Differential Geometry

Revision Guide

Dr. Silvio Fanzon

6 Dec 2024

Table of contents

K		on Guide	3	
		ommended revision strategy	3	
	Chec	cklist	3	
	Cur	Curves		
٠			4	
	1.1	Curvature	5	
	1.2	Frenet frame and torsion	7	
	1.3	Frenet-Serret equations	8	
2	Тор	Topology		
	2.1	Sequences	12	
	2.2	Metric spaces	13	
	2.3	Interior, closure and boundary	14	
	2.4	Hausdorff spaces	16	
	2.5	Continuity	17	
	2.6	Subspace topology	19	
	2.7	Topological basis	19	
	2.8	Product topology	20	
	2.9	Connectedness		
		Path-connectedness		
	2.10	Tutil Connecteditess	22	
3	Surf	Surfaces		
	3.1	Regular Surfaces	24	
	3.2	Smooth maps and tangent plane	25	
	3.3	Examples of Surfaces	28	
	3.4	First fundamental form	29	
	3.5	Length of curves	30	
	3.6	Local isometries	30	
	3.7	Angle between curves	31	
	3.8	Conformal maps	32	
	3.9	Second fundamental form	33	
	3.10	0	33	
	3.11	Curvatures	34	
	3.12	Normal and Geodesic curvatures	36	
	3.13	Local shape of a surface	38	
	0 0	Umbilical points	39	
	J.14		37	
Li	icense	e	41	
	Remo	sa .	41	

Revision Guide

Revision Guide for the Exam of the module **Differential Geometry 661955** 2024/25 at the University of Hull. If you have any question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Full lenght Lecture Notes of the module available at

silviofanzon.com/2024-Differential-Geometry-Notes

Recommended revision strategy

Make sure you are very comfortable with:

- 1. The Definitions, Theorems, Proofs, and Examples contained in this Revision Guide
- 2. The Homework questions
- 3. The 2022/23 and 2023/24 Exam Papers questions.
- 4. The Checklist below

Checklist

You should be comfortable with the following topics/taks:

Curves

- · Regularity of curves
- Computing the length of a curve
- Computing arc-length function and arc-length reparametrization
- Calculating the curvature and torsion of unit-speed curves from the definitions
- Calculating the curvature and torsion of (possibly not unit-speed) curves from the formulae
- Calculating the Frenet frame of a unit-speed curve from the definitions
- Calculating the Frenet frame of a (possibly not unit-speed) unitspeed curve from the formulas
- Applying the Fundamental Theorem of Space Curves to determine if two curves coincide, up to a ridig motion
- Proving that a curve is contained in a plane, and computing the equation of such plane
- Proving that a curve is part of a circle

Topology:

- Proving that a given collection of sets is a topology
- Proving that a given set is open / closed
- Proving that a given topology is discrete
- Comparing two topology, determining which one is finer
- Studying convergent sequences in topological space
- Proving that a given set with a distance function is a metric space

- Studying the topology induced by the metric
- Studying convergent sequences in metric space
- · Studying the interior, closure, boundary and limit points of a set
- · Proving that a topological space is Hausdorff
- Proving that a given function between topological spaces is continuous / sequentially continuous
- Studying the subspace topology of a given subset of a topological space
- Identifying the basis of a given topology
- Showing that a given topological space is connected / pathconnected
- Proving that two given topological spaces are not homeomorphic, by making use of connectedness arguments

Surfaces:

- · Regularity of surface charts
- · Computing reparametrizations of surface charts
- · Calculating the standard unit normal of a surface chart
- Given a surface chart, compute a basis and the equation of the tangent plane
- Calculating the differential of a smooth function between surfaces
- Proving that a given level surface is regular, and computing its tangent plane
- · Proving that a given surface is ruled
- Calculating the first fundamental form of a surface chart
- Proving that a given map is a local isometry / conformal
- Prove that a given parametrization is conformal
- Calculating length and angles of curves on surfaces
- · Calculating the second fundamental form of a surface chart
- Calculating the matrix of the Weingarten map, the principal curvatures and vectors of a surface chart
- · Calculating Gaussian and mean curvature of a surface chart
- Calculating normal and geodesic curvature of a unit-speed curve on a surface
- Calculating the normal and geodesic curvature of a (possibly not unit-speed) curve on a surface from the formulae
- Classifying surface points as elliptic, parabolic, hyperbolic, planar, umbilical

1 Curves

Definition 1.1: Length of a curve

The **length** of the curve $\gamma : (a, b) \to \mathbb{R}^3$ is

$$L(\mathbf{y}) = \int_a^b \|\dot{\mathbf{y}}(u)\| \ du.$$

Example 1.2: Length of the Helix

Question. Compute the length of the Helix

$$\mathbf{\gamma}(t) = (R\cos(t), R\sin(t), Ht), \quad t \in (0, 2\pi).$$

Solution. We compute

$$\dot{\boldsymbol{\gamma}}(t) = (-R\sin(t), R\cos(t), H) \qquad \|\dot{\boldsymbol{\gamma}}(t)\| = \sqrt{R^2 + H^2}$$

$$L(\boldsymbol{\gamma}) = \int_0^{2\pi} \|\dot{\boldsymbol{\gamma}}(u)\| \ du = 2\pi\sqrt{R^2 + H^2}$$

Definition 1.3: Arc-Length of a curve

The **arc-length** along $\mathbf{y}:(a,b)\to\mathbb{R}^3$ from t_0 to t is

$$s: (a,b) \to \mathbb{R}, \qquad s(t) = \int_{t_0}^t |\dot{\mathbf{y}}(u)| du.$$

Example 1.4: Arc-length of Logarithmic Spiral

Question. Compute the arc-length of

$$\mathbf{v}(t) = (e^{kt}\cos(t), e^{kt}\sin(t), 0).$$

Solution. The arc-length starting from t_0 is

$$\dot{\boldsymbol{\gamma}}(t) = e^{kt}(k\cos(t) - \sin(t), k\sin(t) + \cos(t), 0)$$
$$\|\dot{\boldsymbol{\gamma}}(t)\|^2 = (k^2 + 1)e^{2kt}$$

$$s(t) = \int_{t_0}^{t} ||\dot{\boldsymbol{\gamma}}(\tau)|| \ d\tau = \frac{\sqrt{k^2 + 1}}{k} (e^{kt} - e^{kt_0}).$$

Definition 1.5: Unit-speed curve

A curve $\gamma:(a,b)\to\mathbb{R}^3$ is **unit-speed** if

$$\|\dot{\mathbf{y}}(t)\| = 1$$
, $\forall t \in (a,b)$.

Proposition 1.6

Let $\gamma:(a,b)\to\mathbb{R}^3$ be unit-speed. Then

$$\dot{\boldsymbol{\gamma}} \cdot \ddot{\boldsymbol{\gamma}} = 0$$
, $\forall t \in (a, b)$.

Proof

Since γ is unit-speed, we have $\dot{\gamma} \cdot \dot{\gamma} = 1$. Differentiating both sides, we get the thesis:

$$0 = \frac{d}{dt}(\dot{\mathbf{y}} \cdot \dot{\mathbf{y}}) = \ddot{\mathbf{y}} \cdot \dot{\mathbf{y}} + \dot{\mathbf{y}} \cdot \ddot{\mathbf{y}} = 2\dot{\mathbf{y}} \cdot \ddot{\mathbf{y}}.$$

Definition 1.7: Reparametrization

Let $\gamma:(a,b)\to\mathbb{R}^3$. A **reparametrization** of γ is a curve $\tilde{\gamma}:(\tilde{a},\tilde{b})\to\mathbb{R}^3$ such that

$$\tilde{\mathbf{\gamma}}(t) = \mathbf{\gamma}(\phi(t)), \quad \forall t \in (\tilde{a}, \tilde{b}),$$

for $\phi: (\tilde{a}, \tilde{b}) \to (a, b)$ diffeomorphism. We call both ϕ and ϕ^{-1} **reparametrization maps**.

Definition 1.8: Unit-speed reparametrization

Let $\gamma: (a,b) \to \mathbb{R}^3$. A unit-speed reparametrization of γ is a reparametrization $\tilde{\gamma}: (\tilde{a}, \tilde{b}) \to \mathbb{R}^3$ which is unit-speed, that is,

$$\|\dot{\tilde{\mathbf{y}}}(t)\| = 1, \quad \forall t \in (\tilde{a}, \tilde{b}).$$

Definition 1.9: Regular curve

A curve $\mathbf{y}:(a,b)\to\mathbb{R}^3$ is **regular** if

$$\|\dot{\mathbf{y}}(t)\| \neq 0$$
, $\forall t \in (a,b)$

Theorem 1.10: Existence of unit-speed reparametrization

Let γ be a curve. They are equivalent:

- 1. γ is regular,
- 2. γ admits unit-speed reparametrization.

Theorem 1.11: Characterization of unit-speed reparametrizations

Let $\gamma:(a,b)\to\mathbb{R}^3$ be a regular curve. Let $\tilde{\gamma}:(\tilde{a},\tilde{b})\to\mathbb{R}^3$ be a reparametrization of γ , that is,

$$\mathbf{\gamma}(t) = \tilde{\mathbf{\gamma}}(\phi(t)), \quad \forall t \in (a, b)$$

for some diffeomorphism $\phi:(a,b)\to(\tilde{a},\tilde{b})$. We have

1. If $\tilde{\mathbf{y}}$ is unit-speed, there exists $c \in \mathbb{R}$ such that

$$\phi(t) = \pm s(t) + c, \quad \forall t \in (a, b). \tag{1.1}$$

2. If ϕ is given by (1.1), then $\tilde{\gamma}$ is unit-speed.

Definition 1.12: Arc-length reparametrization

Let γ be regular. The **arc-length reparametrization** of γ is

$$\tilde{\boldsymbol{\gamma}} = \boldsymbol{\gamma} \circ s^{-1}$$
,

with s^{-1} inverse of the arc-length function of γ .

Example 1.13: Reparametrization by arc-length

Question. Consider the curve

$$\gamma(t) = (5\cos(t), 5\sin(t), 12t).$$

Prove that γ is regular, and reparametrize it by arc-length. **Solution.** γ is regular because

$$\dot{\mathbf{y}}(t) = (-5\sin(t), 5\cos(t), 12), \qquad ||\dot{\mathbf{y}}(t)|| = 13 \neq 0$$

The arc-length of γ starting from $t_0 = 0$, and its inverse, are

$$s(t) = \int_0^t \|\dot{\mathbf{y}}(u)\| \ du = 13t, \qquad t(s) = \frac{s}{13}.$$

The arc-length reparametrization of γ is

$$\tilde{\boldsymbol{\gamma}}(s) = \boldsymbol{\gamma}(t(s)) = \left(5\cos\left(\frac{s}{13}\right), 5\sin\left(\frac{s}{13}\right), \frac{12}{13}s\right).$$

1.1 Curvature

Definition 1.14: Curvature of unit-speed curve

The **curvature** of a unit-speed curve $\gamma:(a,b)\to\mathbb{R}^3$ is

$$\kappa(t) = \|\ddot{\mathbf{y}}(t)\|.$$

Example 1.15: Curvature of the Circle

Question. Compute the curvature of the circle of radius R > 0

$$\gamma(t) = \left(x_0 + R\cos\left(\frac{t}{R}\right), y_0 + \sin\left(\frac{t}{R}\right), 0\right).$$

Solution. First, check that **y** is unit-speed:

$$\dot{\mathbf{y}}(t) = \left(-\sin\left(\frac{t}{R}\right), \cos\left(\frac{t}{R}\right), 0\right), \qquad \|\dot{\mathbf{y}}(t)\| = 1$$

Now, compute second derivative and curvature

$$\ddot{\mathbf{y}}(t) = \left(-\frac{1}{R}\cos\left(\frac{t}{R}\right), -\frac{1}{R}\sin\left(\frac{t}{R}\right), 0\right),$$

$$\kappa(t) = \|\ddot{\mathbf{y}}(t)\| = \frac{1}{R}.$$

Definition 1.16: Curvature of regular curve

Let $\gamma: (a,b) \to \mathbb{R}^3$ be a regular curve and $\tilde{\gamma}$ be a unit-speed reparametrization of γ , with $\gamma = \tilde{\gamma} \circ \phi$ and $\phi: (a,b) \to (\tilde{a},\tilde{b})$. Let $\tilde{\kappa}: (\tilde{a},\tilde{b}) \to \mathbb{R}$ be the curvature of $\tilde{\gamma}$. The **curvature** of γ is

$$\kappa(t) = \tilde{\kappa}(\phi(t))$$
.

Remark 1.17: Computing curvature of regular γ

- 1. Compute the arc-length s(t) of γ and its inverse t(s).
- 2. Compute the arc-length reparametrization

$$\tilde{\mathbf{\gamma}}(s) = \mathbf{\gamma}(t(s))$$
.

3. Compute the curvature of $\tilde{\gamma}$

$$\tilde{\kappa}(s) = \|\ddot{\tilde{\mathbf{y}}}(s)\|.$$

4. The curvature of γ is

$$\kappa(t) = \tilde{\kappa}(s(t))$$
.

Definition 1.18: Hyperbolic functions

$$\cosh(t) = \frac{e^t + e^{-t}}{2} \qquad \qquad \sinh(t) = \frac{e^t - e^{-t}}{2}
\tanh(t) = \frac{\sinh(t)}{\cosh(t)} \qquad \qquad \coth(t) = \frac{\cosh(t)}{\sinh(t)}
\operatorname{sech}(t) = \frac{1}{\cosh(t)} \qquad \qquad \operatorname{csch}(t) = \frac{1}{\sinh(t)}$$

Theorem 1.19: Properties of Hyperbolic Functions

$$\cosh^2(t) - \sinh^2(t) = 1$$
 $\sinh(t)' = \cosh(t)$
 $\cosh^2(t) + \tanh^2(t) = 1$
 $\cosh(t)' = \sinh(t)$
 $\tanh(t)' = \operatorname{sech}^2(t)$
 $\operatorname{sech}(t)' = -\operatorname{sech}(t) \tanh(t)$

Example 1.20: Curvature of the Catenary

Question. Consider the Catenary curve

$$\gamma(t) = (t, \cosh(t)), \quad t \in \mathbb{R}.$$

- 1. Prove that γ is regular.
- 2. Compute the arc-length reparametrization of γ .
- 3. Compute the curvature of $\tilde{\mathbf{y}}$.
- 4. Compute the curvature of γ .

Solution.

1. γ is regular because

$$\dot{\mathbf{y}}(t) = (1, \sinh(t))$$
$$\|\dot{\mathbf{y}}\| = \sqrt{1 + \sinh^2(t)} = \cosh(t) \ge 1$$

2. The arc-length of \mathbf{y} starting at $t_0 = 0$ is

$$s(t) = \int_0^t \|\dot{\mathbf{y}}(u)\| \ du = \int_0^t \cosh(u) \ du = \sinh(t)$$

where we used that sinh(0) = 0. Moreover,

$$s = \sinh(t)$$
 \iff $s = \frac{e^t - e^{-t}}{2}$ \iff $e^{2t} - 2se^t - 1 = 0$

Substitute $y = e^t$ to obtain

$$e^{2t} - 2se^t - 1 = 0$$
 \iff $y^2 - 2sy - 1 = 0$
 \iff $y_{\perp} = s \pm \sqrt{1 + s^2}$.

Notice that

$$y_{+} = s + \sqrt{1 + s^{2}} \ge s + \sqrt{s^{2}} = s + |s| \ge 0$$

by definition of absolute value. Therefore,

$$e^t = y_+ = s + \sqrt{1+s^2} \quad \Longrightarrow \quad t(s) = \log\left(s + \sqrt{1+s^2}\right)$$

The arc-length reparametrization of γ is

$$\tilde{\boldsymbol{\gamma}}(s) = \boldsymbol{\gamma}(t(s)) = \left(\log\left(s + \sqrt{1 + s^2}\right), \sqrt{1 + s^2}\right)$$

3. Compute the curvature of $\tilde{\gamma}$

$$\begin{split} \dot{\tilde{\mathbf{y}}}(s) &= \left(\frac{1}{\sqrt{1+s^2}}, \frac{s}{\sqrt{1+s^2}}\right) \\ \ddot{\tilde{\mathbf{y}}}(s) &= \left(-\frac{s}{(1+s^2)^{3/2}}, \frac{1}{(1+s^2)^{3/2}}\right) \\ \tilde{\kappa}(s) &= \|\tilde{\tilde{\mathbf{y}}}(s)\| = \frac{1}{1+s^2} \end{split}$$

4. Recalling that $s(t) = \sinh(t)$, the curvature of γ is

$$\kappa(t) = \tilde{\kappa}(s(t)) = \frac{1}{1 + \sinh^2(t)} = \frac{1}{\cosh^2(t)}.$$

Definition 1.21: Vector product

The **vector product** of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ is

$$\mathbf{u} \times \mathbf{v} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_2 \\ v_1 & v_2 & v_3 \end{array} \right|.$$

Theorem 1.22: Geometric Properties of vector product

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ be linearly independent. Then

- $\mathbf{u} \times \mathbf{v}$ is orthogonal to the plane spanned by \mathbf{u}, \mathbf{v}
- $\|\mathbf{u} \times \mathbf{v}\|$ is the area of the parallelogram with sides \mathbf{u}, \mathbf{v}
- The triple $(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})$ is a positive basis of \mathbb{R}^3

Theorem 1.23

For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ it holds:

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$$

Theorem 1.24

Let $\gamma, \eta : (a, b) \to \mathbb{R}^3$. Then, the curve $\gamma \times \eta$ is smooth, and

$$\frac{d}{dt}(\boldsymbol{\gamma} \times \boldsymbol{\eta}) = \dot{\boldsymbol{\gamma}} \times \boldsymbol{\eta} + \boldsymbol{\gamma} \times \dot{\boldsymbol{\eta}}.$$

Theorem 1.25: Curvature formula

Let $\gamma:(a,b)\to\mathbb{R}^3$ be regular. The curvature of γ is

$$\kappa(t) = \frac{\|\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)\|}{\|\dot{\mathbf{y}}(t)\|^3}.$$

Example 1.26: Curvature of the Helix

Question. Consider the Helix of radius R > 0 and rise H,

$$\gamma(t) = (R\cos(t), R\sin(t), Ht).$$

- 1. Prove that γ is regular.
- 2. Compute the curvature of γ .

Solution.

1. γ is regular because

$$\dot{\mathbf{y}}(t) = (-R\sin(t), R\cos(t), H)$$
$$\|\dot{\mathbf{y}}(t)\| = \sqrt{R^2 + H^2} \ge R > 0$$

2. Compute the curvature using the formula:

$$\ddot{\mathbf{y}}(t) = (-R\cos(t), -R\sin(t), 0)$$

$$\dot{\mathbf{y}} \times \ddot{\mathbf{y}} = (RH\sin(t), -RH\cos(t), R^2)$$

$$\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\| = R\sqrt{R^2 + H^2}$$

$$\kappa(t) = \frac{\|\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)\|}{\|\dot{\mathbf{y}}(t)\|^3} = \frac{R}{R^2 + H^2}$$

Example 1.27: Calculation of curvature

Question. Define the curve

$$\boldsymbol{\gamma}(t) = \left(\frac{8}{5}\cos(t), 1 - 2\sin(t), \frac{6}{5}\cos(t)\right).$$

- 1. Prove that γ is regular.
- 2. Compute the curvature of γ .

Solution.

1. γ is regular because

$$\dot{\mathbf{y}} = \left(-\frac{8}{5}\sin(t), -2\cos(t), -\frac{6}{5}\sin(t)\right), \qquad \|\dot{\mathbf{y}}\| = 2 \neq 0.$$

 ${\tt 2.}\,$ Compute the curvature using the formula:

$$\ddot{\mathbf{y}} = \left(-\frac{8}{5}\cos(t), 2\sin(t), -\frac{6}{5}\cos(t)\right) \qquad \|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\| = 4$$

$$\dot{\mathbf{y}} \times \ddot{\mathbf{y}} = \left(-\frac{12}{5}, 0, \frac{16}{5}\right) \qquad \qquad \kappa = \frac{1}{2}.$$

Example 1.28: Different curves, same curvature

Question Let γ be a circle

$$\gamma(t) = (2\cos(t), 2\sin(t), 0),$$

and η be a helix of radius S > 0 and rise H > 0

$$\eta(t) = (S\cos(t), S\sin(t), Ht).$$

Find *S* and *H* such that γ and η have the same curvature. **Solution.** Curvatures of γ and η were already computed:

$$\kappa^{\mathbf{Y}}=rac{1}{2}\,,\quad \kappa^{\mathbf{\eta}}=rac{S}{S^2+H^2}\,.$$

Imposing that $\kappa^{\gamma} = \kappa^{\eta}$, we get

$$\frac{1}{2} = \frac{S}{S^2 + H^2} \quad \Longrightarrow \quad H^2 = 2S - S^2.$$

Choosing S = 1 and H = 1 yields $\kappa^{\gamma} = \kappa^{\eta}$.

1.2 Frenet frame and torsion

Definition 1.29: Frenet frame of unit-speed curve

Let $\gamma: (a, b) \to \mathbb{R}^3$ be unit-speed, with $\kappa \neq 0$.

1. The **tangent vector** to \mathbf{y} at $\mathbf{y}(t)$ is

$$\mathbf{t}(t) = \dot{\mathbf{y}}(t) \,.$$

2. The **principal normal vector** to \mathbf{y} at $\mathbf{y}(t)$ is

$$\mathbf{n}(t) = \frac{\ddot{\mathbf{y}}(t)}{\kappa(t)}.$$

3. The **binormal vector** to \mathbf{y} at $\mathbf{y}(t)$ is

$$\mathbf{b}(t) = \dot{\mathbf{y}}(t) \times \mathbf{n}(t).$$

4. The **Frenet frame** of γ at $\gamma(t)$ is the triple

$$\{\mathbf{t}(t), \mathbf{n}(t), \mathbf{b}(t)\}.$$

Theorem 1.30: Frenet frame is orthonormal basis

Let $\gamma:(a,b)\to\mathbb{R}^3$ be unit-speed, with $\kappa\neq 0$. The Frenet frame

$$\{\mathbf{t}(t), \mathbf{n}(t), \mathbf{b}(t)\}$$

is a positive orthonomal basis of \mathbb{R}^3 for each $t \in (a,b)$.

Definition 1.31: Torsion of unit-speed curve with $\kappa \neq 0$

Let $\gamma:(a,b)\to\mathbb{R}^3$ be unit-speed, with $\kappa\neq 0$. The **torsion** of γ is the unique scalar $\tau(t)$ such that

$$\dot{\mathbf{b}}(t) = -\tau(t)\mathbf{n}(t).$$

In particular,

$$\tau(t) = -\dot{\mathbf{b}}(t) \cdot \mathbf{n}(t).$$

Definition 1.32: Torsion of regular curve with $\kappa \neq 0$

Let $\gamma: (a,b) \to \mathbb{R}^3$ be a regular curve with $\kappa \neq 0$. Let $\tilde{\gamma}$ be a unit-speed reparametrization of γ with $\gamma = \tilde{\gamma} \circ \phi$ and $\phi: (a,b) \to (\tilde{a},\tilde{b})$. Let $\tilde{\tau}: (\tilde{a},\tilde{b}) \to \mathbb{R}$ be the torsion of $\tilde{\gamma}$. The **torsion** of γ is

$$\tau(t) = \tilde{\tau}(\phi(t))$$
.

Example 1.33: Curvature and torsion of Helix with Frenet frame

Question. Consider the Helix of radius R > 0 and rise H

$$\gamma(t) = (R\cos(t), R\sin(t), tH), \quad t \in \mathbb{R}.$$

- 1. Compute the arc-length reparametrization $\tilde{\gamma}$ of γ .
- 2. Compute Frenet frame, curvature and torsion of $\tilde{\gamma}$.
- 3. Compute curvature and torsion γ .

Solution.

1. The arc-length of γ starting at $t_0 = 0$, and its inverse, are

$$\dot{\mathbf{y}}(t) = (-R\sin(t), R\cos(t), H)$$

$$\|\dot{\mathbf{y}}\| = \rho, \qquad \rho := \sqrt{R^2 + H^2}$$

$$s(t) = \int_0^t \|\dot{\mathbf{y}}(u)\| \ du = \rho t, \qquad t(s) = \frac{s}{\rho}.$$

The arc-length reparametrization $\tilde{\boldsymbol{\gamma}}$ of $\boldsymbol{\gamma}$ is

$$\tilde{\gamma}(s) = \gamma(t(s)) = \left(R\cos\left(\frac{s}{\rho}\right), R\sin\left(\frac{s}{\rho}\right), \frac{Hs}{\rho}\right).$$

2. Compute the tangent vector to $\tilde{\boldsymbol{\gamma}}$ and its derivative

$$\tilde{\mathbf{t}}(s) = \dot{\tilde{\mathbf{y}}} = \frac{1}{\rho} \left(-R \sin\left(\frac{s}{\rho}\right), R \cos\left(\frac{s}{\rho}\right), H \right)$$
$$\dot{\tilde{\mathbf{t}}}(s) = \frac{R}{\rho^2} \left(-\cos\left(\frac{s}{\rho}\right), -\sin\left(\frac{s}{\rho}\right), 0 \right)$$

The curvature of $\tilde{\mathbf{y}}$ is

$$\tilde{\kappa}(s) = \|\ddot{\tilde{\mathbf{y}}}(s)\| = \|\dot{\tilde{\mathbf{t}}}(s)\| = \frac{R}{R^2 + H^2}.$$

The principal normal vector and binormal are

$$\widetilde{\mathbf{n}}(s) = \frac{\widetilde{\mathbf{t}}}{\widetilde{\kappa}} = \left(-\cos\left(\frac{s}{\rho}\right), -\sin\left(\frac{s}{\rho}\right), 0\right)$$

$$\widetilde{\mathbf{b}}(s) = \widetilde{\mathbf{t}} \times \widetilde{\mathbf{n}} = \frac{1}{\rho} \left(H\sin\left(\frac{s}{\rho}\right), -H\cos\left(\frac{s}{\rho}\right), R\right).$$

We are left to compute the torsion of $\tilde{\mathbf{y}}$:

$$\dot{\tilde{\mathbf{b}}}(s) = \frac{H}{\rho^2} \left(\cos \left(\frac{s}{\rho} \right), \sin \left(\frac{s}{\rho} \right), 0 \right)$$

$$\dot{\tilde{\mathbf{b}}}(s) \cdot \tilde{\mathbf{n}}(s) = -\frac{H}{\rho^2}$$

$$\tilde{\tau}(s) = -\dot{\tilde{\mathbf{b}}}(s) \cdot \tilde{\mathbf{n}}(s) = \frac{H}{\rho^2} = \frac{H}{R^2 + H^2}$$

3. The curvature and torsion of γ are

$$\kappa(t) = \tilde{\kappa}(s(t)) = \frac{R}{R^2 + H^2}$$
$$\tau(t) = \tilde{\tau}(s(t)) = \frac{H}{R^2 + H^2}$$

Theorem 1.34: Torsion formula

Let $\gamma: (a, b) \to \mathbb{R}^3$ be regular, with $\kappa \neq 0$. The torsion of γ is

$$\tau(t) = \frac{(\dot{\boldsymbol{\gamma}}(t) \times \ddot{\boldsymbol{\gamma}}(t)) \cdot \ddot{\boldsymbol{\gamma}}(t)}{\|\dot{\boldsymbol{\gamma}}(t) \times \ddot{\boldsymbol{\gamma}}(t)\|^2}.$$

Example 1.35: Torsion of the Helix with formula

Question. Consider the Helix of radius R > 0 and rise H > 0

$$\gamma(t) = (R\cos(t), R\sin(t), Ht), \quad t \in \mathbb{R}.$$

- 1. Prove that \mathbf{y} is regular with non-vanishing curvature.
- 2. Compute the torsion of γ .

Solution.

1. γ is regular with non-vanishing curvature, since

$$\|\dot{\mathbf{y}}(t)\| = \sqrt{R^2 + H^2} \ge R > 0$$
, $\kappa = \frac{R}{R^2 + H^2} > 0$.

2. We compute the torsion using the formula:

$$\dot{\mathbf{y}}(t) = (-R\sin(t), R\cos(t), H)$$

$$\ddot{\mathbf{y}}(t) = (-R\cos(t), -R\sin(t), 0)$$

$$\ddot{\mathbf{y}}(t) = (R\sin(t), -R\cos(t), 0)$$

$$\dot{\mathbf{y}} \times \ddot{\mathbf{y}} = (RH\sin(t), -RH\cos(t), R^2)$$

$$\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\| = R\sqrt{R^2 + H^2}$$

$$(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}} = R^2H$$

$$\tau(t) = \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|^2} = \frac{H}{R^2 + H^2}$$

Example 1.36: Calculation of torsion

Question. Compute the torsion of the curve

$$\boldsymbol{\gamma}(t) = \left(\frac{8}{5}\cos(t), 1 - 2\sin(t), \frac{6}{5}\cos(t)\right).$$

Solution. Resuming calculations from Example 1.27,

$$\ddot{\mathbf{y}} = \left(\frac{8}{5}\sin(t), 2\cos(t), \frac{6}{5}\sin(t)\right)$$
$$(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}} = \frac{96}{25}\sin(t) - \frac{96}{25}\sin(t) = 0$$
$$\tau(t) = \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|^2} = 0$$

Theorem 1.37: General Frenet frame formulas

The Frenet frame of a regular curve γ is

$$t = \frac{\dot{\gamma}}{\|\dot{\gamma}\|} \,, \quad b = \frac{\dot{\gamma} \times \ddot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\|} \,, \quad n = b \times t = \frac{(\dot{\gamma} \times \ddot{\gamma}) \times \dot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\| \|\dot{\gamma}\|}$$

Example 1.38: Twisted cubic

Question. Let $\mathbf{y}: \mathbb{R} \to \mathbb{R}^3$ be the *twisted cubic*

$$\boldsymbol{\gamma}(t) = (t, t^2, t^3).$$

- 1. Is γ regular/unit-speed? Justify your answer.
- 2. Compute the curvature and torsion of γ .
- 3. Compute the Frenet frame of γ .

Solution.

1. γ is regular, but not-unit speed, because

$$\dot{\mathbf{y}}(t) = (1, 2t, 3t^2)$$

$$\|\dot{\mathbf{y}}(t)\| = \sqrt{1 + 4t^2 + 9t^4} \ge 1 \qquad \|\dot{\mathbf{y}}(1)\| = \sqrt{14} \ne 1$$

2. Compute the following quantities

$$\ddot{\mathbf{y}} = (0, 2, 6t) \qquad \qquad ||\dot{\mathbf{y}} \times \ddot{\mathbf{y}}|| = 2\sqrt{1 + 9t^2 + 9t^4}$$

$$\ddot{\mathbf{y}} = (0, 0, 6) \qquad (\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}} = 12$$

$$\dot{\mathbf{y}} \times \ddot{\mathbf{y}} = (6t^2, -6t, 2)$$

Compute curvature and torsion using the formulas:

$$\kappa(t) = \frac{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|}{\|\dot{\mathbf{y}}\|^3} = \frac{2\sqrt{1 + 9t^2 + 9t^4}}{(1 + 4t^2 + 9t^4)^{3/2}}$$
$$\tau(t) = \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|^2} = \frac{3}{1 + 9t^2 + 9t^4}.$$

3. By the Frenet frame formulas and the above calculations,

$$\mathbf{t} = \frac{\dot{\mathbf{y}}}{\|\dot{\mathbf{y}}\|} = \frac{1}{\sqrt{1 + 4t^2 + 9t^4}} (1, 2t, 3t^2)$$

$$\mathbf{b} = \frac{\dot{\mathbf{y}} \times \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|} = \frac{1}{\sqrt{1 + 9t^2 + 9t^4}} (3t^2, -3t, 1)$$

$$\mathbf{n} = \mathbf{b} \times \mathbf{t} = \frac{(-9t^3 - 2t, 1 - 9t^4, 6t^3 + 3t)}{\sqrt{1 + 9t^2 + 9t^4}} \sqrt{1 + 4t^2 + 9t^4}$$

1.3 Frenet-Serret equations

Theorem 1.39: Frenet-Serret equations

Let $\gamma:(a,b)\to\mathbb{R}^3$ be unit-speed with $\kappa\neq 0$. The Frenet frame of γ solves the **Frenet-Serret** equations

$$\dot{\mathbf{t}} = \kappa \mathbf{n}$$
, $\dot{\mathbf{n}} = -\kappa \mathbf{t} + \tau \mathbf{b}$, $\dot{\mathbf{b}} = -\tau \mathbf{n}$

Definition 1.40: Rigid motion

A **rigid motion** of \mathbb{R}^3 is a map $M: \mathbb{R}^3 \to \mathbb{R}^3$ of the form

$$M(\mathbf{v}) = R\mathbf{v} + \mathbf{p}, \qquad \mathbf{v} \in \mathbb{R}^3,$$

where $\mathbf{p} \in \mathbb{R}^3$, and $R \in SO(3)$ rotation matrix,

$$SO(3) = \{R \in \mathbb{R}^{3\times 3} : R^T R = I, \det(R) = 1\}.$$

Theorem 1.41: Fundamental Theorem of Space Curves

Let $\kappa, \tau : (a, b) \to \mathbb{R}$ be smooth, with $\kappa > 0$. Then:

- 1. There exists a unit-speed curve $\gamma:(a,b)\to\mathbb{R}^3$ with curvature $\kappa(t)$ and torsion $\tau(t)$.
- 2. Suppose that $\tilde{\gamma}:(a,b)\to\mathbb{R}^3$ is a unit-speed curve whose curvature $\tilde{\kappa}$ and torsion $\tilde{\tau}$ satisfy

$$\tilde{\kappa}(t) = \kappa(t), \quad \tilde{\tau}(t) = \tau(t), \quad \forall t \in (a, b).$$

There exists a rigid motion $M: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$\tilde{\mathbf{y}}(t) = M(\mathbf{y}(t)), \quad \forall t \in (a, b).$$

Example 1.42: Application of FTSC

Question. Consider the curve

$$\mathbf{\gamma}(t) = \left(\sqrt{3}\,t - \sin(t), \sqrt{3}\sin(t) + t, 2\cos(t)\right).$$

- 1. Calculate the curvature and torsion of γ .
- 2. The helix of radius R and rise H is parametrized by

$$\eta(t) = (R\cos(t), R\sin(t), Ht).$$

Recall that η has curvature and torsion

$$\kappa^{\eta} = \frac{R}{R^2 + H^2}, \qquad \tau^{\eta} = \frac{H}{R^2 + H^2}.$$

Prove that there exist a rigid motion $M: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$\gamma(t) = M(\eta(t)), \quad \forall t \in \mathbb{R}.$$
(1.2)

Solution.

1. Compute curvature and torsion with the formulas

$$\dot{\mathbf{y}}(t) = \left(\sqrt{3} - \cos(t), \sqrt{3}\cos(t) + 1, -2\sin(t)\right)$$

$$\ddot{\mathbf{y}}(t) = \left(\sin(t), -\sqrt{3}\sin(t), -2\cos(t)\right)$$

$$\ddot{\mathbf{y}}(t) = (\cos(t), -\sqrt{3}\cos(t), 2\sin(t))$$

$$\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t) = \left(-2\left(\sqrt{3} + \cos(t)\right), 2\left(\sqrt{3}\cos(t) - 1\right), -4\sin(t)\right)$$

$$\|\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)\|^2 = 32$$

$$\|\dot{\mathbf{y}}(t)\|^2 = 8$$

$$(\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)) \cdot \ddot{\mathbf{y}}(t) = -8$$

$$\kappa(t) = \frac{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|}{\|\dot{\mathbf{y}}\|^3} = \frac{\sqrt{32}}{8^{\frac{3}{2}}} = \frac{1}{4}$$

$$\tau(t) = \frac{(\dot{\mathbf{y}} \times \dot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|^2} = \frac{-8}{32} = -\frac{1}{4}.$$

2. Equating $\kappa = \kappa^{\eta}$ and $\tau = \tau^{\eta}$, we obtain

$$\frac{R}{R^2 + H^2} = \frac{1}{4}, \qquad \frac{H}{R^2 + H^2} = -\frac{1}{4}$$

Rearranging both equalities we get

$$R^2 + H^2 = 4R$$
, $R^2 + H^2 = -4H$.

from which we find the relation R = -H. Substituting into $R^2 + H^2 = -4H$, we get

$$H = -2$$
, $R = -H = 2$.

For these values of R and H we have $\kappa = \kappa^{\eta}$ and $\tau = \tau^{\eta}$. By the FTSC, there exists a rigid motion $M : \mathbb{R}^3 \to \mathbb{R}^3$ satisfying (1.2).

Theorem 1.43: Curves contained in a plane - Part I

Let $\mathbf{\gamma}: (a,b) \to \mathbb{R}^3$ be regular with $\kappa \neq 0$. They are equivalent:

1. The torsion of γ satisfies

$$\tau(t) = 0$$
, $\forall t \in (a, b)$.

2. γ is contained in a plane: There exists a vector $\mathbf{P} \in \mathbb{R}^3$ and a scalar $d \in \mathbb{R}$ such that

$$\mathbf{y}(t) \cdot \mathbf{P} = d$$
, $\forall t \in (a, b)$.

Theorem 1.44: Curves contained in a plane - Part II

Let $\mathbf{\gamma}: (a,b) \to \mathbb{R}^3$ be regular, with $\kappa \neq 0$ and $\tau = 0$. Then, the binormal **b** is a constant vector, and $\mathbf{\gamma}$ is contained in the plane of equation

$$(\mathbf{x} - \mathbf{y}(t_0)) \cdot \mathbf{b} = 0$$
.

Example 1.45: A planar curve

Question. Consider the curve

$$\gamma(t) = (t, 2t, t^4), \quad t > 0.$$

- 1. Prove that γ is regular.
- 2. Compute the curvature and torsion of γ .
- 3. Prove that γ is contained in a plane. Compute the equation of such plane.

Solution.

- 1. γ is regular because $\dot{\gamma}(t) = (1, 2, 4t^3) \neq \mathbf{0}$.
- 2. Compute the following quantities

$$\begin{aligned} \|\dot{\mathbf{y}}\| &= \sqrt{5 + 16t^4} & \qquad \dot{\mathbf{y}} \times \ddot{\mathbf{y}} &= 12(2t^2, -t^2, 0) \\ \ddot{\mathbf{y}} &= 12(0, 0, t^2) & \qquad \|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\| &= 12\sqrt{5}t^2 \\ \ddot{\mathbf{y}} &= 24(0, 0, t) & \qquad (\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}} &= 0 \end{aligned}$$

Compute curvature and torsion with the formulas

$$\kappa(t) = \frac{\dot{\mathbf{y}} \times \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}}\|^3} = \frac{12\sqrt{5}t^2}{\sqrt{5 + 16t^4}}$$
$$\tau(t) = \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|} = 0.$$

3. γ lies in a plane because $\tau = 0$. The binormal is

$$\mathbf{b} = \frac{\dot{\mathbf{y}} \times \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|} = \frac{1}{\sqrt{5}} (2, -1, 0).$$

At $t_0 = 0$ we have $\gamma(0) = \mathbf{0}$. The equation of the plane containing γ is then $\mathbf{x} \cdot \mathbf{b} = 0$, which reads

$$\frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}y = 0 \quad \Longrightarrow \quad 2x - y = 0.$$

Theorem 1.46: Curves contained in a circle

Let $\gamma:(a,b)\to\mathbb{R}^3$ be unit-speed. They are equivalent:

- 1. γ is contained in a circle of radius R > 0.
- 2. There exists R > 0 such that

$$\kappa(t) = \frac{1}{R}, \quad \tau(t) = 0, \quad \forall t \in (a, b).$$

Example 1.47: A curve contained in a circle

Question. Consider the curve

$$\gamma(t) = \left(\frac{4}{5}\cos(t), 1 - \sin(t), -\frac{3}{5}\cos(t)\right).$$

- 1. Prove that γ is unit-speed.
- 2. Compute Frenet frame, curvature and torsion of γ .
- 3. Prove that γ is part of a circle.

Solution.

1. γ is unit-speed because

$$\dot{\mathbf{y}}(t) = \left(-\frac{4}{5}\sin(t), -\cos(t), \frac{3}{5}\sin(t)\right)$$
$$\|\dot{\mathbf{y}}(t)\|^2 = \frac{16}{25}\sin^2(t) + \cos^2(t) + \frac{9}{25}\sin^2(t) = 1$$

2. As γ is unit-speed, the tangent vector is $\mathbf{t}(t) = \dot{\gamma}(t)$. The curvature, normal, binormal and torsion are

$$\dot{\mathbf{t}}(t) = \left(-\frac{4}{5}\cos(t), \sin(t), \frac{3}{5}\cos(t)\right)$$

$$\kappa(t) = \|\dot{\mathbf{t}}(t)\| = \frac{16}{25}\cos^2(t) + \sin^2(t) + \frac{9}{25}\cos^2(t) = 1$$

$$\mathbf{n}(t) = \frac{1}{\kappa(t)}\ddot{\mathbf{y}}(t) = \left(-\frac{4}{5}\cos(t), \sin(t), \frac{3}{5}\cos(t)\right)$$

$$\mathbf{b}(t) = \dot{\mathbf{y}}(t) \times \mathbf{n}(t) = \left(-\frac{3}{5}, 0, -\frac{4}{5}\right)$$

$$\dot{\mathbf{b}} = \mathbf{0}$$

$$\tau = -\dot{\mathbf{b}} \cdot \mathbf{n} = 0$$

3. The curvature of γ is constant and the torsion is zero. Therefore γ is contained in a circle of radius

$$R=\frac{1}{\kappa}=1.$$

2 Topology

Definition 2.1: Topological space

Let X be a set and \mathcal{T} a collection of subsets of X. We say that \mathcal{T} is a **topology** on X if the following 3 properties hold:

- (A1) The sets \emptyset , X belong to \mathcal{T} ,
- (A2) If $\{A_i\}_{i\in I}$ is an arbitrary family of elements of \mathcal{T} , then

$$\bigcup_{i\in I}A_i\in\mathcal{T}.$$

• (A₃) If $A, B \in \mathcal{T}$ then $A \cap B \in \mathcal{T}$.

Further, we say:

- The pair (X, \mathcal{T}) is a **topological space**.
- The elements of *X* are called **points**.
- The sets in the topology $\mathcal T$ are called **open sets**.

Definition 2.2: Trivial topology

Let *X* be a set. The **trivial topology** on *X* is the collection of sets

$$\mathcal{T}_{\text{trivial}} := \{\emptyset, X\}.$$

Definition 2.3: Discrete topology

Let X be a set. The **discrete topology** on X is the collection of all subsets of X

$$\mathcal{T}_{\text{discrete}} := \{ A : A \subseteq X \}.$$

Definition 2.4: Open set of \mathbb{R}^n

Let $A \subseteq \mathbb{R}^n$. We say that the set A is **open** if it holds:

$$\forall \mathbf{x} \in A, \ \exists r > 0 \ \text{s.t.} \ B_r(\mathbf{x}) \subseteq A, \tag{2.1}$$

where $B_r(\mathbf{x})$ is the ball of radius r > 0 centered at \mathbf{x}

$$B_r(\mathbf{x}) := \{ \mathbf{y} \in \mathbb{R}^n : \|\mathbf{y} - \mathbf{x}\| < r \},$$

and the **Euclidean norm** of $\mathbf{x} \in \mathbb{R}^n$ is defined by

$$\|\mathbf{x}\| := \sqrt{\sum_{i=1}^n x_i^2}$$
.

Definition 2.5: Euclidean topology of \mathbb{R}^n

The **Euclidean topology** on \mathbb{R}^n is the collection of sets

$$\mathcal{T}_{\text{euclid}} := \{ A : A \subseteq \mathbb{R}^n, A \text{ is open} \}.$$

Proof: $\mathcal{T}_{\text{euclid}}$ is a topology on \mathbb{R}^n

To prove $\mathcal{T}_{\text{euclid}}$ is a topology on \mathbb{R}^n , we need to check the axioms:

- (A1) We have Ø, ℝⁿ ∈ 𝒯_{euclid}: Indeed Ø is open because there is no point **x** for which (2.1) needs to be checked. Moreover, ℝⁿ is open because (2.1) holds with any radius r > 0.
- (A2) Let $A_i \in \mathcal{T}_{\text{euclid}}$ for all $i \in I$. Define the union $A = \bigcup_i A_i$. We need to check that A is open. Let $\mathbf{x} \in A$. By definition of union, there exists an index $i_0 \in I$ such that $\mathbf{x} \in A_{i_0}$. Since A_{i_0} is open, by (2.1) there exists r > 0 such that $B_r(\mathbf{x}) \subseteq A_{i_0}$. As $A_{i_0} \subseteq A$, we conclude that $B_r(\mathbf{x}) \subseteq A$, so that $A \in \mathcal{T}_{\text{euclid}}$.
- (A₃) Let $A, B \in \mathcal{T}_{\text{euclid}}$. We need to check that $A \cap B$ is open. Let $\mathbf{x} \in A \cap B$. Therefore $\mathbf{x} \in A$ and $\mathbf{x} \in B$. Since A and B are open, by (2.1) there exist $r_1, r_2 > 0$ such that $B_{r_1}(\mathbf{x}) \subseteq A$ and $B_{r_n}(\mathbf{x}) \subseteq B$. Set $r := \min\{r_1, r_2\}$. Then

$$B_r(\mathbf{x}) \subseteq B_{r_1}(\mathbf{x}) \subseteq A$$
, $B_r(\mathbf{x}) \subseteq B_{r_2}(\mathbf{x}) \subseteq B$,

Hence $B_r(\mathbf{x}) \subseteq A \cap B$, showing that $A \cap B \in \mathcal{T}_{\text{euclid}}$.

This proves that $\mathcal{T}_{\text{euclid}}$ is a topology on \mathbb{R}^n .

Proposition 2.6: $B_r(\mathbf{x})$ is an open set of $\mathcal{T}_{\text{euclid}}$

Let \mathbb{R}^n be equipped with the Euclidean topology $\mathcal{T}_{\text{euclid}}$. Let r > 0 and $\mathbf{x} \in \mathbb{R}^n$. Then $B_r(\mathbf{x}) \in \mathcal{T}_{\text{euclid}}$.

Proof

To prove $B_r(\mathbf{x}) \in \mathcal{T}_{\text{euclid}}$, we need to show that $B_r(\mathbf{x})$ satisfies (2.1). Therefore, let $\mathbf{y} \in B_r(\mathbf{x})$. In particular

$$\|\mathbf{x} - \mathbf{y}\| < r. \tag{2.2}$$

Define $\varepsilon := r - \|\mathbf{x} - \mathbf{y}\|$. Note that $\varepsilon > 0$ by (2.2). We claim that

$$B_{\varepsilon}(\mathbf{y}) \subseteq B_r(\mathbf{x})$$
. (2.3)

Indeed, let $\mathbf{z} \in B_{\varepsilon}(\mathbf{y})$. By triangle inequality we have

$$\|\mathbf{z} - \mathbf{x}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\| < \|\mathbf{x} - \mathbf{y}\| + \varepsilon = r$$
,

where we used that $\|\mathbf{y} - \mathbf{z}\| < \varepsilon$ and the definition of ε . Hence $\mathbf{z} \in B_r(\mathbf{x})$, proving (2.3). Thus, $B_r(\mathbf{x})$ satisfies (2.1), ending the proof.

Definition 2.7: Closed set

Let (X, \mathcal{T}) be a topological space. A set $C \subseteq X$ is **closed** if

$$C^c \in \mathcal{T}$$
,

where $C^c := X \setminus C$ is the complement of C in X.

Proposition 2.8

Let (X, \mathcal{T}) be a topological space. Properties (A1)-(A2)-(A3) of \mathcal{T} are equivalent to (C1)-(C2)-(C3), where

- (C1) \emptyset , X are closed.
- (C2) If C_i is closed for all $i \in I$, then $\bigcap_{i \in I} C_i$ is closed.
- (C₃) If C_1 , C_2 are closed then $C_1 \cup C_2$ is closed.

Definition 2.9: Comparing topologies

Let *X* be a set and let \mathcal{T}_1 , \mathcal{T}_2 be topologies on *X*.

- 1. \mathcal{T}_1 is **finer** than \mathcal{T}_2 if $\mathcal{T}_2 \subseteq \mathcal{T}_1$.
- 2. \mathcal{T}_1 is **strictly finer** than \mathcal{T}_2 if $\mathcal{T}_2 \subseteq \mathcal{T}_1$.
- 3. \mathcal{T}_1 and \mathcal{T}_2 are the **same** topology if $\mathcal{T}_1 = \mathcal{T}_2$.

Example 2.10: Comparing $\mathcal{T}_{trivial}$ and $\mathcal{T}_{discrete}$

Let *X* be a set. Then $\mathcal{T}_{trivial} \subseteq \mathcal{T}_{discrete}$.

Example 2.11: Cofinite topology on \mathbb{R}

Question. The **cofinite topology** on \mathbb{R} is the collection of sets

$$\mathcal{T}_{\text{cofinite}} := \{ U \subseteq \mathbb{R} : U^c \text{ is finite, or } U^c = \mathbb{R} \}.$$

- 1. Prove that $(\mathbb{R}, \mathcal{T}_{\text{cofinite}})$ is a topological space.
- 2. Prove that $\mathcal{T}_{cofinite} \subseteq \mathcal{T}_{euclid}$.
- 3. Prove that $\mathcal{T}_{cofinite} \neq \mathcal{T}_{euclid}$.

Solution. Part 1. Show that the topology properties are satisfied:

(A1) We have $\emptyset \in \mathcal{T}_{\text{cofinite}}$, since $\emptyset^c = \mathbb{R}$. We have $\mathbb{R} \in \mathcal{T}_{\text{cofinite}}$ because $\mathbb{R}^c = \emptyset$ is finite.

(A2) Let $U_i \in \mathcal{T}_{\text{cofinite}}$ for all $i \in I$, and define $U := \bigcup_{i \in I} U_i$. By the De Morgan's laws we have

$$U^c = \left(\cup_{i \in I} U_i \right)^c = \cap_{i \in I} U_i^c.$$

We have two cases:

1. There exists $i_0 \in I$ such that $U_{i_0}^c$ is finite. Then

$$U^c = \cap_{i \in I} U_i^c \subset U_{i_0}^c ,$$

and therefore U^c is finite, showing that $U \in \mathcal{T}_{\text{cofinite}}$.

2. None of the sets U_i^c is finite. Therefore $U_i^c = \mathbb{R}$ for all $i \in I$, from which we deduce

$$U^c = \cap_{i \in I} U_i^c = \mathbb{R} \implies U \in \mathcal{T}_{\text{cofinite}}.$$

In both cases, we have $U \in \mathcal{T}_{\text{cofinite}}$, so that (A2) holds. (A3) Let $U, V \in \mathcal{T}_{\text{cofinite}}$. Set $A = U \cap V$. Then

$$A^c = U^c \cup V^c.$$

We have 2 possibilities:

- 1. U^c, V^c finite: Then A^c is finite, and $A \in \mathcal{T}_{\text{cofinite}}$.
- 2. $U^c = \mathbb{R}$ or $V^c = \mathbb{R}$: Then $A^c = \mathbb{R}$, and $A \in \mathcal{T}_{\text{cofinite}}$.

In all cases, we have shown that $A \in \mathcal{T}_{\text{cofinite}}$, so that (A₃) holds.

Part 2. Let $U \in \mathcal{T}_{\text{cofinite}}$. We have two cases:

• U^c is finite. Then $U^c = \{x_1, ..., x_n\}$ for some points $x_i \in \mathbb{R}$. Up to relabeling the points, we can assume that $x_i < x_j$ when i < j. Therefore,

$$U = \{x_1, \dots, x_n\}^c = \bigcup_{i=0}^n (x_i, x_{i+1}), \quad x_0 := -\infty, \quad x_{n+1} := \infty.$$

The sets (x_i, x_{i+1}) are open in $\mathcal{T}_{\text{euclid}}$, and therefore $U \in \mathcal{T}_{\text{euclid}}$.

• $U^c = \mathbb{R}$. Then $U = \emptyset$, which belongs to $\mathcal{T}_{\text{euclid}}$ by (A1).

In both cases, $U \in \mathcal{T}_{\text{euclid}}$. Therefore $\mathcal{T}_{\text{cofinite}} \subseteq \mathcal{T}_{\text{euclid}}$. **Part 3.** consider the interval U = (0, 1). Then $U \in \mathcal{T}_{\text{euclid}}$. However U^c is neither \mathbb{R} , nor finite. Thus $U \notin \mathcal{T}_{\text{cofinite}}$.

2.1 Sequences

Definition 2.12: Convergent sequence

Let (X, \mathcal{T}) be a topological space. Consider a sequence $\{x_n\} \subseteq X$ and a point $x \in X$. We say that x_n converges to x_0 in the topology \mathcal{T} , if the following property holds:

$$\forall U \in \mathcal{T} \text{ s.t. } x_0 \in U, \ \exists N = N(U) \in \mathbb{N} \text{ s.t.}$$

$$x_n \in U, \ \forall n \ge N.$$
(2.4)

The convergence of x_n to x_0 is denoted by $x_n \to x_0$.

Proposition 2.13: Convergent sequences in $\mathcal{T}_{trivial}$

Let *X* be equipped with $\mathcal{T}_{\text{trivial}}$. Let $\{x_n\} \subseteq X$, $x_0 \in X$. Then $x_n \to x_0$.

Proof

To show that $x_n \to x_0$ we need to check that (2.4) holds. Let $U \in \mathcal{T}_{\text{trivial}}$ with $x_0 \in U$. We have two cases:

- $U = \emptyset$: There is nothing to prove, since x_0 cannot be in U.
- U = X: Take N = 1. Since U = X, we have $x_n \in U$ for all $n \ge 1$.

Thus (2.4) holds for all the sets $U \in \mathcal{T}_{trivial}$, showing that $x_n \to x_0$.

Warning

Proposition 2.13 shows the topological limit may **not be unique!**

Proposition 2.14: Convergent sequences in $\mathcal{T}_{discrete}$

Let *X* be equipped with $\mathcal{T}_{\text{discrete}}$. Let $\{x_n\} \subseteq X, x_0 \in X$. They are equivalent:

- 1. $x_n \to x_0$ in the topology $\mathcal{T}_{\text{discrete}}$.
- 2. $\{x_n\}$ is eventually constant: $\exists N \in \mathbb{N}$ s.t. $x_n = x_0, \forall n \geq N$

Proof

Part 1. Assume that $x_n \to x_0$. Let $U = \{x_0\}$. Then $U \in \mathcal{T}_{\text{discrete}}$. Since $x_n \to x_0$, by (2.4) there exists $N \in \mathbb{N}$ such that

$$x_n \in U$$
, $\forall n \geq N$.

As $U = \{x_0\}$, we infer $x_n = x_0$ for all $n \ge N$. Hence x_n is eventually constant.

Part 2. Assume that x_n is eventually equal to x_0 , that is, there exists $N \in \mathbb{N}$ such that

$$x_n = x_0 \,, \quad \forall \, n \ge N \,. \tag{2.5}$$

Let $U \in \mathcal{T}$ be an open set such that $x_0 \in U$. By (2.5) we have that

$$x_n \in U$$
, $\forall n \geq N$.

Since *U* was arbitrary, we conclude that $x_n \to x_0$.

Definition 2.15: Classical convergence in \mathbb{R}^n

Let $\{\mathbf{x}_n\} \subseteq \mathbb{R}^n$ and $\mathbf{x}_0 \in \mathbb{R}^n$. We say that \mathbf{x}_n converges \mathbf{x}_0 in the classical sense if $\|\mathbf{x}_n - \mathbf{x}_0\| \to 0$, that is,

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } \|\mathbf{x}_n - \mathbf{x}_0\| < \varepsilon, \forall n \ge N.$$

Proposition 2.16: Convergent sequences in $\mathcal{T}_{\text{euclid}}$

Let \mathbb{R}^n be equipped with $\mathcal{T}_{\text{euclid}}$. Let $\{x_n\} \subseteq \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$. They are equivalent:

- 1. $\mathbf{x}_n \to \mathbf{x}_0$ in the topology $\mathcal{T}_{\text{euclid}}$.
- 2. $\mathbf{x}_n \to \mathbf{x}_0$ in the classical sense.

Proof

Part 1. Assume $\mathbf{x}_n \to \mathbf{x}_0$ with respect to $\mathcal{T}_{\text{euclid}}$. Fix $\varepsilon > 0$ and define $U := B_{\varepsilon}(\mathbf{x}_0)$. By Proposition 2.6, we have $U \in \mathcal{T}$. Moreover $\mathbf{x}_0 \in U$. As $\mathbf{x}_n \to \mathbf{x}_0$ with respect to $\mathcal{T}_{\text{euclid}}$, there exists $N \in \mathbb{N}$ such that

$$\mathbf{x}_n \in U$$
, $\forall n \geq N$.

As $U = B_{\varepsilon}(\mathbf{x}_0)$, the above reads

$$\|\mathbf{x}_n - \mathbf{x}_0\| < \varepsilon$$
, $\forall n \geq N$,

showing that $\mathbf{x}_n \to \mathbf{x}_0$ in the classical sense.

Part 2. Assume $\mathbf{x}_n \to \mathbf{x}_0$ in the classical sense. Let $U \in \mathcal{T}_{\text{euclid}}$ be an arbitrary set such that $\mathbf{x}_0 \in U$. By definition of Euclidean topology, this means that there exists r > 0 such that $B_r(\mathbf{x}_0) \subseteq U$. As $\mathbf{x}_n \to \mathbf{x}_0$ in the classical sense, there exists $N \in \mathbb{N}$ such that

$$\|\mathbf{x}_n - \mathbf{x}_0\| < r$$
, $\forall n \geq N$.

By definition of $B_r(\mathbf{x}_0)$, and since $B_r(\mathbf{x}_0) \subseteq U$, the above is equivalent to

$$\mathbf{x}_n \in B_r(\mathbf{x}_0) \subseteq U, \quad \forall n \ge N.$$

As *U* is arbitrary, we infer $\mathbf{x}_n \to \mathbf{x}_0$ with respect to $\mathcal{T}_{\text{euclid}}$.

Proposition 2.17

Let *X* be a set and $\mathcal{T}_1, \mathcal{T}_2$ be topologies on *X*. Suppose that $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

Let $\{x_n\} \subset X$ and $x_0 \in X$. We have

$$x_n \to x_0$$
 in $\mathcal{T}_1 \Longrightarrow x_n \to x_0$ in \mathcal{T}_2 .

2.2 Metric spaces

Definition 2.18: Distance and Metric space

Let *X* be a set. A **distance** on *X* is a function $d: X \times X \to \mathbb{R}$ such that, for all $x, y, z \in X$ they hold:

- (M1) Positivity: $d(x, y) \ge 0$ and $d(x, y) = 0 \iff x = y$
- (M2) Symmetry: d(x, y) = d(y, x)
- (M₃) Triangle Inequality: $d(x, z) \le d(x, y) + d(y, z)$

The pair (X, d) is called a **metric space**.

Definition 2.19: Euclidean distance on \mathbb{R}^n

The **Euclidean distance** over \mathbb{R}^n is defined by

$$d(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\| = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{1/2}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

Proposition 2.20

Let *d* be the Euclidean distance on \mathbb{R}^n . Then (\mathbb{R}^n, d) is a metric space.

Definition 2.21: Topology induced by the metric

Let (X, d) be a metric space. The set $A \subseteq X$ is **open** if it holds

$$\forall x \in U$$
, $\exists r \in \mathbb{R}, r > 0$ s.t. $B_r(x) \subseteq U$,

where $B_r(x)$ is the ball centered at x of radius r, defined by

$$B_r(x) = \{ y \in X : d(x, y) < r \}.$$

The topology **induced by the metric** d is the collection of sets

$$\mathcal{T}_d = \{U : U \subseteq X, U \text{ open}\}.$$

Remark 2.22: Topology induced by Euclidean distance

Consider the metric space (\mathbb{R}^n, d) with d the Euclidean distance. Then

$$\mathcal{T}_d = \mathcal{T}_{\text{euclid}}$$
,

where $\mathcal{T}_{\text{euclid}}$ is the Euclidean topology on \mathbb{R}^n .

Example 2.23: Discrete distance

Question. Let *X* be a set. The **discrete distance** is the function $d: X \times X \to \mathbb{R}$ defined by

$$d(x,y) := \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

- 1. Prove that (X, d) is a metric space.
- 2. Prove that $\mathcal{T}_d = \mathcal{T}_{\text{discrete}}$.

Solution. See Question 3 in Homework 3.

Proposition 2.24

Let (X, d) be a metric space, \mathcal{T}_d the topology induced by d. Then:

- For all $x \in X$, r > 0 we have $B_r(x) \in \mathcal{T}_d$.
- $U \in \mathcal{T}_d$ if and only if $\exists I$ family of indices s.t.

$$U = \bigcup_{i \in I} B_{r_i}(x_i), \quad x_i \in X, \ r_i > 0.$$

Proposition 2.25: Convergence in metric space

Suppose (X, d) is a metric space and \mathcal{T}_d the topology induced by d. Let $\{x_n\} \subseteq X$ and $x_0 \in X$. They are equivalent:

- 1. $x_n \to x_0$ with respect to the topology \mathcal{T}_d .
- 2. $d(x_n, x_0) \to 0$ in \mathbb{R} .
- 3. For all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$x_n \in B_r(x_0), \ \forall n \ge \mathbb{N}.$$

2.3 Interior, closure and boundary

Definition 2.26: Interior of a set

Let (X, \mathcal{T}) be a topological space, $A \subseteq X$. The **interior** of A is

$$\operatorname{Int} A := \bigcup_{\substack{U \subseteq A \\ U \in \mathcal{T}}} U.$$

Proposition 2.27: Int *A* is the largest open set contained in *A*

Let (X, \mathcal{T}) be a topological space, $A \subseteq X$. Then Int A is the largest open set contained in A, that is:

- 1. Int *A* is open.
- 2. Int $A \subseteq A$.
- 3. If $V \in \mathcal{T}$ and $V \subseteq A$, then $V \subseteq \text{Int } A$.
- 4. A is open if and only if A = Int A.

Definition 2.28: Closure of a set

Let (X, \mathcal{T}) be a topological space, $A \subseteq X$. The **closure** of A is

$$\bar{A} := \bigcap_{\substack{A \subseteq C \\ C \text{ closed}}} C$$

Proposition 2.29: \overline{A} is the smallest closed set containing A

Let (X,\mathcal{T}) be a topological space, $A\subseteq X$. Then \overline{A} is the smallest closed set containing A, that is:

- 1. \overline{A} is closed.
- 2. $A \subseteq \overline{A}$.
- 3. If *V* is closed $A \subseteq V$, then $\overline{A} \subseteq V$.
- 4. *A* is closed if and only if $A = \overline{A}$.

Lemma 2.30

Let (X, \mathcal{T}) be a topological space, $A \subseteq X$. They are equivalent:

- 1. $x_0 \in \overline{A}$.
- 2. For every $U \in \mathcal{T}$ such that $x_0 \in U$, it holds

$$U \cap A \neq \emptyset$$
.

Definition 2.31: Boundary of a set

Let (X, \mathcal{T}) be a topological space, $A \subseteq X$. The **boundary** of A is

$$\partial A := \overline{A} \setminus \operatorname{Int} A$$
.

Proposition 2.32

Let (X, \mathcal{T}) be a topological space, and $A \subseteq X$. Then ∂A is closed.

Definition 2.33: Set of limit points

Let (X, \mathcal{T}) be a topological space, $A \subseteq X$. The set of **limit points** of A is defined as

$$L(A) := \{ x \in X : \exists \{x_n\} \subseteq A \text{ s.t. } x_n \to x \}.$$

Proposition 2.34

Let (X, \mathcal{T}) be a topological space, $A \subseteq X$ a set. Let $\{x_n\} \subseteq A$ and $x_0 \in X$ be such that $x_n \to x_0$. Then $x_0 \in \overline{A}$. In particular,

$$L(A) \subseteq \overline{A}$$
.

Proof

Suppose by contradiction $x_0 \notin \overline{A}$, so that

$$x_0 \in (\overline{A})^c$$
.

Since $(\overline{A})^c$ is open and $x_n \to x_0$, there exists $N \in \mathbb{N}$ such that

$$x_n \in (\overline{A})^c$$
, $\forall n \ge N$.

This is a contradiction, since we were assuming that $\{x_n\} \subseteq A$. This shows $x_0 \in \overline{A}$ and therefore $L(A) \subseteq \overline{A}$.

Warning

1. The converse of Proposition 2.34 is false in general, that is,

$$\overline{A} \not\subset L(A)$$
.

We show a counterexample in Example 2.35.

2. The relation

$$\overline{A} = L(A)$$
.

holds in the so-called first countable topological spaces, such as metric spaces, see Proposition 2.36 below.

Example 2.35: Co-countable topology on \mathbb{R}

Question. The **co-countable** topology on \mathbb{R} is the collection of sets

$$\mathcal{T}_{cc} := \{ A \subseteq \mathbb{R} : A^c = \mathbb{R} \text{ or } A^c \text{ countable } \}.$$

- 1. Prove that \mathcal{T}_{cc} is a topology on \mathbb{R} .
- 2. Prove that a sequence $\{x_n\}$ is convergent in \mathcal{T}_{cc} if and only if it is eventually constant.
- 3. Define the set $A = (-\infty, 0]$. Prove that $\overline{A} = \mathbb{R}$.
- 4. Conclude that $\overline{A} \not\subset L(A)$.

Solution.

- 1. See Question 2 in Homework 3.
- 2. See Question 2 in Homework 3.
- 3. Assume C is a closed set such that $A \subseteq C$. Since C is closed, it follows that $C^c \in \mathcal{T}_{cc}$. Therefore $(C^c)^c = C$ is either countable, or equal to \mathbb{R} . As $A \subseteq C$, we have that C is uncountable. Therefore, $C = \mathbb{R}$. As C is an arbitrary closed set containing A, we conclude that

$$\overline{A} = \bigcap_{\substack{A \subseteq C \\ C \text{ closed}}} C = \bigcap_{\substack{A \subseteq C \\ C \text{ closed}}} \mathbb{R} = \mathbb{R}.$$

4. By Point 2, convergent sequences are eventually constant. Therefore, if $\{x_n\} \subseteq A$ converges to x_0 , we conclude that $x_0 \in A$. This shows

$$L(A) = A = [-\infty, 0)$$
.

By Point 3, we have $\overline{A} = \mathbb{R}$. We conclude that $\overline{A} \not\subset L(A)$.

Proposition 2.36: Characterization of Int A and \overline{A} in metric space

Let (X, d) be a metric space. Denote by \mathcal{T}_d the topology induced by d. For any $A \subseteq X$, we have

- 1. Int $A = \{x \in A : \exists r > 0 \text{ s.t. } B_r(x) \subseteq A\}$,
- 2. $\overline{A} = L(A) = \{x \in X \text{ s.t. } \exists \{x_n\} \subseteq A \text{ s.t. } x_n \to x\}.$

Proof

- 1. See Question 4 in Homework 3.
- 2. The inclusion $L(A) \subseteq \overline{A}$ holds by Proposition 2.34. We are left to show that

$$\overline{A} \subseteq L(A)$$
.

To this end, let $x_0 \in \overline{A}$. For $n \in \mathbb{N}$, consider the ball $B_{1/n}(x_0)$.

Since $B_{1/n}(x_0) \in \mathcal{T}_d$ and $x_0 \in B_{\varepsilon}(x_0)$, we can apply Lemma 2.30 and deduce that

$$B_{1/n}(x_0) \cap A \neq \emptyset$$
.

Let $x_n \in B_{1/n}(x_0) \cap A$. Since n was arbitrary, we have constructed a sequence $\{x_n\} \subseteq A$ such that

$$x_n \in B_{1/n}(x_0), \quad \forall n \in \mathbb{N}.$$

In particular, we have that

$$0 \le d(x_n, x_0) < \frac{1}{n} \to 0$$

as $n \to \infty$. Thus $x_n \to x_0$, showing that $x_0 \in L(A)$.

Example 2.37

Question. Consider \mathbb{R} equipped with the Euclidean topology. Let A = [0, 1). Prove that:

Int
$$A = (0, 1)$$
, $\overline{A} = [0, 1]$, $\partial A = \{0, 1\}$.

Note: In particular, this shows

Int
$$A \neq A$$
, $\overline{A} \neq A$,

so that A is neither open, nor closed. **Solution.** See Question 5 in Homework 3.

Definition 2.38: Density

Let (X, \mathcal{T}) be a topological space. We say that a subset $A \subseteq X$ is **dense** in X, if

$$A \cap U \neq \emptyset$$
, $\forall U \in \mathcal{T}$, $U \neq \emptyset$.

Proposition 2.39: Characterization of density

Let (X, \mathcal{T}) be a topological space, $A \subseteq X$. They are equivalent:

- 1. A is dense in X.
- 2. It holds $\overline{A} = X$.

Example 2.40: \mathbb{Z} is not dense in $(\mathbb{R}, \mathcal{T}_{\text{euclid}})$

Question. Consider $\mathbb R$ equipped with the Euclidean topology $\mathscr T_{\mathrm{euclid}}$. Prove that the set of integers $\mathbb Z$ is not dense in $\mathbb R$, with

$$\bar{\mathbb{Z}} = \mathbb{Z}$$
.

Solution. The set of integers \mathbb{Z} satisfies

$$\mathbb{Z}^c = \bigcup_{z \in \mathbb{Z}} (z, z+1).$$

Since (z, z + 1) is open in \mathbb{R} , by (A2) we conclude that \mathbb{Z}^c is open, so that \mathbb{Z} is closed. Therefore

$$\overline{Z} = Z$$
.

As $\overline{\mathbb{Z}} \neq \mathbb{R}$, by Proposition 2.39, we have that \mathbb{Z} is not dense in \mathbb{R} .

Example 2.41: \mathbb{Z} is dense in $(\mathbb{R}, \mathcal{T}_{\text{cofinite}})$

Question. Consider \mathbb{R} equipped with the cofinite topology

$$\mathcal{T}_{\text{cofinite}} = \{ U \subset \mathbb{R} : U^c \text{ is finite, or } U^c = \mathbb{R} \}.$$

Prove that \mathbb{Z} is dense in \mathbb{R} . In particular,

$$\bar{\mathbb{Z}} = \mathbb{R}$$
.

Solution. Suppose C is a closed set such that $\mathbb{Z} \subseteq C$. By definition of $\mathcal{T}_{\text{cofinite}}$, we have that $(C^c)^c = C$ is either finite, or it coincides with \mathbb{R} . Since $\mathbb{Z} \subseteq C$, and \mathbb{Z} is not finite, we conclude $C = \mathbb{R}$. As C is an arbitrary closed set containing \mathbb{Z} , we conclude that

$$\overline{\mathbb{Z}} = \bigcap_{\substack{\mathbb{Z} \subseteq C \\ C \text{ closed}}} C = \bigcap_{\substack{\mathbb{Z} \subseteq C \\ C \text{ closed}}} \mathbb{R} = \mathbb{R}.$$

In particular, by Proposition 2.39, \mathbb{Z} is dense in \mathbb{R} .

2.4 Hausdorff spaces

Definition 2.42: Hausdorff space

We say that a topological space (X, \mathcal{T}) is **Hausdorff** if for every $x, y \in X$ with $x \neq y$, there exist $U, V \in \mathcal{T}$ such that

$$x \in U$$
, $y \in V$, $U \cap V = \emptyset$.

Proposition 2.43

Let (X, d) be a metric space, \mathcal{T}_d the topology induced by d. Then (X, \mathcal{T}_d) is a Hausdorff space.

Proof

Let $x, y \in X$ with $x \neq y$. Define

$$U := B_{\varepsilon}(x), \quad V := B_{\varepsilon}(y), \quad \varepsilon := \frac{1}{2} d(x, y).$$

By Proposition 2.24, we know that $U, V \in \mathcal{T}_d$. Moreover $x \in U$, $y \in V$. We are left to show that $U \cap V = \emptyset$. Suppose by contradiction that $U \cap V \neq \emptyset$ and let $z \in U \cap V$. Therefore

$$d(x,z) < \varepsilon$$
, $d(y,z) < \varepsilon$.

By triangle inequality we have

$$d(x, y) \le d(x, z) + d(y, z) < \varepsilon + \varepsilon = d(x, y)$$
,

where in the last inequality we used the definition of ε . This is a contradiction. Therefore $U \cap V = \emptyset$ and (X, \mathcal{T}_d) is Hausdorff.

Definition 2.44: Metrizable space

Let (X, \mathcal{T}) be a topological space. We say that the topology \mathcal{T} is **metrizable** if there exists a metric d on X such that

$$\mathcal{T} = \mathcal{T}_d$$
,

with \mathcal{T}_d the topology induced by d.

Corollary 2.45

Let (X, \mathcal{T}) be a metrizable space. Then X is Hausforff.

Example 2.46: $(X, \mathcal{T}_{trivial})$ is not Hausdorff

Question. Let X be equipped with the trivial topology $\mathcal{T}_{\text{trivial}}$. Then X is not Hausdorff.

Solution. Assume by contradiction $(X, \mathcal{T}_{trivial})$ is Hausdorff and let $x, y \in X$ with $x \neq y$. Then, there exist $U, V \in \mathcal{T}_{trivial}$ such that

$$x \in U$$
, $y \in V$, $U \cap V = \emptyset$.

In particular $U \neq \emptyset$ and $V \neq \emptyset$. Since $\mathcal{T} = \{\emptyset, X\}$, we conclude that

$$U = V = X \implies U \cap V = X \neq \emptyset.$$

This is a contradiction, and thus $(X, \mathcal{T}_{trivial})$ is not Hausdorff.

Example 2.47: (\mathbb{R} , $\mathcal{T}_{\text{cofinite}}$) is not Hausdorff

Question. Consider the cofinite topology on $\mathbb R$

$$\mathcal{T}_{\text{cofinite}} = \{ U \subseteq \mathbb{R} : U^c \text{ is finite, or } U^c = \mathbb{R} \}.$$

Prove that $(\mathbb{R}, \mathcal{T}_{\text{cofinite}})$ is not Hausdorff.

Solution. Assume by contradiction $(\mathbb{R}, \mathcal{T}_{\text{cofinite}})$ is Hausdorff and let $x, y \in \mathbb{R}$ with $x \neq y$. Then, there exist $U, V \in \mathcal{T}_{\text{cofinite}}$ such that

$$x \in U$$
, $y \in V$, $U \cap V = \emptyset$.

Taking the complement of $U \cap V = \emptyset$, we infer

$$\mathbb{R} = (U \cap V)^c = U^c \cup V^c. \tag{2.6}$$

There are two possibilities:

- 1. U^c and V^c are finite. Then $U^c \cup V^c$ is finite, so that (2.6) is a contradiction.
- 2. Either $U^c = \mathbb{R}$ or $U^c = \mathbb{R}$. If $U^c = \mathbb{R}$, then $U = \emptyset$. This is a contradiction, since $x \in U$. If $V^c = \mathbb{R}$, then $V = \emptyset$. This is a contradiction, since $y \in V$.

Hence $(\mathbb{R}, \mathcal{T}_{cofinite})$ is not Hausdorff.

Example 2.48: Lower-limit topology on $\mathbb R$ is not Hausdorff

Question. The **lower-limit topology** on \mathbb{R} is the collection of sets

$$\mathcal{T}_{\mathrm{LL}} = \{\emptyset, \mathbb{R}\} \cup \{(a, +\infty) : a \in \mathbb{R}\}.$$

- 1. Prove that $(\mathbb{R}, \mathcal{T}_{LL})$ is a topological space.
- 2. Prove that $(\mathbb{R}, \mathcal{T}_{LL})$ is not Hausdorff.

Solution. Part 1. We show that $(\mathbb{R}, \mathcal{T}_{LL})$ is a topological space by verifying the axioms:

(A1) By definition \emptyset , $\mathbb{R} \in \mathcal{T}_{LL}$.

(A2) Let $A_i \in \mathcal{T}_{LL}$ for all $i \in I$. We have 2 cases:

- If $A_i = \emptyset$ for all i, then $\cup_i A_i = \emptyset \in \mathcal{T}_{LL}$.
- At least one of the sets A_i is non-empty. As empty-sets do not contribute to the union, we can discard them. Therefore,

 $A_i = (-\infty, a_i)$ with $a_i \in \mathbb{R} \cup {\infty}$. Define:

$$a := \sup_{i \in I} a_i$$
, $A := (-\infty, a)$.

Then $A \in \mathcal{T}$ and:

$$A = \cup_{i \in I} A_i$$
.

To prove this, let $x \in A$. Then x < a, so there exists $i_0 \in I$ such that $x < a_{i_0}$. Thus, $x \in A_{i_0}$, showing $A \subseteq \cup_{i \in I} A_i$. Conversely, if $x \in \cup_{i \in I} A_i$, then $x \in A_{i_0}$ for some $i_0 \in I$, implying $x < a_{i_0} \le a$. Thus, $x \in A$, proving $\cup_{i \in I} A_i \subseteq A$.

(A₃) Let $A, B \in \mathcal{T}_{LL}$. We have 3 cases:

- $A = \emptyset$ or $B = \emptyset$. Then $A \cap B = \emptyset \in \mathcal{T}_{LL}$.
- $A \neq \emptyset$ and $B \neq \emptyset$. Therefore, $A = (-\infty, a)$ and $B = (-\infty, b)$ with $a, b \in \mathbb{R} \cup \{\infty\}$. Define

$$U := A \cap B, \quad z := \min\{a, b\}.$$

Then $U = (-\infty, z) \in \mathcal{T}_{LL}$.

Thus, $(\mathbb{R}, \mathcal{T}_{LL})$ is a topological space.

Part 2. To show $(\mathbb{R}, \mathcal{T}_{LL})$ is not Hausdorff, assume otherwise. Let $x, y \in \mathbb{R}$ with $x \neq y$. Then there exist $U, V \in \mathcal{T}_{LL}$ such that:

$$x \in U$$
, $y \in V$, $U \cap V = \emptyset$.

As U, V are non-empty, by definition of \mathcal{T}_{LL} , there exist $a, b \in \mathbb{R} \cup \{\infty\}$ such that $U = (-\infty, a)$ and $V = (-\infty, b)$. Define:

$$z := \min\{a, b\}, \quad Z := U \cap V = (-\infty, z).$$

Hence $Z \neq \emptyset$, contradicting $U \cap V = \emptyset$. Thus, $(\mathbb{R}, \mathcal{T}_{LL})$ is not Hausdorff.

Proposition 2.49: Uniqueness of limit in Hausdorff spaces

Let (X, \mathcal{T}) be a Hausdorff space. If a sequence $\{x_n\} \subseteq X$ converges, then the limit is unique.

Proof

Let $\{x_n\} \subseteq X$ be convergent, and suppose by contradiction that

$$x_n \to x_0$$
, $x_n \to y_0$, $x_0 \neq y_0$.

Since *X* is Hausdorff, there exist $U, V \in \mathcal{T}$ such that

$$x_0 \in U$$
, $y_0 \in V$, $U \cap V = \emptyset$.

As $x_n \to x_0$ and $U \in \mathcal{T}$ with $x_0 \in U$, there exists $N_1 \in \mathbb{N}$ such that

$$x_n \in U$$
, $\forall n \geq N_1$.

Similarly, since $x_n \to y_0$ and $V \in \mathcal{T}$ with $y_0 \in U$, there exists $N_2 \in \mathbb{N}$ such that

$$x_n \in V$$
, $\forall n \geq N_2$.

Take $N := \max\{N_1, N_2\}$. Then

$$x_n \in U \cap V$$
, $\forall n \geq N$.

Since $U \cap V = \emptyset$, the above is a contradiction. Therefore the limit is unique.

2.5 Continuity

Definition 2.50: Images and Pre-images

Let X, Y be sets and $f: X \to Y$ be a function.

1. Let $U \subseteq X$. The image of U under f is the subset of Y defined by

$$f(U) := \{ y \in Y : \exists x \in X \text{ s.t. } y = f(x) \} = \{ f(x) : x \in X \}.$$

2. Let $V \subseteq Y$. The pre-image of V under f is the subset of X defined by

$$f^{-1}(V) := \{x \in X : f(x) \in V\}.$$

Warning

The notation $f^{-1}(V)$ does not mean that we are inverting f. In fact, the pre-image is defined for all functions.

Definition 2.51: Continuous function

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$ be a function.

1. Let $x_0 \in X$. We say that f is continuous at x_0 if it holds:

$$\forall V \in \mathcal{T}_Y \text{ s.t. } f(x_0) \in V, \exists U \in \mathcal{T}_X \text{ s.t. } x_0 \in U, f(U) \subseteq V.$$

2. We say that f is continuous from (X, \mathcal{T}_X) to (Y, \mathcal{T}_Y) if f is continuous at each point $x_0 \in X$.

Proposition 2.52

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$ be a function. They are equivalent:

- 1. f is continuous from (X, \mathcal{T}_X) to (Y, \mathcal{T}_Y) .
- 2. It holds: $f^{-1}(V) \in \mathcal{T}_X$ for all $V \in \mathcal{T}_Y$.

Example 2.53

Question. Let X be a set and \mathcal{T}_1 , \mathcal{T}_2 be topologies on X. Define the identity map

$$\operatorname{Id}_X: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2), \quad \operatorname{Id}_X(x) := x.$$

Prove that they are equivalent:

- 1. Id_X is continuous from (X, \mathcal{T}_1) to (X, \mathcal{T}_2) .
- 2. \mathcal{T}_1 is finer than \mathcal{T}_2 , that is, $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

Solution. Id_X is continuous if and only if

$$\operatorname{Id}_{X}^{-1}(V) \in \mathcal{T}_{1}, \quad \forall V \in \mathcal{T}_{2}.$$

But $\operatorname{Id}_X^{-1}(V) = V$, so that the above reads

$$V\in\mathcal{T}_1\,,\quad\forall\,V\in\mathcal{T}_2\,,$$

which is equivalent to $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

Definition 2.54: Continuity in the classical sense

Let $f: \subseteq \mathbb{R}^n \to \mathbb{R}^m$. We say that f is continuous at \mathbf{x}_0 if it holds:

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ s.t. $||f(\mathbf{x}) - f(\mathbf{x}_0)|| < \varepsilon$ if $||\mathbf{x} - \mathbf{x}_0|| < \delta$.

Proposition 2.55

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and suppose $\mathbb{R}^n, \mathbb{R}^m$ are equipped with the Euclidean topology. Let $\mathbf{x}_0 \in \mathbb{R}^n$. They are equivalent:

- 1. f is continuous at \mathbf{x}_0 in the topological sense.
- 2. f is continuous at \mathbf{x}_0 in the classical sense.

Proposition 2.56

Let (X, d_X) and (Y, d_Y) be metric spaces. Denote by \mathcal{T}_X and \mathcal{T}_Y the topologies induced by the metrics. Let $f: X \to Y$ and $x_0 \in X$. They are equivalent:

- 1. f is continuous at x_0 in the topological sense.
- 2. It holds:

$$\forall \, \varepsilon > 0, \, \exists \, \delta > 0 \, \text{ s.t.}$$

 $d_Y(f(x), f(x_0)) < \varepsilon \, \text{ if } \, d_X(x, x_0) < \delta \, .$

Example 2.57

Question. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be a topological space. Suppose that \mathcal{T}_Y is the trivial topology, that is,

$$\mathcal{T}_Y = \{\emptyset, Y\}.$$

Prove that every function $f: X \to Y$ is continuous.

Solution. f is continuous if $f^{-1}(V) \in \mathcal{T}_X$ for all $V \in \mathcal{T}_Y$. We have two cases:

- $V = \emptyset$: Then $f^{-1}(V) = f^{-1}(\emptyset) = \emptyset \in \mathcal{T}_X$.
- V = Y: Then $f^{-1}(V) = f^{-1}(Y) = X \in \mathcal{T}_X$.

Therefore f is continuous.

Example 2.58

Question. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Suppose that \mathcal{T}_Y is the discrete topology, that is,

$$\mathcal{T}_{Y} = \{ V \text{ s.t. } V \subseteq Y \}.$$

Let $f: X \to Y$. Prove that they are equivalent:

- 1. f is continuous from X to Y.
- 2. $f^{-1}(\{y\}) \in \mathcal{T}_X$ for all $y \in Y$.

Solution. Suppose that f is continuous. Then

$$f^{-1}(V) \in \mathcal{T}_X$$
, $\forall V \in \mathcal{T}_Y$.

As $V = \{y\} \in \mathcal{T}_Y$, we conclude that $f^{-1}(\{y\}) \in \mathcal{T}_X$.

Conversely, assume that $f^{-1}(\{y\}) \in \mathcal{T}_X$ for all $y \in Y$. Let $V \in \mathcal{T}_Y$. Trivially, we have $V = \bigcup_{y \in V} \{y\}$. Therefore

$$f^{-1}(V) = f^{-1}\left(\bigcup_{y \in V} \{y\}\right) = \bigcup_{y \in V} f^{-1}(\{y\}).$$

As $f^{-1}(\{y\}) \in \mathcal{T}_X$ for all $y \in Y$, by property (A2) we conclude that $f^{-1}(V) \in \mathcal{T}_X$. Therefore f is continuous.

Definition 2.59: Sequential continuity

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $f: X \to Y$. We say that f is **sequentially continuous** if the following condition holds:

$$\{x_n\} \subset X$$
, $x_n \to x_0$ in $X \implies f(x_n) \to f(x_0)$ in Y .

Proposition 2.60

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$ be continuous. Then f is sequentially continuous.

Warning

1. The reverse implication of Proposition 2.60 is false:

sequential continuity
$$\iff$$
 continuity

A counterexample is given in Example 2.62 below.

2. Continuity is equivalent to sequential continuity if the topologies on *X* and *Y* are first countable. This is the case for metrizable topologies, see Proposition 2.61 below.

Proposition 2.61

Let (X, d_X) and (Y, d_Y) be metric spaces. They are equivalent:

- 1. f is continuous.
- 2. *f* is sequentially continuous.

Example 2.62: Sequential continuity does not imply continuity

Question. Consider the co-countable and discrete topologies on \mathbb{R}

$$\mathcal{T}_{\mathrm{cc}} = \{ A \subseteq \mathbb{R} : A^c = \mathbb{R} \text{ or } A^c \text{ countable} \}$$

$$\mathcal{T}_{\mathrm{discrete}} = \{ A \subseteq \mathbb{R} \}$$

Consider the identity function

$$f: (\mathbb{R}, \mathcal{T}_{cc}) \to (\mathbb{R}, \mathcal{T}_{discrete}), \quad f(x) := x.$$

Prove that

- 1. *f* is not continuous.
- 2. *f* is sequentially continuous.

Hint: You can use the following fact: Sequences in $(\mathbb{R}, \mathcal{T}_{cc})$ and $(\mathbb{R}, \mathcal{T}_{discrete})$ converge if and only if they are eventually constant. **Solution.**

1. We have $\{x\} \in \mathcal{T}_{discrete}$. However,

$$f^{-1}(\{x\}) = \{x\} \notin \mathcal{T}_{cc},$$

since $\{x\}^c = \mathbb{R} \setminus \{x\}$ is neither equal to \mathbb{R} , nor countable. Therefore f is not continuous.

2. Assume that $\{x_n\}$ is convergent in \mathcal{T}_{cc} . By the Hint, we have that $\{x_n\}$ is eventually constant. Again by the Hint, we infer that $\{x_n\}$ is convergent in $\mathcal{T}_{discrete}$. Since $f(x_n) = x_n$, we conclude that f is sequentially continuous.

Proposition 2.63: Continuity of compositions

Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y), (Z, \mathcal{T}_Z)$ be topological spaces. Assume $f: X \to Y$ and $g: Y \to Z$ are continuous. Then $(g \circ f): X \to Z$ is continuous.

Definition 2.64: Homeomoprhim

Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological space. A function $f: X \to Y$ is called an **homeomorphism** if they hold:

- 1. *f* is continuous.
- 2. f admits continuous inverse $f^{-1}: Y \to X$.

2.6 Subspace topology

Definition 2.65: Subspace topology

Let (X, \mathcal{T}) be a topological space and $Y \subseteq X$ a subset. Define the family of sets

$$\mathcal{S} := \{ A \subseteq Y : \exists U \in \mathcal{T} \text{ s.t. } A = U \cap Y \}$$
$$= \{ U \cap Y, \ U \in \mathcal{T} \}.$$

The family S is the **subspace topology** on Y induced by the inclusion $Y \subseteq X$.

Proposition 2.66

Let (X, \mathcal{T}) be a topological space and $Y \in \mathcal{T}$. Let $A \subseteq Y$. Then

$$A \in \mathcal{S} \iff A \in \mathcal{T}$$
.

Warning

Let (X, \mathcal{T}) be a topological space, $A \subseteq Y \subseteq X$. In general we could have

$$A \in \mathcal{S}$$
 and $A \notin \mathcal{T}$.

Example. Let $X = \mathbb{R}$ with $\mathcal{T}_{\text{euclid}}$. Consider the subset Y = [0, 2), and equip Y with the subspace topology \mathcal{S} . Let A = [0, 1). Then $A \notin \mathcal{T}_{\text{euclid}}$ but $A \in \mathcal{S}$, since

$$A = (-1, 1) \cap Y$$
, $(-1, 1) \in \mathcal{T}_{\text{euclid}}$.

Example 2.67

Question. Let $X = \mathbb{R}$ be equipped with $\mathcal{T}_{\text{euclid}}$. Let \mathcal{S} be the subspace topology on \mathbb{Z} . Prove that

$$S = \mathcal{T}_{\text{discrete}}$$
.

Solution. To prove that $\mathcal{S} = \mathcal{T}_{\text{discrete}}$, we need to show that all the subsets of \mathbb{Z} are open in \mathcal{S} .

1. Let $z \in \mathbb{Z}$ be arbitrary. Notice that

$$\{z\} = (z-1, z+1) \cap \mathbb{Z}$$

and $(z-1, z+1) \in \mathcal{T}_{\text{euclid}}$. Thus $\{z\} \in \mathcal{S}$.

2. Let now $A \subseteq \mathbb{Z}$ be an arbitrary subset. Trivially,

$$A = \cup_{z \in A} \{z\}.$$

As $\{z\} \in \mathcal{S}$, we infer that $A \in \mathcal{S}$ by (A₂).

2.7 Topological basis

Definition 2.68: Topological basis

Let (X, \mathcal{T}) be a topological space and let $\mathcal{B} \subseteq \mathcal{T}$. We say that \mathcal{B} is a **topological basis** for the topology \mathcal{T} , if for all $U \in \mathcal{T}$ there exist open sets $\{B_i\}_{i \in I} \subseteq \mathcal{B}$, with I family of indices, such that

$$U = \bigcup_{i \in I} B_i. \tag{2.7}$$

Example 2.69

Question. Prove the following statements.

- 1. Let (X, \mathcal{T}) be a topological space. Then $\mathcal{B} := \mathcal{T}$ is a basis for \mathcal{T} .
- 2. Let (X, d) be a metric space with topology \mathcal{T}_d induced by the metric. Then

$$\mathscr{B} := \{B_r(x) : x \in X, r > 0\}$$

is a basis for \mathcal{T}_d .

3. Let *X* be equipped with $\mathcal{T}_{discrete}$. Then

$$\mathscr{B} := \{\{x\} : x \in X\}$$

is a basis for $\mathcal{T}_{discrete}$.

Solution.

- 1. This is true because one can just take B = U in (2.7).
- 2. This is true by Propostion 2.24.
- 3. This is true because for any $U \in \mathcal{T}$ we have

$$U = \bigcup_{x \in U} \{x\}.$$

Example 2.70

Question. Consider \mathbb{R} equipped with the Euclidean topology $\mathcal{T}_{\text{euclid}}$. Which of the following collection of sets are basis for $\mathcal{T}_{\text{euclid}}$? Motivate your answer.

- 1. $\mathcal{B}_1 = \{(a, b) : a, b \in \mathbb{R}\}.$
- 2. $\mathscr{B}_2 = \{(a, b) : a, b \in \mathbb{Q}\}.$
- 3. $\mathcal{B}_3 = \{(a,b) : a,b \in \mathbb{Z}\}.$

Solution.

1. \mathcal{B}_1 is a basis for $\mathcal{T}_{\mathrm{euclid}}$, for the following reason. Let d be the Euclidean distance on \mathbb{R} , and \mathcal{T}_d the topology induced by d. We know that $\mathcal{T}_d = \mathcal{T}_{\mathrm{euclid}}$, therefore

$$\mathscr{B} := \{B_r(x) : x \in \mathbb{R}, r > 0\}$$

is a basis for \mathcal{T}_{euclid} by Propostion 2.24. Note that balls in \mathbb{R} are just open intervals

$$B_r(x) = (x - r, x + r).$$

Hence $\mathcal{B}_1 = \mathcal{B}$, so that \mathcal{B}_1 is a basis for $\mathcal{T}_{\text{euclid}}$.

2. \mathcal{B}_2 is a basis for $\mathcal{T}_{\text{euclid}}$. This is because any open interval (a, b) with $a, b \in \mathbb{R}$ can be written as

$$\bigcup_{q,r \in \mathbb{Q}, \, a < q, \, s < b} (q,s) = (a,b).$$

Therefore, since \mathcal{B}_1 is a basis for $\mathcal{T}_{\text{euclid}}$, we conclude that also \mathcal{B}_2 is a basis for $\mathcal{T}_{\text{euclid}}$.

3. \mathcal{B}_3 is not a basis for $\mathcal{T}_{\text{euclid}}$. Indeed, consider U = (0, 1/2), which is open in $\mathcal{T}_{\text{euclid}}$. It is clear that U cannot be obtained as the union of intervals (q, s) with $q, s \in \mathbb{Z}$.

Proposition 2.71

Let (X, \mathcal{T}) be a topological space, and \mathcal{B} a basis for \mathcal{T} . They hold:

• (B1) We have

$$\bigcup_{B\in\mathscr{B}} B=X.$$

• (B2) If $U_1, U_2 \in \mathcal{B}$ then there exist $\{B_i\} \subseteq \mathcal{B}$ such that

$$U_1 \cap U_2 = \bigcup_{i \in I} B_i.$$

Proposition 2.72

Let X be a set, and $\mathcal B$ a collection of subsets of X satisfying (B1)-(B2). Define

$$\mathcal{T} := \left\{ U \subseteq X \ : \ U = \bigcup_{i \in I} B_i \, , \ B_i \in \mathcal{B} \right\} \, .$$

Then \mathcal{T} is a topology on X, with basis given by \mathcal{B} .

2.8 Product topology

Proposition 2.73

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Define the family \mathscr{B} of subsets of $X \times Y$ as

$$\mathcal{B} := \{U \times V \ : \ U \in \mathcal{T}_X \, , \ V \in \mathcal{T}_Y \} \subseteq \mathcal{T}_X \times \mathcal{T}_Y \, .$$

Then \mathcal{B} satisfies properties (B₁) and (B₂) from Proposition 2.71. In

particular,

$$\mathcal{T}_{X\times Y} := \left\{ Z : Z = \bigcup_{i\in I} U_i \times V_i, \ U_i \times V_i \in \mathcal{B} \right\}$$
 (2.8)

is a topology on $X \times Y$.

Definition 2.74: Product topology

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. The **product topology** on $X \times Y$ is the collection of sets $\mathcal{T}_{X \times Y}$ at (2.8).

Example 2.75

Let \mathbb{R} be equipped with the (one dimensional) Euclidean topology. The product topology on $\mathbb{R} \times \mathbb{R}$ coincides with the topology on \mathbb{R}^2 equipped with the (two dimensional) Euclidean topology.

2.9 Connectedness

Definition 2.76: Connected space

Let (X, \mathcal{T}) be a topological space. We say that:

- 1. X is **connected** if the only subsets of X which are both open and closed are \emptyset and X.
- 2. *X* is **disconnected** if it is not connected.

Definition 2.77: Proper subset

Let *X* be a set. A subset $A \subseteq X$ is **proper** if $A \neq \emptyset$ and $A \neq X$.

Proposition 2.78: Equivalent definition for connectedness

Let (X, \mathcal{T}) be a topological space. They are equivalent:

- 1. X is disconnected.
- 2. *X* is the disjoint union of two proper open subsets.
- 3. *X* is the disjoint union of two proper closed subsets.

Example 2.79

Question. Consider the set $X = \{0, 1\}$ with the subspace topology induced by the inclusion $X \subseteq \mathbb{R}$, where \mathbb{R} is equipped with the Euclidean topology $\mathcal{T}_{\text{euclid}}$. Prove that X is disconnected.

Solution. Note that

$$X = \{0\} \cup \{1\}, \quad \{0\} \cap \{1\} = \emptyset.$$

The set {0} is open for the subspace topology, since

$$\{0\} = X \cap (-1,1), \quad (-1,1) \in \mathcal{T}_{\text{euclid}}.$$

Similarly, also {1} is open for the subspace topology, since

$$\{1\} = X \cap (0,2), \quad (0,2) \in \mathcal{T}_{\text{euclid}}.$$

Since $\{0\}$ and $\{1\}$ are proper subsets of X, we conclude that X is disconnected.

Example 2.80

Question. Let \mathbb{R} be equipped with $\mathcal{T}_{\text{euclid}}$, and let $p \in \mathbb{R}$. Prove that the set $X = \mathbb{R} \setminus \{p\}$ is disconnected.

Solution. Define the sets

$$A = (-\infty, p), \quad B = (p, \infty).$$

A and B are proper subsets of X. Moreover

$$X = A \cup B$$
, $A \cap B = \emptyset$.

Finally, *A*, *B* are open for the subspace topology on *X*, since they are open in (\mathbb{R} , $\mathcal{T}_{\mathrm{euclid}}$). Therefore X is disconnected.

Theorem 2.81

Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological spaces. Suppose that $f: X \to X$ Y is continuous and let $f(X) \subseteq Y$ be equipped with the subspace topology. If X is connected, then f(X) is connected.

Theorem 2.82: Connectedness is topological invariant

Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be homeomorpic topological spaces. Then

X is connected \iff Y is connected

Example 2.83

Question. Define the one dimensional unit circle

$$\mathbb{S}^1 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

Prove that \mathbb{S}^1 and [0,1] are not homeomorphic.

Solution. Suppose by contradiction that there exists a homeomorphism

$$f: [0,1] \to \mathbb{S}^1$$
.

The restriction of f to $[0,1] \setminus \{\frac{1}{2}\}$ defines a homeomorphism

$$g: \left([0,1] \setminus \left\{\frac{1}{2}\right\}\right) \to \left(\mathbb{S}^1 \setminus \{\mathbf{p}\}\right), \quad \mathbf{p}:=f\left(\frac{1}{2}\right).$$

The set $[0,1] \setminus \left\{\frac{1}{2}\right\}$ is disconnected, since

$$[0,1] \setminus \{1/2\} = [0,1/2) \cup (1/2,1]$$

with [0, 1/2) and (1/2, 1] open for the subset topology, non-empty and disjoint. Therefore, using that g is a homeomorphism, we conclude that also $\S^1 \setminus \{p\}$ is disconnected. Let $\theta_0 \in [0, 2\pi)$ be the unique angle such that

$$\mathbf{p} = (\cos(\theta_0), \sin(\theta_0))$$
.

Thus $\mathbb{S}^1 \setminus \{\mathbf{p}\}$ is parametrized by

$$\gamma(t) := (\cos(t), \sin(t)), \quad t \in (\theta_0, \theta_0 + 2\pi).$$

Since γ is continuous and $(\theta_0, \theta_0 + 2\pi)$ is connected, by Theorem 2.81, we conclude that $\mathbb{S}^1 \setminus \{\mathbf{p}\}$ is connected. Contradiction.

Definition 2.84: Interval

A subset $I \subset \mathbb{R}$ is an interval if it holds:

$$\forall a, b \in I, x \in \mathbb{R} \text{ s.t. } a < x < b \implies x \in I.$$

Theorem 2.85: Intervals are connected

Let \mathbb{R} be equipped with the Euclidean topology and let $I \subseteq \mathbb{R}$. They are equivalent:

- 1. *I* is connected.
- 2. *I* is an interval.

Theorem 2.86: Intermediate Value Theorem

Let (X, \mathcal{T}) be a connected topological space. Suppose that $f: X \to \mathcal{T}$ \mathbb{R} is continuous. Suppose that $a, b \in X$ are such that f(a) < f(b). It holds:

$$\forall c \in \mathbb{R} \text{ s.t. } f(a) < c < f(b), \exists \xi \in X \text{ s.t. } f(\xi) = c.$$

Example 2.87: Intervals are connected - Alternative proof

Question. Prove the following statements.

- 1. Let (X,\mathcal{T}) be a disconnected topological space. Prove that there exists a function $f: X \to \{0, 1\}$ which is continuous and surjective.
- 2. Consider \mathbb{R} equipped with the Euclidean topology. Let $I \subseteq \mathbb{R}$ be an interval. Use point (1), and the Intermediate Value Theorem in \mathbb{R} (see statement below), to show that *I* is connected.

Intermediate Value Theorem in \mathbb{R} : Suppose that $f:[a,b] \to \mathbb{R}$ is continuous, and f(a) < f(b). Let $c \in \mathbb{R}$ be such that $f(a) \le c \le f(b)$. Then, there exists $\xi \in [a, b]$ such that $f(\xi) = c$.

Solution. Part 1. Since X is disconnected, there exist $A, B \in \mathcal{T}$ proper and such that

$$X = A \cup B$$
, $A \cap B = \emptyset$.

Define $f: X \rightarrow \{0, 1\}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in B \end{cases}$$

Since A and B are non-empty, it follows that f is surjective. Moreover f is continuous: Indeed suppose $U \subseteq \mathbb{R}$ is open. We have 4 cases:

- 0, 1 \notin *U*. Then $f^{-1}(U) = \emptyset \in \mathcal{T}$.
- $0 \in U$, $1 \notin U$. Then $f^{-1}(U) = A \in \mathcal{T}$. $0 \notin U$, $1 \in U$. Then $f^{-1}(U) = B \in \mathcal{T}$.
- 0, 1 \in *U*. Then $f^{-1}(U) = X \in \mathcal{T}$.

Then $f^{-1}(U) \in \mathcal{T}$ for all $U \subseteq \mathbb{R}$ open, showing that f is continuous. **Part 2.** Let $I \subseteq \mathbb{R}$ be an interval. Suppose by contradiction I is disconnected. By Point (1), there exists a map $f: I \to \{0, 1\}$ which is continuous and surjective. As f is surjective, there exist $a, b \in I$ such that

$$f(a) = 0$$
, $f(b) = 1$.

Since f is continuous, and f(a) = 0 < 1 = f(b), by the *Intermediate Value Theorem in* \mathbb{R} , there exists $\xi \in [a, b]$ such that $f(\xi) = 1/2$. As *I* is an interval, $a, b \in I$, and $a \le \xi \le b$, it follows that $\xi \in I$. This is a contradiction, since f maps I into $\{0,1\}$, and $f(\xi) = 1/2 \notin \{0,1\}$. Therefore *I* is connected.

2.10 Path-connectedness

Definition 2.88: Path-connectedness

Let (X, \mathcal{T}) be a topological space. We say that X is **path-connected** if for every $x, y \in X$ there exist $a, b \in \mathbb{R}$ with a < b, and a continuous function

$$\alpha: [a,b] \to X$$
 s.t. $\alpha(a) = x$, $\alpha(b) = y$.

Theorem 2.89: Path-connectedness implies connectedness

Let (X, \mathcal{T}) be a path-connected topological space. Then X is connected.

Example 2.90

Question. Let $A \subseteq \mathbb{R}^n$ be convex. Show that A is path-connected, and hence connected.

Solution. A is convex if for all $x, y \in A$ the segment connecting x to y is contained in A, namely,

$$[x, y] := \{(1-t)x + ty : t \in [0, 1]\} \subseteq A.$$

Therefore we can define

$$\alpha: [0,1] \rightarrow A$$
, $\alpha(t) := (1-t)x + ty$.

Clearly α is continuous, and $\alpha(0) = x$, $\alpha(1) = y$.

Example 2.91: Spaces of matrices

Let $\mathbb{R}^{2\times 2}$ denote the space of real 2×2 matrices. Assume $\mathbb{R}^{2\times 2}$ has the euclidean topology obtained by identifying it with \mathbb{R}^4 .

1. Consider the set of orthogonal matrices

$$O(2) = \{ A \in \mathbb{R}^{2 \times 2} : A^T A = I \}.$$

Prove that O(2) is disconnected.

2. Consider the set of rotations

$$SO(2) = \{ A \in \mathbb{R}^{2 \times 2} : A^T A = I, \det(A) = 1 \}.$$

Prove that SO(2) is path-connected, and hence connected.

Solution. Let $A \in O(2)$, and denote its entries by a, b, c, d. By direct calculation, the condition $A^T A = I$ is equivalent to

$$a^2 + b^2 = 1$$
, $b^2 + c^2 = 1$, $ac + bd = 0$.

From the first condition, we get that $a = \cos(t)$ and $b = \sin(t)$, for a suitable $t \in [0, 2\pi)$. From the second and third conditions, we get $c = \pm \sin(t)$ and $d = \mp \cos(t)$. We decompose O(2) as

$$O(2) = A \cup B$$
.

$$A = SO(2) = \left\{ \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}, t \in [0, 2\pi) \right\}$$

$$B = \left\{ \begin{pmatrix} \cos(t) & \sin(t) \\ \sin(t) & -\cos(t) \end{pmatrix}, t \in [0, 2\pi) \right\}.$$

1. The determinant function $\det: O(2) \to \mathbb{R}$ is continuous. If $M \in A$, we have $\det(M) = 1$. If instead $M \in B$, we have $\det(M) = -1$. Moreover,

$$\det^{-1}(\{1\}) = A$$
, $\det^{-1}(\{0\}) = B$.

As det is continuous, and $\{0\}$, $\{1\}$ closed, we conclude that A and B are closed. Therefore, A and B are closed, proper and disjoint. Since $O(2) = A \cup B$, we conclude that O(2) is disconnected.

2. Define the function $\psi : [0, 2\pi) \to SO(2)$ by

$$\psi(t) = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}.$$

Clearly, ψ is continuous. Let $R, Q \in SO(2)$. Then R is determined by an angle t_1 , while Q by an angle t_2 . Up to swapping R and Q, we can assume $t_1 < t_2$. Define the function $f: [0,1] \to SO(2)$ by

$$f(\lambda) = \psi(t_1(1-\lambda) + t_2\lambda).$$

Then, f is continuous and

$$f(0) = \psi(t_1) = R$$
, $f(1) = \psi(t_2) = Q$.

Thus SO(2) is path-connected.

Warning

In general connectedness does not imply path-connectedness, as seen in Proposition 2.92.

Proposition 2.92: Topologist curve

Consider \mathbb{R}^2 with the Euclidean topology, and define the sets

$$A := \left\{ \left(t, \sin \left(\frac{1}{t} \right) \right) : t > 0 \right\}$$

$$B := \left\{ (0, t) : t \in [-1, 1] \right\}, \qquad X := A \cup B.$$

Then *X* is connected, but not path-connected.

Theorem 2.93

Let $A \subseteq \mathbb{R}^n$ be **open** for the Euclidean topology. Then A is connected if and only if it is path-connected.

3 Surfaces

Definition 3.1: Topology of \mathbb{R}^n

The Euclidean norm on \mathbb{R}^n is denoted by

$$\|\mathbf{x}\| := \sqrt{\sum_{i=1}^{n} x_i^2}, \quad \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Define the Euclidean distance $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

- 1. The pair (\mathbb{R}^n, d) is a metric space.
- 2. The topology induced by the metric d is called the Euclidean topology, denoted by \mathcal{T} .
- 3. A set $U \subseteq \mathbb{R}^n$ is **open** if for all $\mathbf{x} \in U$ there exists $\varepsilon > 0$ such that $B_{\varepsilon}(\mathbf{x}) \subseteq U$, where

$$B_{\varepsilon}(\mathbf{x}) := \{ \mathbf{y} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{y}\| < \varepsilon \}$$

is the open ball of radius $\varepsilon > 0$ centered at **x**. We write $U \in \mathcal{T}$, with \mathcal{T} the Euclidean topology in \mathbb{R}^n .

4. A set $V \subseteq \mathbb{R}^n$ is **closed** if $V^c := \mathbb{R}^n \setminus U$ is open.

Definition 3.2: Subspace Topology

Let $A \subseteq \mathbb{R}^n$. The **subspace topology** on *A* is the family

$$\mathcal{T}_A := \{ U \subseteq A : \exists W \in \mathcal{T} \text{ s.t. } U = A \cap W \}.$$

If $U \in \mathcal{T}_A$, we say that U is open in A.

Definition 3.3: Continuous Function

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ with U open. We say that f is **continuous** at $\mathbf{x} \in U$ if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that

$$\|\mathbf{x} - \mathbf{y}\| < \delta \implies \|f(\mathbf{x}) - f(\mathbf{y})\| < \varepsilon$$
.

f is continuous in U if it is continuous for all $\mathbf{x} \in U$.

Theorem 3.4: Continuity: Topological definition

Let $f: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$, with U, V open. We have that f is continuous if and only if $f^{-1}(A)$ is open in U, for all A open in V.

Definition 3.5: Homeomorphism

Let $f: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$ with U, V open. We say that f is a **homeomorphism** if:

- 1. *f* is continuous;
- 2. f admits continuous inverse $f^{-1}: V \to U$.

Definition 3.6: Differentiable Function

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ with U open. We say that f is **differentiable** at $\mathbf{x} \in U$ if there exists a linear map $d_{\mathbf{x}}f: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$d_{\mathbf{x}}f(\mathbf{h}) = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x} + \varepsilon \mathbf{h}) - f(\mathbf{x})}{\varepsilon},$$

for all $\mathbf{h} \in \mathbb{R}^n$, where the limit is taken in \mathbb{R}^m . The linear map $d_{\mathbf{x}}f$ is called the **differential** of f at \mathbf{x} .

Definition 3.7: Partial Derivative

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, U open, f differentiable. The **partial derivative** of f at $\mathbf{x} \in U$ in direction \mathbf{e}_i is

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) := d_{\mathbf{x}} f(\mathbf{e}_i) = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x} + \varepsilon \mathbf{e}_i) - f(\mathbf{x})}{\varepsilon}.$$

Definition 3.8: Jacobian Matrix

Let $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ be differentiable. The **Jacobian** of f at \mathbf{x} is the $m\times n$ matrix of partial derivatives:

$$Jf(\mathbf{x}) := \left(\frac{\partial f_i}{\partial x_j}(\mathbf{x})\right)_{i,j} \in \mathbb{R}^{m \times n}.$$

If m = n then $Jf \in \mathbb{R}^{n \times n}$ is a square matrix and we can compute its determinant, denoted by $\det(Jf)$.

Proposition 3.9: Matrix representation of $d_{\mathbf{x}}f$

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be differentiable. The matrix of the linear map $d_{\mathbf{x}}f: \mathbb{R}^n \to \mathbb{R}^m$ with respect to the standard basis is given by the Jacobian matrix $Jf(\mathbf{x})$.

Definition 3.10: Diffeomorphism

Let $f: U \to V$, with $U, V \subseteq \mathbb{R}^n$ open. We say that f is a **diffeomorphism** between U and V if:

- 1. *f* is smooth,
- 2. f admits smooth inverse $f^{-1}: V \to U$.

Definition 3.11: Local diffeomorphism

 $f: \mathbb{R}^n \to \mathbb{R}^n$ is a **local diffeomorphism** at $\mathbf{x}_0 \in \mathbb{R}^n$ if:

- 1. There exists an open set $U \subseteq \mathbb{R}^n$ such that $\mathbf{x}_0 \in U$,
- 2. There exists an open set $V \subseteq \mathbb{R}^n$ such that $f(\mathbf{x}_0) \in V$,
- 3. $f: U \to V$ is a diffeomorphism.

Proposition 3.12

Diffeomorphisms are local diffeomorphisms.

Proposition 3.13: Necessary condition for being diffeomorphism

Let $f: U \to \mathbb{R}^n$ with $U \subseteq \mathbb{R}^n$ open. Suppose f is a local diffeomorhism at $\mathbf{x}_0 \in U$. Then det $Jf(\mathbf{x}_0) \neq 0$.

Theorem 3.14: Inverse Function Theorem

Let $f: U \to \mathbb{R}^n$ with $U \subseteq \mathbb{R}^n$ open, f smooth. Assume

$$\det Jf(\mathbf{x}_0) \neq 0\,,$$

for some $\mathbf{x}_0 \in U$. Then:

- 1. There exists an open set $U_0 \subseteq U$ such that $\mathbf{x}_0 \in U_0$,
- 2. There exists an open set V such that $f(\mathbf{x}_0) \in V$,
- 3. $f: U_0 \to V$ is a diffeomorphism.

Example 3.15: A local diffeomorphism which is not global

Question. Define the function $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x, y) = (e^x \cos(y), e^x \sin(y)).$$

Prove f is a local diffeomorphism but not a diffeomorphism. **Solution.** f is a local diffeomorphism at each point $(x, y) \in \mathbb{R}^2$ by

the Inverse Function Theorem, since

$$Jf(x,y) = e^{x} \begin{pmatrix} \cos(y) & \sin(y) \\ -\sin(y) & \cos(y) \end{pmatrix}$$

det $If(x,y) = e^{2x} \neq 0$.

However, f is not invertible because it is not injective, since

$$f(x, y) = f(x, y + 2n\pi), \quad \forall (x, y) \in \mathbb{R}^2, n \in \mathbb{N}.$$

Hence, f cannot be a diffeomorphism of \mathbb{R}^2 into \mathbb{R}^2 .

3.1 Regular Surfaces

Definition 3.16: Surface

Let $\mathcal{S} \subseteq \mathbb{R}^3$ be a connected set. We say that \mathcal{S} is a **surface** if for every point $\mathbf{p} \in \mathcal{S}$ there exist an open set $U \subseteq \mathbb{R}^2$, and a smooth map $\boldsymbol{\sigma} : U \to \boldsymbol{\sigma}(U) \subseteq \mathcal{S}$ such that

- 1. $\mathbf{p} \in \boldsymbol{\sigma}(U)$,
- 2. $\sigma(U)$ is open in \mathcal{S} ,
- 3. σ is a homeomorphism between U and $\sigma(U)$.

 σ is called a **surface chart** at **p**.

Definition 3.17: Atlas of a surface

Let \mathcal{S} be a surface. Assume given a collection of charts

$$\mathscr{A} = \{ \boldsymbol{\sigma}_i \}_{i \in I}, \qquad \boldsymbol{\sigma}_i : U_i \to \boldsymbol{\sigma}(U_i) \subseteq \mathscr{S}.$$

The family \mathcal{A} is an **atlas** of \mathcal{S} if

$$\mathcal{S} = \bigcup_{i \in I} \boldsymbol{\sigma}_i(U_i).$$

Definition 3.18: Regular Chart

Let $U \subseteq \mathbb{R}^2$ be open. A map $\boldsymbol{\sigma} = \boldsymbol{\sigma}(u, v) : U \to \mathbb{R}^3$ is a **regular chart** if the partial derivatives

$$\sigma_u(u, v) = \frac{d\sigma}{du}(u, v), \quad \sigma_v(u, v) = \frac{d\sigma}{dv}(u, v)$$

are linearly independent vectors of \mathbb{R}^3 for all $(u, v) \in U$.

Definition 3.19: Regular surface

Let S be a surface. We say that:

- \mathscr{A} is a **regular atlas** if any σ in \mathscr{A} is regular.
- S is a **regular surface** if it admits a regular atlas.

Theorem 3.20: Characterization of regular charts

Let $\sigma: U \to \mathbb{R}^3$ with $U \subseteq \mathbb{R}^2$ open. They are equivalent:

- 1. σ is a regular chart.
- 2. $d_{\mathbf{x}}\boldsymbol{\sigma}: \mathbb{R}^2 \to \mathbb{R}^3$ is injective for all $\mathbf{x} \in U$.
- 3. The Jacobian matrix $J\boldsymbol{\sigma}$ has rank 2 for all $(u, v) \in U$.
- 4. $\sigma_u \times \sigma_v \neq 0$ for all $(u, v) \in U$.

Example 3.21: Unit cylinder

Question. Consider the infinite unit cylinder

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$$

S is a surface with atlas $\mathcal{A} = \{\sigma_1, \sigma_2\}$, with

$$\boldsymbol{\sigma}(u,v) = (\cos(u),\sin(u),v), \qquad \boldsymbol{\sigma}_1 = \boldsymbol{\sigma}|_{U_1}, \quad \boldsymbol{\sigma}_2 = \boldsymbol{\sigma}|_{U_2},$$

$$U_1 = \left(0, \frac{3\pi}{2}\right) \times \mathbb{R}, \qquad U_2 = \left(\pi, \frac{5\pi}{2}\right) \times \mathbb{R}.$$

Prove that \mathcal{S} is a regular surface.

Solution. The map σ is regular because

$$\sigma_u = (-\sin(u), \cos(u), 0), \quad \sigma_v = (0, 0, 1),$$

are linearly independent, since the last components of σ_u and σ_v are 0 and 1. Therefore, also σ_1 and σ_2 are regular charts, being restrictions of σ . Thus, \mathscr{A} is a regular atlas and \mathscr{S} a regular surface.

Example 3.22: Graph of a function

Question. Let $f: U \to \mathbb{R}$ be smooth, $U \subseteq \mathbb{R}^2$ open. Define

$$\Gamma_f = \{(u, v, f(u, v)) : (u, v) \in U\},\$$

the graph of f. Then Γ_f is surface with atlas $\mathscr{A} = \{\sigma\}$, where

$$\sigma: U \to \Gamma_f, \quad \sigma(u, v) := (u, v, f(u, v)).$$

Prove that Γ_f is a regular surface.

Solution. The Jacobian matrix of σ is

$$J\boldsymbol{\sigma}(u,v) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ f_u & f_v \end{pmatrix}.$$

 $J\sigma$ has rank 2, because the first minor is the 2×2 identity matrix. Therefore, σ is regular. This implies ${\mathscr A}$ is a regular atlas, and ${\mathscr S}$ is a regular surface.

Definition 3.23: Spherical coordinates

The **spherical coordinates** of $\mathbf{p} = (x, y, z) \neq \mathbf{0}$ are

$$\mathbf{p} = (\rho \cos(\theta) \cos(\varphi), \rho \sin(\theta) \cos(\varphi), \rho \sin(\varphi)),$$
$$\rho = \sqrt{x^2 + y^2 + z^2}, \quad \theta \in [-\pi, \pi], \quad \varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Example 3.24: Unit sphere in spherical coordinates

Question. Consider the unit sphere in \mathbb{R}^3

$$\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$

Prove that $\sigma: U \to \mathbb{R}^3$ is regular, where

$$\boldsymbol{\sigma}(\theta, \varphi) = (\cos(\theta)\cos(\varphi), \sin(\theta)\cos(\varphi), \sin(\varphi)),$$

$$U = \left\{ (\theta, \varphi) \in \mathbb{R}^2 : \theta \in (-\pi, \pi), \varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \right\}.$$

Solution. The chart σ is regular because

$$\sigma_{\theta} = (-\sin(\theta)\cos(\varphi),\cos(\theta)\cos(\varphi),0)$$

$$\sigma_{\varphi} = (-\cos(\theta)\sin(\varphi), -\sin(\theta)\sin(\varphi), \cos(\varphi))$$

$$\boldsymbol{\sigma}_{\theta} \times \boldsymbol{\sigma}_{\varphi} = (\cos(\theta)\cos^{2}(\varphi), \sin(\theta)\cos^{2}(\varphi), \cos(\varphi)\sin(\varphi))$$

$$\|\boldsymbol{\sigma}_{\theta} \times \boldsymbol{\sigma}_{\varphi}\| = |\cos(\varphi)| = \cos(\varphi) \neq 0$$
,

where we used that $\cos(\phi) > 0$, since $\varphi \in (-\pi/2, \pi/2)$.

Example 3.25: A non-regular chart

Question. Prove that the following chart is not regular

$$\boldsymbol{\sigma}(u,v) = (u,v^2,v^3).$$

Solution. We have

$$\sigma_{v} = (0, 2v, 3v^{2}), \qquad \sigma_{v}(u, 0) = (0, 0, 0).$$

 σ is not regular because σ_u and σ_v are linearly dependent along the line $L = \{(u, 0) : u \in \mathbb{R}\}.$

Definition 3.26: Reparametrization

Suppose that $U, \widetilde{U} \subseteq \mathbb{R}^2$ are open sets and

$$\sigma: U \to \mathbb{R}^3$$
, $\tilde{\sigma}: \widetilde{U} \to \mathbb{R}^3$,

are surface charts. We say that $\tilde{\sigma}$ is a **reparametrization** of σ if

there exists a diffeomorphism $\Phi: \widetilde{U} \to U$ such that

$$\tilde{\boldsymbol{\sigma}} = \boldsymbol{\sigma} \circ \Phi$$
.

Theorem 3.27: Reparametrizations of regular charts are regular

Let $U, \widetilde{U} \subseteq \mathbb{R}^2$ be open and $\boldsymbol{\sigma}: U \to \mathbb{R}^3$ be regular. Suppose given a diffeomorphism $\Phi: \widetilde{U} \to U$. The reparametrization

$$\tilde{\boldsymbol{\sigma}}: \widetilde{U} \to \mathbb{R}^3, \qquad \tilde{\boldsymbol{\sigma}} = \boldsymbol{\sigma} \circ \Phi$$

is a regular chart, and it holds

$$\tilde{\boldsymbol{\sigma}}_{\tilde{u}} \times \tilde{\boldsymbol{\sigma}}_{\tilde{v}} = \det J\Phi \; (\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}) \; .$$

Definition 3.28: Transition map

Let \mathcal{S} be a regular surface, $\boldsymbol{\sigma}:U\to\mathcal{S}, \tilde{\boldsymbol{\sigma}}:\widetilde{U}\to\mathcal{S}$ regular charts. Suppose the images of $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ overlap

$$I := \boldsymbol{\sigma}(U) \cap \tilde{\boldsymbol{\sigma}}(\widetilde{U}) \neq \emptyset$$
.

I is open in S, being intersection of open sets. Define

$$V := \boldsymbol{\sigma}^{-1}(I) \subseteq U, \quad \widetilde{V} := \widetilde{\boldsymbol{\sigma}}^{-1}(I) \subseteq \widetilde{U}.$$

V and \widetilde{V} are open, by continuity of $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$. Moreover, as $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ are homeomorphisms, we have $\boldsymbol{\sigma}(V) = \tilde{\boldsymbol{\sigma}}(\widetilde{V}) = I$. Therefore, they are well defined the restriction homeomorphisms

$$\sigma|_{V}: V \to I, \quad \tilde{\sigma}|_{\widetilde{V}}: \widetilde{V} \to I.$$

The **transition map** from σ to $\tilde{\sigma}$ is the homeomorphism

$$\Phi: \widetilde{V} \to V$$
 $\Phi:= \boldsymbol{\sigma}^{-1} \circ \widetilde{\boldsymbol{\sigma}}$

Theorem 3.29

Transition maps between regular charts are diffeomorphisms.

Theorem 3.30: Transition maps are reparametrizations

Let \mathscr{S} be a regular surface, $\sigma: U \to \mathscr{S}$, $\tilde{\sigma}: \widetilde{U} \to \mathscr{S}$ regular charts, with $I := \sigma(U) \cap \tilde{\sigma}(\widetilde{U}) \neq \emptyset$. Define the transition map

$$\Phi = \boldsymbol{\sigma}^{-1} \circ \tilde{\boldsymbol{\sigma}} : \widetilde{V} \to V, \quad V = \boldsymbol{\sigma}^{-1}(I), \quad \widetilde{V} = \tilde{\boldsymbol{\sigma}}^{-1}(I).$$

Then $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ are reparametrization of each other, with

$$\tilde{\boldsymbol{\sigma}} = \boldsymbol{\sigma} \circ \Phi$$
, $\boldsymbol{\sigma} = \tilde{\boldsymbol{\sigma}} \circ \Phi^{-1}$.

3.2 Smooth maps and tangent plane

Definition 3.31: Smooth functions between surfaces

Let S_1 and S_2 be regular surfaces and $f: S_1 \to S_2$ a map.

1. f is smooth at $\mathbf{p} \in \mathcal{S}_1$, if there exist charts

 $\sigma_i: U_i \to \mathcal{S}_i$ such that $\mathbf{p} \in \sigma_1(U_1), f(\mathbf{p}) \in \sigma_2(U_2),$

and that the following map is smooth

$$\Psi: U_1 \to U_2, \quad \Psi = \boldsymbol{\sigma}_2^{-1} \circ f \circ \boldsymbol{\sigma}_1.$$

2. f is *smooth*, if it is smooth for each $\mathbf{p} \in \mathcal{S}_1$.

Proposition 3.32: Inverse of a regular chart is smooth

Let $\sigma: U \to \mathbb{R}^3$ be regular. Then $\sigma^{-1}: \sigma(U) \to U$ is smooth.

Definition 3.33: Diffeomorphism of surfaces

Let S_1 and S_2 be regular surfaces.

- 1. $f: \mathcal{S}_1 \to \mathcal{S}_2$ is a **diffeomorphism**, if f is smooth and admits smooth inverse.
- 2. S_1 , S_2 are **diffeomorphic** if there exists $f: S_1 \to S_2$ diffeomorphism.

Proposition 3.34: Image of charts under diffeomorphisms

Let $\mathcal S$ and $\widetilde{\mathcal S}$ be regular surfaces, $f\colon \mathcal S\to \widetilde{\mathcal S}$ diffeomorphism. If $\pmb\sigma\colon U\to \mathcal S$ is a regular chart for $\mathcal S$ at $\mathbf p$, then

$$\tilde{\boldsymbol{\sigma}}: U \to \widetilde{\mathcal{S}}, \qquad \tilde{\boldsymbol{\sigma}}:= f \circ \boldsymbol{\sigma},$$

is a regular chart for $\widetilde{\mathcal{S}}$ at $f(\mathbf{p})$.

Definition 3.35: Local diffeomorphism

Let \mathcal{S}_1 and \mathcal{S}_2 be regular surfaces, and $f: \mathcal{S}_1 \to \mathcal{S}_2$ smooth.

- 1. f is a local diffeomorphism at $p \in S_1$ if:
 - There exists An open set $V \subseteq S_1$ with $\mathbf{p} \in V$;
 - $f(V) \subseteq \mathcal{S}_2$ is open;
 - $f: V \to f(V)$ is smooth between surfaces.
- 2. f is a **local diffeomorphism** in S_1 , if it is a local diffeomorphism at each $\mathbf{p} \in S_1$.
- 3. S_1 is **locally diffeomorphic** to S_2 , if for all $\mathbf{p} \in S_1$ there exists f local diffeomorphism at \mathbf{p} .

Definition 3.36: Tangent vectors and tangent plane

Let S be a surface and $\mathbf{p} \in S$.

1. $\mathbf{v} \in \mathbb{R}^3$ is a **tangent vector** to \mathscr{S} at \mathbf{p} , if there exists a smooth curve $\mathbf{\gamma}: (-\varepsilon, \varepsilon) \to \mathbb{R}^3$ such that

$$\gamma(-\varepsilon,\varepsilon) \subseteq \mathcal{S}$$
, $\gamma(0) = \mathbf{p}$, $\mathbf{v} = \dot{\gamma}(0)$.

- 2. The **tangent plane** of S at **p** is the set
 - $T_{\mathbf{p}}\mathcal{S} := \{ \mathbf{v} \in \mathbb{R}^3 : \mathbf{v} \text{ tangent vector of } \mathcal{S} \text{ at } \mathbf{p} \}.$

Lemma 3.37: Curves with values on surfaces

Let $\sigma: U \to \mathbb{R}^3$ be a regular chart and $\mathcal{S} := \sigma(U)$. Let $\mathbf{p} \in \mathcal{S}$ and $(u_0, v_0) = \sigma^{-1}(\mathbf{p})$. Assume $\mathbf{y}: (-\varepsilon, \varepsilon) \to \mathbb{R}^3$ is a smooth curve such that

$$\gamma(-\varepsilon,\varepsilon)\subseteq\mathcal{S}$$
, $\gamma(0)=\mathbf{p}$.

There exist smooth functions $u, v : (-\varepsilon, \varepsilon) \to \mathbb{R}$ such that

$$\mathbf{\gamma}(t) = \mathbf{\sigma}(u(t), v(t)), \ \forall t \in (-\varepsilon, \varepsilon), \quad u(0) = u_0, \ v(0) = v_0.$$

Theorem 3.38: Characterization of Tangent Plane

Let $\sigma: U \to \mathbb{R}^3$ be a regular chart and $\mathcal{S} := \sigma(U)$. Let $\mathbf{p} \in \mathcal{S}$. Then

$$T_{\mathbf{p}}\mathcal{S} = \operatorname{span}\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\} := \{\lambda \boldsymbol{\sigma}_{u} + \mu \boldsymbol{\sigma}_{v} : \lambda, \mu \in \mathbb{R}\},$$

where σ_u and σ_v are evaluated at $(u, v) = \sigma^{-1}(\mathbf{p})$.

Theorem 3.39: Equation of tangent plane

Let $\sigma: U \to \mathcal{S}$ be regular, $\mathcal{S} = \sigma(U)$. Let $\mathbf{p} \in \mathcal{S}$ and

$$\mathbf{n} := \boldsymbol{\sigma}_{\boldsymbol{\nu}}(\boldsymbol{u}, \boldsymbol{v}) \times \boldsymbol{\sigma}_{\boldsymbol{\nu}}(\boldsymbol{u}, \boldsymbol{v}), \quad (\boldsymbol{u}, \boldsymbol{v}) := \boldsymbol{\sigma}^{-1}(\mathbf{p}).$$

The equation of the tangent plane $T_{\mathbf{p}}\mathcal{S}$ is given by

$$\mathbf{x} \cdot \mathbf{n} = 0$$
, $\forall \mathbf{x} \in \mathbb{R}^3$.

Example 3.40: Calculation of tangent plane

Question. For $u \in (0, 2\pi)$, v < 1, let S charted by

$$\boldsymbol{\sigma}(u,v) = \left(\sqrt{1-v}\cos(u), \sqrt{1-v}\sin(u), v\right).$$

- 1. Prove that σ charts the paraboloid $x^2 + y^2 z = 1$.
- 2. Prove that σ is regular and compute $\mathbf{n} = \sigma_u \times \sigma_v$.
- 3. Give a basis for $T_{\mathbf{p}}\mathcal{S}$ at $\mathbf{p} = (\sqrt{2}/2, \sqrt{2}/2, 0)$.
- 4. Compute the cartesian equation of $T_{\mathbf{p}}\mathcal{S}$.

Solution.

1. Denote $\sigma(u, v) = (x, y, z)$. We have

$$x^{2} + y^{2} = \left(\sqrt{1 - v}\cos(u)\right)^{2} + \left(\sqrt{1 - v}\sin(u)\right)^{2}$$

= 1 - v = 1 - z.

2. We compute $\mathbf{n} = \boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v$ and show that $\boldsymbol{\sigma}$ is regular:

$$\boldsymbol{\sigma}_{u} = \left(-\sqrt{1-\nu}\sin(u), \sqrt{1-\nu}\cos(u), 0\right)$$

$$\boldsymbol{\sigma}_{v} = \left(-\frac{1}{2}(1-\nu)^{-1/2}\cos(u), -\frac{1}{2}(1-\nu)^{-1/2}\sin(u), 1\right)$$

$$\mathbf{n} = \boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} = \left(\sqrt{1-\nu}\cos(u), \sqrt{1-\nu}\sin(u), \frac{1}{2}\right) \neq \mathbf{0}$$

3. Notice that $\sigma(\pi/4,0) = \mathbf{p}$. A basis for $T_{\mathbf{p}}\mathcal{S}$ is

$$\boldsymbol{\sigma}_{u}\left(\frac{\pi}{4},0\right) = \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right),$$
$$\boldsymbol{\sigma}_{v}\left(\frac{\pi}{4},0\right) = \left(-\frac{\sqrt{2}}{4},-\frac{\sqrt{2}}{4},1\right).$$

4. Using the calculation for n in Point 2, we find

$$\mathbf{n}\left(\frac{\pi}{4},0\right) = \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},-\frac{1}{2}\right)\,.$$

The equation for $T_{\mathbf{p}}\mathcal{S}$ is $\mathbf{x} \cdot \mathbf{n} = 0$, which reads

$$\sqrt{2} \, x + \sqrt{2} \, y - z = 0 \, .$$

Definition 3.41: Standard unit normal of a chart

Let \mathcal{S} be a regular surface and $\boldsymbol{\sigma}:U\to\mathbb{R}^3$ a regular chart. The **standard unit normal** of σ is the smooth function

$$\mathbf{N}_{\sigma}: U \to \mathbb{R}^3, \quad \mathbf{N}_{\sigma} = \frac{\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v}{\|\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v\|}.$$

Example 3.42: Calculation of N

Question. Compute the standard unit normal to

$$\sigma(u,v) = (e^u, u + v, v), \quad u, v \in \mathbb{R}.$$

Solution. The standard unit normal to σ is

$$\begin{aligned} & \boldsymbol{\sigma}_{u} = (e^{u}, 1, 0) , \ \boldsymbol{\sigma}_{v} = (0, 1, 1), & & & & & & & & & & & & & & & & \\ & \boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} = (1, -e^{u}, e^{u}) & & & & & & & & & & \\ & \boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} = (1, -e^{u}, e^{u}) & & & & & & & & \\ & \boldsymbol{N}_{\boldsymbol{\sigma}} = \frac{(1, -e^{u}, e^{u})}{\sqrt{1 + 2e^{2u}}} \end{aligned}$$

Definition 3.43: Unit normal of a surface

Let S be a regular surface. A **unit normal** to S is a smooth function $\mathbf{N}: \mathcal{S} \to \mathbb{R}^3$ such that

$$\mathbf{N}(\mathbf{p}) \perp T_{\mathbf{p}} \mathcal{S}$$
, $\|\mathbf{N}(\mathbf{p})\| = 1$, $\forall \mathbf{p} \in \mathcal{S}$.

Definition 3.44: Orientable surface

A regular surface S is **orientable** if there exists a unit normal $\mathbf{N}: \mathcal{S} \to \mathbb{R}^3$ and an atlas \mathscr{A} such that

$$\mathbf{N} \circ \boldsymbol{\sigma} = \mathbf{N}_{\boldsymbol{\sigma}}, \qquad \forall \, \boldsymbol{\sigma} \in \mathscr{A}.$$

Definition 3.45: Differential of smooth function

Let \mathscr{S} and $\widetilde{\mathscr{S}}$ be regular surfaces and $f:\mathscr{S}\to\widetilde{\mathscr{S}}$ a smooth map. The differential $d_{\mathbf{p}} f$ of f at \mathbf{p} is defined as the map

$$d_{\mathbf{p}}f: T_{\mathbf{p}}\mathcal{S} \to T_{f(\mathbf{p})}\widetilde{\mathcal{S}}, \quad d_{\mathbf{p}}f(\mathbf{v}) := (f \circ \boldsymbol{\gamma})'(0),$$

with $\gamma: (-\varepsilon, \varepsilon) \to \mathcal{S}$ smooth curve, $\gamma(0) = \mathbf{p}, \dot{\gamma}(0) = \mathbf{v}$.

Example 3.46: Computing $d_{\mathbf{p}}f$ using the definition

Question. Consider the plane $\mathcal{S} = \{z = 0\}$, the unit cylinder $\widetilde{\mathcal{S}} =$ $\{x^2 + y^2 = 1\}$, and the map

$$f: S \to \widetilde{\mathscr{S}}, \qquad f(x, y, 0) = (\cos x, \sin x, y).$$

- 1. Compute $T_{\mathbf{p}}\mathcal{S}$. 2. Compute $d_{\mathbf{p}}f$ at $\mathbf{p}=(u_0,v_0,0)$ and $\mathbf{v}=(\lambda,\mu,0)$.

Solution.

1. A chart for S is given by $\sigma(u, v) = (u, v, 0)$. Hence,

$$\sigma_u = (1, 0, 0), \quad \sigma_v = (0, 1, 0),$$

and the tangent space is

$$T_{\mathbf{p}}\mathcal{S} = \operatorname{span}\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\} = \{(\lambda, \mu, 0) : \lambda, \mu \in \mathbb{R}\}.$$

2. Define the curve $\gamma: (-\varepsilon, \varepsilon) \to \mathcal{S}$ by setting

$$\gamma(t) := \sigma(u_0 + t\lambda, v_0 + t\mu) = (u_0 + t\lambda, v_0 + t\mu, 0).$$

Note that $\mathbf{y}(0) = \mathbf{p}$ and $\dot{\mathbf{y}}(0) = \mathbf{v} = (\lambda, \mu, 0)$. Therefore, the differential is given by

$$\begin{split} &(f \circ \boldsymbol{\gamma})(t) = (\cos(u_0 + t\lambda), \sin(u_0 + t\lambda), v_0 + t\mu), \\ &(f \circ \boldsymbol{\gamma})'(t) = (-\lambda \sin(u_0 + t\lambda), \lambda \cos(u_0 + t\lambda), \mu), \\ &d_{\mathbf{p}} f(\mathbf{v}) = (f \circ \boldsymbol{\gamma})'(0) = (-\lambda \sin(u_0), \lambda \cos(u_0), \mu). \end{split}$$

Theorem 3.47: Matrix of $d_{\mathbf{p}}f$

Let $\mathcal{S}, \widetilde{\mathcal{S}}$ be regular surfaces, and $f: \mathcal{S} \to \widetilde{\mathcal{S}}$ smooth.

- 1. $d_{\mathbf{p}} f(\mathbf{v})$ depends only on f, \mathbf{p} , \mathbf{v} (and not on γ).
- 2. $d_{\mathbf{p}}f$ is linear, that is, for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}}\mathcal{S}$ and $\lambda, \mu \in \mathbb{R}$

$$d_{\mathbf{p}}f(\lambda \mathbf{v} + \mu \mathbf{w}) = \lambda d_{\mathbf{p}}f(\mathbf{v}) + \mu d_{\mathbf{p}}f(\mathbf{w}).$$

3. Let $\sigma: U \to \mathcal{S}, \tilde{\sigma}: \widetilde{U} \to \widetilde{\mathcal{S}}$ be regular charts at $\mathbf{p}, f(\mathbf{p})$. Let α and β be the components of $\Psi = \tilde{\sigma}^{-1} \circ f \circ \sigma$, so that

$$\tilde{\boldsymbol{\sigma}}(\alpha(u,v),\beta(u,v)) = f(\boldsymbol{\sigma}(u,v)), \quad \forall (u,v) \in U.$$

The matrix of $d_{\mathbf{p}}f$ with respect to the basis

$$\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\}$$
 on $T_{\mathbf{p}}\mathcal{S}$, $\{\tilde{\boldsymbol{\sigma}}_{\tilde{u}}, \tilde{\boldsymbol{\sigma}}_{\tilde{v}}\}$ on $T_{f(\mathbf{p})}\widetilde{\mathcal{S}}$,

is given by the Jacobian of the map Ψ , that is,

$$J\Psi = \left(\begin{array}{cc} \alpha_u & \alpha_v \\ \beta_u & \beta_v \end{array} \right) .$$

Example 3.48: Computing the matrix of $d_{\mathbf{p}}f$

Question. Let \mathcal{S} be the cylinder, and $\widetilde{\mathcal{S}}$ the plane, charted by

$$\sigma(u, v) = (\cos u, \sin u, v), \quad \tilde{\sigma}(u, v) = (u, v, 0),$$

defined on $U = (0, 2\pi) \times \mathbb{R}$ and $\widetilde{U} = \mathbb{R}^2$. Define the map

$$f: \mathcal{S} \to \widetilde{\mathcal{S}}, \quad f(x, y, z) = (y, xz, 0).$$

Compute the matrix of $d_{\mathbf{p}}f$ with respect to $\{\boldsymbol{\sigma}_{u},\boldsymbol{\sigma}_{v}\}$ and $\{\tilde{\boldsymbol{\sigma}}_{u},\tilde{\boldsymbol{\sigma}}_{v}\}$.

Solution. Note that $\tilde{\boldsymbol{\sigma}}^{-1}(u, v, 0) = (u, v)$. Hence,

$$\Psi(u,v) = \tilde{\boldsymbol{\sigma}}^{-1} \left(f(\boldsymbol{\sigma}(u,v)) \right) = \tilde{\boldsymbol{\sigma}}^{-1} \left(f(\cos u, \sin u, v) \right)$$
$$= \tilde{\boldsymbol{\sigma}}^{-1} \left(\sin(u), \cos(u)v, 0 \right) = \left(\sin(u), \cos(u)v \right).$$

The components of Ψ are

$$\alpha(u, v) = \sin(u), \quad \beta(u, v) = \cos(u)v.$$

The matrix of $d_{\mathbf{p}}f$ is hence

$$J\Psi = \begin{pmatrix} \alpha_u & \alpha_v \\ \beta_u & \beta_v \end{pmatrix} = \begin{pmatrix} \cos(u) & 0 \\ -\sin(u)v & \cos(u) \end{pmatrix}.$$

3.3 Examples of Surfaces

Definition 3.49: Level surface

Let $f:V\to\mathbb{R}$ be smooth, $V\subseteq\mathbb{R}^3$ open. The **level surface** associated to f is the set

$$\mathcal{S}_f = f^{-1}(\{0\}) = \{(x,y,z) \in V \ : \ f(x,y,z) = 0\} \, .$$

Theorem 3.50: Regularity of level surfaces

Let $f: V \to \mathbb{R}$ be smooth, with $V \subseteq \mathbb{R}^3$ open. Assume

$$\forall f(x, y, z) \neq \mathbf{0}, \quad \forall (x, y, z) \in V.$$

Then \mathcal{S}_f is a regular surface.

Example 3.51: Circular cone

Question. Prove the circular cone is a regular surface

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, z > 0\}.$$

Solution. Define the open set $V \subset \mathbb{R}^3$ and $f: V \to \mathbb{R}$ by

$$V = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}, \quad f(x, y, z) = x^2 + y^2 - z^2.$$

 \mathcal{S} is a regular surface, since $\mathcal{S} = \mathcal{S}_f$ and

$$\nabla f(x, y, z) = (2x, 2y, -2z) \neq \mathbf{0}, \quad \forall (x, y, z) \in V.$$

Theorem 3.52: Tangent plane of level surfaces

Let $f: V \to \mathbb{R}$ be smooth, with $V \subseteq \mathbb{R}^3$ open. Assume

$$\forall f(x, y, z) \neq \mathbf{0}, \quad \forall (x, y, z) \in V.$$

Let $\mathbf{p} \in \mathcal{S}_f$. Then $\nabla f(\mathbf{p}) \perp T_{\mathbf{p}} \mathcal{S}_f$ and $T_{\mathbf{p}} \mathcal{S}_f$ has equation

$$\nabla f(\mathbf{p}) \cdot \mathbf{x} = 0$$
, $\forall \mathbf{x} \in \mathbb{R}^3$.

Example 3.53: Unit cylinder

Question. Consider the unit cylinder $\mathcal{S} = \{x^2 + y^2 = 1\}$.

- 1. Prove that $\mathcal S$ is a regular surface.
- 2. Find the equation of $T_{\mathbf{p}}\mathcal{S}$ at $\mathbf{p} = (\sqrt{2}/2, \sqrt{2}/2, 5)$.

Solution.

1. Define the open set $V \subseteq \mathbb{R}^3$ and $f: V \to \mathbb{R}$ by

$$V = \mathbb{R}^3 \setminus \{(0,0,z) : z \in \mathbb{R}\}, \quad f(x,y,z) := x^2 + y^2 - 1.$$

 \mathcal{S} is a regular surface, since $\mathcal{S} = \mathcal{S}_f$ and

$$\nabla f(x, y, z) = (2x, 2y, 0) \neq \mathbf{0}, \quad \forall (x, y, z) \in V.$$

2. Using the expression for ∇f in Point 1, we get

$$\nabla f(\mathbf{p}) = \nabla f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 5\right) = (\sqrt{2}, \sqrt{2}, 0).$$

The equation for $T_{\mathbf{p}}\mathcal{S}$ is

$$\nabla f(\mathbf{p}) \cdot \mathbf{x} = 0 \iff x + y = 0.$$

Definition 3.54: Ruled surface

A ruled surface is a surface with chart

$$\sigma(u, v) = \gamma(u) + va(u),$$

where γ , **a** : $(a, b) \rightarrow \mathbb{R}^3$ are smooth curves, such that

 $\dot{\mathbf{y}}(t)$ and $\mathbf{a}(t)$ are linearly independent for all $t \in (a, b)$.

y is the **base curve** and the lines $v \mapsto v\mathbf{a}(u)$ the **rulings**.

Theorem 3.55: Regularity of ruled surfaces

A ruled surface S is regular if v is sufficiently small.

Example 3.56: Unit Cylinder is ruled surface

Question. Prove that the unit cylinder is a ruled surface. **Solution.** The unit cylinder S is charted by

$$\sigma(u, v) = (\cos(u), \sin(u), v) = \gamma(u) + v\mathbf{a}(u)$$

$$\gamma(u) = (\cos(u), \sin(u), 0), \quad \mathbf{a} = (0, 0, 1)$$

 \mathcal{S} is a ruled surface, since the vectors

$$\dot{\mathbf{y}} = (-\sin(u), \cos(u), 0), \quad \mathbf{a} = (0, 0, 1)$$

are orthogonal, and hence linearly independent.

Example 3.57: A ruled surface

Question. Show that the following surface is ruled

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 10xy + 16x^2 - z = 0\}$$
.

Solution. We can rearrange

$$x^{2} + 10xy + 16x^{2} - z = 0 \iff (x + 8y)(x + 2y) = z$$
.

Let u = x + 8y and v = x + 2y. Therefore uv = z and

$$u-v=6y \implies y=\frac{u-v}{6} \implies x=u-8y=\frac{4v-u}{3}$$
.

It follows that if $(x, y, z) \in S$ then

$$(x, y, z) = \left(\frac{4v - u}{3}, \frac{u - v}{6}, uv\right)$$
$$= \left(-\frac{u}{3}, \frac{u}{6}, 0\right) + v\left(\frac{4}{3}, -\frac{1}{6}, u\right) = \gamma(u) + v\mathbf{a}(u).$$

When $u \neq 0$, the vectors

$$\mathbf{a}(u) = \left(\frac{4}{3}, -\frac{1}{6}, u\right), \quad \dot{\mathbf{y}}(u) = \left(-\frac{1}{3}, \frac{1}{6}, 0\right),$$

are linearly independent, as the last component of $\dot{\mathbf{y}}(u)$ is 0. Also $\mathbf{a}(0)$ and $\dot{\mathbf{y}}(0)$ are linearly independent. Thus, \mathcal{S} is a ruled surface.

Definition 3.58: Surface of revolution

Let $\gamma: (a,b) \to \mathbb{R}^3$ be a smooth curve in the (x,z)-plane,

$$\gamma(v) = (f(v), 0, g(v)), \qquad f > 0.$$

The surface \mathcal{S} formed by rotating γ about the z-axis, called a **surface of revolution**, is charted by $\sigma: U \to \mathbb{R}^3$

$$\sigma(u, v) = (\cos(u) f(v), \sin(u) f(v), g(v)), \ U = (0, 2\pi) \times (a, b).$$

Theorem 3.59: Regularity of surfaces of revolution

A surface of revolution is regular if and only if γ is regular.

Example 3.60: Catenoid is surface of revolution

Question. The Catenoid \mathcal{S} is the surface of revolution formed by rotating the catenary $\gamma(\nu) = (\cosh(\nu), 0, \nu)$ about the *z*-axis. A chart for \mathcal{S} is given by

$$\sigma(u, v) = (\cos(u)\cosh(v), \sin(u)\cosh(v), v),$$

with $u \in (0, 2\pi)$, $v \in \mathbb{R}$. Prove that \mathcal{S} is a regular surface. **Solution.** Note that f > 0. \mathcal{S} is regular because γ is regular, as

$$\dot{\mathbf{y}} = (\sinh(v), 0, 1), \quad \|\dot{\mathbf{y}}\|^2 = 1 + \sinh(v)^2 \ge 1.$$

3.4 First fundamental form

Definition 3.61: First fundamental form (FFF)

Let \mathcal{S} be a regular surface and $\mathbf{p} \in \mathcal{S}$. The **first fundamental form** (FFF) of \mathcal{S} at \mathbf{p} is the bilinear symmetric map

$$I_{\mathbf{p}}:\,T_{\mathbf{p}}\mathcal{S}\times T_{\mathbf{p}}\mathcal{S}\rightarrow\mathbb{R}\,,\quad I_{\mathbf{p}}(\mathbf{v},\mathbf{w}):=\mathbf{v}\cdot\mathbf{w}\,.$$

Definition 3.62: Coordinate functions on tangent plane

Let $\sigma: U \to \mathbb{R}^3$ be regular, $\mathcal{S} = \sigma(U)$. The **coordinate functions** on $T_{\mathbf{p}}\mathcal{S}$ are the linear maps

$$du, dv: T_{\mathbf{p}} \mathcal{S} \to \mathbb{R}, \quad du(\mathbf{v}) := \lambda, \quad dv(\mathbf{v}) := \mu,$$

where $\mathbf{v} = \lambda \boldsymbol{\sigma}_u + \mu \boldsymbol{\sigma}_v$, since $\{\boldsymbol{\sigma}_u, \boldsymbol{\sigma}_v\}$ is a basis for $T_{\mathbf{p}} \mathcal{S}$.

Definition 3.63: FFF of a chart

Let $\sigma: U \to \mathbb{R}^3$ be regular, $\mathcal{S} = \sigma(U)$. Define $E, F, G: U \to \mathbb{R}$

$$E = \boldsymbol{\sigma}_u \cdot \boldsymbol{\sigma}_u$$
, $F = \boldsymbol{\sigma}_u \cdot \boldsymbol{\sigma}_v$, $G = \boldsymbol{\sigma}_v \cdot \boldsymbol{\sigma}_v$.

The **FFF** of σ is the quadratic form $\mathcal{F}_1: T_{\mathbf{p}}\mathcal{S} \to \mathbb{R}$

$$\mathcal{F}_1(\mathbf{v}) = E du^2(\mathbf{v}) + 2F du(\mathbf{v}) dv(\mathbf{v}) + G dv^2(\mathbf{v}), \quad \forall v \in T_{\mathbf{p}} \mathcal{S},$$

for all $\mathbf{p} \in \boldsymbol{\sigma}(U)$, with E, F, G evaluated at $(u, v) = \boldsymbol{\sigma}^{-1}(\mathbf{p})$.

Theorem 3.64: Matrix of FFF

Let $\sigma: U \to \mathbb{R}^3$ be regular, $\mathcal{S} = \sigma(U)$, and $\mathbf{p} \in \sigma(U)$. Then

$$I_{\mathbf{p}}(\mathbf{v},\mathbf{w}) = (du(\mathbf{v}),dv(\mathbf{v})) \left(\begin{array}{cc} E & F \\ F & G \end{array} \right) (du(\mathbf{w}),dv(\mathbf{w}))^T \,,$$

for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$. In particular, it holds

$$\mathscr{F}_1(\mathbf{v}) = I_{\mathbf{p}}(\mathbf{v}, \mathbf{v}), \quad \forall \, \mathbf{v} \in T_{\mathbf{p}} \mathscr{S}.$$

Example 3.65: FFF of Unit cylinder

Question. Consider the unit cylinder with chart

$$\sigma(u, v) = (\cos(u), \sin(u), v), \quad (u, v) \in (0, 2\pi) \times \mathbb{R}.$$

Prove that the FFF of σ is

$$\mathcal{F}_1 = du^2 + dv^2$$
.

Solution. We have

$$\sigma_u = (-\sin(u), \cos(u), 0)$$
 $F = \sigma_u \cdot \sigma_v = 0$
 $\sigma_v = (0, 0, 1)$ $G = \sigma_v \cdot \sigma_v = 1$

$$E = \boldsymbol{\sigma}_u \cdot \boldsymbol{\sigma}_u = 1 \qquad \qquad \mathcal{F}_1 = du^2 + dv^2$$

Proposition 3.66: FFF and reparametrizations

Let $\sigma: U \to \mathbb{R}^3$ be regular, and $\tilde{\sigma}: \widetilde{U} \to \mathbb{R}^3$ a reparametrization, with $\tilde{\sigma} = \sigma \circ \Phi$ and $\Phi: \widetilde{U} \to U$ diffeomorphism. The matrices \mathscr{F}_1 and $\widetilde{\mathscr{F}}_1$ of the FFF of σ and $\tilde{\sigma}$ are related by

$$\widetilde{\mathcal{F}}_1 = (J\Phi)^T \, \mathcal{F}_1 \, J\Phi \,, \quad \mathcal{F}_1 = \left(\begin{array}{cc} E & F \\ F & G \end{array} \right) \,, \quad \widetilde{\mathcal{F}}_1 = \left(\begin{array}{cc} \widetilde{E} & \widetilde{F} \\ \widetilde{F} & \widetilde{G} \end{array} \right) \,.$$

Example 3.67: FFF of Plane

Question. Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^3$, with \mathbf{p}, \mathbf{q} orthonormal. The plane in

cartesian and polar coordinates is charted by, respectively,

$$\boldsymbol{\sigma}(u,v) = \mathbf{a} + u\mathbf{p} + v\mathbf{q}, \quad (u,v) \in \mathbb{R}^2,$$

$$\tilde{\boldsymbol{\sigma}}(\rho,\theta) = \mathbf{a} + \rho\cos(\theta)\mathbf{p} + \rho\sin(\theta)\mathbf{q}, \quad \rho > 0, \ \theta \in (0,2\pi).$$

1. Show that the FFF of σ and $\tilde{\sigma}$ are

$$\mathcal{F}_1 = du^2 + dv^2$$
, $\widetilde{\mathcal{F}}_1 = d\rho^2 + \rho^2 d\theta^2$.

2. Let Φ be the change of variables from polar to cartesian coordinates. Show that

$$\widetilde{\mathcal{F}}_1 = (J\Phi)^T \, \mathcal{F}_1 \, J\Phi \, .$$

Solution.

1. Using that **p** and **q** are orthonormal,

$$\begin{split} & \boldsymbol{\sigma}_{u} = \mathbf{p} \,, & \qquad \tilde{\boldsymbol{\sigma}}_{\rho} = \cos(\theta)\mathbf{p} + \sin(\theta)\mathbf{q} \\ & \boldsymbol{\sigma}_{v} = \mathbf{q} & \qquad \tilde{\boldsymbol{\sigma}}_{\theta} = -\rho\sin(\theta)\mathbf{p} + \rho\cos(\theta)\mathbf{q} \\ & E = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u} = 1 & \qquad \widetilde{E} = \tilde{\boldsymbol{\sigma}}_{\rho} \cdot \tilde{\boldsymbol{\sigma}}_{\rho} = 1 \\ & F = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v} = 0 & \qquad \widetilde{F} = \tilde{\boldsymbol{\sigma}}_{\rho} \cdot \tilde{\boldsymbol{\sigma}}_{\theta} = 0 \\ & G = \boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v} = 1 & \qquad \widetilde{G} = \tilde{\boldsymbol{\sigma}}_{\theta} \cdot \tilde{\boldsymbol{\sigma}}_{\theta} = r^{2} \\ & \mathcal{F}_{1} = du^{2} + dv^{2} & \qquad \widetilde{\mathcal{F}}_{1} = d\rho^{2} + \rho^{2}d\theta^{2} \end{split}$$

2. We have $\Phi(\rho, \theta) = (\rho \cos(\theta), \rho \sin(\theta))$. Then

$$(J\Phi)^{T} \mathcal{F}_{1} J\Phi = (J\Phi)^{T} J\Phi$$

$$= \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\rho \sin(\theta) & \rho \cos(\theta) \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\rho \sin(\theta) \\ \sin(\theta) & \rho \cos(\theta) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & \rho^{2} \end{pmatrix} = \widetilde{\mathcal{F}}_{1}.$$

3.5 Length of curves

Proposition 3.68: Length of curves and FFF

Let $\sigma:U\to\mathbb{R}^3$ be regular, $\mathscr{S}=\sigma(U)$. Let $\gamma:(a,b)\to\mathscr{S}$ be a smooth curve. Then

$$\mathbf{y}(t) = \boldsymbol{\sigma}(u(t), v(t)),$$

for some smooth functions $u, v : (a, b) \to \mathbb{R}$, and

$$\int_{a}^{b} \|\dot{\mathbf{y}}(t)\| dt = \int_{a}^{b} \sqrt{E\dot{u}^{2} + 2F\dot{u}\dot{v} + G\dot{v}^{2}} dt,$$

where \dot{u} , \dot{v} are computed at t, and E, F, G at (u(t), v(t)).

Example 3.69: Curves on the Cone

Question. Consider the cone with chart

$$\boldsymbol{\sigma}(u,v) = (\cos(u)v, \sin(u)v, v), \quad u \in (0, 2\pi), \ v > 0.$$

- 1. Compute the first fundamental form of σ .
- 2. Compute the length of $\gamma(t) = \sigma(t, t)$ for $t \in (\pi/2, \pi)$.

Solution.

1. The first fundamental form of σ is

$$\boldsymbol{\sigma}_{u} = (-\sin(u)v, \cos(u)v, 0) \qquad F = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v} = 0$$

$$\boldsymbol{\sigma}_{v} = (\cos(u), \sin(u), 1) \qquad G = \boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v} = 2$$

$$E = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u} = v^{2} \qquad \mathcal{F}_{1} = v^{2} du^{2} + 2 dv^{2}$$

2. $\gamma(t) = \sigma(u(t), v(t))$ with u(t) = t and v(t) = t. Then

$$\dot{u} = 1, \ \dot{v} = 1$$
 $F(u(t), v(t)) = F(t, t) = 0$
 $E(u(t), v(t)) = E(t, t) = t^2$ $G(u(t), v(t)) = G(t, t) = 2$

The length of γ between $\pi/2$ and π is

$$\int_{\pi/2}^{\pi} \|\dot{\boldsymbol{y}}(t)\| \ dt = \int_{\pi/2}^{\pi} \sqrt{t^2 + 2} \, dt \,.$$

3.6 Local isometries

Definition 3.70: Local isometry

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular and $f: \mathcal{S} \to \widetilde{\mathcal{S}}$ smooth. We say that f is a **local isometry**, if for all $\mathbf{p} \in \mathcal{S}$

$$\mathbf{v} \cdot \mathbf{w} = d_{\mathbf{p}} f(\mathbf{v}) \cdot d_{\mathbf{p}} f(\mathbf{w}), \quad \forall \, \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}.$$

In this case, $\mathcal S$ and $\widetilde{\mathcal S}$ are said to be **locally isometric**.

Proposition 3.71

Local isometries are local diffeomorphims.

Theorem 3.72: Local isometries preserve lengths

Let $\mathcal{S},\widetilde{\mathcal{S}}$ be regular surfaces, $f:\,\mathcal{S}\to\widetilde{\mathcal{S}}$ smooth. Equivalently:

- 1. f is a local isometry.
- 2. Let γ be a curve on \mathcal{S} and define the curve $\tilde{\gamma} = f \circ \gamma$ on $\widetilde{\mathcal{S}}$. Then γ and $\tilde{\gamma}$ have the same length.

Theorem 3.73: Local isometries preserve FFF

Let $\mathcal{S},\widetilde{\mathcal{S}}$ be regular surfaces, $f:\mathcal{S}\to\widetilde{\mathcal{S}}$ smooth. Equivalently:

- 1. *f* is a local isometry.
- 2. Let $\sigma: U \to \mathcal{S}$ be regular chart of \mathcal{S} , and define a chart of $\widetilde{\mathcal{S}}$ as $\tilde{\sigma}: U \to \widetilde{\mathcal{S}}$, with $\tilde{\sigma} = f \circ \sigma$. Then σ and $\tilde{\sigma}$ have the same FFF

$$E = \widetilde{E}$$
, $F = \widetilde{F}$, $G = \widetilde{G}$.

Theorem 3.74: Sufficient condition for local isometry

Let $\mathcal{S},\widetilde{\mathcal{S}}$ be regular surfaces, with charts $\boldsymbol{\sigma}:U\to\mathcal{S}$ and $\tilde{\boldsymbol{\sigma}}:U\to\widetilde{\mathcal{S}}$. Assume that $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ have the same FFF. We have

1. The surfaces $\sigma(U)$ and \widetilde{S} are locally isometric.

2. A local isometry is given by

$$f: \boldsymbol{\sigma}(U) \to \widetilde{\mathcal{S}}, \qquad f = \tilde{\boldsymbol{\sigma}} \circ \boldsymbol{\sigma}^{-1}.$$

Example 3.75: Plane and Cylinder are locally isometric

Question. Consider the plane $\mathcal{S} = \{x = 0\}$ and the unit cylinder $\widetilde{\mathcal{S}} = \{x^2 + y^2 = 1\}$. Define the function

$$f: \mathcal{S} \to \widetilde{\mathcal{S}}, \qquad f(0, y, z) = (\cos(y), \sin(y), z).$$

Prove that f is a local isometry (you may assume f smooth). **Solution.** The plane \mathcal{S} is charted by

$$\boldsymbol{\sigma}(u,v)=(0,u,v), \quad u,v\in\mathbb{R}.$$

We already know that σ is regular, with FFF coefficients

$$E=1$$
, $F=0$, $G=1$ \Longrightarrow $\mathscr{F}_1=du^2+dv^2$.

Define $\tilde{\boldsymbol{\sigma}} = f \circ \boldsymbol{\sigma}$. Therefore,

$$\tilde{\boldsymbol{\sigma}}(u,v) = f(0,u,v) = (\cos(u),\sin(u),v).$$

The FFF of $\tilde{\boldsymbol{\sigma}}$ is

$$\tilde{\boldsymbol{\sigma}}_{u} = (-\sin(u), \cos(u), 0) \qquad \qquad \widetilde{F} = \tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{v} = 0$$

$$\tilde{\boldsymbol{\sigma}}_{v} = (0, 0, 1) \qquad \qquad \widetilde{G} = \tilde{\boldsymbol{\sigma}}_{v} \cdot \tilde{\boldsymbol{\sigma}}_{v} = 1$$

$$\widetilde{E} = \tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{u} = 1 \qquad \qquad \widetilde{\mathscr{F}}_{1} = du^{2} + dv^{2}$$

Thus, σ and $\tilde{\sigma}$ have the same FFF. Since $\mathscr{A} = \{\sigma\}$ is an atlas for \mathscr{S} , by Theorem 1.74 we conclude that f is a local isometry of \mathscr{S} into $\widetilde{\mathscr{S}}$.

Example 3.76: Plane and Cone are locally isometric

Question. Consider the cone without tip

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, z > 0\},$$

and the plane $\widetilde{\mathcal{S}} = \{z = 0\}.$

1. Compute the FFF of the chart of the Cone

$$\boldsymbol{\sigma}: U \to \mathcal{S}, \qquad \boldsymbol{\sigma}(\rho, \theta) = (\rho \cos(\theta), \rho \sin(\theta), \rho),$$
$$U = \{(\rho, \theta) \in \mathbb{R}^2 : \rho > 0, \theta \in (0, 2\pi)\}.$$

2. Compute the FFF of the chart of the plane

$$\tilde{\boldsymbol{\sigma}}: U \to \widetilde{\mathcal{S}}, \qquad \tilde{\boldsymbol{\sigma}}(\rho, \theta) = (a\rho\cos(b\theta), a\rho\sin(b\theta), 0),$$

where a > 0 and $b \in (0, 1]$ are constants.

3. Prove that $f = \tilde{\sigma} \circ \sigma^{-1}$ is a local isometry between \mathcal{S} and $\widetilde{\mathcal{S}}$, for suitable coefficients a, b.

Solution.

1. As seen in Example 1.71, the coefficients of the FFF of σ are

$$E=2$$
, $F=0$, $G=\rho^2$.

2. Note that $\tilde{\sigma}$ is well defined for all $(\rho, \theta) \in U$, as

$$\theta \in (0, 2\pi), b \in (0, 1] \implies b\theta \in (0, 2\pi).$$

The coefficients of the FFF of $\tilde{\sigma}$ are

$$\begin{split} \tilde{\pmb{\sigma}}_{\rho} &= a \left(\cos(b\theta), \sin(b\theta), 0 \right) & \widetilde{F} &= \tilde{\pmb{\sigma}}_{\rho} \cdot \tilde{\pmb{\sigma}}_{\theta} = 0 \\ \tilde{\pmb{\sigma}}_{\theta} &= ab\rho \left(-\sin(b\theta), \cos(b\theta), 0 \right) & \widetilde{G} &= \tilde{\pmb{\sigma}}_{\theta} \cdot \tilde{\pmb{\sigma}}_{\theta} = a^2b^2\rho^2 \\ \widetilde{E} &= \tilde{\pmb{\sigma}}_{\rho} \cdot \tilde{\pmb{\sigma}}_{\rho} = a^2 \end{split}$$

3. Imposing that $\widetilde{E} = E$, $\widetilde{F} = F$ and $\widetilde{G} = G$, we obtain

$$a^2 = 2$$
, $a^2b^2 = 1$ \implies $a = \sqrt{2}$, $b = \frac{1}{\sqrt{2}}$.

Note that a > 0 and 0 < b < 1, showing that a, b are admissible. Hence, for $a = \sqrt{2}$ and $b = 1/\sqrt{2}$, the charts σ and $\tilde{\sigma}$ have the same FFF. By Theorem 1.73, we conclude that \mathcal{E} and $\tilde{\mathcal{E}}$ are locally isometric, with local isometry given by $f = \tilde{\sigma} \circ \sigma^{-1}$.

3.7 Angle between curves

Definition 3.77: Angle between curves

Let $\mathcal S$ be a regular surface, and $\pmb \gamma, \tilde \pmb \gamma$ curves on $\mathcal S$ intersecting at

$$\boldsymbol{\gamma}(t_0) = \mathbf{p} = \tilde{\boldsymbol{\gamma}}(t_0).$$

The angle θ between γ and $\tilde{\gamma}$ is

$$\cos(\theta) = \frac{\dot{\boldsymbol{\gamma}}(t_0) \cdot \dot{\tilde{\boldsymbol{\gamma}}}(t_0)}{\|\dot{\boldsymbol{\gamma}}(t_0)\| \|\dot{\tilde{\boldsymbol{\gamma}}}(t_0)\|}.$$

Theorem 3.78: Angle between curves and FFF

Let \mathcal{S} be a regular surface, $\boldsymbol{\sigma}$ regular chart at \mathbf{p} , and $\boldsymbol{\gamma}, \tilde{\boldsymbol{\gamma}}$ curves on \mathcal{S} intersecting at $\boldsymbol{\gamma}(t_0) = \mathbf{p} = \tilde{\boldsymbol{\gamma}}(t_0)$. There exist smooth functions $u, v, \tilde{u}, \tilde{v}$ such that

$$\mathbf{\gamma}(t) = \boldsymbol{\sigma}(u(t), v(t)), \quad \tilde{\mathbf{\gamma}}(t) = \boldsymbol{\sigma}(\tilde{u}(t), \tilde{v}(t)).$$

The angle between γ and $\tilde{\gamma}$ is

$$\cos(\theta) = \frac{E\dot{u}\hat{u} + F(\dot{u}\hat{v} + \dot{u}\hat{v}) + G\dot{v}\hat{v}}{(E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2)^{1/2}(E\dot{u}^2 + 2F\dot{u}\hat{v} + G\dot{v}^2)^{1/2}},$$

with $E, F, G, \widetilde{E}, \widetilde{F}, \widetilde{G}$ evaluated at $(u(t_0), v(t_0))$, and $\dot{u}, \dot{v}, \dot{u}, \dot{v}$ at t_0 .

Example 3.79: Calculation of angle between curves

Question. Let *S* be a surface charted by

$$\sigma(u,v)=(u,v,e^{uv})$$
.

- 1. Calculate the FFF of σ .
- 2. Calculate $cos(\theta)$, where θ is the angle between the two curves

$$\gamma(t) = \sigma(u(t), \nu(t)), \quad u(t) = t, \ \nu(t) = t,
\tilde{\gamma}(t) = \sigma(\tilde{u}(t), \tilde{\nu}(t)), \quad \tilde{u}(t) = 1, \ \tilde{\nu}(t) = t.$$

Solution.

1. The coefficients of the FFF are

$$\sigma_{u} = (1, 0, e^{uv}v)$$
 $F(u, v) = e^{2uv}uv$
 $\sigma_{v} = (0, 1, e^{uv}u)$ $G(u, v) = 1 + e^{2uv}u^{2}$
 $E(u, v) = 1 + e^{2uv}v^{2}$

2. γ and $\tilde{\gamma}$ intersect at $\gamma(1) = \tilde{\gamma}(1) = \sigma(1, 1)$. We compute

$$\dot{u}(1) = 1$$
 $E(1,1) = 1 + e^2$
 $\dot{v}(1) = 1$ $F(1,1) = e^2$
 $\dot{\tilde{u}}(1) = 0$ $G(1,1) = 1 + e^2$
 $\dot{\tilde{v}}(1) = 1$

Therefore, the angle θ satisfies

$$\cos(\theta) = \frac{1 + 2e^2}{\sqrt{2 + 4e^2}\sqrt{1 + e^2}} = \sqrt{\frac{1 + 2e^2}{2 + 2e^2}}.$$

3.8 Conformal maps

Definition 3.80: Conformal map

Let $\mathcal{S},\widetilde{\mathcal{S}}$ be regular surfaces, $f:\mathcal{S}\to\widetilde{\mathcal{S}}$ local diffeomorphism. We say that f is a **conformal map**, if for all $\mathbf{p}\in\mathcal{S}$

$$\theta = \tilde{\theta}, \quad \forall \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S},$$

- θ is the angle between **v** and **w**,
- $\tilde{\theta}$ is the angle between $d_{\mathbf{p}}f(\mathbf{v})$ and $d_{\mathbf{p}}f(\mathbf{w})$.

In this case, we say that $\mathcal S$ and $\widetilde{\mathcal S}$ are **conformal**.

Proposition 3.81

Local isometries are conformal maps.

Theorem 3.82: Conformal maps and FFF

Let $\mathcal{S},\,\widetilde{\mathcal{S}}$ be regular surfaces, $f\colon\mathcal{S}\to\widetilde{\mathcal{S}}$ a local diffeomorphism. Equivalently:

- 1. f is a conformal map.
- 2. Let $\sigma: U \to \mathcal{S}$ be regular chart of \mathcal{S} , and define a chart of $\widetilde{\mathcal{S}}$ as $\tilde{\sigma}: U \to \widetilde{\mathcal{S}}$, with $\tilde{\sigma} = f \circ \sigma$. Then the FFF of σ and $\tilde{\sigma}$ satisfy

$$\widetilde{\mathcal{F}}_1 = \lambda(u,v)\mathcal{F}_1\,, \quad \forall \, (u,v) \in U\,,$$

for some smooth map $\lambda: U \to \mathbb{R}$.

Theorem 3.83: Sufficient condition for conformality

Let \mathcal{S} , $\widetilde{\mathcal{S}}$ be regular surfaces, with charts $\sigma: U \to \mathcal{S}$ and $\tilde{\sigma}: U \to \widetilde{\mathcal{S}}$. Assume that $\widetilde{\mathcal{F}}_1 = \lambda \mathcal{F}_1$ for some $\lambda: U \to \mathbb{R}$. We have

- 1. The surfaces $\sigma(U)$ and $\widetilde{\mathcal{S}}$ are conformal.
- 2. A conformal map is given by $f: \boldsymbol{\sigma}(U) \to \widetilde{\mathcal{S}}$ with $f = \tilde{\boldsymbol{\sigma}} \circ \boldsymbol{\sigma}^{-1}$.

Example 3.84: Stereographic Projection

Question. Consider the unit sphere $\mathbb{S}^2 = \{x^2 + y^2 + z^2 = 1\}$ and define the surface $\mathcal{S} = \mathbb{S}^2 \setminus \{N\}$, where N = (0, 0, 1). Consider the plane $\widetilde{\mathcal{S}} = \{z = 0\}$. The *Stereographic Projection* is

$$f: \mathcal{S} \to \widetilde{\mathcal{S}}, \quad f(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}, 0\right).$$

Prove that f is a conformal map.

Solution. It is easy to prove that $f^{-1} = \sigma$, with

$$\boldsymbol{\sigma}(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, 1 - \frac{2}{u^2 + v^2 + 1}\right).$$

It is straightforward to compute that the FFF of σ is

$$\mathcal{F}_1 = \lambda(u,v)(du^2 + dv^2), \quad \lambda(u,v) = \frac{4}{(u^2 + v^2 + 1)^2}.$$

Let $\tilde{\boldsymbol{\sigma}} = f \circ \boldsymbol{\sigma}$. Since $\boldsymbol{\sigma} = f^{-1}$, we have that $\tilde{\boldsymbol{\sigma}}(u,v) = (u,v,0)$. As already computed, the FFF of $\tilde{\boldsymbol{\sigma}}$ is $\widetilde{\mathcal{F}}_1 = du^2 + dv^2$. Therefore,

$$\widetilde{\mathscr{F}}_1 = \frac{1}{\lambda} \mathscr{F}_1$$
.

Since $\mathcal{A}=\{\pmb{\sigma}\}$ is an atlas for \mathcal{S} , by Theorem 3.82 we conclude that f is a conformal map.

Definition 3.85: Conformal parametrization

Let $\sigma: U \to \mathbb{R}^3$ be regular. We say that σ is a **conformal** parametrization if the FFF of σ satisfies

$$\mathcal{F}_1 = \lambda(u, v)(du^2 + dv^2),$$

for some smooth function $\lambda: U \to \mathbb{R}$.

Example 3.86: Mercator projection

Question. Prove that the parametrization of \mathbb{S}^2 is conformal

$$\sigma(u, v) := (\cos(u) \operatorname{sech}(v), \sin(u) \operatorname{sech}(v), \tanh(v))$$
.

Solution. Recall the identities $\operatorname{sech}^2(v) + \tanh^2(v) = 1$ and

$$\operatorname{sech}(v)' = -\operatorname{sech}(v) \tanh(v), \quad \tanh(v)' = \operatorname{sech}^2(v).$$

The chart σ is a conformal parametrization because the FFF is

$$\tilde{\boldsymbol{\sigma}}_{u} = \operatorname{sech}(v) \left(-\sin(u), \cos(u), 0 \right)$$

$$\tilde{\boldsymbol{\sigma}}_{v} = \operatorname{sech}(v) \left(-\cos(v) \tanh(v), -\sin(u) \tanh(v), \operatorname{sech}(v) \right)$$

$$\widetilde{E} = \widetilde{\boldsymbol{\sigma}}_u \cdot \widetilde{\boldsymbol{\sigma}}_u = \operatorname{sech}^2(v)(\cos^2(u) + \sin^2(u)) = \operatorname{sech}^2(v)$$

$$\widetilde{F} = \widetilde{\boldsymbol{\sigma}}_{u} \cdot \widetilde{\boldsymbol{\sigma}}_{v} = 0$$

$$\widetilde{G} = \widetilde{\boldsymbol{\sigma}}_{v} \cdot \widetilde{\boldsymbol{\sigma}}_{v} = \operatorname{sech}^{2}(v)(\tanh^{2}(v) + \operatorname{sech}^{2}(v)) = \operatorname{sech}^{2}(v)$$

$$\mathcal{F}_1 = \operatorname{sech}^2(v) \left(du^2 + dv^2 \right)$$
.

Theorem 3.87: Conformal parametrizations preserve angles

Let σ be a conformal parametrization, and $\gamma_1(t)$, $\gamma_2(t)$ be curves in \mathbb{R}^2 such that $\dot{\gamma}_1(t_0)$, $\dot{\gamma}_2(t_0)$ make angle θ . Let $\tilde{\gamma}_1 = \sigma \circ \gamma_1$ and $\tilde{\gamma}_2 = \sigma \circ \gamma_2$. Then $\dot{\tilde{\gamma}}_1(t_0)$, $\dot{\tilde{\gamma}}_2(t_0)$ also make angle θ .

3.9 Second fundamental form

Definition 3.88: Second fundamental form of a chart

Let $\sigma: U \to \mathbb{R}^3$ be regular, $\mathcal{S} = \sigma(U)$. Define $L, M, N: U \to \mathbb{R}$

$$L := \boldsymbol{\sigma}_{uv} \cdot \mathbf{N}, \quad M := \boldsymbol{\sigma}_{uv} \cdot \mathbf{N}, \quad N := \boldsymbol{\sigma}_{vv} \cdot \mathbf{N},$$

where **N** is the standard unit normal to σ . The **second fundamental form (SFF)** of σ is the quadratic form $\mathcal{F}_2: T_{\mathbf{p}}\mathcal{S} \to \mathbb{R}$

$$\mathcal{F}_2(\mathbf{v}) = L \, du^2(\mathbf{v}) + 2M \, du(\mathbf{v}) \, dv(\mathbf{v}) + N \, dv^2(\mathbf{v}) \,, \ \forall \, v \in T_\mathbf{p} \mathcal{S},$$

for all $\mathbf{p} \in \boldsymbol{\sigma}(U)$, with L, M, N evaluated at $(u, v) = \boldsymbol{\sigma}^{-1}(v)$, and du, dv the coordinate functions in Definition 1.62.

Example 3.89: SFF of Plane

Question. Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^3$, with \mathbf{p}, \mathbf{q} orthonormal. The plane is charted by

$$\sigma(u, v) = \mathbf{a} + u\mathbf{p} + v\mathbf{q}, \quad (u, v) \in \mathbb{R}^2.$$

Prove that the SFF of σ is $\mathcal{F}_2 = 0$.

Solution. We have that $\mathcal{F}_2 = 0$, since

$$\begin{split} & \boldsymbol{\sigma}_u = \mathbf{p} \,, \quad \boldsymbol{\sigma}_v = \mathbf{q} \,, \quad \boldsymbol{\sigma}_{uu} = \boldsymbol{\sigma}_{uv} = \boldsymbol{\sigma}_{vv} = \mathbf{0} \,, \\ & L = \boldsymbol{\sigma}_{uu} \cdot \mathbf{N} = 0 \,, \quad M = \boldsymbol{\sigma}_{uv} \cdot \mathbf{N} = 0 \,, \quad N = \boldsymbol{\sigma}_{vv} \cdot \mathbf{N} = 0 \,. \end{split}$$

Example 3.90: SFF of Unit cylinder

Question. Consider the unit cylinder with chart

$$\boldsymbol{\sigma}(u,v) = (\cos(u),\sin(u),v), \quad (u,v) \in (0,2\pi) \times \mathbb{R}.$$

Prove that the SFF of σ is

$$\mathcal{F}_2 = -du^2$$
.

Solution. We have

$$\sigma_{u} = (-\sin(u), \cos(u), 0) \qquad \mathbf{N} = \frac{\sigma_{u} \times \sigma_{v}}{\|\sigma_{u} \times \sigma_{v}\|}$$

$$\sigma_{v} = (0, 0, 1) \qquad = (\cos(u), \sin(u), 0)$$

$$\sigma_{uu} = (-\cos(u), -\sin(u), 0) \qquad L = \sigma_{uu} \cdot \mathbf{N} = -1$$

$$\sigma_{uv} = \sigma_{vv} = \mathbf{0} \qquad M = \sigma_{uv} \cdot \mathbf{N} = 0$$

$$\sigma_{u} \times \sigma_{v} = (\cos(u), \sin(u), 0) \qquad N = \sigma_{vv} \cdot \mathbf{N} = 0$$

$$\|\sigma_{u} \times \sigma_{v}\| = 1 \qquad \mathcal{F}_{2} = -du^{2}$$

Remark 3.91: SFF and reparametrizations

Let $\sigma: U \to \mathbb{R}^3$ be regular, and $\tilde{\sigma}: \widetilde{U} \to \mathbb{R}^3$ a reparametrization, with $\tilde{\sigma} = \sigma \circ \Phi$ and $\Phi: \widetilde{U} \to U$ diffeomorphism. The matrices \mathscr{F}_2 and $\widetilde{\mathscr{F}}_2$ of the SFF of σ and $\tilde{\sigma}$ are related by

$$\widetilde{\mathscr{F}}_2 = \pm (J\Phi)^T \mathscr{F}_2 J\Phi \,, \quad \mathscr{F}_2 = \left(\begin{array}{cc} \tilde{L} & \widetilde{M} \\ \widetilde{M} & \widetilde{N} \end{array} \right) \,, \quad \widetilde{\mathscr{F}}_2 \left(\begin{array}{cc} \tilde{L} & \widetilde{M} \\ \widetilde{M} & \widetilde{N} \end{array} \right) \,,$$

where the formula holds with the plus sign if det $J\Phi > 0$, and with the minus sign if det $J\Phi < 0$.

3.10 Gauss and Weingarten maps

Definition 3.92: Gauss map

Let $\mathcal S$ be an oriented surface with standard unit normal N. The Gauss map of $\mathcal S$ is

$$\mathscr{G}_{\mathcal{S}}: \mathscr{S} \to \mathbb{S}^2, \quad \mathscr{G}_{\mathcal{S}}(\mathbf{p}) := \mathbf{N}(\mathbf{p}).$$

Definition 3.93: Weingarten map

Let \mathcal{S} be an orientable surface with Gauss map $\mathcal{S}: \mathcal{S} \to \mathbb{S}^2$. The **Weingarten map** $\mathcal{W}_{\mathbf{p},\mathcal{S}}$ of \mathcal{S} at \mathbf{p} is

$$\mathcal{W}_{\mathbf{p},\mathcal{S}}:\,T_{\mathbf{p}}\mathcal{S}\to T_{\mathbf{p}}\mathcal{S}\,,\quad \mathcal{W}_{\mathbf{p},\mathcal{S}}(\mathbf{v})=-d_{\mathbf{p}}\mathcal{G}(\mathbf{v})\,.$$

Lemma 3.94

Let $\mathcal S$ be an orientable surface with Weingarten map $\mathcal W_{\mathbf p,\mathcal S}$, and $\boldsymbol \sigma$ a regular chart at $\mathbf p$. Then

$$\mathcal{W}_{\mathbf{p},\mathcal{S}}(\boldsymbol{\sigma}_u) = -\mathbf{N}_u, \quad \mathcal{W}_{\mathbf{p},\mathcal{S}}(\boldsymbol{\sigma}_v) = -\mathbf{N}_v,$$

where $\sigma_u, \sigma_v, \mathbf{N}_u, \mathbf{N}_v$ are evaluated at $(u, v) = \sigma^{-1}(\mathbf{p})$.

Definition 3.95: SFF of a surface

Let $\mathcal S$ be an orientable surface with Weingarten map $\mathcal W_{\mathbf p,\mathcal S}$. The **SFF** of $\mathcal S$ at $\mathbf p$ is the bilinear map

$$II_{\mathbf{p}}: T_{\mathbf{p}}\mathcal{S} \times T_{\mathbf{p}}\mathcal{S} \to \mathbb{R}, \quad II_{\mathbf{p}}(\mathbf{v}, \mathbf{w}) := \mathcal{W}_{\mathbf{p}, \mathcal{S}}(\mathbf{v}) \cdot \mathbf{w}.$$

Theorem 3.96: Matrix of the SFF

Let $\sigma: U \to \mathbb{R}^3$ be regular, $\mathcal{S} = \sigma(U)$, and $\mathbf{p} \in \sigma(U)$. Then

$$II_{\mathbf{p}}(\mathbf{v}, \mathbf{w}) = (du(\mathbf{v}), dv(\mathbf{v})) \begin{pmatrix} L & M \\ M & N \end{pmatrix} (du(\mathbf{w}), dv(\mathbf{w}))^{T},$$

for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$. In particular, it holds

$$\mathcal{F}_2(\mathbf{v}) = II_{\mathbf{p}}(\mathbf{v}, \mathbf{v})\,, \quad \forall\, \mathbf{v} \in T_{\mathbf{p}}\mathcal{S}\,.$$

Theorem 3.97: Matrix of Weingarten map

Let $\mathcal S$ be an orientable surface with Weingarten map $\mathcal W_{\mathbf p,\mathcal S}$. Let $\boldsymbol \sigma$ be a regular chart at $\mathbf p$. The matrix of the Weingarten map with respect to the basis $\{\boldsymbol \sigma_u,\boldsymbol \sigma_v\}$ of $T_{\mathbf p}\mathcal S$ is

$$\mathscr{W} = \mathscr{F}_1^{-1} \mathscr{F}_2,$$

where the FFF and SFF are evaluated at $(u, v) = \sigma^{-1}(\mathbf{p})$.

Remark 3.98: Matrix inverse

A matrix $A \in \mathbb{R}^{2\times 2}$ is invertible if and only if $\det(A) \neq 0$. In such case the inverse A^{-1} is computed via the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \quad \det(A) = ad - bc.$$

If the matrix is diagonal, then

$$\left(\begin{array}{cc} \lambda & 0 \\ 0 & \mu \end{array} \right)^{-1} = \left(\begin{array}{cc} 1/\lambda & 0 \\ 0 & 1/\mu \end{array} \right).$$

Example 3.99: Weingarten map of Helicoid

Question. The Helicoid is charted by

$$\boldsymbol{\sigma}(u,v) = (u\cos(v), u\sin(v), \lambda v), \quad u \in \mathbb{R}, v \in (0,2\pi),$$

with $\lambda > 0$ constant. Compute the matrix of the Weingarten map. **Solution.** We compute all the derivatives of σ

$$\sigma_{u} = (\cos(v), \sin(v), 0) \qquad \sigma_{uv} = (-\sin(v), \cos(v), 0)$$

$$\sigma_{v} = (-u\sin(v), u\cos(v), \lambda) \qquad \sigma_{vv} = -u(\cos(v), \sin(v), 0)$$

$$\sigma_{uu} = (0, 0, 0)$$

The FFF and its inverse are

$$\begin{split} E &= \boldsymbol{\sigma}_u \cdot \boldsymbol{\sigma}_u = 1 & F &= \boldsymbol{\sigma}_u \cdot \boldsymbol{\sigma}_v = 0 \\ G &= \boldsymbol{\sigma}_v \cdot \boldsymbol{\sigma}_v = u^2 + \lambda^2 & \\ \mathcal{F}_1 &= \begin{pmatrix} 1 & 0 \\ 0 & u^2 + \lambda^2 \end{pmatrix} & \mathcal{F}_1^{-1} &= \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{t^2 + 1^2} \end{pmatrix}. \end{split}$$

The standard unit normal to σ is

$$\begin{split} & \boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} = (\lambda \sin(v), -\lambda \cos(v), u) \\ & \| \boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} \| = \sqrt{u^{2} + \lambda^{2}} \\ & \mathbf{N} = \frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\| \boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} \|} = \frac{1}{\sqrt{u^{2} + \lambda^{2}}} \left(\lambda \sin(v), -\lambda \cos(v), u \right). \end{split}$$

The SFF of σ is

$$L = \boldsymbol{\sigma}_{uu} \cdot \mathbf{N} = 0 \qquad M = \boldsymbol{\sigma}_{uv} \cdot \mathbf{N} = -\frac{\lambda}{\sqrt{u^2 + \lambda^2}}$$

$$N = \boldsymbol{\sigma}_{vv} \cdot \mathbf{N} = 0$$

$$\mathcal{F}_2 = \begin{pmatrix} 0 & -\frac{\lambda}{\sqrt{u^2 + \lambda^2}} \\ -\frac{\lambda}{\sqrt{u^2 + \lambda^2}} & 0 \end{pmatrix}.$$

Finally, the matrix of the Weingarten map is

$$\mathscr{W} = \mathscr{F}_1^{-1} \mathscr{F}_2 = \left(\begin{array}{ccc} 0 & -\frac{\lambda}{(u^2 + \lambda^2)^{1/2}} \\ -\frac{\lambda}{(u^2 + \lambda^2)^{3/2}} & 0 \end{array} \right).$$

3.11 Curvatures

Definition 3.100: Gaussian and mean curvature

Let \mathscr{S} be an orientable surface. Let \mathscr{W} be the matrix of the Weingarten map $\mathscr{W}_{\mathbf{p},\mathscr{S}}$ of \mathscr{S} at \mathbf{p} . We define:

1. The Gaussian curvature of S at p is

$$K := \det(\mathcal{W}),$$

2. The **mean curvature** of S at p is

$$H:=\frac{1}{2}\operatorname{Tr}(\mathscr{W}),$$

Notation 3.101: Trace of a matrix

The **trace** of a 2×2 matrix is the sum of the diagonal entries.

Proposition 3.102: Formulas for K and H

Let $\sigma: U \to \mathbb{R}^3$ be a regular chart, and $\mathcal{S} = \sigma(U)$. Then

$$K = \frac{LN - M^2}{EG - F^2}$$
, $H = \frac{LG - 2MF - NE}{2(EG - F^2)}$.

Example 3.103: Curvatures of the Plane

Question. Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^3$, with \mathbf{p}, \mathbf{q} orthonormal. Consider the plane charted by

$$\sigma(u,v)=\mathbf{a}+\mathbf{p}u+\mathbf{q}v.$$

- 1. Compute the matrix of the Weingarten map of σ .
- 2. Compute the Gaussian and mean curvatures of the plane.

Solution.

1. From Examples 1.68, 1.89, the FFF and SFF of σ are

$$\mathscr{F}_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \quad \mathscr{F}_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right).$$

Therefore the matrix of the Weingarten map is

$$\mathscr{W} = \mathscr{F}_1^{-1} \mathscr{F}_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right).$$

2. The Gaussian and mean curvatures are

$$K = \det(\mathcal{W}) = 0$$
, $H = \frac{1}{2} \operatorname{Tr}(\mathcal{W}) = 0$.

Example 3.104: Curvatures of the Unit cylinder

Question. Consider the unit cylinder \mathcal{S} charted by

$$\boldsymbol{\sigma}(u,v) = (\cos(u),\sin(u),v).$$

- 1. Compute the matrix of the Weingarten map of σ .
- 2. Compute the Gaussian and mean curvatures of \mathcal{S} .

Solution.

1. From Examples 1.65, 3.90, the FFF and SFF of σ are

$$\mathscr{F}_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \quad \mathscr{F}_2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & 0 \end{array} \right).$$

Therefore the matrix of the Weingarten map is

$$\mathscr{W} = \mathscr{F}_1^{-1} \mathscr{F}_2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & 0 \end{array} \right).$$

2. The Gaussian and mean curvatures are

$$K = \det(\mathcal{W}) = 0, \qquad H = \frac{1}{2} \operatorname{Tr}(\mathcal{W}) = -\frac{1}{2}.$$

Theorem 3.105: Eigenvalues of Weingarten map

Let \mathcal{S} be an orientable surface and $\boldsymbol{\sigma}$ a regular chart at \mathbf{p} . Let \mathcal{W} be the matrix of the Weingarten map $\mathcal{W}_{\mathbf{p},\mathcal{S}}$ with respect to the basis $\{\boldsymbol{\sigma}_u,\boldsymbol{\sigma}_v\}$ of $T_{\mathbf{p}}\mathcal{S}$. Then

1. There exist scalars $\kappa_1, \kappa_2 \in \mathbb{R}$ and an orthonormal basis $\{\mathbf{t}_1, \mathbf{t}_2\}$ of $T_{\mathbf{p}}\mathcal{S}$ such that

$$\mathcal{W}_{\mathbf{p},\mathcal{S}}(\mathbf{t}_1) = \kappa_1 \mathbf{t}_1$$
, $\mathcal{W}_{\mathbf{p},\mathcal{S}}(\mathbf{t}_2) = \kappa_2 \mathbf{t}_2$.

2. Let $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{R}$ be such that

$$\mathbf{t}_1 = \lambda_1 \boldsymbol{\sigma}_u + \mu_1 \boldsymbol{\sigma}_v, \quad \mathbf{t}_2 = \lambda_2 \boldsymbol{\sigma}_u + \mu_2 \boldsymbol{\sigma}_v.$$

Denote $\mathbf{x}_1 = (\lambda_1, \mu_1)$ and $\mathbf{x}_2 = (\lambda_2, \mu_2)$. Then κ_1, κ_2 are eingenvalues of \mathcal{W} of eigenvectors \mathbf{x}_1 and \mathbf{x}_2

$$\mathcal{W} \mathbf{x}_1 = \kappa_1 \mathbf{x}_1$$
, $\mathcal{W} \mathbf{x}_2 = \kappa_2 \mathbf{x}_2$.

In particular, the matrix \mathcal{W} is diagonalizable, with

$$\mathcal{W}=P^{-1}DP,\quad D=\left(\begin{array}{cc}\kappa_1 & 0\\ 0 & \kappa_2\end{array}\right),\quad P=\left(\begin{array}{cc}\lambda_1 & \lambda_2\\ \mu_1 & \mu_2\end{array}\right).$$

Definition 3.106: Principal curvatures and vectors

Let $\mathcal S$ be an orientable surface. Let $\mathcal W_{\mathbf p,\mathcal S}$ the Weingarten map of $\mathcal S$ at $\mathbf p$. We define:

- 1. The **principal curvatures** of \mathcal{S} at **p** are the eigenvalues κ_1, κ_2 of $\mathcal{W}_{\mathbf{p},\mathcal{S}}$.
- 2. The **principal vectors** corresponding to κ_1 and κ_2 are the eigenvectors $\mathbf{t_1}$, $\mathbf{t_2}$ of $\mathcal{W}_{\mathbf{p},\mathcal{S}}$.

Remark 3.107: Computing principal curvatures and vectors

Let $\sigma: U \to \mathbb{R}^3$ be a regular chart and $\mathcal{S} = \sigma(U)$.

1. Compute the FFF and SFF of σ , and the matrix of the Weingarten map

$$\mathcal{W} = \mathcal{F}_1^{-1} \mathcal{F}_2$$
.

2. Compute the eigenvalues of \mathcal{W} , by solving for λ the equation

$$\det(\mathcal{W} - \lambda I) = 0.$$

The two solutions are the principal curvatures κ_1 and κ_2 .

3. Find scalars λ , μ which solve the linear system

$$(\mathcal{W} - \kappa_i I) \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = 0.$$

The solution(s) gives the eigenvector(s) of *W*

$$\mathbf{x}_i = (\lambda, \mu)$$

corresponding to the eigenvalue κ_i .

4. The principal vector(s) associated to κ_i is

$$\mathbf{t}_i = \lambda \boldsymbol{\sigma}_u + \mu \boldsymbol{\sigma}_v$$

Remark 3.108: The case of W diagonal

Let $\sigma: U \to \mathbb{R}^3$ be a regular chart and $\mathcal{S} = \sigma(U)$. Assume the matrix of the Weingarten map is diagonal

$$\mathscr{W} = \left(\begin{array}{cc} \kappa_1 & 0 \\ 0 & \kappa_2 \end{array} \right).$$

Then, the eigenvalues of W are κ_1 and κ_2 , with eigenvectors

$$\mathbf{x}_1 = (1,0), \quad \mathbf{x}_2 = (0,1).$$

Therefore κ_1, κ_2 are the principal curvatures of S, with principal vectors given by

$$\mathbf{t}_1 = \boldsymbol{\sigma}_u$$
, $\mathbf{t}_2 = \boldsymbol{\sigma}_v$.

Proposition 3.109: Relationships between curvatures

Let $\mathcal S$ be an orientable surface. Then

$$K = \kappa_1 \kappa_2 \,, \quad H = \frac{\kappa_1 + \kappa_2}{2} \,,$$

$$k_i = H \pm \sqrt{H^2 - K} \,.$$

Example 3.110: Principal curvatures of Unit Cylinder

Question. Consider the unit cylinder charted by

$$\boldsymbol{\sigma}(u,v) = (\cos(u),\sin(u),v).$$

Compute the principal curvature and principal vectors. **Solution.** By Example 3.104, the matrix of the Weingarten map is

$$\mathscr{W} = \left(\begin{array}{cc} -1 & 0 \\ 0 & 0 \end{array} \right).$$

Since \mathcal{W} is diagonal, the eigenvalues are the diagonal entries of \mathcal{W} and the eigenvectors are

$$\mathbf{x}_1 = (1,0), \quad \mathbf{x}_2 = (0,1).$$

Therefore, the principal curvatures and principal vectors are

$$\kappa_1 = -1, \quad \kappa_2 = 0,$$

$$\mathbf{t}_1 = \boldsymbol{\sigma}_u = (-\sin(u), \cos(v), 0),$$

$$\mathbf{t}_2 = \boldsymbol{\sigma}_v = (0, 0, 1).$$

Example 3.111: Curvatures of Sphere

Question. Consider the chart for the sphere

$$\boldsymbol{\sigma}(u,v) = (\cos(u)\cos(v),\sin(u)\cos(v),\sin(v)),$$

where $u \in (0, 2\pi)$, $v \in (-\pi/2, \pi/2)$. Prove that

$$\mathcal{F}_1 = \mathcal{F}_2 = \begin{pmatrix} \cos^2(v) & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathcal{W} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$K = H = \kappa_1 = \kappa_2 = 1$$
, $\mathbf{t}_1 = \boldsymbol{\sigma}_u$, $\mathbf{t}_2 = \boldsymbol{\sigma}_v$.

Solution. Compute the FFF of σ

$$\boldsymbol{\sigma}_u = (-\sin(u)\cos(v), \cos(u)\cos(v), 0)$$

$$\boldsymbol{\sigma}_{v} = (-\cos(u)\sin(v), -\sin(u)\sin(v), \cos(v))$$

$$E = \boldsymbol{\sigma}_u \cdot \boldsymbol{\sigma}_u = \cos^2(v)$$

$$F = \boldsymbol{\sigma}_u \cdot \boldsymbol{\sigma}_v = 0$$

$$G = \boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v} = 1$$

$$\mathscr{F}_1 = \left(\begin{array}{cc} \cos^2(v) & 0 \\ 0 & 1 \end{array} \right).$$

Moreover

$$\sigma_u \times \sigma_v = (\cos(u)\cos^2(v), \sin(u)\cos^2(v), \cos(v)\sin(v))$$

$$\|\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v\| = |\cos(v)| = \cos(v),$$

where we used that $\cos(v) > 0$ since $v \in (-\pi/2, \pi/2)$. Therefore,

$$\mathbf{N} = (\cos(u)\cos(v), \sin(u)\cos(v), \sin(v))$$

$$\boldsymbol{\sigma}_{uu} = (-\cos(u)\cos(v), -\sin(u)\cos(v), 0)$$

$$\boldsymbol{\sigma}_{uv} = (\sin(u)\sin(v), -\cos(u)\sin(v), 0)$$

$$\boldsymbol{\sigma}_{vv} = (-\cos(u)\cos(v), -\sin(u)\cos(v), -\sin(v))$$

$$L = \boldsymbol{\sigma}_{uu} \cdot \mathbf{N} = \cos^2(v)$$

$$M = \boldsymbol{\sigma}_{uv} \cdot \mathbf{N} = 0$$

$$N = \boldsymbol{\sigma}_{vv} \cdot \mathbf{N} = 1$$

Hence, the SFF and matrix of the Weingarten map are

$$\mathscr{F}_2 = \left(\begin{array}{cc} \cos^2(v) & 0 \\ 0 & 1 \end{array} \right), \quad \mathscr{W} = \mathscr{F}_1^{-1} \mathscr{F}_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right).$$

Since W is diagonal, the principal curvatures and vectors are

$$\kappa_1 = \kappa_2 = 1, \quad \mathbf{t}_1 = \boldsymbol{\sigma}_u, \quad \mathbf{t}_2 = \boldsymbol{\sigma}_v.$$

Finally, the mean and Gaussian curvatures are

$$H = \frac{\kappa_1 + \kappa_2}{2} = 1$$
, $K = \kappa_1 \kappa_2 = 1$.

3.12 Normal and Geodesic curvatures

Definition 3.112: Darboux frame

Let $\mathcal S$ be a regular surface, $\gamma:(a,b)\to\mathcal S$ a unit-speed curve. The **Darboux frame** of γ at t is the triple

$$\{\dot{\mathbf{y}}, \mathbf{N}, \mathbf{N} \times \dot{\mathbf{y}}\}$$

where γ is evaluated at t, and N is the standard unit normal to \mathcal{S} , evaluated at $\mathbf{p} = \gamma(t)$.

Proposition 3.113: Darboux frame is orthonormal basis

Let \mathcal{S} be a regular surface, $\gamma:(a,b)\to\mathcal{S}$ a unit-speed curve. The Darboux frame is an orthornormal basis of \mathbb{R}^3 for all $t\in(a,b)$.

Proposition 3.114: Coefficients of $\ddot{\gamma}$ in the Darboux frame

Let S be a regular surface, $\gamma:(a,b)\to S$ a unit-speed curve. Then

$$\ddot{\mathbf{y}} = \kappa_n \mathbf{N} + \kappa_g \left(\mathbf{N} \times \dot{\mathbf{y}} \right) ,$$

where **N** is evaluated at $\mathbf{p} := \mathbf{\gamma}(t)$ and κ_n, κ_g are scalars depedent on \mathbf{p} . Moreover

$$\kappa_n = \ddot{\mathbf{y}} \cdot \mathbf{N}, \quad \kappa_g = \ddot{\mathbf{y}} \cdot (\mathbf{N} \times \dot{\mathbf{y}}),$$

$$\kappa^2 = \kappa_n^2 + \kappa_\sigma^2,$$

$$\kappa_n = \kappa \cos(\phi), \quad \kappa_g = \pm \kappa \sin(\phi),$$

where κ is the curvature of γ , and ϕ is the angle between **N** and **n**, the principal unit normal of γ .

Definition 3.115: Normal and geodesic curvatures

Let \mathcal{S} be regular and $\mathbf{\gamma}:(a,b)\to\mathcal{S}$ a unit-speed curve. Let **N** bet the standard unit normal to \mathcal{S} .

1. The **normal curvature** of γ is

$$\kappa_n = \ddot{\mathbf{y}} \cdot \mathbf{N},$$

2. The **geodesic curvature** of γ is

$$\kappa_{g} = \ddot{\mathbf{y}} \cdot (\mathbf{N} \times \dot{\mathbf{y}}).$$

Theorem 3.116: Computing κ_n with SFF

Let $\mathcal S$ be a regular surface and $\pmb{\gamma}:(a,b)\to \mathcal S$ a unit-speed curve. Denote $\mathbf p:=\pmb{\gamma}(t)$. We have:

1. The normal curvature κ_n satisfies

$$\kappa_n = II_{\mathbf{p}}(\dot{\mathbf{y}}, \dot{\mathbf{y}}).$$

2. Let σ be a chart for \mathcal{S} at $\mathbf{p} = \mathbf{y}(t)$. Then

$$\mathbf{y}(t) = \boldsymbol{\sigma}(u(t), v(t))$$

for some smooth functions $u, v : (a, b) \to \mathbb{R}$, and

$$\kappa_n = L\dot{u}^2 + 2M\dot{u}\dot{v} + N\dot{v}^2,$$

where L, M, N are evaluated at (u(t), v(t)), and \dot{u}, \dot{v} at t.

Example 3.117: Curves on the sphere

Question. Consider the unit sphere \mathbb{S}^2 with chart

$$\boldsymbol{\sigma}(u,v) = (\cos(u)\cos(v),\sin(u)\cos(v),\sin(v)).$$

Show that, for all unit-speed curves on $\2 ,

$$\kappa_n(t) = 1$$
.

Solution. Let $\gamma(t) = \sigma(u(t), v(t))$ be a unit-speed curve on S^2 . Differentiating, we get

$$\dot{\boldsymbol{\gamma}}(t) = \frac{d}{dt}(\cos(u(t))\cos(v(t)), \sin(u(t))\cos(v(t)), \sin(v(t)))$$

$$= (-\dot{u}\sin(u)\cos(v) - \dot{v}\cos(u)\sin(v),$$

$$\dot{u}\cos(u)\cos(v) - \dot{v}\sin(u)\sin(v),$$

$$\dot{v}\cos(v))$$

$$\|\dot{\mathbf{y}}(t)\|^2 = \cos^2(v)\dot{u}^2 + \dot{v}^2$$

Since γ is unit-speed, we have $\|\dot{\gamma}\| = 1$. Therefore,

$$\cos^2(v)\dot{u}^2 + \dot{v}^2 = 1.$$

By Example 3.111, the coefficients of the SFF of σ are

$$L = \cos^2(v), \quad M = 0, \quad N = 1.$$

By Theorem 3.116, the normal curvature of γ is

$$\kappa_n = L\dot{u}^2 + 2M\dot{u}\dot{v} + N\dot{v}^2 = \cos^2(v)\dot{u}^2 + \dot{v}^2 = 1.$$

Theorem 3.118: Euler's Theorem

Let $\mathcal S$ be a regular surface with principal curvatures κ_1, κ_2 and principal vectors $\mathbf t_1, \mathbf t_2$. Let $\boldsymbol \gamma$ be a unit-speed curve on $\mathcal S$. The normal curvature of $\boldsymbol \gamma$ is given by

$$\kappa_n = \kappa_1 \cos^2(\theta) + \kappa_2 \sin^2(\theta),$$

where θ is the angle between $\dot{\mathbf{y}}$ and \mathbf{t}_1 .

Example 3.119: Curves on the sphere (again)

Question. Same question as in Example 3.117.

Solution. By Example 3.111, the principal curvatures of the unit sphere are $\kappa_1 = \kappa_2 = 1$. By Euler's Theorem, for any unit-speed curve γ on the sphere we have

$$\kappa_n = \kappa_1 \cos^2(\theta) + \kappa_2 \sin^2(\theta) = \cos^2(\theta) + \sin^2(\theta) = 1.$$

Definition 3.120: κ_n and κ_g for regular γ

Let $\mathcal S$ be regular, and $\pmb \gamma:(a,b)\to \mathcal S$ a regular curve. Let $\tilde{\pmb \gamma}$ be a unit-speed reparametrization of $\pmb \gamma$, with

$$\boldsymbol{\gamma} = \tilde{\boldsymbol{\gamma}} \circ \phi, \quad \phi : (a, b) \to (\tilde{a}, \tilde{b}).$$

Let $\tilde{\kappa}_n$ and $\tilde{\kappa}_g$ be the normal and geodesic curvatures of $\tilde{\gamma}$. The normal and geodesic curvatures of γ are

$$\kappa_n(t) = \tilde{\kappa}_n(\phi(t)), \qquad \kappa_{\mathfrak{g}}(t) = \tilde{\kappa}_{\mathfrak{g}}(\phi(t)).$$

Theorem 3.121: Formulas for κ_n and κ_g

Let \mathcal{S} be regular, and $\boldsymbol{\gamma}: (a,b) \to \mathcal{S}$ a regular curve.

1. The normal and geodesic curvatures of γ are given by

$$\kappa_n = \frac{\ddot{\pmb{\gamma}} \cdot \mathbf{N}}{\left\| \dot{\pmb{\gamma}} \right\|^2} \,, \qquad \kappa_g = \frac{\ddot{\pmb{\gamma}} \cdot (\mathbf{N} \times \dot{\pmb{\gamma}})}{\left\| \dot{\pmb{\gamma}} \right\|^3} \,.$$

2. Denote by κ the curvature of γ . It holds

$$\kappa^2 = \kappa_n^2 + \kappa_g^2 \,.$$

3. Let σ be a chart for \mathcal{S} at $\mathbf{p} = \gamma(t)$. Then

$$\mathbf{y}(t) = \boldsymbol{\sigma}(u(t), v(t))$$

for some smooth functions $u, v: (a, b) \to \mathbb{R}$, and

$$\kappa_n = \frac{II_{\mathbf{p}}(\dot{\mathbf{y}}, \dot{\mathbf{y}})}{I_{\mathbf{p}}(\dot{\mathbf{y}}, \dot{\mathbf{y}})} = \frac{L\dot{u}^2 + 2M\dot{u}\dot{v} + N\dot{v}^2}{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2}$$

with E, F, G, L, M, N evaluated at (u(t), v(t)), and \dot{u}, \dot{v} at t.

Example 3.122: Calculation of normal and geodesic curvatures

Question. For $v \neq 0$ and $t \neq 0$, consider the surface chart and curve

$$\boldsymbol{\sigma}(u,v) = \left(u,v,\frac{u}{v}\right), \quad \boldsymbol{\gamma}(t) = \boldsymbol{\sigma}(t^2,t).$$

- 1. Prove that σ is regular.
- 2. Compute the principal unit normal to σ .
- 3. Prove that γ is regular.
- 4. Compute the normal and geodesic curvatures of γ .
- 5. Compute κ , the curvature of γ . Verify that

$$\kappa^2 = \kappa_n^2 + \kappa_g^2 \,.$$

Solution.

1. The chart σ is regular because

$$\boldsymbol{\sigma}_{u} = \left(1, 0, \frac{1}{v}\right), \quad \boldsymbol{\sigma}_{v} = \left(0, 1, -\frac{u}{v^{2}}\right)$$
$$\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} = \left(-\frac{1}{v}, \frac{u}{v^{2}}, 1\right) \neq \mathbf{0}$$

2. The principal unit normal is

$$\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\| = \frac{\left(u^{2} + v^{2} + v^{4}\right)^{1/2}}{v^{2}}$$

$$\mathbf{N} = \frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\|} = \frac{\left(-v, u, v^{2}\right)}{\left(u^{2} + v^{2} + v^{4}\right)^{1/2}}.$$

3. The curve γ is regular because

$$\mathbf{\gamma}(t) = \mathbf{\sigma}(t^2, t) = (t^2, t, t)$$
$$\dot{\mathbf{\gamma}}(t) = (2t, 1, 1) \neq \mathbf{0}$$

4. Compute the following quantities

$$\|\dot{\mathbf{y}}(t)\| = 2^{1/2} (2t^2 + 1)^{1/2} \qquad \ddot{\mathbf{y}} \cdot \mathbf{N} = -\frac{2}{(2t^2 + 1)^{1/2}}$$
$$\ddot{\mathbf{y}}(t) = (2, 0, 0) \qquad \qquad \mathbf{N} \times \dot{\mathbf{y}} = (1 + 2t^2)^{1/2} (0, 1, -1)$$
$$\mathbf{N}(t^2, t) = \frac{(-1, t, t)}{(2t^2 + 1)^{1/2}} \qquad \ddot{\mathbf{y}} \cdot (\mathbf{N} \times \dot{\mathbf{y}}) = 0$$

The normal and geodesic curvatures are

$$\kappa_n = \frac{\ddot{\mathbf{y}} \cdot \mathbf{N}}{\|\dot{\mathbf{y}}\|^2} = -\frac{1}{(2t^2 + 1)^{3/2}},$$

$$\kappa_g = \frac{\ddot{\mathbf{y}} \cdot (\mathbf{N} \times \dot{\mathbf{y}})}{\|\dot{\mathbf{y}}\|^3} = 0.$$

5. The curvature of γ is

$$\dot{\mathbf{y}} \times \ddot{\mathbf{y}} = (0, 2, -2), \quad \|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\| = 2^{3/2}$$

$$\kappa = \frac{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|}{\|\dot{\mathbf{y}}\|^3} = \frac{1}{(2t^2 + 1)^{3/2}}$$

Thus $\kappa = -\kappa_n$. Since $\kappa_g = 0$, we conclude that $\kappa^2 = \kappa_n^2 + \kappa_g^2$.

3.13 Local shape of a surface

Theorem 3.123: Local structure of surfaces

Let $\mathcal S$ be a regular surface and $\mathbf p \in \mathcal S$. In the vicinity of $\mathbf p$, the surface $\mathcal S$ is approximated by the quadric surface of equation

$$z = \frac{1}{2} \left(x^2 \kappa_1(\mathbf{p}) + y^2 \kappa_2(\mathbf{p}) \right) ,$$

where $\kappa_1(\mathbf{p}), \kappa_2(\mathbf{p})$ are the principal curvatures of \mathcal{S} at \mathbf{p} .

Definition 3.124: Local shape types

Let \mathcal{S} be a regular surface, with $\kappa_1(\mathbf{p})$ and $\kappa_2(\mathbf{p})$ the principal curvatures at \mathbf{p} . The point \mathbf{p} is

• Elliptic if

$$\kappa_1(\mathbf{p}) > 0$$
, $\kappa_2(\mathbf{p}) > 0$ or $\kappa_1(\mathbf{p}) < 0$, $\kappa_2(\mathbf{p}) < 0$

· Hyperbolic if

$$\kappa_1(\mathbf{p}) < 0 < \kappa_2(\mathbf{p}) \quad \text{ or } \quad \kappa_2(\mathbf{p}) < 0 < \kappa_1(\mathbf{p})$$

· Parabolic if

$$\kappa_1(\mathbf{p}) = 0$$
, $\kappa_2(\mathbf{p}) \neq 0$ or $\kappa_2(\mathbf{p}) \neq 0$, $\kappa_1(\mathbf{p}) = 0$

• Planar if

$$\kappa_1(\mathbf{p}) = \kappa_2(\mathbf{p}) = 0$$

Proposition 3.125: Gaussian curvature and local shape

Let \mathcal{S} be a regular surface, with $K(\mathbf{p})$ the Gaussian curvature at \mathbf{p} . The point \mathbf{p} is

- Elliptic if $K(\mathbf{p}) > 0$,
- **Hyperbolic** if $K(\mathbf{p}) < 0$,
- **Parabolic** or **Planar** if $K(\mathbf{p}) = 0$.

Example 3.126: Analysis of local shape

Question. Consider the surface chart

$$\boldsymbol{\sigma}(u,v) = \left(u - v, u + v, u^2 + v^2\right).$$

- 1. Compute the first fundamental form of σ .
- 2. Compute the second fundamental form of σ .
- 3. Compute the matrix of the Weingarten map.
- 4. Show that $\mathbf{p} = \boldsymbol{\sigma}(1,0)$ is an elliptic point.
- 5. Can there be points which are not elliptic?

Solution.

1. The FFF of σ is

$$\begin{aligned}
\boldsymbol{\sigma}_{u} &= (1, 1, 2u) & F &= \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v} &= 4uv \\
\boldsymbol{\sigma}_{v} &= (-1, 1, 2v) & G &= \boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v} &= 2(1 + 2v^{2}) \\
E &= \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u} &= 2(1 + 2u^{2}) & \mathscr{F}_{1} &= 2\begin{pmatrix} 1 + 2u^{2} & 2uv \\ 2uv & 1 + 2v^{2} \end{pmatrix}
\end{aligned}$$

2. The standard unit normal is

$$\begin{aligned} \boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} &= 2(v - u, -u - v, 1) \\ \|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\| &= 2\left(1 + 2u^{2} + 2v^{2}\right)^{\frac{1}{2}} \\ \mathbf{N} &= \frac{\left(v - u, -u - v, 1\right)}{\left(1 + 2u^{2} + 2v^{2}\right)^{\frac{1}{2}}} \end{aligned}$$

The SFF of σ is

$$\sigma_{uu} = (0, 0, 2) \qquad L = \sigma_{uu} \cdot \mathbf{N} = 2 \left(1 + 2u^2 + 2v^2 \right)^{-\frac{1}{2}}$$

$$\sigma_{uv} = (0, 0, 0) \qquad M = \sigma_{uv} \cdot \mathbf{N} = 0$$

$$\sigma_{vv} = (0, 0, 2) \qquad N = \sigma_{vv} \cdot \mathbf{N} = 2 \left(1 + 2u^2 + 2v^2 \right)^{-\frac{1}{2}}$$

$$\mathscr{F}_2 = \left(1 + 2u^2 + 2v^2 \right)^{-\frac{1}{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

3. The inverse of \mathcal{F}_1 is

$$\begin{split} \mathcal{F}_1^{-1} &= \frac{1}{\det(\mathcal{F}_1)} \begin{pmatrix} G & -F \\ -F & E \end{pmatrix} \\ &= \frac{1}{2(1 + 2u^2 + 2v^2)} \begin{pmatrix} 1 + 2v^2 & -2uv \\ -2uv & 1 + 2u^2 \end{pmatrix}. \end{split}$$

The matrix of the Weingarten map is

$$W = \mathcal{F}_1^{-1} \mathcal{F}_2$$

$$= \frac{1}{(1 + 2u^2 + 2v^2)^{\frac{3}{2}}} \begin{pmatrix} 1 + 2v^2 & -2uv \\ -2uv & 1 + 2u^2 \end{pmatrix}.$$

4. For u = 1 and v = 0 we obtain

$$\mathcal{W} = \frac{1}{3^{\frac{3}{2}}} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3^{-\frac{3}{2}} & 0 \\ 0 & 3^{-\frac{1}{2}} \end{pmatrix}.$$

Therefore the principal curvatures at \mathbf{p} are

$$\kappa_1(\mathbf{p}) = 3^{-\frac{3}{2}} > 0, \quad \kappa_2(\mathbf{p}) = 3^{-\frac{1}{2}} > 0.$$

Therefore \mathbf{p} is an elliptic point.

5. No. This is because the Gaussian curvature is

$$K = \det(\mathcal{W}) = \frac{1}{(1 + 2u^2 + 2v^2)^2} > 0.$$

By Proposition 3.125 we conclude that every point is elliptic.

3.14 Umbilical points

Definition 3.127: Umbilical point

Let \mathcal{S} be a regular surface, with $\kappa_1(\mathbf{p})$ and $\kappa_2(\mathbf{p})$ the principal curvatures at \mathbf{p} . We say that \mathbf{p} is an **umbilical point** if

$$\kappa_1(\mathbf{p}) = \kappa_2(\mathbf{p})$$
.

Theorem 3.128: Structure theorem at umbilics

Let \mathcal{S} be a regular surface such that every point $\mathbf{p} \in \mathcal{S}$ is umbilic. Then \mathcal{S} is an open subset of plane or a sphere.

Proposition 3.129: Criterion for umbilics

Let \mathcal{S} be a regular surface. The point **p** is umbilical if and only if

$$H^2(\mathbf{p}) = K(\mathbf{p})$$
.

In particular, **p** cannot be umbilical if

$$K(\mathbf{p}) < 0$$
.

Proposition 3.130: Chart criterion for umbilics

Let $\sigma: U \to \mathbb{R}^3$ be a regular chart and $\mathscr{S} = \sigma(U)$. A point **p** is umbilic if and only if there exists a scalar κ such that

$$\mathcal{F}_2 = \kappa \mathcal{F}_1$$
.

Example 3.131: Plane and Sphere

1. If the plane is charted as in Example 3.103, the FFF and SFF are

$$\mathscr{F}_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \qquad \mathscr{F}_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right).$$

Therefore $\mathcal{F}_2 = \kappa \mathcal{F}_1$ with $\kappa = 0$, and all points are umbilical.

2. If the sphere is charted as in Example 3.111, the FFF and SFF are

$$\mathscr{F}_1 = \mathscr{F}_2 = \begin{pmatrix} \cos^2(v) & 0 \\ 0 & 1 \end{pmatrix}.$$

Since $\mathcal{F}_2 = \mathcal{F}_1$, all points on the sphere are umbilical.

Remark 3.132: How to find umbilics

Condition $\mathcal{F}_2 = \kappa \mathcal{F}_1$ is equivalent to

$$(E, F, G) \times (L, M, N) = \mathbf{0}.$$

In practice, umbilics can be found by solving the above equations. Common factors may be discarded, if convenient.

Example 3.133: Local shape of the Monkey Saddle

Question. Consider the *Monkey Saddle* surface $\mathcal S$ described by

$$z = x^3 - 3xy^2.$$

- 1. Compute the Gaussian curvature of \mathcal{S} .
- 2. Does \mathcal{S} contain any hyperbolic point?
- 3. Prove that the origin is the only umbilical point.

Solution. The Monkey Saddle is charted by

$$\boldsymbol{\sigma}(u,v) = (u,v,u^3 - 3uv^2).$$

The FFF of σ is

$$\begin{aligned} & \boldsymbol{\sigma}_{u} = (1, 0, 3(u^{2} - v^{2})) & F = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v} = -18uv(u^{2} - v^{2}) \\ & \boldsymbol{\sigma}_{v} = (0, 1, -6uv) & G = \boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v} = 1 + 36u^{2}v^{2} \\ & E = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u} = 1 + 9(u^{2} - v^{2})^{2} \end{aligned}$$

The SFF of σ is

$$\begin{aligned}
\sigma_{u} \times \sigma_{v} &= (-3(u^{2} - v^{2}), 6uv, 1) \\
\|\sigma_{u} \times \sigma_{v}\| &= 1 + 36u^{2}v^{2} + 9(u^{2} - v^{2})^{2} \\
&= 1 + 9u^{4} + 9v^{4} + 18u^{2}v^{2} \\
&= 1 + 9(u^{2} + v^{2})^{2} \\
\mathbf{N} &= \frac{(-3(u^{2} - v^{2}), 6uv, 1)}{\sqrt{1 + 9(u^{2} + v^{2})^{2}}} \\
\sigma_{uu} &= (0, 0, 6u) \\
\sigma_{uv} &= (0, 0, -6v) \\
\sigma_{vv} &= (0, 0, -6u) \\
L &= \sigma_{uu} \cdot \mathbf{N} = \frac{6u}{\sqrt{1 + 9(u^{2} + v^{2})^{2}}} \\
M &= \sigma_{uv} \cdot \mathbf{N} = \frac{-6v}{\sqrt{1 + 9(u^{2} + v^{2})^{2}}} \\
N &= \sigma_{vv} \cdot \mathbf{N} = \frac{6u}{\sqrt{1 + 9(u^{2} + v^{2})^{2}}} \end{aligned}$$

1. We have that

$$EG - F^{2} = (1 + 9(u^{2} - v^{2})^{2})(1 + 36u^{2}v^{2}) - (-18uv(u^{2} - v^{2}))^{2}$$

$$= 1 + 36u^{2}v^{2} + 9(u^{2} - v^{2})^{2}$$

$$= 1 + 9u^{4} + 9v^{4} + 18u^{2}v^{2}$$

$$= 1 + 9(u^{2} + v^{2})^{2}$$

$$LN - M^{2} = -\frac{36(u^{2} + v^{2})}{1 + 9(u^{2} + v^{2})^{2}}$$

Therefore the Gaussian curvature is

$$K = \frac{LN - M^2}{EG - F^2} = -\frac{36(u^2 + v^2)}{[1 + 9(u^2 + v^2)^2]^2}.$$

2. Note that

$$K < 0$$
, $\forall (u, v) \neq (0, 0)$.

By Proposition 3.125, we conclude that all the points outside of the origin are hyperbolic.

3. Since K < 0 everywhere except at the origin, Proposition 3.129 implies that points outside the origin cannot be umbilic. At (0,0), we have

$$\mathcal{F}_1 = du^2 + dv^2 \,, \quad \mathcal{F}_2 = 0 \,.$$

Therefore \mathcal{F}_2 is a multiple of \mathcal{F}_1 , and by Proposition 3.130 we conclude that (0,0) is an umbilical point. Note: the matrix of the Weingarten map is $\mathcal{W} = \mathcal{F}_1^{-1}\mathcal{F}_2 = 0$. Therefore the principal curvatures are $\kappa_1 = \kappa_2 = 0$, showing that (0,0) is a planar point.

Figure 3.1: The Monkey Saddle surface $z = x^3 - 3xy^2$.

Good Luck with the Exam

License

Reuse

This work is licensed under CC-BY-NC-ND 4.0

Citation

For attribution, please cite this work as:

Fanzon, Silvio. (2024). **Revision Guide of Differential Geometry**.

 $https://www.silviofanzon.com/{\tt 2024-Differential-Geometry-Revision/}$

BibTex citation:

```
@electronic{Fanzon-Differential-Geometry-Revision-2024,
    author = {Fanzon, Silvio},
    title = {Revision Guide of Differential Geometry},
    url = {https://www.silviofanzon.com/2024-Differential-
    Geometry-Revision/},
    year = {2024}}
```