DFA and NFA Solution

21 Jan 2019

- 1. Construct DFAs for the following languages.
 - (a) $L_1 = \{\omega | \omega \text{ contains an equal number of occurrences of 01 and 10}\}$ Solution

(b) Ternary Strings (base 3), (i.e. $\Sigma=\{0,1,2\})$ whose integer equivalent is divisible by 7. (To submit) Solution

Scanned by CamScanner

- 2. Construct NFAs for the following languages.
 - (a) $L_2 = \{\omega | \omega \text{ is a string in which at least one } a_i \text{ occurs even number of times (not necessarily consecutively), where } 1 \leq i \leq 3 \text{ over } \Sigma = \{a_1, a_2, a_3\}\}.$

Solution

(b) $L_3=\{\omega|\omega \text{ contains two 0s separated by a substring whose length is a multiple of 3 }, \Sigma=\{0,1\}.$ (To submit) Solution

- 3. Prove the following properties.
 - (a) For languages A and B, the shuffle of A and B is the language $L = \{\omega | \omega = a_1b_1\cdots a_kb_k\}$, where $a_1\cdots a_k\in A$ and $b_1\cdots b_k\in B$, $\forall a_i,b_i\in \Sigma^*$. Prove that the class of regular languages is closed under Shuffle operation. **Solution**

Let $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ be a DFA recognizing A and $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ be a DFA recognizing B. The NFA for shuffle of A and B will simulate both M_A and M_B on the input, while non-deterministically choosing which machine to run on a particular input symbol. So the NFA N will be obtained by a modified cross-product construction. Formally, let $N = (Q, \Sigma, \delta, q_0, F)$ where

```
i. Q=Q_A\times Q_B

ii. q_0=(q_A,q_B)

iii. F=F_A\times F_B

iv. For a\in \Sigma, \delta is given as \delta((p_A,p_B),a)=\{(\delta_A(p_A,a),p_B),(p_A,\delta_B(p_B,a))\}

In all other cases, \delta is \phi
```

At each step, the machine changes p_A according to δ_A or p_B according to δ_B . It reaches a state in $F = F_A \times F_B$ if and only if the moves according to δ_A take it from q_A to a state in F_A , and the ones according to δ_B take it from q_B to a state in F_B . Hence N accepts exactly the language Shuffle(A,B).

(b) Let B and C be languages over $\Sigma = \{0,1\}$. We have defined a language $L = B \leftarrow C$ as $L = \{\omega \in B | \text{ for some } y \in C, \text{ strings } \omega \text{ and } y \text{ contain equal numbers of 1's. }$. Show that the class of regular languages is closed under the \leftarrow operation. (To submit)

Solution

Let $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ and $M_C = (Q_C, \Sigma, \delta_C, q_C, F_C)$ be DFAs recognizing B and C respectively. Construct NFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $B \leftarrow C$ as follows. To decide whether its input ω is in $B \leftarrow C$, the machine M checks that $\omega \in B$, and in parallel, non-deterministically guesses a string y that contains the same number of 1's as contained in ω and checks that $y \in C$.

```
i. Q = Q_B \times Q_C

ii. For (q,r) \in Q and a \in \Sigma define \delta((q,r),a)

\{(\delta_B(q,0),r)\} if a=0

\{(\delta_B(q,1),\delta_C(r,1))\} if a=1

\{(q,\delta_C(r,0))\} if a=\epsilon
```

iii.
$$q_0 = (q_B, q_C)$$

iv. $F = F_B \times F_C$

(c) A homomorphism is a mapping h with domain Σ^* for some alphabet Σ which preserves concatenation: $h(v \cdot w) = h(v) \cdot h(w)$. Prove

that the class of regular languages is closed under Homomorphism operation. (Home)

Solution Try to solve it yourself.

4. Consider $\Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$. A string $\sigma \in \Sigma^*$ can be interpreted as two binary numbers, for example

$$\sigma = \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \left[\begin{array}{c} 0 \\ 1 \end{array}\right] = \left[\begin{array}{c} 101100 \\ 010011 \end{array}\right] = \left[\begin{array}{c} x \\ y \end{array}\right]$$

where $x,y\in\{0,1\}^*$. Design a DFA which accepts strings in Σ^* such that $2x-y\leq 2$. Note that, for such a DFA transitions will be labeled with elements from $\Sigma=\left\{\left[\begin{array}{c}0\\0\end{array}\right],\left[\begin{array}{c}1\\1\end{array}\right],\left[\begin{array}{c}1\\1\end{array}\right]\right\}$. (Home)

Solution:

Scanned by CamScanner