

现代密码学

第二十讲 DES算法简介

Feistel 具形與型型网

信息与软件工程学院

第二十讲 DES算法简介

•目的 学说012

通信与计算机相结合是人类步入信息社会的一个阶梯, 它始于六十年代末,完成于90年代初。计算机通信网的形成与发展,要求信息作业标准化,安全保密亦不例外。只有标准化,才能真正实现网的安全,才能推广使用加密手段,以便于训练、生产和降低成本。

国家标准局

- 美国NBS在1973年5月15公布了征求建议。1974年8月27日NBS再次出公告征求建议,对建议方案提出如下要求:
- (1)算法必须提供高度的安全性
- (2) 算法必须有详细的说明, 并易于理解
- (3)算法的安全性取决于密钥,不依赖于算法
- (4)算法适用于所有用户
- (5) 算法适用于不同应用场合
- (6)算法必须高效、经济
- (7)算法必须能被证实有效
- (8)算法必须是可出口的

- IBM公司在1971年完成的LUCIFER密码 (64 bit分组,代换-置换,128 bit密钥)的基础上,改进成为建议的DES体制
- 1975年3月17日NBS公布了这个算法,并说明要以它作为联邦信息处理标准, 征求各方意见。
- 1977年1月15日建议被批准为联邦标准[FIPS PUB 46],并设计推出DES芯片。
- 1981年美国ANSI 将其作为标准, 称之为DEA[ANSI X3.92]
- 1983年国际标准化组织(ISO)采用它作为标准,称作DEA-1

- NSA宣布每隔5年重新审议DES是否继续作为联邦标准,1988年(FIPS46-1)、1993年(FIPS46-2),1998年不再重新批准DES为联邦标准。
- 虽然DES已有替代的数据加密标准算法,但它仍是迄今为止得到最广泛应用的一种算法,也是一种最有代表性的分组加密体制。
- 1993年4月, Clinton政府公布了一项建议的加密技术标准, 称作密钥托管加密技术标准EES(Escrowed Encryption Standard)。算法属美国政府SECRET 密级。

- DES发展史确定了发展公用标准算法模式,而EES的制定路线与DES的背道 而驰。人们怀疑有陷门和政府部门肆意侵犯公民权利。此举遭到广为反对。
- 1995年5月AT&T Bell Lab的M. Blaze博士在PC机上用45分钟时间使 SKIPJACK的 LEAF协议失败,伪造ID码获得成功。1995年7月美国政府宣 布放弃用EES来加密数据,只将它用于语音通信。
- 1997年1月美国NIST着手进行AES (Advanced Encryption Standard) 的研究,成立了标准工作室。2001年Rijndael被批准为AES标准。

- DES (Data Encryption Standard) 算法于1977年得到美国政府的正式许可, 是一种用56位密钥来加密64位数据的方法。这是IBM的研究成果。
- DES是第一代公开的、完全说明细节的商业级现代算法,并被世界公认。

第二十讲 DES算法简介

美国制定数据加密标准简况 DES的框架和主要参数

- 分组长度为64 bits (8 bytes)
- ·密文分组长度也是64 bits。
- ·密钥长度为64 bits, 有8 bits奇偶校验, 有效密钥长度为56 bits。
- ·算法主要包括:初始置换IP、16轮迭代的乘积变换、逆初始置换IP-1以及16个子密钥产生器。

DES算法框图

初始置换IP与逆初始置换

- 初始置换是将64 bit明文的位置进行置换,得到一个乱序的64 bit明文组。
- 逆初始置换*IP*-1。将16轮迭代后给出的64 bit组进行置换, 得到输出的密文组。输出为阵中元素按行读得的结果。
- IP和IP·1在密码意义上作用不大,它们的作用在于打乱原来输入x的ASCII码字划分的关系。

(a) 初始置换 IP

拔位. 不改变值

+‡+									
	58	50	42	34	26	18	10	2	
	60	52	44	36	28	20	12	4	
	62	54	46	38	30	22	14	6	
	64	56	48	40	32	24	16	8	
	57	49	41	33	25	17	9	1	
	59	51	43	35	27	19	11	3	
	61	53	45	37	29	21	13	5	
	63	55	47	39	31	23	15	7	

8×8

逆初值置换IP-1

(b) 逆初始置换 IP-1

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

IP与IP-1

1	2	3	4	5	6	7	8	
9	10	11	12	13	14	15	16	58 50 42 34 26 18 10 2
							10	60 <u>52 44 36 38-</u> 20 12 4
17	18	19	20	2.1	22	23	24	62 54 46 38 30 22 14 6 $M_{20} \rightarrow M'_{14}$
25	26	27	28	29	30	31	32	
33	34	35	36	37	38	39	40	IP 57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
								59 51 43 35 27 19 11 3 61 53 45 37 29 21 13 5
41	42	43	44	45	46	47	48	63 55 47 39 31 23 15 7
49	50	51	52	53	54	55	56	00 00 41 00 01 20 10 1
57	58	59	60	61	62	63	64	40 8 48 16 56 24 64 32
1	2	3	4	5	6	7	8	39 7 47 15 55 23 63 31
9	10	11	12	13	1	15	16	
7	10	1.1	12	. 13	7	13	10	7 IVI 20
17	18	19	20	21	22	23	24	IP-1 36 4 44 12 52 20 60 28
25	26	27	28	29	30	31	32	35 3 43 11 51 19 59 27
			2.5					33 3 13 11 31 13 33 21
33	34	35	36	37	38	39	40	34 2 42 10 50 18 58 26
41	42	43	44	45	46	47	48	33 1 41 9 49 17 57 25
49	50	51	52	53	54	55	56	
57	58	59	60	61	62	63		
		.,,.						

IP和IP-1

感谢聆听! xynie@uestc.edu.cn