МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №1

по дисциплине: Архитектура вычислительных систем тема: «Разработка программ на ассемблере. Работа с отладчиком x32dbg, пакетом masm32»

Выполнил: ст. группы ПВ-211

Чувилко Илья Романович

Проверил:

Осипов Олег Васильевич

Вариант 20

Цель работы: получить навыки создания простейших ассемблерных программ с использованием пакета masm32 и научиться пользоваться отладчиком x32dbg.

Выполнение работы:

Код программы:

т.д.

1. Создать файл lab1.asm со следующим содержанием:

```
.686; Тип процессора
.model flat, stdcall; Модель памяти и стиль вызова подпрограмм
option casemap: none; Чувствительность к регистру
; --- Подключение файлов с кодом, макросами, константами, прототипами функций и
include windows.inc
include kernel32.inc
include user32.inc
include msvcrt.inc
; --- Подключаемые библиотеки ---
includelib user32.lib
includelib kernel32.lib
includelib msvcrt.lib
; --- Сегмент данных ---
.DATA
ente DB 13, 10, 0
a DW 5
bDW5
result DD?
p DF 17.5
ten DT 15.5
.CODE
START:
     XOR CX, CX
     MOV CX, b
     XOR AX, AX
     MOV AX, a
     MUL CX
     MOV result, EAX
     push 0
     call ExitProcess
```

- 2. Скомпилировать программу и получить исполняемый файл lab1.exe.
- 3. Открыть файл lab1.exe в отладчике.

END START

4. Сегмент содержит строку ente и 5 переменных a, b, result, p и ten:

	Шестнадцатеричное							ASCII									
00402000	0D	0A	00	05	00	05	00	00	00	00	00	00	00	00	00	00	
																	ø.@
00402020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00402030	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00402040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Адрес		ASCII			
00402000	0D 0A 00 <mark>05</mark>	00 05 00 00	00 00 00 00	00 00 00 00	

00402010	00 00 00	00 00 00 00	F8 02 40 00	00 00 00 00	ø.@
00402020	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	

Название перемен- ной Начальный адрес		Конечный адрес	Размер данных, байт	Описание
ente	ente 004020000		3	символы возврата каретки (13), перевода строки (10), окончания строки (0)
a	004020003	00402005	2	Объявляется как 16-битное слово (WORD) со значением 5.
b	00402006	00402006	2	Объявляется как 16-битное слово (WORD) со значением 5.
result	00402007	0040200A	4	Объявляется как 32-битное двойное слово (DWORD) без инициализации.
р	0040200B	00402010	6	Объявлена 6-байтовая целочисленная переменная
ten	00402011	0040201A	8	8-байтовая переменная с плавающей точкой
Обш	ий размер сегме	ента данных:	25	

Ячейки памяти с адресами от 004020000 до 004020002 содержат ASCII символы возврата каретки (13), перевода строки (10) и окончания строки. Потом объявляются две переменные а и в на участке от 004020003 до 004020006 как слова (DW) 2 байта и каждая инициализирована значением 5. Дальше объявляется переменная result на участке от 00402007 до 0040200A как двойное слово (DD). Она еще не инициализирована, но в последующем коде используется для хранения результата умножения переменных а и в. Переменная р объявлена как 6-байтная целочисленная переменная (DF). Но так как она не может быть инциализирована как число с плавающей точкой, в памяти она представлена нулями. И последняя переменная ten определена как 8 байтовое число с плавающей точкой (DT)

5. Пошаговая трассировка программы

-	00401000	66:33C9	xor cx,cx	EntryPoint
	00401003	66:8B0D 05304000	mov cx,word ptr ds:[403005]	
	00401004	66:33C0	xor ax,ax	
	00401000	66:A1 03304000	mov ax, word ptr ds:[403003]	
	00401013	66:F7E1	mul cx	
	00401010	A3 07304000	mov dword ptr ds:[403007],eax	
	00401016	6A 00	push 0	
	00401010	E8 00000000	call <jmp.&exitprocess></jmp.&exitprocess>	call \$0
	00401022	FF25 00204000	<pre>jmp dword ptr ds:[<&ExitProcess>]</pre>	JMP.&ExitProcess
	00101001		I Table 1 to 1 t	

0. Исходное состояние регистров:

```
0019FFCC
EAX
       002F9000
FBX
       00401000
FCX
                     <lab1.EntryPoint>
       00401000
                     <lab1.EntryPoint>
EDX
       0019FF84
EBP
       0019FF78
ESP
       00401000
                     <lab1.EntryPoint>
EST
                     <lab1.EntryPoint>
      00401000
EDI
      00401000
                     <lab1.EntryPoint>
ETP
EFLAGS
          00000244
ZF 1 PF 1 AF 0
OF 0 SF 0 DF 0
CF 0 TF 0 IF 1
LastError 00000000 (ERROR_SUCCESS)
LastStatus 00000000 (STATUS_SUCCESS)
GS 002B FS 0053
ES 002B
          DS 002B
SS 002B
CS 0023
```

1. Выполняет побитовую операцию «исключающее или» над числами в регистре СХ: CX = CX хог CX. Обнуляет регистр CX. Увеличивает регистр EIP на 3:

```
xor cx, cx
  EAX
         0019FFCC
  EBX
         002E9000
  ECX
         00400000
                         lab1.00400000
         00401000
  EDX
                         <lab1.EntryPoint>
  EBP
         0019FF84
  ESP
         0019FF78
  ESI
         00401000
                         <lab1.EntryPoint>
         00401000
                         <lab1. EntryPoint>
  EDI
         00401003
                         lab1.00401003
  FTP
           00000246
  EFLAGS
  ZF 1 PF 1 AF 0
OF 0 SF 0 DF 0
  CF 0 TF 0 IF 1
  LastError 00000000 (ERROR_SUCCESS)
LastStatus 00000000 (STATUS_SUCCESS)
  GS 002B FS 0053
  ES 002B
CS 0023
             <u>DS</u> 002B
             SS 002B
```

 $2.\ B$ ыполнение этой команды приведет к тому, что двухбайтовое значение из памяти по адресу 403005 в сегменте данных будет скопировано в регистр сх. Увеличивает регистр EIP на 7:

mov cx,word ptr ds:[403005]

```
<u>EAX</u>
       0019FFCC
EBX
       002E9000
ECX
        00400005
                        lab1.00400005
EDX
       00401000
                        <lab1.EntryPoint>
EBP
       0019FF84
ESP
       0019FF78
ESI
       00401000
                        <lab1.EntryPoint>
EDI
       00401000
                        <lab1.EntryPoint>
       0040100A
                        lab1.0040100A
EIP
           00000246
EFLAGS
ZF 1 PF 1 AF 0
OF 0 SF 0 DF 0
       TF 0 IF 1
LastError 00000000 (ERROR_SUCCESS)
LastStatus 00000000 (STATUS_SUCCESS)
GS 002B FS 0053
ES 002B DS 002B
CS 0023 SS 002B
```

3. Выполняет побитовую операцию «исключающее или» над числами в регистре AX: AX = AX хог AX. Обнуляет регистр <math>AX. Увеличивает регистр EIP на 3:

xor ax, ax

```
00190000
EAX
EBX
       002E9000
       00400005
                       lab1.00400005
ECX
                       <lab1.EntryPoint>
       00401000
EDX
EBP
       0019FF84
ESP
       0019FF78
       00401000
                       <lab1.EntryPoint>
ESI
       00401000
                       <lab1.EntryPoint>
EDI
EIP
       0040100D
                       lab1.0040100D
EFLAGS 00000246
ZF 1 PF 1 AF 0
OF 0 SF 0 DF 0
CF 0 TF 0 IF 1
LastError 00000000 (ERROR_SUCCESS)
LastStatus 00000000 (STATUS_SUCCESS)
GS 002B FS 0053
ES 002B <u>DS</u> 002B
CS 0023 SS 002B
```

2. Выполнение этой команды приведет к тому, что двухбайтовое значение из памяти по адресу 403003 в сегменте данных будет скопировано в регистр АХ. Увеличивает регистр ЕІР на 6:

mov ax, word ptr ds:[0x00403003]

```
00190005
<u>EAX</u>
       002E9000
EBX
       00400005
                       lab1.00400005
ECX
       00401000
EDX
                       <lab1.EntryPoint>
EBP
       0019FF84
       0019FF78
ESP
                        <lab1.EntryPoint>
ESI
       00401000
                       <lab1.EntryPoint>
EDI
       00401000
       00401013
                       lab1.00401013
EIP
EFLAGS
           00000246
ZF 1 PF 1 AF 0

OF 0 SF 0 DF 0
CF 0 TF 0 IF 1
LastError 00000000 (ERROR_SUCCESS)
LastStatus 00000000 (STATUS_SUCCESS)
GS 002B FS 0053
ES 002B DS 002B
CS 0023 SS 002B
```

3. Команда mul сх выполняет умножение 16-битного числа в регистре сх на 16-битное число в регистре ах

mul cx

```
00190019
EAX
        002E9000
FBX
        00400005
                         lab1.00400005
FCX
                         lab1.00400000
        00400000
EDX
        0019FF84
EBP
        0019FF78
ESP
        00401000
                         <lab1.EntryPoint>
EST
       00401000
                         <lab1.EntryPoint>
EDI
FTP
       00401016
                         lab1.00401016
          00000202
EFLAGS
ZF 0 PF 0 AF 0
OF 0 SF 0 DF 0
CF 0 TF 0 IF 1
LastError 00000000 (ERROR_SUCCESS)
LastStatus 00000000 (STATUS_SUCCESS)
GS 002B FS 0053
ES 002B <u>DS</u> 002B
CS 0023 SS 002B
```

4. Команда копирует 32-битное значение из регистра EAX в место памяти, на которое указывает адрес 0x00403007

mov dword ptr ds:[0x00403007], eax

```
EAX
EBX
ECX
EDX
            00190019
002E9000
                                      lab1.00400005
lab1.00400000
            00400005
            00400000
EBP
ESP
ESI
           0019FF84
0019FF78
00401000
                                      <lab1.EntryPoint>
<lab1.EntryPoint>
          00401000
EDI
EIP
           0040101B
                                      lab1.0040101B
EFLAGS 00000202
ZF 0 PF 0 AF 0
OF 0 SF 0 DF 0
CF 0 TF 0 IF 1
LastError 00000000 (ERROR_SUCCESS)
LastStatus 00000000 (STATUS_SUCCESS)
GS 002B FS 0053
ES 002B DS 002B
CS 0023 <u>SS</u> 002B
```