5.0 Annotated slides from:

- * Wednesday and Friday of Week 9 (8 and 10, March)
- * Wednesday of Week 10 (15 March)

MA378 Chapter 3: Numerical Integration

§3.5 Orthogonal Polynomials

Dr Niall Madden (Niall.Madden@UniversityOfGalway.ie)

March 2023

These slides are written by Niall Madden, and licensed under CC BY-SA 4.0 \dot{L}

5.1 Orthogonal Polynomials

High order Newton-Cotes methods are of little use because of the problems associated with interpolation be high degree polynomials at equally spaced points. However, high-order Gaussian methods are very useful.

Driving such methods by undetermined coefficients is not practical, however. There is a simpler way, but some mathematical preliminaries are required, including the ideas of **vector spaces** and **inner products**.

Definition 5.1 (Vector Space)

V is a *vector space* (a.k.a., a *linear space*) over a field F (e.g, the real or complex numbers) if for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $a, b \in F$:

- (i) $\mathbf{u} + \mathbf{v} \in V$ (closed under addition)
- (ii) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (Commutativity)
- (iii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (Associativity)
- (iv) V has a zero vector $\mathbf{0}$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- $(v) \mathbf{u} \in V$
- (vi) $a\mathbf{u} \in V$
- (vii) $a(b\mathbf{u}) = (ab)\mathbf{u}$
- (viii) F contains 0 and 1 such that $1\mathbf{u} = \mathbf{u}$, $0\mathbf{u} = \mathbf{0}$.
 - (ix) $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$, and $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$.

Examples:

The vectors in IR^2 form a vector space. Eq. $\begin{bmatrix} a \end{bmatrix}$, $\begin{bmatrix} c \\ d \end{bmatrix} \in IR^2 = 2$ $\begin{bmatrix} a+c \\ b+d \end{bmatrix} \in IR^2$, etc. Babis: $\{ \{ c, c \}, \{ c, c \} \}$

The set of polynomials of degree at most n forms a vector space

This is important because a vector space of dimension d has a basis consisting of d elements.

A basis for $(P^n : S_1, x, x^2, ..., x^n)$

Adso: ELo, L, L2, ..., Lu & Lagrange Polys on to

Definition 5.2 (Inner Product)

Let V is a real vector space. An **Inner Product** (IP) is a real-valued function (\cdot,\cdot) on $V\times V$ such that, for all $f,g,h\in V$,

- (i) (f+g,h) = (f,h) + (g,h),
- (ii) $(\lambda f, g) = \lambda(f, g)$, for $\lambda \in \mathbb{R}$.
- (iii) (f,g) = (g,f),
- (iv) $(f, f) \ge 0$. $(f, f) = 0 \Leftrightarrow f \equiv 0$.

Example 5.3

Let \mathbb{R}^n be our vector space, with $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$. Then the following is an inner product:

$$(\mathbf{x}, \mathbf{y}) := \sum_{i=1}^{n} x_i y_i,$$

5.2 Inner products (iv) $(f_i f) = \int_{\infty}^{5} (f_i x)^2 dx > 0$

Example 5.4

The set of real-valued functions that are continuous and defined on the ionterval [a,b], denoted C[a,b], is a vector space. And

$$(f,g) := \int_a^b f(x)g(x)dx,\tag{1}$$

is an inner product.

Note: (1)
$$(f+g,h) = \int_a^b (f+g)h dx = \int_a^b fh + gh dx$$

= $\int_a^b fh dx + \int_a^b gh dx = (f,h) + (g,h)$

(ii) For any
$$\lambda \in \mathbb{R}$$
 $(\lambda f, g) = \int_{a}^{b} \lambda f g dx = \lambda \int_{a}^{3} f g dx = \lambda (f, g)$
(iii) $(f, g) = \int_{a}^{b} f g dx = \int_{a}^{5} g f dx = (g, f)$

(See Lecture 23 of Stewart's "Afternotes" for more details).

Definition 5.5 (Monic Polynomial)

A polynomial is monic if the coefficient of its leading term is 1.

1,
$$1+x^2$$
, $3+2x^2+3x^3+x^5$ ove all monic.

ie the highest degree term present.

But
$$x^{-1}$$
 is not (not a polynomial)
nor $1 + 2x^2 + 5x^5 + x^3$

Definition 5.6

Two elements a,b, of a vector space are <u>orthogonal</u> with respect to a given inner product (\cdot,\cdot) if (a,b)=0.

Example 5.7

Take the space of polynomials of degree 2 or less and the IP

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx.$$

Let $p(x) \equiv 1$, $q(x) \equiv x$, $r(x) \equiv x^2 - 1/3$, and f(x) = 3x - 4

We can check that
$$(r,p) = 0$$
, and $(r,q) = 0$. We can the verify that $(r,f) = 0$. Details: $(r,\rho) = \int_{-1}^{1} x^2 - \frac{1}{3} d_{0}c = (\frac{1}{3}x^3 - \frac{1}{3}x)\Big|_{-1}^{1} = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} + \frac{1}{3} = 0$. $(r,q) = \int_{-1}^{1} x^3 - \frac{1}{3}x d_{0}c = (\frac{1}{4}x^4 - \frac{1}{3}x^2)\Big|_{-1}^{1} = \frac{1}{4}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 = 0$. $(r,q) = (r,3x) - (r,4) = 3(r,q) - 4(r,\rho) = 3(0) - 4(0) = 0$

As given above, a polynomial is **monic** if the coefficient of the leading term is 1:

$$p_n = x^n + c_{n-1}x^{n-1} + c_{n-2}x^{n-1} + \dots + c_1x + c_0.$$

We'll now look at a sequence of such polynomials

$$\{\widetilde{p}_0,\widetilde{p}_1,\widetilde{p}_2,\ldots,\widetilde{p}_n,\ldots\}$$

that have the property they are orthogonal to each other:

$$(\widetilde{p}_i, \widetilde{p}_j) := \int_a^b \widetilde{p}_i(x) \widetilde{p}_j(x) dx = 0 \quad \text{if } i \neq j.$$

We want to establish some important facts about monic polys:

- (i) \blacktriangleright A set of monic polys of degrees $1, \ldots, n$, forms a basis for \mathcal{P}_n .
 - ▶ If the members of that set are orthogonal to each other, then they are orthogonal to *all* polynomials of lower degree.
 - ▶ We can construct such as set.

Theorem 5.8

Let $\{\widetilde{p_i}\}_{i=0}^n$ be a sequence of polynomials where each p_i is monic an exactly of degree i. This sequence forms as basis for \mathcal{P}_n .

Proof: We want to show that, if Pu is any polynomial if degree n, then we can write Pr uniquely as a linear combination of $\{\vec{p}_0, \vec{p}_1, \dots, \vec{p}_n\}$ Proof is by induction. First: $\vec{p}_0 = 1$ (Since it is monic k of degree 0). If n = 0, then write only $p_0 \in \mathbb{R}_n$ in terms of 1. Next assume this is frue for k=1, k=2, ..., k=n-1. For n = k, write p_R as $p_R = \alpha_R x^R + \alpha_{R-1} x^{k-1} + \dots + \alpha_r x + \alpha_0$

Theorem 5.8 means that if q is a polynomial of degree n then it can be written uniquely as a linear combination of the \widetilde{p}_i :

$$q(x) = \sum_{i=0}^{n} a_i \widetilde{p}_i(x),$$

for some unique choice of the real coefficients a_i .

Definition 5.9

The sequence $\{\widetilde{p}_i\}_{i=0}^n$ is a sequence of monic, orthogonal polynomials if each \widetilde{p}_i is monic and exactly of degree i and

$$(\widetilde{p}_i, \widetilde{p}_j) = 0$$
 if $i \neq j$.

Theorem 5.10

If $\widetilde{p}_j \in \{\widetilde{p}_i\}_{i=0}^\infty$ then $\underline{\widetilde{p}_j}$ is orthogonal to all polynomials of degree less than j.

Proof:
Let
$$P_{k}$$
 be any polynomial of degree (at most) k. Since $\{\vec{P}_{0}, \vec{P}_{1}, \dots, \vec{P}_{K}\}$ is a basis for P_{k} ,

 $P_{k}(\infty) = \sum_{i=0}^{k} \alpha_{i} \vec{P}_{i}$

Thu, if $k < i$, $(P_{k}, \vec{P}_{\delta}) = \sum_{i=0}^{k} \alpha_{i} (\vec{P}_{i}, \vec{P}_{\delta}) = 0$

Since $i < j$

5.4 Constructing the Sequence

Theorem 5.11

The sequence $\{\tilde{p}_i\}_{i=0}^{\infty}$ exists and can be constructed as follows: Let α and β be defined as

$$\alpha_{n+1} = \frac{(x\widetilde{p}_n, \widetilde{p}_n)}{(\widetilde{p}_n, \widetilde{p}_n)}, \quad \text{ and } \quad \beta_{n+1} = \frac{(x\widetilde{p}_n, \widetilde{p}_{n-1})}{(\widetilde{p}_{n-1}, \widetilde{p}_{n-1})},$$

then the sequence is given by

$$\widetilde{p}_0(x) \equiv 1, \qquad \widetilde{p}_1(x) = x - \alpha_1$$

and

$$\widetilde{p}_{n+1}(x) = (x - \alpha_{n+1})\widetilde{p}_n(x) - \beta_{n+1}\widetilde{p}_{n-1}(x),$$

for $n \geq 1$.

The proof uses Gram-Schmidt Orthogonalization.

5.4 Constructing the Sequence

Proof: We want
$$(\tilde{p}_{n+1}, \tilde{p}_{n-1}) = 0$$

$$k = (\tilde{p}_{n+1}, \tilde{p}_{n-1}) = 0.$$

The first of these gives

$$0 = ((x - \alpha x_{n+1}) \hat{p}_{n} - \beta_{n+1} \hat{p}_{n-1}, \hat{p}_{n})$$

$$= (x \hat{p}_{n}, \hat{p}_{n}) - \alpha_{n+1} (\hat{p}_{n}, \hat{p}_{n}) - \beta_{n+1} (\hat{p}_{n-1}, \hat{p}_{n})$$

$$= (x \hat{p}_{n}, \hat{p}_{n})$$

$$= (x \hat{p}_{n}, \hat{p}_{n})$$

$$= (\hat{p}_{n}, \hat{p}_{n})$$

The second equations gives the formula for p_{n+1} .

5.4 Constructing the Sequence

Example 5.12

If we use the inner product $(f,g):=\int_{-1}^1 f(x)g(x)$ then the first 3 polynomials in the sequence are:

$$\widetilde{p}_0 = 1$$
, $\widetilde{p}_1 = x$, and $\widetilde{p}_2 = x^2 - 1/3$.

Example 5.13

The zeros of \widetilde{p}_2 are ...

$$-\frac{1}{\sqrt{3}}$$
, $\frac{1}{\sqrt{3}}$, which were $x_0 \& x_1$, for the 2-point gaussian Rule Gz on $[-1, 1]$.

5.5 Properties of the sequence Finished here 10/03/23

One of the ways of constructing Gaussian Quadrature rule $G_n(\cdot)$ on n+1 is to take the quadrature points as the roots of \widetilde{p}_{n+1} . We know (from the fundamental theorem of algebra) a polynomial of degree n+1 has exactly n+1 roots in $\mathbb C$ up to multiplicity.

However, the polynomials \widetilde{p} have the <u>special</u> properties, established in the following lemma. (A slightly different proof of these facts is given in Thm 9.4 of Suli and Mayers.).

- 1) Roots one all real (not complex)
- 2) No repeated roots (ie not like $x^2 = 0$) because all quadrature point are distinct.
- 3 For $\int_a^b f(x) dx$ need all points in [a,b]

5.5 Properties of the sequence

$$(u,v) = \int_{\infty}^{b} u(x)v(x) dx$$

Theorem 5.14

Let $\widetilde{p}_i \in \{\widetilde{p}_i\}_{i=0}^{\infty} = \{\widetilde{p}_0, \widetilde{p}_1, \dots\}$ be the set of monic polynomials that are orthogonal with respect to the (\longrightarrow) inner product.

- (i) The zeros of each $\widetilde{p}_i \in \{\widetilde{p}_i\}_{i=0}^{\infty}$ are simple (not repeated).
- (ii) All the zeros of \widetilde{p}_i are real numbers in the interval [a,b].

Proof: (i) Suppose
$$\hat{p}$$
; hus a repeated root at $x = q$. That is, we can write $\hat{p}'_i(x)$ as $\hat{p}_i(x) = (x - q)^2 r(x)$

where r(x) has degree i-2. Since $deg(r) < deg(\hat{p}i)$ we know that $0 = (\hat{p}i, r) = \left((x-q)^2 r(x) r(x) dx \right) = \int_{a}^{b} \left[(x-q) r(x) \right] dx > 0$

Consequents, we can say si hus no repeated zero.

5.5 Properties of the sequence

See notes on board for part (ii).

5.5 Properties of the sequence

5.6 Exercises

Exercise 5.1

 \mathcal{P}_n , the space of polynomials of degree (at most) n forms a vector space. Is it true that the space of *monic* polynomials of degree n forms a vector space?

Exercise 5.2

(i) Using the Inner Product

$$(f,g) := \int_0^1 f(x)g(x)dx,$$

find $\widetilde{p}_0(x)$, $\widetilde{p}_1(x)$, $\widetilde{p}_2(x)$ and $\widetilde{p}_3(x)$.

(ii) Find the zeros of $\widetilde{p}_2(x)$ and call them x_0 and x_1 . Construct a quadrature rule for $\int_{-1}^1 f(x) dx$ taking these as the quadrature points, and the weights as the integrals to the corresponding Lagrange polynomials.