A Book of Abstract Algebra | (2nd Edition)

Cł	hapter 29, Problem 5EA	Bookmark	Show all steps: ON					
Problem								
	Find a basis of $\mathbb{Q}(\sqrt{5}, \sqrt{7})$ over \mathbb{Q} and describe the elements of $\mathbb{Q}(\mathbb{Q}(\sqrt{5}, \sqrt{7}))$ (See the example at the end of this chapter.)							
Step-by-step solution								
Step 1 of 2								
	The objective is to find a basis of $\left(\sqrt{5}, \sqrt{7}\right)$ $\left(\sqrt{5}, \sqrt{7}\right)$.	over and describe t	he elements of					
	Comment							
	Step 2 of 2							
	The minimal polynomial of $\sqrt{5}$ over is x^2 . Eisenstein) with $\sqrt{5}$ as a root.)	$_{-5}$ (It is monic and irred	ducible(5-					

Hence $\cdot \left[\left[\sqrt{5} \right] : \right] = 2$ and a basis is $\left\{ 1, \sqrt{5} \right\}$.

Claim: $\sqrt{7} \notin (\sqrt{5})$.

Suppose on the contrary that $\sqrt{7} \in (\sqrt{5})$.

Therefore there exists $a,b \in \text{ with } \sqrt{7} = a + b\sqrt{5}$.

Squaring gives $49 = a^2 + 2ab\sqrt{5} + 5b^2$, from which it follows that $\sqrt{5} = \frac{49 - a^2 - 5b^2}{2ab} \in$,

a contradiction.

Hence $x^2 - 7$ is irreducible over $(\sqrt{5})$; it is the minimal polynomial over $(\sqrt{5})$.

So $\cdot \left[\left(\sqrt{5}, \sqrt{7} \right) : \left(\sqrt{5} \right) \right] = 2$ and that $\left\{ 1, \sqrt{7} \right\}$ is a basis for $\left(\sqrt{5}, \sqrt{7} \right)$ over $\left(\sqrt{5} \right)$.

$$\begin{bmatrix} (\sqrt{5}, \sqrt{7}) : \end{bmatrix} = \begin{bmatrix} (\sqrt{5}, \sqrt{7}) : (\sqrt{5}) \end{bmatrix} \begin{bmatrix} (\sqrt{5}) : \end{bmatrix}$$

$$= 2 \cdot 2$$

$$= 4$$

The extension has basis $\left\{1, \sqrt{5}, \sqrt{7}, \sqrt{35}\right\}$ over .

Any element of $(\sqrt{5}, \sqrt{7})$ is of the form :

$$a + b\sqrt{5} + c\sqrt{7} + d\sqrt{21} : a, b, c, d \in$$

Comment