# molecular diagnostics in cancer using next-generation sequencing technologies

Capita Selecta in Bioinformatics March 9 2020





## platform molecular diagnostics UZ Gent (MDG)

center for medical genetics (CMGG)



targeted next-generation sequencing (NGS) to define diagnosis, prognosis and prediction of therapy response



clinical biology



from request till report to the clinici variant interpretation/classification



pathology

#### detection of somatic variants with NGS

# prediction of therapy response to molecular drugs

examples. ovarian cancer *BRCA1-BRCA2* variants, ER+ breast cancer *PIK3CA* variants

#### diagnosis

examples. pancreatic cyst: *GNAS, KRAS, RNF43, VHL, CTNNB1* variants, granulosa tumor: *FOXL2* 

#### prognosis

examples. endometrial tumor: *POLE* variants, glioma: *TERT* promoter variants







## prediction of therapy response to molecular drugs

examples. ovarian cancer BRCA1-BRCA2 variants, ER+ breast cancer PIK3CA variants





#### diagnosis

examples. pancreatic cyst: GNAS, KRAS, RNF43, VHL, CTNNB1 variants, granulosa tumor: FOXL2

**Table 3.** DNA Analysis of Pancreatic Cyst Fluid Can Identify Patterns of Genetic Alterations that Define Cyst Type

| Variable | KRAS | GNAS | RNF43 | CTNNB1 | VHL |
|----------|------|------|-------|--------|-----|
| IPMN     | +    | +    | +     |        |     |
| MCN      | +    |      | +     |        |     |
| SPN      |      |      |       | +      |     |
| SCA      |      |      |       |        | +   |

IPMN, intraductal papillary mucinous neoplasm; MCN, mucinous cystic neoplasm; SPN, solid-pseudopapillary neoplasm; SCA, serous cystadenoma.

Lee et al. SpringerPlus 2016, Moris et al. Anticancer Research 2017, Maker et al. J Am Coll Surg 2015

## prognosis

examples. endometrial tumor: POLE variants, glioma: TERT promoter variants



## next-generation sequencing workflow

DNA extraction + QC DNA test 1-2 days SeqCap library prep 1,5 days next-generation sequencing 26h-30h/run data-analysis 12h-24h/run 1-3 days/run variant interpretation – reporting

#### **DNA** extraction of solid tumors



fixation time: 6-72h in 10% neutral buffered formalin

#### QC DNA test of solid tumors



→ determine DNA input for SeqCap NGS library prep based on QC test

#### **QC DNA test of solid tumors**

#### QC scores correlate with SeqCap library prep yields





enzymatic fragmentation



ligation of adapters with unique dual indexes (UDI)





- 2) ligation of adapters with unique dual indexes (UDI)
  \*adapters for binding to the flowcell and sequencing of primer sites
  \* unique dual indexes ≠ for each patient sample
- patient sample 1



probe hybridisation







- 3) hybridisation of biotinylated probes for genes of interest
- solid tumor panel (69 genes)
- hemato-onco tumor panel (64 genes)







MDG gene panels for solid and hemato-oncological tumors

solid tumor panel (69 genes): AKT1, ALK, APC, AR, BAP1, BRAF, BRCA1, BRCA2, CCND1, CDK4, CDK6, CDKN2A, CDKN2B, CTNNB1, DDR2, DICER1, DPYD, EGFR, ERBB2, ERBB3, ERBB4, ESR1, FBXW7, FGFR1, FGFR2, FGFR3, FOXL2, FRK, GATA3, GNA11, GNAQ, GNAS, H3F3A, H3F3B, HIST1HB3, HIST1H3C, HNF1A, HRAS, IDH1, IDH2, IL6ST, JAK1, JAK2, KIT, KRAS, MAP2K1, MET, NRAS, NTRK1, NTRK3, PDGFRA, PIK3CA, PIK3R1, POLE, PTEN, RB1, RET, RNF43, ROS1, SMAD4, SMARCA4, SMARCB1, SMO, SPOP, STAT3, STK11, TERT, TP53, VHL

hemato-onco tumor panel (64 genes): ANKRD26, ASXL1, ATM, BCL2, BCOR, BCORL1, BIRC3, BRAF, BTK, CALR, CBL, CEBPA, CRLF2, CSF3R, CUX1, DDX41, DNMT3A, EGR2, ETNK1, ETV6, EZH2, FBXW7, FLT3, GATA2, HRAS, IDH1, IDH2, IKZF1, IL7R, JAK2, JAK3, KIT, KRAS, MPL, NF1, NFKBIE, NOTCH1, NPM1, NRAS, PAX5, PHF6, PLCG2, POT1, PPM1D, PTPN11, RAD21, RPS15, RRAS, RUNX1, SETPB1, SF1, SF3B1, SH2B3, SMC1A, SMC3, SRSF2, STAG2, STAT5B, TET2, TP53, U2AF1, WT1, XPO1, ZRSR2

enrichment of DNA fragments with genes of interest









4) purification of biotinylated-probe bound DNA fragments with streptavidin-coated beads + amplification





## Illumina sequencing of SeqCap library prep

hybridisation, bridge amplification, cluster generation followed by sequencing-by-synthesis



## Illumina sequencing van SeqCap library prep

sequencing instruments @CMGG



MiSeq Illumina up to 15 Gb targeted sequencing



NovaSeq Illumina up to 3000 Gb





NextSeq 500 Illumina up to 120 Gb small/polyA/total RNA sequencing



HiSeq 3000 Illumina up to 750 Gb shallow whole genome/NIPT

in-house **ocbio** datamining workflow

#### bcbio:

- sequencing adapter trimming
- mapping
- duplicate read marking
- variant calling
- variant annotation: VEP, dbNSFP, dbscSNV

#### coverage:

 sequencing depth = amount of unique reads for a specific nucleotide in the sequencing data

#### variant calling and reporting:

- ≥ 300X coverage & ≥ 5% VAF
- exception: 2-5% VAF known hotspot variants with variant present in >10 reads



SRSF2 c.284C>A (p.(Pro95His)) 49% VAF

#### detection of somatic variants with NGS





#### detection of somatic variants with NGS

substitutions (SNVs), deletions, insertions, copy number variants (CNVs) based on coverage





copy number variants (CNVs) based on coverage





EML4-ALK variant 1

#### validation of SeqCap SOLID test

#### miSeq run with good quality FFPE samples





validation of SeqCap SOLID test



validation of SeqCap SOLID test

#### bcbio:

- sequencing adapter trimming
- mapping
- duplicate read marking
- variant calling: 5 variant callers tested

**FREEBAYES** 

GATK

MUTECT2

**VARDICT** 

VARSCAN

variant annotation: VEP, dbNSFP, dbscSNV

validation of SeqCap SOLID test

#### **SNV** calling – known **SNVs**

runM001: 28 known SNVs

- FREEBAYES: detects all known SNVs above 10% VAF
- GATK: detects all known SNVs above 22-25% VAF
- MUTECT2: detects all known SNVs, but 1 incorrect calling of EGFR c.2369C>T → EGFR c.2369\_2370delinsTA
- VARDICT: detects all known SNVs
- VARSCAN: detects all known SNVs

validation of SeqCap SOLID test

#### indel calling - known indels

runM001: 12 known indels

- FREEBAYES: detects all known indels above 10% VAF
- GATK: detects all known indels above 22-25% VAF
- MUTECT2: detects all known indels
- VARDICT: detects all known indels
- VARSCAN: doesn't detect all known indels, MET c.3071\_3082+11del not detected + detection
  of indels at lower VAF values

validation of SeqCap SOLID test

#### SNV calling – novel SNVs

runM001: 12 novel SNVs, except in POLE mutant samples, based on VARDICT

- FREEBAYES: detects all novel SNVs above 10% VAF
- GATK: detects all novel SNVs above 22-25% VAF
- MUTECT2: doesn't detect all novel SNVs, 2 HNF1A SNVs not called possible germline variants?
- VARSCAN: detects all novel SNVs

validation of SeqCap SOLID test

#### indel calling – novel indels

runM001: 5 novel indels, except in POLE mutant samples, based on VARDICT

- FREEBAYES: detects all novel indels above 10% VAF
- GATK: detects all novel indels above 22-25% VAF
- MUTECT2: detects all novel indels
- VARSCAN: doesn't detect all novel indels, TP53 c.568\_574delinsTT not called correctly, TP53
   c.598\_620del low VAF not detected + detection of indels at lower VAF values

## validation of SeqCap SOLID test

#### **intrarun** variability

|          | _                                         | VAF in | trarun |        | intrarı    | intrarun |     |  |  |
|----------|-------------------------------------------|--------|--------|--------|------------|----------|-----|--|--|
| D1804623 | 01804623 variant                          |        | intra2 | intra3 | gem<br>VAF | st dev   | cv  |  |  |
| EGFR     | c.2235_2249del p.(Glu746_Ala750del)       | 28%    | 30%    | 27%    | 28%        | 1,53     | 5%  |  |  |
| PIK3CA   | c.1633G>A p.(Glu545Lys)                   | 19%    | 23%    | 23%    | 22%        | 2,31     | 11% |  |  |
| TP53     | c.660T>A p.(Tyr220Ter)                    | 48%    | 51%    | 50%    | 50%        | 1,53     | 3%  |  |  |
| TP53     | c.869G>A p.(Arg290His)                    | 19%    | 21%    | 23%    | 21%        | 2,00     | 10% |  |  |
| APC      | c.4348C>T p.(Arg1450Ter)                  | 46%    | 46%    | 45%    | 46%        | 0,58     | 1%  |  |  |
| D1801351 | variant                                   | intra1 | intra2 | intra3 | gem<br>VAF | st dev   | cv  |  |  |
| KIT      | c.2467T>G p.(Tyr823Asp)                   | 53%    | 51%    | 53%    | 52%        | 1,15     | 2%  |  |  |
| KIT      | c.1656_1661del p.(Met552_Glu554delinslle) | 48%    | 53%    | 50%    | 50%        | 2,52     | 5%  |  |  |
| MET      | c.4070C>A p.(Ala1357Glu)                  | 68%    | 68%    | 69%    | 68%        | 0,58     | 1%  |  |  |
| RB1      | deletie van 9 exons                       | del    | del    | del    |            |          |     |  |  |

validation of SeqCap SOLID test

#### **interrun** variability

|          |                                     | VAF in | terrun |        | interrun | interrun |     |  |  |
|----------|-------------------------------------|--------|--------|--------|----------|----------|-----|--|--|
| D1806432 | variant                             | inter1 | inter2 | inter3 | gem VAF  | st dev   | cv  |  |  |
| EGFR     | c.2235_2249del p.(Glu746_Ala750del) | 25%    | 27%    | 26%    | 26%      | 0,82     | 3%  |  |  |
| EGFR     | c.2369C>T p.(Thr790Met)             | 7%     | 7%     | 6%     | 7%       | 0,47     | 7%  |  |  |
| TP53     | c.788del p.(Asn263llefsTer82)       | 25%    | 26%    | 16%    | 22%      | 4,5      | 20% |  |  |
| D1808171 | variant                             | inter1 | inter2 | inter3 | gem VAF  | st dev   | cv  |  |  |
| KIT      | c.1651_1662del p.(Pro551_Glu554del) | 42%    | 50%    | 44%    | 45%      | 3,4      | 7%  |  |  |
| KIT      | c.2467T>G p.(Tyr823Asp)             | 52%    | 49%    | 49%    | 50%      | 1,41     | 3%  |  |  |
| KIT      | c.1936T>A p.(Tyr646Asn)             | 21%    | 19%    | 18%    | 19%      | 1,25     | 6%  |  |  |
| CDKN2A   | deletie van 3 exons                 | del    | del    | del    | -        | -        | -   |  |  |

validation of SeqCap SOLID test

limit of detection (LOD)

Tabel 5. Varianten aanwezig in Quantitative Multiplex Reference Standard FFPE (HORIZON) staal

| chromosoom | soom gen |         | exon    | theoretische allelische<br>frequentie (%) (TAF) |
|------------|----------|---------|---------|-------------------------------------------------|
| 7q34       | BRAF     | V600E   | exon 15 | 10,50                                           |
| 4q11-q12   | cKIT     | D816V   | exon 18 | 10,00                                           |
| 7p12       | EGFR     | L858R   | exon 21 | 3,00                                            |
| 7p12       | EGFR     | G719S   | exon 18 | 24,50                                           |
| 12p12.1    | KRAS     | G13D    | exon 2  | 15,00                                           |
| 12p12.1    | KRAS     | G12D    | exon 2  | 6,00                                            |
| 1p13.2     | NRAS     | Q61K    | exon 3  | 12,50                                           |
| 3q26.3     | PIK3CA   | H1047R  | exon 21 | 17,50                                           |
| 3q26.3     | PIK3CA   | E545K   | exon 10 | 9,00                                            |
| 2p23       | ALK      | P1543S  | exon 29 | 33,00                                           |
| 13q12.3    | BRCA2    | A1689fs | exon 12 | 33,00                                           |
| 4q31.3     | FBXW7    | G667fs  | exon 12 | 33,50                                           |
| 7q31       | MET      | V237fs  | exon 2  | 6,5                                             |

validation of SeqCap SOLID test

limit of detection (LOD)

Tabel 6. Theoretische allel frequentie (TAF) versus variant allel frequentie (VAF) van de NGS analyse

| Variant              | LOD1 |      | LOD2 |      | LOD3 |      | LOD4 |     | LOD5 |     | LOD6 |     | LOD7 |     |
|----------------------|------|------|------|------|------|------|------|-----|------|-----|------|-----|------|-----|
|                      | TAF  | VAF  | TAF  | VAF  | TAF  | VAF  | TAF  | VAF | TAF  | VAF | TAF  | VAF | TAF  | VAF |
| BRAF V600E           | 10,5 | 12,6 | 5,3  | 10   | 2,6  | 6,9  | 1,3  | 3,8 | 0,66 | 2,2 | 0,33 | -   | 0,16 | -   |
| KIT D816V            | 10   | 12,2 | 5    | 7,15 | 2,5  | 5,7  | 1,25 | 2,5 | 0,63 | -   | 0,31 | -   | 0,16 | -   |
| EGFR L858R           | 3    | 5,7  | 1,5  | 3    | 0,75 | -    | 0,38 | -   | 0,19 | -   | 0,09 | -   | 0,05 | -   |
| EGFR G719S           | 24,5 | 21   | 12   | 15,7 | 6,1  | 8,7  | 3    | 4,5 | 1,5  | 3,5 | 0,77 | -   | 0,38 | -   |
| KRAS G13D            | 15   | 13,5 | 7,5  | 10,2 | 3,75 | 5,7  | 1,88 | 3   | 0,94 | -   | 0,47 | -   | 0,23 | -   |
| KRAS G12D            | 6    | 6,5  | 3    | 4,5  | 1,5  | 2,6  | 0,75 | -   | 0,38 | -   | 0,19 | -   | 0,09 | -   |
| NRAS Q61K            | 12,5 | 10,1 | 6    | 7,8  | 3    | 4,6  | 1,6  | 3,2 | 0,8  | -   | 0,4  | -   | 0,2  | -   |
| PIK3CA<br>H1047R     | 17,5 | 19,3 | 8,8  | 12,3 | 4,4  | 8,1  | 2,2  | 4,8 | 1,1  | 2,3 | 0,55 | -   | 0,27 | -   |
| PIK3CA<br>E545K      | 9    | 14,9 | 4,5  | 9,5  | 2,25 | 4,8  | 1,1  | 2,6 | 0,56 | -   | 0,28 | -   | 0,14 | -   |
| ALK P1543S           | 33   | 27,8 | 16,5 | 18,1 | 8,2  | 10,2 | 4,1  | 6,9 | 2    | 2,9 | 1    | -   | 0,5  | -   |
| BRCA2<br>A1689fs     | 33   | 28,3 | 16,5 | 19,8 | 8,2  | 14,2 | 4,1  | 6,1 | 2    | 3,1 | 1    | -   | 0,5  | -   |
| FBXW7<br>G667fs      | 33,5 | 28,6 | 16,7 | 19,6 | 8,4  | 12,6 | 4,2  | 6,2 | 2,1  | 3,8 | 1    | 2,2 | 0,5  | -   |
| <i>MET</i><br>V237fs | 6,5  | 5,1  | 3,25 | 3,8  | 1,6  | 3,6  | 0,8  | 3,2 | 0,4  | -   | 0,2  | -   | 0,1  | -   |





Project Rep

Standardization of Somatic Variant Classifications in Solid and Haematological Tumours by a Two-Level Approach of Biological and Clinical Classes: An Initiative of the Belgian ComPerMed Expert Panel

Guy Froyen <sup>1,\*,†</sup>, Marie Le Mercier <sup>2,†</sup>, Els Lierman <sup>3,†</sup>, Karl Vandepoele <sup>4,†</sup>, Friedel Nollet <sup>5,†</sup>, Elke Boone <sup>6,†</sup>, Joni Van der Meulen <sup>7,†</sup>, Koen Jacobs <sup>8</sup>, Suzan Lambin <sup>9</sup>, Sara Vander Borght <sup>10</sup>, Els Van Valckenborgh <sup>11</sup>, Aline Antoniou <sup>12</sup> and Aline Hébrant <sup>11</sup>

#### variant interpretation of NGS data

biological classification of somatic variants: 5 classes

## Molecular Diagnostics.be + Scienscano: guidelines for harmonisation of variant classification/annotation/reporting

classification based on ACMG/AMP standards & guidelines (Richards et al. Genet Med 2015)

pathogenic example. BRAF c.1799T>A p.(Val600Glu)

likely pathogenic example. PCA c.1357G>C p.(Glu453Gln)

VUS example. ALK c.3513C>G p.(Ile1171Met)

▶ likely benign example. *ALK* c.4796C>A p.(Pro1599His)

benign example. TP53 c.215C>G p.(Pro72Arg)

reporting of pathogenic, likely pathogenic and VUS variants





biological classification of somatic variants: 5 classes



Figure 1. ComPerMed workflow for the biological classification of somatic variants.

**biological** classification of somatic variants: 5 classes



#### mapping error

example. *RUNX1* c.1278\_1280delinsCAC 5% VAF and *RUNX1* c.1284delinsGGAGAA 5% VAF

biological classification of somatic variants: 5 classes



Figure 1. ComPerMed workflow for the biological classification of somatic variants.

biological classification of somatic variants: 5 classes

#### germline variants

- present in databases of genome sequencing projects? bv. gnomAD: 125 748 WES and 15 708 WGS, no clinical data present
- some variants are region-specific => Belgian database is coming
- rare germline varianten (bv. CEBPA, RUNX1, TP53, MET...) can play a role in the disease
- age-related clonal hematopoiesis of indeterminate potential (CHIP): 93% DNMT3A of TET2 mutations in healthy > 65 years old individuals (>10% of the elderly), and also ASXL1, JAK2, ...

#### A Model of Clonal Expansion and Clonal Evolution from Normal Hematopoeisis to Myelodysplasia and Myeloid Leukemia



Time

Becker et al. ASH 2016

biological classification of somatic variants: 5 classes



Figure 1. ComPerMed workflow for the biological classification of somatic variants.

Table 1. Consensus Pathogenic Variant (CPV) list of the ComPerMed genes selected for screening in solid tumours.

| Gene                          | Transcript ID                                            | Hs1                                      | Hs2                                            | Hs3                           | Hs4                 | Hs5             | Hs6            | Hs7            | Hs8           | Hs9           | Hs10          | Hs11              | Hs12          |
|-------------------------------|----------------------------------------------------------|------------------------------------------|------------------------------------------------|-------------------------------|---------------------|-----------------|----------------|----------------|---------------|---------------|---------------|-------------------|---------------|
| ALK                           | NM_004304.4                                              | F1174L                                   | R1275Q                                         |                               |                     |                 |                |                |               |               |               |                   |               |
| BRAF                          | NM_004333.5                                              | G469A/E/R/V                              | D594G/M                                        | T599-K601<br>if-del/ins       | V600E/K/M/R         | K601E           |                |                |               |               |               |                   |               |
| BRCA1<br>BRCA2                | NM_007294.3<br>NM_000059.3                               |                                          | s (nonsense, frameshi<br>s (nonsense, frameshi |                               |                     |                 |                |                |               |               |               |                   |               |
| EGFR<br>ESR1<br>GNAS<br>H3F3A | NM_005228.4<br>NM_000125.3<br>NM_000516.5<br>NM_002107.4 | G719A/C/S<br>K303R<br>R201C/H<br>K28M    | ex19if-del/ins<br>E380Q<br>G35R/W              | ex20 if-ins<br>V392I          | T790M<br>S463P      | C797S<br>V533M  | L858R<br>V534E | L861Q<br>P535H | L536H/P/Q/R   | Y537C/N/S     | D538G         |                   |               |
| HRAS<br>IDH1<br>IDH2          | NM_005343.3<br>NM_005896.3<br>NM_002168.3                | G12C/D/S/V<br>R132C/G/H/L/S<br>R140L/Q/W | G13C/D/R/S/V<br>R172K/M/S                      | Q61H/K/L/R                    |                     |                 |                |                |               |               |               |                   |               |
| KIT                           | NM_000222.2                                              | ex8<br>D419 if-del                       | ex9<br>S501-F504 if-ins                        | ex11<br>K550-V560<br>if-indel | ex11<br>W557G/R     | ex11<br>V559A/D | ex11<br>V560D  | ex11<br>L576P  | ex13<br>K642E | ex13<br>V654A | ex14<br>T670I | ex17<br>D816H/V/Y | ex17<br>N822K |
| KRAS<br>MET                   | NM_004985.4<br>NM_001127500.3                            | G12A/C/D/F/R/S/V<br>ex14 skipping        | G13C/D/R/S/V                                   | A59T                          | Q61H/K/L/R          | K117N           | A146T          |                |               |               |               |                   |               |
| NRAS<br>PDGFRA                | NM_002524.4<br>NM_006206.5                               | G12A/C/D/R/S/V<br>S566_E577 if-del       | G13C/D/R/S/V<br>D842V                          | A59T<br>D842_I843<br>if-del   | Q61H/K/L/R<br>V561D | K117N           | A146T          |                |               |               |               |                   |               |

Hs: Hotspot; if-del: inframe deletion; if-ins: inframe insertion; \_: denotes the exact positions of that change; -: denotes a region in which the change has to be located; LoF: Loss of Function.

**Table 2.** Consensus Pathogenic Variant (CPV) list of the ComPerMed genes selected for screening in myeloid tumours.

| Gene   | Transcript<br>ID | Hs1                | Hs2           | Hs3   | Hs4       | Hs5     | Hs6   |
|--------|------------------|--------------------|---------------|-------|-----------|---------|-------|
| ASXL1  | NM_015338.5      | none               |               |       |           |         |       |
| CALR   | NM_004343.3      | ex9of-del          | ex9of-ins     |       |           |         |       |
| CEBPA  | NM_004364.3      | none               |               |       |           |         |       |
| CSF3R  | NM_156039.3      | T618I              |               |       |           |         |       |
| DNMT3A | NM_175629.2      | R882C/H            |               |       |           |         |       |
| EZH2   | NM_004456.4      | Y646F/H/N/S        |               |       |           |         |       |
| FLT3   | NM_004119.2      | ex14if-dup         | D835A/E/H/V/Y |       |           |         |       |
| IDH1   | NM_005896.3      | R132C/G/H/L/S      |               |       |           |         |       |
| IDH2   | NM_002168.3      | R140L/Q/W          | R172K/M/S     |       |           |         |       |
| JAK2   | NM_004972.3      | ex12 if-del/if-dup | V617F         |       |           |         |       |
| KIT    | NM_000222.2      | see CPV Solid list |               |       |           |         |       |
| MPL    | NM_005373.2      | S505N              | W515any ms    |       |           |         |       |
| NPM1   | NM_002520.6      | ex11of-ins         | ,             |       |           |         |       |
| RUNX1  | NM_001754.4      | none               |               |       |           |         |       |
| SETBP1 | NM_015559.3      | D868N              | G870S         |       |           |         |       |
| SF3B1  | NM 012433.3      | E622D              | R625C/H       | H662Q | K666N/R/T | K700E   | G742D |
| SRSF2  | NM_003016.4      | P95H/L/R           | P95_R102del   |       |           |         |       |
| TET2   | NM_001127208     | 3.2 none           |               |       |           |         |       |
| TP53   | NM_000546.5      | R175H              | Y220C         | G245S | R248Q/W   | R273C/H | R282W |
| U2AF1  | NM_006758.2      | S34F/Y             | Q157P/R       |       |           |         |       |
| WT1    | NM 024426.5      | none               | - '           |       |           |         |       |

Hs: Hotspot; if-del: inframe deletion; if-dup: inframe duplication; of-del: out of frame deletion; of-ins: out of frame insertion; any ms: any missense variant; none: no consensus pathogenic variants present.

## BRAF: hotspot c.1799T>A p.(Val600Glu) (V600E)



### RB1: no hotspot



biological classification of somatic variants: 5 classes



Figure 1. ComPerMed workflow for the biological classification of somatic variants.

biological classification of somatic variants: 5 classes



Figure 1. ComPerMed workflow for the biological classification of somatic variants.

biological classification of somatic variants: 5 classes

**Table 3.** Scoring Table for the biological variant classification of non-loss-of-function (LoF) variants.

| Parameter                                                                  | Score<br>+2               | Score<br>+1               | Score<br>+0.5                 | Score<br>0               | Score<br>-1           |
|----------------------------------------------------------------------------|---------------------------|---------------------------|-------------------------------|--------------------------|-----------------------|
| Total # of entries of that particular AA change at that position in COSMIC | Solid: ≥50<br>Hemato: ≥10 | 50 > x > 10<br>10 > x > 5 | /                             | ≤10<br>≤5                | /                     |
| In silico prediction tools SIFT and<br>MutationTaster                      | 1                         | /                         | Both damaging and deleterious | Other                    | /                     |
| Harmful in functional studies (PubMed, JAX-CKB, MDA, MCG)                  | /                         | /                         | Yes                           | Not reported             | No                    |
| Described in at least one genomic db (CIVIC, ClinVar, OncoKb, VarSome)     | /                         | /                         | As (Likely)<br>Pathogenic     | Not<br>described/unknown | As (Likely)<br>Benign |

Variants with a score ≥2 will be classified as "Likely Pathogenic". Variants with a score <2 are classified as "VUS".

biological classification of somatic variants: 5 classes

#### COSMIC

- manually curated database, based on publications
- contains also some germline variants
- problem with reference sequences



oncoKB

pct.mdanderson.org

ckb.jax.org

mycancergenome

PubMed

CIVIC

ClinVar (mainly germline variants)

### TP53 databases

- IARC TP53
- Seshat

### BRCA1/BRCA2 databases

- BRCAexchange.org
- LOVD
- ARUP

### **CMGGMC** database variants & biological classification

| Gen<br><b>‡</b> | c-notatie HGVS  | g-notatie HGVS                 | p-notatie<br>HGVS | Build  | Categorie                          | Goedg. |
|-----------------|-----------------|--------------------------------|-------------------|--------|------------------------------------|--------|
| NRAS            | c.351G>T        | chr1:g.114709668C>A            | p.Lys117Asn       | GRCh38 | Pathogene variant                  | ~      |
| NRAS            | c.183A>T        | chr1:g.114713907T>A            | p.Gln61His        | GRCh38 | Pathogene variant                  | ~      |
| NRAS            | c.183A>C        | chr1:g.114713907T>G            | p.Gln61His        | GRCh38 | Pathogene variant                  | ~      |
| NRAS            | c.182A>T        | chr1:g.114713908T>A            | p.Gln61Leu        | GRCh38 | Pathogene variant                  | ~      |
| NRAS            | c.182A>G        | chr1:g.114713908T>C            | p.Gln61Arg        | GRCh38 | Pathogene variant                  | ~      |
| NRAS            | c.182A>C        | chr1:g.114713908T>G            | p.Gln61Pro        | GRCh38 | Pathogene variant                  | ~      |
| NRAS            | c.181C>G        | chr1:g.114713909G>C            | p.Gln61Glu        | GRCh38 | Pathogene variant                  | ~      |
| NRAS            | c.181C>A        | chr1:g.114713909G>T            | p.Gln61Lys        | GRCh38 | Pathogene variant                  | ~      |
| NRAS            | c.175G>A        | chr1:g.114713915C>T            | p.Ala59Thr        | GRCh38 | Vermoedelijke pathogene<br>variant | ~      |
| NRAS            | c.38_39delinsAA | chr1:g.114716122_114716123deli | p.Gly13Glu        | GRCh38 | Pathogene variant                  | ~      |

### **clinica** classification

### Tier I: Variants of Strong Clinical Significance

Therapeutic, prognostic & diagnostic

#### **Level A Evidence**

FDA-approved therapy Included in professional guidelines

#### **Level B Evidence**

Well-powered studies with consensus from experts in the field

#### Tier II: Variants of Potential Clinical Significance

Therapeutic, prognostic & diagnostic

#### Level C Evidence

FDA-approved therapies for different tumor types or investigational therapies

Multiple small published studies with some consensus

#### **Level D Evidence**

Preclinical trials or a few case reports without consensus

#### Tier III: Variants of Unknown Clinical Significance

Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or tumor-specific variant databases

No convincing published evidence of cancer association

#### Tier IV: Benign or Likely Benign Variants

Observed at significant allele frequency in the general or specific subpopulation databases

No existing published evidence of cancer association

→ recommended: reporting of variants tiers I – III, NOT tier IV



### **NGS** report

#### solid tumors

- pathogenic, probably pathogenic variants and variants of unknown significance (VUS) detected in <u>all 69 genes</u> are reported in <u>all solid tumor types</u>
  - BRCA2 pathogenic variant in melanoma: precision2 clinical trials with olaparib @UZGent, germline mutation analysis recommended @CMGG
  - DPYD pathogenic variant in a colorectal tumor: germline mutation analysis recommended @CMGG, toxicity for 5-FU & capecitabine chemotherapy
  - FGFR2 pathogenic variant in an endometrial tumor: FGFRi clinical basket trials @UZGent

### casus 1

patient with metastatic ER+ HER2- breast cancer, 57 years old – tumour sample with 40% TC

- PIK3CA c.3140A>G p.(His1047Arg) 24% VAF: pathogenic variant
- TP53 c.833C>T p.(Pro278Leu) 41% VAF: pathogenic variant
- ▶ BAP1 c.1039C>T p.(His347Tyr) 50% VAF: VUS
- compassionate use programma / clinical study: alpelisib (PIK3CA inhibitor) in combination with fulvestrant/letrozole for PIK3CA mutated ER+ HER2- breast cancer patients



### casus 2

patient with endometrioid endometrial cancer, 51 years old – tumour sample with 80% TC

- ▶ POLE c.857C>G p.(Pro286Arg) 40% VAF: pathogenic variant
- ▶ BRCA2 c.7795G>T p.(Glu2599Ter) 42% VAF: pathogenic variant
- ► CTNNB1 c.104T>G p.(Ile35Ser) 45% VAF: pathogenic variant
- ▶ PTEN c.19G>T p.(Glu7Ter) 41% VAF: likely pathogenic variant
- ▶ PTEN c.895G>T p.(Glu299Ter) 40% VAF: likely pathogenic variant
- ▶ PIK3R1 c.1042C>T p.(Arg348Ter) 80% VAF: likely pathogenic variant
- ESR1 c.1610A>C p.(Tyr537Ser) 41% VAF: pathogenic variant
   + 22 VUS variants
- ▶ POLE mutated endometrial cancer group are associated with good prognosis



### casus 3

### patient with colorectal cancer, 68 years old – tumour sample with 50% TC

▶ BRAF c.1799T>A p.(Val600Glu) 30% VAF: pathogenic variant → bad prognosis, poor response to anti-EGFR monoclonal antibodies, novel combination therapues for BRAF c.1799T>A p.(Val600Glu) (V600E) mutant mCRC patients

Phase II, Open-label, Single Arm, Multicenter Study of Encorafenib, Binimetinib Plus Cetuximab in Subjects With Previously Untreated BRAF V600E -Mutant Metastatic Colorectal Cancer

Condition: Colorectal cancer, BRAF V600E mutation

Status: Active Phase: Phase II Type: Drug, Precision medicine ID: ANCHOR-CRC, W00090 GE 2 01

- 8 variants: TP53, APC, RNF43, PTEN, PIK3R1, BAP1
- → MMR deficiency (MSI high) → likely sensitive to immunotherapy

### detection of somatic variants with NGS

substitutions (SNVs), deletions, insertions, copy number variants (CNVs) based on coverage





copy number variants (CNVs) based on coverage





interchromosomal & intrachromosomal rearrangements



targetable tyrosine kinase fusions





Schram et al. Nat Rev Clin Oncol 2017



fusions characteristic for specific sarcoma subtypes: diagnosis & prognosis



| Table 4   Gene fusions in malignant s             | olid tumours                                                                                                                                                                            |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tumour type                                       | Gene fusion(s)                                                                                                                                                                          |
| Sarcomas                                          |                                                                                                                                                                                         |
| Alveolar soft part sarcoma                        | ASPSCR1-TFE3*                                                                                                                                                                           |
| Angiomatoid fibrous histiocytoma                  | EWSR1-ATF1*,FUS-ATF1*                                                                                                                                                                   |
| Bone sarcoma, undifferentiated                    | EWSR1-POU5F1                                                                                                                                                                            |
| Chondrosarcoma, myxoid                            | EWSR1-NR4A3*,TAF15-NR4A3*,TCF12-NR4A3,TFG-NR4A3                                                                                                                                         |
| Clear cell sarcoma                                | EWSR1-ATF1*                                                                                                                                                                             |
| Dermatofibrosarcoma protuberans                   | COL1A1-PDGFB*                                                                                                                                                                           |
| Desmoplastic small round-cell tumour              | EWSR1-WT1*, EWSR1-ERG                                                                                                                                                                   |
| Endometrial stromal sarcoma                       | JAZF1-PHF1*,JAZF1-SUZ12*,EPC1-PHF1                                                                                                                                                      |
| Ewing sarcoma or primitive neuroectodermal tumour | EWSR1-ERG*,EWSR1-ETV1*,EWSR1-ETV4*,EWSR1-FU1*,EWSR1-FEV*,<br>FUS-ERG*,EWSR1-ZNF278                                                                                                      |
| Ewing-like soft tissue sarcoma                    | CIC-DUX4*                                                                                                                                                                               |
| Fibromyxoid sarcoma, low grade                    | FUS-CREB3L2*, FUS-CREB3L1                                                                                                                                                               |
| Fibrosarcoma, infantile                           | ETV6-NTRK3*                                                                                                                                                                             |
| Inflammatory myofibroblastic tumour               | CARS-ALK*, CLTC-ALK*, RANBP2-ALK*, TPM3-ALK*, ATIC-ALK, SEC31L1-ALK, TPM4-ALK                                                                                                           |
| Liposarcoma, myxoid                               | EWSR1-DDIT3*, FUS-DDIT3*                                                                                                                                                                |
| Rhabdomyosarcoma, alveolar                        | PAX3-FOXO1A*, PAX7-FOXO1A*, PAX3-MLLT7, PAX3-NCOA1                                                                                                                                      |
| Rhabdomyosarcoma, pleomorphic                     | PAX3-FOXO1A                                                                                                                                                                             |
| Synovial sarcoma                                  | SS18-SSX1*, SS18-SSX2*, SS18-SSX4*, SS18L1-SSX1                                                                                                                                         |
| Carcinomas                                        |                                                                                                                                                                                         |
| Aggressive midline carcinoma                      | BRD4-NUT*                                                                                                                                                                               |
| Breast carcinoma                                  | ETV6-NTRK3*, ODZ4-NRG1*, TBL1XR1-RGS17                                                                                                                                                  |
| Kidney carcinoma                                  | ALPHA-TFEB*, ASPSCR1-TFE3*, PRCC-TFE3*, CLTC-TFE3, NONO-TFE3, SFPQ-TFE3                                                                                                                 |
| Mucoepidermoid carcinoma                          | MECT1-MAML2*                                                                                                                                                                            |
| Prostate carcinoma                                | TMPRSS2-ERG,TMPRSS2-ETV1,TMPRSS2-ETV4,RPS10-HPR                                                                                                                                         |
| Thyroid carcinoma                                 | AKAP9-BRAF*, PAX8-PPARG*, RET-CCDC6*, RET-GOLGA5*, RET-KTN1*, RET-NCOA4*, RET-PCM1*, RET-PRKAR1A*, RET-RAB6IP2*, RET-RFG9*, RET-TRIM24*, RET-TRIM33*, TFG-NTRK1*, TPM3-NTRK1*, TPM3-TPR |
| Other                                             |                                                                                                                                                                                         |
| Astrocytoma                                       | GOPC-ROS1                                                                                                                                                                               |
| Mesoblastic nephroma                              | ETV6-NTRK3*                                                                                                                                                                             |
| *Recurrent gene fusions.                          |                                                                                                                                                                                         |

Mitelman et al. Nat Rev Cancer 2007

research project lab Vandesompele – APD – MDG: 2 patients cohorts



research project lab Vandesompele – APD – MDG: TruSight technologie (Illumina)



research project lab Vandesompele – APD – MDG: RNA fusion & SNV analysis – pipeline Biogazelle



research project lab Vandesompele - APD - MDG: results

cohort I (n=16) cohort II (n=17)



**RNA** fusion detection Archer testing for diagnostic routine



- Sarcoma panel
- Solid tumor panel with actionable fusions
- Hemato panel

https://www.youtube.com/watch?v=cHjKsgbmlsY - action=share

### JONI VAN DER MEULEN supervisor MDG, molecular biologist Molecular Diagnostics UZ Gent (MDG) +32 (0)9 332 39 71

Universitair Ziekenhuis Gent
C. Heymanslaan 10 | B 9000 Gent
T +32 (0)9 332 21 11
E info@uzgent.be

www.uzgent.be
Volg ons op





