ANALISI TEMPORALE

Caratterizzazione temporale di una porta logica

tempo di propagazione transizione t_p:

tempo di propagazione transizione verso l'alto t_{pH}:

tempo di propagazione transizione verso il t_{pL}: basso

$$t_p = max(t_{pH}, t_{pL})$$

Diagramma temporale

Il comportamento temporale dell'ingresso a coincide con quello dell'ingresso b.

Max. frequenza di commutazione della porta: $f_{max} = \frac{1}{t_a}$

Tabella dei tempi di propagazione

Porta AND a due ingressi				
	Caso di Funzionamento			
Tempo	Pessimo	Normale	Ottimo	
t _p	3 ns	2,1 ns	1 ns	
t _{pH}	3 ns	2 ns	0,8 ns	
t_pL	2,8 ns	2,1 ns	1 ns	

Parametri che distinguono tra caso Pessimo, Normale e Ottimo:

- temperatura di funzionamento
- tensione di alimentazione
- presenza di rumore ambientale
- e altri fattori ancora ...

Si danno tabelle simili per tutti i tipi di porte logiche.

Le tabelle mutano fortemente al variare della tecnologia.

Caratterizzazione temporale di una rete combinatoria

Calcolo dei tempi di propagazione:

•
$$t_p(x, p, f) = t_p(3) + t_p(4)$$

•
$$t_p(y, q, p, f) = t_p(2) + t_p(3) + t_p(4)$$

•
$$t_p(z, r, q, p, f) = t_p(1) + t_p(2) + t_p(3) + t_p(4)$$

•
$$t_p(z, f) = t_p(4)$$

$$t_p = max(t_p(x, p, f); t_p(y, q, p, f); t_p(z, r,q, p, f); t_p(z, f))$$

Per esempio:

$$t_p(1) = 1 \text{ ns}, \qquad t_p(2) = t_p(4) = 2 \text{ ns}, \qquad t_p(3) = 2.2 \text{ ns}$$

•
$$t_p(x, p, f) = 2.2 \text{ ns} + 2 \text{ ns} = 4.2 \text{ ns}$$

•
$$t_p(y, q, p, f) = 2 ns + 2.2 ns + 2 ns = 6.2 ns$$

•
$$t_p(z, r, q, p, f) = 1 \text{ ns} + 2 \text{ ns} + 2.2 \text{ ns} + 2 \text{ ns} = 7.2 \text{ ns}$$

•
$$t_p(z, f) = 2 \text{ ns}$$

$$t_p = max(4.2 \text{ ns}; 6.2 \text{ ns}; 7.2 \text{ ns}; 2 \text{ ns}) = 7.2 \text{ ns}$$

$$f_{max} = \frac{1}{t_p} = \frac{1}{7.2 \text{ ns}} = 0.138 \text{ GHz} = 138 \text{ MHz}$$

Prof. William Fornaciari

_____www.elet.polimi.it/~fornacia _____

Caratterizzazione temporale di un bistabile

Parametri temporali del bistabile:

- tempo di propagazione transizione
- tempo di propagazione transizione verso l'alto
- tempo di propagazione transizione verso il basso
- t_{setup}: tempo di preimpostazione dato rispetto al clock
- t_{hold}: tempo di mantenimendo dato rispetto al clock

Per definizione si ha

$$t_p = max(t_{pH}, t_{pL})$$

Caratterizzazione temporale di un bistabile

Bistabile DT a sincronizzazione sul fronte (di salita)

t_{setup}: quanto tempo in anticipo rispetto al fronte attivo del clock il dato D deve essere stabilizzato.

t_{hold}: per quanto tempo dopo il fronte attivo del clock il dato D deve essere mantenuto stabile.

t_p: quanto tempo intercorre tra il fronte attivo del clock e la commutazione dell'uscita.

Massima frequenza di clock del bistabile DT

$$f_{max} = \frac{1}{t_{setup} + max(t_p, t_{hold})}$$

Normalmente si ha: t_{hold} < t_p, pertanto

$$f_{\text{max}} \approx \frac{1}{t_{\text{setup}} + t_{\text{p}}}$$

Prof. William Fornaciari ______ www.elet.polimi.it/~fornacia _____ 5

Tabella dei tempi

Bistabile DT				
	Caso di Funzionamento			
Tempo	Pessimo	Normale	Ottimo	
tp	0,3 ns	0,2 ns	0,1 ns	
t _{pH}	0,3 ns	0,1 ns	0,1 ns	
t _{pL}	0,2 ns	0,2 ns	0,1 ns	
t _{setup}	0,1 ns	0,07 ns	0,04 ns	
t _{hold}	0,1 ns	0,05 ns	0,03 ns	

Parametri che distinguono tra caso Pessimo, Normale e Ottimo:

- temperatura di funzionamento
- tensione di alimentazione
- presenza di rumore ambientale
- e altri fattori ancora ...

Si danno tabelle simili per tutti i tipi di bistabili; le tabelle mutano fortemente al variare della tecnologia.

Esempio (caso Normale):

$$\begin{split} f_{\text{max}} &= \frac{1}{t_{\text{setup}} + \text{max}(t_{\text{p}}, \, t_{\text{hold}})} \\ f_{\text{max}} &= \frac{1}{0.07 \, \text{ns} + \text{max}(0.2 \, \text{ns}; \, 0.05 \, \text{ns})} = \\ &= \frac{1}{2.07 \, \text{ns}} = 0.483 \, \text{GHz} = 483 \, \text{MHz} \end{split}$$

Macchina sequenziale - Caratterizzazione temporale

1^a condizione di stabilità

$$t_{clock} \ge t_{setup}^{DT} + max(t_p^{DT} + t_p^{RC}, t_{hold}^{DT})$$

Normalmente si ha: $t_{\text{hold}}^{\text{DT}} < t_{\text{p}}^{\text{DT}} + t_{\text{p}}^{\text{RC}}$, pertanto

$$t_{\text{clock}} \geq t_{ ext{setup}}^{ ext{ DT}} + t_{ ext{p}}^{ ext{ DT}} + t_{ ext{p}}^{ ext{ RC}}$$

Mimimo periodo di clock della macchina sequenziale

$$t_{\text{clock}} \approx t_{\text{setup}}^{\text{ DT}} + t_{\text{p}}^{\text{ DT}} + t_{\text{p}}^{\text{ RC}}$$

Massima frequenza di clock della macchina sequenziale

$$f_{\text{max}} \approx \frac{1}{t_{\text{clock}}}$$

$$f_{\text{max}} \approx \frac{1}{t_{\text{setup}}^{\text{DT}} + t_{\text{p}}^{\text{DT}} + t_{\text{p}}^{\text{RC}}}$$

Prof. William Fornaciari ______ www.elet.polimi.it/~fornacia ______ 7

Macchina sequenziale - Caratterizzazione temporale

t_{skew} = fronte di salita su Ck 2 - fronte si salita su Ck 1

Sfasamento del clock (clock skew): massimo ritardo di arrivo del fronte attivo di clock tra i bistabili.

2^a condizione di stabilità

$$t_{\text{skew}} < t_{\text{p}}^{\ \ \text{DT}} + t_{\text{p}}^{\ \ \text{RC}}$$

Prof. William Fornaciari ______ www.elet.polimi.it/~fornacia _____ 8

Macchina sequenziale - Caratterizzazione temporale

1^a condizione di stabilità

$$t_{\text{clock}} \geq t_{\text{setup}}^{\hspace{0.1cm}\mathsf{DT}} + t_{\text{p}}^{\hspace{0.1cm}\mathsf{DT}} + t_{\text{p}}^{\hspace{0.1cm}\mathsf{RC}}$$

10 ns \geq 2 ns + 0,3 ns + 0,5 ns = 2,8 ns è verificata

2ª condizione di stabilità

$$t_{\text{skew}} < t_{\text{p}}^{\text{ DT}} + t_{\text{p}}^{\text{ RC}}$$

0.2 ns < 2 ns + 0.3 ns = 2.3 ns è verificata

Massima frequenza di clock raggiungibile

$$f_{\text{max}} \approx \frac{1}{t_{\text{setup}}^{\text{DT}} + t_{\text{p}}^{\text{DT}} + t_{\text{p}}^{\text{RC}}}$$

$$f_{max} \approx \frac{1}{0.3 \text{ ns} + 0.5 \text{ ns} + 2 \text{ ns}} = \frac{1}{2.8 \text{ ns}} = 0.357 \text{ GHz}$$

$$f_{max} \approx \ 357 \ MHz$$

Prof. William Fornaciari _____www.elet.polimi.it/~fornacia ____

Macchine sequenziali - Uso dei bistabili

Quale bistabile sincrono usare per sintetizzare il registro di stato delle macchina sequenziale sincrona?

Latch, Edge-Triggered o Master-Slave?

Non si possono usare bistabili latch, a causa del fenomeno di trasparenza!

Edge-Triggered: è necessario che:

$$\boxed{t_{\text{hold}}^{\text{ DT}} \leq t_{\text{p}}^{\text{ DT}} + t_{\text{p}}^{\text{ RC}}}$$

Master-Slave: nessun problema.