CSE332/Floating Point Problems and Solutions

Prob-1: Convert -1313.3125 to IEEE 32-bit floating point format.

a. The integral part is $1313_{10} = 10100100001_2$. The fractional:

 $0.3125 \times 2 = 0.625$ 0 Generate 0 and continue.

 $0.625 \times 2 = 1.25$ 1 Generate 1 and continue with the rest.

 $0.25 \times 2 = 0.5$ 0 Generate 0 and continue.

 $0.5 \times 2 = 1.0$ 1 Generate 1 and nothing remains.

- b. So $1313.3125_{10} = 10100100001.0101_2$.
- c. Normalize: $10100100001.0101_2 = 1.01001000010101_2 \times 2^{10}$.
- d. Mantissa is 01001000010101000000000,
- e. exponent is $10 + 127 = 137 = 10001001_2$,
- f. sign bit is 1.

So -1313.3125 is 110001001010010000101010000000000

Sign bit	exponent	significant
1	10001001	01001000010101000000000

Prob-2: Convert 39887.5625 to IEEE 32-bit floating point format.

a. The integral part is $39887_{10} = 1001101111001111_2$. The fractional:

 $0.5625 \times 2 = 1.125$ 1 Generate 1 and continue with the rest.

 $0.125 \times 2 = 0.25$ 0 Generate 0 and continue.

 $0.25 \times 2 = 0.5$ 0 Generate 0 and continue.

 $0.5 \times 2 = 1.0$ 1 Generate 1 and nothing remains.

- b. So $39887.5625_{10} = 10011011111001111.1001_2$.
- c. Normalize: $10011011111001111.1001_2 = 1.001101111100111111001_2 \times 2^{15}$.
- d. Mantissa is 001101111100111110010000,
- e. exponent is $15 + 127 = 142 = 10001110_2$,
- f. sign bit is 0.

So 39887.5625 is 010001110001101111100111110010000

Sign bit	exponent	significant
0	10001110	00110111100111110010000

Exponent = $(10000011)_2 = (131)_{10}$

$$E' = E + 127$$

$$131 = E + 127$$

E = 4, the base is 2

$$(0.11)_2 = (1 * 2^{-1}) + (1 * 2^{-2}) = 0.75$$
; But '1.' Is **implicit** in IEEE-32bit. So, we add 1. So,

$$(1+0.75) * 2^4 = 1.75 * 2^4 = (28)_{10}$$

Since sign bit = 1, it is negative.

So, the equivalent decimal value is = -28 (Answer)

Exponent = $(011111110)_2 = (126)_{10}$

$$E'=E+127$$

$$126 = E + 127$$

E = -1, the base is 2

 $(0.101)_2 = (1*2^{-1}) + (0*2^{-2}) + (1*2^{-3}) = (0.625)_{10}$. But '1.' Is **implicit** in IEEE-32bit. So, we add 1. So, $(1+0.625)*2^{-1} = 0.8125 = 8.125 \ \text{X}10^{-1}$

Since sign bit = 0, it is positive.

So, the equivalent decimal value is $= 8.125X10^{-1}$ (Answer)

(b) i) $-16.625X10^{-4} = -0.0016625$

1	0.0016625
	X 2
0 ←	0.003325
	X 2
0 ←	0.00665
	X 2 0.0133
0 ←	0.0133
	X 2 0.0266
0 ←	
	X 2
0 ←	0.0532
	X 2
0 ←	0.1064
	X 2
0 ←	0.2128
	X 2
0 ←	0.4256
8	X 2
0 ←	0.8512
	X 2
1 ←	0.7024
8	X 2
 1 ←	0.4048
	X 2

	0 ←	0.8096
		X 2
· ·	1 ←	0.6192
	100,00 0,000	X 2
	1 ←	X 2 0.2384
		X 2
	0 ←	0.4768
<u></u>		X 2 0.9536
	0 ←	0.9536
		X 2 0.9072
	1 ←	0.9072
		X 2
	1 ←	0.8144
		X 2 0.6288
	1 ←	0.6288
<u></u>		X 2 0.2576
	1 ←	
<u> </u>		X 2
	0 ←	0.5152
		X 2 0.0304
	1 ←	
		X 2 0.0608
	0 ←	
		X 2 0.1216
	0 ←	U.1210
-		X 2
	Ţ	

		0.2432
		X 2
	0 ←	0.4864
		X 2
	0 ←	X 2 0.9728
12		X 2
	1 ←	0.9456
		X 2
	1 ←	0.8912
3	201	X 2
	1 ←	0.7824
		X 2
	1 ←	0.5648
		X 2
	1 ←	0.1296
		X 2
	0 ←	0.2592

 $(0.0016625)_{10} = (0.00000000011011001111010000111110)_2$ = $(1.10110011110100000111110 X 2^{-10})_2$

$$E' = E + 127$$

 $E' = -10 + 127 = 117$
 $(117)_{10} = (0111\ 0101)_2$

Since the number is negative, sign bit =1 So, the IEEE-32 floating point format is,

 $\begin{smallmatrix} 1 & 01110101 & 1011001111101000001111110 \end{smallmatrix}$

ii) -3013.3125

2	3013	
2	1506 -	1
2	753 -	0
2	376 -	1
2	188 -	0
2	94 -	0
2	47 -	0
2	23 -	1
2	11 -	1
2	5 -	1
2	2 -	1
2	1 -	0
2	0 -	1

 $(3013)_{10} = (101111000101)_2$ $(0.3125)_{10} = (0101)_2$

		0	.3125
3		X	2
	0 ←		0.625
		X	2
	1 ←		0.25
		X	2
	0 ←		0.50
		X	2
,	1 ←		0.00

 $(3013.3125)_{10} = (101111000101.0101)_2 = (1.011110001010101 X 2^{11})_2$

$$E' = E + 127$$

 $E' = 11 + 127 = 138$
 $(138)_{10} = (1000 \ 1010)_{2}$

Since the number is negative, sign bit = 1 So, the IEEE-32 floating point format is,

1 10001010 01111000101010100000000

Prob-4: Encode the decimal value +274.5625 as a 32-bit IEEE-754 floating point field and show your final answer in hexadecimal.

274.5625(10) = 100010010.1001(2)Normalized: $1.000100101001 \times 2**8$

Mantissa part: .000100101001 (drop the leading 1.) - pad on the right with zeroes to fill up 23 bits:

00010010100100000000000

Exponent part: 8

- excess-127 notation means add 127 before we convert to binary:

8+127 = 135 = 128+7 = 10000111(2)

Sign: 0 (positive)

In IEEE 754 single-precision (32-bit) format (1+8+23 bits):

- = 0 10000111 0001001010010000000000
- = 4 3 8 9 4 8 0
- = 43894800h

Prob-5: Encode the decimal value -12.1875 as 32-bit IEEE-754 floating point field and show your answer in hexadecimal.

- 1. Number is negative so the sign bit will be 1
- 2. Convert 12.1875 to binary 1100.0011(2)
- 3. Normalize the binary number 1.1000011 * 2**3
- 5. The exponent is 3. Bias it with 127 and it becomes 3+127 = 130. Convert 130 to binary becomes 10000010 (128+2)
- 6. Put it all together in 1+8+23=32 bits like this:
 - = 1 10000010 10000110000000000000000

 - = C 1 4 3 0 0
 - = C1430000h

Prob-6: Convert the 32-bit floating point number to decimal.

010001000011011000010000000000000

a. Exponent: $10001000_2 = 136_{10}$; 136 - 127 = 9.

b. Denormalize: $1.01101100001_2 \times 2^9 = 1011011000.01$.

c. Convert:

 2^8 2^{7} $2^6 2^5$ 2^4 2^3 2^2 2^1 2^0 2^{-1} 2^{-2} 2^{9} Exponents 0.2 Place Values 512 256 128 64 32 16 8 4 2 1 0.5 5 0 1 1 0 1 1 0 0 0.0 1 Value 512 +128 + 64+16 + 8+0.25 = 728.25

d. Sign: positive

Result: 728.25.

Prob-7: Convert the 32-bit floating point number to decimal.

a. Exponent: $011111100_2 = 124_{10}$; 124 - 127 = -3.

b. Denormalize: $1.1011_2 \times 2^{-3} = 0.0011011$.

c. Convert:

 2^0 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6} 2^{-7} **Exponents** 0.007812 0.015625 Place Values 1 0.5 0.25 0.125 0.0625 0.03125 5 **Bits** 0.001 1 1 Value 0.125 + 0.0625+0.015625 + 0.0078125 = 0.2109375

d. Sign: negative

Result: - 0.2109375

•

Prob-8: Convert the 32-bit floating point number a3358000 (in hex) to decimal.

10100011001101011000000000000000000

a. Exponent: $01000110_2 = 70_{10}$; 70 - 127 = -57.

b. Since the exponent is far from zero, convert the original (normalized) mantissa:

Exponent 2 2^{-2} 2^{-1} 2^{-3} 2^{-5} 2^{-6} 2^{-7} 2^{-8} 0.0078120.0312 Place 0.2 0.12 0.062 0.01562 0.0039062 Values 5 5 5 5 5 5 0 **Bits** 1.0 1 1 0 1 1 1 0.007812 0.12 0.0312 0.0039062 Value

c. Sign: - (negative)

Result: - $1.41796875 \times 2^{-57}$

Prob-9: Convert the 32-bit floating point number to decimal.

- a. Exponent: $11101100_2 = 236_{10}$; 236 127 = 109.
- b. Since the exponent is far from zero, convert the original (normalized) mantissa:

```
2-4
                                                                    2^{-7}
             2^{0}
                  2^{-1}
                        2^{-2}
                             2^{-3}
                                              2^{-5}
                                                        2^{-6}
Exponents
                                                                    0.007812
Place Values 1
                  0.5 0.25 0.125 0.0625 0.03125 0.015625
Bits
                        1
                             0
                                    0
             1.1
                                              1
                                                       0
                                                                    1
Value
             1 + 0.5 + 0.25
                                            +0.03125
                                                                  +0.0078125 = 1.7890625
```

- c. Number is 1.7890625×2^{109} .
- d. Sign: positive

Result: 1.7890625×2^{109}

Prob-10: Convert -1313.3125 to IEEE 32-bit floating point format.

The integral part is $1313_{10} = 10100100001_2$. The fractional:

 $0.3125 \times 2 = 0.625$ 0 Generate 0 and continue.

 $0.625 \times 2 = 1.25$ 1 Generate 1 and continue with the rest.

 $0.25 \times 2 = 0.5$ 0 Generate 0 and continue.

 $0.5 \times 2 = 1.0$ 1 Generate 1 and nothing remains.

- So 1313.3125₁₀ = 10100100001.0101₂.
- Normalize: $10100100001.0101_2 = 1.01001000010101_2 \times 2^{10}$.
- Mantissa is 010010000101010000000000,
- exponent is $10 + 127 = 137 = 10001001_2$,
- sign bit is 1.

So -1313.3125 is 110001001010010000101010000000000

Sign bit	exponent	significant
1	10001001	01001000010101000000000

Prob-11: Convert 39887.5625 to IEEE 32-bit floating point format.

The integral part is $39887_{10} = 1001101111001111_2$. The fractional:

 $0.5625 \times 2 = 1.125$ 1 Generate 1 and continue with the rest.

 $0.125 \times 2 = 0.25$ 0 Generate 0 and continue.

 $0.25 \times 2 = 0.5$ 0 Generate 0 and continue.

 $0.5 \times 2 = 1.0$ 1 Generate 1 and nothing remains.

- So $39887.5625_{10} = 10011011111001111.1001_2$.
- Normalize: $10011011111001111.1001_2 = 1.001101111100111111001_2 \times 2^{15}$.
- Mantissa is 00110111100111110010000,
- exponent is $15 + 127 = 142 = 10001110_2$,
- sign bit is 0.

So 39887.5625 is 01000111000110111100111110010000

Sign bit	exponent	significant
0	10001110	00110111100111110010000

Prob-12: Encode the decimal value +274.5625 as a 32-bit IEEE-754 floating point field and show your final answer in hexadecimal.

274.5625(10) = 100010010.1001(2)Normalized: $1.000100101001 \times 2**8$

Exponent part: 8

- excess-127 notation means add 127 before we convert to binary:

8+127 = 135 = 128+7 = 10000111(2)Sign: 0 (positive)

In IEEE 754 single-precision (32-bit) format (1+8+23 bits):

= 0 10000111 00010010100100000000000

= 4 3 8 9 4 8 0

= 43894800h

Prob-13: Encode the decimal value -12.1875 as 32-bit IEEE-754 floating point field and show your answer in hexadecimal.

- 1. Number is negative so the sign bit will be 1
- 2. Convert 12.1875 to binary 1100.0011(2)
- 3. Normalize the binary number 1.1000011 * 2**3
- 4. The binary digits to the right of the decimal become the mantissa.

5. The exponent is 3. Bias it with 127 and it becomes 3+127 = 130.

Convert 130 to binary becomes 10000010 (128+2)

- 6. Put it all together in 1+8+23=32 bits like this:

 - = C 1 4 3 0 0 0 0
 - = C1430000h