Función compuesta e implícita

Unidad VI

Composición de funciones

Repaso de análisis I

- Sea f: Dom(f) $\to \mathbb{R}$ y g: Dom(g) $\to \mathbb{R}$, si Im(f) y Dom(g) tienen intersección no vacía, se puede definir una sola función que a cada elemento de Dom(f) le haga corresponder una imagen en Im(g).
- Es condición necesaria, para que esto suceda, que el Im(f) ⊆Dom(g).
- A esta única función se la llama <u>función compuesta de f con g</u> y se la anota gof
- gof(x)=g(f(x)).
- Regla de la cadena: si f derivable en x_0 y g derivable en $f(x_0)$, entonces gof derivable en x_0 y (gof) $f(x_0) = g'(f(x_0))$. $f'(x_0) = g'(f(x_0))$

Generalización a todo tipo de funciones

• Las funciones generalizadas sólo pueden componerse si la imagen de la primera función que se aplica está incluida en el dominio de la segunda.

• Sea \overline{G} : $A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ y \overline{F} : $B \subseteq \mathbb{R}^m \to \mathbb{R}^p$ (con n≥1, m≥1, p≥1) y Im $\overline{G} \subseteq B$, entonces se puede definir $\overline{F}o\overline{G}$: $A \subseteq \mathbb{R}^n \to \mathbb{R}^p$ tal que $\overline{F}o\overline{G}(X)=\overline{F}(\overline{G}(X))$.

01) Dadas f y g, analice en cada caso si quedan definidas $f \circ g$ y $g \circ f$. Además, para cada función generada mediante la composición, determine su dominio natural y obtenga su matriz jacobiana en algún punto interior al mismo.

b)
$$f(x,y) = x\sqrt{y}$$
, $\overline{g}(u) = (u, 2-u)$.

c)
$$\bar{f}(x,y) = (x-y, \sqrt{x+y}), \ \bar{g}(t) = (2-t, t-3).$$

Generalización regla de la cadena

Sea \overline{G} : $A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ y \overline{F} : $B \subseteq \mathbb{R}^m \to \mathbb{R}^p$ (con $n \ge 1$, $m \ge 1$, $p \ge 1$) y Im $\overline{G} \subseteq B$, $P_0 \in A$. Si \overline{G} differenciable en P_0 y \overline{F} differenciable en $\overline{G}(P_0)$, entonces \overline{F} oddifferenciable en P_0 y además

$$D(\overline{F}o\overline{G})_{(P_0)} = D\overline{F}(\overline{G}_{(P_0)}).DG_{(P_0)}$$

- Ejemplo 6. Dadas $\vec{G}: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\vec{G}(x,y) = (G_1,G_2) = (x^2+1;y^2)$ y $\vec{F}: \mathbb{R}^2 \to \mathbb{R}^3$ tal que $\vec{F}(u,v) = (F_1,F_2,F_3) = (u+v,u,v^2)$ se pide calcular la matriz diferencial de $\vec{F} \circ \vec{G}$ en (1;1)
- 03) Si $z = 2uv 2\sqrt{v u}$ con $\begin{cases} u = x y^2 \\ v = x + 2xy 1 \end{cases}$, resulta z = h(x, y).
 - a) Reconozca las funciones f y g que generan h como $h = f \circ g$.
 - b) Calcule la derivada direccional de h en (2,1), en la dirección que va hacia el (5,5).
 - c) Sea n_0 la recta normal a la gráfica de h en $(2,1,z_0)$, exprese n_0 como la intersección de dos superficies.
 - d) Analice si la recta n_0 mencionada en "c)" tiene algún punto en común con el eje z.
- 5. Hallar la ecuación del plano tangente a la superficie de ecuación z=f(x,y) en $(0,1,z_0)$ cuando $f = H \circ \vec{G}$ con $H(u,v) = u v^2$ y \vec{G} (x,y) = (x-y; sin(x/y)).
- 14. Sabiendo que el plano tangente al gráfico de f en $(2,1,z_0)$ es x+y-z=3 y que \bar{g} es un campo C¹ con $\bar{g}(0,1)=(2,1)$ y $D\bar{g}(0,1)=\begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$, determinar una ecuación para la recta normal al gráfico de h=fo \bar{g} en $(0,1,z_0)$.

Red orientada

Es posible derivar utilizando una red orientada. Esta red puede armarse para cualquier composición de funciones que pueda hacerse y facilita la visualización de la vinculación que existe entre las variables, ya que muestra cuáles son las variables independientes de la composición, y a través de qué variables intermedias se llega a ellas.

$$\sin w = x + 2y + z^{2} \cot \begin{cases} x = \frac{r}{s} \\ y = r^{2} + \ln s \\ z = 2r \end{cases}$$

- 04) Dada $w = u^3 xv^2$ con $u = x\sqrt{y-x} \wedge v = 2x + y^2$, resulta w = f(x,y). Aplicando la regla de derivación de funciones compuestas (sin realizar la composición), calcule $f'_x(0,1)$.
- 4. Dada $w = e^{x-y} z^2 y + x$ con x = u y; $y = u + u^3 \ln(v l)$; z = u v, hallar la dirección de máxima derivada direccional de w = w(u, v) en (u, v) = (1; 2) y el valor de dicha derivada máxima.
- 07) Dada h(x, y) = f(2x/y) f(y/x) con $f \in C^1$, verifique que $x h'_x + y h'_y = 0$ para todo punto (x, y) tal que $xy \neq 0$.
- 24) Sea $f \in C^1$ con $\nabla f = (1,-1)$ constante, halle g derivable tal que h(x) = f(xg(x)), g(x) sea constante; suponga que la gráfica de g pasa por (3,1).

Funciones definidas implícitamente

Repaso de Análisis I

• Llamamos <u>explícitas</u> a aquellas funciones en que la variable considerada dependiente está explícitamente despejada, de tal forma que, al asignar valores a la variable independiente es inmediato obtener su imagen y = f(x).

Ej:
$$y = 3x^2 + 5$$

• Llamamos <u>implícitas</u> a aquellas en las que la variable dependiente no está despejada.

Ej:
$$xy^2+3x^3y+2y^3=5$$

Para campos escalares

- En campos escalares, para dos variables independientes f está definida en forma explícita si z = f(x, y); para n variables: y=f(x₁,x₂,...,x_n)
 Ej: z=3xy-y²
- En forma implícita, se escribe como g(x,y,z)=0, o como g(x₁,x₂,...,x_n,y)=0 Ej: $x^2+3y^2+2z^2x=1$

Formalmente en \mathbb{R}^2

Sea la ecuación F(x; y) = C que se satisface en $P_0(x_0; y_0)$

Dicha ecuación define implícitamente y=y(x) en un entorno de $P_0(x_0;y_0)$,

si y sólo si $\forall x : x \in E(x_0) \Longrightarrow F[x; y(x)] = C$

Formalmente en \mathbb{R}^3

Sea la ecuación F(x; y; z) = C que se satisface en $P_0(x_0; y_0; z_0)$

Dicha ecuación define implícitamente z=z(x,y) en un entorno de $P_0(x_0;y_0;z_0)$,

si y sólo si $\forall (x, y): (x, y) \in E(x_0, y_0) \Longrightarrow F[x; y; z(x, y)] = C$

Observación: se puede generalizar a más variables

Teorema de Cauchy — Dini caso particular n=2

Sea $F: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, A abierto, $P_0 \in A$ y la ecuación F(x; y) = C.

- Si: 1) $F(P_0) = C$
 - 2) F es C^1 en un entorno de P_0
 - 3) $\frac{\partial F}{\partial y}(P_0) = F'_y(P_0) \neq 0$

Entonces $\exists y = y(x), \ E(x_0) \to E(y_0)$ definida implícitamente por F(x; y).

Además y(x) es C^1 en x_0 y se cumple: $|y'(x_0)| = -\frac{F'_{x}(P_0)}{F'_{y}(P_0)}|$

$$y'(x_0) = -\frac{F'_{x}(P_0)}{F'_{y}(P_0)}$$

- 17. Dada la ecuación $e^{y} + y^{2} 2y x^{2} 1 = 0$
 - a) Averiguar si existe la función y=f(x) definida implícitamente en un entorno del origen. En caso afirmativo, hallar su derivada y la ecuación de la recta tangente en dicho punto.
 - b) Idem para x=g(y).

Demostración de la fórmula de la derivada:

$$F(x,y(x))=C$$

Derivamos miembro a miembro y evaluamos en x_0 $F'_x(P_0) + F'_y(P_0) y'(x_0) = 0$

$$F'_{x}(P_{0}) + F'_{y}(P_{0}) y'(x_{0}) = 0$$

$$F'_{y}(P_{0}) y'(x_{0}) = -F'_{x}(P_{0})$$

$$y'(x_0) = -\frac{F'_{x}(P_0)}{F'_{y}(P_0)}$$

$$F \stackrel{X}{\searrow} Y \xrightarrow{X} X$$

Teorema de Cauchy — Dini caso particular n=3

Sea F: $A \subseteq \mathbb{R}^3 \to \mathbb{R}$, A abierto y $P_0 \in A$. Consideramos el conjunto de nivel C de F, es decir: F(x;y;z) = C

Si se cumple que:

1)
$$F(P_0) = C$$

1)
$$F(P_0)=C$$
 2) $F es C^1 en E(P_0)$

3)
$$F'_z(P_0) \neq 0$$

Entonces:

- i) Entonces $\exists z = \varphi(x; y), \ E(x_0; y_0) \to E(z_0)$ definida implícitamente por $F(x; y; z) = \mathbb{C}$.
- ii) φ es C¹ en (x₀;y₀), siendo

$$\varphi'_{x} (x_{0}, y_{0}) = z'_{x} (x_{0}, y_{0}) = -\frac{F_{x}(\bar{P}_{0})}{F_{z(\bar{P}_{0})}} \qquad \varphi'_{y} (x_{0}, y_{0}) = z'_{y} (x_{0}, y_{0}) = -\frac{F_{y}(\bar{P}_{0})}{F_{z(\bar{P}_{0})}}$$

- 17) Dada $z = u + ve^{u-v}$ con $(u,v) = (f(x,y), y^2)$ resulta z = h(x,y). Halle las direcciones \check{r} tales que $h'((2,1), \check{r}) = 0$, si la función f queda definida implícitamente mediante la ecuación $2y ux \ln(u) = 0$.
- 11) La ecuación $z^3 + 2xz + yz x = 0$ define z = f(x, y) en un entorno del punto (1, -2).
 - a) Determine $\nabla f(1,-2)$.
 - b) Halle ecuaciones del plano tangente y la recta normal a la gráfica de f en $(1,-2,z_0)$.
 - c) Calcule las derivadas direccionales de f en (1,-2), en las direcciones que forman ángulos de $\pi/3$ y de $-\pi/3$ medidos en sentido trigonométrico respecto de x^+ .
 - 10) La ecuación $xy e^{z-x} = \ln(z)$ define implicitamente z = f(x, y), halle una expresión lineal que permita aproximar los valores de f en un entorno del punto (1,1).
 - 21) Calcule la derivada direccional máxima de $h = f \circ \overline{g}$ en el punto (1,1) cuando f(u,v) queda definida por $z u^2 + v^2 + \ln(v + z) = 0$, siendo $\overline{g}(x,y) = (xy^2, y x^2)$.

Rectas tangente y normal a una curva de nivel

• Sea f: $A \subseteq \mathbb{R}^2 \to \mathbb{R}$, A abierto, $P_0 \in A$ y f diferenciable en P_0 . Consideramos el conjunto de nivel k de f, es decir: f(x;y) = k tal que P_0 pertenece a dicho conjunto de nivel. Si $\overrightarrow{\nabla} f(P_0) \neq \overrightarrow{0}$, entonces $\overrightarrow{\nabla} f(P_0)$ es perpendicular a la curva f(x,y)=k en P_0

• Ecuación de la recta normal: $X=P_0 + \lambda \vec{\nabla} f(P_0)$

demostración

• Ecuación de la recta tangente: $X=P_0 + \lambda (-f'_y(P_0), f'_x(P_0))$ Geogebra/ Ejemplo

Plano tangente y recta normal a una superficie de nivel

- Sea f: $A \subseteq \mathbb{R}^3 \to \mathbb{R}$, A abierto, $P_0 \in A$ y f diferenciable en P_0 . Consideramos el conjunto de nivel k de f, es decir: f(x;y,z) = k tal que P_0 pertenece a dicho conjunto de nivel. Si $\overrightarrow{V}f(P_0) \neq 0$, entonces $\overrightarrow{V}f(P_0)$ es perpendicular a la superficie f(x,y,z)=k en P_0
- Ecuación del plano tangente: $(X P_0)$. $\overrightarrow{\nabla} f(P_0) = 0$

• Ecuación de la recta normal: $X=P_0 + \lambda \vec{\nabla} f(P_0)$ Geogebra demostración

22. Hallar las ecuaciones del plano tangente y de la recta normal a la superficie definida por $x^2yz^3-2xz+4zy=7$ en (1,-1,-1).

- 12) Halle los puntos del hiperboloide de una hoja de ecuación $2x^2 2y^2 + z^2 = 1$ donde el plano tangente es paralelo al plano de ecuación z = x y.
- 13) Dada $f(x,y,z) = 8x^2 2xy$, calcule la derivada de f en (3,1,2), en la dirección a la normal "interior" a $x^2+y^2+z^2=14$ en dicho punto.
- 24. Hallar los puntos de la superficie $x^2+y^2+3z^2=29$ cuyos planos tangentes son perpendiculares a la recta $(x,y,z)=(2,0,6)+\lambda$ (1,4,6).

Recta tangente y plano normal a una curva definida como intersección de superficies

 \bar{n}_1 el vector normal del plano tangente a S_1 .

 \bar{n}_2 el vector normal del plano tangente a S_2 .

Vector tangente a la curva perpendicular a \bar{n}_1 Vector tangente a la curva perpendicular a \bar{n}_2

Ecuación recta tangente: $X = P_0 + \lambda(\overline{n}_1 \times \overline{n}_2)$

Ecuación plano normal: (X- P_0). $(\bar{n}_1 \times \bar{n}_2)=0$

- 18) Halle la ecuación cartesiana del plano normal a la curva C en $\overline{A} = (2,1,-4)$ si se sabe que los puntos de C pertenecen a la superficie de ecuación z = xy 3x, y que la proyección de C sobre el plano xy es la parábola definida por $y = x^2 3$ con z = 0.
 - 16) Siendo C la curva intersección de las superficies: $x^2 y^2 = 12$ y $z = x + y^2$, analice si la recta tangente a C en $(4,2,z_0)$ corta a la superficie cilíndrica de ecuación $y = x^2$. (#)