## **GRIP: The Sparks Foundation**

## Data Science and Business Analytics Intern

Author: Wrushabh Narendra Gonnade

## Task 1: Prediction using Supervised ML

```
In [30]: #Importing Libraries
    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import metrics
    from sklearn.metrics import r2_score
In [2]: stu_data=pd.read_csv('http://bit.ly/w-data')
In [3]: stu_data
```

| Out[3]:                         |     | Hours                     | Scores |
|---------------------------------|-----|---------------------------|--------|
|                                 | 0   | 2.5                       | 21     |
|                                 | 1   | 5.1                       | 47     |
|                                 | 2   | 3.2                       | 27     |
|                                 | 3   | 8.5                       | 75     |
|                                 | 4   | 3.5                       | 30     |
|                                 | 5   | 1.5                       | 20     |
|                                 | 6   | 9.2                       | 88     |
|                                 | 7   | 5.5                       | 60     |
|                                 | 8   | 8.3                       | 81     |
|                                 | 9   | 2.7                       | 25     |
|                                 | 10  | 7.7                       | 85     |
|                                 | 11  | 5.9                       | 62     |
|                                 | 12  | 4.5                       | 41     |
|                                 | 13  | 3.3                       | 42     |
|                                 | 14  | 1.1                       | 17     |
|                                 | 15  | 8.9                       | 95     |
|                                 | 16  | 2.5                       | 30     |
|                                 | 17  | 1.9                       | 24     |
|                                 | 18  | 6.1                       | 67     |
|                                 | 19  | 7.4                       | 69     |
|                                 | 20  | 2.7                       | 30     |
|                                 | 21  | 4.8                       | 54     |
|                                 | 22  | 3.8                       | 35     |
|                                 | 23  | 6.9                       | 76     |
|                                 | 24  | 7.8                       | 86     |
| #Getting the row stu_data.shape |     |                           |        |
| 4]:                             | (25 | 5, 2)                     |        |
| 5]:                             |     |                           |        |
|                                 |     | <i>lives t.</i><br>u_data |        |

```
Scores
                  Hours
Out[5]:
         count 25.000000 25.000000
                5.012000 51.480000
         mean
           std
                2.525094 25.286887
          min
                1.100000 17.000000
          25%
                2.700000 30.000000
          50%
                4.800000 47.000000
          75%
                7.400000 75.000000
                9.200000 95.000000
          max
In [6]:
         #Summary of Dataframe
         stu_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 25 entries, 0 to 24
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
          0
              Hours
                      25 non-null
                                       float64
              Scores 25 non-null
          1
                                       int64
         dtypes: float64(1), int64(1)
        memory usage: 528.0 bytes
In [7]:
         stu_data.plot(kind='scatter', x='Hours', y='Scores')
Out[7]: <AxesSubplot:xlabel='Hours', ylabel='Scores'>
           90
           80
           70
           60
           50
           40
           30
           20
                         3
                                   5
                                  Hours
In [8]:
         #Corelation Coefficient
         stu data.corr(method='pearson')
```

```
Out[8]: Hours Scores

Hours 1.000000 0.976191

Scores 0.976191 1.000000
```

```
In [35]: #Distribution Model
sns.distplot(stu_data['Hours'])
```

/Users/wrushabhgonnade/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[35]: <AxesSubplot:xlabel='Hours', ylabel='Density'>



```
In [10]: sns.distplot(stu_data['Scores'])
```

/Users/wrushabhgonnade/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='Scores', ylabel='Density'>



### Preparing the data

## **Linear Regression**

```
In [24]:
          m=reg.coef_
          c=reg.intercept_
          line=m*X+c
          plt.scatter(X,Y)
          plt.plot(X,line)
          plt.show()
          90
          80
          70
          60
          50
          40
          30
          20
          10
In [26]:
          #Compare Actual vs Predicted Data
          y_pred=reg.predict(X_test)
In [27]:
          act_pred=pd.DataFrame({'Target':Y_test,'Predicted':y_pred})
          act_pred
```

```
Out[27]: Target Predicted

0 95 88.211394

1 30 28.718453

2 76 69.020122

3 35 39.273652

4 17 13.365436
```

```
In [28]: sns.set_style('whitegrid')
    sns.distplot(np.array(Y_test-y_pred))
    plt.show()
```

/Users/wrushabhgonnade/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)



# Predicted Score if a student studies for 9.25 Hours per day

```
In [29]:
    h=9.25
    s=reg.predict([[h]])
    print('If a Student Studies for {} hours per day he/she will score {} % in
```

If a Student Studies for 9.25 hours per day he/she will score [91.56986604] % in exam.

#### **Model Evaluation**