AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

1-32. (cancel)

33. (currently amended) The light-emitting device comprising:

a compound semiconductor layer having a light-emitting layer portion, being configured so that a first main surface of which serves as a light extraction surface;

wherein the light-emitting layer portion is configured as having a double heterostructure in which a first-conductivity-type cladding layer, an active layer and a second-conductivity-type cladding layer, all of these layers being composed of (Al_xGa_{1-x})_yln_{1-y}P (where, $0 \le x \le 1$ and $1 \le y \le 1$), are stacked in this order; and

a device substrate bonded on a second main surface side of the compound semiconductor layer while placing a main metal layer in between, the main metal layer having a reflective surface for reflecting light from the light-emitting layer portion back towards the light extraction surface side; further comprising:

a diffusion-blocking layer interposed between the device substrate and the main metal layer, being composed of a conductive material, and provided for blocking diffusion of any device-substrate-derived components towards the main metal layer;

further comprising a substrate-side contact metal layer interposed between the diffusion-blocking layer and the device substrate, intended for reducing contact

resistance between the device substrate and the diffusion-blocking layer; and

wherein the main metal layer is composed of an Au-base layer having Au as a major component, at least in a portion including the interface with the diffusion-blocking layer, and the device substrate is a Si substrate.

- 34. (original) The light-emitting device as claimed in Claim 33, wherein the diffusion-blocking layer is a metal layer for blocking diffusion, having either Ti or Ni as a major component.
- 35. (original) The light-emitting device as claimed in Claim 34, wherein the metal layer for blocking diffusion has a thickness of 1 nm to 10 μ m, both ends inclusive.
- 36. (original) The light-emitting device as claimed in Claim 33, wherein the device substrate is an n-type Si substrate, and further comprises a substrate-side contact metal layer interposed between the diffusion-blocking layer and the Si substrate, being composed of an AuSb alloy or an AuSn alloy, and being intended for reducing contact resistance between the Si substrate and the diffusion-blocking layer.
- 37. (original) The light-emitting device as claimed in Claim 33, wherein the Au-base layer composes the reflective layer.
- 38. (currently amended) A light-emitting device comprising:

a compound semiconductor layer having a light-emitting layer portion, being configured so that a first main surface of which serves as a light extraction surface;

wherein the light-emitting layer portion is configured as having a double heterostructure in which a first-conductivity-type cladding layer, an active layer and a second-conductivity-type cladding layer, all of these layers being composed of (Al_xGa_{1-x})_yIn_{1-y}P (where, $0 \le x \le 1$ and $1 \le y \le 1$), are stacked in this order; and

a device substrate bonded on a second main surface side of the compound semiconductor layer while placing a main metal layer in between, the main metal layer having a reflective surface for reflecting light from the light-emitting layer portion back towards the light extraction surface side; further comprising;

a diffusion-blocking layer interposed between the device substrate and the main metal layer, being composed of a conductive material, and provided for blocking diffusion of any device-substrate-derived components towards the main metal layer; wherein, the main metal layer is composed of an Au-base, composed of pure Au, or an Au alloy having a ratio of Au content ratio of 95% by mass or above, at least in a portion including the interface with the diffusion-blocking layer, and the device substrate [[in]] is a Si substrate; and

wherein the an Ag-base layer interposed between the Au-base layer and the compound semiconductor layer, and having Ag as a major component, composes the reflective layer.

39 - 90. (cancel)