MPI Allreduce 实验报告

容逸朗 2020010869

Ring Allreduce 实现

- 首先,我们要处理进程数不整除数据量的情况:
 - 一种简单的方法是,除最后一个数据塊以外,其余的长度统一,均为 $len = \lfloor \frac{n}{comm sz} \rfloor$;
 - 此时最后一个数据塊的长度是 $n (comm_sz 1) \times \frac{n}{comm_sz}$;
 - 这样做的好处在于,我们可以通过塊位置乘以 len 的方式直接得到数据塊的偏移量;
- 接下来实现 Ring Allreduce 算法:
 - 算法分为两部分,第一部分是 Reduce-scatter,主要是通过分塊方法计算结果;
 - 第二部分是 Allgather, 即把每一进程的结果复制到其他进程的对应位置上;

- 左图为第一阶段的操作过程,右图则为第二阶段;
- 对于两部分而言,操作的过程是十分相似的:
 - 每次传输时,首先根据当前轮数、进程号找到发送和接收数据的正确位置;
 - 然后利用 MPI_Irecv 和 MPI_Isend 收发数据;
 注意,第一阶段应当发出 sendbuf 的数据,而第二阶段则是 recvbuf 的数据。
 - 再使用 MPI_Waitall 等待数据收发完成;
 - 若处于第一阶段,则数据就位后,还需要把接收到的数据 (recvbuf) 与自身的数据 (sendbuf) 相加,然后把结果分別复制到 recvbuf 和 sendbuf 之中;
- 上面的情况并没有考虑到进程数为 1 的情况,故当进程数为 1 时,应该把 sendbuf 的数据直接复制到 recvbuf 中;
- 经过上面的流程后,结果就在 recvbuf 的正确位置上了!

通信时间测试

节点数	进程数	通信量	MPI 用时/ms	Naive 用时/ms	Ring 用时/ms
1	1	10^{4}	0.032437	0.036498	0.028017
		10^{6}	3.61272	3.5662	3.49388
		10^{8}	928.606	930.581	463.589
1	7	10^{4}	0.957494	1.88975	0.614788
		10^{6}	41.2156	58.4814	32.4495
		10^{8}	4080.69	6571.67	3365.52
1	14	10^{4}	0.817381	8.50503	0.677773
		10^{6}	52.2498	68.4995	42.3224
		10^{8}	5775.77	7193.14	5346.5
1	28	10^{4}	1.17186	3.84474	1.29839
		10^{6}	148.692	132.214	101.063
		10^{8}	11723.7	12463.1	12020.4
2	2	10^{4}	0.317486	0.446723	0.214491
		10^{6}	13.6354	20.6378	9.35509
		10^{8}	1830.09	2633.28	1047.68
2	14	10^{4}	1.15006	13.807	0.916153
		10^{6}	49.8921	69.7773	41.1224
		10^{8}	4776.41	7054.59	4591.8
2	28	10^{4}	1.93288	2.41345	1.65981
		10^{6}	65.624	68.7127	53.5499
		10^{8}	5900.24	8259.14	5770.66
2	56	10^{4}	1.80787	4.21147	2.10809
		10^{6}	145.027	155.703	106.355
		10^{8}	11868.5	12803.3	12187.2