NASA TECHNICAL MEMORANDUM

ASA TM X. 62,418

(NASA-TH-X-62418) SHAKE TEST OF ROTOR TEST APPARATUS IN THE 40-BY 80-POOT WIND TUNNEL (NASA) 74 p HC \$4.25 CSCL 14B

N75-20350

Unclas G3/09 14696

SHAKE TEST OF ROTOR TEST APPARATUS IN THE 40- BY 80-FOOT WIND TUNNEL

Wayne Johnson and James C. Biggers

Ames Research Center and U. S. Army Air Mobility R&D Laboratory Moffett Field, Calif. 94035

1. Report No. 1M X 62,418	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle SHAKE TEST OF ROTOR TEST	APPARATUS IN	THE	5. Report Date	
40- BY 80-FOOT WIND TUNN			6. Performing Organiz	ation Code
7. Author(s) Wayne Johnson and James	C. Biggers		8. Performing Organiza A-5973	stion Report No.
			10. Work Unit No	
9. Performing Organization Name and Address			505-10-21	
Ames Research Center and U. S. Army Air Mobility Moffett Field, Calif. 94	R&D Laborator	,	11. Contract or Grant	No.
(13. Type of Report an	d Period Covered
12. Sponsoring Agency Neme and Address			Technical M	lemorandum
National Aeronautics and Washington, D. C. 20546	Space Admini	stration	14. Sponsoring Agency	Code
15. Supplementary Notes				,
A shake test was connected Rotor Test Apparatus on tunnel. The rotor-off has function of frequency) tions, using a combinative techniques. The dynamic giving the following profrequency, the hub responsement of the following profrequency are an appendix. The transfer function included as an appendix. The techniques developed to properties, including the following t	two strut sysub transfer fwas measured on of broadbadata is summerties for ense at resonations are presefinally, the obtain on-lin	tems in the Amesunction (acceler in the longitude and and discrete arized for the cach mode identified, and the fin nted, and the decreport discusse e measurements of fficient and the	s 40- by 80-fration per undinal and lat frequency exconfiguration fied: the nated system datailed test es the data and the system e damping rat	et wind ait force as eral direc- ccitation as tested, atural amping. The results are analysis a modal
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Rotor test apparatus Shake test	!	Unclassified	- Unlimited	
Wind tunnel		STAR Category	y - 09	
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price"
Unclassified	Unclassif	ied	74	\$4.25

SHAKE TEST OF ROTOR TEST APPARATUS IN THE 40- BY 80-FT WIND TUNNEL

Wayne Johnson* and James C. Biggers**

Ames Research Center

Moffett Field. California

SUMMARY

A shake test was conducted to determine the dynamic characteristics of a Rotor Test Apparatus on two strut systems in the Ames 40- by 80-ft wind tunnel. The rotor-off hub transfer function (acceleration per unit force as a function of frequency) was measured in the longitudinal and lateral directions, using a combination of broadband and discrete frequency excitation techniques. The dynamic data is summarized for the configurations tested, giving the following properties for each mode identified: the natural frequency, the hub response at resonance, and the fixed system damping. The complete transfer functions are presented, and the detailed test results are included as an appendix. Finally, the report discusses the data analysis techniques developed to obtain on-line measurements of the system modal properties, including the damping coefficient and the damping ratio.

INTRODUCTION

A shake test was conducted to establish the dynamic characteristics of a Rotor Test Apparatus (RTA) in the Ames 40- by 80-ft wind tunnel (figure 1). Of interest were potential resonances at the 1/rev and 4/rev frequencies of rotors likely to be tested on the RTA, and potential ground resonance instabilities.

The shake test was performed on the RTA module, without a rotor, on two strut systems in the wind tunnel, to determine the principle frequencies and damping of the structure. The rotor-off hub transfer function was

^{*}Research Scientist, U.S. Army Air Mobility Research and Development Laboratory

^{**}Research Scientist, National Aeronautics and Space Administration

measured in the longitudinal and lateral directions: longitudinal, inplane acceleration of the hub due to longitudinal, inplane force; and lateral, inplane acceleration of the hub due to lateral, inplane force. With the hub transfer functions it is possible to evaluate potential ground resonance and vibration problems of rotors to be tested on the RTA. The frequency ranges of interest are: 0-5 Hz for ground resonance, 3-7.5 Hz for 1/rev vibration, and 12-30 Hz for 4/rev vibration (based on a rotor speed range of 180-450 rpm). The information required for each mode of the system is the natural frequency and the amplitude of the hub response, and for potential ground resonance modes we must know the fixed system damping as well.

SYSTEM

The system tested consisted of the RTA module, without a rotor, on the struts and balance frame in the 40- by 80-ft wind tunnel. The RTA module included the rotor hub, with the transmission locked, and two 1500-HP electric motors installed (one of the motors was replaced by a dummy weight for this test). The total module weight was 30400 lb.

Two strut/tip configurations were tested: a short strut system (8-ft struts with 5-ft tips) and a long strut system (15-ft struts with 6-in tips). The short struts gave softer support of the module because of the flexibility of the tips. In the basic configuration the balance was free, with the scale system operating. The shake tests were also conducted with the balance locked, in order to obtain the cantilever strut modes. Finally, the system was tested with strut dampers installed, consisting of an extensible strut from the top of each main strut down to the rear of the balance frame, with a total of eight automotive shock absorbers as dampers.

TEST APPARATUS

A hydraulic shaker was attached to the blade grip of the rotor hub to excite the module by application of an inplane force, in the longitudinal or lateral direction. The other end of the shaker was attached to an 11600 lb reaction as suspended from a crane. Figure 2 shows the shake test configuration, for lateral excitation. For longitudinal excitation, the shaker was attached to the forward blade grip, with the reaction mass over the module nose. The shaker servo control was operated in a stroke feedback mode.

A load cell between the shaker and hub measured the applied force. Accelerometers on the hub measured the longitudinal and lateral response. Data were recorded for other accelerometers on the module and balance frame, but only the results for the hub response are presented in this report.

The applied force and resulting hub acceleration data were analyzed on-line to determine the dynamic characteristics of the system, using the Dynamic Analysis System (DAS, shown in figure 3). The DAS is basically a time series analyzer and computer, utilizing Fast Fourier Transform techniques and associated software, and programs specific to this shake test.

TEST PROCEDURE

The frequency ranges investigated were 0-9 Hz for ground resonance and 1/rev vibration modes, and 0-35 Hz for N/rev vibration modes. Broadband random input to the shaker was used, with a bandpass filter to shape the input spectrum. The low cutoff frequency was set at 0.5 Hz to avoid excitation of the reaction mass pendulum modes, and the high cutoff frequency was set at either 9 or 35 Hz to restrict the energy input to the frequency range of interest.

The basic test plan, for each strut/module/balance configuration, excited in the longitudinal and lateral directions, was as follows.

- 1) Random excitation, bandwidth .5-9 Hz; nominal force amplitude \$200 and \$400 lb (\$400 lb point usually repeated).
- 2) Random excitation, bandwidth .5-35 Hz; nominal force amplitude ±100 and ±200 lb.

3) Sinusoidal (discrete frequency) excitation at various force levels, at the low frequency resonances identified in #1; usually points were taken at frequencies near the resonance as well.

There was some variation between runs of course. For future work, the use of narrow-band random excitation at each resonance would seem preferable to a sequence of (nominally) discrete frequency points as was the practice in this test. Narrow-band excitation offers the possibility of obtaining the data over the entire frequency range near the resonance in a single measurement. The reason for the narrow-band excitation is to corcentrate the input energy into a particular mode, so for the highest force levels it may be necessary to narrow it down to essentially discrete excitation again. Still, the data from this test indicate that an accurate estimate of the system damping may be obtained from the single frequency point, even if it is not quite at the resonant peak (see the discussions below).

The following six configurations were tested, with longitudinal and lateral excitation for each:

- Short struts.
- Short struts, balance locked.
- 3) Short struts, with strut dampers (8 shocks).
- 4) Long struts.
- 5) Long struts, balance locked.6) Long struts, with strut dampers (8 shocks).

ANALYSIS

The data for the force applied to the hub and the resulting hub acceleration were analyzed on-line, utilyzing the DAS. The input signal f (force) and output signal a (acceleration) were sampled (digitized) at rate r, taking a total of N samples. The discrete Fourier transforms of f and a were calculated, and converted to engineering units using input conversion factors (lb/volt and g/volt). The products of the transforms gave the cross spectrum $S_{io} = \overline{F}*A$, and the input autospectrum $S_{ii} = \overline{F}*F$. Signand Signary were averaged over K data records. Finally the transfer function of the hub response was calculated, from H = acceleration/force = averaged Sig/averaged Sig.

The computer searched the magnitude of the transfer function for resonant peaks. Then it calculated and printed for each peak the following quantities: the resonant frequency (Hz); the magnitude of the force and acceleration at that frequency; the magnitude of the hub response H (g/1000 lb and in/1000 lb); the phase of the response, LH (deg); the fixed system damping coefficient C_S (lb/fps), calculated from H at the resonant frequency; the damping coefficient, modal mass, and damping ratio $(C_S$, M, and f), calculated from integrals of H through the resonant peak; and the damping ratio f, calculated by a least-squared-error parameter identification technique from the data for H near the peak. In addition, ground resonance parameters (critical rotor speed and required lag damping) were calculated, for a particular rotor.

The magnitude of the transfer function, |H| vs. ω , was displayed on a CRT. A picture was taken as a record of the complete transfer function.

The discrete frequency excitation points were analyzed in the same manner. However, the response was only evaluated at the single line corresponding to the input frequency.

Further details of the analysis techniques are given in appendices: a discussion of the discrete Fourier transform (Appendix A); the local maximum discriminator (Appendix B); calculation of the fixed system damping from the transfer function (Appendix C); LSE parameter identification of the damping ratio (Appendix D); and calculation of the damping from integrals of the transfer function (Appendix E).

The following parameters were used for the analysis of the data in this test:

1) Ground resonance and 1/rev dynamics (0-9 Hz): sample rate r = 20.48/sec, number of samples N = 512, number of records K = 10; total sample time T = 250 sec, spectrum frequency increment = .04 Hz.

2) N/rev dynamics (0-35 Hz): sample rate r = 81.92/sec, number of samples N = 256, number of records K = 20; total sample time T = 62.5 sec, and spectrum frequency increment A = .32 Hz.

For future work, it would probably be better to take more records for the 35 Hz bandwidth excitation, to further reduce the noise in the data: K = 40 (hence T = 125 sec) should be about right. The use of Hanning to smooth the data is usually recommended (see the references of Appendix A), but it was only occasionally used in this test.

RESULTS

The results of this test are the dynamic characteristics of the six configurations investigated, specifically, the frequencies and response amplitudes of the principal modes identifiable in the hub transfer functions.

Figure 4 demonstrates the repeatibility of the transfer function measurements. It shows three separate measurements of the longitudinal response on the short struts. There is excellent correlation between the three points. Figures 5 through 10 present the transfer functions for the six configurations tested. The lateral and longitudinal hub responses are shown, in the 9 and 35 Hz excitation ranges for each. The abscissas in the figures are frequency, from 0 to 10 or 50 Hz, and the ordinates are the magnitude of the transfer function in g/1000 lb.

Tables 1 and 2 summarize the dynamic characteristics of the six configurations tested. The tables give the following quantities for each of the longitudinal and lateral modes identified: the resonant frequency (Hz); the magnitude of the hub response H (g/1000 lb and in/1000 lb); and, for the potential ground resonance modes, the fixed system damping coefficient C_s (lb/fps). The hub response and damping coefficient data for the long struts, lateral shake, balance free and balance locked (runs 17 and 18) are somewhat uncertain because of a problem with the accelerometer calibration. However, the conversion factor (g/volt) used for these two runs was certainly within 25% of the correct factor. The frequency and damping ratio data are nof affected by this problem.

TABLE 1. Summary of Dynamic Characteristics: Short Struts

		Longitudinal Mode	nal Modes				i		Lateral Modes	Modes		
		3	# `	Ħ,	ຶ່ນ				3	H	Н	U
Mode		Hz	1000 1b	1n/ 1000 1b			Mode		Hz	8/ 1000 1b	1n/ 1000 11	s lb/fpe
					TROHE	STRUTE						
balance		1.66	.21		1300-1500		balance	side	2.10	.36	88.	1000-1100
strut		₹0.€	•38	04.	800-1200		balance	уам	2.24	₹.	.67	500-600
balance	vertical	7.32	.15	.n3		<u> </u>	strut		3.52	.41	.32 1	1400-1600
module	rertical	10.0	06.	·39			mast		23.2	6.2	so:	
X-beam	rertical	14.1	.70				mast		27.7	2.3	.03	
mast		25.5	3.1	.05		-						
		28.5	1.5	20.								
		31.2	1.7	•05								
		35.0	2.0	.0Z								
					SHURT STRUTS,	i	BALANCE LCCKED					
strut		2.27	.78	1.47	0111		strut		2.45	1.40	2.28	300
module	rertical	10.0	•80	•08		1	mast		23.7	2.0	.03	
Х-реал	rertical	15.3	•50	• 02		1	mast		27.7	1.9	.02	
mast		25.5	2.5	70.								
		31.2	1.3	.01								
		35.0	1.5	•OI								
				HOR	_	WITH STR	STRUT DAMPIRS	RS				
balance	6 1	1.70	60.		3200-3600		balance	side	1.9	.20	l	1800-2000
damper	trut	6.4	.15	90°	\$009-000t		balance	уан	2.2	.20	.42	1900-2100
strut		5.8	.12	~ さ.	4000-8004		strut		3.52	.22	l	2900-3200
balance	e vertical	2.60	<u>ه</u> .	. 01			mast		23.2	3.5	90.	
module	fertical	10.7	.80	.07			mast		27.7	3.3	ġ	
X-beam	ertical	15.5	.55	.02								
mast		55.5	3.2	•05								
		28.5	1.5	.02								-
		31.2	1.7	.02								
		35.0	2.0	•02								

TABLE 2. Summary of Dynamic Characteristics: Long Struts

Longitudinal Modes	Long1 tudina	<u> </u>	.1 Modes	10					Lateral Modes	Modes	7	
	<u> </u>		tn/		ပ				3		1 n/	ပဖ
Hz 1000 lb 1000 lb	1000 lb 1000	1b 1000		0	ps	1	Mode		Hz	1000 1b	1000 1b	1b/fps
					_	NG STRUT	1 0				1	
. 09 . 32	. 09 . 32	.32		(T)	3400-380		balance	side	2.32	.21	1	1600-2000
	.85	Н	.51		900-800		halance	уви	2.67	.18	.25	2600-3000
7.20	60.		700				strut		4.50	1.24		550-650
ertical 10.6 .70 .06	- 20	H	90*				mast		23.2	1:0	.02	
ertical 14.1 .65 .03	59.		:03				mast		2.12	2.5	છ	
2.5	2.5	-	ਰ ਼									
1.6	1.6		²⁰									
1.4	1.4	_	.01									
35.0 1.5 0.01	1.5		.01	_								
]	4	LUNG STRUTS.	1	BALANCE LOCKED					
0 1	1.15		1.25		500		strut		3.46	1.55	1.27	280
10.2 .85	.85		80.				mast		23.2	1.5	9	
09.	09.		.03				mast		27.7	2.2	.03	
2.1	2.1		.03									-
1.2	1.2		.01									
35.0 1.4 .01	1.4	-	.01	1								
						- 1						
Δ	Δ	7	3 I	ىك	LONG STRUTS	WITH	STIRUT DAMPERS	rrs			1	
.07	.07	.26	1	vo l	00-4500		balance	side	2.32	.24		1400-1800
trut 3.61 .10 .07 50	.10 01.	٠0٠		0	2000-6400		balance	уам	3.2	•02	•02	
.31 .10	.31 .10	•10		N	3200-4600		strut		59.4	.31		2800-3000
20.	20.		.01				mast		23.2	2.0	₹.	
ertical 10.7 80 .07	-80		٠ω٠				mast		27.7	2.6	.03	
rertical 15.5 65 .03	.65	5	.03	L								
2.5	2.5		₩.									
1.4	1.4		.02									
+	1.4	\dashv	.01									
35.0 1.4 .01	1.4	\dashv	٥.									

In the lateral response on the short struts (balance free, no dampers) we observe two close modes at the lower resonance, around 2 Hz. These are the balance side and balance yaw modes, involving considerable module yaw and side motion as well for this case. Figure 11 shows the details of the two modes, expanding the magnitude and phase of the transfer function in the range 1-3 Hz. The detailed test data are given in Appendix G, Table G1. The dynamic situation is as follows. For the short strut configuration, the uncoupled balance lateral modes and cantilever strut side mode have about the same frequency, around 2.4 Hz (see Tables 1 and 2). Thus there is considerable coupling of the balance and module motion for the complete system, with the typical behavior that the frequencies of the coupled modes are driven apart. The balance mode frequencies are decreased, the strut mode frequency is increased, and the damping for the balance modes is reduced. For the long strut configuration, the lateral cantilever strut mode frequency is around 3.5 Hz, well above the balance mode frequencies (see Table 2). Therefore the balance mode frequencies are not lowered significantly for this configuration (note that the balance side mode frequency is expected to be about $\sqrt{2}$ times the balance longitudinal mode frequency, since there are two side force scales and one drag force scale in the balance system).

The test data show a nonlinear behavior for the damping of the balance modes. The damping for high excitation level and high response amplitude consistently was significantly lower than the damping measured at low levels (the data in Tables 1 and 2 are the values for low excitation level). Figure 12 shows the general trend, for all the configurations tested. The ratio of the balance mode damping to its value at low excitation levels correlates well with the rms value of the exciting force. The linear range extends up to 30 or 40 lb (rms), and at high excitation the damping levels off at about 40 to 50% of the low excitation value. The detailed test data are given in Appendix G. A correlation between the excitation level (broadband and discrete) and the balance drag scale motion for the longitudinal balance mode is also given in Appendix G (run 11, Table G1).

From the frequencies of the modes we may identify 1/rev and N/rev resonances for the operating range of a particular rotor, and with the data on the magnitude of the hub response assess the vibration potential of these modes. From the frequency and fixed system damping we may assess the ground resonance stability of articulated and soft-inplane hingeless rotors on this Rotor Test Apparatus. A simple ground resonance stability criterion, giving the critical rpm ranges and the lag damping required for stability, is discussed in Appendix F. More detailed calculations of the dynamic stability are recommended however.

The tables of Appendix G present in detail the shake test data for the six configurations investigated.

DISCUSSION OF ANALYSIS TECHNIQUES

Several methods were used to calculate the modal parameters from the measured transfer function. The quantities required are: the natural frequency ω_n , damping coefficient C_s , damping ratio s, and modal mass M (note that these parameters are related by $C_s = 2 \int \omega_n M$).

The natural frequency was estimated using three points around the experimental peak (Appendix D). This technique gave satisfactory results.

The damping coefficient was calculated from the transfer function at a single frequency point (Appendix C), and from integrals of the transfer function through the peak (Appendix E; this method was used only for runs 17 and 18, Tables G4 and G5). Both methods worked well, and the two techniques gave comparable estimates. The experimental data (Appendix G) for the single-point calculation of $C_{\rm g}$ during discrete frequency sweeps near a resonance demonstrate that this method gives an estimate of the damping which is indeed relatively insensitive to frequency, i.e. roughly constant in the vicinity of each peak (see Appendix C). The integral method of calculating $C_{\rm g}$ is less sensitive to noise in the transfer function data, but for very close modes one must watch that the limits of integration cover only one

resonant peak. With discrete or very narrow-band excitation, only the single-point estimate of C_s is applicable of course. The use of both methods is recommended to obtained the best extimate of the damping coefficient.

To calculate the damping ratio and modal mass (\S and M), the LSE parameter identification techniques described in Appendix D were used, with four iterations after the initial estimate of the parameters, and either 5 or 10 points for the curve fit around the resonant peak. For an ideal transfer function (no noise in the data) these techniques worked well, especially the two-parameter algorithms. For real data however, i.e. an experimental transfer function measurement including noise, the methods of Appendix D were not satisfactory. The one-parameter algorithm (\S from three points. The two-parameter algorithms (\S and M from either \S or \S from three points. The two-parameter algorithms (\S and M from either \S or simply did not converge. The difficulty is probably due to the fact that the derivatives in the iteration formulas are singular at \S = 0. There is the possibility of better success using an algorithm to identify C_\S and M from the transfer function.

The damping ratio and modal mass (\int and M) were also calculated (for runs 17 and 18, Table G4 and G5) from integrals of the transfer function, as described in Appendix E. This technique worked well, and its continued use is recommended.

APPENDIX A

The Discrete Fourier Transform

1. References

Bendat, Julius., and Piersol, Allan G., Measurement and Analysis of Random Data, John Wiley & Sons, Inc., New York, 1966

Jenkins, Gwilym M., and Watts, Donald G., <u>Spectral Analysis and its Applications</u>, Holden-Day, San Francisco, 1969

2. Definition and Application

The input signal (force, f) and output signal (acceleration, a) are sampled (digitized) at rate r, until the total number of samples N is collected. The result is a discrete time series of data, at $t = n\Delta t$, n = 0...N-1 ($\Delta t = 1/r$, with sampling period T = N/r). The discrete Fourier transforms of the input and output are calculated, using Fast Fourier Transform (FFT) techniques, according to the expression:

$$X(k) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-i2\pi kn/N}$$

The result is a discrete spectrum, at the N/2 frequencies $\omega=k\,\Delta\omega$, k=0...(N/2-1) ($\Delta\omega=r/N=1/T$ Hz, with a maximum frequency -- spectrum bandwidth -- of $\omega_{max}=r/2$ Hz).

The input and output transforms are multiplied then to obtain the cross-spectrum $S_{io} = \overline{F} * A$ and the input autospectrum $S_{ii} = \overline{F} * F$. The spectra S_{io} and S_{ii} are averaged over a total of K records of data. Then the system transfer function is calculated as:

$$H = a/f = average S_{io}/average S_{ii}$$

3. Relation to Continuous Fourier Transform

The Fourier transform of a continuous, non-periodic time function $\mathbf{x}(\mathbf{t})$ is defined as

$$X(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) e^{-iut} \delta t$$

The discrete Fourier transform makes two approximations: first, a finite length record of data is transformed; and secondly, a finite number of samples are taken during the record.

With a finite length record, it is assumed that the data is periodic outside the record; hence we calculate the Fourier transform of a periodic function:

 $X_{i}(\omega) = \frac{1}{T} \int_{0}^{T} x(t) e^{-i\omega t} \Omega t$

at the discrete harmonics $\omega = 2\pi k/T$. This may be considered the Fourier transform of x(t) times the window w(t) which is open only for t = 0 to T, so

$$X_{1}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t)w(t) e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} X(\omega^{+}) W(\omega - \omega^{+}) d\omega^{+}$$

(using the convolution theorem). The time window is

$$w = \begin{cases} 2\pi/T & 0 < t < T \\ 0 & \text{otherwise} \end{cases}$$

so the frequency window (the Fourier transform of w) is:

$$W = \frac{\sin \omega T/2}{\omega T/2} e^{-i \omega T/2}$$

which has amplitude 1 and bandwidth $\Delta \omega = 2\pi T$. Thus

$$X_1(\omega) \cong \int_{\omega-\Delta\omega/2}^{\omega+\Delta\nu/2} X(\omega^*) \partial \omega^*$$

This $\Delta \omega$ is the same as the frequency increment in the discrete spectrum. So each line in the discrete transform may be viewed as the integral of the continuous transform over the interval $\omega - \Delta \omega / 2$ to $\omega + \Delta \omega / 2$.

With only a finite number of samples in the record, we calculate as an approximation to X_1 the discrete transform:

$$X_2(k) = \frac{\Delta t}{T} \sum_{n} x(n) e^{-i2\pi kn \Delta t/T}$$

(the summation being the discrete approximation of the integral). Since $\Delta t/T = 1/N$, this is identical to X(k) defined in section 2 above. The finite length record means that only the discrete harmonics $\omega = k \Delta \omega$ of the transform are calculated. The finite number of samples means that the maximum frequency of the spectrum is $\omega_{max} = N/2 * \Delta \omega = r/2$ (the Nyquist frequency). It is necessary to filter the analog input and output signals with a low-pass cutoff frequency at or below ω_{max} , in order to avoid aliasing of the discrete spectrum by harmonics above the Nyquist frequency, which can not be discerned by sampling at the discrete rate r.

4. Noise

Bacause of process and measurement noise, we do not calculate a deterministic spectrum, but rather a statistical estimator of the spectrum. In order to reduce the noise in the estimate of the spectrum, it is necessary to average the data. Thus we take K records, and calculate the average spectrum

This sample spectrum has an unbiased mean, and a variance of

$$\frac{\text{Vor S}}{S^2} = \epsilon^2 \cong \frac{1}{k}$$

The standard deviation is thus inversely proportional to $K^{\frac{1}{2}}$ (compare with the similar result for the standard deviation of a sample mean). The total sample time is $KT = K / \triangle \omega$, so for a given time it is necessary to compromise between the accuracy of the data and the frequency increment in the spectrum. Bendat and Piersol suggest using a minimum of K = 10 records. The statistics of the transfer function H (the ratio of the average cross spectrum to the average input autospectrum) are more complex (the reader is directed to the references given above), but the $K^{-\frac{1}{2}}$ behavior of the spectra is sufficient for the present purposes.

5. Choice of Parameters

The parameters r, N, and K are required to define the sampling and averaging process in the analysis of the data. For a given bandwidth of the data, the sample rate r suggested is

r = 2.5 * bandwidth data

($\omega_{\text{max}} = r/2 = 1.25 * \text{bandwidth}$). A low pass filter on the signal is also required, to avoid aliasing in the discrete transform. The number of samples N is then chosen from r and the required frequency increment in the spectrum $\Delta\omega$, as N = $r/\Delta\omega$ (FFT routines used require also that N be a power of 2). We choose $\Delta\omega$ to define the resonant peaks sufficiently, from $\Delta\omega \approx 5\omega_{\infty}/2$ (which gives about 5 points covering the $\frac{1}{2}$ power bandwidth of the peak; ω is the natural frequency and 5 the damping ratio of the mode). Finally, the number of records K is chosen for the desired accuracy (noise level) of the spectrum. At least 6 to 10 records are desired; the principle restriction of the number of records is the total sample time KN/r.

APPENDIX B

Local Maximum Discriminator

1. Problem

It is necessary to identify the resonant peaks (i.e. the natural frequencies) of the experimental transfer function. The experimental transfer function has measurement and process noise however, so it is not possible to identify the peaks by simply searching for all the local maxima of the data. An algorithm must be developed which will discriminate the true peaks from the spurious local maxima due to noise.

2. The Algorithm

We have the data for the magnitude of the transfer function, which may be written H_e = H + h, where H is the true value and h is random noise in the measurement. Assume h has a normal distribution with zero mean and standard deviation • hence probability distribution:

Assume $= H/K^{\frac{1}{2}}$, where K is the number of records of data in the average of the cross spectrum and input autospectrum calculated to find H (see Appendix A).

Consider then the probability of a peak at a certain frequency ω_N , i.e. the probability that $H_N-H>0$ for all nearby frequencies. This is the probability that $h>h_N-\Delta H_e$, where $\Delta H_e=H_{eN}-H_e$; which is:

$$Pr = \int_{-\infty}^{\infty} \int_{h_{N}-\Delta H_{e}}^{\infty} f(h) f(h_{N}) dh dh_{N}$$

$$= \frac{1}{\sigma^{-2} 2\pi r} \int_{-\infty}^{\infty} e^{-\frac{r^{2}}{2} + h_{N}^{2}} dh dh_{N}$$

$$= \frac{1}{\sqrt{2\pi r}} \int_{-\infty}^{\infty} e^{-\frac{r^{2}}{2} + h_{N}^{2}} dy$$

This integral may be expressed in terms of the error function.

The product of the probability Pr evaluated at several points around ω_N is the probability that all local values of H are less than the H at ω_N . Therefore we take as a discriminator of the local maxima the parameter

C is evaluated at all frequencies of the transfer function. If C is above a certain confidence level for any frequency, we consider that point a resonant peak of the transfer function.

The parameter C has the following properties. For a local maximum, $C \cong 1$, while C is near 0 for a local minimum. If $\Delta H_e = 0$ for all points (i.e. the experimental data constant), then $C = \frac{1}{2}$. Finally, with $\Delta H_e / r = 1$, 2, or 3 we obtain C = .76, .92, and .98.

3. Application

For on-line evaluation of the data (locating the resonant peaks of the transfer function and calculating the system properties there), it is better to use a rather low confidence level on the discriminator (so a few false peaks are located, which are easily discarded by the engineer), rather than to use a high confidence level which will occasionally miss a true peak because of excessive noise. It is also found that the parameter C is a more sensitive discriminator of the peaks if many points are used to evaluate C for each frequency.

For the present test, a confidence level of 65 to 70 (C above the confidence level considered an indication of a resonant peak) was satisfactory. The parameter C was calculated using 12 points ("m" in the definition of C above) around each frequency.

APPENDIX C

Fixed System Damping from Transfer Function

To evaluate the ground resonance stability of a rotor on a flexible support, it is necessary to know the damping coefficient of the modes. This may be obtained from the hub impedance by the following method. Consider the mass/spring/damper system: $M\ddot{x} + C_S \dot{x} + M \dot{x} = f$. The response of the hub acceleration to the applied force is the transfer function

$$H = \frac{\alpha}{\xi} = \frac{-\omega^2}{M(\omega_n^2 - \omega^2) + C_5 i \omega}$$

where Θ_{∞} is the natural frequency, M the generalized mass of the mode, and $C_{_{\rm S}}$ the damping coefficient. It follows that

$$C_S = \frac{\omega \, d_m H}{1 H l^2}$$

or

with the dimensions $[\omega]$ = Hz, [H] = g/1000 lb, $[C_S]$ = lb/fps. This is the expression used to calculate the damping of the rotor support, from the experimental measurement of the hub response.

At the resonant frequency ($\omega = \omega_n$) this result becomes $C_s = \omega / |H|$. In general the previous form is preferable however, since it holds for all ω , not just at the peak. Thus it is possible to evaluate C_s even though the calculation is not performed exactly at the peak (for multimode systems it is necessary to be at least close to the peak of course). The experimental data (Appendix G) shows that the damping calculated by this expression is quite consistent in the vicinity of the resonance of each mode.

APPENDIX D

Least Squared Error (LSE) Parameter Identification of Damping Ratio from Transfer Function

1. LSE Parameter Identification

For complex H, this error is the sum of the distances between H and H on the complex plane (Re H vs. Im H, i.e. the phase plane). The minimum ϵ is given by the solution of:

$$\frac{\partial \varepsilon}{\partial n_i} = \frac{\varepsilon}{k} \frac{\partial n_i}{\partial n_i} \left[H - He \right]^2 = 0$$

If H is linear in the parameters, the above is a set of linear algebraic equations which may be solved directly for the parameters u_i . In the present case however, H is not a linear function of u_i , so a solution by numerical methods is necessary; we shall use Newton's method. From

it follows that the iterative solution of $\partial f/\partial u_i = 0$ is

$$\frac{y_{(n+1)}}{y_{n+1}} = \frac{y_{(n)}}{y_{n}} - \left[\frac{9n!}{9s^2}\right]_{-1} \left\{\frac{9n!}{9s^2}\right\}$$

where u is a vector of the parameters u_i (nth iteration), and the derivatives of f are evaluated using $u^{(n)}$.

Here $f = \xi |H-H_e|^2$, hence the solution of the parameter identification problem is:

$$\vec{h}^{(n+n)} = \vec{h}^{(n)} - \left[\frac{E}{E} \frac{\partial^2}{\partial n_i \partial n_j} | H - He |^2 \right]^{-1} \left\{ \frac{E}{E} \frac{\partial}{\partial n_i} | H - He |^2 \right\}$$

2. Transfer function

We shall fit the measured transfer function in the neighborhood of a resonant peak to the theoretical transfer function of a mass/spring/ damper system. Considering the acceleration response to an applied force, the transfer function is

$$H = \frac{\omega}{f} = \frac{-\omega^2/m}{\omega_n^2 - \omega^2 + i 2 \zeta \omega_n}$$

Note that in general the parameter m (mass) is a complex number, because it accounts for the influence of other modes of the system in the vicinity of any particular resonance. The magnitude of H is:

$$|H| = \frac{\omega^2 / m I}{\sqrt{(\omega^2 - \omega_n^2)^2 + (2 \int \omega \omega_n)^2}}$$

Fitting H to the experimental data around a peak requires the identification of four parameters then: the damping ratio 5, the natural frequency ω_{∞} , the mass |m|, and the phase angle $\angle m$ (only the first three are involved in fitting the magnitude of H to the experimental data).

Because of limitation of computer core and language, we consider only the identification of one or two parameters. The following cases will be considered in detail: fitting |H| to $|H_e|$ by identifying f ; fitting |H| to $|H_e|$ by identifying f and |H| ; and fitting f to $|H_e|$ by identifying f and |H|. An initial estimate of the parameters is required to start the iterative LSE solution. It is assumed that the initial estimate of the parameters not corrected by the LSE solution (in particular the natural frequency f is satisfactorily accurate.

3. Initial Estimate of Parameters

Assume that a resonant frequency ω_P has been found (a local maximum of $|H_e|$; see Appendix B). An initial estimate of the parameters may be obtained from the experimental data at the three points ω_P , $\omega_L = \omega_P - \Delta \omega$, and $\omega_R = \omega_P + \Delta \omega$. For small 5 and small $\omega - \omega_N$ (the usual case of interest), the transfer function is approximately

From this approximation the parameters of H may be estimated as:

$$\Delta \omega_{n} = \Delta \omega \frac{R_{R} - R_{L}}{2(R_{R} + R_{L} - 2R_{R}R_{L})}$$

$$5^{2} = \frac{R_{L}(\Delta\omega + \Delta\omega_{n})^{2} - (\Delta\omega_{n})^{2}}{(1 - R_{L})\omega_{n}^{2}}$$

$$\frac{1}{m} = -H_{ep} \left(\frac{\omega_p^2}{\omega_p^2} - 1 + i 25 \frac{\omega_p}{\omega_p} \right)$$

where

$$R_L = |H_{eL}/H_{eP}|^2$$

 $R_R = |H_{eR}/H_{eP}|^2$

4. Damping ratio from | H |

The LSE iterative solution is

Snew = 5018 +
$$\frac{\frac{500}{100}}{\frac{500}{100}} (H-He)^2$$

or

where

$$L = \frac{\sum_{k=0}^{\infty} \frac{9k}{3} (H - H^{6})_{5}}{\sum_{k=0}^{\infty} \frac{9k}{3} (H - H^{6})_{5}}$$

$$= \frac{\sum_{k} \omega^{4} D^{-3/2} (H_{e} - H)}{\sum_{k} \omega^{6} (12 \, 5^{2} \omega_{n}^{2}) D^{-5/2} (H_{e} - \frac{4}{3} H)}$$

$$H = \frac{m}{m_{\rm s}} P_{-\frac{\pi}{2}}$$

$$P = (m_{\rm s} - m_{\rm s}^2)_{\rm s} + (5 \ell m^{\rm s})_{\rm s}$$

5. Damping ratio and Mass from |H|With $\mu = 1/|m|$ and $D = (\omega^2 - \omega_n^2)^2 + (2 \int \omega_n)^2$, we have $H = \mu \omega^2 D^{-\frac{1}{2}}$. The derivatives required are:

$$a = \frac{2}{5} \frac{3}{5} \frac{2}{5} (H_e - H)^2$$

$$= \frac{2}{5} \left[(H_e - H) \mu \omega^2 D^{-\frac{3}{2}} \frac{3^2 D}{3^5 2} - (H_e - \frac{4}{3} H) \mu \omega^2 \frac{3}{2} D^{-\frac{5}{2}} (\frac{3 D}{3 C})^2 \right]$$

$$8 = \frac{3}{5} \frac{3^2}{5} (H_e - H)^2 = \frac{2}{5} \frac{2 \omega^4 D^{-1}}{5}$$

$$c = \frac{3^2}{5} \frac{3^2}{5} (H_e - H)^2 = \frac{2}{5} \left((H_e - 2H) \omega^2 D^{-\frac{3}{2}} \frac{3 D}{3 C} \right)$$

and the LSE iterative solution is:

6. Damping ratio and Mass from H

Using the initial estimate of \angle m and $\triangle_{\mathbf{x}}$, we shall match the experimental data $\mathbf{H_z} e^{\mathbf{i} \angle m}$ to the complex transfer function

where $D = (\omega^2 - \omega_n^2)^2 + (25\omega\omega)^2$ and m = 1/|m|. Then the squared error is

where

$$\alpha = 2 \text{ ReHe } \omega^2 (\omega_n^2 - \omega^2)$$

$$\beta = 2 \text{ JmHe } \omega^2 (-2\omega\omega_n)$$

The derivatives required are:

$$A = \frac{3}{5} \frac{3}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{5} \left[\mu(\alpha + \mu \omega^{4} + \beta 5) \left(-\frac{3}{3} \frac{3b}{5} \right) + \beta \mu \delta^{-1} \right]$$

$$B = \frac{3}{5} \frac{3}{5} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{5} \left(\alpha + 2\mu \omega^{4} + \beta 5 \right) \delta^{-1}$$

$$a = \frac{3}{5} \frac{3}{5} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{3}{5} \left[\mu(\alpha + \mu \omega^{4} + \beta 5) \left(2 \frac{5}{3} \frac{3b}{5} \right)^{2} - \frac{5}{3} \frac{3^{2}b}{5^{2}} \right]$$

$$= \frac{3}{5} \frac{3}{5} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{3}{5} \frac{3}{5} \frac{3}{5} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{3}{5} \frac{3}{5} \frac{3}{5} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{3}{5} \frac{3}{5} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{3}{5} \frac{3$$

and the LSE iterative solution is:

$$\binom{5}{m}_{now} = \binom{5}{m} - \frac{1}{\alpha B - c^2} \binom{AB - Bc}{Ba - Ac}$$

APPENDIX E

Damping Ratio from Integral of Transfer Function

The damping ratio, mass, and damping coefficient may be calculated from integrals of the system transfer function. This method is an alternative to the single point or curve fit techniques described above (Appendices C and D). Assuming a single mode transfer function:

$$H = \frac{\xi}{\omega} = \frac{-\omega^2/m}{\omega_1^2 - \omega^2 + i 2\zeta \omega \omega_m}$$

it may be shown that the damping coefficient and mass are given by:

and then the damping ratio is $\int = C_g/2m \omega_n$.

To apply this result to experimental data, the transfer function is integrated through each mode from $0.8\omega_n$ to $1.2\omega_n$. Correcting for the finite limits, we obtain:

$$5 = \frac{.33}{\omega_n} \frac{\left(\frac{1.2\omega_n}{\omega_n} \frac{1mH}{\omega} \frac{\Omega_m}{\omega}\right)^2}{\frac{1.2\omega_n}{\omega_n} \frac{1HI^2}{\omega} \frac{\Omega_m}{\omega}}$$

$$C_{5} = 195.4$$

$$\frac{\frac{1120.1}{90.1}}{\frac{111^{2}}{111^{2}}} \frac{3.1}{110}$$

with dimensions [H] = g/1000 lb, [ω] = Hz, [m] = lb, and [C_s] = lb/fps. Note that the result for C_s is independent of the limits of integration; compare with the expression in Appendix C. For extremely close modes it may be necessary to integrate over a smaller range around ω_n ; the above limits were satisfactory for the present test however. The natural frequency ω_n may be obtained from the three-point curve fit around a local maximum, as described in Appendix D, part 3.

By calculating the system parameters from integrals of the transfer function, the effect of noise in the experimental data is reduced. However, the above expressions are not unbiased estimators of \int and C_s . With the factor $|H|^2$ in the denominator, the calculation of \int and C_s in the presence of noise will underestimate the true values. The error in the estimate will be of the order K^{-1} , where K is the number of data records over which the spectra are averaged (see Appendix A). The estimate is conservative at least, and for the present cases the error is only 5 to 10%. If desired, the calculations of \int and C_s may be multiplied by (K+1)/K as an approximate correction for the bias error.

APPENDIX F

Ground Resonance Stability Criterion

1. References

Coleman, Robert P., and Feingold, Arnold M., "Theory of Self-Excited Mechanical Oscillations of Helicopter Rotors with Hinged Blades," NACA Rept. 1351, 1958

Deutsch, M.L., "Ground Vibrations of Helicopters," <u>Journal of the Aeronautical Sciences</u>, vol. 13, no. 5, May 1946

2. Ground resonance

Ground resonance is a mechanical instability involving the coupled dynamics of the rotor lag and hub inplane motion. An instability is possible at the resonance of the low frequency lag mode (frequency $\mathfrak{L}(i-\mathfrak{I}_{\mathfrak{p}})$) and a fixed system mode (frequency $\mathfrak{L}_{\mathfrak{p}}$), if the product of the fixed system damping and the rotor blade lag damping is below a critical level dependent on the blade inertia and lag frequency.

3. Approximate stability criterion

The critical rotor speed for resonance is

and the system damping required at resonance is

$$\left(\frac{C_X}{\omega_X^2}\right)\left(\frac{C_S}{\frac{N}{4}S_S^2\frac{1-\delta_S}{\delta_C}}\right) > 1$$

where

ω_x = support natural frequency

C = support damping

\$ = blade lag frequency (rotating)

Cr = lag damping

N = number of blades

S₅ = first moment of blade mass about lag hinge (i.e. mass * radial C.G. location)

With dimensions $[\Omega] = \text{rpm}$, $[\omega_x] = \text{Hz}$, $[\Im_5] = \text{per rev}$, $[C_x] = \text{lb/fps}$, $[C_5] = \text{ft-lb/rad/sec}$, and $[S_5] = \text{slug-ft}$, the stability criterion is:

$$\Omega_{crit} = \left(\frac{60}{1-75}\right) \omega_x$$

$$C_5 > \frac{K}{C_x/\omega_x^2}$$
, $K = 39.4 \frac{N}{4} S_5^2 \frac{1-35}{35}$

Usually the required lag damping for stability (C₅) is increased by a margin of 30 to 50% to obtain an engineering estimate of the stability boundary.

This criterion is based on the assumption of a small ratio of blade mass to the rotor support mass, which is usually quite true. For extremely small fixed system damping this approximate criterion may not be conservative however. In general a detailed analysis of ground resonance stability is recommended.

APPENDIX G

Rotor Test Apparatus Shake Test Data

The tables of this appendix present the data for the resonant frequencies of the hub transfer functions (lateral acceleration due to lateral force, and longitudinal acceleration due to longitudinal force). The following configurations were tested:

Table G1. Short struts

Table G2. Short struts, balance locked

Table G3. Short struts, with strut dampers (8 shocks)

Table G4. Long struts

Table G5. Long struts, balance locked

Table G6. Long struts, with strut dampers (8 shocks)

The following quantities are given in the tables: the resonant frequency ω (Hz); the amplitude of the hub response H (g/1000 lb and in/1000 lb); the phase of the response \angle H (degrees); the fixed system damping of the mode C_s (lb/fps); the damping ratio f (per-cent of critical damping); and the amplitude of the exciting force F (rms lb, with "D" indicating discrete frequency excitation). Several sweeps of discrete frequency excitation in the vicinity of resonances were made, and the data are given for the entire sweep as well as for the peak.

The hub response and damping coefficient data for the long struts, lateral shake, balance free and locked (runs 17 and 18, Tables G4 and G5) are somewhat uncertain because of a problem with the accelerometer calibration. However, the conversion factor (g/volt) used for these two runs was certainly within 25% of the correct factor. The frequency and damping ratio data are not affected by this problem.

ORIGINAL PAGE IS OF POOR QUALITY

Т									,
	æ	#	H Y	ပ	\$	हु- हि- हि-			
60	g/1000 lb	1n/1000 lb	geg	lb/fps	v critical	D = discrete			
ऌ	longitudinal modes								
	.22	57.	T01-	1456	3.3	62			
	.20	69.	49-	1500	しい	89			_
	٠ ا٩	.62	-97	1770	4.4	136			UF
	.18	.55	- 4e	1430	7.2	841			N
	.23	48.	-13	1276	39	128			
	٠١6	.ئ	141-	1262	3.8	122			
	.36	1.14	-125	281		b 50			
i. 1	-33	1.03	041-	929		D 102			
	-39	1.23	-92	584		050			
	-40	1.30	-101	834		859	drag scale	scale	
	.21		-53	8521		829	767	*91 2b 7	
	.38		- 95	898		b 34	521		,
	.35		821-	742		046	아/(
	. 29		-145	646		P 1 4	071		
_	م:.		-151	419		Diole	200	•	
	ئ2.		-150	628		D136	220		
_							A about Sa	دمهو	
							Stratum EN P)		
Н	.41	+4.	-83	1410	1.5	29			
-	44.	.40	14-	884	1.0	89			
	.37	.34	-81	1248	3.3	136			
	. 34	. 38	- 38	1698	2.€	841			
	٠34	.36	-40	1104	2.4	821			
	.22	. 24	-26	1164		266			
	.36	.40	64-	1236	1.3	122			
	.23	.25	21-	256		+8 9			
	.23	.25	-21	880		D 160			

ORIGINAL PAGE IS OF POOR QUALITY

;

				Table G1.	(continued)	(
/un'h	3	æ	ж	У н	ၓ	3	di sma		
÷	216	g/1000 lb	1n/1000 lb		1b/fps	critical	D = discrete	-	
	longitudinal modes	nal modes							
1/13	7.32	٦١٠	.03	L h!-	82 47	1 · 1	27		
2/1	7.31	.15	£0·	Sh!-	7255	1.0	89		
2	7.32	ી:	.03	139	2846	٤.	136		
11/11	7.28	+14	.03	951-	8214	8.1	871		
2	7.34	01.	70.	Shi-	7702		992		
0	7.32	.13	70.	Shi-	9029	2.0	122		
2/14	7.28	ઝા.	20-	Lhi-	4972		949		
15		١٠ اج	.03	-138	4689		2110		
	lateral m	modes							
3/3	2.08	.35	٩٢٠	בר	2411	ا.ج ا	128		
9	2-12	-36	66:	49	8201	L·1	821		
٢	2.08	.36	18.	15	308	4.	160		
3/3	2.24	.33	. 64	149	819	8.2	128		
6		.36	69 .	158	458	ه٠١	128		
7	2.20	. 40	-82	167	236	2.3	160		
									_
							7		
									7
ARC 167	57							26 P.O. 74 794 585/5956	5e

				Table G1.	(continued)					
Jun'E	3	ĸ	Н	7 н	ບູ	2	न rms lb			
Pŧ	Hz	g/1000 1b	1n/1000 1b	∂eg.	1b/fps	S critical	D= discrete			
	lateral modes	sapt								
3/2	2.20	.47	.96	156	372	1,5	74			
5	2-13	.81	1.76	50	392	2.5	126			
7/14		1.16	7·44	120	312	9.4	081			
3/3	7				414 *		821			
و	52.2/21.2				315 *		821			
7	02.2/80.2				134 *		160			
91	21.2	61.1	2.59	hb	348		D 64			
25	h1-2	1.37	2.92	18	300		b 30			
	:			morney *	for aginalent	solent single	s show 3	ポーデ	+	
					<u>_</u>			1 100	7	
3/1	3.60	.35	. 26	114	1834	1.7	79			
7	3.58	.38	62.	130	1404	1.6	74			
3	3.58	.36	۲2-	125	1618	:.9	128			
5	3.54	.39	.31	123	1476	1.7	126			
و		.36	. 29	116	1692	2.3	821			
٢		.38	.31	801	1656		१७०			
33		.32	-26	28	2066		076			
ARC 167	7								5.40 P.	3 74 794 585/5956

ORIGINAL PAGE IS OF POOR QUALITY

				Table G1.	(continued)	(p)			
/un _c	3	×	n:	H Y		3	F rms lb		
Ft	Hz	g/100C 1b	1n/1000 1b	சூத	1b/fps	g critical	D= discrete		
	lateral m	modes							
3/2	2.06	19.		۲2	300		829		
1)	80.2	.52		62	982		b 24		
13	2.10	48.		44	ትዩይ		78 8		
5	21.2	1.14		29	7324		82 V		
25	41.5	1.37		81	300		∆ 30		
ī	2.16	1.20		و. =	9 (દ		A 30		
72	81.2	1.05		135	286		0 34		
-	2.20	1L.		153	962		≥ S		
21	2.22	09,		157	282		88 9		
23	2-24	.46		163	272		N 34		
31	م2.2	.40		165	288		D 46		
3/30	2.06	.59		31	348		08 4		
12	80.2	.70		39	366		D 70		
14	2.10	.93		53	352		D 62		
اها	2.12	1.19		ዓዛ	348		D 64		
77	5.14	1.12		15	338		D 70		
18	2.1હ	86.		126	-344		89 Q		
82	2.13	. 6.		136	330		D 62		
20	2.20	315		145	326		D 72		
77	2.22	99.		152	310		76 4		
నే	2.24	.59		158	782		D 74		
32	2.26	. 48		१७३	992		4L Q		
								1	
ARC 167	7							0.00	EGPO 74 794 585/5956

				Table G1.	il. (concluded)	(þe				
Run/	3	h	Н	(z.		ันกะ	3	н	н	ir.
Ft	Hz	g/1000 lb	1n/1000 1h	rms lb		, †	Hz	g/1000 lb	1n/1000 lb	rms 1b
	longitudi	longitudinal modes					lateral	modes		
1/2	10.0	1.06	11.	38		3/8	23.0	2.93	. 05	40
1		99-	90.	77		6		2.95	5 0.	9
۲		.92	01.	62		10	C	2-94	.o 5	78
2/4	14.1	69.	40.	98		3/8	27.3	2.49	. 03	40
و		וני	40.	42		6		2.31	.03	e
۲		.75	400	79		10		2.19	.03	78
2/4	2.52	3.28	. 05	98						
		2.97	400	42						
٢		3.05	50.	62						
2/4	28.5	1.54	-02	98						
و		1.50	20.	42						
۲		1.40	200	29						
2/4	31.0	1.69	20.	98						
و		16.1	.02	24						
۲		1.45	.02	62						
2/4	35.0	2.10	70.	7 8						
و		2.22	-02	24						
لا		1.52	20.	62						
						-				
						_				
AHC 167	25								0 d 92%	0 74 794 585/5956

						_																
	م	D=dlscrete					٥	_	0					~								
ked.	rms lb			156	150	130	156	150	130			89	146	142	D 72							
balance loc	دم	% critical		١٠٩	1.5	2.3	1.2	1.5	۲.۱				9.1	6:								
Short struts, balance locked,	ပွဖ	lb/fps		540	444	814	3404	4158	4832			384	282	176	290							
Table G2. Sho	Z H	ಿ. ಡಿ		-23	-52	-46	154	571-	141-				2	153	151							
Tab	r;	in/1000 lb		09٠		h th -1	. o3	.03	50.			2.03	2.63	2.01	1.31							
	н	g/1000 1b	al modes	.33	.79	.76	6-1-	12.	.20		des	1.25	1.63	1.26	.79							
	3	Hz	longitudinal modes	2.32	2.27	2.20	7.92	7.9.7	7.9.7		lateral modes	54.2	2.45	2.46	2.45							
	Run/			10/8	Ь	13	8/01	0	13			1/6	7	٣	ی				_			

		٩																		82/58 5
	,X -	rms lb		36	75	36	76													
	x	1n/1000 lb		20-	40.	20.	20.													10¢
	×	g/1000 lb	modes	8 L·1	2.22	1.92	1.85													
	3	Hz	lateral		23.0	28.5	4.92													
	/unx	Pt		4/6	Ŋ	4/6	5													
nded)																				
2. (concluded)																				
Table G2.	4	rms lb		28	80	28	80	28	80	82	80	28	80							
	н	1n/1000 lb		80.	۲٥٠	20.	70.	40.	40.	20.	20-	10.	10.							
	Н	g/1000 lb	nal modes	.90	ħL.	75.	84.	24.2	84.2	1.30	1. 29	1.47	1.50							
	3	Hz	longitudinal modes	10.1	10.0	15.4	15.3	26.2	25.3	31.5	31.2	35.0	35.2							1
	/ung	,		7)/01	7	9/01	_	9/ol	7	10/6	٢	10/6	4							ARC 167

Short struts, with strut dampers (8 shocks).	S S mms 1b	1b/fps // critical D=discrete		3442 4.4 64	3652 4.0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3702 5.4 104	2218 b 38		3192 0160	3476 1.2 64	6318 1.1 132	1000 104	1	86.34 D 100	10900 D134	4.000	8486 7 132	1948 .9 to4 p. 1948		94 66 D100	16556 64	8632 132		
t dampers (8 :							8 4	164	910			701	P 3	D 10	E1 4					ριο	69	132		
ruts, with stru				_			2298	3308	3192			0019	8518	4598	0060					9466	6556	8632		
G3. Short st	У н	gap		-105	701-	26-		-135		7 111-	ુ - ૧૯		-110	16-	1 68-	-103	-109	-115		-91	711-	-146		
Table	н	in/1000 lb		.32	٠3٥	.30	.35	42.	٩2٠	-10	90.	90.	-12	60.	.o3	.07	40.	, 04	80.	40.	70.	.02		
	н	g/100C 15	2	60.	٠٥٠	Fo.	٠١٠	۲٥٠	80.	52.	51	٠ ا له	.29	-12	Po.	.23	.13	.13	.27	71.	80.	-10		
	3	Hz	long1tud1	1.65	1.68	٥٢٠١	1.70	1.70	06,1	4.96	4.81	5.0	5.00	5.00	5.00	5%	5.70	5.70	5.80	5.30	7.56	7.64		
	Pun/	٦.۲		1/21	2	3	Ь	0	-1	1771	2	3	21	13	ትነ	15/1	7	ין	\bar{n}	<u>و</u> -	1721	2		

ARC 167

				Table G3.	(continued)	(pe			
/una	3	н	н	н 7	ບຶ	2	F rms lb		
>	HT	g/1000 lb	1n/1000 lb	deg	$1b/f_{ m ps}$	2 critical	D= discrete		
	longitudi	longitudinal modes							
1/19	5.08	-12		-80	8390		D 102		
8	5.04	21.		98-	8344		D 102		
13	5.00	.12		16-	h£ 18		D 100		
17	4.96	5۱،		46 -	8130		D 100		
2	4.92	.13		46-	7436		N 94		
7	4.88	113		-73	7192		D 96		
22	48.4	٠١3		86-	e8 So		260		
23	4.80	٠١١ ،		L6-	しいして		16 0		
24	4.76	.14		501-	6364		269		
25	4.72	hι۰		801-	4470		460		
る	4.68	hi		-113	5766		0 40		
21/2	5.00	, z9		- 110	3138		D18		
77	4.76	. 19		- 164			627		
12/14	5.00	٥٩.		-88	109 10		D67		
12/21	4.76	००		-83	10466		770		
JEC 167	7							9 ?:	20 P C 4 794 585/5956

				Table G3.	3. (continued)	led)			
4-		:					(z.		
Run/	3	r:	T :	¥	ບຶ	4	dr smr		_
	Hz	g/1000 ln	1n/1000 lb	deg	$^{1b/fps}$	% critical	D= discrete		
\Box	lateral m	mpdes							
لـــا	1.95	.20	,50		1952		64		
	1.95	-18	94.		2120		951		
	1.90	`20	,54		1856		134		
	1.95	.2!	.53		8181		166		
	1.88	52 ·	٥٢.	72	1380	3.9	122		
<u> </u>	881	74.	1.17	9	752		b 30		
-	2.15	-16	.32		2720		49		
	2.2	.21	.42		2040		156		
	07.2	.20	14.		2100		134		
	2.15	12.	94.		1954		166		
	2.20	61.	.39		04.22		122		
-	2.32	. 14	52'	१५७	1360		D 50		
	3.54	22.	81.	801	8682	1.8	156		
	3.53	. 23	.18	101	2956	2.4	134		
	3.6	.21	1،		3258		166		
	352	81.	* -	123	3208	2.3	721		
	3.58	.13	٠١٥	135	3654		054		
_									

RC 167

										_															
	H ama	D-discrete		0 2C	Δ 30	249	44 Q	ο ς α	D 54	<i>h</i> S	b 58	45 Q		D 60	25 Q	b 5°	0 58	b 50		75 Q	D 50				
ued)	5	% critical																							
33. (continued)	ပ	lb/fps		758	752	1202	1380	1586	1836	1862	2244	22/22	2 4 3 8	29.74	2772	1860		5514	4206	7654	4444				
Table G3.	47	deg		41	90	89	109	119	126	ነቱ፣	139	150	141	134	138	ગ 4 (185	119	130	135	131				
	н	1n/1000 lb																							
	r.	g/1000 1b	modes	.31	.42	.31	92.	.22	۲۱۰	ъ 1.	٦١٠	01.	& .	01.	111.	. 13	71.	4.	.12	.13	.12				
	3	Hz	lateral mp	1.84	1.88	1.92	1-96	2.00	10·2	80.2	2.12	2.16	2.70	h2·2	2.28	2.32	2.36	3.50	3.54	3.58	3.62				
	/un _b	2		21/8	13	14	51	16	7.1	18	19	20	21	22	23	42	25	12/8	26	28	2				

ARC 167

26PO 74 794 585/5956

П		1b																			
	ĺΞι	rms		34		34															
	;	1n/1000 lb		Lo.		す															
	×	g/1000 lb	modes	3.48		3.35			·												
	3	Hz	lateral	4-22		2.82															
	Run/	Pt		8/8		8/8															
(F)																					
(concluded)																					
lable G3.	íz,	rms lb		30	ት ረ	30	ገ ሳ	30	7.4	30	74		30	ትL	30	74					
	Ħ	11/1000 lb		Lo.	٥٦.	٥٠3	20'	50,	.05	.02	.62		20.	.03	10.	10.					
	×	g/1300.3	hal moder	۲۲.	5. 8.	.57	05.	3.0)	3.34	155	1.60		1.69	1.74	1.90	2.07					
	3	Hz	Longitudinal modes	10.6	10.9	15.7	15.4	7.92	25.6	29.0	28.5		31.4	31.0	35.0	35.2					
	Jung	ή. †		12/21	œ	12/21	0~	12/1	٥	٦/21	20		1/21	8	12/7	8					
_			-		· _	 					-	41									

ARC 167

				Table C4.	C4. Long struts.	truts.			
Run/	3	н	н	н У	ည	دم	F rms lb		
•	ZH	d1 کاورا/8	1n/1000 1E	gep	lb/fps	" critical	D=discrete		
	longitudi	longitudipal mode.							
13/6		.08	.33	44	3544	3.2	44		
ר	L	80.	.28	16	3966	2.3	120		
8	1.63	.०१	.35		3344		00 [
92	481	.20	.57	847	1346		₩ Q		
45	85.1	.32	84:	JS S	1220		881 9		
13/6	4.04	30.	.45	142	849	1.3	ሰተ		
7	4.02	84.	74.	921	802	2.5	120		
8	4.01	1.07	S 9 (69	819	1.3	811		
54	4.03	1.46	.87	100	532		ካ 9		
13/6	7.20	60.	١٥,	25	653°	1,3	ሳታ		
L4/27	3.84	.38	52.	20	୧୫୯		D102		
48	3.92	.51	.38	29	229		D loo		
48		216	74.	40	98 9		D 108		
2		1.36	.83	70	528		D 60		
53	_	ተተተ	80.	مار	526		D 58		
54	4.03	1.46	86.	100	532				
151		1.32	.79	132	446		D 56		
52	4.08	.54	.32	१७९			D 58		
ARC 167	57							GFC 74 794 58	74 794 585/5956

ARC 167

œ
2
585
4
•
^
4
4
O
4
Ş

				Table C+	(contratted)				
/un/,	3	ж	н	¥	ບ້	4	F rms lb		
Ft	Hz	ط₁ 4/1000 کم	1n/1000 1b	deg	lb/fps	g critical	D= discrete		
	longitudinal modes	nal modes							
13/18	1.52	So.	.22	L 1	1690		86 9		
19	1.56	.05	22.	1٦	1594		D 114		
97		٠٥ و	ى2.	61	1528		Dol OC		
12	ነዓሳ	80.	18.	52	1568		D 88		
22	89 ।	-10	ት ይ ፦	62	1592		2 9 A		
23	21.1		78.	30	1562		D 112		
74	96.1	113	24.	ع ۹	1502		D 102		
52		ه۱۰	84.	07	1404	_	D 104		
2	ነ. 84	-19	.57	84	1346		D 100		
75	1.85	& 0.	.23	841	2382		D 82		
27		90.	81.	4 51	2442		D 100		
30		.05	hı.	95(2950		D 98		
33	1.91	20.					001		
31	1.92	.03	01.	159	3608		811 Q		
36	1.93	20.							
53		20`	5 0·	158	7220		b 124		
32	2.00	lo.					801 Q		
R	2.04	10.					76 Q		
13/39	1.80	-12	.36	42	1318		D 190		
37	1.84	<u>ن</u> ق	. 43	31	1240		481 Q		
41	1.88	.18	.52	38	1204		D 170		
42	1.92	.25	67.	53	1186		D 188		
43	1.9b	.31	08.	רר	1180				
44	2.00	61.	.46	139	1348		D 168		
45		.32	& <i>L</i> :	95	1224		D 188		
77		Ro	=,	٥ ٩ (0482		982 V		

	9345
	œ.
	767
l	7
	C
	ر د د د د
l	₹J

				rable G4.	G4. (continued)	ned)			
		=	ם	n /	ر		íz.	Noda	Modal Wass
/un/	3	г.	r:	į	ຸທ	^	rms lb	_	>
уч •>	Hz	g/1000 lb	11/1000 1b	deg	lb/fps	% critical	n= discrete		(b
	lateral modes	pdes							
17/1	2.31	.22	. 40	-126.5	1658	5.5	29	14	74500
2	2.32	.20	.33	- 107	2802	5.8	911	46	24800
7:	2.52	14.	49.	221-	9101		789		
25	2.38	.26	545	-112	1640		b 44		
1/41	2.68	.20	82.	- 70	2378	4.6	29	52	52800
7	2.66	9۱۰	22.	-96	8588	4.6	116	5 2	58600
1/41	4.51	1.29	.62	68-	534	8.	29	37	37600
2	4.43	81.1	.58	-109	919	6.	116	400	40000
		1.30	.62	18-	219	1.0	b 38	37	37900
77	4.48	.92	.45	- 85	936		D 64		
17/33	4.44	.86	.47	-137	616		D 44		
%	84.4	1.27	.62	- 100	787		040		
32	4.50	1.30	79.	181	672		38		
62	4.52	1.19	.57	-55	709		D 44		
26	4.48	.93	.45	100	936		D 64		
								_	
ARC 167	57								から、185,485 A 74 485,485

	F rms lb	D = discrete		001 Q	86 0	N 94	46 V	D 100	N 94	86 4	D 106	N 194	78 V	88 V	76 Q		D 50	84 4	P 44	Δ 4c	D 44	84 4				
d)	5	b critical																								
. (continued)	ပ	lb/fps		1246	1186	1168	1192	1132	1198	1234	8011	1144	1010	3630			1464	1706	1640	7281	2222	3092				
Table G4.	Z H	ಗೇಡ		ا اه د	-163	-160	-157	-155	641-	-146	ትተ! –	-135	-122	-45	-59		-139	-119	-112	-96	- 59	-52				
	ж	1n/1000 lb		81.	22.	.25	.28	.30	.35	.36	14.	.47	49.	<u>.</u>	.12		.38	24.	.45	.43	.30	.20				
	n	g/1000 lb	modes	80.	-11	21.	-15	.17	.20	-22	.25	.30	-42	fo.	٠٥٥.		.20	.23	.26	. 25	٩١.	-12				
	3	He	lateral mb	21.2	2.20	2.24	82.2	2.32	2.36	2.40	2-44	2.48	2.52	2.53	2.56		2.32	2.36	2.38	2.40	24.2	44.2				
	Pun/	T C		17/6	7	۵	6	0	=	21	13	21	14	17)		17/6	22	52	18	24	19				

ARC 167

--- GPO 74 794 58"/595"

			_		-			 		 	,	,	,			_			 	_	 	 -	_	
	ļz,	ms 1b		30		30																		
	н	1n/1000 lb		. 02		.03																		
	н	g/1000 1b	modes	1.01		2.51																		
	3	Hz	lateral	22.7		8.82					-													
	Pun/	7		17/3		17/3																		
(concluded)																								
		;																						
Table G4.	۵,	THE 3D		42	52	24	25	74	52	42	25		72.	25		745	52							
	þ.	in/1060 lb		50.	90,	.03	.03	+0.	40.	200	201		20.	20.		10.	10.							
	н	g.'100f lb	al modes	79.	.75	. bS	19.	2.37	2.50	٥٠،	٠,6		1.38	1.47		1.58	1.50							
	3	Z'n.	longitudinal modes	10.6		1.4.1		6.52		0.82			31.4	31.0		35.2								
	/un _c	ب س		13/9	0	13/9	01	13/9	13/10	13/9	10		13/9	9		13/9	<u>o</u>							

476 P C 74 794 585/4956

			_				 		 _	-					 <u> </u>	73.	_				 						_ ^
	ass																	O	•	0							15GFO 74 794 585/5956
	Modal Mass	1p																32000	27400	26300							
.ed.	F TMS 1b	D= discrete		901	154	070	106	154		780	D 68	070	840	D 82				67	118	022		A 32	D 22	D 22	_	b 30	
Long struts, balance locked.	5	% critical		1.6	1.0													٠.	۵.	1.0							
ong struts,	ຕຶ	lb/fps		216	804	484	10160	6760		775	244	454	480	432				272	787	272		862	782	282	290	262	
Table G5. L	7 н	deg		811	135.	83		49		33	49	83	102	130				42 –	140	- 56		-16	-135	-66	- 39	-30	
T	н	in/1000 lb		۰9۰	1.07	1.39	70.	.02		78.	1.30	1.39	1.30	1111				ا۔ <u>ا</u> و	l. 35	1.60		٠,	1.40	÷	1.22	1.04	
	h	g/1000 15	mal modes	.58	1.04	1.28	٠١ج	9		ነገፋ	61.1	82.1	1.20	1.05			odes	1.44	1.63	1.90		۲٥٠	1.62	1.90	- 47	1.26	
	3	Нz	longitudipal modes	3.09	3.07	3.00	8.7	24.7		2.96	2.99	3.00	3.01	3.04			lateral mpdes	3.48	3.44	3.40		3.30	3.36	3.40	3.45	3.44	
	Run/	Ť.		1/41	3	6	1/41	7		14/11	13	σ	7 12	10				1/81	2	7		8/81	6	7	=	10	ARC 167

	3	p:	Ħ	Ļı.	ų.	/unc	3	n:	Ħ	Ĺs.
	ΉZ	g/1000 lb	in/1000 lb	rms lb		,	Hz	g/1000 lb	1n/1000 1b	ms lb
	longitudihal mo e.	nal mo e.					latera]			
_	10.2	.82	80.	44	18	18/3	24.6	1.80	.03	28
ı		98.	80.	96		4	1.22	1.35	20.	52
_	15.0	10).	20.	44	/8/	/3	28.5	2.65	٤٥٠	28
-	15.4	.56	20.	96		7	2.8	1.75	20.	52
ŀ										
)	24.0	2.25	40.	44						
	24.5	2.10	40.	٦6						
]										
	31.4	1.28	20-	44						
•	31.0	1.22	20.	76						
l										
ı	35	1.30	10,	44						
	35	1.40	10.	96						
ł										
1					_					
1 1										
- 1										
- 1										
!						_				
ıl					-					

																			(O)	RIG	IN.	AL IR	P	AGI	e e	Š		
																			6									
										-											_			_				4
.S.)	q	rete													9													_
(S shocks)	41 SMT	D= discrete		00	120	150	849	D 216	B 28		& &	120	150	b 230	D 256	&8	120	150	0120		88	120						
	2	<pre></pre> <pre><</pre>									2.0																	
struts, with strut dampers	ຽ	lb/fps		3384	3908	4780	2064	1774	2464		4364	7040	0049	8830	2510	3158	3462	4714	4704		17182	19200						
Long stru	н 7	deg		49			77	88	601		35			وا	37	74	95	102	91		১৩							
Table Go.	н	in/1000 lb		82.	.30	. 24	۲4٠	.54	۰4۰		1.0.	.07	80.	. o S	90.	.10	.10	۲٥٠	01.		20.	20.						
	н	g/1000 1b	ral modes	۲٥٠	80.	Lo.	L1.	22.	-13		01.	01.	11.	۲٥٠	80.	.33	121	.22	.18		٠٥٨	80.						
	3	Hz	longitudinal modes	1.57	٠.	1.65	1.92	1.99	1.78		3.62	3.6	3.6	3.61	3.48	5.49	Ŋ. 43	5.48	4.40		٦. 36	7.4						
	/ 41.8	T.		15/1	7	3	F 1	72	30		1/51	2	3	33	35	15/1	2	3	43		15/1	7						

															:												
	LE.	D=discrete		4204	P 174	241 0	N 134		N 154	N 156	D 124	D 154	138	D 212	222 9	0 216	D 210	b 50	A 58	D 40	b 50						
led)	۷,	critical			,																						
6. (continued)	. ఆ	3 1b/fps		2810	2700	2456	2314	2142	2120	2064		3546		1974	1 808	1774	1816	2330	2326	2278	2222	49 HZ	3328				
Table G6.	H 7	deg gah		42	35	47	56	63	74	77		142		64	٥٢	42.8	102	44	45	72	19	100	153				
	æ	in/1000 lb																									
	z;	g/1000 lb	mal modes	5 0·	۲٥٠	<u> </u>	.13	9۱۰	۲۱۰	81.	S٥٠	70.	10.	۲۱۰	02:	22.	12.	01.	01.	51.	.13	,13	So·	10.	10.		
	3	42	longi tudi	1.60	1.72).80	1.84	1.88	1.91	1.92	1.93	1.96	2.00	1.92	1.96	1.99	2.00	897	1.72	1.76		1.79	1.80	1.92	1.99		
	4:10	Ţ		15/9	0	=	۲۶	13	71	14	81	9	15	15/19	ટ્ર	22	h	15/26	77	82	2	30	જ	Ø.	23		

Auc 167

DE POOR QUALITY D= discret 256 256 27.6 212 218 724 196 204 012 rms 1b 764 202 D 222 D 230 íŁ, 194 Δ 4 Δ ۵ 4 4 4 4 Scritical Table G6. (continued) lb/fps 8830 9636 5020 7968 4704 11240 8266 10160 11114 9658 4034 9464 6138 8016 ္ပေ VH deg 0 56 10 9 9 サニ 114 89 37 1 1 Ē 9 1n/1000 lb H g/1000 lb longitudinal modes <u>ه</u> %0. 80. .08 .15 20,00 6. i 10. <u>.</u> 07. = 5.20 5.00 5.40 4.40 5.44 24.5 3.48 3.60 4.20 21.4 3.64 3.40 3.61 3.61 $\mathbf{H}\mathbf{z}$ 3 5/36 15/4 क्ट 3un/ Pt 15/51 光 製 43 42 38 37 41 32

ARC 167

450 FO 74 794 585/1956

				Table G6.	G6. (continued)	nued)		
Run/	3	Н	н	н 7	ວ້	Ų	F Jb	
Pt	HZ.	g/1000 lb	1n/1000 lb	Çep	1b/fps	critical	۴,	
	lateral m	modes						
16/1	2.3	-25	9h.		1796		911	
2	2.32	.23	24.	77-	1884	8.2	136	
3	2.34	.13	.23	-80	3484	3.1	316	
10		.25	38.	401-	1932		401 0	
13	2.56	.35	15.	66 -	1430		0110	
ב		.32	35.	カレー	1416		h4 0	
1/9/	4.1	.30	.13		3060		911	
2	4.7	.35	اره		2672		136	
3		.31	51.	aL-	2806	1.5	316	
52		29.	.30	58-	1392		75 4	
67	L	-83	.39	-105	1034		269	
16/6	2.32	-12		-113	3360		869	
7	2.40			-11-	2610		D 38	
2	84.2	.23		-105	2030		D 100	
0	5.43	52.		401-	1932		D 104	
6	25.2	-10		01-			96 V	
11/91	2-49	52:		122	1676		D 154	
12	2.52	.29		-115	1546		D 156	
13	2.56	.35		66 -	1430			
7		.07		22-	2480		991 0	
ARC 167	57							7.GFC 74 794 485 15956

				Table G6.	. (continued)	d)			
Pun/	3		Ħ	7 E	رى م	5	F rms 1d		
3	Hz	g/100C 15	1n/1000 1	ರ ದೀಕ್ಷ	$1\mathrm{b/fpc}$	critical)= discrete		
	긻	modes							
ટ <u>ા</u> /ગ	2.32	.20		011-	2146		D 48		
٦		81.		-102	2426				
18	7.39	.31		LL-	9641				
LI		28.		hL-	1416		14 J		
12/91	4.44	.53		-107	1556		D 56		
23		. ዓር		-100	1874		(
52		29.		- 85	1392		D 54		
42		٥٩،		77-	8141		45 V		
22		.54		-20	1592				
12		94.		-53	9951		25 Q		
20		.35		64-	4561		84 (
19		82.		-38	8012		P 24		
42/91	4.49	.70		66-	1236		ار ۵		
29		.83		-105	1034		D 92		
30		.80		-116	866		98 V		
31		.63		-133	758				
16/1	3.5	.03	.03		31000		٢		
2		.02	20.		21000		136		
ARC 167	57							0 d 9 t t	74 794 585/5956

				- Table G6.	i6. (concluded)	ed)	-				
Run/	3	p:	Н	4.		e.	/un:	3	н	н	Îr.
بر بر	Hz	g/100 lb	1n/1000 lb	rms lh			•	Hz	g/1000 1b	in/1000 in	rms 1b
	longitudinal modes	nal modes						lateral	modes		
15/4	10.9	89.	50.	40		116	16/34	7.52	06.1	40.	82
5	10.6	.97	80.	80			35	H.£2	2.10	40.	98
15/4	15.7	. 67	20.	40		1	16/34	27.8	51.2	.03	28
5	15.4	19.	.02	30			35	27.5	29.2	٤٥٠	98
15/4	24.5	2.4	40.	40							
S	25	2.55	+0.	80							
15/4	28.5	1.4	200	40							
Ŋ		1:1	70.	% %							
15/4	31.4	24.1	70,	40							
Ŋ	31.0	1.38	20.	80							
15/4	35	1.3	10,	40							
5		1.35	10.	80							
ARC 167	7									2-C P	ErG P G 74 794 585/5916

hub force 34 lb (rms) (run 2, point 1)

hub force 68 lb (rms) (run 2, point 2)

hub force 74 lb (rms) (run 2, point 3)

Figure 4. Repeatibility of transfer function measurement. Short struts, .5-9 Hz broadband excitation, longitudinal hub response.

.5-9 Hz broadband excitation, longitudinal hub response (run 11, point 1)

.5-35 Hz broadband excitation, longitudinal hub response (run 2, point 7)

Figure 5. Short struts.

.5-9 Hz broadband excitation, lateral hub response (run 3, point 2)

.5-35 Hz broadband excitation, lateral hub response (ru: 3, point 9)

Figure 5. (concluded)

.5-9 Hz broadband excitation, longitudinal hub response (run 10, point 13)

.5-35 Hz broadband excitation, longitudinal hub response (run 10, point 7)

Figure 6. Short struts, balance locked.

.5-9 Hz broadband excitation, lateral hub response (run 9, point 3)

.5-35 Hz broadband excitation, lateral hub response (run 9, point 5)

Figure 6. (concluded).

.5-9 Hz broadband excitation, longitudinal hub response (run 12, point 3)

.5-35 Hz broadband excitation, longitudinal hub response (run 12, point 8)

Figure ?. Short struts, with strut dampers (P shocks).

.5-9 Hz broadband excitation, lateral hub response (run 8, point 3)

.5-35 Hz broadband excitation, lateral hub response (run 8, point 8)

Figure 7. (concluded)

.5-9 Hz broadband excitation, longitudinal hub response (run 13, point 6)

.5-35 Hz broadband excitation, longitudinal hub response (run 13, point 10)

Figure 8. Long struts.

.5-9 Hz broadband excitation, lateral hub response (run 17, point 1)

.5-35 Hz broadband excitation, lateral hub response (run 17, point 4)

Figure 8. (concluded)

.5-9 Hz broadband excitation, longitudinal hub response (run 14, point 2)

.5-35 Hz broadband excitation, longitudinal hub response (run 14, point 5)

Figure 9. Long struts, balance locked.

.5-9 Hz broadband excitation, lateral hub response (run 18, point 2)

•5-35 Hz broadband excitation, lateral hub response (run 18, point 4)

Figure 9. (concluded)

.5-9 Hz broadhand excitation, longitudinal hub response (run 15, point 1)

.5-35 Hz broadband excitation, longitudinal hub response (run 15, point 4)

Figure 10. Long struts, with strut dampers (8 shocks).

.5-9 Hz broadband excitation, lateral hub response (run 16, point 2)

.5-35 Hz broadband excitation, lateral hub response (run 16, point 35)

Figure 10. (concluded)

Magnitude (0-10 Hz)

Magnitude (1-3 Hz)

Phase (1-3 Hz)

Figure 11. Details of two low frequency lateral modes: short struts, .5-9 Hz broadband excitation, lateral hub response. (Run 3, Point 7)

Figure 12. Nonlinear damping characteristics: reduction of fixed system damping (C_s) with excitation force level (F), for modes involving predominantly balance motion.