

Assignment 6.3/Take home assignment

- Use the website data
- Continue from In-class Assignment 6.3 and consider the logit model
- Predict the active probability for

```
• exog={'age': 40, 'income': 2000, 'region': 1}
• exog={'age': 40, 'income': 3000, 'region': 1}
```

- Calculate the difference in predicted probabilities
- Convert the difference into a single number by selecting the [0] element
- Construct the 95% confidence interval for this difference using bootstrap (at least 1000 times)
- \rightarrow See also the example bootstrap code on Canvas

- Erafus

Slide 2 of 24

Before next time

- Nothing to read
- Reconsider/finish the in-class assignments of this week
- Look at (the code of) an additional example/exercise using binary data (next slide)
- Prepare questions for next time (final lecture!)
 - Theory
 - Applications
 - Exercises
 - Final assignment
 - Statistical challenges...
- You can already work on part 3 of the assignment

Plan for today

- Catch up with last week's material (GLM + Bootstrap)
- Bayesian statistics
- Wrap-up

Ezafus,

- Ezafus

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Background

Up to now we have studied Frequentist Statistics

 \rightarrow There is more!

The other approach to statistics is called Bayesian Statistics Named after reverend Thomas Bayes (1702-1761)

Ezafus,

1025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Frequentist vs. Bayesian statistics

Concept of probability:

- Frequentist: probability is a "frequency in the long run"
- Bayesian: probability is a "degree of belief"

What are parameters?

- Frequentists: A parameter corresponds to a fixed (non random) population quantity
- Bayesians: Parameters are also random variables that have associated beliefs

Source of (parameter) uncertainty

- Frequentists: what would another sample have given us?
 - \rightarrow We need to consider hypothetical repetitions (=difficult?)
- Bayesians: how much information does the current sample bring us?
 - ightarrow Beliefs can be updated

Ezafus

Parameter estimation/learning

Frequentist statistics

- Get a point estimate
 - Minimize sum squared error, or
 - Maximize likelihood (or minimize deviance), or
 - Optimize ...
- Work out the (asymptotic) distribution (or use bootstrap) to get to know the uncertainty

Bayesian statistics

- Start with a prior distribution for the parameter
 - Before looking at data what are your own subjective beliefs?
 - Code this as a distribution
- Consider the information that the data brings (in the form of the likelihood)
- 3 Combine both sources of information (prior+likelihood) to update beliefs
 - ightarrow Results in the posterior distribution
- Operation Posterior gives point estimate and full uncertainty

- Ezafus

Slide 7 of

Advantages and disadvantages

Advantages Bayes

- Is always exact (does not require large samples/asymptotics)
 - → Works well in small samples
- Is more intuitive
 - Bayesians can calculate the probability that a (null) hypothesis is true!
 - Updating information (learning) as data is collected is (conceptually) easy
- Allows for the inclusion of prior (eg. expert) information

Disadvantages Bayes

- Takes the distribution of the data more seriously in general (can be a strong assumption)
- Requires more computational effort (most of the time)
- Priors are subjective → others may not agree
- Formulating a good prior may be difficult

The mechanics

Combination of the two sources of information uses a theorem of Thomas Bayes → Conditional probabilities/conditional densities

Rule of conditional probability

Probability of event A given that event B happened =
$$\Pr[A|B] = \frac{\Pr[A \& B]}{\Pr[B]}$$

= $\frac{\text{Probability of event A and B happening}}{\text{Probability of event B happening}}$

Similar rule applies to densities

conditional density
$$= f(y|x) = \frac{\text{joint density}}{\text{marginal density}} = \frac{f(y,x)}{f(x)}$$

Example of conditional probability

Probability of throwing a 4 with a fair dice given that the throw is even

$$\Pr[X = 4 | X = \text{even}] = \frac{\Pr[X = 4 \& X = \text{even}]}{\Pr[X = \text{even}]} = \frac{\Pr[X = 4]}{\Pr[X = \text{even}]} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$

More difficult example:

Solution for the 3 door problem

Before choosing we know: $Pr[Price in 1] = Pr[Price in 2] = Pr[Price in 3] = \frac{1}{2}$ (prior) Suppose I choose door 3 and Monty opens doors 1 (=data), we now want to know Pr[Price in 3|Monty opens 1]

Need to consider

- Pr[Monty opens 1|Price in 1] = 0 (he will not reveal the car)
- Pr[Monty opens 1|Price in 2] = 1 (he has no other choice)
- Pr[Monty opens 1|Price in 3] = $\frac{1}{2}$ (he can choose door 1 or 2)

Rules of conditional probability gives posterior

$$\begin{split} & \text{Pr}[\text{P=3}|\text{M=1}] = \frac{\text{Pr}[\text{P=3 and M=1}]}{\text{Pr}[\text{M=1}]} = \frac{\text{Pr}[\text{M=1}|\text{P=3}] \, \text{Pr}[\text{P=3}]}{\text{Pr}[\text{M=1}]} \\ & = \frac{\text{Pr}[\text{M=1}|\text{P=3}] \, \text{Pr}[\text{P=3}]}{\sum_{p=1}^{3} \text{Pr}[\text{M=1}|\text{P=3}] \, \text{Pr}[\text{P=3}]} = \frac{\text{Pr}[\text{M=1}|\text{P=3}] \, \text{Pr}[\text{P=3}]}{\sum_{p=1}^{3} \text{Pr}[\text{M=1}|\text{P=p}] \, \text{Pr}[\text{P}=p]} \\ & = \frac{\frac{1}{2} \cdot \frac{1}{3}}{0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3}} = \frac{1}{3} \to \text{it is best to switch! Door 2 has probability } \frac{2}{3}. \end{split}$$

Applied to learning a parameter β

Ingredients

- Prior: $f(\beta)$ (eg. density of $\pi = \Pr[head]$)
- Likelihood $f(data|\beta)$ (eg. prob. of observing 2× head in two tosses given $\pi \to \pi^2$)
- Want to know posterior $f(\beta|data)$ (eg. density of π given that we observe 2 heads, 0 tails)

From Bayes Rule (twice)

$$f(\beta|\mathsf{data}) = rac{f(\beta,\mathsf{data})}{f(\mathsf{data})} = rac{f(\mathsf{data}|\beta)f(\beta)}{f(\mathsf{data})} = c imes f(\mathsf{data}|\beta)f(\beta),$$

where c can be seen as a constant

ightarrow Posterior is proportional to prior imes likelihood

Posterior

The posterior codes everything that we know about β given the data \rightarrow we have the complete distribution!

We can obtain

- Posterior mean/median/mode
- Posterior variance ("estimation uncertainty")
- 95% credible interval (parameter will be in this interval with 95% probability)
- Probability that parameter exceeds x
- Probability that one parameter is larger than another

Example: coin tosses with a Beta prior (unknown coin)

Prior:

prob. heads \sim Beta(2,2)

Data: 2 heads in two tries

Frequentist estimate:

prob. heads = 1(a bit extreme, not?)

Posterior:

prob. heads \sim Beta(4,2)

posterior mean: $\frac{2}{3}$

In-class assignment 7.1 (see starter code on Canvas)

In this assignment we further investigate the previous example

Step 1: investigate properties of the Beta (α, β) distribution

- When do you get a symmetric distribution?
- How do you code a belief that the probability is above 0.8?
- How do you code a belief that the probability is extreme (close to 0 or close to 1)?

Step 2: investigate the posterior given 100 observations

- ullet For what setting of lpha and eta does the posterior mean equal the max. lik estimator?
- What happens when $\alpha = \beta = \text{high}$?
- What happens when $\alpha = \text{large and } \beta = \text{small?}$

Ezafus,

Slide 15 of 24

Applications

Frequentist models have Bayesian equivalents

 \rightarrow Just add a prior!

Can do

- Linear model with prior
- Generalized linear model with prior
- ..

Ezafus

Slide 16 of 2

Added value of a prior

Prior has practical added value especially when information is limited

- Few observations
- Individual-specific parameters and few observations per individual
- Many parameters in a model (relative to data size)

Often prior is $N(\mu, \sigma^2)$

- ullet μ codes the value that we expect a priori
 - can be a specific value (also mean across individuals)
 - often 0 (variable has no impact)
- σ^2 codes how certain we are (strength of information)
 - Small variance: we are really sure
 - ightarrow Posterior will be relatively close to prior
 - Large variance: actually we do not know
 - \rightarrow Uninformative prior

Use cases (with links)

- New product development
- Product ranking (e.g., Amazon, Wayfair)
- A/B testing for e-mail designs, website strategies
- Stock price prediction (dealing with novel phenomena like Covid-19)
- Determining disease risk and medical diagnosis

Ezafus

lide 17 of 24 © 2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin

© 2025 Ezamus University Rottendam, All rights reserved. No text and datamining

Slide 18 o

Obtaining the posterior

- Sometimes easy
 - Prior and likelihood nicely "match"
 - → Called a *conjugate prior*
 - Analytical results can be used
 - Eg. the coin toss example (Binomial distribution + Beta prior)
- Sometimes hard

(c) 2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin

- Analytical results do not exist for the posterior
- Sometimes iterative optimization methods can be used
- General purpose solution: Simulation method using Markov Chain Monte Carlo (MCMC)
 - ► Simulate each parameter conditional on data and other parameters
 - Simulate each parameter in turn
 - ► Repeat for many iterations
 - ▶ Distribution of draws will eventually converge to the posterior distribution
 - ▶ Use draws (at the end of the sequence) instead of actual distribution
- This is advanced material!

Bayesian analysis in Python

Options

- Code up all simulations yourself (rather difficult)
- Use specific packages: → there are many
- We focus a relatively easy to use option: the bambi interface to PyMC
 - → To install pip install bambi (in a terminal within the correct virtual environment)

Bayesian linear model in Pyton using bambi

- 1 🦆 import arviz as az import bambi as bmb
- **3** Can change priors by setting for example

```
p = {'x1': bmb.Prior("Normal", mu=0, sigma=1), 'x2':
bmb.Prior("Normal", mu=0, sigma=1)}
model = bmb.Model("y \sim x1 + x2", data, priors=p)
```

- Plot priors model.build() model.plot_priors(draws=10000)
- Fit using default settings: ₱ fitted = model.fit(random_seed=1234)
- Show draws: ₱ az.plot_trace(fitted) (in case you see trends in the trace plot \rightarrow increase no. tune draws!)
- Summarize results: az.summary(fitted)
- 8 Can extract draws for a specific parameter:

```
az.extract(fitted)["x1"].values
```

Nonlinear models

Can also do other models

- Logit: → bmb.Model("y ~ x1 + x2", data, family="bernoulli")
- Count/Poisson regression with family="poisson"
- etc (see documentation)

(c) 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Wrap-up

Questions?

- Previous material
- Today's material
- Assignment
- Applications of statistics

In-class assignment 7.2 (see starter code on Canvas)

We consider data on "self-reported illegal drug use" as a function of Big-5 personality items

- Consider the example code to load the data
- Specify the model using
 - O = Openness to experience
 - C = Conscientiousness
 - \blacksquare E = Extraversion
 - A = Agreeableness
 - N = Neuroticism
- Inspect the automatically suggested prior: why is prior used?
- Generate and inspect the results
- (Experiment with the prior settings if you have time)

L'afus

2025 Erasmus University Rotterdam, All rights reserved. No text and datamining