Пантелеев Даниил, БПМИ 192

Постановка задачи

$$A \in \mathbb{R}^{N imes D}, B \in \mathbb{R}^{D imes M}, N \gg D \geq M$$

Найти функции g(*), h(*), f(*) такие, что

$$\|\alpha f(g(A), h(B)) + \beta - AB\|_F < \varepsilon(\tau) \|AB\|_F$$

выполнено для как можно меньшего arepsilon(au)

Product Quantization

- 1. Обучение прототипа
- 2. Хеш-функция, g(a)
- 3. Создание таблицы, h(B)
- 4. Аггрегация, f(*,*)

Product Quantization

Важно:

PQ дает хороший прирост производительности только при

 $N,M\gg D$, а у нас

 $N\gg D\geq M$

Матрица \widetilde{A}

Строки \widetilde{A} и A из одного распределения

Хотим:

придумать такую функцию g(a), чтобы максимально оптимизировать PQ, при этом используя тренировочную матрицу \widetilde{A}

Идея:

Обучим двоичное дерево на \widetilde{A} , чтобы оно хешировало векторы и распределяло их по корзинам \mathcal{B}^i_j

Здесь i - номер уровня вершины, а j - номер вершины

Multiplying Matrices Without Multiplying Алгоритм хэширования: (MADDNESSHASH)

На вход получаем вектор x, индексы j^1,\ldots,j^4 , пороги v^1,\ldots,v^4

Для каждого t от 1 до 4:

- 1. Сравниваем j^t -ый элемент вектора х с порогом v^t
- 2. В зависимости от результата определяем вектор в правого или левого сына вершины

Multiplying Matrices Without Multiplying Добавление нового уровня t в дерево:

Для каждой из корзин ${\cal B}_1^{t-1}\dots {\cal B}_{2^{t-1}}^{t-1}$:

- 1. Выбираем индексы разбиений с помощью эвристики
- 2. Выбираем оптимальный (с точки зрения суммы по всем корзинам) порог
- 3. Получаем новые корзины с помощью новых порогов

Multiplying Matrices Without Multiplying Бонус №1: оптимизация g(b)

 $P \in \mathbb{R}^{KC imes D}$ - матрица с диагональными блоками, состоящими из К предобученных образцов

 $\widetilde{A}pprox GP$, где G - матрица, помогающая выбрать нужный образец

Тогда Р можно найти, решив задачу наименьших квадратов:

$$Ppprox (G^T+\lambda I)^{-1}G^T\widetilde{A}$$

Бонус №2: оптимизация f(*, *)

 $T \in \mathbb{R}^{M imes C imes K}$ - тензор таблиц с образцами

Тогда
$$f(g,h) := \sum\limits_{c=1}^C T_{m,c,k}, k = g^{(c)}(a_n)$$

В оригинальной реализации для вычисления суммы используется инструкция суммы, а здесь мы используем функцию усреднения $\frac{(a+b+1)}{2}$ для каждой пары, потом пары пар, и т.д.

