Mapping the Unseen: Small Area Estimation for Urban Analysis

Clara Peiret-García

May 1, 2025

Introduction to Small Area Estimation

Introduction to SAE

- ▶ We live in a world with increasingly complex problems (e.g. poverty, inequalities, climate change, etc.) and data is essential for solving them.
- Many of these problems require identifying specific groups within a given population, in order to better understand the problem, or to develop better-targeted policies.
- Often, the data on these sub-populations is scarce, and sometimes the domain for which the data is needed might not have been planned in the survey design.

What is SAE?

- Small Area Estimation is a statistical modelling technique that uses **survey data** and **auxiliary information** (e.g. census data) to produce estimates of variables of interest at more
- granular level for the **domains** of interest.
 SAE methods produce "new" statistics that were not available before, at higher levels of **accuracy** than **direct estimates** generated through surveys.
- ➤ There are many SAE techniques the choice will depend on the availability of auxiliary data and the relationship between these data and the variable of interest.

Key concepts

- Survey data: information collected from a sample of individuals through their responses to questions.
- **Sample**: smaller selection or subset of a larger group called population. The sample should be representative of the full population. **Population**: full group we are interested in (e.g., all people in the sample in the sampl
- Population: full group we are interested in (e.g., all people in a country).
 Small area (or domain): small geographical area or spatial
 - population unit for which reliable statistics cannot be produced due to limitations in the available data.

 Estimator: rule or formula to approximate unknown
 - population parameters (e.g. sample mean, poverty rates).

 Direct estimator: uses only the sample from the domain
- itself.
 Indirect estimator: uses auxiliary information to approximate the population values.
- the population values.
 Accuracy: distance between the statistical estimates and the "correct" values. It includes random errors (unpredictable and due to chance e.g. stopwatch), and systematic errors

The role of surveys

- Sample surveys are cost-effective methods for obtaining information about wide-ranging topics at frequent intervals over time (Ghosh and Rao 1994).
- Surveys provide reliable estimators for areas where the sample size is large (large domains). These estimators can rely solely on area information and still be trust-worthy. These types of estimators are called *direct estimators*.
- However, when data is scarce, direct estimators are likely to yield too large standard errors, due to the small size of the sample in the area. This makes these estimators unreliable.
- ▶ There are two approaches to solving this problem:
 - ▶ Increasing sample sizes expensive, not always possible (when using past surveys).
 - Changing the sampling design so the unplanned domain becomes planned expensive, not always possible.
 - Applying statistical techniques to obtain reliable small area estimates.

Small area estimation (SAE) is a part of the statistical science that improves the efficiency of direct estimators by

combining methodologies from survey sampling and finite population inference with statistical models. (Morales et

al. 2021).

Direct domain estimation

Design-based approaches

Horvitz-Thompson Estimator

➤ Simple direct estimator — calculated as the **weighted sum** of the sampled values of the target values of a domain.

$$\hat{\bar{Y}}_i^{\mathrm{DIR}} = \frac{1}{N_i} \sum_{j \in S_i} w_j y_j$$

 $\{ \text{where } N_i \text{ is the population size of domain } i, \, S_i \text{ is the set of sampled observations in domain } i, \, w_j \text{ is the sampling weight for unit } j, \text{ and } y_j \text{ is the observation for unit } j, \text{ for all } j \in S_i. \}$

- Design-unbiased its expected value across all possible samples that could be drawn under a given design equals to the true value of the population.
- Unreliable under small samples when samples are small, variances are too large to be reliable.

Indirect domain estimation

- Introduction
- ▶ Synthetic estimator
- Composite estimator

Small area model

- Introduction
- ► Basic area-level model
- ▶ Basic unit-level model

Key Concepts

- ➤ Small area (domain): sub-population of interest for which data is scarce. It does not relate to the geographical size of the area, just to the size of the survey sample.
- Direct estimator: estimator based on area sample only.
- Ghosh, Malay, and John NK Rao. 1994. "Small Area Estimation: An Appraisal." *Statistical Science* 9 (1): 55–76.
- Morales, Domingo, María Dolores Esteban, Agustín Pérez, and Tomáš Hobza. 2021. "A Course on Small Area Estimation and Mixed Models." *Methods, Theory and Applications in R.*