Universität Würzburg Institut für Mathematik

LEHRSTUHL FÜR KOMPLEXE ANALYSIS

Prof. Dr. Oliver Roth Annika Moucha

Einführung in die Funktionentheorie

7. Übungsblatt, Abgabe bis 3. Juni 2024 um 10 Uhr

Hausaufgaben

H7.1 Konvexität und Injektivität (3)

Sei $G \subseteq \mathbb{C}$ ein konvexes Gebiet und $f \in H(G)$ mit Re(f') > 0. Beweisen Sie, dass die Funktion f injektiv ist.

H7.2 Reelles Integral (2+2+1)

Sei $a \in \mathbb{R}$. Wir wollen das uneigentliche reelle Integral

$$\int_{-\infty}^{\infty} e^{-x^2 + 2iax} dx \tag{1}$$

mithilfe des Cauchy Integralsatzes für sternförmige Gebiete, Satz 6.6, berechnen. Hierfür betrachten wir die Hilfsfunktion

$$g \colon \mathbb{C} \to \mathbb{C} \quad g(z) = e^{-z^2}$$

sowie für R>0 den Hilfsweg γ , der den Rand des Rechtecks mit den Eckpunkten $\pm R, \pm R+ia$ beschreibt.

(i) Zeigen Sie

$$\lim_{R \to \infty} \int_{[R,R+ia]} e^{-z^2} dz = 0 = \lim_{R \to \infty} \int_{[-R+ia,-R]} e^{-z^2} dz.$$

(ii) Zeigen Sie

$$\int_{-\infty}^{\infty} e^{-x^2} dx = e^{a^2} \int_{-\infty}^{\infty} e^{-x^2} \cos(2ax) dx.$$

(iii) Berechnen Sie (1) mithilfe von $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.

H7.3 Differenzenquotienten (2+2)

Sei $f: \mathbb{C} \longrightarrow \mathbb{C}$ eine stetige Funktion.

(a) Sei die Abbildung f ferner holomorph. Zeigen Sie, dass

$$\frac{f(a) - f(b)}{a - b} = \frac{1}{2\pi i} \int_{\partial K_B(0)} \frac{f(w)}{(w - a)(w - b)} dw \tag{*}$$

für alle R > 0 und $a, b \in K_R(0)$ mit $a \neq b$ gilt.

(b) Sei die Funktion f stattdessen beschränkt und erfülle (*). Folgern Sie, dass die Funktion f in diesem Fall konstant auf \mathbb{C} ist.