BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – UNE MÉTHODE EFFICACE

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Ce qui nous interesse	2
2.	Notations utilisées	2
3.	Les carrés parfaits	2
3.1.	Structure	2
3.2.	Distance entre deux carrés parfaits	3
4.	Prenons du recul	4
4.1.	Les sf-tableaux	4
4.2.	Construire des sf-tableaux	4
5.	Structure des sf-tableaux	5
5.1.	A propos des sf-tableaux partiels	5
5.2.	A propos des sf-tableaux non partiels	5
6.	Premières applications	6
6.1.	Le cas de 2 facteurs	6
6.2.	Le cas de 3 facteurs	6
6.3.	Le cas de 4 facteurs	7
6.4.	Le cas de 5 facteurs	8
7.	Et après?	9
7.1.	La méthode via le cas de 6 facteurs	9
7.2.	Au-delà de 6 facteurs?	10
		11
9.	AFFAIRE À SUIVRE	12

Date: 25 Jan. 2024 - 14 Fév. 2024.

1. CE QUI NOUS INTÉRESSE

Dans l'article « Note on Products of Consecutive Integers » 1 , Paul Erdős démontre que pour tout couple $(n,k) \in \mathbb{N}^* \times \mathbb{N}^*$, le produit de (k+1) entiers consécutifs $n(n+1) \cdots (n+k)$ n'est jamais le carré d'un entier. Plus précisément, l'argument général de Paul Erdős est valable pour $k+1 \geq 100$, soit à partir de 100 facteurs.

Il est facile de trouver sur le web des preuves à la main un nombre de facteurs appartenant à $[2;8]\cup\{10\}$. Bien que certaines de ces preuves soient très sympathiques, leur lecture ne fait pas ressortir de schéma commun de raisonnement 2 . Dans ce document, nous allons tenter de limiter au maximum l'emploi de fourberies déductives en présentant une méthode très élémentaire 3 , efficace, et semi-automatisable, pour démontrer, avec peu d'efforts cognitifs, les premiers cas d'impossibilité.

2. Notations utilisées

Dans la suite, nous emploierons les notations suivantes.

- $\forall (n,k) \in (\mathbb{N}^*)^2$, $\pi_n^k = \prod_{i=0}^{k-1} (n+i)$. Par exemple, $\pi_n^1 = n$, $\pi_n^2 = n(n+1)$ et $\pi_{n+2}^4 = (n+2)(n+3)(n+4)(n+5)$.
- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\}$ est l'ensemble des carrés parfaits. On note aussi ${}^{2}_{*}\mathbb{N} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}$. \mathbb{N}_{sf} est l'ensemble des naturels non nuls sans facteur carré 4 .
- \mathbb{P} désigne l'ensemble des nombres premiers. $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*, \ v_p(n) \in \mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)} \mid n$ et $p^{v_p(n)+1} \nmid n$, autrement dit $p^{v_p(n)}$ divise n, contrairement à $p^{v_p(n)+1}$.
- \mathbb{N}_{sc}^r désigne l'ensemble des suites finies strictement croissantes de r entiers naturels. \mathbb{P}_{sc}^r désigne l'ensemble des suites finies strictement croissantes de r nombres premiers.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.
- $2 \mathbb{N}$ désigne l'ensemble des nombres naturels pairs. $2 \mathbb{N} + 1$ est l'ensemble des nombres naturels impairs.

3. Les carrés parfaits

3.1. Structure.

Fait 3.1. $n \in {}_*^2\mathbb{N}$ si, et seulement si, $\forall p \in \mathbb{P}$, $v_p(n) \in 2\mathbb{N}$.

Démonstration. Immédiat à valider.

Fait 3.2. $\forall n \in {}_*^2\mathbb{N}$, s'il existe $m \in {}_*^2\mathbb{N}$ tel que n = fm alors $f \in {}_*^2\mathbb{N}$.

Démonstration. $\forall p \in \mathbb{P}$, $v_p(fm) \in 2\mathbb{N}$, $v_p(m) \in 2\mathbb{N}$ et $v_p(fm) = v_p(f) + v_p(m)$ donnent $v_p(f) \in 2\mathbb{N}$.

^{1.} J. London Math. Soc. 14 (1939).

^{2.} Ceci est à nuancer, car à partir de 10 facteurs, une technique de type « principe des tiroirs » est envisageable numériquement; par contre, elle n'est pas humainement efficace contrairement à ce qui va être présenté dans ce document.

^{3.} Cette méthode s'appuie sur une représentation trouvée dans un message archivé : voir la section 8.

^{4.} En anglais, on dit « square free ».

3.2. Distance entre deux carrés parfaits.

```
Fait 3.3. Soit (N, M) \in \mathbb{N}^* \times \mathbb{N}^* tel que N > M.
```

- (1) $N^2 M^2 \ge 2N 1$.
- (2) Notons nb_{sol} le nombre de solutions $(N, M) \in \mathbb{N}^* \times \mathbb{N}^*$ de $N^2 M^2 = \delta$.

Par exemple, pour $\delta \in [1; 20]$, nous avons:

- (a) $nb_{sol} = 0$ si $\delta \in \{1, 2, 4, 6, 10, 14, 18\}$.
- (b) $nb_{sol} = 1$ si $\delta \in \{3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20\}$.
- (c) $nb_{sol} = 2 \text{ si } \delta \in \{15\}$.

$D\'{e}monstration.$

- (1) Comme $N-1 \ge M$, nous obtenons : $N^2 M^2 \ge N^2 (N-1)^2 = 2N-1$.
- (2) Le point précédent permet d'utiliser le programme Python suivant afin d'obtenir rapidement les longues listes de nombres indiquées.

```
from collections import defaultdict
from math
                import sqrt, floor
def sol(diff):
    solfound = []
    for i in range(1, (diff + 1) // 2 + 1):
        tested = i**2 - diff
        if tested > 0:
            tested = floor(sqrt(tested))
            if tested != 0 and tested**2 == i**2 - diff:
                solfound.append((i, tested))
    return solfound
all nbsol = defaultdict(list)
for d in range(1, 101):
    all_nbsol[len(sol(d))].append(d)
print(all_nbsol)
```

4. Prenons du recul

4.1. Les sf-tableaux.

L'idée de départ est simple : d'après le fait 3.2, il semble opportun de se concentrer sur les diviseurs sans facteur carré des k facteurs (n+i) de $\pi_n^k = n(n+1)\cdots(n+k-1)$.

Définition 4.1. Considérons $(n,k) \in (\mathbb{N}^*)^2$, $(a_i)_{0 \le i \le k} \subset \mathbb{N}_{sf}$ et $(s_i)_{0 \le i \le k} \subset {}^2_*\mathbb{N}$ tels que $\forall i \in [0, k], n+i = a_i s_i$. Cette situation est résumée par le tableau suivant que nous nommerons « sf-tableau » ⁵.

Exemple 4.1. Supposons avoir le sf-tableau suivant où $n \in \mathbb{N}^*$.

Ceci résume la situation suivante.

- $\exists A \in \mathbb{N}^* \text{ tel aue } n = 2A^2$.
- $\bullet \ \exists C \in \mathbb{N}^* \ tel \ aue \ n+2=6C^2$.
- $\exists B \in \mathbb{N}^* \text{ tel aue } n+1=5B^2$.
- $\exists D \in \mathbb{N}^* \text{ tel que } n+3=D^2$.

Définition 4.2. Soient $r \in \mathbb{N}^*$, $(n_i)_{1 \leq i \leq r} \in \mathbb{N}^r_{sc}$, $(a_i)_{1 \leq i \leq r} \subset \mathbb{N}_{sf}$ et $(s_i)_{1 \leq i \leq r} \subset {}^2_*\mathbb{N}$ tels que $\forall i \in [\![1\,;r]\!]$, $n_i = a_i s_i$. Cette situation est résumée par le tableau suivant que nous nommerons « sf-tableau généralisé ».

4.2. Construire des sf-tableaux.

Pour fabriquer des sf-tableaux, nous allons « multiplier » des sf-tableaux dits partiels.

Définition 4.3. Soient $(n,k,r) \in (\mathbb{N}^*)^3$, $(p_j)_{1 \leq j \leq r} \in \mathbb{P}^r_{sc}$, $(\epsilon_{i,j})_{0 \leq i \leq k, 1 \leq j \leq r} \subseteq \{0,1\}$ et aussi $(f_i)_{0 \le i \le k} \subset \mathbb{N}^*$ vérifiant les conditions suivantes.

- $\forall i \in \llbracket 0; k \rrbracket$, $n+i=f_i \cdot \prod_{j=1}^r p_j^{v_{p_j}(n+i)}$. Noter que $\forall i \in \llbracket 0; k \rrbracket$, $\forall j \in \llbracket 1; r \rrbracket$, $f_i \wedge p_j = 1$.
- $\forall i \in [0; k]$, $\forall j \in [1; r]$, $v_{p_j}(n+i) \equiv \epsilon_{i,j} \mod 2$.

Cette situation est résumée par le tableau suivant qui sera nommé « sf-tableau partiel », voire « sf-tableau partiel d'ordre $(p_i)_{1 \leq j \leq r}$ » ⁶.

Exemple 4.2. Supposons avoir le sf-tableau partiel suivant où $n \in \mathbb{N}^*$.

^{5. «} sf » est pour « square free » .

^{6.} Noter que $\forall i \in \llbracket 0 \ , k \rrbracket \, , \, \forall j \in \llbracket 1 \ , r \rrbracket \, , \, p_j^{\epsilon_{i,j}} \in \{1,p_j\} \, .$

Ceci résume la situation suivante.

- $\exists (a, \alpha, A) \in \mathbb{N}^2 \times \mathbb{N}^* \text{ tel que } A \wedge 6 = 1 \text{ et } n = 2^{2a+1} 3^{2\alpha} A$.
- $\exists (b, \beta, B) \in \mathbb{N}^2 \times \mathbb{N}^*$ tel que $B \wedge 6 = 1$ et $n + 1 = 2^{2b+1}3^{2\beta+1}B$.
- $\exists (c, \gamma, C) \in \mathbb{N}^2 \times \mathbb{N}^* \text{ tel que } C \wedge 6 = 1 \text{ et } n + 2 = 2^{2c} 3^{2\gamma} C$.
- $\exists (d, \delta, D) \in \mathbb{N}^2 \times \mathbb{N}^*$ tel que $D \wedge 6 = 1$ et $n + 3 = 2^{2d} 3^{2\delta + 1} D$.

Exemple 4.3. La multiplication de deux **sf**-tableaux partiels est « naturelle » lorsqu'elle porte sur des suites $(p_j)_{1 \leq j \leq r} \in \mathbb{P}^r_{sc}$ et $(q_j)_{1 \leq j \leq s} \in \mathbb{P}^s_{sc}$ d'intersection vide, c'est-à-dire sans nombre premier commun.

Considérons les deux sf-tableaux partiels suivants où l'on note 2 et 3 au lieu de (2) et (3).

La multiplication de ces sf-tableaux partiels est le sf-tableau suivant, partiel a priori, mais si l'on sait que 2 et 3 sont les seuls diviseurs premiers de π_n^4 , alors le sf-tableau est non partiel.

Ceci résume la situation suivante qui est équivalente à ce que donne la conjonction des deux premiers sf-tableaux partiels (les abus de notations sont évidents).

•
$$A \wedge 6 = 1$$
 et $n = 2^{2a}3^{2\alpha+1}A$.

•
$$C \wedge 6 = 1$$
 et $n + 2 = 2^{2c}3^{2\gamma}C$.

•
$$B \wedge 6 = 1$$
 et $n + 1 = 2^{2b+1}3^{2\beta}B$.

•
$$D \wedge 6 = 1$$
 et $n + 3 = 2^{2d+1}3^{2\delta+1}D$.

5. Structure des sf-tableaux

5.1. A propos des sf-tableaux partiels.

Fait 5.1. Dans la deuxième ligne d'un sf-tableau partiel d'ordre p, les positions des valeurs p sont congrues modulo p.

 $D\acute{e}monstration$. Penser aux multiples de p.

Fait 5.2. $\forall (n,k,p) \in (\mathbb{N}^*)^2 \times \mathbb{P}$, $si \pi_n^k \in {}^2\mathbb{N}$, alors dans le sf-tableau partiel d'ordre p associé à π_n^k , le nombre de valeurs p est forcément pair.

 $D\acute{e}monstration$. Évident, mais très pratique, comme nous le verrons dans la suite.

5.2. A propos des sf-tableaux non partiels.

Fait 5.3. Dans les tableaux ci-dessous, où $k \geq 2$, les puces • indiquent des valeurs quelconques.

(1) Si nous avons un sf-tableau du type suivant, alors $\pi_n^{k-1} \in {}^2_*\mathbb{N}$.

(2) Si nous avons un **sf**-tableau du type suivant, alors $\pi_{n+1}^{k-1} \in {}_*^2\mathbb{N}$.

Démonstration. Immédiat via le fait 3.2, car nous avons soit $n + k \in {}^2_*\mathbb{N}$, soit $n \in {}^2_*\mathbb{N}$.

Fait 5.4. Soit le sf-tableau généralisé ci-après où $r \in \mathbb{N}_{\geq 2}$, $(n_i)_{1 \leq i \leq r} \in \mathbb{N}_{sc}^r$ et $d \in \mathbb{N}_{sf}$.

$$\begin{array}{c|ccccc} \bullet & n_1 & \dots & n_r \\ \hline & d & \dots & d \end{array}$$

Ce sf-tableau est impossible si l'une des deux conditions suivantes est validée.

$$(1) \ \frac{n_r - n_1}{d} \notin \mathbb{N} .$$

(2)
$$\frac{n_r - n_1}{d} \in \{1, 2, 4, 6, 10, 14, 18\}$$
.

Démonstration. $n_1 = dA^2$ et $n_r = dB^2$ nous donnent $d(B^2 - A^2) = n_r - n_1$. On conclut directement pour le premier cas, et via le fait 3.3 dans le second.

6. Premières applications

6.1. Le cas de 2 facteurs.

Supposons que $\pi_n^2 = n(n+1) \in {}_*^2\mathbb{N}$. Nous avons alors les sf-tableaux partiels suivants pour $p \in \mathbb{P}$ divisant π_n^2 , car les valeurs p de la deuxième ligne doivent apparaître un nombre pair de fois tout en étant espacées par (p-1) valeurs 1 (voir les faits 5.1 et 5.2).

$$\begin{array}{c|cc}
n + \bullet & 0 & 1 \\
\hline
p & 1 & 1
\end{array}$$

La multiplication de tous les sf-tableaux partiels précédents donne le sf-tableau, non partiel, ci-après, mais ceci contredit le fait 5.4.

$$\begin{array}{c|cc}
n + \bullet & 0 & 1 \\
\hline
& 1 & 1
\end{array}$$

6.2. Le cas de 3 facteurs.

Supposons que $\pi_n^3 = n(n+1)(n+2) \in {}^2_*\mathbb{N}$. Nous avons alors les sf-tableaux partiels suivants pour $p \in \mathbb{P}_{\geq 3}$ divisant π_n^3 , d'après les faits 5.1 et 5.2.

$$\begin{array}{c|ccccc} n+\bullet & 0 & 1 & 2 \\ \hline p & 1 & 1 & 1 \end{array}$$

Pour p=2, via les faits 5.1 et 5.2, seulement deux sf-tableaux partiels d'ordre 2 sont possibles. Nous utilisons un abus de notation évident pour indiquer ces deux possibilités.

La multiplication de tous les sf-tableaux partiels précédents donne juste les deux sf-tableaux, non partiels, suivants, mais ceci est impossible d'après le fait 5.4.

6.3. Le cas de 4 facteurs.

Supposons que $\pi_n^4 = n(n+1)(n+2)(n+3) \in {}_*^2\mathbb{N}$. Nous avons alors les sf-tableaux partiels suivants pour $p \in \mathbb{P}_{\geq 4}$ divisant π_n^4 .

Pour p=2, nous avons les trois sf-tableaux partiels d'ordre 2 donnés ci-après.

Pour p=3, nous obtenons les deux sf-tableaux partiels d'ordre 3 donnés ci-après.

La multiplication des sf-tableaux partiels précédents donne les sf-tableaux ⁷, suivants.

$n + \bullet$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$n + \bullet$	0 1 2 3
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		3 1 1 3
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$egin{array}{c cccc} 1 & 2 & 1 & 2 \end{array}$		$3 \mid 2 \mid 1 \mid 6$

Le fait 5.4 rejette quatre sf-tableaux : voir les cellules surlignées ci-dessous.

$n + \bullet$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$n + \bullet$	$\begin{bmatrix} 0 & 1 & 2 & 3 \end{bmatrix}$
	1 1 1 1		3 1 1 3
	$\begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{vmatrix} 3 & 2 & 1 & 6 \end{vmatrix}$

Ceci nous amène à étudier les deux sf-tableaux généralisés suivants.

•	n	n+1	n+2	n+3
	6	1	2	3
	3	2	1	6

En posant $x=n+\frac{3}{2}=\frac{n+(n+3)}{2}$, nous obtenons les sf-tableaux généralisés suivants.

•	$x-\frac{3}{2}$	$x - \frac{1}{2}$	$x + \frac{1}{2}$	$x + \frac{3}{2}$
	6	1	2	3
	3	2	1	6

En multipliant les colonnes 1 et 4, et aussi la 2 et la 3, nous arrivons, dans chaque cas, au même sf-tableau généralisé ci-dessous après avoir noté que $6 \times 3 = 2 \times 3^2$.

^{7.} Tableaux non partiels forcément.

Comme $x^2 - \frac{1}{4} - \left(x^2 - \frac{9}{4}\right) = 2$, le fait 5.4 nous montre que le sf-tableau généralisé précédent est impossible. Joli! Non?

Noter que la fin du raisonnement n'a fait appel à aucune hypothèse sur π_n^4 . Ceci nous donne donc le fait suivant.

Fait 6.1. Aucun sf-tableau ne peut contenir l'un des deux sf-tableaux suivants.

6.4. Le cas de 5 facteurs.

Supposons que $\pi_n^5 = n(n+1)(n+2)(n+3)(n+4) \in {}^2_*\mathbb{N}$. Nous avons alors les sf-tableaux partiels suivants pour $p \in \mathbb{P}_{\geq 5}$ divisant π_n^5 .

Pour p=2, nous avons les sf-tableaux partiels d'ordre 2 donnés ci-après.

$n + \bullet$	0	1	2	3	4
2	1	1	1	1	1
	2	1	2	1	1
	2	1	1	1	2
	1	2	1	2	1
	1	1	2	1	2

Pour p=3, nous obtenons les sf-tableaux partiels d'ordre 3 donnés ci-après.

$n + \bullet$	0	1	2	3	4
3	1	1	1	1	1
	3	1	1	3	1
	1	3	1	1	3

La multiplication de tous les sf-tableaux partiels précédents donne les 15 cas suivants.

n+ ullet	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	n+ullet	$\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	$0 \mid 1$	2 3 4
	1 1 1 1 1		3 1 1 3 1		1 3	1 1 3
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$2 \mid 3$	2 1 3
	$egin{array}{c ccccccccccccccccccccccccccccccccccc$		$egin{bmatrix} 6 & 1 & 1 & 3 & 2 \\ \hline \end{pmatrix}$		$2 \mid 3$	1 1 6
	$egin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{bmatrix} 3 & 2 & 1 & 6 & 1 \end{bmatrix}$		1 6	1 2 3
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{bmatrix} 3 & 1 & 2 & 3 & 2 \end{bmatrix}$		1 3	2 1 6

Comme $\pi_n^4 = n(n+1)(n+2)(n+3) \notin {}^2_*\mathbb{N}$ et $\pi_{n+1}^4 = (n+1)(n+2)(n+3)(n+4) \notin {}^2_*\mathbb{N}$ d'après la section 6.3, les tableaux commençant, ou finissant, par une valeur 1 sont à ignorer d'après le fait 5.3. Cela laisse les sf-tableaux ci-après, mais ces derniers sont rejetés par le fait 5.4.

$n + \bullet$	0	1	2	3	4
	2	1	1	1	2
	6	1	1	3	2
	3	1	2	3	2
	2	3	2	1	3
	2	3	1	1	6

7. Et après?

7.1. La méthode via le cas de 6 facteurs.

La méthode présentée ci-dessus permet de faire appel à des programmes informatiques pour limiter les traitements à la main, et à la sueur des neurones, de sf-tableaux problématiques comme nous avons dû le faire dans la section 6.3. Expliquons cette tactique semi-automatique en traitant le cas de 6 facteurs.

- (1) On raisonne par l'absurde en supposant que $\pi_n^6 \in {}_*\mathbb{N}$.
- (2) Comme $\forall p \in \mathbb{P}_{\geq 6}$, p divise au maximum un seul des facteurs (n+i) de π_n^6 , nous avons juste besoin de considérer l'ensemble $\mathcal{P} = \{2, 3, 5\}$ des diviseurs premiers stricts de 6.
- (3) Pour chaque élément p de \mathcal{P} , on construit la liste \mathcal{V}_p des sf-tableaux partiels relatifs à p et $\pi_n^6 \in {}_*^2\mathbb{N}$ en s'appuyant sur la section 5.1.
- (4) Via les listes $(\mathcal{V}_p)_{p\in\mathcal{P}}$, on calcule toutes les multiplications de tous les sf-tableaux partiels relatifs à des nombres p différents, et pour chacune d'elles, on ne la garde que si elle ne vérifie aucune des conditions suivantes, celles du dernier cas devant être indiquées à la main au programme qui va donc évoluer au gré des démonstrations faites par un humain (démonstrations que l'on espère le plus rare possible).
 - (a) Le tableau commence, ou se termine, par la valeur 1. Dans ce cas, on sait par récurrence que le tableau produit n'est pas possible (voir le fait 5.3).
 - (b) Le tableau est rejeté par le fait 5.4.
 - (c) Le tableau « produit » contient un sous-tableau que nous savons impossible suite à un raisonnement humain fait *localement*, c'est-à-dire que seul les facteurs indiqués dans le sous-tableau, et le sous-tableau lui-même sont utilisés pour raisonner. C'est le cas des sf-tableaux du fait 6.1.

Dans le dépôt en ligne associé à ce document sont placés des fichiers Pyhon ⁸ qui nous amènent à analyser les deux sf-tableaux problématiques suivants pour lesquels nous allons justifier que les valeurs 1 posent problème ⁹.

$n + \bullet$	0	1	2	3	4	5
	30	1	2	3	1	5
	5	1	3	2	1	30

Ces deux cas sont rapides à gérer puisque, d'après le fait 3.3, 1 et 4 sont les seuls carrés distants de 3, d'où n+1=1, mais ceci contredit $n \in \mathbb{N}^*$. Nous savons donc que $\pi_n^6 \in {}_*^2\mathbb{N}$ sans effort. Notons au passage un nouveau cas problématique « local » pour nos futures recherches (le fait suivant généralise la technique que nous venons d'utiliser).

^{8.} L'emploi de scripts codés rapidement est totalement fonctionnel ici.

^{9.} Toutes les règles 4-a, 4-b et 4-c sont utilisées pour n'arriver qu'aux deux sf-tableaux à analyser à la main.

Fait 7.1. Soit le sf-tableau généralisé ci-après où $r \in \mathbb{N}_{\geq 2}$, $(n_i)_{1 \leq i \leq r} \in \mathbb{N}_{sc}^r$ et $d \in \mathbb{N}_{sf}$.

$$\begin{array}{c|cccc} \bullet & n_1 & \dots & n_r \\ \hline & d & \dots & d \end{array}$$

Ce sf-tableau est impossible si $n_1 \geq d+1$ et $\frac{n_r-n_1}{d} \in \{3,8\}$.

Démonstration. Ceci vient des équivalences logiques suivantes en posant $n_1 = dA^2$ et $n_r = dB^2$ avec $(A, B) \in (\mathbb{N}^*)^2$.

$$\frac{n_r - n_1}{d} \in \{3, 8\}$$

$$\iff B^2 - A^2 \in \{3, 8\}$$

$$\iff (A, B) \in \{(1, 2), (1, 3)\}$$
Voir le fait 3.3.

 $\iff (n_1, n_r) \in \{(d, 4d), (d, 9d)\}$

Remarque 7.1. On peut gérer les cas problématiques du cas 6 via des manipulations algébriques similaires à celles qui avaient donné le fait 6.1. En effet, $x = n + \frac{5}{2}$ nous donne ce qui suit avec un abus de notation évident.

La multiplication des colonnes 1 et 6, ainsi que celle des colonnes 3 et 4, nous amènent au même sf-tableau généralisé suivant après avoir noté que $5 \times 30 = 6 \times 5^2$.

Comme $x^2 - \frac{1}{4} - (x^2 - \frac{25}{4}) = 6$, le fait 5.4 nous permet de conclure.

7.2. Au-delà de 6 facteurs?

Voici ce que donnent nos programmes Pyhon sans trop d'efforts, mais avec du temps de calcul ¹⁰. Rappelons que chaque nouveau cas problématique est indiqué au programme qui évolue donc au gré de l'intervention humaine.

Sans intervention humaine.

Pour $k \in \{7,8\}$, nous avons $\pi_n^k \notin {}^2\mathbb{N}$ sans aucun effort cognitif.

De nouveaux cas problématiques

 $\pi_n^9 \not\in {}^2\mathbb{N}$ demande de gérer les sf-tableaux suivants.

n	+ •	0	1	2	3	4	5	6	7	8
		14	1	6	5	2	3	1	7	10
		10	7	1	3	2	5	6	1	14

Extrayons du premier sf-tableau, le sf-tableau généralisé suivant.

^{10.} Nous commencons à entrer dans un monde à la combinatoire élevée.

En posant m = n + 3, nous obtenons le tableau ci-après.

En multipliant les colonnes 1 et 4, et aussi la 2 et la 3, nous obtenons le sf-tableau généralisé ci-dessous après avoir noté que $6 \times 2 = 3 \times 2^2$.

Comme $m^2 - 4 - (m^2 - 1) = 3$, le fait 5.4 nous montre que le premier sf-tableau, celui commençant par 14, est impossible. Le cas du deuxième se traite de façon analogue, d'où finalement $\pi_n^9 \notin {}^2\mathbb{N}$. Notons au passage un nouveau fait.

Fait 7.2. Aucun sf-tableau ne peut contenir l'un des deux sf-tableaux généralisés suivants.

Sans intervention humaine.

Pour $k \in [10; 17]$, nous avons $\pi_n^k \notin {}^2\mathbb{N}$ sans aucun effort cognitif. Au-delà, un programme basique n'est plus utilisable car il y a trop de tableaux à construire...

8. Sources utilisées

Ce document n'aurait pas vu le jour sans la source suivante.

(1) Une discussion archivée consultée le 28 janvier 2024 :

https://web.archive.org/web/20171110144534/http://mathforum.org/library/drmath/view/65589.html.

Cette discussion utilise ce que nous avons nommé les sf-tableaux, mais le côté semimécanisable de leur utilisation n'est pas souligné.

9. AFFAIRE À SUIVRE...