ST2334 Summary Notes

AY23/24 Sem 1, github.com/gerteck

1. Basic Probability Concepts

- ullet Sample Space: S All possible outcomes of stat. expt.
- Null Event: Event that contains no element, empty set, \varnothing
- Axioms of Probability:

For any event X, $0 \le P(X) \le 1$. P(S) = 1. If $A \cap B = \emptyset$ (Mut Excl), $P(A \cup B) = P(A) + P(B)$.

• Finite sample space with equally likely outcomes: $P(A) = (\frac{\#sample points A}{\#total sample points S})$. (e.g. birthday problem)

Event Operation & Relationships

- Event Operations: Union, Intersection, Complement.
- Event Relationships: Contained: $A \subset B$ Equivalence: $A \subset B$ with $A \supset B \to A = B$ Mutually Exclusive: $A \cap B = \emptyset$.
- De Morgan's Law: $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$

Counting Methods

- Multiplication Principle: (Sequential Events)
- Addition Principle: (Pairwise Disjoin sets)
- **Permutation**: ${}_{n}P_{r} = \frac{n!}{(n-r)!}$
- Combination: $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

Conditional Probability

• Understand conditional as reduced sample space.

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

Independence

$$A \perp B \leftrightarrow P(A \cap B) = P(A)P(B)$$

$$A \perp B \leftrightarrow P(A|B) = P(A)$$

Law of Total Probability

- **Partition:** If A_1, \dots, A_n mutually exclusive, $\bigcup_{i=1}^n A_i = S$, then A_1, \dots, A_n are partitions.
- If A_1, \dots, A_n are partitions of S, then for any event B:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Bayes' Theorem

Let A_1, \dots, A_n be partitions of S. For any event B:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_k)P(A_i)}$$

For when n = 2, $\{A, A'\}$ becomes a partition of S.

$$P(A|B) = \frac{P(A)P(B|A))}{P(A)P(B|A) + P(A')P(B|A')}$$

2. Random Variables

A function X, which assigns a real number to every $s \in S$ is called a random variable.

- Range space: $Rx = \{x | x = X(s), s \in S\}$
- Likewise, the set $X \in A$, for A being a subset of R, is also a subset of $S : s \in S : X(s) \in A$.

Probability Distribution

Two main types of RV used in practice: discrete and continuous.

- ullet Probability assigned to each possible X
- Given RV X with range of R_x :

Discrete: Numbers in R_x are finite or countable **Continuous:** R_x is interval

(Discrete) Probability Mass Function f(x):

$$f(x) \begin{cases} P(X=x), & \text{for } x \in R_X \\ 0, & \text{for } x \notin R_X \end{cases}$$

- 1. $f(x_i) = P(X = x_i) \ge 0$ for $x_i \in R_x$
- 2. $f(x_i) = 0$ for $x_i \notin R_x$
- 3. $\sum_{i=1}^{\infty} f(x_i) = 1$ (PSum = 1)
- 4. $\forall B \subseteq \mathbb{R}, P(X \in B) = \sum_{x_i \in B \cap R_x} f(x_i)$

(Continuous) Probability Density Function f(x):

- Given R_x is interval. Quantifies probability that X is in some range.
- \bullet p.f. must satisfy:
 - 1. $f(x) \ge 0$, f(x) = 0 for $x \notin R_x$
 - 2. No need $f(x) \leq 1$ (Concerned with area)
 - 3. $\int_{R_x} f(x)dx = 1$ (Integration over $R_X = 1$)
 - 4. $\forall a, b \text{ s.t. } a \leq b, P(a \leq X \leq b) = \int_a^b f(x) dx$
- Note: $P(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0$
- Hence, to check if a function is a pdf,
- 1. $f(x) \ge 0$ for $x \in R_x$, f(x) = 0 for $x \notin R_x$
- 2. $\int_{R_{-}} f(x)dx = 1$.

Cumulative Distribution Function

Describes distribution of a RV *X*: cumulative distribution function (cdf), applicable for discrete or continuous RV.

$$F(x) = P(X \le x)$$

F(x) is non-decreasing and $0 \le F(x) \le 1$

• Probability fn & cumulative distribution fn have one-to-one correspondence. For any probability fn given, the cdf is uniquely determined, vice versa.

CDF Discrete RV: Step Function F(x)

$$F(x) = \sum_{t \in R_x; t \le x} f(t)$$

- $P(a \le X \le b) = P(X \le b) P(X < a)$
- $P(a \le X \le b) = F(b) F(a-)$
- $P(a < X < b) = F(b) \lim_{x \to a^{-}} F(x)$
- $0 \le f(x) \le 1$
- c.d.f has to be **right continuous** (• —)

CDF Continuous RV: F(x)

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

$$impt: f(x) = \frac{d(F(x))}{dx}$$

- $P(a \le X \le b) = P(a < X < b) = F(b) F(a)$
- $0 \le f(x)$.
- e.g. $f(x) = 3x^2$ is a valid p.f. since $\int_{R_x} f(x) dx = 1$

Expectation μ & Variance σ

Expectation of Random Variable: μ

• Mean of discrete RV:

$$\mu = E(X) = \sum_{x \in R_x} x_i f(x_i)$$

- E.g.: X discrete RV with p.m.f. f(x) and range R_X $\mu = E(g(x)) = \sum_{x \in R_x} g(x) f(x)$
- Mean of continuous RV:

$$\mu = E(X) = \int_{x \in R_x} x f(x) dx$$

- E.g.: X continuous RV with p.d.f. f(x) and range R_X $\mu = E(g(x)) = \int_{x \in R_-} g(x) f(x) dx$
- Properties of Expectation:
- E(aX + b) = aE(X) + b
- Linearity of expectation: E(X + Y) = E(X) + E(Y)

Variance of Random Variable: σ

$$\sigma_X^2 = V(X) = E[(X - \mu_X)^2]$$

• Variance of discrete RV:

$$V(X) = \sum_{x \in R_x} (x - \mu_X)^2 f(x)$$

• Variance of continuous RV:

$$V(X) = \int_{x \in R_x} (x - \mu_X)^2 f(x) dx$$

- V(X) > 0 and V(X) = 0 when X is a constant
- $V(aX + b) = a^2V(X)$
- alt. form: $V(X) = E(X^2) (E(X))^2$
- Standard Deviation: $\sigma_X = \sqrt{V(X)}$

3. Joint Distributions

- Consider more than 1 RV simultaneously,
- Given sample space S. Let X and Y be functions mapping $s \in S \to \mathbb{R}$: (X,Y) is 2D random vector.

Range spc:
$$R_{X,Y} = \{(x,y)|x = X(s), y = Y(s), s \in S\}$$

- Discrete 2D RV:
- # of possible values of (X(s),Y(s)) finite / countable
- Continuous 2D RV:
- # of possible values of (X(s),Y(s)) assume any value in some region of the Euclidean space \mathbb{R}^2
- If both X and Y are discrete/continuous, then (X,Y) is discrete/continuous respectively.

Joint Probability Function

• Joint Probability (mass) function, 2D discrete RV:

$$f_{X,Y}(x,y) = P(X = x, Y = y)$$

- $-f_{X,Y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$
- $-f_{X,Y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$
- $-\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_i) = 1$
- Let $A \subseteq R_{X,Y}$.

$$P((X,Y) \in A) = \sum \sum_{(x,y) \in A} f_{X,Y}(x,y)$$

• Joint Probability (density) function, 2D cont. RV:

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx$$

- $-f_{X,Y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$
- $-f_{X,Y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$
- $-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$ or equivalently:
- $-\int \int_{(x,y)\in R_{X,Y}} f_{X,Y}(x,y)dxdy = 1$

Marginal Probability Function

Marginal distribution of X is individual distribution of X, ignoring the value of Y. "Projection" of 2D function $f_{X,Y}(x,y)$ to 1D function.

Let (X, Y) be 2D RV with joint probability function $f_{X,Y}(x,y)$:

If Y is **discrete**,
$$f_X(x) = \sum_y f_{X,Y}(x,y)$$

If Y is **continuous**,
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

- $f_Y(y)$ defined similarly
- $f_X(x)$ is a p.f., satisfies all properties of prob. fn.

Conditional Distribution

Let (X,Y) be 2D RV with joint probability function $f_{X,Y}(x,y)$. Then $\forall x$ s.t. $f_X(x) > 0$: (X marg prob fn.) Conditional probability function of Y given X = x:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

- Intuition: Distribution of Y given X = x
- Only defined for x s.t. $f_X(x) > 0$
- $f_{Y|X}(y|x)$ is a p.f. if we fix x, satisfies prop. of prob.fn.
- But, $f_{Y|X}(y|x)$ is not a p.f. for x: No need for sum / integral over x = 1. Hence,

If
$$f_X(x) > 0$$
: $f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$
If $f_Y(y) > 0$: $f_{X,Y}(x,y) = f_Y(y)f_{X|Y}(x|y)$

- Probability $Y \le y$, Average Y given X = x
- $P(Y \le y|X = x) = \int_{-\infty}^{y} f_{Y|X}(y|x)dy$
- $E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$

Independent Random Variables

$$X \perp Y : \forall x, y, f_{X,Y}(x, y) = f_X(x) f_Y(y)$$

• Necessary condition: $R_{X,Y}$ must be a product space. i.e. $R_{X,Y}=\{(x,y)|x\in R_X;y\in R_y\}=R_X\times R_Y$ Else, dependent.

Properties of Independent RV

For X, Y independent RV:

• If $A,B\subseteq\mathbb{R}$, then events $X\in A$ and $Y\in B$ are independent:

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B)$$

$$P(X \le x; Y \le y) = P(X \le x)P(Y \le y)$$

- Then, $g_1(X)$ and $g_2(Y)$ are **independent**, for arbitrary g.
- Conditional distribution given Independence:

$$f_X(x) > 0 \rightarrow f_{Y|X}(y|x) = f_Y(y)$$

$$f_Y(y) > 0 \to f_{X|Y}(x|y) = f_X(x)$$

To check independence

- 1. $R_{X,Y}$ is a product space. i.e. R_X does not depend on Y, vice versa. (e.g. 0 < y < x is NOT a product space)
- 2. Additionally, $f_{X,Y}(x,y) =$ some $C * g_1(x)g_2(y)$ where g_1 depends on x only and g_2 depends on y only.

Marginal Distribution under Independence

- Since, $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for independent RV, we derive marginal distribution by standardising $g_1(x)$ and $g_2(y)$.
- For discrete: $f_X(x) = \frac{g_1(x)}{\sum_{t \in R_X} g_1(t)}$
- For continuous: $f_X(x) = \frac{g_1(x)}{\int_{t \in R_X} g_1(t)dt}$

Expectation of a Random Vector

Given 2 variable function g(x, y):

• If (X, Y) is discrete:

$$E(g(X,Y)) = \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y)$$

• If (X, Y) is continuous:

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$$

• If $X \perp Y$:

$$E(XY) = E(X)E(Y)$$

• (If $X \perp Y$, follows that cov(X,Y) = 0). However, converse not always true.

Covariance

• For random variables X, Y:

$$cov(X,Y) = E((X - E(X))(Y - E(Y)))$$

• If (X, Y) both **discrete**:

$$cov(X,Y) = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y)$$

• If (X, Y) both **continuous**:

$$cov(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y) dx dy$$

- Alt: cov(X, Y) = E(XY) E(X)E(Y)
- Hence, for $X \perp Y \rightarrow cov(X, Y) = 0$. (However, converse not always true).
- Properties of covariance:
- cov(aX + b, cY + d) = (ac)cov(X, Y)
- $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab * cov(X, Y)$
- $X \perp Y \rightarrow V(X \pm Y) = V(X) + V(Y)$

4.1 Special Probability Distributions

• **Discrete Distributions**: Study whole classes of discrete RVs that arise frequently in applications.

Discrete Uniform Distribution

• If X has values x_1, x_2, \cdots, x_k with equal probability

$$f(x) \begin{cases} \frac{1}{k}, & \text{for } x = x_1, x_2, ..., x_k \\ 0, & \text{otherwise} \end{cases}$$

- Expectation: $\mu_X = E(X) = \sum_{i=1}^k x_i f_X(x_i) = \frac{1}{k} \sum x_i$
- Variance:

$$\sigma_X^2 = V(X) = E(X^2) - (E(X))^2 = \frac{1}{k} \sum x_i^2 - \mu_X^2$$

Bernoulli, Ber(p)

- **Bernoulli Trial**: Random experiment has 2 possible outcomes (success and failure).
- **Bernoulli Random Variable**: *X* represents number of success in a single Bernoulli Trial. X has only two possible values: 1, or 0.
- Probability mass function: Let $0 \le p \le 1$ be the probability of success in Bernoulli trial

$$f_X(x) = P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0\\ 0 & otherwise \end{cases}$$

- $f_X(x) = p^x (1-p)^{1-x}$ for x = 0 or 1
- Bernoulli distr. is case of binomial distr. where n=1.
- Notation: $X \sim Ber(p)$ and q = 1 p

$$f_x(1) = p, f_x(0) = q$$

- Expectation: $\mu_X = E(X) = p$
- **Variance:** $\sigma_X^2 = V(X) = p(1-p)$
- **Bernoulli Process**: Sequence of repeatedly performed independent and identical Ber. trials.
- Generates sequence of independent and identically distributed (i.i.d.) Ber. RVs: X_1, X_2, \cdots

Binomial Distribution, B(n, p)

- Binomial RV: counts number of successes in n trials in a Ber. process.
- Given n independent trials with each trial having same probability p of success:

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

- Notation: $X \sim B(n, p)$
- E(X) = np, V(X) = np(1-p)

The probability distribution of a Binomial random variable

Negative Binomial Distribution, NB(k, p) (k^{th} success)

- Let X = no. of independent identical distributed Bernoulli(p) trials until k^{th} success occurs.
- Probability mass function of X:

$$P(X = x) = {x - 1 \choose k - 1} p^k (1 - p)^{x - k}$$

- Notation: $X \sim NB(k, p)$
- $E(X) = \frac{k}{p}$ and $V(X) = \frac{(1-p)k}{p^2}$

Geometric Distribution, G(p) (till 1^{st} success)

• Let X = no. of i.i.d. Bernoulli(p) trials until 1st success occurs.

$$P(X = x) = p(1 - p)^{x - 1}$$

- Notation: $X \sim G(p)$
- $E(X) = \frac{1}{p}$ and $V(X) = \frac{1-p}{p^2}$

Poisson Distribution

• **Poisson RV**: Denotes number of events occurring in **fixed period of time or fixed region**, k = no. of occurences.

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

- Notation: $X \sim Poisson(\lambda)$ where $\lambda > 0$ is expected number of occurrences during given period/region
- $E(X) = \lambda$ and $V(X) = \lambda$

The probability distribution of a Poisson random

The number of infections X in a hospital each week has been shown to follow a Poisson distribution with a mean of 3 infections per week. What is the probability that

- (a) there is no infection for a week?
- (b) there are less than 4 infections for a week?

We are given than $X \sim \text{Poisson}(3)$. Then required probabilities are

- (a) $P(X=0) = e^{-3}$.
- (b) $P(X \le 3) = e^{-3} \left(1 + 3 + \frac{3^2}{2!} + \frac{3^3}{3!} \right).$

Poisson Process

- Continuous time process, count number of occurrences within some interval of time. (given rate α)
- Properties of **Poisson process with rate parameter** α :
 - Expected no. of occurrences in interval length T: αT
 - No simultaneous occurrences, and no. of occurrences in disjoint intervals independent.
- No. of occurrences in any interval T of Poisson process follows $Poisson(\alpha T)$ distribution. (Apply $X \sim Poisson(\alpha T)$ directly)

Poisson Approximation of Binomial Distribution

- Let $X \sim B(n,p)$. Suppose $n \to \infty$ and $p \to 0$ s.t. $\lambda = np$ remains constant.
- Then, approximately, $X \sim Poisson(\lambda)$.

$$\lim_{p \to 0; n \to \infty} P(X = x) = \frac{e^{-np}(np)^x}{x!}$$

- Approximation is good when $(n \ge 20 \text{ and } p \le 0.05)$, or $(n \ge 100 \text{ and } np \le 10)$
- Use B(n, p): E(X) = np, V(X) = np(1 p) = npq

4.2 Special Probability Distributions

• Continuous Distributions: Many "natural" RVs whose set of possible values uncountable. Model with classes of continuous random variables.

Continuous Uniform Distribution, U(a,b)

RV X follows uniform distribution over interval (a, b) if p.d.f. given by:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & otherwise \end{cases}$$

- Notation: $X \sim U(a,b)$
- $E(X) = \frac{a+b}{2}$ and $V(X) = \frac{(b-a)^2}{12}$ (derive by integration).
- Cumulative distr. func. c.d.f. is given by:

$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

Exponential Distribution, $Exp(\lambda)$

• Continuous counterpart to **geometric distribution**.

X follows exponential distribution, with parameter $\lambda > 0$ if p.f. is given by:

$$f_x(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

• Notation: $X \sim Exp(\lambda)$

•
$$E(X) = \frac{1}{\lambda}$$
 and $V(X) = \frac{1}{\lambda^2}$

- We can derive λ from mean / expectation of X, since $E(X) = \frac{1}{3}$.
- c.d.f. is given by:

$$F_X(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

- Additionally, $P(X > x) = e^{-\lambda x}$, for x > 0.
- Exponential distribution "Memoryless": Suppose X has exponential distribution with $\lambda > 0$. Then for any positive numbers s and t, we have:

$$P(X > s + t | X > s) = P(X > t)$$

Normal Distribution, $N(\mu, \sigma^2)$

X said to follow normal distribution with mean μ and variance σ^2 if p. f. given by:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

- Notation: $X \sim N(\mu, \sigma^2)$
- $E(X) = \mu$ and $V(X) = \sigma^2$
- p. f. is **bell-shaped curve and symmetric** about $x = \mu$
- Total area under curve is 1
- 2 normal curves are identical in shape if they have same σ^2 . They differ in location by $\mu_1 - \mu_2$.
- As σ increases, curve becomes more spread out
- If $X \sigma N(\mu, \sigma^2)$ and let $Z = \frac{X \mu}{\sigma}$

Standardized Normal Distribution, Z = N(0, 1)

If $X \sim N(\mu, \sigma^2)$, then $Z \sim N(0, 1)$:

$$Z = \frac{X - \mu}{\sigma}$$

- E(Z) = 0 and V(Z) = 1
- p.f of Z is given by:

$$\phi(z) = f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

- Standardizing normal distribution allows us to use tables to find probabilities:
- For $X \sim N(\mu, \sigma^2)$, compute $P(x_1 < X < x_2)$ by standardization:

$$x_1 < X < x_2 \leftrightarrow \frac{x_1 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{x_2 - \mu}{\sigma}$$

- Then, $P(z_1 < Z < z_2)$, use $f_Z(z)$ table to calculate.
- Cumulative d.f. of standard Normal:

$$\Phi(z) = F_Z(z) = \int_{-\infty}^z f_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} dt$$

- $P(Z > 0) = P(Z < 0) = \phi(0) = 0.5$
- For any z, $\Phi(z) = P(Z < z) = P(Z > -z) = 1 \phi(-z)$
- $-Z \sim N(0,1)$
- If $Z \sim N(0,1)$, then $\sigma Z + \mu \sim N(\mu, \sigma^2)$

Ouantile

• Upper Quantile: x_{α} that satisfies:

$$P(X > x_{\alpha}) = \alpha$$

• where $0 \le \alpha \le 1$.

e.g. The 0.05th (upper) quantile of $Z \sim N(0, 1)$ is 1.645, i.e. $z_{0.05} = 1.645$.

- $P(Z > z_{\alpha}) = P(Z < -z_{\alpha}) = \alpha$
- Upper $z_{\alpha} = \text{Lower } z_{1-\alpha}$

Normal Approximation to Binomial Distribution

Let $X \sim B(n, p)$, then as $n \to \infty$:

$$Z = \frac{X - E(X)}{\sqrt{V(X)}} = \frac{X - np}{\sqrt{np(1 - p)}} \sim N(0, 1)$$

• Approximation is good when np > 5 and n(1-p) > 5

5. Sampling Distributions

Population and Sample

- Statistical Inference: Infer about population w. sample.
- **Population:** Totality of all possible obsv / outcomes.
- Sample: Subset of population
- Observation can be numerical or categorical
- Population can be Finite or Infinite.

Random Sampling

• Motivation: Often know what distribution population belongs to, but we not the parameters of distribution. Hence, use sample to estimate the parameters.

Single Random Sample

• Simple Random Sample (SRS): Sample of size n. Every subset of n observations (total $\binom{N}{n}$) equal chance of selection.

SRS for Infinite Population

- For X be RV with certain p.f. $f_X(x)$:
- Let X_1, X_2, \dots, X_n be n independent RV with same distribution as X. Then X_1, \dots, X_n is a **simple random sample** of size n.
- Joint probability function of X_1, \dots, X_n : (product)

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n) = f_X(x_1)f_X(x_2)\dots f_X(x_n)$$

Sampling with Replacement (as Infinite)

- **Sampling with replacement** from finite population is considered as sampling from **infinite population**.
- Sample is random if:
 - Every element in population has same probability
 - Successive draws are independent

Sample Distribution of Sample Mean

- Statistic: Suppose random sample of n observations is X_1, \dots, X_n . A statistic is a function of X_1, \dots, X_n
- Sample Mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• Sample Variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• Statistics are random variables. If values in random sample observed, calculate realization of the statistic. Meaningful to consider distribution of statistics.

Sampling Distribution

Distribution of a statistic

• Mean and variance of \bar{X} :

$$E(\bar{X}) = \mu$$
 and $V(\bar{X}) = \frac{\sigma_X^2}{n}$

 μ_X is unknown constant. \bar{X} serves as valid estimator for μ_X . As n increases, accuracy of \bar{X} increases.

- Standard Error: Standard deviation of sampling distribution (e.g. $\sigma_{\bar{X}}$), describes how much \bar{X} tends to vary from sample to sample of size n.
- Law of Large Numbers: As n increases, \bar{X} converges to μ_X . i.e. For any $\epsilon \in \mathbb{R}$:

$$P(|\bar{X} - \mu| > \epsilon) \to 0 \text{ as } n \to \infty$$

As n increases, probability that sample mean differs from population mean goes to zero.

Central Limit Theorem

 \bar{X} , mean of random sample of size n from population with mean μ and variance σ^2 , then as $n \to \infty$:

$$ar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 approximately

- For large n, \bar{X} is approximately normally distributed.
- If random sample is from normal population, \bar{X} is normally distributed no matter value of n
- \bullet If very skewed, CLT may not hold even with large n.

Other Sampling Distributions

$\chi^2(n)$ (Chi) Distribution

- Let Z_1, \dots, Z_n be n independent and identically distributed standard normal RVs.
- A χ^2 RV with n degrees of freedom is defined as a RV with same distribution as $Z_1^2 + \cdots + Z_n^2$
- Notation: $\chi^2(n)$ with n degrees of freedom
- If $Y \sim \chi^2(n)$, then E(Y) = n and V(Y) = 2n
- For large $n, \chi^2(n)$ is approximately N(n, 2n)
- If Y_1 and Y_2 are independent χ^2 RVs with m and n degrees of freedom respectively, then $Y_1 + Y_2$ is $\chi^2(m+n)$
- χ^2 distribution is a family of curves. All density functions have long right tail.

Sampling Distribution of S^2

• $E(S^2) = \sigma^2$

Sampling Distribution of $\frac{(n-1)S^2}{\sigma^2}$

If S^2 is variance of random sample of size n from normal population of variance σ^2 , then:

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2}$$

has $\chi^2(n-1)$ distribution

Suppose 6 random samples are drawn from a normal population $N(\mu,4)$. Define the sample variance

$$S^{2} = \frac{1}{5} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

Find *c* such that $P(S^2 > c) = 0.05$.

Solution: We know that $\frac{5S^2}{4} \sim \chi^2(5)$. Hence,

$$P(S^2 > c) = 0.05$$

 $\Leftrightarrow P(5S^2/4 > 5c/4) = 0.05$
 $\Leftrightarrow 5c/4 = \chi^2(5; 0.05) = 11.07$
 $\Leftrightarrow c = 8.86.$

t-Distribution t(n)

Suppose $Z \sim N(0,1), U \sim \chi^2(n)$. If Z, U independent:

$$T = \frac{Z}{\sqrt{U/n}} \sim t(n)$$

where t(n) is t-distribution with n degrees of freedom

- t-Distribution approaches N(0,1) as $n \to \infty$. When $n \ge 30$, t-dist approx normal, replace by N(0,1).
- Expectation, Variance: If $T \sim t(n)$, then E(T) = 0 and $V(T) = \frac{n}{n-2}$ for n > 2
- Symmetric about vertical axis and resembles standard normal distribution
- Critical value for t-distribution $t_{n;\alpha}$: number with right hand tail probability of α .

• If X_1, \dots, X_n are independent and identically distributed normal RVs with mean μ and variance σ^2 , then:

$$t.value = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

i.e. follows t distribution with n-1 degrees of freedom.

L-EXAMPLE 5.12

A manufacturer of light bulbs claims that his light bulbs will burn on the average $\mu=500$ hours. To maintain this average, he tests 25 bulbs each month.

If the computed t value, $\frac{x-\mu}{s/\pi}$, falls between $-t_{24;0.05}$ and $t_{24;0.05}$, he is satisfied with his claim.

What conclusion should be drawn from a sample that has a mean \equiv 518 hours and a standard deviation s = 40 hours? Assume that the distribution of burning times in hours is approximately normal.

Solution:

From the *t*-table or software, $t_{24:0.05} = 1.711$.

Therefore, the manufacturer is satisfied with his claim if a sample of 25 bulbs yields a t-value between -1.711 and 1.711.

If
$$\mu = 500$$
, then

$$t = \frac{518 - 500}{40/5} = 2.25 > 1.711.$$

Note that if $\mu > 500$, then the value of t computed from the sample would be more reasonable. Hence the manufacturer is likely to conclude that his bulbs are a better product than he thought.

F-Distribution F(m, n)

Suppose $U \sim \chi^2(m)$ and $V \sim \chi^2(n)$ independent:

$$F = \frac{U/m}{V/m} \sim F(m, n)$$

i.e. F-distribution with (m, n) degrees of freedom

• If $X \sim F(m, n)$, then **mean**:

$$E(X) = \frac{n}{n-2} \text{ for } n > 2$$

and variance:

$$V(X) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} \text{ for } n > 4$$

Values of the F-distribution can be found in the statistical tables or software.
 The values of interests are F(m,n; α) such that

$$P(F > F(m, n; \alpha)) = \alpha,$$

where $F \sim F(m, n)$.

· It can be shown that

$$F(m, n; 1 - \alpha) = 1/F(n, m; \alpha).$$

• If $F \sim F(m, n)$, then $1/F \sim F(n, m)$

L-EXAMPLE 5.15

Let S_1^2 and S_2^2 be the sample variances of independent random samples of sizes $n_1 = 25$ and $n_2 = 31$, taken from normal populations with variances $\sigma_1^2 = 10$ and $\sigma_2^2 = 15$ respectively. Find $P(S_1^2/S_2^2 > 1.26)$.

Solution:

Note that

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$$

which gives

$$\frac{S_1^2/10}{S_2^2/15} \sim F(24,30).$$

Thus

$$P\left(\frac{S_1^2}{S_2^2} > 1.26\right) = P\left(\frac{S_1^2/10}{S_2^2/15} > 1.26 \times \frac{15}{10}\right)$$
$$= P(F > 1.89) = 0.05.$$

Note that here $F \sim F(24,30)$.

06. Estimation

Two types of estimation (of population parameters):

- **Point estimation**: single number calculated to estimate, called point estimator)
- **Interval Estimation**: two numbers calculated to form an interval which the parameter is expected to lie.

Notation

- Estimator: An estimator is a rule (usually expressed as a formula) that tells us how to calculate an estimate based on info in sample.
- Estimate: Result of Estimator.
- **Concern**: How good is estimator? Criteria for good estimator?
- **Notation**: θ represents parameter of interest. θ can be p, μ, σ , etc.

Point Estimation

Unbiased Estimator

Let $\hat{\theta}$ be an estimator of θ . Then $\hat{\theta}$ is unbiased if:

$$E(\hat{\theta}) = \theta$$

• This means, unbiased estimator has mean value equals to the true value of the parameter.

Example

- Let $X_1, ..., X_n$ be random sample from same population with mean μ and variance σ^2 . Then, S^2 (sample variance, see formula in sampling), is an **unbiased estimator** of σ^2 as $E(S^2) = \sigma^2$.
- Sample mean \bar{X} also U.E. for mean μ .

Error of Estimate

As typically $\bar{X} \neq \mu$ (estimator \neq true value). We make use of $\bar{X} - \mu$ to measure difference between estimator and true value of parameter.

Recall if population normal or sufficiently large, $\frac{X-\mu}{\sigma/\sqrt{n}}$ follows (approx) standard normal distribution.

Let \bar{X} follow Std. Normal Distribution:

• Let z_{α} be α th upper quantile of standard normal distribution Z. i.e. $P(Z > z_{\alpha}) = \alpha$.

Define z_{α} to be the number with an upper-tail probability of α for the standard normal distribution Z. That is, $P(Z>z_{\alpha})=\alpha$.

Then, we have

$$P(-z_{\alpha/2} \leq \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2})$$

$$= P(|\bar{X} - \mu| \leq z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}})$$

$$= 1 - \alpha$$
 density function of Z

Hence

Error $|\bar{X} - \mu|$ is less than $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ with probability 1 - α .

Maximum Error of Estimate

• Given probability $1 - \alpha$: (vary α as desired)

$$E_{max} = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Determination of Sample Size (so Error $\leq E_0$)

Minimum sample size n we can have, given probability $1 - \alpha$, so that maximum error is E:

$$n \ge (\frac{z_{\alpha/2}\sigma}{E})^2$$

Different Cases for Max Error & Min Sample Size

	Population	σ	n	Statistic	E	n for desired E_0 and α
I	Normal	known	any	$Z = rac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot \sigma}{E_0}\right)^2$
П	any	known	large	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2}\cdot\boldsymbol{\sigma}}{E_0}\right)^2$
Ш	Normal	unknown	small	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$t_{n-1;\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$\left(\frac{t_{n-1;\alpha/2}\cdot s}{E_0}\right)^2$
IV	any	unknown	large	$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot s}{E_0}\right)^2$

Interval Estimation

- **Interval Estimator:** rule for calculating from a sample an interval (a, b) in which parameter lies.
- Confidence Level: Degree of confidence. Confidence level $(1-\alpha)$, or the probability that interval contains parameter. i.e. $P=(1-\alpha)$

$$P(a < \mu < b) = 1 - \alpha$$

• Confidence Interval: Interval calculated by interval estimator. i.e. (a,b) is called the $(1-\alpha)$ confidence interval.

Case 1: σ known, data normal

Previously:

$$P(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{a/2}) = 1 - \alpha$$

By rearranging, the $(1 - \alpha)$ confidence interval (a, b) is:

$$(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$$

Other Cases of Confidence Interval for Pop. Mean

Case	Population	σ	n	Confidence Interval
I	Normal	known	any	$\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$
II	any	known	large	$\overline{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$
III	Normal	unknown	small	$\bar{x} \pm t_{n-1;\alpha/2} \cdot s / \sqrt{n}$
IV	any	unknown	large	$\bar{x} \pm z_{\alpha/2} \cdot s/\sqrt{n}$

• n is considered large when $n \geq 30$

Interpreting Confidence Intervals

- We calculate that $X \pm E$ has probability (1α) of containing μ .
- The probability is a **statement about the procedure** by which we compute the interval the interval estimator.
- Each time we take a sample, and go through this construction, we get a different confidence interval.
 Sometimes we get a confidence interval that contains μ, and sometimes we get one not containing μ.
- Once an interval is computed, mu is either in it or not. There is no more randomness.
- Since μ is typically not known, no way to determine if true parameter in interval. **Confidence is in the method used**. If we repeat procedure of taking sample and computing confidence interval, about $(1-\alpha)$ of confidence intervals will contain the true parameter.

Comparing 2 Populations

We may want to compare the means of two populations, i.e. make statistical inference on $\mu_1 - \mu_2$.

Experimental Design

To compare, we need to take a number of observations from each population. Exp. design is manner in which samples collected from populations.

- Independent Samples: Completely randomized
- Matched Pairs Samples: Randomization btwn. matched pairs

Independent Samples (Known, Unequal Variance)

For: Random sample of size n_1 from population 1 with μ_1 and σ^2 and random sample of size n_2 from population 2 with μ_2 and σ^2 . We define $\delta = \mu_1 - \mu_2$.

Conditions:

- 1. 2 Samples are independent
- 2. Population variances are **known and not same**: $\sigma_1^2 \neq \sigma_2^2$
- 3. Both populations are normal OR $n_1 \geq 30$ and $n_2 \geq 30$ Let X_1, \cdots, X_{n_1} and Y_1, \cdots, Y_{n_2} be random samples, **then**:

$$E(\bar{X}) = \mu_1$$
, $V(\bar{X}) = \frac{\sigma_1^2}{n_1}$, $E(\bar{Y}) = \mu_2$, $V(\bar{Y}) = \frac{\sigma_2^2}{n_2}$

$$E(\bar{X} - \bar{Y}) = \mu_1 - \mu_2, V(\bar{X} - \bar{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

Thus, by normalizing RV $(\bar{X} - \bar{Y})$ and using assumption 3:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Thus, the $100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is:

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Independent Samples (Unknown, Unequal Variance)

For: Random sample of size n_1 from population 1 with μ_1 and σ^2 and random sample of size n_2 from population 2 with μ_2 and σ^2 , where:

- 1. 2 samples are independent, $n_1 \ge 30$ and $n_2 \ge 30$
- 2. Population variances are unknown and unequal $\sigma_1^2 \neq \sigma_2^2$. Since σ_1 and σ_2 unknown, we use standard error:

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$$
, $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$

Thus, by normalizing RV $\bar{X} - \bar{Y}$ and using assumption 1:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$$

Thus, the $100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is:

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

Indpt. Samples (Small *n***, Equal Unknown Variance)**

For: Random sample of size n_1 from population 1 with μ_1 and σ^2 and random sample of size n_2 from population 2 with μ_2 and σ^2 .

where:

- 1. 2 samples are independent, $n_1 < 30$ and $n_2 < 30$.
- 2. Population variances are unknown but equal: $(\sigma_1^2 = \sigma_2^2)$
- 3. Both populations are **normally distributed**

Thus, by normalizing RV $\bar{X}-\bar{Y}$ and using cond. 1 and 3, and using pooled estimator to estimate σ^2 better:

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

where S_p is the pooled sample variance and $S_1^2 \& S_2^2$ are sample variances of samples:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Thus, the $100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is:

$$(\bar{X} - \bar{Y}) \pm t_{n_1 + n_2 - 2; \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Indpt. Samples (Large *n***, Equal Unknown Variance)**

Since n is large, we can replace $t_{n_1+n_2-2;\alpha/2}$ with $z_{\alpha/2}$ in the previous formula.

For: Random sample of size n_1 from population 1 with μ_1 and σ^2 and random sample of size n_2 from population 2 with μ_2 and σ^2 , where:

- 1. 2 samples are independent, $n_1 \ge 30$ and $n_2 \ge 30$
- 2. Population variances unknown but equal: $\sigma_1^2 = \sigma_2^2$

By applying CLT on large n, replace $t_{n_1+n_2-2;\alpha/2}$ with $z_{\alpha/2}$. Thus, the $100(1-\alpha)\%$ **confidence interval** for $(\mu_1-\mu_2)$ is:

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Paired Data

In cases where it makes sense to take matched data instead of independent samples (e.g. couple income, each couple independent of other couples).

For: $(X_1, Y_1), \dots, (X_n, Y_n)$ are matched pairs, where X_1, \dots, X_n is random sample from population 1 and Y_1, \dots, Y_n is random sample from population 2.

where:

- 1. X_i and Y_i are dependent (within pair),
- 2. (X_i, Y_i) and (X_i, Y_i) are independent for any $i \neq j$.
- 3. For matched pairs, we define $D_i = X_i Y_i$, and $\mu_D = \mu_1 \mu_2$.
- 4. We can now treat D_1, \dots, D_n as random sample from a single population with μ_D and σ_D^2 .

All techniques derived for single population can be used:

Consider the statistic:

$$T = rac{ar{D} - \mu_D}{S_D/\sqrt{n}}, ext{ where } ar{D} = rac{\sum_{i=1}^n D_i}{n} ext{ and }$$

$$S_D^2 = \frac{\sum_{i=1}^n (D_i - \bar{D})^2}{n-1}$$

If n < 30 and population is normally distributed:

$$T \sim t_{n-1}$$

Thus, if n < 30 and the population is normally distributed, the $100(1-\alpha)\%$ confidence interval for μ_D is:

$$\bar{d} \pm t_{n-1;\alpha/2} \frac{S_D}{\sqrt{n}}$$

Else, if $n \geq 30$:

$$T \sim N(0,1)$$

Thus, if $n \geq 30$, the $100(1-\alpha)\%$ confidence interval for μ_D is:

$$\bar{d} \pm z_{\alpha/2} \frac{S_D}{\sqrt{n}}$$

07. Hypothesis Testing

Both null and alternative hypothesis are statements about a population. Outcome of hypo. testing is to either **reject or fail to reject** the null hypothesis.

Steps for Hypothesis Testing

Step 1: Null Hypothesis and Alternative Hypothesis

- Null Hypothesis H_0 : Parameter takes some value
- Alternative Hypothesis H_1 : Parameter falls in alt. range
- Often, let hypothesis we want to prove be alt. hypothesis, as it states null hypothesis is false, often in a particular way.
- 2-Sided Test: If H_1 is "Parameter $\neq H_0$ value"
- **Right-Sided Test:** If H_1 is "Parameter is $> H_0$ value"
- Left-Sided Test: If H_1 is "Parameter is $< H_0$ value"

Step 2: Level of Significance

	Do not reject H_0	Reject H ₀
H_0 is true	Correct Decision	Type I error
H_0 is false	Type II error	Correct Decision

• Level of Significance: α , Probability of making type I error, rejecting H_0 when it is true. i.e.

$$\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 | H_0 \text{ is true})$$

As type I is serious error, set small α , e.g. $\alpha=0.05,0.01$ Let

 $\beta = P(\text{Type II error} = P(\text{Do Not Reject } H_0 | H_0 \text{ is false}))$

• Power of the Test: $(1 - \beta) = P(\text{Reject } H_0 | H_0 \text{ is false})$

Step 3: Identify Test Statistic, its Distribution, and the Rejection Region / criteria

- Test Statistic: quantify how unlikely to observe sample, assuming null hypothesis H_0 is true.
- At significance level α , decision rule can found, divides set of possible values of test statistic into rejection (critical) region and acceptance region.

Step 4: Calculation & Conclusion

Given test statistic, determine if it is in the rejection region:

- If yes, sample too improbable, **reject** H_0 , fail to reject H_1
- Otherwise, do not reject H_0 , fall back to og. assumption.

Hypotheses for testing Popln. Mean

Case 1: Known Variance

Given that population variance σ^2 is known and underlying distribution is normal OR $n \geq 30$.

Steps:

1. Set null and alternative hypotheses. e.g.

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$$

- 2. Set level of significance (e.g. $\alpha = 0.05$)
- 3. With σ^2 known and population normal (or $n \ge 30$), the test statistic is (assume H_0 true):

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Rejection region, where we let observed value of Z be z:

- $H_1: \mu \neq \mu_0: z < -z_{\alpha/2} \text{ or } z > z_{\alpha/2}$
- $H_1: \mu < \mu_0: z < -z_{\alpha}$
- $H_1: \mu > \mu_0: z > z_{\alpha}$

- **p-Value:** Conditional probability that test statistic as extreme as observed value, given H_0 true.
- $H_1: \mu \neq \mu_0: p = 2P(Z < -|z|)$
- $H_1: \mu < \mu_0: p = P(Z < -|z|)$
- $H_1: \mu > \mu_0: p = P(Z > |z|)$

- 4. **Rejection region:** If z is inside rejection region, reject H_0 . Otherwise do not reject.
 - **p-Value**: If p is less than α , reject H_0 . Otherwise do not reject.

Case 2: Unknown Variance

Given that:

- 1. Population variance is unknown
- 2. Underlying distribution is normal
- Test statistic:

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$

- Rejection region:
 - $-H_1: \mu \neq \mu_0: t < -t_{n-1;\alpha/2} \text{ or } t > t_{n-1;\alpha/2}$
 - $-H_1: \mu < \mu_0: t < -t_{n-1:\alpha}$
 - $-H_1: \mu > \mu_0: t > t_{n-1;\alpha}$
- When $n \geq 30$, we can replace t_{n-1} by Z

Two-sided Tests & Confidence Intervals

The **two-sided hypothesis test** procedure is equivalent to finding a $100(1-\alpha)\%$ **confidence interval** for μ .

- When confidence interval contains μ_0 , H_0 will not be rejected at level α .
- Similarly, when confidence interval does not contain μ , then t falls within rejection region and so H_0 will be rejected.

Comparing Means: Independent Samples

 Given 2 independent samples from 2 populations, interested in testing

$$H_0: \mu_1 - \mu_2 = \delta_0$$

against a suitable alternative hypothesis.

Rejection Regions and p-Values

H_1	Rejection Region	<i>p</i> -value
$\mu_1 - \mu_2 > \delta_0$	$z > z_{\alpha}$	P(Z> z)
$\mu_1 - \mu_2 < \delta_0$	$z < -z_{\alpha}$	P(Z<- z)
$\mu_1 - \mu_2 \neq \delta_0$	$z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$	2P(Z> z)

Case 1: Known Variance

Consider case where:

- 1. Population variances are known
- 2. Underlying distributions are normal OR $n_1 \ge 30$ and $n_2 \ge 30$
- Test statistic:

$$Z = \frac{(\bar{X} - \bar{Y}) - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Case 2: Unknown Variance

Consider case where:

- 1. Population variances are unknown
- 2. $n_1 \ge 30$ and $n_2 \ge 30$
- Test statistic:

$$Z = \frac{(\bar{X} - \bar{Y}) - \delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$$

Case 3: Unknown but Equal Variance

Consider case where:

- 1. Population variances are unknown but equal
- 2. Underlying distributions are normal
- 3. $n_1 < 30$ and $n_2 < 30$
- Test statistic:

$$Z = \frac{(\bar{X} - \bar{Y}) - \delta_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

Comparing Means: Paired Data

- Obtain difference, then use methods from single samples.
- Define

$$D_i = X_i - Y_i.$$

• For $H_0: \mu_D = \mu_{D_0}$, test statistic:

$$T = \frac{\bar{D} - \mu_{D_0}}{S_D / \sqrt{n}}$$

– If n < 30 and population is normally distributed,

$$T \sim t_{n-1}$$

- If
$$n ≥ 30, T \sim N(0, 1)$$

08. Additional Formulae & Misc

Integration by Parts

$$\int udv = uv - \int vdu$$

• How to choose u? LIPET

Geometric Series

$$s_n = ar^0 + ar^1 + \cdots + ar^{n-1}, \ rs_n = ar^1 + ar^2 + \cdots + ar^n, \ s_n - rs_n = ar^0 - ar^n, \ s_n \left(1 - r\right) = a \left(1 - r^n\right), \ s_n = a \left(rac{1 - r^n}{1 - r}\right), ext{ for } r
eq 1.$$