

ສາທາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊົນລາວ ສັນຕິພາບ ເອກະລາດ ປະຊາທິປະໄຕ ເອກະພາບ ວັດທະນະຖາວອນ

-----000-----

ກະຊວງສຶກສາທິການ ແລະ ກິລາ ກົມມັດທະຍົມສຶກສາ

ຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮູນເກັ່ງ ຊັ້ນມັດທະຍົມສຶກສາຕອນປາຍ ລະດັບຊາດ ປະຈຳສົກຮູນ 2015-2016

ວິຊາ ຄະນິດສາດ

ເວລາ: 120 ນາທີ

- 1. ຈົ່ງພິສູດວ່າພະຫຸພົດ $P(x) = x^{n+1} x^n x + 1$ ຫານຂາດໃຫ້ $(x-1)^2$
- 2. ຈົ່ງຄິດໄລ່ຜົນບວກ $S = \sum_{i=0}^{101} \frac{x_i^3}{1 3x_i + 3x_i^2}$, ດ້ວຍ $x_i = \frac{i}{101}$
- 3. ຈົ່ງພິສູດວ່າສົມຜົນ: $x^2\cos x + x\sin x = -1$ ມີຢ່າງໜ້ອຍໜຶ່ງໃຈຜົນໃນ R
- 4. ຈົ່ງຊອກຫາຄ່າຂອງ x ຈາກອັນດັບທະວີບວກ: 1, 4, 7,... ຮູ້ວ່າ: (x+1)+(x+4)+...+(x+28)=155
- 5. ໃຫ້ a,b,c,d ເປັນອັດຕາສ່ວນກົງກັບ A,B,C,D ຕາມລຳດັບ. ຈົ່ງພິສູດວ່າ: $\sqrt{aA} + \sqrt{bB} + \sqrt{cC} + \sqrt{dD} = \sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}$
- 6. ໃຫ້ກຸ່ມ A,B,C,D ແລະ E ຈົ່ງຄັດຈ້ອນກຸ່ມ: $(A\cap B)\cap (C\cap D)\cap (B\cup E)'$
- ຈົ່ງຊອກຫາທຸກອັນດັບທະວີຄູນທີ່ມີ 7 ພົດ; ແຕ່ລະພົດເປັນຈຳນວນຈິງ ເມື່ອຮູ້ວ່າ ຜົນບວກ
 ຂອງສາມພົດທຳອິດເທົ່າກັບ 2 ແລະ ຜົນບວກຂອງສາມພົດສຸດທ້າຍເທົ່າກັບ 1250.
- 8. ໃຫ້ a,b,c ແມ່ນລວງຍາວຂອງບັນດາຂ້າງ ແລະ S ແມ່ນເນື້ອທີ່ຂອງຮູບສາມແຈ ABC . ຈົ່ງພິສູດວ່າ: $cotanA + cotanB + cotanC = \frac{a^2 + b^2 + c^2}{4S}$

ຄະນະກຳມະການອອກຫົວບົດ

ສາທາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊົນລາວ

ສັນຕິພາບ ເອກະລາດ ປະຊາທິປະໄຕ ເອກະພາບ ວັດທະນາຖາວອນ

---==000==---

ກະຊວງສຶກສາທິການ ແລະ ກິລາ ກົມມັດທະຍົມສຶກສາ

ຂະໜານຕອບຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮູງນເກັ່ງຊັ້ນມັດທະຍົມສຶກສາຕອນປາຍ ລະດັບຊາດປະຈຳສົກຮູງນ 2015-2016

ວິຊາ ຄະນິດສາດ

ເວລາ: 120 ນາທີ

ຂໍ້	ຄຳຕອບ	ຄະແນນ
1	ຈິ່ງພິສຸດວ່າພະຫຸພິດ $P(x) = x^{n+1} - x^n - x + 1$ ຫານຂາດໃຫ້ $(x-1)^2$	
	$P(x) = x^{n+1} - x^n - x + 1$	0,5
	$=x^{n}(x-1)-(x-1)$	
	$=(x-1)(x^{n}-1)$	
	$= (x-1)^{2} (x^{n-1} - x^{n-2} + x^{n-3} - \dots - 1)$	0,5
	ດັ່ງນັ້ນ, $P(x) = x^{n+1} - x^n - x + 1$ ຫານຂາດໃຫ້ $(x-1)^2$	
2	ຈິ່ງຄິດໄລ່ຜີນບວກ $S=\sum_{i=0}^{101}rac{x_i^3}{1-3x_i+3x_i^2}$, ດ້ວຍ $x_i=rac{i}{101}$	
	$S = \sum_{i=0}^{101} \frac{\left(\frac{i}{101}\right)^3}{1 - 3\left(\frac{i}{101}\right) + 3\left(\frac{i}{101}\right)^2} = \sum_{i=0}^{101} \frac{i^3}{101^3 - 3(102)^2 i + 3(101) i^2} = \sum_{i=0}^{101} \frac{i^3}{(101 - i)^3 + i^3}$	0,5
	$= \frac{1^{3}}{100^{3} + 1^{3}} + \frac{2^{3}}{99^{3} + 2^{3}} + \dots + \frac{50^{3}}{51^{3} + 50^{3}} + \frac{51^{3}}{50^{3} + 51^{3}} + \dots + \frac{99^{3}}{2^{3} + 99^{3}} + \frac{100^{3}}{1^{3} + 100^{3}} + 1$ $= (\frac{1^{3}}{100^{3} + 1^{3}} + \frac{100^{3}}{1^{3} + 100^{3}}) + (\frac{2^{3}}{99^{3} + 2^{3}} + \frac{99^{3}}{2^{3} + 99^{3}}) + \dots + (\frac{50^{3}}{51^{3} + 50^{3}} + \frac{51^{3}}{50^{3} + 51^{3}}) = 51$	0,5
	$=(\frac{1^3}{100^3+1^3}+\frac{100^3}{1^3+100^3})+(\frac{2^3}{99^3+2^3}+\frac{99^3}{2^3+99^3})++(\frac{50^3}{51^3+50^3}+\frac{51^3}{50^3+51^3})=51$	0,5
3	ຈົ່ງພິສູດວ່າ ສີມຜົນ: $\mathbf{x}^2\mathbf{cosx} + \mathbf{xsinx} = -1$ ມີຢ່າງໜ້ອຍໜຶ່ງໃຈຜົນໃນ \mathbf{R}	
	ໃຫ້ຕຳລາ $f(x) = x^2 \cos x + x \sin x + 1$ ເຫັນວ່າ $f(0) = 1 > 0$	0,5
	$f(\pi) = -\pi^2 + 1 < 0$	
	${f f}$ ເປັນຕຳລາທີ່ກຳນົດ ແລະ ຕໍ່ເນື່ອງໃນ ${f R}$; ສະນັ້ນ ${f f}$ ກໍ່ຕໍ່ເນື່ອງໃນຫວ່າງ $[{f 0};\pi]$ ເຫັນວ່າ	0,5

	$0 \in \left[\mathbf{f}(\pi); \mathbf{f}(0) ight]$ ສະນັ້ນ; ສີມຜົນ $\mathbf{x}^2 \mathbf{cosx} + \mathbf{xsinx} = -1$ ຈິ່ງມີຢ່າງໜ້ອຍໜື່ງໃຈຜົນໃນ \mathbf{R}	
4	ຈົ່ງຊອກຫາຄ່າຂອງ x ຈາກອັນດັບຫະວີບວກ: 1, 4, 7, ເມື່ອຮູ້ $(x+1)+(x+4)++(x+28)=155$	
	ນຳໃຊ້ສູດພົດທົ່ວໄປຂອງອັນດັບທະວີບວກ $\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{\mathbf{i}} + (\mathbf{n} - 1)\mathbf{d}$	0,5
	ເຮົາມີ: x+28 = x+1+(n-1)d	
	x+28=x+1+(n-1)3	
	ຖອນໄດ້ n=10	
	ແລະຈາກ $S_n = \frac{n(a_1 + a_n)}{2}$	0,5
	ເຮົາມີ $155 = \frac{10(2x+29)}{2} \Leftrightarrow 20x+290 = 310$	
	ຖອນໄດ້ x=1	
5	ໃຫ້ a,b,c,d ເປັນອັດຕາສ່ວນກົງກັບ A,B,C,D ຕາມລຳດັບ. ຈົ່ງພິສຸດວ່າ:	
	$\sqrt{\mathbf{a}\mathbf{A}} + \sqrt{\mathbf{b}\mathbf{B}} + \sqrt{\mathbf{c}\mathbf{C}} + \sqrt{\mathbf{d}\mathbf{D}} = \sqrt{(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d})(\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D})}$	
	ເຮົາມີ $\frac{a}{A} = \frac{b}{B} = \frac{c}{C} = \frac{d}{D} = \frac{a+b+c+d}{A+B+C+D} = k$	0,5
	ຖອນໄດ້ a = k.A , b = k.B , c = k.C , d = k.D	
	ເອົາແທນເຂົ້າ: $\sqrt{aA} + \sqrt{bB} + \sqrt{cC} + \sqrt{dD}$	0,5
	ເຮົາໄດ້: $= \sqrt{\mathbf{k}\mathbf{A}^2} + \sqrt{\mathbf{k}\mathbf{B}^2} + \sqrt{\mathbf{k}\mathbf{C}^2} + \sqrt{\mathbf{k}\mathbf{D}^2}$	
	$= \sqrt{\mathbf{k} \left(\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D} \right)^2}$	
	$= \sqrt{\frac{(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})}{\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{D}}(\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{D})^2}$	0,5
	$=\sqrt{(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})(\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{D})}$	
	ດັ່ງນັ້ນ: $\sqrt{aA} + \sqrt{bB} + \sqrt{cC} + \sqrt{dD} = \sqrt{(a+b+c+d)(A+B+C+D)}$	
6	ໃຫ້ກຸ່ມ ${f A},{f B},{f C},{f D}$ ແລະ E ຈຶ່ງຄັດຈ້ອນກຸ່ມ: $({f A}\cap {f B})\cap ({f C}\cap {f D})\cap ({f B}\cup {f E})'$	
	$(\mathbf{A} \cap \mathbf{B}) \cap (\mathbf{C} \cap \mathbf{D}) \cap (\mathbf{B} \cup \mathbf{E})'$	1
	$\equiv (\mathbf{A} \cap \mathbf{B}) \cap (\mathbf{C} \cap \mathbf{D}) \cap (\mathbf{B}' \cap \mathbf{E}')$	
	$\equiv \mathbf{A} \cap \mathbf{B} \cap \mathbf{C} \cap \mathbf{D} \cap \mathbf{B}' \cap \mathbf{E}'$	
	$\equiv (\mathbf{B} \cap \mathbf{B}') \cap (\mathbf{A} \cap \mathbf{C} \cap \mathbf{D} \cap \mathbf{E}') \equiv \emptyset$	
7	ຈິ່ງຊອກຫາທຸກອັນດັບທະວີຄຸນທີ່ມີ 7 ພິດ; ແຕ່ລະພົດເປັນຈຳນວນຈິງ ເມື່ອຮູ້ວ່າ ຜົນບວກຂອງສາມ ພິດທຳອິດເທົ່າກັບ 2 ແລະ ຜົນບວກຂອງສາມສຸດທ້າຍເທົ່າກັບ 1250.	
	ເອີ້ນ: $a_1;\ a_2;\ldots;\ a_7$ ເປັນພຶດຂອງອັນດັບທີ່ຊອກຫາ	0,5
	เร็ามี: $a_1 + a_2 + a_3 = 2$	

	ເຮົາໄດ້: $a_1(1+r+r^2)=2(1)$	
	เร็ามี: $a_5 + a_6 + a_7 = 1250$	
	ເຮົາໄດ້: $\mathbf{a}_1 \left(\mathbf{r}^4 + \mathbf{r}^5 + \mathbf{r}^6 \right) = 1250(2)$	
	ເອົາ $(2)\div(1)$ ເຮົາໄດ້: $\mathbf{r}^4=625\Rightarrow\mathbf{r}=\pm 5$	0,5
	- ເອົາ ${f r}=5$ ແທນໃສ່ ${f (1)}$ ເຮົາໄດ້: ${f a}_1=rac{2}{31}$	
	- ເອົາ $r=-5$ ແທນໃສ່ (1) ເຮົາໄດ້: $a_1=rac{2}{21}$	
	ອັນດັບທີ່ຊອກແມ່ນ:	
	$\bullet \frac{2}{31}; \frac{10}{31}; \frac{50}{31}; \frac{250}{31}; \frac{1250}{31}; \frac{6250}{31}; \frac{31250}{31}$	
	• $\frac{2}{21}$; $-\frac{10}{21}$; $\frac{50}{21}$; $-\frac{250}{21}$; $\frac{1250}{21}$; $-\frac{6250}{21}$; $\frac{31250}{21}$	
8	ໃຫ້ $\mathbf{a},\mathbf{b},\mathbf{c}$ ແມ່ນລວງຍາວຂອງບັນດາຂ້າງ ແລະ S ແມ່ນເນື້ອທີ່ ຂອງຮູບສາມແຈ ABC .	
	ຈົ່ງພິສູດວ່າ: $\cot A + \cot B + \cot C = \frac{a^2 + b^2 + c^2}{4S}$	
	ອີງຕາມຫຼັກເກນໂກຊີນເຮົາມີ: $\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2 - 2\mathbf{b}\mathbf{c}\mathbf{c}\mathbf{o}\mathbf{s}\mathbf{A}$	0,5
	$=b^2+c^2-2bc\sin A\frac{\cos A}{\sin A}$	
	$= b^2 + c^2 - 4S\cot A \qquad (1) \text{ເພາະວ່າ } S = \frac{1}{2}bc\sin A$	
	ດ້ວຍວິທີດງວກັນນີ້ເຮົາກໍ່ຈະໄດ້: $b^2 = a^2 + c^2 - 4ScotanB$ (2)	0,5
	$c^2 = a^2 + b^2 - 4ScotanC \qquad (3)$	0,5
	ເອົາ $(1)+(2)+(3)$ ພາກຕໍ່ພາກເຮົາໄດ້:	0,5
	$a^{2} + b^{2} + c^{2} = 2(a^{2} + b^{2} + c^{2}) - 4S(cotanA + cotanB + cotanC)$	
	ຖອນໄດ້ cotanA + cotanB + cotanC = $\frac{a^2 + b^2 + c^2}{4S}$	