On the momentum term in gradient descent learning algorithms

Daniel Richards Ravi Arputharaj , Adhithyan Kalaivanan

KTH

Formulation

A cornerstone of deep learning is non-convex optimization, and gradient descent is often the preferred method. Conventionally, a "momentum" term is added in the parameter update, to improve convergence rate and prevent being trapped in local minima.

Figure 1. Effect of using momentum

An intuitive visual analogy is a ball rolling down the landscape of loss. Its inertia serves as an accelerator, helping speed of convergence.

Physical Analogy

Consider a point mass with mass m in a conservative force field with potential $\mathcal{E}(\mathbf{w})$ and friction coefficient μ [1]. The system is described by,

$$m\frac{d^2\mathbf{w}}{dt^2} + \mu \frac{d\mathbf{w}}{dt} = -\nabla_w \mathcal{E}(\mathbf{w})$$
 (2)

where \mathbf{w} is the coordinate vector of the particle. Discretizing and re-arranging,

$$\mathbf{w}_{t+\Delta t} - \mathbf{w}_t = -\frac{(\Delta t)^2}{m + \mu \Delta t} \nabla_w \mathcal{E}(\mathbf{w}) + \frac{m}{m + \mu \Delta t} (w_t - w_{t-\Delta t})$$
(3)

Comparing with equation 1, we see momentum term does act as inertia

$$\epsilon = \frac{(\Delta t)^2}{m + \mu \Delta t} \tag{4}$$

$$p = \frac{m}{m + \mu \Delta t} \tag{5}$$

Close to minima ₀, equation 2 is approximated by,

$$m\frac{d^2w}{dt^2} + \mu\frac{dw}{dt} = -\mathbf{H}(\mathbf{w} - \mathbf{w}_0) \tag{6}$$

where **H** is the Hessian matrix. As it is p.s.d. $\mathbf{H} = QKQ^T$, with $K = diag(k_i|i=1,2,3...n)$, where n is number of weights. Setting $\mathbf{w}' = Q^T\mathbf{w}$ then,

$$m\frac{d^2w_i'}{dt^2} + \mu\frac{dw_i'}{dt} = -k_iw_i' \tag{7}$$

which resembles a set of uncoupled damped harmonic oscillators.

Analysis

The general solution to equation 7 is given by

$$w_i'(t) = c_1 e^{\lambda_{i,1}t} + c_2 e^{\lambda_{i,2}t}$$

$$\lambda_{i,1,2} = -\frac{\mu}{2m} \pm \sqrt{\frac{\mu}{m} \left(\frac{\mu}{4m} - \frac{k_i}{\mu}\right)}$$
(8)

If there were no momentum, the solution is simply

$$w_i'(t) = c_0 e^{\lambda_{i,0} t}, \lambda_{i,0} = -k_i/\mu$$
 (9)

Observations:

- Convergence guaranteed: $Re(\lambda_{i,2}) \leq Re(\lambda_{i,1}) < 0$
- Momentum speed-up: $|Re(\lambda_{i,1})| > Re(|\lambda_{i,0}|)$, if and only if $k_i < \mu^2/2m$
- Setting $|Re(\lambda_{i,1})| := \alpha |Re(\lambda_{i,0})|$,

Figure 2. Speed-up provided by momentum

so momentum is most effective when $k_i = \mu^2/4m$, where speed up is doubled

Discrete Case

On discretization and approximating the gradient using the Hessian matrix,

$$w'_{i,t+1} = [(1+p)\mathcal{I} - \epsilon k_i]w'_{i,t} - pw'_{i,t-1}$$
(10)

Adding a dummy equation $w'_{i,t} = w'_{i,t}$, we get the following

$$\begin{pmatrix} w'_{i,t} \\ w'_{i,t+1} \end{pmatrix} = A^t \begin{pmatrix} w'_{i,0} \\ w'_{i,1} \end{pmatrix} \tag{11}$$

where $A = \begin{pmatrix} 0 & 1 \\ -p & 1 + p - \epsilon k_i \end{pmatrix}$, whose eigen values are given by

$$\lambda_{i,1,2} = \frac{1 + p - \epsilon k_i \pm \sqrt{(1 + p - \epsilon k_i)^2 - 4p}}{2} \tag{12}$$

Observations:

- For convergence, $\max(|\lambda_{i,1}|,|\lambda_{i,2}|)<1$ which happens if and only if -1< p<1 and $0<\epsilon k_i<2+2p$
- Without p=0, we have $0<\epsilon k_i<2$, thus momentum extends range of allowed epsilon, nearly doubles it.
- Compared to the continuous case, discrete system is guarenteed to converge only for some ϵ, k_i and p.
- For small ϵk_i , optimal momentum $p=(1-\sqrt{\epsilon k_i})^2$ and corresponding $\lambda_{i,1,2}=1-\sqrt{\epsilon k_i}<1-\epsilon k_i=\lambda_i,0$

Experiments

Consider an error function $\mathbf{w}^T A \mathbf{w}$ with $A = \begin{pmatrix} 3 & 0 \\ 0 & 30 \end{pmatrix}$. In the continuous time limit with $\mu = 4, m = 2$, and using large time step $\Delta t = 0.5$ in the discrete case

Figure 3. Continuous time

momentum improves convergence along the some directions.

Figure 4. Discrete time

momentum allows convergence with large time steps as expected.

References

[1] Ning Qian.

On the momentum term in gradient descent learning algorithms. *Neural Networks*, 12(1):145–151, 1999.