日 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出顧年月日 Date of Application:

2000年 4月21日

出願番

平成12年特許願第120976号

Application Number:

サントリー株式会社 人

出 Applicant(s):

> 2001年12月 6 日

特許庁長官 Commissioner, Japan Patent Office

【書類名】特許願

【整理番号】SN185

【あて先】特許庁長官殿

【発明者】

【住所又は居所】大阪府三島郡島本町若山台1丁目1番1号 サントリー株式会社研究センター内

【氏名】井本 昌宏

【発明者】

【住所又は居所】群馬県邑楽郡千代田町大字赤岩字くらかけ2716番地1 サントリー株式会社医薬センター内

【氏名】岩浪 辰也

【発明者】

【住所又は居所】大阪府三島郡島本町若山台1丁目1番1号 サントリー株式会社研究センター内

【氏名】赤羽 美奈子

【発明者】

【住所又は居所】大阪府三島郡島本町若山台1丁目1番1号 サントリー株式会社研究センター内

【氏名】谷 吉弘

【特許出願人】

【識別番号】000001904

【氏名又は名称】サントリー株式会社

【代理人】

【識別番号】100083301

【弁理士】

【氏名又は名称】草間 攻

【手数料の表示】

【予納台帳番号】053958

【納付金額】21,000

【提出物件の目録】

【物件名】明細書]

【物件名】要約書]

【包括委任状番号】9717858

【プルーフの要否】要

【書類名】

明細書

【発明の名称】

環状アミジン化合物

【特許請求の範囲】

【請求項1】 次の一般式(1):

【化1】

(中た)

A¹およびA²は、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基、または置換されていてもよい複素環基を表わし、

Xは、-C(R^1 , R^2)-C(R^3 , R^4)-、-C(R^5)=C(R^6)-、-C(R^7 , R^8)-C(R^9 , R^{10})-C(R^{11} , R^{12})-または-C(R^{13} , R^{14})-C(R^{15} , R^{16})-NH-(但し、 $R^1 \sim R^{16}$ は、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアリール基または置換されていてもよい複素環基を示す)を表わす}

で表わされる化合物またはその薬理学的に許容される塩。

【請求項2】 請求項1に記載の一般式(I)で表わされる以下の化合物またはその薬理学的に許容される塩:

2-(6-2ロロー3ーピリジル)-1, 4, 5, 6ーテトラヒドロピリミジン・

2-(6-クロロー3-ピリジル)-1-メチルー2-イミダゾリン;

2-(6-200-3-ピリジル)-1-メチルー1,4,5,6ーテトラヒドロピリミジン;

1-(6-クロロー3-ピリジル)メチルイミダゾール;

2-(6-クロロー3-ピリジル) イミダゾール;

2-(6-クロロー3-ピリジル) メチルー2-イミダゾリン;

- 2-(6-200-3-ピリジル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;
- 2-(6-クロロー3-ピリジル)メチルー1-メチルー2-イミダゾリン;
- ラヒドロピリミジン;
- 1-(6-クロロー3-ピリジル)メチルー2-メチルー2ーイミダゾリン;
- 1-(6-200-3-ピリジル) メチルー4, 4ージメチルー2ーイミダゾリン;
- 2-(テトラヒドロフランー3-4 n)-1 n4 n5 n6-テトラヒドロピリミジン;
- 2 (テトラヒドロフラン-3 イル) メチル-1, 4, 5, 6 テトラヒドロ ピリミジン;
- 2-(5-プロモー3-ピリジル) メチルー1, 4, 5, 6-テトラヒドロピリミジン:
- 2-(5-ブロモー3ーピリジル)メチルー2-イミダゾリン;
- $2 (3 r \leq 1) = 2 + (3 r$
- 2 (3 7) +
- 2-(2-2-7-5-4-7) (1) -1, 4, 5, 6-7トラヒドロピリミジン;
- 2 (3 +) +) + + + 2 4 = 9
- 2 (2 700 5 7770) 2 75770
- 2 (3 7 7 7 7)
- 1-(6-200-3-ピリジル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;
- 2-(3,5-ジメチル-4-イソオキサゾリル) メチル-1,4,5,6-テトラヒドロピリミジン;

- $5 (3 \forall \eta \forall \eta) 2 \forall \eta \forall \eta \gamma$;
- 1, 2-ビス [(6-クロロー3-ピリジル) メチル] -1, 4, 5, 6ーテトラヒドロピリミジン;
- 1-(6-200-3-ピリジル) メチルー2-(3-ピリジル) -2-イミダ ゾリン:
- 2-(5,6-ジクロロ-3-ピリジル) メチルー1,4,5,6-テトラヒドロピリミジン;
- 2-(6-2)00-3-ピリジル)メチル-5-71-スニル-11, 4, 5, 6-テトラヒドロピリミジン;

- 2-(2,6-ジクロロ-3-ピリジル) メチルー<math>1,4,5,6-テトラヒドロピリミジン;
- 2-[2-(6-)00-3-ピリジル) エチル] -1 , 4 , 5 , 6-テトラヒドロピリミジン;
- 2-(6-メチル-3-ピリジル) メチル-1, 4, 5, 6-テトラヒドロピリミジン;

- 2-(6-x)キシー3-ピッジル) メチルー1, 4, 5, 6-テトラヒドロピッミジン;

- 2-(5,6-i) 7-i 7-i

- 2-(6-200-3-ピリジル) メチルー5, 5-ジメチルー<math>1, 4, 5, 6ーテトラヒドロピリミジン;
- 1-(5,6-ジクロロー3-ピリジル) メチルー<math>1,4,5,6-テトラヒドロピリミジン;
- 2-(5,6-ジクロロ-3-ピリジル) メチルー<math>1-メチルー2-1ミダゾリン;
- $2-(6-2\pi\pi-3-3\pi)$ メチルー4-3 チルー1 , 4 , 5 , 6 ーテトラヒドロピリミジン;
- 1-[2-(6-2) 3 2] (0) エチル [-1, 4, 5, 6 7] トロピリミジン;
- 1-(3-ピリダジニル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;
- 1-(6-メチル-3-ピリジル) メチル-1, 4, 5, 6-テトラヒドロピリミジン;
- 1-(3-ピリジル) メチルー1 , 4 , 5 , 6-テトラヒドロピリミジン;
- 2-[1-(6-)222-3-222] -1,4,5,6-テトラヒドロピリミジン;
- 1-(2-2-1-5-4) アゾリル) メチルー1, 4, 5, 6-7トラヒドロピリミジン;
- 1-[2-(6-200-3-ピリジル) エチル] -2-メチルー2-イミダゾリン;
- 1-[2-(6-)22-3-22] エチル] -4 , 4-ジメチル-2-4 ミダゾリン;
- 2-(2-2-1-5-4-7) リスチルー1, 4, 5, 6-7トラヒドロピリミジン;
- 2-(5-ピリミジル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;

【請求項3】 請求項1または2に記載の化合物、またはその薬理学的に許容される塩を有効成分とする、ニコチン性アセチルコリン α 4 β 2受容体の活性化剤。

【請求項4】 ニコチン性アセチルコリン α 4 β 2受容体のアゴニストまたはモジュレーターであることを特徴とする、請求項3記載のニコチン性アセチルコリン α 4 β 2受容体の活性化剤。

【請求項5】 請求項3または4に記載のニコチン性アセチルコリンα4β 2受容体の活性化剤からなる、脳循環疾患の予防または治療薬。

【請求項6】 請求項3または4に記載のニコチン性アセチルコリン α 4 β 2 受容体の活性化剤からなる、神経変性性疾患、痴呆、運動失調症、ならびに神経および精神疾患の予防または治療薬。

【請求項7】 神経変性性疾患がアルツハイマー(Alzheimer)病またはパーキンソン(Parkinson)病であり、痴呆が脳血管性痴呆であり、運動失調症がツレット(Tourette)症候群であり、神経および精神疾患が脳梗塞慢性期の神経症状、不安または精神分裂病である請求項6に記載の予防または治療薬。

【請求項8】 請求項3または4に記載のニコチン性アセチルコリン α 4 β 2 受容体の活性化剤からなる、脳代謝改善、神経伝達機能改善、脳保護、記憶障害改善、または鎮痛作用を有する医薬品。

【請求項 9 】 請求項 3 または 4 に記載のニコチン性アセチルコリン α 4 β 2 受容体の活性化剤からなる、炎症性腸疾患の予防または治療薬。

【請求項10】 請求項1または2に記載の化合物またはその薬理学的に許容される塩の、ニコチン性アセチルコリン α 4 β 2受容体の活性化剤としての使用。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ニコチン性アセチルコリン受容体に親和性を示し、ニコチン性アセチルコリン受容体を活性化する化合物に関する。本発明の化合物は、アルツハイマー(Alzheimer)病、パーキンソン(Parkinson)病などの神経変性性疾患、脳血管性痴呆などの痴呆、ツレット(Tourette)症候群などの運動失調症、脳梗塞慢性期の神経症状、不安および精神分裂病などの神経および精神障害、頭部外傷による脳機能障害などに対する予防薬、または治療薬として有用なものである。

[0002]

【従来の技術】

ニコチンは多彩な薬理作用を示すことが知られている。例えば、中枢神経系の作用として、アセチルコリンの遊離促進作用といったコリン作動性神経系の活性化作用(De Sarno P. & Giacobini E., J. Neurosci. Res., 22, 194-200(1984))を示すほか、さらには、モノアミン神経系に対する賦活作用を示すとも報告されている(Levin E. D. & Simon B. B., Psychopharmacology, 138, 217-230(1998))。

[0003]

また、ニコチンには、脳血流量の増加作用や、脳内のグルコース利用率の上昇作用など、脳機能を改善する多くの有用な作用が認められている (Decker M. W. et al., Life Sci., 56, 545-570(1995))。

$[0\ 0\ 0\ 4\]$

さらにニコチンには、アルツハイマー(Alzheimer)病進行中に認められる神経細胞死の原因であると考えられている β ーペプチドのアミロイド化を阻害したり(Salomon A. R. et al., Biochemistry, 35, 13568-13578(1996))、 β ーアミロイド(A β)によって惹起される神経細胞死を抑制する細胞保護作用を有すると報告されている(Kihara T. et al., Ann. Neurol., 42, 159-163(1997))。また最近では、ニコチンが炎症性腸炎の治療薬となりうる可能性も示唆されている(Sandborn W. J. et al., Ann. Intern. Med., 126, 364 (1997))。

[0005]

一方、アルツハイマー(Alzheimer)病患者においては、注意力・学習・記憶など認知機能を司る重要な神経系の一つであるアセチルコリン神経系の変性が認

められており、それに伴い大脳皮質や海馬などのニコチン性アセチルコリン受容体が、顕著に減少していることが知られている (Nordberg A. et al., J. Neuro sci. Res., 31, 103-111(1992))。

[0006]

また、ニコチン性アセチルコリン受容体のアゴニストあるいはモジュレーターにより、ニコチン性アセチルコリン受容体を活性化し、アセチルコリン神経系の機能を回復させることが、アルツハイマー(Alzheimer)病の治療に有益な手段となる可能性が示唆されている(Newhouse P. A. et al., Psychopharmacology, 95, 171-175 (1988))。

[0007]

ところで、ニコチン性アセチルコリン受容体は、5つのサブユニットから構成されているイオンチャンネル型の神経伝達物質受容体である。すなわち、アセチルコリンやニコチンなどのアゴニストが、受容体に結合することにより受容体が活性化され、それに伴いチャンネルが開口して、ナトリウムイオンなどのカチオンを細胞外から流入させて、細胞の興奮を引き起こす(Galzi J. L. & Changeux J. P., Neuropharmacology, <math>34, 563-582(1995))。このアセチルコリンやニコチンなどのアゴニストは、 α サブユニットに存在する特定の部位に結合してその作用を発現しており、この部位はアゴニスト結合部位と呼ばれている。

[0008]

一方、ニコチン性アセチルコリン受容体に対して直接アゴニスト作用は示さないものの、アセチルコリンの作用を増強して細胞を活性化するガランタミン(Galanthamine)等の化合物が存在することが知られている。これらの化合物は、アゴニスト結合部位とは明らかに異なるアロステリック部位を介して作用しているものである(Schrattenhol2 A. et al., Mol. Pharmacol., 49, 1-6 (1996))。

[0009]

このような、間接的にニコチン性アセチルコリン受容体を活性化できる化合物はモジュレーターと呼ばれており、医薬品としての応用が期待されている(Lin N.-H. & Meyer M. D., Exp. Opin. Ther. Patents, 8, 991-1015(1998))。

[0010]

本明細書においては、アゴニストおよびモジュレーターという用語は、この意味で使用している。

$[0\ 0\ 1\ 1]$

ニコチン性アセチルコリン受容体は、アルツハイマー (Alzheimer) 病以外にもパーキンソン (Parkinson) 病などの神経変性性疾患や、痴呆、不安、精神分裂病など、数多くの神経あるいは精神疾患に関与すると考えられている (Barrantes F. J., in The Nicotinic Acetylcholine Receptor, ed. Barrantes F. J., Springer, 1997, pl75-212; Lena C. & Changeux J.-P., J. Physiol. (Paris), 92, 63-74(1998))。

$[0\ 0\ 1\ 2]$

とりわけ、脳梗塞等によって起こる脳血管性痴呆の患者においては、脳血流量は低下していることが知られていることから(高木繁治、現代医療、28巻、 115 7-1160(1996); Tachibana H. et al., J. Gerontol., 39, 415-423(1984))、脳血流量増加作用を示すニコチン性アセチルコリン受容体のアゴニストあるいはモジュレーターは、この分野での治療薬としての可能性が示唆されている。 さらに、ニコチン性アセチルコリン受容体アゴニストあるいはそのモジュレーターは鎮痛作用を示すことも最近になって明らかにされてきた($Bannon\ A$. W. et al., S cience, 279, 77-81(1998))。

[0013]

ニコチン自身は、当然ニコチン性アセチルコリン受容体アゴニストとして作用する。例えば、実際にニコチンをアルツハイマー(Alzheimer)病患者に投与すると、注意力や短期記憶力の回復が認められ、その症状を改善することが明らかにされている(Newhouse P. A. et al., Drugs & Aging, 11, 206-228(1997))。しかしながら、ニコチンには一般によく知られている嗜癖性があることに加え、経口投与した際の生物学的利用率が低いことや、循環器系への副作用が強いことなどの欠点も合わせ持つ。

$[0\ 0\ 1\ 4\]$

したがって、ニコチンに代わる嗜癖性が少なく、経口投与した際の生物学的利用率が高く、また循環器系などへの副作用が少ないニコチン性アセチルコリン受

容体のアプニストあるいはモジュレーターが医薬品として求められている(Maelicke A. & Albuquerque E. X., Drug Discovery Today, 1, 53-59(1996); Holladay M. W. et al., J. Med. Chem., 40, 4169-4194(1997))。

[0015]

$[0\ 0\ 1\ 6\]$

コリン作動性神経系の活性化や脳血流量の増加作用などは、中枢神経系の α 4 β 2 サブタイプの受容体を介して起こると考えられており、上述したニコチンの循環器系に対する作用は、主に末梢神経系に存在するサブタイプの受容体に作用することによって惹起される。

[0017]

[0018]

かかる観点より、中枢神経系のニコチン性アセチルコリン受容体に選択的なアゴニストあるいはモジュレーターを医薬品として開発しようとする試みが検討されており、例之は、ABT—418(Arneric S. P. et al., J. Pharmacol. Exp. Ther., 270, 310-318(1994); Decker M. W. et al., J. Pharmacol. Exp. Ther., 270, 319-328 (1994))、ABT— 089(Sullivan J. P. et al., J. Pharmacol. Exp. Ther., 283, 235-246(1997); Decker M. W. et al., J. Pharmacol. Exp. Ther., 283, 247-258 (1997))、GTS— 21(Arendash G. W. et al., Brain Res., 674, 252-259(1995); Briggs C. A. et al., Pharmacol. Bioc

hem. Behav., 57, 231-241 (1997))、RJR-2403 (Bencherif M. et al., J. Pharmacol. Exp. Ther., 279, 1413-1421(1996); Lippiello P. M. et al., J. Pharmacol. Exp. Ther., 279, 1422-1429 (1996))、SIB-1508Y (Cosford N. D. P. et al., J. Med. Chem., 39, 3235-3237(1996); Lloyd. G. K. et al., Life Sci., 62, 1601-1606(1995))およびSIB-1553A (Lloyd. G. K. et al., Life Sci., 62, 1601-1606(1995))などの開発コードで示される化合物が研究されている。

[0019]

また、欧州特許出願公開公報EP679397-A2には、次式で示される置換アミン誘導体を、脳機能障害の予防および治療に使用する医薬に関する開示がある。

[0020]

【化2】

「式中、Rは水素、あるいは場合により置換されたアシル、アルキル、アリール、アラルキル、ヘテロアリールまたはヘテロアリールアルキル基を表わし、Aは水素、アシル、アルキル、またはアリール系の単官能基を表わすか、あるいはZ基に結合する二官能基を表わし、Eは電子吸引基を表わし、Xは-CH=または-N-基を表わし、-CH=基はH原子の代わりにZ基に結合することが可能であり、Zはアルキル、-O-R,-S-R,-NR $_2$ 系の単官能基を表わすか、あるいはA基またはX基に結合する二官能基を表わす1。

[0022]

しかしながら、この特許出願に開示された化合物群は、本発明が開示する化合物とは構造が明らかに異なっており、また、上記の特許出願に記載された化合物群が、ニコチン性アセチルコリン α 4 β 2受容体を選択的に活性化させるということは開示されていない。

[0023]

また、農薬イミダクロブリド(Imidacloprid)は、PC12細胞のニコチン性アセチルコリン受容体に対して電気生理学的に部分的アゴニストとして作用すること(Nagata K. et al., J. Pharmacol. Exp. Ther., 285、731-738(1998))や、イミダクロプリドあるいはその代謝物および類縁化合物が、マウス脳のニコチン性アセチルコリン受容体に親和性を有していること(Lee Chao S. & Casida E., Pestic. Biochem. Physiol., 58, 77-88(1997); Tomizawa T. & Casida E., J. Pharmacol., 127, 115-122(1999); Latli B. et al., J. Med. Chem., 42, 227-2234(1999)) は明らかになっているが、イミダクロプリド誘導体がニコチン性アセチルコリン α 4 β 2受容体を選択的に活性化させるという報告はない。さらに、これらのイミダクロプリドあるいはその代謝物および類縁化合物は、本発明が開示する化合物とは構造が明らかに異なっている。

[0024]

また、特開平10-226684号公開公報には、次式の(N-(ピリジニルメチル)ーへテロサイクリック)イリデンアミン化合物、ならびにその薬剤学的に許容しうる塩類およびそのプロドラッグが開示されている。

[0025]

【化3】

[0026]

[式中、Aは-C H(R)-であり、Rは水素または所望により置換された(C $_1$ \sim C $_6$)アルキルであり、B は次式の基を示す]

[0027]

【化4】

$$(R^{1})_{n}$$

NH

W

 $(R^{2})_{m}$
 $(R^{2})_{m}$

しかしながら、この特許出願に記載された化合物群においては、ニコチン受容体に弱い親和性を示すことは開示されているものの、中枢神経系のニコチン性アセチルコリン α 4 β 2受容体へ選択的に作用すること、また、これらの化合物がニコチン性アセチルコリン受容体のアゴニストあるいはモジュレーターとして作用することは開示されていない。さらに、この特許出願に記載された化合物群は、本発明が開示する化合物とは構造が明らかに異なっている。

[0029]

このように、ニコチンに代わる、経口投与が可能であり、中枢神経系のニコチン性アセチルコリン受容体に選択的なアゴニスト、あるいはモジュレーターを医薬として開発しようとする試みはこれまでに数多く行われてきているものの、いまだ満足する医薬品が得られていないのが実状である。

[0030]

【発明が解決しようとする課題】

したかって、本発明は、中枢神経系のニコチン性アセチルコリン α 4 β 2受容体に選択的に結合し、血圧や心拍数など循環器系への副作用を極力抑えつつ、ニコチン性アセチルコリン受容体を活性化することによって予防または治療が可能と考えられる疾患に対する、より安全な予防薬または治療薬を提供するものである。

$[0\ 0\ 3\ 1]$

より具体的には、ニコチン性アセチルコリン受容体を活性化することによって 予防または治療が可能と考えられる疾患、例えば、痴呆、老年痴呆、初老期痴呆 、アルツハイマー(Alzheimer)病、パーキンソン(Parkinson)病、脳血管性痴 呆、エイズ関連痴呆、ダウン症における痴呆、ツレット(Tourette)症候群、脳梗塞慢性期の神経症状、頭部外傷による脳機能障害、不安、精神分裂病、うつ病、ハンチントン病、疼痛などの予防または治療に用いることができる医薬品を提供するものである。

[0032]

【課題を解決するための手段】

本発明者らは、中枢神経系のニコチン性アセチルコリン α 4 β 2受容体を選択的に活性化する物質の検索について鋭意研究を重ねた結果、一般式(I)で示される化合物、またはそれらの薬理学的に許容される塩が、ニコチン性アセチルコリン α 4 β 2受容体に対する結合能が高く、受容体に対するアゴニストまたはモジュレーターとして作用して、受容体を活性化することを新規に見出して、本発明を完成させた。

すなわち、本発明は次の一般式(I):

[0034]

【化5】

{ 式 中、

A¹およびA²は、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基、または置換されていてもよい複素環基を表わし、

[0036]

で表わされる化合物、およびこれらの薬理学的に許容される塩に関する。

$[0\ 0\ 3\ 7]$

また本発明は、これら化合物またはその塩を有効成分とする、ニコチン性アセチルコリンα4β2受容体活性剤にも関する。

[0038]

また本発明は、これら化合物またはその塩の、脳循環疾患、神経変性性疾患などの予防または治療薬としての使用に関する。

[0039]

本発明化合物の薬理学的に許容される塩としては、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩等の無機酸塩、およびフマル酸塩、マレイン酸塩、シュウ酸塩、クエン酸塩、酒石酸塩、リンゴ酸塩、乳酸塩、コハク酸塩、安息香酸塩、メタンスルホン酸塩、pートルエンスルホン酸塩などの有機酸塩等をあげることができる。

[0040]

$[0\ 0\ 4\ 1\]$

これらのアルキル基が、置換基を有する場合において、その好ましい置換基の例としては、置換されていてもよいアリール基、または置換されていてもよい複素環基等があげられる。したがって、置換アルキル基の具体例としては、ベンジル基、(2ービリジル)メチル基、(2ークロロー3ーピリジル)メチル基、(6ーフルオロー3ーピリジル)メチル基、(6ーフルオロー3ーピリジル)メチル基、(2・6ージクロロー3ーピリジル)メチル基、(2・6ージクロロー3ーピリジル)メチル基、(5・6ージクロロー3ーピリジル)メチル基、(5・6ージクロロー3ーピリジル)メチル基、(6ーメチルー3

ーピリジル)メチル基、(6-xトキシー3-ピリジル)メチル基、(5-ピリミジル)メチル基、(3-アラニル)メチル基、(3-アラニル)メチル基、(3-アトラヒドロー3-アラニル)メチル基、(3-チェニル)メチル基、(3, 5-ジメチルイソキサゾール)メチル基、1-(6-クロロー3-ピリジル)エチル基、2-(6-クロロー3-ピリジル)エチル基、等を例示できる。

[0042]

また、「 A^1 」および「 A^2 」において、置換されていてもよいアリール基の好ましい例としては、フェニル基、ナフチル基等があげられ、アリール基の環上に置換基を有する場合の好ましい置換基の例としては、炭素数 $1 \sim 4$ の低級アルキル基、水酸基、アミノ基、ハロゲン原子等があげられ、置換アリール基の具体例としては、メチルフェニル基、ヒドロキシフェニル基、アミノフェニル基、クロロフェニル基、ジクロロフェニル基等を例示できる。

[0043]

さらに、 Γ A 1 」および Γ A 2 」において、置換されていてもよい複素環基としては、 $1\sim3$ 個の同一または異なる硫黄原子、窒素原子、酸素原子を含む5 員環、6 員環の複素環基、およびこれらが縮環した複素環基、例えばチオフェン、フラン、ピラン、ピロール、ピラゾール、ピリジン、ピリミジン、ピラジン、ピリダジン、イミダゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、キノリン、イソキノリン、インドール、アザインドール、テトラヒドロピリミジン等があげられる。

[0044]

これらの複素環基が、その環上に置換基を有する場合において、その好ましい置換基の例としては、炭素数 1~4の低級アルキル基、ハロゲン原子等があげられる。したがって、置換複素環基の具体例としては、2-メチルピリジン、6-メチルピリジン、2-クロロピリジン、2-フルオロピリジン、2-ブロモピリジン、3-ブロモピリジン、2-クロロピリジン、2-クロロピリミジン、2-クロロチアゾール、3、5-ジメチルイソキサゾール等を例示できる。

[0045]

Xは、次式の結合;

[0046]

(式中、 $R^{-1} \sim R^{-16}$ は、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアリール基または置換されていてもよい複素環基を示す)を表わす。

[0047]

具体例として、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 、 R^{10} 、 R^{11} R^{12} 、 R^{13} 、 R^{14} 、 R^{15} および R^{16} のハロゲン原子としては、フッ素、塩素、臭素、ヨウ素があげられる。

[0048]

また、置換されていてもよいアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、secーブチル基、tertーブチル基等があげられる。

[0049]

これらのアルキル基が、置換基を有する場合において、その好ましい置換基の例としては、置換されていてもよいアリール基、または置換されていてもよい複素環基等があげられる。したがって、置換アルキル基の具体例としては、ベンジ

ル基、(2-ビリジル)メチル基、(3-ビリジル)メチル基、(2-クロロ-3-ビリジル)メチル基、(6-7ルオロ-3-ビリジル)メチル基、(6-7ルオロ-3-ビリジル)メチル基、(5-7ロモ-3-ビリジル)メチル基、(2-7ロロ-3-ビリジル)メチル基、(3-70ロロ-3-ビリジル)メチル基、(3-70ロロ-3-ビリジル)メチル基、(3-70ロロ-3-ビリジル)メチル基、(3-70ロロ-3-ビリジル)メチル基、(3-70ロロリジル)メチル基、(3-71 ルン・メチル基、(3-71 ルン・メチル基、(3-71 ルン・メチル基、(3-71 ルン・メチル基、(3-71 ルン・メチル基、(3-71 ルン・メチル基、(3-71 ルン・メチル基、(3-71 ルン・メチル基、(3-71 ルン・スチル 基、(3-71 ルン・スチル ステル 基、(3-71 ルン・スチル ステル 基、(3-71 ルン・スチル 基、(3-71 ルン・スチル 基、(3-71 ルン・スチル 基、(3-71 ルン・スチル 基、(3-71 ルン・スチル 基、(3-71 ルン・ステル 基、(3-71 ルン・ステ

[0050]

R¹~R¹⁶の置換されていてもよいアリール基としては、無置換のフェニル基のほか、メチル基、エチル基などの炭素数1~4の低級アルキル基や、ハロゲン原子で置換されていても良いフェニル基等があげられ、置換フェニル基の具体例としては、メチルフェニル基、クロロフェニル基、ジクロロフェニル基等を例示できる。

$[0\ 0\ 5\ 1\]$

置換されていてもよい複素環基としては、1~3個の同一または異なる硫黄原子、窒素原子、酸素原子を含む5 員環、6 員環の複素環基、例えばチオフェン、フラン、ピラン、ピロール、ピラゾール、ピリジン、ピリミジン、ピラジン、ピリダジン、イミダゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、キノリン、イソキノリン、テトラヒドロピリミジン等があげられる。

$[0\ 0\ 5\ 2]$

これらの複素環基が、その環上に置換基を有する場合において、その好ましい置換基の例としては、炭素数 1~4の低級アルキル基、ハロゲン原子等があげられる。したがって、置換複素環基の具体例としては、2-メチルピリジン、3-メチルピリジン、2-ブロモピリジン、2-ブロモピリジン、3-ブロモピリジン、2-ブロロピリジン、4-クロロピリミジン、2-クロロチアゾール、3-メチルイソキサゾール等を例示できる。

[0053]

一般式(I)で示される化合物の具体例としては、次のような化合物を例示することができる。

化合物1:2-(6-クロロー3-ピリジル)-2-イミダゾリン;

化合物 2:2-(6-2)ロロー3-ピリジル)-1, 4, 5, 6-テトラヒドロ

ピリミジン;

化合物3:2-(6-クロロ-3-ピリジル)-1-メチル-2-イミダゾリン

•

化合物4:2-(6-クロロー3-ピリジル)-1-メチルー1,4,5,6-テトラヒドロピリミジン;

化合物5:1-(6-クロロー3-ピリジル) メチルイミダゾール;

化合物 6 : 2- (6-クロロー3-ピリジル) イミダゾール;

化合物7:2-(6-クロロー3-ピリジル)メチルー2-イミダゾリン;

化合物8:2-(6-クロロー3-ビリジル) メチルー1,4,5,6-テトラ

ヒドロピリミジン;

化合物9:2-(6-クロロー3-ピリジル)メチルー1-メチルー2-イミダ ゾリン;

化合物10:2-(6-クロロー3-ピリジル)メチルー1-メチルー1,4,

5,6ーテトラヒドロピリミジン;

化合物 1 1 : 1 - (6 - クロロー 3 - ピリジル) メチルー 2 - メチルー 2 - イミダゾリン;

化合物 1 2 : 1 - (6 - クロロー 3 - ピリジル) メチルー 4 , 4 - ジメチルー 2 - イミダゾリン;

化合物 13:2-(テトラヒドロフラン-3-14)-1,4,5,6-テトラヒドロピリミジン;

化合物 1 4 : 2 - (テトラヒドロフラン-3-イル) - 2 - イミダゾリン;

化合物 15:2-(テトラヒドロフラン-3-イル) メチルー1,4,5,6-

テトラヒドロピリミジン;

化合物16:2-(5-プロモー3-ピリジル) メチルー1,4,5,6-テト

ラヒドロピリミジン;

化合物17:2-(5-ブロモー3-ピリジル)メチルー2-イミダゾリン;

化合物 18:2-(3-ピリジル) メチルー1,4,5,6-テトラヒドロピリ

ミジン;

化合物 19:2-(3-ピリジル) メチルー 2-1 イミダゾリン;

化合物 20:2-(3-r) フェニル) -1, 4, 5, 6-r トラヒドロピリ

ミジン;

化合物 21:2-(3-+) リル) メチルー1 、4 、5 、6-テトラヒドロピリ

ミジン;

化合物 22:2-(2-2) ロロー 5-4 アゾリル) -1 、4 、5 、6-7 トラヒ

ドロピリミジン;

化合物23:2-(3-キノリル)メチル-2-イミダゾリン;

化合物 24:2-(2-2) ロロー 5-4 アゾリル) -2-4 ミダゾリン;

化合物 25:2-(3-+) リル) -1 、 4 、 5 、 6 ーテトラヒドロピリミジン

•

化合物26:2-(3-フラニル)メチルー2-イミダゾリン;

化合物 27:1-(6-2)ロロー3ーピリジル) メチルー1, 4, 5, 6ーテト

ラヒドロピリミジン;

化合物 28:2-(3,5-ジメチャー4-4) インオキサゾリャンメチャー1,4

, 5, 6ーテトラヒドロピリミジン;

化合物29:2-(3,5-ジメチル-4-イソオキサゾリル)メチル-2-イ

ミダゾリン;

ミジン;

化合物31:2-(3-チエニル)メチルー2-イミダゾリン;

化合物32:2-メチルー5-(3-ピリジル)-2-イミダゾリン;

化合物33:5-(3-ピリジル)-2-イミダゾリン;

化合物 34:1, 2-ビス [(6-クロロー3-ピリジル) メチル] ー 1, 4,

5,6ーテトラヒドロピリミジン;

化合物35:1-(6-クロロー3-ピリジル) メチルー2-(3-ピリジル) -2-イミダゾリン:

化合物36:2-(5,6-ジクロロ-3-ピリジル)メチル-1,4,5,6

化合物 37:2-(6-2)ロロー 3-2 リジル) メチルー 5-7 ェニルー 1,4 , 5,6- テトラヒドロピリミジン;

化合物 38:2-(4-ピリジル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;

化合物39:2-(2-クロロ-3-ピリジル)メチル-1,4,5,6-テトラヒドロピリミジン;

化合物40:2-(2,6-ジクロロ-3-ピリジル)メチル-1,4,5,6

化合物41:2-[2-(6-クロロー3-ピリジル)エチル]-1,4,5,6-テトラヒドロピリミジン;

化合物42:2-[2-(6-クロロー3-ピリジル)エチル]-2-イミダゾリン;

化合物 4 3 : 2 - (6 - メチル-3 - ピリジル) メチル-1, 4, 5, 6 - テトラヒドロピリミジン:

化合物 44:1, 2-ビス [(6-クロロー3-ピリジル) メチル] <math>-2-1 ダゾリン;

化合物45:2-(6-メチル-3-ピリジル)メチル-2-イミダゾリン;

化合物 46:2-(6-x)+3-2 リジル) メチルー1,4,5,6-テトラヒドロビリミジン;

化合物47:2-(6-エトキシー3-ピリジル)メチルー2-イミダゾリン;

化合物48:2-(6-フルオロー3-ピリジル) メチルー1,4,5,6-テトラヒドロピリミジン;

化合物49:2-(5,6-ジクロロ-3-ピリジル)メチル-2-イミダゾリン;

化合物 50:2-(6-200-3-3) メチルー5,5-3 メチルー1

, 4, 5, 6 - テトラヒドロピリミジン;

化合物52:1-(5,6-ジクロロ-3-ピリジル)メチル-1,4,5,6

化合物53:2-(5,6-ジクロロ-3-ピリジル)メチルー1-メチルー2-イミダゾリン;

化合物 5 4 : 2 - (6 - クロロー3 - ピリジル) メチルー4 - メチルー1, 4, 5, 6 - テトラヒドロビリミジン;

化合物 5 5 : 1 - [2 - (6 - クロロー 3 - ピリジル) エチル] - 1, 4, 5, 6 - テトラヒドロピリミジン;

化合物 56:1-(3-ピリダジニル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;

化合物 57:1-(6-メチル-3-ビリジル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;

化合物58:1-(3-ピリジル) メチルー1,4,5,6-テトラヒドロピリミジン;

化合物 5 9 : 3 - (6 - クロロー3 - ピリジル) メチルー1, 4, 5, 6 - テトラヒドロー1, 2, 4 - トリアジン;

化合物 60:2-[1-(6-2)] (6-2) (6-2) (6-3

化合物.6 1:1-(2-クロロー5-チアゾリル) メチルー1,4,5,6-テトラヒドロピリミジン;

化合物62:1-【2-(6-クロロー3-ピリジル)エチル】-2-メチルー2-イミダゾリン;

化合物 6 3 : 1 - [2 - (6 - クロロー3 - ピリジル) エチル] - 4 , 4 - ジメ チルー2 - イミダゾリン;

化合物64:2-(2-クロロー5-チアゾリル) メチルー1,4,5,6-テトラヒドロビリミジン;

化合物65:2一(2-クロロー5-チアゾリル)メチルー2-イミダゾリン;

化合物 66:2-(5-ピリミジル) メチルー1,4,5,6-テトラヒドロピ

リミジン;

化合物 67:2-(5-ピリミジル) メチルー2-イミダゾリン;

化合物 68:2-(5-3+u-3-ピリジル) メチルー1,4,5,6-テトラヒドロピリミジン。

[0054]

本発明の一般式(I)で示される化合物は、種々の方法により製造できるが、 例えば以下の方法1~3を挙げることができる。

[0055]

なお、以下の反応式において、 A^1 、 A^2 、およびXは前記の意味を有する。

方法1

次の反応式に従い、式(II)で表わされる化合物と式(III)で表わされる化合物を縮合反応させることにより化合物(I)が得られる。

 $[0\ 0\ 5\ 7]$

【化7】

$$A^{1} \longrightarrow NH \qquad NH_{2} \qquad + \qquad A^{2} \longrightarrow \qquad Y \qquad \longrightarrow \qquad A^{1} \longrightarrow N \qquad (II)$$

$$(III) \qquad \qquad (III) \qquad \qquad (II)$$

$$[0 \ 0 \ 5 \ 8]$$

{式中、Yは、 $-COOQ^1$ 、 $-CONQ^2Q^3$ 、 $-C(OQ^4)_3$ 、 $-C(OQ^5)=N$ Hまたは-C=Nを表し、ここで $Q^1\sim Q^5$ は炭素数 $1\sim 4$ の低級アルキル基を表し、すなわち A^2-Y でエステル、アミド、オルトエステル、イミノエーテルあるいはニトリル等のカルボン酸誘導体を表わす}。

[0059]

上記の反応式で用いる、式(【【】)および式(【【【】)で表わされる化合物の

多くは市販されているが、当技術分野において公知の方法を用いて合成すること もできる。

[0060]

式(II)の化合物と式(III)の化合物から化合物(I)を得る反応は、 通常の場合、無溶媒または炭化水素類、アルコール類もしくはエーテル類等を単 独あるいは混合して溶媒とし、必要に応じて塩化水素、Pートルエンスルホン酸 等の酸、もしくは硫黄、硫化水素、二硫化炭素、五硫化二リン等の含硫試薬、ま たはアルミニウム試薬の存在下に、室温から30℃までの範囲で実施できる。

 $[0\ 0\ 6\ 1]$

溶媒として用いる、炭化水素類としては、ベンゼンやトルエン等の芳香族炭化水素、およびベンタンやヘキサン等の脂肪族炭化水素を、アルコール類としては、メタノール、エタノール、プロパノール、2ープロパノール、2ーメチルー2ープロパノール、エチレングリコール、ジエチレングリコール等を、エーテル類としては、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4ージオキサン等を挙げることができる。

[0 0 6 2]

この反応に用いるアルミニウム試薬の例としては、トリメチルアルミニウム、 トリエチルアルミニウム、塩化ジメチルアルミニウム、塩化ジエチルアルミニウム、二塩化エチルアルミニウム等が挙げられる。

[0063]

方法2

次の反応式に従い、式(IV)で表わされる化合物を、式(V)で表わされる 化合物と反応させることにより化合物(I)が得られる。

 $[0\ 0\ 6\ 4\]$

[0065]

(式中、乙は環状アミジン化合物の窒素原子との反応を促進しうる脱離基、例えば、ハロゲン原子、pートルエンスルホニルオキシ基、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、アシルオキシ基、置換アシルオキシ基等を表わす)。

[0066]

反応させる、式(IV)および式(V)で表わされる化合物は市販されているか、当技術分野において公知の方法を用いて合成することができる。

$[0\ 0\ 6\ 7]$

式(IV)の化合物と式(V)の化合物から化合物(I)を得る反応は、通常 アルコール類、ケトン類、ニトリル類、エステル類、アミド類、炭化水素類、エ ーテル類等を単独あるいは混合して溶媒とし、必要に応じて有機塩基または無機 塩基の存在下に、-20℃から反応混合物の還流温度までの範囲で実施できる。

[0068]

溶媒として用いるアルコール類としては、メタノール、エタノール、プロパノール、2ープロパノール、2ーメチルー2ープロパノール等を、ケトン類としては、アセトン、メチルエチルケトン等を、ニトリル類としては、アセトニトリル、プロピオニトリル等を、エステル類としては酢酸エチルを、アミド類としては、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、Nーメチルピロリドン、ヘキサメチルホスホロアミド等を、炭化水素類としては、ベンゼンやトルエン等の芳香族炭化水素、およびペンタンやヘキサン等の脂肪族炭化水素を、エーテル類としては、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4ージオキサン等を挙げることができる。

[0069]

反応に用いる有機塩基としては、トリエチルアミン、コリジン、ルチジン、カリウム tーブトキシド、ナトリウムアミド、リチウムジイソプロピルアミド、カリウムビス(トリメチルシリル)アミド等を、無機塩基としては、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、水素化リチウム、等を例示することができる。

[0070]

方法3

次の反応式に従い、式(VI)で表わされる化合物を、脱水環化することにより化合物(I)が得られる。

$[0\ 0\ 7\ 1]$

【化9】

上記の反応式で用いる、式(VI)で表わされる化合物は、当技術分野において公知の方法を用いて合成することができる。

[0073]

この反応は、通常の場合、無溶媒または炭化水素類、ハロゲン化炭化水素類もしくはエーテル類等を単独あるいは混合して溶媒とし、必要に応じて脱水剤の存在下に、-50℃から200℃、好ましくは室温から120℃の範囲で実施できる。

[0074]

溶媒として用いる、炭化水素類としては、ベンゼンやトルエン等の芳香族炭化水素、およびベンタンやヘキサン等の脂肪族炭化水素を、ハロゲン化炭化水素類としてはジクロロメタン、クロロホルム、1,2-ジクロロエタン等を、エーテ

ル類としては、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1 ,4-ジオキサン等を挙げることができる。また、脱水剤としては、塩化チオニル、塩化スルフリル、オキシ塩化リン、三塩化リン、五塩化リン、塩化pートルエンスルホニル、塩化メタンスルホニル、ホスゲン、アゾジカルボン酸ジエチル、ジシクロヘキシルカルボジイミド等が挙げられる。

[0075]

以上の各方法により得られた本発明化合物(I)は、必要に応じて上記した種々の有機酸あるいは無機酸と造塩することにより、薬理学的に許容される塩へ誘導することができる。また、再結晶やクロマトグラフィー等の手段により精製することもできる。

[0076]

さらに、本発明化合物(I)の中には異性体が存在するものもあるが、本発明においてはこれら異性体も本発明の化合物に含まれ、これらは種々の方法により分離して単一の化合物とすることができるほか、これら異性体の混合物も本発明に含まれる。

[0077]

一般式(I)で表わされる本発明により提供される化合物は、中枢神経系のニコチン性アセチルコリン α 4 β 2受容体と選択的に結合し、アゴニストまたはモジュレーターとして作用してニコチン性アセチルコリン α 4 β 2受容体を活性化させることができる。したがってこれら化合物は、例えば、痴呆、老年痴呆、初老期痴呆、アルツハイマー(Alzheiner)病、パーキンソン(Parkinson)病、脳血管性痴呆、エイズ関連痴呆、ダウン症における痴呆、ツレット(Tourette)症候群、脳梗塞慢性期の神経症状、頭部外傷による脳機能障害、不安、精神分裂病、うつ病、ハンチントン病、疼痛等に対する予防薬および治療薬として有用である。

[0078]

本発明化合物、またはその薬理学的に許容される塩を医薬組成物として投与する場合、例えば、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤等の剤型で経口的に、あるいは、注射用蒸留水もしくはそれ以外の薬学的に許容しうる液との溶

液剤または懸濁剤などの注射剤や、経皮パッチ、経鼻スプレー、坐剤等の剤型で 非経口的に投与することができる。

[0079]

これらの製剤を製造する場合には、本発明に係る化合物と、薬学的に認められる製剤用の担体、賦形剤、香味剤、安定剤等とを製剤化の常法に従って混和することによって調製することができる。

[0800]

製剤用の担体や賦形剤などの例としては、ポリビニルピロリドン、アラビアゴム、ゼラチン、ソルピット、シクロデキストリン、ステアリン酸マグネシウム、タルク、ポリエチレングリコール、ポリビニルアルコール、シリカ、乳糖、結晶セルロース、砂糖、デンプン、リン酸カルシウム、植物油、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ラウリル硫酸ナトリウム、水、エタノール、グリセリン、マンニトール、シロップ等が挙げられる。

[0081]

注射用の水溶液としては、ブドウ糖等を含む等張液等があげられ、ポリエチレングリコールのような適当な溶解補助剤等と併用してもよい。また、緩衝剤、安定剤、保存剤、酸化防止剤等を配合してもよい。

[0082]

このようにして得られる製剤は、例えばヒトをはじめとする哺乳動物に対して 投与することができる。投与経路としては、経口投与、経皮投与、経鼻投与、直 腸内投与、局所投与などが好ましい。

[0083]

これら化合物の投与量は、投与方法、投与対象者の体重・年齢・症状等により変動するが、経口投与の場合、一般的に成人においては、1日につき約0.001~100mg/kg体重、好ましくは約0.01~100mg/kg体重、より好ましくは約0.1~10mg/kg体重である。

[0084]

非経口的に投与する場合は、例之は注射剤の場合、一般的に成人においては、 1日につき約0.0001~10mg/kg体重程度、好ましくは約0.00 $01\sim1$ mg/kg体重程度、より好ましくは約 $0.001\sim0.1$ mg/kg体重程度を、静脈内注射により投与するのが好ましい。これらの量を、1日1回から3回程度に分けて投与する。

[0085]

ニコチン性アセチルコリン受容体への結合能を調べる方法は、サブタイプ毎に 異なる。 α 4 β 2 サブタイプニコチン性アセチルコリン受容体に対する化合物の 結合能は、ラットの全脳をホモジナイズして膜標品を調製し、これに [3 H] ー サイチシン(C y t i s i n e)が結合するのを、被験物質が阻害する割合を測 定することで調べることができる。

[0086]

[0087]

[0088]

【実施例】

次に、実施例により、本発明をさらに具体的に説明する。

[0089]

実施例1:方法1による合成例

2-(6-200-3-ピリジル) メチルー1,4,5,6ーテトラヒドロピリ

ミジン [化合物8]の合成

[0090]

アルゴン雰囲気下に、トルエン20mlを室温撹拌して、これに1Mトリメチ ルアルミニウム/ヘキサン溶液3.75mlとトリメチレンジアミン315μl $(3.77 \, \text{mmol})$ を加え、さらに (6-2) ロロー3ーピリジル)酢酸エチル エステル500mg(2.5mmol)のトルエン溶液を添加した。この混合物 を、100℃で加熱環流下に22時間撹拌した。室温まで冷却して、これにクロ ロホルム5ml、メタノール5mlおよび水lmlを加え、析出したゲルを濾過 し、クロロホルム:メタノール=9:1の混合溶媒で洗った。濾液を減圧濃縮し 、得られた濃縮残分をアミノプロピル化シリカゲル(Chromatorex NH-type;富士シリシア製)を用いたカラムクロマトグラフィー(溶出溶 媒;ジクロロメタン:酢酸エチル=30:1からジクロロメタン:メタノール= 50:1)により精製し、2-(6-クロロー3-ピリジル)メチルー1,4, 5,6-テトラヒドロピリミジンを結晶性残分として442mg(収率84.4 %) 得た。これをメタノールに溶解し、フマル酸245mg(2.11mmo1)を加えて均一溶液としたのち減圧濃縮した。得られた油状残分にアセトニトリ ルを加えて結晶化させたのち、濾取して減圧加熱乾燥することにより表題化合物 のフマル酸塩643mgを得た。

[0091]

以下の化合物は、この実施例1の方法に準じて合成した。

化合物 1:2-(6-2) ロロー3ーピリジル) -2-4 ミダゾリン;

化合物2:2-(6-クロロー3-ピリジル)-1,4,5,6-テトラヒドロ ピリミジン;

化合物3:2-(6-クロロー3-ピリジル)-1-メチルー2-イミダゾリン・

化合物 4:2-(6-2) ロロー 3- ピリジル) -1- メチルー 1 、4 、5 、6- テトラヒドロピリミジン;

化合物 6:2-(6-クロロー3-ピリジル) イミダゾール;

化合物7:2-(6-クロロ-3-ピリジル)メチル-2-イミダゾリン;

化合物 8:2-(6-2)ロロー3-ピリジル)メチルー1, 4, 5, 6-テトラ

ヒドロピリミジン;

化合物9:2-(6-クロロー3-ピリジル) メチルー1-メチルー2ーイミダ ゾリン:

化合物 1 0 : 2 - (6 - クロロー 3 - ピリジル) メチルー 1 - メチルー 1 , 4 , 5 , 6 - テトラヒドロピリミジン;

化合物 13:2-(テトラヒドロフラン-3-イル)-1,4,5,6-テトラヒドロピリミジン;

化合物 14:2-(テトラヒドロフラン-3-4) -2-4 ミダゾリン;

化合物 1 5 : 2 ー (テトラヒドロフランー 3 ー イル) メチルー 1 , 4 , 5 , 6 ー テトラヒドロピリミジン;

化合物 1 6:2-(5-ブロモー3-ビリジル) メチルー1,4,5,6ーテトラヒドロピリミジン;

化合物17:2-(5-ブロモー3-ピリジル)メチルー2-イミダゾリン;

化合物 18:2-(3-ピリジル) メチルー1,4,5,6-テトラヒドロピリミジン;

化合物 19:2-(3-ピリジル) メチルー2ーイミダゾリン;

化合物 20:2-(3-r ミノフェニル)-1, 4, 5, 6-rトラヒドロピリミジン:

化合物 21:2-(3-+) リル) メチルー1 、4 、5 、6-テトラヒドロピリミジン;

化合物22:2-(2-クロロー5-チアゾリル)-1,4,5,6-テトラヒドロピリミジン;

化合物23:2-(3-キノリル)メチル-2-イミダゾリン;

化合物24:2一(2-クロロー5-チアゾリル)-2-イミダゾリン;

化合物 25:2-(3-+) リル) -1 , 4 , 5 , 6- テトラヒドロピリミジン・

化合物26:2-(3-フラニル) メチル-2-イミダゾリン;

化合物28:2-(3,5-ジメチル-4-イソオキサゾリル)メチル-1,4,5,6-テトラヒドロピリミジン;

化合物29:2-(3,5-ジメチル-4-イソオキサゾリル)メチル-2-イミダゾリン;

化合物30:2-(3-チェニル) メチル-1, 4, 5, 6-テトラヒドロピリミジン;

化合物31:2-(3-チエニル) メチルー2-イミダゾリン;

化合物33:5-(3-ピリジル)-2-イミダゾリン;

化合物36:2-(5,6-ジクロロ-3-ピリジル)メチル-1,4,5,6

化合物37:2-(6-クロロー3-ピリジル)メチルー5-フェニルー1,4,5,6-テトラヒドロピリミジン;

化合物38:2-(4-ピリジル)メチル-1, 4, 5, 6-テトラヒドロピリミジン;

化合物39:2-(2-クロロー3-ピリジル) メチルー1,4,5,6ーテトラヒドロピリミジン;

化合物40:2-(2,6-ジクロロ-3-ピリジル)メチル-1,4,5,6 -テトラヒドロピリミジン;

化合物41:2-[2-(6-クロロー3-ピリジル) エチル] -1,4,5,6-テトラヒドロピリミジン:

化合物42:2-[2-(6-クロロ-3-ピリジル) エチル] -2-イミダゾ リン;

化合物43:2-(6-メチル-3-ピリジル)メチル-1,4,5,6-テトラヒドロピリミジン;

化合物45:2-(6-メチル-3-ピリジル)メチル-2-イミダゾリン;

化合物46:2-(6-エトキシー3-ピリジル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;

化合物47:2-(6-エトキシー3-ピリジル)メチルー2-イミダゾリン;

化合物48:2-(6-フルオロ-3-ピリジル) メチルー1,4,5,6-テトラヒドロピリミジン;

化合物49:2-(5,6-ジクロロー3-ピリジル) メチルー2-イミダゾリ

ン;

化合物 5 0 : 2 - (6 - クロロー3 - ピリジル) メチルー5, 5 - ジメチルー1, 4, 5, 6 - テトラヒドロピリミジン;

化合物 51:2-(2-ピリジル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;

化合物53:2-(5,6-ジクロロ-3-ピリジル)メチル-1-メチル-2-イミダゾリン;

化合物 5 4 : 2 - (6 - クロロー3 - ピリジル) メチルー4 - メチルー1, 4, 5, 6 - テトラヒドロピリミジン;

化合物 5 9 : 3 - (6 - クロロー3 - ピリジル) メチルー1, 4, 5, 6 - テトラヒドロー1, 2, 4 - トリアジン;

化合物60:2-[1-(6-クロロー3-ピリジル)エチル**]**-1,4,5,6-テトラヒドロピリミジン;

化合物 6 1:1-(2-クロロー5-チアゾリル) メチルー1, 4, 5, 6-テトラヒドロピリミジン;

化合物 6 2:1 - [2 - (6 - クロロー3 - ピリジル) エチル] - 2 - メチルー 2 - イミダゾリン;

化合物 6 3 : 1 - 【2 - (6 - クロロー3 - ピリジル) エチル】 - 4 , 4 - ジメチル - 2 - イミダゾリン;

化合物64:2-(2-クロロー5-チアゾリル) メチルー1,4,5,6ーテトラヒドロピリミジン;

化合物65:2-(2-クロロー5-チアゾリル)メチルー2-イミダゾリン;

化合物 66:2-(5-ピリミジル) メチルー1,4,5,6-テトラヒドロピリミジン;

化合物67:2-(5-ピリミジル)メチルー2-イミダゾリン;

化合物 68:2-(5-メチル-3-ピリジル) メチル-1, 4, 5, 6-テトラヒドロピリミジン。

[0092]

実施例2:方法2による合成例

ミジン [化合物 2 7] の合成

[0093]

1、4、5、6ーテトラヒドロビリミジン384mg(4.6mmol)のアセトニトリル5ml溶液を氷冷撹拌し、これに5ーブロモメチルー2ークロロビリジン619mg(3mmol)を加えて、15分間反応させた。溶媒を減圧で溜去したのち、残分に0.5N水酸化カリウム/エタノール溶液6mlを加え、析出した不溶物を濾去した。濾液を減圧濃縮して得られた残分に、トルエンを加えて再度減圧濃縮した。こうして得られた残分を、アミノブロビル化シリカゲル(Chromatorex NHーtype;富士シリシア製)を用いたカラムクロマトグラフィー(溶出溶媒;ジクロロメタン:メタノール=40:1)により精製し、1ー(6ークロロー3ービリジル)メチルー1、4、5、6ーテトラヒドロビリミジンを無色油状物として221mg(収率35.2%)得た。これをメタノールに溶解し、フマル酸122mg(1.05mmol)を加えて均一溶液としたのち減圧濃縮した。得られた残分にアセトニトリルを加えて結晶化させたのち、濾取して減圧加熱乾燥することにより表題化合物のフマル酸塩308mgを得た。

[0094]

以下の化合物は、この実施例2の方法に準じて合成した。

化合物 5 : 1 ー (6 ー クロロー 3 ーピリジル) メチル イミダゾール;

化合物 10:2-(6-2)ロロー 3-ピリジル) メチルー1-メチルー1 , 4 ,

5,6ーテトラヒドロピリミジン;

化合物 1 1 : 1 - (6 - クロロー 3 - ピリジル) メチルー 2 - メチルー 2 - イミダゾリン:

化合物27:1-(6-クロロー3-ピリジル)メチルー1,4,5,6ーテトラヒドロピリミジン;

化合物34:1,2ービス [(6ークロロー3ーピリジル) メチル] ー1,4,5,6ーテトラヒドロピリミジン;

化合物35:1-(6-クロロー3-ピリジル)メチルー2-(3-ピリジル)

-2-イミダゾリン;

化合物44:1,2ーピス[(6ークロロー3ーピリジル)メチル]ー2ーイミダゾリン;

化合物52:1-(5,6-ジクロロ-3-ビリジル)メチル-1,4,5,6-デトラヒドロビリミジン;

化合物55:1-[2-(6-クロロー3-ピリジル)エチル]-1,4,5,6-テトラヒドロピリミジン;

化合物56:1-(3-ピリダジニル) メチルー1,4,5,6-テトラヒドロ ピリミジン;

化合物57:1-(6-メチル-3-ピリジル)メチル-1,4,5,6-テトラヒドロピリミジン;

化合物 58:1-(3-ピリジル) メチルー1,4,5,6- テトラヒドロピリミジン;

化合物 6 1 : 1 ー (2 ー クロロー 5 ーチアゾリル) メチルー 1 , 4 , 5 , 6 ーテトラヒドロピリミジン;

化合物62:1-[2-(6-クロロー3-ピリジル)エチル]-2-メチルー2-イミダゾリン;

化合物63:1-【2-(6-クロロ-3-ピリジル)エチル】-4,4-ジメ チル-2-イミダゾリン;

[0095]

実施例3:方法3による合成例

2-メチル-5-(3-ピリジル)-2-イミダゾリン [化合物32] の合成

[0096]

 $N-[2-r \in J-1-(3-l \in J)]$ アセトアミド シュウ酸塩 269mg(1mmol)を5mlのオキシ塩化リンに溶解し、100 Cに加熱して 1.5時間攪拌した。室温まで冷却したのち、オキシ塩化リンを減圧で溜去し、得られた残分に氷を加えた。これに 1N 水酸化ナトリウム水溶液を加えて、pH7に調整したのちに減圧濃縮した。残分にエタノールを加えて、不溶物を濾去したのち、濾液を減圧で濃縮した。得られた濃縮残分をアミノプロビル化シリ

カゲル(Chromatorex NH-type;富士シリシア製)を用いたカラムクロマトグラフィー(溶出溶媒;クロロホルム)により精製し、2-メチルー5-(3-ビリジル)-2-イミダゾリンを褐色油状物として22mg(収率13.6%)得た。これをメタノールに溶解し、フマル酸15mg(0.13mmol)を加えて均一溶液としたのち減圧濃縮した。得られた油状残分を、t-ブタノールとアセトンの混合溶媒から結晶化させたのち、濾取して減圧加熱乾燥することにより表題化合物のフマル酸塩17mgを得た。

[0097]

以上の実施例で合成した化合物 1~化合物 6 8 の物性データを、まとめて表 1 ~表 1 4 に示す。

[0098]

_				4.4	和哪公存	
_	六 0秒	1		<u> </u>	はまりが	
	神中	化 评 稱 阎	姐	(い) 温野(い)	実測値	TH-NMR(DMSO-d ₆)
	,			結晶化溶媒	分子式	ò
		:		無色結晶		8.87 (d, J=2.4Hz, 1H), 8.29 (dd, J=2.4, 8.4Hz,
_		2			m/z 182 = (M+H) ⁺	1H), 7.70 (d, J=8.4Hz, 1H), 6.56 (s, 2H), 3.78 (s,
_	_	Z1	フマル酸	170-175°C		(4H)
	•	-\			C,H,OIN,	
				アセトニトリル	•	
		﴿		無色結晶		8.79 (d, J=2.5Hz, 1H), 8.24 (dd, J=2.5, 8.3Hz,
_		~ =< «			m/z 196 = (M+H) ⁺	18, 7.74 (d, 0=8.3Hz, 1H), 6.40 (s, 2H), 3.49 (t, 1=5.7Hz, 4H), 194 (m, 2H)
	7	>= \	フマル酸	162-168°C		
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		メタノーバー	C ₀ H ₁₀ OIN ₃	
_1				アセトニトリル		
		N		乳白色結晶		8.65 (d. J=2.4Hz, 1H), 8.09 (dd. J=2.4, 8.2Hz.
					$m/z 196 = (M+H)^{+}$	[H), 7.71 (d, J=8.2Hz, 1H), 6.53 (s, 2H), 3.84 (m, 2H), 3.70 (m, 2H), 2.89 (s, 3H)
	າ		フマル酸	117-120°C		
		N.		: 	C ₀ H ₁₀ OIN ₃	
				エーナル		
		•		無色油状物		10.26 (br, 1H) 8.66 (d, J=1.8Hz, 1H), 8.13 (dd,
	*	z=	,		m/z 210 = (M+H) ⁺	J=1.8, 8.3Hz, 1H), 7.80 (d, J=8.3Hz, 1H), 3.57 (t. J=5.6Hz, 2H), 3.43 (t. J=5.3Hz, 2H), 2.98 (s. 3H)
	t	z-:	シュウ酸			2.08 (m, 2H)
		CI			(10, 112, 0143	
				無色結晶		8.39 (d. J=2.4Hz, 1H), 7.81 (d. J=4.6Hz, 1H), 7.73 (d. J=2.4, 8.2Hz, 1H), 7.59 (d. J=8.2Hz, 1H)
	Ŋ		コマル酸	123-124°C	(M+H) = 184 = (M+H)	7.24 (s, 1H), 6.94 (br, 1H), 6.63 (s, 2H), 5.26 (s,
	•	<u>.</u>		1	C ₉ H ₈ CIN ₃	- CU2
Ш				ノエトートリル		

				***	和即公存	
	7 4 4	:		<u>۲</u>	見を見る	•
	5 4 5 4 5 4	化钟桶油	桶	(SC)	東灣価	H-NMR(DMSO-d ₆)
	E E			結晶化溶媒	分子式	
10				無色結晶		13.0 (br, 3H), 8.94 (d, J=2.5Hz, 1H), 8.30 (dd,
<u> </u>		2 1			m/z 180 = (M+H) ⁺	0-2.3, 0.3Mz, 1M, 7.80 (8, 0-0.3Mz, 1M, 7.23 (8, 12H) 6.83 (s. 2H)
1 (φ	ZI	フマル酸	173-186°C		
. (\ N		744-411	֓֞֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟ ֖֖֓֞֞֞֞֓֞֞֞֓֞֞֩֞֩֞֓֓֓֞֞֩֞֞֩֞֩֞֞֩֞֩֞֩֞֩֞֩	
1				4//		-100 30-1 177 40 4 (114 -1130-1 17) 08 0
		IZ		無色結晶	m/z 196 = (M+H)⁺	8.42 (d. J=2.5Hz, 1H), 7.87 (dd, J=2.5, 8.2Hz, 1H), 7.52 (d, J=8.2Hz, 1H), 6.47 (s, 2H), 3.93 (s,
	7		フマル酸	139-142°C		ZH), 3.73 (s. 4H)
•		, v Ö		アセトニトリル	Co.H.o	
•						0 48 (4 1-0 5U- 1U) 00 (44 1-0 5 0 0U-
		π		無色結晶	+(H-M) = 010 =/	8.46 (d. J-2.3Hz, 1H), 7.92 (dd. J-2.3, 8.3Hz, 11H), 7.52 (d. J-8.3Hz, 1H), 6.45 (s. 2H), 3.87 (s.
	0	z = =	# :	0001	(H+W) = 017 2/W	2H), 3.32 (t, J=5.7Hz, 4H), 1.81 (m, 2H)
	•	=\ =\ -\{ -\{	ノヘラ製	77/1-/01	<u> </u>	
•		: 5		アセトニトリル	(10712(113	
		ayi.		無色結晶		8.43 (br. 1H), 7.86 (dd, J=2.3, 8.2Hz, 1H), 7.54 (d. J=8.2Hz, 1H), 6.48 (s. 2H), 4.06 (s. 2H), 3.76 (m.
	0	Z = Z	# = 1 1	0000	$m/2 210 = (M+H)^{T}$	4H), 3.00 (s, 3H)
	•		イベン既	7 97 57	Z.C.	
		5		アセトニトリル	1012 (3	
		aw-		無色結晶	400000000000000000000000000000000000000	8.42 (d, J=2.4Hz, 1H), 7.84 (dd, J=2.4, 8.2Hz, 1H), 7.55 (d, J=8.2Hz, 1H), 4.07 (s, 2H), 3.44 (t
	-	Z			$m/z 224 = (M+H)^{-1}$	J=5.7Hz, 2H) 3.35 (t, J=5.7Hz, 2H) 3.06 (s, 3H)
	2	=z =z =\ -{ 0	シュウ 器	S5-89°C	Z Z	1.95 (m, 2H)
		: 5		アセトン	94	
١						

84年 84年 85年 87年 87年 87年 875 875年 8754 8754 8754 8754 8754 8754 8754 8754 8754 8754 8754 8754 8754 8754 8754 8754 8754					***	質量分析	
# 世 報 点	+	を	1	4	1	± ± 5 €	
#告結晶	איי <u>ב</u>	2 0	理	磓	野瓜(,C)		(9p-QXMC)H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-
#色結晶 m/2 210 = (M+H)* Ci N 7マル	——————————————————————————————————————	μ Γ			結晶化溶媒	分子式	
Ci N 2 210 = (M+H) [†] 165-171°C C ₁₀ H ₁₂ ClN ₃ アセトニトリル 無色結晶 m/2 224 = (M+H) [†] 166-168°C C ₁₁ H ₁₄ ClN ₃ アセトニトリル 次黄色結晶 m/2 155 = (M+H) [†] 54-57°C C ₁₁ H ₁₄ N ₂ O アセトン 無色結晶 m/2 141 = (M+H) [†] 7マトン 無色結晶 m/2 141 = (M+H) [†] カマトン アセトン ボーンコウ酸 187-190°C C ₃ H ₁₆ N ₂ O アセトン オートン (C ₃ H ₁₄ N ₂ O アセトン アセトン (C ₃ H ₁₄ N ₂ O アセトン (C ₃ H ₁₆ N ₂ O (C ₃ H ₁₆ N					無色結晶		8.45 (d, J=2,5Hz, 1H), 7.89 (dd, J=2,5, 8.2Hz,
CI N			æ			$m/2 210 = (M+H)^{+}$	H), 7.57 (d, 0=8.2Hz, H), 0.40 (s, 2H), 4.53 (s, 0H) 3.73 (m, 0H) 2.52 (m, 0H)
#色結晶 m/z 224 = (M+H)*		=	Z - Z - Z - Z - Z - Z - Z - Z - Z - Z -	フマル酸	165-171°C		
#色結晶 m/2 224 = (M+H)* 166-168°C C ₁₁ H ₁₄ ClN ₃ アセトニトリル 淡黄色結晶 m/2 155 = (M+H)* 54-57°C C ₈ H ₁₄ N ₂ O アセトン #色結晶 m/2 141 = (M+H)* 7セトン ボクトン ボクトン ボクトン ボクトン ボクトン ボクトン ボクトン ボク					アセトニトリル	C ₁₀ H ₁₂ OIN ₃	
166-168°C					無色結晶		8.41 (d, J=2.5Hz, 1H), 7.95 (s. 1H), 7.86 (dd,
Nation			Z	٥.		m/z 224 = (M+H)*	J=2.5, 8.2Hz, 1HJ, 7.30 (d. J=6.2Hz, 1HJ, 6.49 (s. 2H), 4.57 (s. 2H), 3.17 (s. 2H), 1.24 (s. 6H)
Nath = 1/1/L		12	— 子 ~ ~	フマル酸	166-168°C	<u> </u>	
Ny 黄色結晶			-		アセトニトリル		
M			(淡黄色結晶		9.9 (br, 1H), 6.43 (s, 2H), 3.88 (m, 2H), 3.72 (m, 2H), 3.34 (k, 1-6.70-, 4U), 3.30 (m, 1H), 3.31 (m, 2H), 3.31 (m
A 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2			/ `z=			m/z 155 = (M+H) ⁺	IH), 2.04 (m, 1H), 1.84 (quintet, J=5.7Hz, 2H)
(S ₆ H ₁₄ N ₂ O アセトン (S ₆ H ₁₄ N ₂ O 無色結晶 m/z 141 = (M+H) [†] フマル酸 103-105°C (C ₇ H ₁₂ N ₂ O アセトン 無色結晶 m/z 169 = (M+H) [†] ※ユウ酸 187-190°C (C ₉ H ₁₆ N ₂ O アセトン (C ₉ H ₁₆ N ₂ O		<u></u>	ZI	フマル酸	54-57°C		
#色結晶 m/z 141 = (M+H) ⁺		•	: }		7	0°H, N20	
#色結晶 m/z 141 = (M+H) ⁺ フマル酸 103-105°C C ₇ H ₁₂ N ₂ O アセトン #色結晶 m/z 169 = (M+H) ⁺ テセトン #色結晶 m/z 169 = (M+H) ⁺ テセトン アセトン アセトン アセトン	_				,		
(C,H ₁₂ N ₂ O) アセトン 無色結晶 m/z 169 = (M+H) [†] シュウ酸 187-190°C C ₉ H ₁₆ N ₂ O アセトン アセトン アセトン			2		無色結晶	$m/r 141 = (M+H)^{+}$	643 (s, 2H), 3.86 (m, 2H), 3.73 (s, 4H), 3.72(m, 2H), 3.35 (m, 1H), 2.19 (m, 1H), 2.06 (m, 1H)
(C;H ₁₂ N ₂ O (C;H ₁₂ N ₂ O (M+H) [†] シュウ酸 187-190°C C ₅ H ₁₆ N ₂ O アセドン C ₅ H ₁₆ N ₂ O		4	ZI	フマル酸	103-105°C		
#色結晶 m/z 169 = (M+H) [†] シュウ酸 187-190°C C ₅ H ₁₆ N ₂ O アセトン			>		アセトン	C,H ₁₂ N ₂ O	
M/2 169 = (M+H)			r		無色結晶		9.71 (br. 2H), 3.74 (m, 2H), 3.64 (m, 1H), 3.32 (m, 4H) 2.44 (m, 4H) 1.99 (m, 1H) 1.84 (m, 2H)
く N ショウ酸 187-190°C アセトン	· ·	· · ·	× >= -		•	$m/z 169 = (M+H)^{+}$	1.54 (m, 1H)
		<u></u>		シュウ酸	187~190°C	C, N,	
					アセトン) 7, 191, 16)	. '

[0101]

-				#	おいの形	
_	144			수 된	阿爾乙亞	
	が回答	化补糖 淌	如	配点(°C)	東渕値	H-NMR(DMSO-d ₆)
-	Ħ Γ			結晶化溶媒	分子式	
				無色結晶		8.66 (d, J=1.6Hz, 1H), 8.62 (d, J=1.6Hz, 1H), 8.16
	,	12;			$m/2 254 = (M+H)^{+}$	(s, 1H), 6.39 (s, 2H), 3.87 (s, 2H), 3.33 (m, 4H), 1.81 (m, 9H)
	16	>=: >=: >=: i	フマル酸	155-159°C		
		\ z !/z			C ₁₀ H ₁₂ BrN ₃	
			-	アセトン		
		-		無色結晶		8.63 (s, 1H), 8.53 (s, 1H), 8.05 (s, 1H), 6.44 (s,
	•••	P S			$m/z 242 = (M+H)^*$	ZII), 3.70 (8, ZII), 3.80 (8, 4II)
-	17		フマル酸	150-154°C		
		: \ Z			C ₃ H ₁₀ BrN ₃	
				アセトン		
		7		無色結晶		10.77 (2H, br), 8.62 (1H, s), 8.51 (d, J=4.8Hz,
		2			$m/z 176 = (M+H)^{+}$	18, 7.83 (a, 3-7.982, 18), 7.33 (aa, 3-4.6, 3-6, 3-7.982)
	8		フマル類	120-124°C		7.00%, 107, 0.4% (5, 207, 0.00 (5, 207, 0.00 (m, 404) 1.01 (m, 504)
		\ \ \ //		エタノール	C,0T,3Z3	
				-アセトン		
Ь				無色結晶		8.57 (d, J=2.0Hz, 1H), 8.51 (dd, J=2.0, 4.7Hz,
		Z			$m/2 162 = (M+H)^{+}$	1H), 7.78 (d. J=7.8Hz, 1H), 7.39 (dd. J=4.7,
	19		フマル戦	134-135°C		7.8Hz, 1HJ, 6.46 (S, ZHJ, 3.83 (S, ZHJ, 3.72 (S, 4HJ)
					C ₉ H ₁₁ N ₃	
				アセトン		
Ь.		\ _ <u></u>		無色結晶		7.21 (m, 1H), 6.85 (s, 1H), 6.81 (m, 2H), 6.37 (s,
	····	~~\ z={			m/z 176 = (M+H) ⁺	ZHJ, 3.34 (Br, ZHJ, 3.43 (M, 4HJ, 1.93 (M, ZH)
	20) > -	フマル酸	192–195°C	;	
		<u></u>		7.444	CoT ₁₃ N ₃	
		NHS		, [

[0102]

			41.41	4 1 0 4	
11 0 th			₩±.	貝尾万伽	
15回数	6 外籍 语	妕	配点(°C)	実測値	1H-NMR(DMSO-dg)
—— 年 九			結晶化溶媒	分子式	
			無色結晶		8.94 (s, 1H), 8.38 (s, 1H), 8.03 (d, J=8.4Hz, 1H),
	1			$m/z 226 = (M+H)^{+}$	7.94 (d, J=8.1Hz, 1H), 7.77 (m, 1H), 7.64 (m, 1H),
21	z -	フマル酸	168-171°C	•	6.42 (S, 2H), 4.03 (S, 2H), 3.34 (m, 4H), 1.83 (m, 2H)
				O.F.T.S.	
			アセトン		
			無色結晶	-	8.03 (s, 1H), 6.56 (s, 2H), 3.34(m, 4H), 1.76 (m,
	z			$m/z 202 = (M+H)^{+}$	ZH)
22	Z =\ 0	フマル酸	159-160°C		
	:I			C,HBCIN ₃ S	
	Ž		アセトン		
			無色結晶		8.88 (s, 1H), 8.31 (s, 1H), 8.03 (d, J=8.4Hz, 1H),
	IZ ($m/z 212 = (M+H)^{+}$	7.96 (d, J=8.182, 187, 7.78 (m, 187, 7.64 (m, 187, 187) (d. 28.) 4.06 (d. 28.) 2.75 (d. 48.)
23		フマル酸	175-177°C		(i.e. (c) 07:0 (3) 7:00 (5) 4:17 (6) 4:0
		S		Cı3H13N3	
			アセトン		
			淡黄色結晶		8.02 (s, 1H), 6.62 (s, 2H), 3.62(s, 4H)
•••	Z			m/z 188 = (M+H)	
24	NI S	フマル酸	157-158°C		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		: :	O ₆ T ₆ CIN ₃ S	
			アセトン		
	<		無色結晶		9.16 (d, J=2.2Hz,1H), 8.82 (d, J=2.2Hz,1H), 8.13
	/		,	$m/z 212 = (M+H)^{+}$	(iii, EH), 7.35 (iii, 117), 7.75 (iii, 117), 0.36 (s, 217), 3.55 (m, 4H), 2.00 (m, 2H)
52	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	フマル酸	188-193°C		
		,	1	$C_{13}H_{13}N_3$	
			ノゼトン		

[0103]

			**	医咽心脏	
17			<u> </u>		
に で し 返 回 数 ロ	化孙横淌	祖	電点(%)	東渕値	H-NMR(DMSO-d ₆)
毎 化			結晶化溶媒	分子式	
			無色結晶		7.66 (s, 1H), 7.64 (s, 1H), 6.50 (s, 1H), 6.41 (s,
	12			m/z 151 = (M+H)*	ZU), 3.74 (S, 4H), 3.09 (S, ZH),
26		フマル酸	200-205°C	; ;	
	ò		アセトン	C ₈ T ₁₀ N ₂ C	
			無色結晶		8.47 (m, 2H), 7.92 (dd, J=2.5, 8.2Hz, 1H), 7.59 (d.
				$m/z 210 = (M+H)^*$	J=8.2Hz, 1H), 6.44 (s, 2H), 4.69 (s, 2H), 3.25 (m, 4H), 1.88 (m, 2H)
27		フマル酸	126-129°C	- -	
) Z		アセトニトリル	C10 712 CIN3	
			無色結晶		10.37 (br, 2H), 6.39 (s, 2H), 3.68 (s, 2H), 3.32 (m,
	ΞŹ			m/z 194 = (M+H) ⁺	4H), 2.34 (s, 3H), 2.14 (s, 3H), 1.83 (m, 2H)
28)=-	フマル酸	188-190°C		
			. 14	C ₁₀ F ₁₅ N ₃ O	
			ノゼトノ		
	I		無色結晶		6.43 (s, 2H), 3.72 (s, 4H), 3.64 (s, 2H), 2.34 (s, 3H), 2.14 (s, 3H)
53	Me	フマル酸	208-215°C		
			エタノール	C ₂ H ₁₃ N ₃ O	
			無色結晶		7.55 (d. J=4.8Hz, 1H), 7.46 (s, 1H), 7.13 (d, 1=4.8Hz, 1H), 6.40 (s, 2H), 3.78 (s, 2H), 3.33 (m, 1H), 6.40 (s, 2H), 3.78 (s, 2H), 3.33 (m, 1H), 6.40 (s, 2H), 3.78 (s, 2H)
		Ì	,	m/z 181 = (M+H)*	4H), 1.83 (m, 2H)
30		フマル酸	85-90°C	V.	
	s S		アセトン	31,12,12	

ί						F
	4			体状	質量分析	
	15日 本 中 1	行孙籍 语	蝍	融点(°C)	東測値	H-NMR(DMSO-de)
	E C			結晶化溶媒	分子式	
<u> </u>				無色結晶		7.55 (d. J=4.8Hz, 1H), 7.43 (s. 1H), 7.11(d.
_		12			$m/z 167 = (M+H)^{+}$	J=4.8Hz, 1H), 6.43 (s, 2H), 3.83 (s, 2H), 3.75 (s,
1	31		フマル酸	150-153°C		(14)
] ~ ~ ~			C ₈ H ₁₀ N ₂ S	
_				アセトン		
_		a W.		淡褐色結晶	,	8.60 (s, 1H), 8.57 (m, 1H), 7.81 (d, J=6.8Hz, 1H), 7.45 (m, 1H), 6.48 (s, 2H), 5.33 (m, 1H), 4.23 (m,
	66	\	å : !	000	m/z 162 = (M+H)*	1H), 3.64(m, 1H), 2.24 (s, 3H)
	70	<u>;</u> }_	ノヘラ器	130-132 C	:	
		\ _Z _J		トノダノーグー・アセドン	ຂຶ້ ກິ່ງ	
L						(11 -110 F-1 L) 25 L (111 -) 110 (UC) 23 0
	•			無句格品		0.30 (III, 2II), 0.14 (S, 1II), 7.73 (d, 0=7.0II2, 1II), 1.43 (m, 4II) 4.15 (m, 4III) 4.15 (m, 4IIII) 4.15 (m, 4IIIII) 4.15 (m, 4IIIII) 4.15 (m, 4IIIIII) 4.15 (m, 4IIIIIIIIIIII) 4.15 (m, 4IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
		N.			$m/2 148 = (M+H)^{+}$	7.45 (m, 17), 0.34 (s, 27), 3.24 (m, 17), 4.13 (m, 141) 3.55 (m, 17)
	33	z 	フマル酸	148-149°C		
		=\ 		Hダノーバ	C, L,	
		Z		-アセトン		
		Z		淡褐色結晶		8.40 (d, J=2.3Hz, 1H), 8.20 (s, 1H), 7.84 (dd,
					$m/z 335 = (M+H)^{+}$	J=2.3, 8.3Hz, 1H), 7.64 (d, J=8.2Hz, 1H), 7.47 (m, Jen), 6.47 (2, 2H), 4.44 (2, 2H), 4.52 (2, 2H), 4
	34	-z'	フマル酸	135-139°C		(£, J≈5,4Hz, 2H), 3,34 (£, J=5,3Hz, 2H), 1,96 (m.
		=z			C16H16O2N	2H)
		2		アセトニトリル		
L		×.		淡褐色結晶		8.76 (d. J=1.8Hz, 1H), 8.71 (dd. J=1.5, 4.8Hz,
		<u></u>			$m/z 273 = (M+H)^{+}$	TH, 6.34 (d, 3-2.4Hz, TH), 7.37 (ddd, 3-1.3, 1.6, 17.8Hz, TH), 7.81 (dd, 3-2.4, 8.2Hz, TH), 7.53 (dd, 3-1.4)
	32	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	フマル酸	164-166°C	:	J=4.8, 7.8Hz, 1H), 7.52 (d. J=8.2Hz, 1H), 6.58 (s.
				744.	CitH13GINt	2H), 4.32 (s, 2H), 3.83 (t, J=10.0Hz, 2H), 3.45 (t, J=10.0Hz, 2H)
لـ				, ,		

[0105]

L						
	4			件状	質量分析	
	1500 第00	允补 蕪 淌	桶	配点(°C)	東巡値	1H-NMR(DMSO-d ₆)
	Ħ L			結晶化溶媒	分子式	
				無色結晶		8.31 (d, J=2.1Hz, 1H), 8.01 (d, J=2.1Hz, 1H),
		IZ			$m/2 244 = (M+H)^{+}$	6.68 (s, 2H), 3.85 (s, 2H), 3.43 (m, 4H), 1.99 (m, 12H) in CDOD
	36	5	フマル酸	198-200°C	-	000000000000000000000000000000000000000
					C ₁₀ H ₁₁ Cl ₂ N ₃	
		5		アセトン		
		Τ.		無色結晶		8.49 (d. J=2.4Hz, 1H), 7.94 (dd, J=2.4, 8.2Hz,
		١.			m/z 286 = (M+H) ⁺	1H), 7.35 (d, J=8.2Hz, 1H), 7.30 (m, 5H), 6.44 (s, 2H), 3.94 (s, 2H), 3.57 (m, 2H), 3.45 (m, 2H), 3.08
	37	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	フマル酸	163-168°C		(m, 1H)
		>		1	CreHis CIN3	
				7 4 5 7		
				無色結晶		8.55 (d, J=5.8Hz, 2H), 7.40 (d, J=5.8Hz, 2H), 6.48
		• • • •			m/z 176 = (M+H) ⁺	(S, ZH), 5.84 (S, ZH), 5.54 (T, U=5.7HZ, 4H), 1.65 (Tm. 2H)
	88	/_ }=; } <u></u>	フマル酸	141-143°C		
		\ z \ z			$C_{10}H_{13}N_3$	
				アセトン		
				無色結晶		8.38 (dd, J=1.7, 4.8Hz, 1H), 7.89 (dd, J=1.7,
	,	T			$m/z 210 = (M+H)^{+}$	7.0FZ, 1H, 7.40 (dd, J-4.6, 7.0FZ, 1H), 6.33 (s, 2H), 3.97 (s, 2H), 3.35 (t, J=5.7Hz, 4H), 1.87 (m.
	36	Z =	フマル酸	160-161°C		2H)
	,			アセトン	C ₁₀ H ₁₂ CIN ₃	
				無色結晶		7.86 (d, J=8.0Hz, 1H), 7.50 (d, J=8.0Hz, 1H), 6.68
	Ć.		# = 1	OCT 1 351	$m/z 244 = (M+H)^*$	(s, ZTV, 3.97 (s, ZTV, 3.40 (t, J=0.7172, 4TV, Z.UZ (m,ZH) in CD ₃ OD
	P	= z	超イン) // -0/ -	, K. H. O.	
		5 Z		アセトン	5 7 11 01 -	

[0106]

_				体状	質量分析	
_	大 小 沙	宁孙蕃 施	#	(2) 年曜	一	(F-OSMO/OMIN-H,
	番号	£ ŀ	¶	ついまま	米河间	19B-DOWD YEAR - E
				結晶化溶媒	分子式	
7				無色結晶		8.28 (s, 1H), 7.74 (d, J=8.2Hz, 1H), 7.46 (d,
_		Z			$m/z 224 = (M+H)^{+}$	J=8.2Hz, 1H), 6.70 (s, 2H), 3.41 (t, J=5.5Hz, 4H), 2.03 (t, I=7.6Hz, 9H), 3.23 (t, I=7.6Hz, 9H), 1.65
	4		フマル酸	156-157°C		3.02 (t. 0=7.012, zn.), z.73 (t. 0=7.012, zn.), 1.30 (n. 2H) in CD ₂ OD
		:I			Cı,Hı,OlN₃	,
		CI_N		アセトン		
				無色結晶		8.27 (s, 1H), 7.73 (d, J=8.0Hz, 1H), 7.43 (d,
		2:			$m/z 210 = (M+H)^*$	J=8.0Hz, 1H), 6.68 (s, 2H), 3.90 (s, 4H), 3.02 (br, 2H), 9.86 (hr, 9H) in OD, OD
	42	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	フマル酸	148-149°C		200 (0), 211/ 11 00300
		=\			C ₁₀ H ₁₂ CIN ₃	
		ž		アセトン		
				無色結晶		8.46 (s, 1H), 7.71 (d, J=7.9Hz, 1H), 7.23 (d.
-		r			$m/z 190 = (M+H)^{+}$	J=7.9Hz, 1H), 6.40 (s, 2H), 3.77 (s, 2H), 3.31 (m,
	43	z -	フマル観	156-158°C		4HJ, 2.44 (S, 3HJ, 1.80 (m, 2H)
			1	2-プロパノール	C ₁₁ H ₁₅ N ₃	
				- アセトン		
		ID' N.		乳白色結晶		8.38 (d, J=2.0Hz, 1H), 8.31 (d, J=2.4Hz, 1H), 7.82
			-	•••	$m/z 321 = (M+H)^{+}$	(dd, J=2.0, 8.2Hz, 1H), 7.75 (dd, J=2.4, 8.2Hz,
	44) 	フマル酸	162-164°C		10, 7.31 (d, 0=0.2nz, 1n), 7.43 (d, 0=0.2nz, 1n), 16.52 (s, 2H) 4.57 (s, 2H) 4.00 (s, 2H) 3.68 (m
				·	C ₁₅ H ₁₄ Cl ₂ N ₄	2H), 3.47 (m, 2H)
		, N, , 10		2-プロパノール		
				無色結晶		8.42 (d, J=2.2Hz, 1H), 7.66 (dd, J=2.2, 8.0Hz,
	- !	± z ($m/z 176 = (M+H)^{+}$	[17], 7.23 (d, J=8.0Hz, 1H), 6.44 (s, ZH), 3.82 (s, [2H), 3.72 (s, 4H), 2.44 (s, 3H)
	45		フマル酸	165-166°C		
		Me		744.7	O. L. L. S. Z.	
_				, ,		

[0107]

L				共世	如每个花	
_	する			<u> </u>		
	神でいる	化学構造	桶	(C)	実測価	H-NMR(DMSO-de)
	ì			結晶化溶媒	分子式	
				無色結晶		8.16 (d, J=2.3Hz, 1H), 7.72 (dd, J=2.3, 8.5Hz,
		IZ ($m/z 220 = (M+H)^{+}$	11H), 6.78 (d, J=8.5Hz, 1H), 6.39 (s, 2H), 4.28 (g, I=7.0Uz, 2H), 2.32 (z, 2H), 2.31 (z, 1Hz, 2H), 2.31
	46	\	フマル酸	110-112°C		J-7.002, 207, 3.72 (S. 207, 3.31 (T. J-3.702, 407), 1.80 (m. 20), 1.30 (t. J-7.004, 30)
				•	O;2H,2N3O	
				アセトン		
		:		無色結晶		8.12 (d, J=2.2Hz, 1H), 7.68 (dd, J=2.2, 8.5Hz,
	ļ				$m/z 206 = (M+H)^{+}$	J=7 0Hz 2H) 3.76 (s 2H) 3.72 (s 4H) 1.30 (t
	47		レマル酸	170-171°C		J=7.0Hz, 3H)
		. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			C ₁₁ H ₁₅ N ₃ 0	
				アセトン		
				淡黄色結晶		8.27 (s, 1H), 8.03 (ddd, J=2.3, 8.2, 8.4Hz, 1H),
		ÍZ ($m/z 194 = (M+H)^*$	7.21 (dd, J=8.4, Z./Hz, 1H), 6.39 (s, 2H), 3.84 (s,
	48	/	フマル酸	136-139°C		ZII), 3.32 (L. 3-3.1, 411), 1.61 (III, ZII)
		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			C ₁₀ H ₁₂ FN ₃	
				アセトン		
		:		無色結晶		8.37 (s, 1H), 8.15 (s, 1H), 6.46 (s, 2H), 3.85 (s,
		5 Z			m/z 230 = (M+H) ⁺	ZH), 3.00 (s, 4H)
	49		フマル酸	176-178°C		
		N N		:	C ₃ H ₃ Cl ₂ N ₃	
				アセトン		
				淡黄色結晶		8.37 (s, 1H), 7.82 (dd, J=2.4, 8.2Hz, 1H), 7.50 (d,
		±2(,		m/z 238 = (M+H) ⁺	J-6.zhz, Tr.), 6.06 (s, zh.), 3.06 (s, zh.), 3.13 (s, 4H), 1.02 (s, 6H) in CD ₂ OD
	 ટ્ર	;; ;=;; ;=;	フマル製	143-145°C		
		N N N N N N N N N N N N N N N N N N N			C ₁₂ H ₁₆ CIN ₃	
╝				ノゼトン		

[0108]

•						
	4			存状	質量分析	
	500 地域	化学横造	桶	融点(°C)	実測値	H-NMR(DMSO-d ₆)
-	無 作			結晶化溶媒	分子式	
,				型工色結晶		8.56 (d, J=4.7Hz, 1H), 7.84 (t, J=7.0, 7.8Hz, 1H),
()		Ι			$m/z 176 = (M+H)^{+}$	7.41 (d, J=7.8Hz 1H), 7.37 (t, J=4.7, 7.0Hz, 1H),
1	5	z 	フマル酸	120-122°C		0.70 (s, zH), 3.93 (s, ZH), 3.46 (t, U=3.7Hz, 4H), [2.01 (a, U=5.7Hz, 2H) in CD ₂ OD
^		z z z			C ₁₀ H ₁₃ N ₃	
9				アセトン		
1				無色結晶		8.37 (d. J=2.1Hz, 1H), 8.33 (s, 1H), 8.10 (d, J=2.1Hz, 1H), 6.8 (s, 2H), 4.70 (s, 2H), 3.31 (m, J=2.1Hz, 1H), 6.8 (s, 2H), 4.70 (s, 2H), 3.31 (m, J=2.1Hz, 1H), 6.8 (s, 2H), 4.70 (s, 2H), 3.31 (m, J=2.1Hz, 1H), 6.8 (s, 2H), 4.70 (s, 2H), 3.31 (m, J=2.1Hz, 1H), 6.8 (s, 2H), 4.70 (s,
	52	Z- Z-	強ニヘク	185–186°C	m/z 244 = (M+H)*	4H), 2.04 (m, 2H) in CD ₃ OD
		___________________	X)	C ₁₀ H ₁₁ Cl ₂ N ₃	
				アセトン		
				無色結晶		8.36 (d. J=2.1Hz, 1H), 8.06 (d. J=2.1Hz, 1H), 6.71
		-We			m/z 244 = (M+H) ⁺	(S, ZH), 4:01 (t, J=11:0HZ, ZH), 3:00 (t, J=11:0HZ, JH), 3:34 (e, DH), 3:20 (e, 3H) in CD_OD
	53	ō	フマル酸	152°C		
					C ₁₀ H ₁₁ Cl ₂ N ₃	
		z 5		アセトン		
		T		無色結晶		8.37 (d, J=2.5Hz, 1H), 7.81 (m, 1H), 7.51 (m, 1H), 8.70 (g, 2H), 3.83 (g, 2H), 3.60 (m, 1H), 3.45 (m,
		z }=			$m/z 224 = (M+H)^{+}$	2.13 (s, 2.11), 3.83 (s, 2.11), 3.03 (iii, 111), 3.43 (iii), 2.11 (m, 11), 1.68 (m, 11), 1.34 (m, 31) in
	54	=z =\ =\ -\ -\ -\	フマル製	157°C		CD3OD
		_£		744	C1.H.1.0	
				淡黄色結晶		8.34 (s, 1H), 8.03 (s, 1H), 7.81 (d, J=8.1Hz, 1H).
					$m/z 224 = (M+H)^{+}$	7.50 (d, J=8.1Hz, 1H), 6.37 (s, 2H), 3.67 (t, 1.1=6.9Hz, 2H), 3.42 (m, 2H), 3.22 (m, 2H), 2.95 (t, 1.1=6.9Hz, 2H), 3.25 (m, 2H), 3.95 (t, 1.1=6.9Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2H
	55	-Z	フマル酸	138-143°C	:	J=6.9Hz, 2H), 1.89 (m, 2H)
		=\v_i		アセトン	C11 His CIN3	
_						

[0109]

		1		41. 63	37, 17	
	14 4 T			性状	質量分析	
	お口検	化补横路	姐	强点(°C)	東測値	H-NMR(DMSO-d ₆)
-	Ħ C			結晶化溶媒	分子式	
Щ.				無色結晶		9.22 (s, 1H), 8.37 (s, 1H), 7.80 (s, 1H), 7.79 (s,
_		(1	m/2 177 = (M+H) [*]	1H), 6.71 (s, 3H), 5.01 (s, 2H), 3.49 (t, J=5.5Hz,
1	26	z// /z/	フマル酸	124-125°C		ZH), 3.43 (t, J=5.5Hz, ZH), 2.11 (t, J=5.5Hz, ZH) in_CD, DD
			1.5分子		C ₃ H ₁ ,N ₄	3)
				アセトン		
				無色結晶		8.49 (s, 2H), 7.72 (d, J=7.8Hz, 1H), 7.32 (d,
		z. \\ z.	i		m/z 190 = (M+H)*	J-7.8hz, 1H), 8.53 (s, 4H), 4.63 (s, 2H), 3.23 (m, 4H), 2.50 (s, 3H), 1.87 (m, 2H)
	<u>.</u> ک		フマル類	156-157°C		
		Z	2分子		C ₁₁ H ₁₅ N ₃	
				アセトン		
				無色結晶		8.62 (s, 1H), 8.58 (d, J=4.8Hz, 1H), 8.49 (s, 1H).
		«			m/z 176 = (M+H) ⁺	/.83 (d, J=/./Hz, IH), /.46 (dd, J=4.8, /./Hz, 1H) 6 52 (- JH) 7 60 (- JH) 2 25 (- JH) 1 97
	28	z	フマル酸	141-142°C	·	(m. 2H)
		\ \ \z	2分子		C ₁₀ H ₁₃ N ₃	
				アセトン		
L		Ξ		黄色結晶		11.46 (br, 1H), 10.21 (br, 1H), 8.47 (s, 1H), 7.93
					$m/2 211 = (M+H)^{+}$	(d, J=8.2Hz, 1H), 7.57 (d, J=8.2Hz, 1H), 5.94 (br. 1H), 2.64 (z. 2H), 2.52 (z. 2H), 2.65 (z. 2H)
	29	= ź	植酸	134-140°C		17), 5.81 (S, 27), 5.38 (m, 27), 5.00 (m, 27)
	-	ZI \V	2分十		C,H,CIN,	
				アセトニトリル		
Ь		aw		器色結晶		8.37 (d, J=2.5Hz, 1H), 7.81 (dd, J=2.5, 8.3Hz,
					m/z 224 = (M+H) ⁺	
	09	=z	フマル酸	156-158°C		(quintet, J=5.7Hz, 2H), 1.63 (d, J=7.2Hz, 3H) in
		z		アセトン		CD°CO

[0110]

L				**	阿魯公花	
	7			7	=	•
	はなる	化 	桶	配示(2C)	実測値	H-NMR(DMSO-d ₆)
	Ħ ι			結晶化溶媒	分子式	
<u></u>				無色結晶		811 (s, 1H), 7.66 (s, 1H), 6.41 (s, 2H), 4.56 (s,
		($m/z 216 = (M+H)^{+}$	2H), 3.35 (m, 4H), 1.77 (m, 2H)
	61	z — — — — — — — — — — — — — — — — — — —	フマル酸	133-134°C		
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			C ₈ H ₁₀ ClN ₃ S	
				アセトン		
l		(無色結晶		8.38 (d, J=2.1Hz, 1H,), 7.85 (dd, J=2.1, 8.2Hz,
		Z N			m/z 224 = (M+H) ⁺	TH), 7.30 (d, 3–8.2Hz, 1H), 6.36 (s, 2H), 3.73 (III, 4H), 3.59 (t, 3=7.2Hz, 2H), 2.91(t, 3=7.2Hz, 2H).
	62	—\$ —\ :{	フマル酸	144-146°C		2.09 (s, 3H)
		\Z,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-	C11H14CIN3	
				アセトン		
L		aw aw		無色結晶		10.34 (1H, s), 8.36 (d, J=2.4Hz, 1H), 8.28 (1H, s).
					$m/z 238 = (M+H)^{T}$	(1H) 374 (+ , =6,8Hz, 4H) 3.62 (s, 9H) 9.97(+
	63	z	植物	158-162°C		J=6.8Hz, 2H), 2.09 (s, 3H), 1.31(s, 3H)
		-\	2分子		C ₁₂ H ₁₆ CIN ₃	
•		<u>.</u>		アセトン		
<u> </u>				無色結晶		10.06 (s, 2H), 7.70 (s, 1H), 4.07 (s, 2H), 3.32 (m,
		IZ ($m/z 216 = (M+H)^{+}$	4H), 1.82 (m, 2H)
	64	>=: >s	植駿	213-220°C		
		Z Z	2分子		C ₈ H ₁₀ CIN ₃ S	
				アセトン		
L				黄色結晶		7.58 (s, 1H), 6.49 (s, 2H), 4.03 (s, 2H), 3.65 (s,
					$m/z 202 = (M+H)^*$	
	65		フマル酸	148-150°C		
		z			C'H ₈ CIN ₃ S	
				アセトン		

[0111]

	;			在状	質量分析	
_	たの智力	化学構造	岨	配点(°C)	東測値	1H-NMR(DMSO-d ₆)
	# r			結晶化溶媒	分子式	
<u> </u>				無色結晶		9.13 (s, 1H), 8.85 (s, 2H), 6.43 (s, 2H), 3.90 (s,
		12 \	-		m/z 177 = $(M+H)^*$	ZH), 3.33 (M, 4H), 1.82 (M, ZH)
	99	>==z >==>	フマル酸	151-156°C		
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			C ₉ H ₁₂ N ₄	
2				アセトン		
1				無色結晶		9.12 (s, 1H), 8.80 (s, 2H), 6.46 (s, 2H), 3.89 (s,
		12			m/z 163 = (M+H) ⁺	ZH), 3.71(S, 4H)
-	67	________________\	フマル酸	155-156°C		
		\ Z \ Z	ı		C ₈ H ₁₀ N	
				アセトン		
_			-	無色結晶		10.42 (s, 2H), 8.40 (s, 1H), 8.35 (s, 1H), 7.63 (s,
		IZ We			$m/z 190 = (M+H)^*$	IH), b.47 (s, ZH), 3.78 (s, IH), 3.33 (m, 4H), 2.29
	89)==2 }	フマル酸	137-139°C		
		\ \ \ \			C,1H,5N3	
				アセドン		

[0112]

実験例1:α4β2サブタイプニコチン性アセチルコリン受容体に対する結合試

本発明化合物のα 4 β 2 サブタイプニコチン性アセチルコリン受容体に対する親和性は、下記の方法で測定した。これはPabreza L.A. et al., Mol. Pharm., 39, 9-12 (1990)およびAnderson D. J. & Arneric S. P., Eur. J. Pharm., 253, 261-267 (1994)の方法の変法である。

[0113]

(1) α 4 β 2 サブタイプニコチン性アセチルコリン受容体を含む膜標品の調製

動物は日本チャールズリバー(Charles River Japan)から入手したフィッシャー344(Fischerー344)系雄性ラット(体重200ー240g、9週令)を、室温(23±1 $^{\circ}$ C)および湿度(55±5%)をコントロールした飼育室にて $1\sim4$ 週間飼育した。ラットは、12時間の明暗サイクル(午前7時から午後7時までの明期間)環境下にて、ステンレス製ケージを用いグループ(1ケージあたり3 \sim 4 $^{\circ}$ C)で飼育し、ラット用飼料および水は任意に与えた。

$[0\ 1\ 1\ 4\]$

 α 4 β 2 サブタイプニコチン性アセチルコリン受容体を含む膜標品の調製は、以下のように行った。すなわち、ラットを断頭により屠殺した直後に全脳を摘出し、氷冷した生理食塩水ですすいだ後、液体窒素により凍結させ-80 $\mathbb C$ で保存した。凍結保存した脳を解凍して、氷冷した10容量の緩衝液(50 $\mathbb M$ Tris·HCl, 120 $\mathbb M$ NaCl, 5 $\mathbb M$ KCl, 1 $\mathbb M$ MgCl $_2$, 2 $\mathbb M$ CaCl $_2$, pH7.4,4 $\mathbb C$)中でホモジナイザ(HG30、日立工機製)で30 秒間ホモジナイズし、ホモジネートを遠心分離により沈降させた(10 $\mathbb M$; 1000 $\mathbb M$ G; $4\mathbb M$ C)。上清を採集した後、沈渣に緩衝液を加之当初の半量とし、再度同条件でホモジナイズ、遠心分離を行った。 2 回分の上清を合わせさらに遠心分離した(20 $\mathbb M$; 40000 $\mathbb M$ G; $4\mathbb M$ C)。沈渣を緩衝液に懸濁し受容体結合実験に用いた。

[0115]

(2) α 4 β 2 サブタイプニコチン性アセチルコリン受容体結合実験

受容体結合実験は以下のように行った。すなわち、最終容量 200μ 1 に被験化合物および [3 H] ーサイチシン(Cytisine)(2nM)を含む試験

管に膜標品($400-600\mu$ gの蛋白質を含む)を添加した。試料を氷冷した水浴中で75分間インキュベーションした。真空下でブランデル(Brandel)マルチマニホールド組織採集装置を用いて、0.5%ポリエチレンイミンにあらかじめ浸漬したワットマン(Whatman)GF/Bフィルターにより濾過した。緩衝液($3\times1\,m1$)でフィルターを洗浄した。フィルターは $3\,m1$ のクリアゾルー(ナカライテスク製)中で計数した。非特異的結合は $10\,\mu$ M(-)ーニコチン存在下で測定した。

[0116]

実験結果の解析はアキュフィットコンペティションプログラム(Accufit Competition Program =ベックマン(Beckman)製)によって行った。

[0117]

実験例 $2:\alpha$ 1 β 1 γ 8 サブタイプニコチン性アセチルコリン受容体に対する結合試験

本発明化合物の α 1 β 1 γ δ サブタイプニコチン性アセチルコリン受容体に対する親和性は、下記の方法で測定した。これは Garcha H. S. et al., Psychoph armacology, 110, 347-354 (1993)の方法の変法である。

[0118]

<u>(1) α 1 β 1 γ δ サブタイプニコチン性アセチルコリン受容体の調製</u>

動物は前記の実験例1と同様の動物を用いた。

α 1 β 1 γ δ サブタイプニコチン性アセチルコリン受容体の抽出は、以下のように行った。ラットを断頭により屠殺した直後に後肢筋肉を摘出し、氷冷した生理食塩水ですすいだ後、液体窒素により凍結させ−80℃で保存した。凍結保存した後肢筋肉を解凍して、氷冷した緩衝液(2.5 mMリン酸ナトリウムバッファー(pH7.2),90 mM NaCl,2 mM KCl,1 mM EDTA,2 mM benzamidine,0.1 mM benzethonium chloride,0.1 mM PM SF,0.01% sodium azide)を、組織が40%(w/v)となるように加え、ウェアリングブレンダー(Waring blender;34BL97, WARING PRODUCTS DIVISION DYNAMICS CORPORATION OF AMERICA)で60秒間ホモジナイズし、ホモジネートを遠心分離により沈降させた(60分;20000×G;4℃)。上清を除

き、沈渣に緩衝液を湿重量1gに対し1. 5 m 1 加え、再度同条件でホモジナイズを行った。ホモジネートにT r i t o n X 1 0 0 (2%, w/v)を加え4 $\mathbb C$ で 3 時間攪拌し、遠心分離により沈降させた(6 0 分,1 0 0 0 0 0 $\mathbb X$ G;4 $\mathbb C$)。上清を筋肉抽出物として4 $\mathbb C$ で保存し、4 週間以内に受容体結合実験に用いた。

[0119]

(2) α 1 β 1 γ δ サブタイプニコチン性アセチルコリン受容体結合実験

受容体結合実験は以下のように行った。被験化合物を含む試験管に筋肉抽出物(600-900μgの蛋白質を含む)を加え37℃で15分間インキュベーションした。 \mathbb{I}^3 H \mathbb{I} $\mathbb{I$

実験結果の解析は前記の実験例1と同様の方法で行った。

[0120]

本発明化合物、および参考化合物である(一)ーニコチンの受容体結合試験結果を下記表 15~16に示した。

[0121]

【表 1 5】

-	受容体親和	m性 Ki
化合物番号	α 4 β 2*1	α 1 β 1 γ δ*2
2	1 3 nM	(34%, 6%)
3	4 5 nM	(34%, 5%)
4	6 7 nM	(46%, 16%)
7	86 nM	(80%, 51%)
8	2 9 nM	395μΜ
9	7. 7 nM	(43%, 16%)
10	1 1 nM	(40%, 17%)
1 1	115nM	(7 4%, 5 3%)
1 2	268nM	(7 9%, 4 2%)
1 5	950nM	未測定
1 6	392 nM	(6 3%, 30%)
18	86 nM	(6 2%, 1 8%)
1 9	1 4 4 nM	(69%, 29%)
22	429 nM	(23%, -4%)
2 5	338nM	(41%, 7%)
2 7	2 nM	4 5 μΜ
3 2	580nM	(69%, 53%)
3 3	365nM	未測定
3 6	1 2 4 nM	(81%, 34%)
4 3	167 nM	(71%, 28%)
4 8	82 nM	257μΜ
4 9	211 nM	773μM
5 2	1. 2 nM	2 3 μΜ
5 3	1 0 nM	8 3 μM
5 4	108nM	1739μΜ
ニコチン	1. 6 nM	182μΜ

^{*1}:括弧内に示した数字は、化合物 1 μ M と、1 0 μ M での $[^3H]$ - C y t i s i n e 結合率を、コントロール%で示した。

[0122]

 $^{^2}$:括弧内に示した数字は、化合物 100μ Mと、 1000μ Mでの $[^3H]$ ー α - B g t 結合率を、コントロール%で示した。

【表16】

	受容体親和性 Ki	
化合物番号	α 4 β 2*1	α 1 β 1 γ δ * 2
5 7	1 2 n M	8 6 μ M
5 8	6. 9 n M	3 2 μ M
6 2	7 0 n M	6 3 9 μ M
6 4	8. 1 nM	2 3 μ M
6 5	5 3 n M	5 2 4 μ M
6 6	90 nM	8 4 1 μ M
6 8	2 0 3 n M	231μΜ
ニコチン	1. 6 n M	182μΜ

*1:括弧内に示した数字は、化合物 1μ Mと、 $1 0 \mu$ Mでの $[^3H]$ — C y t is in e 結合率を、コントロール%で示した。

 $*^2$:括弧内に示した数字は、化合物 100μ Mと、 1000μ Mでの $[^3H]$ $-\alpha$ -Bg t 結合率を、コントロール%で示した。

[0123]

<u>実験例3:ヒトα4β2サブタイプニコチン性アセチルコリン受容体に対するア</u>ゴニスト作用

本発明化合物のヒト α 4 β 2 サブタイプニコチン性アセチルコリン受容体におけるアゴニスト作用は、下記の方法で測定した。これはPapke R. L. et al., Br. J. Pharmacol., 120, 429-438 (1997)の方法の変法である。

[0124]

(1) ヒトα 4 β 2 サブタイプニコチン性アセチルコリン受容体 c R N A の調製 ヒトニコチン性アセチルコリンレセプター(h n A C h - R) α 4 および β 2 c D N A のクローニングは、常法に従い、h n A C h - R α 4 c D N A およびh n A C h - R β 2 c D N A の塩基配列(Monteggia L. M. et al., Gene, 155, 189-193(1995)およびAnand R. & Lindstrom J., Nucl. Acids Res., 18, 4272(1990))に対応する D N A プライマーを合成し、ポリメラーゼ連鎖 反応(Polymerase Chain Reaction: PCR)法により、h n A C h - R α 4 c D N A およびh n A C h - R β 2 c D N A を得た。得られたh n A C h - R α 4 c D N A およびh n A C h - R β 2 c D N A を 、SP 6 R N A プロモーターを有する c R N A 発現用ベクター(p SP 6 4 p o l y A)に挿入

した(h n A C h - R α 4 / p S P 6 4 p o l y A およびh n A C h - R β 2 / p S P 6 4 p o l y A)。制限酵素 E c o R I で発現用ベクターを切断後、キャップアナログ存在下で、S P 6 R N A ポリメラーゼを作用させてトランスクリプションを行い、h n A C h - R β 2 c R N A を得た。

[0125]

(2) <u>アフリカツメガエル卵母細胞でのヒトα4β2サブタイプニコチン性アセ</u>チルコリン受容体の発現

アフリカツメガエル (Xenopus laevis) から既に摘出済みの卵母細胞 (Oocyte s) を購入(北日本生物教材) し測定に用いた。室温下、コラゲナーゼ (Sig ma typeI, lmg/ml)を含む Ca-free modified Barth液(88mM NaCl, 1mM KCl, 2.4mM NaHC O₃, 0.82 mM MgSO₄, 15 mM HEPES, рH7.6) で90 分間ゆっくりと震盪後、酵素を洗い出し、ピンセットで濾胞細胞を除去しながら 卵母細胞を分離した。その後、抗生物質を加えたmodified Barth 液 (88mM NaC1, 1mM KC1, 2.4mM NaHCO3, 0.4 1 mM CaCl₂, 0.82 mM MgSO₄, 15 mM HEPES, pH 7. 6, 0. 1% (v/v) Sigma製培養用ペニシリンおよびストレプト マイシン混液)中に移した。この卵母細胞にオートマチックインジェクター(N ANOJECT; Drummond Scientific Co.)を用いて 1.0mg/mlに調整したcRNAを50nl (すなわち、1卵母細胞あた η h n A C h - R α 4 c R N A と h n A C h - R β 2 c R N A をそれぞ れ50ng含む)を注入し、さらに4~14日間、19℃でインキュベートした 。卵母細胞では、注入したcRNAが翻訳され、ヘテロ5量体 $\mathbf{C}(\alpha 4)_{2}(\beta 2)_{3}$ 〕となり細胞膜上でイオンチャネルレセプターが形成される。

[0126]

(3) ヒトα 4 β 2 サブタイプニコチン性アセチルコリン受容体に対するアゴニ スト作用の測定

膜電位固定法によるヒトα4β2サブタイプニコチン性アセチルコリン受容体

応答の記録は、次の様に行なった。卵母細胞を容量 50μ1のチャンバーに静 置し、アトロピン(1μM)を含む Ringer液(115mM NaCl, 2. $5\,\mathrm{mM}$ KCl, 1. $8\,\mathrm{mM}$ CaCl $_2$, $1.0\,\mathrm{mM}$ HEPES, pH7 . 3) で灌流(流速: 1 m l / m i n) し、二電極膜電位固定法(CEZ-12 50,日本光電)により膜電位を-50mV に固定した。試験化合物は、灌流 液に添加し、惹起された内向き電流のピーク強度を計測した。試験化合物の前後 でアセチルコリン(ACh)による反応を記録し、試験化合物による反応を標準 化した。通常、摘出したはかりの卵母細胞では、内在性のムスカリン性アセチル コリン受容体応答(受容体刺激により細胞内カルシウムイオン濃度が上昇し、カ ルシウム依存性塩素イオンチャンネルを活性化することによる内向き電流)が観 察されるが、これはコラゲナーゼ処理あるいはアトロピン(lμM)で完全に消 失することを確認した。また、コラゲナーゼ処理後、CRNAを注入しなかった 卵母細胞では、AChによる応答は全く観察されなかった。従って、hnACh 胞で観察される反応(受容体刺激により、主にナトリウムイオンが細胞内に流入 することで惹起される内向き電流)は、新たに発現したヒトα4β2サブタイプ ニコチン性アセチルコリン受容体応答と考えられた。

[0127]

本発明化合物、および参考化合物である(一)ーニコチンのアゴニスト作用試験結果を、下記表17に示した。

[0128]

【表17】

化合物番号	アゴニスト作用 (ED50) *1
2	3. 4 μ M
- 3	43.8μΜ
2 2	(13.2%)
2 7	(18.0%)
4 5	(12.0%)
5 7	(9. 1%)
5 8	(27.9%)
6 2	(9. 6%)
ニコチン	11. 4μM

[0129]

*1:アセチルコリン 10μ Mでの反応を 100% として算出した。括弧内に示した数字は、化合物 100μ Mでの反応を、コントロール%で示した。

[0130]

以下に本発明化合物またはその薬理学的に許容される塩の、具体的な製剤例を示す。

[0131]

製剤例1(錠剤)

化合物2(フマル酸塩)	2 5 g
乳糖	1 3 0 g
結晶セルロース	2 0 g
とうもろこし殿粉	2 0 g
3%ヒドロキシプロピルメチルセルロース水溶液	1 0 0 m 1
ステアリン酸マグネシウム	2 g

化合物2のフマル酸塩、乳糖、結晶セルロースおよびとうもろこし澱粉を、60メッシュふるいで篩過し、均一に混合したのち、練合機にいれ、3%ヒドロキシプロピルメチルセルロース水溶液を注加して練合した。次いで、16メッシュのふるいで篩過造粒し、50℃で送風乾燥した。乾燥後16メッシュのふるいを通して整粒を行い、ステアリン酸マグネシウムを混合し、打錠機で直径8mm、重量200mgの錠剤を得た。

[0132]

製剤例2(カプセル剤)

化合物3(フマル酸塩)

25.0g

乳糖

1 2 5 . 0 g

コーンスターチ

48.5g

ステアリン酸マグネシウム

1.5 g

上記成分を細かく粉末にし、均一な混合物となるよう十分に攪拌したのち、これを200mgずつゼラチンカプセルに充填し、カプセル剤を得た。

[0133]

製剤例3(注射剤)

1 バイアル中に、化合物 5 8 の 2 フマル酸塩の 2 5 0 m g を、粉末のまま充填する。用時、注射用蒸留水約 4 ~ 5 m l を添加して注射剤とする。

[0134]

【発明の効果】

本発明に係る化合物は、中枢神経系のニコチン性アセチルコリン α 4 β 2受容体に対する結合能が高く、受容体に対するアゴニストまたはモジュレーターとして、ニコチン性アセチルコリン α 4 β 2受容体を活性化することができるため、ニコチン性アセチルコリン α 4 β 2受容体を活性化することによって予防または治療が可能と考えられる疾患に対し有効である。

[0135]

特に本発明のニコチン性アセチルコリン α 4 β 2受容体の活性化剤は、具体的には、痴呆、老年痴呆、初老期痴呆、アルツハイマー(Alzheimer)病、パーキンソン(Parkinson)病、脳血管性痴呆、エイズ関連痴呆、ダウン症における痴呆、またツレット(Tourette)症候群、脳梗塞慢性期の神経症状、頭部外傷による脳機能障害、不安、精神分裂病、うつ病、ハンチントン病、疼痛等に対する予防薬または治療薬として有用である。

【書類名】

要約書

【要約】

【課題】 中枢神経系のニコチン性アセチルコリン α 4 β 2受容体に選択的に結合し、活性化することにより脳機能障害等を改善し、その予防薬または治療薬として有用である化合物の提供。

【解決手段】 次式(I):

【化1】

(式中、

 A^{1} および A^{2} は、水素原子、置換されていてもよいアルキル基、置換されていてもよいアリール基、または置換されていてもよい複素環基を表わし、

Xは、-C(R^1 , R^2)-C(R^3 , R^4)-、-C(R^5)=C(R^6)-、-C(R^7 , R^8)-C(R^9 , R^{10})-C(R^{11} , R^{12})-または-C(R^{13} , R^{14})-C(R^{15} , R^{16})-NH-(但し、 $R^1 \sim R^{16}$ は、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアリール基または置換されていてもよい複素環基を示す)を表わす}

で表わされる化合物またはその薬理学的に許容される塩、ならびにそれらを有効成分とする医薬である。

【選択図】

なし

大阪府大阪市北区堂島浜2丁目1番40号 サントリー株式会社