Лабораторная работа 7

Купцов Максим Ахмедович

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение Уравнение 1 Уравнение 2 Уравнение 3	9
Выводы	13
Библиография	14

Список таблиц

Список иллюстраций

1	График 1																			8
2	График 1																			9
3	График 2																			10
4	График 2																			11
5	График 3																			11
6	График 3																			12

Цель работы

Целью данной работы является построение модели распространения рекламы.

Задание

Построить графики распространения рекламы для трех случаев. При этом объем аудитории N=1225, в начальный момент о товаре знает 8 человек. Для случая 2 определить, в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Теоретическое введение

Мальтузианская модель роста (@wiki:Malthusian_growth_model), также называемая моделью Мальтуса — это экспоненциальный рост с постоянным темпом. Модель названа в честь английского демографа и экономиста Томаса Мальтуса.

Модель рекламной кампании описывается следующими величинами. Считаем, что dn/dt - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, nt() - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей, унавших о товаре.

Выполнение

Уравнение 1

1. Напишем код на julia, которое решает первое уравнение варианта 62.

```
\begin{split} N &= 1225 \\ n0 &= 8 \end{split} function ode_fn(du, u, p, t)  &(n) = u \\ du[1] &= (0.815 + 0.000033*u[1])*(N - u[1]) \\ end \end{split}
```

2. Сохраним результаты нашего решения в график и увидим следующее (@fig:001)

Рис. 1: График 1

3. Теперь напишем код на языке Modelica.

```
model lab07_1 Real\ N=1225; Real\ n; initial equation n=8; equation der(n)=(0.815+0.000033*n)*(N-n); end lab07_1
```

4. Запустим сиуляцию и увидим следующее (@fig:002)

Рис. 2: График 1

Уравнение 2

1. Напишем код на julia, которое решает второе уравнение варианта 62.

$$\begin{split} N &= 1225 \\ n0 &= 8 \end{split}$$
 function ode_fn(du, u, p, t)
$$(n) &= u \\ du[1] &= (0.000044 + 0.27*u[1])*(N - u[1]) \\ end \end{split}$$

2. Сохраним результаты нашего решения в график и увидим следующее (@fig:003). Момент времени скорость распространения рекламы будет иметь максимальное значение также указан на графике.

Рис. 3: График 2

3. Теперь напишем код на языке Modelica.

```
model lab07_2 Real\ N=1225; Real\ n; initial equation n=8; equation der(n)=(0.000044+0.27*n)*(N-n); end lab07_2;
```

4. Запустим сиуляцию и увидим следующее (@fig:004)

Рис. 4: График 2

Уравнение 3

1. Напишем код на julia, которое решает третье уравнение варианта 62.

$$N = 1225$$

 $n0 = 8$

function ode_fn(du, u, p, t)
$$(n) = u \\ du[1] = (0.5*t + 0.8*cos(t)*u[1])*(N - u[1]) \\ end$$

2. Сохраним результаты нашего решения в график и увидим следующее (@fig:005)

Рис. 5: График 3

3. Теперь напишем код на языке Modelica.

```
model lab07_3 
Real N = 1225; 
Real n; 
initial equation 
n = 8; 
equation 
der(n) = (0.5 + 0.8*\cos(time)*n)*(N-n); 
end lab07_3;
```

4. Запустим сиуляцию и увидим следующее (@fig:006)

Рис. 6: График 3

Выводы

В итоге проделанной работы мы построили графики распространения рекламы для трех случаев на языках Julia и OpenModelica.

Библиография