Stanislas Théorème de Cauchy linéaire H.P.

PSI

Cadre de travail

- I désigne le segment [a, b] et $t_0 \in I$.
- $\|\cdot\|$ désigne une norme sur $\mathcal{M}_{p,1}(\mathbb{K})$ et $\|\cdot\|$ sa norme subordonnée. On rappelle que $\||A|\| = \sup_{X \in \mathcal{M}_{p,1}(\mathbb{K}) \setminus \{0\}} \|AX\|$. Alors,

$$\forall X \in \mathscr{M}_{p,1}(\mathbb{K}), \|AX\| \leqslant |||A||| \cdot \|X\|$$

■ Les fonctions $t \mapsto ||A(t)||$ et $t \mapsto ||B(t)||$ sont supposées sur le segment I. Ainsi, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall t \in I, |||A(t)||| \leq \alpha \text{ et } ||B(t)|| \leq \beta$$

■ Soit (f_n) une suite de fonctions de I dans $\mathcal{M}_{p,1}(\mathbb{K})$ et $f: I \to \mathcal{M}_{p,1}(\mathbb{K})$. * (f_n) converge simplement vers f sur I si

$$\forall t \in I, \lim_{n \to +\infty} f_n(t) = f(t)$$

* (f_n) converge uniformément vers f sur I si

$$\lim_{n \to +\infty} \sup_{t \in I} ||f_n(t) - f(t)|| = 0$$

* $\sum f_n$ converge normalement sur I si $\sum \sup_{t \in I} ||f_n(t) - f(t)||$ converge.

Comme dans le cadre des fonctions à valeurs dans \mathbb{K} , la convergence normale implique la convergence uniforme qui implique la convergence simple.

De plus, les théorèmes de régularité des limites sont encore valides.

■ Si
$$X: I \to \mathcal{M}_{p,1}(\mathbb{K}), t \mapsto \begin{pmatrix} X_1(t) \\ \vdots \\ X_p(t) \end{pmatrix}$$
 est une fonction continue, on

définit son intégrale comme une intégration composante à composante.

$$\forall t \in I, \int_{t_0}^t X(s) \, \mathrm{d}s = \begin{pmatrix} \int_{t_0}^t X_1(s) \, \mathrm{d}s \\ \vdots \\ \int_{t_0}^t X_p(s) \, \mathrm{d}s \end{pmatrix}$$

L'intégrale satisfait l'inégalité triangulaire

$$\forall t \in I, \left\| \int_{t_0}^t X(s) \, \mathrm{d}s \right\| \leqslant \left| \int_{t_0}^t \|X(s)\| \, \mathrm{d}s \right|$$

 $\blacksquare X$ est une solution de classe \mathscr{C}^1 de X' = AX sur I si et seulement si

$$\forall t \in I, X(t) = \int_{t_0}^t \left(A(s)X(s) + B(s) \right) \, \mathrm{d}s$$

Préliminaire

Soit $(Y_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de I dans $\mathcal{M}_{p,1}(\mathbb{K})$ définie par

$$\forall n \in \mathbb{N}, \forall t \in I, Y_{n+1} = \int_{t_0}^t A(s) Y_n(s) \, \mathrm{d}s$$

1. Comme les fonctions A et Y_0 sont continues sur un segment, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall t \in I, |||A(t)||| \leq \alpha \text{ et } ||Y(t)|| \leq \beta$$

2. Majoration de Y_n . On montre par récurrence que $||Y_n(t)|| \le \beta \frac{\alpha^n |t-t_0|^n}{n!}$. **Initialisation.** L'inégalité à l'ordre 0 est triviale.

H.P. IV

Hérédité. Soit n > 1.

$$||Y_{n+1}(t)|| \leqslant \int_{t_0}^t ||A(s)Y_n(s)|| \, \mathrm{d}s$$

$$\leqslant \int_{t_0}^t |||A(s)||| \, ||Y_n(s)|| \, \, \mathrm{d}s$$

$$\leqslant \int_{t_0}^t \alpha \beta \frac{\alpha^{n-1} |s - t_0|^{n-1}}{(n-1)!}$$

$$\leqslant \beta \frac{\alpha^n |t - t_0|^n}{n!}$$

3. Convergence de $\sum Y_n$. D'après la question précédente,

$$\sup_{t \in [a,b]} ||Y_n(t)|| \leqslant \beta \frac{\alpha^n (b-a)^n}{n!}$$

Ainsi, $\sum Y_n$ converge normalement sur [a, b].

Existence d'une solution au problème de CAUCHY

Soit $\widetilde{X}_0 \in \mathscr{M}_{p,1}(\mathbb{K})$. On définit par récurrence la suite de fonctions (X_n) par

$$\forall t \in I, \begin{cases} X_0(t) &= \widetilde{X}_0 \\ X_{n+1} &= \widetilde{X}_0 + \int_{t_0}^t \left[A(s)X_n(s) + B(s) \right] ds \end{cases}$$

4. Contrôle des accroissements. En posant $Y_n = X_{n+1} - X_n$, alors

$$Y_{n+1}(t) = \int_{t_0}^t A(s)(X_{n+1}(s) - X_n(s)) \, ds = \int_{t_0}^t A(s)Y_n(s) \, ds$$

Ainsi, d'après la question précédente, $\sum Y_n$ converge normalement sur [a,b].

- 5. Modes de congergence. D'après le point précédent,
 - * D'une part, $\sum Y_n = \sum (X_{n+1} X_n)$ converge simplement sur [a, b] et (X_n) converge simplement vers une fonction notée X_{∞} .
 - * D'autre part, $X_{\infty}(t) X_n(t) = \sum_{k=n}^{+\infty} (X_{k+1} X_k)$. Ainsi, (X_n) converge uniformément vers X_{∞} .

6. Conclusion.

Comme, pour tout n entier naturel la fonction X_n est continue et (X_n) converge uniformément vers X_{∞} , alors X_{∞} est continue sur [a, b]. De plus, d'après le théorème d'inversion intégrale sur un segment / limite pour les suites de fonctions qui convergent uniformément sur un segment,

$$X_{\infty}(t) = X_0 + \int_{t_0}^t [A(x)X_{\infty}(s) + B(s)] ds$$

Ainsi, X_{∞} est de classe \mathscr{C}^1 et vérifie l'équation différentielle.

Unicité de la solution au problème de CAUCHY

Soient X_1 et X_2 deux solutions du système différentiel. On pose $D = X_2 - X_1$. Comme D est continue sur le segment [a, b], il existe $M \in \mathbb{R}$ tel que $\forall t \in I$, $||D(t)|| \leq M$. Alors,

$$\forall t \in I, D(t) = \int_{t_0}^t A(s)D(s) \, \mathrm{d}s$$

La suite constante égale à D satisfait donc les conditions satisfaites par la suite (Y_n) . Ainsi, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, \forall t \in \mathbb{R}, \|D(t)\| \leqslant \beta \frac{\alpha^n (b-a)^n}{n!}$$

Ainsi, $\lim_{n\to +\infty} D(t)=0$ et D(t)=0. Donc D est la fonction identiquement nulle et $X_1=X_2$.

Mathématiciens

Cauchy Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux)