2.3 (10 points)

Consider an environment with two obstacles:

- $\theta_{start} = [0, 0]^T$ and $\theta_{goal} = [1, 1]^T$
- First obstacle with center $c_1 = [0.4, 0.6]^T$ and radius $r_1 = 0.2$
- Second obstacle with center $c_2 = [0.6, 0.4]^T$ and radius $r_2 = 0.2$
- The trajectory ξ should have k = 20 waypoints

Modify the initial trajectory ξ^0 so that the optimal trajectory goes around both obstacles. Submit a **plot** of your result and **list** the initial trajectory that you used.

```
clear
clc
close all
% Start and Goal orientations
theta_start = [0;0];
theta_goal = [1;1];
% Initial trajectory variables
n = 2; % No. of joints/ 2-D trajectory
k = 20; % No. of waypoints
% Obstacles 1 and 2 parameters
% First obstacle's radius and center
r1 = 0.2;
center1 = [0.4;0.6];
% Second obstacle's radius and center
r2 = 0.2;
center2 = [0.6;0.4];
% MY INITIAL TRAJECTORY
% Create initial trajectory that arches above the first and below the second
mid_point1 = [0.5; 0.7]; % A point above the first obstacle
mid_point2 = [0.5; 0.3]; % A point below the second obstacle
% Construct initial trajectory xi_0
xi_0 = [linspace(theta_start(1), mid_point1(1), floor(k/4)), ...
        linspace(mid_point1(1), mid_point2(1), floor(k/4)), ...
        linspace(mid_point2(1), theta_goal(1), floor(k/2));
        linspace(theta_start(2), mid_point1(2), floor(k/4)), ...
        linspace(mid_point1(2), mid_point2(2), floor(k/4)), ...
        linspace(mid_point2(2), theta_goal(2), floor(k/2))];
```

```
xi_0_vec = reshape(xi_0, [],1); % Reshape for the need of optimization

% Equality constraints for start and goal positions
A = [eye(n), zeros(n,n*(k-1));...
    zeros(n,n*(k-1)), eye(n)];

B = [theta_start;theta_goal];

% Nonlinear optimization
options = optimoptions('fmincon','Display','iter',...
    'Algorithm','sqp','MaxFunctionEvaluations',1e5);
xi_star_vec = fmincon(@(xi) cost(xi), xi_0_vec, ...
    [], [], A, B, [], [], options);
```

Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
0	41	5.259554e+03	0.000e+00	1.000e+00	0.000e+00	1.096e+05
1	105	4.223578e+03	0.000e+00	2.737e-04	4.063e+01	1.276e+02
2	148	3.412082e+03	0.000e+00	4.900e-01	5.225e+01	6.299e+01
3	192	3.360310e+03	0.000e+00	3.430e-01	3.162e+01	5.050e+01
4	235	2.233704e+03	0.000e+00	4.900e-01	4.734e+01	4.379e+01
5	277	2.038745e+03	0.000e+00	7.000e-01	4.050e+01	4.369e+01
6	319	1.634861e+03	0.000e+00	7.000e-01	3.146e+01	4.701e+01
7	361	1.474206e+03	0.000e+00	7.000e-01	2.980e+01	4.114e+01
8	403	1.231450e+03	0.000e+00	7.000e-01	2.418e+01	3.427e+01
9	445	1.088206e+03	0.000e+00	7.000e-01	2.383e+01	2.818e+01
10	487	8.968974e+02	0.000e+00	7.000e-01	1.633e+01	3.109e+01
11	529	8.627004e+02	0.000e+00	7.000e-01	1.607e+01	3.496e+01
12	570	8.115329e+02	0.000e+00	1.000e+00	1.311e+01	3.023e+01
13	612	7.938560e+02	0.000e+00	7.000e-01	1.131e+01	2.958e+01
14	654	7.564874e+02	0.000e+00	7.000e-01	8.699e+00	2.532e+01
15	696	7.526249e+02	0.000e+00	7.000e-01	1.009e+01	3.439e+01
16	738	7.157127e+02	0.000e+00	7.000e-01	6.660e+00	2.719e+01
17	781	6.971369e+02	0.000e+00	4.900e-01	5.646e+00	2.547e+01
18	823	6.915785e+02	0.000e+00	7.000e-01	5.370e+00	2.606e+01
19	864	6.850450e+02	0.000e+00	1.000e+00	5.187e+00	2.610e+01
20	907	6.800388e+02	0.000e+00	4.900e-01	3.493e+00	2.574e+01
21	948	6.734686e+02	0.000e+00	1.000e+00	4.238e+00	2.490e+01
22	990	6.702804e+02	0.000e+00	7.000e-01	2.494e+00	2.499e+01
23	1032	6.700025e+02	0.000e+00	7.000e-01	2.931e+00	2.569e+01
24	1073	6.678741e+02	0.000e+00	1.000e+00	2.594e+00	2.246e+01
25	1116	6.659580e+02	0.000e+00	4.900e-01	1.618e+00	2.449e+01
26	1157	6.653640e+02	0.000e+00	1.000e+00	2.031e+00	2.418e+01
27	1199	6.646424e+02	0.000e+00	7.000e-01	1.344e+00	2.494e+01
28	1241	6.641004e+02	0.000e+00	7.000e-01	1.438e+00	2.383e+01
29	1283	6.634615e+02	0.000e+00	7.000e-01	1.177e+00	2.363e+01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
			-		step	optimality
30	1325	6.629003e+02	0.000e+00	7.000e-01	1.062e+00	2.427e+01
31	1366	6.628434e+02	0.000e+00	1.000e+00	1.375e+00	2.398e+01
32	1407	6.619820e+02	0.000e+00	1.000e+00	1.157e+00	2.400e+01
33	1450	6.614425e+02	0.000e+00	4.900e-01	9.162e-01	2.403e+01
34	1491	6.606951e+02	0.000e+00	1.000e+00	1.131e+00	2.384e+01
35	1532	6.604600e+02	0.000e+00	1.000e+00	1.532e+00	2.336e+01
36	1573	6.588206e+02	0.000e+00	1.000e+00	1.592e+00	2.433e+01
37	1614	6.573849e+02	0.000e+00	1.000e+00	2.664e+00	2.437e+01
38	1655	6.518431e+02	0.000e+00	1.000e+00	1.921e+00	2.343e+01
39	1696	6.489891e+02	0.000e+00	1.000e+00	4.700e+00	2.312e+01
40	1737	6.336788e+02	0.000e+00	1.000e+00	3.550e+00	2.315e+01
41	1778	6.033210e+02	0.000e+00	1.000e+00	1.219e+01	2.257e+01
42	1819	5.694327e+02	0.000e+00	1.000e+00	2.000e+01	2.132e+01
	1017	5.05.52,6.02	0.0000.00	1.0000.00		2,1320,01

43	1860	5.419120e+02	0.000e+00	1.000e+00	2.405e+01	2.087e+01
44	1901	5.130550e+02	0.000e+00	1.000e+00	1.533e+01	1.806e+01
45	1942	4.815863e+02	0.000e+00	1.000e+00	6.172e+00	1.772e+01
46	1983	4.172338e+02	0.000e+00	1.000e+00	1.844e+01	1.641e+01
47	2024	3.660126e+02	0.000e+00	1.000e+00	1.398e+01	1.472e+01
48	2065	2.799702e+02	0.000e+00	1.000e+00	2.394e+01	1.187e+01
49	2106	1.993409e+02	0.000e+00	1.000e+00	2.148e+01	8.503e+00
50	2147	1.067375e+02	0.000e+00	1.000e+00	2.682e+01	6.370e+00
51	2188	4.091122e+01	0.000e+00	1.000c+00	2.207e+01	4.335e+00
52	2229	1.048690e+01	0.000e+00	1.000e+00	1.308e+01	1.630e+00
53	2274	8.018335e+00	0.000e+00	2.401e-01	1.430e+01	8.118e+01
54	2328	7.347262e+00	0.000e+00	9.689e-03	1.375e+01	1.669e+00
55	2370	1.097989e+00	0.000e+00	7.000e-01	5.140e+00	7.712e-01
56	2415	7.610732e-01	0.000e+00	2.401e-01	5.129e-01	6.305e-01
57	2465	7.142845e-01	0.000e+00	4.035e-02	7.061e-02	5.781e-01
58	2508	3.783916e-01	0.000e+00	4.900e-01	2.229e+00	9.066e-01
59	2550	2.837937e-01	0.000e+00	7.000e-01	4.384e-01	6.868e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
60	2598	2.761461e-01	0.000e+00	8.235e-02	3.710e-02	6.671e-01
61	2660	2.761138e-01	0.000e+00	5.585e-04	3.755e-04	6.498e-01
62	2701	2.478416e-01	0.000e+00	1.000e+00	6.738e-01	4.716e-01
63	2742	2.409657e-01	0.000e+00	1.000e+00	1.254e-01	5.045e-01
64	2783	2.397934e-01	0.000e+00	1.000e+00	5.216e-02	5.065e-01
65	2824	2.388920e-01	0.000e+00	1.000e+00	8.271e-02	5.010e-01
66	2865	2.384171e-01	0.000e+00	1.000e+00	3.175e-02	4.974e-01
67	2906	2.366505e-01	0.000e+00	1.000e+00	7.353e-02	4.862e-01
68	2947	2.330986e-01	0.000e+00	1.000e+00	8.224e-02	4.681e-01
69	2988	2.239409e-01	0.000e+00	1.000e+00	1.234e-01	4.277e-01
70	3029	2.044408e-01	0.000e+00	1.000e+00	1.961e-01	3.485e-01
71	3070	1.695681e-01	0.000e+00	1.000e+00	3.956e-01	2.111e-01
72	3117	1.632345e-01	0.000e+00	1.176e-01	7.236e-02	1.931e-01
73	3169	1.613184e-01	0.000e+00	1.977e-02	2.029e-02	1.891e-01
73 74		1.608086e-01	0.000e+00			
	3225			4.748e-03	5.210e-03	1.882e-01
75 76	3287	1.607826e-01	0.000e+00	5.585e-04	6.126e-04	9.220e-01
76	3340	1.576940e-01	0.000e+00	1.384e-02	2.306e-02	3.361e-01
77	3398	1.575542e-01	0.000e+00	2.326e-03	4.382e-03	2.892e+00
78	3450	1.530685e-01	0.000e+00	1.977e-02	3.235e-02	1.156e+00
79	3513	1.527830e-01	0.000e+00	3.910e-04	5.222e-03	2.748e+00
80	3566	1.488220e-01	0.000e+00	1.384e-02	3.137e-02	1.653e+00
81	3620	1.485773e-01	0.000e+00	9.689e-03	4.376e-03	2.114e+00
82	3667	1.374998e-01	0.000e+00	1.176e-01	1.254e-01	8.428e-02
83	3716	1.370526e-01	0.000e+00	5.765e-02	6.377e-03	8.142e-02
84	3771	1.370384e-01	0.000e+00	6.782e-03	5.299e-04	6.803e-01
85	3816	1.363245e-01	0.000e+00	2.401e-01	2.885e-02	3.660e+00
86	3858	1.358079e-01	0.000e+00	7.000e-01	5.693e-02	6.425e-02
87	3899	1.354108e-01	0.000e+00	1.000e+00	2.733e-02	6.110e-02
88	3940	1.353238e-01	0.000e+00	1.000e+00	4.185e-03	6.199e-02
89	3981	1.352314e-01	0.000e+00	1.000e+00	6.652e-03	2.948e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
90	4022	1.352247e-01	0.000e+00	1.000e+00	3.110e-03	5.841e-01
91	4063	1.351975e-01	0.000e+00	1.000e+00	3.594e-03	1.137e-01
92	4104	1.351787e-01	0.000e+00	1.000e+00	4.676e-03	5.817e-02
93	4145	1.351556e-01	0.000e+00	1.000e+00	9.711e-03	6.129e-02
94	4186	1.351536c 01 1.351515e-01	0.000e+00	1.000e+00	1.984e-03	2.771e-01
95	4227	1.351313C 01 1.351451e-01	0.000e+00	1.000e+00	1.355e-03	1.289e-01
96	4268	1.351431e-01 1.351332e-01	0.000e+00	1.000e+00	2.024e-03	5.817e-02
97	4309	1.351352e-01 1.351067e-01	0.000e+00	1.000e+00	2.590e-03	6.245e-02
98 99	4350	1.349986e-01	0.000e+00	1.000e+00	6.796e-03	6.328e-02
	4398	1.349758e-01	0.000e+00	8.235e-02	7.998e-04	6.343e-02
100	4455	1.349745e-01	0.000e+00	3.323e-03	7.367e-05	1.255e-01
101	4496	1.349109e-01	0.000e+00	1.000e+00	6.940e-03	6.938e-02
102	4537	1.348704e-01	0.000e+00	1.000e+00	7.177e-03	7.343e-02

103	4578	1.348570e-01	0.000e+00	1.000e+00	2.583e-03	7.289e-02
104	4619	1.348484e-01	0.000e+00	1.000e+00	2.501e-03	2.266e-01
105	4660	1.348408e-01	0.000e+00	1.000e+00	1.604e-03	7.255e-02
106	4701	1.348253e-01	0.000e+00	1.000e+00	1.468e-03	7.316e-02
	4742	1.347446e-01	0.000e+00	1.000e+00	3.980e-03	
107						7.400e-02
108	4787	1.346992e-01	0.000e+00	2.401e-01	3.591e-03	1.056e+00
109	4828	1.346650e-01	0.000e+00	1.000e+00	2.307e-03	3.534e-01
110	4869	1.346184e-01	0.000e+00	1.000e+00	1.993e-03	2.572e-01
111	4910	1.343492e-01	0.000e+00	1.000e+00	7.262e-03	1.047e-01
112	4954	1.338188e-01	0.000e+00	3.430e-01	1.902e-02	6.290e-02
113	5003	1.337811e-01	0.000e+00	5.765e-02	3.580e-03	1.285e+00
114	5047	1.332554e-01	0.000e+00	3.430e-01	4.998e-02	2.335e+00
115	5088	1.332550e-01	0.000e+00	1.000e+00	2.496e-02	6.907e-02
116	5129	1.328924e-01	0.000e+00	1.000e+00	3.013e-02	5.675e-02
117	5170	1.328221e-01	0.000e+00	1.000e+00	5.945e-03	5.771e-02
118	5211	1.327140e-01	0.000e+00	1.000e+00	1.843e-02	8.661e-01
119	5255	1.326857e-01	0.000e+00	3.430e-01	7.882e-03	3.943e-01
Iter	Func-count	Fval	Feasibility		Norm of	First-order
T CEL	runc-count	rval	reasibility	Step Length		
420	F200	4 226046 04	0.000.00	2 420 04	step	optimality
120	5299	1.326816e-01	0.000e+00	3.430e-01	8.766e-03	6.336e-02
121	5340	1.326646e-01	0.000e+00	1.000e+00	1.853e-03	6.425e-02
122	5382	1.326294e-01	0.000e+00	7.000e-01	3.863e-03	2.170e-01
123	5424	1.326281e-01	0.000e+00	7.000e-01	7.558e-04	6.625e-02
124	5465	1.326165e-01	0.000e+00	1.000e+00	8.699e-04	1.337e-01
125	5506	1.326124e-01	0.000e+00	1.000e+00	3.070e-03	6.615e-02
126	5549	1.326104e-01	0.000e+00	4.900e-01	2.433e-03	2.039e-01
127	5590	1.326089e-01	0.000e+00	1.000e+00	4.985e-04	6.610e-02
128	5631	1.326070e-01	0.000e+00	1.000e+00	5.233e-04	5.521e-02
129	5674	1.326062e-01	0.000e+00	4.900e-01	6.620e-04	2.265e-01
130	5715	1.325987e-01	0.000e+00	1.000e+00	1.487e-03	8.263e-02
131	5756	1.325803e-01	0.000c+00	1.000c+00	2.052e-03	9.593e-02
132	5797	1.325565e-01	0.000e+00	1.000e+00	1.991e-03	6.397e-02
133	5838	1.324966e-01	0.000e+00	1.000e+00	1.193e-02	5.768e-02
134	5879	1.324875e-01	0.000e+00	1.000e+00	1.414e-03	5.865e-02
135	5922	1.324837e-01	0.000e+00	4.900e-01	1.285e-03	3.863e-01
136	5963	1.324589e-01	0.000e+00	1.000e+00	2.071e-03	4.183e-01
137	6004	1.324050e-01	0.000e+00	1.000e+00	5.423e-03	4.190e-01
138	6045	1.323216e-01	0.000e+00	1.000e+00	1.141e-02	1.536e-01
139	6086	1.322846e-01	0.000e+00	1.000e+00	1.298e-02	5.423e-01
140	6130	1.322814e-01	0.000e+00	3.430e-01	7.826e-03	4.648e-01
141	6171	1.322640e-01	0.000e+00	1.000e+00	5.919e-03	1.559e-01
142	6212	1.322471e-01	0.000e+00	1.000e+00	6.140e-03	2.388e-01
143	6253	1.322138e-01	0.000e+00	1.000e+00	3.740e-03	7.074e-02
144	6294	1.321767e-01	0.000e+00	1.000e+00	1.019e-02	8.938e-01
145	6335	1.320802e-01	0.000e+00	1.000e+00	1.669e-02	6.824e-02
146	6376	1.319997e-01	0.000e+00	1.000e+00	7.566e-03	6.682e-02
147	6417	1.318375e-01	0.000e+00	1.000e+00	3.686e-02	1.504e+00
148	6463	1.317930e-01	0.000e+00	1.681e-01	4.448e-02	5.508e-02
149	6504	1.316783e-01	0.000e+00	1.000e+00	4.334e-02	5.772e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
150	6545	1.316363e-01	0.000e+00	1.000e+00	1.208e-02	5.534e-02
151	6586	1.316105e-01	0.000e+00	1.000e+00	9.372e-03	5.355e-02
152	6627	1.316028e-01	0.000e+00	1.000e+00	3.012e-03	5.345e-02
153	6668	1.315921e-01	0.000e+00	1.000e+00	3.226e-03	5.380e-02
154	6709	1.315715e-01	0.000e+00	1.000e+00	3.839e-03	5.481e-02
155	6752	1.315641e-01	0.000e+00	4.900e-01	1.735e-03	4.688e-01
156	6793	1.315536e-01	0.000e+00	1.000e+00	5.503e-03	5.486e-02
157	6834	1.315446e-01	0.000e+00	1.000e+00	2.373e-03	5.523e-02
158	6875	1.3153440C 01 1.315318e-01	0.000c+00	1.000c+00	7.598e-03	4.115e-01
159	6916	1.315318e-01 1.315277e-01	0.000e+00	1.000e+00	2.477e-03	5.707e-02
160	6957	1.315238e-01	0.000e+00	1.000e+00	6.287e-04	5.780e-02
161	6999	1.315213e-01	0.000e+00	7.000e-01	1.758e-03	3.106e-01
162	7040	1.315174e-01	0.000e+00	1.000e+00	5.865e-04	5.959e-02

163	7081	1.315163e-01	0.000e+00	1.000e+00	5.606e-04	6.020e-02
164	7122	1.315152e-01	0.000e+00	1.000e+00	9.284e-04	6.132e-02
165	7163	1.315149e-01	0.000e+00	1.000e+00	1.527e-04	6.152e-02
166	7204	1.315143e 01 1.315132e-01	0.000e+00	1.000e+00	5.911e-04	6.221e-02
167	7253	1.315132e-01 1.315131e-01	0.000e+00	5.765e-02	6.512e-05	4.250e-02
		1.315131e-01 1.315072e-01				
168	7294		0.000e+00	1.000e+00	1.649e-03	6.148e-02
169	7335	1.314774e-01	0.000e+00	1.000e+00	7.751e-03	5.613e-02
170	7376	1.314580e-01	0.000e+00	1.000e+00	3.943e-03	4.992e-02
171	7417	1.314545e-01	0.000e+00	1.000e+00	2.191e-03	4.834e-02
172	7458	1.314528e-01	0.000e+00	1.000e+00	1.624e-03	4.835e-02
173	7499	1.314502e-01	0.000e+00	1.000e+00	1.798e-03	4.849e-02
174	7540	1.314434e-01	0.000e+00	1.000e+00	2.851e-03	4.880e-02
175	7587	1.314419e-01	0.000e+00	1.176e-01	4.900e-04	6.165e-02
176	7628	1.314370e-01	0.000e+00	1.000e+00	3.648e-03	4.791e-02
177	7669	1.314324e-01	0.000e+00	1.000e+00	4.363e-03	4.696e-02
178	7710	1.314294e-01	0.000e+00	1.000e+00	2.514e-03	4.673e-02
179	7754	1.314290e-01	0.000e+00	3.430e-01	7.735e-04	8.150e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
				2 2 2 P = 2 1 P 2 1 1	step	optimality
180	7795	1.314283e-01	0.000e+00	1.000e+00	6.412e-04	4.645e-02
181	7836	1.314279e-01	0.000e+00	1.000e+00	4.671e-04	4.626e-02
182	7877	1.314267e-01	0.000c+00	1.000c+00	1.067e-03	4.576e-02
183	7918	1.314244e-01	0.000e+00	1.000e+00	1.080e-03	4.519e-02
		1.314244e-01 1.314185e-01				
184	7959		0.000e+00	1.000e+00	1.823e-03	4.396e-02
185	8001	1.314102e-01	0.000e+00	7.000e-01	1.988e-03	6.251e-02
186	8042	1.314097e-01	0.000e+00	1.000e+00	1.705e-03	7.835e-02
187	8083	1.314053e-01	0.000e+00	1.000e+00	2.404e-03	9.585e-02
188	8128	1.314049e-01	0.000e+00	2.401e-01	7.786e-04	1.758e-01
189	8169	1.314026e-01	0.000e+00	1.000e+00	3.760e-04	4.089e-02
190	8210	1.314007e-01	0.000e+00	1.000e+00	1.660e-03	3.991e-02
191	8251	1.313978e-01	0.000e+00	1.000e+00	2.895e-03	4.771e-02
192	8292	1.313944e-01	0.000e+00	1.000e+00	7.428e-04	4.849e-02
193	8333	1.313756e-01	0.000e+00	1.000e+00	2.408e-03	2.095e-01
194	8374	1.312825e-01	0.000e+00	1.000e+00	8.847e-03	3.612e-01
195	8421	1.311865e-01	0.000e+00	1.176e-01	1.120e-02	6.012e-02
196	8476	1.311854e-01	0.000e+00	6.782e-03	1.527e-04	6.018e-02
197	8517	1.311080e-01	0.000e+00	1.000e+00	1.897e-02	5.915e-02
198	8558	1.310675e-01	0.000e+00	1.000e+00	2.273e-02	5.804e-02
199	8599	1.310645e-01	0.000e+00	1.000e+00	2.145e-03	5.793e-02
200	8640	1.310610e-01	0.000e+00	1.000e+00	2.391e-03	5.781e-02
201	8681	1.310566e-01	0.000e+00	1.000e+00	1.833e-03	5.773e-02
202	8722	1.310456e-01	0.000e+00	1.000e+00	3.826e-03	2.308e-01
203	8763	1.310431e-01	0.000e+00	1.000e+00	7.277e-03	5.732e-02
203	8804	1.310451e-01 1.310345e-01	0.000e+00	1.000e+00	1.368e-03	5.736e-02
			0.000e+00	1.000e+00		
205	8845	1.309973e-01 1.309921e-01		3.430e-01	6.340e-03	5.730e-02
206	8889		0.000e+00		6.756e-03	7.952e-01
207	8931	1.309615e-01	0.000e+00	7.000e-01	2.564e-02	5.648e-02
208	8972	1.309499e-01	0.000e+00	1.000e+00	1.236e-02	5.638e-02
209	9013	1.309438e-01	0.000e+00	1.000e+00	4.252e-04	5.626e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
210	9054	1.309181e-01	0.000e+00	1.000e+00	1.336e-03	2.420e-01
211	9095	1.308842e-01	0.000e+00	1.000e+00	1.999e-02	5.499e-02
212	9145	1.308832e-01	0.000e+00	4.035e-02	2.168e-04	5.497e-02
213	9202	1.308830e-01	0.000e+00	3.323e-03	4.944e-05	9.254e-02
214	9246	1.308735e-01	0.000e+00	3.430e-01	4.298e-03	1.029e+00
215	9287	1.308557e-01	0.000e+00	1.000e+00	4.807e-03	5.684e-02
216	9328	1.308427e-01	0.000e+00	1.000e+00	8.681e-04	5.665e-02
217	9370	1.308296e-01	0.000e+00	7.000e-01	4.052e-03	6.904e-01
218	9411	1.308206e-01	0.000e+00	1.000e+00	1.888e-03	5.590e-02
219	9452	1.308200c 01 1.308095e-01	0.000c+00	1.000c+00	1.338e-03	5.648e-02
220	9493	1.3080035e-01	0.000e+00	1.000e+00	4.130e-03	6.366e-01
220	9534	1.307838e-01	0.000e+00	1.000e+00	1.749e-03	4.755e-01
222	9580	1.307648e-01	0.000e+00	1.681e-01	2.980e-03	3.541e-01
222	2200	1.70/0406-01	0.00000	T.00TE-0T	2.3006-03	2.2416-01

223	9621	1.307593e-01	0.000e+00	1.000e+00	1.282e-03	4.911e-02
224	9665	1.307573e-01	0.000e+00	3.430e-01	3.762e-04	1.065e-01
225	9706	1.307560e-01	0.000e+00	1.000e+00	1.465e-03	4.990e-02
226	9747	1.307545e-01	0.000e+00	1.000e+00	9.728e-04	5.067e-02
227	9788	1.307526e-01	0.000e+00	1.000e+00	3.132e-04	1.039e-01
228	9830	1.307320c 01 1.307435e-01	0.000c+00	7.000e-01	1.317e-03	2.494e-01
229	9871	1.307382e-01	0.000e+00	1.000e+00	1.322e-03	1.091e-01
230	9914	1.307329e-01	0.000e+00	4.900e-01	1.261e-03	1.525e-01
231	9956	1.307327e-01	0.000e+00	7.000e-01	1.470e-03	5.721e-02
232	9997	1.307315e-01	0.000e+00	1.000e+00	4.729e-04	5.686e-02
233	10044	1.307310e-01	0.000e+00	1.176e-01	3.663e-04	5.682e-02
234	10085	1.307305e-01	0.000e+00	1.000e+00	3.219e-04	5.678e-02
235	10126	1.307300e-01	0.000e+00	1.000e+00	2.117e-04	5.677e-02
236	10168	1.307292e-01	0.000e+00	7.000e-01	2.208e-04	9.346e-02
237	10209	1.307288e-01	0.000e+00	1.000e+00	5.770e-04	5.713e-02
238	10250	1.307282e-01	0.000e+00	1.000e+00	1.098e-04	4.524e-02
239	10294	1.307282e-01	0.000e+00	3.430e-01	1.924e-04	7.055e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
240	10335	1.307279e-01	0.000e+00	1.000e+00	1.019e-04	2.345e-02
241	10376	1.307277e-01	0.000e+00	1.000e+00	9.715e-05	2.344e-02
242	10417	1.307270e-01	0.000e+00	1.000e+00	3.635e-04	5.135e-02
243	10458	1.307255e-01	0.000e+00	1.000e+00	6.331e-04	5.808e-02
244	10499	1.307191e-01	0.000e+00	1.000e+00	3.418e-03	5.944e-02
245	10540	1.307140e-01	0.000e+00	1.000e+00	3.756e-03	6.041e-02
246	10581	1.307103e-01	0.000e+00	1.000e+00	3.718e-03	6.074e-02
247	10622	1.307088e-01	0.000e+00	1.000e+00	1.887e-03	6.052e-02
248	10663	1.307080e-01	0.000e+00	1.000e+00	8.023e-04	6.028e-02
249	10704	1.307064e-01	0.000e+00	1.000e+00	9.788e-04	5.996e-02
250	10748	1.307063e-01	0.000e+00	3.430e-01	5.011e-04	9.820e-02
251	10789	1.307044e-01	0.000e+00	1.000e+00	1.489e-03	6.048e-02
252	10830	1.307029e-01	0.000e+00	1.000e+00	1.230e-03	6.107e-02
253	10871	1.307001e-01	0.000e+00	1.000e+00	2.250e-03	6.219e-02
254	10912	1.306990e-01	0.000e+00	1.000e+00	1.134e-03	6.263e-02
255	10953	1.306963e-01	0.000e+00	1.000e+00	2.549e-03	6.342e-02
256	11001	1.306961e-01	0.000e+00	8.235e-02	2.800e-04	6.687e-02
257	11042	1.306950e-01	0.000e+00	1.000e+00	1.185e-03	4.862e-02
258	11083	1.306940e-01	0.000e+00	1.000e+00	1.173e-03	7.113e-02
259	11124	1.306934e-01	0.000e+00	1.000e+00	7.057e-04	2.324e-02
260	11165	1.306931e-01	0.000e+00	1.000e+00	1.458e-03	2.329e-02
261	11206	1.306929e-01	0.000e+00	1.000e+00	6.141e-04	2.328e-02
262	11247	1.306928e-01	0.000e+00	1.000e+00	4.213e-04	2.327e-02
263	11288	1.306922e-01	0.000c+00	1.000c+00	8.927e-04	2.319e-02
264	11329	1.306909e-01	0.000e+00	1.000e+00	1.114e-03	3.249e-02
265	11379	1.306880e-01	0.000e+00	1.000e+00	1.456e-03	9.447e-02
266	11411	1.306844e-01	0.000e+00	1.000e+00	2.295e-03	6.549e-02
267	11411		0.000e+00	1.000e+00	1.464e-02	6.196e-02
		1.306724e-01				6.096e-02
268	11493	1.306631e-01	0.000e+00	1.000e+00	3.640e-03	
269	11534	1.306630e-01	0.000e+00	1.000e+00	6.257e-03	6.083e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
270	44500	4 206524 04	0.00000	4 604 04	step	optimality
270	11580	1.306531e-01	0.000e+00	1.681e-01	2.553e-03	3.486e-01
271	11629	1.306524e-01	0.000e+00	5.765e-02	9.251e-04	2.641e-01
272	11677	1.306512e-01	0.000e+00	8.235e-02	5.867e-03	5.820e-02
273	11718	1.306469e-01	0.000e+00	1.000e+00	2.252e-03	5.807e-02
274	11759	1.306468e-01	0.000e+00	1.000e+00	3.914e-03	2.747e-01
275	11800	1.306433e-01	0.000e+00	1.000e+00	2.674e-03	5.842e-02
276	11841	1.306416e-01	0.000e+00	1.000e+00	2.907e-04	5.852e-02
277	11882	1.306388e-01	0.000e+00	1.000e+00	1.164e-03	1.928e-01
278	11923	1.306361e-01	0.000e+00	1.000e+00	2.583e-03	5.793e-02
279	11964	1.306347e-01	0.000e+00	1.000e+00	6.615e-04	5.811e-02
280	12008	1.306334e-01	0.000e+00	3.430e-01	8.278e-04	7.544e-02
281	12049	1.306332e-01	0.000e+00	1.000e+00	5.557e-04	6.702e-02
282	12090	1.306329e-01	0.000e+00	1.000e+00	2.378e-04	3.331e-02

283	12131	1.306329e-01	0.000e+00	1.000e+00	1.261e-04	1.738e-02
284	12172	1.306327e-01	0.000e+00	1.000e+00	3.175e-04	7.882e-03
285	12213	1.306325e-01	0.000e+00	1.000e+00	1.024e-03	2.337e-02
286	12254	1.306324e-01	0.000e+00	1.000e+00	3.314e-04	1.400e-02
287	12295	1.306323e-01	0.000e+00	1.000e+00	4.633e-04	7.764e-03
288	12336	1.306323e-01	0.000e+00	1.000e+00	2.313e-04	7.824e-03
289	12377	1.306323e-01	0.000e+00	1.000e+00	3.206e-04	7.955e-03
290	12418	1.306322e-01	0.000e+00	1.000e+00	1.985e-04	7.974e-03
291	12459	1.306322e-01	0.000e+00	1.000e+00	1.010e-04	7.989e-03
292	12500	1.306322e-01	0.000e+00	1.000e+00	1.313e-04	7.956e-03
293	12541	1.306322e-01	0.000e+00	1.000e+00	1.937e-04	7.896e-03
294	12582	1.306322e-01	0.000e+00	1.000e+00	2.567e-04	1.286e-02
295	12625	1.306321e-01	0.000e+00	4.900e-01	1.962e-04	1.677e-02
296	12680	1.306321e-01	0.000e+00	6.782e-03	1.791e-05	1.712e-02
297	12721	1.306321e-01	0.000e+00	1.000e+00	1.054e-04	1.262e-02
298	12762	1.306319e-01	0.000e+00	1.000e+00	3.476e-04	7.859e-03
299	12803	1.306319e-01	0.000e+00	1.000e+00	1.258e-04	7.899e-03
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
300	12844	1.306318e-01	0.000e+00	1.000e+00	5.684e-04	2.269e-02
301	12885	1.306317e-01	0.000e+00	1.000e+00	1.176e-03	1.123e-02
302	12926	1.306317e-01	0.000e+00	1.000e+00	6.812e-04	1.314e-02
303	12967	1.306317e-01	0.000e+00	1.000e+00	2.771e-05	1.540e-02
304	13015	1.306317e-01	0.000e+00	8.235e-02	4.358e-05	2.296e-02
305	13056	1.306316e-01	0.000e+00	1.000e+00	2.064e-04	8.264e-03
306	13097	1.306316e-01	0.000e+00	1.000e+00	1.826e-04	6.522e-03
307	13138	1.306316e-01	0.000e+00	1.000e+00	1.140e-04	5.881e-03
308	13179	1.306316e-01	0.000e+00	1.000e+00	5.220e-05	7.956e-03
309	13220	1.306316e-01	0.000e+00	1.000e+00	4.432e-05	1.129e-02
	13261		0.000c+00	1.000e+00		
310		1.306315e-01			6.967e-05	1.956e-02
311	13302	1.306315e-01	0.000e+00	1.000e+00	1.183e-04	3.241e-02
312	13343	1.306313e-01	0.000e+00	1.000e+00	2.447e-04	5.180e-02
313	13384	1.306307e-01	0.000e+00	1.000e+00	8.555e-04	8.655e-02
314	13425	1.306301e-01	0.000e+00	1.000e+00	6.550e-04	9.446e-02
315	13466	1.306288e-01	0.000e+00	1.000e+00	1.497e-03	7.034e-02
316	13507	1.306283e-01	0.000e+00	1.000e+00	1.162e-03	1.804e-02
317	13548	1.306282e-01	0.000e+00	1.000e+00	1.844e-04	8.669e-03
318	13589	1.306282e-01	0.000e+00	1.000e+00	1.043e-04	8.549e-03
319	13630	1.306282e-01	0.000e+00	1.000e+00	1.170e-04	8.433e-03
320	13671	1.306281e-01	0.000e+00	1.000e+00	2.371e-04	1.140e-02
321	13712	1.306280e-01	0.000e+00	1.000e+00	3.620e-04	3.253e-02
322	13754	1.306280e-01	0.000e+00	7.000e-01	2.036e-04	1.654e-02
323	13795	1.306279e-01	0.000e+00	1.000e+00	1.069e-04	1.343e-02
324	13837	1.306279e-01	0.000e+00	7.000e-01	2.846e-04	2.406e-02
		1.306279e-01	0.000e+00		5.796e-05	
325	13879			7.000e-01		1.301e-02
326	13920	1.306278e-01	0.000e+00	1.000e+00	7.094e-05	3.839e-03
327	13927	1.306278e-01	0.000e+00	8.235e-02	2.523e-06	3.839e-03

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

```
xi_star = reshape(xi_star_vec,2,[]); % final optimized trajectory

% Plot obstacles
figure
grid on
```

```
hold on

axis([0, 1, 0, 1])

axis equal

viscircles(center1', r1, 'Color', [0.5, 0.5, 0.5]);

viscircles(center2', r2, 'Color', [0.5, 0.5, 0.5]);

plot(0, 0, 'ko', 'MarkerFaceColor', 'k')

plot(1, 1, 'ko', 'MarkerFaceColor', 'k')

% Plot result

grid on

hold on

axis equal

plot(xi_0(1,:), xi_0(2,:), 'o-', 'Color', [0.3, 0.3, ...

0.3], 'LineWidth', 3);

plot(xi_star(1,:), xi_star(2,:), 'o-',...

'Color', [1, 0.5, 0], 'LineWidth', 3);
```


% Cost function to minimize

```
function C = cost(xi)
  gamma = 20; % Repulsion coefficient
  xi = reshape(xi, 2, []);
  C = 0;
  epsilon = 1e-6; % Small constant to prevent division by zero
```

```
% Define obstacles with correct centers and radii
    obstacles = [
        0.4, 0.6, 0.2; % First obstacle
        0.6, 0.4, 0.2; % Second obstacle
        % Add more obstacles if needed
    ];
    for idx = 2:length(xi)
        Urep = 0;
        for obs = 1:size(obstacles, 1)
            center = obstacles(obs, 1:2)';
            r = obstacles(obs, 3);
            dist_to_center = norm(xi(:, idx) - center);
            % Calculate repulsive potential if within the obstacle's influence
            if dist to center < r</pre>
                % Add a small value epsilon to prevent division by zero
                Urep = Urep + 0.5 * gamma * ((1 / (dist_to_center + epsilon)) -
(1 / r))^2;
            end
        end
        % Sum the repulsive potential and the path length cost
        C = C + norm(xi(:, idx) - xi(:, idx - 1))^2 + Urep;
    end
end
% MY INITIAL TRAJECTORY
% % Create initial trajectory that arches above the first and below the second
obstacle
% mid_point1 = [0.5; 0.7]; % A point above the first obstacle
% mid_point2 = [0.5; 0.3]; % A point below the second obstacle
%
% % Construct initial trajectory xi_0
% xi \emptyset = [linspace(theta start(1), mid point1(1), floor(k/4)), ...
          linspace(mid_point1(1), mid_point2(1), floor(k/4)), ...
%
%
          linspace(mid_point2(1), theta_goal(1), floor(k/2));
%
          linspace(theta_start(2), mid_point1(2), floor(k/4)), ...
          linspace(mid point1(2), mid point2(2), floor(k/4)), ...
%
%
          linspace(mid_point2(2), theta_goal(2), floor(k/2))];
```