

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Physics (WPH16) Paper 01 Unit 6: Practical Skills in Physics II

Question Number	Answer		Mark
1(a)	EITHER		
	The wire will get hot	(1)	
	Turn off the power supply between readings		
	Or Add a resistor to the circuit	(1)	
	OR		
	There may be a short circuit	(1)	
	Add a resistor to the circuit	(1)	
	OR		
	There is a risk of electric shock (from the copper wire)	(1)	
	Use insulated wire	(1)	2
1(b)	Circuit including d.c. power supply and ammeter in series with copper wire	(1)	
	Circuit includes means of varying current, e.g. variable resistor	(1)	2
	[Ignore additional components that do not prevent circuit working as expected]		
	copper wire		
1(c)	There are not enough readings	(1)	
	The range of readings is too small	(1)	
	The (relationship predicts that the graph should be a straight line through the origin		
	Or The relationship is in the form $y = mx$	(1)	
	An accurate best fit line can't be drawn Or		
	A straight line graph can't be confirmed Or		
	A y-intercept of zero can't be confirmed		
	Or Direct proportionality can't be confirmed	(1)	4
	Total for question 1		8

Question Number	Answer		Mark		
2(a)	Uses $T = 2\pi \sqrt{\frac{l}{g}}$ with $l = H - h$	(1)			
	Clear algebra leading to formula				
	Example of derivation				
	$T = 2\pi \sqrt{\frac{l}{g}}$ where $l = H - h$				
	So $T = 2\pi \sqrt{\frac{H-h}{g}}$				
	$\therefore T^{2} = 4\pi^{2} \left(\frac{H - h}{g} \right) = \frac{4\pi^{2}H - 4\pi^{2}h}{g} = \frac{4\pi^{2}H}{g} - \frac{4\pi^{2}h}{g}$				
2(b)	1. Use a metre rule to measure <i>h</i>	(1)			
	 2. Ensure metre rule is vertical using a set square Or Use a set square to read off the scale Or Measure to the bottom of the bob and add the radius of the bob 				
	3. Use a (timing) marker (at the centre of the oscillation)	(1)			
	 4. Measure (time for) multiple oscillations and divide by the number of oscillations Or Repeat the measurement of <i>T</i> and calculate the mean 	(1)			
	Or Start timing the oscillations once the oscillations have settled	(1)			
	5. Determine T for (at least) 5 different values of h	(1)			
	6. Plot a graph of T^2 against h and determine the intercept (to calculate H)	(1)	6		
	[ANNOTATE WITH MPs AWARDED]				
2(c)	The recording can be viewed in slow motion	(1)			
	Judging when an oscillation is complete will be more accurate (1)				
	Total for question 2		10		

Question Number			Answer				Mark
3(a)	EITHER						
	$\ln P = \ln P_0 - bh$ Compares to $y = c + mx$ where the gradient is $-b$ is the gradient (which is					1)	
	constant)	y = c + mx when	re the gradient is	s-b is the gradient		1)	
	MP2 depende	nt on MP1					
	OR						
	$\ln P = -bh +$	$\ln P_0$			(1)	
	Compares to y constant)	y = mx + c when	re the gradient is	s-b is the gradien		1)	2
	MP2 depende	nt on MP1					
3(b)(i)			nsistent to 3 d.p.	_	stent to 2 d.p. (1)	
			a) and x as h / m			1)	
	Appropriate so		4-1			1)	
	Best fit line di	a plotted accura	tery			 1) 1) 	5
	[Accept graph with values of ln <i>P</i> in Pa, log values only credit MP3,4,5] [ANNOTATE WITH MPs AWARDED, TICK CHECKED PLOTS]						
		<i>h</i> / m	<i>P</i> / kPa	ln (P/kPa)			
		305	97.7	4.582			
		762	92.5	4.527			
		1372	85.9	4.453			
		1829	81.2	4.397			
		2438	75.3	4.321			
		3048	69.7	4.244			

3(b)(ii) Uses large triangle to calculate gradient

(1)

Value of gradient in range (-)1.20 \times 10⁻⁴ to (-)1.30 \times 10⁴

(1)

Value of gradient given to 2 or 3 s.f., and negative

(1)

3

[Allow unit of m⁻¹]

Example of calculation

gradient =
$$\frac{4.56 - 4.25}{500 - 3000} = \frac{0.31}{-250} = -1.24 \times 10^{-4}$$

3(b)(iii)	Uses gradient = $(-)\frac{Mg}{kT}$ Correct value of M e.c.f. 3(b)(ii) Value of M given to 2 or 3 s.f., correct unit $\frac{\text{Example of calculation}}{M} = -\frac{-1.24 \times 10^{-4} \times 1.38 \times 10^{-2} \text{ JK}^{-1} \times 288 \text{K}}{9.81 \text{ms}^{-2}} = 5.02 \times 10^{-26} \text{ kg}$	(1) (1) (1)	3
3(b)(iv)	Reads $\ln P_0$ from y -intercept \mathbf{Or} Calculates (\ln) P_0 using gradient and data point from best fit line \mathbf{Or} Substitutes for (\ln) P_0 using gradient and data point from best fit line Calculates P at $h = (-)414$ m Value of P in range 105 kPa to 108 kPa [accept 2,3,4 SF] MP3 dependent on MP2 $\underline{\mathbf{Example of calculation}}$ $\ln P_0 = 4.62$ $\ln P = 4.62 + (-1.24 \times 10^{-4} \times -414) = 4.67$ $P = \mathrm{e}^{4.67} = 107$ kPa	(1) (1) (1)	3
	Total for question 3		16

Question Number	Answer	Mark			
4(a)(i)	EITHER				
	Repeat at different places and calculate a mean (1)				
	To reduce (the effect of) <u>random error</u> (1)				
	MP2 dependent on MP1 [Allow MP2 if MP1 partially correct]				
	OR				
	Use the ratchet to avoid squashing the rubber (1)				
	To reduce (the effect of) <u>random error</u> (1)				
	MP2 dependent on MP1 [Allow MP2 if MP1 partially correct]				
	OR				
	Check and correct for zero error (1)				
	To eliminate <u>systematic error</u> [Accept reduce for eliminate] (1)	2			
	MP2 dependent on MP1 [Allow MP2 if MP1 partially correct]				
4(a)(ii)	Mean $t = 1.04 \text{ (mm)}$ 3 SF only (1)	1			
	Example of calculation				
	Mean $t = \frac{(1.02 + 1.06 + 1.05 + 1.01)\text{mm}}{4} = 1.035 = 1.04 \text{ (mm)}$				
4(a)(iii)	Calculation using half range shown				
	Or Calculation of furthest from the mean shown (1)				
	Percentage uncertainty in $t = 3 \%$ e.c.f. (a)(ii) Accept 2 SF (1)	2			
	Example of calculation				
	Half range = $\frac{(1.06 - 1.01)\text{mm}}{2}$ = 0.025 = 0.03 (mm)				
	$\%U = \frac{0.03 \text{mm}}{1.04 \text{mm}} \times 100 = 2.9\% = 3\%$				
	Note: use of 0.025 in calculation gives 2.4% or 2%				

4(a)(iv)	The measurement is larger but the uncertainty is the same Or The measurement is larger but the resolution (of the micrometer) is the same So the percentage uncertainty is reduced (by a factor of 4) MP2 dependent on MP1	(1)	2
4(a)(v)	The length <i>x</i> of the rubber band does not take into account the fold (at the ends). The (length <i>x</i> of the) rubber band could be measured when it is not taut Or	(1)	
	The width w could be measured when the rubber band is compressed	(1)	2

4(b)(i) EITHER

Uses $2 \times percentage uncertainty in D$

[Accept
$$2 \times \frac{\Delta D}{D}$$
]

(1)

Uncertainty in D = 0.069 (cm²)

2 SF only

(1)

Example of calculation

%U in
$$D^2 = 2 \times \frac{0.01}{3.45} \times 100 = 0.58\%$$

U in
$$D^2 = 3.45^2 \times \frac{0.58}{100} = 0.069 \text{ (cm}^2\text{)}$$

OR

Calculation of half range of
$$D^2$$
 shown

(1)

2

Uncertainty in
$$D = 0.069$$
 (cm²)

2 SF only

(1)

Example of calculation

U in
$$D^2 = \frac{3.46^2 - 3.44^2}{2} = 0.069 \text{ (cm}^2\text{)}$$

4(b)(ii) EITHER

Addition of uncertainties shown

(1)

U in
$$A = 0.052$$
 (cm²)

2 SF only

e.c.f. (b)(i)

(1)

Example of calculation

U in
$$A = (0.07 + 0.06 + 0.07) \times \frac{\pi}{12} = 0.052 \text{ (cm}^2\text{)}$$

OR

Calculation of maximum and minimum A shown

(1)

2

U in
$$A = 0.053$$
 (cm²)

(1)

Example of calculation

Maximum
$$A = (11.97 + 9.42 + 10.63) \times \frac{\pi}{12} = 8.383 \text{ cm}^2$$

Minimum
$$A = (11.83 + 9.30 + 10.49) \times \frac{\pi}{12} = 8.278 \text{ cm}^2$$

U in
$$A = \frac{8.383 - 8.278}{2} = 0.053 \text{ (cm}^2\text{)}$$

4(c)	Calculation of a relevant limit using percentage uncertainty shown Or Calculation of a relevant uncertainty using percentage uncertainty shown (1)	
	Upper limit ρ for rubber band = 1.20 (g cm ⁻³) and Lower limit ρ for rubber bung = 1.50 (g cm ⁻³) (1)	
	They are not made from the same type of rubber as the upper limit of the rubber band does not overlap the lower limit for the rubber bung (1)	3
	MP3 dependent MP2	
	Example of calculation Upper limit ρ for rubber band = 1.15 × (1 + $\frac{4.3}{100}$) = 1.20 (g cm ⁻³) Lower limit ρ for rubber bung = 1.52 × (1 - $\frac{1.2}{100}$) = 1.50 (g cm ⁻³)	
	Total for question 4	16