Noveno Informe de Calidad de Aire - 2025

Distrito de Tacna

Gobierno Regional de Tacna

2025-04-02

El presente reporte muestra los resultados del monitoreo de la calidad de aire, el cual fue realizado con la estación de monitoreo de calidad de aire del Gobierno Regional de Tacna en un espacio proporcionado por el ITESP "Francisco de Paula Gonzales Vigil" en el distrito de Tacna durante el 06 de marzo del 2025 al 31 de marzo del 2025. Los parámetros de calidad de aire evaluados fueron $PM_{2.5}$, PM_{10} , NO_2 , O_3 , CO, SO_2 , H_2S y datos meteorológicos generados por la estación de monitoreo. Las concentraciones de cada uno de estos parámetros no deben superar el Estándar de Calidad Ambiental para Aire (ECA-aire), establecidos mediante el D.S. N° 003-2017-MINAM (MINAM, 2017), a fin de evitar problemas en la salud de las personas y el ambiente. También se ha considerado en el análisis los niveles recomendados por las Directrices de la Organización Mundial de la Salud (OMS, 2021) sobre la calidad del aire. Como principales paquetes computacionales de R para llevar a cabo el procesamiento de la información se tiene a openair (Carslaw & Ropkins, 2012), zoo (Zeileis & Grothendieck, 2005) y tidyverse (Wickham et al., 2019).

Tabla 1: Estándares de Calidad Ambiental para Aire - D.S. Nº 003-2017 MINAM

Parámetros	Período	$ m Valor \ (ug/m3)$	Criterios de evaluación	Método de análisis ¹
$\overline{SO_2}$	24 horas	250	NE ² más de 7 veces al	Fluorescencia ultravioleta (método automático)
NO_2	1 hora	200	año NE más de 24 veces al año	Quimioluminiscencia (método automático)
$PM_{2.5}$	24 horas	50	NE más de 7 veces al año	Separación incercial/filtración (gravimetría)
PM_{10}	24 horas	100	NE más de 7 veces al año	Separación inercial/filtración (gravimetría)
CO	1 hora	10000	NE más de 1 vez al año	Infrarrojo no dispersivo (NDIR) (método
	8 horas	30000	Media aritmética móvil	automático)
O_3	8 horas	100	Máxima media diaria	Fotometría de absorción ultravioleta (método
-			NE más de 24 veces al	automático)
			año	
H_2S	24 horas	150	Media aritmética	Fluorescencia ultravioleta (método automático)

Una manera muy útil de medir la calidad de aire de diferentes zonas del país era utilizando el Índice de Calidad de Aire del Perú, sin embargo, este instrumento técnico se encuentra desactualizado respecto a la normativa vigente. Por lo cual en este estudio se utilizó el Índice de Calidad de Aire (AQI por sus siglas en inglés) de la Agencia de Protección Ambiental de los Estados Unidos (US-EPA, 2024), cuya simbología se aprecia en la tabla 2.

Tabla 2: Rangos del AQI y su simbología de colores

Categoría	Rango AQI	Color
Buena	0 - 50	Verde
Moderada	51 - 100	Amarillo
No saludable para grupos sensibles	101 - 150	Naranja
No saludable	151 - 200	Rojo
Muy no saludable	201 - 300	Púrpura
Peligrosa	301 - 500	Marrón

²NE: No exceder más de una cantidad

¹O método equivalente aprobado

1 Estación de monitoreo de calidad de aire VIGIL

Durante el 06 de marzo del 2025 al 31 de marzo del 2025 se realizó el monitoreo de calidad del aire, en el ITESP "Francisco de Paula Gonzales Vigil" en el distrito de Tacna, utilizando la Estación Móvil de Monitoreo de Calidad de aire del Gobierno Regional de Tacna.

Figura 1: Mapa de Ubicación de la estación VIGIL

2 Parámetros de calidad de aire

Con los datos obtenidos de la estación de monitoreo de la calidad del aire del Gobierno Regional de Tacna, se realizó un análisis de la variabilidad horaria de las concentraciones de $PM_{10}, PM_{2.5}, CO, NO_2, O_3, SO_2$ y H_2S las cuales se presentan en la figura 2 y están expresadas en ug/m^3 .

Figura 2: Datos horarios de los parámetros de calidad de aire (ug/m3)

Parámetros de calidad de aire (µg m⁻³)

2.1 Comparación con el Estándar de Calidad de aire

2.1.1 Concentraciones diarias de los parámetros monitoreados

A continuación, se presenta la comparación de las concentraciones diarias obtenidas durante el monitoreo de calidad de aire, con los valores que establece el Estándar de Calidad Ambiental de Aire (D.S. N° 003-2017-MINAM).

Así mismo se compara con los niveles recomendados de las Directrices de la OMS sobre la calidad del aire, la cual ofrece recomendaciones cuantitativas relativas a la salud para la gestión de la calidad del aire.

Figura 3: Comparación de concentraciones diarias con el ECA-aire del 06 de marzo al 31 de marzo

Estándar - ECA - OMS

Por otro lado, las concentraciones diarias de los parámetros SO_2 , H_2S y CO se muestran en la siguiente tabla:

Tabla 3: Comparación de concentraciones diarias con el ECA-aire

Fecha	SO2	H2S	CO (1h)	CO (8h)
06-03	4.1	2.6	234.2	243.8
07-03	3.7	2.7	224.9	206.5
08-03	3.7	2.7	194.9	196.8
09-03	3.7	3.7	204.9	204.0
10-03	4.0	3.8	225.4	234.0
11-03	4.3	2.3	271.8	278.2
12-03	4.3	2.3	352.6	362.4
13-03	3.2	1.4	353.1	354.2
14-03	3.7	1.8	394.3	401.1
15-03	5.4	2.3	478.0	487.9
16-03	4.0	2.3	528.6	525.7
17-03	3.9	1.7	490.6	494.8
18-03	3.8	2.7	495.1	502.7
19-03	4.6	2.5	581.5	583.3
20-03	4.6	3.1	607.7	613.2
21-03	3.9	2.2	615.9	626.7
22-03	4.6	4.1	677.4	678.4
23-03	4.0	3.1	679.0	681.6
24-03	5.3	3.6	764.3	776.8
25-03	4.4	3.2	794.9	792.6
26-03	4.8	2.8	814.1	817.0
27-03	4.5	2.0	674.0	618.5
28-03	4.4	2.8	426.5	427.3
29-03	4.0	2.2	449.1	457.0
30-03	2.9	2.3	435.9	432.4
31-03	3.1	1.9	463.1	473.9
ECA	250.0	150.0	30000.0	10000.0
\mathbf{OMS}	40.0	NA	10000.0	35000.0

Lo visto en la figura 3 y la tabla 3 muestra que las concentraciones diarias no superan el Estándar de Calidad Ambiental de Aire en ningún día de monitoreo. En el caso del $PM_{2.5}$ la concentración diaria más alta se dio el lunes 10 de marzo con 33.98 ug/m3 y en el caso del PM_{10} la concentración diaria más alta también se dio el día lunes 24 de marzo con 45.56 ug/m3.

Sin embargo, al realizar la comparación con las Directrices sobre la calidad de aire de la Organización Mundial de la Salud (OMS), los parámetros $PM_{2.5}$ y PM_{10} superan estos valores en algunos dias del periodo de monitoreo.

2.1.2 Concentraciones horarias de los parámetros monitoreados

A continuación, se muestran las concentraciones horarias de los parámetros comparados de forma referencial con los Estándares de Calidad Ambiental (ECA) para aire del Perú y los niveles de la Directriz de la Organización Mundial de la Salud (OMS). El gráfico muestra que los parámetros $PM_{2.5}$ y PM_{10} superan en algunas horas de monitoreo, ambos umbrales de referencia, el parámetro NO_2 supera el umbral de la OMS, en el caso de los parámetros O_3 , SO_2 , H_2S y CO no se llega a superar estos umbrales en ningún momento del periodo de monitoreo. Así también, de forma complementaria en la figura 5 para una mejor comprensión, se muestra el comportamiento semanal de cada uno de los parámetros monitoreados.

Figura 4: Comparación referencial de concentraciones horarias con el Estándar de Calidad Ambiental de Aire del 06 de marzo al 31 de marzo

Figura 5: Comportamiento semanal de datos horarios - 06 de marzo al 31 de marzo

2.1.3 Gráficos polares

Son gráficos que presentan una relación entre las concentraciones horarias de los contaminantes y el comportamiento de los vientos. La dirección del viento se muestra en el plano cartesiano, la velocidad del viento en las circunferencias, la cual aumenta a medida que se aleja del origen, y la concentración en la paleta de colores. En la figura 6 se aprecia la representación polar de 4 parámetros de calidad de aire de interés PM_{10} , $PM_{2.5}$, NO_2 y O_3 . En el caso del parámetro PM_{10} , esta presenta mayores concentraciones con velocidad de viento mayores a 1.5 m/s los cuales provienen principalmente de dirección suroeste y sur este, en el caso del $PM_{2.5}$ las mayores concentraciones también se dan a mayores niveles de velocidad del viento, y en mayor medida de dirección suroeste y sureste. Así mismo, según el gráfico, las mayores concentraciones de NO_2 se presentan a velocidades de viento menores a 1.5 m/s, principalmente de dirección noreste. Las mayores concentraciones de O_3 se presentan con valores de velocidad de viento mayores a 1.5 m/s y provenientes con mayor predominancia de dirección noroeste, oeste y también de dirección suroeste.

Figura 6: Gráficos polares de los principales parámetros evaluados

2.2 Índice de Calidad de Aire

El índice de Calidad de Aire (AQI por sus siglas en inglés) muestra los estados de la calidad del aire, en general la zona monitoreada durante el 06 al 31 de marzo del 2025 presenta estados de calidad de aire "Bueno" en los parámetros PM_{10} , NO_2 , O_3 , SO_2 , y CO, durante todos los días de medición. En el caso del $PM_{2.5}$ se observa que presenta todos los días estado de calidad del aire "Moderado", que puede no ser favorable para personas sensibles a una exposición prolongada de este parámetro en la zona de evaluación.

Figura 7: Índice de Calidad de Aire - 06 de marzo al 31 de marzo

3 Parámetros meteorológicos

El siguiente gráfico muestra la distribución de los vientos en intervalos de 30 grados sexagesimales, de manera que, la dirección predominante del viento se da a los 240 grados en sentido horario.

Figura 8: Distibución de la dirección de los vientos

Así también se presenta el gráfico de rosa de viento donde se evidencia que el promedio de velocidades es de 1.59 m/s. De acuerdo con los rangos propuestos por la OMM (2023), los rangos de velocidades de viento en este periodo de monitoreo, se encuentran en las categorías de "ventolina", "brisa muy débil" y "brisa débil".

Figura 9: Rosa de vientos

Frequency of counts by wind direction (%)

A continuación, se presenta la información obtenida durante el periodo de monitoreo respecto a los parámetros temperatura, precipitación, humedad relativa, presión, velocidad del viento y radiación solar.

Figura 10: Datos horarios de los parámetros meteorológicos de la estación evaluada

4 Conclusiones

- Las concentraciones diarias de material particulado en la zona evaluada cumple con los Estándar de Calidad Ambiental para aire, establecidos en el D.S. N° 003-2017-MINAM. Asimismo, en el caso del $PM_{2.5}$ la concentración diaria más alta se dio el lunes 10 de marzo con 33.98 ug/m3 y en el caso del PM_{10} la concentración diaria más alta se dio el lunes 24 de marzo con 45.56 ug/m3.
- Los contaminantes gaseosos NO_2 , O_3 , SO_2 , H_2S y CO no superaron sus respectivos ECA-aire. Asimismo, la mayor concentración de NO_2 se registró el lunes 24 de marzo con 22.89 ug/m3 y de O_3 el sábado 22 de marzo con 48.03 ug/m3.
- El Índice de Calidad de Aire utilizado para determinar los estados de la calidad de aire en la zona de estudio muestra que durante los días de monitoreo los parámetros evaluados presentan la categoría de "Bueno" en la mayoría de los casos (a excepción del parámetro $PM_{2.5}$. Asimismo, para el parámetro $PM_{2.5}$ presenta estado de calidad del aire "Moderado" en todos los días de monitoreo .
- Respecto a la comparación con las Directrices de la Organización Mundial de la Salud (OMS) sobre la calidad del aire, los parámetros PM_{10} y $PM_{2.5}$ superan sus valores de referencia respectivos.
- En cuanto a los parámetros meteorológicos se destaca la predominancia del viento suroeste (240°) y el valor medio de la velocidad del viento en 1.59 m/s.

5 Referencias

- Carslaw, D. C., & Ropkins, K. (2012). openair An R package for air quality data analysis. *Environmental Modelling & Software*, 27–28(0), 52-61. https://doi.org/10.1016/j.envsoft.2011.09.008
- MINAM. (2017). Decreto Supremo N° 003-2017-MINAM que aprueba los Estándares de Calidad Ambiental (ECA) para Aire. *El peruano*, 34(4), 6-9. https://sinia.minam.gob.pe/normas/aprueban-estandares-calidad-ambiental-eca-aire-establecen-disposiciones
- OMM. (2023). Guía de instrumentos y métodos de observación (8; Vol. 1, p. 226). https://library.wmo.int/viewer/68714/download?file=8 I es 2023.pdf&type=pdf&navigator=1
- OMS. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. *Geneva: World Health Organization*. https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf
- US-EPA. (2024). Technical Assistance Document for the Reporting of Daily Air Quality the Air Quality Index (AQI). United States Environmental Protection Agency. https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019). Welcome to the tidyverse. *Journal of Open Source Software*, 4(43), 1686. https://doi.org/10.21105/joss.01686
- Zeileis, A., & Grothendieck, G. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. *Journal of Statistical Software*, 14(6), 1-27. https://doi.org/10.18637/jss.v014.i06