UCB Math 110, Fall 2010: Midterm 1

Prof. Persson, October 4, 2010

Name: SID: Section:		Sol	Solutions				•
		· 		•			
		n: Circle your	Circle your discussion section below:			Grading	
- ".				• .		1	/ 18
-	Sec	Time	Room	GSI		0	/ 70
	01	Wed 8am - 9am	87 Evans	D. Penneys		2	/ 12
	02	Wed 9am - 10am	2032 Valley LSB	C. Mitchell	•	3	/ 10
	03	Wed 10am - 11am	B51 Hildebrand	D. Beraldo			
	04	Wed 11am - 12pm	B51 Hildebrand	D. Beraldo		•	/ 40
	05	Wed $12pm - 1pm$	75 Evans	C. Mitchell			
	07	Wed 2pm - 3pm	87 Evans	C. Mitchell			
	08	Wed 9am - 10am	3113 Etcheverry	I. Ventura			
	09	Wed 2pm - 3pm	3 Evans	D. Penneys			
	10	Wed 12pm - 1pm	310 Hearst	I. Ventura			
	Othe	er/none, explain:					

Instructions:

- One double-sided sheet of notes, no books, no calculators.
- Exam time 50 minutes, do all of the problems.
- You must justify your answers for full credit.
- Write your answers in the space below each problem.
- If you need more space, use reverse side or scratch pages. Indicate clearly where to find your answers.

- 1. (6 problems, 3 points each) Label the following statements as TRUE or FALSE, giving a short explanation (e.g. a proof or a counterexample).
 - a) Let $V = \mathbb{R}^n$ and $W = \mathbb{R}$. Then $\mathcal{L}(V, W)$ is isomorphic to $P_n(\mathbb{R})$.

$$\operatorname{dim}(\mathcal{L}(V,\omega)) = \operatorname{dim}(V) \operatorname{dim}(\omega) = n$$

 $\operatorname{dim}(\mathcal{R}(R)) = n+1$.

since the Dimensions are not the same, they remot L(V, W) is not isom.
to Pr(IR).

b) Let V be a vector space and $T, U : V \to V$ be two linear operators. Then $N(U) \subseteq N(TU)$.

Let $v \in N(U)$. Then U(v) = 0. $\Rightarrow (TU)(v) = T(Uv) = T(0) = 0$ as T is linear. $\Rightarrow v \in N(TU)$.

c) Let V be a vector space and $T, U : V \to V$ be two linear operators. Then $R(U) \subseteq R(UT)$.

Suppose $T: \mathbb{R} \to \mathbb{R}$ is the zero lin. trans., i.e., $T_{\star}=0$ $\leftrightarrow \in \mathbb{R}$.

Suppose $U: \mathbb{R} \to \mathbb{R}$ is the identity lin. trans., i.e., $U_{\star}=\star$ $\forall \star \in \mathbb{R}$.

Then $R(u) = \mathbb{R} \nsubseteq (0) = \mathbb{R}(uT)$

NOR: that R(Uzt) & R(U)

1. (cont'd)

True d) The set $S = \{p \in P(F) : p'(0) = p(0)\}$ is a subspace of P(F).

Consider $T: P(F) \longrightarrow F$ with T(p(x)) = p'(0) - p'(0)

Tis a Linear transformation so and

S=N(T). Thus Sis a low Subspace

OF P(F)

e) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Then $\mathbb{R}^2 = N(T) \oplus R(T)$.

False

Consider LA with A= Loo7

R(LA) = N(LA) = Span {[0]} thus RZ N(T) OR(T).

f) Let W_1 and W_2 be 3-dimensional subspaces of \mathbb{R}^5 . Then W_1 and W_2 must have a common nonzero vector.

Let B, and B2 be bases for W, and

We respectively, with $\beta_1 = \{u_1, u_2, u_3\}$ β_2= {v, , v2, v3}. if β, Λβ2 # & we are done.

thus I ai bieR Not all o to the dependent.

a, u, + a242+a343+ b, v, + b2 42+ b3 43 = 0 thus a, u, + a, u, 1 3

2. (12 points) Let $T: M_{2\times 2}(R) \to M_{2\times 2}(R)$ be defined by

$$T(A) = BA - A^t$$
 where $B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

a) Prove that T is a linear transformation.

$$T(aA+C) = B(aA+C) - (aA+C)^{t}$$

$$= B(aA) + B(-(aA)^{t} - C^{t})$$

$$= aBA - aA^{t} + BC - C^{t}$$

$$= aT(A) + T(c)$$

b) Find bases for N(T) and R(T).

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad T(A = BA - A^{t} = \begin{pmatrix} a + 2c & b + 2d \\ c & d \end{pmatrix} - \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$= \begin{pmatrix} 2c & b + 2d - c \\ c - b & 0 \end{pmatrix}$$

$$T(A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = b = c = d = 0 = b = c = d = 0$$

$$R(T) = span \left(\begin{cases} 0 & 1 \\ -1 & 0 \end{cases}, \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \right)$$

$$= span \left(\begin{cases} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right)$$

$$= span \left(\begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right)$$

$$= span \left(\begin{cases} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right)$$

3. (10 points) Let V be a vector space, and $T: V \to V$ a linear operator. Suppose $x \in V$ is such that $T^m(x) = 0$ but $T^{m-1}(x) \neq 0$ for some positive integer m. Show that $\{x, T(x), T^2(x), \ldots, T^{m-1}(x)\}$ is linearly independent.

