

Next Generation Sequencing Technologies

Anzaan Dippenaar

31 August 2024

DNA sequencing

A BRIEF HISTORY

Friedrich Miescher:

• isolated various phosphate-rich chemicals from white blood cells, which he called nuclein

Avery-MacLeod-McCarty:

 DNA is the "genetic material"

Watson & Crick:

 Double Helix Structure of DNA

History of DNA sequencing

1977

1981

1983

Maxam-Gilbert:
DNA sequencing by chemical degradation

Frederick Sanger *et al*:

DNA sequencing with chain-terminating inhibitors

Messing et al: shotgun sequencing of cauliflower mosaic virus

Kary Mullis: Polymerase Chain reaction (PCR)

The history of sequencing – 1st gen

1987

First automated sequencer: ABI Prism 370

University of Antwerp
I GHI | Global Health Institute

1995

Craig Venter and Hamilton Smith: first complete genome of a free-living organism: *H*.

influenza

2001

Draft of the human genome published

The history of sequencing: NGS

2005

2006

2007

2011

Roche 454 pyrosequencing

Solexa (Illumina) Next Generation Sequencer

Applied Biosystems Next Generation Sequencer: SOLiD

Ion Torrent: Personal Genome Machine (PGM)

The history of sequencing: 3rd gen

2009

Helicos single molecule sequencer: Helicos Genetic Analyser System

University of Antwerp
I GHI | Global Health Institute

2011

Pacific Biosciences single molecule sequencer: PacBio RS Systems 2012

Oxford Nanopore Technologies -The GridION and MinION

DNA sequencing

THE PRINCIPLES

Next-Generation Sequencing platforms

Different approaches are used:

- 1) Sequencing by synthesis uses DNA polymerase (e.g. Illumina, Pyrosequencing)
- 2) Sequencing by ligation uses DNA ligase (e.g. SOLiD)
- 3) Direct molecule sequencing (e.g. ONT)

Choosing the most appropriate platform

Platform	Primary advantages	Primary disadvantages	
Sanger Sequencing	Low cost for small studies	High cost for large amounts of data	
Illumina	Moderate run cost, low error rate, various read length configurations, standardised data format	High instrument costs, relatively short reads, large amounts of data produced*	
PacBio	Longest available read length (single molecule real time sequencing), short run time	Expensive equipment and persample costs, high(er) error rate	
Ion Torrent	Low-cost instruments and disposable chips, simple machine	High error rate, fewer reads at higher cost per Mb relative to e.g. Illumina MiSeq, smaller user community, data format	
Oxford Nanopore Technologies	MinIon – small, portable instrument, low capital (hardware) cost, long reads, error rate does not increase along read length	High error rate, limited library preparation approaches, high amount of input DNA, analysis not standardized	

Understanding sequencing – PCR

Sequencing by synthesis

- Fragment genomic DNA
- 2. Add 2x different synthetic adapters complimentary to that on the flowcell.
- 3. Hybridize to solid flowcell.
- 4. Perform bridge amplification until flowcell is covered with DNA strands.
- 5. Target strands will now be clustered on the flowcell.
- Add adapter specific primers with fluorescently labeled DNA basis (ATGC)/
- 7. As a base is used during amplification, a signal is detected and captured.
- 8. These contigs are then compared to a reference genome.

https://www.youtube.com/watch?v=CZeN-IgjYCo

https://www.illumina.com/science/technology/next-generation-sequencing/beginners/ngs-workflow.html#:~:text=The%20next%2Dgeneration%20sequencing%20workflow.to%20plan%20your%20NGS%20workflow.

genomic DNA

 $\frac{https://www.youtube.com/watch?v=CZeN-lgjYCo}{https://www.illumina.com/science/technology/next-generation-sequencing/beginners/ngs-workflow.html#:~:text=The%20next%2Dgeneration%20sequencing%20workflow,to%20plan%20your%20NGS%20workflow.}$

Nanopore DNA Sequencing

Oxford Nanopore's technology uses nanopores embedded in a lipid membrane.

As a DNA molecule moves through the nanopore, minute changes in the

electrical current are recorded, and later interpreted.

Nanopore DNA Sequencing

ONLINE VIDEO: ONT

NGS analysis approaches

Reference mapping approach

- Known genome sequence of closely related organism
- Analysis is less resource-intensive
- Limited to known genomic regions

De novo assembly

- Limited knowledge of genome sequence or closely related organism
- Analysis is resource-intensive
- Describe novel genomic structures
 - Species characterisation

WGS ANALYSIS

Quality control and preprocessing FASTQC FASTQ FASTQ Kraken Alignment to a reference genome M.tb BWA **FASTQ** H37Rv SAM Refine and compress alignment ~~~~~~~ **GATK** BAM SAM **SAMTools** Variant identification **GATK** VCF BAM **Annotation** TB-profiler VCF / VCF custom SnpEff text

Next generation sequencing

of M. tuberculosis

FROM SAMPLE TO SEQUENCE

Microbiology

Molecular biology

Bioinformatics

NGS APPLICATIONS FOR TB RESEARCH AND CLINICAL CARE

Surveillance

Epidemiology

Drug resistance

Heteroresistance

Transmission

TARGETED vs. WHOLE GENOME SEQUENCING

Logistics and needs for TDS vs standard WGS vs advanced WGS

	Targeted Sequencing (Deeplex-MycTB)	Standard WGS	Advanced WGS
Application	Culture-free prediction of resistance to anti-TB drugs	Culture-based prediction of resistance to anti-TB drugs	Culture-based prediction of resistance to anti-TB drugs, transmission dynamics
Input material	DNA extracted directly from specimens (if bacterial load high) or cultured isolates	High quality purified DNA extracted from cultured <i>Mtb</i> isolates	High quality purified DNA extracted from cultured <i>Mtb</i> isolates
Staff requirements	Sequencing technician	Sequencing technician	Technician and Bioinformatician
Depth of coverage	> 1000 X (up to 100k X)	>10x	>30x (depending on application)
TAT (assuming in-house sequencer)	2 days	3-40 days culture 1 day DNA extraction 2-3 days sequencing 1 day analysis (Need for culture increases TAT)	3-40 days culture 1 day DNA extraction 2-3 days sequencing 2-day analysis (standard) 4+ days analysis (additional) (Need for culture increases TAT)
Data analysis	User friendly cloud-based system	User-friendly graphical interface	Bioinformatics analysis tools. (Graphical interface, command line)

NGS - Applications in *M. tuberculosis* tNGS vs VVGS

PROJECT OVERVIEW: deepMTB

Impact of (Hetero)resistance on treatment success of DR-TB

Comparison of Hetero-resistance detected by different approaches

Quantify prevalence culture bias

PROJECT OVERVIEW: deepMTB

Validated hetero-resistant mixtures

- Lab-made resistant and susceptible M. tuberculosis mixtures
- Available from BE-based bacterial biobank
- Developers of diagnostic tests

NGS - Applications in *M. tuberculosis*

NGS has higher resolution compared to classic genotyping techniques

WGS: MDR Beijing outbreak in CAPE TOWN

- **1993-2015**
- 84 patients (127 isolates)
- Identical Beijing IS6110-RFLP
- Resistant to 4 frontline drugs
- WGS revealed characteristic: pncA 100ATC; 160GCA mutations

N=4: RU suburb 1993-1995 N=2: Cape Town 2010-2012 N=4: RU suburb 2000-2003 N=6: RU suburb 2014-2015

N=5: RU suburb

1993-2004

N=1: Cape Town

2015

N=6: RU suburb 1994-2010

N=3: Cape Town

2011-2015

N=6: RU suburb 2004-2010

N=1: Cape Town

N=4: RU suburb 1995-2011

N=4: RU suburb

2001-2006

N=1: Cape Town

N=16: RU suburb

1993-2007

N=6: Cape Town

2010-2014

N=2: Freestate

N=4: RU suburb

1994-2015

N=5: Cape Town

2010-2011

N=1: Western Cape

2011

N=4: RU suburb 1995-2010

N=3: Cape Town

2013-2015

N=9: RU suburb 1994-2004

N=1: Cape Town

2011

WGS of clinical primary Mtb liquid cultures for

PRECISION MEDICINE

PROJECT OVERVIEW: SMARTT

- Pragmatic randomised control trial
 - WGS and Standard of care
- WGS-based comprehensive drugresistance profile to guide DR-TB treatment
 - Individualised treatment / personalised medicine
 - Low-middle income country
 - Freestate Province, South Africa
- Primary outcome
 - Bacteriological response to treatment

WHOLE GENOME SEQUENCING

PROJECT OVERVIEW: SMARTT

MYCOBACTERIUM TUBERCULOSIS GENOME SEQUENCING REPORT

Patient Name Phone LP250 Birth date Sample Gender MALE Weight (Kg) 55.0 Facility **Facility contact** Requested by Sequenced from **MGIT** Sample type Sample date XXX Sputum Sample number Report date 2022-11-01

Drug Resistance Profile

This Mycobacterium tuberculosis strain is predicted to be:

Resistant to: Ethambutol, Ethionamide, Prothionamide, Rifampicin, Isoniazid, and Isoniazid High Dose

Susceptible to: Levofloxacin, Linezolid, Imipenem, Meropenem, Moxifloxacin, Moxifloxacin High Dose, Bedaquiline, Amikacin, Clofazimine, Terizidone, Streptomycin, Para Aminosalicylic Acid, Rifabutin, Delamanid, and Pyrazinamide

Clinical Information

b (g/dL) leutrophils (*10^9/L) LT (IU/L) learing loss
LT (IU/L)
paring loce
earing ioss
sychosis
isual problems

Clinical decision support system

- Al trained algorithm
- Takes DR-profile and clinical information into account
- Knowledge of drug properties

Treatment recommender:

Dosage (mg)
1000 mg
600 mg
200 mg three times per week
1500 mg

Summary

- NGS important role to accurately track transmission, outbreaks etc.
- Importance in WGS for drug resistance in TB:
 - All known drug resistance conferring variants can be identified
 - Enables individualised treatment
 - Detection of heteroresistance
 - Identify novel mechanisms of resistance

- Various applications of NGS
 - Which clinical question are you seeking to address?

Tuberculosis practicals – Monday 2 Sep

- Full day!
- Please prepare lab manual
- Before Thursday:
 - Create an account on Galaxy: https://usegalaxy.org/
 - Remember your login details...

COMPLEXITY

anzaan.dippenaar@uantwerpen.be

MOLECULAR ASSAYS FOR TUBERCULOSIS: increased levels of complexity

INFORMATION	Mtb/no Mtb RIF	Mtb/no Mtb RIF	Mtb/no Mtb 15 drugs	Mtb/no Mtb all drugs
		INH 	Genotype	Genotype Transmission
TARGETS	MTB-specific 1 drug-target	MTB-specific 3 drug-targets	MTB-specific 18 drug-targets	4.4Mb All drug-targets
SAMPLE TYPE	Raw specimen	Treated	Treated Specimen ***	Cultured isolate
MOLECULAR ASSAY	Simple NAATs	Mode of the second of the seco	DEEPLEX	M. Auberculouis HSTPV 4.411.2015 p
University of Antwerp I GHI I Global Health Institute				#55