Algoritmos e Estruturas de Dados II

Backtracking

Prof. Tiago Eugenio de Melo tmelo@uea.edu.br

www.tiagodemelo.info

Observações

 As palavras com a fonte Courier indicam as palavras-reservadas da linguagem de programação.

Referências

- Fundamentals of Python From First
 Programs Through Data Structures. Kenneth
 A. Lambert. CENGAGE Learning, 2010.
- Algorithms in a Nutshell. George T. Heineman, Gary Pollice, Stanley Selkow. O'Reilly Media, 2009.
- Projetos de Algoritmos com implementações em Pascal e C. Nivio Ziviani.
 2ª edição. Thomson, 2005.

• Também conhecido como busca exaustiva.

- Também conhecido como busca exaustiva.
- É um tipo de estratégia para resolução de problemas que consiste em enumerar todos os possíveis candidatos de uma solução e verificar se cada um satisfaz o problema.

- Também conhecido como busca exaustiva.
- É um tipo de estratégia para resolução de problemas que consiste em enumerar todos os possíveis candidatos de uma solução e verificar se cada um satisfaz o problema.
- A implementação é simples e sempre encontrará uma solução.

- Também conhecido como busca exaustiva.
- É um tipo de estratégia para resolução de problemas que consiste em enumerar todos os possíveis candidatos de uma solução e verificar se cada um satisfaz o problema.
- A implementação é simples e sempre encontrará uma solução.
- Porém, o custo computacional é proporcional ao número de candidatos a solução que, em problemas reais, tende a crescer exponencialmente.

 Estratégia comumente usada em problemas cujo tamanho é limitado ou quando não se conhece um algoritmo mais eficiente.

• Problema Clique¹

- Problema Clique¹
 - Considere um conjunto P de n pessoas e uma matriz M de tamanho n x n, tal que
 M[i,j]=M[j,i]=1, se as pessoas i e j se conhecem e M[i,j]=M[j,i]=0, caso contrário.

- Problema Clique¹
 - Considere um conjunto P de n pessoas e uma matriz M de tamanho n x n, tal que
 M[i,j]=M[j,i]=1, se as pessoas i e j se conhecem e M[i,j]=M[j,i]=0, caso contrário.
 - Problema: existe um subconjunto $\mathbb C$ (Clique), de $\mathbb P$ pessoas escolhidas de $\mathbb P$, tal que qualquer par de pessoas de $\mathbb C$ se conhecem?

Problema Clique¹

- Considere um conjunto P de n pessoas e uma matriz M de tamanho n x n, tal que M[i,j]=M[j,i]=1, se as pessoas i e j se conhecem e M[i,j]=M[j,i]=0, caso contrário.
- Problema: existe um subconjunto $\mathbb C$ (Clique), de $\mathbb P$ pessoas escolhidas de $\mathbb P$, tal que qualquer par de pessoas de $\mathbb C$ se conhecem?
- Solução por FB: verificar, para todas as combinações simples (sem repetições) C de r pessoas escolhidas entre as n pessoas do conjunto P, se todos os pares de pessoas de C se conhecem.

Considere um conjunto
 □ de 8 pessoas representado pela matriz abaixo (8 x 8):

Considere um conjunto
 □ de 8 pessoas representado pela matriz abaixo (8 x 8):

X	1	2	3	4	5	6	7	8
1	1	0	1	1	1	1	1	0
2	0	1	0	0	1	0	0	1
3	1	0	1	1	0	1	1	1
4	1	0	1	1	1	1	1	1
5	1	1	0	1	1	0	0	0
6	1	0	1	1	0	1	1	1
7	1	0	1	1	0	1	1	0
8	0	1	1	1	0	1	0	1

 Considere um conjunto P de 8 pessoas representado pela matriz abaixo (8 x 8):

X	1	2	3	4	5	6	7	8
1	1	0	1	1	1	1	1	0
2	0	1	0	0	1	0	0	1
3	1	0	1	1	0	1	1	1
4	1	0	1	1	1	1	1	1
5	1	1	0	1	1	0	0	0
6	1	0	1	1	0	1	1	1
7	1	0	1	1	0	1	1	0
8	0	1	1	1	0	1	0	1

• Existem um conjunto $\mathbb C$ de 5 pessoas escolhidas de $\mathbb P$ tal que qualquer par de pessoas de $\mathbb C$ se conhecem?

 Existem 56 combinações simples de 5 elementos escolhidos dentre um conjunto de 8 elementos:

 Existem 56 combinações simples de 5 elementos escolhidos dentre um conjunto de 8 elementos:

1 2 3 4 5	12468	13578	23568
1 2 3 4 6	12478	13678	23578
1 2 3 4 7	12567	14567	23678
1 2 3 4 8	12568	14568	24567
12356	12578	14578	24568
1 2 3 5 7	12678	14678	24578
1 2 3 5 8	13456	15678	24678
1 2 3 6 7	13457	23456	25678
1 2 3 6 8	13458	23457	3 4 5 6 7
1 2 3 7 8	13467	23458	3 4 5 6 8
1 2 4 5 6	13468	23467	3 4 5 7 8
1 2 4 5 7	13478	23468	34678
1 2 4 5 8	13567	23478	35678
1 2 4 6 7	13568	23567	45678

 Existem 56 combinações simples de 5 elementos escolhidos dentre um conjunto de 8 elementos:

1 2 3 4 5	12468	13578	23568
1 2 3 4 6	12478	13678	23578
1 2 3 4 7	12567	14567	23678
1 2 3 4 8	12568	14568	24567
1 2 3 5 6	12578	14578	24568
1 2 3 5 7	12678	14678	24578
1 2 3 5 8	13456	15678	24678
1 2 3 6 7	13457	23456	25678
12368	13458	23457	3 4 5 6 7
12378	13467	23458	34568
12456	13468	23467	34578
1 2 4 5 7	13478	23468	34678
1 2 4 5 8	13567	23478	35678
1 2 4 6 7	13568	23567	45678

 Note que todos os pares de pessoas do subconjunto C = {1, 3, 4, 6, 7} se conhecem:

• Note que todos os pares de pessoas do subconjunto $C = \{1, 3, 4, 6, 7\}$ se conhecem: x = 1 + 3 + 4 + 6 = 7

 x
 1
 3
 4
 6
 7

 1
 1
 1
 1
 1
 1

 3
 1
 1
 1
 1
 1

 4
 1
 1
 1
 1
 1

 6
 1
 1
 1
 1
 1

 7
 1
 1
 1
 1
 1

Note que todos os pares de pessoas do subconjunto
 C = {1, 3, 4, 6, 7} se conhecem:

X	1	3	4	6	7
1	1	1	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
6	1	1	1	1	1
7	1	1	1	1	1

• Como enumerar todas as combinações simples de $\bf r$ elementos de um conjunto de tamanho $\bf n$?

• Note que todos os pares de pessoas do subconjunto $C = \{1, 3, 4, 6, 7\}$ se conhecem:

X	1	3	4	6	7
1	1	1	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
6	1	1	1	1	1
7	1	1	1	1	1

• Como enumerar todas as combinações simples de r elementos de um conjunto de tamanho n?

Backtracking

• É um refinamento da estratégia dos algoritmos de força bruta.

- É um refinamento da estratégia dos algoritmos de força bruta.
- Parte das possíveis soluções que podem ser eliminadas sem que sejam explicitamente executadas.

- É um refinamento da estratégia dos algoritmos de força bruta.
- Parte das possíveis soluções que podem ser eliminadas sem que sejam explicitamente executadas.
- Problemas cujas soluções podem ser definidas através de uma sequência de decisões.

- É um refinamento da estratégia dos algoritmos de força bruta.
- Parte das possíveis soluções que podem ser eliminadas sem que sejam explicitamente executadas.
- Problemas cujas soluções podem ser definidas através de uma sequência de decisões.
- Os problemas podem ser modelados por uma árvore de decisão que representa todas as possíveis sequências de decisão.

 Se houver mais de uma decisão disponível para cada uma das n decisões, a busca exaustiva (força bruta) será exponencial.

- Se houver mais de uma decisão disponível para cada uma das n decisões, a busca exaustiva (força bruta) será exponencial.
- A eficiência da estratégia depende da possibilidade de <u>limitar a busca</u>.

- Se houver mais de uma decisão disponível para cada uma das n decisões, a busca exaustiva (força bruta) será exponencial.
- A eficiência da estratégia depende da possibilidade de <u>limitar a busca</u>.
- Necessário definir um espaço de solução para o problema:

- Se houver mais de uma decisão disponível para cada uma das n decisões, a busca exaustiva (força bruta) será exponencial.
- A eficiência da estratégia depende da possibilidade de <u>limitar a busca</u>.
- Necessário definir um espaço de solução para o problema:
 - Que inclua a solução ótima.

- Se houver mais de uma decisão disponível para cada uma das n decisões, a busca exaustiva (força bruta) será exponencial.
- A eficiência da estratégia depende da possibilidade de <u>limitar a busca</u>.
- Necessário definir um espaço de solução para o problema:
 - Que inclua a solução ótima.
 - Que possa ser <u>pesquisada de forma organizada</u>.

Exemplos

 Deve-se preencher uma mochila com diversos itens com pesos e/ou valores diferentes.

• Deve-se preencher uma mochila com diversos itens com pesos e/ou valores diferentes.

 Deve-se preencher uma mochila com diversos itens com pesos e/ou valores diferentes.

 O objetivo é preencher a mochila com o maior valor possível, não ultrapassando o peso máximo suportado pela mochila.

Entrada

- Entrada
 - N itens com pesos p_i e valores v_i , onde a capacidade da mochila é K.

- Entrada
 - $\bf N$ itens com pesos $\bf p_i$ e valores $\bf v_i$, onde a capacidade da mochila é $\bf K$.
- O objetivo é obter um conjunto S de itens, tais que:

- Entrada
 - N itens com pesos p_i e valores v_i, onde a capacidade da mochila é K.
- O objetivo é obter um conjunto S de itens, tais que:
 - A soma dos pesos dos itens S ≤ K e a soma dos valores dos itens em S seja a maior possível.

Qual item escolher primeiro?

- Qual item escolher primeiro?
 - Maior valor?

- Qual item escolher primeiro?
 - Maior valor?
 - Menor peso?

Solução por força bruta

- Solução por força bruta
 - Gerar todas as possíveis combinações.

- Solução por força bruta
 - Gerar todas as possíveis combinações.
 - Com n itens, existem 2ⁿ soluções.

- Solução por força bruta
 - Gerar todas as possíveis combinações.
 - Com n itens, existem 2ⁿ soluções.
 - Checar se cada solução satisfaz limite de peso.

- Solução por força bruta
 - Gerar todas as possíveis combinações.
 - Com n itens, existem 2n soluções.
 - Checar se cada solução satisfaz limite de peso.
 - Salvar a condição que melhor representa a solução.

- Solução por força bruta
 - Gerar todas as possíveis combinações.
 - Com n itens, existem 2ⁿ soluções.
 - Checar se cada solução satisfaz limite de peso.
 - Salvar a condição que melhor representa a solução.
 - Pode ser representada como uma árvore.

• Exemplo de mochila de 10 kg

 Se alcançarmos um ponto em que a solução não é mais viável, não precisamos continuar explorando a solução.

- Se alcançarmos um ponto em que a solução não é mais viável, não precisamos continuar explorando a solução.
 - Podemos voltar (backtrack) a partir deste ponto.

- Se alcançarmos um ponto em que a solução não é mais viável, não precisamos continuar explorando a solução.
 - Podemos voltar (backtrack) a partir deste ponto.
- Essa estratégia se torna bastante útil:

- Se alcançarmos um ponto em que a solução não é mais viável, não precisamos continuar explorando a solução.
 - Podemos voltar (backtrack) a partir deste ponto.
- Essa estratégia se torna bastante útil:
 - Na medida em que o número de itens cresce.

- Se alcançarmos um ponto em que a solução não é mais viável, não precisamos continuar explorando a solução.
 - Podemos voltar (backtrack) a partir deste ponto.
- Essa estratégia se torna bastante útil:
 - Na medida em que o número de itens cresce.
 - Na medida em que a capacidade da mochila diminui.

Backtracking < 10 kg

 Pode-se voltar também quando se sabe que a melhor solução da subárvore é pior do que a melhor solução já encontrada.

Problema da Mochila

- Pode-se voltar também quando se sabe que a melhor solução da subárvore é pior do que a melhor solução já encontrada.
 - É uma estratégia usada por muitos algoritmos.

Problema da Mochila

Backtracking com cortes por qualidade

Problema da Mochila

Solução genérica

```
def backtrack(v): # v é o nó sendo pesquisado
   if (promissor(v)):
        if (existe_solucao(v)):
            armazena solucao(v)
        else:
            for filho in v:
                backtrack(filho)
}
```

 O problema consiste em minimizar o custo de um caixeiro viajante que deseja percorrer n cidades, visitando cada cidade apenas uma vez, e retornar para casa.

 O problema consiste em minimizar o custo de um caixeiro viajante que deseja percorrer n cidades, visitando cada cidade apenas uma vez, e retornar para casa.

Força bruta

- Força bruta
 - Se calcularmos um bilhão de soluções por segundo com um grafo com 30 cidades, demoraria 8 quadrilhões de anos para achar a melhor solução.

- Força bruta
 - Se calcularmos um bilhão de soluções por segundo com um grafo com 30 cidades, demoraria 8 quadrilhões de anos para achar a melhor solução.
- Esse problema é O(n!).

• Regras:

- Regras:
 - Matriz de 9 x 9.

- Regras:
 - Matriz de 9 x 9.
 - Cada célula pode ter um valor 1 a 9.

- Regras:
 - Matriz de 9 x 9.
 - Cada célula pode ter um valor 1 a 9.
 - Cada linha e coluna possuem sempre números distintos.

- Regras:
 - Matriz de 9 x 9.
 - Cada célula pode ter um valor 1 a 9.
 - Cada linha e coluna possuem sempre números distintos.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1 6
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5 6	3	1	2	7	6	8	9	4
6	3 2 9	4	1	9	5	2		
	9	8					6	
8				6				3
4			80		3			1
7				2				6
	6					2	8	
			4	1	8			59
				8			7	9