

农航卫士—— 无人机病虫害智能识别与 精准施药系统

作品编号: 2025014509

作品名称: 农航卫士--无人机病虫害智能识别与精准施药系统

参赛队员:付泽凯、黄凯伦、陈诗婷、谭俊、曾莉婷

指导老师: 孟伟、黄浩晖

目录/CONTENT

01 项目背景

02 创新成果

03 应用前景

01)

项目背景

1.1 项目背景

农业疾病监测成为农业关注热点

我国农作物病虫害发生面积 单位(亿亩次)

我国农作物疾病重 发生面积广阔! 《2023年"虫口夺粮"保丰 收行动方案》

加强病虫害的 精准监测和控制!

数据来源:农业农村部办公厅《2023年"虫口夺粮"保丰收行动方案》

科技部《关于加强农业科技社会化服务体系建设的若干意见》

目前农业疾病监测方式: 人工巡检

1.2 应用前景

应用前景广阔!

多元化、场景化的农业需求

提高农作物品质

无人机农业疾病分类系统实现高效农田监测和病害识别,助力建设农业强国

数据来源:《国家统计局》

1.3 项目思路

解决思路

✔ 优点

- 自动巡检,提升效率
- 识别疾病,精准可靠
- 对症下药,减少污染

政策支持

科技部 农业农村部 教育部 财政部 人力资源社会保障部 银保监会 中华全国供销合作 总社印发《关于加强农业科技社会化服务体系建设的若干意见》的通知

习近平: 加快建设农业强国 推进农业农村现代化

国务院关于印发"十四五"推进 农业农村现代化规划的通知

农业农村部办公厅关于印发《2023年"虫口夺粮"保丰收行动方案》的通知 《泰章(2023)10号

各省、自治区、直辖市农业农村(农牧)厅(周、委)、新课年产建设共进农业农村局。

1.10

为员需竞中央、国务院决定部署、落实中央农村工作会议和全国农业农村行动社会议精神、充分发挥制度的灾观火产税税增施。 程进农业全面设在村业、种租金总质量发展等方面介施、农业农村部建建进的灾害。生工等程"保干农行动、现在《2023年》生口等 程"保干农行动方案》可发化的、请任会本地实际、研究实际方案、制确目导任务、强化属地存任。如实就对多项结准原实。

> 农业农村部办公厅 2023年3月3日

30176 1411

减少农业 作物疾病 提高农业 产品质量 助力建设 农业强国

02

创新成果

2.1 项目简介 🖊

农作物疾病检测是提高农业生产率的重要手段!

无人机农业疾病分类系统,自主完成农业疾病检测,更高效、更准确!

2.2 项目简介

系统整体框图

硬件配置

mid-360

单目摄像头

Jetson Xavier nx 机载电脑

PX4开源飞控

TFmini Plus 激光测距模块

蓄水喷头

软件配置

QGC地面站

LTE LINK SE

Yolov5

ROS

2.3 技术点一

基于改进Yolov5的农作物叶子识别器

问题

解决方案

目

标

检

测

效

农作物叶片识别受光照、背景干扰大,传统视觉识别算法精度较低

- 1.采用WIoU优化损失函数,减少低质量样本的影响,提高识别准确率
- 2.将WIoU与Yolov5目标检测技术相结合,实现农作物实时高精度识别

实地测试分类准确率达85.78%!

实地测试阶段

损失函数	AP-50	AP-75
CloU	62.92%	53.04%
SloU	63.28%	53.42%
WIoU	64.20%	54.50%

不同损失函数下Yolov5的精度对比

初期实验阶段

AP-50是指损失函数阈值为0.5时,MS-COCO数据集的平均准确率

2.4 技术点二

基于交叉注意力机制的多尺度分类器

问题

目前农业疾病检测多依靠人工判断,主观性强,对经验要求高

解决方案

1使用双分支视觉转换器获取多尺度特征,深化特征层次,提高鲁棒性

2.基于交叉注意力机制对特征信息进行融合,实现高精度的农业疾病分类

疾病分类效果

农航卫士模型数据库中共有29种农业疾病

疾病 本项目 托普云农 极飞科技 平均准确率 平均准确率 平均准确率 玉米 92.6% 90.0% 91.0% 番茄 8 90.8% 87.5% 89.3% 水稻 89.1% 88.4% 89.0%

2.5 技术点三

四旋翼无人机农田自主巡检系统

问题

农田巡检区域较大,传统人工巡检效率低下,且覆盖面小。

解决方案

- 1.结合路径规划与电量管理,提前返航,更方便高效!
- 2.无人机搭载农药喷洒系统,实现农业疾病对症下药

模拟喷洒农药

实地喷洒演示

无人机搭载蓄水喷头

实现农药对"症"喷洒

无人机精准定位飞行, 收到释放农药指令后, 立即精准释放

2.6 技术点四

无人机农田巡检系统可视化

实时画面

4G通信

轨迹监测

QGC地面站实时监测

LTE LINK SE实时监测

移动端地面站实时监测

2.9 项目历程

公开数据集 分类29种农业疾病模型准确率高达90.4%

初期调试

中期推进

训练深度学习 Cross-Attention模型

定位飞行

喷药动作

进行实机调试和实地测试

Yolov5的农作物模型

将各模型整合部署至边缘端

2.9 项目历程 🦼

国家级5项,省级7项,校级4项

《农航卫士——无人机病虫害智能识别与精 准施药系统》

- > 团队实地调研2次
- ▶ 创新技术点4项
- ▶ 提高农业生产质量,助力建设农业强国

从项目初期试验开发,到农田实际测试,真正实现从0到1的突破!

各大校赛

计算机设计大赛

各大省赛

各大国赛

3.1 优势对比 🖊

无人机系统

托普云农

工作准确率

85%

巡检方式

大规模喷洒

产品成本

较低

操作难易度

农业AI大模型"小农人"

极飞科技

70%

大规模喷洒

较高

第二代单手遥控器

本项目

95% → 准确率高

中等 一 性价比高

一键式自主 — 用户友好 巡检 型设计 "农航卫士"无人机病虫害智能识别与精准施药系统 提高农业生产质量 助力建设农业强国

即刀運该於业理画

附页

数据库疾病类型

疾病类型	
条纹叶枯病	
细菌性褐斑病	
细菌性条斑病	
细菌性褐条病	
黄叶病	
黑腐病	
灰霉病	
霜霉病	
黑斑病	
锈病	
灰霉病	
褐斑病	
锈病	
早疫病	

附页

农业疾病数据库

统计了数种农业疾病的图片

附页

边缘端设备

实际应用

解决农业无人机算法负载高等问题

优点

高性能: 快速处理无人机及外界感知信息

● AI加速:利用深度学习模型进行图像识别

● 小巧设计: 便于无人机携带, 功率较低

● 生态完善: 基于arm64架构, 交互性强

边缘端设备 Jetson Xavier nx

- 集成强大的边缘端性能
- 对比同类型产品
- ▶ 性能突出
- 性价比高

jetson xavier nx 核心板

参数对比图

参数 型号	NANO (B01新款)	Jetson TX2	Xavier NX
深度学习 加速器			2个 NVDLA 引擎
视觉加速器		-	7路VLIW视觉 处理器
GPU	NVIDIA Maxweil™ 架构,具有128 个 NVIDIA CUDA® 核心	NVIDIA Pascal™ 架构,有256 个 NVIDIA CUDA核心	NVIDIA Volta™架构 搭载 384 NVIDIA® CUDA® cores 和48 Tensor cores
СРИ	四核ARM® Cortex® -AS7 MPCore 处 理器	双核Denver 2 64位CPU 和 四核 ARM A57 Complex	6-core NVIDIA Car- mel ARM®v8.2 64- bit CPU 6 MB L2 + 4 MB L3
显存	4GB 64位LPDDR4 1600 MHz - 25.6 GB/s	8GB 128位 LPDD-R4	8 GB 128-bit LPDDR4x 51.2GB/s