Reinforcement Learning with Multiple Experts: A Bayesian Model Combination Approach

0712214 陳彥儒 0716007 潘冠蓁 0716308 張千祐 0716312 葉佳翰

Outline

- Introduction
- Bayesian Reward Shaping
- Experimental Setting Environment
- Experimental Setting RL algorithm
- Experimental Setting Experts
- Experimental Results
 - Conclusion

Observe state

But, if you have more than 1 experts...

Which one should you trust?

Original reward

If expert's reward looks like...

9

Original reward

But if we change a little bit...

10

$$\Phi(s_0) = 0$$
 $\Phi(s_1) = 1$ $\Phi(s_2) = 2$

$$F(s, a, s') = \gamma \Phi(s') - \Phi(s)$$

This might be the proper definition of

the additional reward from expert.

Algorithm 2 RL with Bayesian Reward Shaping

- 1: initialize $\alpha \in \mathbb{R}^N_+$
- 2: **for** episode = 0, 1 ... M **do**
- 3: $\hat{\Phi} \leftarrow \frac{\sum_{i=1}^{N} \Phi_i \alpha_i}{\sum_{i=1}^{N} \alpha_i}$
- 4: $F(s, a, s') \leftarrow \gamma \hat{\Phi}(s') \hat{\Phi}(s)$
- 5: $(R_t, s_t)_{t=1...T} \leftarrow \text{TrainRL}(F)$
- 6: for all (R_t, s_t) do
- 7: update $\hat{\sigma}^2$ and compute e
- 8: $\alpha \leftarrow PosteriorUpdate(\alpha, e)$

▶ Main loop

▶ Pool experts and compute shaped reward

▷ Perform one episode of training▷ Posterior update

Algorithm 2 RL with Bayesian Reward Shaping

- 1: initialize $\alpha \in \mathbb{R}^N_+$
- 2: for $episode = 0, 1 \dots M$ do
- 3: $\hat{\Phi} \leftarrow \frac{\sum_{i=1}^{N} \Phi_i \alpha_i}{\sum_{i=1}^{N} \alpha_i}$
- 4: $F(s, a, s') \leftarrow \gamma \hat{\Phi}(s') \hat{\Phi}(s)$
- 5: $(R_t, s_t)_{t=1...T} \leftarrow \text{TrainRL}(F)$
- 6: for all (R_t, s_t) do
- 7: update $\hat{\sigma}^2$ and compute e
- 8: $\alpha \leftarrow PosteriorUpdate(\alpha, e)$

⊳ Main loop

▶ Perform one episode of training

▶ Pool experts and compute shaped reward

▷ Posterior update

How can we update the weights for each expert?

Answer: lots of math...

Prodlet Distribution:

They at . Mindel how "properties" vary.

parameter:
$$O(1) = \frac{1}{|V|} = \frac{|V|}{|V|} = \frac{|V$$

And (w) in (ii)
$$\frac{P(w,D,d)}{P(w,D,d)}$$
 $\frac{P(w,D,d)}{P(w,D,d)}$ $\frac{P(w,D,d)}{P(w,D,d)}$ $\frac{P(w,D,d)}{P(w,D)}$ $\frac{P(w,D,d)}{P(w,D)}$ $\frac{P(w,D,d)}{P(w,D)}$ $\frac{P(w,D)}{P(w,D)}$ $\frac{P(w,D,D)}{P(w,D)}$ $\frac{P(w,D,D)}{P(w,D)}$

$$\begin{aligned} & = \int_{\mathbb{R}} \varrho \cdot \underset{\mathbb{R}}{\text{periodic}} & \text{production of waight} \\ & = \int_{\mathbb{R}} \varrho \cdot \underset{\mathbb{R}}{\text{periodic}} & \text{production of waight} \\ & = \int_{\mathbb{R}} \varrho \cdot \underset{\mathbb{R}}{\text{periodic}} & \text{production of waight} \\ & = \int_{\mathbb{R}} \varrho \cdot \underset{\mathbb{R}}{\text{periodic}} & \text{production of waight} \\ & = \int_{\mathbb{R}} \varrho \cdot \underset{\mathbb{R}}{\text{periodic}} & \underset{\mathbb{R}}{\text{production}} & \text{production of waight} \\ & = \int_{\mathbb{R}} \varrho \cdot \underset{\mathbb{R}}{\text{periodic}} & \underset{\mathbb{R}}{\text{production}} & \underset{\mathbb{R}}{\text{periodic}} & \underset{\mathbb{R}}{\text{periodic}} & \text{production of } \\ & = \underset{\mathbb{R}}{\text{periodic}} & \underset{\mathbb{R}}{\text{p$$

If you are interested:

Don't worry. Let's take it easier...

Algorithm 1 PosteriorUpdate(α_t **e**)

- 1: **for** $i = 1, 2 \dots N 1$ **do**
- 2: $m_i \leftarrow \frac{\alpha_{t,i}(e_i + \mathbf{e} \cdot \alpha_t)}{(\mathbf{e} \cdot \alpha_t)(\alpha_{t,0} + 1)}$
- 3: $s_1 \leftarrow \frac{\alpha_{t,1}(\alpha_{t,1}+1)(2e_1+e\cdot\alpha_t)}{(e\cdot\alpha_t)(\alpha_{t,0}+1)(\alpha_{t,0}+2)}$
- 4: $\alpha_{t+1,0} \leftarrow \frac{m_1 s_1}{s_1 m_1^2}$
- 5: **for** $i = 1, 2 \dots \bar{N} 1$ **do**
- 6: $\alpha_{t+1,i} \leftarrow m_i \alpha_{t+1,0}$
- 7: $\alpha_{t+1,N} \leftarrow \alpha_{t+1,0} \sum_{i=1}^{N-1} \alpha_{t+1,i}$
- 8: return α_{t+1}

"e" decide how to update the weights.

 \triangleright Compute α_{t+1}

e_i = P(E[r|s] occurs at expert i)

Gridworld

- Rules
 - Every move : -1 point
 - Invalid move : -1 additional point
- How to end this game
 - Until 200 steps
 - Collect all flags in order

Cartpole

- Goal
 - Keep the cartpole balanced
- When the game will end
 - Until 500 steps
 - | The angle between cart and pole | > 12 deg
 - | The position of the cart | > 2.4 deg

Tabular Q-learning

SARSA

Deep Q-Learning(DQN)

Experts

For Gridworld:

- 1. $\Phi_{good}(s) = optimal value function$
- 2. $\Phi_{bad}(s) = -optimal value function$
- 3. $\Phi_{\text{random}}(s) = U(-20,20)$
- **4.** $\Phi_{\text{zero}}(s) = 0$
- 5. $\Phi_{\text{heuristic}}(s) = -22 * (5 c 0.5) / 5$

Optimal value function:

$$V(x, y, c) = -distance((x, y), next flag)$$

- distance(next flag ,final)

Experts

For CartPole:

- 1. $\Phi_{good}(s) = Q$ Network trained by us
- 2. $\Phi_{bad}(s) = -Q$ Network trained by us

3.
$$\Phi_{\text{random}}(s) = U(-20,20)$$

4.
$$\Phi_{zero}(s) = 0$$

5.
$$\Phi_{guess}(s) = 20 * (1 - |\Theta| / 0.2618)$$

Hyperparameters — Gridworld — DQN / Q-learning / SARSA

Learning rate: 0.001 / 0.4 / 0.36

Gamma: 0.99 / 1 / 1

Epsilon: max(0.98^t, 0.01) / 0.98^t / 0.98^t

Episode: 500 / 1000 / 2000

Independent set: 20 / 20 / 20

Hyperparameters — CartPole — DQN / Q-learning / SARSA

Learning rate: 0.0005 / max(0.5*lrdc^t, 0.01) / max(0.5*lrdc^t, 0.01)

Gamma: 0.99 / 0.95 / 0.95

Epsilon: $max(0.98^t, 0.01) / max(0.98^t, 0.01) / max(0.98^t, 0.01)$

Episode: 2000 / 500 / 2000

Independent set: 20 / 20 / 20

DQN — Gridworld

DQN — Gridworld

DQN — CartPole

DQN — CartPole

Q-learning — Gridworld without min_eps

Q-learning — Gridworld without min_eps

Q-learning — Gridworld with min_eps

Q-learning — Gridworld with min_eps

Q-learning — CartPole with early termination

Q-learning — CartPole with early termination

Q-learning — CartPole without early termination

Q-learning — CartPole without early termination

SARSA — Gridworld without min_eps

SARSA — Gridworld without min_eps

SARSA — Gridworld with min_eps

SARSA — Gridworld with min_eps

SARSA — CartPole with early termination

SARSA — CartPole with early termination

SARSA — CartPole without early termination

SARSA — CartPole without early termination

Conclusion

- Bayesian Reward Shaping <u>isn't</u> always giving us a useful combination of experts for better speeding up the learning process.
- Early termination might influence the weights provided by Bayesian Reward Shaping.
- The lower bound of epsilon (for exploration) is important in both tabular methods.

Any questions?

