Real Analysis Qualifying Exam Spring 1990

In what follows, (X, \mathcal{A}, μ) is a measure space and λ is Lebesgue measure on \mathbb{R} .

- **1.** Suppose $f, g: X \to \mathbb{R}$ are \mathcal{A} -measurable.
 - (a) What does it mean to say that f is A-measurable?
 - (b) Use your definition to prove that f + g is also A-measurable.
- **2.** Suppose that $f: X \to \mathbb{C}$ is \mathcal{A} -measurable, $\mu(X) < \infty, |f(x)| \le 1 \forall x \in X$, and $\int f d\mu = \mu(X)$. Prove that $f(x) = 1\mu$ -a.e.
- **3.** Let $f \in L_1(\mu)$ and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that

$$A \in \mathcal{A} \text{ and } \mu(A) < \delta \Rightarrow \int_A |f| d\mu < \varepsilon.$$

- 4. Apply the Monotone Convergence Theorem to prove Fatou's Lemma.
- **5.** Suppose (X, \mathcal{A}, μ) is σ -finite and $f: X \to [0, \infty]$ is \mathcal{A} -measurable. Let

$$E = \{ (x, t) \in X \times \mathbb{R} : 0 < t < f(x) \}.$$

Prove that $E \in \mathcal{A} \times \mathcal{B}(\mathbb{R})$ and $\mu \times \lambda(E) = \int f d\mu$.

- **6.** Give examples of each of the following:
 - (a) A closed subset F of [0, 1] that contains no rational number and had $\lambda(F) > 0$.
 - (b) A Borel measurable $f:[0,1]\to[0,1]$ such that if $g:[0,1]\to\mathbb{R}$ is Riemann integrable, then

$$\int_0^{-1} |f(x) - g(x)| dx > 0.$$

- 7. Suppose $f:[a,b]\to\mathbb{R}$ is Lebesgue integrable and $\int_a^x f(t)dt=0$ for all $x\in[a,b]$. Prove that f=0 a.e. on [a,b].
- **8.** Let a < b in \mathbb{R} and let $f : [a,b] \to \mathbb{R}$ be increasing on [a,b]. Presuming it is known that f is differentiable a.e., prove that f' is Borel measurable and

$$\int_{a}^{b} f'(x)dx \le f(b) - f(a).$$

[Hint: Extend f and use Fatou's Lemma.]