This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 16 January 2003 (16.01.2003)

PCT

(10) International Publication Number WO 03/005429 A1

(51) International Patent Classification7:

H01L 21/22

(21) International Application Number: PCT/KR02/01238

(22) International Filing Date: 28 June 2002 (28.06.2002)

(25) Filing Language:

2001/38050

English

(26) Publication Language:

English

(30) Priority Data:

29 June 2001 (29.06.2001) KR

(71) Applicant (for all designated States except US): POSTECH FOUNDATION [KR/KR]; San 31, Hyoja-dong, Nam-gu, Pohang, Kyungsangbuk-do 790-784 (KR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RHEE, Shi-Woo

[KR/KR]; Department of Chemical Engineering, Postech, Hyoja-dong, Nam-gu, Pohang, Kyungsangbuk-do 790-784 (KR). **KWAK, Sang-Ki** [KR/KR]; 3-1104 Postech Daehakwon Apt., Hyoja-dong, Nam-gu, Pohang, Kyungsangbuk-do 790-784 (KR).

- (74) Agents: JANG, Seong-Ku et al.; 17th Fl., KEC Building, 275-7 Yangjae-dong, Seocho-ku, Seoul 137-130 (KR).
- (81) Designated States (national): CN, JP, RU, US.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR PREPARING LOW DIELECTRIC FILMS

(57) Abstract: A low dielectric constant hydrogenated silicon-oxycarbide (SiCO:H) film is prepared by conducting chemical vapor deposition using, together with an O₂-containing gas plasma, an organosilicon or organosilicate compound having at least one vinyl or ethinyl group, or a mixture of a saturated organosilicon or organosilicate compound and an unsaturated hydrocarbon.

WO 03/005429 A1

METHOD FOR PREPARING LOW DIELECTRIC FILMS

FIELD OF THE INVENTION

The present invention relates to an improved plasma chemical vapor deposition (CVD) method for preparing a low dielectric constant hydrogenated silicon-oxycarbide (SiCO:H) film.

BACKGROUND OF THE INVENTION

10

35

With ever decreasing size of electronic devices utilized in ULSI (ultra-large-scale integrated) circuits, there has emerged the problem of increased capacitance of intralayers and/or interlayers, causing signal delays.

Therefore, there has been a need to develop a low dielectric constant (k) material having a k-value lower than that of the conventional silicon dioxide (SiO₂) or fluorinated silicon oxide (SiOF).

US Patent No. 6,147,009 discloses a low dielectric constant material produced by reacting the vapor of a precursor containing atoms of Si, C, O and H in a parallel plate plasma enhanced chemical vapor deposition chamber, the precursor being a molecule with a ring structure such as 1,3,5,7-tetramethylcyclotetrasiloxane(TMCTS, C₄H₁₆O₄Si₄),

tetraethylcyclotetrasiloxane($C_8H_{24}O_4Si_4$) or decamethylcyclopentasiloxane($C_{10}H_{30}O_5Si_5$), with or without added oxygen. However, the dielectric constant of the disclosed film is still high, in the range

of 3.3 to 4.0. To further reduce the dielectric constant of the material described in the patent, US Patent No. 6,312,793 proposes a low k material consisting of two or more phases. However, the multi-phase material still has a k-value of more than 3.2.

Accordingly, the present inventors have endeavored to develop a novel material having a dielectric constant lower than those of conventional materials.

SUMMARY OF THE INVENTION

It is, therefore, an object of the present invention to provide a method

for preparing an improved low dielectric constant hydrogenated silicon-oxycarbide (SiCO:H) film using a chemical vapor deposition (CVD) technique.

It is another object of the present invention to provide a SiCOH film 5 having a dielectric constant (k) lower than those of conventional low dielectric materials.

In accordance with one aspect of the present invention, there is provided a method for preparing a low dielectric constant hydrogenated silicon-oxycarbide (SiCO:H) film which comprises conducting chemical vapor deposition using, together with an O₂-containing gas plasma, an organosilicon or organosilicate compound having at least one vinyl or ethinyl group, or a mixture of a saturated organosilicon or organosilicate compound and an unsaturated hydrocarbon.

In accordance with another aspect of the present invention, there is provided a low dielectric constant SiCOH thin film having a dielectric constant (k) of 2.6 or below, prepared by said method.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and features of the present invention will become apparent from the following description thereof, when taken in conjunction with the accompanying drawings which respectively show:

FIGS. 1a and 1b: schematic diagrams of the plasma reactor used in forming a thin film in accordance with the present invention;

- FIG. 2: variations in carbon contents of the film obtained in Example 1 of the present invention with O₂/VTMS flow ratio, respectively;
 - FIG. 3: variations in dielectric constants of the films obtained in Example 1 and Comparative Example 1 of the present invention with O₂/VTMS and O₂/4MS flow ratio, respectively;
- FIGS. 4 and 5: changes in the dielectric constant of the film obtained in Example 1 as function of annealing temperature and annealing time, respectively;

FIGS. 6 and 7: variations in carbon contents and dielectric constants of the film obtained in Example 2 of the present invention with O₂/(4MS+C₂F₄) 35 flow ratio, respectively;

FIGS. 8 and 9: changes in the dielectric constant of the film obtained in

- Example 2 as function of annealing temperature and annealing time, respectively;
- FIG. 10: variations in carbon contents of the film obtained in Example 3 of the present invention with O₂/TVTMCTSO flow ratio, respectively;
- FIG. 11: variations in dielectric constants of the films obtained in Example 3 and Comparative Example 2 of the present invention with O₂/TVTMCTSO and O₂/TMCTSO flow ratio, respectively;
- FIGS. 12 and 13: changes in the dielectric constant of the film obtained in Example 3 as function of annealing temperature and annealing time, 10 respectively;
 - FIGS. 14 and 15: variations in carbon contents and dielectric constants of the film obtained in Example 4 of the present invention with O₂/(TMCTSO+C₂H₄) flow ratio, respectively;
- FIGS. 16 and 17: changes in the dielectric constant of the film obtained 15 in Example 4 as function of annealing temperature and annealing time, respectively;
 - FIGS. 18 and 19: variations in carbon contents and dielectric constants of the film obtained in Example 5 of the present invention with O₂/DADMS flow ratio, respectively;
- FIGS. 20 and 21: changes in the dielectric constant of the film obtained in Example 5 as function of annealing temperature and annealing time, respectively;
- FIGS. 22 and 23: variations in carbon contents and dielectric constants of the film obtained in Example 6 of the present invention with O₂/DVTMDSO flow ratio, respectively;
 - FIGS. 24 and 25: changes in the dielectric constant of the film obtained in Example 6 as function of annealing temperature and annealing time, respectively;
- FIGS. 26 and 27: variations in carbon contents and dielectric constants of the film obtained in Example 7 of the present invention with O₂/VTMOS flow ratio, respectively;
 - FIGS. 28 and 29: changes in the dielectric constant of the film obtained in Example 7 as function of annealing temperature and annealing time, respectively;
- FIGS. 30 and 31: variations in carbon contents and dielectric constants of the film obtained in Example 8 of the present invention with O₂/ETMS flow

ratio, respectively;

FIGS. 32 and 33: changes in the dielectric constant of the film obtained in Example 8 as function of annealing temperature and annealing time, respectively;

FIGS. 34 and 35: variations in carbon contents and dielectric constants of the films obtained in Example 9 of the present invention with O₂/(HMDSO+C₂H₄) flow ratio, respectively; and

FIGS. 36 and 37: changes in the dielectric constant of the film obtained in Example 9 as function of annealing temperature and annealing time, 10 respectively.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method for preparing a low dielectric constant hydrogenated silicon-oxycarbide (SiCO:H) film by way of conducting chemical vapor deposition using, together with an O₂-containing gas plasma, an organosilicon or organosilicate compound having at least one vinyl or ethinyl group, or a mixture of a saturated organosilicon or organosilicate compound and an unsaturated hydrocarbon.

In accordance with the present invention, the process for forming a low dielectric constant SiCOH film may be conducted using a plasma CVD apparatus, e.g., a remote plasma CVD or a direct plasma CVD apparatus.

The remote plasma CVD apparatus shown in FIG. 1a comprises a quartz tube(6), an antenna(9), a matching box(5), a high-frequency electric power source(10), a mass flow controller(7) for feeding a silicon precursor, a precursor container(2), and a mass flow controller(8) for feeding a reactive gas. The antenna is wound around the outer periphery of the quartz tube(6), to thereby connect the antenna(9) and the matching box(5), which is connected to the high-frequency electric power source(10). The quartz tube(6) is connected to the mass flow controller(8) for feeding an O₂-containing gas via a tube. In the remote plasma CVD apparatus, the O₂-containing gas and the silicon precursor are fed to the matching box(5) separately, the precursor being led through a diffusion ring(3). Further, in the direct plasma CVD apparatus shown in FIG. 1b, the silicon precursor fed from 35 the precursor container(2) and the O₂-containing gas fed from a reactive gas container(1) are mixed, and then supplied to the matching box(5).

In accordance with a preferred embodiment of the present invention, there is provided a method for preparing a low dielectric constant SiCOH material, which comprises conducting chemical vapor deposition using an unsaturated organosilicon or organosilicate compound having at least one vinyl or ethinyl group and an O₂-containing gas plasma.

Representative examples of the unsaturated organosilicon or organosilicate compound having at least one vinyl or ethinyl group include vinyltrimethylsilane, vinyltriethylsilane, vinyltriethoxylsilane, vinyltriethoxylsilane, 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane,

1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane,
1,3-divinyltetramethyldisiloxane, hexavinyldisiloxane, allyldimethylsilane, allyldimethoxysilane, ethinyltrimethylsilane, ethinyltriethylsilane and a mixture thereof.

The unsaturated organosilicon or organosilicate compound may be generated in situ, using an organosilicon or organosilicate having one or more halogen substituents.

In another preferred embodiment of the present invention, there is provided a method for preparing a low dielectric constant SiCOH material, which comprises conducting chemical vapor deposition using a mixture of a saturated organosilicon or organosilicate compound and an unsaturated hydrocarbon with an O₂-containing gas plasma. The mixing ratio of the saturated organosilicon or organosilicate compound and the unsaturated hydrocarbon is preferably in the range from 1:0.1 to 1:10. If the mixing ratio is less than 0.1, the dielectric constant of the film becomes too high, while the physical properties of the film become unsatisfactory if the ratio is above 10.

In the above embodiment, the saturated organosilicon or organosilicate compound, or the unsaturated hydrocarbon may have one or more halogen substituents.

Representative examples of the saturated organosilicon or organosilicate compound include trimethylsilane, triethylsilane, trimethoxysilane, triethoxysilane, tetramethylsilane, tetramethylsilane, tetramethoxysilane, tetramethoxysilane, tetramethylcyclotetrasiloxane, tetramethylcyclotetrasiloxane, tetramethylcyclotetrasiloxane, octamethylcyclotetrasiloxane, hexamethyldisiloxane, bistrimethylsilylmethane and a mixture thereof.

Representative examples of the unsaturated hydrocarbon are H₂C=CH₂, F₂C=CF₂, H₂C=CF₂, HFC=CFH, F₂C=CF₂, H₂C=C=CF₂, HFC=C=CFH,

HC CH, FC CH, FC CF, Cl₂C=CCl₂, H₂C=CCl₂, HClC=CClH, Cl₂C=C=CCl₂, H₂C=C=CCl₂, HClC=C=CClH, ClC CH, ClC CCl, Br₂C=CBr₂, H₂C=CBr₂, HBrC=CBrH, Br₂C=C=CBr₂, H₂C=C=CBr₂, HBrC=C=CI₂, H₂C=CI₂, HIC=CIH, FC CBr, I₂C=CI₂, H₂C=CI₂, HIC=CIH, IC CH and IC CI; and preferred is H₂C=CH₂ or F₂C=CF₂.

The O₂-containing gas which may be used in the present invention is selected from the group consisting of O₂, N₂O, O₃, H₂O₂, CO₂, H₂O and a mixture thereof.

The method of the present invention may further comprise the step of annealing the deposited film, which may be carried out at a temperature ranging from 100 to 800°C for a period ranging from 0.5 to 8 hrs, preferably at 450°C for 1 hr, to obtain a thermally stable low dielectric constant SiCOH film.

The annealing step may also include a rapid-thermal processing, which may be conducted at a temperature ranging from 100 to 900°C for about 1 minute and a spike-heating step performed for 10 seconds.

Such low dielectric constant SiCOH material prepared in accordance with the method of the present invention has a dielectric constant (k) of 2.8 or below; and, further, the thermally stable SiCOH film formed after annealing 20 has an exceptionally low dielectric constant (k) in the range of 1.6 to 2.6, the dielectric constant (k) being controllable by adjusting the process variables.

The present invention is further described and illustrated in Examples provided below, which are, however, not intended to limit the scope of the present invention.

25

Example 1

A SiCOH film was deposited on a Pt substrate using vinyltrimethylsilane(VTMS, SiC₅H₁₂) and O₂ in the direct plasma apparatus shown in FIG. 1b. The flow ratio of O₂/VTMS was varied in the range of 1 to 13.3 during the film deposition. The pressure and temperature in the reactor were 1mmHg and 30°C, respectively, and the applied plasma power, 60W. The film so deposited was annealed under an Ar atmosphere at a temperature in the range of 300 to 500°C, to obtain a low dielectric constant film.

As shown in FIG. 2, the respective carbon contents of the deposited film and the film annealed at 450°C become lower with the increasing flow

ratio of O₂/VTMS. FIG. 3 exhibits that the annealed film at 450°C has a dielectric constant ranging from 1.8 to 2.4, while the deposited film without the annealing has a dielectric constant ranging from 2.3 to 2.8. FIGS. 4 and 5 show the changes in the dielectric constant of the film obtained in Example 1 with the changes in the annealing temperature and annealing time at the O₂/VTMS flow ratio of 2, respectively.

Comparative Example 1

The procedure of Example 1 was repeated using tetramethylsilane(4MS, 10 SiC₄H₁₂) in place of VTMS, to obtain a deposited film. As shown in FIG. 3, the film thus obtained has a dielectric constant ranging from 3.0 to 3.5, which is higher than that of the deposited film obtained in Example 1.

Example 2

Except that a mixture of tetramethylsilane(4MS, SiC₄H₁₂) and C₂F₄ (1:1) was used instead of VTMS, the procedure of Example 1 was repeated to obtain a deposited film, which was subsequently annealed.

FIG. 6 and FIG. 7 show the carbon contents and dielectric constants of the deposited film and the annealed film, respectively. The deposited film 20 has a dielectric constant of 3.0 or below, and the film annealed at 450°C has a dielectric constant of 2.5 or below. FIG. 8 and FIG. 9 show the effects of the annealing temperature (annealing time=0.5hr) and annealing time (annealing temperature=400°C) at the O₂/(4MS+C₂F₄) flow ratio of 4 on the dielectric constant of the film, respectively. The film annealed at 300 to 500°C for 0.5 hr has a dielectric constant of 2.75 or below.

Example 3

The procedure of Example 1 was repeated using tetravinyltetramethylcyclotetrasiloxane(TVTMCTSO, Si₄O₄C₁₂H₂₄) in place of VTMS, to obtain a deposited film, which was subsequently annealed.

FIG. 10 and FIG. 11 show the carbon contents and dielectric constants of the deposited film and the annealed film, respectively. The deposited film has a dielectric constant of 2.4 or below, and the film annealed at 450°C, a dielectric constant of 2.2 or below. FIG. 12 and FIG. 13 show the effects of the annealing temperature (annealing time=0.5hr) and annealing time (annealing temperature=450°C) at the O₂/TVTMCTSO flow ratio of 4 on the

dielectric constant of the film, respectively. The film annealed at 300 to 500°C for 0.5 hr has a dielectric constant of 2.1 or below.

Comparative Example 2

The procedure of Example 1 was repeated using tetramethylcyclotetrasiloxane(TMCTSO, Si₄O₄C₄H₁₆) in place of VTMS, to obtain a deposited film. As shown in FIG. 11, the film thus obtained had a dielectric constant ranging from 2.5 to 3.3, which is higher than that of the deposited film obtained in Example 3.

10

5

Example 4

Except that a mixture of tetramethylcyclotetrasiloxane (TMCTSO, Si₄O₄C₄H₁₆) and C₂H₄ (1:1) was used instead of VTMS, the procedure of Example 1 was repeated to obtain a deposited film, which was subsequently annealed.

FIG. 14 and FIG. 15 depict the carbon contents and dielectric constants of the deposited film and the annealed film, respectively. The deposited film has a dielectric constant of 2.3 or below, and the film annealed at 450°C has a dielectric constant of 2.2 or below. FIG. 16 and FIG. 17 show the effects of the annealing temperature (annealing time=0.5hr) and annealing time (annealing temperature=400°C) at the (TMCTSO+C₂H₄) flow ratio of 2 on the dielectric constant of the film, respectively. The film annealed at 300 to 500°C for 0.5 hr has a dielectric constant of 2.05 or below.

25 Example 5

The procedure of Example 1 was repeated using diallyldimethylsilane (DADMS, SiC₈H₁₆) in place of VTMS, to obtain a deposited film, which was subsequently annealed.

FIG. 18 and FIG. 19 show the carbon contents and dielectric constants of the deposited film and the annealed film, respectively. The deposited film has a dielectric constant of 2.8 or below, and the film annealed at 450°C, a dielectric constant of 2.4 or below. FIG. 20 and FIG. 21 show the effects of the annealing temperature (annealing time=0.5hr) and annealing time (annealing temperature=450°C) at the O₂/DADMS flow ratio of 4 on the dielectric constant of the film, respectively. The film annealed at 300 to 500°C for 0.5 hr has a dielectric constant of 2.35 or below.

Example 6

Except that 1,3-divinyltetramethyldisiloxane(DVTMDSO, Si₂OC₈H₁₈) was used in place of VTMS, the procedure of Example 1 was repeated to obtain a deposited film, which was subsequently annealed.

FIG. 22 and FIG. 23 show the carbon contents and dielectric constants of the deposited film and the annealed film, respectively. The deposited film has a dielectric constant of 2.9 or below, and the film annealed at 450°C has a dielectric constant of 2.4 or below. FIG. 24 and FIG. 25 show the effects of the annealing temperature (annealing time=0.5hr) and annealing time (annealing temperature=500°C) at the O₂/DVTMDSO flow ratio of 2 on the dielectric constant of the film, respectively. The film annealed at 300 to 500°C for 0.5 hr has a dielectric constant of 2.15 or below.

15 Example 7

The procedure of Example 1 was repeated using vinyltrimethoxysilane (VTMOS, SiO₃C₅H₁₂) in place of VTMS, to obtain a deposited film, which was subsequently annealed.

FIG. 26 and FIG. 27 show the carbon contents and dielectric constants of the deposited film and the annealed film, respectively. The deposited film has a dielectric constant in the range of 2.2 to 2.75, and the film annealed at 450°C has a dielectric constant in the range of 1.9 to 2.55. FIG. 28 and FIG. 29 show the effects of the annealing temperature (annealing time=0.5hr) and annealing time (annealing temperature=450°C) at the O₂/VTMOS flow ratio of 2 on the dielectric constant of the film, respectively. The film annealed at 300 to 500°C for 0.5 hr has a dielectric constant of 2.4 or below.

Example 8

Except that ethinyltrimethylsilane (ETMS, SiC₅H₁₀) was used in place of VTMS, the procedure of Example 1 was repeated to obtain a deposited film, which was subsequently annealed.

FIG. 30 and FIG. 31 show the carbon contents and dielectric constants of the deposited film and the annealed film, respectively. The deposited film has a dielectric constant of 2.65 or below, and the film annealed at 450°C, a dielectric constant of 2.35 or below. FIG. 32 and FIG. 33 show

the effects of the annealing temperature (annealing time=0.5hr) and annealing time (annealing temperature=350°C) at the O₂/ETMS flow ratio of 4 on the dielectric constant of the film, respectively. The film annealed at 300 to 500°C for 0.5 hr has a dielectric constant of 2.35 or below.

5

Example 9

The procedure of Example 1 was repeated using a mixture of hexamethyldisiloxane (HMDSO, $Si_2OC_6H_{18}$) and C_2H_4 (1:2) in place of VTMS, to obtain a deposited film, which was subsequently annealed.

FIG. 34 and FIG. 35 show the carbon contents and dielectric constants of the deposited film and the annealed film, respectively. The deposited film has a dielectric constant of 3.0 or below, and the film annealed at 450°C, a dielectric constant of 2.05 or below. FIG. 36 and FIG. 37 show the effects of the annealing temperature (annealing time=0.5hr) and annealing time (annealing temperature=450°C) at the O₂/(HMDSO+C₂H₄) flow ratio of 4 on the dielectric constant of the film, respectively. The film annealed at 300 to 500°C for 0.5 hr has a dielectric constant ranging from 1.7 to 1.9.

As can be seen from the above results, the low dielectric constant SiCOH film prepared by conducting CVD using an O₂-containing gas plasma and an unsaturated organosilicon or organosilicate compound, or a mixture of a saturated organosilicon or organosilicate compound and an unsaturated hydrocarbon in accordance with the present invention has a dielectric constant of 2.6 or below, which is exceptionally lower than conventional low k-materials.

While the subject invention have been described and illustrated with respect to the preferred embodiments only, various changes and modifications may be made therein without departing from the essential concept of the present invention which should be limited only by the scope of the appended claims.

What is claimed is:

- 1. A method for preparing a low dielectric constant hydrogenated silicon-oxycarbide (SiCO:H) film which comprises conducting chemical vapor deposition using, together with an O₂-containing gas plasma, an organosilicon or organosilicate compound having at least one vinyl or ethinyl group, or a mixture of a saturated organosilicon or organosilicate compound and an unsaturated hydrocarbon.
- 10 2. The method of claim 1, wherein the mixture of a saturated organosilicon or organosilicate compound and an unsaturated hydrocarbon has a mixing ratio ranging from 1:0.1 to 1:10.
- 3. The method of claim 1, wherein the organosilicon or organosilicate compound having at least one vinyl or ethinyl group is selected from the group consisting of vinyltrimethylsilane, vinyltriethylsilane, vinyltriethoxylsilane, vinyltriethoxylsilane, 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane,
- 1,3-divinyltetramethyldisiloxane, hexavinyldisiloxane, allyldimethylsilane, 20 allyldimethoxysilane, ethinyltrimethylsilane, ethinyltriethylsilane and a mixture thereof.
- 4. The method of claim 3, wherein the organosilicon or organosilicate compound having at least one vinyl or ethinyl group is selected from the group of vinyltrimethylsilane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane, allyldimethylsilane, 1,3-divinyltetramethyldisiloxane, vinyltrimethoxylsilane and ethinyltrimethylsilane.
- 30 5. The method of claim 1, wherein the saturated organosilicon or organosilicate compound is selected from the group consisting of trimethylsilane, triethylsilane, trimethoxysilane, triethoxysilane, tetramethylsilane, tetramethylsilane, tetramethoxysilane, tetramethoxysilane, hexamethylcyclotrisiloxane,

 35 tetraethylcyclotetrasiloxane.
- 35 tetraethylcyclotetrasiloxane, octamethylcyclotetrasiloxane, hexamethyldisiloxane, bistrimethylsilylmethane, vinyltrimethylsilane,

vinyltriethylsilane, vinyltrimethoxylsilane, vinyltriethoxylsilane, 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane,

- 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane,
- 1,3-divinyltetramethyldisiloxane, hexavinyldisiloxane, allyldimethylsilane, 5 allyldimethoxysilane, ethinyltrimethylsilane, ethinyltriethylsilane and a mixture thereof.
- 6. The method of claim 5, wherein the saturated organosilicon or organosilicate compound is selected from the group consisting of tetramethylsilane, hexamethyldisiloxane and tetramethylcyclotetrasiloxane.
- 7. The method of claim 1, wherein the unsaturated hydrocarbon is selected from the group consisting of H₂C=CH₂, F₂C=CF₂, H₂C=CF₂, HFC=CFH, F₂C=C=CF₂, H₂C=C=CF₂, HFC=C=CFH, HC CH, FC CH, FC CF, 15 Cl₂C=CCl₂, H₂C=CCl₂, HClC=CClH, Cl₂C=CCl₂, H₂C=C=CCl₂, HClC=CClH, ClC CCl, Br₂C=CBr₂, H₂C=CBr₂, HBrC=CBrH, Br₂C=C=CBr₂, H₂C=CBr₂, HBrC=CBrH, BrC CH, BrC CBr, I₂C=Cl₂, H₂C=Cl₂, HIC=CIH, I₂C=C=Cl₂, H₂C=C=CI₂, HIC=C=CIH, ICC CH and IC CI.

20

- 8. The method of claim 7, wherein the unsaturated hydrocarbon is $H_2C=CH_2$ or $F_2C=CF_2$.
- 9. The method of claim 1, wherein the O₂-containing gas is selected from 25 the group consisting of O₂, N₂O, O₃, H₂O₂, CO₂, H₂O and a mixture thereof.
 - 10. The method of claim 1 further comprising the step of annealing the deposited film at a temperature ranging from 100 to 500°C for 0.5 to 8 hrs.
- 30 11. A low dielectric constant hydrogenated silicon-oxycarbide (SiCO:H) film prepared by the method of claim 1.

1/20

FIG. 1a

2/20

FIG. 1b

3/20

FIG. 2

FIG. 3

4/20

FIG. 4

FIG. 5

5/20

FIG. 6

FIG. 7

6/20

FIG. 8

FIG. 9

7/20

FIG. 10

FIG. 11

8/20

FIG. 12

FIG. 13

9/20

FIG. 14

FIG. 15

10/20

FIG. 16

FIG. 17

11/20

FIG. 18

FIG. 19

12/20

FIG. 20

FIG. 21

13/20

14/20

FIG. 24

FIG. 25

15/20

FIG. 26

FIG. 27

16/20

FIG. 28

FIG. 29

17/20

FIG. 30

18/20

FIG. 32

FIG. 33

19/20

FIG. 34

FIG. 35

20/20

FIG. 36

FIG. 37

INTERNATIONAL SEARCH REPORT

International application No. PCT/KR02/01238

A. C	LASSIFICATION OF SUBJECT MATTER		PCT/KR02/01238
l n	PC7 H01L 21/22		
According	to International Patents Cl. 15		
B	to International Patent Classification (IPC) or to	both national classification and IPC	·
IPC7 C22	documentation searched (classification system fol C 16/32, C23C 16/30, R32R 3/00	llowed by classification symbols	
1 -0,02	C 16/32, C23C 16/30, B32B 3/00	- Julions)	
Documenta	tion searched other d		
	tion searched other than minimum documentation	to the extent that such documents are in	icluded in the fall
1		,	an die neids searched
Electronic	oto kanana in a		
USPAT, F	ata base consulted during the intertnational search	(name of data base and where practice	I.I.
, , ,	,-,1		ote, search terms used)
0 70			
C. DOCU	MENTS CONSIDERED TO BE RELEVAN	VT	
Category*			
V	Citation of document, with indication, wh	ere appropriate, of the relevant passages	Relevant to claim No
Y	EP, A, 0 960 958 (DOW COPNING COPP)		- Colevant to claim No
	01 December 1999 See page 2, line 28 - line 35, page 2, line 48 - page, 3, line 1		1, 3, 4, 5, 6, 11
	mie 33, page 2, line 48 - page, 3, line 1		
Y	WO A 90/41/00 (17		
	WO, A, 99/41423 (APPLIED MATERIALS INC.) 10 February 1999		124
	See page 4, line 15 - line 25 page 7 line 15		1, 3, 4, 5, 6, 11
	page 9, line 20 - page 10, line 20	go o, line 24,	
1	•		·
Y	US, A, 6 147 009 (IBM)		
	14 November 2000		1
	See the whole document		
v	:	·	
Y	US A, 6 077 574 (NEC CORP.) 20 June 2000		1
	See the whole document		
1		•	
ſ			
Further	Milmont II		
	ocuments are listed in the continuation of Box C.	See patent family anne	ay .
ancament de	gories of cited documents:		i i
to be of partic	fining the general state of the art which is not considere cular relevence	ed date and not in conflict with the	ne international filing date or priority ne application but cited to understand
carner applic	ation or patent but published on or after the internation	the principle or theory and	application but cited to understand
document wh	ich may throw doubte and the	considered novel or cannot be	the claimed invention cannot be
cited to estab	lish the publication date of citation or other a (as specified)	Step when the document is a	considered to involve an inventive
document refe	erring to an oral disclosure, use, exhibition or other	considered to involve an involve	the claimed invention cannot be
means document nub	lished mineral at the same controllion or other	combined with one or more attach	we sup when the document is
-	lished prior to the international filing date but later ty date claimed	being obvious to a person skilled i document member of the same pat	n the art
of the actual o	completion of the international search		1
29 AT	IGUST 2002 (20 02 02 02)	Date of mailing of the international se	arch report
	JGUST 2002 (29.08.2002)	29 AUGUST 2002 (29.08.	2000)
and mailing	address of the ISA/KR	Authorized officer	2002)
	n Intellectual Property Office unsan-dong, Seo-gu, Daejeon 302-701, lic of Korea	VIIIVEI	
-	110104	SEO, Tae Jun	
nile No. 82-	42-472-7140	Telephone No. 92 42	
JT/ISA/210 ((second sheet) (July 1998)	Telephone No. 82-42-481-5732	(L) (e)