Redes Neurais e Deep Learning

APRENDIZADO DE MÁQUINA (II)

Zenilton K. G. Patrocínio Jr zenilton@pucminas.br

Aprendizado de Máquina Supervisionado

Inicia-se com um com conjunto de "observações" $\mathcal X$ e um conjunto de "alvos" ou "rótulos" $\mathcal Y$

O interesse está em conhecer como as observações determinam os alvos

Aprendizado de Máquina Supervisionado

Inicia-se com um com conjunto de "observações" $\mathcal X$ e um conjunto de "alvos" ou "rótulos" $\mathcal Y$

O interesse está em conhecer como as observações determinam os alvos

Entrada: vários pares (x_i, y_i) em que $x_i \in \mathcal{X}$ e $y_i \in \mathcal{Y}$

Saída: Dada uma nova observação x, deseja-se predizer o rótulo

correspondente *y*

Aprendizado de Máquina Supervisionado

Inicia-se com um com conjunto de "observações" $\mathcal X$ e um conjunto de "alvos" ou "rótulos" $\mathcal Y$

O interesse está em conhecer como as observações determinam os alvos

Entrada: vários pares (x_i, y_i) em que $x_i \in \mathcal{X}$ e $y_i \in \mathcal{Y}$

Saída: Dada uma nova observação x, deseja-se predizer o rótulo

correspondente *y*

Tipicamente observações são "baratas" enquanto alvos são "caros" e nãoobserváveis.

⇒ Dessa forma, predições corretas apresentam valor econômico

Observação – Espaço X:

Alvo – Espaço y:

Imagens

Classe da imagem: "gato", "cachorro", ...

Observação – Espaço X:

Alvo – Espaço y:

Imagens

Classe da imagem: "gato", "cachorro", ...

Imagens

Rótulo descritivo: "crianças jogando futebol"

Observação – Espaço X:

Alvo – Espaço y:

Imagens

Classe da imagem: "gato", "cachorro", ...

Imagens

Rótulo descritivo: "crianças jogando futebol"

Imagens de Faces

Identidade do usuário

Observação – Espaço X:

Alvo – Espaço y:

Imagens

Classe da imagem: "gato", "cachorro", ...

Imagens

Rótulo descritivo: "crianças jogando futebol"

Imagens de Faces

Identidade do usuário

Imagens Naturais

Imagens estilizadas (p.ex. desenhos animados)

Observação – Espaço X:

Alvo – Espaço y:

Imagens Classe da imagem: "gato", "cachorro", ...

Imagens Rótulo descritivo: "crianças jogando futebol"

Imagens de Faces Identidade do usuário

Imagens Naturais Imagens estilizadas (p.ex. desenhos animados)

Sons da Fala Humana Transcrição textual da fala

Observação – Espaço X:

Alvo – Espaço y:

Imagens Classe da imagem: "gato", "cachorro", ...

Imagens Rótulo descritivo: "crianças jogando futebol"

Imagens de Faces Identidade do usuário

Imagens Naturais Imagens estilizadas (p.ex. desenhos animados)

Sons da Fala Humana Transcrição textual da fala

Sentença em inglês Tradução para o português

Observação – Espaço \mathcal{X} : Alvo – Espaço \mathcal{Y} :

Imagens Classe da imagem: "gato", "cachorro", ...

Imagens Rótulo descritivo: "crianças jogando futebol"

Imagens de Faces Identidade do usuário

Imagens Naturais Imagens estilizadas (p.ex. desenhos animados)

Sons da Fala Humana Transcrição textual da fala

Sentença em inglês Tradução para o português

Dados Demográficos: idade, renda Outras informações: nível educacional, emprego

Observação – Espaço \mathcal{X} : Alvo – Espaço \mathcal{Y} :

Imagens Classe da imagem: "gato", "cachorro", ...

Imagens Rótulo descritivo: "crianças jogando futebol"

Imagens de Faces Identidade do usuário

Imagens Naturais Imagens estilizadas (p.ex. desenhos animados)

Sons da Fala Humana Transcrição textual da fala

Sentença em inglês Tradução para o português

Dados Demográficos: idade, renda Outras informações: nível educacional, emprego

Dados sobre dieta e estilo de vida Risco de doenças cardíacas

Assume-se que x e y são obtidas a partir de **amostras de variáveis randômicas** X e Y

Estas variáveis randômicas possuem uma distribuição conjunta P(X,Y)

Assume-se que x e y são obtidas a partir de **amostras de variáveis randômicas** X e Y Estas variáveis randômicas possuem uma **distribuição conjunta** P(X,Y)

Para predição, deseja-se conhecer pelo menos a distribuição condicional P(Y|X), de forma que se possa determinar a distribuição dos alvos y dada uma observação x

Assume-se que x e y são obtidas a partir de **amostras de variáveis randômicas** X e Y Estas variáveis randômicas possuem uma **distribuição conjunta** P(X,Y)

Para predição, deseja-se conhecer pelo menos a distribuição condicional P(Y|X), de forma que se possa determinar a distribuição dos alvos y dada uma observação x

Uma aproximação $\widehat{P}(Y|X)$ para a verdadeira distribuição P(Y|X) é denominada **modelo**

Assume-se que x e y são obtidas a partir de **amostras de variáveis randômicas** X e Y Estas variáveis randômicas possuem uma **distribuição conjunta** P(X,Y)

Para predição, deseja-se conhecer pelo menos a distribuição condicional P(Y|X), de forma que se possa determinar a distribuição dos alvos y dada uma observação x

Uma aproximação $\hat{P}(Y|X)$ para a verdadeira distribuição P(Y|X) é denominada **modelo**

O objetivo do aprendizado estatístico é construir modelos que sejam:

- 1. Computáveis (e talvez, simples e eficientes); e
- 2. Capazes de fornecer predições próximas daquelas feitas pela verdadeira distribuição

Função de Predição

Pode-se simplificar a tarefa de modelagem por meio de uma suposição "forte" sobre o modelo $\hat{P}(X,Y)$ de que y=f(x), isto é, y assume um único valor para um dado x

Exemplos:

- Regressão Linear: y = f(x) em que f é uma função linear e y é um valor real, $y \in \mathbb{R}$
- Classificador (SVM, Floresta Randômica, etc.): y = f(x) representa a classe predita de x e y é o número/rótulo da classe, $y \in \{1, ..., k\}$

Abordagem Paramétrica

 $f(\mathbf{x}, \mathbf{W})$

[32x32x3] vetor de números (3072 no total)

Abordagem Paramétrica

[32x32x3] vetor de números (3072 no total)

Abordagem Paramétrica

[32x32x3] vetor de números (3072 no total)

$$f(x, W) = Wx$$

[32x32x3] vetor de números (3072 no total)

$$f(x, W) = Wx$$
 3072x1

[32x32x3] vetor de números (3072 no total)

[32x32x3] vetor de números (3072 no total)

[32x32x3] vetor de números (3072 no total)

Exemplo com 4 pixels de uma imagem e 3 classes (gato / cão / navio)

Exemplo com 4 pixels de uma imagem e 3 classes (gato / cão / navio)

Exemplo com 4 pixels de uma imagem e 3 classes (gato / cão / navio)

score - gato

score - cão

score - navio

Exemplo com 4 pixels de uma imagem e 3 classes (gato / cão / navio)

Exemplo com 4 pixels de uma imagem e 3 classes (gato / cão / navio)

Exemplo de "scores" de classe para 3 imagens com uma matriz W aleatória

$$f(x_i, W, b) = Wx_i + b$$

avião	-3 , 45	-0,51	3,42
carro	-8,87	6,04	4,64
pássaro	0,09	5,31	2,65
gato	2,9	-4,22	5,1
corsa	4,48	-4 , 19	2,64
cão	8,02	3,58	5 , 55
rã	3,78	4,49	-4,34
cavalo	1,06	-4,37	-1 , 5
navio	-0,36	-2,09	-4 , 79
caminhão	-0,72	-2 , 93	6,14

Exemplo de "scores" de classe para 3 imagens com uma matriz W aleatória

$$f(x_i, W, b) = Wx_i + b$$

avião	-3 , 45
carro	-8 , 87
pássaro	0,09
gato	2,9
corsa	4,48
cão	8 , 02
rã	3,78
cavalo	1,06
navio	-0,36
caminhão	-0,72

Exemplo de "scores" de classe para 3 imagens com uma matriz W aleatória

$$f(x_i, W, b) = Wx_i + b$$

avião	-3,45
carro	-8 , 87
pássaro	0,09
gato	2,9
corsa	4,48
cão	8 , 02
rã	3,78
cavalo	1,06
navio	-0,36
caminhão	-0,72

-0,51
6,04
5 , 31
-4 , 22
-4, 19
3,58
4,49
-4 , 37
-2,09
-2 , 93

Deve-se encontrar com o treinamento um conjunto de parâmetros ou pesos que consiga obter os melhores resultados de predição