6 Состоятельность. Асимптотическая нормальность

На семинарах вы уже освоили такие свойства оценок, как состоятельность и асимптотическая нормальность, и научились их доказывать. Сформулируем еще некоторые полезные результаты в этой области (для более глубокого ознакомления с темой рекомендруем книгу М.Б. Лагутина "Наглядная математическая статистика").

Для начала напомним (или даже введем) некоторые понятия:

Определение 1. Выборочной медианой МЕД называют оценку

MED =
$$\begin{cases} X_{(k+1)}, & n = 2k+1, \\ \frac{X_{(k)} + X_{(k+1)}}{2}, & n = 2k, \end{cases}$$

усеченным среднем \overline{X}_{α}

$$\overline{X}_{\alpha} = \frac{1}{n-2k} (X_{(k+1)} + \dots + X_{(n-k)}), \quad k = [\alpha n].$$

Выборочная медиана оценивает теоретическую медиану $x_{1/2} = F^{-1}(1/2)$. Усеченное среднее как правило используют для оценки центра симметрии у симметричных распределений.

Теорема 1. Пусть распределение F таково, что $F(x_{1/2} + \varepsilon) > 1/2$ при всех $\varepsilon > 0$. Тогда MED будет состоятельной оценкой $x_{1/2}$.

Теорема 2. Пусть X_1, \ldots, X_n выборка из распределения с плотностью f, причем f(x) > 0 в некоторой окрестности $x_{1/2}$; здесь $x_{1/2}$ – медиана распеделения с.в. X_1 . Тогда выборочная медиана МЕD является асимтотически нормальной оценкой $x_{1/2}$:

$$\sqrt{n}(\text{MED} - x_{1/2}) \xrightarrow{d} Z \sim \mathcal{N}\left(0, \frac{1}{4f^2(x_{1/2})}\right), n \to \infty.$$

Теорема 3. Пусть $X_1, \ldots, X_n \sim F(x-\theta)$, где F обладает следующими свойствами: найдется такое $0 < c \le +\infty$, что F(-c) = 0, F(c) = 1 и на (-c, c) F(x) имеет четную, непрерывную и положительную плотность f(x).

Тогда усеченное среднее \overline{X}_{α} при $0<\alpha<1/2$ является асимптотически нормальной оценкой θ :

$$\sqrt{n}(\overline{X}_{\alpha} - \theta) \xrightarrow{d} Z \sim \mathcal{N}\left(0, \sigma_{\alpha}^{2}\right), \ n \to \infty, \quad \sigma_{\alpha}^{2} = \frac{2}{(1 - 2\alpha)^{2}} \left[\int_{0}^{x_{1-\alpha}} t^{2} f(t) \, dt + \alpha x_{1-\alpha}^{2} \right],$$

 $rde \ x_{\gamma}$ – $pewenue \ ypashenus \ F(x_{\gamma}) = \gamma.$

Задачи

- 1. $X_1, ..., X_n \sim R[0, \theta]$.
 - (a) Построить гистограммы для $X_{(n)}$ при разных n и сравнить с нормальной плотностью (с такими же математическим ожиданием и дисперсией, как у $X_{(n)}$).
 - (b) Построить гистограммы для $n(\theta X_{(n)})$ при разных n и сравнить с плотностью распределения $\exp(1)$.
 - (c) * Изобразить гистограммы $\sqrt{n}(2\overline{X} \theta)$ и $\sqrt{n}(2\overline{X}_{\alpha} \theta)$ на одном графике, сравнить разбросы (обе ли оценки асимптотически нормальны, чья асимптотическая дисперсия меньше?).
 - (d) Сравнить, какая из оценок $((n+1)/n)X_{(n)}$ и $2\overline{X}$ чаще оказывается ближе к θ при разных n. Для этого смоделировать по 1000 реализаций (для каждого n) и найти, в какой доле из этих 1000 ближе оказалась $((n+1)/n)X_{(n)}$.

- 2. X_1, \ldots, X_n имеет распределение Коши $f_{\theta}(x) = (\pi(1 + (x \theta)^2))^{-1}$.
 - (а) Построить гистограммы для \overline{X} при разных n. Является ли эта оценка состоятельной? *Сравнить гистограмму/оценку плотности с нормальной плотностью.
 - (b) Построить гистограммы $\sqrt{n}(\text{MED} \theta)$, сравнить с соответсвующей нормальной плотностью (см. теорему 1).
- 3. * $X_1, ..., X_n \sim Bern(p)$, где а) p = 1/3 б) p = 1/2. Будет ли MED состоятельна? Асимптотически нормальна? Постройте гистограммы $\sqrt{n}(\text{MED} 1/2)$, похоже ли распределение на нормальное?
- 4. $X_1, ..., X_n \sim R([\theta-2, \theta-1] \cup [\theta+1, \theta+2])$. Будут ли выборочная медиана и усеченные средние а) состоятельны, б) асимптотически нормальны?
- 5. Смоделировать выборку из распределения Лапласа и численно сравнить асимптотическую дисперсию медианы, выборочного среднего, \overline{X}_{α} с $\alpha=0.1$ и $\alpha=0.3$. Для этого построить гистограммы или плотности каждого из распределений.

_