# Contents

| 1 |     |       | 移动通信系统          |
|---|-----|-------|-----------------|
|   | 1.1 | WCDI  | MA 系统概述         |
|   |     | 1.1.1 | WCMDA 的发展       |
|   |     | 1.1.2 | WCMDA 系统结构      |
|   |     | 1.1.3 | CDMA 扩频技术的优点    |
|   |     | 1.1.4 | UTRAN 接口协议      |
|   | 1.2 | WCDI  | MA 系统的关键技术      |
|   |     | 1.2.1 | 基本技术            |
|   |     | 1.2.2 | RAKE 接收         |
|   |     | 1.2.3 | 功率控制技术          |
|   |     | 1.2.4 | 软切换             |
|   | 1.3 | WCDI  | MA 的空中接口        |
|   |     | 1.3.1 | 分层结构            |
|   |     | 1.3.2 | 无线资源控制层 RRC     |
|   |     | 1.3.3 | 空中接口的信道类型及其映射关系 |
|   |     | 13/   | <b>停</b> 道      |

# Chapter 1

# WCDMA 移动通信系统

# 1.1 WCDMA 系统概述

三种方案对比,详细见书 P186。

#### 1.1.1 WCMDA 的发展

GSM->GPRS->EDGE->WCDMA->HSDPA->HSUPA>LET 详细演进版本可见 P187。

WCDMA 是从 GSM 演进而来,所以许多 WCDMA 的高层协议和 GSM/GPRS 基本相同或相似,比如移动性管理(MM)、GPRS 移动性管理(GMM)、连接管理(CM) 以及会话管理(SM) 等。 移动终端中通用用户识别模块(USIM) 的功能也是从 GSM 的用户识别模块(SIM) 的功能延伸而来的

核心网是平滑的, 但是空中接口发生了革命性的变化

#### 1.1.2 WCMDA 系统结构

无线接入网负责处理所有与无线通信相关的功能。而 CN 则采用了 GSM/GPRS 的定义,这样可以实现网络的平滑过渡,**核心网**负责对**话音及数据业务进行交换和路由查找**,以便将业务连接至外部网络.



Figure 1.1:

- 1. UE, UE 完成人与网络间的交互, 通过 Uu 接口与无线接入网相连,与网络进行信令和数据交换。包括两部分:
  - ME, 移动设备
  - USIM, UTMS 用户识别模块。
- 2. 无线接入网 (UTRAN), UTRAN 位于两个开放接口 Uu 和 Iu 之间, 完成所有与无线有关的功能。RAN 由多个 RNS 组成, 一个 RNS 由一个 RNC 和至少一个 NOodeB 组成。
  - 无线网络控制器 (RNC), 主要完成连接建立和断开、切换、宏分集合并和**无线资源管理控制**等功能。

- (a) 控制 RNC (CRNC)。对于某个 Node B 来说,直接控制它的 RNC 就是控制 RNC (CRNC)
- (b) 服务 RNC(SRNC)。与 CN 有连接,为 UE 提供资源的 RNC。(越区切换合并)
- (c) 漂移 RNC(DRNC)。把自己的资源借给 SRNC 为某一个 UE 使用的 (仅一个 Node B 资源)



左图表示UE在RNC之间软切换的情况(在SRNC中执行合并),右图表示UE只使用来自一个Node B的资源的情况,由 DRNC加以控制。

Figure 1.2:

- Node B,Node B 通过 Iub 接口和基站控制器 RNC 互连。它主要由接口电路、基带处理单元、射频前端和控制单元部分组成。 Node B=BBU (基带处理) +RRU (射频前端 + 天馈系统,基带处理是核心功能, Node B 还负责完成更软切换、定位测量和执行无线资源分配与管理控制指令的功能
- 3. CN 核心网络。
  - CS 域: MSC/VLR, GMSC
  - PS 域: SGSN,GGSN,CG。
  - HLR.

#### 4. 接口

- (a) Cu,USIM 和 ME 之间
- (b) Uu,UE 和 UTRAN,是 UMTS 中最重要的开放接口之一。
- (c) Iu, UTRAN 和 CN。
- (d) Iur,RNC 之间
- (e) Iub, Node B 之间。

## 1.1.3 CDMA 扩频技术的优点

- 1. 抗干扰能力强,特别是抗窄带干扰;
- 2. 可检测性低,不容易被侦破
- 3. 具有多址能力, 易于实现码分多址技术
- 4. 可抗多径干扰
- 5. 可抗频率选择性衰落
- 6. 频谱利用率高,容量大

## 1.1.4 UTRAN 接口协议

#### 1.1.4.1 结构图



Figure 1.3:

#### 特点:

- 1. 所有接口具有开放性
- 2. 将无线网络层与传输层分离
- 3. 控制面和用户面分离

Iu,Iub,Iur 使用 ATM 承载。

#### 1.1.4.2 协议栈

UTRAN 控制面协议栈是指协议和设备的对应关系。UE 里面实现的协议是最完备的,所有的 Node B 只实现第一层,从 Uu 口的角度来讲, RNC 实现第二层 (从 MAC 到 RRC ), CN 只实现 RRC 之上的



Figure 1.4:

UTRAN 用户面协议栈: 用户面有 CS 和 PS 域,从 UE 的角度讲,没有 RRC。



Figure 1.5:

# 1.2 WCDMA 系统的关键技术



Figure 1.6:

# 1.2.1 基本技术

WCDMA 系统发射机和接收机的信号处理流程

- 1. 信源编码。自适应多速率 AMR 技术 ( 带 8 种信源速率).
- 2. 信道编码、交织:抵抗无线传播环境中的各种衰落。主要采用卷积码 (时延低,速率低)、Turbo 码 (时 延高,速率高) 和交织等信道编码技术
- 3. 扩频、加扰,这两步是 WCDMA 系统所特有的,采用高速的 OVSF 提高数
  - 扩频: 扩频又叫做信道化操作,用来区分来自**同一个信源的不同物理信道**;采用高速的 OVSF 提高数字符号的速率,增加信号带宽。(良好的互相关,解决多址干扰)
  - 加扰: 采用 Gold 序列作为扰码,用以区分**不同的信源**。(良好的自相关,解决多径干扰)

字符号的速率,增加信号带宽

- 4. 调制,
  - 首先是将含有信息的基带信号调制至某一载波上
  - 再通过上变频搬移至适合某信道传输的射频段

#### 1.2.2 RAKE 接收

- 多径分离, Chip 周期小于时延
- 多径合并准则, 最强信号; 等增益; 最大比值合并
- RAKE 接收的本质: 时间分集, 多径分集

## 1.2.3 功率控制技术

功率控制的 **目的**:在保证链路质量目标的前提下使发射信号的功率最小,既减少多址干扰,又可以有效地防止"远近效应",使系统维持高质量通信 从通信链路的角度,功率控制可分为

- 前向功率控制, 基站到移动台
- 反向功率控制, 移动台到基站

从功率控制方法的角度, 功率控制可分为

- 开环功率控制, 无控制指令, 补偿平均路径损耗和慢衰落。
- 闭环功率控制,有控制指令。

快速、准确的**功率控制技术**是保证 WCDMA 系统性能的**核心** 技术。

#### 1.2.3.1 反向开环功率控制

根据**接收到的前向链路信号的功率大小来调整自己的发射功率**。开环功率控制由于补偿信道中的**平均路径损耗及慢衰落**,有一个很大的**动态范围**。

关键在于:假设了前向和反向链路的衰落情况一致。所以可以通过测量前向链路来调整 MS 的发射功率。这就导致了当前向和反向链路相互独立时,该方式有较大误差。(如 FDD 方式)。开环功率控制只能起到粗略控制。的作用。

#### 功能

- 调整移动台初始接入时的发射功率
- 弥补由于路径损耗和慢衰落造成的衰减的变化。

#### 1.2.3.2 反向闭环功率控制

建立于开环功率控制之上,最开环功率控制进行校正。根据反向链路上移动台的信号强弱,产生功率控制指令,通过前向链路将功率指令发送给移动台,移动台根据该指令,在开环功率控制所选择发射功率的基础上,快速校正自己功率。克服**快衰落**。

- 内环功率控制,基站测量移动台的移动台信号,与某个门限比较,进行发送相应的功率控制指令。
- 外环功率控制,根据信号质量(如误帧率)对内环门限进行调整。



Figure 1.7:

#### 1.2.4 软切换

#### 1.2.4.1 软切换

在 CDMA 系统中,在同一个载波的不同小区间进行的切换通常是软切换。上行链路软切换和更软切换的差别 很大 **, 两个基站接收移动台的码分信道,但接收到的数据被发送到 RNC 进行合并** 

#### 1.2.4.2 更软切换

在上行链路方向,在基站的每个扇区中接收移动台的码分信道,然后送入到**同一基带 Rake 接收机**,并以通常的方式进行最大比值合并

## 1.3 WCDMA 的空中接口

#### 1.3.1 分层结构



Figure 1.8:

- **层 3** 用户面用于用户数据的传输, 控制面是 RRC 协议, 重要职责是完成 **UE 和 SRNC 之间信令**的交互。 **层 2** 用户面和控制面数据, 都需要经过 RLC 层和 MAC 层的处理。
  - 向上层提供无线承载
  - PDCP 和 BMC 只属于用户面
  - RLC: 将上层的 PDU 进行分割和重组、串联、填充、并完成 WCDMA 的加密功能
  - MAC, 实现逻辑信道和传输信道之间的映射和复用
- **层 1** 负责完成传输信道到物理信道的映射和复用;实现信道编码、交织、速率匹配、无线帧的分割、扩频调制和快速功率控制等功能

#### 1.3.2 无线资源控制层 RRC

#### 1.3.2.1 RRC 层实现功能

- 一个 RRC 连接可以看作在 UE 和 SRNC 之间进行信令交互的一条逻辑通路, **每个 UE 最多只有一个 RRC 连接**。
- 对 UE 来说,没有 RRC 连接的状态称为空闲模式 (IDLE),有 RRC 连接的状态则称为 RRC
- UE 在空闲模式下没有专用信道资源,只有通过 公共控制信道和 SRNC 之间传送 RRC

#### 1.3.2.2 RAB、SRB、RB 以及逻辑信道

一个从 UE 到 CN 之间的承载使用一个 RAB(无线接人承载)来定义,而 RB 则表示其中从 UE 到 UTRAN (SRNC ) 之间的一个无线承载,一个 RAB 可以对应于多个 RB。一个 RB 又可分为: SRB,传送 RRC 信令,映射到 DCCH。普通 RB,传送用户面消息,映射到 DTCH。

#### 1.3.3 空中接口的信道类型及其映射关系

#### 1.3.3.1 无线接人承载 RAB

UE 建立的每一个呼叫都需要某种特定的承载服务,RAB 可以形象地理解为 UE 和核心网间一个双向的数据传输通道,这个数据传输通道可以看作由两部分构成

- 一部分是 UE 与 RNC 之间 Uu 口的连接,即 RB (RB 又细分为承载业务的 RB 和承载信令的 SRB)
- 另一部分就是 RNC 到核心网之间 Iu 口的 AAL2 连接。

#### 1.3.4 信道

# 信道概念

## ▶ 逻辑信道

- > 直接承载用户业务
- ▶ 根据承载的是控制平面业务还是用户平面业务
- > 分为两大类: 控制信道和业务信道

## > 传输信道

- ▶ 无线接口层二和物理层的接口,是物理层对MAC层提供的服务
- ▶ 根据传输的是针对一个用户的专用信息还是针对所有用户的公 共信息
- ▶ 分为: 专用信道和公共信道两大类

#### ▶ 物理信道

- > 各种信息在无线接口传输时的最终体现形式
- ▶ 每一种使用特定的载波频率码、扩频码和扰码以及载波相对相位(I或Q)的信道都可以理解为一类特定的信道

Figure 1.9:

#### 1.3.4.1 传输信道

#### 1.3.4.2 物理信道



Figure 1.10:

#### 1 物理信道的结构



Figure 1.11: