1. Boolean Algebra & Logic Gates

07 November 2023 09:39

BOOLEAN ALGEBRA, LOGIC GATES - INTRO

- · Mathematics used to analyse and simplify logic/digital circuits -> boolean algebra
- · Digital circuits --> constructed using logic gates
- · logic gates: one on more inputs, only one output
- · Number of possible input states = 2 no. of inputs

AND GATE

All inputs are 1 -> output is 1

Truth Jable

INPUTS		OUTPUT	
A 8 0 1 0 0 1 1 1 0		У	
		0	
		0	
		1	
		0	

OR GATE

Any input is 1 --- Output is 1

Truth Table

lN	PUTS	OUTPUT	
A B		у	
0	0	0	
0	1		
1	o	1	
1	1	1	

NOT GATE

Any one input -> opposite output

Touth Table

INPUT	OUTPUT	
A	у	
0	1	
	0	

NAND GATE

NOT (AND) = NAND.

Active low: If any input is 0 ---- Output is 1

Touth Jable

INPUTS		Ουτρυτ
A	В	7
0	0	1
0	1	1
	0	
1	1	0

NOR GATE

NOT (OR) = NOR

Active high: If any input is 1 -> output is 0

Joseth Jable

INPUTS A B		OUTPUT	
		У	
0	0	(
0	ı	0	
1	0	0	
t		0	

Note: Active high, active low

low, high -> surject to the input

the gate is "active"

for

active -> if the gate gcts a

certain input, not necessary

to get output, i.e.,

gate actively looks for certain input

XOR GATE

ODD function gate: If there is an odd no. of 1s in input --- Dutput is 1

Truth Jable

INPUTS		Оитрит	
AB		У	
0	0	0	
0		1	
1	0	(
1	- (0	

combination of infuts in SDP that give output as 1

MINTERMS : AB + AB

MAXTERMS: (A+B)(A+B)

Y = A & B

combination of inputs in POS
that give output as O

3- INPUT XOR GATE

1			
A -	4	У	
B -	1		

INPUTS			OUTPUT
A	В	C	У
0	0	0	0
0	0	1	1
0	1	0	1
T.	0	0	1
1	ı	0	0
1	0	1	0
0	1		0
1	1	I	

NOTE:

XOR gate performs modulo sum speciation without including carry. 0+0=0, 1+0=1, 0+1=1, 1+1=6

A (B () C

Associative law $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

J SOP form (sum of products)

Y = ABC + ABC + ABC + ABC = A (BC+BE) + A (BE-RC) = A (B + A (B + C) $= \bar{A} \times + A \bar{X}$ - A 0 X

PROPERTIES OF XOR GATE

- · Identity element: A ⊕ 0 = A
- · A @ 1 = A'
- . A @ A = 0
- · A @ A = 1
- · Commutative law: ABB=BBA

· Associative law: A + (B + c) = (A + B) + C

XNOR GATE

not of XOR

EVEN function gote: Even no. of 1s - Dutfut is)

Touth Jable

111	ZTUG	OUTPUT	MINTERMS	MAXTERMS
A	В	у	M(A,B)	m (A,B)
0	0		ĀB	-
0	1	0	-	A+8
1	O	0		Ã+B
	1)	AB	

y = 1	A-B	+ Ā.Ē
Y=	A O	B

THREE INPUT XNOR GATE

INPUTS		Ουτρυτ	MINTERMS	MAXTERMS	
A	B	e	У	M(A,B)	m(A,B)
0	0	ō	(ABC	-
1	0	0	0	-	A+B+C
0		0	0	-	A+B+C
0	0	t	0	-	A+8+C
1	ı	0	1	ABE	-
0	1	1	1	ÃВС	
1	0	1	1	ABC	_
	1		0		A+B+C

APPLICATIONS OF XOR AND XNOK

- · To generate parity bits and error detection
- · Equality detection
- · XOR gate is used in processors' ALU (Arithmetic Logic Unit) for binary addition
- · XOR gate is used to generate pseudonandom numbers