Solution to Assignment 4

4.17: (c) Clearly $P(X \ge n) \ge P(X_n = n) = \lambda^n e^{-\lambda}/n!$. For the other bound, since $\binom{n+k}{k} \ge 1$, we have $(k+n)! \ge k!n!$. Using this,

$$P(X_n \ge n) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k+n}}{(n+k)!} \le e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k+n}}{n!k!} = \frac{\lambda^n}{n!}.$$

By Stirling's approximation, as $n \to \infty$

$$\log n! = n \log n - n + O(\log n),$$

and so

$$\log P(X_n > x) = x \log \lambda - x \log x + x + O(\log x)$$

as $x \to \infty$. Taking $Y_n = \log(\log n) X_n / \log n$, as $n \to \infty$,

$$\log P(Y_n > c) = -c \log n + O\left(\frac{\log n}{\log(\log n)}\right).$$

If $\epsilon > 0$ and $c = 1 + 2\epsilon$, then for n large enough we have

$$\log P(Y_n > c) \le -(1+\epsilon)\log n \quad \text{or} \quad P(Y_n > 1+2\epsilon) \le \frac{1}{n^{1+\epsilon}}.$$

Thus

$$\sum_{n} P(Y_n > 1 + 2\epsilon) < \infty.$$

But if $c = 1 - 2\epsilon$, for n large enough we have

$$\log P(Y_n > 1 - 2\epsilon) \ge -(1 - \epsilon) \log n \quad \text{or} \quad P(Y_n > 1 + 2\epsilon) \le \frac{1}{n^{1 - \epsilon}}.$$

Thus

$$\sum_{n} P(Y_n > 1 - 2\epsilon) = \infty.$$

By the Borel zero-one law,

$$P(Y_n > 1 + 2\epsilon, \text{i.o.}) = 0$$
 and $P(Y_n > 1 - 2\epsilon, \text{i.o.}) = 1.$

Since $\epsilon > 0$ can be arbitrarily small, these imply (with the reasoning detailed in Example 4.5.2) that $\limsup Y_n = 1$ with probability one.

4.18: If $B \in \mathcal{P}$, then by additivity

$$P(A^{c}B) = P(B) - P(AB)$$

$$= P(B) - P(A)P(B)$$

$$= (1 - P(A))P(B)$$

$$= P(A^{c})P(B).$$

Thus A^c is independent of \mathcal{P} . Noting that \emptyset and Ω are also independent of \mathcal{P} , we have $\sigma(A)$ independent of \mathcal{P} . But \mathcal{P} is a π -system, so by Theorem 4.1.1, $\sigma(A)$ is independent of $\sigma(\mathcal{P})$. As $A \in \sigma(\mathcal{P})$, A is independent of itself, and we must have P(A) = 0 or 1.

4.21: (a) Take $n_k \to \infty$ so that $P(A_{n_k}) \ge 1 - 1/3^k$. Then by Boole's inequality,

$$P(\cap_{k\geq 1} A_{n_k}) = 1 - P(\cup_{k\geq 1} A_{n_k}^c) \ge 1 - \sum_{k\geq 1} P(A_{n_k}^c) \ge 1 - \sum_{k\geq 1} 3^{-k} = 1/2.$$

4.24: This holds because

$$P(A_n, \text{i.o.}) = P\left(\bigcap_{n\geq 1} \bigcup_{k\geq n} A_k\right)$$

$$= \lim_{n\to\infty} P\left(\bigcup_{k\geq n} A_k\right)$$

$$= \liminf_{n\to\infty} P\left(\bigcup_{k\geq n} A_k\right)$$

$$\geq \liminf_{n\to\infty} P(A_n)$$

$$\geq \epsilon.$$

5.3: Noting that for $n \geq 1$,

$$P(L_1 > n) = P(R_2 \neq 1, \dots, R_n \neq 1) = \frac{1}{2} \times \frac{2}{3} \times \dots \times \frac{n-1}{n} = \frac{1}{n},$$

we have

$$P(L_1 = n) = P(L_1 > n - 1) - P(L_1 > n) = \frac{1}{n(n-1)}, \quad n \ge 2.$$

Since $L_1 1_{[L_1 \le n]}$ are simple functions increasing to L_1 ,

$$EL_1 = \lim_{n \to \infty} \sum_{k=2}^n \frac{1}{k-1} = \infty.$$

5.6: (a) Since $X1_{[|X|>n]} \to 0$ (pointwise) as $n \to \infty$, this follows by dominated convergence as

$$|X1_{[|X|>n]}| \le |X| \in L_1.$$

(b) Using the decomposition in the hint,

$$\int_{A_n} |X| \, dP \le MP(A_n) + \int_{[|X| > M]} |X| \, dP,$$

and so, since $P(A_n) \to 0$,

$$\limsup \int_{A_n} |X| \, dP \le \int_{[|X| > M]} |X| \, dP.$$

The desired result follows because this inequality holds for all M and the upper bound tends to zero as $M \to \infty$ by part (a). (c) First note that if $Y = \sum_{1}^{k} c_i 1_{B_i}$ is a nonnegative simple function with $c_i > 0$ for all i, and if P(N) = 0, then

$$\int_{N} Y \, dP = \int 1_{N} Y \, dP = \sum_{i=1}^{k} c_{i} P(NB_{i}) = 0.$$

Also, if

$$EY = \sum_{i} c_i P(B_i) = 0,$$

then $P(B_i) = 0, i = 1, ..., k$, and so

$$P(Y > 0) = P\left(\bigcup B_i\right) = 0.$$

Next, consider the assertion in the problem with $A=\Omega$. Let $Y_n, n \geq 1$, be nonnegative simple functions increasing to |X|. Suppose E|X|=0. Since $0 \leq Y_n \leq |X|$, we have $EY_n=0$, and thus $P(Y_n>0)=0$. Since $[Y_n>0]\uparrow[|X|>0]$, by continuity we then have $P(|X|>0)=\lim P(Y_n>0)=0$. So E|X|=0 implies P(|X|>0)=0. For the converse, suppose P(|X|>0)=0. Since $Y_n \leq |X|$, event $[Y_n>0]\subset N\stackrel{\mathrm{def}}{=}[|X|>0]$ and so $Y_n=1_NY_n$. But then, since Y_n is simple and P(N)=0,

$$EY_n = E1_N Y_n = \int_N Y_n \, dP = 0$$

and $E|X| = \lim EY_n = 0$. Thus E|X| = 0 if and only if P(|X| > 0) = 0. If we change X to 1_AX in this assertion, noting that $[|1_AX| > 0] = A \cap [|X| > 0]$, we have $\int_A |X| dP = 0$ if and only if $P(A \cap [|X| > 0]) = 0$, as desired.