合肥工业大学试卷 (A)

共 1 页第 1 页

2019~2020 学年第 二 学期 课程代码 1400241B 课程名称高等数学 B(下) 学分 6 课程性质:必修 ☑、选修□、限修□ 考试形式:开卷□、闭卷 ☑ 考试日期 2020 年 08 月 25 日 08:00~10:00 命题教师 集体 系(所或教研室)主任审批签名 专业班级(教学班)

- 一、填空题 (每小题 4 分, 本题满分 20 分) 请将答案写在答题纸上!
- **1.** 微分方程 (x + 2y) dx x dy = 0 的通解是_
- 2. 设 z = z(x, y) 是由 $x^2 + 2xy + y + ze^z = 1$ 所确定的函数,则 $dz|_{(0,1)} =$ ______.
- **3.** 设有级数 $\sum_{n=0}^{\infty} a_n \left(\frac{x+1}{2} \right)^n$,且 $\lim_{n \to \infty} \left| \frac{a_n}{a_n} \right| = 2$,则该级数的收敛半径等于______
- **4.**函数 $f(x, y, z) = \frac{x z}{v + z}$ 在点 (-1, 1, 3) 处的最大变化率为____
- **5.**交换积分次序 $\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x, y) dx =$ _______.
- 二、选择题(每小题 4 分,本题满分 20 分)
- **1.** 设函数 f(x, y) 在点 $P(x_0, y_0)$ 的两个偏导数 $f'_x(x_0, y_0)$ 和 $f'_v(x_0, y_0)$ 都存在,则().
 - (A) f(x,y) 在 P 点连续
- (B) f(x, y) 在 P 点可微

- (C) $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 存在
- (D) $\lim_{x \to x_0} f(x, y_0)$ 及 $\lim_{y \to y_0} f(x_0, y)$ 都存在
- **2**.微分方程 $y'' 3y' + 2y = 3x 2e^x$ 的特解形式为 ().
 - (A) $(ax+b)e^x$

(B) $x(ax+b)e^x$

(C) $ax+b+cxe^x$

- (D) $ax+b+ce^x$
- **3.**二重积分 $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 可以写成 ().
 - (A) $\int_0^1 dx \int_0^1 f(x, y) dy$
- (B) $\int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x,y) dy$
- (C) $\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x, y) dx$ (D) $\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$
- **4.**设 $I_1 = \iint_D \ln(x+y)^3 d\sigma$, $I_2 = \iint_D (x+y)^3 d\sigma$, $I_3 = \iint_D \sin(x+y)^3 d\sigma$, 其中平面区域 D 是由
- $x+y=\frac{1}{2}$, x+y=1及两条坐标轴围成,则().
 - (A) $I_2 > I_3 > I_1$ (B) $I_2 > I_1 > I_3$ (C) $I_3 > I_2 > I_1$ (D) $I_1 > I_2 > I_3$
- **5**.设 $u_n = (-1)^n \ln \left(1 + \frac{1}{\sqrt{n}} \right)$,则级数().

- (A) $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} u_n^2$ 都收敛 (B) $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} u_n^2$ 都发散
- (C) $\sum_{n=0}^{\infty} u_n$ 收敛,而 $\sum_{n=0}^{\infty} u_n^2$ 发散 (D) $\sum_{n=0}^{\infty} u_n$ 发散,而 $\sum_{n=0}^{\infty} u_n^2$ 收敛
- 三、(**本题 10 分**) 设函数 $z = f(xy, \frac{x}{y})$, 其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 四、(本题 10 分) 求微分方程 $\begin{cases} y'' = 2x\sqrt{y'} \\ y|_{x=0} = 0, y'|_{x=0} = \frac{1}{4} \end{cases}$ 的特解.
- 五、(本题 10 分) 计算二重积分 $I = \iint |y-x^2| d\sigma$,其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$.
- 六、(**本题 12 分**) 求函数 $z = e^{2x}(x + y^2 + 2y)$ 的极值.
- 七、(本题 12 分) 求幂级数 $\sum_{1}^{\infty} \frac{n}{2^n} x^{n-1}$ 的收敛半径、收敛域及和函数.
- 八、(本题 6 分) 若 $\lim_{n\to\infty}(n^{2n\sin\frac{1}{n}}a_n)=1$,试判别级数 $\sum_{i=1}^{\infty}a_n$ 敛散性,并说明理由.