## **Chapter 8: Relational Database Design**

**Database System Concepts, 6th Ed.** 

©Silberschatz, Korth and Sudarshan See <a href="https://www.db-book.com">www.db-book.com</a> for conditions on re-use

## **Chapter 8: Relational Database Design**

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Functional Dependency Theory
- Algorithms for Functional Dependencies
- Decomposition Using Multivalued Dependencies
- More Normal Form
- Database-Design Process
- Modeling Temporal Data

### **Combine Schemas?**

- Suppose we combine instructor and department into inst\_dept
  - (No connection to relationship set inst\_dept)
- Result is possible repetition of information

| ID    | пате       | salary | dept_name  | building | budget |
|-------|------------|--------|------------|----------|--------|
| 22222 | Einstein   | 95000  | Physics    | Watson   | 70000  |
| 12121 | Wu         | 90000  | Finance    | Painter  | 120000 |
| 32343 | El Said    | 60000  | History    | Painter  | 50000  |
| 45565 | Katz       | 75000  | Comp. Sci. | Taylor   | 100000 |
| 98345 | Kim        | 80000  | Elec. Eng. | Taylor   | 85000  |
| 76766 | Crick      | 72000  | Biology    | Watson   | 90000  |
| 10101 | Srinivasan | 65000  | Comp. Sci. | Taylor   | 100000 |
| 58583 | Califieri  | 62000  | History    | Painter  | 50000  |
| 83821 | Brandt     | 92000  | Comp. Sci. | Taylor   | 100000 |
| 15151 | Mozart     | 40000  | Music      | Packard  | 80000  |
| 33456 | Gold       | 87000  | Physics    | Watson   | 70000  |
| 76543 | Singh      | 80000  | Finance    | Painter  | 120000 |

### A Combined Schema Without Repetition

- Consider combining relations
  - sec\_class(sec\_id, building, room\_number) and
  - section(course\_id, sec\_id, semester, year)

into one relation

- section(course\_id, sec\_id, semester, year, building, room\_number)
- No repetition in this case

#### **What About Smaller Schemas?**

- Suppose we had started with inst\_dept. How would we know to split up (decompose) it into instructor and department?
- Write a rule "if there were a schema (dept\_name, building, budget), then dept\_name would be a candidate key"
- Denote as a functional dependency:

```
dept_name → building, budget
```

- In inst\_dept, because dept\_name is not a candidate key, the building and budget of a department may have to be repeated.
  - This indicates the need to decompose inst\_dept
- Not all decompositions are good. Suppose we decompose employee(ID, name, street, city, salary) into employee1 (ID, name) employee2 (name, street, city, salary)
- The next slide shows how we lose information -- we cannot reconstruct the original employee relation -- and so, this is a lossy decomposition.

## **A Lossy Decomposition**



| ID                                         | name                     | street                         | city                                           | salary                           |
|--------------------------------------------|--------------------------|--------------------------------|------------------------------------------------|----------------------------------|
| :<br>57766<br>57766<br>98776<br>98776<br>: | Kim<br>Kim<br>Kim<br>Kim | Main<br>North<br>Main<br>North | Perryridge<br>Hampton<br>Perryridge<br>Hampton | 75000<br>67000<br>75000<br>67000 |

### **Example of Lossless-Join Decomposition**

- Lossless join decomposition
- Decomposition of R = (A, B, C)

$$R_1 = (A, B)$$
  $R_2 = (B, C)$ 

| Α              | В   | С      |  |
|----------------|-----|--------|--|
| $\alpha \beta$ | 1 2 | A<br>B |  |
| r              |     |        |  |

$$\begin{array}{c|c}
A & B \\
\hline
\alpha & 1 \\
\beta & 2 \\
\hline
\Pi_{A,B}(r)
\end{array}$$

| В                | С      |  |
|------------------|--------|--|
| 1 2              | A<br>B |  |
| $\prod_{B,C}(r)$ |        |  |

$$\prod_{A} (r) \bowtie \prod_{B} (r)$$

| Α                                              | В   | С      |
|------------------------------------------------|-----|--------|
| $\begin{array}{c} \alpha \\ \beta \end{array}$ | 1 2 | A<br>B |

#### **First Normal Form**

- Domain is atomic if its elements are considered to be indivisible units
  - Examples of non-atomic domains:
    - Set of names, composite attributes
    - Identification numbers like CS101 that can be broken up into parts
- A relational schema R is in first normal form if the domains of all attributes of R are atomic
- Non-atomic values complicate storage and encourage redundant (repeated) storage of data
  - Example: Set of accounts stored with each customer, and set of owners stored with each account
  - We assume all relations are in first normal form.

## First Normal Form (Cont'd)

- Atomicity is actually a property of how the elements of the domain are used.
  - Example: Strings would normally be considered indivisible
  - Suppose that students are given roll numbers which are strings of the form CS0012 or EE1127
  - If the first two characters are extracted to find the department, the domain of roll numbers is not atomic.
  - Doing so is a bad idea: leads to encoding of information in application program rather than in the database.

## Goal — Devise a Theory for the Following

- Decide whether a particular relation R is in "good" form.
- In the case that a relation R is not in "good" form, decompose it into a set of relations  $\{R_1, R_2, ..., R_n\}$  such that
  - each relation is in good form
  - the decomposition is a lossless-join decomposition
- Our theory is based on:
  - functional dependencies
  - multivalued dependencies

### **Functional Dependencies**

- Constraints on the set of legal relations.
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.
- A functional dependency is a generalization of the notion of a key.

## **Functional Dependencies (Cont.)**

Let R be a relation schema

$$\alpha \subseteq R$$
 and  $\beta \subseteq R$ 

■ The functional dependency

$$\alpha \rightarrow \beta$$

**holds on** R if and only if for any legal relations r(R), whenever any two tuples  $t_1$  and  $t_2$  of r agree on the attributes  $\alpha$ , they also agree on the attributes  $\beta$ . That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

Example: Consider r(A,B) with the following instance of r.

• On this instance,  $A \rightarrow B$  does **NOT** hold, but  $B \rightarrow A$  does hold.

## **Functional Dependencies (Cont.)**

- $\blacksquare$  K is a superkey for relation schema R if and only if  $K \to R$
- K is a candidate key for R if and only if
  - $K \rightarrow R$ , and
  - for no  $\alpha \subset K$ ,  $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

```
inst_dept (ID, name, salary, dept_name, building, budget).
```

We expect these functional dependencies to hold:

but would not expect the following to hold:

## **Use of Functional Dependencies**

- We use functional dependencies to:
  - test relations to see if they are legal under a given set of functional dependencies.
    - If a relation *r* is legal under a set *F* of functional dependencies, we say that *r* satisfies *F*.
  - specify constraints on the set of legal relations
    - We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F.
- Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.
  - For example, a specific instance of instructor may, by chance, satisfy
    name → ID.

## **Functional Dependencies (Cont.)**

- A functional dependency is trivial if it is satisfied by all instances of a relation
  - Example:
    - ID, name → ID
    - $\rightarrow$  name  $\rightarrow$  name
  - In general,  $\alpha \to \beta$  is trivial if  $\beta \subseteq \alpha$

## Closure of a Set of Functional Dependencies

- Given a set F of functional dependencies, there are certain other functional dependencies that are logically implied by F.
  - For example: If  $A \rightarrow B$  and  $B \rightarrow C$ , then we can infer that  $A \rightarrow C$
- The set of **all** functional dependencies logically implied by *F* is the **closure** of *F*.
- We denote the closure of F by F+.
- F<sup>+</sup> is a superset of *F*.

## **Boyce-Codd Normal Form**

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F<sup>+</sup> of the form

$$\alpha \rightarrow \beta$$

where  $\alpha \subseteq R$  and  $\beta \subseteq R$ , at least one of the following holds:

- lacksquare  $\alpha$  is a superkey for R

Example schema *not* in BCNF:

instr\_dept (ID, name, salary, dept\_name, building, budget)

because *dept\_name*→ *building*, *budget*holds on *instr\_dept*, but *dept\_name* is not a superkey

## Decomposing a Schema into BCNF

Suppose we have a schema R and a non-trivial dependency  $\alpha \rightarrow \beta$  causes a violation of BCNF.

We decompose *R* into:

- (α U β )
- $(R (\beta \alpha))$
- In our example,
  - $\alpha$  = dept\_name
  - $\beta$  = building, budget

and *inst\_dept* is replaced by

- (α U β ) = ( dept\_name, building, budget )
- $(R (\beta \alpha)) = (ID, name, salary, dept_name)$

## **BCNF** and Dependency Preservation

- Constraints, including functional dependencies, are costly to check in practice unless they pertain to only one relation
- If it is sufficient to test only those dependencies on each individual relation of a decomposition in order to ensure that all functional dependencies hold, then that decomposition is dependency preserving.
- Because it is not always possible to achieve both BCNF and dependency preservation, we consider a weaker normal form, known as third normal form.

#### **Third Normal Form**

A relation schema R is in third normal form (3NF) if for all:

$$\alpha \rightarrow \beta$$
 in  $F^+$ 

at least one of the following holds:

- $\alpha \rightarrow \beta$  is trivial (i.e.,  $\beta \in \alpha$ )
- α is a superkey for R
- Each attribute A in  $\beta \alpha$  is contained in a candidate key for R. (**NOTE**: each attribute may be in a different candidate key)
- If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold).
- Third condition is a minimal relaxation of BCNF to ensure dependency preservation (will see why later).

#### **Goals of Normalization**

- Let R be a relation scheme with a set F of functional dependencies.
- Decide whether a relation scheme *R* is in "good" form.
- In the case that a relation scheme R is not in "good" form, decompose it into a set of relation scheme  $\{R_1, R_2, ..., R_n\}$  such that
  - each relation scheme is in good form
  - the decomposition is a lossless-join decomposition
  - Preferably, the decomposition should be dependency preserving.

## How good is BCNF?

- There are database schemas in BCNF that do not seem to be sufficiently normalized
- Consider a relation

inst\_info (ID, child\_name, phone)

 where an instructor may have more than one phone and can have multiple children

| ID                      | child_name                           | phone                                                        |
|-------------------------|--------------------------------------|--------------------------------------------------------------|
| 99999<br>99999<br>99999 | David<br>David<br>William<br>Willian | 512-555-1234<br>512-555-4321<br>512-555-1234<br>512-555-4321 |

## How good is BCNF? (Cont.)

- There are no non-trivial functional dependencies and therefore the relation is in BCNF
- Insertion anomalies i.e., if we add a phone 981-992-3443 to 99999, we need to add two tuples

(99999, David, 981-992-3443) (99999, William, 981-992-3443)

## **How good is BCNF? (Cont.)**

■ Therefore, it is better to decompose *inst\_info* into:

inst\_child

| ID                      | child_name                           |
|-------------------------|--------------------------------------|
| 99999<br>99999<br>99999 | David<br>David<br>William<br>Willian |

inst\_phone

| ID                      | phone                                                        |
|-------------------------|--------------------------------------------------------------|
| 99999<br>99999<br>99999 | 512-555-1234<br>512-555-4321<br>512-555-1234<br>512-555-4321 |

This suggests the need for higher normal forms, such as Fourth Normal Form (4NF).

## **Functional-Dependency Theory**

- We now consider the formal theory that tells us which functional dependencies are implied logically by a given set of functional dependencies.
- We then develop algorithms to generate lossless decompositions into BCNF and 3NF
- We then develop algorithms to test if a decomposition is dependencypreserving

## Closure of a Set of Functional Dependencies

- Given a set *F* set of functional dependencies, there are certain other functional dependencies that are logically implied by *F*.
  - For e.g.: If  $A \to B$  and  $B \to C$ , then we can infer that  $A \to C$
- The set of **all** functional dependencies logically implied by *F* is the **closure** of *F*.
- We denote the closure of F by F<sup>+</sup>.

# Closure of a Set of Functional Dependencies

We can find F<sup>+,</sup> the closure of F, by repeatedly applying Armstrong's Axioms:

```
• if \beta \subseteq \alpha, then \alpha \to \beta (reflexivity)
```

- if  $\alpha \to \beta$ , then  $\gamma \alpha \to \gamma \beta$  (augmentation)
- if  $\alpha \to \beta$ , and  $\beta \to \gamma$ , then  $\alpha \to \gamma$  (transitivity)
- These rules are
  - sound (generate only functional dependencies that actually hold),
     and
  - complete (generate all functional dependencies that hold).

## **Example**

■ 
$$R = (A, B, C, G, H, I)$$
  
 $F = \{A \rightarrow B$   
 $A \rightarrow C$   
 $CG \rightarrow H$   
 $CG \rightarrow I$   
 $B \rightarrow H\}$ 

- some members of F<sup>+</sup>
  - $\bullet$   $A \rightarrow H$ 
    - ▶ by transitivity from  $A \rightarrow B$  and  $B \rightarrow H$
  - $AG \rightarrow I$ 
    - by augmenting  $A \rightarrow C$  with G, to get  $AG \rightarrow CG$  and then transitivity with  $CG \rightarrow I$
  - $CG \rightarrow HI$ 
    - by augmenting CG → I to infer CG → CGI, and augmenting of CG → H to infer CGI → HI, and then transitivity

## **Procedure for Computing F**<sup>+</sup>

To compute the closure of a set of functional dependencies F:

```
repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+

until F^+ does not change any further
```

**NOTE**: We shall see an alternative procedure for this task later

## Closure of Functional Dependencies (Cont.)

#### Additional rules:

- If  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds, then  $\alpha \to \beta \gamma$  holds (union)
- If  $\alpha \to \beta \gamma$  holds, then  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds (decomposition)
- If  $\alpha \to \beta$  holds and  $\gamma \not \beta \to \delta$  holds, then  $\alpha \gamma \to \delta$  holds (pseudotransitivity)

The above rules can be inferred from Armstrong's axioms.

#### **Closure of Attribute Sets**

- Given a set of attributes  $\alpha$ , define the *closure* of  $\alpha$  under F (denoted by  $\alpha^+$ ) as the set of attributes that are functionally determined by  $\alpha$  under F
- Algorithm to compute  $\alpha^+$ , the closure of  $\alpha$  under F

```
result := \alpha;
while (changes to result) do
for each \beta \to \gamma in F do
begin
if \beta \subseteq result then result := result \cup \gamma
end
```

## **Example of Attribute Set Closure**

- R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
- (*AG*)+
  - 1. result = AG
  - 2. result = ABCG  $(A \rightarrow C \text{ and } A \rightarrow B)$
  - 3.  $result = ABCGH \quad (CG \rightarrow H \text{ and } CG \subseteq AGBC)$
  - 4.  $result = ABCGHI \ (CG \rightarrow I \text{ and } CG \subseteq AGBCH)$
- Is AG a candidate key?
  - 1. Is AG a super key?

1. Does 
$$AG \rightarrow R$$
? == Is  $(AG)^+ \supseteq R$ 

- 2. Is any subset of AG a superkey?
  - 1. Does  $A \rightarrow R$ ? == Is  $(A)^+ \supseteq R$
  - 2. Does  $G \rightarrow R$ ? == Is  $(G)^+ \supseteq R$



#### **Uses of Attribute Closure**

There are several uses of the attribute closure algorithm:

- Testing for superkey:
  - To test if  $\alpha$  is a superkey, we compute  $\alpha^{+}$ , and check if  $\alpha^{+}$  contains all attributes of R.
- Testing functional dependencies
  - To check if a functional dependency  $\alpha \to \beta$  holds (or, in other words, is in  $F^+$ ), just check if  $\beta \subseteq \alpha^+$ .
  - That is, we compute  $\alpha^+$  by using attribute closure, and then check if it contains  $\beta$ .
  - Is a simple and cheap test, and very useful
- Computing closure of F
  - For each  $\gamma \subseteq R$ , we find the closure  $\gamma^+$ , and for each  $S \subseteq \gamma^+$ , we output a functional dependency  $\gamma \to S$ .

### **Canonical Cover**

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
  - For example:  $A \rightarrow C$  is redundant in:  $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
  - Parts of a functional dependency may be redundant
    - ▶ E.g.: on RHS:  $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$  can be simplified to

$$\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$$

▶ E.g.: on LHS:  $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$  can be simplified to

$$\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$$

 Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

### **Ex 1**

Compute the closure of the following set F of functional dependencies for relation schema R = (A, B, C, D, E).

$$A \rightarrow BC$$

$$CD \rightarrow E$$

$$B \rightarrow D$$

$$E \rightarrow A$$

We can find F+, the closure of F, by repeatedly applying Armstrong's Axioms:

- if  $\beta \subseteq \alpha$ , then  $\alpha \to \beta$  (reflexivity)
- if  $\alpha \to \beta$ , then  $\gamma \alpha \to \gamma \beta$  (augmentation)
- if  $\alpha \to \beta$ , and  $\beta \to \gamma$ , then  $\alpha \to \gamma$  (transitivity)
- Additional rules:
  - If  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds, then  $\alpha \to \beta \gamma$  holds (union)
  - If  $\alpha \to \beta \gamma$  holds, then  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds (decomposition)
  - If  $\alpha \to \beta$  holds and  $\gamma \beta \to \delta$  holds, then  $\alpha \gamma \to \delta$  holds (pseudotransitivity)

### Ex 2 (1 cont.)

Suppose that we decompose the schema R = (A, B, C, D, E) into

$$(A, B, C)$$
  
 $(A, D, E)$ .

Show that this decomposition is a lossless-join decomposition if the following set *F* of functional dependencies holds:

$$A \rightarrow BC$$

$$CD \rightarrow E$$

$$B \rightarrow D$$

$$E \rightarrow A$$

A decomposition  $\{R_1, R_2\}$  is a lossless-join decomposition if  $R_1 \cap R_2 \to R_1$  or  $R_1 \cap R_2 \to R_2$ . Let  $R_1 = (A, B, C), R_2 = (A, D, E)$ , and  $R_1 \cap R_2 = A$ . Since A is a candidate key in F<sup>+</sup>A $\rightarrow$ ABC. Therefore  $R_1 \cap R_2 \to R_1$ .

#### **Extraneous Attributes**

Attribute is extraneous if we can remove it without changing the closure of functional dependencies.

- Consider a set F of functional dependencies and the functional dependency α → β in F.
  - Attribute A is **extraneous** in  $\alpha$  if  $A \in \alpha$  and F logically implies  $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$ .
  - Attribute A is extraneous in β if A ∈ β and the set of functional dependencies
     (F {α → β}) ∪ {α → (β A)} logically implies F.
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- **Example:** Given  $F = \{A \rightarrow C, AB \rightarrow C\}$ 
  - *B* is extraneous in  $AB \to C$  because  $\{A \to C, AB \to C\}$  logically implies  $A \to C$  (I.e. the result of dropping *B* from  $AB \to C$ ).
- **Example:** Given  $F = \{A \rightarrow C, AB \rightarrow CD\}$ 
  - C is extraneous in AB → CD since AB → C can be inferred even after deleting C

#### **Testing if an Attribute is Extraneous**

- Consider a set F of functional dependencies and the functional dependency  $\alpha \to \beta$  in F.
- To test if attribute  $A \in \alpha$  is extraneous in  $\alpha$ 
  - 1. compute  $(\{\alpha\} A)^+$  using the dependencies in F
  - 2. check that  $(\{\alpha\} A)^+$  contains  $\beta$ ; if it does, A is extraneous in  $\alpha$
- **To test if attribute**  $A \in \beta$  is extraneous in  $\beta$ 
  - 1. compute  $\alpha^+$  using only the dependencies in  $F' = (F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\},$
  - 2. check that  $\alpha^+$  contains A; if it does, A is extraneous in  $\beta$

#### **Canonical Cover**

- $\blacksquare$  A canonical cover for F is a set of dependencies  $F_c$  such that
  - F logically implies all dependencies in  $F_{c}$ , and
  - F<sub>c</sub> logically implies all dependencies in F, and
  - No functional dependency in F<sub>c</sub> contains an extraneous attribute, and
  - Each left side of functional dependency in  $F_c$  is unique.
- To compute a canonical cover for F: repeat

```
Use the union rule to replace any dependencies in F \alpha_1 \to \beta_1 and \alpha_1 \to \beta_2 with \alpha_1 \to \beta_1 \beta_2 Find a functional dependency \alpha \to \beta with an extraneous attribute either in \alpha or in \beta /* Note: test for extraneous attributes done using F_{c,} not F*/ If an extraneous attribute is found, delete it from \alpha \to \beta until F does not change
```

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

## **Computing a Canonical Cover**

$$R = (A, B, C)$$

$$F = \{A \rightarrow BC$$

$$B \rightarrow C$$

$$A \rightarrow B$$

$$AB \rightarrow C\}$$

- Combine  $A \rightarrow BC$  and  $A \rightarrow B$  into  $A \rightarrow BC$ 
  - Set is now  $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in  $AB \rightarrow C$ 
  - Check if the result of deleting A from AB → C is implied by the other dependencies
    - Yes: in fact,  $B \rightarrow C$  is already present!
  - Set is now  $\{A \rightarrow BC, B \rightarrow C\}$
- $\blacksquare$  C is extraneous in  $A \rightarrow BC$ 
  - Check if  $A \to C$  is logically implied by  $A \to B$  and the other dependencies
    - Yes: using transitivity on  $A \rightarrow B$  and  $B \rightarrow C$ .
      - Can use attribute closure of A in more complex cases
- The canonical cover is:  $A \rightarrow B$  $B \rightarrow C$

Consider the following set F of functional dependencies on the relation schema r(A, B, C, D, E, F):

$$A \rightarrow BCD$$

$$BC \rightarrow DE$$

$$B \rightarrow D$$

$$D \rightarrow A$$

- a. Compute  $B^+$ .
- b. Prove (using Armstrong's axioms) that AF is a superkey.
- c. Compute a canonical cover for the above set of functional dependencies F; give each step of your derivation with an explanation.

Algorithm to compute  $\alpha^+$ , the closure of  $\alpha$  under F

while (changes to result) do

begin

end

for each  $\beta \rightarrow \gamma$  in F do

**if**  $\beta \subseteq result$  **then**  $result := result \cup \gamma$ 

result :=  $\alpha$ ;

```
Armstrong's Axioms:
```

if  $\beta \subset \alpha$ , then  $\alpha \to \beta$  (reflexivity)

• if  $\alpha \to \beta$ , then  $\gamma \alpha \to \gamma \beta$  (augmentation)

• if  $\alpha \to \beta$ , and  $\beta \to \gamma$ , then  $\alpha \to \gamma$  (transitivity)

To compute a canonical cover for *F*: repeat

Use the union rule to replace any dependencies in F  $\alpha_1 \to \beta_1$  and  $\alpha_1 \to \beta_2$  with  $\alpha_1 \to \beta_1$   $\beta_2$  Find a functional dependency  $\alpha \to \beta$  with an extraneous attribute either in  $\alpha$  or in  $\beta$  /\* Note: test for extraneous attributes done using  $F_{c,}$  not F\*/ If an extraneous attribute is found, delete it from  $\alpha \to \beta$  until F does not change

#### Algorithm to compute $\alpha^+$ , the closure of $\alpha$ under F

```
 \begin{array}{l} \textit{result} := \alpha; \\ \textbf{while} \; (\textit{changes to } \textit{result}) \; \textbf{do} \\ \textbf{for each} \; \beta \rightarrow \gamma \; \textbf{in} \; \textit{F} \; \textbf{do} \\ \textbf{begin} \\ \textbf{if} \; \beta \subseteq \textit{result} \; \textbf{then} \; \textit{result} := \textit{result} \cup \gamma \\ \textbf{end} \\ \end{array}
```

#### Armstrong's Axioms:

- if  $\beta \subset \alpha$ , then  $\alpha \to \beta$  (reflexivity)
- if  $\alpha \to \beta$ , then  $\gamma \alpha \to \gamma \beta$  (augmentation)
- if  $\alpha \to \beta$ , and  $\beta \to \gamma$ , then  $\alpha \to \gamma$  (transitivity)

#### Additional rules:

- If  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds, then  $\alpha \to \beta \gamma$  holds (union)
- If  $\alpha \to \beta \gamma$  holds, then  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds (decomposition)
- If  $\alpha \to \beta$  holds and  $\gamma \not \beta \to \delta$  holds, then  $\alpha \gamma \to \delta$  holds (pseudotransitivity)

#### To compute a canonical cover for *F*: repeat

```
Use the union rule to replace any dependencies in F \alpha_1 \to \beta_1 and \alpha_1 \to \beta_2 with \alpha_1 \to \beta_1 \beta_2 Find a functional dependency \alpha \to \beta with an extraneous attribute either in \alpha or in \beta /* Note: test for extraneous attributes done using F_{c,} not F*/ If an extraneous attribute is found, delete it from \alpha \to \beta until F does not change
```

#### **Lossless-join Decomposition**

For the case of  $R = (R_1, R_2)$ , we require that for all possible relations r on schema R

$$r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$$

- A decomposition of R into  $R_1$  and  $R_2$  is lossless join if at least one of the following dependencies is in  $F^+$ :
  - $R_1 \cap R_2 \rightarrow R_1$
  - $R_1 \cap R_2 \rightarrow R_2$
- The above functional dependencies are a sufficient condition for lossless join decomposition; the dependencies are a necessary condition only if all constraints are functional dependencies

#### **Example**

- R = (A, B, C) $F = \{A \rightarrow B, B \rightarrow C\}$ 
  - Can be decomposed in two different ways
- $R_1 = (A, B), R_2 = (B, C)$ 
  - Lossless-join decomposition:

$$R_1 \cap R_2 = \{B\} \text{ and } B \rightarrow BC$$

- Dependency preserving
- $R_1 = (A, B), R_2 = (A, C)$ 
  - Lossless-join decomposition:

$$R_1 \cap R_2 = \{A\} \text{ and } A \rightarrow AB$$

• Not dependency preserving (cannot check  $B \rightarrow C$  without computing  $R_1 \bowtie R_2$ )

#### **Dependency Preservation**

- Let  $F_i$  be the set of dependencies  $F^+$  that include only attributes in  $R_i$ .
  - A decomposition is **dependency preserving**, if  $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
  - If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

#### **Testing for Dependency Preservation**

- To check if a dependency  $\alpha \to \beta$  is preserved in a decomposition of R into  $R_1, R_2, ..., R_n$  we apply the following test (with attribute closure done with respect to F)
  - $result = \alpha$ • while (changes to result) do • for each  $R_i$  in the decomposition •  $t = (result \cap R_i)^+ \cap R_i$ •  $result = result \cup t$
  - If result contains all attributes in β, then the functional dependency
     α → β is preserved.
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute  $F^+$  and  $(F_1 \cup F_2 \cup ... \cup F_n)^+$

#### **Example**

$$R = (A, B, C)$$

$$F = \{A \rightarrow B$$

$$B \rightarrow C\}$$

$$Key = \{A\}$$

- R is not in BCNF
- Decomposition  $R_1 = (A, B), R_2 = (B, C)$ 
  - $R_1$  and  $R_2$  in BCNF
  - Lossless-join decomposition
  - Dependency preserving

#### **Testing for BCNF**

- To check if a non-trivial dependency  $\alpha \rightarrow \beta$  causes a violation of BCNF
  - 1. compute  $\alpha^+$  (the attribute closure of  $\alpha$ ), and
  - 2. verify that it includes all attributes of *R*, that is, it is a superkey of *R*.
- **Simplified test**: To check if a relation schema *R* is in BCNF, it suffices to check only the dependencies in the given set *F* for violation of BCNF, rather than checking all dependencies in *F*<sup>+</sup>.
  - If none of the dependencies in F causes a violation of BCNF, then
    none of the dependencies in F<sup>+</sup> will cause a violation of BCNF
    either.
- However, simplified test using only F is incorrect when testing a relation in a decomposition of R
  - Consider R = (A, B, C, D, E), with  $F = \{A \rightarrow B, BC \rightarrow D\}$ 
    - ▶ Decompose R into  $R_1 = (A,B)$  and  $R_2 = (A,C,D,E)$
    - Neither of the dependencies in *F* contain only attributes from (*A*,*C*,*D*,*E*) so we might be mislead into thinking *R*<sub>2</sub> satisfies BCNF.
    - ▶ In fact, dependency  $AC \rightarrow D$  in  $F^+$  shows  $R_2$  is not in BCNF.

## **Testing Decomposition for BCNF**

- To check if a relation R<sub>i</sub> in a decomposition of R is in BCNF,
  - Either test R<sub>i</sub> for BCNF with respect to the restriction of F to R<sub>i</sub>
     (that is, all FDs in F<sup>+</sup> that contain only attributes from R<sub>i</sub>)
  - or use the original set of dependencies F that hold on R, but with the following test:
    - for every set of attributes  $\alpha \subseteq R_i$ , check that  $\alpha^+$  (the attribute closure of  $\alpha$ ) either includes no attribute of  $R_i$   $\alpha$ , or includes all attributes of  $R_i$ .
    - If the condition is violated by some  $\alpha \to \beta$  in F, the dependency

$$\alpha \rightarrow (\alpha^+ - \alpha) \cap R_i$$

can be shown to hold on  $R_i$ , and  $R_i$  violates BCNF.

▶ We use above dependency to decompose R<sub>i</sub>

#### **BCNF** Decomposition Algorithm

```
 \begin{tabular}{ll} result := \{R\}; \\ done := false; \\ compute $F^+$; \\ \begin{tabular}{ll} while (not done) do \\ if (there is a schema $R_i$ in $result$ that is not in BCNF) \\ then begin \\ let $\alpha \to \beta$ be a nontrivial functional dependency that holds on $R_i$ such that $\alpha \to R_i$ is not in $F^+$, and $\alpha \cap \beta = \emptyset$; \\ $result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta)$; \\ end \\ else $done := true$; \\ \end \\ \end{tabular}
```

Note: each  $R_i$  is in BCNF, and decomposition is lossless-join.

#### **Example of BCNF Decomposition**

- R = (A, B, C)  $F = \{A \rightarrow B$   $B \rightarrow C\}$   $Key = \{A\}$
- R is not in BCNF ( $B \rightarrow C$  but B is not superkey)
- Decomposition
  - $R_1 = (B, C)$
  - $R_2 = (A,B)$

#### **Example of BCNF Decomposition**

- class (course\_id, title, dept\_name, credits, sec\_id, semester, year, building, room\_number, capacity, time\_slot\_id)
- Functional dependencies:
  - course\_id→ title, dept\_name, credits
  - building, room\_number→capacity
  - course\_id, sec\_id, semester, year→building, room\_number, time\_slot\_id
- A candidate key {course\_id, sec\_id, semester, year}.
- BCNF Decomposition:
  - course\_id→ title, dept\_name, credits holds
    - but course\_id is not a superkey.
  - We replace class by:
    - course(course\_id, title, dept\_name, credits)
    - class-1 (course\_id, sec\_id, semester, year, building, room\_number, capacity, time\_slot\_id)

#### **BCNF Decomposition (Cont.)**

- course is in BCNF
  - How do we know this?
- building, room\_number→capacity holds on class-1
  - but {building, room\_number} is not a superkey for class-1.
  - We replace class-1 by:
    - classroom (building, room\_number, capacity)
    - section (course\_id, sec\_id, semester, year, building, room\_number, time\_slot\_id)
- classroom and section are in BCNF.

## **BCNF** and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

- R = (J, K, L)  $F = \{JK \rightarrow L$   $L \rightarrow K\}$ Two candidate keys = JK and JL
- R is not in BCNF
- Any decomposition of R will fail to preserve

$$JK \rightarrow I$$

This implies that testing for  $JK \rightarrow L$  requires a join

#### **Third Normal Form: Motivation**

- There are some situations where
  - BCNF is not dependency preserving, and
  - efficient checking for FD violation on updates is important
- Solution: define a weaker normal form, called Third Normal Form (3NF)
  - Allows some redundancy (with resultant problems; we will see examples later)
  - But functional dependencies can be checked on individual relations without computing a join.
  - There is always a lossless-join, dependency-preserving decomposition into 3NF.

#### **3NF Example**

- Relation dept\_advisor.
  - dept\_advisor (s\_ID, i\_ID, dept\_name)
     F = {s\_ID, dept\_name → i\_ID, i\_ID → dept\_name}
  - Two candidate keys: s\_ID, dept\_name, and i\_ID, s\_ID
  - R is in 3NF
    - s\_ID, dept\_name → i\_ID
      - s\_ID, dept\_name is a superkey
    - i\_ID → dept\_name
      - dept\_name is contained in a candidate key

#### Redundancy in 3NF

- There is some redundancy in this schema
- Example of problems due to redundancy in 3NF

• 
$$R = (J, K, L)$$
  
 $F = \{JK \rightarrow L, L \rightarrow K\}$ 

| J                     | L                     | K                     |
|-----------------------|-----------------------|-----------------------|
| <i>j</i> <sub>1</sub> | <i>I</i> <sub>1</sub> | <i>k</i> <sub>1</sub> |
| $j_2$                 | <i>I</i> <sub>1</sub> | <i>k</i> <sub>1</sub> |
| $j_3$                 | <i>I</i> <sub>1</sub> | <i>k</i> <sub>1</sub> |
| null                  | $I_2$                 | <i>k</i> <sub>2</sub> |

- repetition of information (e.g., the relationship  $l_1$ ,  $k_1$ )
  - (i\_ID, dept\_name)
- need to use null values (e.g., to represent the relationship  $l_2$ ,  $k_2$  where there is no corresponding value for J).
  - (i\_ID, dept\_namel) if there is no separate relation mapping instructors to departments

#### **Testing for 3NF**

- Optimization: Need to check only FDs in F, need not check all FDs in F<sup>+</sup>.
- Use attribute closure to check for each dependency  $\alpha \to \beta$ , if  $\alpha$  is a superkey.
- If  $\alpha$  is not a superkey, we have to verify if each attribute in  $\beta$  is contained in a candidate key of R
  - this test is rather more expensive, since it involve finding candidate keys
  - testing for 3NF has been shown to be NP-hard
  - Interestingly, decomposition into third normal form (described shortly) can be done in polynomial time

## **3NF Decomposition Algorithm**

```
Let F_c be a canonical cover for F;
i := 0;
for each functional dependency \alpha \rightarrow \beta in F_c do
 if none of the schemas R_i, 1 \le i \le i contains \alpha \beta
       then begin
               i := i + 1;
               R_i := \alpha \beta
          end
if none of the schemas R_j, 1 \le j \le i contains a candidate key for R
 then begin
           i := i + 1:
           R_i:= any candidate key for R;
       end
/* Optionally, remove redundant relations */
repeat
if any schema R_i is contained in another schema R_k
     then I^* delete R_i */
       R_j = R_{jj}
return (R_1, R_2, ..., R_i)
```

## **3NF Decomposition Algorithm**

```
let F_c be a canonical cover for F;
i := 0;
for each functional dependency \alpha \rightarrow \beta in F_c
     i := i + 1;
     R_i := \alpha \beta;
if none of the schemas R_j, j = 1, 2, ..., i contains a candidate key for R
  then
     i := i + 1;
     R_i := any candidate key for R;
/* Optionally, remove redundant relations */
repeat
     if any schema R_i is contained in another schema R_k
       then
         /* Delete R_i */
         R_i := R_i;
         i := i - 1;
until no more R<sub>i</sub>s can be deleted
return (R_1, R_2, \ldots, R_i)
```

## **3NF Decomposition Algorithm (Cont.)**

- Above algorithm ensures:
  - each relation schema R<sub>i</sub> is in 3NF
  - decomposition is dependency preserving and lossless-join

#### 3NF Decomposition: An Example

Relation schema:

```
cust_banker_branch = (<u>customer_id</u>, <u>employee_id</u>, branch_name, type)
```

- The functional dependencies for this relation schema are:
  - 1. customer\_id, employee\_id → branch\_name, type
  - 2. employee\_id → branch\_name
  - 3. customer\_id, branch\_name → employee\_id
- We first compute a canonical cover
  - branch\_name is extraneous in the r.h.s. of the 1<sup>st</sup> dependency
  - No other attribute is extraneous, so we get F<sub>C</sub> =

```
customer_id, employee_id → type
employee_id → branch_name
customer_id, branch_name → employee_id
```

## **3NF Decompsition Example (Cont.)**

■ The **for** loop generates following 3NF schema:

```
(customer_id, employee_id, type)

(<u>employee_id</u>, branch_name)

(customer_id, branch_name, employee_id)
```

- Observe that (customer\_id, employee\_id, type) contains a candidate key of the original schema, so no further relation schema needs be added
- At end of for loop, detect and delete schemas, such as (<u>employee\_id</u>, branch\_name), which are subsets of other schemas
  - result will not depend on the order in which FDs are considered
- The resultant simplified 3NF schema is:

```
(customer_id, employee_id, type)
(customer_id, branch_name, employee_id)
```

#### Comparison of BCNF and 3NF

- It is always possible to decompose a relation into a set of relations that are in 3NF such that:
  - the decomposition is lossless
  - the dependencies are preserved
- It is always possible to decompose a relation into a set of relations that are in BCNF such that:
  - the decomposition is lossless
  - it may not be possible to preserve dependencies.

#### **Design Goals**

- Goal for a relational database design is:
  - 1. BCNF.
  - 2. Lossless join.
  - 3. Dependency preservation.
- If we cannot achieve this, we accept one of
  - Lack of dependency preservation
  - Redundancy due to use of 3NF
- Interestingly, SQL does not provide a direct way of specifying functional dependencies other than superkeys.
  - Can specify FDs using assertions, but they are expensive to test, (and currently not supported by any of the widely used databases!)
- Even if we had a dependency preserving decomposition, using SQL we would not be able to efficiently test a functional dependency whose left hand side is not a key.

#### **Overall Database Design Process**

- We have assumed schema R is given
  - R could have been generated when converting E-R diagram to a set of tables.
  - R could have been a single relation containing all attributes that are
    of interest (called universal relation).
  - Normalization breaks R into smaller relations.
  - R could have been the result of some ad hoc design of relations, which we then test/convert to normal form.

#### **ER Model and Normalization**

- When an E-R diagram is carefully designed, identifying all entities correctly, the tables generated from the E-R diagram should not need further normalization.
- However, in a real (imperfect) design, there can be functional dependencies from non-key attributes of an entity to other attributes of the entity
  - Example: an employee entity with attributes
     department\_name and building,
     and a functional dependency
     department\_name→ building
  - Good design would have made department an entity
- Functional dependencies from non-key attributes of a relationship set possible, but rare --- most relationships are binary

#### **Denormalization for Performance**

- May want to use non-normalized schema for performance
- For example, displaying prereqs along with course\_id, and title requires
  join of course with prereq
- Alternative 1: Use denormalized relation containing attributes of course as well as prereq with all above attributes
  - faster lookup
  - extra space and extra execution time for updates
  - extra coding work for programmer and possibility of error in extra code
- Alternative 2: use a materialized view defined as course prereq
  - Benefits and drawbacks same as above, except no extra coding work for programmer and avoids possible errors

#### Other Design Issues

- Some aspects of database design are not caught by normalization
- Examples of bad database design, to be avoided: Instead of earnings (company\_id, year, amount), use
  - earnings\_2004, earnings\_2005, earnings\_2006, etc., all on the schema (company\_id, earnings).
    - Above are in BCNF, but make querying across years difficult and needs new table each year
  - company\_year (company\_id, earnings\_2004, earnings\_2005, earnings\_2006)
    - Also in BCNF, but also makes querying across years difficult and requires new attribute each year.
    - Is an example of a crosstab, where values for one attribute become column names
    - Used in spreadsheets, and in data analysis tools

#### **Modeling Temporal Data**

- **Temporal data** have an association time interval during which the data are *valid*.
- A snapshot is the value of the data at a particular point in time
- Several proposals to extend ER model by adding valid time to
  - attributes, e.g., address of an instructor at different points in time
  - entities, e.g., time duration when a student entity exists
  - relationships, e.g., time during which an instructor was associated with a student as an advisor.
- But no accepted standard
- Adding a temporal component results in functional dependencies like ID → street, city
  - not to hold, because the address varies over time
- A temporal functional dependency  $X \xrightarrow{T} Y$  holds on schema R if the functional dependency  $X \to Y$  holds on all snapshots for all legal instances r(R).

#### **Modeling Temporal Data (Cont.)**

- In practice, database designers may add start and end time attributes to relations
  - E.g., course(course\_id, course\_title) is replaced by course(course\_id, course\_title, start, end)
    - Constraint: no two tuples can have overlapping valid times
      - Hard to enforce efficiently
- Foreign key references may be to current version of data, or to data at a point in time
  - E.g., student transcript should refer to course information at the time the course was taken

## **End of Chapter**

**Database System Concepts, 6th Ed.** 

©Silberschatz, Korth and Sudarshan See <a href="https://www.db-book.com">www.db-book.com</a> for conditions on re-use

# Proof of Correctness of 3NF Decomposition Algorithm

**Database System Concepts, 6th Ed.** 

©Silberschatz, Korth and Sudarshan See <a href="https://www.db-book.com">www.db-book.com</a> for conditions on re-use

# Correctness of 3NF Decomposition Algorithm

- 3NF decomposition algorithm is dependency preserving (since there is a relation for every FD in  $F_c$ )
- Decomposition is lossless
  - A candidate key (C) is in one of the relations  $R_i$  in decomposition
  - Closure of candidate key under F<sub>c</sub> must contain all attributes in R.
  - Follow the steps of attribute closure algorithm to show there is only one tuple in the join result for each tuple in  $R_i$

# Correctness of 3NF Decomposition Algorithm (Cont'd.)

Claim: if a relation  $R_i$  is in the decomposition generated by the above algorithm, then  $R_i$  satisfies 3NF.

- Let  $R_i$  be generated from the dependency  $\alpha \to \beta$
- Let  $\gamma \to B$  be any non-trivial functional dependency on  $R_{i}$ . (We need only consider FDs whose right-hand side is a single attribute.)
- Now, B can be in either  $\beta$  or  $\alpha$  but not in both. Consider each case separately.

# Correctness of 3NF Decomposition (Cont'd.)

- Case 1: If B in β:
  - If  $\gamma$  is a superkey, the 2nd condition of 3NF is satisfied
  - Otherwise  $\alpha$  must contain some attribute not in  $\gamma$
  - Since  $\gamma \to B$  is in  $F^+$  it must be derivable from  $F_c$ , by using attribute closure on  $\gamma$ .
  - Attribute closure not have used  $\alpha \to \beta$ . If it had been used,  $\alpha$  must be contained in the attribute closure of  $\gamma$ , which is not possible, since we assumed  $\gamma$  is not a superkey.
  - Now, using  $\alpha \to (\beta \{B\})$  and  $\gamma \to B$ , we can derive  $\alpha \to B$  (since  $\gamma \subseteq \alpha$   $\beta$ , and B  $\notin \gamma$  since  $\gamma \to B$  is non-trivial)
  - Then, *B* is extraneous in the right-hand side of  $\alpha \rightarrow \beta$ ; which is not possible since  $\alpha \rightarrow \beta$  is in  $F_c$ .
  - Thus, if *B* is in  $\beta$  then  $\gamma$  must be a superkey, and the second condition of 3NF must be satisfied.

# Correctness of 3NF Decomposition (Cont'd.)

- Case 2: B is in  $\alpha$ .
  - Since  $\alpha$  is a candidate key, the third alternative in the definition of 3NF is trivially satisfied.
  - In fact, we cannot show that γ is a superkey.
  - This shows exactly why the third alternative is present in the definition of 3NF.

Q.E.D.