

Max Schaufelberger February 9, 2024 — KTH Royal Institute of Technology

Table of Contents

Introduction

S.50 ulation

Control

L²⁰⁰rning

Combined Learning

Conclusion

BackupSlides

Cantrol

Learning

Loarned Control

Conclusion

Max Schaufelberger

2/50

Introduction

0 250 30

300

400

45

-500

50 ---

00 ---

550 -

\nat are we talking about

Control a Linear system

Use Spiking neural networks

350

[Xue+22]

\nat are we talking about

Control a Linear system

Tracking of reference trajectory

$$\dot{x} = Ax + Bu \\
y = Cx$$
(1)

300 Only stable systems

Use Spiking neural networks

- Third Generation of NN
- Working with discrete spikes
- Inherently fit for temporal data

200 250 300 350 400 450 500 550 600 650 700

Coal / Motivation

Artificial SNN can already solve various cognitive task such as

- Memorization
- Basic Logic
- Simulation of Dynamic Systems
- Control

Although with varying levels of biologic plausibility. We set out to build a controlled dynamic system based on SNN using learning and biologic plausibility

- Allow for black-box deployment without manual parameter tuning
- "Limit ourselves to use the brains capabilities to design a controller"

Max Schaufelberger KTH 5/50

200 250 300 350 400 450

500

00

0

1 ethod

1 Simulate

Use a spiking network to simulate a dynamic system

2. Control

Devise a control scheme to control the network output

3. Learn

ارجار) ly biologically plausible learning rules to our network

4. Combine

Integrate all three steps into a single controller

Max Schaufelberger KTH 6/50

250 300 350

00 ----

-500

550 —

500

650 -

70

Simulation of Linear systems

- Build NN that outputs \hat{x} from the system $\dot{x} = Ax + c$ given c
- Group of LIF neurons with with intrinsic Voltage, tracking the projected error $V_i = F(x \hat{x}) + \mu r_i$
- Network decoding $\hat{x} = F^T r$

$$\dot{V} = -\lambda_V V + Fc + W^f o(t) + W^s r(t) + \sigma_V \eta(t)$$

Coometric

Control

200 250

350 400

500 —

600

650

Cuntrol Concept

- 250 (Almost) identical network architecture
- Network output is external input into (previous) simulating network ←→ Network state contains control signal
- Governed by PD-control as $c = \dot{x} Ax$
- In presence of output matrix $C \neq I \Leftrightarrow \operatorname{rank}(B^T C^T) = \operatorname{rank}(B^T)$

fix the layouting of this page

Max Schaufelberger KTH 11/5

C₁₀₀:rol 150 200 250 300 350 400 450 500 550 60

Examples

Insert Picture

200

250

300

350

Max Schaufelberger KTH 12/50

Luarning

300 350

0 450

- 500 -

600 -

50

$V_i = F_i(x - \hat{x}) - \mu r_i$

Learning rules [BD15]

Slow Learning rule $W^s = F(A + \lambda_d \mathbf{I})F^T$

- Online Learning of Student teacher dynamics $\hat{x} = M\hat{x} + c$
- Error Feedback Ke during Training
- $\delta M \propto e\hat{x}^T \longrightarrow \delta W^s \propto F(e\hat{x}^T)F^T \approx Fer^T$
 - Error alignment?
- Supervised Learning rule

Fast Learning rule $W^f = FF^T + \mu \mathbb{I}$

- Voltage measures system error
- Minimize average Voltage outside of Neuron Threshold
- Biologically plausible prexpost locally
- Unsupervised Learning Rule

250 -

00

0

400

450

-500

-550

---600

65

700

Examples

Insert Picture

Insert Picture

200

250

300

Combined Learning

0 --- 3

00

4

450

- 500

-550

600

70

Control Concept

[HC19]

250

300

350

Max Schaufelberger

KTH

17/50

50 ---- 3

00

400

450

- 500

550

600

)

Control Concept

[HC19]

350

Max Schaufelberger KTH 17/50

50 —

300 —

350

400

450

- 500

550

-600

650 —

70

[HC19]

Cuntrol Concept

Max Schaufelberger

KTH

17/50

300

40

- 45(

-500

550

600 -

650 —

Control Concept II

Foblems

In conjunction, problems can arise:

- Divergence in Learning
- Control with Noise
- Reliance on analytic results
- ³⁰⁰ Biologically implausible Learning

Cual Network

No Learning rule for control network available Gpen Loop Control:

- Incapable of noise detection or correction
- No Compensation of Training error

Highly dependent on governing dynamics from $c_{contr} = \dot{x}_{ref} - Ax_{ref}$

Dual Network with Feedback

No Learning rule for control network available Cyen loop Control:

- Incapable of noise detection or correction
- No Compensation of Training error

Highly dependent on governing dynamics from $c_{contr} = \dot{x}_{ret}$

650 650

Single Network

No Learning rule for control network available
Open Loop Control:

- Incapable of noise detection or correction
- No Compensation of Training error

Highly dependent on governing dynamics from $c_{\text{contr}} = \dot{x_{\text{ref}}} - Ax_{\text{ref}}$ Ortnonormality restriction on Input Matrix $B \in \mathbb{B} := \{M \mid M^TM = \mathbb{I}\}$

300

Single Network with Feedback

No Learning rule for control network available
Open loop Control:

- Incapable of noise detection or correction
- No Compensation of Training error

Highly dependent on governing dynamics from $c_{\text{contr}} = \dot{x_{\text{ref}}} - Ax_{\text{ref}}$ Ortnonormality restriction on Input Matrix $B \in \mathbb{B} := \{M \mid M^TM = \mathbb{I}\}$

300

50 ---- 300

350

- 400

450

-500

550 —

0

7(

Examples

T Example working with single Network working 1 Example of 2 networks working

250

300

Conclusion

200 250 300 350 400 450 500 550 600 650 700

Conclusion

- Open loop and inaccurate
 learning of slow weights W^s need to be addressed.
- Highly dependent on initial conditions in learning
 - Impressive accuracy

- In ideal conditions useable results achievable
- Limited Applicability → Only of theoretical Interest
- Results are somewhat translatable to NEF and LSMs

Choice between biologic plausibility or and Input Matrix Restriction for accurate results

250 300 350 400 450

500 ----!

600

650

70

Fature Work

- Enable non-linear dynamics
- Obey Dale's Law for neuron excitation and inhibition
- Optimize Control
- Learning of En- and Decoder Γ
- Allow for synaptic delays

200 250 300 350 400 450 500 550 600 650 700

Eibliography I

Ralph Bourdoukan and Sophie Denève. "Enforcing balance allows local supervised learning in spiking recurrent networks". In: Advances in Neural Information Processing Systems. Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc., 2015. URL: https://proceedings.neurips.cc/paper_files/paper/2015/file/3871bd64012152bfb53fdf04b401193f-Paper.pdf.

[BMD13] Martin Boerlin, Christian K. Machens, and Sophie Denève. "Predictive Coding of Dynamical Variables in Balanced Spiking Networks". In: PLOS Computational Biology 9.11 (Nov. 14, 2013). Publisher: Public Library of Science, e1003258. ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.1003258. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003258 (visited on 09/20/2022).

200 250 300 350 400 450 500 550 600 650 700

Eibliography II

[HC19] Fugiang Huang and ShiNung Ching. "Spiking networks as efficient distributed

controllers". In: Biological Cybernetics 113.1 (Apr. 2019), pp. 179-190. ISSN: 0340-1200,

1432-0770. DOI: 10.1007/s00422-018-0769-7. URL:

http://link.springer.com/10.1007/s00422-018-0769-7 (visited on 10/23/2022).

[Xue+22] Xiaohe Xue, Ralf D. Wimmer, Michael M. Halassa, and Zhe Sage Chen. "Spiking Recurrent

Neural Networks Represent Task-Relevant Neural Sequences in Rule-Dependent

Computation". In: Cognitive Computation 15.4 (Feb. 2022), pp. 1167–1189. ISSN:

1866-9964. DOI: 10.1007/s12559-022-09994-2. URL:

http://dx.doi.org/10.1007/s12559-022-09994-2.

EuckupSlides

Control

Control with SNN

It is necessary on

Slow and Instantaneous decoding

Requires full state information or and

- Acceptable results in ideal conditions
- Rank condition is limiting factor

+

- Acceptable results in ideal condition
- Pank condition is limiting factor
- Network horse is invisible to the contri

- Acceptable results in ideal conditions
- Rank condition is limiting factor
- Network holse is invisible to the control
- Simple open loop controller in the definition o

Luarning

150 200 250 300 350

 $\hat{\mathbf{x}} = (\mathbf{M} - K\mathbf{I})\hat{\mathbf{x}} + \mathbf{C} + K\mathbf{x}_{700}$ $\mathbf{W}^{s} = \mathbf{\Gamma}^{T} (\mathbf{A} + \lambda_{d} \mathbf{I}) \mathbf{\Gamma}$

Sow Learning rule

Online Teacher-Student Scheme for under

Matrix update under squared loss

replace the F with I in the picture!

Learned Control

- · Very limited applicability
- Open loop + rank condition
 limiting factor
 - Too inaccurate learning of slow weights
 - Too dependent on initial conditions in learning

- In ideal conditions useable results achievable
- Only of theoretical interest
- Impressive accuracy
- translatable to NEF and LSMs

pt				
- F_t	ire Work			
200				
400				

<u> zture Work</u>

- Enable non-linear dynamics
- Obey Dale's Law for neuron excitation and inhibitio

Figture Worl

- Enable non-linear dynamics
- Obey Dale's Law for neuron excitation and inhibition
- 250 **Optimize Contro**

Future Worl

- Enable non-linear dynamics
- Obey Dale's Law for neuron excitation and inhibition
- Optimize Contro
- Learning of the and Decode

Figture Work

- Enable non-linear dynamics
- Obey Dale's Law for neuron excitation and inhibition
 - Optimize Contro
 - Learning of En- and Decode
- Allow for synaptic delays

pt 100 150 200 250 300 350 400 450 500 550 600 650 70

[BD15] Ralph Bourdoukan and Sophie Denève. "Enforcing balance allow supervised learning in spiking recurrent networks". In:

M. Sugiyama, and R. Garnett, Vol. 28, Curran Associates, Inc., 2015, URL:

[BMD13] Martin Boerlin, Christian K. Machens, and Sophie Denève. "Predictive Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks". In: 1000 Cocling of Dynamical Variables in Balanced Spiking Networks.

sited on

