CLAIMS

1. An anionic surfactant of the formula (I):

$$R^2-Y-(O)C-(HR)C-C(HR^1)-C(O)-(OA)_n-X$$
 (I)

wherein one of R and R¹ is a C₆ to C₂₂ linear or branched alkyl or alkenyl, and the other is hydrogen;

Y is O₁ or NH, or -NH-CH₂-C(=CH₂)-, or -N(CH₂-CR³(=CH₂))-CH₂-C(=CH₂)- where R³ is hydrogen or methyl;

when Y is O, \mathbb{R}^2 is hydrogen, or a salt, or a \mathbb{C}_1 to \mathbb{C}_6 linear or branched alkyl, or

an optionally substituted C₃ to C₁₀ linear or branched alkenyl; when Y is NH, or -NH-CH₂-C(=CH₂)-, or -N(CH₂-CR³(=CH₂))-CH₂-C(=CH₂)- where R³ is hydrogen or methyl;

OA is an oxyalkylene group;

n is 2 to 100; and

- 15 X is a group comprising at least one acidic H atom, or a salt thereof.
 - 2. An anionic surfactant according to claim 1 wherein one of R and R^1 is a C_{12} to C_{20} alkenyl group.
- 20 3. An anionic surfactant according to either one of claims 1 and 2 wherein n is in the range from 5 to 30.
 - 4. An anionic surfactant according to any one of the preceding claims wherein X comprises at least one sulphur atom.

25

5. An anionic surfactant according to any one of the preceding claims wherein R^2 is a group of formula -CH₂-C(=CH₂)-R⁴ where R⁴ is hydrogen or methyl; or a group of formula -R⁵-O-C(O)-C(=CH₂)-R⁶ where R⁵ is hydrogen or methyl, and R⁶ is a C₂ to C₆ linear or branched alkyl.

30

6. A method of free radical initiated addition polymerisation of at least one ethylenically unsaturated monomer in the presence of a surfactant comprising at least one anionic surfactant of the formula (I):

$$R^2-Y-(O)C-(HR)C-C(HR^1)-C(O)-(OA)_n-X$$
 (I)

wherein one of R and R¹ is a C₆ to C₂₂ linear or branched alkyl or alkenyl, and the other is hydrogen;

Y is O, or NH, or -NH-CH₂-C(=CH₂)-, or -N(CH₂-CR³(=CH₂))-CH₂-C(=CH₂)- where R³ is

hydrogen or methyl;

when Y is O, \mathbb{R}^2 is hydrogen, or a salt, or a \mathbb{C}_1 to \mathbb{C}_6 linear or branched alkyl, or an optionally substituted \mathbb{C}_3 to \mathbb{C}_{10} linear or branched alkenyl;

when Y is NH, or -NH-CH₂-C(=CH₂)-, or -N(CH₂-CR³(=CH₂))-CH₂-C(=CH₂)- where R³ is

5 hydrogen or methyl, R² is hydrogen or methyl;

OA is an oxyalkylene group;

n is 2 to 100; and

15

X is a group comprising at least one acidic H atom, or a salt thereof.

- A method according to claim 6 wherein the ethylenically unsaturated monomer(s) is or comprises at least one vinyl monomer.
 - 8. A method according to claim 7 wherein the vinyl monomer(s) represent at least 60% by weight of the ethylenically unsaturated monomer(s).
 - 9. A method according to any one of claims 6 to 8 wherein the at least one anionic surfactant of the formula (I) is used for a seed stage, and at least one non-ionic surfactant of the formula (II) below is used for a particle growth stage in emulsion polymerisation:

$$R^2-Y-(O)C-(HR)C-C(HR^1)-C(O)-(OA)_n-Z-R^9$$
 (II)

- wherein R, R¹, R², Y, OA and n are as defined for the anionic surfactant of formula (I), and Z is O, or NH, or -NH-CH₂-C(=CH₂)-, or -N(CH₂-CR¹⁰(=CH₂))-CH₂-C(=CH₂)- where R¹⁰ is hydrogen or methyl;
 - when Z is O, R^9 is hydrogen, or a C_1 to C_6 linear or branched alkyl, or an optionally substituted C_3 to C_{10} linear or branched alkenyl;
- when Z is NH, or -NH-CH₂-C(=CH₂)-, or -N(CH₂-CR¹⁰(=CH₂))-CH₂-C(=CH₂)- where R¹⁰ is hydrogen or methyl, R⁹ is hydrogen or methyl.
 - 10. The use of an anionic surfactant of the formula (I):

$$R^2-Y-(O)C-(HR)C-C(HR^1)-C(O)-(OA)_n-X$$
 (I)

- wherein one of R and R¹ is a C₆ to C₂₂ linear or branched alkyl or alkenyl, and the other is hydrogen;
 - Y is O, or NH, or -NH-CH₂-C(=CH₂)-, or -N(CH₂-CR³(=CH₂))-CH₂-C(=CH₂)- where R³ is hydrogen or methyl;
 - when Y is O, \mathbb{R}^2 is hydrogen, or a salt, or a \mathbb{C}_1 to \mathbb{C}_6 linear or branched alkyl, or
- an optionally substituted C_3 to C_{10} linear or branched alkenyl; when Y is NH, or -NH-CH₂-C(=CH₂)-, or -N(CH₂-CR³(=CH₂))-CH₂-C(=CH₂)- where R³ is hydrogen or methyl, R² is hydrogen or methyl;

OA is an oxyalkylene group;
n is 2 to 100; and
X is a group comprising at least one acidic H atom, or a salt thereof,
as a non-migratory surfactant in emulsion polymerisation.