$$f_0(980)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See also the minireview on scalar mesons under $f_0(500)$. (See the index for the page number.)

$f_0(980)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
	ESTIMAT				
		wing data for averages			
989.4 ± 1.3 989.9 ± 0.4	424 706	ABLIKIM ABLIKIM		BES3 BES3	, ,
$1003 \begin{array}{c} + 5 \\ -27 \end{array}$		^{1,2} GARCIA-MAR.	.11	RVUE	Compilation
996 ± 7		^{1,3} GARCIA-MAR.	.11	RVUE	Compilation
996 $\begin{array}{c} + 4 \\ -14 \end{array}$		⁴ MOUSSALLAM	111	RVUE	Compilation
981 ±43		⁵ MENNESSIER	10	RVUE	Compilation
$1030 \begin{array}{c} +30 \\ -10 \end{array}$		⁶ ANISOVICH	09	RVUE	$0.0 \; \overline{p} p, \; \pi N$
977 $^{+11}_{-9}$ \pm 1	44	⁷ ECKLUND	09	CLEO	4.17 $e^+e^- \rightarrow D_s^- D_s^{*+} + c.c.$
$982.2 \pm 1.0 ^{+}_{-} \stackrel{8.1}{8.0}$		⁸ UEHARA	08A	BELL	$10.6 \stackrel{e^+e^-}{e^+e^-\pi^0}_{\pi^0}$
976.8 \pm 0.3 $^{+10.1}_{-0.6}$	64k	⁹ AMBROSINO	07	KLOE	$1.02~e^+e^-\rightarrow~\pi^0\pi^0\gamma$
984.7 \pm 0.4 $^{+}$ 2.4 $^{-}$ 3.7	64k	¹⁰ AMBROSINO	07	KLOE	$1.02~e^+e^-\rightarrow~\pi^0\pi^0\gamma$
973 ± 3	262 ± 30	¹¹ AUBERT	07A	(BABR	$10.6 \begin{array}{l} e^+ e^- \rightarrow \\ \phi \pi^+ \pi^- \gamma \end{array}$
970 ± 7	54 ± 9	¹¹ AUBERT	07A	(BABR	$10.6 e^{+}e^{-} \rightarrow \phi \pi^{0} \pi^{0} \gamma$ $D^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$
953 ±20	2.6k	¹² BONVICINI	07	CLEO	$D^+ \rightarrow \pi^- \pi^+ \pi^+$
$985.6 { + \atop -} \begin{array}{l} 1.2 + \atop 1.5 - \atop 1.6 \end{array}$		¹³ MORI	07	BELL	$10.6 e^{+}e^{-} _{e^{+}e^{-}\pi^{+}\pi^{-}}$
$983.0 \pm 0.6 ^{+}_{-} \stackrel{4.0}{3.0}$		¹⁴ AMBROSINO	06 B	KLOE	$1.02 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\gamma$
$977.3 \pm 0.9 ^{+}_{-} \stackrel{3.7}{4.3}$		¹⁵ AMBROSINO	06 B	KLOE	$ \begin{array}{ccc} 1.02 & e^{+}e^{-} \rightarrow \\ \pi^{+}\pi^{-}\gamma \\ B^{+} \rightarrow & K^{+}\pi^{+}\pi^{-} \end{array} $
950 ± 9	4286	16 GARMASH	06	BELL	
965 ± 10		¹⁷ ABLIKIM	05	BES2	, , , , , , , , , , , , , , , , , , , ,
1031 ± 8		¹⁸ ANISOVICH	03	RVUE	$\phi K^+ K^-$
1037 ±31		TIKHOMIROV			$\begin{array}{c} 40.0 \ \pi^{-} \ C \rightarrow \\ \kappa_{S}^{0} \ \kappa_{S}^{0} \ \kappa_{L}^{0} \ X \end{array}$
973 ± 1	2438	¹⁹ ALOISIO	02 D	KLOE	$e^+e^- \rightarrow \pi^0\pi^0\gamma$
977 \pm 3 \pm 2		²⁰ AITALA	01A	E791	$D_s^+ \rightarrow \pi^- \pi^+ \pi^+$
$969.8 \pm \ 4.5$	419	²¹ ACHASOV	00н	SND	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\gamma$
$985 \begin{array}{c} +16 \\ -12 \end{array}$	419	^{22,23} ACHASOV			
976 ± 5 ± 6		²⁴ AKHMETSHIN	99 B	CMD2	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
HTTP://PDG.LE	3L.GOV	Page 1		Crea	ted: 5/30/2017 17:20

```
<sup>24</sup> AKHMETSHIN 99C CMD2 e^+e^- \rightarrow \pi^0\pi^0\gamma
                                  268
 977 \pm 3 \pm 6
 975 \pm 4 \pm 6
                                             <sup>25</sup> AKHMETSHIN 99C CMD2 e^+e^- \rightarrow \pi^0\pi^0\gamma
                                             <sup>26</sup> AKHMETSHIN 99C CMD2 e^+e^- \rightarrow \pi^+\pi^-\gamma,
 975
        \pm 4 \pm 6
 985 \ \pm 10
                                                 BARBERIS
                                                                            OMEG 450 pp \rightarrow
                                                                                           p_s p_f K^+ K^-
 982 \pm 3
                                                                      99B OMEG 450 pp \rightarrow p_S p_f \pi^+ \pi^-
                                                 BARBERIS
                                                                      99C OMEG 450 pp \to p_s p_f \pi^0 \pi^0
 982 \pm 3
                                                 BARBERIS
 987 \pm 6 \pm 6
                                             <sup>27</sup> BARBERIS
                                                                      99D OMEG 450 pp \to K^+K^-,
                                                                            \pi^+\pi^- GAM4 450 pp \rightarrow pp\pi^0\pi^0
 989 \pm 15
                                                 BELLAZZINI
                                             <sup>28</sup> KAMINSKI
                                                                            RVUE \pi\pi \to \pi\pi, K\overline{K}, \sigma\sigma
 991 \pm 3
                                             <sup>28</sup> OLLER
                                                                            RVUE \pi\pi \to \pi\pi, K\overline{K}
\sim 980
                                                                      99B RVUE \pi\pi \to \pi\pi, K\overline{K}
\sim 993.5
                                                 OLLER
                                            <sup>28</sup> OLLER
                                                                      99C RVUE \pi\pi \to \pi\pi, K\overline{K}, \eta\eta
\sim 987
                                             ^{29} ACKERSTAFF 98Q OPAL Z \rightarrow f_0 X
 957 \pm 6
                                                ALDE
                                                                      98
                                                                            GAM4
 960 \pm 10
                                             <sup>28</sup> ANISOVICH
                                                                      98B RVUE Compilation
1015
       \pm 15
                                             <sup>30</sup> LOCHER
                                                                            RVUE \pi\pi \to \pi\pi, K\overline{K}
1008
                                                                            GAM2 450 pp \rightarrow pp\pi^0\pi^0
                                             <sup>29</sup> ALDE
 955 \pm 10
                                                                      97C OBLX 0.0 \, \overline{p} \, p \rightarrow \pi^{+} \pi^{-} \pi^{0}
                                             31 BERTIN
 994 \pm 9
                                                                            RVUE \pi\pi \to \pi\pi, K\overline{K}
                                             <sup>32</sup> ISHIDA
 993.2 \pm \ 6.5 \pm \ 6.9
                                                TORNQVIST
                                                                            RVUE \pi\pi \to \pi\pi, K\overline{K}, K\pi,
1006
                                                                      95B GAM2 38 \pi^- p \to \pi^0 \pi^0 n
                                             <sup>33</sup> ALDE
 997 \pm 5
                                    3k
                                             <sup>34</sup> ALDE
                                                                      95B GAM2 38 \pi^- p \to \pi^0 \pi^0 n
 960 \pm 10
                                  10k
                                                                      95B CBAR 0.0 \, \overline{p} \, p \rightarrow 3\pi^0
 994 \pm 5
                                                 AMSLER
                                                                      95D CBAR 0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0
                                             <sup>35</sup> AMSLER
\sim 996
                                                                                           \pi^{0}_{\eta\eta, \pi^{0}\pi^{0}\eta}
                                             <sup>36</sup> ANISOVICH
 987
                                                                      95
                                                                            RVUE
        \pm 6
                                                                            RVUE \pi\pi \to \pi\pi, K\overline{K}
1015
                                                 JANSSEN
                                                                      95
                                             <sup>37</sup> BUGG
                                                                            RVUE \overline{p}p \rightarrow \eta 2\pi^0
 983
                                                                      94
                                             <sup>38</sup> KAMINSKI
 973 \pm 2
                                                                      94
                                                                            RVUE \pi\pi \to \pi\pi, K\overline{K}
                                             <sup>39</sup> ZOU
                                                                      94B RVUE
 988
                                             <sup>40</sup> MORGAN
                                                                                      \pi\pi(K\overline{K}) \to \pi\pi(K\overline{K}),
                                                                            RVUE
 988
       \pm 10
                                                                                           J/\psi \to \phi \pi \pi (K \overline{K}),
D_s \to \pi (\pi \pi)
                                             <sup>29</sup> AGUILAR-...
                                                                      91
 971.1 \pm 4.0
                                                                            EHS
                                                                                       400 pp
 979 \pm 4
                                             <sup>41</sup> ARMSTRONG 91
                                                                            OMEG 300 pp 
ightarrow pp \pi \pi,
                                                                                           ppK\overline{K}
 956 \pm 12
                                                 BREAKSTONE 90
                                                                            SFM
                                                                                       pp \rightarrow pp\pi^{+}\pi^{-}
                                             <sup>29</sup> AUGUSTIN
                                                                                       J/\psi \rightarrow \omega \pi^+ \pi^-
 959.4± 6.5
                                                                      89
                                                                            DM2
                                             <sup>29</sup> ABACHI
                                                                                       e^+e^- \rightarrow \pi^+\pi^-X
 978 \pm 9
                                                                      86B HRS
 985.0+29.0
                                                                                       23 \pi^- p \rightarrow n2K_S^0
                                                                      82B
                                                                            MPS
                                                 ETKIN
         -39.0
                                             <sup>41</sup> GIDAL
                                                                            MRK2 J/\psi \rightarrow \pi^+\pi^-X
 974 \pm 4
                                                                      81
                                             <sup>42</sup> ACHASOV
                                                                      80
 975
                                                                            RVUE
                                                                                       0.7 \, \overline{p}p \rightarrow K_S^0 K_S^0
                                             <sup>41</sup> AGUILAR-...
                                                                      78
                                                                            HBC
 986 \pm 10
                                             <sup>41</sup> LEEPER
                                                                            ASPK 2-2.4 \pi^- p \rightarrow
 969 \pm 5
                                                                                           \pi^{+}\pi^{-}n, K+K-n
                                             <sup>41</sup> BINNIE
 987 \pm 7
                                                                             CNTR \pi^- p \rightarrow nMM
```

1012	± 6	⁴³ GRAYER	73	ASPK	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
1007	± 20	⁴³ HYAMS	73	ASPK	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
997	± 6	⁴³ PROTOPOP	73	HBC	$7 \pi^+ p \rightarrow \pi^+ p \pi^+ \pi^-$

¹Quoted number refers to real part of pole position.

¹⁸ K-matrix pole from combined analysis of
$$\pi^-p \to \pi^0\pi^0$$
 n , $\pi^-p \to K\overline{K}$ n , $\pi^+\pi^- \to \pi^+\pi^-$, $\overline{p}p \to \pi^0\pi^0\pi^0$, $\pi^0\eta\eta$, $\pi^0\pi^0\eta$, $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, $K^0_SK^0_S\pi^0$, $K^+K^0_S\pi^-$ at rest, $\overline{p}n \to \pi^-\pi^-\pi^+$, $K^0_SK^-\pi^0$, $K^0_SK^0_S\pi^-$ at rest.

 $^{^2}$ Analytic continuation using Roy equations. Uses the K_{e4} data of BATLEY 10C and the $\pi\,N\to~\pi\pi\,N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.

 $^{^3}$ Analytic continuation using GKPY equations. Uses the K_{e4} data of BATLEY 10C and the $\pi\,N\to~\pi\,\pi\,N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.

⁴ Pole position. Used Roy equations.

⁵ Average of the analyses of three data sets in the K-matrix model. Uses the data of BATLEY 08A, HYAMS 73, and GRAYER 74, partially of COHEN 80 or ETKIN 82B.

 $^{^6}$ On sheet II in a 2-pole solution. The other pole is found on sheet III at (850-100i) MeV

⁷Using a relativistic Breit-Wigner function and taking into account the finite D_s mass.

⁸ Breit-Wigner mass. Using finite width corrections according to FLATTE 76 and ACHASOV 05, and the ratio $g_{f_0 K K}/g_{f_0 \pi \pi}=0$.

⁹ In the kaon-loop fit.

¹⁰ In the no-structure fit.

¹¹ Systematic errors not estimated.

¹² FLATTE 76 parameterization. $g_{f_0\pi\pi}=329\pm96~{\rm MeV/c^2}$ assuming $g_{f_0K\overline{K}}/g_{f_0\pi\pi}=2$.

¹³ Breit-Wigner mass. Using finite width corrections according to FLATTE 76 and ACHASOV 05, and the ratio $g_{f_0\,K\,K}/g_{f_0\,\pi\,\pi}=4.21\pm0.25\pm0.21$ from ABLIKIM 05.

 $^{^{14}}$ In the kaon-loop fit following formalism of ACHASOV 89.

 $^{^{15}\,\}mathrm{In}$ the no-structure fit assuming a direct coupling of ϕ to $\mathit{f}_{0}\,\gamma.$

¹⁶ FLATTE 76 parameterization. Supersedes GARMASH 05.

 $^{^{17}}$ FLATTE 76 parameterization, ${\it g}_{\it f_0\,\it K\,\overline{K}}/{\it g}_{\it f_0\,\pi\,\pi}=4.21\pm0.25\pm0.21.$

 $^{^{19}}$ From the negative interference with the $f_0(500)$ meson of AITALA 01B using the ACHASOV 89 parameterization for the $f_0(980)$, a Breit-Wigner for the $f_0(500)$, and ACHASOV 01F for the $\rho\pi$ contribution.

²⁰ Coupled-channel Breit-Wigner, couplings g_{π} = 0.09 ± 0.01 ± 0.01, g_{K} = 0.02 ± 0.04 ± 0.03.

²¹ Supersedes ACHASOV 981. Using the model of ACHASOV 89.

²² Supersedes ACHASOV 981.

²³ In the "narrow resonance" approximation.

²⁴ Assuming $\Gamma(f_0)$ = 40 MeV.

²⁵ From a narrow pole fit taking into account $f_0(980)$ and $f_0(1200)$ intermediate mechanisms.

²⁶ From the combined fit of the photon spectra in the reactions $e^+e^- \rightarrow \pi^+\pi^-\gamma$, $\pi^0\pi^0\gamma$.

²⁷ Supersedes BARBERIS 99 and BARBERIS 99B

²⁸ T-matrix pole.

²⁹ From invariant mass fit.

 $^{^{30}}$ On sheet II in a 2 pole solution. The other pole is found on sheet III at (1039-93i) MeV.

³¹On sheet II in a 2 pole solution. The other pole is found on sheet III at (963-29i) MeV.

³² Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.

 $^{^{33}}$ At high |t|.

 $^{^{34}}$ At low |t|.

$f_0(980)$ WIDTH

Width determination very model dependent. Peak width in $\pi\pi$ is about 50 MeV, but decay width can be much larger.

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
10 to 100 OUR E					
• • • We do not use	e the following	g data for averages,	fits, li		
15.3 ± 4.7	424	ABLIKIM	15 P	BES3	$J/\psi \rightarrow K^+K^-3\pi$
9.5 ± 1.1	706	ABLIKIM	12E	BES3	$J/\psi \rightarrow \gamma 3\pi$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		^{1,2} GARCIA-MAR.	.11	RVUE	Compilation
$50 + 20 \\ - 12$		^{2,3} GARCIA-MAR.	.11	RVUE	Compilation
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		⁴ MOUSSALLAN	/11	RVUE	Compilation
36 ± 22		⁵ MENNESSIER	10	RVUE	Compilation
$70 \begin{array}{c} + & 20 \\ - & 32 \end{array}$		⁶ ANISOVICH	09	RVUE	$0.0 \overline{p}p, \pi N$
$91 \begin{array}{c} + \ 30 \\ - \ 22 \end{array} \pm \ 3$	44	⁷ ECKLUND	09	CLEO	4.17 $e^+e^- \rightarrow D_S^-D_S^{*+} + c.c.$
$66.9 \pm 2.2 {+17.6 \atop -12.5}$		⁸ UEHARA	A80	BELL	$10.6 e^{+} e^{-}_{e} _{\pi} 0 _{\pi} 0$
65 ± 13	262 ± 30	⁹ AUBERT	07 AK	BABR	$10.6 e^{+} e^{-} \rightarrow \phi \pi^{+} \pi^{-} \gamma$
81 ± 21	54 ± 9	⁹ AUBERT	07 AK	BABR	$10.6 \begin{array}{l} e^{+} e^{-} \rightarrow \\ \phi \pi^{0} \pi^{0} \gamma \end{array}$
$51.3^{+}_{-}\ \begin{array}{rr} 20.8 + 13.2 \\ 17.7 - \ 3.8 \end{array}$		¹⁰ MORI	07	BELL	$10.6 e^{+}e^{-} _{e^{+}e^{-}\pi^{+}\pi^{-}}$
61 \pm 9 $+14$	2584	¹¹ GARMASH	05	BELL	$B^+ \rightarrow K^+ \pi^+ \pi^-$
64 ± 16		¹² ANISOVICH	03	RVUE	
121 ± 23		TIKHOMIROV	03	SPEC	$^{40.0}$ π^- C \rightarrow 6 6 6 6 6 1 1 1
~ 70		¹³ BRAMON	02	RVUE	$ \begin{array}{c} 3 & 3 & L \\ 1.02 & e^+e^- \rightarrow \\ \pi^0 & \pi^0 & \gamma \end{array} $
$44 \ \pm \ 2 \ \pm \ 2$	848	¹⁴ AITALA	01A	E791	$D^+ \rightarrow \pi^- \pi^+ \pi^+$
201 ± 28	419	¹⁵ ACHASOV	00н	SND	$e^{\stackrel{s}{+}}e^{-} \rightarrow \pi^{0}\pi^{0}\gamma$
122 ± 13	419 ¹⁶	^{6,17} ACHASOV		SND	$e^+e^- \rightarrow \pi^0\pi^0\gamma$
56 ± 20		¹⁸ AKHMETSHIN	199 C	CMD2	$e^+e^- \rightarrow \pi^0\pi^0\gamma$

³⁵ On sheet II in a 4-pole solution, the other poles are found on sheet III at (953–55*i*) MeV and on sheet IV at (938–35*i*) MeV.
36 Combined fit of ALDE 95B, ANISOVICH 94, AMSLER 94D.
37 On sheet II in a 2 pole solution. The other pole is found on sheet III at (996–103*i*) MeV.

³⁸ From sheet II pole position.

 $^{^{39}}$ On sheet II in a 2 pole solution. The other pole is found on sheet III at (797-185i) MeV and can be interpreted as a shadow pole.

 $^{^{40}}$ On sheet II in a 2 pole solution. The other pole is found on sheet III at (978-28i) MeV.

 $^{^{41}}$ From coupled channel analysis.

⁴² Coupled channel analysis with finite width corrections.

⁴³ Included in AGUILAR-BENITEZ 78 fit.

65	\pm	20					BARBERIS	99	OMEG	450 <i>pp</i> →
										$p_s p_f K^+ K^-$
80	\pm	10					BARBERIS	99 B	OMEG	$450 pp \rightarrow$
00		10					DADDEDIC	006	ONIEC	$p_{s}p_{f}\pi^{+}\pi^{-}$
80	\pm	10					BARBERIS	99 C	OMEG	$450 pp \rightarrow p_{S} p_{f} \pi^{0} \pi^{0}$
48	_	12	\perp	Ω		19	BARBERIS	000	OMEG	$ \begin{array}{c} \rho_{S} \rho_{f} \pi^{-1} \pi^{-1} \\ 450 \ pp \rightarrow K^{+} K^{-}, \end{array} $
70	_	12	_	U			DANDENIS	990		$\pi^+\pi^-$
65	\pm	25					BELLAZZINI	99	GAM4	$450 pp \rightarrow pp\pi^0\pi^0$
71		14					KAMINSKI	99		$\pi\pi \to \pi\pi$, $K\overline{K}$, $\sigma\sigma$
~ 28						20	OLLER	99		$\pi\pi \to \pi\pi$, $K\overline{K}$
~ 25						20	OLLER			$\pi\pi \to \pi\pi, K\overline{K}$
~ 14						20	OLLER			$\pi\pi \to \pi\pi$, $K\overline{K}$, $\eta\eta$
70						20	ALDE	98	GAM4	
	\pm	16				20	ANISOVICH			Compilation
54						21	LOCHER	98		$\pi\pi o \pi\pi$, $K\overline{K}$
69						22	ALDE	97		$450 pp \rightarrow pp\pi^0\pi^0$
38		20				23	BERTIN			$0.0 \; \overline{p}p \rightarrow \; \pi^{+}\pi^{-}\pi^{0}$
~ 10	0					4	ISHIDA			$\pi\pi \to \pi\pi, K\overline{K}$
34							TORNQVIST	96	RVUE	$\pi\pi \to \pi\pi$, $K\overline{K}$, $K\pi$,
48	+	10			3k	25	ALDE	05B	CAM2	$38 \pi^{-} p \rightarrow \pi^{0} \pi^{0} n$
	±				10k		ALDE			$38 \pi^{-} p \rightarrow \pi^{0} \pi^{0} n$
26					IOK		AMSLER			$0.0 \overline{p} p \rightarrow 3\pi^0$
~ 11		10				27	AMSLER			$0.0 \overline{p}p \rightarrow 3\pi$ $0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0,$
\sim 11	_						AIVISLLIX	930	CDAIN	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
80	\pm	12				28	ANISOVICH	95	RVUE	, ,,,, , , ,,
30							JANSSEN			$\pi\pi \to \pi\pi$, $K\overline{K}$
74						29	BUGG	94	RVUE	$\overline{p}p \rightarrow \eta 2\pi^0$
29	\pm	2				30	KAMINSKI	94	RVUE	$\pi\pi \to \pi\pi$, $K\overline{K}$
46						31	ZOU	94 B	RVUE	
48	\pm	12				32	MORGAN	93	RVUE	$\pi\pi(K\overline{K}) \to$
										$\pi\pi(K\overline{K})$, $J/\psi ightarrow$
										$\phi\pi\pi(K\overline{K}),\ D_{S} \rightarrow$
						22				$\pi(\pi\pi)$
		10.6)			22		91	EHS	400 <i>pp</i>
72	±	8				33	ARMSTRONG	91	OMEG	300 $pp \rightarrow pp\pi\pi$, $ppK\overline{K}$
110	_	30					RDE AKSTONE	00	SEM	$pp \wedge N$ $pp \rightarrow pp\pi^{+}\pi^{-}$
29						22	ABACHI	90 96p	DI M	$e^+e^- \rightarrow \pi^+\pi^-X$
				20			ETKIN	000	MDC	$e \cdot e \rightarrow \pi \cdot \pi \wedge \Lambda$
120			Τ.	20		33		02B	IVIP3	$23 \pi^- p \rightarrow n2K_S^0$
28						34	ACHASOV	81	MRK2	$J/\psi \rightarrow \pi^+\pi^-X$
		300								
100	\pm									$0.7 \overline{p}p \rightarrow K_S^0 K_S^0$
30	\pm	8				33	LEEPER	77	ASPK	$2-2.4 \pi^{-} p \rightarrow$
48	_	1/				33	BINNIE	72	CNTD	$\pi^+\pi^-$ n, K^+K^- n π^- p \rightarrow nMM
32		14						73	VCDK	$ \begin{array}{ccc} \pi & p \rightarrow m \text{ of } & \\ 17 & \pi^- p \rightarrow \pi^+ \pi^- n \end{array} $
∠د		TO								
20	± +					36	HVVVVC	72	ΛCDIZ	17 m n m +
30 54	\pm	10								$17 \pi^- p \rightarrow \pi^+ \pi^- n$
		10					HYAMS PROTOPOP			

- 1 Analytic continuation using Roy equations. Uses the $K_{\rm e4}$ data of BATLEY 10C and the $\pi\,{\it N}\to~\pi\pi\,{\it N}$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73. 2 Quoted number refers to twice imaginary part of pole position.
- 3 Analytic continuation using GKPY equations. Uses the K_{e4} data of BATLEY 10C and the $\pi\,N\to~\pi\,\pi\,N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.
- $^4\,\mathrm{Pole}$ position. Used Roy equations.
- ⁵ Average of the analyses of three data sets in the K-matrix model. Uses the data of BATLEY 08A, HYAMS 73, and GRAYER 74, partially of COHEN 80 or ETKIN 82B.
- 6 On sheet II in a 2-pole solution. The other pole is found on sheet III at (850-100i) MeV
- 7 Using a relativistic Breit-Wigner function and taking into account the finite $D_{\scriptscriptstyle S}$ mass.
- 8 Breit-Wigner $\pi\pi$ width. Using finite width corrections according to FLATTE 76 and ACHASOV 05, and the ratio $g_{f_0 \ K \ K}/g_{f_0 \ \pi \ \pi} = 0.$
- ⁹Systematic errors not estimated.
- 10 Breit-Wigner $\pi\pi$ width. Using finite width corrections according to FLATTE 76 and ACHASOV 05, and the ratio $g_{f_0\,K\,K}/g_{f_0\,\pi\,\pi}=4.21\pm0.25\pm0.21$ from ABLIKIM 05.
- 11 Breit-Wigner, solution 1, PWA ambiguous.
- 12 K-matrix pole from combined analysis of $\pi^-p\to\pi^0\pi^0$ n, $\pi^-p\to K\overline{K}$ n, $\pi^+\pi^-\to\pi^+\pi^-$, $\overline{p}p\to\pi^0\pi^0$ π^0 , π^0 π^0 , π^0 π^0 , π^0 ${\it K}^+ \, {\it K}^0_S \, \pi^- \text{ at rest, } \overline{\it p} \, n \rightarrow \ \pi^- \, \pi^- \, \pi^+, \ {\it K}^0_S \, {\it K}^- \, \pi^0, \ {\it K}^0_S \, {\it K}^0_S \, \pi^- \text{ at rest.}$
- ¹³ Using the data of AKHMETSHIN 99C, ACHASOV 00H, and ALOISIO 02D.
- ¹⁴ Breit-Wigner width.
- $^{15}\,\mathsf{Supersedes}$ ACHASOV 981. Using the model of ACHASOV 89.
- ¹⁶ Supersedes ACHASOV 981.
- ¹⁷ In the "narrow resonance" approximation.
- ¹⁸ From the combined fit of the photon spectra in the reactions $e^+e^- \rightarrow \pi^+\pi^-\gamma$, $\pi^0 \pi^0 \gamma$.
- ¹⁹ Supersedes BARBERIS 99 and BARBERIS 99B
- ²⁰ T-matrix pole.
- ²¹ On sheet II in a 2 pole solution. The other pole is found on sheet III at (1039–93*i*) MeV.
- ²² From invariant mass fit.
- 23 On sheet II in a 2 pole solution. The other pole is found on sheet III at (963-29i) MeV.
- 24 Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.
- ²⁵ At high |t|.
- 26 At low |t|.
- 27 On sheet II in a 4-pole solution, the other poles are found on sheet III at (953-55i) MeV and on sheet IV at (938-35i) MeV.
- 28 Combined fit of ALDE 95B, ANISOVICH 94, 29 On sheet II in a 2 pole solution. The other pole is found on sheet III at (996–103*i*) MeV.
- 30 From sheet II pole position.
- 31 On sheet II in a 2 pole solution. The other pole is found on sheet III at (797-185i) MeV and can be interpreted as a shadow pole.
- 32 On sheet II in a 2 pole solution. The other pole is found on sheet III at (978-28i) MeV.
- ³³ From coupled channel analysis.
- ³⁴ Coupled channel analysis with finite width corrections.
- $^{35}\mathsf{From}$ coupled channel fit to the HYAMS 73 and PROTOPOPESCU 73 data. With a simultaneous fit to the $\pi\pi$ phase-shifts, inelasticity and to the $K_S^0K_S^0$ invariant mass.
- ³⁶Included in AGUILAR-BENITEZ 78 fit.

$f_0(980)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\pi\pi_{-}$	dominant
	$\frac{\pi \pi}{K K}$	seen
Γ ₃	$\gamma \gamma e^+ e^-$	seen
Γ_4	e^+e^-	

$f_0(980)$ PARTIAL WIDTHS

$\Gamma(\gamma\gamma)$				Г ₃
<i>VALUE</i> (keV)	DOCUMENT ID		TECN	COMMENT
$0.31 \begin{array}{c} +0.05 \\ -0.04 \end{array}$ OUR AV	ERAGE			
$0.32\ \pm0.05$	$^{ m 1}$ DAI	14A	RVUE	Compilation
$0.286 \pm 0.017 ^{+ 0.211}_{- 0.070}$	² UEHARA	08A	BELL	10.6 $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$
$0.205 {}^{+ 0.095}_{- 0.083} {}^{+ 0.147}_{- 0.117}$	³ MORI	07	BELL	10.6 $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
$0.42\ \pm0.06\ \pm0.18$	⁴ OEST	90	JADE	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{0}\pi^{0}$
• • • We do not use the	ne following data for a	verage	es, fits, l	imits, etc. • • •
$0.16\ \pm0.01$	⁵ MENNESSIER	11	RVUE	
$0.29 \ \pm 0.21 \ ^{+0.02}_{-0.07}$	⁶ MOUSSALLAN	Л 11	RVUE	Compilation
0.42	7,8 PENNINGTON	1 08	RVUE	Compilation
0.10	^{8,9} PENNINGTON	1 08	RVUE	Compilation
$0.28 \begin{array}{l} +0.09 \\ -0.13 \end{array}$	¹⁰ BOGLIONE	99	RVUE	$\gamma \gamma ightarrow \ \pi^+ \pi^-$, $\pi^0 \pi^0$
$0.29\ \pm0.07\ \pm0.12$	^{11,12} BOYER	90		$e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
$0.31 \ \pm 0.14 \ \pm 0.09$	^{11,12} MARSISKE	90	_	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{0}\pi^{0}$
0.63 ± 0.14	¹³ MORGAN	90	RVUE	$\gamma \gamma \rightarrow \pi^+ \pi^-, \pi^0 \pi^0$

¹ Using dispersive analysis with phases from GARCIA-MARTIN 11A and BUETTIKER 04 as input.

 $^{^2}$ Using finite width corrections according to FLATTE 76 and ACHASOV 05, and the ratio $g_{f_0}\,K\,K/g_{f_0\,\pi\,\pi}=0.$

 $^{^3}$ Using finite width corrections according to FLATTE 76 and ACHASOV 05, and the ratio $g_{f_0\,K\,K}/g_{f_0\,\pi\,\pi}=4.21\pm0.25\pm0.21$ from ABLIKIM 05.

 $^{^4}$ OEST 90 quote systematic errors $^{+0.08}_{-0.18}.$ We use $\pm 0.18.$ Observed 60 events.

⁵ Uses an analytic K-matrix model. Compilation.

⁶ Using dispersion integral with phase input from Roy equations and data from MAR-SISKE 90, BOYER 90, BEHREND 92, UEHARA 08A, and MORI 07.

⁷ Solution A (preferred solution based on χ^2 -analysis).

⁸ Dispersion theory based amplitude analysis of BOYER 90, MARSISKE 90, BEHREND 92, and MORI 07.

and MORI 07.

Solution B (worse than solution A; still acceptable when systematic uncertainties are included).

¹⁰ Supersedes MORGAN 90.

 $^{^{11}}$ From analysis allowing arbitrary background unconstrained by unitarity.

¹² Data included in MORGAN 90, BOGLIONE 99 analyses.

¹³ From amplitude analysis of BOYER 90 and MARSISKE 90, data corresponds to resonance parameters m = 989 MeV, $\Gamma = 61$ MeV.

$\Gamma(e^+e^-)$					Γ4
VALUE (eV)	CL%	DOCUMENT ID	TECN	COMMENT	
<8.4	90	VOROBYEV 88	ND	$e^+e^- \rightarrow \pi^0\pi^0$	

f₀(980) BRANCHING RATIOS

 $\Gamma_1/(\Gamma_1+\Gamma_2)$

. (,, ,,), [, (,, ,,) , , , (```\				. 1/ (. 1 2)
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •
0.52 ± 0.12	9.9k	¹ AUBERT	060	BABR	$B^{\pm} \rightarrow K^{\pm}\pi^{\pm}\pi^{\mp}$
$_{0.75} + 0.11$		2 ADLUZIM	OEO	DECO	2-+2

ABLIKIM 0.75 - 0.1305Q BES2 $\chi_{c0}
ightarrow 2\pi^+ 2\pi^-$, 3 ANISOVICH 02D SPEC Combined fit 0.84 ± 0.02 OLLER 99B RVUE $\pi\pi \to \pi\pi$, $K\overline{K}$ ~ 0.68 ⁴ LOVERRE 80 HBC $4 \pi^- p \to n2K_S^0$ 0.67 ± 0.09 $0.81 \! \begin{array}{l} + \, 0.09 \\ - \, 0.04 \end{array}$ ⁴ CASON 78 STRC $7 \pi^- p \rightarrow n2K_S^0$ 76 OSPK 8.9 $\pi^- p \to n2K_S^0$ ⁴ WETZEL 0.78 ± 0.03

 $\Gamma(\pi\pi)/[\Gamma(\pi\pi)+\Gamma(K\overline{K})]$

f_0 (980) REFERENCES

ABLIKIM DAI ABLIKIM GARCIA-MAR GARCIA-MSSIER MOUSSALLAM	. 11A 11	PR D92 012007 PR D90 036004 PRL 108 182001 PRL 107 072001 PR D83 074004 PL B696 40 EPJ C71 1814	M. Ablikim et al. LY. Dai, M.R. Pennington M. Ablikim et al. R. Garcia-Martin et al. R. Garcia-Martin et al. G. Mennessier, S. Narison, XG. B. Moussallam	(BES II (MADI (MADI	I Collab.) (CEBAF) I Collab.) R, CRAC) R, CRAC)
BATLEY MENNESSIER ANISOVICH	10C 10 09	EPJ C70 635 PL B688 59 IJMP A24 2481	J.R. Batley <i>et al.</i> G. Mennessier, S. Narison, XG. V.V. Anisovich, A.V. Sarantsev	(CERN NA48/ . Wang	2 Collab.)
ECKLUND	09	PR D80 052009	K.M. Ecklund et al.	(CLE	Collab.)
BATLEY	A80	EPJ C54 411	J.R. Batley <i>et al.</i>	(CERN NA48/	2 Collab.)
PENNINGTON	80	EPJ C56 1	M.R. Pennington et al.		
UEHARA	A80	PR D78 052004	S. Uehara <i>et al.</i>	(BELL	E Collab.)
AMBROSINO	07	EPJ C49 473	F. Ambrosino <i>et al.</i>	(KLO	E Collab.)
AUBERT	07AK	PR D76 012008	B. Aubert <i>et al.</i>	(BABAI	R Collab.)
BONVICINI	07	PR D76 012001	G. Bonvicini et al.	(CLE	Collab.)
MORI	07	PR D75 051101	T. Mori <i>et al.</i>	(BELLI	E Collab.)
AMBROSINO	06B	PL B634 148	F. Ambrosino <i>et al.</i>	(KLO	E Collab.)
AUBERT	06O	PR D74 032003	B. Aubert <i>et al.</i>	(BABAI	R Collab.)
GARMASH	06	PRL 96 251803	A. Garmash <i>et al.</i>	(BELL	E Collab.)
ABLIKIM	05	PL B607 243	M. Ablikim <i>et al.</i>	(BE	S Collab.)
ABLIKIM	05Q	PR D72 092002	M. Ablikim <i>et al.</i>	(BE	S Collab.)
ACHASOV	05	PR D72 013006	N.N. Achasov, G.N. Shestakov		
GARMASH	05	PR D71 092003	A. Garmash <i>et al.</i>	(BELLI	E Collab.)
ABLIKIM	04G	PR D70 092002	M. Ablikim <i>et al.</i>	(BE	S Collab.)
BUETTIKER	04	EPJ C33 409	P. Buettiker, S. Descotes-Genon,	B. Moussallam	
ANISOVICH	03	EPJ A16 229	V.V. Anisovich et al.		
TIKHOMIROV	03	PAN 66 828	G.D. Tikhomirov et al.		
		Translated from YAF 66	860.		

 $^{^{1}}$ Recalculated by us using $\Gamma(K^{+}\,K^{-})$ / $\Gamma(\pi^{+}\,\pi^{-})=0.69\pm0.32$ from AUBERT 060 and isospin relations.

 $^{^{2}\,\}text{Using}$ data from ABLIKIM 04G.

³ From a combined K-matrix analysis of Crystal Barrel (0. $p\overline{p} \rightarrow \pi^0\pi^0\pi^0$, $\pi^0\eta\eta$, $\pi^0\pi^0\eta$), GAMS ($\pi p \rightarrow \pi^0\pi^0$ n, $\eta\eta$ n, $\eta\eta'$ n), and BNL ($\pi p \rightarrow K\overline{K}$ n) data.

⁴ Measure $\pi\pi$ elasticity assuming two resonances coupled to the $\pi\pi$ and $K\overline{K}$ channels only.

ALOISIO ANISOVICH	02D 02D	PL B537 21 PAN 65 1545	A. Aloisio <i>et al.</i> V.V. Anisovich <i>et al.</i>	(KLOE Collab.)
	-	Translated from YAF 65	1583.	
BRAMON ACHASOV	02 01F	EPJ C26 253 PR D63 094007	A. Bramon <i>et al.</i> N.N. Achasov, V.V. Gubin	(Novosibirsk SND Collab.)
AITALA	01A	PRL 86 765	E.M. Aitala et al.	(FNAL E791 Collab.)
AITALA	01B	PRL 86 770	E.M. Aitala et al.	(FNAL E791 Collab.)
ACHASOV	00H	PL B485 349	M.N. Achasov et al.	(Novosibirsk SND Collab.)
AKHMETSHIN		PL B462 371		(Novosibirsk CMD-2 Collab.)
AKHMETSHIN BARBERIS	99C 99	PL B462 380 PL B453 305	R.R. Akhmetshin <i>et al.</i> D. Barberis <i>et al.</i>	(Novosibirsk CMD-2 Collab.) (Omega Expt.)
BARBERIS	99B	PL B453 316	D. Barberis <i>et al.</i>	(Omega Expt.)
BARBERIS	99C	PL B453 325	D. Barberis <i>et al.</i>	(Omega Expt.)
BARBERIS	99D	PL B462 462	D. Barberis et al.	(Omega Expt.)
BELLAZZINI	99	PL B467 296	R. Bellazzini <i>et al.</i>	
BOGLIONE KAMINSKI	99 99	EPJ C9 11 EPJ C9 141	M. Boglione, M.R. Penningto R. Kaminski, L. Lesniak, B.	
OLLER	99	PR D60 099906 (erratun		(CNAC, TAININ)
OLLER	99B	NP A652 407 (erratum)		
OLLER	99C	PR D60 074023	J.A. Oller, E. Oset	
ACHASOV	981	PL B440 442	M.N. Achasov et al.	(0541 6 11 1)
ACKERSTAFF ALDE	98Q 98	EPJ C4 19 EPJ A3 361	K. Ackerstaff <i>et al.</i> D. Alde <i>et al.</i>	(OPAL Collab.)
ALDL	90	PAN 62 405	D. Alde et al.	(GAM4 Collab.) (GAMS Collab.)
71130		Translated from YAF 62		(drivio conds.)
ANISOVICH	98B	SPU 41 419	V.V. Anisovich et al.	
LOCHER	98	Translated from UFN 168 EPJ C4 317	M.P. Locher <i>et al.</i>	(PSI)
ALDE	97	PL B397 350	D.M. Alde <i>et al.</i>	(GAMS Collab.)
BERTIN	97C	PL B408 476	A. Bertin et al.	(OBELIX Collab.)
ISHIDA	96	PTP 95 745	S. Ishida <i>et al.</i>	(TOKY, MIYA, KEK)
TORNQVIST	96 05 D	PRL 76 1575	N.A. Tornqvist, M. Roos	(HELS)
ALDE AMSLER	95B 95B	ZPHY C66 375 PL B342 433	D.M. Alde <i>et al.</i> C. Amsler <i>et al.</i>	(GAMS Collab.) (Crystal Barrel Collab.)
AMSLER	95D	PL B355 425	C. Amsler et al.	(Crystal Barrel Collab.)
ANISOVICH	95	PL B355 363	V.V. Anisovich <i>et al.</i>	(PNPI, SERP)
JANSSEN	95	PR D52 2690	G. Janssen et al.	(STON, ADLD, JULI)
AMSLER	94D	PL B333 277	C. Amsler et al.	(Crystal Barrel Collab.)
ANISOVICH BUGG	94 94	PL B323 233 PR D50 4412	V.V. Anisovich <i>et al.</i> D.V. Bugg <i>et al.</i>	(Crystal Barrel Collab.) (LOQM)
KAMINSKI	94	PR D50 3145	R. Kaminski, L. Lesniak, J.P	
ZOU	94B	PR D50 591	B.S. Zou, D.V. Bugg	(LOQM)
MORGAN	93	PR D48 1185	D. Morgan, M.R. Pennington	
BEHREND	92	ZPHY C56 381	H.J. Behrend	(CELLO Collab.)
AGUILAR ARMSTRONG	91 91	ZPHY C50 405 ZPHY C51 351	M. Aguilar-Benitez <i>et al.</i> T.A. Armstrong <i>et al.</i>	(LEBC-EHS Collab.) (ATHU, BARI, BIRM+)
BOYER	90	PR D42 1350	J. Boyer <i>et al.</i>	(Mark II Collab.)
BREAKSTONE		ZPHY C48 569	A.M. Breakstone <i>et al.</i>	(ISU, BGNA, CERN+)
MARSISKE	90	PR D41 3324	H. Marsiske et al.	(Crystal Ball Collab.)
MORGAN	90	ZPHY C48 623	D. Morgan, M.R. Pennington	
OEST ACHASOV	90 89	ZPHY C47 343 NP B315 465	I. Oest et al.N.N. Achasov, V.N. Ivancher	(JADE Collab.)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme	(DM2 Collab.)
VOROBYEV	88	SJNP 48 273	P.V. Vorobiev et al.	(NOVO)
ADACHI	060	Translated from YAF 48		(DUDD ANI IND MICH.)
ABACHI ETKIN	86B 82B	PRL 57 1990 PR D25 1786	_	(PURD, ANL, IND, MICH+) SNL, CUNY, TUFTS, VAND)
GIDAL	81	PL 107B 153	G. Gidal <i>et al.</i>	(SLAC, LBL)
ACHASOV	80	SJNP 32 566	N.N. Achasov, S.A. Devyanir	n, G.N. Shestakov (NOVM)
COLIEN	00	Translated from YAF 32		(ANL) LID
COHEN LOVERRE	80 80	PR D22 2595 ZPHY C6 187	D. Cohen <i>et al.</i> P.F. Loverre <i>et al.</i>	(ANL) IJP (CERN, CDEF, MADR+) IJP
AGUILAR	78	NP B140 73	M. Aguilar-Benitez <i>et al.</i>	(MADR, BOMB+)
CASON	78	PRL 41 271	N.M. Cason et al.	(NDAM, ANL)
LEEPER	77	PR D16 2054	R.J. Leeper et al.	(ISU)
ROSSELET	77 76	PR D15 574	L. Rosselet <i>et al.</i>	(GEVA, SACL)
FLATTE WETZEL	76 76	PL 63B 224 NP B115 208	S.M. Flatte W. Wetzel <i>et al.</i>	(CERN) (ETH, CERN, LOIC)
SRINIVASAN	75	PR D12 681	V. Srinivasan <i>et al.</i>	(NDAM, ANL)
GRAYER	74	NP B75 189	G. Grayer et al.	(CERN, MPIM)
BINNIE	73	PRL 31 1534	D.M. Binnie et al.	(LOIC, SHMP)

GRAYER	73	Tallahassee	G. Grayer et al.	(CERN, MPIM)
HYAMS	73	NP B64 134	B.D. Hyams et al.	(CERN, MPIM)
PROTOPOP	73	PR D7 1279	S.D. Protopopescu et al.	(LBL)