Nonlinear Dynamics & Chaos I

Exercice Set 4 Questions

Question 1

Consider the discrete dynamical system

$$x_{n+1} = Ax_n + f(x_n, y_n),$$

 $y_{n+1} = By_n + g(x_n, y_n),$

where $x_n \in \mathbb{R}^c$, $y_n \in \mathbb{R}^d$, $A \in \mathbb{R}^{c \times c}$, $B \in \mathbb{R}^{d \times d}$; f and g are C^r functions with no linear terms. Assume that all eigenvalues of A have modulus one, and none of the eigenvalues of B have modulus one. Then the linearized system at the origin admits a center subspace E^c aligned with the x-coordinate plane.

- (a) Derive a general algebraic equation for the center manifold W^c , which is known to exist by a theorem analogous to the center manifold theorem for continuous dynamical systems.
- (b) Find a cubic order approximation for the center manifold of the discrete system

$$x_{n+1} = x_n + x_n y_n,$$

$$y_{n+1} = \lambda y_n - x_n^2,$$

where $\lambda \in (0,1)$.

(c) Reduce the dynamics to the center manifold and determine the stability of the origin. Verify your results by a numerical simulation of a few initial conditions near the origin.

Question 2

Construct a cubic-order local approximation for the unstable manifold of the hyperbolic fixed point of the pendulum equation

$$\ddot{x} + \sin(x) = 0.$$

Question 3

Consider the discrete dynamical system

$$\begin{cases} x_{n+1} = x_n + x_n y_n \\ y_{n+1} = \frac{1}{2} y_n - x_n^2 \end{cases}$$

Let $h: (-\varepsilon, \varepsilon) \longrightarrow \mathbb{R}$ be the local graph of the <u>center manifold</u> around (0,0). $(0 < \varepsilon \ll 1)$. Find the expression that h satisfies.

1

(a)
$$h(x + h(x)) - \frac{1}{2}h(x) = x^2$$

(b)
$$h(x + h(x)) - \frac{1}{2}h(x) = -x^2$$

(c)
$$h(x + xh(x)) - \frac{1}{2}h(x) = x^2$$

(d)
$$h(x + xh(x)) - \frac{1}{2}h(x) = -x^2$$

Question 4

Consider the following dynamical system

$$\begin{cases} \dot{x} = xy \\ \dot{y} = -y + x^2 \end{cases}$$

Which expression describes the reduced dynamics on the center manifold?

- (a) $\dot{x} = x^3(1 2x^2) + \mathcal{O}(x^5)$
- (b) $\dot{y} = y^3(1 2y^2) + \mathcal{O}(y^5)$
- (c) $\dot{x} = x^3(1+2x^2) + \mathcal{O}(x^5)$
- (d) $\dot{y} = y^3(1+2y^2) + \mathcal{O}(y^5)$

Question 5

Consider the following dynamical system

$$\begin{cases} \dot{x} = -x^3 \\ \dot{y} = -y \end{cases}$$

Let y = h(x) be the graph of the center manifold of (0,0). Which of the following expressions is accurate? Hint: $\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{y}{x^3}$

- (a) The dynamical system has a unique center manifold with $h(x) = e^{-\frac{1}{2x^2}}$
- (b) The dynamical system has a unique center manifold with $h(x) = e^{-\frac{1}{x^2}}$
- (c) The dynamical system has infinitely many center manifolds with $h(x) = \begin{cases} ae^{-\frac{1}{2x^2}} & x < 0 \\ 0 & x = 0 \\ be^{-\frac{1}{2x^2}} & x > 0 \end{cases}$
- (d) The dynamical system has infinitely many center manifolds with $h(x) = \begin{cases} ae^{-\frac{1}{x^2}} & x < 0 \\ 0 & x = 0 \quad \forall a, b \in \mathbb{R} \\ be^{-\frac{1}{x^2}} & x > 0 \end{cases}$

Question 6

The phase portrait of four planar dynamical systems are shown below. In which case is the origin <u>not</u> Lyapunov stable?

(b)

(a)

(c)

Question 7

Consider the dynamical system below

$$\dot{x} = |x|^2 (Ax + f(x))$$

where , $x \in \mathbb{R}^n$, $f \in C^1$, $A \in \mathbb{R}^{n \times n}$, $f = \mathcal{O}(|x|^2)$ and the matrix A has precisely one pair of purely imaginary eigenvalues, and (n-2) eigenvalues with negative real parts. Which of the following statements are true?

- (a) The origin x = 0 is unstable.
- (b) $\dim(W^c(0)) = 2$
- (c) $\dim(W^c(0)) = n$
- (d) None of the above