Johns Hopkins Engineering

Methods in Neurobiology

Experimental Approach to PN Regeneration

Models of PN regeneration

In vitro models

Immortalized neuronal or glia cell lines

Primary cultures (neurons and glia)

3D or organotypic cultures

In vivo models

Rats and mice, including genetic modified organisms

Rabbits, cats, dogs and primates (less common)

Examples of GEM mice used to study regeneration

References	Type of transgene	Type of study	Results
(Hirota et al. 1996)	Double transgenic expressing IL-6 and IL-6 receptor	Hypoglossal nerve ligation	Transgenic mice showed improved regeneration. These results suggest that IL-6 signal may play an important role in nerve regeneration
(Gondré et al. 1998)	Δ SCIP transgene	Sciatic nerve crush injury	The transgenic mice showed markedly accelerated regeneration and hypertrophy of both myelin and axons
(Inserra et al. 2000)	IL-6-null mice	Sciatic nerve crush injury and end-to-end neurorrhaphy	The absence of IL-6 does not impair peripheral nerve recovery after injury. The histomorphometric findings were consistent with the functional results, suggesting that IL-6 does not have a significant effect on nerve regeneration
(Kim et al. 2003)	Transgenic mice expressing Nogo-C in peripheral Schwann cells	Sciatic nerve crush injury	The transgenic mice regenerate axons less rapidly than do wild-type (WT) mice. This is associated with a decreased recovery rate for motor function after sciatic nerve injury. Thus, expression of the Nogo-66 domain by otherwise permissive myelinating cells is sufficient to hinder axonal reextension after trauma
(Rong et al. 2004)	Transgenic mice expressing DN RAGE in mononuclear phagocytes and/or peripheral neurons	Sciatic nerve crush injury	After lesion, transgenic mice displayed decreased functional and morphological recovery, and myelinated fiber density. In double transgenic mice, regeneration was even further impaired, suggesting the critical interplay between RAGE-modulated inflammation and neurite outgrowth in nerve repair
(Triolo et al. 2006)	GFAP-null mice	Sciatic nerve crush injury	Without lesion, peripheral nerves develop and function normally in GFAP- null mice; no significant differences in axonal sorting, Schwann-cell axon relationship, and myelination were observed. Axonal regeneration after damage was delayed. Mutant Schwann cells maintained the ability to dedifferentiate but showed defective proliferation

Paradigm to experimental regeneration

TABLE III
CLASSIFICATION OF NERVE LESIONS ACCORDING TO SUNDERLAND (LEFT COLUMN)

Interrruption of axon conduction of the action potential	Axonotmesis	MILD nerve lesion (it does not require surgical repair)
Loss of axon continuity		
Loss of fiber continuity		
Loss of perineurium continuity	Neurotmesis	SEVERE nerve lesion (it
Loss of epineurium continuity		requires surgical repair)

Nerve injury and repair

Table 1. Classification systems of peripheral nerve injury.

Recovery indication	Recovery speed	Overall recovery	Sunderland injury classification	Seddon injury classification
Favorable	Fast (< 1 month)	Complete	I	Neurapraxia
Favorable	Slow (~ 1 mm/day)	Complete	Π_*	Axonotmesis
Favorable	Slow (~ 1 mm/day)	Partial or incomplete	III	
Unfavorable	None	None	IV	Neurotmesis
Unfavorable	None	None	V	
Mixed	Variable	Incomplete	VI (Mackinnon)	All

Factors influencing successful nerve repair in the PNS Speed of regeneration Distance from end target Understanding nerve topology Delayed reconstruction due to trauma Aging

Strategy to improve PN regeneration

- Drugs that improve regeneration (Erythropoietin, Fausidil);
- Nerve grafts;
- Nerve transfers;
- Nerve conduits.

Intervention	Mechanism(s) of action	Observed effect(s)
Rolipram	 Phosphodiesterase 5 inhibition (prevents breakdown of cAMP) 	Prevented the decline of cAMP following injury Increased myelination Increased numbers of motor and sensory neuron regenerating across the repair site
Testosterone	Attenuates GFAP expression Increases BDNF expression Up-regulation of RAGs including βII-tubulin and GAP-43 Suppresses HSP expression	 Increased the rate of axonal regeneration
Fasudil	 Inhibition of ROK Prevents collapse of growth cones, promoting the regenerative process 	 Increased number of nerve fibers, density and width Increased numbers of large diameter myelinated axons Dose-dependent improvement in sensory neurit outgrowth
Chondroitinase ABC	 Degrades chondroitin sulfate proteoglycans (inhibitory myelin proteins) Inactivation of RHOA Improves the ability of axons to access SC basal laminae in the distal nerve stump 	 Increased number of motor and sensory neurons that regenerated their axons across the repair sit
Ibuprofen	 Inhibits RhoA through peroxisome proliferator- activated receptor gamma 	 Improved functional recovery Increased area and thickness of myelinated axon

References

Slide	Reference
3,4	Pierluigi Tos, P., Ronchi, G., Papalia, I., Sallen, V., Legagneux, J., Geuna, S., Giacobini-Robecchi, MG., 2009 Chapter 4 Methods and Protocols in Peripheral Nerve Regeneration Experimental Research: Part 1 Experimental Models, International Review of Neurobiology, Academic Press, Volume 87, 47-79.
5	Wood MD, Mackinnon SE. 2015 Pathways regulating modality-specific axonal regeneration in peripheral nerve. <i>Exp Neurol</i> . 265:171-175.
6	K. Ming Chan, Tessa Gordon, Douglas W. Zochodne, Hollie A. Power, H.A. 2014 Improving peripheral nerve regeneration: From molecular mechanisms to potential therapeutic targets Experimental Neurology, 261, 826-835.

