就像前面所看到的,这个 16 位的位模式就是-12 345 的补码表示。当我们把它强制类型转换回 int 时,符号扩展把高 16 位设置为 1,从而生成-12 345 的 32 位补码表示。

当将一个w位的数 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$ 截断为一个k位数字时,我们会丢弃高w-k位,得到一个位向量 $\vec{x}' = [x_{k-1}, x_{k-2}, \dots, x_0]$ 。截断一个数字可能会改变它的值——溢出的一种形式。对于一个无符号数,我们可以很容易得出其数值结果。

原理: 截断无符号数

令 \vec{x} 等于位向量[x_{w-1} , x_{w-2} , …, x_0], 而 \vec{x}' 是将其截断为 k 位的结果: $\vec{x}' = [x_{k-1}, x_{k-2}, \dots, x_0]$ 。令 $x = B2U_w(\vec{x})$, $x' = B2U_k(\vec{x}')$ 。则 $x' = x \mod 2^k$ 。

该原理背后的直觉就是所有被截去的位其权重形式都为 2^i ,其中 $i \ge k$,因此,每一个权在取模操作下结果都为零。可用如下推导表示:

推导: 截断无符号数

通过对等式(2.1)应用取模运算就可以看到:

$$\begin{aligned} B2U_{w}([x_{w-1}, x_{w-2}, \cdots, x_{0}]) \ \text{mod} \ 2^{k} &= \left[\sum_{i=0}^{w-1} x_{i} 2^{i}\right] \text{mod} \ 2^{k} \\ &= \left[\sum_{i=0}^{k-1} x_{i} 2^{i}\right] \text{mod} \ 2^{k} \\ &= \sum_{i=0}^{k-1} x_{i} 2^{i} \\ &= B2U_{k}([x_{k-1}, x_{k-2}, \cdots, x_{0}]) \end{aligned}$$

在这段推导中, 我们利用了属性: 对于任何 $i \ge k$, $2^i \mod 2^k = 0$.

补码截断也具有相似的属性,只不过要将最高位转换为符号位:

原理: 截断补码数值

令 \vec{x} 等于位向量[x_{w-1} , x_{w-2} , …, x_0], 而 \vec{x}' 是将其截断为 k 位的结果: $\vec{x}' = [x_{k-1}$, x_{k-2} , …, x_0]。令 $x = B2U_w(\vec{x})$, $x' = B2T_k(\vec{x}')$ 。则 $x' = U2T_k(x \text{ mod } 2^k)$ 。

在这个公式中, $x \mod 2^k$ 将是 0 到 2^k-1 之间的一个数。对其应用函数 $U2T_k$ 产生的效果是把最高有效位 x_{k-1} 的权重从 2^{k-1} 转变为一 2^{k-1} 。举例来看,将数值 x=53 191 从 int 转换为 short。由于 $2^{16}=65$ $536 \geqslant x$,我们有 $x \mod 2^{16}=x$ 。但是,当我们把这个数转换为 16 位的补码时,我们得到 x'=53 191—65 536=-12 345。

推导: 截断补码数值

使用与无符号数截断相同的参数,则有

$$B2U_w([x_{w-1}, x_{w-2}, \dots, x_0]) \mod 2^k = B2U_k[x_{k-1}, x_{k-2}, \dots, x_0]$$

也就是, $x \mod 2^k$ 能够被一个位级表示为[x_{k-1} , x_{k-2} , …, x_0]的无符号数表示。将其转换为补码数则有 $x' = U2T_k(x \mod 2^k)$ 。

总而言之, 无符号数的截断结果是:

$$B2U_k[x_{k-1},x_{k-2},\cdots,x_0]=B2U_w([x_{w-1},x_{w-2},\cdots,x_0]) \bmod 2^k$$
 (2.9) 而补码数字的截断结果是:

 $B2T_{k}[x_{k-1}, x_{k-2}, \cdots, x_{0}] = U2T_{k}(B2U_{w}([x_{w-1}, x_{w-2}, \cdots, x_{0}]) \mod 2^{k})$ (2.10)

○ 练习题 2.24 假设将一个 4 位数值(用十六进制数字 0~F表示)截断到一个 3 位数值 (用十六进制数字 0~7表示)。填写下表,根据那些位模式的无符号和补码解释,说明这种截断对某些情况的结果。