Image Captioning

Machine Learning Study JinHo Kim

Contents

- 1. Introduction
- 2. Papers review
- 3. Practice

What is Image Captioning?

"Computer Vision + Natural Language Processing"

What is Image Captioning?

What is Image Captioning?

Dataset name	size						
Dataset Hame	train	valid.	test				
Pascal VOC 2008 [6]	-	-	1000				
Flickr8k [26]	6000	1000	1000				
Flickr30k [33]	28000	1000	1000				
MSCOCO [20]	82783	40504	40775				
SBU [24]	1M	-	-				

Dataset

Flickr8k Sample Data

- 1. A dog is attempting a turn by a nearby picnic bench and metal object .
- 2. A white dog running next to a bench.
- 3. The big white dog is running in the grass.
- 4. The white dog is running around in the grass.
- 5. White dog with collar running in fenced in grassy area.

Image Captioning Papers

- 1. Show and Tell
- 2. Show. Attend and Tell

Neural Image Caption(NIC) Model

Encoder -> pre-trained CNN Decoder → RNN(LSTM)

For.
gradient vanishing
gradient exploding

Generate sentence approach

- 1. Sampling: 가장 확률이 높은 값(단어)을 고르는 방법
- 2. BeamSerarch: k개의 후보를 뽑아서 단어와의 조합 고르는 방법

BeamSearch

Figure 5. A selection of evaluation results, grouped by human rating.

Show and Tell Problem → seq2seq model

Long-term dependency problem!

Show. Attend and Tell

Show and Tell의 후속작 → NIC 모델 + Attention

Attention의 기본 아이디어!
Decoder에서 예측하는 매 시점마다 Encoder를 다시 한 번 체크!
→ So, 이미지에 대한 caption 정확도 ↑

Show, Attend and Tell

Attention Mechanism 1 Hard Attention, 2 Soft Attention

: 입력 이미지(Input Image)

Show, Attend and Tell

Attention Mechanism Visualization

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Practice

Source code

https://www.tensorflow.org/tutorials/text/image_captioning

https://github.com/ndb796/PyTorch-Neural-Image-Caption-Generator#pytorch-neural-

image-caption-generator

Practice

모델 학습 결과

Flickr8k test image

Dataset : Flickr8k

Encoder: VGG16, ResNet 등

Decoder: LSTM, Attention

정답 캡션

the two small dog run through the grass two small dog run through the grass

예측 캡션

VGG16 + LSTM: the little dog is playing in the snow

ResNet101 + LSTM: two dogs are running on beach

ResNet101 + Attention: the two brown dogs are playing in grass

OSCAR

Rank	Model	BLEU- ↑	CIDER	METEOR	SPICE	ROUGE- L	BLEU- 1	BLEU- 2	BLEU-	CIDEr- D	Paper	Code	Result	Year	Tags 🕜
1	Oscar	41.7	140	30.6	24.5						Oscar: Object- Semantics Aligned Pre-training for Vision-Language Tasks	O	Ð	2020	
2	SimVLM	40.6	143.3	33.4	25.4						SimVLM: Simple Visual Language Model Pretraining with Weak Supervision		Ð	2021	
3	X-Transformer	39.7	132.8	29.5	23.4	59.1	80.9	65.8	51.5	132.8	X-Linear Attention Networks for Image Captioning	0	Ð	2020	

OSCAR

Reference Paper.

- 1. Vinyals, Oriol, et al, "Show and Tell: A Neural Image Caption Generator", In CVPR, 2015.
- 2. Xu, Kelvin et al, "Show, Attend and Tell: Neural image caption generation with visual attention", In ICML, 2015.
- 3. Li, Xiujun, et al. "Oscar: Object-semantics aligned pre-training for vision-language tasks." In ECCV, 2020.

QnA?