

Paper

Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent

Jaehoon Lee*, Lechao Xiao*, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, Jeffrey Pennington Google Research, *Equal contribution, work done as part of the Google Al Residency, g.co/airesidency

NeurlPS 2019; arXiv: 1902.06720

Code

Are Training Dynamics Tractable?

A longstanding goal in deep learning research has been to precisely characterize **training** and **generalization**. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. Nevertheless, in the **large width** limit, neural networks evolve as linear models with solvable dynamics.

- **a. Parameter space dynamics:** wide network training dynamics in parameter space are equivalent to the training dynamics of a model which is affine in the collection of all network parameters.
- **b. Sufficient conditions for linearization:** there exists a threshold learning rate $\eta_{\text{critical'}}$, such that gradient descent training of neural networks with learning rate smaller than that threshold are well approximated by their linearization for large width.
- **c. Output distribution dynamics:** the predictions of a neural network throughout gradient descent training converge weakly to a GP as the width goes to infinity. We derive time-dependent expressions for the evolution of this GP and note the differences from the Bayesian posterior GP.
- d. More in the paper:
- Parameterization independence for linearization
- Momentum, non-square losses (e.g. cross-entropy)
- Analytic expressions for NTK for Erf and Relu
- Colab tutorial

Motivation: Gradient descent learning dynamics of deep neural networks are intractable

- Consider (convex) loss function of neural networks $\mathcal{L} = \sum_{(x,y)\in\mathcal{D}} \ell(f_t(x,\theta),y)$.
- Gradient descent (flow) dynamics of the parameters and outputs (logits)

$$\dot{\theta}_{t} = -\eta \nabla_{\theta} f_{t}(\mathcal{X})^{T} \nabla_{f_{t}(\mathcal{X})} \mathcal{L}$$

$$\dot{f}_{t}(\mathcal{X}) = \nabla_{\theta} f_{t}(\mathcal{X}) \dot{\theta}_{t} = -\eta \, \hat{\Theta}_{t}(\mathcal{X}, \mathcal{X}) \nabla_{f_{t}(\mathcal{X})} \mathcal{L}$$

ullet With a time evolving tangent kernel $\hat{\Theta}_t =
abla_{ heta} f_t(\mathcal{X})
abla_{ heta} f_t(\mathcal{X})^T$

Dynamics of linear models are tractable

 For linear models, training dynamics are tractable. Closed form solution for MSE loss:

$$\omega_t = -\nabla_\theta f_0(\mathcal{X})^T \hat{\Theta}_0^{-1} (I - e^{-\eta \hat{\Theta}_0 t}) (f_0(\mathcal{X}) - \mathcal{Y}) \qquad \text{weight dynamics}$$

$$f_t^{\text{lin}}(\mathcal{X}) = (I - e^{-\eta \hat{\Theta}_0 t}) \mathcal{Y} + e^{-\eta \hat{\Theta}_0 t} f_0(\mathcal{X}) \qquad \text{function dynamics}$$

• For some test point x $f_t^{\text{lin}}(x) = \mu_t(x) + \gamma_t(x)$

$$\mu_t(x) = \hat{\Theta}_0(x, \mathcal{X}) \hat{\Theta}_0^{-1} (I - e^{-\eta \hat{\Theta}_0 t}) \mathcal{Y}$$
$$\gamma_t(x) = f_0(x) - \hat{\Theta}_0(x, \mathcal{X}) \hat{\Theta}_0^{-1} (I - e^{-\eta \hat{\Theta}_0 t}) f_0(\mathcal{X})$$

eterministic

stochastic

Infinite networks are GPs

As the width approaches infinity, the outputs of randomly initialized network converge to a Gaussian Process [1-3]:

$$f_0(\mathcal{X}) \sim \mathcal{N}(0, \mathcal{K}(\mathcal{X}, \mathcal{X}))$$

$$\mathcal{K}^{i,j}(x,x') = \underset{n \to \infty}{\text{p-lim}} \mathbb{E}\left[f_0^i(x)f_0^j(x')\right]$$

This GP is transformed by gradient descent throughout the training process, leading to GP behavior after training.

Infinite networks are linearized models

 When the network is sufficiently wide, one can approximate a deep neural network by its first order Taylor expansion (linearization) at initialization (t=0)

$$f_t^{\text{lin}}(x) \equiv f_0(x) + \nabla_{\theta} f_0(x) \,\omega_t$$
 $\omega_t \equiv \theta_t - \theta_0$

 When learning rate is sufficiently small, linearization becomes more accurate as the width increases:

$$\sup_{t \ge 0} \|f_t(x) - f_t^{lin}(x)\|_2, \ \sup_{t \ge 0} \frac{\|\theta_t - \theta_0\|_2}{\sqrt{n}}, \ \sup_{t \ge 0} \|\hat{\Theta}_t - \hat{\Theta}_0\|_F = \mathcal{O}(n^{-\frac{1}{2}}), \ \text{as} \quad n \to \infty$$

Experiments

 Gaussian process at initialization leads to Gaussian distribution during training with mean and covariance

 A wide residual network and its linearization behave similarly when both are trained by SGD with momentum on MSE loss on full CIFAR-10

Relative Frobenius norm change during training

Relation to other approaches

References

- Neal, Radford M. "Bayesian learning for neural networks", Ph.D. Thesis, University of Toronto, 1994.
- Lee, J. and Bahri, Y., et al. "Deep neural networks as gaussian processes", arXiv:1711.00165, ICLR 2018.
 Matthews, Alexander G. de G., et al. "Gaussian process behaviour in wide deep neural networks", arXiv:1804.11271, ICLR 2018.
- 4. Jacot, A., et al. "Neural Tangent Kernel: Convergence and Generalization in Neural Networks", arXiv:1806.07572, NeurlPS 2018.
- 5. Novak R. and Xiao L., et al. "Neural Tangents: Fast and Easy Infinite Neural Networks in Python", arXiv:1912.02803.

Want to automate NNGP/NTK computation for various architectures? : see "Neural Tangents" github.com/google/neural-tangents [5]!

