Departamento de Matemática	Universidade do M	inho
Álgebra	2º teste — 14 jan 2	2021
Lic. em Ciências de Computação/Lic. em Matemática - $2^{\underline{o}}$ ano	duração: duas h	ıoras
Nome		
Curso	Número	

Responda no próprio enunciado, seguindo rigorosamente as instruções dadas em cada um dos grupos

GRUPO I

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20.

1. Seja A um anel comutativo com identidade de caraterística 12. Então, A não é um domínio de integridade. $V \boxtimes F \square$

Se A tem identidade 1_A e caraterística 12, então, $o(1_A)=12$. Logo, o elemento $3 \cdot 1_A$ é divisor de zero não nulo de A (ver exercício 1(a) do grupo III). Logo, A não é domínio de integridade.

2. Se I e J são ideais de um anel A tais que $I\cap J=\{0_A\}$, então, para todos $i\in I$ e $j\in J,\ ij=0_A.$ V \boxtimes F \square

Sabemos que, sendo I e J ideais de A, $IJ \subseteq I \cap J$. O resultado segue de $ij \in IJ$, para todos $i \in I$ e $j \in J$.

3. A soma de dois subanéis de um anel A nunca é um subanel de A. $V \square F \boxtimes$

No anel dos inteiros, se considerarmos os subanéis $2\mathbb{Z}$ e $4\mathbb{Z}$, temos que $2\mathbb{Z}+4\mathbb{Z}=2\mathbb{Z}$, que é um subanel de A.

4. Sejam A um anel com identidade e I e J ideais maximais de A. Se $I \neq J$ então $IJ = I \cap J$. $V \boxtimes F \square$

Como $I, J \subseteq I + J \subseteq A$ e $I \neq J$, uma vez que I e J são maximais, podemos concluir que A = I + J. Como $1_A \in A$ estamos em condições de concluir que $IJ = I \cap J$ (resolução do exercício 65).

5. Sejam A e A' anéis comutativos com identidade e $\varphi:A\to A'$ um morfismo de anéis. Então $\varphi(1_A)=1_{A'}.$ $V\Box$ $F\boxtimes$

Por exemplo, considerando $A=\mathbb{Z}$, $A'=\mathcal{M}_2(\mathbb{R})=\left\{\left[\begin{array}{cc}a&b\\c&d\end{array}\right]:a,b,c,d\in\mathbb{R}\right\}$ e $\varphi:A\to A'$ a aplicação definida por $\varphi(x)=\left[\begin{array}{cc}x&0\\0&0\end{array}\right]$, temos que φ é um morfismo de anéis tal que $\varphi(1)=\left[\begin{array}{cc}1&0\\0&0\end{array}\right]\neq I_2.$

GRUPO II

Em cada uma das questões seguintes, apresente a sua resposta sem qualquer justificação. Cada questão está cotada com 1,0 valores numa escala de 0 a 20.

1. Indique a ordem da permutação $\alpha = (1\,2\,3)(2\,4\,5\,7)$ de \mathcal{S}_7 :

 $\alpha = (1\,2\,4\,5\,7\,3)$, pelo que α é um ciclo de comprimento 6, pelo que $o(\alpha) = 6$.

2. Indique os elementos de $<\beta^3>$, sabendo que $\beta=(1\,2\,3)(4\,5)\in\mathcal{S}_6$:

A permutação β está escrita como produto de ciclos disjuntos de comprimentos 3 e 2, pelo que $o(\beta)=\mathrm{m.m.c.}(3,2)=6$. Assim, $o(\beta^3)=2$. Logo, $<\beta^3>=\{\mathrm{id},\beta^3\}=\{\mathrm{id},(4\,5)\}$, uma vez que $\beta^3=(1\,2\,3)^3(4\,5)^3=\mathrm{id}(4\,5)=(4\,5)$.

3. Indique a paridade da permutação $\gamma \in \mathcal{S}_9$, sabendo que $\gamma^5 = (1\,2\,3)(4\,5\,7\,9)$:

As permutações γ^5 e γ têm a mesma paridade, uma vez que γ^4 é uma permutação par. Como γ^5 é uma permutação ímpar (é produto de uma permutação par por uma ímpar), concluímos que γ é ímpar.

4. Indique duas permutações de S_9 , com a mesma ordem mas de paridades diferentes:

Por exemplo, $\pi_1 = (1\,2\,3\,4)$ e $\pi_2 = (1\,2\,3\,4)(5\,6)$. Ambas as permutações têm ordem 4, π_1 é uma permutação ímpar e π_2 é uma permutação par.

GRUPO III

Em cada uma das questões seguintes, apresente a sua resposta devidamente justificada. Cada questão está cotada com 4,0 valores numa escala de 0 a 20.

- 1. Seja A um anel não nulo. Mostre que:
 - (a) se $a \in A$ é um elemento de ordem 12, então A tem um divisor de zero.

Se $a \in A$ é tal que o(a) = 12, então, $12a = 0_A$ e $ka \neq 0_A$, para todo $k \in \{1, 2, ..., 11\}$. Assim, $4a \neq 0_A$ é tal que

$$(3a)(4a) = 12a^2 = (12a)a = 0_A a = 0_A.$$

Logo, 3a é divisor de zero de A.

(b) se, para todos $a \in A \setminus \{0_A\}$ e $b, c \in A$,

$$ab = ca \Rightarrow b = c$$
.

então A é um anel comutativo.

Sejam $a, b \in A$. Se $a = 0_A$, temos que $ab = 0_A = ba$. Se $a \neq 0_A$, uma vez que a(ba) = (ab)a, aplicando a hipótese, temos que ba = ab. Logo, A é comutativo.

- 2. Sejam A um anel comutativo com identidade, $a, b \in A$ e $I = \{ax + by : x, y \in A\}$.
 - (a) Mostre que I é um ideal de A.

Começamos por observar que $0_A \in A$ e $0_A = a0_A + b0_A$, pelo que $0_A \in I$ e, portanto, $I \neq \emptyset$. Mais ainda, para $i_1, i_2 \in I$, temos que $i_1 = ax_1 + by_1$ e $i_2 = ax_2 + by_2$, com $x_1, y_1, x_2, y_2 \in A$. Então,

$$i_1 - i_2 = (ax_1 + by_1) - (ax_2 + by_2) = a(x_1 - x_2) + b(y_1 - y_2).$$

Como $x_1 - x_2, y_1 - y_2 \in A$, temos que $i_1 - i_2 \in I$. Finalmente, se $i \in I$ e $z \in A$, temos que i = ax + by, com $x, y \in A$ e, por isso,

$$zi = iz = (ax + by)z = (ax)z + (by)z = a(xz) + b(yz).$$

Como $xz,yz\in A$, concluimos que $zi=iz\in I$. Estamos em condições de concluir que I é ideal de A.

(b) Para $A = \mathbb{Z}$, dê exemplo, justificando, de elementos a e b para os quais:

i.
$$I=A$$
;

Sabemos que $I=A=\mathbb{Z}$ se e só se $1\in I$. Assim, temos que $I=\mathbb{Z}$ se e só se existem $x,y\in\mathbb{Z}$ tais que 1=ax+by. Logo, a e b têm de ser tais que $\mathrm{m.d.c.}(a,b)=1$. Podemos considerar, por exemplo, a=2 e b=3.

ii. I é um ideal maximal de A.

Sabemos que I é ideal maximal de \mathbb{Z} se e só se $I=p\mathbb{Z}$, com p primo. Mas, $I=p\mathbb{Z}$ se e só se existem $x,y\in\mathbb{Z}$ tais que p=ax+by e p é o menor inteiro nestas condições, ou seja, $p=\mathrm{m.d.c.}(a,b)$. Podemos considerar, por exemplo, a=10 e b=15. Neste caso, $I=5\mathbb{Z}$.

- 3. Sejam $n \in \mathbb{N}$ e $f_n : \mathbb{Z}_n \to \mathbb{Z}_n$ a aplicação definida por $f_n([x]_n) = ([x]_n)^n$, para todo $[x]_n \in \mathbb{Z}_n$.
 - (a) Justifique que f_4 não é um endomorfismo de anéis.

Como

$$f_4([1]_4 + [1]_4) = f_4([2]_4) = ([2]_4)^4$$

$$= [16]_4 = [0]_4$$

$$\neq [2]_4 = [1]_4 + [1]_4$$

$$= ([1]_4)^4 + ([1]_4)^4 = f_4([1]_4) + f_4([1]_4),$$

podemos concluir que f_4 não é compatível com a adição de classes de \mathbb{Z}_4 , pelo que não é um homomorfismo de anéis. Logo, f_4 não é endomorfismo de anéis.

(b) Mostre que f_3 é um endomorfismo de anéis e determine o seu núcleo.

Sejam $[x]_4, [y]_4 \in \mathbb{Z}_3$. Então, como \mathbb{Z}_3 é um anel comutativo e de caraterística 3,

$$f([x]_3 + [y]_3) = f_3([x + y]_3) = ([x + y]_3)^3$$

$$= [(x + y)^3]_3 = [x^3 + 3x^2y + 3xy^2 + y^3]_3$$

$$= [x^3 + y^3]_3 = ([x]_3)^3 + ([y]_3)^3$$

$$= f_3([x]_3) + f_3([y]_3)$$

е

$$f([x]_3[y]_3) = f_3([xy]_3) = ([xy]_3)^3$$

$$= [(xy)^3]_3 = [x^3y^3]_3$$

$$= ([x]_3)^3([y]_3)^3$$

$$= f_3([x]_3) + f_3([y]_3).$$

Estamos em condições de concluir que f_3 é um morfismo de anéis.

Mais ainda, como $f_3([0]_3) = [0]_3$, $f_3([1]_3) = [1]_3$ e $f_3([2]_3) = [8]_3 = [2]_3$, concluímos que $\operatorname{Nuc} f_3 = \{[0]_3\}$.

(c) Para que valores de n f_n é um endomorfismo de anéis?

Uma vez que, independentemente de $n \in \mathbb{N}$, $(xy)^n = x^ny^n$, para todos $x,y \in \mathbb{Z}$, f_n é morfismo de anéis se e só se f_n for compatível com a adição de classes em \mathbb{Z}_n e isso só é possível se no desenvolvimento da expressão $(x+y)^n$, os coeficientes de todos os termos, com a exceção de x^n e y^n , forem divisível por n. Para isso acontecer, n tem de ser um número primo (recordar que esses coeficientes são nC_k , com $1 \le k \le n-1$). Assim, f_n é um endomorfismo se e só se n é um número primo.

GRUPO IV

Esta questão é facultativa. Caso opte por responder, apresente a sua resposta devidamente justificada. A questão está cotada com 2,0 valores extra escala.

1. Considere o subconjunto $X=\{2+\sqrt{-5},3+\sqrt{-5}\}$ do domínio de integridade $D=\mathbb{Z}[\sqrt{-5}].$ Mostre que

 $\exists^1 x \in X : (x)$ é maximal na classe dos ideais principais de D.

Sabemos que (x) é maximal na classe dos ideais principais de D se e só se (x) é irredutível em D. Vejamos que $7+\sqrt{-5}$ é redutível e que $3+\sqrt{-5}$ é irredutível em D:

- $7 + \sqrt{-5}$ é redutível pois $7 + \sqrt{-5} = (2 \sqrt{-5})(1 + \sqrt{-5})$ e $2 \sqrt{-5}, 1 + \sqrt{-5} \notin \mathcal{U}_{\mathbb{Z}[\sqrt{-5}]} = \{-1, 1\}.$
- Claramente, $3+\sqrt{-5}$ não é o zero nem uma unidade do anel. Sejam $a+b\sqrt{-5}, c+d\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ tais que

$$3 + \sqrt{-5} = (a + b\sqrt{-5})(c + d\sqrt{-5}).$$

Sendo estes dois complexos iguais, então, também o são os quadrados dos seus módulos. Logo, temos que

$$14 = (a^2 + 5b^2)(c^2 + 5d^2).$$

Tendo em conta que os fatores são não negativos, as únicas fatorizações possíveis são, a menos da ordem dos fatores, 2×7 e 1×14 . Como a primeira é impossível (pois $a^2+5b^2\neq 2$, para quaisquer inteiros a e b), concluímos que $a^2+5b^2=1$ ou $c^2+5d^2=1$. Como $a,b,c,d\in\mathbb{Z}$, concluímos que só podemos ter $a=\pm 1$ e b=0 ou $c=\pm 1$ e d=0, i.e., concluímos que $a+b\sqrt{-5}$ é uma unidade ou $c+d\sqrt{-5}$ é uma unidade. Logo $3+\sqrt{-5}$ é irredutível.