Finite temperature and δ -regime in the Schwinger model

Ivan Hip^a, Jaime Fabián Nieto Castellanos^b, Wolfgang Bietenholz^b

> ^aUniversity of Zagreb, Croatia ^bUNAM, Mexico

> > July 29, 2021

Schwinger model

Finite temperature - Hosotani prediction

Pion mass - Hosotani vs. lattice simulation

Pion mass - Hosotani vs. lattice simulation

δ -regime

Hasenfratz/Niedermayer prediction

Residual pion mass plateau

Residual pion mass plateau

1 / L confirmed by lattice simulation

$$F_{\pi} = 0.7$$

Witten-Veneziano formula

In the chiral *N*-flavor Schwinger model the Witten-Veneziano formula is simplified to [Seiler and Stamatescu, 1987]

$$m_{\eta}^2 = \frac{2N}{F_{\eta}^2} \chi_T^{que}$$

Mass of the η particle is known analytically [Belvedere et al. 1979]

$$m_{\eta}^2 = \frac{N}{\pi \beta}$$

and there is also continuum prediction for χ_T^{que} [Seiler and Stamatescu, 1987]

$$\beta \chi_T^{que} = \frac{1}{4\pi^2}$$

Quenched topological susceptibility

By using an alternative definition of topological charge

$$Q_S = \frac{1}{2\pi} \sum_{P} \sin(\theta_P)$$

[Bardeen et al., 1998] were able to analytically compute χ_T^{que} on the lattice

$$\beta \chi_T^{que} = \frac{I_1(\beta)}{4\pi^2 I_0(\beta)}$$

For the usual definition of topological charge

$$Q_T = \frac{1}{2\pi} \sum_P \theta_P$$

it is not possible to find analytic solution, but using the same line of reasoning it is possible to numerically compute χ_T^{que} to arbitrary precision.

Quenched topological susceptibility

F_{η} versus F_{π}