Dimostrazioni per l'esame orale di Analisi Matematica A

Filippo Troncana, dalle note della professoressa A. Defranceschi con l'aiuto del collega D. Borra ${\rm A.A.~2022/2023}$

Indice

M	odulo 1
Irra	azionalità di $\sqrt{2}$
Fun	nzioni in generale
3.1	Funzione
3.2	Immagine di una funzione
3.3	Grafico di una funzione
3.4	Funzione iniettiva, suriettiva e bijettiva
Insi	iemi numerici
4.1	Disuguaglianza di Bernoulli
4.2	Densità di $\mathbb Q$
4.3	Proprietà Archimedea
4.4	Destra e sinistra
4.5	Assioma di Dedekind
4.6	Completezza di \mathbb{R}
4.7	Caratterizzazione di sup e inf
Rac	dici n -esime in $\mathbb C$

1 Introduzione

Per l'esame orale di Analisi Matematica A è richiesta la conoscenza di tutti gli enunciati e tutte le definizioni visti a lezione, oltre che la capacità di dimostrare i teoremi più importanti.

In questa trattazione sono presenti tutte le definizioni e i teoremi richiesti, e nell'indice sono evidenziati i teoremi di cui è richiesta la dimostrazione, gli unici di cui essa è allegata per garantire una trattazione più snella e orientata allo studio per l'esame.

Parte I

Modulo 1

2 Irrazionalità di $\sqrt{2}$

Teorema. $\sqrt{2}$ è irrazionale, ovvero $\nexists m, n \in \mathbb{Z}$: $MCD(m, n) = 1 \land \frac{m}{n} = \sqrt{2}$.

Dimostrazione. Siano $m, n \in \mathbb{Z}$ tali che $MCD(m, n) = 1 \wedge \frac{m^2}{n^2} = 2$. Allora $m^2 = 2n^2$, dunque m^2 è pari e automaticamente m è pari.

Sia m=2k, allora $4k^2=2n^2 \Rightarrow n^2=2k^2$, dunque anche n è pari.

Ma allora $MCD(m, n) \geq 2$, assurdo, dunque non esistono tali $m, n \in \mathbb{Z}$.

3 Funzioni in generale

3.1 Funzione

DEF (Funzione). Dati due insiemi X, Y, una **funzione** $f : X \to Y$ è una qualsiasi legge che ad ogni elemento $x \in X$ associa un unico elemento $y \in Y$, e scriviamo y = f(x). X si dice **dominio** di f, Y si dice **codominio** di f.

3.2 Immagine di una funzione

DEF (Immagine). Dati due insiemi X,Y e una funzione $f:X\to Y$, essa induce una **funzione** immagine che indichiamo con lo stesso nome:

$$f: \mathcal{P}(X) \to \mathcal{P}(Y)$$

$$A \to \{ y \in Y : \exists x \in A : y = f(x) \}$$

3.3 Grafico di una funzione

DEF (Grafico). Dati due insiemi X, Y e una funzione $f: X \to Y$, il **grafico** di f è l'insieme:

$$G_f = \{(x, y) \in X \times Y : y = f(x)\}$$

3.4 Funzione iniettiva, suriettiva e bijettiva

DEF. (Iniettività, suriettività e bijettività) Dati due insiemi X,Y e una funzione $f:X\to Y,$ essa si dice:

Iniettiva se $f(x) = f(y) \Rightarrow x = y$

Suriettiva se $\forall y \in Y \exists x \in X : y = f(x)$

Bijettiva se è sia iniettiva che suriettiva.

4 Insiemi numerici

4.1 Disuguaglianza di Bernoulli

Proposizione 4.1 (Disuguaglianza di Bernoulli). Sia $x \in \mathbb{R}$ tale che $x \ge -1$ e $n \in \mathbb{N}$. Allora vale:

$$x^n \ge 1 + n(x - 1)$$

4.2 Densità di Q

Proposizione 4.2 (Densità di \mathbb{Q}). Siano $x, y \in \mathbb{R}$ tali che x < y. Allora $\exists z \in \mathbb{Q} : x < z < y$.

4.3 Proprietà Archimedea

Proposizione 4.3 (Proprietà Archimedea). Siano $x, y \in \mathbb{Q}_{>0}$. Allora $\exists n \in \mathbb{N} : y \leq nx$.

4.4 Destra e sinistra

DEF (Destra e sinistra). Dati $A, B \subseteq \mathbb{R}$ si dice che A sta a sinistra di B se

$$\forall a \in A, \forall b \in B, a < b$$

Analogamente, diciamo che B sta **a destra** di A.

4.5 Assioma di Dedekind

Assioma 1. (Dedekind) Siano $A, B \subseteq \mathbb{R}$ non vuoi tali che A stia a sinistra di B. Allora esiste $c \in \mathbb{R}$ tale che:

$$\forall a \in A, \forall b \in B, a \le c \le b$$

.

4.6 Completezza di \mathbb{R}

Teorema (Completezza di \mathbb{R}). Sia $A \subseteq \mathbb{R}$ non vuoto. Se A è limitato superiormente, allora $\exists \sup A \in \mathbb{R}$. Se A è limitato inferiormente, allora $\exists \inf A \in \mathbb{R}$.

4.7 Caratterizzazione di sup e inf

Proposizione 4.4 (Caratterizzazione di sup e inf). Sia $A \subseteq \mathbb{R}$ non vuoto e limitato superiormente. Allora sup A è il più piccolo dei maggioranti di A.

Sia $A \subseteq \mathbb{R}$ non vuoto e limitato inferiormente. Allora inf A è il più grande dei minoranti di A.

5 Radici n-esime in \mathbb{C}

Teorema. Siano $w \in \mathbb{C}, n \in \mathbb{N}_{\geq 1}$.

Se w = 0, l'unica radice di w di qualsiasi ordine è 0.

Altrimenti, w ha esattamente n radici n-esime distinte, ciascuna identificata da un numero

 $naturale \ k \in \{0,1,\ldots,n-1\}, \ e \ sono \ date \ da:$

$$z_k = \sqrt[n]{|w|}[\cos(\frac{\arg w + 2k\pi}{n}) + i\sin(\frac{\arg w + 2k\pi}{n})]$$

Dimostrazione. Se $w=0\Rightarrow z^n=0\Leftrightarrow |z|^n=0\Leftrightarrow |z|=0\Leftrightarrow z=0.$ Altrimenti, supponiamo $w\neq 0.$

Parte II Modulo 2