

MATHEMATICS P1

SEPTEMBER 2021

PREPARATORY EXAMINATION MARKING GUIDELINE

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

TIME: 3 hours

This marking guideline consists of 10 pages.

Copyright Reserved Please Turn Ove

1.1.1	x = 0 or $x = 3$	$A \checkmark x = 0 A \checkmark x = 3$	(2)
1.1.2	$5x^2 - 4x - 2 = 0$	A√standard form	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	CA✓substitution in correct formula	
	$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(5)(-2)}}{2(5)}$ $x = -0.35 \qquad or \qquad 1.15$	CACA✓ answers (penalize 1 mark if rounding off is incorrect-once here for entire paper)	(4)
1.1.3	$\sqrt{7+3x} + 2x = 0$		
	$\sqrt{7+3x} = -2x$	A✓Isolating surd	
	$\left(\sqrt{7+3x}\right)^2 = (-2x)^2$	A✓ squaring both sides	
	$7 + 3x = 4x^2$		
	$4x^2 - 3x - 7 = 0$	CA√standard form	
	$(x+1)(4x-7) = 0$ $x = -1 \text{ or } x = \frac{7}{4}$ n/a	CA ✓ factors CA ✓ answers and rejecting	(5)
1.1.4	$3^{x+2} + 3^{2-x} = 82$ $9.3^x + \frac{9}{3^x} = 82$		
	$9.3^{2x} - 82.3^x + 9 = 0$	A✓Writing as a positive index CA✓Standard form of equation	
	$(9.3^{x} - 1)(3^{x} - 9) = 0$	CA√factors	
	$3^{x} = \frac{1}{9} \text{ or } 3^{x} = 9$ $3^{x} = 3^{-2} \text{ or } 3^{x} = 3^{2}$ $x = -2 \text{ or } x = 2$	CA✓ exponential forms	
	x = -2 or $x = 2$	CA✓answers	(5)

1.2	$x^2 - 5x + 4 \ge 0$	$A \checkmark x^2 - 5x + 4 \ge 0$	
1.2	$\begin{vmatrix} x - 5x + 4 \ge 0 \end{vmatrix}$	$A \lor x = 5x + 4 \ge 0$	
	$(x-1)(x-4) \ge 0$	A✓ factors	
	$x \le 1$ or $x \ge 4$	CA✓ end points A✓ interval	(4)
	OR	OR	
		If graphical solution is used:	
	+\ /+	AA 2 marks for graph	
	1 /4	A /CA 2 marks for answer	(4)
1.3	$xy = 12 \rightarrow (1)$		
1.5	$\begin{array}{ccc} xy &= 12 & & & \\ x &- 4 &= y & & \rightarrow (2) \end{array}$		
	Substituting (2) into (1):		
	x(x-4)=12	A√correct substitution	
	$x^2 - 4x - 12 = 0$	CA✓standard form	
	(x+2)(x-6) = 0	CA√factors	
	x = -2 or $x = 6$	$CA \checkmark x/y - \text{values}$	
	y = -6 or y = 2	$CA \checkmark y/x$ values	(5)
			[25]

2.1	$T_p = 3p - 2 = 1450$	A \checkmark equating p^{th} term to 1450	
	p = 484	$CA \checkmark p$ value	(2)
	Between the 484 th and 485 th terms	CA✓answer	(3)
2.2	1D 1 4 7		
	$2a = 3 \therefore a = \frac{3}{2}$	$A \checkmark a$ – value	
	$3a + b = 1 \therefore b = -\frac{7}{2}$ $T_n = an^2 + bn + c$	$CA \checkmark b$ – value	
	$T_{40} = \frac{3}{2}(40)^2 - \frac{7}{2}(40) + c = 2290$ $2400 - 140 + c = 2290$ $c = 30$	CA✓Substitution CA✓answer	(4)
			[7]

QUESTION 3

3.1.1	$T_n = 8n + 57$	A✓ common difference CA✓ answer	(2)
3.1.2	$T_n = 8n + 57$ $T_{1000} = 8(1000) + 57$ $T_{1000} = 8057$	CA✓substitution into formula CA✓answer	(2)
3.1.3	$S_n = \frac{n}{2} [a + T_n]$ $S_{1000} = \frac{1000}{2} [65 + 8057]$ $S_{1000} = 4061000$	CA ✓ correct substitution into sum formula CA ✓ answer	(2)
3.2	Arithmetic: $5; 5 + x; 5 + 2x;$ Geometric: $5; 5x; 5x^2; 5x^3;$ Now: $5x^4 = 80$ $x^4 = 16$ x = -2 or 2 Sequences are: 5; 7; 9 or 5; 3; 1	A ✓ Setting up equation A ✓ dividing by 5 CA ✓ x – values CA ✓ sequence CA ✓ sequence	(5)
			[11]

$ \sum_{p=1}^{5} (4y+3p) + \sum_{k=4}^{7} 3 \cdot (2)^{k} $ $ 4y+3+4y+6+4y+9 $ $ = 20y+45 $ $ 3 \cdot 2^{3} + 3 \cdot 2^{4} + 3 \cdot 2^{5} + 3 \cdot 2^{6} $ $ S_{\infty} = \frac{a}{1-r} $ $ = \frac{1}{1-\frac{1}{3}} $	$A \checkmark 20y + 45$ $A \checkmark 360$	
$= \frac{3}{2}$ $20y + 45 + 360 = \frac{3}{2}$ $20y = -403.5$ $y = -20.175$	CA✓ equation CA✓ simplifying CA✓ answer	[7]

5.1	x = 1 and $y = 2$	$A\checkmark x = 1$	(2)
		$A \checkmark y = 2$	
5.2	y - intercept: (0; 6)	A √ y –	
	$x - \text{intercept: } \frac{4}{x - 1} = 2$	intercept	
	$x - \text{intercept: } \frac{1}{x-1} = 2$		
	x-1=2	$A\checkmark x - 1 = 2$	
	x = 3	CA√x –	
	(3; 0)	intercept	
		(co-ordinate	(3)
		form not	
		needed)	
5.3	1 1/	CA√x,y -	
	/6	intercepts	
		CA√both	
		asymptotes	
		A√shape	
	g	1	(3)
	0 1 3		
			[8]

6.1	$f'(x) = -2x + 4 = 0$ or $x = -\frac{4}{2(-1)}$	A derivative and equal to 0/	
	x = 2	Substitution into formula	
	y = f(2) = -4 + 8 + 5 = 9	CA✓Axis of symmetry value	
	C(2;9)	CA √ Maximum value	(3)
6.2	y ≤ 9	CA✓answer	(1)
6.3	$-x^2 + 4x + 5 = 0$		
	$x^2 - 4x - 5 = 0$	A√standard form	
	(x+1)(x-5) = 0	CA✓ factors	
	x = -1 or x = 5	CA✓x - values	
	AB = 6 units	CA✓answer	(4)
6.4	m = -1 and $c = 5$	CACA✓✓answer	(2)
6.5	y = -x + 5	CACA✓✓answer	(2)
0.3	T(4;5)	CACA* v aliswei	(2)
6.6.1	m = 0	A✓ answer	(1)
6.6.2	9 = -x + 5	CA ✓ Equating equation to 9	(2)
	$ \begin{aligned} x &= -4 \\ E(-4; 9) \end{aligned} $	$CA \checkmark x$ – value	
6.7	f'(x) = -2x + 4 = -1	A✓Derivative equal to – 1	
	$x = \frac{5}{2}$		
	2	$CA \checkmark x$ – value	
	$y = -\left(\frac{5}{2}\right)^2 + 4\left(\frac{5}{2}\right) + 5 = \frac{35}{4}$ $\frac{35}{4} = -\frac{5}{2} + k$	$CA \checkmark y - value$	
	$\frac{35}{35} - \frac{5}{35} + k$	CA / substitution into associan of	
	$4^{-\frac{1}{2}}$	CA✓ substitution into equation of line	
	$k = \frac{45}{4}$	CA✓ answer	(5)
			[20]

QUESTION 7

7.1	$y = log_a x$		
	$-1 = log_a 0,5$	A✓ substitution of point P	
	$a^{-1} = 0,5 = 2^{-1}$	CA✓Writing in exponential form	
	a = 2	CA✓answer	(3)
7.2	$y = 2^x$	CACA✓✓	(2)
7.3	$x \in R$ or $x \in (-\infty; \infty)$	A√answer	(1)
7.4	$log_2 x = -1$ $x = 2^{-1} = \frac{1}{2}$ $0 < x \le \frac{1}{2}$	CA✓end points A✓ interval Can be solved by log inequalities. Answer Only – Full marks	(2)
			[8]

8.1	$A = P(1-i)^n$		
	$= 500\ 000(1 - 8.5\%)^{12}$	$A\checkmark$ value of n	
	= R172 196	A value of i CA answer	(3)
8.2.1	$P = \frac{x[1 - (1 + i)^{-n}]}{x}$		
	[(16%) -60]	$A\checkmark$ value of n	
	$3300 \left 1 - \left(1 + \frac{16\%}{12} \right)^{-60} \right $	$A\checkmark$ value of i	
	16 %	CA✓Substitution into formula	
	= R135 701,63	CA✓ answer	(4)
8.2.2	$P = \frac{x[1 - (1+i)^{-n}]}{i}$		
	$125\ 701,6304 = \frac{x\left[1 - \left(1 + \frac{16\%}{12}\right)^{-60}\right]}{\frac{16\%}{}}$	A✓ P value CA✓ substitution into formula	
	x = R3056,82	CA✓answer	(3)
8.2.3	No. Deposit: 60 x R3300 = R198 000,00	A✓R198 000	
	With Deposit: R10 000 + 60 x R3056,82		
	= R 193 409,20	A✓✓193 409,20	
	Savings: R4590,80	CA✓answer	(4)
			[14]

NSC Marking Guideline **QUESTION 9**(penalize 1 mark once for incorrect notation in this question)

	$\frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2 + 5h}{h}$ $f(x+h) - f(x) h(2x+h+5)$	CA / factorization	
	$\frac{f(x+h)-f(x)}{h} = \frac{h(2x+h+5)}{h}$	CA√ factorization	
	$f'(x) = \lim_{h \to 0} (2x + h + 5)$	A√formula	(5)
	f'(x) = 2x + 5	CA✓answer	
9.2.1	$f(x) = 3x(\sqrt{x} - 4)$		
7.2.1	2	A√rewriting in	
	$f(x) = 3x^{\frac{3}{2}} - 12x$	exponential form	
	$f'(x) = \frac{9}{2}x^{\frac{1}{2}} - 12$	CACA✓✓derivatives	(3)
9.2.2	$x^3 - 4x$		
	$y = \frac{x}{2-x}$		
	x(x-2)(x+2)	A√factors	
	$y = \frac{x(x-2)(x+2)}{-(x-2)} = -x^2 - 2x$	A√simplified expression	
	dy		
	$\frac{dy}{dx} = -2x - 2$	CACA✓✓ each term	(4)
			[12]

QUESTION 10

10.1	d=4	A✓Answer	(1)
10.2	0 = -1 + b - c + 4	A✓substitution of point (-1;0)	
	b - c = -3	A✓ equation	
	$f'(x) = 3x^2 + 2bx + c$	A √ derivative	
	$0 = 3(0)^2 + 2b(0) + c$	$A\checkmark$ substitution of point $(-1;0)$	
	c = 0	into derivative	
	b = -3		(4)
10.3	$f(x) = x^3 - 3x^2 + 4$		
	$f'(x) = 3x^2 - 6x$		
	$f'(5) = 3(5)^2 - 6(5) = 45$	A ✓ gradient value of tangent	
	$f(5) = (5)^3 - 3(5)^2 + 4 = 54$	$A \checkmark y$ – value of tangent	
	54 = 45(5) + c		
	c = -171	$CA \checkmark c$ – value	
	y = 45x - 171	CA✓ answer	(4)
10.4	0 < k < 4	AA✓answer	(2)
10.5	$f'(x) = 3x^2 - 6x = 0$		
	3x(x-2)=0		
	x = 0 or $x = 2$	CA ✓ x - values	
	y = 4 or y = 0	$CA \checkmark y$ - values	
	B(2;0)		
	$B^{\prime}(-2;3)$	$CA \checkmark x$ – value $CA \checkmark y$ – value	(4)
			[15]

QUESTION 12

12.1	8!	A√8!	
	= 40 320	A✓40 320	(2)
12.2	1 × 6! × 1	A✓✓1 × 6! × 1	
	= 720	A✓720	(3)
12.3	Probability of a word starting with P and ending with C	CA✓Numerator	
	$\frac{720}{40320} = \frac{1}{56} = 1,79\% = 0,0179$	CA√denominator	
	10 320 30	$\frac{720}{40320}$ or $\frac{1}{56}$ or 0,0179 or 1,79%	(2)
			[7]

QUESTION 13

13.1	160	A√answer	(1)
13.2	P(Male) = $\frac{60}{160} = \frac{3}{8} = 0.375 = 37.5 \%$	AA \checkmark \checkmark $\frac{60}{160}$ or $\frac{3}{8}$ or 0,375 or 37,5 %	(2)
13.3	$P(Male choosing coffee) = P(Male) \times P(coffee)$	A Condition for independent events	
	$\frac{b}{160} = \frac{60}{160} \times \frac{80}{160}$ $b \qquad 3$	AA✓✓ Substitution into equation	
	$ \frac{160}{160} = \frac{1}{16} $ $ b = 30 $	A✓Answer	(4)
			[7]

Total: 150