Spacing of Conductors

- Trouble free service requires proper spacing of conductors.
- Spacing should be such that
- (i) Corona loss is minimum &
- (ii) Conductors do not clash during swing/vibration.
- There is no exact rule to calculate proper spacing of conductors.
- If spacing is not governed by (i) & (ii), a simple rule of 1 metre for every 100m span seems to be fairly accurate.
- ➤ Different countries use various empirical formulae → that give different spacing for same span & conductor size.
- → deduced from experience of conductor loading, conditions of temperature, wind, ice etc.

Prof. S. S. Thakur

Some of the empirical formulae are

$$S = \sqrt{d} + \frac{V}{150}$$

$$S = \sqrt{d} + 0.012V$$

$$S = 0.75 \sqrt{d} + \frac{V^2}{150}$$

$$S' = 0.75 \sqrt{d} + \frac{V^2}{20000}$$

$$S' = 0.7 \sqrt{d} + \frac{V^2}{100} + 0.25$$

$$S = 0.65 \sqrt{d} + 0.007$$

$$S' = 2 d \sin \theta$$

$$S' = 0.8 \sqrt{d+l} + \frac{V}{150}$$

$$S' = 0.75 \sqrt{(d+l)} \sin \theta + \frac{V}{125}$$

where, d = sag in metre, V = voltage(kV) betn. conductors, l = insulator string length (m) & $\theta = deflection$ of insulator string.

Ι

These formulae serve as guide, final choice depends on local conditions of temperature, ice & wind.

Ground Clearance

- For safety reasons, adequate clearance of conductor above ground must be maintained under all loading conditions.
- It depends on system voltage.
- Indian Electricity Act says a clearance of 17feet/5.18m is to be provided for 33kV line & for every additional 33kV or part thereof, additional 1 foot/0.3048m clearance should be provided.

, Ground clearance = 5.18+11.1212x0.3048 = 8.5697m 101

Line Parameters

- Any electric transmission line has four parameters, namelyresistance, inductance, capacitance & shunt conductance.
- Design & performance of lines depend on these parameters.
- These are uniformly distributed along the whole line.
- So, theses are known as distributed parameters.
- Their values are given for unit length of the line.
- These are denoted as R, L, C & G.
- Their values depend on conductor geometry, line geometry & conductor material.
- R & L form the series impedance; C & G form the shunt admittance of the line.

Prof. S. S. Thakur

Line Inductance

- A current carrying conductor produces flux surrounding it.
- With variation of current flux linkage of the conductor changes & an emf is induced in it (Faraday's law), i.e.,

104

$$|e| = \frac{d}{dt}(N\Phi) = N.\frac{d\Phi}{dt}$$
 Volt(1)

- Again, self induced emf is proportional to rate of change of current, di / dt , i.e.

$$|e|^{\infty} \frac{di}{dt}$$
 or, $|e| = L \cdot \frac{di}{dt}$ Volt (2)

where, L is the constant of proportionality & is known as self inductance of the circuit.

Equating eqns. (1) & (2),

$$L.\frac{di}{dt} = N.\frac{d\Phi}{dt}$$

or,
$$L = N. \frac{d\Phi}{di}$$
 (3)

- If permeability of the magnetic circuit is assumed to be constant, then, $\frac{d\Phi}{di} = \frac{\Phi}{i}$.
- Therefore, from eqn. (3),

$$L = N. \frac{\Phi}{i} Henry (4)$$

For a single conductor,

$$L = \frac{\Phi}{i} \text{ Henry } \dots (5)$$

Prof S. S. Thakur

Inductance of a Conductor

 Consider, a solid, round, infinitely long conductor, situate in air - of radius 'r' & carrying a current of 'i.'

Flux linking with conductor has of two parts –

(i) the internal flux & (ii) the external flux.

 Internal flux is present inside conductor, due to its own current – does not link with whole conductor but only a fraction of it.

External flux is present around the cond.
 due to its own current & currents in other conds. in the vicinity.

External flux links with the whole cond.

- Inductance due to internal flux internal inductance(Lin H/m).
- •Inductance due to external flux -external inductance(Lex H/m).
- So, total inductance (per metre length) = [Lin + Lex] H/m.

Internal Inductance

- Let, return path of the current in the cond. be so far away that its magnetic field is not affected.
- Current distribution is uniform over the cross section of the cond.

Ι

107

- Consider, a distance 'x' & an elemental distance 'dx' there.
- Magnetic field intensity at distance 'x' be 'H_x.'

Applying Ampere's law,

$$2.\pi.x. H_x = i_x (1)$$

where i_x is current enclosed by the path.

So, flux linkage up to 'x' =
$$d\Delta_x = d\Phi_x$$
. $\frac{x^2}{r^2} = \mu$. i. $\frac{X}{2.\pi . r^2}$. dx. $\frac{x^2}{r^2}$

$$= \mu$$
. i. $\frac{x^3}{2.\pi . r^4}$. dx wbT/m(8)

Total internal flux linkage = $\int_0^r d\lambda_x = \int_0^r \mu$. i. $\frac{x^3}{2.\pi r^4}$. dx $= \frac{\mu \cdot i}{2\pi r^4} = \frac{\mu \cdot$

 $= \frac{\mu. i}{2.\pi. r^4} \cdot \frac{r^4}{4} = \frac{\mu. i}{8\pi} \text{ wbT/m} \dots (9)$

 $Internal\ inductance\ L_{in} = \frac{Total\ internal\ flux\ linkage}{Current}$

$$= \frac{\frac{\mu \cdot i}{8\pi}}{i} = \frac{\mu}{8\pi} = \frac{\mu_0 \cdot \mu_r}{8\pi} \text{ H/m} \dots (10)$$

Prof S. S. Thakur

Then,
$$L_{in} = \frac{\mu_0}{8\pi} H/m = \frac{4.\pi \cdot 10^{-7}}{8\pi} = \frac{1}{2} \cdot 10^{-7} H/m$$
(11)

Hence, internal inductance of any conductor is independent of cond. Geometry (radius).

External Inductance

 Flux lines surrounding the cond. are in the form of concentric circles.

Magnetic field intensity at any distance

$$'x' = H_x = \frac{i}{2.\pi x} AT/m$$
 (12)

Flux density = $B_x = \mu_0$. $H_x = \frac{\mu_0 \cdot \underline{\mathbf{i}}}{2 \cdot \Pi \cdot \mathbf{x}}$ wb/m²

$$lm = d\Phi_x = B_x. (dx.1) = \frac{\mu_0.1}{2.\pi.x}. dx$$
 (13)

This flux links with the whole conductor. So, flux linkage up to any distance 'x' = $d\lambda_x$ = $d\Phi_x$ wbT/m (14) Therefore, total external flux linkage up to any very large but finite distance 'R' = $\int_0^R d\lambda_x = \int_0^R \frac{\mu_0.\dot{\mathbf{l}}}{2.\pi.x}$. $dx = \frac{\mu_0.\dot{\mathbf{l}}}{2.\pi}$. $\ln\frac{R}{r}$ wbT/m (15) Then, External inductance $L_{ex} = \frac{\text{Total external flux linkage}}{\text{Current}}$ = $\frac{\mu_0}{2\pi}$. $\ln\frac{R}{r}$ H/m = $\frac{4.\pi.10^{-7}}{2\pi}$ = 2.10^{-7} . $\ln\frac{R}{r}$ H/m (16) So, total inductance of the cond. per metre = $L = L_{in} + L_{ex}$ = $\frac{1}{2} \cdot 10^{-7} + 2 \cdot 10^{-7}$. $\ln\frac{R}{r}$ H/m (17) Simplifying, $L = 2.10^{-7}$. $\ln\frac{R}{r}$ H/m (18) where r' = r. $e^{-\frac{1}{4}} = 0.7788$. r = equivalent radius of cond.

Prof. S. S. Thakur

Flux Linkage in a Group of Conductors

- · Consider, a group of 'n' long, parallel round conductors.
- · Carrying currents Ia, 16, In.
- ·Forming a circuit, i.e.

Fig. n-familiel conductors

- ·Distances Dab, Dbc, Dca, Danek. are large conferred to the radii ta, th, ... Yn ek.
- · Current distribution is uniform over the Cross sectional area.
- . The system is unaffected by external fields.

Flux linkage of any conductor a' is
$$\lambda_a$$

$$= 2.10^{7} \left[I_a \ln \frac{1}{Daa} + I_b \cdot \ln \frac{1}{Dab} + I_c \cdot \ln \frac{1}{Dac} + \cdots + I_n \ln \frac{1}{Dan} \right] wbT/m$$

$$= 2.10^{7} \sum_{x=a}^{n} I_x \ln \frac{1}{Dax} wbT/m$$

Inductance of conductor 'a' = $L_a = \frac{\lambda_a}{T}$ H/m

Inductance of 10 Line

Inductance of 10 Line

Flux linkage of conductor'a' =
$$\lambda a$$
 $\tau = \frac{1}{a} = +1$

Flux linkage of conductor'a' = λa $\tau = \frac{1}{a} = -1$

= 2.10
$$\sum_{x=a}^{7b} I_x \cdot \ln \frac{1}{Dax} = 2.10^{7} \left[I_a \ln \frac{1}{Daa} + I_b \cdot \ln \frac{1}{Dab} \right]$$

=
$$2.10^{7}$$
 [I.ln $\frac{1}{7}$, - I.ln $\frac{1}{D}$] = 2.10^{7} I ln $\frac{D}{7}$ wb T/m

Incluctance of conductor 'a'=La =
$$\frac{\lambda a}{Ia} = 2.10^{\frac{7}{1}} \ln \frac{D}{\gamma'} H/m$$

Similarly, inductance of conductor'b'
$$= L_b = 2.10^{-7} \ln \frac{D}{7}, H \text{ m}$$

$$= L_0 = 2.10^{-7} \ln \frac{D}{7}, H \text{ m}$$

$$= L_0 + L_0 = 4.10^{-7} \cdot \ln \frac{D}{7}, H \text{ m}$$

$$= L_0 + L_0 = 4.10^{-7} \cdot \ln \frac{D}{7}, H \text{ m}$$

7'= 0.71887

Inductance of Symmetrical 3Φ Line

- Symmetrical 34 line: Conductors placed at corners of an equilateral triangle.
- · Arrangement is also known as equilateral spacing

Flux linkage of conductor 'a' =
$$\lambda a$$

=
$$2.10^{\frac{1}{5}} \sum_{x=a}^{c} I_x \ln \frac{1}{Dax} \omega bT/m^{\frac{1}{10}}$$

=
$$2.10^{7}$$
 [$I_{a} \ln \frac{1}{r'} + I_{b} \ln \frac{1}{b} + I_{c} \cdot \ln \frac{1}{b}$] wb T/m
= 2.10^{7} [$I_{a} \ln \frac{1}{r'} + (I_{b} + I_{c}) \ln \frac{1}{b}$]
= 2.10^{7} [$I_{a} \ln \frac{1}{r'} - I_{a} \ln \frac{1}{b}$] (as, $I_{b} + I_{c} = -I_{a}$)
= 2.10^{7} . $I_{a} \cdot \ln \frac{D}{r'}$ wb T/m
So, inductance of conductor 'a' = $L_{a} = \frac{\lambda_{a}}{I_{a}}$
= 2.10^{7} $\ln \frac{D}{r}$ H/m
Again, flux linkage of conductor 'b' = λ_{b}
= 2.10^{7} [$I_{x} \cdot \ln \frac{1}{D_{bx}}$ wb T/m
= 2.10^{7} [$I_{b} \cdot \ln \frac{1}{D_{bb}} + I_{a} \ln \frac{1}{D_{ba}} + I_{c} \cdot \ln \frac{1}{D_{bc}}$]

=
$$2.10^{7}$$
 [$I_{b}l_{h} + (I_{a} + I_{c}) l_{h}$]
= 2.10^{7} [$I_{b}l_{h} + I_{h} - I_{b} \cdot l_{h}$]
= 2.10^{7} [$I_{b}l_{h} + I_{h} - I_{b} \cdot l_{h}$]
= 2.10^{7} $I_{b}.l_{h} + I_{h} \cdot l_{h}$ $l_{h} \cdot l_{h}$ $l_{h} \cdot l_{h}$ $l_{h} \cdot l_{h}$

So, inductance of conductor 'b' = $Lb = \frac{\lambda b}{I_b}$ = $2.10^7 \text{ m} \frac{D}{Y'} \text{ H/m}$

Similarly, inductance of conductor $c'=L_c$ = $2.10^7 \text{ m} \frac{D}{r!} \text{ H/m}$

Hence, for same conductor and line geometry inductance per conductor of 3\$\phi\$ symmetrical line and 1\$\phi\$ line are equal.

Inductance of unsymmetrical 3Φ Line

- · Take phase sequence as a-b-c.
- · Take Ia as reference phasor.

$$I_{\alpha} = I(1+j0)$$

 $I_{b} = I(-\frac{1}{2}-j\sqrt{3}/2)$
 $I_{c} = I(-\frac{1}{2}+j\sqrt{3}/2)$

Flux linkage of conductor $a^2 = \lambda a$

=
$$2.10^7 \sum_{x=0}^{7} I_x ln \frac{1}{Dax} WbT/m$$

=
$$2.10^{7}$$
 I [$lm\frac{1}{\gamma_{1}} - \frac{1}{2}lm\frac{1}{bab.Dac} + j\sqrt{3}/2lm\frac{Dab}{bac}$]

= 2.10^{7} . I [$lm\sqrt{Dab.Dac} + j\sqrt{3}/2.lm\frac{Dab}{Dac}$] wbT/m

50, inductance of conductor "a" = $La = \frac{\lambda_{5}}{La}$

= 2.10^{7} [$lm\sqrt{DabDac} + j\sqrt{3}/2lm\frac{Dab}{Dac}$] H/m

Similarly,

Inductance of conductor "b" = Lb

= 2.10^{7} [$lm\sqrt{DbcDba} + j\sqrt{3}/2lm\frac{Dbc}{Dba}$] H/m

Inductance of conductor "c" = Lc

= 2.10^{7} [$lm\sqrt{DbcDba} + j\sqrt{3}/2lm\frac{Dbc}{Dba}$] H/m

- · Inductances of the three phases are unequal.
- Although, Currents are balanced, inductances are unbalanced.
- Inductive voltage clrobs are unequal.
- Inductances are complex as λa, λb & λc are not in phase with Ia, Ib & Ic respectively.
- Due to the imaginary part power transfer takes place between the phases by mutual induction.
- · However, total bower transfer in any case is zero.

Prof. 5. 5. Thakur

Flat horizontal spacing

Flat vertical spacing

120

Power transfer between different phases by mutual induction

Let, inductance be represented by: L = (a + jb - ja)

So, inductive reactance = $j\omega L = j\omega$ (a + jb - jc)

Taking current 'I' as reference, inductive voltage drop = V_L

= I. $j\omega L = j\omega$. I (a + jb -jc)

Therefore, apparent power = V_L . $I = j\omega$. $I^2(a + jb - jc)$

 $= j\omega I^{2}a - \omega I^{2}b + \omega I^{2}c (1)$

In eqn (1):

 $j\omega I^2 a = reactive power.$

- ω . I²b = negative active power = power received from other phases by mutual induction.

+ ω . I²c = positive active power = power supplied to other phases by mutual induction.

Transposition of Transmission Lines

- Unsymmetrical spacing of line conductors is more common.
- It is due to cheapness & convenience of design & construction.
- However, unsymmetrical spacing of conductors makes
- Unequal inductances, hence unequal inductive reactances of the three phases.
- (ii) So, inductive voltage drops are unequal in the three phases for balance currents.
- (iii)So, although the sending end voltages are balance, receiving end voltages are unbalanced.
- (iv) Further, disturbance/interference takes place with the near by communication lines.

- These problems can be avoided/ reduced by transposition of transmission line conductors.
- In transposed 3Φ transmission lines all phase conductors occupy positions of other phase conductors for almost same length.

Similarly, $L_b = L_c = 2.10^7$. In $\frac{3}{Dab.Dbc.Dca}$ H/m $= 2.10^7 \text{ ln } \frac{Deg.}{\Upsilon'}$ H/m

Where, Deg = 3/Dab. DbcDa

- = Geometric mean of Dab, Dbc & Dca
- = Equivalent delta spacing/ is Equivalent equilateral spacing

Prof. S. S. Thakur

Method of Geometric Mean Distance (GMD)				ao	ОС
· This method is very convenient & useful				h a	ماء
to calculate inductance of a line, having				bo	ob
several conductors connected in parallel				Co	oa
for each phase.					
• It is applicable to all cases of multi-strand					
or bundled conductor lines.				; d	0
			a f	. 0	(m
a oo	b	С	b o o	l d'	o U
00	00	00	် ဝင် ဝ	0	و' (
а	þ	c	Group A (n-conductors)		up B
တိ	00	၀၀	+I	1 (m-c	onductors) -I

Prof. S. S. Thakur

- · Consider a lo line with two groups of conductors A & B'B'
- · Group A consists of 'n' parallel, round & very long conductors, connected in parallel.
- · Total current carried by group A is +1.
- · Each conductor of group A carries a current of + I/n.
- · Similarly, each conductor of group B carries a current of -I/m. Then.

Inductance of group A, consisting of 'n' conductors =
$$L_A$$

$$= 2.10^{7} \ln \frac{[(Daa', Dab'...Dam).(Dba', Dbb'...Dbm)....(Dna', Dnb'...Dnm)]^{m,n}}{[(Daa, Dab...Dan).(Dba', Dbb'...Dbn)....(Dna', Dnb'...Dnn)]^{n}} Hfm$$

$$= 2.10^{7} \ln \frac{Dm}{Dc} Hfm$$

Where,

- Dm = [(Daa'. Dab'...Dam).(Obd. Dbb'....Dbm)....(Dna' Dnb'....Dnm)] m.n
 - = All possible distances (mxn) between conductors of groups ARB for which (mxn) to root is taken.
- This geometric mean is called mutual geometric
 mean distance (Mutual GMD) between conductors of groups A&B.
- Ds = [(Daa.Dab....Dan).(Dba.Dbb....Dbn)....(Dna.Dnb....Dnn)] 1/2
 - = All possible distances ($n \times n$) between conductors of group A for which $(n \times n = n^2)$ is root is taken.
 - . This geometric mean is called self geometric mean distance (Self 4MD).

A.C. Single Phase Circuit

Similarly, LB = 2.107 In D. HIm

Total inductance = L= LA+LB=4.10 In D. H/m

A.C. Symmetrical Three Phase Line

Here, n=1, m=2

Inductance of conductor A is found first.

$$Dm = (D.D)^{\frac{1}{2.1}} = D, Ds' = Daa = r'$$

Inductance of 1 Double Circuit Line

- · It consists of four parallel concluctors.
- Conductors a₁ and a₂ are connected in parallel & Carry Current in one direction. In effect they form Conductor A.
- Conductors b, & b₂ form the return path & they constitute the conductor B.
- · All the conductors have same radius x.

Here,
$$m = n = 2$$

of $D_{5'} = [(D_{a_1a_1}, D_{a_1a_2})(D_{a_2a_1}, D_{a_2a_2})]^{1/4} = [(r', D_1)(D_1, r')]^{1/4} = (r', D_1)^{1/2}$

$$D_m = [(D_{a_1b_1}, D_{a_1b_2}), (D_{a_2b_1}, D_{a_2b_2})]^{1/4}$$

$$= [(D_2, \sqrt{D_1^2 + D_2^2}), (\sqrt{D_1^2 + D_2^2}, D_2)]^{1/4}$$

$$= (D_2, \sqrt{D_1^2 + D_2^2})^{1/2}$$

Incluctance of conductor $A = L_A = 2.10^{\frac{7}{2}} \ln \frac{D_m}{D_2} H/m$

Incluctance of conductor
$$A = L_A = 2.10^7 \ln \frac{D_m}{D_s}$$
 H/m
$$= 2.10^7 \ln \left(D_2 \cdot \sqrt{D_1^2 + D_2^3} \right)^{1/2} H/m$$

$$= 2.10^7 \ln \left(\frac{D_2 \cdot \sqrt{D_1^2 + D_2^3}}{(r', D_1)^{1/2}} \right)^{1/2}$$

$$= 10^{7} \ln \left(\frac{D_{2} \cdot \sqrt{D_{1}^{2} + D_{2}^{2}}}{(r'.D_{1})} \right) H/m = L_{B}$$

Total inductance of the system=L=LA+LB=2.10⁷ ln $(D_2.\sqrt{D_1^2+D_2^2})$ H/m