Tell whether the expression is equivalent to 1.25^{10} . Explain your reasoning.

$$7(22.1) \times ^{6}(22.1)$$
 .**EE**

$$(5.1) \times (2.1) \times (2.1)$$

Explain your reasoning. For Exercises 38-41, tell whether the expression is equivalent to $(1.5)^7$.

4
2.1 \times 5 2.1 .98

42. Without actually graphing these equations, describe and compare

their graphs. Be as specific as you can.

$$y = 4x$$
 $y = 0.25x$ $y = 10(4x)$

$$\lambda = 10(0.25^x)$$

Web Code: ape-3542 For: Help with Exercise 42

aniln qualine

Homework

mos.loods2H9-

$$x$$
\$7.0 = $\sqrt{\chi}$ =

- 43. Each graph below represents an exponential equation of the form $\chi qp = \Lambda$
- **a.** For which of the three functions is the value of a greatest?
- \mathbf{b} . For which of the three functions is the value of b greatest?

Connections

do an exact calculation. Explain your reasoning. For Exercises 44 and 45, tell whether the statement is true or false. Do not

44.
$$(1.56892 \times 10^5) - (2.3456 \times 10^4) < 0 > (2.3456 \times 10^4) < 0 > 44$$
. If $1.56892 \times 10^5 > 1 < \frac{2.96395 \times 10^5}{701 \times 112888.2}$

- 46. Suppose you start with a unit cube (a cube with edges of length 1 unit). In parts (a)-(c), give the volume and surface area of the cube that results from the given transformation.
 - **a.** Each edge length is doubled.
 - **b.** Each edge length is tripled.
 - **c.** Each edge is enlarged by a scale factor of 100.
- 47. Suppose you start with a cylinder with a radius of 1 unit and a height of 1 unit. In parts (a)-(c), give the volume of the cylinder that results from the given transformation.
 - a. The radius and height are doubled.
 - **b.** The radius and height are tripled.
 - **c.** The radius and height are enlarged by a scale factor of 100.
- 48. a. Tell which of the following numbers are prime. (There may be more than one.)

$$2^2 - 1$$

$$2^3 - 1$$

$$2^4 - 1$$

$$2^5 - 1$$

$$2^6 - 1$$

- **b.** Find another prime number that can be written in the form $2^n 1$.
- **49.** In parts (a)–(d), find the sum of the proper factors for the number.
 - **a.** 2^2
- **b.** 2^3
- c. 24
- **d.** 2^5
- **e.** What do you notice about the sums in parts (a)–(d)?
- **50.** Grandville has a population of 1,000. Its population is expected to decrease by 4% a year for the next several years. Tinytown has a population of 100. Its population is expected to increase by 4% a year for the next several years. Will the populations of the two towns ever be the same? Explain.

$$\frac{5(10)^5}{7(10)^5}$$
 .d

Extensions

SS. a. Find the sum for each row.

Row 1:
$$\frac{1}{2}$$

Row 2: $\frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + (\frac{1}{2})^3$
Row 4: $\frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + (\frac{1}{2})^3$

- expression that would be in row 5, and find its sum. b. Study the pattern. Suppose the pattern continues. Write the
- c. What would be the sum of the expression in row 10? What would
- pe the sum for row 20?
- expression. d. Describe the pattern of sums in words and with a symbolic
- e. For which row does the sum first exceed 0.9?
- what number? f. As the row number increases, the sum gets closer and closer to

22. a. Copy and complete this table.

Exponential Form	Standard Form
104	000'01
103	000'۱
102	100
101	01
100	L
l=01	$\Gamma.0 = \frac{\Gamma}{0\Gamma}$
10 ₋₅	$10.0 = \frac{1}{001}$
	$100.0 = \frac{1}{000,1}$
ż	$1000.0 = \frac{1}{000.0}$
10_2	
9-01	

 ξ -01 \times ξ .1 1.5×10^{-2} 3×10^{-1} b. Write each number in standard form as a decimal.

show one of the following: **56.** If you use your calculator to compute $2 \div 2^{12}$, the display will probably

H- 8518588.H

h- 32518588.P

 10^{-4}). You can convert 4.8828125 imes 10-4 to standard form as shown: than 10 (in this case, 4.8828125), times a power of 10 (in this case, notation because it is a number greater than or equal to 1, but less Both displays mean 4.8828125 $\times\,10^{-4}.$ This number is in scientific

 $4.8828125 \times 10^{-4} = 4.8828125 \times \frac{1}{1000,01} \times 2518288 \times 4.8828125 \times 100048828125$

a. Write each number in standard notation.

 $^{8-01} \times 2.1$

1020100.0

write 1.2 \times 10-n in standard notation where n is any whole number b. Using what you discovered in part (a), explain how you would $6-01 \times 2.1$ $^{2-01} \times 2.1$

c. Write each number in scientific notation. greater than or equal to 1.

000,000,000,01

8661248500.0 28,000,000

2,000,000

 1.2×10^{-1}

0.12489

53. a. Find the sum for each row.

Row 1:
$$\frac{1}{3}$$

Row 2:
$$\frac{1}{3} + (\frac{1}{3})^2$$

Row 3:
$$\frac{1}{3} + (\frac{1}{3})^2 + (\frac{1}{3})^3$$

Row 4:
$$\frac{1}{3} + (\frac{1}{3})^2 + (\frac{1}{3})^3 + (\frac{1}{3})^4$$

- **b.** Study the pattern. Suppose the pattern continues. Write the expression that would be in row 5, and find its sum.
- c. What would be the sum of the expression in row 10? What would be the sum for row 20?
- d. Describe the pattern of sums in words and with an equation.
- e. As the row number increases, the sum gets closer and closer to what number?

- 54. Negative numbers can be used as exponents. Parts (a) and (b) will help you understand negative exponents.
 - **a.** Use your calculator to find the value of 2^x for x-values -1, -2, and -3.
 - **b.** Use your calculator to find the value of $(\frac{1}{2})^x$ for x-values 1, 2, and 3.
 - c. What observation can you make from your computations in parts (a) and (b)?
 - **d.** Write each number as a power with a positive exponent.

$$3^{-1}$$

$$4^{-2}$$

$$5^{-3}$$