Feuille d'exercices 12 : Espaces vectoriels.

Exercice 12.1 : (niveau 1)

On note $A = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$ et $B = \{(x, y) \in \mathbb{R}^2 \mid 2x + y = 1\}$.

Les ensembles A et B sont-ils des sous-espaces vectoriels de \mathbb{R}^2 ?

Exercice 12.2 : (niveau 1)

On note A l'ensemble des suites arithmétiques et B l'ensemble des suites monotones. Les ensembles A et B sont-ils des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?

Exercice 12.3 : (niveau 1)

Soit E un \mathbb{K} -espace vectoriel et A et B des parties de E. Comparez

- a) $Vect(A \cup B)$ et $Vect(A) \cup Vect(B)$,
- b) $Vect(A \cap B)$ et $Vect(A) \cap Vect(B)$,
- c) Vect(Vect(A)) et Vect(A).

Exercice 12.4 : (niveau 1)

Montrez que l'ensemble des suites $(u_n)_{n\in\mathbb{N}^*}$ de $\mathbb{C}^{\mathbb{N}^*}$ telles que $(|u_n|^{\frac{1}{n}})_{n\in\mathbb{N}^*}$ est une suite majorée est un \mathbb{C} -espace vectoriel.

Exercice 12.5 : (niveau 1)

On note E l'ensemble des fonctions f de \mathbb{R} dans \mathbb{R} telles qu'il existe $(a, A) \in \mathbb{R}^2_+$ vérifiant $\forall x \in \mathbb{R}, |x| \geq a \Longrightarrow |f(x)| \leq A|x|$.

Montrer que E est un \mathbb{R} -espace vectoriel .

Exercice 12.6: (niveau 1)

On note E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} de la forme $x \longmapsto (ax^2 + bx + c) \cos x$, où $a, b, c \in \mathbb{R}$. Montrer que E est un \mathbb{R} -espace vectoriel, déterminer une base de E ainsi que sa dimension.

Exercice 12.7 : (niveau 1)

Soient E et F deux \mathbb{K} -espaces vectoriels et $u \in L(E, F)$. Soit $(x_i)_{i \in I}$ une famille libre de vecteurs de E. Montrer que la famille $(u(x_i))_{i \in I}$ est libre si et seulement si $Ker(u) \cap Vect\{x_i/i \in I\} = \{0\}$.

Exercice 12.8 : (niveau 1)

Montrer que la famille de réels $(\ln(p))_{p\in\mathbb{P}}$, où \mathbb{P} désigne l'ensemble des nombres premiers, est libre, en considérant \mathbb{R} comme un \mathbb{Q} -espace vectoriel.

Exercice 12.9: (niveau 1)

Soit (e_1, \ldots, e_n) et (f_1, \ldots, f_n) deux bases d'un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$. Montrer qu'il existe $i \in \mathbb{N}_n$ tel que $(e_1, \ldots, e_{n-1}, f_i)$ est une base de E.

Exercice 12.10 : (niveau 1)

Notons E l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} .

On fixe $(x_1, x_2) \in [0, 1]^2$ tel que $x_1 \neq x_2$.

Montrer que $F = \{f \in E/f(x_1) = f(x_2) = 0\}$ est un sous-espace vectoriel de E et que F et $\mathbb{R}_1[X]$ sont supplémentaires dans E.

Exercice 12.11 : (niveau 1)

Soit E un \mathbb{K} -espace vectoriel de dimension n et soit H un hyperplan de E.

- 1°) Si $x_1 \notin H$, montrer qu'on peut compléter (x_1) en une base de E ne contenant aucun vecteur de H.
- **2°)** Si (x_1, \ldots, x_p) est une famille libre telle que, pour tout $i \in \{1, \ldots, p\}, x_i \notin H$, montrer qu'on peut compléter (x_1, \ldots, x_p) en une base de E ne contenant aucun vecteur de H.

Exercice 12.12 : (niveau 2)

Pour tout
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
, on note $M(X) = \begin{pmatrix} x + 2y + 4z \\ 3y + 3z \\ x + y + 3z \end{pmatrix}$.

Montrer que $M \in L(\mathbb{R}^3)$, puis calculer Ker(M) et Im(M).

Exercice 12.13 : (niveau 2)

Soient E un \mathbb{K} -espace vectoriel et h un endomorphisme de E.

- 1°) Si F est un sous-espace vectoriel de E, montrer que $h^{-1}(h(F)) = F + Ker(h)$.
- **2°**) Soit F un sous-espace vectoriel de E.

Exprimer $h(h^{-1}(F))$ en fonction de F et de Im(h).

3°) Déterminer les sous-espaces vectoriels F de E pour lesquels $h^{-1}(h(F)) = h(h^{-1}(F))$.

Exercice 12.14: (niveau 2)

Dans l'espace vectoriel $\mathcal{F}(\mathbb{R}, \mathbb{R})$ des applications de \mathbb{R} dans \mathbb{R} , comparer les sous-espaces vectoriels respectivement engendrés par les familles $(\varphi_n)_{n\in\mathbb{N}}$ et $(\psi_n)_{n\in\mathbb{N}}$, où

$$\forall x \in \mathbb{R} \ \varphi_n(x) = \cos(nx) \text{ et } \psi_n(x) = \cos^n x.$$

Exercice 12.15 : (niveau 2)

Soient E et F deux K-espaces vectoriels et $f \in L(E, F)$.

Soient A et B deux sous-espaces vectoriels de E.

Montrer que $f(A) \subset f(B) \iff A + \operatorname{Ker}(f) \subset B + \operatorname{Ker}(f)$.

Exercice 12.16 : (niveau 2)

Soit E un \mathbb{K} -espace vectoriel et u un élément de L(E).

- 1°) Montrer que $Ker(u) \cap Im(u) = \{0\}$ si et seulement si $Ker(u^2) = Ker(u)$.
- **2°)** Montrer que E = Ker(u) + Im(u) si et seulement si $Im(u^2) = Im(u)$.

Exercice 12.17 : (niveau 2)

Soit E un \mathbb{K} -espace vectoriel et $u, v \in L(E)$ tels que $u \circ v = v \circ u$ et $Ker(u) \cap Ker(v) = \{0\}.$

Montrer que quelque soit $i, j \in \mathbb{N}$, $Ker(u^i) \cap Ker(v^j) = \{0\}$.

Exercice 12.18: (niveau 2)

Soit \mathbb{K} un corps dont le cardinal q est fini.

Déterminer le nombre de droites vectorielles de \mathbb{K}^n , où $n \in \mathbb{N}^*$.

Exercice 12.19 : (niveau 2)

Notons E le \mathbb{R} -espace vectoriel des suites réelles convergentes.

Pour tout
$$k \in \mathbb{N}$$
, on pose $\begin{array}{ccc} \varphi_k : & E \longrightarrow \mathbb{R} \\ (u_n)_{n \in \mathbb{N}} & \longmapsto & u_k \end{array}$
On note aussi $\begin{array}{ccc} \varphi_\infty : & E \longrightarrow \mathbb{R} \\ (u_n)_{n \in \mathbb{N}} & \longmapsto & \lim_{n \to +\infty} u_n \end{array}$

- 1°) Montrer que la famille $(\varphi_n)_{n\in\mathbb{N}}\cup(\varphi_\infty)$ est une famille libre de $L(E,\mathbb{R})$.
- **2°)** Montrer que cette famille n'est pas une base de $L(E, \mathbb{R})$.

Exercice 12.20 : (niveau 2)

Notons E l'espace vectoriel des fonctions de $\mathbb C$ dans $\mathbb C$. On rappelle que $j=e^{\frac{2i\pi}{3}}$.

Posons $F_1 = \{ f \in E / \forall z \in \mathbb{C} \ f(jz) = f(z) \},$

$$F_2 = \{ f \in E / \forall z \in \mathbb{C} \ f(jz) = jf(z) \},\$$

et
$$F_3 = \{ f \in E / \forall z \in \mathbb{C} \mid f(jz) = j^2 f(z) \}.$$

Montrer que $E = F_1 \oplus F_2 \oplus F_3$.

Exercice 12.21 : (niveau 2)

Soient E un \mathbb{K} -espace vectoriel de dimension finie n et F un sous-espace vectoriel de E. Notons $X = \{u \in L(E)/F \subseteq Keru\}$.

Montrer que X est un sous-espace vectoriel de L(E) et déterminer sa dimension.

Exercice 12.22 : (niveau 3)

Soient E, F et G trois \mathbb{K} -espaces vectoriels, $u \in L(E, F)$ et $v \in L(F, G)$.

On pose $w = v \circ u$. Montrer que w est un isomorphisme si et seulement si v est surjective, u est injective et $F = Im(u) \oplus Ker(v)$.

Exercice 12.23: (niveau 3)

n est un entier supérieur ou égal à 1.

E est un \mathbb{R} -espace vectoriel de dimension n.

On dit qu'une famille (x_1, \ldots, x_p) de p vecteurs de E est positivement génératrice si et seulement si, pour tout $x \in E$, il existe $(\alpha_1, \ldots, \alpha_p) \in \mathbb{R}^p$ tel que $x = \sum_{i=1}^p \alpha_i x_i$ avec,

pour tout $i \in \mathbb{N}_p$, $\alpha_i \geq 0$.

Déterminer le plus petit cardinal des familles positivement génératrices de E.

Exercice 12.24 : (niveau 3)

Soient \mathbb{K} un sous-corps de \mathbb{C} et \mathbb{L} un sous-corps de \mathbb{K} .

- 1°) Montrer que tout K-espace vectoriel est aussi un L-espace vectoriel.
- **2°)** Si B est un corps et si A est un B-espace vectoriel, on note, lorsqu'elle est définie, $dim_B(A)$ la dimension de A.

Soit E un \mathbb{K} -espace vectoriel.

On suppose que $dim_{\mathbb{L}}(\mathbb{K})$ et $dim_{\mathbb{K}}(E)$ sont définies. Montrer que $dim_{\mathbb{L}}(E)$ est également définie et que $dim_{\mathbb{L}}(E) = dim_{\mathbb{L}}(\mathbb{K})dim_{\mathbb{K}}(E)$.

Exercice 12.25 : (niveau 3)

Soient \mathbb{K} un sous-corps de \mathbb{C} et E un \mathbb{K} -espace vectoriel.

- 1°) Montrer que la réunion de deux sous-espaces vectoriels strictement inclus dans E est également strictement incluse dans E.
- 2°) Plus généralement, si n est un entier supérieur ou égal à 2, montrer que la réunion de n sous-espaces vectoriels strictement inclus dans E est strictement incluse dans E.

Exercice 12.26: (niveau 3)

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soit $u \in L(E)$ un endomorphisme nilpotent d'indice p (c'est-à-dire que $u^p = 0$ et $u^{p-1} \neq 0$). Pour tout $v \in L(E)$, on pose $\Phi(v) = uv - vu$.

- 1°) Montrer que, pour tout $n \in \mathbb{N}$ et $v \in L(E)$, $\Phi^n(v) = \sum_{k=0}^n \binom{n}{k} (-1)^k u^{n-k} v u^k$.
- **2°)** Pour tout $a \in L(E)$, montrer qu'il existe $b \in L(E)$ tel que aba = a.
- **3°)** Montrer que Φ est nilpotent et préciser son indice de nilpotence, lorsque $\operatorname{car}(\mathbb{K}) = 0$.

Exercice supplémentaire :

Exercice 12.27 : (niveau 1)

Dans
$$\mathbb{R}^3$$
, on note $u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

$$\text{Montrer que Vect}(u,v) = \Big\{ \begin{pmatrix} 2\alpha \\ \alpha+\beta \\ 2\beta \end{pmatrix} \ / \ \alpha,\beta \in \mathbb{R}^2 \Big\}.$$

Exercice 12.28: (niveau 1)

Montrez que $F = \{f \in \mathbb{R}^{\mathbb{R}}/f(1) = 0\}$ et $G = \{f \in \mathbb{R}^{\mathbb{R}}/\exists a \in \mathbb{R} \ f(x) = ax\}$ sont des sous-espaces vectoriels supplémentaires dans $\mathbb{R}^{\mathbb{R}}$.

Exercice 12.29: (niveau 1)

Exercice 12.30 : (niveau 1)

Soient E un \mathbb{K} -espace vectoriel et A, B, C trois sous-espaces vectoriels de E tels que $A \cap B = A \cap C$, A + B = A + C et $B \subseteq C$.

Montrez que B = C.

Soient E un \mathbb{R} -espace vectoriel et F un sous-espace vectoriel de E, différent de E. Soit u une fonction de E dans E telle que la restriction de u sur le complémentaire de F est nulle.

Montrer que u est linéaire si et seulement si elle est nulle.

Exercice 12.31 : (niveau 2)

Soient E, F et G trois sous-espaces vectoriels d'un espace vectoriel A.

- 1°) Est-il vrai que $E \cap (F+G) = (E \cap F) + (E \cap G)$?
- **2°)** Est-il vrai que $E \cap (F + (E \cap G)) = (E \cap F) + (E \cap G)$?

Exercice 12.32 : (niveau 2)

u et v sont deux endomorphismes d'un \mathbb{C} -espace vectoriel E. On suppose qu'il existe $(\alpha, \beta) \in \mathbb{C}^2$ tel que $u \circ v + \alpha u + \beta v = 0$, avec $\alpha \neq 0$ et $\beta \neq 0$. Montrer que $u + \beta Id_E$ est inversible, puis que $u \circ v = v \circ u$.

Exercice 12.33: (niveau 2)

Soit E un \mathbb{K} -espace vectoriel et $f \in L(E)$. On suppose qu'il existe un unique $g \in L(E)$ tel que $f \circ g = Id_E$. Montrer que f est un automorphisme de E.

Exercice 12.34: (niveau 2)

On admettra que tout espace vectoriel possède au moins une base, et que tout sousespace d'un espace vectoriel possède au moins un supplémentaire.

Soient E et F deux \mathbb{K} -espaces vectoriels non nuls et $f \in L(E, F)$.

Montrez que f est un isomorphisme si et seulement si,

pour tout $g \in L(F, E)$, $(f \circ g \circ f = 0 \Rightarrow g = 0)$.

Exercice 12.35 : (niveau 2)

- 1°) Le sous-ensemble de $\mathbb{R}^{\mathbb{N}}$ constitué des suites périodiques est-il un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$?
- 2°) Le sous-ensemble de $\mathbb{R}^{\mathbb{R}}$ constitué des fonctions périodiques est-il un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$?

Exercice 12.36: (niveau 2)

Soient E et F deux \mathbb{K} -espaces vectoriels. Montrer que $E^* \times F^*$ est isomorphe à $(E \times F)^*$.

Exercice 12.37 : (niveau 2)

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in L(E, F)$, avec $f \neq 0$. Montrez que les assertions suivantes sont équivalentes :

- i) f est injective.
- ii) L'image par f de toute famille libre est libre.
- iii) Pour tout triplet (G, H, L) de sous-espaces vectoriels de E tel que $G = H \oplus L$, $f(G) = f(H) \oplus f(L)$.

Exercice 12.38 : (niveau 2)

Soit E un \mathbb{K} -espace vectoriel de dimension n. On note S l'ensemble des sous-espaces vectoriels de E et on suppose que d est une application de S dans \mathbb{N} telle que d(E) = n et telle que, pour tout $(F, F') \in S^2$ tel que $F \cap F' = \{0\}$, d(F + F') = d(F) + d(F').

- 1°) Soit $x \in E$ avec $x \neq 0$. On suppose que d(Vect(x)) = 0. Montrer que, pour tout $y \in E$ avec $y \neq 0$, d(Vect(y)) = 0.
- **2**°) Montrer que, pour tout $F \in S$, d(F) = dim(F).

Exercice 12.39 : (niveau 3)

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in L(E, F)$.

Soient $n \in \mathbb{N}^*$, E_1, \ldots, E_n n sous-espaces vectoriels de E et F_1, \ldots, F_n n sous-espaces vectoriels de F.

1°) Montrer que $f(\sum_{i=1}^n E_i) = \sum_{i=1}^n f(E_i)$.

Si la somme $\sum_{i=1}^{n} E_i$ est directe, peut-on affirmer que la somme $\sum_{i=1}^{n} f(E_i)$ est aussi directe?

Examiner le cas où f est injective.

2°) Montrer que $f^{-1}(\sum_{i=1}^{n} F_i) \supset \sum_{i=1}^{n} f^{-1}(F_i)$.

Donner un exemple où l'inclusion est stricte.

Proposer une condition suffisante simple, portant sur f, pour que l'inclusion précédente soit une égalité.

3°) Si la somme $\sum_{i=1}^{n} F_i$ est directe, peut-on affirmer que la somme $\sum_{i=1}^{n} f^{-1}(F_i)$ est aussi directe? Examiner le cas où f est injective.