Practica 1

Radilla	Maldonodo	Dylon E.	316237848
Garcia	Villanueva	Israel	317052141

3.1

3.1.1. Construya una AFD que reconozea aquellas cadenas en el alfabeto [0.1] tales que las cadenas binarias representen un núnero decinal miltiplo de 3

Rechazo Aceptación 1 & L(A) 0 & L(n) 01 & L(M) 11 € L(M) 10 & L(M) DOLL ELIM) 1001 EL(M) 111 & L(M) 101 € L(A) IIII EL (M) HOOTI ELLA) 100 E L (M) IIII I ELIM) 101011 & L(m)

3.1.2 Construya una AFD que reconozca aquellas cadenas en el alfabeto [a,b] toles que tergan un rinero por de b consecutivos.

A ceptación

Q E L(M)

bab E L(M)

bb G E(M)

babbab E L(M)

babbab E L(M)

anabanb c bbbb ab ob E L(M)

Rechuzo
b & L(M)
Gb & L(M)
babb & L(M)
bbab & L(M)
bbab & L(M)
ccbubabbab & L(M)
bububbacab & L(M)

3 2

Exp Rey => AFN-E

A FN - E 9

AFN-E L

AFN-E (bb)

APN-E (aba)

$$\rightarrow \overbrace{(a_0)} \xrightarrow{\mathcal{E}} \overbrace{(a_1)} \xrightarrow{\alpha} \overbrace{(a_2)} \xrightarrow{\mathcal{E}} \overbrace{(a_3)} \xrightarrow{b} \overbrace{(a_2)} \xrightarrow{\mathcal{E}} \overbrace{(a_3)} \xrightarrow{\alpha} \overbrace{(a_2)} \xrightarrow{\mathcal{E}} \overbrace{(a_3)} \xrightarrow{\mathcal{E}} \overbrace{(a_2)} \xrightarrow{\mathcal{E}} \overbrace{(a_3)} \xrightarrow{\mathcal{E}} \overbrace{(a_2)} \xrightarrow{\mathcal{E}} \overbrace{(a_3)} \xrightarrow{\mathcal{E}} \overbrace{(a_2)} \xrightarrow{\mathcal{E}} \overbrace{(a_3)} \xrightarrow{$$

AFN-E (55 + aba)

Simplificación (bb + aba)

AFN-E (ba)

AFN-1 (bb + aba)(b4)*

AFN-E => AFN

$E(q_0) = \{q_0\}$	$S(q_0, a) = \{q_2\}$
$E(q_1) = \{q_1\}$	S(90.5) = {a,}
$E(q_2) = \{q_1\}$	S(q1, u) : Ø
$f(q_s) = \{q_s\}$	S(q., b) = {q4, q6}
$E(\alpha_{ii}) = \{94, 96\}$	S(92, v) = 🥟
E(9s) [9s]	S(a2'P) = [a4]
E(96) = {9.,94}	$\mathcal{E}(a_3,a): [a_a,a_b]$
	S(9s,6) · Ø
	S(94,a) - 💋
	S(94,5) - E 95]
	S[45, a) [96, 94]
	S(9s,b): 💋
	$\leq (Q_6, \alpha) = \emptyset$
	S(a _c , b) : [95]
	*

AFN (bb + aba)(ba)*

AFN => APD

	a	Ь	
£903	{9 ₂ }	[، و ع	A
[92?	Ø	[43]	В
દ્વ ત્રું	Ø	£ 94,96}	C
<i>[43]</i>	£94.963	Ø	D
F {qu, qb}	Ø	1953	E
<i>[45]</i>	[94,96]	Ø	F
0	0	Ø	G

AFD (66 + a6a) (6a)*

AFD => AFD minimo

7 90 {41, 43, 44} {92,93,91} {91,93,94}=9 91 (91,93,943) {91,93} 692, 43, 413= 98 {93,943V {93,9a3 {93,94,913 {41, 43, 943

Conservamos unicamente los estados, 90,97,98 95

