Universidad de la República - Facultad de Ingeniería - IMERL Matemática Discreta 2, semipresencial

Solución segunda prueba (primer parcial) - 30 de setiembre de 2016.

Ejercicio 1. (8 puntos) Calcular 3¹⁶³ (mód 89).

Solución: Observar primero que $3^{163}=3^{88}3^{75}$. Como $\operatorname{mcd}(89,3)=1$ (obsérvese que 89 es primo), entonces $3^{88}\equiv 1\pmod{89}$, por el teorema de Fermat o de Euler. Entonces $3^{163}\equiv 3^{75}\pmod{89}$. Para calcular $3^{75}\pmod{89}$ usaremos el método de exponenciación rápida. Para eso obsérvese que: $75=64+8+2+1=2^6+2^3+2^1+2^0$.

Planteamos la tabla:

$$\begin{array}{c|cc}
n & 3^{2^n} \pmod{89} \\
\hline
0 & 3 \\
1 & 9 \\
2 & 81 \equiv -8 \\
3 & 64 \equiv -25 \\
4 & 625 \equiv 2 \\
5 & 4 \\
6 & 16
\end{array}$$

Entonces $3^{163} \equiv 3^{75} \pmod{89} \equiv 3^{2^6} 3^{2^3} 32^1 3^{2^0} \pmod{89} \equiv 16 \times 64 \times 9 \times 3 \pmod{89} \equiv 32 \times 3 \times 3 \times 3 \pmod{89} \equiv 7 \times 7 \times 3 \pmod{89} \equiv 58 \pmod{89}$. Finalmente se obtiene que $3^{163} \equiv 58 \pmod{89}$.

Ejercicio 2. (8 puntos) Sea $a, b, c, n \in \mathbb{N}$ con $c \neq 0$.

Demostrar que, si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{b \frac{n}{\operatorname{mcd}(c,n)}}$.

Solución: (esto es parte del teórico, página 27, Proposición 2.2.4 del Capítulo 2).

Si llamamos d = mcd(c, n) tenemos que $c = dc^*$ y $n = dn^*$, con c^* , n^* enteros coprimos. Si $ca \equiv cb$ (mód n), entonces $dc^*a \equiv dc^*b$ (mód dn^*), con lo cual se obtiene que $c^*a \equiv c^*b$ (mód n^*). Ahora

como $\operatorname{mcd}(c^*, n^*) = 1$, se concluye que $a \equiv b \pmod{n^*}$; es decir $a \equiv b \pmod{\frac{n}{\operatorname{mcd}(c, n)}}$.

Ejercicio 3. (14 puntos) Se dice que un entero n es un Pseudoprimo de Carmichael si n es compuesto y $a^n \equiv a \pmod{n}$ para todo $a \in \mathbb{N}$.

- a. Sea b un número entero positivo y coprimo con 561.
 - i) Demostrar que $b^2 \equiv 1 \pmod{3}$, $b^{10} \equiv 1 \pmod{11}$ y $b^{16} \equiv 1 \pmod{17}$.
 - ii) Hallar b^{560} (mód 3), b^{560} (mód 11) y b^{560} (mód 17).
 - iii) Probar que 561 es un Pseudoprimo de Carmichael (Sug: hallar b^{561} dependiendo si b es coprimo o no con 561).
- **b**. Sea n compuesto y libre de cuadrados (no es divisible por ningún cuadrado), tal que todo divisor primo p de n cumple que p-1|n-1. Probar que n es un pseudoprimo de Carmichael.

Solución:

- a. i) Como $\operatorname{mcd}(b, 561) = 1$ y $561 = 3 \times 11 \times 17$ (descomposición en factores primos), entonces $\operatorname{mcd}(b, 3) = 1$, $\operatorname{mcd}(b, 11) = 1$, $\operatorname{mcd}(b, 17) = 1$. Luego, por el Teorema de Fermat tenemos que: $b^2 \equiv 1 \pmod{3}$, $b^{10} \equiv 1 \pmod{11}$ y $b^{16} \equiv 1 \pmod{17}$.
 - ii) Observemos para este punto que 560 se puede escribir de las siguientes formas: $560 = 2 \times 280 = 10 \times 56 = 16 \times 35$. Entonces $b^{560} = (b^2)^{280} \equiv (1)^{280} \pmod{3}$, pues, por el punto anterior $b^2 \equiv 1 \pmod{3}$. También $b^{560} = (b^{10})^{56} \equiv (1)^{56} \pmod{11}$, pues, por el punto anterior $b^{10} \equiv 1 \pmod{11}$. Finalmente vale también que $b^{560} = (b^{16})^{35} \equiv (1)^{35} \pmod{17}$, pues, por el punto anterior $b^{16} \equiv 1 \pmod{17}$.

iii) Si 3 no divide a b entonces $b^2 \equiv 1 \pmod{3}$, por lo tanto $b^{560} = (b^2)^{280} \equiv (1)^{280}$ (mód 3). O sea que $b^{560} \equiv 1 \pmod{3}$ y por lo tanto $b^{561} \equiv b \pmod{3}$. Si 3 divide a b entonces es claro que $b^{561} - b$ es múltiplo de 3. O sea que también

vale $b^{561} \equiv b \pmod{3}$.

Conclusión, en ambos casos vale que $b^{561} \equiv b \pmod{3}$.

Si 11 no divide a *b* entonces $b^{10} \equiv 1 \pmod{11}$, por lo tanto $b^{560} = (b^{10})^{56} \equiv (1)^{56}$ (mód 11). O sea que $b^{560} \equiv 1 \pmod{11}$ y por lo tanto $b^{561} \equiv b \pmod{11}$. Si 11 divide a b entonces es claro que $b^{561} - b$ es múltiplo de 11. O sea que también

vale $b^{561} \equiv b \pmod{11}$.

Conclusión, en ambos casos vale que $b^{561} \equiv b \pmod{11}$.

Si 17 no divide a b entonces $b^{16} \equiv 1 \pmod{17}$, por lo tanto $b^{560} = (b^{16})^{35} \equiv (1)^{35} \pmod{17}$. O sea que $b^{560} \equiv 1 \pmod{17}$ y por lo tanto $b^{561} \equiv b \pmod{17}$. Si 17 divide a b entonces es claro que $b^{561} - b$ es múltiplo de 17. O sea que también

vale $b^{561} \equiv b \pmod{17}$.

Conclusión, en ambos casos vale que $b^{561} \equiv b \pmod{17}$.

Sumando las conclusiones tenemos que $b^{561}-b$ es múltiplo de 3, de 11 y de 17. Por lo tanto, $b^{561} - b$ es múltiplo de 561. O sea que $b^{561} \equiv b \pmod{561}$, para todo $b \in \mathbb{N}$.

b. Seguiremos el mismo proceso de discusión que en el caso anterior. Sea p un primo de la

descomposición factorial de n y consideramos $b \in \mathbb{N}$. Si p no divide a b entonces $b^{p-1} \equiv 1 \pmod{p}$. Por hipótesis, p-1|n-1 o sea que existe k tal que $k \times (p-1) = n-1$. Luego $(b^{p-1})^k \equiv (1)^k \pmod{p} \equiv 1 \pmod{p}$. O sea que $b^{n-1} \equiv 1 \pmod{p}$, por lo tanto $b^n \equiv b \pmod{p}$.

Por otro lado si p divide a b es claro que: $b^n \equiv b \pmod{p}$. Entonces en ambos casos tenemos la misma conclusión.

Como lo anterior es cierto para cada primo que divide a $n, y n = p_1 \times p_2 \times ... \times p_k$ con $p_i \neq p_i$, si $i \neq j$ (n es libre de cuadrados) y $b^n \equiv b$ (mód p_i), para todo i = 1, ..., kentonces $b^n \equiv b \pmod{n}$.