DPDA

Deterministic PDA

Deterministic PDA: DPDA

Allowed transitions:

$$\underbrace{q_1} \xrightarrow{a,b \to w} \underbrace{q_2}$$

$$\overbrace{q_1} \xrightarrow{\lambda, b \to w} \overbrace{q_2}$$

(deterministic choices)

Allowed transitions:

(deterministic choices)

Not allowed:

(non deterministic choices)

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

Definition:

A language $\,L\,$ is deterministic context-free if there exists some DPDA that accepts it

Example:

The language $L(M) = \{a^n b^n : n \ge 0\}$

is deterministic context-free

Example of Non-DPDA (PDA)

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

$$a, \lambda \to a$$
 $a, a \to \lambda$
 $b, \lambda \to b$ $b, b \to \lambda$
 q_0 $\lambda, \lambda \to \lambda$ q_1 $\lambda, \$ \to \$$ q_2

Not allowed in DPDAs

PDAs

Have More Power than

DPDAs

It holds that:

Deterministic
Context-Free
Languages
(DPDA)

Context-Free
Languages
PDAs

Since every DPDA is also a PDA

We will actually show:

We will show that there exists a context-free language L which is not accepted by any DPDA

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

We will show:

• L is context-free

• L is **not** deterministic context-free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Language L is context-free

Context-free grammar for L:

$$S \rightarrow S_1 \mid S_2$$

$$\{a^nb^n\}\cup\{a^nb^{2n}\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$\{a^nb^n\}$$

$$S_2 \rightarrow aS_2bb \mid \lambda \qquad \{a^nb^{2n}\}$$

Theorem:

The language
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$

is not deterministic context-free

(there is no DPDA that accepts L)

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is deterministic context free

Therefore:

there is a DPDA $\,M\,$ that accepts $\,L\,$

DPDA M with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

accepts $a^n b^n$ accepts $a^n b^{2n}$

DPDA
$$M$$
 with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

Such a path exists due to determinism

Fact 1: The language $\{a^nb^nc^n\}$ is not context-free

(we will prove this at a later class using pumping lemma for context-free languages)

Fact 2: The language $L \cup \{a^nb^nc^n\}$ is not context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(we can prove this using pumping lemma for context-free languages)

We will construct a PDA that accepts:

$$L \cup \{a^nb^nc^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

which is a contradiction!

DPDA M

$L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

$$L(M') = \{a^n c^n\} \cup \{a^n c^{2n}\}$$

A PDA that accepts $L \cup \{a^nb^nc^n\}$

Connect the final states of M with the final states of M'

Since $L \cup \{a^nb^nc^n\}$ is accepted by a PDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Is not deterministic context free

There is no DPDA that accepts it

End of Proof