Package 'ars'

December 16, 2015

Type Package				
Citle An R Implementation Of The Adaptive Rejection Sampling (ARS) Algorithm				
Version 1.0				
Maintainer Shamindra Shrotriya <shamindra@berkeley.edu></shamindra@berkeley.edu>				
LazyData true				
URL https://github.com/shamindras/ars.git				
Imports numDeriv				
Suggests knitr, rmarkdown				
Description An R implementation of the adaptive rejection sampling (ARS) algorithm. This is based on the P. Wild and W. R. Gilks (1992) paper ``Adaptive rejection sampling for Gibbs sampling".				
License GPL-2				
RoxygenNote 5.0.1				
R topics documented:				
ars				
faux_CheckLogConcavity				
faux_findmode				
faux_hPrimex				
faux_hx				
faux_InitChoose				
faux_Lkx				
faux_SampleSkx				
faux_Skx				
faux_uInterval				
faux_Ukx				
faux_Zj 8				
Index 9				

2 ars

ars

Main function to carry out simulation

Description

Main function to carry out simulation

Usage

```
ars(n, g, D, k = 100)
```

Arguments

n	A number indicates how many accepted points user wants to generate.
g	A function user wants to generate samples from.
D	A vector with two elements indicates the domain of the sample generation.
k	The number of inital x points to start the algorithm. Default is 100.

Value

A numeric vector of length n, each element of which is a value sampled from g.

References

```
https://stat.duke.edu/~cnk/Links/tangent.method.pdf
```

See Also

Gilks et al

Examples

```
sample 1000 points from the standard normal distribution using adaptive
# rejection sample

set.seed(0)
dnorm1000 <- ars(1000,g=dnorm,D=c(-Inf,Inf))
hist(dnorm1000, breaks=30, main="1000 points sampled from N(0,1)")

# sample 500 point from the chisquare distribution with df=5

set.seed(123)
dchisq500 <- ars(500,g=function(x) dchisq(x,df=5), D=c(0,Inf))
hist(dchisq500, breaks=30)

# sample 1000 points from the exponential distribution

set.seed(0)
dexp1000 <- ars(1000,function(x) exp(-x), c(0,Inf))
hist(dexp1000,breaks=30)</pre>
```

faux_CheckLogConcavity

Helper function to check the log concavity

Description

Helper function to check the log concavity

Usage

faux_CheckLogConcavity(inp_gfun, inp_Dvec)

Arguments

inp_gfun A function user wants to generate samples from. This function is used to calcu-

late $h(x) = \log(g(x))$.

inp_Dvec A numeric vector of length 2 indicating the support of inp_gfun.

Value

A logical vector of length 1: TRUE if inp_gfun is log-concave, FALSE if inp_gfun is not log-concave.

faux_findmode

Helper function to find mode of a given univariate function g(x)

Description

Helper function to find mode of a given univariate function g(x)

Usage

```
faux_findmode(optim_intervalvec, inp_gfun)
```

Arguments

optim_intervalvec

A vector with two elements indicates the support domain of the sample genera-

tion.

inp_gfun A function of x which the user wants to generate samples from. This function is

used to calculate $h(x) = \log(g(x))$.

Value

A list with three elements.

min_int The minimum of the parameter optim_intervalvec.

superStarSeed The point within optim_intervalvec at which the optimization routine begins.

faux_findmode_par

the mode of the function inp_gfun.

4 faux_hx

fally	hPrimex
Iaux	TIL L TIMEX

Helper function to get first derivative of h(x)

Description

Helper function to get first derivative of h(x)

Usage

```
faux_hPrimex(inp_gfun, inp_xvec)
```

Arguments

inp_gfun A function of x which the user wants to generate samples from. This function is

used to calculate $h(x) = \log(g(x))$.

inp_xvec A number indicates the x-axis of the point

Value

A numeric vector of length equal to inp_xvec. The elements of the returned value are equal to the first derivative of h(x) at the points in inp_xvec.

faux_hx

Helper function to get $h(x) = \log(g(x))$.

Description

Helper function to get $h(x) = \log(g(x))$.

Usage

```
faux_hx(inp_gfun)
```

Arguments

inp_gfun

A function of x which the user wants to generate samples from. This function is used to calculate $h(x) = \log(g(x))$.

Value

The function $h(x) = \log(g(x))$. It takes as input the same input to inp_gfun.

faux_InitChoose 5

faux_InitChoose	Helper function to choose two starting poin	ts
Taux_IIII CCIIOOSC	Theiper junction to encose two starting point	us

Description

Helper function to choose two starting points

Usage

```
faux_InitChoose(inp_gfun, inp_Dvec, inp_Initnumsampvec = 2)
```

Arguments

inp_gfun A function user wants to generate samples from. This function is used to calcu-

late $h(x) = \log(g(x))$

inp_Dvec A vector with two elements indicates the support domain of the sample genera-

tion.

inp_Initnumsampvec

An even integer determining the number of points to initially sample - should be

even

Value

A list with 7 elements.

init_sample_points

num_sample_pts_mode

 ${\tt support_classify}$

Based on the support function, determine the type of bounds specified: e.g. (-Inf, Inf) then = "negInf_posInf" e.g. (-Inf, 10) then = "negInf_posBnd" e.g. (-10,

Inf) then = "negBnd_posInf" e.g. (-13, 55) then = "negBnd_posBnd"

This is a single element vector returning the mode of the log of the function

inp_gfun

mode

support The support of the function inp_gfun. Equivalent to inp_Dvec but in ascending

order.

6 faux_SampleSkx

faux_Lkx

Helper function to get the lower bound linear function $l_{-}k(x)$.

Description

Helper function to get the lower bound linear function $l_k(x)$.

Usage

```
faux_Lkx(inp_xvec, inp_gfun)
```

Arguments

inp_xvec A vector of x values of all points and we should be able to get the index of x inp_gfun A function user wants to generate samples from. This function is use to calculate

 $h(x) = \log(g(x))$

Value

A list of functions. The length of the list is one greater than the length of the input inp_xvec. Each element of the list is a piece of the piecewise function $l_k(x)$, which forms the lower hull of the function h(x).

faux_SampleSkx

Helper function to sample a value $x^* * from \ s_k(x)$

Description

Helper function to sample a value x^* from $s_k(x)$

Usage

```
faux_SampleSkx(inp_uintervallist, inp_sfunlist)
```

Arguments

inp_uintervallist

A list of intervals between the z points

inp_sfunlist A list of functions which form the $s_k(x)$ function

Value

A named numeric vector of length 1.

faux_SampleSkx_out

Value sampled from the function $s_k(x)$

faux_Skx 7

faux_Skx

Helper function to create piecewise function $s_k(x)$

Description

Helper function to create piecewise function $s_k(x)$

Usage

```
faux_Skx(inp_uintervallist, inp_ufunlist)
```

Arguments

inp_uintervallist

A list of intervals between z values, as in the output from uInterval.

inp_ufunlist A list of functions, the output from uFun.

Value

A list of functions. The length of the list is equal to the length of the inputs inp_uintervallist and inp_ufunlist. Each element of the list is one piece of the piecewise function $s_k(x)$.

faux_uInterval

Helper function to create the z intervals.

Description

Helper function to create the z intervals.

Usage

```
faux_uInterval(inp_z)
```

Arguments

inp_z

A vector of z values, such as the output from faux_Zj().

Value

A list of numeric vectors, each of length 2. The length of the list is one less than the length of the input inp_z . Each element of the list is an interval between 2 consecutive z points.

8 faux_Zj

faux_	Ukx

Helper function to get the upper bound linear function $u_k(x)$

Description

Helper function to get the upper bound linear function $u_k(x)$

Usage

```
faux_Ukx(inp_xvec, inp_gfun)
```

Arguments

inp_xvec A vector of x values of all points

inp_gfun A function user wants to generate samples from. This function is used to calcu-

late $h(x) = \log(g(x))$

Value

A list of functions. The length of the list is equal to the length of the input inp_xvec. Each of the elements of the list is a piece of the piecewise function $u_k(x)$, which forms the upper hull of h(x).

faux_Zj

Helper function to get the intersection of tangents at x_j and $x_j + 1$

Description

Helper function to get the intersection of tangents at x_j and x_{j+1}

Usage

```
faux_Zj(inp_xvec, inp_gfun, inp_Dvec)
```

Arguments

inp_xvec A vector of x values of your points. The vector is ordered in an increasing order. A function user wants to generate samples from. This function is used to calculate $h(x) = \log(g(x))$

inp_Dvec A vector with 2 elements indicating the domain the function g

Value

A numeric vector. The elements of the vector are the intersection points of $s_k(x)$, the upper hull of the function h(x).

Index

```
*Topic sample
ars, 2

ars, 2

faux_CheckLogConcavity, 3
faux_findmode, 3
faux_hPrimex, 4
faux_lnitChoose, 5
faux_Lkx, 6
faux_SampleSkx, 6
faux_Skx, 7
faux_uInterval, 7
faux_Ukx, 8
faux_Zj, 8
```