

<u>Course</u> > <u>Unit 1:</u> ... > <u>2 Nulls</u>... > 7. Nulls...

7. Nullspace

Here is what happens in general for homogeneous linear systems:

Recall that the set of all solutions to a homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ is called the **nullspace of matrix A**, and is denoted $\mathbf{NS}(\mathbf{A})$.

Theorem 7.1 If \mathbf{A} is a matrix, then the set of all solutions to the homogeneous linear system $\mathbf{A}\mathbf{x}=\mathbf{0}$ is a vector space. (In other words if \mathbf{A} is an $m\times n$ matrix, then the nullspace $\mathbf{NS}(\mathbf{A})$ is a subspace of \mathbb{R}^n .)

Analogous theorem : If P(D) is a linear differential operator, then the set of solutions to the homogeneous ODE P(D)x=0 is a vector space of functions. (It is a subspace of the set of all functions.)

Proof of theorem Show

Example of nullspace by inspection

Start of transcript. Skip to the end.

Video

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

7. Nullspace

Topic: Unit 1: Linear Algebra, Part 1 / 7. Nullspace

Hide Discussion

Add a Post

