Repaso de FAA - sacar coste teórico, teorema maestro

Si tenemos $T(n/2) \rightarrow n = 2^k$, $k = \log_2(n)$

Tema 2 - Montículos y Hash

- Montículos: haces n/2, y empiezas a hundir desde ese elemente mirando si sus hijos son mayor(máximo), menor(mínimo) y cambiándolos. Después decrementamos en la posición de la tabla.

Al terminar, ordenamos de menor a mayor, o de mayor a menor. Cogemos la ultima posición y lo cambiamos con el pivote, procedemos a hundir con el mayor(menor a mayor) o menor(mayor a menor)

□ Crear un Heap. Ejemplo.

 $\begin{array}{ll} \text{procedimiento crear-monticulo}(\texttt{T[1..n]}) \\ \text{para } i &\leftarrow \texttt{[n/2] hasta 1 hacer} \\ \text{hundir}(\texttt{T}, i) \\ \text{fprocedimiento} \end{array}$

Crear un Heap. Ejemplo. 14 21 33 444 566 69 70 444 566 69 73 82 82 87 14 445 57 69 73 82 98 10 AMC_Tema 2

Aquí tenemos montículo de máximos, procedemos a ordenar el vector de menos a mayor.

Así hasta obtener el resultado.

 Hash: elementos a almacenar/media elementos en una búsqueda = tamaño tabla

Si Método de División -> primo cercano a tamaño tabla h(k) = k mod m

Si Método de la Multiplicación -> potencia de 2 cercana a tam. tabla $h(k) = L m ((k\phi) mód 1)J 0 < \phi < 1$

* Por encadenamiento.

* Expresión cerrada (lineal o cuadrática)

Tabla hash inicializada a -1 todos sus elementos para indicar que está vacía

Clave	hash(clave)
1203	4
6754	35
32	33
8683	44
839	120
1363	44
1079	120

hash(clave	e) → clave	mod 120 + 1
------------	------------------------------	-------------

	Clave	Resto de campos
1	1079	
	-1	
4	1203	
	-1	
33	32	
	-1	
35	6754	
	-1	
	-1	
44 45	8683	
45	1363	
	-1	
	-1	
120	839	

Tema 3 - Algortimos Voraces

- Prim: empieza desde un nodo, busca las aristas de menor coste en los nodos abiertos, sin hacer un bucle.

L	1	2	3	4	5	6	7
1	90	1	90	4	6	90	90
2	1	90	2	90	4	90	90
3	90	2	90	90	5	6	90
4	4	90	90	90	3	6	4
5	6	4	5	3	90	6	90
6	90	90	6	6	6	90	3
7	90	90	90	4	90	3	90

paso	selección	В
inicial		1
1	(1,2)	1,2
2	(2,3)	1,2,3
3	(1,4)	1,2,3,4
4	(4,5)	1,2,3,4,5
5	(4,7)	1,2,3,4,5,7
6	(7,6)	1,2,3,4,5,6,7=N

Solución T = $\{(1,2),(2,3),(1,4),(4,5),(4,7),(7,6)\}$

- Observación: No se producen rechazos.
- ☐ Teorema: Prim calcula el árbol expandido mínimo.
 - · Demostración por inducción sobre |T|.

 Kruskal: busca las aristas de menor coste de todo el grafo, sin hacer un bucle.

arista ((1,2)	(2,3)	(4,5)	(6,7)	(1,4)	(2,5)	(4,7)	(3,5)	
arista	1,2)	(2,3)	(4,5)	(0,1)	(1,40)	(2,3)	(4,7)	(5,5)	

paso	selección	componentes conexas(conjuntos						
inicial	•	1 2 3			4	5	6	7
1	(1,2)	1,2 3			4	5	6	7
2	(2,3)	1,2,3			4	5	6	7
3	(4,5)	1,2,3			4,5		6	7
4	(6,7)	1	,2,3		4,	5	6,7	
5	(1,4)		1,2,	3,4,	5		6,	7
6	(2,5) (ciclo-> rechazada)		1,2,	3,4,	5		6,7	
7	(4,7)		1	1,2,3	3,4,5	5,6,	,7	

Solución T = { (1,2), (2,3), (4,5), (6,7), (1,4) ,(4,7) }

 Dijkstra: empieza desde un nodo y va abriendo los nodos con menor coste para llegar y reevalúa los caminos a todos los nodos con ese nodo y sus aristas.

Tabla: Evolución del conjunto C y de los caminos mínimos.

```
> Observación: 3 iteraciones = n - 2

D[w] :=min(D[w], D[v]+L[v,w]) /*si D[w]> D[v]+L[v,w] ⇒ D[w]:=D[v]+L[v,w] */

Solución D = \{35,30,20,10\} ≡ (distancia desde el nodo 1 a cada nodo del grafo)
```

- Floyd: Rellena tabla de coste de camino y antecesores. Va mirando cada fila y columna de cada nodo, va tomando los elementos de la fila y los suma a los de la columna, en caso de ser menor, lo sustituye.

4. Algoritmo de Floyd. Ejemplo.

Tomamos k=1:

Tablas: Evolución del conjunto D y de los caminos mínimos C

3.2. Tomamos k=2:

D	-1	2	3	4	5	С	1	2	3	4	5
1	-	50	30	100	10	1	-	1	1	1	1
2	*	-	- 00	*	*	2	90	-	90	90	100
3	90	5	-	90	*	3	90	3	-	90	00
4	90	20	50	-	*	4	90	4	4	-	00
5	90	œ	96	10	-	5	90	90	90	5	-

Tablas: Evolución del conjunto D y de los caminos mínimos C

3.3. Tomamos k=3:

D	1	2	3	4	5	С	1	2	3	4	5
1	-	35	30	100	10	1	-	3	1	1	1
2	*	-	*	90	90	2	90	-	90	96	90
3	*	-5	-	*	*	3	90	3	-	90	00
4	*	20	50	-	00	4	90	4	4	-	00
5	00	00	*	10	-	5	90	90	90	5	-

Tablas: Evolución del conjunto D y de los caminos mínimos C

3.4. Tomamos **k=4**:

3.5. Tomamos k=5

D	-1	2	3	4	5	С	1	2	3	4	5
1	-	35	30	20	10	1	-	3	1	5	1
2	90	-	100	100	*	2	00	-	00	00	100
3	96	5	-	100	100	3	00	3	-	00	100
4	90	20	50	-	100	4	00	4	4	-	100
5	90	30	60	10	-	5	00	4	4	5	-

Tablas: Evolución del conjunto D y de los caminos mínimos C

Programación dinámica

- Mochila: IMPORTANTE LA FÓRMULA!!!

 $(B[p, m]:= max (B[p-1, m], B[p-1, m-pe_p]+be_p))$

m

	В	0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
p	1	0	0	1	1	1	1	1
	2	0	0	1	2	2	3	3
	3	0	0	1	2	5	5	6

- Monedas: IMPORTANTE LA FÓRMULA!!!

$$D[i,c] = min(D[i-1, c], 1 + D[i, c-v_i]) +\infty$$
 Si col<0 ó fila<0

D	0	1	2	3	4	5	6	7	8
0 c ₀ =0	0	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8
1 c ₁ =1	0	1	2	3	4	5	6	7	8
2 c ₂ =4	0	1	2	3	1	2	3	4	2
3 c ₁ =6	0	1	2	3	1	2	1	2	2

- Subsecuencia: si es distinto coge el mayor de arriba o izquierda, si es igual coge la diagonal y suma 1.

Ejemplo:

		Yj	В	D	С	A	В
		0	1	2	3	4	5
Xi	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1
В	2	0	1	1	1	1	2
С	3	0	1	1	2	2	2
В	4	0	1	1	2	2	3

Backtracking

- Mochila: tomamos (1) o no (0) el objeto en orden del array (x1 = obj1, etc)
 - □ **Ejemplo:** n = 4; M = 7; b = (2, 3, 4, 5); p = (1, 2, 3, 4)

- Asignación de tareas: va comprobando cada tarea para cada empleado, si el coste es mayor poda.

- Resolución de juegos: los nodos son distintas opciones de poner una ficha o lo que sea.

Ramifica y Poda

UB -> beneficio acumulado + (Peso Mochila – peso acumulado) * (bi/pi [del siguiente objeto]) UB=beneficio estimado

- Mochila:

- Asignación de tareas:

LB = tomamos los valores de menor coste para cada trabajador, cuando asignemos ya un trabajador a alguna tarea, no podremos tomar el coste de esa tarea para otro trabajador. LB=cuota más baja

Automatás

- Pasar de AFND a AFD y reducir este último.
- Expresión regular.

- De expresión regular a AFND-lambda

66

(Ejercicio ER)

AMC_Tema 5

$$q_0 = O_{q_0} + 1q_1 \rightarrow O_{q_1}$$
 $q_1 = O_{q_0} + 1q_2 + \lambda$
 $q_2 = O_{q_1} + 1q_2 + \lambda$
 $q_3 = O_{q_1} + 1q_3 + \lambda$
 $q_4 = O_{q_1} + 1O_{q_1} + \lambda$
 $q_5 = O_{q_1} + 1O_{q_1} + \lambda$