Gene forward screening in mammalian cells EXAMPLE: haploid embryonic stem cells

Anton Wutz
Institute of Molecular Health Sciences
Department of Biology
ETH Zurich

CONCEPT I

Cell systems for forward screening

Haploid Superiority

Duncan Greig and Michael Travisano

n common with other higher life forms, the readers of Science are diploids, carrying one set of chromosomes from their mother and a second set from their father. Yet many eukaryotes exist quite happily in the haploid state, with only one set of chromosomes and thus only one set of genes. This observation prompts the question: Is there any particular evolutionary advantage to being diploid? On page 555 of this issue, Zeyl et al. (1) turn this question on its head and instead ask whether haploidy carries an evolutionary advantage. In their experiments, they exploit a valuable eukaryote, the budding yeast Saccharomyces cerevisiae, which

The authors are in the Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA. E-mail: mtrav@mac.com

grows and reproduces in both the haploid and diploid states.

Conventional comparisons between diploids and haploids highlight the hypothetical benefit of having a "backup" copy of each gene in case mutations damage the functional copy (2). One problem with this explanation, however, is that a single undamaged gene cannot always fully compensate for the mutant copy, so that mutations carry some deleterious effects (3). Nonetheless, such mutations are usually recessive and have only small effects as long as there exists one fully functional gene copy. A more serious problem with this explanation is that doubling the number of gene copies may simply postpone the inevitable. Unless nonfunctional gene copies are somehow purged from the genome, mutations will eventually destroy

those are truffles, they are made of haploid cells

Tuber melanosporum

Tuber magnatum

Diploid genomes protect from deleterious mutations and facilitate dominant beneficial mutations

In a genetic screen we do not want the protection, we really want to see the phenotype

Haploid cells may be useful for screening recessive mutations makes little sense for dominant mutations

what do we mean by dominance of a mutation?

what frequency of mutations can you expect to act dominant, what frequency recessive?

Concise history of haploid animal cells

Haploid animal cell cultures

Vertebrate Karyotype Evolution

Evidence for a 3rd genome duplication in fish: Haploid medaka and zebrafish development

Generation of Medaka Fish Haploid Embryonic Stem Cells Meisheng Yi *et al.* Science **326**, 430 (2009);

Haploid syndrome in Zebrafish

Nature Protocols 5, 383 - 394 (2010)

Parental genomes are not equivalent in mammals

Genomic imprinting

Gu et al., Nature 477: 606

Investigation of haploid development through embryonic stem cell derivation

Parthenogenetic haploid ESCs

Derivation of haploid embryonic stem cells from 129Sv mice

Haploid ES cells

Metaphase chromosome spreads

Genetic modification of haploid embryonic stem cells

Haploid ES cells can contribute to development

Diploidization is observed in chimeras from haploid ES cells

Transgenic mice from haploid ES cells

Developmental potential of haploid embryonic stem cells

- Haploid ES cell lines can be established from different mouse strains
- Haploid ES cell lines contribute to chimeras
- Haploid ES cell lines possess germline competence allowing the establishment of genetically modified mouse lines

Mutations in Haploid Genomes: hemizygous mutations

Forward genetics using haploid embryonic stem cells

Screening of genomic insertion sites allows identification of genes underlying the selected phenotype

Forward genetics using haploid embryonic stem cells

Aim of the screen	Cell system	Strategy	genes identified	Reference
Mismatch repair	mouse haploid	gene trap	Msh2	Leeb & Wutz
pathway	ESCs	piggyBac transposon		2011)
		transposon		
Ricin toxicity	mouse haploid ESCs	gene trap virus	Gpr107	(Elling et al 2011)
Olaparib toxicity	mouse haploid ESCs	gene trap piggyBac transposon	Parp1	(Pettitt et al 2013)
Exit from ESC	mouse haploid	gene trap	Zfp706, Pum1	(Leeb et al 2014)
self-Renewal	ESCs	piggyBac		
		transposon		

Haploid cells:

advantages for genetic screening, not new but only very recent opportunity for mammals

recapitulate some characteristics of developing embryo

clearly not an organism but an experimental system usefulness for exploring genomic questions at a cellular level but no substitute for studies on organism (tissue, organ function)

complement weakness of organismal studies for molecular details (cells express the genome – often hard to make out in multicelluar organisms)

X chromosome inactivation and Mammalian Dosage Compensation

BRIEF INTRODUCTION

X chromosome inactivation in mammals provides a mechanism for silencing a single X chromosome in female cells for dosage compensation towards the male single X(y) karyotype

both male and female cells have a single transcriptionally active X

To make an advance on understanding chromosome-wide gene repression in X inactivation mice carrying an inducible promoter inserted in the *Xist* gene were generated

Xist induction from the TX allele in the embryo

Establishment of haploid ES cells for screening for silencing factors

HATX ES cells

Establishment of haploid HATX ES cells for screening for silencing factors

Establishment of haploid ES cells for screening for silencing factors

CONCEPT II

Mutagens and mutant cells in screening process

Infection of haploid HATX ES cells with gene trap viruses

GFP is encoded in gene trap vector:

structure of integrated provirus

Gene trap vectors:

splice acceptor can trap transcripts in an intron

high mutagenic effect dirupting reading frame or termination (nonsense mediated decay)

orientation dependent activity of splice acceptor (works only in one direction)

Screening strategy with random genetrap virus insertions: OVERVIEW

Mutant library representation

at low numbers of cells carrying a particular insertion potential loss of the mutation due to unequal spliting or cell death is high

Mutant library representation

<u>1</u> 16

if roughly 6% of mutations are lost from the pool each split ...

stai	rting l	ibrary	50 mio
1.	split		47 mio
	split		44 mio
3.	split		42 mio
4.	split		39 mio
5.	split		37 mio
6.	split		34 mio
7.	split		32 mio
8.	split		30 mio
9.	split		29 mio
10.	split		27 mio
11.	split		25 mio

.... cell death and increased loss frequency for mutations with few cells exacerbates the problem with successive rounds of splitting

Ideally 10 fold more cells would be required to keep loss of mutations from pools negligible.

Binominal distribution:

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

k = 0: cathegory for loss no cells left for this mutation after split

n ... number of cells for a given mutation

k = 0, 1, 2,, n: number of cells after split

p ... probability of recovery after split:

$$p = 0.5$$
 for split into 2 ($p = 1/2$)

plating efficiency with

1/3 for split into 3 (or in case 33% of cells die !) 1/10 for split into 10 plates, etc.

ca. 2% of mutations are represented by only 4-5 cells after ½ split of 20 cells

... subsequent splits could risk loss

loss at 1:10 split with 20 cells per mutation

Probability density (or mass) function for the binomial distribution

C++

```
#include <boost/math/distributions/binomial.hpp>
namespace math = boost::math;
prob_k = math::pdf(math::binomial(n, p), k);
```

Python

```
from scipy.stats import binom
prob_k = binom.pmf(k, n, p)
```

Identification of genomic sites of insertion of gene trap viruses

Identification of insertions by massive parallel sequencing


```
global const char * ADAPTOR = "ATGTTGGATTATTAG"
global const int ADAPTOR LEN = 15
global void TrimmAdaptor(char * dDataArray, char * read length, int
reads, int MAX READ LEN)
   for (idx = blockIdx*blockDim + threadIdx.x; idx < reads; idx +=
blockDim * gridDim)
            char * sequence = &dDataArray[idx*MAX READ LEN];
            int rl=read length[idx];
            while (p < rl-ADAPTOR LEN)
               if (sequence[p] == ADAPTOR[0])
                    int mm=0;
                    for (int n=1; n<ADAPTOR LEN; n++)
                        if (sequence[p+n]!=ADAPTOR[n])
                           mm++;
                           if (mm > 2) break;
                    if (mm < 3)
                        read length[idx]=p;
                        break;
            if (mm < 3) break;
            if (p < rl-ADAPTOR LEN
```

Expected Mutations: Xist gene trap mutations

READOUT: gene trap orientation bias

splice acceptor only works if inserted in this direction into a transcription unit

Candidate gene validation through REVERSE GENETICS gene deletion using CRISPR/Cas nuclease pairs

genotyping confirms absence of Spen sequences in $\Delta Spen$ cells

 Δ Spen cells survive well induction of *Xist*

CONCLUSION:
Spen is required for Xist mediated gene repression

CONCEPT III

Developing screening strategies

EXERCISE 1: Define criteria and strategy for a genetic screen in cell lines for identifying components in signal transduction

- 1. Consider the problem and pick a concrete example of a signaling pathway
 - 2. Discuss in groups how you can define a selection strategy for interesting mutations
 - 3. What are considerations on the cell system?
 - 4. What are considerations on the mutagenesis?
- 5. What classes of mutations can you expect to isolate

Derivation and differentiation of haploid human embryonic stem cells

Ido Sagi¹, Gloryn Chia², Tamar Golan-Lev¹, Mordecai Peretz¹, Uri Weissbein¹, Lina Sui², Mark V. Sauer³, Ofra Yanuka¹, Dieter Egli^{2,4} & Nissim Benvenisty¹

Nature 523: 107-111

human oocytes can be activated with an electric pulse or Ca-ionophore to generate parthenogentic embryos with varying amounts of haploid cells

> use of cell sorting for enriching human ES cells with a haploid genome content

EXERCISE 2: Synthetic lethal mutations hold promise new avenues in cancer treatment

- 1. Consider the problem: What is the idea behind?
- 2. Discuss in groups how you possibly could apply screens in cell lines to identify mutations that are synthetic lethal with tumor suppressor gene mutations
 - 3. What are considerations on the cell system?
 - 4. What are considerations on the mutagenesis?
 - 5. What classes of mutations can you expect to isolate

Gene essentiality and synthetic lethality in haploid human cells

Vincent A. Blomen, ¹* Peter Májek, ²* Lucas T. Jae, ¹* Johannes W. Bigenzahn, ² Joppe Nieuwenhuis, ¹ Jacqueline Staring, ¹ Roberto Sacco, ² Ferdy R. van Diemen, ¹ Nadine Olk, ² Alexey Stukalov, ² Caleb Marceau, ³ Hans Janssen, ¹ Jan E. Carette, ³ Keiryn L. Bennett, ² Jacques Colinge, ^{2,4}† Giulio Superti-Furga, ^{2,5}† Thijn R. Brummelkamp^{1,2,6}.

Science 350: 1092-1096

KBM7 are tumor derived haploid cells that carry a t(8:22) philadelphia chromosomal translocation (BCR/ABL oncofusion gene)

HAP1 are an adherent cell type derived from KBM7 that has lost several tumor associated genetic abnormalities.

Selective sensitivity of KBM7 cells can indicate potential tumor vunerabilities.