TTK4130 - Cheat Sheet

Håkon Bårsaune

May 19, 2023

https://github.com/haakonbaa/TTK4130-cheatsheet

Contents

1	Intro	2
	1.2 State space methods	2
	1.2.1 State space models	2
	1.2.2 Second order models of mechanical systems	2
	1.2.3 Linearization of state space models	2
	1.5 ODE's	2
2	Rotations	3
	6.2 Vectors	3
	6.4 The Rotation Matrix	3
	6.5 Euler Angles	3
	6.6 Angle Axis Description of rotation	3
	6.6.5 Rotation Matrix	3
	6.7 Euler parameters	3
	6.7.1 Definition	3
	6.7.3 Quaternions	3
	6.7.6 Euler parameters from the rotation matrix	4
	6.8 Angular Velocity	4
	6.9 Kinematic differential equations	4
	6.9.4 Euler Angles	4
3	Rigid Body Dynamics	5
	6.12 Kinematics of a rigid body	5
	6.13 The center of mass	5
	7.2 Forces and torques	5
	7.3 Newton-Euler Equations for rigid bodies	5
4	Lagrange Mechanics	7
	8.2 Lagrange Mechanics	7
5	Differential Algebraic Equations	8
	14.2 Preliminaries	8
	5.1 Differential Algebraic Equations	
6	Simulation methods	9
7	Math	10

1 Intro

1.2 State space methods

1.2.1 State space models

State Space Model is on the form

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, t)$$

Linear time invariant system

$$\dot{x} = Ax + Bu$$

 $y = Cx + Du$
 $y = Ce^{At}x(0) + \int_0^t Ce^{A(t-\tau)}Bu(t) d\tau + Du(t)$

1.2.2 Second order models of mechanical systems

Second order models on the form

$$M(q)\ddot{q} + f(q, \dot{q}) = u$$

Can be written as

$$\begin{pmatrix} \dot{\boldsymbol{q}} \\ \dot{\boldsymbol{q}} \end{pmatrix} = \begin{pmatrix} \dot{\boldsymbol{q}} \\ \boldsymbol{M}^{-1}(\boldsymbol{q})(-\boldsymbol{f}(\boldsymbol{q},\dot{\boldsymbol{q}}) + \boldsymbol{u}) \end{pmatrix}$$

1.2.3 Linearization of state space models

Linearization of time varying systems

$$\dot{x} = f(x, u, t)$$

 $y = h(x, u, t)$

Find two functions \boldsymbol{x}_0 and \boldsymbol{u}_0 begin solutions to the sytem

$$\dot{\boldsymbol{x}}_0 = \boldsymbol{f}(\boldsymbol{x}_0(t), \boldsymbol{u}_0(t), t)$$

Define pertrubations

$$egin{aligned} oldsymbol{x}(t) &= oldsymbol{x}_0(t) + oldsymbol{\Delta} oldsymbol{x}(t) \ oldsymbol{u}(t) &= oldsymbol{u}_0(t) + oldsymbol{\Delta} oldsymbol{u}(t) \ oldsymbol{y}(t) &= oldsymbol{y}_0(t) + oldsymbol{\Delta} oldsymbol{y}(t) \end{aligned}$$

Let $C = \{x_0(t), u_0(t)\}$. The linearized system is

$$egin{aligned} oldsymbol{\Delta}\dot{oldsymbol{x}}&pproxrac{\partial oldsymbol{f}}{\partialoldsymbol{x}}\Big|_{\mathcal{C}}oldsymbol{\Delta}oldsymbol{x}+rac{\partial oldsymbol{f}}{\partialoldsymbol{u}}\Big|_{\mathcal{C}}oldsymbol{\Delta}oldsymbol{u} \ oldsymbol{\Delta}\dot{oldsymbol{y}}&pproxrac{\partial oldsymbol{h}}{\partialoldsymbol{x}}\Big|_{\mathcal{C}}oldsymbol{\Delta}oldsymbol{x}+rac{\partial oldsymbol{h}}{\partialoldsymbol{u}}\Big|_{\mathcal{C}}oldsymbol{\Delta}oldsymbol{u} \end{aligned}$$

1.5 ODE's

General formulation

$$\varphi(y^{(m)},\cdots,y,u^{(m-1)},\cdots,u)=0$$

Lipschitz continous. A function

$$f: \mathbb{R} \to \mathbb{R}$$

is said to be Lipschitz continous if

$$\exists c > 0 \in \mathbb{R}$$
 s.t.
$$||f(x) - f(y)|| < c||x - y|| \qquad \forall x, y \in \mathbb{R}$$

Theorem: existence of unique solution. Consider the ODE

$$\dot{x} = f(x)$$

If f is Lipschitz continous then x(t) exists and is unique for all t

Mean Value Theorem suppose f is continuous on [a,b] and differentiable on (a,b) then

$$\exists c \in (a, b) \text{ s.t. } f'(c) = \frac{f(b) - f(a)}{b - a}$$

This can be sused to show that if f is continous and differentiable everywhere it is also Lipschitz.

Theorem 2: existence of unique solution. Consider the ODE

$$\dot{x} = f(x)$$

if f is continously differentiable ($\frac{\partial f}{\partial x}$ exists and is continous), then the solution to the ODE exists and is unique on some time interval.

2 Rotations

Vectors

The skew-symetric matrix form of the coordinate vector \mathbf{u} is defined by

$$\mathbf{u}^x = \begin{pmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{pmatrix}$$

Notation: v_{ab}^c means the vector from point a to point b (or often the origo of the reference frames a and b) described in the reference frame c

6.4 The Rotation Matrix

The coordinate transformation from frame b to frame a is given by

$$oldsymbol{v}^a = oldsymbol{R}_{\iota}^a oldsymbol{v}^b$$

Properties of the rotation matrix

$$egin{aligned} oldsymbol{R}_a^b oldsymbol{R}_b^a &= oldsymbol{I} = oldsymbol{R}_b^a oldsymbol{R}_a^b \\ oldsymbol{(R}_a^b)^{-1} &= oldsymbol{(R}_a^b)^T = oldsymbol{R}_b^a \\ oldsymbol{R}_b^a &= oldsymbol{(b}_1^a \quad oldsymbol{b}_2^a \quad oldsymbol{b}_3^a) \ \det oldsymbol{R}_a^b &= 1 \end{aligned}$$

R is a rotation matrix if and only if it is an element of SO(3)

$$SO(3) = \{ \boldsymbol{R} \in \mathbb{R}^{3 \times 3} | \boldsymbol{R}^T \boldsymbol{R} = \boldsymbol{I} \wedge \det \boldsymbol{R} = 1 \}$$

Rotation matrices in three dimentions

$$\mathbf{R}_{x}(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}$$
$$\mathbf{R}_{y}(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$$
$$\mathbf{R}_{z}(\psi) = \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matrix transformations in different refrence frames

$$egin{aligned} oldsymbol{D}^a &= oldsymbol{R}_b^a oldsymbol{D}^b oldsymbol{R}_a^b \ &(oldsymbol{u}^b)^ imes &= oldsymbol{R}_a^b (oldsymbol{u}^a)^ imes oldsymbol{R}_h^a \end{aligned}$$

The transformation of position and orientation from frame b to frame a is

$$egin{aligned} m{T}_b^a &= egin{pmatrix} m{R}_b^a & m{r}_{ab}^a \ m{0}^T & 1 \end{pmatrix} \ m{T}_b^a egin{pmatrix} m{v}^b \ 1 \end{pmatrix}^T &= m{v}^a \ 1 \end{pmatrix} \ &(m{T}_b^a)^{-1} &= m{T}_a^b &= m{K}_a^b & m{r}_{ba}^b \ m{0}^T & 1 \end{pmatrix} \end{aligned}$$

The Special Euclidean group is the set of all transfor- Quaternion product mations from one reference frames to another

$$SE(3) = \left\{ \boldsymbol{T} = \begin{pmatrix} \boldsymbol{R} & \boldsymbol{r} \\ \boldsymbol{0}^T & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3} \middle| \boldsymbol{R} \in SO(3) \land \boldsymbol{r} \in \mathbb{R}^3 \right\} \qquad \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \otimes \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \alpha_2 - \boldsymbol{\beta}_1^T \boldsymbol{\beta}_2 \\ \alpha_1 \boldsymbol{\beta}_2 + \alpha_2 \boldsymbol{\beta}_1 + \boldsymbol{\beta}_1^\times \boldsymbol{\beta}_2 \end{pmatrix}$$

6.5 **Euler Angles**

Roll-Pitch-Yaw Euler angles

$$\mathbf{R}_{a}^{b} = \mathbf{R}_{z}(\psi)\mathbf{R}_{y}(\theta)\mathbf{R}_{x}(\phi)$$

Classical Euler angles. The orientation is described by a rotation bout the z axis, then the resulting y axis. And then again the resulting z axis.

$$\mathbf{R}_{a}^{b} = \mathbf{R}_{z}(\psi)\mathbf{R}_{u}(\theta)\mathbf{R}_{z}(\phi)$$

Angle Axis Description of rotation 6.6

6.6.5**Rotation Matrix**

Angle-axis parameters All rotation matrices have an eigen vector with eigen value 1. A rotation can be uniquely described by the direction of this vector and an angle θ being the rotatoin about this vector.

$$(\theta, \mathbf{k}) \text{ s.t. } ||\mathbf{k}|| = 1$$

 $\mathbf{R}_b^a = \cos \theta \mathbf{I} + \sin \theta (\mathbf{k}_a)^{\times} + (1 - \cos \theta) \mathbf{k}_a \mathbf{k}_a^T$
 $\mathbf{R}_b^a = \exp{\{\mathbf{k}^{\times} \theta\}}$

6.7Euler parameters

6.7.1Definition

$$egin{aligned} \eta &= \cos rac{ heta}{2} \ oldsymbol{\epsilon} &= oldsymbol{k} \sin rac{ heta}{2} \ oldsymbol{R}_e(\eta, oldsymbol{\epsilon}) &= oldsymbol{I} + 2\eta oldsymbol{\epsilon}^{ imes} + 2oldsymbol{\epsilon}^{ imes} oldsymbol{\epsilon}^{ imes} \ \eta^2 + oldsymbol{\epsilon}^T oldsymbol{\epsilon} &= 1 \end{aligned}$$

Quaternions

The following can be treated as a unit quaternion

$$oldsymbol{p} = egin{pmatrix} \eta \ oldsymbol{\epsilon} \end{pmatrix}$$

A unit quaternion satisfies

$$\boldsymbol{p}^T\boldsymbol{p} = \eta^2 + \boldsymbol{\epsilon}^T\boldsymbol{\epsilon} = 1$$

$$\begin{pmatrix} \alpha_1 \\ \boldsymbol{\beta}_1 \end{pmatrix} \otimes \begin{pmatrix} \alpha_2 \\ \boldsymbol{\beta}_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \alpha_2 - \boldsymbol{\beta}_1^T \boldsymbol{\beta}_2 \\ \alpha_1 \boldsymbol{\beta}_2 + \alpha_2 \boldsymbol{\beta}_1 + \boldsymbol{\beta}_1^{\times} \boldsymbol{\beta}_2 \end{pmatrix}$$

6.7.6 Euler parameters from the rotation matrix

$$\mathbf{R} = (r_{ij})$$

$$\mathbf{z} = \begin{pmatrix} z_0 & z_1 & z_2 & z_3 \end{pmatrix}^T := 2 \begin{pmatrix} \eta & \epsilon_1 & \epsilon_2 & \epsilon_3 \end{pmatrix}^T$$

$$\mathbf{T} := r_{00} := \text{Trace } \mathbf{R}$$

The algorithm from Shepperd (1978) goes like this:

- Let $i = \arg \max_{i} \{r_{ii}\}$
- Compute $|z_i| = \sqrt{1 + 2r_{ii} T}$
- Determine sign of z_i
- ullet Determine the rest of z from equations below

$$z_0 z_1 = r_{32} - r_{23}$$
 $z_2 z_3 = r_{32} + r_{23}$
 $z_0 z_2 = r_{13} - r_{31}$ $z_3 z_1 = r_{13} + r_{31}$
 $z_0 z_3 = r_{21} - r_{12}$ $z_1 z_2 = r_{21} + r_{12}$

6.8 Angular Velocity

Let $R \in SO(3)$

$$0 = \frac{d}{dt}(\mathbf{I}) = \frac{d}{dt}(\mathbf{R}\mathbf{R}^T) = \dot{\mathbf{R}}\mathbf{R}^T + \mathbf{R}(\dot{\mathbf{R}})^T$$

$$\Rightarrow \dot{\mathbf{R}}\mathbf{R}^T skew\text{-symmetric}$$

Definition of angluar velocity

$$egin{aligned} (oldsymbol{\omega}_{ab}^a)^{ imes} &= \dot{oldsymbol{R}}_b^a (oldsymbol{R}_b^a)^T \Rightarrow \ \dot{oldsymbol{R}}_b^a &= (oldsymbol{\omega}_{ab}^a)^{ imes} oldsymbol{R}_b^a \ \dot{oldsymbol{R}}_b^a &= oldsymbol{R}_b^a (oldsymbol{\omega}_{ab}^b)^{ imes} \end{aligned}$$

It can be shown that

$$\omega = \dot{\theta} k$$

Where θ and k are Angle Axis parameters.

$$egin{aligned} oldsymbol{\omega}_{ad}^a &= oldsymbol{\omega}_{ab}^a + oldsymbol{\omega}_{bc}^a + oldsymbol{\omega}_{cd}^a \ \dot{oldsymbol{u}}^a &= oldsymbol{R}_b^a (\dot{oldsymbol{u}}^b + (oldsymbol{\omega}_{ab}^b)^{ imes} oldsymbol{u}^b) \end{aligned}$$

6.9 Kinematic differential equations

6.9.4 Euler Angles

$$\omega_{ad}^{a} = \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix} + \mathbf{R}_{z,\psi} \begin{pmatrix} 0 \\ \dot{\theta} \\ 0 \end{pmatrix} + \mathbf{R}_{z,\psi} \mathbf{R}_{y,\theta} \begin{pmatrix} \dot{\phi} \\ 0 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} -\sin\psi\dot{\theta} + \cos\psi\cos\theta\dot{\phi} \\ \cos\psi\dot{\theta} + \sin\psi\cos\theta\dot{\phi} \\ \dot{\psi} - \sin\theta\dot{\phi} \end{pmatrix}$$

3 Rigid Body Dynamics

6.12 Kinematics of a rigid body

 $\vec{\omega}_{io}$ is the angular velocity of the o frame with respect to the i frame.

 $\frac{i}{dt}\vec{r}_o$ is the derivative of \vec{r}_o in the *i* frame.

Velocity and Acceleration

$$\begin{split} \vec{v}_p &:= \frac{^i d}{dt} \vec{r}_p \\ &= \vec{v}_o + \frac{^b d}{dt} \vec{r} + \vec{\omega}_{ib} \times \vec{r} \\ \vec{a}_p &:= \frac{^i d^2}{dt^2} \vec{r}_p \\ &= \vec{a}_o + \frac{^b d^2}{dt^2} \vec{r} + 2 \vec{\omega}_{ib} \times \frac{^b d}{dt} \vec{r} + \vec{\alpha}_{ib} \times \vec{r} + \vec{\omega}_{ib} \times (\vec{\omega}_{ib} \times \vec{r}) \end{split}$$

The last three terms are, respectively, the coriolis acceleration, Transveral acceleration and Centripetal acceleration. Note that

$$\vec{a}_o = \frac{^i d}{dt} \vec{v}_o = \frac{^b d}{dt} \vec{v}_o + \vec{\omega}_{ib} \times \vec{v}_o$$

6.13 The center of mass

The center of mass of a rigid body \mathcal{C} is defined to be

$$\vec{r}_c := \frac{1}{m} \int_{\mathcal{C}} \vec{r}_p \, dm$$

It can be shown that

$$\vec{v}_c = \frac{1}{m} \int_{\mathcal{C}} \vec{v_p} \, dm$$
 $\vec{a}_c = \frac{1}{m} \int_{\mathcal{C}} \vec{a_p} \, dm$

where c denotes center

7.2 Forces and torques

Moment. The moment about a point P of the set $S = \{F_j\}_{j \in [1, n_F]}$ for forces is

$$\vec{N}_{S/P} = \sum_{j=1}^{n_F} r_{Pj} \times \vec{F}_j$$

Where \vec{r}_{Pj} is an arbitrary point along the line of action of \vec{F}_i

Torque is defined as the moment of the couple C. A couple being a set of forces with $\mathbf{0}$ resultant force.

7.3 Newton-Euler Equations for rigid bodies

Angular Momentum. The angular momentum of the body b about the center of mass c is

$$egin{aligned} m{h}_{b/c} &= \int_b m{r} imes m{v} \, dm \ &= m{M}_{b/c} m{\omega}_{ib} \ m{T}_{bc} &= rac{d}{dt} m{h}_{b/c} \end{aligned}$$

Rotational Inertia / The intertia dyadic. The inertia matrix of the body b about the point c is

$$M_{b/c} = -\int_{b} \mathbf{r}^{\times} \mathbf{r}^{\times} dm$$

$$= \int_{b} (\mathbf{r}^{T} \mathbf{r} \mathbb{I} - \mathbf{r} \mathbf{r}^{T}) dm$$

$$= \begin{pmatrix} \mathbf{I}_{xx} & -\mathbf{I}_{xy} & -\mathbf{I}_{xz} \\ -\mathbf{I}_{xy} & \mathbf{I}_{yy} & -\mathbf{I}_{yz} \\ -\mathbf{I}_{xz} & -\mathbf{I}_{yz} & \mathbf{I}_{zz} \end{pmatrix}$$

Where r is the distance vector from the center of mass to the mass element being integrated

$$I_{xx} = \int_b y^2 + z^2 dm$$
 $I_{xy} = \int_b xy dm$ $I_{yy} = \int_b x^2 + z^2 dm$ $I_{xz} = \int_b xz dm$ $I_{zz} = \int_b x^2 + y^2 dm$ $I_{yz} = \int_b yz dm$

$$\boldsymbol{M}_{b/c}^{i} = \boldsymbol{R}_{b}^{i} \boldsymbol{M}_{b/c}^{b} \boldsymbol{R}_{i}^{b}$$

Equations of motion. Let b denote body, i an intertial frame, c the center of mass of b, \mathbf{F}_{bc} a resultant force acting on b with line of action through c and \mathbf{T}_{bc} the torque about c. Then

$$egin{aligned} F_{bc} &= mm{a}_c \ T_{bc} &= m{M}_{b/c}m{lpha}_{ib} + m{\omega}_{ib} imes (m{M}_{b/c}m{\omega}_{ib}) \end{aligned}$$

On compact matrix form

$$egin{pmatrix} egin{pmatrix} m{m} \mathbb{I} & \mathbf{0} \ \mathbf{0} & m{M}_{b/c}^b \end{pmatrix} m{igg(m{a}_c^b \ m{lpha}_{ib}^b \end{pmatrix}} + m{igg(m{0} \ m{\omega}_{ib}^b)^ imes m{M}_{b/c}^b m{\omega}_{ib}^b \end{pmatrix}} = m{igg(m{F}_{bc}^b \ m{T}_{b/c}^b m{\omega}_{ib}^b m{\omega$$

Kinetic energy. The kinetic energy of the body b in an inertial refrence frame i is

$$K = \frac{1}{2}m(\boldsymbol{v}_c^b)^T\boldsymbol{v}_c^b + \frac{1}{2}(\boldsymbol{\omega}_{ib}^b)^T\boldsymbol{M}_{b/c}^b\boldsymbol{\omega}_{ib}^b$$

The parallel axes theorem. The inertia matrix of b about o is related to the inertia matrix of b about c according to

$$egin{aligned} oldsymbol{M}_{b/o}^b &= oldsymbol{M}_{b/c}^b - m(oldsymbol{r}_g^b)^ imes (oldsymbol{r}_g^b)^ imes \ &= oldsymbol{M}_{b/c}^b - m(||oldsymbol{r}_g^b||^2 \mathbb{I} - oldsymbol{r}_g^b (oldsymbol{r}_g^b)^T) \end{aligned}$$

Where \boldsymbol{r}_g^b is the vector from c to o

4 Lagrange Mechanics

8.2 Lagrange Mechanics

The lagrangian. Define a set of generalized coordinates \mathbf{q} . Let $T(\mathbf{q}, \dot{\mathbf{q}}, t)$ be the kinetic energy and $U(\mathbf{q}, \dot{\mathbf{q}}, t)$ the potential energy (Sometimes V). Then the lagrangian is defined to be

$$L(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = T(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) - U(\boldsymbol{q})$$

The equation of motion is

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = \tau_i$$

$$\frac{d}{dt} \left(\nabla_{\dot{q}} L \right) - \nabla_{\dot{q}} L = \tau$$

Where τ_i is a generalized actuator force

$$\tau_i = \sum_{k=1}^{N} \frac{\partial \boldsymbol{r_k}}{\partial q_i} \cdot \boldsymbol{F_k}$$

 $r_k(q)$ is the position of the point of application of the force F_k . In general τ_i is a force or a torque.

Constrained Lagrange. Having the constraints

$$c(q) = 0$$

The system can be described by

$$L(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = T(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) - U(\boldsymbol{q}) - \boldsymbol{z}^T \boldsymbol{c}(\boldsymbol{q})$$
$$\frac{d}{dt} (\nabla_{\dot{\boldsymbol{q}}} L) - \nabla_{\boldsymbol{q}} L = \boldsymbol{\tau}$$
$$\boldsymbol{c}(\boldsymbol{q}) = \boldsymbol{0}$$

Baumgarte stabilization. Instead of imposing

$$\ddot{\boldsymbol{c}}(\boldsymbol{q}) = \mathbf{0}$$

Impose

$$\ddot{\boldsymbol{c}} + 2\alpha\dot{\boldsymbol{c}} + \alpha^2\boldsymbol{c} = \boldsymbol{0}$$

As to reduce drifts in the constraints resulting from

$$\ddot{c} = 0$$

not begin satisfied exactly when doing numeric computations.

5 Differential Algebraic Equa- Theorem: Solvability of DAE. A fully implicit tions

14.2 **Preliminaries**

Differential Algebraic Equations

Definition of DEA. The differential equation defined

$$F(\dot{x}, x, u, t) = 0$$

Es a DAE if

$$\frac{\partial \boldsymbol{F}}{\partial \dot{\boldsymbol{x}}}$$

is rank defficient

Fully-explicit DAE

$$oldsymbol{F}(\dot{oldsymbol{x}},oldsymbol{x},oldsymbol{z},oldsymbol{z},oldsymbol{u})=\mathbf{0}$$

$$\det \left| \frac{\partial \mathbf{F}}{\partial \dot{\mathbf{x}}} \right| = 0$$

Can be rewritten as

$$\dot{x} = v$$
 $0 = F(v, x, z, u)$

Semi-explicit DAE

$$\dot{x} = f(x, z, u)$$
 $0 = g(x, z, u)$

This can be rewritten as

$$\boldsymbol{F}(\dot{\boldsymbol{x}},\boldsymbol{x},\boldsymbol{z},\boldsymbol{u}) = \begin{pmatrix} \dot{\boldsymbol{x}} - \boldsymbol{f}(\boldsymbol{x},\boldsymbol{z},\boldsymbol{u}) \\ \boldsymbol{g}(\boldsymbol{x},\boldsymbol{z},\boldsymbol{u}) \end{pmatrix} = \boldsymbol{0}$$

Tikhonov Theorem. Consider the ordinary differential equation

$$\dot{m{x}} = m{f}(m{x},m{z})$$

$$\varepsilon \dot{\boldsymbol{z}} = \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{z})$$

If

- dynamics of $\dot{z} = g(x, z)$ stable $\forall x$
- $\frac{\partial \mathbf{g}}{\partial \mathbf{z}}$ is full rank

then

$$\lim_{\epsilon \to 0} \boldsymbol{x}(t) = \boldsymbol{x}_0(t)$$

$$\lim_{\epsilon \to 0} \boldsymbol{z}(t) = \boldsymbol{z}_0(t)$$

where $z_0(t)$ and $x_0(t)$ is the solution to the ODE above modified to a DAE where $\varepsilon=0$

DAE with smooth

$$F(\dot{x}, x, z, u) = 0$$

Can be readily solved (solved for \dot{x} and z) if

$$\begin{pmatrix} \frac{\partial \mathbf{F}}{\partial \dot{\mathbf{x}}} & \frac{\partial \mathbf{F}}{\partial \mathbf{z}} \end{pmatrix}$$

is full rank on all trajectories \dot{x} , z, x and u. Note that all Index 1 DAEs fullfil these requirements. The theorem implies that

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{u})$$

$$\mathbf{0} = g(x, z, u)$$

with smooth \boldsymbol{f} can be solved if

$$\frac{\partial \boldsymbol{g}}{\partial \boldsymbol{z}}$$

is full rank on all trajectories z, x and u

Definition: Differential index of a DAE is the numer of times the differentiation operator $\frac{d}{dt}$ must be applied to the equations in order to convert the DAE into an ODE.

6 Simulation methods

Butcher tableau

$$\begin{array}{c|c} c & A \\ \hline & \boldsymbol{b}^T \end{array}$$

$$K_n = f(t_k + \Delta t c_n, x_n + \Delta t(A_n)K)$$
$$x_{k+1} = x_k + \Delta t \mathbf{b}^T K$$

The method is valid if

$$c_n = \Sigma_i A_{ni}$$
$$\Sigma_i \boldsymbol{b}_i = 1$$

The **stages** of a Runge Kutta method is the number of elements in c. The Butcher tableu defines an explicit integrator if and only if the diagonal elements and the upper-diagonal elements are zero.

Explicit Euler

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + \Delta t \cdot oldsymbol{f}(oldsymbol{x}, oldsymbol{u})$$

Global error $||\boldsymbol{x}_N - \boldsymbol{x}(T)|| = \mathcal{O}(\Delta t)$ Region of stability R(z) = 1 + z

Explicit mid-point rule

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1/2 & 1/2 & 0 \\
\hline
& 0 & 1/2 \\
\end{array}$$

Global error $||\boldsymbol{x}_N - \boldsymbol{x}(T)|| = \mathcal{O}(\Delta t^2)$

Ralston's RK2

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
2/3 & 2/3 & 0 \\
\hline
& 1/4 & 1/3
\end{array}$$

Heun's RK2

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
& 1/2 & 1/2
\end{array}$$

Generic second-order method

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
\alpha & \alpha & 0 \\
\hline
& 1 - \frac{1}{2\alpha} & \frac{1}{2\alpha}
\end{array}$$

Generic third-order method

$$\begin{array}{c|ccccc}
0 & 0 & 0 & 0 \\
\alpha & \alpha & 0 & 0 \\
1 & 1 + \frac{1-\alpha}{\alpha(3\alpha-2)} & -\frac{1-\alpha}{\alpha(3\alpha-2)} & 0 \\
\hline
& \frac{1}{2} - \frac{1}{6\alpha} & \frac{1}{6\alpha(1-\alpha)} & \frac{2-3\alpha}{6(1-\alpha)}
\end{array}$$

"The" RK4 method

Global error $||\boldsymbol{x}_N - \boldsymbol{x}(T)|| = \mathcal{O}(\Delta t^4)$

One-Step error

$$||x_{k+1} - x(t_{k+1})||$$

Taylor expand $\boldsymbol{x}(t)$ around t_k . Do the same for \boldsymbol{x}_{k+1} . Subtract and get the results

Global error Get error on timestep T by multiplying local error with $N = \frac{T}{\Lambda t}$

stability of integration method: Consdier the ODE

$$\dot{x} = \lambda x \qquad \qquad x(0) = x_0$$

Perform one step of the RK method to find

$$x_{n+1} = R(z)x_n$$
 $z = \Delta t\lambda$

The integration method is unstable if

A-stability A method is a-stable if the region of stability is the entire left-half plane.

Implicit methods

- Can chaieve high and systematic orders
- Can be stable regardless of the step size
- Can handle the simulation of DAEs (must be index 1)
- Can achieve order o=2s for any stage s. Explicit methods can only achieve o=s and only for $s\leq 4$

Implicit Euler

$$\begin{array}{c|c}
1 & 1 \\
\hline
& 1
\end{array}$$

$$k_1 = f(x_n + \Delta t k_1)$$

$$x_{n+1} = x_n + \Delta t k_1$$

$$= x_n + \Delta t f(x_{n+1})$$

Gauss-Legendre collocation method Let s be the number of stages. Find the roots of

$$P_s(\tau) = \frac{1}{s!} \frac{d^s}{d\tau^s} \left((\tau^2 - \tau)^s \right)$$

Build polynomials

$$\ell_i(\tau) = \prod_{j \neq i} \frac{\tau - \tau_j}{\tau_i - \tau_j}$$

Integrate them

$$L_i(\tau) = \int_0^{\tau} \ell_i(\xi) \, d\xi$$

Calculate A, \boldsymbol{b} and \boldsymbol{c}

$$A_{ii} = L_i(\tau_i)$$
 $b_i = L_i(1)$ $c_i = \tau_i$

7 Math

Inverse of 2×2 Matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Multivariable derivative rules

$$egin{aligned} rac{\partial}{\partial x} oldsymbol{a}^T oldsymbol{x} &= oldsymbol{a}^T \ rac{\partial}{\partial x} oldsymbol{A} oldsymbol{x} &= oldsymbol{A} \ rac{\partial}{\partial x} oldsymbol{x}^T oldsymbol{A} &= oldsymbol{A}^T \ oldsymbol{x}^T oldsymbol{A} &= oldsymbol{A}^T \ oldsymbol{x}^T oldsymbol{A} &= oldsymbol{A}^T \ oldsymbol{A}^T oldsymbol{A} &= oldsymbol{A}^T oldsymbol{A}^T oldsymbol{A} &= oldsymbol{A}^T oldsymbol{A}^T oldsymbol{A} &= oldsymbol{A}^T oldsymbol{A}^T oldsymbol{A}^T oldsymb$$

Second order terms

$$\frac{\partial}{\partial x} \frac{1}{2} x^T A x = \frac{1}{2} x^T (A^T + A)$$
$$\nabla_x \frac{1}{2} x^T A x = \frac{1}{2} (A^T + A) x$$

Multivariable Chain rule

$$\begin{split} \frac{\partial f(g(x))}{\partial x} &= \frac{\partial f}{\partial g} \frac{\partial g}{\partial x} \\ \frac{\partial f(g(x), h(x))}{\partial x} &= \frac{\partial f}{\partial g} \frac{\partial g}{\partial x} + \frac{\partial f}{\partial h} \frac{\partial h}{\partial x} \end{split}$$

Some derivatives

$$\begin{split} \frac{d}{dt} \sinh(t) &= \cosh(t) \\ \frac{d}{dt} \cosh(t) &= \sinh(t) \\ \frac{d}{dt} \tanh(t) &= \frac{d}{dt} \frac{\sinh(t)}{\cosh(t)} &= \frac{1}{\cosh^2 t} = 1 - \tanh^2(x) \\ \frac{d}{dt} \arctan(t) &= \frac{1}{1 + t^2} \end{split}$$

Taylor's theorem

Let $k \geq 1$ be an integer and let the function $f : \mathbb{R} \to \mathbb{R}$ be k+1 times differentiable at the point $a \in \mathbb{R}$. Then

$$f(x) = \sum_{n=0}^{k} \frac{1}{n!} f^{(n)}(a)(x-a)^n + \frac{1}{(1+k)!} f^{(k+1)}(\xi)(x-a)^{k+1}$$

for some $\xi \in [x,a]$

Common Taylor expansions

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin(x) = \sum_{n=1}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$$