MATH 118: Quiz 7

Name: Key

Directions:

- * Show your thought process (commonly said as "show your work") when solving each problem for full credit.
- * If you do not know how to solve a problem, try your best and/or explain in English what (1) Find and remove holes you would do.
- * Good luck!

-) Then Lind asymptotes
- 1. Find all vertical and horizontal asymptotes. Make sure to describe potential holes.

(a)
$$\frac{x^2-1}{x^2-x-2}$$

$$=\frac{(x-1)(x+1)}{(x-2)(x+1)}$$

$$= \frac{x-1}{x-2}, \quad x \neq -1$$
(b) $\frac{x^5 - x^3}{x^7 + x^4}$

(c)
$$\frac{x^3 + 3x^2 + 3x + 1}{x + 1}$$
, hole at $x = -1$ $x + 1$ $x + 2x + 1$ $x + 3x^2 + 3x + 1$ $x + 1$ $x + 1$ $x + 2x + 1$ $x + 1$

$$= \left[\frac{x^2 + 2x + 1}{x^2 + 2x + 1}, \frac{x \neq -1}{x \neq -1} \right] \text{ no asymptotis} \qquad \frac{x + 1}{x \neq -1}$$

$$\frac{x^{5} - x}{x^{7} + x^{4}}$$

$$= \frac{x^{3}(x^{2} - 1)}{x^{4}(x^{3} + 1)}$$

$$= \frac{x^{3}(x - 1)}{x^{4}(x^{3} + 1)}$$

$$= \frac{x^{2}(x - 1)(x + 1)}{x^{4}(x^{4} + 1)}$$

$$= \frac{x^{2}(x - 1)(x + 1)}{x^{4}(x^{4} + 1)(x^{2} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{2} - x + 1)}{x^{4}(x^{4} + 1)(x^{2} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{2} - x + 1)}{x^{4}(x^{4} + 1)(x^{2} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{2} - x + 1)}{x^{4}(x^{4} + 1)(x^{2} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{2} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{2} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)(x^{4} - x + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{4} - x + 1)}{x^{4}(x^{4} + 1)}$$

$$= \frac{x^{4}(x + 1)(x^{$$

2. If $f(x) = 4^x$, find f(0), f(2) and f(1.5). Show your work for full credit.

$$f(2) = 4^2 = 16$$
 lpt

$$f(1.5) = 4^{1.5} = 4^{\frac{3}{2}} = \sqrt{4^3} = \sqrt{64} = 8$$

1pt

3. With a base function of $f(x) = e^x$, describe what transformations you need to perform to create $g(x) = -1 - e^{-2(x-3)}$.

$$f(x) = e^{x}$$
 $a(x) = -f(x) = -e^{x}$

$$b(x) = a(-x) = -e^{-x}$$

$$C(x) = b(2x) = -e^{-2x}$$

$$d(x) = c(x-3) - e^{-2(x-3)}$$

$$f(x) = -1 + J(x) = -1 - e^{-2(x-3)}$$