ADVANCED DATA VISUALIZATION AND REPORTING

SETTING THE STAGE

OUTLINE

- Data Visualization with ggplot2
- 2. An Introduction to Dashboards

R GRAPHICS

As of 2018, there are 4 graphical systems available in R:

- base
- grid
- lattice
- ggplot2

Access to the 4 systems differ: base, grid, lattice are included in the base installation; grid, lattice, ggplot2 have to be loaded explicitly before being used.

A GGPLOT2 PRIMER

ggplot2 is a set of tools that map data to visual display elements, and that allow the user to control the fine details of plot display.

Most important aspect: ggplot2 can be used to think about the logical structure of the plot.

A *ggplot2* graph has 2 main components (and optional terms):

- aesthetic mappings (aes connections between data and plot elems.)
- plot geometry (**geom** specifies the type of plot)
- *facets, *coordinates, *scales, *labels, *guides, etc.

GGPLOT2 GRAMMAR

1. Tidy Data

 $p \leftarrow ggplot(data = gapminder, ...$

gdp	lifexp	pop	continent
340	65	31	Euro
227	51	200	Amer
909	81	80	Euro
126	40	20	Asia

2. Mapping

p ← ggplot(data = gapminder, mapping =
 aes(x = gdp, y = lifexp, size = pop,
 color = continent))

4. Co-Ordinates & Scales

p + coord_cartesian() + scale_x_log10()

5. Labels & Guides

p + labs(x = "log GDP", y = "Life
Expectancy", title = "A Gapminder Plot")

A Gapminder Plot

GGPLOT2 GRAMMAR – GEOMS

The data source and variables to be plotted are specified *via* ggplot().

The various geom functions specify **how** these variables are to be visually represented

using points, bars, lines, shaded regions, etc.

There are currently 37 available geoms.

GGPLOT2 GRAMMAR – GEOM()

```
library("ggplot2")
data(singer, package="lattice")
# Using data from the 1979 ed. of the
# New York Choral Society

# Histogram of heights
ggplot(singer, aes(x=height)) +
   geom_histogram()

# Boxplot of heights by voice part
ggplot(singer, aes(x=voice.part, y=height)) +
   geom_boxplot()
```


GGPLOT2 GRAMMAR – GEOM()

```
library("ggplot2")
data(singer, package="lattice")
# Using data from the 1979 ed. of the
# New York Choral Society

# Histogram of heights
ggplot(singer, aes(x=height)) +
    geom_histogram()

# Boxplot of heights by voice part
ggplot(singer, aes(x=voice.part, y=height)) +
    geom_boxplot()
```


GGPLOT2 GRAMMAR – GEOM()

```
library(ggplot2)
data(Salaries, package="car")
# Using data on salaries of a sample of
# US university professors (2018-2019)
# var: rank, sex, yrs.since.phd, yrs.service, salary

ggplot(Salaries, aes(x=rank, y=salary)) +
    geom_boxplot(fill="cornflowerblue",color="black", notch=TRUE) +
    geom_point(position="jitter", color="blue", alpha=.5) +
    geom_rug(side="l", color="black")
```


GGPLOT2 GRAMMAR – AESTHETICS

Aesthetics refer to the displayed attributes of the data.

They map the data to an attribute (such as the size or shape of a marker) and generate an appropriate legend.

Aesthetics are specified with the aes () function.

Aesthetics can be specified within the data function or within a geom. If they're specified within the data function then they apply to all specified geoms.

GGPLOT2 GRAMMAR – AESTHETICS

The aesthetics available to geom point () (scatterplot), as an example, are:

x, y, alpha, color, fill, shape, size

Important difference between specifying characteristics (like colour and shape) inside and outside the aes () function

- inside: assigned colour or shape automatically based on the data.
- outside: not mapped to data.

GGPLOT2 GRAMMAR – AES()

```
library(ggplot2)
# Using the mpg dataset

# specifying characteristics inside aes()
ggplot(mpg, aes(cty, hwy)) +
    geom_point(aes(colour = class))

# specifying characteristics inside aes()
ggplot(mpg, aes(cty, hwy)) +
    geom_point(colour = "red")
```


GGPLOT2 GRAMMAR – AES()

```
library(ggplot2)
# Using the mpg dataset

# specifying characteristics inside aes()
ggplot(mpg, aes(cty, hwy)) +
    geom_point(aes(colour = class))

# specifying characteristics inside aes()
ggplot(mpg, aes(cty, hwy)) +
    geom_point(colour = "red")
```


GGPLOT2 GRAMMAR – FACETS

In *ggplot2* parlance, small multiples are referred to as **facets**:

facet_wrap(), facet_grid()

By default, all panels (one for each factor) share the same axes (scale-wise).

Separating the graph into a sequence of smaller, side-by-side plots makes it easier to enact comparisons.

GGPLOT2 GRAMMAR – FACET_WRAP()

GGPLOT2 GRAMMAR – FACET_GRID()

```
data(Salaries, package="car")
library(ggplot2)
ggplot(Salaries, aes(x=yrs.since.phd,
  y=salary, color=rank, shape=rank)) +
  geom_point() +
  facet_grid(~sex)
```


REPORTING AND DEPLOYMENT

An analysis can only be as good as how it is **communicated** and/or **deployed**.

Crucial Questions:

- Who is in receipt of the report(s)?
- How are the workflows deployed into production?
- Can data insights be turned into useful policies?

Automatic reporting should be audited and validated regularly.

REPORTING AND DEPLOYMENT

Communication should occur at various stages of the project, not solely upon completion:

- keep sponsors / clients aware of broad lines
- technical details may be avoided, but documented nonetheless

Ideal scenario: analysis software is also reporting software

- minimizes human error related to cut-and-paste
- removes the need for keeping analysis and reporting separate
- makes sharing the work with other project member easier

Simplify the process further by deploying directly to the Web.

DASHBOARDS

A dashboard is any visual display of data used to monitor conditions and/or facilitate understanding.

Examples:

- interactive display that allows people to explore motor insurance claims by city, province, driver age, etc.
- PDF showing key audit metrics that gets e-mailed to a Department's DG on a weekly basis.
- wall-mounted screen that shows call centre statistics in real-time.
- mobile app that allow hospital administrators to review wait times on an hourly- and dailybasis for the current year and the previous year.

SOME QUESTIONS TO CONSIDER

In a car's dashboard, a small number of key indicators (speed, gasoline level, lights, etc.) need to be understood at a glance. A dashboard design that does not take these two characteristics under consideration can have catastrophic consequences.

The following questions need to be answered prior to the dashboard being designed:

- Who is the dashboard's **consumer**?
- What **story** does the dashboard tell?
- What data (categories) will be used?
- What will **appear** on the dashboard?
- How can the dashboard **help** the consumer?

DASHBOARD DESIGN GUIDELINES

Nick Smith suggests the following 6 Golden Rules:

- Consider the audience (who are you trying to inform? does the DG really need to know that the servers are operating at 88% capacity?)
- **Select the right type of dashboard** (operational, strategic/executive, analytical)
- Group data logically, use space wisely (split functional areas: product, sales/marketing, finance, people, etc.)
- Make the data relevant to the audience (scope and reach of data, different dashboards for different departments, etc.)
- **Avoid cluttering the dashboard** (present the most important metrics only)
- **Refresh your data at the right frequency** (real-time, daily, weekly, monthly, etc.)

Course Metrics

[https://bigbookofdashboards.com/dashboards.html]

COURSE METRICS DASHBOARD – STRENGTHS

Easy-to-see key metrics

Simple color scheme

Potential to be static or interactive

Both overview and details are clear

What-If Analysis: Impact of Minimum Wage

[https://bigbookofdashboards.com/dashboards.html]

 Proposed Minimum Wage
 Required Service

 \$16.00
 3

 ...
 ...

Developed by Matt Chambers
http://sirvizalot.blogspot.com/

