Tutorial 3

MAT334 – Complex Variables – Spring 2016 Christopher J. Adkins

SOLUTIONS

1.5 -# **3,8,11,13,14** Find the value(s) of

$$\log(1+i\sqrt{3}), \quad \exp(\log(3+2i)), \quad i^{\sqrt{3}}, \quad \log((1-i)^4) \quad \& \quad \exp\left[\pi\left(\frac{i+1}{\sqrt{2}}\right)^4\right]$$

Solution

$$\log(1+i\sqrt{3}) = \log|1+i\sqrt{3}| + i\arg(1+i\sqrt{3}) = \log 4 + i\left(\frac{\pi}{3} + 2k\pi\right), \quad k \in \mathbb{Z}$$

$$\exp(\operatorname{Log}(3+2i)) = 3 + 2i$$

$$i^{\sqrt{3}} = e^{\sqrt{3}(i\pi/2 + 2\pi ik)} = \exp i\left(\sqrt{3}\pi/2 + 2\sqrt{3}\pi k\right), \quad k \in \mathbb{Z}$$

$$\log((1-i)^4) = 4\log(1-i) = 4(\log|1-i| + i\arg(1-i)) = 4\log\sqrt{2} + 4i\left(\frac{\pi}{4} + 2\pi k\right) = 2\log 2 + i\pi(1+8k), \quad k \in \mathbb{Z}$$

$$\exp\left[\pi\left(\frac{1+i}{\sqrt{2}}\right)^4\right] = \exp\left[\pi(e^{\frac{\pi i}{4}})^4\right] = e^{\pi e^{\pi i}} = e^{-\pi}$$

1.5 - # 17 Show that $\cos z = 0$ if and only if $z = \pi/2 + n\pi$, $n \in \mathbb{Z}$. Show that $\sin z = 0$ if and only if $z = n\pi$, $n \in \mathbb{Z}$. That is, extending $\sin z$ and $\cos z$ from the real axis to the whole plane does not introduce any new zeros.

Solution We rewrite cosine and sine into their exponential forms via Euler's Identity to expand to \mathbb{C} ,

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$$
 & $\sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$

Thus

$$\cos z = 0 \iff e^{iz} = -e^{-iz} = e^{-iz+\pi i}$$
 & $\sin(z) = 0 \iff e^{iz} = e^{-iz}$

Suppose that z = x + iy. Then applying log to both sides shows

$$\cos(z) = 0 \iff -y + ix = y + i(-x + \pi + 2n\pi) \iff \begin{cases} y = -y \\ x = -x + \pi + 2n\pi \end{cases} \iff z = \frac{\pi}{2} + n\pi, \quad n \in \mathbb{Z}$$
$$\sin(z) = 0 \iff -y + ix = y + i(-x + 2n\pi) \iff \begin{cases} y = -y \\ x = -x + 2n\pi \end{cases} \iff z = n\pi, \quad n \in \mathbb{Z}$$

1.5 - # 21 Define

$$\cosh z = \frac{1}{2}(e^z + e^{-z}) \quad \& \quad \sinh z = \frac{1}{2}(e^z - e^{-z})$$

Show that the following identities hold:

$$\cosh^{2}(z) - \sinh^{2}(z) = 1$$
$$\cosh z = \cos iz$$
$$\sinh z = -\sin(iz)$$
$$|\cosh z|^{2} = \sinh^{2} x + \cos^{2} y$$
$$|\sinh z|^{2} = \sinh^{2} x + \sin^{2} y$$

Solution The first follows immediately,

$$4(\cosh^2(z) - \sinh^2(z)) = (e^z + e^{-z})^2 - (e^z - e^{-z})^2 = 2 + 2 = 4$$

The second and third follow immediately by Euler's identity (see previous question). The forth and fifth follows by a short computation

$$|\cosh z|^2 = \frac{1}{4}(e^{x+iy} + e^{-x-iy})(e^{x-iy} + e^{-x+iy}) = \left(\frac{e^x - e^{-x}}{2}\right)^2 + \left(\frac{e^{iy} + e^{-iy}}{2}\right)^2 = \sinh^2 x + \cos^2 y$$

$$|\sinh z|^2 = \frac{1}{4}(e^{x+iy} - e^{-x-iy})(e^{x-iy} - e^{-x+iy}) = \left(\frac{e^x - e^{-x}}{2}\right)^2 + \left(\frac{e^{iy} - e^{-iy}}{2}\right)^2 = \sinh^2 x + \sin^2 y$$

1.5 - # **24** Let D be the domain obtained by deleting the ray $\{x : x \leq 0\}$ from the plane, and let G(z) be a branch of $\log z$ on D. Show that G maps D onto a horizontal strip of width 2π

$$\{x + iy : -\infty < x < \infty, c_0 < y < c_0 + 2\pi\}$$

and that the mapping is one-to-one on D.

Solution This is easy to see, if we fix the branch the log maps to, we obtain a nice bijection:

$$G(z) = \log|z| + i(\operatorname{Arg}(z) + c_0 + \pi)$$

where $c_0 \in \mathbb{R}$. Thus

$$\{z = Re^{i\theta} : R \in (0, \infty), \theta \in (-\pi, \pi)\} \to \{w = \log R + i(\theta + c_0 + \pi) : R \in (0, \infty), \theta \in (-\pi, \pi)\}$$
$$= \{w = x + iy : x \in \mathbb{R}, y \in (c_0, c_0 + 2\pi)\}$$

It is 1-to-1 since

$$G(z) = G(w) \implies \log|z| + i(\operatorname{Arg}(z) + c_0 + \pi) = \log|w| + i(\operatorname{Arg}(w) + c_0 + \pi) \implies \begin{cases} \log|z| = \log|w| \\ \operatorname{Arg}(z) = \operatorname{Arg}(w) \end{cases} \implies z = w$$

1.5 - # 27 Let $0 < \alpha < 2$. Show that an appropriate choice of $\log z$ for $f(z) = z^{\alpha} = \exp[\alpha \log z]$ maps the domain $\{x + iy : y > 0\}$ both one-to-one and onto the domain $\{w : 0 < \arg w < \alpha\pi\}$. Show that f also carries the boundary to the boundary.

Solution Again, this is easier in Polar coordinates, since

$$f_k(z) = f_k(R, \theta) = z^{\alpha} = R^{\alpha} e^{i\alpha\theta + 2i\alpha\pi k} \quad k \in \mathbb{Z}$$

We see choosing the principal branch, i.e. k = 0, we obtain that

$$f_0(z) = R^{\alpha} e^{i\alpha\theta}$$

is a map that takes

$$\{x+iy: y>0\} = \{Re^{i\theta}: \theta \in (0,\pi)\} \to \{w=R^{\alpha}e^{i\alpha\theta}: \theta \in (0,\pi)\} = \{w: 0 < \arg w < \alpha\pi\}$$

Clearly it takes the boundary to the boundary since

$$\{z: y = 0\} \to \{z: y = 0, x \geqslant 0\} \cup \{z = R^{\alpha} e^{i\alpha\pi}: R > 0\}$$

1.5 - # 29 Show directly that if ζ is any value of

$$-i\log(iz + \sqrt{1-z^2})$$

then $\sin \zeta = z$. Likewise, show that if ξ is any value of

$$\frac{i}{2}\log\left(\frac{1-iw}{1+iw}\right)$$

then $\tan \xi = w$.

Solution Using our exponential form of sine, we see

$$\sin \zeta = \frac{1}{2i} \left(e^{\log(iz + \sqrt{1 - z^2})} - e^{-\log(iz + \sqrt{1 - z^2})} \right)$$

$$= \frac{1}{2i} \left(iz + \sqrt{1 - z^2} - \frac{1}{iz + \sqrt{1 - z^2}} \right)$$

$$= \frac{1}{2i} \left(\frac{(iz + \sqrt{1 - z^2})^2 - 1}{iz + \sqrt{1 - z^2}} \right)$$

$$= \frac{1}{2i} \left(\frac{-z^2 + 1 - z^2 - 1 + 2iz\sqrt{1 - z^2}}{iz + \sqrt{1 - z^2}} \right)$$

Then using the exponential form of tangent, we see

$$\tan \xi = -i \frac{e^{2i\xi} - 1}{e^{2i\xi} + 1}$$

$$= -i \frac{\exp\left(-\log\left(\frac{1 - iw}{1 + iw}\right)\right) - 1}{\exp\left(-\log\left(\frac{1 - iw}{1 + iw}\right)\right) + 1}$$

$$= -i \frac{\frac{1 + iw}{1 - iw} - 1}{\frac{1 + iw}{1 - iw} + 1}$$

$$= -i \frac{1 + iw - 1 + iw}{1 + iw + 1 - iw}$$