Задача 1

Пусть имеется информация о покупках, совершаемых 100 миллионами людей, каждый из которых ходит в магазин в среднем 100 раз в году и покупает 10 из 1000 предложенных товаров. Предположим, что два человека попадают под подозрение, если они купили в течение года в точности один и тот же набор товаров (возможно, для изготовления бомбы?). С помощью принципа Бонферрони определите, будет ли эффективным метод выявления террористов, основанный на поиске таких пар людей.

Задача 2

На рисунке показан набор из 9 точек, расположенных на плоскости. Примените алгоритм иерархической кластеризации с single-link расстоянием между кластерами. Постройте дендрограмму.

Какова алгоритмическая сложность этого алгоритма?

Задача 3

В таблице даны попарные расстояния между объектами из обучающей выборки. Проведите иерархическую кластеризацию с использованием complete-link расстояния между кластерами.

	x_1	x_2	x_3	x_4	x_5	x_6
$\overline{x_1}$		1.5	5.0	4.0	2.5	0.5
x_2		0.0	4.0	0.5	3.5	2.0
x_3			0.0	6.0	2.0	1.0
x_4				0.0	5.5	4.5
x_5					0.0	1.0
x_6						0.0

Задача 4

Пусть алгоритм, кластеризуюзщий точки в многомерном Евклидовом пространстве, оптимизирует критерий (k задано)

$$J = \frac{1}{2} \sum_{k} \sum_{x_i \in C_k} \sum_{x_j \in C_k} ||x_i - x_j||^2.$$

Покажите, что такой алгоритм эквивалентен стандартному алгоритму k-means.

Задача 5

Пусть даны 2 кластеризации C и Ω одного и того же набора данных. Покажите, что

$$MI(C,\Omega) \le \frac{1}{2}(H(C) + H(\Omega)),$$

где $MI(C,\Omega)$ – mutual information, а H(C) и $H(\Omega)$ – соответствующие энтропии.

Задача 6

Пусть дана обучающая выборка X_N , которая сгенерирована из распределения Стьюдента с неизвестными параметрами μ и σ и известным количеством степеней свободы ν . Используя принцип максимального правдоподобия, получите оценки для неизвестных параметров μ и σ .

Задача 7

Рассмотрим задачу, в которой в качестве объектов рассматриваются строки, а расстояние между объектами – расстояние правок (edit distance). Существует как минимум два способа выбора центроида (clustroid) в такой задаче:

- 1. выбирать объект, сумма расстояний от которого до всех остальных минимальна;
- 2. выбирать объект, максимальное расстояние от которого до всех остальных минимально;

Приведите пример кластера, для которого эти варианты дают разные центроиды.