Le memorie: esempi di domande

M. Sonza Reorda

Politecnico di Torino Dip. di Automatica e Informatica

Volatilità

Indicare per ciascuna delle seguenti tipologie di memoria se è *volatile* e *alterabile*.

		volatile	alterabile
A	SRAM		
В	EPROM		
C	Flash		
D	ROM		

Page mode

In che cosa consiste la modalità di accesso alla memoria nota come *Page Mode* (valida solo se la memoria ha un'architettura a matrice)?

A	Nella possibilità di leggere un'intera riga di memoria con un solo accesso
В	Nella possibilità di leggere più parole appartenenti alla stessa riga di memoria senza bisogno di fornire per ogni accesso sia l'indirizzo di riga che quelo di colonna
С	Nella possibilità di accedere ad una parola fornendo sugli stessi segnali di ingresso prima l'indirizzo di riga e poi quello di colonna
D	Nella possibilità di accedere alla memoria esclusivamente accedendo ad un'intera riga

Tempo di accesso

Si consideri un sistema dotato di cache. Assumendo che il tempo di accesso della memoria principale sia pari a 60 ns, quello della cache a 10 ns, la hit ratio della cache sia pari a 0,9, e la penalità relativa al miss nulla, qual è il tempo medio di accesso al sistema di memoria?

A	5 ns
В	12,6 ns
С	15 ns
D	40 ns

Codici SECDED

Quale caratteristica possiedono i codici SECDED utilizzati nelle memorie DRAM?

A	Riduzione del tempo di accesso
В	Rilevamento dei guasti singoli, doppi e tripli
C	Rilevamento e correzione dei guasti singoli e doppi
D	Rilevamento dei guasti singoli e doppi

Architettura a matrice

Si consideri una memoria composta da 4 Mparole avente un'architettura a matrice: su quale dei seguenti moduli (o gruppi di moduli) potrebbe basarsi la logica di decodifica degli indirizzi?

A	1 decoder con 22 ingressi
В	2 decoder con 22 ingressi
С	1 decoder con 10 ingressi e 1 decoder con 12 ingressi
D	Nessuno dei precedenti

Cache con direct mapping

Si consideri una memoria cache che implementa la tecnica del direct mapping. Assumendo che la dimensione della memoria principale sia pari a 16 Mbyte, il numero di linee sia 1.024 e ciascuna linea contenga 32 byte, che dimensione avrà il campo tag?

A	9
В	19
C	24
D	32

Write-through

Si consideri una cache che implementa il meccanismo del write-through: cosa succede quando si verifica un miss?

A	Viene caricato un nuovo blocco di memoria al posto di uno esistente in cache
В	Viene caricato un nuovo blocco di memoria al posto di uno esistente in cache, il cui contenuto viene copiato in memoria principale
С	Viene caricato un nuovo blocco di memoria al posto di uno esistente in cache, il cui contenuto viene copiato in memoria principale se il corrispondente dirty bit è attivato
D	Si accede direttamente alla memoria principale, senza modificare il contenuto della cache

RAM statiche e dinamiche

Rispetto alle RAM statiche quelle dinamiche sono...

A	Più lente e meno costose in termini di quantità di area di silicio richiesta
В	Più veloci e più costose in termini di quantità di area di silicio richiesta
C	Più lente e più costose in termini di quantità di area di silicio richiesta
D	Più veloci e meno costose in termini di quantità di area di silicio richiesta

Affidabilità

Per quale ragione la tecnologia con cui si realizzano le DRAM è meno affidabile di quella delle SRAM?

A	A causa del meccanismo del rinfresco
В	Perché le DRAM funzionano a velocità più alte
C	Perché nelle DRAM l'informazione è memorizzata sotto forma di eventuale carica all'interno di un condensatore
D	Perché le DRAM sono volatili

DRAM

Quanti transistor sono necessari per realizzare una cella di RAM dinamica?

A	1
В	3
С	6
D	16

Tempo di ciclo

Che cosa si intende per tempo di ciclo?

A	Il tempo minimo che deve intercorrere tra due successive operazioni di accesso alla memoria
В	Il tempo massimo che intercorre tra una richiesta di accesso alla memoria ed il suo completamento
C	Il tempo medio tra il verificarsi di due errori nella memoria
D	Il tempo medio prima che la memoria smetta di funzionare

Memorie Flash

Si confronti una memoria Flash ed una memoria RAM: quale delle seguenti affermazioni è vera?

A	Entrambe sono alterabili
В	Entrambe sono volatili
C	Per entrambe il tempo di accesso in lettura è uguale al tempo di accesso in scrittura
D	Entrambe sono caratterizzate dal meccanismo del Destructive Read Out

Velocità di rotazione

Si consideri un disco magnetico, e si supponga che la ditta costruttrice ne stia predisponendo una nuova versione, caratterizzata da una maggiore velocità di rotazione dei dischi: a parità degli altri parametri, quali dei seguenti valori verrà conseguentemente modificato?

A	Seek time
В	Latency time
C	Capacità del disco
D	Nessuno dei precedenti

CAV

Si consideri la tecnica CAV utilizzata normalmente nei dischi magnetici: quale delle seguenti affermazioni è <u>falsa</u>?

A	Il numero di bit memorizzato in ogni traccia è lo stesso sulle diverse tracce
В	La densità lineare di memorizzazione (espressa in bit/pollice) è la stessa sulle diverse tracce
С	Il numero di bit letti/scritti dalla testina nell'unità di tempo è costante, indipendentemente dalla traccia su cui il disco sta leggendo/scrivendo
D	La velocità angolare di rotazione del disco è costante, ed indipendente dalla traccia acceduta