$$P(x,y) \Longrightarrow f(f(xy)) = f(xf(y) + yf(y))$$

In below, n: means Case n: and n.m: Statement means in step n.m, we'll prove/find Statement.

And we'll use the fact f is continuous many times without saying it.

We'll also use the easy-to-check result that, if f is constant in (a, b), then it is constant in [a, b].

Define:

$$S_t = \left\{ \frac{f(x)}{x} + \frac{f(\frac{t}{x})}{\frac{t}{x}} \middle| x \in \mathbb{R}^+ \right\}$$

 $a_t = \max \{a : x \ge a \text{ for all } x \in S_t\}$

 $b_t = \min \{a: x \le a \text{ for all } x \in S_t\}$

(for clarity, if $S_t = [a_t, b_t]$)

By definition, f is constant in each interval S_t as, $f(f(t)) = f(s) \forall s \in S_t$

0: f(x) = c for all $x \in \mathbb{R}^+$

1:
$$\max \left\{ \frac{f(x)}{x} \middle| x \in \mathbb{R}^+ \right\} = \infty$$

By definition of b_t , we have $b_t = \infty$ for all t > 0

Define $r = \max \{r' : 2x f(x) \ge r' \text{ for all } x \in \mathbb{R}^+ \}$

We have, $f(x) \ge \frac{r}{2x}$ for all $x \in \mathbb{R}^+$

1.1: f is constant in the interval $[r, \infty)$

 $b_t = \infty$ for all $t \in \mathbb{R}^+$, $a_t \leq 2t f(t)$ so, f is constant in the interval $[2t f(t), \infty)$

As, by definition of r, $(\forall \varepsilon > 0)(\exists t)$ such that, $2 t f(t) - r < \varepsilon$.

Take ε arbitrarily small, we have, f is constant in the interval $[r, \infty)$

r=0 is same as **Case 0**, so let, r>0

Define $a = \min \{a' : f(x) = c \text{ for all } x \ge a'\}$

Obviously, $a \leq r$

1.2:
$$f(f(t)) = c$$
 for all $t > 0$

$$f(f(t)) = f(2\sqrt{t} f(\sqrt{t})) = c \text{ as } 2\sqrt{t} f(\sqrt{t}) \ge r \ge a$$

1.3:
$$c \ge a$$
, $f(x) \ge \max\left(a, \frac{r}{2x}\right)$ for all $x > 0$

we have
$$\lim_{x\longrightarrow 0}f(x)\geq \lim_{x\longrightarrow 0}\frac{r}{2\,x}=\infty$$

Let,
$$\mathcal{F} = \{ f(x) | x > 0 \}$$

but, by 1.2, f(x) = c for all $x \in \mathcal{F}$

thus, minimality of a implies, $z \ge a$ for all $z \in \mathcal{F}$

So,
$$c = f(a) \ge a$$

By definition of r, we had, $f(x) \ge \frac{r}{2r}$

So,
$$f(x) \ge \max\left(a, \frac{r}{2x}\right)$$

1.4:
$$2 c^2 \ge 2 c a \ge r \ge a$$

we proved, $c \ge a$ and $r \ge a$, it remains to prove, $2 c a \ge r$,

which is obvious since, $2 c a = 2 a f(a) \ge r$

 $1.\infty$: Finding solutions

we have,

i.
$$f(x) = c \ge \max\left(a, \frac{r}{2x}\right) = a$$
 for all $x \ge a$

ii.
$$f(x) \ge \max\left(a, \frac{r}{2x}\right) = a$$
 for all $c \ge x \ge \frac{r}{2a}$

iii.
$$f(x) \ge \max\left(a, \frac{r}{2x}\right) = \frac{r}{2x}$$
 for all $\frac{r}{2a} \ge x$

Now, define, $h: (0, a] \longrightarrow \mathbb{R}$, such that,

$$h(x) = f(x) - a$$
 for all $c \ge x \ge \frac{r}{2a}$ and,

$$h(x) = f(x) - \frac{r}{2x}$$
 for all $\frac{r}{2a} \ge x$

It's easy to check that h is continuous, h(a) = c - a and $h(x) \ge 0$ for all $x \in (0, a]$

Where, $2c^2 \ge 2ca \ge r \ge a$ and $h: (0, a] \longrightarrow [0, infty)$ is any continuous function with h(a) = c - a.

Checking:

We proved, f(f(xy)) = c. So it is sufficient to prove, $x f(y) + y f(x) \ge a$ for all $x, y \in \mathbb{R}^+$ Indeed, $f(t) \ge \frac{r}{2t}$ for all t > 0.

So, $x f(y) + y f(x) \ge \frac{rx}{2y} + \frac{ry}{2x} \ge r \ge a$ by A.M-G.M inequality. Hence f is a valid solution.

(Note: Case 0 is nothing but a = 0)

2:
$$\max \left\{ \frac{f(x)}{x} \middle| x \in \mathbb{R}^+ \right\}$$
 is finite

Let,
$$M = \min \left\{ M' \middle| \frac{f(x)}{x} \le M' \text{ for all } x \in \mathbb{R}^+ \right\}$$
,

$$m = \max \left\{ m' \middle| \frac{f(x)}{x} \ge m' \text{ for all } x \in \mathbb{R}^+ \right\}$$

2.1: $M + m \in S_t$ for all $t \in \mathbb{R}^+$

from the definition of M and m, we have,

$$(\forall \varepsilon > 0) \, (\exists u,v,\delta,\varphi \in \mathbb{R}^+,\delta,\varphi \leq \varepsilon) \text{ such that } \frac{f(u)}{u} = m + \delta \text{ and } \frac{f(v)}{v} = M - \varphi$$

So,
$$a_t \le \frac{f(u)}{u} + \frac{f(\frac{t}{u})}{\frac{t}{u}} \le M + m + \delta$$
 and $b_t \ge \frac{f(v)}{v} + \frac{f(\frac{t}{v})}{\frac{t}{v}} \ge M + m - \varphi$

as, δ and φ can be arbitrarily small, we have, indeed, $a_t \leq M + m \leq b_t$

So, $M + m \in S_t$

2.2: m = 0, f(f(t)) = f(Mt)

By definition of M, $(\forall \varepsilon > 0)$ $(\exists x \in \mathbb{R}^+)$ such that, $\frac{f(x)}{x} = M - \varepsilon$

Now, we have, $M^2 \frac{x}{M+m} \ge f \left(f \left(\frac{x}{M+m} \right) \right) = f(x) = (M-\varepsilon) x$

$$\Longrightarrow \varepsilon \geq \frac{m M}{m + M}$$

As ε can be arbitrarily small, we have m=0

So, f(f(t)) = f(Mt)

2.3: $M \ge 1$ and $\exists L', c \in \mathbb{R}^+$ such that $f(x) = c \forall x \ge L'$

$$P(t,t) \Longrightarrow 2 t f(t) \in S_{t^2} \Longrightarrow a_{t^2} \le 2 t f(t) \le b_{t^2}$$

As, m = 0, we have,

 $(\forall \varepsilon > 0) (\exists x, \delta, \varepsilon \ge \delta \ge 0)$ such that, $f(x) = \delta x \le \varepsilon x$

we have, $f(Mx) = f(f(x)) = f(\delta x) \le M \delta x \le M \varepsilon x$

So, by induction, $f(M^n x) \leq M^n \varepsilon x$

Take, ε small enough such that, $2\varepsilon < M$

 $a_{M^{2n}x^2} \le 2 M^n x f(M^n x) \le 2 M^{2n} x^2 \varepsilon \le M^{2n+1} x^2 \le b_{M^{2n}x^2}$

$$\Longrightarrow [2 \varepsilon M^{2n} x^2, M^{2n+1} x^2] \subseteq S_{M^{2n} x^2}$$

Define,
$$X = \bigcup_{n \geq 0} [2 \varepsilon M^{2n} x^2, M^{2n+1} x^2]$$

if M < 1, take ε small enough such that, $2\varepsilon \le M^3 \Longrightarrow X = (0, Mx^2]$

as, f is constant in each interval $[2 \in M^{2n} x^2, M^{2n+1} x^2]$, f(x) = c > 0 for all $x \in X$

So,
$$\lim_{x\longrightarrow 0^+} f(x) = c$$
, but $\lim_{x\longrightarrow 0^+} f(x) \le \lim_{x\longrightarrow 0^+} Mx = 0 \Longrightarrow c = 0$,

a contradiction!

So, $M \ge 1$, and take ε small enough such that, $2\varepsilon M \le 1 \Longrightarrow X = [2\varepsilon x^2, \infty)$

as, f is constant in each interval $[2 \varepsilon M^{2n} x^2, M^{2n+1} x^2]$, f(x) = c for all $x \in X$

Take, $L' = 2 \varepsilon x^2$ and we are done!

Define $L = \min \{L': f(x) = c \text{ for all } x \ge L'\}$

2.4:
$$S_{\frac{L}{M}} = \{M\}$$
 i.e. $\frac{f(x)}{x} + \frac{f\left(\frac{L}{Mx}\right)}{\frac{L}{Mx}} = M$ for all x

Consider the functions $g_x(t) = \frac{t}{M} \left(\frac{f(x)}{x} + \frac{f(\frac{t}{Mx})}{\frac{t}{Mx}} \right) > \frac{t}{M} \frac{f(x)}{x}$ for all x

Note that,

$$f\left(f\left(\frac{r}{M}\right)\right) = f(r) = f\left(\frac{r}{M}\left(\frac{f(x)}{x} + \frac{f\left(\frac{r}{Mx}\right)}{\frac{r}{Mx}}\right)\right) = f(g_x(r))$$

$$f\left(f\left(\frac{R}{M}\right)\right) = f(R) = f\left(\frac{R}{M}\left(\frac{f(x)}{x} + \frac{f\left(\frac{R}{Mx}\right)}{\frac{R}{Mx}}\right)\right) = f(g_x(R))$$

Now, by definition of L, we have $(\forall \varepsilon > 0)$ $(\exists r < L, L - r < \varepsilon)$ such that, $f(r) \neq c$

So, we have, $g_x(r) < L$

As we can take ε arbitrarily small, we have $g_x(L) \leq L$

Let, $g_x(L) < L$

Note that, for sufficiently large $R'>L,\ g_x(R')>\frac{R'}{M}\frac{f(x)}{x}\geq L$

So, as g is continuous (which can easily be checked), there must be some R'' > L, such that, $g_x(R'') = L$, and let, $R = \min\{R''\}$ (existence of R can easily be checked)

Then, we have $g_x(t) < L$ for all $L \le t < R$

But then, $f(g_x(t)) = f(t) = c$ for all $L \le t$

Let, $g_x(L) = L_0 < L$, $T = \{g_x(t): t \ge L\} \Longrightarrow [L_0, \infty) \subseteq T \Longrightarrow f(t) = c$ for all $t \ge L_0$, contradicting the minimality of L.

So,
$$g_x(L) = L \Longrightarrow \frac{f(x)}{x} + \frac{f(\frac{L}{Mx})}{\frac{L}{Mx}} = M$$

 $2.\infty$: No solution here!

$$x \le \frac{1}{M} \Longrightarrow \frac{L}{Mx} \ge L$$

So,
$$\frac{f(x)}{x} + \frac{f\left(\frac{L}{Mx}\right)}{\frac{L}{Mx}} = M \Longrightarrow f(x) = Mx - \frac{cMx^2}{L} < Mx$$
 for all $x \le \frac{1}{M}$

Now, take, $x \le \frac{1}{M^2} \le \frac{1}{M} \Longrightarrow f(x) \le M x \le \frac{1}{M}$

So,
$$f(f(x)) = f(Mx) \Longrightarrow Mf(x) - \frac{c Mf(x)^2}{L} = f(f(x)) = f(Mx) = M^2 x - \frac{c M^3 x^2}{L}$$
 for all $x \le \frac{1}{M^2}$

$$\Longrightarrow (f(x) - Mx) \left(f(x) + Mx - \frac{L}{c} \right) = 0$$

$$\Longrightarrow f(x) = \frac{L}{c} - Mx = Mx - \frac{c Mx^2}{L}$$
 for all $x \le \frac{1}{M^2}$

$$x \longrightarrow 0^+ \Longrightarrow \frac{L}{a} = 0 \Longrightarrow L = 0$$
, Contradiction!

Hence, no solution is this case.

So, the solutions are:

$$f(x) = \begin{cases} c & \text{if } x \ge a \\ a + h(x) & \text{if } a \ge x \ge \frac{r}{2a} \\ \frac{r}{2x} + h(x) & \text{if } \frac{r}{2a} \ge x \end{cases}$$

Where, $2c^2 \ge 2ca \ge r \ge a \ge 0$ and $h:(0,a] \longrightarrow [0,\infty)$ is any continuous function with h(a) = c - a.