Computació Numèrica

Laboratori 13. Integració numèrica amb Matlab

M. Àngela Grau Gotés

Departament de Matemàtiques Universitat Politècnica de Catalunya · BarcelonaTech.

22 de maig de 2018

drets d'autor

"Donat el caràcter i la finalitat exclusivament docent i eminentment il·lustrativa de les explicacions a classe d'aquesta presentació, l'autor s'acull a l'article 32 de la Llei de propietat intel·lectual vigent respecte de l'ús parcial d'obres alienes com ara imatges, gràfics o altre material contingudes en les diferents diapositives"

Índex

- Integració Adaptativa
- Mètode de Romberg
- Integració Gaussiana
- Referències

M. A. Grau

Integració Adaptativa

Joc de proves

Joc de proves per als programes d'integració numèrica.

a)
$$I = \int_{1}^{2} \ln(x) dx = 2 \ln(2) - 1$$

b) $I = \int_{0}^{\pi/4} \cos^{2}(x) dx = \left[\frac{\sin(2x)}{4} + \frac{x}{2} \right]_{0}^{\pi/4}$
c) $I = \int_{\frac{2}{7\pi}}^{\frac{2}{\pi}} \sin\left(\frac{1}{x}\right) + \frac{3}{2} dx$

Feu ús de la rutina quadgui de C. Moler

Mètode de Romberg

Mètode de Romberg

Per h = (b-a)/n, $x_k = a + kh$ i $k = 0 \div n$ calculem

$$T(h), T\left(\frac{h}{2}\right), T\left(\frac{h}{4}\right), \cdots, T\left(\frac{h}{2^p}\right)$$

llavors, l'esquema d'extrapolació de Richardson per $\mathtt{L} \geq 1\,,$ és:

$$T_{ ext{L}+1}(h) = T_{ ext{L}}(h) + rac{T_{ ext{L}}(h) - T_{ ext{L}}(2h)}{4^{ ext{L}} - 1}$$
 $T_{1}(h) = T(h)$.

Joc de proves

Mitjançant el mètode de Romberg, calculeu:

a)
$$\int_0^1 \sqrt{x} \sin(x) dx$$
, b) $\int_0^1 \frac{2}{1+x^2} dx = \frac{\pi}{2}$,

c)
$$\int_1^\infty e^{-x^2} dx$$
, b) $\int_0^1 \frac{1}{\sqrt{1+x^4}} dx$.

(I) Escriure una funció (ROMBERG8) per avaluar $I = \int_a^b f(x) dx$, les dades d'entrada han de ser els límits d'integració a i b, l'integrand f(x). La fórmula d'integració és:

$$I \approx \frac{h}{5670} \left[217 \left(f(a) + f(b) \right) + 1024 \left(f(a + \frac{h}{8}) + f(a + \frac{3h}{8}) + f(a + \frac{5h}{8}) + f(a + \frac{7h}{8}) \right) + 352 \left(f(a + \frac{h}{4}) + f(a + \frac{3h}{4}) \right) + 436f(a + \frac{h}{2}) \right] + O(h^8).$$

(II) Escriure un script (ROMBERG8COMPOST) per avaluar integrals mitjançant la fórmula composta de ROMBERG8.

Feu un joc de proves prenent f(x) = 1, x, $\sin(x)$.

Calculeu la integral
$$I = \int_{-1}^{1} e^{-x^2} dx$$

- a) Fent ús del mètode dels trapezis per $h = \frac{b-a}{2^k}$, $0 \le k \le 5$.
- b) Fent ús del mètode de Simpson per $h = \frac{b-a}{2^k}, \ 0 \le k \le 5.$
- Fent ús del mètode de ROMBERG8COMPOST prenent n = 1, 2, ..., 6 subintervals.
- d) Doneu els decimals exactes i les xifres significatives del les vostres aproximacions, sabent que $\int_0^t e^{-x^2} dx = \sqrt{\pi} \, erf \, (t)$.

Consulteu l'ajuda de Matlab per la funció erf

Integració Gaussiana

Fent ús d'una fórmula d'integració gaussiana de dos punts (m = 2), calculeu:

a)
$$\int_{-1}^{1} e^{x} dx$$
, b) $\int_{0}^{1} (7 + 14x^{6}) dx$, c) $\int_{0}^{1} e^{x^{2}} dx$.

Integreu pel mètode de Gauss-Legendre de quatre punts (m = 4),

a)
$$\int_{-1}^{1} \cos(x), dx$$
, c) $\int_{0}^{1} \ln(x) \sin^{2}(x) dx$,

b)
$$\int_{-1}^{1} e^{x} dx$$
, d) $\int_{0}^{\pi/3} \ln(1 + \cos(x)) dx$.

Calculeu les integrals següents per Gauss-Txebixev, amb punts m = 2, 3, 4 i 5.

$$\mathrm{a)} \ \int_{-1}^1 \frac{x^2}{\sqrt{1-x^2}} \, dx \,, \quad \mathrm{b)} \ \int_{-1}^1 \frac{\cos(\pi x)}{\sqrt{1-x^2}} \, dx \,, \quad \mathrm{c)} \ \int_0^1 \frac{x^2}{\sqrt{x(1-x)}} \, dx \,.$$

Guies de MATLAB

- MathWorks Documentation Center, Matlab Users's Guide online
- MathWorks Documentation Center, Matlab Functions's Guide online
- MathWorks Documentation Center, Matlab Users's Guide in pdf
- MathWorks Documentation Center, Tutorials