Ray tracing and procedural modelling

Computer Graphics (DT3025)

Martin Magnusson November 21, 2016

Last time

- Rasterisation vs ray tracing
- The rendering equation (reflectance-only version)
- Ray-object intersections
 - Explicit ray equation and implicit surface equations
- A taxonomy of ray tracing methods

Today

Ray tracing

- More about ray tracing
 - Refraction
 - "Distribution ray tracing"
 - Ray-tracing optimisations
- Sub-surface scattering
- Procedural modelling

Approximating the rendering equation

Ray tracing outline (1/2)

```
1 render_image {
2    for (all pixels [x][y]) {
3       ray R = getPixelRay( x, y, origin );
4       colour C = raytrace( R, 1.0 );
5       image[x][y] = C;
6    }
7 }
```

Ray tracing outline (2/2)

```
colour raytrace( ray R, double contribution ) {
      point P = raycast( R, Scene ); // get closest intersection
 3
      colour C = emitted light from P inwards R;
4
      for (all light sources L) {
 5
        // cast shadow feeler to check light source line-of-sight
6
        if (L is visible from P) {
          C += light from L scattered at P inwards R; // L*BRDF*cos
8
9
10
      double c = P.mirror_amount:
11
      if (c > 0) { // P is partly specularly (impulse) reflective
12
        dir = reflection direction; // or refraction...
13
        ray R_new( P, dir ); // new ray from P out towards dir
14
        C = (1 - c) * C:
15
        C += raytrace( R, contribution * c );
16
17
      return C:
18
```

More BSDFs

Procedural textures

Procedural surfaces

Reflection

Multi-bounce specular reflections

Transparent shadows (shadow rays)

Simple transparent shadow

Caustics

happy-digital.com

Transparent objects (ordinary rays)

Bending of waves

Ray tracing

- Light waves have different speed in different materials.
- Fastest in vacuum, slower in water, glass, etc.
- Index of refraction (IOR): speed ratio compared to vacuum.

Air: 1.0003

Water: 1.33

Glass: $\approx 1.5-1.9$

Water wave refraction

- Why do waves often arrive straight towards the beach?
 - Water waves slow down in shallow water.
 - (Waves get taller and denser, but keep temporal frequency.)
 - Slowing wave down (light, water) doesn't affect temporal frequency,
 - so the wavelength (spatial frequency) must change.

Figure 26.12: Waves traveling to the right bunch up as they slow down.

Figure 26.13: Off-axis waves change direction "at an interface."

Snell's law

$$\frac{\eta_1}{\eta_2} = \frac{\sin \theta_1}{\sin \theta_2}$$

Avoiding sin

- It is more convenient to use cos in the computations (because we get that from $n \cdot \omega$).
- Using trigonometric identity $\sin^2 \alpha + \cos^2 \alpha = 1$,
- we can write Snell's law as

$$\cos \theta_2 = \sqrt{1 - \left(\frac{\eta_1}{\eta_2}\right)^2 (1 - (\cos \theta_1)^2)}.$$

Critical angle

$$\cos \theta_2 = \sqrt{1 - \left(\frac{\eta_1}{\eta_2}\right)^2 (1 - (\cos \theta_1)^2)}.$$

- What if the stuff inside the sqrt is negative?
- Total internal reflection: no light gets transmitted.

Distribution ray tracing

Distribution ray tracing: for non-impulse rays

Rousiers et al. 201

Distribution ray tracing

Blurry translucency

Figure 2: BSDF and notation. (a) A specular BRDF f_r and a specular BTDF f_t , (b) A glossy BRDF f_r and a rough BTDF f_t ,

Distribution ray tracing

Ray tracing

Supersampling (anti-aliasing)

- Casting a single ray through the centre of each pixel leads to aliasing.
- Solution 1: randomise the direction within the pixel's area.
- Solution 2: cast many rays, and compute their average.

Distribution ray tracing

Other kinds of "distribution ray tracing"

Same principle can be applied for other phenomena too:

- Move objects, sample rays over time window: *motion blur*.
- Sample over lens area (not pinhole camera): *depth of field*.
- Sample several nearby point light sources: *area light*.

Optimisations

Optimisations

Bounding volumes

Ray tracing


```
mesh{
     "complicated_object.3ds"
     bounded_by{
       sphere{
         <0,0,0>, 10
6
8
```

Optimisations

Octrees

Ray tracing

0000000000000000000

■ More general form of the reflectance equation:

$$L^{\mathrm{ref}}(P, \boldsymbol{\omega}, \boldsymbol{\lambda}) = \int_{\boldsymbol{\omega}_{i} \in S^{2}(P)} L(P, -\boldsymbol{\omega}_{i}, \boldsymbol{\lambda}) f_{r}(P, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}, \boldsymbol{\lambda})(\boldsymbol{\omega}_{i} \cdot \mathbf{n}_{P}) d\boldsymbol{\omega}_{i}$$

- \blacksquare λ is *frequency* (related to wavelength in reference medium).
- Approximate: compute separate equations for R, G, B colours, just as before.
- (Although the R, G, B colours in common colour models do not correspond to a particular light frequency.)

BRDF vs BSSRDF

Hughes et al. 2013

Acquiring BSDFs

Acquiring BSDFs (out of scope)

Procedural textures

Procedural wood and stone example

Procedural normals

Example functions

fmod(x + z, 1.0)

 $fmod(sin(x) \cdot cos(y), 1.0)$

Ray tracing

Multi-frequency Perlin noise

aul Bourke

Perlin noise in 2D and 3D

Analogously in 2D and 3D:

Paul Bourke

Isosurfaces

Height field vs isosurface landscape

Example of isosurfaces

(Note: using POV-Ray syntax)

```
#declare F1 = function { x*x + z*z - 0.04 };
    #declare F2 = function { min(F1(x,y,z-0.25), F1(x,y,z+0.25)) };
    #declare F3 = function
 4
      \{F2(x*cos(5*y)+z*sin(5*y),y,x*-sin(5*y)+z*cos(5*y))\};
5
6
    isosurface {
      function { F1(x,y,z) }
      contained_by { box { <-3.0, 0.0, -3.0>, <3.0, 2.0, 3.0> }}
8
9
      accuracy 0.01
10
      max_gradient 50.0
11
```


F1 F2 F3

Blobs

- Adding (spherical) density functions.
- "Blobs"/"metaballs".

More BSDFs

Procedural textures

Procedural surfaces ○○○●

Blobs

Example of blob modelling

Summary

- Ray tracing: secondary rays for reflection and refraction
- Distribution ray tracing: sample more rays for "blurry" phenomena
- Bounding volumes and space partitioning for optimising intersection tests
- Subsurface scattering in the rendering equation
 - Can be done cheaply with precomputed scattering function
- Procedural surfaces and materials
 - Perlin noise

Limitations of ray tracing

Time and place

- Mon Nov 28, 13.15–15.00
- T-141

Reading material

- Hughes et al.:
 - **29.3**
 - **31.10**
 - **31.16–17**
 - (31.18 but it's overly detailed)

References

John F. Hughes et al. (2013). Computer graphics: principles and practice (3rd ed.) Boston, MA, USA: Addison-Wesley Professional, p. 1264.

Henrik Wann Jensen et al. (2001). "A Practical Model for Subsurface Light Transport". In: SIGGRAPH'2001. URL: https://graphics.stanford.edu/papers/bssrdf/.

Wan-Chun Ma et al. (2007). "Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination". In: *Eurographics*.

Charles de Rousiers et al. (2011). "Real-time Rough Refraction". In: Symposium on Interactive 3D Graphics and Games. I3D '11. San Francisco, California: ACM, pp. 111–118. URL: http://doi.acm.org/10.1145/1944745.1944764.