

Ingeniate en Octave Clase 0

Daniel Millán, Iván Ferrari, Nicolás Muzi, Petronel Schoeman, Gabriel Rosa, Nicolás Accossatto San Rafael, Argentina Marzo-Abril 2019

En la antigua Mesopotamia, en la civilización Sumeria, tuvo su origen el **sistema sexagesimal,** es un sistema de numeración posicional que emplea como base aritmética el número **60.**

El sistema sexagesimal se usa para medir tiempos (horas, minutos y segundos) y ángulos (grados) principalmente.

Ábaco: permite realizar operaciones aritméticas sencillas, su origen se remonta a la antigua Mesopotamia, más de 2000 años antes de nuestra era.

Wikipedia

≤200 a.C.: Ábaco Romano.

≤200 a.C.: Ábaco Chino. El **suanpan** es un ábaco de origen chino. ²

Introducción

1645: Blaise Pascal inventa la **pascalina**, una de las primeras calculadoras mecánicas. Funcionaba a base de ruedas de diez dientes, cada uno representaba un dígito del 0 al 9.

1949: La **EDVAC** fue la primer computadora de programas almacenados electrónicamente en forma binaria.

Wikipedia.

1946: La **ENIAC** fue inicialmente diseñada para calcular tablas de tiro de artillería destinadas al Laboratorio de Investigación Balística de la Universidad de Pensilvania, para el ARMY USA.

John von Neumann

2010: Scan 3XS Cyclone PC

primer NVIDIA GeForce GTX 480 con refrigeración líquida

2010: Scan 3XS Cyclone PC

- primer tarjeta gráfica de NVIDIA con refigeración líquida
- overclocked GeForce GTX 480, opera a 852MHz (701MHz)
- procesador i7 920, overclocked a 4GHz
- £1,646.84, incluyendo impuestos

http://hexus.net/tech/reviews/systems

2019: MareNostrum Barcelona

• *MareNostrum* es el supercomputador más potente de España, el quinto más rápido de Europa y el 25° del mundo (nov – 2018).

2019: MareNostrum Barcelona

- **Composición atmosférica**: calidad del aire, aerosoles y como estos dispersan y absorben la radiación solar, ciudades inteligentes y la optimización del transporte y la salud humana.
- **Big Data:** herramientas visuales y algorítmicas para analizar y estudiar grandes volúmenes de datos.
- **Bioinformática**: integración, almacenamiento y transmisión de gran volumen de datos clínicos y datos de simulaciones, diseño de fármacos.
- Biomecánica: sistema cardiovascular y sistema respiratorio.
- **Predicción climática:** gestión de la agricultura y del agua, el pronóstico oceánico, estudio de los ciclones tropicales, estudio de dónde es más eficiente instalar un molino de viento.
- Computación en la nube: informática energética y optimización de los centros de datos.

2019: MareNostrum Barcelona

 Simulación de ingeniería: reducción de las emisiones contaminantes, computación en mecánica de fluidos, mecánica nolineal de sólidos.

 Geofísica: terremotos, detección de la presencia de fluidos a grandes profundidades bajo la superficie de la Tierra, propiedades de la superficie de la Tierra.

Simulación social: evolución cultural, eficiencia energética, seguridad pública de cara a tener ciudades inteligentes y resistentes.

Proyecto Alya Red, su video promocional fue elegido mejor vídeo científico del 2012 por la National Science Foundation norteamericana y la revista Science. En él se explica cómo se crean los modelos con los que se simula el funcionamiento de un corazón, intentando imitar el comportamiento de los diferentes tejidos y de cómo las señales eléctricas viajan por su interior.

La tarea es tan compleja que para poder analizarlo con precisión se emplea el ordenador Mare Nostrum del Centro de Supercomputación de Barcelona.

Clase 0

1. ¿Qué es un sistema operativo?

- 2. Breve historia de Unix.
- 3. Arquitectura del SO Linux

1. ¿Qué es un OS?

- Un sistema operativo (OS) es un gestor (administrador) de recursos
- Se presenta en forma de un conjunto de rutinas de software que permiten a los usuarios y a los programas acceder a los recursos del sistema de una manera segura, eficiente y abstracta
 - CPU, tarjetas de red, discos de memoria, módems, impresoras, etc...
 - CPU: central processing unit
 Unidad de Procesamiento Central
 - El OS asegura un <u>acceso</u> seguro p.ej. impresora
 - El OS fomenta el uso <u>eficiente</u> de la CPU mediante suspensión de operaciones de *Entrada/Salida*
 - El OS proporciona <u>abstracciones</u> tales como archivos en lugar de posiciones de memoria en discos (detalles de hardware están ocultos)

Wikipedia

- UNIX ha sido un OS popular durante más de 4 décadas debido a que brinda un entorno
 - Multi-usuario
 - Multitarea
 - Estabilidad
 - Portabilidad
 - Altas prestaciones para trabajo en red

American Telephone and Telegraph (Direct TV U\$S 48G)

- 1960: General Electric + MIT + Bell Labs (AT&T) desarrollan MULTICS
 - SO multi-usuario y multitarea en ordenadores centrales (cajas grandes)
 - MULTICS: <u>MULT</u>iplexed <u>Information</u> and <u>Computing System</u>
- 1969: Ken Thompson (Bell Labs)
 - Crea un SO basado en MULTICS pero más sencillo en una PDP-7 (mini PC 1965)
 - UNICS: <u>UN</u>iplexed <u>I</u>nformation and <u>C</u>omputing <u>S</u>ystem
 - Poca memoria y potencia llevan a utilizar comandos cortos: ls, cp, mv...
 - El lenguaje de programación en que fue escrito UNICS se llamaba B
- 1971: Se une Dennis Ritchie
 - Crea el primer compilador de C y se reescribe el núcleo de UNIX en C (1973)
 - Mejora de la portabilidad
 - Se lanza la quinta versión de UNIX a las Universidades en 1974 (GRATIS)
- 1978: Se separan dos grandes ramas: SYSV (AT&T y otras empresas) y BSD (Berkeley Software Distribution de la UCB) →Incompatibles!

Un PDP-7 modificado, en restauración en Oslo, Noruega. **Wiki**

Ken Thompson y Dennis Ritchie. Wiki

 1979: Aparece la Séptima Edición Unix, (Versión 7 o simplemente V7), fue una importante versión del sistema operativo Unix actual.

```
Terminal
                                  1979 hptmunix
 rwxr-xr-x 1 sys
drwxrwxr–x 2 bin
                       320 Sep 22 05:33 lib
drwxrwxr–x 2 root
                        96 Sep 22 05:46 mdec
-rwxr−xr−x 1 root
                     50990 Jun 8 1979 rkunix
                     51982 Jun 8 1979 rl2unix
-rwxr−xr−x 1 root
-rwxr-xr-x 1 sys
                     51790 Jun 8 1979 rphtunix
                     51274 Jun 8 1979 rptmunix
-rwxr-xr-x 1 sys
                        48 Sep 22 05:50 tmp
drwxrwxrwx 2 root
drwxrwxr–x12 root
                       192 Sep 22 05:48 usr
 ls -1 /usr
total 11
                       128 Sep 22 05:45 dict
drwxrwxr–x 3 bin
drwxrwxrwx 2 dmr
                        32 Sep 22 05:48 dmr
drwxrwxr–x 5 bin
                       416 Sep 22 05:46 games
drwxrwxr-x 3 sys
                       496 Sep 22 05:42 include
                       528 Sep 22 05:43 lib
drwxrwxr–x10 bin
                       176 Sep 22 05:45 man
drwxrwxr–x11 bin
                       208 Sep 22 05:46 mdec
drwxrwxr–x 3 bin
drwxrwxr–x 2 bin
                       80 Sep 22 05:46 pub
drwxrwxr–x 6 root
                        96 Sep 22 05:45 spool
drwxrwxr–x13 root
                       208 Sep 22 05:42 src
 ls –l/usr/dmr
total O
```


- 1991: Linus Torvalds, un estudiante finlandés de Ciencias de la Computación diseña Linux un código abierto del SO UNIX para PC
 - No es SYSV ni BSD, pero incorpora características de cada uno (p.ej. al estilo SYSV archivos de inicio, pero con una disposición del sistema de archivos del tipo BSD)
 - Cumple con un conjunto de estándares de IEEE (Institute of Electrical and Electronics Engineers) llamado POSIX (Portable Operating System Interface)
 - Para maximizar la portabilidad del código, Linux típicamente soporta SYSV, BSD y llamadas al sistema de POSIX
 - Linux ha generado que miles de personas colaboren voluntariamente durante
 >25 años mejorando el núcleo y programas de aplicación
 - Diferentes distribuciones: Debian, Suse, RedHat, Ubuntu, etc
 - Portable a diferentes arquitecturas de procesadores como Intel, AMD, SPARC...
 - Fácil de usar e instalar y viene con un conjunto completo de utilidades y aplicaciones, incluyendo el sistema de gráficos X, entornos GNOME y KDE GUI,

3. Arquitectura del SO Linux

Linux tiene todos los componentes de un SO tipo UNIX:

- Núcleo: facilita acceso seguro a distintos programas al *hardware* (tarjetas gráficas y red, discos duros, etc), decide qué programas utilizan hardware y cuánto tiempo (multiplexado), BSD/SYSV llamadas de sistema, etc.
- Shells y GUIs:
 - Intérpretes de línea de comandos (shells) como en UNIX:
 - **sh**: shell Bourne, **bash**: Bourne again shell y **csh**: C shell
 - Interface Gráfica (GUI, Graphic User Interface), gestores KDE y GNOME
- Utilidades del sistema: Herramientas que realizan una tarea extremadamente bien.
 - cp copia, grep busca expresiones regulares (caracteres), awk procesa datos definidos en archivos de texto, sed: editor de flujo de texto, demonios, etc.
- Programas de aplicación:
 - gcc/g++: compilador de C/C++
 - chrome, firefox: navegadores web
 - GÑU Octave: cálculos matriciales/vectoriales

https://introoctave.github.io/

- Lecturas para curiosos (wiki++)
- CAPÍTULO IV UN SISTEMA DEL QUE DERIVARLOS A TODOS https://www.ionlitio.com/hackers-capitulo-iv/
- CAPÍTULO V UN PINGÜINO LLAMADO TUX <u>https://www.ionlitio.com/hackers-capitulo-v/</u>
- The Art of Unix Programming

http://www.faqs.org/docs/artu/index.html

All the philosophy really boils down to one iron law, the hallowed 'KISS principle' of master engineers everywhere: _____