

Application of Soft Systems Methodology (SSM) to increase engineering efficiency in a globally spread elevator company

Contents

1.	. Int	roduction	3
2.	. Lo	oking at the problem scenario	3
3.	. Th	e Stakeholders	5
	3.1.	Global Technical Data Center	5
	3.2.	Lead Design Center China	6
	3.3.	Lead Design Center Europe	7
	3.4.	Lead Design Center NAA	8
	3.5.	World Head Quarters USA	9
4.	. An	alysis – 1	10
	4.1.	Conceptual model	10
	4.2.	Table of recommendation based on the conceptual model	11
	4.3.	Ease benefit matrix	13
5.	. An	alysis – 2	13
	5.1.	Conceptual model	13
	5.2.	Table of recommendation based on the conceptual model	15
	5.3.	Ease benefit matrix	16
6	Ev	tra analysis	Errorl Bookmark not defined

1. Introduction

Otis is a 168-year-old elevator company, who are also the inventors of the safety elevators, in 1979 Otis was acquired by United technologies and in 2020 Otis was spun off as an individual and an independent company. With this spin off a new direction was envisioned to increase the engineering efficiency. Currently Otis has engineering centers all around the world with Lead Design Centers (LDC) and System Engineering Elevator (SEE) who are responsible to designing and sustaining elevators in their respective regions. The centers currently operate in a dispersed manner with regions in the same continent having more interactions and intercontinentally interaction and exchange being relatively low. One of the main reasons for this type of interaction is since elevators market segment is relatively similar in a region, however for Otis to stay ahead of their competition and satisfy the constantly updating market demand, it has understood the necessity to leverage its global nature of the organization and enable more interactions and communication between its sister engineering centers. Otis has acknowledged this and has setup a global technical data center whose role is to be the driver for change in the organization by bringing all centers to the same level and efficiently handle engineering design and change. The report provided here takes up the task of helping Global Technical Data center in solving this complex issue as will be highlighted below in our analysis using soft systems methodology.

Talking about the type of product under consideration for bringing more insights into the complexity, elevators are generally "Build to order" type of industry. This means only after a customer order is confirmed the elevators are fabricated, assembled, and sent over to customer site. This is mainly because, elevator designs need to be very dynamic or parametric in nature which needs to conform to the shaft size of the customer building. Hence design data needs to be handled differently from conventional and centers have come up with their own method and product configurators have been built around these data handling methods.

2. Looking at the problem scenario

We use rich picture to understand the problem from the perspective of different stakeholders simultaneously. This is done to understand the current scenario of the situation without any bias with all related stakeholders in place.

The rich picture brings a lot of clarity into our situation here where we can observe some key points here which are

- There are 3 main grouping of entities namely entities from Europe, Middle east and Africa (EMEA), Americas South and North (AMER) & Asia pacific (APAC) which are found to have a good relationship internally
- Their strengths are mutually exclusive, that is, every region is a specialist in one type of family of elevator.
- Operations of every region are agitated if they feel their configurators are impacted.
- Apart from the three grouping, other key stakeholders that are to be considered here are our clients who are located at the center of the rich picture – Global Technical Data Center & World Head Quarters.
- Language compatibility seems to be a commonly recurring issue.
- There is a need to exchange data between all 3 centers.

Aston B EMEA - Europe, Middle East and Africa APAC - Asia Pacific AMER - North, Central & South America LDC - Lead Design Center SEE - System engineering centers located across globe collects data from LDC Heavy Duty elevators - Group of high duty load low rise elevators Light Duty elevators - Group of low duty low rise elevators Mid Rise elevators - Group of medium duty and medium rise

High Rise elevators - Group of heavy duty and high rise

Entry Level elevators - Group of low duty cost efficient

elevators

THE RICH PICTURE

UNDERSTANDING THE RICH PICTURE

3. The Stakeholders

3.1. Global Technical Data Center

This center is created to drive the engineering change in the company as an internal consultant to the company. They are given the power and authority to take key decisions regarding development of tools, methods, and process. However, when exercising this power, they are generally bound to face lot of conflicts due to the vast number of stakeholders involved and level of impact anticipated.

The Root definition for Global Technical Data Center

"Unify globally spread engineering centers by developing data architecture, tools, methods and process in order to increase efficiency, reduce lead time for product development"

CATWOE table for Global Technical Data Center					
Customer	All engineering centres, WHQ				
Actor	Global technical data centre, product admins of each centres				
Transformation	Develop data architecture, tools, methods, and process				
Worldview	increase efficiency, reduce lead time for product				
	development				
Ownership	WHQ, LDC China				
Environmental	- Language barriers				
constraints	- Resistance to change				
	- Configurator -operations impact				

CATWOE visual representation

3.2. Lead Design Center China

This is one of the major centers for Otis having the largest market share and serving lot of countries around China. They were faced with similar situation in a smaller scale with dispersed centers inside China and have come up with an efficient method for data management system.

The Root definition for Lead Design Center China

"Manage largest set of design data of high rise and midrise elevator family_by using a highly automated excel based interface to maintain the database in order to have well organized data for faster turnaround times to satisfy the huge demand"

CATWOE table for Lead Design Centre China					
Customer	Engineering centres except China who take and utilize data from China				
Actor	LDC China				
	By using a highly automated excel based interface to maintain the				
Transformation	database				
	have well organized data for faster turnaround times to satisfy the huge				
Worldview	demand				
Ownership	WHQ, Global Technical Data Centre				
Environmental constraints	 - Data too complex for some centres to handle - Data compatibility issue with configurators from other Lead Design Centres 				

CATWOE visual representation

3.3. Lead Design Center Europe

This center is made to represent the whole of Europe who run a similar configurator system, they haven't fully utilized the PLM (Product Lifecycle Management) system which was deployed recently by Otis World Head Quarters.

The Root definition for Lead Design Center Europe

"Manage oldest set of design data of light duty elevator family and electronic components by maintaining data offline and in local language ensure local manufacturing, field departments run seamlessly"

CATWOE table for Lead Design Centre Europe					
Customer	Engineering centres except Europe who utilize this data, Europe manufacturing, field operation				
Actor	LDC Europe				
Transformation	By maintaining data offline and in local language				
Worldview	ensure local manufacturing, field departments run seamlessly				
Ownership	WHQ, Global Technical Data Centre				
Environmental constraints	- Data compatibility issue with configurators from other Lead Design Centres - Language issue				

CATWOE visual representation

3.4. Lead Design Center NAA

This center manages data in a unique way, they have also recently started working with a third-party vendor to create a concept configurator to automate 3D model based on customer input.

The Root definition for Lead Design Center NAA

"Manage design data of heavy-duty elevator family by using special type of data architecture and 3D model automation system in order to reduce errors and human dependency while creating and updating new designs"

CATWOE table for Lead Design Centre NAA					
Customer	Engineering centres except NAA				
Actor	LDC NAA				
	Using special type of data architecture and 3D model automation				
Transformation	system				
Worldview	Reduce errors and human dependency for creating new designs				
Ownership	WHQ, Global Technical Data Centre				
Environmental constraints	 Data compatibility issue with configurators from other Lead Design Centres 3D model automation system native to only NAA region 				

CATWOE visual representation for Lead Design Centre NAA

3.5. World Head Quarters USA

This center had a lot of power and responsibilities with regards to deciding the standards for the data management, even though the standards are not completely followed by everyone. They also handle and set the rules for the Product Lifecycle Management (PLM) system of the company.

The Root definition for Lead Design Center USA

"Define design standards globally by managing the global repository (PLM) of the data creating audit tools for compliance to ensure the centers can communicate and transact with each other"

CATWOE table for World Head Quarters USA					
Customer	All Engineering centres				
Actor	WHQ engineering				
Transformation	by managing the global repository (PLM) of the data, creating audit tools for compliance				
Worldview	to ensure the centres can communicate and transact with each other				
Ownership	Global Technical Data Centre				
Environmental constraints	 - Agreement on standards from all stakeholders - GTD centre shared ownership and overlap of some responsibility 				

CATWOE visual representation for Lead Design Centre NAA

4. Analysis – 1

4.1. Conceptual model

Coming up with the perfect solution for the problem faced is very challenging in our scenario without taking a big cost impact and operations disruption, hence the key idea in drafting the conceptual model is to ensure utilization of all the existing resources while keeping stakeholders satisfied and content. The conceptual model involves product complexity management techniques namely platforming and product modularization, whose usage is already seen extensively in automobile industry. We justify the model with the 3E's depicted as below.

Three 3E's + 1E

<u>Efficacious</u>: By employing the strategies of **platforming, modularity** the model aims to achieve exactly the output that is expected by the center which is to have highly organized and efficient data management system while enabling ease of exchange between centers

<u>Efficient:</u> One of the main objectives of the company is to focus on utilizing the vast existing resources without being a major cost burden and avoid operations impact. By creating the modular packages is to mainly reorganize rather than recreating data, the model can be hence justified in this regard and, we leverage the strengths of each stakeholder rather than restructuring the whole system for assigning platform ownership.

<u>Effective</u>: The end goal is always kept in mind with every single step of the model, which is to achieve better organized data, this can be proved by the <u>collective output of every step</u> highlighted in bold green in our conceptual model which relates in one way, or another the output highlighted.

<u>Elegant:</u> There is a create flow established in the model with regards to the steps that need to be taken and **KPI for each step** is highlighted in the model with all the **checkpoints** points to ensure the proposed architecture shall stay in place and be **self-sustaining** in the future to avoid situation that happened with the standards released by World Head Quarters which have not been seriously considered by the engineering centers.

4.2. Table of recommendation based on the conceptual model

Due to the highly complex nature of the engineering system we try to provide a logical solution to the company by considering multiple factors such as current state, owner for the proposed change, feasibility difficulty, priority of the solution and the compromise for non-feasible proposals. To summarize in general terms the sequence of steps the company must take based on our analytical study is as follows

- 1. Map elevator families and based on the regional strength in their respective elevator segments assign ownership and detail out their accountability and responsibility create ownership.
- 2. Develop module packages of the elevator design while also ensuring flexibility in architecture and no recreation of data. This is a key step which can define the success of our model since the successful reuse of a module implies our model has been successful.
- 3. Data standards creation- keep a future focus while creating data standards to ensure the model eventually leads to the ideal state envisioned that is to bring everyone to the same level of interaction and also such that language issue is resolved by enforcing 1 common language, have 2 strategies to handle current data by simply putting them in their respective module groups and new data created to be in a globally accepted format.
- 4. Make sure everyone uses the online product lifecycle management tool to handle their data, moving away from offline storage, keeping future focus in mind where everyone is eventually expected to come together to the same architecture, tools, methods, and process.

Step#	Ideal state activities	Current state	Proposed changes	Who performs it	Feasibility difficulty	Priority	The Compromise	
1	Map elevator families based on different regions	No specific grouping of elevators done	Create a region wise elevator option offered matrix for analysis	GTD team	Easy	High	Null	
2	Create Platforms for different elevator families	No clear data regarding core components which can be made common	Perform research, define elevator platforms and categorize elevator families under each platform	GTD team with external technical support for Research	Difficult	High	Null	
3	Assign Ownership to respective families	No clear responsibilities & ownership assigned	Appoint leaders who are completely responsible and accountable for the defined platforms	All LDC owning platforms	Easy	High	Null	
4	Develop Modular packages for the defined platforms	Common components and reuse opportunities unknown	Create a dictionary of modules, with respect to each platform under which all the components of elevators can be sub-grouped	GTD to perform with agreement of all LDC centres	Very difficult since data architecture various heavily region to region, finding common architecture nearly impossible	Low	A system of flexible modularity can be implemented	
5	Benchmark & propose best 3D modelling practice from the world	Various approaches utilized for managing 3D data	Come to a common method of 3D modelling approach between all centres	All LDC centres	Very difficult again since data architecture varies heavily and 3D modelling is done based on the architecture	Low	Short term solution of working with existing data and enforce the new rule for upcoming designs	
6	Create Data standards for the module package	Data standards developed by WHQ outdated and not enforced	Newly developed tools and processes to be released as global standards and existing outdated standards to be updated, make common language usage English	GTD team with WHQ team	with WHQ Difficult - Since coming to a common agreement between product admins of each centre is difficult, however this step is crucial		Null	
7	Create Global repository for managing the data	PLM system access Create new renository, move		GTD team with WHQ team	Very difficult since moving data to an open repository has the danger of unauthorized viewing in-work models and doing unnecessary changes	Low	Short term solution of opening up the local PLM access to required engineers who share the design data	

4.3. Ease benefit matrix

5. Analysis – 2

5.1. Conceptual model

The conceptual model created from this analysis provides an alternate strategy to Otis which is looking to increase its engineering working efficiency. This strategy focuses on an aggressive approach of controlling the data structure by utilizing the best practices of 2D & 3D management already being utilized & tested in Otis to eventually lead to a unified operating mechanism.

Three E's

<u>Efficacious:</u> The model ensures organization of data by **enforcing this through process change** and bringing best 2D and 3D management practices for the defined platforms to the common use of all.

<u>Efficient:</u> The model aims to bring out the best practices for 2D and 3D data management by **benchmarking and utilizing existing** best practices around the world without the need to invest in anything new.

<u>Effective:</u> The model is effective since the end goal is attained through the **strict enforcement and metrics definition to track the progress** through each transformative step

<u>Elegant:</u> The model can be claimed to be elegant since the sequence of steps that needs to be followed shall eventually lead to vision set by the company, the checkpoints established in the control box shall ensure all steps are self-sustaining in the future.

5.2. Table of recommendation based on the conceptual model

Step#	Ideal state activities	Current state	Proposed changes	Who performs it	Feasibility difficulty	Priority	The Compromise
1	Benchmark China data management system for 2D data handling and propose for global architecture	LDC China has state of art 2D data management system but currently restricted to only China	Create a gap analysis of China system compatibility against other centres compatibility for 2D data and finalize the architecture	GTD team, LDC China	Very difficult - To find the data architecture to fit all the regions, and configurator impact also anticipated	High	May have to omit some regions due to data structure and configurator compatibility issues
2	Benchmark NAA data management system for 3D data handling	LDC NAA has start of art 3D data management system under development	Create a gap analysis of NAA system compatibility against other centres compatibility for 3D data and finalize the architecture	GTD team, LDC NAA	Very difficult - To find common 3D modelling system globally	High	Only implement this for new product development
3	Create and propose combined 2D + 3D architecture	No common architecture present to deal with this	New combined architecture based on benchmarked best system, make common language usage English	GTD team	Easy	High	Null
4	Develop solution with 3rd party vendors	3rd party vendors working only with LDC China and LDC NAA	Work with the vendors to extend the solution for the 2D & 3D data management globally	GTD team, 3rd party vendors	Difficult - Since vendors constraints may rise during this step	High	Null
5	Create and manage global repository with access to all	No common repository available to all	Create a new repository to control and manage the design data globally for new products	GTD team with WHQ team	Easy	High	Null
6	GTD team to create new data, with onsite deployment of GTD engineers for sustenance of created data	Data is created by local engineering teams with support from GTD engineers	Total ownership to create new design data which comply to the proposed standards	GTD team	Difficult - Since there is a period of learning for GTD engineers to get up to speed, but not impossible. However, issue rises with resource availability to take on such a huge load	High	Eventually take up the responsibility don't drastically change the system overnight

The summary of recommendations to the company based on the table above is as follows

- 1. Perform extensive analysis and finalize the process change to manage 2D data management system based on LDC China
- 2. Perform extensive analysis and finalize the process change to manage 3D data management system based on LDC NAA
- 3. Work with vendors who developed the 2D and 3D management system for China and NAA and get Global Technical Data center staff trained on the new data management system. This would also automatically ensure common language usage between all.
- 4. Invest in increasing resources in GTD who shall turn to be the engineering backbone of the company operating, controlling, and managing design data through a single source of truth.

5.3. Ease benefit matrix

6. Root cause analysis (Extra analysis)

<u>The problem:</u> Engineering centers not collaborating effectively between each other, low efficiency

The data: This has been depicted in the rich picture in section 2

Causal factors:

1. Configurators used are different by every region, which has different requirement of data input

- 2. Common language English not followed by all engineering centers
- 3. No common database for parameters
- 4. Too much leniency, no common standards for data management.
- 5. Loose enforcement of existing standards.
- 6. No common process definition for change management of design

5 WHY

Solution recommendation

- As understood by the 5 WHY methodology of our root cause analysis we can confirm that deploying a unified configurator can easily solve the issue of engineering centers collaborating effectively between each other. This in fact is a logical solution to our problem being discussed in this report, however as soft systems have highlighted and brought out the conflicts in our problem. Unified configurator will cause a major disruption and cost impact to the company which may take longer term to reap the benefit.