Марина Б04-005, Лабораторная работа №.3.4.4: Петля гистерезиса (статический метод)

Цель работы:

1. Исследование основной кривой намагничивания и предельной петли гистерезиса для образца тороидальной формы, изготовленного из стали

Оборудование:

- 1. источник питания
- 2. тороид
- 3. соленоид
- 4. баллистический гальванометр с осветителем и шкалой
- 5. амперметр
- 6. лабораторный автотрансофрматор
- 7. разделительный трансформатор

Теоретическая справка: Магнитная индукция ${\bf B}$ и напряженность поля ${\bf H}$ в ферромагнетике связаны неоднозначно, поскольку магнитная восприимчивость χ не является константой и зависит от ${\bf H}$, при этом, индукция еще зависит и от предыстории образца.

Данное явление несет название "гистерезис". Связь между ${\bf B}$ и ${\bf H}$ в типичном ферромагнетике иллюстрирует рисунок 1.

Рис. 1: Петля гистерезиса ферромагнетика (теоретическая)

Формулы, необходимые для подсчетов:

Связь напряженности магнитного поля в тороиде от тока

$$H \approx \frac{N}{\pi \cdot D} I \tag{1}$$

Формула, необходимая для нахождения изменения магнитной индукции, после выражения баллистической постоянной

$$\Delta B = \mu_0 \cdot N_c \cdot \frac{N_c'}{N'} \frac{R}{R_c} \frac{d_c^2}{d^2} \frac{\Delta I_c}{l_c} \frac{\Delta x}{\Delta x_c}$$
 (2)

где:

- 1. $\mu_0 = 1.257 \cdot 10^{-6} \frac{\Gamma_{\rm H}}{_{
 m M}}$ магнитная постоянная
- 2. $N=1750, N_c=940~N_c^{'}=500~N^{'}=300,$ число витков у намагничивающейся обмотки, пустотелого соленоида, измерительной катушки, тороида
- 3. $R=R_c$ полное сопротивление измерительной цепи тороида, полное сопротивление измерительной цепи соленоида
- 4. D=10см, $d_c=7$ см d=1см диаметры тора, соленоида и сердечника
- 5. $\Delta I_c = 1706 \mathrm{mA}$ ток, проходящий через соленоид
- 6. $l_c = 80$ см длина соленоида
- 7. $\Delta x \ \Delta x_c = 16$ отклонения солнечного зайчика на тороиде и соленоиде

Описание установки:

Рис. 2: Схема установки для исследования петли гистерезиса

Рис. 3: Схема установки для калибровки гальванометра

Все константы, связанные с установками, приведены выше

Ход работы:

1. Посчитаем константы:

$$\begin{split} \alpha &= 55.7 \ 1/\text{M} \Rightarrow H = \alpha I \\ \beta &= \mu_0 \cdot N_c \cdot \frac{N_c'}{N'} \frac{d_c^2}{d^2} \frac{1}{l_c} \frac{\Delta I_c}{\Delta x_c} \approx 0.0128 \ \text{H/(A*cm)} \Rightarrow \Delta B = \beta \cdot \Delta x \end{split}$$

- 2. Перенесем в таблицу данные, полученные при выполнении лабораторной работы:
- 3. По полученным данным построим график

- 4. из графика найдем коэрцитивную силу H_c и индукцию насыщения B_s :
- 5. рассчитаем максимальную дифференциальную магнитную проницаемость для начальной кривой намагничивания: $\mu = \frac{1}{\mu_0} \frac{dB}{dH} \approx 422$
- 6. Построим сводную таблицу:

Выводы:

- 1. Мы нашли коэрцитивную силу $H_c = 1.500 \pm 0.01 \text{ A/M}$ и индукцию насыщения $B_s = 1.450 \pm 0.01 \text{ Тл.}$ (но по нашему графику не совсем корректно определять B_s , поскольку на нашем графике не прослеживается прямая, параллельная оси ОХ. Но мы можем определить остаточную индукцию, равную $B_r \approx 0.7 \text{ Тл}$, что может помочь нам в определении типа стали)
- 2. Нашли дифференциальную магнитную проницаемость, равную $\mu=\frac{1}{\mu_0}\frac{dB}{dH}=420\pm20$
- 3. Из эксперимента сложно определить, какой тип стали нам представлен. Наиболее вероятным из вариантов является сталь кобальтовая, относящаяся к магнитожестким ферромагнетикам.

І, мА	Δx , cm	Н, А/м	ΔB , Тл				
61.8	3.8	344.226	48.64	-436	-32	-2428.52	-409.6
124.3	9.1	692.351	116.48	-623	-50.2	-3470.11	-642.56
175.68	15.8	978.5376	202.24	-869	-59.1	-4840.33	-756.48
196.1	19.9	1092.277	254.72	-1206	-67.6	-6717.42	-865.28
217.48	24.9	1211.3636	318.72	-1705	-74.7	-9496.85	-956.16
237.21	31.7	1321.2597	405.76	-1209	-69.2	-6734.13	-885.76
257.67	37.7	1435.2219	482.56	-871	-64	-4851.47	-819.2
278.6	45.9	1551.802	587.52	-623	-58.5	-3470.11	-748.8
307.2	56.1	1711.104	718.08	-435	-53	-2422.95	-678.4
353.83	75.6	1970.8331	967.68	-351	-50.2	-1955.07	-642.56
623	95.1	3470.11	1217.28	-305	-48.7	-1698.85	-623.36
868	104.6	4834.76	1338.88	-276	-47.7	-1537.32	-610.56
1204	114.1	6706.28	1460.48	-255	-46.9	-1420.35	-600.32
1702	122.4	9480.14	1566.72	-234	-46.1	-1303.38	-590.08
1200	117.1	6684	1498.88	-214	-45.3	-1191.98	-579.84
868	110.3	4834.76	1411.84	-193	-44.5	-1075.01	-569.6
623	104.3	3470.11	1335.04	-173	-43.7	-963.61	-559.36
436.6	97.6	2431.862	1249.28	-121	-41.2	-673.97	-527.36
353.8	95.3	1970.666	1219.84	-60	-37.7	-334.2	-482.56
307	93.4	1709.99	1195.52	0	-33.7	0	-431.36
278.6	92.4	1551.802	1182.72	60	-28.2	334.2	-360.96
257.7	91.6	1435.389	1172.48	122	-17.7	679.54	-226.56
237.21	90.8	1321.2597	1162.24	173	-11.7	963.61	-149.76
217.48	90	1211.3636	1152	194	-7.4	1080.58	-94.72
196.1	89.1	1092.277	1140.48	215	-1.9	1197.55	-24.32
175	88.2	974.75	1128.96	2355	4.1	13117.35	52.48
123	85.7	685.11	1096.96	256	12.3	1425.92	157.44
60.9	82.2	339.213	1052.16	277	21.8	1542.89	279.04
0	78.2	0	1000.96	306	35.3	1704.42	451.84
-61.14	72.4	-340.5498	926.72	352	58.3	1960.64	746.24
-123	61.6	-685.11	788.48	436	83.8	2428.52	1072.64
-174	55.6	-969.18	711.68	623	105.8	3470.11	1354.24
-195	51.4	-1086.15	657.92	870	114.3	4845.9	1463.04
-216	46.3	-1203.12	592.64	1208	123.3	6728.56	1578.24
-236	40.1	-1314.52	513.28	1708	130.8	9513.56	1674.24
-257	32.2	-1431.49	412.16				
-278	24	-1548.46	307.2				
-306	11	-1704.42	140.8				
-352	-6.5	-1960.64	-83.2				

Таблица 1: Данные, полученные при обработки лабораторной работы

	$H_s, A/M$	B_s , Тл	μ
экспериментальные	$(1.50 \pm 0.01) \cdot 10^4$	1.450 ± 0.01 T _T	420 ± 20
значения	(1.50 ± 0.01) · 10	1.400 ± 0.01, 1.1	420 1 20

Таблица 2: Сводная таблица экспериментальных значений