The Battle of Neighborhoods

WEEK 1

Presentation of the Problem

Initial Presentation

To start with, we will analyse the existing restaurants of this category in Manhattan. And we will sort them by neighborhood, in order to identify the best possible location.

We can suppose that we are thinking about opening a exotic

Asiatic one. This could be a good business opportunity but we

restaurant in Manhattan, more specifically a Japanese or

need to carry out a market research in order to establish a

long-term success.

At the end, we will identify, based on a clustering, the best possible location in Manhattan.

The Battle of Neighborhoods Week 1

Pablo de la Fuente Aguilera

Presentation of the Problem

Analysis of the New York Perspective and concentrate the focus on Manhattan

The Battle of Neighborhoods Week 1

We take data from all Boroughs

```
We create a Dataframe with the downloaded data
   neighborhoods_data = newyork_data['features']
   # We define the columns of the dataframe
   column_names = ['Borough', 'Neighborhood', 'Latitude', 'Longitude']
   # We start and initialize the dataframe
   neighborhoods = pd.DataFrame(columns=column_names)
   for data in neighborhoods data:
      borough = neighborhood_name = data['properties']['borough']
       neighborhood_name = data['properties']['name']
       neighborhood_latlon = data['geometry']['coordinates']
       neighborhood_lat = neighborhood_latlon[1]
       neighborhood_lon = neighborhood_latlon[0]
       neighborhoods = neighborhoods.append({'Borough': borough, 'Neighborhood': neighborhood_name,
                                             'Latitude': neighborhood_lat, 'Longitude': neighborhood_lon}, ignore_index=True)
   neighborhoods.head()
   Borough Neighborhood Latitude Longitude
            Wakefield 40.894705 -73.847201
    Bronx Co-op City 40.874294 -73.829939
           Eastchester 40.887556 -73.827806
            Fieldston 40.895437 -73.905643
    Bronx Riverdale 40.890834 -73.912585
```

And then concentrate on Manhattan

```
We analyze of the neighborhoods in Manhattan

[46] 

□ ► □ MU

manhattan_data = neighborhoods[neighborhoods['Borough'] == 'Manhattan'].reset_index(drop=True)
manhattan_data.head()

Borough Neighborhood Latitude Longitude

0 Manhattan Marble Hill 40.876551 -73.910660

1 Manhattan Chinatown 40.715618 -73.994279

2 Manhattan Washington Heights 40.851903 -73.936900

3 Manhattan Inwood 40.867684 -73.921210

4 Manhattan Hamilton Heights 40.823604 -73.949688
```

Pablo de la Fuente Aguilera

We take data from Foursquare about all the Venues in Manhattan, filtering by Category

And show them in a map

Presentation of the Problem

Analysis of the Venues in Manhattan

The Battle of Neighborhoods Week 1

Capstone Project

Presentation of the Problem

Analysis of the Venues in Manhattan

The Battle of Neighborhoods Week 1

Pablo de la Fuente Aguilera

We analyze the different neighborhoods in Manhattan by frequencies, according to the venues

_		Neighborhood	Asian Restaurant	Bakery	Chinese Restaurant	Cocktail Bar	Deli / Bodega	Fish Market	Grocery Store	Hawaiian Restaurant	Indian Chinese Restaurant	Japanese Restaurant	Noodle House	R Restau
	0	Battery Park City	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.000000	0.000000	0.090909	0.045455	0.00
	1	Carnegie Hill	0.041667	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.000000	0.041667	0.125000	0.000000	0.00
	2	Central Harlem	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
	3	Chelsea	0.045455	0.000000	0.000000	0.000000	0.000	0.022727	0.000000	0.000000	0.000000	0.113636	0.000000	0.00
	4	Chinatown	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.000000	0.000000	0.125000	0.000000	0.00
	5	Civic Center	0.000000	0.000000	0.000000	0.000000	0.000	0.000000	0.000000	0.000000	0.000000	0.062500	0.031250	0.00

And the most common venues

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Comm Ven
0	Battery Park City	Sushi Restaurant	Japanese Restaurant	Noodle House	Theme Restaurant	Indian Chinese Restaurant	Bakery	Chine Restaura
1	Carnegie Hill	Sushi Restaurant	Japanese Restaurant	Vegetarian / Vegan Restaurant	Indian Chinese Restaurant	Asian Restaurant	Seafood Restaurant	Sandwich Pla
2	Central Harlem	Sushi Restaurant	Vegetarian / Vegan Restaurant	Japanese Restaurant	Bakery	Chinese Restaurant	Cocktail Bar	Deli / Bode
3	Chelsea	Sushi Restaurant	Japanese Restaurant	Asian Restaurant	Fish Market	Vegetarian / Vegan Restaurant	Seafood Restaurant	Sandwich Pla
4	Chinatown	Sushi Restaurant	Japanese Restaurant	Vegetarian / Vegan Restaurant	Bakery	Chinese Restaurant	Cocktail Bar	Deli / Bode

Presentation of the Problem

Clustering the Venues

The Battle of Neighborhoods Week 1

We cluster them into 5 groups and present it in a map with different colours

Presentation of the Problem

Finding the best location

The Battle of Neighborhoods Week 1

We find the best zones to open our restaurant and highlight them in red

