

Analyzing Bitcoin Security

Philippe Camacho
philippe.camacho@dreamlab.net

Universidad Católica, Santiago de Chile 15 of June 2016

Bitcoin matters

Map

An open question (until 2008)

Is it possible to create (digital) money without a centralized authority?

Who wants some satoshis?

 What kinds of problems are hard to solve when building a decentralized digital cash system?

P2P Network

- TCP/IP
- No authentication
- 8 outgoing connections
- Up to 117 incoming connections
- Hardcoded IP addresses + DNS seeders to get first list of peers
- Probabilistic algorithm to choose peers
- Specific data structure to store peers list
- Gossip protocol to broadcast transactions

Bitcoin addresses

3J5KeQSVBUEs3v2vEEkZDBtPLWqLTuZPuD

Bitcoin transactions

Conceptually very simple

In practice quite complicated (more on this later)

Double spending attack

3Nxwenay9Z8Lc9JBiywExpnEFiLp6Afp8v

3NDQz8rZ3CnmsiBGrATk8SCpDXF2sAUiuM

How does Bitcoin prevent the double-spending attack?

Idea

- Have participants of the network vote to establish the "official" ordered list of transactions
- Check the validity of each transaction with this ledger

Challenge

 We are in an open network => Sybil attack is always possible

Consensus

Instead of voting with your IP, vote with your CPU

The Blockchain

Who wants some satoshis?

Who will extend the next block?
 Or how to agree in a fair way on the participant that will extend the chain?

Proof of Work [Back2002]

On the limits of the Random Oracle

Approximate Bitcoin Mining [LH2015,VDR2015]

Patent pending AsicBoost.com

 Enable to increase profitability of miners by 20%~30%

in 1 slide

GitHub This repository Sourch

bitcoin / bitcoin

Explore Features Enterprise Blog

Who wants some satoshis?

• What happens if two miners produce a block at almost the same time?

Who wants some satoshis?

How are bitcoins created?

 Why would people spend their computational power to protect the network?

Incentive

Each block mined that
 ends up in the main chain
 will be awarded with 12.5 BTC (*)

Hence the metaphor «Mining»

The Monkey at the Cliff

What is the probability that the monkey, sooner or later, will fall off the cliff?

Theorem: If
$$\alpha > \beta$$
 then $P_1 = 1$
If $\alpha < \beta$ then $P_1 = \frac{\alpha}{\beta}$ and $P_k = \frac{\alpha}{\beta}$

51% attack [Nakamoto2008]

51% attack

What is the probability that the adversary catches up with k blocks, sooner or later?

k is the number of confirmations

We have that
$$P_k = P_1^k = \left(\frac{\alpha}{\beta}\right)^k$$

Decreases exponentially fast in k

Who wants some satoshis?

What are some implicit assumptions in the previous analysis?

Selfish Mining Attack [ES2014]

 Idea: The attacker will mine his blocks privately and release them at the right time so that honest miners waste their computational power.

State 0: only a single public chain

State 1: Adversary manages to mine a block. The block is kept *private*.

State 2: Adversary manages to mine a block. The block is kept *private*.

State 2: Honest miners find a block

State 0: After releasing the private chain, back to state 0.

State 1: Adversary manages to mine a block. The block is kept *private*.

State 0': Honest miners and adversary's chain are competing

 α : Adversary's computational power

γ: Portion of honest miners that will mine on top of adversary's block

http://arxiv.org/pdf/1311.0243v1.pdf

Now we can compute the relative gain of the adversary

$$R_A = \frac{r_a}{r_a + r_h} = \frac{\alpha(1 - \alpha)^2 (4\alpha + \gamma(1 - 2\alpha)) - \alpha^3}{1 - \alpha(1 + (2 - \alpha)\alpha)}$$

Who wants some satoshis?

• If everything were "fine", how much should R_a be equal to?

$$R_A = \frac{r_a}{r_a + r_h} = ???$$

Selfish Mining Attack

Majority is not enough!

Results:

 $-\alpha > \frac{1}{4}$: the selfish mining strategy is more profitable than the honest strategy

– Depending on γ this can be worse (i.e. the selfish mining strategy is always profitable

• What is the problem?

If miners are rational then they will prefer to join the adversary's pool => soon the adversary's pool will be

Eclipse Attack [HKZG2015]

The attacker surrounds the victim in the P2P network so that it can filter his view on the events.

Eclipse Attack

- Mainly an implementation problem
 - It is possible to populate the tables of peers of the victim
- But with huge consequences as this attack can be used to leverage others
 - Selfish mining
 - 51%
 - Double spending

Transaction Malleability

version		01 00 00 00
input count		01
input	previous output hash (reversed)	48 4d 40 d4 5b 9e a0 d6 52 fc a8 25 8a b7 ca a4 25 41 eb 52 97 58 57 f9 6f b5 0c d7 32 c8 b4 81
	previous output index	00 00 00 00
	script length	
	scriptSig	script containing signature
	sequence	ff ff ff ff
output count		01
output	value	62 64 01 00 00 00 00 00
	script length	
	scriptPubKey	script containing destination address
block lock time		00 00 00 00

• Step 1:

Compute the unsigned transaction

• Step 2:

Compute the signature of the transaction

• Step 3:

Put the signature inside the transaction

• Step 4:

Compute the hash of the signed transaction => this is the transaction ID

Transaction Malleability

Step 1:

Compute the unsigned transaction

Step 2:

Compute the signature of the transaction

• Step 3:

Put the signature inside the transaction

• Step 4:

Compute the hash of the signed transaction => this is the transaction ID

Privacy with Bitcoin

«Standard» user id is replaced by a random looking sequence.

Bitcoin address31uEbMgunupShBVTewXjtqbBv5MndwfXhb

However Bitcoin is not totally anonymous

Anonymity = Pseudonymity + Unlinkability

Improving Anonymity with mixers

Other initiatives: Zerocash [BCG+2014]

- + Uses of near to practical «universal» zero-knowlege proofs (ZK-SNARKs)
- + Provides a much higher level of anonymity than mixers
- Requires to change bitcoin source code
- Requires a trusted setup

Bitcoin Backbone protocol [GKL2014]

- Purpose: models the problem that occurs when the time of mining a block becomes small
- Security model: synchronous setting (*)

(*) Asynchronous setting is even more complex and analyzed in [PSS2016].

Bitcoin Backbone protocol

Common prefix property:

- Let f be the expected blocks mined per network synchronization round
- if $\beta > \lambda \alpha$ where $\lambda > 1$ and $\lambda^2 f\lambda + 1 \ge 0$ then two honest participants will have the same chain if k blocks are pruned (i.e. the probability that it does not happen drops exponentially in k)

Bitcoin Backbone protocol

Chain quality property:

– if $\beta>\lambda$ α where $\lambda>1$ then the ratio of blocks in the chain of any honest player that are contributed by honest players is at least $\left(1-\frac{1}{\lambda}\right)$

Caution: this definition does not exclude selfish mining attacks.

Open problems

- Anonymity
- Selfish Mining
- Alternatives to PoW
- Scalability
- Avoiding centralization in mining
- ASIC resistance proof of work
- Useful proof of work

• ...

Thank you!

References

- [LH2015] Lerner, S. D., & HANKE, T. T. (2015). Block mining methods and apparatus. Retrieved from http://www.google.com/patents/WO2015077378A1?cl=en
- [VDR2015] Vilim, M., Duwe, H., & Kumar Rakesh. (2015). Approximate Bitcoin Mining.
- [HKZG2015] Heilman, E., Kendler, A., Zohar, A., & Goldberg, S. (2015). Eclipse Attacks on Bitcoin's Peer-to-Peer Network. In USENIX Security Symposium (pp. 129–144).
- [Back2002] Back, A. (2002). Hashcash A Denial of Service Counter-Measure.

References

- [Nakamoto2008] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Consulted. http://doi.org/10.1007/s10838-008-9062-0
- [ES2014] Eyal, I., & Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vulnerable. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8437(.0243v1), 436–454. Cryptography and Security. http://doi.org/10.1007/978-3-662-45472-5
- [BCG+2014] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., & Virza, M. (2014). Zerocash: Decentralized Anonymous Payments from Bitcoin. Retrieved from https://eprint.iacr.org/2014/349
- [GKL2014] Garay, J., Kiayias, A., & Leonardos, N. (2014). The Bitcoin Backbone Protocol: Analysis and Applications. Retrieved from https://eprint.iacr.org/2014/765
- [PSS2016] Pass, R., Seeman, L., & shelat, abhi. (n.d.). Analysis of the Blockchain Protocol in Asynchronous Networks. Retrieved from http://eprint.iacr.org/2016/454