Real Time Control of a Quadcopter

Simon Kick, Philipp Fröhlich, Benedikt König, Annika Stegie

Technische Universität München

11 July 2015

Motivation

Optimal Control Formulation

$$\min_{x,u} J(x,u) \qquad \text{s.t.} \qquad \frac{\tilde{h}(x,u) = 0}{\dot{x} = f(x,u)}$$

x : state

u: control

Optimal Control Formulation

$$\min_{x,u} J(x,u)$$
 s.t. $\widetilde{h}(x,u) = 0$ $\dot{x} = f(x,u)$ $\Rightarrow h(x,u) = 0$

x: state

u: control

Model

Obtain ODE

$$\left. \begin{array}{l} F_{\text{ext}} = F_{\text{g}} + \sum_{i=1}^{4} F_{i} \\ \tau_{\text{ext}} = \tau_{\psi} + \tau_{\varphi} + \tau_{\theta} \end{array} \right\} \quad \Rightarrow \quad \dot{x} = f(x, u)$$

Coordinate Systems

Quaternions

$$q = a + ib + jc + kd$$
 $a, b, c, d \in \mathbb{R}$

Quaternions

$$q = a + ib + jc + kd$$
 $a, b, c, d \in \mathbb{R}$ \Leftrightarrow $q = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4$

Quaternions

$$q = a + ib + jc + kd$$
 $a, b, c, d \in \mathbb{R}$ \Leftrightarrow $q = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4$

represent rotation
$$\Leftrightarrow$$
 $\|q\|=1$ \Leftrightarrow $q\in\mathcal{S}^3$

Drift Correction

$$\dot{q}= ilde{f}(q)$$

Drift Correction

$$\dot{q} = ilde{f}(q) - \lambda(q)$$

Discrete Problem

$$\min_{x,u} \sum_{i=1}^{N} J_i(x_i, u_i)$$
 s.t. $h_i(x_i, u_i) = 0$ $i = t, ..., N$

 $J_i(x_i, u_i)$ discretized goal function $h_i(x_i, u_i)$ equality condition at time i

The Lagrangian

$$L^{t}(y) = \sum_{i=t}^{N} J_{i}(x_{i}, u_{i}) + \sum_{i=t}^{N} \lambda_{i}^{T} h_{i}(x_{i}, u_{i})$$

$$y := (\lambda, x, u)$$

$$y^*$$
 optimal $\Leftrightarrow \nabla_y L^t(y^*) = 0$

The SQP Method

Find y^* :

$$y_{k+1} = y_k + s_k$$

$$\min_{s_k} \frac{1}{2} s_k^T \nabla^2 L(y_k) s_k + \nabla L(y_k)^T s_k$$

Quasi Newton-Method

Find s_k with:

$$\nabla L(y_k) + \nabla^2 L(y_k) s_k = 0$$

Approximate $\nabla^2 L(y_k)$ and solve:

$$H(y_k)s_k = -\nabla L(y_k)$$

What happens in interval [t-1,t] ?

What happens in interval [t-1, t] ?

• calculate control u_{t-1} (Riccati Part II)

What happens in interval [t-1, t]?

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)

What happens in interval [t-1, t]?

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)

Finite Horizon

runtime error

N = 20

N = 50

N = 100

References I

Stephen Boyd.
Solving the lqr problem by block elimination.
Lecture notes, 2009.

James Diebel. Representing attitude: Euler angles, unit quaternions, and rotation vectors.
10, 2006.

Moritz Diehl, Hans Georg Bock, and Johannes P. Schlöder. A real-time iteration scheme for nonlinear optimization in optimal feedback control.

SIAM J. Control Optim., 2005.

References II

- Moritz Diehl, Bock H. Georg, Johannes P. Schlöder, Rolf Findeisen, Zoltan Nagy, and Frank Allgöwer.
 Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations.

 Journal of Process Control, 2002.
- Moritz Mathias Diehl.

 Real-Time Optimization for Large Scale Nonlinear Processes.

 PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2001.
- Luis Rodolfo Garcia Carrillo, Alejandro Enrique Dzul Lopez, Rogelio Lozano, and Claude Pegard.

 Quad Rotorcraft Control.

 Springer-Verlag London, 2013.