早期的知识表示方法

1.一阶谓词逻辑 (First-Order Logic)

Horn逻辑: 一阶谓词逻辑的子集 has_child(a,b) 描述逻辑: 一阶谓词逻辑的可判定子集o:=<T,A>

2.产生式系统IF ..THEN...CF(置信度,知识强度)

3.框架

框架名: 小A抢劫杀人案 犯罪意图: 抢劫 犯罪结果: 杀人 ЪВ 被杀者: 知情人: ЪС JΛ 罪犯: 有小C指控小A 条件一: 条件二: 小A招认

4.语义网络

利用节点和带标记的边结构的有向图描述事件、概念、状况、动作及客体之间的关系

基于语义网的知识表示框架

RDF:资源描述框架(Resource Description Framework, RDF)

R代表页面,图片、视频等任何具有URI标识符

D标识属性、特征和资源之间的关系

F标识模型、语言和这些描述的语法。

在RDF中,知识总是以三元组的形式出现,即每一份知识都可以被分解为:(subject,

predicate, object)。主谓宾

图模型: RDF三元组可以看做是图模型的边和顶点

在RDF中resource和properties是以URIs的形式表示的

RDF空白结点:

RDF允许存在匿名的资源,它可以作为连接其他非匿名资源的桥梁,此时RDF中会出现空白结点,因为这个资源不被URI表示,所以可以表示为:xyz。

Haofen是某一次KG讲座的讲者。

开放世界假设。这表示意味着CCF ADL讲座至少有一位讲者分布式定义可以合并

带标注的RDF: 扩展RDF用来表示更多的信息, 如时间、不确定性、空间、信任等

RDF Schema (RDFS): RDFS在RDF基础上提供了一个术语、概念等的定义方式,以及哪些属性可以应用到哪些对象上。

Class、subClass、type、Property、subPropertyOf、Domain、Range

支持推理功能:

OWL

Web本体语言Web Ontology Language RDF(S)语义表达能力显得太弱,还缺少诸多常用的特征。

owl:equivalentClass	等价类
owl:equivalentProperty	等价属性
owl:sameIndividualAs	等价个体
owl:TransitiveProperty	属性传递
owl:inverseOf	属性互反
owl:FunctionalProperty	属性函数性
owl:SymmetricProperty	属性对称性
owl:allValuesFrom owl:onProperty owl:someValuesFrom owl:onProperty owl:cardinality owl:onProperty	属性约束
owl:intersectionOf	相交的类
owl:oneOf	声明枚举类型
owl:disjointWith	声明两个类不相交
owl:unionOf	声明类的并运算
owl:minCardinality owl:maxCardinality	最小最大的基数限定
owl:InverseFunctionalProperty	声明互反类具有函数属性
owl:hasValue	属性的局部约束时,声明所约束类必有一个取值

OWL2:OWL的最新版本

OWL2 QL:query language,基于本体的查询

允许的核心词汇	对应的描述逻辑会理单例
rdfs:subClassOf	Mother ⊑ Person
rdfs:subPropertyOf	hasSon ⊑ hasChild
rdfs:domain	∃hasSon.T⊑ Person
rdfs:range	T⊑ ∀hasSon.Person
owl:inverseOf	hasChild≡hasParent ⁻
owl:disjointWith	Women ⊓ Man ⊑ Line is ///ellere o

基于QL的本体查询可以优化到多项式对数时间复杂度

OWL2 EL:概念术语描述,推理而设计

允许的核心词汇	对应的描述逻辑公理举例
rdfs:subClassOf	Mother ⊑ Person
rdfs:subPropertyOf	hasSon ⊑ hasChild
owl:someValuesOf	∃hasSon.Children ⊑ Person Parent ⊑ ∃hasSon.Children
owl:intersectionOf	Star
owl:TransitiveProperty	Tran(hasAncestor) https:/

OWL2 RL:为高效推理设计的本体语言(推理针对的是实例数据)

允许的核心词汇	
rdfs:subClassOf	
rdfs:subPropertyOf	
rdfs:domain	
rdfs:range	
owl:TransitiveProperty	
owl:FunctionalProperty	
owl:sameAs	
owl:equivalentClass	
owl:equivalentProperty	
owl:someValuesFrom	
owl:allValuesFrom	

SPARQL:RDF查询语言

可以针对不同的数据集撰写复杂的连接,支持主流的图数据库。 与SQL很相似,定义了OPTIONAL、FILTER、UNION、FROM等关键字,同时它支持嵌套 查询,基于规则的查询 可跨库查询

A SPARQL query comprises, in order:

- Prefix declarations, for abbreviating URIs
- Dataset definition, stating what RDF graph(s) are being queried
- A result clause, identifying what information to return from the query
- The query pattern, specifying what to query for in the underlying dataset
- Query modifiers, slicing, ordering, and otherwise rearranging query results

```
SELECT ?module ?name ?age
WHERE {
    ?student exp:studies ?module .
    ?student foaf:name ?name .
OPTIONAL {
    ?student exp:age ?age .
FILTER (?age > 25) }
}
```


Json-LD: 基于JSON表示和传输互联数据

```
{
    "http://schema.org/name": "Manu Sporny",
    "http://schema.org/url": { "@id":"http://manu.sporny.org/" }, "http://schema.org/image":
    { "@id":"http://manu.sporny.org/images/manu.png" }
}
```

 JSON-LD通过引入规范的术语表示,比如统一化表示"name", "homepage"和 "image"的URI,使得数据交换和机器理解成为基础。

JSON-LD的语法和JSON兼容

RDFa: (Resource Description Framework in attributes)网页标记语言

□ 通过引入名字空间的方法在己有的标签中加入RDFa相应的属性来使得支持RDFa技术的浏览器或者搜索引擎可以解析到,从而达到优化的目的。

□上面的代码示例中用到了RDFa属性中的about属性和property属性, 这段代码示例说明了一篇文章,然后描述了和这篇文章相关的信息 ,比如说标题,创建者和创建日期,而这些属性就可以使得支持 RDFa的机器识别。

从机器可理解的层面优化搜索,提升访问性以及网页数据的关联性。

HTML5 Microdata: 在网页标记标记语言嵌入机器可读的属性数据

RDF语义模型——关系显示定义 关系模型——关系隐式声明

名称	多元关系表述
DBPedia	无考虑,可通过Blank Node等用多个三 元组来表示
Freebase	CVT符合类型节点
WikiData	Qualifier或者Reference
ConceptNet	将多元关系添加为边的属性

