03.11.2020

Дистилляция знаний в нейронных сетях

Мотивация

- 1. Меньшие затраты памяти.
- 2. Меньшее время вычислений.
- 3. Меньшее время на обучение.
- 4. Сохранение эффективности до какого-то порога.
- 5. Разработка продуктов для широкого пользования: на слабых и/или мобильных устройствах.

ImageNet – лучшие по top-1 результаты

Rank	Model	Top-1 ACC	Top-5 ACC	# of params	Year
1	ViT-H/14	88.55%		632M	2020
2	FixEfficientNet-L2	88.50%	98.7%	480M	2020
3	NoisyStudent (EfficientNet-L2)	88.40%	98.7%	480M	2019
4	ViT-L/16	87.76%		307M	2020

Структура. Выход классификатора

Пусть t – температура, x – вектор логитов для классов, тогда $smax_t(x) = smax_t([x_1, x_2, ..., x_k]) = [p_{1,t}, p_{2,t}, ..., p_{k,t}]$, вычисляется как $p_{m,t} = \frac{e^{x_m/t}}{\sum_i e^{x_i/t}}$.

Структура. Выход классификатора

Пусть t – температура, x – вектор логитов для классов, тогда $smax_t(x) = smax_t([x_1, x_2, ..., x_k]) = [p_{1,t}, p_{2,t}, ..., p_{k,t}]$, вычисляется как $p_{m,t} = \frac{e^{x_m/t}}{\sum_i e^{x_i/t}}$. На примере $x = [9.48, \ 6.15, \ 1.72, \ 0.44, -0.56, ...]$:

Структура. Функция потерь на входе

 $loss_{CLS}(p(in)) = CE(p_{true}, p) = -\sum_{i} p_{true,i}(in) \log p_{i}(in)$, где in – вход, p – полученные вероятности, а p_{true} - целевые В случае, когда целевое распределение шифрует лишь 1 класс, имеем: $CE(p_{true}, p) = -\log p_{trg}(in)$, где trg – номер этого класса.

Дистилляция знаний. Основная идея

- На выходе обученная модель обычно даёт грубый вектор, из которого сложно извлечь что-то кроме класса, в котором она наиболее уверенна.
- Сглаженное температурой распределение гораздо более информативно и может быть применено при обучении меньшей модели.

Дистилляция знаний. Алгоритм

- 1. Обучить некоторый классификатор.
- 2. Установить температуру $t = t^* > 0$.
- 3. Обучить сеть с допустимыми размерами, используя функцию ошибки $loss_{KD}^{\sim t^*}(p(in)) = (t^*)^2 CE \left(p_M^{\sim t^*}(in), \ p^{\sim t^*}(in)\right)$, где $p_M^{\sim p^*}(in)$ сглаженный температурой p^* результат основной модели. Если данные размечены можно улучшить, взяв взвешенное среднее ошибок $loss(p(in)) = \alpha \ loss_{CE}(p(in)) + (1-\alpha)loss_{KD}^{\sim p^*}(p(in))$, $\alpha \ll 1$, обычно в пределах 0.05 и 0.1.
- 4. Установить исходную температуру (1). Сеть училась давать сглаженные распределения и это вернёт их в норму.

Pезультат. MNIST

- Исходная сеть 1200 ReLU нейронов на 2 скрытых слоях.
- Применение drop-out и ограничения весов.
- Данные могли получать лёгкое искажение в целях расширения обучающей выборки.
- Результат 67 ошибок на 10,000 тестах.
- Сравнительная сеть на 800 ReLU по 2 слоям, без дополнительных регуляризаций.
- Результат 146 ошибок.
- Та же сеть, но обученная с дистилляцией знаний исходной.
- Результат 74 ошибки.

Pезультат. MNIST

- Тот же опыт. Все тройки исключены из обучающего набора.
- Результат 206 ошибок, 133 из которых на тройках. Всего троек в тестирующем наборе 1010.
- Та же сеть, но с повышающим коэффициентом на уверенность в тройках.
- Результат 109 ошибок, 14 из которых на тройках.
- Сеть распознала 98,6% троек, хотя ни разу не видела их в процессе обучения. Исходная сеть успешно передала знания о тройках через дистилляцию.

Pезультат. MNIST

- Тот же опыт. В процессе обучения сети показывают лишь семёрки и восьмёрки.
- Результат 47,3% ошибок.
- Та же сеть, но с понижающими коэффициентами на уверенность в семёрках и восьмёрках.
- Результат 13,2% ошибок на всём тестовом наборе. Ещё более сильное подтверждение информативности сглаженных распределений.

Анализ. Структура

Опыты проводились на наборах данных CIFAR10 и ImageNet.

- ImageNet постоянно пополняется, более 14М фотографий и 28К категорий.
- СІҒАR10 цветные фотографии 32х32рх из 10 категорий, по 6000 фотографий на каждую. Позволяет быстро проводить различные опыты.

В качестве испытуемых использовались ResNet, WideResNet и DenseNet.

Проблемы. Сильнее учитель – слабее ученик

Ученики – WRN16-1 и DN40-12. Учителя – WRN K-1. CIFAR10.

Проблемы. Сильнее учитель – слабее ученик

Ученики – WRN16-1 и WRN28-1. Учителя – WRN16/28-K. CIFAR-10.

Предложение. Последовательная дистилляция

WRN16-3 \rightarrow WRN16-1 или WRN16-3 \rightarrow ⁵WRN16-3 \rightarrow WRN16-1. CIFAR10.

Учитель	Ошибка учителя (%)	Ошибка ученика (%)
Самостоятельно	5.34	7.61 (7.68 \pm 0.259)
5 дистилляций	4.89	7.79 (7.67±0.19)

WRN16-8 (L)→WRN16-3 (M)→WRN16-1 (S), WRN16-3→WRN16-1 или WRN16-8 →WRN16-1. CIFAR10.

Метод	Ошибка L (%)	Ошибка М (%)	Ошибка S (%)
$L\rightarrow M\rightarrow S$	4.41	4.80	8.04 (7.99±0.24)
M→S	-	5.34	7.614 (7.68 \pm 0.26)
L→S	4.41	-	7.98 (8.03 \pm 0.14)

Проблемы. Дистилляция хуже, чем с нуля

Ученик – ResNet18, учителя – самостоятельно или ResNet34. ImageNet.

Предложение. Остановка дистилляции и спуск

Ученик — ResNet18, учителя — самостоятельно, ResNet18, ResNet34 или ResNet50. Полная дистилляция (KD) или остановленная с обычным дообучением (ES KD). ImageNet.

Учитель	Top-1 ACC (%)	Err CE на обучении	Err KD на обучении	Err KD на тесте
Самостоятельно	30.24	-	-	-
ResNet18 (KD)	30.57	0.146	2.916	3.358
ResNet18 (ES KD)	29.01	0.123	2.234	2.491
ResNet34 (KD)	30.79	0.145	1.357	1.503
ResNet34 (ES KD)	29.16	0.123	2.359	2.582
ResNet50 (KD)	30.95	0.146	1.553	1.721
ResNet50 (ES KD)	29.35	0.124	2.659	2.940

Проблемы. Чем лучше обучен учитель, тем хуже

Ученик - WRN16-1, учителя — WRN16-К разных эпох. CIFAR10. Ученик — WRN28-1, учителя — WRN28-К разных эпох. CIFAR10.

Заключение

- Метод может быть очень эффективным.
- Однако, не является универсальным, особенно если разрыв между учителем и учеником слишком большой.
- Преждевременная остановка обучения учителя может улучшить результат.
- Преждевременная остановка дистилляции и последующее дообучение может улучшить результат.
- Цепная дистилляция не рекомендуется.

Список источников

- https://arxiv.org/abs/1503.02531
- https://arxiv.org/abs/1910.01348
- https://paperswithcode.com/sota/image-classification-on-imagenet