Devoir facultatif n° 5

Première partie

Soit α un réel différent de (-1), et x un réel strictement positif. Pour tout entier naturel n, on pose :

$$Z_n(x) = \frac{1}{n!} \int_1^x t^{\alpha} \ln^n t \, \mathrm{d}t$$

- 1) Calculer $Z_0(x)$ et $Z_1(x)$.
- 2) En effectuant une intégration par parties, déterminer une relation entre $Z_{n-1}(x)$ et $Z_n(x)$.
- 3) Montrer que :

$$Z_n(x) = \left(\frac{-1}{\alpha+1}\right)^{n+1} - \left(\sum_{k=0}^n \left(\frac{-1}{\alpha+1}\right)^{n+1-k} \frac{\ln^k x}{k!}\right) x^{\alpha+1}$$

4) On note N_{α}^{n} l'ensemble des fonctions définies sur $]0, +\infty[$, à valeurs réelles, du type $x^{\alpha}p(\ln(x))$ où p est une fonction polynomiale quelconque, à coefficients réels, de degré au plus n. (Ce sont les fonctions de la forme $x \mapsto x^{\alpha}(a_0 + a_1 \ln(x) + \cdots + a_n \ln^n(x))$.)

Montrer que toute fonction de N_{α}^{n} admet au moins une primitive dans $N_{\alpha+1}^{n}$.

Seconde partie

Soit α un réel. On cherche les fonctions : $]0,+\infty[\to\mathbb{R}$ qui satisfont les équations différentielles suivantes :

$$(E_1): xy' - \alpha y = 0$$
 $(E_2): x^2y'' + (1 - 2\alpha)xy' + \alpha^2 y = 0$

- 5) Déterminer toutes les fonctions dérivables sur $]0, +\infty[$ solutions de (E_1) .
- 6) Soit h deux fois dérivable sur $]0, +\infty[$. On définit une nouvelle application :

$$\begin{array}{ccc} k \,:\, \mathbb{R} & \to & \mathbb{R} \\ & u & \mapsto & k(u) = h(\mathrm{e}^u) \end{array}$$

- a) Justifier que k est deux fois dérivable sur \mathbb{R} , et calculer k' et k''.
- b) Montrer que h est solution de (E_2) si et seulement si k est solution d'une équation différentielle (E_3) que l'on déterminera.

- c) Résoudre (E_3) .
- d) Montrer que l'ensemble des solutions de (E_2) est N_{α}^1 .
- 7) Dans ce qui suit, on note $\mathcal{C}^{\infty}(]0, +\infty[, \mathbb{R})$ l'ensemble des fonctions indéfiniment dérivables 1 sur $]0, +\infty[$ à valeurs dans \mathbb{R} . La dérivée $n^{\text{ème}}$ d'une fonction y de $\mathcal{C}^{\infty}(]0, +\infty[, \mathbb{R})$ est notée $y^{(n)}$. On considère l'application suivante :

$$P: \mathcal{C}^{\infty}(]0, +\infty[, \mathbb{R}) \rightarrow \mathcal{C}^{\infty}(]0, +\infty[, \mathbb{R})$$

 $y \mapsto xy' - \alpha y$

On pose alors $P^1 = P$ et pour tout $n \in \mathbb{N}^*$, $P^{n+1} = P^n \circ P = P \circ P^n$.

- a) Pour $y \in \mathcal{C}^{\infty}(]0, +\infty[, \mathbb{R})$, calculer $P \circ P(y)$. En déduire $P^2(y) = 0 \iff y \in N^1_{\alpha}$.
- **b)** Montrer par récurrence que, pour tout $n \in \mathbb{N}^*$, $P^n(y) = 0$ est une équation différentielle d'ordre n, du type :

$$x^n y^{(n)} + \sum_{k=0}^{n-1} a_k x^k y^{(k)} = 0$$

où $a_0, a_1, \ldots, a_{n-1}$ sont des réels qu'on ne cherchera pas à déterminer.

c) Montrer que, pour $n \in \mathbb{N}^*$, l'ensemble des solutions de $P^n(y) = 0$ est N_{α}^{n-1} .

^{1.} concrètement, on pourra dériver les fonctions de cet ensemble autant de fois qu'on le souhaite sans se poser de question.