ДЗ № 1: Регулярные языки и конечные автоматы.

Иванова Елена. Группа А-13б-19.

1 Задание № 1. Построить конечный автомат, распознающий язык.

Ответом на данное задание является конечный автомат, распознающий описанный язык. Автомат должен быть детерминированным.

1.

$$L = \{ \omega \in \{a, b, c\}^* \mid |\omega|_c = 1 \}$$

Рис. 1: Задание № 1.1.

2.

$$L = \{ \omega \in \{a, b\}^* \mid |\omega|_a \le 2, |\omega|_b \ge 2 \}$$

Данный язык состоит из слов, в которых могут встретиться 1 или 2 буквы «а» и бесконечное количество букв «b», начиная с 2-х. Рассмотрим каждое из условий по отдельности.

Пусть автомат A распознает следующий язык: $L_1 = \{\omega \in \{a,b\}^* \mid |\omega|_a \le 2\}$

Рис. 2: Задание № 1.2. Автомат А.

Пусть автомат В распознает следующий язык: $L_2 = \{\omega \in \{a,b\}^* \mid |\omega|_b \geq 2\}$

Рис. 3: Задание № 1.2. Автомат В.

Автомат А:
$$\Sigma_1 = \{a,b\},\ Q_1 = \{q1,q2,q3\},\ q1$$
 - н.ч., $T_1 = \{q1,q2,q3\},\ \delta_1$ - ф.п.

Автомат В:
$$\Sigma_2 = \{a, b\}, Q_2 = \{t1, t2, t3\}, t1$$
 - н.ч., $T_2 = \{t3\}, \delta_2$ - ф.п.

Рассмотрим прямое произведение 2-х автоматов.

$$\Sigma = \{a, b\}$$

$$Q = \{q1t1, q1t2, q1t3, q2t1, q2t2, q2t3, q3t1, q3t2, q3t3\}$$

Начальное состояние = q1t1

$$T = \{q1t3, q2t3, q3t3\}$$

	a	b
q1t1	q2t1	q1t2
q1t2	q2t2	q1t3
q1t3	q2t3	q1t3
q2t1	q3t1	q2t2
q2t2	q3t2	q2t3
q2t3	q3t3	q2t3
q3t1	-	q3t2
q3t2	-	q3t3
q3t3	-	q3t3

Рис. 4: Задание № 1.2. Итоговый автомат.

3.

$$L = \{\omega \in \{a, b\}^* \mid |\omega|_a \neq |\omega|_b\}$$

Этот язык нельзя описать с помощью ДКА, т.к. для распознования данного языка требуется запоминать количество символов. Язык L является не регулярным языком.

4.

$$L = \{\omega \in \{a, b\}^* \mid \omega\omega = \omega\omega\omega\}$$

Данных язык состоит только из пустых слов.

Рис. 5: Задание № 1.4.

2 Задание № 2. Построить конечный автомат, используя прямое произведение.

Ответом на данное задание является конечный автомат, распознающий описанный язык. Требуется, чтобы он был построен при помощи прямого произведения ДКА и его свойств.

1.

$$L_1 = \{ \omega \in \{a, b\}^* \mid |\omega|_a \ge 2 \land |\omega|_b \ge 2 \}$$

Пусть автомат A распознает следующий язык: $L_{11} = \{\omega \in \{a,b\}^* \mid |\omega|_a \geq 2\}$

Рис. 6: Задание № 2.1. Автомат А.

Пусть автомат В распознает следующий язык: $L_{12} = \{\omega \in \{a,b\}^* \mid |\omega|_b \geq 2\}$

Рис. 7: Задание № 2.1. Автомат В.

Автомат А:
$$\Sigma_1=\{a,b\},\ Q_1=\{q1,q2,q3\},\ \mathbf{q}1$$
 - н.ч., $T_1=\{q3\},\ \delta_1$ - ф.п.

Автомат В:
$$\Sigma_2=\{a,b\},\ Q_2=\{t1,t2,t3\},\ t1$$
 - н.ч., $T_2=\{t3\},\ \delta_2$ - ф.п.

Рассмотрим прямое произведение 2-х автоматов.

$$\Sigma = \{a, b\}$$

$$Q=\{q1t1,q1t2,q1t3,q2t1,q2t2,q2t3,q3t1,q3t2,q3t3\}$$

Начальное состояние = q1t1

$$T=\{q3t3\}$$

a	b
q2t1	q1t2
q2t2	q1t3
q2t3	q1t3
q3t1	q2t2
q3t2	q2t3
q3t3	q2t3
q3t1	q3t2
q3t2	q3t3
q3t3	q3t3
	q2t1 q2t2 q2t3 q3t1 q3t2 q3t3 q3t1 q3t2

Рис. 8: Задание № 2.1. Итоговый автомат.

2.

$$L_2 = \{\omega \in \{a,b\}^* \mid |\omega| \ge 3 \land |\omega|$$
 нечётное $\}$

Пусть автомат A распознает следующий язык: $L_{21} = \{\omega \in \{a,b\}^* \mid |\omega| \geq 3\}$

Рис. 9: Задание № 2.2. Автомат А.

Рис. 10: Задание № 2.2. Автомат В.

Пусть автомат В распознает следующий язык: $L_{22} = \{\omega \in \{a,b\}^* \mid |\omega|$ нечётное $\}$

Автомат А:
$$\Sigma_1=\{a,b\},\ Q_1=\{q1,q2,q3,q4\},\ \mathbf{q}1$$
 - н.ч., $T_1=\{q4\},\ \delta_1$ - ф.п.

Автомат В:
$$\Sigma_2=\{a,b\},\ Q_2=\{t1,t2\},\ t1$$
 - н.ч., $T_2=\{t2\},\ \delta_2$ - ф.п.

Рассмотрим прямое произведение 2-х автоматов.

$$\Sigma = \{a, b\}$$

$$Q=\{q1t1,q1t2,q2t1,q2t2,q3t1,q3t2,q4t1,q4t2\}$$

Hачальное состояние = q1t1

$$T=\{q4t2\}$$

	I
a	b
q2t2	q2t2
q2t1	q2t1
q3t2	q3t2
q3t1	q3t1
q4t2	q4t2
q4t1	q4t1
q4t2	q4t2
q4t1	q4t1
	q2t2 q2t1 q3t2 q3t1 q4t2 q4t1 q4t2

Рис. 11: Задание № 2.2. Итоговый автомат.

Начальное состояние в узле «q1t1», поэтому невозможно попасть в узел «q1t2», соответственно невозможно попасть в узлы «q2t1» и «q3t2». Можем упростить данный Π KA.

Рис. 12: Задание № 2.2. Итоговый автомат (Упрощенный вариант).

3.

$$L_3 = \{\omega \in \{a,b\}^* \mid |\omega|_a$$
 чётно $\wedge |\omega|_b$ кратно трём $\}$

Рассмотрим каждое из условий по отдельности.

Пусть автомат А распознает следующий язык: $L_{31} = \{\omega \in \{a,b\}^* \mid |\omega|_a$ чётно $\}$

Рис. 13: Задание № 2.3. Автомат А.

Пусть автомат В распознает следующий язык: $L_{32} = \{\omega \in \{a,b\}^* \mid |\omega|_b$ кратно трём $\}$

Рис. 14: Задание № 2.3. Автомат В.

Автомат А: $\Sigma_1=\{a,b\},\ Q_1=\{q1,q2\},\ \mathbf{q}1$ - н.ч., $T_1=\{q1\},\ \delta_1$ - ф.п.

Автомат В: $\Sigma_2 = \{a, b\}, Q_2 = \{t1, t2, t3\}, t1$ - н.ч., $T_2 = \{t1\}, \delta_2$ - ф.п.

Рассмотрим прямое произведение 2-х автоматов.

$$\Sigma = \{a, b\}$$

$$Q=\{q1t1,q1t2,q1t3,q2t1,q2t2,q2t3\}$$

Начальное состояние = q1t1

$$T = \{q1t1\}$$

	a	b
q1t1	q2t1	q1t2
q1t2	q2t2	q1t3
q1t3	q2t3	q1t1
q2t1	q1t1	q2t2
q2t2	q1t2	q2t3
q2t3	q1t3	q2t1

Рис. 15: Задание № 2.3. Итоговый автомат.

4.

$$L_4 = \overline{L}_3$$

$$\Sigma = \{a, b\}$$

$$Q = \{q1t1, q1t2, q1t3, q2t1, q2t2, q2t3\}$$

Начальное состояние = q1t1

$$T = \{q1t2, q1t3, q2t1, q2t2, q2t3\}$$

	a	b
q1t1	q2t1	q1t2
q1t2	q2t2	q1t3
q1t3	q2t3	q1t1
q2t1	q1t1	q2t2
q2t2	q1t2	q2t3
q2t3	q1t3	q2t1

Рис. 16: Задание N 2.4. Итоговый автомат.

5.

$$L_5 = L_2 \setminus L_3$$

$$L_5 = L_2 \setminus L_3 = L_2 \cap \overline{L}_3 = L_2 \cap L_4$$

Пусть автомат A распознает язык L_2 .

Рис. 17: Задание № 2.5. Автомат А.

Пусть автомат В распознает язык L_4 .

Автомат А: $\Sigma_1 = \{a, b\}, Q_1 = \{q1, q2, q3, q4\}, q1$ - н.ч., $T_1 = \{q4\}, \delta_1$ - ф.п.

Автомат В: $\Sigma_2=\{a,b\},\ Q_2=\{t1,t2,t3.t4.t5.t6\},\ t1$ - н.ч., $T_2=\{t2,t3,t4,t5,t6\},\ \delta_2$ - ф.п.

Рассмотрим прямое произведение 2-х автоматов.

Рис. 18: Задание № 2.5. Автомат В.

$$\Sigma = \{a,b\}$$

 $Q = \{q1t1, q1t2, q1t3, q1t4, q1t5, q1t6, q2t1, q2t2, q2t3, q2t4, q2t5, q2t6, q3t1, q3t2, q3t3, q3t4, q3t5, q3t6, q4t1, q4t2, q4t3, q4t4, q4t5, q4t6\}$

Начальное состояние = q1t1

 $T = \{q4t2, q4t3, q4t4, q4t5, q4t6\}$

	a	b
q1t1	q2t4	q2t2
q1t2	q2t5	q2t3
q1t3	q2t6	q2t1
q1t4	q2t1	q2t5
q1t5	q2t2	q2t6
q1t6	q2t3	q2t4
q2t1	q3t4	q3t2
q2t2	q3t5	q3t3
q2t3	q3t6	q3t1
q2t4	q3t1	q3t5
q2t5	q3t2	q3t6
q2t6	q3t3	q3t4
q3t1	q4t4	q4t2
q3t2	q4t5	q4t3
q3t3	q4t6	q4t1
q3t4	q4t1	q4t5
q3t5	q4t2	q4t6
q3t6	q4t3	q4t4
q4t1	q4t4	q4t2
q4t2	q4t5	q4t3
q4t3	q4t6	q4t1
q4t4	q4t1	q4t5
q4t5	q4t2	q4t6
q4t6	q4t3	q4t4

Рис. 19: Задание № 2.5. Итоговый автомат.

3 Задание № 3. Построить минимальный ДКА по регулярному выражению.

Ответом на данное задание является минимальный ДКА, который допускает тот же язык, что описывается регулярным выражением.

1. $(ab + aba)^*a$

Построим НКА:

Рис. 20: Задание № 3.1. НКА.

Построим ДКА:

	a	b
{q1}	$\{q3, q6, q10\}$	Ø
{q3, q6, q10}	Ø	{q4, q7}
$\{q4, q7\}$	{q3, q6, q8, q10}	Ø
{q3, q6, q8, q10}	{q3, q6, q10}	{q4, q7}

Рис. 21: Задание № 3.1. ДКА.

Полученный ДКА является минимальным.

2. $a(a(ab)^*b)^*(ab)^*$

Построим НКА:

Рис. 22: Задание № 3.2. НКА.

	a	b
{q1}	$\{q2, q8\}$	Ø
$\{q2, q8\}$	$\{q3, q7\}$	Ø
$\{q3, q7\}$	$\{q4\}$	$\{q6, q8\}$
{q4}	Ø	{q5}
$\{q6, q8\}$	$\{q3, q7\}$	Ø
{q5}	$\{q4\}$	{q6}
{q6}	$\{q3, q7\}$	Ø

Построим минимальный ДКА:

0 эквивалентность: (q1, q3q7, q4, q5), (q2q8, q6q8, q6)

1 эквивалентность: (q1), (q3q7, q5), (q4), (q2q8, q6q8, q6)

Рис. 23: Задание № 3.2. ДКА.

Рис. 24: Задание № 3.2. Минимальный ДКА.

3.
$$(a + (a + b)(a + b)b)^*$$

Построим НКА:

Рис. 25: Задание № 3.3. НКА.

	a	b
{q1}	{q1, q2}	{q2}
$\{q1, q2\}$	$\{q1, q2, q3\}$	$\{q2, q3\}$
{q2}	{q3}	{q3}
$\{q1, q2, q3\}$	$\{q1, q2, q3\}$	$\{q1, q2, q3\}$
$\{q2, q3\}$	{q3}	$\{q1, q3\}$
{cp}	Ø	{q1}
$\{q1, q3\}$	$\{q1, q2\}$	$\{q1, q2\}$

Полученный ДКА является минимальным.

Рис. 26: Задание № 3.3. ДКА.

4.
$$(b+c)((ab)^*c+(ba)^*)^*$$

Построим ДКА:

Рис. 27: Задание № 3.4. ДКА.

Построим минимальный ДКА:

0 эквивалентность: (q1, q3, q4, q6), (q2, q5, q7)

1 эквивалентность: (q1) (q4), (q3), (q6), (q2q5q7)

Рис. 28: Задание № 3.4. Минимальный ДКА.

5. $(a+b)^+(aa+bb+abab+baba)(a+b)^+$

Построим НКА:

Рис. 29: Задание № 3.5. НКА.

	a	b
{q1}	{q2}	{q2}
{q2}	{q1, q3}	{q1, q4}
{q1, q3}	{q2, q9}	$\{q2, q5\}$
{q1, q4}	$\{q2, q6\}$	{q2, q10}
{q2, q9}	{q1, q3, q11}	{q1, q4, q11}
$\{q2, q5\}$	$\{q1, q3, q7\}$	{q1, q4}
$\{q2, q6\}$	$\{q1, q3\}$	$\{q1, q4, q8\}$
$\{q2, q10\}$	$\{q1, q3, q11\}$	{q1, q4, q11}
$\{q1, q3, q11\}$	$\{q2, q9, q11\}$	$\{q2, q5, q11\}$
$\{q1, q4, q11\}$	$\{q2, q6, q11\}$	{q2, q10, q11}
$\{q1, q3, q7\}$	$\{q2, q9\}$	$\{q2, q5, q9\}$
$\{q1, q4, q8\}$	$\{q2, q6, q10\}$	$\{q2, q10\}$
$\{q2, q9, q11\}$	$\{q1, q3, q11\}$	{q1, q4, q11}
$\{q2, q5, q11\}$	$\{q1, q3, q7, q11\}$	{q1, q4, q11}
$\{q2, q6, q11\}$	$\{q1, q3, q11\}$	{q1, q4, q8, q11}
$\{q2, q10, q11\}$	$\{q1, q3, q11\}$	{q1, q4, q11}
$\{q2, q5, q9\}$	$\{q1, q3, q7, q11\}$	{q1, q4, q11}
$\{q2, q6, q10\}$	$\{q1, q3, q11\}$	{q1, q4, q8, q11}
{q1, q3, q7, q11}	$\{q2, q9, q11\}$	{q2, q5, q9, q11}
{q1, q4, q8, q11}	$\{q2, q6, q10, q11\}$	$\{q2, q10, q11\}$
$\{q2, q5, q9, q11\}$	$\{q1, q3, q7, q11\}$	{q1, q4, q11}
{q2, q6, q10, q11}	$\{q1, q3, q11\}$	{q1, q4, q8, q11}

Рис. 30: Задание № 3.5. ДКА.

4 Задание № 4. Определить, является ли язык регулярным или нет.

Ответом на данное задание является конечный автомат, если язык регулярен, либо доказательство нерегулярности языка при помощи леммы о разрастании.

1.

$$L = \{ (aab)^n b (aba)^m \mid n \ge 0, m \ge 0 \}$$

Рис. 31: Задание № 4.1. Конечный автомат.

Данный язык является регулярным.

2.

$$L = \{uaav \mid u \in \{a, b\}^*, v \in \{a, b\}^*, |u|_b \ge |v|_a\}$$

Используем лемму о разрастании.

Пусть L - это регулярный язык. Тогда

$$\exists n \, \forall w \in L, |w| \ge n \, \exists x, y, z \, w = xyz \, |xy| \le n \, y \ne \varepsilon \, \forall i \ge 0 \, xy^i z \in L.$$

Отрицание:

$$\forall n \exists w \in L, |w| \ge n \forall x, y, z w = xyz |xy| \le n y \ne \varepsilon \exists i \ge 0 xy^i z \notin L.$$

Рассмотрим слово: $\omega = b^n aaa^n, |\omega| \ge n$

$$\omega = xyz$$

$$x = b^{i}, \quad y = b^{j} \quad i + j \le n \quad j > 0$$

$$|xy| \le n \quad |y| > 0$$

$$z = b^{n-i-j}aaa^{n}$$

$$xy^{0}z = b^{i}b^{n-i-j}aaa^{n} = b^{n-j}aaa^{n} \notin L$$

Ч.т.д. Язык является не регулярным языком.

3.

$$L = \{a^m w \mid w \in \{a, b\}^*, 1 \le |w|_b \le m\}$$

Рассмотрим слово: $\omega = a^m b^m, |\omega| \ge m$

$$\omega = xyz$$

$$x=a^i,\quad y=a^j\quad i+j\leq m\quad j>0$$

$$|xy|\leq m\quad |y|>0$$

$$a^{m-i-j}b^m$$

$$xy^0z=a^ia^{m-i-j}b^m=a^{m-j}b^m\notin L, \text{т.к.} j\neq 0$$

Ч.т.д. Язык является не регулярным языком.

4.

$$L = \{a^k b^m a^n \mid k = n \lor m > 0\}$$

Рассмотрим слово: $\omega = a^n b a^n, |\omega| \ge n$

$$\omega = xyz$$

$$x = a^i, \quad y = a^j \quad i+j \le n \quad j>0$$

$$|xy| \le n \quad |y|>0$$

$$z = a^{n-i-j}ba^n$$

$$xy^2z = a^ia^{2j}a^{n-i-j}ba^n = a^{n+j}ba^n \notin L, \text{t.k.} j \ne 0$$

Ч.т.д. Язык является не регулярным языком.

5.

$$L = \{ucv \mid u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$$

Рассмотрим слово: $\omega = (ab)^n c(ab)^n, |\omega| \ge n$

$$\omega = (ab)^n c(ab)^n = \alpha_1 \alpha_2 ... \alpha_{4n+1}, |\omega| \ge n$$

$$\omega = xyz$$

$$x = \alpha_1 \alpha_2 ... \alpha_i, \quad y = \alpha_{i+1} \alpha_{i+2} ... \alpha_{i+j} \quad i+j \le n \quad j > 0$$

$$|xy| \le n \quad |y| > 0$$

$$z = \alpha_{i+j+1}\alpha_{i+j+2}...\alpha_{2n}c(ab)^n$$

$$xy^kz = \alpha_1...\alpha_i(\alpha_{i+1}...\alpha_{i+j})^k\alpha_{i+j+1}...\alpha_{2n}c(ab)^n \notin L \quad \forall k > 1$$

Ч.т.д. Язык является не регулярным языком.