Assignment # 6: Implementation of the SMO algorithm Assigned: November 23, 2021 Due on Canvas: December 1st, 2021, 11:59PM 50 points

Problem 1. (15 points) It is easy to compute the change in the dimensionality of the feature space, when a kernel is defined by a polynomial of the type $(p+1)^2$ where p is the dot product in the original feature space. That is, $\mathbf{K}(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z} + 1)^2$.

Consider the more general case: given vectors $\mathbf{x}, \mathbf{z} \in \mathbb{R}^n$, and the constant d, define $\mathbf{K}(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z} + 1)^d$. This kernel corresponds to an *implicit mapping* $\phi : \mathbb{R}^n \mapsto \mathbb{R}^m$, where m >> n (that is, m is much greater than n).

Find an equation/expression relating m, n and d.

Hint: Consider successively different values of n, for example n = 2, 3, 4 and d, for example d = 2, 3.

Problem 2. (35 points) Write your own Matlab/python implementation of the SMO algorithm for hard margin SVM, according to its description shown below for the hard margin SVM.

Hard Margin SMO

Given $S = \{(\mathbf{x}_i, y_i); y_i = \pm 1; i = 1, \dots, l\}$ linearly separable training set, $\epsilon > 0$, find the optimal separating hyperplane as follows:

1. Initialize $\alpha = {\alpha_1, \dots, \alpha_l}$ randomly, subject to the constraint

$$\sum_{i=1}^{l} y_i \alpha_i = 0$$

Set
$$b = 0$$
.

- 2. Calculate the weight vector $\mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i \mathbf{x}_i$;
- 3. Calculate KKT conditions:

$$KKT(i) = \alpha_i \{ y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \}; \text{ for } i = 1, \dots, l$$

$$E(i) = \sum_{j=1}^{l} \alpha_{j} y_{j} K_{ji} - y_{i}; \text{ for } i = 1, \dots, l$$

4. Pick x_1, x_2 :

- (a) Let $i_1 = \arg \max_{i=1,...,l} KKT(i)$.
- (b) Pick $\mathbf{x}_1 = \mathbf{x}_{i_1}$.
- (c) Calculate $e(i) = E(1) E(i) = \sum_{j=1}^{l} \alpha_j y_j (K_{j1} K_{ji}) + y_i y_1$
 - Note: $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$ when the data set is linearly separable. Here \cdot means the *dot product*.
- (d) Let $i_2 = \arg \max_i e(i)$.
- (e) Pick $\mathbf{x}_2 = \mathbf{x}_{i_2}$.
- (f) Calculate $k = K_{11} + K_{22} 2K_{12}$
- 5. Update α_2 :

$$\alpha_2^{new} = \alpha_2^{old} + \frac{y_2 e(2)}{k}$$

6. Update α_1 :

$$\alpha_1^{new} = \alpha_1^{old} + y_1 y_2 (\alpha_2^{old} - \alpha_2^{new})$$

- 7. For i = 1, ..., l, if $\alpha_i < \epsilon$, $\alpha_i \leftarrow 0$;
- 8. Select $\alpha_i > 0$, calculate b (from KKT conditions)
- 9. Test for classification;
- 10. Repeat from Step 2 until classified.

NOTE

In the above, you may find it easier <u>not</u> to rename i_1 and i_2 as 1 and 2 respectively. In that case, you will use everywhere i_1 and i_2 . That means

$$y_1 \to y_{i_1}; y_2 \to y_{i_2};$$

 $\alpha_1 \to \alpha_{i_1}; \alpha_2 \to \alpha_{i_2};$
 $K_{12} \to K_{i_1 i_2}; K_{11} \to K_{i_1 i_1}; K_{22} \to K_{i_2 i_2};$
 $E(1) \to E(i_1)$
 $e(i) = E(i_1) - E(i); i = 1, \dots, l$