Data Structure - Spring 2022 14. Heap & Search Tree

Walid Abdullah Al

Computer and Electronic Systems Engineering Hankuk University of Foreign Studies

TA: Seong Joo Kim

Based on:

Goodrich, Chapter 9,11 Karumanchi, Chapter 6-7 Slides by Prof. Yung Yi, KAIST Slides by Prof. Chansu Shin, HUFS

Priority Queue

- Queue but not first-in-first-out (FIFO)
- Rather:
 - Arbitrary insertion
 - Priority-based removal
- Stores item as key-value pair (k, v)
 - Key, k: priority of the item
 - Example: {(5,A), (7,D), (9,C)}
- Dequeue ≡ Remove_min:
 - Remove the item with the minimum key

Priority Queue: Operation Example

Operation	Return Value	Priority Queue
P.add(5,A)		{(5,A)}
P.add(9,C)		{(5,A), (9,C)}
P.add(3,B)		{(3,B), (5,A), (9,C)}
P.add(7,D)		{(3,B), (5,A), (7,D), (9,C)}
P.min()	(3,B)	{(3,B), (5,A), (7,D), (9,C)}
P.remove_min()	(3,B)	{(5,A), (7,D), (9,C)}
P.remove_min()	(5,A)	{(7,D), (9,C)}
len(P)	2	$\{(7,D), (9,C)\}$
P.remove_min()	(7,D)	{(9,C)}
P.remove_min()	(9,C)	{ }
P.is_empty()	True	{ }
P.remove_min()	"error"	{ }

Binary Heap

- An efficient structure to implement priority queue
- Properties:
 - Complete binary tree property
 - **Heap-order** property: key of any node >= key of its parent

Heap: Insertion

- add(k, v): insert key-value pair (k, v)
- Insert at the rightmost position q of the last level
 - to maintain the complete binary tree property
- Perform up-heap bubbling
 - To maintain the heap-order property
 - Continue to swap with the parent node until k >= key(parent)
- Worst-case running time: O(logn)

Heap: Insertion

Heap: Insertion

Heap: min-key deletetion

- remove_min(): removes the root node
- To maintain the complete binary tree property:
 - Remove the node at the last position (rightmost position of the last level)
 and copy it to the root (replacing the original root-item)
 - Say: the new root is: (k, v)
- Perform down-heap bubbling
 - to maintain the heap-order property
 - Continue to swap with the minimal-key-child until k <= key(minimal-key-child)
- Worst-case running-time: O(logn)

Heap: remove_min

Heap: remove_min

Binary Search Tree (BST)

- a binary tree with each node storing a key-value pair (k, v) such that:
 - Keys of its left subtree are < k
 - Keys of its right subtree are > k

A binary search tree with integer keys.

BST: Search

- search(root, k): searches the node storing key k.
- **if** k == root.key:
 - return root
- elif k < root.key and left subtree exists
 - return search(root.left, k)
- elif k > root.key and right subtree exists

return search(root.right, k)

- Else:
 - return None
 - (unsuccessful search)

Search(root, 65)

Search(root, 68)

BST: Search parent also

- search_p(root, k): finds the node with key k and its parent
- Similar process but use loop instead of recursion
- Initialize:
 - node=parent=root
- · Loop:
 - **If** node is None: **Break**
 - **If** k==node.key: **Break**
 - parent=node
 - If k<node.key and left subtree exists: node=node.left
 - If k>node.key and right subtree exists: node=node.right
- Return node, parent

BST: Insertion

- insert(root, k, v): inserts the key-value pair (k,v)
- Insertion process:
 - node, p = search_p(root, k, v)
 - **if** k==node.key: # key already exists
 - Update **node**.value to **v**
 - **if** k<p.key:
 - Insert (k,v) to the left of p
 - **if** k>p.key:
 - Insert (k,v) to the right of **p**

Finding the parent

Adding the new key

BST: Deletion

- delete(root, k): removes the node storing key k
- Search the node and its parent p using search_p
- Deleting node is not as simple as insertion
 - Insertion: always done as leaf nodes
 - Deletion: can be for any nodes
- Two scenario:
 - node has atmost (≤) one child
 - node has two children

BST: Deletion

- Case-I: node has atmost (≤) one child
 - Delete node and link its child to the parent (i.e, bring the child in node's position)
- Note: this case also generalizes the no-child case

BST: Deletion

- Case-II: node has both left and right child
 - To delete and replace node,
 - bring the *largest-key-node* from the *left-subtree*
 - Or, the *smallest-key-node* from the *right-subtree*

Running Time

- Depends on tree height
 - Best-case height: log(n)
 - Worst-case height: n

