International Rectifier

IRLMS2002

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- N-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- 2.5V Rated

Description

These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

The Micro6™ package with its customized leadframe produces a HEXFET® power MOSFET with $R_{DS(on)}\,60\%$ less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and $R_{DS(on)}$ reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain- Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	6.5	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	5.2	Α
I _{DM}	Pulsed Drain Current ①	20	
P _D @T _A = 25°C	Power Dissipation	2.0	W
P _D @T _A = 70°C	Power Dissipation	1.3	VV
	Linear Derating Factor	0.016	W/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.016		V/°C	Reference to 25°C, I _D = 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.030	Ω	V _{GS} = 4.5V, I _D = 6.5A ②	
				0.045		V _{GS} = 2.5V, I _D = 5.2A ②	
V _{GS(th)}	Gate Threshold Voltage	0.60		1.2	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
g _{fs}	Forward Transconductance	13			S	$V_{DS} = 10V, I_D = 6.5A$	
1	Dunin to Course I calve as Course			1.0		V _{DS} = 16V, V _{GS} = 0V	
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$	
lana	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V	
I _{GSS}	Gate-to-Source Reverse Leakage			100		V _{GS} = 12V	
Qg	Total Gate Charge		15	22		$I_D = 6.5A$	
Q _{gs}	Gate-to-Source Charge		2.2	3.3	nC	$V_{DS} = 10V$	
Q_{gd}	Gate-to-Drain ("Miller") Charge		3.5	5.3		V _{GS} = 5.0V ②	
t _{d(on)}	Turn-On Delay Time		8.5			$V_{DD} = 10V$	
t _r	Rise Time		11		no	$I_{D} = 1.0A$	
t _{d(off)}	Turn-Off Delay Time		36		ns	$R_G = 6.0\Omega$	
t _f	Fall Time		16			$R_D = 10\Omega$ ②	
C _{iss}	Input Capacitance		1310		pF	V _{GS} = 0V	
Coss	Output Capacitance		150			V _{DS} = 15V	
C _{rss}	Reverse Transfer Capacitance		36			f = 1.0MHz	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			MOSFET symbol			
	(Body Diode)		-	2.0) A	showing the	
I _{SM}	Pulsed Source Current				20	1 ^	integral reverse
	(Body Diode) ①	20		p-n junction diode.			
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 1.7$ A, $V_{GS} = 0$ V ②	
t _{rr}	Reverse Recovery Time		19	29	ns	$T_J = 25^{\circ}C, I_F = 1.7A$	
Q _{rr}	Reverse Recovery Charge		13	20	nC	di/dt = 100A/µs ②	

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Typical Vgs(th) Variance Vs. Juction Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International
Rectifier

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

International IOR Rectifier

IRLMS2002

Micro6™ Package Outline

- NOTES:
 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

Micro6™ Tape & Reel Information

9.90 (.390) — | — |

NOTES:
1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Micro6™

Micro6™ Part Marking Information

2A = IRLMS 1902 2B = IRLMS 1503 2C = IRLMS 6702 2001 2D = IRLMS 5703 2E = IRLMS 6802 2002 28 2003 2004 2005 1996 1997 C D E 29 30 C D 2F = IRLMS 4502 2G = IRLMS 2002 2H = IRLMS 6803 1998 1999 2000 DATE CODE EXAMPLES YWW = 9603 = 6C YWW = 9632 = FF 50 51 52

Notes: This part marking information applies to devices produced after 02/26/2001

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

This product has been designed and qualified for the consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 01/03