МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ

ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра инфокоммуникаций «Условные операторы и циклы в языке Python»

Отчет по лабораторной работе № 2.2 по дисциплине «Основы программной инженерии»

Выполнил студент группы ПИЖ-б-	-o-21-1
Кучеренко С. Ю. « » 2022г.	
Подпись студента	
Работа защищена « »	_2022г.
Проверил Воронкин Р.А.	
(полнис	F)

Цель работы: приобретение навыков программирования разветвляющихся алгоритмов и алгоритмов циклической структуры. Освоить операторы языка Python версии 3.х if, while, for, break и continue, позволяющих реализовывать разветвляющиеся алгоритмы и алгоритмы циклической структуры.

Выполнение работы:

Учебные задачи:

Пример 1. Составить *UML-диаграмму деятельности и программу с использованием конструкции ветвления и вычислить значение функции*

$$y = \begin{cases} 2x^2 + \cos x, & x \le 3.5, \\ x + 1, & 0 < x < 5, \\ \sin 2x - x^2, & x \ge 5. \end{cases}$$
 (1)

Рисунок 1 – UML-диаграмма деятельности

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math

if __name__ == '__main__':
    x = float(input("Value of x? "))
    if x <= 0:
        y = 2 * x * x + math.cos(x)
    elif x < 5:
        y = x + 1
    else:</pre>
```

```
/Users/svetik/.conda/envs/Laba5/bin/python
Value of x? -1
y = 2.5403023058681398

Process finished with exit code 0
```

Рисунок 2 – Результат выполнения программы при x = -1

```
/Users/svetik/.conda/envs/Laba5/bin/py
Value of x? 3
y = 4.0

Process finished with exit code 0
```

Рисунок 3 – Результат выполнения программы при х = 3

```
/Users/svetik/.conda/envs/Laba5/bin/pytho
Value of x? 6
y = -36.27941549819893
Process finished with exit code 0
```

Рисунок 4 – Результат выполнения программы при х = 6

Пример 2. Составить UML-диаграмму деятельности и программу для решения задачи: с клавиатуры вводится номер месяца от 1 до 12, необходимо для этого номера месяца вывести наименование времени года.

Peweнue: Составим UML-диаграмму деятельности вычисления значения функции (рис. 4.6).

Рисунок 5 – UML-диаграмма деятельности

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import sys

if __name__ == '__main__':
    n = int(input("Введите номер месяца: "))

if n == 1 or n == 2 or n == 12:
    print("Зима")

elif n == 3 or n == 4 or n == 5:
    print("Весна")

elif n == 6 or n == 7 or n == 8:
    print("Лето")

elif n == 9 or n == 10 or n == 11:
    print("Осень")

else:
    print("Ошибка!", file=sys.stderr)
    exit(1)
```

```
/Users/svetik/.conda/envs/Laba5/bin
Введите номер месяца: 8
Лето
Process finished with exit code 0
```

Рисунок 6 – Результат выполнения программы при х = 8

```
Введите номер месяца: 12
Зима
Process finished with exit code 0
```

Рисунок 7 – Результат выполнения программы при х = 12

```
Введите номер месяца: 32
Ошибка!
Process finished with exit code 1
```

Рисунок 8 – Результат выполнения программы при х = 32

Пример 3. Составить UML-диаграмму деятельности и написать программу, позволяющую вычислить конечную сумму:

$$S = \sum_{k=1}^{n} \frac{\ln kx}{k^2},\tag{2}$$

Рисунок 9 – UML-диаграмма деятельности

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import math

if __name__ == '__main__':
    n = int(input("Value of n? "))
    x = float(input("Value of x? "))

S = 0.0
    for k in range(1, n + 1):
        a = math.log(k * x) / (k * k)
        S += a
    print(f"S = {S}")
```

```
Value of n? 5
Value of x? 7
S = 3.294431456662813
```

Рисунок 10 – Результат выполнения программы при n = 5, x = 7

Value of n? 1
Value of x? 4
S = 1.3862943611198906

Рисунок 11 -Результат выполнения программы при n = 1, x = 4

Пример 4. Найти значение квадратного корня $x=\sqrt{a}$ из положительного числа a вводимого с клавиатуры, с некоторой заданной точностью ε с помощью рекуррентного соотношения:

$$x_{n+1} = \frac{1}{2} \cdot \left(x_n + \frac{a}{x_n} \right). \tag{3}$$

Рисунок 12 – UML-диаграмма деятельности

Код:

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import sys

if __name__ == '__main__':
    a = float(input("Value of a? "))
    if a < 0:
        print("Illegal value of a", file=sys.stderr)
        exit(1)
    x, eps = 1, 1e-10
    while True:
        xp = x
        x = (x + a / x) / 2
        if math.fabs(x - xp) < eps:
            break

    print(f"x = {x}\nx = {math.sqrt(a)}")</pre>
```

```
Value of a? 1
x = 1.0
X = 1.0
```

Рисунок 13 – Результат выполнения программы при а = 1

```
Value of a? 7
x = 2.6457513110645907
X = 2.6457513110645907
```

Рисунок 14 – Результат выполнения программы при а = 7

Пример 5. Вычислить значение специальной (интегральной показательной) функции

$$\operatorname{Ei}(x) = \int_{-\infty}^{x} \frac{\exp t}{t} \, dt = \gamma + \ln x + \sum_{k=1}^{\infty} \frac{x^{k}}{k \cdot k!},\tag{4}$$

еде $\gamma=0.5772156649\dots$ - постоянная Эйлера, по ее разложению в ряд с точностью $\varepsilon=10^{-10}$, аргумент x вводится с клавиатуры.

Рисунок 15 – UML-диаграмма деятельности

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import sys
# Постоянная Эйлера.
EULER = 0.5772156649015328606
# Точность вычислений.
EPS = 1e-10

if __name__ == '__main__':
    x = float(input("Value of x? "))
```

```
if x == 0:
    print("Illegal value of x", file=sys.stderr)
    exit(1)
a = x
S, k = a, 1
# Найти сумму членов ряда.
while math.fabs(a) > EPS:
    a *= x * k / (k + 1) ** 2
    S += a
    k += 1
# Вывести значение функции.
print(f"Ei({x}) = {EULER + math.log(math.fabs(x)) + S}")
```

```
Value of x? 4
Ei(4.0) = 19.63087447005282
```

Рисунок 16 – Результат выполнения программы при х = 4

```
Value of x? -1
Ei(-1.0) = -0.21938393439629178
```

Рисунок 17 – Результат выполнения программы при х = -1

Индивидуальное задание: решить задачу согласно варианту, составить UML-диаграмму деятельности и программу с использованием конструкций ветвления. Номер варианта необходимо получить у преподавателя.

Задание 1.

Вариант 9.

Вводится число экзаменов $N \le 20$. Напечатать фразу «Мы успешно сдали N экзаменов», согласовав слово «экзамен» с числом N.

Рисунок 18 – UML-диаграмма деятельности

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

if __name__ == '__main__':
    N = int(input("Value of N? "))
    if 20 >= N >= 0:
        if N == 1:
            print(f"Мы успешно сдали {N} экзамен")
        elif N == 2 or N == 3 or N == 4:
            print(f"Мы успешно сдали {N} экзамена")
        else:
            print(f"Мы успешно сдали {N} экзаменов")

    else:
        print(f"Мы успешно сдали {N} экзаменов")

else:
        print("Ошибка!")
```

```
/Users/svetik/.conda/envs/Laba5/bin/py
Value of N? 21
Ошибка!

Process finished with exit code 0
```

Рисунок 19— Результат выполнения программы при N=21

Value of N? 3 Мы успешно сдали 3 экзамена Process finished with exit code 0

Рисунок 20 – Результат выполнения программы при N = 3

Value of N? 10
Мы успешно сдали 10 экзаменов
Process finished with exit code 0

Рисунок 21 – Результат выполнения программы при N = 10

Задание 2.

Вариант 9

Найти координаты точки пересечения прямых заданных уравнениями a_1x + b_1y + c_1 = 0 и a_2x + b_2y + c_2 = 0, либо сообщить совпадают, параллельны или не

Рисунок 22 – UML-диаграмма деятельности

```
/Users/svetik/.conda/envs/Laba5/bin/python
Введите координаты первой прямой: 0 0 1
Введите координаты второй прямой 1 2 3
Одна из прямых не существует
```

Рисунок 23 – Результат выполнения программы

```
Введите координаты первой прямой: 0 0 4
Введите координаты второй прямой 0 0 6
Обе прямые не существуют
```

Рисунок 24 – Результат выполнения программы

Рисунок 25 – Результат выполнения программы при N = 10

Задание 3.

Вариант 9.

Если к сумме цифр двузначного числа прибавить квадрат этой суммы, то снова получится это двузначное число. Найти все эти числа.

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

if __name__ == '__main__':
    for x in range(10, 100, 1):
        sum = x // 10 + x % 10
        if x == sum + sum**2:
            print(f"Полученные числа: {x}")
```


Рисунок 26 – UML-диаграмма деятельности

```
/Users/svetik/.conda/envs/Laba5/bin/Полученные числа: 12
Полученные числа: 42
Полученные числа: 90
Process finished with exit code 0
```

Рисунок 27 – Результат выполнения программы

Вопросы для защиты работы:

1. Для чего нужны диаграммы деятельности UML?

Дает возможность визуально представить алгоритм программы.

2. Что такое состояние действия и состояние деятельности?

Состояние деятельности можно представлять себе, как составное состояние, поток управления которого включает только другие состояния деятельности и действий.

Состояние действия — частный вид состояния деятельности, а конкретнее — такое состояние, которое не может быть подвергнуто дальнейшей декомпозиции.

3. Какие нотации существуют для обозначения переходов и ветвлений в диаграммах деятельности?

Переходы, ветвление, алгоритм разветвляющейся структуры, алгоритм циклической структуры.

4. Какой алгоритм является алгоритмом разветвляющейся структуры?

Это алгоритм, в котором вычислительный процесс осуществляется либо по одной, либо по другой ветви, в зависимости от выполнения некоторого условия.

5. Чем отличается разветвляющийся алгоритм от линейного?

В линейном алгоритме все этапы выполняются однократно и строго последовательно, в то время как в разветвляющемся содержащий хотя бы

одно условие, в результате проверки которого совершается переход на один из нескольких возможных шагов.

6. Что такое условный оператор? Какие существуют его формы?

Оператор, обеспечивающая выполнение определённой команды (набора команд) только при условии истинности некоторого логического выражения, либо выполнение одной из нескольких команд.

Условные операторы: if, while, for.

7. Какие операторы сравнения используются в Python?

If, elif, else

8. Что называется простым условием? Приведите примеры.

Условия, в которых выполняется только одна логическая операция, например x > 5, a == 0.

9. Что такое составное условие? Приведите примеры.

Условия, в которых выполняется больше одной логической операции, например x > 5 or a == 0.

10. Какие логические операторы допускаются при составлении сложных условий?

Or, and, not.

11. Может ли оператор ветвления содержать внутри себя другие ветвления?

Да.

12. Какой алгоритм является алгоритмом циклической структуры?

Это вид алгоритма, в процессе выполнения которого одно или несколько действий нужно повторить несколько раз.

13. Типы циклов в языке Python.

while, for.

14. Назовите назначение и способы применения функции range.

Функция range(start, stop[, step]) генерирует серию целых чисел, от значения start до stop, с шагом step указанного пользователем. Мы можем использовать его для цикла for и обходить весь диапазон как список.

15. Как с помощью функции range организовать перебор значений от 15 до 0 с шагом 2?

range(15, 0, 2)

16. Могул ли быть циклы вложенными?

Да

17. Как образуется бесконечный цикл и как выйти из него?

Если условие выхода из него никогда не выполняется.

Чтобы выйти необходимо использовать оператор break.

18. Для чего нужен оператор break?

Для выхода из цикла.

19. Где употребляется оператор continue и для чего он используется?

Оператор continue используется только в циклах. Он выполняет пропуск оставшейся части кода тела цикла и переходит к следующей итерации цикла.

20. Для чего нужны стандартные потоки stdout и stderr?

stdout — стандартный вывод (экран) stderr — стандартная ошибка (вывод ошибок на экран)

21. Как в Python организовать вывод в стандартный поток stderr? print(..., file=sys.stderr).

22. Каково назначение функции exit?

Завершить программу и передать операционной системе заданный код возврата.