

Multi-pass rendering

- More than one rendering passes
- Output of one pass is used in successive pass or passes
- Achieves several complicated effects
 - -Non-planar VR environments
 - -Shadows

Designing Theatres

 Simulate what the viewer sees

 Texture map screen using projected texture from projector

 Render the screen from the viewer

VR Environments

- Render the scene from user's viewpoint
- Distorted if projected from the projector location (since different from user)

How is it used?

- Use this rendered image as a projective texture
- Project it from the viewer on the 3D display screen
- Render this textured screen to generate the image of the projector

Shadows

- Points seen by viewer and NOT by light are in shadow
- Points seen by both viewer and light are lighted

Shadows

- B is not getting light and hence in shadow
- B is seen by viewer as in shadow
- How to achieve the effect?

Rendering Pass 1

- Render the scene from light
- Z_L = The z-buffer gives the depth of the points that are lighted
- Save the z-buffer

Rendering Pass 2

- Render the scenefrom the viewer
- Unproject them to get the 3D coordinates back
 - Finds all *visible* 3d points
 - Limits the number of 3D points to be considered

Rendering Pass 3

- Use the saved z-buffer from pass 1
- Use the visible 3D points from pass 2
 - Reproject them from light
- If the z of the visible points are more than the z in the saved buffer
 - In shadow
 - Attenuate them in the framebuffer for viewer

Results

