Érzékelők jellemzése

Programozható irányítóberendezések és szenzorrendszerek

> KOVÁCS Gábor gkovacs@iit.bme.hu

Érzékelők feladata

- Információ szerzése
 - az irányított folyamatról
 - a környezetről
- Elvárások az érzékelőkkel szemben
 - pontos
 - kis bizonytalanságú
 - minél kevésbé zavarja a folyamatot

Jelátalakítók és érzékelők

- Jelátalakító (transducer)
 - valamilyen típusú jelet (energiát) más típusú jellé (energiává) alakít át
- Érzékelő (sensor)
 - valamilyen nem villamos típusú jelet (energiát)
 villamos jellé alakít

Tipikus felépítés - példa

Elemi érzékelő

Nyomóerő

Ellenállás-változás

Membrán

Nyúlásmérő bélyeg

Hídkapcsolás

Jelformálás

Megnyúlás

Feszültség (-5-+5 mV) Feszültség (0-5V)

Érzékelők kimenete

- Folytonos
 - Analóg szint
 - Frekvencia
 - Fázis
 - Kitöltési tényező

- Diszkrét
 - Digitális érték
 - Kontaktusjel

Feladatmegosztás az érzékelő és az irányítóberendezés között

Aktív és passzív érzékelők

- Aktív érzékelő
 - A működéshez tápellátást igényel

- Passzív érzékelő
 - Tápellátást nem igényel
 - Az energiát a mért közegből veszi

Érzékelők tápellátása

Abszolút és relatív érzékelők

- Abszolút érzékelő
 - Egy állandó referenciaértékhez képest mér
 - A mérési eredmény önmagában is értelmezhető
- Relatív érzékelő
 - Egy adott (esetenként változó) értékhez képest mér
 - A viszonyítási érték ismerete nélkül a mérési eredmény nem értelmezhető
 - Két, azonos kimenetű érzékelő más-más mennyiséget is mérhet

Érékelők jellemzése

- Bemeneti jeltartomány: u_{min} , u_{max} , [u]
- Kimeneti jeltartomány: y_{min} , y_{max} , [y]
- Karakterisztika: y = f(u)
 - Statikus karakterisztika
 - Dinamikus karakterisztika
- Felbontás
- Hiba

Bemeneti jeltartomány

Mérési tartomány

- A megadott karakterisztika a teljes mérési tartományon érvényes
- Átfogás (input span): $u_{\text{max}} u_{min}$

Mérési tartomány

Input range (Rated) Pressure range

Bemeneti jeltartomány

Működési tartomány

- A szenzor nem hibásodik meg
- A karakterisztika nem érvényes a teljes működési tartományon
- Megadható hosszú és rövid távon elviselt (burst) tartomány is

Kimeneti jeltartomány

- A mérési tartományhoz tartozó kimeneti jeltartomány nagysága
- $FS = y_{max} y_{min}$
- Digitális szenzornál: n bit: $0 \dots 2^n 1$

Statikus karakterisztika

- Egy adott munkapontban: $y = f(u)|_{OP}$
- A környezeti paraméterek állandók az összes munkapontban
 - Tápfeszültség
 - Terhelés
 - Kapcsolás
 - Környezeti hőmérséklet (kivéve hőmérsékletérzékelők)
 - **—** ...
- A mérendő mennyiség is állandósult az egyes munkapontokban

Érzékenység

Érzékenység (sensitivity, scale factor):

$$s = \frac{df(u)}{d(u)} \approx \frac{\Delta y}{\Delta u}$$

Felbontás

- A legkisebb bemeneti változás, ami a kimeneten érzékelhető
- Digitális szenzornál: ADC LSB-hez tartozó érték
- Analóg szenzor: fizikai kialakítás miatt jelentkezhet
- Ha nincs megadva: végtelen kicsi

Érzékelők hibája

Hiba: a mért érték eltérése a valódi értéktől

Kalibrálással a rendszeres hiba csökkenthető, ideális esetben teljes egészében kiküszöbölhető!

Hiba jellemzése: abszolút hiba

- mért értékben kPa
- mérési tartomány arányában - %

- kimenet értékében V
- kimeneti tartomány arányában - %FS, %VFS

Hiba jellemzése: relatív hiba

mért érték %-ában

mért kimenet %-ában

Hiba jellemzése: kombinált abszolút és relatív hiba

Hiba érvényessége

- Teljes mérési tartományon
- A mérési tartomány egy részén
- Adott környezeti munkapontban

Sensor Accuracy (Notes 1, 2)					
T _A = +25°C	T _{ACY}	_	±1	_	°C
T _A = 0°C to +70°C	T _{ACY}	-2.0	±1	+2.0	°C
T _A = -40°C to +125°C	T _{ACY}	-2.0	±1	+4.0	°C

Forrás: Microchip MPC970X series datasheet

Ismétlődési hiba

(repeatability)

Hiszterézis-hiba

(hysteresis)

Definíció:

Azonos környezeti körülmények között a bemenetet a mérési tartomány minimumáról a maximumára növelve, majd onnan azonos sebességgel a minimumra csökkentve a két görbe közti legnagyobb különbség.

Általános jellemzés:

Elméleti karakterisztikától mért abszolút hibasáv.

Környezeti hőmérséklet változásának járulékos hibája

(thermal effect)

Definíció:

Más-más környezeti hőmérsékleten felvett statikus karakterisztikák különbsége.

Általános jellemzés:

Elméleti karakterisztikától mért hibasáv: abszolút nullpont (offszet-) hiba és/vagy relatív hiba.

Hosszútávú stabilitás

 $(stability \leftrightarrow drift)$

Definíció:

A szenzor öregedés okozta hibája.

Általános jellemzés:

Elméleti karakterisztikától mért hibasáv adott környezeti hatások mellett.

Hibák megjelenése az adatlapon

Nincs egységes konvenció, hogy milyen hibákat jelölnek külön!

Stabilitás

Hibák összegzése

Worst case összegzés

Példa

Operating Characteristics

Table 1. Operating Characteristics ($V_S = 10 V_{DC}$, $T_A = 25$ °C unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Units
Pressure Range ⁽¹⁾	P _{OP}	0	_	50	kPa
Supply Voltage ⁽²⁾	Vs	_	10	16	V _{DC}
Supply Current	I _O	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	_	-1.0	_	1.0	mV
Pressure Hysteresis (0 to 50 kPa)	_	_	±0.1	_	%V _{FS}
Temperature Hysteresis (-40° to 125°C)	_	_	±0.5	_	%V _{FS}
Temperature Coefficient of Full Scale	TCV _{FS}	-1.0	_	1.0	%V _{FS}
Temperature Coefficient of Offset	TCV _{OFF}	-1.0	_	1.0	mV
Offset Stability ⁽⁶⁾	_	_	±0.5	_	%V _{FS}

Mekkora lesz a nyomásmérés kimeneti hibája?

Forrás: Freescale semiconductor MPXV2050 series datasheet

Kimeneti hiba

- 1. A kimeneti tartomány legrosszabb esetben: $V_{FS} = 41.5 \text{mV}$
- 2. A kimeneti tartománytól függő hibák:

Összesen		0.8715 mV
Offset Stability	$0.5\%V_{FS} =$	0.2075 mV
Temperature Coeff. FS	$1\%V_{FS} =$	0.4150 mV
Temperature Hysteresis	$0.5\%V_{FS} =$	0.2075 mV
Pressure Hysteresis	$0.1\%V_{FS} =$	0.0415 mV

3. Abszolút hibák:

Offset 1 mV
Temperature Coeff. Offset 1 mV
Összesen 2 mV

4. Teljes hiba:

 $2.8715 \text{mV} \approx 7\% \text{ V}_{FS}$

Lineáris statikus karakterisztika

Karakterisztika:

$$y = f(u) = a + bu$$

Érzékenység:

$$s = \frac{df(u)}{du} = b$$

Mért érték számítása a kimenetből:

$$y = y_0 + b(u - u_0)$$

$$y = y_0 + b(u - u_0)$$

 $u = u_0 + \frac{(y - y_0)}{b}$

Példa

Operating Characteristics

Table 1. Operating Characteristics ($V_S = 10 V_{DC}$, $T_A = 25$ °C unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Units
Pressure Range ⁽¹⁾	P _{OP}	0	_	50	kPa
Supply Voltage ⁽²⁾	Vs	_	10	16	V _{DC}
Supply Current	I _O	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	_	-1.0	_	1.0	mV
Pressure Hysteresis (0 to 50 kPa)	_	_	±0.1	_	%V _{FS}
Temperature Hysteresis (-40° to 125°C)	_	_	±0.5	_	%V _{FS}
Temperature Coefficient of Full Scale	TCV _{FS}	-1.0	_	1.0	%V _{FS}
Temperature Coefficient of Offset	TCV _{OFF}	-1.0	_	1.0	mV
Offset Stability ⁽⁶⁾	_	_	±0.5	_	%V _{FS}

Mekkora lesz a nyomásmérés relatív hibája 30 kPa-on?

Már kiszámoltuk, hogy az abszolút kimeneti hiba 2.8715 mV

Forrás: Freescale semiconductor MPXV2050 series datasheet

A nyomásmérés hibája

• Érzékenység:

$$s = \frac{40 \text{mV}}{50 \text{kPA}} = 0.8 \frac{\text{mV}}{\text{kPA}}$$

Abszolút nyomáshiba:

$$\varepsilon_u = \frac{\varepsilon_y}{s} = 2.875 \text{mV} \cdot \frac{1}{0.8} \frac{kPa}{mV} = 3.59 \text{kPa}$$

• A nyomásmérés relatív hibája:

$$\frac{3.59}{30} = 11.96\%$$

Lineáris karakterisztika meghatározása

• Adott $n \ge 2$ mérési pont: (u_i, y_i)

 Hogyan határozzuk meg a lineáris karakterisztikát?

Végpontokra illesztett egyenes

End-Point Straight Line

Végpontokra illesztett egyenes

Legjobban illeszkedő egyenes

Best Fit Straight Line (BFSL)

$$V(a,b) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - (a + bu_i))^2$$

 $(a,b) = \arg\min V(a,b)$

Linearitási hiba

Példa

Egy hőmérsékletérzékelőn az alábbi táblázatban megadott kalibrációs méréseket végeztük. Illesszünk a szenzorhoz végpontokra illeszkedő lineáris karakterisztikát és adjuk meg a hőmérséklet számításának képletét! Mekkora lesz a linearitási hiba a kimeneti tartomány arányában?

<i>u</i> [°C]	30	47	93	100
y [V]	2.4	3.1	5.2	5.9

u [°C]	30	47	93	100
y [V]	2.4	3.1	5.2	5.9

- A bemeneti tartomány: 100 30 = 70°C
- A kimeneti tartomány: 5.9 2.4 = 3.5V
- Az érzékenység: 3.5/70 = 1/20 V/°C = 50 mV/°C
- A 0°C-hoz tartozó feszültség: $2.4 0.05 \cdot 30 = 0.9V$
- A karakterisztika:

$$y [V] = 0.9 + 0.05u [^{\circ}C]$$

A hőmérséklet számításának képlete:

$$u \ [^{\circ}C] = 30 + \frac{y \ [V] - 2.4}{0.05} = 30 + 20(y - 2.4) = 20y - 18$$

u [°C]	30	47	93	100
y [V]	2.4	3.1	5.2	5.9

A karakterisztika:

$$y = 0.9 + 0.05u$$

A linearitási hiba 47°C-on:

$$|3.1 - (0.9 + 0.05 \cdot 47)| = 0.15V$$

A linearitási hiba 93°C-on:

$$|5.2 - (0.9 + 0.05 \cdot 93)| = 0.35V$$

• A teljes tartományra vonatkozó linearitási hiba:

$$\frac{0.35}{3.5} = 10\% \text{ FS}$$

Nemlineáris karakterisztika leírása

Nemlineáris függvény

$$y = y_0 e^{B\left(\frac{1}{u} - \frac{1}{u_0}\right)}$$

Közelítés magasabb fokszámú polinommal

$$y = a + bu + cu^2$$

Megadás táblázattal (kvantálás)

y_1	y_2	 \mathcal{Y}_n
u_1	u_2	 u_n

Lineáris interpoláció

y_1	y_2	y_3	y_4	y_5
u_1	u_2	u_3	u_4	u_5

Példa

A jobb oldalon egy NTC termisztor statikus karakterisztikájának táblázata látható. Mekkora a lineáris interpolációból fakadó relatív hiba, ha a valódi hőmérséklet és a mért kimenet

(b) 107 °C-on 31.09 Ω

(a) 12 °C-on 821.74 Ω

\boldsymbol{u} [C]	y [32]
5	1110.220
10	887.257
15	713.463
20	577.375
25	470.000
30	384.800
35	316.757
40	262.177
45	218.069
50	182.297
55	153.150
60	129.249
65	109.551
70	93.281
75	79.750
80	68.446
85	58.996
90	51.036
95	44.332
100	38.640
105	33.790
110	29.664
115	26.123
120	23.091

 ν [O]

11 [°C]

Forrás: muRata NTC termisztor katalógus

(a) Mivel a mért kimenet 887.26Ω és 713.46Ω közé esik, így $u = 10 + \frac{15 - 10}{713.46 - 887.26} (821.74 - 887.26) = 11.88^{\circ}\text{C}$ A relatív hiba: $\varepsilon = \left|\frac{12 - 11.88}{12}\right| = 1\%$

(b) Mivel a mért kimenet
$$29.67\Omega$$
 és 33.79Ω közé esik, így $u=105+\frac{110-105}{29.67-33.79}(31.09-33.79)=108.28°C$ A relatív hiba: $\varepsilon=\left|\frac{107-108.81}{107}\right|=\mathbf{1.19}\%$

Dinamikus karakterisztika

 A mért mennyiség nem állandó – hogyan követi ezt a szenzor?

A szenzorok dinamikus karakterisztikája

– egytárolós:
$$W(s) = \frac{A}{1+sT}$$

– kéttárolós:
$$W(s) = \frac{A}{s^2T^2 + 2\xi Ts + 1}$$

Jellemzés az időtartományban

- Hogyan követi a szenzor kimenete a bemenet változását?
- Éledési idő (warm-up time): a táp bekapcsolása után mennyi idővel érkezik érvényes mérési érték
- Ugrásválasz jellemzői
 - Időállandó (time constant)
 - Beállási idő (setting time): 2%, 5%
 - Felfutási idő (rise time, response time): 10% 90%
 - Túllövés (overshoot, kéttárolós esetén)

Egytárolós karakterisztika

• Időállandó: T

- $-y(T) \approx 0.63y_{\infty}$
- $-y(2T) \approx 0.87y_{\infty}$
- $-y(3T) \approx 0.95y_{\infty}$

Kéttárolós karakterisztika

- Csillapítatlan sajátfrekvencia: ω_0 ; csillapítatás: ξ
- Beállási idő: $T_{2\%} \approx \frac{4}{\omega_0 \xi}$
- Túllövés: $\Delta V = \exp{-\frac{\pi\xi}{\sqrt{1-\xi^2}}}$

Jellemzés a frekvenciatartományban

- Milyen gyors jelet képes követni a szenzor kimenete?
- Bode-diagram jellemzői
 - Vágási frekvencia (cutoff frequency): ált.-3dB-nél
 - Rezonancia-frekvencia (ha van)

Egytárolós karakterisztika

$$-f_c \approx \frac{0.159}{T} [\text{Hz}]$$

Kéttárolós karakterisztika

Rezonancia:

$$-\xi \le \frac{\sqrt{2}}{2}$$
$$-f_{rez} = \frac{\sqrt{1-2\xi^2}}{2\pi^T} [Hz]$$

 Általában nem előnyös

Hogyan válasszunk érzékelőt?

Házi meteorológiai állomást szeretnénk készíteni, melyhez egy 5V átfogású, 10 bites ADC-vel rendelkező mikrokontrollert használunk fel. Szeretnénk a $-40 \dots + 60$ °C-os tartományban minél pontosabban mérni a hőmérsékletet. Melyik érzékelőt válasszuk az alábbiak közül?

	Anna	Barbara	Cecile
Operating range	−100 + 300 °C	−70 + 130 °C	−40 60 °C
Input range	−100 + 300 °C	−40 + 60 °C	−40 + 60 °C
Accuracy	±0.05%FS	±0.1%FS	±0.02 °C
Sensitivity	50mV/°C	50mV/°C	50mV/°C
Output at 25°C	6.25V	3.25V	3.25V

Hogyan válasszunk érzékelőt?

Házi meteorológiai állomást szeretnénk készíteni, melyhez egy 5V átfogású, 10 bites ADC-vel rendelkező mikrokontrollert használunk fel. Szeretnénk a $-40 \dots + 60$ °C-os tartományban minél pontosabban mérni a hőmérsékletet. Melyik érzékelőt válasszuk az alábbiak közül?

	Anna	Barbara	Cecile
Operating range	−100 + 300 °C	−70 + 130 °C	−40 60 °C
Input range	−100 + 300 °C	−40 + 60 °C	−40 + 60 °C
Accuracy	±0.05%FS	±0.1%FS	±0.02 °C
Sensitivity	50mV/°C	50mV/°C	50mV/°C
Output at 25°C	6.25V	3.25V	3.25V
Abszolút hiba	0 . 2 °C	0 . 1 °C	0 . 02 °C

Anna

- Bemeneti tartomány: 400°C
- Kimeneti tartomány: $400 \cdot 0.05 = 20V$
- A $-40 \dots + 60^{\circ}$ C-os mérési tartományhoz tartozó kimeneti tartomány: $100/400 \cdot 20 = 5V$ (megfelelő referenciafeszültséggel a minkrokontrollerben lévő ADC-vel az 5-10V-os kimeneti tartomány kezelhető)
- Hiba: $0.05 \cdot 0.01 \cdot 20V = 0.01V = 10 \text{mV} = 0.2 ^{\circ}\text{C}$

Barbara

- Bemeneti tartomány: 100°C
- Kimeneti tartomány: $100 \cdot 0.05 = 5V$
- Hiba: $0.1 \cdot 0.01 \cdot 5V = 0.005V = 5mV = 0.1^{\circ}C$

Cecile

- Bemeneti tartomány: 100°C
- Kimeneti tartomány: $100 \cdot 0.05 = 5V$
- − Hiba: 0.02°C

	Anna	Barbara	Cecile
Abszolút hiba	0.2°C	0.1°C	0.02°C

- DE: mivel az ADC 10 bites, így a felbontás $100/1024 \approx 0.1^{\circ}\text{C}$
- Ennél nagyobb pontosságú érzékelőt felesleges választani
- Érdemes tehát a legalább 0.1°C-os pontosságú érzékelők közül a nagyobb megengedett bemeneti tartományút választani
- A legjobb választás tehát: Barbara

Hogyan válasszunk szenzort?

- Viselje el a körülményeket
 - Működési tartomány
 - Környezeti hőmérséklet, páratartalom...
 - Tápellátás
- Mérési tartománya legyen minél közelebb a megkívánthoz
 - A tág méréshatárnak ára van: pontosságban, környezeti paraméterekre való érzékenységben, költségben
- Legyen pontos, de ne lőjünk túl a célon!
 - Helyiségtermosztáthoz felesleges a 0.01°C-os pontosság

Hogyan olvassunk adatlapot? FIGYELMESEN!

- Ügyeljünk a mértékegységre!
- Vegyük figyelembe a paraméterek értelmezési tartományát!
- Soha ne a tipikus hibaértékekre méretezzünk!
- Olvassuk el a lábjegyzeteket, apró betűs részeket!
- Nézzük meg jól, pontosan melyik típusra vonatkoznak a paraméterek!