

象形文字

一組研究人員正在研究象形文字序列之間的相似性。 它們以非負整數表示每個象形文字。 為了進行他們的研究,他們使用以下關於序列的概念。

對於一個固定序列 A , 序列 S 被稱為 A 的 A 的 A 的 当且僅當可從透過從序列 A 中刪除一些元素後,得到序列 B (可能沒有)。

下表顯示了序列 A = [3, 2, 1, 2] 的子序列的一些範例。

子序列	如何從 A 獲得它	
[3,2,1,2]	沒有元素被刪除。	
[2, 1, 2]	[3 , 2, 1, 2]	
[3,2,2]	$[3, 2, \frac{1}{2}, 2]$	
[3, 2]	[3、 2 、 1 、2] 或[3、2、 1 、 2]	
[3]	$[3,\frac{1}{2},\frac{1}{1},\frac{2}{2}]$	
[]	$[3 \cdot 2 \cdot 1 \cdot 2]$	

另一方面,[3,3]或[1,3]不是A的子序列。

考慮兩個象形文字序列 A 和 B 。 序列 S 稱為 A 和 B 的公共子序列 當且僅當 S 是 A 和 B 的子序列。 此外,我們說序列 U 是 A 和 B 的通用公共子序列 當且僅當滿足以下兩個條件:

- *U* 是 *A* 和 *B* 的公共子序列。
- A 和 B 的每個公共子序列也是 U 的子序列。

可以證明任兩個序列 A 和 B 至多有一個通用公共子序列。

研究人員發現了兩個象形文字序列 A 和 B 。 序列 A 由 N 個象形文字組成, 序列 B 由 M 個象形文字組成。 請幫助研究人員計算 序列 A 和 B 的通用公共子序列, 或確定這樣的序列不存在。

實現細節

您應該實現以下程序。

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)

- A: 長度為 N 的數組,表示第一個序列。
- B: 長度為 M 的數組,表示第二個序列。
- 如果 A 和 B 存在通用公共子序列, 該程序應該傳回一個包含該序列的數組。 否則,該過程應返回 $\begin{bmatrix} -1 \end{bmatrix}$ (長度為 1 的數組,其唯一元素為 -1)。
- 對於每個測試案例,此程序僅呼叫一次。

約束條件

- 1 < N < 100000
- $1 \le M \le 100\,000$
- $0 \leq A[i] \leq 200\,000$,對每個i, $0 \leq i < N$
- $0 \le B[j] \le 200\,000$, 對每個j, $0 \le j < M$

子任務

子任務	分數	附加限制
1	3	$N=M~;A$ 和 B 皆由 0 和 $N-1$ (含)之間的 N 個 $oldsymbol{\pi}$ 個
2	15	對於任何整數 k , A 等於 k 的元素數量 $m \perp B$ 等於 k 的元素數量最多為 3 。
3	10	$A[i] \leq 1$ 對每個 i 使得 $0 \leq i < N$; $B[j] \leq 1$ 對每個 j 使得 $0 \leq j < M$
4	16	存在 A 和 B 的通用公共子序列。
5	14	$N \leq 3000$; $M \leq 3000$
6	42	沒有額外的限制。

範例

範例1

考慮以下調用。

ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])

這裡, A 和 B 的公共子序列如下: [], [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] 和 [0,1,0,2].

由於[0,1,0,2]是A和B的公共子序列,且 A 和 B 的所有公共子序列都是 [0,1,0,2] 的子序列, 過程應回 傳 [0,1,0,2] 。

範例 2

考慮以下調用。

```
ucs([0, 0, 2], [1, 1])
```

這裡,A和B唯一的公共子序列是空序列[]。因此該子程序應傳回一個空數組[]。

範例3

考慮以下調用。

```
ucs([0, 1, 0], [1, 0, 1])
```

這裡, A 和 B 的公共子序列是 $[\],[0],[1],[0,1]$ 和 [1,0] 。 可以證明,通用公共子序列不存在。 因此,該 過程應返回 [-1] 。

樣例評分程式

輸入格式:

```
NM
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

輸出格式:

```
T
R[0] R[1] ... R[T-1]
```

這裡,R是 ucs 返回的數組,T 是它的長度。