REDES DE COMPUTADORES

Exame – Prova Prática 3º MIEIC 07.07.2010

Nome:

- 1. Considere que um protocolo de ligação de dados é suportado num canal com capacidade igual a **512 kbit/s** (em cada sentido) e que o tempo de propagação no canal é igual a **270 ms**. Admita que as tramas de Informação (I) são imediatamente confirmadas por tramas de Supervisão, cujo tamanho pode desprezar.
- a) Considere inicialmente que o canal é isento de erros, que as tramas I têm um tamanho típico de **4096 bits** e que são usados **7** bits para a respectiva numeração. Justifique em primeiro lugar que não deve ser usada a variante *Stop and Wait*. Para as variantes a analisar (*Go-Back-N* e *Selective Reject*), indique o tamanho máximo possível da janela de transmissão e a eficiência máxima do protocolo. Calcule ainda, em cada caso, o valor mínimo do tamanho dos pacotes, que permite garantir uma eficiência máxima de **100%**.

	Go-Back-N	Selective Reject
Valor máximo da janela de transmissão	127	64
Eficiência máxima do protocolo (%)	100	93.4
Tamanho mínimo dos pacotes para eficiência máxima igual a 100%	2194	4389

Stop and Wait – eficiência máxima igual a 1.5 % (aproximadamente).

b) Pretende-se analisar as duas variantes no caso de ocorrerem erros na transmissão. Considere como referência dois valores típicos de tamanho (L) das tramas I: 4096 e 2048 bits. A probabilidade de uma trama ser recebida com erro é proporcional ao seu tamanho, sendo igual a 0.1 (10%) e 0.05 (5%), respectivamente, para os dois tamanhos indicados. Calcule a eficiência máxima possível de cada variante e discuta de que modo o valor do tamanho dos pacotes influencia essa eficiência. Qual a solução que recomenda? Poderia melhorar ainda a solução? Como?

	L = 4096 bits	L = 2048 bits
Go-Back-N – eficiência máxima (%)	11.6	12.15
Selective Reject – eficiência máxima (%)	84.1	44.7

Solução recomendada: *Selective Reject* com L = 4096 bits.

É possível melhorar a solução: L=4389 bits, calculado em a), com eficiência máxima igual a 89.3% (visto a probabilidade de erro ser, neste caso, 10.7%).

Nome: 2

2. Pretende-se comparar duas alternativas a seguir caracterizadas, correspondentes a um cenário de transmissão de três fluxos de tráfego independentes entre dois locais remotos. Admita que os débitos médios de referência dos três fluxos são 256, 192 e 64 kbit/s. Na primeira solução, os fluxos são transmitidos em canais dedicados, com capacidades C_{1i} (i = 1, 2, 3) iguais a 320, 256 e 128 kbit/s, respectivamente; na segunda, os fluxos partilham um canal dedicado com capacidade C₂ igual a 640 kbit/s. Considere que os pacotes têm um tamanho médio igual a 1280 bits e que os sistemas em causa podem ser analisados como filas de espera M/M/1.

a) Calcule os valores solicitados na tabela (para cada canal), apresentando os cálculos correspondentes.

		Solução 1		
	$C_{11} = 320 \text{ kbit/s}$	$C_{12} = 256 \text{ kbit/s}$	$C_{13} = 128 \text{ kbit/s}$	$C_2 = 640 \text{ kbit/s}$
Intensidade de tráfego (%)	80	75	50	80
Número médio de pacotes transferidos por segundo	200	150	50	400
Tempo médio de atraso dos pacotes (ms)	20	20	20	10
Número médio de pacotes na fila (espera + serviço)	4	3	1	4

b) Discuta qual das soluções recomendaria, com base numa análise qualitativa de cada um delas (tendo em atenção a natureza e as características do tráfego de dados), que deve ser completada com a análise quantitativa feita na alínea anterior. Discuta ainda possíveis vantagens de recorrer a um serviço *Frame Relay*, como evolução da Solução 2; admita que, neste caso, se controla o débito médio total gerado pelo três fluxos (512 kbit/s), garantido pela rede em condições normais, e que o canal de acesso ao serviço tem capacidade 1920 kbit/s.

Nome: 3

3. Para cada um dos blocos de endereços representados na tabela na notação endereço / máscara, indique o número total de endereços disponíveis para atribuir a interfaces (excluindo os endereços com significado especial) e o endereço de *broadcast*. Justifique as respostas, podendo usar um dos casos como exemplo.

Endereço / máscara	Nº total de endereços de interfaces	Endereço de broadcast
140.200.40.120 / 30	2	140.200.40.123
140.200.60.160 / 28	14	140.200.60.175
140.200.80.192 / 26	62	140.200.80.255
140.200.100.0 / 22	1022	140.200.103.255

4. Uma organização dispõe do bloco de endereços 172.11.10.0/24 que usou para constituir as 4 subredes seguintes:

 Subrede 1
 172.11.10.0 / 27
 Subrede 2
 172.11.10.32 / 27

 Subrede 3
 172.11.10.64 / 26
 Subrede 4
 172.11.10.128 / 25

a) Admita que tem de configurar a tabela de encaminhamento do computador **A**, ao qual foi atribuído o endereço **172.11.10.12**, dispondo da seguinte informação sobre os *routers* a usar para aceder ao exterior e às redes internas:

• acesso ao exterior router com endereço 172.11.10.30

acesso à subrede 4 router com endereço 172.11.10.29
 acesso às outras subredes internas router com endereço 172.11.10.28

Preencha a tabela de encaminhamento do computador **A**, procurando minimizar o número de entradas da tabela. Justifique a resposta.

Endereço / máscara	Flags (G, H)	Endereço de Gateway (next hop)
172.11.10.0 / 27		172.11.10.12 (0.0.0.0)
172.11.10.0 / 25	G	172.11.10.28
172.11.10.128 / 25	G	172.11.10.29
default (0.0.0.0)	G	172.11.10.30

As subredes 2 e 3 são acedidas através do mesmo *router*, pelo que as entradas respectivas poderiam, eventualmente, ser sintetizadas numa única entrada; no entanto, os blocos respectivos não podem ser agrupados, a menos que se inclua o bloco correspondente à subrede 1 (o que pode ser feito, como justificado a seguir).

A simplificação está já reflectida na entrada 172.11.10.0 / 25; os endereços relativos à subrede 1 são tratados pela entrada 172.11.10.0 / 27 (*longest prefix match*).

b) Admita que o utilizador do computador **A** executou com sucesso o comando *ping* sucessivamente e num curto intervalo de tempo para vários endereços IP, pela ordem a seguir indicada. Admita que a sua tabela de encaminhamento foi correctamente configurada, e que no início do processo a sua tabela ARP estava vazia. Complete a tabela seguinte, indicando para cada caso qual o endereço IP alvo a procurar na tabela ARP (para resolução do endereço MAC correspondente) e se é ou não necessário invocar o protocolo ARP para o efeito. Justifique na tabela as respostas a ambas as questões. <u>Nota</u>: não serão aceites respostas não justificadas.

Nome: 4

	Endereço IP alvo de resolução e justificação	ARP necessário (Sim / Não) e justificação
ping 172.11.10.20	172.11.10.20	Sim
ping 172.11.10.28	172.11.10.28	Sim
ping 172.11.10.126	172.11.10.28	Não
ping 172.11.10.180	172.11.10.29	Sim
ping 172.11.10.30	172.11.10.30	Sim
ping 172.11.11.10	172.11.10.30	Não

5. Considere uma LAN em anel que opera a **100 Mbit/s**, de acordo com um protocolo de acesso do tipo *Control Token (Multiple Token)*. Pelo facto de se usar um *Wiring Concentrator*, a ligação física de uma estação ao anel contribui em média com **5 μs** para a latência total. Admita que inicialmente são ligadas **16** estações, pelo que a latência do anel é igual a **80 μs**. Em cada acesso uma estação pode transmitir um pacote de tal modo que o tempo de transmissão não exceda **20 μs** (*Token Holding Time*). Calcule a eficiência máxima do protocolo e, para uma estação com tráfego persistente (isto é, transmite um pacote em cada passagem do *token* livre), calcule os débitos máximo e garantido, os intervalos de tempo máximo e mínimo entre dois acessos consecutivos, e o débito médio durante um intervalo em que o débito médio observado na rede seja igual a **60 Mbit/s**. Calcule ainda o número máximo de estações que seria possível ligar à rede, de forma a garantir um débito por estação igual a **1.6 Mbit/s**.

Eficiência máxima do protocolo (%)	80
Débito máximo possível de uma estação com tráfego persistente (Mbit/s)	20
Débito garantido de uma estação com tráfego persistente (Mbit/s)	5
Intervalo de tempo máximo entre dois acessos de uma estação com tráfego persistente (µs)	400
Intervalo de tempo mínimo entre dois acessos de uma estação com tráfego persistente (µs)	100
Débito de uma estação com tráfego persistente, quando o débito médio na rede é igual a 60 Mbit/s	10
Número máximo de estações tal que o débito garantido por estação seja igual a 1.6 Mbit/s	50

Na última questão é necessário demonstrar que a eficiência máxima é igual a 80 %, qualquer que seja o número de estações (pelo facto de cada ligação física de uma estação ao anel contribuir em média com 5 µs para a latência total da rede).

REDES DE COMPUTADORES

Exame – Prova Teórica 3º MIEIC 07.07.2010

Nome:

- 1. Protocolos de ligação de dados do tipo ARQ (por exemplo, *Go-Back-N*) oferecem:
- a) Um serviço fiável, com conexão.
- b) Um serviço fiável, sem conexão.
- c) Um serviço não fiável, com conexão.
- d) Um serviço não fiável, sem conexão.
- 2. Redes de comutação de pacotes podem operar nos modos de Datagramas (DG) ou Circuitos Virtuais (CV).
- a) O percurso de cada pacote está predefinido em ambos os casos, mas as garantias de entrega são diferentes.
- b) O percurso de cada pacote é determinado nó a nó em ambos os casos, mas as garantias de entrega são diferentes.
- c) Em CV o percurso de cada pacote está predefinido; em DG é determinado nó a nó.
- d) Em DG o percurso de cada pacote está predefinido; em CV é determinado nó a nó.
- 3. Considere uma rede Ethernet / IEEE 802.3 partilhada. Admita que, após ocorrer uma colisão entre duas estações, estas tentam resolver o conflito (com base no protocolo CSMA/CD) e que nenhuma outra tenta aceder ao meio.
- a) À medida que aumenta o número de colisões, a probabilidade de uma nova colisão mantém-se constante.
- b) À medida que aumenta o número de colisões, a probabilidade de uma nova colisão é aleatória e independente do número de colisões anteriores.
- c) À medida que aumenta o número de colisões, a probabilidade de uma nova colisão aumenta.
- d) À medida que aumenta o número de colisões, a probabilidade de uma nova colisão diminui.
- 4. Admita que uma *bridge* transparente Ethernet / IEEE 802.3 recebe uma trama MAC com endereço de destino que não está presente na sua tabela de comutação (*forwarding table*). Neste caso a *bridge*:
- a) Transmite uma cópia inalterada da trama em todas as portas, com excepção da porta onde foi recebida.
- b) Transmite uma cópia da trama em todas as portas, com excepção da porta onde foi recebida, após alterar o endereço de destino para *broadcast*.
- c) Descarta a trama.
- d) Retém a trama temporariamente, inicia um processo de resolução de endereços para localizar a estação de destino e, em caso de sucesso, actualiza a tabela de comutação e envia a trama pela porta correspondente.
- 5. No protocolo TCP o emissor controla uma janela de congestionamento; no início da sessão TCP ou após *time-out* entra-se numa fase de *slow start*, que é seguida, após se atingir um limiar, por uma fase de *congestion avoidance*.
- a) A janela do emissor aumenta durante slow start e mantém-se constante durante congestion avoidance.
- b) A janela do emissor aumenta mais rapidamente durante slow start do que durante congestion avoidance.
- c) A janela do emissor aumenta mais lentamente durante slow start do que durante congestion avoidance.
- d) A janela do emissor aumenta rapidamente durante *slow start*; ao entrar na fase de *congestion avoidance* a janela é reduzida a metade, após o que aumenta mais lentamente até se atingir de novo o limiar (e o processo repete-se).

Nota: Apenas uma alternativa é verdadeira.

A resposta a uma pergunta será considerada errada se for seleccionada mais do que uma alternativa.

Cotação

		Respostas Erradas					
	%	0	1	2	3	4	5
	5	100					
Respostas correctas	4	80	77				
	3	60	57	53			
	2	40	37	33	27		
	1	20	17	13	7	0	
	0	0	0	0	0	0	0