Robots Móviles

Sistemas de coordenadas y localización

Sergio Orts Escolano Otto Colomina Pardo

Índice

Sistemas de coordenadas Localización de objetos

Álgebra necesaria

- Necesitamos herramientas geométricas para manejar las posiciones de los robots y de los objetos en el espacio
- Posición del robot dentro de un entorno
- Posición de un objeto dentro del mismo entorno
- Posición relativa del objeto con respecto al robot

Dimensiones utilizadas

- Podemos tener un espacio de dos o tres dimensiones
 - Veremos el caso general en tres dimensiones
 - Restringiremos a dos dimensiones más el ángulo
- El origen de un sistema de coordenadas se puede colocar en cualquier posición
- Utilizaremos más de un sistema de coordenadas

Etiquetado de los ejes de coordenadas

- Regla de la mano derecha

ROS sigue la misma convención

FIGURE 7-1 x, y, z axes and the right-hand-rule

Campo de visión de un sensor (ángulo)

$$\operatorname{atan2}(y,x) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{if } x > 0, \\ \frac{\pi}{2} - \arctan\left(\frac{x}{y}\right) & \text{if } y > 0, \\ -\frac{\pi}{2} - \arctan\left(\frac{x}{y}\right) & \text{if } y < 0, \\ \arctan\left(\frac{y}{x}\right) \pm \pi & \text{if } x < 0, \\ \operatorname{undefined} & \text{if } x = 0 \text{ and } y = 0. \end{cases}$$

Índice

Sistemas de coordenadas Localización de objetos

Localización de objetos

Objeto definido por cada uno de sus vértices

Alternativa: Definir un nuevo sistema de coordenadas en el objeto. Las coordenadas de los vértices del objeto se definen con respecto al nuevo sistema.

Múltiples sistemas de coordenadas en ROS

Coordenadas homogéneas

$$[x y z]^T$$
 $[wx wy wz w]^T$

 Permiten representar una transformación 3D (rotación + traslación) de manera compacta como una matriz 4x4

Matrices de transformación

 Nos relacionan un sistema de coordenadas con otro (seis grados de libertad)

$$T = \begin{bmatrix} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_9 & t_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 r_i =términos de rotación
$$t_i$$
=términos de traslación

$$r_i$$
=términos de rotación t_i =términos de traslación

 Definen un conjunto de transformaciones (rotaciones y traslaciones)

Matrices de transformación

Matriz de translación:

$$Tras(p_x, p_y, p_z) = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Tras(p_{x}, p_{y}, p_{z}) = \begin{bmatrix} 1 & 0 & 0 & p_{x} \\ 0 & 1 & 0 & p_{y} \\ 0 & 0 & 1 & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot^{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 & 0 \\ 0 & \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot^{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$Rot^{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Transformación de coordenadas

Disponemos de las coordenadas de un punto con respecto a un sistema. Para encontrar las coordenadas de ese punto con respecto a otro sistema de coordenadas, multiplicamos las coordenadas del punto por la matriz que relaciona ambos sistemas

$$p_B = T_B^A * p_A$$

Cuando queremos realizar varias trasformaciones sucesivas multiplicamos las matrices de transformación correspondientes

$$T_C^A = T_B^A * T_C^B$$

Sistemas de coordenadas 2D

- Vamos a tener dos sistemas principales: el global y el local
- Las coordenadas del robot cambian cuando se desplaza
- Debemos ser capaces de calcular las coordenadas de los objetos en nuestro entorno

Coordenadas en 2D

- Tenemos un mundo en dos dimensiones (x, y) y una orientación (θ) (tres grados de libertad)
- Las tres coordenadas (x, y, θ) definen tanto una posición como un sistema de coordenadas

$$p = \left[\begin{array}{c} x \\ y \\ \theta \end{array} \right]$$

Matriz de rotación:

$$Rot(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Relación de los sistemas de coordenadas

Transformación de local a global

Sistema de coordenadas del robot:

$$R = [x_r y_r \theta_r]^T$$

Coordenadas del punto p1 con respecto a R

$$p_1^R = [x_1 y_1 \theta_1]^T$$

$$P_1^G = Rot(-\theta_r)p_1^R + \begin{bmatrix} x_r \\ y_r \\ \theta_r \end{bmatrix}$$

Ejemplo

Tenemos el punto
$$p_1^R = [5-30]^T$$

El sistema del robot $R = [3490]^T$

$$P_1^G = Rot(-90)p_1^R + R = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 4 \\ 90 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 90 \end{bmatrix}$$

Transformación de global a local

Coordenadas del punto con respecto a R conocidas las de G:

$$P_{1}^{G} = Rot(-\theta_{r})p_{1}^{R} + \begin{bmatrix} x_{r} \\ y_{r} \\ \theta_{r} \end{bmatrix}$$

$$Rot(-\theta_{r})p_{1}^{R} = P_{1}^{G} + \begin{bmatrix} -x_{r} \\ -y_{r} \\ -\theta_{r} \end{bmatrix}$$

$$p_{1}^{R} = Rot(-\theta_{r})^{-1} \left(P_{1}^{G} + \begin{bmatrix} -x_{r} \\ -y_{r} \\ -\theta_{r} \end{bmatrix} \right)$$

$$p_{1}^{R} = Rot(\theta_{r}) \left(P_{1}^{G} + \begin{bmatrix} -x_{r} \\ -y_{r} \\ -\theta_{r} \end{bmatrix} \right)$$

Ejercicio

$$S_1^G = [100 \ 100 \ 0]^T$$
 $S_2^G = [600 \ 400 \ 0]^T$
 $R^{S2} = [100 \ 100 \ 45]^T$ $P_1^{S1} = [250 \ 50 \ 0]^T$
 $P_2^G = [735 \ 465 \ 0]^T$

Calcular: R^G; P₁^R; P₂^{S2}; P₂^R;

Ejercicio

 $S_1^G = [100 \ 100 \ 0]^T$ $S_2^G = [600 \ 400 \ 0]^T$ $R^{S2} = [100 \ 100 \ 45]^T$ $P_1^{S1} = [250 \ 50 \ 0]^T$ $P_2^G = [735 \ 465 \ 0]^T$

Calcular: R^G; P₁^R; P₂^{S2}; P₂^R;

$$R^{G} = \begin{bmatrix} 700 \\ 500 \\ 45 \end{bmatrix}$$

$$p_1^G = \begin{bmatrix} 350 \\ 150 \\ 0 \end{bmatrix}$$

$$p_1^R = \begin{bmatrix} -494.97 \\ 0 \\ 0 \end{bmatrix}$$

$$p_2^{S2} = \begin{bmatrix} 135 \\ 65 \\ 0 \end{bmatrix}$$

$$p_2^R = \begin{bmatrix} 0 \\ -49.50 \\ 0 \end{bmatrix}$$

Ejercicio 2

Calcula si p₂ se encuentra en el campo de visión del robot

$$p_2^G = [300\ 500\ 0]^T \quad R^G = [250\ 500\ 45]^T \quad \alpha = 30^\circ$$

Robots Móviles

Sistemas de coordenadas y localización

Sergio Orts Escolano Otto Colomina Pardo

