

四实用新型专利申请说明书

CN 87 2 05995 U

B23B 5/36

(51) Int.Cl.4

1988年12月21日 [43] 公告日

[21]申请号 87 2 05995

[22]申请日 87.4.6

[71]申请人 陕西省清华机电研究所

地址 陕西省长安县三号信箱

|72||设计人 贸崇伦 张蒲忠 赵文润

[74]专利代理机构 国家机械委军工专利事务所 代理人 吴明亮

[54]实用新型名称 车削法制造量规和特形面的刀具 1571摘要

本实用新型是用车削的方法制造螺纹量规光滑 量规及加工特形面的刀具,

在普通车床、精密车床、数控车床或仿形车床上, 采用硬质合金或金属热压陶瓷刀具进行加工,精度可 达国标六级(原二级精度),光洁度 Ra0.4~0.2 (原光 洁度∇8.以上)达到以车代磨的效果,设备简单,生产 和经济效益较高.

新设计的刀具,包括刀片(1),夹板(2),紧固螺钉 (3)及活动刀杆(4)等部分。

- 1、车削法制造量规和特形面的刀具,其特征是刀具的形状、结构、几何参数等对于不同材料、不同零件而不同,一般情况下,刀片(1)采用负前角或前角值很小。对于仿形外圆刀片,前角 r取为-3°主后角 a 取为 3°,付后角 a1 选为 8°,刃倾角选为 9°,刀尖半径 R 取为 0.5 毫米左右。对于螺纹车刀,前角 0°左右,主后角约 3°~5°,负后角约 2°~3°,对公制螺纹刀尖角为 60°+9′。
- 2、根据权利要求 1 的车削法制造量规和特形面的刀具, 其特征是刀片 (1)的材料为硬质合金、陶瓷材料或配方相近的材料。
- 3、根据权利要求 1 的车削法制造量规和特形面的刀具, 其特征是刀片 (1)用硬质合金材料时,其型号为 H6,600 或 726; 当选用陶瓷材料时,其型号为 AT6 热压金属陶瓷材料 或其它配方相近的材料。

车削法制造量规和特形面的刀具

本发明是用车削的方法制造螺纹量规、光滑量规及加工特形面的刀具,在普通车床,精密车床,数控车床或仿形车床上用金属热压陶瓷刀具加工硬度 H_RC38~68 的各种金属材料的螺纹量规、光滑量规及具有特形面的零件。精度可达国标六级 (原国标二级精度),表面粗造度为R₀O.4~O.2(光洁度 V8 以上),达到了以车削代替磨削和研磨的效果,生产效率和经济效益较高。

众所周知, 螺纹量规, 光滑量规是机械制造行业为了保证孔、轴和带有螺纹的零件具有互换性的一种重要的综合检验工具。随着生产的高速发展, 要求尽快制造出各种合格的螺纹和光滑量规, 以谦足新产品加工的不断需要。然而过去量具行业制造螺纹量规的传统方法是:

程车后基处理工精车一磨螺纹一研磨这不仅需要价格较贵的内、外螺纹磨床,而且需要较长的加工时间。一般中、小机械厂由于缺少专用螺纹磨床,因而无法制造螺纹量规。普通螺纹量规反方牙、梯形锥度量规或直经较大的量对牙、梯形螺纹量规反方牙、梯形锥度量规或直经较大的量层,从加工。对一些形面复杂产证的磨削加工,也往往因效率低、成本高,甚至不能加工可的磨削加工,也往往因效率低、成本高,甚至不能加工可能的。普通车刀的材料一般用碳素工具钢或高速钢,前者耐温 250~300℃以下,后者超过 500~600℃也不能使用,用这些刀具材料也难以完成对高强度材料的精密车削加工任务,当然也不宜用来车削螺纹量规、光滑量规。

本发明是针对目前国内外螺纹量规、光滑量规和特形面加工方法及普通车刀中存在的技术问题而设计的。目的在于实现一种能用一般工厂所具有的精密车床、仿形车床或数控车床,利用效率较高的车削技术代替螺纹磨床,因地制宜,快速简便地加工螺纹量规、光滑量规和特形面的新的刀具技术方案。

以下的说明较好地实现了这一目的。

本发明的一组精车高强度材料量具或特形面的刀具,包括刀片(1),夹板(2),紧固螺钉(3),活动刀杆(4)等部分,对于不同材料,不同零件,如加工外圆、内孔,锥形或其它特形曲面,普通公、英制螺纹,公、英制锥度螺纹,方牙、梯形,锯齿形锥度螺纹等等,刀具的结构和材料稍有不同。从而设计了一组精车高强度材料的刀具,可以满足上述各种加工任务的要求。

刀片(1)的材料根据工件材料,特别是硬度、强度的不同,可以选用硬质合金或热压金属陶瓷材料。一般硬质合金刀具,硬度达 HRC 87~91,耐温 850~1000 ℃,切削速度比高速钢提高 4~10倍,对于一般高强度的材料,可以选用 H6、600或 726 等硬质合金刀片,加工出的零件表面硬度可以达到 HRC55~58 对高强度的淬火钢调质钢,高锰钢灰特硬的铸铁等材料,可以选用 AT6 型热压金属陶瓷刀片制成的刀片(1)。

万片(1)的几何角度,根据工件的材料,不同加工要求而有所不同,一般情况下,由于硬质白金或陶瓷石片脆性较大,采用负前角或前角值很小。例如:仿形外圆陶瓷刀片,前角了取为一3°。硬质合金或陶瓷刀片脆性大,抗拉力差但耐压性好,刀片正前角时刀尖承受拉力,而刀片(1)的前角为负时,刀尖承受压力,这样刀具刚度大,刀具断面大,

利于传热。主后角 a 选为 3°,保证刀具切削时能自由运动,减少摩擦,提高零件表面光滑度,付后角 a1 选为 8°,目的也是为了保证刀具切削时能自由运动,减少摩擦,提高零件表面光滑度。刃倾角是不同进步,这也是不同于普通车刀的地方。通常正刃倾角只在刨刀中使用,这样选择用度了硬质合金或陶瓷刀片脆性较大,抗拉力弱,采用度。刀尖半径 R 取为 0.5 毫米,一般情况下刀尖半径 R 取为 0.5 毫米,一般情况下刀尖半径,刀具传热好,切削时温度可以低一些,考虑到硬质合金或陶瓷刀片积 2200℃时仍能正常工作,刀具硬度可达 HRC 93~96,随着刀具使用时的磨损,刀尖半经逐渐增大,切削仍是有利的,刀片(1)的毛坯尺寸为 13×13×8(毫米)。

刀片(1)用夹板(2)通过螺钉(3)拧固在刀杆(4)上。 这样平时利于取下刀片(1)进行刃磨或更换刀片,刀杆(2) 和螺钉(3)可以多次使用,节约了刀杆和夹具材料,带有刀片(1)的刀杆(4),利用通用夹具固定在车床的刀架上,提高了工效五倍以上。

对于车削淬火硬度 HRC60~64 的 CrMnNo 和ZGMnB的内孔和外圆,内燃机后塞销渗碳硬度 HRC62 的 12CrNi3A 和轴承外套淬火硬度 HRC62~64 的GCr15。本组车刀都显示了良好的切削效果,且刀具耐用度比最好的硬质合金刀片提高 10 倍以上。对于一些需淬火后精车的零件,而磨床又不能磨削加工,有的是因淬火前遗漏了工序,需淬火后进行补加工,就可以采用本组车刀,在淬火后进行各种必要的加工和补加工。

采用本发明刀具,在普通精密车床上车削螺纹量规或

要求精度很高的螺纹零件技术,具有独特的工艺性,设备简单,工艺灵活、操作方便,生产螺纹种类多,生产速度快,应用范围广,经济效益特别显著。这些刀具已能可靠地加工普通公、英制螺纹,公、英制锥度螺纹,方牙梯形、锯齿形螺纹及梯形锯齿形锥度螺纹量规,或高精度螺纹零件,其规格为:

外螺纹量规 M10~M200 毫米, 螺距 0.5~8 毫米 内螺纹量规 M20~M180 毫米, 螺距 0.5~3 毫米 方牙、梯形外螺纹量规 M10~M200 毫米, 螺距 0.5 ~8 毫米

内螺纹方牙、梯形螺纹量规 M30~M200 毫米,螺距 0.5~8 毫米

以上螺纹量规的精度可达国家标准 6 级 (原国标 2 级)精度,表面粗糙度 RaO.4~O.2 (原光洁度 V8 以上)。

本发明的主要优点:

- 1. 采用本发明的刀具,可以在普通车床,普通精密车床上加工出各种精密零件,达到车削代替磨削加工的效果,从而提高了生产效率,降低了生产成本;
- 2. 本发明刀具,采用了硬质合金或金属陶瓷刀片,刀片的耐用度大,一种刀片可用于加工多种零件;
- 3. 本发明刀具除可用于加工普通材料的零件外,特别适宜于对高强度、高硬度的淬火钢、调质钢、高锰钢、高冷硬铸铁材料进行加工;
- 4. 本发明刀具加工精度高,光洁度好。如用本刀具车削螺纹量规,在普通精密车床丝杠一级精度时,产品精度可以达到原国家标准二级精度,光洁度可达 V 8 以上;
- 5.设备简单,工艺灵活,操作方便。例如在普通精密车床上装夹刀具、零件很方便,精车一件螺纹量规只需 20

分钟左右,而且产品合格率很高,一般合格率均在98%以上。

图 1 图 2 示出了本发明的两个实施例

图 1 为本发明的外圆车刀示意图

图 2 为本发明的内螺纹车刀示意图

本发明的一种仿形外圆车刀实施例:

刀片材料为 AT6 热压 AL2O3-TiC 金属陶瓷刀片, 其规格长×宽×厚为 13×13×8 (毫米)。结构为上压式机械夹固左偏力, 几何角度: 主偏角 45°, 前角-3°, 主后角3°, 主负后角8°, 刃倾角9°, 刀尖半径0.5毫米, 负割棱0.1×30°。

本发明的另一内螺纹车刀实施图:

刀片材料亦为 AT6 型热压金属陶瓷刀片, 其规格为 16×15×4.5 毫米 (标准刀片的二分之一)。结构为机械 共固内螺纹车刀。几何角度前角 O°, 主后角约 3~5°, 负后角约 2~3°, 对公制螺纹刀尖角为 60°±9′。

图

图 1

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)