计算机组织结构

5 整数运算

任桐炜

2022年10月4日

教材对应章节

第3章 运算方法和运算部件

第9章 计算机算术

算术逻辑单元 (ALU)

- 算术逻辑单元 (ALU) 是计算机实际完成数据算术逻辑运算的 部件
 - 数据由寄存器 (Registers) 提交给ALU, 运算结果也存于寄存器
 - ALU可能根据运算结果设置一些标志 (Flags),标志值也保存在处理器内的寄存器中
 - 控制器 (Control unit) 提供控制ALU操作和数据传入送出ALU的信号

全加器

- 1位 (1bit) 加法: *X_i* + *Y_i*
- 第 i 位加法:

$$S_i = X_i \oplus Y_i \oplus C_{i-1}$$

$$C_i = X_i C_{i-1} + Y_i C_{i-1} + X_i Y_i$$

与门延迟: 1级门延迟 (1ty) 或门延迟: 1级门延迟 (1ty)

异或门延迟: 3级门延迟 (3ty)

CarryOut = B & CarryIn | A & CarryIn | A & B

Sum = A XOR B XOR Carryln

串行进位加法器

• 延迟

• *Cn*: 2n ty

• *Sn*: (2n+1) ty

• 缺点: 慢

全先行进位加法器

• 超前进位

$$C_{i} = X_{i}C_{i-1} + Y_{i}C_{i-1} + X_{i}Y_{i}$$

$$C_{1} = X_{1}Y_{1} + (X_{1} + Y_{1})C_{0}$$

$$C_{2} = X_{2}Y_{2} + (X_{2} + Y_{2})X_{1}Y_{1} + (X_{2} + Y_{2})(X_{1} + Y_{1})C_{0}$$

$$C_{3} = X_{3}Y_{3} + (X_{3} + Y_{3})X_{2}Y_{2} + (X_{3} + Y_{3})(X_{2} + Y_{2})X_{1}Y_{1} + (X_{3} + Y_{3})(X_{2} + Y_{2})(X_{1} + Y_{1})C_{0}$$

$$C_{4} = \dots$$

定义两个辅助函数:
$$P_i = X_i + Y_i$$
 $G_i = X_i Y_i$

$$C_1 = G_1 + P_1 C_0$$

$$C_2 = G_2 + P_2 G_1 + P_2 P_1 C_0$$

$$C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_0$$

$$C_4 =$$

全先行进位加法器 (续)

缺点:复杂

延迟: 1ty + 2ty + 3ty = 6ty

部分先行进位加法器

- 思路
 - 采用多个CLA并将其串联,取得计算时间和硬件复杂度之间的权衡
- 例子

延迟: 3ty + 2ty + 2ty + 5ty = 12ty

加法

- $[X+Y]C = [X]C + [Y]C (MOD 2^n)$
- 溢出:

- $X_n = Y_n \coprod S_n \neq X_n$, Y_n : $overflow = X_n Y_n \overline{S_n} + \overline{X_n} \overline{Y_n} S_n$
- $C_n \neq C_{n-1}$: $overflow = C_n \oplus C_{n-1}$

减法

- $[X-Y]c = [X]c + [-Y]c (MOD 2^n)$
- 溢出: 与加法相同

乘法

- 手工演算乘法
 - 若 $Y_i = 0$, 部分积为 0; 否则, 部分积为 X
 - 每一步的部分积相比之前左移一位
 - 对所有部分积求和

X	6	<u> </u>
	42	_

0111
× 0110
0000
0111
0111
0000
0101010

- 计算机乘法的改进
 - 每一步都计算部分积求和结果
 - 右移部分积代替左移部分积
 - 若 $Y_i = 0$,只执行移位操作

• 例子

7	0111					
× 6	× 0110					
42	0000					
	0111					
	0111					
	0000					
	0101010					

部分积

initial		0000	
0	->	00000	
1	+	01110	
	->	001110	
1	+	101010	
	->	<mark>0101</mark> 010	
0	->	<mark>001</mark> 01010	42

实现

• 实现 (续)

7	0111			
× 6	× 0110			
42	0000			
	0111			
	0111			
	0000			
	0101010			

			结果	Y
初始	化		0000	0110
6		->	0000	0011
1	L	+	0111	0011
		->	0011	1001
1	L	+	1010	<mark>10</mark> 01
		->	0101	0100
	9	->	0010	1010

• 问题: [X x Y]c ≠ [X]c x [Y]c

$$7$$
 0111 -7 1001
 \times 6 \times 0110 \times -6 \times 1010
 0101010 42 42 1011010 -38

- 大致思路:
 - 将被乘数和乘数由补码表示改为原码表示
 - 将乘积结果由原码表示改为补码表示

• 布斯算法

$$\begin{split} X \times Y &= X \times Y_{n} Y_{n-1} \dots Y_{2} Y_{1} \\ &= X \times (-Y_{n} \times 2^{n-1} + Y_{n-1} \times 2^{n-2} + \dots + Y_{2} \times 2^{1} + Y_{1} \times 2^{0}) \\ &= X \times \begin{pmatrix} -Y_{n} \times 2^{n-1} + Y_{n-1} \times (2^{n-1} - 2^{n-2}) + \dots \\ +Y_{2} \times (2^{2} - 2^{1}) + Y_{1} \times (2^{1} - 2^{0}) \end{pmatrix} \\ &= X \times \begin{pmatrix} (Y_{n-1} - Y_{n}) \times 2^{n-1} + (Y_{n-2} - Y_{n-1}) \times 2^{n-2} + \dots \\ +(Y_{1} - Y_{2}) \times 2^{1} + (Y_{0} - Y_{1}) \times 2^{0} \end{pmatrix} \quad \mathbf{Y_{0}} = \mathbf{0} \\ &= 2^{n} \times \sum_{i=0}^{n-1} \left(X \times (Y_{i} - Y_{i+1}) \times 2^{-(n-i)} \right) \\ &\downarrow P_{i+1} = 2^{-1} \times \left(P_{i} + X \times (Y_{i} - Y_{i+1}) \right) \end{split}$$

- 布斯算法 (续)
 - 1. 增加 Yo = 0
 - 2. 根据 Yi+1 Yi, 决定是否增加 +X, -X, +0
 - 3. 右移部分积
 - 4. 重复步骤 2和步骤 3共 n 次,得到最终结果

• 布斯算法 (续)

• 布斯算法 (续)

-7		结果	Y	
× -6	初始化	0000	10100	
42	$Y_0 - Y_1 = 0$ -	> 0000	<mark>0</mark> 1010	
	$Y_1 - Y_2 = -1$ -	X 0111	<mark>0</mark> 1010	
[X]c = 1001	_	> 0011	10 101	
[-X]c = 0111	$Y_2 - Y_3 = 1 + 1$	-X 1100	10 101	
		-> 1110	01010	
[Y]c = 1010	$Y_3 - Y_4 = -1$	X 0101	01010	
		-> 0010	10101	42

• 阵列乘法器

除法

- 不同情形的处理
 - 若被除数为0,除数不为0:商为0
 - 若被除数不为0,除数为0:发生"除数为0"异常
 - 若被除数、除数均为0: 发生"除法错"异常
 - 若被除数、除数均不为0: 进行进一步除法运算

- 手工演算除法
 - 在被除数的左侧补充符号位,将除数的最高位与被除数的次高位对齐
 - 从被除数中减去除数,若够减,则上商为1; 若不够减,则上商为0
 - 右移除数, 重复上述步骤

实现

• 例子

ר האו			余数		除数		商
	0010	初始化	00000111		00110000		0000
0011 /	00000111		00000111	->	00011000		0000
0011/	0000	不够减	00000111		00011000	<-	0000
	000111		00000111	->	00001100		0000
	0000	不够减	00000111		00001100	<-	0000
2	00111		00000111	->	00000110		0000
2	0011	够减 -	00000001		00000110	<-	0001
3 / 7	0001 0000		00000001	->	00000011		0001
<u>6</u> 1	0001	不够减	00000001		00000011	<-	0010

实现

• 例子(续)

				余数		商	除数
	0010	初始化		0000		0111	0011
0011	00000111	•	< -	0000	<-	111	0011
		不够减		0000		1110	0011
	000111 0000		<-	0001	<-	110	0011
		不够减		0001		1100	0011
2	00111 0011	•	< -	0011	<-	100	0011
3 / 7	0001	够减 -		0000		1001	0011
6_	0000	•	< -	0001	< -	001	0011
1	0001	不够减		0001		0010	0011

• 如何判断"够减":余数是否足够"大"

• 如果余数和除数的符号相同: 减法

• 如果余数和除数的符号不同: 加法

中间余数除数		减	法	加法		
R	Y	0 1		0	1	
0	0	够	不够			
0	1			够	不够	
1	0			不够	够	
1	1	不够	够			

- 步骤过程
 - 通过在前面加n位符号扩展被除数,并存储在余数寄存器和商寄存器中
 - 将余数和商左移, 判断是否"够减"
 - 如果"够",则做减法(同号)或者加法(异号),并上 商为1
 - 如果"不够,则上商为0
 - 重复以上步骤
 - 如果除数和被除数不同号,则将商替换为其相反数
 - 余数存在余数寄存器中

- 问题:恢复余数成本高
- 大致思路: 不恢复余数
 - 只考虑减法
 - 如果余数 R_i 足够大

$$R_{i+1} = 2R_i - Y$$

• 如果余数 R_i 不够大

$$R_{i+1} = 2(R_i + Y) - Y = 2R_i + Y$$

- 步骤过程
 - 通过在前面加n位符号扩展被除数,并存储在余数寄存器和商寄存器中
 - 如果除数和被除数符号相同,则做减法; 否则,做加法
 - 如果余数和除数符号相同,则商 $Q_n = 1$; 否则, $Q_n = 0$
 - 如果余数和除数符号相同, $R_{i+1} = 2R_i Y$; 否则, $R_{i+1} = 2R_i + Y$
 - 如果新的余数和除数符号相同,使商为1; 否则,使商为0
 - 重复以上步骤

- 步骤过程 (续)
 - 左移商
 - 如果商是负的(被除数和除数的符号不同),商加1
 - 余数和被除数符号不同,修正余数
 - 若被除数和除数符号相同,最后余数加除数;否则,最后余数减除数

• 阵列除法器

总结

- 算术逻辑单元 (ALU)
 - 全加器
 - 串行进位加法器,全先行进位加法器,部分先行进位加法器
- 补码表示的整数运算

• 加法: 溢出判定

• 减法: 硬件实现

• 乘法: 布斯算法

• 除法:恢复余数 / 不恢复余数

谢谢

rentw@nju.edu.cn

