AMSC/CMSC 460: Final Exam

Prof. Doron Levy May 16, 2019

Read carefully the following instructions:

- Write your name & student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 2 hours.
- Good luck!

Additional instructions:

- You should solve only 6 out of the 7 problems. Each problem = 10 points.
- No extra credit will be given for solving more than 6 problems.
- If you solve more than 6 problems, you should clearly indicate which problems you would like to be graded otherwise, the first 6 problems in each part will be graded.

Solve 6 problems out of the following 7 problems

- 1. Find the most accurate approximation to the second derivative, f''(x), using f(x-2h), f(x), f(x+4h). What is the order of accuracy of this approximation?
- 2. Let D(h) be a first-order approximation to f'(x) such that

$$f'(x) = D(h) + C_1h + C_2h^2 + \dots$$

- (a) Use Richardson's extrapolation to find a second-order approximation of f'(x).
- (b) What is the result of part (a) if

$$D(h) = \frac{f(x+h) - f(x-3h)}{4h}.$$

3. Find a linear polynomial, $P_1^*(x)$, that minimizes

$$\int_{-1}^{1} \frac{(x^2 - Q_1(x))^2}{\sqrt{1 - x^2}} dx,$$

among all polynomials $Q_1(x)$ of degree ≤ 1 .

4. (a) Find a quadrature of the form

$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx = A_0f(x_0) + A_1f(x_1),$$

that is exact for all polynomials of degree ≤ 3 .

- (b) Use the result of part (a) to approximate $\int_{-\infty}^{\infty} x^6 e^{-x^2} dx$.
- 5. Consider the ODE y'(t) = f(t, y(t)) together with the initial condition $y(0) = y_0$.
 - (a) Write an equivalent integral formulation to the ODE and show how to obtain Euler's method using a rectangular quadrature.
 - (b) Let $f(t, y(t)) = t^2y(t)$. Compute two iterations of Euler's method for the ODE y' = f(t, y(t)), starting from y(0) = 1. Assume that the time step is h = 0.1.
- 6. Let $f(x) = x^4$ in [-1, 1].
 - (a) Write the Lagrange form of the interpolating polynomial $P_2(x)$, of degree ≤ 2 , that interpolates the values of f(x) at 3 Chebyshev points.
 - (b) Explain the advantages of interpolating at Chebyshev points.
- 7. Let $f(x) = e^{-x} x$.
 - (a) Prove that f(x) must have an least one root in the interval [0, 10].
 - (b) Explain why f(x) has only one root in the interval [0, 10].
 - (c) Write Newton's method for approximating a root of f(x), and compute two iterations of the method, starting from $x_0 = 1$.

• Chebyshev polynomials

$$T_{0}(x) = 1, \quad T_{1}(x) = x, \quad T_{n+1}(x) = 2xT_{n}(x) - T_{n-1}(x) = 0, \quad \forall n \ge 1.$$

$$\int_{-1}^{1} \frac{T_{n}(x)T_{m}(x)}{\sqrt{1-x^{2}}} dx = 0, \quad m \ne n.$$

$$\int_{-1}^{1} \frac{(T_{n}(x))^{2}}{\sqrt{1-x^{2}}} dx = \begin{cases} \pi, & n = 0, \\ \frac{\pi}{2}, & n = 1, 2, \dots \end{cases}$$

$$\int \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x + C, \qquad \int \frac{x^{2}dx}{\sqrt{1-x^{2}}} = \frac{1}{2}(\arcsin x - x\sqrt{1-x^{2}}) + C.$$

• Hermite polynomials

$$H_0(x) = 1, \quad H_1(x) = 2x, \quad H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x), \ \forall n \ge 1$$

$$\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) = \delta_{nm} 2^n n! \sqrt{\pi}$$

$$\int_{-\infty}^{\infty} x^m e^{-x^2} dx = \Gamma\left(\frac{m+1}{2}\right), \quad \text{for even } m$$

$$\Gamma(1/2) = \sqrt{\pi}, \quad \Gamma(3/2) = \frac{1}{2}\sqrt{\pi}, \quad \Gamma(5/2) = \frac{3}{4}\sqrt{\pi}.$$