On negative results concerning Hardy means

Paweł Pasteczka

Faculty of Mathematics, Informatics and Mechanics University of Warsaw

Warsaw, May 14th, 2014

Mean

a *mean* is simply a function $\mathfrak{A}: \bigcup_{n=1}^{\infty} I^n \to \mathbb{R}_+$, where I is an interval.

Hardy Mean [Definition introduced by Pales and Persson]

Let $I \subset \mathbb{R}_+$ be an interval, inf I = 0. A mean \mathfrak{A} defined on I is *Hardy* if there exists a constant C such that for any $a \in I^1(I)$

$$\sum_{n=1}^{\infty}\mathfrak{A}(a_1,\ldots,a_n)< C\sum_{n=1}^{\infty}a_n.$$

Power Means

- Hardy 1920 p-th Power Mean (\mathcal{P}_p) is Hardy if and only if p < 1 (with a constant $(p(1-p))^{-1/p}$ for $p \in (0,1)$).
- Landau 1921 optimal constant for $p \in (0,1)$ (equal $(1-p)^{-1/p}$).
- Carleman 1923 optimal constant for p = 0 (equals e).
- Knopp 1928 optimal constant for p < 0 (equal $(1-p)^{-1/p}$).

Power Means

- Hardy 1920 p-th Power Mean (\mathcal{P}_p) is Hardy if and only if p < 1 (with a constant $(p(1-p))^{-1/p}$ for $p \in (0,1)$).
- Landau 1921 optimal constant for $p \in (0,1)$ (equal $(1-p)^{-1/p}$).
- Carleman 1923 optimal constant for p = 0 (equals e).
- Knopp 1928 optimal constant for p < 0 (equal $(1-p)^{-1/p}$).

. . .

Paper by Páles and Persson (2004)

- some nessesary and some sufficient condition for a deviation mean to be Hardy [omitted in this talk].
- some nessesary and some sufficient condition for Gini means to be Hardy [postponed until applications].

Theorem (P. 2013)

Let $\mathfrak A$ be a mean defined on an interval I, (a_n) be a sequence of positive numbers in I satisfying $\sum\limits_{n=1}^\infty a_n = +\infty$.

If
$$\lim_{n\to\infty} a_n^{-1}\mathfrak{A}(a_1,\ldots,a_n)=\infty$$
 then \mathfrak{A} is not Hardy.

Theorem (P. 2013)

Let $\mathfrak A$ be a mean defined on an interval I, (a_n) be a sequence of positive numbers in I satisfying $\sum\limits_{n=1}^\infty a_n = +\infty$.

If $\lim_{n\to\infty} a_n^{-1}\mathfrak{A}(a_1,\ldots,a_n)=\infty$ then \mathfrak{A} is not Hardy.

In all examples $a_n = \frac{1}{n}$ and we will estimate $n \cdot \mathfrak{A}(1, \frac{1}{2}, \dots, \frac{1}{n})$ from below.

Suppose conversely that ${\mathfrak A}$ is a Hardy mean with a constant ${\mathcal C}>0.$ By

$$\sum_{n=1}^{\infty} a_n = +\infty \text{ and } \lim_{n\to\infty} a_n^{-1} \mathfrak{A}(a_1,\ldots,a_n) = \infty$$

there exist n_0 and $n_1 > n_0$ such that

$$a_n^{-1}\mathfrak{A}(a_1,\ldots a_n) > 2 \ C \ ext{for any } n > n_0,$$

$$\sum_{n=n_0+1}^{n_1-1} a_n > \sum_{n=1}^{n_0} a_n.$$

Let
$$b_n = \begin{cases} a_n & \text{, for } n \leq n_1, \\ a_{n_1} 2^{-n} & \text{, for } n > n_1 \end{cases}$$
. The sequence $(b_n) \in I^1(I)$ will give a contradiction.

$$\mathfrak{G}_{p,q}(a_1,\ldots,a_n) := \begin{cases} \left(\frac{\sum_{i=1}^n a_i^p}{\sum_{i=1}^n a_i^p}\right)^{1/(p-q)} & \text{if } p \neq q, \\ \exp\left(\frac{\sum_{i=1}^n a_i^p}{\sum_{i=1}^n a_i^p}\right) & \text{if } p = q. \end{cases}$$

$$\mathfrak{G}_{p,q}(a_1,\ldots,a_n) := \begin{cases} \left(\frac{\sum_{i=1}^n a_i^p}{\sum_{i=1}^n a_i^p}\right)^{1/(p-q)} & \text{if } p \neq q, \\ \exp\left(\frac{\sum_{i=1}^n a_i^p}{\sum_{i=1}^n a_i^p}\right) & \text{if } p = q. \end{cases}$$

Proposition, Pales & Persson 2004

Let $p,q\in\mathbb{R}$. If $\mathfrak{G}_{p,q}$ is a Hardy mean, then

$$min(p, q) \le 0$$
 and $max(p, q) \le 1$.

Conversely, if

$$min(p, q) \le 0$$
 and $max(p, q) < 1$

then $\mathfrak{G}_{p,q}$ is a Hardy mean.

Remaining case[Páles & Persson Conjecture]

If $min(p,q) \leq 0$ and max(p,q) = 1 then $\mathfrak{G}_{p,q}$ is not Hardy.

Remaining case[Páles & Persson Conjecture]

If $min(p,q) \le 0$ and max(p,q) = 1 then $\mathfrak{G}_{p,q}$ is not Hardy.

Proof.

In this case, using the equality $\mathfrak{G}_{p,q}=\mathfrak{G}_{q,p}$ one may suppose that p=1 and $q\leq 0$. Moreover, it might be proved that

$$n\mathfrak{G}_{1,q}(1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n}) \ge (\ln n)^{1/(1-q)} \text{ for any } q \le 0.$$

Whence $\mathfrak{G}_{1,q}$ is Hardy for no $q \leq 0$.

Gaussian Product

Let $\lambda=(\lambda_0,\ldots,\lambda_p)\in\mathbb{R}^{p+1}$ and v be an all-positive-components vector. One defines a sequence

$$v^{(0)} = v,$$
 $v^{(i+1)} = \left(\mathcal{P}_{\lambda_0}(v^{(i)}), \mathcal{P}_{\lambda_1}(v^{(i)}), \dots, \mathcal{P}_{\lambda_p}(v^{(i)})\right).$

Then it is known that the limit $\lim_{i\to\infty} \mathcal{P}_{\lambda_k}(v^{(i)})$ exists and does not depend on k. This common limit is denoted by $\mathcal{P}_{\lambda_0}\otimes\cdots\otimes\mathcal{P}_{\lambda_p}(v)$.

Theorem

 $\mathcal{P}_{\lambda_0} \otimes \cdots \otimes \mathcal{P}_{\lambda_p}$ is Hardy **iff** $\max(\lambda_0, \dots, \lambda_p) < 1$.

(\Leftarrow) is straightforward. To prove the (\Rightarrow) one may assume $\lambda_0=1$, $\lambda_1=\lambda_2=\ldots=\lambda_p=-\lambda$ for certain $\lambda>0$. Then it might be proved [main part of proof] that there exists C,D>0 s.t.

$$n\mathcal{P}_1 \otimes \underbrace{\mathcal{P}_{-\lambda} \otimes \cdots \otimes \mathcal{P}_{-\lambda}}_{p} (1, \frac{1}{2}, \dots, \frac{1}{n}) > C(\ln n)^D$$
 for any $n \geq 1$.

Fix $\theta > 1$ and let

$$F: (a,b) \mapsto \mathcal{P}_{1} \otimes \underbrace{\mathcal{P}_{-\lambda} \otimes \cdots \otimes \mathcal{P}_{-\lambda}}_{p} (a, \underbrace{b, \dots, b}_{p}),$$

$$G: (a,b) \mapsto \left(a^{\log_{p+1} \left(\frac{p+1}{\theta^{-\lambda} + p}\right)} b^{\lambda}\right)^{1/\left(\lambda + \log_{p+1} \left(\frac{p+1}{\theta^{-\lambda} + p}\right)\right)}$$

$$\tau: (a,b) \mapsto \left(\frac{1}{p+1} a, \left(\frac{p+1}{\theta^{-\lambda} + p}\right)^{1/\lambda} b\right).$$

Then

- $G(a, b) \in (\min(a, b), \max(a, b)),$
- $F(a, b) \in (\min(a, b), \max(a, b)),$
- $G \circ \tau(a, b) = G(a, b)$,
- F, G and τ are homogeneous.

Moreover, for $a > \theta b$,

$$F(a,b) = \mathfrak{A}\left(\frac{a+pb}{p+1}, \underbrace{\left(\frac{p+1}{a^{-\lambda}+pb^{-\lambda}}\right)^{1/\lambda}, \dots, \left(\frac{p+1}{a^{-\lambda}+pb^{-\lambda}}\right)^{1/\lambda}}_{p}\right)$$

$$\geq \mathfrak{A}\left(\frac{1}{p+1}a, \underbrace{\left(\frac{p+1}{(\theta b)^{-\lambda}+pb^{-\lambda}}\right)^{1/\lambda}, \dots, \left(\frac{p+1}{(\theta b)^{-\lambda}+pb^{-\lambda}}\right)^{1/\lambda}}_{p}\right)$$

$$= \mathfrak{A}\left(\frac{1}{p+1}a, \underbrace{\left(\frac{p+1}{\theta^{-\lambda}+p}\right)^{1/\lambda}b, \dots, \left(\frac{p+1}{\theta^{-\lambda}+p}\right)^{1/\lambda}b}_{p}\right)$$

$$= F\left(\frac{1}{p+1}a, \underbrace{\left(\frac{p+1}{\theta^{-\lambda}+p}\right)^{1/\lambda}b}\right) = F \circ \tau(a,b)$$

Next, we will prove that

$$F(a,b) > \frac{1}{\theta(p+1)}G(a,b)$$
 for any $a > b$:

The case when $\frac{a}{b} < \theta(p+1)$ is simply implied by first and second property.

Otherwise, let $a_0=a$, $b_0=b$, $(a_{i+1},b_{i+1})=\tau(a_i,b_i)$. By the definition of τ , $a_n\to 0$ and $b_n\to +\infty$. Denote by N the smallest natural number such that $a_N\le \theta b_N$. Obviously $a_{N-1}>\theta b_{N-1}$, thus

$$a_{N} = \frac{1}{p+1} a_{N-1} > \frac{\theta}{p+1} b_{N-1} = \frac{\theta}{p+1} \left(\frac{\theta^{-\lambda} + p}{p+1} \right)^{1/\lambda} b_{N}$$
$$> \frac{\theta}{p+1} \left(\frac{\theta^{-\lambda} + \theta^{-\lambda} p}{p+1} \right)^{1/\lambda} b_{N} = \frac{1}{p+1} b_{N}.$$

Hence $\frac{1}{p+1}b_N < a_N \le \theta b_N$ so

$$F(a,b) = F(a_0,b_0) \ge F \circ \tau^N(a_0,b_0) = F(a_N,b_N) \ge \min(a_N,b_N)$$

$$> \frac{1}{\theta}a_N \ge \frac{1}{\theta(p+1)}\max(a_N,b_N) \ge \frac{1}{\theta(p+1)}G(a_N,b_N)$$

$$= \frac{1}{\theta(p+1)}G \circ \tau^N(a_0,b_0) = \frac{1}{\theta(p+1)}G(a_0,b_0) = \frac{1}{\theta(p+1)}G(a,b).$$

So

$$n\mathcal{P}_1 \otimes \underbrace{\mathcal{P}_{-\lambda} \otimes \cdots \otimes \mathcal{P}_{-\lambda}}_{p} (1, \frac{1}{2}, \dots, \frac{1}{n}) > nF(\frac{\ln n}{n}, \frac{1}{n}) > \frac{1}{\theta(p+1)} G(\ln n, 1).$$

- W. Gustin, Gaussian Means, Amer. Math. Monthly 54 (1947), 332–335.
- A. Kufner, L. Maligranda, L.-E. Persson, The Hardy Inequality: About its History and Some Related Results, Vydavatelský Servis, Pilsen 2007.
- J. A. Oguntuase, L-E. Persson, Hardy type inequalities via convexity – the journey so far, Aust. J. Math. Anal. Appl. 7 (2011), 1–19.
- Zs. Páles, L.-E. Persson, Hardy-type inequalities for means, Bull. Austral. Math. Soc. 70 (2004), 521–528.
- P. Pasteczka On negative results concerning Hardy means, arXiv:1311.2155 [math.CA].

