Guia de Estudo Detalhado: Congruência de Triângulos

1 | Conceito-chave

Dizemos que dois triângulos são **congruentes** ($\Delta ABC \cong \Delta DEF$) quando existe uma correspondência biunívoca entre seus vértices que preserva comprimentos e medidas de ângulos. Em termos práticos, um triângulo pode ser movido (translação, rotação, reflexão) até coincidir exatamente com o outro.

Por que isso importa?

- Permite justificar construções geométricas (ex.: mediatriz, bissetriz).
- Garante igualdade de segmentos/ângulos ocultos em problemas.
- Serve de base a critérios de semelhança e trigonometria.

2 | Critérios de Congruência

2 | Critérios de Congruência

Abrev.	Nome (PT/EN)	Dados exigidos	Esboço da prova*	Exemplo numérico (esboçado)
LLL / SSS	Lado-Lado-Lado	3 lados correspondentes iguais	Constrói-se ΔABC; com mesmo compasso traça-se ΔDEF. Só há uma forma de fechar o triângulo ⇒ congruência.	$AB=5,\;BC=6,\;CA=7$ e $DE=5,\;EF=6,\;FD=7$ \Rightarrow Δ ABC \cong Δ DEF
LAL / SAS	Lado-Ângulo-Lado	2 lados e Ângulo entre eles	Pela Lei do Cosseno o 3.º lado fica fixado ⇒ único triângulo.	$AB=4,\;AC=6,\;\widehat{A}=50^{\circ}\Rightarrow$ congruente a qualquer outro Δ com mesmos dados
ALA / ASA	Ângulo-Lado-Ângulo	2 ângulos e lado entre eles	Como a soma interna é 180°, o 3.º ângulo é forçado; Lei dos Senos fixa os outros lados.	$\widehat{B}=30^{\circ},~\widehat{C}=80^{\circ},~BC=7$
AAL / AAS	Ângulo-Ângulo-Lado	2 ângulos + lado não incluído	É variação do ASA (o ângulo incluído pode ser obtido).	$\widehat{A}=40^{\circ},\;\widehat{B}=60^{\circ},\;AC=10$
LLR / RHS (Hip-Cat.)	Lado-Lado em Triâng. Ret.	Hipotenusa + 1 cateto	Teorema de Pitágoras fixa o 2.º cateto, logo Δ único.	$\mathrm{hip}=13,\;\mathrm{cateto}=5$

⚠ Não são critérios válidos isoladamente: SSA (Lado-Lado-Ângulo não incluído) e AAA (apenas semelhança).

3 | Construções Clássicas com Régua e Compasso

A seguir, instruções passo a passo (teste no GeoGebra ou em papel):

3.1 SSS (LLL) – "Fechando três lados"

3.2 SAS (LAL) – "Dois lados e ângulo"

3.3 ASA / AAS (ALA / AAL) – "Dois ângulos e um lado"

3.4 RHS – "Retângulo com hipotenusa"

Justificativa: cada construção utiliza exatamente um dos critérios; assim, qualquer outro triângulo obtido pelos mesmos dados é congruente ao primeiro.

4 | Aplicações Típicas e Exemplos Resolvidos

Exemplo 1 - Uso de LAL

Num terreno, dois marcos A e B distam 50 m. Um terceiro marco C deve ser colocado de modo que AC = 40m e o ângulo CAB^ = 65°. Determine a posição única de C.

Estratégia: construir \triangle ABC pelo procedimento SAS; qualquer outra localização que satisfaça os dados resultará no mesmo \triangle (congruência).

Exemplo 2 - Uso de AAL

Em \triangle PQR sabe-se P^ = 42°, Q^ = 76° e PR = 9. Calcule PQ.

Passos:

- 1. Encontre $R^{4} = 180^{\circ} 42^{\circ} 76^{\circ} = 62^{\circ}$.
- 2. Aplique Lei dos Senos:

$$rac{PQ}{\sin 62^{\circ}} = rac{9}{\sin 76^{\circ}} \; \Rightarrow \; PQ pprox 8.46.$$

PQ é determinado unicamente → congruência assegura resultado.

Exemplo 3 - Prova de Igualdade de Segmentos

Num triângulo isósceles AB = AC, a bissetriz do ângulo A encontra BC em D. Mostre que BD=DC.

Demonstração:

- ΔABD e ΔACD têm AB = AC (dados),
- BAD^=DAC^ (bissetriz) e AD comum ⇒ LAL.
- Logo $\triangle ABD \cong \triangle ACD \Rightarrow BD = DC$.

5 | Lista de Verificação

- Cito de memória todos os critérios válidos (LLL, LAL, ..., LLR).
- Construo qualquer triângulo dado SSS, SAS, ASA ou RHS.
- Diferencio imediatamente quando um problema pede semelhança vs. congruência.
- Escrevo provas curtas e claras usando justificativas formais.