Package 'rMIDAS'

October 11, 2023

Title Multiple Imputation with Denoising Autoencoders

Version 1.0.0

Description A tool for multiply imputing missing data using 'MIDAS', a deep learning method based on denoising autoencoder neural networks (see Lall and Robinson, 2022; <doi:10.1017/pan.2020.49>). This algorithm offers significant accuracy and efficiency advantages over other multiple imputation strategies, particularly when applied to large datasets with complex features. Alongside interfacing with 'Python' to run the core algorithm, this package contains functions for processing data before and after model training, running imputation model diagnostics, generating multiple completed datasets, and estimating regression models on these datasets. For more information see Lall and Robinson (2023) <doi:10.18637/jss.v107.i09>.

```
Encoding UTF-8
RoxygenNote 7.2.3
Depends R (>= 3.6.0), data.table, mltools, reticulate
Imports rappdirs, Rdpack
Suggests testthat, knitr, rmarkdown
RdMacros Rdpack
SystemRequirements Python (>= 3.6.0)
VignetteBuilder knitr
License Apache License (>= 2.0)
URL https://github.com/MIDASverse/rMIDAS
BugReports https://github.com/MIDASverse/rMIDAS/issues
NeedsCompilation no
Author Thomas Robinson [aut, cre, cph]
      (<https://orcid.org/0000-0001-7097-1599>),
     Ranjit Lall [aut, cph] (<a href="https://orcid.org/0000-0003-1455-3506">https://orcid.org/0000-0003-1455-3506</a>),
     Alex Stenlake [ctb, cph],
     Elviss Dvinskis [ctb]
Maintainer Thomas Robinson <ts.robinson1994@gmail.com>
Repository CRAN
```

Date/Publication 2023-10-11 15:50:02 UTC

2 add_bin_labels

R topics documented:

	add_bin_labels	2
	add_missingness	3
	coalesce_one_hot	4
	col_minmax	4
	combine	5
	complete	5
	convert	7
	delete_rMIDAS_env	9
	import_midas	9
	midas_setup	10
	mid_py_setup	10
	na_to_nan	11
	overimpute	11
	python_configured	15
	python_init	15
	reset_rMIDAS_env	15
	set_python_env	16
	skip_if_no_numpy	16
	train	17
	undo_minmax	19
Index		21

add_bin_labels

Reverse numeric conversion of binary vector

Description

Helper function to re-apply binary variable labels post-imputation.

Usage

```
add\_bin\_labels(x, one, zero, fast = TRUE)
```

Arguments

x	A numeric vector or column, scaled between 0 and 1
one	A character string, the label associated with binary value 1
zero	A character string, the label associated with binary value 0
fast	Boolean indicating whether to return binary value 1 if predicted probability >= 0.5 (TRUE), or take random draw using predicted probability as weighting.

Value

Vector of character strings corresponding to binary values

add_missingness 3

Examples

```
ex_bin <- c(1,0,0,1,1,0,0,1,0)
cat <- "cat"
dog <- "dog"
add_bin_labels(x = ex_bin, one = cat, zero = dog)</pre>
```

 ${\tt add_missingness}$

Apply MAR missingness to data

Description

Helper function to add missing values to data.

Usage

```
add_missingness(X, prop, cols = NULL)
```

Arguments

X	A data frame or similar
prop	Numeric value between 0 and 1; the proportion of observations set to missing
cols	A vector of column names to be corrupted; if NULL, all columns are used

Value

Data with missing values

4 col_minmax

coalesce	ono	hat
coaresce	one	not

Coalesce one-hot encoding back to a single variable

Description

Helper function to reverse one-hot encoding post-imputation.

Usage

```
coalesce_one_hot(X, var_name, fast = TRUE)
```

Arguments

X A data.frame, data.table or matrix, for a single variable var_name A character string, with the original variable label

fast Boolean, indicating whether to choose category with highest predicted proba-

bility (TRUE), or use predicted probabilities as weights in draw from random

distribution

Value

A vector of length equal to nrow(X), containing categorical labels corresponding to the columns of X

col_minmax

Scale numeric vector between 0 and 1

Description

Helper function to scale numeric variables. Aids convergence of Midas model.

Usage

```
col_minmax(x)
```

Arguments

Х

A numeric vector or column.

Value

Vector scaled between 0 and 1

```
ex_num <- runif(100,1,10)
scaled <- col_minmax(ex_num)</pre>
```

combine 5

\sim	ın	nŀ	١٦	n	_

Estimate and combine regression models from multiply-imputed data

Description

combine() calculates *m* individual regression models, then applies "Rubin's Rules" to produce a single, combined estimate of the regression parameters and uncertainty.

Usage

```
combine(formula, df_list, dof_adjust = TRUE, ...)
```

Arguments

formula	A formula, or character string coercible to a formula
df_list	A list, containing data.frames or objects coercible to data.frames
dof_adjust	Boolean, indicating whether or not to apply the Rubin and Barnard (1999) degrees of freedom adjustment for small-samples
	Further arguments passed onto glm()

Value

Data.frame of combined model results.

Examples

 ${\tt complete}$

Impute missing values using imputation model

Description

Having trained an imputation model, complete() produces m completed datasets, saved as a list.

6 complete

Usage

```
complete(
  mid_obj,
  m = 10L,
  unscale = TRUE,
  bin_label = TRUE,
  cat_coalesce = TRUE,
  fast = FALSE,
  file = NULL,
  file_root = NULL
)
```

Arguments

mid_obj	Object of class midas, the result of running rMIDAS::train()
m	An integer, the number of completed datasets required
unscale	Boolean, indicating whether to unscale any columns that were previously min-max scaled between 0 and 1 $$
bin_label	Boolean, indicating whether to add back labels for binary columns
cat_coalesce	Boolean, indicating whether to decode the one-hot encoded categorical variables
fast	Boolean, indicating whether to impute category with highest predicted probability (TRUE), or to use predicted probabilities to make weighted sample of category levels (FALSE)
file	Path to save completed datasets. If NULL, completed datasets are only loaded into memory.
file_root	A character string, used as the root for all filenames when saving completed datasets if a filepath is supplied. If no file_root is provided, completed datasets will be saved as "file/midas_impute_yymmdd_hhmmss_m.csv"

Details

For more information, see Lall and Robinson (2023): doi:10.18637/jss.v107.i09.

Value

List of length m, each element of which is a completed data.frame (i.e. no missing values)

References

Lall R, Robinson T (2023). "Efficient Multiple Imputation for Diverse Data in Python and R: MIDASpy and rMIDAS." *Journal of Statistical Software*, **107**(9), 1–38. doi:10.18637/jss.v107.i09.

```
# Generate raw data, with numeric, binary, and categorical variables
## Not run:
# Run where Python available and configured correctly
```

convert 7

```
if (python_configured()) {
set.seed(89)
n_obs <- 10000
raw_data <- data.table(a = sample(c("red","yellow","blue",NA),n_obs, replace = TRUE),</pre>
                        b = 1:n_{obs}
                        c = sample(c("YES","NO",NA),n_obs,replace=TRUE),
                        d = runif(n_obs, 1, 10),
                        e = sample(c("YES","NO"), n_obs, replace = TRUE),
                 f = sample(c("male", "female", "trans", "other", NA), n_obs, replace = TRUE))
# Names of bin./cat. variables
test_bin <- c("c","e")
test_cat <- c("a","f")
# Pre-process data
test_data <- convert(raw_data,</pre>
                      bin_cols = test_bin,
                      cat_cols = test_cat,
                      minmax_scale = TRUE)
# Run imputations
test_imp <- train(test_data)</pre>
# Generate datasets
complete_datasets <- complete(test_imp, m = 5, fast = FALSE)</pre>
# Use Rubin's rules to combine m regression models
midas_pool <- combine(formula = d~a+c+e+f,</pre>
                       complete_datasets)
}
## End(Not run)
```

convert

Pre-process data for Midas imputation

Description

convert pre-processes datasets to enable user-friendly interface with the main train() function.

Usage

```
convert(data, bin_cols = NULL, cat_cols = NULL, minmax_scale = FALSE)
```

Arguments

data

Either an object of class data.frame, data.table, or a path to a regular, delimited file 8 convert

```
bin_cols, cat_cols
```

A vector, column names corresponding to binary and categorical variables respectively

minmax_scale Boolean, indicating whether to scale all numeric columns between 0 and 1, to improve model convergence

Details

The function has two advantages over manual pre-processing:

- 1. Utilises data.table for fast read-in and processing of large datasets
- 2. Outputs an object that can be passed directly to train() without re-specifying column names etc.

For more information, see Lall and Robinson (2023): doi:10.18637/jss.v107.i09.

Value

Returns custom S3 object of class 'midas_preproc' containing:

- data processed version of input data,
- bin_list vector of binary variable names
- cat_lists embedded list of one-hot encoded categorical variable names
- minmax_params list of min. and max. values for each numeric object scaled

List containing converted data, categorical and binary labels to be imported into the imputation model, and scaling parameters for post-imputation transformations.

References

Lall R, Robinson T (2023). "Efficient Multiple Imputation for Diverse Data in Python and R: MIDASpy and rMIDAS." *Journal of Statistical Software*, **107**(9), 1–38. doi:10.18637/jss.v107.i09.

delete_rMIDAS_env 9

delete_rMIDAS_env

Delete the rMIDAS Environment and Configuration

Description

Deletes both the virtual environment and the configuration file for the rMIDAS package. After deletion, it is necessary to restart the R session and then load the rMIDAS package once more. This will trigger the setup process again.

Usage

```
delete_rMIDAS_env()
```

Value

A message indicating the completion of the deletion process.

import_midas

Instantiate Midas class

Description

Import Midas class into R environment, and instantiates passed parameters.

Usage

```
import_midas(...)
```

Arguments

... Arguments passed to the MIDAS class for instantiating network

Value

Object of class 'midas'

10 mid_py_setup

midas_setup Manually set up Python connection

Description

This function allows users to initialise a custom Python configuration to run MIDAS, having manually set a Python version using reticulate::use_python, reticulate::use_virtualenv, reticulate::use_condaenv, or reticulate::use_miniconda.

Usage

```
midas_setup()
```

Note

This function is primarily for users who wish to have complete control over configuring Python versions and environments.

This function call is **not** required if users either use the rMIDAS::set_python_env() function or leave settings at their default.

If users set a custom binary/environment, this must be completed prior to the first call to either train() or complete().

mid_py_setup

Configure python for MIDAS imputation

Description

This helper function checks if the required Python dependencies are installed, and if not, checks with user before installing them. Users should not call this function directly. Users can set a custom python install using set_python_env() so long as this is done prior to the first call to train() or complete().

Usage

```
mid_py_setup()
```

na_to_nan 11

na_to_nan

Replace NA missing values with NaN

Description

Helper function to convert NA values in a data frame to NaN. This ensures the correct conversion of missing values when reticulate converts R objects to their Python equivalent. See the reticulate package documentation on type conversions for more information.

Usage

```
na_to_nan(df)
```

Arguments

df

Data frame, or object coercible to one.

Value

Data frame with NA values replaced with NaN values.

Examples

```
na_{to} = c(1,NA,0,0,NA,NA))
```

overimpute

Perform overimputation diagnostic test

Description

overimpute() spikes additional missingness into the input data and reports imputation accuracy at training intervals specified by the user. overimpute() works like train() – users must specify input data, binary and categorical columns (if data is not generated via convert(), model parameters for the neural network, and then overimputation parameters (see below for full details).

Usage

```
overimpute(
  data,
  binary_columns = NULL,
  softmax_columns = NULL,
  spikein = 0.3,
  training_epochs,
  report_ival = 35,
  plot_vars = FALSE,
  skip_plot = FALSE,
```

12 overimpute

```
spike_seed = NULL,
  save_path = "",
  layer_structure = c(256, 256, 256),
  learn_rate = 4e-04,
  input_drop = 0.8,
  seed = 123L,
  train_batch = 16L,
  latent_space_size = 4,
  cont_adj = 1,
 binary_adj = 1,
  softmax_adj = 1,
  dropout_level = 0.5,
  vae_layer = FALSE,
  vae_alpha = 1,
  vae_sample_var = 1
)
```

Arguments

data

A data.frame (or coercible) object, or an object of class midas_pre created from rMIDAS::convert()

binary_columns A vector of column names, containing binary variables. NOTE: if data is a midas_pre object, this argument will be overwritten.

softmax_columns

A list of lists, each internal list corresponding to a single categorical variable and containing names of the one-hot encoded variable names. NOTE: if data is a midas_pre object, this argument will be overwritten.

spikein

A numeric between 0 and 1; the proportion of observed values in the input dataset to be randomly removed.

training_epochs

An integer, specifying the number of overimputation training epochs.

report_ival

An integer, specifying the number of overimputation training epochs between calculations of loss. Shorter intervals provide a more granular view of model performance but slow down the overimputation process.

plot_vars

Boolean, specifies whether to plot the distribution of original versus overimputed values. This takes the form of a density plot for continuous variables and a barplot for categorical variables (showing proportions of each class).

skip_plot

Boolean, specifies whether to suppress the main graphical output. This may be desirable when users are conducting a series of overimputation exercises and are primarily interested in the console output. **Note**, when skip_plot = FALSE, users must manually close the resulting pyplot window before the code will terminate.

spike_seed, seed

An integer, to initialize the pseudo-random number generators. Separate seeds can be provided for the spiked-in missingness and imputation, otherwise spike_seed is set to seed (default = 123L).

overimpute 13

save_path	String, indicating path to directory to save overimputation figures. Users should include a trailing "/" at the end of the path i.e. save_path = "path/to/figures/".
layer_structure	2
	A vector of integers, The number of nodes in each layer of the network (default = c(256, 256, 256), denoting a three-layer network with 256 nodes per layer). Larger networks can learn more complex data structures but require longer training and are more prone to overfitting.
learn_rate	A number, the learning rate γ (default = 0.0001), which controls the size of the weight adjustment in each training epoch. In general, higher values reduce training time at the expense of less accurate results.
input_drop	A number between 0 and 1. The probability of corruption for input columns in training mini-batches (default = 0.8). Higher values increase training time but reduce the risk of overfitting. In our experience, values between 0.7 and 0.95 deliver the best performance.
train_batch	An integer, the number of observations in training mini-batches (default = 16).
latent_space_si	
	An integer, the number of normal dimensions used to parameterize the latent space.
cont_adj	A number, weights the importance of continuous variables in the loss function
binary_adj	A number, weights the importance of binary variables in the loss function
softmax_adj	A number, weights the importance of categorical variables in the loss function
dropout_level	A number between 0 and 1, determines the number of nodes dropped to "thin" the network
vae_layer	Boolean, specifies whether to include a variational autoencoder layer in the network
vae_alpha	A number, the strength of the prior imposed on the Kullback-Leibler divergence term in the variational autoencoder loss functions.
vae_sample_var	A number, the sampling variance of the normal distributions used to parameterize the latent space.

Details

Accuracy is measured as the RMSE of imputed values versus actual values for continuous variables and classification error for categorical variables (i.e., the fraction of correctly predicted classes subtracted from 1). Both metrics are reported in two forms:

- 1. their summed value over all Monte Carlo samples from the estimated missing-data posterior "Aggregated RMSE" and "Aggregated softmax error";
- 2. their aggregated value divided by the number of such samples "Individual RMSE" and "Individual softmax error".

In the final model, we recommend selecting the number of training epochs that minimizes the average value of these metrics — weighted by the proportion (or substantive importance) of continuous and categorical variables — in the overimputation exercise. This "early stopping" rule reduces the risk of overtraining and thus, in effect, serves as an extra layer of regularization in the network.

For more information, see Lall and Robinson (2023): doi:10.18637/jss.v107.i09.

14 overimpute

Value

Object of class midas, and outputs both overimputation loss values to the console and generates overimputation graphs.

References

Lall R, Robinson T (2023). "Efficient Multiple Imputation for Diverse Data in Python and R: MIDASpy and rMIDAS." *Journal of Statistical Software*, **107**(9), 1–38. doi:10.18637/jss.v107.i09.

See Also

train for the main imputation function.

```
## Not run:
# Run where Python initialised and configured correctly
if (python_configured()) {
raw_data <- data.table(a = sample(c("red","yellow","blue",NA),1000, replace = TRUE),</pre>
                          b = 1:1000,
                          c = sample(c("YES","NO",NA),1000,replace=TRUE),
                          d = runif(1000, 1, 10),
                          e = sample(c("YES","NO"), 1000, replace = TRUE),
                  f = sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE))
# Names of bin./cat. variables
test_bin <- c("c","e")
test_cat <- c("a", "f")
# Pre-process data
test_data <- convert(raw_data,</pre>
                        bin_cols = test_bin,
                        cat_cols = test_cat,
                        minmax_scale = TRUE)
# Overimpute - without plots
test_imp <- overimpute(test_data,</pre>
                        spikein = 0.3,
                        plot_vars = FALSE,
                        skip_plot = TRUE,
                        training_epochs = 10,
                        report_ival = 5)
}
## End(Not run)
```

python_configured 15

python_configured

Check whether Python is capable of executing example code

Description

Checks if each Python dependency is available. This function is called within some examples to ensure code executes properly.

Usage

```
python_configured()
```

Value

NULL

python_init

Initialise connection to Python

Description

Internal function. Checks if Python has already been initialised, and if not, completes the required setup to run the MIDAS algorithm. This function is called automatically, and users should not call it directly. To configure which Python install/environment/conda is used, see documentation for set_python_env().

Usage

```
python_init()
```

reset_rMIDAS_env

Reset the rMIDAS Environment Configuration

Description

Resets the configuration for the rMIDAS package by deleting the configuration file. Once the configuration is reset, it is necessary to restart the R session and then load the rMIDAS package once more.

Usage

```
reset_rMIDAS_env()
```

Value

A message indicating the completion of the reset process.

skip_if_no_numpy

Description

This function allows users to set a custom python binary, virtualenv or conda environment, from which the MIDAS algorithm is run. Users comfortable with reticulate can configure Python manually using reticulate::use_. Note: If users wish to set a custom binary/environment, this must be completed prior to the first call to either train() or complete(). The same is true if users use the reticulate package directly. If users wish to switch to a different Python binaries, R must be restarted prior to calling this function.

Usage

```
set_python_env(x, type = "auto", ...)
```

Arguments

Х	Character string, path to python binary, or directory of virtualenv, or name of conda environment
type	Character string, specifies whether to set a python binary ("auto"), "virtualenv", or "conda"
	Further arguments passed to reticulate::use_condaenv()

Value

Boolean indicating whether the custom python environment was activated.

skip_if_no_numpy Skip test where 'numpy' not available.

Description

Check if Python's numpy is available, and skip test if not. This function is called within some tests to ensure server tests involving reticulate calls execute properly.

Usage

```
skip_if_no_numpy()
```

Value

NULL

17 train

train

Train an imputation model using Midas

Description

Build and run a MIDAS neural network on the supplied missing data.

Usage

```
train(
  data,
  binary_columns = NULL,
  softmax_columns = NULL,
  training_epochs = 10L,
  layer_structure = c(256, 256, 256),
  learn_rate = 4e-04,
  input_drop = 0.8,
  seed = 123L,
  train_batch = 16L,
  latent_space_size = 4,
  cont_adj = 1,
  binary_adj = 1,
  softmax_adj = 1,
  dropout_level = 0.5,
  vae_layer = FALSE,
  vae_alpha = 1,
  vae\_sample\_var = 1
)
```

Arguments

data

A data.frame (or coercible) object, or an object of class midas_pre created from rMIDAS::convert()

binary_columns A vector of column names, containing binary variables. NOTE: if data is a midas_pre object, this argument will be overwritten.

softmax_columns

A list of lists, each internal list corresponding to a single categorical variable and containing names of the one-hot encoded variable names. NOTE: if data is a midas_pre object, this argument will be overwritten.

training_epochs

An integer, indicating the number of forward passes to conduct when running the model.

layer_structure

A vector of integers, The number of nodes in each layer of the network (default = c(256, 256, 256), denoting a three-layer network with 256 nodes per layer). Larger networks can learn more complex data structures but require longer training and are more prone to overfitting.

18 train

learn_rate	A number, the learning rate γ (default = 0.0001), which controls the size of the weight adjustment in each training epoch. In general, higher values reduce training time at the expense of less accurate results.
input_drop	A number between 0 and 1. The probability of corruption for input columns in training mini-batches (default = 0.8). Higher values increase training time but reduce the risk of overfitting. In our experience, values between 0.7 and 0.95 deliver the best performance.
seed	An integer, the value to which Python's pseudo-random number generator is initialized. This enables users to ensure that data shuffling, weight and bias initialization, and missingness indicator vectors are reproducible.
train_batch	An integer, the number of observations in training mini-batches (default = 16).
latent_space_s	
	An integer, the number of normal dimensions used to parameterize the latent space.
cont_adj	A number, weights the importance of continuous variables in the loss function
binary_adj	A number, weights the importance of binary variables in the loss function
softmax_adj	A number, weights the importance of categorical variables in the loss function
dropout_level	A number between 0 and 1, determines the number of nodes dropped to "thin" the network $$
vae_layer	Boolean, specifies whether to include a variational autoencoder layer in the network
vae_alpha	A number, the strength of the prior imposed on the Kullback-Leibler divergence term in the variational autoencoder loss functions.
vae_sample_var	A number, the sampling variance of the normal distributions used to parameterize the latent space.

Details

For more information, see Lall and Robinson (2023): doi:10.18637/jss.v107.i09.

Value

Object of class midas from which completed datasets can be drawn, using rMIDAS::complete()

References

Lall R, Robinson T (2023). "Efficient Multiple Imputation for Diverse Data in Python and R: MIDASpy and rMIDAS." *Journal of Statistical Software*, **107**(9), 1–38. doi:10.18637/jss.v107.i09.

```
# Generate raw data, with numeric, binary, and categorical variables
## Not run:
# Run where Python available and configured correctly
if (python_configured()) {
set.seed(89)
n_obs <- 10000</pre>
```

undo_minmax 19

```
raw_data <- data.table(a = sample(c("red","yellow","blue",NA),n_obs, replace = TRUE),</pre>
                        b = 1:n_{obs}
                        c = sample(c("YES","NO",NA),n_obs,replace=TRUE),
                        d = runif(n_obs, 1, 10),
                        e = sample(c("YES","NO"), n_obs, replace = TRUE),
                 f = sample(c("male", "female", "trans", "other", NA), n_obs, replace = TRUE))
# Names of bin./cat. variables
test_bin <- c("c","e")
test_cat <- c("a","f")
# Pre-process data
test_data <- convert(raw_data,</pre>
                      bin_cols = test_bin,
                      cat_cols = test_cat,
                      minmax_scale = TRUE)
# Run imputations
test_imp <- train(test_data)</pre>
# Generate datasets
complete_datasets <- complete(test_imp, m = 5, fast = FALSE)</pre>
# Use Rubin's rules to combine m regression models
midas_pool <- combine(formula = d^a+c+e+f,
                       complete_datasets)
}
## End(Not run)
```

undo_minmax

Reverse minmax scaling of numeric vector

Description

Helper function to reverse minmax scaling applied in the pre-processing step.

Usage

```
undo_minmax(s, s_min, s_max)
```

Arguments

S	A numeric vector or column, scaled between 0 and 1.
s_min	A numeric value, the minimum of the unscaled vector
s_max	A numeric value, the maximum of the unscaled vector

20 undo_minmax

Value

Vector re-scaled using original parameters s_min and s_max

```
ex_num <- runif(100,1,10)
scaled <- col_minmax(ex_num)
undo_scale <- undo_minmax(scaled, s_min = min(ex_num), s_max = max(ex_num))
# Prove two are identical
all.equal(ex_num, undo_scale)</pre>
```

Index

* diagnostics	na_to_nan, 11
overimpute, 11	
* import	overimpute, 11
combine, 5	6: 1.15
* imputation	python_configured, 15
complete, 5	python_init, 15
<pre>import_midas, 9</pre>	rocat rMIDAS any 15
train, 17	reset_rMIDAS_env, 15
* postprocessing	set_python_env, 16
add_bin_labels, 2	skip_if_no_numpy, 16
<pre>coalesce_one_hot, 4</pre>	CN1p_1oapy, 10
undo_minmax, 19	train, <i>14</i> , 17
* preprocessing	
add_missingness, 3	undo_minmax, 19
col_minmax,4	
convert, 7	
na_to_nan, 11	
* setup	
mid_py_setup, 10	
midas_setup, 10	
python_configured, 15	
<pre>python_init, 15</pre>	
set_python_env, 16	
skip_if_no_numpy, 16	
add_bin_labels, 2	
add_missingness, 3	
•	
coalesce_one_hot, 4	
col_minmax, 4	
combine, 5	
complete, 5	
convert, 7	
delete_rMIDAS_env,9	
import_midas, 9	
mid_py_setup, 10	
midas_setup, 10	