Mixture of Gaussian 의 EM Algorithm 적용

바이오 인공지능융합학과 2021192861 김가연

1. Introduction

1.1 Mixture of Gaussian

Figure 1 Gaussian Mixture Model

Gaussian Mixture Model, GMM 은 Gaussian 분포가 여러 개 혼합된 clustering 알고리즘이다.

왼쪽 그림처럼 현실에 존재하는 복잡한 형태의 확률 분포를 여러 개의 Gaussian 분포를 혼합하여 표현하자는 것이 GMM 의 기본 아이디어다.

$$p(\mathbf{x}|\mathbf{\Theta}) = \sum_{j=1}^{m} \alpha_j p_j(\mathbf{x}|\boldsymbol{\theta}_j)$$

Figure 2 GMM의 x가 발생할 확률

GMM 의 x 가 발생할 확률은 여러 Gaussian probability density function 의 합으로 표현된다. 위 식에서는 총 m 개의 components 가 있다. 여기서 α_j 는 mixing probability 로 j 번째 component 가 선택될 확률을 나타내고 α_j 는 0~1 사이의 값을 가지고 모든 α_j 의 합은 1 이 된다. $p_j(x|\theta)$ 는 component density 로 j 번째 sample 의 likelihood 이다.

1.2 EM Algorithm (Expectation-Maximization Algorithm)

1.2.1 EM 알고리즘의 개념

EM 알고리즘은 관측되지 않은 잠재변수(latent variables)에 의존하는 확률 모델에서 maximum likelihood 를 갖는 최적의 매개변수 θ 를 찾는 반복적인 알고리즘이다. EM 알고리즘은 2 가지 step, E-step, M-step 을 반복하면서 이루어지는데 먼저 E-step 은 주어진 임의의 파라미터 초기값에서 likelihood 와 최대한 근사한 likelihood 값을 계산한다. 그리고 M-step 은 E-step 에서 계산된 likelihood 를 최대화하는 새로운 파라미터 θ 를 계산한다.

1.2.2 EM 알고리즘 프로세스

왼쪽 위의 그림처럼 우리가 maximization 하고싶은 likelihood $\sum_i \log p(x^{(i)}|\theta)$ 는 'Jensen's inequality'에 의해 complete log likelihood $E_{y^{(i)}\sim Q_i(y^{(i)})}[\log p(x^{(i)},y^{(i)}|\theta]$ 이상으로 정의된다. 따라서 complete log likelihood 를 높이게 되면 이를 lower bound 로 가지는 maximization 하고싶은 likelihood 를 높일 수 있을 것이다. 즉 오른쪽 위 그림에서 볼 수 있듯이 EM 알고리즘은 실제 cost function $\sum_i \log p(x^{(i)}|\theta)$ 의 tight lower bound 인 $E_{y^{(i)}\sim Q_i(y^{(i)})}[\log p(x^{(i)},y^{(i)}|\theta]$ 를 최대화하는 것이다.

위에서는 두 식의 관계가 이상으로 정의되었는데 만약 $Q_i(y^{(i)}):=\log p(y^{(i)}|x^{(i)},\theta]$ 이라면 두 식은 같아지게 된다. 즉 EM 알고리즘의 E-step 은 $Q_i(y^{(i)}):=\log p(y^{(i)}|x^{(i)},\theta]$ 인 $Q_i(y^{(i)})$ 를 찾고,

M-step 에서 $\theta \coloneqq argmax_{\theta} \sum_{i} \sum_{y^{(i)}} Q_i (y^{(i)}) \log \frac{p(x^{(i)}, y^{(i)}; \theta)}{Q_i(y^{(i)})}$ 로 θ 를 업데이트 하는 것이다.

1.3 MoG(Mixture of Gaussian)의 EM Algorithm 적용

$$\begin{array}{ll} \textcircled{\textcircled{\textbf{0}}} & \textbf{0} & \textbf{0}$$

2. Method

2.1 Data

2.1.1 평균과 분산

```
# 차원 수
Ndim = 2
# class 수
NClasses = 3
# nsample : 전체 데이터 갯수
Nsample = 150
# class 볼 플러는 욕을 맡게 하려면 '1'로 설정
same_probability = 1|
# Mean
Mu = [np.random.uniform(0.0, 50.0, Ndim) for i in range(1,NClasses+1)]
# Covariance
SDClass = np.random.uniform(1.0,10.0,NClasses)
#print('SDClass : ',SDClass)
Cov = [makeSDmatrix(Ndim,i) for i in SDClass]
```

```
Means of the classes
['Means for Class 1'] [28.78109855 12.60408777]
['Means for Class 2'] [15.8768149 37.8477567]
['Means for Class 3'] [16.31058868 35.0237212 ]
           Variances of the classes
           ['the variance for Class 1']
           [[1.98716156 0.39564416]
            [0.39564416 2.13130009]]
           ['the variance for Class 2']
           [[6.51461282 0.37277097]
            [0.37277097 6.49495126]]
           ['the variance for Class 3']
           [[2.60120821 0.80054451]
            [0.80054451 2.78075097]]
 def makeSDmatrix(n,sd):
      M = np.matrix(np.random.rand(n,n))
      M = 0.5*(M + M.T)
      M = M + sd*np.eye(n)
     return M
```

2 차원 Gaussian Mixture Model 의 data 를 뽑기 위해 class 수 (NClasses)와 총 데이터 sample 수(Nsample)을 설정한다. 각 component 에서 sample 이 뽑히는 확률을 같게 하려면 same_probability 를 '1'로 설정한다.

3 개의 components 를 사용한다고 하면 평균 Mu 는 0 에서 50 사이에서 random 하게 3 개의 class 마다 평균 2 개, 총 6 개의 값을 뽑는다. 분산은 2 차원이므로 공분산의 형태일 것이고 마찬가지로 1 에서 10 사이에서 하나의 값을 random 하게 뽑고 그 값을 makeSDmatrix 함수에 넣어서 symmetric positive definite 행렬로 변환해 covariance 형태의 분산을 만든다.

2.1.2 각 component 에서 sample 을 뽑을 확률 α_i 과 sample 개수 뽑기

Figure 3 component별 선택될 확률

```
# 모든 클래스가 선택될 확률을 동일하게
                                                    The probabilities of each classes from 1 to 3
if same_probability==1:
                                                    [0.17322058 0.20811174 0.61866768]
  alpha = np.repeat(1.0/NClasses,NClasses)
# 클래스 별 선택될 확률을 다르게
el se:
                                                    Figure 4 확률이 다를 경우 예시
  a = np.ones(NClasses)
  n = 1
                                                    The probabilities of each classes from 1 to 3
   p = Ien(a)
                                                    [0.33333333 \ 0.33333333 \ 0.33333333]
   rd = np.random.gamma(np.repeat(a,n),n,p)
   rd = np.divide(rd,np.repeat(np.sum(rd),p))
   alpha = rd
                                                    Figure 3 확률이 같을 경우 예시
```

모든 component 에서 다른 확률로 sample 을 뽑는다면 gamma 분포를 통해 합이 1 이도록 확률을 class 개수만큼 분배하고, 같은 확률로 sample 을 뽑는다면 1을 각 class 개수로 나누어 사용한다.

```
r = np.random.multinomial(Nsample,alpha)
```

Figure 4 확률에 따라 component별로 sample 개수선택

random.multinomial을 통해 alpha의 확률을 사용해 총 Nsample개의 데이터를 클래스 별로 나누어 준다.

```
data_sample = [np.random.multivariate_normal(Mu[i], Cov[i], r[i]) for i in range(0,NClasses)]
```

Figure 5 multivariate 정규 분포를 이용하여 각 클래스별로 sample을 random으로 뽑기

random.multivariate_normal 을 이용해 위에서 선택된 평균, 분산, 데이터 개수에 따라 2 차원 데이터를 class 수만큼 뽑는다. Class 가 3 개이고 각 class 별로 44, 50, 56 개의 데이터가 있다면 [28.11044942, 9.37201796], 이런식의 data 가 각 클래스별로 44, 50, 56 개 존재한다.

2.1.3 EM algorithm test 를 위해 데이터 섞기

```
# data를 array로
y = np.empty([1, Ndim])
for i in range(NClasses):
    y = np.vstack((y,data_sample[i]))
y = np.delete(y, 0, axis=0)
# 데이터들에 클래스 활용하기
v_true = np.zeros((1))
for i,j in enumerate(r):
    v_true = np.hstack((v_true, np.repeat(i+1, j)))
v_true = np.array([v_true[1:]])
y_true = np.concatenate((y, v_true.T), axis=1)
# 데이터 석기
np.random.shuffle(y_true)
```

위에서 뽑은 data_sample 을 (150,2) 형태의 array 로 만든다.

다음으로 정확도 계산을 위해 data_sample array 에 열을 하나 추가하여 class 번호도 붙여준다. 예를 들어 [16.82792156 26.00812523 1.]는 1 번 class 에 속하는 (x,y) 2 차원 데이터를 의미한다.

마지막으로 EM algorithm 실행 전 데이터를 random 한 순서로 섞어서 데이터를 저장해 준다.

2.2 EM Algorithm

2.2.1 초기 평균, 분산, 확률 설정하기

```
initMu = np.empty([NClasses, Ndim])
initCov = np.empty([Ndim, Ndim, NClasses])

for j in range(NClasses):
    initMu[j,:] = np.random.uniform(0.0, 50.0, Ndim)
    sd = np.random.uniform(1.0,10.0)
    initCov[:,:,j] = makeSDmatrix(Ndim,sd)

a = np.ones(NClasses)
n = 1
p = len(a)
rd = np.random.gamma(np.repeat(a,n),n,p)
rd = np.divide(rd,np.repeat(np.sum(rd),p))
initW = rd
```

초기 평균(initMu), 분산(initCov), 각 component 에서 sample 이 뽑힐 확률(initW)을 위해 앞에서 data 를 뽑을 때와 동일하게 평균과 분산은 크기만큼 random 하게 만들어주고 확률은 Gamma 분포를 통해 합이 1 이 되도록 확률 값을 나누어 준다.

 $p(y_i|x_i, \theta^{(g)}) = \frac{\alpha_{y_i}^{(g)} p_{y_i}(x_i|\theta_{y_i}^{(g)})}{\sum_{j=1}^m \alpha_j^{(g)} p_{j}(x_i|\theta_j^{(g)})}$ 계산을 위해서 먼저 $\alpha_{y_i}^{(g)} p_{y_i}(x_i|\theta_{y_i}^{(g)})$ 인 r_ij_Sumj[jClass]를 보면 $\alpha_{y_i}^{(g)}$ 가 w[jClass]이고 현재 우리는 multivariate_normal 을 통해 sampling 을 하였으므로 $p_{y_i}(x_i|\theta_{y_i}^{(g)})$ 는 multivariate_normal.pdf 를 따를 것이다. 따라서 두 식의 곱인 $\alpha_{y_i}^{(g)} p_{y_i}(x_i|\theta_{y_i}^{(g)})$ 가 분포가 되고 이것을 분자로, class 개수만큼 j 에 대해 모두 더한 np.sum(r_ij_Sumj)를 분모에 주면 우리가 구할 $p(y_i|x_i,\theta^{(g)})$ 가 정의된다.

2.2.3 M-step

```
def MStep(r, y, mu, cov):
   N = y.shape[0]
   Allmu_j = np.zeros((N, mu.shape[0], mu.shape[1]))
Allcov_j = np.zeros((N, cov.shape[0], cov.shape[1], cov.shape[2]))
   mu_j = np.zeros((mu.shape[0], mu.shape[1]))
   cov_j = np.zeros((cov.shape[0], cov.shape[1], cov.shape[2]))
   # weight 월데이트
   w_j = np.sum(r, axis=0) / N
   # mean / mu_j
   for Object in range(N):
       Allmu_j[Object,:,:]=np.asmatrix(r[Object,:]).T*y[Object,:]
   for j in range(cov.shape[2]):
       # covariance : cov_j
   for Object in range(N):
       for j in range(cov.shape[2]):
           Allcov_j[Object,:,:,j] = r[Object,j]
           *np.asmatrix(y[Object,:]-mu_j[j,:]).T*np.asmatrix(y[Object,:]-mu_j[j,:])
   for j in range(cov.shape[2]):
       cov_j[:,:,j] = (np.sum(Allcov_j, axis=0)[:,:,j])/(np.sum(r,axis=0)[j])
return w_j,mu_j,cov_j
```

1.3 에서 보았듯이 $\alpha_j = \frac{\sum_{i=1}^n p(j|x_i, \theta^{(g)})}{n}$, $\mu_j = \frac{\sum_{i=1}^n p(j|x_i, \theta^{(g)})x_i}{\sum_{i=1}^n p(j|x_i, \theta^{(g)})}$, $\Sigma_j = \frac{\sum_{i=1}^n p(j|x_i, \theta^{(g)})(x_i - \widehat{\mu_j})(x_i - \widehat{\mu_j})^T}{\sum_{i=1}^n p(j|x_i, \theta^{(g)})}$ 1 로 업데이트한다.

¹ MoG의 EM 알고리즘에서 사용할 수 있는 Σ_j 는 총 5가지 ($\sigma^2 I$, $\sigma_j^2 I$, $diag(\{\sigma_{jk}^2\}_{k=1}^d)$, Σ , arbitrary)가 있는데 본실험에서는 가장 general한 방법인 'arbitrary' 를 사용하였다.

2.2.4 E-step, M-step 반복적으로 적용

```
EMiteration = 2000
# starting values
r_n = EStep(y, init\, init\u00e4u, initCov)
w_n, mu_n, cov_n = MStep(r_n, y, initMu, initCov)
logLH = -10000000000000
for i in range(EMiteration):
    # E sten
    r_n = \text{EStep}(y, w_n, mu_n, cov_n)
    w_n, mu_n, sigma_n = MStep(r_n, y, mu_n, cov_n)
    # log likelihood
    logLall = np.zeros((y.shape[0]))
    for Object in range(y.shape[0]):
        LH = np.zeros(NClasses)
        for jClass in range(NClasses):
   LH[jClass] = w_n[jClass]
            sc.stats.multivariate_normal.pdf(y[Object,:], mu_n[jClass,:], cov_n[:,:,jClass])
        logLall[Object] = np.log(np.sum(LH))
    logL = np.sum(logLall)
    if logL > logLH:
         # 수렴조건을 둘 차이가 10^(-4) 미만일때로 설정
        if (logL-logLH<10**(-6)):
print('둘 차이가 매우 적음')
            hreak
        else :
            logLH = logL
            print ('found larger: ', logLH)
            w_p = w_n
            mu_p = mu_n
            sigma_p = sigma_n
print('final log likelihood : ', logLH)
```

EM Algorithm 은 E-step 과 M-step 을 반복적으로 실행하는데 stop condition 이 필요하다. 총 2 가지 ①현재 log likelihood 값과 직전의 log likelihood 값의 차이가 설정된 ε^2 보다 작을 때, 혹은 ② iteration 의 수를 정해주어 stop condition 을 정의한다. 본 실험에서는 ① 현재 log likelihood 값과 직전의 log likelihood 값의 차이가 설정된 ε 보다 작을 때에 EM 알고리즘이 종료된다. 두 log likelihood 값의 차이가 ε 보다 작지 않지만 log likelihood 값이 더 큰 것이 발견되었다면 log likelihood, α_i , μ_i , Σ_i , 결과 r_i p 를 모두 현재 값으로 업데이트 해준다.

 $^{^2}$ 본 실험에서 arepsilon은 10^{-6} 으로 설정하였다.

2.2.5 정확도 계산

EM 알고리즘을 통해 clustering을 하게 되면 원래의 class 번호에 따라 분류되는 것이 아니기 때문에 r_p 의 결과 (150*NClasses)에서 NClasses 인 열을 순열으로 모든 경우의 수를 따져 보아야 한다. 예를 들어 5 개의 class를 사용한다면 결과 r_p 는 150*5의 형태이고 이때 열 5 개를 모든 순열 5*4*3*2*1=120 가지의 경우의 수를 모두 따져 보아야한다.

```
a=list(range(NClasses))
permute = list(permutations(a,NClasses))
permute_=[]
acc_list=[]
permute_list=[]
r_list=[]
# 모든 permutation을 고려해 정확도 구하여서 가장 높은 정확도를 가지는 permutation 찾기
for i in range(len(permute)):
   Gorder = list(permute[i])
   permute_.append(Gorder)
   reorder = r_p[:,Gorder]
   inf = np.argmax(reorder, axis=1)
   r_.append(inf+1)
   Clust=y_true[:,2]==inf+1
   now_acc=np.mean(Clust)
   acc_list=np.append(acc_list, now_acc)
   permute_list.append(list)
   r_list.append(r_)
acc=max(acc_list)
index=np.argmax(acc_list)
```

먼저 class 의 개수만큼 0 에서 NClasses-1 까지의 list 를 만들고 이 숫자들로 가능한 모든 순열을 만든다. 총 순열의 수만큼 반복하며 해당 permutation을 이용해 r_p 를 재정렬(reorder)하고 np.argmax 를 통해 가장 높은 확률을 가지는 것을 찾는다(inf). 후에 inf 에 1을 더하고 원래의 class 가 같은지 비교하여(Clust) np.mean을 통해 accuracy 를 찾아낸다.

예를 들어 class 가 5 개라면 a={0,1,2,3,4}가 되고 permute={(0,1,2,3,4), (0,1,2,4,3), ... }이며 permute 는 총 120 개의 원소가 있다. 이중 하나의 순열 {0,1,3,4,2} 이용해 r_p 를 재정렬하여 reoder 을 만들고 np.argmax(reorder)을 하여 재정렬한 후 확률이 가장 높은 값을 가지는 index 를 150 개 모두 찾아낸 후 값에 1을 더해주면 이것이 우리가 예측한 class 번호 inf+1 이 된다. 마지막으로 원래의 답인 y_true[;,2]와 inf+1를 비교하여 Clust 를 만들고 np.mean(Clust)를 통해 정확도를 계산한다.

for 문을 이용해 가능한 모든 순열의 정확도를 acc_list에 저장해 두고 list에서 가장 큰 값이 우리가 사용할 정확도이고 그때 사용된 순열이 가장 바르게 재정렬한 경우이다. 정확도를 acc 로 그때의 순열을 index 로 저장한다.

3. Result

비교를 위해 총 150 개의 데이터를 class 3 개, 5 개, 7 개로 나누어 실험을 진행하였다.

3.1 class 3 개

3.1.1 각 component 별 선택될 확률 α_i 가 동일할 때 (α_i =0.333)

```
The probabilities of each classes from 1 to 3 The number of objects in each classes from 1 to 3 [0.33333333 0.33333333 0.33333333] [54 49 47]
```

각 component 별로 선택될 확률 α_i 가 동일하므로 각각의 component 들은 모두 33.33%의 확률로 데이터가 선택될 것이다. 위 확률을 바탕으로 데이터 150 개는 각각 class 에 59, 49, 47 개로 나누어 졌다.

① 원래 데이터 분포와 clustering 이후의 분포 비교

실험 데이터를 확인해 보면 왼쪽 위의 그림과 같이 분포하는 것을 확인할 수 있다. 다음으로 EM 알고리즘을 반복적으로 실행하여 clustering 한 결과 오른쪽 위의 그림과 같이 데이터가 잘 clustering 된 것을 확인할 수 있다.

② log likelihood값과 정확도 비교

found larger: -848.1615133461664 found larger: -848.1396566579525

둘 차이가 매우 적음 accuracy : 1.0

final log likelihood : -848.1396566579525 가장 높은 정확도를 가지는 permutation : (D, 2, 1)

실제 class

예측 class

```
y_true[:,2]
                                                                                                                                                                                           r_list[index]
                                          1., 3.,
2., 1.,
3., 2.,
                                                                                                                                                  2.,
2.,
1.,
3.,
                                                                                                                                                                                                                                                                                                                                                    3, 2,
2, 2,
1, 2,
2, 3,
1, 3,
3, 2,
                                                                                                                                                                                                                                                    1, 2,
1, 2,
                                                                                                                                                                                                                                                                                                                                     2,
3,
                                                                                                                                                                                         [array([2, 2, 3,
                                                                                                                                                                                                                                                                                                                                             3,
2,
2,
1,
                                                                                3., 2.,
                                                              3.,
                                                                                                                                                                                                                                                                                           1, 2,
1, 1,
3, 2,
2, 1,
2, 3,
3, 2,
                                                                                          2., 3., 3., 2., 3., 3.,
                                                                                                                                                                                                             3, 1, 2, 1,
                                                                                                                               1., 1., 2.,
3., 1., 1.,
3., 3., 3.,
1., 2., 1.,
2., 2., 1.,
3., 2., 2.,
3., 1., 2.,
1., 1.])
                                                                                                                                                                                                                                     2, 3, 1, 1,
                                                                                                                                                                                                                    1, 3,
                                                                                                                                                                                                                                                                                     2,
3,
2,
3,
3,
                                                                                                                                                                                                                                                                                                             3,
                                                                                                                                                                                                                                                                                                                             1,
                                                                                                   2., 2., 3.,
                                                                       2.,
                                                                                                              2.
                                                                                                                                                                                                             3, 1, 3, 1, 1, 1, 1,
1, 1, 3, 3, 1, 1, 3, 2,
3, 2, 1, 3, 2, 2, 3,
3, 2, 3, 3, 3, 2, 2,
1, 2, 1, 1, 1, 1, 2,
                                                                                                                                                                                                                                                                                                                                     3,
2,
1,
                                                                                                                                                                                                                                                                    2,
2,
3,
                                                                                                                                                                                                                                                                                                                    2, 1,
3, 1,
1, 3,
                                                                                                                                                                                                                                                                                                             1,
                                                              1...
                                                                                                             1...
                                          3., 2., 3., 2.,
                                                                                                             1.,
2.,
3.,
3.,
                                                             2.,
                                                                       ī.,
3.,
                                                                                2.,
                                                                                                                      3.,
                                                                                                                                                                      3.,
                                                                                                                                                                                                                                                                             1,
                                                                                                                                                                                                                                                                                                             1,
                                                                                                                                                                                                                                                                            3, 2, 2,
                                                                                                                                                                                                                                                                                                                             3,
                                                                                                                                                                                                                                                                                                             i,
                                                                                                                                                                                                                                                                                                                                                                     3,
                                                             3.,
                                                                                                   2., 2., 3.,
                                                                                                                      3.,
                                                                                                                                                                                                                                                                                                                                     2,
2,
                                                    3.,
                                                                                                                                                                                                                                                                                                             3,
                                                                                                                                                                                                                                                                                                                                             3,
                                          3.,
                                                                       2.,
                                                                                3.,
                                                                                                                                                                                                                                                                                                                     3,
```

EM 알고리즘은 이전과 현재의 log likelihood값의 차이가 10⁻⁶ 보다 작을 때 종료된다. 본 실험에서 2번의 iteration 후 최종 log likelihood값은 -848.1396이고 100%의 <mark>정확도</mark>를 가지며 그때 사용된 순열은 (0, 2, 1)이다. 실제 class번호와 예측된 class 번호를 비교해 보면 모든 데이터가 동일한 것을 확인할 수 있다.

- 각 component 가 선택될 확률 α_i

예측 : class 별 선택될 확률: [0.35873994 0.32792673 0.31333333] 실제 : class 별 선택될 확률 [0.33333333 0.33333333 0.33333333]

- 평균

- 분산

```
['예측: class 별 variances']
[[3.98743974 0.19604601]
[[0.19604601 4.24230946]]
['예측: class 별 variances']
[[4.15768783 0.440436]
[[0.440436 5.62455894]]
['예측: class 별 variances']
['연계 : class 별 variances']
[[5.1721744 0.90252717]
[[4.77386667 0.41422585]]
```

마지막으로 원래 data의 분산, 평균, 각 component가 선택될 확률 α_i 을 EM알고리즘이 종료된 후 우리가 구한 값들과 비교해 보면 모두 비슷한 값을 가지는 것을 확인할 수 있다.

3.1.2 각 component 별 선택될 확률 α_i 가 다를 때

각 component별로 선택될 확률 α_i 가 모두 다르게 설정된다. 본 실험에서는 각각 왼쪽 위의 사진과 같은 확률로 선택되었고 위 확률을 바탕으로 데이터는 각각 class에 5, 43, 102 개로 나누어 졌다.

① 원래 데이터 분포와 clustering 이후의 분포 비교

본 실험 데이터를 확인해 보면 왼쪽 위의 그림과 같이 분포하는 것을 확인할 수 있다. 다음으로 데이터를 random한 순서로 섞은 후 EM 알고리즘을 반복적으로 실행하여 clustering 한 결과 오른쪽 위의 그림과 같이데이터가 잘 clustering 된 것을 확인할 수 있다.

② log likelihood값과 정확도 비교

found larger: -775.5100896717679 found larger: -775.509642378552

둘 차이가 매우 적음

final log likelihood : -775.509642378552

accuracy : 1.0 가장 높은 정확도를 가지는 permutation : (1, 2, 0)

실제 class

y_true[:,2]									
array	3., 3., 3., 2., 2., 3., 2., 3., 3., 3., 3., 3.,	1., 3. 3., 3. 3., 2. 3., 3. 3., 3. 2., 3.	, 2., 2. , 2., 2. , 3., 2. , 2., 3. , 3., 3. , 2., 1. , 3., 3.	, 2., 1. , 3., 3. , 3., 3. , 2., 3. , 3., 3. , 2., 2. , 3., 2. , 3., 3.	, 3., 3 , 3., 3 , 3., 3 , 3., 3 , 2., 2 , 3., 2	., 3., 3 ., 3., 3 ., 3., 3 ., 2., 3 ., 3., 3	3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3.,	2., 3., 3., 2., 3., 2., 2., 3., 2., 3., 3., 3.,	2., 2., 2., 3., 3., 2., 3., 3., 2., 2.,

예측 class

본 실험에서 2번의 iteration 후 최종 log likelihood값은 -775.5096으로 매우 높은 log likelihood값을 가지고 100%의 <mark>정확도</mark>를 가지며 그때 사용된 순열은 (1, 2, 0)이다. 실제 class 번호와 예측된 class 번호를 비교해 보면모든 데이터가 동일한 것을 확인할 수 있다.

- 각 component 가 선택될 확률 α_i

예측 : class 별 선택될 확률: [0.03343882 0.28666667 0.67989451] 실제 : class 별 선택될 확률 [0.04209889 0.30362989 0.65427122]

- 평균

- 분산

```
['예측 : class 별 variances']
[[6.61399054 1.72288471] [[4.05134675 0.75473282]
[1.72288471 1.97545714]] [[0.75473282 4.11333748]]
['예측 : class 별 variances']
[[4.64601837 1.48999735] [[4.94344278 0.62156561]
[1.48999735 6.06933057]] [[4.94344278 0.62156561]
[[0.62156561 5.41594375]]
['실제 : class 별 variances']
[[4.22418411 0.66452188] [[4.45787018 0.47465811]
[0.47465811 4.89681898]]
```

마지막으로 원래 data의 분산, 평균, 각 component가 선택될 확률 α_i 을 EM알고리즘이 종료된 후 우리가 구한 값들과 비교해 보면 평균과 α_i 는 비슷한 값을 가지는 것을 확인할 수 있다. 분산은 첫번째 class 에서 분산의 차이가 조금 있지만 분류는 잘 되었음을 확인할 수 있다.

3.2 class 5 개

3.2.1 각 component 별 선택될 확률 α_i 가 동일할 때 $(\alpha_i=0.2)$

```
The probabilities of each classes from 1 to 5 The number of objects in each classes from 1 to 5 [0.2 0.2 0.2 0.2] [33 28 32 23 34]
```

각 component별로 선택될 확률 α_i 가 동일하므로 각각의 component들은 모두 20%의 확률로 데이터가 선택될 것이다. 그 확률을 바탕으로 각 component의 데이터는 33, 28, 32, 23, 34개로 나누어 졌다.

① 원래 데이터 분포와 clustering 이후의 분포 비교

실험 데이터를 확인해 보면 왼쪽 위의 그림과 같이 분포하는 것을 확인할 수 있다. 다음으로 EM 알고리즘을 반복적으로 실행하여 clustering 한 결과 오른쪽 위의 그림과 같이 데이터가 잘 clustering 된 것을 확인할 수 있다.

② log likelihood값과 정확도 비교

```
found larger: -927.6670469066942
   found larger: -927.6110706557229
                                    -927.6087787517704
   found larger:
   둘 차이가 매우 적음
                                                                                                         accuracy: 1.0
   final log likelihood : -927.6087787517704
                                                                                                         가장 높은 정확도를 가지는 permutation : (4, 3, 2, 0, 1)
실제 class
                                                                                                                      예측 class
 y_true[:,2]
                                                                                                                         r_list[index]
array([4., 5., 4.,
                                                                                                 3.,
3.,
5.,
4.,
                                   2., 5., 5., 1.,
                                                                                                        3.,
1.,
4.,
2.,
           1., 3., 5., 5.,
1., 2., 4., 3.,
3., 4., 3., 5.,
                                                                         5., 5., 5., 2.,
                                                                                3.,
4.,
2.,
1.,
                                                                                      2.,
                                                                                                                                    [4, 5, 4, 2, 2, 3, 3, 2, 2, 5, 3, 4, 3, 1, 3, 4, 3, 3, 5, 1, 1, 2, 3, 4, 2, 1, 1, 2, 1, 1, 1, 4, 4, 4,
                                                                                                                                                           1, 3,
5, 3,
1, 5,
4, 5,
1, 4,
2, 4,
5, 3,
                                                                                                                                                                                                                           3, 5, 5, 2,
4, 3, 5, 1,
2, 5, 1, 5,
5, 1, 2, 1,
3, 5, 2, 5,
5, 1, 2, 3,
                                                                                                                                                                                    1, 4,
3, 2,
5, 2,
2, 4,
3, 1,
1, 2,
4, 2,
                                                                                                                                                                                                   4,
2,
1,
                                                                                                                        [array([4, 5,
                                                                                                                                                                      2,
2,
3,
2,
2,
4,
                                                                                                                                                                                              3,
1,
5,
3,
4,
3,
5,
                                                                                                                                                                                                        3,
4,
5,
1,
5,
2,
                                                                                                                                                                                                                 3,
5,
3,
4,
5,
5,
3,
                                                                                                                                                                                                             5,
3,
1,
5,
1,
2,
3,
                                                                   3.,
4.,
4.,
                                                                                                              3.,
5.,
                                                                                                                                                                          5,
4,
3,
1,
                                                                                                                                                                               2,
3,
4,
5,
                                          5.
                                                       5.,
                             4.,
1.,
                                                       4.
4.
                                                                                            5.
                                                                                                                                                                                                   1,
1,
5,
4,
                      5.,
2.,
3.,
                              5.,
                                    3. .
                                                                                             2.,
```

본 실험에서 3번의 iteration 후의 최종 log likelihood값은 -927.6088이고 100%의 정확도를 가지며 그때 사용된 순열은 (4, 3, 2, 0, 1)이다. 실제 class번호와 예측된 class 번호를 비교해 보면 모든 데이터가 동일한 것을 확인할 수 있다.

- 각 component 가 선택될 확률 α_i

예측 : class 별 선택될 확률: [0.21989447 0.19030463 0.2098009 0.15333333 0.22666667]

실제 : class 별 선택될 확률 [0.2 0.2 0.2 0.2 0.2]

- 평균

```
['예측 : class 별 means'] [5.85606065 5.0821054 ]
['예측 : class 별 means'] [30.44952703 9.11212887]
['예측 : class 별 means'] [53.68696626 11.90295717]
['예측 : class 별 means'] [29.11120401 47.29169928]
['예측 : class 별 means'] [98.09998653 10.58898757]
['실제 : class 별 means1'] [6.165113
                                        5.14744597]
['실제 : class 별 means2'] [30.24979958 8.80619773]
[-질제
      : class 별 means3'] [53,29619377 12,67193248]
['실제 : class 별 means4'] [28.69002909 47.60431647]
['실제 : class 별 means5'] [97.93578657 10.10615396]
```

- 분산

```
['예측 : class 별 variances'] ['실제 : class 별 variances1']
[[ 4.34030407 -0.1976514 ]
                                [[5.43925437 0.57361047]
                                 [0.57361047 5.54905405]]
 [-0.1976514 6.46683841]]
['예측 : class 별 variances'] ['실제 : class 별 variances2']
[[11.80471322 0.87231485]
                                [[5.05203438 0.25234161]
                                 [0.25234161 5.5386874 ]]
 [ 0.87231485  4.18467511]]
['예측 : class 별 variances'] ['실제 : class 별 variances3']
[[6.26930894 1.36810443]
                                [[5.4493659 0.28936344]
 [1.36810443 4.8643263 ]]
                                 [0.28936344 5.72058197]]
['예측 : class 별 variances'] ['실제 : class 별 variances4']
[[2.87515156 3.04509317]
[3.04509317 5.5075485 ]]
                                [[4.40060942 0.59382011]
                                 [0.59382011 4.19451614]]
['예측 : class 별 variances'] ['실제 : class 별 variances5']
[[ 6.1729327 0.23272448] [[5.30478743 0.36983522]
 [ 0.23272448 10.02765927]]
                                 [0.36983522 5.88325945]]
```

마지막으로 원래 data의 분산, 평균, 각 component가 선택될 확률 α_i 을 EM알고리즘이 종료된 후 우리가 구한 값들과 비교해 보면 2번 class의 분산을 제외한 나머지에서 모두 비슷한 값을 가지는 것을 확인할 수 있다.

3.2.2 각 component 별 선택될 확률 α_i 가 다를 때

```
The probabilities of each classes from 1 to 5 The number of objects in each classes from 1 to 5 [0.08290288 0.19018933 0.10994608 0.02240081 0.5945609 ] [12 29 15 3 91]
```

각 component 별로 선택될 확률 α_i 가 각각 다르게 설정되고 위 확률을 바탕으로 데이터 150개는 각각 class에 12, 29, 15, 3, 91 개로 나누어 졌다.

① 원래 데이터 분포와 clustering 이후의 분포 비교

실험 데이터를 확인해 보면 왼쪽 위의 그림과 같이 분포하는 것을 확인할 수 있다. 다음으로 EM 알고리즘을 반복적으로 실행하여 clustering 한 결과 오른쪽 위의 그림과 같이 데이터가 잘 clustering 된 것을 확인할 수 있다.

② log likelihood값과 정확도 비교

found larger: -796.6647635006454 found larger: -795.6085005131034 found larger: -795.5750015145373 found larger: -795.5749228887598

둘 차이가 매우 적음 accuracy: 0.9733333333333334

final log likelihood: -795.5749228887598 가장 높은 정확도를 가지는 permutation: (0, 4, 1, 2, 3)

본 실험에서 총 4번의 iteration후의 최종 log likelihood값은 -795.5749이고 97.33%의 <mark>정확도</mark>를 가지며 그때 사용된 순열은 (0, 4, 1, 2, 3)이다. 실제 class번호와 예측된 class 번호를 비교해 보면 대부분의 데이터가 동일한 것을 확인할 수 있다.

- 각 component 가 선택될 확률 α_i

예측: class 별 선택될 확률: [0.08011294 0.18688494 0.12 0.00644839 0.60655373] 실제: class 별 선택될 확률 [0.08290288 0.19018933 0.10994608 0.02240081 0.5945609]

- 평균

- 분산

['실제 : class1의 variances'] ['예측 : class1의 variances'] [[5.58918699 0.86629497] [[8.61791938 0.18047025] [0.18047025 6.69305913]] [0.86629497 5.41514729]] ['예측 : class2의 variances'] ['실제 : class2의 variances'] [[3.28360517 0.2940401] [0.2940401 2.83162044]] [[3.4869849 1.34871453] [1.34871453 4.37512383]] ['예측 : class3의 variances'] ['실제 : class3의 variances'] [[44.31384944 -24.91417572] [-24.91417572 20.79164767]] [[7.94168142 0.1476452] [0.1476452 8.61759053]] ['예측 : class4의 variances'] ['실제 : class4의 variances'] ['예측 : class5의 variances'] ['실제 : class5의 variances'] [[3.74359065 0.86646088] [[2.56043161 0.64038294] [0.64038294 3.30991046]] [0.86646088 3.46214135]]

마지막으로 원래 data의 분산, 평균, 각 component가 선택될 확률 α_i 을 EM알고리즘이 종료된 후 우리가 구한 값들과 비교해 보면 4번 class의 α_i 와 평균, 3, 4번 class의 분산을 제외한 나머지에서는 모두 비슷한 값을 가지는 것을 확인할 수 있다.

3.3 class 7 개

3.3.1 각 component 별 선택될 확률 α_i 가 동일할 때 $(\alpha_i = 0.14285714)$

The probabilities of each classes from 1 to 7 [0.14285714 0.142857

각 component별로 선택될 확률 α_i 가 동일하므로 각각의 component들은 모두 14.29%의 확률로 데이터가 선택될 것이다. 위 확률을 바탕으로 데이터 150개는 각각 class에 16, 18, 20, 21, 19, 28, 28 개로 나누어 졌다.

① 원래 데이터 분포와 clustering 이후의 분포 비교

실험 데이터를 확인해 보면 왼쪽 위의 그림과 같이 분포하는 것을 확인할 수 있다. 다음으로 EM 알고리즘을 반복적으로 실행하여 clustering 한 결과 오른쪽 위의 그림과 같이 모여 있는 몇 개의 class를 제외한 4개의 class는 잘 clustering 된 것을 확인할 수 있다.

② log likelihood값과 정확도 비교

```
found larger: -1067.1030642675635
found larger: -1067.1030629283466
found larger: -1067.1030617118654
found larger: -1067.1030606068175
found larger: -1067.1030596029495
```

둘 차미가 매우 적음 accuracy : 0.82

final log likelihood : -1067.1030596029495 가장 높은 정확도를 가지는 permutation : (1, 5, 0, 6, 4, 2, 3)

실제 class

```
y_true[:,2]
                                                 2., 6.,
7., 2.,
7., 7.,
7., 7.,
                                                                                   6.,
7.,
4.,
                                                                                                                     4.,
7.,
1.,
                                                                                                                                                                  3.,
7.,
7.,
                                       2.,
4.,
                                                                                              6.,
2.,
5.,
                                                                                                                                                                            4., 2.,
                                                            2.,
                                                                        6.,
2.,
6.,
                  4., 6.,
7., 3.,
                                                                                                          6.,
2.,
                                                                                                                                           3.,
                                                                                                                                                       5.,
7.,
                7., 3., 1.,
3., 3., 3.,
7., 5., 3.,
5., 5., 2.,
1., 4., 3.,
5., 7., 3.,
3., 6., 2.,
                                                                                    6.,
7.,
3.,
5.,
                                                 3.,
5.,
5.,
4.,
                                                                                                                                                       5.,
                                                                                                                                                                  5.,
                                                                                                                                                                            4.,
7.,
5.,
7.,
                                                                                                           6.,
                                                                                                                     6.,
                                                                                              6.,
3.,
4.,
7.,
                                                                                                          1.,
7.,
3.,
5.,
                                                                                                                     4.,
6.,
4.,
                                                                                                                                6.,
2.,
7.,
                                                             3.
6.
5.
                                                                                                                                             4.,
                                                                         6.
```

예측 class

```
r_list[index]
                                                                                      5, 6,
3, 6,
6, 6,
6, 7,
[array([4, 7, 4,
                                         6,
6,
4,
3,
                                                3, 6, 4,
1, 3, 5,
1, 4, 3,
                                                                   6, 4,
7, 4,
3, 3,
7, 5,
                                   4,
6,
7,
5,
                                                                                                   3,
3,
6,
7,
                                                                                                                3, 6,
7, 7,
4, 4,
                                                                                                                              4, 6, 4,
4, 4, 4,
6, 6, 1,
                6, 6, 6,
7, 1, 7,
7, 7, 6,
                                                                                4,
7,
6,
                                                                                                           4,
                                                                                                                              6,
                                                                                      6,
7,
3,
7,
                                                3, 4,
                                                                                                           4.
                                                                                                                 5.
                                                                                                                       4.
                                                                   4, 5,
4, 5,
6, 6,
                                                                                                   4,
7,
6,
                                                                                                                       3,
4,
5,
                                                                                                                             5, 6, 4,
3, 4, 7,
                                                                                6,
7,
1,
                                   3,
                                                       4, 6,
                                                                                             6,
                            4,
                                                      5,
4,
                                                             6,
                                                                                             4,
5,
                                                                                                          6,
4,
                                                                                                                 5,
4,
                                                6,
```

본 실험에서 많은 iteration 후의 최종 log likelihood값은 -1067.1031이고 82%의 정확도를 가지며 그때 사용된 순열은 (1, 5, 0, 6, 4, 2, 3)이다.

- 각 component 가 선택될 확률 α_i

예측 : class 별 선택될 확률: [0.11978686 0.01250212 0.11550419 0.28160728 0.09439388 0.2122995 0.16390616] 실제 : class 별 선택될 확률 [0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714]

- 평균

```
['예측 : class1별 means'] [46.29553432 25.52160307]
 ['예측 : class2별 means']
                                   [10.58663706 45.85311346]
         : class3별 means']
                                   [12.75148727 44.73757579]
        : class4별 means']
                                   [3.73035615 8.90537918]
['예측 : class5별 means'] [20.88097771 24.50590627]
['예측 : class6별 means'] [30.16243868 39.71018253]
['예측 : class7별 means'] [32.08341082 27.92440799]
['실제 : class1별 means'] [48.24925801 22.96849834]
[실제 : class2별 means'] [ 0.63765012 11.04245077]
[실제 : class3별 means'] [12.93098128 45.08792003]
['실제
['실제
         : class4별 means']
                                   [3.1748854 3.94998873]
['실제
['실제
['실제 : class5별 means'] [20.80725061 23.0491444 ]
['실제 : class6별 means'] [30.19900495 41.88722887]
['실제 : class7별 means'] [33.78292659 29.4533018 ]
```

- 분산

```
['예측 : class1의 variances']
                                     ['실제 : class1의 variances']
[[ 25.17936608 -27.08072384] 
[-27.08072384 37.98751161]]
                                      [[9.08757281 0.53196707]
                                       [0.53196707 9.14580207]]
['예측 : class2의 variances']
                                      ['실제 : class2의 variances']
[[10.88973586 0.73122705]
[[6.55367002 2.48100629]
 [2.48100629 6.75951431]]
                                       [ 0.73122705 10.97262563]]
['예측 : class3의 variances']
                                     ['실제 : class3의 variances']
[[9.07102498 0.37415289]
[[ 8.95137166 -0.61955617]
[-0.61955617 2.86324473]]
                                       [0.37415289 8.69118091]]
['예측 : class4의 variances']
                                      ['실제 : class4의 variances']
[[33.64881384 11.48066586]
[11.48066586 27.63512944]]
                                      [[5.18127894 0.71124884]
                                       [0.71124884 5.52641392]]
['예측 : class5의 variances']
                                        '실제 : class5의 variances']
[[23,49028484 -8,88375686]
[-8,88375686 21,78059965]]
                                      [[9.07689367 0.1896441 ]
                                       [0.1896441 8.79866336]]
['예측 : class6의 variances']
[[13.01763841 -7.70376467]
                                     ['실제 : class6의 variances']
[[10.57718596 0.60939905]
 [-7.70376467 23.51420973]]
                                       [ 0.60939905 10.38638184]]
['예측 : class7의 variances']
                                      ['실제 : class7의 variances']
[[13.66334753 5.24762774]
                                      [[5.86020037 0.4553058]
 [ 5.24762774  5.91430583]]
                                       [0.4553058 6.33279555]]
```

마지막으로 원래 data의 분산, 평균, 각 component가 선택될 확률 α_i 을 EM알고리즘이 종료된 후 우리가 구한 값들과 비교해 보면 2번 class의 α_i 와 평균을 잘 예측하지 못하고, 대부분의 분산을 잘 예측하지 못하는 것을 확인할 수 있다.

3.3.2 각 component 별 선택될 확률 α_i 가 다를 때

The probabilities of each classes from 1 to 7 [0.13772253 0.53480718 0.02453108 0.08198857 0.1357185 0.06144018 [20 76 6 12 20 9 7]

각 component별로 선택될 확률 α_i 가 왼쪽 위의 사진과 같은 각각 다른 확률로 선택되었고 위 확률을 바탕으로 데이터는 각각 class에 20, 76, 6, 12, 20, 9, 7개로 나누어 졌다.

① 원래 데이터 분포와 clustering 이후의 분포 비교

실험 데이터를 확인해 보면 왼쪽 위의 그림과 같이 분포하는 것을 확인할 수 있다. 다음으로 EM 알고리즘을 반복적으로 실행하여 clustering 한 결과 오른쪽 위의 그림과 같이 모여 있지 않은 class에 대한 데이터만 잘 clustering 된 것을 확인할 수 있다.

② log likelihood값과 정확도 비교

found larger:

found larger:

found larger:

-859 0429950507983

-859.0429918655959

-859.042989519728

```
found larger:
                                                  -859.0429877918873
                 found larger: -859
둘 차이가 매우 적음
                                                   -859.0429865191616
                                                                                                                 accuracy : 0.73333333333333333
                 final log likelihood
                                                                     -859.0429865191616 가장 높은 정확도를 가지는 permutation : (3, 1, 0, 4, 6, 5, 2)
실제 class
                                                                                                                                  예측 class
 y_true[:,2]
                                                                                                                                    r_list[index]
2.
4.
2.,
6.,
5.,
1.,
                                                                  2.,
2.,
3.,
2.,
7.,
4.,
5.,
                                                                                                                                   [array([2, 2,
2, 2,
2, 7,
2, 2,
7, 2,
4, 5,
2, 5,
                                                                                                                                                                                                                                                2, 4, 2, 2, 2, 2,
6, 2, 2, 4, 4, 4,
7, 2, 4, 4, 6, 4,
2, 2, 5, 7, 2, 2,
2, 2, 6, 2, 5, 2,
2, 5, 2, 2, 2, 2,
4, 5], dtype=int64)]
                                                                                                                                                                   2, 2, 2,
2, 2, 2,
2, 2, 2,
7, 3, 7,
2, 2, 2,
7, 5, 2,
2, 7, 2,
                                                                                                                                                                                      5, 2,
2, 2,
1, 4,
5, 2,
2, 2,
2, 2,
2, 2,
                                                            2.,
                                                                                                                                                                                                       2, 2,
4, 5,
2, 2,
6, 7,
                                                                                                                                                                                                                               2, 4,
2, 2,
5, 2,
5, 3,
6, 2,
                                                                                                    5.,
2.,
6.,
5.,
2.,
2.,
5.])
                                                                                2. 2. 2. 2. 2. 2.
                                                                                                                                                              2, 2, 5, 2, 2, 2, 2, 2,
                                                                                                                                                                                                 2, 5, 7, 7, 5, 5, 4,
                                                                                                                                                                                                                   2,
2,
6,
4,
2,
                                                                                                                                                                                                                          2,
3,
7,
5,
2,
2,
                                                                                              5.,
4.,
3.,
6.,
5.,
7.
                                                                                                                                                                                                       6,
4,
7,
                                                                                                                                                                                                             6,
2,
2,
                                                                                                                                                                                                                                6,
2,
2,
```

본 실험에서 많은 iteration 후의 최종 log likelihood값은 -859.0430이고 73.3%의 정확도를 가지며 그때 사용된 순열은 (3, 1, 0, 4, 6, 5, 2)이다.

- 각 component 가 선택될 확률 α_i

```
예측 : class 별 선택될 확률: [0.00666667 0.50930085 0.02299707 0.10333754 0.13333333 0.05581583 0.16854871]
실제 : class 별 선택될 확률 [0.13772253 0.53480718 0.02453108 0.08198857 0.1357185 0.06144018 0.02379195]
```

- 평균

```
['예측 : class1별 means'] [26.95518639 19.82915564]
  예측 : class2별 means']
                             [ 4.51428103 26.25049594]
 '예측 : class3별 means']
                             [ 8.17752666 39.49873628]
  예측 : class4별 means']
                             [14.65611153 22.84773007]
 '예측 : class5별 means']
                             [41.51975465 0.38463965]
       : class6별 means']
                             [15.5201148 47.86662702]
['예측 : class7별 means'] [ 1.93893823 23.52421805]
  실제 : class1별 means'] [ 9.00713095 32.46948453]
실제 : class2별 means'] [ 2.86583966 24.1307389 ]
  실제 : class3별 means']
                            [ 9.53627318 36.10652766]
  실제
       : class4별 means']
                             [17.12937262 21.12766994]
[실제 : class5별 means] [41.01227104 0.47782053]
[실제 : class6별 means] [15.32646781 47.86067735]
['실제 : class7별 means'] [ 3.08900997 19.53911334]
```

- 분산

```
['예측 : class1의 variances']
                                   ['실제 : class1의 variances']
                                   [[3.03873572 0.46609827]
[[Ö. Ö.]
[0. 0.]]
['예측 : class2의 variances']
[[7.57368042 10.25669521]
[10.25669521 19.57359707]]
                                     [0.46609827 2.77780405]]
                                     '실제 : class2의 variances']
                                   [[3.07267146 0.38923667]
                                    [0.38923667 2.9642182 ]]
                                   ['실제 : class3의 variances']
['예측 : class3의 variances']
[[6.30273897 9.12952453]
                                   [[4.99280009 0.47609278]
 [ 9.12952453 14.58948911]]
                                    [0.47609278 4.98085794]]
['예측 : class4의 variances']
                                   ['실제 : class4의 variances']
[[26.70525407 -8.23085845]
[-8.23085845 26.85898192]]
                                   [[6.79029298 0.37225363]
                                    [0.37225363 7.09079959]]
['예측 : class5의 variances']
                                     '실제 : class5의 variances']
[[4.96875114 2.28531426]
                                   [[5.06955762 0.42190482]
 [2.28531426 4.09561557]]
                                    [0.42190482 4.73524559]]
['예측 : class6의 variances']
                                   ['실제 : class6의 variances']
[[2.13552408 0.85969095]
                                   [[4.18876422 0.44568275]
 [0.85969095 6.3906668 ]]
                                    [0.44568275 4.1255659]]
['예측 : class7의 variances']
[[5.7816734 -0.21079182]
[-0.21079182 2.59355651]]
                                   ['실제 : class7의 variances']
                                   [[4.89572599 0.16536169]
                                    [0.16536169 5.18100945]]
```

마지막으로 원래 data의 분산, 평균, 각 component가 선택될 확률 α_i 을 EM알고리즘이 종료된 후 우리가 구한 값들과 비교해 보면 1, 7번 class의 α_i 와 1번 class의 평균을 잘 예측하지 못하고, 3번 class의 분산을 잘 예측하지 못하는 것을 확인할 수 있다.

4. Conclusion

EM 알고리즘을 Gaussian Mixture Model에 적용하여 Clustering을 진행해 보았다. 본 실험은 초기 확률과 평균, 분산을 random한 값으로 설정한 후 log likelihood값의 차이가 10^{-6} 보다 작을 때까지, $p(y_i|x_i,\theta^{(g)})$ 를 구하는 E-step과, $\theta_j = \{\alpha_j, \Sigma_j\}$ 와 각 component가 선택될 확률 α_j 를 업데이트하는 M-step을 반복하여 진행한다. 즉 EM 알고리즘을 통해 log likelihood값을 최대로 하는 평균과 분산을 찾아서 clustering을 진행한다.

본 실험에서는 비교를 위하여 같은 수의 데이터, 총 150개의 데이터를 class의 개수를 바꾸어 가며 실행하였다. Class 3, 5, 7개로 실행을 해보며 비교를 해 보았는데 class 3개로 진행하였을 때는 보통 100%의 정확도로, 5개로 진행되었을 때는 평균적으로 95% 이상의 정확도로, 마지막으로 7개로 진행하였을 때는 75% 정도의 정확도를 보였다.

Figure 7 class 7개중 몇 개의 class가 겹쳐진 경우

같은 양의 데이터를 사용해 class를 나누다 보니 class가 적을수록 clustering이 진행이 잘 되었지만 class수가 7개일때는 위의 그림처럼 class들이 모여 있는 현상이 많이 나타났다. 따라서 EM 알고리즘을 반복적으로 실행하여도 직관적으로 모여 있는 데이터들의 clustering이 어려웠고 결과적으로 예측된 7개의 class들의 분산과 평균, 각 component가 선택될 확률 α_i 값에서 차이가 많이 발견되었다.

즉 결과적으로 데이터의 수가 동일할 때, class의 수가 많아질수록 모여 있는 class가 많이 발견될 확률이 높아지기 때문에 clustering에 어려움이 따른다.

하지만 class수가 적고 (보통 5이하) 각 class들의 평균 거리가 멀고 잘 퍼져 있다면 clustering 결과는 매우 높고 그때의 log likelihood값도 높은 것을 실험을 통해 확인할 수 있었다.