

Rose Wine

ANALYSIS AND PREDICTION

SUHAS PAWAR | TIME SERIES FORECASTING

Problem Statement:

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

Data set for the Problem: Rose.csv

Please do perform the following questions on each of these two data sets separately.

- 1. Read the data as an appropriate Time Series data and plot the data.
- 2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.
- 3. Split the data into training and test. The test data should start in 1991.
- 4. Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data.
 - Other models such as regression, naïve forecast models, simple average models etc. should also be built on the training data and check the performance on the test data using RMSE.
- 5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.
 - Note: Stationarity should be checked at alpha = 0.05.
- 6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.
- 7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.
- 8. Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.
- 9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.
- 10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

1. Read the data as an appropriate Time Series data and plot the data.

First of all we will import all the necessary libraries like Pandas, Numpy, seaborn, os to set the path and Statsmodels as base library for all the models.

After setting the path we will import Rose dataset

We will read the dataset First by using pandas library.

Then We will Apply head and tail to see how data looks first and last 5 rows.

First 5 Rows:

YearMonth	Rose
1980-01	112.00
1980-02	118.00
1980-03	129.00
1980-04	99.00
1980-05	116.00

Last 5 Rows:

YearMonth	Rose
1995-03	45.00
1995-04	52.00
1995-05	28.00
1995-06	40.00
1995-07	62.00

Null Value check:

We will check for null condition, to see whether Dataset has null value or not.

	YearMonth	Rose
174	1994-07	nan
175	1994-08	nan

Row no. 174 and 175 has Null values, we will impute this By using forward filling method.

	Rose
Time_Stamp	
1980-01-31	112.00
1980-02-29	118.00
1980-03-31	129.00
1980-04-30	99.00
1980-05-31	116.00
1994-05-31	44.00
1994-06-30	45.00
1994-07-31	nan
1994-08-31	nan
1994-09-30	46.00

Shape of the Data:

(187, 2)

So Dataset has 187 rows and 2 Columns.

Data Info:

We can see that YearMonth column is of Object Data type while Rose is having float data type.

Rose column has 2 missing values.

Here we make an assumption that the date starts and ends as mentioned below

We are assuming the Date Starts from 1980-01-31 to 1995-07-31.

Total 187 entries needs to be added to Original Dataframe while we need to remove YearMonth Column.

And need to make This new Column as Index.

	YearMonth	Rose	Time_Stamp
0	1980-01	112.00	1980-01-31
1	1980-02	118.00	1980-02-29
2	1980-03	129.00	1980-03-31
3	1980-04	99.00	1980-04-30
4	1980-05	116.00	1980-05-31

	Rose
Time_Stamp	
1980-01-31	112.00
1980-02-29	118.00
1980-03-31	129.00
1980-04-30	99.00
1980-05-31	116.00

We will plot the original dataset of Rose.

We can see discontinuity in Year 1994-95 as 2 values are missing of Sales-Rose Wines. From Above plot we can see that Data has Negative Trend, Seasonality.

2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Description:

	Rose
count	187.00
mean	89.91
std	39.24
min	28.00
25%	62.50
50%	85.00
75%	111.00
max	267.00

from above describe Function we can see that Highest Sales of Rose wine is 267. Mean and Median are almost same here.

Info check after Imputation of Null values:

Total 187 rows we have enties from Jan 1980 to July 1995.

Yearly plot:

From Yearly plot we can see that Sales of Rose wine are getting down by every year, This continuous decrease in the Sales needs a deep study.

Monthly plot:

Here we come with interesting insights from Monthly plot, From January to October Median of Sales is almost Same. Only Sales are increasing in November and December. In This December Only Sales has Crossed figure of 250 wines.

Highlight The maximum sales:

1980 and 1981 are only Two years where Sales are Highest, But from this point the sales has decreased.

The orange line is for December month, It is Alienated from Other lines.

Empirical Cumulative Distribution.

This particular graph tells us what percentage of data points refer to what number of Sales. 50% of the sales are below 100. Maximum sales is close 260.

Plot of average Sales per month and the month on month percentage change of Sales.

In This plots we can see there is drastic change at the end of every year.

Decompose the Time Series and plot the different components.

Additive Decomposition:

From above Additive Decomposition we can see that There is Negative trend and Seasonality is there residuals are showing patterns, Might me missing some quality Information.

Multiplicative Decomposition:

For the multiplicative decomposition series, we see that a lot of residuals are located around 1.

We can see the values of trend and Seasonality for Year 1980. In Case of Seasonality it will mostly repeat and In case of Trend it will keep decreasing overall.

Trend	
Time_Stamp	
1980-01-31	nan
1980-02-29	nan
1980-03-31	nan
1980-04-30	nan
1980-05-31	nan
1980-06-30	nan
1980-07-31	147.08
1980-08-31	148.12
1980-09-30	148.37
1980-10-31	148.08
1980-11-30	147.42
1980-12-31	145.12
Name: trend,	dtype: float64

```
Seasonality
Time_Stamp
1980-01-31
            0.67
1980-02-29
            0.81
1980-03-31
            0.90
1980-04-30
            0.85
1980-05-31
            0.89
1980-06-30
            0.92
1980-07-31
            1.06
1980-08-31
            1.04
1980-09-30
           1.02
1980-10-31
           1.02
1980-11-30
            1.19
1980-12-31
            1.63
Name: seasonal, dtype: float64
```

Residual		
Time_Stamp		
1980-01-31	nan	
1980-02-29	nan	
1980-03-31	nan	
1980-04-30	nan	
1980-05-31	nan	
1980-06-30	nan	
1980-07-31	0.76	
1980-08-31	0.84	
1980-09-30	1.36	
1980-10-31	0.97	
1980-11-30	0.85	
1980-12-31	1.13	
Name: resid,	dtype:	float64

3. Split the data into training and test. The test data should start in 1991.

Training Data is till the end of 1990. Test Data is from the beginning of 1991 to the last time stamp provided.

First few	rows of	f Training	Data
	Rose		
Time_Stamp)		
1980-01-31	112		
1980-02-29	118		
1980-03-31	129		
1980-04-30	99		
1980-05-31	116		

Last few ro	ws of	Training	Data
	Rose		
Time_Stamp			
1990-08-31	70		
1990-09-30	83		
1990-10-31	65		
1990-11-30	110		
1990-12-31	132		

First few r	ows of	F Test	Data
	Rose		
Time_Stamp			
1991-01-31	54		
1991-02-28	55		
1991-03-31	66		
1991-04-30	65		
1991-05-31	60		

Last few	rows	of	Test	Data
	Ro	se		
Time_Stam	пр			
1995-03-3	31	45		
1995-04-3	30	52		
1995-05-3	31	28		
1995-06-3	30	40		
1995-07-3	31	62		

Shape of Train Data: 132 Rows and 1 Column

Shape of Test Data: 55 Rows and 1 Column

Train data Information:

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 132 entries, 1980-01-31 to 1990-12-31
Data columns (total 1 columns):
    # Column Non-Null Count Dtype
--- 0 Rose 132 non-null int32
dtypes: int32(1)
memory usage: 1.5 KB
```

Train and Test data plot:

4.Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression,naïve forecast models and simple average models. should also be built on the training data and check the performance on the test data using RMSE.

1.Simple Exponential Smoothing

We have created the test and train data for the upcoming Models.

First we will create model on train Data, will test model performance on Test Data.

The Test data predictions for first 5 rows:

	Rose	predict
Time_Stamp		
1991-01-31	54	87.10
1991-02-28	55	87.10
1991-03-31	66	87.10
1991-04-30	65	87.10
1991-05-31	60	87.10

Plotting on both the Training and Test data:

Model Evaluation for $\alpha = 0.995$: Simple Exponential Smoothing

For Alpha =0.995 Simple Exponential Smoothing Model forecast on the Test Data, RMSE is 36.817

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82

Setting different alpha values. the higher the alpha value more weightage is given to the more recent observation. That means, what happened recently will happen again. We will run a loop with different alpha values to understand which particular value works best for alpha on the test set.

First we will define an empty dataframe to store our values from the loop

Alpha Values Train RMSE Test RMSE

Model Evaluation:

	Alpha Values	Train RMSE	Test RMSE
0	0.30	32.47	47.53
1	0.40	33.04	53.79
2	0.50	33.68	59.66
3	0.60	34.44	64.99
4	0.70	35.32	69.72
5	0.80	36.33	73.79
6	0.90	37.48	77.16

Plotting on both the Training and Test data

The Final Result of Simple Exponential Smoothing in form of RMSE:

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53

Model 2 : Double Exponential Smoothing (Holt's Model)

Two parameters α and β are estimated in this model. Level and Trend are accounted for in this model. First We will create a model and then we will predict on test data.

We will check the results for Different values of Alpha and Beta. Let us sort the data frame in the ascending ordering of the 'Test RMSE' and the 'Test MAPE' values.

	Alpha Values	Beta Values	Train RMSE	Test RMSE
0	0.30	0.30	35.94	265.59
8	0.40	0.30	36.75	339.33
1	0.30	0.40	37.39	358.78
16	0.50	0.30	37.43	394.30
24	0.60	0.30	38.35	439.32

Test RMSE is lowest for Alpha=0.3 and Beta=0.3. hence we will select these values for better performance.

Plotting on both the Training and Test data

Test RMSE:

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59

For this the Test RMSE is too high. So we cannot go further with this model. Lets deep dive more, to check about other models.

Method 3: Triple Exponential Smoothing (Holt - Winter's Model)

Three parameters α , β and γ are estimated in this model. Level, Trend and Seasonality are accounted for in this model.

Autofit parameters for the Triple Exponential smoothing:

The above fit of the model is by the best parameters that Python thinks for the model. It uses a brute force method to choose the parameters.

Lets predict on the test data:

	Rose	auto_predict
Time_Stamp		
1991-01-31	54	56.75
1991-02-28	55	64.20
1991-03-31	66	69.93
1991-04-30	65	60.95
1991-05-31	60	68.31

Plotting on both the Training and Test using autofit

For Alpha=0.676, Beta=0.088, Gamma=0.323, Triple Exponential Smoothing Model forecast on the Test Data, RMSE is 21.170

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17

Lets define an empty dataframe to store our values from the loop

Alpha Values	Beta Values	Gamma Values	Train RMSE	Test RMSE

We will append all the results to it, by changing values of alpha, beta, gamma.

After Sorting the first five rows are

	Alpha Values	Beta Values	Gamma Values	Train RMSE	Test RMSE
8	0.30	0.40	0.30	28.11	10.95
1	0.30	0.30	0.40	27.40	11.19
69	0.40	0.30	0.80	32.60	12.61
16	0.30	0.50	0.30	29.09	14.40
131	0.50	0.30	0.60	32.14	16.70

So this model is giving RMSE 10.95 lowest so far, and Ideal values are 0.3, 0.4, 0.3 for Alpha, Beta, Gamma. Plotting on both the Training and Test data using brute force alpha, beta and gamma determination

The sorted results of all the models so far:

	Test RMSE
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59

For this data, we had both trend and seasonality so by definition Triple Exponential Smoothing is supposed to work better than the Simple Exponential Smoothing as well as the Double Exponential Smoothing. However, since this was a model building exercise we had gone on to build different models on the data and have compared these model with the best RMSE value on the test data.

Model 4: Linear Regression

For this particular linear regression, we are going to regress the 'Rose-Sales' variable against the order of the occurrence. For this we need to modify our training data before fitting it into a linear regression.

```
Training Time instance
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 3
4, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130, 131, 132]
Test Time instance
[133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 18
3, 184, 185, 186, 187]
```

We see that we have successfully the generated the numerical time instance order for both the training and test set. Now we will add these values in the training and test set.

Training Data:

First few ro	ws of	Training Data
	Rose	time
Time_Stamp		
1980-01-31	112	1
1980-02-29	118	2
1980-03-31	129	3
1980-04-30	99	4
1980-05-31	116	5
Last few row	s of T	raining Data
	Rose	time
Time_Stamp		
1990-08-31	70	128
1990-09-30	83	129
1990-10-31	65	130
1990-11-30	110	131
1990-11-30 1990-12-31		

Test Data:

First few ro	ws of	Test Data
	Rose	time
Time_Stamp		
1991-01-31	54	133
1991-02-28	55	134
1991-03-31	66	135
1991-04-30	65	136
1991-05-31	60	137
Last few row	s of T	est Data
	Rose	time
Time_Stamp		
1995-03-31	45	183
1995-04-30	52	184
1995-05-31	28	185
1995-06-30	40	186
1995-07-31	62	187

Now our training and test data has been modified, let us go ahead use Linear regression to build the model on the training data and test the model on the test data.

Prediction plot:

Model Evaluation

For RegressionOnTime forecast on the Test Data, RMSE is 15.276

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
RegressionOnTime	15.28

Model 5: Naive Approach:

For this particular naive model, we say that the prediction for tomorrow is the same as today and the prediction for day after tomorrow is tomorrow and since the prediction of tomorrow is same as today, therefore the prediction for day after tomorrow is also today.

Prediction: First 5 rows:

132	
132	
132	
132	
132	
dtype:	int32
	132 132 132 132

Prediction Plot:

Model Evaluation

For RegressionOnTime forecast on the Test Data, RMSE is 79.739

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
RegressionOnTime	15.28
NaiveModel	79.74

Model 6: Simple Average

For this particular simple average method, we will forecast by using the average of the training values.

Forecast:

	Rose	mean_forecast
Time_Stamp		
1991-01-31	54	104.94
1991-02-28	55	104.94
1991-03-31	66	104.94
1991-04-30	65	104.94
1991-05-31	60	104.94

Prediction Plot vs Test Data:

Model Evaluation

For Simple Average forecast on the Test Data, RMSE is 53.481

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
RegressionOnTime	15.28
NaiveModel	79.74
SimpleAverageModel	53.48

Model 7: Moving Average(MA)

For the moving average model, we are going to calculate rolling means (or moving averages) for different intervals. The best interval can be determined by the maximum accuracy (or the minimum error) over here.

For Moving Average, we are going to average over the entire data.

	Rose
Time_Stamp	
1980-01-31	112
1980-02-29	118
1980-03-31	129
1980-04-30	99
1980-05-31	116

For Trailing Average,

	Rose	Trailing_2	Trailing_4	Trailing_6	Trailing_9
Time_Stamp					
1980-01-31	112	nan	nan	nan	nan
1980-02-29	118	115.00	nan	nan	nan
1980-03-31	129	123.50	nan	nan	nan
1980-04-30	99	114.00	114.50	nan	nan
1980-05-31	116	107.50	115.50	nan	nan

Plot for 2,4,6,9 Point Moving Average

Let us split the data into train and test and plot this Time Series. The window of the moving average is need to be carefully selected as too big a window will result in not having any test set as the whole series might get averaged over.

Model Evaluation

Done only on Test data

For 2 point Moving Average Model forecast on the Training Data, RMSE is 11.529 For 4 point Moving Average Model forecast on the Training Data, RMSE is 14.455 For 6 point Moving Average Model forecast on the Training Data, RMSE is 14.572 For 9 point Moving Average Model forecast on the Training Data, RMSE is 14.731

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
RegressionOnTime	15.28
NaiveModel	79.74
SimpleAverageModel	53.48
2pointTrailingMovingAverage	11.53
4pointTrailingMovingAverage	14.46
6pointTrailingMovingAverage	14.57
9pointTrailingMovingAverage	14.73

Plotting on both Training and Test data

Sorted by RMSE values on the Test Data:

	Test RMSE
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
2pointTrailingMovingAverage	11.53
4pointTrailingMovingAverage	14.46
6pointTrailingMovingAverage	14.57
9pointTrailingMovingAverage	14.73
RegressionOnTime	15.28
Alpha = 0.676, Beta = 0.088, Gamma = 0.323, Triple Exponential Smoothing	21.17
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
SimpleAverageModel	53.48
NaiveModel	79.74
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59

5.Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

Check for Stationarity:

Dicky Fuller Test

Null Hypothesis Ho- Series is not Stationary

Alternative Hypothesis H1- Series is Stationary

P value is higher that 0.05 Hence Null Hypothesis is True, we will take Order 1 differencing to make series stationary

Results of Dickey-Fuller Test	:
Test Statistic	-1.87
p-value	0.34
#Lags Used	13.00
Number of Observations Used	173.00
Critical Value (1%)	-3.47
Critical Value (5%)	-2.88
Critical Value (10%)	-2.58
dtype: float64	

We check stationarity at initial level, but series is not stationary as P value is higher than 0.05 difference of order 1.

Results of Dickey-Fuller Tes	st:
Test Statistic	-6.59
p-value	0.00
#Lags Used	12.00
Number of Observations Used	118.00
Critical Value (1%)	-3.49
Critical Value (5%)	-2.89
Critical Value (10%)	-2.58
dtype: float64	

We see that at P value is less than 0.05 the Time Series is indeed stationary.

6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE. 8

Automated Verion of ARIMA

The following loop helps us in getting a combination of different parameters of p and q in the range of o and 2. We have kept the value of d as 1 as we need to take a difference of the series to make it stationary.

```
Some parameter combinations for the Model...

Model: (0, 1, 0)

Model: (0, 1, 1)

Model: (0, 1, 2)

Model: (1, 1, 0)

Model: (1, 1, 1)

Model: (1, 1, 2)

Model: (2, 1, 0)

Model: (2, 1, 1)

Model: (2, 1, 2)
```

We will Apply all values of p and q. check which combination is giving us the low AIC score.

```
ARIMA(0, 1, 0) - AIC:1335.1526583086775
ARIMA(0, 1, 1) - AIC:1280.7261830464336
ARIMA(0, 1, 2) - AIC:1276.8353748558739
ARIMA(1, 1, 0) - AIC:1319.3483105801956
ARIMA(1, 1, 1) - AIC:1277.7757578176656
ARIMA(1, 1, 2) - AIC:1277.359222277722
ARIMA(2, 1, 0) - AIC:1300.6092611744687
ARIMA(2, 1, 1) - AIC:1279.0456894093138
ARIMA(2, 1, 2) - AIC:1279.2986939364855
```

Sort the above AIC values in the ascending order to get the parameters for the minimum AIC value

	param	AIC
2	(0, 1, 2)	1276.84
5	(1, 1, 2)	1277.36
4	(1, 1, 1)	1277.78
7	(2, 1, 1)	1279.05
8	(2, 1, 2)	1279.30
1	(0, 1, 1)	1280.73
6	(2, 1, 0)	1300.61
3	(1, 1, 0)	1319.35
0	(0, 1, 0)	1335.15

		ARIMA Mod	del Results				
=========	=======	========		:=======	=======	======	
Dep. Variable:	Dep. Variable: D.Rose No. Observations:						
Model:	AR	IMA(0, 1, 2)	Log Like	lihood	-634.418		
Method:		css-mle	S.D. of	innovations		30.167	
Date:	Tue,	22 Jun 2021	AIC			1276.835	
Time:		20:45:21	BIC			1288.336	
Sample:		02-29-1980	HQIC			1281.509	
		- 12-31-1990					
==========	coef	std err	Z	P> z	[0.025	0.975]	
const	-0.4885	0.085	-5.742	0.000	-0.655	-0.322	
ma.L1.D.Rose	-0.7601	0.101	-7.499	0.000	-0.959	-0.561	
ma.L2.D.Rose	-0.2398	0.095	-2.518	0.012	-0.427	-0.053	
		Ro	oots				
==========	Real	Imagin	ary	Modulus	 Fr	equency	
MA.1	1.0001	+0.00)00j	1.0001		0.0000	
	-4.1696	+0.00	•	4.1696		0.5000	

Predict on the Test Set using this model and evaluate the model.

	Test RMSE
ARIMA(0,1,2)	15.63

Performance of Models so far:

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
RegressionOnTime	15.28
NaiveModel	79.74
SimpleAverageModel	53.48
2pointTrailingMovingAverage	11.53
4pointTrailingMovingAverage	14.46
6pointTrailingMovingAverage	14.57
9pointTrailingMovingAverage	14.73
ARIMA(0,1,2)	15.63
L	

Still this point Triple exponential has performed the best.

Automated Version of SARIMA

In Model SARIMA, we are considering Seasonal P,D,Q,S.

It is extension of ARIMA model by considering Seasonality factor.

```
Examples of some parameter combinations for Model...

Model: (0, 1, 1)(0, 0, 1, 12)

Model: (0, 1, 2)(0, 0, 2, 12)

Model: (1, 1, 0)(1, 0, 0, 12)

Model: (1, 1, 1)(1, 0, 1, 12)

Model: (1, 1, 2)(1, 0, 2, 12)

Model: (2, 1, 0)(2, 0, 0, 12)

Model: (2, 1, 1)(2, 0, 1, 12)

Model: (2, 1, 2)(2, 0, 2, 12)
```

Top 5 Parameters AIC score:

	param	seasonal	AIC
26	(0, 1, 2)	(2, 0, 2, 12)	887.94
80	(2, 1, 2)	(2, 0, 2, 12)	890.67
69	(2, 1, 1)	(2, 0, 0, 12)	896.52
78	(2, 1, 2)	(2, 0, 0, 12)	897.35
70	(2, 1, 1)	(2, 0, 1, 12)	897.64

From the above result we will choose (0,1,2)(2,0,2,12).

Dep. Variable	: :			y No.	Observations	s:	132
Model:	SAR	[MAX(0, 1,	2)x(2, 0, 2	, 12) Log	Likelihood		-436.969
Date:			Tue, 22 Jun				887.938
Time:			20:	46:08 BIC			906.448
Sample:				0 HQIC	2		895.437
				- 132			
Covariance Ty	/pe:			opg			
========	coef	std err	Z	P> z	[0.025	0.975]	
ma.L1	-0.8428	174.455	-0.005	0.996	-342.767	341.082	
ma.L2	-0.1572	27.458	-0.006	0.995	-53.973	53.659	
ar.S.L12	0.3467	0.079	4.374	0.000	0.191	0.502	
ar.S.L24	0.3023	0.076	3.996	0.000	0.154	0.451	
ma.S.L12	0.0767	0.133	0.577	0.564	-0.184	0.337	
ma.S.L24	-0.0726	0.146	-0.498	0.618	-0.358	0.213	
sigma2	251.3159	4.38e+04	0.006	0.995	-8.57e+04	8.62e+04	
Ljung-Box (L1	 L) (0):		0.10	Jarque-Bera	======== a (JB):	========	2.33
Prob(Q):	, (0)		0.75	Prob(JB):	` /		0.31
Heteroskedast	cicity (H):	:	0.88	Skew:			0.37
Prob(H) (two-	sided):		0.70	Kurtosis:			3.03

Results:

Predict on the Test Set using this model and evaluate the model.

у	mean	mean_se	mean_ci_lower	mean_ci_upper
0	62.87	15.93	31.65	94.09
1	70.54	16.15	38.89	102.19
2	77.36	16.15	45.71	109.01
3	76.21	16.15	44.56	107.86
4	72.75	16.15	41.10	104.40

RMSE for SARIMA model is:

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
RegressionOnTime	15.28
NaiveModel	79.74
SimpleAverageModel	53.48
2pointTrailingMovingAverage	11.53
4pointTrailingMovingAverage	14.46
6pointTrailingMovingAverage	14.57
9pointTrailingMovingAverage	14.73
ARIMA(0,1,2)	15.63
SARIMA(0,1,2)(2,0,2,12)	26.95

7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

Manual ARIMA

Let us look at the ACF and the PACF plots

Here, we have taken alpha=0.05.

The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PACF plot cuts-off to o. The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to o. By looking at the above plots, we can say that both the PACF and ACF plot cuts-off at lag 4 and 2.

=========			lel Results ≔======	========		======
Dep. Variable:		D.Rose	No. Obse	rvations:	131	
Model:	AR	IMA(4, 1, 2)	_		-633.876	
Method:		css-mle	S.D. of	innovations	29.793	
Date:	Tue, 22 Jun 2021		AIC		1283.753	
Time:		20:46:10	BIC		1306.754	
Sample:		02-29-1980 - 12-31-1990	HQIC		1293.099	
========	coef	std err	Z	P> z	[0.025	0.975]
const	-0.1905	0.576	-0.331	0.741	-1.319	0.938
ar.L1.D.Rose	1.1685	0.087	13.391	0.000	0.997	1.340
ar.L2.D.Rose	-0.3562	0.132	-2.693	0.007	-0.616	-0.097
ar.L3.D.Rose	0.1855	0.132	1.402	0.161	-0.074	0.445
ar.L4.D.Rose	-0.2227	0.091	-2.443	0.015	-0.401	-0.044
ma.L1.D.Rose	-1.9506	nan	nan	nan	nan	nar
ma.L2.D.Rose	1.0000	nan	nan	nan	nan	nar
		Ro	ots			
	Real	Imagin	ıary	Modulus	Fre	quency
AR.1	1.1027	-0.41	.16j	1.1770		0.0569
AR.2	1.1027	+0.41	.16j	1.1770	0.0569	
AR.3	-0.6863	-1.66	643j	1.8003	-0.3122	
AR.4	-0.6863	+1.66	543j	1.8003		0.3122
MA.1	0.9753	-0.22	109j	1.0000	-	0.0355
MA.2	0.9753	+0.22	.09j	1.0000		0.0355

Predict on the Test Set using this model and evaluate the model.

RMSE for Manual ARIMA model is 33.96920076790553.

The Overall Results till now,

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
RegressionOnTime	15.28
NaiveModel	79.74
SimpleAverageModel	53.48
2pointTrailingMovingAverage	11.53
4pointTrailingMovingAverage	14.46
6pointTrailingMovingAverage	14.57
9pointTrailingMovingAverage	14.73
ARIMA(0,1,2)	15.63
SARIMA(0,1,2)(2,0,2,12)	26.95
ARIMA(4,1,2)	33.97

SARIMA Model: Manually looking at ACF and PACF

We see that there is a trend and a seasonality. So, now we take a seasonal differencing and check the series.

We see that there might be a slight trend which can be noticed in the data. So we take a differencing of first order on the seasonally differenced series.

Now we see that there is almost no trend present in the data. Seasonality is only present in the data. Let us go ahead and check the stationarity of the above series before fitting the SARIMA model.

Results of Dickey-Fuller Test	:
Test Statistic	-3.69
p-value	0.00
#Lags Used	11.00
Number of Observations Used	107.00
Critical Value (1%)	-3.49
Critical Value (5%)	-2.89
Critical Value (10%)	-2.58
dtype: float64	

Here, we have taken alpha=0.05.

We are going to take the seasonal period as 12. We will keep the p(1) and q(1) parameters same as the ARIMA model.

The Auto-Regressive parameter in an SARIMA model is 'P' which comes from the significant lag after which the PACF plot cuts-off to o. The Moving-Average parameter in an SARIMA model is 'q' which comes from the significant lag after which the ACF plot cuts-off to o. Remember to check the ACF and the PACF plots only at multiples of 12 (since 12 is the seasonal period). By looking at the plots we see that the ACF and the PACF do not directly cut-off to o.

This is a common problem while building models by looking at the ACF and the PACF plots. But we are able to explain the model.

132 -426.513 875.026 903.901 886.718		No. Observa Log Likelih AIC BIC HQIC			IMAX(2, 1,		Dep. Varia Model: Date: Time: Sample:	
			- 132 opg			Type:	Covariance	
	0.975]	[0.025	P> z	 Z	std err	coef	=======	
	1.213	-0.037	0.065	1.844	0.319	0.5879	ar.L1	
		-1.263					ar.L2	
	-215.031	-592.027	0.000	-4.196	96.174			
	775.104	441.048	0.000	7.135	85.220	608.0760	ma.L2	
	-230.606	-669.881	0.000	-4.018	112.062	-450.2434	ma.L3	
	467.189	17.583	0.035	2.113	114.697	242.3857	ma.L4	
	0.677	0.114	0.006	2.754	0.144	0.3954	ar.S.L12	
	0.469	0.068	0.009	2.626	0.102	0.2686	ar.S.L24	
	0.422	-0.303	0.747	0.322	0.185	0.0596	ma.S.L12	
		-0.336			0.143	-0.0566		
	0.003	2.5e-05	0.046	1.993	0.001	0.0015	sigma2	
	1.88	a (JB):	Jarque-Bera	0.22		(L1) (Q):	Ljung-Box	
	0.39	•	Prob(JB):	0.64	Prob(Q):			
	0.33		Skew:	0.76	:	asticity (H)	Heterosked	
	3.11		Kurtosis:	0.43	Prob(H) (two-sided):			

Results Dignostics for Manual SARIMA:

Predict on the Test Set using this model and evaluate the model.

у	mean	mean_se	mean_ci_lower	mean_ci_upper
0	61.66	15.59	31.10	92.22
1	70.96	15.64	40.30	101.62
2	76.12	15.65	45.44	106.79
3	75.26	15.65	44.57	105.94
4	72.43	15.66	41.74	103.12

RMSE for Manual SARIMA is 26.696148760797275

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha = 0.676, Beta = 0.088, Gamma = 0.323, Triple Exponential Smoothing	21.17
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
RegressionOnTime	15.28
NaiveModel	79.74
SimpleAverageModel	53.48
2pointTrailingMovingAverage	11.53
4pointTrailingMovingAverage	14.46
6pointTrailingMovingAverage	14.57
9pointTrailingMovingAverage	14.73
ARIMA(0,1,2)	15.63
SARIMA(0,1,2)(2,0,2,12)	26.95
ARIMA(4,1,2)	33.97
SARIMA(2,1,4)(2,0,2,12)	26.70

8.Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

	Test RMSE
Alpha=0.995,Simple Exponential Model	36.82
Alpha=0.3,SimpleExponentialSmoothing	47.53
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	265.59
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	21.17
Alpha=0.3,Beta=0.4,Gamma=0.3,TripleExponentialSmoothing	10.95
RegressionOnTime	15.28
NaiveModel	79.74
SimpleAverageModel	53.48
2pointTrailingMovingAverage	11.53
4pointTrailingMovingAverage	14.46
6pointTrailingMovingAverage	14.57
9pointTrailingMovingAverage	14.73
ARIMA(0,1,2)	15.63
SARIMA(0,1,2)(2,0,2,12)	26.95
ARIMA(4,1,2)	33.97
SARIMA(2,1,4)(2,0,2,12)	26.70

9.Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

If we see all the RMSE, We can Say that Triple exponential Smoothing can perform Well for this series, This series has level, Seasonality and Trend also.

So we will Select Triple Exponential Smoothing model, we will give train data as Whole Data. That is, Test and Train data earlier, Now all data will be used for Training for Purpose.

We are predicting here for Next 12 Months.

Parameters:

Final Model results:

ExponentialSmoothing M	lodel Results				
Dep. Variable:		Rose	No. Observa	itions:	187
Model: E	xponentialSm	oothing		SSE	48456.867
Optimized:		True		AIC	1071.219
Trend:	A	Additive		BIC	1122.917
Seasonal:	Multip	licative		AICC	1075.290
Seasonal Periods:		12		Date:	Tue, 22 Jun 2021
Box-Cox:		False		Time:	22:05:00
Box-Cox Coeff.:		None			
	coeff	code	optimized		
smoothing_level	0.1067081	alpha	True		
smoothing_trend	4.3861e-08	beta	True		
smoothing_seasonal	4.6406e-05	gamma	True		
initial_level	44.808788	1.0	True		
initial_trend	-0.1701793	b.0	True		
initial_seasons.0	2.4095078	s.0	True		
initial_seasons.1	2.7364239	s.1	True		
initial_seasons.2	3.0184761	s.2	True		
initial_seasons.3	2.6973654	s.3	True		
initial_seasons.4	2.9486071	s.4	True		
initial_seasons.5	3.1936259	s.5	True		
initial_seasons.6	3.5825785	s.6	True		
initial_seasons.7	3.6914497	s.7	True		
initial_seasons.8	3.4862899	s.8	True		
initial_seasons.9		s.9			
initial_seasons.10		s.10	True		
initial_seasons.11	5.5133509	s.11	True		

Sales for the Next 12 Months,

Rose wine Sales and Particular Month:

	Sales
1995-08-31	47.50
1995-09-30	44.27
1995-10-31	43.16
1995-11-30	49.42
1995-12-31	67.19
1996-01-31	28.95
1996-02-29	32.42
1996-03-31	35.25
1996-04-30	31.04
1996-05-31	33.43
1996-06-30	35.66
1996-07-31	39.39

10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales. Please explain and summarise the various steps performed in this project. There should be proper business interpretation and actionable insights present. 5

To predict Sales in 12 Months we have studied, Analysed and applied different Models on the existing Data.

While Doing the EDA part we got to know that

- 1. There is downward trend, and also series has Seasonality, Trend and Level.
- 2. There are two missing values, we have filled that with the forward filling method.
- 3. The sales are High in the month of December, it is might due to Festivals like New year, Christmas.
- 4. The High Stock should be Ready from the month of August to December.
- 5.As per Predicted, The Maximum sales are happening in the month of December, and it is around 67, so it will be okay if we got 67 wines in stock in The Dec-1995.
- 6. Here we come with interseting insights from Monthly plot, From January to October Median of Sales is almost Same. Only Sales are increasing in November and December. In This December Only Sales has Crossed figure of 250 wines.
- 7. It needs to be analysed further, Why the Sales are Decreasing every passing year. Quality issue, branding, Advertisement issue that can be analysed from different data.

To Predict the Results, We have applied Double, Triple Exponential Smoothing. Also applied Regression, NaiveModel, SimpleAverageModel, TrailingMovingAverage, Then automated ARIMA, SARIMA by comparing AIC values and Manual ARIMA, SARIMA by Partial Autocorrelation Function and Autocorrelation Function plots.

After Applying all the Models, we found that RMSE value for Triple exponential smoothing was a lowest, so we have decided to go with this model. We have applied the whole Data earlier it was Test and Train, we have applied full data, fit the model and then predicted the Next 12 Months Sales and plotted the same.

THE END