CSE350: NETWORK SECURITY

PROGRAMMING ASSIGNMENT 3

Ananya Garg (2022068), Ananya Gupta (2021012)

Introduction

Project 0: RSA-based Public-key Certification Authority (CA)

Built a public-key Certification Authority (CA), that responds to requests from clients that seek their own RSA-based public-key certificates OR that of other clients

Built 2 clients, A and B, that:

- send requests to the CA for their own public-key certificates OR that of other clients,
 and
- exchange text messages with each other in a confidential manner, suitably encrypted with the public key of the receiver, but only after they know the other client's public key in a secure manner.

A sample certificate for A is of the form as given below:

$$[(ID_{A},\ PU_{A},\ T_{A},\ DUR_{A},\ INFO_{CA})||ENC_{PR-CA}(ID_{A},\ PU_{A},\ T_{A},\ DUR_{A},\ INFO_{CA})]$$

- ID_A is the user ID
- PU_A is the public key of A
- ullet $T_{_{A}}$ is the time of issuance of the certificate
- ullet DUR_A is the duration for which the certificate is valid
- INFO_{CA} is information about certification authority
- ENC is the encryption algorithm used by CA
- PR CA is the public key of the certification authority

Assumptions

- Clients already (somehow) know their own [public-key, private-key] but do not have their certificates or that of others.
- The format of the certificate and the hashing function are publicly available.
- Clients know the public key of the CA.

CA has the public keys of all clients (handled by gRPC)

Encryption and Decryption

RSA is used for encryption and decryption. Large prime numbers p and q are generated to get $n=p^*q$ and $\phi=(p-1)^*(q-1)$.

This further allowed to generate numbers d and e. Chose e such that:

$$1 < e < \phi$$
 and $gcd(e, \phi) = 1$

Used keys for encryption and decryption as below:

$$C = M^e \pmod{n}$$

$$M = C^d (mod n)$$

where, M is a plaintext such that M<n and C is the ciphertext.

Encryption

- RSA encryption involves generating public and private keys.
- In the code, RequestCertificate method in the CA class signs certificate data using CA's private key.
- This is then appended to the original message and sent to the client.
- Clients use the public key to encrypt data before sending it to the other client.

Decryption

- Decryption in the code involves verifying signatures and decrypting messages on the client side
- When a certificate is received the client verifies its authenticity using the CA's public key.
- If the signature is valid, decryption is successful, and the client can trust the received certificate for secure communication.
- Clients also send messages to each other while encrypting and decrypting them back and forth.

Constraints

Specially chosen n, and blocks of data of size k bits s.t. $2^k < n \le 2^{k+1}$

This constraint is inherent in the RSA algorithm. It is satisfied by default in our code.