课程名称:	应用高等工程数学	课程类别 口会处课	考核形式 <u>口开</u>
学生类别	考试日期201	3.12.17 学生所在院系	
学号			
一、填空题:(1	1×10=10分)		
1. 给出三个线性	生变换的例子		
2. 矩阵的特征值	直的几何重数与代表重数的	为关系是	
3. 对 $A = [a_{ij}]_{m \times n}$	给出 A 的某一范数		
4. 矩阵对角化可	了认为是矩阵 Jordan 标准型	型的	÷
5. 三个节点的 N	Newton-Cotes 求积公式的	代数精度为	_
	求积公式的精确程度能否		
7. 用非线性方和	星求根的 Newton 迭代	法,写出求√3 的近似	值的一种计算格式
8. 若 $f(x) = 2x^7$	+ x ⁵ +1 , 则 f[0,1,···,7] =		an and a second
9. 设 $(X_1, \cdots X_n)$	为 $X \sim N(0,1)$ 的样本, X_0	$(x_1) \le \cdots \le X_{(n)}, \emptyset X_{(1)}^{2} + $	$\cdots + X_{(n)}^{2} \sim \underline{\hspace{1cm}}$
10. 设 $(X_1, \cdots X_n)$) 为 X ~ N(μ,σ²) 的样本,	μ , σ^2 均未知, μ 的置	
侧区间估计	为· .		
二、计算证明题	(9×10=90分)		
11. 设 1/1,1/2 分别	为齐次方程组 $x_1 + \cdots + x_n$	= 0 和 x, = · · · = x, 的解 3	空间,问:R"=v,⊕v
是否成立?	若成立给出证明,若不成	立给出反例。	
12. 设[$\alpha_1,\alpha_2,\alpha_3$]] 为线性空间 V 的一个基 一	 底、 T 为 V 上 的 一 个 -	、线性变换。设7
			4

$$[\alpha_1,\alpha_2,\alpha_3]$$
 下的矩阵 $A = \begin{bmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & 2 & 2 \end{bmatrix}$,求 T 的特征值与特征向量。

13. 设
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$$
, 求 A 的 Jordan 标准型.

14. 用 Gauss 列主元解法求下列方程组的解.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 14 \\ 8 \\ 13 \end{bmatrix}$$

15. 给出方程组
$$\begin{bmatrix} 1 & a & 0 \\ a & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, 确定 a 的范围,使方程组对应的 Jacobi 迭代收

敛.

16. 求一个次数不超过 4 的多项式
$$P(x)$$
, 使它满足 $P(0) = P'(1) = 1$, $P(1) = P'(0) = 0$, O (2 $P(2) = 1$, 并写出其余项表达式. $P(0) = 1$

- P(2)=1,并写出其余项表达式. P(1) 1 0 1 P(2)=1,并写出其余项表达式. P(1) 1 0 1 P(2)=1 0 1 17. 设 (X_1,\cdots,X_n) , (Y_1,\cdots,Y_n) 为分别来自 $X\sim N(\mu_1,\sigma^2)$, $Y\sim N(\mu_2,\sigma^2)$ 的两个独立 样本, X与Y独立, 求 μ_1, μ_2, σ^2 的极大似然估计.
- (1) 叙述某一非参数假设检验方法. 18.
 - (2) 设有甲、乙两赌徒,他们将一正四面体的四面分别涂为红、黄、蓝、白四 种不同颜色,作抛掷试验,任意抛掷四面体,直到白色一面与地面接触为止。 记录下抛掷次数,作如此试验 200 次,结果如下:

抛掷次数	1	2	3	4	>5
频數	56	48	32	28	56

甲赌此四面体均匀,乙赌不均匀,找到一位统计学家, (统计学家取 $\alpha = 0.05$)

判决, 问统计学家判断谁输? (χ_{0.95}(4) = 9.488)

19. (1) 叙述方差分析的条件.

16、利用鱼的鱼差局公式可以粉出差局是

(2) 五种粮食贮藏法,以含水量为污准,设粮食贮藏前含水量几乎无差别,贮藏后含水量如下:

武验号 含水量% 贮藏法	1	2	3	4	5
A_{i}	7.3	8.3	7.6	8.4	8.3
A_2	5.4	7.4	7.1		
A_3	8.1	6.4	7.0		
A_4	7.9	9.5	9.2	8.6	
A_5	7.1	7.5	7.3		

设粮食含水量都服从正态分布,方差相同,在显著性水平 $\alpha=0.05$ 下,问贮藏方法 对粮食含水量的影响是否有显著性差异? ($F_{0.95}(4.13)=3.18$, $I_{0.975}(12)=2.1788$)

20. 叙述高斯一马尔可夫条件,给出一元线性回归模型中,模型参数最小二乘估计的算法.

华中科技大学研究生课程考试试卷

课程名	名称:	应用高等コ	二程数学	课程类别	☑公共课□专业课	考核形式	<u>□开卷</u> ☑闭卷
学生类	烂别	研究生	_考试日期2014	-12-16	生所在院系_		
学号_			_姓名	任i	果教师		
一、填	真空题(任选 10 小鳥	题,每小题 2 分,	共计 20 分,	多答不加分) 。)	
1. 设	$A = \{A_{ij}\}_{3}$	3×3 的最小多	S 项式为 $m_{A}(\lambda) =$	$(\lambda-1)(\lambda-2)$	(λ-3) 则与	A 相似的	対角阵
B =].						
2. 设知	矩阵A∈	C ^{n×n} 满足等	$\exists \vec{\mathbf{x}} : A^2 + A = 2I$, 问 <i>A</i> 是否	可对角化	·	
3. 矩阵	阵的谱半	径是指		·			
4. 矩阵	阵特征值	的根空间组	崖数等于				
5. 对位	任何非奇	异矩阵 A ,	都有 cond (A) _p	1, 当A	为正交矩阵时	$\dagger cond (A)$	₂ =
6. 己多	知 $\sqrt{5}=2$.236067977	499…,则其近何	以值 2.23607	有	位有效数字	² ,通过
四	舍五入得	身到其有四個	位有效数字的近侧	以值为	·		
7. 已分	知 $f(x) =$	$2x^3 - 4x^2 -$	⊦1,则 <i>f</i> [0,1,2,3] :	=	, f[0,1,2,3	,4]=	·
8. 当	n 为奇数	时,等距雪	方点的插值型(N	- <i>C</i>) 求积公:	$\overrightarrow{r} I_n = (b - a)$	$\sum_{i=1}^{n} C_i f(x_i)$	至少有
	次代数	双精度.					
9. φ(z	$x) = x + \lambda$	$L(x^2-3)$,	要使迭代法 x_{k+1} =	$= \varphi(x_k)$ 局部以	女敛到 $x^* = $	3, 则λ的	」取值范
围	是	·					
10. 试	(写出方和	$\stackrel{\square}{=} f(x) = x^3$	-a=0的牛顿迭	代格式		·	
11. 设	$ \overset{1}{\zeta}(X_1, \dots, X_n) $	X_n) 为 X ~	· N(0,1) 的样本,	$X_{(1)} \leq X_{(2)}$	$\leq \cdots \leq X_{(n)}$ 为	次序统计	量,则
X	$X_{(1)}^{2} + X_{(2)}$	$X_{(i)}^2 + \cdots + X_{(i)}^2$	² ~	_•			

- 12. 给出点估计评价的三个标准 .
- 13. 给出假设检验中显著性水平 α 与统计假设 H_0 的关系_____.
- 14. 设 (X_1, \dots, X_n) 为 $X \sim N(\mu, \sigma^2)$ 的样本, μ 未知, σ^2 已知, μ 的置信水平为 $1-\alpha$ 的 双侧区间估计为______.
- 15. 使用方差分析时对数据的要求是
- 二、计算证明题(任选 4 题,每小题 10 分,满分 40 分,多答不加分。)
- 16. 已知 R^3 中的两个基底 $B_1 = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$, $B_2 = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$,求从 B_1 到 B_2 的 基变换矩阵。
- 17. 设 \mathbf{R}^4 中的向量 $x_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $x_3 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$, $x_4 = \begin{bmatrix} -1 \\ -1 \\ 3 \\ 7 \end{bmatrix}$, 分别张成

 $w_1 = span\{x_1, x_2\}$, $w_2 = span\{x_3, x_4\}$, 求 $w_1 + w_2$ 及 $w_1 \cap w_2$ 的基底及维数。

18. 设T 是线性空间 V^3 的线性变换,已知T 在基 $B = \{\alpha_1, \alpha_2, \alpha_3\}$ 下的矩阵A 为

$$A = \begin{bmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & 2 & 2 \end{bmatrix},$$

求T的特征值和对应的特征向量。

19. 设 $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix}$, 求可逆矩阵 P 和 Jordan 矩阵 J,使 AP = PJ。

20. 设
$$A = \begin{bmatrix} 0.2 & 0.1 & 0.2 \\ 0.5 & 0.5 & 0.4 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}$$
,问 $\lim_{k \to \infty} A^k = 0$ 成立吗?若成立证明之。

21.
$$A = \begin{bmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \\ -2 & -4 & 2 & -2 \end{bmatrix}$$
, $\bar{x}A$ 的满秩分解。

22. 设有微分方程组
$$\begin{cases} \frac{dx_1(t)}{dt} = 2x_1(t) + e^{2t} \\ \frac{dx_2(t)}{dt} = x_1(t) + x_2(t) + x_3(t) + e^{2t} \\ \frac{dx_3(t)}{dt} = x_1(t) - x_2(t) + 3x_3(t) \end{cases}$$

 $x(0) = [-1,1,0]^T$, 求满足初始条件的特解。

23. 设
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, 求 A 的奇异值分解。

- 三、计算证明题(任选 4 题,每小题 10 分,满分 40 份,多答不加分。)
- 24. 对函数 f(0) = -1, f'(0) = -2, f(1) = 0, f'(1) = 10, 试求过这 2 点的三次 Hermite 插值多项式 $H_3(x)$, 并写出插值余项的表达式。
- 25. 试构造两点 Gauss-Chebyshev 求积公式

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) dx \approx A_0 f(x_0) + A_1 f(x_1)$$

并由此计算积分
$$\int_{-1}^{1} \sqrt{\frac{3+2x^2}{1-x^2}} dx$$
 。

26. 设有常微分方程初值问题
$$\begin{cases} y'(x) = f(x, y) \\ y(0) = a \end{cases}$$
 的隐式中点公式

$$y_{n+1} = y_n + hf\left(x_{n+\frac{h}{2}}, \frac{y_n + y_{n+1}}{2}\right)$$
, 证明该方法是无条件稳定的。

27. 方程
$$Ax = b$$
 的系数矩阵为 $A = \begin{bmatrix} a & 5 & 0 \\ 1 & a & 2 \\ 0 & 2 & a \end{bmatrix}$,问 a 取何值时,Jacobi 迭代收敛?

- 28. 设 (X_1, \dots, X_n) 为总体X的一个样本, $EX = \mu$, μ 未知。
 - (1) \bar{X} 是否为 μ 的无偏估计?
 - (2) 由 (X_1,\cdots,X_n) 构造 μ 的n个无偏估计.

(3)
$$\bigvee_{i=1}^{n} \sum_{i=1}^{n} a_i = 1, a_i > 0, i = 1, \dots, n.$$

问 $\hat{\mu} = \sum_{i=1}^{n} a_i X_i$ 是否为 μ 的无偏估计,若是 μ 的无偏估计,确定 a_i , $i=1,\cdots,n$,使 $\hat{\mu}$ 的方差最小。

29. 某纺织厂生产的某种产品的纤度,设服从正态分布,标准差 σ =0.048,现抽取 5 根测得纤度为 1.32,1.55,1.36,1.40,1.44,问在显著性水平 α =0.10下,能否认为 σ^2 无显著变化。($\chi^2_{0.05}(4)$ =0.711, $\chi^2_{0.95}(4)$ =9.488)

30. 设有三个工厂生产同一种机械锻件,为比较这三个厂生产的锻件强度无显著差异,分别从每个厂随机抽4件,测得强度数据如下:

工厂	强度数据						
$oldsymbol{A}_1$	103	101	98	110			
A_2	113	107	108	116			
A_3	82	92	84	86			

设第i个厂的强度服从 $N(\mu_i, \sigma^2)$,i=1,2,3。检验三个厂的平均强度有无显著差异? α =0.05($F_{0.95}(2,9)$ =4.26, $F_{0.95}(3,12)$ =3.49)

31. 已知 y 与三个自变量的观察值如下表:

x_1	-1	-1	-1	-1	1	1	1	1
x_2	-1	-1	1	1	-1	-1	1	1
x_3	-1	1	-1	1	-1	1	-1	1
У	7.6	10.3	9.2	10.2	8.4	11.1	9.8	12.6

求 y 对 x_1, x_2, x_3 的回归方程。

32. 有经过 xmin 反应之后的数据如下:

x_i	1	2	3	4	5	6
y_i	28.5	16.9	17.5	14.0	9.8	8.9

设 $y = \beta_0 \beta_1^x \varepsilon$ (ε 满足回归分析条件), 求 β_0, β_1 的点估计, 并求 $\hat{y} = \hat{\beta}_0 \hat{\beta}_1^x$.

华中科技大学研究生课程考试试验

课程名称: <u>应用高等工程数学 B</u> 课程类别 <u>□专业课</u> 考核形式 <u>□开盘</u> 学生类别 多次 考试日期 2015.12 学生所在院系 77 计

一 、填空題(毎題3分共30分)

- 2. 设方阵 A 满足 $A^2 + aI = (a+1)A$,则当 $a = \frac{1}{2}$ 时可以对角化。
- 3. 设 $A_1 = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. $A_2 = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$. 则方阵 $\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$ 的最小多项式为 $(\lambda-2)^*(\lambda-3)$
- 4. 设方阵的一个特征值2的代数重数为6. 几何重数为3. 则2的指标可以为2,3. 4.
- (5) 对于 n 阶方阵 A 和 B, 基于算子范敷 III 的条件数, 其大小关系为 Cond(AB) 5 Cond(A) Cond(B).
 - 6. 设(X1, X2, ··· X5)是取自总体 N(0, 4)的样本, 已知 a(X1+ X2)2+b(X3+ X4+ X5)2 服从
 - 7. 在总体期望 μ 的估计类 $M = \{\hat{\mu} = \sum_{i=1}^n a_i X_i\} \Phi$,最小方差无偏估计为 $\frac{\sum_{i=1}^n \lambda_i}{\sum_{i=1}^n \lambda_i} = \frac{\sum_{i=1}^n \lambda_i}{\sum_{i=1}^n \lambda_i} = \frac{\sum_{i=1}$
 - 8. 一般未知参数heta 的置信区间长度 L 会随着置信度1-lpha 的增大而 λ 。 λ ,
 - 9. 在假设检验中,当显著水平α较大时,原假设 Ho 更容易被 15.60]。
- 10) 对线性统计模型: $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, i=1,2,...,n, 相互独立, 回归系数 β_i 的 最小二乘估计 B ~ ______。

二、(9分)求格向量 x = [1.1.1.1]^r 变换为向量 y = [-2.0.0.0]^r的 Householder 矩阵 H, 共证明对任何可逆方阵 A 有 Condo(H) ≤ Cond(A).

三、(8分) 已知
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, 求 $g(A) = A^5 - 4A^4 + 4A^3 + 6A^2 + I$.

四、(9分) 求可逆矩阵 P, 使 P AP 为 Jordan 矩阵, 其中: A= -4 3 0 . 五/(9分) 求上题中矩阵 A 的 Doolittle 分解。

六、(8分) 设总体 X 的期望 $EX = \mu$,方差 $DX = \sigma^2$, (X_1, X_2, \cdots, X_n) 是取自该总体的样本。对样本作变换: $Y_i = aX_i + b$,i=1,2,...,n, \overline{Y} 和 SY^2 分别为变换后的样本均值和样本方差,试求 $E\overline{Y}$ 、 $D\overline{Y}$ 和 ESY^2 。

七、 $(10\, \mathcal{O})$ 设 (X_1, X_2, \cdots, X_n) 是取自总体 $N(0, \sigma^2)$ 的样本。(1) 求未知参数 σ^2 的极大似然估计 \mathcal{O} ; (2) 判断 \mathcal{O} 是否为无偏估计,如果是无偏估计,其方差能否达到方差下界?

八、(8 分)设某网店的日营业额服从正态分布,已知同类网店的日均营业额为 3180 元。由该网店随机抽取的 9 天营业额记录算得样本均值 $\bar{x}=3510$ 元,样本标准差 s=150 元。问在显著水平 $\alpha=0.05$ 下,能否认为该网店的日均营业额高于同类网店的平均水平?

九、(9分)下表列出的是武汉市今年 11 月份五个环境监测点测到的空气污染指数值

监测点	污染指数 x _{ii}			
青山钢花 沌口新区 汉口江滩	76			
沌口新区	78	95	90	103
汉口江滩	77	122	139	128
东湖高新	74	102	97	122
沉湖七壕	84	89	102	74

假定第 i 个观察点的空气污染指数服从正态分布 $N(\mu_i,\sigma^2)$,试检验各监测点的空气质量差异的显著性。

附:上侧分位点数值

 $F_{0.01}(4,15)=4.893$, $F_{0.025}(4,15)=3.804$, $F_{0.05}(4,15)=3.056$, $F_{0.10}(5,15)=2.273$, $F_{0.05}(5,15)=2.901$, $t_{0.025}(8)=2.306$, $t_{0.025}(9)=2.262$, $t_{0.05}(8)=1.86$, $t_{0.05}(9)=1.833$, $t_{0.025}(14)=2.145$

