SUMMARY OF ALGORITHMS

CLRS: 10 □ ADT – Abstract Data Type

☐ I-d : Lists, Queue, Stack

☐ Array implementation

■ Execution Stacks

☐ Heap (aka Priority Queue) **CRLS: 16**

☐ Binary Trees

☐ Traversals (pre-, in-, post-order)

☐ BST

☐ Huffman Encoding

See appendix B.5 Trees)

CRLS: 12

CRLS: 13

CRLS: 16.3

I-D ADT'S: ARRAYS, QUEUES, STACKS & LINKED LISTS.

- Abstract Data Types (ADT): data type (class) with ops (methods).
 - ◆ Examples: Int. (0,1,...,Maxint). All 2 by 2 real matrices. IEEE floats, etc.
 - **◆** The implementation is not part of the ADT!

- Queue (or FIFO) is a list with methods:
 - ◆ Enqueue(item) & item = Dequeue (relative to *front/*back respectively)

- STACK (or LIFO) is a list with methods:
 - ◆ push(item) & item = pop() (relative to *TOP)

- Linked List is a list with methods:
 - ◆ insert(item) & delete() (relative to *current)
 - ◆ current->next and current->last moves current

STACK IS FUNDAMENTAL

Reverse Polish: 6 5 2 3 + 8 * + 3 + *
+ + + + + + +

See also convertion: infix → postfix

$$(6*(5+((2+3)*8+3))) = 6 5 2 3 + 8* + 3 + *$$

- Execution Stacks for Function Calls:
 - Fixed return register
 - First line of subroutine (nested)
 - Execution stack (recursive)

FORTRAN'S EVOLUTION OF THE SUBROUTINE CALL

- Function Call & Return
- Version I -- Return Register
 - no nesting
- Version 2 --- Return to top of Function
 - nesting but no recursion
- Version 3 --- The stack frame AT LAST!
 - Call yourself (recursion)

VERSION I

VERSION 2

Verslon 3

STACK

SIACK
103
Temp
Arg2
Arg1
14

Heaps = Array disguised as Tree

- Basic Heap ADT:
 - ◆ Data is a[i], i = 1,...,N (ROOT = 1, LABEL 0)
 - ◆ Methods: Insert (key), Delete(key), DeleteMin, Build and Sort
- Q: When is a tree an array? A: complete tree
 - ◆ Parent a[i] → a[2i] = left child & a[2i+1] = right child
 - ◆ Child a[j]: → a[j/2] = parent (integer division).
- Build Heap is O(N) by bottom up, DeleteMin is O(log(N))
 - **→**
 - ◆ Heap sort by deleting min over and over is O(N log(N)).

Min Heap Order

MAX NUMBER OF NODES $N = 1 + 2 + 4 + ... + 2^H = 2^{H+1} - 1$ and Total height H = O(Log2(N))

Insert 5: Insertion sort on path to root

Insert 5: Insertion sort on path to root

Delete 1: Push down to min child

Recursive: Heap = Root + Left and Right Heap

Bottom up Heapify in O(N)

• Take Array as is and them heapify the bottom at most 2^(H-1) pairs

$$T(N) \le 2^{H-1} + 2 * 2^{H-2} + 3 * 2^{H-3} + \dots + (H-1) * 1 = 2^H \sum_{n=1}^{H-1} n(1/2)^n$$

Do the sum for large total height H by for x = 1/2

$$\sum_{n=0}^{H-1} nx^n = x \frac{d}{dx} \sum_{n=0}^{H-1} x^n = x \frac{d}{dx} \frac{1 - x^H}{1 - x} \simeq 1/(1 - x)^2 = 4$$

or Solve the Recursive relation with $N=2^H$

$$T(H) = 2T(H-1) + c_0H$$
 with the guess $T = c_1 2^H + c_2 H$

INTRODUCTION TO TREES

- Trees: inheritance, partial ordering, execution graphs,
- A tree is a special kind of Graph G(E,V)
- *E* = "edges/arcs" connecting *V* = "vertices/nodes"

■ A tree is Connected, Acyclic, Undirected G(E,V)

■ Binary Tree has 0,1,2 children (i.e. nodes have 1,2,3 edges)

DEFINITIONS FOR BINARY TREES

- ◆ Full Tree: 0, 2 children,
- ◆ Complete Tree: Consecutive nodes (aka Heap),
- Perfect Tree: Compete and full last row.
- Full Tree Theorem: # of leaves: L(N) = (N+ 1)/2 for N nodes
- Perfect Tree with H levels (height or depth)
- Nodes in Perfect k-way tree : $N(H) = (k^{H+1}-1)/(k-1) \rightarrow 2^{H+1}-1$
- Execution Tree
- Traversals: in-, pre-,post-order.

Height vs Depth of "nodes"

B.5 Trees 1177

BINARY TREE: RECURSIVE DEFINITION

A binary trees is null or a singe node with a Right and Left Child that is a binary tree!
 (Useful for organizing recursive algorithms on binary trees.)

Full Binary Tree: A Binary Tree is full if every node has 0 or 2 children. Following are examples of a full binary tree.

Complete Binary Tree: A Binary Tree is complete Binary Tree if all levels are completely filled except possibly the last level and the last keys as left as possible.

Perfect Binary Tree: A Binary tree is Perfect Binary Tree in which all internal nodes have two children and all leaves are at same level.

TREETRAVERSALS

Pre: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$ In: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 6 \rightarrow 5$ sort on BST

Post: $3 \rightarrow 4 \rightarrow 2 \rightarrow 6 \rightarrow 5 \rightarrow 1$

Expression Trees

<u>Preorder</u>: + - 2 * 4 + 1 3 (Lisp, Scheme) (+ (- 2) (* 4 (+ 1 3)))

<u>In order</u>: -2 + 4 * (1 + 3) (C, C++, Java) Standard precedence

<u>Postorder</u>: 2 - 4 1 3 + * + (HP calculator, PS, Forth)

Binary Search Tree: left <= root < right

- in order traversal gives sorted list
- easy to search

see https://en.wikipedia.org/wiki/Binary_expression_tree

DIMENSIONS OF A PERFECT TREE

Perfect Tree (all levels filled) with H levels:

```
(Height: H = Log_k(N) for k-array tree)
```

- **total** Depth: $T_D(N) = k dN/dk = (H+1)k^{H+1}/(k-1) k(k^{H+1}-1)/(k-1)^2$
- \rightarrow (binary tree) 2 (H+1) 2H 2 (2H+1 -1) = (H-1) N + H + 1
- total Height: $T_H(N) + T_D(N) = H N$ (each h + d = H)

$$T_H = H N - T_D = N - H - 1$$
 (binary tree)

SEARCH TREES

- BST tree Recursive definition
 - Insertion and Deletion

- AVL tree balance:
 - ◆ Insertions: single (zig-zig) and double (zig-zag) rotations.
 - Lazy Deletion

Red/Black Tree

BINARY SEARCHTREES

BINARY SEARCH TREE: BST

- 1. BST is a Binary Tree with keys stored in each node.
- 2. The key (K_0) in each node is: greater or equal to all keys in T_L , the Left subtree $(K_{left} < = K_0)$ less than all keys in T_R , the Right subtree $(K_0 < K_{Right})$
- 3. The BST defines a partial ordered set --- as you move down to the left/right the keys decrease/increase.
- 4. Insert new K_{new} push down to subtree Left/Right if K_{new} <=/> K_0 .
- 5. Delete K_0 and replace by SMALLEST key in T_R , the Right subtree.

AVERAGETOTAL DEPTH OF BST

$$T_D(N) = \frac{2}{N} [T_D(0) + T_D(1) + T_D(2) + \dots + T_D(N-1)] + c(N-1)$$

$$T_D(x) \simeq \frac{2}{x} \int_0^x T_D(x) + c(x-1)$$

$$xT_D(x) \simeq 2 \int_0^x T_D(x) + c(x^2 - x)$$

$$\Rightarrow T_D(x) + x \frac{dT_D(x)}{dx} = 2T_D(x) + c(2x-1)$$

$$\frac{dT_D(x)}{dx} \simeq T_D(x)/x + 2c$$

$$\Rightarrow T_D(x) = 2cx \log(x)$$

♦ Solution: $T_D(N) = Θ(N log(N))$

See Average of Quick Sort Sec 7.7.5 (p 278)

Average BST vs After O(N^2)insert/delete

RELATIONS: BOOLEAN VALUED MATRIX R[A,B]

- Set: $S = \{a,b,c,....\}$
- Relation (a,b) **2** S x S: a R b is True?
- Properties:
 - Reflexive: a R a is True
 - Anti-symmetric: a R b and b R a \rightarrow a = b
 - ◆ Transitive: a R b and b R c → a R c
 - ◆ Total Ordering: a R b or b R a (inclusive or)
 - ◆ Self dual: a R b ←→ b R a
 - ◆ Transpose: a R b ←→ b R^T a
- RAT is partial ordering: e.g. descendants in a tree!

(e.g. \leq is total ordering for int but g(N) = O(f(N)) is partial ordering!)

AVL: BST WITH $|H_L - H_R| = 0, I$

WORST CASE HEIGHT H(N) FOR AVL

Minimum # of Nodes (see Fig 4.33):

$$N(H) = N(H-1) + N(H-2) + 1 > N(H-1) + N(H-2)$$

- Almost Fibonacci: $F_k = F_{k-1} + F_{k-2}$
 - So N(H) > F_H ~ c^H with $c = (1 + 5^{1/2})/2 = 1.618034$
 - ◆Or H < log(N)/log(c) 1.440420 $log_2(N)$ = 2.078 ln(N) = 4.784 $log_{10}(N)$

(Better estimate: $H = 1.44 \log_2(N+2) - 0.328$

ZIG-ZIG INSERTION FOR LL OR RR:

- Insert New Key along path going Left and Left again into A:
- This cause violation of AVL balance.
- k_2 is lowest node failing AVL balance.
- Single rotation of $k_1 \rightarrow k_2$ restores AVL balance

ZIG-ZAG INSERTION FOR LR

- Insert New Key along path going Left and then Right into B:
- This cause violation of AVL balance.
- k₃ is lowest node failing AVL balance.
- Double rotation of $k_1 \rightarrow k_2 \rightarrow k_3$ restores AVL blance

HUFFMAN CODING

- ☐ Place all letters at leaves of a binary tree
 - ☐ The code is path (i.e. address) of each leaf.
 - ☐ Binary code for each letter: e.g. "a" = 01001, "b" = 101, ...

ext. depth
$$=\sum_i w_i d_i$$
 , average code length $=\frac{\sum_i w_i d_i}{\sum_i w_i} = \sum_i p_i d_i$

Build the Huffman tree:

- Sort symbol list: $w_1 < w_2 < \dots < w_N$
- Remove w_1 and w_2 and place as left and right children of parent $w_{(12)}$
- Place $w_{(12)} = w_1 + w_2$ in symbol list and Repeat

RESULTING CODE: AVERAGE BITS/CHAR = 785/306 = 2.565

Letter	Weight	Code	Bits	Count	
• C	32	1110	4	128	
• D	42	101	3	126	
• E	120	0	I	120	
• F	24	ШШ	5	120	
• K	7	111101	6	42	
• L	42	110	3	126	
• U	37	100	3	111	
• Z	2	111100	6	12	
Total: 306			785		

PROOF BY INDUCTION

- Base case N=2 has minimum with $d_1 = d_2 = 1$
- Two smallest weights w₁ & w₂ are at max depth
- (If not swap with any other is smaller: See identity next)
 - Can swap to give same parent $w_{12} = w_1 + w_2$
- Hence prove for N:
- $Min[(d_{12} + 1) (w_1 + w_2) + w_3 d_3 + ... + w_N d_N]$ over all trees T= $(w_1 + w_2) + Min[d_{12}w_{12} + w_3 d_3 + ... + w_N d_N]$

"SCHWARTZ" PARING INEQUALITY!

Need for Huffman and Many Opt Algorithms

Prove: (more parallel is larger!)

$$W_S d_S + W_L d_L > W_L d_S + W_S d_L$$

because
$$(w_1 - w_5) (d_1 - d_5) > 0$$

scalar product is larger

when w and d are more nearly parallel!

MORE OPTIMIZATION

- Object Function and elementary move
 - Sorting $S = MIN_{\pi} \sum_{I} I * a[\pi(I)]$ swap minimize I a[I] + J a[J] if out of order
- Continuum vs Discrete:
 - ■Bisection : Log(N) vs error => error/2
 - Find zero: ff(x) = 0 or (continuous)
 - Find key $f[I] = (a[I] key)^2 = 0$ (a[I] sorted)
- Newton's, Secant, Regula falsi

& Dictionary method (linear extrapolation)

Log(Log(N)) vs error => (error) ϕ

phi is 2 for Newton and the golden ratio 1.618 for secant.