«Математическая модель импульсного погружателя, оптимального по коэффициенту асимметрии»

Уткин Артем Александрович

10.06.2019

Бакалаврская работа Направление 01.03.04 Прикладная математика Профиль Применение математических методов к решению инженерных и экономических задач

Актуальность проблемы

На сегодняшний день в строительной сфере довольно часто возникает потребность в вибропогружателях для погружения свайных элементов в землю.

Такая востребованность порождает задача оптимизации характеристик таких вибропогружателей для получения наилучшего результата их работы.

Решение задачи прикладными методами несомненно актуальна в данный момент и соответствует профилю.

Постановка задачи

Для решения такой задачи необходимо на основе теории вибрационных машин и теоремы об оптимальности импульса Максвелла-Фейера разработать ПО для автоматизированного расчета характеристик импульсного погружателя с возможностью ввода начальных данных и наглядного вывода результатов.

Конструкция вибропогружателя

Принцип действия погружателя основан на эффекте резкого снижения сопротивлению погружения свайного элемента при сообщении последнему вибрации.

При вращении дебалансов на их ось крепления действует центробежная сила и вибрационный погружатель получает вибрирующее движение, которое сообщается свайному элементу через наголовник.

Рис.: Схема вибрационного погружателя.

Конструкция дебаланса

Центробежная сила:

$$F_{ ext{qентр.}} = m \cdot \omega^2 \cdot I$$
 где $I = rac{4r}{3\pi}$

Гармонические колебания:

$$x(t) = \lambda \cos(\omega t)$$

где $\lambda = m \cdot \omega^2 \cdot I$

Рис.: Схема дебаланса.

Конструкция пары дебалансов

Гармонические колебания:

$$x(t) = 2\lambda \cos(\omega t + \varphi_0)$$
, где $\lambda = m \cdot \omega^2 \cdot I$ (3)

Уравнение гармонического колебания для пары дебалансов в общем виде:

$$x(t) = 2m_k \cdot (k\omega)^2 \cdot I(r_k) \cdot \cos(k\omega t) \tag{4}$$

Рис.: Схема пары дебалансов.

Гармонические колебания дебалансов

Сумма гармонических колебаний для всех пар дебалансов:

$$F = \sum_{k=1}^{n} 2\lambda_k \cdot \cos(k\omega t), \lambda = m \cdot \omega^2 \cdot I$$
 (5)

Рис.: График работы выбропогружателя.

Рис.: График работы импульсного погружателя.

Задача оптимизации

Пусть $f_{\max}(t)$ — максимальное значение импульса силы за время t, $f_{\min}(t)$ — минимальное значение импульса за время t. Тогда:

$$K = \left| \frac{f_{\mathsf{max}}(t)}{f_{\mathsf{min}}(t)} \right| \to \mathsf{max}$$
 (6)

Исходя из теоремы оптимальности модели полигармонического импульса многочлен (5) является оптимальным тогда и только тогда, когда он с точностью до постоянного множителя имеет вид суммы Фейера:

$$f_n(t) = \sum_{k=1}^{n} (n+1-k)\cos(kt)$$

$$\max_{\lambda} K_n(\lambda) = n$$
(7)

Из этого следует, что:

$$\lambda_k = \frac{n - k + 1}{n} \tag{8}$$

Спасибо за внимание!