1.	Matice Q má 13 sloupců a 9 řádků. Její defekt je 5. Potom platí:
	(a) Hodnost matice Q je rovna 4.
	(b) Hodnost matice Q je rovna 8.
	(c) Matice Q je monomorfismus.
	(d) O hodnosti matice Q v tomto případě nelze rozhodnout.
	(a) a manifest matrice & termes pripage neize rezineaneati
2.	Ať A a B jsou čtvercové matice typu n×n. Obě tyto matice jsou regulární. Pak je nutně
	regulární i následující matice.
	(a) A + B
((b) A · B · A ⁻¹
	(c) $(A - B)^2$
	(d) $(\mathbf{A} + \mathbf{E}_{\mathbf{n}}) \cdot \mathbf{B}$
3.	Ať A a B jsou čtvercové matice typu 3×3, a ať pro tři různé vektory u , v , w $\in \mathbb{R}^3$ platí rovnosti
	$\mathbf{A} \cdot \mathbf{u} = \mathbf{B} \cdot \mathbf{u}, \ \mathbf{A} \cdot \mathbf{v} = \mathbf{B} \cdot \mathbf{v}, \ \mathbf{A} \cdot \mathbf{w} = \mathbf{B} \cdot \mathbf{w}.$ Potom:
	(a) Nemůže platit rovnost u = o
	(b) Matice A a B mají nutně totožná jádra.
	(c) Matice A a B jsou nutně totožné.
	(d) Ani jedna z výše uvedených třech možností není pravdivá.
,	
1	At A in žtuornou ć motino roćiloć motino tumu 2v2 s ulostnými žíslu 1, 2 a 2. Botom nutně mlatí
4.	Ať A je čtvercová matice reálná matice typu 3×3 s vlastními čísly 1, 2 a 3. Potom <i>nutně</i> platí:
((a) Matice A je regulární a diagonalisovatelná.
	(b) Matice A je regulární, ale není diagonalisovatelná.
	(c) Matice A není regulární, ale je diagonalisovatelná.
	(d) Matice A není ani regulární, ani diagonalisovatelná.
5.	Matice A je nilpotentní a platí $A^6 = O$. Vyberte <i>nutně pravdivé</i> tvrzení.
	(a) Matice A má inversi.
	(b) $\mathbf{A}^5 = \mathbf{O}$
	(c) $A^7 = O$
'	(d) Matice A ⁰ nemá inversi.
	(a) Mattee A Hema inversit
6.	Je dáno lineární zobrazení $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ a v \mathbb{R}^3 tři různé vektory v_1, v_2, v_3 takové, že $\mathbf{f}(v_1) = \mathbf{o}$,
	$f(v_2) = o$ a $f(v_3) = o$. Hodnost zobrazení f nemůže být:
	(a) 3.
	(b) 2.
	(c) 1.
	(d) 0.
	(4)

- 7. Ať A je reálná matice typu 2×2, ať každá ze soustav A · x = e₁ a A · x = e₂ má řešní. Pak nutně platí:
 (a) det(A) = 0
 (b) Soustava A · x = e₁ + e₂ má právě jedno řešení.
 (c) Soustava A · x = e₁ + e₂ má nekonečně mnoho řešení.
- 8. Mějme čtvercovou matici **A** typu n×n. potom *nutně* platí:

(d) Existuje vektor $b \in \mathbb{R}^2$ takový, že soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ nemá řešení.

- (a) $det(26 \cdot A) = 26^{n} \cdot (det(A))^{n}$
- (b) $det(26 \cdot A) = 26 \cdot det(A)$
- (c) $det(26 \cdot A) = 26 \cdot (det(A))^n$
- (d) $det(26 \cdot \mathbf{A}) = 26^n \cdot det(\mathbf{A})$
- 9. Mějme dvě čtvercové matice **A**, **B** typu n×n. Matice **A** a **B** jsou si podobné. Potom *nutně* platí:
 - (a) Matice $\mathbf{A} \cdot \mathbf{B}$ a $\mathbf{B} \cdot \mathbf{A}$ si nemohou být podobné.
 - (b) Matice **A** + **B** a **B** + **A** si nemohou být podobné.
 - (c) Matice A · A a B si nemohou být podobné.
 - (d) Neplatí ani jedno z výše uvedených
- 10. Mějme lineární zobrazení **f** : *V*→*W*. Vyberte *nepravdivé* tvrzení:
 - (a) Je možné, že rank(\mathbf{f}) = def(\mathbf{f}).
 - (b) Pokud je f isomorfismus, pak ker(f) je prázdná množina.
 - (c) Pokud je V konečně dimensionální, pak dim(V) > def(f) rank(f).
 - (d) Lineární zobrazení $\mathbf{f}: \mathbb{R}^1 \to \mathbb{R}^1$ nemůže být zadáno jako $f(x) = 4 \cdot x + 2$. (Tj. v tomto případě volíme $V = W = \mathbb{R}^1$.)
- 11. Vektor v lineárního prostoru \mathbb{R}^8 nad \mathbb{R} má vzhledem k uspořádané bázi (b₁, b₂,...., b₈) souřadnice (1, 1,....,1)^T. Potom vektor w 2 · v má vzhledem k uspořádané bázi (b₁ + b₂, b₂ + b₃,...., b₈ + b₁) souřadnice:
 - (a) $(1, 1, ..., 1)^T$ ešení tohohle souboru je špatn, vysvtleno v ešení tipsportu
 - (b) $(2, 2, ..., 2)^T$
 - (c) $(1/2, 1/2,...,1/2)^T$
 - (d) Souřadnice nelze určit, protože ($b_1 + b_2$, $b_2 + b_3$,..., $b_8 + b_1$) není uspořádaná báze.
- 12. Ať L_1 , L_2 , L_3 jsou konečně dimensionální prostory, $\mathbf{f}: L_1 \to L_2$ je isomorfismus a $\mathbf{g}: L_2 \to L_3$ je monomorfismus. Potom nutně platí:
 - (a) Pro libovolný vektor $\mathbf{w} \in L_3$ existuje vektor $\mathbf{v} \in L_1$ takový, že $(\mathbf{g} \circ \mathbf{f})(\mathbf{v}) = \mathbf{w}$.
 - (b) $\mathbf{g} \circ \mathbf{f} : L_1 \to L_3$ je epimorfismus.
 - (c) $\dim(L_1) \leq \dim(L_3)$.
 - (d) Zobrazení **g** je epimorfismus.

- 13. Symbolem $\mathbb{R}[x]$ označujeme lineární prostor všech reálných polynomů s reálnými koeficienty. Následující podmnožina množiny $\mathbb{R}[x]$ je lineárním podprostorem lineárního prostoru $\mathbb{R}[x]$:
 - (a) Množina všech polynomů sudého stupně společně s nulovým polynomem.
 - (b) Množina všech polynomů nemajících reálný kořen.
 - (c) Množina všech polynomů stupně přesně 2019 spolu s nulovým polynomem.
 - (d) Množina všech polynomů s nulovými koeficienty u sudých mocnin.
- 14. V lineárním prostoru *V* mějme lineárně nezávislou množinu vektorů {**u**, **v**, **w**}. Následující množina vektorů je lineárně závislá:
 - (a) $\{v, w + u, w v + u\}$.
 - (b) $\{v + w, w + u, u + v\}$.
 - (c) $\{v, v w, v + w + u\}$.
 - $(2 \cdot \mathbf{v}, 2 \cdot \mathbf{w}, 2 \cdot \mathbf{u}).$
- 15. Mějme lineární prostor V, lineární zobrazení f: V → V, a dva lineárně nezávislé vektory v ∈ V, w ∈ V, které jsou vlastními vektory lineárního zobrazení f příslušnými vlastnímu číslu λ. Potom platí:
 - (a) $f(v) = \lambda \cdot w$
 - (b) Vektor $2 \cdot v$ je vlastní vektor lineárního zobrazení \mathbf{f} příslušný vlastnímu číslu $2 \cdot \lambda$.
 - (c) Vektor f(v) je vlastní vektor lineárního zobrazení f příslušný vlastnímu číslu $2 \cdot \lambda$.
 - Pro nenulové skaláry α a β je i vektor $\alpha \cdot \mathbf{v} + \beta \cdot \mathbf{w}$ vlastním vektorem lineárního zobrazení **f**.
- 16. Ať **A** je čtvercová matice typu 3×3 a ať det(**A**) = 3. Potom nutně platí (**E**₃ je jednotková matice typu 3×3):
 - (a) det(-**A**) = -3.
 - (b) $det(A + E_3) = 3 + 1 = 4$.
 - (c) det(A + A) = 3 + 3 = 6.
 - (d) $det(A^3) = 3 \times 3 = 9$.
- 17. Nechť $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ je lineární zobrazení. Vyberte nutně pravdivé tvrzení:
 - (a) Pokud je f monomorfismus, pak je f i isomorfismus.
 - (b) Pokud má **f** jádro celé \mathbb{R}^3 , pak matice zobrazení **f** není diagonalizovatelná.
 - (c) Zobrazení $x \rightarrow f(x) + e_1$ je také lineární.
 - (d) Pokud je f nilpotentní, pak má f hodnost 3.
- 18. Nechť je S = $(s_1,...,s_m)$, $2 \le m \le n$, lineárně nezávislý seznam vektorů z \mathbb{R}^n . Vyberte nutně pravdivé tvrzení.
 - (a) Seznam S nemůže být bází \mathbb{R}^n .
 - (b) Seznam S nemůže generovat \mathbb{R}^n .

- (c) Ať ze seznamu S odebereme jakýkoli vektor, bude nově vzniklý seznam lineárně nezávislý.
- (d) Ať ze seznamu S odebereme jakýkoli vektor, bude nově vzniklý seznam generovat \mathbb{R}^n .
- 19. Mějme soustavu lineárních rovnic **A** · **x** = **b** s čtvercovou maticí A. Rozhodněte, které z následujících tvrzení platí:
 - Pokud má soustava více řešení, podle Cramerovy věty nalezneme řešení nulové.
 - (b) Pokud má soustava právě jedno řešení, pak má i soustava (A · A) · x = b právě jedno řešení.
 - Pokud soustava nemá řešení, může mít řešení soustava $(\mathbf{A} \cdot \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$.
 - Determinant matice **A** je nutně nulový.
- 20. Mějme dán lineární prostor \mathbb{R}^3 se standartním skalárním součinem a v něm uspořádanou ortogonální bázi $B = (\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3})$. Potom platí:
 - Vektory **b**₁, **b**₂, **b**₃ jsou nutně jednotkové.
 - (b) Nikdy nemůže platit rovnost $\sqrt{\langle \mathbf{b}_2 | \mathbf{b}_2 \rangle}$ = 0.
 - Existuje vektor z \mathbb{R}^3 , který lze zapsat dvěma různými způsoby jako lineární kombinace vektorů z báze B.
 - Projekce vektoru $\mathbf{b_3}$ na rovinu zadanou vektory $\mathbf{b_1}$ a $\mathbf{b_2}$ je *nutně* nenulová.
- 21. Ať pro čtvercovou matici **Q** platí rovnost $\mathbf{Q}^T \cdot \mathbf{Q} = \mathbf{E}$. Pak nutně platí:
 - (a) $det(\mathbf{Q}) = \pm 1$.
 - (b) Pro libovolné **b** má rovnice $\mathbf{Q}^T \cdot \mathbf{Q} \cdot \mathbf{x} = \mathbf{b}$ nekonečně mnoho řešení.
 - (c) Matice **Q**² je singulární.
 - (d) Platí rovnost $\mathbf{Q} = \mathbf{Q}^{\mathsf{T}}$.
- 22. V této otázce je tělesem skalárů množina reálných čísel. Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, mějme vektor $\vec{b} \in L_2$. Pak pro množinu $\mathsf{M} = \{\vec{z} \mid \mathbf{f}(\vec{x}) = \vec{b}\}$ nutně platí: *
 - (a) Množina M tvoří lineární podprostor prostoru L₁.
 - (b) Množina M obsahuje nulový vektor.
 - (c) Množina M obsahuje vektor \vec{b} .
 - (d) Když $\vec{x}_1 \in M$ a $\vec{x}_2 \in M$, pak I $(2 \cdot \vec{x}_1 \vec{x}_2) \in M$.

 $f(2u_1-u_2) = b$ $2f(u_1)-f(u_2) = b$

- 23. Ať **A** je čtvercová reálná matice. Vyberte pravdivé tvrzení.
 - (a) Pokud má A nulové vlastní číslo, pak A je regulární.
 - (b) Pokud je A regulární, pak je A diagonalisovatelná.
 - (c) Pokud je A diagonalizovatelná, pak je A singulární.
 - (d) Matice A má nulové vlastní číslo právě tehdy, když je A singulární.

- 24. Mějme matici $\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^3$, kde rank $(\mathbf{A}) = 2$, na prostorech : \mathbb{R}^2 a \mathbb{R}^3 jsou standardní skalární součiny. Potom platí:
 - Yer Pro libovolné $\mathbf{b} \in \mathbb{R}^3$ má soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ řešení.
 - (b) Matice $\mathbf{A}^{\mathsf{T}} \cdot \mathbf{A}$ je regulární.
 - Vektor $\mathbf{A}^{-1} \cdot \mathbf{b}$ je ortogonální projekce vektoru b na podprostor ker(\mathbf{A}).
 - Matice A zachovává nutně skalární součin.
- 25. Víme, že pro $\mathbf{A}: \mathbb{R}^m \to \mathbb{R}^n$ má soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ řešení pro libovolné \mathbf{b} . Pak nutně platí:
 - (a) A má více sloupců než řádků.
 - (b) A má nenulový determinant.
 - 📈 A je isomorfismus.
 - (d) rank $(A) \ge n$.
- 26. Máme dáno lineární zobrazení $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$. Víme, že pro libovolný vektor $\mathbf{x} \in \mathbb{R}^3$ platí, že $\mathbf{f}(\mathbf{x})$ = $3 \cdot \mathbf{x}$. Potom také platí:
 - (a) def(f) = 3.
 - (b) Existuje nestandartní báze prostoru \mathbb{R}^3 , vzhledem ke které má zobrazení **f** vlastní číslo 9.
 - (c) Matice zobrazení **f** vzhledem ke standartním bázím má determinant 3.
 - Vlastní vektory zobrazení **f** příslušné číslu 3 spolu s nulovým vektorem tvoří vlastní podprostor, kterým je celé \mathbb{R}^3 .
- 27. Ať **A** a **B** jsou čtvercové matice typu 4×4, dále ať platí rank(**A**) = 2 a rank(**B**) = 2. Pak rank(**A** · **B**) nemůže být:
 - (a) 0.
 - (b) 1.
 - (c) 2.
 - (d) 3.
- 28. Čtvercová reálná matice A typu 2×2 má determinant det(A) = -1. Potom platí:
 - (a) A nemůže měnit normu vektorů v \mathbb{R}^2 (normu odvozenou ze skalárního součinu).
 - (b) A je matice projekce.
 - (c) Soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ má vždy triviální řešení.
 - (d) $det(A^{-1}) = -1$.
- 29. Ať B je uspořádaná báze lineárního prostoru \mathbb{R}^3 a **M** ať je matice obsahující jako sloupce vektory z B (zapsané jako souřadnice vzhledem ke kanonické bázi \mathbb{R}^3). Potom *nutně* platí:
 - (a) Soustava lineárních rovnic $\mathbf{M}^n \cdot \mathbf{x} = \mathbf{c}$ má řešení pro libovolné přirozené n.
 - (b) Matice M je podobná jednotkové matici.
 - (c) Matice M je positivně definitní.
 - (d) Determinant matice $\mathbf{M} \cdot \mathbf{M}^{-1}$ je nulový.

- 30. Ať je $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ lineární zobrazení. Pak nutně platí:
 - (a) Pokud $def(\mathbf{f}) > 0$, pak je \mathbf{f} projekce na nějaký podprostor prostoru \mathbb{R}^3 .
 - (b) Pokud je f^3 nulové zobrazení, pak def $(f) \ge 2$.
 - (c) Ať **A** a **B** jsou matice zobrazení **f**, každá vzhledem k jiné bázi. Přesto platí det(**A**) = det(**B**).
 - (d) dim(im(f)∩ker(f)) může být 3.
- 31. Mějme seznam vektorů $V = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ ($n \ge 2$) z lineárního prostoru L nad \mathbb{R} . Pak neplatí:
 - (a) Pokud je V lineárně nezávislý, pak dim $(L) \ge n$.
 - Seznam V je lineárně nezávislý, pokud platí že každý jeho o jeden vektor kratší podseznam je lineárně nezávislý.
 - (c) Pokud V generuje L, přesto nemusí nutně být bází L.
 - (d) Existuje lineární kombinace vektorů z V, která je rovna nulovému vektoru.
- 32. Mějme matice **A**, **B** : $\mathbb{R}^5 \to \mathbb{R}^5$, rank(**A**) = rank(**B**) = 3. Pak platí:
 - (a) Matice $\mathbf{A} \cdot \mathbf{B}$ může být maticí kolmé projekce na podprostor v \mathbb{R}^5 .
 - (b) $rank(\mathbf{A} \cdot \mathbf{B})$ může být 0.
 - (c) rank(A + B) nemůže být 5.
 - (d) $rank(\mathbf{A} \cdot \mathbf{B}) = min(rank(\mathbf{A}), rank(\mathbf{B}))$.

ank(B) = 3. Pak platí:

ojekce na podprostor v \mathbb{R}^5 . $\operatorname{ranl}(A) + \operatorname{ranl}(B) - \operatorname{ranl}(AB)$ $A \in F \longrightarrow \mathbb{R}$ $u \in F \longrightarrow \mathbb{R}$

- 33. Ať B je uspořádaná báze lineárního prostoru \mathbb{R}^3 a **M** ať je matice obsahující jako sloupce vektory z B (zapsané jako souřadnice vzhledem ke kanonické bázi \mathbb{R}^3). Potom *nutně* platí:
 - (a) Sloupce matice M · M nemohou tvořit bázi.
 - (b) Matice **M** má nenulový determinant.
 - (c) Rozdíl $\mathbf{M} \mathbf{E}_3$ je nulová matice.
 - (d) Matice M je positivně definitní.
- 34. Násobení matic není obecně:
 - (a) Asociativní.
 - (b) Zleva distributivní (tj platí $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$).
 - (c) Zprava distributivní (tj platí $(\mathbf{B} + \mathbf{C}) \cdot \mathbf{A} = \mathbf{B} \cdot \mathbf{A} + \mathbf{C} \cdot \mathbf{A}$).
 - (d) Komutativní.
- 35. Mějme reálnou matici **A**, ať platí vztahy $\mathbf{A} \cdot \mathbf{v} = 4 \cdot \mathbf{v}$ a $\mathbf{A} \cdot \mathbf{w} = 8 \cdot \mathbf{w}$. Pak *nutně* platí:
 - (a) $\mathbf{A} \cdot (\mathbf{v} + \mathbf{w}) = 12 \cdot (\mathbf{v} + \mathbf{w})$
 - (b) $\mathbf{A} \cdot (4 \cdot \mathbf{v}) = 16 \cdot \mathbf{v}$
 - (c) $\mathbf{w} = 2 \cdot \mathbf{v}$
 - (d) Ani jedno z výše uvedených.

- 36. Mějme soustavu lineárních rovnic $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ s čtvercovou maticí A. Rozhodněte, které z následujících tvrzení platí:
 - (a) Pokud má soustava právě jedno řešení, pak má i soustava (A · A) · x = b právě jedno řešení.
 - Pokud má soustava více řešení, podle Cramerovy věty nalezneme řešení nulové.
 - Pokud soustava nemá řešení, může mít řešení soustava $(\mathbf{A} \cdot \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$.
 - (d) Ani jedno z předcházejících tvrzení není pravdivé.
- 37. Mějme lineární prostor L nad tělesem F a v něm tři vektory **u**, **v**, **w** takové, že platí {**v**, **w**} je lineárně nezávislá množina, {**v**, **u**} je lineárně nezávislá množina. Potom platí:
- Pokud je vektor **p** ∈ V lineární kombinací vektorů **v** a **w**, pak nemůže být lineární kombinací vektorů **w** a **u**.
- Množina vektorů { $\alpha \cdot \mathbf{u}$, $\beta \cdot \mathbf{v}$, $\gamma \cdot \mathbf{w}$ } je lineárně nezávislá pro libovolně zvolené skaláry α , β , γ ∈ F.
 - (c) Množina vektorů {u, v, w} nemusí být lineárně nezávislá.
 - (d) Množina vektorů {u, v, w} nemůže tvořit bázi prostoru L.
- 38. Průnikem dvou lineárních podprostorů dimense 3 v lineárním prostoru F⁴ nad F nemůže být:
 - (a) Lineární podprostor dimense 1.
 - (b) Lineární podprostor dimense 2.
 - (c) Lineární podprostor dimense 3.
 - (d) Lineární podprostor dimense 4.
- 39. At **A** je matice nad \mathbb{R} typu 8 × 8 a det(**A**) = 2. Potom platí:
 - (a) det(A 5A) = -8.
 - (b) det(-A) = -2.
 - (c) $det(5 \cdot A) = 10$.
 - (d) $det(\mathbf{A} \cdot (-\mathbf{A})) = 4$.
- 40. Ať L_1 , L_2 , L_3 jsou konečně dimensionální prostory nad F, $\mathbf{f}: L_1 \to L_2$ je isomorfismus a $\mathbf{g}: L_2 \to L_3$ je monomorfismus. Potom platí:
 - (a) $\dim(L_1) \leq \dim(L_3)$.
 - (b) pro libovolný vektor $\mathbf{w} \in L_3$ existuje vektor $\mathbf{v} \in L_1$ takový, že $(\mathbf{g} \cdot \mathbf{f})(\mathbf{v}) = \mathbf{w}$.
 - (c) zobrazení g je epimorfismus.
 - (d) Zobrazení $\mathbf{g} \cdot \mathbf{f} : L_1 \to L_3$ je epimorfismus.
- 41. Ať je $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ matice lineárního zobrazení $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ a rank(\mathbf{f}) = 3. Potom \mathbf{F} nemůže být:
 - (a) Diagonalisovatelná matice.
 - (b) Matice rotace podél osy procházející počátkem.

- (c) Matice transformace souřadnic.
- (d) Matice projekce n rovinu určenou vektory $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ a $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.
- 42. Ať řešením soustavy lineárních rovnic (A | b) jsou například vektory u a v, ať řešením soustavy (A | o) je například vektor w. Potom je pro libovolné skaláry a, b řešením soustavy (A | b) vždy i vektor:
 - (a) $a\mathbf{w} + \mathbf{u}$.
 - (b) $a\mathbf{v} b\mathbf{u}$.
 - (c) $a\mathbf{u} + \mathbf{w}$.
 - (d) $a\mathbf{u} + b\mathbf{v}$.
- 43. At **A** je matice nad \mathbb{R} typu 4×4 a det(**A**) = 4. Potom *plati*:

- (b) $\det(-\mathbf{A}) = -4$. = $(-1)^4$ $\mathcal{M}(A) = \mathcal{M}(A) 4$ (c) $\det(5 \cdot \mathbf{A}) = 10$. = 54 $\mathcal{M}(A) = 54$ 4
- (d) $det(A \cdot (-A)) = 4$. = $M(A) \cdot M(-A) = 4 \cdot 4 = 16$
- 44. Ať L_1 , L_2 , L_3 jsou konečně dimensionální prostory nad F, $\mathbf{f}: L_1 \to L_2$ je isomorfismus a $\mathbf{g}: L_2 \to L_3$ je monomorfismus. Potom platí:
 - (a) $\dim(L_1) \leq \dim(L_3)$.
 - (b) pro libovolný vektor $\mathbf{w} \in L_3$ existuje vektor $\mathbf{v} \in L_1$ takový, že $(\mathbf{g} \cdot \mathbf{f})(\mathbf{v}) = \mathbf{w}$.
 - (c) zobrazení g je epimorfismus.
 - (d) zobrazení $\mathbf{g} \cdot \mathbf{f} : L_1 \to L_3$ je epimorfismus.
- 45. Ať pro lineární zobrazení $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ platí $\mathbf{f} \cdot \mathbf{f} = \mathbf{id}$. Potom platí:
 - (a) ker(f) = im(f).

(b) f je isomorfismus. $2 \sqrt{f} = f$ (c) f je isomorfismus a $\mathbf{f} \cdot \mathbf{f} \cdot \mathbf{f}$ isomorfismus není.

- (d) Existuje báze (\mathbf{b}_1 , \mathbf{b}_2) prostoru \mathbb{R}^2 taková, že ($\mathbf{f}(\mathbf{b}_1)$), $\mathbf{f}(\mathbf{b}_2)$) není báze prostoru \mathbb{R}^2 .
- 46. Ať vektory \mathbf{p}_1 a \mathbf{p}_2 z F^s jsou řešením soustav ($\mathbf{A} \mid \mathbf{b}_1$) a ($\mathbf{A} \mid \mathbf{b}_2$), kde $\mathbf{A} : F^s \to F^r$ a \mathbf{b}_1 , \mathbf{b}_2 jsou vektory z F^r. Potom soustava ($\mathbf{A} \mid 3\mathbf{b}_1 + 2\mathbf{b}_2$)
 - (a) má nutně stejná řešení jako soustava (5 \mathbf{A} | 3 \mathbf{b}_1 + 2 \mathbf{b}_2).

- (b) nemá žádné řešení.
- (c) má nutně řešení $3Ap_1 + 2Ap_2$.
- ((d)) má nutně řešení 3 p_1 + 2 p_2 .

 $A_{r_1} = b_1$ $A_{r_2} = b_2$ $A_{x} = 3b_1 + 7b_2 = 3A_{r_1} + 2A_{r_2}$ $= A(3\mu_1+2\mu_2)$

 $=> u = 3 p_1 + 2 p_2$

- 47. Vektor \mathbf{v} lineárního prostoru L nad \mathbb{R} má vzhledem k uspořádané bázi (b_1 , b_2 ,...., b_n) souřadnice (1, 1,....,1), kde n je liché přirozené číslo. Vzhledem k uspořádané bázi ($b_1 + b_2$, $b_2 + b_3$,...., $b_n + b_1$) má vektor $2 \cdot \mathbf{v}$ souřadnice:
 - (a) (1, 1,...,1)
 - (b) (2, 2,...,2)
 - (c) (1/2, 1/2,...,1/2)
 - (d) Souřadnice nelze určit, protože $(b_1 + b_2, b_2 + b_3,..., b_n + b_1)$ není uspořádaná báze.
- 48. O reálné čtvercové matici $\bf A$ rozměrů $\bf 5 \times \bf 5$ víte, že ${\sf det}(\bf A) = -1$. Rozhodněte, které z následujících tvrzení *platí*:
 - (a) det(-2A) = 32.
 - (b) det(-2A) = -32.
 - (c) det(-2A) = -2.
 - (d) ani jedno z předcházejících tvrzení není pravdivé.

```
Výsledky: 1. (b); 2. (b); 3. (d); 4. (a); 5. (c); 6. (a); 7. (b); 8. (d); 9.(d); 10. (b) i (c) 11. (a); 12. (c); 13.(d); 14. (a); 15. (d); 16. (a) 17. (a); 18. (c); 19. (b); 20. (b); 21. (a); 22. (d); 23. (d); 24. (b); 25. (d); 26. (d); 27. (d); 28. (d); 29. (a); 30. (c); 31. (b); 32. (a)/d; 33.(b); 34.(d); 35.(b); 36.(c/d); 37.(c); 38.(d); 39.(d); 40.(a); 41.(d); 42.(a); 43.(a); 44.(a); 45.(c); 46.(c); 47.(d); 48.(a)
```

^{*}_Jedná se pravděpodobně o překlep, tipoval bych, že správná verze je M = $\{\vec{x} \mid \mathbf{f}(\vec{x}) = \vec{b}\}$.