

40	
เลขที่นั่ง	L

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้า **ธนบุรี**

การสอบกลางภาค

ภาคการศึกษา 1 -- ปีการศึกษา 2557

วิชา: ENE 326 Electronics Communication Engineering	
นักศึกษา: วิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่	3

วันสอบ: 26 กันยายน 2557

เวลา: 09.00-12.00 น.

คำสั่ง

- 1. ข้อสอบนี้ มีคำถาม 15 ข้อ รวม 9 หน้า สมการที่จำเป็นอยู่หน้าสุดท้าย
- 2. ทำทุกข้อลงในข้อสอบ
- สามารถใช้เครื่องคำนวณ ตามระเบียบ มจช.
- 4. ห้ามนำเอกสารทุกชนิดเข้าห้องสอบ และ ห้ามนำข้อสอบออกนอกห้องสอบ

<u>หมายเหตุ</u>

- เมื่อ นศ. ทำข้อสอบเสร็จ ให้ยกมือขึ้น เพื่อขออนุญาคออกจากห้องสอบ
- การทุจริตใมการสอบถือเป็นการกระทำผิดร้ายแรง และอาจได้รับโทษถึง การพ้นสภาพนักศึกษา

à	
ช่อ - นามสกูล	Student ID

ผู้ช่วยศาสตราจารย์ ชนินทร์ วงศ์งามขำ Tel: 9070 ข้อสอบนี้ ได้ผ่านการประเมินโดยคณะกรรมการของภาควิชาฯแล้ว

> รองศาสตราจารย์ ราชวดี ศิลาพันธ์ หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และ โทรคมนาคม

ชื่อ-นาม	สกุลภาควิชารหัสภาควิชา		
Q1.ทำคามคำสั่ง หรือคอบคำถามค่อไปนี้ โคยเขียนคำตอบถงในช่องที่เว้นไว้ให้ (ข้อถะ 2 คะแนน)			
1.	คำนวณค่ากำลังของน้อยส์ ที่ T = 300K, BW. = 1MHz		
2.	แปลงคำตอบช้อ 1 เป็น dBm		
3.	คำนวณ แรงคันของเทอร์มอลน้อยส์ที่อินพุทของเครื่องรับที่มีคำ ความด้านทานขาเข้า 75 ohms ?		
4.	สังเกลอย่างไรว่าวงจรขยาย BJT ต่อแบบ emitter follower		
5.	สังเกตอย่างไรว่าวงจรขยาย BJT ต่อแบบ common emitter		
6.	วงจรขยาย BJT ค่อแบบใค ให้เฟสขาออก กลับ เฟส เมื่อเทียบกับขาเข้า		
7.	วงจรขยาย BJT ต่อแบบ common base มักจะใช้งานแบบใค ที่ตรงกับคุณลักษณะของวงจร		
8.	เราสามารถทำให้คริสตอลกำเนิดความถี่ที่ค่าใดบ้าง? ถ้าคูจาก Impedance/Reactance Curve		
9.	อธิบายเหตุผลที่ เฟสคีเทคเตอร์แบบ PFD เป็นที่นิยมในปัจจุบัน		
10.	จากบทเรียน ที่เกี่ยวข้อง คำว่า charged pump คืออะไร และมีหน้าที่อะไร?		

ชื่อ-นามสกุล.....ภาควิชา.....ภาควิชา.....ภาควิชา......ภา

Q2. กำหนครูปสัญญาณที่ input port (RF) และ LO port จงวาครูปสัญญาณที่ Output port (IF) ตามสัคส่วน (10 กะแนน)

Q3. จงคำนวณ L,C, X_L , X_C ของวงจรแมทซึ่งแบบ L ตอบสนองแบบโลว์พาส เพื่อแมทซ์ ซอร์สที่มีความค้านทาน 150+j0 Ohms เข้ากับโหลด 50 Ohms ที่ความถี่ 150 MHz (10 คะแนน)

วิธีทำ

Q4. จงวาควงจร ของคำถาม Q3 และแสดงค่าอุปกรณ์ที่เกี่ยวข้อง (5 คะแนน)

ชื่อ-นามสกุล.....ภาควิชา.....ภาควิชา

Q5. จงพิสูจน์ว่าความถี่ ของวงจรแค้ลป ออสซิเลเตอร์ ไม่ขึ้นกับค่า C1 และ C2 กำหนดให้ f= 90 MHz (10 คะแนน)

วิธีทำ

Q6. จงคำนวณค่า N และ A เมื่อกำหนด fout = 155.370 MHz และตัวแปรต่างๆ ตามรูป (10 คะแนน)

Q7. จงคำนวณค่าตัวหาร N_{eff},N,K,F ของวงจรสังเคราะห์ความถี่แบบ fractional – N เมื่อกำหนดพารามิเตอร์ให้ ดังรูป (10 กะแนน.)

Q8. คำนวณค่าของกำลังทั้งหมคใน คลื่น AM ดังรูป กำหนคกำลังของพาหะเท่ากับ 10W (10 คะแนน)

ชื่อ-นามสกุล.....ภาควิชา.....ภาควิชา.....

Q9. เปรียบเทียบการสังเคราะห์ความถี่ สองแบบนี้ โดยเปรียบเทียบในหัวข้อที่กำหนด (10 คะแนน)

หัวข้อ	รายละเอียด	ทำให้/เหตุผล
F1	Fractional-N >integer N	
N	Fractional-N <integer n<="" td=""><td></td></integer>	
R	Fractional-N <integer n<="" td=""><td></td></integer>	

Q10. อธิบาชการทำงานในรูป เพื่อแสคงค่าตัวหารทั้งหมด (10 คะแนน)

	ภาควิชา	
	tector (IQ) ในเครื่องรับวิทยุแบบ software defined จะมีวิธีการคีเทคสัญญาณที่	มอคยูเล
บบ AM FM และ PM ใค้	ย่างไร อธิบาย ด้วยตัวอักษร และรูปภาพ (10 คะแนน)	
้ญญาณขาออก ที่เป็น I หรือ O	าะผ่านวงจร A/D และเข้าไปตรวจสอบข้อมูลตามขั้นตอน	
Modulation	Detection process	
AM		
FM	414	
1.141		i
PM		
PM	ย่างไร กับ วงจร front end ? (5 คะแนน)	
PM	ย่างไร กับ วงจร front end ? (5 คะแนน)	
PM	ย่างไร กับ วงจร front end ? (5 คะแนน)	
PM	ย่างไร กับ วงจร front end ? (5 คะแนน)	
PM P12. Intermodulation มีผลเ		
PM P12. Intermodulation มีผลเ	ย่างไร กับ วงจร front end ? (5 คะแนน) tion สามารถแก้ไข โดยวิธีการใด? (5 คะแนน)	
PM P12. Intermodulation มีผลเ		
PM P12. Intermodulation มีผลเ		
PM P12. Intermodulation มีผลเ	tion สามารถแก้ไข โดยวิธีการใด? (5 คะแนน)	
PM P12. Intermodulation มีผลเ		
PM P12. Intermodulation มีผลเ	tion สามารถแก้ไข โดยวิธีการใด? (5 คะแนน)	

ชื่อ-นามสกุล	รหัส	ภาควิชา
Q15. เลือกอธิบาย <u>เพียง 2 หัวข้อ</u>		
SSB Modulator, DDS, Phase locked	loop, Quadrature modulator,	Barkhausen criterior, Super heterodyne receive
Foster Seeley discriminator, PFD, F	ractional - N Frequency Synth	nesizer, Intermodulation

Formulas

$$P_n = kTB$$
 $V_{noise} = \sqrt{4kTBR}$ $NF = 10 \log(F_N)$ $dBm = 10 \log(P_{mW})$

$$T_{\sigma} = (F_N - 1)T_0$$

$$T_e = KT_0 \log^{-1} \left[\frac{NF}{10} \right] - 1$$
 $F_N = \left[\frac{S_{NI}}{S_{NO}} \right]_{T=290K}$ $F_{NO} = \left[\frac{v_S \left(\frac{R_L}{R_L + R_S} \right) \right]^2}{R_L}$

$$\frac{V_r}{V_S} = \frac{R}{R + j(\omega L - 1/\omega C)}$$

$$Z = R + j\omega L + 1/(j\omega C)$$

$$Q = \omega_0 L/R \text{ with } 1/(\omega_0 CR)$$

$$F_N = F_1 + \frac{F_2 - 1}{G1} + \frac{F_3 - 1}{G1 G2} + \dots$$

$$\omega_0 = 1/\sqrt{LC}$$

$$Q = \omega_0/(\omega_2 - \omega_1)$$

$$+ \frac{F_N - 1}{G1 G2 \dots G_{N-1}}$$

$$Q = Q_s = Q_p = \sqrt{\frac{R_{Larger}}{R_{smaller}} - 1}$$

$$L_1 = \frac{X_L}{\omega_0} = \frac{Q_S R_{smaller}}{\omega_0} = \frac{R_{Larger}}{\omega_0 Q_P}$$

$$C_1 = \frac{1}{\omega_0 X_C} = \frac{1}{\omega_0 Q_S R_{smaller}} = \frac{Q_P}{\omega_0 R_{Larger}}$$

$$f_{T} = \frac{1}{2\pi\sqrt{LC_{T}}} \qquad \omega^{2} = \frac{1}{LC_{T}} \left[1 + \frac{C_{T}}{C_{1}} + \frac{C_{T}}{C_{2}} \right] \qquad f_{O} = \frac{M.f_{C}}{2^{n}} \qquad f_{alias} = |\mathbf{n}|^{\circ} \mathbf{f}\mathbf{s} - \mathbf{f}|$$

Single modulus $f_0 = f_r * M N$

dual modulus $f_0 = f_r(NM+A)$,

Fractional –N
$$f_o = f_r * N_{eff}, N_{eff} = N + K/F$$

$$USB: s_{USB}(t) = \frac{A_m A_c}{2} \cos(\omega_c t + \omega_m t)$$

$$\frac{E(V/m)}{H(A/m)} = Z_0$$

$$LSB: s_{LSB}(t) = \frac{A_m A_c}{2} \cos(\omega_c t - \omega_m t)$$

$$\% m = \frac{B - A}{B + A} \times 100\%$$

$$\underline{m_f} = \Delta f f_m$$
 $\Delta f = \phi_{rad} \times f_m$ $P_{total} = (J_0^2 + 2J_1^2 + 2J_2^2 + 2J_3^2 + ...) \times P_{trans}$

$$\underline{\mathbf{B}}\underline{\mathbf{W}} = \underline{\mathbf{2}}(\Delta + \mathbf{f}_{\mathbf{m}}) \qquad \text{Armstrong s signal} \qquad = A_{\mathbf{m}}\cos(\mathcal{O}_{\mathbf{m}}t)A_{\mathbf{c}}\cos(\mathcal{O}_{\mathbf{c}}t) + A_{\mathbf{c}}\sin(\mathcal{O}_{\mathbf{c}}t)$$

$$F_o = n_i F_{pc} + n_i F_{LO}$$
 $f_{vco} = f_{osc.} * \left(Z + \frac{x}{v}\right)$ $f_{LO} = \frac{f_{vco}}{R}$