

JPEG Encoder IP v1.2

JPEG Encoder IP User Guide

Introduction

Joint Photographic Experts Group (JPEG) is a commonly used method for image compression. JPEG Encoder is an intraframe compression method where each video frame is compressed by using the data of the same frame. The compression does not depend on past or future frames. The video frame is divided into multiple 8 x 8 blocks, which are called Macroblocks. A 2-dimensional Discrete Cosine Transform (DCT) is applied to each macroblock. The output of DCT represents frequency components in the horizontal and vertical directions. The DCT output is quantized using a quantization table that makes insignificant high-frequency components to zero, thereby reducing the number of bytes required to represent an 8 x 8 macroblock. The number of non-zero bytes in the quantization output depends on the high-frequency components in the image and on the Quality factor (Q factor) used to generate the quantization table. The degree of compression can be adjusted by the Q factor allowing a trade-off between size and image quality.

The output of quantization is passed through Huffman encoding, which reduces the number of bits used to represent the components of quantization output. A typical compression ratio of 20:1 can be achieved at a 50% Q factor. This user guide describes the JPEG encoder that encodes camera data given as input to JPEG Encoder IP in 4:2:2 (YCbCr) format in 8-bits per pixel mode. IP can provide compressed data for the selected quality factor (Quantization tables are programmable).

JPEG Encoder IP can include JPEG Header and Tables used for compression along with compressed data based on the input signal.

Key Features

The JPEG Encoder IP has the following key features:

- · Samples input in 4:2:2 YCbCr format
- Implements compression in 4:2:2 format
- Support 8-bits for each component (Y, Cb, and Cr)
- · Supports Programmable Quantization tables
- · Minimal latency (nine horizontal lines)

Supported Families

The JPEG Encoder IP supports the following families:

- PolarFire[®] SoC
- PolarFire

JPEG Encoder IP Configuration

The JPEG Encoder IP supports in 4:2:2 mode. It supports an 8-bit width for each component of Y, Cb, and Cr. The following figure shows the JPEG Encoder Configurator.

Figure 1. JPEG Encoder Configurator in Compile Time Mode

Table of Contents

Intr	roduction	1
	Key Features	1
	1	
	JPEG Encoder IP Configuration	1
1.	Hardware Implementation	4
	1.1. Inputs and Outputs	4
	Hardware Implementation of JPEG Encoder IP	5
2.	Register Table	8
3.	License	16
4.	Installation Instructions	17
5.	Testbench	18
	5.1. Simulation	18
6.	Resource Utilization	20
7.	Revision History	21
Mic	crochip FPGA Support	22
Mic	crochip Information	22
	The Microchip Website	22
	Product Change Notification Service	22
	Customer Support	22
	Microchip Devices Code Protection Feature	22
	Legal Notice	23
	Trademarks	23
	Quality Management System	24
	Worldwide Sales and Service	25

1. Hardware Implementation

The following figure shows the JPEG Encoder IP block diagram.

Figure 1-1. JPEG Encoder IP Block Diagram

1.1 Inputs and Outputs

The following table lists the JPEG Encoder IP input and output ports.

Table 1-1. Input and Output Ports of JPEG Encoder IP

Signal Name	Direction	Width	Port Valid Under	Description	
ARSTN_I	Input	1	_	Active-Low Asynchronous Reset signal to design	
PIX_CLK_I	Input	1	_	Input clock with which incoming pixels are sampled	
DATA_Y_I	Input	8	_	8-bit Luma (Y) input	
DATA_C_I	Input	8	_	8-bit Chroma input	
DATA_VALID_I	Input	1	_	Input pixel data valid signal	
EOF_I	Input	1	_	End of Frame indication	
HRES_I	Input	[15:0]	_	Horizontal resolution of input image	
VRES_I	Input	[15:0]	_	Vertical resolution of input image	
DATA_VALID_O	Output	1	_	Signal indicating valid compressed data on the compressed_data_o bus	
DATA_O	Output	[63:0]	_	Compressed data	
APB Bus Interface					
APB_PEN_I	Input	1	_	APB Interface write enable signal	
APB_PWRITE_I	Input	1	_	APB Interface write signal	
APB_PSEL_I	Input	1	_	APB Interface select signal	

continued	continued				
Signal Name	Direction	Width	Port Valid Under	Description	
APB_PADDR_I	Input	[31:0]	_	APB Interface write address signal	
APB_PWDATA_I	Input	[31:0]	_	APB Interface write data signal	
APB_CLK_I	Input	1	_	APB Interface clock All APB interface signals are synchronous to this clock.	
APB_RESETN_I	Input	1	_	APB Interface Active-Low Reset signal. This reset is synchronous to APB_CLK_I.	

1.2 Hardware Implementation of JPEG Encoder IP

The following figure shows the JPEG Encoder IP block diagram.

Figure 1-2. JPEG Encoder IP Block Diagram

1.2.1 Design Description for JPEG Encoder IP

This section describes the different internal modules of the JPEG Encoder IP. Data input to the JPEG Encoder IP should be in the form of 8 x 8 blocks in YCbCr format.

1.2.1.1 DCT

This module processes the incoming data based on the selected Data format (4:2:2).

As a first step in computing the DCT of the 8×8 block, its values are shifted from a positive range to one centered on zero. For an 8-bit image, each entry in the original block falls in the range [0 255]. The midpoint of the range (in this case, value 128) is subtracted from each entry to produce a data range that is centered on zero, so that the modified range is [-128 127]. Every 8 x 8 block of each component (Y, Cb, Cr) is converted to a frequency domain representation, using a normalized, two-dimensional type-II DCT.

1.2.1.2 Quantization

The human eye is good at seeing small differences in brightness over a relatively large area but not so good at distinguishing the exact strength of a high-frequency brightness variation. This allows one to reduce the amount of information in the high-frequency components. This is done by dividing each component in the frequency domain by a constant for that component and then rounding to the nearest integer. This rounding operation is the only lossy operation in the whole process (other than chroma subsampling) if the DCT computation is performed with sufficiently

Hardware Implementation

high precision. As a result of this, many of the higher frequency components are rounded to zero, and the rest become small positive or negative numbers, which take fewer bits to represent.

Default Quantization table that is valid for Quality value of 50. The QP varies from 5 to 95.

Luma Table:

Default Luma Table[0-63] -

[16 11 10 16 24 40 51 61 12 12 14 19 26 58 60 55 14 13 16 24 40 57 69 56 14 17 22 29 51 87 80 62 18 24 37 56 68 109 103 77 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101 72 92 95 98 112 100 103 99]

Chroma Table

Default Chroma Table[0 - 63] -

Quant value for Luma and Chroma gets calculated with following equation for 0 to 63:

If Quality value is < 50, then use the following equation:

```
quant_luma[i] = ((5000/Quality Value)*Default Luma Table[i])/100
quant_chroma[i] = ((5000/Quality Value)*Default Chroma Table[i])/100
```

If Quality value is >= 50, then use the following equation:

```
quant_luma[i] = (((200 - 2*Quality Value)*Default Luma Table[i])/100)
quant_chroma[i] = (((200 - 2*Quality Value)*Default Chroma Table[i])/100)
if(quant_luma[i]==0) quant_luma[i]=1;
if(quant_chroma[i]==0) quant_chroma[i]=1;
```

IQuant value for Luma and Chroma gets calculated with following equation for 0 to 63:

```
IQuant value for Luma :
iquant_luma[i] = (4096/quant_luma[i]) ;
IQuant value for Chroma :
iquant_chroma[i] = (4096/quant_chroma[i])
if(iquant_luma[i] > 4095) iquant_luma[i] = 4095;
if(iquant_chroma[i] > 4095) iquant_chroma[i] = 4095;
```

Note: IQuant = Inverse Quant

1.2.1.3 Zigzag Scan

Zigzag scanning is used to group low-frequency coefficients of the 8 x 8 quantized block to the top level of the vector and the high coefficient to the bottom. This is likely to result in the large number of zeros of the quantized matrix get grouped towards the end of the block. These large number of zeros at the end of the block can be encoded for better compression. The following figure shows the Zigzag scan order.

Figure 1-3. ZigZag Scan

1.2.1.4 Huffman Coding

Separate Huffman tables are used for DC and AC components of Luma and Chroma samples. Standard Huffman tables are used for encoding.

1.2.1.5 Data Packing

Data packing block combines the huffman output along with the header to create the encoded output as per the JPEG format.

2. Register Table

The following table lists the JPEG Encoder IP registers.

Table 2-1. Register Table

Address[12:0]	Data width	Description
0x0	12	Inverse quant table value for Luma [0]
0x4	12	Inverse quant table value for Luma [1]
0x8	12	Inverse quant table value for Luma [2]
0xc	12	Inverse quant table value for Luma [3]
0x10	12	Inverse quant table value for Luma [4]
0x14	12	Inverse quant table value for Luma [5]
0x18	12	Inverse quant table value for Luma [6]
0x1c	12	Inverse quant table value for Luma [7]
0x20	12	Inverse quant table value for Luma [8]
0x24	12	Inverse quant table value for Luma [9]
0x28	12	Inverse quant table value for Luma [10]
0x2c	12	Inverse quant table value for Luma [11]
0x30	12	Inverse quant table value for Luma [12]
0x34	12	Inverse quant table value for Luma [13]
0x38	12	Inverse quant table value for Luma [14]
0x3c	12	Inverse quant table value for Luma [15]
0x40	12	Inverse quant table value for Luma [16]
0x44	12	Inverse quant table value for Luma [17]
0x48	12	Inverse quant table value for Luma [18]
0x4c	12	Inverse quant table value for Luma [19]
0x50	12	Inverse quant table value for Luma [20]
0x54	12	Inverse quant table value for Luma [21]
0x58	12	Inverse quant table value for Luma [22]
0x5c	12	Inverse quant table value for Luma [23]
0x60	12	Inverse quant table value for Luma [24]
0x64	12	Inverse quant table value for Luma [25]
0x68	12	Inverse quant table value for Luma [26]
0x6c	12	Inverse quant table value for Luma [27]
0x70	12	Inverse quant table value for Luma [28]
0x74	12	Inverse quant table value for Luma [29]
0x78	12	Inverse quant table value for Luma [30]
0x7c	12	Inverse quant table value for Luma [31]

continued					
Address[12:0]	Data width	Description			
0x80	12	Inverse quant table value for Luma [32]			
0x84	12	Inverse quant table value for Luma [33]			
0x88	12	Inverse quant table value for Luma [34]			
0x8c	12	Inverse quant table value for Luma [35]			
0x90	12	Inverse quant table value for Luma [36]			
0x94	12	Inverse quant table value for Luma [37]			
0x98	12	Inverse quant table value for Luma [38]			
0x9c	12	Inverse quant table value for Luma [39]			
0xa0	12	Inverse quant table value for Luma [40]			
0xa4	12	Inverse quant table value for Luma [41]			
0xa8	12	Inverse quant table value for Luma [42]			
0xac	12	Inverse quant table value for Luma [43]			
0xb0	12	Inverse quant table value for Luma [44]			
0xb4	12	Inverse quant table value for Luma [45]			
0xb8	12	Inverse quant table value for Luma [46]			
0xbc	12	Inverse quant table value for Luma [47]			
0xc0	12	Inverse quant table value for Luma [48]			
0xc4	12	Inverse quant table value for Luma [49]			
0xc8	12	Inverse quant table value for Luma [50]			
0xcc	12	Inverse quant table value for Luma [51]			
0xd0	12	Inverse quant table value for Luma [52]			
0xd4	12	Inverse quant table value for Luma [53]			
0xd8	12	Inverse quant table value for Luma [54]			
0xdc	12	Inverse quant table value for Luma [55]			
0xe0	12	Inverse quant table value for Luma [56]			
0xe4	12	Inverse quant table value for Luma [57]			
0xe8	12	Inverse quant table value for Luma [58]			
0xec	12	Inverse quant table value for Luma [59]			
0xf0	12	Inverse quant table value for Luma [60]			
0xf4	12	Inverse quant table value for Luma [61]			
0xf8	12	Inverse quant table value for Luma [62]			
0xfc	12	Inverse quant table value for Luma [63]			
0x100	12	Inverse quant table value for Chroma [0]			
0x104	12	Inverse quant table value for Chroma [1]			
0x108	12	Inverse quant table value for Chroma [2]			

continued				
Address[12:0]	Data width	Description		
0x10c	12	Inverse quant table value for Chroma [3]		
0x110	12	Inverse quant table value for Chroma [4]		
0x114	12	Inverse quant table value for Chroma [5]		
0x118	12	Inverse quant table value for Chroma [6]		
0x11c	12	Inverse quant table value for Chroma [7]		
0x120	12	Inverse quant table value for Chroma [8]		
0x124	12	Inverse quant table value for Chroma [9]		
0x128	12	Inverse quant table value for Chroma [10]		
0x12c	12	Inverse quant table value for Chroma [11]		
0x130	12	Inverse quant table value for Chroma [12]		
0x134	12	Inverse quant table value for Chroma [13]		
0x138	12	Inverse quant table value for Chroma [14]		
0x13c	12	Inverse quant table value for Chroma [15]		
0x140	12	Inverse quant table value for Chroma [16]		
0x144	12	Inverse quant table value for Chroma [17]		
0x148	12	Inverse quant table value for Chroma [18]		
0x14c	12	Inverse quant table value for Chroma [19]		
0x150	12	Inverse quant table value for Chroma [20]		
0x154	12	Inverse quant table value for Chroma [21]		
0x158	12	Inverse quant table value for Chroma [22]		
0x15c	12	Inverse quant table value for Chroma [23]		
0x160	12	Inverse quant table value for Chroma [24]		
0x164	12	Inverse quant table value for Chroma [25]		
0x168	12	Inverse quant table value for Chroma [26]		
0x16c	12	Inverse quant table value for Chroma [27]		
0x170	12	Inverse quant table value for Chroma [28]		
0x174	12	Inverse quant table value for Chroma [29]		
0x178	12	Inverse quant table value for Chroma [30]		
0x17c	12	Inverse quant table value for Chroma [31]		
0x180	12	Inverse quant table value for Chroma [32]		
0x184	12	Inverse quant table value for Chroma [33]		
0x188	12	Inverse quant table value for Chroma [34]		
0x18c	12	Inverse quant table value for Chroma [35]		
0x190	12	Inverse quant table value for Chroma [36]		
0x194	12	Inverse quant table value for Chroma [37]		

continued					
Address[12:0]	Data width	Description			
0x198	12	Inverse quant table value for Chroma [38]			
0x19c	12	Inverse quant table value for Chroma [39]			
0x1a0	12	Inverse quant table value for Chroma [40]			
0x1a4	12	Inverse quant table value for Chroma [41]			
0x1a8	12	Inverse quant table value for Chroma [42]			
0x1ac	12	Inverse quant table value for Chroma [43]			
0x1b0	12	Inverse quant table value for Chroma [44]			
0x1b4	12	Inverse quant table value for Chroma [45]			
0x1b8	12	Inverse quant table value for Chroma [46]			
0x1bc	12	Inverse quant table value for Chroma [47]			
0x1c0	12	Inverse quant table value for Chroma [48]			
0x1c4	12	Inverse quant table value for Chroma [49]			
0x1c8	12	Inverse quant table value for Chroma [50]			
0x1cc	12	Inverse quant table value for Chroma [51]			
0x1d0	12	Inverse quant table value for Chroma [52]			
0x1d4	12	Inverse quant table value for Chroma [53]			
0x1d8	12	Inverse quant table value for Chroma [54]			
0x1dc	12	Inverse quant table value for Chroma [55]			
0x1e0	12	Inverse quant table value for Chroma [56]			
0x1e4	12	Inverse quant table value for Chroma [57]			
0x1e8	12	Inverse quant table value for Chroma [58]			
0x1ec	12	Inverse quant table value for Chroma [59]			
0x1f0	12	Inverse quant table value for Chroma [60]			
0x1f4	12	Inverse quant table value for Chroma [61]			
0x1f8	12	Inverse quant table value for Chroma [62]			
0x1fc	12	Inverse quant table value for Chroma [63]			
0x200	8	Quant value for Luma [0]			
0x204	8	Quant value for Luma [1]			
0x208	8	Quant value for Luma [2]			
0x20c	8	Quant value for Luma [3]			
0x210	8	Quant value for Luma [4]			
0x214	8	Quant value for Luma [5]			
0x218	8	Quant value for Luma [6]			
0x21c	8	Quant value for Luma [7]			
0x220	8	Quant value for Luma [8]			

continued					
Address[12:0]	Data width	Description			
0x224	8	Quant value for Luma [9]			
0x228	8	Quant value for Luma [10]			
0x22c	8	Quant value for Luma [11]			
0x230	8	Quant value for Luma [12]			
0x234	8	Quant value for Luma [13]			
0x238	8	Quant value for Luma [14]			
0x23c	8	Quant value for Luma [15]			
0x240	8	Quant value for Luma [16]			
0x244	8	Quant value for Luma [17]			
0x248	8	Quant value for Luma [18]			
0x24c	8	Quant value for Luma [19]			
0x250	8	Quant value for Luma [20]			
0x254	8	Quant value for Luma [21]			
0x258	8	Quant value for Luma [22]			
0x25c	8	Quant value for Luma [23]			
0x260	8	Quant value for Luma [24]			
0x264	8	Quant value for Luma [25]			
0x268	8	Quant value for Luma [26]			
0x26c	8	Quant value for Luma [27]			
0x270	8	Quant value for Luma [28]			
0x274	8	Quant value for Luma [29]			
0x278	8	Quant value for Luma [30]			
0x27c	8	Quant value for Luma [31]			
0x280	8	Quant value for Luma [32]			
0x284	8	Quant value for Luma [33]			
0x288	8	Quant value for Luma [34]			
0x28c	8	Quant value for Luma [35]			
0x290	8	Quant value for Luma [36]			
0x294	8	Quant value for Luma [37]			
0x298	8	Quant value for Luma [38]			
0x29c	8	Quant value for Luma [39]			
0x2a0	8	Quant value for Luma [40]			
0x2a4	8	Quant value for Luma [41]			
0x2a8	8	Quant value for Luma [42]			
0x2ac	8	Quant value for Luma [43]			

continued					
Address[12:0]	Data width	Description			
0x2b0	8	Quant value for Luma [44]			
0x2b4	8	Quant value for Luma [45]			
0x2b8	8	Quant value for Luma [46]			
0x2bc	8	Quant value for Luma [47]			
0x2c0	8	Quant value for Luma [48]			
0x2c4	8	Quant value for Luma [49]			
0x2c8	8	Quant value for Luma [50]			
0x2cc	8	Quant value for Luma [51]			
0x2d0	8	Quant value for Luma [52]			
0x2d4	8	Quant value for Luma [53]			
0x2d8	8	Quant value for Luma [54]			
0x2dc	8	Quant value for Luma [55]			
0x2e0	8	Quant value for Luma [56]			
0x2e4	8	Quant value for Luma [57]			
0x2e8	8	Quant value for Luma [58]			
0x2ec	8	Quant value for Luma [59]			
0x2f0	8	Quant value for Luma [60]			
0x2f4	8	Quant value for Luma [61]			
0x2f8	8	Quant value for Luma [62]			
0x2fc	8	Quant value for Luma [63]			
0x300	8	Quant value for Chroma [0]			
0x304	8	Quant value for Chroma [1]			
0x308	8	Quant value for Chroma [2]			
0x30c	8	Quant value for Chroma [3]			
0x310	8	Quant value for Chroma [4]			
0x314	8	Quant value for Chroma [5]			
0x318	8	Quant value for Chroma [6]			
0x31c	8	Quant value for Chroma [7]			
0x320	8	Quant value for Chroma [8]			
0x324	8	Quant value for Chroma [9]			
0x328	8	Quant value for Chroma [10]			
0x32c	8	Quant value for Chroma [11]			
0x330	8	Quant value for Chroma [12]			
0x334	8	Quant value for Chroma [13]			
0x338	8	Quant value for Chroma [14]			

continued					
Address[12:0]	Data width	Description			
0x33c	8	Quant value for Chroma [15]			
0x340	8	Quant value for Chroma [16]			
0x344	8	Quant value for Chroma [17]			
0x348	8	Quant value for Chroma [18]			
0x34c	8	Quant value for Chroma [19]			
0x350	8	Quant value for Chroma [20]			
0x354	8	Quant value for Chroma [21]			
0x358	8	Quant value for Chroma [22]			
0x35c	8	Quant value for Chroma [23]			
0x360	8	Quant value for Chroma [24]			
0x364	8	Quant value for Chroma [25]			
0x368	8	Quant value for Chroma [26]			
0x36c	8	Quant value for Chroma [27]			
0x370	8	Quant value for Chroma [28]			
0x374	8	Quant value for Chroma [29]			
0x378	8	Quant value for Chroma [30]			
0x37c	8	Quant value for Chroma [31]			
0x380	8	Quant value for Chroma [32]			
0x384	8	Quant value for Chroma [33]			
0x388	8	Quant value for Chroma [34]			
0x38c	8	Quant value for Chroma [35]			
0x390	8	Quant value for Chroma [36]			
0x394	8	Quant value for Chroma [37]			
0x398	8	Quant value for Chroma [38]			
0x39c	8	Quant value for Chroma [39]			
0x3a0	8	Quant value for Chroma [40]			
0x3a4	8	Quant value for Chroma [41]			
0x3a8	8	Quant value for Chroma [42]			
0x3ac	8	Quant value for Chroma [43]			
0x3b0	8	Quant value for Chroma [44]			
0x3b4	8	Quant value for Chroma [45]			
0x3b8	8	Quant value for Chroma [46]			
0x3bc	8	Quant value for Chroma [47]			
0x3c0	8	Quant value for Chroma [48]			
0x3c4	8	Quant value for Chroma [49]			

JPEG Encoder IP v1.2

Register Table

continued				
Address[12:0]	Data width	Description		
0x3c8	8	Quant value for Chroma [50]		
0x3cc	8	Quant value for Chroma [51]		
0x3d0	8	Quant value for Chroma [52]		
0x3d4	8	Quant value for Chroma [53]		
0x3d8	8	Quant value for Chroma [54]		
0x3dc	8	Quant value for Chroma [55]		
0x3e0	8	Quant value for Chroma [56]		
0x3e4	8	Quant value for Chroma [57]		
0x3e8	8	Quant value for Chroma [58]		
0x3ec	8	Quant value for Chroma [59]		
0x3f0	8	Quant value for Chroma [60]		
0x3f4	8	Quant value for Chroma [61]		
0x3f8	8	Quant value for Chroma [62]		
0x3fc	8	Quant value for Chroma [63]		

3. License

JPEG Encoder is provided in encrypted form only under license.

Encrypted RTL source code is license-locked and must be purchased separately. You can perform simulation, synthesis, layout, and program the Field Programmable Gate Array (FPGA) silicon using the Libero design suite.

Evaluation license is provided for free to check the JPEG Encoder features. The evaluation license expires after an hour's use on the hardware.

JPEG Encoder IP v1.2

Installation Instructions

4. Installation Instructions

The IP core must be installed to the IP Catalog of Libero SoC software automatically through the IP Catalog update function in Libero SoC software, or it can be manually downloaded from the catalog. Once the IP core is installed in Libero SoC software IP Catalog, it can be configured, generated, and instantiated within SmartDesign for inclusion in the Libero project.

5. Testbench

Testbench is provided to check the functionality of the JPEG_Encoder IP.

5.1 Simulation

The simulation uses a 512×512 image in the YCbCr422 format, which is represented by two files each for Y and C as input and generates a compressed HEX file format containing one frame. The following steps describe how to simulate the core using the testbench.

 Go to Libero SoC Catalog > View > Windows > Catalog, and then expand Solutions-Video. Double click JPEG Encoder, and then click OK.

Figure 5-1. JPEG_Encoder IP Core in Libero SoC Catalog

On the Files tab, right click simulation > Import Files.

Figure 5-2. Import Files

- 3. Import the jpeg_sim_data_in_y.txt, jpeg_sim_data_in_c.txt
 and jpeg_sim_refOut.txt file from the following
 path: ...\<Project_name>\component\Microchip\SolutionCore\JPEG_Encoder\<JPEG
 Encoder IP version>\Stimulus.
- 4. To import a different file, browse the folder that contains the required file, and click **Open**. The imported file is listed under simulation, see the following figure.

Figure 5-3. Imported Files

On the Stimulus Hierarchy tab, click JPEG_Encoder_tb (JPEG_Encoder_tb. v) > Simulate Pre-Synth
Design > Open Interactively. The IP is simulated for two frames.

Figure 5-4. Simulating Pre-Synthesis Design

ModelSim opens with the testbench file, as shown in the following figure.

Figure 5-5. Simulation

Important:

- If the simulation is interrupted due to the run time limit specified in the DO file, use the run
 -all command to complete the simulation.
- The testbench generates <code>jpeg_compresed_hex.txt</code>, any HEX to JPEG converter tool can be used to view JPEG image.

6. Resource Utilization

The following table lists the resource utilization of a sample JPEG Encoder IP design made for PolarFire® SoC FPGA (MPFS250TS-1FCG1152I package) and generation of compressed data by using 4:2:2 sampling of input data.

Table 6-1. Resource Utilization of JPEG Encoder IP that Compresses Data Sampled in 4:2:2 Format

Element	Usage
DFFs	3388
4-input LUTs	6131
Interface DFFs	3672
Interface 4LUTs	3672
LSRAM	66
μSRAM	6
Math Blocks	34

7. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Revision	Date	Description
В	01/2023	The following is the list of changes in revision B of the document: Updated Figure 1. Updated Figure 1-1. Updated Table 1-1. Updated Quant value equation for luma and chroma in 1.2.1.2. Quantization. Added a new section 5. Testbench. Updated the device family name and updated Table 6-1. Renamed the JPEG with JPEG Encoder throughout the document.
A	04/2022	The following is the list of changes in revision A of the document: • The document was migrated to the Microchip template. • The document number was updated to DS50003301A from 50200952. • Added Evaluation License option.
1.0	08/2021	Initial Revision.

Microchip FPGA Support

Microchip FPGA products group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit Microchip online resources prior to contacting support as it is very likely that their queries have been already answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

- From North America, call 800.262.1060
- From the rest of the world, call 650.318.4460
- Fax, from anywhere in the world, 650.318.8044

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- Local Sales Office
- · Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/ design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLog, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-

ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-1814-0

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

© 2023 Microchip Technology Inc. User Guide DS50003301B-page 24

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800 Raleigh, NC			Tel: 34-91-708-08-90
- •			Fax: 34-91-708-08-91
Tel: 919-844-7510 New York, NY			Sweden - Gothenberg Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			1 ax. 77-110-321-0020
Fax: 905-695-2078			
1 ax. 505-550-2010			