Predicting Earthquakes

Using data science to calculate probabilities

Heather Ewton

Foundations of Data Science

<u>Overview</u>

- The Problem
- Background
- Data
- Exploratory Analysis
- Model Building
- Results & Discussion

The Problem

 There is no reliable method that exists to predict when and where a significant earthquake will occur OR how strong that earthquake will be

Background

- How are earthquakes measured?
 - Richter Scale
 - Created in 1935
 - Measures energy released in a quake on a log-based scale
 - A magnitude of 2 is 10 times stronger than a magnitude of 1
 - A magnitude of 3 is 100 times stronger than a magnitude of 1
 - Measured by seismographs around the world

The Data

- 2 data sets were used:
 - NOAA data set
 - USGS data set

NOAA data set

- Summary:
 - 23,400 observations
 - 21 columns
 - Includes earthquakes from 1965-2016 with a magnitude of 5.5 or higher
- Clean and tidy

USGS data set

- Summary:
 - 6,047 observations
 - 23 columns
 - Sorted by region but does not include plate names
- Clean and tidy

• Bar graph of significant earthquakes per year

• Year vs. Magnitude box plot

• Plate Name v. Magnitude

• Quake plot by plate name, magnitude

Quake plot by year, size = magnitude

Exploring the last ten years of data in detail

• Interactions between variables in Earthquakes data set (global)

• Interactions between variables in NAP Earthquakes data set

• Linear Regression Results

Model	Data set	Factors	Adjusted R^2
LRModel1	Earthquakes	Lat + long	0.002018
LRModel2	Earthquakes	lat*long	0.001433
LRModel3	Earthquakes	Lat * long + focal_depth	0.002827
LRModel4	Earthquakes	Lat*long* + focal_depth + PlateName	0.009274
LRModel5	Earthquakes	Lat*long + focal_depth*PlateName	0.01287
LRModel6	Earthquakes	Lat*long*PlateName	0.01507
LRModel7	Nap_Earthquakes	Lat*long + focal_depth	0.001786
LRModel8	Nap_Earthquakes	Lat*long*focal_depth + PlateName	0.009719
LRModel9	Nap_Earthquakes	Lat*long*focal_depth*PlateName	0.008226

• Logistic Regression Results

Model	Data set	Factors	df	Residual Deviance
QuakeLog1	Earthquakes	Lat + long + focal_depth	18789	6369.7
QuakeLog2	Earthquakes	Long * focal_depth	18840	6501.7
QuakeLog3	Earthquakes	Focal_depth	18842	6511.9
QuakeLog4	Earthquakes	Lat*long	18842	6524.8
NapQuakeLog1	Nap_Earthquakes	Lat*long	1475	639.23
NapQuakeLog2	Nap_Earthquakes	Lat*long*focal_depth	1471	629.69
NapQuakeLog3	Nap_Earthquakes	Lat + long + focal_depth	1475	638.14
NapQuakeLog4	Nap_Earthquakes	Long*focal_depth	1475	637.64
NapQuakeLog5	Nap_Earthquakes	Focal_depth	1478	645.01

- Binomial Regression
- Relative vs. absolute effects

Model	Data set	Residual Deviance	Plogis(x)
bd_model	Earthquakes	640.90	0.0225
Nap_model	Nap_earthquak es	-2.15 x 10 ⁻	0.0562

Poisson Distributions

Model	Data set	Residual Deviance	Prob.
p_model	Earthquakes	5.58 x 10 ⁻¹⁰	Varies per plate
Nap_p_model	Nap_earthquakes	4.44 x 10 ⁻¹⁵	1.1

Results & Discussion

 Relationship found between magnitude and longitude and magnitude and focal_depth

 Poisson model is best for predicting probability of a major earthquake (magnitude 7.0 or higher)

 Per Poisson model, the Pacific plate has the highest rate of probability of a major earthquake, at 10%

Results & Discussion

- Future expansions to analysis:
 - Analyze using a time-series model
 - Add data set with fault zone classifications and analyze for impact of fault zone/stress types
 - Mixed-effects model