

planetmath.org

Math for the people, by the people.

localization of a module

 ${\bf Canonical\ name} \quad {\bf Localization Of A Module}$

Date of creation 2013-03-22 17:26:59 Last modified on 2013-03-22 17:26:59

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 13B30 Let R be a commutative ring and M an R-module. Let $S \subset R$ be a non-empty multiplicative set. Form the Cartesian product $M \times S$, and define a binary relation \sim on $M \times S$ as follows:

$$(m_1, s_1) \sim (m_2, s_2)$$
 if and only if there is some $t \in S$ such that $t(s_2m_1 - s_1m_2) = 0$

Proposition 1. \sim on $M \times S$ is an equivalence relation.

Proof. Clearly $(m, s) \sim (m, s)$ as t(sm-sm) = 0 for any $t \in S$, where $S \neq \emptyset$. Also, $(m_1, s_1) \sim (m_2, s_2)$ implies that $(m_2, s_2) \sim (m_1, s_1)$, since $t(s_2m_1 - s_1m_2) = 0$ implies that $t(s_1m_2 - s_2m_1) = 0$. Finally, given $(m_1, s_1) \sim (m_2, s_2)$ and $(m_2, s_2) \sim (m_3, s_3)$, we are led to two equations $t(s_2m_1 - s_1m_2) = 0$ and $u(s_3m_2 - s_2m_3) = 0$ for some $t, u \in S$. Expanding and rearranging these, then multiplying the first equation by us_3 and the second by ts_1 , we get $tus_2(s_3m_1 - s_1m_3) = 0$. Since $tus_2 \in S$, $(m_1, s_1) \sim (m_3, s_3)$ as required. \square

Let M_S be the set of equivalence classes in $M \times S$ under \sim . For each $(m, s) \in M \times S$, write

$$[(m,s)]$$
 or more commonly $\frac{m}{s}$

the equivalence class in M_S containing (m, s). Next,

• define a binary operation + on M_S as follows:

$$\frac{m_1}{s_1} + \frac{m_2}{s_2} := \frac{s_2 m_1 + s_1 m_2}{s_1 s_2}.$$

• define a function $\cdot: R_S \times M_S \to M_S$ as follows:

$$\frac{r}{s} \cdot \frac{m}{t} := \frac{rm}{st}$$

where R_S is the localization of R over S.

Proposition 2. M_S together with + and \cdot defined above is a unital module over R_S .

Proof. That + and \cdot are well-defined is based on the following: if $(m_1, s_1) \sim (m_2, s_2)$, then

$$\frac{m}{s} + \frac{m_1}{s_1} = \frac{m}{s} + \frac{m_2}{s_2}, \qquad \frac{m_1}{s_1} + \frac{m}{s} = \frac{m_2}{s_2} + \frac{m}{s}, \text{ and } \frac{r}{s} \cdot \frac{m_1}{s_1} = \frac{r}{s} \cdot \frac{m_2}{s_2},$$

which are clear by Proposition 1. Furthermore + is commutative and associative and that \cdot distributes over + on both sides, which are all properties inherited from M. Next, $\frac{0}{s}$ is the additive identity in M_S and $\frac{-m}{s} \in M_S$ is the additive inverse of $\frac{m}{s}$. So M_S is a module over R_S . Finally, since $(mt, st) \sim (m, s)$ for any $t \in S$, $\frac{t}{t} \cdot \frac{m}{s} = \frac{m}{s}$ so that M_S is unital. \square

Definition. M_S , as an R_S -module, is called the *localization* of M at S. M_S is also written $S^{-1}M$.

Remarks.

- The notion of the localization of a module generalizes that of a ring in the sense that R_S is the localization of R at S as an R_S -module.
- If $S = R \mathfrak{p}$, where \mathfrak{p} is a prime ideal in R, then M_S is usually written $M_{\mathfrak{p}}$.