CSE 241

Lecture 4

Overview for this lecture

- Reminders
- Introduce some combinational logic not on exam
- Review

Reminders

- Lab 1 Due June 14 at 5:30 pm
- HW 3 Due tonight at 11:59 pm
- Exam on Wednesday
- Lab 3 will be set to start Wednesday
 - Due June 20th at 5:30 pm
 - You get 2 lab sections to work on it
 - o It is a short lab

Questions?

What is Combinational Logic?

- Circuits fall into one of two categories
 - Combinational
 - Sequential
- These circuits depend on only the current inputs

Copyright ©2013 Pearson Education, publishing as Prentice Hall

MSI

- Medium Scale Integration
- Level of complexity of the combinational logic we will explore
- How Complex Is This?
 - All these circuits can be fabricated to an IC

Anyone recall what IC is short for?

Some key things about Combinational Logic Design

- No Feedback Paths
- No Memory Elements
- Can have multiple inputs and outputs

Design Procedure

- 1. Determine the number of inputs and outputs- Assign a symbol to each
- 2. Derive the Truth Table
- 3. Obtain the simplified Boolean functions for each output as a function of the inputs
- 4. Draw the logic diagram and verify correctness (manually or by simulation)

Let's Consider a Half Adder

Table 4.3 *Half Adder*

X	y	C	S
0 0 1	0 1 0	0 0 0 1	0 1 1 0

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Copyright ©2013 Pearson Education, publishing as Prentice Hall

What is

Let's Walk Through a Bit Slower With a Full Adder

What is different between a Full Adder and a Half Adder?

What if we wanted a 4 bit adder?

This is called a ripple carry

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Is there anything we have to consider with this design?

Solution- Fast Adders

- There are multiple methods to deal with the delay of waiting for the carries to propagate through
- They are more complex
- Here is the 5 minute or so run down

Carry Lookahead Adder

- Evaluate carries first, then crank out the sum.
- Faster, but gets really complex as number of inputs goes up.
- In a little more detail:
- We calculate a generate and a propagate function for each addition.

$$\circ c_i + 1 = g_i + p_i c_i$$

$$\circ g_i = x_i y_i, p_i = x_i + y_i$$

$$\circ$$
 $c_{i+1} = g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-1}$

$$c_{i+1} = g_i + p_i g_{i-1} + p_i p_{i-1} g_{i-2} + \dots + p_i p_{i-1} \dots p_2 p_1 p_0 g_0 + p_i p_{i-1} \dots p_2 p_1 p_0 c_0$$

p_i is the carry propagate and g_i is the carry generate term

What does the carry generator part look like for 3 carries?

Putting it all together

Hierarchical Carry Lookahead Adder

- Break up larger adds into blocks, and do an initial calculation of the carry between the blocks
- Think divide and conquer approach

Now

- A Short Break
- Then your practice exam
- If you finish early you can take a break until recitation
 - Recitation starts at 5:30
 - Others may be using the room before then
- If you finished your lab last time you don't need to go to recitation today