Lista de Exercício 2 – OC II

Gabarito

Exercício 1

Considere as seguintes características para erro de previsão. Os desvio são 20% do processamento. O CPI sem parada é igual a 1,5.

	Previsão Não-Tomado	Previsão Tomado
Desvio Tomado	4	1
Desvio Não-Tomado	0	5

(a) Considerando que os desvios são tomados 75% do tempo. Determine o CPI desta máquina usando um sistema de previsão estático tomado. Faça o mesmo para o não-tomado.

```
Tomado: 1,5 + 0,2 \times (0,75 \times 1 + 0,25 \times 5) = 1,5 + 0,4 = 1,9
Não-Tomado: 1,5 + 0,2 \times (0,75 \times 4 + 0,25 \times 0) = 1,5 + 0,6 = 2,1
```

(b) Considere o uso de uma branch history table de 1 bit. Assuma que o previsor é inicializado no estado T. Dada a sequência de desvios TTTTNNTNTNTTTTTNTNTNT, qual é a taxa de acerto e CPI correspondente?

D: TTTTNNTNTNTTTTTNTNTNT

P: TTTTTNNTNTNTTTTTNTNTN – acertos 8 / 20

Previsão T / Desvio T = 7 Previsão T / Desvio N = 6 Previsão N / Desvio T = 6 Previsão N / Desvio N = 1

CPI:
$$1.5 + 0.2 \times (7/20 \times 1 + 6/20 \times 5 + 6/20 \times 4 + 1/20 \times 0) = 1.5 + 0.61 = 2.11$$

(c) Repita o item acima para o caso de uma branch history table de 2 bits. Assuma que o previsor é inicializado no estado PT. Os estados são:

PT – Pouco Tomado MT – Muito Tomado PN – Pouco Não-Tomado MN – Muito Não-Tomado

D: TTTTNNTNTNTTTTTNTNTNT

P: TTTTTTNNNNNNTTTTTTTT – acertos 11 / 20

Previsão T / Desvio T = 9 Previsão T / Desvio N = 5 Previsão N / Desvio T = 4 Previsão N / Desvio N = 2

Exercício 2

Para este problema, assuma um processador VLIW com três unidades de inteiros (X, Y, Z), uma unidade de multiplicação (M) e duas unidades de *load* e *store* (LS0, LS1). Instruções de ALU tem uma latência de 1, multiplicação tem uma latência de 5 e *loads* tem uma latência de 2. Um desvio (*branch*) pode ser executado por ciclo e executa no pipeline Z. O seguinte código foi gerado assumindo uma técnica de escalonamento conhecida como EQ.

	X	Y	Z	M	LS0	LS1
1	ADDI R9, R0, 9	ADDI R10, R0, 10				
2	ADDI R6, R0, 6	ADDI R8, R0, 8	ADDI R5, R0, 5			
3					LW R6, 0(R7)	LW R8, 4(R7)
4	ADDI R12, R6, 1	ADDI R13 R8, 2				
5				MUL R7, R6, R9		
6				MUL R5, R8, R10		
7					LW R14, 8(R7)	
8	ADD R15, R16, R17					
9	ADD R14, R14, R5					
10	SUB R19, R18, R22					
11	ADD R5, R7, R5					

R0 tem valor zero!

Assuma que os endereços 0(R7), 4(R7) e 8(R7) contêm os valores 0, 10 e 1, respectivamente.

(a) Quais os valores de R12, R13 e R14 após a execução do código?

7, 10 e 6

(b) Sem alterar os nomes dos registradores, reescalone o código acima de forma a melhorar o desempenho sem impactar na lógica correta.

	X	Y	Z	M	LS0	LS1
1	ADDI R6, R0, 6	ADDI R8, R0, 8	ADDI R5, R0, 5		LW R14, 8(R7)	
2	ADDI R12, R6, 1	ADDI R13 R8, 2			LW R6, 0(R7)	LW R8, 4(R7)
3	ADD R14, R14, R5	ADDI R9, R0, 9	ADDI R10, R0, 10			
4				MUL R5, R8, R10		
5				MUL R7, R6, R9		
6	ADD R15, R16, R17					
7	SUB R19, R18, R22					
8						
9						
10	ADD R5, R7, R5					
11						

Exercício 3

Este problema investigará os efeito da **Previsão de Desvios (Branch Prediction)**. Ao longo do problema vamos considerar o seguinte código:

loop:

LW R4, 0(R3) ADDI R3, R3, 4 SUBI R1, R1, 1

b1:

BEQZ R4, b2 ADDI R2, R2, 1

b2:

BNEZ R1, loop

Assuma que o valor inicial de R1 é n (n > 0)

Assuma que o valor inicial de R2 é 0 (R2 guarda o resultado do programa)

Assuma que o valor inicial de R3 é p (um ponteiro para o início de um array de inteiros de 32 bits)

Todas as previsões de desvios neste problema vai ser baseada em um previsor de 2 bits , como mostrado abaixo:

O estado **1X é considerado como não-tomado**. Já o estado *0X é considerado como tomado*. Assumam que b1 e b2 não possuem conflito no BHT.

(a) O que o programa calcula? Ou seja, qual o valor contido em R2 quando o loop terminar?

O número de valores diferentes de zero

(b) Vamos investigar o funcionamento do previsor proposto. Assuma que as entradas do programa são n = 8 e p[0] = 1, p[1] = 0, p[2] = 1, p[3] = 0,... etc.; isto é, o array exibe elementos alternados de 1s e 0s. Preencha o restante da tabela abaixo. Qual é o número de predições incorretas?

A tabela contém uma entrada para cada desvio (b1 e b2) que é executado. Os bits do Previsor de Desvio (PD) na tabela são bits da BHT (Branch History Table). Para cada desvio, verifique os bits de PD correspondente para realizar a previsão. Em seguida, atualize os bits de PD da entrada.

do do Sist	tema	Previsor de Desvio (PD) Comportamento (to do Desvio	
R3 R4		b1 bits	b2 bits	Previsto	Ocorrido
4	1	10	10	N	N
4	1	10	10	N	T
8	0			N	T
8	0			N	T
12	1			N	N
12	1			Т	Т
16	0			N	T
16	0			Т	Т
20	1			N	N
20	1			Т	Т
24	0			N	T
24	0			Т	Т
28	1			N	N
28	1			Т	Т
32	0			N	T
32	0			Т	N

7

(c) Agora adicionamos um **bit de histórico global (desvios correlacionados)**. Preencha a tabela abaixo e novamente informe o número total de predições incorretas. Considere as mesmas condições do item b.

O bit histórico igual a 0 corresponde a não tomado e 1 a tomado.

	Estado do Sistema			P	Previsor de Desvio (PD) Comportamento do				nto do Desvio
				b1	b1 bits b2 bits				
PC	R3	R4	Bit História	0	1	0	1	Previsto	Ocorrido
b1	4	1	1	10	10	10	10	N	N
b2	4	1	0	10	10	10	10	N	T
b1								N	T
b2								N	Т
b1								N	N
b2								N	Т
b1								N	Т
b2								N	Т
b1								N	N
b2								Т	T
b1								N	Т
b2								Т	Ţ
b1								N	N
b2								Т	T
b1								N	Ţ
b2								Т	N

9

(d) Refaça o item c, mas agora **considere um segundo bit de histórico global.** Qual o número de predições incorretas?

	Estado do Sistema			Previsor de Desvio (PD)							Comportamento do Desvio		
					b1 k	oits			b2	bits			
PC	R3	R4	Bit História	0 0	01	10	11	0 0	01	10	11	Previsto	Ocorrido
b1	4	1	11	10	10	10	10	10	10	10	10	N	N
b2	4	1	0 1	10	10	10	10	10	10	10	10	N	T
b1												N	T
b2												N	T
b1												N	N
b2												N	Т
b1												N	T
b2												N	T
b1												N	N
b2												T	T
b1												Т	Т
b2												T	T
b1												N	N
b2												Т	Т
b1												Т	Т
b2												T	N

7

(e) Compare os resultados do itens b, c e d. Onde ocorre a maior parte das previsões incorretas em cada caso (no início, periodicamente, no fim, etc)? O que isto diz sobre a previsão com bits de histórico global? O que ocorreria para um valor de n maior? Explique resumidamente.

Para n grande, o último previsor seria melhor.

(f) As entradas utilizadas neste problema são muito regulares. O que você esperaria que ocorresse caso as entradas fossem aleatórias (igual probabilidade do elemento do array ser 0 ou 1)? Dos 3 previsores que vimos neste problema, qual deles seria o melhor para este tipo de entradas? O resultado é o mesmo para n pequeno e grande?

Sem padrão. Bit de histórico não ajuda. Não depende de n.

Exercício 4

Considere o processador I2O2 visto em sala e apresentado abaixo. Além disso, resolva todos os itens da questão considerando o seguinte código:

Processador I2O2

Código:

- 1: MUL R1, R2, R3 2: ADD R4, R2, R1 3: MUL R2, R7, R8 4: LW R10, 0(R12) 5: MUL R4, R10, R1
- 6: SW R4, 0(R2) 7: ADD R5, R6, R7
- 8: ADD R4, R3, R1
- 9: BNE R4, R0
- 10: ADDI R3, R1, 10
- (a) Mostre o diagrama do pipeline deste trecho de código, considerando que o desvio da instrução 9 é não-tomado e a instrução 10 pode ser disparada em seguida. Encaminhamentos são permitidos.
- (b) Mostre o estado do Scoreboard quando a instrução 3 está no estágio I do pipeline. Encaminhamentos são permitidos.

	P	F	4	3	2	1	0
R1	1	Y					1
R2							
R3							
R4	1	X				1	

(c) Considere agora o processador IO3 visto em aula e apresentado abaixo. Como fica o novo diagrama do pipeline? Apenas uma instrução pode ser disparada por vez. Quando a instrução está no IQ esperando o disparo, considere como estágio i.

- (d) Se ocorrer um problema de desalinhamento de memória no estágio M1 da instrução 6, quais problemas para o tratamento da interrupção.
- (f) Como resolver este problema sem reescalonar o código e sem perder desempenho? Mostre uma imagem que ilustre a sua alternativa e descreva os detalhes.

Exercício 5

(a) Mostre o diagrama de pipeline para o programa abaixo considerando o pipeline de 5 estágios do MIPS para instruções inteiras. A instrução MUL é executada por uma unidade funcional exclusiva por 4 estágios. Considere apenas uma ALU e uma unidade funcional de multiplicação. Considere todos os tipos de encaminhamento (fowarding).

0: ADD	R15, R2, R3
1: SUB	R1, R12, R16
2: ADDIU	R11, R10, 1
3: MUL	R5, R1, R4
4: MUL	R7, R5, R6
5: ADDIU	R18, R11, 1
6: ADDIU	R14, R18, 1
7: ADDIU	R13, R18, 2
8: SW	R5, 0(R14)
9: SW	R7, 0(R14)

(b) Mostre o diagrama do pipeline do código abaixo sendo executado no **processador superescalar de 2-vias em ordem** apresentado abaixo. Assuma que desvios só são executados no pipeline A e load/store só são executados no pipeline B. Considere encaminhamento quando possível e nenhum problema de alinhamento.

ADD	R5, R6, R7
SUB	R6, R7, R8
LW	R10, 0(R6)
ADDIU	R12, R13, 1
LW	R15, 4(R6)
LW	R15, 4(R15)
ADD	R6, R9, R10
ADDIU	R8, R10, R11

(c) Considere o processador I2O2 visto em sala e apresentado abaixo. Mostre o estado do Scoreboard a cada ciclo da execução do código abaixo. Encaminhamentos são permitidos.

Processador I2O2

Código:

MUL R1, R2, R3 ADD R4, R2, R1 LW R3, 20(R4) ADD R4, R3, R2

	P	F	4	3	2	1	0
R1	1	Y	1				
R2							
R3							
R4							

	P	F	4	3	2	1	0
R1	1	Y		1			
R2							
R3							
R4							

	P	F	4	3	2	1	0
R1	1	Y			1		
R2							
R3							
R4							

	P	F	4	3	2	1	0
R1	1	Y				1	
R2							
R3							
R4							
	P	F	4	3	2	1	0
R1	1	Y					1
R2							
R3							
R4	1	X				1	
	P	F	4	3	2	1	0
R1	0	Y					1
R2							
R3	1	M			1		
R4	1	X					1
	P	F	4	3	2	1	0
R1	0	Y					1
R2							
R3	1	M				1	
R4	0	X					1
	P	F	4	3	2	1	0
R1	0	Y					1
R2							
		i .	1	1	 		
R3	1	M				1	

 $\overline{}$

 $\overline{}$

	P	F	4	3	2	1	0
R1	0	Y					1
R2							
R3	1	M					1
R4	1	X				1	
	P	F	4	3	2	1	0
R1	0	Y					1
R2							
R3	0	M					1
R4	1	X					1
	P	F	4	3	2	1	0
R1	0	Y					1
R2							
R3	0	M					1
R4	0	X					1
	P	F	4	3	2	1	0
R1	Г	I.	4	J	2	1	0
R2							
R3							
R4							
104							
	P	F	4	3	2	1	0
R1							
R2							
R3							
R4							
				T.			
	P	F	4	3	2	1	0
R1							
R2							
R3							
R4							
	P	F	4	3	2	1	0

				I	I		
R1							
R2							
R3							
R4							
	P	F	4	3	2	1	0
R1	1	-	•		_		
R2							
R3							
R4							
104							
			T	T			
	P	F	4	3	2	1	0
R1							
R2							
R3							
R4							
	P	F	4	3	2	1	0
R1	Г	Ι΄	4	J		1	U
R2							
R3							
R4							
	P	F	4	3	2	1	0
R1							
R2							
R3							
R4							
	n	F	4	2	2	1	0
D1	P	Г	4	3	2	1	U
R1							
R2							
R3							
R4							