Homework #1: Fundamentals

Question I (10 points)

Suppose that A and B are nonempty sets and $A \times B \subseteq B \times A$. Show that A = B. Suggestion: show that $A \subseteq B$ and $B \subseteq A$, using proof by contradiction in each case.

Question II (10 points each)

Each case below give a relation on the set of all nonempty subsets of \mathcal{N} . In each case, say whether the relation is reflexive, whether it is symmetric, and whether it is transitive.

- a. R is defined by: ARB if and only if $A \subseteq B$.
- b. R is defined by: ARB if and only if $A \cap B \neq \emptyset$.
- c. R is defined by: ARB if and only if $1 \in A \cap B$.

Question III (10 points)

Prove using mathematical induction that for every nonnegative integer n,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

Question IV (5 points each)

In each case below, construct a truth table for the statement and find another statement with at most one operator $(\lor, \land, \neg, \text{ or } \rightarrow)$ that is logically equivalent.

- a. $(p \to q) \land (p \to \neg q)$
- b. $p \wedge (p \rightarrow q)$
- c. $(p \to q) \land (\neg p \to q)$
- d. $p \leftrightarrow (p \leftrightarrow q)$
- e. $q \wedge (p \rightarrow q)$

QUESTION V (2 points each)

Let $P = \emptyset$, $Q = \{\epsilon\}$, $R = \{aba, bcb, cac\}$, and $S = \{aba, abc, abb\}$.

- 1. Is $P \subset Q$ correct?
- 2. What are the members of $R \cap S$?
- 3. What are the members of $R\triangle S$?
- 4. What is the cardinality of R?

QUESTION VI (3 points each)

Let $P = (x \to y) \land (y \to z)$ where x, y, and z are boolean variables.

- 1. What is the value of P when x = z = true and y = false?
- 2. What is the value of P when x = z = false and y = true?

QUESTION VII

- 1. (5 points) Design a 4-state finite automaton that accepts the words over $\{a, b\}$ that end with aba.
- 2. (6 points) Design a 6-state finite automaton that accepts the words over $\{0,1\}$ that contain either 000 or 111.