日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 7月31日

出願番号

Application Number:

特願2002-223935

[ST.10/C]:

[JP2002-223935]

出 願 人 Applicant(s):

株式会社リコー

2003年 6月24日

特 許 庁 長 官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 0201433

【提出日】 平成14年 7月31日

【あて先】 特許庁長官殿

【国際特許分類】 B65H 45/16

G03G 15/00 534

【発明の名称】 用紙処理装置及び画像形成システム

【請求項の数】 6

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 山田 健次

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 永迫 秀也

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 田村 政博

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 鈴木 伸宜

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 齊藤 広元

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 飯田 淳一

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】

安藤 明人

【特許出願人】

【識別番号】 000006747

【氏名又は名称】 株式会社 リコー

【代表者】

桜井 正光

【代理人】

【識別番号】 100078134

【弁理士】

【氏名又は名称】 武 顕次郎

【電話番号】 03-3591-8550

【選任した代理人】

【識別番号】 100106758

【弁理士】

【氏名又は名称】 橘 昭成

【手数料の表示】

【予納台帳番号】 006770

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

要

【物件名】

要約書 1

【包括委任状番号】 9808513

【プルーフの要否】

【書類名】 明細書

【発明の名称】 用紙処理装置及び画像形成システム

【特許請求の範囲】

【請求項1】 対となるローラのニップを通る間に用紙に折りを施す折りローラと、折られた用紙束の折り部に対してさらに折り増しする折り増しローラと、前記折り増しローラを用紙搬送方向に対して直交する方向に移動させる駆動手段とを備え、画像形成後の用紙に対して折り処理を施す用紙処理装置において、

前記駆動手段は、折り増しローラの移動速度を用紙束に接触しているときと用 紙束に接触していないときとで異ならせたことを特徴とする用紙処理装置。

【請求項2】 前記駆動手段は、折りローラが用紙束に乗り上げる時の速度を乗り上げてからの速度より遅く設定したことを特徴とする請求項1記載の用紙処理装置。

【請求項3】 前記駆動手段は、折りローラが用紙束に乗り上げた後、所定 速度まで増速することを特徴とする請求項2記載の用紙処理装置。

【請求項4】 前記駆動手段は、前記折りローラが用紙束に乗り上げる前の速度をV1、乗り上げる時の速度をV2、乗り上げた後用紙束から降りる前の速度をV3、用紙束から降りる時の速度をV4、用紙束から降りた後の速度をV6としたとき、

 $V1 \ge V2$

 $V6 \ge V4$

V3>V2, V4

の関係を満たすことを特徴とする請求項1記載の用紙処理装置。

【請求項5】 前記駆動手段は、折り対象部材があるときの移動速度より折り対象部材がないときの移動速度を速く設定したことを特徴とする請求項1記載の用紙処理装置。

【請求項6】 請求項1ないし5のいずれか1項に記載の用紙処理装置と、

入力された画像情報に基づいて用紙上に画像を形成する画像形成手段および前 記画像形成手段に用紙を供給する給紙手段とを備えた画像形成装置と、

からなることを特徴とする画像形成システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、複写機、プリンタ、印刷機等の画像形成装置に一体もしくは別体に 設けられ、画像形成済みの用紙(記録媒体)に対して所定の処理、例えば仕分け 、スタック、綴じ、中綴じ製本を行って排紙する用紙処理装置およびこの用紙処 理装置と前記画像形成装置とからなる画像形成システムに関する。

[0002]

【従来の技術】

複写機、プリンタ等の画像形成(出力)装置の下流側に配置され、出力される 用紙に綴じなどの後処理装置は広く知られているが、昨今その機能は多機能化され、従来の端面綴じに加えて中綴じ処理も可能としたものも提案されている。そして、このような中綴じ処理が可能なものでは、中綴じ部分から折って製本する機能をも備えているものがある。しかし、中綴じ処理したものを中折りすることは、多数枚を一気に折る必要があるために比較的大きな力が必要となる。そこで、これらを限られたスペース、かつ、限られた時間内で処理するため、多数の発明が提案されている。

[0003]

もっとも一般的な方法は、一対の加圧ローラ間を搬送することで折ぐせをつける方法であるがこの場合用紙幅全体がごく短い時間内にローラニップを通過してしまうためローラの加圧力を十分に伝えることができないといった問題点がある。そのため、例えば特開平9-183567号公報には、折りローラの速度を制御することによって折りの品質の向上を狙った発明が提案されている。しかし、この公報開示の発明では、ローラのニップは極小の幅であるため一対のローラでの加圧時間には限界がある。また生産性が低下することは否めない。そのため例えば、特開2000-143088公報には、ローラ対を2本にして折品質の向上を狙ったものも提案されている。確かにこの方法であれば1対のローラで行うより有利ではあると思われる。

[0004]

しかし、人間が折り目をつける場合には折り目に沿って指で押えるの普通であり、こうすることで比較的小さな力で折り目を確実につけることができる。これは折る幅全体を一気に折るのではなく、部分部分で折るのと同じでその部分にかかる単位長さ当たりの力が大きくなるためと考えられる。これに着目して特開昭62-16987号公報には、搬送方向と直交する方向(折り目に平行な方向ー以下、横折りと称する)にローラを転がすことで確実に折ることを意図した発明が提案されている。確かにこの特開昭62-16987号公報に開示された方法では、ローラ対による搬送中での折りよって確実に折り品質の向上を図ることができると考えられる。

[0005]

【発明が解決しようとする課題】

ところで、ローラニップで用紙束を搬送しながら折り目を強化する方法では、そのローラ自体に搬送力が必要されるので、一般的には弾性体で構成される。そのため、比較的厚めの用紙束を折った場合でも用紙束の後端がニップから抜ける際の音は低音且つ小音を維持できる。それに比べ横折の場合、ローラ自体に搬送力を持たせる必要はないためローラおよび対向のガイド板は硬質のものが選択できる。硬質であれば折り効果は向上するが、折り終わりの際用紙束とガイド板のギャップからローラがガイド板に急激に落下してしまうので高音で大きな音が発生してしまう。また、特開昭62-16987号公報記載の発明では、構成から見て(用紙束の厚みを許容する構成がない)一枚シートの折りを目指したもので問題点への配慮はない。また、折り始めを見てみると横折の場合は用紙束の厚いみ分を一気にローラが駆け上がる必要があり、この際、用紙束をずらしてしまう危険性がある。

[0006]

本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、 横折りで多数枚の用紙からなる用紙束を折り増しする場合に、騒音の発生を抑え 、かつ、用紙束をずらす虞がなく、効率的に折り増し処理が可能な用紙処理装置 および画像形成システムを提供することにある。

[0007]

【課題を解決するための手段】

前記目的を達成するため、第1の手段は、対となるローラのニップを通る間に 用紙に折りを施す折りローラと、折られた用紙束の折り部に対してさらに折り増 しする折り増しローラと、前記折り増しローラを用紙搬送方向に対して直交する 方向に移動させる駆動手段とを備え、画像形成後の用紙に対して折り処理を施す 用紙処理装置において、前記駆動手段は、折り増しローラの移動速度を用紙束に 接触しているときと用紙束に接触していないときとで異ならせたことを特徴とす る。このように構成すると、折り増し動作時と折り増し動作を行わない時とで移 動速度を異ならせ、折り増し動作の確実性と作業効率との両立を図ることができ る。

[0008]

第2の手段は、第1の手段において、前記駆動手段は、折りローラが用紙束に乗り上げる時の速度を乗り上げてからの速度より遅く設定したことを特徴とする。このように用紙束に乗り上げる時の速度を折り増しを行うときの速度より遅くすると、折り増しローラが用紙束へ乗り上げる際の用紙束にかかる水平抗力を低減し、乗り上げ時に用紙束をずらしてしまう等の不具合を解消でき、確実な折り増しが可能となる。また、この部分のモータの駆動力が一番大きなものとなるが、ここで速度を低下することでモータのトルクを大きく設定できる。

[0009]

第3の手段は、第2の手段において、前記駆動手段は、折りローラが用紙束に乗り上げた後、所定速度まで増速することを特徴とする。このように用紙束に乗り上げた後、増速すると、効率よく折り増し処理が行える。

[0010]

第4の手段は、第1の手段において、前記駆動手段は、前記折りローラが用紙 東に乗り上げる前の速度をV1、乗り上げる時の速度をV2、乗り上げた後用紙 東から降りる前の速度をV3、用紙束から降りる時の速度をV4、用紙束から降 りた後の速度をV6としたとき、

 $V1 \ge V2$

 $V 6 \ge V 4$

V3 > V2. V4

の関係を満たすことを特徴とする。

[0011]

なお、一般には

V1 = V6

V1 > V3

に設定される。

[0012]

このように構成すると、折り増し開始時には、用紙束をずらすことなく用紙束に乗り上げて折り増しを実行し、折り増しが完了し、用紙束上を移動していた折り増しローラがガイド板上に滑落する際には速度は減速するので、その際に発生する衝撃音を低減できる。

[0013]

第5の手段は、第1の手段において、前記駆動手段は、折り対象部材があると きの移動速度より折り対象部材がないときの移動速度を速く設定したことを特徴 とする。これにより、確実な折効果を得るとともに生産性の低下を防止できる。

[0014]

そこで、折り増し処理を行った後、折り増し動作開始位置に戻るときの速度(折り対象物が存在しないとき)をV5とすると、

V = 5 > V = 3

に設定される。

[0015]

第6の手段は、第1ないし第5の手段に係る用紙処理装置と、入力された画像情報に基づいて用紙上に画像を形成する画像形成手段および前記画像形成手段に用紙を供給する給紙手段とを備えた画像形成装置とからなる画像形成システムを構築したことを特徴とする。このように画像形成システムを構築すると、横折りで多数枚の用紙からなる用紙束を折り増しする場合に、騒音の発生を抑え、かつ、用紙束をずらす虞がなく、効率的に折り増し処理が可能となる。

[0016]

【発明の実施の形態】

以下、本発明の実施形態について図面を参照して説明する。なお、以下の各実施形態の説明において、同等な各部には同一の参照符号を付し、重複する説明は 省略する。

[0017]

1. 機械的構成

1. 1 全体構成

図1は本発明の実施形態に係る用紙処理装置としての用紙後処理装置と画像形成装置とからなる画像形成システムのシステム構成を示す図であり、図では、用紙後処理装置の全体と画像形成装置の一部を示している。

[0018]

図1において、用紙後処理装置PDは、画像形成装置PRの側部に取付けられており、画像形成装置PRの排紙口から排出された記録媒体、ここでは用紙は用紙後処理装置PDの導入口18に導かれる。前記用紙は、1枚の用紙に後処理を施す後処理手段(この実施形態では穿孔手段としてのパンチユニット100)を有する搬送路Aを通り、上トレイ201へ導く搬送路B、シフトトレイ202へ導く搬送路C、整合およびスティプル綴じ等を行う処理トレイF(以下スティプル処理トレイとも称する)へ導く搬送路Dへ、それぞれ分岐爪15および分岐爪16によって振り分けられるように構成されている。

[0019]

搬送路AおよびDを経てスティプル処理トレイドへ導かれ、スティプル処理トレイで整合およびスティプル等を施された用紙は、偏向手段である分岐ガイド板54と可動ガイド55により、シフトトレイ202へ導く搬送路C、折り等を施す処理トレイG(以下、中折り処理トレイとも称する)へ振り分けられるように構成され、中折り処理トレイGで折り等を施された用紙は折り増しローラ400によって折りを強化された上、搬送路日を通り下トレイ203へ導かれる。また、搬送路D内には分岐爪17が配置され、図示しない低荷重バネにより図の状態に保持されており、用紙後端がこれを通過した後、搬送ローラ9、10、スティプル排紙ローラ11の内少なくとも搬送ローラ9および再給紙ローラ8を逆転す

ることで後端を用紙収容部Eへ導き滞留させ、次用紙と重ね合せて搬送することが可能なように構成されている。この動作を繰り返すことによって2枚以上の用紙を重ね合せて搬送することも可能である。

[0020]

搬送路B、搬送路Cおよび搬送路Dの上流で各々に対し共通な搬送路Aには、画像形成装置から受け入れる用紙を検出する入口センサ301、その下流に入口ローラ1、パンチユニット100、パンチかすホッパ101、搬送ローラ2、分岐爪15および分岐爪16が順次配置されている。分岐爪15、分岐爪16は図示しないバネにより図1の状態に保持されており、図示しないソレノイドをONすることにより、分岐爪15は上方に、分岐爪16は下方に、各々回動することによって、搬送路B、搬送路C、搬送路Dへ用紙を振り分ける。

[0021]

搬送路Bへ用紙を導く場合は、分岐爪15は図1の状態で前記ソレノイドはOFF、搬送路Cへ用紙を導く場合は、図1の状態から前記ソレノイドをONすることにより、分岐爪15は上方に、分岐爪16は下方にそれぞれ回動した状態となり、搬送路Dへ用紙を導く場合は、分岐爪16は図1の状態で前記ソレノイドはOFF、分岐爪15は図1の状態から前記ソレノイドをONすることにより、上方に回動した状態となる。

[0022]

この用紙後処理装置では、用紙に対して、穴明け(パンチユニット100)、 用紙揃え+端部綴じ(ジョガーフェンス53、端面綴じスティプラS1)、用紙 揃え+中綴じ(ジョガーフェンス53、中綴じスティプラS2)、用紙の仕分け (シフトトレイ202)、中折り(折りプレート74、折りローラ81、折り増 しローラ400)などの各処理を行うことができる。

[0023]

1. 2シフトトレイ部

この用紙後処理装置PDの最下流部に位置するシフトトレイ排紙部Iは、シフト排紙ローラ6と、戻しコロ13と、紙面検知センサ330と、シフトトレイ202と、図2に示すシフト機構Jと、図3に示すシフトトレイ昇降機構Kとによ

り構成される。なお、図2はシフト機構Jの詳細を示す要部を拡大した斜視図、図3はシフトトレイ昇降機構Kの要部を拡大した斜視図である。

[0024]

図1および図3において、符号13はシフト排紙ローラ6から排出された用紙と接して前記用紙の後端を図2に示すエンドフェンス32に突き当てて揃えるためのスポンジ製のコロを示す。この戻しコロ13は、シフト排紙ローラ6の回転力で回転するようになっている。戻しコロ13の近傍にはトレイ上昇リミットスイッチ333が設けられており、シフトトレイ202が上昇して戻しコロ13を押し上げると、前記トレイ上昇リミットスイッチ333がオンしてトレイ昇降モータ168が停止する。これによりシフトトレイ202のオーバーランが防止される。また、戻しコロ13の近傍には、図1に示すように、シフトトレイ202上に排紙された用紙もしくは用紙束の紙面位置を検知する紙面位置検知手段としての紙面検知センサ330が設けられている。

[0025]

図1に詳細には図示していないが、紙面検知センサ330は、図3に示す紙面検知レバー30と、紙面検知センサ(スティプル用)330aと紙面検知センサ(ノンスティプル用)330bとから構成されている。紙面検知レバー30は、レバーの軸部を中心に回動可能に設けられ、シフトトレイ202に積載された用紙の後端上面に接触する接触部30aと扇形の遮蔽部30bとを備えている。上方に位置する紙面検知センサ(スティプル用)330aは主にスティプル排紙制御に用いられ、紙面検知センサ(ノンスティプル用)330bは主にシフト排紙制御に用いられる。

[0026]

本実施形態では、紙面検知センサ(スティプル用)330aおよび紙面検知センサ(ノンスティプル用)330bは、遮蔽部30bによって遮られたときにオンするようになっている。したがって、シフトトレイ202が上昇して紙面検知レバー30の接触部30aが上方に回動すると、紙面検知センサ(スティプル用)330aがオフし、さらに回動すると紙面検知センサ(ノンスティプル用)330bがオンする。用紙の積載量が所定の高さに達したことが紙面検知センサ(

スティプル用)330aと紙面検知センサ(ノンスティプル用)330bによって検知されると、シフトトレイ202はトレイ昇降モータ168の駆動により所定量下降する。これにより、シフトトレイ202の紙面位置は略一定に保たれる

[0027]

1. 2. 1 シフトトレイの昇降機構

シフトトレイ202の昇降機構について詳細に説明する。

[0028]

図3に示すようにシフトトレイ202は、駆動ユニットLにより駆動軸21が 駆動されることにより昇降する。駆動軸21と従動軸22との間にはタイミング ベルト23がタイミングプーリを介してテンションをもって掛けられ、このタイ ミングベルト23にシフトトレイ202を支持する側板24が固定されている。 このように構成することにより、シフトトレイ202を含むユニットが昇降可能 にタイミングベルト23に吊り下げられている。

[0029]

駆動ユニットしは、トレイ昇降モータ168とウォームギア25とから構成され、駆動源としての正逆転可能なトレイ昇降モータ168で発生した動力が、ウォームギヤ25を介して駆動軸21に固定されたギヤ列の最終ギヤに伝達され、シフトトレイ202を上下方向に移動させるるようになっている。動力伝達系統がウォームギヤ25を介しているため、シフトトレイ202を一定位置に保持することができ、このギア構成により、シフトトレイ202の不意の落下事故等を防止することが可能となっている。

[0030]

シフトトレイ202の側板24には、遮蔽板24aが一体に形成され、下方には積載用紙の満載を検出する満杯検知センサ334と下限位置を検出する下限センサ335が配置されており、遮蔽板24aによって満杯検知センサ334と下限センサ335とがオン・オフされるようになっている。満杯検知センサ334と下限センサ335はフォトセンサであり、遮蔽板24aによって遮られたときにオンするようになっている。なお、図3において、シフト排紙ローラ6は省略

している。

[0031]

シフトトレイ202の揺動(シフト)機構は図2に示すように、シフトモータ169とシフトカム31とからなり、シフトモータ169を駆動源としてシフトカム31を回転させることにより、シフトトレイ202は用紙排紙方向と直交する方向に往復動する。シフトカム31には回転軸中心から一定量離れた位置にピン31aが立てられ、そのピン31aの他端部がエンドフェンス32の係合部材32aの長孔部32bに遊嵌されている。係合部材32aはエンドフェンス32の背面(シフトトレイ202が位置しない側の面)に固定され、前記シフトカム31のピン31aの回動位置に応じて、用紙排紙方向と直交する方向に往復動し、これにともなってシフトトレイ202も用紙排紙方向と直交する方向に移動する。シフトトレイ202は図1において手前側と奥側の2つの位置で停止し(図2のシフトカム31の拡大図に対応)、その停止制御はシフトカム31の切り欠きをシフトセンサ336により検出し、この検出信号に基づいてシフトモータ169をON、OFF制御することにより行われる。

[0032]

エンドフェンス32の前面側には、前記シフトトレイ202の案内用の突条32cが設けられ、シフトトレイ202の後端部がこの突条32cに上下動自在に遊嵌され、これにより、シフトトレイ202は上下動可能かつ用紙搬送方向と直交する方向に往復動可能にエンドフェンス32に支持される。なお、エンドフェンス32はシフトトレイ202上の積載紙の後端をガイドし、後端を揃える機能を有する。

[0033]

1. 2. 2 排紙部

図4はシフトトレイ202への排紙部の構造を示す斜視図である。

[0034]

図1および図4において、シフト排紙ローラ6は、駆動ローラ6aと従動ローラ6bを有し、従動ローラ6bは用紙排出方向上流側を支持され、上下方向に揺動自在設けられた開閉ガイド板33の自由端部に回転自在に支持されている。従

動ローラ6bは自重または付勢力により駆動ローラ6aに当接し、用紙は両ローラ6a、6b間に挟持されて排出される。綴じ処理された用紙束が排出される時は、開閉ガイド板33が上方に引き上げられ、所定のタイミングで戻されるようになっており、このタイミングはシフト排紙センサ303の検知信号に基づいて決定される。その停止位置は排紙ガイド板開閉センサ331の検知信号に基づいて決定され、排紙ガイド板開閉モータ167により駆動される。なお、排紙ガイド板開閉モータ167は排紙ガイド板開閉リミットスイッチ332のオンオフにより駆動制御される。

[0035]

- 1.3 スティプル処理トレイ
 - 1.3.1 スティプル処理トレイの全体構成

スティプル処理を施すスティプル処理トレイFの構成を詳細に説明する。

[0036]

図5はこのスティプル処理トレイFを用紙搬送面に垂直な方向から見た平面図、図6はスティプル処理トレイFとその駆動機構を示す斜視図、図7は用紙束の放出機構を示す斜視図である。まず、図6に示すように、スティプル排紙ローラ11によってスティプル処理トレイFへ導かれた用紙は、スティプル処理トレイF上に順次積載される。この場合、用紙ごとに叩きコロ12で縦方向(用紙搬送方向)の整合が行われ、ジョガーフェンス53によって横方向(用紙搬送方向)の整合が行われ、ジョガーフェンス53によって横方向(用紙搬送方向と直交する方向一用紙幅方向とも称す)の整合が行われる。ジョブの切れ目、すなわち、用紙束の最終紙から次の用紙束先頭紙までの間で、制御装置350(図26参照)からのスティプル信号により端面綴じスティプラS1が駆動され、綴じ処理が行われる。綴じ処理が行われた用紙束は、ただちに放出爪52aが突設された放出ベルト52によりシフト排紙ローラ6へ送られ、受取り位置にセットされているシフトトレイ202に排出される。

[0037]

1. 3. 2 用紙放出機構

放出爪52aは、図7に示すように、放出ベルトHPセンサ311によりそのホームポジションが検知されるようになっており、この放出ベルトHPセンサ3

11は放出ベルト52に設けられた放出爪52aによりオン・オフする。この放出ベルト52の外周上には対向する位置に2つの放出爪52a,52a'(図37参照)が配置され、スティプル処理トレイドに収容された用紙束を交互に移動搬送する。また必要に応じて放出ベルト52を逆回転し、これから用紙束を移動するように待機している放出爪52aと対向側の放出爪52a'の背面でスティプル処理トレイドに収容された用紙束の搬送方向先端を揃えるようにすることもできる。したがって、この放出爪52a,52a'は用紙束の用紙搬送方向の揃え手段としても機能する。

[0038]

また、図5に示すように、放出モータ157により駆動される放出ベルト52の駆動軸には、用紙幅方向の整合中心に放出ベルト52とその駆動プーリ62とが配置され、駆動プーリ62に対して対称に放出ローラ56が配置、固定されている。さらに、これらの放出ローラ56の周速は放出ベルト52の周速より速くなるように設定されている。

[0039]

1. 3. 3 処理機構

図6に示すように、叩きコロ12は支点12aを中心に叩きSOL(ソレノイド)170によって振り子運動を与えられ、スティプル処理トレイFへ送り込まれた用紙に間欠的に作用して用紙を後端フェンス51に突き当てる。なお、叩きコロ12は反時計回りに回転する。ジョガーフェンス53は、正逆転可能なジョガーモータ158によりタイミングベルトを介して駆動され、用紙幅方向に往復移動する。

[0040]

端面綴じスティプラS1は、図8のステイプラS1を移動機構とともに示す斜 視図から分かるように、正逆転可能なスティプラ移動モータ159によりタイミ ングベルトを介して駆動され、用紙端部の所定位置を綴じるために用紙幅方向に 移動する。その移動範囲の一側端には、端面綴じスティプラS1のホームポジションを検出するスティプラ移動HPセンサ312が設けられており、用紙幅方向 の綴じ位置は、前記ホームポジションからの端面綴じスティプラS1移動量によ り制御される。端面綴じスティプラS1は、図9の斜視図に示すように針の打ち込み角度を用紙端部と平行あるいは斜めに変更できるように、さらには、前記ホームポジション位置でスティプラS1の綴じ機構部だけを所定角度斜めに回転させ、スティプル針の交換が容易にできるように構成されている。スティプラS1は斜めモータ160によって斜め回転し、針交換位置センサ313によって所定の斜めの角度に、あるいは、前記針の交換位置まで達したことが検出されると、斜めモータ160は停止する。斜め打ちが終了し、あるいは針交換が終了すると、元の位置まで回転して次のスティプルに備える。

[0041]

中綴じスティプラS 2 は図1 および図5に示すように、後端フェンス5 1 から中綴じスティプラS 2 の針打ち位置までの距離が、中綴じ可能な最大用紙サイズの搬送方向長の半分に相当する距離以上となるように配置され、かつ、用紙幅方向の整合中心に対して対称に2 つ配置され、ステー63に固定されている。中綴じスティプラS 2 自体は公知の構成なので、ここでは詳細についての説明は省略するが、中綴じを行う場合、ジョガーフェンス53で用紙の搬送方向に直交する方向が整合され、後端フェンス51と叩きコロ12で用紙の搬送方向が整合された後、放出ベルト52を駆動して放出爪52 a で用紙束の後端部を持ち上げ、中綴じスティプラS 2 の綴じ位置に用紙束の搬送方向の中央部が位置するようにし、この位置で停止して、綴じ動作を実行させる。そして、綴じられた用紙束は、中折り処理トレイG側に搬送され、中折りされる。詳細は後述する。

[0042]

なお、図中符号64 a は前側板、64 b は後側板であり、符号310はスティ プル処理トレイF上の用紙の有無を検出する紙有無センサである。

[0043]

1.4 用紙束偏向機構

前記スティプル処理トレイドで中綴じが行われた用紙束は用紙の中央部で中折りされる。この中折りは中折り処理トレイGで行われる。そのためには、綴じた用紙束を中折り処理トレイGに搬送する必要がある。この実施形態では、スティプル処理トレイドの搬送方向最下流側に、用紙束偏向手段が設けられ、中折り処

理トレイG側に用紙束を搬送する。

[0044]

用紙束偏向機構は、図1および図15のスティプル処理トレイFと中折り処理トレイG部分の拡大図に示すように分岐ガイド板54と可動ガイド55とからなる。分岐ガイド板54は図10ないし図12の動作説明図に示すように支点54 aを中心に上下方向に揺動自在に設けられ、その下流側に回転自在な加圧コロ57が設けられ、スプリング58により放出ローラ56側に加圧される。また、分岐ガイド板54の位置は、束分岐駆動モータ161より駆動力を得て回転するカム61のカム面61aとの当接位置によって規定される。

[0045]

可動ガイド55は放出ローラ56の回転軸に揺動自在に支持され、可動ガイド55の一端(分岐ガイド板54とは反対側の端部)には連結部60aで回動自在に連結されたリンクアーム60が設けられている。リンクアーム60は図5に示す前側板64aに固定された軸と長孔部60bでされており、これにより可動ガイド55の揺動範囲は規制される。また、スプリング59により下方に付勢されることによって図10の位置に保持される。さらに、東分岐駆動モータ161より駆動を得て回転するカム61のカム面61bによりリンクアーム60が押されると、連結されている可動ガイド55は上方へ回動する。東分岐ガイドHPセンサ315はカム61の遮蔽部61cを検知してカム61のホームポジションを検知する。これにより、カム61はそのホームポジションを基準として東分岐駆動モータ161の駆動パルスをカウントすることにより、停止位置の制御が行われる。

[0046]

図10は、カム61がホームポジションに位置した時の分岐ガイド板54と可動ガイド55の位置関係を示す動作説明図である。可動ガイド55のガイド面5 5aはシフト排紙ローラ6への経路において、用紙をガイドする機能を有する。

[0047]

図11は、カム61が回転することにより、分岐ガイド板54が支点54aを中心として図において反時計方向(下方)へ回動し、加圧コロ57が放出ローラ

56側に接触して加圧している状態を示す動作説明図である。

[0048]

図12は、カム61がさらに回転することにより、可動ガイド55が図において時計方向(上方)に回動し、スティプル処理トレイFから中折り処理トレイGに導く経路を分岐ガイド板54と可動ガイド55とで形成した状態を示す動作説明図である。また、図5には奥行き方向の位置関係を示す。

[0049]

この実施形態では、分岐ガイド板54と可動ガイド55は1つの駆動モータにより動作するが、個々に駆動モータを設けて、用紙サイズや綴じ枚数に応じて、 移動タイミングや停止位置を制御可能に構成しても良い。

[0050]

1.5 中折り処理トレイ

図13および図14は中折りを行うための折りプレート74の移動機構の動作 説明図である。

[0051]

折りプレート74は前後側板64a,64bに立てられた各2本の軸64cに長孔部74aを遊嵌することにより支持され、さらに、折りプレート74から立設された軸部74bがリンクアーム76の長孔部76bに遊嵌され、リンクアーム76が支点76aを中心に揺動することにより、折りプレート74は図13および図14中を左右に往復移動する。すなわち、リンクアーム76の長孔部76cに折りプレート駆動カム75の軸部75bは遊嵌されており、折りプレート駆動カム75の回転運動によりリンクアーム76は揺動し、これに応じて、図15において、折りプレート74は束搬送ガイド板下上91,92に対して垂直な方向に往復動する。

[0052]

折りプレート駆動カム75は折りプレート駆動モータ166により図13中の 矢印方向に回転する。その停止位置は半月形状の遮蔽部75a両端部を折りプレ ートHPセンサ325により検知することで決定される。

[0053]

図13は、処理トレイGの用紙束収容領域から完全に退避したホームポジション位置を示す。折りプレート駆動カム75を矢印方向に回転させると折りプレート74は矢印方向に移動し、処理トレイGの用紙束収容領域に突出する。図14は、処理トレイGの用紙束中央を折りローラ81のニップに押し込む位置を示す。折りプレート駆動カム75を矢印方向に回転させると折りプレート74は矢印方向に移動し、処理トレイGの用紙束収容領域から退避する。

[0054]

なお、この実施形態では、中折りについては用紙束を折ることを前提にしているが、この発明は1枚の用紙を折る場合でも適用できる。この場合は、1枚だけで中綴じが不要なので、1枚排紙された時点で中折り処理トレイG側に送り込み、折りプレート74と折りローラとによって折り処理を実行して下トレイに排紙するようにする。

[0055]

1. 6 折り増しローラユニット

パルスモータ401の回転駆動は、プーリ402とプーリ404に張られているタイミングベルト403によって、タイミングベルト403と嵌合している移動支持部材407に伝わり、移動支持部材403はガイド部材405にガイドされてガイド部材405のスラスト方向に摺動しながら移動する。移動支持部材403と上ガイド板415との間には撓み防止部材406が存在し、移動支持部材403に回転可能な状態で支持されているので、移動支持部材403と一緒にガイド部材405のスラスト方向に移動することができる。さらに移動支持部材403と下ガイド板との間には折り増しローラ409が存在し、折り増しローラの周上には摩擦部材410が存在する。そして折り増しローラを持部材408は移動支持部材403と摺動しながら上下方向に移動することができる状態で支持されている。さらに折り増しローラ支持部材408は移動支持部材403と摺動しながら上下方向に移動することができる状態で支持されている。さらに折り増しローラ支持部材408は移動支持部材403と摺動しながら上下方向に移動することができる状態で支持されている。さらに折り増しローラ支持部材408は移動支持部材403と対がら上下方向に移動することができる状態である。これにより折り増しローラ409は移動支持部材403と一緒に、ガイド部材405のスラスト方向に移動することができ、その間、折り増しローラ409は弾性材411によって常に下ガイド板

416に向かって加圧され、かつ上下方向に移動可能な状態である。またガイド 部材405のスラスト方向には移動支持部材407の位置を検知する検知手段と して位置検知センサ前412及び位置検知センサ前413が存在し、移動支持部 材407が位置検知センサ前412及び位置検知センサ後413の位置に来たと きにはセンサによって検知されるようになっている。そして折り増しローラユニット400に搬送されてくる用紙束は、用紙束検知センサ414によって検知される構成になっている。

[0056]

折り増しローラユニット400は、図1に示したように折りローラ81と排紙ローラ83との間の搬送路Hに設けられ、折りプレート74で折り込まれた用紙束を折りローラ83のニップに押し込んで折り目を付けた後、折り増しローラユニット400で折り目を強化するようにしている。

[0057]

折り増しローラユニット400は、図16の正面図、図17の側面図に示すように折り増しローラ409と折り増しローラ409の支持機構と折り増しローラ409の駆動機構は、駆動側プーリ402と、従動側プーリ404と、両プーリ402,404との間に掛け渡されたタイミングベルト403と、このタイミングベルト403を回転駆動するパルスモータ401とから主に構成されている。折り増しローラ409の支持機構は、前記タイミングベルト403と結合され、一体的に移動する移動支持部材407と、移動支持部材407が摺動し、移動方向を規制するガイド部材405と、移動支持部材407の反折り増しローラ設置側まで延び、折り増しローラ407の傾きを規制するとともにガイド部材405の撓みを防止する上ガイド板415と、折り増しローラ407を用紙束折り方向(図では下方)に弾性付勢する弾性付勢手段としての弾性材(図ではコイルバネ)411とから主に構成されている。前記支持機構は用紙搬送方向に対して直交する方向に設置され、前記駆動機構は前記支持機構内で、当該支持機構の設置方向に折り増しローラ407を移動させる。

[0058]

パルスモータ401の回転駆動は、駆動側プーリ402と従動側プーリ404間に張られているタイミングベルト403によって、タイミングベルト403と結合している移動支持部材407に伝わり、移動支持部材403はガイド部材405にガイドされてガイド部材405のスラスト方向に摺動しながら移動する。移動支持部材407と上ガイド板415との間には撓み防止部材406が存在し、移動支持部材407に回転可能な状態で支持され、いわばローラ状になっているので、移動支持部材407と一体でガイド部材405の軸方向に移動することができる。さらに、折り増しローラ409は移動支持部材407と下ガイド板416との間に配置され、折り増しローラ409の外周面上には摩擦部材410が設けられている。

[0059]

折り増しローラ409の回転軸は折り増しローラ支持部材408によって支持され、折り増しローラ支持部材408は移動支持部材407と摺動しながら上下方向に移動することができる状態で支持されている。さらに、折り増しローラ支持部材408は移動支持部材407から弾性材411によって加圧された状態である。これにより折り増しローラ409は移動支持部材407と一体でガイド部材405のスラスト方向に移動することができ、その間、折り増しローラ409は弾性材411によって常に下ガイド板416に向かって加圧され、かつ上下方向に移動可能になっている。また、ガイド部材405のスラスト方向には移動支持部材407の位置を検知する検知手段として位置検知センサ前412及び位置検知センサ後413が設けられ、移動支持部材407が位置検知センサ前412及び位置検知センサ後413の位置に来たときには当該位置検知センサ前412及び位置検知センサ後413の位置に来たときには当該位置検知センサ前後412人び位置検知センサ後413によって検知される。一方、折り増しローラユニット400に搬送されてくる用紙束は、折り増しローラユニット400の入口部に設けられた用紙束検知センサ414によって検知される。

[0060]

折り増しローラ409は位置検知センサ後413によりホームポジションが検出される。折り増し動作は用紙束が所定位置に搬送され停止した後、折り増しローラ409を位置検知センサ後413の位置から位置検知センサ前412の位置

に移動することで実施される。このとき、図18に示すように、まず、ホームポジションから用紙束近傍までは速度V1で移動し、その後、用紙束に乗り上げる区間を速度V2で移動し、さらに用紙束の折り目を折り増しながら反対側の用紙束端面近傍までは速度V3で移動する。その後、用束束から段差を降りる一定区間を速度V4で移動し、速度V1で位置検知センサ前413まで移動する。そして、用紙束が搬送され、横折ユニット外に移動すると、折り増しローラ409は位置検知センサ後413の位置に速度V5で移動する。

[0061]

各速度の関係は

 $V1 \ge V2$

V2, V4 < V3

V 5 > V 3

となる。なお用紙束の折り増し時の速度であるV3は、この実施形態では、

V1 > V3

に設定されている。

[0062]

また、折り増しローラ409が用紙束を降りてからの速度をここでは、用紙束に乗り上げる前の速度V1と同じに設定しているが、異なる速度V6に設定することも可能である。その場合

 $V 6 \ge V 4$

であればよい。

[0063]

2. 制御装置

制御装置350は、図19に示すように、CPU360、I/Oインターフェース370等を有するマイクロコンピュータからなり、画像形成装置PR本体のコントロールパネルの各スイッチ等、および入口センサ301、上排紙センサ302、シフト排紙センサ303、プレスタックセンサ304、スティプル排紙センサ305、紙有無センサ310、放出ベルトホームポジションセンサ311、スティプル移動ホームポジションセンサ312、スティプラ斜めホームポジショ

ンセンサ313、ジョガーフェンスホームポジションセンサ314、東分岐ガイドホームポジションセンサ315、東到達センサ321、可動後端フェンスホームポジションセンサ322、折り部通過センサ323、下排紙センサ324、折りプレートホームポジションセンサ325、紙面検知センサ330,330a,330b、排紙ガイド板開閉センサ331等の各センサからの信号がI/Oインターフェース370を介してCPU360へ入力される。

[0064]

CPU360は、入力された信号に基づいて、シフトトレイ202用のトレイ 昇降モータ168、開閉ガイド板を開閉する排紙ガイド板開閉モータ167、シ フトトレイ202を移動するシフトモータ169、叩きコロ12を駆動する図示 しない叩きコロモータ、叩きSOL170等の各ソレノイド、各搬送ローラを駆 動する搬送モータ、各排紙ローラを駆動する排紙モータ、放出ベルト52を駆動 する放出モータ157、端面綴じスティプラS1を移動するスティプラ移動モー タ159、端面綴じスティプラS1を斜めに回転させる斜めモータ160、ジョ ガーフェンス53を移動するジョガーモータ158、分岐ガイド板54および可 動ガイド55を回動する東分岐駆動モータ161、その東を搬送する搬送ローラ を駆動する図示しない束搬送モータ、可動後端フェンス73を移動させる図示し ない後端フェンス移動モータ、折りプレート74を移動させる折りプレート駆動 モータ166、折りローラ81を駆動する図示しない折りローラ駆動モータ、折 り増しローラ409を駆動するパルスモータ401等の駆動を制御する。スティ プル排紙ローラを駆動する図示しないスティプル搬送モータのパルス信号はCP U360に入力されてカウントされ、このカウントに応じて叩きSOL170お よびジョガーモータ158が制御される。なお、折りローラ駆動モータはステッ ピングモータからなり、CPU360からモータドライバを介して直接的に、あ るいは、I/O370とモータドライバを介して間接的に制御される。

[0065]

また、パンチユニット100もクラッチやモータを制御することによりCPU 360の指示によって穴明けを実行する。

[0066]

3. 動作

以下、前記CPU360によって実行される本実施形態に係る用紙後処理装置の動作について説明する。

[0067]

3.1 処理モードに応じた動作

本実施形態では、後処理モードに応じて下記の排出形態をとる。

[0068]

① ノンスティプルモードA:

このモードは、搬送路Aから搬送路Bを通り、上トレイ201へ用紙を綴じないで排出するモードである。このモードでは、分岐爪15が図1において時計方向に回動し、搬送路B側が開放された状態になる。このときの処理手順を図20のフローチャートに示す。

[0069]

このモードでは、動作がスタートし、用紙が画像形成装置PR側から搬入される状態になると、用紙後処理装置PDの搬送路Aの入口ローラ1および搬送ローラ2、搬送路Bの搬送ローラ3および上排紙ローラ4がそれぞれ回転を開始する(ステップS101)。そして、入口センサ301のオン、オフ(ステップS102, S103)と上排紙センサ302のオン、オフ(ステップS104, S105)をチェックして、用紙の通過を確認し、最終紙が通過し(ステップS107)、所定時間経過すると、前記各ローラ、すなわち、入口ローラ1、搬送ローラ2、搬送ローラ3および上排紙ローラ4の回転を停止させる。これにより、画像形成装置から搬入されてきた用紙を全て上トレイ201に綴じることなく排紙し、積載する。なお、この実施形態では、パンチユニット100が入口ローラ1と搬送ローラ2間に設けられているので、この間にパンチユニット100によって穴あけすることもできる。なお、穴あけされたパンチかすはパンチかす受け入れ口100aからパンチ層収容ホッパ101内に収容される。

[0070]

② ノンスティプルモードB:

このモードは、用紙を綴じることなく搬送路Aから搬送路Cを経て、シフトト

レイ202へ排出するモードである。このモードでは、分岐爪15が反時計方向 、分岐爪16が時計方向にそれぞれ回動し、搬送路Cが開放された状態になる。 このときの処理手順を図21のフローチャートに示す。

[0071]

このモードでは、動作がスタートし、用紙が画像形成装置PR側から搬入される状態になると、用紙後処理装置PDの搬送路Aの入口ローラ1および搬送ローラ2、搬送路Cの搬送ローラ5およびシフト排紙ローラ6がそれぞれ回転を開始する(ステップS201)。そして、分岐爪15および16を駆動するソレノイドをオンにして(ステップS202)分岐爪15を反時計方向、分岐爪16を時計方向にそれぞれ回動させる。次いで、入口センサ301のオン、オフ(ステップS203, S204)とシフト排紙センサ303のオン、オフ(ステップS205, S206)をチェックして、搬入されてきた用紙の通過を確認する。

[0072]

そして、最終紙が通過し(ステップS207)、所定時間経過すると、前記各ローラ、すなわち、入口ローラ1、搬送ローラ2、搬送ローラ5およびシフト排紙ローラ6の回転を停止させ(ステップS208)、分岐爪15,16を駆動するソレノイドをオフにする(ステップS209)。これにより、画像形成装置PRから搬入されてきた用紙を全てシフトトレイ202に綴じることなく排紙し、積載する。なお、この実施形態では、パンチユニット100が入口ローラ1と搬送ローラ2間に設けられているので、この間にパンチユニット100によって穴あけすることもできる。

[0073]

③ ソート、スタックモード:

このモードは、用紙を搬送路Aから搬送路Cを経てシフトトレイ202へ排出するモードであるが、その際、シフトトレイ202を部の区切れ毎に排紙方向と直交方向に揺動させ、シフトトレイ202上に排出される用紙を仕分けるモードである。このモードでは、ノンスティプルモードBと同様に、分岐爪15が反時計方向、分岐爪16が時計方向にそれぞれ回動し、搬送路Cが開放された状態になる。このときの処理手順を図22のフローチャートに示す。

[0074]

このモードでは、動作がスタートし、用紙が画像形成装置PR側から搬入される状態になると、用紙後処理装置PDの搬送路Aの入口ローラ1および搬送ローラ2、搬送路Cの搬送ローラ5およびシフト排紙ローラ6がそれぞれ回転を開始する(ステップS301)。そして、分岐爪15および16を駆動するソレノイドをオンにして(ステップS302)分岐爪15を反時計方向、分岐爪16を時計方向にそれぞれ回動させる。そして、入口センサ301のオン、オフ(ステップS303, S304)とシフト排紙センサ303のオン(ステップS305)をチェックする。

[0075]

このチェックにより、シフト排紙センサ303を通過した用紙が部の先頭の用 紙であれば(ステップS306-Y)、シフトモータ169をオンし(ステップ S307)、シフトセンサ336がシフトトレイ202を検出するまでシフトト レイ202を用紙搬送方向と直交する方向に移動させる(ステップS309)。 そして、用紙をシフトトレイ202に排紙し、シフト排紙センサ303がオフに なり、用紙がシフト排紙センサ303の通過が確認されると(ステップS310)、その用紙が最終紙かどうかをチェックする(ステップS311)。最終紙で なければ、この場合、先頭の用紙なので、部が1枚でなければ、ステップS30 3に戻って以降の処理を繰り返し、部が1枚で構成されていれば、ステップS3 12の処理を実行する。 一方、ステップS306でシフト排紙センサ303を 通過した用紙が部の先頭紙でなければ、すでにシフトトレイ202は移動してい るので、そのまま排紙し(ステップS310)、その排紙した用紙が最終紙かど うかをチェックする(ステップS311)。最終紙でなければ、次の用紙に対し てステップS303からの処理を繰り返し、最終紙であれば(ステップS311 - Y)、最終紙が通過して所定時間経過した時点で、前記各ローラ、すなわち、 入口ローラ1、搬送ローラ2、搬送ローラ5およびシフト排紙ローラ6の回転を 停止させ(ステップS312)、分岐爪15、16を駆動するソレノイドをオフ にする(ステップS313)。これにより、画像形成装置から搬入されてきた用 紙を全てシフトトレイ202に綴じることなく排紙し、仕分けして積載する。な お、この場合もパンチユニット100によって穴あけした用紙のソートやスタックが可能である。

[0076]

④ スティプルモード:

このモードは、用紙を搬送路Aと搬送路Dを経てスティプル処理トレイFに搬送し、スティプル処理トレイFで整合および綴じ処理を行った後、搬送路Cを通ってシフトトレイ202へ排出するモードである。このモードでは、分岐爪15と分岐爪16はともに反時計方向に回動し、搬送路AからDに至る経路が開放された状態になる。このときの処理手順を図23に示す。

[0077]

このモードでは、動作がスタートし、用紙が画像形成装置側PRから搬入される状態になると、用紙後処理装置PDの搬送路Aの入口ローラ1および搬送ローラ2、搬送路Dの搬送ローラ7,9,10およびスティプル排紙ローラ11、スティプル処理トレイFの叩きコロ12がそれぞれ回転を開始する(ステップS401)。そして、分岐爪15を駆動するソレノイドをオンにして(ステップS402)分岐爪15を反時計方向に回動させる。

[0078]

次いで、端面綴じスティプラS1をスティプラ移動HPセンサ312で検知し、ホームポジションを確認した後、スティプラ移動モータ159を駆動して端面綴じスティプラS1を綴じ位置に移動させる(ステップS403)。また、放出ベルト52のホームポジションも放出ベルトHPセンサ311で検知し、その位置を確認した後、放出モータ157を駆動して待機位置に放出ベルト52を移動させる(ステップS404)。また、ジョガーフェンス53もジョガーフェンスHPセンサでホームポジション位置を検出した後、待機位置に移動させる(ステップS405)。さらに、分岐ガイド板54と可動ガイド55をホームポジションに移動させる(ステップS406)。

[0079]

そして、入口センサ301のオン、オフ(ステップS407, S408)、スティプル排紙センサ305がオン(ステップS409)、シフト排紙センサ30

3がオフ(ステップS410)であれば、スティプル処理トレイドに用紙が排紙され、用紙が存在しているので、叩きソレノイド170を所定時間オンにし、叩きソレノイド12を用紙に接触させ、後端フェンス51側に付勢して、用紙後端を揃える(ステップS411)。次いで、ジョガーモータ158を駆動することによってジョガーフェンス53を所定量内側に移動させて用紙の幅方向(用紙搬送方向に直交する方向)の揃え動作を行った後、待機位置に戻す(ステップS412)。これによりスティプル処理トレイドに送り込まれた用紙の縦横(搬送方向に平行な方向と直交する方向)が揃えられる。これらステップS407からステップS413までの動作を1枚毎に繰り返し、部の最終紙になると(ステップS413-Y)、ジョガーフェンス53を所定量内側に移動させて用紙端面がずれない状態にし(ステップS414)、この状態で端面綴じスティプラS1をオンにして端面綴じを実行する(ステップS415)。

[0080]

一方、シフトトレイ202を所定量下降させて(ステップS416)排紙スペ ースを確保し、シフト排紙モータを駆動してシフト排紙ローラ6の回転を開始さ せ(ステップS417)、さらに放出モータ157をオンにして放出ベルト52 を所定量回転させ(ステップS418)、綴じられた用紙束を搬送路C方向に押 し上げる。これにより、用紙束はシフト排紙ローラ6のニップに挟まれてシフト トレイ202への排紙動作が行われる。そして、シフト排紙センサ303がオン になり(ステップS419)、用紙束がセンサ303位置に進入し、シフト排紙 センサ303がオフになって用紙束がセンサ303位置を抜けたことが確認され ると(ステップS420)、用紙束はシフト排紙ローラ6によってシフトトレイ への排紙が完了する状態になっているので、放出ベルト52およびジョガーフェ ンス53を待機位置に移動させ(ステップS421, S422)、シフト排紙口 ーラ6の回転を所定時間経過後停止させ(ステップS423)、シフトトレイ2 02を用紙受け入れ位置に上昇させる(ステップS424)。この上昇位置は、 紙面検知センサ330によってシフトトレイ202上に積載された用紙束の最上 位の用紙の上面を検知することにより制御される。これらの一連を動作をジョブ の最終部まで繰り返す(ステップS425)。

[0081]

そして、最終部になると、端面綴じスティプラS1、放出ベルト52、ジョガーフェンス53をそれぞれホームポジションに移動させ(ステップS426, S427, S428)、入口ローラ1、搬送ローラ2, 7, 9, 10、スティプル排紙ローラ11および叩きコロ12の回転を停止させ(ステップS429)、分岐爪15の分岐ソレノイドをオフにして(ステップS430)全て初期状態に戻して処理を終える。

[0082]

このようにして、画像形成装置から搬入されてきた用紙をスティプル処理トレイFで綴じ処理を行ってシフトトレイ202に排紙して積載する。なお、この場合もパンチユニット100によって穴あけした用紙の綴じ処理が可能である。

[0083]

このスティプルモード時のスティプル処理トレイFの動作をさらに詳細に説明 する。

[0084]

スティプルモードが選択されると、図6に示すように、ジョガーフェンス53 はホームポジションより移動し、スティプル処理トレイFに排出される用紙幅より片側7mm離れた待機位置で待機する(ステップS405)。用紙がスティプル排紙ローラ11によって搬送され、用紙後端がスティプル排紙センサ305を通過すると(ステップS409)、ジョガーフェンス53が待機位置から5mm内側に移動して停止する。

[0085]

また、スティプル排紙センサ305は用紙後端通過時点にそれを検知し、その信号がCPU360に入力される。CPU360ではこの信号の受信時点からスティプル排紙ローラ11を駆動する図示しないスティプル搬送モータからの発信パルス数をカウントし、所定パルス発信後に叩きSOL170をオンさせる(ステップS412)。叩きコロ12は、叩きSOL170のオン・オフにより振り子運動をし、オン時には用紙を叩いて下方向に戻し、後端フェンス51に突き当てて紙揃えを行う。このとき、スティプル処理トレイドに収容される用紙が入口

センサ301あるいはスティプル排紙センサ305を通過するたびにその信号が CPU360に入力され、用紙枚数がカウントされる。

[0086]

叩きSOL170がオフされて所定時間経過後、ジョガーフェンス53は、ジョガーモータ158によってさらに2.6mm内側に移動して一旦停止し、横揃えが終了する。ジョガーフェンス53はその後7.6mm外側に移動して待機位置に戻り、次の用紙を待つ(ステップS412)。この動作を最終頁まで行う(ステップS413)。その後、再び7mm内側に移動して停止し(ステップS414)、用紙束の両側端を押えてスティプル動作に備える。その後、所定時間後に図示しないスティプルモータにより端面綴じスティプラS1が作動し、綴じ処理が行われる(ステップS415)。このとき2ヶ所以上の綴じが指定されていれば、1ヶ所の綴じ処理が終了した後、スティプル移動モータ159が駆動され、端面綴じスティプラS1が用紙後端に沿って適正位置まで移動され、2ヶ所目の綴じ処理が行なわれる。また、3ヶ所目以降が指定されている場合は、これを繰返す。

[0087]

綴じ処理が終了すると、放出モータ157が駆動され、放出ベルト52が駆動される(ステップS418)。このとき、排紙モータも駆動され、放出爪52aにより持ち上げられた用紙束を受け入れるベくシフト排紙ローラ6が回転し始める(ステップS417)。このとき、ジョガーフェンス53は用紙サイズおよび綴じ枚数に基づいて異なる制御が行われる。例えば、綴じ枚数が設定枚数より少ない、あるいは設定サイズより小さい場合には、ジョガーフェンス53により用紙束を押えながら放出爪52aにより用紙束後端を引っかけ搬送する。

[0088]

そして、紙有無センサ310あるいは放出ベルトHPセンサ311による検知より所定パルス後にジョガーフェンス53を2mm退避させジョガーフェンス53による用紙への拘束を解除する。この所定パルスは、放出爪52aが用紙後端と接触してからジョガーフェンス53の先端を抜ける間で設定されている。

[0089]

また、綴じ枚数が設定枚数より多い、あるいは設定サイズより大きい場合には、予めジョガーフェンス53を2mm退避させ、放出を行う。いずれの場合も用紙束がジョガーフェンス53を抜けきると、ジョガーフェンス53は、さらに5mm外側に移動して待機位置に復帰し(ステップS422)、次の用紙に備える。なお、用紙に対するジョガーフェンス53の距離により拘束力を調整することも可能である。

[0090]

⑤ 中綴じ製本モード(折り増しローラ再加圧モード):

図24ないし図26はこの実施形態における中綴じ製本モードの処理手順を示すフローチャートで、これら3図で1つの処理を示す。

[0091]

このモードは、用紙を搬送路Aと搬送路Dを経てスティプル処理トレイFに搬送し、スティプル処理トレイFで整合および中央綴じを行った後、さらに中折り処理トレイGで中折りし、折り増しされた用紙束を搬送路Hを経て下トレイ203へ排出するモードである。このモードでは、分岐爪15と分岐爪16はともに反時計方向に回動し、搬送路AからDに至る経路が開放された状態になる。また、分岐ガイド板54と可動ガイド板55が後述の図27に示すように閉鎖状態となって用紙束を中折り処理トレイGに導き、中折りが行われる。

[0092]

このモードでは、図24に示すように動作がスタートし、用紙が画像形成装置 PR側から搬入される状態になると、用紙後処理装置 PDの搬送路Aの入口ローラ1および搬送ローラ2、搬送路Dの搬送ローラ7,9,10およびスティプル排紙ローラ11、スティプル処理トレイFの叩きコロ12がそれぞれ回転を開始する(ステップS501)。そして、分岐爪15を駆動するソレノイドをオンにして(ステップS502)分岐爪15を反時計方向に回動させる。

[0093]

次いで、放出ベルト52のホームポジションも放出ベルトHPセンサ311で 検知し、その位置を確認した後、放出モータ157を駆動して放出ベルト52を 待機位置に、また、ジョガーフェンス53もジョガーフェンスHPセンサでホー

2 8

ムポジション位置を検出した後、待機位置に、さらに、分岐ガイド板54と可動ガイド55をホームポジションにそれぞれ移動させる(ステップS503, S504, S505)。

[0094]

そして、入口センサ301のオン、オフ(ステップS506, S507)、スティプル排紙センサ305がオン(ステップS508)、シフト排紙センサ303がオフ(ステップS509)であれば、スティプル処理トレイFに用紙が排紙され、用紙が存在しているので、叩きソレノイド170を所定時間オンにし、叩きコロ12を用紙に接触させ、後端フェンス51側に付勢して、用紙後端を揃える(ステップS510)。次いで、ジョガーモータ158を駆動することによってジョガーフェンス53を所定量内側に移動させて用紙の幅方向(用紙搬送方向に直交する方向)の揃え動作を行った後、待機位置に戻す(ステップS511)。これによりスティプル処理トレイFに送り込まれた用紙の縦横(搬送方向に平行な方向と直交する方向)が揃えられる。

[0095]

これらステップS506からステップS512までの動作を1枚毎に繰り返し、部の最終紙になると(ステップS512-Y)、図25のフローチャートに示すようにジョガーフェンス53を所定量内側に移動させて用紙端面がずれない状態にし(ステップS513)、この状態で放出モータ157をオンにすることにより放出ベルト52を所定量回転させ(ステップS514)、中綴じスティプラS2の綴じ位置まで用紙束を上昇させる。そして、用紙束の中央部で中綴じスティプラS2をオンし、中綴じを行う(ステップS515)。次いで、分岐ガイド板54と可動ガイド55を所定量を変位させて中折り処理トレイGに向かう経路を形成し(ステップS516)、中折り処理トレイGの束搬送ローラ上、下71,72の回転を開始させ、中折り処理トレイGに設けられている可動後端フェンス73のホームポジションを検知した後、当該可動後端フェンス73のホームポジションを検知した後、当該可動後端フェンス73を待機位置に移動させる(ステップS518)。

[0096]

このようにして、中折り処理トレイGの用紙束受け入れ体制が整えられると、

放出ベルト52をさらに所定量回転させ(ステップS519)、放出ローラ56と加圧ローラ57に銜え込ませ、中折り処理トレイG側に用紙束を搬送する。用紙先端が束到達センサ321位置に達し(ステップS520)、所定距離搬送したら、束搬送ローラ上、下71,72の回転を停止させ(ステップS521)、束搬送ローラ下72の加圧状態を解除させる(ステップS522)。次いで、折りプレート74による折り動作を開始し(ステップS522)。次いで、折りプレート74による折り動作を開始し(ステップS523)、折りローラ81および下排紙ローラ83の回転を開始させる(ステップS524)。そして、折り増しローラユニット400に設けられた用紙束検知センサ414がオンになるまで折りローラ81を回転させ、用紙束検知センサがオンになると(ステップS525-YES)、折りローラ81を所定量回転させた後停止する(ステップS526)。この動作は、用紙束の先端を折り増しローラ加圧位置まで搬送する動作である。

[0097]

用紙束先端を折り増しローラ409による加圧位置まで搬送し、その位置で折りローラ81を停止させることにより用紙束を停止させる(ステップS526)。この状態で折り増しローラ409を移動させるパルスモータ401に駆動パルスを送って回転させ、折り増しローラ409を位置検知センサ後413の位置から位置検知センサ前412の位置に移動させ(ステップS527)、用紙束先端を折り増しローラ409によって加圧する。そして、折りローラ81と下排紙ローラ32の回転を開始させる(ステップS528)。

[0098]

この状態で図25のフローチャートに示すように用紙束の通過を折り部通過センサ323によって監視し(ステップS529, S530)、折り部通過センサがオフになると(ステップS530ーYES)、束搬送ローラ下72を加圧し(ステップS531)、折りプレート74をホームポジションに移動させ(ステップS532)、さらに、分岐ガイド板54および可動ガイド板55もホームポジションに移動させる(ステップS533)。そして、下排紙センサ324を用紙束が通過すると(ステップS534, S535)、折りローラ81、下排紙ローラ83をさらに所定時間回転させた後、停止させる(ステップS536)。次い

で、折り増しローラ409を位置検知センサ前412位置から位置検知センサ後413まで移動させてホームポジションに戻し(ステップS537)、さらに、放出ベルト52とジョガーフェンス53を待機位置に移動させる(ステップS538, S539)。そして、ジョブの最終部かどうかをチェックし(ステップS540)、ジョブの最終部でなければステップS506に戻って以降の処理を繰り返し、最終部であれば、放出ベルト52およびジョガーフェンス53をホームポジションに移動させ(ステップS541, S542)、入口ローラ1, 搬送ローラ2, 7, 9, 10、スティプル排紙ローラ11および叩きコロ12の回転を停止し(ステップS543)、分岐爪15の分岐ソレノイドをオフにして(ステップS5444)すべて初期状態に戻して処理を終える。

[0099]

このようにして画像形成装置PRから搬入されてきた用紙をスティプル処理トレイFで中綴じし、中折り処理トレイGで中折りし、さらに折り増しした後、下トレイ203上に中折りされた用紙束を排紙して積載する。

[0100]

4. 中折りモード時の綴じ動作と折り動作の詳細

この中折りモード時の綴じ動作と折り動作についてさらに詳細に説明する。

[0101]

搬送路Aから分岐爪15と分岐爪16で振り分けられた用紙は、搬送路Dに導かれ、搬送ローラ7,9,10およびスティプル排紙ローラ11によりスティプル処理トレイFに排出される。スティプル処理トレイFでは、④のスティプルモード時と同様に排紙ローラ11により順次排出される用紙を整合し、スティプルする直前までは同様の動作をする(図27)。その後、図28に示すように用紙束は放出爪52aにより用紙サイズ毎に設定された距離だけ搬送方向下流へ運ばれ、その中央を中綴じスティプラS2により綴じ処理される。綴じられた用紙束は放出爪52aにより搬送方向下流側へ用紙サイズ毎に設定された所定距離搬送され、一旦停止する。この移動距離は放出モータ157の駆動パルスにより管理される。

[0102]

その後、図29に示すように、用紙束の先端部は放出ローラ56と加圧コロ57により挟持され、分岐ガイド板54と可動ガイド55とが回動することによって形成される経路、すなわち中折り処理トレイGへ導かれる経路を通過するように再度放出爪52aと放出ローラ56により下流へ搬送される。この放出ローラ56は前述のように放出ベルト52の駆動軸に設けられ、放出ベルト52と同期して駆動される。そして、図30に示すように、その用紙束は束搬送ローラ上71と束搬送ローラ下72により、予めその用紙サイズに応じた位置にホームポジションから移動し、下側の端面をガイドするために停止している可動後端フェンス73まで搬送される。このとき、放出爪52aは、放出ベルト52の外周上に対向する位置に配置されたもう1つの放出爪52a′が後端フェンス51近傍に達した位置で停止し、分岐ガイド板54と可動ガイド55はホームポジションへ復帰し、次の用紙に備える。

[0103]

このようにして案内され、図31に示すように、可動後端フェンス73に突き 当てられた用紙束は、束搬送ローラ下72の加圧が解除され、その後、図32に 示すように、綴じられた針部近傍が折りプレート74により略直角方向に押され 、対向する折りローラ81のニップへと導かれる。予め回転している折りローラ 81は、ニップに導かれた用紙束を加圧搬送することによって用紙束の中央に折 りを施す。

[0104]

折りを施された用紙束は図33に示すように折り増しローラユニット400まで搬送され、一旦停止する。この停止位置は折り増しローラユニット400搭載された用紙束検知センサ414からのパルス制御で決定される。こうして用紙束先端が折り増しローラユニット400の所定位置に停止すると、図33に示す位置で折り増しローラ409が駆動され、折りが強化される。折り増し動作が完了すると、折りローラ81および下排紙ローラ83により下トレイ203へ排出される。このとき、折り部通過センサ323が用紙束後端を検知すると、折りプレート74及び可動後端フェンス73はホームポジションに復帰し、束搬送ローラ下72の加圧も復帰し、次の用紙に備える。また、次のジョブが同用紙サイズ同

枚数であれば、可動後端フェンス73はその位置で待機しても良い。

[0105]

4.1 折り増しローラのイニシャル動作

折り増しローラ409の動作制御では、ホームポジションが基準となって動作させることからホームポジションに復帰させる動作が重要となる。そこで、前記図26の中綴じ製本モードのフローチャートでは、ステップS537で折り増しローラ409をホームポジションに移動させるが、このときの動作は図34のフローチャートに示すような手順で実行される。

[0106]

すなわち、ホームポジションセンサである位置検知センサ後413がオンであれば(ステップS601-YES)、その位置がホームポジションであり、折り増しローラ409はホームポジションにいることになるので、そのままリターンする。一方、オンでなければ、パルスモータ402を駆動し、折り増しローラ409を位置検知センサ後413方向に移動させ(ステップS602)、位置検知センサ413が折り増しローラ409を検知した時点(ステップS603)でパルスモータ402を停止して折り増しローラ409を停止させる(ステップS604)。

[0107]

【発明の効果】

以上のように、本発明によれば、前述のように構成されているので、横折りで 多数枚の用紙からなる用紙束を折り増しする場合に、騒音の発生を抑え、かつ、 用紙束をずらす虞がなく、効率的に折り増し処理が可能な用紙処理装置および画 像形成システムを提供することができる。

【図面の簡単な説明】

【図1】

本発明の実施形態に係る用紙後処理装置を主に示す用紙処理装置と画像形成装置とからなる画像処理システムのシステム構成を示す図である。

【図2】

本発明の実施形態に係る用紙後処理装置のシフト機構の詳細を示す要部を拡大

した斜視図である。

【図3】

本発明の実施形態に係る用紙後処理装置のシフトトレイ昇降機構の要部を拡大した斜視図である。

【図4】

本発明の実施形態に係る用紙後処理装置のシフトトレイへの排紙部の構造を示す斜視図である。

【図5】

本発明の実施形態に係る用紙後処理装置のスティプル処理トレイを用紙搬送面に垂直な方向から見た平面図である。

【図6】

本発明の実施形態に係る用紙後処理装置のスティプル処理トレイとその駆動機構を示す斜視図である。

【図7】

本発明の実施形態に係る用紙後処理装置の用紙束の放出機構を示す斜視図である。

【図8】

本発明の実施形態に係る用紙後処理装置の端面綴じステイプラを移動機構とともに示す斜視図である。

【図9】

図8における端面綴じスティプラの斜め回動機構を示す斜視図である。

【図10】

本発明の実施形態に係る用紙後処理装置の用紙束偏向機構の動作説明図で、用紙あるいは用紙束をシフトトレイに排紙するときの状態を示す。

【図11】

本発明の実施形態に係る用紙後処理装置の用紙束偏向機構の動作説明図で、図 10の状態から分岐ガイド板が放出ローラ側に回動した状態を示す。

【図12】

本発明の実施形態に係る用紙後処理装置の用紙束偏向機構の動作説明図で、図

11の状態から可動ガイドが分岐ガイド板側に回動し、中折り処理トレイ側に用紙束を偏向する経路を形成した状態を示す。

【図13】

本発明の実施形態に係る用紙後処理装置の折りプレートの移動機構の動作説明 図で、中折り動作に入る前の状態を示す。

【図14】

本発明の実施形態に係る用紙後処理装置の折りプレートの移動機構の動作説明図で、中折り後、初期位置に戻るときの状態を示す。

【図15】

本発明の実施形態に係る用紙後処理装置のスティブル処理トレイと中折り処理トレイの詳細を示す図である。

【図16】

本発明の実施形態に係る折り増しローラユニットの正面図である。

【図17】

本発明の実施形態に係る折り増しローラユニットの側面図である。

【図18】

折り増しローラの位置と移動速度との関係を示す説明図である。

【図19】

本発明の実施形態に係る用紙後処理装置の制御回路を画像形成装置とともに示すブロック図である。

【図201

本発明の実施形態に係る用紙後処理装置におけるノンスティプルモードAの処理手順を示すフローチャートである。

【図21】

本発明の実施形態に係る用紙後処理装置におけるノンスティプルモードBの処理手順を示すフローチャートである。

【図22】

本発明の実施形態に係る用紙後処理装置におけるソート、スタックモードの処理手順を示すフローチャートである。

【図23】

本発明の実施形態に係る用紙後処理装置におけるスティプルモードの処理手順 を示すフローチャートである。

【図24】

本発明の実施形態に係る用紙後処理装置における中綴じ製本モードの処理手順 を示すフローチャート (その1)である。

【図25】

本発明の実施形態に係る用紙後処理装置における中綴じ製本モードの処理手順 を示すフローチャート (その2)である。

【図26】

本発明の実施形態に係る用紙後処理装置における中綴じ製本モードの処理手順 を示すフローチャート(その3)である。

【図27】

中綴じ製本モードにおいてスティプル処理トレイにスタックされた用紙束の状態を示す動作説明図である。

【図28】

中綴じ製本モードにおいてスティプル処理トレイでスタックされ、中綴じされるときの状態を示す動作説明図である。

【図29】

中綴じ製本モードにおいてスティプル処理トレイで中綴じされた用紙束を用紙束偏向機構によって偏向させる初期状態を示す動作説明図である。

【図30】

中綴じ製本モードにおいてスティプル処理トレイで中綴じされた用紙束を用紙 束偏向機構によって偏向させ、中折り処理トレイに送り込んだときの状態を示す 動作説明図である。

【図31】

中綴じ製本モードにおいて中折り処理トレイで用紙束を中折り位置に位置させたときの状態を示す動作説明図である。

【図32】

中綴じ製本モードにおいて中折り処理トレイで中折りプレートを作動させて用 紙束の中折り動作を開始した時の状態を示す動作説明図である。

【図33】

中綴じ製本モードにおいて中折り処理トレイで中折りプレートを作動させて用 紙束の中折り動作の開始した後、折り増しローラでさらに折りを強化している状態を示す動作説明図である。

【図34】

折り増しローラのイニシャル処理の処理手順を示すフローチャートである。

【符号の説明】

- 74 折りプレート
- 81 第1の折りローラ
- 350 制御装置
- 360 CPU
- 400 折り増しローラユニット
- 401 パルスモータ
- 405 ガイド部材
- 406 撓み防止部材
- 407 移動支持部材
- 408 折り増しローラ支持部材
- 409 折り増しローラ
- 4 1 1 弹性材
- 412 位置検知センサ前
- 413 位置検知センサ後
- 414 用紙束検知センサ
- F スティプル処理トレイ
- G 中折り処理トレイ
- PD 用紙後処理装置
- PR 画像形成装置
- S1 端面綴じスティプラ

S2 中綴じスティプラ

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図7】

[図8]

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

ノンスティブルモードA

【図21】

ノンスティプルモードB

【図22】

【図23】

【図24】

【図25】

【図26】

【図27】

【図28】

【図29】

【図30】

【図31】

【図32】

【図33】

【図34】

折り増しローライニシャルフロー

【書類名】 要約書

【要約】

【課題】 横折りで多数枚の用紙からなる用紙束を折り増しする場合に、騒音の 発生を抑え、かつ、用紙束をずらす虞がなく、効率的に折り増し処理ができるよ うにする。

【解決手段】 ホームポジションから用紙束近傍までは速度V1で移動し、その後、用紙束に乗り上げる区間を速度V2で移動し、さらに用紙束の折り目を折り増しながら反対側の用紙束端面近傍までは速度V3で移動する。その後、用束束から段差を降りる一定区間を速度V4で移動し、速度V1で位置検知センサ前413まで移動する。そして、用紙束が搬送され、横折ユニット外に移動すると、折り増しローラ409は位置検知センサ後413の位置に速度V5で移動する。各速度の関係は、 $V1 \ge V2$, V4 < V3, V5 > V3となる。

【選択図】 図18

出願人履歴情報

識別番号

[000006747]

1. 変更年月日 2002年 5月17日

[変更理由] 住所変更 住 所 東京都大田区中馬込1丁目3番6号

氏 名 株式会社リコー