Física 2 - Práctico 6 Procesos en gases ideales

Instituto de Física, Facultad de Ingeniería, Universidad de la República

De ser necesario, busque en tablas las masas molares de los gases mencionados en los ejercicios

6.1. Equilibrio termodinámico

Dos recipientes diatermos A y B en contacto térmico con reservas térmicas a temperaturas $T_A=300~K$ y $T_B=400~K$ respectivamente, están interconectados mediante una válvula a través de un tubo delgado. El recipiente A contiene un gas ideal a una presión de 500~kPa y el recipiente B, con cuatro veces el volumen de A, contiene el mismo gas ideal a una presión de 100~kPa. Inicialmente la válvula de conexión se encuentra cerrada. Esta se abre lentamente hasta que se equilibran las presiones a ambos lados de dicha válvula (manteniendo las tem-

peraturas constantes dentro de cada tanque durante dicho proceso), momento en el que se cierra la válvula. ¿Cuál es la presión final en los tanques?

6.2. Expansión isotérmica

Calcule el trabajo efectuado sobre la sustancia en la expansión isotérmica cuasiestática de 2,5 g de helio a 290 K, desde un volumen de 11 m^3 hasta un volumen final de 18 m^3 . Bosqueje el proceso e indique el trabajo en un diagrama P-V.

6.3. Compresión adiabática

6.3.1.

Un gas ocupa un recinto cerrado por un pistón con un volumen inicial de 4,33 ℓ a una presión de 1,17 atm y una temperatura de 310 K. Se le comprime adiabática y cuasiestáticamente hasta un volumen de 1,06 ℓ . Suponiendo que el gas en cuestión se comporta, en el rango de temperaturas de interés, como un gas ideal con $\gamma = 1,40$, determine:

- a) La presión y temperatura finales.
- b) El trabajo efectuado sobre el gas.

6.3.2.

Un gas experimenta una compresión adiabática cuasiestática ($PV^{\gamma}=cte$) desde el estado $P_i=122~kPa,~V_i=10,7~m^3,~T_i=-23^{\circ}C$ hasta el estado $P_f=2,0~MPa,~V_f=1,997~m^3$. Halle el valor de γ para el proceso e indique cuántos grados de libertad tienen las moléculas de este gas.

6.4. Amortiguador neumático

Un sistema amortiguador consiste de un cilindro conteniendo aire (que se supondrá se com-

porta como un gas ideal), cerrado por un pistón móvil. Se desea detener un móvil de masa $m=1000\ kg$ y velocidad $v=50\ km/h$ haciendo que golpee el pistón y comprima el aire. El aire ocupa inicialmente un volumen de $10\ m^3$ y está a presión atmosférica.

Suponiendo que la energía disipada en el choque con el pistón es despreciable, que la compresión es adiabática y que es posible modelar el proceso como cuasiestático, calcular el volumen y la presión del aire en el punto de máxima compresión. Considere para el aire que γ vale 1,4.

6.5. Burbuja ascendente

Un buzo, cuya temperatura corporal es de 36 °C, expele una burbuja de aire de $19.4~cm^3$ de volumen cuando está en el fondo de un lago a una profundidad de 41.5~m, donde la temperatura es de 3.8 °C. La burbuja se eleva a la superficie, que está a una temperatura de 22.6 °C, lo suficientemente rápido como para considerar que no hay intercambio de calor entre la burbuja y su entorno.

- a) ¿Cuál es la temperatura inicial del aire en la burbuja?
- b) Halle su volumen justo antes de que alcance la superficie.
- c) Calcule el trabajo realizado por el lago sobre la burbuja en el proceso de ascenso.
- d) ¿Cuál fue la variación de la energía cinética media del aire contenido en la burbuja?

6.6. Pistón con resorte

Se tienen n moles de aire en un dispositivo pistón-cilindro, en una atmósfera a temperatura T_0 y presión P_0 . El pistón tiene una masa m_p , sección A y se encuentra unido a un resorte de constante k y longitud natural z_0 . Inicialmente (ver figura) el resorte está en su posición de equilibrio; luego se calienta el sistema hasta que el pistón alcanza una altura z_1 .

- a) Halle una relación para la presión interna, P(z), en función de la altura z a la que se encuentra el pistón.
- b) Halle el trabajo realizado por el gas, en el proceso de expandirse hasta $z_1 = 2z_0$. Dibuje el proceso en un diagrama P(V).

6.7. Diagramas P-V y T-V

Un gas que puede modelarse con la ecuación de estado de un gas ideal, se expande cuasiestáticamente desde un volumen inicial $V_i = 1,0$ m^3 a un volumen final $V_f = 2,0$ m^3 . La temperatura inicial es $T_i = 300,7$ K y la presión inicial es $P_i = 100$ kPa. En el proceso de expansión el trabajo realizado por el gas es W = 69,3 kJ. Se grafican los diagramas P(V) y T(V) del proceso. Indique el par de diagramas que corresponden al proceso descrito (ver figura al final). El coeficiente de dilatación adiabática de este gas es $\gamma = 1,4$.

Importante: las curvas en los diagramas P(V) representan procesos que son adiabáticos, isotérmicos o isobáricos, y algunas de las opciones pueden representar procesos físicamente imposibles.

Preguntas

- P1: ¿Puede sentirse un objeto "más caliente" que otro a pesar de estar a la misma temperatura?
- P2: ¿Por qué un proceso que se produce rápidamente puede aproximarse a un proceso adiabático?
- P3: Sople aire por la boca y verifique que la temperatura del aire expelido es mayor cerca de la boca que a una distancia de unos 15 cm. Explique por qué sucede esto. Considere la expansión que sufre el aire al salir, y verifique que cuanto más abre la boca, menos se nota este efecto.

