2023~2024 学年上学期高三年级 9 月联考卷

化 学

考生注意:

- 1. 本试卷分选择题和非选择题两部分。满分 100 分,考试时间 75 分钟。
- 2. 答题前,考生务必用直径 0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
- 3. 考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径 0.5 毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
- 4. 本卷命题范围: 高考范围,选择性必修3(占40%)。
- 5. 可能用到的相对原子质量: H1 C12 O16 K39 Mn 55 Zn 65 Cd 112 Sn 119
- 一、选择题(本题共 15 小题,每小题 3 分,共行 45 分。在每小题列出的四个选项中,只有一项是符合题目要求的)
- 1. 化学与生活、科技、环境密切相关,下列说法错误的是
- A. 制造化为麒麟芯片的主要材料是SiO,
- B. 氯化铵溶液可去除铜器表面的铜绿
- C. 热的纯碱溶液可用于去除餐具表面的油污
- D. 化石燃料的燃烧会引起大气中CO,含量上升

- 2. 下列化学用语或表述正确的是

C. 乙烯的球棍模型为

- D. 乙二醇的实验式为 $C_2H_6O_2$
- 3. 下列有机反应方程式书写错误的是
- A. $2CH_3CH_2OH + O_2 \xrightarrow{Cu} 2CH_3CHO + 2H_2O$
- B. $CH_2 = CH_2 + Br_2 \rightarrow CH_2BrCH_2Br$
- С. $CH_3CH_2OH + CH_3COOH \xrightarrow{\text{$\kappa\bar{\kappa}\bar{m}}} CH_3COOCH_2CH_3 + H_2O$
- D. 2CH₃CH₂OH 浓硫酸 CH₃CH₂OCH₂CH₃ + H₂O
- 4. 下列装置或原理能达到实验目的的是

A. 用装置甲苯萃取碘水中的I,

B. 用装置乙证明溴乙烷发生消去反应

C. 用装置丙分离甲苯和乙醇

- D. 用装置丁制取乙烯
- 5. Na_2O_2 可用作供氧剂,反应为 $2Na_2O_2+2CO_2$ — $2Na_2CO_3+O_2$,设 N_A 为阿伏加德罗常数的值。下列说法错误的是
- A. 22g CO_2 中含有 π 键的数目为 N_A
- B. 每生成 22.4L O_2 转移电子数目为 2 N_A
- C. 0.1 mol Na_2O_2 晶体中含离子数为 0.3 N_A
- D. $1L0.1 \text{ mol} \cdot \text{L}^{-1}$ Na_2CO_3 溶液中 CO_3^{2-} 的数目小于 $0.1 N_A$
- 6. 合成马蔺子甲素的部分路线如图所示,下列说法错误的是

A. 该反应为取代反应

B. X与Y均能与FeCl、溶液发生显色反应

C. Y的核磁共振氢谱图有 10 组峰

- D. X 比 Y 的亲水性更好
- 7. 用惰性电极电解 K_2MnO_4 溶液可得 $KMnO_4$ (装置如图所示)。

下列说法错误的是

- A. a 极为电源的正极
- B. 阴极电极反应式为2H₂O+2e⁻==H₂↑+2OH⁻
- C. 离子交换膜应采用阳离子交换膜
- D. 当电路中有 0.2 mol 电子转移时, 阴极室溶液质量增加 7.8 g
- 8. 羟甲香豆素是一种治疗胆结石的药物,部分合成路线如图所示。下列说法正确的是

A. 甲分子中的氧原子杂化方式相同

- B. 甲、乙和羟甲香豆素的分子均为手性分子
- C. 甲、乙知羟甲香豆素均能与 NaOH 溶液反应
- D. 1mol 羟甲香豆素与足量溴水反应最多消耗 2mol Br,
- 9. X、Y、Z、W 为原子序数依次增大的前四周期主族元素,四种元素中仅 X、Y 在同一周期,它们形成的一种物质的结构如图所示,其中所有原子均形成了 8 电子稳定结构。下列推断中正确的是

A. X 的氢化物常温下一定是气体

- B. X与Z组成的化合物 XZ, 为非极性分子
- C. Y 的氧化物对应的水化物的酸性一定比 Z 的弱
- D. 元素的第一电离能: X<Y<W
- 10. 金属 Ni 可活化 C_2 H_6 放出 CH_4 ,其反应历程如图所示:

下列说法正确的是

- A. 中间体 1→中间体 2 的过程决定整个历程反应速率
- B. 加入催化剂可降低反应的活化能,加快反应速率
- C. Ni 和 C₂H₆ 的总键能大于 NiCH₂ 和 CH₄ 的总键能
- D. 中间体 2→中间体 3 的过程是放热过程
- 11. 以钴渣(含 CO_2O_3 、 Fe_2O_3 等)为原料制取 Co_3O_4 的工艺流程如下:

已知:
$$K_{\rm sp} \left[\text{Co(OH)}_2 \right] = 1.6 \times 10^{-15}$$
, $K_{\rm sp} \left(\text{CoC}_2 \text{O}_4 \right) = 6.3 \times 10^{-8}$

下列说法错误的是

- A. "浸液"中主要含有的金属阳离子有 Co^{2+} 、 Fe^{2+} 、 Na^+
- B. 铁渣的主要成分是 $Fe(OH)_3$ 和 $Co(OH)_2$

- C. "沉钴"时,不用 $Na_2C_2O_4$ 溶液是为了防止生成 Co(OH), 沉淀
- D. "煅烧"时 CoC_2O_4 发生分解反应只产生 CO_2 气体
- 12. 将 6. 8g X 完全燃烧生成 3. 6g H_2O 和 8. 96L(标准状况下) CO_2 。X 的核磁共振氢谱有 4 组峰且峰面积之比 为 3:2:2:1。X 分子中只含一个苯环且苯环上只有一个取代基, 其质谱图、核磁共振氢谱与红外光谱如图所示。 下列关于 X 的说法错误的是

- A. 化合物 X 的摩尔质量为 136 g·mol⁻¹
- B. 化合物 X 分子中含有官能团的名称为醚键、羰基

C. 符合条件的 X 只有 1 种

- D. X 分子中所有的碳原子有中能在同一个平面上
- 13. 某小组进行实验:将少量 $CuSO_4$ 粉末加入盛有医用酒精的烧杯中,白色粉末变为蓝色晶体;边搅拌边向盛有少 量 $CuSO_4$ 粉末的烧杯中加水至固体完全溶解,得蓝色溶液;向蓝色溶液中滴加氨水,先有蓝色沉淀生成,再继续滴 加,沉淀溶解得深蓝色溶液,加入乙醇时,析出深蓝色晶体。下列关于颜色变化的解释错误的是

选项	颜色变化	解释
A	白色粉末溶于水变为蓝色溶液	\mathbf{Cu}^{2+} 和 $\mathbf{H}_2\mathbf{O}$ 以配位键结合形成 $\left[\mathbf{Cu}\left(\mathbf{H}_2\mathbf{O}\right)_4 ight]^{2+}$
В	蓝色溶液转化为蓝色沉淀	$Cu^{2+} + 2OH^{-} \longrightarrow Cu(OH)_{2} \downarrow$
С	蓝色沉淀转化为深蓝色溶液	$\operatorname{Cu}\left(\operatorname{OH}\right)_{2}$ 溶于氨水生成可溶的 $\left[\operatorname{Cu}\left(\operatorname{NH}_{3}\right)_{4}\right]^{2+}$
D	深蓝色溶液得深蓝色晶体	乙醇可以降低 $\left[\operatorname{Cu}\left(\operatorname{NH}_{3}\right)_{4}\right]$ SO $_{4}$ 溶解度,使其析出

14. 一种磁性材料的单晶胞结构如图所示($N_{\rm A}$ 表示阿伏加德罗常数的值),下列说法正确的是

- A. 基态锰原子的价层电子排布式为 $\left[Ar \right] 3d^5 4s^2$ B. 该磁性材料的化学式为 $SnMn_2C$
- C. 体心处碳原子的分数坐标为 $\left(\frac{1}{2}, \frac{1}{2}, 1\right)$
- D. 该晶胞的密度为 $\frac{296}{N_{\Lambda} \times a^{3} \times 10^{-30}}$ g·cm⁻³
- 15. 25℃时,向某二元弱酸 H_2X 溶液中滴加 NaOH 溶液,所得混合溶液 pH 与离子浓度变化的关系如图所示。下列

说法正确的是

A. Q 表示 pH 与
$$\lg \frac{c(HX^-)}{c(H_2X)}$$
 的变化关系

B. pH=4.8 时,溶液中
$$c(Na^+)+c(H^+)>3c(HX^-)+c(OH^-)$$

C.
$$K_h(HX^-) = 1.0 \times 10^{-8.6}$$

D. 当混合溶液呈中性时,
$$c(HX^-) > c(X^{2-})$$

二、非选择题(本题共4小题,共55分)

16. (14分)

工业上采用菱锌矿 (主要成分为 $ZnCO_3$,还有含有 $CdCO_3$ 、 $FeCO_3$ 、 $MnCO_3$ 和少量不溶于酸的杂质)制取 ZnO_3 工艺流程如下:

己知:

①相关金属离子[$c(\mathbf{M}^{n+}) = 0.1 \, \text{mol} \cdot \mathbf{L}^{-1}$]开始沉淀及完全沉淀时的 pH 如下表:

金属离子	Fe ³⁺	Fe ²⁺	Zn ²⁺	Cd ²⁺	Mn ²⁺
开始沉淀的 pH	1. 5	6. 3	6. 2	7. 4	8. 1
完全沉淀的 pH	2. 8	8. 3	8. 2	9. 4	10. 1

②弱酸性 $KMnO_4$ 溶液中能将 Mn^{2+} 氧化生成 MnO_2 。

回答下列问题:

- (2) "氧化除杂"的目的是_____。
- (3)"调 pH"时,使用 ZnO 的优点是。
- (4) "还原除镉"时,Zn 的实际用量是理论用量的 1.3 倍,若需置换出 56.0kg 镉,实际加入的 Zn 应为

(5)"沉锌"生成碱式碳酸锌 $[ZnCO_3 \cdot 2Zn(OH)_2 \cdot 2H_2O]$ 沉淀,写出加入 Na_2CO_3 溶液沉锌的化学方程

式:。形成的沉淀要用水洗,洗
涤的方法是。
17. (13 分)
己二酸在有机合成工业等方面有着重要作用,以环己醇(\bigcirc —OH, $_{M=100\mathrm{g\cdot mol^{-1}}}$, $_{\rho=0.95\mathrm{g\cdot mL^{-1}}}$)为
原料制取己二酸[$HOOC(CH_2)_4COOH$, $M = 146 g \cdot mol^{-1}$]
I. 实验原理: 3 CH+8KMnO, KOH
II. 实验步骤: 向 250mL 三颈烧瓶中加入搅拌磁子、50mL 1.0%的 KOH 溶液和 9.0g 高锰酸钾,按图 1 所示安装装置,控制滴速并维持温度在 45℃左右,共滴加环己醇 2.0mL,滴加结束时需启动加热装置加热一段时间,得到浊液
X 。趁热过滤分离出 \mathbf{MnO}_2 ,再向滤液 Y 中加入约 $\mathbf{4mL}$ 浓盐酸,使溶液呈酸性,加热浓缩使溶液体积减少至 $\mathbf{10mL}$,
经过冷却、脱色得到 1. 46g 产品。
A
(1) 图 1 中仪器 A 的名称为, 仪器 B 是冷凝管, 进出水的方向为(填"下进上
出""上进下出"),搅拌磁子的作用是
(2) "氧化"过程中,三颈烧瓶中浊液温度逐渐升高,说明该反应是 (填"吸热反应"或"放热反
应");在环己醇不同滴速下,浊液温度随滴加时间变化曲线如图 2,为减少副反应发生及安全角度考虑,应选择的
滴速为滴/min。
55 50 45 40 35 30 10 20 30 40 时间/min
(3)"氧化"后,用玻璃棒蘸取一滴浊液 X 点在滤纸上,在黑色圆点周围出现紫色环。该现象说明
为
过程中会观察到的现象是。
(4) 环己醇的转化率为(保留 4 位有效数字)。

18. (13分)

甲醇和乙醇是可再生能源,具有广泛的发展前景。回答下列问题:

(1) C₂H₅OH 催化氧化可制得 H₂。主要反应为:

反应 I:
$$2C_2H_5OH(g)+3O_2(g)=4CO_2(g)+6H_2(g)$$
 $\Delta H_1 = -552.0 \text{ kJ} \cdot \text{mol}^{-1}$;

反应 II:
$$2C_2H_5OH(g)+O_2(g)$$
— $4CO(g)+6H_2(g)$ $\Delta H_2=+28.2 \text{ kJ} \cdot \text{mol}^{-1}$ 。

还可能发生下列副反应:

反应III:
$$CO_2(g) + 4H_2(g) \rightleftharpoons CH_4(g) + 2H_2O(g)$$
 $\Delta H_3 = -164.8 \text{ kJ} \cdot \text{mol}^{-1}$;

反应IV:
$$CH_4(g) \rightleftharpoons C(s) + 2H_2(g)$$
 $\Delta H_4 = +74.8 \text{ kJ} \cdot \text{mol}^{-1}$;

反应 V:
$$CO(g) + H_2(g) \rightleftharpoons C(s) + H_2O(g)$$
 $\Delta H_5 = -114.8 \text{ kJ} \cdot \text{mol}^{-1}$ 。

研究发现,在实验条件下,乙醇的转化率均接近 100%。 1×10^5 Pa 下,氧醇比为 0.6 时,部分气体产物(H_2 、CO、

 CO_2 和 CH_4)的平衡分压 $p[p(H_2) = \frac{n(H_2)}{n_{ik}($ 气体 $)} \times p_{ik}]$ 随温度的变化如图所示(已知:用气体物质的分压替换浓

度计算得到的平衡常数称为分压平衡常数 K_n)。

- ①反应 $2CO(g) + O_2(g) = 2CO_2(g)$ 的 $\Delta H = _____$ 。
- ②图中_____(填"曲线1"或"曲线2")表示CO的平衡分压随温度的变化。

1000K 开始继续升高温度,固体催化剂的活性先增强后减弱的原因是_____

(2) CO_2 和 H_2 合成甲醇。反应为 $CO_2(g)+3H_2(g)$ \Longrightarrow $CH_3OH(g)+H_2O(g)$ $\Delta H_1=-49.4$ kJ·mol $^{-1}$ 。 在恒温恒压条件下, CO_2 和 H_2 按体积比 1:3 分别在普通反应器(A)和分子筛膜催化反应器(B)中反应,测得相关数据如下表。

	1. 8MPa 260℃			
反应器	CO ₂ 平衡转化率	甲醇的选择性	达到平衡时间是(s)	

普通反应器(A)	25. 0%	80.0%	10. 0
分子筛膜催化反应器 (B)	a>25.0%	100.0%	8. 0

己知:

i. 分子筛膜催化反应器 (B) 具有催化作用、分离出部分水蒸气的双重功能;

ii .
$$CH_3OH$$
 的选择性 = $\frac{n(CH_3OH)_{\text{生成}}}{c(CO_2)_{\text{消耗}}} \times 100\%$ 。

①在普通反应器(A)中,下列能作为上述反应达到平衡状态的判据是____(填字母)。

A. 气体压强不再改变

B. 气体的密度不再改变

C. $v_{\mathbb{H}}(CO_2) = 3v_{\mathbb{W}}(H_2)$

D. 各物质浓度比不再改变

②在反应器(B)中, CO_2 的平衡转化率明显高于反应器(A),原因可能是_____

19. (15分)

阿佐塞米(化合物 L)是一种可用于治疗心脏、肝脏和肾脏病引起的水肿的药物。L的一种合成路线如下:

已知: $R-COOH \xrightarrow{SOCl_2} R-COCl \xrightarrow{NH_3 \cdot H_2O} R-CONH_2$ 。

回答下列问题:

- (1) A 分子中 σ 键的数目为______,物质 B 应选择_____。
- (2) C 的一种同分异构体同时满足下列条件,写出该同分异构体的结构简式:。
- ①含有苯环, 且苯环上只有 2 个取代基;
- ②与 C 具有相同的官能团;
- ③核磁共振氢谱显示3组峰,且峰面积比为1:1:1。
- (3) D 中含氧官能团名称为_____, D→E 的反应类型为_____。
- (4) H 的结构简式为______; I+J→K 的化学方程式为_____。