1.
$$(a+b)^2 = a^2 + 2ab + b^2$$
; $a^2 + b^2 = (a+b)^2 - 2ab$

2.
$$(a - b)^2 = a^2 - 2ab + b^2$$
; $a^2 + b^2 = (a - b)^2 + 2ab$

3.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$$

4.
$$(a+b)^3 = a^3 + b^3 + 3ab(a+b)$$
; $a^3 + b^3 = (a+b)^3 - 3ab(a+b)$

5.
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$
; $a^3 - b^3 = (a-b)^3 + 3ab(a-b)$

6.
$$a^2 - b^2 = (a + b)(a - b)$$

7.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

8.
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

9.
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \cdots + b^{n-1})$$

10.
$$a^n = a.a.a...n$$
 times

11.
$$a^m.a^n = a^{m-n}$$

11.
$$\frac{a^m}{a^n} = a^{m-n}$$
 if $m > n$
-1 if $m - n$
= $\frac{1}{a^{n-m}}$ if $m < n, a \in R, a \neq 0$
13. $(a^m)^n = a^{mn} = (a^n)^m$

13.
$$(u^m)^n = u^{mn} = (u^n)^m$$

14.
$$(ab)^n = a^n.b^n$$

15.
$$\left(\frac{a}{L}\right)^n = \frac{a^n}{L^n}$$

16.
$$a^0 = 1$$
 where $a \in R$, $a \neq 0$

14.
$$(nb)^n = a^n, b^n$$

15. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
16. $a^0 = 1$ where $a \in R, a \neq 0$
17. $a^{-n} = \frac{1}{a^n}, a^n = \frac{1}{a^{-n}}$
18. $a^{p/n} = \sqrt[n]{a^p}$

18.
$$a^{p/q} = \sqrt[q]{a^p}$$

19. If
$$a^m = a^n$$
 and $a \neq \pm 1, a \neq 0$ then $m = n$

20. If
$$a^n = b^n$$
 where $n \neq 0$, then $a = \pm b$

21. If
$$\sqrt{x}$$
, \sqrt{y} are quadratic surds and if $a + \sqrt{x} = \sqrt{y}$, then $a = 0$ and $x = y$

22. If
$$\sqrt{x}$$
, \sqrt{y} are quadratic surds and if $a + \sqrt{x} = b + \sqrt{y}$ then $a = b$ and $x = y$

23. If
$$a, m, n$$
 are positive real numbers and $a \neq 1$, then $\log_a mn = \log_a m + \log_a n$

24. If
$$a, m, n$$
 are positive real numbers, $a \neq 1$, then $\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$

25. If a and m are positive real numbers,
$$a \neq 1$$
 then $\log_a m^{n} = n \log_a m$

26. If
$$a, b$$
 and k are positive real numbers, $b \neq 1, k \neq 1$, then $\log_b a = \frac{\log_k a}{\log_k b}$

27.
$$\log_b a = \frac{1}{\log_a b}$$
 where a, b are positive real numbers, $a \neq 1, b \neq 1$

28. if
$$n, m, n$$
 are positive real numbers, $a \neq 1$ and if $\log_n m = \log_n n$, then $m = n$