

PROPOSAL PENGAJUAN TUGAS AKHIR PERANCANGAN DAN REALISASI SISTEM WI-FI SHARING TERDESENTRALISASI MENGGUNAKAN BLOCKCHAIN

BIDANG KEGIATAN: TUGAS AKHIR PROGRAM STUDI D4 TELEKOMUNIKASI

Diusulkan oleh:

Muhamad Ismail 151344019 / Angkatan 2015

POLITEKNIK NEGERI BANDUNG BANDUNG

2019

PENGESAHAN PROPOSAL TUGAS AKHIR

1. Judul Kegiatan : Perancangan dan Realisasi

Sistem Wi-Fi Sharing Terdesentralisasi

Menggunakan Blockchain

2. Bidang Kegiatan : Tugas Akhir Program Studi

D4 Teknik Telekomunikasi

3. Pengusul

a. Nama Lengkap : Muhamad Ismail

b. NIM : 151344019 c. Jurusan : Teknik Elektro

d. Perguruan Tinggi : Politeknik Negeri Bandung

e. Alamat Rumah dan No. Tel./HP: Komp. Bumi Pakusarakan D4/13, RT02

RW19, Kel. Tanimulya, Kec. Ngamprah, Kab. Bandung Barat 40552

/+6285871288400

f. Email : mail.muhismail@gmail.com

4. Dosen Pendamping

a. Nama Lengkap dan Gelar : Mohammad Farid Susanto, ST., M.Eng

b. NIDN/NIDK : 0012016004

c. Alamat Rumah dan No. Tel./HP: Jl. Mesin No. 40 Perumahan Polban

Bandung

5. Biaya Kegiatan Total : Rp2.722.000

6. Jangka Waktu Pelaksanaan : 5 (lima) bulan

Bandung, 31 Januari 2019

Dosen Pendamping

(Mohammad Farid Susanto, ST., M.Eng.)

NIDN. 0012016004

(Muhamad Ismail)

Pengusul,

NIM. 151344019

DAFTAR ISI

PENGE	SAHAN	PROPOSAL TUGAS AKHIRi
DAFTA	R ISI	ii
BAB 1 l	PENDAH	IULUAN
1.1.	Latar Be	elakang Masalah1
1.2.	Perumus	san Masalah2
1.3.	Tujuan	2
BAB 2	ΓINJAUA	AN PUSTAKA
BAB 3	ГАНАР І	PELAKSANAAN5
3.1.	Peranca	ngan5
3.2.	Impleme	entasi5
3.3.	Pengujia	an6
3.4.	Analisis	6
BAB 4 l	BIAYA D	OAN JADWAL KEGIATAN7
4.1.	Anggara	ın Biaya7
4.2.	Jadwal I	Kegiatan
DAFTA	R PUSTA	AKA9
LAMPI	RAN-LA	MPIRAN 10
Lamp	oiran 1.	Biodata Pengusul dan Dosen Pendamping 10
Lamp	oiran 2.	Justifikasi Anggaran Kegiatan
Lamp	oiran 3.	Surat Pernyataan Pelaksana
Lamp	oiran 4.	Gambaran Teknologi yang Hendak Diterapkembangkan 16

BAB 1 PENDAHULUAN

1.1. Latar Belakang Masalah

Kebutuhan akan akses internet semakin bertambah dari waktu ke waktu. Perubahan gaya hidup masyarakat dan juga kemudahan serta kepraktisan yang ditawarkan oleh layanan berbasis internet turut mendorong pertumbuhan penggunaan internet oleh masyarakat. Kebutuhan yang semakin meningkat ini tentunya harus diimbangi dengan ketersediaan layanan internet maupun kualitas layanan internet itu sendiri. Ketidakseimbangan ini akan menyebabkan sebagian masyarakat tidak mendapatkan akses internet atau buruknya kualitas akses internet.

Berdasarkan data pada Juni 2018, sekitar 55.1% dari jumlah penduduk di dunia telah memiliki akses internet (Internet World Stats, 2018). Di Indonesia sendiri, pada Desember 2017 penetrasi pengguna internet hanya 54.7% saja dari total penduduknya (Asosiasi Penyelenggara Internet Indonesia, 2017). Artinya, ada sekitar 118 juta penduduk Indonesia belum mendapatkan akses internet. Salah satu penyebabnya adalah minimnya infrastruktur telekomunikasi. Area yang dianggap tidak menguntungkan dan tingginya pengeluaran yang diperlukan untuk mengimplementasikan ataupun perawatan infrastruktur tersebut membuat penyedia layanan internet tidak tertarik untuk memasang infrastruktur di area tersebut.

Keterbatasan layanan internet di era dimana kebutuhan internet semakin tinggi ini dapat berdampak pada kondisi ekonomi maupun sosial masyarakat. Mereka akan kehilangan kesempatan yang menguntungkan yang ditawarkan oleh internet. Misalnya saja, kegiatan jual-beli yang dapat dilakukan dengan mudah melaui internet, ataupun pelayanan masyarakat melalui internet yang saat ini gencar dilakukan oleh pemerintah.

Salah satu cara untuk mengatasi masalah di atas adalah dengan membuat suatu jaringan baru pada daerah dengan layanan internet yang terbatas. Jaringan baru ini terhubung ke jaringan dengan layanan internet yang telah tersedia sebelumnya, sehingga cakupan layanan akan semakin bertambah. Jaringan baru ini dapat dibuat dengan membuat sebuah *access point* dan menghubungkan *end-user* menggunakan teknologi WiFi. Cara ini juga secara tidak langsung akan menambal area dengan kualitas layanan internet yang rendah.

Tentunya jaringan ini tidak harus dibuat oleh ISP, melainkan dapat dibuat oleh siapapun. Dengan begitu, ISP tidak perlu menambah infrastrukturnya dan menurunkan biaya operasionalnya. Pembuat *access point* yang selanjutnya disebut *provider*, dapat membagikan kelebihan *bandwidth*-nya untuk digunakan oleh orang lain. Kemudian untuk mendorong atau memotivasi orang-orang untuk membagikan layanan internetnya, *provider* diberikan sebuah insentif yang juga merupakan suatu

imbalan atas kontribusinya pada jaringan tersebut. Dengan sistem ini, diharapkan munculnya banyak *provider-provider* yang akan memberikan layanan internet di berbagai tempat.

1.2. Perumusan Masalah

- 1. Bagaimana cara untuk memberikan layanan internet ke area yang belum medapatkan layanan internet?
- 2. Bagaimana cara membagikan layanan internet menggunakan WiFi?
- 3. Metode apa yang dapat digunakan agar semua orang/pihak dapat berkontribusi untuk membagikan layanan internet melalui WiFi?
- 4. Model insentif seperti apa yang dapat diberikan kepada pemberi layanan internet yang membagikannya melalui WiFi?

1.3. Tujuan

- 1. Membuat dan mengimplementasikan sistem pembagi layanan internet secara terbuka menggunakan WiFi.
- 2. Membuat dan mengimplementasikan sistem *Wi-Fi sharing* yang aman bagi pengguna dan *provider*.
- 3. Membuat dan mengimplementasikan sistem pemberian insentif untuk pembagi layanan internet menggunakan WiFi.

BAB 2 TINJAUAN PUSTAKA

Penggunaan WiFi untuk membagikan akses internet sudah sangat sering dilakukan dengan membuat sebuah access point atau hot-spot. Biasanya fasilitas access point ini banyak dijumpai di tempat-tempat umum seperti taman, sekolah, pusat perbelanjaan atau bahkan di tempat makan. Access point ini biasanya dapat digunakan tanpa menggunakan password dan beberapa access point akan meminta password untuk dapat digunakan. Diantara access point yang terbuka (tanpa password) tersebut ada yang akan meminta untuk melakukan login. Hanya pengguna tertentu saja yang dapat menggunakan access point ini. Beberapa perusahaan telekomunikasi membuat jaringan ini untuk pelanggan yang ingin mendapatkan akses internet cepat pada perangkat mobile.

Salah satu perusahaan yang menggunakan teknologi *sharing* WiFi dengan jumlah komunitas yang besar adalah FON. Anggota yang tergabung dalam jaringan FON ini dapat membagikan sebagian dari *bandwidth*-nya untuk digunakan oleh orang lain, dan memungkinkan anggota untuk menggunakan *hotspot* milik anggota lain sebagai imbalannya (FON, 2006). Hanya saja, pada sistem tersebut masih terdapat beberapa masalah keamanan, seperti *untrusted host* dimana adanya kemungkinan *eavesdropping* data pengguna menggunakan jaringan *host* yang tidak terenkripsi dan ancaman bagi privasi pengguna (Elsner et al., 2010). Sistem *Wi-Fi sharing* tersentralisasi ini akan menimbulkan ketergantungan komunitas terhadap operator dari komunitas itu sendiri.

Efstathiou dkk. (2010) juga membuat sistem Wi-Fi *sharing* yang sama seperti FON dimana Wi-Fi *sharing* dilakukan atas dasar saling menguntungkan, hanya saja dilakukan secara terdesentralisasi. Sistem ini tidak memerlukan satu otoritas untuk mengatur jaringan. Layanan yang didapat oleh tiap anggotanya akan dibedakan berdasarkan kontribusinya. Sistem ini mengasumsikan pengguna melakukan *tunneling* trafiknya ke internet *gateway* yang terpercaya untuk mencegah *eavesdroping*.

Salah satu sistem Wi-Fi sharing dengan struktur terdesentralisasi lainnya adalah radioActive (Elsner et al., 2010). Pada sistem ini digunakan remote station yang berfungsi sebagai relay dari trafik pengguna yang disalurkan oleh host. Remote station ini merupakan perantara yang dipercaya oleh pengguna untuk meneruskan trafiknya ke internet. Trafik ini sediri terenkripsi antara pengguna dan remote station untuk mengamankan data pengguna dari host.

World Wi-Fi juga melakukan sistem *Wi-Fi sharing* secara terdesentralisasi. Setiap orang dapat menggunakan layanan internet secara gratis yang diberikan oleh pemilik *router*. Pengguna yang terhubung ke *access point* ini akan melihat iklan

yang ditargetkan untuk pengguna sebelum dapat menggunakan layanan internet. Dari model bisnis berbasis iklan ini, pemilik *router* mendapatkan bayarannya sebagai insentif yang diberikan oleh *advertiser* (World Wi-Fi, 2018). Sistem ini tentunya berpotensi melanggar privasi pengguna dengan memanfaatkan data pengguna untuk digunakan oleh *advertiser*.

Yu dkk. (2017) juga membuat sebuah sistem Wi-Fi *sharing* yang menggunakan pendapatan dari iklan sebagai sumber insentif. Bedanya, terdapat 2 jenis akses yang diberikan kepada pengguna, yaitu akses Wi-Fi premium dimana pengguna membayar penyedia Wi-Fi untuk mendapatkan akses internet dan akses Wi-Fi dengan iklan sponsor dimana pengguna perlu melihat iklan untuk mendapatkan akses internet. Sebuah platform iklan dibuat untuk menghubungkan antara pemilik Wi-Fi dan pengiklan.

Berdasarkan tinjauan-tinjauan diatas, perancangan dan realisasi sistem Wi-Fi *sharing* terdesentralisasi menggunakan blockchain diusulkan dengan mempertimbangkan sistem insentif yang diberikan kepada penyedia Wi-Fi, keamanan koneksi untuk pengguna dan penyedia Wi-Fi, dan privasi untuk pengguna Wi-Fi.

Tabel 1. Perbandingan Sistem Wi-Fi Sharing

	A	В	C	D
FON (FON, 2006)				✓
World Wi-Fi (World Wi-Fi, 2018)	✓			✓
radioActive (Elsner et al., 2010)	✓	✓	✓	
Controlled Wi-Fi Sharing in Cities: A Decentralized Approach Relying on Indirect Reciprocity (Efstathiou et al., 2010)	✓			✓
Public Wi-Fi Monetization via Advertising (Yu et al., 2017)				√
Perancangan dan Realisasi Sistem Wi-Fi Sharing Terdesentralisasi Menggunakan Blockchain	✓	✓	✓	✓

Keterangan:

A = Sistem Terdesentralisasi C = Privasi B = Keamanan D = Insentif

BAB 3 TAHAP PELAKSANAAN

3.1. Perancangan

Pada tahap ini dirancang konsep kerja untuk sistem memberikan layanan internet melalui WiFi. Apa saja tahap yang harus dilakukan oleh pengguna sebelum dapat menggunakan sistem ini dan bagaimana sistem pemberian insentif kepada pembagi layanan internet diberikan.

Secara garis besar, pengguna atau *client* yang akan menggunakan sistem ini akan mengaktifkan WiFi-nya dan membuka aplikasi pada perangkatnya. Pada aplikasi tersebut *client* dapat melihat jumlah *token* yang dimilikinya. *Token* ini berfungsi layaknya tiket yang digunakan oleh pengguna untuk dapat menggunakan sistem ini. *Token* ini juga yang akan membatasi jumlah data yang dapat digunakan atau kuota *client*, misalnya 1 *token*/1 MB. Pada aplikasi tersebut kemudian *client* dapat melihat *access point* yang menggunakan sistem ini yang tersedia di area tersebut.

Setelah *client* terhubung ke *access point*, *client* akan memberikan *token*-nya kepada *provider* (penyedia/pemilik *access point*) untuk dapat menggunakan layanan internet. Apabila transaksi ini berhasil *client* dapat menggunakan layanan internet dengan batas yang telah ditentukan berdasarkan *token* yang dibayarkannya itu. *Client* dapat menambah kuota internetnya setelah mencapai batas kuota atau dapat berhenti. Saat *client* ini berhenti, *provider* kemudian akan mengklaim *token* yang telah dibayarkan oleh *client*.

3.2. Implementasi

Sistem ini akan mengimplementasikan *software* pada *router* untuk *provider* dan aplikasi pada *client* (komputer atau smartphone). Untuk proses transaksi *token*, digunakan platform *Ethereum* dengan memanfaatkan *smart contract* yang dimilikinya.

Software yang untuk provider ini dapat diimplementasikan langsung pada router atau pada komputer yang terhubung dengan router ini. Untuk implementasi langsung, software akan diunggah kedalam router untuk kemudian digunakan oleh router untuk menggunakan sistem ini. Sedangkan untuk implementasi pada komputer yang terhubung dengan router, komputer akan diposisikan sebagai perantara. Aliran data dari client-router-internet atau sebaliknya akan terlebih dahulu diarahkan ke komputer dengan software yang fungsinya sama dengan software pada router untuk dilakukan proses pengolan data.

3.3. Pengujian

Beberapa hal yang akan diuji pada sistem ini, yaitu aplikasi *client* pada *smartphone* atau komputer desktop/laptop dan *software* pada *router* untuk *provider*. Selain itu juga diuji proses transaksi dan penggunaan *token* menggunakan platform *Ethereum*.

Parameter yang diuji pada *software* yang untuk *provider* ini adalah keberhasilannya untuk memberikan layanan internet kepada *client* dan keberhasilannya dalam melakukan transaksi *token* dengan *client*. Sedangkan parameter yang diuji pada aplikasi *client* adalah keberhasilannya dalam terhubung dengan *provider*, menampilkan *provider* yang tersedia, melakukan koneksi internet setelah terhubung dan proses transaksi berhasil, menampilkan jumlah *token* yang dimiliki, dan dalam melakukan transaksi *token* dengan *provider*.

3.4. Analisis

Pada tahap ini akan dianalisis kualitas layanan internet yang diberikan kepada *client*, seperti kecepatan transfer data atau *throughput* data yang diberikan oleh *router* kepada setiap *client*, kapasitas atau jumlah *client* yang dimiliki oleh *router* milik *provider* dan optimasi layanan internet yang diberikan oleh *provider* kepada *client*.

BAB 4 BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

Tabel 2. Ringkasan Anggaran Biaya

No.	Jenis Pengeluaran	Biaya (Rp)
1	Peralatan Penunjang	1.170.000
2	Bahan Habis Pakai	324.000
3	Perjalanan	228.000
4	Lain-lain	1.000.000
	Jumlah	2.722.000

4.2. Jadwal Kegiatan

Tabel 3. Jadwal Kegiatan

No.	Jenis Kegiatan		Bulan Ke-				
NO.		1	2	3	4	5	
1	Perancangan						
	Perancangan Sistem						
	Pemecahan Sistem						
	Perancangan Software						
2	Persiapan						
	Studi Dokumentasi dan Spesifikasi						
	Studi Pasar						
	Pembelian Alat dan Komponen						
3	Realisasi/Implementasi						
	Pembuatan Software untuk sisi Provider						
	Pembuatan Aplikasi untuk Sisi Client						
	Pengimplementasian Proses Transaksi						
4	Pengujian						
	Pengujian Software untuk sisi Provider						
	Pengujian Aplikasi untuk Sisi Client						
	Pengujian Sistem Secara Menyeluruh						

	Evaluasi			
5	Pembuatan Laporan			

DAFTAR PUSTAKA

- Asosiasi Penyelenggara Internet Indonesia, 2017. Penetrasi & Perilaku Pengguna Internet Indonesia 2017.
- Efstathiou, E.C., Frangoudis, P.A., Polyzos, G.C., 2010. Controlled Wi-Fi sharing in cities: A decentralized approach relying on indirect reciprocity. IEEE Trans. Mob. Comput. https://doi.org/10.1109/TMC.2010.79
- Elsner, T., Nguyen, N.T., Scheuermann, B., 2010. Radioactive WiFi sharing for autonomous peers, in: 2010 IEEE 10th International Conference on Peer-to-Peer Computing, P2P 2010 Proceedings. https://doi.org/10.1109/P2P.2010.5569979
- FON, 2006. FON [WWW Document]. URL https://fon.com/ (diakses 1.29.19).
- Internet World Stats, 2018. World Internet Users and 2018 Population Stats [WWW Document]. URL https://www.internetworldstats.com/stats.htm (diakses 1.26.19).
- World Wi-Fi, 2018. World Wi-Fi [WWW Document]. URL https://en.worldwifi.io/
- Yu, H., Cheung, M.H., Gao, L., Huang, J., 2017. Public Wi-Fi monetization via advertising. IEEE/ACM Trans. Netw. https://doi.org/10.1109/TNET.2017.2675944

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Pengusul dan Dosen Pendamping

Biodata Pengusul

A. Identitas Diri

1	Nama Lengkap	Muhamad Ismail	
2	Jenis Kelamin	Laki-laki	
3	Program Studi	D4 Teknik Telekomunikasi	
4	NIM	151344019	
5	Tempat dan Tanggal Lahir	Bandung, 4 Februari 1997	
6	E-mail	mail.muhismail@gmail.com	
7	Nomor Telepon/HP	085871288400	

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam kegiatan	Waktu dan Tempat
1	Program Pengenalan Kampus	Peserta	2015 di Politeknik Negeri Bandung
2	ESQ Leadership Training	Peserta	2015 di Politeknik Negeri Bandung
3	Bela Negara	Peserta	2015 di Pusdikhub Cimahi
4	Kunjungan Industri 1.0	Peserta	2016 di PT. Indosat
5	Kunjungan Industri 2.0	Peserta	2017 di PT. SKKL Indosat

C. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Proposal Tugas Akhir Program D4 Teknik Telekomunikasi.

Bandung, 31 Januari 2019 Pengusul,

Muhamad Ismail

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap	Mohammad Farid Susanto, ST., M.Eng.	
2	Jenis Kelamin	Laki – laki	
3	Program Studi	Teknik Telekomunikasi	
4	NIDN	0012016004	
5	Tempat dan Tanggal Lahir	Lahir Banyuwangi, 12 januari 1960	
6	E-mail	mfarids@polban.ac.id	
7	Nomor Telepon/HP	08122145120 / 085286777555	

B. Riwayat Pendidikan

	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	Itenas Bandung	UGM Yogyakarta	
Jurusan	Teknik Elektro	Teknik Elektro	
Tahun Masuk-Lulus	1990-1995	2009-2011	

C. Rekam Jejak Tri/Dharma

C.1. Pendidikan/Pengajaran

No.	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Sistem komunikasi serat optik (Teori /Praktek)	wajib	3
2	Jaringan komunikasi data (Teori /Praktek)	wajib	3
3	Teknik Penyambungan (Teori /Praktek)	wajib	3

C.2. Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1	Perancangan Dan Implementasi Jaringan Komunikasi Menggunakan Radio Internet Protokol Point to Point	MANDIRI POLBAN	2016
2	Perancangan Dan Implementasi Sistem Salam Sapa Untuk Pengunjung Pada Minimarket	MANDIRI POLBAN	2018

C.3. Pengabdian Kepada Masyarakat

No.	Jenis Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Aplikasi Intercom via LAN untuk informasi siskamling dan basis data di lingkungan RT/RW	DIPA POLBAN	2014

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Bidang Karsa Cipta.

Bandung, 31 Januari 2019 Pendamping,

Mohammad Farid Susanto, ST., M.Eng.

Lampiran 2. Justifikasi Anggaran Kegiatan

	T	T			
1. Peralatan Penunjang	Volume	Harga Satuan (Rp)	Nilai (Rp)		
- Raspberry pi 3	1 buah	650.000	650.000		
- Router	1 buah	300.000	300.000		
- Kabel RJ45	10 meter	15.000	150.000		
- Adaptor 5V 2.5A	1 buah	70.000	70.000		
	•	SUB TOTAL	1.170.000		
2. Bahan Habis Pakai	Volume	Harga Satuan (Rp)	Nilai (Rp)		
- Konektor RJ45	1 set	24.000	24.000		
- Kertas	1 rim	50.000	50.000		
- Tinta Printer	1 set	250.000	250.000		
		SUB TOTAL	324.000		
3. Pejalanan	Volume	Harga Satuan (Rp)	Nilai (Rp)		
- Bensin untuk keperluan pembelian barang dan uji coba alat	20 liter	10.400	208.000		
- Parkir	10 kali	2.000	20.000		
	l	SUB TOTAL	228.000		
4. Lain-Lain	Volume	Harga Satuan (Rp)	Nilai (Rp)		
- Publikasi jurnal	1 kali	200.000	200.000		
- Biaya berlangganan internet (bulanan)	4 kali	200.000	800.000		
SUB TOTAL 1.00			1.000.000		
TOTAL 2.722					
(Terbilang dua juta lima ratus dua puluh dua ribu rupiah)					

Lampiran 3. Surat Pernyataan Pelaksana

SURAT PERNYATAAN PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Muhamad Ismail

NIM

: 151344019

Program Studi

: D4 – Teknik Telekomunikasi

Jurusan

: Teknik Elektro

Dengan ini menyatakan bahwa proposal Pengajuan Tugas Akhir Program Studi D4 Teknik Telekomunikasi saya dengan judul: "Perancangan dan Realisasi Sistem Wi-Fi *Sharing* Terdesentralisasi Menggunakan *Blockchain*" yang diusulkan untuk Tugas Akhir Program ini bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 31 Januari 2019 Pengusul,

Muhamad Ismail

Lampiran 4. Gambaran Teknologi yang Hendak Diterapkembangkan

1. Diagram Sistem

Gambar 1. Diagram Sistem Wi-Fi Sharing

Sistem ini menggunakan *router* sebagai komponen utama untuk membagikan koneksi internetnya menggunakan Wi-Fi. *Router* akan terhubung ke internet sebagai *gateway*-nya. Pada perangkat *router* tersebut terpasang *software* yang akan mengatur pengoperasian sistem Wi-Fi *sharing*. Sedangkan pada *smartphone*, terdapat juga aplikasi yang digunakan untuk menghubungkan *smartphone* dengan *router* yang menggunakan sistem ini. Selain itu, aplikasi ini juga dapat digunakan untuk melihat jumlah *token*, membeli *token*, atau melakukan transaksi *token*.

Proses yang dilakukan oleh sistem ini ditunjukkan oleh Gambar 2. Pada gambar tersebut proses penggunaan Wi-Fi *sharing* ini secara umum terbagi menjadi tiga tahap. Tahap pertama adalah permintaan koneksi dimana *client* akan melakukan permintaan sambungan kepada penyedia layanan internet (*router*). *Router* kemudian akan menyetujui permintaan ini, sehingga *client* dan *router* akan tersambung. Selanjutnya, *client* akan mengirimkan *token* ke blok transaksi dan layanan internet dapat digunakan.

Gambar 2. Diagram Proses Penggunaan Wi-Fi Sharing

Token ini memiliki batas penggunaan berdasarkan jumlah data yang telah digunakan oleh *client*. Setelah habis, *router* atau *provider* akan mengklaim *token*. Setelah itu, *client* dapat memutuskan untuk menambah jumlah data dengan membayar *token* kembali atau berhenti menggunakannya.