

IIILIOGUCLIOI

Main result Bibliography Preliminaries

Generalizations of Roth's criteria for solvability of matrix equations

*Tetiana Klymchuk*Universitat Politècnica de Catalunya

XXV CEDYA / XV CMA June 26–30, 2017

Semilinear mappings

Introduction

Main result Bibliography Preliminaries

A mapping $\mathcal A$ from a complex vector space $\mathcal U$ to a complex vector space $\mathcal V$ is semilinear if

$$A(u+u') = Au + Au', \qquad A(\alpha u) = \bar{\alpha}Au$$

for all $u, u' \in U$ and $\alpha \in \mathbb{C}$.

We write

- $A: U \longrightarrow V$ if A is a linear mapping, and
- $A: U \longrightarrow V$ if A is a semilinear mapping.

Cycles of linear and semilinear mappings

IIIIOduction

Main result
Bibliography
Preliminaries

We give a canonical form of matrices of a cycle of linear and semilinear mappings

$$V_1 \stackrel{A_1}{\underbrace{\hspace{1cm}}} V_2 \stackrel{A_2}{\underbrace{\hspace{1cm}}} \dots \stackrel{A_{t-2}}{\underbrace{\hspace{1cm}}} V_{t-1} \stackrel{A_{t-1}}{\underbrace{\hspace{1cm}}} V_t$$

in which each line is

- \bullet a full arrow \longrightarrow , \longleftarrow , or
- a dashed arrow --→, ←--.

My talk is based on:

roduction

Main result Bibliography Preliminaries

- T. Klimchuk, D. Kovalenko, T. Rybalkina, V.V. Sergeichuk, Tame systems of linear and semilinear mappings), Contemp. Math. 658 (2016) 103-114.
- D. Duarte de Oliveira, V. Futorny, T. Klimchuk, D. Kovalenko, V.V. Sergeichuk, *Cycles of linear and semilinear mappings*), Linear Algebra Appl. 438 (2013) 3442-3453.
- D. Duarte de Oliveira, R.A. Horn, T. Klimchuk, V.V. Sergeichuk, Remarks on the classification of a pair of commuting semilinear operators, Linear Algebra Appl. 436 (2012) 3362-3372.

Empty matrices

Introduction

Main result Bibliography Preliminaries

- $\forall n = 0, 1, 2, ...$ $\exists !$ matrices of sizes $0 \times n$ and $n \times 0$, which correspond to linear mappings $\mathbb{C}^n \to 0$ and $0 \to \mathbb{C}^n$.
- They are denoted by 0_{0n} and 0_{n0} and are considered as zero matrices
- For every $p \times q$ matrix M_{pq} :

$$M_{pq} \oplus 0_{n0} = \begin{bmatrix} M_{pq} & 0 \\ 0 & 0_{n0} \end{bmatrix} = \begin{bmatrix} M_{pq} & 0_{p0} \\ 0_{nq} & 0_{n0} \end{bmatrix} = \begin{bmatrix} M_{pq} \\ 0_{nq} \end{bmatrix}$$

$$M_{pq} \oplus 0_{0n} = \begin{bmatrix} M_{pq} & 0 \\ 0 & 0_{0n} \end{bmatrix} = \begin{bmatrix} M_{pq} & 0_{pn} \\ 0_{0q} & 0_{0n} \end{bmatrix} = \begin{bmatrix} M_{pq} & 0_{pn} \end{bmatrix}$$

Introductio

Main result Bibliography Preliminaries

Soooooo baaad without empty matrices

$$\forall A \exists \text{ nonsingular } R, S \colon RAS = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$$

Observation

• Each matrix is equivalent to a direct sum of indecomposable matrices of the form

$$[1], [10], [100], \ldots, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ldots$$

• This direct sum is not uniquely determined:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

Goood with empty matrices

Main result Bibliography Preliminaries

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \oplus 0_{01} \oplus 0_{01} \oplus 0_{10}$$
$$= \begin{bmatrix} 1 \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \oplus 0_{01} \oplus 0_{01} \oplus 0_{10}$$

A la Jordan Theorem

- Each matrix is equivalent to a direct sum of indecomposable matrices of the form [1], 0₀₁, 0₁₀
- This direct sum is uniquely determined, up to permutation of summands.