

Chapter 9 – Satellite-based navigation

9 Satellite-based navigation / Contents

- 9.1 Introduction
- 9.2 Earlier systems
- 9.3 GPS and GLONASS

9 Satellite-based navigation (1)

9.1 Introduction

- Terminology
 - Satellite-based navigation means navigation based on satellites,
 i.e. using signals transmitted by satellites
 - Modern term: GNSS = global navigation satellite system(s)
- Brief historical review
 - 1957: successful launch of Sputnik
 - Line-of-sight radio navigation became possible through the use of artificial satellites
 - 1960s: U.S. Navy Navigation Satellite System (NNSS), also known as Transit
 - "Cold-war response": Tsikada (very similar to Transit)

9 Satellite-based navigation (2)

- 1980s: development of the U.S. **Global Positioning System** (GPS) with full operational capability (FOC) reached in 1995
- "Cold-war response": Global'naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) with FOC reached (only) in 1996
- Current developments
 - Modernization of GPS
 - Development of the European Galileo
 - Possible further development of GLONASS

9 Satellite-based navigation (3)

9.2 Early systems

9.2.1 Transit

- General remarks
 - Transit was conceived in the late 1950s by Johns Hopkins Applied Physics Laboratory (APL) and deployed in the mid-1960s
 - The basic concept was triggered by U.S. studies of signals from the first Soviet Sputnik satellite
 - The entire Sputnik orbit was determined from Doppler shift data
 - Idea: if the satellite orbit is known, an unknown receiver position may be determined from the same type of Doppler measurements

9 Satellite-based navigation (4)

- Key advantage of Transit: worldwide coverage with periodic position updates could be obtained with just one satellite
- Each satellite provided four to six position updates per day for every user
- Additional satellites only increased the update frequency and improved the daily distribution of these updates
- Six satellites were launched until November 1961
- The objectives included providing data needed to analyze the gravity field of the earth
- On December 31, 1996, Transit was declared being out of order

9 Satellite-based navigation (5)

System architecture

- Control segment
 - Tracking stations
 - Computing center

Space segment

- Circular, polar orbits
- Height: 1075 km (low-earth orbit, LEO)
- Period: 107 minutes

Source: http://home.arcor.de/satellitenwelt/

- Signal structure

- Two stable carrier waves at 150 MHz and 400 MHz
- Modulation of timing marks and navigation data on the carriers
- Observables: Doppler shift of the satellite signals due to the orbital motion of the satellites (high Doppler shift due to fast radial motion in low-earth orbits)

9 Satellite-based navigation (6)

User segment

- Unlimited capacity due to passive user receivers
- Whenever a satellite passed above the horizon, a single horizontal position fix could be obtained
- The average time interval between fixes varied from 35 to 100 minutes, depending on the latitude of the user and the number of operational satellites

Example of a Transit receiver (http://home.t-online.de/home/Hbusch/satnav.htm)

9 Satellite-based navigation (7)

Positioning accuracy

- Measurements referred to sequential positions of one satellite
 as it passed above the user → no simultaneous observations of
 several satellites were used
- Possible motions of the user during the satellite pass had to be considered in the fix calculations, e.g. by dead reckoning
 (→ running fix)
- Accurate position fixes could be obtained by combining
 - the calculated satellite positions,
 - the range differences between these positions (derived from integrating the Doppler shift measurements) yielding hyperboloids of revolution,
 - -and information regarding possible motions of the receiver

9 Satellite-based navigation (8)

Typical accuracies

Navigation mode

-Single-frequency receivers: ± 80 m to ±100 m

– Dual-frequency receivers: ± 25 m

Surveying mode for fixed stations

–Single point positioning: ± 5 m

-Relative positioning: ± 0.5 m

9 Satellite-based navigation (9)

9.2.2 Tsikada

- Two parts
 - Military system
 - Civil system
- The system architecture of the civil system is very similar to Transit
 - 4 LEO satellites
 - Carrier waves at 150 MHz and 400 MHz
 - Positioning accuracy: ~ 100 m

Source: www.astronautix.com

- Further Internet sites (March 2004)
 - www.fas.org/spp/guide/russia/nav/tsikada.htm
 - www.vectorsite.net/ttgps.html > Tsikada "seems to be operational"

9 Satellite-based navigation (10)

9.3 GPS and GLONASS Comparison of the systems (a)

Feature	GPS	GLONASS
FOC	July 17, 1995	January 18, 1996
Actual (nominal) # SV	28 (24)	10 (24)
# orbital planes	6	3
Orbit inclination	55°	65°
Orbit altitude	20200 km	19100 km
Revolution period	~ 12 hours	~ 11.25 hours
Ephemeris data representation	Kepler elements, extrapolation coeff.	Position, velocity, acceleration vectors

9 Satellite-based navigation (11)

Comparison of the systems (b)

Feature	GPS	GLONASS
Reference system	WGS-84	PZ-90
Signal separation	CDMA	FDMA
Almanac contents	152 bit	120 bit
Almanac trans. time	12.5 min	2.5 min
L1 frequency [MHz]	1575.42	1602.5625 – 1615.5
L2 frequency [MHz]	1227.60	1246.4375 – 1256.5

9 Satellite-based navigation (12)

Comparison of the systems (c)

Feature	GPS	GLONASS
Type of ranging code	C/A-, P(Y)-code	S-, P-code
C/A- (S-) code freq.	1.023 MHz	0.511 MHz
P-code frequency	10.23 MHz	5.11 MHz
Availability	Non selective (since May 2000)	Non selective
Time synchronization	GPS time, UTC (USNO)	GLONASS time, UTC (SU)
Ground track repeat period	1 siderial day	8 siderial days

9 Satellite-based navigation (13)

Combining GPS and GLONASS

Engineering principle:
 "adding correctly weighted observables always decreases the variance of a measurement"

Example: Ashtech GG24

Benefits

- Accuracy: only minor improvements
- Availability: depends on type of system integration (raw measurements vs. solved positions)
- Reliability: increase due to independence of systems
- Integrity: increase of receiver-autonomous integrity monitoring (RAIM) capability

9 Satellite-based navigation (14)

• RAIM ...

- may prevent an unhealthy satellite from degrading typical
 GPS-only performance by detecting and removing
 erroneous signals
- benefits tremendously from an increased number of satellites, since it uses redundant measurements in its computations

- Difficulties

- Different reference frames
- Different time systems
- Different signal structures
- Future: Integrated GPS/Galileo receivers

Chapter 10 – Augmentation systems

10 Satellite-based navigation / Contents

- 10.1 Introduction
- 10.2 Differential GPS
- 10.3 DGPS services
- 10.4 Future of DGPS

10 Augmentation systems (1)

10.1 Introduction

- End of SA → reconsideration of many differential GPS (DGPS) services
- Future: GNSS augmentation systems
 - DGNSS
 - Integrity monitoring

10 Augmentation systems (2)

10.2 Differential GPS

10.2.1 Principle

Mathematical derivation → see labs

10 Augmentation systems (3)

10.2.2 Systems and concepts

- Terminology
 - Conventional DGPS
 - Precise DGPS
 - Real-Time-Kinematics (RTK)

uses raw or smoothed code PRs uses phase PRs

is relative kinematic positioning

	Conventional DGPS		Precise DGPS
Observables	raw code pseudoranges	smoothed code pseudoranges	phase pseudoranges
Range of application	some 1000 km	some 100 km	some 10 km
Positioning accuracy	< 10 m	< 1 m	< 0.1 m
Main drawback	limited accuracy	limited range	ambiguity resolution, range

10 Augmentation systems (4)

- Single versus multiple reference station concept
 - Single reference station concept
 - Very simple... BUT
 positional accuracy decreases with increasing distance from the
 base station

10 Augmentation systems (5)

Multiple reference station concept

Advantages

- –(Almost) no accuracy decrease with increasing station separation (→ limited spatial decorrelation)
- Extended coverage
- -Increased reliability and integrity

Disadvantages

- Increased costs for network installation and maintenance
- More complex hardware and software
- Additional latency introduced by intra-network communication

10 Augmentation systems (6)

10.2.3 Multiple reference station concept

- Approaches
 - Currently two main approaches are in use
 - Measurement-domain approach (→ scalar correction data)
 - State-space approach (→ vector of correction data)

Scalar algorithms	Vector algorithm
Extended DGPS	Wide Area DGPS (WADGPS)
Local Area DGPS (LADGPS)	Worldwide DGPS (WWDGPS)

10 Augmentation systems (7)

Wide Area DGPS (WADGPS)

- Network of monitor stations tracks all satellites in view using dual-frequency receivers to derive position-dependent vectors of corrections
 - lonospheric corrections → modeling the TEC using the dualfrequency data (e.g. via the Klobuchar model)
 - Orbital corrections and clock biases → network solution of ionosphere-corrected pseudoranges

10 Augmentation systems (8)

10.2.4 Data transfer

Radio links

- General remarks
 - Data transfer in real-time is based on telemetric links (controlled radio links)
 - Telemetric links require compatible hardware at the reference station and at the rover receivers
- Link characteristics
 - **Types** ... ground-based vs. space-based
 - Parameters ... frequency, power, data rate
 - Formats ... proprietary vs. receiver-independent

10 Augmentation systems (9)

Ground-based data transmission

System	Frequency	Data rate [bps]	Range [km]
Eurofix	LF	30	1.500
Radio beacons	MF	100	300
Radio data system	VHF	1.000	100
GSM	UHF	9.600	30
GPRS	UHF	44.000	30
UMTS	UHF	2.000.000	10

(Indicative/theoretical values)

- Space-based data transmission
 - → typically via geostationary satellites

10 Augmentation systems (10)

Data formats

- Some manufacturers of DGPS receivers use proprietary formats to compress the data to transmit more data per time unit
- For non-autonomous operation, receiver-independent formats must be used to transmit correction data

- RTCM format

 Internationally accepted standard format for the transmission of correction data was proposed by Special Committee 104 of the U.S. Radio Technical Commission for Maritime Services

10 Augmentation systems (11)

Several versions of the RTCM format exist

- Version 2.0
 - ... contains range and range-rate corrections for (C/A- and P-) code pseudoranges
- Version 2.1
 - ... contains additionally phase pseudorange corrections and raw observables
- Version 2.2
 - ... provides version 2.1 data also for GLONASS satellites
- Version 2.3
 - ... considers recent developments (end of SA)

10 Augmentation systems (12)

- 64 message types are available (not all yet defined)
 - Format of messages is (almost) identical to the GPS navigation message (i.e., sequence of 30-bit words)
 - Each message starts with a two- (or three-) word header which contains
 - -fixed preamble
 - message type identifier
 - -time tag (Z-count)
 - -sequence number
 - -message length
 - Data amount required for code pseudorange corrections
 - −6 satellites ... ~ 480 bits

10 Augmentation systems (13)

10.3 DGPS services

- General remarks
 - Sources of differential correction data
 - Autonomous operation ... mainly for precise DGPS
 - Provided services ... mainly for conventional DGPS

Features

- Continuously operating (stationary) reference stations (CORS)
- Operating on global, continental, or regional scale
- Characterized in terms of accuracy, availability, coverage, costs

10 Augmentation systems (14)

10.3.1 Examples

- Europe
 - Omnistar
 - –(Almost) global WADGPS service operated by Fugro providing code range corrections
 - -European reference network consists of 16 reference stations
 - The (scalar) corrections in RTCM 2.0 format are transmitted to the rovers via communication satellites
 - Small and lightweight Omnistar receivers interface directly to the DGPS capable receivers
 - -The service is not free of charge

10 Augmentation systems (15)

Omnistar reference stations and coverage area

10 Augmentation systems (16)

- Austria

- Currently, no nationwide Austrian service is available
- Former Mercator service

-Partners

- Federal Office of Metrology and Surveying (BEV)
- Austrian Broadcasting Corporation (ORF)
- Institute for Space Research of the Austrian Academy of Sciences (ÖAW)
- Austrian surveying and consulting group (GPS Netz)

Service provided RTMC-2.2 data

- Code range corrections for (almost) 100% of Austria
- Phase range corrections for about 40% of Austria

10 Augmentation systems (17)

- Tracking network consisted of 15 reference stations and was based on the Austrian GPS Reference Network (AREF) which is a realization of ITRF
- Correction data were transmitted by the ORF via Ö1 using more than 300 stations (transmitters, repeaters)
- Modulation was performed by the UHF subcarrier technique DARC/Swift (System for Wireless Infotainment Forwarding and Teledistribution)

10 Augmentation systems (18)

Mercator DGPS reference stations

10 Augmentation systems (19)

10.3.2 Services under development

- Satellite-Based Augmentation Systems (SBAS)
 - Services
 - USA ... Wide Area Augmentation System (WAAS)
 - Japan ... MT-Sat Augmentation System (MSAS)
 - European Geostationary Navigation Overlay Service (EGNOS)
 - Components
 - WADGNSS
 - GNSS Integrity Channel (GIC)
 - GEO Ranging (GEO-R)

10 Augmentation systems (20)

Visibility of a GEO from the earth

10 Augmentation systems (21)

EGNOS space segment coverage area

10 Augmentation systems (22)

- EGNOS simulations for Austria
 - Direction vectors to the GEO satellites

Satellite	Graz		Innsbruck	
	Azimuth	Elevation	Azimuth	Elevation
AOR-E	219°	28°	215°	30°
IOR	122°	18°	118°	15°

10 Augmentation systems (23)

- GEO visibility at Graz
 - AOR-E:99,9%

- IOR: 98.6%

10 Augmentation systems (24)

- GEO visibility at Innsbruck
 - AOR-E:85.9%
 - IOR:61.4%

10 Augmentation systems (25)

Eurofix

- Principle

- Based on the terrestrial infrastructure of Loran-C
- Modulation scheme developed by Delft University of Technology

Features

- Low data rate
- High transmission power
- Good penetration into urban areas

Accuracy

- ~ 3 m ... single reference station
- ~ 1 m ... multiple reference stations

10 Augmentation systems (26)

Current status: Eurofix feasibility phase

10 Augmentation systems (27)

Current coverage in Austria

10 Augmentation systems (28)

10.4 Future of DGPS

Expectations

- Conventional differential services will be replaced by superior augmentation services that also provide integrity information
- High-accuracy services might be phased out when real-time centimeter accuracy will become available (e.g., via multi-carrier ambiguity resolution)

- Reasons

- Switch-off of SA
- Modernization of GPS (more civil signals)
- Introduction of Galileo

9 Satellite-based navigation / 10 Augmentation systems

References

- Brown EG (1996): Receiver autonomous integrity monitoring. In: Parkinson BW, Spilker JJ (eds): Global Positioning System theory and applications, vol. 2 American Institute of Aeronautics and Astronautics, Washington DC: 143-165.
- Department of Defense (2001): Global Positioning System standard positioning service performance standard. U.S. Assistant for GPS, Positioning and Navigation, Defense Pentagon, Washington DC.
- Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001): GPS theory and practice, 5th revised edition. Springer, Wien.
- Kee C (1996): Wide area differential GPS. In: Parkinson BW, Spilker JJ (eds): Global Positioning System – theory and applications, vol. 2 American Institute of Aeronautics and Astronautics, Washington DC: 81-115.
- Misra P, Enge P (2001): Global Positioning System signals, measurements and performance. Ganga-Jamuna, Lincoln (Mass.).
- Lichtenegger H (1998): DGPS fundamentals. Reports on Geodesy, Warsaw University of Technology, Institute of Geodesy and Geodetic Astronomy, 11(41): 7-19.
- Parkinson BW, Enge P (1996): In: Parkinson BW, Spilker JJ (eds): Global Positioning System theory and applications, vol. 2 American Institute of Aeronautics and Astronautics, Washington DC: 3-50.