UNIVERSITY OF EDINBURGH SCHOOL OF MATHEMATICS

Generalised Regression Models

GRM: Problem Sheet 2 Semester 1, 2022–2023

Work on Questions 1(ii), 2(ii) and 3 in the workshop.

1. Show that the following distributions are members of the exponential family with probability density function of the form

$$\exp\{a(y)b(\theta)+c(\theta)+d(y)\},\$$

and use the general results obtained in the lectures to deduce the mean and variance of a(Y) in each case.

- (i) Exponential distribution: $f(y; \theta) = \theta e^{-y\theta}$.
- (ii) Binomial distribution: $f(y;\theta) = {m \choose y} \theta^y (1-\theta)^{m-y}$ (*m* known).
- (iii) Gamma distribution: $f(y;\theta) = \frac{y^{\phi-1}\theta^{\phi}e^{-y\theta}}{\Gamma(\phi)}$ (\$\phi\$ known).
- (iv) Negative binomial distribution: $f(y; \theta) = {y+r-1 \choose r-1} \theta^r (1-\theta)^y$ (r known).

For those distributions in canonical form, write down the *natural parameter*.

- 2. For each of the distributions given in Question 1: (i) Exponential, (ii) Binomial, (iii) Gamma, and (iv) Negative binomial.
 - (a) Determine the maximum likelihood estimate, $\widehat{\theta}$, of θ based on a random sample of observations y_1, \dots, y_n .
 - (b) Obtain an expression for the asymptotic variance of the maximum likelihood estimator of θ .
- 3. Suppose that random variables Y_1, \ldots, Y_n are independently and Normally distributed with common variance σ^2 and expectations of the form

$$E(Y_i|x_i) = \beta_0 + \beta_1 x_i \quad (i = 1, ..., n),$$

where σ , β_0 and β_1 are unknown parameters and the x_i are known values of an explanatory variable.

(a) Show that the joint probability density function of Y_1, \dots, Y_n is

$$f(y_1,\ldots,y_n;\beta_0,\beta_1,\sigma)=(2\pi)^{-\frac{1}{2}n}\sigma^{-n}\exp(-\frac{1}{2}\sigma^{-2}Q),$$

where $Q = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$.

- (b) Hence show that the maximum likelihood estimates of β_0 and β_1 are the same as their least squares estimates.
- (c) Find the maximum likelihood estimate of σ^2 . [NOTE: The MLE of σ^2 is not used in practice; the unbiased estimator of σ^2 is used (see Question 3 on Problem Sheet 1).]

4. A random variable Y has a log normal distribution, i.e.

$$\log(Y) \sim N(\mu, \sigma^2)$$

Let v = E(Y) and $\tau = var(Y)$, then it can be shown that

$$v = e^{\mu + \frac{\sigma^2}{2}}$$
 and $\tau = \left(e^{\sigma^2} - 1\right)e^{2\mu + \sigma^2}$.

Obtain MLEs of v and τ for a sample of size n:

- (a) if μ and σ^2 are unknown;
- (b) if σ^2 is known, but μ is unknown.

For (b), obtain the expectation of the MLE for ν . Derive Fisher's information for ν in this case, and hence obtain the asymptotic variance for the MLE of ν .

5. Consider the density

$$f(y; \theta) = \exp[y\theta - c(\theta) + d(y)]$$

and let $E(Y) = \mu$ and $l = \log f(y; \theta)$.

Show that

- (a) $\mu = c'(\theta)$ and $var(Y) = c''(\theta)$
- (b) $\frac{dl}{d\theta} = y \mu$
- (c) $\frac{dl}{d\mu} = \frac{y-\mu}{\text{var}(Y)}$
- 6. A generalization of the 1-parameter exponential family, to allow 2-parameter distributions, is the family defined by,

$$f(y; \theta, \phi) = \exp\left[\frac{y\theta - c(\theta)}{a(\phi)} + d(y, \phi)\right]$$

- (a) Show that $E(Y) = c'(\theta)$ and $var(Y) = c''(\theta)a(\phi)$
- (b) Show that the normal distribution $N(\mu, \sigma^2)$ and the Gamma distribution

$$f(y; \lambda, \alpha) = \frac{\lambda(\lambda y)^{\alpha - 1} e^{-\lambda y}}{\Gamma(\alpha)}$$

belong to this family.

- (c) The lognormal distribution is defined as the distribution of a random variable Y such that $\log(Y) \sim N(\mu, \sigma^2)$. Find the density of Y and examine whether it belongs to the exponential family defined above.
- 7. If $l(\theta; \mathbf{y})$ is the log likelihood for a random sample y_1, \dots, y_n from a density $f(y; \theta)$, where $\theta = (\theta_1, \dots, \theta_p)'$ is a *p*-dimensional vector of parameters, show that

$$E\left(\frac{\partial l}{\partial \theta_j}\right) = 0$$
 and $\operatorname{cov}\left(\frac{\partial l}{\partial \theta_j}, \frac{\partial l}{\partial \theta_k}\right) = -E\left(\frac{\partial^2 l}{\partial \theta_j \partial \theta_k}\right)$