Fizikai alapismeretek

5. előadás: Elektrosztatika

Papp Ádám
papp.adam@itk.ppke.hu
407. szoba, 204. labor

Elektromos töltés

Elemi töltéssel rendelkező részecskék:

- elektron (negatív)
- proton (pozitív)

Coulomb törvény:

$$e = 1,602 \cdot 10^{-19} \,\mathrm{C}$$

$$k = \frac{1}{4\pi \cdot \varepsilon_0} \approx 8,988 \cdot 10^9 \frac{\text{Nm}^2}{\text{C}^2}$$

Két töltés között ható erő:

$$F = k \frac{Q_1 Q_2}{r^2}$$

Az erő iránya ellentétes töltés esetén vonzó, azonos töltés esetén taszító.

Összehasonlítás: elektromos és gravitációs kölcsönhatás

Két elektron között ható erők:

$$F_e = k \frac{q_e q_e}{r^2} = 8,988 \cdot 10^9 \frac{\text{Nm}^2}{\text{C}^2} \frac{(1,602 \cdot 10^{-19} \text{C})^2}{r^2} = \frac{1}{r^2} \cdot 2,31 \cdot 10^{-28} \text{ Nm}^2$$

$$F_g = \gamma \frac{m_e m_e}{r^2} = 6,674 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg s}^2} \frac{(9,109 \cdot 10^{-31} \text{ kg})^2}{r^2} = \frac{1}{r^2} \cdot 5,54 \cdot 10^{-71} \text{ Nm}^2$$

$$q_e = -1,602 \cdot 10^{-19} \,\mathrm{C}$$

$$m_e = 9,109 \cdot 10^{-31} \text{ kg}$$

$$k = 8,988 \cdot 10^9 \frac{\text{Nm}^2}{\text{C}^2}$$

$$\gamma = 6,674 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$$

$F_e=$ **4**, **16** \cdot **10**⁴² \cdot F_g

Két proton esetében:

$$F_e=\mathbf{1},\mathbf{24}\cdot\mathbf{10}^{\mathbf{36}}\cdot F_g$$

Összehasonlításul:

Világegyetem mérete: 8,8 · 10²⁶ m

Planck-hossz: $1,616 \cdot 10^{-35} \text{ m}$

Az elektrosztatikus kölcsönhatás a gravitációhoz képest gigantikus!

Elektromos erőtér/mező

Az egységnyi ("próba") töltésre ható erő nagyságát és irányát írja le a térben.

A próbatöltésre ható erő:

$$\boldsymbol{F}_e = k \frac{Qq}{r^2} \hat{\boldsymbol{r}} \quad [N]$$

Elektromos térerősség:

$$\boldsymbol{E} = k \frac{Q}{r^2} \hat{\boldsymbol{r}} \quad \left| \frac{\mathbf{N}}{\mathbf{C}} \right|$$

Erővonalak:

Olyan vonalak, melyek minden pontjában az elektromos mező érintő irányú.

Elektromos potenciál, feszültség

Az elektromos mező konzervatív erőtér, azaz létezik olyan U potenciál, melynek gradiense az elektromos mező: **Mértékegysége:**

$$\boldsymbol{E} = -\operatorname{grad} U$$

Ponttöltés körüli potenciál:

$$E = k \frac{Q}{r^2} \hat{r} = -\text{grad } U \rightarrow U = -k \frac{Q}{r}$$

A végtelenben 0, nullában +/-∞!

Feszültség: két pont közötti potenciálkülönbség.

$$U_{AB} = U_B - U_A$$

Jelentése: A és B pont között egy egységnyi töltés mozgatásához szükséges munka (független az útvonaltól, mivel az elektromos erőtér konzervatív).

Ekvipotenciális felület

Olyan pontok összessége, melyhez azonos potenciál tartozik.

(Gravitációs térben erre mondanánk hogy "vízszintes", pl.: az óceán felszíne.)

Az **erővonalak mindig merőlegesek** az ekvipotenciális felületekre. Az ekvipotenciális felületeken a **töltés munkavégzés nélkül mozgatható**.

Vezetők (fémek)

A fémekben az elektronok egy része az atomok között szabadon mozoghat.

Ezek az elektronok elektromos tér hatására elmozdulnak. Ezen elmozdulás hatására olyan töltéseloszlás jön létre, mely a külső tér hatását kioltja, vagyis olyan egyensúlyi helyzet jön létre, melyben **a fém belsejében az eredő térerősség nulla**. Tehát a fémek minden pontja (egyensúlyi helyzetben) **azonos potenciálon van**.

Szigetelők (dielektrikum)

Szigetelő anyagokban az elektronok az atomokhoz kötött állapotban vannak.

Elektromos tér hatására az elektronok csak az atomok körüli kis elmozdulásra képesek, dipólusokként viselkedve az anyag belsejében. A dipólusok miatt a felületeken töltésfelhalmozódás jelentkezik, melynek tere az anyag belsejében a külső teret ellensúlyozni igyekszik, de megszüntetni nem tudja, csak csökkenti. Ennek mértékét jellemzi a dielektromos állandó (**relatív permittivitás**): ε_r .

Kapacitás, kondenzátorok

<u>Kapacitás:</u> az a töltésmennyiség, amely egy vezető potenciálját 1 volttal változtatja meg. Ha két vezető közötti kapacitást mérjük, akkor a két vezető közötti feszültséget vesszük figyelembe.

 $C = \frac{Q}{U}$ Mértékegysége: $F = \frac{C}{V}$

Síkkondenzátor: két sík felületű vezető és az őket elválasztó dielektrikumból álló eszköz.

Tárolt energia:
$$E_C = \frac{1}{2}QU = \frac{1}{2}CU^2$$