STATISTICS YEAR 1 RECAP: Distributions and Hypothesis Testing

Probability Distributions

There are a few ways to show the mapping from outcomes to probabilities:

The random variable X represents the **number of heads when** three coins are tossed.

Distribution as a Table

		*	_	
	8	8	8	8
P(X=x)	1	3	3	1
Num heads x	0	1	2	3

{ HHH, △ HHT, ←

HTT, 🥦

HTH, -

THH, -

THT, 🙀

TTH, 🔌

Distribution as a Function

$$P(X = x) = \begin{cases} \frac{1}{8} & x = 0.3\\ \frac{3}{8} & x = 1.2\\ 0 & otherwise \end{cases}$$

The throw of a die is an example of a discrete uniform distribution because the probability of each outcome is the same.

The Binomial Distribution

 \mathscr{I} You can model a random variable X with a binomial distribution B(n,p) if

- there are a fixed number of trials, n,
- there are two possible outcomes: 'success' and 'failure',
- ullet there is a fixed probability of success, p
- the trials are independent of each other \mathcal{I}

If $X \sim B(n, p)$ then:

$$P(X=r) = \binom{n}{r} p^r (1-p)^{n-r}$$

In the example below,

'success' was 'left
handed'.

_ r is the number of successes out of n.

"~" means "has the distribution"

On a table of 8 family members, 6 people are left handed.

- a) Suggest a suitable model for a random variable X: the number of left-handed people in a group of 8, where the probability of being left-handed is 0.1.
- b) Find the probability 6 people are left handed.
- c) Suggest why the chosen model may not have been appropriate.

a)
$$X \sim B(8, 0.1)$$
 b) $P(X=6) = {8 \choose 6} 0.16 \times 0.92$
= 0.00002268

c) because there may be a genetic link in left handedness, so trials may not be naupendent

Your Turn

1
$$X \sim B(6, 0.2)$$

What is $P(X = 2)$? $P(X = 2) = \binom{6}{2} \cdot 0.2^2 \times 0.8^4 = 0.24576$
What is $P(X \ge 5)$? $P(X \ge 5) = P(X = 5) + P(X = 6)$
 $= \binom{6}{5} \cdot 0.2^5 \times 0.8 + 0.2^6$
 $= 0.0016$

- I have a bag of 2 red and 8 white balls. X represents the number of red balls I chose after 5 selections (with replacement).
 - 1 How is X distributed? $\times \sim 3(5, 0.2)$
- Determine the probability that I chose 3 red balls. $p(\chi = 3) = \binom{5}{3} \times 0.2^{3} \times 0.8^{2}$ $p(\chi = 3) = \binom{5}{3} \times 0.512$