1: Regular Construction

(a) $((a \cup b)^*bc(a \cup b)^*bc(a \cup b)^*bc)^*(a \cup b)^*$

(b)

2: NFA to RegEx Conversion

 $RegEx = (a \cup b)^* aa(b(a \cup b)^* aa)^*$

3: More than Regular

Suppose, for the sake of contradiction, that A is regular. Then by definition, there is a DFA M for which there is a pumping lumma, p. Let $s=0^p1^{(p+1)}$. By the pumping lumma, we can divide s into x, y, z where $|xy| \le p$ and $|y| \ge 1$. Then $y=0^k$ represent the number of 0's for $0 < k \le p$. Pumping up gives us $xy^2z=0^{(p+k)}1^{(p+1)}$. Since $k\ge 1$, then $p+k\ge p+1$. Therefore, the number of 0's will be greater than or equal to the number of 1's Thus, there is a contradiction because $xy^2z\notin A$. Thus, A cannot be regular.