

مشروع محطه تنقيه المياه الشرب لمدينة النوته الحسابية لمحطة تنقية مياه الشرب لمدينة

Knowing the following data:-

POP	215,000	capita
W.C	300	I/c/d
Rate (r)	2.8	%
n	25	year

$$pop = pop(1+r)^n$$
 $= 215000 \left(1 + \frac{2.8}{100}\right)^{25} = 428812 \text{capita}$
 $Qavg(25) = pop * \frac{wc}{1000} = 428812 * 300/1000 = 128643.6 \text{m}^3/\text{d}$
 $Qm. m = 1.4 * Qavg(25)$
 $= 1.4 * 128643.6 = 128643.6 \text{m}^3/\text{d}$
 $Qm. d = 1.7 * Qavg(25)$

=1.7*128643.6=180101.04m³/d

Qm.h = 2.5 Qavg(25)

=2.5*128643.6 = 321609 m³/d

Discharge	m³/d	m³/sec
Q av	128643.6	1.49
Q mm	180101.04	2.08
Q md	218694.12	2.53
Q m h	321609	3.72

Collection works: -

1-Design of intake:-

A-Design of intake pipes:

اسس التصميم:

التصرف التصميمي للمأخذ = أقصى استهلاك شهري + 0.0 من أقصى استهلاك شهري التصرف المياه في المواسير لا تقل عن 0.6 م/ث و لا تزيد عن 0.5 م / ث.

عدد المواسير لا تقل عن ماسورتين.

في حالة كسر أحد الماسورتين فمن الممكن أن تصل السرعة إلى 2.5 م/ث.

Qdesign=1.1*Q max monthly

A pipe=
$$\frac{Qdesign}{velocity}$$

velocity (0.6-1.5) m/sec

$$=\frac{2.29}{1.2}=1.9 \text{ m}^2$$

No of pipes = 4 pipes

Area of one pipe=
$$\frac{\text{Apipes}}{4}$$
= $\frac{1.9}{4}$ =0.478 m²

$$\frac{\pi d^2}{4} = 0.390$$
m

∴ d= 0.780m =800 mm

Actual area =
$$\frac{\pi d^2}{4} = \frac{\pi * 0.65^2}{4} = 0.503 \text{ m}^2$$

Actual velocity=
$$\frac{Qdesign}{4*\frac{\pi d^2}{4}} = \frac{2.9}{4*\frac{\pi*0.800^2}{4}} = 1.14 \text{ m/sec}$$

IF one pipe broken:

Velocity =
$$\frac{2.9}{3*\frac{\pi*0.800^2}{4}}$$
 = 1.60 m/sec < 2.5 m/sec ok safe

calculation of frictional head loss (Hf)

assume C=120

get S=0.04

Hf =S * Pipe length =S * 1000 =43.22 m

B- Design of pumps building:

Assume Pump=300 L/S=0.3 m³/sec

No of pumps = $\frac{Qdesign}{Qpump}$ +0.5 no.of. pumps

$$=\frac{2.5}{0.3}$$
 +0.5*n =10 pumps

Distance between pumps=(1.5m-3m)

Length of pumps building = (No of pumps/2-1) *distance between pumps + 4m

Area of suction pipe =
$$\frac{Qpump}{2} = \frac{0.3}{2} = 0.15 \text{ m}^2$$

$$\therefore 0.15 = \frac{\pi d^2}{4}$$

• Diameter of pipe = 0.4m = 400 mm

C-Design of low lift pump:

HP: horse power

H: total dynamic head ((assume 6-10 m if we can't calculate))

Assume Hst =35 m

Assume Hm =1 m

TDH = Hst + Hf + Hm

$$\mathsf{HP} = \frac{ **Qd*H}{75*1*12} = \frac{1000*2.5*79.22}{75*0.8*0.8} = 495 \ hp$$

Treatment works: -

2-Design of coagulation units:

A-Design of alum concentration tank:

$$v = \frac{Qd*S}{C*Y*10^6}$$

v: volume of tank

& Q d: Q max monthly

S: dosage (30-80) ppm & C1: concentration of alum (5-20%)

$$\therefore v = \frac{198111.14*50}{0.15*1.02*10^{5}} = 64.74 \text{ m}^{3}$$

$$v=n*D*A$$

n: number of tanks(take=2) & D=height of tank(take=2m)

∴ 40.15=
$$2*2*A$$
 \rightarrow A=16.19²

Take L=B=4.0m

B-Design of flash mixing tank:

Qi=1.1*Mm=1.1*2.08= 2.29m3/sec

Retention time= 5-60 sec → take R. T=30sec

& n=1

Diameter of tank = 6.62m = 6.65 m

C-Design of clarifloculators:

Design=1.1*Qmax monthly=1.1*180101.04=198111.144 m³/d

1-Design of tanks:

Assume n=6 tanks & surface flow rate=30m³/m²/d

A tot=
$$\frac{\text{Qdesign}}{S.L.R}$$
 = $\frac{198111.144}{30}$ = 6603.70 m²

$$6603.70 = \frac{\pi}{4} (\text{Øs}^2 - \text{Øf}^2)$$

Ø s: total tank diameter & Ø f: Flocculation zone diameter=0.4Øs

$$6603.70 = \frac{\pi}{4} (Øs^2 - (0.4 Ø s)^2)$$

Øs=41m

&

Ø f=16.36m

2-check for flocculation zone:

Assume Df = 5m

$$v=n*\frac{\pi}{4}* Øf^2* D f=6*\frac{\pi}{4}* (16.36)^2*5=6305 m^3$$

R.T =
$$\frac{\text{volume}}{\text{Qd}} = \frac{6305}{2.9*60} = 45.83 \text{min}$$
 \Rightarrow (15-40 min) ok

3-check for sedimentation zone:

Assume Ds=Df+0.5m=4+0.5=4.5m

R.
$$T = \frac{n * \frac{\pi}{4} * (\varnothing s^2 - \varnothing f^2) * Ds}{\varrho d} = \frac{6 * \frac{\pi}{4} * (41^2 - 16.36^2) * 4.5}{198111.144} = 0.1 \text{hr} \rightarrow (2-4 \text{hr}) \text{ ok}$$

S.L.R =
$$\frac{Qd}{n*\frac{\pi}{4}*(\varnothing s^2 - \varnothing f^2)} = \frac{198111.144}{6*\frac{\pi}{4}*(41^2 - 16.36^2)} = 29.9 \text{ m}^3/\text{m}^2/\text{d} \Rightarrow (25-40) \text{ m}^3/\text{m}^2/\text{d}$$

ok

Weir load rate=
$$\frac{Qd}{n*\pi* \varnothing s} = \frac{198111.144}{6*\pi* 41} = 257.02 \text{ m}^3/\text{m/d} < 300 \text{ m}^3/\text{m/d} \text{ ok}$$

4-Design of sludge hopper:

Vs: voume of sludge

S.S: raw water suspended solids(300ppm)

R.R: removal ratio (90-95%)

N: number of sludge hopper evacuation per day (2-3)/day

Υ s: sludge specific density (1.02)t/m³

$$vs = \frac{Qd*s.s*R.R}{n*N(1-WC)**s*10^6} = \frac{198111.144*300*0.95}{6*2*(1-.95)*1.02*10^6} = 92.26m^3$$

5-Design of sludge pipe:

Qs =
$$\frac{vs}{time} = \frac{92.26}{10*60} = 0.154 \text{ m}^3/\text{sec}$$

Time: evacuation time (10-20) min

Assume velovity (1-2) m/sec

$$A = \frac{Qs}{v} = \frac{0.154}{2} = 0.0769 \text{ m}^2$$

$$0.0769 = \frac{\pi d^2}{4}$$

•Diameter of pipe = 0.4m≈0.4m=400mm

6-inlet pipe:

V=(1-1.5)m/sec

$$Q = \frac{Qd}{n} = \frac{2.29}{6} = 0.38 \text{ m}^3/\text{sec}$$

$$A = \frac{Q}{v} = \frac{0.38}{1} = 0.38 \text{ m}^2$$

$$0.38=\frac{\pi d^2}{4}$$

•Diameter of pipe = 0.7m=700mm

7-outlet pipe:

V= 0.5 m/sec

$$Q = \frac{Qd}{n} = \frac{2.29}{6} = 0.38 \text{ m}^3/\text{sec}$$

$$A = \frac{Q}{v} = \frac{0.38}{0.5} = 0.76 \text{ m}^2$$

$$0.76 = \frac{\pi d^2}{4}$$

Diameter of pipe = 1m=1000mm

3-Design of filtration unit:

A-Design of rapid sand filter:

Assume rate of filtration=130 m³/m²/d

Q d=Q mm=180101.04 m³/d

A total =
$$\frac{Qd}{RQF} = \frac{180101.04}{130} = 1385 \text{ m}^2$$

Assume Area of one unit=80 m² →L=10m & B=8m

$$n = \frac{Atotal}{Aone} = \frac{1385}{80} = 18$$
 filter

n total=18+2 stand by=20 filter

R .O.Fact
$$=\frac{Qd}{n*L*B} = \frac{180101.04}{18*10*8} = 125.1 \text{ m}^3/\text{m}^2/\text{d}$$

B-inlet pipe:

V=0.5m/sec

Q d=180101.04m³/d=2.08m³/sec

$$A = \frac{Q}{v} = \frac{2.08}{0.5} = 4.16 \text{ m}^2$$

$$4.17 = \frac{\pi d^2}{4}$$

•Diameter of pipe = 2.3m

c-outlet pipe:

V= 1 m/sec

Q d=2.08m³/sec

$$A = \frac{Q}{v} = \frac{2.08}{1} = 2.08 \text{ m}^2$$

$$2.08=\frac{\pi d^2}{4}$$

•Diameter of pipe = 1.65m=1650mm

4-Design of storage tank:

A- (6-10) hours for emergency:

C1 = Q mm *(6-10) hr

C1 = 180101.04*8 = 60033.7m³

B- The differenc between Q max daily & Q max monthly:

C2 = Q md - Q mm

C2 = 218694.12- 180101.04= 38593.08 m³

C- 0.8 of fire demand:

C3 = 0.8*fire demand for 2 hours

C3 = 0.8 * $\frac{pop}{10000}$ *120 min

 $C3 = 0.8*\frac{215000}{10000}*120 = 2064 \text{ m}^3$

D- 0.5 hour of Q max monthly:

C4 = 0.5*180101.04= 3752.1 m³

E- Capacity of ground tanks:

CT = max of C1&C2&C4 + C3

CT = 60033.68+2064 = 62097.68m³

F- Dimension of tanks:

Take D = (5-7) m = 6 m

Take n=8tanks

CT=n*L*B*D

take L = 45m

take B = 30m

NO .OF .Tanks =7.67 Tanks

Take No .of .Tanks =8 Tanks

وقد تم الاستعانة ببرنامج الاكسيل للقيام بالعمليات الحسابية في النوته الحسابية لمحطة تتقية مياه الشرب

حطة معالجة مياه الشرب	وتة الحسابية لم	i)
рор	215000	сар
w/c	300	I/c/d
n	50	year
rate	2.8	%
pop(25)	428812	сар
Qavg(25)	128643.6	m³/d
Qmm	180101.04	m³/d
Qmd	218694.12	m³/d
Qmh	321609	m³/d
Discharge	m³/d	m³/sec
Qavg(25)	128643.6	1.49
Qmm	180101.04	2.08
Qmd	218694.12	2.53
Qmh	321609	3.72
1-Design of	intake:	
A-design of intake pipes:		
Qdesign	2.29	m³/sec

Apipes	1.9	m²
Take no.of.pipes	4	pipes
A pipe	0.478	m²
diameter	0.780	m
Take Diameter	0.800	m
actual area	0.503	m²
actual velocity	1.14	m/sec
If no.of.pipes	3	pipes
velocity	1.60	m/sec
calculation of frictional he	ead loss (Hf)	
$V = 0.355 * C * D^{0.63} * S^{0.54}$	00000	
assume C =	120	
get S =	0.04	
Hf = S * pipe length = S * 1000m =	43.22	m
	5	
B- Design of pumps building:	<u>"</u>	
ass Qpump = 300 l/c/d	0.3	m³/sec
no.of.pumps	10	pumps
Distance between pumps	3	m
L.of.p.building=(n/2-1)*(Dis. bet. Pumps)+4m		
L.of.p.building	16	m
Take velocity	2	m/sec
A.of suction pipe	0.15	m²
diameter	0.44	m
c-Design of low lift pump:	<u></u>	
hp=ɤ*Qd*H/75*կ1*կ2		

TDH = Hst + Hf + Hm		
Ass Hst	35	m
Ass Hm	1	m
TDH	79.22	m
Ass η1=η2	0.8	
HP	495	hp
2-Design of coa	gulation units:	
A-Design of alum concentration tank:		
□ =Qd*s/c* ₈ *10 ⁶		
Qdesign	198111.14	m³/d
Ass dose =	50	PPM
8	1.02	t / m³
Ass Conc. =	15	%
volume	64.74	m³
⊡=n*D*A	"	
n	2	
depth	2	m
area	16.19	m²
L=B	4.0	m
B-Design of flash mixing tank:	<u>"</u>	
Qd=1.1Qmm	2.29	m³/sec
Take R.T	30.0	sec
volume=Qd*R.t	68.79	m³
take D	2.0	m
take n	1.0	

area = V/(D*n)	34.39	m²
diameter	6.62	m
Take D	6.65	m
C-Design of clarifloculators:	<u> </u>	
Qd=1.1*Qmm	198111.144	m³/d
1-Dimension of	tanks:	
assume n=	6	tanks
surface flow rate	30	m³/m²/d
Atot=Qd/S.F.R	6603.70	m²
A=n*(፻/4)*(Øs²*Øf²)	Mr. W	
Øs	41	m
Øf	16.36	≈16.40 m
2-check for floccula	tion zone:	
assume (Depth) f	5	m
volume=n*(□ /4)*Øf²*Df	6305	m³
retention time=volume/Qd	45.83	min
3-check for sedimenta	tion zone:	
assume Ds=Df+.5m	4.5	m
R.t=n*(□ /4)*(Øs²*Øf²)*Ds/Qd	0.1	hr
S.L.R=Qd/n*(½/4)*(Øs²-Øf²)	29.9	m³/m²/d
weir load rate=Qd/n*1*øs	257.02	m³/m/d
4-Design of sludge	hopper:	
□ s=Qd*s.s*R.R/n*N*(1Wc)*૪s*10 ⁶		
Take R.R =	0.95	
Take S.S =	300	PPM

Take W.C =	0.95	
□ S	92.26	m³
5-Design of slud	ge pipe:	
Take t=	10	min
Qs=□ s/time	0.154	m³/sec
Ass v =	2.00	m/sec
area =Qs/v	0.0769	m²
diameter of pipe	0.4	m
6-inlet pipe	e:	
Q=Qd/n	0.38	m³/sec
Ass v =	1.00	m/sec
A=Q/v	0.38	m²
diameter of pipe	0.7	700mm
7-outlet pip)e:	
Q=Qd/n	0.38	m³/se
Ass v =	0.50	m/sec
A=Q/v	0.76	m²
diameter of pipe	1.0	m
3-Design of filtrat	ion unit:	
A-Dimension of rapid sand filter:		
rate of filtration	130	m³/m²/d
Qd=Qmm	180101.04	m³/d
Atot = Qd/R.O.F	1385	m²
L	10	m
В	8	m

n = Atot/Aone	17.32	
take n	18.00	filter
stand by	2	filter
N tot	20.00	
R.O.Fact=Qd/(n*L*B)	125.1	m³/m²/d
B-inlet pipe:	<u> </u>	
Qd	2.08	m³/se
Ass v =	0.50	m/sec
A=Q/v	4.17	m²
diameter of pipe	2.3	m
C-outlet pipe:	1 1	
Qd	2.08	m³/sec
Ass v =	1.00	m/sec
A=Q/v	2.08	m²
diameter of pipe	1.63	≈1.65m
4-Design of sto	rage tank:	
Qd	2.08	m³/sec
C1 = Qmd - Qmm	38593.08	m³
C2 = 8hr * Qd	60033.7	m³
C3 = 0.5hr * Qmm	3752.1	m³
Take Cmax	60033.68	m³
Pop.	215000	Capita
C4 = 0.8 * fire demand	2064	m³
Volume = Cmax + C4	62097.68	m³
Ass water depth =	6.0	m

Area = V / Depth	10349.61333	m²
Ass width =	30	m
Ass length =	45	m
no.of. Tanks =	7.67	Tanks
Take No. of Tanks	8	Tanks

- سوف تستعرض اللوحات ما تم تصميمه في محطة تتقية مياه الشرب موضحا عليها كافة الاجزاء وذلك لعدم امكانية عرضها هنا بشكل يوضح كافة البيانات عليها.

