

APPM: Introduction to HPC

CURC Alpine: New User Seminar

Instructor: Trevor Hall

Website: www.rc.colorado.edu

Helpdesk: <u>rc-help@colorado.edu</u>

Slides: https://github.com/ResearchComputing/APPM_HPC

• Survey: http://tinyurl.com/curc-survey18

Learning Goals

- Part 1: Overview
 - Overview of CU Research Computing (CURC) and our resources
- Part 2: Using Blanca
 - Using Blanca
 - Logging in
 - Basic Linux Commands
 - File editing
 - Linux filesystem
 - Environment variables
 - Software modules on Blanca
 - Bash scripts and job scheduling

Part 1 - Overview

What is Research Computing?

- Provide services for researchers that include:
 - High performance computing (HPC)
 - Data visualization
 - Data storage
 - High speed data transfer
 - Data management support
 - Consulting
 - Training
- We are likely best known for:
 - Alpine Supercomputer (~22,000 cores)
 - Blanca "condo" cluster (~4,000 cores)
 - PetaLibrary storage

Primarily known for: High Performance Computing (HPC)

High Performance Computing (HPC) vs. Traditional Computing

 Traditional computing generally has access to a single processor (perhaps multiple cores)

What can / use HPC for?

- Solving large problems that require more:
 - Memory than you have on your PC
 - cores/nodes/power thank you have on your PC
- Jobs that require hardware you may not have:
 - High Performance GPU computing
 - Specific Operating System
- Visualization rendering

What can / use HPC for?

- Jobs that would take a long time on local machines can instead be distributed over hardware:
 - Parallelized to split up then joined (if software enabled)

Broken up into many serial jobs

Research Computing Resources

HPC Cluster: Alpine

Alpine

- Alpine is the 3rd-generation HPC cluster at CURC, following:
 - Janus
 - RMACC Summit

- Alpine is a heterogeneous cluster with hardware currently provided by CU Boulder, CSU, and Anschutz
- Access available to CU Boulder, CSU, AMC and RMACC users

HPC Cluster: Alpine

Alpine

- Hardware on Alpine will continue to be purchased and released in stages:
- Alpine (stage 4):
 - 256 General CPU Nodes
 - AMD Milan, 64 Core, 3.74G RAM/Core
 - 12 NVIDIA GPU Nodes
 - 3x NVIDIA A100 (atop General CPU node)
 - 8 AMD GPU Nodes
 - 3x AMD MI100 (atop General CPU node)
 - 22 AMD High-Memory Nodes
 - AMD Milan, 48 Core, 21.5G RAM/Core
 - Additional Hardware contributed by CSU, AMC
 - Nodes which boost priority for CSU/AMC users

HPC Cluster: Alpine

Alpine

Interconnect

- CPU nodes: HDR-100 InfiniBand (200Gb inter-node fabric)
- GPU nodes: 2x25 Gb Ethernet +RoCE
- Scratch Storage: 25Gb Ethernet +RoCE

- Operating System
 - RedHat Enterprise Linux version 8 operating system

Storage at CURC

Core

- Included with RC account
 - /home
 - /projects
 - scratch space

PetaLibrary

- Paid Service for:
 - Storage
 - Archive
 - Sharing of research data

Local or Cloud

- You can download your data locally or to a variety of other cloud resources
- Cloud Foundations at Research Computing

Data Sharing: Within RC

- Sharing workspaces
 - Project spaceScratch Space

 - PetaLibrary Space*

*If you have purchased PetaLibrary space

Data Sharing: Outside RC

- Globus (recommended):
 - GUI Web Application
 - Automates large transfersResumes failed transfers

 - Distributes large transfers across DTNs
 - Endpoints that can shared
- Data Transfer Nodes (DTN)
 - Internal CU network needed (VPN)
- Command line tools
 - scp, sftp, rsync, rclone

Cloud Computing

- CURC supports both AWS and onpremise cloud via CUmulus
 - For use cases not well-supported by HPC
- Can be used as an alternative to HPC
- Can be used to enhance HPC
 - Automatic job submission, high availability, etc.

Request a CUmulus application by contacting the RC helpdesk at <u>rc-help@colorado.edu</u>

Blanca

- A "condo" cluster whereby individual research groups own nodes
- List of nodes and groups can be found <u>here</u>
- Users have dedicated access to their group's nodes (e.g., blancaappm)
 - Jobs up to 7 days long
 - Can also run 'preemptable' jobs on other groups nodes (jobs up to 24 hours long)

 More documentation on Blanca: https://curc.readthedocs.io/en/latest/access/blanca.html

blanca-appm

- bnode0501, bnode0502 (2 nodes)
 - 32 (effectively 64) cores, avx2, Cascade, 2.3 GB RAM/core)
- bnode0508, bnode0509 (2 nodes)
 - 40 (effectively 80) cores, avx2, Cascade, 2.3 GB RAM/core)

Accessing Research Computing

How to Access RC Resources?

- 1. Get an RC account
- 2. Set up two-factor authentication with Duo
- 3. (Inform us of any specific needs)
- 4. Log in
- 5. Create greatness! (responsibly)

Getting an RC Account

- University of Colorado, Boulder users and affiliates:
 - Request an account through the RC Account request portal
 - https://rcamp.rc.colorado.edu/accounts/accountrequest/create/organization

Your RC Account

Access to:

- 1. Alpine Cluster
- 2. Core Storage
- 3. PetaLibrary Storage*
- 4. Open OnDemand
- 5. Approximately 2,000 Service Units (SUs) per month

*If purchased

Your RC Account

How can I use more computational time?:

- Trailhead Allocation (Default)
 - ~2,000 SUs / Month
- Ascent Allocation
 - 350,000 SUs
- Peak Allocation
 - >350,000 SUs

Request an allocation at

https://curc.readthedocs.io/en/latest/clusters/alpine/allocations.html?highlight=alpine%20allocation#comparing-trailhead-auto-allocation-ascent-allocation-and-peak-allocation-tiers

Your RC Account

How much storage do I have available?:

- /home directory
 - 2GB
- /projects directory
 - 250GB
- /scratch and /rc_scratch
 - 10TB*

More documentation at: https://curc.readthedocs.io/en/latest/compute/filesystems.html

Logging In

- It's important to note that you are NOT logging into any specific resource, Alpine, Blanca, etc.
- When you log in, you land on our login nodes
- From *there*, you can access our other resources:
 - Alpine
 - Blanca
 - Petalibrary

Part 2 (Using Blanca)

Logging into CURC

- ssh <identikey>@login.rc.colorado.edu
- Enter your identikey password
- Authenticate by accepting the Duo push to your smartphone
- Can also authenticate by text message, phone call, or token
- More info here: https://curc.readthedocs.io/en/latest/access/logging-in.html

What is Linux?

- Part of the Unix-like family of operating systems.
- Started in early '90s by Linus Torvalds.
- Typically refers only to the kernel with software from the GNU project and elsewhere layered on top to form a complete OS. Most is open source.

images courtesy of wikicommons

Why Use Linux?

- Default operating system on virtually all HPC systems and the foundation for many business services globally
- Extremely flexible
- Fast and powerful
- Many tools for software development
- You can get started with a few basic commands and build from there

Anatomy of a Linux command

command [flags] [target(s)]

ls – l myworkdir/

- Case is important!
- Help on commands is available through the "man" command (short for manual)

man ls

File and Directory related commands

- pwd- prints full path to current directory
- cd changes directory; can use full or relative path as target
- mkdir creates a subdirectory in the current directory
- rmdir removes an empty directory
- rm removes a file (rm -r removes a directory and all of its contents)
- cp copies a file
- mv moves (or renames) a file or directory
- **Is** lists the contents of a directory (|s -| gives detailed listing)

File-viewing commands

- less
 displays a file one screen at a time
- cat prints entire file to the screen
- head prints the first few lines of a file
- tail prints the last few lines of a file (with -f shows in realtime the end of a file that may be changing)
- diff shows differences between two files
- grep prints lines containing a string or other regular expression ps –df | grep xx
- sort sorts lines in a file
- find searches for files that meet specified criteria
- wc count words, lines, or characters in a file

The Linux Filesystem

- System of arranging files on disk
- Consists of directories (folders) that can contain files or directories
- Levels in full paths separated by forward slashes:

```
e.g. /home/user/scripts/analyze_data.sh
```

- Case-sensitive; spaces in names discouraged
- Some shorthand:
 - . (the current directory)
 - .. (the directory one level above)
 - (home directory)
 - (previous directory, when used with cd)

/home/<username>/documents/hpc/notes.txt

Jobs

What is a "job"?

- Work for the cluster to perform on
- Has a unique ID

1. Batch jobs

- Submit job script which will be executed when resources are available
 - Create script containing information about the job
 - Submit the job file to a queue

2. Interactive jobs

Work interactively at the command line of a compute node

Job Scheduling

- CURC Clusters are shared resources, jobs are:
 - Submitted to a queue
 - When the required resources become available, the scheduler determines which set of nodes to use
 - Executes your job

Job Script: 3 main parts

1. Directives

Specify resource requirements

1. Software

- Because jobs run on a different node than from where you submitted...
- ...software that is needed must be loaded via the job script

1. User scripting

the actual user scripting that will execute when the job runs

```
#!/bin/bash

## Directives
#SBATCH --<resource>=<amount>

## Software
module purge

## User Scripting
hostname # example bash command
```


Slurm Options (directives)

```
#SBATCH <options>
                                 sbatch <options>
 Allocation:
                                  --account=<account no>

    Partition:

                                  --partition=<partition name>

    Sending emails:

                                  --mail-type=<type>

    Output file:

                                  --output=<file name> (%j gives you job id)

    Number of nodes:

                                  --nodes=<nodes>

    Number of tasks:

                                  --ntasks=<processes>

    Quality of service:

                                 --qos=<qos>
 Reservation:
                                  --reservation=<name>
Wall time:
                                  --time=<wall time>

    Job Name:

                                  --job-name=<jobname> ...etc...
```

• FYI: You do NOT actually type <> above – this designates something specific you as a user must enter about your job

Software and Jobs

 Okay so running a job is easy, but how do I run a job with my software?

LMOD

- Module system on CURC systems
- Modifies your environment to make your desired software visible to your terminal.

```
$ module load matlab
$ ml matlab #shorthand version!
```


Software and Jobs

• More LMOD commands:

```
$ module purge  #Unloads all current modules
$ module unload python #Unloads python
$ module spider python #Searches for python in module tree
```

- What if my software isn't available through LMOD?
 - Software must be installed locally if not available through LMOD
 - RC User support is happy to assist, installs are best effort
 - For more assistance contact <u>rc-help@colorado.edu</u>

Topics we didn't cover today

- Job arrays (when you need to run lots of similar tasks)
- Running preemptable jobs
- CURC OnDemand (Interactive interface <u>https://ondemand.rc.colorado.edu</u>)
- Use of conda on CURC
- ..and lots of other cool stuff
- See: https://curc.readthedocs.io; or email rc-help@colorado.edu to schedule a consultation

Help! I'm stuck, where do I go?

- Documentation: <u>curc.readthedocs.io/</u>
- Trainings with Center for Research Data and Digital Scholarship (CRDDS):

https://www.colorado.edu/crdds/

- Coming up:
 - RC Quick Byte Getting an Account (1/23)
 - Alpine New User Seminar (1/25)
 - Supercomputing Spin Up Part 1 Working with Linux (1/30)
 - Supercomputing Spin Up Part 2 Job Submission (2/1)
- Helpdesk: rc-help@colorado.edu
- Consult Hours (Tuesday 12:00-1:00, Thursday 1:00-2:00)

Questions?

CURC User Policies: https://curc.readthedocs.io/en/latest/additional-resources/policies.html?highlight=policies#curc-user-policies

Survey and feedback

http://tinyurl.com/curc-survey18

