Principles of Economics

Discussion Session 7: Consumer Choice

Joe Wilske and Yuzhi Yao

Boston College

October 23, 2025

The Budget Constraint

Describes all combinations of Q_A and Q_B that are within your budget.

Exercise 1: Budget Constraint

Q1: Consider two goods, A and B, with $P_A = \$1$ and $P_B = \$2$. Suppose income is \$100.

- Oraw the budget constraint and label the intercepts.
- 4 How will the budget constraint be affected if
 - P_A increases to \$4?
 - Income increases to \$120?

Exercise 1: Budget Constraint

Solution:

Utility Function

- Describes the satisfaction or "utility" that one receives from consuming a good
- ullet Concave \Longrightarrow diminishing marginal utility

• But what if we want to compare the utility from both goods A and B?

Utility in 3 Dimensions

- Add another axis! \implies Utility depends on Q_A and Q_B
- Can translate this to 2D by depicting curves where utility is constant
 - Like a topographical map

Indifference Curves

- Every combination of A and B along the same curve gives the same utility
- The consumer is "indifferent" between all points on the same curve

Marginal Rate of Substitution

- MRS: How much B I'm willing to give up for one unit of A.
- Just the negative slope of the indifference curve between two points: $MRS = -(B_1 B_2)/(A_1 A_2)$

• In this case, MRS = 3/4. "I can give up 3/4 bananas for 1 apple and be indifferent".

Optimal Consumption Point

- Consumer maximizes utility subject to budget constraint.
- "Climb as high up the hill as possible" while staying behind the BC.

Optimal Consumption Point

- Consumer maximizes utility subject to budget constraint.
- "Climb as high up the hill as possible" while staying behind the BC.

• At point C, the (negative) slope of the BC is equal to the MRS (slope of the IC)

Exercise 2: Indifference Curve & Optimal Choice

Q1: Consider the following indifference curve.

- Calculate the marginal rate of substitution (MRS) from point B to C
- Suppose the price of ice cream bars and strudels are both \$10. Your income is \$110. Draw and label your budget constraint and mark the optimal choice in relation to an indifference curve.
- Suppose your income increases to \$220. How will your optimal choice change if
 - ice cream bar is a normal good?
 - ice cream bar is an inferior good?

How must your indifference curves be shaped in each of those scenarios?

Exercise 2: Indifference Curve & Optimal Choice

Solution:

- $MRS = \frac{34-23}{11-7} = \frac{11}{4}$
- The optimal choice is the tangent point of the indifference curve to the budget line

Ochanges in optimal choice:

Externalities

- When a market transaction effects a third party.
- Negative Externality: The third party is negatively effected.
 - Quantity produced is too high.
 - Policy response is a tax.
- Positive Externality: The third party is positively effected.
 - · Quantity produced is too low.
 - Policy response is a subsidy.

Exercise 3: Externalities

Q1: Consider the following market for beers:

- $Q^D = 20 P$
- $-Q^{S} = P 2$

Suppose that drinking beers at a party makes the party more fun for everybody, including non-drinkers, to the tune of \$2 of fun per beer.

- Find the market equilibrium quantity.
- What kind of externality is this?
- What is the appropriate policy response by non-drinkers?
- How big should the response be?
- Assume the policy is implemented. Find the socially optimal quantity.

Exercise 3: Externalities

Solution:

$$P = 11, Q = 9$$

- Positive
- Non-drinkers should subsidize beers for drinkers
- The size of the externality: $\sigma = 2$
- **9** $P^D = P^S 2$, so

$$Q^{D}(P^{D}) = Q^{S}(P^{S})$$

$$20 - P^{D} = P^{S} - 2$$

$$20 - (P^{S} - 2) = P^{S} - 2$$

$$\implies P^{S} = 12,$$

$$P^{D} = 10,$$

$$Q^{\text{optimal}} = 10.$$