

暑假培训——物理

作者: Huang

目录

第1草	直线这	动模型	1			
1.1	A 匀变速五大参数和五大方程					
	1.1.1	A ₁ 五大約	参数和五大方程 1			
	1.1.2	A_2 平均速度和中间速度 \ldots				
		1.1.2.1	A21 平均速度 1			
		1.1.2.2	A ₂₂ 匀变速直线运动中的中间速度 2			
	1.1.3	A ₃ 直线i	运动中的陌生函数			
	1.1.4	A4 刹车	掐阱			
1.2	B打点	打点计时器全模型总结				
	1.2.1	1 <i>B</i> ₁ 打点计时器原理				
		1.2.1.1	B ₁₁ 电火花打点计时器			
		1.2.1.2	B ₁₂ 电磁式打点计时器			
		1.2.1.3	B ₁₃ 配套仪器			
	1.2.2	B_2 打点 i	井时器──计时原理			
		1.2.2.1	<i>B</i> ₂₁ 等时推论			
		1.2.2.2	B ₂₂ 打点周期 T 和计数点 3			
	1.2.3	B ₃ 打点记	井时器──测量原理			
		1.2.3.1	B ₃₁ 测量速度			
		1.2.3.2	B ₃₂ 测量加速度			
	1.2.4	B4 其他 2	类型打点计时器 4			
		1.2.4.1	B ₄₁ 滴水计时器			
		1.2.4.2	B ₄₂ 频闪照相机			
		1.2.4.3	B ₄₃ 通过点迹判断小车运动方向 4			
		1.2.4.4	B ₄₄ 曝光时间			
1.3	C 分段	C 分段运动				
	1.3.1	3.1 C_1 等时分段运动 \ldots \ldots \ldots				
	1.3.2	6.2 C_2 不等时分段运动 \ldots				
1.4	D 自由	D 自由落体与竖直上抛				
	1.4.1	D_1 自由 3	落体运动5			
		1.4.1.1	D ₁₁ 自由落体运动的定义和公式 5			
		1.4.1.2	<i>D</i> ₁₂ 阻力对物体的影响			
		1.4.1.3	<i>D</i> ₁₃ 自由落体运动的三大题型			
	1.4.2	D ₂ 竖直.	上抛运动 6			
		1.4.2.1	D_{21} 三个重要量			
		1.4.2.2	<i>D</i> ₂₂ 对称性			
1.5	E 运动	E 运动学图像归纳				
	1.5.1	.5.1 E ₁ 位置时间 (x-t) 图				
		1.5.1.1	<i>E</i> ₁₁ 理解横纵轴			
		1.5.1.2	E ₁₂ 理解斜率			
		1.5.1.3	E ₁₃ 面积			
		1.5.1.4	E ₁₄ 图像交点			

		1.5.1.5 E ₁₅ 图像零点	8			
		1.5.1.6 E ₁₆ 图像拐点	8			
	1.5.2	<i>E</i> ₂ 速度时间 (v-t) 图	8			
		1.5.2.1 E ₂₁ 理解横纵轴	8			
		1.5.2.2 E ₂₂ 理解斜率	8			
		1.5.2.3 E ₂₃ 面积	8			
		1.5.2.4 E ₂₄ 图像交点	8			
		1.5.2.5 E ₂₅ 图像零点	8			
		1.5.2.6 E ₂₆ 图像拐点	9			
	1.5.3	E ₃ 加速度时间 (a-t) 图	9			
	1.5.4	E ₄ 其他类别图像	9			
		1.5.4.1 $E_{41}\frac{x}{t} - t$ 图像	9			
		1.5.4.2 $E_{42}v^2 - x$ 图像	9			
		1.5.4.3 $E_{43}x - t^2$ 图像	9			
		1.5.4.4 E ₄₄ v - x 图像	9			
1.6	F 追击	相遇模型	9			
	1.6.1	F_1 单物体多过程问题	9			
	1.6.2	F ₂ 多物体同时运动	0			
		1.6.2.1 F ₂₁ 共速点的运用 1	0			
		1.6.2.2 F ₂₂ 解追击相遇的基本套路	0			
		1.6.2.3 F ₂₄ 两次相遇的特殊结论	0			
第2章	5.2章 静力学模型					
カ ょ 早 2.1		··/天至 分析基础	1			
2.1	2.1.1		1			
	2.1.1	• ***	1			
			1			
	2.1.2		1			
	2.1.2		1			
		2.1.2.1 A ₂₁ グル				
	2.1.3		2			
	2.1.3	A3 按触关弹力模型 1 2.1.3.1 A ₂₃ 目标杆				
		2.1.3.1 A23 口你们	. 4			

第1章 直线运动模型

1.1 A 匀变速五大参数和五大方程

1.1.1 A_1 五大参数和五大方程

首先,我们要明确匀变速运动中的五个参数 v_0 质点在初始时刻的速度, v_t 质点在某一时刻 t 的速度,a 质点的加速度,t 时间,x 质点的位移,对于上述的参数,我们有

缺
$$x \longrightarrow v_t = v_0 + at$$

缺 $a \longrightarrow x = \frac{v_0 + v_t}{2}t$
缺 $v_t \longrightarrow x = v_0 t + \frac{1}{2}at^2$
缺 $v_0 \longrightarrow x = v_t t - \frac{1}{2}at^2$
缺 $t \longrightarrow 2ax = v_t^2 - v_0^2$

例题 1.1 从光电门甲至乙所用的时间 t,并用米尺测量甲、乙之间的距离 s。若滑块所受摩擦力为一常量,滑块加速度的大小 a、滑块经过光电门乙时的瞬时速度 v_1 、测量值 s 和 t 四个物理量之间所满足的关系式是

例题 1.2 一物体以初速度 $v_0 = 20$ m/s 沿光滑斜面匀减速向上滑动,当上滑距离 $x_0 = 30$ m 时,速度减为 5m/s 求运动的时间 t 的关系式是

注 上面的五大参数除了时间以外均为矢量,在规定正方向后,需要考虑正负

1.1.2 A₂ 平均速度和中间速度

1.1.2.1 A₂₁ 平均速度

在这里, 我们要注意到两个公式以及两个条件

$$\bar{v} = \begin{cases} \frac{x}{t} \left(\text{所有条件均使用} \right) \\ \frac{v_0 + v_t}{2} \left(\text{仅限于匀变速直线运动} \right) \end{cases}$$

1.1.2.2 A₂₂ 匀变速直线运动中的中间速度

中间时刻的瞬时速度: $v_{\frac{t}{2}} = \frac{v_0 + v_t}{2}$ 中间位置瞬时速度: $v_{\frac{x}{2}} = \sqrt{\frac{v_0^2 + v_t^2}{2}}$ 注 比大小: 当a = 0时, $v_{\frac{t}{2}} = v_{\frac{x}{2}}$; 当 $a \neq 0$ 时, $v_{\frac{t}{2}} < v_{\frac{x}{2}}$

1.1.3 A3 直线运动中的陌生函数

套路: 找准对应方程, 化简, 对比

例题 1.3

$$2s = t - t^2$$

例题 1.4

$$5v = 3 + 4t$$

例题 1.5

$$-0.1v^2 = 2x - 6$$

1.1.4 A₄ 刹车陷阱

什么是刹车陷阱? 刹车陷阱又称**停车陷阱,减速陷阱,掉头陷阱 例题 1.6** 一辆初速度为 20m/s 的汽车正在以大小为 5m/s² 的加速度减速, 求汽车在前 5s 内的位移。

例题 1.7 一辆初速度为 20m/s 的汽车正在以大小为-5 m/s^2 的加速度做变速运动, 求汽车在前 5s 内的位移。

注 要注意停车时间!

1.2 B 打点计时器全模型总结

1.2.1 B_1 打点计时器原理

1.2.1.1 B_{11} 电火花打点计时器

220V家用交流电 电火花打点计时器 {电火花+墨粉盒+白纸 电火花阻力小, 频率稳定

1.2.1.2 B_{12} 电磁式打点计时器

低压学生交流电源 电磁式打点计时器 {电流+磁铁+振针+复写纸 振针阻力大, 频率不稳定

1.2.1.3 B₁₃ 配套仪器

配套仪器:交流电源,开关,导线,纸带,刻度尺

1.2.2 *B*₂ 打点计时器——计时原理

1.2.2.1 B21 等时推论

等时推论: $\Delta s = aT^2 = s_2 - s_1 = s_3 - s_2 = s_4 - s_3 = \cdots$ (条件: 匀变速直线运动且时间间隔 T 相等)

笔记 应用 1: 判断是否为匀变速直线运动

应用 2: 计算某一段的位移

1.2.2.2 *B*₂₂ 打点周期 *T* 和计数点

为什么有些点不算数?

起始段过于密集且不好测量,间隔取点可以有效减小测量误差

注 以下三句等价:

- 1. 每隔四个点取一个计数点
- 2. 每五个点中取一个计数点
- 3. 两个计数点之间有四个点未画出

1.2.3 B_3 打点计时器——测量原理

1.2.3.1 B₃₁ 测量速度

- 1. 平均速度 $\bar{v} = \frac{s}{t}$ $v_{CE} = \frac{(s_3 + s_4)}{(2T)}$ 2. 中点瞬时速度 $v_{\rm th} = \frac{(s_{\pm} + s_{\pm})}{t_{\bar{b}}}$ $v_B = \frac{(s_1 + s_2)}{2T}$ $v_E = \frac{s_4 + s_5}{2T}$ 3. 端点瞬时速度 $v_{\rm th} = \frac{3s_6 s_5}{2T} \rightarrow v_A = \frac{3s_1 s_2}{2T}v_G = \frac{3s_6 s_5}{2T}$

1.2.3.2 B₃₂ 测量加速度

技巧: 两端劈开, 末减初, 除以
$$nT^2$$

$$a = \frac{(s_4 + s_5 + s_6) - (s_1 + s_2 + s_3)}{9T^2}$$

$$a = \frac{(s_4 + s_5) - (s_1 + s_2)}{6T^2}$$

$$a = \frac{(s_3 + s_4) - (s_1 + s_2)}{4T^2}$$

$$a = \frac{s_6 - s_1}{5T^2}$$

1.2.4 B4 其他类型打点计时器

1.2.4.1 B₄₁ 滴水计时器

相同时间内滴下一滴墨水,以记录物体的位置信息(打点)

1.2.4.2 B₄₂ 频闪照相机

相同时间拍摄一张照片,以记录物体的位置信息(打点)

1.2.4.3 B₄₃ 通过点迹判断小车运动方向

打点计时器: 先打出的点连接实物

滴水计时器: 后滴出的点靠近实物 频闪照片: 后闪出的点靠近小车

1.2.4.4 B₄₄ 曝光时间

定义: 持续拍摄的时长 (Δt)

底片:记录曝光时间内的轨迹 (Δx

题型: 计算平均速度 $(\bar{v} = \frac{\Delta v}{\Delta t}) \rightarrow$ 近似认为是瞬时速度 v

1.3 C 分段运动

1.3.1 C₁ 等时分段运动

将其看作打点计时器的纸带即可

例题 1.8 已知 O,A,B,C 为同一直线上的四点,AB 间的距离为 I_1,BC 间的距离为 I_2 , 一物作自 O 点由静止出发,沿此直线做匀变速运动,依次经过 A、B、C 三点,已知物体通过 AB 段与 BC 段所用的时间相等。求 O 与 A 的 距离。

1.3.2 C_2 不等时分段运动

均速法

两步走:

- 1. 画轴标时刻
- 2. $\bar{v} \rightarrow v_{\text{m}} \rightarrow a \rightarrow$ 其他

例题 1.9 一物体作匀加速直线运动,通过一段位移 Δx 所用的时间为 t_1 , 紧接着通过下一段位移 Δx 所用时间为 t_2 , 则物体运动的加速度为

1.4 D 自由落体与竖直上抛

1.4.1 D_1 自由落体运动

1.4.1.1 D_{11} 自由落体运动的定义和公式

定义 1.1

初速度 $v_0 = 0$, 只受重力 (不计空阻), 加速度 a = g 的匀加速直线运动

缺
$$x \longrightarrow v_t = v_0 + at$$
 $v = gt$
缺 $a \longrightarrow x = \frac{v_0 + v_t}{2}t$ $h = \frac{v_t}{2}t$
缺 $v_t \longrightarrow x = v_0 t + \frac{1}{2}at^2$ $h = \frac{1}{2}gt^2$
缺 $t \longrightarrow 2ax = v_t^2 - v_0^2$ $2gh = v_t^2$

1.4.1.2 D_{12} 阻力对物体的影响

1.4.1.3 D_{13} 自由落体运动的三大题型

题型一: 从顶端开始(利用好初始条件)

例题 1.10 质量为 m 的物体从高为 h 处自由下落,开始的 $\frac{h}{3}$ 用时为 t,则()

- A. 物体接下来的 ²/₃ 所用的时间为 2₁
- B. 物体落地所用的总时间为 $\sqrt{3}t$
- C. 物体落地时的速度为 $\sqrt{3}gt$
- D. 物体落地时的速度为 3gt

题型二:有前看前,没前看第(前几秒,第几秒)

例题 1.11 求自由落体运动第 3 秒内的位移 h

题型三: 非质点物体研究——专一

1.4.2 D₂ 竖直上抛运动

1.4.2.1 D₂₁ 三个重要量

最高点竖直方向速度:

上升时间:

最大高度:

1.4.2.2 D₂₂ 对称性

同高等速率,上下等时间

例题 1.12 如图所示一跳水运动员从离水面 10m 高的平台上向上跃起,举双臂直体离开台面. 此时其重心位于从手到脚全长的中点,跃起后重心升高 0.45m 达到最高点,落水时身体竖直,手先入水 (在此过程中运动员水平方向的运动忽略不计). 从离开跳台到手触水面,他可用于完成空中动作的时间 $_s$ (计算时,可以把运动员看作全部质量集中在重心的一个质点,g 取 $10m/s^2$, 结果保留两位数字).

1.5 E 运动学图像归纳

1.5.1 E₁ 位置时间 (x-t) 图

1.5.1.1 *E*₁₁ 理解横纵轴

x:相对于原点的位移

t:时间

Δx: 位移

 Δt : 时间间隔

1.5.1.2 E₁₂ 理解斜率

绝对值代表速度大小, 正负代表方向

1.5.1.3 *E*₁₃ 面积

没意义

1.5.1.4 E₁₄ 图像交点

相遇

1.5.1.5 E₁₅ 图像零点

回到原点

1.5.1.6 E₁₆ 图像拐点

速度方向发生改变

1.5.2 E₂ 速度时间 (v-t) 图

1.5.2.1 E₂₁ 理解横纵轴

v:瞬时速度

t:时间

Δν: 速度变化量

 Δt : 时间间隔

1.5.2.2 E₂₂ 理解斜率

绝对值代表加速度大小, 正负代表方向

1.5.2.3 E₂₃ 面积

位移

1.5.2.4 E₂₄ 图像交点

共速

1.5.2.5 E₂₅ 图像零点

速度为零

1.5.2.6 E₂₆ 图像拐点

加速度方向改变

1.5.3 E₃ 加速度时间 (a-t) 图

1.5.4 E₄ 其他类别图像

破题方法: 五个运动学方程

1.5.4.1
$$E_{41}\frac{x}{t} - t$$
 图像

1.5.4.2
$$E_{42}v^2 - x$$
 图像

1.5.4.3
$$E_{43}x - t^2$$
 图像

1.6 *F* 追击相遇模型

1.6.1 *F*₁ 单物体多过程问题

臺 笔记 第 n 个时间 t 内的位移之比等于 1: 3: 5: 7......: (2n-1)

前n个时间t内的位移之比等于 1: 4: 9: 16.....: n^2

第 n 个位移 x 内的时间之比等于 1: $\sqrt{2}-1$: $\sqrt{3}-\sqrt{2}$: $\sqrt{4}-\sqrt{3}$: $\sqrt{n}-\sqrt{n-1}$

前n个位移x内的时间之比等于1: $\sqrt{2}$: $\sqrt{3}$: $\sqrt{4}$: \sqrt{n}

1.6.2 F_2 多物体同时运动

1.6.2.1 F₂₁ 共速点的运用

追击相遇问题中的距离最值

1.6.2.2 F_{22} 解追击相遇的基本套路

相遇情况分析:

利用共速点分析: 利用运动学方程求解:

1.6.2.3 F_{24} 两次相遇的特殊结论

 $t_1+t_2=2t_{\sharp\!\!\!\!/}$

第2章 静力学模型

2.1 A 受力分析基础

2.1.1 A₁ 刚绳弹力模型

常考的刚性光滑轻绳

2.1.1.1 *A*₁₁ 有结点刚性光滑轻绳

结点左右视为两条

2.1.1.2 A₁₂ 无结点刚性光滑轻绳

同条同力

例题 2.1 (2024 • 浙江) 如图所示,在同一竖直平面内,小球 A、B上系有不可伸长的细线 a、b、c 和 d, 其中 a 的上端悬挂于竖直固定的支架上,d 跨过左侧定滑轮、c 跨过右侧定滑轮分别与相同配重 P、Q 相连周节左、右两侧定滑轮高度达到平衡。已知小球 A、B 和配重 P、Q 质量均为 50g, 细线 c、d 平行且与水平成 θ = 30(不计摩擦),请做出 a、b、b b Q 的受力分析。

2.1.2 A₂ 轻杆/硬杆弹力模型

2.1.2.1 A₂₁ 死杆

定义: 固定不可动的杆 (可直可弯)

特征: 杆对其一端物体弹力满足"大小任意、方向任意"

2.1.2.2 A₂₂ 活杆

一端铰接杆: 杆对其一端的物体或受力点的弹力满足"大小任意、方向沿杆

两端自由杆: 杆对其两端物体的弹力满足"方向沿杆、等大反向"

2.1.3 A₃ 接触类弹力模型

垂直于接触面,指向受力物体

2.1.3.1 A₂₃ 目标杆

杆作为受力分析的目标来出现, 需要考虑重力

例题 2.2 如图所示,一轻质晒衣架静置于水平地面上,水平横杆与四根相同的斜杆垂直,两斜杆夹角 $\theta=60$ 。一重为 G 的物体悬挂在横杆中点,请对任一斜杆做受力分析。

