STATE OF THE ART UNIVERSAL IMPULSE CURRENT TEST SYSTEMS Mr. Carl-Hendrik Stuckenholz Mr. Michael Gamlin

Mr. Carl-Hendrik Stuckenholz April 29th, 2016

OUTLINE

- 1. Overview of Exponential Wave Shapes
- 2. Basic Prinicple of Impulse Current Generation
- 3. Universal Impulse Current Generator for IEC 62305-1
- 4. Universal Impulse Current Generator for IEC 60099-4
- 5. Conclusion

OVERVIEW EXPONENTIAL WAVE SHAPES

Wave	Spec	ifications and A	Appearance
Shape	T₁ in μs	T_2 in μ s	IEC
0.25/100	0.25	100	62305-1
1 / ≤ 20	1	≤ 20	60099-4
1/200	1	200	62305-1
2/20	2	20	60099-8
4/10	4	10	60099-4 60099-8
5 / 300	5	300	61000-4-5 61643-21
6/310	6	310	61643-311
8/20	8	20	60099-4 60099-8 61000-4-5 61643-11 61643-21 61643-311 61643-331
10 / 250	10	250	61643-21
10 / 350	10	350	61643-11 61643-21 61643-311 61643-331 62305-1
10 / 1000	10	1000	61643-21 61643-311
30 / 60	30 < T ₁ < 100	2 · T ₁	60099-4
30 / 80	30	80	60099-4

OVERVIEW EXPONENTIAL WAVE SHAPES

Wave	Spec	Specifications and A		
Shape	T₁ in µs	T_2 in μ s	IEC	
0.25/100	0.25	100	62305-1	
1 / ≤ 20	1	≤ 20	60099-4	
1/200	1	200	62305-1	
2/20	2	20	60099-8	
4 / 10	4	10	60099-4 60099-8	
5 / 300	5	300	61000-4-5 61643-21	
6/310	6	310	61643-311	
8 / 20	8	20	60099-4 60099-8 61000-4-5 61643-11 61643-21 61643-311 61643-331	
10 / 250	10	250	61643-21	
10 / 350	10	350	61643-11 61643-21 61643-311 61643-331 62305-1	
10 / 1000	10	1000	61643-21 61643-311	
30 / 60	30 < T ₁ < 100	2 · T ₁	60099-4	
30 / 80	30	80	60099-4	

	8/20				
	IEC	T ₁	T ₂		
	62475				
	61643-21	8 μ s \pm 20 %	20 μ s \pm 20 %		
	61000-4-5				
	60099-4	$8\mu extstyle \pm 1\mu extstyle s$	20 µs \pm 2 µs		
	60099-8	ο μο 💷 τ μο	20 μ5 ± 2 μ5		
>	61643-11				
	61643-311	8 μ s \pm 10 %	20 μ s \pm 10 %		
<u>/</u>	61643-331				

OVERVIEW EXPONENTIAL WAVE SHAPES

Wave	Spec	ifications and A	ppearance
Shape	T₁ in μs	T_2 in μ s	IEC
0.25/100	0.25	100	62305-1
1 / ≤ 20	1	≤ 20	60099-4
1/200	1	200	62305-1
2/20	2	20	60099-8
4/10	4	10	60099-4 60099-8
5 / 300	5	300	61000-4-5 61643-21
6/310	6	310	61643-311
8 / 20	8	20	60099-4 60099-8 61000-4-5 61643-11 61643-21 61643-311 61643-331
10 / 250	10	250	61643-21
10 / 350	10	350	61643-11 61643-21 61643-311 61643-331 62305-1
10 / 1000	10	1000	61643-21
			61643-311
30 / 60	30 < T ₁ < 100	2 · T ₁	60099-4
30 / 80	30	80	60099-4

	8/20				
	IEC	T ₁	T ₂		
	62475				
	61643-21	8 μ s \pm 20 %	$20~\mu s \pm 20~\%$		
	61000-4-5				
	60099-4	0 110 ± 1 110	20.110 ± 2.110		
	60099-8	8 µs \pm 1 µs	$20~\mu s \pm 2~\mu s$		
>	61643-11				
\wedge	61643-311	8 μ s \pm 10 %	20 μ s \pm 10 %		
<u>/</u>	61643-331				

	10/350
IEC	
62475a	T_1 = 10 μ s \pm 30 %
61643-21	$T_2 = 350 \mu s \pm 20 \% (\pm 50 \%)^a$
61643-11	T_2 $T_{peak} \le 50 \text{ µs (minor interest)}$ $T_{transfer} < 5 \text{ ms}$ $Q = I_{imp} \cdot 5 \cdot 10 \cdot 4 \text{ s} - 10 \cdot + 20 \%$ $W/R = I_{imp} \cdot 2.5 \cdot 10 \cdot 4 \text{ s} \cdot 10 \cdot + 45 \%$
61643-1 ^b	$T_{\text{peak}} \le 50 \text{ µs (minor interest)}$ $T_{\text{transfer}} < 10 \text{ ms}$ $Q = I_{\text{imp}} \cdot 5 \cdot 10 \cdot 4 \text{ s} \pm 20 \text{ %}$ $W/R = I_{\text{imp}} \cdot 2.5 \cdot 10 \cdot 4 \text{ s} \pm 35 \text{ %}$
62305-1	$\Delta t = 10 \ \mu s \pm 20 \ \%$ $Q = I_{imp} \cdot 5 \cdot 10 \cdot 4 \ s \pm 20 \ \%$ $W/R = I_{imp} \cdot 2.5 \cdot 10 \cdot 4 \ s \pm 35 \ \%$

a in case of energy requirement b replaced by IEC 61643-11

OUTLINE

- 1. Overview of exponential wave shapes
- 2. Basic Prinicple of Impulse Current Generation
- 3. Universal Impulse Current Generator for IEC 62305-1
- 4. Universal Impulse Current Generator for IEC 60099-4
- 5. Conclusion

BASIC PRINCIPLE Periodically Damped Impulse

$$\begin{split} i(t) &= \frac{U_{ch}}{\omega \cdot L} \cdot \sin \left(\omega \cdot t\right) \cdot e^{-t/\tau}; \quad \left(\frac{di}{dt}\right)_{\max} = \frac{U_{ch}}{L} \quad \text{(a)} \quad t_{i_{\max}} = \frac{\arctan(\omega \cdot \tau)}{\omega} \\ \tau &= \frac{2 \cdot L}{R}, \quad \omega = \sqrt{\frac{1}{L \cdot C} - \frac{R^2}{4 \cdot L^2}}, \quad R < 2\sqrt{\frac{L}{C}} \\ Q &= \int_0^\infty \left|i(t)\right| \cdot dt = \frac{U_{ch}/L}{\omega^2 + 1/\tau^2} \cdot \left(\frac{2}{1 - e^{-\pi/(\omega \cdot \tau)}} - 1\right); \quad \int_0^\infty \left(i(t)\right)^2 \cdot dt = \frac{U_{ch}^2}{4 \cdot \omega^2 \cdot L^2} \cdot \frac{\tau}{1 + 1/(\omega \cdot \tau)^2} \end{split}$$

BASIC PRINCIPLE Aperiodically Damped Impulse - Overdamping

$$\begin{split} i(t) &= \frac{U_{ch}}{\sqrt{R^2 - 4 \cdot L/C}} \cdot (e^{-t/\tau_1} - e^{-t/\tau_2}); \quad \left(\frac{di}{dt}\right)_{\max} = \frac{U_{ch}}{L}; \quad t_{i_{\max}} = \frac{\tau_1 \cdot \tau_2}{\tau_1 - \tau_2} \cdot \ln \frac{\tau_1}{\tau_2} \\ \tau_1 &= \frac{1}{\frac{R}{2 \cdot L} - k}, \quad \tau_2 = \frac{1}{\frac{R}{2 \cdot L} + k}, \quad k = \sqrt{\left(\frac{R}{2 \cdot L}\right)^2 - \frac{1}{L \cdot C}}, \quad R > 2\sqrt{\frac{L}{C}} \\ Q &= \int_0^\infty |i(t)| \cdot dt = U_{ch} \cdot C; \quad \int_0^\infty (i(t))^2 \cdot dt = \frac{U_{ch}^2 / 2}{\left(R^2 - 4 \cdot L/C\right)} \cdot \frac{\left(\tau_1 - \tau_2\right)^2}{\tau_1 + \tau_2} \end{split}$$

BASIC PRINCIPLE Aperiodically Damped Impulse - Crowbar

$$i(t) = \frac{U_{ch}}{\omega \cdot (L_1 + L_2)} \cdot \sin(\omega \cdot t) \text{ for } 0 \le t \le \frac{\pi}{2 \cdot \omega}; \quad i(t) = \frac{U_{ch}}{\omega \cdot (L_1 + L_2)} \cdot e^{-\frac{t}{\tau}} \text{ for } t \ge \frac{\pi}{2 \cdot \omega}$$

$$\omega = \sqrt{\frac{1}{C \cdot (L_1 + L_2)}}; \quad \tau = \frac{L_2}{R}, \quad i_{\text{max}} = \frac{U_{ch}}{\omega \cdot (L_1 + L_2)} \text{ @ } t = \frac{\pi}{2 \cdot \omega}, \quad \left(\frac{di}{dt}\right)_{\text{max}} = \frac{U_{ch}}{(L_1 + L_2)} \text{ @ } t = 0$$

$$Q = \int_0^{\infty} |i(t)| \cdot dt = U_{ch} \cdot C + \frac{U_{ch}}{\omega \cdot (L_1 + L_2)} \cdot \tau; \quad \int_0^{\infty} (i(t))^2 \cdot dt = \frac{U_{ch}^2}{\omega^2 \cdot (L_1 + L_2)^2} \cdot \left(\frac{\pi}{4 \cdot \omega} + \frac{\tau}{2}\right)$$

BASIC PRINCIPLE Aperiodically Damped Impulse - Crowbar Systems

Crowbar with spark gap

BASIC PRINCIPLE Aperiodically Damped Impulse - Crowbar Systems

Crowbar with spark gap

Crowbar with diode

BASIC PRINCIPLE Aperiodically Damped Impulse - Crowbar Systems

Crowbar with spark gap

control unit 1 (master) t1 L2 R2 main spark gap peaking circuit impulse voltage generator crowbar C1 — U0 C1 — U0 C1 — Cpeaking control unit 2 (slave) RDUT

Crowbar with diode

	Crowbar	Crowbar	Overdamped
	Spark gap	Diode	
Efficiency	High	High	Low
Efficiency	Resistance m Ω	Resistance m Ω	Resistance Ω
Peak amplitude	High	Medium	Low
10/350	250 kA	50 kA	10 kA
Back coupling DUT	High	High	Low
Handling	Complicated	Intermediate	Easy
Acoustic noise	High	Low	Low
Electric noise	High	Low	Low
Degree of freedom	High	Low	Low

BASIC PRINCIPLE Comparison Crowbar / Overdamped Circuit

Identical capacitor bank, time to half value $T_2 = 350 \mu s$

		Crowbar	Overdamped
Charging voltage	kV	100	100
Capacitance	μF	30	30
Resistance	Ω	0.036	17
Inductance L ₁	μΗ	1	
Inductance L ₂	μΗ	18	2.1
T_1	μS	29.6	0.83
T_2	μS	350	350
Peak Current	kA	125.7	5.9
	%	100	4.7
Current @ T ₂	kA	62.4	3.0

BASIC PRINCIPLE Comparison Crowbar / Overdamped Circuit

Identical capacitor bank, time to half value $T_2 = 350 \mu s$

		Crowbar	Overdamped
Charging voltage	kV	100	100
Capacitance	μF	30	30
Resistance	Ω	0.036	17
Inductance L ₁	μΗ	1	
Inductance L ₂	μΗ	18	2.1
T ₁	μS	29.6	0.83
T_2	μS	350	350
Peak Current	kA	125.7	5.9
	%	100	4.7
Current @ T ₂	kA	62.4	3.0

Peak current amplitude approx. 20 x higher for the crowbar arrangement!

BASIC PRINCIPLE Adjusting exponential impulses

	Charging voltage	Capacitance	Inductance	Resistance
Change	↑	↑	↑	↑
I _{peak}	↑	↑	\	↓
T ₁	_	<u></u>	↑	\
T ₂	-	↑	↑	↑

General guidelines for linear loads without consideration of mutual interactions Variable impact of parameters depending on load point and mutual interactions Change in behaviour possible!

Examples:

- 1. Reduction of capacitors ⇒ increase of generator self inductance; non-linear!
- 2. Increase of system voltage \Rightarrow increase of generator self inductance

BASIC PRINCIPLE Sine Half Wave

Diode or crowbar to limit current reversal

$$i(t) = \frac{U_{ch}}{\omega \cdot (L_1 + L_2)} \cdot \sin(\omega \cdot t); \quad 0 \le t \le \frac{\pi}{\omega}; \qquad \omega = \sqrt{\frac{1}{(L_1 + L_2) \cdot C}}$$

Switching @ i(t) = 0;
$$u(t) = -u_{peak}$$

$$i_{\text{max}} = \frac{U_{ch}}{\omega \cdot (L_1 + L_2)}$$
 @ $t_{i_{\text{max}}} = \frac{\pi}{2 \cdot \omega}$; $\left(\frac{di}{dt}\right)_{\text{max}} = \frac{U_{ch}}{(L_1 + L_2)}$ @ $t = 0$

$$Q = \int_{0}^{\frac{\pi}{\omega}} i(t) \cdot dt = 2 \cdot U_{ch} \cdot C; \quad \frac{W}{R} = \int_{0}^{\frac{\pi}{\omega}} i(t)^{2} \cdot dt = \frac{U_{ch}^{2} \cdot \pi}{2 \cdot \omega^{2} \cdot (L_{1} + L_{2})}$$

BASIC PRINCIPLE Comparison Aperiodically Damped / Sine Half Wave

Identical capacitor bank and test object

your link to electricity

BASIC PRINCIPLE Comparison Aperiodically Damped / Sine Half Wave

Identical capacitor bank and test object

Aperiodically damped with crowbar	Sine half wave
Switching at I = I _{max}	Switching at I = I _{min}
Switching at U _{ch} = 0	Switching at U _{ch} = - U _{peak} (~½ U _{peak})
I _{peak} = 68 kA	I _{peak} = 68 kA
Q = 55 As	Q = 10 As
W/R = 2000 kJ/Ω	$W/R = 502 \text{ kJ/}\Omega$

BASIC PRINCIPLE Comparison Aperiodically Damped / Sine Half Wave

Identical capacitor bank and test object

Aperiodically damped with crowbar	Sine half wave
Switching at I = I _{max}	Switching at I = I _{min}
Switching at U _{ch} = 0	Switching at $U_{ch} = -U_{peak} (\sim \frac{1}{2} U_{peak})$
I _{peak} = 68 kA	I _{peak} = 68 kA
Q = 55 As	Q = 10 As
W/R = 2000 kJ/Ω	$W/R = 502 \text{ kJ/}\Omega$

Charge Q approx. 5.5 x higher for crowbar arrangement!

IMPULSE CURRENT GENERATOR BASIC PRINCIPLE – Rectangular Impulse

$$\frac{n \cdot 1.1 \cdot T_{90\%}}{2 \cdot (n-1)} = \sqrt{L_{tot} \cdot C_{tot}};$$

$$\frac{n \cdot 1.1 \cdot T_{90\%}}{2 \cdot (n-1)} = \sqrt{L_{tot} \cdot C_{tot}};$$

$$L_{tot} = \sum_{i=1}^{n} L_{i}, \quad C_{tot} = n \cdot C, \quad n = 8..12$$

$$i_p = \frac{U_0}{R_{tot} + \sqrt{\frac{L_{tot}}{C_{tot}}}}; R_{tot} = R_s + R_{MOA} = \sqrt{\frac{L_{tot}}{C_{tot}}}$$

OUTLINE

- 1. Overview of exponential wave shapes
- 2. Basic Prinicple of Impulse Current Generation
- 3. Universal Impulse Current Generator for IEC 62305-1
- 4. Universal Impulse Current Generator for IEC 60099-4
- 5. Conclusion

ICG FOR IEC 62305-1 Requirements

IEC 62305-1 general wave shapes

First negative Subsequent Positive impulse impulse impulse 10/350 1/200 0.25/100 50 kA 200 kA 100 kA Ipeak 100 kA/µs di/dt 20 kA/µs 200 kA/µs T_1 10 µs 1 µs $0.25 \, \mu s$ T_2 350 µs 200 µs 100 µs Q_{short} 100 C W/R 10 MJ/Ω

IEC 62305-1 wave shapes for test

LPL I	First positive impulse energy	First positive Impulse	Subsequent negative impulse
	10/350	10/350	0.25/100
l _{peak}	200 kA		
Q _{short}	100 C		
W/R	10 MJ/Ω		
Δί		200 kA	50 kA
Δt		10 μs	0.25 μs

ICG FOR IEC 62305-1 Customer specification

Customer specification

	Positive impulse	First negative impulse	Subsequent impulse
	10/350	1/200	0.25/100
I _{peak}	200 kA ± 10 %	100 kA ± 10 %	20 kA ± 10 %
T ₁	10 µs ± 10 %	4 μs ± 10 %	0.25 μs ± 20 %
T ₂	350 μs ± 10 %	200 µs ± 10 %	100 µs ± 10 %
Q _{short}	100 C ± 20 %		
W/R	10 MJ/Ω ± 35 %		

ICG FOR IEC 62305-1 Layout

charging rectifier ICG
capacitor bank ICG
spark gap ICG
crowbar
charging rectifier IVG

ICG FOR IEC 62305-1 Sphere gaps

ICG FOR IEC 62305-1 Results 10/350

10/350	Positive impulse	
	10/350	
I _{peak}	209 kA	
di/dt	19 kA/μs	
T ₁	10.9 µs	
T ₂	366 µs	
Q_{short}	131 C	
W/R	11.4 MJ/Ω	

ICG FOR IEC 62305-1 Results 1/200

1/200	T ₁ /T ₂	I _{max} @1 µs	I _{max}
I _{peak}	11.0 kA	53.0 kA	94.4 kA
T ₁	1.0 µs	1.0 μs	4.37 μs
T ₂	190.0 µs	40.0 µs	192.0 µs
Setup			Crowbar

ICG FOR IEC 62305-1 Results 0.25/100

1/100	Subseqeunt impulse
	1/100
l _{peak}	21.8 kA
T ₁	0.28 ns
T ₂	97.6 µs

OUTLINE

- 1. Overview of exponential wave shapes
- 2. Basic Prinicple of Impulse Current Generation
- 3. Universal Impulse Current Generator for IEC 62305-1
- 4. Universal Impulse Current Generator for IEC 60099-4
- 5. Conclusion

ICG FOR IEC 60099-4 Customer specification

Exponential wave shapes

Impulse T₁ T_2 I_{peak} kΑ μs μs 0.5 < 2030 0.5 < 20 1/<20 50 1 < 20 8/20 75 20 8 4/10 150 4 10 30/80 80 50 30 30/60 ≈ $2x T_1$ 45 30

Sine half wave / rectangular wave

Sine Half Wave	I _{peak} kA	T _{duration} ms
0.2	48	0.2
2	5.8	2
4	3	4
Rectangular	I _{peak} kA	T _{duration}
2	2.8	2
4	1.5	4

ICG FOR IEC 60099-4 Layout

inductances for rectangular wave

capacitor bank

damping elements

central spark gap

ICG FOR IEC 60099-4 Special Wave Shapes – 0.5/<20

Combination of capacitors with different capacitance value Superposition of currents

ICG FOR IEC 60099-4 Special Wave Shapes – Sine Half Wave

First time with diode Up to 50 kA

OUTLINE

- 1. Overview of exponential wave shapes
- 2. Basic Prinicple of Impulse Current Generation
- 3. Universal Impulse Current Generator for IEC 62305-1
- 4. Universal Impulse Current Generator for IEC 60099-4
- 5. Conclusion

Conclusion

- Universal impulse current generators for almost all waveforms possible with optimally chosen components/extensions
- Crowbars can be built for highest current levels up to 250 kA
- Aperiodically damped impulses using crowbars beneficial for high energy / charge impulses
- Time parameters (especially front times) critical for high energy / charge impulses (10/350) due to necessary inductance values

