346532,	Daniel Boschmann
348776,	Anton Beliankou
356092.	Daniel Schleiz

2	3	4	5	\sum
/8	/5	/8	/7	/28

Gruppe **G**

Aufgabe 2 (Punkte: /8)

(a)

(i)

Die Aussage ist falsch. Seien $\varphi = 0, \psi = 1$. Dann gilt $\varphi \to \psi \models \varphi$ nicht, da $\varphi \to \psi$ eine Tautologie ist und insbesondere jede Interpretation dazu passt, während φ unerfüllbar ist und ebenfalls jede Interpretation dazu passt.

(ii)

Die Aussage ist wahr. Zeige dazu beide Richtungen der Aussage:

• " \Rightarrow ":

Es gelte $\Phi \models \psi$. Dann gilt für alle Modelle $\mathfrak I$ von Φ , dass $\llbracket \psi \rrbracket^{\mathfrak I} = 1$. Da somit $\llbracket \neg \psi \rrbracket^{\mathfrak I} = 0$ für alle Modelle $\mathfrak I$ von Φ , existiert kein Modell für $\Phi \cup \{\neg \psi\}$, also unerfüllbar.

• " = ":

Sei $\Phi \cup \{\neg \psi\}$ unerfüllbar. Betrachte zwei Fälle: Ist Φ unerfüllbar, so gilt $\Phi \models \psi$, da für alle Modelle von Φ , welche nicht existieren, gilt, dass diese auch Modell von ψ sind. Ist aber Φ erfüllbar, so besitzt Φ mindestens ein Modell. Da angenommen wurde, dass $\Phi \cup \{\neg \psi\}$ unerfüllbar ist, gilt für alle Modelle \Im von Φ , dass $\llbracket \neg \psi \rrbracket^{\Im} = 0$., da sonst $\Phi \cup \{\neg \psi\}$ erfüllbar wäre. Somit gilt für diese Modelle auch $\llbracket \psi \rrbracket^{\Im} = 1$ und damit folgt $\Phi \models \psi$.

(iii)

Die Aussage ist wahr. Da $\Phi \models \psi$ für alle $\psi \in \Psi$ gilt, ist jedes (zu $\Phi \cup \Psi$ passende) Modell von Φ ebenfalls Modell von Ψ . Gilt nun $\Psi \models \varphi$, so ist jedes der eben erwähnten Modelle ebenfalls Modell von φ . Also gilt auch $\Phi \models \varphi$.

(b)
Mit (a)(ii) ist die Gültigkeit der gegebenen Folgerungsbeziehung äquivalent zur Unerfüllbarkeit von

$$\{Y \vee \neg Z \vee Q, \neg Y \vee \neg Z, U \vee Y \vee \neg Q, U \vee X, \neg X \vee Y \vee \neg Z\} \cup \{\neg(Z \to (U \wedge Q))\}$$

$$\equiv \{Y \vee \neg Z \vee Q, \neg Y \vee \neg Z, U \vee Y \vee \neg Q, U \vee X, \neg X \vee Y \vee \neg Z\} \cup \{Z \wedge (\neg U \vee \neg Q)\}$$

Überführe die Formelmenge in die Klauselmenge

$$K = \{ \{Y, \neg Z, Q\}, \{\neg Y, \neg Z\}, \{U, Y, \neg Q\}, \{U, X\}, \{\neg X, Y, \neg Z\}, \{Z\}, \{\neg U, \neg Q\} \}.$$

Resolviere $\{Y, \neg Z, Q\}$ mit $\{\neg Y, \neg Z\}$ und erhalte die Resolvente $C_1 := \{\neg Z, Q\}$. Resolviere C_1 mit $\{\neg U, \neg Q\}$ und erhalte die Resolvente $C_2 := \{\neg Z, \neg U\}$. Resolviere C_2 mit $\{U, X\}$, erhalte

Mathematische Logik
Übung X
24. April 2017

346532, Daniel Boschmann 348776, Anton Beliankou 356092, Daniel Schleiz

die Resolvente $C_3 := \{\neg Z, X\}$. Resolviere C_3 mit $\{\neg X, Y, \neg Z\}$ und erhalte die Resolvente $C_4 := \{\neg Z, Y\}$. Resolviere C_4 mit $\{\neg Y, \neg Z\}$ und erhalte die Resolvente $C_5 := \{\neg Z\}$. Resolviere nun noch $C_5 := \{\neg Z\}$ mit $\{Z\}$ und erhalte schließlich die leere Klausel \square .

Da die leere Klausel ableitbar ist, ist die Klauselmenge K unerfüllbar. Somit folgt die Gültgkeit der Folgerungsbeziehung.

Aufgabe 3 (Punkte: /5)

Aufgabe 4 (Punkte: /8)

(a)

(b)

Aufgabe 5 (Punkte: /7)