Calcul asymptotique

Comparaison de suites numériques

Exercice 1 [02281] [Correction]

Trouver un équivalent simple aux suites (u_n) suivantes et donner leur limite :

(a)
$$u_n = (n+3\ln n)e^{-(n+1)}$$
 (b) $u_n = \frac{\ln(n^2+1)}{n+1}$ (c) $u_n = \frac{\sqrt{n^2+n+1}}{\sqrt[3]{n^2-n+1}}$

(b)
$$u_n = \frac{\ln(n^2+1)}{n+1}$$

(c)
$$u_n = \frac{\sqrt{n^2 + n + 1}}{\sqrt[3]{n^2 - n + 1}}$$

Exercice 2 [00236] [Correction]

Trouver un équivalent simple aux suites (u_n) suivantes et donner leur limite :

(a)
$$u_n = \frac{n^3 - \sqrt{n^2 + 1}}{\ln n - 2n^2}$$

(a)
$$u_n = \frac{n^3 - \sqrt{n^2 + 1}}{\ln n - 2n^2}$$
 (b) $u_n = \frac{2n^3 - \ln n + 1}{n^2 + 1}$ (c) $u_n = \frac{n! + e^n}{2^n + 3^n}$

(c)
$$u_n = \frac{n! + e^n}{2^n + 3^n}$$

Exercice 3 [02282] [Correction]

Trouver un équivalent simple aux suites (u_n) suivantes :

(a)
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$

$$\begin{array}{c} \text{(b)} \ \ u_n = \\ \sqrt{n+1} - \sqrt{n-1} \end{array}$$

(a)
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$
 (b) $u_n = \sqrt{n+1} - \sqrt{n-1}$ (c) $u_n = \sqrt{\ln(n+1) - \ln(n)}$

Exercice 4 [00235] [Correction]

Trouver un équivalent simple aux suites (u_n) suivantes :

(a)
$$u_n = \sin \frac{1}{\sqrt{n+1}}$$

(b)
$$u_n = \ln\left(\sin\frac{1}{n}\right)$$
 (c) $u_n = 1 - \cos\frac{1}{n}$

(c)
$$u_n = 1 - \cos \frac{1}{n}$$

Exercice 5 [01472] [Correction]

Déterminer un équivalent simple de la suite dont le terme général est :

(a)
$$2\sqrt{n} - \sqrt{n+1} -$$
 (b) $\frac{\ln(n+1) - \ln n}{\sqrt{n+1} - \sqrt{n}}$ (c) $^{n+1}\sqrt{n+1} - \sqrt[n]{n}$

(b)
$$\frac{\ln(n+1) - \ln r}{\sqrt{n+1} - \sqrt{n}}$$

(c)
$$\sqrt[n+1]{n+1} - \sqrt[n]{n}$$

Exercice 6 [02287] [Correction]

Soit (u_n) une suite décroissante de réels telle que

$$u_n + u_{n+1} \sim \frac{1}{n}.$$

- (a) Montrer que (u_n) converge vers 0^+ .
- (b) Donner un équivalent simple de (u_n) .

Exercice 7 [02286] [Correction]

Soient $(u_n), (v_n), (w_n), (t_n)$ des suites de réels strictement positifs telles que

$$u_n \sim v_n$$
 et $w_n \sim t_n$.

Montrer que

$$u_n + w_n \sim v_n + t_n$$
.

Exercice 8 [02284] [Correction]

Pour $n \in \mathbb{N}$, on pose

$$u_n = 0! + 1! + 2! + \dots + n! = \sum_{k=0}^{n} k!.$$

Montrer que $u_n \sim n!$.

Exercice 9 [02285] [Correction]

On pose

$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}.$$

(a) Justifier que

$$\frac{1}{\sqrt{n+1}} \le 2\left(\sqrt{n+1} - \sqrt{n}\right) \le \frac{1}{\sqrt{n}}.$$

- (b) Déterminer la limite de (S_n) .
- (c) On pose $u_n = S_n 2\sqrt{n}$. Montrer que (u_n) converge.
- (d) Donner un équivalent simple de (S_n) .

Exercice 10 [00301] [Correction]

On étudie ici la suite (S_n) de terme général

$$S_n = \sum_{k=1}^n \frac{1}{k}.$$

(a) Établir que pour tout t > -1, $\ln(1+t) \le t$ et en déduire

$$\ln(1+t) \ge \frac{t}{t+1}.$$

(b) Observer que

$$\ln(n+1) \le S_n \le \ln n + 1$$

et en déduire un équivalent simple de S_n .

(c) Montrer que la suite $u_n = S_n - \ln n$ est convergente. Sa limite est appelée constante d'Euler et est usuellement notée γ .

Exercice 11 [02459] [Correction]

Montrer que, au voisinage de $+\infty$,

$$u_n = \int_{n^2}^{n^3} \frac{\mathrm{d}t}{1 + t^2} \sim \frac{1}{n^2}.$$

Calcul de limites de suites numériques

Exercice 12 [02283] [Correction]

Déterminer la limite des suites (u_n) suivantes :

(a)
$$u_n = n\sqrt{\ln\left(1 + \frac{1}{n^2 + 1}\right)}$$
 (b) $u_n = \left(1 + \sin\frac{1}{n}\right)^n$ (c) $u_n = \frac{n^{\sqrt{n+1}}}{(n+1)^{\sqrt{n}}}$

(b)
$$u_n = \left(1 + \sin\frac{1}{n}\right)^n$$

(c)
$$u_n = \frac{n^{\sqrt{n+1}}}{(n+1)^{\sqrt{n}}}$$

Exercice 13 [01473] [Correction]

Déterminer les limites suivantes :

(a)
$$\lim_{n\to\infty} n \sin\frac{1}{n}$$

(c)
$$\lim_{n\to\infty} n^2 ((n+1)^{1/n} - n^{1/n})$$

(b)
$$\lim_{n\to\infty} \left(n\sin\frac{1}{n}\right)^{n^2}$$

Exercice 14 [01474] [Correction]

Soient a et b deux réels strictement positifs. Déterminer

$$\lim_{n \to +\infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n.$$

Exercice 15 [01475] [Correction]

Déterminer

$$\lim_{n \to +\infty} \left(3\sqrt[n]{2} - 2\sqrt[n]{3} \right)^n.$$

Calcul de développements asymptotiques de suites

Exercice 16 [01459] [Correction]

Réaliser un développement asymptotique de la suite considérée à la précision demandée:

- (a) $u_n = \ln(n+1)$ à la précision $1/n^2$
- (b) $u_n = \sqrt{n+1} \sqrt{n-1}$ à la précision $1/n^2$
- (c) $u_n = \sqrt{n + \sqrt{n}} \sqrt{n}$ à la précision 1/n
- (d) $u_n = \left(1 + \frac{1}{n}\right)^n$ à la précision $1/n^2$.

Exercice 17 [00323] [Correction]

Développement asymptotique à trois termes de :

$$u_n = \sum_{k=1}^n \sin \frac{k}{n^2}.$$

Exercice 18 [01476] [Correction]

Former le développement asymptotique, en $+\infty$, à la précision $1/n^2$ de

$$u_n = \frac{1}{n!} \sum_{k=0}^{n} k!.$$

Exercice 19 [02788] [Correction]

Donner un développement asymptotique de $\left(\frac{1}{n!}\sum_{k=0}^{n}k!\right)_{n\in\mathbb{N}}$ à la précision o (n^{-3}) .

Exercice 20 [05029] [Correction]

Pour tout $n \in \mathbb{N}^*$, on pose

$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln(n+1)$$
 et $b_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$.

- (a) Établir que $\ln(1+x) \le x$ pour tout $x \in]-1; +\infty[$.
- (b) Justifier que les suites $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ sont adjacentes.

On note γ leur limite commune ¹

(a) Justifier le développement

$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{=} \ln(n) + \gamma + o(1).$$

Étude asymptotique de suites de solutions d'une équation

Exercice 21 [02289] [Correction]

Soit n un entier naturel et E_n l'équation $x + \ln x = n$ d'inconnue $x \in \mathbb{R}_+^*$.

- (a) Montrer que l'équation E_n possède une solution unique notée x_n .
- (b) Montrer que la suite (x_n) diverge vers $+\infty$.
- (c) Donner un équivalent simple de la suite (x_n) .

Exercice 22 [01477] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R}]$ la fonction définie par

$$f(x) = \ln x + x.$$

- (a) Montrer que pour tout $n \in \mathbb{N}$, il existe un unique x_n tel que $f(x_n) = n$.
- 1. Il s'agit de la constante d'Euler, $\gamma = 0.577$ à 10^{-3} près.

(b) Former le développement asymptotique de la suite $(x_n)_{n\in\mathbb{N}}$ à la précision $(\ln n/n)$.

Exercice 23 [00311] [Correction]

(a) Pour tout $n \in \mathbb{N}$, justifier que l'équation

$$x + e^x = n$$

possède une unique solution $x_n \in \mathbb{R}$.

- (b) Déterminer la limite de (x_n) puis un équivalent de x_n .
- (c) Former un développement asymptotique à trois termes de x_n quand $n \to +\infty$.

Exercice 24 [01478] [Correction]

Montrer que l'équation $\tan x = \sqrt{x}$ possède une unique solution x_n dans chaque intervalle $I_n =]-\pi/2$; $\pi/2[+n\pi$ (avec $n \in \mathbb{N}^*$).

Réaliser un développement asymptotique à quatre termes de x_n .

Exercice 25 [02599] [Correction]

Soient $n \in \mathbb{N}^*$ et l'équation

$$(E_n)$$
: $x^n + x - 1 = 0$.

- (a) Montrer qu'il existe une unique solution positive de (E_n) notée x_n et que $\lim_{n\to+\infty}x_n=1$.
- (b) On pose $y_n = 1 x_n$. Montrer que, pour n assez grand,

$$\frac{\ln n}{2n} \le y_n \le 2\frac{\ln n}{n}$$

(on posera $f_n(y) = n \ln(1 - y) - \ln(y)$).

(c) Montrer que $\ln(y_n) \sim -\ln n$ puis que

$$x_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

Exercice 26 [00316] [Correction]

Montrer que l'équation $x^n + x^2 - 1 = 0$ admet une unique racine réelle strictement positive pour $n \ge 1$. On la note x_n . Déterminer la limite ℓ de la suite (x_n) puis un équivalent de $x_n - \ell$.

Exercice 27 [00317] [Correction]

Pour tout entier $n \geq 2$, on considère l'équation (E_n) : $x^n = x + 1$ dont l'inconnue est x > 0.

- (a) Montrer l'existence et l'unicité de x_n solution de (E_n) .
- (b) Montrer que (x_n) tend vers 1.
- (c) Montrer que (x_n) admet un développement limité à tout ordre. Donner les trois premiers termes de ce développement limité.

Exercice 28 [00318] [Correction]

Pour $n \geq 2$, on considère le polynôme

$$P_n = X^n - nX + 1.$$

- (a) Montrer que P_n admet exactement une racine réelle entre 0 et 1, notée x_n .
- (b) Déterminer la limite de x_n lorsque $n \to +\infty$.
- (c) Donner un équivalent de (x_n) puis le deuxième terme du développement asymptotique x_n .

Exercice 29 [00312] [Correction]

- (a) Soit $n \in \mathbb{N}$. Montrer que l'équation $x^n + \ln x = 0$ possède une unique solution $x_n > 0$.
- (b) Déterminer la limite de x_n .
- (c) On pose $u_n=1-x_n.$ Justifier que $nu_n\sim -\ln u_n$ puis déterminer un équivalent de u_n .

Exercice 30 [02471] [Correction]

Soit $f(x) = (\cos x)^{1/x}$ et (\mathcal{C}) le graphe de f.

- (a) Montrer l'existence d'une suite (x_n) vérifiant :
- (b) (x_n) est croissante positive.
 - ii) la tangente à (C) en $(x_n, f(x_n))$ passe par O.
- (c) Déterminer un développement asymptotique à 2 termes de (x_n)

Exercice 31 [04139] [Correction]

On étudie l'équation $\tan x = x$ d'inconnue x réelle.

- (a) Soit $n \in \mathbb{N}$. Montrer que cette équation possède une unique solution x_n dans l'intervalle $I_n = \left| -\pi/2 \right| \pi/2 \left[+ n\pi \right]$.
- (b) Déterminer un équivalent de la suite $(x_n)_{n\in\mathbb{N}}$ ainsi définie.
- (c) Réaliser un développement asymptotique à trois termes de x_n .

Étude asymptotique de suites récurrentes

Exercice 32 [02302] [Correction]

On considère la suite (u_n) définie pour $n \geq 1$ par

$$u_n = \sqrt{n + \sqrt{(n-1) + \dots + \sqrt{2 + \sqrt{1}}}}.$$

- (a) Montrer que (u_n) diverge vers $+\infty$.
- (b) Exprimer u_{n+1} en fonction de u_n .
- (c) Montrer que $u_n \leq n$ puis que $u_n = o(n)$
- (d) Donner un équivalent simple de (u_n) .
- (e) Déterminer $\lim_{n\to+\infty} u_n \sqrt{n}$.

Comparaison de fonctions numériques

Exercice 33 [01821] [Correction]

Déterminer un équivalent simple aux expressions suivantes quand $x \to +\infty$:

(a)
$$\frac{\sqrt{x^3+2}}{\sqrt[3]{x^2+3}}$$

(b)
$$\sqrt{x^2+1} + \sqrt{x^2-1}$$

(b)
$$\sqrt{x^2+1} + \sqrt{x^2-1}$$
 (c) $\sqrt{x^2+1} - \sqrt{x^2-1}$

Exercice 34 [00306] [Correction]

Déterminer un équivalent simple aux expressions suivantes quand $x \to +\infty$

(a)
$$\frac{\ln(x+1)}{\ln x} - 1$$

(c)
$$x \ln(x+1) - (x+1) \ln x$$

(b)
$$\sqrt{\ln(x+1)} - \sqrt{\ln(x-1)}$$

Exercice 35 [01823] [Correction]

Déterminer un équivalent simple aux expressions suivantes quand $x \to 0$

(a)
$$\sqrt{1+x^2} - \sqrt{1-x^2}$$

(b)
$$\tan x - \sin x$$

(b)
$$\tan x - \sin x$$
 (c) $e^x + x - 1$

Exercice 36 [00313] [Correction]

Déterminer un équivalent simple aux expressions suivantes quand $x \to 0$

(a)
$$\ln(1 + \sin x)$$

(b) $\ln(\ln(1 + x))$

(c)
$$(\ln(1+x))^2 - (\ln(1-x))^2$$

$$\left(\ln(1-x)\right)$$

(a)
$$\lim_{x \to +\infty} \frac{x^{\ln x}}{\ln x}$$

(b)
$$\lim_{x \to +\infty} \left(\frac{x}{\ln x}\right)^{\frac{\ln x}{x}}$$
 (c) $\lim_{x \to +\infty} \frac{\ln(x + \sqrt{x^2 + 1})}{\ln x}$

(c)
$$\lim_{x \to +\infty} \frac{\ln(x + \sqrt{x^2 + 1})}{\ln x}$$

Exercice 37 [00305] [Correction]

Déterminer un équivalent de $\ln(\cos x)$ quand $x \to (\pi/2)^{-1}$

Exercice 38 [01461] [Correction]

Déterminer un équivalent simple des fonctions proposées au voisinage de 0:

(a)
$$x(2 + \cos x) - 3\sin x$$
 (b) $x^x - (\sin x)^x$

(b)
$$x^x - (\sin x)^x$$

(c)
$$\arctan(2x) - 2\arctan(x)$$

Exercice 39 [01824] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction décroissante telle que

$$f(x) + f(x+1) \underset{+\infty}{\sim} \frac{1}{x}$$
.

- (a) Étudier la limite de f en $+\infty$.
- (b) Donner un équivalent de f en $+\infty$.

Calcul de limites de fonctions numériques

Exercice 40 [01822] [Correction]

Déterminer les limites suivantes :

(a)
$$\lim_{x\to+\infty} \frac{xe^{-x}+x^2}{x-\ln x}$$

(b)
$$\lim_{x \to +\infty} \frac{x \ln x - x}{x + \cos x}$$

(a)
$$\lim_{x \to +\infty} \frac{x e^{-x} + x^2}{x - \ln x}$$
 (b) $\lim_{x \to +\infty} \frac{x \ln x - x}{x + \cos x}$ (c) $\lim_{x \to +\infty} \frac{\sqrt{x e^x - x^2}}{e^x + e^{-x}}$

Exercice 41 [00704] [Correction]

Déterminer les limites suivantes :

(a)
$$\lim_{x\to 0^+} \frac{x+\sin x}{x \ln x}$$

(a)
$$\lim_{x\to 0^+} \frac{x+\sin x}{x \ln x}$$
 (b) $\lim_{x\to 0^+} \frac{\ln x+x^2}{\ln(x+x^2)}$ (c) $\lim_{x\to 1} \frac{\ln x}{x^2-1}$

(c)
$$\lim_{x \to 1} \frac{\ln x}{x^2 - 1}$$

Exercice 42 [00705] [Correction]

Déterminer les limites suivantes :

Exercice 43 [01462] [Correction]

Déterminer les limites suivantes :

(a)
$$\lim_{x\to 0} \frac{1}{\sin^2 x} - \frac{1}{x}$$

(a)
$$\lim_{x\to 0} \frac{1}{\sin^2 x} - \frac{1}{x^2}$$
 (b) $\lim_{x\to 0} \frac{1}{x} - \frac{1}{\ln(1+x)}$ (c) $\lim_{x\to 0} \frac{(1+x)^{1/x} - e^{-x}}{x}$

c)
$$\lim_{x\to 0} \frac{(1+x)^{1/x}-1}{x}$$

Exercice 44 [01463] [Correction]

Déterminer les limites suivantes :

$$\lim_{x\to 2} \left(\frac{2^x+3^x}{2^{x+1}+5^{x/2}}\right)^{1/(2-x)} \quad \lim_{x\to +\infty} \left(\frac{\ln(1+x)}{\ln x}\right)^{x\ln x} \quad \begin{array}{c} \text{(c)} \\ \lim_{x\to a} \frac{x^a-a^x}{\arctan x-\arctan a} \\ \text{avec } a>0 \end{array}$$

Exercice 45 [03381] [Correction]

Déterminer

$$\lim_{x \to 1^-} \ln(x) \ln(1-x).$$

Exercice 46 [05028] [Correction]

(a) Soient f et q deux fonctions réelles définies sur un intervalle dont a est une extrémité finie ou infinie. On suppose

$$f(x) \xrightarrow[x \to a]{} 1$$
 et $g(x)(f(x) - 1) \xrightarrow[x \to a]{} \ell \in \mathbb{R} \cup \{\pm \infty\}.$

Étudier la limite de $f(x)^{g(x)}$ lorsque x tend vers a.

(b) Application: Étudier

$$\lim_{x \to +\infty} \left(\frac{1}{x} + \frac{\ln(2x)}{\ln(x)} \right)^{\ln(x)}.$$

Calcul de développements limités

Exercice 47 [01447] [Correction]

Déterminer les développements limités suivants :

- (a) $DL_3(\pi/4)$ de $\sin x$
- (b) $DL_4(1)$ de $\frac{\ln x}{x^2}$
- (c) $DL_5(0) \text{ de sh } x \operatorname{ch}(2x) \operatorname{ch} x$.

Exercice 48 [00226] [Correction]

Déterminer les développements limités suivants :

- (a) $DL_3(0)$ de $\ln\left(\frac{x^2+1}{x+1}\right)$
- (b) $DL_3(0) \text{ de } \ln(1 + \sin x)$
- (c) $DL_3(1)$ de $\cos(\ln(x))$

Exercice 49 [00745] [Correction]

Déterminer les développements limités suivants :

- (a) $DL_3(0)$ de $\ln(1 + e^x)$
- (b) $DL_3(0)$ de $\ln(2 + \sin x)$
- (c) $DL_3(0) \text{ de } \sqrt{3 + \cos x}$

Exercice 50 [00292] [Correction]

Déterminer les développements limités suivants :

- (a) $DL_3(0)$ de $e^{\sqrt{1+x}}$
- (b) $DL_3(0)$ de $\ln(1+\sqrt{1+x})$
- (c) $DL_3(0)$ de $\ln(3e^x + e^{-x})$

Exercice 51 [01448] [Correction]

Déterminer les développements limités suivants :

- (a) $DL_2(0)$ de $(1+x)^{1/x}$
- (b) $DL_4(0)$ de $\ln\left(\frac{\sin x}{x}\right)$
- (c) $DL_4(0)$ de $\ln\left(\frac{\sin x}{x}\right)$

Exercice 52 [01451] [Correction]

Déterminer les développements limités suivants :

- (a) $DL_3(0)$ de $\frac{\ln(1+x)}{e^x-1}$
- (b) $DL_2(0)$ de $\frac{\arctan x}{\tan x}$
- (c) $DL_2(1)$ de $\frac{x-1}{\ln x}$

Exercice 53 [00751] [Correction]

Déterminer les développements limités suivants :

- (a) $DL_3(0)$ de $\frac{x-\sin x}{1-\cos x}$
- (b) $DL_2(0)$ de $\frac{\sin(x)}{\exp(x)-1}$
- (c) $DL_3(0)$ de $\frac{x \operatorname{ch} x \operatorname{sh} x}{\operatorname{ch} x 1}$

Exercice 54 [00231] [Correction]

Déterminer les développements limités suivants :

- (a) $DL_3(0)$ de $\ln\left(\frac{x^2+1}{x+1}\right)$
- (b) $DL_3(0) \text{ de } \sqrt{3 + \cos x}$
- (c) $DL_2(0)$ de $(1+x)^{1/x}$
- (d) $DL_3(0)$ de $\frac{\ln(1+x)}{e^x-1}$

Exercice 55 [01449] [Correction]

Former le $DL_3(1)$ de $\arctan x$

Exercice 56 [01452] [Correction]

Déterminer les développements limités suivants :

- (a) $DL_{10}(0)$ de $\int_{x}^{x^{2}} \frac{dt}{\sqrt{1+t^{4}}}$
- (b) $DL_{1000}(0)$ de $\ln\left(\sum_{k=0}^{999} \frac{x^k}{k!}\right)$

Exercice 57 [01453] [Correction]

Exprimer le développement limité à l'ordre n en 0 de $\frac{1}{\sqrt{1-x}}$ à l'aide de nombres factoriels.

Exercice 58 [01454] [Correction]

Pour $\alpha = -1/2$ et $k \in \mathbb{N}$, exprimer

$$\frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}$$

à l'aide de nombres factoriels.

En déduire une expression du $DL_{2n+1}(0)$ de $\frac{1}{\sqrt{1-x^2}}$ puis du $DL_{2n+2}(0)$ de $\arcsin(x)$.

Exercice 59 [00233] [Correction]

Exprimer le développement limité général en 0 de $\arcsin x$.

Exercice 60 [01455] [Correction]

Pour $n \in \mathbb{N}$, déterminer le développement limité à l'ordre 2n + 2 de $x \mapsto \frac{1}{2} \ln \frac{1+x}{1-x}$. On pourra commencer par calculer la dérivée de cette fonction.

Exercice 61 [01456] [Correction]

Montrer que l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = xe^{x^2}$ admet une application réciproque définie sur \mathbb{R} et former le $DL_5(0)$ de f^{-1} .

Exercice 62 [02519] [Correction]

Soient $n \in \mathbb{N}$, $n \geq 2$ et f l'application de \mathbb{R} dans \mathbb{R} définie par

$$f(x) = x^n \sin\left(\frac{1}{x}\right)$$
 si $x \neq 0$ et $f(0) = 0$.

- (a) Montrer que f est dérivable sur \mathbb{R} .
- (b) f admet-elle un développement limité en 0? si oui à quel ordre maximal?

Applications à l'étude locale de fonctions

Exercice 63 [01464] [Correction]

Soit $f:]-1; 0[\cup]0; +\infty[\to \mathbb{R}$ définie par

$$f(x) = \frac{\ln(1+x) - x}{r^2}.$$

Montrer que f peut être prolongée par continuité en 0 et que ce prolongement est alors dérivable en 0.

Quelle est alors la position relative de la courbe de f par rapport à sa tangente en ce point?

Exercice 64 [01465] [Correction]

Soient a un réel non nul et f la fonction définie au voisinage de 0 par

$$f(x) = \frac{\ln(1+ax)}{1+x}.$$

Déterminer les éventuelles valeurs de a pour les quelles f présente un point d'inflexion en 0.

Exercice 65 [01466] [Correction]

Montrer que la fonction

$$f \colon x \mapsto \frac{x}{\mathrm{e}^x - 1}$$

peut être prolongée en une fonction de classe \mathcal{C}^1 sur \mathbb{R} .

Exercice 66 [01470] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} e^{-1/x^2} & \text{si } x \neq 0\\ 0 & \text{sinon.} \end{cases}$$

Montrer que f est de classe C^{∞} et que pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = 0$. C'est ici un exemple de fonction non nulle dont tous les $DL_n(0)$ sont nuls.

Exercice 67 [01471] [Correction]

Soit $f: [0;1] \cup [1;+\infty] \to \mathbb{R}$ l'application définie par

$$f(x) = \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t}.$$

- (a) Montrer que f est convexe sur [0;1] et $[1;+\infty[$.
- (b) Montrer que, pour tout x > 1 on a :

$$\int_{x}^{x^2} \frac{x \, \mathrm{d}t}{t \ln t} \le \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t} \le \int_{x}^{x^2} \frac{x^2 \, \mathrm{d}t}{t \ln t}.$$

En déduire que $\lim_{x\to 1+} f(x) = \ln 2$. De même, établir : $\lim_{x\to 1-} f(x) = \ln 2$.

(c) On prolonge f par continuité en 1, en posant $f(1) = \ln 2$. Montrer que f ainsi prolongée est de classe C^2 sur $]0; +\infty[$. Établir la convexité de f sur $]0; +\infty[$.

Calcul de développements asymptotiques de fonctions

Exercice 68 [01457] [Correction]

Former le développement asymptotique en 0 de l'expression considérée à la précision demandée :

- (a) $\frac{\ln(1+x)}{\sqrt{x}}$ à la précision $x^{5/2}$
- (b) x^x à la précision $(x \ln x)^2$

Exercice 69 [01458] [Correction]

Former le développement asymptotique en $+\infty$ de l'expression considérée à la précision demandée :

- (a) $\sqrt{x+1}$ à la précision $1/x^{3/2}$.
- (b) $x \ln(x+1) (x+1) \ln x$ à la précision $1/x^2$.
- (c) $\left(\frac{x+1}{x}\right)^x$ à la précision $1/x^2$.

Exercice 70 [05030] [Correction]

Soit φ :]-1; $+\infty[\to\mathbb{R}$ la fonction définie par $\varphi(s)=s-\ln(1+s)$ pour tout s>-1.

- (a) Montrer que φ définit par restriction aux intervalles]-1;0] et $[0;+\infty[$ une bijection $\varphi_-:]-1;0] \to [0;+\infty[$ et une bijection $\varphi_+:[0;+\infty[\to [0;+\infty[$.
- (b) Donner un équivalent de $\varphi(s)$ lorsque s tend vers 0 et en déduire des équivalents des bijections réciproques φ_+ et φ_- en 0 par valeurs supérieures.
- (c) Former un développement asymptotique à trois termes de φ_+ et φ_- en 0^+ .

Corrections

Exercice 1 : [énoncé]

- (a) $u_n = \frac{ne^{-n}}{e} \to 0$
- (b) $u_n \sim \frac{2 \ln n}{n} \to 0$
- (c) $u_n \sim n^{1/3} \to +\infty$.

Exercice 2: [énoncé]

- (a) $u_n \sim -\frac{1}{2}n \to -\infty$
- (b) $u_n \sim 2n \to +\infty$
- (c) $u_n \sim \frac{n!}{3^n} \to +\infty$

Exercice 3: [énoncé]

(a)

$$u_n = \frac{2}{n^2 - 1} \sim \frac{2}{n^2}.$$

(b)

$$u_n = \frac{2}{\sqrt{n+1} + \sqrt{n-1}} = \frac{2}{\sqrt{n} + o(\sqrt{n}) + \sqrt{n} + o(\sqrt{n})} = \frac{1}{\sqrt{n} + o(\sqrt{n})} \sim \frac{1}{\sqrt{n}}.$$

(c)

$$u_n = \sqrt{\ln\left(1 + \frac{1}{n}\right)} \sim \sqrt{\frac{1}{n}} = \frac{1}{\sqrt{n}}$$

 $\operatorname{car} \ln \left(1 + \frac{1}{n} \right) \sim \frac{1}{n} \text{ puisque } \frac{1}{n} \to 0.$

Exercice 4: [énoncé]

- (a) $u_n = \sin \frac{1}{\sqrt{n+1}} \sim \frac{1}{\sqrt{n+1}} \sim \frac{1}{\sqrt{n}} \operatorname{car} \frac{1}{\sqrt{n+1}} \to 0$
- (b) $\sin \frac{1}{n} \sim \frac{1}{n} \to 0 \neq 1$ donc $u_n \sim \ln \frac{1}{n} = -\ln n$.
- (c) $u_n = 2\sin^2\frac{1}{2n} \sim \frac{1}{2n^2}$.

Exercice 5 : [énoncé]

(a)

$$2\sqrt{n} - \sqrt{n+1} - \sqrt{n-1} \sim \frac{1}{4n\sqrt{n}}.$$

(b)

$$\frac{\ln(n+1) - \ln n}{\sqrt{n+1} - \sqrt{n}} = \frac{\ln(1+1/n)}{\sqrt{n}(\sqrt{1+1/n} - 1)} \sim \frac{1/n}{1/2n^{3/2}} = \frac{2}{\sqrt{n}}.$$

(c) ${}^{n+1}\sqrt{n+1} - \sqrt[n]{n} = e^{\frac{\ln(n+1)}{n+1}} - e^{\frac{\ln n}{n}}$ or

$$e^{\frac{\ln(n+1)}{n+1}} = 1 + \frac{\ln(n+1)}{n+1} + \frac{1}{2} \left(\frac{\ln(n+1)}{(n+1)}\right)^2 + \frac{1}{6} \left(\frac{\ln(n+1)}{(n+1)}\right)^3 + o\left(\frac{(\ln n)^3}{n^3}\right)$$

 et

$$e^{\frac{\ln n}{n}} = 1 + \frac{\ln n}{n} + \frac{1}{2} \left(\frac{\ln n}{n}\right)^2 + \frac{1}{6} \left(\frac{\ln n}{n}\right)^3 + o\left(\frac{(\ln n)^3}{n^3}\right)$$

donc

$$\sqrt[n+1]{n+1} - \sqrt[n]{n} = -\frac{\ln n}{n^2} + o\left(\frac{\ln n}{n^2}\right) \sim -\frac{\ln n}{n^2}.$$

Exercice 6: [énoncé]

- (a) (u_n) est décroissante donc admet une limite $\ell \in \mathbb{R} \cup \{-\infty\}$. Puisque $u_n + u_{n+1} \sim \frac{1}{n} \to 0^+$, on a $\ell + \ell = 0$ donc $\ell = 0$. De plus, à partir d'un certain rang : $2u_n \geq u_n + u_{n+1} > 0$
- (b) Par monotonie

$$u_{n+1}+u_n\leq 2u_n\leq u_{n-1}+u_n$$
 avec $u_{n+1}+u_n\sim \frac{1}{n}$ et $u_{n-1}+u_n\sim \frac{1}{n-1}\sim \frac{1}{n}$ donc $2u_n\sim \frac{1}{n}$ puis
$$u_n\sim \frac{1}{2n}.$$

Exercice 7: [énoncé]

Supposons $u_n \sim v_n$ et $w_n \sim t_n$. On a

$$\left| \frac{u_n + w_n}{v_n + t_n} - 1 \right| = \left| \frac{(u_n - v_n) + (w_n - t_n)}{v_n + t_n} \right|$$

donc

$$\left| \frac{u_n + w_n}{v_n + t_n} - 1 \right| \le \frac{|u_n - v_n|}{v_n} + \frac{|w_n - t_n|}{t_n} = \left| \frac{u_n}{v_n} - 1 \right| + \left| \frac{w_n}{t_n} - 1 \right| \to 0.$$

Exercice 8 : [énoncé]

On a

$$u_n = n! + (n-1)! + \sum_{k=0}^{n-2} k!$$

Or

$$\frac{(n-1)!}{n!} = \frac{1}{n} \to 0$$

 $_{
m et}$

$$0 \le \frac{\sum_{k=0}^{n-2} k!}{n!} = \sum_{k=0}^{n-2} \frac{k!}{n!} \le \sum_{k=0}^{n-2} \frac{(n-2)!}{n!} = \sum_{k=0}^{n-2} \frac{1}{n(n-1)} \le \frac{1}{n} \to 0$$

donc

$$u_n = n! + (n-1)! + \sum_{k=0}^{n-2} k! = n! + o(n!) \sim n!$$

Exercice 9 : [énoncé]

(a)

$$2(\sqrt{n+1} - \sqrt{n}) = \frac{2}{\sqrt{n+1} + \sqrt{n}}$$

donc

$$\frac{1}{\sqrt{n+1}} \leq 2 \left(\sqrt{n+1} - \sqrt{n} \right) \leq \frac{1}{\sqrt{n}}.$$

(b)

$$S_n \ge \sum_{k=1}^n 2(\sqrt{k+1} - \sqrt{k}) = 2\sqrt{n+1} - 2$$

puis $S_n \to +\infty$.

(c) $u_{n+1} - u_n = \frac{1}{\sqrt{n+1}} - 2(\sqrt{n+1} - \sqrt{n}) \le 0$ donc (u_n) est décroissante. Or $u_n = S_n - 2\sqrt{n} \ge 2\sqrt{n+1} - 2 - 2\sqrt{n} \ge -2$ donc (u_n) est aussi minorée. Par suite (u_n) converge.

(d)

$$S_n = 2\sqrt{n} + u_n = 2\sqrt{n} + o(\sqrt{n}) \sim 2\sqrt{n}.$$

Exercice 10: [énoncé]

(a) On étudie la fonction $t\mapsto t-\ln(1+t)$ pour établir la première inégalité. On en déduit

$$\ln(1 - \frac{t}{1+t}) \le -\frac{t}{1+t}$$

donc

$$\ln\left(\frac{1}{1+t}\right) \le -\frac{t}{1+t}$$

puis l'inégalité voulue.

(b)

$$S_n = \sum_{k=1}^n \frac{1}{k} \ge \ln \left(\prod_{k=1}^n \left(1 + \frac{1}{k} \right) \right) = \ln(n+1)$$

 $_{
m et}$

$$S_n = 1 + \sum_{k=1}^{n-1} \frac{1/k}{1 + 1/k} \le 1 + \ln\left(\prod_{k=1}^{n-1} \left(1 + \frac{1}{k}\right)\right) = 1 + \ln n.$$

On en déduit

$$S_n \sim \ln n$$
.

(c)

$$u_{n+1} - u_n = \frac{1/n}{1 + 1/n} - \ln\left(1 + \frac{1}{n}\right) \le 0$$

donc (u_n) est décroissante. De plus $u_n \ge \ln(n+1) - \ln n \ge 0$ donc (u_n) est minorée et par suite convergente.

Exercice 11: [énoncé]

On peut calculer l'intégrale

$$u_n = \arctan n^3 - \arctan n^2.$$

Or pour x > 0,

$$\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$$

donc

$$u_n = \arctan \frac{1}{n^2} - \arctan \frac{1}{n^3} = \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \sim \frac{1}{n^2}.$$

Exercice 12 : [énoncé]

(a)
$$\ln\left(1 + \frac{1}{n^2 + 1}\right) \sim \frac{1}{n^2 + 1} \sim \frac{1}{n^2} \operatorname{car} \frac{1}{n^2 + 1} \to 0$$
. Par suite $u_n \sim 1 \to 1$.

- (b) $u_n = e^{n \ln(1+\sin\frac{1}{n})}$, $\ln\left(1+\sin\frac{1}{n}\right) \sim \sin\frac{1}{n} \sim \frac{1}{n}$ donc $n \ln\left(1+\sin\frac{1}{n}\right) \to 1$ puis $u_n \to e$.
- $\begin{aligned} \text{(c)} \quad u_n &= \mathrm{e}^{\sqrt{n+1}\ln n \sqrt{n}\ln(n+1)}, \\ \sqrt{n+1}\ln n \sqrt{n}\ln(n+1) &= \left(\sqrt{n+1} \sqrt{n}\right)\ln n \sqrt{n}\ln\left(1 + \frac{1}{n}\right) \\ \text{Or } \left(\sqrt{n+1} \sqrt{n}\right)\ln n &= \frac{\ln n}{\sqrt{n+1} + \sqrt{n}} = \frac{\ln n}{2\sqrt{n} + \mathrm{o}(\sqrt{n})} \sim \frac{\ln n}{2\sqrt{n}} \text{ et} \\ \sqrt{n}\ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{\sqrt{n}} &= \mathrm{o}\left(\frac{\ln n}{2\sqrt{n}}\right) \text{ donc} \\ \sqrt{n+1}\ln n \sqrt{n}\ln(n+1) &= \frac{\ln n}{2\sqrt{n}} + \mathrm{o}\left(\frac{\ln n}{2\sqrt{n}}\right) \to 0 \text{ donc } u_n \to 1. \end{aligned}$

Exercice 13: [énoncé]

- (a) $n \sin \frac{1}{n} \sim \frac{n}{n} = 1$ donc $\lim_{n \to \infty} n \sin \frac{1}{n} = 1$
- (b) $\left(n \sin \frac{1}{n}\right)^{n^2} = e^{n^2 \ln(n \sin \frac{1}{n})} = e^{-\frac{1}{6} + o(1)} \text{ donc } \lim_{n \to \infty} \left(n \sin \frac{1}{n}\right)^{n^2} = \frac{1}{\sqrt[6]{e}}.$
- (c) $n^2((n+1)^{1/n} n^{1/n}) = e^{\frac{\ln n}{n}} n^2(e^{\frac{\ln(1+1/n)}{n}} 1) \sim e^{\frac{\ln n}{n}} donc$ $\lim_{n \to \infty} n^2((n+1)^{1/n} - n^{1/n}) = 1$

Exercice 14: [énoncé]

On a

$$\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} = \frac{a^{1/n} + b^{1/n}}{2} = \frac{e^{\frac{\ln a}{n}} + e^{\frac{\ln b}{n}}}{2} = 1 + \frac{\ln a + \ln b}{2n} + o(1/n)$$

donc

$$\left(\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^n = e^{n(\ln(1+\frac{\ln a + \ln b}{2n} + o(1/n)))} = e^{\frac{\ln a + \ln b}{2} + o(1)} \to \sqrt{ab}.$$

Exercice 15: [énoncé]

On a

$$3\sqrt[n]{2} - 2\sqrt[n]{3} = 3e^{\frac{1}{n}\ln 2} - 2e^{\frac{1}{n}\ln 3} = 1 + \frac{3\ln 2 - 2\ln 3}{n} + o\left(\frac{1}{n}\right)$$

donc

$$(3\sqrt[n]{2} - 2\sqrt[n]{3})^n = e^{n\ln(3\sqrt[n]{2} + 2\sqrt[n]{3})} = e^{\ln(8/9) + o(1)} \to \frac{8}{9}.$$

Exercice 16: [énoncé]

- (a) $\ln(n+1) = \ln n + \frac{1}{n} \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$
- (b) $\sqrt{n+1} \sqrt{n-1} = \frac{1}{\sqrt{n}} + \frac{1}{8} \frac{1}{n^{5/2}} + o\left(\frac{1}{n^{5/2}}\right)$.
- (c) $\sqrt{n+\sqrt{n}} \sqrt{n} = \frac{1}{2} \frac{1}{8\sqrt{n}} + \frac{1}{16n} + o\left(\frac{1}{n}\right)$
- (d) $\left(1 + \frac{1}{n}\right)^n = e \frac{e}{2n} + \frac{11e}{24n^2} + o\left(\frac{1}{n^2}\right)$

Exercice 17: [énoncé]

Pour $x \in [0; 1]$,

$$\left|\sin x - x + \frac{1}{6}x^3\right| \le \frac{1}{120}.$$

On a donc

$$u_n = \sum_{k=1}^{n} \frac{k}{n^2} - \frac{1}{6} \frac{k^3}{n^6} + M_n$$

avec

$$|M_n| \le \frac{1}{120} \sum_{k=1}^n \frac{k^5}{n^{10}} \le \frac{1}{120} \frac{1}{n^4}$$

 $\operatorname{donc} M_n = \operatorname{o}(1/n^3).$

O:

$$\sum_{k=1}^{n} \frac{k}{n^2} = \frac{n(n+1)}{2n^2} = \frac{1}{2} + \frac{1}{2n}$$

 $_{
m et}$

$$\sum_{k=1}^{n} \frac{k^3}{n^6} = \frac{1}{n^6} \sum_{k=1}^{n} k^3 \sim \frac{1}{4n^2}$$

donc

$$u_n = \frac{1}{2} + \frac{1}{2n} - \frac{1}{24n^2} + o\left(\frac{1}{n^2}\right).$$

Exercice 18: [énoncé]

On a

$$u_n = \frac{1}{n!} \sum_{k=0}^{n} k! = 1 + \frac{1}{n} + \frac{1}{n(n-1)} + \frac{1}{n(n-1)(n-2)} + \sum_{k=0}^{n-4} \frac{k!}{n!}.$$

Or

$$0 \le \sum_{k=0}^{n-4} \frac{k!}{n!} \le \sum_{k=0}^{n-4} \frac{(n-4)!}{n!} \le n \frac{1}{n(n-1)(n-2)(n-3)} \underset{n \to +\infty}{=} o\left(\frac{1}{n^2}\right).$$

Donc

$$u_n = 1 + \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right).$$

Exercice 19: [énoncé]

On a

$$\frac{1}{n!} \sum_{k=0}^{n} k! = 1 + \frac{1}{n} + \frac{1}{n(n-1)} + \frac{1}{n(n-1)(n-2)} + o\left(\frac{1}{n^3}\right) + \sum_{k=0}^{n-5} \frac{k!}{n!}.$$

Or

$$\sum_{k=0}^{n-5} \frac{k!}{n!} \le (n-4) \frac{(n-5)!}{n!} = o\left(\frac{1}{n^3}\right)$$

donc

$$\frac{1}{n!} \sum_{k=0}^{n} k! = 1 + \frac{1}{n} + \frac{1}{n^2} + \frac{2}{n^3} + o\left(\frac{1}{n^3}\right).$$

Exercice 20 : [énoncé]

- (a) Cette inégalité fameuse a déjà été justifiée dans le sujet 4898.
- (b) Pour tout $n \geq 2$,

$$a_n - a_{n-1} = \frac{1}{n} - \ln(n+1) + \ln(n) = \frac{1}{n} - \ln\left(\frac{n+1}{n}\right) = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) \underset{x=1/n}{\ge} 0$$
$$b_n - b_{n-1} = \frac{1}{n} - \ln(n) + \ln(n-1) = \frac{1}{n} + \ln\left(\frac{n-1}{n}\right) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) \underset{x=-1/n}{\le} 0$$

 $_{
m et}$

$$b_n - a_n = \ln(n+1) - \ln(n) = \ln\left(\frac{n+1}{n}\right) \xrightarrow[n \to +\infty]{} 0.$$

Les suites $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ sont donc adjacentes.

(c) Lorsqu'une suite (u_n) possède une limite finie ℓ , on peut écrire $u_n = \ell + o(1)$ quand $n \to +\infty$.

Puisque la suite (b_n) tend vers γ , on peut écrire

$$b_n = \gamma + o(1)$$
.

Cette égalité se transforme immédiatement en celle souhaitée ³

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1).$$

Exercice 21 : [énoncé]

- (a) Le tableau de variation de $f: x \mapsto x + \ln x$ permet d'affirmer que cette fonction réalise une bijection croissante de \mathbb{R}_+^* vers \mathbb{R} . L'équation E_n possède alors pour solution unique $x_n = f^{-1}(n)$.
- (b) Le tableau de variation de f^{-1} donne $\lim_{+\infty} f^{-1} = +\infty$. Par suite $x_n \to +\infty$.
- (c) $x_n \to +\infty$ donne $\ln x_n = o(x_n)$. La relation $x_n + \ln x_n = n$ donne alors $x_n + o(x_n) = n$ et donc $x_n \sim n$.

Exercice 22 : [énoncé]

- (a) La fonction $f: x \mapsto x + \ln x$ réalise une bijection de $]0; +\infty[$ sur \mathbb{R} d'où l'existence de (x_n) .
- (b) Comme $n \to +\infty$, $x_n = f^{-1}(n) \to +\infty$. Par suite $\ln x_n = o(x_n)$ et $n = x_n + \ln x_n \sim x_n$.

Donc $x_n = n + o(n)$

Soit $y_n = x_n - n$. On a:

$$y_n = -\ln x_n = -\ln(n + o(n)) = -\ln n + \ln(1 + o(1)) = -\ln n + o(1).$$

Donc

$$x_n = n - \ln n + \mathrm{o}(1).$$

Soit $z_n = y_n + \ln n$. On a:

$$z_n = -\ln(n - \ln(n) + o(1)) + \ln n = -\ln\left(1 - \frac{\ln n}{n} + o(\frac{1}{n})\right) = \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

Donc

$$x_n = n - \ln n + \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

3. En particulier en en déduit $1 + \frac{1}{2} + \cdots + \frac{1}{n} \sim \ln(n)$.

^{2.} Il est ici plus commode d'étudier la monotonie de la suite (a_n) en déterminant le signe de $a_n - a_{n-1}$ plutôt que celui de $a_{n+1} - a_n$.

Exercice 23: [énoncé]

(a) Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x + e^x$.

x	$-\infty$		$+\infty$
f(x)	$-\infty$	7	$+\infty$

- (b) $f(x_n) = n \le n + 1 = f(x_{n+1})$ donc $x_n \le x_{n+1}$ car f^{-1} est croissante. Si (x_n) est majorée par M alors $f(x_n) = n \le f(M)$ ce qui est absurde. La suite (x_n) étant croissante et non majorée, elle diverge vers $+\infty$. $x_n = o(e^{x_n})$ donc $e^{x_n} \sim n \to +\infty \ne 1$ puis $x_n \sim \ln n$.
- (c) Posons $y_n = x_n \ln n = o(\ln n)$. On a $y_n + \ln n + ne^{y_n} = n$ donc

$$e^{y_n} = 1 - \frac{y_n}{n} - \frac{\ln n}{n} \to 1$$

d'où $y_n \to 0$ et

$$e^{y_n} = 1 + y_n + o(y_n).$$

On a alors $y_n + \ln n + n(1 + y_n + o(y_n)) = n$ d'où $ny_n + o(ny_n) = -\ln n$ et

$$y_n \sim -\frac{\ln n}{n}$$
.

Par suite

$$x_n = \ln n - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

On écrit $y_n = -\frac{\ln n}{n} + z_n$ et

$$e^{y_n} = 1 - \frac{\ln n}{n} + z_n + \frac{1}{2} \left(\frac{\ln n}{n}\right)^2 + o\left(\frac{\ln n}{n}\right)^2$$

donc

$$-\frac{\ln n}{n} + z_n + nz_n + \frac{1}{2} \frac{(\ln n)^2}{n} + o\left(\frac{(\ln n)^2}{n}\right) = 0$$

puis

$$z_n \sim -\frac{(\ln n)^2}{2n^2}.$$

Finalement

$$x_n = \ln n - \frac{\ln n}{n} - \frac{(\ln n)^2}{2n^2} + o\left(\left(\frac{\ln n}{n}\right)^2\right).$$

Exercice 24: [énoncé]

Sur I_n , la fonction $f: x \mapsto \tan x - \sqrt{x}$ est continue, croît strictement de $-\infty$ vers $+\infty$.

Cela assure l'existence et l'unité de x_n .

On a

$$-\frac{\pi}{2} + n\pi < x_n < \frac{\pi}{2} + n\pi$$

donc $x_n \sim n\pi$.

Posons $y_n = x_n - n\pi$. On a $\tan y_n = \sqrt{x_n}$ et $y_n \in]-\frac{\pi}{2}; \frac{\pi}{2}[$ donc

$$y_n = \arctan \sqrt{x_n} \to \frac{\pi}{2}.$$

Posons

$$z_n = \frac{\pi}{2} - y_n = \frac{\pi}{2} - \arctan\sqrt{x_n} = \arctan\frac{1}{\sqrt{x_n}} = \arctan\frac{1}{\sqrt{n\pi + \frac{\pi}{2} + o(1)}}.$$

On a

$$\frac{1}{\sqrt{n\pi + \frac{\pi}{2} + \mathrm{o}(1)}} = \frac{1}{\sqrt{n\pi}} \frac{1}{\sqrt{1 + \frac{1}{2n} + \mathrm{o}\left(\frac{1}{n}\right)}} = \frac{1}{\sqrt{n\pi}} - \frac{1}{4} \frac{1}{\sqrt{\pi n^3}} + \mathrm{o}\left(\frac{1}{n^{3/2}}\right)$$

 $_{
m et}$

$$\arctan x = x - \frac{1}{3}x^3 + \mathrm{o}(x^3)$$

donc

$$z_n = \frac{1}{\sqrt{n\pi}} - \frac{1}{4} \frac{1}{\sqrt{\pi n^3}} - \frac{1}{3} \frac{1}{\sqrt{\pi^3 n^3}} + o\left(\frac{1}{n^{3/2}}\right).$$

Finalement

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{\sqrt{n\pi}} + \frac{3+4\pi}{12\pi^{3/2}} \frac{1}{n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right).$$

Exercice 25 : [énoncé]

(a) On introduit $\varphi_n(x) = x^n + x - 1$. $\varphi_n'(x) = nx^{n-1} + 1 > 0$, φ_n est continue strictement croissante et réalise une bijective et de $[0; +\infty[$ vers $[-1; +\infty[$ d'où l'existence et l'unicité de x_n . On a $\varphi_n(1) = 1$ donc $x_n \in]0; 1[$. Si $x_{n+1} < x_n$ alors $x_{n+1}^{n+1} < x_n^n$ puis

$$x_{n+1}^{n+1} + x_{n+1} - 1 < x_n^n + x_n - 1$$

ce qui est absurde. On en déduit que (x_n) est croissante et étant majorée cette suite converge. Posons ℓ sa limite, $\ell \in]0\,;1]$. Si $\ell < 1$ alors $x_n^n + x_n - 1 = 0$ donne à la limite $\ell - 1 = 0$ ce qui est absurde. Il reste $\ell = 1$.

(b) f_n est strictement décroissante sur $]0;1[,f_n(y_n)=0,$

$$f_n\left(\frac{\ln n}{2n}\right) \sim \frac{\ln n}{2} > 0 \text{ et } f_n\left(\frac{2\ln n}{n}\right) \sim -\ln n < 0$$

donc à partir d'un certain rang

$$\frac{\ln n}{2n} \le y_n \le 2\frac{\ln n}{n}.$$

(c)

$$\ln\left(\frac{\ln n}{2n}\right) \le \ln y_n \le \ln\left(2\frac{\ln n}{n}\right)$$

donne $\ln(y_n) \sim -\ln n$ puis $n \ln(1-y_n) = \ln y_n$ donne $-ny_n \sim -\ln n$ puis $y_n \sim \frac{\ln n}{n}$ et finalement

$$x_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

Exercice 26: [énoncé]

Posons $f_n(x) = x^n + x^2 - 1$. L'étude de la fonction f_n assure l'existence et l'unicité d'une solution $x_n \in \mathbb{R}_+$ à l'équation étudiée. De plus, on observe que $x_n \in [0;1]$.

Puisque $0 = f_{n+1}(x_{n+1}) \le f_n(x_{n+1})$, on peut affirmer $x_{n+1} \ge x_n$.

La suite (x_n) est croissante et majorée donc converge vers un réel ℓ .

Puisque pour tout $n \in \mathbb{N}$, $x_n \in [0, 1]$, à la limite $\ell \in [0, 1]$.

Si $\ell < 1$ alors

$$0 \le x_n^n \le \ell^n \to 0$$

et la relation $x_n^n + x_n^2 - 1 = 0$ donne à la limite $\ell^2 = 1$ ce qui est absurde.

On conclut que $\ell = 1$.

Posons $u_n = 1 - x_n$,

On a

$$(1-u_n)^n = u_n(2-u_n)$$

donc

$$n \ln(1 - u_n) = \ln u_n + \ln(2 - u_n)$$

d'où

$$-nu_n \sim \ln u_n$$
 puis $\ln n + \ln u_n \sim \ln(-\ln u_n)$

or

$$\ln(-\ln u_n) = o(\ln u_n)$$

donc

$$\ln u_n \sim -\ln n$$

puis

$$u_n \sim \frac{\ln n}{n}$$

et enfin

$$x_n - 1 \sim -\frac{\ln n}{n}$$
.

Exercice 27: [énoncé]

- (a) Il suffit d'étudier $f_n: x \mapsto x^n (x+1)$.
- (b) $f_n(1) \leq 0$ donc $x_n \geq 1$. De plus

$$f_{n+1}(x_n) = x_n^{n+1} - (x_n+1) = x_n(x_n+1) - (x_n+1) = (x_n-1)(x_n+1) \ge 0$$

donc $x_{n+1} \le x_n$. La suite (x_n) est décroissante et minorée par 1 donc elle converge vers $\ell > 1$.

Si $\ell > 1$ alors $x_n^n \ge \ell^n \to +\infty$ or $x_n^n = x_n + 1 \to \ell + 1$. Ce qui est impossible et il reste $\ell = 1$.

(c) On a

$$x^n = x + 1 \iff n \ln x = \ln(x + 1) \iff g(x) = \frac{1}{n}$$

avec

$$g(x) = \frac{\ln x}{\ln(x+1)}$$

définie sur $[1; +\infty[$. La fonction g est de classe \mathcal{C}^{∞} , g'(x) > 0 donc g réalise une bijection de $[1; +\infty[$ vers [0; 1[, de plus (puisque $g'(x) \neq 0)$ g^{-1} est aussi de classe \mathcal{C}^{∞} et donc g^{-1} admet un $DL_n(0)$ pour tout $n \in \mathbb{N}$ et donc $x_n = g^{-1}(1/n)$ admet un développement limité à tout ordre.

Formons ses trois premiers termes

$$g^{-1}(x) = a + bx + cx^2 + o(x^2)$$

 $a = g^{-1}(0) = 1$. $g(g^{-1}(x)) = x$ donc

$$\ln(1 + bx + cx^2 + o(x^2)) = x \ln(2 + bx + o(x^2))$$

puis

$$bx + \left(c - \frac{b^2}{2}\right)x^2 + o(x^2) = \ln(2)x + \frac{b}{2}x^2 + o(x^2)$$

donc

$$b = \ln 2$$
 et $c = \frac{(1 + \ln(2))\ln(2)}{2}$.

Finalement

$$x_n = 1 + \frac{\ln 2}{n} + \frac{(1 + \ln(2)) \ln 2}{2n^2} + o\left(\frac{1}{n^2}\right).$$

Exercice 28: [énoncé]

(a) La fonction $x \mapsto P_n(x)$ est strictement décroissante sur [0;1] car

$$P'_n(x) = n(x^{n-1} - 1)$$

est strictement négatif sauf pour x = 1.

La fonction continue P_n réalise donc une bijection strictement décroissante de [0;1] vers $[P_n(1);P_n(0)]=[2-n;1]$.

On en déduit l'existence et l'unicité de la solution x_n à l'équation $P_n(x) = 0$.

(b) Puisque $x_n \in [0;1]$, on a $x_n^{n+1} \le x_n^n$ puis

$$P_{n+1}(x_n) = x_n^{n+1} - (n+1)x_n + 1 \le P_n(x_n) = 0.$$

Ainsi $P_{n+1}(x_n) \leq P_{n+1}(x_{n+1})$ et donc $x_{n+1} \leq x_n$ car la fonction P_{n+1} est strictement décroissante.

La suite (x_n) est décroissante et minorée, elle converge donc vers un réel $\ell \in [0;1]$.

Si $\ell > 0$ alors

$$P_n(x_n) = x_n^n - nx_n + 1 \to -\infty$$

ce qui est absurde. On conclut $\ell = 0$.

(c) On a

$$\frac{x_n^n}{nx_n} = \frac{1}{n}x_n^{n-1} \to 0$$

et donc $x_n^n = o(nx_n)$.

Sachant $x_n^n - nx_n + 1 = 0$, on obtient $nx_n \sim 1$ puis

$$x_n \sim \frac{1}{n}$$
.

Écrivons ensuite

$$x_n = \frac{1}{n} + \frac{\varepsilon_n}{n} \text{ avec } \varepsilon_n \to 0.$$

Puisque $x_n^n = nx_n - 1$, on a

$$\varepsilon_n = x_n^n = \frac{(1+\varepsilon_n)^n}{n^n} \ge 0.$$

Nous allons montrer

$$(1+\varepsilon_n)^n \xrightarrow[n\to+\infty]{} 1$$

ce qui permettra de déterminer un équivalent de ε_n puis de conclure. Puisque $\varepsilon_n \to 0$, pour n assez grand, on a $|1 + \varepsilon_n| \le 2$ et alors

$$\varepsilon_n = \frac{(1+\varepsilon_n)^n}{n^n} \le \frac{2^n}{n^n}.$$

On en déduit

$$1 \le (1 + \varepsilon_n)^n \le \left(1 + \frac{2^n}{n^n}\right)^n = \exp\left(n\ln\left(1 + \frac{2^n}{n^n}\right)\right).$$

Or

$$n\ln\left(1+\frac{2^n}{n^n}\right) \sim \frac{2^n}{n^{n-1}} \to 0$$

et par encadrement

$$(1+\varepsilon_n)^n \to 1.$$

On peut conclure $\varepsilon_n \sim \frac{1}{n^n}$ et finalement

$$x_n = \frac{1}{n} + \frac{1}{n^{n+1}} + o\left(\frac{1}{n^{n+1}}\right).$$

Exercice 29 : [énoncé]

(a) Soit $f_n: x \mapsto x^n + \ln x$. On a

\overline{x}	0		1		$+\infty$
$f_n(x)$	$-\infty$	7	1	7	$+\infty$

d'où l'existence et l'unicité de x_n avec en plus la propriété $x_n \in [0;1[$.

(b) On a

$$f_{n+1}(x_n) = x_n^{n+1} + \ln(x_n) = (1 - x_n)\ln(x_n) < 0$$

donc $x_{n+1} \ge x_n$. La suite (x_n) est croissante et majorée par 1 donc converge vers $\ell \in [0, 1]$.

Si $\ell < 1$ alors

$$0 = x_n^n + \ln x_n \to -\ln \ell$$

car $0 \le x_n^n \le \ell^n \to 0$.

Ceci est impossible. Il reste $\ell = 1$.

(c) $(1 - u_n)^n = -\ln(1 - u_n) \sim u_n \to 0 \neq 1$ donc $n \ln(1 - u_n) \sim \ln u_n$ puis $n u_n \sim -\ln u_n \to +\infty \neq 1$. $\ln n + \ln u_n \sim \ln(-\ln u_n)$ donc $\ln n = -\ln u_n + \ln(-\ln u_n) + o(\ln(-\ln u_n))$ or $\ln(-\ln u_n) = o(\ln u_n)$ donc $\ln n \sim -\ln u_n$ puis

$$u_n \sim -\frac{\ln u_n}{n} \sim \frac{\ln n}{n}$$
.

Exercice 30: [énoncé]

(a) La fonction f est définie et \mathcal{C}^{∞} sur $\mathcal{D} = \bigcup_{k \in \mathbb{Z}} I_k$ avec

$$I_k = \left] -\frac{\pi}{2} + 2k\pi; \frac{\pi}{2} + 2k\pi \right[.$$

Pour $x \in \mathcal{D}$, la tangente en (x, f(x)) passe par O si, et seulement si, xf'(x) = f(x).

Après transformation, ceci équivaut pour x > 0 à l'équation

$$x \tan x + \ln(\cos(x)) + x = 0.$$

Posons $\varphi(x) = x \tan x + \ln(\cos(x)) + x$.

 φ est définie et de classe \mathcal{C}^{∞} sur \mathcal{D} .

 $\varphi'(x) = x(1 + \tan^2 x) + 1 > 0 \text{ sur } \mathcal{D} \cap \mathbb{R}_+^*.$

Quand
$$x \to \left(\frac{\pi}{2} + 2k\pi\right)^-$$
, $\varphi(x) \to +\infty$. Quand $x \to \left(-\frac{\pi}{2} + 2k\pi\right)^+$,

 $\varphi_{\upharpoonright I_k}$ réalise donc une bijection de I_k vers \mathbb{R} (pour $k \in \mathbb{N}^*$).

La suite $(x_n)_{n\in\mathbb{N}^*}$ avec $x_n=(\varphi_{\upharpoonright I_n})^{-1}(0)$ est solution.

(b) Evidemment $x_n \sim 2n\pi$ et donc $x_n = 2n\pi + y_n$. Après calculs, on obtient

$$(2n\pi + y_n)(\cos y_n + \sin y_n) = -\cos(y_n)\ln(\cos y_n).$$

La fonction $t\mapsto t\ln t$ est bornée sur $]0\,;1]$ car prolongeable par continuité en 0 et donc

$$\cos y_n + \sin y_n = -\frac{\cos y_n \ln(\cos y_n)}{2n\pi + y_n} \xrightarrow[n \to +\infty]{} 0.$$

Sachant $|y_n| < \pi/2$, on en déduit $y_n \to -\pi/4$. On conclut

$$x_n = 2n\pi - \frac{\pi}{4} + o\left(\frac{1}{n}\right).$$

Exercice 31: [énoncé]

- (a) Sur I_n , la fonction $f_n : x \mapsto \tan x x$ est continue et croît strictement de $-\infty$ vers $+\infty$. Elle réalise donc une bijection de I_n vers \mathbb{R} . L'équation $f_n(x) = 0$ possède alors une unique solution dans I_n .
- (b) Puisque x_n est un élément de I_n , on dispose de l'encadrement

$$-\frac{\pi}{2} + n\pi < x_n < \frac{\pi}{2} + n\pi.$$

On en déduit

$$x_n \underset{n \to +\infty}{\sim} n\pi$$
.

(c) Posons

$$y_n = x_n - n\pi$$

On a

$$\tan y_n = x_n \text{ avec } y_n \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$

et donc

$$y_n = \arctan x_n \xrightarrow[n \to +\infty]{} \frac{\pi}{2}.$$

On peut ainsi déjà écrire le développement asymptotique à deux termes

$$x_n \underset{n \to +\infty}{=} n\pi + \frac{\pi}{2} + o(1).$$

Déterminons un équivalent de ce o(1) en étudiant

$$z_n = \frac{\pi}{2} - y_n = \frac{\pi}{2} - \arctan x_n.$$

Sachant

$$\forall x > 0, \arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

on obtient

$$z_n = \arctan\left(\frac{1}{x_n}\right) \underset{n \to +\infty}{=} \arctan\left(\frac{1}{n\pi + \frac{\pi}{2} + \mathrm{o}(1)}\right) \underset{n \to +\infty}{\sim} \frac{1}{n\pi}.$$

Finalement

$$x_n \underset{n \to +\infty}{=} n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + o\left(\frac{1}{n}\right).$$

Exercice 32 : [énoncé]

(a) $u_n \ge \sqrt{n} \to +\infty$.

(b)
$$u_{n+1} = \sqrt{(n+1) + u_n}$$
.

(c) Montrons par récurrence sur $n \ge 1$ que $u_n \le n$.

Pour n = 1: ok

Supposons la propriété établie au rang $n \geq 1$.

$$u_{n+1} = \sqrt{(n+1) + u_n} \le \sqrt{(n+1) + n} \le n+1.$$

Récurrence établie.

$$0 \le u_n = \sqrt{n + u_{n-1}} \le \sqrt{n + (n-1)} = O(\sqrt{n})$$

donc $u_n = O(\sqrt{n}) = o(n)$.

(d)
$$u_n = \sqrt{n + o(n)} \sim \sqrt{n}$$

(e)

$$u_n - \sqrt{n} = \frac{u_{n-1}}{u_n + \sqrt{n}}$$

or $u_{n-1} \sim \sqrt{n-1} \sim \sqrt{n}$ et $u_n + \sqrt{n} = \sqrt{n} + o(\sqrt{n}) + \sqrt{n} \sim 2\sqrt{n}$ donc

$$u_n - \sqrt{n} \to \frac{1}{2}$$
.

Exercice 33: [énoncé]

(a) Quand $x \to +\infty$,

$$\frac{\sqrt{x^3+2}}{\sqrt[3]{x^2+3}} \sim \frac{x^{3/2}}{x^{2/3}} = x^{5/6}.$$

(b) Quand $x \to +\infty$,

$$\sqrt{x^2 + 1} + \sqrt{x^2 - 1} = x + o(x) + x + o(x) = 2x + o(x) \sim 2x$$
.

(c) Quand $x \to +\infty$,

$$\sqrt{x^2+1} - \sqrt{x^2-1} = \frac{(x^2+1) - (x^2-1)}{\sqrt{x^2+1} + \sqrt{x^2-1}} = \frac{2}{x + \mathrm{o}(x) + x + \mathrm{o}(x)} \sim \frac{1}{x}.$$

(a) Quand $x \to +\infty$,

$$\frac{\ln(x+1)}{\ln x} - 1 = \frac{\ln(1+1/x)}{\ln x} \sim \frac{1}{x \ln x}.$$

(b) Quand $x \to +\infty$,

$$\sqrt{\ln(x+1)} - \sqrt{\ln(x-1)} = \frac{\ln(\frac{x+1}{x-1})}{\sqrt{\ln(x+1)} + \sqrt{\ln(x-1)}}.$$

Or

$$\ln\left(\frac{x+1}{x-1}\right) = \ln\left(1 + \frac{2}{x-1}\right) \sim \frac{2}{x-1} \sim \frac{2}{x}$$

 $_{
m et}$

$$\sqrt{\ln(x+1)} + \sqrt{\ln(x-1)} = 2\sqrt{\ln x} + \mathrm{o}(\sqrt{\ln x}) \sim 2\sqrt{\ln x}$$

donc

$$\sqrt{\ln(x+1)} - \sqrt{\ln(x-1)} \sim \frac{1}{x\sqrt{\ln x}}$$
.

(c) Quand $x \to +\infty$,

$$x \ln(x+1) - (x+1) \ln x = x \ln\left(1 + \frac{1}{x}\right) - \ln x = 1 + o(1) - \ln x \sim -\ln x.$$

Exercice 35 : [énoncé]

(a) Quand $x \to 0$,

$$\sqrt{1+x^2} - \sqrt{1-x^2} = \frac{2x^2}{\sqrt{1+x^2} + \sqrt{1-x^2}} \sim \frac{2x^2}{2} = x^2.$$

(b) Quand $x \to 0$,

$$\tan x - \sin x = \tan x (1 - \cos x) = 2 \tan x \sin^2 \frac{x}{2} \sim \frac{x^3}{2}.$$

(c) Quand $x \to 0$,

$$e^x - 1 \sim x$$

donc

$$e^{x} + x - 1 = x + x + o(x) = 2x + o(x) \sim 2x$$
.

Exercice 36: [énoncé]

(a) Quand $x \to 0$,

$$\ln(1+\sin x) \sim \sin x$$

 $car \sin x \to 0$, or

$$\sin x \sim x$$

donc

$$\ln(1+\sin x) \sim x.$$

(b) Quand $x \to 0$,

$$ln(1+x) \sim x \to 0 \neq 1$$

donc

$$\ln(\ln(1+x)) \sim \ln(x).$$

(c) Quand $x \to 0$,

$$\ln(1+x)^2 - \ln(1-x)^2 = (\ln(1+x) + \ln(1-x))(\ln(1+x) - \ln(1-x))$$

or

$$\ln(1+x) + \ln(1-x) = \ln(1-x^2) \sim -x^2$$

 $_{
m et}$

$$\ln(1+x) - \ln(1-x) = x + o(x) - (-x + o(x)) = 2x + o(x)$$

donc

$$(\ln(1+x))^2 - (\ln(1-x))^2 \sim -2x^3.$$

Exercice 37 : [énoncé]

Quand $x \to \frac{\pi}{2}^-$, posons $x = \frac{\pi}{2} - h$ avec $h \to 0^+$

$$\cos x = \cos\left(\frac{\pi}{2} - h\right) = \sin h.$$

Or

$$\sin h \sim h \to 0 \neq 1$$

donc

$$\ln \sin h \sim \ln h$$

puis

$$\ln \cos x \sim \ln \left(\frac{\pi}{2} - x\right).$$

Exercice 38: [énoncé]

Par développements limités :

- (a) $x(2 + \cos x) 3\sin x \sim \frac{1}{60}x^5$
- (b) $x^x (\sin x)^x = x^x (1 \left(\frac{\sin x}{x}\right)^x) \sim \frac{1}{6}x^3$
- (c) $\arctan(2x) 2\arctan(x) \sim -2x^3$

Exercice 39: [énoncé]

(a) f est décroissante donc possède une limite ℓ en $+\infty$. Quand $x \to +\infty$, $f(x) \to \ell$ et $f(x+1) \to \ell$ donc

$$f(x) + f(x+1) \rightarrow 2\ell$$

or

$$f(x) + f(x+1) \sim \frac{1}{x} \to 0$$

donc $\ell = 0$.

(b) Quand $x \to +\infty$, on a

$$f(x+1) + f(x) \le 2f(x) \le f(x) + f(x-1)$$

donc

$$2f(x) \sim \frac{1}{x}$$

puis

$$f(x) \sim \frac{1}{2x}$$
.

Exercice 40: [énoncé]

(a) Quand $x \to +\infty$,

$$\frac{xe^{-x} + x^2}{x - \ln x} \sim \frac{x^2}{x} = x \to +\infty.$$

(b) Quand $x \to +\infty$,

$$\frac{x \ln x - x}{x + \cos x} \sim \frac{x \ln x}{x} = \ln x \to +\infty.$$

(c) Quand $x \to +\infty$,

$$\frac{\sqrt{xe^x - x^2}}{e^x + e^{-x}} \sim \sqrt{x}e^{-x/2} \to 0$$

Exercice 41: [énoncé]

(a) Quand $x \to 0^+$,

$$\frac{x + \sin x}{x \ln x} = \frac{x + x + \mathrm{o}(x)}{x \ln x} \sim \frac{2}{\ln x} \to 0.$$

(b) Quand $x \to 0^+$,

$$\ln x + x^2 = \ln x + o(\ln x)$$

et puisque

$$x + x^2 \sim x \to 0 \neq 1$$

on a

$$\ln(x+x^2) \sim \ln x$$

donc

$$\frac{\ln x + x^2}{\ln(x + x^2)} \sim \frac{\ln x}{\ln x} = 1 \to 1.$$

(c) Quand $x \to 1$, on peut écrire x = 1 + h avec $h \to 0$, $\frac{\ln x}{x^2 - 1} = \frac{\ln(1 + h)}{2h + h^2} \sim \frac{h}{2h} = \frac{1}{2} \to \frac{1}{2}$

Exercice 42: [énoncé]

(a) Quand $x \to +\infty$,

$$\frac{x^{\ln x}}{\ln x} = e^{(\ln x)^2 - \ln \ln x} = e^{(\ln x)^2 + o(\ln x)^2} \to +\infty.$$

(b) Quand $x \to +\infty$,

$$\left(\frac{x}{\ln x}\right)^{\frac{\ln x}{x}} = e^{\frac{\ln x}{x}\ln x - \frac{\ln x}{x}\ln \ln x} = e^{\frac{(\ln x)^2}{x} + o\left(\frac{(\ln x)^2}{x}\right)} \to 1.$$

(c) Quand $x \to +\infty$,

$$\frac{\ln(x + \sqrt{x^2 + 1})}{\ln x} = \frac{\ln(2x + o(x))}{\ln x} \sim \frac{\ln 2 + \ln x}{\ln x} \sim 1 \to 1.$$

Exercice 43: [énoncé]

- (a) $\lim_{x\to 0} \frac{1}{\sin^2 x} \frac{1}{x^2} = \frac{1}{3}$
- (b) $\lim_{x\to 0} \frac{1}{x} \frac{1}{\ln(1+x)} = -\frac{1}{2}$

(c) $\lim_{x\to 0} \frac{(1+x)^{1/x} - e}{x} = -\frac{e}{2}$

Exercice 44: [énoncé]

- (a) $\lim_{x\to 2} \left(\frac{2^x + 3^x}{2^{x+1} + 5^{x/2}}\right)^{1/(2-x)} = \frac{1}{3} 6^{4/13} 5^{5/26}$
- (b) $\lim_{x \to +\infty} \left(\frac{\ln(1+x)}{\ln x} \right)^{x \ln x} = e$
- (c) $x^a a^x \sim a^a (1 \ln a)(x a)$ si $a \neq 1$ et $\arctan(x) \arctan(a) \sim (\arctan(a))'(x a) = \frac{(x a)}{1 + a^2}$. Si $a \neq 1$,

$$\lim_{x \to a} \frac{x^a - a^x}{\arctan x - \arctan a} = a^a (1 + a^2)(1 - \ln a).$$

Si a=1,

$$\lim_{x \to a} \frac{x^a - a^x}{\arctan x - \arctan a} = 2.$$

Exercice 45: [énoncé]

Posons x = 1 - h.

Quand $x \to 1^-$, on a $h \to 0^+$ et

$$\ln(x) \ln(1-x) = \ln(1-h) \ln h \sim -h \ln h \to 0.$$

Exercice 46: [énoncé]

(a) Si f(x) est de limite 1, on montre que $\ln(f(x))$ équivaut à f(x) - 1.

Par l'écriture exponentielle,

$$f(x)^{g(x)} = \exp(g(x)\ln(f(x))).$$

Cependant,

$$\ln(f(x)) = \ln(1+u)$$
 avec $u = f(x) - 1 \xrightarrow[x \to a]{} 0$

et donc

$$\ln(f(x)) \underset{x \to a}{\sim} f(x) - 1$$
 puis $g(x) \ln(f(x)) \underset{x \to a}{\sim} g(x) (f(x) - 1)$.

Par composition de limites, on conclut

$$f(x)^{g(x)} \xrightarrow[x \to a]{} e^{\ell}.$$

(b) On observe

$$\frac{1}{x} + \frac{\ln(2x)}{\ln(x)} = \frac{1}{x} + \frac{\ln(2)}{\ln(x)} + 1 \xrightarrow[x \to +\infty]{} 1$$

 $_{
m et}$

$$\ln(x)\left(\frac{1}{x} + \frac{\ln(2x)}{\ln(x)} - 1\right) = \frac{\ln(x)}{x} + \ln(2x) - \ln(x)$$
$$= \frac{\ln(x)}{x} + \ln(2) \xrightarrow[x \to +\infty]{} \ln(2).$$

Le résultat qui précède donne alors

$$\lim_{x \to +\infty} \left(\frac{1}{x} + \frac{\ln(2x)}{\ln(x)} \right)^{\ln(x)} = e^{\ln(2)} = 2.$$

Exercice 47: [énoncé]

(a)
$$\sin(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(x - \frac{\pi}{4}) - \frac{\sqrt{2}}{4}(x - \frac{\pi}{4})^2 - \frac{\sqrt{2}}{12}(x - \frac{\pi}{4})^3 + o((x - \frac{\pi}{4})^3)$$

(b)
$$\frac{\ln x}{r^2} = (x-1) - \frac{5}{2}(x-1)^2 + \frac{13}{3}(x-1)^3 - \frac{77}{12}(x-1)^4 + o((x-1))^4$$
.

(c)
$$\operatorname{sh} x \operatorname{ch}(2x) - \operatorname{ch} x = -1 + x - \frac{1}{2}x^2 + \frac{13}{6}x^3 - \frac{1}{24}x^4 + \frac{121}{120}x^5 + \operatorname{o}(x^5).$$

Exercice 48: [énoncé]

(a)
$$\ln\left(\frac{x^2+1}{x+1}\right) = \ln(1+x^2) - \ln(1+x) = -x + \frac{3}{2}x^2 - \frac{1}{3}x^3 + o(x^3)$$

(b)
$$\ln(1+\sin x) = x - \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3)$$

(c)
$$\cos(\ln x) = 1 - \frac{1}{2}(x-1)^2 + \frac{1}{2}(x-1)^3 + o((x-1)^3)$$

Exercice 49: [énoncé]

(a)
$$\ln(1+e^x) = \ln 2 + \frac{1}{2}x + \frac{1}{8}x^2 + o(x^3)$$

(b)
$$\ln(2 + \sin x) = \ln 2 + \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{24}x^3 + o(x^3)$$

(c)
$$\sqrt{3 + \cos x} = 2 - \frac{1}{8}x^2 + o(x^3)$$

Exercice 50: [énoncé]

(a)
$$e^{\sqrt{1+x}} = e + \frac{e}{2}x + \frac{e}{48}x^3 + o(x^3)$$
.

(b)
$$\ln(1+\sqrt{1+x}) = \ln 2 + \frac{1}{4}x - \frac{3}{32}x^2 + \frac{5}{96}x^3 + o(x^3)$$

(c)
$$\ln(3e^x + e^{-x}) = 2\ln 2 + \frac{1}{2}x + \frac{3}{8}x^2 - \frac{1}{8}x^3 + o(x^3)$$

Exercice 51: [énoncé]

(a)
$$(1+x)^{1/x} = e - \frac{e}{2}x + \frac{11e}{24}x^2 + o(x^2)$$

(b)
$$\ln\left(\frac{\sin x}{x}\right) = -\frac{1}{6}x^2 - \frac{1}{180}x^4 + o(x^4)$$

(c)
$$\ln\left(\frac{\sin x}{x}\right) = \frac{1}{6}x^2 - \frac{1}{180}x^4 + o(x^4)$$

Exercice 52 : [énoncé]

(a)
$$\frac{\ln(1+x)}{e^x-1} = 1 - x + \frac{2}{3}x^2 - \frac{11}{24}x^3 + o(x^3)$$

(b)
$$\frac{\arctan x}{\tan x} = 1 - \frac{2}{3}x^2 + o(x^2)$$

(c)
$$\frac{x-1}{\ln x} = 1 + \frac{1}{2}(x-1) - \frac{1}{12}(x-1)^2 + o((x-1)^2)$$

Exercice 53: [énoncé]

(a)
$$\frac{x - \sin x}{1 - \cos x} = \frac{1}{3}x + \frac{1}{90}x^3 + o(x^3)$$

(b)
$$\frac{\sin x}{\exp(x)-1} = 1 - \frac{1}{2}x - \frac{1}{12}x^2 + o(x^2)$$

(c)
$$\frac{x \operatorname{ch} x - \operatorname{sh} x}{\operatorname{ch} x - 1} = \frac{2}{3}x + \frac{1}{90}x^3 + \operatorname{o}(x^3)$$

Exercice 54: [énoncé]

(a)
$$\ln\left(\frac{x^2+1}{x+1}\right) = -x + \frac{3}{2}x^2 - \frac{1}{3}x^3 + o(x^3)$$

(b)
$$\sqrt{3 + \cos x} = 2 - \frac{1}{8}x^2 + o(x^3)$$

(c)
$$(1+x)^{1/x} = e - \frac{e}{2}x + \frac{11e}{24}x^2 + o(x^2)$$

(d)
$$\frac{\ln(1+x)}{e^x-1} = 1 - x + \frac{2}{3}x^2 - \frac{11}{24}x^3 + o(x^3)$$

Exercice 55: [énoncé]

On primitive de
$$DL_2(1)$$
 de $\frac{1}{1+x^2}$:
 $\arctan x = \frac{\pi}{4} + \frac{1}{2}(x-1) - \frac{1}{4}(x-1)^2 + \frac{1}{12}(x-1)^3 + o((x-1)^3)$

Exercice 56: [énoncé]

(a)
$$\frac{1}{\sqrt{1+t^4}} = 1 - \frac{1}{2}t^4 + \frac{3}{8}t^8 + o(t^9) \text{ dont } \int_0^x \frac{dt}{\sqrt{1+t^4}} = t - \frac{1}{10}t^5 + \frac{1}{24}t^9 + o(t^{10})$$
puis
$$\int_x^{x^2} \frac{dt}{\sqrt{1+t^4}} = \int_0^x \frac{dt}{\sqrt{1+t^4}} - \int_0^x \frac{dt}{\sqrt{1+t^4}} = -x + x^2 + \frac{1}{10}x^5 - \frac{1}{24}x^9 - \frac{1}{10}x^{10} + o(x^{10})$$

(b)
$$\ln\left(\sum_{k=0}^{999} \frac{x^k}{k!}\right) = \ln(e^x - \frac{x^{1000}}{1000!} + o(x^{1000})) = \ln(e^x) + \ln(1 - \frac{x^{1000}e^{-x}}{1000!} + o(x^{1000})) = x - \frac{1}{1000!}x^{1000} + o(x^{1000}).$$

Exercice 57: [énoncé]

$$\frac{1}{\sqrt{1-x}} = \sum_{k=0}^{n} {\binom{-1}{/}} 2k(-x)^k + o(x^n)$$

avec

$$\binom{-1}{/}2k = \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\cdots\left(-\frac{2k-1}{2}\right)}{k!}$$
$$= (-1)^k \frac{1 \cdot 3 \cdot \cdot \cdot (2k-1)}{2^k k!} = (-1)^k \frac{(2k)!}{(2^k k!)^2}$$

Au final.

$$\frac{1}{\sqrt{1-x}} = \sum_{k=0}^{n} \frac{(2k)!}{(2^k k!)^2} x^k + o(x^n).$$

Exercice 58: [énoncé]

On a

$$\frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} = \frac{(-1)^k \frac{1}{2} \frac{3}{2} \cdots \frac{2k-1}{2}}{k!} = \frac{(-1)^k (2k)!}{2^{2k} (k!)^2}.$$

Donc

$$\frac{1}{\sqrt{1-x^2}} = \sum_{k=0}^{n} \frac{(2k)!}{2^{2k}(k!)^2} x^{2k} + o(x^{2n+1})$$

puis

$$\arcsin x = \sum_{k=0}^{n} \frac{(2k)!}{2^{2k}(2k+1)(k!)^2} x^{2k+1} + o(x^{2n+2}).$$

Exercice 59 : [énoncé]

On a

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

 $_{
m et}$

$$\frac{1}{\sqrt{1-x^2}} = \sum_{k=0}^{n} (-1)^k c_k x^{2k} + o(x^{2n})$$

avec

$$c_k = \frac{(-1)^k \frac{1}{2} \frac{3}{2} \cdots \frac{2k-1}{2}}{k!} = (-1)^k \frac{(2k)!}{2^{2k} (k!)^2}$$

donc

$$\arcsin x = \sum_{k=0}^{n} \frac{(2k)!}{2^{2k}(k!)^2(2k+1)} x^{2k+1} + o(x^{2n+1}).$$

Exercice 60: [énoncé]

$$\left(\frac{1}{2}\ln\frac{1+x}{1-x}\right)' = \frac{1}{1-x^2} \text{ et } \frac{1}{1-x^2} = 1 + x^2 + x^4 + \dots + x^{2n} + o(x^{2n+1}).$$
Donc
$$\frac{1}{2}\ln\frac{1+x}{1-x} = x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + \frac{1}{2n+1}x^{2n+1} + o(x^{2n+2}).$$

Exercice 61: [énoncé]

f est de classe \mathcal{C}^{∞} sur \mathbb{R} et

$$f'(x) = (1 + 2x^2)e^{x^2} > 0$$

de plus $\lim_{+\infty} f = +\infty$, $\lim_{-\infty} f = -\infty$.

Donc f réalise une bijection de \mathbb{R} vers \mathbb{R} et f^{-1} est de classe \mathcal{C}^{∞} sur \mathbb{R} . En particulier f^{-1} admet une $DL_5(0)$, de plus comme f est impaire, f^{-1} l'est aussi et le $DL_5(0)$ de f^{-1} est de la forme :

$$f^{-1}(x) = ax + bx^3 + cx^5 + o(x^5)$$

En réalisant un $DL_5(0)$ de $f^{-1}(f(x))$ on obtient :

$$f^{-1}(f(x)) = ax + (a+b)x^3 + (\frac{1}{2}a + 3b + c)x^5 + o(x^5).$$

Or
$$f^{-1}(f(x)) = x$$
, donc:

$$a = 1, b = -1 \text{ et } c = \frac{5}{2}.$$

Exercice 62: [énoncé]

- (a) f est évidemment dérivable en tout $a \in \mathbb{R}^*$ et aussi dérivable en 0 avec f'(0) = 0.
- (b) f admet pour développement limité à l'ordre n-1: $f(x) = o(x^{n-1})$. Si f admet un $DL_n(0)$ celui-ci serait de la forme

$$f(x) = ax^n + o(x^n)$$

ce qui entraı̂ne que $\sin(1/x)$ admet une limite finie en 0 ce qui est notoirement faux.

Exercice 63: [énoncé]

On a

$$f(x) = -\frac{1}{2} + \frac{1}{3}x - \frac{1}{4}x^2 + o(x^2).$$

Par suite f peut être prolongée par continuité en 0 en posant $f(0) = -\frac{1}{2}$. De plus ce prolongement est dérivable en 0 et $f'(0) = \frac{1}{3}$.

L'équation de la tangente en 0 est $y = -\frac{1}{2} + \frac{1}{3}x$ et la courbe est localement en dessous de celle-ci.

Exercice 64: [énoncé]

On a

$$f(x) = ax - a(1 + \frac{1}{2}a)x^2 + a(1 + \frac{1}{2}a + \frac{1}{3}a^2)x^3 + o(x^3).$$

Pour que f présente un point d'inflexion en 0, il faut que $a(1+\frac{1}{2}a)=0$ i.e. : a=-2.

Inversement si a = -2,

$$f(x) = -2x - \frac{8}{3}x^3 + o(x^3)$$

et par suite f présente un point d'inflexion en 0.

Exercice 65: [énoncé]

f est définie sur \mathbb{R}^* et se prolonge par continuité en 0 en posant f(0) = 1. f est de classe \mathcal{C}^1 sur \mathbb{R}^* et

$$f'(x) = \frac{e^x - 1 - xe^x}{(e^x - 1)^2} = \frac{-\frac{1}{2}x^2 + o(x^2)}{x^2 + o(x^2)} \xrightarrow[x \to 0]{} -\frac{1}{2}$$

donc f est dérivable en 0 avec f'(0) = -1/2 et finalement f est de classe \mathcal{C}^1 sur \mathbb{R} .

Exercice 66: [énoncé]

f est évidemment de classe \mathcal{C}^{∞} sur \mathbb{R}^* .

Montrons par récurrence que f est de classe \mathcal{C}^n et que $f^{(n)}$ est de la forme :

$$f^{(n)}(x) = P_n(1/x)e^{-1/x^2}$$

pour $x \neq 0$ avec $P_n \in \mathbb{R}[X]$.

Pour n = 0: ok.

Supposons la propriété établie au rang $n \geq 0$.

 $f^{(n)}$ est continue, dérivable sur \mathbb{R}^* et pour $x \neq 0$,

$$f^{(n+1)}(x) = -\frac{1}{x^2} P_n'\left(\frac{1}{x}\right) e^{-1/x^2} + \frac{2}{x^3} P_n\left(\frac{1}{x}\right) e^{-1/x^2} = P_{n+1}\left(\frac{1}{x}\right) e^{-1/x^2}$$

avec $P_{n+1} \in \mathbb{R}[X]$.

Récurrence établie.

Pour tout $n \in \mathbb{N}$, $f^{(n)}(x) = \sum_{y=1/x^2} P_n(\sqrt{y}) e^{-y} \to 0$ quand $x \to 0^+$ et de même quand

 $x \to 0^-$.

Par le théorème du prolongement \mathcal{C}^1 dans une version généralisée, on obtient que f est de classe \mathcal{C}^{∞} et $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$.

Par suite $f^{(n)}$ est dérivable en 0 et $f^{(n+1)}(0) = 0$.

Exercice 67: [énoncé]

(a) Soit G une primitive de la fonction $t \mapsto 1/\ln t$ sur]0;1[(resp. sur $]1;+\infty[$). Pour tout $x \in]0;1[$ (resp. $]1;+\infty[$), on a $f(x)=G(x^2)-G(x)$. On en déduit que f est de classe \mathcal{C}^{∞} sur]0;1[(resp. sur $]1;+\infty[$) et

$$f'(x) = \frac{2x}{\ln x^2} - \frac{1}{\ln x} = \frac{x-1}{\ln x}.$$

On a alors

$$f''(x) = \frac{x \ln x - x + 1}{x(\ln x)^2}.$$

Soit $g(x) = x \ln x - x + 1$ sur \mathbb{R}_+^* . g est de classe \mathcal{C}^{∞} et $g'(x) = \ln(x)$. Puisque g(1) = 0, la fonction g est

positive puis $f'' \ge 0$ sur]0;1[(resp. $]1;+\infty[$).

 $\forall t \in [x; x^2], \frac{x}{t \ln t} \le \frac{1}{\ln t} \le \frac{x^2}{t \ln t}.$

D'où

(b) Pour x > 1.

$$\int_{x}^{x^2} \frac{x \, \mathrm{d}t}{t \cdot \ln t} \le \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t} \le \int_{x}^{x^2} \frac{x^2 \, \mathrm{d}t}{t \cdot \ln t}.$$

Comme $\int_{x}^{x^{2}} \frac{dt}{t \cdot \ln t} = \ln 2$, on obtient

$$x \ln 2 \le f(x) \le x^2 \ln 2$$

puis $\lim_{x\to 1+} f(x) = \ln 2$.

Pour x < 1,

$$\forall t \in [x^2; x], \frac{x}{t \ln t} \le \frac{1}{\ln t} \le \frac{x^2}{t \ln t}.$$

D'où

$$\int_{x}^{x^2} \frac{x^2 dt}{t \cdot \ln t} \le \int_{x}^{x^2} \frac{dt}{\ln t} \le \int_{x}^{x^2} \frac{x dt}{t \cdot \ln t}.$$

On obtient $x^2 \ln 2 \le f(x) \le x \ln 2$ puis $\lim_{x \to 1^-} f(x) = \ln 2$.

(c) f est continue sur $]0; +\infty[$, de classe \mathcal{C}^1 sur]0; 1[et $]1; +\infty[$ et

$$f'(1+h) = \frac{h}{\ln(1+h)} \xrightarrow[h \to 0]{} 1.$$

Par le théorème de prolongement C^1 , on a f de classe C^1 et f'(1) = 1. De même, en exploitant

$$f''(1+h) = \frac{(1+h)\ln(1+h) - h}{(1+h)(\ln(1+h))^2} \sim \frac{h^2/2}{(1+h)h^2} \xrightarrow[h \to 0]{} \frac{1}{2}$$

on obtient que f est de classe C^2 et f''(1) = 1/2.

Comme f'' est positive sur $]0; +\infty[$, on peut conclure que f est convexe sur \mathbb{R}^*_{\perp} .

Exercice 68: [énoncé]

(a)
$$\frac{\ln(1+x)}{\sqrt{x}} = \sqrt{x} - \frac{1}{2}x^{3/2} + \frac{1}{3}x^{5/2} + o(x^{5/2})$$

(b)
$$x^x = 1 + x \ln x + \frac{1}{2}x^2 \ln^2 x + o(x^2 \ln^2 x)$$

Exercice 69: [énoncé]

(a)
$$\sqrt{x+1} = \sqrt{x}\sqrt{1+1/x} = \sqrt{x} + \frac{1}{2}\frac{1}{\sqrt{x}} - \frac{1}{8}\frac{1}{x^{3/2}} + o\left(\frac{1}{x^{3/2}}\right)$$
.

(b)
$$x \ln(x+1) - (x+1) \ln x = -\ln x + 1 - \frac{1}{2} \frac{1}{x} + \frac{1}{3} \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$$

(c)
$$\left(\frac{x+1}{x}\right)^x = e - \frac{e}{2}\frac{1}{x} + \frac{11e}{24}\frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$$

Exercice 70 : [énoncé]

(a) La fonction φ est dérivable sur $]-1;+\infty[$ avec

$$\varphi'(s) = 1 - \frac{1}{1+s} = \frac{s}{1+s}$$
 pour tout $s > -1$

On en déduit les variations de φ :

[Une figure]

La fonction φ est continue sur $[0; +\infty[$ et strictement croissante sur cet intervalle car sa dérivée y est positive et ne s'annule qu'en 0. La restriction de φ au départ de $[0; +\infty[$ définit une bijection dont le domaine de valeurs est déterminé par les limites de φ en 0 et $+\infty$, c'est la bijection φ_+ de $[0; +\infty[$ vers $[0; +\infty[$. De même, φ est continue sur]-1;0] et strictement décroissante, elle définit une bijection φ_- de]-1;0] vers $[0; +\infty[$.

(b) Par développement limité,

$$\varphi(s) = s - \left(s - \frac{1}{2}s^2 + o(s^2)\right) = \frac{1}{2}s^2 + o(s^2) \sim \frac{1}{2}s^2$$

Les bijections réciproques φ_+^{-1} et φ_-^{-1} sont continues et leurs limites ainsi que leurs variations se déduisent des tableaux de variation de φ_+ et φ_- :

[Une figure]

En particulier, φ_+^{-1} et φ_-^{-1} sont de limites nulles en 0. Par composition, on peut donc écrire à la fois

$$\varphi(\varphi_+^{-1}(t)) \underset{t \to 0}{\sim} \frac{1}{2} (\varphi_+^{-1}(t))^2$$
 et $\varphi(\varphi_+^{-1}(t)) = t$ pour tout $t \ge 0$

On en déduit

$$\varphi_+^{-1}(t) \underset{t\to 0}{\sim} \sqrt{2t} \quad \text{car} \quad \varphi_+^{-1}(t) \ge 0$$

On montre de même

$$\varphi_{-}^{-1}(t) \underset{t \to 0}{\sim} -\sqrt{2t} \quad \text{car} \quad \varphi_{-}^{-1}(t) \le 0$$

(c) Un équivalent produit le premier terme d'un développement asymptotique, le terme suivant se déduit d'un équivalent de la différence.

Posons $\alpha(t) = \varphi_{+}^{-1}(t) - \sqrt{2t}$ de sorte que

$$\varphi_+^{-1}(t) = \sqrt{2t} + \alpha(t)$$
 avec $\alpha(t) = 0$

Déterminons un équivalent de $\alpha(t)$ en injectant l'écriture précédente dans l'égalité $\varphi(\varphi_+^{-1}(t)) = t$, c'est-à-dire

$$\varphi_{+}^{-1}(t) - \ln(1 + \varphi_{+}^{-1}(t)) = t \quad \text{pour tout } t \ge 0$$
 (1)

Par développement du logarithme à trois termes,

$$\ln(1+u) = u - \frac{1}{2}u^2 + \frac{1}{3}u^3 + o(u^3)$$

avec

$$\begin{cases} u = \sqrt{2t} + \alpha(t) \\ u^2 = 2t + 2\sqrt{2t}\alpha(t) + o(\sqrt{t}\alpha(t)) \\ u^3 = 2\sqrt{2t}^{3/2} + o(t^{3/2}) \end{cases}$$

on obtient

$$\ln\left(1 + \sqrt{2t} + \alpha(t)\right) = \int_{t \to 0^+} \sqrt{2t} + \alpha(t) - \frac{1}{2}\left(2t + 2\sqrt{2t}\alpha(t)\right) + \frac{2\sqrt{2}}{3}t^{3/2} + o\left(t^{3/2}\right)$$

Après simplifications, l'égalité (??) donne alors

$$\sqrt{2t}\alpha(t) = \frac{2\sqrt{2}}{3}t^{3/2} + o(t^{3/2})$$

On en déduit

$$\alpha(t) \sim \frac{2}{t \to 0^+} \frac{2}{3} t$$

On obtient ainsi le développement asymptotique à deux termes

$$\varphi_{+}^{-1}(t) \underset{t \to 0^{+}}{=} \sqrt{2t} + \frac{2}{3}t + o(t)$$

On calcule un troisième terme en déterminant un équivalent de $\beta(t) = \alpha(t) - 2t/3 = o(t)$. On développe pour cela le logarithme à quatre termes en écrivant

$$\begin{cases} u = \sqrt{2t} + \frac{2}{3}t + \beta(t) \\ u^2 = 2t + \frac{4\sqrt{2}}{3}t^{3/2} + \frac{4}{9}t^2 + 2\sqrt{2t}\beta(t) + o(\sqrt{t}\beta(t)) \\ u^3 = 2\sqrt{2}t^{3/2} + 4t^2 + o(t^2) \\ u^4 = 4t^2 + o(t^2) \end{cases}$$

Au terme des calculs, on obtient

$$\beta(t) \underset{t \to 0^{+}}{\sim} \frac{1}{9\sqrt{2}} t^{3/2}$$
 puis $\varphi_{+}^{-1}(t) \underset{t \to 0^{+}}{=} \sqrt{2t} + \frac{2}{3}t + \frac{1}{9\sqrt{2}} t^{3/2} + o(t^{3/2})$

Par des calculs analogues, on acquiert

$$\varphi_{-}^{-1}(t) \underset{t \to 0^{+}}{=} -\sqrt{2t} + \frac{2}{3}t - \frac{1}{9\sqrt{2}}t^{3/2} + o(t^{3/2})$$

[Une figure]