CNS2025: Homework 3

Due: 2025-09-24 23:59

The objective of the homework is to generate spike-trains from given firing rate as a function of time.

Exercise 1

Exercise 2

Using the "random points in a box" (Do not use the <code>gen_spikes</code> functions provided in the <code>code03.ipynb</code> file, which implements a different algorithm to be discussed later.) method as discussed in the lecture to construct 100 spike trains (100 trials) based on the given rate function. Make a raster plot similar to the following:

Exercise 3

Pick a spike train generated above, say spikes from trial 100, which should be in time-of-spike representation. Convert it to frame-based representation with $\Delta t = 0.0001$ s (or frame_dt = 0.0001, note that this is different from delta_t of original firing rate sampling time) of time between frames so that frame_times = np.arange(0,duration,frame_dt) using, for example,

```
frames = np.zeros_like(frame_times)
frames[(spikes/frame_dt).astype(int)] = 1
```

Convert the frame-based spike train into firing rate versus time using a Gaussian kernel of standard deviation $\sigma=0.1$ s as well as the <code>np.convolve()</code> function and plot the result similar to what was done in <u>Homework 2</u>. Plot the original rate from Ex.1 in the same plot using dashed line for comparison.

<u>CNS2025</u>