Билет №15. Линейные пространства, их базисы, размерности.

Координаты вектора. Матрица перехода к другому базису.

Теорема о ранге матрицы.

Пусть дано поле P. Непустое множество V называется линейным (векторным) пространством над полем P, если на этом множестве определены внутренний закон композиции V x V \rightarrow V, называемый сложением, и внешний закон композиции P x V \rightarrow V, называемый умножением на число из поля P, удовлетворяющие следующим аксиомам: $\forall a,b,c\in V$ и $\alpha,\beta\in P$

- 1) a + b = b + a.
- 2) (a + b) + c = a + (b + c).
- 3) В V существует, причем единственный, нулевой элемент θ , удовлетворяющий условию: $a+\theta=a$
- 4) $\forall a \in V \exists (-a) \in V$ (противоположный элемент), причем единственный, удовлетворяющий условию: $a + (-a) = \theta$.
 - 5) $\alpha(a+b) = \alpha a + \alpha b$
 - 6) $(\alpha + \beta)a = \alpha a + \beta a$
 - $7)(\alpha\beta)a = \alpha(\beta a)$
 - 8) 1 * a = a,

Линейной пространство над полем $\mathbb R$ называется вещественным линейным пространством, а над полем $\mathbb C$ - комплексным.

Примеры

- 1)Обозначим \mathbb{R}^n множество матриц-столбцов размеров $n\times 1$ с операциями сложения матриц и умножения матриц на число. Аксиомы 1-8 линейного пространства для этого множества выполняются. Нулевым вектором в этом множестве служит нулевой столбец $o=(0\cdots 0)^T$. Следовательно, множество \mathbb{R}^n является вещественным линейным пространством. Аналогично, множество \mathbb{C}^n столбцов размеров $n\times 1$ с комплексными элементами является комплексным линейным пространством. Множество матриц-столбцов с неотрицательными действительными элементами, напротив, не является линейным пространством, так как не содержит противоположных векторов.
- 2) Обозначим C[a;b] множество действительных функций, определенных и непрерывных на отрезке [a;b]. Сумма (f+g) функций f,g и произведение αf функции f на действительное число α есть также непрерывные функции (из свойств непрерывных функций). Проверим выполнение аксиом линейного пространства. Из коммутативности сложения действительных чисел следует справедливость равенства $f(x)+g(x)=g(x)+f(x), \forall x\in\mathbb{R}$, т.е. аксиома 1 выполняется. Аксиома 2 следует аналогично из ассоциативности сложения. Нулевым вектором служит функция 0(x), тождественно равная нулю, которая, разумеется, является непрерывной. Для любой функции f выполняется равенство f(x)+0(x)=f(x), т.е. справедлива аксиома 3. Противоположным вектором для вектора f будет функция (-f)(x)=-f(x)

(аксиома 4 выполняется). Аксиомы 5, 6 следуют из дистрибутивности операций сложения и умножения действительных чисел, а аксиома 7 — из ассоциативности умножения чисел. Последняя аксиома выполняется, так как умножение на единицу не изменяет функцию: $1 \cdot f(x) = f(x)$. Таким образом, рассматриваемое множество C[a;b] с введенными операциями является вещественным линейным пространством. Аналогично доказывается, что $C^1[a;b], C^2[a;b], \ldots, C^m[a;b]$ — множества функций, имеющих непрерывные производные первого, второго и т.д. порядков соответственно, также являются линейными пространствами.

Определение. Линейной комбинацией векторов $a_1,...,a_n$ с коэффициентами $x_1,...,x_n$ называется вектор $x_1a_1+...+x_na_n$.

Определение. Линейная комбинация $x_1a_1+...+x_na_n$ называется нетривиальной, если хотя бы один из коэффициентов $x_1,...,x_n$ не равен нулю.

Определение. Вектора $a_1,...,a_n$ называются линейно независимыми, если не существует нетривиальной комбинации этих векторов равной нулевому вектору.

Определение. Линейное пространство V называется конечномерным, если в нем можно найти конечную максимальную линейно независимую систему векторов; всякая такая упорядоченная система векторов будет называться базисом пространства V.

Замечания. Все базисы конечномерного линейного пространства V состоят из одного и того же числа векторов. Если это число равно n, то V будет называться n-мерным линейным пространством, а число n — размерностью этого пространства.

Всякая система из n+1 вектора n-мерного линейного пространства линейно зависима.

Всякая линейно независимая система векторов n-мерного линейного пространства содержится в некотором базисе этого пространства.

Теорема (о разложении вектора по базису). Если e_1, e_2, \ldots, e_n — базис n-мерного линейного пространства V, то любой вектор $v \in V$ может быть представлен в виде линейной комбинации базисных векторов: $v = \alpha_1 \cdot e_1 + \alpha_2 \cdot e_2 + \ldots + \alpha_n \cdot e_n$ и притом единственным образом.

Доказательство. Действительно, размерность пространства V равна n. Система векторов e_1, e_2, \ldots, e_n линейно независима (это базис). После присоединения к базису любого вектора v, получаем линейно зависимую систему e_1, e_2, \ldots, e_n, v (так как это система состоит из (n+1) векторов n-мерного пространства).

Так как система векторов e_1,e_2,\ldots,e_n,v линейно зависима, то существуют числа $\alpha_1,\alpha_2,\ldots,\alpha_k,\alpha$ не все равные 0, что $\alpha_1\cdot e_1+\alpha_2\cdot e_2+\ldots+\alpha_n\cdot e_n+\alpha\cdot v=0$. В этом равенстве $\alpha\neq 0$. В самом деле, если $\alpha=0$, то

 $\alpha_1 \cdot e_1 + \alpha_2 \cdot e_2 + \ldots + \alpha_n \cdot e_n = 0$. Значит, нетривиальная линейная комбинация векторов e_1, e_2, \ldots, e_n равна нулевому вектору, что противоречит линейной независимости системы e_1, e_2, \ldots, e_n . Следовательно, $\alpha \neq 0$ и тогда $v = -\frac{\alpha_1 e_1}{\alpha} - \ldots - \frac{\alpha_n e_n}{\alpha}$, т.е. v есть линейная комбинация векторов e_1, e_2, \ldots, e_n .

Осталось показать единственность такого представления. Предположим противное. Пусть имеется два разложения $v = \alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n$ и $v = \beta_1 \cdot e_1 + \ldots + \beta_n \cdot e_n$, причем не все коэффициенты разложений соответственно равны между собой (например, $\alpha_1 \neq \beta_1$). Тогда из равенства

$$\alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n = \beta_1 \cdot e_1 + \ldots + \beta_n \cdot e_n$$

получаем $(\alpha_1 - \beta_1)e_1 + \ldots + (\alpha_n - \beta_n)e_n = 0$. Так как не все коэффициенты данной линейной комбинации равны нулю (по крайней мере $\alpha_1 - \beta_1 \neq 0$), то эта комбинация нетривиальная, что противоречит условию линейной независимости столбцов e_1, e_2, \ldots, e_n . Полученное противоречие подтверждает единственность разложения.

Связь между базисами

Пусть в n-мерном линейном пространстве V заданы базисы $e_1, e_2, ..., e_n$ и $e'_1, e'_2, ..., e'_n$. Каждый вектор второго базиса, как и всякий вектор пространства V, однозначно записывается через первый базис,

$$e'_{i} = \sum_{i=1}^{n} \tau_{ij} e_{j}, i = 1, 2, ..., n$$

Матрица

$$\begin{pmatrix} \tau_{11} & \dots & \tau_{1n} \\ \dots & \dots & \dots \\ \tau_{n1} & \dots & \tau_{nn} \end{pmatrix}$$

называется матрицей перехода от базиса e к базису e'.

Замечания. Матрица перехода от одного базиса к другому всегда является невырожденной матрицей.

Всякая невырожденная квадратная матрица порядка n с действительными элементами служит матрицей перехода от данного базиса n-мерного действительного линейного пространства к некоторому другому базису.

Преобразование координат вектора

Пусть в n-мерном линейном пространстве даны базисы $e(e_1,...,e_n)$ и $e'(e'_1,...,e'_n)$ с матрицей перехода $T=(\tau_{ij}),\ e'=Te$. Найдем связь между координатами произвольного вектора в этих базисах. Тогда

$$a = \sum_{j=1}^{n} \alpha_j e_j$$

 $a=\sum\limits_{i=1}^n \alpha_i'e_i'$, где $(\alpha_1,...,\alpha_n),$ $(\alpha_1',...,\alpha_n')$ координаты вектора a в базисах e и e' соответственно.

Так как $e_i' = \sum_{j=1}^n \tau_{ij} e_j, i = 1, 2, ..., n$, следовательно

$$a = \sum_{i=1}^{n} \alpha'_{i} (\sum_{j=1}^{n} \tau_{ij} e_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha'_{i} \tau_{ij} e_{j} = \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha'_{i} \tau_{ij} e_{j} = \sum_{j=1}^{n} (\sum_{i=1}^{n} \alpha'_{i} \tau_{ij}) e_{j}$$

Используя единственность разложения вектора по базису, получаем

$$\alpha_j = \sum_{i=1}^n \alpha'_i \tau_{ij}, j = 1, 2, ..., n,$$

т.е. имеет место матричное равенство

$$(\alpha_1, ..., \alpha_n) = (\alpha'_1, ..., \alpha'_n)T$$

Таким образом, строка координат вектора в базисе равна строке координат этого вектора в базисе ', умноженной справа на матрицу перехода от базиса к базису '. Отсюда следует

$$(\alpha'_1, ..., \alpha'_n) = (\alpha_1, ..., \alpha_n)T^{-1}$$

Определение ранга матрица и теорема о вычислении ранге матрицы

Определение. Минором k-го порядка данной матрицы A размерности $m \times n$ называется определитель матрицы, элементы которой есть элементы матрицы A, лежащие на пересечении произвольно взятых k столбцов и k строк матрицы A, где $k \leq min(m,n)$.

Определение. Рангом ненулевой матрицы называется максимальный порядок ненулевых миноров этой матрицы. Ранг нулевой матрицы по определению считается равным нулю. Обозначается rgA, где A - данная матрица.

Определение. Пусть rgA = r > 0. Базисным минором данной матрицы называется ее любой ненулевой минор r-го порядка. Строки и столбцы, в которых расположен базисный минор, называются базисными строками и столбцами.

Теорема. Система векторов $a_1, a_2, ..., a_k$, где k > 1, линейно зависима тогда и только тогда, когда хотя бы один из векторов этой системы линейно выражается через другие.

Теорема (о базисном миноре). Базисные строки (столбцы) линейно независимы. Любая строка (столбец) является линейной комбинацией базисных строк (столбцов).

Теорема. Ранг матрицы равен максимальному числу ее линейно независимых строк (столбцов)

Докозательство. Пусть rgA=r и r>0 (случай r=0 очевиден). Тогда в матрице А существует r базисных строк (столбцов), которые по теореме о базисном миноре линейно независимы, а любая другая строка (столбец) данной матрицы линейно выражается через эти базисные строки (столбцы). Следовательно, по теореме о системе линейно зависимых векторов данная система из r базисных векторов будет максимальной линейно независимой.