Low-energy extensions of X_{max} parameterizations

Carmelo Evoli, on behalf of the Auger-L'Aquila group

Gran Sasso Science Institute, L'Aquila (Italy)
INFN/Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy)

February 21, 2024

Based on GAP-2020-058

Motivations

- ightharpoonup Our goal is to broaden the scope of the combined fit in order to cover lower energies down to E $\gtrsim 10^{15}$ eV ightharpoonup Galactic-ExtraGalactic transition
- ightharpoonup Existing parametrizations for calculating cosmic ray composition using X_{max} statistics are constrained to energies above E $\gtrsim 10^{17}$ eV (see GAP2020_058)
- ightharpoonup It's crucial to assess whether these current models remain accurate for energies down to 10^{15} eV. Should discrepancies arise, we must consider refining our parametrization models to ensure reliable composition in the knee energy spectrum.

Conex simulations

From GAP2020 058:

- ▶ Conex version: version 4.37 for EPOS-LHC and QGSJet II-04, version 7.30 for Sibyll 2.3d
- ▶ Hadronic models used Sibyll 2.3d, EPOS-LHC and QGSJet II-04
- ightharpoonup The log energy range 17 ightharpoonup 20 in 13 fixed lg E bins with $\Delta \log {
 m E} = 0.25$
- Number of showers 5.4k 7.7k / bin
- ▶ The Xmax used to build the distributions is taken from the XmxdEdX branch of the CONEX file
- Primary nuclei: H, He, N, Si, Ca and Fe

New simulations at CNAF:

- Conex version: version 7.60
- ▶ Hadronic models used Sibyll 2.3d, EPOS-LHC, QGSJet II-04, and DPM-JET III
- ightharpoonup The log energy range 15 ightharpoonup 20.5 in 23 fixed lg E bins with $\Delta \log {
 m E} = 0.25$
- \triangleright Number of showers 10k / bin \rightarrow 50k / bin
- ▶ The Xmax used to build the distributions is taken from the XmxdEdX branch of the CONEX file
- Primary nuclei: H, He, N, Si, and Fe

X_{max} parametrizations

- ▶ We model X_{max} as a function of $x \equiv log(E/E_0)$ and $y \equiv ln A$
- GAP parametrization (4 free parameters):

$$p'_{0}(y) = p_{0} + \alpha y$$

 $p'_{1}(y) = p_{1} + \beta y$
 $f(x, y) = p'_{0}(y) + p'_{1}(y)x$

which can be re-written as

$$f(x,y) = (p_0 + p_1x) + (\alpha + \beta x)y \equiv f_p(x) + f_E(x)y$$

▶ EXT parametrization (6 free parameters):

$$p'_{0}(y) = p_{0} + \alpha y$$

 $p'_{1}(y) = p_{1} + \beta y$
 $p'_{2}(y) = p_{2} + \gamma y$
 $f(x, y) = p'_{0}(y) + p'_{1}(y)x + p'_{2}(y)x^{2}$

which can be re-written as

$$f(x,y) = (p_0 + p_1 x + p_2 x^2) + (\alpha + \beta x + \gamma x^2)y \equiv f_p(x) + f_E(x)y$$

X_{max} parametrizations

	D ₀	D_1	D_2	α	β	γ
GAP-full	815.69 ± 0.11	58.76 ± 0.06	-	-26.37 ± 0.03	1.57 ± 0.02	-
GAP-hi	815.83 ± 0.11	58.09 ± 0.11	-	-26.19 ± 0.03	0.67 ± 0.03	-

Fit parameters based on Sibyll-2.3D.

X_{max} parametrizations

	D ₀	D_1	D_2	α	β	γ
GAP	815.69 ± 0.11	58.76 ± 0.06	-	-26.37 ± 0.03	1.57 ± 0.02	-
EXT	816.21 ± 0.12	58.01 ± 0.11	-0.37 ± 0.04	-25.67 ± 0.04	0.56 ± 0.03	-0.46 ± 0.01

Fit parameters based on Sibyll-2.3D.

X_{max} residuals

	Н	He	N	Si	Fe
GAP-full	2.15	2.45	3.64	4.39	4.94
GAP-hi	3.07	2.95	4.56	5.71	7.11

Mean residuals in g/cm². Si is not included in the fit.

X_{max} residuals

	Н	He	N	Si	Fe
GAP	2.15	2.45	3.64	4.39	4.94
EXT	1.96	0.98	1.21	1.35	1.37

Mean residuals in g/cm². Si is not included in the fit.

$\sigma^2({\rm X}_{\rm max})$ parametrizations

- ightharpoonup We model $\sigma^2(X_{max})$ as a function of $x \equiv log(E/E_0)$ and $y \equiv ln A$
- ▶ Old parametrization (6 free parameters):

$$\begin{array}{rcl} a_0'(x) & = & a_0 + a_1 x \\ p(x) & = & p_0 + p_1 x + p_2 x^2 \\ f(x,y) & = & p(x) \left[1 + a_0'(x)y + b_0 y^2 \right] \end{array}$$

New parametrization (7 free parameters):

$$\begin{array}{lll} \ln p_0(x) & = & a_0 + a_1 y + a_2 y^2 \\ \ln p_1(x) & = & b_0 + b_1 y \\ \ln p_2(x) & = & c_0 + c_1 y \\ f(x,y) & = & p_0 - p_1 x + p_2 x^2 \end{array}$$

$\sigma^2({\rm X}_{\rm max})$ parametrizations

Shown error bars are the mean variance error over N simulations.

	P ₀	p ₁	p_2	a ₀	a ₁	b
full	3578 ± 11	-551.5 ± 6.4	111.7 ± 2.6	-0.378 ± 0.001	0.0007 ± 0.0001	0.0408 ± 0.0002
hi	3619 ± 14	-525.8 ± 9.5	76.3 ± 7.1	-0.380 ± 0.001	-0.0001 ± 0.0002	0.0411 ± 0.0003

Fit parameters based on Sibyll-2.3D.

$\sigma^2({\rm X}_{\rm max})$ parametrizations

Shown error bars are the **mean variance error** over N simulations.

	a ₀	a ₁	a_2	b ₀	b ₁	c ₁	c_2
EXT	8.22 ± 0.004	-0.47 ± 0.004	-0.01 ± 0.001	6.27 ± 0.02	-0.490 ± 0.007	4.97 ± 0.03	-0.63 ± 0.01

Fit parameters based on Sibyll-2.3D.

C. Evoli (GSSI) SimProp February 21, 2024

$\sigma^2({\rm X}_{\rm max})$ residuals

	Н	He	N	Si	Fe
GAP full	240.09	168.12	62.41	32.47	11.20
GAP hi	352.54	137.01	97.00	45.12	13.36

Mean residuals in g^2 cm $^{-4}$. Si is not included in the fit.

$\sigma^2({\rm X}_{\rm max})$ residuals

	Н	Не	N	Si	Fe
GAP	240.09	168.12	62.41	32.47	11.20
EXP	106.36	77.57	66.40	16.97	16.52

Mean residuals in g^2 cm $^{-4}$. Si is not included in the fit.

Comparison with Auger data

Based on Sibyll-2.3D.
P.Auger Coll., ICRC 2019, internal use only

Comparison with Auger data

Based on Sibyll-2.3D.
P.Auger Coll., ICRC 2019, internal use only

Mean In A in Auger data

Based on Sibyll-2.3D.
P.Auger Coll., ICRC 2019, internal use only

Variance of InA in Auger data

There are two independent sources of fluctuations: the intrinsic shower-to-shower fluctuations and the InA dispersion arising from the mass distribution:

$$\sigma^2(\mathrm{X}_{\mathrm{max}}) = \langle \sigma_{\mathrm{sh}}^2 \rangle + \left(\frac{\mathrm{d}\langle \mathrm{X}_{\mathrm{max}} \rangle}{\mathrm{d} \ln \mathrm{A}}\right)^2 \sigma_{\ln \mathrm{A}}^2 = \langle \sigma_{\mathrm{sh}}^2 \rangle + \mathrm{f}_{\mathrm{E}}^2 \sigma_{\ln \mathrm{A}}^2$$

$$\sigma_{\rm sh}^2(\ln {\rm A}) = \sigma_{\rm p}^2 \left[1 + {\rm a} \ln {\rm A} + {\rm b} (\ln {\rm A})^2 \right]$$

therefore

$$\langle \sigma_{\rm sh}^2 \rangle = \sigma_{\rm p}^2 \left[1 + {\rm a} \langle \ln {\rm A} \rangle + {\rm b} \langle (\ln {\rm A})^2 \rangle \right]$$

After substitution

$$\sigma^2(\mathrm{X}_{\mathrm{MaX}}) = \sigma_{\mathrm{p}}^2 \left[1 + \mathrm{a} \langle \ln \mathrm{A} \rangle + \mathrm{b} \langle (\ln \mathrm{A})^2 \rangle \right] + \mathrm{f}_{\mathrm{E}}^2 \sigma_{\ln \mathrm{A}}^2$$

We apply the definition

$$\langle (\ln \mathbf{A})^2 \rangle = \sigma_{\ln \mathbf{A}}^2 + \langle \ln \mathbf{A} \rangle^2$$

As a result we arrive at

$$\sigma_{\ln \mathrm{A}}^2 = \frac{\sigma^2(\mathrm{X}_{\mathrm{MAX}}) - \sigma_{\mathrm{Sh}}^2(\langle \ln \mathrm{A} \rangle)}{\mathrm{b}\sigma_{\mathrm{p}}^2 + \mathrm{f}_{\mathrm{F}}^2}$$

Mean InA in other datasets

Based on Sibyll-2.3D.

$$G(z) = \frac{1}{\beta} \frac{\lambda^{\lambda}}{\Gamma(\lambda)} e^{-\lambda(z+e^{-z})}$$

Mass: H, Energy: $10^{16}\,\mathrm{eV}$

Mass: H, Energy: $10^{20}\,\mathrm{eV}$

Parametrizations

 $\triangleright \mu$ as a function of $x \equiv \log(E/E_0)$ and $y \equiv \ln A$

$$\begin{array}{rcl} p_0^{\mu}(y) & = & a_0^{\mu} + a_1^{\mu}y + a_2^{\mu}y^2 \\ p_1^{\mu}(y) & = & b_0^{\mu} + b_1^{\mu}y + b_2^{\mu}y^2 \\ p_2^{\mu}(y) & = & c_0^{\mu} + c_1^{\mu}y + c_2^{\mu}y^2 \\ \mu(x,y) & = & p_0^{\mu}(y) + p_1^{\mu}(y)x + p_2^{\mu}(y)x^2 \end{array}$$

 σ as a function of $x \equiv \log(E/E_0)$ and $y \equiv \ln A$

$$\begin{array}{rcl} p_0^{\sigma}(y) & = & a_0^{\sigma} + a_1^{\sigma}y + a_2^{\sigma}y^2 \\ p_1^{\sigma}(y) & = & b_0^{\sigma} + b_1^{\sigma}y + b_2^{\sigma}y^2 \\ \sigma(x,y) & = & p_0^{\sigma}(y) + p_1^{\sigma}(y)x + p_2^{\sigma}(y)x^2 \end{array}$$

ho λ as a function of $x \equiv log(E/E_0)$ and $y \equiv ln A$

$$p_0^{\lambda}(y) = a_0^{\lambda} + a_1^{\lambda}y + a_2^{\lambda}y^2$$

$$p_1^{\lambda}(y) = b_0^{\lambda} + b_1^{\lambda}y + b_2^{\lambda}y^2$$

$$\lambda(x,y) = p_0^{\lambda}(y) + p_1^{\lambda}(y)x + p_2^{\lambda}(y)x^2$$

▶ 21 free parameters. Cross fingers...

Next Steps

- Calculating the parametrization parameters for 4 distinct HIMs → assessing the variations among these models.
- We plan to augment our dataset of CONEX simulations by 10x. This increase in data volume aims to minimize the scatter in Gumbel parametrizations.
- ▶ We are actively testing additional parametrization methods rather than Gumbel functions.
- ▶ Analysis codes and simulated X_{max} databases will be public online on GitHub