Fundamentos de Algoritmos y Computabilidad

- * Lema de Arden
- * Lema del bombeo
- * Gramáticas regulares

Problema. Dado un autómata encontrar la expresión regular del lenguaje que acepta

Dados los lenguajes A y B

• Se define el lenguaje X de forma recursiva:

$$X={ab}\cdot X\cup {bbb}$$

Dados los lenguajes A y B

• Se define el lenguaje X de forma recursiva:

$$X=\{ab\}\cdot X\cup \{bbb\}$$

$$\{ab\}\cdot \{ab\}\cdot X\cup \{bbb\}\}$$

Dados los lenguajes A y B

• Se define el lenguaje X de forma recursiva:

$$X={ab}\cdot X\cup {bbb}$$

X={bbb,abbbb,ababbbb, ...}={ab}*·{bbb}

Dados los lenguajes A y B

Se define el lenguaje X de forma recursiva:

$$X={ab}\cdot X\cup {bbb} = A\cdot X\cup B$$

 $X=\{bbb,abbbb,ababbbb,...\}=\{ab\}*\cdot\{bbb\}=A*\cdot B$

Dados los lenguajes A y B

• Se define el lenguaje X de forma recursiva:

$$X={ab}\cdot X\cup {b,ba}=A\cdot X\cup B$$

Lema de Arden. Una ecuación de la forma $X=AX \cup B$, donde A, B, X son lenguajes y $\varepsilon \notin A$ (A no contiene la cadena vacía), tiene una solución única X=A*B

El lema permite expresar de forma no recursiva un lenguaje $X=A\cdot X\cup B$ es equivalente a $X=A^*B$

Dado un diagrama de transición se puede obtener una expresión regular de la siguiente forma:

- Escriba una ecuación por cada estado del diagrama que represente el lenguaje generado a partir de ese nodo
- · Resuelva las ecuaciones recursivas por medio del lema de Arden
- Reemplace las expresiones calculadas

Dado un diagrama de transición se puede obtener una expresión regular de la siguiente forma:

- Escriba una ecuación por cada estado del diagrama que represente el lenguaje generado a partir de ese nodo
- · Resuelva las ecuaciones recursivas por medio del lema de Arden
- Reemplace las expresiones calculadas
- La expresión asociada a q_0 será la expresión regular del autómata

 $A_0=aA_0 \cup bA_1$, indica las cadenas generadas en q_0 $A_1=aA_1 \cup bA_0 \cup \epsilon$, indica las cadenas generadas en q_1

• Se aplica el lema de Arden para simplificar las ecuaciones:

$$A_0 = \alpha A_0 \cup bA_1$$

 $A_1 = \alpha A_1 \cup bA_0 \cup \epsilon$

• Se aplica el lema de Arden para simplificar las ecuaciones:

$$A_0=aA_0 \cup bA_1$$

 $A_1=aA_1 \cup bA_0 \cup \varepsilon=a^*(bA_0 \cup \varepsilon)=a^*bA_0 \cup a^*$

• Se aplica el lema de Arden para simplificar las ecuaciones:

$$A_0=aA_0 \cup bA_1$$

 $A_1=aA_1 \cup bA_0 \cup \varepsilon=a^*(bA_0 \cup \varepsilon)=a^*bA_0 \cup a^*$

• Se reemplaza A_1 en A_0 y se obtiene:

$$A_0$$
= aA_0 \cup b($a*bA_0$ \cup $a*$)= aA_0 \cup ba*b A_0 \cup ba*
$$=(a\cup ba*b)A_0$$
 \cup ba*
$$=(a\cup ba*b)*ba*$$

La expresión asociada a A_0 es la expresión que representa el autómata

Autómata que representa (a∪ba*b)*ba*

$$A_0=\alpha A_1$$
 $A_1=\alpha A_2\cup bA_4$
 $A_2=\alpha A_3\cup bA_4$
 $A_3=\alpha A_3\cup bA_4\cup \epsilon$
 $A_4=bA_4\cup \epsilon$

$$A_0=\alpha A_1$$

 $A_1=\alpha A_2\cup bA_4$
 $A_2=\alpha A_3\cup bA_4$
 $A_3=\alpha A_3\cup bA_4\cup \epsilon$
 $A_4=bA_4\cup \epsilon=b^*$

$$A_0=aA_1=a(aa^+b^*\cup ab^+\cup b^+)=aaa^+b^*\cup aab^+\cup ab^+$$

 $A_1=aA_2\cup bA_4=a(a^+b^*\cup b^+)\cup b^+=aa^+b^*\cup ab^+\cup b^+$
 $A_2=aA_3\cup bA_4=aa^*b^*\cup bb^*=a^+b^*\cup b^+$
 $A_3=aA_3\cup bA_4\cup \epsilon=aA_3\cup bb^*\cup \epsilon=aA_3\cup b^+\cup \epsilon=a^*(b^+\cup \epsilon)=a^*b^*$
 $A_4=bA_4\cup \epsilon=b^*$

$$A_0=aA_1=a(ba)*b$$

 $A_1=bA_2=b(aA_1\cup \epsilon)=baA_1\cup b=(ba)*b$
 $A_2=aA_1\cup \epsilon$

$$A_0=aA_1=a(a(a\cup b)^*\cup bA_0)=aa(a\cup b)^*\cup abA_0=(ab)^*aa(a\cup b)^*$$

 $A_1=aA_2\cup bA_0=a(a\cup b)^*\cup bA_0$
 $A_2=aA_2\cup bA_2\cup \epsilon=(a\cup b)A_2\cup \epsilon=(a\cup b)^*$

$$A_0=\alpha A_1 \cup bA_2$$

 $A_1=\alpha A_0 \cup bA_2 \cup \epsilon$
 $A_2=\alpha A_2 \cup bA_2$

$$A_0=aA_1\cup bA_2=a(aA_0\cup \epsilon)=aaA_0\cup a=(aa)*a$$

 $A_1=aA_0\cup bA_2\cup \epsilon=aA_0\cup \epsilon$
 $A_2=aA_2\cup bA_2=(a\cup b)A_2\cup \varnothing=(a\cup b)\varnothing$

$$A_0 = aA_0 \cup bA_2 \cup \varepsilon = aA_0 \cup bb*aA_1 \cup \varepsilon = aA_0 \cup b^*a((b^*a)*aA_0) \cup \varepsilon$$

$$A_1$$
= aA_0 \cup bA_2 = aA_0 \cup $bb*aA_1$ = $(bb*a)*aA_0$ = $(b^+a)*aA_0$

$$A_2=aA_1\cup bA_2=bA_2\cup aA_1=b^*aA_1$$

Encuentre la expresión regular asociada al siguiente autómata

 $A_0=aA_0\cup bA_2\cup \epsilon=aA_0\cup bb^*aA_1\cup \epsilon=aA_0\cup b^*a((b^*a)^*aA_0)\cup \epsilon$ $=aA_0\cup b^*a(b^*a)^*aA_0\cup \epsilon$ $=aA_0\cup (b^*a)^*aA_0\cup \epsilon$ $=(a\cup (b^*a)^*a)A_0\cup \epsilon$ $=(a\cup (b^*a)^*a)^*$

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

 Si L es infinito se pueden encontrar cadenas cuya longitud es mayor que n

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

¿Cómo hace un autómata que tiene 3 estados para generar cadenas de longitud 100?

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

Si es un lenguaje regular infinito debe existir un ciclo en el autómata

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

• Suponga que $w=a_1a_2...a_{n+1}$ es una cadena de longitud n+1 que pertenece a L. Al hacer el recorrido por M, se debe **pasar por un mismo estado más de una vez**, es decir, debe existir un ciclo

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

• Suponga que w=aaa

Lema del bombeo

$$w=a(a)a$$

Lema del bombeo

$$w=a(a)^2a$$

Lema del bombeo

$$w=a(a)^3a$$

Lema del bombeo

$$w = a(a)^{100}a$$

Lema del bombeo

$$w=a(a)^0a=a\cdot\epsilon\cdot a=aa$$

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

El lema del bombeo establece que cada palabra de longitud mayor o igual a n de un lenguaje regular debe tener una parte que se puede "bombear" 0, 1, 2 o más veces y el resultado sigue perteneciendo al lenguaje

Lema del bombeo

L={b,abb,ababb,...}

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

¿Cómo hace este autómata que tiene 3 estados para generar cadenas de longitud 100?

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

Si es un lenguaje regular infinito debe existir un ciclo en el autómata

Lema del bombeo

 Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados

w=abb

Lema del bombeo

$$w=(ab)b$$

Lema del bombeo

$$w=(ab)^2b$$

Lema del bombeo

$$w=(ab)^3b$$

Lema del bombeo

$$w = (ab)^{100}b$$

Lema del bombeo

$$w=(ab)^0b=\varepsilon\cdot b=b$$

- Les regular infinito
- Debe tener cadenas de longitud mayor a n, la cantidad de estados
- Ya que cada transición consume un símbolo y se tienen cadenas de longitud mayor a n, debe existir un ciclo en el autómata
- Si una cadena $\sigma\rho\omega\tau$ pertenece a L, se puede bombear una parte de la cadena y el resultado, $\sigma\rho\omega^i\tau$, también pertenece a L, para $i\geq 0$

- Suponga que L es regular infinito y que es aceptado por un AFD M que tiene n estados
- Si L es infinito se pueden encontrar cadenas cuya longitud es mayor que n
- Suponga que $w=a_1a_2...a_{n+1}$ es una cadena de longitud n+1 que pertenece a L. Al hacer el recorrido por M, se debe pasar por un mismo estado más de una vez, es decir, debe existir un ciclo

• Suponga que $w=a_1a_2...a_{n+1}$ es una cadena de longitud n+1 que pertenece a L. Al hacer el recorrido por M, se debe pasar por un mismo estado más de una vez, es decir, debe existir un ciclo

• Suponga que $w=a_1a_2...a_{n+1}$ es una cadena de longitud n+1 que pertenece a L. Al hacer el recorrido por M, se debe pasar por un mismo estado más de una vez, es decir, debe existir un ciclo

• Se puede dar vueltas en el ciclo tantas veces como se quiera, por lo tanto, $a_1...a_j(a_{j+1}...a_k)^m a_{k+1}...a_{n+1}$ estará en L para todo $m \ge 0$

Lema del bombeo

Lema del bombeo

• Sea L un lenguaje regular infinito. Hay una constante n de forma que, si w es una cadena de L cuya longitud es mayor o igual a n, se tiene que w=uvx, siendo uv i x \in L para todo $i\ge0$, con $|v|\ge1$ y $|uv|\le n$

w=aaa

Lema del bombeo

Lema del bombeo

Lema del bombeo

Lema del bombeo

 Considere el lenguaje regular representado por a⁺b y el autómata

w=aab es una cadena de L

Lema del bombeo

• Considere el lenguaje regular representado por a⁺b y el autómata

Lema del bombeo

 Considere el lenguaje regular representado por a⁺b y el autómata

$$w=a$$
 a^2 b también es una cadena de L

Lema del bombeo

 Considere el lenguaje regular representado por a⁺b y el autómata

w=a a b es una cadena de L

↑ ↑ ↑

u v x

w=a ε b también es una cadena de L

Lema del bombeo

w=a b b es una cadena de L

$$w=\varepsilon$$
 a b b es una cadena de L \uparrow \uparrow \uparrow

$$w=\varepsilon$$
 a b b es una cadena de L \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

$$w=\varepsilon$$
 (ab)² b pertenece a L
 v^2 x

$$w=\varepsilon$$
 a b b es una cadena de L \uparrow \uparrow \uparrow

$$w=\varepsilon$$
 (ab)² b pertenece a L
 u v ² x

$$\mathbf{w} = \mathbf{\varepsilon} \quad \mathbf{\varepsilon} \quad \mathbf{b} \text{ pertenece a L}$$

$$\mathbf{u} \quad \mathbf{v}^{0} \quad \mathbf{x}$$

Lema del bombeo

Analice el lenguaje L={aama | m≥0}

Lema del bombeo

Analice el lenguaje L={aama | m≥0}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

w=aana

• Expresar w de la forma w=uvx de tal forma que uvix también pertenezca al lenguaje. v es la parte que se puede bombear

Lema del bombeo

Analice el lenguaje L={aama | m≥0}

Lema del bombeo

Analice el lenguaje L={aama | m≥0}

$$w=aa^{1}\underline{a^{n-1}a}$$

$$w=a \epsilon a^{n-1}a$$

$$\downarrow v v$$

$$w=aa^{2}a^{n-1}a$$

$$\downarrow v^{2} x$$

$$w=uv^{i}x \in L \text{ para } i\geq 0$$

Lema del bombeo

Analice el lenguaje L={aama | m≥0}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

$$w=aa^{n-1}a$$

• Expresar w de la forma w=uvx de tal forma que uvix también pertenezca al lenguaje. v es la parte que se puede bombear

Lema del bombeo

Analice el lenguaje L={aama | m≥0}

$$w=aa^{n-1}a$$
 $v \times x$

Lema del bombeo

Analice el lenguaje L={aama | m≥0}

Lema del bombeo

Analice el lenguaje L={aama | m≥0}

$$w=aa^{n-1}a$$
 $v \times x$

Lema del bombeo

Analice el lenguaje L={aama | m≥0}

Lema del bombeo

Analice el lenguaje L={(ab)mb| m≥0}

Lema del bombeo

Analice el lenguaje L={(ab)mb| m≥0}

$$w=(ab)^nb$$

Lema del bombeo

Analice el lenguaje L={(ab)mb| m≥0}

Lema del bombeo

Analice el lenguaje L={(ab)mb| m≥0}

Lema del bombeo

• El lema del bombeo es una propiedad que debe estar presente en todo lenguaje regular. Si un lenguaje no cumple el lema, no es regular

Lema del bombeo

Analice el lenguaje L={ambm | m≥0}

Lema del bombeo

Analice el lenguaje L={ambm | m≥0}

$$w=a^nb^n$$

Lema del bombeo

Analice el lenguaje L={ambm | m≥0}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

$$w=\epsilon a^n b^n$$

y se tiene que

$$w=\varepsilon$$
 a^{2n} b^n no es una cadena de L

Lema del bombeo

Analice el lenguaje L={ambm | m≥0}

$$w=a^nb^n$$

Lema del bombeo

Analice el lenguaje L={ambm | m≥0}

Lema del bombeo

Analice el lenguaje L={ambm | m≥0}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

$$w=a^ra^sb^n$$
 donde $r+s=n$

y se tiene que

$$w=a^r a^{2s} b^n$$
 no es una cadena de L
 $\uparrow \qquad \uparrow \qquad \uparrow$
 $u \qquad v^2 \qquad x$

Lema del bombeo

Analice el lenguaje L={amb2m | m≥0}

Lema del bombeo

Analice el lenguaje L={amb2m | m≥0}

$$w=a^n b^{2n}$$

Lema del bombeo

Analice el lenguaje L={amb2m | m≥0}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

$$w=\varepsilon a^n b^{2n}$$

y se tiene que

$$w=\varepsilon$$
 a^{2n} b^{2n} no es una cadena de L

Lema del bombeo

Analice el lenguaje L={amb2m | m≥0}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

$$w=a^r a^s b^{2n}$$
 donde $r+s=n$

y se tiene que

$$w=a^r a^{2s} b^{2n}$$
 no es una cadena de L
 $\uparrow \uparrow \uparrow \uparrow \uparrow \downarrow$

Lema del bombeo

Analice el lenguaje L={anbcm|n,m≥0}

Lema del bombeo

Analice el lenguaje L={anbcm|n,m≥0}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

 $w=a^n bc^m$

Lema del bombeo

Analice el lenguaje L={anbcm|n,m≥0}

Lema del bombeo

Analice el lenguaje L={anbcm|n,m≥0}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

 $w=a^n bc^m$

Lema del bombeo

Analice el lenguaje L={anbcm|n,m≥0}

Lema del bombeo

Analice el lenguaje L={anbcm|n,m≥0}

Lema del bombeo

Analice el lenguaje L={abcd^m|m≥0}

Lema del bombeo

Analice el lenguaje L={abcd^m|m≥0}

Lema del bombeo

Analice el lenguaje L={w| w∈{a,b}* y w es palíndroma}

Lema del bombeo

Analice el lenguaje L={w| w∈{a,b}* y w es palíndroma}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

 $w=a^nba^n$

Lema del bombeo

Analice el lenguaje L={w| w∈{a,b}* y w es palíndroma}

• Se toma una cadena w de longitud mayor o igual a n, donde n se conoce como la constante del lema

y se tiene que

$$w=a^r a^{2s} ba^n$$
 no es una cadena de L
 $\uparrow \uparrow \uparrow \uparrow \uparrow$
 $u v^2 x$

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	<i>A</i> →γ
3	Regulares	Autómata finito	A→aB A→a

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	$A \rightarrow \gamma$
3	Regulares	Autómata finito	A → aB A → a

Gramática regular

Gramáticas

 $S \rightarrow aA \mid bB$

 $A \rightarrow aA \mid a$

B→bB | b

- S, A y B son símbolos no terminales, e indican que deben ser sustituidos según las producciones
- \bullet a y b son símbolos terminales que pertenecen a un alfabeto Σ

Gramáticas

$$S \rightarrow aA \mid bB$$

$$A \rightarrow aA \mid a$$

Las gramáticas generan cadenas

Gramáticas

 $S \rightarrow aA \rightarrow aaA \rightarrow aaa$

 $A \rightarrow aA \mid a$ La cadena **aaa** es generada por la

B→bB | b

gramática

Gramáticas

$$S \rightarrow aA \mid bB$$
 $S \rightarrow aA \rightarrow aa$
 $S \rightarrow aA \rightarrow aaA \rightarrow aaaA \rightarrow aaaa$
 $A \rightarrow aA \mid a$ $S \rightarrow bB \rightarrow bb$

$$B \rightarrow bB \mid b$$

Gramáticas

 $S \rightarrow aA \mid bB$

 $A \rightarrow aA \mid a$

 $B \rightarrow bB \mid b$

¿La cadena **ab** se puede generar por la gramática?

Gramáticas

S→aAb | bBa

 $A \rightarrow aAb \mid \epsilon$

B→bBa | ε

Indique cuáles de las siguientes cadenas se pueden generar por la gramática:

- ab
- aabb
- bbaa
- abb
- bbba

Gramáticas

S→abS | ε

Indique cuáles de las siguientes cadenas se pueden generar por la gramática:

- **9** •
- abab
- aaab
- abb

Gramáticas

 $S \rightarrow aE$

 $E \rightarrow A \mid B$

 $A \rightarrow aA \mid b$

 $B \rightarrow aB|b$

La cadena aaab se puede generar así:

 $S \rightarrow aE \rightarrow aA \rightarrow aaA \rightarrow aaaA \rightarrow aaab$

Se utiliza la notación S w para indicar que la cadena w se **puede generar** a partir de S en O o más etapas

Gramáticas regulares

 Considere el lenguaje regular a(a*∪b*)b. Una forma de expresar las cadenas aceptadas por el lenguaje, es por medio de las producciones

Gramáticas regulares

• Considere el lenguaje regular a(a*∪b*)b. Una forma de expresar las cadenas aceptadas por el lenguaje, es por medio de las producciones

S→aE

 $E \rightarrow A \mid B$

 $A \rightarrow aA \mid b$

B→bB|b

Una gramática regular se define como un conjunto de 4 elementos, $G=(\Sigma,N,S,P)$ donde:

- Σ es el alfabeto
- N son los símbolos no terminales
- · S es el símbolo inicial
- P es la colección de reglas de sustitución o producciones

$$E \rightarrow A \mid B$$

$$A \rightarrow aA \mid b$$

Una gramática regular se define como un conjunto de 4 elementos, $G=(\Sigma,N,S,P)$ donde:

- Σ es el alfabeto
- N son los símbolos no terminales
- · S es el símbolo inicial
- P es la colección de reglas de sustitución o producciones de la forma $A \rightarrow w$, donde $A \in \mathbb{N}$ y $w \in (\Sigma \cup \mathbb{N})^*$ que satisface:
 - 1. w contiene un no terminal como máximo
- 2. Si w contiene un no terminal, entonces es el símbolo que está en el extremo derecho de w

Las siguientes gramáticas no son regulares:

$$S \rightarrow AB$$

$$S \rightarrow aAb$$

$$A \rightarrow aA \mid a$$

B→bB|b

$$A \rightarrow cA|c$$

$$bAa \rightarrow b|c$$

Considere la siguiente gramática regular:

- Σ ={a,b}
- N={S,A}
- · S es el símbolo inicial
- P: S→bA
 - $A \rightarrow aaA|b$

Considere la siguiente gramática regular:

- Σ ={a,b}
- N={S,A}
- · S es el símbolo inicial
- P: S→bA

 $A \rightarrow aaA|b$

bb,baab,baaaab, baaaaaab,...

Considere la siguiente gramática regular:

- $\Sigma = \{a,b\}$
- N={S,A}
- · S es el símbolo inicial
- P: S→bA

 $A \rightarrow aaA|b$

El lenguaje aceptado por la gramática, L(G), contiene las cadenas de la forma b(aa)*b

Indique la expresión regular asociada a la siguiente gramática:

- Σ ={a,b}
- N={S}
- · S es el símbolo inicial
- P: S→aS|b

Indique la expresión regular asociada a la siguiente gramática:

- $\Sigma = \{a,b\}$
- N={S}
- · S es el símbolo inicial
- P: S→aS|b

El lenguaje aceptado por la gramática, L(G), contiene las cadenas de la forma a*b

Indique la expresión regular asociada a la siguiente gramática:

- Σ ={a,b}
- N={S,B}
- · S es el símbolo inicial
- P: $S \rightarrow aS|B$
 - $B\rightarrow bB|\epsilon$

Indique la expresión regular asociada a la siguiente gramática:

- $\Sigma = \{a,b\}$
- N={S,B}
- · S es el símbolo inicial
- P: S→aS|B

 $B\rightarrow bB|\epsilon$

El lenguaje aceptado por la gramática, L(G), contiene las cadenas de la forma a*b*

Indique la expresión regular asociada a la siguiente gramática:

- $\Sigma = \{a,b\}$
- N={S,A}
- · S es el símbolo inicial
- P: S→abS|A

 $A \rightarrow a|b$

Indique la expresión regular asociada a la siguiente gramática:

- $\Sigma = \{a,b\}$
- N={S,A}
- · S es el símbolo inicial
- P: S→abS | A

 $A \rightarrow a|b$

El lenguaje aceptado por la gramática, L(G), contiene las cadenas de la forma (ab)*(a∪b)

Diseñe una gramática regular que reconozca (ab)+

Diseñe una gramática regular que reconozca (ab)+

- Σ ={a,b}
- N={S}
- · S es el símbolo inicial
- P: S→abS|ab

Diseñe una gramática regular que reconozca el lenguaje dado por $(a \cup b)a*(a \cup b)$

Diseñe una gramática regular que reconozca el lenguaje dado por (a∪b)a*(a∪b)

- $\Sigma = \{a,b\}$
- N={S,A,B}
- · S es el símbolo inicial
- · P: S -> aA | bA

 $A \rightarrow aA|a|b$

Diseñe una gramática regular que reconozca el lenguaje dado por $(a \cup b)*a(a \cup b)*$

Diseñe una gramática regular que reconozca el lenguaje dado por (a∪b)*a(a∪b)*

- $\Sigma = \{a,b\}$
- N={S,A,B}
- · S es el símbolo inicial
- P: $S \rightarrow aS|bS|aA$ $A \rightarrow aA|bA|\epsilon$

Diseñe una gramática regular que reconozca el lenguaje dado por $(ab)^+(a\cup b)^*$

Diseñe una gramática regular que reconozca el lenguaje dado por (ab)⁺(a∪b)*

- Σ ={a,b}
- N={S,A}
- · S es el símbolo inicial
- · P: S→abS|abA

 $A \rightarrow aA|bA|\epsilon$

Diseñe una gramática regular que reconozca el lenguaje dado por a*b*c*

Diseñe una gramática regular que reconozca el lenguaje dado por a*b*c*

- Σ ={a,b,c}
- N={S,B,C}
- · S es el símbolo inicial
- P: $S \rightarrow aS|bB|cC|\epsilon$
 - $B \rightarrow bB|cC|\epsilon$
 - $C \rightarrow cC|\epsilon$

Teorema. Dado un autómata M, existe una gramática G tal que L(M)=L(G)

Teorema. Dado un autómata M, existe una gramática G tal que L(M)=L(G)

Las producciones se obtienen tomando a los estados del autómata como no terminales y los símbolos del alfabeto como terminales

Teorema. Dado un autómata M, existe una gramática G tal que L(M)=L(G)

Las producciones se obtienen tomando a los estados del autómata como no terminales y los símbolos del alfabeto como terminales

Teorema. Dado un autómata M, existe una gramática G tal que L(M)=L(G)

Teorema. Dado un autómata M, existe una gramática G tal que L(M)=L(G)

El autómata M induce la gramática regular:

$$q_0 \rightarrow aq_0 | bq_1$$
 $5 \rightarrow aS | bA$
 $q_1 \rightarrow aq_0 | bq_2$ $A \rightarrow aS | bB$
 $q_2 \rightarrow aq_2 | bq_2 | \epsilon$ $B \rightarrow aB | bB | \epsilon$

Autómata que reconoce (a∪b)*

Autómata que reconoce (a∪b)*

$$q_0 \rightarrow aq_0 |bq_0|\epsilon$$
 $\Rightarrow aS|bS|\epsilon$

Autómata que reconoce (a∪b)⁺

Autómata que reconoce (a∪b)⁺

$$q_0 \rightarrow aq_1 |bq_1|$$
 $S \rightarrow aA|bA$
 $q_1 \rightarrow aq_1 |bq_1| \epsilon$ $A \rightarrow aA|bA| \epsilon$

 Muestre la gramática regular para el siguiente autómata que reconoce (ab∪ba)*

 Muestre la gramática regular para el siguiente autómata que reconoce (ab∪ba)*

$$q_0 \rightarrow aq_1 |bq_2|\epsilon$$
 $S \rightarrow aA|bB|\epsilon$
 $q_1 \rightarrow bq_0 |aq_3$ $A \rightarrow bS|aC$
 $q_2 \rightarrow aq_0 |bq_3$ $B \rightarrow aS|bC$
 $q_3 \rightarrow aq_3 |bq_3$ $C \rightarrow aC|bC$

Muestre la gramática regular para el siguiente autómata

que reconoce (ab∪ba)*

$$q_0 \rightarrow aq_1 |bq_2|\epsilon$$
 $S \rightarrow aA|bB|\epsilon$
 $q_1 \rightarrow bq_0 |aq_3$ $A \rightarrow bS|aC$
 $q_2 \rightarrow aq_0 |bq_3$ $B \rightarrow aS|bC$
 $q_3 \rightarrow aq_3 |bq_3$ $C \rightarrow aC|bC$

• Muestre la gramática regular para el siguiente autómata

que reconoce (ab∪ba)*

La cadena **aab** no se genera por la gramática

$$q_0 \rightarrow aq_1 |bq_2|\epsilon$$
 $S \rightarrow aA|bB|\epsilon$
 $q_1 \rightarrow bq_0 |aq_3$ $A \rightarrow bS|aC$
 $q_2 \rightarrow aq_0 |bq_3$ $B \rightarrow aS|bC$
 $q_3 \rightarrow aq_3 |bq_3$ $C \rightarrow aC|bC$

 Muestre la gramática regular para el siguiente autómata que reconoce a⁺b⁺

 Muestre la gramática regular para el siguiente autómata que reconoce a⁺b⁺

$$q_0 \rightarrow aq_1 | bq_3$$
 $S \rightarrow aA | bC$
 $q_1 \rightarrow aq_1 | bq_2$ $A \rightarrow aA | bB$
 $q_2 \rightarrow bq_2 | \epsilon | aq_3$ $B \rightarrow bB | \epsilon | aC$
 $q_3 \rightarrow aq_3 | bq_3$ $C \rightarrow aC | bC$

Teorema. Dada una gramática regular G, existe un autómata M, tal que L(M)=L(G)

Teorema. Dada una gramática regular G, existe un autómata M, tal que L(M)=L(G)

La construcción del autómata se realiza utilizando las producciones teniendo en cuenta que los símbolos no terminales corresponden con estados y los terminales con transiciones

Teorema. Dada una gramática regular G, existe un autómata M, tal que L(M)=L(G)

La construcción del autómata se realiza utilizando las producciones teniendo en cuenta que los símbolos no terminales corresponden con estados y los terminales con transiciones

 $S \rightarrow aS|bA$

 $A \rightarrow aB|bB|\epsilon$

 $B \rightarrow aB \mid bB$

Diseñar el autómata para la siguiente gramática:

S→aS|bA

 $A \rightarrow aB|bB|\epsilon$

B→aB|bB

Diseñar el autómata para la siguiente gramática:

$$A \rightarrow \alpha B |bB| \epsilon$$

$$B \rightarrow aB \mid bB$$

Diseñar el autómata para la siguiente gramática:

 $S \rightarrow aB|bA|\epsilon$

 $A \rightarrow abaS$

B→babS

Diseñar el autómata para la siguiente gramática:

 $S \rightarrow aB|bA|\epsilon$

 $A \rightarrow abaS$

B→babS

Diseñar el autómata para la siguiente gramática:

 $S \rightarrow \alpha A | \epsilon$

 $A \rightarrow abA|baB|\epsilon$

 $B \rightarrow aB|bA$