Skokowe rozkłady prawdopodobieństwa

J. Różański, WML WAT 2023/2024

21 maja 2024

Zagadnienia: zmienna losowa X i jej parametry, rozkład zmiennej losowej - funkcje: pmf(X) oraz cdf(X), szereg rozdzielczy punktowy, rozkład dwumianowy $X \sim Binom(n, p)$.

Laboratorium nr 1. Lista zadań

- A. Dla pojedynczego rzutu kostką 1..6 ustalimy zmienną losową X jako wynik rzutu. Wykonaj w arkuszu odpowiednie tabele i wykresy:
 - 1. zbuduj szereg rozdzielczy punktowy dla $\mathbf{range}(X) = \{1, 2, ..., 6\}$, czyli (x_i, n_i) [tabela, 1 punkt]
 - 2. wyznacz empiryczny rozkład prawdopodobieństwa $\mathbf{epmf}(X)$, czyli tabelę (x_i, p_i) [tabela i wykres, 2 punkty]
 - 3. porównaj rozkład empiryczny z teoretycznym na jednym wykresie [wykres, 1 punkt]
 - 4. wyznacz dystrybuantę empiryczną $\mathbf{ecdf}(X)$; [tabela i wykres, 2 punkty]
 - 5. oblicz wartość oczekiwaną EXoraz wariancję D^2X tego rozkładu; [tabela, 1 punkt]
- B. Dla dwóch rzutów kostką 1..6 określimy zmienną losową X jako sumę oczek, czyli $X = X_1 + X_2$. Wykonaj w arkuszu odpowiednie tabele i wykresy:
 - 1. zbuduj szereg rozdzielczy punktowy dla $\mathbf{range}(X) = \{2,3,...,12\}$; [tabela, 1 punkt]
 - 2. wyznacz empiryczny rozkład prawdopodobieństwa $\mathbf{epmf}(X)$; [tabela i wykres, 2 punkty]
 - 3. porównaj empiryczny rozkład prawdopodobieństwa z teoretycznym rozkładem trójkątnym; [wykres, 1 punkt]
 - 4. wyznacz skumulowany rozkład prawdopodobieństwa, czyli dystrybuantę $\mathbf{ecdf}(X)$; [tabela, 1 punkt]

- 5. oblicz wartość oczekiwaną EXoraz wariancję D^2X tego rozkładu; [tabela, 1 punkt]
- C. Dla dziesięciu rzutów monetą określimy zmienną losową X jako sumę wyników, czyli $X = X_1 + ... + X_{10}$, gdzie X_i to liczba orłów. Wykonaj w arkuszu odpowiednie tabele i wykresy:
 - 1. zbuduj szereg rozdzielczy punktowy dla $\mathbf{range}(X) = \{0,1,...,10\};$ [tabela, 1 punkt]
 - 2. wyznacz empiryczny rozkład prawdopodobieństwa $\mathbf{epmf}(X)$ [tabela i wykres, 2 punkty]
 - 3. porównaj empiryczny rozkład prawdopodobieństwa z teoretycznym rozkładem dwumianowym $X \sim B(10, \frac{1}{2})$; [tabela i wykres, 2 punkty]
 - 4. wyznacz skumulowany rozkład prawdopodobieństwa, czyli dystrybuantę $\mathbf{ecdf}(X)$; [tabela, 1 punkt]
 - 5. oblicz wartość oczekiwaną EX oraz wariancję D^2X tego rozkładu; [tabela, 1 punkt]

Twierdzenie 0.1 (J. Bernoulli, 1705). Niech zmienna X_i ma rozkład zero-jedynkowy dla każdego i=1,2,...,n. Wtedy suma $X=X_1+X_2+...+X_n$ ma rozkład dwumianowy, czyli $X \sim B(n,p)$ oraz

$$P(X = k) = \binom{n}{k} p^k (1 - p)^k,$$

gdzie $p=P(X_i=1)$ dla każdego i, to prawdopodobieństwo wystąpienia jedynki (sukces, zwykle p=1/2), natomiast $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ to współczynnik dwumianowy.

Dowód. Zdarzeniem pewnym jest iloczyn n składników postaci $(A \cup A') \cap (A \cup A') \cap ... \cap (A \cup A')$, gdzie A = 1. Wtedy prawdopodobieństwo zdarzeń niezależnych $1 = (p + (1-p))^n$ oraz ze wzoru dwumianowego Newtona

$$1 = (p + (1 - p))^n = \sum_{k=0}^n \binom{n}{k} p^k (1 - p)^k.$$

Wtedy prawdopodobieństwo zdarzenia pewnego jest sumą prawdopodobieństwP(X=k) pokwystąpieniach jedynki, czyli $1=\sum\limits_{k=0}^n P(X=k).$