SUPER-JUNCTION SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF

Patent Number:

JP2001111041

Publication date:

2001-04-20

Inventor(s):

MIYASAKA YASUSHI;; FUJIHIRA TATSUHIKO;; ONISHI YASUHIKO;; UENO

KATSUNORI;; IWAMOTO SUSUMU

Applicant(s):

FUJI ELECTRIC CO LTD

Requested

Patent:

☐ JP2001111041

Application

Number:

JP19990237286 19990824

Priority Number

(s):

IPC Classification: H01L29/78; H01L29/861

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To ease realization of mass production by clarifying the effect of parameters of a super-junction semiconductor device having a drift layer comprising parallel pn layers which depletes in OFF state while conducting current in ON state.

SOLUTION: The impurity amount in an (n) drift region 12a is in the range of 100-150% or of 110-150% of the impurity amount in a (p) partitioning region. Or, the impurity concentration in either of the (n) drift region 12a or the (p) partitioning region 12b is in the range of 92-108% of the impurity concentration in the other region. Besides, width of the one is in the range of 94-106% of the width of the other.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-111041 (P2001-111041A)

(43)公開日 平成13年4月20日(2001.4.20)

(51) Int.Cl.7

設別記号

FΙ

テーマコート*(参考)

H01L 29/78

29/861

HO1L 29/78

652H

652C

29/91

D

審査請求 未請求 請求項の数10 OL (全 9 頁)

(21)出願番号

特願平11-237286

(22)出願日

平成11年8月24日(1999.8.24)

(31) 優先権主張番号 特願平10-321567

(32)優先日

平成10年11月12日(1998.11.12)

(33)優先権主張国

日本 (J.P)

(31) 優先権主張番号 特願平11-221861

(32)優先日

平成11年8月5日(1999.8.5)

(33)優先権主張国

日本 (JP)

(71)出願人 000005234

宫士電機株式会社

神奈川県川崎市川崎区田辺新田1番1号

(72)発明者 宮坂 靖

神奈川県川崎市川崎区田辺新田1番1号

富士電機株式 会社内

(72)発明者 藤平 飽彦

神奈川県川崎市川崎区田辺新田1番1号

富士電機株式 会社内

(74)代理人 100088339

弁理士 篠部 正治

最終頁に続く

(54)【発明の名称】 超接合半導体素子およびその製造方法 (57)【要約】

【課題】オン状態では電流を流すとともに、オフ状態で は空乏化する並列pn層からなるドリフト層を備えた超 接合半導体素子において、パラメータの影響を明らかに し、量産化を容易にする。

【解決手段】nドリフト領域12aの不純物量がp仕切 り領域12bの不純物量の100~150%の範囲内ま たは110~150%の範囲内とする。あるいはnドリ フト領域12aおよびp仕切り領域12bの一方の不純 物濃度を他方の不純物濃度の92~108%の範囲とす る。また、一方の幅を他方の幅の94~106%の範囲 とする。

【特許請求の範囲】

【請求項1】第一と第二の主面と、主面に設けられた二つの主電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層を備える超接合半導体案子において、第一導電型ドリフト領域の不純物型が第二導電型仕切り領域の不純物型の100~150%の範囲内にあることを特徴とする超接合半導体案子。

【請求項2】第一と第二の主面と、主面に設けられた二つの主電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層を備える超接合半導体案子において、第一導電型ドリフト領域の不純物量が第二導電型仕切り領域の不純物量の110~150%の範囲内にあることを特徴とする超接合半導体案子。

【請求項3】第一と第二の主面と、主面に設けられた二つの主電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層を備える超接合半導体素子において、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域の不純物量が、他方の領域の不純物量の92~108%の範囲内にあることを特徴とする超接合半導体素子。

【請求項4】第一導電型ドリフト領域と第二導電型仕切り領域とがそれぞれストライプ状であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の超接合半導体素子。

【請求項5】第一と第二の主面と、主面に設けられた二つの主電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層を備える超接合半導体素子において、第一導電型ドリフト領域と第二導電型仕切り領域とがそれぞれほぼ同じ幅であり、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域の平均不純物濃度が、他方の領域の平均不純物濃度が、他方の領域の平均不純物濃度の92~108%の範囲内にあることを特徴とする超接合半導体素子。

【請求項6】第一と第二の主面と、主面に設けられた二つの主電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層を備える超接合半導体素子において、第一導電型ドリフト領域と第二導電型仕切り領域とがそれぞれほぼ同じ幅であり、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域の不純物濃度が、他方の領域の不純物濃度の92~108%の範囲内にあることを特徴とする超接合半導体素子。

【請求項7】第一と第二の主面と、主面に設けられた二

つの主電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層を備える超接合半導体案子において、第一導電型ドリフト領域と第二導電型仕切り領域とがそれぞれほぼ同じ濃度であり、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域の幅が、他方の領域の幅の94~106%の範囲内にあることを特徴とする超接合半導体案子。

【請求項8】二つの主電極が、それぞれ第一、第二の主面に設けられていることを特徴とする請求項1ないし請求項7のいずれか1項に記載の超接合半導体素子。

【請求項9】第一と第二の主面と、主面に設けられた二つの主電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する、第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層とを備える超接合半導体素子の製造方法において、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域の不純物量の92~108%の範囲内にある不純物量の他方の領域をエピタキシャル成長により形成することを特徴とする超接合半導体素子の製造方法。

【請求項10】第一と第二の主面と、主面に設けられた二つの主電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する、第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層とを備える超接合半導体素子の製造方法において、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域を形成するための不純物量の92~108%の範囲内にある不純物量を導入した後、熱拡散により他方の領域を形成することを特徴とする超接合半導体素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、オン状態では電流を流すとともに、オフ状態では空乏化する並列pn層からなる特別な構造を備えるMOSFET(絶縁ゲート型電界効果トランジスタ)、1GBT(絶縁ゲートバイポーラトランジスタ)、バイポーラトランジスタ、ダイオード等の半導体素子に関する。

[0002]

【従来の技術】相対向する二つの主面に設けられた電極間に電流が流される縦型半導体素子において、高耐圧化を図るには、両電極間の高抵抗層の厚さを厚くしなければならず、一方そのように厚い高抵抗層をもつ素子では、必然的に両電極間のオン抵抗が大きくなり、損失が増すことになることが避けられなかった。すなわちオン抵抗(電流容量)と耐圧間にはトレードオフ関係がある。このトレードオフ関係は、IGBT、バイポーラトランジスタ、ダイオード等の半導体素子においても同様

に成立することが知られている。またこの問題は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアスによる空乏層の延びる方向とが異なる横型半導体案子についても共通である。

【0003】この問題に対する解決法として、ドリフト層を、不純物濃度を高めたn型の領域とp型の領域とを交互に積層した並列pn層で構成し、オフ状態のときは、空乏化して耐圧を負担するようにした構造の半導体装置が、EP0053854、USP5216275、USP5438215および本発明の発明者らによる特開平9-266311号公報に開示されている。

【0004】なお本発明の発明者らは、オン状態では電流を流すとともに、オフ状態では空乏化する並列pn層からなるドリフト層を備える半導体素子を超接合半導体素子と称することとした。

[0005]

【発明が解決しようとする課題】しかし、前記の発明はいずれも、試作的な段階で、最産化のための検討がなされているとは言えない。例えば、並列 p n 層は、同じ不純物濃度、同じ幅とされている。しかし、実際の素子の製造過程では必ずばらつきを生じる。

【0006】また、量産化および製品化において重要であるL負荷アバランシェ破壊電流に関する具体的な数値がこれまで規定されていない。製品化のためには定格電流以上のL負荷アバランシェ破壊電流であることが望まれる。

【0007】このような状況に鑑み本発明の目的は、不 純物濃度、幅等について許容される範囲を明らかにする ことによって、オン抵抗と耐圧とのトレードオフ関係を 大幅に改善しつつ高耐圧を実現し、しかも量産に適した 超接合半導体素子を提供することにある。

[0008]

【課題を解決するための手段】上記の課題解決のため本発明は、第一と第二の主面と、主面に設けられた二つの主電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層とを備える超接合半導体素子において、第一導電型ドリフト領域の不純物量が第二導電型仕切り領域の不純物量の100~150%の範囲内にあるものとする。

【0009】特に、第一導電型ドリフト領域の不純物量が第二導電型仕切り領域の不純物量の110~150%の範囲内にあるのがよい。

【0010】また、第一導電型ドリフト領域と第二導電型仕切り領域とがそれぞれほぼ同じ幅のストライプ状であることが有効である。

【0011】また、これとは別に、第一と第二の主面と、主面に設けられた二つの電極と、その主電極間に、オン状態では電流を流すとともにオフ状態では空乏化する第一導電型ドリフト領域と第二導電型仕切り領域とを

交互に配置した並列p n層とを備える超接合半導体素子において、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域の不純物量が、他方の領域の不純物量の92~108%の範囲内にあるものとする。

【0012】特に、第一導電型ドリフト領域と第二導電型仕切り領域とがそれぞれほぼ同じ幅でありその内の一方の領域の平均不純物濃度が、他方の領域の平均不純物濃度の92~108%の範囲内にあってもよいし、また、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域の不純物濃度が、他方の領域の不純物濃度の92~108%の範囲内にあってもよい。

【0013】また、第一導電型ドリフト領域と第二導電型仕切り領域とがそれぞれほぼ同じ濃度でありその内の一方の領域の幅が、他方の領域の幅の94~106%の範囲内にあるものとする。

【0014】第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層とをオフ状態で空乏化するためには、両領域の不純物量がほぼ等量であることが必要である。仮に一方の不純物濃度が他方の不純物濃度の半分であれば、倍の幅としなければならないことになる。従って、両領域は同じ不純物濃度とすると、同じ幅ですむので、半導体表面の利用効率の点から最も良いことになる。

【0015】その同じ不純物濃度、同じ幅として、上記のようにすれば、双方の領域がほぼ均等に空乏層化するので、空乏化しない部分が残ることによる耐圧低下が、後述するように理想的な場合の10%程度に抑えられる。

【0016】製造方法としては、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域の不純物量の92~108%の範囲内にある不純物量の他方の領域をエピタキシャル成長により形成しても、一方の領域を形成するための不純物量の92~108%の範囲内にある不純物量を導入した後、熱拡散により他方の領域を形成してもよい。

[0017]

【発明の実施の形態】以下に本発明のためにおこなった 実験とその結果について説明する。

【0018】 [実施例1] 先ず、図3は実験に用いた縦型のnチャネル型の超接合MOSFETの基本的な部分の部分断面図である。他に、主に周縁部分に耐圧を保持するための部分が設けられるが、その部分は、例えばガードリング構造のような一般的な方法で形成される。なお以下でnまたはpを冠記した層や領域は、それぞれ電子、正孔を多数キャリアとする層、領域を意味している。また添字の*は比較的高不純物濃度の、一は比較的低不純物濃度の領域をそれぞれ意味している。

【0019】図3において、11は低抵抗のn⁺ドレイン層、12はnドリフト領域12a、p仕切り領域12 bとからなる並列pn層のドリフト層である。ドリフト 層12のうちドリフト電流が流れるのは、nドリフト領 域12aであるが、ここではp仕切り領域12bを含め た並列p n層をドリフト層12と呼ぶことにする。表面 層には、nドリフト領域12aに接続してnチャネル領 域12dが、p仕切り領域12bに接続してpウェル領 域13aがそれぞれ形成されている。pウェル領域13 aの内部にn⁺ソース領域14と高濃度のp⁺コンタクト 領域13bとが形成されている。n⁺ソース領域14と nドリフト領域12aとに挟まれたpウェル領域13a の表面上には、ゲート絶縁膜15を介して多結晶シリコ ンのゲート電極層16が、また、n⁺ソース領域14と 高濃度のp⁺コンタクト領域13bの表面に共通に接触 するソース電極17が設けられている。n⁺ドレイン層 11の裏面にはドレイン電極18が設けられている。1 9は表面保護および安定化のための絶縁膜であり、例え ば、熱酸化膜と燐シリカガラス (PSG) からなる。ソ ース電極17は、図のように絶縁膜19を介してゲート 電極層16の上に延長されることが多い。 n型分割領域 1とp型分割領域2の交互配置は、ストライプ状でも、 一方を格子状とした他の方法でも良い。 n ドリフト領域 12aは、例えばエピタキシャル成長により形成され る。p仕切り領域12bは、nドリフト領域12aに設 けられた掘り下げ部にエピタキシャル成長により充填し て形成する。この製造方法に関しては特願平10-20 9267号で詳細に説明している。

【0020】例えば、400 V クラスのMOSFETとして、各部の基準的な寸法および不純物濃度等は次のような値をとる。 n^+ ドレイン層 11 の比抵抗は0.01 $\Omega\cdot cm$ 、厚さ $350\mu m$ 、ドリフト層 12 の厚さ $32\mu m$ 、n ドリフト領域 12a およびp 仕切り領域 12b の幅 $8\mu m$ (すなわち、同じ領域の中心間間隔 $16\mu m$)、不純物濃度 3.0×10^{15} cm $^{-3}$ 、p ウェル領域 13a の拡散深さ $3\mu m$ 、表面不純物濃度 2×10^{17} cm $^{-3}$ 、 n^+ ソース領域 14 の拡散深さ $0.3\mu m$ 、表面不純物濃度 3×10^{20} cm $^{-3}$ である。

【0021】例えば、800 V クラスのMOSFETとして、各部の基準的な寸法および不純物濃度等は次のような値をとる。 n^+ ドレイン層 11 の比抵抗は0.01 $Q\cdot cm$ 、厚さ $350\mu m$ 、ドリフト層 12 の厚さ $48\mu m$ 、n ドリフト領域 12a および p 仕切り領域 12b の幅 $5\mu m$ (すなわち、同じ領域の中心間間隔 $10\mu m$)、不純物濃度 3.5×10^{15} cm -3、p ウェル領域 13a の拡散深さ $1\mu m$ 、表面不純物濃度 3×10^{18} cm -3、 n^+ ソース領域 14 の拡散深さ $0.3\mu m$ 、表面不純物濃度 1×10^{20} cm -3^0 である。

【0022】図3の超接合MOSFETの動作は、次のようにおこなわれる。ゲート電極層16に所定の正の電圧が印加されると、ゲート電極層16直下のpウェル領域13aの表面層に反転層が誘起され、n⁺ソース領域14から反転層を通じてnチャネル領域13dに電子が

注入される。その注入された電子が n ドリフト領域 1 2 a を通じて n * ドレイン電極 1 1 に違し、ドレイン電極 1 8、ソース電極 1 7 間が導通する。

【0023】ゲート電極層16への正の電圧が取り去られると、pウェル領域13aの表面層に誘起された反転層がが消滅し、ドレイン電極18、ソース電極17間が遮断される。更に、逆パイアス電圧を大きくすると、各p仕切り領域12bはpウェル領域13aを介してソース電極17で連結されているので、pウェル領域13aとnチャネル領域12dとの間のpn接合Ja、nドリフト領域12aとp仕切り領域12bとの間のpn接合Jbからそれぞれ空乏層がnドリフト領域12a、p仕切り領域12b内に広がってこれらが空乏化される。

【0024】pn接合Jbからの空乏端は、nドリフト領域12aの幅方向に広がり、しかも両側のp仕切り領域12bから空乏層が広がるので空乏化が非常に早まる。従って、nドリフト領域12aの不純物濃度を高めることができる。またp仕切り領域12bも同時に空乏化される。p仕切り領域12bも両側のpn接合から空乏層が広がるので空乏化が非常に早まる。p仕切り領域12bとnドリフト領域12aとを交互に形成することにより、隣接するnドリフト領域12aの双方へ空乏端が進入するようになっているので、空乏層形成のためのp仕切り領域12aの断面積の拡大を図ることができる。

【0025】図5は、オン抵抗($Ron\cdot A$)と発生耐圧(V_{DSS})の不純物量依存性を示す特性図である。 横軸は、発生耐圧(V_{DSS})、縦軸はオン抵抗($Ron\cdot A$)である。 p仕切り領域12bの不純物量(ドーズ量)は 1×10^{13} c m^{-2} に固定し、幅はともに 8μ mとし、ドリフト層12の深さは 32μ mとした。

【0026】例えば、 nドリフト領域12aの不純物量を1.0×10 13 cm $^{-2}$ (100%)のとき、発生耐圧は445Vで、オン抵抗は38mQ・cm 2 となるが、1.3×10 13 cm $^{-2}$ (130%)とすると発生耐圧は365Vでオン抵抗は24mQ・cm 2 に、1.5×10 13 cm $^{-2}$ (150%)とすると発生耐圧は280Vでオン抵抗は20mQ・cm 2 に低下する。

【0027】図から、 nドリフト領域12aの不純物量がp仕切り領域12bの不純物量に対して $100\sim150$ %になるに従い、発生耐圧(V_{DSS})は低下するものの、オン抵抗($Ron\cdot A$)が低減されることがわかる。また、この $100\sim150$ %の範囲での製品毎のオ

ン抵抗(Ron・A)のばらつきは小さいので、量産時には発生耐圧のばらつきのみを考慮して製造すればよくなるので、製造や工程管理が容易となる。また、この実施例は400Vクラスとしたが、どの耐圧クラスでも同じことが言える。

【0029】例えば、nドリフト領域12aの不純物 量を 1.0×10^{13} cm $^{-2}$ (100%)のとき、アバランシェ破壊電流(A)は約7Aとなるが、 1.3×10^{13} cm $^{-2}$ (130%)とするとアバランシェ破壊電流(A)は約63Aに、 1.5×10^{13} cm $^{-2}$ (150%)とするとアバランシェ破壊電流(A)は約72Aとなる。

【0030】図から、L負荷アバランシェ破壊電流が定格電流以上、好ましくは2倍以上要求される場合には、 nドリフト領域12aの不純物量 (ドーズ量)を110%以上にすればよいことがわかる。また、140%以上でのL負荷アバランシェ破壊電流は飽和傾向であるので、図1での発生耐圧の低下を考慮すると150%以下であることが望ましい。また、このL負荷アバランシェ

破壊電流に関してもどの耐圧クラスでも同じことが言え

【0031】以上の実験により並列pn層のnドリフト領域12aおよびp仕切り領域12bの不純物量の許容される範囲が明らかになったので、これを基に超接合半導体素子を設計すれば、オン抵抗と耐圧とのトレードオフ関係を大幅に改善しつつ、更にL負荷アバランシェ破壊の保証をした、高耐圧の超接合半導体素子の量産化が容易にできる。

[実施例4] p仕切り領域 12bの不純物濃度 C_p を変えてn チャネル型MOSFETをシミュレーションし、また実際に試作して確認した。

【0032】図1は、耐圧(V_{DSS})の不純物濃度 C_p 依存性を示す特性図である。横軸は、p仕切り領域12bの不純物濃度 C_p 、縦軸は耐圧(V_{DSS})である。nドリフト領域12aの不純物濃度 C_n は3. $5 \times 10^{15} cm^{-3}$ に固定し、幅はともに 5μ mとし、ドリフト層12の深さは 48μ mとした。

【0033】例えば、 $C_n = C_p = 3.5 \times 10^{15} \, cm^{-3}$ のとき、耐圧は最大値960 Vとなるが、 $C_p = 3 \times 10^{15} \, cm^{-3}$ とすると耐圧は約750 Vに、 $2 \times 10^{15} \, cm^{-3}$ とすると更に約380 Vに低下する。

【0034】これは、nドリフト領域12aに十分空乏

化しきれない部分を生じるためである。逆にp仕切り領域12bの不純物濃度をnドリフト領域12aより高くしたときは、p仕切り領域12bに十分空乏化しきれない部分を生じて、やはり耐圧が低下する。

【0035】図から、p仕切り領域12bの不純物濃度 C_p が、nドリフト領域12aの不純物濃度 C_n に対して上下8%以内にあるならば、耐圧の低下は10%程度ですむことがわかる。

【0036】この実施例は、p仕切り領域12bの不純物機度 C_p を変えた場合であるが、同じことは当然nドリフト領域12aの不純物機度 C_n を変えた場合についても言える。また、設定耐圧に関してもどの耐圧クラスでも同じことが言える。

[実施例 5] 次に、nドリフト領域 12a の幅 L_n を 5μ m 一定とし、p 仕切り領域 12b の幅 L_p を変えて n チャネル型MOSFETをシミュレーションし、また実際に試作して確認した。

【0037】図1は、耐圧(V_{DSS})の寸法依存性を示す特性図である。横軸は、p仕切り領域12bの幅 L_P 、縦軸は耐圧(V_{DSS})である。不純物濃度は3.5 $\times 10^{15}$ c m $^{-3}$ に固定し、ドリフト層12の深さは48 μ m とした。

【0038】例えば、 $L_n = L_p = 5 \mu m$ のとき、耐圧は最大値960 V となるが、 $L_p = 4 \mu m$ とすると耐圧は約550 V に低下する。

【0039】これは、nドリフト領域12aに十分空乏化しきれない部分を生じるためである。逆にp仕切り領域12bをnドリフト領域12aより厚くしたときは、p仕切り領域12bに十分空乏化しきれない部分を生じて、やはり耐圧が低下する。

【0040】図から、p仕切り領域12bの幅Lpが、 nドリフト領域12aの幅Lnに対して上下6%以内に あるならば、耐圧の低下は10%程度ですむことがわか る。

【0041】この実施例は、p仕切り領域12bの幅L pを変えた場合であるが、同じことは当然nドリフト領域12aの幅Lnを変えた場合についても言える。また、設定耐圧に関してもどの耐圧クラスでも同じことが言える。

【0042】以上の実験により並列pn層のnドリフト領域12aおよびp仕切り領域12bの不純物濃度や寸法等の許容される範囲が明らかになったので、これを基に超接合半導体素子を設計すれば、オン抵抗と耐圧とのトレードオフ関係を大幅に改善しつつ、高耐圧の超接合半導体素子の量産化が容易にできる。

[実施例6] 他の製造方法として、エピタキシャル成長の前に部分的に不純物の埋め込み領域を形成しておいてから、高抵抗層をエピタキシャル成長する工程を数回繰り返した後、熱処理により拡散させて並列pn層を形成することもできる。

【0043】図4はそのような方法で製造した縦型のn チャネル型超接合MOSFETの基本的な部分の部分断 面図である。

【0044】図3の超接合MOSFETの断面図と殆ど変わらないが、nドリフト領域22a、p仕切り領域22bが均一な不純物濃度でなく、内部に不純物濃度分布があることが違っている。分かり易くするため、点線で等しい不純物濃度の線を示した。等しい不純物濃度の線は、曲線(三次元的には曲面)となっている。これは不純物の埋め込み領域を形成しておいてから、高抵抗層をエピタキシャル成長する工程を数回繰り返した後、熱処理により埋め込まれ不純物源から拡散したためである。十分な拡散時間を経れば、nドリフト領域22aとp仕切り領域22bとの境界は図のような直線(三次元的には平面)となる。

【0045】このような場合に、nドリフト領域22 a、p仕切り領域22bが十分空乏化しきれない部分を 生じることが無いようにするには、両領域に埋め込まれ た不純物量がほぼ等しいことが重要である。

【0046】特に、先に述べたように、nドリフト領域22a、p仕切り領域22bの幅が等しい時に、半導体結晶面の利用率が大きくなることから、nドリフト領域22a、p仕切り領域22bの平均不純物濃度がほぼ等しいことが重要である。

【0047】そして、この例の場合も、実施例3と全く同じく、第一導電型ドリフト領域と第二導電型仕切り領域との内の一方の領域の不純物量が、他方の領域の不純物量の92~108%の範囲内にあれば、耐圧の低下は10%程度に抑えられる。

【0048】幅が等しいとすれば、第一導電型ドリフト 領域と第二導電型仕切り領域との内の一方の領域の平均 不純物濃度が、他方の領域の平均不純物濃度の92~1 08%の範囲内にあればよいことになる。

【0049】また、nドリフト領域22a、p仕切り領域22bの幅の許容範囲としても、94~106%の範囲内にあればよいことになる。

【0050】なお、nドリフト領域12aおよびp仕切り領域12bの幅を狭くし、不純物濃度を高くすれば、より一層のオン抵抗の低減、オン抵抗と耐圧とのトレードオフ関係の改善が可能である。

【0051】なお、実施例は縦型のMOSFETの例を 掲げたが、この問題は、オン時にドリフト電流が流れる 方向と、オフ時の逆バイアスによる空乏層の延びる方向 とが異なる横型半導体素子についても共通である。更に、IGBTやpnダイオード、ショットキーバリアダイオード、バイポーラトランジスタでも同様の効果が得られる。

. 5

[0052]

【発明の効果】以上説明したように本発明は、オン状態では電流を流すとともにオフ状態では空乏化する第一導電型ドリフト領域と第二導電型仕切り領域とを交互に配置した並列pn層とを備える超接合半導体素子において、並列pn層の第一導電型ドリフト領域と第二導電型仕切り領域との不純物濃度や寸法等の許容される範囲を明らかにすることによって、オン抵抗と耐圧とのトレードオフ関係を大幅に改善しつつ、更にL負荷アパランシェ破壊の保証をして、高耐圧の超接合半導体素子の盘産化を容易にした。

【図面の簡単な説明】

【図1】本発明の超接合MOSFETにおける耐圧(V pss)のL_P幅依存性を示す特性図

【図2】耐圧(V_{DSS})の不純物濃度C_P依存性を示す特 性図

【図3】実施例1の超接合MOSFETの基本的な構造 部分の部分断面図

【図4】実施例2の超接合MOSFETの基本的な構造 部分の部分断面図

【図5】本発明の超接合MOSFETにおけるオン抵抗 (Ron・A)と発生耐圧(V_{DSS})の不純物量依存性を 示す特性図

【図6】 L負荷アバランシェ破壊電流 (A) の不純物量 依存性を示す特性図

n⁺ドレイン層

【符号の説明】 11、21

12,22	ドリフト層
12a,22a	n ドリフト領域
12b, 22b	p仕切り領域
13a,23a	pウェル領域
13b, 23b	p ⁺ コンタクト領域
14,24	n ⁺ ソース領域
1 5	ゲート絶縁膜
1 6	ゲート電極層
1 7	ソース電極
18	ドレイン電極
1 9	絶縁膜

【図1】

p仕切り領域濃度C。(cm⁻⁴)

知用V_{Pt} (V)

1×1014

[図2]

【図3】

[図4]

フロントページの続き

(72)発明者 大西 泰彦

神奈川県川崎市川崎区田辺新田1番1号 富士電機株式 会社内 (72)発明者 上野 勝典

神奈川県川崎市川崎区田辺新田1番1号

富士電機株式 会社内

(72) 発明者 岩本 進

神奈川県川崎市川崎区田辺新田1番1号

富士電機株式 会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
——————————————————————————————————————

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.