Econ712 - Handout 4b

1 Measure space and Measurable function

Definition 1. For a set S and a set of its subsets \mathscr{S} , \mathscr{S} is a σ -algebra if

- 1. $\emptyset, S \in \mathscr{S}$
- 2. If $A \in \mathscr{S}$ then $A^c \in \mathscr{S}$
- 3. If $A_n \in \mathcal{S}$, n = 1, 2, ... then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{S}$

The pair (S, \mathcal{S}) is called a measurable space, and any $A \in \mathcal{S}$ is called an \mathcal{S} -measurable set.

Definition 2. For any set S and any collection $\mathscr A$ of subsets of S, the smallest σ -algebra that contains $\mathscr A$ is called the σ -algebra generated by $\mathscr A$

Definition 3. The Borel algebra \mathcal{B}^n of \mathbb{R}^n is the σ -algebra generated by the open sets of \mathbb{R}^n

Definition 4. Let (S, \mathscr{S}) be a measurable space. A measure is an extended real valued function $\mu : \mathscr{S} \to \bar{R}$ s.t.

- 1. $\mu(\emptyset) = 0$
- 2. $\mu(A) \ge 0, \forall A \in \mathscr{S}$
- 3. If $\{A_n\}_{n=1}^{\infty}$ is a countable, disjoint sequence of subsets in \mathscr{S} , then $\mu(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}\mu(A_n)$

Definition 5. A measure space is a triple (S, \mathcal{S}, μ) , where S is a set, \mathcal{S} is a σ -algebra of its subsets, and μ is a measure defined on \mathcal{S}

Definition 6. Given a measure space (S, \mathcal{S}, μ) , if $\mu(S) = 1$ then μ is a probability measure and (S, \mathcal{S}, μ) is a probability space

Definition 7. Given a measurable space (S, \mathscr{S}) , a real-valued function $f: S \to R$ is measurable wrt \mathscr{S} if

$$\{s \in S : f(s) < a\} \in \mathscr{S}, \forall a \in R$$

Exercise. For some $S \in \mathcal{B}^n$, define $\mathcal{B}_s = \{A \in \mathcal{B}^n; A \subseteq S\}$. Show that \mathcal{B}_s is a σ -algebra

Exercise. Let (S, \mathscr{S}) be a measurable space; let μ_1, μ_2 be measures on it. Show that $\lambda : \mathscr{S} \to \overline{R}$ defined by $\lambda(A) = \mu_1(A) + \mu_2(A)$ is a measure on (S, \mathscr{S})

Exercise. Show that any monotone or continuous function $f: R \to R$ is measurable wrt to \mathscr{B}

2 Transition functions

Definition 8. Let (Z, \mathcal{L}) be a measurable space. A transition function is a function $Q: Z \times \mathcal{L} \to [0, 1]$ s.t.

- 1. for each $z \in Z$, $Q(z, \cdot)$ is a probability measure on (Z, \mathcal{L}) and
- 2. for each $A \in \mathcal{L}$, $Q(\cdot, A)$ is a \mathcal{L} -measurable function

The interpretation is that $Q(a, A) = Pr\{z_{t+1} \in A | z_t = a\}$, where z_t is the random stat in period tFor any \mathscr{L} -measurable function f, define Tf by

$$Tf(z) = \int f(z')Q(z,dz'), \quad \forall z \in Z$$

The interpretation is $Tf(z)=E\left[f(z')|z\right]$ For any probability measure λ on (Z,\mathcal{L}) , define $T^*\lambda$ by

$$T^*\lambda(A) = \int Q(z,A)\lambda(dz), \quad \forall A \in \mathscr{L}$$

The interpretation is $T^*\lambda(A) = Pr_{\lambda} \{z_{t+1} \in A\}$