What is claimed is:

1. An anthraquinone dye of formula

wherein

 R_1 , R_2 and R_3 are each independently of one another hydrogen or unsubstituted or substituted C_1 - C_{12} alkyl,

 X_1 is chloro or fluoro,

 B_1 is methylene-phenylene-methylene which is unsubstituted or substituted in the phenylene ring by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 alkanoylamino, halogen, carboxy or sulfo, or is a radical of formula -(CH_2)₃- $CH(CH_3$)- CH_2 -, - CH_2 - CH_2 - $CH(C_2H_5)$ -, - CH_2 -CH(OH)- CH_2 - or - CH_2 - $C(CH_3)$ ₂- CH_2 -,

Y is hydrogen, unsubstituted or substituted C_1 - C_{12} alkyl, or phenyl or naphthyl, each unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 alkanoylamino, halogen, carboxy, sulfo or a radical of formula -SO₂-Z, wherein

Z is a group of formula -CH=CH₂ or -CH₂-CH₂-U₁, and U₁ is a leaving group.

- 2. An anthraquinone dye according to claim 1, wherein R_1 and R_2 are hydrogen or C_1 - C_4 alkyl, and R_3 is hydrogen or C_1 - C_8 alkyl which is unsubstituted or substituted by hydroxyl, sulfo or sulfato and, with the exception of methyl, may be interrupted by oxygen.
- 3. An anthraquinone dye according to claim 1, wherein R_1 , R_2 and R_3 are hydrogen.
- 4. An anthraquinone dye according to claim 1, wherein Y is hydrogen; C_1 - C_{12} alkyl which is unsubstituted or substituted hydroxyl, sulfo or sulfato and, with the exception of methyl, interrupted by oxygen; or phenyl or naphthyl, each unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy,

 C_2 - C_4 alkanoylamino, halogen, carboxy, sulfo or a radical of formula -SO₂-Z, wherein Z is a group of formula -CH=CH₂ or -CH₂-CH₂-U₁, and U₁ is chloro or sulfato; or an anthraquinone of formula

$$\begin{array}{c|c}
O & NH_2 \\
\hline
SO_3H \\
O & HN - B_2
\end{array}$$
(3),

wherein B_2 is C_2 - C_{12} alkylene which is unsubstituted or substituted by hydroxyl, sulfo or sulfato, and which may be interrupted by oxygen, or methylene-phenylene-methylene which is unsubstituted or substituted in the phenylene ring by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 alkanoylamino, halogen, carboxy or sulfo.

- 5. An anthraquinone dye according to claim 4, wherein Y is phenyl or naphthyl, each unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, sulfo or a radical of formula -SO₂-Z, wherein Z is a group of formula -CH=CH₂ or -CH₂-CH₂-U₁, and U₁ is chloro or sulfato.
- 6. An anthraquinone dye according to claim 1, wherein B_1 is methylene-phenylene-methylene which is unsubstituted or substituted in the phenylene ring by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 alkanoylamino, halogen, carboxy or sulfo, or is a radical of formula - $(CH_2)_3$ - $CH(CH_3)$ - CH_2 or - CH_2 - $C(CH_3)_2$ - CH_2 -.
- 7. An anthraquinone dye according to claim 6, wherein B_1 is methylene-phenylene-methylene or a radical of formula - CH_2 - $C(CH_3)_2$ - CH_2 -.
- 8. An anthraquinone dye according to claim 7, wherein B_1 is a radical of formula $-CH_2-C(CH_3)_2-CH_2$.
- 9. An anthraquinone dye according to claim 1, of formula

$$\begin{array}{c} O & NH_2 \\ \hline \\ O & HN \\ \hline \\ CH_2 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_2 \\ \hline \\ N \\ \hline \\ N \\ \hline \\ N \\ \hline \\ HN \\ \hline \\ (SO_3H)_{1-3} \\ \end{array}$$

or

$$\begin{array}{c} O & NH_2 \\ \hline \\ O & HN - CH_2 - C \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \end{array} \begin{array}{c} X_1 \\ N \\ N \\ N \\ N \\ \end{array} \begin{array}{c} R_6 \\ R_7 \\ \end{array} (5),$$

wherein R_6 , R_7 and R_8 are each independently of one another hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, sulfo or a radical of formula -SO₂-Z, wherein Z is a group of formula -CH=CH₂ or -CH₂-CH₂-U₁, and U₁ is chloro or sulfato.

- 10. An anthraquinone dye of formula (5) according to claim 9, wherein R_6 , R_7 and R_8 are each independently of one another hydrogen or sulfo.
- 11. An anthraquinone dye according to claim 1, of formula

wherein R_9 , R_{10} and R_{11} are each independently of one another hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, sulfo or a radical of formula -SO₂-Z, wherein Z is a group of formula -CH=CH₂ or -CH₂-CH₂-U₁, and U₁ is chloro or sulfato.

- 12. An anthraquinone dye of formula (7) according to claim 11, wherein R_9 , R_{10} and R_{11} are each independently of one another hydrogen or sulfo.
- 13. A process for the preparation of an anthraquinone dye as claimed in claim 1, which comprises condensing an anthraquinone dye of formula

$$\begin{array}{c|c}
O & NH_2 \\
SO_3H \\
O & N - B_1 - NH \\
R_1 & R_2
\end{array}$$
(8)

with a compound of formula

$$X_{2} \stackrel{N}{\longrightarrow} N \stackrel{N}{\longrightarrow} Y$$

$$X_{2} \stackrel{N}{\longrightarrow} N \stackrel{N}{\longrightarrow} Y$$

$$R_{3}$$

$$(9)$$

and subsequently carrying out an optional conversion reaction, in which formulae X_2 is chloro or fluoro and R_1 , R_2 , R_3 , X_1 , B_1 and Y are as defined in claim 1.

- 14. Method of using an anthraquinone dye as claimed in claim 1 for dyeing or printing hydroxyl group-containing or nitrogen-containing fibre materials.
- 15. Use according to claim 14 for dyeing or printing cellulosic fibre materials or natural or synthetic polyamide fibre materials.