· A formal language

· A formal language

- A formal language
 - Syntax what expressions are legal

- A formal language
 - Syntax what expressions are legal
 - Semantics what legal expressions mean

- A formal language
 - Syntax what expressions are legal
 - · Semantics what legal expressions mean
 - Proof system a way of manipulating syntactic expressions to get other syntactic expressions (which will tell us something new)

- · A formal language
 - Syntax what expressions are legal
 - · Semantics what legal expressions mean
 - Proof system a way of manipulating syntactic expressions to get other syntactic expressions (which will tell us something new)
- Why proofs? Two kinds of inferences an agent might want to make:

- · A formal language
 - · Syntax what expressions are legal
 - · Semantics what legal expressions mean
 - Proof system a way of manipulating syntactic expressions to get other syntactic expressions (which will tell us something new)
- Why proofs? Two kinds of inferences an agent might want to make:
 - Multiple percepts => conclusions about the world

- · A formal language
 - · Syntax what expressions are legal
 - · Semantics what legal expressions mean
 - Proof system a way of manipulating syntactic expressions to get other syntactic expressions (which will tell us something new)
- Why proofs? Two kinds of inferences an agent might want to make:
 - Multiple percepts => conclusions about the world
 - Current state & operator => properties of next state

Syntax: what you're allowed to write

• for (thing t = fizz; t == fuzz; t++){ ... }

Syntax: what you're allowed to write

- for (thing t = fizz; t == fuzz; t++){ ... }
- · Colorless green ideas sleep furiously.

Syntax: what you're allowed to write

- for (thing t = fizz; t == fuzz; t++){ ... }
- · Colorless green ideas sleep furiously.

Syntax: what you're allowed to write

- for (thing t = fizz; t == fuzz; t++){ ... }
- · Colorless green ideas sleep furiously.

Sentences (wffs: well formed formulas)

• true and false are sentences

Syntax: what you're allowed to write

- for (thing t = fizz; t == fuzz; t++){ ... }
- · Colorless green ideas sleep furiously.

- true and false are sentences
- Propositional variables are sentences: P,Q,R,Z

Syntax: what you're allowed to write

- for (thing t = fizz; t == fuzz; t++){ ... }
- · Colorless green ideas sleep furiously.

- · true and false are sentences
- · Propositional variables are sentences: P,Q,R,Z
- If φ and ψ are sentences, then so are
 (φ), ¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, φ ↔ ψ

Syntax: what you're allowed to write

- for (thing t = fizz; t == fuzz; t++){ ... }
- · Colorless green ideas sleep furiously.

- · true and false are sentences
- · Propositional variables are sentences: P,Q,R,Z
- If ϕ and ψ are sentences, then so are (ϕ) , $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$, $\phi \to \psi$, $\phi \leftrightarrow \psi$
- · Nothing else is a sentence

Precedence

7	highest
٨	
V	
\rightarrow	1
\leftrightarrow	lowest

 $A \lor B \land C$ $A \lor (B \land C)$ $A \land B \rightarrow C \lor D$ $(A \land B) \rightarrow (C \lor D)$

 Precedence rules enable "shorthand" form of sentences, but formally only the fully parenthesized form is legal.

 $A \rightarrow B \lor C \leftrightarrow D$

 Syntactically ambiguous forms allowed in shorthand only when semantically equivalent: A ∧ B ∧ C is equivalent to (A ∧ B) ∧ C and A ∧ (B ∧ C)

 $(A \rightarrow (B \lor C)) \leftrightarrow D$

ullet Meaning of a sentence is truth value $\{ullet$, ullet

- Meaning of a sentence is truth value {t, f}
- Interpretation is an assignment of truth values to the propositional variables

 $holds(\phi,i)$ [Sentence ϕ is t in interpretation i]

- Meaning of a sentence is truth value {t, f}
- Interpretation is an assignment of truth values to the propositional variables

```
holds(\phi, i) [Sentence \phi is \mathbf{t} in interpretation i ] fails(\phi, i) [Sentence \phi is \mathbf{f} in interpretation i ]
```


• holds(true, i) for all i

- holds(true, i) for all i
- fails(false, i) for all i


```
• holds(true, i) for all i

• fails(false, i) for all i

• holds(¬ф, i) if and only if fails(φ, i)

(negation)
```



```
holds(true, i) for all i
fails(false, i) for all i
```

- holds(¬φ, i) if and only if fails(φ, i) (negation)
- $holds(\phi \land \psi, i)$ iff $holds(\phi, i)$ and $holds(\psi, i)$ (conjunction)


```
    holds(true, i) for all i
```

- fails(false, i) for all i
- holds($\neg \phi$, i) if and only if fails(ϕ , i) (negation)
- $holds(\phi \land \psi, i)$ iff $holds(\phi, i)$ and $holds(\psi, i)$ (conjunction)
- holds($\phi \lor \psi$, i) iff holds(ϕ , i) or holds(ψ ,i) (disjunction)


```
    holds(true, i) for all i
    fails(false, i) for all i
    holds(¬φ, i) if and only if fails(φ, i) (negation)
    holds(φ ∧ ψ, i) iff holds(φ, i) and holds(ψ, i) (conjunction)
    holds(φ ∨ ψ, i) iff holds(φ, i) or holds(ψ, i) (disjunction)
```

- holds(P, i) iff i(P) = t
- fails(P, i) iff i(P) = f

• $\phi \rightarrow \psi \equiv \neg \phi \lor \psi$ (conditional, implication)

antecedent \rightarrow consequent

- $\phi \rightarrow \psi \equiv \neg \phi \lor \psi$ (conditional, implication)

 antecedent \rightarrow consequent
- φ ↔ ψ ≡ (φ → ψ) ∧ (ψ → φ) (biconditional, equivalence)

- $\phi \rightarrow \psi \equiv \neg \phi \lor \psi$ (conditional, implication)

 antecedent \rightarrow consequent
- $\phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$ (biconditional, equivalence)

 Truth Tables

١	P	Q	¬ P	PAQ	PVQ	$P \rightarrow Q$	$Q\toP$	P + Q
	f	f	t	f	f	t	t	t
ı	f	t	t	f	t	t	f	f
	t	f	f	f	t	f	t	f
ı	t	t	f	t	t	t	t	t

- $\phi \rightarrow \psi \equiv \neg \phi \lor \psi$ (conditional, implication)

 antecedent \rightarrow consequent
- $\phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$ (biconditional, equivalence)

 Truth Tables

	Р	Q	¬ P	PAQ	PVQ	$P\toQ$	$Q\toP$	$P \leftrightarrow Q$
I	f	f	t	f	f	t	t	t
ı	f	t	t	f	t	t	f	f
ı	t	f	f	f	t	f	t	f
Ì	t	t	f	t	t	t	t	t

Note that implication is not "causality", if P is f then $P \rightarrow Q$ is t

Terminology

Terminology

 A sentence is valid iff its truth value is t in all interpretations

Valid sentences: true, ¬ false, P ∨ ¬ P

Terminology

 A sentence is valid iff its truth value is t in all interpretations

Valid sentences: true, ¬ false, P ∨ ¬ P

 A sentence is satisfiable iff its truth value is t in at least one interpretation

Satisfiable sentences: P, true, ¬ P

Terminology

 A sentence is valid iff its truth value is t in all interpretations

Valid sentences: true, ¬ false, P ∨ ¬ P

Satisfiable sentences: P, true, ¬ P

 A sentence is satisfiable iff its truth value is t in at least one interpretation

 A sentence is unsatisfiable iff its truth value is f in all interpretations

Unsatisfiable sentences: $P \land \neg P$, false, \neg true

Terminology

 A sentence is valid iff its truth value is t in all interpretations

Valid sentences: true, ¬ false, P ∨ ¬ P

 A sentence is satisfiable iff its truth value is t in at least one interpretation

Satisfiable sentences: P, <u>true</u>, ¬ P

• A sentence is <u>unsatisfiable</u> iff its truth value is **f** in all interpretations

Unsatisfiable sentences: $P \land \neg P$, <u>false</u>, $\neg \underline{true}$

All are finitely decidable.

Sentence	Valid?	Interpretation that make sentence's truth value = \mathbf{f}
$smoke \to smoke$	valid	3
smoke ∨ ¬smoke) valid	

Sentence	Valid?	Interpretation that make sentence's truth value = f
$smoke \rightarrow smoke$	valid	
smoke ∨ ¬smoke	Valid	
$smoke \rightarrow fire \\$	satisfiable not valid	smoke = t, fire = f

Sentence	Valid?	Interpretation that make sentence's truth value = f
smoke → smoke smoke ∨ ¬smoke	valid	
$smoke \rightarrow fire$	satisfiable not valid	smoke = t, fire = f
$(s \to f) \to (\neg \ s \to \neg$	f) } satisfiable not valid	s = f, f = t $s \rightarrow f = t, \neg s \rightarrow \neg f = f$

Sentence	Valid?	Interpretation that make sentence's truth value = f
smoke → smoke smoke ∨ ¬smoke	valid	
$smoke \rightarrow fire$	satisfiable, not valid	smoke = t , fire = f
$(s \to f) \to (\neg \ s \to \neg \ f)$		s = f, f = t $s \rightarrow f = t, \neg s \rightarrow \neg f = f$
contrapositive $(s \rightarrow f) \rightarrow (\neg f \rightarrow \neg s)$	valid	

Sentence	Valid?	Interpretation that make sentence's truth value = \mathbf{f}
$smoke \rightarrow smoke$	valid	
smoke ∨ ¬smoke	Valid	
$smoke \rightarrow fire$	satisfiable, not valid	smoke = t, fire = f
$(s \to f) \to (\neg \ s \to \neg \ f)$	satisfiable	s = f , f = t
		$s \rightarrow f = t$, $\neg s \rightarrow \neg f = f$
$(s \to f) \to (\neg f \to \neg s)$	} valid	
$b \lor d \lor (b \rightarrow d)$	} valid	

Satisfiability

- · Related to constraint satisfaction
- Given a sentence S, try to find an interpretation i such that holds(S,i)
- Analogous to finding an assignment of values to variables such that the constraints hold

Satisfiability

- · Related to constraint satisfaction
- Given a sentence S, try to find an interpretation i such that holds(S,i)
- Analogous to finding an assignment of values to variables such that the constraints hold
- Brute force method: enumerate all interpretations and check

Satisfiability

- · Related to constraint satisfaction
- Given a sentence S, try to find an interpretation i such that holds(S,i)
- Analogous to finding an assignment of values to variables such that the constraints hold
- Brute force method: enumerate all interpretations and check
- Better methods:
 - heuristic search
 - · constraint propagation
 - stochastic search

Satisfiability problems

Satisfiability problems

- Scheduling nurses to work in a hospital
 - propositional variables represent, for example, that Pat is working on Tuesday at 2
 - constraints on the schedule are represented using logical expressions over the variables

Satisfiability problems

- Scheduling nurses to work in a hospital
 - propositional variables represent, for example, that Pat is working on Tuesday at 2
 - constraints on the schedule are represented using logical expressions over the variables
- · Finding bugs in software
 - propositional variables represent state of the program
 - use logic to describe how the program works and to assert there is a bug
 - if the sentence is satisfiable, you've found a bug!

A Good Lecture?

A Good Lecture?

Imagine we knew that:

- If today is sunny, then Tomas will be happy $(S\rightarrow H)$
- If Tomas is happy, the lecture will be good (H→G)
- Today is sunny (S)

Should we conclude that the lecture will be good?

S	Н	G
t	t	t
t	t	f
t	f	t
t	f	f
f	t	t
f	t	f
f	f	t
f	f	f

s	Н	G	S→ H	H→G	S
t	t	t	t	t	t
t	t	f	t	f	t
t	f	t	f	t	t
t	f	f	f	t	t
f	t	t	t	t	f
f	t	f	t	f	f
f	f	t	t	t	f
f	f	f	t	t	f

s	Н	G	S →H	H→G	S	G
t	t	t	t	t	t	t
t	t	f	t	f	t	f
t	f	t	f	t	t	t
t	f	f	f	t	t	f
f	t	t	t	t	f	t
f	t	f	t	f	f	f
f	f	t	t	t	f	t
f	f	f	t	t	f	f

Adding a Variable

L	S	Н	G	S→H	H→G	S	G
t	t	t	t	t	t	t	t
t	t	t	f	t	f	t	f
t	t	f	t	f	t	t	t
t	t	f	f	f	t	t	f
t	f	t	t	t	t	f	t
t	f	t	f	t	f	f	f
t	f	f	t	t	t	f	t
t	f	f	f	t	t	f	f
f	t	t	t	t	t	t	t
f	t	t	f	t	f	t	f
010	2000	100				T	

Entailment

A knowledge base (KB) *entails* a sentence S iff every interpretation that makes KB true also makes S true

Computing Entailment

- · enumerate all interpretations
- select those in which all elements of KB are true
- check to see if S is true in all of those interpretations

Computing Entailment

- · enumerate all interpretations
- select those in which all elements of KB are true
- check to see if S is true in all of those interpretations

Way too many interpretations, in general!!

Entailment and Proof

A proof is a way to test whether a KB entails a sentence, without enumerating all possible interpretations

• Proof is a sequence of sentences

- Proof is a sequence of sentences
- First ones are premises (KB)

- Proof is a sequence of sentences
- First ones are premises (KB)
- Then, you can write down on the next line the result of applying an inference rule to previous lines

- Proof is a sequence of sentences
- · First ones are premises (KB)
- Then, you can write down on the next line the result of applying an inference rule to previous lines
- When S is on a line, you have proved S from KB

- Proof is a sequence of sentences
- · First ones are premises (KB)
- Then, you can write down on the next line the result of applying an inference rule to previous lines
- When S is on a line, you have proved S from KB
- If inference rules are *sound*, then any S you can prove from KB is entailed by KB

- Proof is a sequence of sentences
- · First ones are premises (KB)
- Then, you can write down on the next line the result of applying an inference rule to previous lines
- When S is on a line, you have proved S from KB
- If inference rules are sound, then any S you can prove from KB is entailed by KB
- If inference rules are complete, then any S that is entailed by KB can be proved from KB

Some inference rules:

Some inference rules:

$$\alpha \rightarrow \beta$$
 α

Modus

Some inference rules:

$$\begin{array}{c}
\alpha \to \beta \\
\alpha \\
\hline
\beta
\end{array}
\qquad
\begin{array}{c}
\alpha \to \beta \\
\neg \beta \\
\hline
\neg \alpha
\end{array}$$
Modus

ponens

tolens

Some inference rules:

$$\alpha \rightarrow \beta$$
 α
 β

$$\begin{array}{c} \alpha \to \beta \\ \neg \beta \\ \hline \neg \alpha \end{array}$$

Natural Deduction

Some inference rules:

$$\alpha \rightarrow \beta$$
 α
 β

$$\frac{\alpha \to \beta}{\neg \beta}$$

Prove S

Step	Formula	Derivation	
		-	

Prove S

Step	Formula	Derivation	
1	P ∧ Q	Given	
2	$P \rightarrow R$	Given	
3	$(Q \land R) \rightarrow S$	Given	
			-
			+

Prove S

Formula	Derivation
P ∧ Q	Given
$P \rightarrow R$	Given
$(Q \land R) \rightarrow S$	Given
Р	1 And-Elim
	4
	$\begin{array}{c} P \wedge Q \\ P \rightarrow R \\ (Q \wedge R) \rightarrow S \end{array}$

Prove S

Step	Formula	Derivation
1	P ∧ Q	Given
2	$P \rightarrow R$	Given
3	$(Q \land R) \rightarrow S$	Given
4	P	1 And-Elim
5	R	4,2 Modus Ponens

Prove S

	Step	Formula	Derivation
$ \begin{array}{cccc} 3 & (Q \land R) \rightarrow S & \text{Given} \\ 4 & P & 1 \text{ And-Elim} \\ 5 & R & 4,2 \text{ Modus Pone} \\ \end{array} $	1	P ∧ Q	Given
4 P 1 And-Elim 5 R 4,2 Modus Pone	2	$P \rightarrow R$	Given
5 R 4,2 Modus Pone	3	$(Q \land R) \rightarrow S$	Given
	4	P	1 And-Elim
6 O I And Flim	5	R	4,2 Modus Ponens
6 Q I And-Ellin	6	Q	1 And-Elim

Prove S

Step	Formula	Derivation
1	P ∧ Q	Given
2	$P \rightarrow R$	Given
3	$(Q \land R) \rightarrow S$	Given
4	P	1 And-Elim
5	R	4,2 Modus Ponens
6	Q	1 And-Elim
7	Q ∧ R	5,6 And-Intro

Prove S

Step	Formula	Derivation
1	P ∧ Q	Given
2	$P \rightarrow R$	Given
3	$(Q \land R) \rightarrow S$	Given
4	P	1 And-Elim
5	R	4,2 Modus Ponens
6	Q	1 And-Elim
7	Q ∧ R	5,6 And-Intro
8	S	7.3 Modus Ponens

Proof systems

 There are many natural deduction systems; they are typically "proof checkers", sound but not complete

Proof systems

- There are many natural deduction systems; they are typically "proof checkers", sound but not complete
- Natural deduction uses lots of inference rules which introduces a large branching factor in the search for a proof.

Proof systems

- There are many natural deduction systems; they are typically "proof checkers", sound but not complete
- Natural deduction uses lots of inference rules which introduces a large branching factor in the search for a proof.
- In general, you need to do "proof by cases" which introduces even more branching.

Prove R

	VIV. 11.71.1.171.1
1	PvQ
2	$Q \rightarrow R$
3	$P \rightarrow R$

- Single inference rule is a sound and complete proof system
- Requires all sentences to be converted to conjunctive normal form

$$(A \lor B \lor \neg C) \land (B \lor D) \land (\neg A) \land (B \lor C)$$

Conjunctive normal form (CNF) formulas:

$$(A \lor B \lor \neg C) \land (B \lor D) \land (\neg A) \land (B \lor C)$$

• $(A \lor B \lor \neg C)$ is a clause

$$(A \lor B \lor \neg C) \land (B \lor D) \land (\neg A) \land (B \lor C)$$

- (A∨B∨¬C) is a clause, which is a disjunction of literals
- A, B, and ¬ C are literals

$$(A \lor B \lor \neg C) \land (B \lor D) \land (\neg A) \land (B \lor C)$$

- (A \times B \times \to C) is a clause, which is a disjunction of literals
- A, B, and

 C are literals, each of which is a variable or the negation of a variable.

$$(A \lor B \lor \neg C) \land (B \lor D) \land (\neg A) \land (B \lor C)$$

- (A∨B∨¬C) is a clause, which is a disjunction of literals
- A, B, and ¬ C are literals, each of which is a variable or the negation of a variable.
- Each clause is a requirement that must be satisfied and can be satisfied in multiple ways

$$(A \lor B \lor \neg C) \land (B \lor D) \land (\neg A) \land (B \lor C)$$

- (A∨B∨¬C) is a clause, which is a disjunction of literals
- A, B, and ¬ C are literals, each of which is a variable or the negation of a variable.
- Each clause is a requirement that must be satisfied and can be satisfied in multiple ways
- Every sentence in propositional logic can be written in CNF

1. Eliminate arrows using definitions

- 1. Eliminate arrows using definitions
- 2. Drive in negations using De Morgan's Laws

$$\neg(\phi \lor \varphi) \equiv \neg \phi \land \neg \varphi$$
$$\neg(\phi \land \varphi) \equiv \neg \phi \lor \neg \varphi$$

- 1. Eliminate arrows using definitions
- 2. Drive in negations using De Morgan's Laws

$$\neg(\phi \lor \varphi) \equiv \neg \phi \land \neg \varphi$$
$$\neg(\phi \land \varphi) \equiv \neg \phi \lor \neg \varphi$$

3. Distribute or over and

$$A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$$

- 1. Eliminate arrows using definitions
- 2. Drive in negations using De Morgan's Laws

$$\neg(\phi \lor \varphi) \equiv \neg\phi \land \neg\varphi$$
$$\neg(\phi \land \varphi) \equiv \neg\phi \lor \neg\varphi$$

3. Distribute or over and

$$A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$$

Every sentence can be converted to CNF, but it may grow exponentially in size

$$(A \vee B) \to (C \to D)$$

$$(A \lor B) \to (C \to D)$$

1. Eliminate arrows

$$\neg (A \lor B) \lor (\neg C \lor D)$$

$$(A \lor B) \to (C \to D)$$

1. Eliminate arrows

$$\neg (A \lor B) \lor (\neg C \lor D)$$

2. Drive in negations

$$(\neg A \land \neg B) \lor (\neg C \lor D)$$

$$(A \lor B) \to (C \to D)$$

1. Eliminate arrows

$$\neg (A \lor B) \lor (\neg C \lor D)$$

2. Drive in negations

$$(\neg A \land \neg B) \lor (\neg C \lor D)$$

3. Distribute

$$(\neg A \lor \neg C \lor D) \land (\neg B \lor \neg C \lor D)$$

Resolution rule:

· Resolution refutation:

- · Resolution refutation:
 - · Convert all sentences to CNF

- Resolution refutation:
 - · Convert all sentences to CNF
 - · Negate the desired conclusion (converted to CNF)

- · Resolution refutation:
 - · Convert all sentences to CNF
 - · Negate the desired conclusion (converted to CNF)
 - · Apply resolution rule until either
 - Derive false (a contradiction)
 - Can't apply any more

- Resolution refutation:
 - · Convert all sentences to CNF
 - . Negate the desired conclusion (converted to CNF)
 - · Apply resolution rule until either
 - Derive false (a contradiction)
 - Can't apply any more
- · Resolution refutation is sound and complete
 - If we derive a contradiction, then the conclusion follows from the axioms
 - If we can't apply any more, then the conclusion cannot be proved from the axioms.

Propositional Resolution Example

Prove R		
1	ΡvQ	
2	$P \rightarrow R$	
3	$Q\toR$	

Step	Formula	Derivation	
		1	
		+	_
			_
		+	

Propositional Resolution Example

Prove R		
1	PvQ	
2	$P\toR$	
3	$Q\toR$	

Step	Formula	Derivation
1	PvQ	Given

Prove R		
1	PvQ	
2	$P\toR$	
3	$Q \rightarrow R$	

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
		-

Prove R		
1	PvQ	
2	$P\toR$	
3	$Q\toR$	

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬QvR	Given

Prove R		
1	PvQ	
2	$P\toR$	
3	$Q\toR$	

Step	Formula	Derivation
1	PvQ	Given
2	¬PVR	Given
3	¬QvR	Given
4	¬ R	Negated conclusion

Prove R		
1	PvQ	
2	$P\toR$	
3	$Q\toR$	

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬QvR	Given
4	¬ R	Negated conclusion
		-
		-

Prove R		
1	PvQ	
2	$P\toR$	
3	$Q \rightarrow R$	

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬QvR	Given
4	¬ R	Negated conclusion
5	QvR	1,2

Prove R		
1	PvQ	
2	$P\toR$	
3	$Q\toR$	

Step	Formula	Derivation
1	PvQ	Given
2	¬P∨R	Given
3	¬QvR	Given
4	¬ R	Negated conclusion
5	QvR	1,2
6	¬ P	2,4
		-

Р	rove R
1	PvQ
2	$P\toR$
3	$Q\toR$

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬Q∨R	Given
4	¬ R	Negated conclusion
5	QvR	1,2
6	¬ P	2,4
7	¬ Q	3,4

Р	rove R
1	PvQ
2	$P\toR$
3	$Q\toR$

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬QvR	Given
4	¬ R	Negated conclusion
5	QvR	1,2
6	¬ P	2,4
7	¬ Q	3,4
8	R	5,7

Р	rove R
1	PvQ
2	$P\toR$
3	$Q\toR$

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬QvR	Given
4	¬ R	Negated conclusion
5	QvR	1,2
6	¬ P	2,4
7	¬ Q	3,4
8	R	5,7
9	•	4.8

Р	rove R
1	ΡνQ
2	$P \rightarrow R$
3	$Q\toR$

false v R

¬ R v false

false v false

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬QvR	Given
4	¬ R	Negated conclusion
5	QvR	1,2
6	¬ P	2,4
7	¬ Q	3,4
8	R	5,7
9		4,8

Р	rove R	
1	PvQ	
2	$P\toR$	
3	$Q\toR$	

false v R

¬ R v false

false v false

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬QvR	Given
4	¬ R	Negated conclusion
5	QvR	1,2
5 6	¬ P	2,4
7	¬ Q	3,4
8	R	5,7
9		4,8

Prove Z

1	P
2	¬ P

Step	Formula	Derivation

Prove Z

1	Р
2	¬ P

Step	Formula	Derivation
1	P	Given
2	¬ P	Given
3	¬ Z	Negated conclusion

Prove Z

1	Р
2	¬ P

Step	Formula	Derivation
1	Р	Given
2	¬ P	Given
3	¬ Z	Negated conclusion
4	•	1,2

Prove Z

1	Р
2	¬ P

Step	Formula	Derivation
1	Р	Given
2	¬ P	Given
3	¬ Z	Negated conclusion
4		1,2

Note that $(P \land \neg P) \rightarrow Z$ is valid

Prove Z

1	Р
2	¬ P

Step	Formula	Derivation
1	Р	Given
2	¬ P	Given
3	¬ Z	Negated conclusion
4		1,2

Note that $(P \land \neg P) \rightarrow Z$ is valid

Any conclusion follows from a contradiction – and so strict logic systems are very brittle.

Convert to CNF

Prove R

$$\begin{array}{c|c} 1 & (P \rightarrow Q) \rightarrow Q \\ 2 & (P \rightarrow P) \rightarrow R \\ 3 & (R \rightarrow S) \rightarrow \neg (S \rightarrow Q) \end{array}$$

Prove R

1	$(P \rightarrow Q) \rightarrow Q$
2	$(P \rightarrow P) \rightarrow R$
3	$(R \rightarrow S) \rightarrow \neg (S \rightarrow Q)$

Convert to CNF

- ¬(¬PvQ)vQ
- (P∧¬Q) v Q • (P v Q) ∧ (¬Q v Q)
- (P v Q) \ (¬Q v Q)
 (P v Q)

Prove R

1	$(P \rightarrow Q) \rightarrow Q$
2	$(P \rightarrow P) \rightarrow R$
3	$(R \rightarrow S) \rightarrow \neg(S \rightarrow Q)$

Convert to CNF

- (P∧¬Q) v Q (P v Q) ∧ (¬Q v Q)

Prove R

1	$(P \rightarrow Q) \rightarrow Q$
2	$(P \rightarrow P) \rightarrow R$
3	$(R \to S) \to \neg(S \to Q)$

Convert to CNF

- (P ∧ ¬ Q) v Q (P v Q) ∧ (¬ Q v Q)
- (PvQ)

- ¬(¬PvP)vR
 (P∧¬P)vR
 (PvR)∧(¬PvR)

Resolution Proof Example

Prove R		
1	$(P \rightarrow Q) \rightarrow Q$	
2	$(P \to P) \to R$	
3	$(R \rightarrow S)$ $\rightarrow \neg (S \rightarrow Q)$	

JUIO	II FIOOI EX	ample
1	PvQ	
2	PVR	
3	¬PvR	
4	RvS	
5	R v ¬ Q	
6	¬Sv¬Q	
7	¬ R	Neg

Resolution Proof Example

D	ro	D

Prove R		
1	$(P \rightarrow Q) \rightarrow Q$	
2	$(P \rightarrow P) \rightarrow R$	
3	$(R \rightarrow S)$ $\rightarrow \neg (S \rightarrow Q)$	

100	III FIOOI EX	ample
1	PvQ	
2	PVR	
3	¬PVR	
4	RVS	
5	R v ¬ Q	
6	¬Sv¬Q	
7	¬ R	Neg
8	S	4,7
9	¬ Q	6,8
10	Р	1,9
11	R	3,10
12		7,11

Proof Strategies

Proof Strategies

- Unit preference: prefer a resolution step involving an unit clause (clause with one literal).
 - Produces a shorter clause which is good since we are trying to produce a zero-length clause, that is, a contradiction.
- Set of support: Choose a resolution involving the negated goal or any clause derived from the negated goal.
 - We're trying to produce a contradiction that follows from the negated goal, so these are "relevant" clauses.
 - If a contradiction exists, one can find one using the set-of-support strategy.

