```
import pandas as pd
import numpy as np
import seaborn as sns
import threading
```

ds = pd.read_csv('fraudTest.csv')

ds.head()

	category	merchant	cc_num	trans_date_trans_time	Unnamed:	∑
	personal_care	fraud_Kirlin and Sons	2291163933867244	2020-06-21 12:14:25	0	0
:	personal_care	fraud_Sporer- Keebler	3573030041201292	2020-06-21 12:14:33	1	1
,	health_fitness	fraud_Swaniawski, Nitzsche and Welch	3598215285024754	2020-06-21 12:14:53	2	2
(misc_pos	fraud_Haley Group	3591919803438423	2020-06-21 12:15:15	3	3
	travel	fraud_Johnston- Casper	3526826139003047	2020-06-21 12:15:17	4	4

5 rows × 23 columns

ds.isna().sum()

```
Unnamed: 0 trans_date_trans_time
                                        0
      cc_num
                                        0
0
      merchant
      category
      amt
                                        0 0 0 0 0 0 0 0 0 0 0
      first
      last
      gender
      street
      city
      state
zip
      lat
      long
      city_pop
      job
      dob
      trans_num
                                        0
      unix_time
     merch_lat
merch_long
is_fraud
dtype: int64
                                        0
```

ds.shape

→ (555719, 23)

ds.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 555719 entries, 0 to 555718
 Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	555719 non-null	int64
1	trans_date_trans_time	555719 non-null	object
2	cc_num	555719 non-null	int64
3	merchant	555719 non-null	object
4	category	555719 non-null	object
5	amt	555719 non-null	float64
6	first	555719 non-null	object
7	last	555719 non-null	object

```
8
    gender
                         555719 non-null object
9
    street
                         555719 non-null object
10
   city
                         555719 non-null object
                         555719 non-null object
11 state
12 zip
                         555719 non-null int64
                         555719 non-null float64
13 lat
14 long
                         555719 non-null float64
                        555719 non-null int64
15 city_pop
                         555719 non-null
16 job
                                         object
17 dob
                         555719 non-null object
18 trans_num
                         555719 non-null object
19 unix_time
                         555719 non-null int64
20 merch_lat
                         555719 non-null float64
21 merch_long
                         555719 non-null
                                          float64
22 is_fraud
                         555719 non-null int64
dtypes: float64(5), int64(6), object(12)
memory usage: 97.5+ MB
```

ds.describe(include='all')

_		Unnamed: 0	trans_date_trans_time	cc_num	merchant	category
	count	555719.000000	555719	5.557190e+05	555719	555719
	unique	NaN	544760	NaN	693	14
	top	NaN	2020-12-19 16:02:22	NaN	fraud_Kilback LLC	gas_transport
	freq	NaN	4	NaN	1859	56370
	mean	277859.000000	NaN	4.178387e+17	NaN	NaN
	std	160422.401459	NaN	1.309837e+18	NaN	NaN
	min	0.000000	NaN	6.041621e+10	NaN	NaN
	25%	138929.500000	NaN	1.800429e+14	NaN	NaN
	50%	277859.000000	NaN	3.521417e+15	NaN	NaN
	75%	416788.500000	NaN	4.635331e+15	NaN	NaN
	max	555718.000000	NaN	4.992346e+18	NaN	NaN

11 rows × 23 columns

ds.columns

ds = ds.drop(columns=['Unnamed: 0','merchant','category','city','state','cc_num','first', 'last','trans_num','unix_time','street','merchant'

ds.head()

₹		trans_date_trans_time	amt	gender	lat	long	city_pop	dob	is_fraud
	0	2020-06-21 12:14:25	2.86	М	33.9659	-80.9355	333497	1968- 03-19	0
	1	2020-06-21 12:14:33	29.84	F	40.3207	-110.4360	302	1990- 01-17	0
	2	2020-06-21 12:14:53	41.28	F	40.6729	-73.5365	34496	1970- 10-21	0
	4		_	_	_			_	

ds['gender'].unique()

```
⇒ array(['M', 'F'], dtype=object)
```

```
# Binarizing Gender column
def gender_binarizer(x):
    if x=='F':
        return 1
    if x=='M':
        return 0
```

ds['gender'] = ds['gender'].transform(gender_binarizer)

```
ds = ds.loc[:99999,ds.dtypes!= object]
```

ds.head()

→		amt	gender	lat	long	city_pop	is_fraud	
	0	2.86	0	33.9659	-80.9355	333497	0	ılı
	1	29.84	1	40.3207	-110.4360	302	0	
	2	41.28	1	40.6729	-73.5365	34496	0	
	3	60.05	0	28.5697	-80.8191	54767	0	
	4	3.19	0	44.2529	-85.0170	1126	0	

Next steps: Generate code with ds View recommended plots

sns.countplot(x=ds['is_fraud'])

<Axes: xlabel='is_fraud', ylabel='count'>


```
X_in = ds.drop('is_fraud',axis=1)
y_in =ds['is_fraud']
```

y_in.value_counts()

is_fraud 0 99598 1 402

Name: count, dtype: int64

from imblearn.over_sampling import SMOTEN
X,y = SMOTEN().fit_resample(X_in,y_in)

y.value_counts()

is_fraud
0 99598
1 99598

Name: count, dtype: int64

ds.corr()

		_
	4	÷
- 7	7	

	amt	gender	lat	long	city_pop	is_fraud	
amt	1.000000	-0.002058	0.004497	0.000323	0.002691	0.181555	ılı
gender	-0.002058	1.000000	-0.044486	-0.053116	0.027901	-0.000072	
lat	0.004497	-0.044486	1.000000	-0.017368	-0.154416	0.009932	
long	0.000323	-0.053116	-0.017368	1.000000	-0.051689	-0.003700	
city_pop	0.002691	0.027901	-0.154416	-0.051689	1.000000	-0.003776	
is_fraud	0.181555	-0.000072	0.009932	-0.003700	-0.003776	1.000000	

sns.pairplot(ds)


```
→ <Axes: >
                                                                        - 1.0
                    -0.0021 0.0045 0.00032 0.0027
                                                          0.18
                                                                        - 0.8
                                       -0.053
           -0.0021
                              -0.044
                                                 0.028 -7.2e-05
                                                                        0.6
           0.0045
                                       -0.017
                                                 -0.15
                     -0.044
                                1
                                                         0.0099
      lat
                                                                        0.4
          0.00032
                                                -0.052
                                                         -0.0037
                    -0.053
                              -0.017
                                         1
                                                                         0.2
           0.0027
                     0.028
                              -0.15
                                       -0.052
                                                   1
                                                         -0.0038
       Ċţ≤
                                                                         0.0
       р
#splitting
from sklearn.model_selection import train_test_split
                   genuer
                              ICIL
                                        iong acy_pop is_naua
X_test, X_train, y_test, y_train = train_test_split(X, y, test_size=0.2, random_state=0)
#Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
X train
\Rightarrow array([[-0.05998004, -1.08837945, 0.81060419, 0.16883475, 0.08114222],
               0.52685656, \ -1.08837945, \ \ 0.45671234, \ \ 0.60325075, \ \ 0.80572182], 
             [-0.82311466, -1.08837945, -0.45185704, 0.4407713 , -0.28821054],
             [-0.51908479, 0.91879721, -0.61805674, -0.09117796, -0.3035924],
            [-0.32571843, -1.08837945, 0.41304893, 0.4451996, -0.30612877], [ 0.89674553, 0.91879721, 0.11827964, 1.03009958, -0.30540468]])
#LOGISTIC REGRESSION
from \ sklearn.linear\_model \ import \ LogisticRegression
lo = LogisticRegression()
lo.fit(X_train,y_train)
     ▼ LogisticRegression
     LogisticRegression()
yp1 = lo.predict(X_test)
from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score
from sklearn.metrics import mean_squared_error, mean_absolute_error
print("LOGISTIC REGRESSION")
print("Accuracy= ",accuracy_score(y_test,yp1))
print("Precision= ",precision_score(y_test,yp1))
print("Recall= ",recall_score(y_test,yp1))
print("F1_Score= ",f1_score(y_test,yp1))
print("MSE= ",mean_squared_error(y_test,yp1))
print("MAE= ",mean_absolute_error(y_test,yp1))
```

→ LOGISTIC REGRESSION

Accuracy= 0.7954203167750195 Precision= 0.8528456751149995 Recall= 0.7132189326796153 F1_Score= 0.7768079032224937 MSE= 0.20457968322498055