OLIST Recommendation System

Satria F. B**aga**skara

Dibimbing Data Scientist Batch 18

CONTENTS

- Data Scheme
- Objective
- Problem Background
- Collaborative Filtering
- Exploratory Data Analysis (EDA)
- Recommendation System
- Conclusion & Suggestion

OBJECTIVE

- 1. Olist needs recommendation system to increase sales by give nearest suggestion products based on customer interest and preferences.
- 2. The available data is enough for user-based data like product id, customer id and product's rating.

PROBLEM BACKGROUND

- Recommendation system is important for e-commerce companies.
- Too many options of products makes confuses
- Simply suggest most likeable of customer's interest and needs

Dataset source: https://www.kaggle.com/datasets/olistbr/brazilian-ecommercev

User-based Interest

WHAT KIND OF PRODUCT THAT I LIKE?

User-based Interest

Giving Recommendation based on their interest and preferences (Personalized Purchasing Experience)

User-based Interest

Similar Users Interest Collaborative Filtering

for Repeat Customers

DATA SCHEME

Olist

using Surprise Library

TOP 17 CATEGORIES FROM 72 CATEGORIES

23% products contribute 80% sales which align with the pareto & long-tail Hence there're still a lot of opportunities to recommend other products

TOP 17 CATEGORIES (TOP 20% RANK)

Top 3 are Bed, Table & Bath, Beauty & Health, and Computer & Accessories Next top 3 are Furniture & Décor, Watches & Gifts, and Sports & leisure

MONTHLY BEST SELLING CATEGORIES EDA

3x consecutively on Computer & Accessories 4x times on Bed Table & Bath 3x times on Beauty & Health

Hence monthly top category product could use for first-time customer since they still don't have their purchase data.

COUNT OF PRODUCT RATING SCORE

Mostly Customer **Rated** only **1 Times** with almost **85%**It seems likely rate by First-Time Customer, and could be Repeat Customer don't want to give rating

RATING SCORE OF PRODUCT

EDA

5 Rating Score with mostly **57%**

except for **1 star score** had high score, furthermore I would inspect on the further step.

TOTAL PRODUCT CATEGORY WITH 1 SCORE

Unfortunately, some of **Top Category Product** has **Rated** with **1 Score**Hence there's need service improvement

DISTRIBUTION OF PRODUCT PER ORDER

Almost 87% order is only bought 1 product
Hence it align with the given product ratings count that still 1x times

FIRST-TIME VS REPEATER: HOW MANY PRODUCT PER ORDER?

78% First-Time Customer only **buy 1 product**vs
100% Repeat Customer buy **2-3 products**

HIGHEST PURCHASE AMOUNT OF PRODUCT & HIGHEST TRANSACTION VALUE OF PRODUCT

EDA

Surprisely, the customer bought 8x landline telephone using credit card Need further analysis to validate this.

Most of them included to 17 Top Products such as furniture & décor; bed, table & bath; and household utilities using voucher

TRANSACTION VALUE: REPEAT VS FIRST-TIME CUSTOMER EDA

Repeat customers made repeat purchases of the product by seeing total transaction value is higher than their amount.

Hence there're still lot of opportunities to gain more selling on repeat customer and first-time customer

PREPARING DATAFRAME

Recommendation System

MODELLING RESULT

Recommendation System

7 Models on Surprise Library

	normalpred	SVD	SVD++	NMF	KNNBasic	CoClustering	SlopeOne
RMSE train	1.953044	1.523386	1.519055	1.527452	0.302666	0.409888	0.035610
RMSE test	1.939800	1.513225	1.513225	1.513092	1.470767	1.414831	1.370222

Selected Model

Base Model (SVD++)

Tuned Model

Tuning

Train Test

RMSE: 0.3210 RMSE: 0.3248

MAE: 0.2593 MAE: 0.2616

After tuning the model using
GridSearchCV, the model has
improved almost 5x significantly
decreased of RMSE for both trainset &
testset

EVALUATING RECOMMENDER

Recommendation System

Top: Joni bought Lexung Car with **Actual Rating 1** Score otherwise the **Predicted Rating 1** Score too, Hence the **difference/error is 0**. Meanwhile this Car was rated by 2 person.

Bottom: Kamila bought Cupid Doll with Actual Rating 1 Score otherwise the Predicted Rating 2.1 Score, Hence the difference/error is 1.1. Meanwhile this Doll was rated by 11 person.

EVALUATING RECOMMENDER

Recommendation System

The model has the **good performance** so far for **all rating score**

For all rating, the model has RMSE with skewed right distribution

The model has the **good performance** so far for **above and below 3 rating score**

For above 3 rating score, the model has RMSE with skewed right distribution, meanwhile for below 3 rating score the model has same distribution but more long tail and slightly lower head

SIMPLE RECOMMENDER: FIRST-TIME CUSTOMER

Recommendation System

Top 5 Popular Products Recommendation

```
        Top 5 items:

        product_id product_category_name

        0 aca2eb7d00ea1a7b8ebd4e68314663af
        Furniture & Decor

        1 99a4788cb24856965c36a24e339b6058
        Bed, Table & Bath

        2 422879e10f46682990de24d770e7f83d
        Tools & Garden

        3 389d119b48cf3043d311335e499d9c6b
        Tools & Garden

        4 368c6c730842d78016ad823897a372db
        Tools & Garden
```

Top 5 Products in **State** Recommendation

```
      Customerid: 11e379501f73ec65c77def13ec8ae678

      Top 5 trending products around you (MG, belo horizonte):

      product_id product_category_name

      0 d1c427060a0f73f6b889a5c7c61f2ac4 Computers & Accessories

      1 389d119b48cf3043d311335e499d9c6b
      Tools & Garden

      2 99a4788cb24856965c36a24e339b6058
      Bed, Table & Bath

      3 422879e10f46682990de24d770e7f83d
      Tools & Garden

      4 3dd2a17168ec895c781a9191c1e95ad7
      Computers & Accessories
```

CONCLUSION & RECOMMENDATIONS

Conclusion:

The analysis reveals three key problems for the Olist. Firstly, a significant **80% of transaction value** is generated from **only 17 categories of products (20%),** indicating there's still **potential products** in the remaining **34 categories**. Secondly, there is a **urgent issue** with **bad ratings** in the **top 17 categories**, which may lead to **customer dissatisfaction** and impact **customer retention**. Thirdly, there're still **78% first-time customer** that **bought 1 product** instead of repeat customer that bought **2-3 products**

Recommendations:

- 1. Implement a recommendation system that leverages **collaborative filtering**, specifically the SVD++ algorithm. This approach will provide **personalized product recommendations** based on user-to-product data, **improving** the overall **customer experience** and driving sales.
- 2. Try to **solve the issue of bad ratings** by identifying the underlying causes. Causes might be from product quality, delivery, customer support, or other factors affecting customer satisfaction. Resolving these issues would help **retain loyal customers**.
- 3. Since there're still a lot first-time customer than repeat customer, **overcome** the **cold-start problem** for **first-time customers** with two strategies. Firstly, implement a **Top 10 Popular Products Recommendation** to guide customers towards popular products. Secondly, implement a **Top 10 Product in State Recommendation** to offer products that are **specifically popular** in the **customer's state**. These approaches would increase the **likelihood of repeat purchases** and contributing data collection from the customer.

REFERENCES

- 1. https://surpriselib.com/
- 2. https://www.moyak.com/papers/collaborative-filtering.html
- 3. https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
- 4. https://developers.google.com/machine-learning/recommendation/collaborative/basics
- 5. https://towardsdatascience.com/various-implementations-of-collaborative-filtering-100385c6dfe0
- 6. https://towardsdatascience.com/recsys-series-part-4-the-7-variants-of-matrix-factorization-for-collaborative-filtering-368754e4fab5
- 7. https://towardsdatascience.com/collaborative-filtering-and-embeddings-part-1-63b00b9739ce
- 8. https://towardsdatascience.com/various-implementations-of-collaborative-filtering-100385c6dfe0
- 9. https://www.ethanrosenthal.com/2015/11/02/intro-to-collaborative-filtering/
- 10. https://www.stat.ipb.ac.id/main/wp-content/uploads/2021/01/Introduction-to-RecSys_BERT4Rec-IPB.pdf
- 11. https://medium.datadriveninvestor.com/how-to-build-a-recommendation-system-for-purchase-data-step-by-step-d6d7a78800b6
- 12. https://towardsdatascience.com/building-and-testing-recommender-systems-with-surprise
- 13. https://towardsdatascience.com/a-simple-approach-to-building-a-recommendation-system-d0f4de1a1f50e-step-by-step-d4ba702ef80b
- 14. https://celikkam.medium.com/surprise-recommender-library-few-lines-for-everything-d2de3ceac3d4
- 15. https://towardsdatascience.com/recommendation-system-series-part-1-an-executive-guide-to-building-recommendation-system-608f83e2630a

THANKS!

Linkedin: linkedin.com/in/satriabagaskara/

Github: github.com/dataaga