Intro to Programming for Public Policy Week 8 Statistics, Regression, and Visualizations

Eric Potash

May 17, 2018

Reading

Recall that we could read a file as follows:

```
file = open('filename.txt')
contents = file.readlines()
```

Writing

Similarly, we can write:

```
file = open('filename.txt', 'w')
file.write('First line')
file.write('Second line')
file.write('Still second line\n')
file.close()
```

- ► Note the format argument 'w', indicating that we want to write to the specified file.
 - ► 'w' will overwrite any existing file
 - ► To append, use 'a'
- If you don't close the file when you're done, bad things can happen.

with block

To avoid remembering to close the file, you can wrap your witing in a with block. Python will automatically close the file when the block is finished.

```
with open('filename.txt', 'w') as file:
    file.write('First line')
    file.write('Second line')
    file.write('Still second line\n')
```


Hierarchical index

When we groupby with two keys the result has what's called a multiindex or a hierarchical index:

```
In [1]: import pandas as pd
         %matplotlib inline
 In [2]: crimes = pd.read csv('Crimes - 2001 to present.csv')
         crimes['Date'] = pd.to datetime(crimes.Date)
In [10]: crimes['Day'] = crimes.Date.dt.date
         crimes['Month'] = crimes.Date.dt.month
In [16]: crime months = crimes.groupby(['Community Area', 'Month']).size()
         crime months
Out[16]: Community Area Month
                                  289
                                  295
                                  289
                                  336
                                  369
                          6
                                  347
                                  410
                                  384
                                  355
                          10
                                  406
                                  360
                                  291
         2
                                  307
```

Simpler example

To reshape into a hierarchical index use stack():

unstack()

The inverse to this operation is unstack():

Unstack crimes

In [18]: crime_months.unstack('Community Area')

Out[18]:

Community Area	0	1	2	3	4	5	6	7	8	9	 68	69	70	71	72	73
Month																
1	NaN	289.0	307.0	265.0	163.0	95.0	447.0	367.0	887.0	18.0	 490.0	557.0	269.0	620.0	70.0	278.0
2	NaN	295.0	236.0	255.0	136.0	100.0	385.0	305.0	795.0	32.0	 392.0	451.0	226.0	572.0	68.0	199.0
3	NaN	289.0	284.0	242.0	132.0	100.0	386.0	349.0	812.0	20.0	 443.0	486.0	240.0	559.0	59.0	229.0
4	NaN	336.0	267.0	290.0	118.0	93.0	470.0	308.0	908.0	17.0	 487.0	502.0	209.0	677.0	66.0	239.0
5	1.0	369.0	298.0	304.0	174.0	147.0	485.0	371.0	937.0	15.0	 608.0	568.0	184.0	697.0	81.0	280.0
6	NaN	347.0	299.0	299.0	160.0	138.0	551.0	387.0	1085.0	21.0	 558.0	550.0	194.0	621.0	110.0	291.0
7	NaN	410.0	327.0	345.0	171.0	138.0	555.0	401.0	1150.0	35.0	 553.0	607.0	186.0	721.0	82.0	269.0
8	NaN	384.0	329.0	334.0	214.0	158.0	544.0	382.0	1237.0	35.0	 520.0	604.0	191.0	683.0	80.0	257.0
9	NaN	355.0	315.0	339.0	198.0	115.0	512.0	397.0	1123.0	27.0	 509.0	554.0	196.0	609.0	67.0	282.0
10	NaN	406.0	306.0	331.0	184.0	119.0	570.0	389.0	1165.0	16.0	 476.0	512.0	199.0	628.0	76.0	272.0
11	NaN	360.0	295.0	263.0	172.0	99.0	375.0	405.0	1062.0	16.0	 458.0	550.0	211.0	534.0	70.0	257.0
12	NaN	291.0	320.0	281.0	168.0	115.0	432.0	397.0	1104.0	21.0	 418.0	516.0	185.0	579.0	59.0	217.0

Time series

```
In [19]: crime_months.unstack(level='Community Area')[[1,2,3, 4]].plot(figsize=(10,5))
Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff97ba02410>
           450
               Community Area
           400
           350
           300
           250
           200
          150
           100
                                                6
                                                             8
                                                                           10
                                                                                        12
```

Month

Matplotlib

- Matplotlib is the core of all plotting in python
- When you use pandas (or seaborn) to plot, it is using matplotlib.
- As a result, matplotlib settings will affect pandas plots

Matplotlib rcParams

```
In [75]: import pandas as pd
   import matplotlib.pyplot as plt
        *matplotlib inline

plt.rcParams['figure.figsize'] = 9,5
   plt.rcParams['font.family'] = 'sans-serif'
```

Axes

Plot functions like DataFrame.plot() or Series.hist() return matplotlib Axes objects:

```
>>> s = pd.Series([1,2,3,4])
>>> ax = s.plot()
>>> ax
<matplotlib.axes._subplots.AxesSubplot at 0x7fa917dac410>
```

You can use these Axes objects to customize the plot.

Axes customization

```
In [10]: ax = s.plot()
    ax.set_xlabel('X axis', fontsize=14)
    ax.set_ylabel('Y axis', fontsize=14)
    ax.set_title('Title of plot', fontsize=20)
```

Out[10]: <matplotlib.text.Text at 0x7f9d0b7363d0>

Wages data

: [EDUCATION	SOUTH	SEX	EXPERIENCE	UNION	WAGE	AGE	RACE	OCCUPATION	SECTOR	MARR
	0	8	NORTH	FEMALE	21	False	5.10	35	Hispanic	Other	Manufacturing	True
	1	9	NORTH	FEMALE	42	False	4.95	57	White	Other	Manufacturing	True
	2	12	NORTH	MALE	1	False	6.67	19	White	Other	Manufacturing	False
	3	12	NORTH	MALE	4	False	4.00	22	White	Other	Other	False
	4	12	NORTH	MALE	17	False	7.50	35	White	Other	Other	True
	5	13	NORTH	MALE	9	True	13.07	28	White	Other	Other	False
	6	10	SOUTH	MALE	27	False	4.45	43	White	Other	Other	False
	7	12	NORTH	MALE	9	False	19.47	27	White	Other	Other	False
	8	16	NORTH	MALE	11	False	13.28	33	White	Other	Manufacturing	True
	9	12	NORTH	MALE	9	False	8.75	27	White	Other	Other	False
	10	12	NORTH	MALE	17	True	11.35	35	White	Other	Other	True

From 1985 CPS, CSV here.

Boxplot

In [3]: df.boxplot('WAGE', by='OCCUPATION')

Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x7faf9368ca90>

Seaborn

- ► Seaborn is a visualization module that builds on matplotlib
 - So what we know about matplotlib Axes and rcParams still applies
- Provides a lot of very useful plots and options

Seaborn boxplot

```
In [5]: import seaborn as sns
sns.boxplot(x='OCCUPATION', y='WAGE', data=df)
```

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x7faf934e1a10>

Seaborn boxplot hue

```
In [6]: sns.boxplot(x='OCCUPATION', y='WAGE', hue='SEX', data=df)
Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7faf8b018410>
```


Seaborn aesthetics

```
In [11]: sns.set_style('whitegrid')
           sns.boxplot(x='OCCUPATION', y='WAGE', hue='SEX', data=df)
Out[11]: <matplotlib.axes. subplots.AxesSubplot at 0x7faf8a1fdd10>
              45
                                                                                SEX
              40
                                                                                 FEMALE
                                                                                MALE
              35
              30
              25
           WAGE
              20
              15
              10
               0
                              Management
                                                                              Professional
                    Other
                                             Sales
                                                        Clerical
                                                                    Service
                                                OCCUPATION
```

Seaborn pairplot()

In [12]: sns.pairplot(df, vars=['WAGE', 'AGE', 'EDUCATION'])

Out[12]: <seaborn.axisgrid.PairGrid at 0x7faf8a97cf50>

Seaborn regplot()

```
In [21]: sns.regplot('EDUCATION', 'WAGE', df)
Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x7faf82ad7f90>
```


Another regplot()

```
In [23]: sns.regplot('UNION', 'WAGE', df)
Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9d02d00250>
               50
               30
           WAGE
               20
               10
             -10
-0.2
                          0.0
                                     0.2
                                               0.4
                                                                               1.0
                                                                                         1.2
                                                          0.6
                                                                    0.8
                                                   UNION
```

Jittering

```
In [26]: sns.regplot('UNION', 'WAGE', df, x_jitter=.1)
Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9d02a13250>
```


pairplot kind='reg'

In [13]: sns.pairplot(df, vars=['WAGE', 'AGE', 'EDUCATION'], kind='reg')

Out[13]: <seaborn.axisgrid.PairGrid at 0x7faf8a97cc10>

pairplot hue

In [25]: sns.pairplot(df, vars=['WAGE', 'AGE', 'EDUCATION'], kind='reg', hue='SEX')

Out[25]: <seaborn.axisgrid.PairGrid at 0x7faf8367b910>

Statsmodels

- Statsmodels is an econometrics/statistics library for python.
- ▶ It provides OLS, logistic and other regression functions.
- There are other modules that can perform regression (e.g. scipy and sklearn)
 - But statsmodels has the best output

X,y

One way to run a regression with statsmodels is to provide a exogenous design matrix and an endogenous outcome vector:

```
In [26]: from statsmodels.regression.linear_model import OLS
In [28]: X = df[['AGE', 'EDUCATION']]
y = df['WAGE']
```

statsmodels regression

```
In [32]: res = OLS(y, X)
    type(res)
Out[32]: statsmodels.regression.linear_model.OLS
In [34]: fit = res.fit()
    type(fit)
Out[34]: statsmodels.regression.linear_model.RegressionResultsWrapper
```

Regression summary()

In [36]: fit.summary()

Out[36]:

OLS Regression Results

Dep. Variable:	WAGE	R-squared:	0.798
Model:	OLS	Adj. R-squared:	0.797
Method:	Least Squares	F-statistic:	1051.
Date:	Thu, 17 May 2018	Prob (F-statistic):	1.73e-185
Time:	00:05:00	Log-Likelihood:	-1580.3
No. Observations:	534	AIC:	3165.
Df Residuals:	532	BIC:	3173.
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
AGE	0.0595	0.014	4.309	0.000	0.032 0.087
EDUCATION	0.5351	0.040	13.311	0.000	0.456 0.614

Omnibus:	230.878	Durbin-Watson:	1.789
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1396.245
Skew:	1.805	Prob(JB):	6.45e-304
Kurtosis:	10.052	Cond. No.	8.47

Add a constant

You could add a constant like this and then rerun the regression:

```
In [52]: X['Intercept'] = 1
fit = OLS(y,X).fit()
fit.summary()
```

Out[52]:

OLS Regression Results

Dep. Variable:	WAGE	R-squared:	0.202
Model:	OLS	Adj. R-squared:	0.199
Method:	Least Squares	F-statistic:	67.21
Date:	Thu, 17 May 2018	Prob (F-statistic):	9.57e-27
Time:	00:08:41	Log-Likelihood:	-1571.1
No. Observations:	534	AIC:	3148.
Df Residuals:	531	BIC:	3161.
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
AGE	0.1050	0.017	6.112	0.000	0.071 0.139
EDUCATION	0.8211	0.077	10.657	0.000	0.670 0.972
Intercept	-5.5342	1.279	-4.326	0.000	-8.047 -3.021

Fitted values In [53]: fit.fittedvalues Out[53]: 0 4.710601 1 7.842321 2 6.314583 3 6.629667

```
4
        7.995029
5
        8.080941
6
        7.193038
        7.154806
8
       11.069402
9
        7.154806
10
        7.995029
        8.205085
11
12
        5.340768
13
        6.581986
14
        6.476958
15
       10.095586
        6.200107
16
17
        8.940280
18
        6.963866
19
        9.675475
```

Residuals

```
fit.resid
In [54]:
Out[54]:
                   0.389399
                  -2.892321
                   0.355417
          3
                  -2.629667
          4
                  -0.495029
          5
                   4.989059
          6
                  -2.743038
                  12.315194
          8
                   2.210598
          9
                   1.595194
          10
                   3.354971
          11
                   3.294915
          12
                   1.159232
          13
                  -0.331986
          14
                  13.503042
          15
                  -2.795586
          16
                   1.799893
          17
                  12 259720
```

Coefficients

Formulas

It's more convenient to run a regression using formulas:

```
In [56]: import statsmodels.formula.api as smf
In [57]: fit = smf.ols('WAGE ~ AGE + EDUCATION', df).fit()
          fit.summary()
Out[57]:
                               OLS Regression Results
           Dep. Variable:
                              WAGE
                                               R-squared:
                                                                 0.202
           Model:
                              OLS
                                               Adj. R-squared:
                                                                 0.199
           Method:
                                               F-statistic:
                              Least Squares
                                                                 67.21
           Date:
                              Thu, 17 May 2018
                                               Prob (F-statistic):
                                                                 9.57e-27
           Time:
                                               Log-Likelihood:
                              00:09:02
                                                                 -1571.1
           No. Observations:
                                               AIC:
                              534
                                                                 3148.
           Of Residuals:
                                               BIC:
                              531
                                                                 3161.
           Df Model:
                              2
           Covariance Type:
                             nonrobust
                                std err t
                                               P>|t|
                                                     [95.0% Conf. Int.]
                        coef
```

Formula anatomy

WAGE ~ AGE + EDUCATION

- ► The variable on the left of the ~ is the outcome
- ▶ The variables on the right are separated by plus signs

Formula intercepts

► Formulas include an intercept term on the right-hand side by default. To remove it use

WAGE ~ EDUCATION + AGE - 1

You can also specify the intercept explicitly (same as not specifying it):

```
WAGE ~ EDUCATION + AGE + 1
```

Formulas with numpy functions

With formulas you can apply functions to the covariates or dependent variable:

```
np.log(WAGE) ~ EDUCATION + AGE + 1
```

Formula interactions

Formulas allow you to play around with different specifications easily.

- ► To add the interaction of two variables use a:b
- ► To add the variables and their interaction use a*b
 - ► So a*b is equivalent to a + b + a*b

Formulas with categorical variables

By default, variables with string values become dummy variables (fixed effects) in the regression:

```
In [59]: fit = smf.ols('WAGE ~ AGE + EDUCATION + OCCUPATION', df).fit()
fit.summary()
```

Out[59]:

OLS Regression Results

OLS Regression Results				
Dep. Variable:	WAGE	R-squared:	0.272	
Model:	OLS	Adj. R-squared:	0.262	
Method:	Least Squares	F-statistic:	28.09	
Date:	Thu, 17 May 2018	Prob (F-statistic):	7.28e-33	
Time:	00:14:41	Log-Likelihood:	-1546.5	
No. Observations:	534	AIC:	3109.	
Df Residuals:	526	BIC:	3143.	
Df Model:	7			
Covariance Type:	nonrobust			

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	-4.6162	1.566	-2.949	0.003	-7.692 -1.541
OCCUPATION[T.Management]	3.9994	0.764	5.235	0.000	2.499 5.500
OCCUPATION[T.Other]	2.0634	0.589	3.503	0.000	0.906 3.221

Formula C()

For numeric columns to be interpreted as categories use C():

Out[68]:

OLS Regression Results

Dep. Variable:	WAGE	R-squared:	0.320
Model:	OLS	Adj. R-squared:	0.286
Method:	Least Squares	F-statistic:	9.560
Date:	Thu, 17 May 2018	Prob (F-statistic):	2.88e-29
Time:	00:18:46	Log-Likelihood:	-1528.4
No. Observations:	534	AIC:	3109.
Df Residuals:	508	BIC:	3220.
Df Model:	25		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	2.6712	4.533	0.589	0.556	-6.235 11.578
C(EDUCATION)[T.3]	-2.9981	6.223	-0.482	0.630	-15.225 9.229
C(EDUCATION)[T.4]	-1.2337	6.180	-0.200	0.842	-13.375 10.908
C(EDUCATION)[T.5]	5.2968	6.252	0.847	0.397	-6.985 17.579
C(EDUCATION)[T.6]	-5.1672	5.088	-1.015	0.310	-15.164 4.830
C(EDUCATION)[T.7]	-2.1600	4.800	-0.450	0.653	-11.589 7.269

Other models

- ► Logit
- ► Weighted least squares

Statistical testing

SciPy

SciPy (Scientific Python) is a library of scientific tools for python. It includes, among many other things, a submodule scipy.stats with a many statistical test functions.

Log wages by sex

```
In [40]: male_wages = df['WAGE'][df.SEX == 'MALE']
  female_wages = df['WAGE'][df.SEX=='FEMALE']

In [46]: np.log(male_wages).hist(alpha=.5)
  np.log(female_wages).hist(alpha=.5)
```

Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9d02327f90>

t-test

In [47]: from scipy.stats import ttest_ind
ttest_ind(np.log(male_wages), np.log(female_wages))

Out[47]: Ttest_indResult(statistic=5.1658066558780682, pvalue=3.3904092752343325e-07)

Other stats

- ▶ 1 sample t-test
- ▶ 1- and 2-sample z-test
- ► Spearman's rank correlation