

مثال از روش های تجزیه و تحلیل شبکه

امیر عباس شایگانی اکمل

حدامیک از روش های تحلیل حلقه یا کات ست را برای تحلیل مدار زیر مناسب تر می دانید؟چرا؟ برای درخت شامل R_1 و R_2 معادلات انتگرال دیفرانسیل حلقه را بنویسید و شرایط اولیه لازم برای حل آن را مشخص نمایید.

کدام روش؟

۱- تعداد متغیرهای برای روشهای گره، مش، حلقه و كات ست، يكسان است لذا از دیدگاه ابعاد ماتریس تحلیل روشها با هم معادل هستند. ۲-از دیدگاه منابع وابسته، منبع وابسته جریان تابعی از جریان است و لذا روش مش یا حلقه ارجح است. اگر چه بدلیل سادگی رابطه جریان با ولتاژ شاخه، در صورت انتخاب روش گره یا کات ست حل مسئله تفاوت چندانی ندارد.

تفاوت روش مش و حلقه؟

جهت حلقه ها توسط لینک ها تعیین می شود در صورتیکه برای مشها جهت را ساعتگرد در نظر می گیریم.

تبدیل سلفهای تزویج دار

سلفهای تزویج دار را با استفاده از رابطه آنها به سلفهای ساده و منابع وابسته تبدیل می کنیم. برای معادلات گره و کات ست از منابع جریان وابسته و برای مش و حلقه از منابع ولتاژ وابسته بهره می بریم.

رابطه جریان ها در منابع وابسته به جریان های لینکها

$$i_{L1}=i_R-i_C$$

$$i_{L2}$$
=- i_{L3} - i_R

$$i_x = -i_{L3} - i_C$$

تجزیه و تحلیل کات ست

$$Z_{l} = \begin{bmatrix} L_{3}D + L_{2}D + R_{1} & R_{1} & L_{2}D \\ R_{1} & R_{1} + L_{1}D + \frac{1}{CD} & -L_{1}D \\ L_{2}D & -L_{1}D & L_{1}D + R \end{bmatrix}$$

بردار منابع

$$e_{S} = \begin{bmatrix} MD(i_{R} - i_{C}) - v_{S} \\ MD(-i_{R} - i_{L3}) - v_{S} - v_{C}(0) \\ MD(i_{R} - i_{C}) - MD(-i_{R} - i_{L3}) + \alpha R(-i_{L3} - i_{C}) \end{bmatrix}$$

Z_ا جابجایی ضرایب متغیرها از بردار منابع به

$$Z_{l=}\begin{bmatrix} L_{3}D + L_{2}D + R_{1} & R_{1} & L_{2}D \\ R_{1} & R_{1} + L_{1}D + \frac{1}{CD} & -L_{1}D \\ L_{2}D & -L_{1}D & L_{1}D + L_{2}D + R \end{bmatrix}$$

$$e_{S} = \begin{bmatrix} MD(i_{R} - i_{C}) - v_{S} \\ MD(-i_{R} - i_{L3}) - v_{S} \\ MD(i_{R} - i_{C}) - MD(-i_{R} - i_{L3}) + \alpha R(-i_{L3} - i_{C}) \end{bmatrix}$$

$$Z_{l=}\begin{bmatrix} L_{3}D + L_{2}D + R_{1} & R_{1} + MD & L_{2}D - MD \\ R_{1} + MD & R_{1} + L_{1}D + \frac{1}{CD} & -L_{1}D + MD \\ L_{2}D - MD + \alpha R & -L_{1}D + MD + \alpha R & L_{1}D + L_{2}D + R - 2MD \end{bmatrix} \begin{bmatrix} i_{L3} \\ i_{C} \\ i_{R} \end{bmatrix}$$

نوشتن کامل معادله

$$\begin{bmatrix} L_{3}D + L_{2}D + R_{1} & R_{1} + MD & L_{2}D - MD \\ R_{1} + MD & R_{1} + L_{1}D + \frac{1}{CD} & -L_{1}D + MD \\ L_{2}D - MD + \alpha R & -L_{1}D + MD + \alpha R & L_{1}D + L_{2}D + R - 2MD \end{bmatrix} \begin{bmatrix} i_{L3} \\ i_{C} \\ i_{R} \end{bmatrix} = \begin{bmatrix} -v_{s} \\ -v_{s} - v_{c}(0) \\ 0 \end{bmatrix}$$

نوشتن شرایط اولیه

$$i_{L3}(0) = i_{L3}(0)$$

$$i_C(0) = -i_{L1}(0) - i_{L2}(0) - i_{L3}(0)$$

$$i_R(0) = -i_{L2}(0) - i_{L3}(0)$$

مثال روش حلقه

انتخاب درخت و تعیین لینک ها

مناسب سازی شبکه

$$\begin{bmatrix} \frac{1}{G_{1}} + \frac{1}{G_{4}} + \frac{1}{j\omega C_{2}} & \frac{1}{j\omega C_{2}} \\ \frac{1}{j\omega C_{2}} & \frac{1}{j\omega C_{2}} + j\omega (L_{3} + L_{5}) \end{bmatrix} \begin{bmatrix} -\frac{I_{s4}}{G_{4}} - \frac{g_{m}I_{11}}{j\omega G_{1}C_{2}} \\ -\frac{g_{m}I_{11}}{j\omega G_{1}C_{2}} - j\omega M I_{12} - j\omega M I_{12} \end{bmatrix}$$

$$-\frac{I_{s4}}{G_4} - \frac{g_m I_{11}}{j\omega G_1 C_2} - \frac{g_m I_{12}}{j\omega G_1 C_2} - \frac{g_m I_{12}}{j\omega G_1 C_2}$$

ماتریس امپدانس

$$\begin{bmatrix} \frac{1}{G_{1}} + \frac{1}{G_{4}} + \frac{1}{j\omega C_{2}} & \frac{1}{j\omega C_{2}} \\ \frac{1}{j\omega C_{2}} & \frac{1}{j\omega C_{2}} + j\omega (L_{3} + L_{5}) \end{bmatrix} \begin{bmatrix} -\frac{I_{s4}}{G_{4}} - \frac{g_{m}I_{11}}{j\omega G_{1}C_{2}} \\ -\frac{g_{m}I_{11}}{j\omega G_{1}C_{2}} - j\omega M I_{12} - j\omega M I_{12} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{G_{1}} + \frac{1}{G_{4}} + \frac{g_{m}}{j\omega G_{1}C_{2}} + \frac{1}{j\omega C_{2}} & \frac{1}{j\omega C_{2}} \\ \frac{g_{m}}{j\omega G_{1}C_{2}} + \frac{1}{j\omega C_{2}} & \frac{1}{j\omega C_{2}} + j\omega(L_{3} + L_{5} + 2M) \end{bmatrix} \begin{bmatrix} -\frac{I_{s4}}{G_{4}} \\ 0 \end{bmatrix}$$