AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Multivariate probability distributions – Part 1 of 3 (WMS Ch. 5.1-5.2)

October 5, 2017
Nicole Mason
Michigan State University
Fall 2017

MICHIGAN STATE

GAME PLAN

Collect Ch. 4 HW

Review

Graded in-class exercise

Multivariate probability distributions (Part 1 of 3)

- 1. Bivariate probability distributions (discrete & continuous)
- 2. Multivariate probability distributions (discrete & continuous)

Review: standard normal distribution

MICHIGAN STATE

Can convert any normal RV to standard normal

• Suppose $Y \sim N(\mu, \sigma^2)$, then

$$Z = \frac{Y - \mu}{\sigma}$$
, $Z \sim N(0,1) = \text{standard normal}$

• Once converted to standard normal → use Table 4 (P(Z>z))

2

Review: gamma distribution

NIVERSITY

• Non-negative and skewed to the right (graphs on next slide)

$$f(y) = \begin{cases} \frac{y^{\alpha - 1} e^{-y/\beta}}{\beta^{\alpha} \Gamma(\alpha)}, & 0 \le y \le \infty \\ 0, & \text{elsewhere} \end{cases}$$

$$\Gamma(\alpha)$$
: "gamma function"

Γ(1)=1

 $\Gamma(n)=(n-1)!$ if n is an integer

where
$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy$$

and $\alpha > 0, \beta > 0$

$$E(Y) = \alpha \beta$$

$$V(Y) = \alpha \beta^2$$

Review: gamma special case #2 – exponential MICHIGAN STATE

2. **Exponential** distribution: gamma w/ $\alpha = 1$, $\beta > 0$

$$f(y) = \begin{cases} \frac{e^{-y/\beta}}{\beta}, & 0 \le y \le \infty \\ 0, & \text{elsewhere} \end{cases}$$

$$F(y) = \begin{cases} 0, & y < 0 \\ 1 - e^{-y/\beta}, & y \ge 0 \end{cases}$$

$$E(Y) = \alpha \beta = 1\beta = \beta$$

$$V(Y) = \alpha \beta^2 = I\beta^2 = \beta^2$$

	Distribution	Probability Function	Mean	Variance		
	Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}; \theta_1 \le y \le \theta_2$	$\frac{\theta_1+\theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$		
$F(y) = 0 \text{ for } y < \theta_j; \ \frac{y - \theta_j}{\theta_2 - \theta_i} \text{ for } \theta_j \le y \le \theta_j; \ I \text{ for } y > \theta_2$						
	Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(y-\mu)^2\right]$	μ	σ^2		
		$-\infty < y < +\infty$				
$Z = \frac{Y - \mu}{\sigma}$, $Z \sim N(0,1) = \text{standard normal}$						
	Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}; \beta > 0$	β	β^2		
$F(y) = \begin{cases} 0, \\ 1 - \epsilon \end{cases}$	$y < 0$ $e^{-y/\beta}, \ y \ge 0$	<i>p</i> 0 < <i>y</i> < ∞				
	Gamma	$f(y) = \left[\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right] y^{\alpha-1} e^{-y/\beta};$	αβ	$lphaeta^2$		
$0 < y < \infty$ where $\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy$						
$\Gamma(n) = (n-1)!$ if n is an integer						
	Chi-square	$f(y) = \frac{(y)^{(v/2)-1}e^{-y/2}}{2^{v/2}\Gamma(v/2)};$	v	2v		
		y > 0				

Graded in-class exercise

8

MICHIGAN STATE

Multivariate probability distributions

- We are often interested in the intersection of 2 (or more) events
 - EX) Blackjack
 - · A: drawing an ace
 - · B: drawing a face card
 - EX) Egg producer
 - A: A chicken produces n eggs
 - B: y of those eggs are bad
- Need to understand the joint probability distributions (bivariate = 2, multivariate ≥ 2)
- We'll discuss these for discrete & continuous RVs

Bivariate probability distribution for discrete RV Example

- Roll a pair of dice. How many ordered pairs of #s?
 - · mn=6*6=36
- Let (y_1, y_2) represent the (# of 1st die, # on 2nd die)
 - EX) Pair of 1s: (1, 1)
 - EX) 2 on 1st die, 3 on 2nd die: (2, 3)
- Consider all pairs (y₁, y₂). What is the probability of each (ordered) pair?
 - 1/36
- →Bivariate probability distribution for this example:

$$p(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2) = 1/36,$$

where $y_1 = 1, 2, 3, 4, 5, 6, y_2 = 1, 2, 3, 4, 5, 6$

MICHIGAN STATE INIVERSITY

Graphical representation of rolling a pair of die bivariate probability distribution

 $p(y_1, y_2)$

 $p(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2) = 1/36,$

where $y_1 = 1, 2, 3, 4, 5, 6,$

 $y_2 = 1, 2, 3, 4, 5, 6$

Cengage Learning

Bivariate (or joint) probability distribution for discrete RVs (in general)

$$p(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2)$$

where $-\infty < y_1 < \infty, -\infty < y_2 < \infty$

The usual rules for probabilities apply, but now they apply to the joint probability, $p(y_1, y_2)$. What is the interpretation?

1.
$$0 \le p(y_1, y_2) \le 1$$

2.
$$\sum_{y_1, y_2} p(y_1, y_2) = 1$$

Process for finding the bivariate probability distribution for discrete RVs: (1) find all (ordered) pairs of values; (2) assign a probability to each pair.

12

MICHIGAN STATE

EX) In the toss 2 dice experiment, what is $P(2 \le Y_1 \le 3, 1 \le Y_2 \le 2)$?

Rolls that satisfy this condition:

(2, 1)

(2, 2)

(3, 1)

(3, 2)

Probability of each is 1/36

Mutually exclusive so can add up the probabilities \rightarrow (1/36)+(1/36)+(1/36)+(1/36)=4/36=1/9

Bivariate probability distribution (discrete RVs) MICHIGAN STATE

EX) A supermarket has <u>3 checkout counters</u>. Two customers arrive at the counters at different times when the counters are serving no other customers. (Both can choose the same counter.)

- Let Y₁ denote the number of customers (out of the two customers) who choose counter 1.
- Let Y_2 denote the number of customers who choose counter 2. Find the joint probability function of Y_1 and Y_2 .

- Define the sample space. Let {i, j} denote that the 1st customer chooses counter i, 2nd chooses counter j.
 E.g., {1,3} =1st customer chooses counter 1, 2nd customer chooses counter 3. How many pairs of counter choices are there?

 9
- 2. Map these into (y_1, y_2) pairs (in a table is easiest). Assign probabilities to each (y_1, y_2) pair.

14

Find the joint probability function of Y_1 and Y_2 .

1. Define the sample space. Let {*i*, *j*} denote that the 1st customer chooses counter *i*, 2nd chooses counter *j*.

E.g., {1,3} =1st customer chooses counter 1, 2nd customer chooses counter 3.

2. Map these into (y_1, y_2) pairs (in a table is easiest). Assign probabilities to each (y_1, y_2) pair.

Sample space	
(counters chosen))

	y ₁ (# of customers choosing counter 1)		
y ₂ (# of customers choosing counter 2)	0	1	2
0			
1			
2			

Bivariate CDF (discrete RVs)

$$F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2) = \sum_{t_2 \le y_2} \sum_{t_1 \le y_1} p(t_1, t_2)$$

where
$$-\infty < y_1 < \infty$$
, $-\infty < y_2 < \infty$

EX) In the toss 2 dice experiment, what is $F(2, 3) = P(Y_1 \le 2, Y_2 \le 3)$? Recall that there are 36 possible ordered pairs, each w/ probability 1/36.

$$= p(1,1) + p(1,2) + p(1,3) + p(2,1) + p(2,2) + p(2,3) = 6*(1/36) = 1/6$$

16

MICHIGAN STATE

Bivariate cumulative distribution function (CDF) (discrete RVs)

$$F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2) = \sum_{t_2 \le y_2} \sum_{t_1 \le y_1} p(t_1, t_2)$$

EX) In the supermarket checkout counter example, find: a. F(-1, 2)

b. F(1.5, 2)

c. F(5, 7)

	y_1				
y_2	0	1	2		
0	1/9	2/9	1/9		
1	1/9 2/9 1/9	2/9 2/9	0		
2	1/9	0	0		

Bivariate CDF (discrete RVs)

$$F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2) = \sum_{t_2 \le y_2} \sum_{t_1 \le y_1} p(t_1, t_2)$$

Both discrete & continuous bivariate CDFs must satisfy similar properties to what we saw in the univariate case:

1.
$$F(-\infty, -\infty) = 0$$
, $F(-\infty, y_1) = 0$, $F(y_1, -\infty) = 0$

2.
$$F(\infty,\infty) = 1$$

Bivariate CDF (continuous RVs)

$$F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2) = \int_{-\infty}^{y_2} \int_{-\infty}^{y_1} f(t_1, t_2) dt_1 dt_2$$
where $-\infty < y_1 < \infty$, $-\infty < y_2 < \infty$

MICHIGAN STATE

Bivariate PDFs (continuous RVs)

$$f(y_1, y_2)$$

Like PDFs for the univariate case (and bivariate probability distributions for discrete RVs), bivariate PDFs must satisfy similar properties:

1.
$$0 \le f(y_1, y_2) \le 1$$
 for all y_1, y_2

2.
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2) dy_1 dy_2 = 1$$

Graphical representation of univariate vs. bivariate PDFs

Univariate f(y) a b

Recall that in the univariate case, area under the PDF between a and $b = P(a \le Y \le b)$

$$P(a \le Y \le b)$$

$$= \int_{a}^{b} f(y) dy$$

Bivariate PDFs are 2-dimensional surfaces, so the volume under the surface corresponds to a probability – e.g., above:

$$P(a_1 \le Y_1 \le a_2, b_1 \le Y_2 \le b_2)$$

= $\int_{b_1}^{b_2} \int_{a_1}^{a_2} f(y_1, y_2) dy_1 dy_2$

EX1) Finding probabilities from a bivariate PDF (continuous RVs)

 $f(y_1, y_2) = \begin{cases} 1, \ 0 \le y_1 \le 1, \ 0 \le y_2 \le 1 \\ 0, \text{ elsewhere} \end{cases}$

a. Find $F(0.2, 0.4) = P(Y_1 \le 0.2, Y_2 \le 0.4)$

b. Find $P(0.1 \le y_1 \le 0.3, 0 \le y_2 \le 0.5)$

$$P(a_1 \le Y_1 \le a_2, b_1 \le Y_2 \le b_2)$$

= $\int_{b_1}^{b_2} \int_{a_1}^{a_2} f(y_1, y_2) dy_1 dy_2$

EX1) Finding probabilities from a bivariate PDF (continuous RVs)

22

EX2) Finding probabilities from a bivariate PDF (continuous RVs) f(y₁, y₂) | Bivar

$$f(y_1, y_2) = \begin{cases} 3y_1, & 0 \le y_2 \le y_1 \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

Find $P(0 \le Y_1 \le 0.5, Y_2 > 0.25)$

$$P(a_1 \le Y_1 \le a_2, b_1 \le Y_2 \le b_2)$$

= $\int_{b_1}^{b_2} \int_{a_1}^{a_2} f(y_1, y_2) dy_1 dy_2$

EX2) Finding probabilities from a bivariate PDF (continuous RVs)

Find $P(0 \le Y_1 \le 0.5, Y_2 > 0.25)$

24

EX2) Finding probabilities from a bivariate PDF (continuous RVs)

$$f(y_1, y_2) = \begin{cases} 3y_1, & 0 \le y_2 \le y_1 \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

Find $P(0 \le Y_1 \le 0.5, Y_2 > 0.25)$

Moving beyond the bivariate case

Joint probability distributions for discrete RVs:

$$p(y_1, y_2,..., y_n) = P(Y_1 = y_1, Y_2 = y_2,..., Y_n = y_n)$$

Joint probability density function (PDF) for continuous RVs:

$$f(y_1, y_2, ..., y_n)$$

Joint cumulative distribution function (CDF) for discrete & continuous RVs:

$$F(y_1, y_2, ..., y_n) = P(Y_1 \le y_1, Y_2 \le y_2, ..., Y_n \le y_n)$$

26

MICHIGAN STATE

Homework:

- WMS Ch. 5 (part 1 of 3)
 - Bivariate & multivariate probability distributions: 5.1, 5.2, 5.4, 5.7, 5.8
- Ch. 5 will not be collected (b/c would be due the class before the midterm)

Next class:

- Multivariate probability distributions, cont'd (Part 2 of 3)
 - · Marginal & conditional probability distributions
 - · Independent RVs

Reading for next class:

• WMS Ch. 5 (sections 5.3-5.4)