2022-2 분석 공동세션

PYTORCH PYTORC

TensorFlow

18기 분석 박규연

18기 분석 박규연 2022-2 분석 공동세션

CONTENTS*

- 01 PyTorch and TensorFlow 02 PyTorch vs TensorFlow 03 Conclusion
 - TensorFlow and PyTorch
 - 프레임워크를 사용하는 이유

- 간단비교
- 모델 가용성
- 배포 인프라
- 생태계

그래서 어떤 프레임워크를 사용해야하는가?

04 참고문헌

Google이 개발한 오픈소스 머신러닝 라이브러리

170k+ stars

Google

▶ 데이터 플로우 그래프(Data Flow Graph)를 통한 풍부한 표현력

데이터 플로우 그래프 수학 계산과 데이터의 흐름을 노드(Node)와 엣지(Edge)를 사용한 방향 그래프(Directed Graph)로 표현

노드 수학적 계산 데이터 입/출력, 그리고 데이터의 읽기/저장 등의 작업 수행

엣지 노드들 간 데이터의 입출력 관계를 나타냄. 동적 사이즈의 다차원 데이터 배열(Tensor)를 실어 나름 -> TensorFlow

▶ 연산 구조와 목표 함수만 정의하면 자동으로 미분 계산(Automatic differentiation)

#Google #CocalCola

#Airbnb

#Lenovo

#Qualcomm

#Twitter

FaceBook

60k+ stars

➤ NumPy와 유사하지만 GPU 상에서 실행 가능한 n-차원 텐서 (Tensor)

▶ 신경망을 구성하고 학습하는 과정에서의 자동 미분(Automatic differentiation)

프레임워크를 사용하는 이유

프레임워크 비교 이전에

복잡한 연산 그래프를 쉽게 빌드하기 위해

그래디언트 계산을 쉽게 하기 위해

GPU를 효율적으로 사용하기 위해

Numpy

Computational Graphs

Numpy

```
import numpy as np
np.random.seed(0)

N, D = 3, 4

x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)
```


Numpy

Computational Graphs

Numpy

```
import numpy as np
np.random.seed(0)

N, D = 3, 4

x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```


Problems:

- Can't run on GPU
- Have to compute our own gradients

Create forward computational graph

```
# Basic computational graph
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3, 4
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)
c = tf.reduce_sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])
with tf.Session() as sess:
    values =
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    out = sess.run([c, grad_x, grad_y, grad_z],
                   feed dict=values)
    c val, grad x val, grac y val, grad z val = out
```


Ask TensorFlow to compute gradients

```
# Basic computational graph
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3, 4
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)
c = tf.reduce_sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])
with tf.Session() as sess:
    values =
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    out = sess.run([c, grad_x, grad_y, grad_z],
                   feed dict=values)
    c val, grad x val, grac y val, grad z val = out
```


Tell
TensorFlow
to run on CPU

Tell
TensorFlow
to run on **GPU**

```
with tf.device('/gpu:0'):
```

```
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3000, 4000
with tf.device('/cpu:0'):
    x - cr.pracenoruer(cr.float32)
    y = tf.placeholder(tf.float32)
    z = tf.placeholder(tf.float32)
    a = x \cdot y
    c = tf.reduce_sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])
with tf.Session() as sess:
    values =
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    out = sess.run([c, grad_x, grad_y, grad_z],
                   feed dict=values)
    c_val, grad_x_val, grad_y_val, grad_z_val = out
```


PyTorch*

Create forward computational graph

```
import torch
from torch.autograd import Variable
N, D = 3, 4
x = Variable(torch.randn(N, D),
             requires_grad=True)
y = Variable(torch.randn(N, D),
             requires_grad=True)
z = Variable(torch.randn(N, D),
             requires_grad=True)
c = torch.sum(b)
c.backward()
print(x.grad.data)
print(y.grad.data)
print(z.grad.datr.;
```


PyTorch*

Calling c.backward() computes all gradients

```
import torch
from torch.autograd import Variable
N, D = 3, 4
x = Variable(torch.randn(N, D),
             requires_grad=True)
y = Variable(torch.randn(N, D),
             requires_grad=True)
z = Variable(torch.randn(N, D),
             requires_grad=True)
c = torch.sum(b)
c.backward()
print(x.grad.data)
print(y.grad.data)
print(z.grad.datr.)
```


PyTorch*

Run on GPU by casting to .cuda()

```
import torch
from torch.autograd import Variable
N, D = 3, 4
x = Variable(torch.randn(N, D).cuda(),
             requires_grad=True)
    Variable (torch.raman(N, D).cuda(),
             requires_grad=True)
z = Variable(torch.randn(N, D).cuda(),
             requires grad=True)
b = a + z
c = torch.sum(b)
c.backward()
print(x.grad.data)
print(y.grad.data)
print(z.grad.data)
```


간단 비교

PyTorch와 TensorFlow

그래프

디버깅

시각화 툴

사용자 규모

국내 커뮤니티

TensorFlow

Static

Difficult to Debug

Tensorboard

Rich Community

TensorFlow Korea

PyTorch

Dynamic

Runtime Debugging

(Visidom)

Growing Community

PyTorch Korea

Static vs Dynamic **

Define and Run vs Define by Run

Define and Run

신경망 정의 이후 실행시 데이터 입력


```
x = Variable(xi)
w = Variable(wi)
y = x * w

for xi, wi in data:
    eval(y, (xi, wi))
```

Define by Run

신경망 동적으로 정의


```
for xi, wi in data:
    x = Variable(xi)
    w = Variable(wi)
    y = x * w
```


Static vs Dynamic'

TensorFlow: Build graph once, then run many times (**static**)

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.Variable(tf.random normal((D, H)))
w2 = tf.Variable(tf.random normal((H, D)))
h = tf.maximum(tf.matmul(x, wl), 0)
y pred = tf.matmul(h, w2)
diff = y pred - y
loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])
learning rate = 1e-5
new w1 = w1.assign(w1 - learning rate * grad w1)
new w2 = w2.assign(w2 - learning rate * grad w2)
updates = tf.group(new_w1, new_w2)
with tf.Session() as sess:
    sess.run(tf.global variables initializer())
   values = {x: np.random.randn(N, D),
              y: np.random.randn(N, D),}
    losses = []
    for t in range(50):
        loss val, = sess.run([loss, updates],
                               feed dict=values)
```

PyTorch: Each forward pass defines a new graph (**dynamic**)

```
import torch
from torch.autograd import Variable
N, D in, H, D out = 64, 1000, 100, 10
x = Variable(torch.randn(N, D in), requires grad=False)
y = Variable(torch.randn(N, D out), requires grad=False)
w1 = Variable(torch.randn(D in, H), requires grad=True)
w2 = Variable(torch.randn(H, D out), requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    if wl.grad: wl.grad.data.zero ()
    if w2.grad: w2.grad.data.zero ()
    loss.backward()
    wl.data -= learning_rate * wl.grad.data
    w2.data -= learning rate * w2.grad.data
           New graph each iteration
```

Run each iteration

Build

graph

고려사항

모델 가용성 (공개된 모델을 이용 가능한지)

배포 인프라 (배포가 용이한지)

생태계 (환경/하드웨어 적합성)

모델가용성

SOTA 모델의 복잡성이 증가하고 규모가 커짐에 따라 소규모 기업에서는 이를 직접 구현하는 것이 거의 불가능에 가까움.

모델 복잡성 증가

사전 훈련 모델 액세스

컴퓨팅 리소스 부족

- 사전 훈련된 모델에 접근할 수 있는가?
- > 공개된 SOTA 모델을 활용할 수 있는가?

#HuggingFace

HuggingFace

https://huggingface.co/

❷ HuggingFace에서 사용 가능한 모델

거의 85%의 모델이 PyTorch 독점적이며, 독점이 아닌 모델도 PyTorch에서 사용할 수 있는 반면에 모든 모델의 약 16%만 TensorFlow에서 사용할 수 있으며 약 8%만 TensorFlow 전용

PyTorch⁽⁾

HuggingFace

https://huggingface.co/

▶ HuggingFace에서 가장 인기있는 모델 Top 30

상위 30개 모델 중 2/3에 해당하는 모델들이

TensorFlow 독점인 상위 30개 모델X.

연구 노윤ers

논문에서의 TensorFlow 및 PyTorch 채택 비율

불과 몇 년 만에 PyTorch 또는 TensorFlow를 사용하는 논문에서 PyTorch의 비율이 7%에서 거의 80%까지 성장함.

● PyTorch 채택 비율 증가 배경

TensorFlow1의 어려움 -> PyTorch를 대안으로 사용, 이후 TensorFlow2가 출시 되었지만 PyTorch의 영향력이 이미

Papers with Code

https://paperswithcode.com/

▶ Papers with Code에서의 프레임워크 채택 비율

PyTorch의 채택 비율이 꾸준히 성장 반면에 TensorFlow는 2019년 TensroFlow1의 단점을 보완한 ver2의 출시에도 불구하고 지속적인 감소를 보임.

明里 인프라

종단간 프로세스

SOTA 모델에 액세스 하더라도 오류가 발생하기 쉬운 프로세스가 있는 경우 무의미 함. 따라서 SOTA 모델에 액세스 하는 것 외에도 각 프레임워크에서 종단간 딥러닝 프로세스를 고려하는 것이 중요함.

모바일, loT

클라우드

- > 종단간 딥러닝 프로세스 고려
- > 모바일, 클라우드 등에 적용 가능한가?

- ❷ 종단간 딥러닝 프로세스를 쉽고 효율적으로 만드는 도구들이
- ▶ 많을 성능에 최적화된 정적 그래프로 확장 가능한 프로덕션 제공

TensorFlow Serving

TensorFlow 모델을 사내 또는 클라우드에 배포할 때 사용

TensorFlow Lite

TensorFlow 모델을 모바일 또는 IoT/임베디드 기기에 배포할 때 사용

장치에 대한 모델을 압축 및 최적화하고 온디바이스 AI에 대한 5가지 제약 조건 (대기 시간, 연결, 개인 정보 보호, 크기, 전력 소비)을 보다 광범위하게 해결

PyTorch

- 이전에는 PyTorch 사용자가 Flask 또는 Django를 사용하여 모델 위에 REST API를 빌드해야 했음
- 배포 관점에서 극도로 부진했으나 최근 격차를 좁히기 위해 노력중

Torch Serve

PyTorch 모델을 사내 또는 클라우드에 배포할 때 사용

AWS와 Facebook의 협업으로 탄생한 오픈소스 배포 프레임워크

PyTorch Live

Android, iOS 및 Linux용으로 최적화된 PyTorch 모델 배포를 위한 종단간 워크플로를 생성하도록 설계

생태계

모델링 관점에서 볼 때 PyTorch와 TensorFlow 모두 유능한 프레임워크이므로 조성되어있는 생태계가 프레임워크를 결정하는 요소 환경 도구

수 위운 배포, 관리, 분산, 교육 등을 위한 도구를 제공하는 주변 생태계가 잘 조성되어 있는가?

TensorFlow Hub

사전 훈련된 기계 학습 모델의 repository

Model Garden

SOTA 모델의 소스 코드를 사용할 수 있도록 하는 저장소

Extended (TFX)

모델 배포를 위한 종단간 플랫폼

Vertex Al

Google Cloud의 통합 기계 학습 플랫폼

MediaPipe

개체 감지 등에 사용할 수 있는 기계 학습 파이프라인 구축 프레임워크

Coral

로컬 AI로 제품을 빌드하기 위한 툴킷

TensorFlow.js

기계 학습을 위한 JavaScript 라이브러리

PyTorch

PyTorch Hub

사전 훈련된 기계 학습 모델의 repository

Speech Brain

PyTorch 공식 오픈소스 음성 툴킷

TorchElastic

훈련에 영향을 주지 않고 동적으로 변경될 수 있는 컴퓨팅 노드 클러스터에서 모델을 훈련할 수 있도록 작업자 프로세스를 관리하고 재시작 동작을 조정하는 분산 훈련용 도구

TorchX

머신 러닝 애플리케이션의 빠른 구축 및 배포를 위한 SDK

Lightning

PyTorch의 모델 엔지니어링 및 교육 프로세스를 단순화하는데 유용한 도구 PyTorch의 Keras라고도 함

Conclusion

PyTorch 대 TensorFlow의 논쟁은 정답이 없으므로 상황에 맞게 선택해야 함. 연구원 산업 입문

> 그래서 어떤 프레임워크를 사용해야 하는가?

산 업

● 산업에서는 TensorFlow 우세

SOTA 모델 액세스가 필요한 경우, 모델 빌딩은 PyTorch로, 이후 ONNX 변환을 거쳐 TensorFlow의 배포 인프라 활용

연구원

❷ 연구원의 경우 PyTorch 필수

이직/취직

❷ 둘 다 하는 게 이상적이지만, 채용공고에서는 TensorFlow 우세

취미

- 딥러닝 모델을 배포하는 것이 목적 -> TensorFlow
- 딥러닝 자체를 배우는 것이 목적 -> PyTorch

참고문헌

논문 및 기타 Document

참고 문헌

1_	https://www.youtube.com/watch?v=tNWatDufzDk
2	https://tutorials.pytorch.kr/beginner/pytorch_with_examples.html
3	https://dlabs.ai/resources/whitepapers/10-machine-learning-frameworks-to-try-in-202
4	https://gist.github.com/haje01/202ac276bace4b25dd3f
5	https://velog.io/@ttogle918/Tensorflow-Pytorch-⊟ 교
6	https://m.blog.naver.com/dsz08082/222122736953
7	https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
8	CS231n

2022-2 분석 공동세션

감사합니다

PyTorch와 TensorFlow

18기 분석 박규연

