## Formulation locale des lois de l'éléctrostatique

# Table des matières

| 1 | Formulation intégrale des Lois de l'éléctrostatique         | 2 |
|---|-------------------------------------------------------------|---|
|   | 1.1 Champ électrostatique                                   | 2 |
|   | 1.2 Circulation du champ électrostatique                    | 2 |
|   | 1.3 Potentiel électrostatique                               | 3 |
|   | 1.4 Théorème de Gauss                                       | 3 |
|   | 1.5 Relations de passage d'un champ électrostatique         | 4 |
| 2 | Formulation locale des lois de l'électrostatique            | 4 |
|   | 2.1 Forme locale de la circulation du champ électrostatique | 4 |
|   | 2.2 Forme locale du théorème de Gauss                       | 5 |
|   | 2.3 Equation de Poisson-Equation de Laplace                 | 5 |
|   | 2.4 Résolution des lois locales                             | 5 |
| 2 | Applications                                                | 6 |

## 1 Formulation intégrale des Lois de l'éléctrostatique

### 1.1 Champ électrostatique

▶ Une charge *q* placée en un point O dans le vide crée en un point M,un champ électrostatique donné par

$$\overrightarrow{E} = \frac{q}{4\pi\varepsilon_0} \frac{\overrightarrow{u}_r}{r^2} \text{ avec} : \overrightarrow{u}_r = \frac{\overrightarrow{OM}}{OM} \text{ et } OM = r$$

- pour une distribution volumique de charge
  - $dq = \rho d\tau$
  - ρ : densité volumique de charge

• 
$$d\overrightarrow{E} = \frac{dq}{4\pi\epsilon_0} \frac{\overrightarrow{OM}}{OM^3}$$

• 
$$\overrightarrow{E}(M) = \frac{1}{4\pi\epsilon_0} \iiint_V \rho(O) \frac{\overrightarrow{OM}}{OM^3} d\tau$$



- ▶ Pour une distribution surfacique de charge
  - $dq = \sigma dS$
  - $\sigma$  : densité surfacique de charge

• 
$$d\vec{E} = \frac{dq}{4\pi\epsilon_0} \frac{\vec{OM}}{OM^3}$$

• 
$$\overrightarrow{E}(M) = \frac{1}{4\pi\epsilon_0} \iint_{S} \sigma(O) \frac{\overrightarrow{OM}}{OM^3} dS$$



- pour une distribution linéique de charge
  - $dq = \lambda dS$
  - λ : densité linéique de charge

• 
$$d\vec{E} = \frac{dq}{4\pi\epsilon_0} \frac{\overrightarrow{OM}}{OM^3}$$

• 
$$\overrightarrow{E}(M) = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{D}} \lambda(O) \frac{\overrightarrow{OM}}{OM^3} dl$$



# 1.2 Circulation du champ électrostatique

- circulation élémentaire :  $d\mathscr{C} = \overrightarrow{E} \cdot d\overrightarrow{l}$
- circulation du champ  $\overrightarrow{E}$  entre A et B le long de  $\Gamma$  :  $\mathscr{C}_{A}^{B} = \int_{A(\Gamma)}^{B} \overrightarrow{E} . d\overrightarrow{l}$
- cas d'une charge ponctuelle



• 
$$\mathscr{C}_{A}^{B} = \int_{A}^{B} \frac{q}{4\pi\varepsilon_{0}} \frac{dr}{r^{2}} = \frac{q}{4\pi\varepsilon_{0}} \left( \frac{1}{r_{A}} - \frac{1}{r_{B}} \right)$$

- sur une courbe fermée (contour) :  $\mathscr{C} = \oint_{\Gamma} \overrightarrow{E} \cdot d\overrightarrow{l} = 0$
- la circulation du champ électrostatique est conservative
- ► Cas d'une distribution de charge

En utilisant le principe de superposition on montre que la propriété précédente reste valable pour une distribution de charge

#### 1.3 Potentiel électrostatique

ightharpoonup le potentiel crée par une charge q à une distance r

$$V(r) = \frac{q}{4\pi\varepsilon_0 r}$$

- $\rightarrow d\mathscr{C} = \overrightarrow{E} . d\overrightarrow{dl} = -dV$
- pour une distribution de charge

$$V = \sum_{i} V_{i} = \frac{1}{4\pi\varepsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}}$$

pour une distribution volumique de charge

$$V = \frac{1}{4\pi\epsilon_0} \iiint_V \frac{\rho d\tau}{r}$$

pour une distribution surfacique de charge

$$V = \frac{1}{4\pi\varepsilon_0} \iint_{S} \frac{\sigma dS}{r}$$

pour une distribution linéique de charge

$$V = \frac{1}{4\pi\varepsilon_0} \int_{\mathscr{D}} \frac{\lambda dl}{r}$$

#### 1.4 Théorème de Gauss

• Enoncé : Le flux du champ électrostatique à travers une surface fermée ( $\Sigma$ ) est égal à la charge située à l'intérieur ( $Q_{int}$ ) de cette surface divisée sur  $\varepsilon_0$ .

$$\iint_{\Sigma} \overrightarrow{E} \cdot d\overrightarrow{S} = \frac{Q_{int}}{\varepsilon_0}$$

#### 1.5 Relations de passage d'un champ électrostatique

• les relations de passage pour un champ électrostatique

$$\overrightarrow{E}_2 - \overrightarrow{E}_1 = \frac{\sigma}{\varepsilon_0} \overrightarrow{n}_{1 \to 2}$$



avec  $\overrightarrow{n}_{1\rightarrow2}$  : vecteur unitaire dirigé de (1) vers (2)

• la composante normale du  $\overrightarrow{E}$  subit une discontinuité de  $\frac{\sigma}{\epsilon_0}$  à travers une surface chargé uniformément avec une densité  $\sigma$ 

$$E_{2n} - E_{1n} = \frac{\sigma}{\varepsilon_0}$$

• la composante tangentielle est continue

$$\mathbf{E}_{2t} - \mathbf{E}_{1t} = \mathbf{0}$$

# 2 Formulation locale des lois de l'électrostatique

### 2.1 Forme locale de la circulation du champ électrostatique

•Théorème de STOKES-AMPERE : la circulation d'un champ vectoriel  $\overrightarrow{A}$  le long d'un contour fermé  $(\Gamma)$  est égale au flux de son rotationnel à travers toute surface  $(\Sigma)$  s'appuyant sur ce contour

$$\oint_{\Gamma} \overrightarrow{A} . d\overrightarrow{l} = \iint_{\Sigma} \overrightarrow{rot} \overrightarrow{A} . d\overrightarrow{S}$$

• la circulation du champ  $\overrightarrow{E}$  sur un contour fermé  $(\Gamma)$   $\mathscr{C}_{\Gamma} = \oint_{\Gamma} \overrightarrow{E} . d\overrightarrow{l} = \iint_{\Sigma} \overrightarrow{rot} \overrightarrow{E} . d\overrightarrow{S} = 0$ 

$$\overrightarrow{rot}\overrightarrow{\mathbf{E}} = \overrightarrow{\mathbf{0}}$$

•Conclusion : l'équation  $\overrightarrow{rot} \overrightarrow{E} = \overrightarrow{0}$  traduit le caractère conservatif de la circulation du champ électrostatique.

•  $\overrightarrow{rot} \overrightarrow{E} = \overrightarrow{0}$ : il existe un potentiel V tel que

$$\overrightarrow{E} = -\overrightarrow{grad}V$$

#### 2.2 Forme locale du théorème de Gauss

•Théorème de GREEN-OSTROGRADSKI : le flux sortant d'un champ vectoriel  $\overrightarrow{A}$ , à travers une surface fermée ( $\Sigma$ ), est égal à l'intégrale, sur le volume (V) limité par cette surface, de sa divergence  $\overrightarrow{div A}$  :

$$\iint_{\Sigma} \overrightarrow{A} . d\overrightarrow{S} = \iiint_{V} div \overrightarrow{A} . d\tau$$

• 
$$\iint_{\Sigma} \overrightarrow{E} . d\overrightarrow{S} = \frac{Q_{int}}{\varepsilon_0}$$

• 
$$\iint_{\Sigma} \overrightarrow{E} . d\overrightarrow{S} = \iiint_{V} di v \overrightarrow{E} . d\tau$$

• 
$$Q_{int} = \iiint_{V} \rho d\tau$$

donc

$$div\overrightarrow{E} = \frac{\rho}{\varepsilon_0}$$

•Conclusion : l'équation locale qui traduit le théorème de Gauss est

$$div\overrightarrow{E} = \frac{\rho}{\varepsilon_0}$$

## 2.3 Equation de Poisson-Equation de Laplace

• 
$$\vec{E} = -\overrightarrow{grad}V$$

• 
$$div\overrightarrow{E} = \frac{\rho}{\varepsilon_0}$$

- on définit le laplacien d'un champ scalaire V par :  $\Delta V = div(\overrightarrow{grad}V)$
- on obtient l'équation de Poisson

$$\Delta V + \frac{\rho}{\epsilon_0} = 0$$

- dans une région vide de charge  $\rho=0$  on obtient l'équation de Laplace

$$\Delta V = 0$$

#### 2.4 Résolution des lois locales

• 
$$div\overrightarrow{E} = \frac{\rho}{\varepsilon_0}$$

• 
$$\overrightarrow{rot}\overrightarrow{E} = \overrightarrow{0}$$

$$\Delta V + \frac{\rho}{\epsilon_0} = 0$$



on admet la solution de l'équation de Poisson

$$V(M) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{D}} \frac{\rho(P)}{PM} d\tau$$

en coordonnées sphériques

$$\overrightarrow{grad}\left(\frac{1}{r}\right) = -\frac{\overrightarrow{e}_r}{r^2}$$

$$\overrightarrow{grad}_{M}\left(\frac{1}{PM}\right) = -\frac{\overrightarrow{e}_{P\to M}}{PM^{2}}$$

$$\overrightarrow{E}(M) = -\overrightarrow{grad}_{M} \left( \frac{1}{4\pi\epsilon_{0}} \iiint_{\mathcal{D}} \frac{\rho(P)d\tau}{PM} \right) = \frac{1}{4\pi\epsilon_{0}} \iiint_{\mathcal{D}} \frac{\rho(P)d\tau}{PM^{2}} \overrightarrow{e}_{P \to M}$$

# 3 Applications

Considérons une sphère homogène chargée uniformément en volume avec une densité totale de charge  $\rho$  et de charge totale Q



#### ▶ Théorème de Gauss

•  $\Sigma$ : surface de Gauss est une sphère de rayon OM = r

• 
$$\iint_{\Sigma} \overrightarrow{E} \cdot d\overrightarrow{S} = \frac{Q_{int}}{\varepsilon_0}$$

• la symétrie sphérique  $\overrightarrow{E}(M) = E(r) \overrightarrow{e}_r$ 

• 
$$E(r).4\pi r^2 = \frac{Q_{int}}{\varepsilon_0}$$

• 
$$Q_{int} = \begin{cases} \rho \frac{4}{3} \pi r^3 & \text{si M se trouve à l'intérieur de la sphère} \\ \rho \frac{4}{3} \pi R^3 & \text{si M se trouve à l'éxtérieur de la sphère} \end{cases}$$

$$\begin{cases} E_{i}nt = \frac{\rho r}{3\varepsilon_{0}} = \frac{Q}{4\pi\varepsilon_{0}R^{3}}r \\ E_{ext} = \frac{\rho R^{3}}{3\varepsilon_{0}r^{2}} = \frac{Q}{4\pi\varepsilon_{0}r^{2}} \end{cases}$$

#### Equations locales

• 
$$div\vec{E} = \frac{\rho}{\epsilon_0}$$

• en coordonnées sphériques

$$div\vec{E} = \frac{1}{r^2}\frac{\partial(r^2E_r)}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial(E_\theta\sin\theta)}{\partial\theta} + \frac{1}{r\sin\theta}\frac{\partial E_\phi}{\partial\phi}$$

- la symétrie sphérique  $\overrightarrow{E} = E(r)\overrightarrow{e}_r$
- donc  $div\vec{E} = \frac{1}{r^2} \frac{\partial (r^2 E_r)}{\partial r} = \frac{\rho(M)}{\varepsilon_0}$
- si M se trouve à l'extérieur  $\rho(M) = 0$  donc  $\frac{1}{r^2} \frac{\partial (r^2 E_r)}{\partial r} = 0$  $E_{ext}(r) = \frac{A}{r^2}$

$$\overrightarrow{E}_{ext}(r) = \frac{A}{r^2} \overrightarrow{e}_r$$

• si M se trouve à l'intérieur  $\rho(M) = \rho = cte$  donc  $\frac{1}{r^2} \frac{\partial (r^2 E_r)}{\partial r} = \frac{\rho}{\epsilon_0}$  $r^2 \mathbf{E}_{int} = \frac{\rho r^3}{3\epsilon_0} + \mathbf{C}_1 \text{ avec} : \overrightarrow{\mathbf{E}}(\mathbf{O}) = \overrightarrow{\mathbf{0}} \text{ donc } \mathbf{C}_1 = \mathbf{0}$ 

$$\vec{E}_{int} = \frac{\rho r}{3\varepsilon_0} \vec{e}_r$$

- absence du charge surfacique : continuité de  $\overrightarrow{E}$  à travers la surface de la sphére donc  $\overrightarrow{E}_{int}(R) = \overrightarrow{E}_{ext}(R) \Rightarrow A = \frac{\rho R^3}{3\epsilon_0}$ 

$$\overrightarrow{E}_{ext} = \frac{\rho}{3\varepsilon_0} \frac{R^3}{r^2} \overrightarrow{e}_r$$

► Potentiel électrostatique

• 
$$\overrightarrow{E} = -\overrightarrow{grad}V$$

• 
$$E_r = E(r) = -\frac{dV}{dr}$$

$$\int_{r}^{\infty} dV = -\frac{\rho R^{3}}{3\epsilon_{0}} \int_{r}^{\infty} \frac{dr}{r^{2}} \Leftrightarrow V(\infty) - V(r) = -\frac{\rho R^{3}}{3\epsilon_{0} r}$$

$$V(r) = \frac{\rho R^3}{3\varepsilon_0 r}$$

$$\int_{r}^{R} dV = -\int_{r}^{R} \frac{\rho r}{3\epsilon_{0}} \Leftrightarrow V(R) - V(r) = -\frac{\rho}{6\epsilon_{0}} (R^{2} - r^{2}) \text{ avec} : V(R) = \frac{\rho R^{2}}{3\epsilon_{0}}$$

$$V(r) = \frac{\rho}{6\epsilon_0} (3R^2 - r^2)$$