Programação concorrente e Distribuída

Aula 2: Arquitetura de Máquinas Paralelas e Distribuídas

Prof: Álvaro L. Fazenda (alvaro.fazenda@unifesp.br)

Classificação

- Importante para análise das possibilidades de arquiteturas e seus efeitos
- Muitas formas possíveis de classificação:
- Clássicas:
 - Fluxo de instruções e fluxo de dados (Taxonomia de Flynn, 1972)
 - Modelo de memória
 - Outros tipos:
 - Dispersão dos processadores
 - Estrutura de interconexão
 - Sincronismo
 - Modernas

Taxonomia de Flynn

- ("Some Computer organization and their effectiveness" - M. Flynn - IEEE Transactions on Computers, 1972)
- Mais aceita de forma universal
- O conceito central foi classificar arquiteturas pelo número de fluxos (stream) de dados e instruções
 - "Stream in this context simply means a sequence of items (instructions or data) as executed or operated on by a processor"

Taxonomia de Flynn (cont.)

• (Fluxo de Instruções)x(Fluxo de Dados)

4 casos possíveis:

- SISD (Single Instruction, Single Data)
- SIMD (Single Instruction, Multiple Data)
- MISD (Multiple Instructions, Single Data)
- MIMD (Multiple Instructions, Multiple Data)

SISD

- Máquina convencional
 - Arquitetura clássica de Von Neumann

- Mesma instrução executada simultaneamente sobre diversos conjuntos distintos de dados
 - Cada Processador atua exclusivamente sobre sua memória
 - Unidade de controle UC central
 - Envia a mesma instrução decodificada (sinais) para todos os processadores

 Obtém instruções e dados da própria memória (exclusiva) e/ou das memórias dos diversos processadores

- Exemplos:
 - Máquinas array
 - Máquinas vetoriais
 - Atualmente GPUs

MISD

- Utilidade prática duvidosa
 - Máquinas sistólicas?

MIMD

- Cada processador pode executar seu próprio fluxo de instruções
- Troca de dados através de memória e/ou envio de mensagens através de rede
 - Clássicas máquinas paralelas
 - CM-2, MasPar, etc
 - Atuais Multicores baseados em x86

Classificação por modelo de memória

Dois principais tipos:

Memória compartilhada (shared/central memory)

Memória Distribuída (distributed memory)

Arq. Memória Compartilhada

- Conhecido como: Multiprocessadores
- Todos os processadores podem acessar uma área comum de memória
 - Espaço único de endereçamento
 - Operações de LOAD/STORE

Memória

- Vantagem:
 - Facilidade de programação e para troca de dados entre processadores (PThreads, OpenMP)
 - Comum, atualmente, em Processadores Multicore
- Desvantagem:
 - Hardware ainda caro para mais de 8 processadores
 - Tendência ao barateamento com o avanço do multicore

Multiprocessadores

- Máquina paralela construída, geralmente, a partir da replicação de processadores de uma arquitetura convencional
- Todos processadores (P) acessam memórias compartilhadas (M) através de uma infra-estrutura de comunicação
 - Possui apenas um espaço de endereçamento
 - Comunicação entre processos de forma bastante eficiente (load e store)

- Em relação ao tipo de acesso às memórias do sistema, multiprocessadores podem ser subclassificados como:
 - UMA
 - NUMA (e NCC-NUMA, CC-NUMA)
 - COMA

Acesso Uniforme à Memória

(Uniform Memory Access - UMA)

- Memória centralizada
 - Encontra-se à mesma distância de todos processadores
- Latência de acesso à memória
 - Igual para todos processadores
- Infra-estrutura de comunicação
 - Barramento é a mais usada → suporta apenas uma transação por vez
 - Outras infra-estruturas também se enquadram nesta categoria, se mantiverem uniforme o tempo de acesso à memória

Acesso Não Uniforme à Memória

(Non-Uniform Memory Access - NUMA)

- Memória local distribuída
- Espaço de endereçamento único
 - Implementada com múltiplos módulos associados a cada processador
- Comunicação processador-memórias não locais através da infra-estrutura de comunicação
- Tempo de acesso à memória local < tempo de acesso às demais → Acesso não uniforme → Distância das memórias variável → depende do endereço

Arquiteturas de Memória Somente com Cache (Cache-Only Memory Architecture - COMA)

- Memórias locais estão estruturadas como memórias cache
 - São chamadas de COMA caches
 - Mais capacidade que uma cache tradicional
- Arquiteturas COMA têm suporte de hardware para manter coerência entre cache e memória principal através dos múltiplos nós
 - Geralmente reduz tempo global para pegar informações

Arq. Memória Distribuída

- Conhecidos por Multicomputadores
- Cada processador tem sua área de dados local
- Interconexão através de rede de dados
 - Troca de mensagens entre processos
 - Operações de SEND/RECEIVE

- Fácil implementação de um Cluster
- Fácil expansão (porém limitada pelo tipo de rede)
- Desvantagens:
 - Granularidade de Comunicação/Computação é crítica para desempenho
 - Rede pode limitar ganhos de desempenho
 - Programação, geralmente, mais complexa

Sem Acesso à Memória Remota

(Non-Remote Memory Access - NORMA)

- Multicomputadores são classificados como NORMA
 - Cada nó só consegue endereçar sua memória local

Visão Geral da Classificação Segundo Modelo de Memória

Classificação por dispersão dos processadores

- Sistemas com dispersão geográfica
 - Sistemas distribuídos
 - Cluster e/ou rede de computadores
 - Multicomputadores
- Sistemas confinados
 - Máquinas paralelas
 - Multiprocessadores

Classificação por sincronismo

- Síncronos
 - Processadores operam sincronizadamente sob o controle de um único relógio global comum
- Assíncronos
 - Ausência completa de base de tempo comum a todos os processadores
 - Programador deve indicar explicitamente os pontos de sincronização

Classificações Modernas

Subdivisão dos diversos tipos de arquitetura em:

- PVP Parallel Vector Processor
- SMP Symmetric Multiprocessor
- MPP Massively Parallel Processors
- NOW Network of Workstations
 - COW Cluster of Workstations

Redes para interconexão

- Todo computador paralelo necessita de uma rede de interconexão
 - Comunicação entre os seus diversos recursos de processamento, armazenamento e entrada/saída.
 - Aspectos que devem ser considerados:
 - latência (tempo de trânsito de uma mensagem pela rede de comunicação, inclui tempo de empacotar e desempacotar dados mais tempo de envio propriamente dito)
 - Vazão (Expressa a capacidade da rede de "bombear" dados entre dois pontos. Unidade: Quantidade de dados por unidade de tempo, exemplo: 10 MBytes/segundo (10MB/s))
 - conectividade (quantidade de vizinhos que cada processador possui)
 - confiabilidade (conseguida, por exemplo, através de caminhos redundantes)
 - escalabilidade: possibilidade de acréscimo de dispositivos sem a necessidade de alteração das características da rede

Desempenho da Rede de Interconexão - Exemplo

- Latência de 1 mensagem de 1 byte entre máquinas rodando GNU/Linux ligadas por Fast-Ethernet (100 Mbit/s) é de aproximadamente 150 µs
- A melhor vazão, obtida com uma mensagem de aproximadamente 64 KB, é em torno de 10 MB/s. Próximo do limite teórico (12,5 MB = 100 Mbits/s)

Tipos de redes

- Redes estáticas
 - ligações fixas entre os componentes
 - Diversas topologias possíveis
- Redes dinâmicas
 - conexões são feitas sob demanda
 - não existem ligações fixas entre os componentes
 - bloqueantes ou n\u00e4o bloqueantes
 - três tipos básicos:
 - Barramento, Matriz de chaveamento, Rede multinível

Redes estáticas

- Array linear
 - Sem caminhos alternativos

Redes estáticas Malha

 canais de comunicação entre os processadores vizinhos

Redes estáticas Hipercubo

- tamanhos do hipercubo são definidos por potências de 2
- escalabilidade restrita a potências de 2

Redes estáticas Arvore

- diâmetro cresce de forma linear com a altura h
- grau de nó máximo 3
- sem caminhos alternativos
- nó raiz é um gargalo

Redes Dinâmicas Barramento

- todos os processadores estão conectados em um único barramento compartilhado
 - necessidade de aguardar que o barramento esteja livre
 - Existência de Colisões
 - viável para um pequeno número de processadores e/ou algoritmos com pouca comunicação

Redes dinâmicas - Matriz de Chaveamento (crossbar)

- alternativa não bloqueante de interconexão
 - Escalabilidade limitada por aspectos econômicos

Redes dinâmicas - Redes Multinível

- Conexões através da ligação de pequenas matrizes de chaveamento
 - tenta reduzir a probabilidade de conflitos entre conexões de diferentes pares
 - As matrizes chaveadoras presentes na maioria das redes multinível têm tamanho 2×2 e permitem no mínimo 2 e, na maioria das vezes, 4 posições de chaveamento

Redes dinâmicas -Roteamento de Mensagens

- Roteamento é o procedimento de condução de uma mensagem, através de nós intermediários, até seu destino
- não possuem ligações diretas entre todos os componentes de um sistema
 - Mensagem pode precisar trafegar por nós intermediários para chegar ao seu destino
- Baixo custo

Redes dinâmicas Roteamento de Mensagens - Chaveamentos

- Chaveamento de circuito
 - Estabelece-se inicialmente um caminho fixo da origem ao destino, e só depois são enviadas todas as mensagens
 - usada por poucas máquinas paralelas, pois a comunicação entre dois nós tem pouca duração
- Chaveamento de pacotes
 - cada mensagem decide, a cada nó, qual a direção que irá seguir na rede
 - caminho dinâmico
 - elimina o custo inicial de estabelecimento de circuito, mas embute um custo adicional para o roteamento de cada mensagem em cada um dos nós visitados
 - reagem mais rapidamente a congestionamentos e falhas na rede

Tecnologia de rede (I)

- Gigabit Ethernet
 - extensão dos padrões 10/100 Mbps Ethernet
 - Atende a necessidade criada pelo aumento da vazão
 - baixo custo
 - Usada em aproximadamente 50% das máquinas do TOP500 até junho/2011
 - Usada em 7.6% das máquinas do TOP500 em junho/2016

Tecnologia de rede (II)

Myrinet

- Desenvolvida pela Myricom
- portas e interfaces full-duplex alcançando 1.28 Gb/s para cada link;
- controle de fluxo, de erro, e monitoramento contínuo dos links;
- baixa latência, switches crossbar com monitoramento para aplicação de alta disponibilidade;
- suporte a qualquer configuração de topologia;
- latência: 13 a 21 us

Tecnologia de rede (III)

- Arquitetura Infiniband, ou IBA (Infiniband Architecture)
 - Padronização: Infiniband Trade Association, 2002
 - Usada em, aproximadamente, 40% dos supercomputadores do TOP500 até junho/2011
 - Usada em 38,8% das máquinas do TOP500 em junho/2016
 - Não necessita de recursos do processador
 - surgiu devido à necessidade de se melhorar o desempenho dos dispositivos de E/S e das comunicações, devido ao aumento da capacidade de processamento.
 - utiliza uma estrutura hierárquica, com comunicação do tipo ponto-a-ponto.
 - Vantagens: baixa latência e boa vazão (1,3 us e 2,5Gb/s até 10Gb/s)

Máquinas híbridas implicam em paralelismo de múltiplos níveis

- Em todos os níveis, as arquiteturas provêm paralelismo importante.
- Linguagens de programação / algoritmos não são concebidos para aproveitar este paralelismo
 - Algoritmos: o modelo de referência é a máquina de Turing...
 - Modelos paralelos não capturam todos os parâmetros ou são impraticáveis
 - PRAM (memória compartilhada infinita)
 - BSP / CSM (fortemente síncrono)
 - LogP (poucos resultados)
- Só se sabe explorar paralelismo "trivial"
 - Mestre/escravo, Task Farm, ...

Nível 1 - Multicores ou manycores

 Composto de cores homogêneos ou heterogêneos

Nível 2 - Board SMP

 Board composto de múltiplos chips que compartilham memória

SMP

Nível 3 - Rack

- Rack
 composto de
 múltiplos
 boards
 - Múltiplos boards tem memória distribuída

Nível 4 - Cluster de racks

Exemplo de arquitetura com paralelismo de múltiplos níveis

Nível 5 - Grid

- Vários clusters de racks trocando informações
 - Via internet
 - Fraco acoplamento das tarefas neste nível

Granularidade no paralelismo de múltiplos níveis

Granularidade ou tamanho do grau em paralelismo define a carga de trabalho (*workload*) executada entre nós paralelos em relação ao tempo/carga de comunicação entre eles

Granularity

Grids

Multi-computers

Multi-processors

Multi-core