

Au menu de ce mois

MITRE ATT&CK Framework

Découvrir la CTI et la sécurité offensive de base

Défense en profondeur

Un aperçu plus approfondi des principes de sécurité et de l'architecture sécurisée

SIEM

Comment fonctionne un SOC?

Maxime MINGUELLA - BUT3 Cybersécurité - 2024-2025

ANALYSE DES RISQUES + RUMPS

Introduction à la méthode EBIOS RM et évaluation RUMP

Who am 1?

Maxime MINGUELLA

- Ingénieur cyberdéfense
- Product Security Specialist OT @ Alrbus

000000000

00 00

Évaluation

00 | 000 00

00

- 1/3 CM (interactif)
- 2/3 TD/TP (https://tryhackme.com)
- Des labs à réaliser sur Tryhackme avant l'évaluation finale
- Un RUMP à réaliser lors de l'évaluation finale (oral de 5 minutes sur un sujet choisi par vos soins -> validation par email à me faire maxime.minguella@univ-amu.fr avant le 09/10/2024)
- Un examen écrit sur le contenu du cours (QCM + questions)

000

000

 \circ

Disclaimer ©

Article 323-1

 \bigcirc

 \circ

000

000

Version en vigueur depuis le 26 janvier 2023

Le fait d'accéder ou de se maintenir, frauduleusement, dans tout ou partie d'un système de traitement automatisé de données est puni de trois ans d'emprisonnement et de 100 000 € d'amende.

Lorsqu'il en est résulté soit la suppression ou la modification de données contenues dans le système, soit une altération du fonctionnement de ce système, la peine est de cinq ans d'emprisonnement et de 150 000 € d'amende.

Lorsque les infractions prévues aux deux premiers alinéas ont été commises à l'encontre d'un système de traitement automatisé de données à caractère personnel mis en œuvre par l'Etat, la peine est portée à sept ans d'emprisonnement et à 300 000 € d'amende.

Mais aussi les article 323-1 à 8...

000

0000

 \bigcirc

000

000

000

 \circ

0 000000

00000000

00 000 00

00

Imaginons un scénario comme celuici avec :

- Un serveur de mail ;
- Un serveur de fichier;
- Un serveur web et sa base de données *high level*.

 \bigcirc

00 000 00

00

Notre attaquant commence une phase de reconnaissance, avec un scan, et remarque qu'il y a un serveur de mail.

Il envoie donc un email de Phishing pour encourager le salarié naïf à cliquer sur un lien.

00

 \bigcirc

 \bigcirc

000

Maintenant qu'il a accès aux emails de notre victime, il se dit : « j'ai aussi découvert qu'il y avait un serveur de fichier, je vais voir si je peux m'y connecter ».

Bingo même identifiant, même mot de passe.

Sur ce serveur se trouve un fichier Excel non chiffré avec tous les mots de passe de la victime.

 \bigcirc

00 000 00

000

Une fois ces nouveaux mot de passes connus, l'attaquant va essayer d'accéder au serveur web et donc à la base de données.

Bingo ! Pléthore d'information *high level* sur la société dans la base données.

 \bigcirc

 \bigcirc

 \bigcirc

000

000

L'attaquant va ensuite exfiltrer les informations de la société vers son ordinateur.

Enfin, cerise sur le gâteau, il va détruire les données et laisser la société les mains vides.

« Il a les données de votre société, et vous pas »

 \bigcirc

MITRE ATT&CK Framework

MITRE | ATT&CK®

											•		
Reconnaissance	Resource Development	Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command and Control	Exfiltration	Impact
10 techniques	8 techniques	10 techniques	14 techniques	20 techniques	14 techniques	43 techniques	17 techniques	32 techniques	9 techniques	17 techniques	18 techniques	9 techniques	14 techniques
Active Scanning (3)	Acquire Access	Content Injection	Cloud Administration	Account Manipulation (6)	Abuse Elevation Control	Abuse Elevation Control	Adversary-in-the- Middle (t)	Account Discovery (4)	Exploitation of Remote Services	Adversary-in-the- Middle co	Application Layer Protocol (4)	Automated Exfiltration (1)	Account Access Removal
Gather Victim Host Information (4)	Acquire Infrastructure (8)	Drive-by Compromise	Command and	BITS Jobs	Mechanism (6)	Mechanism (6)	Brute Force (4)	Application Window	Internal Spearphishing	Archive Collected Data (3)	Communication Through	Data Transfer Size Limits	Data Destruction
Gather Victim Identity Information (2)	Compromise Accounts (3)	Exploit Public- Facing Application	Scripting Interpreter (10)	Boot or Logon Autostart Execution (14)	Manipulation (S)	Manipulation (5)	Credentials from Password Stores (6)	Discovery	Lateral Tool Transfer	Audio Capture	Removable Media Content Injection	Exfiltration Over	Data Encrypted for Impact
Gather Victim Network	Compromise Infrastructure (8)	External Remote Services	Container Administration Command	Boot or Logon Initialization	Manipulation (6) Boot or Logon	Build Image on Host	Exploitation for Credential	Information Discovery	Remote Service Session	Automated Collection	Data Encoding (2)	Alternative Protocol (3)	Data Manipulation (3)
Information (6)	Develop Capabilities (4)	Hardware	Deploy Container	Scripts (5)	Autostart Execution (14)	Debugger Evasion	Access	Cloud Infrastructure	Hijacking (2)	Browser Session Hijacking	Data Obfuscation (3)	Exfiltration Over C2	Defacement (2)
Gather Victim Org Information (4)	Establish Accounts (9)	Additions Phishing (4)	Exploitation for Client Execution	Browser Extensions	Boot or Logon Initialization	Deobfuscate/ Decode Files or	Forced Authentication	Discovery Cloud Service	Remote Services (8)	Clipboard Data	Dynamic Resolution m	Channel	Disk Wipe (2) Endpoint Denial
Phishing for Information (4)	Obtain Capabilities (2)	Replication Through	Inter-Process Communication (2)	Compromise Host Software Binary	Scripts (5) Create or Modify	Information Deploy Container	Forge Web Credentials (2)	Dashboard Cloud Service	Replication Through Removable	Data from Cloud Storage	Encrypted Channel (2)	Over Other Network Medium (1)	of Service (4)
Search Closed Sources (2)	Stage Capabilities (6)	Removable Media Supply Chain	Native API	Create Account (3)	System Process (5)	Direct Volume Access	Input Capture (4)	Discovery Cloud Storage	Media Software	Data from Configuration Repository (2)	Fallback Channels	Exfiltration Over Physical	Firmware Corruption
Search Open Technical Databases (%)		Compromise (3)	Scheduled Task/ Job (5)	Create or Modify System Process (5)	Domain or Tenant Policy Modification (2)	Domain or Tenant Policy	Authentication Process (9)	Object Discovery	Deployment Tools	Data from Information	Hide Infrastructure	Medium (1) Exfiltration	Inhibit System Recovery
Search Open Websites/		Relationship	Serverless Execution Shared Modules	Event Triggered Execution (16)	Escape to Host	Modification (2)	Multi-Factor Authentication Interception	Container and Resource Discovery	Taint Shared Content	Repositories (3)	Ingress Tool Transfer	Over Web Service (4)	Network Denial of Service (2)
Domains (3) Search Victim-	1	Valid Accounts (4)	Software Deployment Tools	External Remote Services	Event Triggered Execution (16)	Guardrails (1) Exploitation for	Multi-Factor Authentication	Debugger Evasion	Use Alternate Authentication Material (4)	System Data from	Multi-Stage Channels	Scheduled Transfer	Resource Hijacking
Owned Websites			System Services (2)	Hijack Execution	Exploitation for Privilege	Defense Evasion	Request Generation	Device Driver	Material (4)	Network Shared Drive	Non-Application Layer Protocol	Transfer Data to Cloud	Service Stop
			User Execution (3)	Flow (13) Implant Internal	Escalation Hijack Execution	File and Directory Permissions Modification (2)	Network Sniffing	Discovery Domain Trust		Data from Removable	Non-Standard Port	Account	System Shutdown/Reboot
			Windows Management Instrumentation	Image Modify Authentication Process (9)	Process Injection (12)	Hide Artifacts (12)	jack Execution Steal Application	File and		Media Data Staged (2)	Protocol Tunneling		
						Hijack Execution Flow (13)		Directory Discovery		Email Collection (3)	Proxy (4)		
				Office Application Startup (6)	Job (5) Valid Accounts (4)	Impair Defenses (11)	Steal or Forge Authentication Certificates	Group Policy Discovery		Input Capture (4)	Remote Access Software		
				Power Settings	Valid Accounts (4)	Impersonation	Steal or Forge	Log Enumeration		Screen Capture	Traffic Signaling (2)		
				Pre-OS Boot (5) Scheduled Task/		Indicator Removal (9)	Kerberos Tickets (4)	Network Service Discovery		Video Capture	Web Service (3)		
				Job (5) Server Software		Indirect Command Execution	Steal Web Session Cookie	Network Share Discovery					
				Component (s)		Masquerading (9)	Unsecured Credentials (8)	Network Sniffing					
				Signaling (2)		Authentication Process (9)		Password Policy Discovery					
				valid Accounts (4)	1	Modify Cloud Compute Infrastructure (5)		Peripheral Device Discovery					

0000

 \bigcirc

MITRE ATT&CK Framework

- Le Framework MITRE ATT&CK est une base de connaissances mondiale qui répertorie les tactiques et techniques utilisées par les cybercriminels et les groupes APT (Advanced Persistent Threats). Il a été conçu pour mieux comprendre comment se déroulent les cyberattaques.
- ATT&CK est l'abréviation de : Adversarial Tactics, Techniques and Common Knowledge.
- Ce Framework sert généralement de référence pour mettre en évidence les différentes phase du cycle de vie d'une attaque, des logiciels utilisés et des systèmes d'exploitations visés.
- Il s'agit également d'une ressource précieuse pour les « blue team », car il détaille les différentes TTP utilisées par des attaquants spécifiques et fournit aux entreprises des renseignements précieux sur les cybermenaces (CTI Cyber threat intelligence) qui peuvent ensuite être utilisés pour mettre en œuvre des défenses et des contre mesures.

000

000

 \bigcirc

 \circ

 \bigcirc

Tactics, techniques & Procedures (TTPs)

• « Tactics » caractérise chaque étape de la méthodologie d'une attaque.

00000

00000

- Les tactiques représentent le but ou l'objectif d'un adversaire.
- « Techniques » est utilisé pour expliquer comment chaque tactique est orchestrée.
 - Les techniques décrivent les actions réalisées par un adversaire afin d'atteindre son objectif.
 - Les sous-technique expliquent en détail l'implémentation d'une technique spécifique.
- « Procedures » explique toutes les implémentations connues d'une technique ou sous-technique.

Tactics → Quoi ?
Techniques → Comment ?
Procedures → Détails

000

000

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

000

000

On pourrait ainsi caractériser comme ceci le scénario de notre attaque en s'appuyant sur le framework Mitre Att&ck.

Et nous utiliserons les PPTs (People, Process and Technology) pour contrer les TTPs!

 \bigcirc

TP - Reconnaissance

Passive Reconnaissance

Learn about the essential tools for passive reconnaissance, such as whois, nslookup, and dig.

Easy () 60 min

Notions visées

- Utilisation de whois / nslookup / dig ;
- Capacité à s'informer sur sa cible.

Pour aller plus loin...

Active Reconnaissance

Learn how to use simple tools such as traceroute, ping, telnet, and a web browser to gather information.

Basic Pentesting

This is a machine that allows you to practise web app hacking and privilege escalation

000000000

OWASP

 \bigcirc

OO

000

Le Phishing : Comprendre et Prévenir

<u>Définition</u>: Le phishing est une technique de cyberattaque où un attaquant se fait passer pour une entité de confiance afin de tromper les victimes et obtenir des informations sensibles telles que des identifiants, des mots de passe ou des informations bancaires.

Types de Phishing:

 \bigcirc

- **Phishing par e-mail**: Envoi de courriels frauduleux imitant des entreprises légitimes;
- **Phishing par SMS (Smishing) :** Envoi de messages texte trompeurs ;
- Phishing par téléphone (Vishing) : Appels téléphoniques frauduleux ;
- **Phishing par réseaux sociaux :** Messages directs sur des plateformes sociales.

Méthodes Utilisées :

- Usurpation d'identité : Utilisation de logos et de noms O d'entreprises pour paraître légitime ;
- Création de faux sites web : Imitation de sites web officiels pour voler des informations ;
- Messages d'urgence : Incitation à agir rapidement pour éviter des conséquences négatives.

Prévention:

- Vérification des sources : Toujours vérifier l'authenticité des messages ;
- Éducation et sensibilisation : Former les utilisateurs à reconnaître les signes de phishing ;
- **Utilisation de logiciels de sécurité :** Installer des filtres anti-phishing et des logiciels de sécurité.

000

Defang d'URL

<u>Définition</u>: Le defang d'URL est une technique utilisée pour rendre les liens web non cliquables et donc inoffensifs, tout en restant lisibles pour les humains.

Objectif: Empêcher les utilisateurs de cliquer accidentellement sur des liens potentiellement malveillants.

Pourquoi utiliser le Defang d'URL?

 \bigcirc

000

000

 \bigcirc

- Sécurité : Protège contre les attaques de phishing et autres menaces en rendant les liens inactifs ;
- Analyse : Permet aux analystes de sécurité de partager des liens suspects sans risquer une exécution accidentelle.

Avantages du Defang d'URL :

- Prévention : Réduit les risques d'interaction accidentelle avec des sites malveillants ;
- **Collaboration** : Facilite le partage sécurisé d'indicateurs de compromission (IOC) entre équipes de sécurité.

000

000

 \circ

Defang d'URL - Exemple

Caractères modifiés :

- 1. Protocole :
 - O http:// devient hxxp://
 - O https://<mark>devient</mark>hxxps://
- 2. Points dans les noms de domaine :
 - o devient [.]
- 3. Séparateurs de protocole :
 - :// devient [:]//

Exemples concrets:

- URL originale: http://example.com
 - Defanged: hxxp://example[.]com
- URL originale: https://malicious-site.com/path
 - O Defanged: hxxps[:]//malicious-site[.]com/path
- URL originale: https://ent.univ-amu.fr
 - O Defanged: hxxps[:]//ent[.]univ-amu[.]fr

Pourquoi ces changements?

000

 \bigcirc

- **Protocole :** En remplaçant http par hxxp, on empêche les navigateurs de reconnaître le lien comme une URL valide :
- Points : En remplaçant les points par [...], on évite que les noms de domaine soient interprétés comme des liens cliquables ;
 - **Séparateurs de protocole** : En modifiant :// en [:]//, on désactive le lien tout en conservant sa lisibilité pour les humains.

 \bigcirc

000

 \circ

 \bigcirc

TP - Initial Access - Phishing

Notions visées

- Analyser un email ;
- Comprendre la démarche d'un attaquant ;
- Connaître les principales techniques d'entrée dans un système ;
- Comprendre le but du defang d'URL.

Pour aller plus loin...

Injections XSS

<u>Définition</u>: **XSS** est une attaque par injection de code où un attaquant insère du code malveillant dans un site web légitime. Ce code est ensuite exécuté dans le navigateur de l'utilisateur.

Types de XSS:

 $\bigcirc\bigcirc$

 \bigcirc

000

000

1. XSS Reflet (Non-Persistant):

 Le script malveillant est renvoyé par le serveur web et exécuté immédiatement;

2. XSS Stocké (Persistant):

 Le script est stocké sur le serveur (ex. base de données) et exécuté lorsque l'utilisateur accède à la page;

3. XSS Basé sur le DOM:

 Le script modifie le Document Object Model (DOM) de la page web pour exécuter du code malveillant.

Risques:

- Vol de cookies de session ;
- Usurpation d'identité;
- Accès non autorisé à des informations sensibles.

Prévention :

- Validation des entrées : Vérifier et nettoyer toutes les données entrantes (formulaire de contact par exemple);
- **Encodage des sorties** : Convertir les données utilisateur en une forme sécurisée avant de les afficher ;
- Utilisation de Content Security Policy (CSP) : Limiter les sources de scripts exécutables.

000

000

 \circ

Injections XSS - Exemple

Scénario : Un site web possède un formulaire de recherche qui affiche les résultats de la recherche directement sur la page.

Étape 1 : Injection du Script Malveillant L'attaquant entre le code suivant dans le champ de recherche :

<script>alert('XSS Attack!');</script>

Étape 2 : Exécution du Script Le site web renvoie la recherche et affiche le contenu sans le filtrer :

Résultat : Le navigateur de l'utilisateur exécute le script et affiche une alerte avec le message "XSS Attack!".

Impact :

00

000

 \bigcirc

000

- L'attaquant peut exécuter des scripts malveillants dans le navigateur de l'utilisateur;
- Peut conduire au vol de cookies, à la redirection vers des sites malveillants, ou à l'exécution de commandes non autorisées.

Prévention :

- **Validation des entrées** : Filtrer et échapper les caractères spéciaux ;
- Encodage des sorties : Utiliser des fonctions d'encodage pour afficher les données utilisateur de manière sécurisée.

IUI

000

000

000

 \circ

TP - Initial Access - XSS

XSS

Explore in-depth the different types of XSS and their root causes.

. | Easy () 120 min

Notions visées

- Comprendre les risques de l'injection de code
- Comprendre les contre-mesures

Pour aller plus loin...

https://tryhackme.com/r/room/dombasedattacks

Injections SQL

<u>Définition</u>: **SQL Injection (SQLi)** est une vulnérabilité de sécurité web qui permet à un attaquant d'interférer avec les requêtes qu'une application fait à sa base de données.

Types d'Injections SQL:

 \bigcirc

00

000

000

 \bigcirc

1. Injections SQL Basées sur les Erreurs :

 L'attaquant obtient des informations sur la base de données en provoquant des erreurs.

2. Injections SQL Basées sur l'Union :

 L'attaquant récupère des données supplémentaires en combinant des requêtes.

3. Injections SQL Aveugles:

 L'attaquant envoie des requêtes qui ne renvoient pas directement de données mais permettent de déduire des informations.

Risques:

- Accès non autorisé à des données sensibles ;
- Modification ou suppression de données ;
- Compromission du serveur ou de l'infrastructure backend.

Prévention:

- Validation des entrées : Vérifier et nettoyer toutes les données entrantes ;
- Utilisation de requêtes préparées : Utiliser des requêtes avec des paramètres pour éviter l'injection de code ;
- Utilisation d'ORM (Object-Relational Mapping):
 Utiliser des outils qui gèrent les requêtes SQL de manière sécurisée (ex: PDO en PHP).

000

000

 \circ

Injections SQL - Exemple

Scénario: Un site web possède un formulaire de connexion qui vérifie les identifiants des utilisateurs.

Étape 1 : Injection du Code Malveillant L'attaquant entre le code suivant dans le champ "Nom d'utilisateur" :

```
' OR '1'='1
```

Étape 2 : Exécution de la Requête Le site web exécute la requête SQL suivante :

```
SELECT * FROM utilisateurs WHERE nom_utilisateur = '' OR '1'='1' AND mot_de_passe = '';
```

Résultat : La condition "1"="1" est toujours vraie, donc la requête renvoie tous les utilisateurs de la base de données, permettant à l'attaquant de se connecter sans connaître le mot de passe.

Impact :

 \bigcirc

 \bigcirc

000

000

 \bigcirc

- Accès non autorisé à des comptes utilisateurs ;
- Possibilité de voler des informations sensibles ou de modifier des données.

Prévention:

- Validation des entrées : Filtrer et échapper les caractères spéciaux ;
- **Utilisation de requêtes préparées** : Utiliser des requêtes avec des paramètres pour éviter l'injection de code.

000

000

TP - Initial Access - SQLi

Notions visées

- Comprendre le principe d'une injection SQL ;
- Comprendre le mécanisme d'injection ;
- Connaître les contre-mesures.

Pour aller plus loin...

Advanced SQL Injection

 $Learn\ advanced\ injection\ techniques\ to\ exploit\ a\ web\ app.$

.II Medium () 60 min

SQL Injection Lab

Understand how SQL injection attacks work and how to exploit this vulnerability.

.II Easy () 0 min

Gestion des Identités et des Accès (IAM)

La Identity Access Management (IAM) est un cadre qui permet à l'équipe informatique de contrôler l'accès aux systèmes, aux réseaux et aux ressources en fonction de l'identité de chaque utilisateur. Elle est constituée de deux composants principaux :

- 1. **Gestion des identités** : vérifie l'identité de l'utilisateur sur la base des informations stockées dans une base de données de gestion des identités.
- Gestion des accès : utilise l'identité du demandeur pour confirmer ses droits d'accès à différents systèmes, applications, données, terminaux et autres ressources.

Les principales fonctions d'une solution IAM sont les suivantes :

00 000

 \bigcirc

- Identification : Attribuer une identité numérique unique à chaque utilisateur ;
- Authentification : Authentifier l'utilisateur (vérifier son identité) ;
- Authorisation : Autoriser un accès approprié aux ressources pertinentes ;
- Accountability : Surveiller et gérer les identités afin de les aligner sur les changements survenant dans l'entreprise.

 \bigcirc

000

 \circ

Gestion des accès - Authentification multifacteur (MFA)

L'authentification multifacteur (MFA) est une fonction de sécurité qui n'accorde l'accès à un utilisateur qu'après avoir vérifié son identité au moyen d'un ou plusieurs identifiants, en plus de son nom d'utilisateur et de son mot de passe. Il peut s'agir d'un code de sécurité envoyé par SMS ou par email, d'un jeton de sécurité fourni par une application d'authentification, ou encore d'un identifiant biométrique.

Le principe est de fournir quelque chose que l'on connait (ex: un mot de passe), quelque chose que l'on possède (ex: un téléphone/carte à puce), quelque chose que l'on est (ex: empreinte digitale).

De nos jours, les MFA par le biais d'un email ou d'un SMS sont à éviter. La fiabilité d'une sécurité par SMS peut être remise en question si l'attaquant peut se fournir un double de la carte SIM de la victime.

000

 \bigcirc

Les tokens OTP (One Time Password / Mot de passe à usage unique) sont à privilégier.

Notions à approfondir à la maison : Zero Trust, Principe du moindre privilège (Least Privilege), Gestion des accès privilégiés (PAM).

Gestion des accès - MFA

000

000

Knowledge Factor	Possession Factor	Inherence Factor			
(something you know)	(something you have)	(something you are)			

Password	Smartphone	Fingerprint			
?					
Security Question	Smart Card	Retina Pattern			
<u>1234</u>					
PIN	Hardware Token	Face Recognition			

Gestion des accès - OTP

 \bigcirc

00

000

 \bigcirc

000

Le mot de passe à usage unique (ou OTP en abrégé) est un code unique que vous ne pouvez utiliser qu'une seule fois. L'OTP est généralement un code à 6 chiffres que l'utilisateur doit saisir pour se connecter à son application lors de l'authentification à deux facteurs (2FA) ou de l'authentification à plusieurs facteurs (MFA).

L'OTP peut être basé sur un compteur d'événements (HOTP) ou un compteur de temps (TOTP).

Les **soft tokens** sont des applications que vous pouvez installer sur votre ordinateur ou votre téléphone pour générer des codes OTP.

→ Exemple: Aegis Authenticator, Google Authenticator, Duo Mobile, etc.,

Les **hard tokens** sont des porte-clés physiques dotés d'un écran minuscule qui génèrent des jetons OTP ou des équipements physique comme une clef USB.

→ Exemple: Yubikey, Onlykey, Nitrokey, Carte à puce, etc.

000

 \circ

Gestion des accès - HOTP vs TOTP : lequel est le plus sûr ?

HMAC-Based One-Time Password (HOTP)	Time-Based One-Time Password (TOTP)
Compteur d'évènements	Compteur de temps
Le compteur s'incrémente après une authentification effectuée ou un appuie sur le bouton	Le compteur s'incrémente toutes les 30 secondes
Le code OTP est valide pendant une durée indéterminée (tant qu'un nouveau code n'est pas généré)	Le code OTP est valide pendant 30 secondes uniquement
Nécessite une fenêtre de validation (doit enregistrer des codes avant et après celui attendu dans le doute où il y aurait une désynchronisation)	Ne nécessite pas une fenêtre de validation

Gestion des accès - HOTP vs TOTP : lequel est le plus sûr ?

→ Lequel choisir ?

000

Un seul code TOTP est valable à la fois, ce qui rend le TOTP moins piratable que le HOTP. Les codes TOTP changent toutes les 30 secondes, ce qui rend le TOTP plus sûr que le HOTP.

En définitive, la question HOTP vs TOTP a une réponse claire : **le TOTP est beaucoup plus sûr que le HOTP** parce qu'il utilise l'algorithme HOTP sous-jacent tout en introduisant des modifications qui améliorent la sécurité.

Il n'y a aucune raison d'utiliser HOTP au lieu de TOTP. La seule exception concerne les anciens systèmes qui ne prennent pas en charge l'heure Unix.

<u>Définition</u>: L'authentification unique (SSO) est une méthode d'authentification qui permet à un utilisateur d'accéder à plusieurs applications avec un seul jeu de identifiants..

<u>Objectif</u> : Simplifier la gestion des identifiants et améliorer la sécurité en réduisant le nombre de mots de passe à Imémoriser.

Principe :

000

 \bigcirc

- L'authentification SSO repose sur une relation de confiance entre un fournisseur d'identité et une application;
- La relation de confiance s'appuie souvent sur l'échange d'un certificat qui va permettre de signer les informations envoyées afin que les deux parties sachent qu'elles proviennent d'une source approuvée;
- Ces informations se présentent sous la forme de jetons contenant les informations d'identification de l'utilisateur, comme un e-mail ou un nom d'utilisateur.

 $\bigcirc \bigcirc \bigcirc$

Le flux de connexion se déroule généralement comme suit :

 \bigcirc

00

000

000

 \bigcirc

- 1. L'utilisateur se rend sur l'application ou le site Web auquel il souhaite accéder : le fournisseur de services.
- 2. Le fournisseur de services envoie au système SSO (fournisseur d'identité) un jeton contenant des informations sur l'utilisateur, comme son e-mail, dans le cadre de la requête d'authentification de cet utilisateur.
- 3. Le fournisseur d'identité vérifie d'abord si l'utilisateur est déjà authentifié, auquel cas il lui accorde l'accès à l'application du fournisseur de services, puis il passe à l'étape 5.
- 4. Si l'utilisateur n'est pas déjà connecté, il est invité à le faire en fournissant les informations d'identification requises par le fournisseur d'identité. Il peut simplement s'agir d'un nom d'utilisateur et d'un mot de passe, ou cela peut inclure une autre forme d'authentification comme un OTP (ou autre MFA).
- 5. Une fois que le fournisseur d'identité valide les informations d'identification fournies, il renvoie un jeton au fournisseur de services pour confirmer l'authentification.
- 6. Le fournisseur de services reçoit le jeton par l'intermédiaire du navigateur de l'utilisateur.
- 7. Le jeton reçu par le fournisseur de services est validé d'après la relation de confiance établie entre le fournisseur de services et le fournisseur d'identité au moment de la configuration initiale.
- 8. L'accès au fournisseur de services est accordé à l'utilisateur.

 \bigcirc

000

 \bigcirc

Avantages du SSO:

- **Sécurité améliorée** : Moins de mots de passe à gérer, réduisant le risque de mots de passe faibles ou réutilisés ;
- **Expérience utilisateur** : Connexion simplifiée et plus rapide aux applications ;
- **Gestion centralisée** : Facilite la gestion des accès et des permissions.

Défis et Considérations :

- **Point de défaillance unique** : Si le SSO est compromis, toutes les applications connectées le sont aussi ;
- Complexité de mise en œuvre : Nécessite une intégration et une configuration précises.

Cas d'utilisation :

 \bigcirc

 \bigcirc

000

000

 \bigcirc

- **Entreprises**: Accès aux applications internes (email, CRM, ERP);
- Éducation : Accès aux plateformes d'apprentissage et aux ressources en ligne (ex. ident.univ-amu.fr).

Protocoles courants:

- SAML (Security Assertion Markup Language);
- OAuth;
- OpenID Connect;
- CAS (Central Authentication Service).

000

000

 \circ

 \bigcirc

200 Techniques de Contrôle d'Accès : DAC, RBAC et MAC

<u>Discretionary Access Control (DAC)</u>

Définition: Le contrôle d'accès discrétionnaire permet aux propriétaires de ressources de décider qui peut accéder à leurs ressources et quelles actions ils peuvent effectuer.

Caractéristiques :

- Flexibilité: Les propriétaires peuvent accorder ou révoquer des permissions à leur discrétion ;
- O **Utilisation courante :** Systèmes d'exploitation comme Windows et Unix, ou un Cloud (ex. partage de photo).

 \bigcirc

000

Avantages:

- o Facile à mettre en œuvre ;
- Grande flexibilité pour les utilisateurs.

Inconvénients :

• Moins sécurisé, car les utilisateurs peuvent partager des accès sans contrôle centralisé.

Techniques de Contrôle d'Accès : DAC, RBAC et MAC

Role-Based Access Control (RBAC)

Définition : Le contrôle d'accès basé sur les rôles attribue des permissions à des rôles spécifiques plutôt qu'à des utilisateurs individuels.

Caractéristiques :

• **Gestion centralisée :** Les administrateurs définissent des rôles et attribuent des utilisateurs à ces rôles ;

 \bigcirc

000

o **Scalabilité**: Idéal pour les grandes organisations avec de nombreux utilisateurs.

Avantages :

- Simplifie la gestion des permissions ;
- o Réduit les erreurs humaines.

Inconvénients :

• Peut être complexe à configurer initialement.

 \circ

Techniques de Contrôle d'Accès : DAC, RBAC et MAC

Mandatory Access Control (MAC)

Définition : Le contrôle d'accès obligatoire utilise des politiques de sécurité centralisées pour contrôler l'accès aux ressources.

 \bigcirc

000

Caractéristiques :

- **Hiérarchique**: Les accès sont déterminés par des niveaux de classification et des autorisations;
- O **Utilisation courante :** Militaire, gouvernement et autres environnements hautement sécurisés.

Avantages :

- Très sécurisé, car les utilisateurs ne peuvent pas modifier les permissions ;
- Contrôle strict des accès.

Inconvénients :

Moins flexible.

000

TP - Initial Access - IAM

Identity and Access Management

 $Learn\ about\ identification, authentication, authorisation, accounting, and\ identity\ management.$

.1 Easy () 120 min

Notions visées

- Différence entre Authentification et Identification ;
- Single Sign-On principe ;
- MFA ;
- Access Control Models.

Pour aller plus loin...

Introduction to CryptOps

Key management strategies for DevSecOps.

, Il Easy () 60 min

Introduction to Cryptography

Learn about encryption algorithms such as AES, Diffie-Hellman key exchange, hashing, PKI, and TLS.

Medium (240 min

