Ликбез по методу максимального правдоподобия!

Идея метода:

Имеется n наблюдений, значений случайных величин. Параметр θ не известен. Считаем вероятность получить имеющиеся наблюдения. Она зависит от θ . Выбираем $\hat{\theta}$ так, чтобы вероятность имеющихся наблюдений была наибольшей.

Пример с вероятностью.

Пример с функцией плотности.

Чем хорош метод максимального правдоподобия?

Теорема: Оценки ML «хорошие»:

Оценки будут:

Состоятельными:

 $\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| > \epsilon) = 0$

Асимптотически несмещенными:

 $\lim E(\hat{\theta}_n) = \theta$

Асимптотически нормальными.

 $\hat{\theta}_n \sim N$

Информацией Фишера (информационной матрицей) называют $I = -E(l''(\theta))$ Теоремка: $I = -E(l''(\theta)) = E(l'(\theta) \cdot l'(\theta))$

Теорема: **Неравенства Крамера-Рао** У любой другой несмещенной оценки дисперсия не меньше, чем I^{-1}

Теорема: Оценки ML «лучшие»:

Оценки ML являются асимптотически эффективными, т.е. их дисперсия является асимптотически минимально возможной и равна I^{-1}

Асимптотически эффективными среди асимпотически нормальных несмещенных.

Если взять другую асимпотически несмещенную нормальную оценку $\hat{\theta}_n^{alt}$, то у нее будет выше дисперсия, $Var(\hat{\theta}_n^{alt}) \geq Var(\hat{\theta}_n^{ML})$

Подведем итог: $\hat{\theta} \sim N(\theta, I^{-1})$

Настояющая I зависит от неизвестного θ

Однако можно оценить \hat{I} по принципу: $\hat{I} = -l''(\hat{\theta})$

Значит $\widehat{Var}(\hat{\theta}) = \hat{I}^{-1}$

С помощью ML можно проверять гипотезы:

 $H_0: \theta = \theta_0$ Святая троица ML тестов

Тест Вальда (Wald test):

$$W = (\hat{\theta} - \theta_0) \cdot I \cdot (\hat{\theta} - \theta_0)$$

Score test (Lagrange multiplier test): $LM = l'(\theta_0) \cdot I^{-1} \cdot l'(\theta_0)$

Likelihood ratio test:

$$LR = -2(l(\theta_0) - l(\hat{\theta}))$$

Если нулевая гипотеза верна, то все три статистики имеют χ^2 распределение с 1-ой степенью свободы.

Комментарий: формулы записаны в таком странном виде, чтобы были похожи на многомерный случай.

Прочие факты:

Факт 1. $E(l(\theta))$ достигает своего максимума при истинном θ

Факт 2.
$$Var(l'(\theta)) = I(\theta)$$

Многомерный случай...

Имеет k параметров $\theta = (\theta_1, \dots \theta_k)^t$

Проверяется гипотезы, состоящая из j ограничений.

В этом случае произойдут такие изменения:

Вместо производной $l'(\theta)$ будет вектор градиент grad(l)

Вместо второй производной $l''(\theta)$ будет матрица Гессе $H(\theta)$

Вместо I будет матрица

Оценка \hat{I} считается как $\hat{I} = -H(\hat{\theta})$

Теоремка примет вид: $I = -E(H(\theta)) = E(grad(l)^t grad(l))$

Изменятся формулы трех статистик.

Статистики будут иметь χ_j^2 распределение

Примечания мелким шрифтом:

Указанные теоремы верны при соблюдении следующих технических условий:

Более сильный вариант неравенства Крамера-Рао имеет вид:

Доказательства можно найти, например, в