Noções de Probabilidade - Parte I

Bacharelado em Economia - FEA - Noturno

1º Semestre 2018

Prof. Gilberto Alvarenga Paula

Sumário

- Objetivos da Aula
- Motivação
- Experimento Aleatório
- Espaço Amostral
- Evento
- Probabilidade
- Aplicação
- Propriedades

Objetivos da Aula

O objetivo principal desta aula é apresentar alguns conceitos básicos sobre o cálculo de probabilidade.

Objetivos da Aula

Objetivos da Aula

O objetivo principal desta aula é apresentar alguns conceitos básicos sobre o cálculo de probabilidade. Inicialmente, iremos definir

Experimento Aleatório

Objetivos da Aula

- Experimento Aleatório
- Espaço Amostral

Objetivos da Aula

- Experimento Aleatório
- Espaço Amostral
- Eventos

Objetivos da Aula

- Experimento Aleatório
- Espaço Amostral
- Eventos
- Operações com Eventos

Objetivos da Aula

- Experimento Aleatório
- Espaço Amostral
- Eventos
- Operações com Eventos
- Definição de Probabilidade

Objetivos da Aula

- Experimento Aleatório
- Espaço Amostral
- Eventos
- Operações com Eventos
- Definição de Probabilidade
- Regra da Adição de Probabilidades

Sumário

- Objetivos da Aula
- Motivação
- Experimento Aleatório
- Espaço Amostral
- Evento
- Probabilidade
- Aplicação
- Propriedades

? CARA? OU ? COROA?

Exemplos

• qual será a variação do PIB neste ano?

- qual será a variação do PIB neste ano?
- qual será a inflação acumulada em 2018?

- qual será a variação do PIB neste ano?
- qual será a inflação acumulada em 2018?
- qual seleção vencerá a Copa do Mundo?

- qual será a variação do PIB neste ano?
- qual será a inflação acumulada em 2018?
- qual seleção vencerá a Copa do Mundo?
- quem será o(a) próximo(a) presidente(a) do Brasil?

Sumário

- Objetivos da Aula
- Motivação
- 3 Experimento Aleatório
- Espaço Amostral
- Evento
- Probabilidade
- Aplicação
- Propriedades

Definição

Experimento aleatório é aquele experimento que, ainda que sendo realizado sob condições fixas, não possui necessariamente resultado determinado.

Definição

Experimento aleatório é aquele experimento que, ainda que sendo realizado sob condições fixas, não possui necessariamente resultado determinado.

Exemplos

lançar uma moeda e observar o resultado

Definição

Experimento aleatório é aquele experimento que, ainda que sendo realizado sob condições fixas, não possui necessariamente resultado determinado.

- lançar uma moeda e observar o resultado
- lançar um dado e observar a face superior

Definição

Experimento aleatório é aquele experimento que, ainda que sendo realizado sob condições fixas, não possui necessariamente resultado determinado.

- lançar uma moeda e observar o resultado
- lançar um dado e observar a face superior
- sortear um estudante da USP e perguntar sobre o hábito de fumar

Definição

Experimento aleatório é aquele experimento que, ainda que sendo realizado sob condições fixas, não possui necessariamente resultado determinado.

- lançar uma moeda e observar o resultado
- lançar um dado e observar a face superior
- sortear um estudante da USP e perguntar sobre o hábito de fumar
- sortear um doador de sangue cadastrado e verificar o seu tipo sanguíneo

Sumário

- Objetivos da Aula
- Motivação
- Experimento Aleatório
- Espaço Amostral
- Evento
- Probabilidade
- Aplicação
- Propriedades

Definição

Espaço amostral é conjunto de todos os resultados possíveis de um experimento aleatório. Denotaremos por Ω .

Definição

Espaço amostral é conjunto de todos os resultados possíveis de um experimento aleatório. Denotaremos por Ω .

Exemplos

lançar um dado e observar a face superior

Definição

Espaço amostral é conjunto de todos os resultados possíveis de um experimento aleatório. Denotaremos por Ω .

Exemplos

lançar um dado e observar a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Definição

Espaço amostral é conjunto de todos os resultados possíveis de um experimento aleatório. Denotaremos por Ω .

- lançar um dado e observar a face superior $\Omega = \{1, 2, 3, 4, 5, 6\}$
- tipo sanguíneo de um doador

Definição

Espaço amostral é conjunto de todos os resultados possíveis de um experimento aleatório. Denotaremos por Ω .

- lançar um dado e observar a face superior $\Omega = \{1, 2, 3, 4, 5, 6\}$
- tipo sanguíneo de um doador
 Ω = {A, B, O, AB}

Definição

Espaço amostral é conjunto de todos os resultados possíveis de um experimento aleatório. Denotaremos por Ω .

- lançar um dado e observar a face superior $\Omega = \{1, 2, 3, 4, 5, 6\}$
- tipo sanguíneo de um doador
 Ω = {A, B, O, AB}
- hábito de fumar de um estudante

Definição

Espaço amostral é conjunto de todos os resultados possíveis de um experimento aleatório. Denotaremos por Ω .

- lançar um dado e observar a face superior $\Omega = \{1, 2, 3, 4, 5, 6\}$
- tipo sanguíneo de um doador
 Ω = {A, B, O, AB}
- hábito de fumar de um estudante
 - $\Omega = \{\text{sim}, \, \text{não}\}\$

Definição

Espaço amostral é conjunto de todos os resultados possíveis de um experimento aleatório. Denotaremos por Ω .

- lançar um dado e observar a face superior $\Omega = \{1, 2, 3, 4, 5, 6\}$
- tipo sanguíneo de um doador
 Ω = {A, B, O, AB}
- hábito de fumar de um estudante
- $\Omega = \{\text{sim}, \text{não}\}\$
- tempo de duração de uma lâmpada (em horas)

Definição

Espaço amostral é conjunto de todos os resultados possíveis de um experimento aleatório. Denotaremos por Ω .

- lançar um dado e observar a face superior $\Omega = \{1, 2, 3, 4, 5, 6\}$
- tipo sanguíneo de um doador
 - $\Omega = \{A, B, O, AB\}$
- hábito de fumar de um estudante
 Ω = {sim, não}
- tempo de duração de uma lâmpada (em horas)

$$\Omega = \{t : t \ge 0\}$$

Sumário

- Objetivos da Aula
- Motivação
- Experimento Aleatório
- Espaço Amostral
- 5 Evento
- Probabilidade
- Aplicação
- Propriedades

Evento

Definição

Evento é qualquer subconjunto do espaço amostral.

Evento

Definição

Evento é qualquer subconjunto do espaço amostral.

Notação

Definição

Evento é qualquer subconjunto do espaço amostral.

Notação

eventos: A, B, C, ...

Definição

Evento é qualquer subconjunto do espaço amostral.

Notação

- eventos: A, B, C, ...
- evento impossível: 0 (conjunto vazio)

Definição

Evento é qualquer subconjunto do espaço amostral.

Notação

- eventos: A, B, C, ...
- evento impossível: 0 (conjunto vazio)
- evento certo: Ω (espaço amostral)

Exemplo

Lançamento de um dado observando a face superior,

Exemplo

Lançamento de um dado observando a face superior,

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

Exemplo

Lançamento de um dado observando a face superior, $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Alguns eventos

Exemplo

Lançamento de um dado observando a face superior, $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Alguns eventos

• A: sair face par \Longrightarrow $A = \{2, 4, 6\} \subset \Omega$

Exemplo

Lançamento de um dado observando a face superior, $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Alguns eventos

- A: sair face par \Longrightarrow $A = \{2, 4, 6\} \subset \Omega$
- B: sair face maior do que $3 \Longrightarrow B = \{4, 5, 6\} \subset \Omega$

Exemplo

Lançamento de um dado observando a face superior, $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Alguns eventos

- A: sair face par \Longrightarrow $A = \{2, 4, 6\} \subset \Omega$
- B: sair face maior do que $3 \Longrightarrow B = \{4, 5, 6\} \subset \Omega$
- C: sair face $1 \Longrightarrow C = \{1\} \subset \Omega$

Sejam A e B dois eventos quaisquer de um espaço amostral Ω .

Sejam A e B dois eventos quaisquer de um espaço amostral Ω .

União de Eventos

União dos eventos A e B representa a ocorrência de pelo menos um dos eventos, A ou B. Notação: $A \cup B$.

Sejam A e B dois eventos quaisquer de um espaço amostral Ω .

União de Eventos

União dos eventos A e B representa a ocorrência de pelo menos um dos eventos, A ou B. Notação: $A \cup B$.

Intersecção de Eventos

Intersecção dos eventos A e B representa a ocorrência simultânea dos eventos A e B. Notação: $A \cap B$.

Diagrama de Venn: Eventos A e B

Diagrama de Venn: Eventos A, B e C

Eventos Disjuntos

Dois eventos A e B são disjuntos (ou mutuamente exclusivos) se não têm elementos em comum, isto é $A \cap B = \emptyset$.

Eventos Disjuntos

Dois eventos A e B são disjuntos (ou mutuamente exclusivos) se não têm elementos em comum, isto é $A \cap B = \emptyset$.

Eventos Complementares

Dois eventos A e B são complementares se sua interseção é vazia e sua união é o espaço amostral, isto é, $A \cap B = \emptyset$ e $A \cup B = \Omega$.

Eventos Complementares

Dois eventos A e B são complementares se sua interseção é vazia e sua união é o espaço amostral, isto é, $A \cap B = \emptyset$ e $A \cup B = \Omega$.

O complementar do evento *A* será denotado por A^c . Logo, temos que $A \cup A^c = \Omega$ e $A \cap A^c = \emptyset$.

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}$, $B = \{4, 5, 6\}$ e $C = \{1\}$.

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}$, $B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}, B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

sair uma face par e maior do que 3

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}, B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

sair uma face par e maior do que 3

$$A\cap B=\{2,4,6\}\cap\{4,5,6\}=\{4,6\}$$

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}, B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

- sair uma face par e maior do que 3
 - $A \cap B = \{2,4,6\} \cap \{4,5,6\} = \{4,6\}$
- sair uma face par e face 1

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}, B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

sair uma face par e maior do que 3

$$A \cap B = \{2,4,6\} \cap \{4,5,6\} = \{4,6\}$$

sair uma face par e face 1

$$A \cap C = \{2,4,6\} \cap \{1\} = \emptyset$$

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}, B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

sair uma face par e maior do que 3

$$A \cap B = \{2,4,6\} \cap \{4,5,6\} = \{4,6\}$$

sair uma face par e face 1

$$A \cap C = \{2,4,6\} \cap \{1\} = \emptyset$$

sair uma face par ou maior do que 3

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}, B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

sair uma face par e maior do que 3

$$A \cap B = \{2,4,6\} \cap \{4,5,6\} = \{4,6\}$$

sair uma face par e face 1

$$A \cap C = \{2,4,6\} \cap \{1\} = \emptyset$$

sair uma face par ou maior do que 3

$$A \cup B = \{2,4,6\} \cup \{4,5,6\} = \{2,4,5,6\}$$

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}$, $B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

sair uma face par e maior do que 3

$$A \cap B = \{2,4,6\} \cap \{4,5,6\} = \{4,6\}$$

sair uma face par e face 1

$$A \cap C = \{2,4,6\} \cap \{1\} = \emptyset$$

• sair uma face par ou maior do que 3

$$A \cup B = \{2,4,6\} \cup \{4,5,6\} = \{2,4,5,6\}$$

sair uma face par ou face 1

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}$, $B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

sair uma face par e maior do que 3

$$A \cap B = \{2,4,6\} \cap \{4,5,6\} = \{4,6\}$$

sair uma face par e face 1

$$\textit{A} \cap \textit{C} = \{2,4,6\} \cap \{1\} = \emptyset$$

• sair uma face par ou maior do que 3

$$A \cup B = \{2,4,6\} \cup \{4,5,6\} = \{2,4,5,6\}$$

• sair uma face par ou face 1

$$A \cup C = \{2,4,6\} \cup \{1\} = \{1,2,4,6\}$$

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}$, $B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

sair uma face par e maior do que 3

$$A \cap B = \{2,4,6\} \cap \{4,5,6\} = \{4,6\}$$

sair uma face par e face 1

$$\textit{A} \cap \textit{C} = \{2,4,6\} \cap \{1\} = \emptyset$$

• sair uma face par ou maior do que 3

$$A \cup B = \{2,4,6\} \cup \{4,5,6\} = \{2,4,5,6\}$$

sair uma face par ou face 1

$$A \cup C = \{2,4,6\} \cup \{1\} = \{1,2,4,6\}$$

• não sair face par

Exemplo

Lançamento de um dado observando a face superior

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
. Eventos: $A = \{2, 4, 6\}, B = \{4, 5, 6\}$ e $C = \{1\}$.

Outros Eventos

sair uma face par e maior do que 3

$$A \cap B = \{2,4,6\} \cap \{4,5,6\} = \{4,6\}$$

sair uma face par e face 1

$$A \cap C = \{2,4,6\} \cap \{1\} = \emptyset$$

• sair uma face par ou maior do que 3

$$A \cup B = \{2,4,6\} \cup \{4,5,6\} = \{2,4,5,6\}$$

sair uma face par ou face 1

$$A \cup C = \{2,4,6\} \cup \{1\} = \{1,2,4,6\}$$

não sair face par

$$A^c = \{1, 3, 5\}$$

Sumário

- Objetivos da Aula
- Motivação
- Experimento Aleatório
- Espaço Amostral
- Evento
- Probabilidade
- Aplicação
- Propriedades

Definição

Probabilidade é uma medida da incerteza associada aos resultados do experimento aleatório.

Definição

Probabilidade é uma medida da incerteza associada aos resultados do experimento aleatório.

Como atribuir probabilidade aos elementos do espaço amostral?

Definição

Probabilidade é uma medida da incerteza associada aos resultados do experimento aleatório.

Como atribuir probabilidade aos elementos do espaço amostral?

• frequências relativas de ocorrências de cada resultado

Definição

Probabilidade é uma medida da incerteza associada aos resultados do experimento aleatório.

Como atribuir probabilidade aos elementos do espaço amostral?

- frequências relativas de ocorrências de cada resultado
- suposições teóricas

Probabilidade

Definição

Probabilidade é uma medida da incerteza associada aos resultados do experimento aleatório.

Como atribuir probabilidade aos elementos do espaço amostral?

- frequências relativas de ocorrências de cada resultado
- suposições teóricas
- experiência de um(a) especialista

Através das frequências relativas de ocorrências

Através das frequências relativas de ocorrências

o experimento aleatório é replicado muitas vezes

Através das frequências relativas de ocorrências

- o experimento aleatório é replicado muitas vezes
- registra-se a frequência relativa com que cada resultado ocorre

Através das frequências relativas de ocorrências

- o experimento aleatório é replicado muitas vezes
- registra-se a frequência relativa com que cada resultado ocorre
- para um número grande de replicações, a frequência relativa aproxima a probabilidade

Através das frequências relativas de ocorrências

- o experimento aleatório é replicado muitas vezes
- registra-se a frequência relativa com que cada resultado ocorre
- para um número grande de replicações, a frequência relativa aproxima a probabilidade

Através de suposições teóricas

Através das frequências relativas de ocorrências

- o experimento aleatório é replicado muitas vezes
- registra-se a frequência relativa com que cada resultado ocorre
- para um número grande de replicações, a frequência relativa aproxima a probabilidade

Através de suposições teóricas

Por exemplo, no lançamento de um dado admite-se que o dado é perfeitamente equilibrado. Dessa forma

Através das frequências relativas de ocorrências

- o experimento aleatório é replicado muitas vezes
- registra-se a frequência relativa com que cada resultado ocorre
- para um número grande de replicações, a frequência relativa aproxima a probabilidade

Através de suposições teóricas

Por exemplo, no lançamento de um dado admite-se que o dado é perfeitamente equilibrado. Dessa forma

$$P(\text{face1}) = P(\text{face2}) = \cdots = P(\text{face 6}) = \frac{1}{6}.$$

Através da experiência de um(a) especialista

Através da experiência de um(a) especialista

 após o exame clínico, o médico externa a probabilidade do paciente estar com sinusite viral ou bacteriana

Através da experiência de um(a) especialista

- após o exame clínico, o médico externa a probabilidade do paciente estar com sinusite viral ou bacteriana
- após uma análise de vários indicadores econômicos um analista financeiro externa a probabilidade de um ativo financeiro render mais do que a inflação num determinado período

Caso discreto

No caso discreto o espaço amostral é expresso na forma

Caso discreto

No caso discreto o espaço amostral é expresso na forma

$$\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}.$$

Caso discreto

No caso discreto o espaço amostral é expresso na forma

$$\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}.$$

A probabilidade $P(\omega)$ para cada elemento do espaço amostral é especificada da seguinte forma:

Caso discreto

No caso discreto o espaço amostral é expresso na forma

$$\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}.$$

A probabilidade $P(\omega)$ para cada elemento do espaço amostral é especificada da seguinte forma:

•
$$0 \le P(\omega_i) \le 1$$
 para $i = 1, 2, ...$

Caso discreto

No caso discreto o espaço amostral é expresso na forma

$$\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}.$$

A probabilidade $P(\omega)$ para cada elemento do espaço amostral é especificada da seguinte forma:

- $0 \le P(\omega_i) \le 1$ para i = 1, 2, ...
- $\bullet \ \textstyle\sum_{i=1}^{\infty} P(\omega_i) = 1$

Casos particulares

• Seja $A \subset \Omega$. Então $P(A) = \sum_{\omega_i \in A} P(\omega_i)$.

Casos particulares

• Seja $A \subset \Omega$. Então $P(A) = \sum_{\omega_i \in A} P(\omega_i)$. Se $A = \{\omega_7, \omega_8, \omega_9\}$

Casos particulares

• Seja $A \subset \Omega$. Então $P(A) = \sum_{\omega_i \in A} P(\omega_i)$. Se $A = \{\omega_7, \omega_8, \omega_9\}$ então $P(A) = P(\omega_7) + P(\omega_8) + P(\omega_9)$.

Casos particulares

- Seja $A \subset \Omega$. Então $P(A) = \sum_{\omega_i \in A} P(\omega_i)$. Se $A = \{\omega_7, \omega_8, \omega_9\}$ então $P(A) = P(\omega_7) + P(\omega_8) + P(\omega_9)$.
- $P(\Omega) = 1$

Casos particulares

- Seja $A \subset \Omega$. Então $P(A) = \sum_{\omega_i \in A} P(\omega_i)$. Se $A = \{\omega_7, \omega_8, \omega_9\}$ então $P(A) = P(\omega_7) + P(\omega_8) + P(\omega_9)$.
- $P(\Omega) = 1$
- $P(\emptyset) = 0$

Equiprobabilidade

Supor que o espaço amostral tem um número finito de elementos

$$\Omega = \{\omega_1, \omega_2, \omega_3, \dots, \omega_n\}.$$

Equiprobabilidade

Supor que o espaço amostral tem um número finito de elementos $\Omega = \{\omega_1, \omega_2, \omega_3, \dots, \omega_n\}$. Se *A* for um evento de *m* elementos, na situação de equiprobabilidade, isto é, quando as probabilidades de todos os resultados do espaço amostral são iguais, tem-se que

Equiprobabilidade

Supor que o espaço amostral tem um número finito de elementos $\Omega = \{\omega_1, \omega_2, \omega_3, \dots, \omega_n\}$. Se A for um evento de m elementos, na situação de equiprobabilidade, isto é, quando as probabilidades de todos os resultados do espaço amostral são iguais, tem-se que

$$P(A) = \frac{\text{número de elementos de A}}{\text{número de elementos de }\Omega} = \frac{m}{n}.$$

Equiprobabilidade

Supor que o espaço amostral tem um número finito de elementos $\Omega = \{\omega_1, \omega_2, \omega_3, \dots, \omega_n\}$. Se A for um evento de m elementos, na situação de equiprobabilidade, isto é, quando as probabilidades de todos os resultados do espaço amostral são iguais, tem-se que

$$P(A) = \frac{\text{número de elementos de A}}{\text{número de elementos de }\Omega} = \frac{m}{n}.$$

Neste caso não é necessário explicitar Ω e A, bastando calcular m e n, também chamados, respectivamente, de casos favoráveis e casos possíveis.

Sumário

- Objetivos da Aula
- Motivação
- Experimento Aleatório
- Espaço Amostral
- Evento
- Probabilidade
- Aplicação
- 8 Propriedades

Descrição

Alunos diplomados em 2002 no município de São Paulo segundo nível de ensino e tipo de instituição. ^a

		3	
	Tipo de Instituição		
Nível de Ensino	Pública	Privada	Total
Fundamental	144.548	32.299	176.847
Médio	117.945	29.422	147.367
Superior	5.159	56.124	61.283
Total	267.652	117.845	385.497

^aMEC, INEP (Instituto Nacional de Estudos e Pesquisas Educacionais) e Fundação SEADE

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Eventos

M: aluno se formou no ensino médio

$$P(M) = \frac{147.367}{385.497} = 0,382$$

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Eventos

- M: aluno se formou no ensino médio
 - $P(M) = \frac{147.367}{385.497} = 0,382$
- F: aluno se formou no ensino fundamental

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Eventos

M: aluno se formou no ensino médio

$$P(M) = \frac{147.367}{385.497} = 0,382$$

F: aluno se formou no ensino fundamental

$$P(F) = \frac{176.847}{385.497} = 0,459$$

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Eventos

S: aluno se formou no ensino superior

$$P(S) = \frac{61.283}{385.497} = 0,159$$

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Eventos

- S: aluno se formou no ensino superior
 - $P(S) = \frac{61.283}{385.497} = 0,159$
- G: aluno se formou em instituição pública

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Eventos

S: aluno se formou no ensino superior

$$P(S) = \frac{61.283}{385.497} = 0,159$$

G: aluno se formou em instituição pública

$$P(G) = \frac{267.652}{385.497} = 0,694$$

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Evento

M ∩ G: aluno formado no ensino médio e em instituição pública

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Evento

• $M \cap G$: aluno formado no ensino médio **e** em instituição pública $P(M \cap G) = \frac{117.945}{385.497} = 0,306$

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Evento

M ∪ G: aluno formado no ensino médio ou em instituição pública

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

 Ω : conjunto de 385.497 alunos diplomados em 2002 no municipio de Sao Paulo.

Evento

• $M \cup G$: aluno formado no ensino médio **ou** em instituição pública $P(M \cup G) = \frac{(147.367 + 267.652 - 117.945)}{385.497} = \frac{297.074}{385.497} = 0,771$

Sumário

- Objetivos da Aula
- Motivação
- Experimento Aleatório
- Espaço Amostral
- Evento
- Probabilidade
- Aplicação
- 8 Propriedades

Definição

Definição

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Definição

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Casos Particulares

• se A e B são conjuntos disjuntos ($A \cap B = \emptyset$)

Casos Particulares

• se $A \in B$ são conjuntos disjuntos $(A \cap B = \emptyset)$ $P(A \cup B) = P(A) + P(B)$

Casos Particulares

- se A e B são conjuntos disjuntos ($A \cap B = \emptyset$) $P(A \cup B) = P(A) + P(B)$
- para qualquer evento A em Ω

Casos Particulares

- se A e B são conjuntos disjuntos ($A \cap B = \emptyset$) $P(A \cup B) = P(A) + P(B)$
- para qualquer evento A em Ω
 P(A) = 1 P(A^c)

Aplicação

Considere novamente o evento

 ${\it M} \cup {\it G}$: aluno formado no ensino médio ${\it ou}$ em instituição pública.

Então

Aplicação

Considere novamente o evento

 $M \cup G$: aluno formado no ensino médio **ou** em instituição pública. Então

$$P(M \cup G) = P(M) + P(G) - P(M \cap G)$$

$$= \frac{147.367}{385.497} + \frac{267.652}{385.495} - \frac{117.945}{385.497}$$

$$= \frac{297.074}{385.497} = 0,771.$$

Exercício 1

Sejam A, B e C eventos quaisquer do espaço amostral Ω . Usando o Diagrama de Venn abaixo obtenha uma expressão para $P(A \cup B \cup C)$.

Exercício 1

Sejam A, B e C eventos quaisquer do espaço amostral Ω . Usando o Diagrama de Venn abaixo obtenha uma expressão para $P(A \cup B \cup C)$.

Exercício 1

Sejam A, B e C eventos quaisquer do espaço amostral Ω . Usando o Diagrama de Venn abaixo obtenha uma expressão para $P(A \cup B \cup C)$.

$$P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Exercício 2

Em um bairro há três empresas de TV a cabo e 20 mil residências. A empresa A tem 2100 assinantes, a B tem 1850 e a empresa C tem 2600 assinantes, sendo que algumas residências subscrevem aos serviços de mais de uma empresa. Assim, temos 420 residências que são assinantes de A e B, 120 de A e C, 180 de B e C e 30 que são assinantes das três empresas.

Exercício 2

Em um bairro há três empresas de TV a cabo e 20 mil residências. A empresa A tem 2100 assinantes, a B tem 1850 e a empresa C tem 2600 assinantes, sendo que algumas residências subscrevem aos serviços de mais de uma empresa. Assim, temos 420 residências que são assinantes de A e B, 120 de A e C, 180 de B e C e 30 que são assinantes das três empresas.

Se uma residência desse bairro é sorteada ao acaso, qual é a probabilidade de:

Exercício 2

Em um bairro há três empresas de TV a cabo e 20 mil residências. A empresa A tem 2100 assinantes, a B tem 1850 e a empresa C tem 2600 assinantes, sendo que algumas residências subscrevem aos serviços de mais de uma empresa. Assim, temos 420 residências que são assinantes de A e B, 120 de A e C, 180 de B e C e 30 que são assinantes das três empresas.

Se uma residência desse bairro é sorteada ao acaso, qual é a probabilidade de:

Ser assinante somente da empresa A?

Exercício 2

Em um bairro há três empresas de TV a cabo e 20 mil residências. A empresa A tem 2100 assinantes, a B tem 1850 e a empresa C tem 2600 assinantes, sendo que algumas residências subscrevem aos serviços de mais de uma empresa. Assim, temos 420 residências que são assinantes de A e B, 120 de A e C, 180 de B e C e 30 que são assinantes das três empresas.

Se uma residência desse bairro é sorteada ao acaso, qual é a probabilidade de:

- Ser assinante somente da empresa A?
- Ser assinante de pelo menos uma empresa?

Exercício 2

Em um bairro há três empresas de TV a cabo e 20 mil residências. A empresa A tem 2100 assinantes, a B tem 1850 e a empresa C tem 2600 assinantes, sendo que algumas residências subscrevem aos serviços de mais de uma empresa. Assim, temos 420 residências que são assinantes de A e B, 120 de A e C, 180 de B e C e 30 que são assinantes das três empresas.

Se uma residência desse bairro é sorteada ao acaso, qual é a probabilidade de:

- Ser assinante somente da empresa A?
- Ser assinante de pelo menos uma empresa?
- Não ser assinante de TV a cabo?

Definição

Definição

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$$

Definição

Sejam A e B dois eventos quaisquer do espaço amostral Ω . Então

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$$

Consequências

Definição

Sejam A e B dois eventos quaisquer do espaço amostral Ω . Então

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$$

Consequências

 $P(A \cap B) = P(A|B)P(B)$

Definição

Sejam A e B dois eventos quaisquer do espaço amostral Ω . Então

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$$

Consequências

- $P(A \cap B) = P(A|B)P(B)$
- $P(A \cap B) = P(B|A)P(A)$

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

Eventos

M: aluno se formou no ensino médio

Descrição

Vamos supor que um aluno diplomado em 2002 do município de São Paulo é selecionado, ao acaso.

Eventos

- M: aluno se formou no ensino médio
- G: aluno se formou em instituição pública

Qual a probabilidade do aluno escolhido ser formado no ensino médio sabendo-se que é de instituição pública?

Qual a probabilidade do aluno escolhido ser formado no ensino médio sabendo-se que é de instituição pública?

Cálculo da Probabilidade

$$P(M|G) = \frac{P(M \cap G)}{P(G)}$$

Qual a probabilidade do aluno escolhido ser formado no ensino médio sabendo-se que é de instituição pública?

Cálculo da Probabilidade

$$\begin{array}{rcl}
P(M|G) & = & \frac{P(M \cap G)}{P(G)} \\
 & = & \frac{117.945}{385.497} \\
 & = & \frac{267.652}{385.497}
\end{array}$$

Qual a probabilidade do aluno escolhido ser formado no ensino médio sabendo-se que é de instituição pública?

Cálculo da Probabilidade

$$P(M|G) = \frac{P(M \cap G)}{P(G)}$$

$$= \frac{\frac{117.945}{385.497}}{\frac{267.652}{385.497}}$$

$$= \frac{117.945}{267.652} = 0,441.$$

Sumário

- Objetivos da Aula
- Noções de Contagem
- 3 Exemplo 1
- Independência de Eventos
- 5 Exemplo 2
- 6 Exemplo 4

Sem Reposição

Descrição

Em uma urna há 5 bolas, sendo 2 bolas brancas e 3 bolas vermelhas. Duas bolas são sorteadas sucessivamente, *sem reposição*.

Qual a probabilidade da 2ª bola sorteada ser da cor vermelha?

Sem Reposição

Diagrama de Árvore

Sem Reposição

Cálculo de Probabilidades

 $P(2^{a} \text{ bola vermelha}) = P(VV) + P(BV) = 6/20 + 6/20 = 12/20 = 0,60$

Com Reposição

Descrição

Em uma urna há 5 bolas, sendo 2 bolas brancas e 3 bolas vermelhas. Duas bolas são sorteadas sucessivamente, *com reposição*.

Qual a probabilidade da 2ª bola sorteada ser da cor vermelha?

Com Reposição

Cálculo de Probabilidades

 $P(2^2 \text{ bola vermelha}) = P(VV) + P(BV) = 9/25 + 6/25 = 15/25 = 0,60$

Sumário

- Objetivos da Aula
- Noções de Contagem
- 3 Exemplo 1
- Independência de Eventos
- Exemplo 2
- 6 Exemplo 4

Definição

Dois eventos A e B são independentes se a informação da ocorrência (ou não) de B não altera a probabilidade de ocorrência de A, isto é,

Definição

Dois eventos A e B são independentes se a informação da ocorrência (ou não) de B não altera a probabilidade de ocorrência de A, isto é,

$$P(A|B) = P(A), P(B) > 0.$$

Definição

Dois eventos A e B são independentes se a informação da ocorrência (ou não) de B não altera a probabilidade de ocorrência de A, isto é,

$$P(A|B) = P(A), P(B) > 0.$$

Consequência

Da definição de probabilidade condicional temos que

Definição

Dois eventos A e B são independentes se a informação da ocorrência (ou não) de B não altera a probabilidade de ocorrência de A, isto é,

$$P(A|B) = P(A), P(B) > 0.$$

Consequência

Da definição de probabilidade condicional temos que

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$$

Definição

Dois eventos A e B são independentes se a informação da ocorrência (ou não) de B não altera a probabilidade de ocorrência de A, isto é,

$$P(A|B) = P(A), P(B) > 0.$$

Consequência

Da definição de probabilidade condicional temos que

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$$

Logo, a independência entre A e B é equivalente a

Definição

Dois eventos A e B são independentes se a informação da ocorrência (ou não) de B não altera a probabilidade de ocorrência de A, isto é,

$$P(A|B) = P(A), P(B) > 0.$$

Consequência

Da definição de probabilidade condicional temos que

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$$

Logo, a independência entre A e B é equivalente a

$$P(A \cap B) = P(A)P(B)$$
.

Eventos

• V1: ocorrência de bola vermelha na 1ª retirada

Eventos

- V1: ocorrência de bola vermelha na 1ª retirada
- V2: ocorrência de bola vermelha na 2^a retirada

Eventos

- V1: ocorrência de bola vermelha na 1^a retirada
- V2: ocorrência de bola vermelha na 2^a retirada

Sem Reposição

Eventos

- V1: ocorrência de bola vermelha na 1^a retirada
- V2: ocorrência de bola vermelha na 2^a retirada

Sem Reposição

Temos que P(V2|V1) = 2/4 = 0,50 e P(V2) = 0,60. Portanto, os eventos V1 e V2 não são independentes.

Eventos

- V1: ocorrência de bola vermelha na 1ª retirada
- V2: ocorrência de bola vermelha na 2ª retirada

Sem Reposição

Temos que P(V2|V1) = 2/4 = 0,50 e P(V2) = 0,60. Portanto, os eventos V1 e V2 não são independentes.

Com Reposição

Eventos

- V1: ocorrência de bola vermelha na 1^a retirada
- V2: ocorrência de bola vermelha na 2ª retirada

Sem Reposição

Temos que P(V2|V1) = 2/4 = 0,50 e P(V2) = 0,60. Portanto, os eventos V1 e V2 não são independentes.

Com Reposição

Temos que P(V2|V1) = 3/5 e P(V2) = 3/5. Portanto, os eventos V1 e V2 são independentes.

Sumário

- Objetivos da Aula
- Noções de Contagem
- 3 Exemplo 1
- Independência de Eventos
- 5 Exemplo 2
- 6 Exemplo 4

Descrição

Numa pesquisa sobre hábitos de fumar de uma população, constatou-se que 25% dos homens entrevistados fumam, 17% das mulheres fumam e 60% dos entrevitados eram homens.

Descrição

Numa pesquisa sobre hábitos de fumar de uma população, constatou-se que 25% dos homens entrevistados fumam, 17% das mulheres fumam e 60% dos entrevitados eram homens.

Eventos

• F: ser fumante

Descrição

Numa pesquisa sobre hábitos de fumar de uma população, constatou-se que 25% dos homens entrevistados fumam, 17% das mulheres fumam e 60% dos entrevitados eram homens.

Eventos

- F: ser fumante
- M: ser do sexo feminino

Descrição

Numa pesquisa sobre hábitos de fumar de uma população, constatou-se que 25% dos homens entrevistados fumam, 17% das mulheres fumam e 60% dos entrevitados eram homens.

Eventos

- F: ser fumante
- M: ser do sexo feminino
- H: ser do sexo masculino

Descrição

Numa pesquisa sobre hábitos de fumar de uma população, constatou-se que 25% dos homens entrevistados fumam, 17% das mulheres fumam e 60% dos entrevitados eram homens.

Eventos

- *F*: ser fumante
- M: ser do sexo feminino
- H: ser do sexo masculino

Qual a probabilidade de uma pessoa sorteada ao acaso dessa população ser fumante?

Descrição

Numa pesquisa sobre hábitos de fumar de uma população, constatou-se que 25% dos homens entrevistados fumam, 17% das mulheres fumam e 60% dos entrevitados eram homens.

Eventos

- *F*: ser fumante
- M: ser do sexo feminino
- H: ser do sexo masculino

Qual a probabilidade de uma pessoa sorteada ao acaso dessa população ser fumante?

Diagrama de Árvore

Cálculo de Probabilidades

P(Fumante) = P(MF) + P(HF) = 0.068 + 0.150 = 0.218

Regra da Probabilidade Total

Partição do Espaço Amostral

Sejam Ω um espaço amostral e A_1, \ldots, A_n eventos dois a dois disjuntos e exaustivos de Ω , isto é

Partição do Espaço Amostral

Sejam Ω um espaço amostral e A_1, \ldots, A_n eventos dois a dois disjuntos e exaustivos de Ω , isto é

$$\bullet \ \Omega = \cup_{i=1}^n A_i$$

Partição do Espaço Amostral

Sejam Ω um espaço amostral e A_1, \ldots, A_n eventos dois a dois disjuntos e exaustivos de Ω , isto é

- $\bullet \ \Omega = \cup_{i=1}^n A_i$
- $A_i \cap A_j = \emptyset$ para $i \neq j$

Partição do Espaço Amostral

Sejam Ω um espaço amostral e A_1, \ldots, A_n eventos dois a dois disjuntos e exaustivos de Ω , isto é

- $\Omega = \bigcup_{i=1}^n A_i$
- $A_i \cap A_i = \emptyset$ para $i \neq j$

Então dizemos que $\{A_1,...,A_n\}$ é uma partição de Ω .

Regra da Probabilidade Total

Sejam Ω um espaço amostral e $\{A_1,...,A_n\}$ uma partição de Ω .

Regra da Probabilidade Total

Sejam Ω um espaço amostral e $\{A_1,...,A_n\}$ uma partição de Ω . Para um evento qualquer B temos que

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i).$$

Regra da Probabilidade Total

Sejam Ω um espaço amostral e $\{A_1, ..., A_n\}$ uma partição de Ω . Para um evento qualquer B temos que

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i).$$

Assim, pela regra de Bayes

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}.$$

Sumário

- Objetivos da Aula
- Noções de Contagem
- 3 Exemplo 1
- Independência de Eventos
- 5 Exemplo 2
- 6 Exemplo 4

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

No setor de automóveis 30% dos sinistros resultam em perda total, 60% em perda parcial e 10% são dedutíveis.

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

No setor de automóveis 30% dos sinistros resultam em perda total, 60% em perda parcial e 10% são dedutíveis.

No setor de caminhões 40% dos sinistros resultam em perda total, 50% em perda parcial e 10% são dedutíveis.

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

No setor de automóveis 30% dos sinistros resultam em perda total, 60% em perda parcial e 10% são dedutíveis.

No setor de caminhões 40% dos sinistros resultam em perda total, 50% em perda parcial e 10% são dedutíveis.

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

No setor de automóveis 30% dos sinistros resultam em perda total, 60% em perda parcial e 10% são dedutíveis.

No setor de caminhões 40% dos sinistros resultam em perda total, 50% em perda parcial e 10% são dedutíveis.

Eventos

A: automóvel

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

No setor de automóveis 30% dos sinistros resultam em perda total, 60% em perda parcial e 10% são dedutíveis.

No setor de caminhões 40% dos sinistros resultam em perda total, 50% em perda parcial e 10% são dedutíveis.

- A: automóvel
- C: caminhão

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

No setor de automóveis 30% dos sinistros resultam em perda total, 60% em perda parcial e 10% são dedutíveis.

No setor de caminhões 40% dos sinistros resultam em perda total, 50% em perda parcial e 10% são dedutíveis.

- A: automóvel
- C: caminhão
- Tot: perda total

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

No setor de automóveis 30% dos sinistros resultam em perda total, 60% em perda parcial e 10% são dedutíveis.

No setor de caminhões 40% dos sinistros resultam em perda total, 50% em perda parcial e 10% são dedutíveis.

- A: automóvel
- C: caminhão
- Tot: perda total
- Par: perda parcial

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

No setor de automóveis 30% dos sinistros resultam em perda total, 60% em perda parcial e 10% são dedutíveis.

No setor de caminhões 40% dos sinistros resultam em perda total, 50% em perda parcial e 10% são dedutíveis.

- A: automóvel
- C: caminhão
- Tot: perda total
- Par: perda parcial
- Ded: dedutível

Descrição

O portifólio de uma seguradora de veículos é formado por apólices para automóveis e para caminhões na proporção de 70% e 30%, respectivamente.

No setor de automóveis 30% dos sinistros resultam em perda total, 60% em perda parcial e 10% são dedutíveis.

No setor de caminhões 40% dos sinistros resultam em perda total, 50% em perda parcial e 10% são dedutíveis.

- A: automóvel
- C: caminhão
- Tot: perda total
- Par: perda parcial
- Ded: dedutível

Descrição

Se em determinado acidente houve perda parcial, qual a probabilidade de que o veículo acidentado foi um automóvel?

Descrição

Se em determinado acidente houve perda parcial, qual a probabilidade de que o veículo acidentado foi um automóvel? Portanto, queremos calcular $P(A|Par) = P(A \cap Par)/P(Par)$.

Descrição

Se em determinado acidente houve perda parcial, qual a probabilidade de que o veículo acidentado foi um automóvel? Portanto, queremos calcular $P(A|Par) = P(A \cap Par)/P(Par)$.

Probabilidades

Descrição

Se em determinado acidente houve perda parcial, qual a probabilidade de que o veículo acidentado foi um automóvel? Portanto, queremos calcular $P(A|Par) = P(A \cap Par)/P(Par)$.

Probabilidades

• P(A) = 0,70 e P(C) = 0,30

Descrição

Se em determinado acidente houve perda parcial, qual a probabilidade de que o veículo acidentado foi um automóvel? Portanto, queremos calcular $P(A|Par) = P(A \cap Par)/P(Par)$.

Probabilidades

- P(A) = 0,70 e P(C) = 0,30
- no setor de automóveis P(Tot|A) = 0,30, P(Par|A) = 0,60 e P(Ded|A) = 0,10

Descrição

Se em determinado acidente houve perda parcial, qual a probabilidade de que o veículo acidentado foi um automóvel? Portanto, queremos calcular $P(A|Par) = P(A \cap Par)/P(Par)$.

Probabilidades

- P(A) = 0,70 e P(C) = 0,30
- no setor de automóveis P(Tot|A) = 0,30, P(Par|A) = 0,60 e P(Ded|A) = 0,10
- no setor de caminhões P(Tot|C) = 0,40, P(Par|C) = 0,50 e P(Ded|C) = 0,10

Cálculo da Probabilidade

Cálculo da Probabilidade

$$P(A \cap Par) = P(Par|A) \times P(A)$$

= 0,60 × 0,70 = 0,42.

Cálculo da Probabilidade

$$P(A \cap Par) = P(Par|A) \times P(A)$$

= 0,60 × 0,70 = 0,42.
 $P(Par) = P(Par|A)P(A) + P(Par|C)P(C)$
= 0,60 × 0,70 + 0,50 × 0,30

Cálculo da Probabilidade

$$P(A \cap Par) = P(Par|A) \times P(A)$$

= 0,60 × 0,70 = 0,42.
 $P(Par) = P(Par|A)P(A) + P(Par|C)P(C)$
= 0,60 × 0,70 + 0,50 × 0,30
= 0,42 + 0,15 = 0,57.

Cálculo da Probabilidade

Temos que

$$P(A \cap Par) = P(Par|A) \times P(A)$$

= 0,60 × 0,70 = 0,42.
 $P(Par) = P(Par|A)P(A) + P(Par|C)P(C)$
= 0,60 × 0,70 + 0,50 × 0,30
= 0,42 + 0,15 = 0,57.

Logo

$$P(A|Par) = \frac{0.42}{0.57} \cong 0.737.$$