

Our country, our future

525/1

S6 CHEMISTRY

Exam 8

PAPER 1

DURATION: 2 HOUR 45 MINUTES

For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709.

Attempt all numbers

1 More exams? browse: digitaltears.co.ug

1.	Complete the following organic reaction and name the major organic products. (a) $CH_3CH=CH_2$ MnO_4 / $OH-$ (1 ½)
	Name
	(b) \bigcirc OH $\underline{Cr_2O_7}$ /H ⁺ , heat
	Name
	(c) (CH ₃) ₂ CHCOONa + NaOH(s)
	Name(d)
2.	(a) Explain what is meant by the term steam distillation?
••••	

•••••	
•••••	
•••••	
3.	Draw the structures and namethe shapes of the following species. Structure Name
	(a) HCO ₃ -
	(b) Cl ₂ O ⁻
	(c) SO ₃ ²⁻
1	State what is observed and write equation that occur when
+.	(a) Dilute sulphuric acid is added to aqueous solution of potassium manganate (VI).
	Observation
	Equation
••••	
••••	
	(b) Bromine water is added to hydroxylbenzene
erv	ation
atic	on

J. (a) state Nabult s law.

2 More exams? browse: digitaltears.co.ug

(c)	At 50°C an aqueous solution of carbamide (CH₃CONH 12100Nm ⁻² . Determine the vapor pressure of water a	$_{2}$) of concentration 60.93gdm-3 has a vapor pressure of it this temperature. (4marks)
6. Co	omplete the following organic reactions and outline the	accepted mechanism.
(a)	NH₂ + CH₃COCI →	
(b)) CH ₃ CH ₂ Br + CH ₃ CECH Na/Liq. NH ₃	
(5)	1 CH3CH2DI - CH3CECH	
7 (2)) Write electronic configuration of conner (I) and conne	(II) ions
7. (a) (i)	Write electronic configuration of copper (I) and copper Copper (I) ion	
(ii)		
(b)) The electrode potentials for the following reactions a	
		E ^o /V
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.52
		0.52
	Use the information given above to calculate the e.m $2Cu+(aq)$ $Cu(s) + Cu^{2+}(aq)$	i.f value for the reaction given below
	cu(s) + cu (dy)	

	(c) What can you deduce from your answer
8.	Write equations for the reactions that occur between each of the following compounds with hot concentrated sodium hydroxide solution (a) Chromium (III) oxide
	(b) Fluorine
	(c) Lead (IV) oxide
9.	Define the term buffer solution
	 (c) A 0.1M solution of sodium hydroxide was added to 50cm³ (d) of 0.1M ethanoic acid until when the acid is half way neutralized. Determine the pH of the resultant solution formed. (Ka for ethanoic acid is 1.8 x10⁻⁵)
	(d) State one application of a buffer.
	SECTION B (54MARKS)

(Attempt six questions only)

10. (a) during manufacture of nitric acid, ammonia is catalytically oxidized with air in presence of a catalyst R.

4 More exams? browse: digitaltears.co.ug

((i)	Na	ame the catalyst R
((ii)	W	rite equation for the reaction in (a)(i) above
(b) State	oth	ner cor	nditions applied in the reaction above
((c)	Write	equation to show how nitric acid is formed from the product (s) in (a) above
((d)		drops of concentrate nitric acid were added to aqueous solution of manganese (II) salt in presence of Q. A purple was formed.
		(i)	Name solid Q
		(ii)	Write equation for the reaction
9	stat	e the o	reagent(s) that can be used to distinguish between the following pairs of compounds. In each case observations made.
((b)	2- ami	inopropane and dimethylamine
	• •		ol and methanol in what is meant by the term anomalous behavior
(b) State			anomalous behavior of fluorine as compared to other group (VII) elements. Use equations to illustrate

5 More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

(c)	Give reasons(s)) why fluoring	ne exhibit the tv	pe of behaviors	mentioned in	(b)	above
\ ~/	0110100110(0	,,	ic chilibre tile ty	pe or benations	THE THE STATE OF T	\~ /	_

13. (a) Explain what is meant by each of the following terms.

- (i) Order of the reaction
- (ii) Molecularity of the reaction
- (b) Hydrogen peroxide decomposes as shown below

$$2H_2O_2$$
 (aq) \longrightarrow $2H_2O(I) + O_2$ (g)

The reaction is catalyzed by adding a known volume of iron (III) chloride. The order of this reaction can be determined by titrating the mixture with standard solutions of acidified potassium permanganate (VII). The following results were obtained during the experiment

Time/min	5	5	10	15	20	25	30
Vol of KMno ₄	30	23.4	18.3	14.7	14.2	8.7	6.8

⁽i) Plot a graph of volume of potassium permanganate (VII) against time

- (ii) Determine the order of reaction. Give reasons for your answer
- (iii) Determine the rate constant for the reaction.

14. (a) State Grahams' law of gaseous diffusion.
(b) Equimolar amounts of an amine, W and oxygen were allowed to diffuse through the same porous medium under the same conditions of pressure and temperature. The amine W diffuses 1.19 times as fast as the time taken by oxygen
(i) Determine the molecular mass of W.
(iii) Determine the molecular formula of W.
(c)(i) Write equation for the reaction that occur when compound W is dissolved in water
(iii) Determine the pH of 0.1M aqueous solution of compound W. the base dissociation constant Kb for compound W is 1.85×10^{-5} and Kw for water at 250C is 1.0×10^{-14} .
15. Write equations to show how the following synthesis can be carried out. In each case indicate the necessary reagents and conditions.
(a) \longrightarrow =NNH ₂ from cyclohexene
(b) Ethylamine from ethanol
(w) = to in the control of the contr

8 More exams? browse: digitaltears.co.ug

	(c) Methylbenzene from benzene sulphonic acid
	State what is will be observed and write equations for the reactions that occur when Sodium hydroxide solution is added drop wise until in excess to an aqueous solution of chromium (III) salt followed by hydrogen peroxide solution and the solution warmed
(b)	Acidified potassium permanganate solution is added to aqueous solution of tin (II) chloride
17.	(a) Boron and silicon show diagonal relationship(i) What is diagonal relationship
	(ii) Briefly explain why silicon and boron show diagonal relation ship
(c)	Given any four ways in which both boron and silicon exhibit diagonal relationship

9 More exams? browse: digitaltears.co.ug

(d)	State two other pairs of elements in the periodic table that exhibit diagonal relationship.
(e)	Excess hot concentrated sodium hydroxide solution was added to 2.5g of a mixture of aluminium metal and magnesium metal. If the volume of the gas liberated at stp was 2.24cm3. calculate the percentage of magnesium in the mixture.

10 More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709