NETWORKING AND COMMUNICATION BASICS THERE AND BACK AGAIN

Overview

Basic concepts

Communication

Message

Communication loop

Networking

Premise

Outbound

Inbound

OSI model

Headers

Real life packet

TCP/IP model

Sockets

Homework

Conclusion

Communication

Basic concepts

Definition

Communication is the act of developing meaning among entities or groups through the use of sufficiently mutually understood signs, symbols, and semiotic conventions.

Message

Basic concepts

Definition
Message is a discrete unit of
communication intended by the source for
consumption by some recipient or group of
recipients.

Communication loop

Basic concepts

Premise

Outbound

Inbound

OSI model

Headers

Real life packet

```
Frame 1530: 1506 bytes on wire (12048 bits), 1506 bytes captured (12048 bits) on interface enp4s0, id 0
Ethernet II. Src: Giga-Byt f5:ba:6c (b4:2e:99:f5:ba:6c). Dst: Tp-LinkT 26:be:6e (84:16:f9:26:be:6e)
Internet Protocol Version 4. Src: 192.168.0.117. Dst: 39.50.241.244
Transmission Control Protocol, Src Port: 51413, Dst Port: 48872, Seg: 921601, Ack: 953, Len: 1440
Data (1440 bytes)
                    00 01 01
           91 90 aa ff 82 39
           04 f1 34 e1 ff b6 e4 06 da 4e b3 ed bf 55
                             8d 35 84 ae 68 9d
     cf b3 74 c8 bd 29 e9 53 96 7b a5 cd 41 3f 27 13
     99 c8 fa 65 a8 57 af a5 b6 83 10 69 9e 49 ba e2
0140 4e a3 59 f1 cf e7 3a 5e 5e 98 8c 95 ef b1 04 18
0150 02 f1 79 1d 8d 81 41 7d 31 c3 e8 2a 14 36 a7 e0
                                                       ..v...A} 1..*.6..
       wireshark enp4s0 20211221145021 iGg2lz.pcapng
```

TCP/IP model

Transmission Control Protocol

Transmission Control Protocol

User Datagram Protocol

Internet protocol

) 4		3	16 1	9	3.
Version	Header Length	Service Type	Total Length		
Identification			Flags	Fragment Offse	t
TTL		Protocol	Header Checksum		
Source IP Addr					
Destination IP Addr					
Options				Padding	

TCP/IP model


```
#include <sys/socket.h>
int socket(int domain, int type, int protocol);
 ▶ Domain
     ► AF_INET
     ► AF_INET6
     ► AF_UNIX
 ► Type
     ► SOCK_STREAM
     ► SOCK_DGRAM
     ► SOCK_RAW
 ► Protocol
     ▶ 0
```

```
#include <sys/socket.h>
int bind(
    int socket,
    const struct sockaddr *address,
    socklen_t address_len
);
```

```
#include <sys/socket.h>
int listen(int socket, int backlog);
```

```
#include <sys/socket.h>
int accept(
    int socket,
    struct sockaddr *__restrict__ address,
    socklen_t *__restrict__address_len
);
```

```
#include <sys/socket.h>
int connect(
    int socket,
    const struct sockaddr *address,
    socklen_t address_len
);
```

```
#include <unistd.h>
ssize_t read(int fs, void *buf, size_t N);
```

Homework

Echo World

The end

Thank you for your time!