El libro de FAA

Jesús García Gutiérrez

Capítulo 1

Operación elemental

Una operación elemental es una operación que tarda t unidades de tiempo. Siempre tarda t, sin importar cuándo la hagamos.

Si consideramos la suma como una operación elemental, el ordenador tardará t unidades de tiempo en hacer una. Hacer dos sumas le tomaría $2 \cdot t$ unidades de tiempo. Hacer n sumas le tomaría $n \cdot t$ unidades de tiempo.

Así, tenemos una manera sencilla de calcular el tiempo que tardará el ordenador en hacer n sumas. Realmente, el ordenador no tarda un tiempo exacto t en hacer una suma (puede variar por circunstancias), pero esta simplificación nos hace posible analizar los algoritmos sin preocuparnos de detalles de software o de hardware.

Si también definimos la multiplicación como una operación elemental, esto significa que el ordenador también tardará t unidades de tiempo en hacer una multiplicación. Podemos decir entonces lo siguiente.

$$t_{\text{suma}} = t_{\text{multiplicacion}} = t$$
 (1.1)

No solo consideraremos la suma y la multiplicación como operaciones elementales. Consideraremos como operaciones elementales todas las operaciones de la siguiente tabla.

1.1. Listado de operaciones elementales

Suma
Resta
Multiplicación
División
Módulo
AND
OR
Asignación
Llamada a una función
Acceso a un elemento del array

El ordenador tarda t unidades de tiempo en realizar cualquiera de estas operaciones.

Capítulo 2

Relación de recurrencia

2.1. Ejercicio del 02/04/2025

Hallar la eficiencia de un algoritmo dado. Supongamos que ya nos dan la función a trozos del T(n).

$$T(n) = \begin{cases} 1 & n \le 1\\ T(\frac{n}{2}) + 2 & n > 1 \end{cases}$$

Primero aislamos la relación de recurrencia. Las relaciones de recurrencia tienen en la parte derecha de la igualdad una o más T, a diferencia de los casos base, que no tienen ninguna T en dicha parte.

$$T(n) = T(\frac{n}{2}) + 2$$
 (2.1)

En este caso, podemos aplicar tanto el método de expansión de recurrencia como el teorema maestro. Esto es así porque solo hay una T en la parte derecha de la igualdad. Si hubiera más de una T en dicha parte, no podríamos aplicar ninguno de estos métodos.

2.1.1. Método de expansión de recurrencia

El método de expansión de recurrencia consiste en hallar el tiempo para problemas cada vez más pequeños, y calcular el T(n) utilizando cada uno de estos hallazgos.

Si nos fijamos en la ecuación 1, vemos $T(\frac{n}{2})$. ¡Vamos a hallarlo usando T(n)!

$$T(\frac{n}{2}) = T(\frac{(\frac{n}{2})}{2}) + 2$$

$$T(\frac{n}{2}) = T(\frac{n}{4}) + 2$$

Listo, hemos desarrollado $T(\frac{n}{2})$. Ahora podemos sustituir la expresión que hemos hallado en la ecuación 1.

$$T(n) = (T(\frac{n}{4}) + 2) + 2$$

$$T(n) = T(\frac{n}{4}) + 4$$
(2.2)

Perfecto, la ecuación 2 es una nueva fórmula para el T(n).

Ahora solo tenemos que seguir el mismo procedimiento que antes, hasta que veamos un patrón claro y podamos escribirlo en una ecuación. ¡Vamos con el $T(\frac{n}{4})$ que aparece en la ecuación 2!

$$T(\frac{n}{4}) = T(\frac{\left(\frac{n}{4}\right)}{2}) + 2$$
$$T(\frac{n}{4}) = T(\frac{n}{8}) + 2$$

Listo, sustituimos en la ecuación 2.

$$T(n) = (T(\frac{n}{8}) + 2) + 4$$

$$T(n) = T(\frac{n}{8}) + 6$$
 (2.3)

Ya lo vas pillando, ja por el $T(\frac{n}{8})$!

$$T(\frac{n}{8}) = T(\frac{\left(\frac{n}{8}\right)}{2}) + 2$$
$$T(\frac{n}{8}) = T(\frac{n}{16}) + 2$$

Sustituimos $T(\frac{n}{8})$ en la ecuación 3.

$$T(n) = \left(T(\frac{n}{16}) + 2\right) + 6$$

$$T(n) = T(\frac{n}{16}) + 8 \tag{2.4}$$

Ya hemos hallado el T(n) utilizando varios subproblemas. Si nos fijamos en las ecuaciones 1, 2, 3 y 4, ¿veis el patrón? Vamos a escribirlo utilizando una variable llamada i.

$$T(n) = T(\frac{n}{2^i}) + 2 \cdot i \tag{2.5}$$

Estupendo, la ecuación 5 es muy bonita y parece que ya somos informáticos teóricos cum laude, pero ocurre una desgracia: no está solo en función de n, también está en función de i. Tenemos que transformar i en n de algún modo.

En la ecuación 5 fijémonos en la expresión $T(\frac{n}{2^i})$. Solo tenemos que igualar el paréntesis al valor de n que sea caso base. Si volvemos a la función a trozos, vemos que el caso base tiene n=1, y por tanto podemos escribir lo siguiente.

$$\frac{n}{2^i} = 1$$

Podríamos pensar que n=0 es también un caso base, pero no trabajaremos nunca con problemas de tamaño igual a cero. Por eso ponemos 1 y no 0 en la igualdad. Seguimos desarrollando y aplicando la idea de logaritmo.

$$n = 2^{i}$$
$$\log_{2}(n) = i$$
$$i = \log_{2}(n)$$

Listo, tenemos i en función de n. Sustituimos la i en la ecuación 5.

$$T(n) = T(\frac{n}{2^{\log_2(\mathbf{n})}}) + 2 \cdot \log_2(n)$$

El denominador se puede seguir simplificando matemáticamente.

$$2^{\log_2(n)} = n^{\log_2(2)}$$
$$2^{\log_2(n)} = n^1$$

Maravilloso, ahora el denominador es simplemente n. Volvemos a donde estábamos antes.

$$T(n) = T(\frac{n}{n}) + 2 \cdot \log_2(n)$$
$$T(n) = T(1) + 2 \cdot \log_2(n)$$

Sustituimos T(1), sabiendo por la función a trozos que T(1) = 1

$$T(n) = 1 + 2 \cdot \log_2(n)$$

$$T(n) = 2 \cdot \log_2(n) + 1$$
 (2.6)

Listo, qué bonita nos ha quedado la fórmula 6. Esta nos da el número de operaciones elementales dada una n, y no tenemos que hacer tiempos de otros subproblemas como ocurría con la relación de recurrencia originalmente.

También podemos hablar ya del orden de complejidad. Podemos ver que...

$$T(n) \in O(\log_2(n))$$