$F_{LC,i}$ 와 유사하다. 이 경우 교정 관련 불확도로서 교정에 사용하는 유체의 property를 고려하여야 하는데, 교정 성적서 상에 고려되어 있는 경우에는 중복 고려를 할 필요가 없으나, 그렇지 않은 경우에는 이를 고려하여야 한다.

이와 같은 17개의 직접적 측정 요소는 모두 일반적으로 다음 그림과 같은 5 단계의 측정 단계 및 관련 불확도 요소를 가지고 있다. 여기에는 센서의 non-repeatability나 sampling에 의한 불확도 요인은 빠져 있으며, 이는 이러한 요인은 A형 평가에 의해 고려된다고 가정하 였기 때문이다.

그림 3.1.2.50 일반적인 측정 단계

각 측정 요소의 세분화된 측정 체계에 따라서는 세부적인 단계 및 그와 관련된 불확도가 다를 수 있으므로 이를 고려하여야 한다. 특히 그림에서 센서 설치 관련 불확도는 측정 체계 에 따라 다르게 고려할 점이 많이 있다.

(나) 측정 단계별 정량적 성능지표 정의

측정 체계의 성능은 기본적으로 측정 불확도이므로 정량적 성능 지표 역시 측정 불확도 값으로 정의되어야 한다. 여기에서는 측정 단계별로 측정 불확도값을 정의하여 이를 정량적 성능 지표로 삼는다.

① 센서 교정 관련

센서 교정 과정에서 수반되는 불확도로서 교정 표준기의 불확도도 여기에 포함된다. 이를 센서 교정 관련 성능 지표로 삼는다. 이 단계는 위 Table 3.1.2.27 상의 17개 인자 모두에 해당된다. 4개의 직경 인자(d_{mn} 등)는 직경 측정기가 센서에 해당한다.

② 센서 환경 관련

센서가 설치된 장소의 압력, 온도, 진동 등에 의한 불확도로서, 센서 사양서 상의 수치를 반영한다. 관련 불확도의 합성값을 센서 환경 관련 성능 지표로 삼는다. 이 단계는 위 Table 3.1.2.27 상의 $1\sim3$, 13, 14, 17번 인자에 해당된다. 나머지 인자는 센서가 환경이 제어되는 장소에 설치되므로 무관하다고 가정한다.

③ 센서 설치 관련 - I

단면 상 원주 방향 불균일성 관련 : 본 설비에서는 배관 내 단면 상에서 원주 방향으로는 유동에 특정한 방향성이 없다고 가정한다. 따라서 원주 방향 불균일성은 원주 방향으로 여러지점에서의 측정값을 산술 평균하는 것으로 반영하며, 불균일성에 의한 불확도 역시 이 측정