

Yarn Project Schedule

WENYING WU

Real World Domain

https://www.woolandthegang.com/en

Completed ERD

One-to-many Relationship

One and only one Designer has one or many Project

There are two one-to-many relationship in this ERD

postgres=# select * from Designer order by DesignerID; designerid | designer name | phone number | email | 6128849754 | Bruce3785@gmail.com 370 | Bruce 374 | John | 6104337060 | John77@gmail.com | 6147998327 | Jenny0776@gmail.com 385 | Jenny | 6104278859 | Ann.knit@hotmail.com 399 | Ann (4 rows) postgres=# Select * from Project order by DesignerID; projectid | project name | designerid | time need | prerequisite 1 | Loop weave 370 I 5 | Chullo hats | 370 I 3 | Cute sock 374 I 385 | 4 | Blanket 6 | Taylor Sweater | 385 I 2 | Shopping Bag 399 | (6 rows)

Second one- to-many relationship:

One and only one Fiber used in one or many Yarn

Many-to-many Relationship

There are two many-to-many relationship in this ERD

Second many- to many relationship:

One or many Yarn have one or many Colour

Simple Query Example

Example:

Designer

DesignerID
Designer_Name
Phone_Number
Email

All the data in Designer table

Show the designer information about a specific designer, Bruce

Join Example

Show the information about designer's project, including designer, project name, project ID and time need.

Cross Product

	time_need from designer	elect Designer_na om Designer natur project +	al join Proj projectid	ect order by time_need	name as Project, projectID, Designer;
Natural Join	Ann Bruce Bruce	Shopping Bag Loop weave Chullo hats	2 1 5	6 5 29	
	Jenny Jenny John (6 rows)	Blanket Taylor Sweater Cute sock	4 6 3		

designer	project	project	tid	time_need
nn	Shopping Bag	 	2	 6
ruce	Loop weave	1	1	5
ruce	Chullo hats	1	5	29
enny	Blanket	1	4	15
enny	Taylor Sweater	1	6	35
ohn	Cute sock	1	3	9

postgres=# select Designer name as Designer, Project Name as Project, ProjectID,

Group by & Sub query

Previous example table

designer	project	projectid	time_need	i
Ann Bruce Bruce Jenny Jenny John (6 rows)	Shopping Bag Loop weave Chullo hats Blanket Taylor Sweater Cute sock	 	4 1	6 5 29 L5 35

Group By (with HAVING)

• Show the number of project for designers who has more than one project.

Sub query

• Show the project which used more than average time of all project, including designer, project name, project ID and time need.

postgres=# select Designer_name as Designer, Project_name as Project, ProjectID, time_need from
Designer natural join Project where time_need > (select AVG(time_need) from Designer natural
join Project);

designer	ĺ	project		projectid	 -	time_need
Bruce		Chullo hats		5		29
Jenny		Taylor Sweater		6		35
(2 rows)						

Self Join

Show all the projects which have a prerequisite, including project and project ID

Statement

CHECK statement example:

Example 1:

Yarn

YarnID Yarn_Name Price

Quantity Weight Fiber

Example 2:

Fiber

<u>Fiber</u> Fiber_Type Region

```
CONSTRAINT Yarn_YarnID CHECK ((YarnID >= 1000) AND (YarnID <= 1500)),
CONSTRAINT Yarn_Price CHECK ((Price > 0) AND (Price <= 30)),
CONSTRAINT Yarn_Quantity CHECK ((Quantity >= 50) AND (Quantity <= 200))

CONSTRAINT Fiber_Fiber CHECK (Fiber IN('Alpaca', 'Raffia', 'Wool',
'Acrylic')),
CONSTRAINT Fiber_Fiber_Type CHECK (Fiber_Type IN('Natural',
'Artificial')),
CONSTRAINT Fiber_Region CHECK (Region IN('New Zealand', 'Japan',
'Australia', 'China'))
```

Action statement example:

Example:

CONSTRAINT ProjectFK FOREIGN KEY (DesignerID) REFERENCES Designer ON DELETE RESTRICT ON UPDATE CASCADE,

View

Code

Result

• List designer and their project, including Designer ID, Designer's name and the name of the project

```
CREATE VIEW Designer_Project AS
select DesignerID, Designer_Name as Designer, Project_Name as Project
from Designer natural join Project
order by DesignerID;
```

```
postgres=# select * from Designer Project;
designerid | designer |
                             project
                        | Loop weave
       370 | Bruce
       370 | Bruce
                        | Chullo hats
       374 | John
                       | Cute sock
       385 | Jenny
                        | Blanket
       385 | Jenny
                      | Taylor Sweater
                       | Shopping Bag
       399 | Ann
(6 rows)
```