CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE ANÁLISE DE SISTEMAS LINEARES

Av. Amazonas, 7675 - Belo Horizonte, MG-Brasil, 30.470-000

ROTEIRO: Nº 01 - ERE 2/2021

1. TÍTULO: Introdução ao Octave / Matlab. Conceitos de Álgebra Linear.

2. OBJETIVOS:

- 1. Familiarizar com o pacote de programas Octave / Matlab;
- 2. Revisar conceitos de álgebra linear;

3. INTRODUÇÃO TEÓRICA

Responda as seguintes questões:

1. Dado as seguintes matrizes: $A(n \times m)$ e $B(p \times q)$ indique, algebricamente, as seguintes regras da álgebra

linear: (Dica: assuma, e.g.¹, que
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 e $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$.)

- a. Soma C = A + B;
- b. Subtração C= A B;
- c. Multiplicação: C=A * B;
- d. Divisão de A por B;
- e. Inversa da matriz A (Existe matriz inversa para $n \neq m$?);
- f. Determinante de A;
- g. Transposta A;
- h. Equação característica;
- i. Exponencial de matrizes, i.e. $e^{At} = ?$
- j. Autovalores (ou raízes características) da matriz A.
- 2. Dado um vetor Z com números complexos na forma retangular $z_i = x_i + j*y_i$, indique fórmulas para se obter a forma polar, i.e. o módulo e o ângulo. Que funções no Matlab podem ser usadas para realizar estas operações?

4. PARTE EXPERIMENTAL

Resolva os exercícios abaixo (usando o Matlab, obviamente, e indique os comandos usados):

1. Considere as duas matrizes
$$A = \begin{bmatrix} e^4 & \ln(5) \\ \sqrt{6} & 1+5i \end{bmatrix}$$
 e $B = \begin{bmatrix} \pi & \log(5) \\ 3j & 1+3j \end{bmatrix}$

Usando o Matlab, calcule o seguinte

c.
$$A^2$$

$$d.$$
 A^{T}

$$f.$$
 B^TA^T

g.
$$A^2+B^2-AB$$

e. B-1

¹ **e.g.** significa por exemplo (em Latin exempli gratia)

² i.e. significa isto é (em Latin id est)

2. Considere o seguinte sistema de equações algébricas lineares:
$$\begin{cases} 4x + 3y + 2z = 5 \\ -6x + 8z = 8 \\ -4y - 12z = 0 \end{cases}$$

Determinar os valores de x, y, e z tal que o sistema de equações seja satisfeito. (Dica: escrever as equações sob a forma matricial-vetorial.)

- 3. Gerar um gráfico de $y(x) = e^{-0.2x} sen(\omega x) + 1$, onde w=5 rad/s e $0 \le x \le 40$. Utilizar a notação de dois pontos para gerar o vetor x com incrementos de
 - a. 0.2
 - b. 0.01
- 4. O uso de planilhas eletrônicas como o Excell é comum para atividades como calcular o valor de cada item de uma lista de preços, e.g. a tabela abaixo, e o preço total da lista de material. Use comandos do Matlab para calcular o total parcial de cada item da tabela abaixo e o valor total da lista. Indique os comandos que você usou e os resultados.

Dica: Usar operação ponto a ponto.

Item	1	2	3	4	5	6
Descrição do	A	В	С	D	Е	F
Produto						
Preço unitário	0.5	0.4	5.7	22.2	17.3	2.1
Quantidade	5	4	20	10	15	1
Total parcial						

5. Teste a execução de seções.

Dica: use %% para criar uma nova seção e Run Section para executar a seção corrente.

5. CONCLUSÕES e DISCUSSÕES

Comente sobre os objetivos da prática e como foram alcançados.

7. REFERÊNCIAS

Cite as referências utilizadas.