535514: Reinforcement Learning Lecture 22 — DQN, DDQN, and Distributional RL

Ping-Chun Hsieh

May 9, 2024

On-Policy vs Off-Policy Methods

	Policy Optimization	Value-Based	Model- Based	Imitation- Based
On- Policy	Exact PG REINFORCE (w/i baseline) A2C On-policy DAC TRPO Natural PG (NPG) PPO-KL & PPO-Clip RLHF by PPO-KL	Epsilon-Greedy MC Sarsa Expected Sarsa	Model- Predictive Control (MPC) PETS	IRL GAIL IQ-Learn
Off- Policy	Off-policy DPG & DDPG Twin Delayed DDPG (TD3)	Q-learning Double Q-learning DQN & DDQN C51 / QR-DQN / IQN Rainbow Soft Actor-Critic (SAC)		

_

Review: Deep Q-Network

$$F(\mathbf{w}) := \frac{1}{2} \mathbb{E}_{(s,a,r,s') \sim \rho} \left[\left(r + \gamma \max_{a' \in A} \underline{Q(s',a';\bar{\mathbf{w}})} - Q(s,a;\mathbf{w}) \right)^2 \right]$$

$$\approx \frac{1}{2} \sum_{(s,a,r,s') \in D \sim \mathcal{B}} \left[\left(r + \gamma \max_{a' \in A} Q(s',a';\bar{\mathbf{w}}) - Q(s,a;\mathbf{w}) \right)^2 \right]$$

Can DQN be Applied Under Continuous Actions?

The difficulty lies in the "arg $\max_{a \in \mathcal{A}} Q(s, a; \mathbf{w})$ " operation

Existing methods that adapts DQN to continuous actions

1. Naive Action Discretization [Tavakoli et al., AAAI 2020]

Issue: Naive discretization suffers from exponential growth of cardinality

2. Discretization + Factorization [Tang and Agrawal, AAAI 2020]

$$\pi(a|s) := \prod_{i=1}^{d} \pi_{\theta_i}(a_i|s)$$
 where $a = [a_0, a_1, \dots, a_{d-1}]^{\mathsf{T}}$

(a) **HalfCheetah + PPO**

(b) Ant + PPO

(c) Walker + PPO

(d) Humanoid (R) + PPO

Tavakoli et al., Action Branching Architectures for Deep Reinforcement Learning, AAAI 2018 Tang and Agrawal et al., Discretizing Continuous Aetion Space for On-Policy Optimization, AAAI 2020

3. Discretization + Branching [Tavakoli et al., AAAI 2018]

Tavakoli et al., Action Branching Architectures for Deep Reinforcement Learning, AAAI 2018

4. Normalized Advantage Functions (NAF): Quadratic Approximation!

Continuous Deep Q-Learning with Model-based Acceleration

[Gu et al., ICML 2016]

Shixiang Gu^{1 2 3} Timothy Lillicrap⁴ Ilya Sutskever³ Sergey Levine³ SG717@CAM.AC.UK COUNTZERO@GOOGLE.COM ILYASU@GOOGLE.COM SLEVINE@GOOGLE.COM

$$Q(s,a;\phi_A,\phi_V) = A(s,a;\phi_A) + V(s;\phi_V) \qquad (P \text{ is state-dependent, positive definite})$$

$$A(s,a;\phi_A) := -\frac{1}{2}(a-\mu(s;\phi_\mu))^\top P(s;\phi_P)(a-\mu(s;\phi_\mu))$$

 $P(s;\phi_P) := L(s|;\phi_P)L(s|;\phi_P)^{\mathsf{T}}$ (This is known as the "Cholesky decomposition") (L is a lower-triangular matrix)

Gu et al., Continuous Deep Q-Learning with Model-based Acceleration, ICML 2016

¹University of Cambridge ²Max Planck Institute for Intelligent Systems ³Google Brain ⁴Google DeepMind

5. Amortized Q-Learning (AQL): Sampling!

Q-Learning in enormous action spaces via [NeurlPS 2018 Workshop] AMORTIZED APPROXIMATE MAXIMIZATION

Van de Wiele et al., Q-Learning in Enormous Action Spaces via Amortized Approximate Maximization, NeurIPS Workshop 2018

6. DDPG: Reinterpret DDPG as an Adaptation of DQN for Continuous Actions!

(Quick Review)

Off-Policy Deterministic PG:
$$\nabla_{\theta} J_{\beta}^{\pi_{\theta}} \approx \mathbb{E}_{s \sim d_{\mu}^{\beta}} \left[\nabla_{\theta} \pi_{\theta}(s) \nabla_{a} Q^{\pi_{\theta}}(s, a) |_{a = \pi_{\theta}(s)} \right]$$

- ullet Critic: estimate $Q_{\scriptscriptstyle W}pprox Q^{\pi_{\scriptscriptstyle heta}}$ by bootstrapping
- Actor: updates policy parameters θ by deterministic policy gradient

Step 1: Initialize
$$\theta_0$$
, w_0 and step sizes α_{θ} , α_{w}

Step 2: Sample a trajectory
$$\tau = (s_0, a_0, r_1, \cdots) \sim P_{\mu}^{\beta}$$

For each step of the current trajectory $t = 0, 1, 2, \cdots$

$$\Delta w_k \leftarrow \Delta w_k + \alpha_w \left(r_t + \gamma Q_{w_k}(s_{t+1}, \pi_{\theta}(s_{t+1})) - Q_{w_k}(s_t, a_t) \right) \nabla_w Q_w(s_t, a_t)|_{w = w_k}$$

$$\Delta \theta_k \leftarrow \Delta \theta_k + \alpha_{\theta} \gamma^t \left(\nabla_{\theta} \pi_{\theta}(s_t) \nabla_a Q_{w_k}(s_t, a)|_{a = \pi_{\theta}(s_t)} \right)$$

$$= \nabla_{\theta} Q_{w_k}(s_t, \pi_{\theta}(s_t))|_{\theta = \theta_k}$$

Alternative Interpretation of DDPG: An Adaptation of DQN for Continuous Actions (Cont.)

- DDPG can be reinterpreted as DQN for continuous actions
 - 1. Deterministic policy: $\pi_{\theta}(s) \approx \arg \max_{a} Q_{w}(s, a)$
 - 2. How to find θ : solve $\theta \leftarrow \arg\max_{\theta} Q_w(s, \pi_{\theta}(s))$ by SGD

$$\Delta \theta_k \leftarrow \Delta \theta_k + \alpha_{\theta} \gamma^t \left(\nabla_{\theta} \pi_{\theta}(s_t) \nabla_a Q_{w_k}(s_t, a) |_{a = \pi_{\theta}(s_t)} \right)$$

$$= \nabla_{\theta} Q_{w_k}(s_t, \pi_{\theta}(s_t))|_{\theta = \theta_k}$$

3. DQN and DDPG have a similar TD update scheme

$$\Delta w_k \leftarrow \Delta w_k + \alpha_w (r_t + \gamma Q_{w_k}(s_{t+1}, \pi_{\theta}(s_{t+1})) - Q_{w_k}(s_t, a_t)) \nabla_w Q_w(s_t, a_t)|_{w = w_k}$$

Next Topic: What to Improve in Vanilla DQN?

Next Topic: What to Improve in Vanilla DQN?

2. A better loss function?

Next Topic: Rainbow (= DQN with 6 Useful Tricks)

- 1. Double DQN (DDQN)
- 2. Distributional Q-learning
- 3. Prioritized experience replay (PER)
- 4. Dueling networks
- 5. Multi-step return in TD target
- 6. Noisy networks for exploration

Double DQN (DDQN)

Hado van Hasselt, Arthur Guez, and David Silver, "Deep Reinforcement Learning with Double Q-learning," AAAI 2016

Recall: Double Q-Learning

Step 1: Initialize $Q^A(s,a)$, $Q^B(s,a)$ for all (s,a), and initial state s_0

Step 2: For each step $t = 0, 1, 2, \cdots$

Select a_t using ε -greedy w.r.t $Q^A(s_t, a) + Q^B(s_t, a)$

Observe (r_{t+1}, s_{t+1})

Choose one of the following updates uniformly at random

$$Q^{A}(s_{t}, a_{t}) \leftarrow Q^{A}(s_{t}, a_{t}) + \alpha \left(r_{t+1} + \gamma Q^{B}(s_{t+1}, \arg\max_{a} Q^{A}(s_{t+1}, a)) - Q^{A}(s_{t}, a_{t})\right)$$

$$Q^{B}(s_{t}, a_{t}) \leftarrow Q^{B}(s_{t}, a_{t}) + \alpha \left(r_{t+1} + \gamma Q^{A}(s_{t+1}, \arg \max_{a} Q^{B}(s_{t+1}, a)) - Q^{B}(s_{t}, a_{t})\right)$$

- Key Idea: Decouple "Q value" and "greedy action selection"
- Question: How to apply this to DQN?

Double DQN

Loss function of DQN:

$$F(\mathbf{w}) := \frac{1}{2} \mathbb{E}_{(s,a,r,s') \sim \rho} \left[\left(r + \gamma \max_{a' \in A} Q(s', a'; \bar{\mathbf{w}}) - Q(s, a; \mathbf{w}) \right)^2 \right]$$

$$\approx \frac{1}{2} \sum_{(s,a,r,s') \in D} \left[\left(r + \gamma \max_{a' \in A} Q(s', a'; \mathbf{w}) - Q(s, a; \mathbf{w}) \right)^2 \right]$$

Loss function of Double DQN:

$$F(\mathbf{w}) := \frac{1}{2} \mathbb{E}_{(s,a,r,s') \sim \rho} \left[\left(r + \gamma Q(s', \arg \max_{a' \in A} Q(s, a; \mathbf{w}); \bar{\mathbf{w}}) - Q(s, a; \mathbf{w}) \right)^{2} \right]$$

$$\approx \frac{1}{2} \sum_{(s,a,r,s') \sim D} \left[\left(r + \gamma Q(s', \arg \max_{a' \in A} Q(s, a; \mathbf{w}); \bar{\mathbf{w}}) - Q(s, a; \mathbf{w}) \right)^{2} \right]$$

"We therefore propose to evaluate the greedy policy according to the online network, but using the target network to estimate its value." — [van Hasselt et al., AAAI 2016]

16

Distributional Q-Learning

(Learn value distribution Z(s, a) & use E[Z(s, a)] as Q(s, a) in Q-Learning)

Why Shall We Consider "Value Distributions"?

- Risky vs safe choices
 - E.g., Same expected return but different variance
- Good empirical performance (despite that the underlying root cause is not fully known)
 - C51 [Belleware et al., ICML 2017]
 - QR-DQN [Dabney et al., AAAI 2018]
 - IQN [Dabney et al., ICML 2018]
- New approaches for exploration
 - Information-directed exploration [Nikolov et al., ICLR 2019]
 - Distributional RL for efficient exploration [Mavrin et al., ICML 2019]
- Learn better critics
 - Truncated Quantile Critics (TQC) [Kuznetsov et al., ICML 2020]

Question: How to learn the complete value distribution (instead of merely the expectation)?

Sample Action-Value $Z^{\pi}(s, a)$

• Sample action-value $Z^{\pi}(s, a)$: sample return if we start from state s and take action a, and then follow policy π

$$Q^{\pi}(s, a) = \mathbb{E}[Z^{\pi}(s, a)] = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})\right]$$

- $Z^{\pi}(s, a)$ is essentially a random variable (and hence follows some distribution)
- Example: 1-state MDP with 2 actions and $\pi(s) = a_1$

$$Q^{\pi}(s, a_1) = ? Z^{\pi}(s, a_1)?$$

$$\begin{array}{c}
a_1 & r(s, a_1) \sim \mathcal{N}(0, 1) \\
\hline
s & \text{terminal state} \\
\hline
a_2 & r(s, a_1) \sim \mathcal{N}(1, 10)
\end{array}$$

•
$$Q^{\pi}(s, a_2) = ? Z^{\pi}(s, a_2)?$$

Finding Z^{π} via Distributional Bellman Equation

- Mild assumption: $Z^{\pi}(s, a)$ has bounded moments
- Distributional Bellman equation for $Z^{\pi}(s, a)$:

$$Z^{\pi}(s, a) \stackrel{D}{=} r(s, a) + \gamma Z^{\pi}(s', a')$$

 $\stackrel{D}{(=: equal in distribution)}$

- Question: How to interpret this equation?
- Question: Are r(s, a) and $Z^{\pi}(s', a')$ independent?
- Question: Is this consistent with Bellman expectation equation?

Distributional Bellman Operator B^{π}

- $m \mathcal{Z}$: the space of all value distributions with bounded moments
- Transition operator $P^{\pi}: \mathcal{Z} \to \mathcal{Z}$

$$P^{\pi}Z(s,a) := Z(s',a')$$

$$s' \sim P(\cdot \mid s,a), \ a' \sim \pi(\cdot \mid s')$$

- Distributional Bellman operator $B^\pi: \mathcal{Z} \to \mathcal{Z}$

$$B^{\pi}Z(s,a) := r(s,a) + \gamma P^{\pi}Z(s,a)$$

An Example of Applying B^{π}

- Example: 2 states x_1, x_2 and 2 actions a_1, a_2
- $\pi(a_1 | x_2) = 0.3$, $\pi(a_2 | x_2) = 0.7$, and $\gamma = 0.9$

$$B^{\pi}Z(s,a) \stackrel{D}{:=} r(s,a) + \gamma P^{\pi}Z(s,a)$$

- Suppose $Z(x_1,a_1)=0$, $Z(x_2,a_1)=0$ with probability 1 and $Z(x_2,a_2)\sim\mathcal{N}(0,1)$
- Question: $B^{\pi}Z(x_2, a_2) = ? B^{\pi}Z(x_1, a_1) = ?$

Visualization of Distributional Bellman Operator

Distributional "Optimality" Operator

Recall— Distributional Bellman operator $B^{\pi}: \mathcal{Z} \to \mathcal{Z}$

$$B^{\pi}Z(s,a) \stackrel{D}{:=} r(s,a) + \gamma P^{\pi}Z(s,a)$$

• Distributional optimality operator B^* : The B^π resulting from a greedy policy π (what does "greedy" mean here?)

An Example of B^*

$$r = 0$$

$$r = \epsilon \pm 1 \ (\epsilon > 0)$$

$$a_1$$

$$a_2$$

$$x_2$$

$$r = 0$$

$$x_1$$

$$Q$$

Suppose we have the following:

- $\pi(a_1 | x_2) = 0.3$, $\pi(a_2 | x_2) = 0.7$, and $\gamma = 1$
- $Z(x_1, a_1) = 0, Z(x_2, a_1) = 0$ with probability 1
- $Z(x_2, a_2) \sim \mathcal{N}(0, 1)$

Question: What's the PDF of $B*Z(x_1, a_1) = ?$

$$B*Z(s,a):\stackrel{D}{=} r(s,a) + \gamma P^{\pi_{greedy}}Z(s,a)$$