RESQUAKE

Version 1.0
For Houdini Apprentice
Created by CT2

ResQuake is a Geometry Nodes setup for Houdini that creates diverse and random Philippine houses procedural earthquake damage effects.

The base version comes with 46 quality models of our 50 generated models

Documentation

Documentation	1
Getting started	2
Setup PBG 2 in a project	
Modeling tips	3
Custom setup	4
Node groups	5
Settings	6
Simulations and deforming meshes	7
Interior mapping (fake interiors)	8
Create your own style	9
Convert to mesh	
Convert to instances	12
Explanations	12
FAQ and support	12
License	13
Version log	13

Getting started

When you download this product, you get a ZIP file. This is not an addon, so it can't be installed the way an addon would be.

Here's how to set it up once you've downloaded it:

- 1. Make sure you downloaded the latest version of Houdini. There's an available free license for Houdini which is the Houdini Apprentice
- 2. Extract the zip file and place the folder somewhere convenient
- 3. Open Houdini. Go to File>Open>Downloads
- 4. Find the Resquake.hipnc file and Select it.
- 5. Done!

The download contains a .hipnc file.

Settings

Since the generators and presets are built from the same modular pieces, they share most of the settings that are accessed directly from the modifier.

Scenario Generator Controls:

Scenario Randomizer: This control will randomize the creation of the models. This can control the *Floor Number, Generations* and *Random Seed*.

Apply Post-earthquake effects checkbox: Checking this box will apply the post-earthquake damage effects on the random generated models.

Earthquake Magnitude: This controls the magnitude of earthquake.

House Parameters Controls:

Floor Number: Controls the number of Floor numbers of the desired model.

Generations: Generates the desired number of grids for the model.

Random Seed: Randomizes the growth path of the grids.

Roof Checkbox: Unchecking this will remove the *Roof* of the house model.

Door Dimensions: Controls the dimensions of the door

Windows Controller: Controls the dimensions of the window and the number of the windows to be placed in the model.

Nodes

I. FLOOR LAYOUT RANDOMIZER

1. lsystem1:

- create Isystem generated line path

a. Rules

a.a: A

a.b: A=F+A:0.5

- means turn right (+) every instance of A in the string is replaced with F+A 50%

a.c: A=F-A:0.5

- means turn left (-) every instance of A in the string is replaced with F+A 50%

b. Geometry

b.1 Generations:

- The number of path to be generated
- b.2 Random Seed:
 - Randomizer
- 2. Transform:
 - rotates the lsystem path to x-axis so that the growth is on the x-axis

- 3. Fuse: Connects the generated path
- 4. Copypoints:
 - Copies the Grid to the fused Lines which is the Polyframe
 - 4.1 Grid
 - 4.2 Polyframe
 - calculates the coordinated frames
- 5. Fuse:
 - Connects the generated grids

II. Walls

1. Polyextrude:

- 1.1 Extrusion Mode: Primitive
 - Mode to primitive so it selects the edges
- 1.2 Distance:
 - This is the Floor Level

- 1.3 OutputFront:
 - Top Grid (Roof)
 - Names the Roof to extrudeFront
- 1.4 OutputSide:

- Side
- 2. Split:
 - to only be left with the walls and roof

III. LOOP THROUGH WALLS

1. Foreach loop:

- Iteration by Piece or points
- And the piece elements is primitives so it will get the walls

- 2. Normal
 - Computes points and primitives
- 3. Fuse

_

IV. Walls, Door, and Windows

- 1. Walls
 - 1.1 Wall subnetwork:
 - A subnet that holds the Wall object
 - 1.2 Copy to points:
 - places the walls according to the given points
- 2. Door
 - 2.1 Door subnetwork:
 - A subnet that holds the *Door* object
 - 2.2 Copy to points:
 - places the walls according to the given points
- 3. Window
 - 2.1 Window subnetwork:

- A subnet that holds the Window object
- 2.2 Copy to points:
 - places the walls according to the given points
- 4. Split
 - Segregates the walls
- 5. Sort

- Randomize selected points
- 6. Grouprange

- 6.1 Select
 - number *points*
- 6.2 Offset
 - Offset of the points

V. ROOF

- 1. Dissolve_flat_edges
 - Removes edges below certain number creating smooth surface
- 2. Polyextrude

- Yung ilalagpas nung roof kaya negative
- This nodes can control the thicknesss but we wont do it in this node yet
- 3. Polyexpand
 - Expand to increase the size
- 4. Attribpromote

- Promotes points or primitive to polygon
- 5. Attribwrangle

- 6. Fuse
 - Merge points
- 7. Polyfill

- Fills holes in mesh to create new polygon
- 8. Color

VI. BEAMS

- 1. Dissolve_flat_edges
 - Removes edges below certain number creating smooth surface
- 2. Copytopoint

2.1 box

2.2 polyframe

- Connected lines
- 3. Сору

VII. FLOORS

- 1. Connectivity
 - Analyze connections points or faces
- 2. Attributepromote
 - Promotes points to primitive or polygon
- 3. Get_grid_area

4. Polyextrude

```
Distance 0.05
```

- Thickness of the Floor
- 5. copytopoints
 - 4.1 line

```
Length ch("../polyextrude1/dist")-1
Points ch("../polyextrude1/dist")
```

VIII. SEGREGATE ROOMS

Foereach
 1.1 find_door_grid

```
😂 Attribute Wrangle FIND_DOOR_GRID
Code Bindings
     1 // Get the center of the bounding box for the geometry piece
2 vector bbox_center = getbbox_center(θ);
     4 // Fetch the door's position. Assuming it's passed correctly into the wrangle 5 vector doorPos = detail(θ, "doorPos", θ); // Make sure this attribute is accessible
     7 // Access the stored area attribute
8 float storedArea = @area;
    10 // Define your distance threshold
    11 float threshold = (storedArea/2); // Adjust this based on your scene's scale and requirements
    12
13 // Fetch the floor level from the parameter. Adjust the path as necessary.
14 int floorLevel = chi("../dist");
    17 // Calculate the distance between the bbox center and the door's position
18 float dist = distance(bbox_center, doorPos);
    19
    20 // Initialize group flags
    21 @group_public_space = 0;
22 @group_private_space = 0;
    24 // Initialize color attributes for public and private spaces
25 vector yellow = {1, 1, 0};
26 vector violet = {1, 0, 1};
27 vector red = {1, 0, 0};
    31 if (dist < threshold) {
                       @group_public_space = 1;
                       @Cd = yellow;
                } else {
    34
                      @group_private_space = 1;
@Cd = violet;
```

1.2 room_assigment

}

36

```
Code Bindings
               Group Type
                                 Points
                 Run Over
 VEXpression
     f 1 // Assuming <code>@P.x</code> is the position in X, and we're using it to differentiate spaces
     2 int divisionX = 1; // Example division line; adjust based on your scene
     4 // Initialize color attributes for living room and kitchen
   4 // Initialize color attributes of 5 vector red = {1, 0, 0};
6 vector orange = {1, 0.5, 0};
7 vector yellow = {1, 1, 0};
8 vector green = {0, 1, 0};
9 vector blue = {0, 0, 1};
10 vector violet = {0.5, 0, 0.5};
11 vector black = {0, 0, 0};
12 vector brown = {0.6, 0.3, 0.1};
   15 int temp = floor(@P.x);
   17 // Check if the point is in the public space group
        if (@group_public_space) {
    // Now divide the public space based on some condition, here using @P.x
              if (temp < divisionX) {</pre>
                    @Cd = red;
                    @group_living_room = 1;
              } else {
                    @Cd = orange;
                    @group_kitchen = 1;
   27 } else {
```

IX. MERGE ALL

- 1. Scenario Randomizer
 - 1.1 Scenario Randomizer
 - Randomizes Floor Number, Generations, and Random Seed
 - 1.2 Earthquake Magnitude
- 2. House Parameters

- 2.1 Floor number
- 2.2 Generations
- 2.3 Random seed
- 3. Door dimensions
- 4. Windows