The Constructive Model of Univalence in Cubical Sets

Literature review

W. Vanhulle¹ A. Nuyts² D. Devriese³

¹Student

²Supervisor

³Promoter

45 min. public seminar

Outline

Introduction

Cubical model

Applications

A mathematician is asked by a friend who is a devout Christian:
"Do you believe in one God?"

What does he reply?

A mathematician is asked by a friend who is a devout Christian: "Do you believe in one God ?"

What does he reply?

He answers: "Yes – up to isomorphism." (\bigcirc Michael Benjamin Stepp)

figures/isomorphism.jpg

Figure: Monkeys looking at isomorphic monkeys.

Algebraic Topology

Isomorphism in algebraic topology is "homotopy equivalence"

figures/mug.jpg

figures/donut.jpg

Figure: A mug

Figure: A donut

homotopy equivalent spaces have the same "number of *n*-dimensional holes"

Holes are homotopy groups

computed by looking at homotopy classes of continous embeddings

$$S^n \to X$$
, or $[0,1]^n \to X$

figures/loops.png

Figure: A donut has two 1-dimensional homotopy classes.

Figure: A ball without center has two 2-dimensional homotopy classes.

Type theory's origin

Russel, 1907

Invented to prevent paradox:

$$R = \{x \mid x \notin x\}, R \in R \Leftrightarrow \notin R$$

Solution was:

replace sets (and propositions) by types and elements by terms,

$$x \in R \Rightarrow x : R$$

types belong to universe hierarchy

$$\exists i, R : \mathcal{U}_i, \quad \mathcal{U}_0 : \mathcal{U}_1 : \dots$$

constructive logic and formation rules

 $x \notin x$ is not a valid proposition anymore

Type theory

Two meanings/subfields:

verifying computation in programming languages

Figure: A typed recursive function in Haskell

▶ alternative constructive foundation of mathematics

```
\_\circ\_: (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) - ((x : A) → C (g x))
f ∘ g = \lambda x → f (g x)
```

Figure: Definition of the topological space S^{1} in Agda

Type theory

Two meanings/subfields:

verifying computation in programming languages

Figure: A typed recursive function in Haskell

alternative constructive foundation of mathematics

```
\_\circ\_: (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = \lambda x → f (g x)
```

Figure: Definition of the topological space S^1 in Agda

Type theory as foundation for mathematics

Deductive system of judgements with typing rules:

$$\frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash a : A}{\Gamma \vdash b : B}$$

- judgments express wether a type is inhabited
- all judgements have contexts
- typing rules tell how to form and combine types and terms

Equality in type theory

Martin-Löf, 1984

Definitional equality in type theory is for type checking, "denoted =" in code:

```
data Nat : Set where
  zero : Nat
  suc : (n : Nat) → Nat

_+_ : Nat → Nat → Nat
  zero + m = m
suc n + m = suc (n + m)
```

Figure: An example of definitional equality.

Mathematics needs a "softer" equality as in:

Example (Leibniz's extensionality principle)

$$f = g \Leftrightarrow f(x) = g(x), \forall x$$

Identity eliminator

Martin-Löf, 1984

Definition (Introduction rule)

Given a a: X, refl(a): a = a.

Elimination rule of equality type:

Definition (path induction)

Given the following terms:

- ▶ a predicate $C: \prod_{x,y,A} (x =_A y) \to \mathcal{U}$
- ▶ the base step $c: \prod_{x:A} C(x, x, refl_x)$

there is a function $f: \prod_{x,y:A} \prod_{p:x=_{A}y} C(x,y,p)$ such that $f(x,x,\text{refl}_x) \equiv c(x)$.

- weaker than equality "by definition".
- stronger than equivalence.

Intuition identity eliminator

Role of eliminator:

To prove a property C that depends on terms x, y and equalities p: x = y it suffices to consider all the cases where

- x is definitionally equal to y
- ▶ the term of the intensional equality type under consideration is $refl_X$: x = x.

Implications:

- proves transitivity, symmetry
- equality type can have multiple terms

Homotopy type theory (HoTT)

Awodey, 2006

Gives homotopy interpretation to equality type:

$$p,q: a =_X b$$
 $r,s: p =_{\text{Id}_X(a,b)} q$

 \Rightarrow alternative foundations for mathematics based on type theory and topology

Role of univalence

Voevodsky, 2009

Axiom (Univalence axiom)

Given types $X, Y : \mathcal{U}$ for some universe \mathcal{U} , the map $\Phi_{X,Y} : (X = Y) \to (X \simeq Y)$ is an equivalence of types.

equivalence of types is a bijection for set-like types

$$\mathbb{N}\simeq\mathbb{N}_0$$

univalence implies

$$\mathbb{N}\simeq\mathbb{N}_0\Rightarrow\mathbb{N}=\mathbb{N}$$

forces multiple terms of equality

⇒ terms of equality are like paths

Role of univalence

Voevodsky, 2009

Axiom (Univalence axiom)

Given types $X,Y: \mathscr{U}$ for some universe \mathscr{U} , the map $\Phi_{X,Y}: (X=Y) \to (X \simeq Y)$ is an equivalence of types.

equivalence of types is a bijection for set-like types

$$\mathbb{N}\simeq\mathbb{N}_0$$

univalence implies

$$\mathbb{N}\simeq\mathbb{N}_0\Rightarrow\mathbb{N}=\mathbb{N}$$

- forces multiple terms of equality
 - ⇒ terms of equality are like paths

Consequences of path interpretation

in general:

- equivalence behaves like homotopy equivalence
- mathematics "up to homotopy"
- lifting of path p as in algebraic topology: transport gives the other ending point of p*

figures/cover.png

Figure: Jeff Erickson, 2009

Origin univalence

Grayson, 2018

figures/voevodsky.jpg

Why is it called "univalent"?

... these foundations seem to be faithful to the way in which I think about mathematical objects in my head ...

faithful = univalent in a Russion translation of Boardman (2006)

Figure: Vladimir Voevodsky (1966 - 2017)

Origin univalence

Grayson, 2018

figures/voevodsky.jpg

Why is it called "univalent"?

... these foundations
seem to be faithful to
the way in which I think
about mathematical objects in my head ...

faithful = univalent in a Russion translation of Boardman (2006)

Figure: Vladimir Voevodsky (1966 - 2017)

Personal remark

The univalence axiom adds:

- intuitive explanation of equaity
- alternative foundations with types
- ▶ field of mathematics: HoTT

But does not:

- make all proofs easier or shorter
- eliminate proofs of equivalence

Computing with univalence Huber, 2015

What about:

- ▶ implementing HoTT?
- ▶ calculations with very simple types as N?

Can we, given a term $t: \mathbb{N}$ constructed using the univalence axiom, construct two terms $u: \mathbb{N}$ and $p: t =_{\mathbb{N}} u$ such that u does not involve the univalence axiom?

 \Rightarrow canonicity of $\mathbb N$ in cubical type theory (CTT)

$$t \equiv ua(...) \rightsquigarrow u \equiv S(...(0)...) : \mathbb{N}$$

What about:

- ▶ implementing HoTT?
- ▶ calculations with very simple types as N?

Can we, given a term $t:\mathbb{N}$ constructed using the univalence axiom, construct two terms $u:\mathbb{N}$ and $p:t=_{\mathbb{N}}u$ such that u does not involve the univalence axiom?

 \Rightarrow canonicity of $\mathbb N$ in cubical type theory (CTT)

$$t \equiv ua(...) \rightsquigarrow u \equiv S(...(0)...) : \mathbb{N}$$

Cubical type theory

Cohen et al., 2015

A constructive extension of HoTT with dimension variables $i, j, k : \mathbb{I}$ (cubes) as primitives:

```
figures/cubes.png
```

Figure: Discrete "n-cubes". Huber (2016)

- univalence becomes constructable
- computational interpretation for univalence

Are cubes a good idea?

EnigmaChord, 2016

figures/cube-joke.jpg

Figure:

(yes, they model n-dimensional homotopies

Are cubes a good idea?

EnigmaChord, 2016

figures/cube-joke.jpg

Figure:

(yes, they model n-dimensional homotopies)

Cubes model homotopy

Altenkirch, Brunerie, Licata, et. al 2013

Homotopy groups are defined as equivalence classes of *continous* embeddings:

$$[0,1]^n \rightarrow X$$

In HoTT, higher-dimensional eqalities behave like these embeddings

Level	Types	Cubes	Topology
1	p, q : (a = b)	edge	line
2	r,s:(p=q)	face	path homotopy
			\dots
n		n-hypercube	n-dimensional homotopy

Cubes model homotopy

Altenkirch, Brunerie, Licata, et. al 2013

Homotopy groups are defined as equivalence classes of *continous* embeddings:

$$[0,1]^n \rightarrow X$$

In HoTT, higher-dimensional eqalities behave like these embeddings

Level	Types	Cubes	Topology
1	p,q:(a=b)	edge	line
2	r,s:(p=q)	face	path homotopy
			\dots
n	•••	n-hypercube	n-dimensional homotopy

Operations on cubes

Bezem, Coquand, Huber et al., 2013

figures/kan.jpg

Figure: Daniel Kan (1927 — 2013)

Necessary for modelling HoTT:

- ▶ composition ⇒ equality type
- ▶ glueing ⇒ univalence

figures/extension.png

Presheaf model on \mathscr{C} Dybjer, 1994

Give interpretation for stuff in type theory by modelling every context Γ as as presheaf.

- verify consistency of type theory in sets
- justify primitives for implementations

Presheaves on $\mathscr C$

Hofstra, 2014

Maps (contravariant functors) $\mathscr{C} \to \mathbf{Set}$ denoted by $\hat{\mathscr{C}}$

- generalize sheaves (see sheafication)
- ▶ model type theories, Dybjer (1994)

Example (Reflexive directed graph)

Take $\mathscr{C} = \{0,1\}$ and $\mathsf{Hom}_\mathscr{C} = \{B,E,R\}$

Types in presheaves

Lemma (Types in a presheaf model)

If $\Gamma \in \widehat{\mathscr{C}}$ a context, then the types are

$$\Big\{(\Delta,\sigma) \mid \Delta \in \widehat{\mathscr{C}}, \sigma \in \mathit{Hom}_{\mathit{Ctx}}(\Delta,\Gamma)\Big\}.$$

Helps to characterize types without using presheaves explicitly.

Types in a simple presheaf model

Example (Dependent directed reflexive graph) A type A in $\widehat{\{0,1\}}$:

CTT as presheaf model

dimension variables and cubes can also be modelled with a presheaf model:

- proves consistency of CTT and HoTT
- justifies primitives used in implementations

Distributive lattice

 \mathbb{A} : countable set of "dimension variables"

CTT built with presheaves on "cube" category \square :

- ▶ objects: $\{I \mid |I| < \infty, I \subset \mathbb{A}\}$
- ► morphisms $J \rightarrow I$: maps $I \mapsto dM(J)$
 - distributive lattice
 - $x \land 0 = 0, x \lor 1 = 1$
 - ightharpoonup
 abla 0 = 1 and
 abla 1 = 0

figures/lattice.png

Figure: A simple lattice

Cubical contexts

Example (presheaf model on \square)

A presheaf $\Gamma \in \widehat{\square}$ is a functor $\square \to \mathbf{Set}$

- ▶ $u \in \Gamma(i,j)$ is a square
- ightharpoonup morphisms in lattice dM(i,j) give corners of a square

Figure: a context $\Gamma \in \widehat{\square}$ applied to $\{i, j\}$

Types in $\widehat{\Box}$

Type A is presheaf $\widehat{\int_{\mathscr{C}}}\Gamma$, a functor $\int_{\mathscr{C}}\Gamma \to \mathbf{Set}$:

- $ho \in \Gamma(i)$ is a line
- endpoints $\rho(0), \rho(1)$ lifted to $u(0), u(1) \in A(i, \rho)$

```
figures/types.png
```

Figure: A type A within context Γ . Huber (2016)

Types in presheaf models

In the presheaf model on \square :

- types more complicated
- types no longer simply nested graphs

Interpreting types in presheaf model \square hard but possible!

Path type

Bezem, Coquand, 2013

Syntactical definition of Path type with typing rules:

$$i: \mathbb{I} \vdash t: A \qquad i: \mathbb{I} \vdash t(i/0) = a: A \qquad i: \mathbb{I} \vdash t(i/1) = b: A$$

$$() \vdash \langle i \rangle t: \mathtt{Path} \ a \ b$$

- almost models equality type
- ▶ not necessarily transitive ⇒ composition operation

$$\begin{array}{ccc}
 a & ---- & c \\
 refl & q & j \\
 a & \xrightarrow{p i} & b
\end{array}$$

Figure: Transitivity can be proven with composition operation.

Constructive model of type theory

Other types can be interpreted in the presheaf model $\widehat{\Box}$ for constructive model for type theory:

- product, sum types
- natural numbers

Univalence proven with:

- concepts from simplicial set model (Streicher, Voevodsky, Kapulkin et al. 2006 – 2012)
- partial types and glueing construction

figures/simplex.png

Figure: Related concept of a simplicial complex

Partial types

Bezem, Coquand, Huber 2013

Partial types only defined on subpolyhedra of cubes.

- ▶ u 1-dimensional cube, line and type A:
- **Partial type** A(i/0) in type A:

```
figures/types_side.png
```

Figure: Huber, 2015

red = $A[(i=0) \mapsto A(i/0)]$ (syntax)

Glueing equivalences

Kapulkin, 2012

Equivalences $f: T \rightarrow A$ are crucial ingredient for the univalence axiom:

- correspond to homotopy equivalences
- have inverse up-to some paths

Glue type was introduced to prove univalence:

- ▶ let T be a partial type, defined on $i \in \{0,1\}$
- glues partial equivalence f and partial type T together:

figures/glue.png

Proving univalence

Cohen, Coquand, Huber, Moertberg (2015)

Axiom (Univalence axiom)

Given types $X,Y: \mathscr{U}$ for some universe \mathscr{U} , the map $\Phi_{X,Y}: (X=Y) \to (X \simeq Y)$ is an equivalence of types.

Proof.

► The existence of a map $ua:(X \simeq Y) \to (X = Y)$ proven with Glue construction:

$$i: \mathbb{I} \vdash E = \text{Glue}\left[(i=0) \mapsto (X, f), (i=1) \mapsto (Y, \text{id}_Y)\right] Y$$

E is a path (equality) from X to Y.

Remainder proven with "contractibility of singletons".

Applying ua from univalence

Example (Monoids)

$$M_1 \equiv (\mathbb{N}, (m, n) \mapsto m + n, 0)$$

and

$$M_2 \equiv (\mathbb{N}_0, (m,n) \mapsto m+n-1,1)$$

▶ are isomorphic by

$$\lambda n \rightarrow n+1$$

▶ (path-) equal in CTT

Definition of a monoid magma

setoid encoding uses operator "." and equivalence ".":

```
notZero n = \Sigma N (\lambda m \rightarrow (n \equiv (suc m)))
\mathbb{N}_0 = \Sigma \mathbb{N} \ (\lambda \ n \rightarrow \text{notZero } n)
op_2 : Op_2 \mathbb{N}_0
op_2(x, p)(y, q) =
      (predN (x + y) , (predN (predN (x + y)) , sumLem x y p q))
M2 : Algebra.Magma _ _
M_2 = record {
  Carrier = \mathbb{N}_0;
  _≈_ = (_≡_) ;
  _{-} \cdot _{-} = op_{2};
  isMagma = ...,
```

Equality of carrier sets

 $\mathbb{N} \to \mathbb{N}_0 : n \mapsto n+1$ is bijection

- is equivalence of (set-like) types
- univalence/ua returns equality N ≡ N₀

```
\begin{array}{l} f: \ N \to \mathbb{N}_0 \\ \\ f \ n = (suc \ n \ , \ ( \ n \ , \ refl \ ) \end{array} ) \\ \\ \dots \\ f Equiv : \ N \simeq \mathbb{N}_0 \\ \\ f Equiv = (f \ , \ isoToIsEquiv \ (iso \ f \ g \ l' \ r')) \\ \\ f Eq : \ N \equiv \mathbb{N}_0 \\ \\ f Eq \ i = ua \ f Equiv \ i \end{array}
```

Equality of monoids magmas

Defined for every component of record type:

transop' defined by transporting along $\mathbb{N} \equiv \mathbb{N}_0$, proofs can be transported over $s_1 \equiv s_2$.

Higher homotopies of spheres

Types in HoTT and CTT are topological spaces. Higher homotopy groups compute number of higher-dimensional holes in S^n :

```
figures/groups.png
```

Figure: HoTT Book, 2013

Homotopy groups can be defined in CTT as datatypes

Implementation in CTT

Brunerie, 2016

Theorem

$$\pi_4(S^3) \cong \mathbb{Z}_n$$
 for $n=2$

- proven in HoTT with univalence
- n implemented in CTT as a function
- canonicity predicts termination

(bug in Agda or CTT prevents evaluation)

figures/loops.png

Figure: The case S^1 is simply \mathbb{Z} (drawing from science4all)

Other research

Licata, Harper, Cavallo, Orton et al., 2018

- computational type theory is an alternative implementation
- composition operation may not be necessary
- alternatives to complicated glue types: fundamental axioms and language of topoi

Summary

- ► HoTT redefines equality
- ► CTT implements HoTT
- ► HoTT can be verified in computers

Thanks for watching!

For Further Reading I