• A. Grammar

1.		_ system shared by a group of people to
	express thoughts.	
•	A. Computational	
•	B. Rule-governed	
•	C. Semantic	
•	D. Arbitrary	
•	Answer: B	
2.	Lexical ambiguity arises when:	
•	A. Sentence structure is unclear	
•	B. The same word has multiple mean	ings
•	C. Multiple clauses confuse meaning	
•	D. Emotions affect sentence delivery	
•	Answer: B	
3.	In the sentence "I saw the boy with th	ne telescope", ambiguity is:
•	A. Lexical	
•	B. Structural	
•	C. Morphological	
•	D. Phonological	
Þ	Answer: B	
4.	Pragmatic ambiguity depends on:	

B. Syntax
C. Context and speaker intention
D. Word length
Answer: C
5. Which type of relationship involves substitution of words in the same category?
A. Syntagmatic
B. Semantic
C. Paradigmatic
D. Schematic
Answer: C
6. Which branch of linguistics studies sentence structure?
A. Morphology
B. Syntax
C. Semantics
D. Phonetics
Answer: B
7. Structural ambiguity arises due to:
A. Cultural references
B. Multiple possible sentence parses
C. Misspelled words
D. Accent variations
Answer: B
8. What does the term 'natural language' refer to?

C. Human languages used for communication
D. Translated languages
Answer: C
9. The form-function-meaning framework includes:
A. Syntax, morphology, semantics
B. Physical, emotional, social levels
C. Structure, purpose, conveyed content
D. Sound, script, content
Answer: C
10. 'Wanted' in the sentence "Outlaws are wanted" demonstrates:
A. Structural ambiguity
B. Semantic neutrality
C. Lexical ambiguity
D. Morphological analysis
Answer: C
11. Which is not a type of ambiguity?
A. Lexical
B. Structural
C. Morphological
D. Predictive
Answer: D
12. "Break a leg!" is an example of:

• A. Computer programming languages

• B. Formally structured codes

A. Idiomatic ambiguity
B. Pragmatic meaning
C. Morphology
D. Direct speech
Answer: B
13. Morphological ambiguity involves:
A. Unclear word order
B. Multiple meanings for a word root
C. Phoneme misinterpretation
D. Accent shift
Answer: B
14. The word 'run' in 'She will run a campaign' vs 'She runs fast' shows:
A. Structural ambiguity
B. Lexical ambiguity
C. POS ambiguity
D. Context-free parsing
Answer: B
15. Which field is focused on speech sounds?
A. Semantics
B. Pragmatics
C. Phonetics
D. Morphology
Answer: C
16. The syntagmatic relationship involves:

C. Co-occurrence of words
D. Root analysis
Answer: C
17. Lexicology studies:
A. Sentence structures
B. Sound patterns
C. Word meanings and relations
D. Sentence chunking
Answer: C
18. 'Unbelievable' consists of how many morphemes?
• A. 1
• B. 2
• C. 3
• D. 4
Answer: C
19. 'Teacher' in "She is a teacher" has:
A. Implied meaning
B. Cultural meaning
C. Literal meaning
D. Context-dependent
Answer: C
20. 'Wow, you are early!" — implied meaning is an example of:

• A. Substitution

B. Context-independent meaning

A. Sarcasm
B. Phonology
C. Pragmatics
• D. Idioms
Answer: A
21. Which level of analysis focuses on the meaning in larger discourse?
A. Morphology
B. Syntax
• C. Discourse
D. Semantics
Answer: C
22. A morpheme is:
A. A sentence chunk
B. Smallest unit of syntax
C. Smallest unit of meaning
D. A sound segment
Answer: C
23. Prefix 'un-' in 'unhappy' is a:
A. Free morpheme
B. Bound morpheme
• C. Root
D. Suffix
Answer: B
24. Free morphemes can:

- A. Only exist in compounds
- B. Not form complete words
- C. Stand alone as words
- D. Be used as suffixes
- Answer: C
- 25. Linguistic nativism refers to:
- A. Learning language only via school
- B. Language being innate to humans
- C. Artificial language evolution
- D. Morphological decoding
- Answer: B

🗱 Section 2: NLP Pipeline and Preprocessing

- 1. What is the first step in an NLP pipeline?
- A. POS tagging
- B. Parsing
- C. Tokenization
- D. Lemmatization
- Answer: C
- 2. Which technique converts text to lowercase and removes punctuation?
- A. Vectorization
- B. Stemming
- C. Normalization

D. Parsing
Answer: C
3. Which of the following is a stop word?
A. Python
B. Apple
• C. The
• D. Run
Answer: C
4. Lemmatization returns:
A. Shortened stems
B. N-grams
C. Root dictionary word
D. Tokens
Answer: C
E What is the key difference between stamming and lammetization?
5. What is the key difference between stemming and lemmatization?
A. Lemmatization is faster
A. Lemmatization is faster
 A. Lemmatization is faster B. Lemmatization gives valid words
 A. Lemmatization is faster B. Lemmatization gives valid words C. Stemming is more accurate
 A. Lemmatization is faster B. Lemmatization gives valid words C. Stemming is more accurate D. Stemming requires context
 A. Lemmatization is faster B. Lemmatization gives valid words C. Stemming is more accurate D. Stemming requires context Answer: B
 A. Lemmatization is faster B. Lemmatization gives valid words C. Stemming is more accurate D. Stemming requires context Answer: B Which NLP library is rule-based?

D. Keras
Answer: C
7. The output of tokenization is:
A. Sentence vectors
B. POS tags
C. Tokens
D. Named entities
Answer: C
8. Which of the following is not a token?
A. 'apple'
• B. '?'
• C. 'run'
• D. 'noun'
Answer: D
9. Which component removes commonly used but insignificant words?
A. Lemmatizer
B. POS tagger
C. Stop word filter
D. Chunker
Answer: C
Answer: C 10. What is the output of chunking?
10. What is the output of chunking?

•	Answer: D
11.	POS tagging assigns:
•	A. Lemmas
•	B. Sentence chunks
•	C. Grammatical category
•	D. Embeddings
•	Answer: C
12.	Which method uses regex to identify patterns in text?
•	A. Stemming
•	B. Chunking
•	C. Parsing
•	D. NER
•	Answer: B
13.	Shallow parsing is also called:
•	A. Dependency parsing
•	B. Light parsing
•	C. POS tagging
•	D. Word segmentation
•	Answer: B
14.	The process of converting words to numbers is called:
•	A. Lemmatization
•	B. Text vectorization
•	C. Disambiguation

• D. Phrase-level units

D. Parsing
Answer: B
15. Bag-of-Words model ignores:
A. Word counts
B. Document size
C. Word order
D. Term uniqueness
Answer: C
16. What is a document-term matrix?
A. Tree of phrases
B. Summary of entities
C. Table of word frequencies per document
D. Table of sentence structures
Answer: C
17. Which model gives weightage to rare but important words?
• A. BoW
B. Word2Vec
• C. TF-IDF
• D. CNN
Answer: C
18. A unigram model considers:
A. One word at a time
B. Two words
C. Trigrams

19. The term 'normalization' in NLP refers to:
A. Setting word frequency to 1
B. Equalizing sentence length
C. Standardizing text format
D. Removing nouns
Answer: C
20. Which technique is more accurate but slower?
A. Lemmatization
B. Stemming
C. Tokenization
D. Chunking
Answer: A
21. Which part of a word does stemming retain?
A. Prefix
B. Suffix
C. Stem/root
D. Lemma
Answer: C
22. In NLP, 'chunking' groups words into:
A. Syntax trees
B. Noun/verb phrases
C. Random clusters

• D. Characters

• Answer: A

D. Characters
Answer: B
23. POS tagging is usually applied after:
A. Parsing
B. Chunking
C. Tokenization
D. Entity linking
Answer: C
24. What is a limitation of rule-based NLP?
A. Overfitting
B. Poor performance on known data
C. Inflexibility and poor generalization
D. High memory usage
Answer: C
25. TF in TF-IDF represents:
A. Total frequency
B. Term formula
C. Term frequency
D. Text feature
Answer: C
Continue 2: Compton Density of Comptons
Section 3: Syntax, Parsing, and Structure
1. Which component determines grammatical structure?

• D. Stop word remover Answer: B 2. Shallow parsing results in: • A. Named entity extraction • B. Phrase chunks • C. Syntax trees • D. Token segmentation Answer: B 3. Deep parsing builds: • A. Word clouds • B. Dependency or constituency trees • C. Document embeddings • D. Grammar rules Answer: B 4. Which parser type uses probabilities? • A. Chart parser • B. Recursive descent parser • C. CFG parser • D. Probabilistic context-free grammar parser Answer: D 5. POS tagging uses which kind of model?

• A. Lemmatizer

• C. NER

• B. Syntax parser

6. The tag 'VBZ' in POS tagging stands for:
A. Verb in base form
B. Verb, third-person singular present
C. Verb, past tense
D. Verb phrase
Answer: B
7. Which of the following identifies phrase relationships?
A. Lemmatizer
B. Named Entity Recognizer
C. Constituency parser
D. Tokenizer
Answer: C
8. Dependency parsing focuses on:
A. Chunking
B. Semantic matching
C. Word-to-word relations
D. Embeddings
Answer: C
9. The root of a dependency tree is usually:

• A. Supervised learning

• B. Unsupervised learning

• C. Reinforcement learning

• D. Rule-based only

• Answer: A

10. Shift-reduce parsing is used in:
• A. NER
B. spaCy
C. Keras
• D. TF-IDF
Answer: B
11. Which method produces a parse tree from rules?
A. Chart parser
B. Neural net parser
C. Word2Vec
D. N-gram model
Answer: A
12. What is ambiguity in parsing?
A. When tokenization fails
B. When multiple parse trees are possible
C. When chunking fails
D. When vectors overlap
Answer: B
13. Top-down parsers work by:

• A. An adjective

B. A determiner

• C. The main verb

• D. A noun phrase

• Answer: C

Answer: B
14. Which of these can handle ambiguity with backtracking?
A. Recursive descent parser
B. TF-IDF model
C. Unigram tagger
D. Stemming
Answer: A
15. Which is not a syntactic category?
• A. NP
• B. VP
• C. DET
• D. TF
Answer: D
16. A constituent is:
A. A token
B. A valid phrase in a parse tree
C. A synonym group
D. A vectorized word
Answer: B
17. Sentence segmentation is part of:

• A. Reading tokens line by line

• C. Evaluating word frequency

• D. Compressing phrases

B. Predicting rules from root to leaf

18. The output of a constituency parser is:
A. Tokens
B. Parse tree with nested phrases
C. Word embeddings
D. Root verbs
Answer: B
19. Bracketing notation represents:
A. Word vectors
B. Syntax trees
C. Parsing failures
D. NER confidence
Answer: B
20. POS tags are critical for:
A. Syntax parsing
B. Tokenization
C. Sentence generation
• D. TF-IDF
Answer: A
21. Parsing helps in:

• A. Syntax

• B. Morphology

• C. POS tagging

• D. Parsing

• Answer: D

22. Recursive structure in parsing means:
A. Every sentence has the same pattern
B. Sentences include repeated elements or embedded clauses
C. Words are duplicated
D. Word order is fixed
Answer: B
23. A sentence with more than one parse tree is:
A. Morphologically ambiguous
B. Structurally ambiguous
C. Semantically irrelevant
D. Lexically invalid
Answer: B
24. The output of POS tagger 'DT NN VBZ' is:
A. Verb phrase
B. Prepositional clause
C. Noun phrase
D. Determiner, noun, verb
Answer: D
25. In NLP, parsing is essential for:

• A. Calculating vector distances

• D. Predicting document labels

• C. Lemmatizing words

• Answer: B

• B. Structuring grammatical relationships

- A. Finding word vectors
- B. Understanding syntactic structure
- C. Topic modeling
- D. TF-IDF indexing
- Answer: B

Section 4: Vectorization and Feature Extraction

- 1. Which model represents text as a vector of word counts?
- A. Word2Vec
- B. TF-IDF
- C. Bag-of-Words
- D. GloVe
- Answer: C
- 2. TF in TF-IDF stands for:
- A. Term frequency
- B. Token factor
- C. Text frequency
- D. Term formula
- Answer: A
- 3. Which model considers the rarity of terms across documents?
- A. Word2Vec
- B. CountVectorizer
- C. TF-IDF

Answer: C
4. Which is a disadvantage of the Bag-of-Words model?
A. Simple computation
B. Preserves context
C. Ignores word order
D. Requires parsing
Answer: C
5. High TF-IDF score indicates:
A. Very common word
B. Rare and informative word
C. Stop word
D. Word from title
Answer: B
6. Which vectorization method produces sparse matrices?
• A. TF-IDF
B. Word2Vec
• C. GloVe
• D. Doc2Vec
Answer: A
7. What is the size of the BoW feature vector determined by?
A. Number of sentences
B. Number of unique characters
C. Vocabulary size

• D. CBOW

•	D. Corpus length
•	Answer: C
8.	Which of the following handles semantics best?
•	A. BoW
•	B. TF-IDF
•	C. Word2Vec
•	D. N-grams
•	Answer: C
9.	CBOW in Word2Vec predicts:
•	A. Context words
•	B. Target word
•	C. Sentence
•	D. Phrase chunk
•	Answer: B
10	. Which embedding uses matrix factorization techniques?
•	A. GloVe
•	B. CBOW
•	C. Skip-gram
•	D. TF-IDF
•	Answer: A
11.	. What kind of vector does Word2Vec produce?
•	A. Binary
•	B. One-hot

• C. Dense

C. Semantic relations
D. POS tagging
Answer: B
13. Which vector representation preserves context?
A. One-hot
B. TF-IDF
C. BERT embeddings
D. Bag-of-Words
Answer: C
14. The dimensionality of one-hot encoding is:
• A. Fixed to 100
B. Equal to corpus length
C. Equal to vocabulary size
D. Variable by word count
Answer: C
15. What does 'inverse' in IDF penalize?
A. Rare words
B. Unique tokens
C. Common words

• D. Sparse

• Answer: C

12. N-grams model helps capture:

• A. Word frequency only

B. Word co-occurrence

C. Representing full sentence meaning
D. Using fewer tokens
Answer: C
17. Doc2Vec is useful for:
A. Named Entity Recognition
B. Document similarity
C. Syntax parsing
D. Entity linking
Answer: B
18. The output of TF-IDF vectorizer is usually:
A. A list
B. Dense matrix
C. Sparse matrix
D. Tensor
Answer: C
19. Contextual embeddings change:
A. With document length
B. For each token instance
C. Based on corpus size

• D. Verb phrases

• A. Encoding only nouns

• B. Context-free structure

16. Sentence embedding differs from word embedding in:

• Answer: C

20. Cosine similarity is often used to:
A. Find entity types
B. Compare syntactic rules
C. Measure vector similarity
D. Normalize documents
Answer: C
21. What is the problem with high-dimensional sparse vectors?
A. Slower search
B. Overfitting
C. Dimensionality curse
D. All of the above
Answer: D
22. Which technique reduces vector dimensionality?
A. Tokenization
B. TF-IDF
• C. PCA
D. POS tagging
Answer: C
23. Word2Vec embeddings are trained using:
• A. LSTMs
B. CNNs

• D. With vocabulary

• Answer: B

•	Answer: C
24	. Which is better for large corpora and capturing analogies?
•	A. Word2Vec
•	B. TF-IDF
•	C. BoW
•	D. POS tags
•	Answer: A
25	. BERT embeddings are:
•	A. Static
•	B. Rule-based
•	C. Contextual and dynamic
•	D. One-hot encoded
•	Answer: C
⊗ S	ection 5: NLU, NLG, and NLI
1.	NLU focuses on:
•	A. Parsing
•	B. Understanding meaning and intent
•	C. Sentence generation
•	D. Tokenization
•	Answer: B
2.	NLG is used to:

• D. Rule-based models

3. The task of inferring logical conclusions is part of:
• A. NLG
B. NLI
C. POS tagging
• D. NER
Answer: B
4. Intent detection is crucial for:
A. Entity recognition
B. Summarization
C. Dialogue systems
D. Machine translation
Answer: C
5. Which is a common NLU application?
A. Data visualization
B. Sentiment analysis
C. Image processing
D. Data scraping
Answer: B
6. In the sentence "Book me a flight," 'flight' is a:

• A. Translate intent into natural language

• B. Parse sentence structure

• D. Generate embeddings

• C. Tokenize text

• Answer: A

Answer: C 7. Slot filling is part of: • A. Intent classification B. Tokenization • C. Named Entity Linking • D. Dialogue management Answer: A 8. Which task involves resolving contradictions in text? • A. Parsing B. NLI • C. Lemmatization • D. Embedding Answer: B 9. The phrase "Can you pass the salt?" demonstrates: • A. Syntax parsing • B. Lexical analysis • C. Indirect intent • D. Semantic similarity Answer: C 10. Which is NOT part of the NLU pipeline?

• A. Token

• B. Named Entity

• D. Parsing error

• C. Slot value

A. Intent classification
B. Entity recognition
C. Text summarization
D. Slot filling
Answer: C
11. NLI often evaluates:
A. Contradiction, entailment, neutral
B. Sentiment levels
C. Frequency of tokens
D. POS structure
Answer: A
12. NLG model converts:
A. Structured data to text
B. Text to embeddings
C. Parsing tree to tokens
D. Numbers to vectors
Answer: A
13. A chatbot interpreting "weather in Delhi?" as a query is an example of:
A. Tokenization
B. Parsing
C. Intent detection
D. Embedding
Answer: C
14. Coreference resolution helps in:

Answer: B
15. An utterance like "Turn it off!" requires:
A. Summarization
B. Contextual intent parsing
C. Morphological analysis
D. Word segmentation
Answer: B
16. Which models are used in NLU classification?
A. CNNs
B. Naive Bayes, SVM, LSTM
C. Decision trees
• D. GANS
Answer: B
17. "Apple" as a fruit or company is disambiguated in:
• A. NLI
B. Intent detection
C. Word Sense Disambiguation
• D. NLG
Answer: C
18. Semantic parsing converts:

• A. Sentiment classification

• D. Extracting topics

• B. Matching pronouns to entities

• C. Identifying sentence boundaries

• B. Sentence into logical form • C. Document into summary • D. Chat into conversation Answer: B 19. Which task ensures correct pronoun linkage? • A. NLG B. NLI • C. Coreference resolution • D. Lemmatization Answer: C 20. Named Entity Recognition helps with: • A. Word generation • B. Entity classification (like PERSON, DATE) • C. Syntax analysis • D. Vector construction Answer: B 21. In NLI, "All dogs bark" and "My dog barks" is: • A. Entailment B. Contradiction C. Neutral • D. Irrelevant Answer: C 22. Which tool is used for NLG?

• A. Text into vector

A. spaCy
B. GPT
• C. NLTK
• D. NumPy
Answer: B
23. Slot filling extracts:
A. Topic keywords
B. Named entities relevant to intent
C. Embeddings
D. POS tags
Answer: B
24. Sentiment analysis is part of:
• A. NLU
B. POS tagging
C. Parsing
D. Chunking
Answer: A
25. Sequence-to-sequence models are often used in:
A. POS tagging
B. Text normalization
C. Machine translation (NLG)
D. Parsing
Answer: C

Section 6: Named Entity Recognition and Information Extraction

Section 6: Named Entity Recognition and information Extrac
1. Named Entity Recognition (NER) is used to:
A. Identify parts of speech
B. Extract named entities like persons, locations
C. Parse sentence structure
D. Tokenize words
Answer: B
2. A named entity example is:
• A. run
B. quickly
• C. Paris
• D. if
Answer: C
3. Information extraction refers to:
A. Parsing grammar
B. Summarizing entire documents
C. Pulling structured data from text
D. Predicting next word
Answer: C

- A. PERSON
- B. LOCATION
- C. VERB
- D. ORGANIZATION

4. Which is not a common named entity category?

Answer: C
5. Rule-based NER uses:
A. Neural networks
B. Regular expressions and heuristics
C. BoW model
D. TF-IDF
Answer: B
6. Statistical NER models are often based on:
A. Regex
B. Decision trees
C. CRFs and HMMs
D. Sentiment classifiers
Answer: C
7. Which method is best for recognizing new unseen entities?
A. Rule-based system
B. POS tagger
C. Deep learning models
D. Regex parser
Answer: C
8. NER helps in:
A. Improving grammar
B. Document vectorization
C. Knowledge graph construction

• D. Token normalization

Answer: C
9. The phrase "Elon Musk founded Tesla" contains how many named entities?
• A. 1
• B. 2
• C. 3
• D. 0
Answer: B
10. Entity linking differs from NER in that it:
A. Links words to topics
B. Assigns semantic roles
C. Maps entities to real-world concepts (like Wikipedia)
D. Does POS tagging
Answer: C
11. Entity recognition in spaCy is performed using:
• A. TF-IDF
B. Neural models and transition-based parsing
C. One-hot vectors
D. Rule templates only
Answer: B
12. Which library provides pre-trained NER models?
A. NumPy
B. Pandas
• C. spaCy
D. Matplotlib

D. Base Indexed Observation
Answer: A
14. Which is a subtask of information extraction?
A. Tokenization
B. POS tagging
C. Coreference resolution
D. Lowercasing
Answer: C
15. Which task groups entities by relation?
A. Clustering
B. Entity normalization
C. Relation extraction
D. Parsing
Answer: C
16. Temporal expressions are extracted as:
A. POS tags
B. DATE entities
C. Modifiers
D. Features

• Answer: C

• A. Begin-In-Out

B. Binary Integer Output

• C. Biased Input Output

13. The BIO format used in NER stands for:

Answer: A
18. Nested entity recognition is:
A. Identifying duplicate entities
B. Finding multi-level or embedded entities
C. Normalizing tokens
D. Chunking sequences
Answer: B
19. A challenge in NER is:
A. Context-insensitive words
B. Training on images
C. Predicting punctuation
D. Lemmatizing entities
Answer: A
20. Ontologies in IE help with:
A. Syntax analysis
B. Defining structured relationships among entities
C. Word segmentation
D. Parsing logic

17. The F1-score in NER balances:

• A. Precision and recall

• B. Accuracy and runtime

• C. Recall and specificity

• D. Confidence and size

Answer: B
22. Co-reference resolution helps IE by:
A. Counting entities
B. Aligning embeddings
C. Linking pronouns to entities
D. POS conversion
Answer: C
23. Named entities improve:
A. Grammar
B. Visualizations
C. Retrieval accuracy in QA systems
D. Punctuation prediction
Answer: C
24. What is meant by entity drift?
A. Shifting locations of tokens
B. Changing relevance of entity types over time
C. Vector changes
D. Parse tree evolution

• A. Tokens to embeddings

• C. Words to syntax

• D. Chunks to vectors

21. A named entity disambiguation task maps:

• B. Ambiguous entities to correct identities

- Answer: B
- 25. The use of NER in chatbots is primarily to:
- A. Understand grammatical intent
- B. Fill dialogue slots with relevant real-world data
- C. Create syntax trees
- D. Adjust token boundaries
- Answer: B

Section 7: Word Embeddings & Semantic Understanding

- 1. Word embeddings convert words into:
- A. Strings
- B. Numbers
- C. Syntax trees
- D. Vector representations
- Answer: D
- 2. Which embedding model is based on local context prediction?
- A. GloVe
- B. BERT
- C. Word2Vec
- D. TF-IDF
- Answer: C
- 3. GloVe captures:
- A. Syntax rules

C. Local character encoding
D. POS tags
Answer: B
4. Which model learns word representations via context prediction?
• A. TF-IDF
B. Word2Vec
• C. SVM
D. Regex
Answer: B
5. Embeddings help with:
A. Syntax analysis
B. Understanding semantic similarity
C. Sentence segmentation
D. Parsing
Answer: B
6. Context-free embeddings give:
A. Same vector for every occurrence
B. Unique vector per context
C. Sentence-level info
• D. TF counts
Answer: A
7. Contextual embeddings are generated by:
A. Static models

• B. Global word-word co-occurrence

Answer: B 8. Analogy tasks test embeddings by: • A. Word frequency • B. Vector arithmetic (king - man + woman = ?) • C. Syntax errors • D. POS tagging Answer: B 9. Skip-gram in Word2Vec tries to: A. Predict context from target word • B. Predict target word from context • C. Skip low-frequency tokens • D. Model sentence grammar Answer: A 10. CBOW in Word2Vec tries to: • A. Predict context from sentence • B. Predict sentence type • C. Predict target word from context • D. Predict grammar pattern Answer: C 11. Embedding dimension size affects: • A. Word count

• B. Deep language models like BERT

• C. Rule-based engines

• D. Regex matchers

C. POS tag set
D. Sentence length
Answer: B
12. Word2Vec is trained using:
A. Backpropagation and gradient descent
B. Decision tree
C. POS rules
D. Frequency tables
Answer: A
13. GloVe uses:
A. Contextual prediction
B. Word co-occurrence matrix factorization
C. Rule-based tagging
D. Token counts
Answer: B
14. Word similarity in embeddings is measured by:
A. Cosine similarity
B. Euclidean distance only
• C. TF counts
D. Entity linking
Answer: A
15. Which vector similarity is scale-invariant?
A. Jaccard

B. Vector length and representation capacity

A. We lack training data
B. We parse documents
C. We need rule sets
D. We cluster tokens
Answer: A
17. Subword embeddings (e.g. FastText) help with:
A. Only frequent words
B. Rare and OOV words
C. Regular expressions
D. Chunking
Answer: B
18. FastText represents words as:
A. Integer indices
B. Bag-of-characters
C. Sums of n-gram embeddings
D. Tokens only
Answer: C
19. Sentence embeddings encode:
A. Individual word meanings

• B. Cosine

• D. L1

• C. Manhattan

• Answer: B

16. Pre-trained embeddings are useful when:

B. Whole sentence semantics
C. Entity classes
D. Token counts
Answer: B
20. Which model gives different vectors for the same word in different contexts?
A. Word2Vec
B. TF-IDF
• C. BERT
D. CountVectorizer
Answer: C
21. Embedding space geometry allows:
A. Grammar checking
B. Word clustering and analogy reasoning
C. POS extraction
D. Stop word removal
Answer: B
22. Fine-tuning embedding layers allows:
A. Manual vector editing
B. Learning domain-specific representations
C. Limiting vocabulary size
D. Removing stop words
Answer: B
23. GloVe is trained on:
A. Context windows

B. Word co-occurrence statistics
C. Sentence length
D. Lemmas
Answer: B
24. Cosine similarity of 1 indicates:
A. Orthogonal vectors
B. Identical orientation
C. Zero similarity
D. No relation
Answer: B
25. OOV stands for:
A. Output Optimized Vector
B. Out-Of-Vocabulary

Section 8: Transformers & Contextual Embeddings

- 1. Transformers primarily rely on:
- A. Convolutional filters

• C. Online Vector Value

• D. Overfitted Output Vector

• B. Recurrence

Answer: B

- C. Attention mechanisms
- D. Word co-occurrence

C. Attention is shared across sentences
D. Only verbs get attention
Answer: B
3. Positional encoding is required because:
A. Transformers are recurrent
B. Input tokens are unordered in transformers
C. It adds stop words
D. It replaces embeddings
Answer: B
4. Which architecture is used by BERT?
A. Encoder-decoder
B. Encoder only
C. Decoder only
D. Convolutional blocks
Answer: B
5. GPT model uses:
A. Decoder-only transformer
B. Encoder-only transformer
C. RNN
D. Attention-less transformer

2. What does the 'self' in self-attention mean?

• A. Attention is given only to other tokens

• B. Each word attends to all tokens in the input, including itself

Answer: A
6. The term 'contextual embedding' implies:
A. Fixed word vectors
B. Same vector for each word
C. Different vectors for a word in different contexts
D. Vectors based on grammar rules
Answer: C
7. The term 'multi-head attention' allows:
A. Multiple models to run in parallel
B. Focus on different parts of the sentence simultaneously
C. Multiple embeddings per sentence
D. Different tokenizers
Answer: B
8. Which transformer component aggregates word importance?
A. Feed-forward layer
B. Positional encoder
B. Positional encoderC. Attention layer
C. Attention layer
C. Attention layerD. Input embedding
 C. Attention layer D. Input embedding Answer: C
 C. Attention layer D. Input embedding Answer: C BERT stands for:
 C. Attention layer D. Input embedding Answer: C BERT stands for: A. Binary Encoding for Recurrent Tokens

Answer: C
11. In transformers, attention score is computed using:
A. Dot product of Query and Key vectors
B. Difference between word indices
C. Sum of token positions
D. LSTM memory state
Answer: A
12. The mask in transformers is used to:
A. Prevent dropout
B. Hide future tokens during training
C. Improve syntax parsing
D. Reduce vocabulary
Answer: B
13. Fine-tuning a transformer refers to:
A. Retraining only the embedding layer
B. Training on a new corpus from scratch
C. Adapting a pre-trained model to a downstream task
D. Changing model architecture

10. Transformer training requires:

• B. Training one token at a time

• D. Grammar trees

• A. Backpropagation through recurrence

• C. Parallelizable training on full sequences

• D.	. Replacing attention with CNN
• A	nswer: C
15. W	hich is NOT a benefit of transformer models?
• A.	. Capturing long-range dependencies
• B.	. Parallelizable training
• C.	. Fixed-size vocabulary
• D.	. Transfer learning
• A	nswer: C
16. Tł	ne key innovation of transformer compared to RNN is:
• A.	. Embeddings
• B.	. Attention mechanism and parallelism
• C.	. Bag-of-Words encoding
• D.	. Syntax tree parsing
• Aı	nswer: B
17. ln	BERT, the [CLS] token is used for:
• A.	. Padding
• B.	. Segment separation
• C.	. Classification tasks
• D.	. Ignoring irrelevant text

14. RoBERTa improves on BERT by:

• C. Training longer on more data

• A. Using fewer layers

B. Removing dropout

1	9. Token embeddings + positional encodings =
•	A. Input to attention layer
•	B. Final output vector
•	C. Masked sequence
•	D. N-gram probability
•	Answer: A
2	0. Transformers solve vanishing gradient problem by:
•	A. ReLU activations
•	B. Using GRUs
•	C. Removing recurrence and using attention
•	D. Bag-of-words trick
•	Answer: C
2	1. Pre-trained transformers are typically trained on:
•	A. Specific application data
•	B. Small labeled corpora
•	C. Large unlabeled corpora using self-supervised tasks
•	D. Only Wikipedia

• A. RNN + CNN

18. A transformer block consists of:

• C. GRU + Memory network

• D. Embedding only

• Answer: B

• B. Self-attention + Feed-forward layers

• B. Vocabulary size • C. Hidden size parameter • D. Embedding function Answer: C 23. Which model generalizes better in multilingual NLP? A. BERT B. GPT • C. mBERT or XLM-R D. Naive Bayes Answer: C 24. Self-attention helps by: • A. Keeping only subject and object • B. Allowing model to attend to every token at each layer • C. Skipping irrelevant parts of text • D. Reducing matrix dimensions Answer: B 25. Sentence-transformers are used for: • A. Named entity recognition • B. Sentence-level semantic similarity • C. Syntax tagging • D. Word segmentation

22. The output dimension of transformer layers depends on:

Answer: C

• A. Number of input tokens

Section 9: Sentiment Analysis & Classification

- 1. Sentiment analysis helps determine:
- A. Topic category
- B. Grammatical errors
- C. Emotional tone or opinion in text
- D. Part-of-speech
- Answer: C
- 2. Which machine learning algorithm is often used for sentiment classification?
- A. Linear regression
- B. K-means
- C. Naive Bayes
- D. DBSCAN
- Answer: C
- 3. A lexicon-based approach to sentiment analysis uses:
- A. Predefined word lists with sentiment scores
- B. Deep neural networks
- C. TF-IDF weights only
- D. Clustering techniques
- Answer: A
- 4. Which of the following is a polarity label in binary sentiment analysis?
- A. Neutral

B. Mixed
C. Positive
D. Subjective
Answer: C
5. The VADER sentiment tool is best suited for:
A. Long legal documents
B. Tweets and social media text
C. Technical manuals
D. News summarization
Answer: B
6. Sentiment scores typically range between:
• A. 0–100
• B1 to +1
• C. 1–10
• D. 0–1
Answer: B
7. Which of these is a limitation of lexicon-based sentiment analysis?
A. Cannot process tweets
B. Ignores sentence structure/context
C. Requires labeled data
D. Overfits quickly
Answer: B
8. Supervised sentiment analysis requires:
A. Only raw text

C. Converts logits into probabilities
D. Tokenizes inputs
Answer: C
13. A sentence with both positive and negative phrases may be:
A. Ambiguous
B. Subjective
C. Mixed sentiment
D. Neutral
Answer: C
14. Which Python library supports sentiment analysis via TextBlob?
• A. Numpy
B. Scikit-learn
C. TextBlob
D. PyTorch
Answer: C
15. An F1-score is especially important when:
A. Data is balanced
B. Classes are imbalanced
C. Only accuracy is needed
D. Tokenization fails
Answer: B
16. What role does tokenization play in sentiment analysis?
A. Summarizes paragraphs

• B. Extracts features

17. Sentiment intensity is:
A. A score for text objectivity
B. Degree of emotion (e.g. very positive)
C. Probability of grammar correctness
D. Measure of entity linking
Answer: B
18. Which of these can improve sentiment accuracy?
A. POS tagging
B. Coreference resolution
C. Negation handling
D. Lemmatization only
Answer: C
19. The phrase "Not bad" is:
A. Negative sentiment
B. Ambiguous
C. Context-free
D. Positive sentiment (due to negation)
Answer: D
20. Emojis in sentiment analysis are:
A. Ignored by all models

• B. Breaks text into manageable units (e.g. words)

• C. Builds graphs

• Answer: B

• D. Normalizes values

B. Used to improve context in lexicon models
C. Treated as punctuation
D. Always negative
Answer: B
21. Zero-shot classification enables:
A. Learning without any data
B. Labeling new categories not seen in training
C. Entity linking
D. Parsing trees
Answer: B
22. Transformer-based models in sentiment analysis are preferred because:
A. They ignore rare words
B. They are less accurate
C. They capture context better
D. They are rule-based
Answer: C
23. Fine-tuning a pre-trained BERT for sentiment analysis requires:
A. Grammar tree
B. Rule set
C. Sentiment-labeled dataset
D. Visualizer
Answer: C
24. Which of the following handles sarcasm poorly?
A. Rule-based sentiment models

- B. Deep contextual models
- C. BERT fine-tuned models
- D. LSTM with attention
- Answer: A
- 25. Which metric is best when false positives and negatives are costly?
- A. Accuracy
- B. Recall
- C. Precision
- D. F1-score
- Answer: D

Section 10: Advanced Parsing & Semantics

- 1. Semantic parsing transforms natural language into:
- A. Vectors
- B. Logical forms or machine-understandable queries
- C. Chunked phrases
- D. Morphological roots
- Answer: B
- 2. Which of the following helps with word sense disambiguation?
- A. POS tagging
- B. Syntax trees
- C. Contextual embeddings
- D. Lemmatization

Answer: C	
3. A sentence with multiple interpretations is said to be:	
A. Ambiguous	
B. Unsupervised	
C. Recursive	
D. Predictive	
Answer: A	
4. The output of semantic role labeling includes:	
A. Intent labels	
B. Word vectors	
C. Arguments for predicates	
D. Entity names	
Answer: C	
5. Which of these best captures meaning across sentence struc	ture?
A. POS tags	
B. Syntax trees	
C. Semantic dependency graphs	
D. Lemma chains	
Answer: C	
6. WordNet is used for:	
A. POS tagging	
B. Syntax parsing	
C. Lexical semantics	
D. Coreference resolution	

A. Question-answering types
B. Named entities
C. Agent, theme, instrument
D. Token lengths
Answer: C
8. Inference in semantics often deals with:
A. Morphological variants
B. Logical entailment
C. Vector normalization
D. Sentiment labels
Answer: B
9. Which of the following enhances semantic accuracy?
A. Stemming
B. Sentence segmentation
C. Coreference resolution
D. Frequency counts
Answer: C
10. Dependency structures map:
A. Topics to sentences
B. Entity relations only
C. Words and their grammatical functions
D. Token counts

7. Thematic roles in SRL include:

Answer: C
11. Which type of parsing is most useful for semantics?
A. Surface parsing
B. Dependency parsing
C. Syntactic chunking
D. POS tagging
Answer: B
12. FrameNet is used to:
A. Parse syntax
B. Label words with semantic frames
C. Normalize embeddings
D. Classify texts
Answer: B
13. Predicate-argument structures are key to:
A. Tokenization
B. Sentiment scoring
C. Semantic parsing
D. Grammar correction
Answer: C
14. Compositional semantics refers to:
A. Sentence structure only
B. Meaning derived from combining word meanings

• C. Random word combinations

• D. Syntax-only rules

D. Meaning is ambiguous
Answer: A
16. The sentence "John gave Mary a book" assigns roles:
A. Verb-object-subject
B. Agent-recipient-theme
C. Subject-object-action
D. Theme-agent-recipient
Answer: B
17. Pragmatic analysis focuses on:
A. Word structure
B. Contextual interpretation of meaning
C. Syntax tags
D. Frequency analysis
Answer: B
18. Ambiguity in semantics can be resolved using:
A. WordNet
B. Parse tree depth
C. Token frequency
D. N-gram models

15. Semantic entailment means:

• A. A sentence implies another

• B. Synonyms are replaced

• C. Entity is named twice

Answer: A
19. The symbol '→' in logical form indicates:
A. Syntax agreement
B. Mapping rules
C. Implication
D. Sentiment polarity
Answer: C
20. Semantic parsing is used in:
A. POS tagging
B. Knowledge base querying
C. N-gram expansion
D. Morphological analysis
Answer: B
21. Which NLP task converts questions into SQL-like queries?
21. Which NLP task converts questions into SQL-like queries?A. Chunking
A. Chunking
A. ChunkingB. Named entity tagging
 A. Chunking B. Named entity tagging C. Semantic parsing
 A. Chunking B. Named entity tagging C. Semantic parsing D. Sentiment classification
 A. Chunking B. Named entity tagging C. Semantic parsing D. Sentiment classification Answer: C
 A. Chunking B. Named entity tagging C. Semantic parsing D. Sentiment classification Answer: C 22. Which type of ambiguity involves conflicting sentence roles?
 A. Chunking B. Named entity tagging C. Semantic parsing D. Sentiment classification Answer: C Which type of ambiguity involves conflicting sentence roles? A. Lexical

Answer: D 23. A limitation of rule-based semantic systems is: • A. Accuracy • B. Scalability and coverage • C. Interpretability • D. Determinism Answer: B 24. Temporal semantics deals with: A. Locations • B. Word embeddings • C. Time-based interpretations • D. Grammar corrections Answer: C 25. Which tool is used to visualize dependency semantics? • A. TensorBoard • B. NLTK Tree • C. displaCy by spaCy • D. Matplotlib Answer: C

Section 11: Deep Learning in NLP

- 1. Deep learning models learn features from:
- A. Manual rules

D. Lexicons
Answer: C
2. Which neural network is best suited for sequential data like text?
• A. CNN
B. RNN
C. Decision Tree
D. Random Forest
Answer: B
3. The vanishing gradient problem affects:
A. CNNs
B. Short RNNs only
C. Deep RNNs and LSTMs
D. Shallow MLPs
Answer: C
4. LSTM improves on RNN by:
A. Increasing depth
B. Introducing attention
C. Using memory gates to manage long dependencies
D. Using wider layers
Answer: C
5. The output of a softmax layer is:
A. Word vector

• B. Structured trees

• C. Raw data automatically

	B. Normalized probabilities
•	
•	C. Distance score
•	D. Attention weight
•	Answer: B
6.	Which of these is not a typical activation function?
•	A. ReLU
•	B. Sigmoid
•	C. Tanh
•	D. Pool
•	Answer: D
7.	A CNN in NLP is used for:
•	A. Entity linking
•	B. Parsing
•	C. Capturing local n-gram features
•	D. Summarizing documents
•	Answer: C
8.	Attention in deep learning allows:
•	A. Tokenization
•	B. Stemming
•	C. Focusing on important words in context
•	D. Tree-based parsing
•	Answer: C
9.	Which layer reduces overfitting by randomly disabling neurons?
•	A. Pooling

B. Dropout
• C. Dense
D. Softmax
Answer: B
10. What type of learning does BERT use initially?
A. Supervised
B. Reinforcement
C. Unsupervised (masked language modeling)
D. Semi-supervised
Answer: C
11. The hidden state in RNN captures:
A. Output label
B. Syntax rules
C. Accumulated context
D. Gradient descent
Answer: C
12. GRU stands for:
A. Gated Recurrent Unit
B. Gradient Residual Unit
C. Generalized ReLU Unit
D. Grammar Reduction Unit
Answer: A
13. In LSTM, which gate decides how much to forget?
A. Input gate

B. Output gate
C. Forget gate
D. Context gate
Answer: C
14. Which component in LSTM controls information retention?
A. Cell state
B. Dropout
• C. ReLU
D. Embedding layer
Answer: A
15. Which neural model is bidirectional?
A. Vanilla RNN
• B. CNN
• C. BiLSTM
• D. GRU
Answer: C
16. The number of trainable parameters in deep NLP models grows with:
A. Input length
B. Number of layers and embedding size
C. Document ID
D. Vocabulary size only
Answer: B
17. Sequence-to-sequence models are used in:
A. Parsing trees

B. Text classification
C. Machine translation and summarization
D. Tokenization
Answer: C
18. A model that converts audio to text is:
A. Text classifier
B. Speech recognizer
C. Token generator
D. Syntax parser
Answer: B
19. Which deep learning model performs best on long-term dependencies?
• A. CNN
B. LSTM
• C. BiLSTM
D. Transformer
Answer: D
20. Batch size in training affects:
A. Dropout rate
B. Inference only
C. Memory usage and convergence speed
D. Vocabulary
Answer: C
21. Which loss function is used for multi-class classification?
• A. MSE

Answer: C
22. Which layer follows the embedding layer in typical NLP models?
A. Input layer
B. Attention layer or RNN layer
• C. Dropout
D. Output softmax
Answer: B
23. Which technique accelerates convergence in deep models?
A. Stemming
B. Learning rate scheduling
C. POS tagging
D. Token pruning
Answer: B
24. Pretrained word embeddings help by:
A. Saving computation
B. Boosting generalization with prior knowledge
C. Decreasing vocabulary size
D. Reducing parse tree depth
Answer: B
25. In NLP pipelines, deep learning is most beneficial for:
A. Grammar rules

B. Binary cross-entropy

• D. Hinge loss

• C. Categorical cross-entropy

- B. Rule-based NER
- C. Semantic understanding and generation tasks
- D. Token count
- Answer: C

Section 12: Text Classification & Topic Modeling

- 1. Text classification is a type of:
- A. Unsupervised learning
- B. Reinforcement learning
- C. Supervised learning
- D. Deep clustering
- Answer: C
- 2. Naive Bayes works best for:
- A. Contextual embedding
- B. Word2Vec
- C. High-dimensional sparse data
- D. Syntax parsing
- Answer: C
- 3. Which classifier separates data using a hyperplane?
- A. Naive Bayes
- B. Decision Tree
- C. SVM
- D. Random Forest

Answer: C
4. Which method is suitable for multi-class text classification?
A. One-vs-all SVM
B. BoW only
C. Skip-gram
D. Syntax trees
Answer: A
5. In classification, overfitting means:
A. Model underperforms
B. Model performs well on training but poorly on new data
C. Model generalizes well
D. Model has high bias
Answer: B
Answer: B6. Which evaluation metric is not ideal for imbalanced classes?
6. Which evaluation metric is not ideal for imbalanced classes?
6. Which evaluation metric is not ideal for imbalanced classes?A. Accuracy
 6. Which evaluation metric is not ideal for imbalanced classes? A. Accuracy B. F1-score
 6. Which evaluation metric is not ideal for imbalanced classes? A. Accuracy B. F1-score C. Precision
 6. Which evaluation metric is not ideal for imbalanced classes? A. Accuracy B. F1-score C. Precision D. Recall
 6. Which evaluation metric is not ideal for imbalanced classes? A. Accuracy B. F1-score C. Precision D. Recall Answer: A
 6. Which evaluation metric is not ideal for imbalanced classes? A. Accuracy B. F1-score C. Precision D. Recall Answer: A 7. Precision is defined as:
 6. Which evaluation metric is not ideal for imbalanced classes? A. Accuracy B. F1-score C. Precision D. Recall Answer: A 7. Precision is defined as: A. TP / (TP + FN)

8. LDA in topic modeling stands for:
A. Long Dependency Analysis
B. Latent Dirichlet Allocation
C. Layered Deep Attention
D. Local Distance Algorithm
Answer: B
9. Topic modeling is:
A. Supervised
B. Unsupervised
C. Reinforced
D. Manual
Answer: B
10. Which technique visualizes document-topic distribution?
• A. TF-IDF
B. LDA
• C. NER
• D. BoW
Answer: B
11. Gensim is used for:
A. POS tagging
B. Word embedding only
C. Topic modeling and document similarity
D. Syntax trees

Answer: C
12. Which metric is best for evaluating topic coherence?
A. Precision
B. Perplexity
• C. BLEU
• D. ROUGE
Answer: B
13. K-means clustering can be used for:
A. Supervised learning
B. Sentiment labeling
C. Document clustering
D. Syntax tagging
Answer: C
14. A topic is defined as:
A. Sentence of nouns
B. Word frequency score
C. Probability distribution over words
D. Vector similarity
Answer: C
15. Which model provides probabilities of topics in a document?
• A. TF-IDF
B. CountVectorizer
• C. LDA
D. SVM

16. Dimensionality reduction in topic modeling can be done using:
• A. PCA
B. LDA
C. Random Forest
D. POS tagging
Answer: A
17. Bag-of-Words in topic modeling provides:
A. Contextual info
B. Token vectorization
C. Term-document matrix
D. Entity linking
Answer: C
18. In unsupervised text clustering, labels are:
A. Pre-defined
B. Generated after model
C. Derived using POS
D. Fixed manually
Answer: B
19. What does the silhouette score evaluate?
A. Clustering quality
B. Model overfitting

• C. Token length

• D. Parsing depth

Answer: A
20. Which algorithm is best suited for exploratory topic discovery?
• A. SVM
B. LDA
C. FastText
• D. RoBERTa
Answer: B
21. Topic modeling outputs are typically:
A. Topic embeddings
B. Word counts
C. Probability distributions over topics and words
D. Syntax trees
Answer: C
22. Which NLP task is often combined with topic modeling?
A. Summarization
B. POS tagging
C. Co-reference resolution
• D. NER
Answer: A
23. Which evaluation metric is common for text classification?
• A. BLEU
B. F1-score
• C. WER
• D. CER

- Answer: B24. Document similarity can be computed using:A. Word frequency only
- B. Cosine similarity over TF-IDF vectors
- C. Syntax tree depth
- D. POS overlap
- Answer: B
- 25. Which tool helps visualize topic clusters?
- A. Matplotlib
- B. pyLDAvis
- C. Seaborn
- D. SciPy
- Answer: B