Chapter 10 Vocabulaire relatif aux applications

```
Exercice 10.1 Soit f: \mathbb{R} \to \mathbb{R}. Écrire \{x \in \mathbb{R} \mid f(x) \neq 0\} comme une image réciproque. Solution 10.1 f^{-1}(\mathbb{R}^*).
```

On considère l'application $f:\mathbb{R}\to\mathbb{R}$. Déterminer

3.
$$f(\{-1,0,1,2\})$$
,

4.
$$f^{-1}(4)$$
,

5.
$$f^{-1}(\{4\})$$
,

6.
$$f^{-1}(\{-2,0,1,4\}),$$

6.
$$f^{-1}(\{-2,0,1,4\}),$$

7. $f(f^{-1}(\{-2,0,1,4\})),$
8. $f^{-1}(f(\{-1,0,1,2\})),$
9. $f([1,2]),$
11. $f^{-1}([1,2]),$
12. $f^{-1}([-1,4]),$
13. $f(\mathbb{R}),$
14. $f^{-1}(\mathbb{R}),$

8.
$$f^{-1}(f(\{-1,0,1,2\})),$$

10.
$$f([-1,4[),$$

11.
$$f^{-1}(]1,2]),$$

12.
$$f^{-1}([-1,4])$$
,

13.
$$f(\mathbb{R})$$

14.
$$f^{-1}(\mathbb{R})$$
,

Solution 10.2

Voici les solutions. Ne reste plus qu'à les démontrer (voir le cours!).

1.
$$f(2) = 4$$
,

2.
$$f(\{2\}) = \{4\},$$

3.
$$f(\{-1,0,1,2\}) = \{1,0,1,4\} = \{0,1,4\},$$

4. $f^{-1}(4)$ n'a aucun sens car f n'est pas bijective,

5.
$$f^{-1}(\{4\}) = \{-2, 2\},$$

6.
$$f^{-1}(-2,0,1,4) = \{0,-1,1,-2,2\},\$$

7.
$$f(f^{-1}(-2,0,1,4)) = f(\{0,-1,1,-2,2\}) = \{0,1,4\},$$

8.
$$f^{-1}(f(\{-1,0,1,2\})) = f^{-1}(\{0,1,4\}) = \{0,-1,1,-2,2\},$$

9.
$$f([1,2]) = [1,4],$$

10.
$$f(]-1,4[) = [0,16[,$$

11.
$$f^{-1}(]1,2]) = \left[-\sqrt{2},-1\right] \cup \left[1,\sqrt{2}\right],$$

12.
$$f^{-1}([-1,4]) = [-2,2],$$

13.
$$f(\mathbb{R}) = \mathbb{R}_+$$

14.
$$f^{-1}(\mathbb{R}) = \mathbb{R}$$
,

15. Im
$$f = f(\mathbb{R}) = \mathbb{R}_{+}$$
.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction impaire déterminée par

$$f(x) = \begin{cases} 1 - x, & 0 < x < 1 \\ 2 - x, & x \ge 1. \end{cases}$$

- **1.** Représenter graphiquement f (sur \mathbb{R}).
- **2.** Déterminer (graphiquement) f([0,2]) et $f^{-1}([0,2])$.

Solution 10.3

2. Une lecture graphique donne

$$f([0,2]) = [0,1]$$
 et $f^{-1}([0,2]) = [-4,-2] \cup [0,2]$.

La démonstration est un peu pénible...

Soit
$$\varphi: \mathbb{R} \to \mathbb{R}$$
 . Déterminer $\varphi(\mathbb{R})$.
 $x \mapsto \lfloor 2x \rfloor - 2 \lfloor x \rfloor$

Solution 10.4

Commençons par remarquer que pour tout $x \in \mathbb{R}$, $\varphi(x) = \lfloor 2x \rfloor - 2 \lfloor x \rfloor \in \mathbb{Z}$. Soit $x \in \mathbb{R}$, on a les encadrements

$$2x - 1 < \lfloor 2x \rfloor \le 2x$$
 et $x - 1 < \lfloor x \rfloor \le x$.

Il s'en suit

$$-1 < |2x| - 2|x| < 2$$
.

Tenant compte du fait que $\varphi(x) \in \mathbb{Z}$, on a donc $\varphi(x) = 0$ ou $\varphi(x) = 1$. Ainsi

$$\varphi(\mathbb{R}) \subset \{0,1\}.$$

Réciproquement, $\varphi(0) = 0$ et $\varphi(0.7) = 1$, d'où $\{0, 1\} \subset \varphi(\mathbb{R})$.

Conclusion

Par double inclusion,

$$\varphi(\mathbb{R}) = \{ 0, 1 \}.$$

On considère l'application

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x_1, x_2, x_3) \mapsto (x_1 + x_2, x_2 + x_3, x_1 - x_3)$

- **1.** Déterminer $f^{-1}(\{(0,0,0)\})$.
- **2.** Soit $P = \{ (a, b, c) \in \mathbb{R}^3 \mid a + 2b + 3c = 0 \}$. Déterminer $f^{-1}(P)$.
- 3. Déterminer $\operatorname{Im} f$.
- **4.** Soit $\Delta = \{ (t, t, t) \mid t \in \mathbb{R} \}$. Déterminer $f(\Delta)$.
- 5. Soit $Q = \{ (a, b, c) \in \mathbb{R}^3 \mid a + 2b + c = 0 \}$. Déterminer f(Q).

Exercice 10.6

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto \sqrt{x^2 + y^2}$$
.

1. Représenter graphiquement l'ensemble

$$J = \{ (x, y) \in \mathbb{R}^2 \mid |x| \le 1 \text{ et } |y| \le 1 \}.$$

2. Que valent f(J) et $f^{-1}(f(J))$?

Soit $f: A \to B$ une application, X_1 et X_2 deux parties de A. Montrer

- **1.** $X_1 \subset X_2 \implies f(X_1) \subset f(X_2)$.
- **2.** $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$.
- **3.** $f(X_1 \cap X_2) \subset f(X_1) \cap f(X_2)$.
- **4.** Montrer que l'inclusion réciproque, $f(X_1) \cap f(X_2) \subset f(X_1 \cap X_2)$, est fausse en général.

Solution 10.7

1. Supposons $X_1 \subset X_2$ et montrons que $f(X_1) \subset f(X_2)$.

Soit y un élément de $f(X_1)$.

Par définition de $f(X_1)$, il existe un élément $x \in X_1$ tel que y = f(x).

Or $X_1 \subset X_2$ donc

$$x \in X_2$$
 et $y = f(x)$;

il s'en suit $y \in f(X_2)^1$.

Nous pouvons conclure que $f(X_1) \subset f(X_2)$.

2. Nous allons effectuer un raisonnement par double inclusion. Montrons d'abord que $f(X_1 \cup X_2) \subset f(X_1) \cup f(X_2)$.

Soit $y \in f(X_1 \cup X_2)$.

Il existe $x \in X_1 \cup X_2$ tel que y = f(x). Comme $x \in X_1 \cup X_2$, nous savons que $x \in X_1$ ou $x \in X_2$.

- Si $x \in X_1$; alors $y = f(x) \in f(X_1)$, et a fortior $y \in f(X_1) \cup f(X_2)$.
- Si $x \in X_2$; alors $y = f(x) \in f(X_2)$, et a fortior $y \in f(X_1) \cup f(X_2)$.

Dans tous les cas, nous avons donc $y \in f(X_1) \cup f(X_2)$.

Nous avons donc montré que $f(X_1 \cup X_2) \subset f(X_1) \cup f(X_2)$. Montrons maintenant que $f(X_1) \cup f(X_2) \subset f(X_1 \cup X_2)$.

Soit $y \in f(X_1) \cup f(X_2)$. Alors $y \in f(X_1)$ ou $y \in f(X_2)$.

• Supposons $y \in f(X_1)$, alors il existe $x \in X_1$ tel que y = f(x). Puisque $x \in X_1$, nous pouvons écrire

$$x \in X_1 \cup X_2$$
 et $y = f(x)$

c'est-à-dire $y \in f(X_1 \cup X_2)$.

• Supposons $y \in f(X_2)$, le raisonnement est analogue : il existe $x \in X_2$ tel que y = f(x). On a donc $x \in X_1 \cup X_2$ puis $y = f(x) \in f(X_1 \cup X_2)$.

Dans tous les cas, nous avons montré que $y \in f(X_1 \cup X_2)$, donc $f(X_1) \cup f(X_2) \subset f(X_1 \cup X_2)$.

Nous avons montré que

$$f(X_1 \cup X_2) \subset f(X_1) \cup f(X_2)$$
 et $f(X_1) \cup f(X_2) \subset f(X_1 \cup X_2)$;

par double inclusion, nous pouvons conclure $f(X_1) \cup f(X_2) = f(X_1 \cup X_2)$.

¹Nous avons démontré une propriété de y ($y \in f(X_2)$). Nous pouvons alors affirmer qu'elle est vérifiée par **tous** les objets qui ont les propriétés qui ont été annoncées par «Soit y…», c'est-à-dire ici tous les éléments de l'ensemble $f(X_1)$. On a donc $\forall y \in f(X_1), x \in f(X_2)$.

3. Soit $y \in f(X_1 \cap X_2)$. Il existe $x \in X_1 \cap X_2$ tel que y = f(x).

Puisque $x \in X_1 \cap X_2$, nous pouvons écrire que $x \in X_1$ et donc $y = f(x) \in f(X_1)$.

De même, $x \in X_2$ et donc $y = f(x) \in f(X_2)$.

Nous avons donc montré que $y \in f(X_1)$ et $y \in f(X_2)$, c'est-à-dire $y \in f(X_1) \cap f(X_2)$. Nous pouvons conclure

$$f(X_1 \cap X_2) \subset f(X_1) \cap f(X_2)$$
.

4. L'inclusion $f(X_1) \cap f(X_2) \subset f(X_1 \cap X_2)$ est fausse en général.

Avec $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$:

$$f\left(\mathbb{R}_{+}\right)\bigcap f\left(\mathbb{R}_{-}\right)=[0,+\infty[\bigcap[0,+\infty[=[0,+\infty[$$

mais

$$f\left(\mathbb{R}_{+}\bigcap\mathbb{R}_{-}\right)=f\left(\left\{\,0\,\right\}\right)=\left\{\,0\,\right\}.$$

Soit $f: A \to B$ une application, Y_1 et Y_2 deux parties de B. Montrer

1.
$$Y_1 \subset Y_2 \implies f^{-1}(Y_1) \subset f^{-1}(Y_2)$$
.

2.
$$f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$$
.

3.
$$f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$$
.

Solution 10.8

- 1. Supposons $Y_1 \subset Y_2$. Soit $x \in f^{-1}(Y_1)$. Nous avons donc $f(x) \in Y_1$ d'où $f(x) \in Y_2$, c'est-à-dire $x \in f^{-1}(Y_2)$. Nous avons donc montré que $f^{-1}(Y_1) \subset f^{-1}(Y_2)$.
- **2.** Soit $x \in A$.

$$\begin{split} x \in f^{-1}(Y_1 \cup Y_2) &\iff f(x) \in Y_1 \cup Y_2 \\ &\iff f(x) \in Y_1 \text{ ou } f(x) \in Y_2 \\ &\iff x \in f^{-1}(Y_1) \text{ ou } x \in f^{-1}(Y_2) \\ &\iff x \in f^{-1}(Y_1) \cup f^{-1}(Y_2). \end{split}$$

Nous avons donc montré $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$.

3. Soit $x \in A$.

$$\begin{split} x \in f^{-1}(Y_1 \cap Y_2) &\iff f(x) \in Y_1 \cap Y_2 \\ &\iff f(x) \in Y_1 \text{ et } f(x) \in Y_2 \\ &\iff x \in f^{-1}(Y_1) \text{ et } x \in f^{-1}(Y_2) \\ &\iff x \in f^{-1}(Y_1) \cap f^{-1}(Y_2). \end{split}$$

Nous avons donc montré $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$.

Soient E et F deux ensembles, et f une application de E dans F. On considère une partie A de E et une partie B de F. Démontrer l'égalité

$$f\left(A\cap f^{-1}(B)\right)=f(A)\cap B.$$

Étant donné une application f de E dans F, on désigne pas S la famille des parties X de E telle que

$$f^{-1}\left(f(X)\right) = X.$$

- 1. A étant une partie quelconque de E, démontrer que $f^{-1}(f(A))$ est un ensemble de S.
- 2. Démontrer que toute intersection et toute réunion d'ensembles de S est un ensemble de S.
- **3.** X étant un ensemble de S et A une partie de E telle que X et A soient disjoints, démontrer que X et $f^{-1}(f(A))$ sont disjoints.
- **4.** X_1 et X_2 étant deux ensembles de S tels que $X_1 \subset X_2$, démontrer que $X_2 \setminus X_1$ est un ensemble de S.

On définit la somme de deux parties E et F de $\mathbb R$ par

$$E + F = \{ x + y \mid x \in E \text{ et } y \in F \}.$$

Soient f et g deux applications de \mathbb{R} dans \mathbb{R} et A une partie de \mathbb{R} . Vrai ou Faux?

1.
$$(f+g)(A) \subset f(A) + g(A)$$
.

3.
$$(f+g)^{-1}(A) \subset f^{-1}(A) + g^{-1}(A)$$
.
4. $f^{-1}(A) + g^{-1}(A) \subset (f+g)^{-1}(A)$.

2.
$$f(A) + g(A) \subset (f+g)(A)$$
.

4.
$$f^{-1}(A) + g^{-1}(A) \subset (f+g)^{-1}(A)$$
.

Donner, pour chacun des énoncés suivants, une formulation du type «l'application de ... vers ... qui à tout ... associe ... est (n'est pas) injective (surjective)».

- 1. Dans mon quartier, il y a deux personnes qui ont le même modèle de voiture.
- 2. Dans cette classe, il y a des élèves qui ont le même âge.
- 3. Dans cette classe, chaque élève est né un jour différent de l'année.
- 4. Toute ville de France possède au moins une église.
- 5. Il y a des villes de France qui ont plusieurs églises.
- 6. Il y a des réels qui n'ont pas de racine carrée réelle.
- 7. Tout réel positif ou nul possède une unique racine carrée positive ou nulle.
- **8.** On peut avoir a + b = c + d sans que a = c et b = d.

- 1. L'application de l'ensemble des habitants de mon quartier vers l'ensemble des modèles de voitures qui à toute personne associe son modèle de voiture n'est pas injective.
- 2. L'application de l'ensemble des élèves de la classe vers № qui à chaque personne associe son age n'est pas injective.
- **3.** L'application de l'ensemble des élèves de la classe vers l'ensemble des jours de l'année qui à chaque personne associe son jour d'anniversaire est injective.
- **4.** L'application de l'ensemble des églises vers l'ensemble des ville de france qui à toute église associe sa ville est surjective.
- **5.** L'application de l'ensemble des églises vers l'ensemble des ville de france qui à toute église associe sa ville n'est pas injective.
- **6.** L'application de \mathbb{R} vers \mathbb{R} qui à un réel associe son carré n'est pas surjective.
- 7. L'application de \mathbb{R}_+ vers \mathbb{R}_+ qui à un réel associe son carré est bijective.
- **8.** L'application de \mathbb{R}^2 dans \mathbb{R} qui à un couple (a, b) associe sa somme a + b n'est pas injective.

On considère les deux applications de N dans N définies par

$$f: \mathbb{N} \to \mathbb{N} \qquad \text{et} \qquad g: \mathbb{N} \to \mathbb{N} \qquad .$$

$$n \mapsto n+1 \qquad \qquad n \mapsto \begin{cases} 0, & n=0 \\ n-1, & n>0 \end{cases}$$

- **1.** Calculer $g \circ f$.
- **2.** Les applications f et g sont-elles bijectives? Que dire de $f \circ g$?

Solution 10.13

1. On a $g \circ f : \mathbb{N} \to \mathbb{N}$. De plus, pour $n \in \mathbb{N}$,

$$(g \circ f)(n) = g(f(n)) = g(n+1) = (n+1) - 1 = n.$$

car n + 1 > 0. Finalement, on a $g \circ f = Id_{\mathbb{N}}$.

2. L'application f n'est pas surjective car 0 n'a pas d'antécédent par f. L'application g n'est pas injective car g(1) = g(0) = 0.

Puisque $g \circ f = \mathrm{Id}_{\mathbb{N}}$, on a nécessairement, $f \circ g \neq \mathrm{Id}_{\mathbb{N}}$, car sinon f et g serait bijectives. Remarquez qu'en fait $f \circ g$ n'est ni injective car $f \circ g(1) = f \circ g(0)$, ni surjective car $g \circ g(1) = f \circ g(0)$ n'a pas d'antécédent par $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = f \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$

Exercice 10.14 (***)

- **1.** Une application admet un point fixe s'il existe x tel que f(x) = x. Donner un exemple de bijection de \mathbb{N} dans \mathbb{N} n'ayant aucun point fixe.
- **2.** Donner un exemple de bijection de \mathbb{R} dans \mathbb{R} non monotone.
- **3.** Donner un exemple de bijection de \mathbb{R} dans \mathbb{R}^* .

Exercice 10.15

Démontrer que l'application

$$f: \mathbb{C} \setminus \{-3\} \to \mathbb{C} \setminus \{i\}$$

$$z \mapsto \frac{iz-i}{z+3}$$

est une bijection. Déterminer sa bijection réciproque.

Exercice 10.16 (***)

- **1.** Démontrer que l'application $z\mapsto \frac{z-i}{z+i}$ définit une bijection de $\mathbb{C}\setminus\{-i\}$ sur $\mathbb{C}\setminus\{1\}$ et que la bijection réciproque est l'application $w\mapsto i\frac{1+w}{1-w}$.
- **2.** On note \mathcal{D} le disque unité ouvert et \mathcal{H} le demi-plan de Poincaré:

$$\mathcal{D} = \{ z \in \mathbb{C} \mid |z| < 1 \} \qquad \qquad \mathcal{H} = \{ z \in \mathbb{C} \mid \mathfrak{Tm} \, z > 0 \}.$$

Démontrer géométriquement que $z \in \mathcal{H}$ si, et seulement si $\frac{z-i}{z+i} \in \mathcal{D}$. En déduire une bijection de \mathcal{H} sur \mathcal{D} .

On considère l'application

$$f: \mathbb{C}^{\star} \to \mathbb{C}$$

$$z \mapsto \frac{1}{2} \left(z + \frac{1}{z} \right).$$

On rappelle que $i\mathbb{R} = \{iy \mid y \in \mathbb{R} \}$ désigne l'ensemble des imaginaires purs.

- **1.** Déterminer $f^{-1}(\mathbb{R})$.
- **2.** Déterminer $f^{-1}(i\mathbb{R})$.
- 3. Déterminer, selon la valeur du complexe Z le nombre d'antécédents de Z par f. L'application f est-elle injective ? L'application f est-elle surjective ? Lorsque Z possède deux antécédents, que valent leur somme et leur produit ?
- 4. On note

$$\mathbb{U} = \left\{ \left. z \in \mathbb{C}^{\star} \mid |z| = 1 \right. \right\}, \qquad V_1 = \left\{ \left. z \in \mathbb{C}^{\star} \mid |z| < 1 \right. \right\}, \qquad V_2 = \left\{ \left. z \in \mathbb{C}^{\star} \mid |z| > 1 \right. \right\}.$$

- (a) Que représentent géométriquement les ensemble \mathbb{U}, V_1, V_2 ?
- (b) Montrer que $f^{-1}([-1,1]) = \mathbb{U}$.
- (c) Soient z_1 et z_2 deux complexes. Montrer

$$z_1 z_2 = 1 \implies (z_1, z_2) \in \mathbb{U}^2$$
 ou $(z_1, z_2) \in V_1 \times V_2$ ou $(z_1, z_2) \in V_2 \times V_1$.

(d) Démontrer que f réalise une bijection de V_1 sur $\mathbb{C} \setminus [-1,1]$.

On notera
$$g: V_1 \to \mathbb{C} \setminus [-1, 1]$$
.
 $z \mapsto f(z)$

$$z \mapsto f(z)$$

Les applications suivantes sont-elles injectives ? surjectives ?

1.
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto x+y$

$$(x, y) \mapsto x + y$$
2. $g: \mathbb{R}^2 \to \mathbb{R}^2$

$$(x, y) \mapsto (x + y, x - y)$$

3.
$$h: \mathbb{R}^2 \rightarrow \mathbb{R}^2$$

 $(x, y) \mapsto (x + y, x^2 - y^2)$

4.
$$k: \mathbb{R}^2 \to \mathbb{R}^2$$
 . $(x, y) \mapsto (x + y, x + y^3)$

4.
$$k : \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x+y,x+y^3)$
5. $\ell : \mathbb{R}^2 \to \mathbb{R}^2$
 $(x,y) \mapsto (x+y,x+y^2)$

Solution 10.18

1. f n'est pas injective car les couples (0,0) et (1,-1) ont l'amême image par f. f est-elle surjective? Soit $\alpha \in \mathbb{R}$, existe-t-il un coupel $(x, y) \in \mathbb{R}^2$ vérifiant $x + y = \alpha$? On choisit par exemple x = 0 et $y = \alpha$, ansi

$$(0, \alpha) \in \mathbb{R}^2$$
 et $f((0, \alpha)) = \alpha$

donc $(0, \alpha)$ est un antécédent de α par f, et f est surjective.

Remarque. On peut remarquer que $f^{-1}(\{\alpha\}) = \{(t, \alpha - t) \mid t \in \mathbb{R} \}$.

2. Soit $(u, v) \in \mathbb{R}^2$, (u, v) admet-il un antécédent par g? Un tel éventuel antécédent (x, y) vérifie $\begin{cases} x + y &= u \\ x - y &= v \end{cases}$. Or

$$\begin{cases} x+y = u \\ x-y = v \end{cases} \iff \begin{cases} x = \frac{1}{2}(u+v) \\ y = \frac{1}{2}(u-v) \end{cases}$$

Ainsi, (u, v) admet un antécédent par g et de plus, cet antécédent est unique, il s'agit de

$$\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right).$$

Ceci prouve que g est bijective.

3. h n'est pas injective car les couples (0,0) et (1,-1) distincts ont la même image par h. h n'est pas surjective car les couples (0, a) avec $a \in \mathbb{R}^*$ n'ont pas d'antécédent par h. En effet, un éventuel antécédent (x, y) vérifie

$$\begin{cases} x + y = 0 \\ x^2 - y^2 = (x - y)(x + y) = a \end{cases}$$
 donc
$$\begin{cases} x + y = 0 \\ 0 = x^2 - y^2 = a \end{cases}$$

et ce système n'admet aucune solution car $a \neq 0$

4. k n'est pas injective car les couples (0,0) et (1,-1) distincts ont la même image par k. k est-elle surjective?

Soit $(u, v) \in \mathbb{R}^2$, (u, v) admet-il un antécédent par k? Un tel éventuel antécédent (x, y) vérifie

$$\begin{cases} x+y &= u \\ x+y^3 &= v \end{cases} \iff \begin{cases} x &= u-y \\ y^3-y+u-v &= 0 \end{cases}$$

Or l'équation d'inconnue réelle $y^3 - y = v - u$ admet au moins une solutions y_1 dans \mathbb{R} . En effet, l'application $\varphi : \mathbb{R} \to \mathbb{R}, y \mapsto y^3 - y$ est continue et

$$\lim_{x \to -\infty} \varphi(y) = -\infty \quad \text{et} \quad \lim_{x \to +\infty} \varphi(y) = +\infty.$$

17

Le couple $(u - y_1, y_1)$ est ainsi un antécédent de (u, v) par k et k est surjective.

5. ℓ n'est pas injective car les couples (0,0) et (-1,1) distincts ont la même image par ℓ .

En s'aidant de la méthode proposée à la question précédente, il apparaît que le couple (0, -1) n'admet pas d'antécédent par ℓ . En effet, un tel éventuel antécédent (x, y) vérifie

$$\begin{cases} x+y = 0 \\ x+y^2 = -1 \end{cases} \iff \begin{cases} x = -y \\ y^2 - y + 1 = 0 \end{cases}$$

et l'équation $y^2 - y + 1 = 0$ n'admet aucune solution réelle.

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
.
 $(x, y) \mapsto (x + y, xy)$.

- **1.** On considère un élément $(u, v) \in \mathbb{R}^2$. Déterminer l'ensemble $f^{-1}(\{(u, v)\})$. (Les notations sont-elles correctes ?)
- **2.** *f* est-elle injective ? surjective ?
- **3.** Déterminer $f(\mathbb{R}^2)$.
- **4.** Soit $D = \{ (x, y) \in \mathbb{R}^2 \mid x \le y \}$ et φ la restriction de f à D. L'application φ est-elle injective ?

Exercice 10.20

Soient $n \in \mathbb{N}^*$. Pour $q \in \mathbb{Z}$, on considère l'application

$$\varphi_q: \mathbb{U}_n \to \mathbb{U}_n .$$
 $z \mapsto z^q$

- **1.** Soient $p, q \in \mathbb{Z}$. Calculer $\varphi_p \circ \varphi_q$.
- 2. On suppose que n et q sont premiers entre eux. Vérifier que l'application φ_q est bijective.
- 3. Réciproquement, on suppose l'application φ_q bijective. Montrer que n et q sont premiers entre eux.

Soient trois ensembles A,B,C et deux applications $f:A\to B$ et $g:B\to C$.

- 1. On suppose que $g \circ f$ est injective. Montrer que f est injective, puis montrer à l'aide d'un contre-exemple que g ne l'est pas nécessairement.
- **2.** On suppose que $g \circ f$ est surjective. Montrer que g est surjective, puis montrer à l'aide d'un contre-exemple que f ne l'est pas nécessairement.
- 3. Donner un exemple où $g \circ f$ est bijective sans que ni g ni f ne le soit.

Solution 10.21

1. On suppose $g \circ f$ injective. Montrons que f est injective. Soit $x_1, x_2 \in A$. On suppose $f(x_1) = f(x_2)$. Alors $g(f(x_1)) = g(f(x_2))$ et puisque $g \circ f$ est injective $x_1 = x_2$. L'application f est donc injective.

Par contre, g n'est pas nécessairement injective. En prenant par exemple $f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto x$ et $g: \mathbb{R} \to \mathbb{R}, x \mapsto x^4$, alors $g \circ f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto x^4$ est injective (car strictement croissante par exemple) mais g n'est pas injective car g(-1) = g(1).

On peut également utiliser $f: \{0,1\} \to \mathbb{R}, x \mapsto x \text{ et } g: \mathbb{R} \to \mathbb{Z}, x \mapsto \lfloor x \rfloor$.

Ou encore, $f = \arcsin \operatorname{et} g = \sin$.

2. On suppose que $g \circ f$ est surjective. Montrons que g est surjective. Soit $y \in C$. Puisque $g \circ f$ est surjective, il existe $x_1 \in A$ tel que $y = g \circ f(x_1)$. En posant $x = f(x_1)$, on a bien $x \in B$ et g(x) = y. L'application g est donc surjective.

Par contre, f n'est pas nécessairement surjective.

En prenant par exemple $f: \{0,1\} \to \mathbb{R}, x \mapsto 4$ et $g: \mathbb{R} \to \{11\}, x \mapsto 11$.

Ou encore, $f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto \sqrt{x}$ et $g: \mathbb{R} \to \mathbb{R}_+, x \mapsto x^2$.

3. Plusieurs exemples précédents répondent au critère.

Un exemple très simple : $g : \mathbb{R} \to \{0\}, x \mapsto 0 \text{ et } f : \{0\} \to \mathbb{R}, x \mapsto 3.$

Soit f une application de E dans E telle que

$$f \circ f \circ f = \mathrm{Id}_E$$
.

Prouver que f est bijective et exprimer f^{-1} en fonction de f.

Solution 10.22

En posant $g = f \circ f$, on a $g \circ f = f \circ f \circ f = \mathrm{Id}_E$ et $f \circ g = f \circ f \circ f = \mathrm{Id}_E$. L'application f est donc bijective et

$$f^{-1} = f \circ f.$$

Soient E et F deux ensembles non vides, on considère une application $f: E \to F$.

1. (a) Soit A une partie de E, montrer l'inclusion

$$A \subset f^{-1}(f(A))$$
.

(b) Montrer que si A est une partie de E et f est injective, alors

$$f^{-1}(f(A)) = A.$$

(c) Réciproquement, on suppose

$$\forall A \in \mathcal{P}(E), A = f^{-1}(f(A)).$$

Montrer que l'application f est alors injective.

2. (a) Soit B une partie de F, montrer l'inclusion

$$f\left(f^{-1}(B)\right) \subset B.$$

(b) Montrer que si B est une partie de E et f est surjective, alors

$$f\left(f^{-1}(B)\right) = B.$$

(c) Réciproquement, on suppose

$$\forall B \in \mathcal{P}(E), f\left(f^{-1}(B)\right) = B.$$

Montrer que l'application f est alors surjective.

Solution 10.23

- 1. (a) Soit $x \in A$, alors $f(x) \in f(A)$, ce qui s'écrit également $x \in f^{-1}(f(A))$. Conclusion: $A \subset f^{-1}(f(A))$.
 - (b) Soit $x \in f^{-1}(f(A))$, on a donc $f(x) \in f(A)$, c'est-à-dire qu'il existe $x' \in A$ tel que f(x') = f(x). Puisque f est injective, on a x = x' d'où $x \in A$.

Conclusion: on a montrer $f^{-1}(f(A)) \subset A$. Le résultat demandé découle de la question précédente par double inclusion.

(c) Soit $(x_1, x_2) \in E^2$ tel que $f(x_1) = f(x_2)$. On a alors $f(\{x_1\}) = \{f(x_1)\} = \{f(x_2)\} = f(\{x_2\})$ d'où

$$\left\{\;x_1\;\right\}=f^{-1}\left(f\left(\left\{\;x_1\;\right\}\right)\right)=f^{-1}\left(f\left(\left\{\;x_2\;\right\}\right)\right)=\left\{\;x_2\;\right\},$$

ce qui implique $x_1 = x_2$: f est alors injective.

2. (a) Soit $y \in f(f^{-1}(B))$, il existe alors $x \in f^{-1}(B)$ tel que y = f(x). Or $x \in f^{-1}(B)$ signifie que $y = f(x) \in B$.

Conclusion: $f(f^{-1}(B)) \subset B$.

(b) Soit $y \in B$. Puisque f est surjective, il existe $x \in E$ tel que y = f(x). Or $y = f(x) \in B$, on a donc en effet

$$x \in f^{-1}(B)$$
 et $y = f(x)$.

Donc $y \in f(f^{-1}(B))$.

Conclusion : on a montrer $B \subset f(f^{-1}(B))$. Le résultat demandé découle de la question précédente par double inclusion.

(c) Soit $y \in F$, on a $f(f^{-1}(\{y\}) = \{y\})$, en particulier, $f^{-1}(\{y\}) \neq \emptyset$, c'est-à-dire que y possède au moins un antécédent par f : f est surjective.

Variante. Puisque $f \in \mathcal{F}(E, F)$, $f^{-1}(F) = E$. On a donc $f(E) = f(f^{-1}(F)) = F$; c'est-à-dire f est surjective.

Soit X un ensemble et f une application de X dans l'ensemble $\mathcal{P}(X)$ des parties de X. On note A l'ensemble des $x \in X$ vérifiant $x \notin f(x)$. Démontrer qu'il n'existe aucun $x \in X$ tel que A = f(x).

Exercice 10.25

Soit f une application de E dans F et soit $g: \mathcal{P}(F) \to \mathcal{P}(E)$ définie par

$$\forall Y \in \mathcal{P}(F), g(Y) = f^{-1}(Y).$$

- 1. Montrer que g est injective si, et seulement si f est surjective.
- **2.** Montrer que g est surjective si, et seulement si f est injective.

Exercice 10.26 (***)

Donner une écriture simple les ensembles suivants.

1.
$$I_1 = \bigcap_{n=1}^{+\infty} \left[3, 3 + \frac{1}{n^2} \right[$$
.

3.
$$I_3 = \bigcap_{n=1}^{+\infty} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right[.$$
4. $I_4 = \bigcup_{n=2}^{+\infty} \left[1 + \frac{1}{n}, n \right].$

2.
$$I_2 = \bigcap_{n=1}^{+\infty} \left[-2 - \frac{1}{n}, 4 + n^2 \right].$$

4.
$$I_4 = \bigcup_{n=2}^{+\infty} \left[1 + \frac{1}{n}, n \right].$$

Solution 10.26

1. Montrons que $I_1 = \{3\}$ par double inclusion.

Pour tout $n \ge 1$, on a $3 \in \left[3, 3 + \frac{1}{n^2}\right]$, donc $\{3\} \subset I_1$.

Réciproquement, soit $x \in I_1$. Alors,

$$\forall n \ge 1, 3 \le x \le 3 + \frac{1}{n^2}.$$

Par compatibilité de la relation d'ordre avec la limite, on a $3 \le x \le 3$, c'est-à-dire x = 3. On a donc $I_1 \subset \{3\}.$

2. Montrons que $I_2 = [-2, 5]$ par double inclusion.

Soit $x \in I_2$, alors

$$\forall n \ge 1, -2 - \frac{1}{n} \le x \le 4 + n^2.$$

Par compatibilité de la relation d'ordre avec la limite, on a $-2 \le x$. De plus, en spécifiant la relation précédente pour n = 1, on obtient $x \le 5$.

Finalement $x \in [-2, 5]$. On a donc $I_2 \subset [-2, 5]$.

Réciproquement, soit $x \in [-2, 5]$. Alors pour tout $n \ge 1$, on a

$$-2 - \frac{1}{n^2} < -2 \le x \le 5 \le 4 + n^2.$$

On a donc,

$$\forall n \ge 1, x \in \left] -2 - \frac{1}{n^2}, 4 + n^2 \right].$$

c'est-à-dire $x \in I_2$.

- **3.** $I_3 = [0, 2]$. La démonstration est analogue aux précédentes.
- **4.** Montrons que $I_4 =]1, +\infty[$ par double inclusion.

Soit $x \in I_4$. Alors, il existe $n \ge 2$ tel que

$$1 + \frac{1}{n} \le x \le n.$$

Et puisque $1 < 1 + \frac{1}{n}$, on a bien x > 1, c'est-à-dire $x \in]1, +\infty[$.

Réciproquement, soit $x \in]1, +\infty[$. On a donc x > 1 et donc, pour $n \ge 2$,

$$x \ge 1 + \frac{1}{n} \iff x - 1 \ge \frac{1}{n} \iff n \ge \frac{1}{x - 1}.$$

24

Posons $n_1 = \left\lfloor \frac{1}{x-1} \right\rfloor + 1$ et $n_2 = \lfloor x \rfloor + 1$. Alors, pour $n = \max 2, n_1, n_2$, on a

$$1 + \frac{1}{n} \le 1 + \frac{1}{n_1} \le x \le n_2 \le n.$$

On a donc montrer l'existence d'un entier $n \ge 2$, tel que $x \in \left[1 + \frac{1}{n}, n\right]$, donc $x \in I_4$.