Linda Neergaard Parker, Jacobs ESSSA/MSFC

Joseph Minow, NASA/MSFC

AGU, Fall 2014

Spacecraft Charging in Geostationary Transfer Orbit

Outline

- Background
- Observations
- Model
- Event characteristics
- Future work

Surface Charging

- Accumulation of charge on the outer surfaces of a spacecraft
- The net charge is due to the sum of the incident currents

$$\frac{dQ}{dt} = C\frac{dV}{dt} = \frac{d\sigma}{dt}A = \sum_{k} I_{k}$$

(Garrett and Minow, 2004)

Ion Line Charging Signature

• "Ion line" is due to the low energy (E_o) background ions accelerated to an additional energy (q φ) due to the spacecraft potential

$$E=E_o+q\phi$$

- Auroral, 1-2 kV, eclipse, low ambient density and high flux for high energy electrons
- GEO, 1-10 kV, midnight through dawn sector

Van Allen Probes

- 700 km x 5.8 R_e orbit, geostationary transit orbit
- Study includes data from the start of mission through December 2013.

 Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging

events

Level III moments files

Charging Line Extraction Program

- Read in RBSP HOPE data
- Look for ion charging line in the proton differential energy flux channel
- Program automatically extracts the H+, He+, O+ charging lines
 - Plots charging line
 - Prints variables to file including t_0 , t_f , ϕ , ephemeris, moments.

Dual Satellite Observations

- By looking at RBSP-A and -B, we can explore the temporal and spatial information of the charging events
- Satellites exhibited charging on the same day in 12 out of 30 days
- When both satellites exhibit charging on the same day, the charging was of similar magnitude

Example: Nov 1, 2012

Moments

Charging Levels

- Peak potentials exceed the mean of the charging events by an approximate order of magnitude or less
- In general, more charging events occurred at times when n_e > n_i and when T_i > T_e

Relationship to K_p

 Weak correlation between the longer the event, higher Kp, higher charging levels

Normalized to K_p

- RBSP-A saw charging 12.5% of the orbits when $K_p=4$
- 2.5% of the total time (orbits) saw charging

Surface Charging Locations

- GEO charging is more prevalent in the midnight to dawn sector
- GTO, larger number in midnight-dawn sector, but sizable number at other local times

Summary

- 63 candidate surface charging events in both RBSP-A and B
- All events are in the outer radiation belt
- Charging rates increase with K_p
- Most (55) are in sunlight, however 8 are in eclipse or partial eclipse condition
- Minimum duration charging event ~20 minutes
- Maximum duration charging event ~4 hours
- Maximum potential ~ few kilovolts