CheggSolutions - Thegdp

Dissociation of Carbonic Acid (H₂CO₃)

Subject: Chemistry - Acid-Base Equilibria

Given:

Initial concentration of H₂CO₃ (carbonic acid) = 0.180 M

$$K_{a1}$$
 for $H_2CO_3 = 4.3 \times 10^{-7}$

$$K_{a2}$$
 for $H_2CO_3 = 5.6 \times 10^{-11}$

Dissociation Steps:

Carbonic acid dissociates in two steps:

1.
$$H_2CO_3 \leftrightarrow H^+ + HCO_3^-$$
 with K_{a1}

2.
$$HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$$
 with K_{a2}

Step 1: Dissociation Equilibria Setup:

 $K_{a1} = \frac{H^{-2}}{H^{-2}}$

Assuming $[H^+] = [HCO_3^-] = x$:

 $K_{a1} = (\frac{x^2}{0.180 - x})$

Since K_{a1} is small, $\langle x \rangle$ is small compared to 0.180, so $\langle 0.180 - x \rangle$

$$4.3 \times 10^{-7} = (\frac{x^2}{0.180})$$

Solving for $\ (x \)$:

$$x^2 = (4.3 \times 10^{-7}) \times 0.180$$

$$x^2 = 7.74 \times 10^{-8}$$

 $x = (\sqrt{7.74 \times 10^{-8}})$

$$x = 8.8 \times 10^{-4} M$$

Therefore, $[H^+] = [HCO_3^-] = 8.8 \times 10^{-4} M$

Step 2: Calculate [CO₃²] using K_{a2}:

 $K_{a2} = \frac{(\text{HCO}_3^{2-})}{(\text{HCO}_3^{-1})}$

 $K_{a2} = \frac{(8.8 \times 10^{-4}) y}{8.8 \times 10^{-4}}}$

$$K_{a2} = y$$

So:

$$y = K_{a2} = 5.6 \times 10^{-11} M$$

Thus,
$$[CO_3^{2-}] = 5.6 \times 10^{-11} M$$

Step 3: Calculate [OH] using Kw:

Using the relationship:

$$K_{w} = [H^{+}][OH^{-}]$$

$$1.0 \times 10^{-14} = (8.8 \times 10^{-4})[OH^-]$$

Solving for [OH^-]:
 $[OH^-] = \(1.0 \times 10^{-14})$
 $[OH^-] = 1.14 \times 10^{-11} M$
Therefore, $[OH^-] = 1.14 \times 10^{-11} M$

$$[CO_3^{2-}] = 5.6 \times 10^{-11} M$$

$$[H_3O^+] = 8.8 \times 10^{-4} M$$

$$[OH^{-}] = 1.14 \times 10^{-11} M$$