

Universidade Federal do Sul de Sudeste do Pará Faculdade de Computação e Engenharia Elétrica Inteligência Artificial

Capítulo 4 REDES NEURAIS ARTIFICIAIS (Parte 1)

PROF. DR. ELTON ALVES

Introdução

"Um gato que já se sentou sobre um fogão quente não se sentará novamente sobre esse fogão quente nem sobre um fogão frio".

Conceito

□São modelos computacionais inspiradores nos mecanismos de aprendizagem do cérebro humano.

Motivação para as RNAs

- □O processamento de informações no cérebro humano é altamente complexo, não linear e paralelo.
 - O cérebro é constituído por aproximadamente 100 bilhões de neurônios (10¹⁰)
 - Cada neurônio é interligado em média com outros 6.000 neurônios (<u>60 trilhões de sinapses</u>).
 - Número de neurônios equivale à quantidade de estrelas de via Láctea.
 - É um dos sistemas mais complexos que é atualmente conhecido pelo ser humano

Comparação entre computador e o cérebro

	Computador	Cérebro
Tipo de processamento	Sequencial (serial)	Paralelo
Quantidade e complexidade	Um ou poucos processadores	≈ 10¹º neurônios; ≈ 10¹º conexões/neurônio.
Velocidade de processamento	≈ 10 ⁻⁹ segundos	≈ 10 ⁻⁶ segundos
Eficiência energética	≈ 10 ⁻¹⁶ Joules (por operação/segundo)	≈ 10 ⁻⁶ Joules (por operação/segundo)

Principais Características das RNAs

□Adaptação:

• Parâmetros internos da rede, tipicamente seus <u>pesos sinápticos</u>, são ajustados a partir da apresentação sucessiva de exemplos (amostras e medidas) relacionados ao comportamento do processo.

□ Capacidade de Aprendizado:

• Aplicação de <u>método de treinamento</u> possibilita a rede extrair o relacionamento existente entre variáveis que compõem a aplicação.

☐ Habilidade de generalização:

• Após o <u>processo de treinamento</u>, a rede é capaz de generalizar o conhecimento adquirido, possibilitando a estimação de soluções que eram até então <u>desconhecidas</u>.

Principais Características

■ Mapeamento de entrada-saída:

• A RNA aprende através de mapeamentos dos dados de entrasaída.

□Não-linearidade:

- Um neurônio artificial pode ser linear ou não linear;
- · A não-linearidade é uma propriedade de sistemas físicos;

Neurônio Biológico

• O processamento de informações no cérebro humano é regido por elementos processadores biológicos que operam em paralelo.

Neurônio Biológico

Neurônio Biológico: Variação do potencial de ação do neurônio

☐Etapas de variação (potencial de ação):

Característica	Dimensão
Massa do cérebro	1,5 kg
Energia consumida	20%
Comprimento do neurônio	100μm
Potencial de repouso	-70 mV
Potencial de ativação	-55 mV
Potencial de ação (máximo)	35 mV

Modelo do Neurônio Artificial

$$v_k = \sum_{m=1}^p w_{km} x_m$$

$$y_k = f(v_k + b_k)$$

Modelo do Neurônio Artificial

Modelo do Neurônio Artificial

Considere os pesos a seguir:

 $(0.8\times0.7) + (0.4\times0.9) = 0.92$

$$W1 = 0.8 e W2 = 0.4$$

As entradas para o neurônio são:

$$X1 = 0.7 e 0.9$$

Então, o peso somado dessas entradas é:

$$v_k = \sum_{m=1}^p w_{km} x_m$$

■ O nível de ativação Y é definido para este neurônio como:

$$Y = \begin{cases} +1 \ para \ X > t \\ 0 \ para \ X \le t \end{cases}$$

$$y_k = f(v_k + b_k)$$

Funções de Ativação Neural

□ Função Logística:

• Saída: valores entre 0 e 1.

Funções de Ativação Neural

☐ Função tangente hiperbólica:

○Saída: valores reais entre -1 e 1

Funções de Ativação Neural

□Função gaussiana:

- □Função linear (identidade):
- Produz um resultado identifico ao potencial de ativação

Arquitetura das RNAs

□Arquitetura de RNAs:

- Define a forma como os seus diversos neurônios estão arranjados, ou dispostos, uns em relação aos outros.
- Os arranjos são estruturados através do direcionamento do fluxo sináptico.

□Topologia de RNAs:

- Define as diferentes formas de composições estruturais que uma rede pode assumir, dada uma determinada arquitetura.
- Ex: dada uma determinada arquitetura, uma das redes pode ser composta por 10 neurônios e a outra por 20 neurônios

Arquitetura das RNAs

□Processo de treinamento:

- Consiste na aplicação de um conjunto de passos ordenados com o intuito de <u>ajustar os pesos</u> e os <u>limiares de seus neurônios</u>.
- Visa sintonizar a rede para que as suas respostas estejam próximas dos valores desejados.
- Conhecido como <u>algoritmo de aprendizagem</u>.

Partes das RNAs

□Camada de entrada:

• Responsável pelo recebimento de informações (dados) advindas do meio externo.

□Camadas escondidas, intermediárias, ocultas ou invisíveis:

• Compostas de neurônios que possuem a responsabilidade de extrair as características associadas ao processo ou sistema a ser inferido.

□Camada de saída:

• Também é constituída de neurônios, sendo responsável por produzir/apresentar os resultados finais da rede

- □Arquitetura feedforward (alimentação à frente):
 - Camada simples.
 - Constituída de uma camada de entrada e única camada de neurônios, que é a própria saída.
 - Fluxo de informações segue sempre numa única direção (unidirecional).
 - Ex: Perceptron, Adaline
 - Aplicações: classificação de padrões, filtragem linear

- ☐ Arquitetura feedforward (alimentação à frente):
- Camadas múltiplas.
- Presença de uma ou mais camadas neurais escondidas.
- Quantidade de camadas escondidas e de neurônios dependem, sobretudo, do tipo e complexidade do problema.
- Aplicações: aproximação de funções, classificação de padrões, controle de processos, otimização, etc.

□Redes correntes:

- Saídas dos neurônios são realimentadas como sinais de entrada para outros neurônios.
- Realimentação as qualificam para processamento dinâmico de informações.
- Ex: Hopfield, Perceptron multicamadas com realimentação
- Aplicações sistemas de previsão, otimização, controle de processos, etc.

□Arquitetura articulada:

- Levam em consideração a forma em que a disposição espacial dos neurônios está organizada.
- Visa propósitos de extração de características.
- Ex: Kohonen.
- Aplicações: problemas de agrupamento, classificação de padrões, otimização de sistemas, etc.

Aprendizado

"Aprendizado é o processo pelo qual os <u>parâmetros livres</u> de uma rede neural são ajustados por meio de uma forma continuada de estímulos pelo ambiente externo, sendo o tipo específico de aprendizado definido pela maneira particular como ocorrem os ajustes dos parâmetros livres"

Treinamento Supervisionado

- □Consiste em se ter disponível, considerando cada amostra dos sinais de entrada, as respectivas saídas desejadas.
- □Comporta como se houvesse um "professor" ensinando para a rede qual seria a <u>resposta correta</u> para cada amostra apresentada

Passos de Treinamento Supervisionado

- 1. Apresente uma amostra de treinamento.
- 2. Calcule a saída produzida pela rede.
- 3. Compare com a saída desejada.
- 4. Se estiver dentro de valores aceitáveis:

Então——— Termine o processo de aprendizado

Senão — Ajuste os pesos sinápticos e limiares

dos neurônios e volte ao passo 1.

Treinamento não-supervisionado

- □ Diferentemente do supervisionado, as <u>respectivas saídas desejadas</u> <u>são inexistentes.</u>
- □A rede deve se <u>auto-organizar</u> em relação às particularidades existentes entre os elementos do conjunto total de amostras, identificado subconjuntos (*clusters*) que contenham similaridades.

Passo de Treinamento não-supervisionado

- 1. Apresente todas as amostras de treinamento.
- 2. Obtenha as características que marcam as amostras de treinamento.
- 3. Agrupe todas as amostras com características em comum.
- 4. Coloque as amostras comuns em classes.

Processos de treinamento

- □Consiste da aplicação de passos ordenados a fim de ajustar (sintonizar) os parâmetros livre (pesos sinápticos e limiares) dos neurônios.
- Objetivo final:
 generalização de
 soluções (as quais não eram conhecidas)

Divisão das Amostras

Usado para o processo de aprendizado da rede neural

Usado para verificar a generalização da RNA. Não participam do treinamento da RNA.

Potenciais Aplicações de RNA

□ Aproximador universal de funções:

- Envolvem normalmente o mapeamento de processos cuja modelagem por técnicas convencionais são de difícil obtenção.
- Mapeiam o relacionamento entre variáveis de um sistema a partir de um conjunto conhecido de seus valores representativos.

□ Controle de processos:

• Consistem em identificar ações de controle que permitam o alcance dos requisitos de qualidade, de eficiência e de segurança do processo.

Potenciais Aplicações de RNA

□ Classificação de Padrões

- Associar um padrão de entrada (amostra) para uma das classes previamente definidas.
- Exemplos: reconhecimento de caracteres, detecção de fraudes, reconhecimento de imagens e etc.

□Agrupamento de dados (clusterização)

- Identificação e detecção de similaridades e particularidades entre os diversos padrões de entrada a fim de possibilitar seu agrupamento.
- Exemplos: Agrupamentos de clientes, mineração de dados e etc.

Potenciais Aplicações de RNA

□Sistemas de Previsão

- Estimar valores futuros de um processo levando-se em consideração diversas medidas prévias observadas em seu domínio.
- Exemplos: previsão de tempo, previsão financeira (câmbio, bolsa e etc) e etc.