Student Information

Full Name : Unal Hasanli Id Number : 2589877

Answer 1

a)

p	q	$(p \wedge q)$	$(\neg p \vee \neg q)$	$(p \land q) \leftrightarrow (\neg p \lor \neg q)$
T	T	T	F	F
$\mid T$	F	F	T	F
$\mid F \mid$	T	F	T	F
$\mid F \mid$	F	F	T	F

Thus, $(p \land q) \leftrightarrow (\neg p \lor \neg q)$ is a contradiction.

b)

$$\begin{array}{lll} 1 & p \to ((q \vee \neg q) \to (p \wedge q)) \\ \\ 2 & \equiv p \to (T \to (p \wedge q)) & \text{Negation Law} \\ \\ 3 & \equiv p \to (F \vee (p \wedge q)) & \text{Table 7.1} \\ \\ 4 & \equiv p \to (p \wedge q) & \text{Identity Law} \\ \\ 5 & \equiv \neg p \vee (p \wedge q) & \text{Table 7.1} \\ \\ 6 & \equiv (\neg p \vee p) \wedge (\neg p \vee q) & \text{Distributive Law} \\ \\ 7 & \equiv T \wedge (\neg p \vee q) & \text{Negation Law} \\ \\ 8 & \equiv (\neg p \vee q) & \text{Identity Law} \\ \end{array}$$

Answer 2

- a) $\forall x \exists y W(x,y)$
- **b)** $\exists x \exists y F(x,y)$

c)
$$\forall x(W(x,P) \rightarrow A(Ali,x))$$

d)
$$\exists x(W(Busra, x) \land F(TUBITAK, x))$$

e)
$$\exists x \exists y \exists z (S(x,y) \land S(x,z) \land \neg(y,z))$$

f)
$$\forall y \forall z \forall x (W(x,z) \land W(y,z) \rightarrow (x=z))$$

$$\mathbf{g)} \ \exists y \exists z \exists x ((W(z,x) \land W(y,x) \land \neg (z=y) \land \forall n (W(n,x) \rightarrow ((n=y) \lor (n=z))))$$

Answer 3

Answer 4

1	p	premise
2	$p \to (q \wedge r)$	premise
3	$r \rightarrow s$	premise
4	$q \wedge r$	$\rightarrow_e, 1, 2$
5	q	$\wedge_{e1}, 4$
6	r	$\wedge_{e2}, 4$
7	s	$\rightarrow_e, 3, 6$
8	$s \to \neg q$	assumption
9	$\neg q$	$\rightarrow_e, 7, 8$
10	上	$\neg_e, 5, 9$
11	$\neg (s \to \neg q)$	$\neg_i, 8-10$

Answer 5