Methods of proof: direct, contradiction, contraposition, induc- Bolzano-Weierstrass Theorem: Every bounded real sequence tion.

Set operations $(A, B \subset X)$:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x | x \in A \text{ and } x \in B\}$
- Difference: $A \setminus B = \{x \in A | x \notin B\}$
- Complement: $A^C = \{x \in X | x \notin A\}$

DeMorgan's Laws: $(A \cap B)^C = A^C \cup B^C$ and $(A \cup B)^C =$ $A^C \cap B^C$.

Cardinality is the size of the set. Sets A and B are numerically equivalent (have the same cardinality) if their elements can be uniquely matched up and paired off.

Set A is finite if it is numerically equivalent to 1, ..., n for some n. Then A's cardinality = n. A set that is not finite is infinite.

An infinite set is either countable (it is numerically equivalent to \mathbb{N}) or uncountable.

Metric (distance) on a set X is a function $d: X \times X \to \mathbb{R}_+$ s.t. $\forall x, y, z \in X$,

- $d(x,y) \ge 0$, with equality iff x = y,
- d(x,y) = d(y,x),
- $d(x,z) \le d(x,y) + d(y,x)$

Metric space is a pair (X, d), where X is a set and d is a metric on X.

Euclidean space $(\mathbb{R}^m, d_E(x,y)) = (\{(x_1,...,x_m)|x_i \in \mathbb{R}, i=1,...,m\}, \sqrt{\sum_{i=1}^m (x_i,y_i)^2}).$

In metric space (X, d), open ball with center x and radius ε is $B_{\varepsilon}(x) = \{ y \in X | d(x, y) < \varepsilon \}.$

In metric space (X, d), closed ball with center x and radius ε is $B_{\varepsilon}(x) = \{ y \in X | d(x, y) \le \varepsilon \}.$

Sequence in a set X is a function $s: \mathbb{N} \to X$, which we write as $\{s_n\}$, where $s_n = s(n)$.

Sequence $\{x_n\}$ in a metric space (X,d) converges to $x \in X$ if $\forall \varepsilon > 0 \exists N(\varepsilon) > 0$ s.t. $\forall n > N(\varepsilon), d(x_n, x) < \varepsilon$ (written as $x_n \to x \text{ or } \lim_{n \to \infty} x_n = x$).

A sequence $\{x_n\}$ in a metric space (X,d) has at most one limit. Let (X,d) and (Y,ρ) be two metric spaces, $f:X\to Y$, x^0

Consider a sequence $\{x_n\}$ and a rule that assigns to each $k \in \mathbb{N}$ a value $n_k \in \mathbb{N}$ s.t. $n_k < n_{k+1} \forall k$. Then $\{x_{n_k}\}$ is called a subsequence.

If $\{x_n\}$ converges to x as $n \to \infty$, then any subsequence $\{x_{n_k}\}$ also converges to x as $k \to \infty$.

A subset $S \subset X$ in a metric space (X, d) is bounded if $\exists x \in$ $X, \beta \in \mathbb{R} \text{ s.t. } \forall s \in S, d(x, s) < \beta.$

Every convergent sequence in a metric space is bounded.

In (\mathbb{R}, d_E) , if $x_n \to x \in \mathbb{R}, y_n \to y \in \mathbb{R}$, and $x_n \leq y_n \forall n \in \mathbb{N}$, then $x \leq y$ (limits preserve weak inequality).

In (\mathbb{R}, d_E) , if $x_n \to x \in \mathbb{R}$ and $y_n \to y \in \mathbb{R}$, then $x_n + y_n \to x + y$, $x_n - y_n \to x - y$, $x_n y_n \to xy$, and $x_n/y_n \to x/y$ if $y \neq 0$ and $y_n \neq 0 \forall n$ (limits preserve algebraic operations).

contains at least one convergent subsequence.

Monotone Convergence Theorem: Every increasing sequence of real numbers that is bounded above converges. Every decreasing sequence of real numbers that is bounded below converges.

Every real sequence contains either a decreasing subsequence or increasing subsequence (and possibly both).

Given a real sequence $\{x_n\}$, the infinite sum of its terms is well-defined if the sequence of partial sums $\{S_n\}$ converges, $S_n = \sum_{i=1}^n x_i$. If $S_n \to S$, we write $\sum_{i=1}^\infty x_i = S$.

Let (X,d) be a metric space. A set $A \subset X$ is **open** if $\forall x \in$ $A\exists \varepsilon > 0 \text{ s.t. } B_{\varepsilon} \subset A.$

A set $C \subset X$ is **closed** id its complement, $C^c = X \setminus C$, is open.

Open ball $B_{\varepsilon}(x)$ is an open set. Closed ball $B_{\varepsilon}[x]$ is a closed

Let (X,d) be a metric space. Then

- \emptyset and X are simultaneously open and closed in X,
- the union of an arbitrary collection of open sets is open,
- the intersection of a finite collection of open sets is open,
- the union of a finite collection of closed sets is closed.
- the intersection of an arbitrary collection of closed sets is closed.

A set A in a metric space (X, d) is closed iff every convergent sequence $\{x_n\}$ contained in A has its limit in A.

Let (X, d) be a metric space and A a set in X. A point $x_L \in X$ is a **limit point** of A if $\forall \varepsilon > 0$, $(B_{\varepsilon}(x_L) \setminus \{x_l\}) \cap A \neq \emptyset$. (A has points that are arbitrarily close to x_L)

Let (X,d) and (Y,ρ) be two metric spaces, $A \subset X$, $f:A \to Y$, $x^0 =$ limit point of A. A function f has a limit y^0 as x approaches x^0 if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. if $x \in A$ and $0 < d(x, x^0) < \delta$, then $\rho(f(X), y^0) < \varepsilon$ (written as $\lim_{x \to x^0} f(x) = y^0$).

Let (X,d) and (Y,ρ) be two metric spaces, $f:X\to Y$, x^0 = \$ limit point of X. Then $\lim_{x\to x^0} f(x) = y^0$ iff for any sequence $\{x_n\} \in X$ s.t. $x_n \to x^0$ and $x_n \neq x^0$, the sequence $\{f_n\}$ converges to y^0 .

= \$ limit point of X. Then the limit of f as $x \to x^0$, when it exists, is unique.

Let (X,d) and (Y,ρ) be two metric spaces. A function f: $X \to Y$ is **continuous** at a point x^0 if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. if $d(x, x^0) < \delta$, then $\rho(f(x), f(x^0)) < \varepsilon$.

Continuity at x^0 requires $f(x^0)$ is defined and either x^0 is an isolated point of X ($\exists x^0$ s.t. $B_{\varepsilon}(x^0) = \{x^0\}$) or $\lim_{x \to x^0} f(x)$ exists and equals $f(x^0)$.

Let (X,d) and (Y,ρ) be two metric spaces, $f:X\to Y$. Then fis continuous at x^0 iff either (1) f(x) is defined and either x^0 is an isolated point or x^0 is a limit point of X and $\lim_{x\to x^0} = f(X^0)$ or (2) for any sequence $\{x_n\}$ s.t. $x_n \to x^0$, the sequence $\{f(x_n)\}$ converges to $f(x^0)$.

A function f is continuous if it is continuous at every point of Euclidean space (\mathbb{R}^m, d_E) is complete for any m. its domain.

$$f^{-1}(A) = \{x \in X | f(x) \to A\}$$

Let (X, d) and (Y, ρ) be two metric spaces, $f: x \to Y$. Then f is continuous iff for any closed set C in (Y, ρ) , the set $f^{-1}(C)$ is closed in (X, d).

Let (X,d) and (Y,ρ) be two metric spaces, $f:x\to Y$. Then fis continuous iff for any open set C in (Y, ρ) , the set $f^{-1}(C)$ is open in (X,d).

Let (X,d) and (Y,ρ) be two metric spaces. A function $f:X\to$ Y is uniformly continuous if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. if $d(x, x^0) < \delta$, then $\rho(f(x), f(x^0)) < \varepsilon$ (δ depends only on ε not on x^0).

Let (X,d) and (Y,ρ) be two metric spaces, $f:X\to Y,E\subset$ X. Then f is Lipschitz on E if $\exists K > 0$ s.t. $\rho(f(x), f(y)) \leq$ $Kd(x,y)\forall x,y\in E.$

Let (X, d) and (Y, ρ) be two metric spaces, $f: X \to Y, E \subset X$. Then f is locally Lipschitz on E if $\forall x \in E \exists \varepsilon > 0$ s.t. f is Lipschitz on $B_{\varepsilon}(x) \cap E$.

Lipschitz continuity \implies uniform continuity \implies continuity

Let $X \subset \mathbb{R}$. Then $u \in \mathbb{R}$ is an upper bound for X if $x \leq u$ for all $x \in X$.

Let $X \subset \mathbb{R}$. Then $l \in \mathbb{R}$ is an lower bound for X if $x \geq l$ for all $x \in X$.

Suppose X is bounded above. The **supremum** of X, $\sup X$, is the smallest upper bound for X. That is, $\sup X$ satisfies $\sup X \ge x \forall x \in X \text{ and } \forall y < \sup X \exists x \in X \text{ s.t. } x > y.$

Suppose X is bounded below. The **infimum** of X, inf X, is the largest lower bound for X. That is, inf X satisfies inf $X \leq$ $x \forall x \in X \text{ and } \forall y > \inf X \exists x \in X \text{ s.t. } x < y.$

Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum. This supremum is a real number.

EVT: Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Then f attains its maximum and minimum on [a,b]: $f(x_M) =$ $\sup_{x \in [a,b]} f(x), f(x_m) = \inf_{x \in [a,b]} f(x), x_M, x_m \in [a,b].$

IVT: Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Then for any $\gamma \in [f(a), f(b)]$ there exists $c \in [a, b]$ s.t. $f(c) = \gamma$.

 $f: \mathbb{R} \to \mathbb{R}$ is monotonically increasing if $\forall x, y, x < y$ implies f(x) < f(y).

Let $f:(a,b)\to\mathbb{R}$ be monotonically increasing. Then one-sided limits $f(x^+) := \lim_{x \to x^+} f(y)$ and $f(x^-) := \lim_{x \to x^-} f(y)$ exist $\forall x \in (a,b)$. Moreover, $\sup\{f(s)|a < s < x\} = f(x^-) \le f(x) \le f(x)$ $f(x^+) = \inf\{f(s)|x < s < b\}.$

A sequence $\{x_n\}$ in a metric space (X,d) is **Cauchy** if $\forall \varepsilon >$ $0\exists N>0 \text{ s.t. if } m,n>N, \text{ then } d(x_n,x_m)<\varepsilon.$

Every **convergent** sequence in a metric space is **Cauchy**.

A metric space (X, d) is **complete** if every Cauchy sequence contained in X converges to some point in X.

If (X,d) is a complete metric space and $Y \subset X$, then (Y,d) is complete iff Y is closed.

A function $T: X \to X$ from a metric space to itself is called and operator.

An operator $T: X \to X$ is a **contraction of modulus** β if $\beta < 1$ and $d(T(x), T(y)) \leq \beta d(x, y) \forall x, y \in X$.

Every contraction is uniformly continuous.

A fixed point of an operator T is an element $x^* \in X$ s.t. $T(x^*) =$

Contraction Mapping Theorem: Let (X, d) be a nonempty complete metric space and $T: X \to X$ a contraction with modulus $\beta < 1$. Then T has a unique fixed point x^* and $\forall x_0 \in$ X the sequence $\{x_n\}$, where $x_n = T^n(x_0) = T(T(...T(x_0)))$ converges to x^* .

Continuous Dependence of the Fixed Point on Pa**rameters**: Let (X, d) and (Ω, ρ) be two metric spaces and $T: X \times \Omega \to X$. For each $\omega \in \Omega$, let $T_{\omega}: X \to X$ be defined by $T_{\omega}(x) = T(x,\omega)$. Suppose (X,d) is complete, T is continuous in ω , and $\exists \beta < 1$ s.t. T_{ω} is a contraction of modulus β for all $\omega \in \Omega$. Then the fixed point function $x^*: \Omega \to X$ defined by $x^*(\omega) = T_{\omega}(x^*(\omega))$ is continuous.

Blackwell's Sufficient Conditions: Let B(X) be the set of all bounded functions from X to \mathbb{R} with metric $d_{\infty}(f,g) =$ $\sup_{x\in X} |f(x)-g(x)|$. Let $T:B(X)\to B(X)$ satisfy monotonicity (if $f(x) \leq g(x) \forall x \in X$, then $(T(f))(x) \leq (T(g))(x)$ for all $x \in X$) and discounting $(\exists \beta \in (0,1) \text{ s.t. for every } \alpha \geq 0 \text{ and }$ $x \in X$, $(T(f+a))(x) \leq (T(f))(x) + \beta \alpha$, then T is a contraction with modulus β .

A collection of sets $\mathcal{U} = \{U_{\lambda} | \lambda \in \Lambda\}$ in a metric space (X, d)is an **open cover** of the set A if U_{λ} is open for all $\lambda \in \Lambda$ and $A \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$.

A set A in a metric space is **compact** if every open cover of A contains a finite subcover of A. That is, if $\{U_{\lambda} | \lambda \in \Lambda\}$ is an open cover of A, then $\exists n \in \mathbb{N}$ and $\lambda_1, ..., \lambda_n \in \Lambda$ such that $A \subset U_{\lambda_1} \cup ... \cup U_{\lambda_n}$.

Any closed subset of a compact space is compact.

If A is a compact subset of a metric space, then A is closed and bounded.

Heine-Borel Theorem: If $A \subset \mathbb{R}^m$, then A is compact iff A is closed and bounded.

Closed interval $[a, b] = \{a \in \mathbb{R}^m | a_i \le x_i \le b_i, i = 1, ..., m\}$ is compact in (\mathbb{R}^m, d_E) for any $a, b \in \mathbb{R}^m$.

Let (X,d) and (Y,ρ) be metric spaces. If $f:X\to Y$ is continuous and C is a compact set in (X, d), then f(C) is compact in (Y, ρ) .

EVT: If C is a compact set in a metric space (X, d) and f: $C \to \mathbb{R}$ is continuous, then f is bounded on C and attains its maximum and minimum.

Let (X,d) and (Y,ρ) be metric spaces, $C \subset X$ compact, f: $C \to Y$ continuous. Then f is uniformly continuous on C.

A **vector space** V is a collection of objects called vectors, which may be added together and multiplied by real numbers, called scalars, satisfying $\forall x, y, z \in V, \forall \alpha, \beta \in \mathbb{R}$:

- (x+y) + z = x + (y+z),
- x + y = y + x,
- $\exists \bar{0} \in V \text{ s.t. } x + \bar{0} = \bar{0} + x = x,$
- $\exists (-x) \in V \text{ s.t. } x + (-x) = \bar{0},$
- $\alpha(x+y) = \alpha x + \alpha y$,
- $(\alpha + \beta)x = \alpha x + \beta x$,
- $(\alpha \cdot \beta)x = \alpha(\beta \cdot x)$,
- $1 \cdot x = x$.

Let V be a vector space. A linear combination of $x_1, ..., x_n \in V$ equals $y = \sum_{i=1}^n \alpha_i x_i$, where $\alpha_i \in \mathbb{R}$. α_i is called the coefficient of x_i in the linear combination.

Let W be a subset of V. A span of W is the set of all linear combinations of elements of W, span $W = \{\sum_{i=1} n\alpha_i x_i | n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in W\}$. The set $W \subset V$ spans V if V = span W.

A set $X \subset V$ is linearly dependent if $\exists x_1,...,x_n \in X, \alpha_1,...,\alpha_n \in \mathbb{R}$, s.t. $\sum_{i=1}^n \alpha_i^2 \neq 0$ and $\sum_{i=1}^n \alpha_i x_i \bar{0}$.

A set $X \subset V$ is linearly independent if $\nexists x_1,...,x_n \in X, \alpha_1,...,\alpha_n \in \mathbb{R}$, s.t. $\sum_{i=1}^n \alpha_i^2 \neq 0$ and $\sum_{i=1}^n \alpha_i x_i \bar{0}$ ($\alpha_1 = ... = \alpha_n = 0$).

A basis of a vector space V is a linearly independent set of vectors in V that spans V.

Let $B = \{v_{\lambda} | \lambda \in \Lambda\}$ be a basis for V. Then every vector $x \in V$ has a unique representation as a linear combination of elements of B with finitely many nonzero coefficients.

Every vector space has a basis. Any two bases of a vector space V have the same cardinality.

If V is a vector space and $W \subset V$ is linearly independent, then there exists a linearly independent set B s.t. $W \subset B \subset \operatorname{span} B = V$.

Let V be a vector space. The dimension of V, denoted $\dim V$, is the cardinality of any basis of V. If $\dim V = n$ for some $n \in \mathbb{N}$ then V is finite-dimensional. Otherwise V is infinite-dimensional.

Suppose $\dim V = n \in \mathbb{N}$. If $W \subset V$ and |W| > n, then W is linearly dependent.

Suppose $\dim V = n$ and $W \subset V$, |W| = n. Then

- If W is linearly independent, then $\operatorname{span} W = V$, so W is a basis of V.
- If $\operatorname{span} W = V$, then W is linearly independent, so W is a basis of V.

Let X and Y be two vector spaces. We say that $T: X \to Y$ is a linear transformation if for all $x_1, x_2 \in X$, $\alpha_1, \alpha_2 \in \mathbb{R}$, $T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T(x_1) + \alpha_2 T(x_2)$.

L(X,Y) is the set of all linear transformations from X to Y.

L(X,Y) is a vector space.

If $R: X \to Y$ and $S: Y \to Z$ are linear transformations, then $S \circ R: X \to Z$ is a linear transformation.

Let $X \in L(X,Y)$. The image of T is $\text{Im}T := T(X) = \{T(x) | x \in X\}$, the kernal of T is $\text{ker}T := \{x \in X | T(x) = \overline{0}\}$, and the rank of T is $\text{rank}T := \dim(\text{Im}T)$.

If $T \in L(X, Y)$, then ImT and kerT are vector subspaces of Y and X, respectively.

Let X be a finite-dimenional vector space and $T \in L(X, Y)$. Then dim $X = \dim(\ker T) + \operatorname{rank} T = \dim(\ker T) + \dim(\operatorname{Im} T)$.

 $T \in L(X,Y)$ is invertible if there exists a function $S: Y \to X$ s.t. $S(T(x)) = x \forall x \in X$ and $T(S(y)) = y \forall y \in Y$. The transformation S is called the inverse of T and is denoted T^{-1} .

T is invertible means (1) T is one-to-one $(\forall x_1 \neq x_2, T(x_1) \neq T(x_2))$ and (2) T is onto $(\forall y \in Y \exists x \in X \text{ s.t. } T(x) = y)$.

If $T \in L(X, Y)$ is invertible, then $T^{-1} \in L(Y, X)$.

If $T \in L(X, Y)$ is one-to-one iff $\ker T \equiv \{\bar{0}\}.$

Two vector spaces X and Y are isomorphic if there exists an invertible linear function from X to Y. A function with these properties is called an isomorphism.

Let X and Y be two vector spaces, and let $V = \{v_{\lambda} | \lambda \in \Lambda\}$ be a basis for X. Then a linear transformation $T: X \to Y$ is completely defined by its value on V, that is:

- Given any set $\{y_{\lambda} | \lambda \in \Lambda\} \subset Y$, $\exists T \in L(X, Y)$ s.t. $T(v_{\lambda}) = y_{\lambda}$ for all $\lambda \in \Lambda$.
- If $S, T \in L(X, Y)$ and $S(v_{\lambda}) = T(v_{\lambda})$ for all $\lambda \in \Lambda$, then S = T.

Two vector spaces X and Y are isomorphic iff $\dim X = \dim Y$.

 $V = \{v_1, ..., v_n\} \in X$ is a basis of $X \implies \forall x \in X$ has a unique representation $x = \sum_{i=1}^n \alpha_i v_i$.

$$\operatorname{crd}_V(x) = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}$$

 $V = \{v_1, ..., v_n\} \in X$ is a basis of X and $W = \{w_1, ..., w_n\} \in Y$ is a basis of Y. $\forall y \in Y$ has a unique representation $y = \sum_{i=1}^m \alpha_i w_i$.

$$\operatorname{mtx}_{W,V}(T) = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \vdots & \vdots & & \vdots \\ \alpha_{m1} & \alpha_{m2} & \dots & \alpha_{mn} \end{bmatrix} \in M_{m \times n}$$

 $U \subset X$ is a basis of X, $V \subset Y$ is a basis of Y, and $W \subset Z$ is a basis of Z. $S \in L(X,Y), T \in L(Y,Z)$. $mtx_{W,V}(T) \cdot mtx_{V,U}(S) = mtx_{W,U}(T \circ S)$.

dim $X = n, T \in L(X, X)$. $\operatorname{mtx}_V(T) \equiv \operatorname{mtx}_{V,V}(T)$. To change basis from V to W, $\operatorname{mtx}_V(T) = P^{-1} \cdot \operatorname{mtx}_W(T) \cdot P$ where $P = \operatorname{mtx}_{W,V}(id)$.

 $A, B \in M_{n \times n}$ are similar if $A = P^{-1}BP$ for some invertible matrix P.

If $\dim X = n$, then

- If $T \in L(X, X)$, then any two matrix representations of T are similar.
- Two similar matrices represent the same linear transformation T, relative to suitable bases.