AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application.

1. (Original) A compound of Formula I:

(Formula I)

wherein X is a substituent selected from the group consisting of an OH, an ether, a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted; wherein p is an integer that is greater than or equal to 2;

wherein each of R³, R⁴, and R⁸ is independently a hydrogen; a C₁-C₂₄ alkyl, C₂-C₂₄ alkenyl, or C₂-C₂₄ alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R^5 and the carbon to which R^5 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^6 is absent and R^5 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^5 and R^6 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle;

or a salt thereof, wherein the compound is a solid.

2. (Original) A compound of Formula I:

wherein X is a substituent selected from the group consisting of an OH, an ether, a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR^7 to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^7 is absent and Y is H, and, when the bond is a single bond, R^7 is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted; wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R^5 and the carbon to which R^5 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^6 is absent and R^5 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^5 and R^6 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle;

or a salt thereof;

provided that, when each of R^1 and R^5 is CH_2 attached by a double-bond, R^2 and R^6 are absent, R^3 and R^4 are CH_3 , R^7 is H, T^1 and T^2 are both O, Z is CH_2 , and p is 3, then X and Y are not both methoxy, both ethoxy, or both hydroxyl; and when each of R^1 , R^2 , R^5 , and R^6 are H, then X and Y are not both sulfide or both ether.

3. (Original) A compound of Formula I:

(Formula I)

wherein X is a substituent selected from the group consisting of a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR^7 to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^7 is absent and Y is H, and, when the bond is a single bond, R^7 is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted; wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of a C_1 - C_8 alkyl, an aryl, and a heterocycle; and

wherein the bond between R⁵ and the carbon to which R⁵ is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁶ is absent and R⁵ is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R⁵ and R⁶ are independently selected from the group consisting of C₁-C₈ alkyl, aryl, and a heterocycle;

or a salt thereof.

4. (Currently Amended) The compound of <u>claim 1</u> any of claims 1-3, wherein <u>X</u> is <u>selected from the group consisting of:</u> the

(a) an amino acid-derived group has having the structure:

$$R \longrightarrow O$$
 R'
 $CHRCO_2H$
 $NR'R''$ or R''

wherein each of R, R', and R" is independently selected from the group consisting of H, a C₁-C₈ alkyl optionally substituted with an amine or a carboxylate; an aryl; an aryl alkyl; and a heterocycle,

(b) a phosphoric group, a phosphorus group, a phosphonic acid group, or a phosphonous acid group having the structure:

(<u>i</u>)

<u>(ii)</u>

<u>(iii)</u>

wherein R is C_1 - C_8 alkyl optionally substituted with an aryl, a heterocycle, an alkoxy, a halo, an amine, or carboxylate; an aryl; or a heterocycle, or

<u>(iv)</u>

wherein R is C_1 - C_8 alkyl optionally substituted with an aryl, a heterocycle, an alkoxy, a halo, an amine, or carboxylate; an aryl; or a heterocycle,

<u>(c)</u>

<u>(d)</u>

<u>(e)</u>

<u>(f)</u>

(g)

<u>(h)</u>

<u>(i)</u>

wherein, for each of structures (c) through (k), each of R, R', and R" is independently selected from the group consisting of H; C₁-C₈ alkyl optionally substituted with an aryl, a heterocycle, an alkoxy, a halo, an amine, or carboxylate; an aryl; and a heterocycle, and wherein u is 1 to about 16;

(1) an amide having the structure:

wherein each of R and R' is independently H; C_1 - C_8 alkyl optionally substituted with an aryl, a heterocycle, an alkoxy, a halo, an amine, or carboxylate; an aryl; or a heterocycle, and (m) a monohydroxylic or a polyhydroxylic group.

5. - 15. (Canceled).

16. (Currently Amended) The compound of claim 1 any of claims 1-15, wherein each of T^1 and T^2 is O, p is 3 and Z is -CH₂-.

- 17. (Currently Amended) The compound of claim 1 any of claims 1-16, wherein R^1 and R^2 are not both H.
- 18. (Currently Amended) The compound of <u>claim 1</u> any of claims 1-17, wherein each of R^3 and R^4 is a C_1 - C_8 alkyl optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, H, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl.
- 19. (Canceled).
- 20. (Canceled).
- 21. (Currently Amended) The compound of claim 1 any of claims 1-19, wherein R⁸ is H.
- 22. (Canceled).
- 23. (Canceled).
- 24. (Currently Amended) The compound of <u>claim 1</u> any of claims 1, 2, 4-10, or 16-23, wherein (a) each of X and Y is OH, (b) X is OH and Y is H, or (c) X is OR and R is an alkyl.
- 25. (Canceled).
- 26. (Canceled).
- 27. (Currently Amended) The compound of claim $\underline{24}$ [[26]], wherein \underline{X} is \underline{OR} and \underline{R} is a $\underline{C_1}$ - $\underline{C_8}$ alkyl.
- 28. (Canceled).
- 29. (Canceled).

- 30. (Currently Amended) The compound of <u>claim 1</u> any of claims 1-23 and 26-29, wherein Y is the same as X.
- 31. (Currently Amended) The compound of claim 1, wherein the compound is <u>selected</u> from the group consisting of:

$$H_2$$
C H_3 CO H_3 CO H_3 CO H_2

<u>(b)</u>

$$H_3CH_2CO$$
 H_3CH_3
 H_3CO
 H_3CO

<u>(c)</u>

$$H_2CO$$
 H_3CO
 H_3C

<u>(d)</u>

wherein, for structure (f), the following applies: R is an alkyl; a C_2 - C_{24} alkenyl; a cyclohexylalkyl; a C_3 - C_{26} alkoxyacetyl; a naphthalenalkyl optionally substituted with methyl or halogen; a phenyl (C_3 - C_{26} alkenyl), wherein the phenyl is optionally substituted with methyl or halogen; a cinnamyl; a pyridinealkyl optionally substituted with methyl or halogen; a dihydropyridine alkyl optionally substituted with C_1 - C_{24} alkyl; a thiophenealkyl optionally substituted with methyl or halogen; an aryl; an allyl; a furanalkyl optionally substituted with methyl or halogen; cysteine; glutathione; or a group of structure

wherein each of Y and Y' is independently hydrogen, C₁-C₂₄ alkyl, C₁-C₂₄ alkoxy, or halogen, or Y and Y' together form 3,4-methylenedioxy, and Y" is hydrogen, C₁-C₂₄ alkyl, C₁-C₂₄ alkoxy or halogen.

- 32. 36. (Canceled).
- 37. (Currently Amended) The compound of claim 31 [[36]], wherein the compound is of structure (f) and R is

and wherein each of Y and Y' is independently hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, or halogen, or Y and Y' together form 3,4-methylenedioxy, and Y" is hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy or halogen.

- 38. (Canceled).
- 39. (Canceled).
- 40. (Currently Amended) The compound of <u>claim 1</u> any of claims 1-3, wherein the compound is

wherein R is an alkyl; a cycloalkyl; a C_2 - C_{24} alkenyl; a cyclohexylalkyl; a C_3 - C_{26} alkoxyacetyl; a naphthalenalkyl optionally substituted with methyl or halogen; phenyl (C_2 - C_{24} alkenyl), wherein the phenyl is optionally substituted with methyl or halogen; cinnamyl; pyridinealkyl optionally substituted with methyl or halogen; dihydropyridine alkyl optionally

substituted with C₁-C₂₄ alkyl; thiophenealkyl optionally substituted with methyl or halogen; an aryl; an allyl; furanalkyl optionally substituted with methyl or halogen; or a group of structure

wherein each of Y and Y' is independently hydrogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, or halogen, or Y and Y' together form 3,4-methylenedioxy, and Y" is hydrogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy or halogen.

41. - 47. (Canceled).

- 48. (Currently Amended) A pharmaceutical composition comprising a compound of <u>claim 1</u> any of claims 1-47 and a pharmaceutically acceptable carrier.
- 49. (Currently Amended) A method of inhibiting the growth of a cell, which method comprises administering to the cell in an amount effective to inhibit the growth of the cell a compound of claim 1 any of claims 1-47.
- 50. (Currently Amended) The method of claim 49, wherein the cell is in a host <u>and the</u> host is afflicted with a disease caused by hyperproliferation and the method effectively treats the disease.

51. - 56. (Canceled).

57. (Currently Amended) A method of treating a viral, parasitic, or bacterial infection of a cell, which method comprises administering to the cell in an amount effective to treat a viral, parasitic, or bacterial infection a compound of claim 1 any of claims 1-47.

- 58. (Currently Amended) The method claim 57, wherein the cell is in a host and the host is afflicted with a disease caused by the viral, parasitic, or bacterial infection and the method effectively treats the disease.
- 59. 61. (Canceled).
- 62. (Currently Amended) A method of preparing [[a]] the compound of claim 1, wherein the compound is of Formula I

wherein X is OH,

wherein the bond between the carbon to which Y is attached and the N of NR^7 to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^7 is absent and Y is H, and, when the bond is a single bond, R^7 is H and Y is OH;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted; wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the

bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R^5 and the carbon to which R^5 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^6 is absent and R^5 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^5 and R^6 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle;

or a salt thereof; and

wherein the compound is a solid;

which method comprises:

(a) providing a compound of Formula II:

$$R^{1}$$

$$(R^{2})$$

$$(R^{2})$$

$$(R^{3})$$

$$(R^{4})$$

$$(R^{6})$$

$$(R^{6})$$

(Formula II)

wherein the definitions of R¹, R², R³, R⁴, R⁵, R⁶, T¹, T², Z, and p are the same as those for Formula I; and

- (b) contacting the compound of Formula II with water, whereby the solid compound of Formula I is formed.
- 63.-67. (Canceled).
- 68. (Currently Amended) A method of preparing [[a]] the compound of claim 1, wherein the compound is of Formula I

(Formula I)

wherein X is a substituent selected from the group consisting of an ether, a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid- derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T1 and T2 is independently O, S, or NR8;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted; Swherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, H, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R^5 and the carbon to which R^5 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^6 is absent and R^5 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^5 and R^6 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle;

or a salt thereof; and

wherein the compound is a solid;[[.]]

which method comprises:

(a) providing a compound of Formula II:

$$R^{1}$$

$$(R^{2})$$

$$N$$

$$OR^{3} R^{4}O$$

$$R^{5}$$

(Formula II)

wherein the definitions of R¹, R², R³, R⁴, R⁵, R⁶, T¹, T², Z, and p are the same as those for Formula I; and

(b) combining the compound of Formula II with a nucleophilic organic reactant, wherein the nucleophilic part of the nucleophilic organic reactant provides X,

whereby the solid compound of Formula I is formed.

69. (Currently Amended) A method of preparing [[a]] the compound of claim 2, wherein the compound is of Formula I

(Formula I)

wherein X is a substituent selected from the group consisting of an OH, an ether, a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted; wherein p is an integer that is greater than or equal to 2;

wherein each of R³, R⁴, and R⁸ is independently a hydrogen; a C₁-C₂₄ alkyl, C₂-C₂₄ alkenyl, or C₂-C₂₄ alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R^5 and the carbon to which R^5 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^6 is absent and R^5 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^5 and R^6 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle;

or a salt thereof; and

provided that, when each of R^1 and R^5 is CH_2 attached by a double-bond, R^2 and R^6 are absent, R^3 and R^4 are CH_3 , R^7 is H, T^1 and T^2 are both O, Z is CH_2 , and p is 3, then X and

Y are not both methoxy, both ethoxy, or both hydroxyl; and when each of R¹, R², R⁵, and R⁶ are H, then X and Y are not both sulfide or both ether;

which method comprises:

(a) providing a compound of Formula II:

$$R^{1}$$

$$(R^{2})$$

$$(R^{2})$$

$$(R^{5})$$

$$(R^{6})$$

(Formula II)

wherein the definitions of R¹, R², R³, R⁴, R⁵, R⁶, T¹, T², Z, and p are the same as those for Formula I; and

(b) combining the compound of Formula II with a nucleophilic organic reactant other than methanol or ethanol, wherein the nucleophilic part of the nucleophilic organic reactant provides X,

whereby the solid compound of Formula I is formed.

70. (Currently Amended) A method of preparing [[a]] the compound of claim 3, wherein the compound is of Formula I

$$\begin{array}{c} X \\ H \\ N \\ OR^3 R^4O \end{array}$$

$$\begin{array}{c} R^7 \\ N \\ OR^5 \end{array}$$

$$\begin{array}{c} (R^6) \\ R^5 \end{array}$$

(Formula I)

wherein X is a substituent selected from the group consisting of a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a

sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR^7 to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^7 is absent and Y is H, and, when the bond is a single bond, R^7 is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted; wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R⁵ and the carbon to which R⁵ is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁶ is absent and R⁵ is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R⁵ and R⁶ are independently selected from the group consisting of C₁-C₈ alkyl, aryl, and a heterocycle;

or a salt thereof; and which method comprises:

(a) providing a compound of Formula II:

$$R^{1}$$

$$(R^{2})$$

$$(R^{2})$$

$$(R^{3} R^{4} O$$

$$(R^{6})$$

(Formula II)

wherein the definitions of R¹, R², R³, R⁴, R⁵, R⁶, T¹, T², Z, and p are the same as those for Formula I; and

(b) combining the compound of Formula II with a nucleophilic organic reactant, wherein the nucleophilic part of the nucleophilic organic reactant provides X, and whereby the solid compound of Formula I is formed.

71. - 80. (Canceled).

- 81. (New) The compound of claim 1, wherein X is selected from the group consisting of OR^9 , SR^{10} , or an amine; wherein each of R^9 and R^{10} is independently a hydrogen, an alkyl, or a substituted or unsubstituted phenyl; wherein the bond between the carbon to which Y is attached and the N of NR^7 to which the carbon is attached is a single bond; wherein Y is the same as X; wherein each of T^1 and T^2 is O; wherein Z is a divalent radical of an alkane; wherein p is 3; wherein each of R^3 and R^4 is independently a hydrogen or a C_1 – C_{24} alkyl; wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond; and wherein the bond between R^5 and the carbon to which R^5 is attached is a single bond.
- 82. (New) The compound of claim 2, wherein each of T^1 and T^2 is O, p is 3 and Z is CH_2 -.
- 83. (New) The compound of claim 2, wherein each of R³ and R⁴ is a C₁-C₄ alkyl optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl.

- 84. (New) The compound of claim 2, wherein (a) each of X and Y is OH, (b) X is OH and Y is H, or (c) X is OR and R is an alkyl.
- 85. (New) The compound of claim 83, wherein X is OR and R is methyl, ethyl, isopropyl, or *t*-butyl.
- 86. (New) The compound of claim 2, wherein the compound is selected from the group consisting of:

wherein, for structure (c), the following applies: R is an alkyl; a C_2 - C_{24} alkenyl; a cyclohexylalkyl; a C_3 - C_{26} alkoxyacetyl; a naphthalenalkyl optionally substituted with methyl

or halogen; a phenyl (C_3 - C_{26} alkenyl), wherein the phenyl is optionally substituted with methyl or halogen; a cinnamyl; a pyridinealkyl optionally substituted with methyl or halogen; a dihydropyridine alkyl optionally substituted with C_1 - C_{24} alkyl; a thiophenealkyl optionally substituted with methyl or halogen; an aryl; an allyl; a furanalkyl optionally substituted with methyl or halogen; cysteine; glutathione; or a group of structure

wherein each of Y and Y' is independently hydrogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, or halogen, or Y and Y' together form 3,4-methylenedioxy, and Y" is hydrogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy or halogen.

87. (New) The compound of claim 2, wherein the compound is

wherein R is an alkyl; a cycloalkyl; a C_2 - C_{24} alkenyl; a cyclohexylalkyl; a C_3 - C_{26} alkoxyacetyl; a naphthalenalkyl optionally substituted with methyl or halogen; phenyl (C_2 - C_{24} alkenyl), wherein the phenyl is optionally substituted with methyl or halogen; cinnamyl; pyridinealkyl optionally substituted with methyl or halogen; dihydropyridine alkyl optionally substituted with C_1 - C_{24} alkyl; thiophenealkyl optionally substituted with methyl or halogen; an aryl; an allyl; furanalkyl optionally substituted with methyl or halogen; or a group of structure

wherein each of Y and Y' is independently hydrogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, or halogen, or Y and Y' together form 3,4-methylenedioxy, and Y" is hydrogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy or halogen.

- 88. (New) A pharmaceutical composition comprising a compound of claim 2 and a pharmaceutically acceptable carrier.
- 89. (New) A method of inhibiting the growth of a cell, which method comprises administering to the cell in an amount effective to inhibit the growth of the cell a compound of claim 2.
- 90. (New) A method of treating a viral, parasitic, or bacterial infection of a cell, which method comprises administering to the cell in an amount effective to treat a viral, parasitic, or bacterial infection a compound of claim 2.
- 91. (New) The compound of claim 3, wherein each of T^1 and T^2 is O, p is 3 and Z is CH_2 -.
- 92. (New) The compound of claim 3, wherein each of R³ and R⁴ is a C₁-C₄ alkyl optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl.
- 93. (New) A pharmaceutical composition comprising a compound of claim 3 and a pharmaceutically acceptable carrier.
- 94. (New) A method of inhibiting the growth of a cell, which method comprises administering to the cell in an amount effective to inhibit the growth of the cell a compound of claim 3.

95. (New) A method of treating a viral, parasitic, or bacterial infection of a cell, which method comprises administering to the cell in an amount effective to treat a viral, parasitic, or bacterial infection a compound of claim 3.