Notes

Xinyu Zhong Wolfson College

December 6, 2022

${\bf Contents}$

1	Clas	ssical Fields	2
2	Syn	ymmetries and conservation laws	
	2.1	Noether's theorem	2
	2.2	Symmetries and conserved currents	2
	2.3	Global phase symmetry	2
	2.4	Local phase (gauge) symmetry	2
	2.5	Electromagnetic interaction	2
	2.6	Stress-energy tensor, angular momentum tensor	2
	2.7	Quantum fields	2

Abstract

Abstract of this course

1 Classical Fields

2 Symmetries and conservation laws

2.1 Noether's theorem

Noether's theorem: there is a conserved current associated with every continuous symmetry of the Lagrangian

2.2 Symmetries and conserved currents

2.3 Global phase symmetry

Consider the Klein-Gordon Lagrangian density for a complex field:

$$L_{KG} = \partial_{\mu}\psi^*\partial^{\mu}\psi - m^2\psi^*\psi$$

We can then find the conserved Noether current, as well as the conserved charge

2.4 Local phase (gauge) symmetry

We now allow the phase change ϵ to be dependent on the space-time coordinates x^{μ} . We realise that electromagnetic fields/ covariant derivative is an essential requirement for a complex filed to remain invariant under local phase transformation.

2.5 Electromagnetic interaction

Expanding the Klein-Gordon equation:

$$L_{KG} = (D_{\mu}\psi)^{*}(D^{\mu}\psi) - m^{2}\psi^{*}\psi$$

= $\partial_{\mu}\psi^{*}\partial^{\mu}\psi - m^{2}\psi^{*}\psi + ieA_{\mu}[(\partial_{\mu}\psi)^{*}\psi - \psi(\partial^{\mu}\psi)] + e^{2}A_{\mu}A^{\mu}\psi^{*}\psi$

We see that the third term being the interaction term $eA_{-}muJ^{\mu}$, where J^{μ} is the free-field current. The

2.6 Stress-energy tensor, angular momentum tensor

2.7 Quantum fields