PRINCIPLES OF EE 1

KVL: Kirchhoff's Voltage Law

→ The sum of all the voltages around a loop is equal to zero. v1 + v2 + v3 - v4 = 0

KCL: Kirchhoff's Current Law

→ The current entering any junction is equal to the current leaving that junction. i2 + i3 = i1 + i4

NODE-VOLTAGE METHOD:

Basic case

With Kirchhoff's current law, we get:

$$\frac{V_1 - V_S}{R_1} + \frac{V_1}{R_2} - I_S = 0$$

$$\Rightarrow V_1 = \frac{14}{3} \text{ V}$$

Supernode

→ In this circuit, VA is between two unknown voltages, and is therefore a supernode.

The complete set of equations for this circuit is:

$$\left\{ egin{array}{l} rac{V_1 - V_{
m B}}{R_1} + rac{V_2 - V_{
m B}}{R_2} + rac{V_2}{R_3} = 0 \ V_1 = V_2 + V_{
m A} \end{array}
ight.$$

By substituting V_1 to the first equation and solving in respect to V_2 , we get:

$$V_2 = rac{(R_1 + R_2)R_3V_{
m B} - R_2R_3V_{
m A}}{(R_1 + R_2)R_3 + R_1R_2}$$

MESH-CURRENT METHOD:

$$egin{cases} ext{Mesh 1: } I_1 = I_s \ ext{Mesh 2: } -V_s + R_1(I_2 - I_1) + rac{1}{sC}(I_2 - I_3) = 0 \ ext{Mesh 3: } rac{1}{sC}(I_3 - I_2) + R_2(I_3 - I_1) + sLI_3 = 0 \end{cases}$$

Supermesh

 $\left\{ egin{aligned} {
m Mesh} \ 1, \, 2 \colon - V_s + R_1 I_1 + R_2 I_2 = 0 \ {
m Current \ source:} \ I_s = I_2 - I_1 \end{aligned}
ight.$

Dependent sources

 $\left\{egin{aligned} ext{Mesh 1:} & -V_s + R_1I_1 + R_3(I_1 - I_2) = 0 \ ext{Mesh 2:} & R_2I_2 + 3I_x + R_3(I_2 - I_1) = 0 \ ext{Dependent variable:} & I_x = I_1 - I_2 \end{aligned}
ight.$

Source Transformation

THEVENIN'S EQUIVALENT CIRCUIT: V Thevenin = V Open Circuit

Example:

- 1. Original circuit
- 2. The equivalent voltage
- 3. The equivalent resistance
- 4. The equivalent circuit

$$egin{aligned} V_{ ext{Th}} &= rac{R_2 + R_3}{(R_2 + R_3) + R_4} \cdot V_1 \ &= rac{1 \, \mathrm{k} \Omega + 1 \, \mathrm{k} \Omega}{(1 \, \mathrm{k} \Omega + 1 \, \mathrm{k} \Omega) + 2 \, \mathrm{k} \Omega} \cdot 15 \, \mathrm{V} \ &= rac{1}{2} \cdot 15 \, \mathrm{V} = 7.5 \, \mathrm{V} \end{aligned}$$

$$egin{aligned} R_{
m Th} &= R_{
m No} \ V_{
m Th} &= I_{
m No} R_{
m No} \ I_{
m No} &= V_{
m Th}/R_{
m Th} \end{aligned}$$

$$egin{aligned} R_{\mathrm{Th}} &= R_1 + \left[(R_2 + R_3) \, \| R_4
ight] \ &= 1 \, \mathrm{k}\Omega + \left[(1 \, \mathrm{k}\Omega + 1 \, \mathrm{k}\Omega) \, \| 2 \, \mathrm{k}\Omega
ight] \ &= 1 \, \mathrm{k}\Omega + \left(\frac{1}{(1 \, \mathrm{k}\Omega + 1 \, \mathrm{k}\Omega)} + \frac{1}{(2 \, \mathrm{k}\Omega)}
ight)^{-1} \ &= 2 \, \mathrm{k}\Omega \end{aligned}$$

NORTON'S EQUIVALENT CIRCUIT: I Norton = I Short Circuit

Example:

- 1. The original circuit
- 2. Calculating the equivalent output current
- 3. Calculating the equivalent resistance
- 4. Design the Norton equivalent circuit

$$I_{\mathrm{total}} = rac{15 \mathrm{V}}{2 \, \mathrm{k}\Omega + 1 \mathrm{k}\Omega \| (1 \, \mathrm{k}\Omega + 1 \, \mathrm{k}\Omega)} = 5.625 \mathrm{mA}.$$

$$egin{aligned} I_{
m no} &= rac{1\,\mathrm{k}\Omega + 1\,\mathrm{k}\Omega}{(1\,\mathrm{k}\Omega + 1\,\mathrm{k}\Omega + 1\,\mathrm{k}\Omega)} \cdot I_{
m total} \ &= 2/3 \cdot 5.625 \mathrm{mA} = 3.75 \mathrm{mA}. \end{aligned}$$

$$R_{
m no} = 1\,\mathrm{k}\Omega + (2\,\mathrm{k}\Omega\|(1\,\mathrm{k}\Omega + 1\,\mathrm{k}\Omega)) = 2\,\mathrm{k}\Omega.$$

$$egin{aligned} R_{
m th} &= R_{
m no} \ V_{
m th} &= I_{
m no} R_{
m no} \ rac{V_{
m th}}{R_{
m th}} &= I_{
m no} \end{aligned}$$

MAXIMUM POWER TRANSFER:

$$P_{max} = \frac{V_{Th}^2}{4R_L} , \quad R_L = R_{Th}$$

Example:

$$V_{th}=V_S=360*rac{150}{150+30}$$

$$V_{th}=V_S=300~V$$

$$R_L=R_{th}=R_S=150~||~30=25\Omega$$
 $ightharpoonup P_{max}=900~W$

SUPERPOSITION:

Find the current flowing through the 20Ω resistor?

Current Source → **Open Circuit**

Using Node-voltage method to find V_1 $\ \Rightarrow V_1 = 12V$

$$I_1 = rac{V_1}{10+20} = rac{12}{30} = 0.4A$$

Voltage Source → Short Circuit

$$R_{AB} = (\frac{5 \times 10}{5 + 10}) + 10 = \frac{10}{3} + 10 = \frac{40}{3}\Omega$$

The current I_2 flowing through 20Ω resistor, using current division principle

$$I_2 = I_S(rac{R_1}{R_1 + R_2}) = 4(rac{rac{40}{3}}{rac{40}{3} + 20}) = 4(rac{40}{100}) = 1.6A$$

Adding 2 currents has been found to get the result: $I=I_1+I_2=0.4+1.6=2A$

THE OPERATIONAL AMPLIFIER:

For ideal op amp:

Input voltage constraint: $v_p = v_n$

Input current constraint: $i_p = i_n = 0$

Basic Operational Amplifier Configurations

