II. Référentiel accélérés

II. Référentiel accélérés

Prof. Cécile Hébert

20 juillet 2021

Plan du cours

- I Cinématique
- II Référentiel accélérés
- III Lois de Newton
- IV Balistique effet d'une force constante et uniforme
 - V Forces; application des lois de Newton
- VI Travail, Energie, principes de conservation
- VII Chocs, systèmes de masse variable
- VIII Oscillateur harmonique
 - IX Moment cinétique ; Gravitation
 - X Solide indéformable
 - XI Application du solide indéformable

II. Référentiel accélérés

Table des matières

- 1. Introduction
- 2. Position vitesse et accélération
- 3. Analyse et cas particuliers

1. Introduction et notation

Soient un référentiel \mathcal{R} fixe, muni du repère cartésien $(O, \vec{x}_1, \vec{x}_2, \vec{x}_3)$ un référentiel \mathcal{R}' muni du repère cartésien $(A, \vec{y}_1, \vec{y}_2, \vec{y}_3)$ en mouvement dans \mathcal{R} . On notera \vec{e}_{x_i} respectivement \vec{e}_{v_i} les vecteurs unitaires de ces deux repères.

Dans \mathcal{R}' :

$$\overrightarrow{AP} = \sum_{i} y_{i} \overrightarrow{e}_{y_{i}}$$

$$ec{\mathbf{v}}_{\mathcal{R}'}(\mathbf{P}) = \sum_i \dot{\mathbf{y}}_i ec{\mathbf{e}}_{\mathbf{y}_i} \qquad ec{\mathbf{a}}_{\mathcal{R}'}(\mathbf{P}) = \sum_i \ddot{\mathbf{y}}_i ec{\mathbf{e}}_{\mathbf{y}_i}$$

$$\vec{a}_{\mathcal{R}'}(P) = \sum_i \ddot{y}_i \vec{e}_{y_i}$$

On peut séparer le mouvement de \mathcal{R}' dans \mathcal{R} en deux composantes : une rotation et une translation.

La translation donne le mouvement de A dans \mathcal{R} et la rotation la rotation des axes (y_i) par rapport aux axes (x_i) . On appelle $\vec{\omega}$ le vecteur rotation. w quelconque w(t)!

Les vecteurs \vec{e}_{V_i} changent dans \mathcal{R} . On obtient leur dérivée par :

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{e}_{y_j} = \vec{\omega} \wedge \vec{e}_{y_j} = \vec{e}_{\gamma_i}$$

$$\widetilde{\mathcal{O}}_{R}(P) \hookrightarrow \widetilde{\mathcal{O}}_{R'}(P)$$
 $\widetilde{\mathcal{A}}_{R}(P) \hookrightarrow \widetilde{\mathcal{A}}_{R'}(P)$

$$\vec{a}_{R}(P) \subset \vec{a}_{R'}(P)$$

2. Position, vitesse et accélération

II. Référentiel accélérés 2. Position vitesse et accélération

$$\vec{O}_{R}(P) = \vec{O}_{R}(H) + \vec{D}_{C}(P) + \vec{\omega}_{A}\vec{AP} \rightarrow ddrivation$$

$$\vec{O}_{R}(P) = \vec{O}_{R}(H) + \frac{d}{dt} \left[\vec{Z}_{i} \dot{y}_{i} \vec{e}_{i} \right] + \frac{d}{dt} \left[\vec{\omega}_{A} \vec{Z}_{i} \dot{y}_{i} \vec{e}_{i} \right]$$

$$= \vec{O}_{R}(H) + \vec{Z}_{i} d_{i} (\dot{y}_{i} \vec{e}_{i}) + \vec{\omega}_{A} \vec{Z}_{i} \dot{y}_{i} \vec{e}_{i} + \vec{\omega}_{A} \vec{Z}_{i} d_{i} \vec{e}_{i}$$

$$= \vec{O}_{R}(H) + \vec{Z}_{i} (\dot{y}_{i} \vec{e}_{i}) + \dot{y}_{i} \dot{e}_{i} + \dot{\omega}_{A} \vec{AP} + \vec{\omega}_{A} \vec{Z}_{i} (\dot{y}_{i} \vec{e}_{i}) + \dot{\omega}_{A} \vec{E}_{i}$$

$$= \vec{O}_{R}(H) + \vec{Z}_{i} (\dot{y}_{i} \vec{e}_{i}) + \dot{z}_{i} (\dot{z}_{i}) + \dot{\omega}_{A} \vec{AP} + \vec{\omega}_{A} \vec{Z}_{i} \dot{y}_{i} \vec{e}_{i} + \vec{\omega}_{A} \vec{E}_{i}$$

$$= \vec{O}_{R}(H) + \vec{O}_{C}(P) + \vec{\omega}_{A} \vec{Z}_{i} \dot{z}_{i} \vec{e}_{i} + \vec{\omega}_{A} \vec{AP} + \vec{\omega}_{A} \vec{Z}_{i} \dot{z}_{i} \vec{e}_{i} + \vec{\omega}_{A} \vec{E}_{i}$$

$$= \vec{O}_{R}(H) + \vec{O}_{R}(P) + \vec{\omega}_{A} \vec{Z}_{i} \dot{z}_{i} \vec{e}_{i} + \vec{\omega}_{A} \vec{AP} + \vec{\omega}_{A} \vec{Z}_{i} \dot{z}_{i} \vec{e}_{i} + \vec{\omega}_{A} \vec{E}_{i}$$

$$= \vec{O}_{R}(H) + \vec{O}_{R}(P) + \vec{\omega}_{A} \vec{AP} + \vec{\omega}_{A} \vec{D}_{R}(P) + \vec{\omega}_{A} \vec{AP}$$

$$\vec{O}_{R}(P) = \vec{O}_{R}(H) + \vec{O}_{R}(P) + \vec{\omega}_{A} \vec{AP} + \vec{\omega}_{A} \vec{D}_{R}(P) + \vec{\omega}_{A} \vec{D}_{R}(P)$$

Résumé:

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$$

$$ec{\mathbf{v}}_{\mathcal{R}}(\mathbf{P}) = ec{\mathbf{v}}_{\mathcal{R}}(\mathbf{A}) + ec{\mathbf{v}}_{\mathcal{R}'}(\mathbf{P}) + ec{\omega} \wedge \overrightarrow{\mathbf{AP}}$$

$$\vec{a}_{\mathcal{R}}(\textit{P}) = \vec{a}_{\mathcal{R}'}(\textit{P}) + \vec{a}_{\mathcal{R}}(\textit{A}) + \dot{\vec{\omega}} \wedge \overrightarrow{\textit{AP}} + \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{\textit{AP}}) + 2\vec{\omega} \wedge \vec{v}_{\mathcal{R}'}(\textit{P})$$

3. Analyse et cas particuliers

Cas particulier 1 : \mathcal{R}' a un mouvement de translation uniforme dans \mathcal{R}

$$\vec{a}_{\mathcal{R}}(P) = \vec{a}_{\mathcal{R}'}(P) + \vec{a}_{\mathcal{R}}(A) + \dot{\vec{\omega}} + \dot{$$

Cas particulier 1 : \mathcal{R}' a un mouvement de translation uniforme dans \mathcal{R}

$$ec{v}_{\mathcal{R}}(P)=ec{v}_{\mathcal{R}}(A)+ec{v}_{\mathcal{R}'}(P)$$
 (4) $ec{a}_{\mathcal{R}}(P)=ec{a}_{\mathcal{R}'}(P)$

(1) Composition des vitesses dans un monvement de translation

Les Chapitre 3 = lois de Newton lien entre force et accélération elles s'exprimerent de la même manière dans R et R'

R' sora aussi un référentel plillién.

Cas particulier 2:

 \mathcal{R}' a un mouvement de rotation uniforme dans \mathcal{R} avec $\mathbf{A} = \mathbf{O}$ et P fixe dans \mathcal{R}'

Cas particulier 2:

 \mathcal{R}' a un mouvement de rotation uniforme dans \mathcal{R} avec A = O et P fixe dans \mathcal{R}' P a donc un mouvement circulaire uniforme dans \mathcal{R} .

$$\vec{v}_{R}(P) = \vec{\omega} \wedge \overrightarrow{OP} \qquad \vec{\omega} = \omega \vec{e}_{y3}$$

$$\vec{a}_{R}(P) = \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{OP})$$

$$\vec{a}_{R}(P) = \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{OP})$$

$$\vec{v}_{R}(P) = \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{OP})$$

$$\vec{v}_{R}(P) = \vec{\omega} \wedge (\vec{o} + \vec{o} + \vec{o$$

 $\vec{\mathbf{v}}_{\mathcal{P}}(P) = \vec{\omega} \wedge \overrightarrow{OP}$

II. Référentiel accélérés 3. Analyse et cas particuliers

Cas particulier 3 : \mathcal{R}' a un mouvement de rotation uniforme dans \mathcal{R} avec A = O

Cas particulier 3 : \mathcal{R}' a un mouvement de rotation uniforme dans \mathcal{R} avec A = O

$$\vec{v}_{\mathcal{R}}(P) = \vec{v}_{\mathcal{R}'}(P) + \vec{\omega} \wedge \overrightarrow{OP}$$

$$\vec{a}_{\mathcal{R}}(P) = \vec{a}_{\mathcal{R}'}(P) + \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{OP}) + 2\vec{\omega} \wedge \vec{v}_{\mathcal{R}'}(P)$$

$$accidération \qquad accidération \qquad accidération de Consols accidération de Consols Aux R$$

Nomenclature dans le cas général

