

Le 20 Février 2014

Examen

Electromagnétisme (Filières SMP et SMAI – S3) Session de rattrapage – Durée 1h30

Exercice I

Soit un arc d'anneau conducteur, inscrit dans un cercle de centre O et de rayon R, parcouru par un courant d'intensité I.

- En utilisant les règles de symétries de distribution du courant, indiquer l'orientation du champ magnétique en O.
- Calculer le champ magnétique B créé par cette distribution de courant en O (centre du cercle) dans le cas où la longueur de l'arc d'anneau est égale au
 - 1. demi-cercle.
 - 2. quart de cercle

Exercice II

Un conducteur métallique, placé perpendiculairement à l'axe Ox (voir figure), se déplace à une vitesse constante \vec{v} horizontale sur deux rails métalliques, se coupent en O et faisant entre eux un angle 2α (Ox axe de symétrie des rails). L'ensemble est plongé dans un champ magnétique \vec{B} , vertical, constant. A l'instant t=0, le conducteur métallique est en O.

- 1. donnez les caractéristiques de la force à laquelle sont soumises les charges mobiles du conducteur.
- 2. donner l'expression du champ électromoteur,

- 3. en déduire l'expression de la *f.e.m* induite en fonction de *B*, *v*, *a* et *t*,
- 4. retrouver ce dernier résultat à partir de la loi de FARADAY (le sens d'orientation de la surface est celui indiqué sur la figure)
- 5. donner l'expression de l'intensité du courant induit (en fonction B, v, K,a et t) sachant que la résistance du circuit est proportionnelle à sa longueur ($R = K\ell$).

Exercice III

Le dipôle suivant est alimenté par une tension sinusoïdale de tension efficace 10V. Pour la pulsation $\omega_0 = 1050 \ rd.s^{-1}$, l'ampèremètre A indique une intensité de 100mA, et ceci quelque soit la valeur de R.

1. établir l'expression de l'impédance équivalente du circuit \overline{Z}

Plutôt que de se lancer dans des calculs (visiblement lourds) pour montrer que \overline{Z} est indépendante de R à la pulsation ω_0 ; nous allons considérer les solutions particulières R=0 et R infinie:

- 2. donner alors les valeurs de L et C (expressions et valeurs numériques)
- 3. dans ces conditions, établir la relation entre L et C
- 4. vérifier alors que l'impédance \overline{Z} est effectivement indépendante de R

