Covid-19 and Nutrition: Correlation Connections

By:

Rebecca Gibbs Bekka Ross Witt Cordell Sterling Miller

Topic and why it was selected

- Worldwide there have been 521 million cases of COVID-19 and 6.26 million deaths since first reports of the disease in December 2019
- It will be years before the short term and long impacts of the pandemic are understood
 - Health impacts to those infected
 - Financial/economic impacts
 - Societal impacts

Why Nutrition Data?

Data Sources

- COVID-19 Cases and Deaths by Country:
 https://covid19.who.int/WHO-COVID-19-global-table-data.csv
- COVID-19 Vaccination Dataset:
 https://ourworldindata.org/covid-vaccinations
- Nutritional Dataset by Country:
 https://www.kaggle.com/datasets/mariaren/covid19-healthy-diet-dataset?select=

 Food Supply Quantity kg Data.csv

Data Exploration Phase

- Searched public health sites and Kaggle for Covid related datasets
- Dataset originally chosen contained too many null values scrapped and chose new dataset
- Covid datasets included basic COVID-19 info (cases/deaths/etc) by country
- Nutritional dataset (below) % of food intake by category & obesity/undernourished rates

*	Alcoholic		Animal	Aquatic Products,	Cereals - Excluding		Fish,	Fruits - Excluding		Milk - Excluding	Sugar & Sweetener		Vegetable		Vegetal		Undernou
Country	Beverages	Animal fats	Products	Other	Beer	Eggs	Seafood	Wine	Meat	Butter	s	Treenuts	Oils	Vegetables	Products	Obesity	rished
Afghanistan	0.0014	0.1973	9.4341	0	24.8097	0.2099	0.035	5.3495	1.202	7.5828	1.3489	0.077	0.5345	6.7642	40.5645	4.5	29.8
Albania	1.6719	0.1357	18.7684	0	5.7817	0.5815	0.2126	6.7861	1.8845	15.7213	1.5367	0.1515	0.3261	11.7753	31.2304	22.3	6.2
Algeria	0.2711	0.0282	9.6334	0	13.6816	0.5277	0.2416	6.3801	1.1305	7.6189	1.8342	0.1152	1.031	11.6484	40.3651	26.6	3.9
Angola	5.8087	0.056	4.9278	0	9.1085	0.0587	1.7707	6.0005	2.0571	0.8311	1.8495	0.0061	0.6463	2.3041	45.0722	6.8	25
Antigua and Barbuda	3.5764	0.0087	16.6613	0	5.996	0.2274	4.1489	10.7451	5.6888	6.3663	3.8749	0.0253	0.8102	5.4495	33.3233	19.1	NA
Argentina	4.2672	0.2234	19.3454	0	8.4102	0.9979	0.4693	6.0435	7.0421	10.2328	3.0536	0.02	0.9541	4.3503	30.6559	28.5	4.6
Armenia	0.4014	0.1833	13.564	0	7.2982	0.5783	0.2896	6.0989	2.2675	9.9407	2.6579	0.1108	0.4705	16.7019	36.4358	20.9	4.3
Australia	5.5436	0.3143	21.4175	0.0033	5.4979	0.4428	1.4264	4.1883	6.7049	12.1018	2.5364	0.3176	1.2798	5.1406	28.5806	30.4	<2.5
Austria	7.0015	O OEEE	10 5654	0.0011	6 2116	0.7004	0.7560	4 6060	A CO1	10 2776	2.6004	0.2267	0.0100	E 1000	20 4220	21.0	/2 E

Data Cleaning

- Used Pandas for most of data cleaning
 - Joined Covid & Vaccination datasets
 - Dropped columns
 - Removed null values
 - Calculated "case fatality ratio" column
- Used SQLAlchemy to import datasets into PostgreSQL as tables
- Used SQL code to join covid and nutritional datasets

COUNTRY	WHO Region	Case_Fatality_Ratio
Albania	Europe	1.269711106
Algeria	Africa	2.586518363
Angola	Africa	1.913642773
Argentina	Americas	1.414397903
Armenia	Europe	2.039018833
Australia	Western Paci	0.119539245
Austria	Europe	0.468346951

Analysis Phase

Goal:

 Predict likelihood of fatality from COVID-19 based on nutritional and COVID-19 record data.

Approach:

- We opted for a <u>multilinear regression</u> for our analysis.
- We aimed to produce fatality probability predictions for every country provided in the utilized data
- We utilized R² value metric to determine the model's validity and accuracy
- We utilized each input factor's <u>p-value to determine</u> its <u>significance</u> in the model's predictions and the calculations' results.

The Model

(Details)

Database Connectivity

```
# Import Module to Communicate with PostgreSQL import paycont2 as in

# Import Password Protector from patipus; import getpass passw = getpass('Enter your Password')

# Build Engine for Connection engine = in-connect(database="Final_Project", user="postgres", host="localhost", port="5432", password=passw)

dataframe = pi.read_sql('SELECT covid.*, nutrition."Alcoholic Beverages",nutrition."Animal Products",nutrition."Cereals - Excluding Beer",nutrition."Eggs",nutrition."Fish, Search and Sear
```

Model Choice

Instantiate, Fit, & Evaluate the Model

```
# Instantiate the Model
lr_model = LinearRegression()
```

Training / Testing Settings

Create Training & Testing Splits

Split Data into Training & Testing (Default: 75%/25% Split) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=615, train_size=None) # | Change the split % by editting the "train_size parameter to your training split percentage" | # Example: train_size = 0.80 results in an 80%/20% split # Preview the shapes of the Split Datasets print(X_train.shape) print(X_train.shape) print(Y_train.shape) print(Y_train.shape) print(Y_test.shape) (98, 34) (33, 34) (98,) (33,)

Model Accuracy, Model Validity, & Feature Significance

```
Model Effectiveness & Feature Weights

+ code

import stottward and as is a import runny as is a import runny as is a
import runny as is a

X2 = sec.add_constant(X)

est = sec.add_constant(X)

est = sec.add_constant(X)

print(est2.summary())

# NOTE: R-summary())

# NOTE: R-summary())

# while P>|t| values represent statistical significance of each input factor
# toward the model.
```

Results

	•						
	OLS Regres						
Dep. Variable:	Case_Fatality_Ratio	R-squared:		0.603			
Model:	OLS	Adj. R-squared:		0.463			
Method:	Least Squares	F-statistic:		4.296			
Date:	Mon, 23 May 2022	Prob (F-statistic):	1.	00e-08			
Time:	21:08:10	Log-Likelihood:		148.97			
No. Observations:	131	AIC:		367.9			
Df Residuals:	96	BIC:		468.6			
Df Model:	34						
Covariance Type:	nonrobust						
==========					 P> t	[0.025	0.975
			coef	std err			

	coef	std err	t	P> t	[0.025	0.975]
const	214.3324	1162.016	0.184	0.854	-2092.251	2520.915
Cases - cumulative total	-1.027e-07	6.07e-08	-1.693	0.094	-2.23e-07	1.77e-08
Cases - cumulative total per 100000 population	-4.48e-05	1.2e-05	-3.724	0.000	-6.87e-05	-2.09e-05
Cases - newly reported in last 7 days	-4.47e-07	5.41e-06	-0.083	0.934	-1.12e-05	1.03e-05
Cases - newly reported in last 7 days per 100000 population	1.011e-06	0.001	0.001	0.999	-0.002	0.002
Cases - newly reported in last 24 hours	2.56e-05	3.21e-05	0.798	0.427	-3.8e-05	8.92e-05
Deaths - cumulative total	7.022e-06	3.15e-06	2.226	0.028	7.6e-07	1.33e-05
Deaths - cumulative total per 100000 population	0.0048	0.001	4.814	0.000	0.003	0.007
Deaths - newly reported in last 7 days	-0.0012	0.001	-0.861	0.392	-0.004	0.002
Deaths - newly reported in last 7 days per 100000 population	0.0217	0.126	0.172	0.864	-0.229	0.272
Deaths - newly reported in last 24 hours	-0.0023	0.007	-0.334	0.739	-0.016	0.012

https://public.tableau.com/app/profile/witt.cordell/viz/FinalProject Eda/Project EDA#1

- Our model proved functional with database connectivity and fully integrated data cleaning and preprocessing.
- Our accuracy metrics determined a <u>60% accuracy</u> based on initial input factors included, upon model revision the accuracy reduced to 30%
- Our p-value significance calculations proved that very few input factors from the original input factors were statistically significant toward the calculations that we were solving for in our model.
- In the end, our model was able to predict potentiality for fatalities from COVID-19 cases per country via a metric that indicates how influential the input factors were in determining whether or not a fatality was probable or not.

Recommendations and what we would have done differently

- 1. Devote more time to data sourcing
- 2. Consider input factors that relate more conveniently to individuals' health data
- 3. More time for model revision and accuracy improvement
- 4. Develop more nuanced data for each country's data point
- 5. More time dedicated to deriving our correlation

Thank You All!