

BIOINFORMATICS **PLATFORM**

Single Cell RNA-seq Workshop

Monash Bioinformatics Platform

ABACBS 2022

Workshop Summary

What are we covering?

- Basics of using Seurat for single cell analysis
- QC > Normalisation > Dimension Reduction >
 Cell Clustering > Differential Expression >
 Cell type annotation > Dataset Integration
- O What tools to use?

How exactly?

- Some theory, then hands-on.
- o Demo, and exercises, helpers floating around the room
- Based on Seurat tutorial walkthrough
- Additional content: SingleR and harmony for cell type annotation and dataset integration(time permitting)

Single Cell Sequencing

10x Genomics

Single Cell Analysis Workflow

Content We Won't Be Covering

- Different sequencing technologies
- Pipelines for processing raw data
- Single cell immune profiling, atac, cell surface protein expression, spatial, etc
- Further downstream analysis beyond the basic workflow

This workshop is based on the assumption that you have 10x gene expression data generated by Cellranger

Have a Dialogue Going

NASH

BIOINFORMATICS PLATFORM

The Counts Matrix

#F9<"-/08YJE875G?NABCGa1*4:A@:41-C88N49;>=.==, *46P#\$""%+=<9;66Y:/AOK

820 ch=241 start_time=2017-05-24T08:43:012 UNAUCACCACCGAAAGGGUGUUUCCAGAUCUGUUCCAUCUGGUGCCUUCACCGGUGUCCACGAAGCUUUUGG

1+1)2.@9@bA7#

Raw Data to Counts Matrix

Reference Genome

Raw fastq files

Count Matrix

Counts Matrix - From Cellranger

Sparse matrix format only includes non-zero counts

		ma	trix	.mtx			featu	res.tsv	barcodes.tsv
%%Ma	trixM	arket	t ma	atrix	coordinate	e real	ENSG00000243485	MIR1302-10	AAACATACAACCAC-1
gene	ral						ENSG00000237613	FAM138A	AAACATTGAGCTAC-1
%							ENSG00000186092	OR4F5	AAACATTGATCAGC-1
3273	8	2700		22868	884		ENSG00000238009	RP11-34P13.7	AAACCGTGCTTCCG-1
3270	9	1	4				ENSG00000239945	RP11-34P13.8	AAACCGTGTATGCG-1
3270	7	1	1				ENSG00000237683	AL627309.1	AAACGCACTGGTAC-1
3270	6	1	10				ENSG00000239906	RP11-34P13.14	AAACGCTGACCAGT-1
3270	4	1	1				ENSG00000241599	RP11-34P13.9	AAACGCTGGTTCTT-1
3270	3	1	5				ENSG00000228463	AP006222.2	AAACGCTGTAGCCA-1
3270	2	1	6				ENSG00000237094	RP4-669L17.10	AAACGCTGTTTCTG-1
3270	0	1	10				ENSG00000235249	OR4F29	AAACTTGAAAAACG-1
3269	9	1	25				ENSG00000236601	RP4-669L17.2	AAACTTGATCCAGA-1
3269	8	1	3				ENSG00000236743	RP5-857K21.15	AAAGAGACGAGATA-1
3269	7	1	8				ENSG00000231709	RP5-857K21.1	AAAGAGACGCGAGA-1
•••							***		•••

Cell barcodes

11																				
	AAACATACAACCAC	AAACATTGAGCTAC	AAACATTGATCAGC	AAACCGTGCTTCCG	AAACCGTGTATGCG	AAACGCACTGGTAC	AAACGCTGACCAGT	AAACGCTGGTTCTT	AAACGCTGTAGCCA	AAACGCTGTTTCTG	AAACTTGAAAAACG	AAACTTGATCCAGA	AAAGAGACGAGATA	AAAGAGGCGGAGA	AAAGAGACGGACTT	AAAGAGGCGCATT	AAAGCAGATATCGG	AAAGCCTGTATGCG	AAAGGCCTGTCTAG	AAAGTTTGATCACG
	ATACA	ATTGA	ATTGA	сетес	сетет	GCACT	GCTG/	GCTG	GСТG1	GCTGT	TTGAA	TTGAT	AGAC	AGAC	AGAC	AGAC	CAGA ⁻	ССТСТ	СССТС	TTTG₽
	AAAC	AAAG	AAAG	AAAG	AAAG	AAAG	AAAG	AAAG	AAAG											
AL627309.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AP006222.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RP11-206L10.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RP11-206L10.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LINCO0115	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOC2L	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
KLHL17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PLEKHN1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RP11-5407.17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HES4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
RP11-5407.11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ISG15	0	0	1	9	0	1	0	0	0	3	0	0	1	5	0	2	1	0	0	0
AGRN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C1orf159	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TNFRSF18	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TNFRSF4	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	12	0	0
SDF4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
B3GALT6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
FAM132A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UBE2J2	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0

Counts

IONASH

BIOINFORMATICS PLATFORM

Single Cell Analysis Ecosystems

1+F9<"-/@8\JE875G?MABCGal *4:A@:41-C88N49; >= . == , *46P#\$" "%+=<9;66\:/A0 20 ch=241 start_time=2017-05-24T08:43:012

Huge Number of Single Cell Analysis Tools

With so many tools, how do you then pick which one to use?

R is very popular, python is catching up

Most tools are capable of performing general analysis tasks - some will have specialised types of analysis only that particular tool can perform

Single Cell Analysis Ecosystems

Bioconductor: R

- Repository of many bioinformatics analysis packages
- Single cell packages in Bioconductor make use of the singleCellExperiment class

Seurat (Signac): R

- Twin R packages that has decided to make themselves a one-stop shop for most common single cell analysis tasks
- Uses the Seurat class

Scanpy: Python

- Toolkit for single cell analysis
- Uses the anndata class
- Large ecosystem of tools that integrate with scanpy

Single Cell Analysis Ecosystems

Each system has a **shared central data structure** for storing and representing single cell data Conversion between different data structures isn't impossible but it can be difficult

Knowing what analysis you want to do downstream can save you a lot of pain if you use the right data

structure upstream.

 ${\tt Single Cell Experiment}$

Seurat

- Very popular R package
- Well documented
- Lots of tutorials we're working through the PBMC tutorial today
- Performs most common single cell analysis tasks

Seurat object - S4 class:

- Container for count matrix, normalised count matrix, dimensionality reduction, cell meta-data, etc
- Can contain more than gene expression data, will also store ATAC peak counts, cell surface protein counts, spatial images, etc

DNASH

BIOINFORMATICS PLATFORM

Analysis Workflow

320 ch=241 start_time=2017-05-24T08:43:012 UUAUCACCACCGAAAGGGUGUUUCCAGAUCUGUUCCAUCUGGUGCCUUCACCGGUGUCCACGAAGCUUUGG

1+1)2.@9@bA7#

Counts Matrix

Î													1	d	_	_				
	AAACATACAACCAC	AAACATTGAGCTAC	AAACATTGATCAGC	AAACCGTGCTTCCG	AAACCGTGTATGCG	AAACGCACTGGTAC	AAACGCTGACCAGT	AAACGCTGGTTCTT	AAACGCTGTAGCCA	АААСGСТGТТТСТG	AAACTTGAAAAACG	AAACTTGATCCAGA	AAAGAGACGAGATA	AAAGAGGCGGAGA	AAAGAGACGGACTT	AAAGAGACGGCATT	AAAGCAGATATCGG	AAAGCCTGTATGCG	AAAGGCCTGTCTAG	AAAGTTTGATCACG
	AAC	AGC	ATC	CT	TAT	TGC	ACC	В	TAG	E	AA/	ТСС	GA	360	366	990	TA.	TAT	GTO	ATC
	TAC	ПG	ITG	этс	этс	CAC	СТБ	СТБ	ств	СТС	lGA.	IGA.	GAC	GAC	GAC	GAC	AG/	СТС	CC	TIG
	.CA.	.CA.	.CA	CCC	CCC	CG	CG	CG	CG	CG	CT	Ę	'GA	'GA	'GA	'GA	GC,	'GC	99)	F
	AAA	AAA	AAA	AAA	AAA	AA	AA	AAA	AAA	AA	AAA	AAA	AAA	AA	AA	₩	AAA	AA	A	₹
AL627309.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AP006222.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RP11-206L10.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RP11-206L10.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LINC00115	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOC2L	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
KLHL17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PLEKHN1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RP11-5407.17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HES4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
RP11-5407.11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ISG15	0	0	1	9	0	1	0	0	0	3	0	0	1	5	0	2	1	0	0	0
AGRN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C1orf159	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TNFRSF18	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TNFRSF4	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	12	0	0
SDF4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
B3GALT6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
FAM132A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UBE2J2	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0

Quality Control

Filtering the Counts Matrix

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		AAACATTGAGCTAC	AAACATTGATCAGC	AAACCGTGCTTCCG	AAACCGTGTATGCG		AAACGCACTGGTAC	AAACGCTGACCAGT	AAACCCTCCTTCTT		AAACGCTGTAGCCA	AAACGCTGTTTCTG	AAACTTGAAAAACG	AAACTTGATCCAGA	AAAGAGACGAGATA	AAAGAGGCGGAGA	AAAGAGGACTT		AAAGAGACGGCATT	AAAGCAGATATCGG	AAAGCCTGTATGCG	AAAGGCCTGTCTAG	AAAGTTTGATCACG
AL627309.1		0	0	0	0		0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0 0 0 0
AP006222.2		0	0	0	0		0	0	0			0	0	0	0	0	0		0	0	0	0	0	0
RP11-206L10.2	Ц	0	0	0	0		0 0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0
RP11-206L10.9		0	0	0	0		0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0
LINCO0115		0	0	0	0		0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	
NOC2L		0	0	0	0		0	0	0		0	0	0	0	1	0	0		0	0	0	0	0	D
KLHL17		0	0	0	0		0 0 0	0	0		0	0	0	0	0	0	0		0 0 0	0	0	0	0	0 0 0
PLEKHN1		0	0	0	0			0	0		0	0	0	0	0	0	0			0	0	0	0	
RP11-5407.17		0	0	0	0		0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0
HES4		0	0	0	0		0	0	0		0	0	0	0	0	0	0		0	0	1	0	0	0
RP11-5407.11		0	0	0	0		0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0
ISG15		0	0	1	9		0	1	0		0	0	3	0	0	1	5		0	2	1	0	0	0
AGRN		0	0	0	0		000	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0
C1orf159		0	0	0	0		0	0	0		0	0	0	0	0	0	0		0 0	0	0	0	0	0
TNFRSF18		0	2	0	0			0	0		0	0	0	0	0	0	0			0	0	0	0	0
TNFRSF4		0	0	0	0		0	0	0		0	1	0	0	0	0	0		0	0	0	12	0	0
SDF4		0	0	1	0		0	0	0		0	0	0	0	0	0	0		0	0	0	1	1	0
B3GALT6		0	0	0	0		0	0	1		0	0	0	0	0	0	0		0	0	0	0	0	0
FAM132A		0	0	0	0		0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	
UBE2J2		0	0	0	0		0	0	0		0	1	0	1	0	0	1		0	0	0	1	0	0

## Normalisation

Differences in sequencing coverage between cells due to technical effects (e.g PCR amplification efficiency, amount of mRNA captured, etc)

Library size normalisation: divide counts in a cell by the total counts for that cell

Typically scaled by multiplying by 10000 and log transformed in Seurat

Seurat also has SCTransform - regularised negative binomial model



Normalizing single-cell RNA sequencing data: challenges and opportunities. *Nat Methods* **14**, 565–571 (2017)



## **Feature Selection**

Select genes that have high variability to focus on interesting biological signal for downstream steps that aggregate or cluster cells based on similarity

Not all genes necessarily contain useful information, some contain random noise

Seurat's strategy is to pick the topmost variable 2000 genes





## **Dimensionality Reduction - PCA**

If we view each gene as a dimension, cells inhabit a gene-space with **1000s of dimensions**.

Using Principal Components Analysis, most of the variation in a dataset can usually be summarized into **10s of components**.

This is convenient for many algorithms, but still difficult to visualize...





## **Dimensionality Reduction - UMAP**

UMAP provides a further dimensionality reduction step from 10s of PCs to **2 dimensions** that can be easily visualized.

UMAP is a non-linear dimensionality reduction method.

- Very good at showing the structure of the data.
- May arbitrarily warp and tear the data to present it in 2D.

The UMAP layout is a useful map on which other data can be shown, such as clusters or the expression of particular genes.





## Clustering

Unsupervised learning technique to define groups of cells with similar expression profiles

Highly dependent on parameters chosen

### Methods:

- Graph-based Seurat louvain/leiden algorithm
- K-means loupe browser



## Cluster Marker Identification

Identify genes that drive the differences between clusters

Use differential tests to get potential marker gene lists - Seurat defaults to the Wilcoxon test but implements several others e.g bimod, roc, t-test, DESeq2, poisson, etc







## Manual Cell Annotation

- Use known cluster markers expression to determine cell type
- Requires domain specific knowledge
- Identifying cell types is probably the most time consuming step if you are working with uncharacterised cells
- Capturing cell surface protein expression can help



## **Automated Cell Annotation**

Use a reference dataset to annotate new data

Compare the expression profile of the new dataset against the reference and classify cells in the new dataset

### Tools:

- singleR
- scMatch
- scPred
- Garnett
- etc

Works well when your dataset is represented in the reference



Aran, D., Looney, A.P., Liu, L. *et al.* Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. *Nat Immunol* **20**, 163–172 (2019).



## Dataset Integration/Batch Correction

Samples from different experiments can have substantial batch effects that need to be corrected before the data can be jointly analysed

### Tools:

- Seurat
- Harmony
- batchelor
- bbknn
- etc





## Replication

Original thought was that multiple cells provided replication

However, this is still an n = 1 and biological replicates are required to get valid p.values

Pseudobulking within a sample is reported to outperform single cell DE methods



Squair, J.W., Gautier, M., Kathe, C. *et al.* Confronting false discoveries in single-cell differential expression. *Nat Commun* 12, 5692 (2021)





### BIOINFORMATICS PLATFORM

AAGAUEGGUUUGALUGUSUUGUS

# Let's Get Started

6443 Ch=402 Start_CHWE-2011 GACUUUCUUUGUUGUUGUCUUUGGAUGGAUGCCAACAGGUECAAGUUGGGUGCUAACGUUGGGUGGUCUAACGUUGGGUGUCUCLAO

241 start time=2017-05-24T08:43:01Z



); 481 '\$-(<=7d^F8J?, 731+1)2,@9@bA7a

## Workshop Reminders

Ask questions - either in person or on Slack!

Ask for help if you need it - helpers are in the room to provide help!

Sticky notes - teal - don't need help, pink - need help

The learning material is freely available online - come back to it anytime

We run a help session every Friday @ 3pm - drop by if you have more questions

Single cell analysis is an ever growing and evolving field this workshop covering how to use Seurat is just the tip of the iceberg



#### More

- Pseudotime trajectories
- Single cell velocity
- Multiomics
- Doublet detection
- Cell cycle
- Differential accessibility
- Immune Profiling
- Hashtag demultiplexing
- Spatial
- Pseudobulk
- etc...



## Further Resources

- Orchestrating Single Cell Analysis: this is one of the most comprehensive resource on learning about single cell analysis. It utilises the Bioconductor ecosystem but is well worth reading even if you stick with Seurat or use scanpy
- Seurat & Signac websites: lots of documentation on how to use these packages
- Ming Tang's scRNA analysis notes: huge list of single cell tools, tutorials, papers, etc organised by topic
- Awesome single cell: another extensive list of single cell tools, tutorials, papers, etc organised by topic
- scRNA-tools: a database that catalogues tools for analysing single-cell data

