Are there microbes in venom, and why characterizing them matters for our fundamental understanding of systems biology

De León et al. 2025 Symbiosis [in press]

Acknowledgements

[alphabetical] Anthony Saviola, Clarissa Nobile, Daniel Petras, Eduardo Fox, Eduardo Rodriguez-Roman, Jason Macrander, Justin Yeager, Marina De León, Natasha Varona, Nick Keiser, Ronald Jenner, Sara Dunaj, Samantha Nixon, Steven Trim, Timothy Colston, Volker Herzig

Acknowledgements

[alphabetical] Anthony Saviola, Clarissa Nobile, Daniel Petras, Eduardo Fox, Eduardo Rodriguez-Roman, Jason Macrander, Justin Yeager, Marina De León, Natasha Varona, Nick Keiser, Ronald Jenner, Sara Dunaj, Samantha Nixon, Steven Trim, Timothy Colston, Volker Herzig

Land Acknowledgement: Tiwa Territory

Overview

- 10 min: Background
 - Microbiology
 - Venom as a microenvironment
- 20 min: Venom microbiomics as a Field
 - Review: De León et al. 2025 Symbiosis [in press]
 - Ties to systems biology, informatics, and theory
- 10 min: Summary
 - Does diversity matter in science? Impacts of iVAMP, my path
 - What does this mean for those in computing and bioinformatics, why care?

Background

What is the impact of microbiology as a field to biology, and even informatics?

https://pollev.com/sabahulhasan789

Microbiology significantly contributes to understanding biology

nature > the journal of antibiotics > review articles > article

Review Article | Published: 09 January 2009

Review Article

Microbial drug discovery: 80 years of progress

Arnold L Demain [™] & Sergio Sanchez

The Journal of Antibiotics 62, 5–16 (2009) | Cite this article

Volume 172, Issue 6, 8 March 2018, Pages 1181-1197

Perspective

Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life

Cindy J. Castelle ¹²³, Jillian F. Banfield ¹²³⁴⁵⁶ ○ ⊠

- vs 7,210,000 results for "biology"
- 1,430,000 are "microbiome"
- 674,000 since 2006 (~47%)

Commentary | Open access | Published: 30 June 2020

Microbiome definition re-visited: old concepts and new challenges

Gabriele Berg ™, Daria Rybakova, Doreen Fischer, Tomislav Cernava, Marie-Christine

Champomier Vergès, Trevor Charles, Xiaoyulong Chen, Luca Cocolin, Kellye Eversole, Gema

Herrero Corral, Maria Kazou, Linda Kinkel, Lene Lange, Nelson Lima, Alexander Loy, James A.

Macklin, Emmanuelle Maguin, Tim Mauchline, Ryan McClure, Birgit Mitter, Matthew Ryan, Inga

Sarand, Hauke Smidt, Bettina Schelkle, ... Michael Schloter ™ + Show authors

Microbiome 8, Article number: 103 (2020) Cite this article

Microbes in venom: Review of literature shows bias

< 0.05% of all results for "microbiome" Majority are identifications of antimicrobials derived from venom, so <u>much</u> less

Ul-Hasan et al. 2019 Toxicon: X

Venom: A relatively untouched reservoir for microbial discovery

Ul-Hasan et al. 2019 Toxicon: X

Venom Microbiomes

A review of the venom microbiome and its utility in ecology and evolution including future directions for emerging research

- Convergently evolved, sophisticated and specialized systems over hundreds of millions of years
- Variations in microbial colonization of the host, venom composition, host-microbe interaction, etc.

Publications of confirmed bacteria presence in venom

Host species (microbial taxa identified)	Publication	ID method	Cultured in Petri dish	Isolated from
Wasp Comperia merceti (1)	Lebeck 1989; Gibson & Hunter 2009	Light & electron microscopy	yes	venom gland & other tissue
Bee Apis mellifera (1)	Copley & Jabaji 2012	qPCR of dissected glands	yes	venom gland & other tissue
Myrmeleon bore (1)	Yoshida et al. 2001	Not specified	yes	venom
Ants	Yang et al. 2021	16S rRNA sequencing	no	venom gland
Solenopsis invicta (5)				
Solenopsis geminata (6)				
Diacamma rugosum (4)				
Scorpions	Shimwell et al. 2023	16S rRNA sequencing clones telson libraries	no	telson (bulbous segment of tail)
Smeringurus mesaensis (7)				
Hadrurus arizonensis (7)				
Vaejovis smithi (1)	Tonalli García-Santibañez et al. 2022	Combined PacBio and Illumina metagenome assembly	no	telson (bulbous segment of tail)
Spiders				
Lasiodora parahybana (1)	Esmaeilishirazifard et al. 2022	Isolate culture: Whole Genome Sequencing (WGS)	yes	venom
Poecilotheria regalis (1)	Esmaeilishirazifard et al. 2022	Isolate culture: Whole Genome Sequencing (WGS)	yes	venom
Parasteatoda tepidariorum (22)	Dunaj et al. 2020	RNA-seq + 16s rRNA seq	no	venom
Latrodectus hesperus (20)	Dunaj et al. 2020	RNA-seq + 16s rRNA seq	no	venom
Steatoda grossa (22)	Dunaj et al. 2020	RNA-seq + 16s rRNA seq	no	venom
Steatoda nobilis (5)	Dunbar et al. 2020	16s rRNA sequencing	no	Chelicerae (mouth region)
Snakes				
Naja nigricollis (1)	Esmaeilishirazifard et al. 2022	Isolate culture: Whole Genome Sequencing (WGS)	yes	venom
Naja nigricollis (21)	Esmaeilishirazifard et al. 2022	16S rRNA sequencing	no	venom
Bitis arietans (21)	Esmaeilishirazifard et al. 2022	16S rRNA sequencing	no	venom
Bothrops atrox (21)	Esmaeilishirazifard et al. 2022	16S rRNA sequencing	no	venom
Oxyuranus scutellatus (21)	Esmaeilishirazifard et al. 2022	16S rRNA sequencing	no	venom
Crotalus atro (21)	Esmaeilishirazifard et al. 2022	16S rRNA sequencing	no	venom

How does the bacteria colonize the host? Looking to our understanding of poisonous animals for answer

Looking to our understanding of poisonous animals for answer Transfer of toxins (and microbes?) across trophic levels

Venom microbiomics as a field

- What is the venom microbiome beyond bacteria?
- Is there a core venom microbiome across species?
- How may this venom microbiome vary across life stages?
- Which venomous hosts post as strong model systems, and why?

Methods and Approaches to Understanding Venom Microbiomes							
Focus	Technique	Taxonomic classification	Functional data	Advantages	Primary considerations		
Venom Microbiome Exploration	Metagenomics	YES	NO	Biomarker discovery, Comparative analysis	Contamination risk, dissection, library preparation		
Venom production and regulation	Transcriptomics	NO	YES	Gene expression pattern, Key genes, Comparatives analysis with microbial genes	Difficulty in RNA extraction and processing, transcript sorting		
Protein composition, Protein family exploration	Proteomics	NO	YES	Detect protein interactions or levels, Functional potential	Complex biological samples, database searches, statistical analysis		
Chemical profiling and pathways	Metabolomics	NO	YES	Metabolite profiling, Comprehensive, Functional	Interdisciplinary collaboration, compound identification		
Host health, Ecology, Selection	Isolate Cultures	YES	NO	Selective, Strain identification, AMR testing	Technical expertise, careful planning, contamination risk		

Venom microbiome characterization and contributions to theory

- Biomedical applications and understanding of evolution as a result of microbial discovery
- Expanded case study examples for our understanding of both systems and holobionts
- More variables for modeling game theory schema: When we have species A, what is the likelihood of species B being pathogenic? Mutualistic? Etc

Progress in Botany Vol 83

Evolutionary Game Theory

Summary

Why care about diversity?

- Healthy ecosystems are strongly rooted in biodiversity

Why care about diversity?

- Healthy ecosystems are strongly rooted in biodiversity
- Diversity in the workplace = innovation and productivity

What are the benefits of diversity in the workplace?

19%

higher innovation revenues

35%

performance advantage over those that are homogenous 36%

more profitable

(companies in top 25% for enthic and cultural diversity vs bottom 25%)

Source: Harvard Business Review & McKinsey

Caring about diversity, equity, & inclusion means better science

We cannot be objective as scientists without understanding and acknowledging the subjective. We **need** "DEI" to be successful, as a species, and we all need to fight for it.

Life is ups and downs: Know your worth, stay resilient.

Positive

Negative

Started work in a lab thanks to a high school program. Received full scholarship and met first mentors.

Continued to experience prejudices and toxicity, but able to build supportive community and complete doctorate.

Supportive environment made it easier to focus on the science. Additionally provided space to heal > project

Steep learning curves and tough timelines, but ability to develop resilience made it easier to maintain calm and inspire.

Sexually harassed. Islamophobia. Sexism. Wanted to drop out and leave science. Mentors guided me to persevere.

Time

Normalize rest: Existing is enough.

- The "leaky pipeline", or a shift in priorities? Finite time with family
- During the pandemic: Evaluation of what (and who) is important to me
- There will be plenty of opportunities to succeed later, ~30+ more years to "produce"

Cited by

		А	II	Since	2020
Citations		1896	5		18501
h-index		1	2		10
i10-index		1	2		11
					6000
		_			4500
					3000
	_				3000
		-			1500
				١	
2019	2020 2021	2022 2	2023 202	24 2025	0

Takeaways: Venom microbiomes for informatics

- Large data sets of complex biological systems and interactions for analytics and modeling "The ultimate objective of iVAMP is to cultivate a collaborative network aimed at developing predictive models, leveraging a comprehensive understanding spanning from host metadata to the interactions of microorganisms within venom."

De León et al. 2025 Symbiosis [in press]

- Approximately ~30% of venom microbe taxa are uncharacterized, which can serve as good
- case study examples for further development of next generation technologies
- Identification of bias in datasets and filling those gaps, much like the biases that may be within ourselves, can push and advance our understanding of fundamentals

Publish or perish... or a new paradigm? Putting science first. Were they thinking about publication counts in Nature and Science?

