Terceiro Relatório de Medidas Eletromagnéticas

Gabriel Soares Henrique da Silva

15 de fevereiro de 2023

Sumário

- 1 Introdução
- 2 Análise preliminar
- 3 Resultados esperados
- 4 Medições no laboratório
 - - 4.1.2 Medições utilizando multímetro
- 5 Circuito RL
- 6 Conclusões

1 Introdução

Neste relatório, vamos medir a capacitância de um capacitor em um filtro RC.

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/ Shapis/ufpe_ee/tree/main/5thsemester/ ElectromagneticMeasurements/Relatorios

2 Análise preliminar

Construíremos um circuito RC e mediremos a tensão com um osciloscópio com as pontas de prova sobre o capacitor.

Utilizaremos da seguinte relação para medir a capacitância:

$$\tau = RC
C = \frac{\tau}{R}$$
(1)

Logo utilizaremos uma fonte geradora de onda quadrada com período de aproximadamente 4τ para podermos observar claramente o padrão de carregamento e descarregamento do capacitor.

Entao mediremos o tempo necessário para que a tensão atinja 63.2% do seu valor de pico para obtermos o τ .

3 Resultados esperados

Esperamos que os valores de capacitância que obteremos sejam coerentes com o valor real e que a maior fonte de imprecisão virá pelos cursores no osciloscópio.

4 Medições no laboratório

Vamos utilizar o osciloscópio para gerar uma onda quadrada que passará por um circuito RC. Mediremos a tensão no capacitor para fazermos a análise de tempo de subida e descida.

Faremos isso três vezes para três valores de R previamente conhecidos, respectivamente 14800Ω , 8200Ω e 15Ω .

Com estes em mãos, determinaremos a capacitância do nosso capacitor.

Após isso, mediremos a capacitância diretamente com um multimetro para podermos fazer a analise das discrepâncias entre as duas medidas.

4.1 Tabela de medições

4.1.1 Medições utilizando circuito RC

$R(\Omega)$	$\tau(s)$	C(nF)
15	0.0000045	300.0
8200	0.00054	65.8
14800	0.00076	51.3

4.1.2 Medições utilizando multímetro

C(nF)	
62.37	62.42
62.16	62.27
62.8	63.1
62.99	62.95
63.38	62.97
63.3	63.4
63.45	63.61
64.24	63.82
63.32	63.26
63.24	63.09

Média	63.107nF
Desvio padrão	0.5104nF

5 Circuito RL

Para um hipotético circuito RL, teríamos:

$$\tau = \frac{L}{R}$$

$$L = \tau R$$
(2)

Que também nos permitiria determinar a indutância, a diferença seria que nesse caso multiplicaríamos o τ encontrado experimentalmente por R para obtermos a indutância.

6 Conclusões

Conseguimos determinar a capacitância com mais precisão com um resistor intermediário. Isso ocorre devido à maior facilidade de observação das curvas de subida e descida da tensão no capacitor vistos no osciloscópio.

Mediu-se, portanto, uma capacitância usando um engenhoso método. É por meio de engenhosos pensamentos como esses que surgem e desenvolvem-se os sistemas de medição.