Υπολογιστικά Μαθηματικά 2021–2022

Παύλος Ορφανίδης Γιώργος Χατζηλίγος Σπύρος Κοντάκης

11 Ιανουαρίου 2022

Περιεχόμενα

T	1160	οβλημα Ι	2
	1.1	Να βρεθούν οι τύποι για την επίλυση του $\Pi.A.T$ με την M έθοδο του $Euler$ και την βελτιωμένη μέθοδο του $Euler$ με τις παρακάτω	
		τιμές για τις εισόδους και τις αρχικές συνθήκες	2
	1.2	Ερώτημα γ: Μέθοδος <i>Euler</i>	3
		1.2.1 Δεδομένα:	3
	1.3	Μεταφορική Κίνηση	4
	1.4	Πρόβλημα 1γ: Βελτιωμένη Μέθοδος Ευλερ	4
		1.4.1 Δεδομένα	4
		1.4.2 Μεταφορική Κίνηση	4
		κά δεδομένα $AM=4835$	(1)
		$ms^{\prime\prime}=(f_1+f_2)-b_s s^\prime s^\prime$	(2)
		$I_z\omega'=rac{d}{2}(f_2-f_1)-b_ heta \omega \omega$	(3)
		$s(0)=s_0$	(4)
		$s'(0) = 0, \omega(0) = 0$	(5)
		m=9kg	
		d=1m	
$I_z = 0.38 kgm^2$			

1 Πρόβλημα 1

1.1 Να βρεθούν οι τύποι για την επίλυση του $\Pi.A.T$ με την Μέθοδο του Euler και την βελτιωμένη μέθοδο του Euler με τις παρακάτω τιμές για τις εισόδους και τις αρχικές συνθήκες

Μεταφορική κίνηση

Euler s'

Έχουμε από τα δεδομένα ότι:

$$s'' = f'(t, s') = (f1 + f2) - bs|s'|s'$$

$$s' = f(t, s)$$

$$[f_1, f_2]^T = [A.M./7000, A.M./7000]^T$$

$$[f_1, f_2]^T = [A.M./7000, A.M./8000]^T$$

$$s_0 = \frac{A.M.}{1000}$$

$$\theta_0 = 0$$
(6)

Εφαρμόζουμε την μέθοδο *Euler*:

Στροφική κίνηση

$$\omega' = \frac{\frac{d}{2}(f_2 - f_1) - b\theta|\omega|\omega}{I_z} = f(t, \omega)$$
(8)

Euler

$$\begin{array}{lll} t_{n+1} = t_0 + nh & \omega_{n+1} = \omega_0 + h\omega'h \\ t_1 = t_0 + 1h & \omega_1 = \omega_0 + h\omega'_0 \\ t_2 = t_0 + 2h & \omega_2 = \omega_1 + h\omega'_1 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ t_{30.000} = t_0 + 29.999h & \omega_{30.000} = \omega_{29.999} + h\omega'_{29.999} \end{array}$$

Βελτιωμένη μέθοδος Euler s'

Εφαρμόζουμε την βελτιωμένη μέθοδο
$$Euler$$
:
$$t_n=t_0+nh \qquad s'_{n+1}=s'_n+\frac{h}{2}[f'(t_n,s'_n)+f'(t_n+h,s'_n+hf'(t_n,s'_n))]$$
 το οποίο σημαίνει ότι:
$$t_1=t_0+1h \qquad s'_n+\frac{h}{2}[\frac{f_1+f_2-b_s|s'_n|s'}{m}+\frac{f_1+f_2}{m}-\frac{|s'_n+h\frac{f_1+f_2-b_s|s'_n|s'}{m}|}{m}(\frac{s'_n+h\frac{f_1+f_2-b_s|s'_n|s'}{m}})]$$
 . . .
$$t_n=t_0+nh$$

Βελτιωμένη μέθοδος Euler s

Εφαρμόζουμε την βελτιωμένη μέθοδο
$$Euler$$
: $t_n=t_0+nh$ $s_{n+1}=s_n+hf(t,s)n$ το οποίο σημαίνει ότι: $t_1=t_0+1h$ $s_{n+1}=s_n+hs_n'$ $t_2=t_0+2h$ $s_1=s_0+hs_0'$ $t_n=t_0+nh$

Στροφική κίνηση

$$\omega_{n+1} = \omega_n + \frac{h}{2} [f(t,\omega) + f(t_n + h, \omega_n + f(t,\omega))]$$

$$= \omega_n + \frac{h}{2} [\omega'_n + \frac{(\frac{d}{2}(f_2 - f_1) - b\theta | \omega_n + \omega'_n | (\omega_n + \omega'_n))}{I_z}]$$
(9)

1.2 Ερώτημα γ: Μέθοδος Euler

1.2.1 Δεδομένα:

$$f_1 + f_2 = Kps(sdes - s) - Kds(s')$$

$$K_{ps} = 5$$

$$K_{ds} = 15 + \frac{AM}{100}$$

$$S_0 = 0$$

$$S_{des} = \frac{AM}{200}$$

1.3 Μεταφορική Κίνηση

$$s' = \frac{(f_1+f_2)-Kps(s_{des}-s)}{K_{ds}} = f(t,s)$$

Άρα, για την συνάρτηση s(t) έχουμε:

$$t_n = t_0 + nh$$
 $s_{n+1} = s_n + hs'_n$
 $t_1 = t_0 + 1h$ $s_1 = s_0 + hs'_0$
 $t_2 = t_0 + 2h$ $s_2 = s_1 + hs'_1$

.

 $t_{30.000} = t_0 + 30.000h$ $s_{30.000} = s_{29.999} + h_{s'29.999}$

 Γ ια την συνάρτηση s'(t):

$$S'' = K_{ps}(s_{des} - s) - K_{ds}(s') - b_s|s'|s'$$

Άρα, προκύπτει:

$$t_n = t_0 + nh$$
 $s'_{n+1} = s''_n + hs''_n$ $t_1 = t_0 + 1h$ $s'_1 = s'_0 + hs''_n$ $t_2 = t_0 + 2h$ $s_2 = s'_1 + hs''_1$

•

 $t_{30.000} = t_0 + 30.000h$ $s_{30.000} = s_{29.999} + hs''29.999$

1.4 Πρόβλημα 1γ: Βελτιωμένη Μέθοδος Ευλερ

1.4.1 Δεδομένα

$$f_1 + f_2 = K_{ps}(s_{des} - s) - K_{ds}(s')$$

$$K_{ps} = 5$$

$$K_{ds} = 15 + (AM/100)$$

$$S_0 = 0$$

$$S_{des} = AM/200$$

1.4.2 Μεταφορική Κίνηση

Για την s(t):

$$t_n = t_0 + nh$$
 $s_{n+1} = s_n + hs'_n$
 $t_1 = t_0 + 1h$ $s_1 = s_0 + hs'_0$
 $t_2 = t_0 + 2h$ $s_2 = s_1 + hs'_1$

.

$$t_{30.000} = t_0 + 30.000h$$
 $s_{30.000} = s_{29.999} + hs'_{29.999}$

$$s_{n+1} = s_n + \frac{h}{2} [f(t_n, s_n) + f(t_n + h, s_n + h(f(t_n, s_n)))]$$

$$= s_n + \frac{h}{2} [f(t_n, s_n) + [-(t_1 + t_2) - K_{ps}(s_{des} - (s_n + h(\frac{-(f_1 + f_2) - K_{ps}(s_{des} - s_n)}{m})))] | K_{ds}$$

$$(10)$$

Για τη
$$s'(t)$$
:

$$s'_{n+1} = s'_n + \frac{h}{2} [f'(t_n, s_n) + f(t_n + h, s'_n + h(f'(t_n, s_n)))]$$

Οπότε,

$$s_n' + (h/2)(f'(t_n, s_n) + \frac{(f_1 + f_2) - b_s(s_n' + h|(f_1 + f_2) - b_s|s_n'|s_n'}{m}|\frac{S_n' + h(f_1 + f_2) - b_s|s_n'|s_n'}{m}|m)$$