

Нейросетевой метод заполнения пропусков в спутниковых снимках

Кураторы: Анна Недорубова Александр Рябов Участники: Григорьев Василий

### Введение

#### Общая постановка задачи:

- Оперативное прогнозирование движение льда на 3 дня вперед, обновляющееся каждые 6 часов
- Наглядная визуализация прогноза для пользователей (капитанов арктических судов)

#### Мотивация:

- Обеспечение безопасной навигации в арктических водах
- Более экономичная транспортировка товаров
- Уменьшение негативного воздействия на окружающую среду

#### Методы решения:

- Прогноз на основе гидродинамической модели
- Прогнозирование на основе спутниковых данных, данных с буев и кораблей

### Задача в рамках проекта:

• Поскольку данные со спутников обладают артефактами и пробелами, то перед тем как решать задачу прогнозирования пробелы необходимо заполнить



## Литературный обзор

Efficient data-driven gap filling of satellite image time series using deep neural networks with partial convolutions

Marius Appel<sup>1</sup>

<sup>1</sup>University of Münster, Insitute for Geoinformatics, Heisenbergstr. 2, 48149 Münster, Germany; Contact: marius.appel@uni-muenster.de



Статья еще не прошла этап рецензирования. Статья посвящена нейросетевому методу заполнения пропусков в спутниковых снимков с использованием архитектуры U-Net на основе исторических данных. Приведено сравнение результатов с классическими (статистическими методами) и линейной интерполяцией.

### DATA-DRIVEN SHORT-TERM DAILY OPERATIONAL SEA ICE REGIONAL FORECASTING

Timofey Grigoryev, Ilya Trofimov, Nikita Balabin, Evgeny Burnaev, Vladimir Vanovskiy
Applied Al Center

Skolkovo Institute of Science and Technology Moscow, Russia

{t.grigorev, ilya.trofimov, nikita.balabin, e.burnaev, v.vanovskiy}@skoltech.ru

Polina Verezemskaya, Mikhail Krinitskiy, Alexander Gavrikov, Sergey Gulev Shirshov Institute of Oceanology

Moscow, Russia {verezem, krinitsky, gavr, gul}@sail.msk.ru

Nikita Anikin
Moscow Institute of Physics and Technology
Dolgoprudny, Russia
anikin.nn@phystech.edu

Aleksei Shpilman, Andrei Eremchenko Gazprom Neft St. Petersburg, Russia {Shpilman.AA, Eremchenko.AYu}@gazprom-neft.ru

метод статье описывается прогнозирования движения арктических ЛЬДОВ использованием архитектуры U-Net. обучения использовались ЈАХА-данные и погодные данные (GFS). Прогнозирование осуществлялось на 3 дня вперед на исторических данных в дней.



S-режим



R-режим

### Датасет

#### Реальные данные

- Источник данных Sentinel.hub
- Охватываемая территория Обская губа (min\_lon= 71.04, min\_lat= 67.36, max lon= 75.5, max lat =73.81)
- Охват по времени 30.04.2017-01.03.2023 (791 день)
- Вид данных: изображения 825х200
- В данных есть пропуски артефакты
- Дополнительные данные: вспомогательные поля погоды и течений

#### Данные для Stpconvnet

 Аналогичные изображения, но обрезанные до размера 200х200 и сжатые до 128х128





Пример входных данных для STpconvnet

Реальные данные: без артефактов (слева), с артефактами (справа)



### Методы решения задачи

#### Unet (прогноз)

- На вход n дней, на выходе 1 день
- При прогнозе пропуски заолняются одним из 2 способов: персистенс, заполнение данных прогнозами.
- Для обучения использовались данные sentinel.hub

#### FNO2D (прогноз)\*

- На вход п дней (упорядоченных), на выходе 1 день
- При прогнозе пропуски заолняются одним из 2 способов: персистенс, заполнение данных прогнозами.
- Для обучения использовались данные sentinel.hub

# STPconvnet (заполнение пропусков)\*\*

- Основано на архитектуре UNet
- На вход и выход тензор 128х128х16. На вход данные с пропусками, на выходе данные без пропусков.
- Использовалась предобученная сеть (без fine tuning).

В проекте была проведена попытка сравнить описанные 3 способа для заполнения пропусков. Для сравнения методов из датасета было выбрано 113 изображений без артефактов и далее на них накладывались искусственные артефакты.

<sup>\*</sup>Li Z. et al. Fourier neural operator for parametric partial differential equations //arXiv preprint arXiv:2010.08895. – 2020. 
\*\*Appel M. Efficient data-driven gap filling of satellite image time series using deep neural networks with partial convolutions// arXiv:2208.08781, 2022.



# Эксперименты (ч.1)



### **STpconvnet**



# Эксперименты (ч.2)



FNO2D, forecast



# Эксперименты (ч.3)



FNO2D, persistence



### Заключение

|      | STpconv | FNO2D<br>(pers) | FNO2D<br>(for) | PERS  |
|------|---------|-----------------|----------------|-------|
| MAE  | 0.249   | 0.094           | 0.133          | 0.062 |
| RMSE | 0.340   | 0.123           | 0.159          | 0.096 |

### Направления дальнейшей работы

- Провести fine-tuning STpconvnet
- Определить и обосновать оптимальные гиперпараметры для каждого из методов и выбор наилучшего для заполнения пропусков в данных
- Ввести и обосновать использование более "физичной" метрики качества
- Осуществление прогноза с помощью FNO3D (для учета временной компоненты)







# Artificial Intelligence Research Institute

- airi\_research\_institute
- **AIRI Institute**
- AIRI Institute
- AIRI\_inst
- intificial-intelligence-research-institute