Linear regression assumptions

- Linearity: The expected value of the dependent variable is a linear function of each independent variable, holding the others fixed (note this does not restrict you to use a nonlinear transformation of the independent variables i.e. you can still model f(x) = ax² + bx + c, using both x² and x as predicting variables.
- **Independence:** The errors (residuals of the fitted model) are independent of each other.
- Homoscedasticity (constant variance): The variance of the errors is constant with respect to the predicting variables or the response.

Linear regression assumptions

- Normality: errors are generated from a Normal distribution. Note, this is not a
 necessary condition to perform linear regression unlike the top three above.
 However, without this assumption being satisfied, you cannot calculate the socalled 'confidence' or 'prediction' intervals easily.
- For multiple linear regression, judging **multicollinearity** is also critical: minimal or no linear dependence between the predicting variables.
- **Outliers** can also be an issue impacting the model quality by having a disproportionate influence on the estimated model parameters.

Scatterplot of variables to check for linearity

Pairwise scatter plots for checking multicollinearity

Correlation heatmap for checking multicollinearity

Model fitting using statsmodel.ols() function

OLS Regression Results

Dep. Variable:		у		squared:		0.615
Model:		OLS		Adj. R-squared:		0.612
Method:		Least Squares		F-statistic:		204.3
Date:		Sun, 02 Jun 2019		Prob (F-statistic):		6.76e-206
Time:		18:25:55		Log-Likelihood:		-3869.0
No. Observations:		1030		AIC:		7756.
Df Residuals:			1021 BI	C:		7800.
Df Model:			8			
Covariance Type:		nonrobust				
=========	coef	std err	-	t P> t	[0.025	0.975]
Intercept	-23.1638	26.588	-0.87	1 0.384	-75 . 338	29.010
Component1	0.1198	0.008	14.11	0.000	0.103	0.136
Component2	0.1038	0.010	10.24	0.000	0.084	0.124
Component3	0.0879	0.013	6.98	0.000	0.063	0.113
Component4	-0.1503	0.040	-3.74	0.000	-0.229	-0.071
Component5	0.2907	0.093	3.110	0.002	0.107	0.474
Component6	0.0180	0.009	1.919	9 0.055	-0.000	0.036
Component7	0.0202	0.011	1.88	0.060	-0.001	0.041
Age	0.1142	0.005	21.04	0.000	0.104	0.125
Omnibus:		5.379		======================================		1.281
Prob(Omnibus):		0.068		Jarque-Bera (JB):		5.305
Skew:		-0.174		Prob(JB):		0.0705
Kurtosis:		3		nd. Nó.		1.06e+05

Model fitting using statsmodel.ols() function

- R-squared is also called the coefficient of determination. It's a statistical measure of how well the regression line fits the data.
- Adjusted R-squared actually adjusts the statistics based on the number of independent variables present.
- The ratio of deviation of the estimated value of a parameter from its hypothesized value to its standard error is called **t-statistic**.
- F-statistic is calculated as the ratio of mean squared error of the model and mean squared error of residuals.
- AIC stands for Akaike Information Criterion, which estimates the relative quality of statistical models for a given dataset.
- BIC stands for Bayesian Information Criterion, which is used as a criterion for model selection among a finite set of models. BIC is like AIC, however it adds a higher penalty for models with more parameters.

Residuals vs. predicting variables plots

If the residuals are distributed uniformly randomly around the zero x-axes and do not form specific clusters, then the assumption holds true. In this particular problem, we observe some clusters.

Fitted vs. residuals plot to check homoscedasticity

Histogram and Q-Q plot of normalized residuals

Checking for Normality

Q-Q plot should be linear for normal distribution.

Quantile

Outlier detection using Cook's distance plot

Outlier detection using Cook's distance plot

Definition

Each element in the Cook's distance D is the normalized change in the fitted response values due to the deletion of an observation. The Cook's distance of observation i is

$$D_i = \frac{\sum_{j=1}^n \left(\hat{y}_j - \hat{y}_{j(i)} \right)^2}{p \, MSE},$$

where

- ŷ_j is the jth fitted response value.
- $\hat{y}_{j(i)}$ is the jth fitted response value, where the fit does not include observation i.
- MSE is the mean squared error.
- p is the number of coefficients in the regression model.

Cook's distance is algebraically equivalent to the following expression:

$$D_i = \frac{r_i^2}{p \, MSE} \left(\frac{h_{ii}}{(1 - h_{ii})^2} \right),$$

where r_i is the *i*th residual, and h_{ii} is the *i*th leverage value.

$$D_i > 4/n$$

Variance influence factors

```
from statsmodels.stats.outliers_influence import variance_inflation_factor as vif
```

```
for i in range(len(df1.columns[:-1])):
    v=vif(np.matrix(df1[:-1]),i)
    print("Variance inflation factor for {}: {}".format(df.columns[i],round(v,2)))

Variance inflation factor for Cement (component 1)(kg in a m^3 mixture): 26.23

Variance inflation factor for Blast Furnace Slag (component 2)(kg in a m^3 mixture): 4.44

Variance inflation factor for Fly Ash (component 3)(kg in a m^3 mixture): 4.56

Variance inflation factor for Water (component 4)(kg in a m^3 mixture): 92.59

Variance inflation factor for Superplasticizer (component 5)(kg in a m^3 mixture): 5.52

Variance inflation factor for Coarse Aggregate (component 6)(kg in a m^3 mixture): 85.97

Variance inflation factor for Fine Aggregate (component 7)(kg in a m^3 mixture): 73.46

Variance inflation factor for Age (day): 2.43
```

There are few features with VIF > 10, thereby indicating significant multicollinearity

We can compute the variance influence/inflation factors for each predicting variable. It is the ratio of variance in a model with multiple terms, divided by the variance of a model with one term alone. Again, we take advantage of the special outlier influence class in statsmodels.