

LEMA 1.1. Sea B un álgebra de Boole finita. Entonces todo elemento de B se escribe de manera única como supremo de átomos. O sea: para todo $x \in B$ se tiene:

- $(1) x = \sup\{a \in At(B) : a \le x\},\$
- (2) $si\ A \subseteq At(B)\ y\ x = sup\ A$, entonces $A = \{a \in At(B) : a \le x\}$.

DEMOSTRACIÓN. Veamos que $x y^c \neq 0$. Si $x y^c = 0$, entonces $y (x y^c) = y 0$, o sea y x = y, lo que contradice la hipótesis del lema. Luego $x y^c \neq 0$. Por el lema anterior existe $a \in At(B)$ tal que $a \le x y^c$. Claramente $a \le x$, veamos que $a \not \le y$. Si $a \le y$, como $a \le x y^c$ tendríamos $a \le x y^c y = 0$, lo que es absurdo puesto que a es un átomo. Luego $a \not \le y$.

