Frühjahr 22 Themennummer 3 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

(a) Formulieren Sie den Satz von Bolzano-Weierstraß.

Im Folgenden seien $a, b \in \mathbb{R}$ mit $a \leq b$ und $f_n, g_n : [a, b] \to \mathbb{R}, n \in \mathbb{N}$, stetige Funktionen mit $g_1 \geq g_2 \geq \ldots$ und $f_1 \leq f_2 \leq \ldots$. Beweisen Sie die folgenden Aussagen (b) und (c).

- (b) Ist $(x_n)_{n\in\mathbb{N}}$ eine Folge in [a,b] mit $g_n(x_n)\geq 0$ für alle $n\in\mathbb{N}$, dann existiert ein $x_0\in[a,b]$ mit $g_n(x_0)\geq 0$ für alle $n\in\mathbb{N}$.
- (c) Konvergiert die Funktionenfolge f_n punktweise gegen eine stetige Funktion $f:[a,b] \to \mathbb{R}$, so ist diese Konvergenz sogar gleichmäßig. Hinweis: Widerspruchsbeweis mit Hilfe von (b).

Lösungsvorschlag:

- (a) Jede beschränkte reelle(komplexe) Folge besitzt einen reellen(komplexen) Häufungspunkt.
- (b) Die Folge $(x_n)_{n\in\mathbb{N}}$ ist beschränkt, besitzt also einen Häufungspunkt x_0 in \mathbb{R} . Dieser ist Grenzwert einer Teilfolge, also liegt $x_0 \in [a,b]$, weil das Intervall abgeschlossen ist. Außerdem gilt für alle $j \in \mathbb{N}$ und $n \in \mathbb{N}$ mit $n \geq j$ die Ungleichung $g_j(x_n) \geq g_n(x_n) \geq 0$. Insbesondere folgt für die gegen x_0 konvergente Teilfolge x_{n_k} mit der Stetigkeit von g_j noch $g_j(x_0) = \lim_{k \to \infty} g_j(x_{n_k}) \geq 0$, weil für k groß genug auch $n_k \geq j$ gilt und schwache Ungleichungen unter Grenzwertbildung erhalten bleiben.
- (c) Wir betrachten die stetigen Funktionen $g_n \coloneqq f f_n$ und stellen fest, dass diese nichtnegativ sind und $g_1 \ge g_2 \ge \ldots$ erfüllen. Weil die Funktionen stetig auf einem kompakten Intervall sind, gibt es für jedes $n \in \mathbb{N}$ ein $x_n \in [a,b]$ in dem die Funktion g_n ihr Maximum annimmt. Die gleichmäßige Konvergenz von f_n gegen f ist äquivalent zur gleichmäßigen Konvergenz von g_n gegen die Nullfunktion, angenommen f_n würde also nicht gleichmäßig gegen f konvergieren, dann gilt auch $\|g_n\|_{\infty} \to 0$, es gibt also ein c > 0 und eine Teilfolge n_k mit $g_{n_k}(x_{n_k}) = \|g_{n_k}\|_{\infty} \ge c$. Wir betrachten schließlich die Folge stetiger Funktionen $h_k \coloneqq g_{n_k} c$, die ebenfalls $h_1 \ge h_2 \ge \ldots$ erfüllt und für die die Folge $(x_{n_k})_{k \in \mathbb{N}}$ die Eigenschaft $h_k(x_{n_k}) \ge 0$ hat. Es gibt nach (b) also ein $x_0 \in [a,b]$ mit $h_k(x_0) \ge 0$ für $k \in \mathbb{N}$, was äquivalent zu $g_{n_k}(x_0) \ge c$ ist. D. h. aber, dass $g_{n_k}(x_0)$ nicht gegen $g_{n_k}(x_0)$ nicht gegen $g_{n_k}(x_0)$ nicht gegen $g_{n_k}(x_0)$ nicht gegen $g_{n_k}(x_0)$ nicht gegen den Grenzwert der Folge konvergiert. Damit war die Annahme also falsch und die Konvergenz von $g_{n_k}(x_0)$ ist gleichmäßig.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$