Vzporedni (paralelni) računalniki

Von Neumann: zaporedno izvajanje ukazov

Mnogi problemi po svoji naravi dovoljujejo istočasno oz. paralelno izvajanje več operacij

Zato so von Neumann-ov model razširili

Flynn-ova klasifikacija (1966) uporablja 2 kriterija:

- tok ukazov (instruction stream): koliko ukazov se izvršuje naenkrat
- tok podatkov (data stream): koliko ponovitev operandov* en ukaz obdeluje naenkrat

Npr.,

ADD A1, A2, A3 ; A1
$$\leftarrow$$
 A2 + A3

;
$$A1 \leftarrow A2 + A3$$

N paralelnih ponovitev:

$$A1(i) \leftarrow A2(i) + A3(i), \qquad i = 1, ..., N$$

$$i = 1, ..., N$$

Flynn-ova klasifikacija

Flynn-ova klasifikacija računalnikov:

- SISD (Single Instruction stream, Single Data stream)
 - izvajajo naenkrat en ukaz na eni zbirki operandov
 - najbolj zmogljivi so vektorski računalniki
- SIMD (Single Instruction stream, Multiple Data stream)
 - izvajajo en ukaz na več zbirkah operandov (N)
 - imajo eno kontrolno enoto in N ALE ter N množic registrov
- MISD (Multiple Instruction stream, Single Data stream)
 - ne obstajajo (najbližje temu so 'stream' procesorji, ki podobno cevovodu izvajajo različne operacije na istem toku ukazov)
- MIMD (Multiple Instruction stream, Multiple Data stream)
 - izvajajo več ukazov na več zbirkah operandov
 - multiprocesorji, multiračunalniki

MIMD: več CPE

- tesno povezani (tudi shared memory): skupen pomnilnik
- rahlo povezani (tudi distributed memory): povezani preko V/I enot

Večjedrne (multicore) računalnike (več CPE na istem čipu) lahko štejemo med tesno povezane MIMD

 "pravi" oz. veliki MIMD pa imajo po več tisoč jeder (rekord je trenutno nekaj milijonov)

SPMD: Single Program – Multiple Data:

 Programi na MIMD pogosto tečejo tako, da isti program teče na več procesorjih (oz. jedrih), pogojni stavki pa določajo, kaj se izvaja na posameznem procesorju

SIMD in MIMD so paralelni računalniki

- najbolj zmogljivi superračunalniki so paralelni
- zmogljivost se običajno meri v številu operacij v plavajoči vejici na sekundo
 - GFLOPS (Giga FLOPS Floating Point Operations Per Second) pomeni
 10⁹ operacij / s
 - Cray 1988, 1GFLOPS
 - TFLOPS (Tera FLOPS) pomeni 10¹² operacij / s
 - PFLOPS (Peta FLOPS) pomeni 10¹⁵ operacij / s
 - trenutno je rekord 34 PFLOPS
- od leta 1988 se povečuje zmogljivost za 2x na leto
- današnji PCji: nekaj GFLOPS

Amdahlov zakon

Vzemimo, da pohitrimo delovanje določenega dela operacij

- f je zaporedni del(ež) programa
- 1 f je vzporedni del(ež) programa
 - pri njem je delovanje N-krat hitrejše (npr. paralelno izvajanje N procesorjev)

$$S(N) = \frac{1}{f + (1 - f)/N} = \frac{N}{1 + (N - 1)f}$$

- npr. če je f = 0,1, hitrosti računalnika ne moremo povečati za več kot 10-krat, tudi če preostalih 90% časa zmanjšamo na 0 (pohitrimo za faktor $N \to \infty$)
- koliko nam paralelni računalnik koristi, je odvisno od problema

Gustafsonov zakon

Gustafsonov zakon:

- lahko pa rešimo večji problem
- če povečujemo problem, se zaporedni del f zmanjšuje in pohitritev postane skoraj linearna:

$$S(N) \approx N$$

Gustafsonov zakon je poskus, da se obide omejitve, ki jih postavlja Amdahlov zakon

- ne morem te prepeljati hitreje, lahko pa vas gre 5
- ni vedno možno 🕾