

VIBIKNet: Visual Bidirectional Kernelized Network for the VQA Challenge

Marc Bolaños^(1,2), Álvaro Peris⁽³⁾, Francisco Casacuberta⁽³⁾ and Petia Radeva^(1,2)

(1) Universitat de Barcelona, (2) Computer Vision Center, (3) Universitat Politècnica de València

IEEE 2016 Conference on Computer Vision and Pattern Recognition

CVPR2016

Introduction

- VQA as a classification task.
- Image processed by a Kernelized CNN [2].
- Question processed by a Bidirectional LSTM.
- Multimodal combination using a classifier.

Kernelized CNN

Kernelized CNN [2] (KCNN): uses a set of object proposals and their rotations and learns a GMM for obtaining a final rotation-invariant Fisher Vector representation of the whole image.

Bibliography

- **Visual Embedding**: linear combination for adapting the image representation to the dataset at hand.
- Text Embedding with GLOVE initialization: embedding matrix pretrained using GLOVE [4] that is adapted during training.
- **BLSTM**: bidirectional representation (past-to-future and future-to-past) of the input question for a more robust representation.

Our architecture was inspired by the work in [1] and [3].

- [1] M. Malinowski, M. Rohrbach, and M. Fritz. "Ask your neurons: A neural-based approach to answering questions about images," *Proc. IEEE ICCV*, 2015.
- [2] Z. Liu, "Kernelized Deep Convolutional Neural Network for Describing Complex Images," arXiv:1509.04581. 2015.
- [3] Á. Peris, M. Bolaños, P. Radeva, and F. Casacuberta. "Video Description using Bidirectional Recurrent Neural Networks," arXiv:1604.03390. 2016.
- [4] J. Pennington, R. Socher and Ch.D. Manning. "Glove: Global Vectors for Word Representation," Proceedings of the 2014 Conf. on EMNLP, 2014.

Contacts: Marc Bolaños: marc.bolanos@ub.edu, Álvaro Peris: lvapeab@prhlt.upv.es, Francisco Casacuberta: fcn@prhlt.upv.es, Petia Radeva: petia.ivanova@ub.edu
Acknowledgments: Partially supported by TIN2015-66951-C2-1-R, SGR 1219, PrometeoII/2014/030 and R-MIPRCV; P. Radeva by ICREA Academia. We acknowledge NVIDIA for a GPU donation.

Results

Results								
Model	Accuracy on dev 2014				Accuracy on test 2015			
	Yes/No	Number	Other	Overall	Yes/No	Number	Other	Overall
LSTM	79.00	38.16	33.68	52.88	-	-	-	-
BLSTM	79.13	38.26	33.52	52.96	78.30	38.88	38.97	54.86
BLSTM train+dev	_	-	-	_	78.88	36.33	40.27	55.77

Examples

Question:
What is the person holding?

VIBIKNet: umbrella

Question:
What are the dogs doing?

VIBIKNet: playing frisbee

Ougati

Question:
What is the man holding near his mouth?

Question:

VIBIKNet:

monkey

What character is

on the backpack?

VIBIKNet:

Conclusions

- Robust image analysis.
- Full question context taken into account.
- Future work:
 - Attention mechanisms.
 - LSTM decoder for complex answers.

Download VIBIKNet

