Data Preprocessing and Exploratory Data Analysis (EDA)

1. Auto MPG

Datatypes

Name	Туре	Name	Туре
mpg	float64	acceleration	float64
cylinders	int64	model_year	int64
displacement	float64	origin	int64
horsepower	float64	car_name	object
weight	float64		

Missing Data and Shape

Shape with n/a values: (398, 9) Shape without n/a values: (392, 9)

n/a values: 6

Correlation Matrix Heatmap

Group Analysis

Average MPG by Brand

Brand	MPG	Brand	MPG	Brand	MPG	Brand	MPG
amc	18.070370	chevrolet	20.370455	ford	19.475000	mercury	19.118182
audi	26.714286	chevy	18.000000	hi	9.000000	nissan	36.000000
bmw	23.750000	chrysler	17.266667	honda	33.761538	oldsmobile	21.100000
buick	19.182353	datsun	31.113043	mazda	30.058333	opel	25.750000
cadillac	19.750000	dodge	22.060714	mercedes	25.400000	peugeot	23.687500
capri	25.000000	fiat	28.912500	volkswagen	29.150000	plymouth	21.703226
pontiac	20.012500	subaru	30.525000	toyota	28.165385	vw	39.016667
renault	29.666667	saab	23.900000	triumph	35.000000	volvo	21.116667
Mercedes- benz	23.250000						

Average MPG by cylinders

Cylinders	MPG	Cylinders	MPG	Cylinders	MPG
3	20.550000	4	29.283920	5	27.366667
6	19.973494	8	14.963107		

Average MPG by model year

model year	mpg	model year	mpg	model year	mpg
70	17.689655	75	20.266667	79	25.093103
71	21.111111	76	21.573529	80	33.803704
72	18.714286	77	23.375	81	30.185714
73	17.1	78	24.061111	82	32
74	22.769231				

Average MPG by origin

origin	mpg	origin	mpg	origin	mpg
1	20.033469	2	27.602941	3	0.450633

Descriptive Statistics

features	count	mean	std	min	25%	50%	75%	max	skewness	kurtosis
mpg	392	23.445918	7.805007	9	17	22.75	29	46.6	0.457092	-0.515993
cylinders	392	5.471939	1.705783	3	4	4	8	8	0.508109	-1.398199
displacement	392	194.41199	104.644004	68	105	151	275.75	455	0.701669	-0.778317
horsepower	392	104.469388	38.49116	46	75	93.5	126	230	1.087326	0.696947
weight	392	2977.584184	849.40256	1613	2225.25	2803.5	3614.75	5140	0.519586	-0.809259
acceleration	392	15.541327	2.758864	8	13.775	15.5	17.025	24.8	0.291587	0.444234
model_year	392	75.979592	3.683737	70	73	76	79	82	0.019688	-1.167446
origin	392	1.576531	0.805518	1	1	1	2	3	0.915185	-0.841885

Distribution Statistics

2. Forest Fire

Datatypes

Name	Туре	Name	Туре
X	int64	ISI	float64
Y	int64	temp	float64
month	object	RH	int64
Day	object	wind	float64
FFMC	float64	rain	float64
DMC	float64	area	float64
DC	float64	dtype	object

Missing Data and Shape

Shape with n/a values: (517, 13) Shape without n/a values: (517, 13)

n/a values: 0

Correlation Matrix Heatmap

Group Analysis

Average area by month

Month	Area
apr	8.891111
aug	12.489076
dec	13.330000
feb	6.275000
jan	0.000000
jul	14.369687
jun	5.841176
mar	4.356667
may	19.240000
nov	0.000000
oct	6.638000
sep	17.942616

Average area by day

Day	Area
fri	5.261647
mon	9.547703
sat	25.534048
sun	10.104526
thu	16.345902
tue	12.621719
wed	10.714815

Average area by rain

Rain	Area
0.0	13.023694
0.2	0.000000
0.4	0.000000
0.8	0.000000
1.0	0.000000
1.4	2.170000
6.4	10.820000

Average area by X

Х	Area
1	13.392292
2	9.570548
3	2.456545
4	10.385165
5	3.045667
6	20.115000
7	11.092667
8	24.466885
9	18.546923

Average area by Y

Υ	Area
2	15.513409
3	9.110000
4	8.412857
5	15.758560
6	20.385946
8	185.760000
9	0.745000

Descriptive Statistics

feature s	count	mean	std	min	25%	50%	75%	max	skewne ss	kurtosi s
X	517.0	4.669246	2.313 778	1.0	3.0	4.00	7.00	9.00	0.03624 6	-1.1723 31
Y	517.0	4.299807	1.229 900	2.0	4.0	4.00	5.00	9.00	0.41729 6	1.42055 3
FFMC	517.0	90.64468 1	5.520 111	18.7	90.2	91.60	92.90	96.20	-6.5756 06	67.0660 41
DMC	517.0	110.8723 40	64.04 6482	1.1	68.6	108.30	142.40	291.30	0.54749 8	0.20482 2
DC	517.0	547.9400 39	248.0 66192	7.9	437.7	664.20	713.90	860.60	-1.1004 45	-0.2452 44
ISI	517.0	9.021663	4.559 477	0.0	6.5	8.40	10.80	56.10	2.53632 5	21.4580 37
temp	517.0	18.88916 8	5.806 625	2.2	15.5	19.30	22.80	33.30	-0.3311 72	0.13616 6
RH	517.0	44.28820 1	16.31 7469	15.0	33.0	42.00	53.00	100.00	0.86290 4	0.43818 3
wind	517.0	4.017602	1.791 653	0.4	2.7	4.00	4.90	9.40	0.57100 1	0.05432 4
rain	517.0	0.021663	0.295 959	0.0	0.0	0.00	0.00	6.40	19.8163 44	421.295 964
area	517.0	12.84729 2	63.65 5818	0.0	0.0	0.52	6.57	1090.84	12.8469 34	194.140 721

Distribution Statistics

3. Seoul Bike Share Demand

Datatypes

Date	object	Dew point temperature(C)	float64
Rented Bike Count	int64	Solar Radiation (MJ/m2)	float64
Hour	int64	Rainfall(mm)	float64
Temperature(C)	float64	Snowfall (cm)	float64
Humidity(%)	int64	Seasons	object
Wind speed (m/s)	float64	Holiday	object
Visibility (10m)	int64	Functioning Day	object

Missing Data and Shape

Shape with n/a values: (8760, 14) Shape without n/a values: (8760, 14)

n/a values: 0

Correlation Matrix Heatmap

Group Analysis

Average Rented Bike Count by Seasons

Seasons	Rented Bike Count				
Autumn	819.597985				
Spring	730.03125				
Summer	1034.07337				
Winter	225.541204				

Average by Holiday

Holiday	Rented Bike Count
Holiday	499.756944
No Holiday	715.228026

Average by Hours

Hour	Rented Bike Count	Hour	Rented Bike Count
0	541.460274	12	699.441096
1	426.183562	13	733.246575
2	301.630137	14	758.824658
3	203.331507	15	829.186301
4	132.591781	16	930.621918
5	139.082192	17	1138.509589
6	287.564384	18	1502.926027
7	606.005479	19	1195.147945
8	1015.70137	20	1068.964384
9	645.983562	21	1031.449315
10	527.821918	22	922.79726
11	600.852055	23	671.126027

Descriptive Statistics

Metrics	Count	Mean	Std	Min	25%	50%	75%	Max	Skewnes s	Kurtosis
Rented Bike Count	8760	704.60205 5	644.9974 68	0	191	504.5	1065.25	3556	1.153428	0.853387
Hour	8760	11.5	6.922582	0	5.75	11.5	17.25	23	0	-1.204176
Temperatur e(C)	8760	12.882922	11.94482 5	-17.8	3.5	13.7	22.5	39.4	-0.19832 6	-0.837786
Humidity(%	8760	58.226256	20.36241 3	0	42	57	74	98	0.059579	-0.803559
Wind speed (m/s)	8760	1.724909	1.0363	0	0.9	1.5	2.3	7.4	0.890955	0.727179
Visibility (10m)	8760	1436.8257 99	608.2987 12	27	940	1698	2000	2000	-0.70178 6	-0.96198
Dew point temperatur e(C)	8760	4.073813	13.06036 9	-30.6	-4.7	5.1	14.8	27.2	-0.36729 8	-0.75543
Solar Radiation (MJ/m2)	8760	0.569111	0.868746	0	0	0.01	0.93	3.52	1.50404	1.126433
Rainfall(m m)	8760	0.148687	1.128193	0	0	0	0	35	14.53323 2	284.9910 99
Snowfall (cm)	8760	0.075068	0.436746	0	0	0	0	8.8	8.440801	93.80332 4

Distributive Statistics

4. Boston Housing

Datatypes

Name	Туре	Name	Туре
CRIM	float64	DIS	float64
ZN	float64	RAD	int64
INDUS	float64	TAX	float64
CHAS	int64	PTRATIO	float64
NOX	float64	В	float64
RM	float64	LSTAT	float64
AGE	float64	MEDV	float64

Missing Data and Shape

Shape with n/a values: (506, 14) Shape without n/a values: (506, 14)

n/a values: 0

Correlation Matrix Heatmap

Group Analysis

Average MEDV by CHAS

CHAS	MEDV
0	22.093843
1	28.440000

Average MEDV by RAD

RAD	MEDV
1	24.365000
2	26.833333
3	27.928947
4	21.387273
5	25.706957
6	20.976923
7	27.105882
8	30.358333
24	16.403788

Descriptive Statistics

features	count	mean	std	min	25%	50%	75%	max	skewness	kurtosis
CRIM	506.0	3.61352 4	8.60154 5	0.00632	0.08204 5	0.25651	3.67708 3	88.9762	5.22314 9	37.1305 09
ZN	506.0	11.3636 36	23.3224 53	0.00000	0.00000 0	0.00000	12.5000 00	100.000 0	2.22566 6	4.03151 0
INDUS	506.0	11.1367 79	6.86035 3	0.46000	5.19000 0	9.69000	18.1000 00	27.7400	0.29502 2	-1.23354 0

		1				1			1	
CHAS	506.0	0.06917 0	0.25399 4	0.00000	0.00000	0.00000	0.00000 0	1.0000	3.40590 4	9.63826 4
NOX	506.0	0.55469 5	0.11587 8	0.38500	0.44900 0	0.53800	0.62400 0	0.8710	0.72930 8	-0.06466 7
RM	506.0	6.28463 4	0.70261 7	3.56100	5.88550 0	6.20850	6.62350 0	8.7800	0.40361 2	1.89150 0
AGE	506.0	68.5749 01	28.1488 61	2.90000	45.0250 00	77.5000 0	94.0750 00	100.000	-0.59896 3	-0.96771 6
DIS	506.0	3.79504 3	2.10571 0	1.12960	2.10017 5	3.20745	5.18842 5	12.1265	1.01178 1	0.48794 1
RAD	506.0	9.54940 7	8.70725 9	1.00000	4.00000 0	5.00000	24.0000 00	24.0000	1.00481 5	-0.86723 2
TAX	506.0	408.237 154	168.537 116	187.000 00	279.000 000	330.000 00	666.000 000	711.000 0	0.66995 6	-1.14240 8
PTRATI O	506.0	18.4555 34	2.16494 6	12.6000 0	17.4000 00	19.0500 0	20.2000 00	22.0000	-0.80232 5	-0.28509 1
В	506.0	356.674 032	91.2948 64	0.32000	375.377 500	391.440 00	396.225 000	396.900 0	-2.89037 4	7.22681 8
LSTAT	506.0	12.6530 63	7.14106 2	1.73000	6.95000 0	11.3600 0	16.9550 00	37.9700	0.90646 0	0.49324 0
MEDV	506.0	22.5328 06	9.19710 4	5.00000	17.0250 00	21.2000 0	25.0000 00	50.0000	1.10809 8	1.49519 7

Distribution Statistics

Quality of Fit

Linear

Auto MPG

	MSE	R2	RMSE
Train	10.71086	0.79015	3.27275
Test	10.71086	0.79015	3.27275
5X Cross-Validation	11.49514	0.81009	3.37577

Forest Fires

	MSE	R2	RMSE
Train	11613.67453	0.01477	107.76676
Test	11613.67453	0.01477	107.76676
5X Cross Validation	4112.06868	-0.19463	55.64507

Seoul Bike Sharing Demand

	MSE	R2	RMSE
Train	194288.2051	0.53369	440.78136
Test	194288.2051	0.53369	440.78136
5X Cross Validation	187603.3027	0.54887	433.0349

Boston Housing

	MSE	R2	RMSE
Train	24.29112	0.66876	4.9286
Test	24.29112	0.66876	4.9286
5X Cross Validation	23.4886	0.71522	4.84279

Ridge

Auto MPG

	MSE	R2	RMSE
Train	10.70278	0.79031	3.27151
Test	10.70278	0.79031	3.27151
Cross Validation	11.49302	0.81013	3.37538

Forest Fires

	MSE	R2	RMSE
Train	11637.64549	0.01273	107.87792
Test	11637.64549	0.01273	107.87792
Cross Validation	4097.53755	-0.16776	55.38703

Seoul Bike Sharing Demand

	MSE	R2	RMSE
Train	194262.2332	0.53375	440.7519
Test	194262.2332	0.53375	440.7519
Cross Validation	187603.5005	0.54887	433.03541

Boston Housing

	MSE	R2	RMSE
Train	24.47719	0.66622	4.94744
Test	24.47719	0.66622	4.94744
Cross Validation	23.71106	0.71222	4.86681

Lasso

Auto MPG

Performance including outliers

	MSE	RSquared	RMSE
In-Sample	10.84749	0.82148	3.29355
Train	11.04147	0.82502	3.32287
Test	10.75401	0.7893	3.27933
5X Validation	11.49538	0.81009	3.37577

$Performance\ excluding\ outliers\ -\ Z\ Score$

	MSE	RSquared	RMSE
In-Sample	10.59414	0.8221	3.25486
Train	10.84212	0.82165	3.29274
Test	10.19649	0.80882	3.19319
5X Validation	11.16959	0.80936	3.33935

	MSE	RSquared	RMSE
In-Sample	10.31223	0.8222	3.21127
Train	10.80482	0.81451	3.28707
Test	8.81355	0.84535	2.96876
5X Validation	10.93944	0.80871	3.30106

Forest Fires

Performance including outliers

	MSE	RSquared	RMSE
In-Sample	3859.08	0.04578	62.12149
Train	1990.089	0.04307	44.61042
Test	11685.56	0.00867	108.0998
5X Validation	4111.496	-0.19373	55.63621

Performance excluding outliers - Z Score

	MSE	RSquared	RMSE
In-Sample	453.2778	0.06339	21.29032
Train	516.6072	0.05447	22.72899
Test	261.3988	-0.15016	16.16783
5X Validation	508.8067	-0.09555	22.06728

	MSE	RSquared	RMSE
In-Sample	12.13703	0.03775	3.48382
Train	12.24535	0.03067	3.49934
Test	13.21939	-0.07467	3.63585
5X Validation	14.5449	-0.17577	3.79941

Seoul Bike Sharing Demand

Performance including outliers

	MSE	RSquared	RMSE
In-Sample	187005.2	0.55044	432.441
Train	185272.8	0.55442	430.4333
Test	194248	0.53378	440.7358
5X Validation	187603.3	0.54887	433.0349

Performance excluding outliers - Z Score

	MSE	RSquared	RMSE
In-Sample	165633.3	0.56597	406.9807
Train	165478.9	0.56784	406.791
Test	166467.1	0.55767	408.0038
5X Validation	166222.4	0.56429	407.6011

	MSE	RSquared	RMSE
In-Sample	156033.1	0.57122	395.0103
Train	155390.7	0.57246	394.1962
Test	159069.4	0.56499	398.8351
5X Validation	156714.3	0.56867	395.8314

Boston Housing

Performance including outliers

	MSE	RSquared	RMSE
In-Sample	21.8952	0.74064	4.67923
Train	22.73981	0.73824	4.76863
Test	25.15559	0.65697	5.01554
5X Validation	23.49094	0.71518	4.84309

Performance excluding outliers - Z Score

	MSE	RSquared	RMSE
In-Sample	10.20754	0.7917	3.19492
Train	10.41864	0.78652	3.22779
Test	10.74615	0.78379	3.27813
5X Validation	11.00931	0.77263	3.28895

	MSE	RSquared	RMSE
In-Sample	4.7584	0.71521	2.18138
Train	5.3524	0.70431	2.31353
Test	3.18889	0.70963	1.78575
5X Validation	5.558	0.66571	2.32556

Transformed

Auto MPG

Including Outliers

Technique	MSE	R2	RMSE
Logarithmic Regression (In-Sample)	8.79549	0.85525	2.96572
Logarithmic Regression (Train)	9.03284	0.85685	3.00547
Logarithmic Regression (Test)	7.6954	0.84923	2.77406
Logarithmic Regression (5X Validation)	0.0136	0.86942	0.11626
Square Root Regression (In-Sample)	10.84748	0.82148	3.29355
Square Root Regression (Train)	9.6417	0.8472	3.10511
Square Root Regression (Test)	8.77465	0.82808	2.9622
Square Root Regression (5X Validation)	11.49514	0.81009	3.37577
Reciprocal Regression (In-Sample)	9.17551	0.84899	3.02911
Reciprocal Regression (Train)	10.11554	0.83969	3.18049
Reciprocal Regression (Test)	7.47045	0.85364	2.73321
Reciprocal Regression (5X Validation)	0.00003	0.87602	0.00579
Yeo-Johnson Regression (In-Sample)	8.99253	0.85201	2.99876
Yeo-Johnson Regression (Train)	9.18992	0.85436	3.03149
Yeo-Johnson Regression (Test)	8.00071	0.84325	2.82855
Yeo-Johnson Regression (5X Validation)	0.0389	0.86294	0.19664
Random Forest (In-Sample)	2.04323	0.96637	1.42942
Random Forest (Train)	1.1296	0.9821	1.06283
Random Forest (Test)	5.66305	0.88905	2.37972
Random Forest (5X Validation)	7.63248	0.8753	2.73176

Excluding Outliers - Z Score

Technique (Including Outliers)	MSE	R2	RMSE
Logarithmic Regression (In-Sample)	8.60586	0.85549	2.93357
Logarithmic Regression (Train)	8.82894	0.85477	2.97135
Logarithmic Regression (Test)	7.25709	0.86393	2.6939
Logarithmic Regression (5X Validation)	0.01321	0.86966	0.11481
Square Root Regression (In-Sample)	10.59413	0.8221	3.25486
Square Root Regression (Train)	9.47738	0.8441	3.07853
Square Root Regression (Test)	8.24672	0.84538	2.87171
Square Root Regression (5X Validation)	11.16989	0.80935	3.3394
Reciprocal Regression (In-Sample)	9.18911	0.84569	3.03136
Reciprocal Regression (Train)	9.25635	0.84774	3.04243
Reciprocal Regression (Test)	6.02293	0.88707	2.45417
Reciprocal Regression (5X Validation)	0.00003	0.87568	0.00576

Yeo-Johnson Regression (In-Sample)	8.84086	0.85154	2.97336
Yeo-Johnson Regression (Train)	9.02431	0.85155	3.00405
Yeo-Johnson Regression (Test)	7.58146	0.85785	2.75345
Yeo-Johnson Regression (5X Validation)	0.04802	0.86146	0.21892
Random Forest (In-Sample)	2.3866	0.95992	1.54486
Random Forest (Train)	1.07251	0.98236	1.03562
Random Forest (Test)	7.64293	0.8567	2.76459
Random Forest (5X Validation)	8.39319	0.85397	2.86884

Excluding Outliers - IQR

Excluding Outliers - TQX					
Technique (Including Outliers)	MSE	R2	RMSE		
Logarithmic Regression (In-Sample)	8.38857	0.85537	2.8963		
Logarithmic Regression (Train)	8.5863	0.8526	2.93024		
Logarithmic Regression (Test)	7.47503	0.86884	2.73405		
Logarithmic Regression (5X Validation)	0.01325	0.86378	0.11485		
Square Root Regression (In-Sample)	10.31222	0.8222	3.21126		
Square Root Regression (Train)	9.31657	0.84006	3.05231		
Square Root Regression (Test)	7.6438	0.86588	2.76474		
Square Root Regression (5X Validation)	10.9397	0.80871	3.30111		
Reciprocal Regression (In-Sample)	8.82314	0.84788	2.97038		
Reciprocal Regression (Train)	8.84068	0.84823	2.97333		
Reciprocal Regression (Test)	11.4369	0.79932	3.38185		
Reciprocal Regression (5X Validation)	0.00003	0.87008	0.00567		
Yeo-Johnson Regression (In-Sample)	8.59721	0.85177	2.9321		
Yeo-Johnson Regression (Train)	8.72879	0.85015	2.95445		
Yeo-Johnson Regression (Test)	7.4489	0.8693	2.72927		
Yeo-Johnson Regression (5X Validation)	0.04502	0.85663	0.2118		
Random Forest (In-Sample)	2.02484	0.96509	1.42297		
Random Forest (Train)	1.11619	0.98084	1.0565		
Random Forest (Test)	5.63519	0.90112	2.37386		
Random Forest (5X Validation)	7.48079	0.86995	2.71147		

Feature Importance by Random Forest

Outliers	Importance	Z-Score	Importance	IQR	Importance
displacement	0.407415	displacement	0.406583	displacement	0.361861
horsepower	0.169918	weight	0.183966	weight	0.21614
cylinders	0.148823	horsepower	0.165799	horsepower	0.182276
weight	0.139834	model_year	0.109298	model_year	0.131107
model_year	0.104788	cylinders	0.101861	cylinders	0.078867
acceleration	0.0248	acceleration	0.025738	acceleration	0.023404
origin	0.004422	origin	0.006756	origin	0.006345

Forest Fires

Including Outliers

Technique	MSE	R2	RMSE
Logarithmic Regression (In-Sample)	4130.48147	-0.02133	64.26882
Logarithmic Regression (Train)	2142.32266	-0.03013	46.28523
Logarithmic Regression (Test)	12055.8865 1	-0.02275	109.7993
Logarithmic Regression (5X Validation)	2.09867	-0.08486	1.44511
Square Root Regression (In-Sample)	3859.07245	0.04578	62.12143
Square Root Regression (Train)	2092.38302	-0.00612	45.74257
Square Root Regression (Test)	11919.3977	-0.01117	109.17599
Square Root Regression (5X Validation)	4112.06868	-0.19463	55.64507
Reciprocal Regression (In-Sample)	4209.27849	-0.04081	64.87895
Reciprocal Regression (Train)	2199.99438	-0.05786	46.9041
Reciprocal Regression (Test)	12174.2172 3	-0.03278	110.33684
Reciprocal Regression (5X Validation)	2.69954134 90827437e+ 17	-0.08494	519266607.63836
Yeo-Johnson Regression (In-Sample)	4170.5629	-0.03124	64.5799
Yeo-Johnson Regression (Train)	2169.41167	-0.04316	46.57694
Yeo-Johnson Regression (Test)	12504.8851 1	-0.06084	111.82524
Yeo-Johnson Regression (5X Validation)	0.46485	-0.09749	0.68105
Random Forest (In-Sample)	2744.27978	0.32143	52.38587
Random Forest (Train)	417.75181	0.79912	20.43898
Random Forest (Test)	11983.2803	-0.01659	109.46817
Random Forest (5X Validation)	5005.80994	-1.22527	65.03728

Excluding Outliers - Z Score

Method	MSE	R ²	RMSE
Logarithmic Regression (In-Sample)	512.5734	-0.05913	22.64008
Logarithmic Regression (Train)	579.66766	-0.06095	24.07629
Logarithmic Regression (Test)	234.2028	-0.03049	15.30369
Logarithmic Regression (5X Validation)	1.77478	-0.014	1.33076
Square Root Regression (In-Sample)	453.27181	0.06341	21.29018
Square Root Regression (Train)	555.35671	-0.01645	23.56601
Square Root Regression (Test)	228.16487	-0.00393	15.10513
Square Root Regression (5X Validation)	509.03188	-0.09635	22.07351
Reciprocal Regression (In-Sample)	550.02326	-0.13651	23.45257
Reciprocal Regression (Train)	621.89646	-0.13824	24.93785
Reciprocal Regression (Test)	262.53047	-0.15514	16.20279
Reciprocal Regression (5X Validation)	2.600097448358675e+17	-0.05364	509747646.15471
Yeo-Johnson Regression (In-Sample)	530.15139	-0.09545	23.02502
Yeo-Johnson Regression (Train)	598.23418	-0.09493	24.45883
Yeo-Johnson Regression (Test)	242.47243	-0.06688	15.57153
Yeo-Johnson Regression (5X Validation)	0.42482	-0.0171	0.65154
Random Forest (In-Sample)	182.35145	0.62321	13.50376
Random Forest (Train)	84.4312	0.84547	9.18864
Random Forest (Test)	574.03245	-1.52575	23.95897

Random Forest (5X	572.90632	-0.3698	23.66006
Validation)			

Excluding Outliers – IQR

Technique	MSE	R ²	RMSE
Logarithmic Regression (In-Sample)	13.58527	-0.07707	3.68582
Logarithmic Regression (Train)	13.38464	-0.05952	3.6585
Logarithmic Regression (Test)	15.91586	-0.29388	3.98947
Logarithmic Regression (5X Validation)	0.8996	-0.17587	0.94726
Square Root Regression (In-Sample)	12.13689	0.03776	3.4838
Square Root Regression (Train)	13.65537	-0.08095	3.69532
Square Root Regression (Test)	16.61496	-0.35071	4.07614
Square Root Regression (5X Validation)	14.59936	-0.18004	3.80636
Reciprocal Regression (In-Sample)	17.8461	-0.41488	4.22446
Reciprocal Regression (Train)	17.38254	-0.37599	4.16924
Reciprocal Regression (Test)	19.70031	-0.60153	4.4385
Reciprocal Regression (5X Validation)	2.7626537280713123e+17	-0.14939	525386874.28687
Yeo-Johnson Regression (In-Sample)	14.94084	-0.18454	3.86534
Yeo-Johnson Regression (Train)	14.8387	-0.17462	3.8521
Yeo-Johnson Regression (Test)	17.25788	-0.40298	4.15426
Yeo-Johnson Regression (5X Validation)	0.24252	-0.16913	0.49219
Random Forest (In-Sample)	4.62221	0.63354	2.14993

Random Forest (Train)	2.24398	0.82237	1.49799
Random Forest (Test)	14.1351	-0.14911	3.75967
Random Forest (5X Validation)	14.87006	-0.20507	3.8434

Feature Importance by Random Forest

Outliers	Importance	Z-Score	Importance	IQR	Importance
DMC	0.1694071	Y	0.1268003	temp	0.160936
temp	0.1672118	wind	0.1225544	DMC	0.152375
RH	0.1031345	temp	0.1104956	DC	0.143829
wind	0.08915285	RH	0.09638183	RH	0.123305
Y	0.07499659	X	0.09459988	X	0.085732
FFMC	0.0681802	day_sat	0.09389508	wind	0.076619
X	0.05915375	DMC	0.0765702	ISI	0.068197
ISI	0.05447728	ISI	0.07415865	FFMC	0.06323
DC	0.05319513	DC	0.06425293	Y	0.042156
day_thu	0.03664583	FFMC	0.04800677	day_thu	0.020648
day_sat	0.02748757	month_sep	0.02061919	day_sat	0.017743
day_mon	0.02707548	day_sun	0.01930376	day_sun	0.011602
month_jul	0.0208649	month_aug	0.01083513	day_tue	0.009875
day_sun	0.01346987	month_jul	0.007836371	day_wed	0.004913
month_aug	0.01114579	day_wed	0.006012869	day_mon	0.0049
day_wed	0.006549027	month_may	0.005394649	month_sep	0.004107
month_sep	0.006060789	month_oct	0.004655547	month_aug	0.003708
day_tue	0.004231065	day_mon	0.004145851	month_oct	0.002406
month_may	0.002547817	day_tue	0.004029233	month_jul	0.002023
month_jun	0.001304156	month_mar	0.003007553	month_jun	0.001696
month_oct	0.001002762	day_thu	0.00271643	rain	0.0
rain	0.0008986776	month_jun	0.001843978	month_nov	0.0
month_dec	0.0006832938	month_dec	0.0009765764	month_may	0.0
month_mar	0.000580944	month_feb	0.0009041777	month_dec	0.0
month_feb	0.0005421003	rain	2.128452e-06	month_feb	0.0

month_jan	8.185991e-07	month_nov	7.277916e-07	month_mar	0.0
month_nov	0.0	month_jan	2.709299e-07	month_jan	0.0

Seoul Bike Sharing Demand Including Outliers

Technique	MSE	R ²	RMSE
Logarithmic Regression (In-Sample)	206,857.11	0.50272	454.81546
Logarithmic Regression (Train)	202,734.04	0.51243	450.25997
Logarithmic Regression (Test)	206,819.82	0.50361	454.77447
Logarithmic Regression (5X Validation)	0.52405	0.78905	0.72383
Square Root Regression (In-Sample)	187,005.22	0.55044	432.441
Square Root Regression (Train)	171,967.73	0.58642	414.68992
Square Root Regression (Test)	181,108.93	0.56532	425.56895
Square Root Regression (5X Validation)	187,603.30	0.54887	433.0349
Reciprocal Regression (In-Sample)	525,784,936.83	-1262.98436	22,930.00
Reciprocal Regression (Train)	1,949,959,711.99	-4688.58893	44,158.35
Reciprocal Regression (Test)	422,624,754.90	-1013.34914	20,557.84
Reciprocal Regression (5X Validation)	0.00023	1	0.01501
Yeo-Johnson Regression (In-Sample)	177,519.91	0.57324	421.33112
Yeo-Johnson Regression (Train)	175,263.43	0.5785	418.64475
Yeo-Johnson Regression (Test)	182,781.83	0.5613	427.52992
Yeo-Johnson Regression (5X Validation)	31.55941	0.68067	5.61675
Random Forest (In-Sample)	17,355.47	0.95828	131.74016
Random Forest (Train)	7,085.55	0.98296	84.17568
Random Forest (Test)	58,435.17	0.85975	241.73368
Random Forest (5X Validation)	53,805.30	0.87062	231.83811

Excluding Outliers - Z Score

Technique	MSE	R ²	RMSE
Logarithmic Regression (In-Sample)	172,312.86	0.54847	415.10584
Logarithmic Regression (Train)	173,454.45	0.54701	416.47863
Logarithmic Regression (Test)	168,224.61	0.553	410.15194
Logarithmic Regression (5X Validation)	0.44641	0.81686	0.66761
Square Root Regression (In-Sample)	165,633.33	0.56597	406.98074
Square Root Regression (Train)	152,962.70	0.60053	391.10446
Square Root Regression (Test)	151,737.95	0.59681	389.53556
Square Root Regression (5X Validation)	166,222.45	0.56429	407.60112

Reciprocal Regression (In-Sample)	64,002,752.68	-166.71482	8000.17204
Reciprocal Regression (Train)	161,135,529.36	-419.81748	12,693.92
Reciprocal Regression (Test)	19,018,082.47	-49.53401	4,360.97
Reciprocal Regression (5X Validation)	0.00016	1	0.01187
Yeo-Johnson Regression (In-Sample)	155,046.11	0.59371	393.75894
Yeo-Johnson Regression (Train)	155,027.78	0.59513	393.73567
Yeo-Johnson Regression (Test)	152,997.33	0.59346	391.14873
Yeo-Johnson Regression (5X Validation)	35.38454	0.69676	5.94686
Random Forest (In-Sample)	15,954.48	0.95819	126.31103
Random Forest (Train)	7,003.70	0.98171	83.68813
Random Forest (Test)	51,746.75	0.8625	227.47913
Random Forest (5X Validation)	52,105.48	0.86345	227.97348

Excluding Outliers - IQR

Technique	MSE	R ²	RMSE
Logarithmic Regression (In-Sample)	161,361.16	0.55658	401.69785
Logarithmic Regression (Train)	160,411.45	0.55864	400.51399
Logarithmic Regression (Test)	178,091.71	0.51297	422.00914
Logarithmic Regression (5X Validation)	0.41038	0.82882	0.63977
Square Root Regression (In-Sample)	156,033.13	0.57122	395.0103
Square Root Regression (Train)	143,548.04	0.60504	378.87734
Square Root Regression (Test)	150,372.60	0.58877	387.77906
Square Root Regression (5X Validation)	156,714.32	0.56867	395.83139
Reciprocal Regression (In-Sample)	290,483,070.31	-797.24182	17,043.56
Reciprocal Regression (Train)	392,174,634.16	-1078.03454	19,803.40
Reciprocal Regression (Test)	1,233,987,729.78	-3373.61685	35,128.16
Reciprocal Regression (5X Validation)	0.00009	1	0.00883
Yeo-Johnson Regression (In-Sample)	145,723.35	0.59956	381.73728
Yeo-Johnson Regression (Train)	144,736.75	0.60177	380.44284
Yeo-Johnson Regression (Test)	152,801.40	0.58213	390.8982
Yeo-Johnson Regression (5X Validation)	40.88786	0.69084	6.39325
Random Forest (In-Sample)	15,745.80	0.95673	125.48228
Random Forest (Train)	7,094.73	0.98048	84.23022
Random Forest (Test)	50,350.09	0.86231	224.38826
Random Forest (5X Validation)	50,758.63	0.86032	225.25683

Boston Housing Including Outliers

Technique	MSE	R ²	RMSE
Logarithmic Regression (In-Sample)	18.59032	0.77979	4.31165
Logarithmic Regression (Train)	18.32633	0.78905	4.28093
Logarithmic Regression (Test)	17.30027	0.76409	4.15936
Logarithmic Regression (5X Validation)	0.03409	0.7678	0.18462
Square Root Regression (In-Sample)	21.89483	0.74064	4.67919
Square Root Regression (Train)	19.13472	0.77974	4.37433
Square Root Regression (Test)	18.82078	0.74335	4.33829
Square Root Regression (5X Validation)	23.4886	0.71522	4.84279
Reciprocal Regression (In-Sample)	20.73025	0.75444	4.55305
Reciprocal Regression (Train)	20.57254	0.76319	4.5357
Reciprocal Regression (Test)	18.88658	0.74246	4.34587
Reciprocal Regression (5X Validation)	0.0002	0.67806	0.01398
Yeo-Johnson Regression (In-Sample)	18.77313	0.77762	4.3328
Yeo-Johnson Regression (Train)	18.53051	0.7867	4.30471
Yeo-Johnson Regression (Test)	17.69277	0.75874	4.20628
Yeo-Johnson Regression (5X Validation)	0.09736	0.76587	0.31201
Random Forest (In-Sample)	3.27191	0.96124	1.80884
Random Forest (Train)	1.94937	0.97756	1.3962
Random Forest (Test)	8.5102	0.88395	2.91722
Random Forest (5X Validation)	10.80462	0.87056	3.25515

Excluding Outliers - Z Score

Technique	MSE	R ²	RMSE
Logarithmic Regression (In-Sample)	8.73262	0.8218	2.9551
Logarithmic Regression (Train)	8.76663	0.82037	2.96085
Logarithmic Regression (Test)	7.7513	0.84404	2.78411
Logarithmic Regression (5X Validation)	0.02279	0.77532	0.14798
Square Root Regression (In-Sample)	10.20716	0.79171	3.19486
Square Root Regression (Train)	9.13453	0.81283	3.02234
Square Root Regression (Test)	8.63013	0.82636	2.93771
Square Root Regression (5X Validation)	11.00581	0.7727	3.2883

Reciprocal Regression (In-Sample)	10.29787	0.78986	3.20903
Reciprocal Regression (Train)	10.60316	0.78274	3.25625
Reciprocal Regression (Test)	12.68893	0.7447	3.56215
Reciprocal Regression (5X Validation)	0.00014	0.67471	0.01125
Yeo-Johnson Regression (In-Sample)	9.05145	0.81529	3.00856
Yeo-Johnson Regression (Train)	9.15589	0.81239	3.02587
Yeo-Johnson Regression (Test)	8.66372	0.82569	2.94342
Yeo-Johnson Regression (5X Validation)	0.27016	0.78258	0.51247
Random Forest (In-Sample)	2.41838	0.95065	1.55511
Random Forest (Train)	1.10016	0.97746	1.04888
Random Forest (Test)	7.67498	0.84558	2.77037
Random Forest (5X Validation)	7.98042	0.83341	2.8131

Excluding Outliers - IQR

Technique	MSE	R ²	RMSE
Logarithmic Regression (In-Sample)	4.70766	0.71825	2.16971
Logarithmic Regression (Train)	5.17419	0.71415	2.27468
Logarithmic Regression (Test)	2.92426	0.73373	1.71005
Logarithmic Regression (5X Validation)	0.01053	0.6569	0.10178
Square Root Regression (In-Sample)	4.75707	0.71529	2.18107
Square Root Regression (Train)	5.14101	0.71599	2.26738
Square Root Regression (Test)	3.0734	0.72015	1.75311
Square Root Regression (5X Validation)	5.55515	0.66583	2.32526
Reciprocal Regression (In-Sample)	4.98561	0.70161	2.23285
Reciprocal Regression (Train)	5.6024	0.6905	2.36694
Reciprocal Regression (Test)	2.90066	0.73588	1.70313
Reciprocal Regression (5X Validation)	0.00003	0.6157	0.00538
Yeo-Johnson Regression (In-Sample)	4.69925	0.71875	2.16778
Yeo-Johnson Regression (Train)	5.1706	0.71435	2.27389
Yeo-Johnson Regression (Test)	2.92989	0.73322	1.71169
Yeo-Johnson Regression (5X Validation)	0.02492	0.65973	0.15649
Random Forest (In-Sample)	1.58292	0.90526	1.25814
Random Forest (Train)	0.88394	0.95117	0.94018
Random Forest (Test)	4.36259	0.60276	2.08868
Random Forest (5X Validation)	5.83846	0.64417	2.39711

Symbolic

Auto MPG

In-Sample:

In-Sample Mean Squared Error: 11.189024963623158

In-Sample R-squared: 0.8158571313528716

In-Sample Adjusted R-squared: 0.812500360309825 In-Sample Mean Absolute Error: 2.353617718343498

Train Test Split(80-20):

Validation Mean Squared Error: 12.136821723043147

Validation R-squared: 0.762212322966489

Validation Adjusted R-squared: 0.7387684674843118 Validation Mean Absolute Error: 2.4698216424090864

5X Cross Validation:

5x Cross-Validation Mean Squared Error: 11.829055107927978

5x Cross-Validation R2 Score: 0.801020894

Forest Fires

In-Sample:

In-Sample Mean Squared Error: 4185.389555705995

In-Sample R-squared: -0.03490507010978616

In-Sample Adjusted R-squared: -0.0920470678459091 In-Sample Mean Absolute Error: 12.81634429400387

Train Test Split(80-20):

Validation Mean Squared Error: 12172.81992307692

Validation R-squared: -0.03266589522453578

Validation Adjusted R-squared: -0.3995340422121998 Validation Mean Absolute Error: 19.63923076923077

5X Cross Validation:

5x Cross-Validation Mean Squared Error: 4192.789134191329

5x Cross-Validation R2 Score: -0.074843213.

Seoul Bike Sharing Demand

In-Sample:

In-Sample Mean Squared Error: 160908.3946181571

In-Sample R-squared: 0.6131770233681545

In-Sample Adjusted R-squared: 0.6125577527366113 In-Sample Mean Absolute Error: 268.87295720647523

Train Test Split(80-20):

Validation Mean Squared Error: 184405.1696326787

Validation R-squared: 0.5574058927138987

Validation Adjusted R-squared: 0.5538386402659969 Validation Mean Absolute Error: 286.3442868160291

5X Cross Validation:

5x Cross-Validation Mean Squared Error: 167078.8076922553

5x Cross-Validation R2 Score: 0.5982950184899063

Boston Housing

In-Sample:

In-Sample Mean Squared Error: 25.839619066954363

In-Sample R-squared: 0.6939142984931794

In-Sample Adjusted R-squared: 0.6858266681688122 In-Sample Mean Absolute Error: 3.5066574723639965

Train Test Split(80-20):

Validation Mean Squared Error: 33.00715822561788

Validation R-squared: 0.5499051487162835

Validation Adjusted R-squared: 0.4834138638675527 Validation Mean Absolute Error: 4.1133147595864425

5X Cross Validation:

5x Cross-Validation Mean Squared Error: 39.417021579726295

5x Cross-Validation R2 Score: 0.528097465439966

Statistical Summaries and Plots

Auto MPG

Linear

Ridge

Lasso

Logarithmic

Box Cox

Reciprocal

Square Root

Forest Fire

Linear

Ridge

Lasso

Logarithmic

Box Cox

Reciprocal

Square Root

Seoul Bike Demand

Linear

Ridge

Lasso

Logarithmic

Box Cox

Reciprocal

Square Root

Boston

Linear

Ridge

Lasso

Logarithmic

Box Cox

Reciprocal

Square Root

Feature Selection

Auto MPG Selected Features

[weight, model year, origin, displacement, horsepower, cylinders, acceleration] **Backward:** [cylinders, displacement, horsepower, weight, acceleration, model year, origin]

Stepwise: [weight]

Forest Fire Selected Features

Forward: [temp, day_sat, X, month_sep, wind, month_dec, ISI, DMC, DC, month_oct, month_aug, month_jul, day thu, month mar, RH, day tue, rain, day mon, day sun, day wed, month jan, month may, month feb, month jun, FFMC, month nov, Y]

Backward: [temp, day sat]

Stepwise: [temp]

Seoul Bike Share Demand Selected Features

Forward: [Temperature(C), Hour, Functioning Day Yes, Humidity(%), Seasons Winter, Rainfall(mm), Solar Radiation (MJ/m2), Seasons Spring, Seasons Summer, Holiday, No Holiday, Wind speed (m/s), Dew point temperature(C), Snowfall (cm), Visibility (10m)]

Backward: [Hour, Temperature(C), Humidity(%), Wind speed (m/s), Visibility (10m), Dew point temperature(C), Solar Radiation (MJ/m2), Rainfall(mm), Snowfall (cm), Seasons Spring, Seasons Summer, Seasons Winter, Holiday No Holiday, Functioning Day Yes]

Stepwise: [Seasons Winter]

Boston Housing Selected Features

Forward: [LSTAT, RM, PTRATIO, DIS, NOX, CHAS, B, ZN, CRIM, RAD, TAX, INDUS, AGE] Backward: [CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT]

Stepwise: [LSTAT]

Auto MPG			Forest Fire		
F-Selection	R Squared	R Squared Adj	F-Selection	R Squared	R Squared Adj
Forward	0.821478	0.818224	Forward	0.045782	-0.006905
Backward	0.821478	0.818224	Backward	0.016714	0.012888
Stepwise	0.69263	0.691842	Stepwise	0.009573	0.00765
Seoul			Boston		
Forward	0.55044	0.549721	Forward	0.740643	0.73379
Backward	0.55044	0.549721	Backward	0.740643	0.73379
Stepwise	0.180561	0.180468	Stepwise	0.544146	0.543242

Discussion of Results

Auto MPG:

- Brands like Nissan and Honda show higher average MPG, indicating more fuel-efficient vehicles.
- Cars with 4 cylinders have highest average MPG (29.28), while those with 8 cylinders have the lowest (14.96)
- A steady increase in MPG is observed over model years, reflecting improvements in fuel efficiency over time.
- Horsepower and weight exhibit high variability, while skewness and kurtosis indicate some non-normality in distributions.
- In-Sample: Logarithmic Regression has the highest R² (0.85525) indicating that it explains more variance of the target variable within the sample.
- Train: Logarithmic Regression with R² of 0.85685.
- Test: Logarithmic Regression with R² of 0.84923.
- Cross-Validation: Logarithmic Regression with R² of 0.86942.

Forest Fires:

- May and September have the highest average burned area, suggesting these months are more prone to larger fires.
- Saturday has the highest average burned area, potentially reflecting human activities affecting fire occurrence or reporting bias.
- Higher average burned area is noted for zero rainfall, indicating dry conditions as a key factor.
- Temperature, wind speed, and drought code (DC) influence the burned area more, based on feature importance.
- In-Sample: Square Root Regression has the highest R² of 0.04578.
- Train: Square Root Regression with R² of 0.04578.
- Test: Yeo-Johnson Regression with the least negative R² (-0.03278), indicating slightly better performance among weak models.
- Cross-Validation: Square Root Regression with the highest negative R² (-0.19463).

Seoul Bike Sharing Demand:

- Demand peaks during summer, while winter has the lowest demand, reflecting expected seasonal variation.
- Dew Point Temperature and Temperature are highly correlated.
- Significant increases in bike rentals are observed during evening hours (5 PM to 7 PM), likely due to commuting patterns.
- Average rentals are lower on holidays, indicating reduced commuting and business activities.
- In-Sample: Yeo-Johnson Regression has the highest R² of 0.57324.
- Train: Yeo-Johnson Regression with R² of 0.5785.
- Test: Yeo-Johnson Regression with R² of 0.5613.
- Cross-Validation: Yeo-Johnson Regression with R² of 0.68067.

Boston Housing:

- Homes near the Charles River (CHAS = 1) have significantly higher average prices
- Higher access to radial highways (RAD = 8) is associated with higher median housing prices.
- In-Sample: Yeo-Johnson Regression has the highest R² of 0.77762.
- Train: Yeo-Johnson Regression with R² of 0.7867.
- Test: Logarithmic Regression with R² of 0.76409.
- Cross-Validation: Logarithmic Regression with R² of 0.7678.

Misc:

- Higher R² values indicate better fit and more explained variance by the model.
- For datasets with lower or negative R² (Forest Fires), it suggests that the models are not capturing the data patterns effectively.
- Cross-validation results show consistency and reliability across different data splits, with high R² values suggesting robust model performance.