

UNIVERSITY OF CHITTAGONG

Department of Computer Science & Engineering

Program: **B.Sc.** (Engineering) Session: 2022-2023 4th Semester

Class Assignment

Topic: Practice Exercises

Course Title: DataBase Systems Course Code: CSE - 413

Submitted To: Dr. Rudra Pratap Deb Nath

Associate Professor
Department of Computer Science & Engineering
University of Chittagong

Submitted By: Nilanjana Das Jui

ID: 23701011 Dept. of Computer Science & Engineering

Date of submission: July 07, 2025

Contents

•	Question - 7.8	2
•	Question - 7.26	6
•	Question - 7.35	7

Chapter - 07: Relational Database Design

Question - 7.8:

Consider the algorithm in Figure 7.19 to compute α^+ . Show that this algorithm is more efficient than the one presented in Figure 7.8 (Section 7.4.2) and that it computes α^+ correctly.

Answer:

```
result := \alpha;
repeat

for each functional dependency \beta \to \gamma in F do

begin

if \beta \subseteq result then result := result \cup \gamma;
end

until (result \text{ does not change})
```

Figure 7.8 An algorithm to compute α^+ , the closure of α under F.

Explanation:

- Begin with result = α .
- Repeatedly scan all FDs.
- If the left-hand side (β) of a dependency is a subset of the current result, add the right-hand side (γ) to the result.
- Repeat until the result stops changing.

Time Complexity:

Worst case: $\mathcal{O}(m \times n^2)$, where m = |F| (number of functional dependencies), and n is the number of attributes.

This is because:

- In each iteration, we scan all FDs.
- Each iteration may update result.
- We may require up to *n* iterations in the worst case if one new attribute is added at a time.

The algorithm in Figure 7.19 to compute α^+ :

```
result := \emptyset:
/* fdcount is an array whose ith element contains the number
   of attributes on the left side of the ith FD that are
   not yet known to be in α+ */
for i := 1 to |F| do
   begin
     let \beta \rightarrow \gamma denote the ith FD;
     fdcount[i] := |\beta|;
   end
/* appears is an array with one entry for each attribute. The
   entry for attribute A is a list of integers. Each integer
   i on the list indicates that A appears on the left side
   of the ith FD */
for each attribute A do
   begin
     appears [A] := NIL;
     for i := 1 to |F| do
       begin
          let \beta \rightarrow \gamma denote the ith FD;
          if A \in \beta then add i to appears [A];
       end
   end
addin (a):
return (result);
procedure addin (α);
for each attribute A in \alpha do
   begin
     if A \notin result then
       begin
          result := result \cup \{A\};
          for each element i of appears[A] do
              fdcount[i] := fdcount[i] - 1;
              if fdcount[i] := 0 then
                 begin
                   let \beta \rightarrow \gamma denote the ith FD;
                   addin (y);
                 end
            end
       end
   end
```

Figure 7.19 An algorithm to compute α^+ .

Explanation

The algorithm starts by scanning all functional dependencies in F. For each functional dependency β → γ, it counts the number of attributes in the left-hand side β. This count is stored in fdcount[i] for each ith FD. This tells us how many more attributes need to be added to the closure before this FD can be triggered.

- Next, for every attribute A in the schema, the algorithm constructs a list appears [A] which contains the indices of all FDs where A appears on the left-hand side (β) . This mapping helps us later in efficiently updating the status of dependent FDs when A is added to the closure.
- The recursive procedure addin(α) begins with the input set α .
 - For each attribute A in α :
 - * If A is not already in result, it is added.
 - * For each FD index i in appears [A], we decrement fdcount[i].
 - * If fdcount[i] becomes zero, this means all attributes in the left-hand side β of the i^{th} FD are now present in the closure.
 - * Thus, the right-hand side γ of the FD is added by calling addin(γ).
- This process continues recursively until no new attributes can be added. The recursion guarantees that each FD is used at most once exactly when all attributes of its left-hand side are included in result.
- Once all recursive calls are complete, the algorithm returns result, which now contains the full closure α^+ under the given set of functional dependencies.

Time Complexity Analysis

- Let n be the number of attributes and m = |F| be the number of functional dependencies.
- Initializing fdcount[i] for all FDs: $\mathcal{O}(m \cdot n)$ in the worst case (if each FD has up to n attributes).
- Building appears [A] requires checking every attribute in every FD: also $\mathcal{O}(m \cdot n)$.
- Each attribute is added to the result at most once: $\mathcal{O}(n)$.
- Each FD is triggered only once when its LHS becomes a subset of the result: $\mathcal{O}(m)$.
- Each appearance in appears [A] is processed once: Let k be the total number of these appearances.

$$\mathcal{O}(m \cdot n)$$
 (for initialization) + $\mathcal{O}(n + m + k) = \mathcal{O}(m \cdot n + k)$

Since $k \leq m \cdot n$, the total complexity is effectively:

$$\boxed{\mathcal{O}(m\cdot n)}$$

This is significantly better than the naive algorithm, which may take $\mathcal{O}(m \cdot n^2)$ due to repeated scanning.

Efficiency Comparison with Figure 7.8

The algorithm in Figure 7.8 uses a simpler approach:

```
\begin{tabular}{ll} {\tt result} &:= \alpha; \\ {\tt repeat} \\ &\quad {\tt for each functional dependency} &\quad \beta \rightarrow \gamma & {\tt in} &\quad F & {\tt do} \\ &\quad {\tt if} &\quad \beta \subseteq {\tt result then result} := {\tt result} \cup \gamma \\ {\tt until result does not change} \\ \end{tabular}
```

This approach repeatedly scans the entire list of FDs until no new attributes can be added to the closure. In the worst case, it may take up to n iterations (where n is the number of attributes), and in each iteration, it checks all FDs.

Time Complexity

- Figure 7.8: $\mathcal{O}(m \cdot n^2)$ in the worst case, where m = |F| is the number of FDs and n is the number of attributes. This is because each FD is scanned multiple times, and each scan can take $\mathcal{O}(n)$ time.
- Figure 7.19: $\mathcal{O}(m+n+k)$ where k is the total number of FD appearances in appears [A]. Each FD is processed at most once when its left-hand side is satisfied, and no unnecessary iterations are performed.

So, Both algorithms compute α^+ correctly. However, the algorithm in Figure 7.19 is more efficient because:

- It avoids repeated scanning of the functional dependency set.
- Each FD is only triggered when all its left-hand attributes are known.
- The use of auxiliary data structures allows faster lookups and minimal recomputation.

Therefore, the Figure 7.19 algorithm is both correct and more efficient than the one in Figure 7.8.

Question - 7.26:

Consider the following proposed rule for functional dependencies: If $\alpha \to \beta$ and $\alpha \to \beta$, then $\alpha \to \gamma$. Prove that this rule is not sound by showing a relation r that satisfies $\alpha \to \beta$ and $\beta \to \gamma$, but does not satisfy $\alpha \to \gamma$.

Answer:

We will prove that the above rule is **not sound** by providing a counterexample.

Let the relation schema be:

$$R(\alpha, \gamma, \beta)$$

Define a relation r over R as follows:

α	γ	β
3	8	10
5	2	4
5	7	4

1. Check whether $\alpha \to \beta$ holds:

We examine if the same value of α always leads to the same β :

- When $\alpha = 3$, $\beta = 10$
- When $\alpha = 5$, both tuples have $\beta = 4$

Since every value of α determines a unique β , we conclude that:

$$\alpha \to \beta$$
 holds.

2. Check whether $\gamma \to \beta$ holds:

- $\gamma = 8 \Rightarrow \beta = 10$
- $\gamma = 2 \Rightarrow \beta = 4$
- $\gamma = 7 \Rightarrow \beta = 4$

Each value of γ is associated with a unique β , so:

$$\gamma \to \beta$$
 holds.

3. Check whether $\alpha \to \gamma$ holds:

- For $\alpha = 3$, $\gamma = 8$
- For $\alpha = 5$, $\gamma = 2$ and $\gamma = 7$

Since $\alpha = 5$ is associated with multiple γ values, the dependency does not hold:

$$\alpha \to \gamma$$
 does not hold.

The relation r satisfies:

$$\alpha \to \beta$$
 and $\gamma \to \beta$

but does **not** satisfy:

$$\alpha \to \gamma$$

Therefore, the proposed inference rule:

If
$$\alpha \to \beta$$
 and $\gamma \to \beta$, then $\alpha \to \gamma$

is not sound.

Question - 7.35:

Although the BCNF algorithm ensures that the resulting decomposition is lossless, it is possible to have a schema and a decomposition that was not generated by the algorithm, that is in BCNF, and is not lossless. Give an example of such a schema and its decomposition.

Answer:

Although the BCNF decomposition algorithm guarantees that any decomposition it produces will be **lossless**, it is important to note that there exist decompositions which are **in BCNF but not lossless** if they are not generated by the BCNF algorithm.

Consider the relation schema:

$$R = (A, B, C, D, E)$$

with the set of functional dependencies:

$$F = \{A \to BC, CD \to E, B \to D, E \to A\}$$

We consider the decomposition of R into two relations:

$$R_1 = (A, B, C)$$
 and $R_2 = (A, D, E)$

Checking BCNF:

- For R_1 , the FD $A \to BC$ holds, so A functionally determines all other attributes in R_1 . Therefore, A is a key for R_1 , and R_1 is in BCNF.
- For R_2 , the only relevant FD is $E \to A$ (since $B \to D$ does not apply as $B \notin R_2$). Because E determines A and together these cover all attributes of R_2 , E is a key for R_2 , so R_2 is in BCNF as well.

Checking for Lossless Join:

The common attribute between R_1 and R_2 is:

$$R_1 \cap R_2 = \{A\}$$

The decomposition is lossless if either

$$A \to R_1$$
 or $A \to R_2$

Since

$$A \to BC$$
 (which is $R_1 - \{A\}$),

the condition $A \to R_1$ holds, so this decomposition should be lossless.

Counterexample with Data Showing Lossiness:

Consider the following instance of relation R:

A	B	C	D	E
5	9	12	14	18
6	10	12	15	19

Projecting this data onto $R_1 = (A, B, C)$:

A	B	C
5	9	12
6	10	12

Projecting onto $R_2 = (A, D, E)$:

A	D	E
5	14	18
6	15	19

Now, performing the natural join $R_1 \bowtie R_2$ on attribute A:

A	B	C	D	E
5	9	12	14	18
5	9	12	15	19
6	10	12	14	18
6	10	12	15	19

Observe that tuples such as (5, 9, 12, 15, 19) and (6, 10, 12, 14, 18) are *not* in the original relation R. These **spurious tuples** appear due to the join combining tuples with matching A values but mismatched D and E or B and C values.

Therefore, both R_1 and R_2 are in BCNF and the theoretical condition for losslessness is satisfied, this decomposition is actually **lossy**.