9. előadás

FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 1.

Ebben a fejezetben valós-valós függvények határértékével és folytonosságával foglalkozunk.

FÜGGVÉNYEK HATÁRÉRTÉKE

Ebben a pontban valós-valós függvény pontbeli határértékeinek a fogalmaival ismerkedünk meg.

Egy f függvény valamely a pontbeli határértékével a függvénynek azt a tulajdonságát fogjuk precíz módon megfogalmazni, hogy ha x tetszőlegesen közel van a-hoz (jelben $x \sim a$), akkor az f(x) függvényértékek tetszőlegesen közel vannak valamely A értékhez (jelben $f(x) \sim A$). A szóban forgó tulajdonságot többek között a

$$\lim_{x \to a} f(x) = A$$

szimbólummal fogjuk jelölni.

A határérték motivációja

Tekintsük például az

$$f(x) := \frac{\sin x}{x} \quad (x \in \mathbb{R} \setminus \{0\})$$

függvényt. Mit mondhatunk az f(x) függvényértékekről, ha $x\sim 0$? A szinuszfüggvény definíciójából következik, hogy ha $x\sim 0$, akkor $\sin x\sim 0$ is teljesül, ezért két kicsi szám hányadosáról van szó, és azt már tudjuk, hogy általában az bármi lehet. Hamarosan látni fogjuk azt, hogy $\frac{\sin x}{x}\sim 1$, ha $x\sim 0$, ezért

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Lássunk néhány további példát!

Legyen |a=1| és tekintsük a következő függvényeket:

$$f_1(x) := \begin{cases} \frac{x^2 - 1}{x - 1} = x + 1, & \text{ha } x \in \mathbb{R} \setminus \{1\} \\ 1, & \text{ha } x = 1; \end{cases}$$

$$f_2(x) := \frac{1}{(x - 1)^2}, \text{ ha } x \in \mathbb{R} \setminus \{1\}; \qquad f_3(x) := -\frac{1}{(x - 1)^2}, \text{ ha } x \in \mathbb{R} \setminus \{1\}.$$

$$f_2(x) := \frac{1}{(x-1)^2}$$
, ha $x \in \mathbb{R} \setminus \{1\}$;

$$f_3(x) := -\frac{1}{(x-1)^2}$$
, ha $x \in \mathbb{R} \setminus \{1\}$.

$$\lim_{x \to 1} f_1(x) = 2$$

$$\lim_{x \to 1} f_2(x) = +\infty$$

$$\lim_{x \to 1} f_3(x) = -\infty$$

A függvényértékek viselkedését nagy x értékekre is vizsgálhatjuk. Tekintsük például a következő függvényeket:

$$f_4(x) = \frac{1}{x+1} \quad (x \ge 0)$$
 $f_5(x) = x \quad (x \ge 0)$

$$f_5(x) = x \quad (x \ge 0)$$

$$\lim_{x \to +\infty} f_5(x) = +\infty$$

$$f_6(x) = -x \quad (x \ge 0)$$

$$\lim_{x \to +\infty} f_6(x) = -\infty$$

További példák:

$$f_7(x) = \frac{1}{1-x} \quad (x \le 0)$$

$$\lim_{x \to -\infty} f_7(x) = 0$$

$$f_8(x) = -x \quad (x \le 0)$$

$$\lim_{x \to -\infty} f_8(x) = +\infty$$

$$f_9(x) = x \quad (x \le 0)$$

$$\lim_{x \to -\infty} f_9(x) = -\infty$$

Összefoglalva tehát a következőket mondhatjuk. Függvény határértékét a következő $a \in \overline{\mathbb{R}}$ pontokban vizsgálhatjuk:

$$\begin{cases}
 a \in \mathbb{R} & \text{(véges ben)} \\
 a = +\infty \\
 a = -\infty
 \end{cases}
 \text{(végtelenben)}$$

Függvény $A \in \overline{\mathbb{R}}$ határértéke lehet:

$$\begin{array}{l} A \in \mathbb{R} \\ A = +\infty \\ A = -\infty \end{array} \} \quad \begin{array}{l} \text{(véges)} \\ \text{(végtelen)} \end{array}$$

Az $\overline{\mathbb{R}}$ -beli környezetek definícióira gondolva "érezhetjük", hogy az előzőekben jelzett tulajdonságoknak egységes az alapgondolata.

Mivel az a pontbeli határértéknél az a-hoz tetszőlegesen közeli pontokban felvett függvény-értékek viselkedését vizsgáljuk, ezért fel fogjuk tenni azt, hogy a függvény az a pont tetszőleges környezetében végtelen sok helyen van értelmezve. Ezzel kapcsolatos a **torlódási pont** fogalma.

Számhalmaz torlódási pontja

Emlékeztetünk arra, hogy az $a\in \overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty,+\infty\}$ elem $\varepsilon>0$ sugarú környezetét így értelmeztük:

eztuk:
$$K_{\varepsilon}(a) := \begin{cases} (a - \varepsilon, a + \varepsilon), & \text{ha } a \in \mathbb{R} \\ \left(\frac{1}{\varepsilon}, +\infty\right), & \text{ha } a = +\infty \\ \left(-\infty, -\frac{1}{\varepsilon}\right), & \text{ha } a = -\infty. \end{cases}$$

1. definíció. Azt mondjuk, hogy a $\emptyset \neq H \subset \mathbb{R}$ halmaznak $a \in \overline{\mathbb{R}}$ torlódási pontja, ha az $a \in \overline{\mathbb{R}}$ minden környezete végtelen sok H-beli elemet tartalmaz, azaz

$$\forall \varepsilon > 0$$
 esetén a $K_{\varepsilon}(a) \cap H$ végtelen halmaz.

 $A\ H\ halmaz\ torl\'od\'asi\ pontjainak\ a\ halmaz\'at\ a\ H'\ szim\'olummal\ jel\"olj\"uk.$

1. példák.

(1)
$$\mathbb{N}' = \{+\infty\}$$
, (2) $\mathbb{R}' = \overline{\mathbb{R}}$, (3) $\mathbb{Q}' = \overline{\mathbb{R}}$, (4) $(\mathbb{R} \setminus \mathbb{Q})' = \overline{\mathbb{R}}$, (5) $(0,1)' = [0,1]$, (6) $\{\frac{1}{n} \mid n \in \mathbb{N}^+\}' = \{0\}$, (7) ha $H \subset \mathbb{R}$ véges halmaz, akkor $H' = \emptyset$.

Fontos megjegyezni, hogy ha $a \in \overline{\mathbb{R}}$ a $H \subset \mathbb{R}$ halmaz torlódási pontja, azaz $a \in H'$, akkor

lehet, hogy
$$a \in H$$
 és az is előfordulhat, hogy $a \notin H$.

Például, ha H=(-1,1) és a=0, akkor $0\in H'$ és $0\in H$, de $1\in H'$ esetén $1\notin H$.

A következő tétel azt állítja, hogy a torlódási pontokat sorozatok határértékével lehet jellemezni.

1. tétel. $Az \ a \in \mathbb{R}$ $akkor és csak akkor torlódási pontja <math>a \emptyset \neq H \subset \mathbb{R}$ halmaznak, $ha van olyan (x_n): \mathbb{N} \to H \setminus \{a\}$ sorozat, amelynek létezik \mathbb{R} -beli határértéke, és $\lim (x_n) = a$.

Bizonyítás.

Tegyük fel, hogy $a \in H'$ és $\underline{a} \in \mathbb{R}$ egy valós szám. Ekkor bármely $n \in \mathbb{N}^+$ esetén van olyan $x_n \in H$, hogy $x_n \in K_{1/n}(a) \setminus \{a\}$. Következésképpen $(x_n) : \mathbb{N} \to H \setminus \{a\}$, és

$$\left|x_n - a\right| < \frac{1}{n} \quad (n \in \mathbb{N}^+).$$

Ez azt jelenti, hogy $\lim (x_n) = a$.

Ha $\underline{a} = +\infty \in \underline{H'}$, akkor tetszőleges $n \in \mathbb{N}$ számhoz létezik olyan $x_n \in H$, amelyre $x_n > n$. Ha P > 0 tetszőleges és az $N \in \mathbb{N}$ indexre N > P, akkor minden $n \in \mathbb{N}$, n > N mellet $x_n > n > N > P$, azaz $x_n > P$. Ezért $\lim_{n \to \infty} (x_n) = +\infty$.

Hasonló módon következik az $\underline{a} = -\infty \in \underline{H}'$ esetben olyan $(x_n) \colon \mathbb{N} \to H$ sorozat létezése, amelyre $\lim (x_n) = -\infty$.

Függvény határértékének a definíciója. Alaptételek

Egy f valós-valós függvény határértékét a \mathcal{D}_f értelmezési tartományának az a torlódási pontjaiban, vagyis az $a \in \mathcal{D}_f'$ pontokban fogjuk értelmezni. Ekkor $a \in \mathcal{D}_f$ és $a \notin \mathcal{D}_f$ is lehetséges. Ezért a határérték szempontjából érdektelen, hogy a függvény értelmezve van-e a-ban, és ha igen, akkor ott mi a függvény helyettesítési értéke. Így $a \in \mathcal{D}_f'$ lehet véges (vagyis $a \in \mathbb{R}$), de lehet $\pm \infty$ is. A függvény határértéke is lehet véges (ha $A \in \mathbb{R}$), de ez is lehet $\pm \infty$ is.

Először környezetek segítségével adjuk meg a határérték egységes definícióját.

A határérték egységes definíciója

2. definíció. Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f'$ pontban van határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists \delta > 0, \ \forall x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : \ f(x) \in K_{\varepsilon}(A).$$

Ekkor A-t a függvény $a \in \mathcal{D}'_f$ -beli **határértékének** nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{a} f = A, \qquad \lim_{x \to a} f(x) = A, \qquad f(x) \to A, \quad ha \quad x \to a.$$

Megjegyzések

- 1. A $\lim_a f = A$ egyenlőség azt fejezi ki, hogy "az a-hoz közeli x pontokban felvett függvényértékek közel vannak A-hoz".
- **2.** Tekintsük az $f: \mathbb{N} \to \mathbb{R}$ speciális esetet, azaz legyen f egy valós sorozat. Ekkor $\mathcal{D}'_f = \mathbb{N}' = \{+\infty\}$. Gondoljuk meg, hogy a 2. definícióból adódó $\lim_{+\infty} f = A \in \overline{\mathbb{R}}$ tulajdonság megegyezik sorozatok határértékének a korábbi definíciójával.

Alaptételek

2. tétel: A határérték egyértelmű. Ha az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f'$ pontban van határértéke, akkor a 2. definícióban szereplő $A \in \overline{\mathbb{R}}$ egyértelműen létezik.

Bizonyítás. Tegyük fel, hogy valamilyen $B \in \overline{\mathbb{R}}$ is eleget tesz a definíció feltételeinek és $A \neq B$. Ekkor

$$\exists \varepsilon > 0 : K_{\varepsilon}(A) \cap K_{\varepsilon}(B) = \emptyset.$$

Egy ilyen ε -hoz a határérték definíciója szerint

$$\exists \, \delta_1 > 0 : \, \forall \, x \in \big(K_{\delta_1}(a) \setminus \{a\} \big) \cap \mathcal{D}_f : \, f(x) \in K_{\varepsilon}(A),$$
$$\exists \, \delta_2 > 0 : \, \forall \, x \in \big(K_{\delta_2}(a) \setminus \{a\} \big) \cap \mathcal{D}_f : \, f(x) \in K_{\varepsilon}(B).$$

Legyen $\delta := \min \{\delta_1, \delta_2\}$. Ekkor

$$\forall x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : f(x) \in K_{\varepsilon}(A) \cap K_{\varepsilon}(B) = \emptyset.$$

Ellentmondásra jutottunk, és ezzel a határérték egyértelműségét igazoltuk.

A következő tétel azt állítja, hogy a határérték sorozatok határértékével jellemezhető.

3. tétel: A határértékre vonatkozó átviteli elv. Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f'$ és $A \in \overline{\mathbb{R}}$. Ekkor

$$\lim_{a} f = A \iff \begin{cases} \forall (x_n) \colon \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, & \lim_{n \to +\infty} x_n = a \text{ eset\'en} \\ & \lim_{n \to +\infty} f(x_n) = A. \end{cases}$$

Bizonyítás.

$$\implies \lim_{a} f = A \implies \forall \varepsilon > 0 \text{-hoz} \ \exists \delta > 0, \ \forall x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : \ f(x) \in K_{\varepsilon}(A).$$

Legyen (x_n) egy, a tételben szereplő sorozat és $\varepsilon > 0$ egy rögzített érték. Ekkor a $K_\delta(a)$ környezethez $\exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ x_n \in K_\delta(a)$. Így $f(x_n) \in K_\varepsilon(A)$ telejesül minden $n > n_0$ indexre, és ez azt jelenti, hogy az $(f(x_n))$ sorozatnak van határértéke, és $\lim_{n \to +\infty} f(x_n) = A$.

Tegyük fel, hogy $\forall (x_n) \colon \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \lim_{n \to +\infty} x_n = a$ esetén $\lim_{n \to +\infty} f(x_n) = A$. Megmutatjuk, hogy $\lim f = A$.

Az állítással ellentétben tegyük fel, hogy a $\lim_a f = A$ egyenlőség nem igaz. Ez részletesen azt jelenti, hogy

$$\exists \varepsilon > 0, \ \forall \delta > 0 \text{-hoz} \ \exists x_{\delta} \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : \ f(x_{\delta}) \notin K_{\varepsilon}(A).$$

A $\delta = \frac{1}{n}$ $(n \in \mathbb{N}^+)$ választással ez azt jelenti, hogy

$$\exists \varepsilon > 0, \forall n \in \mathbb{N}^+$$
-hoz $\exists x_n \in (K_{1/n}(a) \setminus \{a\}) \cap \mathcal{D}_f : f(x_n) \notin K_{\varepsilon}(A).$

Ez az (x_n) sorozat nyilván a-hoz tart (hiszen $x_n \in K_{1/n}(a)$), de a függvényértékek $(f(x_n))$ sorozata nem tart A-hoz (hiszen $f(x_n) \notin K_{\varepsilon}(A)$), ami ellentmond a feltételünknek.

Az átviteli elv és a sorozatokra vonatkozó közrefogási elv közvetlen következménye az alábbi állítás.

4. tétel: A közrefogási elv. Tegyük fel, hogy $\emptyset \neq H \subset \mathbb{R}$, f, g, h: $H \to \mathbb{R}$, $a \in H'$ és

$$\exists \, K(a): \quad f(x) \leq h(x) \leq g(x) \quad \forall \, x \in \big(K(a) \setminus \{a\}\big) \cap H.$$

Ha

$$\exists \lim_{a} f, \ \exists \lim_{a} g \quad \textit{\'es} \quad \lim_{a} f = \lim_{a} g = A \in \overline{\mathbb{R}},$$

akkor

$$\exists \lim_{a} h \quad \text{\'es} \quad \lim_{a} h = A.$$

A sorozatoknál láttuk, hogy a három algebrai művelet és a határérték képzés sorrendje a "legtöbb esetben" felcserélhető. A következő tétel azt állítja, hogy ez igaz függvények határértékre is.

5. tétel: A határérték és a műveletek kapcsolata. Tegyük fel, hogy $f,g \in \mathbb{R} \to \mathbb{R}$, $a \in (\mathcal{D}_f \cap \mathcal{D}_g)'$ és léteznek az $A := \lim_a f \in \overline{\mathbb{R}}$, $B := \lim_a g \in \overline{\mathbb{R}}$ határértékek. Ekkor $\mathbf{1}^o$ az f + g összegfüggvénynek is van határértéke a-ban és

$$\lim_{a} (f+g) = \lim_{a} f + \lim_{a} g = A + B,$$

feltéve, hogy az $A + B \in \overline{\mathbb{R}}$ összeg értelmezve van;

 $\mathbf{2}^o$ az $f \cdot g$ szorzatfüggvénynek is van határértéke a-ban és

$$\lim_{a} (f \cdot g) = \lim_{a} f \cdot \lim_{a} g = A \cdot B,$$

feltéve, hogy az $A \cdot B \in \overline{\mathbb{R}}$ szorzat értelmezve van;

 ${f 3^o}$ az ${f\over g}$ hányadosfüggvénynek is van határértéke a-ban és

$$\lim_{a} \frac{f}{g} = \frac{\lim_{a} f}{\lim_{a} g} = \frac{A}{B},$$

feltéve, hogy az $\frac{A}{B} \in \overline{\mathbb{R}}$ hányados értelmezve van.

Bizonyítás. Az átviteli elv és a sorozatokra vonatkozó analóg állítás közvetlen következménye.

Kritikus határértékekről beszélünk akkor, ha az 5. tétel nem alkalmazható. A sorozatokhoz hasonlóan ilyenek például a

$$(+\infty) + (-\infty) \text{ (vagy } (+\infty) - (+\infty)), \qquad 0 \cdot (\pm \infty), \qquad \frac{\pm \infty}{\pm \infty}, \qquad \frac{0}{0}, \quad \frac{c}{0} \text{ } (c \in \overline{\mathbb{R}})$$

típusú kritikus határértékek.

A határérték definíciójának speciális esetei

A $\lim_{x\to a} f(x) = A$ egyenlőségre a-tól, illetve A-tól függően a következő szóhasználatokat vezetjük be.

- Végesben vett véges határérték, ha $a \in \mathbb{R}$ és $A \in \mathbb{R}$.
- Végesben vett végtelen határérték, ha $a \in \mathbb{R}$ és $A = \pm \infty$.
- Végtelenben vett véges határérték, ha $a = \pm \infty$ és $A \in \mathbb{R}$.
- Végtelenben vett végtelen határérték, ha $a = \pm \infty$ és $A = \pm \infty$.

Fontos megjegyezni, hogy a $\lim_{a} f = A$ -ra a **környezetekkel** megadott egységes definíciót a speciális esetekben **egyenlőtlenségekkel** is megfogalmazhatjuk.

Egyoldali határértékek

3. definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$. Tegyük fel, hogy $a \in \mathbb{R}$ és $a \in (\mathcal{D}_f \cap (a, +\infty))'$. Azt mondjuk, hogy az f függvénynek az a helyen (vagy a-ban) van jobb oldali határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ a < x < a + \delta : \ f(x) \in K_{\varepsilon}(A).$$

Ekkor A egyértelmű, és ezt az f függvény a-ban vett **jobb oldali határértékének** nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{a \to 0} f = A,$$
 $\lim_{x \to a+0} f(x) = A,$ $f(a+0) = A.$

4. definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$. Tegyük fel, hogy $a \in \mathbb{R}$ és $a \in (\mathcal{D}_f \cap (-\infty, a))'$. Azt mondjuk, hogy az f függvénynek az a helyen (vagy a-ban) van bal oldali határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-hoz} \ \exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ a - \delta < x < a : \ f(x) \in K_{\varepsilon}(A).$$

Ekkor A egyértelmű, és ezt az f függvény a-ban vett **bal oldali határértékének** nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{a\to 0} f = A,$$
 $\lim_{x\to a\to 0} f(x) = A,$ $f(a-0) = A.$

A következő tétel nyilvánvaló a definíciókból.

6. tétel. Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f'$. Ekkor

$$\exists \lim_a f \quad \Longleftrightarrow \quad \exists \lim_{a \to 0} f, \ \exists \lim_{a \to 0} f \quad \textit{\'es} \quad \lim_{a \to 0} f = \lim_{a \to 0} f \ (= \lim_a f).$$

A határértékre vonatkozó alaptételek az egyoldali határértékekre is érvényesek.

2. példák.

(1)
$$\lim_{x\to 0+0} \frac{1}{x} = +\infty$$
 és $\lim_{x\to 0-0} \frac{1}{x} = -\infty$ \Longrightarrow $\nexists \lim_{x\to 0} \frac{1}{x}$.

(2)
$$\lim_{x\to 0+0} \operatorname{sign}(x) = 1$$
 és $\lim_{x\to 0-0} \operatorname{sign}(x) = -1$ \Longrightarrow $\nexists \lim_{x\to 0} \operatorname{sign}(x)$.

9

Nevezetes határértékek 1.

1. Az előjelfüggvény (vagy szignumfüggvény.)

sign
$$(x) := \begin{cases} 1, & \text{ha } x \in (0, +\infty) \\ 0, & \text{ha } x = 0 \\ -1, & \text{ha } x \in (-\infty, 0) \end{cases}$$

$$\lim_{0+0} \operatorname{sign} = 1$$

$$\lim_{0 \to 0} sign = -1$$

$$\sharp \lim_{0} \operatorname{sign}$$

2. Hatványfüggvények. $f(x) := x^n \ (x \in \mathbb{R}), \ n = 1, 2, \dots$

Mivel $\mathcal{D}_f = \mathbb{R} \Longrightarrow \mathcal{D}_f' = \mathbb{R}' = \overline{\mathbb{R}}$, ezért a határérték minden $a \in \overline{\mathbb{R}}$ helyen vizsgálható. Az átviteli elvből következnek az alábbi állítások:

2. (a)
$$\lim_{x \to a} x^n = a^n, \quad \forall \, a \in \mathbb{R} \text{ és } \forall \, n = 1, 2, \dots$$

2. (b)
$$\lim_{x \to +\infty} x^n = +\infty, \quad \forall n = 1, 2, \dots$$

2. (c)
$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty, & \text{ha } n = 2, 4, 6, \dots \\ -\infty, & \text{ha } n = 1, 3, 5, \dots \end{cases}$$

3. Reciprokfüggvények. $f(x) := \frac{1}{x^n}$ $(x \in \mathbb{R} \setminus \{0\}), n = 1, 2,$

 $\begin{array}{c|c}
n & \text{páratlan} \\
y & & \\
\hline
 & 1 \\
\hline
 & 1 \\
\hline
 & x^n
\end{array}$

Mivel $\mathcal{D}_f = \mathbb{R} \setminus \{0\} \Longrightarrow \mathcal{D}_f' = (\mathbb{R} \setminus \{0\})' = \overline{\mathbb{R}}$, ezért a határérték minden $a \in \overline{\mathbb{R}}$ helyen vizsgálható.

Az átviteli elvből következnek az alábbi állítások:

3. (a)
$$\lim_{x \to a} \frac{1}{x^n} = \frac{1}{a^n}, \quad \forall a \in \mathbb{R} \setminus \{0\} \text{ és } n = 1, 2, \dots$$

3. (b)
$$\lim_{x \to +\infty} \frac{1}{x^n} = \lim_{x \to -\infty} \frac{1}{x^n} = 0 \quad \forall \ n = 1, 2, \dots$$

3. (c)
$$\lim_{x \to 0} \frac{1}{x^n} \begin{cases} = +\infty, & \text{ha } n = 2, 4, 6, \dots \\ \not\equiv, & \text{ha } n = 1, 3, 5, \dots \end{cases}$$

Ha *n* páratlan, akkor

$$\lim_{x\to 0-0}\frac{1}{x^n}=-\infty\quad \text{\'es}\quad \lim_{x\to 0+0}\frac{1}{x^n}=+\infty$$

4. Gyökfüggvények. $f(x) := \sqrt[q]{x} = x^{\frac{1}{q}} (x \in [0, +\infty)), q = 2, 3, \dots$

Mivel $\mathcal{D}_f = [0, +\infty)$, ezért $\mathcal{D}_f' = [0, +\infty) \cup \{+\infty\}$. Az átviteli elvből következnek az alábbi állítások:

4. (a)
$$\lim_{x \to a} \sqrt[q]{x} = \sqrt[q]{a} \quad (\forall a \in [0, +\infty), \ \forall q = 2, 3, \ldots),$$

4. (b)
$$\lim_{x \to +\infty} \sqrt[q]{x} = +\infty \quad (\forall q = 2, 3, \ldots).$$

5. Polinomfüggvények. Legyen

$$P(x) := \alpha_r x^r + \alpha_{r-1} x^{r-1} + \dots + \alpha_1 x + \alpha_0 \quad (x \in \mathbb{R})$$
$$(\alpha_0, \alpha_1, \dots, \alpha_r \in \mathbb{R}, \ 1 \le r \in \mathbb{N})$$

egy pontosan r-edfokú polinom (azaz $\alpha_r \neq 0$). Mivel $\mathcal{D}_P = \mathbb{R} \Longrightarrow \mathcal{D}'_P = \mathbb{R}' = \overline{\mathbb{R}}$, ezért a határértéket $\forall a \in \overline{\mathbb{R}}$ helyen vizsgálhatjuk.

4. (a)
$$\lim_{x \to a} P(x) = P(a) \quad \forall a \in \mathbb{R},$$

4. (b)
$$\lim_{x \to +\infty} P(x) = \operatorname{sign}(\alpha_r) \cdot (+\infty),$$

4. (c)
$$\lim_{x \to -\infty} P(x) = (-1)^r \cdot \operatorname{sign}(\alpha_r) \cdot (+\infty)$$

6. Racionális törtfüggvénynek nevezzük az $R := \frac{P}{Q}$ alakú függvényeket, ahol P, Q polinomok. Feltesszük, hogy Q legalább elsőfokú. Az R függvény ott van értelmezve, ahol a nevező nem nulla, tehát véges sok pont kivételével mindenütt.

Mivel $\mathcal{D}'_R = \overline{\mathbb{R}}$, ezért R határértékét $\forall a \in \overline{\mathbb{R}}$ helyen vizsgálhatjuk. Az alábbi eseteket fogjuk megkülönböztetni.

 1^o eset: $Q(a) \neq 0$. Ekkor 5. és a műveleti tételek alapján azt kapjuk, hogy

$$\lim_{\underline{a}} R = \lim_{a} \frac{P}{Q} = \frac{\lim_{a} P}{\lim_{a} Q} = \frac{P(a)}{Q(a)} = R(a).$$

 $\underline{2^o \text{ eset:}}$ $a = +\infty$ vagy $a = -\infty$. Ekkor $\underline{\mathbf{5}}$ szerint $\frac{\pm \infty}{\pm \infty}$ típusú kritikus határértékről van szó, amelyet a sorozatoknál megismert technikák segítségével vissza lehet vezetni nem kritikus határértékre. Könnyű megmutatni, hogy a szóban forgó **határértékek mindegyike létezik**. Például, ha $a = +\infty$, akkor

(a)
$$\lim_{x \to +\infty} \frac{2x^2 + 1}{3x^2 - 2x + 5} = \lim_{x \to +\infty} \frac{2 + \frac{1}{x^2}}{3 - \frac{2}{x} + \frac{5}{x^2}} = \frac{2}{3}$$

(b)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 1}{x^3 + 100} = \lim_{x \to +\infty} \frac{\frac{1}{x} - \frac{2}{x^2} + \frac{1}{x^3}}{1 + \frac{100}{x^3}} = \frac{0}{1} = 0,$$

(c)
$$\lim_{x \to +\infty} \frac{3x^3 - 1}{x^2 + 2} = \lim_{x \to +\infty} x \cdot \frac{3 - \frac{1}{x^3}}{1 + \frac{2}{x^2}} = (+\infty) \cdot 3 = +\infty,$$

(d)
$$\lim_{x \to +\infty} \frac{3x^3 - 1}{2 - x^2} = \lim_{x \to +\infty} x \cdot \frac{3 - \frac{1}{x^3}}{\frac{2}{x^2} - 1} = (+\infty) \cdot (-3) = -\infty.$$

Hasonló a helyzet, ha $a = -\infty$.

<u>3º eset:</u> Q(a) = 0. Ekkor két eset lehetséges: $P(a) \neq 0$ vagy P(a) = 0.

 $\underline{3^o\ (a)\ \text{eset:}}\ \text{Legyen}\ \boxed{P(a) \neq 0}$ és $\boxed{Q(a) = 0}$. A Q polinomot felírhatjuk a

$$(*) Q(x) = (x - a)^m \cdot q(x)$$

alakban, ahol $m=1,2,\ldots$ és q olyan polinom, amelyre $q(a)\neq 0$.

Ha $\boxed{m=2k}$ páros, akkor

$$\lim_{x \to a} \frac{1}{(x-a)^{2k}} = +\infty,$$

ezért a műveleti tételek alapján

$$\lim_{\underline{a}} R = \lim_{x \to a} \frac{P(x)}{Q(x)} = \lim_{x \to a} \left(\frac{P(x)}{q(x)} \cdot \frac{1}{(x-a)^{2k}} \right) =$$

$$= \lim_{x \to a} \frac{P(x)}{q(x)} \cdot \lim_{x \to a} \frac{1}{(x-a)^{2k}} = \operatorname{sign} \left(\frac{P(a)}{q(a)} \right) \cdot (+\infty).$$

Ha m=2k+1 páratlan, akkor

$$\lim_{x \to a-0} \frac{1}{(x-a)^{2k+1}} = -\infty \quad \text{és} \quad \lim_{x \to a+0} \frac{1}{(x-a)^{2k+1}} = +\infty.$$

Mivel

$$\lim_{x \to a} \frac{P(x)}{q(x)} = \lim_{x \to a-0} \frac{P(x)}{q(x)} = \lim_{x \to a+0} \frac{P(x)}{q(x)} =: A \in \mathbb{R},$$

ezért

$$\lim_{x\to a-0} \frac{P(x)}{Q(x)} = \lim_{x\to a-0} \left(\frac{P(x)}{q(x)} \cdot \frac{1}{(x-a)^{2k+1}} \right) = \operatorname{sign}(A) \cdot (-\infty) \text{ \'es}$$

$$\lim_{x\to a+0} \frac{P(x)}{Q(x)} = \lim_{x\to a+0} \frac{P(x)}{q(x)} \cdot \frac{1}{(x-a)^{2k+1}} = \operatorname{sign}(A) \cdot (+\infty), \text{ ez\'ert}$$

$$\not\equiv \lim_{a} R = \lim_{x\to a} \frac{P(x)}{Q(x)}.$$

 3^o (b) eset: Legyen P(a) = 0 és Q(a) = 0. Tekintsük a Q polinom (*) alakját! A P polinom is felírható a

$$(*) P(x) = (x - a)^s \cdot p(x)$$

alakban, ahol s = 1, 2, ... és p olyan polinom, amelyre $p(a) \neq 0$. Így

$$R(x) = \frac{P(x)}{Q(x)} = \frac{p(x)}{q(x)} \cdot (x - a)^{s - m}.$$

Mivel

$$\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)} \in \mathbb{R},$$

ezért a $\lim_a R$ határérték az sés az m kitevőktől függően az előzőekhez hasonlóan kezelhető.