

Home Grades

Quizzes

<u>Assignments</u>

Modules

Discussions Ø

Homework 3

Due Nov 11 at 3:59am Points 100 Questions 10

Available until Nov 11 at 3:59am Time Limit 60 Minutes

Allowed Attempts 3

Instructions

We use the conventions in the QBook101.

The default programming language for coding is Python. You may write pieces of code during this exercise.

Take the Quiz Again

Attempt History

	Attempt	Time	Score	
KEPT	Attempt 2	3 minutes	80 out of 100	
LATEST	Attempt 2	3 minutes	80 out of 100	
	Attempt 1	60 minutes	0 out of 100	

(!) Correct answers are hidden.

Score for this attempt: 80 out of 100

Submitted Oct 9 at 12:41am This attempt took 3 minutes.

Question 1

10 / 10 pts

We have a three state quantum system. If the system is in the quantum state

$$|u
angle = \left(egin{array}{c} x \ rac{1}{\sqrt{7}} \ rac{2}{\sqrt{7}} \end{array}
ight) \in \mathbb{R}^3$$

what is the probability of being in the first state?

 $\frac{1}{7}$

 $\frac{2}{\sqrt{7}}$

 $\sqrt{\frac{2}{7}}$

 $\frac{2}{7}$

Last Attempt Details:

Time:	3 minutes
Current	80 out of
Score:	100
Kept	80 out of
Score:	100

2 Attempts so far

(<u>View Previous</u>

<u>Attempts</u>

1 More Attempt available

Take the Quiz Again

(Will keep the highest of all your scores)

uestion	
 uesnon	_

10 / 10 pts

If $|u\rangle\in\mathbb{R}^2$ is a quantum state on the unit circle with angle $\frac{5\pi}{6}$, what is $|u\rangle$?

- $\bigcirc \left(\begin{array}{c} \frac{1}{2} \\ \\ \frac{\sqrt{3}}{2} \end{array}\right)$
- $\begin{pmatrix}
 -\frac{\sqrt{3}}{2} \\
 -\frac{1}{2}
 \end{pmatrix}$
- $\bigcirc \left(\begin{array}{c} \frac{\sqrt{3}}{2} \\ \\ \frac{1}{2} \end{array}\right)$

Question 3

10 / 10 pts

We have a qubit in state $|1\rangle$, We apply the operators X,H,X,H, iX order,

where $H{\rm and}\ X{\rm are}$ the Hadamard and NOT operators, respectively.

What is the final state?

- $| | 1 \rangle$
- |1>
- $|0\rangle$
- $|-\rangle$

Question 4

10 / 10 pts

When a qubit is in the quantum state $|u
angle = \left(egin{array}{c} rac{1}{\sqrt{3}} \ \\ -\sqrt{rac{2}{3}} \end{array}
ight)$

the Hadamard operator is applied: $|u'
angle=H\!.|u
angle$

What is the probability of being in state $|0\rangle$ in the new quantum state $|u'\rangle$

- 0.0200
0.9714
○ 0.5
0 1

Incorrect Question 5 0 / 10 pts

We apply a series of quantum operators to a single qubit that is in state $|1\rangle$ at the beginning.

If we observe the state 0 at the end with probability 1, then which one of the following combinations is possible,

where ${\cal M}$ stands for a measurement, and we apply the operators from the left to the right?

\odot H, X, H, M
\circ H,H,M

 $\bigcirc M, X, M, X, M$

 $\bigcirc X, H, X, H, M$ $\bigcirc X, H, X, M$

Question 7 0 / 10 pts

If we execute the above program 500 times, what is the most likely count of observing '0'?

0 125

375

Question 9

10 / 10 pts

If we execute the following quantum program with a single qubit and a single classical bit 1000 times,

which one of the following outcomes is more likely?

Hint: You could write a code in python similar to the tasks in the notebooks.

```
start in |1>
apply the Hadamard operator
make a measurement
for i in range(9)
    x = i mod 3
    if the classical bit is x:
        apply a Hadamard operator
    make a measurement
```

{'0': 511, '1': 489}

{'0': 392, '1': 608}

{'0': 367, '1': 633}

{'0': 442, '1': 558}

{'0': 274, '1': 726}

Question 10

10 / 10 pts

We have four qubits, say $q_0,\ldots,q_{\overline{y}}$ nitially in zero states.

We apply the X operators to both qubits q_0 and q_2 .
For the rest of qubits, we apply either identity operator or \boldsymbol{X} operator.
After making a measurement, we read the values from the qubits q_0,\dots,q_3 as b_0,\dots,b_8 espectively.
If $b=b_3\cdots b_{\delta}$ a binary number, which one of the following decimal numbers is not possible for the value of b ?
○ 15
157
0 7

Quiz Score: 80 out of 100

◆ Previous