

·TEMPEST·

Field Engineering Training 1.0/1.2/2.1/2.5/3.2 GB Fireball TM

March 19, 1996

Confidential

Tempest 1080/2160/3240 Program Review

Tempest Program Overview Agenda

- ➤ Tempest Engineering Team
- Key Specification Comparison
- Leveraged Architecture
- ➤ Schedule Milestones
- ➤ P2 Build Summary
- Risk Summary

Tempest Engineering Team

Dick Reiser Engineering Program Manager

Dave Basehore Mechanical Manager

Kathy Tang Head/Media Engineering

Ben Miller Read/Write and Servo Manager

Mike Morgan Drive Engineering Manager

Joe Liu Firmware Manager

Dan McFarland Process Test Manager

Larry Toombs Product Engineering Manager

Larry Rosier MR Head Coordinator

Desktop Product Specification

		Tempest	Sirocco	<u>Fireball</u>
100	Form Factor	3.5" x 1.00"	3.5" x 1.00"	3.5" x 1.00"
	Formatted Capacity (MB)	1080/2160/3240	1700/2550	640/1280
	Seek Time (ms)	12/10.5/10.5	11	11
	RPM	4500	4500	5400
M	Buffer	128K	128K	128K
	Data Rate (max)	90Mb/s	72Mb/s	84Mb/s
	Transfer Rate (MB/sec)			
	- AT/PIO	6/16	6/16	6/16
	- Fast Multiword DMA	16	16	16
	- SCSI /SCSI-3	6/20	NA	6/10
M	Power (watts)			
	- idle	3.7/4.0/5.0	4.2	4.0
	- sleep/standby	<1.0	<0.8	<1.0
	- operating	5.0/6.5/6.5	6.5	6.5
	Acoustics (idle)			
	- sound pressure (dBA)	32	32	32
	- sound power (bels)	3.6	3,6	3,6
	Interface	Fast ATA-2/ Ultra SCSI-3	Fast ATA-2	Fast ATA-2/ SCSI-3
191	MTBF (hrs)	400K	400K	500K
	Volume Availability	5/96	3/96	3/95

Quantum* JTM 2/23/96

QUALITY STORAGE FOR BETTER SYSTEMS

Tempest

3 1/2" Program Overviev

 Tempest
 1080 MB
 90 Mb/sec
 <12ms</th>
 4500rpm
 Volume Avail: May '96

 2160, 3240 MB
 90 Mb/sec
 <11ms</td>
 4500rpm
 Volume Avail: May '96

Program Highlights:

 1080 MB per platter is the leading areal density in CQ2'96; 3,240MB is highest desktop capacity for CQ2-CQ3 '96 system launches

• Targeted at Mainstream and Enthusiast desktop PC users with the popular 1,2,3 GB capacities,

Program Status:

• P2 build will start on 2/1 (HDA Assembly); 5 head and 5 media suppliers participating in build.

60K CSS in process with multiple head-media-motor combinations; DVT testing hearly complete

P2 Build Summary

Overall HDA Test Yield (Head/Media):

- > 95.6%
 - Best

- 100%
- (25 Combinations)

Worst

- 60%
- (1 Combination)

Overall Self Scan/Final Test Yield:

» 1080 MB

- ΛT
- 69.4%

- SCSI
- 68:1%

» 2160 MB

81.0%

77.4%

» 3240 MB

60.3%

66.1%

- » Overall
- 66.9%

65.6%

68.0%

P2 Build Summary (Continued)

Head/Media Yield:

» Hea	ďΧ	/enc	lor
-------	----	------	-----

•	RHG-B	136 units	74%
•	Alps	394	70%
	Read-Rite	109	68%
9	TDK	451	72%
	Yamaha	128	70%

» Media Vendor

~	THE TOTAL OF		
	AKCL	156 units	65%
8	Fuji	511	86%
•	Stor Media	80	72%
	MCC	420	90%
	Showa Denko	51	61%

P2 Build Issues

Servo Write

- » Clock Control (PLO Stability)
- » Motor Control (6000 RPM)
- » Code (Back-up & Re-Write)

1-Disk

- » 1 KHz Resonance of Upper Magnet Plate
- > Un-Parking Current
- » Seek Time (Distribution)

3-Disk

>> Seek Time (Distribution)

General

- » Servo Start-Up Robustness & Recal Robustness
- » Read Channel

Technical Risk Summary

MR Head Vendor Issues

- » Alps Instability
- » Yamaha Off Track Capability (Track Centering)

Media defects

» Media scratching reduced, next build will verify dynamic loading

Solutions for MR head unique properties

- » MR Instability test (Too Sensitive)
- Thermal Asperities detection and correction algorithm within limited correction set-up (ECC level set to zero correction)

TEMPEST <u>MECHANICAL</u> DESIGN REVIEW

For Quantum Field Engineering

*March 19, 1996

Presented by Dave Basehore

Presentation Overview

- Design Goals for 1 Disk and 2/3 Disk HDAs
- * 1 Disk HDA
 - Design Characteristics
 - Performance to Date
- * 2 / 3 Disk HDA
 - Design Characteristics
 - Performance to Date
- Summary

Mechanical Design Goals

- Very Stiff and Low Runout HDAs to Support TMR
 - Support Sirocco HDA at 5850 TPI
 - Support Tempest HDA at 6775 TPI
- ❖ Achieve 3.6 Bels Acoustics Sound Power
- ♦ 11.0 ms. Average Seek to Read on 2/3 Disk HDA
- * 12 ms. Average Seek to Read on 1 Disk HDA

Design Strategy - 1 Disk and 2/3 Disk HDA Commonalities

- Same TrB Arm Length / Pivot Locations on Base That Supports Sirocco Microjog / Heads
- Same Head Skews / Data Stroke
- Both Use Air Lock
- Common PCBA will mount to both HDAs
- Same Heads and Media

MKE Manufacturing Strategy

- ❖ 1 Disk Tempest to be Built and Servowritten on <u>Trailblazer</u> Assembly Line
- 2/3 Disk Sirocco / Tempest to be Built and Servowritten on <u>Fireball</u> Assembly Line

TRACK MAP - TEMPEST (1D, 2D & 3D)

1 Disk HDA Design

- Mechanical Assembly Overview
- Commonality with Trail Blazer
- Commonality with 2 / 3 Disk
- Base / Motor Disk / Stack Assembly
- Actuator Assembly
- Voice Coil Motor Assembly
- Air Lock Design
- Cover Design

Tempest 1 Disk HDA Overview

One Disk HDA Architecture

 Trailblazer modified for one disk HDA

- Lowest cost existing HDA platform
- Stamped Cover and Stamped Base

SIROCCO / TEMPEST 1D HDA PLAN VIEW

1 Disk Latch Asm

- Design Changes From Trail Blazer
 - Modified TrB A/L to accommodate disk elevation change
 - Same function as TrB latch (slider play when latched)

1 Disk Actuator Assembly

Actuator / VCM Asm

- Differences from Trailblazer
 - One disk actuator (J=30 gm cm2)
 - One disk only Eblock, arms centered to coil for symmetry
 - ◆ Different coil thickness for balancing actuator
 - 1.3 mm vs 1.8 mm thick
 - ◆ Modified Coil for 12.0 ms. Seek Time
 - .130 mm diameter wire
 - 121 turns, R=12.3 ohms
 - Currently same rotor molding tooling
 - Modify top magplate to hold FPCB at loop exit
 - Flex guide design for one disk FPCB
 - Bottom magplate / magnet same as TrB

1 Disk VCM Comparison with Trailblazer

Parameter	Tempest 1 Disk	Trail Blazer 1 Disk
Max Torque Constant (gm cm/A)	342	560
Head Gap Radius (cm)	54.42	54.41
Total Inertia (gm cm2)	30.0	36.5
Coil Resistance @ 22 Deg C (Ohms)	12.34	18
Maximum Gap Flux (Gauss)	3950	3950
Coil # of Turns	121	198
Coil Wire Diameter (mm)	.130	.135
Magnet Material Energy Product (MgOe)	36	36
1/3 Stroke Move Time (mechanical ms)	8.03	10.40
Average Seek Time Specification (ms)	12.0	14.0
Estimated Allowance for Settle Time (ms)	3.97	3.60

Design for MR head requirement

Pre-Amp IC on Actuator

- Min lead length from pre-amp to head
- Shorter loop than Fireball (30 mm vs 36 mm)
- Optimize material thickness, width for lower bias

1 Disk Headstack Assembly

HGA Design

MR Head HGA

- MR transducer
- TPC and NPAB slider design for constant flying ht vs. radius
- Semi-tubeless design
- Type 850 thru etch (same as FB)
- .7366 mm Z-ht (same as TrB)
- 5 gm load / 2.5 mil suspension

SIROCCO / TEMPEST 1D HDA SIDE VIEW

Motor / Base Asm

- Differences from Trailblazer
 - Tied shaft with labyrinth seal for contamination control
 - Move TrB bearings closer due to space for labyrinth seal
 - Move disk elevation to center of actuator coil
 - Tighter NRRO specification of 8 uin needed for TMR
 - FPCB mounting points move for short loop
 - Plate modified to widen FPCB channel area

Parameter	Tempest 1 Disk	Trail Blazer 1 Disk
Rotational Speed (RPM)	4500	4500
Torque Constant (gmf cm/A)	140	140
Coil Resistance (Ohms)	8.5 +/- 10%	8.5 +/- 10%
Coil Inductance (mH)	1.2 +/4	1.2 +/4
Static Rocking Mode (Hz.)	₹ 480	> 320
NRRO (micro in radial P-P)	(8)	12
Imbalance (mg cm)	50	50
Average Run Current (milli amps)	140	140
BEMF (Volts / KRPM)	1.67	1.67
Bearing Size	1150	1150
Lubrication	Multemp	Andok C
Minimum Starting Torque (gmf - cm)	81	81

TEMPEST ONE DISK SPINDLE MOTOR

1 Disk Misc Parts

- Cover Asm:
 - Modified clock head opening for different disk elevation
 - No other change to Trailblazer
- Crash Stops:
 - Location of stops same as Trailblazer
 - Diameter and Durometer Adjusted
- * Disk Clamp:
 - Clamp Modified for Additional Data Stroke

1 Disk Performance

- * TMR Data
- * Mechanical Resonance Data
- Acoustics Data

DriveID 381566623104

HDA Variation Code roomtem

3 $\sigma = 3.23\%$

Population Estimate, Based on Cumulative Peak Method, 3 **σ** (est) = 3.56 % (.59K events)

Scelling (Random)

% Off Track Error

non-Seeking

 $3 \sigma = 2.49 \%$

3 or Population Estimate = 2.64 %

6500 TPI

COUNT

--- PDI

SN 3815777 94720

-100

-200 _____

10³

SN/ 3815 777 94220 10⁴

4/3/95	/E2/ACOUSTI F. H & T.K.											
1. Two thickness of PCBs are used for this measurement. One is 1.2 mm thick, another is 0.8 mm.												
	2. Perform @ Ontm acoustic chamber in building 5. B&K-2123 analyzer is the tester.											
3. Sound power	er(Bel) and sou	nd pressure(c	dB) are measur	ed per ANSI s	pec.			101 DOD T	1 1	0001	l	
4. Due to chamber availability, and the first 10 drives results indicate that: No significant deviation between thick and thin PCB. Therefore, thick PCB is used thereafter.												
S/N	THICK PCB/D	OWN	THICK PCB/		THIN PCB/E		THIN PCB / U		MOTOR	ļ		
	Pressure	Power	Pressure	Power	Pressure	Power	Pressure	Power	D1 4D1 4/54 4 4			l
650011	28.10	3.36	30.50	3.47	28.40	3.39	31.20	3.46)13-NMB,FF,M		· · · · · · · · · · · · · · · · · · ·
650014	29.80	3.48	32.60	3.56						10-NMB,FF,M		
650017	27.00	3.19	30.30	3.27	27.30	3.21	30.30	3.27		002-NMB,FF,M		
650021	29.70	3.44	32.60	3.50						004E,NMB,FF,I		
650023	29.50	3.42	32.10	3.47						002E,NMB,FF,I		
651001	28.50	3.25	30.40	3.34						003-NMB,FF,M		9
631001	29.40	3.47	31.80	3.52						MB,FF,MulVA		
631004	28.70	3.39	29.90	3.34	28.60	3.40	32.70			NMB,FF,Mult/A		
650001	27.80	3.12	29.00	3.16	27.40	3.18	28.80	3.18		NSK,FF,MulVA		P 1000077 8 8 8 8 000007
650005	27.80	3.14	28.70	3,13						NSK,FF,MulVA		
630011	27.30	3.12	28.50	3.14	27.20	3.11	28.40	3.12		NSK,FF,Mult/N		
630013	27.30	3.08	28.40	3.06						NSK,FF,Mult/N		
610032	26.80	3.11	29.20	3.15	27.90	3.19	30.00			F,xx/xx,Mcage		
610034	25.90	3.04	28.30	3.10	27.30	3.13	28.30			F,xx/xx,Mcage		
610035	26.70	3.11	29.20	3.19	27.70	3.21	30.30			F,xx/xx,Mcage		
630001	28.00	3.19	29.50	3.27	28.20	3.26	29.30			FF,xx/xx,Mcage		
630002	28.00	3.33	30.50	3.32	29.10	3.39	30.90	3.36		FF,xx/xx,Mcage		
*610004	32.30	3.60	37.80	3.79					******	FF,xx/xx,Mcage		<u>.</u> .
610021	27.50	3.19	29.40	3.24						B,LS,AKC/AKC		
610022	28.10	3.27	30.50	3.37						3,LS,AKC/AKC	range and the second second second	
610023	27.30	3.18	28.80	3.19					OHZUE-NMI	B,LS,AKC/AKC	,Mcage	
631012	28.00	3.18	29.90	3.24					N30950817-I	VSK,LS,AKC/A	KC,Pcage	*******
Average**	27.43	3.20	29.49	3.24	27.91	3.25	30.02	3.27				
Average	28.16	3.26	30.36	3.31								
Comments:												
1. On limited s	amples, Idle ac	oustic, Thick	PCB is quieter	than thin PCE	3 by 0.5 dB (S.	pressure) and	1 0.04 Bel (S. p	ower).				
1. On limited samples, Idle acoustic, Thick PCB is quieter than thin PCB by 0.5 dB (S. pressure) and 0.04 Bel (S. power). 2. On OHZU samples, NSK bearing is quieter than NMB bearing, about 1.5 dB.(S. pressure)												
3. * Drive 610004, acoustic is off spec.(s. pressure = 35 dB, max.). Further FA will be followed.												
4. " Average of	4. ** Average on the drive testing data with both thick and thin PCB.											

			Ι	1			Τ	1	T		T	T
		1										
	1D/E2/ACOUS											
TEST RES	ULTS SMMAR	Υ										
1. Based or	the data from t	hlck PCB/Dowr	n, idle run.									
2. Sound pr	essure = dB, Sc	ound power = B	el.									
												<u> </u>
3. Resul	ts by vendo	or:										
	Vendor	Pressure	Power	sample size	e		<u></u>					
The second secon	OZHU	27.29	3.18	8								
	PMDM	28.76	3.36	6		111 004 7 2 005						
	Nidec	28.04		7		****						
4. Resul	ts by lubric	ant type:	<u> </u>									
	FF = Ferr	o-Fluid seal	, M=Multer	np, A=AKC.					THE RESIDENCE OF A PROPERTY OF THE PROPERTY OF			
AL SERVICE		Pressure		sample size						The second section is a second section of the second section of the second section is a second section of the section of the second section of the section of the second section of the section of		
	FF,M/M	27.70		3								
	FF,M/A	28.64	3.33	9								
	LS, A/A	27.73	3.21	4		<u> </u>				L	<u></u>	<u> </u>

1 Disk Data Update

* From P2 Build

Completed on 2/21/96

BODE PLOT

PZ HDA - 1 DISK

% Off Track Error

-000

500

-000

500

000

500

% Off Track Error

% Off Track Lirror

DriveID 381688842023

HIIA Variation Code p?test

 $3 \sigma = 6.12 \%$

Copalition Estimate, Based

concumulative Peak Method.

(**o** test) > 7,05 % (.790 events) 0,145 tism

TMR DATA

PZ HDA - 1 DISK

 $3 \sigma = 2.31 \%$

La Population Estimate » 2,45 %

2/3 Disk HDA Design

- Mechanical Assembly Overview
- Commonality with Sirocco
- Commonality with Fireball
- Base / Motor / Disk Stack Assembly
- Actuator Assembly
- Voice Coil Motor Assembly
- Air Lock Design
- Cover Design

2/3 Disk Commonalities with Fireball

- 2/3 Disk HDA Base Casting Is Compatible with Fireball Assembly Line and Servowriter
- Actuator Assembly Is Compatible with Fireball Assembly Line
- Air Lock is Same Basic Design with Slight Geometry Modifications
- VCM Magnet Plates, Coil Plan View, and Flex Mounting Are Same as Fireball
- PCBA Mounting Holes on Base Are Compatible with Fireball and Trail Blazer Hole Pattern

Plan View of 2/3 Disk HDA Design

Cross Section View of 2/3 Disk HDA Design

Fireball 1.08 Gb 2disk HDA

Actuator Assembly

- Cast / Machined Aluminum Rotor for 10 ms. Access
 Time
- ❖ Same Plan View as for TrailBlazer
- Standard Suspension Swage Mount for Hutchinson
 Type 850
- Same Bearings as Fireball
- Top of Shaft Fixed to Cover for Support
- ❖ Lower Resistance Coil than Fireball

2/3 Disk VCM Comparison with Fireball

Parameter	2/3D Tempest	2D Fireball
Max Torque Constant (gm cm/A)	730	540
Head Gap Radius (cm)	54.42	52.07
Total Inertia (gm cm2)	43	35
Coil Resistance @ 22deg C (Ohms)	11.2	13.8
Max Gap Flux (Gauss)	7900	5700
Coil # of turns	180	185
Coil wire diameter (mm)	0.160	0.146
Magnet material energy product (MgOe)	41	40
1/3 Stroke Move Time (mechanical)-(ms)	6.6	7.25
Average Seek Time (spec)-(ms)	11.5	10.5
Estimated allowance for settle time-(ms)	4.9	3.25

TEMPEST 6 head actuator

Flex PCB

- Design for Small Dynamic Loop with Minimum Force Bias
- Preamp IC on Rotor
- ❖ 2 Disk : 16 Traces to Heads
- ❖ 3 Disk : 24 Traces to Heads
- ❖ 24 Pin ZIF Connector to PCBA

Base Casting Design

- Basic Die Cast Aluminum Bowl Approach like Fireball
- Increased Wall Thickness at Bottom for Reduced Acoustics
- Machined PCBA Mounting Pads for Tolerance Control
- ❖ PCBA Mounting Plane to Accommodate PLCC Package Heights of Shiva and Mighty ICs
- Interface to Push Rod Servowriter Like Trail Blazer

Cross Section View of 2/3 Disk HDA In the Flange Motor

Spindle / Motor Design

- 12 Pole Motor vs. 8 Pole Motor
- Benefits:
 - Enables Lower Power Consumption
 - Lower Acoustics Due to Lower Radial ForcesNo Assymetry
 - Higher Km than 8 Pole More Starting Torque
 - Provides Design Margin for Head / Media Friction
- Pin Connector Interface to PCBA Like 1 Disk HDA

2/3 Disk Spindle Motor Comparison with Fireball

Parameter	Tempest 2/3 Disk	Fireball 2 Disk
,		
Rotational Speed (RPM)	4500	5400
Torque Constant (gmf cm/A)	170 ·	140
Coil Resistance (Ohms)	6.0 +/- 10%	6.2 +/- 10%
Coil Inductance (mH)	1.8 Max	.9 +/- 15%
Static Rocking Mode (Hz.)	> 485	> 470
NRRO (micro in radial P-P)	8 Max	10 Max
Imbalance (mg cm)	50	50
Average Run Current (milli amps)	56 (no load)	< 185
BEMF (Volts)	8 +/- 5 %	7.77
Bearing Size	1350	1150
Lubrication	Multemp	Andok C
Number of Poles	12	8
Minimum Starting Torque (gmf-cm @	132	85
1.0 amp)		
Starting Torque (gmf-cm @ 1.2 amp)	158	

Spindle / Motor Design

- Stationary Shaft Design Supported at Both Ends
- In the Flange Motor Selected :
 - For Less Cost than In the Hub Motor
 - Enables Use of 1350 Bearing vs. 1150 Bearing
- ♦ 1350 Bearing Benefits :
 - Enables Detuning the Rocking Mode from the Bearing Frequencies
 - Stiffer and Better for Shock and Vibration
- Lower Acoustics, NRRO, and Power Consumption with 1350 Bearing

Measured Breakaway Current vs. Current Capability, Tempest P2 2D @ 10K CSS, Extrapolated

File Name = Mitypwr.mcd

Ali Kheymehdooz on Sep./25/1995

This MathCad file calculates the power dissipation in Mighty motor driver chip in 1/3 stroke seek and also the start up current for Tempest 3 platter HDAs. Total of 9 pages

Summary:

This report consists of two main parts. Part one calculates the power dissipation of the Mighty chip durnig 1/3 stroke seek for 3 platter HDA, part two (pages 8 and 9) calculates the spindle start up current capability for 3 platter HDA.

Part (1) Mighty power dissipation is done in three part:

- 1. Spindle section during run
- 2. VCM section during 1.3 stroke seek
- 3. Idle Power which is the bias currents drawn from the supplies to keep the chip operating.
- 4. Total seek time =10.2 ms.

In doing the power calculation some assumptions were made to simplify the calculations.

- 1. Seek current was averaged over accel and decel.
- 2. BEMF voltage during seek was calculated using nomimal VCM mechanical parameters.
- 3. Seek time was divided into two major segment, accel and decel.
- 4. Total seek time and VCM current value during decel was obtained from simulation result.

Conclusion:

Power calculation:

The maximum safe junction temperature for Mighty is 150 deg. C. It is seen that under typical conditions the junction temperature is below that and under extreme worst case this value is exceeded by 32 degree. The power dissipated during seek is 4.8w nominal and 5.67w max. with 50% duty cycle on the seek the total power including spindle and bias power is 2.8w nominal and 3.7w max.

This analysis was compared with Matlab simulation result. It is seen that the total seek power values match to within 10%, however individual Accel and Decel powers do not match. The reason for this could be in addition to all the above assumptions the fact that the currents for accel and decel were linearly approximated where the actual waveforms are not linear.

One possible way to reduce the power dissipation is to change the decel current profile (increase current) and/or decrease the decel time. In the present simulation we have anticipate function where the decel point is anticipated and the current is reduced gradually ahead of the switch point which will reduce the overall decel current. We could shorten the anticipation. It should also be noted that these values are all based on calculations and simulations, next step will be to measure the power and temperature during 1/3 stroke seek to verify the calculations.

Start up current:

Mighty operates in a closed loop current control at start up to limit the start up current, the Minimum start up current under closed loop control

Another possible solution to increasing the start current is to disable the closed loop control by putting Mighty the control of Position Detection or Induction Sense Mode), doing this the start up current is then limited by the voltage drop across the spindle output drivers, the spindle motor resistance, sense resistor and the 12V power supply,

1. Spindle power dissipation during run is calculated by knowing the runcurrent of the Part (1). spindle by means of measurement

 $Vcc12_nom = 12$

Volt

Vcc12_max = 13.2 Volt Vcc12_min = 10.8 Volt, 12v power supply

Current thru 5 and 12 volt supply at Idle

Ivcc12_nom := 0.02 $Ivcc5_nom = 0.005$ Amp typical Amp typical $Ivcc12_max = 0.033$

Amp maximum

 $Ivcc5_max := 0.008$

Amp maximum

 $Irun_nom = 0.160$

Amp

 $Irun_max := 0.200$

Amp, current thru spindle

Rspindle_nom = 6.0 Ohm at 25 deg. C, spindle winding resistance from spec.

Rspindle_max = Rspindle_nom-1.10

Rspindle_max = 6.6

Ohm at 70 Deg. C

Rspindle_min = Rspindle_nom-0.9

Rspindle_min = 5.4

Ohm at 25 Deg. C

Rsense_nom = 0.33 Ohm, sense resistor

Rsense_max = Rsense_nom-1.05 Rsense_min := Rsense_nom-0.95

Rsense_max = 0.347

Ohm

Rsense_min = 0.314Ohm

V_bemf_nom := 8.0 BEMF Voltage at 4500 rpm, from spec.

 $V_bemf_max := V_bemf_nom \cdot 1.05$

 $V_bemf_max = 8.4$ Volt

V_bemf_min := V_bemf_nom-0.95

 $V_bemf_min = 7.6$

Volt

Total power drawn from the 12 volt supply

Total_Vcc12_power_nom = Vcc12_nom-Irun_nom Total Vcc12 power nom = 1.92

Total_Vcc12_power_max = Vcc12_max-Irun_max

Total_Vcc12_power_max = 2.64 Watts

Power dissipated in the spindle and the sense resistors

Pd_in_spindle_and_Rsense_nom := Irun_nom² (Rspindle_nom + Rsense_nom)

Pd_in_spindle_and_Rsense_nom = 0.162

Watts

Pd_in_spindle_and_Rsense_min = Irun_max^2 (Rspindle_min + Rsense_min)

Pd_in_spindle_and_Rsense_min = 0.229

Watts

Power dissipated due to BEMF voltage

Pd_bemf_nom = V_bemf_nom Irun_nom

 $Pd_bemf_nom = 1.28$ Watts

Pd_bemf_min = V_bemf_min-Irun_max

 $Pd_bemf_min = 1.52$ Watts

Power dissipated in Mighty spindle drivers is the total power minus the power dissipated in spindle and sense resistors and the BEMF power.

Pd_spm_drivers_nom := Total_Vcc12_power_nom - Pd_in_spindle_and_Rsense_nom - Pd_bemf_nom

 $Pd_spm_drivers_nom = 0.478$

Nominal power dissipation in spindle

drivers (Watts)

Pd_spm_drivers_max = 0.891

Pd_spm_drivers_max := Total_Vcc12_power_max - Pd_in_spindle_and_Rsense_min - Pd_bemf_min

Maximum power dissipation in spindle

drivers, (Watts)

2. VCM power dissipation during 1/3 stroke seek is calculated using VCM mechanical parameter and the simulated current profile. The mechanical parameters are used to calculate the BEMF voltage during seek. The calculation is divided into two parts, acceleration and deceleration.

 $J := 4300 \cdot \text{gm-mm}^2 \qquad J := \frac{J}{1000 \cdot \text{gm-m}^2} \qquad \qquad J = 4.3 \cdot 10^{-6} \qquad \text{Inertia of the motor and disks in Kg.m^2}$

Kt = 700 gm.cm/Amp Kt = $\frac{\text{Kt} \cdot 9.8}{10^5}$ Kt = 0.069 Kg.m/Amp Torque constant Ke = 0.069 BEMF constant, V/rad/sec

Seek_time = 10.2 Total seek time, ms.

Some PCB component value relevant to the calculation.

 $R1_{max} := R1_{nom-1.010}$ $R1_{max} = 1.01 \cdot 10^4$ **Ohm** $R1_{min} := R1_{nom-0.99}$ $R1_{min} = 9.9 \cdot 10^3$ **Ohm**

Rsense_nom = 0.33 sense resistor,Ohm

Rsense_max = Rsense_nom·1.05 Rsense_max = 0.347 **Ohm**Rsense_min = Rsense_nom·0.95 Rsense_min = 0.314 **Ohm**

Rvcm_nom = 12 VCM resistance, Ohm from spec.

 Rvcm_max := Rvcm_nom·1.05
 Rvcm_max = 12.6
 Ohm

 Rvcm_min := Rvcm_nom·0.95
 Rvcm_min = 11.4
 Ohm

Vdrop_drv_nom = 1 Drop across output drivers (volt) of Mighty from spec.

Vdrop_drv_min = 0.8 Drop across output drivers (volt)
Vdrop_drv_max = 1.2 Drop across output drivers (volt)

Amp_Gain_nom = 4 VCM sense amp. gain in the current loop inside Mighty, from spec.

Amp_Gain_min = Amp_Gain_nom-0.95 Amp_Gain_min = 3.8 Amp_Gain_max = Amp_Gain_nom-1.05 Amp_Gain_max = 4.2

 $Gm_nom = \frac{R2_nom}{Amp_Gain_nom \cdot Rsense_nom \cdot R1_nom}$ $Gm_nom = 0.48$ Amp/Volt

 $Gm_{min} := \frac{R2_{min}}{Amp_{max} \cdot Rsense_{max} \cdot R1_{max}} \qquad Gm_{min} = 0.427 \qquad Amp/Volt$

Volt_cmd_nom := 1.98 Volt output of the PWM decoder inside Mighty

Volt_cmd_max = 2.06 Volt_cmd_min = 1.90

Commanded current thru the PWML and PWMH (DAC)

Available current from the 12v power supply at t=0

 $Iavail_nom_00 = \frac{Vcc12_nom - Vdrop_drv_nom}{Rsense_nom + Rvcm_nom}$ $Iavail_nom_00 = 0.892 \text{ Amp}$

 $Iavail_min_00 := \frac{Vcc12_min - Vdrop_drv_max}{Rsense_max + Rvcm_max}$ $Iavail_min_00 = 0.742 \text{ Amp}$

 $Iavail_max_00 := \frac{Vcc12_max - Vdrop_drv_min}{Rsense_min + Rvcm_min}$ $Iavail_max_00 = 1.059 \text{ Amp}$

Commanded current lond is greater than available current lavail, so I_avail is used to calculate the BEMF voltage since we can not ask for more current than what is available from the supply. Next we calculate the BEMF voltage at specific times according to the seek currnt profile. BEMF is calculated using VCM mechanical parameters and lond_nom.

Total accel time, ms.

$$t1 := 0.5 \cdot 10^{-3}$$

$$t2 = 3.2 \cdot 10^{-3}$$

Times at which BEMF voltage is calculated

BEMF voltage calculation based on nominal available current

$\alpha_{nom} := \frac{Kt \cdot Iavail_{nom_00}}{J}$	$\alpha_{nom} = 1.423 \cdot 10^4$	Nom. angular acceleration rad/sec^2
$\omega 1$ _nom = α _nom·t1	ω_{1} nom = 7.116	Nom. angular velocity at time t1 (0.5ms), rad/sec
$\omega_{2nom} := \alpha_{nom} \cdot t2$	ω_{2} nom = 45.544	Nom. angular velocity at time t2 (3.2ms), rad/sec

BEMF voltage calculation based on maximum available current

$\alpha_{\max} := \frac{Kt \cdot Iavail_{\max}_{0}}{V}$	$\alpha_{\text{max}} = 1.689 \cdot 10^4$	Max. angular acceleration rad/sec^2
$\omega 1_{max} := \alpha_{max} \cdot t1$	ω_{1} max = 8.444	Max. angular velocity at time t1 (0.5ms), rad/sec
ω2_max := α_max·t2	ω_{2} max = 54.043	Max. angular velocity at time t2 (3.2ms), rad/sec

Vbemf_00ms := 0.0 Bemf voltage at 0.0msec or at start

Vbemf_05ms_nom := Ke·ω1_nom	Vbemf_05ms_nom = 0.488	Nom. Bemf voltage at 0.5msec
Vbemf_32ms_nom := Ke·ω2_nom	Vbemf_32ms_nom = 3.124	Nom. Bemf voltage at 3.2msec
Vbemf_05ms_max := Ke-ω1_max Vbemf_32ms_max := Ke-ω2_max	Vbemf_05ms_max = 0.579 Vbemf_32ms_max = 3.707	Max. Bemf voltage at 0.5msec Max. Bemf voltage at 3.2msec

$$Vbemf_ave_nom := \frac{Vbemf_32ms_nom - Vbemf_05ms_nom}{2}$$

$$Vbemf_ave_max := \frac{Vbemf_32ms_max - Vbemf_05ms_max}{2}$$

$$Average nominal bemf voltage, Volt$$

Next available current at t1, t2 and average current during acceleration is calculated, average current during accel is calculated in two parts, one is from 0 to 0,5ms and the other is from 0.5 ms to 3.2ms. then the current is averaged thru the accel time as follows

$$Iavail_nom_05ms := \frac{Vcc12_nom - Vdrop_drv_nom - Vbemf_05ms_nom}{Rsense_nom + Rvcm_nom} Iavail_nom_05ms = 0.853$$

$$Iavail_nom_32ms := \frac{(Vcc12_nom - Vdrop_drv_nom) - Vbemf_32ms_nom}{Rsense_nom + Rvcm_nom} Iavail_nom_32ms = 0.639$$

$$Iavail_nom_32ms := \frac{(Vcc12_nom - Vdrop_drv_nom) - Vbemf_32ms_nom}{Rsense_nom + Rvcm_nom} Iavail_nom_32ms = 0.639$$

$$Iavail_nom_accel := \frac{\left(\frac{0 + Iavail_nom_05ms}{2}\right) \cdot 0.5 + \left(\frac{Iavail_nom_05ms + Iavail_nom_32ms}{2}\right) \cdot 2.7}{Accel_time}$$

lavail_nom_accel = 0.696

Average nom. current during accel. is averaged over two segments. Amp

$$Iavail_max_05ms = \frac{Vcc12_max - Vdrop_drv_min - Vbemf_05ms_max}{Rsense_min + Rvcm_min}$$

$$Iavail_max_32ms = \frac{Vcc12_max - Vdrop_drv_min - Vbemf_32ms_max}{Rsense_min + Rvcm_min}$$

$$Iavail_max_32ms = 0.742$$

$$Iavail_max_32ms = 0.742$$

$$[avail_max_accel] = \frac{\left(\frac{0 + [avail_max_05ms]}{2}\right) \cdot 0.5 + \left(\frac{[avail_max_05ms + [avail_max_32ms]}{2}\right) \cdot 2.7}{Accel_time}$$

Iavail_max_accel = 0.818 Average max. current during accel. is average over two segments. Amp

In the above lavail_nom,max_accel current calculation, current at t=0 is set to zero due to the inductor which does not let the current rise instantly.

Icmd_max is now greater than lavail_max so lavail_max is used to calculate the average current and the power dissipation. Total power dissipation in the Mighty VCM drivers is total 12v supply power minus the dissipated power in sense and VCM resistors and the power dissipation due to the BEMF voltage

Now the decel portion, decel portion is divoided into 4 segments, average current for each segment is calculated, then average current for the whole decel time is calculated based on the simulated current profile.

$Idecel_1 := 0.0$	Amp at start of the decel t=0
Idecel_2 := 0.7	Amp from 0 to 0.5ms into the decel
Idecel_3 := 0.5	Amp from 0.5ms to 3.5ms into the decel
Idecel_4 := 0.3	Amp from 3.5ms to 4.5ms into the decel
Idecel_5 = 0.0	Amp from 4.5ms to 7ms into the decel

Decel_time = Seek_time - Accel_time

miliseconds, total decel time

Average decel current is the average over the four decel segment, from start of decel to 3.5ms into the decel and from 3.5 ms till the end of the decel which is 7ms

$$Iave_decel := \frac{\left(\frac{Idecel_1 + Idecel_2}{2}\right) \cdot 0.5 + \left(\frac{Idecel_2 + Idecel_3}{2}\right) \cdot 3.0 + \left(\frac{Idecel_3 + Idecel_4}{2}\right) \cdot 1.0 + \left(\frac{Idecel_4 + Idecel_5}{2}\right) \cdot 2.5}{Decel_time}$$

 $Iave_decel = 0.393$

Ave. decel current

Again the total power dissipation in the Mighty VCM drivers is total 12v supply power minus the dissipated power in sense and VCM resistors and the power dissipation due to the BEMF voltage

 $Pd_decel_nom := ((Vcc12_nom + Vbemf_ave_nom) - Iave_decel \cdot (Rsense_nom + Rvcm_nom)) \cdot Iave_decel$

 $Pd_decel_nom = 3.329$

Nominal power dissipation during decel in the Mighty output, watts

Pd_decel_max = ((Vcc12_max + Vbemf_ave_max) - Iave_decel (Rsense_min + Rvcm_min)) · Iave_decel

 $Pd_decel_max = 3.992$

Nominal power dissipation during decel in the Mighty output, watts

Total power during one seek cycle is the Pd_accel_nom,max + Pd_decel_nom,max

Pd_seek_nom := Pd_accel_nom + Pd_decel_nom

 $Pd_seek_nom = 4.793$

Nominal power dissipation during one seek in the Mighty

output, watts

Pd_seek_max := Pd_accel_max + Pd_decel_max

 $Pd_seek_max = 5.675$

Max. power dissipation during

one seek in the Mighty output,

watts

Total seek time is 10.2 ms based on simulation and it is also assumed that 10.2 ms is given between each seek so the total power dissipation during seek should be averaged out as follows

Pd_ave_seek_nom = (Pd_accel_nom + Pd_decel_nom) · Seek_time 2 · Seek_time

 $Pd_ave_seek_nom = 2.396$

Nominal power dissipation during 1/3 seek in the Mighty output, watts

 $Pd_ave_seek_max = (Pd_accel_max + Pd_decel_max) \cdot \left(\frac{Seek_time}{2 \cdot Seek_time}\right)$

 $Pd_ave_seek_max = 2.838$

Max. power dissipation during 1/3 seek in the Mighty output, watts

3. Total bias power in 12 and 5 volt supply is:

Pd_bias_Vcc12_nom = Ivcc12_nom-Irun_nom Pd_bias_Vcc12_max = Ivcc12_max-Irun_max Pd_bias_Vcc12_nom = 0.003 Pd_bias_Vcc12_max = 0.007 Nom. 12v bias power Watts Max. 12v bias power Watts

Pd_bias_Vcc5_nom := Ivcc5_nom·Irun_nom Pd_bias_Vcc5_max := Ivcc5_max·Irun_max Pd_bias_Vcc5_nom = $8 \cdot 10^{-4}$ Pd_bias_Vcc5_max = 0.002

Nom. 5v bias power Watts Max. 5v bias power Watts Now the total power in Mighty is the sum of the power dissipated in spindle output srivers, in the VCM output drivers and the bias power drawn from the supplies to keep the Mighty operational.

Pd_total_nom = Pd_ave_seek_nom + Pd_spm_drivers_nom + Pd_bias_Vcc5_nom + Pd_bias_Vcc12_nom $Pd_{total_nom} = 2.878$ Total nominal power in Mighty, watts

Pd_total_max := Pd_ave_seek_max + Pd_spm_drivers_max + Pd_bias_Vcc5_max + Pd_bias_Vcc12_max

Total maximum power in Mighty, watts $Pd_{total_max} = 3.737$

To calculate the junction temperature in Mighty we need to know the Thermal resistance of the package which is as indicated below.

Nominal junction to ambient thermal resistance for Mighty package (52 pin PLCC), $Rth_ja_nom := 30$ degree C/watt from Mighty spec. $Rth_ja_max = 34$ Max. junction to ambient thermal resistance for Mighty package (52 pin PLCC), degree C/watt from Mighty spec.

Tambient = 55Ambient temperature, degree C.

Tjunction_nom = Rth_ja_nom Pd_total_nom + Tambient $T_{junction_nom} = 141.347$ Nom. junction temp. degree C. $Tjunction_max = Rth_ja_max \cdot Pd_total_max + Tambient$ $T_{junction}_{max} = 182.07$

Max. junction temp. degree C.

Spindle start up current is calculated using two different Rsense values (0.33 and 0.25 ohm). In closed loop start up the current is independent of the power supply and in open loop start up the current depends on power supply, Rsense, Spindle motor resistance and the voltage drop across the drivers.

 $Vcc12_nom := 12$

Vcc12_max := 13.2 **Volt**

Vcc12_min = 10.8 Volt, 12v power supply

Kt nom = 170

Torque constant in g.f.cm/A, it is degraded due to non perfect commutation points at start up.

 $Kt_deg_nom = Kt_nom \cdot 0.8$

 $Kt_deg_nom = 136$

 $Kt_{deg_min} = Kt_{deg_nom-0.92}$

 $Kt_deg_min = 125.12$

 $Kt_{deg_max} = Kt_{deg_nom \cdot 1.08}$

 $Kt_{deg_max} = 146.88$

Rspindle_nom = 6.0 Ohm at 25 deg. C, spindle winding resistance from spec.

Rspindle_max = Rspindle_nom-1.10

Rspindle_max = 6.6

Ohm at 70 Deg. C

Rspindle_min := Rspindle_nom·0.9

Rspindle_min = 5.4

Ohm at 25 Deg. C

Rsense_nom := 0.33 Ohm, sense resistor

Rsense_max := Rsense_nom-1.05 Rsense_min = Rsense_nom-0.95

Rsense_max = 0.347

Ohm

Rsense_min = 0.314

Ohm

Spm_ampgain_nom = 5

Spindle sense amp. gain in the current loop inside Mighty

Spm_ampgain_min := Spm_ampgain_nom-0.98

 $Spm_ampgain_min = 4.9$

Spm_ampgain_max = Spm_ampgain_nom-1.02

 $Spm_ampgain_max = 5.1$

Vdrop_drv_nom := 1.0

Drop across spindle output drivers (volt) of Mighty from spec.

 $Vdrop_drv_min = 0.8$

Drop across spindle output drivers (volt)

 $Vdrop_drv_max = 1.7$

Drop across spindle output drivers at Tj = 125 deg. C(volt)

 $Cur_cmd_nom := 1.74$

Voltage at SPWMFLT correspondint to 100% duty cycle of the PWM input

Cur_cmd_min := Cur_cmd_nom-0.95

 $Cur_cmd_min = 1.653$

Cur_cmd_max := Cur_cmd_nom-1.05

 $Cur_cmd_max = 1.827$

Inside Mighty there is a closed current loop control which limits the start up current according to the following formula.

Cur_cmd-%DUTY Rsense-Cur_ampgain-100

At start up the duty cycle is 100% so the formula reduces to the following

Spindle start up current using the above variables

Cur_cmd_nom Ispm_nom :=

Spm_ampgain_nom-Rsense_nom

 $Ispm_nom = 1.055$

Amp

Cur_cmd_min Ispm min =

Spm_ampgain_max·Rsense_max

 $Ispm_min = 0.935$

Amp

Cur_cmd_max Ispm_max =

Spm_ampgain_min-Rsense_min

 $Ispm_max = 1.189$

Amp

Spindle start up torque is calculated using nominal Kt and above min, nom, and max current values.

Spm_start_torq_nom	= Kt_deg_nom·Ispm_nom	Spm_start_torq_nom = 143.418	Start up torque, gmf.cm
Spm_start_torq_min	= Kt_deg_min-Ispm_min	Spm_start_torq_min = 117.038	Start up torque, gmf.cm
Spm_start_torq_max	= Kt_deg_max·Ispm_max	Spm_start_torq_max = 174.69	Start up torque, gmf.cm

Now if Rsense were changed to 0.25 ohm instead of 0.33 ohm the start up torque would increase as shown below

Rsense_nom := 0.25	Ohm, sense resisto	r
Rsense_max = Rsense_nom-1.05	Rsense_max = 0.263	Ohm
Rsense_min = Rsense_nom·0.95	Rsense_min = 0.237	Ohm

Spindle start up current using the above variables

Spindle start up torque is calculated using nominal Kt and above min, nom, and max current values.

Spm_start_torq_nom = Kt_deg_nom-Ispm_nom	Spm_start_torq_nom = 189.312	Start up torque, gmf.cm
Spm_start_torq_min = Kt_deg_min-Ispm_min	Spm_start_torq_min = 154.49	Start up torque, gmf.cm
Spm_start_torq_max := Kt_deg_max-Ispm_max	Spm_start_torq_max = 230.591	Start up torque, gmf.cm

There is also the possibility to disable the closed current loop control during start up by putting Mighty into the Induction Sense Mode. In this mode the start up current is limited only by the power supply and the spindle motor resistance, in that case the numbers will look like below.

Ispm_st_rpd_nom := \frac{Vcc12_nom - Vdrop_drv_nom}{Rspindle_nom}	Ispm_st_rpd_nom = 1.833	
Ispm_st_rpd_min := \frac{Vcc12_min - Vdrop_drv_max}{Rspindle_max}	Ispm_st_rpd_min = 1.379	
Ispm_st_rpd_max = \frac{Vcc12_max - Vdrop_drv_min}{Rspindle_min}	Ispm_st_rpd_max = 2.296	
Spm_st_torq_rpd_nom := Kt_deg_nom-Ispm_st_rpd_nom Spm_st_torq_rpd_min := Kt_deg_min-Ispm_st_rpd_min Spm_st_torq_rpd_max := Kt_deg_max-Ispm_st_rpd_max	Spm_st_torq_rpd_nom = 249.333 Spm_st_torq_rpd_min = 172.514 Spm_st_torq_rpd_max = 337.28	Start up torque, gmf.cm Start up torque, gmf.cm Start up torque, gmf.cm

2/3 Disk Performance - P1 Reference

* TMR Data

* Mechanical Resonance Data

Acoustics Data

Shock and Vibration Data

DriveID 382577721228
HDA Variation Code roomtem $3 \sigma = 3.03 \%$ Population Estimate, Based
on Cumulative Peak Method. 3σ (est) = 3.52 % (1.49K events)

10-22-1995

 $3 \sigma = 3.88 \%$ 3σ Population Estimate = 4.43 %

6,500 TPI

2 DISKTMR

DriveID 383566682216

HDA Variation Code roomtem

3 $\sigma = 4.42\%$

Population Estimate, Based on Cumulative Peak Method.
3 σ (est) = 4.47 % (1.98K events) 10 19-1995

 $3 \sigma = 3.63 \%$

 3σ Population f. stimate = 3.72 %

6,5007PI

🖼 сови

P1 Acoustic Results at MKE

All units in bels								
Motor/#disk	Ohzu 3D N	MB Ohzu	3D NSK	PMDM'3D	Nidec 3D	Ohzu 2D	PMDM 2D	Nidec 2D
	3.5	504	3.4284	3.5494	3.8985	3.3779	3.6135	3.7940
	3.6	295	3.7307	3.5952	3.9078	3.4934	3.4618	3.7737
	3.5	973	3.4489	3.6286	3.8916	3.6562	3.5290	3.7680
	3.5	698	3.7251	3.4809	3.8458	3.5978	3.6411	3.7235
	3.4	998	3.6328	3.5573	4.1274	3.2546	3.5697	3.5871
	3.4	947	3.6127	3.5606	4.0210	3.5283	3.5289	3.7613
	3.6	210	3.8672	3.5419	3.8050	3.6589	3.4946	3.6691
	3.6	270	3.5507	3.5081	4.0240	3.4416	3.5161	3.6630
	3.6	172	3.6508	3.6198	3.8928	3.3034	3.4960	3.4772
	3.8	696	3.3757	3.8966	4.0091	3.4180	3.9073	3.7198
Average	3.6	076	3.6023	3.5938	3.9423	3.4730	3.5758	3.6937
Stdev	0.1	049	0.1538	0.1158	0.0988	0.1401	0.1289	0.0988
avg -high	3.5	785		3.5602			3.5390	
Stdev -high	0.0	533		0.0486			0.0585	
Diff, 3D-2D	Nidec	PMDM	1	Ohzu				
·	0.2	486	0.0180	0.1320				
II Average	3.6	412			•			
verage w/o lidec	3.5	705						

2/3 DISK HDA ACOUSTICS AT TM P1

Sirocco P2 Acoustic Noise Data: Idle Sound Power, PCB Up

S/N	Nidec	PMDM	Ohzu 1,2,3	Otizu 4,5
	NSK	NMB	NSK	NMB
80709	38.970			
51723	37.928			
54611		35.676		
53602		38.702		
31625		35.249		
54801		35.505		
33204			38.625	
35110			38.203	
34213			36.281	
35108			34.950	
30718	39.581			
80701	38.725			
30714	37.250			
30721	38.717			
30717	37.700			
81728	38.989			
52709	38.568			
50720	38.508			
53603		38.940		
53601		37.370		
35107			35.860	
35114			36.013	
35102			35.979	
34206			34.467	
53611		34.575		
12609		36.086		
32610		35.872		
54602		34.378		
34214			34.741	
33208			35.597	

Count	10	10	10	0
Avg	38.494	35.835	35.572	#DIV/0!
1 Sigma	0.588	0.978	0.719	#D!V/0!
Avg+3sig	40.558	38.765	37.829	#DIV/DI
Min	37.250	34.378	34.457	0
Max	39.581	37.370	36.625	#DIV/0!

SIROCCO	/P1/2D HD	A/20020 w.	OHZU MO	TOR				 		
SUMMAR'										,
OFFTRAC	K DURING	SHOCK A	ND VIBRA	TION				 		
7/27/95								 		
Remarks:								 		
	20G, 3 ms	, HS						 		
	n = 1.0G, P		Hz							•
3. N/A = H	lead signal	bad. No da	ta measure	d available) .			 		
	cation = cy							 		
5. One hea	ad+suspens	sion+wire =	0.1128g, J	w.r.t. pivo	t center = 5	g-mm.				
				.,,						
I. BASELI	NE		•	VIBRA	ATION				SHOCK	
		FREQ	AMPL	FREQ	AMPL	FREQ	AMPL		RATE	AMPL
S/N	Head	(Hz)	(% OT)	(Hz)	(% OT)	(Hz)	(% OT)	DIR	(% OT/WDG)	(% OT)
20020	3	282	9.88	413	8.69	541	7.76	IN	1.06	21.75
	2	N/A	,					N/A		
	1	282	9.84	412	8.62	541	10.92	IN	1.00	22.11
	0	282	9.53	426	9.23	543	9.55	IN	1.06	21.88
II. Add im	balancing	= 2.93 g-m	m.							
		FREQ	AMPL.	FREQ	AMPL	FREQ	AMPL		RATE	AMPL
S/N	Head	(Hz)	(% OT)	(Hz)	(% OT)	(Hz)	(% OT)	 DIR	(% OT/WDG)	(% OT)
20020	3	281	8.60	401	6.88	540	7.00	IN	. 0.79	17.67
	2	N/A						N/A		
	1	281	8.14	406	7.00	540	10.16	IN	0.83	19.04
	0	281	8.27	405	7.00	542	8.23	IN	0.80	17.34

2 DISK OPERATING

SHOCK AND VIBRATION

SIROCCO P3 Drives OP-1	VIB TEST S	TATUS:				
Jan.5,1996 / Jan.10 1996 u	update					
1. Qntm OP-VIB SPEC: 5-	-300 Hz, 1.0	G, P-P / 300-5	00 Hz, 0.5G,	P-P.		
2. Run testing per latest ve	rsion of :					
2.1 ATATSR - Ver.	.2.07					
2.2 ATADIAG - Ve	r.3.27x1					
2.3 Update SA31.0	7X3 (see Jir	n Godwin's no	te on Dec.28	,1995.)		
3. Baseline run (no vibratio	n).		,	:		
3.1:Using random	logic scan, d	lissuper, only e	echo the unre	coverable	егтог.	
4. OP-VIB run on shaker pe				1		
4.1 Using Qntm Of	VIB script f	ile to perform	random read	write & cor	npare the dat	a
in buffer, if any					:	
5. Received 6 2-disks drive					failed on bas	eline run.
6. On Jan.8, received 3 3-c			!	!		
7. Apple spec. 7.a. 0.5G,0-	P,5-300Hz,	No soft error a	illowed.	·	.	
7.b. 1.0G, 0	-P, 5-300Hz	, No non-reco	verable error	allowed.		
8. Drive #94038 run Apple	7.a, super m	node on, recov	ered error(53	sh)- bump d	etected show	ving.
Request F/W group to o	ffer an appro	opriate script to	o rerun Apple	7.a. (only	echo the soft	error).
		:				
Testing results:		:	 	!		
	Baseline	OP-VI	B Run	Run per	Apple 7.b	
Drive S/N Motor Vendor	Run	Y direction	X direction			
2 Disks Drives		:		:		
66227 Ozu motor	OK	pass	pass			
66225 Ozu motor	OK	pass	pass			
26035:Ozu motor	OK	pass	pass			
26042 Ozu motor	OK	pass	pass	Pa 10	73.20	
26014 Ozu motor	OK	pass	pass			
26001 Ozu motor	OK	pass	pass	722	- FO-50	
	· · · · · · · · · · · · · · · · · · ·					
3 Disks Drives		•				
12005 Ozu motor	Error - ID n	ot found, give	to Roy for F/	Ā.		
£	OK	Pass	Pass			
71047 Ozu motor	OK	Pass	Pass	Pass	Pass	
94038 PMDM motor	OK.	Pass	Pass	Pass	Pass	

2/3 Disk Data Update

- * From P2 Build
- Completed on 2/21/96

BODE PLOT Z/IS/96 PZ HDA - Z DISI

DriveID 382688874128

14th Variation Code papers

 $3\sigma = 3.79\%$

Espaintos Estimite, Piered

sact amulative Legic Method

→ o restr = 4,57 % (1.588) events)

ing the point

TMR DATA

PZ HDA - Z DISK

 $3 \sigma = 2.54 \%$

Coloporation Estimates 271 %

BODE PLOT 2/14/96 PZ HDA-3DISK

3 \(\sigma = 5.30 \)% Expediation for the state of the

DriveID 383688849020

 $3 \sigma = 3.04 \%$

collopatation Estimate - CIA %

1Disk Mechanical Design Summary - New Features

- Tied Spindle Shaft for Improved Shock and Vibration
- Modified Rotor Assembly for 12.0 ms. Seek Time
- Preamp IC on E Block to Support MR Heads
- Reduced Diameter Clamp and Disk Hub for Maximum Disk Real Estate
- Multemp Spindle Grease for Lower Acoustics

2/3 Disk Mechanical Design Summary - New Features

- 2.8 mm Disk Spacing vs. 3.0 mm on Fireball and
 4.0 mm on Lightning to Support 3 Disks
- Die Cast Low Inertia Rotor for 3 Disk HDA with Preamp IC on E Block
- * 12 Pole Tied End Spindle/Motor with Laby Seal and Pin Connector
- * 8 Microin. NRRO vs. 12 Microin. NRRO on FB
- Steel Cover for Lower Acoustics
- Flex PCB Supports up to 24 Head Traces With Preamp IC on Rotor

Future Test Plans for P2 Drives

- Rotary Shock and Vibration at Quanta Labs
 - 2560 rad/sec **2 at 3 ms. half sine **operating** shock
 - 15,000 rad/sec **2 at 3 ms. half sine **non operating** shock
 - 128 rad/sec **2 from 20 300 Hz. **operating** vibration
- Translational Operating Shock and Vibration
 - With Latest Servo Code
 - Verify Sirocco Testing Success
- Additional Altitude Testing of Air Locks
 - Test to Failure -- 10,000 ft. and greater
 - All Magnet Suppliers

Mechanical Summary

- No Major Design Issues Remaining
- Working with MKE on Manufacturing Issues - Process and Cost Related
- Test Data to Date Indicates That 1 Disk and 2/3 Disk HDAs Are Meeting Tempest Specifications

TEMPEST

R/W FE TRAINING

Quantum Tempest 1080/2160/3240

Q. Lam 03/06/96

TOPICS

- 1. FLEXCABLE LAYOUT
- 2. PREAMP
- 3. READ/WRITE CHANNEL RECORDING SPECIFICATIONS
- 4. READ/WRITE CHANNEL HIGHLIGHTS
- 5. R/W CHANNEL TRAINING FACTORY ADJUSTED PARAMETERS
- 6. READ CHANNEL ADAPTATION
- 7. CHANNEL PERFORMANCES
- 8. ERROR CHECKING AND CORRECTION METHODS (ECC)
- 9. DATA TRACK FORMATS
- 10. PRML CHANNEL SPECIFICS; MAGNETO-RESISTIVE HEAD

READ/WRITE FLEX CABLE

- . Signal Paths
- . Grounding Paths

Questiant

Tempest 1080/2160/3240

Q. Lam 03/06/96

PREAMP

- . Features
- . Design History
- . Preamp Specifications

Tempest 1080/2169/9240

Q. Lam 03/06/96

Preamp features:

- . Current Bias/Current Sense Architecture
- . Single + 5V Power Supply (+/- 10%)
- . Single Ended I/P, Differential O/P
- . Chip On Arm (Close to Heads)

Preamp Specifications:

. Norminal Voltage Gain:

240 V/V

 \bigcirc Rmr = 20 Ohms

. Bandwidth:

65Mhz

(a) -1 dB, 140Mhz (a) -3dB

. Equivalent-Input-Noise: 0.68 nV/Sqrt Hertz (Max) @ Rmr = 20 Ohms

. Series Termination Resistor at Preamp-Output: ~50 Ohms

. Write Current: - Programmable from 10mA to 35mA

- Rise/False 3.7 nSec Typical $(I_w=25\text{mA}, L_{tf}=180\text{nH},$

 $R_{tf}=15 \text{ Ohms}, L_{lead}=50 \text{nH})$

. Bufferd Head Voltage Monitor

. PSRR 50dB @ 25 Mhz

Tempost 1080/2160/9240

O. Lam 03/06/96

11403A DIGITIZING OSCILLOSCOPE date: 13-NOV-95 time: 14:47:03

(exp: 3.3, dig: 3.0, dsy: 3.10) Instrument ID# B011345 11403A DIGITIZING OSCILLOSCOPE date: 13-NOV-95 time: 14:53:35

lexp: 3.3, dig: 3.0, dsy: 3.10) Instrument ID# 8011345

PGII

11403A DIGITIZING OSCILLOSCOPE date: 7-DEC-95 time: 14: 24: 27

(_

(exp: 3.3, dig: 3.0, day: 3.10) Instrument ID# 8011345

11403A DIGITIZING OSCILLOSCOPE date: 7-DEC-95 time: 13: 44: 44

C.

lexp: 3.3, dig: 3.0, dsy: 3.10)
Instrument ID# 8011345

SNR Measurement. (dB)

	Zo. 01	Zo. 08	Zo. 15
Hd. 0	15.8	15.5	17.1
Hd. 1	13.8	13.5	14.5
Hd. 2	16.9	16.4	17.7
Hd. 3	18.8	18.3	19.7
Hd. 4	19.6	19.0	20.6
Hd. 5	17.8	17.3	18.9

Note: With olu . re-Amp

NLTS Measurement. (%)

	Zo. 01	Zo. 08	Zo. 15
Hd. 0	23.8	18.1	12.7
Hd. 1	24.3	20.4	15.9
Hd. 2	24.1	18.2	12.4
Hd. 3	28.0	20.6	12.1
Hd. 4	27.4	20.7	14.3
Hd. 5	25.0	19.6	14.1

■Hd 0 ■Hd. 1 ■Hd. 2 □Hd. 3 ■Hd. 4 ■Hd. 5

SNR Measurement. (dB)

	Zo. 01	Zo. 08	Zo. 15
Hd. 0	17.2	16.4	17.7
Hd. 1	13.9	12.6	15.0
Hd. 2	17.1	16.3	18.1
Hd. 3	18.7	18.2	19.7
Hd. 4	19.9	19.3	20.0
Hd. 5	17.2	16.7	18.1

Note: With new Pre-Amp

NLTS Measurement. (%)

	Zo. 01	Zo. 08	Zo. 15	1
Hd. 0	20.8	16.5	11.3	7 -
Hd. 1	21.8	18.0	13.6	7 . <i>a</i>
Hd. 2	23.4	18.9	13.4	7
Hd. 3	22.7	16.9	12.2	7 - 1
Hd. 4	26.6	20.3	13.2	1
Hd. 5	25.1	19.3	14.6	1

爾Hd. 0 圖Hd. 1 個Hd. 2 口Hd. 3 日Hd. 4 圖Hd. 5

PGB

Note: With ES6 preamp / No Damping Resis

Drive: 3_31.

Amplitude Measurement. (mv)

	Zo. 01	Zo. 04	Zo. 08	Zo. 12	Zo. 15
Hd. 0	52.3	56.1	60.6	64.6	64.6
Hd. 1	76.7	74.0	74.0	83.8	83.7
Hd. 2	74.7	72.8	79:0	80.9	81.5
Hd. 3	59.5	60.5	60.7	62.6	68.5
Hd. 4	99.7	100.3	101.9	108.4	117.3
Hd. 5	61.6	61.6	67.6	68.1	72.4

SNR Measurement. (dB)

	Zo. 01	Zo. 08	Zo. 15		
Hd. 0	17.1	15.4	17.4		
Hd. 1	19.5	18.0	19.7		
Hd. 2	19.0	16.7	18.7		
Hd. 3	18.9	18.6	19.6		
Hd. 4	21.3	21.0	21.1		
Hd. 5	17.5	15.5	17.9		

PW50 Measurement. (ns)

	Zo. 01	Zo. 04	Zo. 08	Zo. 12	Zo. 15
Hd. 0	22.1	23.9	28.6	35.0	42.2
Hd. 1	20.7	22.2	26.7	32.2	39.9
Hd. 2	20.3	23.0	26.3	33.2	39.6
Hd. 3	20.4	22.5	26.8	32.0	39.1
Hd. 4	19.0	20.6	24.2	29.2	36.3
Hd. 5	22.3	24.1	27.9	34.0	41.5

NLTS Measurement. (%)

	Zo. 01	Zo. 08	Zo. 15
Hd. 0	16.6	12.9	8.8
Hd. 1	15.0	11.1	7.2
Hd. 2	15.4	10.8	6.6
Hd. 3	16.3	10.9	7.1
Hd. 4	13.5	9.0	5.7
Hd. 5	17.9	11.3	8.8

READ/WRITE CHANNEL RECORDING SPECS:

. HIGH FREQUENCY TAA: 350 uV

. PW50 442 nm

. RESOLUTION: 70 %

. NLTS 25% (5th harmonic method)

. MR ASYMMETRY: 15 %

. OVERWRITE: 30 dB

Cales (Care

Temper 1030/21/07/140

O Len Disking

HIGHLIGHTS OF READ/WRITE CHANNEL IC's

- . 100 Mb/Sec (Max) DATA RATE
- . MR BIAS CURRENT DAC.
- . MR SIGNAL ASYMMETRY COMPENSATION
- . FULLY ADAPTIVE 10 TAPS DIGITAL FIR
- . THERMAL ASPERITY (T.A.) DETECTION AND COMPENSATION

Questuri

Tempes: 1780/2160/3240

O. Lam 03/06/96

FUNCTIONAL BLOCK DIAGRAM

@ DATA READ CHANNEL

- . DATA READ CHANNEL USE PARTIAL-RESPONSE MAXIMUM-LIKELIHOOD (PRML) DETECTION TECHNIQUE.
- . AGC LOOP
- . TIMING LOOP
- @ SERVO CHANNEL
- . TO RECOGNIZE THE GRAYCODE, THE SERVO CHANNEL USES PEAK-DETECTION TECHNIQUE WITH THRESHOLD AND/OR POLARITY QUALIFICATION.
- . SERVO DEMODULATOR- CONSISTS OF A MASTER SLAVE PEAK DETECTOR, AN WEIGHTED AVERAGING CIRCUIT.

Quantum

Q. Lam 03/06/96

Tempest 1080/2160/3240

Read/Write Channel IC - Functional Block Diagram

PG18

eriselyation areas

Read/Write Channel - Digital Phase Lock Loop Block Diagram

Phase Detector phase-error_n = error_n * sgn(ŷ_{n+1} - ŷ_{n-1}) Frequency Register (Frequency update gain) Six phases from synthesizer Phase Recovered Mixer Clock

Figure 7. Digital PLL Block Diagram.

AT&T Proprietary
Use Pursuant to Company Instructions

Functional Description (continued)

and two poles at

$$Z_{poles} = 1 - \left[\frac{\alpha + \beta}{2}\right] \left[1 + \sqrt{1 - \frac{4\alpha}{(\alpha + \beta)^2}}\right]$$
REFERENCE CLOCK IN
$$R(Z) \longrightarrow \Sigma \longrightarrow \frac{1}{(1 \cdot Z^1)} \longrightarrow \Sigma \longrightarrow \frac{Z^1}{(1 \cdot Z^1)} \longrightarrow \Sigma$$

$$\frac{S(Z)}{R(Z)} = \frac{Z(\alpha + \beta) - \beta}{Z^2 + Z(\alpha + \beta - 2) + (1 - \beta)}$$

Figure 16. Two-Parameter Model of Synth. PLL.

$$\frac{\beta^2}{\alpha} = \frac{I_{po} \times ICPM \times K_o \times C_1 R^2}{2\pi M \left[1 + \frac{C_2}{C_1}\right]^3}$$

Constant

Tempost 1086/2160/3240

O Lan. 03/06/96

Read Channel - Viterbi Detector Block Diagram

Figure 8. Viterbi Detector Block Diagram.

AT&T Proprietary

Use Pursuant to Company Instructions

Read Channel - AC Coupling, Offset Acquisition and TA Block Diagram

Note: For clarity only single-ended shown.

Figure 9. Thermal Asperity Detection and Correction Block Diagram.

Custom Tempest 1080/2160/3240

Servo block Diagram

Figure 18. Servo Block Diagram.

Sector Sync

Servo Polarity Qualification and Mode of Operations

Figure 19. Servo Mode Operations.

PLL

R/W CHANNEL TRAINING:

MR Bias Current, MR Asymmetry Cancellation and Micro-jog

- . In "Selfscan" The MR bias current is adjusted such that the minimum MSE (mean-squared-error) is achieved.
- . Upon the selection of MR bias current, the "MR Asymmetry Cancelation" control range is adjusted to assure that the percentage asymmetry of a target head is within the compensation range.
- . Micro-jog calibrates the MR read-element offset from the center of the track.

Questant Temper (ESD2160024

Quian (OA669)

R/W CHANNEL TRAINING:

Factory Adjusted Parameters

- . In "Selfscan" Write-Precomp, Cut-Off and Boost (of the continuous filter) and Tap4 (of the FIR filter) are all adjusted.
- . The "TAGUCHI" algorithm is used which essentially adjust all the parameters at once! Speeding up the tuning process.
- . The proper "OPTIMUM" values for each head and zone are stored and used to "PRESET" the channel upon head and zone selection.

Quantum

1080/2160/3240

Zone setup Friday, March 1, 1996 Adaptives Algorithm head setup measure current defaults go through matrix experiment find the best settings that give the best mse in matrix Calculate level average for each parameter measure mse using best levels Compare MSE measured in best in matrix, best levels combination, and default settings Choose the settings with lowest MSE. 10 No Max head Yes 11 No Last Zone Yes 12

END

"ON-THE-FLY" ADAPTATION

. READ CHANNEL CONSTANTLY ADAPTS ITS RESPONSE VIA THE FIR FILTER IN ORDER TO MINIMIZE THE MSE (Mean-Squared- Error)

THE FIR ADAPTATION FEATURE COUNTERS ANY VARIATIONS TO THE CHANNEL RESPONSE CAUSED BY COMPONENT AGING, TEMPERATURE AND ANY OTHER SLOW CHANGING PHENOMENA THAT COULD DEGRADE THE CHANNEL PERFORMANCE.

Quantum

Eampest 1080/2160/9240

Q. Lam 03/06/96

THERMAL ASPERITY (TA)

. TA is a generic name given to all incidents that involve heat induced read-back amplitude distortion.

Ckenturi Tempest (1080/2160/3240

Q. Lam 03/06/96

T.A. DETECTION AND COMPENSATION

- . Detect the rising edge of the TA
- . Keep the PLL and AGC loop from changing (Hold the AGC and Timing Loop-Gain)
- . Move the coupling pole such that the TA decays faster

Quentum Tempes: 1080/2160/3240

BLUE EVALUATION TEST RESULTS T.A. PERFORMANCE @ AM Field

BLUE EVALUATION TEST RESULTS T.A. PERFORMANCE @ DATA Field

.

BLUE EVALUATION TEST RESULTS T.A. PERFORMANCE @ ZPR Field

TA Disable

TA Disable

TA Enable

CHANNEL PERFORMANCE HEAD/MEDIA NOISE EVALUATION

Test Conditions Head Shorted	Freq(MHz)	Signal(Vrms)	Signal & Pk(V)	Noise(Vrms) 2.17E-03	Total NP(V^2) 4.70E-06	SNR	Comment Guzik Electronic Noise
1) Head off disk surface (DC erase, Ir=12mA)*				3.66E-03	1.34E-05		Electronic + head noise
2)Head on Surface DC erase Ir=0*				3.59E-03	1.29E-05		Electronic + head noise
DC erase Ir=12mA				4.23E-03	1.79E-05		Elec+head+disk DC erase noise
Transition Noise	16 32		1.96E-01 1.14E-01	5.27E-03 6.40E-03	2.78E-05 4.10E-05	22.37 16.01	Elec+head+disk tran. noise
	38.5	0.027	7.72E-02	6.61E-03	4.37E-05	12.32	

Tempest 1080/1160/1240

Q. Lam 03/06/96

PG 35

PGBG

CHANNEL PERFORMANCE - BIT-ERROR-RATE

- . Mean of Log_{10} (BER) is -9.22
- . None of the heads failed the Raw-Error-Rate Objective of < 10E-6

Questian

lampes (080/2160/3240

O Lam 03/06/96

P2 Log Raw BER vs Head for 1092 heads

P2 Log BER vs. Zone for 1092 heads

CHANNEL PERFORMANCE - OTC/TMR

Quertury Tempest 1080/2160/3240

Q. Lam 03/06/96

ERROR CHECKING AND CORRECTION

- REED SOLOMON CODE
- FOUR WAYS INTERLEAVE
- "ON THE FLY" DOUBLE BURST CORRECTION
- TRIPLE BURST CORRECTION

Figure 7-2 Sector Error Code for 16/17 Code

DATA TRACK FORMAT

. "IDLESS" FORMAT

. RECORDING CODE 16/17

. 6775 TPI

. DATA RATE 86.05 Mb/sec

. 128 KFCI MAX.

. 15 DATA ZONES

. 813 Mb/sq inch

. 110-216 SECTORS PER TRACK

TEMPEST 1.08 GB

2/15/96 Q. LAM REV 1

Q. LAW	REVI
1280	MBytes
2	(Sctrs/cyl)
2	(surfaces)
1.8091	inches
0.7939	inches
1.0152	inches
4500	rpm
13333.33	uSec
75.0000	Hz
6775.0	Trks/inch
6878	Trks/head
439	Trks/zone
128	116
85.91%	
1099.65	Mbytes
2147758	sectors
	1280 2 2 1.8091 0.7939 1.0152 4500 13333 33 75 0000 6775.0 6878 439 128 85.91% 1099.65

	á ::	904	100				40	*****
1	ťΙ	Ű,) (1	SKS	3.00	wge	ાણ	s
In	hr	r:ti	n:4	66	b ft	SOF	chy	ely.

Data	Bytes	uSec	uSec
Format		Zone 0	Zone 15
Wiggle Rec	2	0.19	0.36
Clock Sync	2	0.19	0.36
Clock Jitter	1	0.09	0.18
Asic Delay	1	0.09	0.18
PLL delay	1	0.09	0.18
Total	7	0.65	1.24
PLL Size	18	1.67	3.20
Data AM	1	0.09	0 18
Read Delay	4	0.37	0.71
Data bytes	512	47 60	91.00
Data ECC	28	2.60	4.98
Delta MR	2	0.19	0 36
Total	565	52.53	100.42
Split OH	19	1.77	3.38

Srv Fq	40	MHz
Srv Olk	25	nSec
Nwdgs	90	Smpls
Wg-Wg	148.148148	uSec
SmplFq	6750	Hz∕
Tservo	19.025	uSec
Tdata	129 123	uSec
Srv OH	12.84%	
Fmt OH	10 49%	

P50	17.4 uinch	441.96 nm
code	parameters	
(user) m	16	
(channel) n	17	
d	0	

Wedge	Cłock	Time
Format	[T]	[uS]
Gap	168	4 200
AGC	72	1 800
Sync	42	1 050
SAM	37	0.925
Index	18	0 450
Trk#	117	2 925
pre-A	9	0 225
AB-bursts	96	2 400
CD-bursts	96	2 400
post-D	24	0 600
BCV	64	1 600
Wedge #	18	0 450
Total	761	19 025
Squelch		1 500

Zone	Zone Rid	Inner	Cyls	Max.	Max.	Data Rate	Chnl rate	1/4T	Tchannel	ns/byte	Bytes/	pst-wg	Sect time	pre-wg	Sect/Wg	Time left	Split	Srs/trk	Zone Cap	# of User	P50/Tch
		Cyl#		KFCI	KBPI	(Mb/s)	(MHz)	(MHz)	[nsec]	[nsec]	Wg⋅Wg	(bytes)	(ha)	(bytes)	w/o split	[µs]	Sector	/w spare	/surface	Sectors	1
OD	1.8042																				
System	1.8013	-1	20	67.65	64	54.04	57.42	14.355	17.416	148.03	872	* 5	83.639	5	1	44.004	44	134	1361920	5320	1 177
1	1.7338	456	457	111.90	105	86.05	91.43	22.857	10.938	92.97	1388	5	52.527	5	2	23.139	36	216	50306560	196510	1 947
2	1.6664	913	457	113.34	107	83.76	89.00	22.250	11.236	95.51	1351	5	53.961	5	2	20.247	30	210	48902656	191026	1 972
3	1.5989	1370	457	113.16	107	80.25	85.26	21.316	11.728	99.69	1295	5	56.326	5	2	15.475	21	201	46796800	182800	1 969
4	1.5315	1827	457	112.24	106	76.24	81,00	20.250	12.346	104.94	1230	5	59.290	5	2	9.494	11	191	44456960	173660	1 953
5	1.4640	2284	457	111.50	105	72.40	76.92	19.231	13.000	110.50	1168	5	62.433	5	2	3.153	1	181	42117120	164520	1 940
6	1.3966	2741	457	111.43	105	69.02	73.33	18.333	13.636	115.91	1114	5	65.489	5	1	62.475	82	172	40011264	156294	1 939
7	1.3291	3198	457	110.22	104	64.97	69.03	17.258	14.486	123.13	1048	5	69.569	5	1	58.323	72	162	37671424	147154	1 918
8	1.2616	3655	457	110.53	104	61.85	65.71	16.429	15.217	129.35	998	5	73.082	5	1	54.748	64	154	35799552	139842	1 923
9	1.1942	4112	457	110.88	104	58.73	62,40	15.600	16.026	136.22	947	5	76.963	5	1	50.798	56	146	33927680	132530	1 929
10	1.1267	4569	457	111.75	105	55.84	59.33	14.833	16.854	143.26	901	5	80.941	5	1	46.750	48	138	32055808	125218	1 944
11	1.0593	5026	457	11161	105	52.44	55.71	13.929	17.949	152.56	846	5	86.199	5	1	41.399	40	131	30417920	118820	1 942
12	0.9918	5483	457	115.00	108	50.59	53,75	13.438	18.605	158.14	816	5	89.349	5	1	38.193	35	125	29014016	113336	2 001
13	0 9244	5940	457	118.96	112	48.77	51.82	12.955	19.298	164.04	787	5	92.680	5	1	34.803	30	120	27844096	108766	2 070
14	0 8569	6397	457	122.64	115	46.61	49.52	12.381	20.192	171.63	752	5	96.974	5	1	30.433	25	115	26674176	104196	2 134
15	0.7939	6824	427	127.84	120	45.01	47.83	11.957	20.909	177.73	726	5	100.416	5	1	26.930	21	110	23830016	93086	2 224

1.08 GB DENSITY

PG46

Page 1

PRML CHANNEL SPECIFICS - MAGNETO-RESISTIVE HEAD

- . MR TRANSFER CHARACTERISTICS
- . MSE vs BIAS CURRENT
- . BER vs MSE
- . MSE vs SNR
- . BER vs SNR

Quintant

Lempost 1080/2160/3240

Q. Lam 03/06/96

MSE VS. MR BIAS CURRENT

MSE VS. MR BIAS CURRENT

Tempest Servo System

TOPICS

- Key Features
- Tempest/Fireball Comparison
- Modes of Operation
- **Pre-Production Results**

Key Features

- Embedded Sector Digital Servo System.
- Leveraged from Fireball Program.
- Differences due to MR Head:
 - » Microjog Control.
 - > Three-Pass Servowrite per Data Track.
 - > Four-Servo-Burst Pattern.

Microjogging

TOW STATE

Servo Wedge Format

Servo System Comparison

Mechanical

	Fireball 1080	Sirocco	<u>Tempest</u>
Ave Seek Time (msec)	10.5/12	11.0	12.0 / 10.5
TPI	4200	5850	6775
Total Cylinders	3886	5946	6875
RPM	5400	4500	4500
Sample Period (µsec)	146.2	148.1	148.1
Sample Freq (Hz)	6840	6750	6750
Wedges/Track	76	90	90
Arm Radius (inch)	2.050	2.142	2.142
Inertia (Gm-Cm ²)	36.4	43.0	30.0 / 43.0
Torque Const. (Gm-Cm/Amp)	557.8	730.0	436.0 / 760.0

Servo System Comparison (Cont.)

Firmware

	Fireball 1080	Sirocco	<u>Tempest</u>
Structure	Single ISR	Same	Same
On-Track ISR Time (µsec)	45/146	48/148	58/148
Servo Config Page 18	Yes	Yes	Yes
Servo Zone Page 21	16 zones	24 zones	27 zones
Control Delay (µsec)	30	33	42
Digital Notch Filter	Yes	Yes	Yes
Max Head Velocity (ips)	100	100	100
Idle Seek Mode	Yes	Yes	Yes
Spindle Control	Hardware	Firmware	Firmware
Microjog Control	N/A	Yes	Yes

Mighty Overview

Analog Combo Chip Designed by Quantum.

- » Spindle Motor Driver
 - 1.7 Amp peak.
 - Rotor Position Detection (RPD) at start up.
 - Programmable linear or PWM.
 - · Active braking.
- Voice Coil Motor Driver
 - 0.8 Amp peak.
 - External control loop compensation.
 - Enable, retract, disable modes.
- > Power Monitor & Retract Circuit
 - +5/+12V monitor threshold +/- 2% accuracy.
 - Retract works down to 2 V.
 - Programmable retract voltage.
 - Internal thermal sense circuitry.
 - Sleep mode.

Servo Modes

Acceleration

Velocity

Position

- Velocity Mode
 - ➤ Accel
 - ➤ Coast
 - ▶ Decel
 - ➤ Linear Velocity
 - ➤ Linear Velocity Low BW

- Position Mode
 - > Settle
 - On-Track

Velocity Mode

Position Mode

Recalibration

	INIT_DEFAULT	CSUM_TST	RAM_TST	COARSE_SLP	MAP_HEADS	FINE_SLP	NULLI	KLOOP	RRO	ADJ_KLOOP_CAL	SEQ_TST	RD_SYS_CYL	REZERO	SEEK_FF_ADAPTATION
INIT_SERVO	•	♦	♦	♦	•	♦	♦	♦	♦	♦	♦	♦	♦	•
START_DRIVE_SETUP	•			•	•	•	•	•	•	•		•	•	•
COLD_RCAL_SETUP	•			•	•	•	•	♦	•	•		•	♦	♦
DW_LOADER	•			♦	•	•	♦	♦	♦	♦			•	•
FULL_RESEEK_SETUP	•			♦		♦	•							•
FAST_RCAL_SETUP													♦	•
SHORT_RESEEK_SETUP														•

A STATE OF THE STA

TMR Budget (Proposed)

Description	Dist. Type	Distr	ibution Pa	rameters (all u	nit in tra	cks)
Spindle NRRO	Normal	Mean =	0.00%	3 Sigma =	1.76%	
Servo Dither				:		
Write	Normal	Mean =	0.00%	3 Sigma =	2.40%	
Read	Normal	Mean =	0.00%	3 Sigma =	3.19%	
Settling Transient						
Random Seek, Write	Measured	Mean =	0.00%	99.74% Level =	3.49%	
Random Seek, Read	Measured	Mean =	0.00%	99.74% Level =	5.58%	
RRO Residual				· · · · · · · · · · · · · · · · · · ·		
Write mode	Normal	Mean =	0.00%	3 Sigma =	3.57%	
Read mode	Normal	Mean =	0.00%	3 Sigma =	4.64%	
Microjog Inaccuracy						
Read mode	Normal	Mean =	0.00%	3 Sigma =	1.16%	
Servowriter Errors (W/W only)			*	:		
DC Component	Normal	Mean =	0.00%	3 Sigma =	0.63%	
AC Component	Normal	Mean =	0.00%	3 Sigma =	3.07%	
Operating Vibration (Worst Case)			i :		
	Measured	Mean =	0.00%	99.74% Level =	5.52%	
Operating Shock		:				
Write Bump Limits + Uncertainty	Uniform	Min =	-13.76%	Max=	13.76%	
Nominal TPI	6775					
Nominal Track Pitch (μ")	147.6					

Pre-production Results

Bode Plots

10² 10³ C:\TEMPEST\DBODE\PREP3DAT\ROOM\3X\O3171041.M

10⁴

-200 L

10² 10³ C:\TEMPEST\DBODE\PREP3DAT\ROOM\3X\O3171044.M

10⁴

-200 10¹

Pre-production Results

Runout Measurements

Tempest P2 2-Disk Drives 100.00% 3000 90.00% 2500 80.00% 217 drives 50C 70.00% Mean: 2.726 2000 Std. Dev.: 0.474 60.00% Frequency Frequency Cumulative % 1500 50.00% 40.00% 1000 30.00% 20.00% 500 10.00%

4.6

NRRO

.00%

NRRO

Pre-production Results

Seek Times

Average Random Seek 1 Disk Histogram

Count: 286 Mean: 12.02755 Stdev: 0.09936 Minimum: 11.65 Maximum: 12.46 Kurtosis: 2.96859 Skewness: 0.768

Frequency
Cumulative %

Average Random Seek 3 Disk Histogram

Average Random Seek 1 Disk Roa=0 Histogram

◆ Cumulative %

Average Random Seek 2 Disk Roa-0 Histogram

Average Random Seek 3 Disk Roa=0 Histogram

TEMPEST PCBA

FE TEMPEST TRAINING MARCH 19, 1996

TEMPEST PCBA

TEMPEST TRAINING AGENDA

- OVERVIEW
- BLOCK DIAGRAM
- DESIGN HIGHLIGHTS
- KEY COMPONENTS
- AKBAR FEATURES
- PCB TEST RESULTS
- PCB LAYOUT

OVERVIEW

- The Tempest PCBA design follows a common Quantum electrical architecture. The implementation of this architecture is nearly identical to Sirocco. The major difference is the Akbar interface/controller IC in place of Rajon.
- There are a couple of advantages for using Akbar.
 - The read channel bandwidth has been expanded from 85 Mb/s to 120 Mb/s. This allows us to take advantage of higher performance read channels and achieve higher bit densities (BPI) on each data track.
 - Akbar allows us to use ID-less formatting. This gives us a slight capacity increase (higher format efficiency) and the removal of ID fields makes it easier for us to accommodate MR head read and write geometries.
- We are entering the P3 phase of drive testing at MKE with our P3 AT PCBA. This board is based on the Akbar-A3 interface/controller IC, the Blue-3 and -3HD PRML read channel ICs and the Mighty-8D spindle motor/VCM controller IC.

TEMPEST AT BLOCK DIAGRAM

COMPONENTS

- The PCBA design is leveraged heavily from Sirocco and Fireball. There are five major ICs.
 - The K7 micro-controller is common to Sirocco and Fireball.
 - The Blue PRML read channel is common to Sirocco and derived from Shiva, which is used by Fireball.
 - The Mighty Spindle Motor/VCM IC is a die-shrunk version of the part used by Sirocco.
 - The DRAM is the same memory configuration (64Kx16) as Sirocco and Fireball. However, those products use 80ns parts while Akbar is designed to use 70ns DRAMs.
- The only significant Tempest architecture change from Sirocco is the use of the Akbar interface ASIC in place of Raion. Both Akbar and Raion are derived from Leo, which is used by Fireball.
 - Akbar implements ID-less formatting by replacing the SEQ block from Leo with the FMTR block. This results in greater track format efficiency, yielding a capacity increase of about 4%. It also provides for an easier accommodation of the read and write element offsets with MR head designs.
 - Akbar supports a higher read channel data rate.
 - An APLL has been added to control the Buffer clock.
 - The I/O cells for the IDE interface has been improved.
 - All other functional blocks are derived from Leo.

PCB NOISE REDUCTION

- An enlarged isolated power plane has been added around the Akbar. This helps to prevent interface noise from coupling into other sensitive components through the power plane.
- De-coupling capacitors have been chosen for the Akbar power plane to filter specific frequencies which have been prominent in the past.
- Dampening resistors or de-coupling capacitors have been added to some of the digital control lines from the Akbar and K7. This prevents noise from coupling into the read channel and pre-amplifier through the digital control signals.

SCSI

- The SCSI PCBA will be leveraged heavily from the AT PCBA. The SCSI PCB layout has been derived from the AT PCB to minimize differences from the AT layout. This ensures common electrical functionality. The only significant differences are due to pinout changes with the Akbar-SCSI IC and the SCSI interface termination requirements.
- The interface design is targeted to support the SCSI-3 Fast-20 mode of operation (Ultra-SCSI). This will require the use of the Akbar-S3 interface IC.

MISCELLANEOUS

- The footprint of the PCBA is narrower than that for Fireball and Sirocco to accommodate our 1-disk HDA.
- Both 1-disk and 2/3-disk HDA designs use hard pin spindle motor contacts (TrailBlazer-style). This is common with Sirocco.
- Tempest AVL is common to Sirocco for more than 90% of the parts.

KEY COMPONENTS

CURRENT STATUS

Akbar-AT

Based on Leo-AT (Fireball) with ID-less format and higher read channel bandwidth added.

- P3 Build: 3/96 using Akbar-A3
- Akbar-A3 was previously used in the P2 build

Blue

Based on Shiva (Fireball) with thermal asperity (TA) detection and MR bias current control added.

- P3 Build: 3/96 using Blue-3 and -3HD
- Blue-3HD is a smaller die-version of Blue-3. The advantage is higher production volumes and reduced cost.
- Both Blue versions were previously used in the P2 build

KEY COMPONENTS

• Mighty

Tempest will use v8, which is a die-shrunk version of the v7 part used by Sirocco. Panasonic is expected to be a second source.

- P3 Build: 3/96 using Mighty-8D
- Mighty-8D was previously used in the P2 Build

Akbar-SCSI

Based on Leo-SCSI (Fireball) with Akbar-AT modifications and improvements.

- P3 SCSI Build: 3/96 using Akbar-S3
- Akbar-S3 will include a fix for a write problem observed only in Ultra-SCSI mode of operation and an improper data latch problem during the message out phase

KEY COMPONENTS

TARGET AVL (APPROVED VENDOR LIST)

<u>IC Description</u> <u>Vendor</u>

Interface ASIC, Akbar-A3

Interface ASIC, Akbar-S3

Microprocessor, K7 NEC

Read Channel, Blue-3 and -3HD Lucent Tech (AT&T)

SPM/VCM Controller, Mighty-8 Phillips, Panasonic

DRAM, 70nS Hitachi, Mitsubishi, NEC, OKI, Sanyo, TI, Toshiba

Preamp

Additional component vendors are common with Sirocco.

AKBAR-AT FEATURES

<<< <u>Akbar = Leo + modifications</u> >>>

Disk Formatter (FMTR)

- Replaces Leo's Sequencer (SEQ) block with the Formatter (FMTR) block to implement the ID-less format.
- ID-less format only (no sector headers).
- Supports 120 Mb/s transfer rate.
- Supports multiple read/write ASIC interfaces.
- Programmable parameters: sector size (up to 4KB), address mark time out, PLL length and extended write gate.
- Supports 3-segment split of sector data.

Servo Controller (TNA)

- Uses Leo's Servo Control (TNA) block.
- Supports target track ID comparison.

Buffer Controller (BFR)

- Uses Leo's Buffer Control (BFR) block with modifications.
- Supports DRAM with standard and extended data out modes of operation.
- Programmable DRAM timing and buffer allocation.

AKBAR-AT FEATURES (CONTINUED)

Host Interface (AT/Beavis)

• Uses Leo's AT Interface block with 16.6 MB/s support.

ECC Block (Error Correction Control)

• ECC capability has been expanded from 3-way to 4-way interleave. Cross check bytes have also been expanded from 2 bytes to 4 bytes.

All Other Functional Blocks are Equivalent to Leo's

- Analog to Digital converter (ADC).
- Serial interface (SER).
- Microprocessor interface (uPI).
- Spindle Motor/VCM interface (MTR).

PCB TEST RESULTS

IDE INTERFACE TESTING

- Passed PIO mode 4 testing with at least 18% timing margin on a 133 Mhz system. Drive level ATA termination helped to minimize distortion and ringing on the IDE interface.
- Passed DMA mode 2 testing with at least 22% timing margin on a 133 Mhz system.

PCB TEST RESULTS (CONTINUED)

EMI TESTING

- System level radiated and conducted noise are well within FCC class B specifications.
- The drive can withstand a radiated electrical field of 8 V/m at all frequencies from 10 Khz to 1 Ghz without customer mode errors. This is twice the specification.
- The drive can withstand a radiated magnetic field of 12 Gauss at all frequencies from 30 hz to 1 Ghz without customer mode errors. This is also twice the specification.

Top Trace:

DIOR-

Bottom Trace:

Value: t1

Top Trace:

DIOR-

Bottom Trace:

CS1-

PIO Timing Measurement

Test Platform:	PENTIUM 133MHz
Chip set / Bridge chip:	TRITON
Quantum product (s/n):	TEMPEST P1 381577791102
ASIC:	AKBAR A3
Transfer Mode	PIO mode 4

	Timing Parameters	measured	min	max	margin	margin		
	Discription	value	(ns)	(ns)	(ns)	(ns)	(%)	
1	Cycle time	t0	120.2	120				
2	Address valid to DIOR-/DIOW- setup	t1	57.2	25		32.2	56	
3	DIOR-/DIOW- Pulse width	t2	89.6	70		19.6	22	
4	DIOR-/DIOW- recovery time	t2i	30.4	25		5.4	18	
5	DIOW- data setup	t3	117.2	20		97.2	83	
6	DIOW- data hold	t4	35.6	10		25.6	72	
7	DIOR- data setup	t5	73	20		53	73	
8	DIOR- data hold	t6	45.6	5		40.6	89	
9	DIOR- data tristate.	t6z	18.5		30	11.5	38	
10	Addr valid to IOCS16- assertion	t7			n/a			
11	Addr valid to IOCS16- released	t8			n/a			
12	DIOR-/DIOW- to address valid hold	t9	848	10		838	99	
13	Read data valid to IODRY active	tRd		0		0		
14	IORDY setup time	tA						
15	IORDY pulse width	tB			·1250	1250		

1/delta x

8.53242 MHz

Top Trace: DIOW-Bottom Trace: DD4

Value: t4

Top Trace: DIOW-Bottom Trace: DD4

Top Trace: DIOR-Bottom Trace: CS1-

Top Trace: DIOR-Bottom Trace: CS1-

Top Trace: DIOR-Bottom Trace: DD4

Top Trace: DIOR-Bottom Trace: CS1-

Bottom Trace:

DD4

Top Trace:

DIOR-

Bottom Trace:

DD4

PERFORMED FOR: QUANTUM

TEST SPECIMEN: TEMPEST HDD

MODEL NO: TEMPEST 1080A SERIAL NO: 381577794216

115 VAC RETURN LINE

150	KHz	to 500 KHz			•
	The	Largest Signal is:	0.150	MHz	34.9 dBuV
		Spec at this frequency is	:		66.0 dBuV
	The	next largest signal is:	0.150	MHz	34.9 dBuV
		Spec at This Frequency is	•		66.0 dBuV
					PASSED
500	kHz	to 5.0 MHz			
	The	Largest Signal is:	0.671	MHz	40.5 dBuV
		Spec at This Frequency is			56.0 dBuV
	The	next largest signal is:	0.671	MHz	40.5 dBuV
		Spec at This Frequency is	:		56.0 dBuV
					PASSED
5.0	MHz	to 30 MHz			
	The	Largest Signal is:	9.070	MHz	44.2 dBuV
		Spec at This Frequency is			60.0 dBuV
	The	next largest signal is:		MHz	44.2 dBuV
		Spec at This Frequency is:	:		60.0 dBuV
					PASSED

COMMENTS:

VERIFIED BY Ja Bulling

DMA Timing Measurement

Test Platform:	PENTIUM 133 MHZ
Chip set / Bridge chip:	TRITON
Quantum product (s/n):	TEMPEST P1 SN#381577791102
ASIC:	ARBAK A3
Transfer Mode	DMA mode between 0 and 1

	Timing Parameters					Mode 2	margin
	Description	value	measured	min	max	margin	(%)
1	Cycle time	t0	120.4	120			
2	DIOR-/DIOW- active time	tD	89.6	70		19.6	22
3	DIOR- data access	tE	17.6				
4	DIOR- data hold	tF	49.2	5		44.2	90
5	DIOR- data setup	tGr	72	20	n/a		72
6	DIOW- date setup	tGw	85.2	20		65.2	7 7
7	DIOW- date hold	tH	33.6	10		23.6	70
8	DMACK- to DIOR-/DIOW- setup	tl	29.8	0		29.8	
9	DIOR-/DIOW- to DMACK- hold	เม	30	5		25	83
10	DIOR- negated pulse width	tKr	30.6	25		5.6	18
11	DIOW- negated pulse width	tKw	30.5	25		5.5	18
12	DIOR- to DMARQ delay	tLr	19		35	16	46
13	DIOW- to DMARQ delay	tLw	18.2	<u> </u>	25	6.8	27
14	DMACK- to tristate	tZ	13		25	12	48

FILE:

PERFORMED FOR: QUANTUM

TEST SPECIMEN: TEMPEST DRIVE

MODEL NUMBER: TEMPEST 1080A SERIAL NUMBER: 381577794216

LOCATION: HURIZ PCL

FINAL CISPR 22-B RADIATED RESULTS:

Freq	Analyzer Reading	CF	Correct Reading	Spec Limit	margin	Ht	Angle
MHz	dBuV	dB	dBuV/m	dBuV/m	dВ	cm	Deg
79.89	31.0	-16.5	14.52	30.00	15.48	150	360
120.03	26.7	-11.6	15.09	30.00	14.91	150	356
159.95	23.7	-12.6	11.14	30.00	18.86	150	360

NONE OUT OF SPECIFICATION

COMMENTS: Test Dist = 10.0 m. QP Detector ON.

SAMPLE CALCULATION:

At 159.95 MHz

Analyzer Reading = 23.70 dBuV Correction Factor, CF, = AF 11.24 dB + Cable 3.20 dB

-Preamp Gain 27.00 dB =-12.56 dB

CORRECTED READING = 11.14 dBuV/m

VERIFIED BY

DAIL: 12/20/95

FILE:

PERFORMED FOR: QUANTUM

TEST SPECIMEN: TEMPEST DRIVE

MODEL NUMBER: TEMPEST 1080A SERIAL NUMBER: 381577794216

LOCATION: VERT PCL

FINAL CISPR 22-B RADIATED RESULTS:

Freq	Analyzen Reading	CF	Correct Reading	Spec Limit	margin	Ht	Angle
MHz	dBuV	dВ	dBuV/m	dBuV/m	dB	cm	Deg
80.00	38.8	-16.4	22.35	30.00	7.65	150	289
120.05	32.8	-11.6	21.19	30.00	8.81	150	356
160.06	24.9	-13.4	11.51	30.00	18.49	150	360

NONE OUT OF SPECIFICATION

COMMENTS: Test Dist = 10.0 m. QP Detector ON.

SAMPLE CALCULATION:

At 160.06 MHz

Analyzer Reading = 24.90 dBuV

Correction Factor, CF, = AF 10.41 dB + Cable 3.20 dB

-Preamp Gain 27.00 dB =-13.39 dB

CORRECTED READING = 11.51 dBuV/m

VERIFIED	BY	Contraction

DATE: 01 FEBRUARY 1996

FILE:

PERFORMED FOR: QUANTUM

TEST SPECIMEN: HARD DISK DRIVE

MODEL NO: TEMPEST 1080A SERIAL NO: 381577751304

ELECTRIC FIELD

RADIATED SUSCEPTIBILITY RESULTS:

FREQUEN	1CY	RANGE	RAD	IATE	LEV	EL	LIMI	T	
10KHz	to	20KHz	>	8.0	V/m		8.0	V/m	PASSED
20KHz	to	40KHz	>	8.0	V/m		8.0	V/m	PASSED
40KHz	to	80KHz	>	8.0	V/m		8.0	V/m	PASSED
80KHz	to	150KHz	>	8.0	V/m		8.0	V/m	PASSED
150KHz	to	300KHz	>	8.0	V/m		8.0		PASSED
300KHz	to	600KHz	>	8.0	V/m		8.0	V/m	PASSED
600KHz	to	1.2MHz	.>	8.0	V/m		8.0	V/m	PASSED
1.2MHz	to	2.5MHz	>	8.0	V/m		8.0	V/m	PASSED
2.5MHz	to	5.0MHz	>	8.0	V/m		8.0	V/m	PASSED
5.0MHz	to	10.0MHz	>	8.0	V/m		8.0	V/m	PASSED
10.0MHz	to	20.0MHz	>				8.0		
20.0MHz	to	40.0MHz	>	8.0	V/m		8.0	V/m	PASSED
40.0MHz	to	60.0MHz	>	8.0	V/m		8.0	V/m	PASSED
60.0MHz	to	80.0MHz	>	8.0	V/m		8.0	V/m	PASSED
80.0MHz	to	100.0MHz	>	8.0	V/m		8.0	V/m	PASSED
100.0MHz	to	200.0MHz	>	8.0	V/m		8.0	V/m	PASSED
200.0MHz	to	400.0MHz		8.0	V/m		8.0		PASSED
400.0MHz	to	600.0MHz	>	8.0	V/m	-	8.0	V/m	PASSED
600.0MHz	to	800.0MHz	>	8.0	V/m		8.0	V/m	PASSED
800.0MHz	to	1.0GHz							

VERIFIED BY JUN Gallaus

DATE: 5 FEBRUARY 1996 FILE:

PERFORMED FOR: QUANTUM CORPORATION TEST SPECIMEN: HARD DISK DRIVE

MODEL NO: TEMPEST 1080A SERIAL NO: 381577751304

MAGNETIC SUSCEPTIILITY TEST:

FREQUENCY RANGE	MAGNETIC FIELD	LIMIT
30 - 100 Hertz	>12.0 Gauss	12.0 Gauss PASSED
100- 500 Hertz	>12.0 Gauss	12.0 Gauss PASSED
500-:000 Hertz	>12.0 Gauss	12.0 Gauss PASSED
1000-5000 Hertz	>12.0 Gauss	12.0 Gauss PASSED
5000-10000 Hertz	>12.0 Gauss	12.0 Gauss PASSED
10000-50000 Hertz	>12.0 Gauss	12.0 Gauss PASSED
50000-100000 Hertz	>12.0 Gauss	12.0 Gauss PASSED
100000-500000 Hertz	>12.0 Gauss	12.0 Gauss PASSED
500000-1000000 Hertz	>12.0 Gauss	12.0 Gauss PASSED
100000-3000000 Hertz	>12.0 Gauss	12.0 Gauss PASSED

COMMENTS:

VERIFIED BY SAS-

TEMPEST P3 AT

FINAL

80-111402-01

MIGHTY REV 8D AKBAR AT 3 BLUE 3

NEAR R/W CONNECTOR

AT-P3

TEMPEST P3 AT

Orcad A 80-111402-0

TEMPEST AT P3

COMP	
Lost Edit 3/3/96 JOHN F. BINNS	

BACK	
Last Edit 3/3/96 JOHN F. BINNS	

TEMPEST AT P3 AKBAR-AT3 MIGHTY-80 BLUE-3 10-111402-01 REV A

	VOLT PLANE
Last Edit 3/3/96 JOHN F. BINNS	

TEMPEST AT P3 AKBAR-AT3 MIGHTY-80 BLUE-3 10-111402-01 REV A

	GND PLANE
Last Edit 3/3/96 JOHN F. BINNS	

TEMPEST AT P3 AKBAR-AT3 MIGHTY-80 BLUE-3 10-111402-01 REV A

1. MATERIAL: 0.8mm THK GLASS EPOXY TYPE: FR4 loz CU CLAD 4 SIDES.

Must be made of a UL Recognized material and traceable per Quantum Corporation specification number 70-104654-01, and manufactured by a UL Recognized printed circuit board supplier. Printed circuit boards must be marked in the copper layer with UL recognized manufactures logo and type code, as designated in the UL Recognized directory.

2. BOARD:

SELECTIVE PLATED BOARD, SOLDERMASK OVER BARE COPPER. SOLDER PLATE 60/40 AFTER SOLDERMASKING. HOT AIR LEVEL.

TENT HOLES BACKSIDE.

SOLDERMASK TYPE: HET PHOTO-IMAGE

PLATE-THROUGH ALL HOLES WITH COPPER. MINIMUM PLATING THK: loz except where plating is not required. \cdot

THIS BOARD DOES NOT HAVE A SILKSCREEN.

3. DRILL:

ALL HOLES TO BE DRILLED +/- .003 INCH HITH RESPECT TO CENTER OF DRILLED PAD, OR AS INDICATED TOLERANCE IS DIRECTED IN THE DRILL SCHEDULE.

ALL HOLES ARE FINISHED SIZE AFTER PLATING UNLESS INDICATED OTHERHISE INDICATED IN THE DRILL SCHEDULE.

HOLE TOLERENCE	TOOL	HOLE SIZE	HOLE COUNT	NOTE.	PLATE-THRU	TYPE
+.003/010	T1	23 ML	486	INITIAL START DRILL DIA	YES	VIA AND P/G PADS
+/003	T2	28 MIL	2	FINISHED SIZE	NO	COMP MTG HOLE -
+/003	T3	39 ML	4	FINISHED SIZE	NO	PIN CLEARANCE
+/003	T4	122 ML	11	FINISHED SIZE	NO	
+/003	T5	126 MIL	5	FINISHED SIZE	NO	
+/003	T6	127 MIL	2	FINISHED SIZE	NO	
<u> </u>						
	TOTA		500	1		L

Note: Board dimensional information contained on sheet 2 of this drawing.

TEMPEST FIRMWARE

- Overview
- Comparison with Fireball
- Diskware & Overlays
- ASIC Features
- ID-less format
- Cache

- Defect Management
- O ECC
- Thermal Asperity Recovery
- SMART
- Current Status

<u>OVERVIEW</u>

- K7 Micro Controller
 - → 32-bit internal
 - > 33 MHz, pipeline processing

- > 32K of firmware in ROM
- > 32K RAMware in external RAM

- Akbar ASIC
 - ➤ Formatter
 - > Reed-Solomon ECC
 - ➤ Host interface (AT / SCSI)

- > Buffer management
- Analog to Digital Converter
- >> Servo control

- Firmware leveraged
 - > AT leveraged from Fireball; with periodical updates
 - SCSI interface code leveraged from Grand Prix
- Cache
 - > Dynamically segmented cache
 - > Concurrent read and write
 - > Cache size: 76K bytes

COMPARISON WITH FIREBALL

	Fireball	Tempest
Processor	K7	K7
Controller	Leo	Akbar
Sector format	ID-after-wedge	ID-less
ECC	3-way interleaving	4-way interleaving
Cache size	84K bytes	76K bytes
Defects allowance	511	1,227
SMART	Phase 3.5	Phase 4
SCSI interface	10 MB/s	20 MB/s
SCAM	Level 1	Level 2
SCSI command queuing	none	Tagged

DISKWARE & OVERLAYS

Overlays:

0	Defect management, logical-to-physical
1	Super commands
2	Diagnostic software & Selfscan supports
3	Servo diag. routines, SMART
4	SCSI error logging commands
5	Additional SCSI commands
6	future expansion

ASIC FEATURES

Formatter

- > ID-less controller
- ➤ 4-way interleaving ECC
- > Wedge number comparison for ID-less

Read/write

- > Channel rate up to 120 Mb/s
- > Thermal asperity recovery support

IDE

- ➤ LBA mode
- > Transfer rate up to 16.6 MB/s
- >> PIO mode 4
- > DMA Multi-word mode 2

SCSI

- > AutoSCSI significant protocol automation
- > Ultra SCSI 20 MB/s synchronous transfer

THE ID-LESS EVOLUTION

Traditional ID Before Sector (Pioneer)

Wedge	ID	SECTOR 0	ID	SEC 1	Wedge	SECTOR 1	ID	SECTOR 2 Wedge
			250	part 1		part 2	4.	part 1

ID After Wedge (Thunderbolt) (Sirocco) Pseudo IDLESS.

Wedge	ΙĎ	SECTOR 0	SECTOR 1	Wedge	ID	SEC 1	SECTOR 2	Wedge
			part 1	a (N. 1). Suga Afrika sa Suwa		part 2	part 1	

ID-less TEMPEST

		0505054		0=0.4	0-0-0	
Wedge	SECTOR 0	SECTOR 1	Wedge	SEC 1	SECTOR 2	Wedge
.		ACRES CARROLLES AND ACCOUNTS OF A SECURIOR SECUR				
		part 1	V-24-05/6 (7)	part 2		

ID-LESS FORMAT

Benefits

Capacity

Gaining about 4% of track real-estate

Throughput

No IDs to read, no need to correct ID error

MR Heads

No need to retrieve IDs when writing sectors; Less concerns for the MR/write elements offset

Challenge

Firmware overheads for defect management and track skewing

LOOKING FOR AN ID-LESS SECTOR

Sector Descriptor

Wedge #	0
Start time	1700
Break count	4

CACHE

- Leveraged from Fireball
- Dynamically segmented cache
 - > Segment size is determined by request size and prefetch amount
- Concurrent reading and writing
 - > Prefetch data while sending cache hit data to host
 - > Finish writing data to disk while sending cache hit data to host
 - > Finish writing while caching incoming write data from host
- Enhancements in Tempest
 - Overhead reduced Maximum of 10 cache segments
 - > Extended prefetch in "sequential mode" Prefetch until segment is full
 - > "Auto-read" threshold increased to 40 sectors More prefetch hits

DEFECT MANAGEMENT

- Based on traditional defect sparing scheme with revised ID-less interface
- Four spares per system track
- Two in-line spares per data cylinder; unlimited off-line spares
- Accommodates 1,227 maximum defects per drive
- Defect table is hashed to expedite defect lookup
- "Transparent auto-reallocation" to eliminate data loss

Defect entry in working-list:

Status	
Replacement cyl o	ffset
Defect cyl low	
Defect head / cyl	high
Defect sector	

ECC

- ECC hardware upgraded to handle higher soft error rate
 - > Extended four-way interleaving -- 6 x 4 redundancy bytes
 - > Improved robustness -- 4 cross-check bytes
- Single-burst "on-the-fly" correction up to 32 bits (0.7 mS max.)
- Double-burst "on-the-fly" correction up to 64 bits (1.1 mS max.)
- Triple-burst correction of up to 96 bits (2.2 mS max.)

THERMAL ASPERITY RECOVERY

Hardware

Shiva Blue

Real-time baseline compensation, AGC and timing coasting Generates detection signal to the controller Force Address Mark detection for sync field error

Akbar

Registers the sector number of the asperity
Registers the position and length of the asperity

Firmware

- Invoke only if error is analyzed to be caused by T.A.

The retry algorithm is:

- 1. Enable Blue's detection and compensation feature
- 2. Determine off-track read position (best-of-3)
- 3. If address mark problem, using the best position, apply F.A.M.

S.M.A.R.T.

(Self-Monitor Analysis and Reporting Technology)

- Formally known as DPA (Drive Parameter Analysis)
- Leveraged from Fireball SMART 3.5 code, monitoring:
 - Power on hours

- Number of grown defects
- Number of start/stops
- Seek error rate
- Number of power cycles
- Number of recal retries

- Spin-up time
- Additional Phase 4 attribute:
 - Raw error rate measurement
- Additional Phase 4 features:
 - Enable/disable automatic off-line command
 - Off-line immediate command

CURRENT STATUS

Operational:

- > Reading and writing
- Error correction and recovery
- > Read and write caching
- > Fine tuned cache performance
- > Defect management, auto-reallocation
- > Tagged command queuing
- ➤ Selfscan

- Outstanding Issues:
 - ➤ Fixing bugs
 - >> Streamline thermal asperity recovery
 - >> SMART data collection and threshold setting
 - Customer-specific compatibility testing

TEST PROCESS

page: 1

MP TEST PROCESS FLOW

SERVOWRITE & HDA TEST PROCESS

page: 3

2/29/96

SERVOWRITER HIGHLIGHTS

FIREBALL	SIROCCO	TEMPEST
5400 RPM	4500 RPM	Fast Write
Gang Write	Stagger Write	Stagger Write
2 Passes/Track	3 Passes/Track	3 Passes/Track
4100 TPI	5850 TPI	6775 TPI
3 Burst Pattern	4 Burst Pattern	4 Burst Pattern
76 Wedges	90 Wedges	90 Wedges
1 Or 2 Disk HDA	2 Or 3 Disk HDA	1 Disk HDA
3 Position	4 Position	2,3 Disk HDA
		4 Position

1050/2150/3240

page: 4

2/29/96

SERVOWRITER TESTS

- SAM to SAM Check
 - ➤ Checks Circumferential Position of Wedges
- Parametric Tests
- Stroke Test
- Servo Verify
 - ➤ Process Monitor on 1 Surface Sampled Process

SERVO WEDGE WRITE PROCESS

- Staggered Head Writing
- 1/3 Track Stepping
- · Laser System for Radial Positioning
- Clock Head/Clock Track for Circumferential Positioning
- Process Data Written on Super Cylinders (ID Cylinders)
- Fastwrite Process

page: 6

2/29/96

SERVOWRITER FASTWRITE PROCESS

Product Speed: 4500 RPM

Servowrite Speed: 6000 RPM

- 1 Disk Product Enters Mass Pro At 6000 RPM
- 2/3 Disk Product Enters Mass Pro at 4500 RPM, Then Upgrades to 6000 RPM At A Later Date

page: 7

HDA TESTS (Sample Only)

- MR Resistance
- LF TAA
- HF TAA
- Resolution
- Modulation
- Overwrite
- PW 50
- Non-Linear Transition Shift
- Signal to Noise
- Asymmetry Test

SELF SCAN TEST PROCESS

PRODUCTION TEST PROCESS FLOW

PCB FUNCTIONAL TEST

- Test Functionality Of Each PCB Subsection
 - ➤ Spin Up Captive HDA
 - ➤ Controller Buffer RAM Test
 - ➤ Perform Seek Test
 - ➤ Read/Write Test
 - ➤ DMA Test
 - ➤ Connectivity Test (AT)
 - Slave Present, Cable Select, PIO Mode

DISKWARE STATION

- Prepares drive for selfscan testing
 - ➤ Spin up
 - ➤ Initialize system tracks
 - Calibrate read channel for system zone
 - Map any media defects in system area
 - Load default configuration parameters
 - ➤ Write diskware to HDA
 - ➤ Write selfscan test script to HDA

SELF SCAN TEST PROCESS

- Tests are similar or equivalent to tests in Digital Scan
- Self scan resides in diskware
 - ➤ Selfscan is only loaded during production testing
- Tests are specified by S/S script
 - ➤ Diskware station writes S/S script
- S/S starts by detecting S/S script (Password)
 - ➤ Optimize Drive Performance
 - ➤ Test Drive Functionality / Performance
 - ➤ Scan and Map Media Defects
 - ➤ Measure Soft Error Rate

TEMPEST TEST ENHANCEMENTS

<u>TEMPEST</u> <u>FIREBALL</u>

MR Bias Optimization N/A

MR Head Stability Test N/A

MR Microjog Calibration N/A

"Taguchi" Channel Optimization One Parameter At A Time

Test Time Optimization

SELF SCAN TEST FLOW

- **Buffer RAM Test**
- Kloop Servo Optimization
- MR Bias Current Calibration
- Input Attenuation Calibration
- Micro Jog W/R MR Calibration
- Adaptive Data Channel Calibration
- MR Head Stability Check
- Servo Wedge Verify
- Repeatable/Nonrepeatable Runout

- Sequential Head Switch Test
- Fixed LengthSeek Test
- Random Seek Test
- Offtrack Read Capability
- Physical Sector Defect Scan
- Inline Defect Sparing (Format inline)
- Logical Sequential/Random Scan

(BER Measurement)
Confincience mode (all vetneson??)
Start/Stop Test

PERFORMANCE OPTIMIZATION

- MR Bias Current Calibration
- Kloop Optimization
 - ➤ Maximize servo performance and stability
- MR Microjog Calibration
 - ➤ Calibrate Microjog Offset for Each Head
- Channel Optimization (Minimize MSE)
 - ➤ Input Attentuator Calibration
 - ➤ Optimize Write Precompensation
 - ➤ Optimize Continuous Time Filter (Boost/Bandwidth)
 - ➤ Tap 4 Optimization For FIR Filter

FUNCTIONALITY / PERFORMANCE TESTS

- Buffer RAM Test
- Runout Test
 - ➤ Measures repeatable and nonrepeatable runout
 - ➤ Test at multiple locations on each surface for all heads
- Servo Wedge Verify
 - ➤ Map servo defects
 - ➤ Verify radial/circumferential wedge position
- Start Stop Test
 - ➤ Test the spin-up time

FUNCTIONALITY / PERFORMANCE TESTS

- Head Switch / Single Track Seek Test
- Random Seek Test
- Fixed Length Seek Test
 - Third Stroke/Full Stroke Seeks
- Offtrack Read Test
 - Verifies Offtrack Read Margins

DEFECT SCAN

- Physical Sequential Scan
 - ➤ Multiple scan patterns
- Logical Random Scan
 - ➤ Random reads and writes
 - ➤ Maps defective sectors

ERROR RATE MEASUREMENT

- · Logical Scan (tetres on?)
 - ➤ Combination of sequential and random scans
 - ➤ Logs recovered error by type (sense key & sense code)
 - ➤ Logs soft errors per head and per drive

where is confindence mode test??

FINAL STATION

- Self Scan Report
- Power Cycle Test
- Write/Read with Full Compare (all retires on)
- Generic Ship Configuration

TEMPEST

Design Verification Test (DVT)

TEMPEST DVT

- Overview
- Status
- Plan

TEMPEST DVT Overview

Quantum, Reliability Engineering

FE Training, 3/19/96

TEMPEST DVT Status

- Parametric Tests:
 - **» 100% Completed (P1')**
- Environmental Tests:
 - » 58% Completed (P1')
 - **» 42% Testing in FMT/DMT**
- Regulatory & Safety Tests:
 - **» 100% Completed**

Tempest DVT Status (cont.)

■ Parametric Tests

Test	Drive	Status	Failure Mode	Corrective Action
	Level			
Under Voltage Protection	P1'	Pass		
Motor Rotational Speed	E3	Pass		
Power Sequencing	E3	Pass	·	
Locked Motor	P1'	Pass		
Mechanical Dimension	E3	Pass		
A coustic	P2	Fail	Idle mode 36.7dB, spec 35	Nidec/PM DM Motor improvement
Thermal Mapping	P1'	Pass		
Start/Stop Times	P1'	Pass		
Sequential Head/Cyl Switch	P1'	Fail	Head switch within spec.< 95%.	Optimize servo code & Read channel
Power Consumption	P1'	Fail	Standby , Sleep over 1.5 W atts	Power management, F/W up date
Access Time	P1'	Fail	Seek time Over 12mS(1dk)	1-dk -A ctuator Coil change
Hot Plug	P1'	Pass		
DC Line Noise	P1'	Fail	A kbar burnt	TI F/A and simulate testing
CSS	P1	Fail	40KCSS, crash stop banging,	Servo code, Hd-ABS/Media process/lube
Throughput	P1'	Pass		7
Interface	P1'	Pass		

Tempest DVT Status (cont.)

■ Environmental Tests

Test	Drive	Status	Failure Mode	Corrective Action
	Level			
Storage	P2	Test in DMT		
lon-Op. Rotational Vib./Shoc	P2	Test in DMT		
Thermal Shock	P2	Test in DMT		
Four-Corner	P2 (16 Drs.)	1 of 16 failed	22-115F,unused servo error 2	Optimize servo and read channel
			(cold temp, seek complete error)	
Op. Thermal Humidity	P2	Test in DMT		
Operating Altitude	P1'	Pass		
Non-Oprating Altitude	P2	Test in DM T		
Accelerating Package Drop	P2	Test in DMT		
Strife	P2	Test in DMT		
ESD	P1	Pass		
EM S	P1'	Pass		
M S	P1'	Pass		
Operating Vibration	P1'	Pass		
Non-Operating Vibration	P1'	Pass		
Operating Shock	P1'	Pass		
Non-Operating Shock	P1'	Pass		
Shock Damage Boundary	P2	Test in DMT		
			•	

Tempest DVT Status (cont.)

■ Regulatory & Safety Tests

Test	Drive	Status	Failure Mode	Corrective Action
	Level			
EM I	P2	Pass		
UL,CSA, TUV	P1	In Progress		

TEMPEST DVT

• P2 FMT PLAN START: 3/1/96

END: 3/15/96

• P2 DMT PLAN START: 3/19/96

END: 5/30/96

FWY TEST-Plan (Rev. 2) Tempest (AT) P2 / TEMPEST FMT Test Plan 3/14/96 18 - 1.08G AT/SCSI -each 3/7/96 18 - 2.16G AT/SCSI - each Power 18 - 3.24G AT/SCSI - each DC line noise Consumption Test Test 2-1.0G AT / SCSI 6-1.0G AT/SCSI 6-2.1G AT/SCSI 6-3.2G AT/SCSI 3/13/96 QR 3/18/96 QR 3/14/96 3/7/96 5 3/1/96 Power Sequencing **ESD** Start (Baseline) Test 18-1.0G AT/SCSI each 2-1.0G AT/SCSI 2-1.0GAT/SCSI 18-2.1G AT/SCSI each 2-2.1G AT/SCSI 18-3.2G AT/SCSI each Q/Ř 3/19/96 3/13/96 Q/R 3/4/96 3/7/96 3/5/96 3/15/96 4/3/96 Four-Corner Acoustic Seek Access Time Complete P2 FMT Test Test 6-1.0G AT/SCSI 10-1.0G AT/SCSI 3-1.0G AT/SCSI & Evaluate data 6-2.1G AT/SCSI 10-2.1G AT/SCSI 3-2.1G AT/SCSI FOR DMT TESTING 6-3.2G AT/SCSI 10-3.2G AT/SCSI 3-3.2G AT/SCSI 3/6/96 3/14/96 QR 3/18/96 QR 4/12/96 ŌΡ. 3/13/96 12 3/7/96 Op/Non Op Operating Shock Altitude Test 3-1.0G AT 3-1.0G AT/SCSI 3-2.1G AT 3-2.1G AT/SCSI 3-3.2G AT 3-3.2G AT/SCSI 3/12/96 3/28/96 QR. 3/7/96 3/13/96 3 3/18/96 12 Non-Op Rotational Non-Op Rotational Op/Non Op Vibration Test Shock Test Vibration 1-1.0G AT 1-1.0G AT 3-1.0G AT 1-2.1G AT 1-2.1G AT 3-2.1G AT 1-3.2G AT 1-3.2G AT 3-3.2G AT (Mod. Cover) (Mod. Cover) Q/R & Quanta_{3/15/96} 3/12/96 Q/R & Quanta 4/2/96 Q/R Q/R Eng. Patrick Ho

2/23/96

LEGEND
Earliest Finish Resource

Duration

Earliest Start

Tempest (AT/SCSI) Product-P2 DMT Qual. Plan. REV 2.0

NOTE: In the Resource of each test, FMT/DVT represent data available in that test, no test will be conducted in DMT if passing in DVT/FMT

LEGEND

Earliest Finish

Q/R Engineer Patrick Ho x- 6444 Date 2/23/96

TEMPEST FE TRAINING

HEADS AND MEDIA, MARCH 1996

BY KATHY TANG

OVERVIEW

- Tempest Heads and Media Design Specification
- Fly Height Budget Model
- PP1 and PP2 Drive CSS Data
- PP2 HDA Test and Selfscan Data
- PP2 Supplier Issues
- Other MR Related Issues

I. Tempest Heads and Media Design Specification1. Head Design Specification

	<u>Fireball</u>	Sirocco	Tempest
Areal Density (Mbpsi)	380	600	784
Track Density (TPI)	4200	5850	6775
Linear Density (KFCI)	99	115	123
RPM	5400	4500	4500
Fly Height (nom/min) (u")	2.25/1.75	2.75/2.25	2.50/2.00
Slider Size	50%	50%	50%
ABS with COC	TPC, NPAB	TPC, NPAB	TPC, NPAB
Suspension	850LSF	850LSF	850LSF
Load Beam Thickness	3 mil	2.5 mil	2.5 mil
Preload (Gram)	5.0	5.0	5.0

Tupsta. Upd

	Fireball	<u>Sirocco</u>	Tempest
Writer Head Design	Inductive TF	Inductive TF	Inductive TF
Write Turns	42	15	12-15
Write Pole Width (µm)	4.7	3.5	3.0
Write Gap Length (µm)	0.25	0.45	0.4
Read Head Design	TF Inductive	MR	MR
MR Transverse Bias		SAL	SAL
MR Longitudinal Bias		HB or Exch. Bias	HB or Exch. Bias
Nominal Read Width (µm)		2.6	2.4
Read and Write Width Rela	ation	M	agnetic Read width
		<	optical write width
Minimum Read width (μm) 1 2 2		1.8
Read Gap Length (µm)		0.3	0.3
Read DC resistance		15 to 30	17 to 40

2. MR Head Structures

Head Vendor	Air Bearing	Transverse Bias	Longitudinal Bias	MR Resistance(Ω)	WRITE Turns
QUANTUM	NPAB	SAL	Hard Magnet	28	15
TDK	TPC,XNP	SAL	Exchange Bias	29	14
ALPS	TPC	SAL	Hard Magnet	22	12
Read-Rite	TPC	SAL	Hard Magnet	27	15
Yamaha	TPC	SAL	Hard Magnet	24	12

3. Media Design Specification

	Units	<u>Fireball</u> <u>Sirocco</u>		Tempest
Brδ	G-µm	270-290	130	125
Coercivity	Oe	1800-2000	2200	2200
Carbon Thickness	A	125-150	125-150	125-150
Glide Height	nm (μ")	38 (1.5)	38 (1.5)	30 (1.2)
Substrate		Al, 95x31.5	Al, 95x31.5	Al, 95x31.5
Texture		Full Surface	Full Surface	Full Surface
CSS	cycles	40k	40k	40k

MEDIA STRUCTURE

	Alloy	Texture	Carbon	Lube
Fuji	CoCrTa-based	Full	DLC	Z-dol
MCC	CoCrTa-based	Full	H-C/A-C	Z-dol/Demnum
AKCL	CoNiPt	Full	Н-С	
Showa-Denka	CoCrTa-based	Full	Normal Car	bon

II. FLY HEIGHT BUDGET

1. Head Fly Height Model-Lognormal Distribution

Fly height distribution at HGA level (5000 RHG P1 heads)

Fly height distribution at HSA level (staking effect)

- 2. Disk Glide Model-Weibull Distribution
- 3. Total Clearance at sea level and 10k feet.
- 4. Data package:

Flying height profile and 3 sigma range for each head vendors.

Disk Glide Avalanche Curves at 3 radius for each disk vendors at P2 build.

Disk Glide Hits Avalanche and Yield Curves

TEMPEST HGA FLY HEIGHT DISTRIBUTION 5000 HEADS @ SEA LEVEL:HGA-LOGNORMAL MODEL

TEMPEST HSA STAKING GRAM LOAD CHANGE

TEMPEST HSA DRIVE LEVEL GRAM LOAD 5000 HEADS: NORMAL MODEL

TEMPEST HSA FLY HEIGHT DISTRIBUTION SEA LEVEL

TEMPEST DISK GLIDE HEIGHT DISTRIBUTION 5000 SURFACE:WEIBULL MODEL

TEMPEST HSA vs GLIDE @ SEA LEVEL

TEMPEST HEAD CLEARANCE HEIGHT DIST. AT SEA LEVEL

TEMPEST HSA vs GLIDE @ 10K FT

TEMPEST HEAD CLEARANCE HEIGHT DIST. AT 10K FT

Page 1

SHOWA DENKO

...

SPUTTERED THIN FILM DISK

No. QTT-950904 Sheet 10of 10

Glide Avalanche Curve

Glide Avalanche Curve TEMPEST Lot No.QTT-950904

HITACHI RG570 Glide Tester Glide-Write 50% Type2 Head

III. PP1 and PP2 Drive CSS Data

CSS Test Environment

Ambient 23 ± 30 C $(50 \pm 3)\%$ RH

Hot and Dry $50 \pm 3^{\circ}$ C $(15 \pm 3)\%$ RH

Warm and Wet 32 ± 30 C $(80 \pm 3)\%$ RH

<u>Test parameter</u>:

Spinup with srecal and drive in ready mode, then spindown. Breakaway Torque after every 10k cycles and 24hr soak. Sequential read at every 10k cycles.

Test Matrix: every head vendors vs. every disk vendors

IV. PP2 Drive HDA and Selfscan Data

Data supplied from P2 drive testing

- 1. Parametrics (TAA, PW50, Asym, NLTS, Resol, SNR)
- 2. MR resistance
- 3. MR head instability test (COV, MSE variation)
- 4. raw-error rate
- 5. Off-track capability
- 6. Media defect map

Tempest P2 Head/Media Mean Parametrics

	RHGS	RHGB	TDK	TDKN	Alps	Yamaha	RR
HFTAA (mV)	83.6	86.7	109	93.9	90.2	98.3	139
Asymmetry (<±20%)	3.8	-1.9	-0.1	-1.2	1.5	-1.4	-4.9
IACSN (dB)	20.8	20.9	21.3	21.0	21.2	21.4	22.6
Pos. PW50/T	1.69	1.77	1.77	1.76	1.83	1.85	1.82
Neg. PW50/T	1.76	1.75	1.79	1.75	1.85	1.83	1.74
OW @MD (>30dB)	36.0	33.9	35.0	36.1	36.1	34.3	35.2
NLTS @OD (<25%)	13.6	14.3	15.9	13.4	17.4	18.6	14.8
Resolution (>70%)	83.3	83.1	80.8	81.8	81.5	80.4	82.3
Pos. Mod. (%)	5.6·	5.5	6.7	6.8	6.6	6.0	6.6
Neg. Mod. (%)	-5.8	-5.8	-6.8	-6.9	-6.7	-6.3	-6.8
Resistance (17 to 40Ω)	27.5	26.4	20.5	22.8	22.6	23.8	22.7
COV (<2.5%)	0.7	0.8	0.8	0.9	1.7	1.2	1.6
Microjog @ MD (μstep)	-328	-273	-19	10	-256	126	-583

ii. MEDIA SUPPLIER STATUS

Disk Vendor	Technical Issues	Improvement Plan
MCC	 Glide Improvement CSS stiction 	Texture and contamination control Lube and Carbon
AKCL	 NLTS, OW CSS stiction 	Mrt and Hc optimization lube
Fuii	1. site qualification	

VI. MR SPECIAL ISSUES

• Thermal Asperity

Head/Media Clearance Control (1.2u"Glide/2.0u" min fly height)
"Blue" Read/Write Channel/Akbar Controller TA Recovery

MR Head Instability

MR Head Design & Process Improvement

100% Screening by Head Vendors with On-Track COV and Additional Test

100% Drive Screen Test

Recovery Algorithms in Read/Write Channel

Blank page

Follows: Supplier Review Tab

• MR Reliability

Process Control

suppliers.

Nominal Current Density: 2x10^7 A/cm^2

Stripe Height Control -- Dynamic Bow Compensation during Lapping (MP)

Long Term and Accelerated Correlation and Enforcement of Accelerated Tests

Quantum reliability tests of Tempest heads from all the vendors have been finished. The following specifications are going to be enforced on head

- 1 Accelerated Reliability Test
- 2. Temperature Rise vs. Bias Current
- 3. Head/Media Breakdown Voltage Spec.

• ESD

ESD Precautions at Head Manufacture

ESD Protections at MKE Assembly

Tempest P2 Head/Media Mean Parametrics

	Fuji-M	Fuji-Y	MCMM	MCCN	AKCL	Showa	StorM
HFTAA (mV)	99.5	102	94.8	93.9	102	101	108
Asymmetry (<±20%)	0.0	-1.1	-0.7	-0.7	-0.4	-0.7	-0.2
IACSN (dB)	21.9	21.6	21.0	21.0	21.0	21.1	21.5
Pos. PW50/T	1.81	1.80	1.76	1.77	1.83	1.79	1.75
Neg. PW50/T	1.81	1.79	1.75	1.76	1.83	1.77	1.76
OW @MD (>30dB)	36.5	35.7	35.9	35.8	32.6	35.3	34.8
NLTS @OD (<25%)	16.1	14.7	14.9	15.2	17.6	14.0	15.5
Resolution (>70%)	81.3	81.7	82.3	81.9	81.0	82.2	82.7
Pos. Mod. (%)	6.0	6.4	7.1	7.0	5.6	5.7	5.8
Neg. Mod. (%)	-6.1	-6.4	-7.1	-6.9	-6.2	-5.7	-6.3
COV (<2.5%)	1.1	1.1	1.1	1.1	1.0	1.1	1.1
Microjog @ MD (μstep)	-180	-198	-139	-183	-207	-216	-211

SS Hard Defects vs Media Vendor BoxPlot Tempest P2 3-Disk Drives

V. PP2 Supplier Issues

i.Head Supplier Status

Head Vendor	Technical Issues	Improvement Plan
RHG	 TAA Distribution Stripe Height Control Head Yield Improvement 	Dynamic Bow- Compensation (MP) Process Control
TDK	 CSS Stripe Height Control 	ABS Lapping process control DBC (MP)
ALPS	 Escape of Unstable Head NLTS 	Process Improvement and tighter screening Yoke structure
Yamaha	1. Read Track Width	Add a screening process
Read-Rite	 Minimum flying height Head Yield Improvement 	increase the average flying height