RESUMO EXPANDIDO

Centro Federal de Educação Tecnológica de Minas Gerais

IV Encontro de Programas de Educação Tutorial

INTERPET 2019

Desenvolvimento de uma plataforma 5-CSRTT de baixo custo

SOARES, Maurício Ferreira

PEREIRA, Alysson Aurélio de Azevedo

CEFET-MG Campus Divinópolis, Engenharia Mecatrônica, fsoares.mauricio@gmail.com

CEFET-MG Campus Divinópolis, Engenharia Mecatrônica, alyssonaapereira@gmail.com

DÂMASO, Renato de Sousa

CEFET-MG Campus Divinópolis, Engenharia Mecatrônica, dinamicarobos@gmail.com

Estágio de Desenvolvimento: Em conclusão Área de Conhecimento: Engenharias Modalidade Principal: Pesquisa

RESUMO

O objetivo deste documento consiste em detalhar o desenvolvimento de uma plataforma de baixo custo e fácil utilização, capaz de realizar testes seriados e obter parâmetros correlacionados ao comportamento de uma cobaia. Por se tratar de um projeto extenso, viu-se necessária a utilização de *softwares* e técnicas das seguintes áreas da mecatrônica: mecânica, eletrônica e computação. Este trabalho, após seu término, torna-se uma ponte entre futuras parcerias para outros projetos desta natureza.

Palavras-Chave: Plataforma, Baixo custo, Mecatrônica.

INTRODUÇÃO

Devido à necessidade do desenvolvimento de medicações ou métodos de tratamento de doenças psíquicas em seres humanos, notou-se que determinadas regiões do corpo de cobaias, como os roedores da espécie *Rattus norvegicus domestica*, afetadas pelas mesmas doenças, funcionam de forma semelhante às mesmas no corpo humano. Para isso, ao longo do tempo, foram elaborados procedimentos que utilizam estas cobaias, de modo a estudar seus comportamentos e reações ao longo do tempo e da aplicação de medicamentos desenvolvidos. Um exemplo seria a plataforma 5-CSRTT (*Five Choice Serial Reaction Time Task*) que, segundo BARI *et. al.* (2008), trabalha baseada na percepção das cobaias em relação aos eventos que acontecem em sua volta.

Desta forma, foi solicitada uma parceria entre a Universidade Federal de São João del-Rei *Campus* Dona Lindu (UFSJ-CCO) e o Centro Federal de Educação Tecnológica de Minas Gerais Campus Divinópolis (CEFET-MG *Campus* V), para a elaboração de uma plataforma deste tipo, de baixo custo, visto que as empresas capazes de ofertar este tipo de serviço cobram altas compensações. Além disso, foi levantada a necessidade de um sistema de fácil utilização, uma vez que os pesquisadores envolvidos são de formações bem distintas à Engenharia.

Centro Federal de Educação Tecnológica de Minas Gerais

IV Encontro de Programas de Educação Tutorial

INTERPET 2019

MATERIAIS E MÉTODOS

Ainda segundo BATI et. al. (2008), a versão mais aplicada da tarefa proposta pela plataforma consiste em iluminar a área de recompensa e liberar um alimento "gratuito" e o teste tem início quando a cobaia adentra nesta área. Nesta etapa, a luz se apaga e inicia-se o período de espera entre tentativas (ITI). Após o término do mesmo, uma luz é acesa, aleatoriamente, em alguma das cinco câmaras, dispostas na posição contrária à área de recompensa, por um breve período de tempo. Sequencialmente, inicia-se o período de espera limitada (LH), onde a cobaia possui alguns segundos para interagir com a câmara que foi acesa anteriormente. Caso a cobaia interaja com a câmara errada ou não interaja com câmara alguma, inicia-se um processo de punição, que consiste em estímulos luminosos e sonoros de alta intensidade. Caso a cobaia adentre a câmara correta, a luz da área de recompensa se acende e um alimento é fornecido; após esta etapa, o ciclo se repete por uma quantidade pré-determinada de tentativas. Um fluxograma demonstrando a sequência de funcionamento do teste pode ser visualizado na Figura 1.

Figura 1: Fluxograma das etapas do teste proposto por BARI.

Desta forma, para a construção da estrutura da plataforma, optou-se pela

RESUMO EXPANDIDO

Centro Federal de Educação Tecnológica de Minas Gerais

IV Encontro de Programas de Educação Tutorial

INTERPET 2019

utilização de uma chapa de alumínio de 3mm visto seu baixo custo e sua alta usinabilidade. Já para a estrutura dos periféricos - câmaras de teste e sistema de alimentação -, utilizou-se da prototipagem rápida via impressão 3D, visto que a geometria das mesmas possui alta complexidade e o *Campus* V possui o equipamento necessário para este tipo de serviço.

Para identificação da interação da cobaia com as câmaras da plataforma, propôsse a utilização de pares infravermelhos capazes de captar a presença de um corpo caso haja a interrupção do fluxo contínuo de sinal entre o emissor e o receptor. Já o sistema de alimentação se baseia em um dos desenhos propostos por Leonardo da Vinci, em seu *Codex Atlanticus*, e consiste em dois discos perfurados dispostos um sobre o outro; o disco superior possui uma quantidade de furos maior que o disco inferior, de modo que, tendo o disco inferior estático, são realizadas rotações no disco superior de modo a coincidir os furos e fazer com que os objetos dispostos sobre os discos sejam direcionados pelos furos. A rotação deste disco superior é realizada por um motor de passos, selecionado por sua precisão angular. Este motor de passos é alimentado por um driver ponte H dupla, uma vez que este motor é do tipo bipolar e necessita de uma inversão de corrente para o acionamento correto de suas bobinas.

Para o controle de todo o processo, optou-se pelo microcontrolador Arduino Mega 2560 R3, uma vez que a versão Uno R3 – amplamente utilizada ao decorrer do curso de Engenharia Mecatrônica – possui uma quantidade de pinos de dados menor que a requerida pelo projeto e a versão Mega atende esta especificação.

Assim, a fim de minimizar o desperdício de materiais, projetou-se a montagem da plataforma através de softwares CAD (*Computer Aided Design*) 3D, conforme a Figura 2, e seus circuitos eletrônicos através de *softwares* de simulação eletrônica.

Centro Federal de Educação Tecnológica de Minas Gerais

IV Encontro de Programas de Educação Tutorial

INTERPET 2019

Fonte: Autores.

Figura 2: Vista em perspectiva do protótipo de platforma desenvolvido. Da esquerda para a direita: área de opção, área principal e área de recompensa.

Para a aquisição de parâmetros como a taxa de acerto e o tempo de resposta, foi desenvolvido um código em *Python* capaz de realizar a comunicação entre o microcontrolador – responsável por receber os dados dos sensores – e um computador, de modo a salvar estes dados em uma tabela de estensão .xml. Para a aquisição visual de todo o teste, utilizou-se uma *Webcam* na parte superior da área principal, contudo, notou-se que a área de visão da câmera era inferior à área principal; desta forma, adaptou-se uma lente *fisheye* a *Webcam*, comumente utilizada em fotos panorâmicas. Desta forma, notou-se que, com esta adaptação, a filmagem cobria toda a extensão da caixa. Em seguida, adaptou-se o código anterior, de modo a realizar a gravação de todo o período de teste em um arquivo de vídeo .mp4, para que o teste pudesse ser estudado quantas vezes forem necessárias.

Por fim, para facilitar a interação homem-máquina, desenvolveu-se uma interface gráfica simples, em Java, capaz de interagir com o usuário de modo a deixá-lo decidir os valores de parâmetros do teste, como a duração da punição, a quantidade de tentativas a serem realizadas e a intensidade da punição; onde, após o preenchimento dos campos de todos os parâmetros, a interface gera um código intermediário em linguagem para Arduino. Um frame da tela inicial desta interface pode ser visualizada na Figura 3.

Centro Federal de Educação Tecnológica de Minas Gerais

IV Encontro de Programas de Educação Tutorial INTERPET 2019

Fonte: Autores.

Figura 3: Frame principal da interface desenvolvida para a plataforma.

RESULTADOS E DISCUSSÃO

Como o produto final deste trabalho depende das pesquisas realizadas pela UFSJ-CCO, foi considerado como resultado o funcionamento modular de cada um dos componentes envolvidos no projeto. Desta forma, considerando o funcionamento do sistema de alimentação, realizou-se uma bateria 120 de tentativas – padrão para um teste – e notou-se que o sistema funcionou em 116 dos casos, ou seja, 96.67%.

Já para o sistema de acionamento luminoso das câmaras de seleção, foi verificada sua aleatoriedade e a identificação de um objeto à partir dos sensores infraavermelhos. Para tal, utilizou-se a função randomSeed(), presente na biblioteca do Arduino, capaz de gerar uma sequência numérica pseudo-aleatória que depende de uma *seed*, no caso, aproveitou-se da flutuação ruídosa de uma porta analógica não conectada — leitura imprecisa — para geração de sementes distintas e, portanto, sequências distintas. Quanto ao funcionamento dos sensores infravermelhos, notou-se que, como as dimensões das câmaras são pequenas em relação ao campo de funcionamento dos mesmos, tem-se que objetos como canetas e até mesmo dedos foram identificados, implicando que a cabeça das cobaias também será identificada, uma vez que esta possui dimensões superiores as de uma caneta.

Para o sistema de gravação dos testes, foi avaliado se a nomenclatura – utilizada para identificação - do arquivo gerado estava de acordo em diferentes máquinas e avaliou-se, também, e a qualidade do mesmo. Após testes em alguns dos computadores disponíveis no Laboratório de Robótica do *Campus* V, notou-se que a nomenclatura do

RESUMO EXPANDIDO

Centro Federal de Educação Tecnológica de Minas Gerais

IV Encontro de Programas de Educação Tutorial

INTERPET 2019

arquivo estava correta em todos os casos, contudo, ocorriam casos de arquivos sem custo de memória (0 kB). Percebeu-se então que este problema se dava pela falta de alguns dos CODEC's (amálgama de *coder-decoder*) necessários para a compressão de um arquivo .mp4, desta forma, alterou-se a extensão do arquivo de vídeo para .avi e utilizou-se o codec DivX; após estas alterações, os arquivos deixaram de apresentar o problema supracitado.

CONCLUSÕES

Projetos como este, veem-se necessários no meio acadêmico pois trazem consigo um modo de interação entre as instituições de ensino do país, além de contribuírem para o financiamento de diversos outros projetos deste tipo, uma vez que notou-se que é possível desenvolver plataformas desta magnitude de baixo custo.

Atualmente, estão sendo aplicadas otimizações em todos os códigos desenvolvidos anteriormente e analises sobre a qualidade da filmagem, visto que o reflexo do próprio alumínio interfere na saturação da luminosidade presente. Além de pequenas correções e melhorias mecânicas como adição de nervuras em pontos de estresse mecânico e redução sobre as dimensões de alguns componentes. Posteriormente, pretende-se melhorar ainda mais a interação homem-máquina, visto que, atualmente, o operador ainda precisa fazer ajustes como selecionar manualmente Webcam utilizada e afins, além de trabalhar a confecção de um manual de instruções para os pesquisadores da UFSJ-CCO.

Por fim, é possível afirmar que este trabalho cumpriu seu objetivo, uma vez que a plataforma está pronta para uso, apesar das pequenas melhorias e correções sendo desenvolvidas atualmente.

REFERÊNCIAS

BARI, Andrea et al. The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nature Protocols, [s.l.], v. 03, n. 05, p. 759-767, 2008.

Função randomSeed() Arduino. Disponível em https://www.arduino.cc/reference/en/language/functions/random-numbers/randomseed/ Acesso em 06/08/2019.