

Objectives

At the end of this Unit, the student should:

- Know and understand the design of CMOS integrated circuits
 - Complementary CMOS logic
 - Logic design based on transmission gates
- Know a wide range of CMOS logic circuits
 - Combinational, sequential, RAM memory cells
- Know how to characterize electrically the CMOS integrated circuits
 - Parameters of voltage, current, delay and power consumption
 - Special outputs: open drain, tri-state.
- Know the main CMOS subfamilies
 - Buffered outputs, high speed, low voltage, etc.
- Understand the foundations of design and manufacture of VLSI chips

Contents

- 4.1 Introduction
 - 4.1.1 Main features. Historical evolution. Moore's Law
- 4.2 Combinational Circuits
 - 4.2.1 The inverter
 - 4.2.2 Other basic gates
 - 4.2.3 Design of general functions in CMOS Complementary Logic
 - 4.2.4 Design with transmission gates. Multiplexers
- 4.3 Flip-flops: level and edge triggered
- 4.4 Special outputs
 - 4.4.1 Open drain
 - 4.4.2 Tri-state
- 4.5 Electrical characteristic parameters
- 4.6 CMOS Subfamilies
- 4.7 Compatibility between families
 - 4.7.1 Level Converters
- 4.8 VLSI Design Basics
 - 4.8.1 Fabrication Process. Masks.
 - 4.8.2 Cells layout.
 - 4.8.3 Design flow based on standard cells
 - 4.8.4. Current and future trends

Bibliography

Theory

- "Digital design". Wakerly. Ed. Prentice-Hall. 2006. Chapter 3.
- "Electronics". Hambley. Ed. Prentice-Hall. 2002. Chapter 6.
- "CMOS circuits". R.M. Marston. Ed. Paraninfo. 1995.
- "Digital integrated circuits". Jan Rabaey et al. Ed. Prentice-Hall. 2004.
- www.intel.com/technology
- "International Technology Roadmap for Semiconductors ITRS09"

Problems

G.Benet; J.V.Benlloch; J.V.Busquets; D.Gil; P.Perez, *Ejercicios* Resueltos de Tecnologia de Computadores, Cap.5, SPUPV 2006.916

4.1. Introduction

- CMOS is the logic family with more looking forward to future.
- Application scope:
 - Most LSI and VLSI I.C.: Memories and Processors
 - SSI and MSI, together with TTL VLSI: Very Large Scale of Integration
- Relevant features
 - Low power consumption
 - Simple manufacturing process
 - Excellent noise immunity
 - Variable supply voltage
 - High Speed subfamilies.

4.1. Introduction. Historical evolution

- In 1970's the manufacturing processes for processors and memories was typically based on NMOS transistors
 - Cheap, but have static consumption (When Low Level)

Intel 1101 256-bit SRAM

Intel 4004 4-bit μProc

4.1. Introduction. Historical evolution

 From 1980's to present: CMOS technology: Low static power

Intel-i7

Intel 286

Intel Pentium

From 16 bits of data bus: NON-FUNCTIONAL parts

4.1. Introduction. Moore's law

- 1965: Gordon Moore predicted the evolution of the number of transistors per chip
 - It fits a straight line in a semi-logarithmic scale
 - The number of transistors doubles every 18-24 months

Microprocessor Transistor Counts 1971-2011 & Moore's Law

4.1. Introduction. Moore's

Feature Size brings down an 30% every 2-3 years

4.1. Introducción. Ley de Moore

- Many other factors grow exponentially
 - Ex: clock frequency, processor performance

4.1 Introduction. Power

- The power consumed by chips has also grown exponentially, because:
 - Intensive integration, High frequency
- Power consumption is a key factor, as soon as:
 - Limits the integration density: Heat dissipation
 - It is specially important in systems powered with batteries

4.1 Introduction. Power density

4.2. Combinational circuits

- MOS transistors as ideal switches: (sw)
 - MOS transistors can be seen as voltage-controlled switches (model); Ron ≥ 0 (Closed SW); Roff ≥ ∞ (Open SW)
 - The gate voltage controls the connection between drain and source terminals

Digital input: $V_I = 0V = "0"$ $V_I = V_{DD} = "1"$

$$V_{GS1} = V_{DD} - V_{DD} = 0V > -V_T \Rightarrow PMOS \ \mathbf{OFF}$$

 $V_{GS2} = V_{DD} - 0V = V_{DD} > V_T \Rightarrow NMOS \ \mathbf{ON}$

Static power consumption = 0 mW

(Except leackage)

$$V_{GS1} = 0V - V_{DD} = -V_{DD} < -V_{T} \Rightarrow PMOS \ \mathbf{ON}$$

 $V_{GS2} = 0V - 0V = 0V < V_{T} \Rightarrow NMOS \ \mathbf{OFF}$

Static power consumption = 0 mW

(Except leackage)

An easier symbol for MOS transistors

Structure: PMOS transistors in parallel and NMOS in series

NMOS and PMOS nets are DUAL NMOS series = PMOS parallel

Structure: NMOS transistors in parallel and PMOS in series

NMOS and PMOS nets are DUAL NMOS series = PMOS parallel

4.2.2 Other basic gates

- Buffer = NOT + NOT Second NOT gives/ sinks more current than usual
- AND = NAND + NOT
- OR = NOR + NOT

