Semaine du 2 Juin - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 28, propriétés 20 et 21 : rang et matrices extraites.

Exercice no 2:

(Probabilités) : On considère une urne contenant n jetons numérotés de 1 à n ($n \ge 2$). On prélève ces jetons au hasard, un par un et sans remise.

- * On note (u_1, \ldots, u_n) la liste des numéros tirés.
- * Pour $2 \le i \le n$, on dit qu'il y a un record à l'instant i si $u_i > \max(u_1, \dots, u_{i-1})$.
- * On convient qu'il y a systématiquement record à l'instant 1.
- 1. Calculer, pour $1 \le i \le n$, la probabilité r_i qu'il y ait record à l'instant i.
- 2. Calculer les probabilités que, durant la totalité des tirages, on assiste exactement à :
 - (a) un record.
 - (b) 2 records.
 - (c) n records.

Exercice no 3:

(Représentation matricielle) : On note $\mathbb{R}_3[X]$ l'ensemble des polynômes réels de degré inférieur ou égal à 3. On considère l'application ϕ de $\mathbb{R}_3[X]$ dans $\mathbb{R}[X]$ définie en posant, pour tout $P(X) \in \mathbb{R}_3[X]$,

$$\phi(P(X)) = P(X+1) + P(X)$$

- 1. Montrer que ϕ est un endomorphisme de $\mathbb{R}_3[X]$.
- 2. Déterminer la matrice de ϕ dans la base canonique de $\mathbb{R}_3[X]$. On notera M cette matrice.
- 3. Montrer que ϕ est un automorphisme de $\mathbb{R}_3[X]$ et donner la matrice de ϕ^{-1} dans la base canonique de $\mathbb{R}_3[X]$.
- 4. En déduire que l'équation $P(X+1)+P(X)=4X^3-2X^2+X-1$ admet une unique solution $P\in\mathbb{R}_3[X]$ et donner cette solution.

Semaine du 2 Juin - Planche n° 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 28, propriétés 26, 27 et 28 : formules de changement de bases.

Exercice no 2:

(Probabilités): Un laboratoire fabrique un alcootest et les essais montrent que :

- * 1% des personnes contrôlées sont en état d'ébriété.
- * Si une personne en état d'ébriété se fait tester, les test est positif 95 fois sur 100.
- * Si une personne qui n'est pas en état d'ébriété se fait tester, le test est négatif 98 fois sur 100.
- 1. On teste une personne et le résultat est positif. Quelle est la probabilité que cette personne soit en état d'ébriété?
- 2. On teste une personne et le résultat est négatif. Quelles est la probabilité que cette personne soit en fait en état d'ébriété?
- 3. Déterminer la probabilité que le résultat donné par l'appareil soit faux.

Exercice no 3:

(Représentation matricielle) : Soit $\mathbb{R}_n[X]$ l'ensemble des polynômes réels de degré inférieur ou égal à n et f l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}[X]$ définie en posant, pour tout $P(X) \in \mathbb{R}_n[X]$,

$$f(P(X)) = P(X+1) + P(X-1) - 2P(X)$$

- 1. Montrer f est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Pour n = 3, donner la matrice de f dans la base canonique de $\mathbb{R}_3[X]$. Déterminer ensuite pour n quelconque, la matrice de f dans la base canonique de $\mathbb{R}_n[X]$.
- 3. Déterminer le noyau et l'image de f pour $n \geq 3$. Calculer leurs dimensions respectives.
- 4. Soit Q un élément de l'image de f. Montrer qu'il existe un unique $P \in \mathbb{R}_n[X]$ tel que

$$f(P) = Q$$
 et $P(0) = P'(0) = 0$

Semaine du 2 Juin - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 29, propriété 6, théorème 8 et propriété 9 : formules des probabilités composées, des probabilités totales et de Bayes.

Exercice nº 2:

(Probabilités - Urne de Polya) : Une urne contient initialement $r \ge 1$ boules rouges et $b \ge 1$ boules blanches. On effectue des tirages successifs d'une boule, en remettant après chaque tirage la boule tirée dans l'urne avec en plus $c \ge 1$ boules de la même couleur. Pour tout $n \ge 1$, on note R_n l'évènement « la n-ième boule tirée est rouge ».

1. On note $p_n(r, b)$ la probabilité d'obtenir une boule rouge au n-ième tirage, quand l'urne contient initialement r boules rouges et b boules blanches. Montrer que

$$\forall n \ge 2, p_n(r, b) = \frac{r}{r+b} p_{n-1}(r+c, b) + \frac{b}{r+b} p_{n-1}(r, b+c)$$

2. En déduire que pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(R_n) = \frac{r}{r+b}$.

Exercice no 3:

(Représentation matricielle) : Soient $E = \mathbb{R}_2[X]$ l'ensemble des polynômes réels de degré inférieur ou égal à 2 et f l'application définie sur E par f(P) = P + P'

- 1. Prouver que f est un endomorphisme de E.
- 2. On note \mathcal{B}_0 la base canonique de E. Déterminer la matrice $M = \operatorname{mat}_{\mathcal{B}_0}(f)$.
- 3. Établir que f est un automorphisme de E.
- 4. En déduire la solution P de $P + P' = X^2 + X + 1$.