$\begin{array}{c} {\rm Manual~for~Package:~mathematics} \\ {\rm Revision~20M} \end{array}$

Karl Kästner

December 22, 2022

Contents

1	calend	ar	1			
	1.1	days_per_month	1			
	1.2	isnight	1			
2	mathe	matics	1			
	2.1	cast_byte_to_integer	1			
3	complex-analysis 1					
	3.1	1 1 1	1			
	3.2	$complex_exp_product_im_re \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	2			
	3.3	$complex_exp_product_re_im \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	2			
	3.4	$complex_exp_product_re_re $	2			
	3.5	croots	3			
	3.6	$root_complex \dots \dots \dots \dots \dots$	3			
	3.7	test_imroots	3			
4	deriva	tion	3			
	4.1	derive_acfar1	3			
	4.2	derive_ar1_spectral_density	4			
	4.3	derive_ar2param	4			
	4.4		4			
	4.5	_	4			
	4.6		4			
	4.7		4			
	4.8	derive_laplacian_fourier_piecewise_linear	4			
	4.9		4			
	4.10		4			
	4.11		4			
5	deriva	tion/master	5			

	5.1	derive_bc_one_sided	5
	5.2	derive_convergence	5
	5.3	derive_error_fdm	5
	5.4	derive_fdm_poly	5
	5.5	derive_fdm_power	5
	5.6	derive_fdm_taylor	5
	5.7	derive_fdm_vargrid	5
	5.8	derive_fem_2d_mass	5
	5.9	derive_fem_error_2d 5	5
	5.10	derive_fem_error_3d6	3
	5.11	derive_fem_sym_2d	3
	5.12	derive_grid_constants	3
	5.13	derive_interpolation	3
	5.14	derive_laplacian	3
	5.15	derive_limit	3
	5.16	derive_nc_1d	3
	5.17	derive_nc_1d	3
	5.18	derive_nc_2d	3
	5.19	derive_nonuniform_symmetric	3
	5.20	derive_richardson	7
	5.21	derive_sum	7
	5.22	nn	7
	5.23	test_derive	7
	5.24	test_derive_fdm_poly	7
	5.25	test_filter	7
	5.26	test_vargrid	7
6	deriva	tion 7	7
U	6.1	$ m simplify_atan \dots \dots$	
	0.1	Simping_atan	1
7	mathe	matics 8	3
	7.1	entropy	3
8	finance	e 8	3
	8.1	derive_skewrnd_walsh_paramter	
	8.2	gbm_cdf	
	8.3	gbm_fit	
	8.4	gbm_fit_old	
	8.5	gbm_inv	
	8.6	gbm_mean	
	8.7	gbm_median	
	8.8	gbm_pdf	
	8.9	gbm_simulate	
	8.10	gbm_skewness	
	-	5	

	8.11 8.12	gbm_std
	8.13	
	8.14	1 1
	8.15	8
	8.15	skewrnd_walsh
9	finance	•
	9.1	$test_gbm $
	9.2	$test_gbm_pdf \dots \dots$
	9.3	$test_skewrnd_walsh$
10	fourier	·/@STFT 10
	10.1	STFT
	10.2	itransform
	10.3	stft
	10.4	stftmat
	10.5	transform
11	fourier	
	11.1	amplitude_from_peak
	11.2	caesaro_weight
	11.3	dftmtx_man
	11.4	example_fourier_window
	11.5	fft_man
	11.6	fftsmooth
	11.7	fix_fourier
	11.8	fourier_axis
	11.9	fourier_axis_2d
	11.10	fourier_cesaro_correction
	11.11	fourier_coefficient_piecewise_linear
	11.12	fourier_coefficient_piecewise_linear_1
	11.13	fourier_coefficient_ramp3
	11.14	fourier_coefficient_ramp_pulse
	11.15	fourier_coefficient_ramp_step
	11.16	fourier_coefficient_square_pulse
	11.17	fourier_complete_negative_half_plane
	11.18	fourier_cubic_interaction_coefficients
	11.19	fourier_derivative
	11.20	$fourier_derivative_matrix_1d \dots \dots \dots 15$
	11.21	$fourier_derivative_matrix_2d $
	11.22	$fourier_expand \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	11.23	$fourier_fit \dots \dots$
	11.24	$fourier_interpolate \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	11.25	fourier_matrix

11.26	fourier_matrix2
11.27	fourier_matrix3
11.28	fourier_matrix_exp
11.29	fourier_multiplicative_interaction_coefficients 16
11.30	fourier_power
11.31	fourier_power_exp
11.32	fourier_predict
11.33	fourier_quadratic_interaction_coefficients
11.34	fourier_random_phase_walk
11.35	fourier_range
11.36	fourier_regress
11.37	fourier_resampled_fit
11.38	fourier_resampled_predict
11.39	fourier_signed_square
11.40	fourier_transform
11.41	fourier_transform_fractional
11.42	fourier_truncate_negative_half_plane
11.43	hyperbolic_fourier_box
11.44	idftmtx_man
11.45	laplace_2d_pwlinear
11.46	mean_fourier_power
11.47	moments_fourier_power
11.48	nanfft
11.49	peaks
11.50	roots_fourier
11.51	spectral_density
11.52	std_fourier_power
11.53	test_complex_exp_product
11.54	test_fourier_filter
11.55	$test_idftmtx$
11.56	var_fourier_power
10	
12 math	
12.1	gaussfit_quantile
13 geom	etry/@Geometry 21
13.1	Geometry
13.2	arclength
13.3	arclength_old
13.4	arclength_old2
13.5	base_point
13.6	base_point_limited
13.7	centroid
13.8	cosa_min_max

13.9	cross2	22
13.10	curvature	22
13.11	ddot 2	23
13.12		23
13.13	distance2	23
13.14	dot	23
13.15	$edge_length \dots \dots$	23
13.16	enclosed_angle	23
13.17	enclosing_triangle	23
13.18	hexagon	23
13.19	inPolygon	24
13.20	inTetra	24
13.21	inTetra2	24
13.22	inTriangle	24
13.23	intersect	24
13.24	lineintersect	24
13.25		24
13.26		24
13.27	mittenpunkt	25
13.28	nagelpoint	25
13.29	onLine	25
13.30	orthocentre	25
13.31	plumb_line	25
13.32		25
13.33		25
13.34	poly_set	25
13.35	poly_width	26
13.36	polyxpoly	26
13.37	project_to_curve	26
13.38		26
13.39	random_disk	26
13.40		26
13.41		26
13.42		27
13.43	tobarycentric	27
13.44	tobarycentric1	27
13.45	tobarycentric2	27
13.46		27
13.47	v	27
13.48	9	27
13.49		27
13.50		28
13.51		28
13.52		28

]	13.53	tri_excircle	8
]	13.54	tri_height	8
]	13.55	tri_incircle	8
]	13.56	tri_isacute	8
	13.57	tri_isobtuse	
	13.58	tri_semiperimeter	9
	13.59	tri_side_length	
•	geome	·	
	14.1	Polygon	
	14.2	bounding_box	
	14.3	curvature_1d	
	14.4	cvt	
	14.5	deg_to_frac	
	14.6	ellipse	
_	14.7	ellipseX	
1	14.8	ellipseY	
	14.9	first_intersect	
	14.10	golden_ratio	
	14.11	hypot3	0
]	14.12	meanangle	0
]	14.13	$meanangle 2 \dots $	1
]	14.14	$meanangle 3 \dots \dots \dots 3$	1
]	14.15	$meanangle 4 \dots $	1
]	14.16	$median angle \ \dots \ \dots \ \dots \ \ 3$	1
]	14.17	$medianangle 2 \ldots \ldots \ldots 3$	1
]	14.18	pilim	1
]	14.19	$streamline_radius_of_curvature \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	2
1 5 1	history	ram/@Histogram 3:	า
	instogi 15.1	2x	
	15.2	Histogram	
	15.2	0	
	15.4	bimodes	
	15.5	cdfS	
	15.6	chi2test	
	15.7	cmoment	
	15.7 15.8		
	15.9	entropy	
	15.10	entropyS	
	15.11	export_csv	
	15.12	iquantile	
	15.13 15.14	kstest	
	1:3 1/4	KHELOSIS	~

15.15	kurtosisS
15.16	mean
15.17	meanS
15.18	median
15.19	medianS
15.20	mode
15.21	modeS
15.22	moment
15.23	momentS
15.24	pdf
15.25	quantile
15.26	quantileS
15.27	resample
15.28	setup 3
15.29	skewness
15.30	skewnessS
15.31	stairs
15.32	stairsS
15.33	std
15.34	stdS
15.35	var
15.36	varS
16 histog	
16.1	hist_man
16.2	histadapt
16.3	histconst
16.4	pdf_poly
16.5	plotcdf
16.6	test_histogram
17 mathe	
17.1	imrotmat
18 linear	-algebra 36
18.1	averaging_matrix_2
18.2	colnorm
18.3	$\operatorname{condest}_{-}$
18.4	connectivity_matrix
10.4	Connectivity ination
19 linear	-algebra/coordinate-transformation 37
19.1	barycentric2cartesian
19.2	barycentric2cartesian3
19.3	·

	19.4	cartesian_to_unit_triangle_basis	7
	19.5	ellipsoid2geoid	7
	19.6	example_approximate_utm_conversion	7
	19.7	latlon2utm	8
	19.8	latlon2utm_simple	8
	19.9	lowrance_mercator_to_wgs84	8
	19.10	nmea2utm	8
	19.11	sn2xy	8
	19.12	unit_triangle_to_cartesian	8
	19.13	utm2latlon	8
	19.14	xy2nt	9
	19.15	xy2sn	9
	19.16	xy2sn_java	9
	19.17	xy2sn_old	9
ว ก	linoar	algebra 39	n
20	20.1	$det 2x 2 \dots \dots 3$	
	20.1	$\det 3x3 \qquad \dots \qquad \qquad 3$	
	20.2	det4x4	
	20.3	$diag2x2 \dots $	-
	20.4	down	
	20.6	eig2x2	
	20.0	CISZAZ	J
21	linear-	algebra/eigenvalue 40	0
	21.1	eig_bisection	0
	21.2	eig_inverse	0
	21.3	eig_inverse_iteration	0
	21.4	eig_power_iteration	0
22	linear-	algebra/eigenvalue/jacobi-davidson 41	1
	22.1	afun_jdm	
	22.2	davidson	
	22.3	jacobi_davidson	
	22.4	jacobi_davidson_qr	
	22.5	jacobi_davidson_qz	
	22.6	jacobi_davidson_simple	
	22.7	jdqr	
	22.8	jdqr_sleijpen	
	22.9	jdqr_vorst	
	22.10	jdqz	
	22.10 22.11	mfunc_jdm	
	22.11	mgs	
	22.12 22.13	minres	
	22.14	mv_jacobi_davidson	
			~

23		algebra	56
	23.1	first	56
	23.2	gershgorin_circle	56
	23.3	haussdorff	56
	23.4	ieig2x2	56
	23.5	inv2x2	57
	23.6	inv3x3	57
	23.7	inv4x4	57
	23.8	kernel2matrix	57
24	linear-	algebra/lanczos	57
	24.1	arnoldi	57
	24.2	arnoldi_new	57
	24.3	eigs_lanczos_man	57
	24.4	lanczos	57
	24.5	lanczos	57
	24.6	lanczos_biorthogonal	58
	24.7	lanczos_biorthogonal_improved	58
	24.8	lanczos_ghep	58
	24.9	mv_lanczos	58
	24.10	reorthogonalise	58
	24.11	test_lanczos	58
25	linear-	algebra	58
	25.1	laplacian_eigenvalue	58
	25.2	laplacian_eigenvector	58
	25.3	laplacian_power	58
	25.4	least_squares_perpendicular_offset	59
	25.5	left	59
26		algebra/linear-systems	59
	26.1	$gmres_man$	59
	26.2	minres_recycle	59
27	linear-	algebra	5 9
	27.1	lpmean	59
	27.2	lpnorm	59
	27.3	matvec3	59
	27.4	$\max 2d \dots $	59
	27.5	$\operatorname{mid}\ \ldots\ldots\ldots\ldots\ldots\ldots\ldots$	60
	27.6	mpoweri	60
	27.7	$mtimes2x2 \dots $	60
	27.8	$mtimes 3x 3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	60
	27.0	nannorm	60

27.10	nanshift	60
27.11	nl	60
27.12	normalise	61
27.13	normalize1	61
27.14	normrows	61
27.15	orth2	61
27.16	orth_man	61
27.17	orthogonalise	61
27.18	$\operatorname{padd2}$	61
27.19	paddext	62
27.20	paddval1	62
27.21	paddval2	62
28 linear	-algebra/polynomial	62
28.1	chebychev	62
28.2	piecewise_polynomial	62
28.3	roots1	62
28.4	roots2	62
28.5	roots2poly	63
28.6	roots3	63
28.7	roots4	63
28.8	roots_piecewise_linear	63
28.9	test_roots4	63
28.10	vanderi_1d	63
00 limaan	almahna	63
29 nnear 29.1	-algebra randrot	63
$\frac{29.1}{29.2}$		63
$\frac{29.2}{29.3}$	right	64
$\frac{29.3}{29.4}$	rot2dir	64
$\frac{29.4}{29.5}$		64
$\frac{29.5}{29.6}$	rot3	64
$\frac{29.0}{29.7}$	rotR	64
29.7		64
$\frac{29.8}{29.9}$	simmilarity_matrix	64
29.9 29.10	spnorm	64
	•	64
29.11	test_roots3	
29.12	transform_minmax	65 65
29.13	transpose3	65 65
29.14	transposeall	65 65
29.15	up	65 65
29.16 29.17	vander_nd	65 65
/U I /	vanoero 70	nn

30	logic		65
	30.1	bitor_man	65
31	master	r/plot	65
	31.1	attach_boundary_value	65
	31.2	cartesian_polar	66
	31.3	img_vargrid	66
	31.4	plot_basis_functions	66
	31.5	plot_convergence	66
	31.6	plot_dof	66
	31.7	plot_eigenbar	66
	31.8	plot_error_estimation	66
	31.9	plot_error_estimation_2	66
	31.10	plot_error_fem	66
	31.11	plot_fdm_kernel	66
	31.12	plot_fdm_vs_fem	67
	31.13	plot_fem_accuracy	67
	31.14	plot_function_and_grid	67
	31.15	plot_hat	67
	31.16	plot_hydrogen_wf	67
	31.17	plot_mesh	67
	31.18	plot_mesh_2	67
	31.19	plot_refine	67
	31.20	plot_refine_3d	67
	31.21	plot_runtime	67
	31.22	plot_spectrum	68
	31.23	plot_wavefunction	68
99	magta	n/nonted	68
3 4	32.1	r/ported	68
	$32.1 \\ 32.2$	assemble_2d_phi_phi	68
	32.3		68
	32.3	assemble_3d_phi_phi	68
	32.4 32.5	dV_2d	68
	32.6	derivative_3d	68
	32.7	element_neighbour_2d	68
	32.8	prefetch_2d	69
	32.8	promote_2d_3_10	69
		•	69
	32.10	promote_2d_3_15	
	32.11	promote_2d_3_21	69 60
	32.12	promote_2d_3_6	69 60
	32.13 32.14	promote_3d_4_10	69 69
		promote_3d_4_20	69
	32.15	promote_3d_4_35	09

	32.16 32.17	vander_2d	69 69
กก			70
33			
	33.1	nearest_fractional_timestep	70
34	numbe	er-theory	70
	34.1	ceiln	70
	34.2	digitsb	70
	34.3	floorn	70
	34.4	iseven	70
	34.5	multichoosek	70
	34.6	nchoosek_man	71
	34.7	pythagorean_triple	71
	34.8	roundn	71
25		cical-methods	71
33			71
	35.1	advect_analytic	71
36	numer	rical-methods/differentiation	71
	36.1	derivative1	71
	36.2	derivative2	71
37	numar	rical-methods	71
J 1	37.1	diffuse_analytic	71
	01.1	diffuse_analy tie	11
38	numer	rical-methods/finite-difference	72
	38.1	1 · C	
	38.2	cdiff	72
	30.2	cdiffb	72 72
	38.3		
		cdiffb	72
	38.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72 72
	38.3 38.4	cdiffb central_difference cmean	72 72 72
	38.3 38.4 38.5	cdiffbcentral_differencecmeancmean2	72 72 72 72
	38.3 38.4 38.5 38.6	cdiffb	72 72 72 72 72
	38.3 38.4 38.5 38.6 38.7	cdiffb	72 72 72 72 72 72
	38.3 38.4 38.5 38.6 38.7 38.8	cdiffb	72 72 72 72 72 72 73
	38.3 38.4 38.5 38.6 38.7 38.8 38.9	cdiffb central_difference cmean cmean2 derivative_matrix_1_1d derivative_matrix_2_1d derivative_matrix_2d derivative_matrix_curvilinear	72 72 72 72 72 72 73 73
	38.3 38.4 38.5 38.6 38.7 38.8 38.9 38.10	cdiffb central_difference cmean cmean2 derivative_matrix_1_1d derivative_matrix_2_1d derivative_matrix_2d derivative_matrix_curvilinear derivative_matrix_curvilinear_2	72 72 72 72 72 72 73 73 73
	38.3 38.4 38.5 38.6 38.7 38.8 38.9 38.10 38.11	cdiffb central_difference cmean cmean2 derivative_matrix_1_1d derivative_matrix_2_1d derivative_matrix_2d derivative_matrix_curvilinear derivative_matrix_curvilinear_2 difference_kernel	72 72 72 72 72 72 73 73 73
	38.3 38.4 38.5 38.6 38.7 38.8 38.9 38.10 38.11 38.12	cdiffb central_difference cmean cmean2 derivative_matrix_1_1d derivative_matrix_2_1d derivative_matrix_2d derivative_matrix_curvilinear derivative_matrix_curvilinear_2 difference_kernel diffusion_matrix_2d_anisotropic	72 72 72 72 72 73 73 73 73 73
	38.3 38.4 38.5 38.6 38.7 38.8 38.9 38.10 38.11 38.12 38.13	cdiffb central_difference cmean cmean2 derivative_matrix_1_1d derivative_matrix_2_1d derivative_matrix_2d derivative_matrix_curvilinear derivative_matrix_curvilinear_2 difference_kernel diffusion_matrix_2d_anisotropic diffusion_matrix_2d_anisotropic2	72 72 72 72 72 73 73 73 73 73 73
	38.3 38.4 38.5 38.6 38.7 38.8 38.9 38.10 38.11 38.12 38.13 38.14	cdiffb central_difference cmean cmean2 derivative_matrix_1_1d derivative_matrix_2_1d derivative_matrix_2d derivative_matrix_curvilinear derivative_matrix_curvilinear_2 difference_kernel diffusion_matrix_2d_anisotropic diffusion_matrix_2d_anisotropic2 directional_neighbour	72 72 72 72 72 73 73 73 73 73 73 73
	38.3 38.4 38.5 38.6 38.7 38.8 38.9 38.10 38.11 38.12 38.13 38.14 38.15	cdiffb central_difference cmean cmean2 derivative_matrix_1_1d derivative_matrix_2_1d derivative_matrix_2d derivative_matrix_curvilinear derivative_matrix_curvilinear_2 difference_kernel diffusion_matrix_2d_anisotropic diffusion_matrix_2d_anisotropic2 directional_neighbour distmat	72 72 72 72 72 73 73 73 73 73 73 73

	38.19	laplacian_fdm	74
	38.20	$lrmean \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	74
39		ical-methods/finite-difference/master	74
	39.1	fdm_adaptive_grid	74
	39.2	fdm_adaptive_refinement_old	74
	39.3	$fdm_assemble_d1_2d \ \dots \dots \dots \dots \dots \dots \dots \dots$	74
	39.4	$fdm_assemble_d2_2d \ \dots \dots \dots \dots \dots \dots \dots \dots$	75
	39.5	$fdm_confinement \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	75
	39.6	$fdm_d_vargrid \dots \dots$	75
	39.7	$fdm_h_unstructured \ \dots $	75
	39.8	$fdm_hydrogen_vargrid\ .\ .\ .\ .\ .\ .\ .\ .$	75
	39.9	$fdm_mark_unstructured_2d \ \dots \dots \dots \dots \dots \dots \dots$	75
	39.10	$fdm_plot \dots \dots$	75
	39.11	$fdm_plot_series \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	75
	39.12	$fdm_refine_2d\ldots\ldots\ldots\ldots\ldots\ldots$	75
	39.13	$fdm_refine_3d\ldots\ldots\ldots\ldots\ldots\ldots$	75
	39.14	$fdm_refine_unstructured_2d \ \dots \ \dots \ \dots \ \dots \ \dots \ \dots$	76
	39.15	$fdm_schroedinger_2d \ldots \ldots \ldots \ldots \ldots \ldots$	76
	39.16	$fdm_schroedinger_3d \ldots \ldots \ldots \ldots \ldots \ldots$	76
	39.17	${\rm relocate} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	76
40	n	ical mathada/finita diffaranca	76
40	40.1	$egin{aligned} \mathbf{ical-methods/finite-difference} \\ \mathbf{mid} \ \ldots \ $	76
	40.1		76
	40.2	pwmid	76
	40.3		76
		steplength	77
	40.5	swapoddeven	
	40.6	test_derivative_matrix_2d	77
	40.7	test_derivative_matrix_curvilinear	77
	40.8	test_difference_kernel	77
	40.9	upwind_difference	77
41	numer	ical-methods/finite-element	77
	41.1	Mesh_2d_java	77
	41.2	Tree_2d_java	77
	41.3	assemble_1d_dphi_dphi	77
	41.4	assemble_1d_phi_phi	77
	41.5	assemble_2d_dphi_dphi_java	78
	41.6	assemble_2d_phi_phi_java	78
	41.7	assemble_3d_dphi_dphi_java	78
	41.8	assemble_3d_phi_phi_java	78
	41.9	boundary_1d	78
	41.10	boundary_2d	78

4	11.11	boundary_3d
4	11.12	check_area_2d
4	11.13	circmesh
4	11.14	cropradius
4	11.15	display_2d
4	11.16	display_3d
4	11.17	distort
4	11.18	err_2d
4	11.19	estimate_err_2d_3
4	11.20	example_1d
4	11.21	example_2d
4	11.22	explode
4	11.23	fem_2d
4	11.24	$fem_2d_heuristic_mesh \dots \dots$
4	11.25	$fem_get_2d_radial \dots \dots 80$
4	11.26	fem_interpolation
4	11.27	$fem_plot_1d\ldots\ldots\ldots\ldots 80$
4	11.28	fem_plot_1d_series
4	11.29	$fem_plot_2d\ldots\ldots\ldots\ldots 80$
4	41.30	$fem_plot_2d_series \ \dots \ \dots \ 80$
4	11.31	$fem_plot_3d\ldots\ldots\ldots\ldots\ldots 80$
4	11.32	fem_plot_3d_series
4	11.33	$fem_plot_confine_series \dots \dots 80$
4	11.34	fem_radial
4	11.35	flip_2d
4	11.36	get_mesh_arrays
4	11.37	hashkey
		ical-methods/finite-element/int 81
	12.1	int_1d_gauss
	12.2	int_1d_gauss_1
	12.3	int_1d_gauss_2
	12.4	int_1d_gauss_3
	12.5	int_1d_gauss_4
	12.6	int_1d_gauss_5
	12.7	int_1d_gauss_6
	12.8	int_1d_gauss_lobatto
	12.9	int_1d_gauss_n
	12.10	int_1d_nc_2
	12.11	int_1d_nc_3
	12.12	int_1d_nc_4
	12.13	int_1d_nc_5
	12.14	int_1d_nc_6
4	12.15	int_1d_nc_7

	42.16	int_1d_nc_7_hardy	33
	42.17	int_2d_gauss_1	33
	42.18		33
	42.19	int_2d_gauss_13	33
	42.20	int_2d_gauss_16	33
	42.21	int_2d_gauss_19	33
	42.22	int_2d_gauss_25	33
	42.23	int_2d_gauss_3	33
	42.24	int_2d_gauss_33	33
	42.25	int_2d_gauss_4	33
	42.26	int_2d_gauss_6	34
	42.27	int_2d_gauss_7	34
	42.28		34
	42.29	int_2d_nc_10	34
	42.30	int_2d_nc_15	34
	42.31	int_2d_nc_21 8	34
	42.32		34
	42.33	int_2d_nc_6	34
	42.34	int_3d_gauss_1	34
	42.35		34
	42.36	9	35
	42.37	int_3d_gauss_15	35
	42.38	int_3d_gauss_24	35
	42.39	int_3d_gauss_4	35
	42.40		35
	42.41	int_3d_gauss_5	35
	42.42	int_3d_nc_11	35
	42.43		35
	42.44		35
	42.45	int_3d_nc_8	35
43	numer	,	86
	43.1	1	36
	43.2		36
	43.3		36
	43.4		36
	43.5	$\operatorname{mesh_3d_uniform}$	36
	43.6	mesh_interpolate	36
	43.7	neighbour_1d	36
	43.8	old	36
	43.9	1 0	36
	43.10	pdeeig_2d	37
	43.11	pdeeig_3d	37
	43.12	polynomial_derivative_1d	37

	43.13	potential_const	
	43.14	potential_coulomb	87
	43.15	potential_harmonic_oscillator	87
	43.16	project_circle	87
	43.17	project_rectangle	87
	43.18	promote_1d_2_3	87
	43.19	promote_1d_2_4	87
	43.20	promote_1d_2_5	88
	43.21	promote_1d_2_6	88
	43.22	quadrilaterate	88
	43.23	recalculate_regularity_2d	88
	43.24	$refine_1d \dots $	88
	43.25	refine_2d_21	88
	43.26	$refine_2d_structural $	88
	43.27	$regularity_1d \ldots \ldots \ldots \ldots \ldots \ldots$	88
	43.28	$regularity_2d \ldots \ldots \ldots \ldots \ldots \ldots$	88
	43.29	regularity_3d	89
	43.30	relocate_2d	89
	43.31	test_circmesh	89
	43.32	test_hermite	89
	43.33	tri_assign_points	89
	43.34	triangulation_uniform	89
	43.35	$vander_1d $	89
	43.36	$vanderd_1d \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	89
	43.37	vanderi_1d	89
44	numer	ical-methods/finite-volume/@Advection	90
	44.1	Advection	90
	44.2	$dot_advection $	90
45		ical-methods/finite-volume/@Burgers	90
	45.1	burgers_split	
	45.2	dot_burgers_fdm	
	45.3	dot_burgers_fft	90
46	numer	ical-methods/finite-volume/@Finite_Volume	90
	46.1	Finite_Volume	90
	46.2	apply_bc	91
	46.3	solve \ldots	91
	46.4	$step_split_strang \ \dots $	91
	46.5	$step_unsplit \dots \dots$	91
47	numer	ical-methods/finite-volume/@Flux_Limiter	91
		Flux Limiton	01

	47.2	beam_warming	91
	47.3	fromm	92
	47.4	$lax_wendroff \dots $	92
	47.5	minmod	92
	47.6	$monotized_central \ \dots $	92
	47.7	$muscl\ \dots$	92
	47.8	superbee	92
	47.9	upwind	92
	47.10	vanLeer	93
48	numer	ical-methods/finite-volume/@KDV	93
	48.1	dot_kdv_fdm	93
	48.2	$dot_kdv_fft \ \dots $	93
	48.3	$kdv_split \ \dots $	93
49	numer	$ical-methods/finite-volume/@Reconstruct_Average_E$	volve 93
	49.1	Reconstruct_Average_Evolve	93
	49.2	$advect_highres \ \dots $	94
	49.3	advect_lowress	94
50	numer	ical-methods/finite-volume	94
	50.1	Godunov	94
	50.2	Lax_Friedrich	94
	50.3	Measure	94
	50.4	Roe	94
	50.5	$fv_swe\dots$	95
	50.6	$staggered_euler \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	95
	50.7	$staggered_grid \ \dots $	95
5 1	numer	ical-methods	95
	51.1	grid2quad	95
${f 52}$	numer	ical-methods/integration	95
	52.1	$cumintL \dots $	95
	52.2	$cumint R \dots \dots \dots \dots \dots \dots \dots \dots \dots $	95
	52.3	$int_trapezoidal \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	95
53	numer	ical-methods/interpolation/@Kriging	96
	53.1	Kriging	96
	53.2	estimate_semivariance	96
	53.3	$interpolate_{\dots$	96
54	numer	${\it ical-methods/interpolation/@RegularizedInterpolator}$	r1 96
	54.1	RegularizedInterpolator1	96
	54.2	init	96

55	numer	${\it ical-methods/interpolation/@RegularizedInterpolator}$	2 97
	55.1	RegularizedInterpolator2	97
	55.2	init	97
56		${\it ical-methods/interpolation/@RegularizedInterpolator}$	
	56.1	RegularizedInterpolator3	97
	56.2	init	97
57	numer	ical-methods/interpolation	97
	57.1	IDW	97
	57.2	IPoly	97
	57.3	IRBM	98
	57.4	ISparse	98
	57.5	Inn	98
	57.6	Interpolator	98
	57.7	fixnan	98
	57.8	idw1	98
	57.9	idw2	98
	57.10	inner2outer	99
	57.11	inner2outer2	99
	57.12	interp1_circular	99
	57.13	interp1_limited	99
	57.14	interp1_man	99
	57.15	interp1_piecewise_linear	99
	57.16	interp1_save	99
	57.17	-	100
	57.18	interp1_smooth	
	57.19	interp1_unique	
	57.20	interp2_man	
	57.21	interp_angle	
	57.22	interp_fourier	
	57.23	interp_fourier_batch	
	57.24	interp_sn	
	57.25	interp_sn2	
	57.26	interp_sn3	
	57.27	interp_sn	
	57.28	limit_by_distance_1d	
	57.29	resample1	
	57.30	resample_d_min	
	57.31	resample_vector	
	57.32	test_interp1_limited	
	-		
58	numer	ical-methods 1	L02
	58.1	inverse_complex	102

	58.2	maccormack_step	102
	58.3	$minmod \dots \dots$	
59	numer	ical-methods/multigrid	102
	59.1	mg_interpolate	102
	59.2	mg_restrict	102
60		${ m cical-methods/ode/@BVPS_Characteristic}$	102
	60.1	BVPS_Characteristic	
	60.2	$assemble 1_A \ldots \ldots \ldots \ldots \ldots \ldots$	
	60.3	$assemble 1_A_Q \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
	60.4	assemble2_A	
	60.5	$assemble_AA \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
	60.6	$assemble_AAA \dots \dots$	
	60.7	assemble_Ic	
	60.8	bvp1c	
	60.9	check_arguments	
	60.10	couple_junctions	104
	60.11	derivative	
	60.12	init	104
	60.13	$inner2outer_bvp2c$	104
	60.14	reconstruct	104
	60.15	resample	104
	60.16	solve	104
	60.17	$test_assemble1_A \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	105
	60.18	$test_assemble2_A \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	105
61		${ m cical-methods/ode/@Time_Stepper}$	105
	61.1	Time_Stepper	
	61.2	solve	105
e o		ical mathada/ada	105
04		rical-methods/ode	
	62.1	bvp2fdm	105
	62.3		
	62.4	bvp2wavetwopass	
	62.5	ivp_euler_forward	
		ivp_euler_forward2	
	62.6	ivprk2	
	62.7	ode2_matrix	
	62.8	ode2characteristic	
	62.9	step_trapezoidal	
	62.10	test_bvp2	107
63	numer	ical-methods/optimisation	107

63.1	aitken_iteration
63.2	anderson_iteration
63.3	armijo_stopping_criterion
63.4	astar
63.5	binsearch
63.6	bisection
63.7	box1
63.8	box2
63.9	cauchy
63.10	cauchy2
63.11	directional_derivative
63.12	dud
63.13	extreme3
63.14	extreme_quadratic
63.15	ftest
63.16	fzero_bisect
63.17	fzero_newton
63.18	grad
63.19	hessian
63.20	hessian_from_gradient
63.21	hessian_projected
63.22	line_search
63.23	line_search2
63.24	line_search_polynomial
63.25	line_search_polynomial2
63.26	line_search_quadratic
63.27	line_search_quadratic2
63.28	line_search_wolfe
63.29	ls_bgfs
63.30	ls_broyden
63.31	ls_generalized_secant
63.32	nlcg
63.33	nlls
63.34	picard
63.35	poly_extrema
63.36	quadratic_function
63.37	quadratic_programming
63.38	quadratic_step
63.39	rosenbrock
63.40	sqrt_heron
63.41	test_directional_derivative
63.42	test_dud
63.43	test_fzero_newton
63.44	test_line_search_quadratic2
J.J. I I	- CONCLINED DOWN CITE OF GROWN CONTROL OF THE FORM THE FO

	63.45	test_ls_generalized_secant	114
	63.46	$test_nlcg_6_order \dots \dots$	114
	63.47	test_nlls	114
64	numer	ical-methods/pde	L14
	64.1	$laplacian 2 d_fundamental_solution $	114
65	numer	ical-methods/piecewise-polynomials	L 14
	65.1	Hermite1	114
	65.2	$hp2_fit \dots \dots \dots \dots \dots \dots \dots \dots \dots $	114
	65.3	$hp2_predict \dots \dots$	115
	65.4	$\label{predict} $\operatorname{hp_predict} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	115
	65.5	hp_regress	115
	65.6	$lp_count \dots $	115
	65.7	$lp_predict \dots \dots$	115
	65.8	lp_regress	115
	65.9	$lp_regress_$	115
66	numer	ical-methods	115
	66.1	$test_adams_bash for th \dots $	115
67	mathe	matics 1	116
	67.1	oversampleNZ	116
		r	
68	regress	sion/@PolyOLS	116
	68.1	PolyOLS	116
	68.2	coefftest	116
	68.3	detrend	116
	68.4	fit	116
	68.5	$\operatorname{fit} \ \ldots \ $	116
	68.6	predict	116
	68.7	$\operatorname{predict}_{-} \dots \dots \dots \dots \dots$	
	68.8	slope	117
69	regress	sion/@PowerLS	L17
	69.1	,	117
	69.2		117
	69.3	predict	
	69.4	$\operatorname{predict}_{-} \dots \dots \dots \dots \dots$	
70	regress	sion/@Theil	L17
	70.1	•	117
	70.1	detrend	
	70.3	fit	
		predict	
	1 V.T	DIVINO A CALL A	

	70.5	slope
71	regress	sion 118
	71.1	Theil_Multivariate
	71.2	areg
	71.3	ginireg
	71.4	hessimplereg
	71.5	l1lin
	71.6	lsq_sparam
	71.7	polyfitd
	71.8	regression_method_of_moments
	71.9	robustlinreg
	71.10	theil2
	71.11	theil_generalised
	71.12	total_least_squares
	71.13	weighted_median_regression
	, = : = 0	
72	set-the	
	72.1	is subset
	_	
7 3	mathe	
	73.1	shuffle_index
74	signal-	processing 121
	74.1	asymwin
75	signal-	processing/autocorrelation 121
	75.1	acf_radial
	75.2	acfar1
	75.3	acfar1_2
	75.4	acfar2
	75.5	acfar2_2
	75.6	$ar1_cutoff_frequency \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	75.7	ar1_effective_sample_size
	75.8	$ar1_mse_mu_single_sample \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	75.9	ar1_mse_pop
	75.10	ar1_mse_range
	75.11	ar1_spectrum
	75.12	ar1_to_tikhonov
	75.13	ar1_var_factor
	75.14	ar1_var_factor
	75.15	ar1_var_range2
	75.15 75.16	ar1_var_range2

	75.18	ar2_acf2c
	75.19	ar2conv
	75.20	ar2dof
	75.21	ar2param
	75.22	autocorr2
	75.23	autocorr_bandpass
	75.24	autocorr_brownian_phase
	75.25	autocorr_brownian_phase_2d
	75.26	autocorr_brownian_phase_across
	75.27	autocorr_decay_rate
	75.28	autocorr_effective_sample_size
	75.29	autocorr_fft
	75.30	autocorr_forest
	75.31	autocorr_genton
	75.32	autocorr_highpass
	75.33	autocorr_lowpass
	75.34	autocorr_periodic_additive_noise
	75.35	autocorr_periodic_windowed
	75.36	autocorr_radial
7 6	_	processing 126
	76.1	average_wave_shape
	76.2	bandpass
	76.3	bartlett
	76.4	bin1d
	76.5	bin2d
	76.6	binormrnd
	76.7	coherence
	76.8	conv1_man
	76.9	conv2_man
	76.10	conv2z
	76.11	conv30
	76.12	$conv_{-}$
	76.13	conv_centered
	76.14	convz
	76.15	cosexpdelay
	76.16	csmooth
	76.17	daniell_window
	76.18	db2neper
	76.19	db2power
	76.20	derive_bandpass_continuous_scale
	76.21	derive_danielle_weight
	76.22	derive_limit_0_acfar
	76.23	detect_peak

	76.24	determine_phase_shift
	76.25	determine_phase_shift1
	76.26	doublesum_ij
	76.27	effective_sample_size_to_ar1
	76.28	fcut2Lw_gausswin
	76.29	fcut_gausswin
	76.30	$filt_hodges_lehman \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
77	sional_	processing/filters 130
• •	77.1	circfilt2
	77.2	filter1
	77.3	filter2
	77.4	filter
	77.5	filter_r_to_f0
	77.6	filter_rho_to_f0
	77.7	filter_twosided
	77.8	filteriir
	77.9	filterp
	77.10	filterp1
	77.11	filterstd
	77.12	gaussfilt2
	77.13	lowpass_discrete
	77.14	meanfilt2
	77.15	medfilt1_man
	77.16	medfilt1_man2
	77.17	medfilt1_padded
	77.18	medfilt1_reduced
	77.19	trifilt1
	77.20	trifilt2
	0	
7 8	_	processing 133
	78.1	firls_man
	78.2	fit_spectral_density
	78.3	fit_spectral_density_2d
	78.4	fit_spectral_density_radial
	78.5	flattopwin
	78.6	frequency_response_boxcar
	78.7	freqz_boxcar
	78.8	gaussfilt1
	78.9	hanchangewin
	78.10	hanchangewin2
	78.11	hanwin
	78.12	hanwin
	78 13	high pass 1d simple 135

	78.14	kaiserwin
	78.15	kalman
	78.16	lanczoswin
	78.17	last
	78.18	maxfilt1
	78.19	meanfilt1
	78.20	mid_term_single_sample
	78.21	minfilt1
	78.22	minmax
	78.23	mu2ar1
	78.24	mysmooth
	78.25	nanautocorr
	78.26	nanmedfilt1
	78.27	neper2db
	78.28	oscillator_noisy
79	_	processing/passes 136
	79.1	bandpass1d
	79.2	bandpass1d_fft
	79.3	bandpass1d_implicit
	79.4	bandpass2
	79.5	bandpass2d
	79.6	bandpass2d_2
	79.7	bandpass2d_fft
	79.8	bandpass2d_ideal
	79.9	bandpass2d_implicit
	79.10	bandpass2d_iso
	79.11	bandpass_arg
	79.12	bandpass_f0_to_rho
	79.13	bandpass_max
	79.14	bandpass_max2
	79.15	highpass
	79.16	highpass1d_fft_cos
	79.17	highpass1d_implicit
	79.18	highpass2d_fft
	79.19	highpass2d_ideal
	79.20	highpass2d_implicit
	79.21	highpass_arg
	79.22	highpass_fc_to_rho
	79.23	lowpass
	79.24	$lowpass1d_fft \dots \dots 139$
	79.25	$lowpass1d_implicit \dots \dots$
	79.26	lowpass2
	79.27	lowpass2d_2

	79.28	lowpass2d_anisotropic)
	79.29	lowpass2d_fft)
	79.30	lowpass2d_ideal)
	79.31	lowpass2d_implicit)
	79.32	lowpass_arg)
	79.33	lowpass_fc_to_rho)
	79.34	lowpass_iir)
	79.35	lowpass_iir_symmetric)
	79.36	lowpassfilter2)
80	signal-	processing 141	L
	80.1	peaks_man	1
81	signal-	processing/periodogram 141	1
	81.1	periodogram	1
	81.2	periodogram_2d	
	81.3	periodogram_annular	
	81.4	periodogram_bartlett	
	81.5	periodogram_bootstrap	
	81.6	periodogram_confidence_interval	
	81.7	periodogram_filter	
	81.8	periodogram_median	
	81.9	periodogram_p_value	
	81.10	periodogram_qq	
	81.11	periodogram_quantiles	2
	81.12	periodogram_radial	2
	81.13	periodogram_std	2
	81.14	periodogram_test_periodicity	2
	81.15	periodogram_test_periodicity_2d	3
	81.16	periodogram_test_stationarity	4
	81.17	periodogram_welsh	1
82	sional_	processing 144	1
02	82.1	polyfilt1	
	82.2	gmedfilt1	
	82.3	quadratfilt1	
	82.4	quadratwin	_
	82.5	randar1	
	82.6	randar1_dual	
	82.7	randar2	
	82.8	randarp	-
	82.9	rectwin	
	82.10	recursive sum	
	82.10	select range	_

82.12	smooth1d_parametric
82.13	smooth2
82.14	smooth_man
82.15	smooth_parametric
82.16	smooth_parametric2
82.17	smooth_with_splines
82.18	smoothfft
83 signal	-processing/spectral-density 146
83.1	spectral_density_ar2
83.2	spectral_density_area
83.3	spectral_density_bandpass2d_ideal
83.4	spectral_density_bandpass_2d
83.5	spectral_density_bandpass_2d_max2par
83.6	spectral_density_bandpass_2d_scale
83.7	spectral_density_bandpass_2d_scale_old
83.8	spectral_density_bandpass_continuous
83.9	spectral_density_bandpass_continuous_max
83.10	spectral_density_bandpass_continuous_max2par 148
83.11	spectral_density_bandpass_continuous_scale 148
83.12	spectral_density_bandpass_discrete
83.13	spectral_density_brownian_phase
83.14	spectral_density_brownian_phase_2d
83.15	spectral_density_brownian_phase_across
83.16	spectral_density_brownian_phase_across_max 148
83.17	spectral_density_brownian_phase_across_max2par 148
83.18	spectral_density_brownian_phase_across_mode2par 149
83.19	spectral_density_brownian_phase_mode 149
83.20	spectral_density_brownian_phase_mode2par 149
83.21	spectral_density_brownian_phase_scale
83.22	spectral_density_estimate_2d
83.23	spectral_density_flat
83.24	spectral_density_forest
83.25	spectral_density_gausswin
83.26	spectral_density_highpass
83.27	spectral_density_highpass2d_ideal
83.28	spectral_density_highpass_2d
83.29	spectral_density_highpass_cos
83.30	spectral_density_lorentzian
83.31	spectral_density_lorentzian_max
83.32	spectral_density_lorentzian_max2par
83.33	spectral_density_lorentzian_scale
83.34	spectral_density_lowpass2d_ideal
83.35	spectral_density_lowpass_2d

	83.36	spectral_density_lowpass_continuous
	83.37	$spectral_density_lowpass_continuous_scale~.~.~.~.~.~.~151$
	83.38	spectral_density_lowpass_discrete
	83.39	spectral_density_lowpass_one_sided
	83.40	$spectral_density_maximum_bias_corrected \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	83.41	$spectral_density_periodic_additive_noise \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	83.42	$spectral_density_rectwin \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	83.43	spectral_density_wperiodic
84	signal-	processing 151
	84.1	$spectral_density_brownian_phase_reg2par 151$
	84.2	spectrogram
	84.3	sum_i_lag
	84.4	sum_ii
	84.5	sum_ii
	84.6	sum_ij
	84.7	sum_ij
	84.8	sum_ij_partial
	84.9	sum_multivar
	84.10	test_acfar1
	84.11	tikhonov_to_ar1
	84.12	trapwin
	84.13	triwin
	84.14	triwin2
	84.15	tukeywin_man
	84.16	varar1
	84.17	welch_spectrogram
	84.18	wfilt
	84.19	winbandpass
85	signal-	processing/windows 154
	85.1	circwin
	85.2	danielle_window
	85.3	gausswin
	85.4	gausswin2
	85.5	radial_window
	85.6	range_window
	85.7	rectwin_cutoff_frequency
	85.8	std_window
	85.9	window2d
	85.10	window_make_odd
86	signal-	processing 155
	86.1	winfilt0

	86.2	winlength
	86.3	wmeanfilt
	86.4	wmedfilt
	86.5	wordfilt
	86.6	$wordfilt_edgeworth$
	86.7	wrapphase
	86.8	xar1
	86.9	xcorr_man
87	sorting	156
	87.1	sort2
	87.2	sort2d
88	spatial	-pattern-analysis/@Spatial_Pattern 157
	88.1	Spatial_Pattern
	88.2	analyze_grid
	88.3	analyze_transect
	88.4	$extract_improfile \dots 157$
	88.5	imread
	88.6	plot
	88.7	tabulate
89	spatial	-pattern-analysis 157
	89.1	analyze_grid2
	89.2	approximate_ratio_distribution
	89.3	banded_pattern
	89.4	brownian_phase_patch_size_distribution
	89.5	hexagonal_pattern
	89.6	isisotropic
	89.7	patch_size_1d
	89.8	patch_size_2d
	89.9	separate_isotropic_from_anisotropic_density
	89.10	suppress_low_frequency_lobe
90	-	-functions 158
	90.1	bessel_sphere
	90.2	beta_man
	90.3	betainc_man
	90.4	digamma_man
	90.5	$\exp 10 \dots $
	90.6	hankel_sphere
	90.7	hermite
	90.8	$legendre_man \dots \dots$
	90.9	neumann sphere 160

91	statisti	ics	160
	91.1	atan_s2	160
	91.2	beta_kurt	160
	91.3	beta_mean	160
	91.4	beta_moment2param	160
	91.5	beta_skew	160
	91.6	beta_std	160
	91.7	chi2_kurt	160
	91.8	chi2_mean	161
	91.9	chi2_skew	161
	91.10	$chi2_std \dots \dots$	161
	91.11	$coefficient_of_determination \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	161
	91.12	$conditional_expectation_normal . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	161
	91.13	$correlation_confidence_pearson \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	161
വാ	at a tiat	m ics/distributions	161
94	92.1	PDF	
	92.1	binorm_separation_coefficient	
	92.2	binormedf	
	92.4	binormfit	
	92.5	binormpdf	
	92.6	edgeworth_cdf	
	92.7	edgeworth_pdf	
	92.8	gam_moment2param	
	92.9	logn_mean	
	92.10	logn_mode	
	92.11	logn_mode2param	
	92.12	logn_moment2param	
	92.13	logn_param2moment	
	92.14	logn_std	
	92.15	$lognpdf_{-}$	
	92.16	pdfsample	
	92.17	t2cdf	
	92.18	t2inv	
00			101
93	statisti		164 164
	93.1	error_propagation_fraction	
	93.2	error_propagation_product	
	93.3	example_standard_error_of_sample_quantiles	164 164
	93.4 93.5		
		fisher_mean	164 164
	93.6 93.7	fisher_moment2param	
	93.7	gam mean	164 164

	93.9	gam_std
	93.10	gamma_mode_to_parameter
	93.11	gamma_stirling
	93.12	gaussfit3
	93.13	gaussfit_quantile
	93.14	geoserr
	93.15	geostd
	93.16	$hodges_lehmann_correlation$
	93.17	hodges_lehmann_dispersion
94	statisti	ics/information-theory 166
	94.1	akaike_information_criterion
	94.2	bayesian_information_criterion
95	statisti	ics 166
	95.1	jackknife_block
	95.2	kurtncdf
	95.3	kurtnpdf
	95.4	kurtosis_bias_corrected
	95.5	limit
	95.6	logfactorial
	95.7	loglogpdf
	95.8	lognfit_quantile
	95.9	logskewcdf
	95.10	logskewpdf
96	statisti	ics/logu 167
	96.1	lambertw_numeric
	96.2	logtrialtcdf
	96.3	logtrialtinv
	96.4	logtrialtmean
	96.5	$logtrial tpdf \dots \dots$
	96.6	logtrialtrnd
	96.7	logtricdf
	96.8	logtriinv
	96.9	logtrimean
	96.10	logtripdf
	96.11	logtrirnd
	96.12	logucdf
	96.13	logucm
	96.14	loguinv
	96.15	logumean
	96.16	logupdf
	96.17	logurnd

	96.18	loguvar
	96.19	medlogu
	96.20	test_logurnd
	96.21	tricdf
	96.22	triinv
	96.23	trimedian
	96.24	tripdf
	96.25	trirnd
97	statisti	ics 171
	97.1	max_exprnd
	97.2	maxnnormals
	97.3	mean_angle
	97.4	mean_generalized_gampdf
	97.5	midrange
	97.6	minavg
	97.7	mode_man
98	statisti	ics/moment-statistics 172
	98.1	autocorr_man3
	98.2	autocorr_man4
	98.3	autocorr_man5
	98.4	blockserr
	98.5	comoment
	98.6	corr_man
	98.7	cov_man
	98.8	dof
	98.9	edgeworth_quantile
	98.10	effective_sample_size
	98.11	f_correlation
	98.12	f_finite
	98.13	lmean
	98.14	lmoment
	98.15	maskmean
	98.16	masknanmean
	98.17	mean1
	98.18	mean_man
	98.19	mse
	98.20	nanautocorr_man1
	98.21	nanautocorr_man2
	98.22	nanautocorr_man4
	98.23	nancorr
	98.24	nancumsum
	08 25	nanlmean 175

98.26	nanr2
98.27	nanrms
98.28	nanrmse
98.29	nanserr
98.30	nanwmean
98.31	nanwstd
98.32	nanwvar
98.33	nanxcorr
98.34	pearson
98.35	pearson_to_kendall
98.36	pool_samples
98.37	qmean
98.38	range_mean
98.39	rmse
98.40	serr
98.41	serr1
98.42	test_qskew
98.43	test_qstd_qskew_optimal_p
98.44	wautocorr
98.45	wcorr
98.46	wcov
98.47	wdof
98.48	wkurt
98.49	wmean
98.50	wrms
98.51	wserr
98.52	wskew
98.53	wstd
98.54	wvar
00	
99 statist	
99.1	nangeomean
99.2	nangeostd
100statics	tics/nonparametric-statistics 180
100.1	kernel1d
100.2	kernel2d
100.2	Romoizu
101statist	tics 180
101.1	normmoment
101.2	normpdf2
	tics/order-statistics 181
102.1	hodges_lehmann_location

102.2	kendall	181
102.3	kendall_to_pearson	181
102.4	mad2sd	181
102.5	madcorr	181
102.6	median2_holder	182
102.7	median_ci	182
102.8	median_man	182
102.9	mediani	182
102.10	nanmadcorr	182
102.11	nanwmedian	182
102.12	nanwquantile	182
102.13	oja_median	183
102.14	qkurtosis	183
102.15	qmoments	183
102.16	gskew	183
102.17	-	
102.18	gstdq	184
102.19	quantile1_optimisation	184
102.20	quantile2_breckling	184
102.21	quantile2_chaudhuri	184
102.22	quantile2_projected	184
102.23		
102.24		
102.25	quantile_regression_simple	184
102.26	ranking	
102.27	spatial_median	185
102.28	spatial_quantile	
102.29	spatial_quantile2	185
102.30		
102.31	spatial_rank	
102.32	spatial_sign	185
102.33		
102.34	spearman	186
102.35	spearman_rank	
102.36	spearman_to_pearson	186
102.37	wmedian	186
102.38	wquantile	186
103statist		86
103.1	1	186
103.2	quantile_extrap	
103.3	quantile_sin	186
104statist	ics/random-number-generation 1	.87

	104.1	laplacernd
	104.2	randc
	104.3	skewness2param
	104.4	skewpdf_central_moments
	104.5	skewrnd
10	5statist	ics 187
	105.1	range
	105.2	resample_with_replacement
10	l&tatist	ics/resampling-statistics/@Jackknife 188
	106.1	Jackknife
	106.2	estimated_STATIC
	106.3	matrix1_STATIC
	106.4	matrix2
10		ics/resampling-statistics 189
	107.1	block_jackknife
	107.2	jackknife_moments
	107.3	moving_block_jackknife
	107.4	randblockserr
	107.5	resample
10	8statist	ics 190
	108.1	scale_quantile_sd
	108.2	sd_sample_quantiles
	108.3	skew_generalized_normal_fit
	108.4	$skew_generalized_normpdf $
	108.5	skewcdf
	108.6	skewparam_to_central_moments
	108.7	skewpdf
	108.8	spatialrnd
	108.9	$test_mean_generalized_gampdf \ \dots \ \dots \ \dots \ 191$
	108.10	test_skew_generalized_normpdf
	108.11	trimmed_mean
	108.12	ttest2_man
	108.13	ttest_man
	100.10	00000
	108.14	ttest_paired
	108.14	ttest_paired
	108.14 108.15	ttest_paired
	108.14 108.15 108.16	ttest_paired
	108.14 108.15 108.16 108.17	ttest_paired

10	8.21	wnormpdf
109st	ocha	stic 192
10	9.1	brownian_drift_hitting_probability
10	9.2	$brownian_drift_hitting_probability2 . \ . \ . \ . \ . \ . \ . \ . \ . \ .$
10	9.3	brownian_field
10	9.4	brownian_motion_1d_acf
10	9.5	brownian_motion_1d_cov
10	9.6	brownian_motion_1d_fft
10	9.7	brownian_motion_1d_fourier
10	9.8	brownian_motion_1d_interleave
10	9.9	brownian_motion_1d_laplacian
10	9.10	brownian_motion_2d_cov
10	9.11	brownian_motion_2d_fft
10	9.12	brownian_motion_2d_fft_old
10	9.13	brownian_motion_2d_fourier
10	9.14	brownian_motion_2d_interleave
10	9.15	brownian_motion_2d_interleaving
10	9.16	brownian_motion_2d_kahunen
10	9.17	
10	9.18	brownian_motion_with_drift_hitting_probability 194
110m	athe	matics 194
11	0.1	$ternary_diagram \dots \dots$
	,	aster 195
	1.1	dat_test_lanczos_3d_k_20_n_40
	1.2	poisson2d_blk
	1.3	qr_implicit_givens_2
	1.4	spectral_derivative_2d
	1.5	test_2d_eigensolver_hydrogen
	1.6	test_2d_refine
	1.7	$test_3d_eigensolver_hydrogen \dots \dots$
	1.8	test_FEM
	1.9	test_Mesh_3d
	1.10	test_arnoldi
	1.11	test_arpackc
11	1.12	test_assemble
11	1.13	$test_assembly_performance \dots \dots$
11	1.14	$test_bc_one_sided \dots \dots \dots \dots 196$
11	1.15	$test_compare_solvers \dots \dots$
11	1.16	$test_complete \dots $
11	1.17	$test_convergence \ \dots \ $
11	1.18	test_convergence_b

111.19	test_df_2d
111.20	test_eig_algs
111.21	test_eig_inverse
111.22	test_eigs_lanczos
111.23	test_eigs_lanczos_1
111.24	test_eigs_lanczos_2
111.25	test_eigs_lanczos_performance
111.26	test_fdm
111.27	test_fdm_d_vargrid
111.28	test_fdm_spectral
111.29	test_fem
111.30	test_fem_1d
111.31	test_fem_1d_higher_order
111.32	test_fem_2d_adaptive
111.33	test_fem_2d_higher_order
111.34	test_fem_3d_higher_order
111.35	test_fem_3d_refine
111.36	test_fem_b
111.37	test_fem_derivative
111.38	test_fem_quadrature
111.39	test_final
111.40	test_fix_substitution
111.41	test_forward
111.42	test_get_sparse_arrays
111.43	test_harmonic_oscillator
111.44	test_high_order_fdm_periodic_bc
111.45	test_hydrogen_wf
111.46	test_ichol
111.47	test_interpolation
111.48	test_inverse_problem
111.49	test_it_vs_exact
111.50	test_jama
111.51	test_jd
111.52	test_jdqz
111.53	test_lanczos_2
111.54	test_lanczos_biorthogonal
111.55	test_laplacian
111.56	test_laplacian_non_uniform
111.57	test_laplacian_simple
111.58	test_mesh_2d_uniform
111.59	test_mesh_2d_uniform_2
111.60	test_mesh_circle
111.61	test_mesh_generation
111.62	test_mesh_interpolate

111 63	test_mg
	test_minres_recycle
	test_multigrid
111.66	test_nc
111.67	
	test_pde
111.69	test_permutation
111.70	test_poison_fem
	test_polar
	test_potential
111.73	test_powers
	test_precondition
111.75	test_project_rectangle
111.76	$\operatorname{test_qr}$
111.77	•
	test_radial_adaptive
111.79	test_radial_confinement
111.80	test_radial_fixes
111.81	
111.82	test_refine_2d_b
111.83	
	test_refine_structural
111.85	test_regularisation
111.86	test_round_off
111.87	test_schrödinger_potentials
111.88	test_uniform_mesh
111.89	test_vargrid
112test/si	gnal-processing/autocorrelation 204
112.1	test_acf
112.2	test_acf_bias
112.3	test_acf_brownian_phase
112.4	test_acfar1_2
112.5	test_acfar1_3
112.6	test_acfar1_4
112.7	test_acfar2
112.8	test_ar1_var_factor
112.9	test_ar1_var_factor_2
112.10	$test_ar1_var_mu_single_sample $
112.11	test_ar1_var_pop
112.12	$test_ar1_var_pop_1 \dots \dots$
112.13	$test_ar1delay \dots \dots$
112.14	test_ar2

113test/s	signal-processing/passes	205
113.1	$test_bandpass2d_ideal \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	205
113.2	$test_lowpass1d_fft \ldots \ldots \ldots \ldots \ldots \ldots$	205
113.3	$test_lowpass1d_implicit \dots \dots$	205
113.4	$test_lowpass2d_anisotropic $	205
113.5	$test_lowpass2d_fft $	206
113.6	$test_lowpass2d_rho \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	206
114test/s	signal-processing/periodogram	206
114.1	test_periodicity_test_2d	206
114.2	test_periodogram_bartlett_se	206
114.3	test_periodogram_gauss	206
114.4	test_periodogram_radial	206
114.5	test_periodogram_test	
114.6	test_periodogram_test_periodicity_2d	
114.7	$test_periogogram_significance \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	206
115test/s	signal-processing/spectral-density	207
115.1	test_spectral_density_2	
115.2	test_spectral_density_bandpass_2d	
115.3	test_spectral_density_bandpass_2d_max2par	
115.4	test_spectral_density_bandpass_continuous	
115.5	test_spectral_density_bandpass_continuous_1	
115.6	test_spectral_density_bandpass_maximum	
115.7	test_spectral_density_bandpass_scale	
115.8	test_spectral_density_bp	
115.9	test_spectral_density_bp_2d	
115.10		
115.11	test_spectral_density_brownian_phase	208
115.12		
115.13	test_spectral_density_brownian_phase_across	208
115.14	test_spectral_density_brownian_phase_across_mode2par	208
115.15	test_spectral_density_brownian_phase_mode	208
115.16	test_spectral_density_brownian_phase_mode2par	208
115.17	test_spectral_density_brownian_phase_scale	208
115.18	3 test_spectral_density_flat	208
115.19	test_spectral_density_hp_cos	208
115.20	test_spectral_density_lorentzian_max	209
115.21		
115.22		
115.23	3 test_spectral_density_lowpass_continuous	209
115.24	test_spectral_density_lowpass_continuous_1	209
115.25		

116 test/s	patial-pattern-analysis	209
116.1	test_approximate_ratio_distribution	. 209
116.2	test_approximate_ratio_quantile	. 209
116.3	$test_spearate_isotropic_density \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 209
117test/st	tatistics/moment-statistics	210
117.1	test_wmean	. 210
118test/st	tatistics	210
	test_fisher_moment2param	
110tost /st	tochastics	210
	test_brownian_surface	
110.1	ucst_blowinan_surface	. 210
120test		210
120.1	$test_S \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 210
120.2	$test_advect_analytic \ \dots \dots \dots \dots \dots \dots \dots \dots$. 210
120.3	$test_asymbp \dots \dots$. 210
120.4	test_bandpass2d	. 210
120.5	$test_bandwidth \dots \dots$. 210
120.6	test_bartlett_angle	. 211
120.7	test_bartlett_distribution	. 211
120.8	test_bartlett_expansion	. 211
120.9	test_beta	
120.10	test_betainc	. 211
120.11	test_bivariate_covariance_term	. 211
120.12	test_brownian_drift_hitting_probability	. 211
120.13	test_brownian_drift_hitting_probability2	. 211
120.14	test_brownian_motion_1d	. 211
120.15		
120.16	test_brownian_motion_2d_fft	. 212
120.17	test_brownian_noise_1d	. 212
120.18	test_brownian_noise_2d	. 212
120.19	test_brownian_noise_interleave	. 212
120.20	test_coherence	. 212
120.21	test_combined_spectral_density	. 212
120.22	test_continuous_fourier_transform	
120.23	test_convexity	. 212
120.24	test_d2	. 212
120.25		
120.26	test_diffuse_analytic	
120.27	· ·	
120.28		
120.29		

120.30	test_f
120.31	test_f2
120.32	test_fit_2d_spectral_density
120.33	test_fourier
120.34	test_fourier_derivative
120.35	test_fourier_derivative_1
120.36	test_fourier_integral
120.37	test_fourier_mask_covariance_matrix
120.38	test_ft_bp
120.39	test_gam
120.40	test_gamma_distribution
120.41	test_gaussfit3
120.42	test_gaussian_flat
120.43	test_geoserr
120.44	test_hexagonal_pattern
120.45	test_iafrate
120.46	test_implicit_ode
120.47	test_imrotmat
120.48	test_integration
120.49	test_ivp
120.50	test_jacobian
120.51	test_lanczoswin
120.52	test_laplacian_power
120.53	test_lognfit_quantile
120.54	test_ls_perpendicular_offset
120.55	test_madcorr
120.56	test_mask
120.57	test_max_normal
120.58	test_moments
120.59	test_moments_fourier_power
120.60	test_mtimes3x3
120.61	test_noisy_oscillator
120.62	test_nonperiodic_pattern
120.63	test_normalization
120.64	test_ols
120.65	test_parcorr
120.66	test_positivity_preserving
120.67	test_randar1
120.68	test_randar1_multivariate
120.69	test_randar2
120.70	test_ratio_distributions
120.71	test_sd_rectwin
120.72	test_spatialrnd
120.73	test_spectrum_additivity

120.74	test_stationarity
120.75	test_stationarity2
120.76	test_sum_ij
120.77	test_sum_multivar
120.78	test_trifilt1
120.79	test_wautocorr
120.80	test_wavelet_transform
120.81	test_whittle
120.82	test_window
120.83	test_wordfilt
120.84	$test_xar1_mid_term$
121mathe	matics 219
121.1	trapezoidal_fixed
122wavele	et 219
122.1	contiuous_wavelet_transform
122.2	cwt_man
122.3	cwt_man2
122.4	example_wavelets
122.5	phasewrap
122.6	test_cwt_man
122.7	test_phasewrap
122.8	test_wavelet
122.9	test_wavelet2
122.10	test_wavelet_analysis
122.11	test_wavelet_reconstruct
122.12	test_wtc
122.13	wavelet
122.14	wavelet_reconstruct
122.15	wavelet_transform $\dots \dots \dots$

1 calendar

$1.1 \quad days_per_month$

1.2 isnight

2 mathematics

mathematical functions of various kind

2.1 cast_byte_to_integer

cast byte to integer

3 complex-analysis

operations on complex numbers

3.1 complex_exp_product_im_im

3.2 complex_exp_product_im_re

3.3 complex_exp_product_re_im

$3.4 \quad complex_exp_product_re_re$

3.5 croots

```
nth-roots of a complex number
input:
c : complex number
n : order of root
    n must be rational, to obtain n solutions
    otherwise no finite set of solutions exists
r : roots of the complex number
```

3.6	${ m root_complex}$
root	of a complex number
3.7	test_imroots
4	derivation
deriva	ation of several functions by means of symbolic computation
4.1	derive_acfar1
4.0	denies aut amasteral densites
4.2	derive_ar1_spectral_density
4.3	derive_ar2param
1 1	$derive_arc_length$
4.4	derive_arc_iengtii
4.5	derive_fourier_power
4.6	derive_fourier_power_exp
4.7	derive_laplacian_curvilinear

${\bf 4.8} {\bf derive_laplacian_fourier_piecewise_linear}$
4.9 derive_logtripdf
$4.10 derive_smooth1d_parametric$
${\bf 4.11 derive_spectral_density_bandpass_initial_condition}$
5 derivation/master
$5.1 derive_bc_one_sided$
5.2 derive_convergence
5.3 derive_error_fdm
$5.4 derive_fdm_poly$
5.5 derive_fdm_power

 $5.6 \quad derive_fdm_taylor$ 5.7 derive_fdm_vargrid 5.8 derive_fem_2d_mass 5.9 derive_fem_error_2d 5.10 derive_fem_error_3d $derive_fem_sym_2d$ 5.11 $derive_grid_constants$ 5.125.13 derive_interpolation 5.14 derive_laplacian

5.15 derive_limit

5.16	derive_nc_1d
5.17	$derive_nc_1d_$
5.18	$derive_nc_2d$
5.19	$derive_nonuniform_symmetric$
%	
5.20	$derive_richardson$
5.21	$\operatorname{derive_sum}$
5.22	nn
5.23	${\it test_derive}$
5.24	$test_derive_fdm_poly$

5.25 test_filter

5.26 test_vargrid

6 derivation

derivation of several functions by means of symbolic computation

$6.1 \quad simplify_atan$

symbolic simplification of the arcus tangent

7 mathematics

mathematical functions of various kind

7.1 entropy

8 finance

- $8.1 \quad derive_skewrnd_walsh_paramter$
- $8.2 \quad gbm_cdf$
- 8.3 gbm_fit
- 8.4 gbm_fit_old

8.5	gbm_inv
8.6	gbm_mean
8.7	${ m gbm_median}$
8.8	${ m gbm_pdf}$
8.9	${ m gbm_simulate}$
8.10	${ m gbm_skewness}$
8.11	${ m gbm_std}$
8.12	${\tt gbm_transform_time_step}$
8.13	$\operatorname{put_price_black_scholes}$

 $8.14 \quad skewgbm_simulate$

8.15 skewrnd_walsh

- 9 finance/test
- $9.1 ext{test_gbm}$
- 9.2 $test_gbm_pdf$
- 9.3 test_skewrnd_walsh

10 fourier/@STFT

10.1 STFT

class for short time fourier transform

Note: the interval Ti should be set to at leat 2*max(T), as
 otherwise coefficients
 tend to oscillate in the presence of noise
Note: for convenience, the independent variable is labeled as time
 (t),
 but the independent variable is arbitrary, so it works
 likewise in space

10.2 itransform

inverse of the short time fourier transform

10.3 stft_

static wrapper for ${\tt STFT}$

10.4 stftmat

transformation matrix for the short time fourier transform

10.5 transform

short time fourier transform

11 fourier

support and analysis functions both for the discrete (fast) fourier
 transform (dft/fft)
and continuous fourier analysis (fourier series)

11.1 amplitude_from_peak

```
amplitude and standard deviation of the amplitude of a frequency
   component
represented by a peak in the fourier domain
input :
h : peak height
w : peak width at half height

output:
a : amplitude in real space
s : standard deviation of the frequency (!)
```

11.2 caesaro_weight

11.3 dftmtx_man

```
fourier matrix in matlab style with a limited number of rows,
columns of higher frequencies are omitted
input :
```

n : number of samples
nr : number of columns

output :

F : fourier matrix

11.4 example_fourier_window

11.5 fft_man

```
fast fourier transform for complex input data
input:
F : data in real space
output :
F : fourier transformation of F
```

11.6 fftsmooth

smooth the fourier transform and determine upper and lower bound
 confidence intervals

input :
f :
sfunc : a smoothing function (for example fir convolution with
 rectangular window)
 returns filtered (mean) value and normalized fir window

nf : window length
nsigma : number of standard deviations for confidnce intervals

output :
ff : filtered fourier transform
l : lower bound
u : upper bound

11.7 fix fourier

```
fill gaps (missing data) by means of fourier extrapolation

fix periodic data series with fourier interpolation

longest gap should not exceed 1/2 of the shortest time span of
   interest (1/cutoff frequency)

note: this limit equals the position of first side lobe of the ft
   of a rectangular window with gap length
```

11.8 fourier_axis

11.9 fourier_axis_2d

11.10 fourier_cesaro_correction

11.11 fourier_coefficient_piecewise_linear

(not coefficient of discrete fourier transform)
function can be discontinuous between intervals
scales domain length to 2pi

input :
l,r : end points of piecewise linear function
lval, rval : values at end points
L : length of domain
n : number of samples/highest frequency

output :
a, b : coefficients for frequency components

fourier series coefficients of a piecewise linear function

11.12 fourier_coefficient_piecewise_linear_1

fourier series coefficients of a piecewise linear function (not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input :

 ${\tt X}$: end points of piecewise linear function

Y : values at end points

output :

ab : coefficients for frequency components

11.13 fourier_coefficient_ramp3

fourier series coefficient of a ramp

11.14 fourier_coefficient_ramp_pulse

fourier series coefficient of a ramp pules

11.15 fourier_coefficient_ramp_step

fourier coefficient of a ramp-step

11.16 fourier_coefficient_square_pulse

fourier series coefficients of a square pulse

11.17 fourier_complete_negative_half_plane

11.18 fourier_cubic_interaction_coefficients

11.19 fourier_derivative

derivative via fourier transform exponential convergence for periodic functions results in spurious oscillations for aperiodic functions

input:

x : data, sampled in equal intervals

k : order of the derivative

 ${\tt dx}$: kth-derivative of x

note : 1) the derivative converges with spectral accuracy, i.e. is exact up to rounding condition for L sufficiently large and ${\bf x}$ being periodic

- 2) the derivative converges with order p, when x has only p-continous derivatives, including discontinuous derivatives over the boundary
- 3) discontinuous derivatives result in gibbs phenomenon

11.20 fourier_derivative_matrix_1d

11.21 fourier_derivative_matrix_2d

11.22 fourier_expand

expand values of fourier series

11.23 fourier_fit

fit a fourier series to a set of sample points that are not spaced
 in
equal intervals

11.24 fourier_interpolate

interpolate samples y sampled at moments (location) t to locations $\mbox{\ensuremath{\mbox{ti}}}$

11.25 fourier_matrix

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

11.26 fourier_matrix2

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

11.27 fourier matrix3

transformation matrix for the continous fourier transform this is a matrix with (2*n+1) real columns

11.28 fourier_matrix_exp

transformation matrix for a continuous fourier series (not for the discrete dft/fft)

11.29 fourier_multiplicative_interaction_coefficients

11.30 fourier_power

powers of a continuous fourier series in sin/cos form
powers of a^p = (ur + u1 sin(ot) + u2 sin(ot+dp))^p
phase of first component assumed 0
frequencies higher than 2-omega ignored in input
frequencies higher than 3-omega not computed

11.31 fourier_power_exp

11.32 fourier_predict

expand a continous fourier series at times t

11.33 fourier_quadratic_interaction_coefficients

11.34 fourier_random_phase_walk

evaluete fourier series where the phase undergoes a brownian motion

11.35 fourier_range

approximate range of a continous Fourier series with 2 components range(y) = max(y) - min(y)

11.36 fourier_regress

fit a continous fourier series to a set of sample points not
 sampled
at equal intervals

11.37 fourier_resampled_fit

fits coefficients of a continuous fourier transform, but stores them as resampled values

11.38 fourier_resampled_predict

interpolates a continuous fourier series that has been stored as values at their support points

11.39 fourier_signed_square

```
coefficients of the fourier series of | cos a + cos t | (cos a +
    cos t)
in general
    cos a is midrange
    cos t is tidal variation
c.f Dronkers
```

11.40 fourier_transform

```
continuous fourier transformation of y
(not discrete fourier transformation dft/fft)

input:
    b : data sampled at equal intervals
    T : length of data in time or space, i.e. position of last
        sample if
        position of first sample is 0
    T_max : maximum period to include

output :
    A : fourier matrix
    p : fourier transformation of b
    tt : TODO
```

11.41 fourier_transform_fractional

11.42 fourier_truncate_negative_half_plane

11.43 hyperbolic_fourier_box

11.44 idftmtx_man

inverse matrix for the discrete fourier transform in matlab style with a limited number of columns, thus ignoring higher frequencies keep 2nc+1 columns (mean and conj-complex pairs of nc frequencies)

11.45 laplace_2d_pwlinear

least squares with piecewise integration [x0,p,q,r] piecewise linear polynomials at the boundaries

11.46 mean_fourier_power

11.47 moments_fourier_power

11.48 nanfft

discrete fourier transform of a data series with gaps

11.49 peaks

```
peaks of the power spectrum of a disctrete fourier transform
rule for peaks: there is no higher value left or right of the "peak
               until the signal drops to p*y_peak, p = 0.5
works best, when spectrum has been smoothened
input :
f : frequency
y : absolute value of fourier transform (power spectrum)
L : length in space or time of series
output :
a0 : amplitude
s0 : standard deviation (error?) of amplitude
w0 : width of peak
lambda = wave length (period?)
pdx : index of peak
f : frequency (if not given as input)
11.50 roots_fourier
```

```
zeros of continuous fourier series series
      f = a_0 + sum_j = n a_i cos(j x) + b_i sin(j x)
```

11.51 spectral_density

spectral density

11.52 std_fourier_power

- 11.53 test_complex_exp_product
- 11.54 test_fourier_filter
- 11.55 test_idftmtx
- 11.56 var_fourier_power

12 mathematics

mathematical functions of various kind

- 12.1 gaussfit_quantile
- 13 geometry/@Geometry
- 13.1 Geometry

13.2 arclength

arc length of a two dimensional curve

8th order accurate does not require the segments length to vary smoothly

note: the curve can be considered parametric, e.g. x = x(t), y=y(t) and

and t = t(s), but the error term contains derivatives of t, thus a non smooth t (strongly varying distance between points) requires the scaling as done below

13.3 arclength_old

arc length of a two dimensional function

13.4 arclength_old2

arc length of a two dimensional function

13.5 base_point

base point (fusspunkt), i.e. point on a line with shortest distance to another point $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

13.6 base_point_limited

base point (Fusspunkt) of a point on a line

13.7 centroid

centroid of a polygone

13.8 cosa_min_max

13.9 cross2

cross product in two dimensions

13.10 curvature

curvature of a function in two dimensions

13.11 ddot

sum of squares of cos of inner angles of triangle

13.12 distance

equclidan distance between two points

13.13 distance2

euclidean distance between two points
this function requires a and be of equal dimensions, or the least
the first pair or second pair to be a scalar

13.14 dot

dot product

13.15 edge_length

edge length

13.16 enclosed_angle

angle enclosed between two lines

13.17 enclosing_triangle

smallest enclosing equilateral triangle with bottom site paralle to $\ensuremath{\mathtt{X}}$ axis

13.18 hexagon

coordinates of a hexagon, scaled and rotated

13.19 inPolygon

flag points contained in a polygon much faster than matlab internal function

13.20 inTetra

flag points contained in tetrahedron

13.21 inTetra2

flag points contained in tetrahedron

13.22 inTriangle

flag points contained in triangle
function [flag, c] = inTriangle(P1,P2,P3,P0)

13.23 intersect

intersect between two lines

13.24 lineintersect

intersect of two lines

13.25 lineintersect1

intersect of two lines

13.26 minimum_distance_lines

minimum distance of two lines in three dimensions

13.27 mittenpunkt

mittenpunkt of a triangle

13.28 nagelpoint

nagelpoint of a triangle

13.29 onLine

13.30 orthocentre

orthocentre of triangle

13.31 plumb_line

13.32 poly_area

area of a polygon
function A = poly_area(x,y)

13.33 poly_edges

edges of a polygon

13.34 poly_set

associate point at arbitary location with a polygon it is contained in and assign the value of the polygon to it

13.35 poly_width

width of polygon width holes by surface normals holes / islands separated with NaN order of points of outer boundary must be cw order of points of holes must be ccw note that this function does not give the true width for expanding sections use voronoi polygons for this

13.36 polyxpoly

intersections of two polygons

13.37 project_to_curve

closest point on a curve with respect to a point at distance to the curve

13.38 quad_isconvex

13.39 random_disk

draw random points on the unit disk

13.40 random_simplex

random point inside of a triangle

13.41 sphere_volume

volume of a sphere
function v = sphere_volume(r)

13.42 tetra_volume

volume of a tetrahedron

13.43 tobarycentric

cartesian to barycentric coordinates

13.44 tobarycentric1

cartesian to barycentric coordinates

13.45 tobarycentric2

cartesian to barycentric coordinates

13.46 tobarycentric3

cartesian to barycentric coordinates

13.47 tri_angle

cos of angles of a triangle

13.48 tri_area

angle of a triangle

13.49 tri_centroid

centroid of a triangle

13.50 tri_distance_opposit_midpoint

distance between corner of a triangle and its opposing mid-point

13.51 tri_edge_length

edge length of a triangle

13.52 tri_edge_midpoint

mid point of a triangle

13.53 tri_excircle

excircle of a triangle

13.54 tri_height

height of a triangle

13.55 tri_incircle

incircle of a triangle

13.56 tri_isacute

flag acute triangles

13.57 tri_isobtuse

flag obntuse triangles

13.58 tri_semiperimeter

semiperimeter of a triangle

13.59 tri_side_length

edge lenght of triangle

14 geometry

14.1 Polygon

Simple 2D polygon class

Polygon properties:

x - x coordinates of polygon
y - y coordinates of polygon
nnodes - number of nodes in the polygon

Polygon methods:

in - checks whether given points lie inside, on the edge, or
 outside of the polygon
area - returns the area of the polygon
centerline - computes the centerline of the river
iscw - check whether polygon is clockwise
reverse - reverse the order of the polygon

14.2 bounding_box

bounding box of X

14.3 curvature_1d

curvature of a sampled parametric curve in two dimensions

14.4 cvt

centroidal voronoi tesselation

14.5 deg_to_frac

degree, minutes and seconds to fractions

14.6 ellipse

return points on an ellipse
n : number of points
ci : confidence interval, i.e. for 1 sigma

14.7 ellipseX

x-coordinates of y-coordinates of an ellipse

14.8 ellipseY

14.9 first_intersect

get first intersection between lines in ${\tt A}$ and ${\tt B}$

14.10 golden_ratio

golden ratio

14.11 hypot3

 ${\tt hypothenuse} \ {\tt in} \ {\tt 3D}$

14.12 meanangle

weighted mean of angles

14.13 meanangle2

mean angle

14.14 meanangle3

mean angle

14.15 meanangle4

mean angle

14.16 medianangle

```
{\tt median} angle angle, that has the smallest squared distance to all others
```

14.17 medianangle2

```
median angle
input
alpha : x*m, [rad] angle

ouput
ma : 1*m, [rad] median angle
sa : 1*m, [rad] standard error of median angle for uncorrelated
    error
```

14.18 pilim

```
limit to +- pi
```

14.19 streamline_radius_of_curvature

streamline radius of curvature simplifies when rotatate to streamwise coordinates to R = 1/dv/ds * u

- 15 histogram/@Histogram
- 15.1 2x
- 15.2 Histogram
- 15.3 bimodes
- 15.4 cdf
- 15.5 cdfS
- 15.6 chi2test
- 15.7 cmoment
- 15.8 cmomentS

- 15.9 entropy
- 15.10 entropyS
- 15.11 export_csv
- 15.12 iquantile
- 15.13 kstest
- 15.14 kurtosis
- 15.15 kurtosisS
- 15.16 mean
- 15.17 meanS
- 15.18 median

15.19 medianS

15.20 mode

 $15.21 \mod S$

15.22 moment

15.23 momentS

15.24 pdf

15.25 quantile

15.26 quantileS

15.27 resample

15.28 setup

- 15.29 skewness
- 15.30 skewnessS
- 15.31 stairs
- 15.32 stairsS
- 15.33 std
- 15.34 stdS
- 15.35 var
- 15.36 varS
- 16 histogram
- 16.1 hist_man

16.2	histadapt
16.3	histconst
16.4	$\mathrm{pdf}_{ ext{-}}\mathrm{poly}$
16.5	plotcdf
16.6	$test_histogram$
17	mathematics
mather	matical functions of various kind
17.1	imrotmat
18	linear-algebra
18.1	$averaging_matrix_2$

18.2 colnorm

norms of columns

18.3 condest_

estimation of the condition number

18.4 connectivity_matrix

19 linear-algebra/coordinate-transformation

19.1 barycentric2cartesian

barycentric to cartesian coordinates

19.2 barycentric2cartesian3

convert barycentric to cartesian coordinates

19.3 cartesian2barycentric

cartesian to barycentric coordinates

$19.4 \quad cartesian_to_unit_triangle_basis$

transform coodinates into unit triangle

19.5 ellipsoid2geoid

19.6 example_approximate_utm_conversion

19.7 latlon2utm

 ${\tt transform\ latitude\ and\ longitude\ to\ WGS84\ UTM}$

19.8 latlon2utm_simple

$19.9 \quad lowrance_mercator_to_wgs84$

convert lowrance coordinates to wgs84

based on spreadsheet by D Whitney King and Patty B at Lowrance $\,$

19.10 nmea2utm

convert nmea messages to utm coordinates

$19.11 \quad sn2xy$

convert sn to xy coordinates

19.12 unit_triangle_to_cartesian

transform coordinates in unit triangle to cartesian coordinates

19.13 utm2latlon

convert wgs84 utm to latitute and longitude

19.14 xy2nt

project all points onto the cross section and assign them $\ensuremath{\text{nz-}}$ coordinates

transform coordinate into N-T reference rotate coordinate, so that cross section goes along x-axis then x and y are n and t respectively scaled by width N and T coordinates $\begin{array}{c} \text{ To section Boundary Support} \\ \text{ To section Boundary Support$

$19.15 \quad xy2sn$

convert cartesian to streamwise coordiantes

$19.16 \text{ xy}2\text{sn_java}$

use java port for speed up

$19.17 \text{ xy}2\text{sn_old}$

transform points from cartesian into streamwise coordinates

 $\ensuremath{\mathsf{NOTE}}$: prefer the java version, this has some problems with round off

20 linear-algebra

$20.1 \det 2x2$

2x2 matrix inverse of 2x2 matrices stacked along dim 3

20.2 det3x3

determinant of stacked 3x3 matrices

$20.3 \det 4x4$

determinant of stacked 4x4 matrices

20.4 diag2x2

 ${\tt diagonal} \ {\tt of} \ {\tt stacked} \ {\tt 2x2} \ {\tt matrices}$

20.5 down

$20.6 \quad eig2x2$

eigenvalues of stacked 2x2 matrices

21 linear-algebra/eigenvalue

21.1 eig_bisection

21.2 eig_inverse

21.3 eig_inverse_iteration

${\bf 21.4 \quad eig_power_iteration}$

- 22 linear-algebra/eigenvalue/jacobi-davidson
- 22.1 afun_jdm
- 22.2 davidson
- 22.3 jacobi_davidson
- 22.4 jacobi_davidson_qr
- 22.5 jacobi_davidson_qz
- 22.6 jacobi_davidson_simple
- 22.7 jdqr

```
%
%
%
%
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%
\mbox{\ensuremath{\mbox{\%}}} Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   V W AV.
%
   Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
%
% Compute approximate eigenpair and residual
%
%
```

```
%
%
%
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
  W orthonormal, V and W orthogonal to Qschur,
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
   M=W'*V
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
  _____
%===== END ARNOLDI
  % not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
  % compute vectors and matrices for skew projection
% solve preconditioned system
% 0 step of bicgstab eq. 1 step of bicgstab
```

```
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Q explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
\% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
%----- reorder schur form -----
%----- compute qz form ------
%----- sort eigenvalues ------
```

```
%----- sort qz form ------
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
%% 'v'
```

22.8 jdqr_sleijpen

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
  V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V, *W
%
\mbox{\ensuremath{\mbox{\%}}} Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
% Compute approximate eigenpair and residual
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
\% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   V W AV.
  Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
%
  tau*V
%
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
%
\% Compute approximate eigenpair and residual
%
%
%
%
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
   M=W,*V
% Compute approximate eigenpair and residual
%
%
%
%
```

```
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[]; R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
   _____
%===== END ARNOLDI
   % not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
   % compute vectors and matrices for skew projection
% solve preconditioned system
% 0 step of bicgstab eq. 1 step of bicgstab
\% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Q explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
\% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
\% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
```

```
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
\%----- reorder schur form ------
%----- compute qz form ------
%----- sort eigenvalues ------
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
%% 'v'
```

22.9 jdqr_vorst

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
  V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V'*W
% Compute approximate eigenpair and residual
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%
%
\% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
\% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
%
   V W AV.
%
  Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
%
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
% Compute approximate eigenpair and residual
%
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
%
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
%
   M=W'*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[]; R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
  %====== END ARNOLDI
  _____
% not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
  _____
% accepted separation between eigenvalues:
% no preconditioning
\% solve left preconditioned system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
```

```
% no preconditioning
\mbox{\ensuremath{\mbox{\%}}} solve two-sided expl. precond. system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
% "unprecondition" solution
%%%% u(:,j+1)=Atilde*u(:,j)
%%%% r(:,j+1)=Atilde*r(:,j)
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
%----- reorder schur form ------
%----- compute qz form ------
%----- sort eigenvalues -----
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
```

22.10 jdqz

```
% Read/set parameters
% Return if eigenvalueproblem is trivial
% Initialize target, test space and interaction matrices
% V=RepGS(Qschur,V); [AV,BV]=MV(V); %%% more stability??
% W=RepGS(Zschur,eval(testspace)); %%% dangerous if sigma~lambda
% Solve the preconditioned correction equation
% Expand the subspaces and the interaction matrices
% Check for stagnation
% Solve projected eigenproblem
% Compute approximate eigenpair and residual
\%=== an alternative, but less stable way of computing z =====
% display history
% save history
% check convergence
% EXPAND Schur form
\% Expand preconditioned Schur matrix MinvZ=M\Zschur
% check for conjugate pair
% To detect whether another eigenpair is accurate enough
\% Initialize target, test space and interaction matrices
% additional stabilisation. May not be needed
% V=RepGS(Zschur,V); [AV,BV]=MV(V);
% end add. stab.
% Solve the preconditioned correction equation
% = 1000 expand the subspaces and the interaction matrices
```

```
% Check for stagnation
\% compute approximate eigenpair
% Compute approximate eigenpair and residual
% display history
% save history
% check convergence
% expand Schur form
% ZastQ=Z'*Q0
% the final Qschur
\% check for conjugate pair
% t perp Zschur, t in span(Q0,imag(q))
% To detect whether another eigenpair is accurate enough
% restart if dim(V)> jmax
%===== END JDQZ
  ______
%-----
%====== PREPROCESSING
  _____
%====== ARNOLDI (for initial spaces)
%% then precond=I and target = 0: apply Arnoldi with A
%===== END ARNOLDI
  _____
%====== POSTPROCESSING
  _____
%====== SORT QZ DECOMPOSITION INTERACTION MATRICES
  ============
%====== COMPUTE SORTED JORDAN FORM
  _____
%====== END JORDAN FORM
  _____
%===== OUTPUT
%====== UPDATE PRECONDITIONED SCHUR VECTORS
%-----
```

```
%====== SOLVE CORRECTION EQUATION
  % solve preconditioned system
%====== LINEAR SOLVERS
% [At,Bt]=MV(x); At=theta(2)*At-theta(1)*Bt;
% xtol=norm(r-At+Z*(Z'*At))/norm(r);
%===== Iterative methods
  % 0 step of bicgstab eq. 1 step of bicgstab
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Z implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Z explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow
\% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
%-----
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow
%====== END SOLVE CORRECTION EQUATION
  _____
```

```
%====== BASIC OPERATIONS
 y(1:5,1), pause
%====== COMPUTE r AND z
% E*u=Q*sigma, sigma(1,1)>sigma(2,2)
\%====== END computation r and z
  _____
%====== Orthogonalisation
 _____
\%====== END Orthogonalisation
 %====== Sorts Schur form
 kappa=max(norm(A,inf)/max(norm(B,inf),1.e-12),1);
 kappa=2^(round(log2(kappa)));
\%----- compute the qz factorization ------
%----- scale the eigenvalues ------
\%----- sort the eigenvalues -----
%----- swap the qz form ------
% repeat SwapQZ if angle is too small
%-----
% i>j, move ith eigenvalue to position j
% compute q s.t. C*q=(t(i,1)*S-s(i,1)*T)*q=0
C*P=Q*R
check whether last but one diag. elt r nonzero
C*q
% end computation q
\%====== END sort QZ decomposition interaction matrices
%====== INITIALIZATION
 _____
```

```
% defaults
            %%%% search for 'xx' in fieldnames
%% 'ma'
%% 'sch'
%% 'to'
%% 'di'
% jmin=nselect+p0 %%%% 'jmi'
% jmax=jmin+p1 %%%% 'jma'
%% 'te'
%% 'pai'
%% 'av'
%% 'tr'
%% 'fix'
%% 'ns'
%% 'ch'
%% 'lso'
%% 'ls_m'
%% 'ls_t'
%% 'ls_e'
%% 'ty'
%% '1_'
%% 'u_'
%% 'p_'
%% 'sca'
%% 'v0'
initiation
'standard'
'harmonic'
'searchspace'
% or Operator_Form=3 or Operator_Form=5???
%====== DISPLAY FUNCTIONS
  _____
```

$22.11 \quad mfunc_jdm$

22.12 mgs

 $22.13 \quad minres_{-}$

$22.14 \quad mv_jacobi_davidson$

23 linear-algebra

23.1 first

23.2 gershgorin_circle

range of eigenvalues determined by the gershgorin circle theorem

23.3 haussdorff

haussdorf dimension box counting: count cectangles passed through by line (covered by polygon)

Koch snow flake 3:4 -> 1.2619 Kantor set 2:3, (4:9) -> 0.6309 quadrat 4:2, 9:3, 16:4 -> 2

23.4 ieig2x2

reconstruct matrix from eigenvalue decomposition

23.5 inv2x2

2x2 inverse of stacked matrices

23.6 inv3x3

23.7 inv4x4

inverse of stacked 4x4 matrices

23.8 kernel2matrix

$24 \quad linear-algebra/lanczos$

24.1 arnoldi

24.2 arnoldi_new

$24.3 \quad eigs_lanczos_man$

24.4 lanczos

24.5 lanczos_

24.6	$lanczos_biorthogonal$
24.7	$lanczos_biorthogonal_improved$
24.8	$lanczos_ghep$
24.9	$mv_lanczos$
24.10	reorthogonalise
24.11	${ m test_lanczos}$
25	linear-algebra
	laplacian_eigenvalue
25.2	$laplacian_eigenvector$

25.3 laplacian_power

$25.4 \quad least_squares_perpendicular_offset$

25.5 left

left element of vector, leftmost column is extrapolated

26 linear-algebra/linear-systems

26.1 gmres_man

break on convergence

26.2 minres_recycle

27 linear-algebra

27.1 lpmean

mean of pth-power of a

27.2 lpnorm

norm of 1th-power of a

27.3 matvec3

matrix-vector product of stacked matrices and vectors

$27.4 \quad \text{max2d}$

 $\hbox{\tt maximum value and i-j index for matrix}$

27.5 mid

mid point between neighbouring vector elements

27.6 mpoweri

approximation of A^p, where p is not integer by quadtratic interpolation

$27.7 \quad \text{mtimes} 2x2$

27.8 mtimes3x3

product of stacked 3x3 matrices

27.9 nannorm

norm of a vector, skips nan-values

27.10 nanshift

shift vector, but set out of range values to NaN

27.11 nl

number rows (lines) of a matrix analogue to unix nl command

27.12 normalise

normalise a vector or the columns of a matrix
note that the columns are independently normalised, and hence not
 necessarily
orthogonal to each other use the gram schmidt algorithm for this (
 qr or orth)

27.13 normalize1

normalize columns in x to [-1,1]

27.14 normrows

27.15 orth2

make matrix ${\tt A}$ orhogonal to ${\tt B}$

27.16 orth_man

orthogonalize the columns of ${\tt A}$

27.17 orthogonalise

make x orthogonal to Y

27.18 padd2

padd values around a 2d (image) matrix, constant exprapolation

27.19 paddext

padd values to vactor
not suitable for noisy data
order = 0 : constant extrapolation (hold)
order = 1 : linear extrapolation

27.20 paddval1

padd values at end of \boldsymbol{x}

27.21 paddval2

padd values to x

28 linear-algebra/polynomial

28.1 chebychev

chebycheff polynomials

28.2 piecewise_polynomial

evaluate piecewise polynomial

28.3 roots1

roots of linear functions

28.4 roots2

roots of quadratic function $c1 x^2 + c2 x + c3 = 0$

28.5 roots2poly

28.6 roots3

28.7 roots4

28.8 roots_piecewise_linear

28.9 test_roots4

28.10 vanderi_1d

vandermonde matrix of an integral

29 linear-algebra

29.1 randrot

random rotation matrix

29.2 right

get right column by shifting columns to left extrapolate rightmost column $\,$

29.3 rot2

rotation matrix from angle

$29.4 \quad rot2dir$

rotation matrix from direction vector

29.5 rot3

29.6 rotR

29.7 rownorm

 ${\bf 29.8 \quad simmilarity_matrix}$

29.9 spnorm

frobenius norm

29.10 spzeros

allocate a sparze matrix of zeros

$29.11 \quad test_roots3$

29.12 transform_minmax

29.13 transpose3

transpose stacked 3x3 matrices

29.14 transposeall

29.15 up

29.16 vander_nd

29.17 vanderd_2d

30 logic

bitwise operations on integers

30.1 bitor_man

bitwise OR of the numbers of the columns of A
input:
 A (positive integer)

31 master/plot

31.1 attach_boundary_value

31.2	${\operatorname{cartesian}}_{\operatorname{ ext{-}}}{\operatorname{polar}}$
31.3	$\mathrm{img}_{-}\mathrm{vargrid}$
31.4	${\bf plot_basis_functions}$
31.5	${\bf plot_convergence}$
31.6	${ m plot}_{ m _}{ m dof}$
31.7	$\operatorname{ploteigenbar}$
31.8	$plot_error_estimation$
31.9	$plot_error_estimation_2$
31.10	${ m plot_error_fem}$

31.11 plot_fdm_kernel

- $31.12 \quad plot_fdm_vs_fem$
- 31.13 plot_fem_accuracy
- 31.14 plot_function_and_grid
- 31.15 plot_hat
- $31.16 \quad plot_hydrogen_wf$
- $31.17 \quad plot_mesh$
- $31.18 \quad plot_mesh_2$
- 31.19 plot_refine
- 31.20 plot_refine_3d
- 31.21 plot_runtime

31.22	${\bf plot_spectrum}$
31.23	${\bf plot}_{\bf _wavefunction}$
32 1	m master/ported
32.1	assemble_2d_phi_phi
32.2	assemble_3d_dphi_dphi
32.3	assemble_3d_phi_phi
32.4	$\mathrm{dV}_{-}2\mathrm{d}_{-}$
32.5	$ m derivative_2d$

32.6 derivative_3d

32.7 element_neighbour_2d

- ${\bf 32.8} \quad prefetch_2d_$
- $32.9 \quad promote_2d_3_10$
- $32.10 \quad promote_2d_3_15$
- $32.11 \quad promote_2d_3_21$
- $32.12 \quad promote_2d_3_6$
- $32.13 \quad promote_3d_4_10$
- $32.14 \quad promote_3d_4_20$
- 32.15 promote_ $3d_4_35$
- 32.16 vander_2d
- 32.17 vander_3d

33 mathematics

mathematical functions of various kind

33.1 nearest_fractional_timestep

34 number-theory

34.1 ceiln

floor to leading n-digits

34.2 digitsb

number of digits with respect to specified base

34.3 floorn

floor to n-digits

34.4 iseven

true for even numbers in ${\tt X}$

34.5 multichoosek

if x vector : the exact combinations

34.6 nchoosek_man

vecotrised binomial coefficient b = N!/K!(N-K)!

34.7 pythagorean_triple

pythagorean triple

34.8 roundn

round to n digits

35 numerical-methods

35.1 advect_analytic

36 numerical-methods/differentiation

36.1 derivative1

first derivative on variable mesh second order accurate

36.2 derivative2

second derivative on a variable mesh

37 numerical-methods

37.1 diffuse_analytic

38 numerical-methods/finite-difference

38.1 cdiff

```
differences of columns of X
degree = 1 : central first order differences
degreee = 2 : central second order differences
```

38.2 cdiffb

```
differences of columns of X
degree = 1 : central first order differences
degreee = 2 : central second order differences
TODO use difference matrix function for simplicity
```

38.3 central_difference

38.4 cmean

```
single gaussian smoothing step with kernel 1/4*[1,2,1]
```

38.5 cmean2

38.6 derivative_matrix_1_1d

```
finite difference matrix of first derivative in one dimensions n: number of grid points h = L/(n+1) constant step with function [D1, d1] = derivative_matrix_1d(n,L,order)
```

38.7 derivative_matrix_2_1d

finite derivative matrix of second derivative in one dimension

38.8 derivative_matrix_2d

finite difference derivative matrix in two dimensions

38.9 derivative_matrix_curvilinear

derivative matrix on a curvilinear grid

38.10 derivative_matrix_curvilinear_2

derivative matrix on a two dimensional curvilinear grid the grid has not necessarily to be orthogonal

38.11 difference_kernel

difference kernels for equispaced grids
c.f. Computing the Spectrum of the Confined Hydrogen Atom, Kastner,

38.12 diffusion_matrix_2d_anisotropic

38.13 diffusion_matrix_2d_anisotropic2

38.14 directional_neighbour

38.15 distmat

distance matrix for a 2 dimensional rectangular matrix

38.16 downwind_difference

38.17 gradpde2d

```
objective function gradiend on two dimensional regular grid numeric gradient for non-linear least squares optimisation of a PDE on a rectangular grid x_* = \min(f(x)) f = (v(x) - v(x_*))^2 = f(x) + A dx + O(dx^2) a_ij = df_i/dx_j
```

38.18 laplacian

38.19 laplacian_fdm

finite difference matrix of the laplacian $\ensuremath{\mathsf{BC}}$

38.20 lrmean

mean of the left and right element

39 numerical-methods/finite-difference/master

39.1 fdm_adaptive_grid

39.2 fdm_adaptive_refinement_old

39.3 fdm_assemble_d1_2d

- 39.4 fdm_assemble_d2_2d
- 39.5 fdm_confinement
- $39.6 \quad fdm_d_vargrid$
- 39.7 fdm_h_unstructured
- 39.8 fdm_hydrogen_vargrid
- $39.9 fdm_mark_unstructured_2d$
- $39.10 \quad fdm_plot$
- 39.11 fdm_plot_series
- $39.12 \quad fdm_refine_2d$
- 39.13 fdm_refine_3d

39.14 fdm_refine_unstructured_2d

$39.15 \quad fdm_schroedinger_2d$

39.16 fdm_schroedinger_3d

39.17 relocate

40 numerical-methods/finite-difference

40.1 mid

mid point between neighbouring vector elements

40.2 pwmid

segment end point to segment mid point transformation for regular 1 $\,$ d grids $\,$

40.3 ratio

ratio of two subsequent values

40.4 steplength

step length of a vector if it were equispaced

40.5 swapoddeven swap odd and even elements in a vector 40.6 test_derivative_matrix_2d 40.7 test_derivative_matrix_curvilinear 40.8 test_difference_kernel 40.9 upwind_difference numerical-methods/finite-element **41** 41.1 $Mesh_2d_java$ 41.2 Tree_2d_java assemble_1d_dphi_dphi

 $41.4 \quad assemble_1d_phi_phi$

 $41.5 \quad assemble_2d_dphi_dphi_java$ assemble_2d_phi_phi_java 41.6 41.7 $assemble_3d_dphi_dphi_java$ assemble_3d_phi_phi_java 41.8 41.9 boundary_1d $boundary_2d$ 41.10 $boundary_3d$ 41.11 41.12 check_area_2d 41.13 circmesh

41.14 cropradius

 $41.15 \quad display_2d$ $41.16 \quad display_3d$ 41.17 distort $41.18 \quad err_2d$ 41.19 estimate_err_2d_3 $41.20 \quad example_1d$ $41.21 \quad example_2d$ 41.22 explode

41.24 fem_2d_heuristic_mesh

 fem_2d

41.23

- 41.25 fem_get_2d_radial

 41.26 fem_interpolation

 41.27 fem_plot_1d

 41.28 fem_plot_1d_series

 41.29 fem_plot_2d
- 41.30 fem_plot_2d_series
- $41.31 \quad fem_plot_3d$
- $41.32 \quad fem_plot_3d_series$
- $41.33 \quad fem_plot_confine_series$

41.34 fem_radial

adaptive grid constant grid

- $41.35 \quad flip_2d$
- $41.36 ext{ get_mesh_arrays}$
- 41.37 hashkey
- ${\bf 42} \quad numerical\text{-}methods/finite-element/int}$
- $42.1 \quad int_1d_gauss$
- $42.2 \quad int_1d_gauss_1$
- $42.3 \quad int_1d_gauss_2$
- $42.4 \quad int_1d_gauss_3$
- $42.5 \quad int_1d_gauss_4$

- $42.6 \quad int_1d_gauss_5$
- $42.7 \quad int_1d_gauss_6$
- 42.8 int_1d_gauss_lobatto
- $42.9 \quad int_1d_gauss_n$
- 42.10 int_1d_nc_2
- $42.11 \quad int_1d_nc_3$
- $42.12 \quad int_1d_nc_4$
- $42.13 \quad int_1d_nc_5$
- 42.14 int_1d_nc_6
- 42.15 int_1d_nc_7

- 42.16 int_1d_nc_7_hardy
- $42.17 \quad int_2d_gauss_1$
- $42.18 \quad int_2d_gauss_12$
- $42.19 \quad int_2d_gauss_13$
- $42.20 \quad int_2d_gauss_16$
- $42.21 \quad int_2d_gauss_19$
- $42.22 \quad int_2d_gauss_25$
- $42.23 \quad int_2d_gauss_3$
- $42.24 \quad int_2d_gauss_33$
- 42.25 int_2d_gauss_4

- $42.26 \quad int_2d_gauss_6$
- $42.27 \quad int_2d_gauss_7$
- $42.28 \quad int_2d_gauss_9$
- $42.29 \quad int_2d_nc_10$
- 42.30 int_2d_nc_15
- $42.31 \quad int_2d_nc_21$
- $42.32 \quad int_2d_nc_3$
- $42.33 \quad int_2d_nc_6$
- $42.34 \quad int_3d_gauss_1$
- 42.35 int_3d_gauss_11

- $42.36 \quad int_3d_gauss_14$
- $42.37 \quad int_3d_gauss_15$
- 42.38 int_3d_gauss_24
- $42.39 \quad int_3d_gauss_4$
- 42.40 int_3d_gauss_45
- $42.41 \quad int_3d_gauss_5$
- $42.42 \quad int_3d_nc_11$
- $42.43 \quad int_3d_nc_4$
- $42.44 \quad int_3d_nc_6$
- 42.45 int_3d_nc_8

43	numerical-methods/finite-element
43.1	interpolation_matrix
43.2	mark
43.3	$ m mark_{-}1d$
43.4	$\rm mesh_1d_uniform$
43.5	$mesh_3d_uniform$
43.6	$\operatorname{mesh_interpolate}$
43.7	$ m neighbour_1d$
43.8	old

43.9 pdeeig_1d

 $43.10 \quad pdeeig_2d$ 43.11 pdeeig_3d 43.12 polynomial_derivative_1d 43.13 potential_const 43.14 potential_coulomb $43.15 \quad potential_harmonic_oscillator$ 43.16 project_circle 43.17 project_rectangle

43.19 promote_ $1d_2_4$

 $43.18 \quad promote_1d_2_3$

- $43.20 \quad promote_1d_2_5$
- $43.21 \quad promote_1d_2_6$
- 43.22 quadrilaterate
- $43.23 \quad recalculate_regularity_2d$
- 43.24 refine_1d
- 43.25 refine_2d_21
- 43.26 refine_2d_structural
- 43.27 regularity_1d
- $43.28 \quad regularity_2d$

```
43.29 \quad regularity\_3d
      T = [1 \ 2 \ 3 \ 4];
43.30 \quad relocate\_2d
43.31 test_circmesh
43.32 test_hermite
43.33 tri_assign_points
43.34 triangulation_uniform
43.35 vander_1d
```

43.37 vanderi_1d

van der Monde matrix

43.36 vanderd₋1d

44 numerical-methods/finite-volume/@Advection

44.1 Advection

FVM treatment of the Advection equation

44.2 dot_advection

advection equation

$45 \quad numerical-methods/finite-volume/@Burgers$

45.1 burgers_split

```
viscous Burgers' equation, mixed analytic and numerical derivative in frequency space by splitting sheme u_t = -(0.5*u^2)_x + c*u_xx
```

45.2 dot_burgers_fdm

```
viscous burgers' equation

u_t = -d/dx (1/2*u^2) + c d^2/dx^2 u_xx
```

45.3 dot_burgers_fft

```
viscous Burgers' equation in frequency space u_t + (0.5*u^2)_x = c*u_xx
```

46 numerical-methods/finite-volume/@Finite_Volume

46.1 Finite_Volume

```
finite volume method for partial differential equations 1+1
    dimensions
(time and space)
```

46.2 apply_bc

apply boundary conditions

46.3 solve

46.4 step_split_strang

step in time, treat inhomogeneous part by Strang splitting this scheme is not suitable for stationary solutions, for example steady shallow water flow

46.5 step_unsplit

step in time, without splitting the inhomogeneous term

47 numerical-methods/finite-volume/@Flux_Limiter

47.1 Flux_Limiter

class of flux limiters

47.2 beam_warming

beam warming sheme
low resolution
note: works only if sign of eigenvalues point into the same
direction according to RL

47.3 fromm

fromme limiter
low res

47.4 lax_wendroff

lax wendroff scheme second order accurate, but no tvd this is effectively not a limiter eq. 6.39 in randall, leveque

47.5 minmod

min-mod schock limiter

47.6 monotized_central

monotonized central flux limiter

47.7 muscl

muscl flux limiter

47.8 superbee

superbee limiter

47.9 upwind

godunov scheme
godunov, first order accurate

47.10 vanLeer

van Leer limiter

48 numerical-methods/finite-volume/@KDV

$48.1 \quad dot_kdv_fdm$

```
korteweg de vries equation u_t + (0.5*u^2)_x = c*u_xxx
```

48.2 dot_kdv_fft

```
korteweg de vries equation compute derivatives in frequency space u_t + (0.5*u^2)_x = c*u_xxx
```

48.3 kdv_split

korteweg de vries equation in frequency space, derivative treated by splitting scheme

$49 \quad numerical-methods/finite-volume/@Reconstruct_Average_E$

49.1 Reconstruct_Average_Evolve

```
Reconstruct Average Evolve Finite Volume Method for treatment of
    1+1D pdes

McCronack Scheme
err = 0(dt^2) + 0(dx^2), except as discontinuities
error:
    h_xxx(3:end-2) = 1/dx^3*( -0.5*h(1:end-4) + h(2:end-3) - h(4:end-1) + 0.5*h(5:end) );
    th = -1/6*dx^2*qh_.*(1 - (qh_*dt/dx).^2).*h_xxx;
```

49.2 advect_highres

single time step for the reconstruct evolve algorithm

49.3 advect_lowress

single time step
low resolution

50 numerical-methods/finite-volume

50.1 Godunov

Godunov, upwind method for systems of pdes

50.2 Lax_Friedrich

Lax-Friedrich-Method
for hyperbolic conservation laws
err = O(dt) + O(dx)
|a dt/dx| < 1</pre>

50.3 Measure

50.4 Roe

non linear roe solver for the SWE (randall, leveque 15.3.1)

The roe solver guarantess:

- \mbox{A} is diagonalisable with real eigenvalues (15.12)
- can be determined by a closed formula
- is an efficient replacement for true Rieman solver

50.5 fv_swe

 $\hbox{\tt wrapper for solving SWE}$

50.6 staggered_euler

forward euler method with staggered grid

50.7 staggered_grid

staggered grid approximation to the SWE

51 numerical-methods

51.1 grid2quad

extract rectangular elements of a structured grid in form of an unstructured quad-mesh format $\,$

52 numerical-methods/integration

52.1 cumintL

cumulative integral from left to right

52.2 cumintR

cumulative integral from right to left

52.3 int_trapezoidal

integrate y along x with the trapezoidal rule

53 numerical-methods/interpolation/@Kriging

53.1 Kriging

class for Kriging interpolation

53.2 estimate_semivariance

estimate the parameter of the semivariance model for Kriging interpolation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$

% set up the regression matrix and solve for parameters

53.3 interpolate_

interpolate with Krieging method

this function may interpolate several quantities per coordinate, using the same variogram, if the semivariance of the quantities differs,

the user may prefer to estimate the semivariance and interpolate each quantity individually

Xs : source point coordinates
Vs : value at source points
Xt : targe point coordinates
Vt : value at target points

E2t : squared interpolation error at target points

$54 \quad numerical-methods/interpolation/@RegularizedInterpolator 1$

54.1 RegularizedInterpolator1

class for regularized interpolation (Thikonov) on a 1D mesh

54.2 init

initialize the interpolator with a set of sampling points

$55 \quad numerical-methods/interpolation/@RegularizedInterpolator$

55.1 RegularizedInterpolator2

class for regularized interpolation on an unstructures mesh (
 interpolation)

55.2 init

initialize the interpolator with a set of point samples

56 numerical-methods/interpolation/@RegularizedInterpolator

56.1 RegularizedInterpolator3

class for regularized interpolation (Tikhonov) on a triangulation (unstructured mesh)

56.2 init

initialize the interpolator with a set of sampling points

57 numerical-methods/interpolation

57.1 IDW

spatial averaging by inverse distance weighting

57.2 IPoly

polynomial interpolation class

57.3 IRBM

57.4 ISparse

sparse interpolation class

57.5 Inn

nearest neighbour interpolation

57.6 Interpolator

 ${\tt interpolator \ super-class}$

fprintf(1,'Progress: %f%% %fs\n',100*
 idx/size(Xt,1),t);

57.7 fixnan

fill nan-values in vector with gaps

57.8 idw1

spatial average ny inverse distance weighting

57.9 idw2

spatial average by inverse distance weighting

57.10 inner2outer

linear interpolation of segment mit point to grid points at segment ends assumes equal grid spacing

57.11 inner2outer2

interpolate from element (segment) centres to edge points

57.12 interp1_circular

57.13 interp1_limited

interpolate values, but not beyond a certain distance
this function is idempotent, i.e. it will not extrapolate over into
 gaps
exceedint the limit and thus not spuriously extend the series when
 called a second time on the same data

57.14 interp1_man

interpolate

57.15 interp1_piecewise_linear

57.16 interp1_save

make interpolation save to round off errors
the matlab internal interpolation suffers from rounding errors,
 which
are unacceptable when values of X and Y are large (for example UTm
 coordinates)
this normalization prevents this

57.17 interp1_slope

quadratic interpolation returning value and derivative(s)

57.18 interp1_smooth

57.19 interp1_unique

matlab fails to interpolate, when ${\bf x}$ values are not unique this function makes the values unique before use

57.20 interp2_man

nearest neighbour interpolation in two dimensions

57.21 interp_angle

interpolate an angle

57.22 interp_fourier

interpolation by the fourier method

57.23 interp_fourier_batch

batch interpolation by the fourier interpolation

57.24 interp_sn

```
interpolate along streamwise coordinates
This gives similar result to setting aspect ratio for sN to
   infinity,
but not quite,as the input point set is not dense (scale for sN to
   infinity does not work)
        sdx = sdx(sdx_);
```

57.25 interp_sn2

interpolation in streamwise coordinates

57.26 interp_sn3

$57.27 \quad interp_sn_$

57.28 limit_by_distance_1d

```
smooth subsequent values along a curve such that v(x0+dx) < v(x0) + (ratio-1)*dx if v is the edge length in a resampled polygon, then v_i/v_i+1) < ratio ratio^1 = exp(a*1)
```

57.29 resample 1

interpolation along a parametric curve with variable step width

57.30 resample_d_min

resample a function

57.31 resample_vector

resample a track so that velocity vectors do not run into each other $% \left(1\right) =\left(1\right) \left(1\right)$

57.32 test_interp1_limited

- 58 numerical-methods
- $58.1 \quad inverse_complex$
- 58.2 maccormack_step
- 58.3 minmod
- 59 numerical-methods/multigrid
- 59.1 mg_interpolate
- $59.2 mg_restrict$
- 60 numerical-methods/ode/@BVPS_Characteristic
- 60.1 BVPS_Characteristic

solve coupled first- and second-order 1D boundary-value problems

60.2 assemble 1_A

assemble the discretisation matrix for a first order ode (mean component, zero frequency)

60.3 assemble 1_A_Q

assemble the discretisation matrix for a first order ode (mean component, zero frequency)

60.4 assemble 2_A

assemble the discretisation matrix for a second-order ode (non-zero frequency component)

60.5 assemble_AA

assemble the discretisation matrix for each channel iteratively calls assembly for each frequency components

60.6 assemble_AAA

assemble the discretisation matrix for the entire network iteratively calls assembly for each channel

60.7 assemble_Ic

60.8 bvp1c

60.9 check_arguments

60.10 couple_junctions

60.11 derivative

60.12 init

60.13 inner2outer_bvp2c

60.14 reconstruct

60.15 resample

60.16 solve

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
   c_1 y" + c_2 y' + c_3 y + c_4 = c_4

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
   + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)

where q weighs the waves travelling from left to right and right to
   left (default [1 1])
```

60.17 test_assemble1_A

60.18 test_assemble2_A

- 61 numerical-methods/ode/@Time_Stepper
- 61.1 Time_Stepper
- 61.2 solve
- 62 numerical-methods/ode
- 62.1 bvp2fdm

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems by the finite difference method

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
c_1 y" + c_2 y' + c_3 y + c_4 = 0

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
   + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)

where q weighs the waves travelling from left to right and right to
   left (default [1 1])
```

62.2 bvp2wavetrain

solve second order boundary value problem by repeated integration

62.3 bvp2wavetwopass

two pass solution for the linearised wave equation solve first for the wave number k, and then for y

62.4 ivp_euler_forward

solve intial value problem by the euler forward method

62.5 ivp_euler_forward2

62.6 ivprk2

solve initial value problem by the two step runge kutta method

62.7 ode2_matrix

 $\begin{tabular}{ll} transformation matrix of second order ode \\ to left and right going wave \\ \end{tabular}$

```
c = odefun(x)
c1 y'' + c2' y + c3 y == 0
y = y_p + y_m, left and right going wave
d/dx [y_p, y_m] = A*[y_m, y_p]
```

62.8 ode2characteristic

second order odes transmittded and reflected wave

62.9 step_trapezoidal

single trapezoidal step

62.10 $test_bvp2$

- 63 numerical-methods/optimisation
- 63.1 aitken_iteration
- 63.2 anderson_iteration
- 63.3 armijo_stopping_criterion

armijo stopping criterion for optimizations

63.4 astar

astar path finding alforithm

63.5 binsearch

binary search on a line

63.6 bisection

bisection

63.7 box1

test objective function for optimisation routines

63.8 box2

63.9 cauchy

63.10 cauchy2

solve non-linear system by cuachy's method slower than quadratic optimisation, but does not require a hessian

fun : objective function, returns

 $\ensuremath{\mathtt{f}}$: scalar, objective function value

g : nx1, gradient
x : nx1, initial position

opt : options

63.11 directional_derivative

directional (projected) derivative
d : derivative, highest first
p : series expansion around x0

63.12 dud

optimization by the dud algorithm

63.13 extreme3

```
extract maxima by quadratic approximation from sampled function val
    (t)
intended to be called after [mval, mid] = max(val) for refinement
    of
locatian and maximum

input
t : sampling time (uniformly spaced)
v : values at sampling times
ouput:
tdx : index where extremum should be computed
t0 : location of the extremum
val0 : value of extremum
```

v'(dt0) = 0 and v''(dt0) determines type of extremum

63.14 extreme_quadratic

63.15 ftest

63.16 fzero_bisect

63.17 fzero_newton

63.18 grad

numerical gradient

63.19 hessian

numerical hessian

63.20hessian_from_gradient

numerical hessian from gradient

63.21hessian_projected

numerical hessian projected to one dimenstion

63.22 line_search

bisection routine

63.23 line_search2

bisection method

fun : objective funct x0 : start value

f0 : objective function value at x0

: gradient at x0

: search direction from x0 (p = g for steepest descend)
: initial step length (default 1)

lb : lower bound for x ${\tt up} \;\; : \; {\tt upper} \; {\tt bound} \; \, {\tt for} \; \, {\tt x}$

63.24line_search_polynomial

polynomial line search fun : objective funct

x0 : start value

 ${\tt f0}$: objective function value at ${\tt x0}$

g : gradient at x0

 dir : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

lb : lower bound for xup : upper bound for x

63.25 line_search_polynomial2

cubic line search
fun : objective funct
x0 : start value

 ${\tt f0}$: objective function value at ${\tt x0}$

g : gradient at x0

dir : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

63.26 line_search_quadratic

quadratic line search
fun : objective funct
x0 : start value

 ${\tt f0}$: objective function value at ${\tt x0}$

g : gradient at x0

 dir : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

63.27 line_search_quadratic2

quadratic line search

63.28 line_search_wolfe

63.29 ls_bgfs

least squares by the bgfs method

63.30 ls_broyden

63.31 ls_generalized_secant

least squares by the secant method Barnes, 1965 Wolfe, 1959 Fletcher 1980, 6.3 seber 2003 gerber

63.32 nlcg

non-linear conjugate gradient
input:

x : nx1 start vectort
opt : struct options
fdx : gradient constraint

63.33 nlls

non-linear least squares

63.34 picard

picard iteration

63.35 poly_extrema

extrema of a polynomial

63.36 quadratic_function

evaluate quadratic function in higher dimensions

63.37 quadratic_programming

optimize by quadratic programming

63.38 quadratic_step

single step of the quadratic programming

63.39 rosenbrock

rosenbrock test function

$63.40 \quad sqrt_heron$

Heron's method for the square root

63.41 test_directional_derivative

63.42 test_dud

63.43 test_fzero_newton

- 63.44 test_line_search_quadratic2
- 63.45 test_ls_generalized_secant
- 63.46 test_nlcg_6_order
- 63.47 test_nlls

```
f = w'*(p*abs(x-1).^4) + w'*(1-p)*abs(x-1).^2;
```

- 64 numerical-methods/pde
- $64.1 \quad laplacian 2 \\ d_fundamental_solution$
- 65 numerical-methods/piecewise-polynomials
- 65.1 Hermite1

hermite polynomial interpolation in 1d

65.2 hp2_fit

```
fit a hermite polynomial
coefficients are derivative free
x0 : left point of first segment
x1 : right point of last segment
n : number of segments
x : sample x-value
val : sample y-value
c : coefficients (values at points, no derivatives)
```

65.3 hp2-predict

prediction with pw hermite polynomial
c are values at support points

$65.4 hp_predict$

predict with piecewise hermite polynomial

65.5 hp_regress

fit piecewise hermite polynomial coefficients are values and derivatives

65.6 lp_count

lagrangian basis for interpolation count number of valid samples

65.7 lp_predict

lagrangian basis piecwie interpolation, predicor

65.8 lp_regress

65.9 lp_regress_

66 numerical-methods

66.1 test_adams_bashforth

67 mathematics

mathematical functions of various kind

67.1 oversampleNZ

68 regression/@PolyOLS

68.1 PolyOLS

class for polynomial least squares

68.2 coefftest

68.3 detrend

detrending by polynomial regression

68.4 fit

fit a polynomial function like polyfit, but returns parameter error estimates TODO automatically activate scaleflag

68.5 fit_

fit a polynomial function

68.6 predict

predict polynomial function values

68.7 predict_

68.8 slope

slope by linear regression

$69 \quad regression/@PowerLS$

69.1 PowerLS

class for power law regression

69.2 fit

fit a power law like polyfit, but returns parameter error estimates

69.3 predict

```
predict with power law
   S2 = diag((A*obj.C)*A');
   L = Y - S;
   U = Y + S;
```

69.4 predict_

70 regression/@Theil

70.1 Theil

Kendal-Theil-Sen robust regression

70.2 detrend

linear detrending of a set of samples by the Theil-Senn Slope

70.3 fit

fit slope and intercept to a set of sample with the Theil-Sen $\ensuremath{\mathsf{method}}$

c : confidence interval c = 2*ns*normcdf(1) for ns-sigma
intervals

 $\begin{array}{l} \texttt{param} \; : \; \texttt{itercept} \; \texttt{and} \; \texttt{slope} \\ \texttt{P} \; : \; \texttt{confidence} \; \texttt{interval} \end{array}$

70.4 predict

predict values and confidence intervals with the Theil-Sen method

70.5 slope

fit the slope with the Theil-Sen method

71 regression

linear and non-linear regression

71.1 Theil_Multivariate

extension of the Theil-Senn regression to higher dimensions by means of the ${\tt Gauss-Seidel}$ iteration

71.2 areg

regression using the pth-fraction of samples with smallest residual

71.3 ginireg

gini regression

71.4 hessimplereg

```
hessian, gradient and objective function value of the simple regression  \text{rhs = p(1) + p(2) x + eps}
```

71.5 l1lin

solve ||Ax - b||_L1 by means of linear programming

71.6 lsq_sparam

```
parameter covariance of the least squares regression
```

```
fun : model function for predtiction
```

b : sample values

f(p) = b

 ${\tt p}$: parameter at point of evaluation (preferably optimum)

71.7 polyfitd

```
fit a polynomial of order n to a set of sampled values and sampled values of the derivative  \\
```

x0 must contain at least for conditioning as otherwise the intercept cannot be determined

71.8 regression_method_of_moments

```
fit linear function ||a b x = y||_L2 by the method of moments y+eps = alpha + beta*x
```

71.9 robustling

fit a linear function by splitting the x-values at their median $(\texttt{med}(y_\texttt{left}) - \texttt{med}(y_\texttt{right})) / (\texttt{med}(x_\texttt{left}) - \texttt{med}(x_\texttt{right})$ this approach performs poorly compared to the theil-senn operator

71.10 theil2

Theil senn-estimator for two dimensions (glm)

71.11 theil_generalised

generalization of the Theil-Senn operator to higher dimensions,
for arbitrary functions such as polynomials and multivariate
 regression
either higher order polynomials or glm
c.f. "On theil's fitting method", Pegoraro, 1991

71.12 total_least_squares

total least squares

71.13 weighted_median_regression

weighted median regression c.f. Scholz, 1978

72 set-theory

72.1 issubset

test if set B is subset of A in O(n)-runtime

A : first set
B : second set

P : set of primes (auxiliary)

73 mathematics

mathematical functions of various kind

73.1 shuffle_index

74 signal-processing

74.1 asymwin

creates asymmetrical filter windows filter will always have negative weights

75 signal-processing/autocorrelation

75.1 acf_radial

75.2 acfar1

Autocorrelation function of the finite AR1 process

```
a_k = 1/(n-k)sum x_ix_i+1 + (xi + xi+k)mu + mu^2
= r^k + 1/n sum_ij + 1/n
pause
```

$75.3 \quad acfar1_2$

autocorrelation of the ar1 process

75.4 acfar2

impulse response of the ar2 process

$75.5 \quad acfar2_{-}2$

autocorrelation of the ar2 process $X_i + a1 X_{i-1} + a2 X_{i-2} = 0$

75.6 ar1_cutoff_frequency

75.7 ar1_effective_sample_size

effective sample size correction for autocorrelated series

75.8 ar1_mse_mu_single_sample

standard error of a single sample of an ar1 correlated process

$75.9 \quad ar1_mse_pop$

variance of the population mean of a single realisation around zero ${\tt E[(mu_N-0)^2] = E[mu_N^n]}$

75.10 ar1_mse_range

mean standard error of the mean of a range of values taken from an $\mbox{ar1}\mbox{ process}$

75.11 ar1_spectrum

spectrum of the ar1 process

75.12 ar1_to_tikhonov

convert ar1 correlation to tikhonovs lambda

75.13 ar1_var_factor

```
variance correction factor for an autocorrelated finite process n : [1 .. inf] population size m : [1 .. n] samples size rho : [ -1 < rho < 1 (for convergence) ] correlation of samples
```

75.14 arl_var_factor_

variance of an autocorrelated finite process

75.15 ar1_var_range2

```
variance of sub sample starting at the end of the series from the finite length first order autocorrelated process s2 = 1/m^2 \ sum\_i^m \ sum\_j^m \ rho^-|i-j|
```

75.16 ar1delay

75.17 ar1delay_old

autocorrelation of the residual

75.18 ar2_acf2c

determine coefficients of the ar2 process from the first two lags of the autocorrelation function

75.19 ar2conv

```
coefficients of the ar2 process determined from the two leading
   correlations
of the acf [1,r1,r2,...]
```

75.20 ar2dof

effective samples size for the ar2 process

75.21 ar2param

```
ar2 parameter estimation from first two terms of acf
acf = [1 a1 a2 ...]
```

75.22 autocorr2

75.23 autocorr_bandpass

75.24 autocorr_brownian_phase

75.25 autocorr_brownian_phase_2d

$75.26 \quad autocorr_brownian_phase_across$

$75.27 \quad autocorr_decay_rate$

estimate exponential decay of the autocorrelation

$75.28 \quad autocorr_effective_sample_size$

effective sample size from acf

75.29 autocorr_fft

estimate sample autocorrelation function

75.30 autocorr_forest

75.31 autocorr_genton

autocorrelation function

75.32 autocorr_highpass

75.33 autocorr_lowpass

75.34 autocorr_periodic_additive_noise

75.35 autocorr_periodic_windowed

75.36 autocorr_radial

76 signal-processing

76.1 average_wave_shape

extract waves with varying length from a wave train and and average their shape $\,$

76.2 bandpass

bandpass filter

76.3 bartlett

```
Effective sample size factor for bartlett window c.f. thiebaux c.f spectral analysis-jenkins, eq. (6.3.27) c = acf note: results seams always to be 1 tac too low T : reduction factor for dof for ar1 with a = rho^k = \exp(-k/L), T = 2L
```

76.4 bin1d

bin values of v sampled at x into bins bounded by "edges" apply function v to it

76.5 bin2d

```
bin values of V sampled at X and Y into the grid structured grid ex
    ,ey
apply function func to all walues in the bin
func = mean : default
func = sum : non-normalized frequency histogram in 2D
```

76.6 binormrnd

generate two correlated normally distributed vectors

76.7 coherence

$76.8 \quad conv1_man$

convolutions with padding

76.9 conv2_man

convolution in 2d

$76.10 \quad conv2z$

76.11 conv30

convolve with rectangular window of lenght \boldsymbol{n} circular boundaries

$76.12 \quad conv_{-}$

convolution of a with b

76.13 conv_centered

convolve x with filter window f
when length of f is even, this guarantees a symmetric result (no
 off by on
displacement) by making the length of f odd at first

76.14 convz

76.15 cosexpdelay

76.16 csmooth

smooth recursively with [1,2,1]/4 kernel function x = csmooth(x,n,p,circ)

76.17 daniell_window

Daniell window for smoothing the power spectrum c.f. Daniell 1946
Bloomfield 2000
meko 2015

76.18 db2neper

convert decibel to neper

76.19 db2power

power ratio from db

$76.20 \quad derive_bandpass_continuous_scale$

$76.21 \quad derive_danielle_weight$

76.22 derive_limit_0_acfar

76.23 detect_peak

detect peaks in a vector
requires function value to fall to p*max before new value is
 allowed

76.24 determine_phase_shift

$76.25 \quad determine_phase_shift1$

average phase and phase shift per time step of a train of waves

76.26 doublesum_ij

double sum of r^i

$76.27 \quad effective_sample_size_to_ar1$

convert effective sample size to ar1 correlation

76.28 fcut2Lw_gausswin

76.29 fcut_gausswin

76.30 filt_hodges_lehman

77 signal-processing/filters

77.1 circfilt2

Mon 19 Dec 17:03:02 CET 2022 smooth (filter) the 2D image z with a circular disk of radius nf apply periodic boundary conditions

77.2 filter1

filter along one dimension

77.3 filter2

filter columns of x (matlab does only support vector input)

77.4 filter_

invalidate values that exceed n-times the robust standard deviation

77.5 filter_r_to_f0

77.6 filter_rho_to_f0

77.7 filter_twosided

77.8 filteriir

```
filter adcp t-n data over time
v : nz,nt : values to be filtered
H : nt,1 : depth of ensemble
last : nt,1 : last bin above bottom that can be sampled without
   side lobe interference
nf : scalar : number of reweighted iterations
when samples
- distance to bed is reference (advantageous for near-bed suspended
    transport)
TODO for wash load: distance to surface is more relevant
interpolate depending on z
when depth changes, neighbouring indices do not correspond to same
   relative position in the water column
relative poisition in the colum (s-coordinate) smoothes values
near the bed: absolute distance to bed is chosen
near surface: absolute distance to surface is chosen
-> cubic transformation of index
faster and avoid alising (smoothing along z)
      resample ensemble to same number of bins in S -> filter ->
          resample back
      use nonlinear transform z-s coordinates
-> resampling has to be local (Hi -> H-filtered)
filtered profile coordinates to sample coordinates
      zf -> zi (special transform)
corresponding indices and fractions
filtration step (update of hf and vf)
sample coordinates to updated profile coordinates
(the inverse step is actually not necessary)
write filtered value
```

77.9 filterp

77.10 filterp1

fir filter with some fancy extras

77.11 filterstd

77.12 gaussfilt2

smooth (filter) the 2D image z with a gaussian window apply periodic boundary conditions

77.13 lowpass_discrete

design coefficients of a low pass filter with specified cut of
 frequency
and sampling period
alalogue low pass with pole at s=-omega_c=1/tau=1/RC
Ha = tau/(tau + s) = 1/(1 + omega_c*s)

77.14 meanfilt2

filter with a rectangular window along both dimensions

$77.15 \quad medfilt1_man$

moving median filter, supports columnwise operation

$77.16 \quad medfilt1_man2$

moving median filter with special treatment of boundaries

77.17 medfilt1_padded

median filter with padding

77.18 medfilt1_reduced

median filter with padding

77.19 trifilt1

77.20 trifilt2

filter with a triangular window along both dimensions

78 signal-processing

78.1 firls_man

design finite impulse response filter by the least squares method

78.2 fit_spectral_density

fit spectral densities

78.3 fit_spectral_density_2d

fit spectral densities

78.4 fit_spectral_density_radial

fit spectral densities

78.5 flattopwin

the flat top window

78.6 frequency_response_boxcar

frquency response of a boxcar filter

78.7 freqz_boxcar

frequncy response of a boxcar filter

78.8 gaussfilt1

filter data series with a gaussian window

78.9 hanchangewin

hanning window for change point detection

78.10 hanchangewin2

nanning window for chage point detection

78.11 hanwin

hanning filter window

78.12 hanwin_

hanning filter window

$78.13 \quad high_pass_1d_simple$

78.14 kaiserwin

kaiser filter window

78.15 kalman

Kalman filter

78.16 lanczoswin

Lanczos window

78.17 last

lake tail, but for matrices

78.18 maxfilt1

78.19 meanfilt1

moving average filter with special treatment of the boundaries

$78.20 \quad mid_term_single_sample$

variance of single sample, mid term

78.21 minfilt1

78.22 minmax

78.23 mu2ar1

error variance of the mean of the finite length ar1 process

 $(mu)^2 = (sum \ epsi)^2 = sum_i \ sum_j \ eps_i \ eps_j = sum_ii(rho,n)/n^2$ this has the limit s^2 for rho->1

78.24 mysmooth

78.25 nanautocorr

autocorrelation with nan-values

78.26 nanmedfilt1

medfilt1, skipping nans

78.27 neper2db

convert neper to db

78.28 oscillator_noisy

79 signal-processing/passes

79.1 bandpass1d

$79.2 \quad bandpass1d_fft$ filter input vector with a spatial (two-sided) bandpass in fourier space $bandpass1d_implicit$ bandpass2 79.4 bandpass filter 79.5bandpass2d $bandpass2d_2$ 79.6 $bandpass2d_fft$ 79.7 $bandpass2d_ideal$ 79.8 $bandpass2d_implicit$ 79.9

bandpass2d_iso

79.10

79.11 bandpass_arg

determine correlation coefficient from frequency of mode for the $\operatorname{symmetric}$

79.12 bandpass_f0_to_rho

correlation coefficient for the pth-order symmetric bandpass filter
 with
maximum at f0 (when rho_lp = rho_hp)

79.13 bandpass_max

79.14 bandpass_max2

79.15 highpass

high pass filter

79.16 highpass1d_fft_cos

filter the input vector with a cosine-shaped highpass in frequency space

79.17 highpass1d_implicit

79.18 highpass2d_fft

- $79.19 \quad highpass 2d_ideal$
- $79.20 \quad highpass 2 \\ \text{d_implicit}$
- 79.21 highpass_arg
- $79.22 \quad highpass_fc_to_rho$
- 79.23 lowpass

low pass filter

- $79.24 \quad lowpass1d_fft$
- $79.25 \quad lowpass1d_implicit$
- 79.26 lowpass2

design low pass filter with cutoff-frequency f1

 $79.27 \quad lowpass2d_2$

79.28	$lowpass 2 d_anisotropic$		
79.29	$lowpass2d_fft$		
79.30	$lowpass2d_ideal$		
79.31	$lowpass 2 \\ d_implicit$		
79.32	$lowpass_arg$		
79.33	$lowpass_fc_to_rho$		
79.34	lowpass_iir		
iir-low	pass		
79.35	$lowpass_iir_symmetric$		
two-sided iir low pass filter (for symmetry)			
79.36	lowpassfilter2		

low-pass filter of data

80 signal-processing

80.1 peaks_man

peaks of a periodogram

81 signal-processing/periodogram

81.1 periodogram

compute the normalized periodogram

81.2 periodogram_2d

compute the normalized periodogram in two dimensions

81.3 periodogram_annular

81.4 periodogram_bartlett

estimate the spectral density nonparametrically with Bartlett's $\tt method$

81.5 periodogram_bootstrap

81.6 periodogram_confidence_interval

confidence interval for periodogram values

81.7 periodogram_filter

81.8 periodogram_median

81.9 periodogram_p_value

81.10 periodogram_qq

```
\operatorname{qq-plot} of a spectral density estimate by smoothing against the expected beta-density
```

81.11 periodogram_quantiles

quantiles of a periodogram

81.12 periodogram_radial

81.13 periodogram_std

standard deviation of a periodogram

81.14 periodogram_test_periodicity

```
test a periodogram for hidden periodic frequency components
function [p,ratio,maxShat,mdx,fdx,S] = periodogram_test_periodicity
    (fx,Shat,nf,fmin,fmax,S,mode)

input:
    fx : frequengcies
    Shat : corresponding periodogram values
    nf : number of bins to test for periodicity, ignored when S
        is given
```

fmin, fmax : frequency range limits to test

S : exact (a priori known theoretical spectral density,

must not be estimated from the periodogram)

mode: automatically set to "exact", when S given

inclusive : estimate density by smoothing including the $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

central bin

exclusive : estimate density by smoothing excluding the

central bin

note: inclusive and exclusive lead to different distribution

but identical p-values

TODO pass L and not fx

81.15 periodogram_test_periodicity_2d

test a periodogram for hidden periodic frequency components

input:

fx : frequengcies

: image to test for presence of hidden periodicities,

i.e. periodicities where the frequency is not known a priori

nf : radius of circular disk (in number of bins) used for smoothing

the periodogram to estimate the spectral density

bmsk : mask determining parts of the image to include in the
 analysis

default is entire image

fmin, fmax : (radial) frequency range limits to test (fmask)

mode : automatically set to "exact", when S given

inclusive : estimate density by smoothing including the central $\ensuremath{\operatorname{bin}}$

exclusive : estimate density by smoothing excluding the central bin

note: inclusive and exclusive lead to different distribution but identical p-values

influence of masking the input file:

the root-mean-square energy of the ordinates is proportional

to the number of unmasked points

values in the periodogram are not any more linearly independent

so that the dof of the filter window is not nf^2

81.16 periodogram_test_stationarity

```
test a periodogram for statoinarity
note : the method works, but is of little practical use,
as it requires about 50 periods and a small dx to detect a
    frequency change by a factor of 2
```

81.17 periodogram_welsh

82 signal-processing

82.1 polyfilt1

```
polynomial filter, can be achieved by iteratively processing the data with a mean (zero-order) filter
```

82.2 qmedfilt1

medfilt1, after fitting a quadratic polynomial

82.3 quadratfilt1

82.4 quadratwin

82.5 randar1

generate random ar1 process
e1 = randar1(sigma,p,n,m)

$82.6 \quad randar1_dual$

draw random variables of two corrlated ar1 processes

82.7 randar2

generate ar2 process

82.8 randarp

randomly generate the instance of an ar-p process

82.9 rectwin

rectangular window

82.10 recursive_sum

82.11 select_range

82.12 smooth1d_parametric

smooth position of p0=x0,y0 between p1=x1,y1 and p2=x2,y2, so that distance to p1 and p2 becomes equal and the chord length remains the same

82.13 smooth2

smooth vectos of X

82.14 smooth_man

82.15 smooth_parametric

smooth a parametric function given in x-y coordinates
 matvec2x2(R,[dxc;dyc])

$82.16 \quad smooth_parametric2$

parametrically smooth the curve

$82.17 \quad smooth_with_splines$

82.18 smoothfft

filter with fast fourier transform

83 signal-processing/spectral-density

$83.1 ext{ spectral_density_ar2}$

83.2 spectral_density_area

integrate the spectral density

$83.3 \quad spectral_density_bandpass2d_ideal$

83.4 spectral_density_bandpass_2d

83.5 spectral_density_bandpass_2d_max2par

```
transform mode (maxima) of the bandpass spectral density into the
   paramter
of the underlying distribution
```

83.6 spectral_density_bandpass_2d_scale

83.7 spectral_density_bandpass_2d_scale_old

83.8 spectral_density_bandpass_continuous

83.9 spectral_density_bandpass_continuous_max

maximum of the bandpass spectral density

$83.10 \quad spectral_density_bandpass_continuous_max2par$

transform mode (maxima) of the bandpass spectral density into the
 paramter
of the underlying distribution

$83.11 \quad spectral_density_bandpass_continuous_scale$

normaliztation scale of the spatial bandpass density

83.12 spectral_density_bandpass_discrete

spectral density of the discrete spatial (two-sided) bandpass filter $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) +\left(\frac{1}{2}\right)$

83.13 spectral_density_brownian_phase

spectral density of a fourier series where the phase undergoes
 brownian motion
with standard deviation s per unit distance

83.14 spectral_density_brownian_phase_2d

83.15 spectral_density_brownian_phase_across

83.16 spectral_density_brownian_phase_across_max

83.17 spectral_density_brownian_phase_across_max2par

83.18	$spectral_density_brownian_phase_across_mode2par$
83.19	$spectral_density_brownian_phase_mode$
	maximum) of the spectral density of the fourier series with which was
83.20	$spectral_density_brownian_phase_mode2par$
transfo	orm mode to parameters of the brownian phase spectral density
83.21	$spectral_density_brownian_phase_scale$
normali	zation scale of the brownian phase spectral density
83.22	$spectral_density_estimate_2d$
83.23	$spectral_density_flat$
flat sp	pectral density of a random vector woth iid elements
83.24	$spectral_density_forest$

 $83.25 \quad spectral_density_gausswin$

 $83.26 \quad spectral_density_highpass$

83.27	$\mathbf{spectral}$	$_{f _density_}$	highpass	${f 2d_ideal}$
-------	---------------------	--------------------	----------	----------------

83.28 spectral_density_highpass_2d

83.29 spectral_density_highpass_cos

consine shaped spectral density of a highpass filter

83.30 spectral_density_lorentzian

lorentzian spectral density

$83.31 \quad spectral_density_lorentzian_max$

mode (maximum) of the lorentzian spectral density

83.32 spectral_density_lorentzian_max2par

 $\begin{array}{c} \text{transform maximum of the lorentzian spectral density to its} \\ \text{distribution parameters} \end{array}$

83.33 spectral_density_lorentzian_scale

normalization scale of the lorentzian spectral density

83.34 spectral_density_lowpass2d_ideal

83.35 spectral_density_lowpass_2d

83.30	spectral_density_lowpass_continuous
83.37	$spectral_density_lowpass_continuous_scale$
83.38	$spectral_density_lowpass_discrete$
83.39	$spectral_density_lowpass_one_sided$
83.40	$spectral_density_maximum_bias_corrected$
83.41	$spectral_density_periodic_additive_noise$
83.42	$spectral_density_rectwin$
83.43	${\bf spectral_density_wperiodic}$

signal-processing

 $84.1 \quad spectral_density_brownian_phase_reg2par$

84

84.2 spectrogram

spectrogram

$84.3 \quad sum_i_lag$

sum of ar1 matrix with lag
sum_i=1^n rho^|i-k|

84.4 sum_ii

sum of ar1 matrix $\begin{aligned} &\text{sum_i=1^n sum_j=1^n rho^|i-j|} \\ &\text{this is for the variance, take square root for the standard} \\ &\text{deviation factor} \end{aligned}$

84.5 sum_ii_

$84.6 \quad sum_{ij}$

```
sum of ar1 matrix
sum_{i=1}^n sum_{j=1}^m r^|i-j|
```

$84.7 \quad sum_{ij}$

$84.8 \quad sum_{ij_partial_}$

$84.9 \quad sum_multivar$

 sum of matrix entries of bivariate ar1 process

84.10 test_acfar1

84.11 tikhonov_to_ar1

convert coefficient of the tikhonov regularization to correlatioon of the arl process $% \left(1\right) =\left(1\right) \left(1\right) \left($

84.12 trapwin

trapezoidal filter window

84.13 triwin

triangular filter window

84.14 triwin2

triangular filter window

84.15 tukeywin_man

84.16 varar1

error variance of a single sample of a finite length ar1 process with respect to the mean, averaged over the population

84.17 welch_spectrogram

welch spectrogram

84.18 wfilt

filter with window

84.19 winbandpass

filter with bandpass

85 signal-processing/windows

85.1 circwin

85.2 danielle_window

danielle fourier window

85.3 gausswin

85.4 gausswin2

85.5 radial_window

radial filter window in the 2d-frequency domain

85.6 range_window

range of values within a certain range of indices (window)

85.7 rectwin_cutoff_frequency

85.8 std_window

moving block standard deviation

85.9 window2d

85.10 window_make_odd

86 signal-processing

86.1 winfilt0

filter with window

86.2 winlength

```
window length for desired cutoff frequency
power at fc is halved
H(wf) = 1/sqrt(2) H(f)
if the filter window were used as a low pass filter
note: the user should prefer a windowed ideal low pass filter
TODO, relate this to DOF
```

86.3 wmeanfilt

mean filter with window

86.4 wmedfilt

median filter with window

86.5 wordfilt

weighted order filter

86.6 wordfilt_edgeworth

weighed order filter

86.7 wrapphase

86.8 xar1

86.9 xcorr_man

cross correlation of two sampled ar1 processes

87 sorting

87.1 sort2

sort two numbers

87.2 sort2d

sort elements of matrix in ${\tt X}$ returns row and column index of sorted values

88	$spatial-pattern-analysis/@Spatial_Pattern$
88.1	Spatial_Pattern
88.2	${ m analyze_grid}$
88.3	${\bf analyze_transect}$
88.4	$\operatorname{extract_improfile}$
88.5	imread
88.6	plot
88.7	tabulate
89	spatial-pattern-analysis
89.1	$ m analyze_grid2$
89.2	approximate ratio distribution

89.3 bande	${ m ed}$ $_{ m pattern}$
89.4 brown	${f nian_phase_patch_size_distribution}$
89.5 hexag	${f gonal_pattern}$
89.6 isisot	ropic
89.7 patch	$_size_1d$
89.8 patch	_size_2d
89.9 separ	$ate_isotropic_from_anisotropic_density$
89.10 supp	${ m press_low_frequency_lobe}$
90 specia	al-functions
90.1 besse	$_{ m L}$ sphere

spherical Bessel function of the first kind

90.2 beta_man

90.3 betainc_man

90.4 digamma_man

 $90.5 \quad \exp 10$

90.6 hankel_sphere

spherical Hankel function for the far field (incident plane wave) first ${\tt kind}$

90.7 hermite

probabilistic's hermite polynomial by recurrence relation

input :
n : order
x : value

output:
f : H_n(x)
df : d/dx H_n(x)

90.8 legendre_man

legendre polynomials

90.9 neumann_sphere

spherical Neumann function
Bessel function of the second kind

91 statistics

$91.1 \quad atan_s2$

stadard deviation of the arcus tangens by means of taylor expansion

91.2 beta_kurt

91.3 beta_mean

$91.4 \quad beta_moment2param$

transform central moments (mean and sd) to parameters of the beta function

91.5 beta_skew

91.6 beta_std

91.7 chi2_kurt

91.8	${ m chi2_mean}$

91.9	${ m chi2_skew}$

```
91.10 \text{ chi}2\_\text{std}
```

91.11 coefficient_of_determination

91.12 conditional_expectation_normal

91.13 correlation_confidence_pearson

confience intervals of the correlation coefficient c.f. Fischer 1921

92 statistics/distributions

92.1 PDF

class for quasi-distributions from a set of sampling points

$92.2 \quad binorm_separation_coefficient$

separation coefficient of a bimodal normal distribution

92.3 binormcdf

bio-modal gaussian distribution

92.4 binormfit

fit sum of to normal distribution to a histogram

92.5 binormpdf

92.6 edgeworth_cdf

edgeworth expansion of an unknown cumulative distribution with mean mu, standard deviation sigma, and third and fourth cumulants c.f. Rao 2010

92.7 edgeworth_pdf

probability density of and unknown distribution
with mean mu, standard deviation sigma, and third and fourth
 cumulants
c.f. Rao 2010

$92.8 \quad gam_moment2param$

$92.9 logn_mean$

$92.10 logn_{mode}$

mode (maximum) of the log-normal density

$92.11 logn_mode2param$

92.12 logn_moment2param

transform the mode (mu,sd) to parameters of the log normal distribution

92.13 logn_param2moment

transform parameters to mode (mu, sd) for the \log normal distribution

$92.14 logn_std$

$92.15 \quad lognpdf_{-}$

log normal distribution called by modes rather than parameters

92.16 pdfsample

pdf from sample distribution
Note: better use kernal density estimates

92.17 t2cdf

 $\hbox{\tt Hotelling's T-squared cumulative distribution}\\$

92.18	t2inv
72.10	1. 2.111 V

inverse	οf	Hotelling's	T-squared	cumulative	distribution
THIVELSE	OT	noterring 8	1-Squareu	Cumurative	arstribution

- 93 statistics
- 93.1 error_propagation_fraction
- $93.2 \quad error_propagation_product$
- $93.3 \quad example_standard_error_of_sample_quantiles$
- 93.4 f_var_finite

reduction of variance when sampling from a finite population without replacement $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right$

- 93.5 fisher_mean
- 93.6 fisher_moment2param
- 93.7 fisher_std
- 93.8 gam_mean

$93.9 \quad gam_std$

$93.10 \quad gamma_mode_to_parameter$

transform modes (mu,sd) to parameters of the gamma distribution

93.11 gamma_stirling

93.12 gaussfit3

93.13 gaussfit_quantile

93.14 geoserr

93.15 geostd

93.16 hodges_lehmann_correlation

hodges_lehmann correlatoon coefficient

- c.f. Shamos 1976
- c.f. Bickel and Lehmann 1976
- c.f. rousseeuw 1993
- c.f. Shevlyakov 2011

93.17 hodges_lehmann_dispersion

94 statistics/information-theory

94.1 akaike_information_criterion

```
akaike information criterion
serr : rmse of model prediction
n : effective sample size
k : number of parameters
c.f. akaike (1974)
c.f. sugiura 1978
```

94.2 bayesian_information_criterion

bayesian information criterion

95 statistics

95.1 jackknife_block

95.2 kurtncdf

95.3 kurtnpdf

95.4 kurtosis_bias_corrected

bias corrected kurtosis

95.5 limit

limit a by lower and upper bound

95.6 logfactorial

approximate log of the factorial

95.7 loglogpdf

95.8 lognfit_quantile

95.9 logskewcdf

95.10 logskewpdf

96 statistics/logu

96.1 lambertw_numeric

lambert-w function

96.2 logtrialtcdf

pdf of a logarithmic triangular distribution

96.3 logtrialtiny

```
inverse of the logarithmic triangular distribution
= (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/
    log(a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b
    ) + d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c)
    + b log(c) - d F log(a) log(c)))/(log(a) - log(b)))
x = (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/log
    (a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b) +
    d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c) + b
    log(c) - d F log(a) log(c)))/(log(a) - log(b))))
```

96.4 logtrialtmean

mean of the logarithmic triangular distribution

96.5 logtrialtpdf

density of the logarithmic triangular distribution

96.6 logtrialtrnd

96.7 logtricdf

cumulative distribution of the logarithmic triangular distribution

96.8 logtriinv

invere of the logarithmic triangular distribution

96.9 logtrimean

 $\hbox{\it mean of the logarithmic triangular distribution}\\$

96.10 logtripdf

probability density of the logarithmic triangular distribution

96.11 logtrirnd

96.12 logucdf

probability density of the logarithmic uniform distribution

96.13 logucm

central moments of the log-uniform distribution

96.14 loguinv

inverse of the log-uniform distribution

96.15 logumean

mean of the log-uniform distribution

96.16 logupdf

pdf of the log uniform distribution

96.17 logurnd

random numbers following a log-uniform distribution

96.18 loguvar

variance of the log-uniform distribution

96.19 medlogu

median of the log-uniform distribution

96.20 test_logurnd

96.21 tricdf

cumulative distribution of the log-triangular distribution

96.22 triinv

inverse of the triangular distribution

96.23 trimedian

median of the triangular distribution

96.24 tripdf

probability density of the triangular distribution

96.25 trirnd

random numbers of the triangular distribution

97 statistics

97.1 max_exprnd

97.2 maxnnormals

expected maximum of n normal variables c.f. Wolperts this is the median, not the mean of the maximum! see median of gumbel

97.3 mean_angle

97.4 mean_generalized_gampdf

97.5 midrange

mid range of columns of X

97.6 minavg

solution of the minimum variance problem minimise the variance of the weighted sum of n-independent random variables with equal mean and individual variance

97.7 mode_man

98 statistics/moment-statistics

98.1 autocorr_man3

autoccorrelation of the columns of X

98.2 autocorr_man4

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix

c.f. box jenkins 2008 eq. 2.1.12

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

98.3 autocorr_man5

autocorrellation of the columns of X

98.4 blockserr

estimate the standard error of potetially sequentilly correlated ${\tt data}$

by blocking

block length should be sufficiently larger than correlation length and sufficiently smaller than data length $\,$

this uses a sliding block approach, which reduces the variation of the error estimate

98.5 comoment

 $\begin{array}{c} {\tt non-central\ higher\ order\ moments\ of\ the\ multivariate\ normal} \\ {\tt distribution} \end{array}$

c.f. Moments and cumulants of the multivariate real and complex ${\tt Gaussian}$ distributions

note : there seem to be some typos in the original paper, for $x^4 cii^2$, the square seems to be missing

mu : nx1 mean vector

C : nxn covariance matrix

k : nx1 powers of variables in moments

98.6 corr_man

correlation of two vectors

98.7 cov_man

covariance matrix of two vectors

98.8 dof

mininum number of support points for a polynomial of degree order in dim dimensions

98.9 edgeworth_quantile

inverse edgeworth expansion
c.f. cornis fisher 1937
c.f. Rao 2010
c.f. 2.50 in hall
CHERNOZHUKOV 3.3

98.10 effective_sample_size

effective sample size of the weighted mean of uncorrelated data ${\tt c.f.}$ Kish

98.11 f_correlation

correction factor for standard error of the mean of n ar1-correlated iid samples $\ensuremath{\mathsf{S}}$

98.12 f_finite

reduction factor of standard error for sampling from a finite
 distribution
without replacement

98.13 lmean

mean of $x.^1$, not of abs

98.14 lmoment

1-moment of vector x

98.15 maskmean

mean of the masked values of X

98.16 masknanmean

98.17 mean1

 ${\tt mean} {\tt of} {\tt x}$

98.18 mean_man

mean and standard error of X

98.19 mse

mean squared error of residual vector res this is de-facto the std for an unbiased residual

98.20 nanautocorr_man1

autocorrelation of a vector with nan-values

98.21 nanautocorr_man2

autocorrelation of a vector with nan-values

98.22 nanautocorr_man4

compute autocorrelation for x if x is a vector, or indivvidually
 for the
columns of x if x is a matrix
box jenkins 2008 eq. 2.1.12
TODO nan is problematic!
Note that it is faster to compute the acf in frequency space
as done in the matlab internal function

98.23 nancorr

(co)-correlation matrix when samples a NaN

98.24 nancumsum

cumulative sum, setting nan values to zero

98.25 nanlmean

mean of the 1-th power of the absolute value of \boldsymbol{x}

98.26 nanr2

coefficient of determination when samples are invalid

98.27 nanrms

root mean square value when sample contains nan-values

98.28 nanrmse

root mean square error from vector of residuals this is de-facto the std for an unbiased residual

98.29 nanserr

standard error of x with respect to mean when x contains nan values

98.30 nanwmean

```
weighted mean
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = nanwmean(w,x)
```

98.31 nanwstd

weighed standard deviation

98.32 nanwvar

```
weighted variance of columns, corrected for degrees of freedom (
    bessel)

s^2 = sum(w*(x-sum(wx)/sum(w))^2)/sum(w)
```

98.33 nanxcorr

98.34 pearson

pearson correlation coefficient

98.35 pearson_to_kendall

conversion of pearson to kendall correlation coefficient c.f. Kruskal 1958

98.36 pool_samples

pooled mean and standard deviation of several groups of different size, mean and standard deviation

98.37 qmean

trimmed mean

98.38 range_mean

$98.39 \quad rmse_{-}$

 $\hbox{root mean square error computed from a residual vector} \\ \hbox{this is de-facto the std for an unbiased residual}$

98.40 serr

standard error of the mean of a set of uncorrelated samples

98.41 serr1

98.42 test_qskew

98.43 test_qstd_qskew_optimal_p

98.44 wautocorr

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix samples can be weighted

c.f. box jenkins 2008 eq. 2.1.12

c.f. autocorr_man4

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

98.45 wcorr

correlation of two vectors when samples are weighted

98.46 wcov

covariance of two vectors when samples are weighted

98.47 wdof

effective degrees of freedom for weighted samples

98.48 wkurt

kurtosis with weighted samples

98.49 wmean

```
weighted mean
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = wmean(w,x)
```

98.50 wrms

weighted root mean square

98.51 wserr

weighted root mean square error

98.52 wskew

```
skewness of a weighted set of samples function sk = wskew(w,x)
```

98.53 wstd

weighed standard deviation

98.54 wvar

```
weighted variance of columns, corrected for degrees of freedom (
   bessel)
variance of the weighted sample mean of samples with same mean (but
   not necessarily same variance)
s^2 = sum (w^2(x-sum(wx)^2))
s2_mu : error of mean, s2_mu : sd of prediction
```

99 statistics

99.1 nangeomean

99.2 nangeostd

geometric standard deviation ignoring nan-values

100 statistics/nonparametric-statistics

100.1 kernel1d

X : ouput x axis bins
xi : samples along x
m : number of bins in X
fun : kernel function

pdf : propability density of xi

100.2 kernel2d

kernel density estimate in two dimensions

101 statistics

101.1 normmoment

expected norm of $x.^n$, when values x in x are iid normal with mu and sigma

101.2 normpdf2

pdf of the bivariate normal distribution

102 statistics/order-statistics

102.1 hodges_lehmann_location

hodges lehman location estimator

Asymptotic rms efficency of location estimte:

mean: 1 s/sqrt(n)

hodges lehman: sqrt(pi/3)*s ~ 1.0233 s/sqrt(n) median: pi/2 s/sqrt(n) ~ 1.25 s / sqrt(n)

102.2 kendall

kendall correlation coefficient

102.3 kendall_to_pearson

convert kendall rank correlation coefficient to the person product
 moment
correlation coefficient

c.f. Kruska, 1985

$102.4 \quad \text{mad2sd}$

transform median absolute deviation to standard deviation for normal distributed values

102.5 madcorr

proxy correlation by median absolute deviation

$102.6 \quad median2_holder$

$102.7 \quad median_ci$

median and its confidence intervals under assumption of normality se_me = sqrt(1/2 pi) 1.25331 * sd/sqrt(n)

102.8 median_man

median and confidence intervals c is a P value for the confidence interval, default is 0.95 (2-sigma) median of the colums of X

102.9 mediani

index of median, if median is not unique, any of the values is ${\it chosen}$

102.10 nanmadcorr

proxy correlation by median absolute deviation

102.11 nanwmedian

weighted median, skips nan-values

102.12 nanwquantile

weighted quantile, skips nan values

102.13 oja_median

two dimensional oja median note: the multivariate median is not unique oja 1983, for extension to multivariate function, see chaudhri

102.14 qkurtosis

kurosis computed for quantiles

Note: this is a measurement of shape-tailedness and yields the same value for the normal distribution as "kurtosis"

However, this is a separate statistic and hence requires different methods for calculating P-values and hypothesis testing

102.15 qmoments

moments estimated from quantiles

102.16 qskew

skewness estimated from quantiles

Note: this is a measurement of shape-symmetry and yields the same value for the skew-normal distribution as "skewness"

However, this is an own statistic and hence requires different methods for calculating P-values and hypothesis testing

102.17 qskewq

skewness estimated by quantiles

102.18 qstdq

proxy standard deviation determined by quantiles

102.19 quantile1_optimisation

102.20 quantile2_breckling

qunatile regression

102.21 quantile 2_chaudhuri

quantile regression

$102.22 \quad quantile 2_projected$

quantile in two dimensions

102.23 quantile2_projected2

spatial qunatile for chosen direction

102.24 quantile_envelope

102.25 quantile_regression_simple

simple quantile regression

102.26 ranking

ranking for spearman statistics

102.27 spatial_median

c.f. $0ja\ 2008$ is this the same as the $oja\ simplex\ median\ (c.f.\ small\ 1990)$?

102.28 spatial_quantile

spatial quantile

102.29 spatial_quantile2

spatial quantile

102.30 spatial_quantile3

spatial quantile

102.31 spatial_rank

unsigned rank

102.32 spatial_sign

spatial sign

102.33 spatial_signed_rank

signed rank

Note: this is only a true rank if ${\tt X}$ is normal with zero mean, abitrary variance

102.34 spearman

spearman's product moment coefficient

102.35 spearman_rank

102.36 spearman_to_pearson

conversion of spearman rank to person product moment correlation coefficient

102.37 wmedian

weighted median

102.38 wquantile

weighted quantile

103 statistics

103.1 qstd

103.2 quantile_extrap

103.3 quantile_sin

104 statistics/random-number-generation

104.1 laplacernd

random number of laplace distribution

104.2 randc

correlate to correlated standard normally distributed vectors

104.3 skewness2param

104.4 skewpdf_central_moments

104.5 skewrnd

random numbers of the skew normal distribution

105 statistics

105.1 range

range and mid range of input

$105.2 \quad resample_with_replacement$

106 statistics/resampling-statistics/@Jackknife

106.1 Jackknife

class for leave out 1 (delete 1) Jackknife estimates

- note 1: the 1-delete jackknife does not yield consistend estimates for all functions,
 - in particular it will perform poorly on robust estimation functions
 - this is overcome by the d-delete jacknife, where d has to exceed the breakdown point
 - of the estimating function, for example $\operatorname{sqrt}(n)$ for the median
 - as this leads to unreasonably large number of repetitions, bootstrap
 - is recommended for large sample cases (or blocking for sequential data)
- note 2 : as a linearisation, jackknife underestimates the error variance in case of

dependence in the data

note 3 : studentisation and the leave out 1 jackknife are related
note 4 : the double 1 sample jacknife performs iferior to the d1
 jacknife

106.2 estimated_STATIC

jacknife estimate of mean, bias and standard error

 $\verb|theta0|: estimate from all samples|\\$

thetad : set of estimates obtained by leaving out one data point

each

last dimension of theta is assumed to be the jackknife dimension

106.3 matrix1_STATIC

matrix of estimation for leaving out two samples at a time

106.4 matrix2

matrix of estimations for jacknive with two samples left out

107 statistics/resampling-statistics

107.1 block_jackknife

107.2 jackknife_moments

moments determined by the jacknife

func : function of interest on the samples (e.g. mean)

A : parameter matrix columns : parameters

rows : samples of the parameter sets

d : number of samples left out

107.3 moving_block_jackknife

blocked Jacknfife for autocorrelated data
sliding block, statistically more efficient but computationally
 expensive
note, number of blocks must be sufficiently large h ~ sqrt(n)? << n</pre>

107.4 randblockserr

standard error of sequentilly correlated data by blocking block length should be sufficiently larger than correlation length and sufficiently smaller than data length this uses a sliding block approach, which reduces the variation of

the error estimate

 $\ensuremath{\mathsf{TODO}}$ this does not work, randomly picking samples does not reveal the correlation

107.5 resample

resample a vector and apply function to it $\$

TODO, should be with replacement

n : number of samples

m : number of subsamples

cx : maximum number of combinations

108 statistics

108.1 scale_quantile_sd

scale factor for the standard deviation of the asymtpotic distibution of sample quantiles (for normal distribution) see cadwell, 1952

108.2 sd_sample_quantiles

108.3 skew_generalized_normal_fit

108.4 skew_generalized_normpdf

108.5 skewcdf

108.6 skewparam_to_central_moments

108.7 skewpdf

skew-normal distribution c.f. Azzalini 1985

108.8 spatialrnd

 $108.9 \quad test_mean_generalized_gampdf$

108.10 test_skew_generalized_normpdf

108.11 trimmed_mean

trimmed mean

108.12 $ttest2_man$

two-sample t-test here posix return value standard: h=0 accepted, h=1 failed note: the matlab logic is inverse : h=1 accepted, h=0 failed two sided univariate t-test

108.13 ttest_man

two-sample t-test
unequal sample size
equal variance

108.14 $ttest_paired$

paired t-test unequal sample size equal variance more powerfull than unpaired test, as long as correlation between ${\tt x1}$ and ${\tt x2}$ > 0

108.15 uniformnpdf

108.16 wgeomean

```
weighted geometric mean
function mu = wgeomean(w,x)
```

108.17 wgeovar

variance of the weighted geometric mean

108.18 wharmean

weighted harmonic mean

108.19 wharstd

108.20 wharvar

108.21 wnormpdf

wrapped normal distribution to the unit circle ${\tt c.f.}$ stephens

109 stochastic

109.1 brownian_drift_hitting_probability

109.2 brownian_drift_hitting_probability2

109.3 brownian_field

- 109.4 brownian_motion_1d_acf
- 109.5 brownian_motion_1d_cov
- 109.6 brownian_motion_1d_fft
- 109.7 brownian_motion_1d_fourier
- 109.8 brownian_motion_1d_interleave
- 109.9 brownian_motion_1d_laplacian
- 109.10 brownian_motion_2d_cov

109.11	$brownian_motion_2d_fft$
109.12	$brownian_motion_2d_fft_old$
109.13	$brownian_motion_2d_fourier$
109.14	$brownian_motion_2d_interleave$
109.15	$brownian_motion_2d_interleaving$
109.16	brownian_motion_2d_kahunen
109.17	$brownian_motion_2d_laplacian$
109.18	$brownian_motion_with_drift_hitting_probability$
110 r	nathematics

mathematical functions of various kind

 $110.1 \quad ternary_diagram$

- $111 ext{test/master}$
- 111.1 dat_test_lanczos_3d_k_20_n_40
- 111.2 poisson $2d_blk$
- $111.3 \quad qr_implicit_givens_2$
- 111.4 spectral_derivative_2d
- 111.5 test_2d_eigensolver_hydrogen
- 111.6 test_2d_refine
- 111.7 test_3d_eigensolver_hydrogen
- 111.8 test_FEM
- $111.9 \quad test_Mesh_3d$

111.10	${ m test_arnoldi}$
111.11	${ m test_arpackc}$
111.12	$test_assemble$
111.13	$test_assembly_performance$
111.14	$test_bc_one_sided$
111.15	$test_compare_solvers$
111.16	$test_complete$
111.17	$test_convergence$
111.18	${ m test_convergence_b}$

 $111.19 \quad test_df_2d$

- $111.20 \quad test_eig_algs$
- 111.21 test_eig_inverse
- 111.22 test_eigs_lanczos
- 111.23 test_eigs_lanczos_1
- 111.24 test_eigs_lanczos_2
- $111.25 \quad test_eigs_lanczos_performance$
- 111.26 test_fdm
- 111.27 test_fdm_d_vargrid
- 111.28 test_fdm_spectral
- 111.29 test_fem

- 111.30 test_fem_1d
- $111.31 \quad test_fem_1d_higher_order$
- 111.32 test_fem_2d_adaptive
- $111.33 \quad test_fem_2d_higher_order$
- 111.34 test_fem_3d_higher_order
- 111.35 test_fem_3d_refine
- 111.36 test_fem_b
- 111.37 test_fem_derivative
- 111.38 test_fem_quadrature
- 111.39 test_final

- 111.40 test_fix_substitution
- 111.41 test_forward
- 111.42 test_get_sparse_arrays
- 111.43 test_harmonic_oscillator
- 111.44 test_high_order_fdm_periodic_bc
- 111.45 test_hydrogen_wf
- 111.46 test_ichol
- 111.47 test_interpolation
- 111.48 test_inverse_problem
- 111.49 test_it_vs_exact

- $111.50 \quad test_jama$
- $111.51 \quad test_jd$
- 111.52 $test_jdqz$
- 111.53 test_lanczos_2
- 111.54 test_lanczos_biorthogonal
- 111.55 $test_laplacian$
- 111.56 test_laplacian_non_uniform
- 111.57 test_laplacian_simple
- 111.58 test_mesh_2d_uniform
- 111.59 test_mesh_2d_uniform_2

- 111.60 test_mesh_circle
- 111.61 test_mesh_generation
- 111.62 test_mesh_interpolate
- 111.63 test_mg
- 111.64 test_minres_recycle
- 111.65 test_multigrid
- 111.66 test_nc
- 111.67 test_nonuniform_symmetric
- 111.68 $test_pde$
- 111.69 test_permutation

- 111.70 test_poison_fem
 111.71 test_polar
 111.72 test_potential
 111.73 test_powers
- 111.74 test_precondition
- $111.75 \quad test_project_rectangle$
- 111.76 $test_qr$
- $111.77 \quad test_quantum_well$
- 111.78 test_radial_adaptive
- 111.79 test_radial_confinement

- 111.80 test_radial_fixes
- 111.81 test_refine_2d
- 111.82 test_refine_2d_b
- 111.83 test_refine_3d
- 111.84 test_refine_structural
- 111.85 test_regularisation
- 111.86 test_round_off
- 111.87 test_schrödinger_potentials
- 111.88 test_uniform_mesh
- 111.89 test_vargrid

112	test/signal-processing/autocorrelation
112.1	$\operatorname{test_acf}$
112.2	${ m test_acf_bias}$
112.3	$test_acf_brownian_phase$
112.4	${ m test_acfar1_2}$
112.5	$test_acfar1_3$
112.6	${ m test_acfar1_4}$
112.7	${ m test_acfar2}$
112.8	$test_ar1_var_factor$
112.9	${ m test_ar1_var_factor_2}$

- $112.10 \quad test_ar1_var_mu_single_sample$
- $112.11 \quad test_ar1_var_pop$
- 112.12 test_ar1_var_pop_1
- 112.13 test_ar1delay
- 112.14 $test_ar2$
- $113 \quad test/signal-processing/passes$
- $113.1 \quad test_bandpass2d_ideal$
- $113.2 \quad test_lowpass1d_fft$
- 113.3 test_lowpass1d_implicit
- 113.4 test_lowpass2d_anisotropic

113.5	${ m test_lowpass2d_fft}$
113.6	${ m test_lowpass2d_rho}$
	$test/signal-processing/periodogram \\ test_periodicity_test_2d$
114.2	$test_periodogram_bartlett_se$
114.3	$test_periodogram_gauss$
114.4	$test_periodogram_radial$
114.5	$test_periodogram_test$
114.6	$test_periodogram_test_periodicity_2d$

 $114.7 \quad test_periogogram_significance$

115.1	${ m test_spectral_density_2}$
115.2	$test_spectral_density_bandpass_2d$
115.3	$test_spectral_density_bandpass_2d_max2par$
115.4	$test_spectral_density_bandpass_continuous$
	<pre>title(sprintf('n %d L %g %g%%',[n,L,1e2*rmse(idx,jdx)]));</pre>
115.5	$test_spectral_density_bandpass_continuous_1$
115.6	test_spectral_density_bandpass_maximum
	The state of the s

test/signal-processing/spectral-density

115

 $115.8 \quad test_spectral_density_bp$

 $115.7 \quad test_spectral_density_bandpass_scale$

115.9 test_spectral_density_bp_2d

115.10	$test_spectral_density_bp_approx$
115.11	$test_spectral_density_brownian_phase$
115.12	$test_spectral_density_brownian_phase_2d$
115.13	$test_spectral_density_brownian_phase_across$
115.14	$test_spectral_density_brownian_phase_across_mode2par$
115.15	$test_spectral_density_brownian_phase_mode$
115.16	$test_spectral_density_brownian_phase_mode2par$
115.17	$test_spectral_density_brownian_phase_scale$
115.18	$test_spectral_density_flat$

 $115.19 \quad test_spectral_density_hp_cos$

- 115.20 test_spectral_density_lorentzian_max
- $115.21 \quad test_spectral_density_lorentzian_scale$
- $115.22 \quad test_spectral_density_lowpass$
- $115.23 \quad test_spectral_density_lowpass_continuous$
- $115.24 \quad test_spectral_density_lowpass_continuous_1$
- $115.25 \quad test_spectral_density_maxiumum_bias_corrected$
- 116 test/spatial-pattern-analysis
- 116.1 test_approximate_ratio_distribution
- 116.2 test_approximate_ratio_quantile
- 116.3 test_spearate_isotropic_density

- 117 test/statistics/moment-statistics
- 117.1 test_wmean
- 118 test/statistics
- $118.1 \quad test_fisher_moment2param$
- 119 test/stochastics
- 119.1 test_brownian_surface
- 120 test
- $120.1 \quad test_S$
- 120.2 test_advect_analytic
- 120.3 test_asymbp
- $120.4 \quad test_bandpass2d$
- 120.5 test_bandwidth

- 120.6 test_bartlett_angle
- 120.7 test_bartlett_distribution
- 120.8 test_bartlett_expansion
- 120.9 test_beta
- 120.10 test_betainc
- 120.11 test_bivariate_covariance_term
- $120.12 \quad test_brownian_drift_hitting_probability$
- 120.13 test_brownian_drift_hitting_probability2
- 120.14 test_brownian_motion_1d
- 120.15 test_brownian_motion_2d_cov

120.16	$test_brownian_motion_2d_fft$
120.17	$test_brownian_noise_1d$
120.18	$test_brownian_noise_2d$
120.19	$test_brownian_noise_interleave$
120.20	$test_coherence$
120.21	$test_combined_spectral_density$
120.22	$test_continuous_fourier_transform$
120.23	$test_convexity$
120.24	$\mathrm{test}_{-}\mathrm{d}2$

 $120.25 \quad test_determine_phase_shift$

- $120.26 \quad test_diffuse_analytic$
- 120.27 test_diffusion_matrix
- 120.28 test_ellipse
- 120.29 test_error_propagation_fraction
- 120.30 test_f
- 120.31 test_f2
- $120.32 \quad test_fit_2d_spectral_density$
- 120.33 test_fourier
- 120.34 test_fourier_derivative
- 120.35 test_fourier_derivative_1

 $120.36 \quad test_fourier_integral$ 120.37 test_fourier_mask_covariance_matrix 120.38 $test_ft_p$ $120.39 \quad test_gam$ 120.40 test_gamma_distribution 120.41 test_gaussfit3 $120.42 \quad test_gaussian_flat$ 120.43 test_geoserr

120.44 test_hexagonal_pattern

120.45 test_iafrate

- $120.46 \quad test_implicit_ode$
- 120.47 test_imrotmat
- 120.48 test_integration
- 120.49 test_ivp
- 120.50 test_jacobian
- 120.51 test_lanczoswin
- 120.52 test_laplacian_power
- 120.53 test_lognfit_quantile
- $120.54 \quad test_ls_perpendicular_offset$
- 120.55 test_madcorr

 $120.56 \quad test_mask$

120.57 test_max_normal

120.58 test_moments

 $120.59 \quad test_moments_fourier_power$

120.60 test_mtimes3x3

120.61 test_noisy_oscillator

120.62 test_nonperiodic_pattern

120.63 test_normalizatation

120.64 test_ols

120.65 test_parcorr

- $120.66 \quad test_positivity_preserving$
- 120.67 test_randar1
- 120.68 test_randar1_multivariate
- 120.69 test_randar2
- 120.70 test_ratio_distributions
- 120.71 test_sd_rectwin
- 120.72 test_spatialrnd
- 120.73 test_spectrum_additivity
- 120.74 test_stationarity
- 120.75 test_stationarity2

 $120.76 \quad test_sum_ij$

120.77 test_sum_multivar

120.78 test_trifilt1

120.79 test_wautocorr

120.80 test_wavelet_transform

120.81 test_whittle

120.82 test_window

120.83 test_wordfilt

120.84 test_xar1_mid_term

121 mathematics

mathematical functions of various kind

121.1 trapezoidal_fixed

122 wavelet

122.1 continuous_wavelet_transform

```
continuous wavelet transform
follows "The Illustrated Wavelet Transform Handbook: Introductory
    Theory and ..."
```

122.2 cwt_man

continuous fourier transform as of time of implmentation, the matlab interal cwt is affected by serious round-off errors and has issues with the scaling, which is not the case here

122.3 cwt_man2

$122.4 \quad example_wavelets$

122.5 phasewrap

wrap the phase to +/- pi

122.6 test_cwt_man

$122.7 \quad test_phasewrap$

122.8 test_wavelet

122.9 test_wavelet2

122.10 test_wavelet_analysis

122.11 test_wavelet_reconstruct

122.12 test_wtc

122.13 wavelet

wavelet windows

122.14 wavelet_reconstruct

```
iverses wavelet transform for single frequency (reconstruction of time series) n: window lengths in multiples of filter period 1/f0
```

122.15 wavelet_transform

wavelet transform for single frequency n : window lengths in multiples of filter period 1/f0