

Bioestatística

Atividade no R

Prof. Leticia Raposo 2019

Abalone

Haliotis é um gênero de moluscos gastrópodes marinhos da família Haliotidae e o único gênero catalogado desta família. Foi proposto por Linnaeus em 1758 e contém diversas espécies em águas costeiras de quase todo o mundo. Na gastronomia, o abalone é um molusco valorizado em países asiáticos. Wikipédia

O banco de dados disponível no arquivo *ExercicioAbalone.txt* contém 4177 observações e 9 variáveis. As descrições de cada variável são:

- sexo: M, F, e I (infantil)
- comprimento: comprimento (maior medida da concha), em mm
- diametro: diâmetro (perpendicular ao comprimento), em mm
- altura: altura, em mm
- **peso_total**: peso total, em gramas
- peso_sem_concha: peso sem a concha, em gramas
- peso_intestinal: peso intestinal (após sangramento), em gramas
- peso_concha: peso da concha depois de seca, em gramas
- aneis: número de anéis (1: até 10 anéis, 2: mais de 10 anéis)

Trabalhos mal formatados, com caracteres estranhos e não enviado nos formatos Word ou HTML perdem 0,5.

```
dados <-
    read.table("C:/Users/Leticia/Google Drive/UNIRIO/Disciplinas Ministradas/2019.2/Ciências Ambientais -
        header = T)</pre>
```

1. Antes de iniciar a análise, verifique e responda:

i. (0,5 ponto) As variáveis foram lidas (codificadas) corretamente pelo R? Se não, faça a correta codificação.

```
str(dados)
```

```
## 'data.frame':
                    4177 obs. of 9 variables:
##
    $ sexo
                     : Factor w/ 3 levels "F", "I", "M": 2 2 2 2 2 3 3 2 2 2 ...
##
                     : num 0.075 0.15 0.13 0.11 0.165 0.21 0.155 0.16 0.24 0.195 ...
    $ comprimento
##
  $ diametro
                            0.055 0.1 0.1 0.09 0.12 0.15 0.11 0.11 0.175 0.15 ...
                      : num 0.01 0.025 0.03 0.03 0.03 0.05 0.04 0.025 0.065 0.045 ...
##
  $ altura
    $ peso total
                            0.002 0.015 0.013 0.008 0.0215 0.0385 0.0155 0.018 0.0665 0.0375 ...
##
                     : num
    $ peso_sem_concha: num   0.001   0.0045   0.0045   0.0025   0.007   0.0155   0.0065   0.0065   0.031   0.018   ...
##
##
    $ peso_intestinal: num
                             0.0005 0.004 0.003 0.002 0.005 0.0085 0.003 0.0055 0.0135 0.006 ...
                             0.0015 0.005 0.004 0.003 0.005 0.01 0.005 0.005 0.017 0.011 ...
##
    $ peso_concha
                      : num
                            1 1 1 1 1 1 1 1 1 1 . . .
    $ aneis
                      : int
```

```
dados$aneis <- as.factor(dados$aneis)</pre>
```

Não, a variável aneis deveria ser qualitativa.

ii. (1,0 ponto) Há dados ausentes? Se sim, em qual(is) variável(is)?

summary(dados)

O aluno precisa mostrar que verificou as variáveis pelo str. Se não tiver isso, retire 0,1.


```
##
    sexo
              comprimento
                                  diametro
                                                     altura
##
    F:1307
             Min.
                     :0.075
                              Min. :0.0550
                                                Min.
                                                        :0.0000
##
    I:1342
             1st Qu.:0.450
                              1st Qu.:0.3500
                                                 1st Qu.:0.1150
##
    M:1528
             Median :0.545
                              Median :0.4250
                                                Median :0.1400
##
             Mean :0.524
                              Mean
                                     :0.4079
                                                 Mean
                                                       :0.1395
             3rd Qu.:0.615
##
                              3rd Qu.:0.4800
                                                 3rd Qu.:0.1650
##
             Max.
                    :0.815
                              Max.
                                      :0.6500
                                                 Max.
                                                        :1.1300
##
      peso_total
                       peso_sem_concha peso_intestinal
                                                            peso_concha
##
          : 0.0020
                       Min.
                              : 0.001
                                         Min.
                                                 :0.0005
                                                                   :0.0015
    1st Qu.: 0.4415
                       1st Qu.: 0.186
##
                                         1st Qu.:0.0935
                                                           1st Qu.:0.1300
##
    Median: 0.7995
                       Median : 0.336
                                         Median :0.1710
                                                           Median :0.2340
##
    Mean
           : 2.8581
                       Mean
                               : 0.425
                                         Mean
                                                 :0.1806
                                                           Mean
                                                                   :0.2388
                                         3rd Qu.:0.2530
    3rd Qu.: 1.3120
                       3rd Qu.: 0.502
                                                            3rd Qu.:0.3290
##
           :28.2550
                              :13.485
                                                 :0.7600
                                                                   :1.0050
   Max.
                       Max.
                                         Max.
                                                           Max.
    aneis
##
##
   1:2096
    2:2081
                                          O aluno precisa mostrar que
##
##
                                          verificou a presença ou não
                                          de dados ausentes por
##
##
                                          algum comando. Se não fez
                                          isso, retire 0,1.
##
```

Não há dados ausentes.

2. Para a variável comprimento, pede-se:

- i. (0,6 ponto) Calcule a média aritmética, a mediana e a moda;
- ii. (0,6 ponto) Calcule o primeiro e o terceiro quartis e também o IQR;
- iii. (0,8 ponto) Calcule as medidas de dispersão (amplitude, variância, desvio-padrão e coeficiente de variação);

library(summarytools)

```
## Warning: package 'summarytools' was built under R version 3.6.1
## Registered S3 method overwritten by 'pryr':
## method from
## print.bytes Rcpp
descr(dados$comprimento)
```

Descriptive Statistics

dados\$comprimento

N: 4177

comprimento ## ## Mean 0.52 ## Std.Dev 0.12 ## Min 0.08 ## Q1 0.45 ## Median 0.55 ## 0.62 QЗ ## Max 0.82 ## MAD 0.12 ## IQR 0.16 CV 0.23

Para as letras i, ii, iii, aluno pode calcular por qualquer forma, desde que seja por meio do R. Se ele não especificou cada valor, retire 0,1 em cada alternativa.


```
-0.64
##
            Skewness
##
         SE.Skewness
                              0.04
##
            Kurtosis
                              0.06
             N.Valid
                           4177.00
##
##
           Pct.Valid
                            100.00
var(dados$comprimento) #variância
## [1] 0.01442231
diff(range(dados$comprimento)) #amplitude
## [1] 0.74
library(DescTools)
## Warning: package 'DescTools' was built under R version 3.6.1
Mode(dados$comprimento)
## [1] 0.550 0.625
  • Média aritmética: 0,52 mm
  • Mediana: 0,55 mm
  • Moda: 0,550 e 0,625 mm
  • Q1: 0,45 mm
  • Q3: 0,62 mm
  • IQR: 0,16 mm
```

iv. (0,5 ponto) Verifique se a distribuição é simétrica, assimétrica positiva ou assimétrica negativa;

library(ggplot2)

Amplitude: 0,74 mm
Variância: 0,01 mm²
Desvio-padrão: 0,12 mm

```
## Warning: package 'ggplot2' was built under R version 3.6.1
```

```
ggplot(dados) +
aes(x = comprimento) +
geom_density(adjust = 1L, fill = "#0c4c8a") +
labs(x = "Comprimento (maior medida da concha), em mm", y = "Densidade") +
theme_minimal()
```

O aluno pode verificar por qualquer gráfico (histograma, densidade ou boxplot) ou medida de assimetria.
Se não colocar gráfico ou medida, retire 0,1 e se não falar o tipo de assimetria, retire 0,1.

A distribuição é levemente assimétrica à esquerda.

v. (0,6 ponto) Construa o histograma e o boxplot para a variável em estudo;

```
library(ggplot2)
# Histograma
ggplot(dados) +
  aes(x = comprimento) +
  geom_histogram(bins = 30L, fill = "#0c4c8a") +
  labs(x = "Comprimento (maior medida da concha), em mm", y = "Frequência") +
  theme_minimal()
```



```
# Boxplot
ggplot(dados) +
aes(x = "", y = comprimento) +
geom_boxplot(fill = "#0c4c8a") +
labs(x = " ", y = "Comprimento (maior medida da concha), em mm") +
theme_minimal()
```


vi. (0,4 ponto) É possível observar outliers para a variável analisada? Sim, há a presença de diversos outliers inferiores.

3. Para a variável sexo, pede-se:

i. (0,7 ponto) Construa uma tabela de distribuição de frequências. Comente o resultado.

freq(dados\$sexo)

Total

Frequencies

##

dados\$sexo ## Type: Factor ## ## Freq % Valid % Valid Cum. % Total % Total Cum. ## 31.29 ## F 1307 31.29 31.29 31.29 32.13 63.42 63.42 ## Ι 1342 32.13 М 1528 36.58 100.00 36.58 100.00 ## ## 0 0.00 100.00 <NA>

100.00

Pode ser qualquer tipo de tabela de distribuição de frequências com frequência absoluta e relativa. Se não tiver um comentário sobre a tabela, retire 0,4. Se não tiver a frequência relativa, retire 0,1.

questão toda.

Basta uma resposta sim e já é o suficiente para ganhar a

Podemos obervar que as frequências são próximas entre as 3 classes, apresentando um maior valor a classe adulta masculina (36,58%).

100.00

100.00

100.00

ii. (0,5 ponto) Elabore um gráfico de barras.

4177

```
library(ggplot2)
ggplot(dados) +
```



```
aes(x = sexo) +
geom_bar(fill = "#0c4c8a") +
labs(x = "Sexo", y = "Frequência") +
theme_minimal()
```


4. Para as variáveis sexo e aneis, pede-se:

ctable(dados\$sexo, dados\$aneis, prop = "c")

```
i. (0,8 ponto) Construa uma tabela de contingência com perfil linha e outra com perfil coluna.
# Perfil linha
ctable(dados$sexo, dados$aneis, prop = "r")
## Cross-Tabulation, Row Proportions
## sexo * aneis
## Data Frame: dados
##
##
##
              aneis
                                                                  Total
##
      sexo
                                                                               Se apenas uma das tabelas
##
         F
                        424 (32.4%)
                                         883 (67.6%)
                                                         1307 (100.0%)
                                                                               tiver sido feita, dê apenas a
##
          Ι
                       1095 (81.6%)
                                         247 (18.4%)
                                                         1342 (100.0%)
                                                                               metade da questão.
##
          М
                        577 (37.8%)
                                         951 (62.2%)
                                                         1528 (100.0%)
     Total
##
                       2096 (50.2%)
                                        2081 (49.8%)
                                                         4177 (100.0%)
# Perfil coluna
```



```
## Cross-Tabulation, Column Proportions
## sexo * aneis
## Data Frame: dados
##
##
                                                  2
             aneis
                                                               Total
##
      sexo
##
        F
                      424 ( 20.2%)
                                       883 ( 42.4%)
                                                     1307 ( 31.3%)
         Ι
                     1095 ( 52.2%)
                                       247 ( 11.9%)
                                                      1342 ( 32.1%)
##
                      577 ( 27.5%)
##
         М
                                       951 (45.7%)
                                                       1528 ( 36.6%)
##
     Total
                     2096 (100.0%)
                                      2081 (100.0%)
                                                       4177 (100.0%)
```

iii. (1,0 ponto) Contrua um gráfico com barras múltiplas e outro com barras empilhadas.

```
library(ggplot2)

# Barras múltiplas
ggplot(dados) +
  aes(x = sexo, fill = aneis) +
  geom_bar(position = "dodge") +
  scale_fill_brewer(palette = "Set1") +
  labs(x = "Sexo", y = "Frequência", fill = "Anéis") +
  theme_minimal()
```



```
# Barras empilhadas
ggplot(dados) +
```



```
aes(x = sexo, fill = aneis) +
geom_bar(position = "fill") +
scale_fill_brewer(palette = "Set1") +
labs(x = "Sexo", y = "Frequência relativa", fill = "Anéis") +
theme_minimal()
   1.00
   0.75
Frequência relativa
                                                                                               Anéis
   0.50
                                                                                                    2
   0.25
                                                                                            Se as barras não estiverem
                                                                                            com 100%, retire 0,4.
   0.00
                       F
                                                                           Μ
```

5. Para as variáveis diametro e peso_concha:

i. (1,0 ponto) Construa um gráfico de dispersão e avalie se há indícios de relação entre as variáveis.

Sexo

```
library(ggplot2)

ggplot(dados) +
  aes(x = diametro, y = peso_concha) +
  geom_point(size = 1L, colour = "#0c4c8a") +
  geom_smooth(span = 0.75) +
  labs(x = "Diâmetro (perpendicular ao comprimento), em mm", y = "Peso da concha depois de seca, em gram theme_minimal()
```

`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

É possível ver claramente uma relação entre as variáveis. Conforme aumenta o diâmetro, também aumenta o peso da concha.

6. (1,0 ponto) Construa boxplots para a variável $peso_intestinal$, segundo a variável aneis. Descreva o que é observado no gráfico.

```
library(ggplot2)

ggplot(dados) +
  aes(x = "", y = peso_intestinal, fill = aneis) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Pastel1") +
  labs(x = " ", y = "Peso intestinal (após sangramento), em gramas", fill = "Anéis") +
  theme_minimal()
```


É possível observar que o grupo 2 (que possui mais de 10 anéis), apresenta uma mediana maior comparada ao grupo 1 (até 10 anéis). Além disso, ambos os grupos apresentam assimetria à direita e outliers superiores.

DESAFIO! (Bônus de 1,0 ponto) Construa um gráfico não ensinado em sala de aula utilizando alguma(s) variável(is) do banco de dados. Explique o que o gráfico mostra.