

Escuela de Ciencias Departamento de Ciencias Matemáticas Cálculo I - CM0230 PROGRAMA CLASE A CLASE - 2019-1

Coordinador: Pedro Vicente Esteban Duarte

: 38 – 432 Oficina

Texto guía: Larson, R. Edwards B. (2016). Cálculo, Tomo I. Décima Edición.

Cengage Learning Editores, S. A., México.

CLASE No.	SECCIÓN LIBRO Ejemplos clase (Larson, 10ªed.)	CONTENIDO	OBJETIVOS	Ejercicios propuestos para el trabajo independiente
1	 P.2 Trabajar todos los ejemplos de la sección. 	Modelos lineales y ritmos o velocidades de cambio.	Interpretar gráfica y conceptualmente la ecuación de la línea recta.	P.2 1 – 43, 48, 53, 56, 64, 75 - 79
2	 P.3 Trabajar todos los ejemplos de la sección. Para funciones nuevas a partir de otras, presentarlas tal y como aparece en el texto. Para dominio de la función compuesta, componer sin simplificar y luego hallarlo. 	Funciones y sus gráficas.	Representar funciones a partir de la ecuación, la gráfica, lo verbal y de tablas.	P.3 1 – 22, 29 – 39, 55 – 71, 103, 104, 105 - 110
3	 P.3 Taller de ejercicios de modelación. 	Funciones y sus gráficas. Modelación.	Construir modelos funcionales a partir de enunciados sencillos.	P.3 Presentar ejercicios modelación relacionados con los que luego se van a optimizar a partir de las propiedades de derivadas.
4	• Ejemplos 1, 2, 3, no trabajar la definición formal de límite.	gráfico y numérico.	Leer e interpretar límites de funciones a partir de la gráfica de las mismas. ial: valor 15%	1.2 1 – 28, 67 - 74

En el diseño del examen se tendrá en cuenta:

- Aspectos conceptuales sobre la línea recta y funciones. Se pedirá la justificación de diferentes tipos de afirmaciones.
- Ejercicios gráficos sobre la línea recta y sobre funciones. Dada una ecuación, realizar la gráfica correspondiente, dada la gráfica escribir la ecuación. Leer el dominio y el rango de una ecuación a partir de la gráfica dada, entre otros.
- Ejercicios operativos. Dada una función encontrar el dominio y el rango, cortes con los ejes coordenados o puntos de corte entre dos o más ecuaciones. Dada de una función analizar si es par, impar o ninguna de las anteriores.

		cional de un ejercicio literal, co á la interpretación del resultado	mo los trabajados en la clase 3.				
5	1.3 • Ejemplos 3, 4, 6, 7 y 8.	Cálculo analítico de límites.	Calcular límites de funciones a	1.3 1 – 40, 47 – 74, 83 – 88, 115 - 124			
6	 Ejemplos 1, 2, 4, 5, 7. No presentar el teorema del valor intermedio. No trabajar el ejemplo 8. 	Continuidad y límites laterales.	 Distinguir entre continuidad puntual y por intervalos. Resaltar la importancia de la continuidad en la hipótesis de las propiedades del Cálculo. 	1.4 1 – 18, 27 – 34, 48 – 66 97, 98, 100, 100 – 109.			
	1.5 • Ejemplos 1, 2, 3, 5.	Límites infinitos.	Interpretar la tendencia de algunos tipos de funciones al acercarse a un valor particular.	1.5 1 – 48, 53 – 57, 66 – 69.			
7	• Trabajar todos los ejemplos.	La derivada y el problema de la recta tangente.	Interpretar la derivada desde el punto de vista geométrico.	2.1 1 – 59, 75 – 80, 93 - 96			
8	2.2 Ejemplificar los teoremas sin demostrar 2.3 Ejemplificar los teoremas sin demostrar	Reglas básicas de derivación. Regla del producto, del cociente y derivadas de orden superior.	Encontrar la derivada de funciones elementarles a partir de las reglas básicas de derivación.	2.2 1 - 66, 73 - 88, 87 - 92 2.3 1 - 62, 69 - 76, 81, 82 129 - 136			
	2.4 Ejemplificar los teoremas sin demostrar	La regla de la cadena.		2.4 1 - 64, 103 - 107 125 - 128			
	Segundo parcial: valor 17% En el diseño del examen se tendrá en cuenta:						
	 Aspectos conceptuales sobre sobre límites, continuidad y derivada. Se pedirá la justificación de diferentes tipos de afirmaciones. Ejercicios gráficos sobre límites, continuidad y derivada. Dada una ecuación y algunas condiciones, realizar la gráfica correspondiente, dada la gráfica escribir la ecuación que cumpla las condiciones dadas. Leer límites, continuidad y derivada a partir de una gráfica dada, entre otros. Ejercicios operativos. Calcular límites de funciones en punto dado. Para una función encontrar su primera y segunda derivadas. Encontrar la ecuación de la recta tangente, cuando exista, a una función en un punto dado. Solucionar problemas literales en los que intervenga aspectos conceptuales de la derivada. En cada caso, se pedirá la interpretación del resultado o resultados obtenidos. 						
9	2.5 • Ejemplos 1 – 5	Derivación implícita Ritmos o velocidades relacionados.	Derivar expresiones implícitamente e interpretar el resultado en diferentes	2.5 1 – 16, 29 – 40, 59 - 62			
	2.6 • Ejemplos 1 − 5		contextos.	2.6 1 - 24			
10	3.1 Trabajar todos los ejemplos y teoremas.	Extremos en un intervalo.	Utilizar la primera derivada para estudiar el comportamiento de una función en un intervalo.	3.1 1 - 25, 29 - 36, 59, 69 63 - 68			
11	3.2Ejemplificar los	Teorema de Rolle y del valor medio.	Interpretar el teorema de Rolle y del valor medio desde el punto	3.2 9 – 22, 37 – 50, 57, 58,			

	teoremas sin demostrar.		de vista geométrico.	59, 60		
	• Ejemplificar los	Funciones crecientes y decrecientes y criterio de la primera derivada.	Utilizar la primera derivada para estudiar el comportamiento de una función en un abierto.	3.3 1 - 20, 30 - 48, 57 - 62		
12		Concavidad y criterio de la segunda derivada.	 Utilizar la segunda derivada para estudiar el comportamiento de una función en un abierto. Utilizar el criterio de la segunda derivada para verificar máximos y mínimos relativos. 	3.4 1 – 30, 53 – 56, 75 - 78		
	Tercer parcial: valor 25%					
	 En el diseño del examen se tendrá en cuenta: Aspectos conceptuales la derivada y sus gráficas. Se pedirá la justificación de diferentes tipos de afirmaciones. Finaciones gráficas la derivada de una función o equación. Dada la gráfica de una función trazar enrovimadementa la 					
	 Ejercicios gráficos la derivada de una función o ecuación. Dada la gráfica de una función, trazar, aproximadamente, la gráfica de la primera y segunda derivada y determinar intervalos de crecimiento, decrecimiento y concavidad de la función dada. Para intervalos cerrados o abiertos, determinar los máximos y los mínimos de una función, si existen. Verificar gráficamente las condiciones de los de Rolle y del valor medio. Ejercicios operativos. Dada una función, encontrar intervalos de crecimiento, decrecimiento y concavidad. Verificar operativamente las condiciones de los teoremas de Rolle y del valor medio. Solucionar problemas literales en los que se requiera encontrar máximos y mínimos de una función. En cada caso, se pedirá la interpretación del resultado o resultados. 					
13		Límites al infinito.	Interpretar la tendencia que toma una función cuando se toman valores cada vez más grandes, tanto negativos como positivos.	3.5 1 – 18, 27 – 38, 75 – 82 103, 104		
14	 3.6 Trabajar todos los ejemplos y teoremas. 	Análisis de gráficas.	Utilizar todos los conceptos del curso para analizar el comportamiento de una función y graficarla.	3.6 1 – 14, 25 – 34 55 – 58, 63, 64		
15,16	• Trabajar todos los ejemplos y teoremas	Problemas de optimización.	Aplicar los conceptos trabajados en el curso para interpretar modelos funcionales.	3.7 1 – 24, 28 – 40		
17		Parcial 1	final: 27 %			
	 En el diseño del examen se tendrá en cuenta: Aspectos conceptuales de los límites al infinito y del análisis de gráfico de una función. Se pedirá la justificación de diferentes tipos de afirmaciones. Graficar funciones aplicando las propiedades de límites, derivadas y de las funciones, realizar gráficas de las mismas. Optimizar ejercicios literales de diferentes aplicaciones. En cada caso, se pedirá la interpretación del resultado o resultados. 					

Nota: El 16% restante de la evaluación son los talleres que se realizan en cada una de las clases.