

Estadística III para Ingenieros de Sistemas

Jose Daniel Ramirez Soto 2023 jdr2162@columbia.edu

Agenda

- anuncios varios
 - O https://forms.office.com/r/LeFfxyg4rQ
- modelos de analitica (machine learning-ML) Supervisado
 - Regresión
- Práctica de regresión en Python

Supervisado, Regresión ejemplo

Tomando los datos de los carros, vamos a crear una regresión utilizando el tamaño del motor.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x,$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

Autos Engine vs MPG

Medidas de error en los problemas de regresión:

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - \tilde{y}_i)^2, MAPE = \frac{1}{n} \sum_{i=0}^{n} \frac{|y_i - \tilde{y}_i|}{y_i}$$

Ej y=20 , \tilde{y} =19, mse=1 , mape = 0.05

^{*} A Course of Machine Learning http://ciml.info/

Supervisado, Regresión P-value (menor a 0.005)

Para conocer la relevancia de una variable se utilizan hipótesis test :

null hypothesis H0 :No existe relación entre las variables y el coeficiente es 0

 $H0: \beta 1 = 0$

alternative hypothesis Ha: Existe relación entre las variables

Ha : β 1 $\not=$ 0,

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)}, \text{ SE}(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \text{SE}(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

Supervisado, Regresión ejemplo

•	,		
$\hat{eta}_1 = \sum$		EngineSize(X)	MPG_City (y)
$\hat{eta}_0 = ar{y}$ -		2.5	18
$ ho_0 = y$ -		3.8	18
$\bar{x} = 30.2/10 =$		2.0	21
β1_num = (2.		2.0	29
β1_den = (2.5	TRAIN	4.3	18
1 – `		2.0	25
β 1= -48.06/1		5.6	13
$\beta_0 = 20.3 - (-3)$		3.0	16
$\hat{y}_{11} = 4.6*(-3.$		3.2	16
$\hat{\mathbf{y}}_{12} = 5.0^*(-3.$		1.8	29
MSE Train =		4.6	17
MSE = ((17- MAPE = (A)	TEST	5.0	16

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}, \qquad MSE = \frac{1}{n} \sum_{i=0}^{n} (y_{i} - \tilde{y}_{i})^{2}, MAPE = \frac{1}{n} \sum_{i=0}^{n} \frac{|y_{i} - \tilde{y}_{i}|}{y_{i}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x},$$

$$\bar{\mathbf{X}} = 30.2/10 = 3.2$$
, $\bar{\mathbf{y}} = 203/10 = 20.3$

$$\beta$$
1_num = (2.5 - 3.2)(18 -20.3)+ (3.8 - 3.2)(18 -20.3) + (1.8 - 3.2)(29 -20.3) = **-48.06**

$$\beta_{1_e}$$
 1_den = (2.5- 3.2)^2+ (3.8 - 3.2)^2 +....+ (1.8 - 3.2)^2 = **13.816**

$$\beta_{1}$$
= -48.06/13.816 = -3.47

$$\beta_0 = 20.3 - (-3.47) \cdot 3.2 = 31.404$$

$$\hat{\mathbf{y}}_{11} = \mathbf{4.6*(-3.47)} + 31.404 = 15.442$$

 $\hat{\mathbf{y}}_{12} = \mathbf{5.0*(-3.47)} + 31.404 = 14.054$

MSE =
$$((17-15.44)^2 + (16-14.054)^2)/2 = 3.110258$$
, el error es $(3.11)^0.5 = 1.76$
MAPE = $(ABS(17-15.44)/17 + abs(16-14.054)/16)/2 = 0.10$

^{*} A Course of Machine Learning http://ciml.info/

Supervisado, Regresión P-value (menor a 0.005) ejemplo

Para conocer la relevancia de una variable se utilizan hipótesis test :

null hypothesis H0 :No existe relación entre las variables y el coeficiente es 0

 $H0: \beta 1 = 0$

alternative hypothesis Ha: Existe relación entre las variables

Ha : $\beta 1 \not= 0$,

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)}, \text{ SE}(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \text{SE}(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

 $σ^2$ (y-ŷ) = ((18-22.7)^2 + (18-18.18)^2...+(29-25.14)^2) = 116.50/10 = 11.65 **SE**(β1) = $σ^2/(x-\bar{x})^2$ = 116.50/((2.5-3.2)^2 + (3.8 - 3.2)^2 +...+ (1.8 - 3.2)^2) = 11.65/13.8 = 0.84

 $\mathbf{t} = (-3.47 - 0)/0.84^{\circ}0.5 = -3.7860$

grados de libertad son el numero de observaciones -1 - el numero de parámetros que es el numero de betas.

Tabla t-Student

Grados de	81 10.75					
libertad	0.25	0.1	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3137	12.7062	31.8210	63.6559
2	0.8165	1.8856	2.9200	4.3027	6.9645	9.9250
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8408
4	0.7407	1.5332	2.1318	2.7765	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9979	3.4995
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693

^{*} A Course of Machine Learning http://ciml.info/

Supervisado, Regresión

EngineSize(X)
2.5
3.8
2.0
2.0
4.3
2.0
5.6
3.0
3.2
1.8
4.6
5.0

Calcular el R-squared utilizando la regresión del ejemplo.

$$\beta$$
1= -48.06/13.816 = -3.47

$$\beta_0 = 20.3 - (-3.47) \cdot 3.2 = 31.404$$

$$\hat{\mathbf{y}} = \mathbf{x}^* \, \beta \, 1 + \beta \, 0$$

$$R^2 = \frac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{TSS}} = 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}}$$

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
.

$$TSS = \sum (y_i - \bar{y})^2$$

^{*} A Course of Machine Learning http://ciml.info/

Supervisado, Regresión

Resultado de una regresión, R-squared es la proporción de la varianza de las millas por galón que es explicada por el motor .

OLS Regression Results						
Dep. Variable:		MPG_C	ity	R	squared:	0.50
Model:		0	LS	Adj. R	squared:	0.502
Method:	Lea	ast Squar	es	F	-statistic:	431.
Date:	Thu, 1	6 Mar 20	23 P	Prob (F-	statistic):	9.86e-6
Time:		17:17:	56	Log-Li	kelihood:	-1165.8
No. Observations:		4	28		AIC:	2336
Df Residuals:		4	26		BIC:	2344
Df Model:			1			
Covariance Type: nonrobust						
C	oef sto	l err	t	P> t	[0.025	0.975]
const 30.77	772 0.	546 56	3.388	0.000	29.704	31.850
EngineSize -3.35	523 0.	161 -20).778	0.000	-3.669	-3.035
Omnibus:	447.615	Durb	in-Wa	itson:	1.310)
Prob(Omnibus):	0.000	Jarque	-Bera	(JB):	25957.663	3
Skew:	4.519		Prob	o(JB):	0.00)
Kurtosis:	40.066		Conc	d. No.	11.1	1

$$R^{2} = \frac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{TSS}} = 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}}$$

$$\mathrm{RSS} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}.$$

$$\mathrm{TSS} = \sum (y_{i} - \bar{y})^{2}$$

^{*} A Course of Machine Learning http://ciml.info/

Supervisado, Regresión con más variables

Calcular Betas o w para muchas variables

$$\hat{\mathbf{y}} = \mathbf{w}^T \mathbf{x} + b = \sum_{i=1}^p w_i x_i + b$$

$$\min_{w} \mathcal{L}(w) = \frac{1}{2} ||\mathbf{X}w - \mathbf{Y}||^2 + \frac{\lambda}{2} ||w||^2$$

$$\boldsymbol{w} = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{D}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

Supervisado, Regresión

La predicción es el valor de la función f(x) con los nuevos dato \hat{y}

$$\hat{y} = w^T \mathbf{x} + b = \sum_{i=1}^p w_i x_i + b \equiv \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,D} \\ x_{2,1} & x_{2,2} & \dots & x_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \dots & x_{N,D} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} = \begin{bmatrix} \sum_d x_{1,d} w_d \\ \sum_d x_{2,d} w_d \\ \vdots \\ \sum_d x_{N,d} w_d \end{bmatrix} \approx \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

^{*} A Course of Machine Learning http://ciml.info/