数据结构与算法分析 (2017年秋季学期),Assignment #1

截止日期: 2017年9月21日星期四

姓名:	学号:	班级:

在答题之前,请仔细阅读以下注意事项:

- (1) 请独立完成作业。
- (2) 本作业包含五个大题,请用英语简单明确作答。
- (3) 请于截止日期前将作业纸质版本交给本班学习委员,学习委员在**9月21日星期四上课开始前** 将作业集中交给我。
- (4) 请务必**按时提交作业**,从9月21日10点40分开始计时,迟交24小时内作业总分扣30%,迟交24小时之后,该次作业计0分。

......

- **1.** Define an ADT for a set of integers (remember that a set may not contain duplicates). Your ADT should contain the following seven operations:
 - a) Insert: insert an integer into a set;
 - b) Delete: remove an integer from a set;
 - c) Size: return the size of a set currently;
 - d) Empty: return if a set is empty;
 - e) Union: return the union of two sets;
 - f) Intersection: return the intersection of two sets;
 - g) SetDifference: return the difference of two sets.

Each operation should be clearly defined in terms of its input and output.

2.	State whether	each of the	e following	relations is a	partial ordering	, and expla	in why	or why not.

- a) "isFatherOf" on the set of people.
- b) "isOlderThan" on the set of people.
- c) "noLessThan" on the set of integers.
- d) $\{(a,b),(a,a),(b,a)\}\$ on the set of $\{a,b\}$.
- e) $\{(2,1),(1,3),(2,3)\}$ on the set of $\{1,2,3\}$.

3. Answer the following two questions.

a) Prove that $x^{\log_a y} = y^{\log_a x}$ for any a > 0, x > 0, and y > 0.

b) Derive the closed form of the recurrence relation: f(n) = 2 f(n/2) + 2n, with f(1) = 1. To simplify the problem, you may assume that n is a power of 2. That is, the relation holds for $n = 2^t$ for some non-negative integer t.

- **4.** For each pair of the following functions, determine whether f(n) is in O(g(n)), f(n) is in $\Omega(g(n))$, or $f(n) = \Theta(g(n))$.
 - a) $f(n) = log(n^2)$; g(n) = log n + 7
 - b) $f(n) = log(n^2); g(n) = \sqrt{n}$
 - c) $f(n) = \log n$; $g(n) = n \log n + n$
 - d) f(n) = n; $g(n) = (\log n)^2$

- 5. Let P be an array storing integers.
 - a) Write in pseudocode an algorithm to find a sub-array of P with the largest sum. That is, your algorithm takes as input an array P, its size n, and returns two array indexes i and j with $i \le j$, such that the sum: P[i]+P[i+1]+...+P[j-1]+P[j] is as large as possible. For example, if $P=\{-1,5,-3,7,-2\}$, your algorithm should return 1 and 3.
 - b) Analyze the time complexity of your algorithm in the worst case.