Sistemi Elettronici, Tecnologie e Misure Appello del 23/6/2021

Nome:	
Cognome:	SOLUZIONE
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b	X	X		X		
c						X
d			X		X	

- 1. In un diodo ideale in interdizione (stato OFF), la tensione tra anodo e catodo:
 - (a) è sempre positiva o nulla
 - (b) è sempre negativa o nulla
 - (c) è sempre nulla
 - (d) dipende dal verso della corrente che scorre nel diodo
- 2. In uno stadio amplificatore MOS a singolo transistore di tipo source comune, detta $A_{\rm v}$ l'amplificazione di tensione:
 - (a) $A_{\rm v} > 0$ (stadio non-invertente) e $|A_{\rm v}|$ può essere maggiore di 1
 - (b) $A_{\rm v} < 0$ (stadio invertente) e $|A_{\rm v}|$ può essere maggiore di 1
 - (c) $A_{\rm v} < 0$ (stadio invertente) e $|A_{\rm v}|$ è necessariamente minore di 1
 - (d) $A_{\rm v}>0$ (stadio non-invertente) e $|A_{\rm v}|$ è necessariamente minore di 1
- 3. In un comparatore di soglia senza isteresi realizzato a partire da un amplificatore operazionale:
 - (a) è presente retroazione negativa
 - (b) è presente retroazione positiva
 - (c) sono sempre presenti sia retroazione positiva sia retroazione negativa
 - (d) l'operazionale è utilizzato ad anello aperto
- 4. Nel ricavare il punto di funzionamento a riposo di un amplificatore:
 - (a) i generatori di tensione costanti nel tempo possono essere sostituiti con cortocircuiti
 - (b) i condensatori possono essere sempre sostituiti da circuiti aperti
 - (c) i generatori di corrente variabili nel tempo possono essere sostituiti con cortocircuiti
 - (d) gli induttori possono essere sempre sostituiti da circuiti aperti
- 5. Un amplificatore di transresistenza è ottenuto collegando in cascata un amplificatore di corrente con amplificazione di corrente $A_{i,1}$ ed ideale dal punto di vista degli effetti di carico, ed un amplificatore di transresistenza con transresistenza $R_{m,2}$, $R_{in,2}$ finita e non nulla e $R_{out,2}=0$. La transresisrenza complessiva R_m della cascata dei due stadi è data da
 - (a) $A_{i,1}R_{in,2}$
 - (b) $R_{m,2}$
 - (c) $A_{i,1}R_{in,2}\frac{R_{m,2}}{R_{in,2}+R_{m,2}}$
 - (d) $A_{i,1}R_{m,2}$
- 6. In un amplificatore invertente basato su operazionale che presenta amplificazione di tensione pari a -2, è utilizzato un operazionale nei cui dati di targa si legge *input offset voltage* (max.): 5mV, e che si può assumere ideale sotto tutti gli altri aspetti. La tensione d'uscita $V_{\rm OUT}$ dell'amplificatore invertente per segnale d'ingresso nullo potrà variare nell'intervallo:
 - (a) $-10 \text{mV} < V_{\text{OUT}} < 10 \text{mV}$
 - (b) $-10 \text{mV} < V_{\text{OUT}} < 0$
 - (c) $-15 \text{mV} < V_{\text{OUT}} < 15 \text{mV}$
 - (d) $-5 \text{mV} < V_{\text{OUT}} < 5 \text{mV}$

Esercizio 1.

Con riferimento allo stadio in figura

- 1. verificare la regione di funzionamento di MN e determinarne i parametri del modello per il piccolo segnale;
- 2. determinare a centro banda, ovvero con $C_{\rm in} \to \infty$, il guadagno $A_v = v_{out}/v_{in}$, la resistenza di ingresso R_{in} e la resistenza di uscita R_{out} (espressione simbolica e valore numerico);
- 3. Si dia una rappresentazione dello stadio in termini di amplificatore di tensione;
- 4. Per i valori assegnati di $C_{\rm in}$ e C_3 , determinare l'espressione del guadagno $A_v(s) = v_{\rm out}/v_{\rm in}$ dello stadio in figura

5. Disegnare il diagramma di Bode del modulo e della fase di $A_v(s)$.

Regione di funzionamento e Parametri di piccolo segnale Transistore MN

$$V_{\text{GS}} = V_{\text{A}} - V_{\text{B}} = 1 \,\text{V}; \ V_{\text{GS}} - V_{\text{TH}} = 0.1 \,\text{V} > 0;$$

$$V_{\rm DS} = V_{\rm C} - V_{\rm B} = 2.25 \,\text{V} > V_{\rm GS} - V_{\rm TH};$$

Non richiesto: $I_D = 5\mu A$.

$$g_m = \beta_n (V_{GS} - V_{TH}) = 100 \,\mu\text{S}; \ r_0 = \infty$$

Analisi Stadio a centro banda

Sostituendo C_{in} con un corto circuito e C_{out} con un circuito aperto, ottiene uno stadio a gate comune (sinistra in Figura 1).

Figura 1: sinistra: Circuito di piccolo segnale dello stadio. Destra: Diagramma di Bode del guadagno

$$v_{\rm gs} = -v_{\rm in}$$

$$v_{\rm out} = -g_m R_3 v_{\rm gs} = g_m R_3 v_{\rm in}$$

$$A_{\rm v0} = g_m R_3 = 50 \, (34 \, {\rm dB}); \ R_{\rm out} = R_3 = 500 \, k\Omega$$

Per la resistenza di ingresso

$$i_{\rm in} = \frac{v_{\rm in}}{R_4} - g_m v_{\rm gs} = \frac{v_{\rm in}}{R_4} + g_m v_{\rm in}$$

da cui

$$R_{\rm in} = \frac{1}{1/R_4 + g_m} = \frac{R_4}{1 + g_m R_4} = 8.34 \, k\Omega;$$

Analisi in frequenza dello Stadio

$$A_{\rm v} = A_{\rm v0} \frac{sC_{\rm in}R_{\rm in}}{1 + sC_{\rm in}R_{\rm in}} \frac{1}{1 + sC_3R_3}$$

Presenta uno zero semplice nell'origine e due poli alla frequenza

$$f_{\rm p1} = \frac{1}{2\pi C_{\rm in} R_{\rm in}} \simeq 10\,{\rm Hz}; \qquad f_{\rm p2} = \frac{1}{2\pi C_3 R_3} \simeq 55\,{\rm kHz}.$$

Cfr. diagrammi di Bode (destra in Figura 1).

Esercizio 2.

Assumendo $R_i=1\,\mathrm{k}\Omega,\,\forall i\in[1,10]$ e considerando gli operazionali ideali, determinare:

- 1. l'espressione delle tensioni $v_{\rm O1}, v_{\rm O2}$ e $v_{\rm OUT};$
- 2. la minimima dinamica della tensione d'uscita richiesta agli operazionali OP1, OP2 e OP3 per garantirne il funzionamento in linearità, assumendo che la dinamica di entrambi i segnali d'ingresso i_1 ed i_2 sia (-1mA, +1mA);
- 3. l'espressione delle correnti di uscita degli operazionali $i_{\rm OP1}, i_{\rm OP2}$ e $i_{\rm OP3};$

1. Espressioni delle tensioni richieste:

$$\begin{split} v_{\rm O1} &= -R_1 i_1 + R_2 i_2 = R(i_2 - i_1) = 1 \, \mathrm{k}\Omega \cdot (i_2 - i_1) \\ v_{\rm O2} &= R_2 i_2 \left(1 + \frac{R_4}{R_3} \right) = 2 R i_2 = 2 \, \mathrm{k}\Omega \cdot i_2 \\ v_{\rm OUT} &= v_{\rm O1} \frac{R_8}{R_6 + R_8} \left(1 + \frac{R_9}{R_7} \right) - \frac{R_9}{R_7} v_{\rm O2} = v_{\rm O1} - v_{\rm O2} = - R(i_2 + i_1) = -1 \, \mathrm{k}\Omega \cdot (i_2 + i_1) \end{split}$$

2. Dinamica della tensione d'uscita degli operazionali:

Essendo:

$$\max v_{\text{O1}} = R(i_{2,\text{max}} - i_{1,\text{min}}) = 2 \text{ V}$$

$$\min v_{\text{O1}} = R(i_{2,\text{min}} - i_{1,\text{max}}) = -2 \text{ V}$$

la minima dinamica della tensione d'uscita richiesta per il corretto funzionamento di OP1 nel circuito considerato è (-2V,+2V).

Utilizzando le espressioni delle tensioni ricavate al punto precedente, con considerazioni analoghe si ricava che la minima dinamica della tensione d'uscita richiesta per il corretto funzionamento di OP2 e di OP3 nel circuito considerato è pari a (-2V,+2V) per entrambi gli operazionali.

3. Espressioni delle correnti richieste:

$$\begin{split} i_{\text{OP1}} &= -i_1 + \frac{v_{\text{O1}}}{R_6 + R_8} = -\frac{3}{2}i_1 + \frac{1}{2}i_2 \\ i_{\text{OP2}} &= \left(v_{\text{O2}} - v_{\text{O1}}\frac{R_8}{R_6 + R_8}\right)\frac{1}{R_7} + \frac{v_{\text{O2}}}{R_5} + \frac{v_2^+}{R_3} = \frac{1}{2}i_1 + \frac{9}{2}i_2 \\ i_{\text{OP3}} &= \frac{v_{\text{OUT}}}{R_{10}} - \left(v_{\text{O2}} - v_{\text{O1}}\frac{R_8}{R_6 + R_8}\right)\frac{1}{R_7} = -\frac{3}{2}i_1 - \frac{5}{2}i_2 \end{split}$$