### Wie alles begann ...

## Und sie existiert doch:



Die fast unmögliche Primzahlen- erkennungsmaschine





### Der Aufbau ...



# Gerade oder ungerade?

- Regler auf 1
- Beliebige Anzahl an Kugeln einlegen (z. B. 9)
- Regler auf 2
  - $\Rightarrow$  Rest vorhanden = ungerade
  - ⇒ Kein Rest vorhanden = gerade

#### Oder:

томо

- Immer 2 entfernen:
  - $\Rightarrow$  1 Kugel übrig = ungerade
  - ⇒ Keine Kugel übrig = gerade

Primzahlenerkennungsmaschine





## Multiplizieren

# **Das Kommutativ**gesetz der Multiplikation

### Beispiel mit $3 \times 5 = 15$ :

Y-Achse = Wert (1. Faktor)

X-Achse = Häufigkeit (2. Faktor)

Faktoren an x- und y-Achse ablesen, Regler auf Faktor an x-Achse positionieren. Mit Kugeln auffüllen (bis man ein Rechteck hat). Das Ergebnis ermitteln durch:

- 1. Zählen oder (besser)
- Regler auf 1 oder ganz rechte Position. Das Ergebnis einfach ablesen.

Primzahlenerkennungs-TOMO maschine

Beispiel mit  $5 \times 3 = 3 \times 5 = 15$ :

Regler auf 3. Kugeln bis zur 5 auffüllen (das entspricht 5 x 3). Das Rechteck drehen. Dies ergibt ein 3 x 5 Rechteck und man erkennt, dass die Anzahl der Kugeln sich nicht verändert hat.

Beispiel mit  $5 \times 3 + 2 = 3 \times 5 + 2 = 17$ :

Wie zuvor mit Rest 2.

# Division mit und ohne Rest!

## Eine Zahl in ihre Teiler zerlegen!

Wofür braucht man Restwertberechnung?

- ⇒ Z. B. Umwandlung in ein anderes Zahlensystem (Horner Schema)
- Regler auf 1
- 15 Kugeln auflegen (Dividend)

### Beispiel mit 15÷3 = 5:

Regler auf 3 und Ergebnis an der y-Achse ablesen (= 3)

#### Beispiel mit $17 \div 3 = 5 + 2$ :

 Regler auf 3 und Ergebnis an der y-Achse ablesen + Rest (= 2). Im Prinzip kann man hier die Punktrechnung vor Strichrechnung Regel erkennen. • Regler auf 1

• 12 Kugeln auflegen :

12 x 1 6 x 2 4 x 3 3 x 4 2 x 6 1 x 12

- Triviale Teiler sind die 1 und die Zahl selber
- Regler um eine Position nach rechts
  - ⇒ Rechteck bzw. keinen Rest: Teiler gefunden. Teiler (X-Wert) notieren und Schritt wiederholen.
  - ⇒ Kein Rechteck bzw. Rest: Kein Teiler. Regler weitere Position nach rechts und Schritt wiederholen.
- Ende bei y = 1 bzw. y = 2.

Primzahlenerkennungsmaschine

TOMO



# Prim oder nicht prim?

Man muss keine Zahlen kennen und auch nicht

• Regler auf 1

zählen können.

- Kugeln auflegen (erst mit 12, wiederholen mit 21 und 23)
- Schrittweise nach rechts und jeweils prüfen, ob es einen Rest gibt.
  - ⇒ Kein Rest: Keine Primzahl -> ENDE
  - ⇒ Rest vorhanden: Könnte prim sein. Weitermachen
- Wenn x > y und kein Rechteck (also ein Rest vorhanden), dann Primzahl gefunden. Auf der x-Achse notieren.

Primzahlen ermitteln und markieren.

Primzahlenerkennungsmaschine



- Regler auf 1
- Kugeln auflegen (12)
- Regler um eine Position nach rechts (auf die erste Primzahl)
  - ⇒ Rechteck bzw. kein Rest: Primfaktor gefunden und notieren. Alle Spalten bis auf die Erste entfernen und weitermachen.
  - ⇒ Kein Rechteck bzw. Rest: Kein Teiler. Regler weiter auf nächste Primzahl.
- Schritte wiederholen bis nur noch 1 Kugel übrig ist. Dann sind alle Primfaktoren ermittelt.

Wiederholen mit 18 und 21.

TOMO

6



## **Umrechnen** in andere Zahlensysteme

- Regler auf 1
- Kugeln auflegen (21 unär)

### 1 : 2 = 0 R 1=> 1010 binär

#### In HEX, DEC, BIN und OCT umwandeln:

- Regler auf das gewünschte Zielsystem setzen
- Reste entfernen und auf die erste (rechte Position legen. Wenn kein Rest, dann die Position mit 0 markieren.
- Alle Spalten bis auf die Erste entfernen.
- Schritte wiederholen bis keine Kugeln mehr übrig sind.

HEX: 15 - BIN: 0001 0101 - OCT: 25

Primzahlenerkennungsmaschine



- Kugeln auflegen (17: sqrt(17) = 4,1231...)

• Regler auf 1

- Regler so weit nach rechts, bis annährend ein Quadrat zu erkennen ist (höher als breiter)
  - ⇒ Auf der x-Achse die Vorkommastelle able-

Quadratwurzeln

berechnen bzw.

abschätzen

⇒ Die Anzahl der verbleibenden Kugeln (des Restes) durch den Wert der x-Achse teilen und das Ergebnis halbieren: (R:x):2



Die Wurzel ist immer echt kleiner als das hier ermittelte Ergebnis (denn das fehlende kleine Quadrat muss aus den 2 \* x Teilen erstellt werden).



# Rechnung auff der linihen

... nach Adam Ries

Danke fürs reinschauen und
noch viel Spaß
auf der #GPN22

- Aufbau des Brettes (Bancire, Linien und Spacio)
- Auslegen einer Zahl (Numeratio)
- Bündeln und erhöhen (Elevatio und Resolvatio)

Addition: 194 + 76 = 270Subtraktion: 187 - 43 = 144Multiplikation:  $21 \times 122 = 2.562$ 

Division:  $9 \div 3 = 3 \text{ und } 276 \div 23 = 12$ 

@tor

10

@tomo@chaos.social

Primzahlenerkennungsmaschine

