® BUNDESREPUBLIK ® Ottenlegungsschrift [®] DE 3100610 A1

(5) Int. Cl. 3. A 61 B 5/02

DEUTSCHLAND

DEUTSCHES PATENTAMT ② Aktenzeichen:

Anmeldetag:

Offenlegungstag:

P 31 00 610.8-35

12. 1.81

29. 7.82

(1) Anmelder:

Blazek, Vladimir, Dr.-Ing.; Wienert, Volker, Prof. Dr.med., 5100 Aachen, DE

Erfinder:

gleich Anmelder

Prüfungsantrag gein. § 44 PatG ist gestellt

Meßeinrichtung zur nichtinvasiven Feststellung venöser bzw. artieller Abfluß- und Durchflußstörungen

Die Erfindung beinhaltet eine optoelektronische Meßeinrichtung zur nichtinvasiven, quantitativen Beurteilung der peripheren Hamodynamik beim Menschen. Sie erlaubt in der klimischen Praxis einerseits die meßtechnische Erlassung der Hautdurchblutungsänderung unter Belastung (sie korreliert eng mit den Durchblutungsverhaltnissen in den tiefen Leitvenen), andererseits kann sie auch zur Erkennung venöser Stromungshindernisse eingesetzt werden. In der Figur 1 ist ein Ausführungsbeispiel eines erfindungsmäßigen Meßkoples dargestellt. Der Meßkopf (1) wird mit seiner Stirnfläche (4) mit Hille beiderseits klebender Folienringe auf die Extremität appliziert. In der Achsenmitte ist in der Offnung (6) ein Strahlungsemplanger (9) belestigt: ringformig um ihn sind mehrere, gleichzeitig sinusformige angeregte, selektive Strahlungsquellen (8) in die Offnungen (5) angebracht. Schließlich befindet sich im Meßkopf ein kleiner Temperaturfühler (10) zur gleichzeitigen Messung der aktuellen Hauttemperatur. Durch eine elektronische Auswertung der Meßsignale mit anschließender nurnerischer temperaturabhängigen Korrektur der Meßwerte werden hamodynamische Parameter (Wiederauffüllphase und dynamische Venendruckanderung infolge der Bewegung) registriert und zur Diagnose herangezogen.

(31 00 610)

BUNDESDRUCKEREI BERLIN 06 82 230 030/444

Dr. V. Blazek, Prof. Dr. V. Wienert, Aachen

Aktenzeichen: 80/13921

Patentansprüche

- 1) Meßeinrichtung zur nichtinvasiven Feststellung peripherer Abfluß- und Durchflußstörungen in menschlichen Extremitäten, wobei die Blutentleerung bzw. -auffüllung der Venen oder Arterien eines Extremitätenareals in ihrem zeitlichen Verlauf erfaßbar ist,
 - gekennzeichnet durch
 - a) mehrere auf die Haut des Extremitätenareals gerichtete Strahlungsquellen,
 - b) einen Strahlungsempfänger zum Messen des von dem dermalen Gefäßplexus reflektierten bzw. zurückgestreuten Strahlungs-anteiles,
 - c) einen Temperaturfühler zur gleichzeitigen Messung der Hauttemperatur,
 - d) eine elektronische Auswerteschaltung zum Erfassen und Aufzeichnen des zeitlichen Verlaufs des reflektierten bzw. zurückgestreuten Strahlungsanteiles und der Hauttemperatur.
 - 2. Meßeinrichtung nach Anspruch 1, gekennzeichnet durch einen leichten, an dem zu untersuchenden Hautareal zu befestigenden Meßkopf (1), der in einer zentralen Öffnung (6) den Strahlungsempfänger (9) aufweist, um den ringförmig in weiteren Öffnungen (5, 7) die Strahlungsquellen (8) sowie der kleine Temperaturfühler (10) angeordnet sind.
 - 3. Meßeinrichtung nach Anspruch 1 oder 2, gekennzeichnet dadurch, daß die Strahlungsquellen (8) selektive Strahler sind, die eine im nahen IR-Bereich oder im sichtbaren Bereich des Spektrums liegende Strahlung emittieren, welche aber die Haut thermisch nicht belastet.
 - 4. Meßeinrichtung nach Anspruch 1 bis 3, gekennzeichnet dadurch, daß sowohl die Strahlungsquellen (8) als auch der Strahlungsempfänger (9) mit einer vorzugsweise integrierten Fokussieroptik ausgerüstet sind.

- 5. Meßeinrichtung nach Anspruch 2 bis 4, dadurch gekennzeichnet, daß der Meßkopf (1) in einem flachen, kreisrunden Gehäuse angeordnet ist, das einen Außendurchmesser von vorzugsweise etwa 30 mm aufweist und mittels handelsüblicher beiderseits selbstklebender Folienringe auf dem Hautareal befestigt werden kann.
- 6. Meßeinrichtung nach Anspruch 1 bis 5,
 gekennzeichnet durch eine solche Ausbildung der elektronischen
 Auswerteschaltung, daß aus den Signalen eines oder mehrerer
 gleichartiger Meßköpfe physikalische Parameter zur Feststellung venöser bzw. arterieller Abfluß- und Durchflußstörungen entweder graphisch oder analytisch gewonnen werden können.
- 7. Meßeinrichtung nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Auswerteelektronik Taktgebereinheiten (23, 24, 25) zur optischen oder akustischen Unterstützung des Patienten bei der Durchführung eines vorgegebenen Bewegungsprogramms enthält.
- Meßeinrichtung nach Anspruch 1 bis 7,
 dadurch gekennzeichnet, daß die Auswerteelektronik Baugruppen (20,
 21, 22) zur Auswertung des vom Meßkopf (1) gelieferten Temperatursignales sowie zur digitalen Anzeige der jeweiligen Temperatur
 des Hautareals aufweist.

_ 3-

Aktenzeichen: 80/13921

Meßeinrichtung zur nichtinvasiven Feststellung venöser bzw. arterieller Abfluß- und Durchflußstörungen

Die Erfindung beinhaltet eine Meßeinrichtung zur quantitativen bearteilung peripherer venöser Abflußstörungen bzw. arterieller Durchblutungsstörungen beim Menschen. Sie erlaubt in der klinischen Praxis einerseits die objektive Erfassung der Hautdurchblutungsänderung unter Belastung (sie korreliert eng mit den Durchblutungsverhältnissen in den tiefen Leitvenen), andererseits kann sie auch zur Erkennung von venösen Strömungshindernissen (Thrombosen) im Bereich der Extremitäten eingesetzt werden.

bei der chronisch-venösen Insuffizienz (CVI) liegt eine periphere venöse Abflußstörung vor, bedingt durch eine valvuläre Dysfunktion. Unter dem Begriff CVI werden die Folgezustände der primären wie auch der sekundären Varikose subsummiert.

Das klinische Bild der CVI ist vielgestaltig. Man findet Gefäßveränderungen (Corona phlebectatica paraplantaris, Besenreiser,
Capillaritis alba usw.), Ödeme, Hautveränderungen (z. B. hyper- oder
Depigmentierung) und hautdefekte.

In der klinischen Praxis hat sich folgende subjektive, rein deskriptive Linteilung der CVI bewährt:

Grad I: Corona phlebectatica paraplantaris,

Grad II: Hyper- oder Depigmentierungen mit oder ohne

Corona phlebectatica,

Grad III: Florides oder abgeheiltes Unterschenkelgeschwür. Weil diese Stadieneinteilung jedoch wenig Aussage über die wirkliche Dysfunktion der Venen zuläßt, müssen Meßverfahren zur Diagnostik zugezogen werden. In den letzten 10 Jahren wurden entscheidende Fortschritte auf dem Gebiet der angiologischen Meßtechnik erzielt. Nach dem heutigen Stand der Technik können folgende meßtechnische Methoden zur Beurteilung von peripheren Venenerkrankungen angewendet werden (siehe EBRINGER et al.: Venöse Abflußstörungen. F. Enke Verlag, Stuttgart 1979):

- 1. Venendruckmessung (Phlebodynamometrie),
- Volumenmessung (Plethysmographie),
- 3. Phlebographie (auch Isotopenphlebographie),
- 4. Radio-Jod-Fibrinogen-Test,

_ U _

Insbesondere die Meßmethodik der invasiven, dynamischen Venendruckmessung findet in den letzten Jahren breite klinische Anwendung, da
sie es erlaubt, den Grad der venösen Insuffizienz objektiv zu beurtei-

Der Venendruck an beliebiger Stelle des menschlichen Körpers ist eine zusammengesetzte Größe, die sich in Horizontallage bei stehender Flüssigkeit aus dem lokalen Flüssigkeitsdruck (hämostatischer Druck) und dem Dehnungswiderstand der Gefäßwand (Gefäßtonus) ergibt. Zu diesem Grunddruck kommt – bei einsetzender Strömung – der Strömungsdruck hinzu, dessen Höhe von der Herzleistung und peripherem Widerstand bestimmt ist.

Zu diesem, in horizontaler Ruhelage im ganzen Venensystem annähernd gleich hohen und fast konstanten Venendruck addiert sich schließlich -im Stehen- der hydrostatische Druck. Er entspricht rechnerisch dem Abstand, der zwischen der Meßebene liegt und der hydrostatischen Indifferenzebene, die etwa in Höhe des vierten Interkostalraums links anzunehmen ist.

Durch die CVI vergrößert sich das Volumen der Extremität bzw. der venöse Druck. Da eine gute Korrelation zwischen Volumen und Druck z. B. von THULESIUS 1973 nachgewiesen wurde (s. obige Literaturstelle, S. 462, Abb. 232), wird die dynamische Druckmessung in peripheren subkutanen Venen zur Beurteilung der CVI hinzugezogen. Im allgemeinen wird heute die venöse Druckmessung folgendermaßen durchgeführt:

Eine Fußrückenvene wird mit einer Injektions-Kanüle punktiert, an die ein Polyäthylenschlauch als Verbindungsstück zum elektronischen Druck wandler angeschlossen wird. Die Kanüle wird bei richtiger Lage auf der Haut fixiert. Auf einem Registriergerät (meist EKG-Schreiber) wird ein Ruhedruck Poregistriert. Danach wird ein sog. Bewegungsprogramm (bewährt haben sich 10 Zehestände oder 10 Dorsalflexionen des Fußes in 15 sec) durchgeführt. Durch die Muskelkontraktion (Wadenmuskelpumpe, Sprunggelenkspumpe) wird infolge der Bewegung das Blut aus der Extremität vermehrt abgeführt; dies führt unterhalb des Kniegelenkes zu einer Druck- und Volumensenkung. Das Absinken des Ausgangsdruckes (Ruhedruck) innerhalb des Bewegungsprogramms wird registriert. Der tiefste Druck wird mit Pmin bezeichnet. Anschließend wird das bein in Ruhe gehalten. In einer Wiederauffüllphase (Zeitspanne to) steigt der Druck wieder von Pmin auf Po

-5-

Die registrierte Zeitspanne t_o wird ebenso wie die Druckdifferenz Δ P = P_o - P_{min} zur Diagnose der CVI einbezogen.

Im Unterschied zu dem Druckverhalten beim Gesunden, sind bei Venenkranken geringere Druckabfälle Δ P und kürzere Auffüllzeiten zu erwarten. Nachteilig bei der beschriebenen Technik der Venendruckmessung ist, daß sie invasiv, schmerzhaft für den Patienten, aufwendig
(steriles Infusionsbesteck), zeitraubend und mit der Möglichkeit von
Komplikationen (Hämatom, Venenentzündung) verbunden ist; sie hat sich
deshalb nicht allgemein als Routinemethode durchzusetzen vermocht.

Eine nichtinvasive Technik zur Beurteilung der CVI ist dagegen die Plethysmographie. Es handelt sich um eine Methode zur quantitativen Erfassung rascher Änderungen der Blutfülle eines Extremitätensegments durch Registrierung der damit einhergehenden Volumenschwankungen des gesamten Meßgebietes. Die Wasser-Plethysmographen enthalten als übertragendes Medium Wasser, welches dem Extremitätenbereich - in der Regel durch eine Gummimembran getrennt - dicht anliegt. Luft-Plethysmographen bedienen sich einer felxiblen, luftgefüllten Manschette. Volumenänderungen des Meßareals führen hier zu Druckänderungen der Luft in der Manschette. Bei der Plethysmographie mittels Quecksilber-Dehnungsmeßstreifen werden Umfangsmessungen durchgeführt und von diesen auf Volumenänderungen rückgeschlossen. Es ist auch bekannt, daß die Änderungen der Blutfülle eines Körperareals parallel mit Änderungen des elektrischen Widerstandes einhergehen. Auf diesem Effekt basieren die Methoden der elektrischen Rheographie und der Impedanz-Plethysmographie. Bei diesen Verfahren werden auf die Haut mehrere metallische Kontakte aufgelegt.

Bei der sog. photoelekrischen Plethysmographie (vergl. z. B. Acta Dermatovener (Stockholm), 50, (1970), 263 - 269 oder Phys. Med. Biol. 19 (1974), 317 - 328) wird die Pulswelle (Änderung des peripheren Blutvolumens in Abhängigkeit von der Herzfunktion) ermittelt. Dabei werden überwiegend Finger- oder Zehenspitzen mit Hilfe einer Lichtquelle durchstrahlt; die transmittierten oder reflektierten, sich mit dem Herzrhythmus periodisch verändernden Lichtanteile werden erfaßt. So kann z. B. die Zahl der Herzschläge pro Minute nichtinvasiv

ermittelt werden.

Alle plethysmographischen Methoden weisen aber mehrere, in der einschlägigen Literatur beschriebene Nachteile auf und haben sich in der klinischen Praxis wegen störender Nebeneffekte, geringer Meßgenauigkeit, schlechter Reproduzierbarkeit bzw. wegen der komplizierten Hand habung nicht durchsetzen können. Deshalb sind die plethysmographische Methoden weniger verbreitet als die blutige Venendruckmessung. Auch die Ultraschall-Doppler-Technik ist ein nichtinvasives qualitatives Verfahren zur Beurteilung der venösen Hämodynamik. Hier wird die zeitabhängige Blutgeschwindigkeit registriert; quantitative Aussagen über CVI sind nicht möglich.
Schließlich haben auch die invasiven Methoden der Phlebographie, des Radio-Jod-Fibrinogen-Tests und der Thermographie wegen der großen Kör perbelastung, des apparativen Aufwandes und begrenzter Aussagekraft eine Anwendung nur in Spezialkliniken gefunden. Sie werden erfolgreich zur Diagnostik der Venenthrombose eingesetzt; eine quantitative

Es ist allgemein bekannt, daß es sich bei der CVI um eine venöse Abflußstörung im Bereich der großen Transportvenen, also um einen Makrozirkulationsschaden handelt. Nicht bekannt geworden ist hingegen daß hierbei auch ein Mikrozirkulationsschaden im Kapillargebiet vorliegt. Alle Symptome der CVI sind deshalb im Bereich der Kutis und Subkutis lokalisiert.

Beurteilung der CVI ist aber nicht möglich.

Bei arteriellen Durchblutungsstörungen wird die Hautfarbe und die Venenfüllung durch Lagewechsel der entsprechenden Körperpartien in charakteristischer Weise (siehe WIDMER: Arterielle Durchblutungsstörung in der Praxis. H. Hübner Verlag 1972) verändert und nach bisheriger Praxis visuell durch den Arzt diagnostiziert. Diese Diagnose ist subjektiv. Sie kann auch durch äußere Unterschungsbedingungen, z. B. durch die Beleuchtungsverhältnisse, störend beeinflußt werden.

Dieser Erfindung liegt die Aufgabe zugrunde, eine Meßeinrichtung zum Feststellen peripherer Abfluß- und Durchblutungsstörungen in menschlichen Extremitäten anzugeben, die es erlaubt, <u>nichtinvasiv</u>, objektiv und quantitativ die Entleerung bzw. Auffüllung der dermalen Gefäße - Venen bzw. Arterien - meßtechnisch zu erfassen.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Aus- und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Die erfindungsgemäße Methodik der nichtinvasiven Licht-Reflexions-Rheographie (LRR) beruht auf einer Erfassung und Auswertung der von mehreren, vorzugsweise selektiven Strahlungsquellen in die Haut eingestrahlten und von dem dermalen Gefäßplexus zurück zu einem Photodetektor reflektierten Strahlungsanteile unter der gleichzeitigen Messung der Hauttemperatur.

In der Figur 1 ist ein Ausführungsbeispiel eines erfindungsgemäßen Meßkopfes dargestellt. Figur 2 zeigt ein Blockschaltbild der Sendeund Auswerteelektronik. In den Figuren 3, 4 und 5 sind schließlich einige ausgewählte Ergebnisse dargestellt.

Der Meßkopf 1 muß kleine Abmessungen aufweisen, geringes Gewicht haben und muß auf der zu untersuchenden Extremität einfach fixiert werden können. Dabei darf kein Druck auf die Haut ausgeübt werden, da sonst das Blut aus den Hautgefäßen weggedrückt wird und damit ein verfälschtes Meßergebnis registriert würde. Der Meßkopf darf den Patienten nicht bei den – nach Anlegen des Meßkopfes – durchzuführenden bewegungen behindern.

Die Licht-Reflexions-Rheographie soll in jeder Körperlage durchführbar sein. Diese Forderung ist z. B. bei dem Verfahren der Plethysmographie nicht zu erfüllen.

In dem in Figur 1 dargestellten Ausführungsbeispiel ist der LRR-Meßkopf aus einem PVC-Material gefertigt. Der Durchmesser des Meßkopfes beträgt etwa 30 mm und sein Gesamtgewicht incl. der Bauelemente 8, 9 und 10 nur etwa zehn Gramm.

Zur Befestigung an dem ausgewählten Hautareal können z. B. handelsübliche, beiderseits klebende Folienringe, Art. Nr. 2373579 L 300 der Firma Siemens verwendet werden, die üblicherweise zur Befestigung von EKG-Elektroden eingesetzt werden. Diese Folienringe werden zuerst auf die Stirnfläche 4 des Meßkopfes 1 aufgelegt; anschließend wird der Meßkopft 1 auf die Haut fixiert.

Der Meßkopf weist mehrere Öffnungen auf. Durch die Öffnung 3 ist ein mehradriges elektrisches Kabel zur Verbindung des Meßkopfes 1 mit der Auswerteelektronik geführt. Die Rückseite des Meßkopfes 1 ist mit einem Deckel 2 abgedeckt.

In der Achsenmitte des Meßkopfes 1 ist in der öffnung 6 ein Strah-

lungsempfänger 9 (Halbleiterphotodiode oder Phototransistor) befestigt.

Ringförmig um den Strahlungsempfänger 9 sind vorzugsweise drei (minimal 2) oder mehr Strahlungsquellen 8 (Halbleiterlaserdioden oder lich emittierende Dioden, sog. LED's) in den Öffnungen 5 angebracht. Die Strahlungsquellen sind selektive Strahler, sie emittieren je nach Typ im nahen IR-Bereich oder im sichtbaren Bereich des Spektrums. Sie werden moduliert, um eine Beeinflussung der Meßergebnisse durch Fremd licht auszuschließen. Die Strahlungsquellen dürfen keine Wärme entwickeln, weil dies die Meßgenauigkeit beeinflussen würde.

Sowohl die Strahlungsquellen 8 als auch der Strahlungsempfänger 9 sind vorzugsweise mit Linsen ausgestattet. Durch diese konstruktive M nahme besitzen diese Bauelemente einen kleinen Strahlungsöffnungswinkel, so daß die emittierte selektive optische Strahlung einerseits tief in die Haut eindringen kann, andererseits kann der Strahlungsempfänger die von dem Hautgefäßplexus reflektierten bzw. zurückgestreuten Strahlungsanteile (und nicht die Hautoberflächenreflexion) erfassen.

Durch die Verwendung mehrerer, ringförmig um den Detektor 9 befestigter Strahlungsquellen 8 wird, im Gegensatz zu den bekannten
photoelektrischen plethysmographischen Aufnehmern, eine homogene
Hautdurchleuchtung ohne Temperaturbelastung der Haut bewirkt.

Schließlich befindet sich im Meßkopf 1 ein kleiner Temperaturfühler 1 zur Messung der aktuellen Hauttemperatur. Er ist in der Öffnung 7 befestigt.

Durch diese, in diesem Zusammenhang neue Maßnahme wird erstmalig bei der angiologischen Meßtechnik der an sich seit langem bekannten Beobachtung (vergl. z. B. Klin. Wschr. 34 (1956), 356) Rechnung getragen, daß der diagnostizierte Grad von venösen Abflußstörungen auch wesentlich von der Hauttemperatur abhängt.

Ein Beispiel der optoelektronischen Auswerteelektronik nach der Erfindung ist in Fig. 2 dargestellt. In dem Blockschaltbild nach Fig. 2 bedeuten:

- 11 ... Sinusgenerator ($f_0 = 10 \text{ kHz beispielsweise}$)
- 12 ... Hochpaß zur Unterdrückung tieffrequenter Störungen
- 13 ... Modulator und Regler zur symmetrischen Ansteuerung der Strahlungsquellen 8
- 14 ... Verstärker des vom Strahlungsempfänger 9 detektierten Meßsignals
- 15 ... Bandpaß (selektive Strahlungsdetektion)
- 16 ... Demodulator
- 17 ... Tiefpaß mit einstellbarer Grenzfrequenz zur Unterdrückung störender Einflüsse (wie z. B. Bewegungsartefakte, Störmodulation des Meßsignals durch Atem- bzw. Pulswelle)
- 18 ... Eicheinheit, Nullpunkteinstellung
- 19 ... Auswerteeinheit des Meßsignals (z. B. Schreiber zur Registrierung der dynamischen Bautreflexionsänderung, rechnergestützte Auswertung und Digitalanzeige der weiter unten erklärten Parameter $R_{\rm O}$, $R_{\rm max}$, $t_{\rm O}$ usw.)
- 20 ... Aufarbeitung und Verstärkung des vom Temperaturfühler 10 gelieferten Meßsignals
- 21 ... Analog/Digital-Wandler
- 22 ... Digitale Anzeigeeinheit der Hauttemperatur
- 23 ... Taktgebereinheit für das Bewegungsprogramm
- 24 ... Optischer Signalgeber zur Unterstützung des Ablaufes des Bewegungsprogramms
- 25 ... Akustischer Signalgeber zur Unterstützung des Ablaufes des Bewegungsprogramms

Die erfindungsgemäße Methodik der nichtinvasiven Licht-Reflexions-Rheographie (LRR) wird in der Analogie zu der invasiven Venendruckmessung wie folgt angewandt:

Dem vorzugsweise sitzenden Patienten mit hängenden Beinen wird der Meßkopf auf die Innenseite des relaxierten Beines in einem definierten Abstand (z. B. 10 cm) vom Innenknöchel appliziert. Der Meßkopf ist dabei durch die bereits beschriebenen, beiderseits klebenden Ringe in einer definierten, gut reproduzierbaren Weise befestigt. Durch die Eicheinheit 18 mit entsprechender Elektronik wird anschließend die Auswerteelektronik automatisch geeicht. Analog zu dem Ruhedruck Powird bei der LRR der Ruhe-Hautreflexionsgrad Roregistriert. Aufgezeichnet wird außerdem automatisch auch die Temperatur des Hauttestareals unter dem Meßkopf 1.

Auf knopfdruck wird die Registriereinheit (vorzugsweise ein Schreiber) in Gang gesetzt; die LRR-Kurve wird aufgezeichnet. Nun wird das Bewegungsprogramm vom Patienten durchgeführt. Dabei folgt der Patient den optischen und akustischen Signalen der Taktgebereinheit 23,24,25 und führt innerhalb von 15 sec 10 maximale Dorsalflexionen im Sprunggelenk aus. Auch andere Bewegungsprogramme sind möglich. Danach wird das Bein wiederum in relaxierter Ruhelage hängen gelassen. Infolge de Bewegungsprogrammes (Sprunggelenkspumpe) entleeren sich zunächst die Hautgefäße, was zum Ansteigen des Hautreflexionsgrades bzw. zum Aufhellen der Haut führt. Diese Hautreflexionsänderung wird von der Registriereinheit angezeigt. In der Analogie zu dem Druck $_{\mathsf{min}}^{\mathsf{p}}$ wird der Hautreflexionsgrad R_{max} registriert. Nach Beendigung des Bewegungsprogramms füllen sich die Venen normalerweise wieder nur durch den arteriellen Einstrom auf, d. h., die Hautreflexion sinkt in die Nähe des Ruhereflexionsgrades R_{o} . Bei venös Insuffizienten kommt es durch zusätzlichen venösen Reflux zur schnelleren Auffüllung der Gefäße.

Die Auffüllzeit t_0 und die Differenz des Hautreflexionsgrades $\Delta R = R_{max} - R_0$ können entweder graphisch aus der LRR-Kurve (s. Fig. 3-abgelesen werden oder sie können, wie auch andere mögliche Bewertungs faktoren (z. B. die Steilheit der Hautreflexionsabnahme nach Beendigung des Bewegungsprogrammes), elektronisch mit Hilfe der rechnerunter stützten Auswerteeinheit ermittelt werden.

In der Fig. 3 ist die LRR-Kurve eines gesunden weiblichen Probanden aufgeführt. Gemessen wurde am rechten Unterschenkel, die Hauttemperat betrug 32° C. Die Differenz des Hautreflexionsgrades \triangle R entspricht hier der Spannungsdifferenz von 220 mV; die Auffüllzeit beträgt $t_{\circ}=80$ sec.

In der Fig. 4 sind die LRR-Kurven eines männlichen Patienten dargestellt; linkes Bein (links) gesund, $T=32.8^{\circ}$ C; rechtes Bein (rechts) mit primärer Varikose, $T=33^{\circ}$ C. Am linken Bein beträgt Δ R \triangleq 240 mV; $t_{o}\sim$ 45 sec; am rechten Bein ist dagegen Δ R \triangleq 150 mV; $t_{o}\sim$ 20 sec. Am erkrankten Bein ist insbesondere die kürzere Auffüllzeit t_{o} pathognomonisch für die erklärte Diagnose.

In der Fig. 5 sind schließlich Ergebnisse der Untersuchung bei einem Patienten mit CVI I.Grades dargestellt. Die Hauttemperatur ist in diesem Beispiel als Parameter aufgeführt:

Fig. 5 a: $T_{\text{Haut}} = 31^{\circ} \text{ C (gekühlt)}$ $\Delta R \stackrel{?}{=} 410 \text{ mV}$; $t_{\text{O}} = 30 \text{ sec}$ b: $= 33^{\circ} \text{ C (normal)}$ $\stackrel{?}{=} 340 \text{ mV}$; = 25 secc: $= 35^{\circ} \text{ C (erwärmt)}$ $\stackrel{?}{=} 450 \text{ mV}$; = 19 secd: $= 39^{\circ} \text{ C (erwärmt)}$ $\stackrel{?}{=} 380 \text{ mV}$; = 11 sec.

Experimentell wurde eine sehr gute Übereinstimmung zwischen den Ergebnissen der LRR-Methodik und den Ergebnissen der konventionellen, blutigen Venendruckmessung festgestellt, wobei die Nachteile der bisher bekannten und angewendeten Methoden eliminiert werden konnten.

Bei der Anwendung der erfindungsgemäßen Meßeinrichtung zur Feststellung arterieller Durchblutungsstörungen werden nach der Befestigung des Meßkopfes an dem zu untersuchenden Körperteil die beschriebenen Messungen unter gleichzeitiger Durchführung der sog. Lagerungstests (z. B. Kipptest, Allen-Test, Lagerungsprobe nach Ratschow) durchgeführt. Mittels der LRR-Methode kann die aktuelle Hautdurchblutung im Bereich des Meßareals viel exakter als durch die bisher übliche visuelle Beobachtung bestimmt und daraus auf etwaige Durchblutungsstörungen geschlossen werden.

Bei anderen Untersuchungen, z.B. im Zusammenhang mit arteriellen Durchblutungsstörungen im Bereich der unteren Extremitäten, kann es zweckmäßig sein, an die elektronische Auswerteschaltung der Meßeinrichtung gleichzeitig zwei oder mehrere Meßköpfe anzuschließen. Dadurch wird es möglich, die Differenz der Meßwerte zwischen normal durchbluteten und unterversorgten Hautpartien zu ermitteln.

-12_ Leerseite

THIS PAGE BLANK (USPTO)

-A-

Nummer: Int. Cl.3: Anmeldetag: Offenlegungstag:

A 61 B 5/02 12. Januar 1981 29. Juli 1982

3100610

Fig. 3

Fig. 4

- 16 -

Fig. 5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ MAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.