Competing risks

David McAllister 3rd March 2020

Learning outcomes

- Understand relationship between rates and risks
- Understand concept of competing risks
- Get a feel for the impact of competing risks on outcomes and treatment effects

Overview

- Spend some time on rates and risks
- Proceed to competing risks
- Discussion, equations and interactive plots (via a Shiny app)

Why there are some equations

- · Only if you find these helpful
- Tried hard, but I am not a statistician some errors possible, corrections are welcome

Scenarios where we might find competing risks

Cancer

- · Trial of a cancer treatment
 - Death from relapse
 - Death from non-relapse related causes

Cardiovascular

- Trial of a treatment for myocardial infarction (heart attack)
 - Cardiovascular death
 - Bleeding death
 - Non-cardiovascular non bleeding death

Pregnancy

- · Long-term outcomes following chemotherapy childbirth
 - Childbirth
 - Relapse

Rates and risks

Rates and risks

- · Rates events per person-time
 - Single event per person incidence rate
 - Otherwise event rates
- · Risk % or proportion of people experiencing an event

Synonyms

- · Rates incidence density, force of mortality, force of morbidity, hazard rate
- · Risk cumulative incidence

Uses

- · Rates understanding causation, modelling
- · Risks prediction, magnitude, public health/policy, clinical decision-making

Incidence rate and hazard rate

- Hazard rate
 - mathematics/statistics
 - instantaneous risk
 - Conditional probability
- · Incidence rate
 - epidemiology
 - empirical examples
 - Number at risk

Equivalent concepts

In the absence of competing risks

1 to 1 relationship. Constant rates

$$\begin{aligned} Risk &= 1 - e^{-\lambda t} \\ \frac{1}{e^{\lambda t}}, \frac{1}{2.72^{\lambda t}}, \frac{1}{2.72^{1}}, \frac{1}{2.72^{2}}, \frac{1}{2.72^{3}}, \frac{1}{2.72^{4}} \\ \frac{1}{e^{\lambda t}}, \frac{1}{2.72^{\lambda t}}, \frac{1}{2.7}, \frac{1}{7.4}, \frac{1}{20.12}, \frac{1}{54.74} \\ \frac{1}{e^{\lambda t}}, \frac{1}{2.72^{\lambda t}}, 0.4, 0.14, 0.05, 0.02 \end{aligned}$$

100 events per 1,000 person years, 0.1 events per person-year; 10 years; $\lambda t=1$

Risk and rates

Risk of event at different follow-up periods

rate	1 year(s)	2 year(s)	3 year(s)	4 year(s)
0.1	0.10	0.18	0.26	0.33
0.2	0.18	0.33	0.45	0.55
0.3	0.26	0.45	0.59	0.70
0.4	0.33	0.55	0.70	0.80

Time-varying rates

Rates varying continuously

$$Risk = 1 - e^{-\int (\lambda_t dt)}$$

- Rates constant within discrete time periods
 - 0-3 months 2.5 per 1000 person years
 - 4-12 months 1.0 per 1000 person years

$$Risk = 1 - e^{-\sum(\lambda_t t_t)}$$

Area under the curve

Plot of varying rates and risk

Example using incidence rate at discrete time periods

Table for incidence rate at different time periods

time_period	N_at_risk	events	person_time	rate
1	1000	231	442	52
2	769	168	342	49
3	601	149	263	57
4	452	129	194	67
5	323	96	138	70
6	227	65	97	67
7	162	44	70	63
8	118	27	52	52
9	91	21	40	25/43

Table for incidence rate at different time periods, continued

I	ime_period	N_at_risk	events	person_time	rate	Risk	
	1	1000	231	442	52	23.1%	
	2	769	168	342	49	39.9%	
	3	601	149	263	57	54.8%	
	4	452	129	194	67	67.7%	
	5	323	96	138	70	77.3%	
	6	227	65	97	67	83.8%	
	7	162	44	70	63	88.2%	
	8	118	27	52	52	90.9%	21/43

What happens to risks and effect estimates for different rates

https://ihwph-hehta.shinyapps.io/competing_risks/

Set "Rate of target event per 100 person-years:" to 10, and the "Rate ratio for effect of treatment on target event:" to 0.78. Leave the other settings as they are. Examine the effect of increasing the "Rate of target event per 100 person-years:". What impact do these changes have on the:-

- Risk of target events
- · Odds ratio
- Relative risk
- Absolute risk reduction

What happens to the relationship between the rate ratio and risk ratio as you increase the target event rate?

What implications does this have for interpreting hazard ratios?

Example of censoring

Calculating cumulative incidence (risk)

- Statistical methods to cope with censoring
 - Kaplan-Meier

$$S_t = \prod_{i: t_i \leq t} (1 - rac{d_i}{n_i})$$

- Nelson-Aalen

$$ilde{H}_{(t)} = \sum_{i:t_i \leq t} (rac{d_i}{n_i})$$

with d_i the number of events at t_i and n_i the total individuals at risk at t_i

· Nelson Aalen - $risk = 1 - e^{-H_{(t)}}$

Worked example

see Excel spreadsheet "competing_risk_calculation.xlsx"

Summary: without competing risks

- Rates lie between 0 and infinity
- Risks lie between zero and 1
- Risks can be estimated from rates (and vice versa)
- doubling rate and doubling time have the same effect on the risk
- The relationship between rates and risk is non-linear
- The relationship between time and risk is non-linear
- · If the rate ratio is constant over time, the risk ratio will attenuate over time
- Rate ratios are NOT risk ratios

Competing risks

What happens to risk of event if there is a competing event

https://ihwph-hehta.shinyapps.io/competing_risks/

Set "Rate of target event per 100 person-years:" to 10 and "Rate ratio for effect of treatment on target event:" to 0.78. Leaving the other settings as they are, gradually increase the event rate for competing events. NOTE THAT IN THIS SCENARIO THE TREATMENT IS NOT RELATED TO THE COMPETING EVENT. What impact do these changes have on the:-

- Risk of target events
- Odds ratio
- Relative risk
- Absolute risk reduction

Repeat the exercise varying the target event rate too.

Estimating risk if there are competing events

If no censoring

Relapse	Death	Either	Relapse_Cum	Death_Cum	Either_Cum	Relapse_Risk	Death_Risk	Either_Risk
17	10	27	17	10	27	0.017	0.010	0.027
19	7	26	36	17	53	0.036	0.017	0.053
24	8	32	60	25	85	0.060	0.025	0.085
11	10	21	71	35	106	0.071	0.035	0.106
20	11	31	91	46	137	0.091	0.046	0.137
18	10	28	109	56	165	0.109	0.056	0.165
21	11	32	130	67	197	0.130	0.067	0.197
27	7	34	157	74	231	0.157	0.074	0.231

What if there is censoring

Figure 2 Naïve Kaplan–Meier estimates of relapse and NRM, shown as incidence and survival curves, respectively

Why

Figure 2 Naïve Kaplan–Meier estimates of relapse and NRM, shown as incidence and survival curves, respectively

- Dashed line shows KM estimate treating non-relapse death as censoring
- · Solid line shows KM estimate treating non-relapse death as censoring
- Double counting censoring if sum these

Why is it different from censoring due to loss to follow-up

- We assume that such censoring is non-informative
- KM estimates the survival if those who died of a competing risk had had same underlying rates as those who did not die from a competing risk

Relationship between rates and risk

$$Risk_1(t) = \int_0^t S(t) \lambda_1(t) dt$$

$$S(t) = exp^{-\int_0^t \lambda_1(t) + \lambda_2(t) dt}$$

- · At any time, survival plus Risk₁ plus Risk₂ always equals 1.
- Work through an example in excel

Area under the curve

Impact of this graphically

Figure 2 Naïve Kaplan–Meier estimates of relapse and NRM, shown as incidence and survival curves, respectively

NRM (survival)
-- Relapse (incidence)

NRM (survival)
-- Relapse (incidence)

Figure 3 Cumulative incidence estimates of relapse and NRM, shown as incidence and survival curves, respectively; naïve Kaplan–Meier estimates are shown in grey

Cause-specific hazard ratios

- · Can also use Cox regression to estimate the cause-specific hazard
- · Same model, different interpretation
- Cannot directly translate to risk
- Instead combine the cause-specific hazards using the equation in previous slide to estimate the risk of each outcome
 - R packages such as mstate and msm allow combination of different models
 - Rely on simulation or bootstrapping to get 95 % confidence intervals

Modelling cumulative incidence directly

- · Can also estimate the cumulative incidence directly using Fine and Gray model
- Produces regression coefficients for effect of a predictor on the subdistributional hazard rate
- Unlike the hazard rate from a Cox model this has no natural interpretation

Direction of effect on cause-specific hazard rates

Prognostic score	Relapse Cox	Death Cox
Very low	1	1
Low	1.01 (0.81-1.27)	1.57 (1.25-1.97)
Medium	1.28 (1.03-1.59)	2.01 (1.61-2.52)
High	1.57 (1.25-1.99)	2.68 (2.12-3.37)
Very high	2.67 (2.06-3.47)	3.98 (3.09-5.13)

Direction of effect on cause-specific hazard rates and risk

Prognostic score	Relapse Cox	Relapse Fine and Gray	Death Cox	Death Fine and Gray
Very low	1	1	1	1
Low	1.01 (0.81-1.27)	0.93 (0.75-1.16)	1.57 (1.25-1.97)	1.56 (1.24-1.96)
Medium	1.28 (1.03-1.59)	1.07 (0.87-1.33)	2.01 (1.61-2.52)	1.94 (1.55-2.42)
High	1.57 (1.25-1.99)	1.17 (0.93-1.48)	2.68 (2.12-3.37)	2.48 (1.96-3.12)
Very high	2.67 (2.06-3.47)	1.55 (1.19-2.02)	3.98 (3.09-5.13)	3.27 (2.5; .1.22)

What happens to risks and effect estimates if the treatment also affects the competing event

https://ihwph-hehta.shinyapps.io/competing_risks/

Set "Rate of target event per 100 person-years:" to 10, "Rate ratio for effect of treatment on target event:" to 0.78, "Rate of competing event per 100 person-years:" to 0.10 and "Rate ratio for effect of treatment on competing event:" to 1. Examine the effect of changing the "Rate ratio for effect of treatment on competing event:". What impact do these changes have on the:-

- Risk of target events
- Odds ratio
- Relative risk
- Absolute risk reduction

Specifically, what happens to the effect of the treatment on the target event when the treatment also increases the competing risk. Do you think that this is generally a good thing?

42/43

Additional references

see

https://docs.google.com/document/d/1eqVzqYM6ozlrt5I_4aqqe6OIR6OV6EJ8G6Tg1lBausp=sharing

You will also find the link to this on the front-page of https://github.com/dmcalli2/Advanced_epidemiology_course