Cohomologie et déformations d'algèbres de Lie restreintes sur des corps de caractéristique positive

Quentin EHRET

Séminaire de Mathématiques, IRIMAS Mulhouse

17 mars 2022

Contexte:

 Etude des (super)algèbres de Lie-Rinehart en caractéristique p > 0.

Contexte:

- Etude des (super)algèbres de Lie-Rinehart en caractéristique p > 0.
- Déjà fait: classification et déformations en caractéristique 0;

Contexte:

- Etude des (super)algèbres de Lie-Rinehart en caractéristique p > 0.
- Déjà fait: classification et déformations en caractéristique 0;
- En caractéristique p, de nouveaux phénomènes apparaissent;

Contexte:

- Etude des (super)algèbres de Lie-Rinehart en caractéristique p > 0.
- Déjà fait: classification et déformations en caractéristique 0;
- En caractéristique p, de nouveaux phénomènes apparaissent;
- → Il est d'abord nécessaire de comprendre les (super)algèbres de Lie restreintes en caractéristique p.

- Introduction
- 2 Déformations d'algèbres de Lie en caractéristique 0
 - Généralités sur les algèbres de Lie
 - Cohomologie de Chevalley-Eilenberg
 - Déformations d'algèbres de Lie
- 3 Algèbres de Lie restreintes en caractéristique positive
 - Introduction aux algèbres de Lie restreintes
 - Les p-mappings
 - La cohomologie restreinte
 - Deformations retreintes
- ④ Le cas particulier de la caractéristique 2 विकास कार्यक्र कार्यक्रम कार्यक्रम कार्यक्रम कार्यक्रम

 \mathbb{K} est un corps algébriquement clos, de caractéristique 0.

Définition

Soit L un \mathbb{K} -ev. Un **crochet de Lie** sur L est une application bilinéaire $[\cdot, \cdot] : L \times L \longrightarrow L$ vérifiant, pour $x, y, z \in L$,

- ② [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi).

Si L est équipé d'un tel crochet, on appelle le couple $(L, [\cdot, \cdot])$ une algèbre de Lie.

Exemples:

• $[x, y] = 0 \ \forall x, y \in L$ (algèbre abélienne);

Exemples:

- $[x, y] = 0 \ \forall x, y \in L$ (algèbre abélienne);
- Si $\mu: L \times L \longrightarrow L$ est une loi d'algèbre associative (multiplication), alors

$$[x,y] := \mu(x,y) - \mu(y,x)$$

est un crochet de Lie sur *L* appelé **commutateur**.

Exemples:

- $[x, y] = 0 \ \forall x, y \in L$ (algèbre abélienne);
- Si $\mu: L \times L \longrightarrow L$ est une loi d'algèbre associative (multiplication), alors

$$[x,y] := \mu(x,y) - \mu(y,x)$$

est un crochet de Lie sur L appelé commutateur.

Conséquence importante: $M_n(\mathbb{K})$ munie du commutateur est une algèbre de Lie.

Définition

Une application linéaire $\varphi: L_1 \longrightarrow L_2$ est un morphisme d'algèbres de Lie $si \varphi([x,y]_1) = [\varphi(x), \varphi(y)]_2 \ \forall x,y \in L_1$.

Définition

Une application linéaire $\varphi: L_1 \longrightarrow L_2$ est un morphisme d'algèbres de Lie si $\varphi([x,y]_1) = [\varphi(x), \varphi(y)]_2 \ \forall x,y \in L_1$.

Définition

Une représentation $\rho: L \longrightarrow End(V)$ est une **représentation** d'algèbres de Lie si ρ est un morphisme d'algèbres de Lie, c'est-à-dire si $\rho([x,y]) = \rho(x)\rho(y) - \rho(y)\rho(x)$.

Remarque: On dit aussi que V est un L-module.

Exemple essentiel: La représentation adjointe

$$\mathsf{ad}: L \longrightarrow \mathsf{End}(L)$$
$$x \longmapsto \mathsf{ad}_x : y \longmapsto [x, y].$$

On souhaite construire un **complexe de cochaînes** associé à *L*:

$$0 \longrightarrow C^0 \stackrel{d^0}{\longrightarrow} C^1 \stackrel{d^1}{\longrightarrow} C^2 \stackrel{d^2}{\longrightarrow} C^3 \stackrel{d^3}{\longrightarrow} ...$$

Les C_i étant des L-modules et les d^j des applications linéaires vérifiant

$$d^{j+1}\circ d^j=0.$$

Soit L une algèbre de Lie et M un L-module. On pose pour $q \ge 0$:

$$C_{CE}^q(L,M) := \operatorname{\mathsf{Hom}}_{\mathbb{K}} \left(\wedge^q L, M \right).$$

Soit L une algèbre de Lie et M un L-module. On pose pour $q \ge 0$:

$$C_{CE}^q(L,M) := \operatorname{\mathsf{Hom}}_{\mathbb{K}} \left(\wedge^q L, M \right).$$

Ce sont les applications $\varphi: L^{\times q} \longrightarrow M$, q-linéaires et antisymétriques.

Soit L une algèbre de Lie et M un L-module. On pose pour $q \ge 0$:

$$C_{CE}^q(L,M) := \operatorname{\mathsf{Hom}}_{\mathbb{K}} \left(\wedge^q L, M \right).$$

Ce sont les applications $\varphi: L^{\times q} \longrightarrow M$, q-linéaires et antisymétriques.

En particulier, elles vérifient

$$\forall \sigma \in \mathfrak{S}_q, \ \varphi(x_{\sigma(1)},...,x_{\sigma(q)}) = \operatorname{sign}(\sigma)\varphi(x_1,...,x_q).$$

Soit L une algèbre de Lie et M un L-module. On pose pour $q \ge 0$:

$$C_{CE}^q(L,M) := \operatorname{\mathsf{Hom}}_{\mathbb{K}} \left(\wedge^q L, M \right).$$

Ce sont les applications $\varphi: L^{\times q} \longrightarrow M$, q-linéaires et antisymétriques.

En particulier, elles vérifient

$$\forall \sigma \in \mathfrak{S}_q, \ \varphi(x_{\sigma(1)},...,x_{\sigma(q)}) = \operatorname{sign}(\sigma)\varphi(x_1,...,x_q).$$

Remarque: si $(L, [\cdot, \cdot])$ est une algèbre de Lie, alors le crochet $[\cdot, \cdot]$ est un élément de $C_{CF}^2(L, L)$.

On souhaite ensuite équiper ce complexe $C^*_{CE}(L, M)$ d'applications particulières, appelées **différentielles**:

$$d_{CE}^q: C_{CE}^q(L,M) \longrightarrow C_{CE}^{q+1}(L,M),$$

On souhaite ensuite équiper ce complexe $C_{CE}^*(L, M)$ d'applications particulières, appelées **différentielles**:

$$d_{CE}^q: C_{CE}^q(L,M) \longrightarrow C_{CE}^{q+1}(L,M),$$

données par

$$d_{CE}^{d}\varphi(x_{1},...,x_{q+1}) =$$

$$\sum_{1 \leq i < j \leq q+1} (-1)^{i+j-1}\varphi([x_{i},x_{j}],x_{1},...\hat{x}_{i},...,\hat{x}_{j},...,x_{q+1})$$

$$+ \sum_{1 \leq i} (-1)^{i}x_{i} \cdot \varphi(x_{1},...,\hat{x}_{i},...,x_{q+1}).$$

Lemme

Ces applications vérifient $d_{CE}^{q+1} \circ d_{CE}^q = 0$, $\forall q \geq 0$.

Lemme

Ces applications vérifient $d_{CE}^{q+1} \circ d_{CE}^q = 0$, $\forall q \geq 0$.

1 $(C_{CE}^q(L, M), d_{CE}^q)_{q < 0}$ est un **complexe de cochaînes**.

Lemme

Ces applications vérifient $d_{CF}^{q+1} \circ d_{CF}^q = 0$, $\forall q \geq 0$.

- **1** $(C_{CE}^q(L, M), d_{CE}^q)_{q < 0}$ est un **complexe de cochaînes**.
- ② On note $Z_{CE}^q(L, M) = \ker(d_{CE}^q)$ (q-cocycles).

Lemme

Ces applications vérifient $d_{CE}^{q+1} \circ d_{CE}^q = 0$, $\forall q \geq 0$.

- **1** $(C_{CE}^q(L, M), d_{CE}^q)_{q < 0}$ est un **complexe de cochaînes**.
- ② On note $Z_{CE}^q(L, M) = \ker(d_{CE}^q)$ (q-cocycles).
- **3** On note $B_{CE}^q(L, M) = \operatorname{im}(d_{CE}^{q-1})$ (**q-cobords**).

Lemme

Ces applications vérifient $d_{CE}^{q+1} \circ d_{CE}^q = 0$, $\forall q \geq 0$.

- **1** $(C_{CE}^q(L, M), d_{CE}^q)_{q < 0}$ est un **complexe de cochaînes**.
- ② On note $Z_{CE}^q(L, M) = \ker(d_{CE}^q)$ (**q-cocycles**).
- **3** On note $B_{CE}^q(L, M) = \operatorname{im}(d_{CE}^{q-1})$ (**q-cobords**).
- **1** Grâce au lemme, on a $B_{CE}^q(L,M) \subset Z_{CE}^q(L,M)$. On peut donc considérer l'espace vectoriel quotient

$$H_{CE}^{q}(L, M) := Z_{CE}^{q}(L, M)/B_{CE}^{q}(L, M).$$

Lemme

Ces applications vérifient $d_{CE}^{q+1} \circ d_{CE}^q = 0$, $\forall q \geq 0$.

- **1** $(C_{CE}^q(L, M), d_{CE}^q)_{q \le 0}$ est un **complexe de cochaînes**.
- ② On note $Z_{CE}^q(L, M) = \ker(d_{CE}^q)$ (**q-cocycles**).
- **3** On note $B_{CE}^q(L, M) = \operatorname{im}(d_{CE}^{q-1})$ (**q-cobords**).
- **1** Grâce au lemme, on a $B_{CE}^q(L,M) \subset Z_{CE}^q(L,M)$. On peut donc considérer l'espace vectoriel quotient

$$H_{CE}^{q}(L, M) := Z_{CE}^{q}(L, M)/B_{CE}^{q}(L, M).$$

C'est le q^{eme} groupe de cohomologie de Chevalley-Eilenberg de L.

Définition

Soit $(L, [\cdot, \cdot])$ une algèbre de Lie. Une **déformation formelle** de L est la donnée d'une application $\mathbb{K}[[t]]$ -bilinéaire

$$\mu_t: L[[t]] \times L[[t]] \longrightarrow L[[t]],$$

que l'on définit sur L × L par

$$\mu_t(x, y) = [x, y] + \sum_{i>1} t^i \mu_i(x, y),$$

avec $\mu_i: L \longrightarrow L$ bilinéaires antisymétriques telles que

$$\mu_t(x, \mu_t(y, z)) + \mu_t(y, \mu_t(z, x)) + \mu_t(z, \mu_t(x, y)) = 0, \ \forall x, y, z \in L.$$

$$\mu_t(x, \mu_t(y, z)) + \mu_t(y, \mu_t(z, x)) + \mu_t(z, \mu_t(x, y)) = 0, \ \forall x, y, z \in L.$$

En développant, on obtient pour $q \ge 0$:

$$\sum_{i=0}^{q} (\mu_i(x, \mu_{q-i}(y, z)) + \mu_i(y, \mu_{q-i}(z, x)) + \mu_i(z, \mu_{q-i}(x, y))) = 0$$

$$\mu_t(x, \mu_t(y, z)) + \mu_t(y, \mu_t(z, x)) + \mu_t(z, \mu_t(x, y)) = 0, \ \forall x, y, z \in L.$$

En développant, on obtient pour $q \ge 0$:

$$\sum_{i=0}^{q} (\mu_i(x, \mu_{q-i}(y, z)) + \mu_i(y, \mu_{q-i}(z, x)) + \mu_i(z, \mu_{q-i}(x, y))) = 0$$

• Pour q = 0, on retrouve l'identité de Jacobi usuelle;

$$\mu_t(x, \mu_t(y, z)) + \mu_t(y, \mu_t(z, x)) + \mu_t(z, \mu_t(x, y)) = 0, \ \forall x, y, z \in L.$$

En développant, on obtient pour $q \ge 0$:

$$\sum_{i=0}^{q} (\mu_i(x, \mu_{q-i}(y, z)) + \mu_i(y, \mu_{q-i}(z, x)) + \mu_i(z, \mu_{q-i}(x, y))) = 0$$

- Pour q = 0, on retrouve l'identité de Jacobi usuelle;
- Pour q=1, on obtient $\mu_1 \in Z^2_{CF}(L,L)$.

Obstructions.

L'étude de la réciproque de ce théorème conduit à l'étude des obstructions.

Définition

Soit $\varphi \in Z^2_{CE}(L,L)$ un 2-cocycle. φ est dit **intégrable** si il existe une déformation formelle de L admettant φ comme élément infinitésimal.

Obstructions.

L'étude de la réciproque de ce théorème conduit à l'étude des obstructions.

Définition

Soit $\varphi \in Z^2_{CE}(L,L)$ un 2-cocycle. φ est dit **intégrable** si il existe une déformation formelle de L admettant φ comme élément infinitésimal.

Définition

Une déformation de L d'ordre n est une déformation de la forme

$$\mu_t^n = \sum_{i=0}^n t^i \mu_i.$$

Définition

Soit μ_t^n une déformation d'ordre n de L. On définit pour $x, y, z \in L$:

$$obs_{n+1}(x, y, z) = \sum_{i=1}^{n} \mu_i(x, \mu_{n+1-i}(y, z)) + \mu_i(y, \mu_{n+1-i}(z, x)) + \mu_i(z, \mu_{n+1-i}(x, y)).$$

Définition

Soit μ_t^n une déformation d'ordre n de L. On définit pour $x, y, z \in L$:

$$obs_{n+1}(x, y, z) = \sum_{i=1}^{n} \mu_i(x, \mu_{n+1-i}(y, z)) + \mu_i(y, \mu_{n+1-i}(z, x)) + \mu_i(z, \mu_{n+1-i}(x, y)).$$

Proposition

Soit μ_t^n une déformation d'ordre n de L. Alors obs_{n+1} $\in Z_{CF}^3(L,L)$.

Proposition

Soit μ_t^n une déformation d'ordre n de L. Si on pose

$$\mu_t^{n+1} = \mu_t^n + t^{n+1} \mu_{n+1},$$

pour $\mu_{n+1} \in C^2_{CE}(L,L)$, alors

 μ_t^{n+1} est une déformation de L d'ordre $n+1 \iff obs_{n+1} = d_{CE}^2 \mu_{n+1}$.

Proposition

Soit μ_t^n une déformation d'ordre n de L. Si on pose

$$\mu_t^{n+1} = \mu_t^n + t^{n+1} \mu_{n+1},$$

pour $\mu_{n+1} \in C^2_{CE}(L, L)$, alors

 μ_t^{n+1} est une déformation de L d'ordre $n+1 \iff obs_{n+1} = d_{CE}^2 \mu_{n+1}$.

Théorème

- Si $H^3_{CF}(L,L) = 0$, tout 2-cocycle est intégrable.
- ② Une déformation d'ordre n s'étend en une déformation d'ordre n+1 si et seulement si la classe de cohomologie de obs $_{n+1}$ est nulle.

Equivalence de déformations formelles.

Si V est un espace vectoriel, un **automorphisme formel** $\phi_t: V[[t]] \longrightarrow V[[t]]$ est la donnée d'une famille $\phi_i: L \longrightarrow L$ d'applications telles que $\phi_t = \sum_{i>0} t^i \phi_i$, avec $\phi_0 = id$.

Equivalence de déformations formelles.

Si V est un espace vectoriel, un **automorphisme formel** $\phi_t: V[[t]] \longrightarrow V[[t]]$ est la donnée d'une famille $\phi_i: L \longrightarrow L$ d'applications telles que $\phi_t = \sum_{i \ge 0} t^i \phi_i$, avec $\phi_0 = id$.

Définition

Soient μ_t et ν_t deux déformations formelles d'une algèbre de Lie L. On dit qu'elles sont **équivalentes** s'il existe un automorphisme formel ϕ_t tel que, pour $x, y \in L$,

$$\phi_t(\mu_t(x,y)) = \nu_t(\phi_t(x),\phi_t(y)).$$

Théorème

• Toute déformation formelle de L est équivalente à une déformation de la forme

$$\mu_t = \sum_{i>q} t^i \mu_i, \quad \mu_q \in Z^2_{CE}(L,L) \setminus B^2_{CE}(L,L).$$

Théorème

• Toute déformation formelle de L est équivalente à une déformation de la forme

$$\mu_t = \sum_{i \geq q} t^i \mu_i, \quad \mu_q \in Z^2_{CE}(L, L) \setminus B^2_{CE}(L, L).$$

② SI $H^2_{CE}(L, L) = 0$, toute déformation de L est triviale.

Théorème

• Toute déformation formelle de L est équivalente à une déformation de la forme

$$\mu_t = \sum_{i \geq q} t^i \mu_i, \quad \mu_q \in Z^2_{CE}(L, L) \setminus B^2_{CE}(L, L).$$

② SI $H^2_{CE}(L,L) = 0$, toute déformation de L est triviale.

Remarque: Il y a une correspondance bijective entre les éléments de $H^2_{CE}(L,L)$ et les éléments infinitésimaux de déformations non-équivalentes. Ainsi, $H^2_{CE}(L,L)$ classifie entièrement les déformations infinitésimales de la forme $\mu_t = [\cdot,\cdot] + t\mu_1$.

Soit $\mathbb F$ un corps de caractéristique p>3 et A une $\mathbb F$ -algèbre associative. Munie du commutateur, c'est une algèbre de Lie. La représentation adjointe est alors donnée par

$$\mathsf{ad}_{\mathsf{x}}(y) = \mathsf{x} \mathsf{y} - \mathsf{y} \mathsf{x}.$$

Soit \mathbb{F} un corps de caractéristique p>3 et A une \mathbb{F} -algèbre associative. Munie du commutateur, c'est une algèbre de Lie. La représentation adjointe est alors donnée par

$$\mathsf{ad}_{\mathsf{x}}(y) = \mathsf{x} \mathsf{y} - \mathsf{y} \mathsf{x}.$$

Si m > 0, un rapide calcul donne

$$\operatorname{ad}_{x}^{m}(y) = \sum_{i=0}^{m} {m \choose j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Soit \mathbb{F} un corps de caractéristique p>3 et A une \mathbb{F} -algèbre associative. Munie du commutateur, c'est une algèbre de Lie. La représentation adjointe est alors donnée par

$$\operatorname{ad}_{x}(y) = xy - yx.$$

Si m > 0, un rapide calcul donne

$$\operatorname{ad}_{x}^{m}(y) = \sum_{i=0}^{m} {m \choose j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Ainsi, si m = p, on a la relation

$$\operatorname{ad}_{x}^{p}(y) = x^{p}y - yx^{p} = \operatorname{ad}_{x^{p}}(y).$$

- **1** On a donc une sympathique relation entre le commutateur et le morphisme de Frobenius $x \mapsto x^p$.
- A-t-on une relation entre la loi additive et le morphisme de Frobenius?

- ① On a donc une sympathique relation entre le commutateur et le morphisme de Frobenius $x \mapsto x^p$.
- A-t-on une relation entre la loi additive et le morphisme de Frobenius?

Lemme

Soit A associative et a, $b \in A$. Alors

$$(a+b)^p = a^p + b^p + \sum_{i=1}^{p-1} s_i(a,b),$$

avec is_i(a, b) le coefficient de X^{i-1} dans l'expression $ad_{aX+b}^{p-1}(a)$.

- **1** On a donc une sympathique relation entre le commutateur et le morphisme de Frobenius $x \mapsto x^p$.
- A-t-on une relation entre la loi additive et le morphisme de Frobenius?

Lemme

Soit A associative et $a, b \in A$. Alors

$$(a+b)^p = a^p + b^p + \sum_{i=1}^{p-1} s_i(a,b),$$

avec is_i(a, b) le coefficient de X^{i-1} dans l'expression $ad_{aX+b}^{p-1}(a)$.

L'exemple précédent motive la définition suivante.

Définition (Jacobson)

Une algèbre de Lie restreinte est une algèbre de Lie L équipée d'une application $(\cdot)^{[p]}: L \longrightarrow L$ telle que

L'exemple précédent motive la définition suivante.

Définition (Jacobson)

Une algèbre de Lie restreinte est une algèbre de Lie L équipée d'une application $(\cdot)^{[p]}: L \longrightarrow L$ telle que

p termes

②
$$[x, y^{[p]}] = [[...[x, y], y], ..., y];$$

L'exemple précédent motive la définition suivante.

Définition (Jacobson)

Une algèbre de Lie restreinte est une algèbre de Lie L équipée d'une application $(\cdot)^{[p]}: L \longrightarrow L$ telle que

②
$$[x, y^{[p]}] = [[...[x, y], y], ..., y];$$

$$(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$$

avec is_i(x, y) le coefficient of Z^{i-1} in $\operatorname{ad}_{Zx+y}^{p-1}(x)$. Une telle application $(-)^{[p]}: L \longrightarrow L$ est appelée p-map.

Introduction aux algèbres de Lie restreintes **Les p-mappings** La cohomologie restreinte Deformations retreintes

Caractéristique *p* - Les *p*-mappings

Remarques:

Toutes les algèbres associatives peuvent être vues comme algèbres de Lie restreintes avec morphisme de Frobenius x → x^p.

Remarques:

- ① Toutes les algèbres associatives peuvent être vues comme algèbres de Lie restreintes avec morphisme de Frobenius x → x^p.
- ② Si L est abélienne, n'importe quelle application p-semilinéaire (telle que $\varphi(\lambda x + y) = \lambda^p \varphi(x) + \varphi(y), \ \lambda \in \mathbb{F}, \ x, y \in L$) est une p-map.

Remarques:

- ① Toutes les algèbres associatives peuvent être vues comme algèbres de Lie restreintes avec morphisme de Frobenius x → x^p.
- ② Si L est abélienne, n'importe quelle application p-semilinéaire (telle que $\varphi(\lambda x + y) = \lambda^p \varphi(x) + \varphi(y), \ \lambda \in \mathbb{F}, \ x, y \in L$) est une p-map.

$$\sum_{i=1}^{p-1} s_i(x,y) = \sum_{\substack{x_i = x \text{ or } y \\ x_p = x, \ x_{n-1} = y}} \frac{1}{\sharp \{x\}} [x_1, [x_2, [..., [x_{p-1}, x_p]...],$$

Historique:

 En 1954, dans son article Cohomology of Restricted Lie Algebras, Hochschild donne une construction complète de la cohomologie des algèbres de Lie restreintes:

$$H^q_{res}(L,M) := \operatorname{Ext}^q_{U(L)}(\mathbb{F},M).$$

Historique:

 En 1954, dans son article Cohomology of Restricted Lie Algebras, Hochschild donne une construction complète de la cohomologie des algèbres de Lie restreintes:

$$H^q_{res}(L,M) := \mathsf{Ext}^q_{U(L)}(\mathbb{F},M).$$

 Mais cette construction ne permet de faire presque aucun calcul concret.

Historique:

 En 1954, dans son article Cohomology of Restricted Lie Algebras, Hochschild donne une construction complète de la cohomologie des algèbres de Lie restreintes:

$$H^q_{res}(L,M) := \mathsf{Ext}^q_{U(L)}(\mathbb{F},M).$$

- Mais cette construction ne permet de faire presque aucun calcul concret.
- En 2000, D. Fuchs et T. J. Evans proposent une construction plus adaptée aux calculs dans la thèse de ce dernier.

Historique:

 En 1954, dans son article Cohomology of Restricted Lie Algebras, Hochschild donne une construction complète de la cohomologie des algèbres de Lie restreintes:

$$H^q_{res}(L,M) := \mathsf{Ext}^q_{U(L)}(\mathbb{F},M).$$

- Mais cette construction ne permet de faire presque aucun calcul concret.
- En 2000, D. Fuchs et T. J. Evans proposent une construction plus adaptée aux calculs dans la thèse de ce dernier.
- Mais cela reste incomplet.

Le cas abélien:

Si L est une algèbre de Lie restreinte **abélienne** et M un L-module (restreint), on note

$$\operatorname{\mathsf{Hom}}(\bar{L},M) = \{\varphi : L \longrightarrow M, \varphi(\lambda x + y) = \lambda^p \varphi(x) + \varphi(y)\}.$$

Le cas abélien:

Si L est une algèbre de Lie restreinte **abélienne** et M un L-module (restreint), on note

$$\operatorname{\mathsf{Hom}}(\bar{L},M) = \{\varphi : L \longrightarrow M, \varphi(\lambda x + y) = \lambda^p \varphi(x) + \varphi(y)\}.$$

On construit un nouveau complexe:

$$C_{ab}^k(L,M) = \bigoplus_{2t+s=k} \operatorname{Hom}\left(S^t \overline{L} \otimes \wedge^s L, M\right), \quad 0 \leq k < p.$$

On définit de nouvelles différentielles sur $C_{ab}^k(L, M)$:

$$d_{ab}^{k}: C_{ab}^{k}(L, M) \longrightarrow C_{ab}^{k+1}(L, M)$$
$$\{\gamma_{t}\}_{0 \leq t \leq \lfloor \frac{k}{2} \rfloor} \longmapsto \{\beta_{t}\}_{0 \leq t \leq \lfloor \frac{k+1}{2} \rfloor},$$

On définit de nouvelles différentielles sur $C_{ab}^k(L, M)$:

$$d_{ab}^{k}: C_{ab}^{k}(L, M) \longrightarrow C_{ab}^{k+1}(L, M)$$
$$\{\gamma_{t}\}_{0 \leq t \leq \lfloor \frac{k}{2} \rfloor} \longmapsto \{\beta_{t}\}_{0 \leq t \leq \lfloor \frac{k+1}{2} \rfloor},$$

avec

$$\beta_{t}(x_{1},...,x_{t};y_{1},...,y_{s}) = \sum_{j=1}^{s} (-1)^{j} y_{j} \cdot \gamma_{t}(x_{1},...,x_{t};y_{1},...,\hat{y}_{j},...,y_{s})$$

$$+ \sum_{i=1}^{t} \gamma_{t-1}(x_{1},...,\hat{x}_{i},...,x_{t};x_{i}^{[p]},y_{1},...,y_{s})$$

$$+ \sum_{i=1}^{t} x_{i}^{p-1} \cdot \gamma_{t-1}(x_{1},...,\hat{x}_{i},...,x_{t};x_{i},y_{1},...,y_{s}).$$

$$d_{ab}^1: \operatorname{Hom}(L, M) \longrightarrow \operatorname{Hom}(\wedge^2 L, M) \oplus \operatorname{Hom}(\bar{L}, M)$$

 $\gamma_0 \longmapsto \{\beta_0, \beta_1\},$

$$\beta_0(y_1, y_2) = y_2 \gamma_0(y_1) - y_1 \gamma_0(y_2);$$

$$\beta_1(x) = \gamma_0(x^{[p]}) + x^{p-1} \gamma_0(x).$$

$$0 \longrightarrow M \longrightarrow \operatorname{Hom}(L,M) \longrightarrow \operatorname{Hom}(\wedge^2L,M) \longrightarrow \operatorname{Hom}(\wedge^3L,M) \longrightarrow \operatorname{Hom}(\wedge^4L,M) \longrightarrow \operatorname{Hom}(\wedge^5L,M) \dots \\ \bigoplus \qquad \qquad \bigoplus \qquad$$

$$d^2_{ab}: \mathsf{Hom}(\wedge^2 L, M) \oplus \mathsf{Hom}(\bar{L}, M) \longrightarrow \mathsf{Hom}(\wedge^3 L, M) \oplus \mathsf{Hom}(\bar{L} \otimes L, M) \ \{\gamma_0, \gamma_1\} \longmapsto \{\beta_0, \beta_1\},$$

$$\beta_0(y_1, y_2, y_3) = -y_1 \gamma_0(y_2, y_3) + y_2 \gamma_0(y_1, y_3) - y_3 \gamma_0(y_1, y_2);$$

$$\beta_1(x, y) = -y \gamma_1(x) + \gamma_0(x^{[p]}, y) + x^{p-1} \gamma_0(x, y).$$

Soit *L* une algèbre de Lie restreinte quelconque et *M* un *L*-module.

On cherche à définir la **cohomologie restreinte** de L, notée $C^q_*(L, M), \ q \ge 0$. On a déjà:

$$C_*^0(L, M) = C_{CE}^0(L, M); \quad C_*^1(L, M) = C_{CE}^1(L, M).$$

Définition

Soit $\varphi \in C^2_{CE}(L, M)$ et $\omega : L \longrightarrow M$. On dit que ω possède la propriété (*) vis-à-vis de φ si

$$\sum_{\substack{x_i = x \text{ or } y \\ x_1 = x, \ x_2 = y}} \frac{1}{\pi(x)} \sum_{k=0}^{p-2} (-1)^k x_p ... x_{p-k+1} \varphi([[...[x_1, x_2], x_3]..., x_{p-k-1}], x_{p-k}),$$

avec $x, y \in L$, $\pi(x)$ le nombre de facteurs x_i égaux à x. On définit ensuite

$$C_*^2(L,M) = \{(\varphi,\omega), \ \varphi \in C_{CE}^2(L,M), \ \omega \ \text{possède la propriété } (*) \ v.a.v \ \varphi\}$$

Définition

Soit $\alpha \in C^3_{CE}(L, M)$ et $\beta : L \times L \longrightarrow M$. On dit que β possède la propriété (**) vis-à-vis de α si

- **1** $\beta(\cdot, y)$ est linéaire;
- $\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2) \sum_{\substack{h_1 = y_1 \text{ or } y_2 \\ h_1 = y_1, h_2 = y_2}} \frac{1}{\pi(y_1)} \sum_{j=0}^{p-2} (-1)^j \sum_{k=1}^j {j \choose k} h_p \dots h_{p-k-1} \alpha \left([x, h_{p-k}, \dots, h_{p-j+1}], [h_1, \dots, h_{p-j-1}], h_{p-j} \right)$

avec $\lambda \in \mathbb{F}$, $x, y, y_1, y_2 \in L$ et $\pi(y_1)$ le nombre de facteurs h_i égaux à y_1 . On définit ensuite:

$$C^3_*(L,M) = \{(\alpha,\beta), \ \alpha \in C^3_{CE}(L,M), \ \beta \text{ a la propriété (**) v.a.v } \alpha\}.$$

On est donc dans la situation suivante:

$$0 \longrightarrow C^0_*(L,M) \xrightarrow{d^0_*} C^1_*(L,M) \xrightarrow{d^1_*} C^2_*(L,M) \xrightarrow{d^2_*} C^3_*(L,M)$$
avec $d^0_* = d^0_{CE}$.

On est donc dans la situation suivante:

$$0 \longrightarrow C^0_*(L,M) \xrightarrow{d^0_*} C^1_*(L,M) \xrightarrow{d^1_*} C^2_*(L,M) \xrightarrow{d^2_*} C^3_*(L,M)$$
avec $d^0_* = d^0_{CE}$.

$$\rightsquigarrow$$
 il reste à construire d_*^1 et d_*^2 .

Un élément $\varphi \in C^1_*(L,M)$ induit une application

$$\operatorname{ind}^1(\varphi)(x) = \varphi\left(x^{[p]}\right) - x^{p-1}\varphi(x), \ \ x \in L$$

Un élément $\varphi \in C^1_*(L, M)$ induit une application

$$\operatorname{ind}^{1}(\varphi)(x) = \varphi\left(x^{[p]}\right) - x^{p-1}\varphi(x), \ \ x \in L$$

On peut alors définir:

$$d^1_*(\varphi) = \left(d^1_{\mathit{CE}}\varphi, \mathsf{ind}^1(\varphi)\right).$$

Caractéristique p - La cohomologie restreinte - cas général

De même, un élément $(\alpha, \beta) \in C^2_*(L, M)$ induit une application

$$\operatorname{ind}^{2}(\alpha,\beta)(x,y) = \alpha\left(x,y^{[p]}\right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \alpha\left([x,\overline{y,...,y}],y\right) + x\beta(y).$$

On peut alors définir:

$$d_*^2(\alpha,\beta) = \left(d_{CE}^2\alpha, \operatorname{ind}^2(\alpha,\beta)\right).$$

Deformations retreintes

Définition

Une déformation formelle de L est donnée par deux applications

$$[\cdot,\cdot]_t: L \times L \longrightarrow L[[t]] \qquad [p]_t: L \longrightarrow L[[t]] (x,y) \longmapsto \sum_{i \geq 0} t^i \mu_i(x,y) \qquad x \longmapsto \sum_{j \geq 0} t^j \omega_j(x),$$

avec $\mu_0(x,y) = [x,y]$, μ_i antisymétriques, $\omega_0 = (\cdot)^{[p]}$, ω_j telles que $\omega_j(\lambda x) = \lambda^p \omega(x)$.

De plus, $[\cdot,\cdot]_t$ et $[p]_t$ doivent vérifier

$$[x, [y, z]_t]_t + [y, [z, x]_t]_t + [z, [x, y]_t]_t = 0;$$
 (1)

$$\left[x, y^{[p]_t}\right]_t = \left[\left[...[x, y]_t, y\right]_t, ..., y\right]_t. \tag{2}$$

Introduction aux algebres de Lie restreinte Les p-mappings La cohomologie restreinte Deformations retreintes

Deformations retreintes

Dans ce contexte, on retrouve tous les résultats "classiques" qui font intervenir la cohomologie jusqu'à l'ordre 2, par exemple:

Deformations retreintes

Dans ce contexte, on retrouve tous les résultats "classiques" qui font intervenir la cohomologie jusqu'à l'ordre 2, par exemple:

Proposition

Soit $([\cdot, \cdot]_t, (\cdot)^{[p]_t})$ une déformation restreinte de $(L, [\cdot, \cdot], [p])$. Alors (μ_1, ω_1) est un 2-cocyle de la cohomologie restreinte.

Deformations retreintes

Dans ce contexte, on retrouve tous les résultats "classiques" qui font intervenir la cohomologie jusqu'à l'ordre 2, par exemple:

Proposition

Soit $([\cdot,\cdot]_t,(\cdot)^{[p]_t})$ une déformation restreinte de $(L,[\cdot,\cdot],[p])$. Alors (μ_1,ω_1) est un 2-cocyle de la cohomologie restreinte.

 \leadsto En l'absence de "bonne" description de la cohomologie, pour les ordres \geq 3, on n'a pas (encore) de théorie des déformations complète.

Définition

Une algèbre de Lie restreinte est une algèbre de Lie L équipée d'une application $(\cdot)^{[p]}: L \longrightarrow L$ telle que

$$(\lambda x)^{[p]} = \lambda^p x^{[p]}, x \in L, \lambda \in \mathbb{F};$$

②
$$[x, y^{[p]}] = [[...[x, y], y], ..., y];$$

$$(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$$

avec is_i(x, y) le coefficient of Z^{i-1} in $\operatorname{ad}_{Z_{x+y}}^{p-1}(x)$.

Définition

Une algèbre de Lie restreinte en caractéristique 2 est une algèbre de Lie L équipée d'une application $(\cdot)^{[2]}: L \longrightarrow L$ telle que

- $[x, y^{[2]}] = [[x, y], y]$
- $(x+y)^{[2]} = x^{[2]} + y^{[2]} + [x,y].$

Définition

Une algèbre de Lie restreinte en caractéristique 2 est une algèbre de Lie L équipée d'une application $(\cdot)^{[2]}: L \longrightarrow L$ telle que

$$[x, y^{[2]}] = [[x, y], y]$$

$$(x+y)^{[2]} = x^{[2]} + y^{[2]} + [x,y].$$

→ la troisième relation donne une clé pour comprendre la cohomologie dans ce cas.

Un couple (φ, ω) avec $\varphi : \wedge^n L \longrightarrow M$ et $\omega : L^{n-1} \longrightarrow M$ est une n-cochaîne si

Un couple (φ, ω) avec $\varphi : \wedge^n L \longrightarrow M$ et $\omega : L^{n-1} \longrightarrow M$ est une n-cochaîne si

- ② ω est multilinéaire en ses variables $z_2, ..., z_{n-1}$;

Un couple (φ, ω) avec $\varphi : \wedge^n L \longrightarrow M$ et $\omega : L^{n-1} \longrightarrow M$ est une n-cochaîne si

- **2** ω est multilinéaire en ses variables $z_2, ..., z_{n-1}$;
- $\omega(x+y,z_2,...,z_{n-1}) = \omega(x,z_2,...,z_{n-1}) + \omega(y,z_2,...,z_{n-1}) + \varphi(x,y,z_2,...,z_{n-1}).$

Un couple (φ, ω) avec $\varphi : \wedge^n L \longrightarrow M$ et $\omega : L^{n-1} \longrightarrow M$ est une n-cochaîne si

- **2** ω est multilinéaire en ses variables $z_2, ..., z_{n-1}$;
- **3** $\omega(x+y,z_2,...,z_{n-1}) = \omega(x,z_2,...,z_{n-1}) + \omega(y,z_2,...,z_{n-1}) + \varphi(x,y,z_2,...,z_{n-1}).$

 \Rightarrow si n=2, $\varphi=[\cdot,\cdot]$, $\omega=(\cdot)^{[2]}$ et M=L, on retrouve les conditions (1) et (3) de la définition précédente.

On note les espaces ainsi obtenus $C_{*_2}^n(L, M)$.

On a besoin d'applications $d_{*_2}^n: C_{*_2}^n(L,M) \longrightarrow C_{*_2}^{n+1}(L,M)$.

On a besoin d'applications $d_{*_2}^n: C_{*_2}^n(L,M) \longrightarrow C_{*_2}^{n+1}(L,M)$.

On écrit
$$d_{*_2}^n(\varphi,\omega)=(d_{CE}^n(\varphi),\delta^n(\omega))$$
, avec

$$\delta^{n}\omega(x, z_{2}, ..., z_{n}) = x \cdot \varphi(x, z_{2}, ..., z_{n})$$

$$+ \sum_{i=2}^{n} z_{i} \cdot \omega(x, z_{2}, ..., \hat{z}_{i}, ..., z_{n})$$

$$+ \varphi(x^{[2]}, z_{2}, ..., z_{n})$$

$$+ \sum_{i=2}^{n} \varphi([x, z_{i}], x, z_{2}, ..., \hat{z}_{i}, ..., z_{n})$$

$$+ \sum_{1 \leq i \leq j \leq n} \omega(x, [z_{i}, z_{j}], z_{2}, ..., \hat{z}_{i}, ..., \hat{z}_{i}, ..., z_{n}).$$

Le miracle:

Proposition

• Si $(\varphi, \omega) \in C^n_{*_2}(L, M)$, alors $(d^n_{CE}(\varphi), \delta^n(\omega)) \in C^{n+1}_{*_2}(L, M)$;

Le miracle:

Proposition

- Si $(\varphi, \omega) \in C_{*_2}^n(L, M)$, alors $(d_{CE}^n(\varphi), \delta^n(\omega)) \in C_{*_2}^{n+1}(L, M)$;
- $\delta^{n+1} \circ \delta^n = 0.$

Le miracle:

Proposition

- Si $(\varphi, \omega) \in C_{*_2}^n(L, M)$, alors $(d_{CE}^n(\varphi), \delta^n(\omega)) \in C_{*_2}^{n+1}(L, M)$;
- $\delta^{n+1} \circ \delta^n = 0.$

 \rightsquigarrow cela nous permet de construire un complexe de cochaînes en caractéristique 2, pour tous les $n \ge 0$.

Merci pour votre attention!