Trabalho Prático

O objetivo do trabalho será:

- Compreender a definição de derivada como limite da razão de variação média.
- Interpretar geometricamente a derivada como inclinação da reta tangente.
- Aplicar o conceito de derivada a funções elementares e visualizar esse conceito com o apoio de gráficos.

Problema 1: Achar a equação da Reta que Passa por Dois Pontos

- Dados os pontos A = (1, 4) e B = (3, 6).
- Usamos a fórmula da equação da reta: $y y_0 = m(x x_0)$.
- Coeficiente angular: $m = \frac{6-4}{3-1} = 1$.
- Equação: $y 4 = 1(x 1) \Rightarrow y = x + 3$.

Atividade 1

Escrever um programa que determina a equação de uma reta que passa por dois pontos, como no problema 1.

Problema 2: Achar a equação da Reta Tangente

- 1. **Motivação:** Como determinar a equação da reta tangente se conhecemos apenas um ponto?
- 2. Estratégia: Usar o conceito de limite com retas secantes se aproximando da tangente.
- 3. Achar a equação da Reta Tangente ao gráfico de $f(x) = x^2$ no ponto A = (2, 4).

Vamos escolher pontos cuja abscissa seja perto de x = 2:

Começamos com o ponto
$$B=(4,f(4))=(4,16)$$
 equação da reta: $y=6x-8$

Vamos agora com o ponto
$$C = (3, 9)$$
 equação da reta: $y = 5x - 6$

Considerando outros pontos, construímos a tabela dos coeficientes angulares da reta secante - m_s

x	f(x)	m_s
4	16	6
3	9	5
2,5	6,25	4,5
2,1	4,41	4,1
2,01	4,0401	4,01

Observa-se que o coeficiente angular das retas secantes se aproximam do valor 4, que será o coeficiente angular da reta tangente.

Atividade 2

Escrever um programa que calcula a equação das retas secantes para a função $f(x) = x^2$ sendo um dos pontos A = (2,4) seguindo os passos abaixo:

- 1. Criar uma sequência de valores de x que se aproximem de 2 pela direita. (Como na tabela abaixo)
- 2. Calcular os valores de f(x), como na tabela.
- 3. Calcular o valor do coeficiente angular da reta secante com o ponto A = (2,4) e para cada ponto da tabela (x, f(x)). (Siga o exemplo como na tabela)

x	$f(x) = x^2$	Coef. Angular da Secante com $A = (2,4)$
2,5	$6,\!25$	$m_s = \frac{6,25-4}{2,5-2} = 4,5$
2,4		_,~ _
2,3		
2,1		

- 4. Determinar a equação das retas secantes que passa por cada ponto da tabela com o ponto A=(2,4).
- 5. Determine com base na tabela e nos gráficos, o valor do limite do coeficiente angular das secantes quando $x \to 2$.
- 6. Com o valor determinado acima, determine a equação da reta tangente.
- 7. Esboce a reta tangente, as retas secantes no mesmo sistema que a parábola $f(x) = x^2$, como na figura abaixo. Você pode usar um software gráfico como o Geogebra ou Python.

Atividade 3

- 1. Repita esse processo para a função $f(x)=x^3$ no ponto x=1. Qual é a derivada nesse ponto?
- 2. Repita esse processo para a função $f(x) = \sqrt{x}$ no ponto x = 1. Qual é a derivada nesse ponto?