Candidate Name Centre Number Candidate Number

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Advanced Level

PHYSICS 6032/2

PAPER 2

SPECIMEN PAPER

1 hour 30 minutes

Candidates answer on the question paper.

Additional materials:

Electronic calculator and/or Mathematical tables

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.

A review of the space of the s

Answer all questions.

Write your answers in the spaces provided on the question paper For numerical answers, **all** working should be shown.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

FOR EXAMINER	YS USE
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

This specimen paper consists of 13 printed pages and 3 blank pages.

Copyright: Zimbabwe School Examinations Council, Specimen Paper.

©ZIMSEC SPECIMEN PAPER [Turn over

DATA

speed of light in free space	$c = 3.00 \times 10^8 \text{ms}^{-1}$
permeability of free space	$\mu_o = 4\pi \times 10^{-7} \text{ Hm}^{-1}$
permittivity of free space	$\epsilon_0 = 8.85 \text{ x } 10^{-12} \text{ Fm}^{-1} \text{ (} 1/4\pi\epsilon_0 = 8.99 \text{ x } 10^9 \text{ mF}^{-1} \text{)}$
elementary charge	$e = 1.60 \times 10^{-19} C$
the Planck constant	$h = 6.63 \times 10^{-34} \text{ Js}$
unified atomic mass unit	$1 \text{ u} = 1.66 \text{ x } 10^{-27} \text{ kg}$
rest mass of electron	$m_e = 9.11 \times 10^{-31} \text{ kg}$
rest mass of proton	$m_p = 1.67 \times 10^{-27} \text{ kg}$
molar gas constant	$R = 8.31 \text{ JK}^{-1} \text{mol}^{-1}$
the Avogadro constant	$N_A = 6.02 \text{ x } 10^{23} \text{ mol}^{-1}$
the Boltzmann constant	$k = 1.38 \times 10^{-23} \text{ JK}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$
acceleration of free fall	$g = 9.81 \text{ ms}^{-2}$

FORMULAE

uniformly accelerated motion
$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

work done on/by a gas
$$W = p \Delta V$$

gravitational potential
$$\emptyset = - \text{Gm/r}$$

hydrostatic pressure
$$p = \rho gh$$

pressure of an ideal gas
$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

simple harmonic motion
$$a = -\omega^2 x$$

velocity of particle in s.h.m.
$$v = v_0 \cos \omega t$$

$$v = \pm \omega \sqrt{(x_o^2 - x^2)}$$

Doppler effect
$$f_o = \frac{f_s v}{v \pm v_s}$$

Attenuation of x-rays
$$I = I_0 e^{-\mu x}$$

electric potential
$$V = \frac{Q}{4\pi\epsilon_0 r}$$

capacitors in series
$$1/C = 1/C_1 + 1/C_2 + \dots$$

capacitors in parallel
$$C = C_1 + C_2 + \dots$$

energy of charged capacitor
$$W = \frac{1}{2}QV$$

electric current
$$I = Anvq$$

resistors in series
$$R = R_1 + R_2 + \dots$$

resistors in parallel
$$1/R = 1/R_1 + 1/R_2 + \dots$$

Hall voltage
$$V_H = \frac{BI}{nta}$$

alternating current/voltage
$$x = x_o \sin \omega t$$

radioactive decay
$$x = x_0 \exp(-\lambda t)$$

decay constant
$$\lambda = \frac{0.693}{t_1}$$

6032/2 SPECIMEN PAPER

[Turn over

1	(a)	Define angular velocity.		For Examiner's Use
			[1]	
	(b)	A body is moving in a circular path of radius, r , at constant linear velocity, angular velocity, ω , and period T .	ν,	
		Deduce an expression connecting v , r and T .		
			[1]	

(c) Fig. 1.1 shows a 0.6 kg stone tied to one end of a string whirled in a vertical of circle of radius 0.4 m at a constant rate of 12.0 turns per minute.

Show on **Fig. 1.1**, the direction of linear velocity v and centripetal **(i)** acceleration, a.

(ii)	Calculate the centripetal acceleration.
	centripetal acceleration =
(iii)	Label a point Q where the stone would be when the string is most likely to break.
(iv)	Determine the tension in the string at Q .
	Tension = [
	in why passengers experience a normal reaction less than their weight the vehicle goes over the top of a curved bridge.

(a)	Define gravitational potential.	
		 [2 ¹
(b)	A stone of mass, m , has gravitational potential energy, E_p , at a point, X , in a gravitational field of potential ϕ .	— L
	Write an expression for gravitational potential ϕ in terms of m and E_p .	
		[1]
(c)	For an isolated spherical planet of radius R , the value of ϕ at its surface is $-6.3 \times 10^7 \text{Jkg}^{-1}$.	
	Calculate the change in gravitational potential energy for a 1.4 kg stone moving towards the planet from a distance of 6R to 3R.	
	Change in gravitational p.e =	[3]

6032/2 SPECIMEN PAPER

3. Fig. 3.1 shows a ray incident on a glass-air boundary. The glass-air and air-glass boundaries are parallel to each other.

For Examiner's Use

Fig. 3.1

- (a) (i) Complete the path of the ray as it passes through the air into glass.
 - (ii) Determine the angle to the horizontal at which the ray emerges from air entering glass if the angle of incidence in glass is 40° .

[5]

(b) Derive the equation $n = \frac{1}{sinc}$.

For Examiner's Use

[1]

4. Fig. 4.1(a) and Fig 4.1(b) shows an X-ray beam from an anode target.

Fig.4.1(a)

Fig 4.1(b)

- (a) (i) State the figure which shows the X-ray beam preferred in X-ray imaging.
 - (ii) Explain your choice in part (a)(i).

[2]

		[
	The number 7 is written in a voxel as shown.	
	7	
)	State what the number 7 represents.	
		[
)	State the advantage of the image obtained using CT scanning ove obtained using X-rays.	
)		er the image
hei		er the image
nno	obtained using X-rays. en a slide wire potentiometer is used to measure the <i>emf</i> of a cell, a b	er the image
hei	obtained using X-rays. en a slide wire potentiometer is used to measure the <i>emf</i> of a cell, a base to be found along the resistance wire.	er the image
hei	obtained using X-rays. en a slide wire potentiometer is used to measure the <i>emf</i> of a cell, a base to be found along the resistance wire.	er the image

5.

6032/2 SPECIMEN PAPER

[Turn over

	State Faraday's law of electromagnetic induction.	(a)	6.
 [1]			
	Fig. 6.1 shows a lump of soft solders at the centre of a coil. The coil is connected to a signal generator.	(b)	
	Solders	Coil	
	SIGNAL GENERATOR		
_	Fig. 6.1		
	Describe and explain what happens to the solder when the a.c. frequency is increased to a high value.		
•	Fig. 6.1 Describe and explain what happens to the solder when the a.c. frequency		

7.	(a)	State two devices of modern electronic technology which have improved speed of communication.			
				[2]	
	(b)		st, with an explanation, an electronic input transducer which can be used to detect that	used	
		(i)	the seat belt is not fastened,		
		(ii)	headlamps are not switched on,		
		(iii)	the engine requires cooling.		
8.	(a)	Define		_[6]	
		(i)	Density	_	
		(ii)	Pressure	_	
				[2]	

6032/2 SPECIMEN PAPER

[Turn over

	(b)		the definitions you have given in (a) to derive the equation $P = \varrho gh$ for ure, P, at a depth, h, in a fluid of density ϱ .	the
9.	(a)		ain why it is much more difficult to reduce the effects of noise when mitting an analogue signal than when transmitting in digital form.	[1]
	(b)	(i)	State two advantages of optical fibre cables over copper cables.	 [2]
		(ii)	Explain the term attenuation.	
		(iii)	State one cause of <i>attenuation</i> in optical fibres.	
				_[4]

e)	(i)	Distinguish between a <i>geostationary</i> satellite and a <i>polar</i> satellite.				
	(ii)	Give three reasons why microwaves are used for satellite communication.				
		[5]				

BLANK PAGE

BLANK PAGE

BLANK PAGE