|--|

Note: Show your work on all problems. Each part of each problem is worth 5 points. A total of 25 points is possible.

1. Let $X \sim \operatorname{gamma}(\alpha, \beta)$. Show that $EX^n = \beta^n \Gamma(n+\alpha)/\Gamma(\alpha)$, where n is a positive integer.

2.	Let X be a continuous random	variable with pdf f	f_X and cdf F_X .	Moreover, a	assume that f	X is sy	mmetric
	about a point a .						

(a) Show that the random variables U=X-a and W=a-X have the same distribution.

(b) Assuming that the k-th central moment of X exists, show that for an odd positive integer $E[X-a]^k=0$.

3. Let X be a random variable with pmf $f_X(x) > 0$ for $x = 1, 2, 3, \cdots$ (positive integers), and $f_X(x) = 0$ for all other values of x. Then, the pmf of X_T , the random variable X truncated at X = 1, is given by

$$f_{X_T}(x) = \frac{f_X(x)}{P(X > 1)}$$
, for $x = 2, 3, \dots$.

(a) Verify that $f_{X_T}(x)$ is a pmf.

(b) Assume that $f_X(1) = 1/4$, $E(X) = \mu$. Obtain $E(X_T)$ as a function of μ .