SOLID-STATE IMAGE SENSING DEVICE

Publication number: JP2089368 Publication date: 1990-03-29

Inventor: YAMAGISHI MACHIO SONY CORP

Applicant:

Classification:

- international: H04N5/335: H01L27/00: H01L27/146: H04N5/335:

H01L27/00: H01L27/146: (IPC1-7): H01L27/00:

H01L27/146: H04N5/335

- European:

Application number: JP19880241778 19880927 Priority number(s): JP19880241778 19880927

Report a data error here

Abstract of JP2089368

PURPOSE:To enhance the sensitivity and density by forming a selecting substrate having a switching transistor that selects the signals coming from a taking-out section, on a photoelectric-conversion substrate. CONSTITUTION: A photoelectric-conversion substrate 1 having a photodiode and an amplifying transistor is formed, and its phase boundary 1a is made flat sufficiently. On that occasion, besides, a selective growth layer 20 as a taking-out section is formed by a selective growth method. After being made flat sufficiently, the selecting substrate 2 having a thin silicon film is attached together. And, by making a switching transistor, etc., in the selecting substrate 2 the switching transistor becomes to have a SOI structure, and this makes the part of a circuit for selecting picture elements of a solid-state image sensing device. Namely, as this device is made by attaching the selecting substrate 2 and photoelectric-conversion substrate 1 together, MOS transistors 32, 33 come to be arranged being lapped in the direction to the main surface of the substrate. And, this makes it possible to have amplification-type element constitution without the need for a very large ara of each picture element.

(9) 日本国特許庁(JP)

① 特許出願公開

@ 公開特許公報(A) 平2-89368

@Int. Cl. 5 H 01 L 27/146 識別記号 庁内整理番号 (3)公開 平成2年(1990)3月29日

H 04 N

7514-5F 301 8838-5C 7377-5F

H 01 L 27/14

審査請求 未請求 請求項の数 1 (全4頁)

60発明の名称

固体操像装置

顧 8263-241778 2014

願 昭63(1988)9月27日 29出

万千雄 東京都品川区北品川6丁日7番35号 ソニー株式会社内 @発 明 の出 質 人 ソニー株式会社 東京都品川区北品川6丁目7番35号

39代 理 人 弁理十 小 池 外2名

明相部

1. 登明の名称

团体播像装置

2. 特許請求の新朋

光電空機選子の一方の領域から延在するゲート 電腦を展開絶縁膜中に形成し、目つそのゲート電 様により嫌報された信号を取り出す取り出し部を 有する光電変換基板上に、上記取り出し部からの 信号を選択するスイッチングトランジスタを形成 した選択用基板を形成してなる個体環像装置。

3. 発明の詳細な説明

(産業上の利用分野)

木発明は光電変換案子からの信号を画素質に増 揺して出力する構造の固体攝像装置に関し、特に その3次元化を図った間体指債装置に関する。

(登明の概要)

本発明は、光電変換素子からの信号を商業毎に 増幅して出力する構造の固体摄像装置において、 米雷泰徳を行う技術と電気信号を選択するための 共振とを別価に形成した後、これら各基板を重ね て形成する構造にすることにより、高感度化や高 経復度化等を実現するものである。

(従来の移跡)

最近の機像技術においては、光電荷信号を低雑 音で増幅して、高感度化や高S/N化を図ろうと する技術が検討されており、例えば「テレビジョ ン学会誌」,1988 年 8月号,787頁~793 頁 (Vol. 42. 社団法人テレビジョン学会発行)に記載され るように、その1つに画素の中に増幅回路を入れ tAM | (Amplified MOS Intelligent Imager) 等の両業内で信号を増幅し、これを走査して取り 出す装置が知られている。

(登明が解決しようとする課題)

このような機械型関係構像素子を用いることで、

小さな面積で大きなダイナックレンジを得ること が可能となる。

しかしながら、増幅型とするためには、例えば その単位画素を1つのフォトダイオードと3つの MOSトランジスタで構成する必要があり、高密 変に配置することが困難となっている。

そこで、本発明は高感度化を図ると共にその高 密度化も行うような関体閣僚装置の提供を目的と する。

「課題を解決するための手段)

上述の目的を連成するために、本発明の関体場 権装置は、光電変換象子の一方の別域から延在す をゲート環格を期間連縁関中に形成し、且つその ゲート環格により増幅されたは等を取り出す取り 出し助とからなる光電変換器板を有し、その光電 変換器板上に、上記取り出し動からの位等を選択 な成る形式を大きなり出しませた。 な成本に、まれ取り出し動からの位等を選択 な成本形成を形成した選択用 な成本形成といこを特徴とする。

ここで、上記光電変換基板における問路構成は、

フォトダイオード等の光電変換素子に増幅用のト ランジスタのゲート電極が接続したものとなり、 その増幅した信号が取り出し部に供給される。そ の回路には所要のリセットするための業子を設け ることもでき、フォトグイオードのリセットを基 板に特定の電位を与え、基板から電荷を抜き出す ように行うこともできる。また、基板の一方の面 に来言変換要子を配列させ、他方の面に取り出し 部を配列させるような構成にすることもできる。 さらに、取り出し部として特に選択成長層を用い るような構成でも良い。選択成長層としては、選 駅エピタキシャル層や選択シリサイド層、選択タ ングステン層等の各種材料を用いることができる。 上記スイッチングトランジスタが形成された基板 は、特に薄膜のものとすることができ、その場合 にはスイッチングトランジスタを薄膜トランジス クにすることができる。

(作用)

光電変換基板上に選択用基板を形成することで、

(実施例)

本発明の好通な実施例を図面を参照しながら設明する。

本実施例の固体攝像装置は、各画素毎に信号の 増幅機能を有した固体操像装置の例である。

まず、その複式的な断面構造は、第1図に模式 的に示すように、主に光電変換基板 1 と高択用基 版2が張り合わされた構造とされている。

まず、光電変換基板1は、n型のシリコン基板 11にp型のウェル領域12が形成された構造を 行し、そのp型のウェル領域12の主面12aに は、n型の不純物領域13.チャンネル形成 城14.n・型の不統物領域15,チャンネルス トッパー領域16が形成されている。なお、図示 を省略するが、n型のシリコン基板!lの裏面! | aには遮光膜が形成される。上紀 n:型の不能 物領域13はp型のウェル領域12とpn接合を 形成し、フォトダイオードの一部として機能する。 チャンネル形成領域14は、増幅用トランジスタ のチャンネルとなる領域であり、第2図に示すよ うに、n ・型の不純物領域!5と電圧 Vaaが供給 されるn.型の不純物領域19の間に延在される。 チャンネルストッパー領域16は各画素間の分離 を行うための領域である。上記 n ・型の不純物領 域13の表面からは、シリコン酸化膜等の層間絶 経験17中にゲート電極18が取り出されている。 このゲート電板18は上記チャンネル形成領域1 4 に絶縁膜を介して臨み、増幅用トランジスクの ゲートとして機能する。従って、フォトダイオー ドに光が入射することで、ゲート電極18の電位 が高くなり、チャンネル形成領域し4にチャンネ ルが形成され、上記n・型の不純物領域19とト

特間平2-89368(3)

型の不秘物別域15の間か必過する。その
n・型の不秘物別域15の定間には専門題種類1
そ 間ロしてコンタクトホール21が形成され、
そのコンタクトホール21を実験するように選股
シリサイド層からなる選択成長器20が形成され
ている。この選択成長器20は選択用基板2と光 温度後基板1の間の界面1」まで選択成長により 形成され、規模された信号の取り出し部取り出し

このような光電変換基板 1 と選択用基板 2 の間の界面 1 a は構めて平均な面とされる。そして、上記選択馬族度 2 は、その界面 1 a で振り合わせている。この選択用基板 2 の界面 1 a 上にはシリコン薄膜が野域され、一部がスイッチングトランジスク (Y 選択トランジスク) の 落性 領域として機能する。すなわち、上記選択成長層 2 0 に焼結する 切破にか、型の半導体例域 2 2 が形成され、この n・型の半導体領域 2 3 の上部が減少 3 の上部に対けられる。この p 型の 半導体領域 2 3 の上部に対峙結婚 2 4 をクレてゲート環機

2 5 が形成される。その p 型の単編体構製 2 3 を 間に挟んで n ・型の単導体領域 2 2 た 上 内向するように n ・型の半導体領域 2 6 か形成される。これ 5 n ・型の半導体領域 2 7 に 四まれる。そして これらの各単導体構域 2 7 に 四まれる。そして これらの各単導体構域 2 7 に 四まれる。そして これもの各単導体構域 2 2、2 3、2 6。2 7 の 上 部には上 起ゲート電極 2 5 と接続するアルミ 起練層 2 9 が形成される。このアルミ起線層 2 8 は Y 選択用 の 性等 o Y を ゲート 電極 2 5 に 伝え、 選択用 基級 2 では、その 信号 o Y に 基づいて 深段 トランジスタからなるスイッチングトランジスタ が作動することになる。

おおむね上述の知る構成を有する図体的構造図 の各商素の関格を第3回に示す。1つの哲学は1 つのフォトダイオード31と2つのMOSトラン ジスタ32、33とからなり、MOSトランジス タ32は信号の増相用に用いられ、MOSトラン ンスタ33は画素の選択用に用いられる。第1回 の制応する部分については、フォトダイオード3

1の一端が上記n、型の不被物領域13となり、 これがMOSトランジスク32のゲートとなるゲ --ト電極18に接続する。2つのMOSトランジ スタ32、33の接続点34は、第1図の選択成 長期20が該当し、MOSトランジスタ33のゲ ートは上記ゲート電機25が対応する。上記 n: 型の半導体領域26がX選択のために用いられる。 ここで、本実施例の固体媒像装置が選択用基板2 と光電変換基板1の張り合わせからなるために、 上記MOSトランジスタ32、33は、基板の主 血に重直な方向に重なって配せられることになる。 このため各画素の面積をそれほど大きく探ること なく増帽型の素子構成にすることができ、高感度 化を図ると同時に、高密度化、高解像度化を図る ことかできる。また、木実施例の周体指微装置で は、画楽の回路にリセット用の素子が設けられな いが、フェトダイオード31のリセットは、p型 のウェル領域12やA型のシリコン基板11等に 所要の電位を与え、電荷を基板側へ引き出すこと で行うことができる。このためリセット用の累子

が設けられない分だけ、素子の面積を有効に用いることができ、高密度化、高解像度化を図ること ができる。

(発明の効果)

本発明の固体摄像装置は、光電変換基板上に遊

沢用基板を影成するため、素子の構造を3次元化することができ、従って、高密度化、高原度化、高原度化を図ることができる。また、実施例に 繋の回路を構成することもできる。 東の回路を構成することもできる。福度素子の特性 向上を図ることができる。

4. 図面の簡単な説明

第1回は本発明の関係場体装置の一例の模式的な前面図、第2回はその一例の模式的な平面図、 第3回はその一例の画素の回路構成を示す網路図 である。

- 1…光電変換基板
- 2 … 選択用基板

特許出願人 ソニー株式会社 代理人弁理士 小池 晃 (他2名)

20 30 30 XER

第 2 図

第3図