JOHNS HOPKINS UNIVERSITY, PHYSICS AND ASTRONOMY AS.173.115 – CLASSICAL MECHANICS LABORATORY

Modeling the Human Arm as a Lever- Prelab Quiz

Answer these questions after reading the "Engineering an Arm" assignment. Submit your answers via Blackboard as either a MS Word (.docx) or MS Excel spreadsheet file (.xlsx). Be sure to show all of your work so that partial credit can be given.

- 1. [5 points] A meter-long, massless rod is fixed so that it can rotate freely around one end as shown in Figure 0.1. A mass is hung from the free end of the rod to produce a downward force of \vec{F}_0 . A wire supports the rod at 20cm from the pivot point.
 - What force, \vec{F}_i , does the wire exert to keep the rod horizontal?
 - How large, and in which direction, is the force at the pivot?

Figure 0.1

2. [5 points] The mechanical advantage is given in the assignment by Equation 3.4:

$$MA = \frac{|\vec{F_{out}}|}{|\vec{F_{in}}|}.$$
(3.4)

For a system in rotational equilibrium, derive an alternative expression for the mechanical advantage.

Hints: Use the expression for torque in Equation 3.2 to replace \vec{F} :

$$\vec{\tau} = \vec{r} \times \vec{F}.\tag{3.2}$$

For a system in equilibrium, what does Equation 3.5 indicate for $\vec{\tau_{in}}$ and $\vec{\tau_{out}}$?

$$\sum_{i} \vec{\tau}_{i} = 0 \tag{3.5}$$