HW 5 - ASTR404

Created with Wolfram Mathematica 11.0 on 9-27-201

Daniel George - dgeorge5@illinois.edu

Q1) Solving Lane-Emden Equation

a) Euler's method

Function to update one step

```
\inf\{1:=\mathsf{next}[\Delta\xi_-,\mathsf{n}_-][\{\xi_-,\theta1_-,\theta2_-\}]:=\left\{\xi+\Delta\xi_-,\theta1+\theta2\,\Delta\xi_-,\left(\xi/(\xi+\Delta\xi)\right)^2\,\left(\theta2-\theta1^\mathsf{n}\,\Delta\xi\right)\right\}
```

Initial conditions at $\xi = \Delta \xi$

$$\ln[2] = \theta 11@\Delta \xi_{-} := 1 - 1/6 \Delta \xi^{2}; \ \theta 21@\Delta \xi_{-} := -1/3 \Delta \xi$$

Function to iterate with n = 1.5

```
\label{eq:local_local_local_local_local} $$ \inf_{\theta \in \mathbb{R}^+} := \{\{ \begin{subarray}{ll} \begi
```

b) $\Delta \xi = \pi / 4$

Table of steps

ln[4]:= Grid[steps[π /4.], Frame \rightarrow All]

	ξ	θ	d θ/ d ξ
Out[4]=	0	1	0
	0.785398	0.897192	-0.261799
	1.5708	0.691575	-0.232312
	2.35619	0.509117	-0.304005
	3.14159	0.270353	-0.331489
	3.92699	0.0100016	-0.282812
	4.71239	-0.212118	-0.196943

Finding first zero

```
In[5]:= s\xi11 = Quiet@Solve[Interpolation[steps[<math>\pi/4][-2;;, ;; 2]]@\xi11 == 0, \xi11][1, 1]] Out[5]:= \xi11 \rightarrow 3.96236
```

c) $\Delta \xi = \pi / 8$

Table of steps

In[6]:= Grid[steps[$\pi/8$.], Frame \rightarrow All]

	ξ	θ	d ⊖/ d ξ
Out[6]=	0	1	0
	0.392699	0.974298	-0.1309
	0.785398	0.922894	-0.127139
	1.1781	0.872966	-0.211247
	1.5708	0.79001	-0.298995
	1.9635	0.672595	-0.367834
	2.35619	0.528147	-0.405868
	2.74889	0.368763	-0.408927
	3.14159	0.208178	-0.380413
	3.53429	0.0587897	-0.330045
	3.92699	-0.0708186	-0.27187

Finding first zero

```
log_{:=} s\xi 12 = Quiet@Solve[Interpolation[steps[\pi/8][-2;;, ;; 2]]@\xi 12 == 0, \xi 12][1, 1]
Out[7]= \xi12 \rightarrow 3.71242
```

d) Richardson extrapolation

First order expression for ξ_1

```
ln[8] = s\xi 1 = Simplify@Solve[\{\xi 1 == \xi 11 + \alpha \Delta \xi 1, \xi 1 == \xi 12 + \alpha \Delta \xi 2\}, \{\xi 1, \alpha\}][[1, 1]]
Out[8]= \xi \mathbf{1} \rightarrow \frac{-\Delta \xi \mathbf{2} \xi \mathbf{11} + \Delta \xi \mathbf{1} \xi \mathbf{12}}{\Delta \xi \mathbf{1} - \Delta \xi \mathbf{2}}
```

This is equivalent to the given expression. Therefore this gives an estimate of ξ_1 which is valid up to first order.

Substituting $\xi^{(1)}_1$ and $\xi^{(2)}_1$

$$ln[9]:=$$
 s§1 /. {**s§12**, **s§11**, Δ **§1** \rightarrow π / **4**, Δ **§2** \rightarrow π / **8**} Out[9]= **§1** \rightarrow **3**.46248

This is an estimate of the true zero with error of order $(\Delta \xi)^2$.

Q2) Convective Stability

Solution for n = 1 (given)

```
ln[10]:= s\theta := \theta \rightarrow sin@\xi/\xi
```

Equations for pressure & density

In[11]:=
$$SP\rho := \{P \rightarrow K \rho_c^2 \theta^2, \rho \rightarrow \rho_c \theta\}$$

Finding temperature of ideal gas

$$\begin{array}{ll} & \text{In[12]:=} & \text{ST = T} \rightarrow \text{P} \; \mu \; \text{m}_{\text{H}} \; / \; \left(\rho \; \text{k}_{\text{B}} \right) \; / \; . \; \text{SP}\rho \; / \; . \; \text{S}\theta \; / / \; \text{Simplify} \\ & \text{Out[12]:=} \; \; T \rightarrow \frac{\text{K} \; \mu \; \rho_{c} \; m_{H} \; \text{sin}(\xi)}{\xi \; k_{B}} \end{array}$$

Finding $\partial T/\partial r$ (LHS)

$$\label{eq:local_local_local} \begin{split} & \text{In[13]:= } \quad \textbf{LHS = D[T /. sT, } \boldsymbol{\xi}] \; / \; \alpha \; / / \; \textbf{Simplify} \\ & \\ & \text{Out[13]:= } \quad \frac{ K \; \mu \; \rho_c \; m_H \left(\boldsymbol{\xi} \cos(\boldsymbol{\xi}) - \sin(\boldsymbol{\xi}) \right) }{ \alpha \; \boldsymbol{\xi}^2 \; k_B} \end{split}$$

Finding adiabatic $\partial T/\partial r$ (RHS)

Showing |LHS| > |RHS|

Subtracting RHS from LHS:

Out[15]:= Abs@LHS - Abs@RHS /.
$$\alpha$$
 -> Sqrt [2 K / (4 π G)] // Simplify
$$\int_{0}^{\infty} \frac{1}{5} \sqrt{2\pi} \left| \frac{G\sqrt{\frac{K}{G}} \mu(\xi \cos(\xi) - \sin(\xi)) m_H \rho_c}{\xi^2 k_B} \right|$$

This is always positive, therefore $|\partial T/\partial r| > |\partial T/\partial r|$ adiabatic. Hence the solution is convectively unstable.

Q3) Energy Released in Reactions

a) Exothermic

```
In[16]:= -UnitConvert

      magnesium-24 (isotope)
      [ atomic mass ] - 2 carbon-12 (isotope)
      [ atomic mass ] c ^2, "MeV"]

Out[16]= 13.9336 MeV
```

b) Endothermic

```
In[17]= -UnitConvert[ oxygen-16 (isotope) [ atomic mass ] +
            2 helium-4 (isotope) [ atomic mass ] - 2 carbon-12 (isotope) [ atomic mass ] c ^2, "MeV"]
Out[17]= -0.11283 \text{ MeV}
```

c) Exothermic

```
In[18]:= -UnitConvert[ ( oxygen-16 (isotope) [ atomic mass ] + helium-4 (isotope) [ atomic mass ] -
            hydrogen (isotope) [ atomic mass ] - fluorine-19 (isotope) [ atomic mass ] c ^2, "MeV"]
Out[18]= 8.113670 MeV
```

Q4) Range of Stellar Lifespans

a) Lowest mass star

```
log_{10} = UnitConvert[.007 * .072 | Sun(star)] ["Mass"] c^2 / (10^-4.3 | Sun(star)) ["Luminosity"]), "Years"]
Out[19]= 1.48095 \times 10^{14} \text{ yr}
```

b) Highest mass star

```
ln[20] = UnitConvert[.007 * .1 * 85 Sun (star) ["Mass"] c^2 (10^6.006 Sun (star) ["Luminosity"]), "Years"]
Out[20]= 864 228. yr
```

Q5) Lifespan of Sun

Energy output divided by luminosity

```
In[21]:= UnitConvert [ Sun (star) ["Mass"] / hydrogen (element) [ atomic mass ]
           10 eV / Sun (star) ["Luminosity"], "Years"]
\text{Out[21]=}\quad \textbf{1.569}\times \textbf{10}^{5}\ \text{yr}
```

Therefore most of the Sun's energy cannot be from chemical reactions since we know that the lifespan of the sun is many orders of magnitudes greater than the above result.