HW#5 solution

1 Ex. 34.1-1

(⇒) The decision problem LONGEST-PATH may be reduced to the optimization problem LONGEST-PATH-LENGTH as follows:

Since, by assumption, LONGEST-PATH-LENGTH can be solved in polynomial time, Algorithm A1 takes a time in $O(|\langle G, u, v \rangle|^c)$ for some constant c > 0. Since $|\langle G, u, v \rangle| < |\langle G, u, v, k \rangle|$, Algorithm A2 takes a time in $O(|\langle G, u, v \rangle|^c) + O(1) = O(|\langle G, u, v, k \rangle|^c)$ which is of polynomial time in terms of the input size $|\langle G, u, v, k \rangle|$. Thus, LONGEST-PATH $\in P$

(⇐) The optimization problem LONGEST-PATH-LENGTH may be reduced to the decision problem LONGEST-PATH as follows:

Algorithm A2 uses binary search to query algorithm A1 as follows:

Step 1: Set min = 0, max = n where n = the number of vertices in G

Step 2: If max - min = 1 then set opt = min and terminate

Step 3: Call algorithm A1 with $k = \lfloor (\min + \max)/2 \rfloor$

Step 4: If algorithm A1 answers yes, set min = k else set max = k

Step 5: Goto step 2

Observe that the invariant of the binary search is

 $min \le optimal solution < max$

Hence, if max - min = 1, the optimal solution equals to min.

Since, by assumption, LONGEST-PATH \in P, Algorithm A1 takes a time in $O(|\langle G, u, v, k \rangle|^c)$ for some constant c > 0

Cleary, Algorithm A1 is called $\lg n$ times, each time with a different value of k. Since the value of k is always less than n, algorithm A2 takes a time in $O(\lg n \cdot |\langle G, u, v, n \rangle|^c)$.

Since $n \le |\langle G, u, v \rangle|$ (: the encoding $\langle G, u, v \rangle$ contains at least n bits) and $|\langle n \rangle| = \lg n \le n$ (because of standard binary encoding), it follows that $|\langle G, u, v, n \rangle| = |\langle G, u, v \rangle| + |\langle n \rangle| \le 2 \cdot |\langle G, u, v \rangle|$

Hence, algorithm A2 takes a time in

$$O(\lg n \cdot |\langle G, u, v, n \rangle|^c) = O(\lg|\langle G, u, v \rangle| \cdot (2 \cdot |\langle G, u, v \rangle|)^c)$$

which is of polynomial time in terms of the input size $|\langle G, u, v \rangle|$.

2 If $L_1, L_2 \in P$, then $L_1 \cup L_2 \in P$

Let A_1 and A_2 be the polynomial-time algorithms that decide L_1 and L_2 in $O(|x|^c)$ and $O(|x|^k)$ time, respectively.

Then, the algorithm A depicted below runs in

$$O(|x|^c) + O(|x|^k) + O(1) = O(|x|^{\max(c,k)})$$

time and decides $L_1 \cup L_2$

3 Ex. 34.3-2

Since $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, there are polynomial-time computable functions f and g such that $x \in L_1 \Leftrightarrow f(x) \in L_2$ and $x \in L_2 \Leftrightarrow g(x) \in L_3$.

To see that $L_1 \leq_p L_3$, let $h = g \circ f$.

Then,

$$x \in L_1 \Leftrightarrow f(x) \in L_2 \Leftrightarrow g(f(x)) = h(x) \in L_3$$

Furthermore, suppose the computations of f(x) and g(x) take $O(|x|^c)$ and $O(|x|^k)$ time, respectively. Then, the computation of h(x) takes a time in

$$O(|x|^c) + O(|f(x)|^k)$$

= $O(|x|^c) + O(|x|^{ck}) : |f(x)| = O(|x|^c)$
= $O(|x|^{\max(c,ck)})$

4 Ex. 34.3-6

We shall prove this theorem:

THEOREM Every language, except for \emptyset and $\{0,1\}^*$, in P is P-complete.

Proof

Let $L \in P, L \neq \emptyset$ and $L \neq \{0,1\}^*$

We show that $L' \leq_p L$ for every $L' \in P$.

Since $L \neq \emptyset$ and $L \neq \{0,1\}^*$, there exist two instances $x_{yes} \in L$ and $x_{no} \notin L$.

We define the reduction function f as follows:

$$f(x) = \begin{cases} x_{yes} & \text{if } x \in L' \\ x_{no} & \text{if } x \notin L' \end{cases}$$

Clearly, $x \in L'$ if and only if $f(x) \in L$

Furthermore, since $L' \in P$, the function f is polynomial-time computable.

Remarks

1 What we have proven may be depicted as follows.

The proof is a little bit tricky – we use an existing algorithm A' for L' to construct another algorithm A'' for L'.

- \emptyset and $\{0,1\}^*$ are not P-complete, because there is no yes-instance x_{yes} in \emptyset and no no-instance x_{no} in $\{0,1\}^*$. Thus, \emptyset and $\{0,1\}^*$ are easier than other problems in P.
- What this theorem says is that all problems, except for \emptyset and $\{0,1\}^*$, in P are equally hard (or easy).

5 Ex. 34.4-4

Let TAUT be the problem in question.

By Ex.34.3-7, TAUT is co-NPC if and only if its complement is NPC.

Thus, we need only show

THEOREM $\overline{\text{TAUT}} \equiv \{ \langle \phi \rangle \mid \text{the boolean formula } \phi \text{ isn't a tautology} \}$ is NPC *Proof*

TAUT ∈ NP

Given a truth assignment for a formula that is not a tautology, we may verify whether the formula evaluates to 0 under the truth assignment in linear time by simply replacing each variable in the formula by the corresponding value and then evaluating the resulting formula.

Next, we show that $SAT \leq_p \overline{TAUT}$

The required reduction function is $f(\phi) = \neg \phi$

Clearly, f may be computed in polynomial time.

Furthermore.

φ is satisfiable

- $\Leftrightarrow \varphi$ evaluates to 1 under some truth assignment
- $\Leftrightarrow \neg \phi$ evaluates to 0 under some truth assignment
- $\Leftrightarrow \neg \phi$ is not a tautology

6 Ex. 34.5-6

Let HAM-CYCLE = $\{\langle G \rangle \mid G \text{ has a Hamiltonian cycle}\}$ HAM-PATH = $\{\langle G \rangle \mid G \text{ has a Hamiltonian path}\}$

We want to show that HAM-PATH is NPC.

First of all, HAM-PATH \in NP, since a certificate can be verified in O(|V|) time. We next show that HAM-CYCLE \leq_p HAM-PATH

Given a graph G = (V, E) for HAM-CYCLE, construct a graph G' = (V', E') for HAM-PATH where

$$V' = V \cup \{u, u', w\}$$

$$E' = E \cup \{(u, u'), (w, v_0)\} \cup \{(u, v) | (v, v_0) \in E\}$$

where $v_0 \in V$ is an arbitrary vertex.

For example,

Graph G

Graph G'

G has a Hamiltonian cycle $\Rightarrow G'$ has a Hamiltonian path Let $(v_0, ..., v, v_0)$ be a Hamiltonian cycle in GThen, $(w, v_0, ..., v, u, u')$ is a Hamiltonian path in G'

G' has a Hamiltonian path $\Rightarrow G$ has a Hamiltonian cycle The Hamiltonian path in G' must be of the form $(w, v_0, ..., v, u, u')$. Since $(u, v) \in E'$, we have $(v, v_0) \in E$ Thus, $(v_0, ..., v, v_0)$ is a Hamiltonian cycle in G.