

Pyannote评价体系

报告人:郑群

时间: 2019年1月04日

内容简介:

- 简介:
- (1)语音活动检测(VAD)又称:语音边界检测,语音端点检测。通俗点说就是一段语音在哪些时间段内是有声音活动的,哪些时间段内是静音的。目标就是在音频流中找到音频变化点
- (2) Speech_Diarization:主要解决两个问题: [1]: who speak when:什么人,在什么时间,说话了 [2]: 说话者分析是说话者分割(segments)和说话者聚类(cluster)的结合。目标是基于说话者特征将语音片段组合在一起。
- (我目前在做的就是: who speak when)

- 简介:
- Pyannote-metric: 一种speaker diarization系统中的评价 , 诊断, 错误分析工具。
- 操作流程:

Figure 1: A typical pipeline for speaker diarization, aligned with the list of available evaluation metrics

■ 输出结果形式:

Diarization (collar = 0 ms)	error	purity	coverage	total	correct	윰	fa.	*	miss.	*	conf.	*
BFMTV_BFMStory_2011-03-17_175900	14.64	94.74	90.00	2582.08	2300.22	89.08	96.16	3.72	80.14	3.10	201.72	7.81
LCP_CaVousRegarde_2011-02-17_204700	17.80	89.13	86.90	3280.72	2848.42	86.82	151.78	4.63	208.29	6.35	224.01	6.83
LCP_EntreLesLignes_2011-03-18_192900	23.46	79.52	79.03	1704.97	1337.80	78.46	32.89	1.93	157.14	9.22	210.03	12.32
LCP_EntreLesLignes_2011-03-25_192900	26.75	76.97	75.86	1704.13	1292.83	75.86	44.61	2.62	158.38	9.29	252.92	14.84
LCP_P11eEtFace_2011-03-17_192900	10.73	93.33	92.30	1611.49	1487.32	92.30	48.73	3.02	55.49	3.44	68.67	4.26
LCP_TopQuestions_2011-03-23_213900	18.28	98.25	94.20	727.26	668.65	91.94	74.36	10.22	16.41	2.26	42.20	5.80
LCP_TopQuestions_2011-04-05_213900	27.97	97.95	79.81	818.03	638.68	78.08	49.45	6.04	17.46	2.13	161.89	19.79
TV8_LaPlaceDuV11lage_2011-03-14_172834	21.43	92.89	89.64	996.12	892.04	89.55	109.36	10.98	11.80	1.18	92.28	9.26
TV8_LaPlaceDuV11lage_2011-03-21_201334	66.23	77.24	70.64	1296.86	691.76	53.34	253.80	19.57	29.16	2.25	575.95	44.41
TOTAL	23.27	88.18	84.55	14721.65	12157.71	82.58	861.14	5.85	734.28	4.99	1829.67	12.43

■ VAD计算公式:

$$detection error rate = \frac{false \ alarm + missed \ detection}{total}$$

false_alarm:non_speech预测为 speech region

- Miss_detection : speech_region预测为 non_speech
- Total:真值中说话区域总时长
- Diarization计算方法:

$$DER = \frac{false \ alarm + missed \ detection + confusion}{total}$$

■ Confusion: 说话人混淆区间: 该部分计算是特别麻烦的。同时需要考虑标签和不同标签的分割段数长短

- Confusion分析:作者在计算该段真值和预测值的重合区间时,需要考虑重合区间标签相同和不同时的情况。
- 比如: 真值: [0,10]:'a' 预测值: [0,1]:'a'
- [1,3]:'b'
- **[4,5]:**'c'
- [6,10]:'d'
- 按照作者的思想: d为[0,10]区间的另一说话人
- 其他三个为混淆

```
■ 真值: [0,10]:'b' 预测值: [3,5]:'a'
                             [6,7]:'b'
                             [7,8]:'c'
                             [8,10]:'b' (\sqrt{})
真值:[0,10]:'a'
                    预测值: [2,4]:'a'
                               [6,8]:'b'
                               [8,10]:'c'
```

此种情况下哪个作为预测值的真值都可以,其余 为混淆

- IER: Identification Error Rate:
- 计算公式:

$$IER = \frac{false \; alarm + missed \; detection + confusion}{total}$$

- ■这个公式跟DER是一模一样的额,含义不同
- Confusion: 直接比对真值和预测值的label, 而不是one-to-one matching。

总结:

- (1) Pyannote-metric: 为计算VAD和 Speech Diarization提供了接口,可以便于用户调用。
- (2) Vad_error: 计算上跟作者有点出入
- (3) Diarization: 计算思路是正确的,可以 拿来借鉴。至于性能是不是最好的有待商榷, 可能别的论文中有更好的思路。

Thank You

请各位师兄师姐们指导批评