Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 24: June 24th, 2017

Lecturer: Alan Arroyo Guevara Notes By: Harsh Mistry

Missed This Lecture, Notes Taken By Xyan Bhatnagar

Theorem 24.1 If T is a spanning tree of G and $e \in E(G) \setminus E(T)$ then T + e has a unique cycle c. Moreover for every $e' \in E(C) \setminus \{e\}, T' := (T + e) - e'$ is a spanning tree

Notation : $T + e = (V(T), E(T) \cup \{e\})$

Proof: Let e = xy and Let P be a unique xy-path in T.

As every cycle in T + e contains e. C = P + e is the unique cycle in T + e

Let $e' \in E(P) \subseteq E(C)$. As e' is not a bridge in T + e. Then T' = (T + e) - e' is connected

$$\mid E(T') \mid = \mid E(T) \mid = \mid V(T) \mid -1 = \mid V(T') \mid -1$$

By previous theorem, T' is a tree and |V(T')| = |V(T)| = |V(G)|. So it is a spanning tree

24.1 Characterizing Bipartite Graphs

G is bipartite \iff V(G) can be coloured using 2 colours so that no 2 adjacent vertices have the same color

Observations

- A graph that contains a cycle of off length (odd cycle) as a sub graph is **not bipartite**.
- Trees are bipartite

Theorem 24.2 A graph is bipartite if and only if it has no odd cycles as a sub-graph

Proof:

- \rightarrow Use previous observations
- \leftarrow Suppose G has no odd cycles. Assume that G is connect (or we treat components separately). Let T be a spanning tree of G and Let $A \cup V = V(T)$ be a bipartition of T.

We claim that $A \cup B$ is also a bipartition of G. Suppose not, then there exists $e = uv \in E(G) \setminus E(T)$ where u and v both belong to A or B.

Let $u, v \in A$ and Let P be the uv-path in T. Length(P) is even because $u, v \in A \implies p + e$ is an odd cycle. **Contradiction**

24.2 Breadth-First Search Trees (BFS)

Definition 24.3 A queue is an ordered list

$$Q:q_1,q_2,q_3,\ldots,q_n$$

where every new element added to Q is added at the end. The first element in Q is the active element

BFS Algorithm

Input: Graph G and $r \in V(G)$

Output: Spanning Tree T or that G is not connected

Process:

- 1. Initialization $T=(\{r\},\phi) \text{ r = vertices and } \phi=\text{edges}$ $P:V(G)\to V(G)\cup \{null\}$ $P(v)\to null$ Q=r
- 2. Operations

```
While Q != phi
Let u be the active vertex in Q
While u has a neighbour not in V(T)
Add v and uv to T
Let P(v) = u
Add v to Q
Remove u from Q
```

3. Output (T,P)