STIC Biotechnology Systems Branch

RAW SEQUENCE LISTING ERROR REPORT

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) detected errors when processing the following computer readable form:

Application Serial Number:

Source:

Date Processed by STIC:

10/069,772A

THE ATTACHED PRINTOUT EXPLAINS DETECTED ERRORS.
PLEASE FORWARD THIS INFORMATION TO THE APPLICANT BY EITHER:

- 1) INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANT, WITH A NOTICE TO COMPLY or,
- 2) TELEPHONING APPLICANT AND FAXING A COPY OF THIS PRINTOUT, WITH A NOTICE TO COMPLY

FOR CRF SUBMISSION AND PATENTIN SOFTWARE QUESTIONS, PLEASE CONTACT MARK SPENCER, TELEPHONE: 571-272-2510; FAX: 571-273-0221

TO REDUCE ERRORED SEQUENCE LISTINGS, PLEASE USE THE CHECKER VERSION 4.4.0 PROGRAM, ACCESSIBLE THROUGH THE U.S. PATENT AND TRADEMARK OFFICE WEBSITE. SEE BELOW FOR ADDRESS:

http://www.uspto.gov/web/offices/pac/checker/chkrnote.htm

Applicants submitting genetic sequence information electronically on diskette or CD-Rom should be aware that there is a possibility that the disk/CD-Rom may have been affected by treatment given to all incoming mail. Please consider using alternate methods of submission for the disk/CD-Rom or replacement disk/CD-Rom.

Any reply including a sequence listing in electronic form should NOT be sent to the 20231 zip code address for the United States Patent and Trademark Office, and instead should be sent via the following to the indicated addresses:

- 1. EFS-Bio (http://www.uspto.gov/ebc/efs/downloads/documents.htm, EFS Submission User Manual ePAVE)
- 2. U.S. Postal Service: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
- Hand Carry, Federal Express, United Parcel Service, or other delivery service (EFFECTIVE 01/14/05):
 U.S. Patent and Trademark Office, Mail Stop Sequence, Customer Window, Randolph Building, 401 Dulany Street,
 Alexandria, VA 22314

Revised 01/10/06

Raw Sequence Listing Error Summary

ERROR DETECTED	SUGGESTED CORRECTION SERIAL NUMBER: 10/069,772 A										
ATTN: NEW RULES CASES:	PLEASE DISREGARD ENGLISH "ALPHA" HEADERS, WHICH WERE INSERTED BY PTO SOFTWARE										
lWrapped Nucleics Wrapped Aminos	The number/text at the end of each line "wrapped" down to the next line. This may occur if your file was retrieved in a word processor after creating it. Please adjust your right margin to .3; this will prevent "wrapping."										
2Invalid Line Length	The rules require that a line not exceed 72 characters in length. This includes white spaces.										
3Misaligned Amino Numbering	The numbering under each 5 th amino acid is misaligned. Do not use tab codes between numbers; use space characters, instead.										
4Non-ASCII	The submitted file was not saved in ASCII(DOS) text, as required by the Sequence Rules. Please ensure your subsequent submission is saved in ASCII text.										
5Variable Length	Sequence(s) contain n's or Xaa's representing more than one residue. Per Sequence Rules, each n or Xaa can only represent a single residue. Please present the maximum number of each residue having variable length and indicate in the <220>-<223> section that some may be missing.										
6PatentIn 2.0 "bug"	A "bug" in PatentIn version 2.0 has caused the <220>-<223> section to be missing from amino acid sequences(s) Normally, PatentIn would automatically generate this section from the previously coded nucleic acid sequence. Please manually copy the relevant <220>-<223> section to the subsequent amino acid sequence. This applies to the mandatory <220>-<223> sections for Artificial or Unknown sequences.										
7Skipped Sequences (OLD RULES)	Sequence(s) missing. If intentional, please insert the following lines for each skipped sequence: (2) INFORMATION FOR SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) (i) SEQUENCE CHARACTERISTICS: (Do not insert any subheadings under this heading) (xi) SEQUENCE DESCRIPTION:SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) This sequence is intentionally skipped Please also adjust the "(ii) NUMBER OF SEQUENCES:" response to include the skipped sequences.										
8Skipped Sequences (NEW RULES)	Sequence(s) missing. If intentional, please insert the following lines for each skipped sequence. <210> sequence id number <400> sequence id number 000										
9Use of n's or Xaa's (NEW RULES)	Use of n's and/or Xaa's have been detected in the Sequence Listing. Per 1.823 of Sequence Rules, use of <220>-<223> is MANDATORY if n's or Xaa's are present. In <220> to <223> section, please explain location of n or Xaa, and which residue n or Xaa represents.										
10Invalid 213> Response	Per 1.823 of Sequence Rules, the only valid <213> responses are: Unknown, Artificial Sequence, or scientific name (Genus/species). <220>-<223> section is required when <213> response is Unknown or is Artificial Sequence. (see item 11 below)										
11	Sequence(s) missing the <220> "Feature" and associated numeric identifiers and responses. Use of <220> to <223> is MANDATORY if <213> "Organism" response is "Artificial Sequence" or "Unknown." Please explain source of genetic material in <220> to <223> section or use "chemically synthesized" as explanation. (See "Federal Register," 06/01/1998, Vol. 63, No. 104, pp. 29631-32), also Sec. 1.823 of Sequence Rules										
	Please do not use "Copy to Disk" function of PatentIn version 2.0. This causes a corrupted file, resulting in missing mandatory numeric identifiers and responses (as indicated on raw sequence listing). Instead, please use "File Manager" or any other manual means to copy file to floppy disk.										
13 Misuse of n/Xaa	"n" can only represent a single nucleotide; "Xaa" can only represent a single amino acid										

IFWO

RAW SEQUENCE LISTING DATE: 02/24/2006 PATENT APPLICATION: US/10/069,772A TIME: 15:43:05

Input Set : F:\Feussner-10069772-060211-SEQLIST.txt

Output Set: N:\CRF4\02242006\J069772A.raw

```
3 <110> APPLICANT: Feussner, Ivo
           Hornung, Ellen
           Fritsche, Kathrin
           Peitzsch, Nicola
   8 <120> TITLE OF INVENTION: Fatty acid desaturase gene from plants
  10 <130> FILE REFERENCE: 50669
  12 <140> CURRENT APPLICATION NUMBER: US 10/069,772A
  13 <141> CURRENT FILING DATE: 2002-02-28
  15 <160> NUMBER OF SEQ ID NOS: 16
  17 <170> SOFTWARE: PatentIn version 3.3
                                                                 Deas Not Comply
RORED SEQUENCES
  19 <210> SEQ ID NO: 1
  20 <211> LENGTH: 1285
      212> TYPE: DNA
  24 221 NAME/KEY: CDS
                     (42) . (1175) 20
      <222> LOCATION:
                              in sert
-> 27 <213> ORGANISM:
-> 27 <400> SEQUENCE: 1
  28 aaaageteae ttetetgtga gggtaattat atateaacaa e atg ggt get ggt 56
  29
                                                    Met Gly Ala Gly Gly
  32 cgg atg tcg gat cca tct gag gga aaa aac atc ctt gaa cgt gtg cca
                                                                         104
  33 Arg Met Ser Asp Pro Ser Glu Gly Lys Asn Ile Leu Glu Arg Val Pro
  34
                      10
  37 gtc gat cca ccg ttc acg tta agc gat ctg aag aaa gcg att cct acc
                                                                         152
  38 Val Asp Pro Pro Phe Thr Leu Ser Asp Leu Lys Lys Ala Ile Pro Thr
  41 cat tgc ttt gag cga tct gtc atc cgg tca tca tac tat gtt gtt cat
                                                                         200
  42 His Cys Phe Glu Arg Ser Val Ile Arg Ser Ser Tyr Tyr Val Val His
  43
              40
                                   45
                                                       50
  45 gat ctc att gtt gcc tat gtc ttc tac tac ctt gca aac acg tat atc
                                                                         248
  46 Asp Leu Ile Val Ala Tyr Val Phe Tyr Tyr Leu Ala Asn Thr Tyr Ile
                              60
  49 cct ctt att cct aca cct ctg gct tac cta gca tgg ccc gtt tac tgg
                                                                        296
  50 Pro Leu Ile Pro Thr Pro Leu Ala Tyr Leu Ala Trp Pro Val Tyr Trp
                          75
  53 ttt tgt caa gct agc atc ctc acc ggc ctc tgg gtc atc ggt cac gaa
                                                                         344
  54 Phe Cys Gln Ala Ser Ile Leu Thr Cly Leu Trp Val Ile Gly His Glu
                      90
  57 tgt ggt cac cat gca ttt agc gac tac cag ttg att gat gac att gtt
                                                                        392
```

RAW SEQUENCE LISTING DATE: 02/24/2006
PATENT APPLICATION: US/10/069,772A TIME: 15:43:05

Input Set : F:\Feussner-10069772-060211-SEQLIST.txt
Output Set: N:\CRF4\02242006\J069772A.raw

58	Cys	Gly	His	His	Ala	Phe	Ser	Asp	Tyr	Gln	Leu	Ile	Asp		Ile	Val	
59				105					110					115			
61	gga	ttc	gtg	ctc	cat	tcg	gct	ctc	ctc	acc	ccg	tat	ttc	tct	tgg	aaa	440
62	Gly	Phe	Val	Leu	His	Ser	Ala	Leu	Leu	Thr	Pro	Tyr	Phe	Ser	Trp	Lys	
63			120					125					130				
65	tat	agc	cac	agg	aat	cac	cac	gcc	aac	aca	aat	tca	ctc	gat	aac	gat	488
67	Tyr	Ser	His	Arg	Asn	His	His	Ala	Asn	Thr	Asn	Ser	Leu	Asp	Asn	Asp	
68		135					140					145					
70	gaa	gtt	tac	att	cct	aaa	cgt	aag	tcg	aag	gtc	aag	att	tat	tcc	aaa	536
				Ile													
	150		•			155	_	-		_	160	_		_		165	
74	ctt	ctt	aac	aat	cca	ccc	ggg	cga	gtg	ttc	act	ttg	gtg	ttt	cgg	ttg	584
				Asn				_				_				_	
76					170		. •		-	175			-		180		
78	act	tta	qqa	ttt	ccq	tta	tac	ctc	tta	act	aat	atc	tca	qqc	aaq	aaa	632
				Phe													
80				185					190					195			
	tac	aaa	agg	ttt	acc	aac	cac	ttt		ccc	atq	agt	cca	att	ttc	aac	680
				Phe	_						_	_					
84			200					205					210				
	gat	cat		cgc	att	caa	att		cta	tcc	gat	ttc		ctt	ctc	act	728
				Arg													
88	•	215		` _			220				•	225					
90	qta	ttt	tat	gca	atc	aaq	ctt	ctt	qta	qca	gca		aaa	qca	act	taa	776
				Ala													
	230		-2-			235					240	-,-	1			245	
		atc	aac	atg	tac	aca	att	cca	'gta	cta		gta	age	ata	ttc		824
				Met													
96					250					255	2				260		
	att	tta	atc	aca		tta	cac	cac	acc		ctc	tca	ctc	cct		tat	872
																Tyr	
101				265					270					275		2 -	
103	gat	tca	acc	gaa	tac	aac	t tq	ato			gee	: tta	a tca			gat	920
																Asp	
105			280		•		•	285	_	•			290			•	
107	ago	gat	tto	qqq	rtto	cto	a aat	cac	att	tto	cac	ga q	att	aca	a cad	act	968
																Thr	
109		295		•			300	_				305					
111	cac	: qt	: tto	cat	cat	tto	ato	tca	a tac	att	. cca			: cat	gea	aag	1016
																Lys	
	310					315			2 -		320					325	
			ago	gat	qca			r cca	ato	tto			tac	: tat	. aaa	atc	1064
116	Glu	Ala	Arc	Asp	Ala	Ile	Lvs	Pro	Val	Let	ı Glv	Gli	י דער נ	TVI	Lvs	Ile	
117				,	330					335	_		1-	-2-	340		
		ago	act	. cca			: aaa	a gca	ato			gad	a act	aac		tgc	1112
																ı Cys	
121			,	345			,		350		3			355		, -	
		tac	ato			gat	gad	g gat			r cac	aaa	aat			tgg:	1160
124	Ile	Tvr	Ile	- 3~3 : G] 11	Pro	Asr	o Gli	, Jac	Ser	יונט י	, Juc	Live	. Glu	v Val	Phe	Trp	
		-1-		- J-u								٠,٠,٠		* W.3	110		

RAW SEQUENCE LISTING DATE: 02/24/2006
PATENT APPLICATION: US/10/069,772A TIME: 15:43:05

Input Set : F:\Feussner-10069772-060211-SEQLIST.txt

Output Set: N:\CRF4\02242006\J069772A.raw

125			360					365					370				
	tac	cac	aag	atg	taa	tcaa	aaaag	ggt	gtate	gtcaa	at go	caati	gtat	t gct	taat	taa	1215
128	Tyr	His	Lys	Met							_		•	•			
130	•	375	-														
132	qtte	gtta	aac 1	ttc	tatt	cc gt	tgtaa	ataa	a tta	atcat	taa	gaga	aaaa	aaa a	aaaa	aaaaaa	1275
134	aaaa	aaaa	aaa			•	_										1285
137	<21	0 > S	EQ II	ои с	: 2												
138	<21	1> L	ENGT	H: 3	77												
139	<21	2> T	YPE:	PRT													
140	<21	3 > 0	RGAN:	ISM:	Cal	endu.	la of	Efic	inal	is							
143	<40	0 > S	EQUEI	NCE:	2												
144	Met	Gly	Ala	Gly	Gly	Arg	Met	Ser	Asp	Pro	Ser	Glu	Gly	Lys	Asn	Ile	
145	1				5					10					15		
147	Leu	Glu	Arg	Val	Pro	Val	Asp	Pro	Pro	Phe	Thr	Leu	Ser	Asp	Leu	Lys	
148				20					25					30			
150	Lys	Ala	Ile	Pro	Thr	His	Cys	Phe	Glu	Arg	Ser	Val	Ile	Arg	Ser	Ser	
151			35					40					45				
153	Tyr	_	Val	Val	His	Asp	Leu	Ile	Val	Ala	Tyr	Val	Phe	Tyr	Tyr	Leu	
154		50					55					60					
156	Ala	Asn	Thr	Tyr	Ile	Pro	Leu	Ile	Pro	Thr	Pro	Leu	Ala	Tyr	Leu	Ala	
157						70					75					80	
	Trp	Pro	Val	Tyr	_	Phe	Cys	Gln	Ala		Ile	Leu	Thr	Gly		\mathtt{Trp}	
160				•	85	_				90					95		
	Val	Ile	Gly		Glu	Cys	Gly	His		Ala	Phe	Ser	Asp	-	Gln	Leu	
164	71 -	3	3	100	**- 7	~ 1	Dh.	**- 7	105	***			-	110	m\	5	
	ire	Asp		TIE	vai	GIY	Phe		Leu	HIS	ser	Ala		Leu	Thr	PIO	
167	Th	Dho	115	Ten	Two	M	Ser	120	7 ~~	N cm	TI i o	11: a	125	3 a m	mb	N am	
170	IÀI	130	Ser	пр	цуз	ıyı	135	nis	Arg	ASII	піѕ	140	Ala	ASII	1111	ASII	
	Ser		λen	λen	Aen	Glu	Val	Tier	716	Dro	Tare		Lare	Car	Luc	Wa l	
	145	LCu	nop	71511	nop	150	VUL	- 7 -	110	110	155	Arg	пуз	DCI	DyS	160	
		Ile	Tvr	Ser	Lvs		Leu	Asn	Asn	Pro		Glv	Ara	Val	Phe		
176	-1-		-1-		165					170		0 -7	3	•	175		
	Leu	Val	Phe	Ara		Thr	Leu	Glv	Phe		Leu	Tvr	Leu	Leu		Asn	
179				180					185			-2-		190			
181	Ile	Ser	Gly	Lys	Lys	Tyr	Gly	Arq	Phe	Ala	Asn	His	Phe		Pro	Met	•
182			195	-	-	•	-	200					205	•			
184	Ser	Pro	Ile	Phe	Asn	Asp	Arg	Glu	Arg	Val	Gln	Val	Leu	Leu	Ser	qaA	
185		210				_	215		_			220				-	
187	Phe	Gly	Leu	Leu	Ala	Val	Phe	Tyr	Ala	Ile	Lys	Leu	Leu	Val	Ala	Ala	
											235					240	
190	Lys	Gly	Ala	Ala	Trp	Val	Ile	Asn	Met	Tyr	Ala	Ile	Pro	Val	Leu	Gly	
191					245					250					255	-	
194	Val	Ser	Val	Phe	Phe	Val	Leu	Ile	Thr	Tyr	Leu	His	His	Thr	His	Leu	
195				260					265					270			
	Ser	Leu		His	Tyr	Asp	Ser	Thr	Glu	Trp	Asn	Trp	Ile	Lys	Gly	Ala	
198			275					280					285				
	Leu		Thr	Ile	Asp	Arg	qaA	Phe	Gly	Phe	Leu		Arg	Val	Phe	His	
201	_	290					295					300					

```
DATE: 02/24/2006
                   RAW SEQUENCE LISTING
                   PATENT APPLICATION: US/10/069,772A
                                                             TIME: 15:43:05
                  Input Set : F:\Feussner-10069772-060211-SEQLIST.txt
                  Output Set: N:\CRF4\02242006\J069772A.raw
  203 Asp Val Thr His Thr His Val Leu His His Leu Ile Ser Tyr Ile Pro
  204 305
                                               315
  206 His Tyr His Ala Lys Glu Ala Arg Asp Ala Ile Lys Pro Val Leu Gly
                       325
                                           330
  209 Glu Tyr Tyr Lys Ile Asp Arg Thr Pro Ile Phe Lys Ala Met Tyr Arg
  210
                  340
                                       345
  212 Glu Ala Lys Glu Cys Ile Tyr Ile Glu Pro Asp Glu Asp Ser Glu His
  213
              355
                                   360
  215 Lys Gly Val Phe Trp Tyr His Lys Met
          370
                               SEQUENCE LISTING
-> 221 <110> APPLICANT: Feussner, Ivo
-> 221 <110> APPLICANT: Feussner, Ivo
-> 226 <120> TITLE OF INVENTION: Fatty acid desaturase gene from plants
-> 226 <120> TITLE OF INVENTION: Fatty acid desaturase gene from plants
-> 218 <130> FILE REFERENCE: 50669
-> 228 <130> FILE REFERENCE: 50669
-> 230 <140> CURRENT APPLICATION NUMBER: US 10/069,772A
-> 231 <141> CURRENT FILING DATE: 2002-02-28
-> 233 <160> NUMBER OF SEQ ID NOS: 14
                                                                       See error
explanation
on page 5,
-> 233\<160> NUMBER OF SEQ ID NOS: 14
-> 235 <170> SOFTWARE: PatentIn version 3.3
```

d This is from sequence Z

Lys Gly Val Phe Trp Tyr His Lys Met 370 375

SEQUENCE LISTING <110> Feussner, Ivo Hornung, Ellen This Appeared after Fritsche, Kathrin Peitzsch, Nicola Sequence 2. <120> Fatty acid desaturase gene from plants 50669 Per sequence kules, <140> US 10/069,772 show 21107-21707 only at the beginning of the sequence listing. 2002-02-28 14 <160> <170> PatentIn version 3.3 (Delete <1107-070> from <210> <211> 28 unis section. <212> Artificial Sequence <220> <223> Primer <400> 3 ccdrtyttct ctggaarwwh agycaycg 28

<210> <211> 27 DNA <212> Artificial Sequence <220> <223> Primer <220> <221> misc_feature <222> congregart crtartg ccartyccay

•		Page 7
	<210> 15 <211> 28 <212> DNA <213> Artificial Sequence CONTROL TO ALICA CONTROL TO	explain source of genetic material. See item #!
	<210> 16 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> none S ~ ~ e e ~ e ~ e ~ e ~ e ~ e ~ e ~ e	See item #!! on error summary sheet.
	<400> 16 caattccagt actaggtgta agtgtgtt	28
	· .	
	•	

Page 8

RAW SEQUENCE LISTING ERROR SUMMARY PATENT APPLICATION: US/10/069,772A

DATE: 02/24/2006 TIME: 15:43:06

Input Set : F:\Feussner-10069772-060211-SEQLIST.txt

Output Set: N:\CRF4\02242006\J069772A.raw

valid Line Length:

erules require that a line not exceed 72 characters in length. This includes spaces.

```
#:1; Line(s) 24,28,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,45,46,47
#:1; Line(s) 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,68
#:1; Line(s) 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88
#:1; Line(s) 89,90,91,92,93,94,95,96,97,99,100,101,102,103,104,105,106
#:1; Line(s) 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121
#:1; Line(s) 122,123,124,125,126,127,128,130,131,132,133
#:2; Line(s) 138,139,144,145,146,147,148,149,150,151,152,153,154,155,156
##:2; Line(s) 157,158,159,160,161,163,164,165,166,167,168,169,170,171,172
##:2; Line(s) 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187
##:2; Line(s) 188,189,190,191,192,194,195,196,197,198,199,200,201,202,203
##:2; Line(s) 204,205,206,207,208,209,210,211,212,213,214,215
```

PASE 9

TIME: 15:43:06

DATE: 02/24/2006 VERIFICATION SUMMARY PATENT APPLICATION: US/10/069,772A

Input Set : F:\Feussner-10069772-060211-SEQLIST.txt Output Set: N:\CRF4\02242006\J069772A.raw

27 M:282 E: Numeric Field Identifier Missing, <213> is required. 27 M:200 E: Mandatory Header Field missing, <220> Tag not found for SEQ ID#:1 219 M:333 E: Wrong sequence grouping, Amino acids not in groups! 219 M:330 E: (2) Invalid Amino Acid Designator, NUMBER OF INVALID KEYS:2 219 M:252 E: No. of Seq. differs, <211> LENGTH:Input:377 Found:379 SEQ:2 221 M:280 W: Numeric Identifier already exists, <110> found multiple times / 221 M:281 W: Numeric Fields not Ordered, <110> not ordered!. 226 M:280 W: Numeric Identifier already exists, <120> found multiple times 226 M:281 W: Numeric Fields not Ordered, <120> not ordered!. 228 M:280 W: Numeric Identifier already exists, <130> found multiple times 228 M:281 W: Numeric Fields not Ordered, <130> not ordered!. 230 M:280 W: Numeric Identifier already exists, <140> found multiple times 230 M:281 W: Numeric Fields not Ordered, <140> not ordered!. 231 M:280 W: Numeric Identifier already exists, <141> found multiple times 231 M:281 W: Numeric Fields not Ordered, <141> not ordered!. 233 M:280 W: Numeric Identifier already exists, <160> found multiple times 233 M:281 W: Numeric Fields not Ordered, <160> not ordered!. 235 M:280 W: Numeric Identifier already exists, <170> found multiple times 288 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:6 after pos.:0 233 M:203 E: No. of Seq. differs, <160> Number Of Sequences:Input (14) Counted (16) /