



# **Deep Reinforcement Learning**

A. Maier, K. Breininger, L. Mill, N. Ravikumar, T. Würfl
Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg





## **Outline**

## **Sequential Decision Making**

## **Reinforcement Learning**

Markov Decision Processes Policy Iteration Other Solution Methods

# **Deep Reinforcement Learning**

Deep Q Learning AlphaGo AlphaGo Zero





# **Sequential Decision Making**





# Sequential decision making: Multi-armed bandit problem



Action Formalize choosing a machine as **action** a at time t from a set A Reward Action  $a_t$  has a **different**<sup>1</sup> **unknown pdf** p(r|a) generating **reward**  $r_t$ 

<sup>1</sup> This is not how gambling works



# Sequential decision making: Multi-armed bandit problem



Action Formalize choosing a machine as **action** a at time t from a set A Reward Action  $a_t$  has a **different**<sup>1</sup> **unknown pdf** p(r|a) generating **reward**  $r_t$  Policy Formalize choosing an action a as pdf  $\pi(a)$  which we call a **policy** 

<sup>1</sup> This is not how gambling works





Find action a producing the maximum expected reward over time t:

$$\max_{a} \mathbb{E} \left[ p(r|a) \right]$$

• Difference to supervised learning: **No** feedback on **what** action to choose





Find action a producing the maximum expected reward over time t:

$$\max_{a} \mathbb{E} \left[ p(r|a) \right]$$

- Difference to supervised learning: No feedback on what action to choose
- $\mathbb{E}[p(r|a)]$  is not known in advance





Find action a producing the maximum expected reward over time t:

$$\max_{a} \mathbb{E} \left[ p(r|a) \right]$$

- Difference to supervised learning: No feedback on what action to choose
- $\mathbb{E}[p(r|a)]$  is not known in advance
- We can form a one-hot encoded vector r which reflects which action from a caused the reward





Find action a producing the maximum expected reward over time t:

$$\max_{a} \mathbb{E} \left[ p(r|a) \right]$$

- Difference to supervised learning: No feedback on what action to choose
- $\mathbb{E}[p(r|a)]$  is not known in advance
- We can form a one-hot encoded vector r which reflects which action from a caused the reward
- $\rightarrow$  Estimate the joint pdf online as  $\frac{1}{t} \sum_{i=1}^{t} \mathbf{r}_i := Q_t(\mathbf{a})$





• Find action a producing the **maximum expected reward over time** t:

$$\max_{a} \mathbb{E} \left[ p(r|a) \right]$$

- Difference to supervised learning: No feedback on what action to choose
- $\mathbb{E}\left[p(r|a)\right]$  is not known in advance
- We can form a one-hot encoded vector r which reflects which action from a caused the reward
- $\rightarrow$  Estimate the joint pdf online as  $\frac{1}{t} \sum_{i=1}^{t} \mathbf{r}_i := Q_t(\mathbf{a})$
- We call  $Q_t(\mathbf{a})$  the action-value function, which changes with every new information



# Incremental update of $Q_t(\mathbf{a})$

$$Q_{t+1}(\mathbf{a}) = \frac{1}{t} \sum_{i=1}^{t} \mathbf{r}_{i}$$

$$= \frac{1}{t} \left( \mathbf{r}_{t} + \sum_{i=1}^{t-1} \mathbf{r}_{i} \right)$$

$$= \frac{1}{t} \left( \mathbf{r}_{t} + (t-1) \frac{1}{t-1} \sum_{i=1}^{t-1} \mathbf{r}_{i} \right)$$

$$= \frac{1}{t} \left( \mathbf{r}_{t} + (t-1) Q_{t}(\mathbf{a}) \right)$$

$$= \frac{1}{t} \left( \mathbf{r}_{t} + t Q_{t}(\mathbf{a}) - Q_{t}(\mathbf{a}) \right)$$

$$= Q_{t}(\mathbf{a}) + \frac{1}{t} \left( \mathbf{r}_{t} - Q_{t}(\mathbf{a}) \right)$$





- Reward is maximized by a policy  $\pi(a)$  choosing  $\max_a Q_t(a)$
- We exploit a known good action
- This is a deterministic<sup>1</sup> policy called greedy action selection





- Reward is maximized by a policy  $\pi(a)$  choosing  $\max_a Q_t(a)$
- We exploit a known good action
- This is a deterministic 1 policy called greedy action selection
- However we need to obtain samples r<sub>a</sub>





- Reward is maximized by a policy  $\pi(a)$  choosing  $\max_a Q_t(a)$
- We exploit a known good action
- This is a deterministic<sup>1</sup> policy called greedy action selection
- However we need to obtain samples r<sub>a</sub>
- → This means we **cannot follow** the greedy action selection policy for learning

 $^{\rm 1}$  If  ${\it Q_t}$  is equal for two a, the tie has to be broken e.g. randomly









- Reward is maximized by a policy  $\pi(a)$  choosing  $\max_a Q_t(a)$
- We exploit a known good action
- This is a **deterministic**<sup>1</sup> policy called **greedy action selection**
- However we need to obtain samples r<sub>a</sub>
- → This means we cannot follow the greedy action selection policy for learning
- → Sometimes explore by selecting other moves which could potentially be better

1 If Qt is equal for two a, the tie has to be broken e.g. randomly



We sample discrete actions a from  $\pi(a)$ , but what distributions can we use?



We sample discrete actions a from  $\pi(a)$ , but what distributions can we use? Uniform random

$$\pi(a) = \frac{1}{|A|}$$

• |A| is the cardinality of the set of different actions A



We sample discrete actions a from  $\pi(a)$ , but what distributions can we use? Uniform random

$$\pi(a) = \frac{1}{|A|}$$

• |A| is the cardinality of the set of different actions A

**Epsilon Greedy** 

$$\pi(a) = egin{cases} 1 - \epsilon & ext{if } a = \max_a Q_t(a) \ \epsilon/(n-1) & ext{else} \end{cases}$$



# We sample discrete actions a from $\pi(a)$ , but what distributions can we use? Uniform random

$$\pi(a) = \frac{1}{|A|}$$

|A| is the cardinality of the set of different actions A

## **Epsilon Greedy**

$$\pi(a) = egin{cases} 1 - \epsilon & ext{if } a = \max_a Q_t(a) \ \epsilon/(n-1) & ext{else} \end{cases}$$

#### Softmax

$$\pi(a) = rac{\mathrm{e}^{Q_t(a)/ au_t}}{\sum_{n=1}^{|A|} \mathrm{e}^{Q_t(a_n)/ au_t}}$$

•  $\tau_t$  is called **temperature** and used to decrease exploration over time



So far we ...

• considered sequential decision making in a setting known as multi-armed bandits



- considered sequential decision making in a setting known as multi-armed bandits
- found out that estimating a function Q(a) and the greedy action selection policy  $\pi(a) = \max_{a} Q(a)$  maximized our reward



- considered sequential decision making in a setting known as multi-armed bandits
- found out that estimating a function Q(a) and the greedy action selection policy  $\pi(a) = \max_a Q(a)$  maximized our reward
- learned that exploration of different actions is necessary



- considered sequential decision making in a setting known as multi-armed bandits
- found out that estimating a function Q(a) and the greedy action selection policy  $\pi(a) = \max_a Q(a)$  maximized our reward
- learned that exploration of different actions is necessary
- assumed rewards didn't depend on a state of the world



- considered sequential decision making in a setting known as multi-armed bandits
- found out that estimating a function Q(a) and the greedy action selection policy  $\pi(a) = \max_a Q(a)$  maximized our reward
- learned that exploration of different actions is necessary
- assumed rewards didn't depend on a state of the world
- and our action at time t doesn't influence the rewards from a at t + 1





# **Reinforcement Learning**





# **Associativity**

We extend the multi-armed bandits problem:



# **Associativity**

We extend the multi-armed bandits problem:

- We introduces a state of the world at any time t: st
- Rewards now additionally **depend on** the **state**  $s_t$ :

$$p(r_t|s_t,a_t)$$



# **Associativity**

We extend the multi-armed bandits problem:

- We introduces a state of the world at any time t: st
- Rewards now additionally depend on the state s<sub>t</sub>:

$$p(r_t|s_t,a_t)$$

- However this setting is known as contextual bandit
- In the full **reinforcement learning problem**, actions influence the state:

$$p(s_{t+1}|s_t,a_t)$$







Action An **action**  $a_t$  at time t from a set A

State A state  $s_t$  from a set S





Action An action at time t from a set A

State A **state** s<sub>t</sub> from a set S

A state transition pdf  $p(s_{t+1}|s_t, a_t)$ 





Action An action at at time t from a set A

State A state  $s_t$  from a set S

A state transition pdf  $p(s_{t+1}|s_t, a_t)$ 

Reward Transition produces reward  $r_{t+1} \in R \subset \mathbb{R}$  according to  $p(r_{t+1}|s_t, a_t)$ 





Action An action at time t from a set A

State A state  $s_t$  from a set S

A state transition pdf  $p(s_{t+1}|s_t, a_t)$ 

Reward Transition produces reward  $r_{t+1} \in R \subset \mathbb{R}$  according to  $p(r_{t+1}|s_t,a_t)$ 

Policy Agents choose actions  $a_t$  by a policy  $\pi(a|s)$ 





Action An action at time t from a set A

State A state  $s_t$  from a set S

A state transition pdf  $p(s_{t+1}|s_t, a_t)$ 

Reward Transition produces reward  $r_{t+1} \in R \subset \mathbb{R}$  according to  $p(r_{t+1}|s_t, a_t)$ 

Policy Agents choose actions  $a_t$  by a policy  $\pi(a|s)$ 

If all those sets are **finite** we call this a **finite MDP** 





- → Here s is the field we are currently on.
- The agent can move in all four directions
- Any action which would leave the grid has  $p(s_{t+1}|a_t,s_t)$  equal to a  $\delta$  distribution on  $s_{t+1}=s_t$  and a similarly deterministic  $r_t=-1$





- → Here s is the field we are currently on.
- The agent can move in all four directions
- Any action which would leave the grid has  $p(s_{t+1}|a_t, s_t)$  equal to a  $\delta$ distribution on  $s_{t+1} = s_t$  and a similarly deterministic  $r_t = -1$
- Every state we reach other than tile A' and B' deterministically causes  $r_t = 0$





- → Here s is the field we are currently on.
- The agent can move in all four directions
- Any action which would leave the grid has  $p(s_{t+1}|a_t, s_t)$  equal to a  $\delta$  distribution on  $s_{t+1} = s_t$  and a similarly deterministic  $r_t = -1$
- Every state we reach other than tile A' and B' deterministically causes  $r_t = 0$
- On A or B any action will take us to A' or B' respectively



#### **Example policy**



- Policies now depend on s<sub>t</sub>
- We can extend the **uniform random policy** to be independent from  $s_t$



#### **Example policy**



- Policies now depend on s<sub>t</sub>
- We can extend the **uniform random policy** to be independent from  $s_t$
- However there's no reason to believe that this policy is any good



#### **Example policy**



- Policies now depend on s<sub>t</sub>
- We can extend the **uniform random policy** to be independent from  $s_t$
- However there's no reason to believe that this policy is any good
- · How can we estimate good policies?



# What is a good policy?

- → We have to be precise about good
- Preliminary we have to state two kinds of tasks
  - 1. Episodic tasks which have an end
  - 2. Continuing tasks which are infinitely long
- Unify them using a terminal state in episodic tasks which only transition to themselves with deterministic  $r_t = 0$
- Goal is to maximize the future return

$$\max_{\pi(s_t,a_t)} g_t = \sum_{k=t+1}^T \gamma^{k-t-1} r_k$$

- $\gamma$  is a **discount** reducing influence of rewards **far** in the future
- $\gamma \in$  (0, 1] meaning that  $\gamma =$  1 is allowed as long as  $T \neq \infty$



# **Policy Iteration**



• Before we used the action-value function Q(a)



- Before we used the action-value function Q(a)
- Now at has to depend on st





- Before we used the action-value function Q(a)
- Now a<sub>t</sub> has to depend on s<sub>t</sub>
- ightarrow Use an oracle predicting the future reward  $g_t$  following  $\pi(s_t, a_t)$  from  $s_t$





- Before we used the action-value function Q(a)
- Now a<sub>t</sub> has to depend on s<sub>t</sub>
- ightarrow Use an oracle predicting the future reward  $g_t$  following  $\pi(s_t, a_t)$  from  $s_t$
- We introduce the state-value function  $V_{\pi}(s)$

$$V_{\pi}(s) = \mathbb{E}_{\pi}\left[g_t|s_t
ight] = \mathbb{E}_{\pi}\left[\sum_{k=t+1}^{T} \gamma^{k-t-1} r_k|s_t
ight]$$





The definition of the gridworld

Recall our grid example





| 3.3  | 8.8  | 4.4  | 5.3  | 1.5  |
|------|------|------|------|------|
| 1.5  | 3.0  | 2.3  | 1.9  | 0.5  |
| 0.1  | 0.7  | 0.7  | 0.4  | -0.4 |
| -1.0 | -0.4 | -0.4 | -0.6 | -1.2 |
| -1.9 | -1.3 | -1.2 | -1.4 | -2.0 |

The definition of the gridworld

 $V_{\pi}(s)$  for the uniform random policy

- Recall our grid example
- Some edge tiles are negative since the policy can't control the move





| 3.3  | 8.8  | 4.4  | 5.3  | 1.5  |
|------|------|------|------|------|
| 1.5  | 3.0  | 2.3  | 1.9  | 0.5  |
| 0.1  | 0.7  | 0.7  | 0.4  | -0.4 |
| -1.0 | -0.4 | -0.4 | -0.6 | -1.2 |
| -1.9 | -1.3 | -1.2 | -1.4 | -2.0 |

The definition of the aridworld

 $V_{\pi}(s)$  for the uniform random policy

- · Recall our grid example
- Some edge tiles are negative since the policy can't control the move
- What if we use the **greedy action selection** policy on this  $V_{\pi}(s)$  ?





| 3.3  | 8.8  | 4.4  | 5.3  | 1.5  |
|------|------|------|------|------|
| 1.5  | 3.0  | 2.3  | 1.9  | 0.5  |
| 0.1  | 0.7  | 0.7  | 0.4  | -0.4 |
| -1.0 | -0.4 | -0.4 | -0.6 | -1.2 |
| -1.9 | -1.3 | -1.2 | -1.4 | -2.0 |

The definition of the aridworld

 $V_{\pi}(s)$  for the uniform random policy

- Recall our grid example
- Some edge tiles are negative since the policy can't control the move
- What if we use the **greedy action selection** policy on this  $V_{\pi}(s)$  ?
- We get a better policy!



#### **Action-value function**

- Before we used the action-value function Q(a)
- Now we introduced  $V_{\pi}(s)$  filling a similar role



#### **Action-value function**

- Before we used the action-value function Q(a)
- Now we introduced  $V_{\pi}(s)$  filling a similar role
- We can also introduce the action-value function  $Q_{\pi}(s,a)$
- Basically this accounts for the transition probabilities

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[g_t|s_t,a_t
ight] = \mathbb{E}_{\pi}\left[\sum_{k=t+1}^{T}\gamma^{k-t-1}r_k|s_t,a_t
ight]$$





- No.
- There can only be one  $^{1}$  optimal  $V^{*}(s)$



- No.
- There can only be one  $^{1}$  optimal  $V^{*}(s)$
- · We can state its existence without referring to a specific policy:

$$V^*(s) = \max_{\pi} V_{\pi}(s) \tag{1}$$



- No.
- There can only be one optimal  $V^*(s)$
- We can state its existence without referring to a specific policy:

$$V^*(s) = \max_{\pi} V_{\pi}(s) \tag{1}$$

•  $Q^*(s, a)$  can also be defined and is related to  $V^*(s_t)$  by:

$$Q^*(s,a) = \mathbb{E}[r_{t+1} + \gamma V^*(s_{t+1})]$$
 (2)



# **Optimal Value-function Example**

| 3.3  | 8.8  | 4.4  | 5.3  | 1.5  |
|------|------|------|------|------|
| 1.5  | 3.0  | 2.3  | 1.9  | 0.5  |
| 0.1  | 0.7  | 0.7  | 0.4  | -0.4 |
| -1.0 | -0.4 | -0.4 | -0.6 | -1.2 |
| -1.9 | -1.3 | -1.2 | -1.4 | -2.0 |

 $V_{\pi}(s)$  for the uniform random policy



# **Optimal Value-function Example**

| 3.3  | 8.8  | 4.4  | 5.3  | 1.5  |
|------|------|------|------|------|
| 1.5  | 3.0  | 2.3  | 1.9  | 0.5  |
| 0.1  | 0.7  | 0.7  | 0.4  | -0.4 |
| -1.0 | -0.4 | -0.4 | -0.6 | -1.2 |
| -1.9 | -1.3 | -1.2 | -1.4 | -2.0 |

| 22.0 | 24.4 | 22.0 | 19.4 | 17.5 |
|------|------|------|------|------|
| 19.8 | 22.0 | 19.8 | 17.8 | 16.0 |
| 17.8 | 19.8 | 17.8 | 16.0 | 14.4 |
| 16.0 | 17.8 | 16.0 | 14.4 | 13.0 |
| 14.4 | 16.0 | 14.4 | 13.0 | 11.7 |

 $V_{\pi}(s)$  for the uniform random policy

• Observe that  $V^*$  is strictly positive since it's deterministic



• Policies can now be ordered:  $\pi \geq \pi'$  if and only if  $V_\pi(s) \geq V_{\pi'}(s), \forall s \in S$ 



- Policies can now be ordered:  $\pi \geq \pi'$  if and only if  $V_\pi(s) \geq V_{\pi'}(s), \forall s \in S$
- Any policy  $\pi$  with  $\mathit{V}_{\pi} = \mathit{V}^*$  is an optimal policy  $\pi^*$



- Policies can now be ordered:  $\pi \geq \pi'$  if and only if  $V_\pi(s) \geq V_{\pi'}(s), orall s \in \mathcal{S}$
- Any policy  $\pi$  with  $V_\pi = V^*$  is an optimal policy  $\pi^*$
- This implies there might be more than one optimal policy



- Policies can now be ordered:  $\pi \geq \pi'$  if and only if  $V_{\pi}(s) \geq V_{\pi'}(s), \forall s \in S$
- Any policy  $\pi$  with  $V_{\pi} = V^*$  is an optimal policy  $\pi^*$
- This implies there might be **more than one** optimal policy
- Given either  $V^*$  or  $Q^*$  an optimal policy is directly obtained by **greedy action** selection



# Greedy Action Selection on $V^*(s)$ or $Q^*(s, a)$



 $\pi'(s,a)=$  Greedy Action Selection on  $V_{\pi}(s)$  with  $\pi(s,a)$  being uniform random



# **Greedy Action Selection on** $V^*(s)$ **or** $Q^*(s, a)$



$$\pi'(s, a) =$$
 Greedy Action Selection on  $V_{\pi}(s)$  with  $\pi(s, a)$  being uniform random

$$\pi^*(s,a) = ext{Greedy Action Selection on } V^*(s)$$



# **A Tool to Compute Optimal Value-functions**

• We still need to compute  $V^*(s)$  and  $Q^*(s, a)$ 



# **A Tool to Compute Optimal Value-functions**

- We **still need** to compute  $V^*(s)$  and  $Q^*(s, a)$
- For this the Bellman equations can be utilized
- They are consistency conditions for the value functions

Bellman equation for  $V_{\pi}(s)$ 

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s_{t+1},r} p(s_{t+1},r|s,a) [r + \gamma V_{\pi}(s_{t+1})]$$



#### **Policy Evaluation**

- The Bellman equations form a system of linear equations which can be solved for small problems
- Better: **Iteratively solve**, by turning the Bellman equations into **update rules**:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s_{t+1},r} p(s_{t+1},r|s,a) \left[r + \gamma V_k(s_{t+1})\right]$$

For all  $s \in S$ 



•  $V_{\pi}(s)$  is used to **guide our search** for good policies



- $V_{\pi}(s)$  is used to **guide our search** for good policies
- Another necessary step is to update the policy



- $V_{\pi}(s)$  is used to **guide our search** for good policies
- Another necessary step is to update the policy
- However if we use greedy action selection an update of  $V_{\pi}(s)$  is simultaneously an update of  $\pi(s)$



- $V_{\pi}(s)$  is used to **guide our search** for good policies
- Another necessary step is to update the policy
- However if we use greedy action selection an update of  $V_{\pi}(s)$  is simultaneously an update of  $\pi(s)$
- Now iterate **evaluation** of the **greedy policy** on  $V_{\pi}(s)$



- $V_{\pi}(s)$  is used to **guide our search** for good policies
- Another necessary step is to update the policy
- However if we use greedy action selection an update of  $V_{\pi}(s)$  is simultaneously an update of  $\pi(s)$
- Now iterate **evaluation** of the **greedy policy** on  $V_{\pi}(s)$
- Stop iterating if the policy stops changing



# **Policy Improvement**

- $V_{\pi}(s)$  is used to **guide our search** for good policies
- Another necessary step is to update the policy
- However if we use greedy action selection an update of  $V_{\pi}(s)$  is simultaneously an update of  $\pi(s)$
- Now iterate **evaluation** of the **greedy policy** on  $V_{\pi}(s)$
- Stop iterating if the policy stops changing
- But is this guaranteed to work?



• We consider changing a single action  $a_t$  in state  $s_t$  but following  $\pi$ 



- We consider changing a single action  $a_t$  in state  $s_t$  but following  $\pi$
- · In general if

$$Q_{\pi}(s,\pi'(s)) \geq V_{\pi}(s)\,, orall s \in S \implies \pi' \geq \pi$$



- We consider changing a single action  $a_t$  in state  $s_t$  but following  $\pi$
- · In general if

$$Q_{\pi}(s,\pi'(s)) \geq V_{\pi}(s)\,, orall s \in S \implies \pi' \geq \pi$$

This also implies:

$$V_{\pi'}(s) \geq V_{\pi}(s)$$



- We consider changing a single action  $a_t$  in state  $s_t$  but following  $\pi$
- In general if

$$Q_{\pi}(s,\pi'(s)) \geq V_{\pi}(s)\,, orall s \in S \implies \pi' \geq \pi$$

This also implies:

$$V_{\pi'}(s) \geq V_{\pi}(s)$$

• Because we **only select greedy** we have  $Q_{\pi}(s, a) > V_{\pi}(s)$  before convergence



- We consider changing a single action  $a_t$  in state  $s_t$  but following  $\pi$
- In general if

$$Q_{\pi}(s,\pi'(s)) \geq V_{\pi}(s)\,, orall s \in S \implies \pi' \geq \pi$$

This also implies:

$$V_{\pi'}(s) \geq V_{\pi}(s)$$

- Because we **only select greedy** we have  $Q_{\pi}(s,a) > V_{\pi}(s)$  before convergence
- So iteratively updating  $V_{\pi}(s)$  and using **greedy action selection** is guaranteed to work here



- We consider changing a single action  $a_t$  in state  $s_t$  but following  $\pi$
- In general if

$$Q_{\pi}(s,\pi'(s)) \geq V_{\pi}(s), \forall s \in S \implies \pi' \geq \pi$$

This also implies:

$$V_{\pi'}(s) \geq V_{\pi}(s)$$

- Because we **only select greedy** we have  $Q_{\pi}(s,a) > V_{\pi}(s)$  before convergence
- So iteratively updating  $V_{\pi}(s)$  and using **greedy action selection** is guaranteed to work here
- We terminate if the policy no longer changes



- We consider changing a single action  $a_t$  in state  $s_t$  but following  $\pi$
- In general if

$$Q_{\pi}(s,\pi'(s)) \geq V_{\pi}(s), \forall s \in S \implies \pi' \geq \pi$$

· This also implies:

$$V_{\pi'}(s) \geq V_{\pi}(s)$$

- Because we **only select greedy** we have  $Q_{\pi}(s,a) > V_{\pi}(s)$  before convergence
- So iteratively updating  $V_{\pi}(s)$  and using greedy action selection is guaranteed to work here
- We terminate if the policy no longer changes
- Last remark: If we don't loop over all  $s \in S$  for policy evaluation, but update the policy directly this algorithm is called **Value iteration**



# **Other Solution Methods**



 Both policy iteration and value iteration require using the updated policies during learning to obtain better approximations to  $V^*(s)$ 



- Both policy iteration and value iteration **require** using the **updated policies** during learning to obtain better approximations to  $V^*(s)$
- For this reason we call them on-policy algorithms



- Both policy iteration and value iteration require using the updated policies during learning to obtain better approximations to  $V^*(s)$
- For this reason we call them on-policy algorithms
- Additionally we assumed the **state-transition** pdf and **reward** pdf are known



- Both policy iteration and value iteration require using the updated policies during learning to obtain better approximations to  $V^*(s)$
- For this reason we call them on-policy algorithms
- Additionally we assumed the **state-transition** pdf and **reward** pdf are known
- Can we relax this?



- Both policy iteration and value iteration require using the updated policies during learning to obtain better approximations to  $V^*(s)$
- For this reason we call them on-policy algorithms
- Additionally we assumed the **state-transition** pdf and **reward** pdf are known
- · Can we relax this?
- Yes. The methods differ mostly how they perform policy evaluation



# **Monte Carlo Techniques**

## **Properties**

- Only for episodic tasks
- Off-policy learns  $V^*(s)$  by following any **arbitrary**  $\pi(s,a)$
- Does not need information about dynamics of the environment



# **Monte Carlo Techniques**

## **Properties**

- Only for episodic tasks
- Off-policy learns  $V^*(s)$  by following any **arbitrary**  $\pi(s,a)$
- Does not need information about dynamics of the environment

#### **Scheme**

- Generate an episode by using some policy
- Loop **backwards** over the episode accumulating the expected future reward  $g_t = g_{t+1} + r_{t+1}$
- If a state was **not yet** visited append  $g_t$  to a list  $returns(s_t)$
- Update  $V_{s_t} = \frac{1}{N} \sum_{n=1}^{N} returns_n(s_t)$



# **Temporal Difference Learning**

# **Properties**

- On-policy
- Does not need information about dynamics of the environment



# **Temporal Difference Learning**

## **Properties**

- On-policy
- Does not need information about dynamics of the environment

#### **Scheme**

- Loop and follow  $\pi(s_t, a_t)$
- Use a from  $\pi(s_t, a_t)$ , observe  $r_t, s_{t+1}$
- Update:  $V_{t+1}(s) = V_t(s) + \alpha [r_t + \gamma V_t(s_{t+1}) V_t(s_t)]$



# **Temporal Difference Learning**

## **Properties**

- On-policy
- Does not need information about dynamics of the environment

#### **Scheme**

- Loop and follow  $\pi(s_t, a_t)$
- Use a from  $\pi(s_t, a_t)$ , observe  $r_t, s_{t+1}$
- Update:  $V_{t+1}(s) = V_t(s) + \alpha [r_t + \gamma V_t(s_{t+1}) V_t(s_t)]$
- . Converges to the optimal solution
- A variant of this estimates  $Q_{(s,a)}$  and is known as SARSA



# **Q** Learning

## **Properties**

- Off-policy
- Temporal difference type of method
- Does not need information about dynamics of the environment



# **Q** Learning

## **Properties**

- Off-policy
- Temporal difference type of method
- Does not need information about dynamics of the environment

#### **Scheme**

- Loop and follow  $\pi(s_t, a_t)$  derived from  $Q_t(s, a)$  e.g.  $\epsilon$ -greedy
- Use a from  $\pi(s_t, a_t)$ , observe  $r_t, s_{t+1}$
- Update:  $Q_{t+1}(s, a) = Q_t(s_t, a_t) + \alpha \left[ r_t + \gamma \max_a Q_t(s_{t+1}, a_t) Q_t(s_t, a_t) \right]$



# If you have Universal Function Approximators

• What about just parametrizing  $\pi(s_t, a_t, \mathbf{w})$  by weights  $\mathbf{w}$  and use some loss-function L?



# If you have Universal Function Approximators

- What about just parametrizing  $\pi(s_t, a_t, \mathbf{w})$  by weights  $\mathbf{w}$  and use some loss-function 1?
- → Known as policy gradient and this instance is called REINFORCE



# If you have Universal Function Approximators

- What about just parametrizing  $\pi(s_t, a_t, \mathbf{w})$  by weights  $\mathbf{w}$  and use some loss-function L?
- → Known as policy gradient and this instance is called REINFORCE
- Generate an episode using  $\pi(s_t, a_t, \mathbf{w})$
- Go forwards in the episode: t = 0, ..., T 1
- $\mathbf{w} = \mathbf{w} + \eta \gamma^t g_t \nabla_{\mathbf{w}} \ln \left( \pi(a_t | s_t, \mathbf{w}) \right)$





# **Deep Reinforcement Learning**





# **Deep Q Learning**



# Atari Games: Human-level control through deep reinforcement learning [4]

- Volodymyr Mnih et al. (Google DeepMind) 2013/2015
- Idea: Let a neural network play Atari games!
- Input: Current and three subsequent video frames from game
- Processed by network trained with reinforcement learning
- Goal: learn best controller movements



Atari Pac-Man

Source: Human-level control through deep reinforcement learning [4]



# Atari Games: Human-level control through deep reinforcement learning [4]

- Volodymyr Mnih et al. (Google DeepMind) 2013/2015
- Idea: Let a neural network play Atari games!
- Input: Current and three subsequent video frames from game
- Processed by network trained with reinforcement learning
- Goal: learn best controller movements
- Convolutional layers for frame processing, fully-connected for final decision making



Atari Pac-Man

Source: Human-level control through deep reinforcement learning [4]



# **Learning Atari Games**





# **Learning Atari Games**

- Deep Q-network: Deep network that applies Q-learning
- State s<sub>t</sub> of the game: current + 3 previous frames (image stack)
- 18 outputs associated with an action
- → Each output estimates optimal action value for "its" action given the input
- Instead of label & cost function, update to maximize reward
- Reward: +1/-1 when game score increased/decreased, 0 otherwise
- $\epsilon$ -greedy policy with  $\epsilon$  decreasing to a low value during training
- Semi-gradient form of Q-learning to update network weights w
- Uses mini-batches to accumulate weight updates



# **Target Network**

· Weight update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[ r_{t+1} + \gamma \max_{a} \hat{q}(s_{t+1}, a, \mathbf{w}_t) - \hat{q}(s_t, a_t, \mathbf{w}_t) \right] \cdot \nabla \mathbf{w}_t \hat{q}(s_t, a_t, \mathbf{w}_t)$$

- Problem: The target  $\gamma \max_{a} \hat{q}(s_{t+1}, a, \mathbf{w}_t)$  is a function of  $\mathbf{w}_t$ .
- → Target changes simultaneously with the weights we want to learn!
- → Training can oscillate or diverge



# **Target Network**

· Weight update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[ r_{t+1} + \gamma \max_{a} \hat{q}(s_{t+1}, a, \mathbf{w}_t) - \hat{q}(s_t, a_t, \mathbf{w}_t) \right] \cdot \nabla \mathbf{w}_t \hat{q}(s_t, a_t, \mathbf{w}_t)$$

- Problem: The target  $\gamma \max_a \hat{q}(s_{t+1}, a, \mathbf{w}_t)$  is a function of  $\mathbf{w}_t$ .
- → Target changes simultaneously with the weights we want to learn!
- → Training can oscillate or diverge
- Idea: Use a second target network:
- After each C steps, copy weights of action-value network to a duplicate network and keep them fixed
- Use output  $\bar{q}$  of "target network" as a target to stabilize:

$$\gamma \max_{a} \bar{q}(s_{t+1}, a, \mathbf{w}_t)$$



# **Experience Replay**

Goal: Reduce correlation between updates

- After performing action  $a_t$  for image stack  $s_t$  (state) and receiving reward  $r_t$ , add  $(s_t, a_t, r_t, s_{t+1})$  to **replay memory**
- → Memory accumulates experiences
- To update the network, draw random samples from memory, instead of taking the most recent ones
- → Removes dependence on current weights
- → Increases stability



# **Atari Breakout Example**



Video on learning Atari Breakout. Click here



# **AlphaGo**



# Mastering the game of Go with deep neural networks and tree search [1]

- Go is an ancient Chinese boardgame: Black plays against white for control over the board
- Simple rules but extremely high number of possible moves and situations
- Performance on par with professional human players thought years away



Traditional Go board

Source: https://commons.wikimedia.org/wiki/File:FloorGoban.jpg



## **Challenges in Go**

- Go is a "perfect information" game: No hidden information and no chance
- Theoretically, we can construct a full game tree and traverse it with Minimax to find the best moves



## **Challenges in Go**

- Go is a "perfect information" game: No hidden information and no chance
- Theoretically, we can construct a full game tree and traverse it with Minimax to find the best moves
- Problem: High number of legal moves ( $\approx$  250 chess  $\approx$  35)
- Games involve many moves ( $\approx$  150)
- → Exhaustive search is infeasible!



## Challenges in Go (cont.)

- Search tree can be pruned if we have an accurate evaluation function
- For chess (DeepBlue) already extremely complex and based on massive human input
- For Go: "No simple yet reasonable evaluation function will ever be found for Go." (Müller 2002) [5]



## Challenges in Go (cont.)

- Search tree can be pruned if we have an accurate evaluation function
- For chess (DeepBlue) already extremely complex and based on massive human input
- For Go: "No simple yet reasonable evaluation function will ever be found for Go." (Müller 2002) [5]
- Still: AlphaGo beat Lee Sedol and Ke Jie, two of the world's strongest players in 2016 and 2017!



## Mastering the game of Go with deep neural networks and tree search [1]

- AlphaGo was developed by Silver et al. (also Google DeepMind)
- Combination of multiple methods:
  - Deep neural networks
  - Monte Carlo tree search (MCTS)
  - Supervised learning and
  - Reinforcement learning
- First improvement compared to a full tree search: Monte Carlo Tree Search (MCTS)
- Networks to support efficient search through tree



#### **Monte Carlo Tree Search**



- Idea: Run many Monte Carlo simulations of episodes (=entire Go games) to select action (=where to place a stone)
- Starting from a root node representing the current state, MCTS iteratively extends the search tree

Source: Mastering the game of go without human knowledge [2]



## Monte Carlo Tree Search (cont.)

## Algorithm:

- Selection: Starting at root, traverse with tree policy to a leaf node
- **Expansion**: (Optional) add one or more child nodes to the current leaf
- **Simulation**: From the current or the child node, simulate episode with actions according to rollout policy
- **Backup**: Propagate the received reward back through the tree
- Repeat for a certain amount of time, then stop
- Then, choose action from root node according to accumulated statistics
- Start again with new root node



## Monte Carlo Tree Search (cont.)

- Tree policy guides in how far successful paths are frequented more often.
- Typical exploration/exploitation trade-off.
- Problem: Estimation via MCTS not accurate enough for Go.



## Monte Carlo Tree Search (cont.)

- Tree policy guides in how far successful paths are frequented more often.
- Typical exploration/exploitation trade-off.
- Problem: Estimation via MCTS not accurate enough for Go.
- Ideas in AlphaGo:
  - Control tree expansion by using a neural network to find promising actions.
  - Improve value estimation by a neural network.
- More efficient extension & evaluation of search tree → better at Go!



## **Deep Neural Networks for Go**

#### Utilization of three different networks:

- Policy network: Suggests the next move in leaf nodes for extension
- Value network: Given the current board position, get chances of winning
- Rollout policy network: Guide rollout action selection
- All networks are deep convolutional networks
- Input: Current board position and additional precomputed features



## **Policy Network**

- 13 conv-layers, one output for each point on the Go board.
- Huge database of expert human moves (30 mio) available.
- Start with supervised learning: Train network to predict the next move in human expert plays
- Further train network with reinforcement learning by playing against older versions of itself. Reward when winning the game
- Older versions avoid correlation and instability
- Training time: 3 weeks on 50 GPUs + 1 day for RL





#### Value network

- Same architecture as policy network but just one output node
- Goal: Estimate how likely the current state leads to a win
- Training utilized self-play games of reinforcement learned policy
- → Trained using Monte-Carlo policy evaluation for 30 mio positions from these games
- · Training time: 1 week on 50 GPUs





## Rollout policy network

- AlphaGo could use policy network to select moves during roll-out
- Problem: Inference comparatively high: 5 ms
- Solution: Train simpler, linear network on subset of data that provides actions fast
- Speedup of ≈ 1000 compared to policy network → more simulations possible



## AlphaGo Zero



## AlphaGo Zero: Do we even need humans for training?

- After minor improvements, Silver et al. proposed AlphaGo Zero:
- → Solely trained with reinforcement learning & playing against itself!
- Simpler MCTS, no rollout policy
- Include MCTS in self-play games
- Multi-task training: Policy and value network share initial layers
- Further extension in Dec. '17: AlphaZero [3] able to also play chess and shoqi

# **NEXT TIME**

ON DEEP LEARNING



#### **Next Time**

- Algorithms to learn if we don't even observe rewards
- How to benefit from adversaries
- Extensions to perform image processing tasks



## **Comprehensive Questions**

- What is a policy?
- What are value functions?
- Explain the exploitation vs exploration dilemma.
- Describe typical solutions to the dilemma.
- What is the difference of a multi armed bandit problem to the full reinforcement learning problem?
- Describe a Markov decision process.
- Is an optimal policy necessarily unique?
- What do the Bellman equations represent?
- Describe policy iteration.
- Why does policy iteration work?
- How can you beat your friends in every Atari game?
- How can one master the game of Go?



## **Further Reading**





Reinforcement Learning

Richard Sutton

 Link - the one real reference for Reinforcement learning in its 2018 draft, including Deep Q learning and Alpha Go details





# References





#### References I

- [1] David Silver, Aja Huang, Chris J Maddison, et al. "Mastering the game of Go with deep neural networks and tree search". In: Nature 529.7587 (2016), pp. 484-489.
- [2] David Silver, Julian Schrittwieser, Karen Simonyan, et al. "Mastering the game of go without human knowledge". In: Nature 550.7676 (2017), p. 354.
- David Silver, Thomas Hubert, Julian Schrittwieser, et al. "Mastering Chess [3] and Shogi by Self-Play with a General Reinforcement Learning Algorithm". In: arXiv preprint arXiv:1712.01815 (2017).
- [4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. "Human-level control through deep reinforcement learning". In: Nature 518.7540 (2015). pp. 529-533.



#### References II

- [5] Martin Müller. "Computer Go". In: <u>Artificial Intelligence</u> 134.1 (2002), pp. 145–179.
- [6] Richard S. Sutton and Andrew G. Barto.
  <u>Introduction to Reinforcement Learning</u>. 1st. Cambridge, MA, USA: MIT Press, 1998.