Aufgabenblatt SF PM: Differentialgleichungen 2. Ordnung

1. Löse die folgenden Differentialgleichungen

a)
$$y'' - y' + y = 0$$

b)
$$y'' + 2y' + 5y = 0$$
 Anfangsbed. $y(0) = y'(0) = 1$

c)
$$y'' + y = \cos x$$

c)
$$y'' + y = \cos x$$
 d) $y'' + y' - 2y = \cos x$

e)
$$y'' - 4y = e^{3x}$$

f)
$$y'' + y' - 2y = e^x$$

Für Aufgaben 2 und 3: Gegeben sei die DGL y" + 2ay' + by = 0 (**) mit a,b ∈ ℝ

2. Zeige: Für $a^2 = b$ (Fall 2) sind $y_1 = e^{-ax}$ und $y_2 = xe^{-ax}$ Lösungen von (**) (und damit $y = e^{-ax}$ (C₁ + C₂x) Lösungsgesamtheit).

3. Sei nun $a^2 - b < 0$; $\omega^2 = b - a^2$ (Fall 3) $y_1 = e^{(-a + i\omega)x}$, $y_2 = e^{(-a - i\omega)x}$ (vergleiche Theorie)

- a) Zeige: $Re(y_1) = e^{-ax} \cos \omega x$ und $Im(y_1) = e^{-ax} \sin \omega x$ sind Lösungen von (**) (und damit $y = e^{-ax}$ ($C_1 \cos \omega x + C_2 \sin \omega x$) Lösungsgesamtheit).
- b) Zeige: Re(y₂) und Im(y₂) sind auch Lösungen von (**), verändern aber die Lösungsgesamtheit nicht!
- 4. Es sei $\alpha \cos (\omega t + \gamma) = \alpha_1 \cos \omega t + \alpha_2 \sin \omega t$ (für alle t) Bestimme α und γ als Funktion von α_1 und α_2 .
- 5. Gegeben sei die DGL y" + $2\delta y'$ + $\omega_0^2 y$ = A cos $\omega_1 t$ (*) In der Theorie, Beispiel 2 wurde der Ansatz $y_0 = \alpha \cos (\omega_1 t + \gamma)$ für die partikuläre Lösung von (*) angegeben. Berechne α und γ . Verwende dazu für die Goniometrieformeln ev. den TI Voyage (texpand....)