Оценка качества кластеризации

• Внешние критерии

Внешние меры основаны на сравнении автоматического разбиения данных с полученным от экспертов «эталонным» разбиением этих же данных

- Внутренние критерии
 - Оценка компактности и отделимости кластеров без привлечения внешней информации
- *Сравнительные критерии*Сопоставление результатов, полученных разными

методами кластеризации

Энтропия кластерного решения

• Оценка энтропии кластерного решения (неоднородности кластеров по классам)

$$E(K_r) = -\frac{1}{\log q} \sum_{i=1}^{q} \frac{n_r^i}{n_r} * \log \frac{n_r^i}{n_r}$$

$$Entropy = \sum_{r=1}^{M} \frac{n_r^{\square}}{n} * E(K_r)$$

$$E = -\frac{1}{\log 2} \left(\frac{1}{2} \log \frac{1}{2} + \frac{1}{2} \log \frac{1}{2} \right) = 1$$

 n_r – число элементов в r-кластере

 n_r^i - число элементов i-того класса внутри кластера r

q – общее число классов

М – число кластеров

$$E = -\frac{1}{\log 2}(0 \cdot \log 0 + 1 \cdot \log 1) = 0$$

Оценка совпадений классов и кластеров объектов

	Same Cluster	Different Cluster
Same Class	f_{11}	f_{10}
Different Class	f_{01}	f_{00}

 f_{11} — число пар объектов одного класса, находящихся в одном кластере; f_{10} — число пар объектов одного класса, находящихся в разных кластерах;

Rand statistic = $\frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}}$

Jaccard coefficient =
$$\frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

Внутренние критерии

• Внутренние меры основаны на оценке свойств отделимости (separation) и компактности (cohesion) полученного разбиения данных

overall validity =
$$\sum_{i=1}^{K} w_i \ validity(C_i)$$
.

Отделимость и компактность кластера

$$cohesion(C_i) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_i}} proximity(\mathbf{x}, \mathbf{y})$$

$$separation(C_i, C_j) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_j}} proximity(\mathbf{x}, \mathbf{y})$$

Отделимость и компактность кластеров (с центрами)

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i} proximity(\mathbf{x}, \mathbf{c}_i)$$

$$separation(C_i, C_j) = proximity(\mathbf{c}_i, \mathbf{c}_j)$$

$$separation(C_i) = proximity(\mathbf{c}_i, \mathbf{c})$$

Коэффициент Silhouette

- Оценивает насколько кластеризация соответствует расстояниям между точками
- Для і-ой точки:
 - a_i среднее расстояние относительно от всех других точек в своем кластере
 - d(i,c) среднее расстояние относительно всех других точек в кластере с
 - $-b_i = \min d(i,c)$
 - Оценка sw для i-ой точки:

$$sw_i = \frac{b_i - a_i}{\max(a_i; b_i)}$$

Суммарная оценка:
$$sw = \frac{1}{n} \sum_{i=1}^{n} sw_i$$

Оценка тенденций к кластеризации

- Статистика Хопкинса для набора данных D
 - Случайным образом отбираем р точек из исходного набора (множество X)
 - Генерируем p точек равномерно распределенных в пространстве (множество Y)
 - Для точек наборов *X* и *Y* вычисляем расстояния до ближайших точек их исходного набора данных D:

 u_i - расстояние от i-точки набора Y до ближайшей точки D;

 w_i — расстояние от i-точки набора X до ближайшей точки D;

$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$