Geometria I Università degli studi di Padova

Giovanni Caberlotto

Contents

Chapter 1	Campo Complesso $\mathbb C$	_ Page 2	
1.1	Richiami di teoria degli insiemi	2	
	Numeri Naturali $\mathbb{N}-2$ • Numeri Interi $\mathbb{Z}-2$ • Numeri Razionali $\mathbb{Q}-3$ • Numeri Reali -4		
1.2	Numeri Complessi ℂ	4	
	Coniugio di un numero complesso — $6 \bullet$ Rappresentazione trigonometrica dei numeri complessi —	- 6	
1.3	Richiami di Trigonometria	7	
1.4	Operazioni coi numeri complessi	7	
	Prodotto — $7 \bullet$ Potenze — 8		
1.5	Interpretazione Geometrica	9	
Chapter 2	Spazi Vettoriali	Page 10	
2.1	Proprietà degli spazi vettoriali	10	
2.2	Vettori Geometrici	10	

Chapter 1

Campo Complesso \mathbb{C}

1.1 Richiami di teoria degli insiemi

1.1.1 Numeri Naturali N

Consideriamo noti i numeri naturali $\mathbb{N} = \{0, 1, 2, 3, \dots\}$

Operazioni:

- Somma: il numero naturale m+n è l'n-essimo successore di m, ovvero $m+n=(((m+1)+1)+\ldots)+1$ (n addendi uguali ad 1)
- Prodotto: Il numero naturale mn si ottiene iterando n
 volte la somma di m con se stesso; ovver
omn = (((m+m)+m)+...)+m (n addendi uguali ad m)

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

Godono delle seguenti proprietà; $\forall x, y, z \in \mathbb{N}$

Somma:

- Associativa: (x + y) + z = x + (y + z)
- Commutativa: x + y = y + x
- Esistenza dell'elementoi neutro: x + 0 = x = 0 + x

Prodotto:

- Associativa: (xy)z = x(yz)
- Commutativa: xy = yx
- Esistenza dell'elementoi neutro: x1 = x = 1x
- Distributiva: (x + y)z = zx + zy

1.1.2 Numeri Interi Z

Diamo per noti i numeri interi $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ con le operazioni + e * $\forall x, y, z \in \mathbb{Z}$, valgono le seguenti proprietà:

Somma:

- Associativa: (x + y) + z = x + (y + z)
- Commutativa: x + y = y + x

• Esistenza dell'elementoi neutro: x + 0 = x = 0 + x

• Esistenza dell'elemento opposto $\forall x \in \mathbb{Z} \ \exists \ a \in \mathbb{Z} : x + a = 0$

Prodotto:

• Associativa: (xy)z = x(yz)

• Commutativa: xy = yx

• Esistenza dell'elementoi neutro: x1 = x = 1x

• Distributiva: (x + y)z = zx + zy

1.1.3 Numeri Razionali Q

L'insieme dei numeri razionali permette di descrivere i suoi elementi sottoforma di frazioni $\frac{a}{b}$ con $a, b \in \mathbb{Z}$ e $b \neq 0$ e due frazioni $\frac{a}{b}$ e $\frac{a'}{b'}$ rappresentano lo stesso numero razionale se $ab' = a'b \in \mathbb{Q}$ Il numero intero n si identifica con la frazione $\frac{n}{1}$ e in questo modo $\mathbb{Z} \subset \mathbb{Q}$ le operazioni di somma e prodotto in \mathbb{Q} sono definite da:

 $\frac{a}{b} + \frac{c}{d} = ^{def} \frac{ad+bc}{bd}, \ \frac{a}{b} \frac{c}{d} = ^{def} \frac{ac}{bd}$

e non dipendono dalla scelta dei rappresentanti, le operazioni di somma e prodotto in \mathbb{Q} godono delle seguenti proprietà $\forall x,y,z\in\mathbb{Q}$

Somma:

• Associativa: (x + y) + z = x + (y + z)

• Commutativa: x + y = y + x

• Esistenza dell'elementoi neutro: x + 0 = x = 0 + x

• Esistenza dell'elemento opposto $\forall x \in \mathbb{Z} \ \exists \ a \in \mathbb{Z} : x+a=0$

Prodotto:

• Associativa: (xy)z = x(yz)

• Commutativa: xy = yx

• Esistenza dell'elementoi neutro: x1 = x = 1x

• Distributiva: (x + y)z = zx + zy

• Esistenza dell'inverso: dato $x \neq 0 \; \exists \; x^{-1} : xx^{-1} = 1 = x^{-1}x$

Definition 1.1.1: Campo

Un insieme dotato di due operazioni con le proprietà appena descritte viene definito campo o (corpo commutativo)

3

 $+: K \times K \to K$

 $*: K \times K \to K$

1.1.4 Numeri Reali

E' noto che il rapporto tra lunghezze non fornisce sempre un numero razionale

ad esempio il rapporto tra la lunghezza della diagonale e quella del lato di un quadrato vale $\sqrt{2}$ O ancora in modo analogo, il rapporto tra la lunghezza di una circonferenza e quella di un suo raggio vale 2π

Per questo viene introdotto il campo $\mathbb R$ dei numeri reali

Nei numeri reali possiamo trovare una radice n-essima di un nu8mero reale positivo qualsiasi, ma non possiamo trovare usoluzioni a tutte le equazioni algebriche

Ad esempio, non ci può essere soluzione all'equazione $x^2 + 1 = 0$. Se ci fosse un tale numero, -1 sarebbe un quadrato, ma in $\mathbb R$ tutti i quadrati sono positivi o 0

Costruendo il campo dei numeri complessi a partire da \mathbb{R} è possibile trovare radici a tutti i polinomi a coefficienti reali

1.2 Numeri Complessi C

Definition 1.2.1: Numeri Complessi

Il campo dei numeri complessi \mathbb{C} è l'insieme $\mathbb{R} \times \mathbb{R}$ con le operazioni di somma e prodotto definite nel seguente modo:

$$(a,b) + (c,d) = (a+c,b+d) e (a,b)(c,d) = (ac-bd,ad+bc)$$

qualunque siano $(a,b)e(c,d) \in \mathbb{R} \times \mathbb{R}$

Corollary 1.2.1 Osservazioni sul campo €

 \mathbb{C} non è un campo ordinato, cioè non è possibile introdurre una relazione d'ordine totale con le operazioni ammesse: +,*, se ciò fosse possibile:

$$i = 0 i > 0 i < 0$$

Non essendo confrontabili possiamo quindi affermare che $\mathbb C$ non è un campo ordinato

La somma e il prodotto in ${\Bbb C}$ godono delle seguenti proprietà: Somma:

- Associativa: (e, f) + ((a, b) + (c, d)) = (c, d) + ((a, b) + (e, f))
- Commutativa: (a, b) + (c, d) = (c, d) + (a, b)
- Esistenza dell'elementoi neutro: $0_{\mathbb{C}=(0,0)}$
- Esistenza dell'elemento opposto: dato $(a,b) \in \mathbb{C} \exists -(a,b): -(a,b) + (-a,-b) = 0$

Prodotto:

- Associativa: (a,b)(c,d) = (c,d)(a,b)
- Commutativa: a, b)(c, d) = (c, d)(a, b)
- Esistenza dell'elementoi neutro: $1_{\mathbb{C}=(1,0)}$
- Distributiva: ((a,b) + (c,d))(e,f) = (e,f)(a,b) + (e,f)(c,d)
- Esistenza dell'inverso: se $(a,b) \neq (0,0)$ l'inverso è: $(a,b)^{-1} = (\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2})$

Identifichiamo \mathbb{R} con il sottoinsieme (sottocampo) di \mathbb{C} formato dalle coppie (x,0)

Sia $i = (0,1) \in \mathbb{C}$ e osserviamo che $i^2 = (-1,0) = -1$, Ogni elemento (a,b) di \mathbb{C} si scrive come:

 $(a,b) = (a,0) + (0,b) = a + bi \rightarrow$ Rappresentazione Algebrica

- \bullet Il numero complesso i è detto unità immaginaria
- I numeri reali a e b sono detti, rispettivamente parte reale e parte immaginaria del numero complesso z = a + bi in simboli: $a = \Re(z)$ e $b = \Im(z)$

Costruzione di un campo estendendolo al campo complesso

Question 1

Dato un campo K composto da due elementi K=0,1:

- Costruire le tabelle somma prodotto in K
- Trovare un equazione non risolvibile nel campo K
- Introdurre un J che sia soluzione dell'equazione
- Determinare il campo \overline{K} e le sue tabelle somma prodotto

 $Solution: K = \{0,1\}$ definiamo le tabelle di somma e prodotto per il campo appena definito rispettando le proprietà che definiscono un campo

Introduziamo adesso un equazione non risolvibile nel campo appena definito

 $x^2 + x = 1$ Per risolvere questa equazione estendiamo il campo introducendo $j \overline{K} = \{0, 1, j, 1 + j\}$

Risolviamo l'equazione per i + j

$$(1+j)^2 + 1 + j = 1$$

come si può notare basandoci sulle tabelle precedentemente definite (1+j)(1+j) risulta essere uguale a j in quanto nel campo K, 1+1=0

Risolvendola per j otteniamo invece che: $j^2 = 1 + j$ questo implica che (1 + j) * j = j + 1 + j otteniamo quindi che (1 + j) * j = 1 abbiamo completato quindi la tabella prodotto del campo \overline{K}

*	0	1	j	1+j
0	0	0	0	0
1	0	1	j	1+j
j	0	j	1 + j	1
1+j	0	1+j	1	j

Per quanto riguarda la tabella della somma di \overline{K} sappiamo che in un campo deve esistere l'elemento opposto che permetta a + (-a) = 0 quindi procedendo analogamente a quanto fatto con la tabella somma nel campo K otteniamo:

+	0	1	j	1+j
0	0	1	j	1 + j
1	1	0	j	1+j
j	j	1+j	0	1
1+j	1+j	j	1	0

1.2.1 Coniugio di un numero complesso

Vi è una corrsipondenza biunivoca $\overline{}: \mathbb{C} \to \mathbb{C}$, detta coniugio, che associa a ogni numero complesso z = a + ib il suo coniugato $\overline{z} = a + (-b)i = a - ib$

Per ogni coppia di numeri complessi z, w, valgono:

- $\bullet \ \overline{\overline{z}} = z$
- \bullet $\overline{z+w} = \overline{z} + \overline{w}$
- $\overline{zw} = \overline{zw}$
- $\Re(z) = \frac{z+\overline{z}}{2}$
- $\Im(z) = \frac{z-\overline{z}}{2}$

Corollary 1.2.2

Somma o prodotto di due numeri complessi non reali può sempre dare un numero reale

1.2.2 Rappresentazione trigonometrica dei numeri complessi

Definition 1.2.2: Modulo di un numero complesso

Il modulo (o valore assoluto) di un numero complesso, z = a + bi, è il numero reale (non negativo)

$$|z| = \sqrt{\overline{z}z} = \sqrt{(a-ib)(a+ib)} = \sqrt{a^2+b^2}$$

Il valore assoluto di \mathbb{C} coincide col valore assoluto reale sul sottocampo $\mathbb{R} \forall z \in \mathbb{C}, |\Re(z)| \leq |z|$ e $\Im(z) \leq |z|$

- \bullet $|\overline{\overline{z}}| = |z|$
- $|z| \ge 0 \forall z \in \mathbb{C}$ e |z| = 0 se e solo se z = 0
- $|z+w|=|z|+|w|\forall z,w\in\mathbb{C}$
- $|zw| = |z||w| \forall z, w \in \mathbb{C}$
- $\bullet \ \text{se} \ z \neq 0$ allora $z^{-1} = \frac{\overline{z}}{|z|^2} \ \text{e} \ |\frac{z}{|z|}| = 1$

Piano di Argand-Gauss Gli elementi di \mathbb{C} sono i punti del piano cartesiano $\mathbb{R} \times \mathbb{R}$ Al numero complesso z = a + ib si associa il punto di coordinate (a, b)

L'asse orizzontale è l'asse reale, l'asse verticale è l'asse immaginario Essendo gli assi ortogonali |a + ib| è la

Figure 1.1: Piano di Argand-Gauss

distanza dal punto (a, b) dall'origine nel piano cartesiano

Dati due numeri complessi $z \in w$, il modulo |z-w| è la distanza tra i punti corrispondenti a $z \in w$

Sia r un numero reale positivo. Nel piano di Gauss l'insieme $\{z \in \mathbb{C} | |z-z_0| < r\}$ rappresenta i punti interni alla circonferenza di centro z_0 e raggio r

I punti della circonferenza di equazione $x^2 + y^2 = 1$ (centro origine e raggio 1), corrispondono ai numeri complessi $\cos \vartheta + i \sin \vartheta$, $\cos \vartheta \in [0, 2k\pi]$

Sia $z \neq 0 \in \mathbb{C}$ e consideriamo:

$$z'=\frac{z}{|z|}=c+di$$
si ha $|z'|=\sqrt{c^2+d^2}=1$

Esiste un numero reale ϑ (unico se lo richiediamo in $[0, 2k\pi]$) tale che $z' = \cos(\vartheta) + i\sin(\vartheta)$ e si ha |z|z' da cui

 $z = |z|(\cos(\vartheta) + i\sin(\vartheta)) \rightarrow$ Rappresentazione Trigonometrica

 ϑ è l'angolo formato dalla semiretta per z uscente dall'origine e la semiretta positiva dell'asse orizzontale

 ϑ è detto argomento del numero complesso $z \neq 0$ (ed è determinato da z a meno di multipli di $2k\pi$).

Si indica con Arg(z)

1.3 Richiami di Trigonometria

Gradi	0°	30°	45°	60°	90°	120°	180°	270°	360°
Radianti	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	π/2	$\frac{2}{3}\pi$	π	$\frac{3}{2}\pi$	2 π

Figure 1.2: Tabella di conversione gradi radianti

1.4 Operazioni coi numeri complessi

1.4.1 Prodotto

Se $z_1 = |z_1|(\cos(\vartheta) + i\sin(\vartheta))$ e $z_2 = |z_2|(\cos(\vartheta) + i\sin(\vartheta))$ sono numeri complessi non nulli, il loro prodotto è:

$$z_1 z_2 = |z_1|(\cos(\vartheta) + i\sin(\vartheta))|z_2|(\cos(\vartheta) + i\sin(\vartheta)) = |z_1 z_2|(\cos(\vartheta_1 + \vartheta_2) + i\sin(\vartheta_1 + \vartheta_2))$$

Pertanto:

- $\bullet |z_1 z_2| = |z_1||z_2|$
- $\bullet \operatorname{Arg}(z_1 z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$

Per definizione $i = \sqrt{-1}$

Proposition 1.4.1 Valore di i
$$i = \sqrt{-1} \iff i^2 = -1$$

Corollary 1.4.1

Un prodotto tra due numeri complessi può risultare in un numero reale

1.4.2 Potenze

Se $z_1 = |z_1|(\cos(\vartheta_1) + i\sin(\vartheta_1))$ allora:

$$z_1^2 = |z_1|^2 (\cos(\vartheta_1)^2 + i\sin(\vartheta_1)^2)$$

$$z_1^3 = |z_1|^3 (\cos(\vartheta_1)^3 + i\sin(\vartheta_1)^3)$$
...
$$z_1^n = |z_1|^n (\cos(\vartheta_1)^n + i\sin(\vartheta_1)^n)$$

Pertanto:

- $|z_1^n| = |z_1|^n$
- $\operatorname{Arg}(z_1^n) = \operatorname{nArg}(z_1)$

Di conseguenza, sappiamo calcolare le radici:

Per $z_0 \neq 0$ e $n \geq 1$ si ha

$$z^n = z_0$$

Se, e solo se, $|z|^n = |z_0|$ e $n\vartheta_0 + 2k\pi$ al variare di $k \in \mathbb{Z}$, ove $\vartheta = \operatorname{Arg}(z)$ e $\vartheta_0 = \operatorname{Arg}(z_0)$

Proposition 1.4.2 formula di de Moivre

$$z^{n} = z_{0} \Longleftrightarrow \begin{cases} |z| = \sqrt[n]{|z_{0}|} \\ Complesso\vartheta = \frac{\vartheta_{0}}{n} + \frac{2k\pi}{n} & k = 0, \dots, n-1 \end{cases}$$

Ci sono n radici n-esime distinte per ogni numero complesso diverso da 0, che fomrano i vertici di un n-gono regolare centrato nell'origine

Proposition 1.4.3 Esponenziale complesso

Sia z = x + iy, con x e y reali, e poniamo

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y)$$

Al variare di $z \in \mathbb{C}$, $e^z \neq 0$ e si ha $e^{z+w} = e^z e^w$

Per ogni numero complesso $z_0 = |z_0|(\cos(\vartheta_0) + i\sin(\vartheta_0) \neq 0$ si ha:

$$z_0 = |z_0|e^{i\vartheta_0} = pe^{i\vartheta_0} \rightarrow \text{Rappresentazione Esponenziale}$$

Ove ϑ_0 è l'argomento di z_0 e $p=|z_0|$

Question 2: Risoluzione di un equazione utilizzando la notazione esponenziale

Dato $z \in \mathbb{C}$ trova le soluzioni di $z^2 * \overline{z} = z$

Solution: $z^2=r^2e^{i2\vartheta}, \overline{z}=re^{-i\vartheta}, z=re^{i\vartheta}$ abbiamo quindi:

$$r^2 e^{i2\vartheta} r e^{-i\vartheta} = r e^{i\vartheta}$$

moltiplichiamo r a primo membro e otteniamo

$$r^3e^{i2\vartheta}e^{-i\vartheta} = re^{i\vartheta}$$

svolgiamo i calcoli in e a primo membro raccogliendo i e otteniamo:

$$r^3e^{i(2\vartheta-\vartheta)}=re^{i\vartheta}$$

$$r^3e^{i\vartheta} = re^{i\vartheta}$$

dividiamo per $e^{i\vartheta}$

Complesso $r^3 = r$

otteniamo quindi:

$$r^3 - r = 0$$

$$r(r^2 - 1)$$

otteniamo quindi r = + -1 e r = 0

Proposition 1.4.4 Identità di Eulero

$$e^{i\pi} + 1 = 0$$

I numeri complessi sono un campo algebricamente chiuso. Vale il cosidetto

Theorem 1.4.1 Teorema fondamentale dell'algebra

Sia $P(X \text{ un polinomio di grado posittivo in } \mathbb{C}[X]$. Allora esiste un numero complesso z_0 tale che $P(z_0) = 0$

Ogni polinomio a coefficienti in \mathbb{R} si fattorizza come prodotto di polinomi lineari $X-\alpha$ con $\alpha\in\mathbb{R}$ e polinomi di grado due $(X-\beta)(X-\overline{\beta})$ con $\beta\in\mathbb{C}$

1.5 Interpretazione Geometrica

Le operazioni in $\mathbb C$ hanno una rappresentazione geometrica nel piano di Gauss La somma per un numero z_2 è la

Figure 1.3: Interpretazione Geometrica su Piano di Argand-Gauss

traslazione corrispondente a quel vettore.

Il prodotto per un numero $z_2=pe^{i\alpha}\neq 0$ è una dilatazione di rapporto p seguita da una rotazione di angolo $\alpha={\rm Arg}(z_2)$

Chapter 2

Spazi Vettoriali

Definition 2.0.1: Spazi Vettoriali

Uno spazio vettoriale su K è un insieme non vuoto V dotato di due operazione (Moltiplicazione e Addizione)

$$+: K \times K \to V$$

$$*: K \times K \to V$$

2.1 Proprietà degli spazi vettoriali

- $(u+v)+w=v+(u+w)\forall u,v\in V$
- $u + v = v + u \forall u, v \in V$
- $\exists \vec{o} \in V : v + \vec{o} = \vec{o} + v \forall u, v \in V$
- $\forall v \in V$ esiste un vettore indicato come -v tale che: v + (-v) = 0
- $(\alpha * \beta) * v = \alpha * (\beta * v) \forall \alpha, \beta \in K \forall u, v \in V$
- $\alpha + \beta$) * $v = + \forall \alpha, \beta \in K \forall u, v \in V$
- $1 * v = v \forall v \in V$

2.2 Vettori Geometrici

Vettori geometrici anche detti segmenti orientati sono rappresentazioni dei vettori su un piano \mathbb{R}^2 o $\mathbb{R} \times \mathbb{C}$ Proprietà

Figure 2.1: Vettore sul piano

- $\bullet \ \vec{v} + \vec{v} = 2\vec{v}$
- $\bullet~V=K$ Spazio vettoriale su K
- K campo, V=L un altro campo tale che $V\subset K$

Esempi:

$$K = \mathbb{Q} \subset \mathbb{R} = L; K = \mathbb{R} \subset \mathbb{C} = L$$

Vè uno spazio vettoriale su K

• $V = K^m = \{a_1, a_2, \dots, a_m\} | a_1, a_2, \dots, a_m \in K$

$$(a_1, a_2, \dots, a_m) + (b_1, b_2, \dots b_m) = (a_1 + b_1, a_2 + b_2, \dots a_m + b_n) \text{ e si scrive} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \\ \vdots \end{pmatrix}$$

$$\lambda \in \mathbb{K}, \quad \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} \in V = \mathbb{K}^M \quad \text{definisco} \quad \lambda \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \\ \vdots \\ \lambda a_m \end{pmatrix}$$

- V = insieme dei polinomi in x con coefficienti in K e si scrive K[x] il quale è uno spazio vettoriale
- $\bullet~V=$ insieme di funzioni da $R\to R$ e anch'esso rappresenta uno spazio vettoriale