Matplotlib

This serves as a cheat sheet for Matplotlib, a 2d plotting library for Python.

Not a total beginner? Jump straight down to the examples or get the jupyter notebook file. Also, the official example library is pretty sweet.

Index

- 1. Prepare Data
- 2. Plots
 - Creating Plots
 - Figure
 - Axes
 - Plotting
 - 1D Data
 - 2D Data
 - Saving Plots
 - Customization
 - Colors
 - Markers
 - Lines
 - Text
 - Limits, Labels, Layout
- 3. Examples
 - Basics
 - Subplotting
 - Advanced

1. Prepare Data

NumPy is probably your best friend for that. Check out my CheatSheet here

2. Plots

Creating plots

Figure

Operator	Description	Documentation
fig =	a container that contains all plot	link
<pre>plt.figures()</pre>	elements	IIIIX

Axes

Operator	Description	Documentation
<pre>fig.add_axes() a = fig.add_subplot(222)</pre>	Initializes subplot A subplot is an axes on a grid system row-col-num, see examples	link link
<pre>fig, b = plt.subplots(nrows=3, nclos=2)</pre>	Adds subplot	link
<pre>ax = plt.subplots(2, 2)</pre>	Creates subplot	link

Axes are very useful for subplots. See example here

After configuring your plot, you must use plt.show() to make it visible

Plotting

1D Data

Operator	Description	Documentation
<pre>lines = plt.plot(x,y)</pre>	Plot data connected by lines	link
plt.scatter(x,y)	Creates a scatterplot, unconnected data points	link
<pre>plt.bar(xvalue, data , width,</pre>	simple vertical	link

color)	bar chart	IINK	
<pre>plt.barh(yvalue, data, width, color)</pre>	simple horizontal bar	link	
<pre>plt.hist(x, y)</pre>	Plots a histogram	link	
<pre>plt.boxplot(x,y)</pre>	Box and Whisker plot		link
<pre>plt.violinplot(x, y)</pre>	Creates violin plot	link	
<pre>ax.fill(x, y, color='lightblue') ax.fill_between(x,y,color='yellow')</pre>	Fill area under/between plots	link	

For more advanced box plots, start here

2D Data

Operator	Description	Documentation
<pre>fig, ax = plt.subplots()</pre>	Colormapped or RGB arrays	
<pre>im = ax.imshow(img, cmap,</pre>		link
vmin)		

Suggestions?

Saving plots

Operator	Description	Documentation
<pre>plt.savefig('pic.png')</pre>	Saves plot/figure to image	link
<pre>plt.savefig('transparentback.png')</pre>	Saves transparent plot/figure to image	see above

Customization

Color

Operator	Description	Documentation
<pre>plt.plot(x, y, color='lightblue') plt.plot(x, y, alpha = 0.4)</pre>	colors plot to color blue	link
<pre>plt.colorbar(mappable, orientation='horizontal')</pre>	mappable: the Image, Contourset etc to which colorbar applies	link

Markers (see examples)

Operator	Description	Documentation
<pre>plt.plot(x, y, marker='*')</pre>	adds * for every data point	link
<pre>plt.scatter(x, y, marker='.')</pre>	adds . for every data point	see above

Lines

Operator	Description	Documentation
<pre>plt.plot(x, y, linewidth=2)</pre>	Sets line width	link
<pre>plt.plot(x, y, ls='solid')</pre>	Sets linestyle, Is can be ommitted, see 2 below	see above
plt.plot(x, y, ls='')	Sets linestyle, Is can be ommitted, see below	see above
plt.plot(x,y,'', x**2, y**2, '')	Lines are '' and '', see example	see above
<pre>plt.setp(lines,color='red',linewidth=2)</pre>	Sets properties of plot lines	link

Text

Operator	Description	Documentation
<pre>plt.text(1, 1,'Example Text',style='italic')</pre>	Places text at coordinates 1/1	link
<pre>ax.annotate('some annotation', xy=(10, 10))</pre>	Annotate the point with coordinates xy with text s	link
<pre>plt.title(r'\$delta_i=20\$', fontsize=10)</pre>	Mathtext	link

Limits, Legends/Labels , Layout

Limits

Operator	Description	Documentation
plt.xlim(0, 7)	Sets x-axis to display 0 - 7	link
plt.ylim(-0.5, 9)	Sets y-axis to display -0.5 - 9	link
<pre>ax.set(xlim=[0, 7], ylim= [-0.5, 9]) ax.set_xlim(0, 7)</pre>	Sets limits	link link
<pre>plt.margins(x=1.0, y=1.0)</pre>	Set margins: add padding to a plot, values 0 - 1	
<pre>plt.axis('equal')</pre>	Set the aspect ratio of the plot to	

Legends/Labels

Operator	Description	Documentation
<pre>plt.title('just a title')</pre>	Sets title of plot	link
<pre>plt.xlabel('x-axis')</pre>	Sets label next to x-axis	link
`plt.ylabel('y-axis')``	Sets label next to y-axis	link
<pre>ax.set(title='axis', ylabel='Y-Axis', xlabel='X-Axis')</pre>	Set title and axis labels	link

<pre>ax.legend(loc='best')</pre>	No overlapping plot	link
	elements	

Ticks

Operator	Description	Documentation
<pre>plt.xticks(x, labels, rotation='vertical')</pre>	Set ticks, example	link
<pre>ax.xaxis.set(ticks=range(1,5), ticklabels=[3,100,-12,"foo"])</pre>	Set x-ticks	link
<pre>ax.tick_params(axis='y', direction='inout', length=10)</pre>	Make y-ticks longer and go in and out	link

Examples

Basics

```
import matplotlib.pyplot as plt

x = [1, 2.1, 0.4, 8.9, 7.1, 0.1, 3, 5.1, 6.1, 3.4, 2.9, 9]
y = [1, 3.4, 0.7, 1.3, 9, 0.4, 4, 1.9, 9, 0.3, 4.0, 2.9]
plt.scatter(x,y, color='red')

w = [0.1, 0.2, 0.4, 0.8, 1.6, 2.1, 2.5, 4, 6.5, 8, 10]
z = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
plt.plot(z, w, color='lightblue', linewidth=2)

c = [0,1,2,3,4, 5, 6, 7, 8, 9, 10]
plt.plot(c)

plt.ylabel('some numbers')
plt.xlabel('some more numbers')
plt.show()
```



```
import matplotlib.pyplot as plt
import numpy as np

x = np.random.rand(10)
y = np.random.rand(10)

plt.plot(x,y,'--', x**2, y**2,'-.')
plt.savefig('lines.png')
plt.show()
```



```
import matplotlib.pyplot as plt

x = [1, 2, 3, 4]
y = [1, 4, 9, 6]
labels = ['Frogs', 'Hogs', 'Bogs', 'Slogs']

plt.plot(x, y, 'ro')
# You can specify a rotation for the tick labels in degrees or with keyword s.
plt.xticks(x, labels, rotation='vertical')
# Pad margins so that markers don't get clipped by the axes
plt.margins(0.2)
plt.savefig('ticks.png')
plt.show()
```


Subplotting Examples

```
import matplotlib.pyplot as plt
x = [0.5, 0.6, 0.8, 1.2, 2.0, 3.0]
y = [10, 15, 20, 25, 30, 35]
z = [1, 2, 3, 4]
W = [10, 20, 30, 40]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y, color='lightblue', linewidth=3)
ax.scatter([2,3.4,4, 5.5],
               [5,10,12, 15],
               color='black',
               marker='^')
ax.set_xlim(0, 6.5)
ax2 = fig.add_subplot(222)
ax2.plot(z, w, color='lightgreen', linewidth=3)
ax2.scatter([3,5,7],
               [5,15,25],
               color='red',
               marker='*')
ax2.set_xlim(1, 7.5)
plt.savefig('mediumplot.png')
plt.show()
```


Thanks to this guy for this good example

```
import numpy as np
import matplotlib.pyplot as plt
# First way #
x = np.random.rand(10)
y = np.random.rand(10)
figure1 = plt.plot(x,y)
# Second way #
x1 = np.random.rand(10)
x2 = np.random.rand(10)
x3 = np.random.rand(10)
x4 = np.random.rand(10)
y1 = np.random.rand(10)
y2 = np.random.rand(10)
y3 = np.random.rand(10)
y4 = np.random.rand(10)
figure2, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
ax1.plot(x1,y1)
ax2.plot(x2,y2)
ax3.plot(x3,y3)
ax4.plot(x4,y4)
plt.show()
```

If you haven't used NumPy before, check out my cheat sheet


```
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 1, 500)
y = np.sin(4 * np.pi * x) * np.exp(-5 * x)

fig, ax = plt.subplots()

ax.fill(x, y, color='lightblue')
plt.show()
```


source

Advanced

Taken from official docs

```
import matplotlib.pyplot as plt
import numpy as np

np.random.seed(0)

x, y = np.random.randn(2, 100)
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.xcorr(x, y, usevlines=True, maxlags=50, normed=True, lw=2)
ax1.grid(True)
ax1.axhline(0, color='black', lw=2)

ax2 = fig.add_subplot(212, sharex=ax1)
ax2.acorr(x, usevlines=True, normed=True, maxlags=50, lw=2)
ax2.grid(True)
ax2.axhline(0, color='black', lw=2)

plt.show()
```


Sources: Datacamp, Official Docs and Quandl