Rajesh Ra

U2: Scan Conversion Algorithm 6 Hrs

2.1 Scan Converting a Point and a straight Line: DDA Line Algorithm,
Bresenham's Line Algorithm

2.2 Scan Converting Circle and Ellipse : Mid Point Circle and Ellipse Algorithm

2.3 Area Filling: Scan Line Polygon fill Algorithm, Inside-outside Test, Scan line fill of Curved Boundary area, Boundary-fill and Flood-fill algorithm

Scan Conversion

- A procedure used to digitize or rasterize pixel data available on frame buffer.

- The process of representing continuous graphics object as a collection of discrete pixels is called scan conversion.

For e.g. a line is defined by its two end points and the line equation.

Scan conversion of a point

Scan conversion of a point aposition and color for display.

In C, a point be scan converted using function putpixel() defined in library.

Header file is <graphics.h>
putpixel(x, y, color)
Here, x & y represent pixel position on 2D display.

Scan Conversion of line

Say y = mx + b be the equation of line with end point (x_1, y_1) and (x_2, y_2) then, $m = \frac{y_2 - y_1}{x_2 - x_1}$ $\therefore m = \frac{\Delta y}{\Delta x}$ Here, m represents the slope of line path where by $\Delta x \& \Delta y$ gives the deflection needed towards horizontal and vertical direction to get new pixel from current pixel position.

- Slope of line also describes the nature and characteristics of line that is going to display.

Disadvantages of DDA - m is stored in floating point number. - Accumulation of round-off error in successive additions can cause calculated pixel positions to drift away from the actual line path for long line segments. - Rounding operations and floating-point-arithmetic are time consuming. - Rounding operations and floating-point-arithmetic are time consuming. - Rounding operations and floating-point-arithmetic are time consuming.

Rajesh Rajesh Digitized the	Ine with end po	sh Rajesh Raj
and (4, 5) usi		sh Rajesh Raj
Solution: Solution: Given,	Rajesh Raje	sh Rajesh Raj
$(x_1, y_1) = (0, 0) \in S$		
Raj $(x_2, y_2) = (4, 5)$		
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 0}{4 - 0} = 1$		
Since, $m > 1$, from DD $y_{k+1} = y_k + 1$		
$\begin{array}{c} \mathbf{R} \mathbf{a} \mathbf{j} \\ x_{k+1} = x_k + \frac{1}{m} \mathbf{j} \in \mathbf{S} \mathbf{h} \end{array}$	RajeshRaje	shRajeshRaj

Raje	shRa	esh R	aiesh	Raies	h Raiesh
Raie	x	y	x-plot	y-plot	(x, y)
Lajo	0	0	0	0	(0,0)
Kaje	0.8	1	1	1	(1, 1)
Raje	1.6	2	2	2	(2, 2) Sh
Raie	2.4	3	2	3	(2,3) sh
	3.2	4	3	4	(3, 4)
<i>xaje</i>	4	5	4	5	(4, 5)
₹aie	sn Ka	esnk	aiesn	Kales	nkalesh

Digitized the line with end and (8, 3) using DDA	points (3, 7)	
Solution: Given,	ijesh Rajesh Raj	
$(x_2, y_2) = (8, 3) $ sh Rajesh Ra		
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 7}{8 - 3} = -0.8 \text{Rajesh} \text{Ra}$		
Since, m<1, from DDA algorithm we have;		

	esh R	rieshI	V C . 1 V / C 1		<u>th Rai</u>	esh Raje
	X	У	x-plot	y-plot	(x, y)	esh Raje
	3	7	3	7	(3, 7)	- 1. D
	4	6.2	4	6	(4, 6)	eshRaje
	5	5.4	5	5	(5, 5)	eshRaje
	6	4.6	6	5	(6, 5)	eshRaie
	7	3.8	7	4	(7, 4)	esh Raie
	8	3	8	3	(8, 3)	ballkaje
	esnka	ijesnr	cajesi	ikajes	snkaj	eshRaje
70	1.00	7 1 T	7 1	TO TO	1 10 7	1.70

Practice Time	
Q.> Digitize a Line with end point A(2,3) and B(6,8), using DDA Right to left.	
Q.> Digitize a Line with end point A(3,2) and B(8,4), using DDA	
Q.>Digitize a Line with end point A(2,6) and B(4,2), using DDA	
BASSH KUMAN BASSAN 18	

```
Bresenham's Line drawing Algorithm (BLA)

Advantage of BLA over DDA

In BLA each successive point is calculated in integer unlike DDA in floating point, hence required less time and memory

In BLA it does not need to round, so there is no accumulation of rounding error like that of DDA

Due to rounding error, the line drawn by DDA algorithm is not accurate, while in BLA line is accurate

DDA algorithm cannot be used in other application except line drawing, but BLA can be implemented in other application such as circle, ellipse and other curves.
```

```
Rajesh Rajesh Rajesh Rajesh Rajesh Raje
Rajesh R
```



```
Let us assume that pixel (x_k, y_k) is already plotted assuming that the sampling direction is along X-axis i.e. (x_k+1, y_k) or (x_k+1, y_k+1). Thus, the common equation of the line is y=m(x_k+1)+c Now, d1=y-y_k=m(x_k+1)+c-y_k and, d2=(y_k+1)-y=y_k+1-(m(x_k+1)+c) The difference between these two separation is, d1-d2=[m(x_k+1)+c-y_k]-[y_k+1-\{m(x_k+1)+c\}] Or, d1-d2=2m(x_k+1)+2c-2y_k-1 Since, slope of line (\mathbf{m})=\Delta\mathbf{y}/\Delta\mathbf{x}, We have, \Delta\mathbf{x} (d1-d2)=2\Delta\mathbf{y} (\mathbf{x}+1)+2\Delta\mathbf{x} C-2\Delta\mathbf{x} Y_k-\Delta\mathbf{x} Define Decision parameter at K^{th} step,
```

```
P_{k} = \Delta x (d1-d2)
= 2 \Delta y (x_{k}+1)+2 \Delta x C-2 \Delta x y_{k}-\Delta x
P_{k} = 2 \Delta y X_{k}+2 \Delta y+2 \Delta x C-2 \Delta x y_{k}-\Delta x
P_{k} = 2 \Delta y X_{k}+2 \Delta y+2 \Delta x C-2 \Delta x y_{k}-\Delta x
P_{k+1} = 2 \Delta y X_{k+1}+2 \Delta y+2 \Delta x C-2 \Delta x Y_{k+1}-\Delta x
P_{k+1} = 2 \Delta y X_{k+1}+2 \Delta y+2 \Delta x C-2 \Delta x Y_{k+1}-\Delta x
P_{k+1} = 2 \Delta y X_{k+1}+2 \Delta y+2 \Delta x C-2 \Delta x Y_{k+1}-\Delta x-\{2 \Delta y X_{k+1}+2 \Delta y+2 \Delta x C-2 \Delta x Y_{k+1}-\Delta x-\{2 \Delta y X_{k+1}+2 \Delta y+2 \Delta x C-2 \Delta x Y_{k+1}-\Delta x-2 \Delta y X_{k}-2 \Delta y-2 \Delta x C+2 \Delta x Y_{k}-2 \Delta x Y_{k}-2 \Delta y X_{k}-2 \Delta y X_{k}-2 \Delta y X_{k}-2 \Delta x Y_{k}-2 \Delta x Y_{k
```

```
Digitize the line with end points (20, 10) and (30, 18) using BLA.  
Here, Starting point of line = (x_1, y_1) = (20, 10) and Ending point of line = (x_2, y_2) = (30, 18)  
Thus, slope of line, m = \Delta y / \Delta x = (y_2 y_1) / (x_2 x_1) = (18-10) / (30-20) = 8/10  
As the given points, it is clear that the line is moving left to right with the positive slope |m| = 0.8 < 1  
Thus,  
The initial decision parameter (P_0) = 2\Delta y - \Delta x = 2*8 - 10 = 6  
Since, for the Bresenham's Line drawing Algorithm of slope, |m| \le 1,
```

```
Rajesh R
```

Rajesh Rajesh

k	$\mathbf{P}_{\mathbf{k}}$	X_{k+1}	Y_{k+1}	(X_{k+1}, Y_{k+1})
0.	6	20+1 = 21	11	(21, 11)
1.	6 + 2*8 -2*10 = 2	21+1 = 22	12	(22, 12)
2.	2 + 2*8 - 2*10 = -2	22+1=23	12	(23, 12)
3.	-2 + 2*8 = 14	23+1=24	13	(24, 13)
4.	14 + 2*8 -2*10 = 10	24+1 = 25	14	(25, 14)
5.	10 + 2*8 - 2*10 = 6	25+1 = 26	15	(26, 15)
6.	6 + 2*8 - 2*10 = 2	26+1 = 27	16	(27, 16)
7.	2 + 2*8 -2*10 = -2	27+1=28	16	(28, 16)
8.	-2 + 2*8 = 14	28+1 = 29	17	(29, 17)
9.	14 + 2*8 -2*10 = 10	29+1 = 30	18	(30, 18)

```
Let us assume that pixel (x_i, y_k) is already plotted assuming that the sampling direction is along X-axis i.e. (x_k, y_k+1) or (x_k+1, y_k+1).

Thus, the common equation of the line is y=mx+c
y_k+1=mx+c
x=\{y_k+1-c\}/m
Now, d1=x-x_k=\{y_k+1-c\}/m-x_k
And d2=(x_k+1)-X=x_k+1-\{y_k+1-c\}/m
So, d1-d2=[\{y_k+1-c\}/m-x_k]-[x_k+1-\{y_k+1-c\}/m\}]
Or, d1-d2=2[y_k+1)/m-2c/m-2x_k-1
Since, slope of line (m)=\Delta y/\Delta x, we have
```

```
Case 1: If P_k < 0 sh Raje Case 2: If P_k \ge 0 h Rajesh Rajes
                                                         X_{k+1} = X_k + 1
       then,
                    X_{k+1} = X_k
                                                          Y_{k+1} = Y_k + 1
                     Y_{k+1} = Y_k + 1
                                           S \cap R = P_{k+1} = P_k + 2 \Delta x - 2 \Delta y
                    P_{k+1} = P_k + 2 \Delta x
                                         esh Rajesh Rajesh Raje
                    Initial Decision Parameter (Po)
                    We Know,
                                         P_k = 2\Delta x (y_k+1) - 2c \Delta x - 2\Delta y x_k - \Delta y
RajeshRajeshR
                                        Let, X<sub>0</sub> = 0 , Y<sub>0</sub> = 0 then C = 0
R 2 | CS | R 2 Then, | R 2 | P<sub>0</sub> = 2\Delta x (y_0 + 1) - 2c \Delta x - 2\Delta y x_0 - \Delta y R 2 | C
                                        P_0 = 2 \Delta x - \Delta y esh Rajesh Raje
```

Digitize the line with end points (1, 0) and (3, 3) using BLA.

Here, Starting point of line = (x_1, y_1) = (1, 0) and Ending point of line = (x_2, y_2) = (3, 3)Thus, slope of line, $m = \Delta y / \Delta x = (y_2 - y_1) / (x_2 - x_1)$ = (3-0) / (3-1) = 3/2As the given points, it is clear that the line is moving left to right with the positive slope, |m| = 1.5 > 1

	shRajeshR s, the initial decision pa		$\Delta x = x_2 - x_1 = 3$	
(P ₀)	$= 2\Delta x - \Delta y = 2*2 - 3 = 3$	ajesh D	$\Delta y = y_2 - y_1 = 3$	
we h	nave	ajesn k	.ajesn i	Kajesh K a
a If P_k	<0 then, CShR		If $P_k \ge 0$ then	Rajesh Ra
X_{k+1}	$=X_kRajeshR$		$X_{k+1} = X_k + 1$	
Y _{k+1}	₹Y _k +Rajesh R		$Y_{k+1} = Y_k + 1$	
P _{k+1}	= P _k + 2 Δx		$P_{k+1} = P_k + 2$	Δx -2Δy
k	$\mathbf{P}_{\mathbf{k}}$	X_{k+1}	Y_{k+1}	(X_{k+1}, Y_{k+1})
0.	1	2	1	(2, 1)
1.	1 + 2*2 -2*3 = -1	2	1+1 = 2	(2, 2)
2.	-1 + 2*2 = 3	3	2+1 = 3	(3, 3)


```
p_{k+1} = f_{\text{circle}}\left(x_{k+1}+1, y_{k+1}-\frac{1}{2}\right) = (x_k+2)^2 + (y_{k+1}-\frac{1}{2})^2 - r^2
\text{Now, } p_{k+1}-p_k = (x_k+2)^2 + (y_{k+1}-1/2)^2 - r^2 - (x_k+1)^2 - (y_k-1/2)^2 + r^2
p_{k+1}=p_k+x_k^2 + 4x_k + 4 + y_{k+1}^2 - y_{k+1} + 1/4 - x_k^2 - 2x_k - 1 - y_k^2 + y_k - 1/4
p_{k+1}=p_k+2x_k + 3 + (y^2_{k+1}-y^2_k) - (y_{k+1}-y_k)
p_{k+1}=p_k+2x_{k+1} + (y^2_{k+1}-y^2_k) - (y_{k+1}-y_k) + 1
\text{Where, } y_{k+1} \text{ is either } y_k \text{ or } y_{k-1} \text{ depending on the sign of } p_k.
\text{if } p_k < 0; y_{k+1} = y_k \Rightarrow p_{k+1} = p_k + 2x_{k+1} + 1
\text{if } p_k \ge 0; y_{k+1} = y_k \Rightarrow p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}
\text{or initial decision parameter: } (x_0, y_0) = (0, r)
p_0 = f(1, r - 1/2) = 1 + (r - 1/2)^2 - r^2 = 5/4 - r
\text{All increments are integer, rounding } 5/4 \text{ will give } 1 \text{ so,}
```

```
Step 1: Input radius 'r' and circle center (x_c, y_c) and obtain the first point on the circumference of a circle centered on origin as (x_0, y_0) = (0, r)
Step 2: Calculate the initial value of the decision parameter as p_0 = 5/4 - r
Step 3: At each x_k position, starting at k=0, perform the following test:
If p_k < 0, the next point on circle is (x_k + 1, y_k) and
p_{k+1} = p_k + 2x_{k+1} + 1
Otherwise, the next point on circle is (x_k + 1, y_k - 1) and
p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}
Step 4: Determine the symmetry point in other seven octants.
Step 5: Move each calculated pixel position (x, y) onto the circular path centered on (x_c, y_c) and plot the co-ordinate values, x = x + x_c, y = y + y_c
Step 6: Repeat step 3 through 5 until x \ge y.
```

Digitize the circle $x^2 + y^2 = 100$ in first octant.

Here,

Center = (0,0)Radius (r) = 10Initial point = (0,r) = (0,10)Initial decision parameter $p_0 = 1 - r = 1 - 10 = -9$ From mid-point circle algorithm we have;

If $p_k < 0$;
Plot $(x_k + 1, y_k)$ and $p_{k+1} = p_k + 2x_{k+1} + 1$ $p_k \ge 0$;
Plot $(x_k + 1, y_k - 1)$ and $p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$

\mathbb{R} a $\int \mathbb{R} p_k < \infty$		esh R				
$p_k \ge 0$,	US II K	lajesh'i	$p_{k+1} = p_k + 2$	nKu	jesh R aje
Rajesl	Plot $(x_k +$	$1, y_k - 1$	and p_k	$p_{k+1} = p_k + 2$	$2x_{k+1} + 1$	$2y_{k+1}$ h Raje
	k	p_k	(x_{k+1}, y_{k+1})	$2x_{k+1}$	$2y_{k+1}$	ieshRaie
	0	-9	(1, 10)	2	20	
	1	-6	(2, 10)	4	20	jesh Raje
	2	-1	(3, 10)	6	20	ach Daic
	3	6	(4, 9)	8	18	jesh Raje
	4	-3	(5, 9)	10	18	ieshRaie
	5	8	(6, 8)	12	16	1 1 1
	6	5	(7, 7)	14	14	jeshKaje
75 1 1	100	1 10	1 1 1		1 70	4 7 7

Digitize the circle with radius r =10 centered (3, 4) in first octant. Note: When center is not origin, we first calculate the octants points of the circle in the same way as the center at origin then add the given circle center on each calculated pixel.

k	p_k	(x_{k+1},y_{k+1})	$2x_{k+1}$	$2y_{k+1}$	(x_{k+1},y_{k+1})
		at (0, 0)			at (3, 4)
0	-9	(1, 10)	2	20	(4, 14)
1	-6	(2, 10)	4	20	(5, 14)
2	-1	(3, 10)	6	20	(6, 14)
3	6	(4, 9)	8	18	(7, 13)
4	-3	(5, 9)	10	18	(8, 13)
5	8	(6, 8)	12	16	(9, 12)
6	5	(7, 7)	14	14	(10, 11)

D 1 1 D 1 1 D 1	1011011	D 1
Rajesh Rajesh Raj	esh Rajesh Rajesh	Raje

Midpoint Ellipse Algorithm Similar approach to that used in displaying a raster circle but the ellipse has 4-way symmetry. The midpoint ellipse method is applied throughout the first quadrant in two parts or region as shown in figure. The region-1 just behaves as the circular property and the region-2 is slightly straight curve. The equation of ellipse, whose centre at (0, 0) is $x^2/a^2 + y^2/b^2 = 1$

Midpoint Ellipse Algorithm Starting at (0, b), we take unit steps in the x direction until we reach the boundary between region 1 and region 2. Then we switch to unit steps in the y direction over the remainder of the curve in the first quadrant. At each step, we need to test the value of the slope of the curve. The ellipse slope is calculated by differentiating the ellipse function as: 2xb² + 2ya² * dy/dx= 0 Or dy/dx = - 2xb² / 2ya² At the boundary between region 1 and region 2, dy/dx = - 1 and 2xb² = 2ya². Therefore, we move out of region 1 whenever 2xb²>=2ya².

Case 1: P1 _k <0	<u>Case 2: P1_k≥ 0</u>
$x_{k+1} = x_k + 1$	$x_{k+1} = x_k + 1$
$y_{k+1} = y_k$ a cshkaj	$esh_{y_{k+1}} = y_k - 1sh Rajesh$
$P1_{k+1} = P1_k + 2b^2x_{k+1} + b^2$	$P1_{k+1} = P1_k + 2b^2x_{k+1} - 2a^2y_{k+1} + b^2x_{k+1} - 2a^2y_{k+1} + b^2x_{k+1} + b^2x_{k+$
	₀) for region-1 of ellipse is obtained by a at the start position $(x_0, y_0) = (0, b)$.
Here, the next pixel will eithe midpoint is (1, b -1/2). Thus	r be (1, b) or (1, b-1) where the

Midpoint Ellipse Algorithm-Region2

Assuming that the position (x_k, y_k) has been plotted, we determine next position (x_{k+1}, y_{k+1}) as either (x_k+1, y_k-1) or (x_k, y_k-1) by evaluating the decision parameter $P2_k$ as: $P2_k = F_{\text{ellipse}}(x_k+1/2, y_k-1) = b^2(x_k+1/2)^2 + a^2(y_k-1)^2 - a^2b^2$ At next sampling position, the decision parameter will be $P2_{k+1} = F_{\text{ellipse}}(x_{k+1}+1/2, y_{k+1}-1) = b^2(x_{k+1}+1/2)^2 + a^2(y_{k+1}-1)^2 - a^2b^2$ Now, Subtracting $P2_k$ from $P2_{k+1}$, We get $P2_{k+1} = P2_k + b^2[(x_{k+1}^2 - x_k^2) + (x_{k+1} - x_k)] - 2a^2(y_k-1) + a^2$

Example: Given input ellipse parameters $r_x = a = 8$ and $r_y = b = 6$, we illustrate the steps in the midpoint ellipse algorithm by determining raster positions along the ellipse path in the first quadrant. $2b^2x = 0$ (with increment $2b^2 = 72$) $2a^2y = 2a^2b$ (with increment $-2a^2 = -128$)

For region-1: The initial point for the ellipse centered on the origin is $(x_0y_0) = (0,6)$, and the initial decision parameters value is: $p1_0 = b^2 - a^2b^2 + a^2/4 = -332$ Successive decision parameter values and positions along the ellipse path are calculated using the midpoint method as:

k	P1 _k	$(X_{k+1}, Y_{k+1})_{At (0, 0)}$	$2b^{2}X_{k+1}$	$2a^2Y_{k+1}$
0.	-332	(1, 6)	72	768
1.	-224	(2, 6)	144	768
2.	-44	(3, 6)	216	768
3.	208	(4, 5)	288	640
4.	-108	(5, 5)	360	640
5.	288	(6, 4)	432	512
6.	244	(7, 3)	540	384

For region 2: The initial point is $(x_0,y_0) = (7,3)$ and the initial decision parameter is: $P2_0=b^2(x_0+1/2)^2+a^2(y_0-1)^2-a^2b^2=-151$

The remaining positions along the ellipse path in the first quadrant are then calculated as

k	Pl_k	$(X_{k+1}, Y_{k+1})_{At(0,0)}$	$2b^2X_{k+1}$	$2a^2Y_{k+1}$	
0.	-151	(8, 2)	576	256	\neg
1.	233	(8, 1)	576	128	
2.	748	(8, 0)	-	-	

	Mid-point Ellipse Algorithm:
] : 	Step 1: Input r_x , r_y and center (x_c, y_c) and obtain the first point on ellipse centered at origin as $(x_0, y_0) = (0, r_y)$
	Step 2: Calculate the initial value of decision parameter in region 1 as $p1_0=r_y^2-r_x^2r_y+\frac{1}{4}r_x^2$
	Step 3: At each step x_k position in region 1, starting at k=0, perform th following test:
	If $p1_k < 0$, the next point on ellipse centered at $(0, 0)$ is $(x_k + 1, y_k)$ and $p1_{k+1} = p1_k + 2r_v^2 x_{k+1} + r_v^2$

```
Otherwise, the next point along the ellipse is (x_k + 1, y_k - 1) and p1_{k+1} = p1_k + 2r_y^2x_{k+1} - 2r_x^2y_{k+1} + r_y^2

With, 2r_y^2x_{k+1} = 2r_y^2x_k + 2r_y^2, 2r_x^2y_{k+1} = 2r_x^2y_k - 2r_x^2

And continue until 2r_y^2x \ge 2r_x^2y

Step 4: Calculate the initial value of the decision parameter in region 2 using the last point (x_0, y_0) calculated in region 1 as p2_0 = r_y^2(x_0 + 1/2)^2 + r_x^2(y_0 - 1)^2 - r_x^2r_y^2

Step 5: At each step y_k in region 2, starting at k=0, perform the following test:

If p2_k > 0, the next point along the ellipse centered on (0, 0) is (x_k, y_k - 1) and p2_{k+1} = p2_k - 2r_x^2y_{k+1} + r_x^2
```

```
Otherwise, the next point is (x_k + 1, y_k - 1) and p2_{k+1} = p2_k + 2r_y^2x_{k+1} - 2r_x^2y_{k+1} + r_x^2

Step 6: Determine symmetry points in the other three quadrants.

Step 7: Move each calculated pixel position (x, y) onto the elliptical path centered on (x_c, y_c) and plot the coordinate values: x = x + x_c, y = y + y_c

Step 8: Repeat the steps for region 1 until 2r_y^2x \ge 2r_x^2y and region 2 until (r_{xx}, 0).
```

Area Filling

Filling of polygon with solid color i.e. to color a polygon.

Coloring must be done only inside its boundary.

There are two basic approaches to area filling in raster systems:

To determine the overlap intervals for scan lines that crosses the area.

To start from a given interior position and point outward from this until a specified boundary is met.

Algorithms for filled area primitives

a) Scan line polygon fill algorithm
b) Boundary fill algorithm
c) Flood fill algorithm
a c) Flood fill algori

Scan line polygon fill algorithm

This algorithm works by intersecting scanline with polygon edges and fills the polygon between pairs of intersections.

Rajesh Ra

Boundary fill Algorithm

It accepts an input, the co-ordinate of interior point p(x, y), a fill color and a boundary color.

Starting from point p(x, y), test is performed to determine whether the neighboring pixel is already filled or boundary is reached.

If not, the neighboring pixels are filled with fill color and their neighbors are tested.

This process is repeated till boundary is reached.

This algorithm is used when boundary is of single color.

Boundary fill 4-connected Algorithm

void Boundary_fill4(int x, int y, int b_color, int fill_color) {

int value = getpixel (x, y);

if (value! = b_color && value!=fill_color) {

putpixel (x, y, fill_color);

Boundary_fill4 (x-1, y, b_color, fill_color);

Boundary_fill4 (x+1, y, b_color, fill_color);

Boundary_fill4 (x, y-1, b_color, fill_color);

Boundary_fill4 (x, y+1, b_color, fill_color);

Boundary_fill4 (x, y+1, b_color, fill_color);

Boundary_fill4 (x, y+1, b_color, fill_color);

	Boundary fill 8-connected Algorithm Josh Rajo
	void Boundary-fill8(int x,int y,int b_color, int fill_color) { Rajes h Raje
	int current = getpixel (x, y);
	if (current !=b color && current!=fill color) {
	putpixel (x,y,fill_color); h Rajesh Rajesh Rajesh Rajesh
	Boundary_fill8(x-1, y, b_color,fill_color); $RajeshRajeshRajesh$
	Boundary_fill8(x+1, y, b_color, fill_color); RajeshRaj
	Boundary Till8(X, V-1, D color, Till color):
	Boundary_fill8(x, y+1, b_color, fill_color); Rajesh Rajesh Rajesh
	Boundary_fill8(x-1, y-1, b_color,fill_color); $RaieshRaieshRaiesh$
	Boundary_fill8(x-1, y+1, b_color,fill_color); a esh Rajesh Rajesh
7/	Boundary_fill8(x+1, y-1, b_color,fill_color);
	Roundary fill8(y+1 y+1 h colorfill color): \\

Flood Fill Algorithm Flood Fill Algorithm Flood Fill Algorithm Flood Flood Fill Algorithm Flood
- This algorithm is used when boundary is of different color.
- We start from a specified interior pixel (x, y) and reassign all pixel values that are currently set to a given interior color with desired fill-color.
- Two mechanisms are used for finding the neighboring pixel:
2 4-connected if they are adjacent horizontally and vertically. 3 1 8 2
$\underline{\mathbb{B}}$ 8-connected if they are adjacent horizontally, vertically and $\underline{s} h R \underline{a} j$ diagonally. $\underline{a} \underline{e} \underline{s} h R \underline{a} \underline{e} \underline{e} \underline{s} h R \underline{a} \underline{e} \underline{e} \underline{s} \underline{h} R \underline{a} \underline{e} \underline$

Algorithm (for 4-connected)

void flood_fill4(int x, int y, int fill_color, int old_color) {

int current = getpixel (x,y);

if (current==old_color) {

putpixel (x,y,fill_color);

flood_fill4(x-1, y, fill_color, old_color);

flood_fill4(x+1, y, fill_color, old_color);

flood_fill4(x, y-1, fill_color, old_color);

flood_fill4(x, y+1, fill_color, old_color);

flood_fill4(x, y+1, fill_color, old_color);
}

//Similarly flood fill for 8 connected can be also defined.

Rajesh Rajesh Rajesh Rajesh Rajesh Raje Rajesh Ra