Semantic Perceptual Image Compression

Using Deep Convolutional Networks

> Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo and James Storer

> > **Brandeis University**

Perceptual Image Compression

JPEG treats all blocks as equally important

Perceptual Image Compression

Humans perceive some regions as more important

Perceptual Image Compression

We use convolutional neural networks to identify 'salient' regions

Standard JPEG

Our method

- Develop novel CNN architecture to find all salient objects
- Specifically designed towards compression applications

- Develop novel CNN architecture to find all salient objects
- Specifically designed towards compression applications
- Achieves higher visual quality for the same PSNR and compressed size

- Develop novel CNN architecture to find all salient objects
- Specifically designed towards compression applications
- Achieves higher visual quality for the same PSNR and compressed size
- Final image is encoded as standard JPEG
- Use any off-the-shelf JPEG decoder to decode

Convolutional Neural Network

CNN filter response

Higher activations -> Object Location

See: Interactive visualization with MNIST

CNN filter response

- Higher activations -> Object Location

Problem: Does not capture object structure

See: Interactive visualization with MNIST

- Class activation map is the obtained by taking the output of GAP and learning weights that maximize the discriminative activations for a given class.

Class activation maps of top 5 predictions

Class activation maps for one object class

- Problem: Identifies only one object.

Multi-Structure Region of Interest (MSROI)

Perform weak localization like CAM, but detect multiple salient objects.

- Add one more dimension to feature maps - classes.

- Add one more dimension to feature maps classes.
- Learns class invariant feature maps.

- Add one more dimension to feature maps classes.
- Learns class invariant feature maps.
- For training, replace softmax with sigmoid in order to prevent "squeezing" of the probabilities of classes that are not 'ground-truth'.

MSROI - No Free Lunch

For L layers, where each layer l contains d_l features, k is the max pooling stride size. an image of size $n \times n$, and with C classes

$$\sum_{l \in \mathbf{L}} d_l \times \mathbf{C} \times \frac{n}{k^l} \times \frac{n}{k^l}$$

- For a color image of decent size and with many filters per layer and several layers deep, this number is huge.

MSROI - No Free Lunch

For L layers, where each layer l contains d_l features, k is the max pooling stride size. an image of size $n \times n$, and with C classes

$$\sum_{l \in \mathbf{L}} d_l \times \mathbf{C} \times \frac{n}{k^l} \times \frac{n}{k^l}$$

- For a color image of decent size and with many filters per layer and several layers deep, this number is huge.

Solution

- Make number of classes very small by using Synsets hierarchy of classes in Imagenet
- Share feature maps across classes to jointly learn lower level features

MSROI - Fine-grained is overkill

- Most CNN models, including CAM, are trained on Imagenet, which has 1000 classes.
- Some of the classes are fine-grained like different breeds of dog.

MSROI - Fine-grained is overkill

- Most CNN models, including CAM, are trained on Imagenet, which has 1000 classes.
- Some of the classes are fine-grained like different breeds of dog.
- Intuition, they will have similar "semantic" map, because of similar object structure.

Where do we look?

SALICON Dataset

Where do we look?

Class Activation Map (CAM)

CAM

$$M_c(x,y) = \sum_{d \in \mathbf{D}} w_d^c f_d(x,y)$$

where w_d^c is learned for every class c and for layer 'd'

$$P(c) = \frac{\exp(\sum_{xy} M_c(x, y))}{\sum_{c} \exp(\sum_{xy} M_c(x, y))}$$

 Z_l^c denotes threshold which signifies 'presence' of a class

CAM

$$M_c(x,y) = \sum_{d \in \mathbf{D}} w_d^c f_d(x,y)$$

where $\ w_d^c$ is learned for every class c and for layer 'd'

$$P(c) = \frac{\exp(\sum_{xy} M_c(x, y))}{\sum_{c} \exp(\sum_{xy} M_c(x, y))}$$

MSROI Map

$$Z_l^c = \sum_{d \in \mathbf{D}} \sum_{x,y} f_d^c(x,y)$$

MSROI - Details

- Z_l^c denotes threshold which signifies 'presence' of a class
- \widehat{M} denotes Multi-structure map generated using MSROI. Compare this with CAM map (M)
- It is sum over all classes with total activations Z_l^c beyond some threshold.

CAM

$$M_c(x,y) = \sum_{d \in \mathbf{D}} w_d^c f_d(x,y)$$

where w_d^c is learned for every class c and for layer 'd'

$$P(c) = \frac{\exp(\sum_{xy} M_c(x, y))}{\sum_c \exp(\sum_{xy} M_c(x, y))}$$

MSROI Map

$$Z_l^c = \sum_{d \in \mathbf{D}} \sum_{x,y} f_d^c(x,y)$$

$$\widehat{M}(x,y) = \sum_{c \in \mathbf{c}} \begin{cases} \sum_{d} f_{d}^{c}(x,y), & \text{if } Z_{l}^{c} > T \\ 0 & \text{otherwise} \end{cases}$$

MSROI - Details

- Z_l^c denotes threshold which signifies 'presence' of a class
- \widehat{M} denotes Multi-structure map generated using MSROI. Compare this with CAM map (M)
- It is sum over all classes with total activations Z_l^c beyond some threshold.
- For training use sigmoid instead of softmax to prevent losing information about 'other objects'

CAM

$$M_c(x, y) = \sum_{d \in \mathbf{D}} w_d^c f_d(x, y)$$

where w_d^c is learned for every class c and for layer 'd'

$$P(c) = \frac{\exp(\sum_{xy} M_c(x, y))}{\sum_c \exp(\sum_{xy} M_c(x, y))}$$

MSROI Map

$$Z_l^c = \sum_{d \in \mathbf{D}} \sum_{x,y} f_d^c(x,y)$$

$$\widehat{M}(x,y) = \sum_{c \in \mathbf{c}} \begin{cases} \sum_{d} f_{d}^{c}(x,y), & \text{if } Z_{l}^{c} > T \\ 0 & \text{otherwise} \end{cases}$$

$$P(c) = \frac{1}{1 + \exp(Z_l^c)}$$

MSROI - examples on Kodak images

JPEG

 Traditional JPEG coders apply a fixed scaling factor to the Quantization matrices.

- Our method employs a variable scaling factor.

Train a MSROI model - only once for all the images!

Train a MSROI model - only once for all the images! For each image encoding:

Use the MSROI to obtain the 'heatmap' of all salient objects.

Train a MSROI model - only once for all the images! For each image encoding:

- Use the MSROI to obtain the 'heatmap' of all salient objects.
- Encode the 'hot' areas with higher Q value (means lower quantization), and encode the 'cold' areas (which denotes background) with low Q value.

Train a MSROI model - only once for all the images! For each image encoding:

- Use the MSROI to obtain the 'heatmap' of all salient objects.
- Encode the 'hot' areas with higher Q value (means lower quantization), and encode the 'cold' areas (which denotes background) with low Q value.
- Decode these blocks and arrange them in the same position from where they were extracted.

Train a MSROI model - only once for all the images! For each image encoding:

- Use the MSROI to obtain the 'heatmap' of all salient objects.
- Encode the 'hot' areas with higher Q value (means lower quantization), and encode the 'cold' areas (which denotes background) with low Q value.
- Decode these blocks and arrange them in the same position from where they were extracted.
- Encode this using standard JPEG at a uniform Q level.

Results

PSNR-S is the PSNR of the 'salient' regions as identified by MSROI

	PSNR-S	PSNR	PSNR-HVS	PSNR-HVSM	SSIM	MS-SSIM	VIFP
			Kodak Pho	toCD [24 images]			
Std JPEG	33.91	34.70	34.92	42.19	0.969	0.991	0.626
Our model	39.16	34.82	35.05	42.33	0.969	0.991	0.629
	MIT Sa	aliency Ben	chmark [Outde	oor Man-made +	Natural, 2	00 images]	
Std JPEG	36.9	31.84	35.91	45.37	0.893	0.982	0.521
Our model	40.8	32.16	36.32	45.62	0.917	0.990	0.529
	R	e-sized ima	ges of a very l	arge image, see fi	ig: 4 [20 im	ages]	
Std JPEG	35.4	27.46	33.12	43.26	0.912	0.988	0.494
Our model	39.6	28.67	34.63	44.89	0.915	0.991	0.522

- For all these experiments - size of images is same (±1%) on both methods

Results

PSNR-S is the PSNR of the 'salient' regions as identified by MSROI

	PSNR-S	PSNR	PSNR-HVS	PSNR-HVSM	SSIM	MS-SSIM	VIFP
	Kodak Ph <mark>o</mark> toCD [24 images]						
Std JPEG	33.91	34.70	34.92	42.19	0.969	0.991	0.626
Our model	39.16	34.82	35.05	42.33	0.969	0.991	0.629
	MIT Sa	liency Ben	chmark [Out	loor Man-made +	- Natural, 2	00 images]	
Std JPEG	36.9	31.84	35.91	45.37	0.893	0.982	0.521
Our model	40.8	32.16	36.32	45.62	0.917	0.990	0.529
	R	e-sized ima	ges of a very	large image, see f	ig: 4 [20 im	ages]	
Std JPEG	35.4	27.46	33.12	43.26	0.912	0.988	0.494
Our model	39.6	28.67	34.63	44.89	0.915	0.991	0.522

- For all these experiments size of images is same (±1%) on both methods
- Our model always maintains the PSNR and other perceptual metrics

Results

PSNR-S is the PSNR of the 'salient' regions as identified by MSROI

	PSNR-S	PSNR	PSNR-HVS	PSNR-HVSM	SSIM	MS-SSIM	VIFP
	Kodak PhotoCD [24 images]						
Std JPEG Our model	33.91 39.16	$\frac{34.70}{34.82}$	$\frac{34.92}{35.05}$	42.19 42.33	0.969 0.969	0.991 0.991	0.626 0.629
	MIT Sa	liency Ben	chmark [Outdo	oor Man-made +	Natural, 2	00 images]	
Std JPEG Our model	36.9 40.8	31.84 32.16	$35.91 \\ 36.32$	$45.37 \\ 45.62$	$0.893 \\ 0.917$	0.982 0.990	0.521 0.529
	Re	e-sized ima	ges of a very l	arge image, see fi	ig: 4 [20 im	ages]	
Std JPEG Our model	35.4 39.6	27.46 28.67	33.12 34.63	43.26 44.89	0.912 0.915	0.988 0.991	$0.494 \\ 0.522$

- For all these experiments size of images is same (±1%) on both methods
- Our model always maintains the PSNR and other perceptual metrics
- Effective on images much different than the training set

Results - comparison of different categories

Text in the bar represents categories of object represented in the image

Results - comparison of different categories

Text in the bar represents categories of object represented in the image

PSNR-HVS of our model minus standard JPEG Positive values (blue color) means our model is better.

Performs better on all 'categories' except 'Pattern'

Results - comparison of different categories

Text in the bar represents categories of object represented in the image

- Performs better on all 'categories' except 'Pattern'
- Patterns have no semantic content and thus model is not able to determine any 'regions-of-interest'.

Results - comparison of different resolutions

Numbers in the bar represents resolution of image (height x width)

Results - comparison of different resolutions

Numbers in the bar represents resolution of image (height x width)

- Performs equally well on different size images and with many objects.
- This signifies that our model is able to extract object at different scales.

Summary

- MSROI: A new CNN design for salient region detection:
 Avoids precise object boundary (not needed for image compression).
 Is able to detect multiple salient regions.
- Encoding is slower than standard JPEG but reasonable (90 images/sec on GPU).
- Decoding employs standard off-the-shelf decoder, thus there is no added cost.
- Technique is agnostic to the kind of 'encoder-decoder' used. Thus can be expanded to JPEG-2000.

Code:

github.com/iamaaditya/image-compression-cnn

Thankyou

References

Correspondence: aprakash@brandeis.edu

Object localization/detection

1. 2. 3. 4.	Tools for efficient Object Detection R-CNN for Object Detection Segmentation as Selective Search (Poster) Faster R-CNN: Towards real-time object detection	[pdf] [pdf] [pdf] [pdf]
Weak l	<u>ocalization</u>	.,
5. 6. 7.	Is localization for free? - Original paper which investigated weakly supervised localization. Learning Deep Features for Discriminative Localization - Subsequent paper, which proposed CAM. Semantic Perceptual Image Compression using Deep Convolution Networks - Paper this presentation is about.	[pdf] [pdf] [pdf]
<u>JPEG P</u>	erceptual Quality Metrics	
8.	Multi-scale Structural Similarity for Image Quality Assessment - MSSIM	[pdf]
9.	A Modified PSNR Metric based on HVS for Quality Assessment of Color Images - PSNR-HVS	[pdf]
10.	On Between-Coefficient Contrast Masking of DCT Basis Functions - PSNR-HVS-M	[pdf]
11.	Image Information and Visual Quality - VIFP	[pdf]
<u>lmage</u>	compression using deep learning	
12.	Variable Rate Image Compression with Recurrent Neural Networks	pdf
13.	Full Resolution Image Compression with Recurrent Neural Networks	[pdf]
14.	End-to-end Optimized Image Compression	[pdf]