Non-Linear Models

Weizi Li

Department of Computer Science University of Memphis

Outline 1

- Feature Mapping
- Kernels

Feature Mapping

- Consider the following 1-D example with 2 classes.
- We can separate the 2 classes using a linear classifier:

$$h(x; \theta, \theta_0) = sign(\theta x + \theta_0)$$

(θ and x are scalars)

- Consider the following 1D example with 2 classes.
- We cannot separate the 2 classes using a linear classifier. Why? data are not linearly separable.

- Feature mapping: $x \to \phi(x) = [x, x^2]^T$
- Accordingly more parameter to learn: $\theta = [\theta_1, \theta_2]^T$
- Now we have:

$$h(x; \theta, \theta_0) = sign(\theta \phi(x) + \theta_0) = sign(\theta_1 x + \theta_2 x^2 + \theta_0)$$

 \bullet $\theta_1 x + \theta_2 x^2 + \theta_0$ is non-linear (quadratic function, parabola)

■ After feature mapping, the 2 classes can now be separated using a linear classifier.

■ Linear classifier in the new feature representation corresponds to non-linear classifier in the original feature representation

- Consider the following 2-D example with 2 classes.
- We cannot separate the 2 classes using a linear classifier.

- Feature mapping: $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2]^T \rightarrow \phi(\mathbf{x}) = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1 \mathbf{x}_2]^T$
- $h(x; \theta, \theta_0) = sign(\theta\phi(x) + \theta_0) = sign(\theta_1x_1 + \theta_2x_2 + \theta_3x_1x_2 + \theta_0)$
- \bullet $\theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_0$ is non-linear
- Now we can separate the 2 classes using a linear classifier (a 2-D plane)

■ x: represents raw data in above-mentioned examples, but usually x represents features extracted from raw data.

- We can design infinitely many "new features" and achieve more and more expressive feature representation.
- E.g., $[x_1, x_2]^T \rightarrow [x_1, x_2, x_1x_2, x_1^2, x_2^2, \dots]^T$

- Pros: feature representation can be expressive
- Cons: requires manual design

Kernels

- Consider the following 2 feature vectors.
- $x = [x_1, x_2]^T \to \phi(x) = [x_1, x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2]^T$
- $z = [z_1, z_2]^T \to \phi(z) = [z_1, z_2, z_1^2, z_2^2, \sqrt{2}z_1z_2]^T$

■ Consider the following equation:

$$(x \cdot z) + (x \cdot z)^2 = x_1 z_1 + x_2 z_2 + x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$

- Achieved the same feature representation without explicit feature mapping
- That means we can operate high-dimensional features without manually design them

- A function that is constructed using the original feature representation
- E.g., $k(x, z) = (x \cdot z) + (x \cdot z)^2$

- Constant: k(x, z) = 1
- Addition: $k(x, z) = k_1(x, z) + k_2(x, z)$
- Multiplication: $k(x, z) = k_1(x, z)k_2(x, z)$
- Multiplication w/ other functions: $k(x, z) = f(x)k_1(x, z)f(z)$

■ A kernel function can be infinitely expressive while easy to compute

- RBF kernel: $k(x, z) = e^{-\gamma ||x-z||^2}$
 - $ightharpoonup \gamma$: spread factor
 - $\|x-z\|$: distance between x and z
- Why infinitely expressive?
 - ► Gaussian pdf: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
 - $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

■ RBF kernel: $k(x, z) = e^{-\gamma ||x-z||^2}$

- Treat each training example as a landmark /
- Given an unknown data point x, we can compute its distance to all landmarks: $f_i = similarity(x, l_i) = e^{-\gamma ||x-l_i||^2}, \forall i$

■ If x is near a specific I_i :

$$f_i \approx e^{-\gamma \times 0} \approx 1$$

■ If x is far away from a specific I_i :

$$f_i \approx e^{-\gamma \times \text{large number}} \approx 0$$

- Using all computed f_i , we can use a linear classifier $\sum_i \theta_i f_i$ to predict the label of the unknown data point x
- E.g., if $\sum_i \theta_i f_i \ge 0$, x is +, otherwise x is -

- RBF kernel is the driving force for Support Vector Machine (SVM)—one of the best ML models before deep learning era
- γ is a hyperparameter to be tuned (in many implementations of SVM, people usually tune $C = \frac{1}{\gamma}$)

■ Small γ : high bias, low variance (top left, f_i spread out more)

■ Large γ : low bias, high variance (bottom right, f_i spread out less)

■ raw data \rightarrow feature engineering (and kernel function design) via human experts \rightarrow model training and tuning \rightarrow outcome