

Crypto Prediction

Using Machine Learning to Predict Cryptocurrency Market Data

Reason for the Selected Topic

Due to dramatic changes in the world financial environment, cryptocurrencies have gained popularity as one of the alternative investment available to most. The volatility of cryptocurrency assets would pose a challenge to predict as there are multiple factors that influenced market data. Using Machine Learning, we hope to create a way to predict these crypto market data by studying the behavior of past data. We will assess and analyze historical data of six most popular cryptocurrencies and hope to compare the findings to real world market data.

Questions We Hope to Answer with Data

- Which Machine Learning Model would best predict price changes on cryptocurrency from historical price?
- Which asset(s) is more stable out of the
 6 cryptocurrencies chosen for prediction?
- Which features affect the close price the most?

Description of Data Source

- <u>Kaggle</u> the dataset contains historical trades on several crypto assets such as Bitcoin, Binance Coin, Etherium, Litecoin and Monero.
- G-Research is a quantitative finance research firm is Europe. They utilized machine learning, big data and the most advanced technology to predict movements in the financial markets.

ERD

Process Map

Data Cleaning

Data Processing Machine Learning

Optimization

Visualization

- Filling NaN data
- Forward fill of missing values in time series data
- Convert the minute-to-minute data to day-to-day data
- Merge Datasets

- Manual split of training/testing set
- Feature importances to determine best features
- Linear Regression
 Random Forest Regression
 XGBooster Regression
 Artificial Neural network
- RandomGridSearchCV to
 determine best parameter for

 HyperTuning
- Finding best hyperparameters for Neural Network using GridSearchCV

Tableau Public Matplotlib

Tools and Resources Used

- PostgreSQL
- Amazon Web Services (AWS)
- Jupyter Notebook
- Tableau Public
- Google Collab
- Google Slides
- Python language
- Python Dependencies: Scikit-learn, pandas, numpy, matplotlib, SciPy, tensorflow, StandardScaler, xgboost

Data Exploration

- timestamp A timestamp for the minute covered by the row.
- Asset ID An ID code for the crypto asset.
- Count The number of trades that took place this minute.
- Open The USD price at the beginning of the minute.
- High The highest USD price during the minute.
- Low The lowest USD price during the minute.
- Close The USD price at the end of the minute.
- Volume The number of crypto asset units traded during the minute.
- VWAP The volume weighted average price for the minute.
- Target 15 minute residualized returns.
 - Check the missing values in each column and fill NAN values
- Choose 6 most popular crypto assets for analysis
- Forward filling gaps using the 3. .reindex() method for each crypto

crypto df = pd.read csv('Resources/train.csv') crypto df.head()

	timestamp	Asset_ID	Count	Open	High	Low	Close	Volume	VWAP	Target
0	1514764860	2	40.0	2376.5800	2399.5000	2357.1400	2374.5900	19.233005	2373.116392	-0.004218
1	1514764860	0	5.0	8.5300	8.5300	8.5300	8.5300	78.380000	8.530000	-0.014399
2	1514764860	1	229.0	13835.1940	14013.8000	13666.1100	13850.1760	31.550062	13827.062093	-0.014643
3	1514764860	5	32.0	7.6596	7.6596	7.6567	7.6576	6626.713370	7.657713	-0.013922
4	1514764860	7	5.0	25.9200	25.9200	25.8740	25.8770	121.087310	25.891363	-0.008264

asset df = pd.read csv('Resources/asset details.csv') asset df

```
Asset ID
              Weight
                         Asset Name
         2 2.397895
                          Bitcoin Cash
         0 4.304065
                         Binance Coin
2
         1 6,779922
                               Bitcoin
         5 1.386294
                               EOS.IO
         7 2.079442 Ethereum Classic
         6 5.894403
                             Ethereum
         9 2.397895
                              Litecoin
         11 1.609438
                              Monero
```

Data Exploration

4. Convert minutes data to daily data for each cryptocurrency

```
# convert minute data to daily data for Bitcoin
bit.reset_index(inplace=True)
bit["timestamp"]=bit["timestamp"].apply(lambda x: x-60) # run only once
bit["date"]=pd.to_datetime(bit["timestamp"], unit='s')
# create a new daily DataFrame for Bitcoin
bit_daily_df=pd.DataFrame(columns=["Asset_ID", "Open", "High", "Low", "Close", "Volume", "VWAP"])
bit_daily_df['High'] = bit.groupby(pd.Grouper(freq='D', key='date')).max()['High']
bit_daily_df['Low'] = bit.groupby(pd.Grouper(freq='D', key='date')).min()['Low']
bit_daily_df['Open'] = bit.Open[0:-1:24*60].values
bit_daily_df['Close'] = bit.Close[24*60-1:len(bit):24*60].values
bit_daily_df['Asset_ID'] = bit.Asset_ID[0:-1:24*60].values
bit_daily_df['Volume'] = bit.groupby(pd.Grouper(freq='D', key='date')).sum()['Volume']
bit_daily_df['VWAP'] = bit.groupby(pd.Grouper(freq='D', key='date')).mean()['VWAP']
```

	Asset_ID	Open	High	Low	Close	Volume	VWAP	
date								
2018-01-01	1	13835.194	14442.9	12750.00	13468.698	57889.811032	13439.704032	
2018-01-02	1	13459.606	15500.0	12798.00	14743.424	105541.245764	13885.548774	
2018-01-03	1	14739.148	15599.7	14150.00	15107.792	83829.059632	14968.234757	
2018-01-04	1	15096.770	15500.1	13918.04	15158.492	101148.935997	14820.300206	
2018-01-05	1	15158.346	17200.0	14600.00	16935.556	108673.177856	15828.101106	

Overview of Data

Closing price in USD of 6 chosen crypto assets from 2018 to 2021

Machine Learning models

Analysis Results

Preditions by Artifical Neural Network

Analysis Results

Preditions by XGBoost

Preditions by Random Forest

Analysis Results continued...

Tableau Public Dashboard

	⊗	B			L	M
ML Models	Binance Coin	Bitcoin	Eos.IO	Ethereum	Litecoin	Monero
Linear Regresssion	0.993	0.985	0.964	0.990	0.980	0.976
Random Forest	-3.132	-3.333	0.958	-1.803	0.889	0.961
xGBoost Regression	-3.132	-2.921	0.965	-1.556	0.895	0.971
Artificial Neural Network	0.993	0.986	0.694	0.990	0.980	0.976

Questions We Hope to Answer with Data

- Which Machine Learning Model would best predict price changes on cryptocurrency from historical price?
- Which asset(s) is more stable out of the
 6 cryptocurrencies chosen for prediction?
- Which features affect the close price the most?

Recommendations for Future Analysis

- Use Time Series API for the forecasting portion of the analysis
- Utilized open-sourced library called Prophet designed for making forecasts
- Utilized yfinance package to pull real time data to make comparison to model prediction
- Utilized other models for forecasting (LSTM)

Anything The Team Would Have Done Differently

- Allocate time to explore time series forecasting, experiment with other libraries like Prophet and other ML models (LSTM, ...)
- Ensemble models has limitations they cannot extrapolate beyond what they are trained for. Be mindful of the training data.