Generalized functions Tutorial notes

Part 1. Tutorial 1

1. Technical issues

- (1) Tutor: Shai Shechter;
- (2) Office, and office hours: Goldsmith 210, OH to be coordinated by mail;
- (3) Tutorial notes are available on https://shaishechter.github.io/;
- (4) Lecture notes distributed by mail (create mailing list).

2. Basic definitions and properties

Definition 2.1. (1) Let $C^{\infty}(\mathbb{R})$ denote the space of smooth functions on \mathbb{R} , i.e. functions $f: \mathbb{R} \to \mathbb{R}$ which have derivatives of any order at any $x \in \mathbb{R}$.

(2) For a function $f: \mathbb{R} \to \mathbb{R}$ define the support of f to be

$$\operatorname{Supp}(f) = \operatorname{cl}\left(\left\{x \in \mathbb{R} : f(x) \neq 0\right\}\right).$$

(3) Let $C_c^{\infty}(\mathbb{R}) \subseteq C^{\infty}(\mathbb{R})$ denote the space of smooth functions on \mathbb{R} with compact support.

EXERCISE 2.2. Prove $C_c^{\infty}(\mathbb{R}) \neq 0$.

Solution. We show the following:

For any a < b real numbers, there exists a function $f_{a,b} \neq 0$ such that $\operatorname{Supp}(f_{a,b}) = [a,b].$

Fix $a \in \mathbb{R}$, and define

$$h_a(x) = e^{-1/(x-a)^2} \cdot \delta_{x>a}(x) = \begin{cases} e^{-1/(x-a)^2} & \text{if } x > a \\ 0 & \text{otherwise} \end{cases}$$

The following are easy:

- (1) $h_a(x) = 0$ if x < a and $h_a(x) > 0$ if $x \le a$;
- (2) $h_a(x) > 0$ if x > a and $\lim_{x \to a^+} h_a(x) = 0$; In particular, $h_a(x)$ is continuous;
- (3) $\lim_{x \to +\infty} h_a(x) = 1$.

We show $h_a(x) \in C^{\infty}(\mathbb{R})$. Once, we have this, we may take $f_{a,b}(x) = h_a(x) \cdot h_{-b}(-x)$. Since $h_a(x) = h_0(x-a)$, it suffices to verify that $h_0(x) = e^{-1/x^2} \in C^{\infty}(\mathbb{R})$. We show that the k-th derivative of h_0 is continuous on \mathbb{R} for any $k \in \mathbb{N}$.

CLAIM. For any $k \in \mathbb{N}$, there exists a polynomial $p_k(x)$ of degree < 3k such that in the domain $x \neq 0$

$$h_0^{(k)}(x) = \frac{p_k(x)}{x^{3k}} h_0(x).$$

Proof of claim. In the domain x < 0 h_0 is constant zero, so there is nothing to prove. For x > 0 we argue by induction on k, the case k = 1 being true since $h'_0(x) = \frac{2}{x^3}h_0(x)$ in this domain. The induction step is:

$$h_0^{(k+1)}(x) = \frac{p_k'(x)x^{3k} - 3kx^{3k-1}p_k(x)}{x^{6k}}h_0 - \frac{p_k(x)}{x^{3k}}h_0'(x)$$

$$= \left(\frac{p_k'(x)x^3 - 3kx^2p_k(x) - 2p_k(x)}{x^{3k+3}}\right)e^{-1/x^2}$$

and the denominator on the LHS has degree $\leq \deg p_k + 2 < 3k + 3$.

The smoothness of h_0 follows from the following fact, left as a home-exercise.

CLAIM. $\lim_{x\to 0} \frac{1}{x^m} e^{-1/x^2} = 0$ for any $m \in \mathbb{N}$.

In particular, the two claims imply that

$$\lim_{x \to 0^{-}} h_0^{(k)}(x) = \lim_{x \to 0^{+}} h_0^{(k)}(x) = 0,$$

for any $k \in \mathbb{N}$.

DEFINITION 2.3. Given absolutely differentiable functions $f, g : \mathbb{R} \to \mathbb{R}$ one may define the convolution of f and g to be

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - x)g(x)dx = \int_{-\infty}^{\infty} f(x)g(t - x)dx.$$

EXAMPLE 2.4. For example, if f is continuous and $g = I_{[0,1]}$, where $I_{[0,1]}$ is the indicator function of [0,1], then

$$(f * g)(t) = \int_{t}^{t-1} f(x)dx. \tag{2.1}$$

That is, f * g is obtained from f by summing over a sliding window of width 1.

Remark 2.5. Note that f * g is again absolutely integrable on \mathbb{R} , as

$$\int_{-\infty}^{\infty} |f * g(t)| dt \le \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(t - x)g(x)| dx dt$$

$$= \int_{-\infty}^{\infty} |g(x)| \left(\int_{-\infty}^{\infty} |f(t - x)| dt \right) dx = ||g||_{1} \cdot ||f||_{1},$$

where the penultimate equality follow from Tonelli's Theorem.

In more compact form- $L^1(\mathbb{R}) * L^1(\mathbb{R}) \subseteq L^1(\mathbb{R})$. The next exercise proves two additional inclusions of this form.

Exercise 2.6. (1) Show that convolution is commutative and associative.

- (2) Given $f, g \in L^1(\mathbb{R})$ with f differentiable with compact support, show that (f*g)' = f'*g. Deduce $C_c^{\infty}*L^1(\mathbb{R}) \subseteq C^{\infty}(\mathbb{R})$. Can we have $\subseteq C_c^{\infty}(\mathbb{R})$?
- (3) Given $f, g \in C_c^{\infty}(\mathbb{R})$, show $\operatorname{Supp}(f * g) \subseteq \operatorname{Supp}(f) + \operatorname{Supp}(g)$, where $X + Y = \{x + y : x \in X, y \in Y\}$ is the Minkowski sum. Is this an equality? Deduce $C_c^{\infty}(R) * C_c^{\infty}(\mathbb{R}) \subseteq C_c^{\infty}(\mathbb{R})$.

Solution. (1) Both assertions follow by change of variable; see (2.1).

(2) We have, for any $t \in \mathbb{R}$ and $\epsilon > 0$,

$$\frac{f * g(t+\epsilon) - f * g(t)}{\epsilon} = \int_{-\infty}^{\infty} \left(\frac{f(t+\epsilon - x) - f(t-x)}{\epsilon} \right) g(x) dx. \tag{2.2}$$

Taking $\lim as \epsilon \to 0$, the claim would follow if we can justify replacing the limit and the integral.

Note that, as Supp(f) is compact and f is differentiable, we have that

$$M = \sup_{\substack{y \in \text{Supp}(f)\\ \epsilon \in (0,1]}} \left| \frac{f(y+\epsilon) - f(y)}{\epsilon} \right| < \infty;$$

(home exercise; hint: $F(y,\epsilon) = \frac{f(y+\epsilon)-f(y)}{\epsilon}$ extends to a continuous function on a compact set in \mathbb{R}^2). In particular, if $0 < \epsilon \le 1$ then the integrand in (2.2) is bounded above by $H(x) = M \cdot g(x)$, which is absolutely integrable, since g is. In particular, by the Dominated Convergence Theorem, we have that

$$(f * g)'(t) = \lim_{\epsilon \to 0} \frac{f * g(t + \epsilon) - f * g(t)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \left(\frac{f(t + \epsilon - x) - f(t - x)}{\epsilon} \right) g(x) dx$$

$$= \int_{-\infty}^{\infty} \lim_{\epsilon \to 0} \left(\frac{f(t + \epsilon - x) - f(t - x)}{\epsilon} \right) g(x) dx = f' * g(t)$$

The assertion $C_c^{\infty}(\mathbb{R}) * L^1(\mathbb{R}) \subseteq C^{\infty}(\mathbb{R})$ follows easily. The inclusion into $C_c^{\infty}(\mathbb{R})$ does not hold (home exercise).

(3) Let $t \notin \operatorname{Supp}(f) + \operatorname{Supp}(g)$, we want to show f * g(t) = 0. Indeed, if $f * g(t) \neq 0$ then

$$f * g(t) = \int_{-\infty}^{\infty} f(t - x)g(x)dx \neq 0,$$

which implies, in particular, that the function f(t-x)g(x) is not everywhere zero. In particular, there exists $x \in \mathbb{R}$ such that both $f(t-x), g(x) \neq 0$, i.e. $x \in \text{Supp}(g)$ and $t-x \in \text{Supp}(f)$. But then

$$t = (t - x) + x \in \text{Supp}(f) + \text{Supp}(g),$$

a contradiction.

The inclusion $\operatorname{Supp}(f * g) \subseteq \operatorname{Supp}(f) + \operatorname{Supp}(g)$ may be strict. As a non-example, we may take $f(x) = x \cdot I_{[-1,1]}$ and $g(x) = I_{[-2,2]}$, for which $\operatorname{Supp}(f) = [-1,1]$, $\operatorname{Supp}[g] = [-2,2]$ and $\operatorname{Supp}(f) + \operatorname{Supp}(g) = [-6,6]$, but $(-1,1) \cap \operatorname{Supp}(f * g) = \emptyset$. These are, of course, non-smooth compactly supported functions, but examples in $C_c^{\infty}(\mathbb{R})$ also exist (home exercise: find such!).

tions, but examples in $C_c^{\infty}(\mathbb{R})$ also exist (home exercise: find such!). Lastly, the inclusion $C_c^{\infty}(\mathbb{R})*C_c^{\infty}(\mathbb{R})\subseteq C_c^{\infty}(\mathbb{R})$, follows from the continuity of addition, as a map $\mathbb{R}^2\to\mathbb{R}$ (maps the compact set $\mathrm{Supp}(f)\times\mathrm{Supp}(g)$ onto a compact set). Note that, in general, if X and Y are closed (but not compact) then X+Y may not be closed (e.g. $X=\{(x,y):xy=1\}$, $Y=\{(x,y):x=0\}\subseteq\mathbb{R}^2$).

EXERCISE 2.7. Let $K \subseteq \mathbb{R}$ be a compact set and $U \supseteq K$ an open set. Show that there exists $f \in C_c^{\infty}(U) := \{g \in C_c^{\infty}(\mathbb{R}) : \operatorname{Supp}(g) \subseteq U\}$ such that $f \mid_{K} \equiv 1$.

Remark 2.8. This exercise holds in much greater generality.

Solution. Set $\epsilon = d(K, U^c) = \inf \{ d(x, y) : x \in K, y \in U^c \}$, and, for any $\delta > 0$, put $K_{\delta} = \{ x \in U : d(x, K) \leq \delta \}$, a closed set in U. By Urysohn's Lemma, there exists $\varphi : U \to [0, 1]$ such that $\varphi \mid_{K_{\epsilon/4}} \equiv 1$ and $\varphi \mid_{\operatorname{cl}\left(K_{3\epsilon/4}^c\right)} \equiv 0$. Let $\psi \in C_c^{\infty}(\mathbb{R})$ have $\operatorname{Supp}(\psi) = [-\epsilon/4, \epsilon/4]$, $\psi(0) \neq 0$ and $\int_{\mathbb{R}} \psi(x) dx = 1$ (normalise the function taken in Exercise 2.2). By Exercise 2.6, $f = \varphi * \psi$ is smooth and has support $\operatorname{Supp}(f) = \operatorname{Supp}(\psi) + \operatorname{Supp}(\varphi) \subseteq K_{3\epsilon/4} + [-\epsilon/4, \epsilon/4] \subseteq U$. Furthermore, for any $x \in K$,

$$f(x) = \int_{\mathbb{R}} \varphi(x-t)\psi(t)dt = \int_{-\epsilon/4}^{\epsilon/4} \underbrace{\varphi(x-t)}_{x-t \in K_{\epsilon/4}} \psi(t)dt = \int_{-\epsilon/4}^{\epsilon/4} \psi(t)dt = 1.$$

Remark 2.9. Note that the function f we obtained in Exercise 2.7 is, in addition, non-negative.

EXERCISE 2.10 (Partition of unity). Let $f \in C_c^{\infty}(\mathbb{R})$, I an indexing set and $\mathbb{R} = \bigcup_{i \in I} U_i$ an open cover. Then there exist $f_i \in C_c^{\infty}(U_i)$, for any $i \in I$, such that $f = \sum_{i \in I} f_i$.

Solution. Put $K = \operatorname{Supp}(f)$. Since K is compact, there exist $i_1, \ldots, i_r \in I$ such that $K \subseteq \bigcup_{j=1}^r U_{i_j}$.

CLAIM. There exists open sets $V_1, \ldots, V_r \subseteq \mathbb{R}$ such that $K \subseteq \bigcup_{j=1}^r V_j$ and such that $\operatorname{cl}(V_j) \subseteq U_{i_j}$, for any $j = 1, \ldots, r$.

Proof of Claim. Put $\mathcal{A} = \{V \subseteq \mathbb{R} \text{ open} : \operatorname{cl}(V) \subseteq U_{i_j} \text{ for some } j = 1, \ldots, r\}$. Note that, as K is a regular topological space $(T_3, \text{ i.e. separates points from closed sets})$, for any $x \in K$, there exists $V \in \mathcal{A}$ such that $x \in V$. In particular \mathcal{A} is a cover of K, and there exists a finite subcover $\mathcal{B} \subseteq \mathcal{A}$. We can choose a function $f : \mathcal{B} \to \{1, \ldots, r\}$, mapping each $V \in \mathcal{B}$ to $j \in \{1, \ldots, r\}$ such that $\operatorname{cl}(V) \subseteq U_{i_j}$. Define, for any $j = 1, \ldots, u_j$,

$$V_j := \bigcup f^{-1}(U_{i_j}).$$

As V_j is the union of finitely many open sets whose closures are contained in U_{i_j} , so does $\operatorname{cl}(V_j) \subseteq U_{i_j}$.

Using the claim and Exercise 2.7, for any $j=1,\ldots,r$ we may choose ρ_j such that $\rho_j \mid_{K \cap \operatorname{cl}(V_j)} \equiv 1$ and $\rho_j \mid_{U_{i_j}^c} \equiv 0$. In particular, since the ρ_j 's can be taken to be non-negative, we have that $\sum_{j=1}^r \rho_j(x) \neq 0$ for any $x \in K$, and we may define

$$f_i = \begin{cases} \frac{\rho_j \cdot f}{\rho_1 + \dots + \rho_r} & \text{if } i = i_j \in \{i_1, \dots, i_j\} \\ 0 & \text{otherwise} \end{cases}$$

EXERCISE 2.11. Show that $C_c^{\infty}(\mathbb{R})$ is dense in $C_c(\mathbb{R})$ with respect to uniform convergence.

REMARK 2.12. More generally, it is true that $C_c^{\infty}(\mathbb{R})$ is dense in $L^p(\mathbb{R})$, for any $1 \leq p < \infty$ (but not for $p = \infty$). This will be proved in the home exercise.

PROOF. Let $g \in C_c(\mathbb{R})$. We construct a sequence $\{g_n\}_{n \in \mathbb{N}}$ of elements of $C_c^{\infty}(\mathbb{R})$ such that $g_n \xrightarrow{n \to \infty} g$.

For any $n \in \mathbb{N}$, let $\chi_n \in C_c^{\infty}(\mathbb{R})$ be a non-negative bump function with $\operatorname{Supp}(\chi_n) = \left[-\frac{1}{n}, \frac{1}{n}\right]$ and $\|\chi_n\|_1 := \int_{\mathbb{R}} \chi_n = 1$ (e.g., take $\chi_n = \frac{f_{-\frac{1}{n}, \frac{1}{n}}}{\left\|f_{-\frac{1}{n}, \frac{1}{n}}\right\|_1}$, where $f_{a,b}$ is as in Exercise 2.2), and put

$$g_n = g * \chi_n$$
 for all $n \in \mathbb{N}$.

By Exercise 2.6, since g and χ_n have compact support and χ_n are smooth, we have that $g_n \in C_c^{\infty}(\mathbb{R})$ for all n. Moreover, again by Exercise 2.6.(3),

$$\operatorname{Supp}(g_n) = \operatorname{Supp}(g) + \left[-\frac{1}{n}, \frac{1}{n} \right] \subseteq \operatorname{Supp}(g) + \left[-1, 1 \right],$$

and so, as this is a compact set, it suffices to show point-wise convergence in this domain. This holds since, for any $x \in \mathbb{R}$,

$$g_n(x) = \int_{\mathbb{R}} g(x-t)\chi_n(t)dt = \int_{-\frac{1}{n}}^{\frac{1}{n}} g(x-t)\chi_n(t)dt,$$

and

$$\min_{|t'| \le \frac{1}{n}} g(x - t') = \min_{|t'| \le \frac{1}{n}} g(x - t') \cdot \int_{-\frac{1}{n}}^{\frac{1}{n}} \chi_n(t) dt$$

$$\le \int_{-\frac{1}{n}}^{\frac{1}{n}} g(x - t) \chi_n(t) dt$$

$$\max_{|t'| \le \frac{1}{n}} g(x - t') \cdot \int_{-\frac{1}{n}}^{\frac{1}{n}} \chi_n(t) dt \le \max_{|t'| \le \frac{1}{n}} g(x - t').$$

Since g is continuous on \mathbb{R} , both right-hand left-hand side of this inequality converge to g(x) as $n \to \infty$, implying the claim.