Appendix 1

PROPERTY TABLES AND CHARTS (SI UNITS)

Table A-1	Molar mass, gas constant, and critical-point properties	Table A-20	Ideal-gas properties of carbon dioxide, CO ₂
Table A-2	Ideal-gas specific heats of various common gases	Table A-21	Ideal-gas properties of carbon monoxide, CO
Table A-3	Properties of common liquids, solids, and foods	Table A-22 Table A-23	Ideal-gas properties of hydrogen, H ₂ Ideal-gas properties of water vapor, H ₂ C
Table A-4 Table A-5	Saturated water—Temperature table Saturated water—Pressure table	Table A-24	Ideal-gas properties of monatomic oxygen, O
Table A-6	Superheated water	Table A-25	Ideal-gas properties of hydroxyl, OH
Table A-7 Table A-8 Figure A-9	Compressed liquid water Saturated ice—water vapor <i>T-s</i> diagram for water	Table A-26	Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm
Figure A-10	Mollier diagram for water	Table A-27	Properties of some common fuels and hydrocarbons
Table A-11	Saturated refrigerant-134a— Temperature table	Table A-28	Natural logarithms of the equilibrium constant K_n
Table A-12	Saturated refrigerant-134a— Pressure table	Figure A-29	Generalized enthalpy departure chart
Table A-13	Superheated refrigerant-134a	Figure A-30	Generalized entropy departure chart
Figure A-14	P-h diagram for refrigerant-134a	Figure A-31	Psychrometric chart at 1 atm total pressure
Figure A–15	Nelson–Obert generalized compressibility chart	Table A-32	One-dimensional isentropic compressible-flow functions
Table A-16	Properties of the atmosphere at high altitude		for an ideal gas with $k = 1.4$
Table A-17	Ideal-gas properties of air	Table A-33	One-dimensional normal-shock functions for an ideal gas with $k = 1.4$
Table A-18	Ideal-gas properties of nitrogen, N_2	Table A-34	Rayleigh flow functions for an ideal
Table A-19	Ideal-gas properties of oxygen, O ₂		gas with $k = 1.4$

TABLE A - 1

Molar mass, gas constant, and critical-point properties

			Gas	Critical-p	point properties	6
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg · K*	Temperature, K	Pressure, MPa	Volume, m³/kmol
Air	_	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromine	Br ₂	159.808	0.0520	584	10.34	0.1355
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547
Carbon dioxide	CO_2	44.01	0.1889	304.2	7.39	0.0943
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930
Carbon tetrachloride	CCI ₄	153.82	0.05405	556.4	4.56	0.2759
Chlorine	Cl_2	70.906	0.1173	417	7.71	0.1242
Chloroform	CHCI ₃	119.38	0.06964	536.6	5.47	0.2403
Dichlorodifluoromethane (R-12)	CCI ₂ F ₂	120.91	0.06876	384.7	4.01	0.2179
Dichlorofluoromethane (R-21)	CHCI ₂ F	102.92	0.08078	451.7	5.17	0.1973
Ethane	C_2H_6	30.070	0.2765	305.5	4.48	0.1480
Ethyl alcohol	C_2H_5OH	46.07	0.1805	516	6.38	0.1673
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242
Helium	He	4.003	2.0769	5.3	0.23	0.0578
<i>n</i> -Hexane	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677
Hydrogen (normal)	H_2	2.016	4.1240	33.3	1.30	0.0649
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924
Methane	CH ₄	16.043	0.5182	191.1	4.64	0.0993
Methyl alcohol	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180
Methyl chloride	CH ₃ CI	50.488	0.1647	416.3	6.68	0.1430
Neon	Ne	20.183	0.4119	44.5	2.73	0.0417
Nitrogen	N_2	28.013	0.2968	126.2	3.39	0.0899
Nitrous oxide	N_2O	44.013	0.1889	309.7	7.27	0.0961
Oxygen	02	31.999	0.2598	154.8	5.08	0.0780
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO ₂	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

^{*}The unit kJ/kg · K is equivalent to kPa · m³/kg · K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol · K and M is the molar

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117-236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A-2

Ideal-gas specific heats of various common gases

(a) At 300 K

		Gas constant, R	$C_{\mathcal{D}}$	$c_{_{\scriptscriptstyle V}}$	
Gas	Formula	kJ/kg · K	kĴ/kg ⋅ K	kJ/kg · K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_2	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	C_2H_4	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	$C_8^{-}H_{18}$	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	$C_3^{\prime}H_8$	0.1885	1.6794	1.4909	1.126
Steam	H_2° 0 $^{\circ}$	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg \cdot K is equivalent to kJ/kg \cdot °C.

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

TABLE A-2

Ideal-gas specific heats of various common gases (Continued)

(b) At various temperatures

Temperature,	$c_p \ ext{kJ/kg} \cdot ext{K}$	$c_{_{\scriptscriptstyle V}}$ kJ/kg \cdot K	k	c_p kJ/kg · K	$c_{_{\scriptscriptstyle ee}}$ kJ/kg \cdot K	k	<i>c_p</i> kJ/kg ⋅ K	$c_{_{ec{v}}}$ kJ/kg \cdot K	k	
K K		Air		Cart	oon dioxide, C	CO ₂	Carbon	monoxide, (20	
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400	
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399	
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398	
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395	
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392	
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387	
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382	
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376	
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370	
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364	
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358	
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353	
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343	
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335	
		Hydrogen,	H_2		Nitrogen, N	V_2	O)	Oxygen, O ₂		
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398	
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395	
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389	
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382	
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373	
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365	
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358	
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350	
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343	
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337	
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332	
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327	
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319	
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313	

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 783, Table A-4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A-2

Ideal-gas specific heats of various common gases (Concluded)

(c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(*T* in K, c_p in kJ/kmol · K)

Substance Formula a b c d range, K Max. Ayg. Nitrogen N₂ 28.90 -0.1571 × 10⁻² 0.8081 × 10⁻⁵ -2.873 × 10⁻³ 273-1800 0.59 0.34 Oxygen 0₂ 25.48 1.52.0 × 10⁻² -0.7155 × 10⁻⁵ 1.312 × 10⁻³ 273-1800 0.72 0.33 Hydrogen H₂ 29.11 -0.1916 × 10⁻² 0.4003 × 10⁻⁵ -0.8704 × 10⁻³ 273-1800 1.01 0.26 Carbon monoxide CO 28.16 0.1675 × 10⁻² 0.5372 × 10⁻⁵ -2.222 × 10⁻³ 273-1800 0.89 0.37 Carbon monoxide CO₂ 22.26 5.981 × 10⁻² 0.5372 × 10⁻⁵ -2.222 × 10⁻³ 273-1800 0.89 0.37 Carbon monoxide CO₂ 22.26 5.981 × 10⁻² -3.501 × 10⁻⁵ 7.469 × 10⁻³ 273-1800 0.89 0.37 Water vapor H₂0 32.24 0.1923 × 10⁻² 0.9747 × 10⁻⁵ 7.459 × 10⁻³ 273-1800 0.69 0.26							Temperature	<u> % е</u>	rror
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Substance	Formula	а	b	С	d			Avg.
Oxygen O2 by 15.48 1.520 x 10 ⁻² by 1.50 ⁻² by 1.50 ⁻² by 1.50 ⁻² by 1.312 x 10 ⁻⁹ by 1.312 x 10 ⁻⁹ by 273–1800 1.19 by 0.28 by 1.312 x 10 ⁻⁹ by 273–1800 1.19 by 0.28 by 1.312 x 10 ⁻⁹ by 273–1800 1.19 by 0.28 by 1.312 x 10 ⁻⁹ by 1.312 x	Nitrogen	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273–1800	0.59	0.34
Air — 1 28.11 0.1967 × 10 ⁻² 0.4802 × 10 ⁻⁵ -1.966 × 10 ⁻⁹ 273-1800 0.72 0.33 Hydrogen H ₂ 29.11 -0.1916 × 10 ⁻² 0.4003 × 10 ⁻⁵ -0.8704 × 10 ⁻⁹ 273-1800 0.72 0.36 Carbon monoxide CO 28.16 0.1675 × 10 ⁻² 0.5372 × 10 ⁻⁵ -2.222 × 10 ⁻⁹ 273-1800 0.69 0.37 Carbon dioxide CO ₂ 22.26 5.981 × 10 ⁻² -3.501 × 10 ⁻⁵ 7.469 × 10 ⁻⁹ 273-1800 0.67 0.22 Water vapor H ₂ O 32.24 0.1923 × 10 ⁻² 1.055 × 10 ⁻⁵ -3.595 × 10 ⁻⁹ 273-1800 0.53 0.24 Nitric oxide NO 29.34 -0.09395 × 10 ⁻² 0.9747 × 10 ⁻⁵ -4.187 × 10 ⁻⁹ 273-1500 0.97 0.36 Nitrous oxide N _Q 24.11 5.8632 × 10 ⁻² -3.562 × 10 ⁻⁵ 10.58 × 10 ⁻⁹ 273-1500 0.97 0.36 Nitrous oxide N _Q 22.9 5.715 × 10 ⁻² -3.52 × 10 ⁻⁵ 7.87 × 10 ⁻⁹ 273-1500 0.97 0.36 Nitrous oxide N _Q 22.9 5.715 × 10 ⁻² -3.52 × 10 ⁻⁵ -6.6909 × 10 ⁻⁹ 273-1500 0.91 0.36 Sulfur S ₂ 27.21 2.218 × 10 ⁻² -1.628 × 10 ⁻⁵ 8.612 × 10 ⁻⁹ 273-1800 0.45 0.45 Nitrus oxide S _Q 27.21 2.218 × 10 ⁻² -1.628 × 10 ⁻⁵ 8.612 × 10 ⁻⁹ 273-1800 0.99 0.38 Sulfur Trioxide S _Q 25.78 5.795 × 10 ⁻² -3.812 × 10 ⁻⁵ 8.612 × 10 ⁻⁹ 273-1800 0.99 0.38 Sulfur S _Q 27.21 2.218 × 10 ⁻² -1.1.20 × 10 ⁻⁵ 8.612 × 10 ⁻⁹ 273-1800 0.45 0.45 Nitrus oxide S _Q 25.78 5.795 × 10 ⁻² -3.812 × 10 ⁻⁵ 8.612 × 10 ⁻⁹ 273-1800 0.45 0.45 Nitrus oxide S _Q 25.88 5.795 × 10 ⁻² -3.812 × 10 ⁻⁵ 8.612 × 10 ⁻⁹ 273-1800 0.45 0.45 Nitrus oxide S _Q 25.88 5.795 × 10 ⁻² -3.812 × 10 ⁻⁵ 8.612 × 10 ⁻⁹ 273-1800 0.45 0.24 Nitrus oxide S _Q 25.88 5.795 × 10 ⁻² -1.1.20 × 10 ⁻⁵ 8.612 × 10 ⁻⁹ 273-1500 0.46 0.59 Nitrus oxide S _Q 25.88 5.795 × 10 ⁻² -1.1.20 × 10 ⁻⁵ 8.612 × 10 ⁻⁹ 273-1500 0.49 0.45 0.24 Nitrus oxide S _Q 27.21 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.9		_	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273-1800	1.19	0.28
Hydrogen			28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hydrogen	Ha	29.11	-0.1916×10^{-2}	0.4003×10^{-5}		273-1800	1.01	0.26
$ \begin{array}{c} \text{Carbon} \\ \text{dioxide} & \text{CO}_2 & 22.26 & 5.981 \times 10^{-2} \\ \text{Water vapor} & \text{H}_2\text{O} & 32.24 & 0.1923 \times 10^{-2} \\ \text{Nitric oxide} & \text{NO} & 29.34 & -0.09395 \times 10^{-2} \\ \text{O.9747} \times 10^{-5} & -3.595 \times 10^{-9} \\ \text{O.9747} \times 10^{-5} & -4.187 \times 10^{-9} \\ \text{O.9747} \times 10^{-9} & 273-1500 \\ \text{O.99072} \times 10^{-5} & 10.58 \times 10^{-9} \\ \text{O.99072} \times 10^{-5} & -6.6909 \times 10^{-9} \\ \text{O.99072} \times 10^{-5} & -6.6909 \times 10^{-9} \\ \text{O.9909} \times 10^{-9} & 273-1500 \\ \text{O.99072} \times 10^{-5} & -6.6909 \times 10^{-9} \\ \text{O.9909} \times 10^{-9} & 273-1500 \\ \text{O.9909} \times 10^{-9} \times 10^{-9} \times 10^{-9} \\ \text{O.9909} \times 10^{-9} \times 10^{-9} \times 10^{-9} \times 10^{-9} \\ \text{O.9909} \times 10^{-9} \times 10^{-9} \times 10^{-9} \\ \text{O.9909} \times 10^{-9} \times 10^{$, ,	2							
$ \begin{array}{c} \text{Carbon} \\ \text{dioxide} & \text{CO}_2 & 22.26 & 5.981 \times 10^{-2} & -3.501 \times 10^{-5} & 7.469 \times 10^{-9} & 273-1800 & 0.67 & 0.22 \\ \text{Water vapor} & \text{H}_2\text{O} & 32.24 & 0.1923 \times 10^{-2} & 1.055 \times 10^{-5} & -3.595 \times 10^{-9} & 273-1800 & 0.53 & 0.24 \\ \text{Nitric oxide} & \text{NO} & 29.34 & -0.09395 \times 10^{-2} & 0.9747 \times 10^{-5} & -4.187 \times 10^{-9} & 273-1500 & 0.59 & 0.26 \\ \text{Nitrous oxide} & \text{N}_2\text{O} & 24.11 & 5.8632 \times 10^{-2} & -3.562 \times 10^{-5} & 10.58 \times 10^{-9} & 273-1500 & 0.59 & 0.26 \\ \text{Nitrous oxide} & \text{NO}_2 & 22.9 & 5.715 \times 10^{-2} & -3.522 \times 10^{-5} & 7.87 \times 10^{-9} & 273-1500 & 0.46 & 0.18 \\ \text{Ammonia} & \text{NH}_3 & 27.568 & 2.5630 \times 10^{-2} & 0.99072 \times 10^{-5} & -6.6909 \times 10^{-9} & 273-1500 & 0.91 & 0.36 \\ \text{Sulfur} & \text{S}_2 & 27.21 & 2.218 \times 10^{-2} & -1.628 \times 10^{-5} & 3.986 \times 10^{-9} & 273-1800 & 0.99 & 0.38 \\ \text{Sulfur} & \text{So}_2 & 25.78 & 5.795 \times 10^{-2} & -3.812 \times 10^{-5} & 8.612 \times 10^{-9} & 273-1800 & 0.45 & 0.24 \\ \text{Sulfur} & \text{Trioxide} & \text{SO}_3 & 16.40 & 14.58 \times 10^{-2} & -11.20 \times 10^{-5} & 32.42 \times 10^{-9} & 273-1800 & 0.45 & 0.24 \\ \text{Sulfur} & \text{Trioxide} & \text{SO}_3 & 16.40 & 14.58 \times 10^{-2} & -11.20 \times 10^{-5} & 32.42 \times 10^{-9} & 273-1300 & 0.29 & 0.13 \\ \text{Acetylene} & \text{C}_2\text{H}_2 & 21.8 & 9.2143 \times 10^{-2} & -6.527 \times 10^{-5} & 18.21 \times 10^{-9} & 273-1500 & 0.34 & 0.20 \\ \text{Methanol} & \text{CH}_4\text{O} & 19.0 & 9.152 \times 10^{-2} & -31.57 \times 10^{-5} & 77.62 \times 10^{-9} & 273-1500 & 0.34 & 0.20 \\ \text{Methanol} & \text{C}_4\text{H}_0 & 19.9 & 20.96 \times 10^{-2} & -1.22 \times 10^{-5} & -8.039 \times 10^{-9} & 273-1500 & 0.34 & 0.20 \\ \text{Methane} & \text{C}_4\text{H}_1 & 19.89 & 5.024 \times 10^{-2} & 1.327 \times 10^{-5} & -4.338 \times 10^{-9} & 273-1500 & 0.22 & 0.08 \\ \text{Methane} & \text{C}_4\text{H}_1 & 19.89 & 5.024 \times 10^{-2} & 1.269 \times 10^{-5} & -4.338 \times 10^{-9} & 273-1500 & 0.34 & 0.20 \\ \text{Methane} & \text{C}_4\text{H}_1 & 19.89 & 5.024 \times 10^{-2} & 1.269 \times 10^{-5} & -4.338 \times 10^{-9} & 273-1500 & 0.22 & 0.08 \\ \text{Methane} & \text{C}_4\text{H}_1 & 19.89 & 5.024 \times 10^{-2} & -1.529 \times 10^{-5} & -4.338 \times 10^{-9} & 273-1500 & 0.25 & 0.13 \\ \text{N-Pentane} & \text{C}_5\text{H}_2 & 6.074 & 4.543 \times$	monoxide	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273-1800	0.89	0.37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbon								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	dioxide	CO ₂	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water vapor		32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273-1800	0.53	0.24
Nitrogen dioxide NO_2 22.9 5.715×10^{-2} -3.52×10^{-5} 7.87×10^{-9} $273-1500$ 0.46 0.18 Ammonia NH_3 27.568 2.5630×10^{-2} 0.99072×10^{-5} -6.6909×10^{-9} $273-1500$ 0.91 0.36 Sulfur S_2 27.21 2.218×10^{-2} -1.628×10^{-5} 3.986×10^{-9} $273-1800$ 0.99 0.38 Sulfur dioxide SO_2 25.78 5.795×10^{-2} -3.812×10^{-5} 8.612×10^{-9} $273-1800$ 0.45 0.24 Sulfur trioxide SO_3 16.40 14.58×10^{-2} -11.20×10^{-5} 32.42×10^{-9} $273-1300$ 0.29 0.13 Acetylene C_2H_2 21.8 9.2143×10^{-2} -6.527×10^{-5} 18.21×10^{-9} $273-1500$ 1.46 0.59 Benzene C_6H_6 -36.22 48.475×10^{-2} -31.57×10^{-5} 77.62×10^{-9} $273-1500$ 0.34 0.29 Methanol CH_40 19.0 9.152×10^{-2} -1.22×10^{-5} -8.039×10^{-9} $273-1500$ 0.18 0.08 Ethanol C_2H_6 0 19.9 20.96×10^{-2} -1.22×10^{-5} -8.039×10^{-9} $273-1500$ 0.40 0.22 Hydrogen chloride C_2H_6 6.900 17.27×10^{-2} 1.269×10^{-5} -11.01×10^{-9} $273-1500$ 0.22 0.08 Nethane C_4H_4 19.89 5.024×10^{-2} 1.269×10^{-5} -11.01×10^{-9} $273-1500$ 0.22 0.08 Propane C_3H_8 -4.04 30.48×10^{-2} -15.72×10^{-5} 31.74×10^{-9} $273-1500$ 0.83 0.28 Propane C_4H_{10} 3.96 37.15×10^{-2} -18.34×10^{-5} 31.74×10^{-9} $273-1500$ 0.40 0.22 0.80			29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrous oxide	N_2O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273-1500	0.59	0.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrogen	2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NO_2	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273-1500	0.46	0.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ammonia		27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sulfur	S_2	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273-1800	0.99	0.38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sulfur	_							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	dioxide	SO_2	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273-1800	0.45	0.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sulfur	-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	trioxide	SO ₃	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273-1300	0.29	0.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Acetylene		21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273-1500	1.46	0.59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Benzene		-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273-1500	0.34	0.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Methanol		19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273-1000	0.18	0.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethanol	C ₂ H ₆ O	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273-1500	0.40	0.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hydrogen								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	chloride	HCI	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Methane	CH_4	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ethane	C ₂ H ₆	6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Propane		-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273-1500	0.40	0.12
n-Pentane C_5H_{12} 6.774 45.43×10^{-2} -22.46×10^{-5} 42.29×10^{-9} $273-1500$ 0.56 0.21 n-Hexane C_6H_{14} 6.938 55.22 × 10 ⁻² -28.65×10^{-5} 57.69 × 10 ⁻⁹ 273-1500 0.72 0.20 Ethylene C_2H_4 3.95 15.64 × 10 ⁻² -8.344×10^{-5} 17.67 × 10 ⁻⁹ 273-1500 0.54 0.13	<i>n</i> -Butane		3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24
n-Hexane C_6H_{14} 6.938 55.22 × 10 ⁻² -28.65×10^{-5} 57.69 × 10 ⁻⁹ 273–1500 0.72 0.20 Ethylene C_2H_4 3.95 15.64 × 10 ⁻² -8.344×10^{-5} 17.67 × 10 ⁻⁹ 273–1500 0.54 0.13	<i>i</i> -Butane	C ₄ H ₁₀	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13
n-Hexane C_6H_{14} 6.938 55.22 × 10 ⁻² -28.65×10^{-5} 57.69 × 10 ⁻⁹ 273–1500 0.72 0.20 Ethylene C_2H_4 3.95 15.64 × 10 ⁻² -8.344×10^{-5} 17.67 × 10 ⁻⁹ 273–1500 0.54 0.13	<i>n</i> -Pentane		6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273-1500	0.56	0.21
Ethylene C_2H_4 3.95 15.64×10^{-2} -8.344×10^{-5} 17.67×10^{-9} 273–1500 0.54 0.13	<i>n</i> -Hexane		6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
	Ethylene		3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13
	Propylene	C_3H_6	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273-1500	0.73	0.17

Source: B. G. Kyle, Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984). Used with permission.

914 | Thermodynamics

TABLE A-3

Properties of common liquids, solids, and foods

(a) Liquids

	Boiling	data at 1 atm	Freez	ring data	L	iquid propert	ies
Substance	Normal boiling point, °C	Latent heat of vaporization $h_{\it fg}, {\rm kJ/kg}$	Freezing point, °C	Latent heat of fusion h_{if} , kJ/kg	Temperature, °C	Density $ ho$, kg/m ³	Specific heat $c_{ ho}$, kJ/kg \cdot K
Ammonia	-33.3	1357	-77.7	322.4	-33.3	682	4.43
					-20	665	4.52
					0	639	4.60
					25	602	4.80
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14
Benzene	80.2	394	5.5	126	20	879	1.72
Brine (20% sodium							
chloride by mass)	103.9	_	-17.4	_	20	1150	3.11
<i>n</i> -Butane	-0.5	385.2	-138.5	80.3	-0.5	601	2.31
Carbon dioxide	-78.4*	230.5 (at 0°C)	-56.6		0	298	0.59
Ethanol	78.2	838.3	-114.2	109	25	783	2.46
Ethyl alcohol	78.6	855	-156	108	20	789	2.84
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84
Glycerine	179.9	974	18.9	200.6	20	1261	2.32
Helium	-268.9	22.8	_	_	-268.9	146.2	22.8
Hydrogen	-252.8	445.7	-259.2	59.5	-252.8	70.7	10.0
Isobutane	-11.7	367.1	-160	105.7	-11.7	593.8	2.28
Kerosene	204–293	251	-24.9	_	20	820	2.00
Mercury	356.7	294.7	-38.9	11.4	25	13,560	0.139
Methane	-161.5	510.4	-182.2	58.4	-161.5	423	3.49
					-100	301	5.79
Methanol	64.5	1100	-97.7	99.2	25	787	2.55
Nitrogen	-195.8	198.6	-210	25.3	-195.8	809	2.06
					-160	596	2.97
Octane	124.8	306.3	-57.5	180.7	20	703	2.10
Oil (light)					25	910	1.80
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71
Petroleum		230–384			20	640	2.0
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25
					0	529	2.53
					50	449	3.13
Refrigerant-134a	-26.1	217.0	-96.6	_	-50	1443	1.23
					-26.1	1374	1.27
					0	1295	1.34
	100	0057	0.0	222 7	25	1207	1.43
Water	100	2257	0.0	333.7	0	1000	4.22
					25	997	4.18
					50	988	4.18
					75	975	4.19
					100	958	4.22

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

TABLE A-3

Properties of common liquids, solids, and foods (Concluded)

(b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ kg/m 3	Specific heat, c_{ρ} kJ/kg \cdot K	Substance	Density, $ ho$ kg/m ³	Specific heat, c_{ρ} kJ/kg \cdot K
Metals			Nonmetals		
Aluminum			Asphalt	2110	0.920
200 K		0.797	Brick, common	1922	0.79
250 K		0.859	Brick, fireclay (500°C)	2300	0.960
300 K	2,700	0.902	Concrete	2300	0.653
350 K		0.929	Clay	1000	0.920
400 K		0.949	Diamond	2420	0.616
450 K		0.973	Glass, window	2700	0.800
500 K		0.997	Glass, pyrex	2230	0.840
Bronze (76% Cu, 2% Zn,	8,280	0.400	Graphite	2500	0.711
2% AI)			Granite	2700	1.017
Brass, yellow (65% Cu,	8,310	0.400	Gypsum or plaster board	800	1.09
35% Zn)			Ice		
Copper			200 K		1.56
-173°C		0.254	220 K		1.71
-100°C		0.342	240 K		1.86
-50°C		0.367	260 K		2.01
0°C		0.381	273 K	921	2.11
27°C	8,900	0.386	Limestone	1650	0.909
100°C		0.393	Marble	2600	0.880
200°C		0.403	Plywood (Douglas Fir)	545	1.21
Iron	7,840	0.45	Rubber (soft)	1100	1.840
Lead	11,310	0.128	Rubber (hard)	1150	2.009
Magnesium	1,730	1.000	Sand	1520	0.800
Nickel	8,890	0.440	Stone	1500	0.800
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26
Steel, mild	7,830	0.500	Woods, soft (fir, pine, etc.)	513	1.38
Tungsten	19,400	0.130			

(c) Foods

	Water			ic heat, g · K	Latent heat of		Water		Specific kJ/kg		Latent heat of	
Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg	Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg	
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317	
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294	
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291	
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261	
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214	
Cheese, swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277	
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311	
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301	
Corn, sweet	74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314	
Eggs, whole	74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214	
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311	

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

TABLE A-4

Saturated water—Temperature table

		<i>Specific volume,</i> m³/kg		<i>Internal energy,</i> kJ/kg			Enthalp kJ/kg	y,	Entropy, kJ/kg · K			
Temp., T°C	Sat. , press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.9487 8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

TABLE A-4

Saturated water—Temperature table (Continued)

		,	Specific volume, m³/kg		<i>ternal en</i> kJ/kg	ergy,		<i>Enthalp</i> kJ/kg	y,	Entropy, kJ/kg · K		
Temp.,	Sat. press.,	Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat.
T °C	P _{sat} kPa	V _f	Vg	U _f	U _{fg}	Ug	h_f	h _{fg}	h _g	S_f	S _{fg}	Sg
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.9318 3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.7857 1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.1373 0.9489	5.1384 5.0537 4.9493 4.8009 4.4070

Source: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLE A-5

Saturated water—Pressure table

		,	fic volume, m³/kg		<i>Internal e.</i> kJ/kg			<i>Enthalpy</i> kJ/kg	<i>'</i> ,	<i>Entropy,</i> kJ/kg · K		
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s_g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003		29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8	0.1059 0.1956 0.2606	8.8690 8.6314 8.4621	8.9749 8.8270 8.7227 8.6421
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8320 0.8932 0.9441 1.0261 1.0912	6.9370 6.8234 6.6430	7.9073 7.8302 7.7675 7.6691 7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	5 99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	594.32	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199		1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422		1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133		1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242		1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	639.54 655.16 669.72	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5		1.8205 1.8604 1.8970 1.9308 1.9623	5.0356 4.9603 4.8916 4.8285 4.7699	6.8561 6.8207 6.7886 6.7593 6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

TABLE A-5

Saturated water—Pressure table (Continued)

		•	<i>volume,</i> ³ /kg	In	<i>ternal en</i> kJ/kg	ergy,	<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg · K		
Press., <i>P</i> kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
800 850 900 950 1000 1100 1200	170.41 172.94 175.35 177.66 179.88 184.06 187.96	0.001115 0.001118 0.001121 0.001124 0.001127 0.001133 0.001138	0.24035 0.22690 0.21489 0.20411 0.19436 0.17745 0.16326	719.97 731.00 741.55 751.67 761.39 779.78	1856.1 1846.9 1838.1 1829.6 1821.4 1805.7 1790.9	2576.0 2577.9 2579.6 2581.3 2582.8 2585.5 2587.8	720.87 731.95 742.56 752.74 762.51 781.03 798.33	2047.5 2038.8 2030.5 2022.4 2014.6 1999.6 1985.4	2768.3 2770.8 2773.0 2775.2	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705 4.5273 4.4862 4.4470 4.3735 4.3058	6.6616 6.6409 6.6213 6.6027 6.5850 6.5520 6.5217
1300 1400 1500	191.60 195.04 198.29	0.001144 0.001149 0.001154	0.15119 0.14078 0.13171	813.10 828.35	1776.8 1763.4 1750.6	2589.9 2591.8 2593.4	814.59 829.96 844.55	1971.9 1958.9 1946.4	2786.5 2788.9		4.2428 4.1840 4.1287	6.4936 6.4675 6.4430
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12 933.54	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9	2798.3 2800.5 2801.9	2.3844 2.4467 2.5029 2.5542 2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352		1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2601.7 2597.0 2589.9	1049.7 1087.4 1154.5 1213.8 1267.5	1753.0 1713.5 1639.7 1570.9 1505.2	2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2545.2 2530.4	1317.1 1363.7 1407.8 1450.2 1491.3	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1	2477.1 2455.7	1531.4 1571.0 1610.3 1649.9 1690.3	1131.3 1067.0 1000.5 931.1 857.4	2662.7 2637.9 2610.8 2581.0 2547.7	3.5606 3.6232 3.6848 3.7461 3.8082	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8 0	2339.2 2294.8 2233.5 2092.4	1732.2 1776.8 1826.6 1888.0 2011.1 2084.3	777.8 689.2 585.5 450.4 161.5	2338.4 2172.6	3.8720 3.9396 4.0146 4.1071 4.2942 4.4070	1.2343 1.0860 0.9164 0.7005 0.2496 0	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070

TABLE A-6

Superh	eated wate	r										
T	V	и	h	s	V	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
			Pa (45.81°			0.05 MP				0.10 MF		
C-4 †				8.1488					1.6941			
Sat.† 50	14.670 14.867	2437.2	2592.0	8.1741	3.2403	2483.2	2645.2	7.5931	1.0941	2505.6	2675.0	7.3589
100	17.196		2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.3611
150	19.513	2515.5	2783.0	8.6893	3.8897	2585.7	2780.2		1.0939	2582.9	2776.6	
200	21.826		2879.6	8.9049	4.3562	2660.0	2877.8		2.1724	2658.2	2875.5	7.8356
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8		2.6389	2810.7	3074.5	8.2172
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3		3.1027	2968.3	3278.6	
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0		4.0279	3302.8	3705.6	
700	44.911		3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	
800	49.527	3665.4		10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8		10.1000	5.4137	3856.7	4398.0	
1000	58.758	4055.3		11.0429	11.7513	4055.2		10.3000	5.8755	4055.0	4642.6	
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9		10.4897	6.3372	4259.8		10.1698
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8		10.6704	6.7988	4470.7		10.3504
1300	72.604			11.5857	14.5209	4687.3		10.8429	7.2605	4687.2		10.5229
	P =	0.20 MF	a (120.21	l°C)	P =	0.30 MPa	ı (133.52	°C)	P =	0.40 MPa	a (143.6)	L°C)
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1		7.2810	0.63402		2761.2			3 2564.4	2752.8	
200	1.08049	2654.6	2870.7	7.5081	0.71643		2865.9	7.3132		2647.2	2860.9	7.1723
250	1.19890		2971.2	7.7100	0.79645		2967.9	7.5180		2726.4	2964.5	7.3804
300	1.31623	2808.8	3072.1	7.8941	0.87535	2807.0	3069.6	7.7037		2805.1	3067.1	7.5677
400	1.54934	2967.2	3277.0	8.2236	1.03155	2966.0	3275.5	8.0347	0.77265	2964.9	3273.9	7.9003
500	1.78142	3131.4	3487.7	8.5153	1.18672	3130.6	3486.6	8.3271	0.88936	3129.8	3485.5	8.1933
600	2.01302	3302.2	3704.8	8.7793	1.34139	3301.6	3704.0	8.5915	1.00558	3301.0	3703.3	8.4580
700	2.24434	3479.9	3928.8	9.0221	1.49580	3479.5	3928.2	8.8345	1.12152	3479.0	3927.6	8.7012
800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605		3663.9	4158.9	8.9274
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298	3855.7	4396.9	9.1394
1000	2.93755		4642.3	9.6599	1.95824		4642.0			4054.3	4641.7	9.3396
1100	3.16848		4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414	4259.2	4892.9	9.5295
1200	3.39938	4470.5	5150.4	10.0304		4470.3	5150.2		1.69966	4470.2	5150.0	9.7102
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	4686.7	5412.8	9.8828
	P =	0.50 MP	a (151.83	3°C)	<i>P</i> =	0.60 MPa	(158.83	°C)	P =	0.80 MP	a (170.4)	L°C)
Sat.	0.37483	2560.7		6.8207	0.31560		2756.2	6.7593		2576.0	2768.3	
200	0.42503			7.0610	0.35212		2850.6			3 2631.1	2839.8	
250	0.47443			7.2725	0.39390		2957.6			2715.9	2950.4	
300	0.52261			7.4614	0.43442		3062.0			2797.5	3056.9	
350	0.57015			7.6346	0.47428		3166.1		0.35442	2878.6	3162.2	
400	0.61731			7.7956	0.51374		3270.8			2960.2	3267.7	
500	0.71095			8.0893	0.59200		3483.4	8.0041		3126.6	3481.3	7.8692
600	0.80409			8.3544	0.66976		3701.7			3298.7	3700.1	
700	0.89696			8.5978	0.74725		3926.4	8.5132	0.56011	3477.2	3925.3	8.3794
800	0.98966			8.8240	0.82457		4157.9			3662.5	4157.0	
900	1.08227	3855.4	4396.6	9.0362	0.90179		4396.2		0.67619	3854.5	4395.5	8.8185
1000	1.17480			9.2364	0.97893		4641.1			4053.3	4640.5	
1100	1.26728			9.4263	1.05603		4892.4			4258.3	4891.9	
1200	1.35972			9.6071	1.13309		5149.6			4469.4	5149.3	
1300	1.45214	4686.6	5412.6	9.7797	1.21012	4686.4	5412.5	9.6955	0.90761	4686.1	5412.2	9.5625

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

 $^{^{\}scriptscriptstyle\dagger}$ Properties of saturated vapor at the specified pressure.

Superheated water (Continued) T v u h s v u h s v u h s v u h s v u u h s v u u h s v u u h s v u u u h s v u u u u u u u u u u u u u u u u u u												
T	V	и	h	S	V	И	h	S	V	И	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	P	= 1.00 MI		8°C)	P	= 1.20 N	MPa (187			1.40 MP		
Sat	0.19437		2777.1		0.16326		-	6.5217	0.14078		2788.9	6.4675
Sat. 200	0.19437	2582.8 2622.3	2828.3	6.5850 6.6956	0.16326			6.5909	0.14078	2591.8 2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.10934			6.8313	0.14303	2698.9	2927.9	6.7488
300	0.25799	2710.4	3051.6	7.1246	0.13241			7.0335	0.18233	2785.7	3040.9	
350	0.28250	2875.7	3158.2	7.3029	0.23455			7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482			7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464			7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395			7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297		3922.9	8.1904	0.31951	3474.4	3921.7	
800	0.49438	3661.7	4156.1	8.5024	0.41184			8.4176	0.35288	3660.3	4154.3	
900	0.54083	3853.9	4394.8	8.7150	0.45059			8.6303	0.38614	3852.7	4393.3	
1000	0.58721	4052.7	4640.0	8.9155	0.48928			8.8310	0.41933	4051.7	4638.8	
1100	0.63354	4257.9	4891.4	9.1057	0.52792	4257.5	4891.0	9.0212	0.45247	4257.0	4890.5	8.9497
1200	0.67983	4469.0	5148.9	9.2866	0.56652		5148.5	9.2022	0.48558	4468.3	5148.1	
1300	0.72610	4685.8	5411.9	9.4593	0.60509		5411.6	9.3750	0.51866	4685.1	5411.3	9.3036
	P	= 1.60 MI	Pa (201.3	7°C)	Р	= 1.80 M	MPa (207	.11°C)	P =	2.00 MP	a (212.3	8°C)
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795.	9 6.3775	0.09959	2599.1	2798.3	6.3390
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0			0.10381	2628.5		6.4160
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7			0.11150	2680.3		6.5475
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4			0.12551	2773.2		2 6.7684
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6			0.13860	2860.5		6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3			0.15122	2945.9		7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5			0.17568	3116.9		3 7.4337
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7		3 7.7543	0.19962	3291.5	3690.7	7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6	3919.	4 8.0005	0.22326	3471.7	3918.2	7.9509
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8	4152.	4 8.2284	0.24674	3658.0	4151.5	8.1791
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5	4391.	9 8.4417	0.27012	3850.9	4391.1	8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7	4637.	6 8.6427	0.29342	4050.2	4637.1	8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2	4889.	6 8.8331	0.31667	4255.7	4889.1	8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6			0.33989	4467.2		8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5	5410.	.6 9.1872	0.36308	4684.2	5410.3	3 9.1384
	P	= 2.50 MI	Pa (223.9	5°C)	Р	= 3.00 M	MPa (233	.85°C)	P =	3.50 MP	a (242.5	6°C)
Sat.	0.07995	2602.1	2801.9	6.2558	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244
225 250	0.08026	2604.8 2663.3	2805.5 2880.9	6.2629 6.4107	0.07063	2644.7	2856.	E 6 2002	0.05070	2624.0	2020 -	6.1764
	0.08705	2762.2			0.07063				0.05876	2624.0		
300	0.09894 0.10979		3009.6	6.6459	0.08118	2750.8			0.06845	2738.8 2836.0		6.4484
350 400	0.10979		3127.0 3240.1	6.8424 7.0170	0.09038	2844.4 2933.6			0.07680 0.08456	2927.2		9 6.6601 2 6.8428
450	0.12012		3351.6	7.0170	0.09938	3021.2			0.08436	3016.1		1 7.0074
500	0.13013		3462.8	7.1766	0.10789	3108.6			0.09198	3104.5		7.0074
600	0.15931		3686.8	7.5254	0.11020	3285.5			0.03313	3282.5		7.1393
700	0.13931		3915.2	7.8455	0.13243	3467.0			0.11323	3464.7		7.4337
800	0.17633		4149.2	8.0744	0.14641	3654.3			0.12702	3652.5		7.0055
900	0.13722	3849.4	4389.3	8.2882	0.10420	3847.9			0.14001	3846.4		7.9130
1000	0.21397		4635.6	8.4897	0.17568	4047.7			0.15410	4046.4		7 8.3324
1100	0.25330		4887.9	8.6804	0.19349	4253.6			0.18087	4252.5		8.5236
1200	0.23330		5146.0	8.8618	0.21103	4465.3			0.19420	4464.4		8.7053
1300	0.27130		5409.5	9.0349	0.24207	4682.6			0.13420	4681.8		8.8786
				,	/	. 50210		2				

TABLE A-6 Superheated water (Continued) Τ h v h И S И S И S m³/kg kJ/kg °C kJ/kg m³/kg kJ/kg · K m³/kg kJ/kg kJ/kg ⋅ K kJ/kg kJ/kg kJ/kg kJ/kg · K $P = 4.0 \text{ MPa } (250.35^{\circ}\text{C})$ $P = 4.5 \text{ MPa } (257.44^{\circ}\text{C})$ $P = 5.0 \text{ MPa} (263.94^{\circ}\text{C})$ Sat. 0.04978 2601.7 2800.8 6.0696 0.04406 2599.7 2798.0 6.0198 0.03945 2597.0 2794.2 5.9737 2864.4 2839.5 6.0571 275 0.05461 2668.9 2887.3 6.2312 0.04733 2651.4 6.1429 0.04144 2632.3 300 0.05887 2726.2 2961.7 6.3639 0.05138 2713.0 2944.2 6.2854 0.04535 2699.0 2925.7 6.2111 350 0.06647 2827.4 3093.3 6.5843 0.05842 2818.6 3081.5 6.5153 0.05197 2809.5 3069.3 6.4516 400 0.07343 2920.8 3214.5 6.7714 0.06477 2914.2 3205.7 6.7071 0.05784 2907.5 3196.7 6.6483 450 0.08004 3011.0 3331.2 6.9386 0.07076 3005.8 3324.2 6.8770 0.06332 3000.6 3317.2 6.8210 500 0.08644 3100.3 3446.0 7.0922 0.07652 3096.0 3440.4 7.0323 0.06858 3091.8 3434.7 6.9781 3279.4 3674.9 3670.9 3666.9 7.2605 600 0.09886 7.3706 0.08766 3276.4 7.3127 0.07870 3273.3 3462.4 700 0.11098 3906.3 7.6214 0.09850 3460.0 3903.3 7.5647 0.08852 3457.7 3900.3 7.5136 800 0.12292 3650.6 4142.3 7.8523 0.10916 3648.8 4140.0 7.7962 0.09816 3646.9 4137.7 7.7458 0.11972 0.13476 3844.8 4383.9 8.0675 3843.3 4382.1 8.0118 3841.8 4380.2 7.9619 900 0.10769 0.14653 4045.1 4631.2 8.2698 0.13020 4043.9 4629.8 8.2144 0.11715 4042.6 4628.3 8.1648 1000 1100 0.15824 4251.4 4884.4 8.4612 0.14064 4250.4 4883.2 8.4060 0.12655 4249.3 4882.1 8.3566 0.15103 4462.6 8.5880 4463.5 5143.2 5142.2 4461.6 1200 0.16992 8.6430 0.13592 5141.3 8.5388 1300 0.18157 4680.9 5407.2 0.16140 4680.1 5406.5 8.7616 0.14527 4679.3 5405.7 8.7124 8.8164 $P = 6.0 \text{ MPa} (275.59^{\circ}\text{C})$ $P = 7.0 \text{ MPa } (285.83^{\circ}\text{C})$ $P = 8.0 \text{ MPa } (295.01^{\circ}\text{C})$ 0.03245 2589.9 2784.6 5.8902 0.027378 2581.0 2772.6 5.8148 0.023525 2570.5 2758.7 5.7450 Sat. 2668.4 2885.6 6.0703 0.029492 2633.5 2839.9 5.9337 0.024279 2592.3 2786.5 5.7937 300 0.03619 2790.4 6.2305 0.029975 2748.3 350 0.04225 3043.9 6.3357 0.035262 2770.1 3016.9 2988.1 6.1321 0.04742 2893.7 6.5432 0.039958 2879.5 3159.2 6.4502 0.034344 2864.6 3139.4 6.3658 400 3178.3 450 0.05217 2989.9 3302.9 6.7219 0.044187 2979.0 3288.3 6.6353 0.038194 2967.8 3273.3 6.5579 3083.1 3423.1 6.8826 0.048157 3074.3 0.041767 3065.4 3399.5 6.7266 500 0.05667 3411.4 6.8000 550 0.06102 3175.2 3541.3 7.0308 0.051966 3167.9 3531.6 6.9507 0.045172 3160.5 3521.8 6.8800 0.055665 3261.0 600 0.06527 3267.2 3658.8 7.1693 3650.6 7.0910 0.048463 3254.7 3642.4 7.0221 700 0.07355 3453.0 3894.3 7.4247 0.062850 3448.3 3888.3 7.3487 0.054829 3443.6 3882.2 7.2822 800 0.08165 3643.2 4133.1 7.6582 0.069856 3639.5 4128.5 7.5836 0.061011 3635.7 4123.8 7.5185 900 0.08964 3838.8 4376.6 7.8751 0.076750 3835.7 4373.0 7.8014 0.067082 3832.7 4369.3 7.7372 1000 0.09756 4040.1 4625.4 8.0786 0.083571 4037.5 4622.5 8.0055 0.073079 4035.0 4619.6 7.9419 1100 0.10543 4247.1 4879.7 8.2709 0.090341 4245.0 4877.4 8.1982 0.079025 4242.8 4875.0 8.1350 0.11326 4459.8 5139.4 8.4534 0.097075 4457.9 5137.4 8.3810 0.084934 4456.1 5135.5 8.3181 1200 1300 0.12107 4677.7 5404.1 8.6273 0.103781 4676.1 5402.6 8.5551 0.090817 4674.5 5401.0 8.4925 $P = 9.0 \text{ MPa} (303.35^{\circ}\text{C})$ $P = 10.0 \text{ MPa} (311.00^{\circ}\text{C})$ $P = 12.5 \text{ MPa } (327.81^{\circ}\text{C})$ 0.020489 2558.5 2742.9 5.6791 0.018028 2545.2 2725.5 5.6159 0.013496 2505.6 2674.3 5.4638 Sat. 5.8738 0.019877 2611.6 5.7596 325 0.023284 2647.6 2857.1 2810.3 350 0.025816 2725.0 2957.3 6.0380 0.022440 2699.6 2924.0 5.9460 0.016138 2624.9 2826.6 5.7130 6.2876 0.020030 2789.6 400 0.029960 2849.2 3118.8 0.026436 2833.1 3097.5 6.2141 3040.0 6.0433 6.4219 0.023019 2913.7 450 0.033524 2956.3 3258.0 6.4872 0.029782 2944.5 3242.4 3201.5 6.2749 0.032811 3047.0 0.025630 3023.2 500 0.036793 3056.3 3387.4 6.6603 3375.1 6.5995 3343.6 6.4651 0.035655 3145.4 0.028033 3126.1 3476.5 6.6317 550 0.039885 3153.0 3512.0 6.8164 3502.0 6.7585 600 0.042861 3248.4 3634.1 6.9605 0.038378 3242.0 3625.8 6.9045 0.030306 3225.8 3604.6 6.7828 650 0.045755 3343.4 3755.2 7.0954 0.041018 3338.0 3748.1 7.0408 0.032491 3324.1 3730.2 6.9227 7.2229 0.034612 3422.0 3854.6 7.0540 700 0.048589 3438.8 3876.1 0.043597 3434.0 3870.0 7.1693 800 0.054132 3632.0 4119.2 7.4606 0.048629 3628.2 4114.5 7.4085 0.038724 3618.8 4102.8 7.2967 4365.7 7.6802 0.053547 3826.5 4362.0 7.6290 0.042720 3818.9 4352.9 7.5195 900 0.059562 3829.6 1000 0.064919 4032.4 4616.7 7.8855 0.058391 4029.9 4613.8 7.8349 0.046641 4023.5 4606.5 7.7269 1100 0.070224 4240.7 4872.7 8.0791 0.063183 4238.5 4870.3 8.0289 0.050510 4233.1 4864.5 7.9220 1200 0.075492 4454.2 5133.6 8.2625 0.067938 4452.4 5131.7 8.2126 0.054342 4447.7 5127.0 8.1065 1300 0.080733 4672.9 5399.5 8.4371 0.072667 4671.3 5398.0 8.3874 0.058147 4667.3 5394.1 8.2819

Superl	heated wate	er (<i>Conclu</i>	ıded)									
T	V	И	h	S	V	И	h	S	v	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg \cdot K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg \cdot K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg \cdot K
	P =	= 15.0 MF	Pa (342.16	S°C)	P = 1	17.5 MPa	(354.67	′°C)	P =	20.0 MP	a (365.75	 5°C)
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932				0.005862		-	-
350	0.011481	2520.9	2693.1	5.4438	0.007302	2030.7	2023.0	0.1 100	0.000002	223 1.0	2112.1	1.5010
400	0.015671	2740.6	2975.7	5.8819	0.012463	2684.3	2902.4	5.7211	0.009950	2617.9	2816.9	5.5526
450	0.018477	2880.8	3157.9	6.1434	0.015204			6.0212	0.012721		3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385				0.014793		3241.2	6.1446
550	0.022945 0.024921	3106.2	3450.4	6.5230	0.019305				0.016571 0.018185			6.3390
600 650	0.024921	3209.3 3310.1	3583.1 3712.1	6.6796 6.8233	0.021073			6.5890 6.7366	0.018185		3539.0 3675.3	6.5075 6.6593
700	0.028621	3409.8	3839.1	6.9573	0.022742				0.013033			6.7991
800	0.032121	3609.3	4091.1	7.2037	0.027405				0.023870			7.0531
900	0.035503	3811.2		7.4288	0.030348				0.026484			7.2829
1000	0.038808	4017.1	4599.2	7.6378	0.033215	4010.7	4592.0	7.5616	0.029020	4004.3	4584.7	7.4950
1100	0.042062	4227.7	4858.6	7.8339	0.036029			7.7588	0.031504			7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806				0.033952			7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4659.2	5386.5	8.1215	0.036371	4655.2	5382.7	8.0574
		P = 25	5.0 MPa			P = 30.0	О МРа			P = 35	.0 MPa	
375	0.001978	1799.9	1849.4	4.0345	0.001792	1738.1	1791.9	3.9313	0.001701	1702.8	1762.4	3.8724
400	0.006005	2428.5	2578.7	5.1400	0.002798			4.4758	0.002105		1988.6	4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299			5.1473	0.003434		2373.5	4.7751
450	0.009176	2721.2	2950.6	5.6759	0.006737			5.4422	0.004957			5.1946
500 550	0.011143 0.012736	2887.3 3020.8	3165.9 3339.2	5.9643 6.1816	0.008691 0.010175			5.7956	0.006933		2997.9 3218.0	5.6331 5.9093
600	0.012736	3140.0	3493.5	6.3637	0.010175				0.008348			6.1229
650	0.014140	3251.9	3637.7	6.5243	0.012590				0.003323			6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654				0.011523		3711.6	6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628				0.013278		3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668	0.017473				0.014904			6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240				0.016450			7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954				0.017942			7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630			7.6807	0.019398		5085.0	7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		P = 40	0.0 MPa			P = 50.0	O MPa			P = 60	.0 MPa	
375	0.001641	1677.0	1742.6	3.8290		1638.6			0.001503			
400	0.001911	1855.0	1931.4	4.1145		1787.8			0.001633			3.9317
425	0.002538	2097.5	2199.0	4.5044	0.002009			4.2746	0.001816			
450 500	0.003692 0.005623	2364.2	2511.8 2906.5	4.9449 5.4744	0.002487 0.003890				0.002086 0.002952			
550	0.003023		3154.4		0.0053330				0.002952			
600	0.008089	3026.8	3350.4	6.0170	0.006108				0.003333			
650	0.009053	3159.5	3521.6	6.2078	0.006957				0.005591			
700	0.009930	3282.0		6.3740	0.007717	3228.7	3614.6	6.2179	0.006265			
800	0.011521	3511.8	3972.6	6.6613	0.009073				0.007456			
900	0.012980	3733.3		6.9107	0.010296				0.008519			
1000	0.014360	3952.9		7.1355	0.011441				0.009504			
1100	0.015686	4173.7	4801.1	7.3425	0.012534				0.010439			
1200 1300	0.016976 0.018239	4396.9		7.5357 7.7175	0.013590 0.014620				0.011339 0.012213			
	0.010233	- 023.3	3332.0	7.7173	0.014020	+007.5	3330.5	7.0040	0.012213	7071.0	3324.3	7.0111

TABLE	A-7											
Comp	ressed liqui	d water										
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K		kJ/kg	kJ/kg	kJ/kg · K		kJ/kg	kJ/kg	kJ/kg · K
	-											
			(263.94°C				(311.00°C			: 15 MPa		
Sat.	0.0012862		1154.5	2.9207	0.0014522		1407.9	3.3603	0.0016572		1610.3	3.6848
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	
40	0.0010057	166.92		0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	
60 80	0.0010149 0.0010267		255.36 338.96	0.8287 1.0723	0.0010127 0.0010244	249.43 332.69	259.55 342.94	0.8260 1.0691	0.0010105 0.0010221	248.58 331.59	263.74 346.92	
100	0.0010207			1.3034	0.0010244	416.23	426.62	1.2996	0.0010221	414.85		
120	0.0010410		507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010501	498.50	514.28	
140	0.0010370		592.18	1.7344	0.0010349	584.72	595.45	1.7293	0.0010322	582.69	598.75	
160	0.0010703		678.04	1.9374	0.0010750	670.06	681.01	1.9316	0.0010700	667.63		
180	0.0010300		765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0010320	753.58		
200	0.0011531	847.92	853.68	2.3251	0.0011200	844.32	855.80	2.3174	0.0011100	840.84	858.00	
220	0.0011868		944.32	2.5127	0.00111809	934.01	945.82	2.5037	0.0011752	929.81	947.43	
240	0.0011268		1037.7	2.6983	0.0012192		1038.3	2.6876	0.0012121		1039.2	2.6774
260	0.0012755		1134.9	2.8841	0.0012653		1134.3	2.8710	0.0012560		1134.0	2.8586
280	0.0012,00	1120.0	110	2.00.1	0.0013226		1235.0	3.0565	0.0013096		1233.0	3.0410
300					0.0013220		1343.3	3.2488	0.0013783		1338.3	3.2279
320					0.0010300	1023.1	10 10.0	0.2 100	0.0014733		1454.0	3.4263
340									0.0016311		1592.4	3.6555
		00 MD:	/2CE 7E0/	2)		D 20	. MD.					
			(365.75°C			P = 30	MPa			P = 50	NIPa	
Sat.	0.0020378		1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29		-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	
40	0.0009992		185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90		
60	0.0010084		267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08		
80	0.0010199		350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42		
100	0.0010337		434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94		
120	0.0010496		517.84	1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	
140	0.0010679		602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	
160 180	0.0010886 0.0011122		687.05 773.02	1.9203 2.1143	0.0010823 0.0011049	660.74 745.40	693.21 778.55	1.9094 2.1020	0.0010704 0.0010914	652.33 735.49	705.85 790.06	
200	0.0011122		860.27	2.3027		831.11	865.02		0.0010914	819.45		
220	0.0011390		949.16	2.3027	0.0011304 0.0011595	918.15	952.93	2.4707	0.0011149	904.39	961.45	
240	0.0011697		1040.2	2.4667	0.0011393		1042.7	2.4707	0.0011412		1049.1	2.4414
260	0.0012033		1134.0	2.8469	0.0011927		1134.7	2.8250	0.0011708		1138.4	2.7864
280	0.0012472		1231.5	3.0265	0.0012314		1229.8	3.0001	0.0012044		1229.9	2.7864
300	0.0012978		1334.4	3.0265	0.0012770		1328.9	3.1761	0.0012430		1324.0	3.1218
320	0.0013611		1445.5	3.3996	0.0013322		1433.7	3.3558	0.0012879		1421.4	3.2888
340	0.0014430		1571.6	3.6086	0.0014014		1547.1	3.5438	0.0013409		1523.1	3.4575
360	0.0013693		1740.1	3.8787	0.0014932		1675.6	3.7499	0.0014049		1630.7	3.6301
380	0.0010240	1/03.0	1/40.1	3.0707	0.0010270		1838.2	4.0026	0.0014848		1746.5	3.8102
550					0.0010729	1/02.0	1000.2	7.0020	0.0013004	1007.1	1/40.5	5.0102

TABLE A-8

Saturated ice-water vapor

		Specific volume, m³/kg		kJ/kg				<i>Enthalpy</i> kJ/kg	<i>'</i> ,		Entropy, J/kg · K	
Temp.,	Sat. press., P _{sat} kPa	Sat. ice, v _i	Sat. vapor, v_g	Sat. ice, <i>u_i</i>	Subl., u _{ig}	Sat. vapor, u_g	Sat. ice, <i>h_i</i>	Subl., h _{ig}	Sat. vapor, h_g	Sat. ice, s_i	Subl., s _{ig}	Sat. vapor, s_g
0.01	0.61169	0.001091	205.99	-333.40	2707.9	2374.5	-333.40	2833.9	2500.5	-1.2202	10.374	9.154
0	0.61115	0.001091	206.17	-333.43	2707.9	2374.5	-333.43	2833.9	2500.5	-1.2204	10.375	9.154
-2	0.51772	0.001091	241.62	-337.63	2709.4	2371.8	-337.63	2834.5	2496.8	-1.2358	10.453	9.218
-4	0.43748	0.001090	283.84	-341.80	2710.8	2369.0	-341.80	2835.0	2493.2	-1.2513	10.533	9.282
-6	0.36873	0.001090	334.27	-345.94	2712.2	2366.2	-345.93	2835.4	2489.5	-1.2667	10.613	9.347
-8	0.30998	0.001090	394.66	-350.04	2713.5	2363.5	-350.04	2835.8	2485.8	-1.2821	10.695	9.413
-10	0.25990	0.001089	467.17	-354.12	2714.8	2360.7	-354.12	2836.2	2482.1	-1.2976	10.778	9.480
-12	0.21732	0.001089	554.47	-358.17	2716.1	2357.9	-358.17	2836.6	2478.4	-1.3130	10.862	9.549
-14	0.18121	0.001088	659.88	-362.18	2717.3	2355.2	-362.18	2836.9	2474.7	-1.3284	10.947	9.618
-16	0.15068	0.001088	787.51	-366.17	2718.6	2352.4	-366.17	2837.2	2471.0	-1.3439	11.033	9.689
-18	0.12492	0.001088	942.51	-370.13	2719.7	2349.6	-370.13	2837.5	2467.3	-1.3593	11.121	9.761
-20	0.10326	0.001087	1131.3	-374.06	2720.9	2346.8	-374.06	2837.7	2463.6	-1.3748	11.209	9.835
-22	0.08510	0.001087	1362.0	-377.95	2722.0	2344.1	-377.95	2837.9	2459.9	-1.3903	11.300	9.909
-24	0.06991	0.001087	1644.7	-381.82	2723.1	2341.3	-381.82	2838.1	2456.2	-1.4057	11.391	9.985
-26	0.05725	0.001087	1992.2	-385.66	2724.2	2338.5	-385.66	2838.2	2452.5	-1.4212	11.484	10.063
-28	0.04673	0.001086	2421.0	-389.47	2725.2	2335.7	-389.47	2838.3	2448.8	-1.4367	11.578	10.141
-30	0.03802	0.001086	2951.7	-393.25	2726.2	2332.9	-393.25	2838.4	2445.1	-1.4521	11.673	10.221
-32	0.03082	0.001086	3610.9	-397.00	2727.2	2330.2	-397.00	2838.4	2441.4	-1.4676	11.770	10.303
-34	0.02490	0.001085	4432.4	-400.72	2728.1	2327.4	-400.72	2838.5	2437.7	-1.4831	11.869	10.386
-36	0.02004	0.001085	5460.1	-404.40	2729.0	2324.6	-404.40	2838.4	2434.0	-1.4986	11.969	10.470
-38	0.01608	0.001085	6750.5	-408.07	2729.9	2321.8	-408.07	2838.4	2430.3	-1.5141	12.071	10.557
<u>-40</u>	0.01285	0.001084	8376.7	-411.70	2730.7	2319.0	-411.70	2838.3	2426.6	-1.5296	12.174	10.644

FIGURE A–9 *T-s* diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lexter Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge-Taylor & Francis Books, Inc.

FIGURE A-10

Mollier diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

TABLE A-11

Saturated refrigerant-134a—Temperature table

		Specific volume, m³/kg		Internal energy, kJ/kg				Enthalpy kJ/kg	<i>'</i> ,		<i>Entropy,</i> kJ/kg · K	
Temp <i>T</i> °C	Sat. ., press., <i>P</i> _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
-40 -38 -36 -34 -32	51.25 56.86 62.95 69.56 76.71	0.0007054 0.0007083 0.0007112 0.0007142 0.0007172	0.36081 0.32732 0.29751 0.27090 0.24711	-0.036 2.475 4.992 7.517 10.05	207.40 206.04 204.67 203.29 201.91	207.37 208.51 209.66 210.81 211.96	5.037	225.86 224.61 223.35 222.09 220.81	225.86 227.12 228.39 229.65 230.91	0.00000 0.01072 0.02138 0.03199 0.04253	0.96866 0.95511 0.94176 0.92859 0.91560	0.96866 0.96584 0.96315 0.96058 0.95813
-30 -28 -26 -24 -22	84.43 92.76 101.73 111.37 121.72	0.0007203 0.0007234 0.0007265 0.0007297 0.0007329	0.22580 0.20666 0.18946 0.17395 0.15995	12.59 15.13 17.69 20.25 22.82	200.52 199.12 197.72 196.30 194.88	213.11 214.25 215.40 216.55 217.70	12.65 15.20 17.76 20.33 22.91	219.52 218.22 216.92 215.59 214.26	232.17 233.43 234.68 235.92 s237.17	0.05301 0.06344 0.07382 0.08414 0.09441	0.90278 0.89012 0.87762 0.86527 0.85307	0.95579 0.95356 0.95144 0.94941 0.94748
-20 -18 -16 -14 -12	132.82 144.69 157.38 170.93 185.37	0.0007362 0.0007396 0.0007430 0.0007464 0.0007499	0.14729 0.13583 0.12542 0.11597 0.10736	25.39 27.98 30.57 33.17 35.78	193.45 192.01 190.56 189.09 187.62	218.84 219.98 221.13 222.27 223.40	25.49 28.09 30.69 33.30 35.92	212.91 211.55 210.18 208.79 207.38	238.41 239.64 240.87 242.09 243.30	0.10463 0.11481 0.12493 0.13501 0.14504	0.84101 0.82908 0.81729 0.80561 0.79406	0.94564 0.94389 0.94222 0.94063 0.93911
-10 -8 -6 -4 -2	200.74 217.08 234.44 252.85 272.36	0.0007535 0.0007571 0.0007608 0.0007646 0.0007684	0.099516 0.092352 0.085802 0.079804 0.074304	41.03 43.66 46.31	186.14 184.64 183.13 181.61 180.08	224.54 225.67 226.80 227.92 229.04	38.55 41.19 43.84 46.50 49.17	205.96 204.52 203.07 201.60 200.11	244.51 245.72 246.91 248.10 249.28	0.15504 0.16498 0.17489 0.18476 0.19459	0.78263 0.77130 0.76008 0.74896 0.73794	0.93766 0.93629 0.93497 0.93372 0.93253
0 2 4 6 8	293.01 314.84 337.90 362.23 387.88	0.0007723 0.0007763 0.0007804 0.0007845 0.0007887	0.069255 0.064612 0.060338 0.056398 0.052762	54.30 56.99 59.68	178.53 176.97 175.39 173.80 172.19	230.16 231.27 232.38 233.48 234.58	51.86 54.55 57.25 59.97 62.69	198.60 197.07 195.51 193.94 192.35	250.45 251.61 252.77 253.91 255.04	0.20439 0.21415 0.22387 0.23356 0.24323	0.72701 0.71616 0.70540 0.69471 0.68410	0.93139 0.93031 0.92927 0.92828 0.92733
10 12 14 16 18	414.89 443.31 473.19 504.58 537.52	0.0007930 0.0007975 0.0008020 0.0008066 0.0008113	0.049403 0.046295 0.043417 0.040748 0.038271	67.83 70.57 73.32	170.56 168.92 167.26 165.58 163.88	235.67 236.75 237.83 238.90 239.96	65.43 68.18 70.95 73.73 76.52	190.73 189.09 187.42 185.73 184.01	256.16 257.27 258.37 259.46 260.53	0.25286 0.26246 0.27204 0.28159 0.29112	0.67356 0.66308 0.65266 0.64230 0.63198	0.92641 0.92554 0.92470 0.92389 0.92310

TABLE A-11

Saturated refrigerant-134a—Temperature table (Continued)

			Specific volume, m³/kg		Internal energy, kJ/kg			<i>Enthalpy</i> kJ/kg	;		<i>Entropy,</i> kJ/kg · K	
Temp T°C	Sat. o., press., P _{sat} kPa	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	174.99	265.68	0.33846	0.58102	0.91948
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	169.17	268.57	0.36670	0.55074	0.91743
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606
40	1017.1	0.0008720	0.019952	107.38	143.60	250.97	108.26	163.00	271.27	0.39486	0.52049	0.91536
42	1072.8	0.0008786	0.018855	110.32	141.58	251.89	111.26	160.86	272.12	0.40425	0.51039	0.91464
44	1130.7	0.0008854	0.017824	113.28	139.52	252.80	114.28	158.67	272.95	0.41363	0.50027	0.91391
46	1191.0	0.0008924	0.016853	116.26	137.42	253.68	117.32	156.43	273.75	0.42302	0.49012	0.91315
48	1253.6	0.0008996	0.015939	119.26	135.29	254.55	120.39	154.14	274.53	0.43242	0.47993	0.91236
52	1386.2	0.0009150	0.014265	125.33	130.88	256.21	126.59	149.39	275.98	0.45126	0.45941	0.91067
56	1529.1	0.0009317	0.012771	131.49	126.28	257.77	132.91	144.38	277.30	0.47018	0.43863	0.90880
60	1682.8	0.0009498	0.011434	137.76	121.46	259.22	139.36	139.10	278.46	0.48920	0.41749	0.90669
65	1891.0	0.0009750	0.009950	145.77	115.05	260.82	147.62	132.02	279.64	0.51320	0.39039	0.90359
70	2118.2	0.0010037	0.008642	154.01	108.14	262.15	156.13	124.32	280.46	0.53755	0.36227	0.89982
75	2365.8	0.0010372	0.007480	162.53	100.60	263.13	164.98	115.85	280.82	0.56241	0.33272	0.89512
80	2635.3	0.0010772	0.006436	171.40	92.23	263.63	174.24	106.35	280.59	0.58800	0.30111	0.88912
85	2928.2	0.0011270	0.005486	180.77	82.67	263.44	184.07	95.44	279.51	0.61473	0.26644	0.88117
90	3246.9	0.0011932	0.004599	190.89	71.29	262.18	194.76	82.35	277.11	0.64336	0.22674	0.87010
95	3594.1	0.0012933	0.003726	202.40	56.47	258.87	207.05	65.21	272.26	0.67578	0.17711	0.85289
100	3975.1	0.0015269	0.002630	218.72	29.19	247.91	224.79	33.58	258.37	0.72217	0.08999	0.81215

Source: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem., Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40° C (and -40° F).

TABLE A-12

Saturated refrigerant-134a—Pressure table

			volume, /kg	Inte	<i>rnal enei</i> kJ/kg	rgy,	E	<i>nthalpy,</i> kJ/kg			<i>Entropy,</i> kJ/kg · K	
Press., P kPa	Sat. temp., $T_{\rm sat}$ °C	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
60 70 80 90 100	-36.95 -33.87 -31.13 -28.65 -26.37 -22.32	0.0007098 0.0007144 0.0007185 0.0007223 0.0007259	0.31121 0.26929 0.23753 0.21263 0.19254 0.16212	7.680 11.15 14.31 17.21 22.40	205.32 203.20 201.30 199.57 197.98 195.11	209.12 210.88 212.46 213.88 215.19 217.51	7.730 11.21 14.37 17.28 22.49	218.65 217.16 214.48	229.73 231.46 233.02 234.44 236.97	0.01634 0.03267 0.04711 0.06008 0.07188 0.09275	0.94807 0.92775 0.90999 0.89419 0.87995 0.85503	0.96441 0.96042 0.95710 0.95427 0.95183 0.94779
140 160 180 200	-18.77 -15.60 -12.73 -10.09	0.0007383 0.0007437 0.0007487 0.0007533 0.0007620	0.14014 0.12348 0.11041 0.099867 0.083897	26.98 31.09 34.83 38.28 44.48	192.57 190.27 188.16 186.21 182.67	219.54 221.35 222.99 224.48 227.14	27.08 31.21 34.97 38.43 44.66	209.90 207.90 206.03	239.16 241.11 242.86 244.46	0.11087 0.12693 0.14139 0.15457 0.17794	0.83368 0.81496 0.79826 0.78316 0.75664	0.94456 0.94190 0.93965 0.93773 0.93458
280 320 360 400	-1.25 2.46 5.82 8.91	0.0007699 0.0007772 0.0007841 0.0007907	0.072352 0.063604 0.056738 0.051201	49.97 54.92 59.44 63.62	179.50 176.61 173.94 171.45	229.46 231.52 233.38 235.07	50.18 55.16 59.72 63.94	199.54 196.71 194.08	249.72 251.88 253.81 255.55	0.19829 0.21637 0.23270 0.24761	0.73381 0.71369 0.69566 0.67929	0.93210 0.93006 0.92836 0.92691
450 500 550 600 650	12.46 15.71 18.73 21.55 24.20	0.0007985 0.0008059 0.0008130 0.0008199 0.0008266	0.045619 0.041118 0.037408 0.034295 0.031646	68.45 72.93 77.10 81.02 84.72	168.54 165.82 163.25 160.81 158.48	237.00 238.75 240.35 241.83 243.20	68.81 73.33 77.54 81.51 85.26	185.98 183.38 180.90	257.53 259.30 260.92 262.40 263.77	0.26465 0.28023 0.29461 0.30799 0.32051	0.66069 0.64377 0.62821 0.61378 0.60030	0.92535 0.92400 0.92282 0.92177 0.92081
700 750 800 850	26.69 29.06 31.31 33.45	0.0008331 0.0008395 0.0008458 0.0008520	0.029361 0.027371 0.025621 0.024069	88.24 91.59 94.79 97.87	156.24 154.08 152.00 149.98	244.48 245.67 246.79 247.85	88.82 92.22 95.47 98.60	173.98 171.82 169.71	265.03 266.20 267.29 268.31	0.33230 0.34345 0.35404 0.36413	0.58763 0.57567 0.56431 0.55349	0.91994 0.91912 0.91835 0.91762
900 950 1000 1200 1400	35.51 37.48 39.37 46.29 52.40	0.0008580 0.0008641 0.0008700 0.0008934 0.0009166	0.022683 0.021438 0.020313 0.016715 0.014107	100.83 103.69 106.45 116.70 125.94	148.01 146.10 144.23 137.11 130.43	248.85 249.79 250.68 253.81 256.37	101.61 104.51 107.32 117.77 127.22	165.64 163.67 156.10		0.37377 0.38301 0.39189 0.42441 0.45315	0.54315 0.53323 0.52368 0.48863 0.45734	0.91692 0.91624 0.91558 0.91303 0.91050
1600 1800 2000 2500 3000	57.88 62.87 67.45 77.54 86.16	0.0009400 0.0009639 0.0009886 0.0010566 0.0011406	0.012123 0.010559 0.009288 0.006936 0.005275	134.43 142.33 149.78 166.99 183.04	124.04 117.83 111.73 96.47 80.22	258.47 260.17 261.51 263.45 263.26	135.93 144.07 151.76 169.63 186.46	128.33 111.16	279.17 280.09	0.47911 0.50294 0.52509 0.57531 0.62118	0.42873 0.40204 0.37675 0.31695 0.25776	0.90784 0.90498 0.90184 0.89226 0.87894

TABLE A-13

Super	heated ref	frigerant-	134a									
T	V	И	h	S	V	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P = 0.0	06 MPa (7	$rac{1}{1} = -36$.95°C)	P = 0	.10 MPa ($T_{\rm sat} = -26$.37°C)	P = 0.	14 MPa ($T_{\rm sat} = -18$	3.77°C)
Sat.	0.31121	209.12		0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54		0.9446
-20	0.33608	220.60	240.76	1.0174	0.19841	219.66	239.50	0.9721				
-10	0.35048	227.55	248.58	1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724
0	0.36476	234.66	256.54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	1.0031
10	0.37893	241.92	264.66	1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	1.0331
20		249.35		1.1353	0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	
30	0.40705	256.95		1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97	
40	0.42102	264.71		1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	
50	0.43495	272.64		1.2191	0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57	
60	0.44883	280.73		1.2463	0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59	
70	0.46269	288.99		1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	
80	0.47651	297.41		1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	
90	0.49032	306.00	335.42	1.3260	0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	1.2553
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	P = 0.	18 MPa (7	$s_{\text{sat}} = -12$.73°C)	P = 0	.20 MPa ($T_{\rm sat} = -10$.09°C)	P = 0	.24 MPa ($T_{\rm sat} = -5$.38°C)
Sat.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346
-10	0.11189			0.9484	0.09991	224.55	244.54	0.9380	0.0000		2 . , 2 0	0.50.10
0	0.11722	232.48		0.9798	0.10481	232.09	253.05	0.9698	0.08617	231.29	251 97	0.9519
10	0.11722	240.00		1.0102	0.10451	239.67	261.58	1.0004	0.09026	238.98		0.9831
20	0.12748			1.0399	0.10333	247.35	270.18	1.0303	0.09423	246.74		1.0134
30	0.12748	255.41		1.0690	0.11418	255.14	278.89	1.0505	0.09423	254.61		1.0134
40		263.31		1.0090	0.11374	263.08	287.72	1.0393	0.10193	262.59		1.0429
50	0.13741			1.1256	0.12322	271.15	296.68	1.1163	0.10193	270.71		1.1001
60	0.14230	271.56		1.1532	0.12706	271.13	305.78	1.1103	0.10370	278.97		1.1280
	0.14715	287.91		1.1805	0.13206	287.73	315.01		0.10942	287.36		1.1260
70								1.1714				
80	0.15673	296.42		1.2074	0.14074	296.25	324.40	1.1983	0.11675	295.91	323.93	
90	0.16149	305.07		1.2339	0.14504	304.92	333.93	1.2249	0.12038	304.60		1.2092
100	0.16622	313.88		1.2602	0.14933	313.74	343.60	1.2512	0.12398	313.44	343.20	
		.28 MPa ($(T_{\rm sat}=2.4)$			0.40 MPa		
Sat.	0.07235	229.46		0.9321	0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
0	0.07282	230.44	250.83	0.9362	0.06600	007.54	050.60	0.0544	0.051506	005.07	056.50	0.0005
10	0.07646	238.27		0.9680	0.06609	237.54	258.69	0.9544	0.051506	235.97		0.9305
20	0.07997	246.13		0.9987	0.06925	245.50	267.66	0.9856	0.054213			0.9628
30	0.08338	254.06	277.41	1.0285	0.07231	253.50	276.65	1.0157	0.056796			0.9937
40	0.08672	262.10		1.0576	0.07530	261.60	285.70	1.0451	0.059292			1.0236
50		270.27		1.0862	0.07823	269.82	294.85	1.0739	0.061724			1.0528
60	0.09324				0.08111				0.064104			1.0814
70		286.99			0.08395			1.1298	0.066443			1.1094
80			323.46		0.08675		322.98	1.1571	0.068747			1.1369
90	0.10275				0.08953			1.1840	0.071023			1.1640
100	0.10587		342.80		0.09229			1.2105	0.073274			1.1907
110	0.10897		352.68			321.89		1.2367	0.075504			1.2171
120	0.11205	331.32	362.70	1.2742		331.07		1.2626	0.077717	330.55	361.63	1.2431
130		340.63	372.87	1.2997	0.10045	340.39	372.54	1.2882	0.079913	339.90		1.2688
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942

TABLE A-13

932

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Superl	heated refr	igerant-1	134a (<i>C</i>	Continued)								
F = 0.50 MPa (T _m = 15.71°C)	T	V	и	h	S	V	и	h	S	V	и	h	S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
Sat. 0.041118 238.75 259.30 0.9240 0.034295 241.83 262.40 0.9218 0.029361 244.48 265.03 0.9199 20.042118 242.40 263.46 0.9383 0.044338 250.84 273.01 0.9703 0.035984 249.22 270.81 0.9499 0.029966 247.48 268.45 0.9313 240.046456 299.26 282.48 1.0011 0.037865 257.86 280.58 0.9916 0.031696 256.39 278.77 0.9946 0.050485 276.25 301.50 1.0599 0.043695 266.48 290.28 1.0121 0.033427 265.20 288.53 0.9954 0.050427 284.89 311.10 1.0883 0.043069 293.89 30.973 1.0705 0.033427 268.27 308.33 1.0584 0.046381 293.64 320.80 1.1162 0.044710 292.73 319.55 1.0987 0.035873 282.87 308.33 1.0584 0.058053 311.05 340.53 1.1705 0.047900 310.73 339.47 1.1556 0.046642 309.95 338.40 1.389 1.000 340.53 1.000 340.53 1.1705 0.047900 310.73 339.47 1.1556 0.046642 309.95 338.80 1.1834 1.000 340.53 31.000 340.53 31.705 0.045900 310.73 339.47 1.1556 0.046642 309.95 338.80 1.1658 1.000 0.066067 329.89 360.73 1.2233 0.050997 329.23 358.82 1.2067 0.044388 383.48 1.389 3.0458 3.					_				_	_			
200 0.042115 242.40 263.46 0.9383 0.0035984 249.22 270.81 0.9499 0.029965 247.48 258.45 0.9313 0.044646 259.26 282.48 1.0011 0.037865 257.86 280.58 0.9916 0.031696 256.39 278.78 0.9954 0.050489 267.72 291.96 1.0390 0.039865 257.86 280.58 0.9916 0.031696 256.39 278.78 0.9954 0.050489 267.25 201.50 1.0599 0.039869 283.89 301.21 0.034875 274.01 298.42 1.0256 0.050485 276.25 280.80 1.0121 0.044710 292.73 319.55 1.0987 0.036373 282.87 308.43 1.0838 0.056205 302.51 330.61 1.1436 0.046318 301.67 329.46 1.1644 0.039250 300.82 328.24 1.1114 0.059880 320.63 350.57 1.1971 0.049458 319.91 349.59 1.1535 0.046042 309.95 338.40 1.1889 1.100 0.058605 301.50 360.73 1.233 0.060997 338.67 370.18 1.2327 0.044688 338.04 369.22 1.2341 1.0059880 300.63 300.72 328.25 300.60997 338.67 370.18 1.2327 0.044688 338.04 369.22 1.2341 1.0059860 300.603479 339.29 371.03 1.2491 0.056259 338.67 370.18 1.2327 0.044688 338.04 369.22 1.2341 1.0059860 300.603479 339.29 371.03 1.2491 0.056259 357.96 391.27 1.2383 0.047306 357.41 390.25 1.2699 0.056060 0.066775 368.33 402.77 1.3249 0.056060 367.81 402.01 1.3088 0.043306 357.41 390.25 1.2699 0.056060 367.81 402.01 1.3088 0.043306 357.41 390.25 1.2699 0.056060 0.066705 548.48 368.64 369.279 401.31 1.2916 0.068757 368.33 40.84 0.023357 369.85 0.024301 0.06462 0.06462 0.064675													
0.04438 250.84 273.01 0.9703 0.035984 249.22 270.81 0.9499 0.029966 247.48 268.45 0.9181						0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
0.046466 259.26 282.48 1.0011 0.037865 257.86 280.58 0.9816 0.031696 256.39 278.57 0.9641						0.005004	0.40.00	070.01	0.0400	0.000066	0.47.40	060 45	0.0010
50													
60 0.056485 276.25 301.50 1.0599 0.041389 275.15 299.98 1.0417 0.036875 274.01 298.42 1.0256 80 0.056272 284.89 311.0 1.0689 0.043818 0.043676 283.89 309.73 1.0750 0.035673 291.80 318.28 1.0836 0.046681 293.99 300.51 330.61 1.1436 0.046710 292.73 319.55 1.0987 0.035673 292.180 318.28 1.0836 0.05603 311.50 340.53 1.1705 0.047900 310.73 339.47 1.1536 0.040642 309.95 338.40 1.1389 110 0.058983 320.63 350.57 1.1971 0.049458 319.1 349.59 1.1803 0.040642 309.95 338.40 1.1389 110 0.063679 393.92 371.03 1.2491 0.052519 338.67 370.18 1.2327 0.044588 338.04 369.32 1.2186 0.066379 393.92 371.03 1.2491 0.052519 338.67 370.18 1.2327 0.044588 339.04 345.60 1.1558 0.0667021 386.51 392.02 1.2999 0.055522 357.96 391.27 1.2838 0.04350 347.66 379.86 1.2444 150 0.067021 386.51 392.02 1.2999 0.055522 357.96 391.27 1.2838 0.043507 367.29 401.31 1.2951 0.062547 253.86 286.69 0.9890 0.068775 368.33 402.72 1.3249 0.055522 357.96 391.27 1.2838 0.04530 357.41 390.52 1.2599 0.062542 284.82 276.45 0.9480 0.022375 253.13 274.17 0.9327 0.023068 270.32 293.38 0.9850 0.022857 253.83 268.81 1.0110 0.023375 253.13 274.17 0.9327 0.02006 251.30 271.71 0.9179 0.023375 253.13 274.17 0.9927 0.023068 270.32 293.38 0.9850 0.0239973 272.83 296.81 1.0110 0.026146 271.60 295.13 0.9976 0.022169 0.024267 254.82 276.45 0.9480 0.022462 24.284.77 0.9560 0.022973 272.83 296.81 1.0110 0.026146 271.60 295.13 0.9976 0.023068 270.32 293.38 0.9850 0.032659 290.84 316.97 1.0698 0.022630 289.86 316.63 1.0574 0.025398 288.86 314.25 1.0458 0.032659 290.84 316.97 1.0698 0.022630 289.86 316.63 1.0574 0.025398 288.86 314.25 1.0458 0.032659 290.84 316.97 1.0698 0.022630 289.86 316.63 1.0574 0.025398 288.86 314.25 1.0458 0.032659 290.84 316.97 1.0698 0.022630 289.86 316.63 1.0574 0.025398 288.86 314.25 1.0458 0.032659 290.84 31.97 0.032659 290.84 31.97 0.032659 290.85 337.30 1.1268 0.032659 290.85 337.30 1.1268 0.032659 290.85 337.30 1.1269 0.022650 0.022993 287.87 357.97 1.1798 0.033649 387.87 0.022650 0.02247 0.022650 0.022650 0.022650 0.022650 0.022650 0.022650 0.022650													
0.052427 284.89 311.10 1.0883 0.043069 283.89 309.73 1.0705 0.036373 282.87 308.33 1.0649 0.0506 0.054331 293.64 320.80 1.1162 0.046710 292.73 19.55 1.0897 0.0376373 291.80 318.28 1.0835 90 0.056205 302.51 330.61 1.1436 0.046318 301.67 329.46 1.1264 0.039250 300.82 328.29 1.1114 0.058053 311.50 340.53 1.1705 0.047900 310.73 339.47 1.1536 0.040642 309.95 338.40 1.1389 120 0.061687 329.89 360.73 1.2233 0.050997 370.18 1.2327 0.046343 329.89 360.73 1.2233 0.050997 370.18 1.2327 0.046343 328.55 358.90 1.1924 0.056265 348.83 381.46 1.2747 0.056279 338.67 370.18 1.2327 0.046364 338.04 369.32 1.2186 0.066275 368.33 402.72 1.3249 0.057006 367.81 402.01 1.3088 0.048507 367.29 401.31 1.2951 0.068775 368.33 402.72 1.3249 0.057006 367.81 402.01 1.3088 0.048507 367.29 401.31 1.2951 0.02562 246.79 267.29 0.9183 0.022683 248.85 269.69 0.0226847 263.86 286.69 0.9802 0.0226807 263.86 286.69 0.9802 0.024809 262.44 284.77 0.9560 0.022675 263.85 296.81 1.010 0.026164 271.60 295.13 0.9976 0.02363 254.82 276.45 0.9480 0.023375 255.313 274.17 0.9327 0.020406 251.30 271.10 0.975 0.031340 281.81 306.88 1.0408 0.027413 280.72 305.39 1.0280 0.024261 279.59 303.85 1.0160 0.03513 309.15 337.30 1.1256 0.039951 309.15 337.30 1.1256 0.036259 290.84 316.95 1.0594 0.03951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039951 337.30 1.1256 0.039952 366.76 400.59 1.2830 0.03942 386.52 42.00 0.33549 347.06 379.05 1.2321 0.03502 346.46 378.23 1.2210 0.035154 345.85 377.40 1.1210 0.035163 347.59 1.1530 0.039951 337.30 1.1256 0.039952 347.06 379.05 1.2321 0.039952 347.06 379.05 1.2321 0.039952 347.06 379.05 1.2321 0.039952 347.06 379.05 1.2321 0.039953 347.06 379.05 1.2321 0.039952 347.06 379.05 1.2321 0.039953 347.06 379.05 1.2321 0.039953 347.06 379.05 1.2321 0.039953 347.06 379.05 1.2321 0.039952 347.06 379.05 1.2321 0.039953 347.06 379.05 1.2321 0.03													
80													
90 0.056205 302.51 330.61 1.1436 0.046318 301.67 329.46 1.1264 0.039250 300.82 328.29 1.1114 0.0050853 311.50 340.53 1.1705 0.04790 310.73 339.47 1.1383 0.042010 319.19 348.60 1.1658 120 0.061687 329.89 360.73 1.2233 0.050997 339.23 359.82 1.2067 0.043185 328.55 358.90 1.1924 130 0.054379 339.29 371.03 1.2491 0.052519 338.67 370.18 1.2327 0.044683 338.04 363.92 1.2186 140 0.065256 348.83 381.46 1.2747 0.054027 348.25 380.66 1.2584 0.046004 347.66 379.86 12.4144 0.065256 348.83 381.46 1.2747 0.054027 348.25 380.66 1.2584 0.046004 347.66 379.86 12.4144 0.065256 348.83 381.46 1.2747 0.054027 348.25 380.66 1.2584 0.045006 337.41 390.52 1.2599 160 0.068775 368.33 402.72 1.3249 0.057006 367.81 402.01 1.3088 0.048597 367.29 401.31 1.2951													
110						0.046318	301.67			0.039250			
120	100	0.058053	311.50	340.53	1.1705	0.047900	310.73	339.47	1.1536	0.040642	309.95	338.40	1.1389
130	110	0.059880	320.63	350.57	1.1971	0.049458	319.91	349.59	1.1803	0.042010	319.19	348.60	1.1658
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
Sat. $0.025621 \ 246.79 \ 267.29 \ 0.9183$ $0.022683 \ 248.85 \ 269.26 \ 0.9169$ $0.020313 \ 250.68 \ 270.99 \ 0.9156$ $400 \ 0.027035 \ 254.82 \ 276.45 \ 0.9480$ $0.023375 \ 253.13 \ 274.17 \ 0.9327 \ 0.020406 \ 251.30 \ 271.71 \ 0.9179$ $500 \ 0.028547 \ 263.86 \ 286.69 \ 0.9802$ $0.024809 \ 262.44 \ 284.77 \ 0.9660 \ 0.021796 \ 260.94 \ 282.74 \ 0.9525 \ 0.029973 \ 272.83 \ 296.81 \ 1.0110 \ 0.026146 \ 271.60 \ 295.13 \ 0.9976 \ 0.023068 \ 270.32 \ 293.38 \ 0.9850 \ 70 \ 0.031340 \ 281.81 \ 306.88 \ 1.0408 \ 0.027413 \ 280.72 \ 305.39 \ 1.0280 \ 0.022461 \ 279.59 \ 303.85 \ 1.0160 \ 0.032659 \ 290.84 \ 316.97 \ 1.0698 \ 0.0228630 \ 289.86 \ 315.63 \ 1.0574 \ 0.025398 \ 288.86 \ 314.25 \ 1.0458 \ 90 \ 0.033941 \ 299.95 \ 327.10 \ 1.0981 \ 0.029806 \ 299.06 \ 325.89 \ 1.0860 \ 0.026492 \ 298.15 \ 324.64 \ 1.0748 \ 1100 \ 0.035420 \ 318.45 \ 347.59 \ 1.1530 \ 0.03951 \ 308.34 \ 336.19 \ 1.1140 \ 0.027552 \ 307.51 \ 335.06 \ 1.1031 \ 100 \ 0.036420 \ 318.45 \ 347.59 \ 1.1530 \ 0.032068 \ 317.70 \ 346.56 \ 1.1414 \ 0.027552 \ 307.51 \ 335.06 \ 1.1580 \ 130 \ 0.038813 \ 337.40 \ 368.45 \ 1.2061 \ 0.034241 \ 336.76 \ 367.58 \ 1.1949 \ 0.030851 \ 336.11 \ 366.69 \ 1.1846 \ 100 \ 0.039955 \ 347.05 \ 379.05 \ 1.3221 \ 0.035502 \ 346.46 \ 378.23 \ 1.2210 \ 0.031554 \ 345.85 \ 377.40 \ 1.2109 \ 1.0003427 \ 376.81 \ 411.55 \ 1.3080 \ 0.038408 \ 376.31 \ 410.88 \ 1.2271 \ 0.033427 \ 376.81 \ 411.55 \ 1.3080 \ 0.038408 \ 376.31 \ 410.88 \ 1.2271 \ 0.033427 \ 386.04 \ 415.55 \ 1.3080 \ 0.034273 \ 386.52 \ 422.00 \ 1.3221 \ 0.035317 \ 386.04 \ 415.55 \ 1.3080 \ 0.034427 \ 376.81 \ 411.55 \ 1.3080 \ 0.038408 \ 376.31 \ 410.88 \ 1.2271 \ 0.033457 \ 365.71 \ 388.22 \ 1.2368 \ 0.0044554 \ 386.99 \ 422.64 \ 1.3327 \ 0.039423 \ 386.52 \ 422.00 \ 1.3221 \ 0.035317 \ 386.04 \ 415.65 \ 1.3080 \ 0.038408 \ 376.31 \ 410.88 \ 1.2271 \ 0.033457 \ 356.84 \ 411.55 \ 1.3080 \ 0.038408 \ 376.31 \ 410.88 \ 1.2271 \ 0.033457 \ 366.99 \ 280.69 \ 0.9163 \ 0.016060 \ 274.62 \ 297.10 \ 0.9733 \ 0.014300 \ 277.72 \ 30.61 \ 0.03466 \ 0.014300 \ 277$													
Sat.	160	0.068775	368.33	402.72	1.3249	0.057006	367.81	402.01	1.3088	0.048597	367.29	401.31	1.2951
0.027035 254.82 276.45 0.9480 0.023375 253.13 274.17 0.9327 0.020406 251.30 271.71 0.9179													
50													
Column													
No.													
80													
90 0.033941 299.95 327.10 1.0981 0.029806 299.06 325.89 1.0860 0.026492 298.15 324.64 1.0748 100 0.035193 309.15 337.30 1.1258 0.030951 308.34 336.19 1.1140 0.027552 307.51 335.06 1.1031 110 0.036420 318.45 347.59 1.1530 0.032068 317.70 346.56 1.1414 0.027552 307.51 335.06 1.1031 120 0.037625 327.87 357.97 1.1798 0.033164 327.18 357.02 1.1684 0.029592 326.47 356.06 1.1580 130 0.038813 337.40 368.45 1.2061 0.034241 336.76 367.58 1.1949 0.030581 336.11 366.69 1.1846 140 0.039985 347.06 379.05 1.2321 0.035302 346.46 378.23 1.2210 0.031554 345.85 377.40 1.2109 150 0.041143 356.85 389.76 1.2577 0.036349 356.28 389.00 1.2467 0.032512 355.71 388.22 1.2368 160 0.042290 366.76 400.59 1.2830 0.037384 366.23 399.88 1.2721 0.033457 365.70 399.15 1.2623 170 0.043427 376.81 411.55 1.3080 0.038408 376.31 410.88 1.2972 0.034392 375.81 410.20 1.2875 180 0.044554 386.99 422.64 1.3327 0.039423 386.52 422.00 1.3221 0.035317 386.04 421.36 1.3124 P = 1.20 MPa (T _{sat} = 46.29°C) P = 1.40 MPa (T _{sat} = 52.40°C) P = 1.60 MPa (T _{sat} = 57.88°C) Sat. 0.016715 253.81 273.87 0.9130 0.014107 256.37 276.12 0.9105 0.012123 258.47 277.86 0.9078 60 0.018404 267.56 289.64 0.9614 0.015005 264.46 285.47 0.9389 0.012372 260.89 280.69 0.9163 70 0.019502 277.21 300.61 0.9938 0.016060 274.62 297.10 0.9733 0.013430 271.76 293.25 0.9535 80 0.020529 286.75 311.39 1.0248 0.017023 284.51 308.34 1.0056 0.014362 282.09 305.07 0.9875 90 0.021506 296.26 322.07 1.0546 0.017923 294.28 319.37 1.0364 0.015215 292.17 316.52 1.0194 100 0.022442 305.80 332.73 1.0836 0.018778 304.01 330.30 1.0661 0.016014 302.14 327.76 1.0500 110 0.023348 315.38 343.40 1.1118 0.019597 313.76 341.19 1.0949 0.016773 312.07 338.91 1.0795 120 0.024228 325.03 354.11 1.1394 0.020388 323.55 352.09 1.1230 0.01801 332.00 361.12 1.1360 140 0.025927 344.61 375.72 1.1930 0.021904 343.34 374.01 1.1773 0.018882 342.05 372.26 1.1632 150 0.026753 344.61 375.72 1.1930 0.024061 373.75 407.43 1.2554 0.020830 372.69 406.02 1.2421 150 0.028367 374													
100													
110													
130 0.038813 337.40 368.45 1.2061 0.034241 336.76 367.58 1.1949 0.030581 336.11 366.69 1.1846 140 0.039985 347.06 379.05 1.2321 0.035302 346.46 378.23 1.2210 0.031554 345.85 377.40 1.2109 150 0.041143 356.85 389.76 1.2577 0.036349 356.28 389.00 1.2467 0.032512 355.71 388.22 1.2368 160 0.042290 366.76 400.59 1.2830 0.037384 366.23 399.88 1.2721 0.033457 365.70 399.15 1.2623 170 0.043427 376.81 411.55 1.3080 0.038408 376.31 410.88 1.2972 0.034392 375.81 410.20 1.2875 180 0.044554 386.99 422.64 1.3327 0.039423 386.52 422.00 1.3221 0.035317 386.04 421.36 1.3124 180 1.300 1						0.032068				0.028584			
140	120	0.037625	327.87	357.97	1.1798	0.033164	327.18	357.02	1.1684	0.029592	326.47	356.06	1.1580
150	130	0.038813	337.40	368.45	1.2061	0.034241	336.76	367.58	1.1949	0.030581	336.11	366.69	1.1846
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
Sat. 0.016715 253.81 273.87 0.9130 0.014107 256.37 276.12 0.9105 0.012123 258.47 277.86 0.9078 50 0.017201 257.63 278.27 0.9267 0.9163 0.018404 267.56 289.64 0.9614 0.015005 264.46 285.47 0.9389 0.012372 260.89 280.69 0.9163 70 0.019502 277.21 300.61 0.9938 0.016060 274.62 297.10 0.9733 0.013430 271.76 293.25 0.9535 80 0.020529 286.75 311.39 1.0248 0.017023 284.51 308.34 1.0056 0.014362 282.09 305.07 0.9875 90 0.021506 296.26 322.07 1.0546 0.017923 294.28 319.37 1.0364 0.015215 292.17 316.52 1.0194 100 0.022442 305.80 332.73 1.0836 0.018778 304.01 330.30 1.0661 0.016014	160												
50 0.017201 257.63 278.27 0.9267 60 0.018404 267.56 289.64 0.9614 0.015005 264.46 285.47 0.9389 0.012372 260.89 280.69 0.9163 70 0.019502 277.21 300.61 0.9938 0.016060 274.62 297.10 0.9733 0.013430 271.76 293.25 0.9535 80 0.020529 286.75 311.39 1.0248 0.017023 284.51 308.34 1.0056 0.014362 282.09 305.07 0.9875 90 0.021506 296.26 322.07 1.0546 0.017923 294.28 319.37 1.0364 0.015215 292.17 316.52 1.0194 100 0.022442 305.80 332.73 1.0836 0.018778 304.01 330.30 1.0661 0.016014 302.14 327.76 1.0500 110 0.023348 315.38 343.40 1.1118 0.019597 313.76 341.19 1.0949 0.0													
60 0.018404 267.56 289.64 0.9614 0.015005 264.46 285.47 0.9389 0.012372 260.89 280.69 0.9163 70 0.019502 277.21 300.61 0.9938 0.016060 274.62 297.10 0.9733 0.013430 271.76 293.25 0.9535 80 0.020529 286.75 311.39 1.0248 0.017023 284.51 308.34 1.0056 0.014362 282.09 305.07 0.9875 90 0.021506 296.26 322.07 1.0546 0.017923 294.28 319.37 1.0364 0.015215 292.17 316.52 1.0194 100 0.022442 305.80 332.73 1.0836 0.018778 304.01 330.30 1.0661 0.016014 302.14 327.76 1.0500 110 0.023348 315.38 343.40 1.1118 0.019597 313.76 341.19 1.0949 0.016773 312.07 338.91 1.0795 120 0.						0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
70 0.019502 277.21 300.61 0.9938 0.016060 274.62 297.10 0.9733 0.013430 271.76 293.25 0.9535 80 0.020529 286.75 311.39 1.0248 0.017023 284.51 308.34 1.0056 0.014362 282.09 305.07 0.9875 90 0.021506 296.26 322.07 1.0546 0.017923 294.28 319.37 1.0364 0.015215 292.17 316.52 1.0194 100 0.022442 305.80 332.73 1.0836 0.018778 304.01 330.30 1.0661 0.016014 302.14 327.76 1.0500 110 0.023348 315.38 343.40 1.1118 0.019597 313.76 341.19 1.0949 0.016773 312.07 338.91 1.0795 120 0.024228 325.03 354.11 1.1394 0.020388 323.55 352.09 1.1230 0.017500 322.02 350.02 1.1081 130 0						0.015005	264 46	285 47	0 9389	0.012372	260.89	280 69	0.9163
80 0.020529 286.75 311.39 1.0248 0.017023 284.51 308.34 1.0056 0.014362 282.09 305.07 0.9875 90 0.021506 296.26 322.07 1.0546 0.017923 294.28 319.37 1.0364 0.015215 292.17 316.52 1.0194 100 0.022442 305.80 332.73 1.0836 0.018778 304.01 330.30 1.0661 0.016014 302.14 327.76 1.0500 110 0.023348 315.38 343.40 1.1118 0.019597 313.76 341.19 1.0949 0.016773 312.07 338.91 1.0795 120 0.024228 325.03 354.11 1.1394 0.020388 323.55 352.09 1.1230 0.017500 322.02 350.02 1.1081 130 0.025086 334.77 364.88 1.1664 0.021155 333.41 363.02 1.1504 0.018201 332.00 361.12 1.1360 140													
100 0.022442 305.80 332.73 1.0836 0.018778 304.01 330.30 1.0661 0.016014 302.14 327.76 1.0500 110 0.023348 315.38 343.40 1.1118 0.019597 313.76 341.19 1.0949 0.016773 312.07 338.91 1.0795 120 0.024228 325.03 354.11 1.1394 0.020388 323.55 352.09 1.1230 0.017500 322.02 350.02 1.1081 130 0.025086 334.77 364.88 1.1664 0.021155 333.41 363.02 1.1504 0.018201 332.00 361.12 1.1360 140 0.025927 344.61 375.72 1.1930 0.021904 343.34 374.01 1.1773 0.018882 342.05 372.26 1.1632 150 0.026753 354.56 386.66 1.2192 0.022636 353.37 385.07 1.2038 0.019545 352.17 383.44 1.1900 160 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
110 0.023348 315.38 343.40 1.1118 0.019597 313.76 341.19 1.0949 0.016773 312.07 338.91 1.0795 120 0.024228 325.03 354.11 1.1394 0.020388 323.55 352.09 1.1230 0.017500 322.02 350.02 1.1081 130 0.025086 334.77 364.88 1.1664 0.021155 333.41 363.02 1.1504 0.018201 332.00 361.12 1.1360 140 0.025927 344.61 375.72 1.1930 0.021904 343.34 374.01 1.1773 0.018882 342.05 372.26 1.1632 150 0.026753 354.56 386.66 1.2192 0.022636 353.37 385.07 1.2038 0.019545 352.17 383.44 1.1900 160 0.027566 364.61 397.69 1.2449 0.023355 363.51 396.20 1.2298 0.020194 362.38 394.69 1.2163 170 0.028367 374.78 408.82 1.2703 0.024061 373.75 407.43	90	0.021506	296.26	322.07	1.0546	0.017923	294.28	319.37	1.0364	0.015215	292.17	316.52	1.0194
120 0.024228 325.03 354.11 1.1394 0.020388 323.55 352.09 1.1230 0.017500 322.02 350.02 1.1081 130 0.025086 334.77 364.88 1.1664 0.021155 333.41 363.02 1.1504 0.018201 332.00 361.12 1.1360 140 0.025927 344.61 375.72 1.1930 0.021904 343.34 374.01 1.1773 0.018882 342.05 372.26 1.1632 150 0.026753 354.56 386.66 1.2192 0.022636 353.37 385.07 1.2038 0.019545 352.17 383.44 1.1900 160 0.027566 364.61 397.69 1.2449 0.023355 363.51 396.20 1.2298 0.020194 362.38 394.69 1.2163 170 0.028367 374.78 408.82 1.2703 0.024061 373.75 407.43 1.254 0.020830 372.69 406.02 1.2421	100	0.022442	305.80	332.73	1.0836	0.018778	304.01	330.30	1.0661	0.016014	302.14	327.76	1.0500
130 0.025086 334.77 364.88 1.1664 0.021155 333.41 363.02 1.1504 0.018201 332.00 361.12 1.1360 140 0.025927 344.61 375.72 1.1930 0.021904 343.34 374.01 1.1773 0.018882 342.05 372.26 1.1632 150 0.026753 354.56 386.66 1.2192 0.022636 353.37 385.07 1.2038 0.019545 352.17 383.44 1.1900 160 0.027566 364.61 397.69 1.2449 0.023355 363.51 396.20 1.2298 0.020194 362.38 394.69 1.2163 170 0.028367 374.78 408.82 1.2703 0.024061 373.75 407.43 1.2554 0.020830 372.69 406.02 1.2421	110					0.019597	313.76	341.19	1.0949	0.016773	312.07	338.91	1.0795
140 0.025927 344.61 375.72 1.1930 0.021904 343.34 374.01 1.1773 0.018882 342.05 372.26 1.1632 150 0.026753 354.56 386.66 1.2192 0.022636 353.37 385.07 1.2038 0.019545 352.17 383.44 1.1900 160 0.027566 364.61 397.69 1.2449 0.023355 363.51 396.20 1.2298 0.020194 362.38 394.69 1.2163 170 0.028367 374.78 408.82 1.2703 0.024061 373.75 407.43 1.2554 0.020830 372.69 406.02 1.2421													
150 0.026753 354.56 386.66 1.2192 0.022636 353.37 385.07 1.2038 0.019545 352.17 383.44 1.1900 160 0.027566 364.61 397.69 1.2449 0.023355 363.51 396.20 1.2298 0.020194 362.38 394.69 1.2163 170 0.028367 374.78 408.82 1.2703 0.024061 373.75 407.43 1.2554 0.020830 372.69 406.02 1.2421													
160 0.027566 364.61 397.69 1.2449 0.023355 363.51 396.20 1.2298 0.020194 362.38 394.69 1.2163 170 0.028367 374.78 408.82 1.2703 0.024061 373.75 407.43 1.2554 0.020830 372.69 406.02 1.2421													
170 0.028367 374.78 408.82 1.2703 0.024061 373.75 407.43 1.2554 0.020830 372.69 406.02 1.2421													
0.021130 000.00 120.07 1.2331 0.021737 301.10 110.70 1.2007 0.021130 303.11 417.44 1.2070													
		0.023130	303.00	720.07	1.2334	0.024737	504.10	710.70	1.2007	0.021430	505.11	717.44	1.20/0

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

(a) Low pressures, $0 < P_R < 1.0$

FIGURE A-15

Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

TABLE A-16

Properties of the atmosphere at high altitude

Altitude, m	Temperature, °C	Pressure, kPa	Gravity g, m/s ²	Speed of Sound, m/s	Density, kg/m³	Viscosity μ , kg/m \cdot s	Thermal Conductivity, W/m · K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5} 1.783×10^{-5} 1.777×10^{-5} 1.771×10^{-5} 1.764×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202		0.0252
400	12.40	96.61	9.805	338.8	1.179		0.0252
600	11.10	94.32	9.805	338.0	1.156		0.0251
800	9.80	92.08	9.804	337.2	1.134		0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5} 1.752×10^{-5} 1.745×10^{-5} 1.739×10^{-5} 1.732×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090		0.0248
1400	5.90	85.60	9.802	334.9	1.069		0.0247
1600	4.60	83.53	9.802	334.1	1.048		0.0245
1800	3.30	81.49	9.801	333.3	1.027		0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5} 1.720×10^{-5} 1.713×10^{-5} 1.707×10^{-5} 1.700×10^{-5}	0.0243
2200	0.70	77.55	9.800	331.7	0.987		0.0242
2400	-0.59	75.63	9.799	331.0	0.967		0.0241
2600	-1.89	73.76	9.799	330.2	0.947		0.0240
2800	-3.19	71.92	9.798	329.4	0.928		0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5} 1.687×10^{-5} 1.681×10^{-5} 1.674×10^{-5} 1.668×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891		0.0237
3400	-7.09	66.63	9.796	327.0	0.872		0.0236
3600	-8.39	64.94	9.796	326.2	0.854		0.0235
3800	-9.69	63.28	9.795	325.4	0.837		0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5} 1.655×10^{-5} 1.648×10^{-5} 1.642×10^{-5} 1.635×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802		0.0232
4400	-13.6	58.52	9.793	323.0	0.785		0.0231
4600	-14.9	57.00	9.793	322.2	0.769		0.0230
4800	-16.2	55.51	9.792	321.4	0.752		0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5} 1.622×10^{-5} 1.615×10^{-5} 1.608×10^{-5} 1.602×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721		0.0227
5400	-20.1	51.23	9.790	318.9	0.705		0.0226
5600	-21.4	49.86	9.789	318.1	0.690		0.0224
5800	-22.7	48.52	9.785	317.3	0.675		0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5} 1.588×10^{-5} 1.582×10^{-5} 1.575×10^{-5} 1.568×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646		0.0221
6400	-26.6	44.69	9.787	314.8	0.631		0.0220
6600	-27.9	43.47	9.786	314.0	0.617		0.0219
6800	-29.2	42.27	9.785	313.1	0.604		0.0218
7000	-30.5	41.11	9.785	312.3	0.590	1.561×10^{-5}	0.0217
8000	-36.9	35.65	9.782	308.1	0.526	1.527×10^{-5}	0.0212
9000	-43.4	30.80	9.779	303.8	0.467	1.493×10^{-5}	0.0206
10,000	-49.9	26.50	9.776	299.5	0.414	1.458×10^{-5} 1.422×10^{-5}	0.0201
12,000	-56.5	19.40	9.770	295.1	0.312		0.0195
14,000	-56.5	14.17	9.764	295.1	0.228		0.0195
16,000	-56.5	10.53	9.758	295.1	0.166		0.0195
18,000	-56.5	7.57	9.751	295.1	0.122		0.0195

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=101.325 kPa, $T=15^{\circ}$ C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

TABLE A-17

Ideal	-gas prope	erties of air									
T	h		И		s°	T	h		И		s°
K	kJ/kg	P_r	kJ/kg	V_r	kJ/kg ⋅ K	K	kJ/kg	P_r	kJ/kg	V_r	kJ/kg · K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230 240	230.02 240.02	0.5477 0.6355	164.00 171.13	1205.0 1084.0	1.43557 1.47824	610 620	617.53 628.07	17.30 18.36	442.42 450.09	101.2 96.92	2.42644 2.44356
250	250.05	0.7329	171.13	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.7329	176.26	887.8	1.55848	640	649.22	20.64	465.50	92.84 88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52 713.27	27.29	504.45	72.56	2.55731
298 300	298.18 300.19	1.3543 1.3860	212.64 214.07	631.9 621.2	1.69528 1.70203	700 710	713.27 724.04	28.80 30.38	512.33 520.23	69.76 67.07	2.57277 2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325 330	325.31 330.34	1.8345 1.9352	232.02 235.61	508.4 489.4	1.78249 1.79783	760 780	778.18 800.03	39.27 43.35	560.01 576.12	55.54 51.64	2.66176 2.69013
340	340.42	2.149	242.82	454.1	1.79763	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.149	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.71767
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400 410	400.98 411.12	3.806 4.153	286.16 293.43	301.6 283.3	1.99194 2.01699	920 940	955.38 977.92	82.05 89.28	691.28 708.08	32.18 30.22	2.87324 2.89748
420	421.26	4.153	300.69	266.6	2.01033	960	1000.55	97.00	705.03	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440	441.61	5.332	315.30	236.8	2.08870	1000	1046.04	114.0	758.94	25.17	2.96770
450	451.80	5.775	322.62	223.6	2.11161	1020	1068.89	123.4	776.10	23.72	2.99034
460	462.02	6.245	329.97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.01260
470 480	472.24 482.49	6.742 7.268	337.32 344.70	200.1 189.5	2.15604 2.17760	1060 1080	1114.86 1137.89	143.9 155.2	810.62 827.88	21.14 19.98	3.03449 3.05608
490	492.74	7.208	352.08	179.7	2.17766	1100	1161.07	167.1	845.33	18.896	3.03008
500	503.02	8.411	352.08	179.7	2.19676	1120	1184.28	179.7	862.79	17.886	3.07732
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540	544.35	11.10	389.34	139.7	2.29906	1200	1277.79	238.0	933.33	14.470	3.17888
550 560	555.74	11.86	396.86	133.1	2.31809	1220	1301.31	254.7	951.09	13.747	
560 570	565.17 575.59	12.66 13.50	404.42 411.97	127.0 121.2	2.33685 2.35531	1240	1324.93	272.3	968.95	13.069	3.21751
370	373.33	10.00	T11.J/	141.4	2.00001						

TABLE A-17

Ideal-gas properties of air (Concluded)

Τ	h		и		s°	T	h		И		s°
K	kJ/kg	P_r	kJ/kg	V_r	kJ/kg ⋅ K	K	kJ/kg	P_r	kJ/kg	V_r	$kJ/kg \cdot K$
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850	2065.3	1475	1534.9	3.601	3.7023
1440	1563.51	506.9	1150.13	8.153	3.39586	1900	2127.4	1655	1582.6	3.295	3.7354
1460	1587.63	537.1	1168.49	7.801	3.41247	1950	2189.7	1852	1630.6	3.022	3.7677
1480	1611.79	568.8	1186.95	7.468	3.42892	2000	2252.1	2068	1678.7	2.776	3.7994
1500	1635.97	601.9	1205.41	7.152	3.44516	2050	2314.6	2303	1726.8	2.555	3.8303
1520	1660.23	636.5	1223.87	6.854	3.46120	2100	2377.7	2559	1775.3	2.356	3.8605
1540	1684.51	672.8	1242.43	6.569	3.47712	2150	2440.3	2837	1823.8	2.175	3.8901
1560	1708.82	710.5	1260.99	6.301	3.49276	2200	2503.2	3138	1872.4	2.012	3.9191
1580	1733.17	750.0	1279.65	6.046	3.50829	2250	2566.4	3464	1921.3	1.864	3.9474

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

TABLE A-	-18						
Ideal-gas	properties of nit	trogen, N ₂					
T	\overline{h}	\overline{u}	<u></u> $ \overline{S} $ °	T	\overline{h}	\overline{u}	<u></u> s °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	17,563	12,574	212.066
220	6,391	4,562	182.639	610	17,864	12,792	212.564
230	6,683	4,770	183.938	620	18,166	13,011	213.055
240	6,975	4,979	185.180	630	18,468	13,230	213.541
250	7,266	5,188	186.370	640	18,772	13,450	214.018
260	7,558	5,396	187.514	650	19,075	13,671	214.489
270	7,849	5,604	188.614	660	19,380	13,892	214.954
280	8,141	5,813	189.673	670	19,685	14,114	215.413
290	8,432	6,021	190.695	680	19,991	14,337	215.866
298	8,669	6,190	191.502	690	20,297	14,560	216.314
300	8,723	6,229	191.682	700	20,604	14,784	216.756
310	9,014	6,437	192.638	710	20,912	15,008	217.192
320	9,306	6,645	193.562	720	21,220	15,234	217.624
330	9,597	6,853	194.459	730	21,529	15,460	218.059
340	9,888	7,061	195.328	740	21,839	15,686	218.472
350	10,180	7,270	196.173	750	22,149	15,913	218.889
360	10,471	7,478	196.995	760	22,460	16,141	219.301
370	10,763	7,687	197.794	770	22,772	16,370	219.709
380	11,055	7,895	198.572	780	23,085	16,599	220.113
390	11,347	8,104	199.331	790	23,398	16,830	220.512
400	11,640	8,314	200.071	800	23,714	17,061	220.907
410	11,932	8,523	200.794	810	24,027	17,292	221.298
420	12,225	8,733	201.499	820	24,342	17,524	221.684
430 440	12,518 12,811	8,943 9,153	202.189 202.863	830 840	24,658 24,974	17,757 17,990	222.067 222.447
				1			
450	13,105	9,363	203.523	850	25,292	18,224	222.822
460 470	13,399 13,693	9,574 9,786	204.170 204.803	860 870	25,610 25,928	18,459 18,695	223.194 223.562
480	13,988	9,997	205.424	880	26,248	18,931	223.927
490	14,285	10,210	206.033	890	26,568	19,168	224.288
500	14,581	10,423	206.630	900	26,890	19,407	224.647
510	14,876	10,423	207.216	910	27,210	19,407	225.002
520	15,172	10,848	207.210	920	27,532	19,883	225.353
530	15,469	11,062	208.358	930	27,854	20,122	225.701
540	15,766	11,277	208.914	940	28,178	20,362	226.047
550	16,064	11,492	209.461	950	28,501	20,603	226.389
560	16,363	11,707	209.999	960	28,826	20,844	226.728
570	16,662	11,923	210.528	970	29,151	21,086	227.064
580	16,962	12,139	211.049	980	29,476	21,328	227.398
590	17,262	12,356	211.562	990	29,803	21,571	227.728

TABLE A-18

ideai-ga	s properties of	r nitrogen, N ₂ (C	ionciuaea)			
T	\overline{h}	ĪĪ	<u>s</u> °	T	h	

	h h	7 2 (5.5	,				
T	\overline{h}	\overline{u}	<u></u> s°	T	\overline{h}	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	30,129	21,815	228.057	1760	56,227	41,594	247.396
1020	30,784	22,304	228.706	1780	56,938	42,139	247.798
1040	31,442	22,795	229.344	1800	57,651	42,685	248.195
1060	32,101	23,288	229.973	1820	58,363	43,231	248.589
1080	32,762	23,782	230.591	1840	59,075	43,777	248.979
1100	33,426	24,280	231.199	1860	59,790	44,324	249.365
1120	34,092	24,780	231.799	1880	60,504	44,873	249.748
1140	34,760	25,282	232.391	1900	61,220	45,423	250.128
1160	35,430	25,786	232.973	1920	61,936	45,973	250.502
1180	36,104	26,291	233.549	1940	62,654	46,524	250.874
1200	36,777	26,799	234.115	1960	63,381	47,075	251.242
1220	37,452	27,308	234.673	1980	64,090	47,627	251.607
1240	38,129	27,819	235.223	2000	64,810	48,181	251.969
1260	38,807	28,331	235.766	2050	66,612	49,567	252.858
1280	39,488	28,845	236.302	2100	68,417	50,957	253.726
1300	40,170	29,361	236.831	2150	70,226	52,351	254.578
1320	40,853	29,378	237.353	2200	72,040	53,749	255.412
1340	41,539	30,398	237.867	2250	73,856	55,149	256.227
1360	42,227	30,919	238.376	2300	75,676	56,553	257.027
1380	42,915	31,441	238.878	2350	77,496	57,958	257.810
1400	43,605	31,964	239.375	2400	79,320	59,366	258.580
1420	44,295	32,489	239.865	2450	81,149	60,779	259.332
1440	44,988	33,014	240.350	2500	82,981	62,195	260.073
1460	45,682	33,543	240.827	2550	84,814	63,613	260.799
1480	46,377	34,071	241.301	2600	86,650	65,033	261.512
1500	47,073	34,601	241.768	2650	88,488	66,455	262.213
1520	47,771	35,133	242.228	2700	90,328	67,880	262.902
1540	48,470	35,665	242.685	2750	92,171	69,306	263.577
1560	49,168	36,197	243.137	2800	94,014	70,734	264.241
1580	49,869	36,732	243.585	2850	95,859	72,163	264.895
1600	50,571	37,268	244.028	2900	97,705	73,593	265.538
1620	51,275	37,806	244.464	2950	99,556	75,028	266.170
1640	51,980	38,344	244.896	3000	101,407	76,464	266.793
1660	52,686	38,884	245.324	3050	103,260	77,902	267.404
1680	53,393	39,424	245.747	3100	105,115	79,341	268.007
1700	54,099	39,965	246.166	3150	106,972	80,782	268.601
1720	54,807	40,507	246.580	3200	108,830	82,224	269.186
1740	55,516	41,049	246.990	3250	110,690	83,668	269.763

Source: Tables A–18 through A–25 are adapted from Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 787–98. Originally published in JANAF, Thermochemical Tables, NSRDS-NBS-37, 1971.

TABLE A-19

Ideal-gas properties of oxygen, ${\rm O_2}$

T	\overline{h}	\overline{u}	S °	T	\overline{h}	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	17,929	12,940	226.346
220	6,404	4,575	196.171	610	18,250	13,178	226.877
230	6,694	4,782	197.461	620	18,572	13,417	227.400
240	6,984	4,989	198.696	630	18,895	13,657	227.918
250	7,275	5,197	199.885	640	19,219	13,898	228.429
260	7,566	5,405	201.027	650	19,544	14,140	228.932
270	7,858	5,613	202.128	660	19,870	14,383	229.430
280	8,150	5,822	203.191	670	20,197	14,626	229.920
290	8,443	6,032	204.218	680	20,524	14,871	230.405
298	8,682	6,203	205.033	690	20,854	15,116	230.885
300	8,736	6,242	205.213	700	21,184	15,364	231.358
310	9,030	6,453	206.177	710	21,514	15,611	231.827
320	9,325	6,664	207.112	720	21,845	15,859	232.291
330	9,620	6,877	208.020	730	22,177	16,107	232.748
340	9,916	7,090	208.904	740	22,510	16,357	233.201
350	10,213	7,303	209.765	750	22,844	16,607	233.649
360	10,511	7,518	210.604	760	23,178	16,859	234.091
370	10,809	7,733	211.423	770	23,513	17,111	234.528
380	11,109	7,949	212.222	780	23,850	17,364	234.960
390	11,409	8,166	213.002	790	24,186	17,618	235.387
400	11,711	8,384	213.765	800	24,523	17,872	235.810
410	12,012	8,603	214.510	810	24,861	18,126	236.230
420	12,314	8,822	215.241	820	25,199	18,382	236.644
430	12,618	9,043	215.955	830	25,537	18,637	237.055
440	12,923	9,264	216.656	840	25,877	18,893	237.462
450	13,228	9,487	217.342	850	26,218	19,150	237.864
460	13,525	9,710	218.016	860	26,559	19,408	238.264
470	13,842	9,935	218.676	870	26,899	19,666	238.660
480	14,151	10,160	219.326	880	27,242	19,925	239.051
490	14,460	10,386	219.963	890	27,584	20,185	239.439
500	14,770	10,614	220.589	900	27,928	20,445	239.823
510	15,082	10,842	221.206	910	28,272	20,706	240.203
520	15,395	11,071	221.812	920	28,616	20,967	240.580
530	15,708	11,301	222.409	930	28,960	21,228	240.953
540	16,022	11,533	222.997	940	29,306	21,491	241.323
550	16,338	11,765	223.576	950	29,652	21,754	241.689
560	16,654	11,998	224.146	960	29,999	22,017	242.052
570	16,971	12,232	224.708	970	30,345	22,280	242.411
580	17,290	12,467	225.262	980	30,692	22,544	242.768
590	17,609	12,703	225.808	990	31,041	22,809	242.120

Ideal-gas properties of oxygen, O_2 (Concluded)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	S °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	31,389	23,075	243.471	1760	58,880	44,247	263.861
1020	32,088	23,607	244.164	1780	59,624	44,825	264.283
1040	32,789	24,142	244.844	1800	60,371	45,405	264.701
1060	33,490	24,677	245.513	1820	61,118	45,986	265.113
1080	34,194	25,214	246.171	1840	61,866	46,568	265.521
1100	34,899	25,753	246.818	1860	62,616	47,151	265.925
1120	35,606	26,294	247.454	1880	63,365	47,734	266.326
1140	36,314	26,836	248.081	1900	64,116	48,319	266.722
1160	37,023	27,379	248.698	1920	64,868	48,904	267.115
1180	37,734	27,923	249.307	1940	65,620	49,490	267.505
1200	38,447	28,469	249.906	1960	66,374	50,078	267.891
1220	39,162	29,018	250.497	1980	67,127	50,665	268.275
1240	39,877	29,568	251.079	2000	67,881	51,253	268.655
1260	40,594	30,118	251.653	2050	69,772	52,727	269.588
1280	41,312	30,670	252.219	2100	71,668	54,208	270.504
1300	42,033	31,224	252.776	2150	73,573	55,697	271.399
1320	42,753	31,778	253.325	2200	75,484	57,192	272.278
1340	43,475	32,334	253.868	2250	77,397	58,690	273.136
1360	44,198	32,891	254.404	2300	79,316	60,193	273.891
1380	44,923	33,449	254.932	2350	81,243	61,704	274.809
1400	45,648	34,008	255.454	2400	83,174	63,219	275.625
1420	46,374	34,567	255.968	2450	85,112	64,742	276.424
1440	47,102	35,129	256.475	2500	87,057	66,271	277.207
1460	47,831	35,692	256.978	2550	89,004	67,802	277.979
1480	48,561	36,256	257.474	2600	90,956	69,339	278.738
1500	49,292	36,821	257.965	2650	92,916	70,883	279.485
1520	50,024	37,387	258.450	2700	94,881	72,433	280.219
1540	50,756	37,952	258.928	2750	96,852	73,987	280.942
1560	51,490	38,520	259.402	2800	98,826	75,546	281.654
1580	52,224	39,088	259.870	2850	100,808	77,112	282.357
1600	52,961	39,658	260.333	2900	102,793	78,682	283.048
1620	53,696	40,227	260.791	2950	104,785	80,258	283.728
1640	54,434	40,799	261.242	3000	106,780	81,837	284.399
1660	55,172	41,370	261.690	3050	108,778	83,419	285.060
1680	55,912	41,944	262.132	3100	110,784	85,009	285.713
1700	56,652	42,517	262.571	3150	112,795	86,601	286.355
1720	57,394	43,093	263.005	3200	114,809	88,203	286.989
1740	58,136	43,669	263.435	3250	116,827	89,804	287.614

TABLE A-20

Ideal-gas properties of carbon dioxide, CO₂

T	\overline{h}	\overline{u}	S °	T	\overline{h}	\overline{u}	<u></u> s °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	22,280	17,291	243.199
220	6,601	4,772	202.966	610	22,754	17,683	243.983
230	6,938	5,026	204.464	620	23,231	18,076	244.758
240	7,280	5,285	205.920	630	23,709	18,471	245.524
250	7,627	5,548	207.337	640	24,190	18,869	246.282
260	7,979	5,817	208.717	650	24,674	19,270	247.032
270	8,335	6,091	210.062	660	25,160	19,672	247.773
280	8,697	6,369	211.376	670	25,648	20,078	248.507
290	9,063	6,651	212.660	680	26,138	20,484	249.233
298	9,364	6,885	213.685	690	26,631	20,894	249.952
300	9,431	6,939	213.915	700	27,125	21,305	250.663
310	9,807	7,230	215.146	710	27,622	21,719	251.368
320	10,186	7,526	216.351	720	28,121	22,134	252.065
330	10,570	7,826	217.534	730	28,622	22,522	252.755
340	10,959	8,131	218.694	740	29,124	22,972	253.439
350	11,351	8,439	219.831	750	29,629	23,393	254.117
360	11,748	8,752	220.948	760	30,135	23,817	254.787
370	12,148	9,068	222.044	770	30,644	24,242	255.452
380	12,552	9,392	223.122	780	31,154	24,669	256.110
390	12,960	9,718	224.182	790	31,665	25,097	256.762
400	13,372	10,046	225.225	800	32,179	25,527	257.408
410	13,787	10,378	226.250	810	32,694	25,959	258.048
420	14,206	10,714	227.258	820	33,212	26,394	258.682
430	14,628	11,053	228.252	830	33,730	26,829	259.311
440	15,054	11,393	229.230	840	34,251	27,267	259.934
450	15,483	11,742	230.194	850	34,773	27,706	260.551
460	15,916	12,091	231.144	860	35,296	28,125	261.164
470	16,351	12,444	232.080	870	35,821	28,588	261.770
480	16,791	12,800	233.004	880	36,347	29,031	262.371
490	17,232	13,158	233.916	890	36,876	29,476	262.968
500	17,678	13,521	234.814	900	37,405	29,922	263.559
510	18,126	13,885	235.700	910	37,935	30,369	264.146
520	18,576	14,253	236.575	920	38,467	30,818	264.728
530	19,029	14,622	237.439	930	39,000	31,268	265.304
540	19,485	14,996	238.292	940	39,535	31,719	265.877
550	19,945	15,372	239.135	950	40,070	32,171	266.444
560	20,407	15,751	239.962	960	40,607	32,625	267.007
570	20,870	16,131	240.789	970	41,145	33,081	267.566
580	21,337	16,515	241.602	980	41,685	33,537	268.119
590	21,807	16,902	242.405	990	42,226	33,995	268.670

	RI		N
-			

Ideal-gas	properties	of	carbon	dioxide.	CO ₂ (Concluded)
racar gas	properties	01	Cuibon	aloxiac,	oog (concraaca)

T	\overline{h}	\overline{u}	<u></u> $ \overline{S}$ °	T	\overline{h}	\overline{u}	S °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	42,769	34,455	269.215	1760	86,420	71,787	301.543
1020	43,859	35,378	270.293	1780	87,612	72,812	302.217
1040	44,953	36,306	271.354	1800	88,806	73,840	302.884
1060	46,051	37,238	272.400	1820	90,000	74,868	303.544
1080	47,153	38,174	273.430	1840	91,196	75,897	304.198
1100	48,258	39,112	274.445	1860	92,394	76,929	304.845
1120	49,369	40,057	275.444	1880	93,593	77,962	305.487
1140	50,484	41,006	276.430	1900	94,793	78,996	306.122
1160	51,602	41,957	277.403	1920	95,995	80,031	306.751
1180	52,724	42,913	278.361	1940	97,197	81,067	307.374
1200	53,848	43,871	297.307	1960	98,401	82,105	307.992
1220	54,977	44,834	280.238	1980	99,606	83,144	308.604
1240	56,108	45,799	281.158	2000	100,804	84,185	309.210
1260	57,244	46,768	282.066	2050	103,835	86,791	310.701
1280	58,381	47,739	282.962	2100	106,864	89,404	312.160
1300	59,522	48,713	283.847	2150	109,898	92,023	313.589
1320	60,666	49,691	284.722	2200	112,939	94,648	314.988
1340	61,813	50,672	285.586	2250	115,984	97,277	316.356
1360	62,963	51,656	286.439	2300	119,035	99,912	317.695
1380	64,116	52,643	287.283	2350	122,091	102,552	319.011
1400	65,271	53,631	288.106	2400	125,152	105,197	320.302
1420	66,427	54,621	288.934	2450	128,219	107,849	321.566
1440	67,586	55,614	289.743	2500	131,290	110,504	322.808
1460	68,748	56,609	290.542	2550	134,368	113,166	324.026
1480	66,911	57,606	291.333	2600	137,449	115,832	325.222
1500	71,078	58,606	292.114	2650	140,533	118,500	326.396
1520	72,246	59,609	292.888	2700	143,620	121,172	327.549
1540	73,417	60,613	292.654	2750	146,713	123,849	328.684
1560	74,590	61,620	294.411	2800	149,808	126,528	329.800
1580	76,767	62,630	295.161	2850	152,908	129,212	330.896
1600	76,944	63,741	295.901	2900	156,009	131,898	331.975
1620	78,123	64,653	296.632	2950	159,117	134,589	333.037
1640	79,303	65,668	297.356	3000	162,226	137,283	334.084
1660	80,486	66,592	298.072	3050	165,341	139,982	335.114
1680	81,670	67,702	298.781	3100	168,456	142,681	336.126
1700	82,856	68,721	299.482	3150	171,576	145,385	337.124
1720	84,043	69,742	300.177	3200	174,695	148,089	338.109
1740	85,231	70,764	300.863	3250	177,822	150,801	339.069

TABLE A — 21

Ideal-gas properties of carbon monoxide, CO

T	\overline{h}	\overline{u}	S °	T	\overline{h}	\overline{u}	<u></u> s°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	17,611	12,622	218.204
220	6,391	4,562	188.683	610	17,915	12,843	218.708
230	6,683	4,771	189.980	620	18,221	13,066	219.205
240	6,975	4,979	191.221	630	18,527	13,289	219.695
250	7,266	5,188	192.411	640	18,833	13,512	220.179
260	7,558	5,396	193.554	650	19,141	13,736	220.656
270	7,849	5,604	194.654	660	19,449	13,962	221.127
280	8,140	5,812	195.713	670	19,758	14,187	221.592
290	8,432	6,020	196.735	680	20,068	14,414	222.052
298	8,669	6,190	197.543	690	20,378	14,641	222.505
300	8,723	6,229	197.723	700	20,690	14,870	222.953
310	9,014	6,437	198.678	710	21,002	15,099	223.396
320	9,306	6,645	199.603	720	21,315	15,328	223.833
330	9,597	6,854	200.500	730	21,628	15,558	224.265
340	9,889	7,062	201.371	740	21,943	15,789	224.692
350	10,181	7,271	202.217	750	22,258	16,022	225.115
360	10,473	7,480	203.040	760	22,573	16,255	225.533
370	10,765	7,689	203.842	770	22,890	16,488	225.947
380	11,058	7,899	204.622	780	23,208	16,723	226.357
390	11,351	8,108	205.383	790	23,526	16,957	226.762
400	11,644	8,319	206.125	800	23,844	17,193	227.162
410	11,938	8,529	206.850	810	24,164	17,429	227.559
420	12,232	8,740	207.549	820	24,483	17,665	227.952
430	12,526	8,951	208.252	830	24,803	17,902	228.339
440	12,821	9,163	208.929	840	25,124	18,140	228.724
450	13,116	9,375	209.593	850	25,446	18,379	229.106
460	13,412	9,587	210.243	860	25,768	18,617	229.482
470	13,708	9,800	210.880	870	26,091	18,858	229.856
480	14,005	10,014	211.504	880	26,415	19,099	230.227
490	14,302	10,228	212.117	890	26,740	19,341	230.593
500	14,600	10,443	212.719	900	27,066	19,583	230.957
510	14,898	10,658	213.310	910	27,392	19,826	231.317
520	15,197	10,874	213.890	920	27,719	20,070	231.674
530	15,497	11,090	214.460	930	28,046	20,314	232.028
540	15,797	11,307	215.020	940	28,375	20,559	232.379
550	16,097	11,524	215.572	950	28,703	20,805	232.727
560	16,399	11,743	216.115	960	29,033	21,051	233.072
570	16,701	11,961	216.649	970	29,362	21,298	233.413
580	17,003	12,181	217.175	980	29,693	21,545	233.752
590	17,307	12,401	217.693	990	30,024	21,793	234.088

Ideal-gas	properties	οf	carbon	monoxide	CO	(Concluded)
Tucai gas	properties	Oi	Carbon	monoxide,		Concluded

T	\overline{h}	\overline{u}	<u></u> s °	T	\overline{h}	\overline{u}	\overline{s}°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	30,355	22,041	234.421	1760	56,756	42,123	253.991
1020	31,020	22,540	235.079	1780	57,473	42,673	254.398
1040	31,688	23,041	235.728	1800	58,191	43,225	254.797
1060	32,357	23,544	236.364	1820	58,910	43,778	255.194
1080	33,029	24,049	236.992	1840	59,629	44,331	255.587
1100	33,702	24,557	237.609	1860	60,351	44,886	255.976
1120	34,377	25,065	238.217	1880	61,072	45,441	256.361
1140	35,054	25,575	238.817	1900	61,794	45,997	256.743
1160	35,733	26,088	239.407	1920	62,516	46,552	257.122
1180	36,406	26,602	239.989	1940	63,238	47,108	257.497
1200 1220 1240 1260 1280	37,095 37,780 38,466 39,154 39,844	27,118 27,637 28,426 28,678 29,201	240.663 241.128 241.686 242.236 242.780	1960 1980 2000 2050 2100	63,961 64,684 65,408 67,224 69,044	47,108 47,665 48,221 48,780 50,179 51,584	257.868 258.236 258.600 259.494 260.370
1300	40,534	29,725	243.316	2150	70,864	52,988	261.226
1320	41,226	30,251	243.844	2200	72,688	54,396	262.065
1340	41,919	30,778	244.366	2250	74,516	55,809	262.887
1360	42,613	31,306	244.880	2300	76,345	57,222	263.692
1380	43,309	31,836	245.388	2350	78,178	58,640	264.480
1400	44,007	32,367	245.889	2400	80,015	60,060	265.253
1420	44,707	32,900	246.385	2450	81,852	61,482	266.012
1440	45,408	33,434	246.876	2500	83,692	62,906	266.755
1460	46,110	33,971	247.360	2550	85,537	64,335	267.485
1480	46,813	34,508	247.839	2600	87,383	65,766	268.202
1500	47,517	35,046	248.312	2650	89,230	67,197	268.905
1520	48,222	35,584	248.778	2700	91,077	68,628	269.596
1540	48,928	36,124	249.240	2750	92,930	70,066	270.285
1560	49,635	36,665	249.695	2800	94,784	71,504	270.943
1580	50,344	37,207	250.147	2850	96,639	72,945	271.602
1600	51,053	37,750	250.592	2900	98,495	74,383	272.249
1620	51,763	38,293	251.033	2950	100,352	75,825	272.884
1640	52,472	38,837	251.470	3000	102,210	77,267	273.508
1660	53,184	39,382	251.901	3050	104,073	78,715	274.123
1680	53,895	39,927	252.329	3100	105,939	80,164	274.730
1700	54,609	40,474	252.751	3150	107,802	81,612	275.326
1720	55,323	41,023	253.169	3200	109,667	83,061	275.914
1740	56,039	41,572	253.582	3250	111,534	84,513	276.494

TABLE A-22

Ideal-gas properties of hydrogen, H₂ h \overline{s}° ħ Τ Τ ū \overline{s}° kJ/kmol kJ/kmol kJ/kmol Κ kJ/kmol · K Κ kJ/kmol kJ/kmol · K 0 0 0 0 1440 42,808 30,835 177.410 260 7,370 5,209 126.636 1480 44,091 31,786 178.291 270 7,657 5,412 127.719 1520 45,384 32,746 179.153 280 7,945 5,617 128.765 1560 46.683 33,713 179.995 290 8,233 5,822 129.775 1600 47,990 34,687 180.820 298 8.468 5.989 130.574 1640 49.303 35.668 181.632 300 8,522 6,027 1680 50,622 36,654 182.428 130.754 320 9,100 6.440 132.621 1720 51.947 37,646 183.208 38,645 340 9,680 6,853 134.378 1760 53,279 183.973 360 10,262 7,268 136.039 1800 54,618 39,652 184.724 380 10,843 7,684 137.612 1840 55.962 40,663 185.463 400 11,426 8,100 139.106 1880 57,311 41.680 186.190 420 12,010 8,518 140.529 1920 58,668 42,705 186.904 440 12,594 8.936 141.888 1960 60.031 43.735 187.607 13,179 44,771 460 9,355 143.187 2000 61,400 188.297 480 13,764 9,773 144.432 2050 63,119 46,074 189.148 500 14,350 10,193 145.628 2100 64,847 47,386 189.979 520 14,935 10.611 146.775 2150 66,584 48,708 190.796 11,451 50,037 560 16,107 148.945 2200 68,328 191.598 600 17,280 12,291 150.968 2250 70,080 51,373 192.385 640 18,453 13,133 152.863 2300 71,839 52,716 193.159 680 19,630 13,976 154.645 2350 73,608 54,069 193.921 720 20,807 14,821 156.328 2400 75,383 55,429 194.669 77,168 760 21,988 15,669 157.923 2450 56,798 195.403 16,520 78,960 800 23,171 159.440 2500 58,175 196.125 840 24.359 17.375 160.891 2550 80.755 59.554 196.837 880 25,551 18,235 2600 82,558 60,941 162.277 197.539 920 26,747 19,098 163.607 2650 84,368 62,335 198.229 960 27,948 19,966 164.884 2700 86,186 63,737 198.907 1000 29,154 20,839 166.114 2750 88,008 65,144 199.575 89,838 1040 30,364 21,717 167.300 2800 66,558 200.234 1080 31.580 22.601 168,449 2850 91.671 67.976 200.885 32,802 23,490 93,512 1120 169.560 2900 69,401 201.527 1160 34,028 24,384 170.636 2950 95,358 70,831 202.157 1200 35,262 25,284 171.682 3000 97,211 72,268 202.778 36,502 26,192 99,065 73,707 1240 172.698 3050 203.391 37,749 27,106 75,152 1280 173.687 3100 100,926 203.995 102,793 76,604 1320 39,002 28,027 174.652 3150 204.592 40,263 28,955 78,061 1360 175.593 3200 104,667 205.181 1400 41,530 29,889 176.510 3250 106,545 79,523 205.765

Ideal-gas properties	of	water	vapor.	$H_{2}O$
----------------------	----	-------	--------	----------

T	\overline{h}	\overline{u}	S °	T	h	\overline{u}	<u></u> s°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	20,402	15,413	212.920
220	7,295	5,466	178.576	610	20,765	15,693	213.529
230	7,628	5,715	180.054	620	21,130	15,975	214.122
240	7,961	5,965	181.471	630	21,495	16,257	214.707
250	8,294	6,215	182.831	640	21,862	16,541	215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.856
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	6,968	186.616	670	22,970	17,399	216.976
290	9,631	7,219	187.791	680	23,342	17,688	217.527
298	9,904	7,425	188.720	690	23,714	17,978	218.071
300	9,966	7,472	188.928	700	24,088	18,268	218.610
310	10,302	7,725	190.030	710	24,464	18,561	219.142
320	10,639	7,978	191.098	720	24,840	18,854	219.668
330	10,976	8,232	192.136	730	25,218	19,148	220.189
340	11,314	8,487	193.144	740	25,597	19,444	220.707
350	11,652	8,742	194.125	750	25,977	19,741	221.215
360	11,992	8,998	195.081	760	26,358	20,039	221.720
370	12,331	9,255	196.012	770	26,741	20,339	222.221
380	12,672	9,513	196.920	780	27,125	20,639	222.717
390	13,014	9,771	197.807	790	27,510	20,941	223.207
400	13,356	10,030	198.673	800	27,896	21,245	223.693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21,855	224.651
430	14,388	10,813	201.160	830	29,062	22,162	225.123
440	14,734	11,075	201.955	840	29,454	22,470	225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206.413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530	17,889	13,482	208.475	930	33,032	25,300	229.637
540	18,245	13,755	209.139	940	33,436	25,621	230.070
550	18,601	14,028	209.795	950	33,841	25,943	230.499
560	18,959	14,303	210.440	960	34,247	26,265	230.924
570	19,318	14,579	211.075	970	34,653	26,588	231.347
580	19,678	14,856	211.702	980	35,061	26,913	231.767
590	20,039	15,134	212.320	990	35,472	27,240	232.184

TABLE A-23

1640

1660

1680

1700

1720

1740

64,675

65,643

66,614

67,589

68,567

69,550

Ideal-gas properties of water vapor, H₂O (Concluded) \bar{h} ħ Τ Τ ū \overline{s}° kJ/kmol kJ/kmol Κ kJ/kmol Κ kJ/kmol · K kJ/kmol kJ/kmol · K 1000 35,882 27,568 232.597 1760 70,535 55,902 258.151 1020 36,709 28,228 233.415 1780 71,523 56,723 258.708 1040 37,542 28,895 234.223 1800 72,513 57,547 259.262 1060 38,380 29,567 235.020 1820 73,507 58,375 259.811 1080 39,223 30,243 235.806 1840 74,506 59,207 260.357 1100 40.071 30.925 236.584 1860 75.506 60,042 260.898 1120 40,923 31,611 1880 76,511 60,880 237.352 261.436 41,780 32,301 1900 77,517 61,720 1140 238.110 261.969 32,997 62,564 1160 42,642 238.859 1920 78,527 262.497 1180 43,509 33,698 239.600 1940 79,540 63,411 263.022 1200 44,380 34,403 240.333 1960 80,555 64,259 263,542 1220 45,256 35.112 241.057 1980 81,573 65.111 264.059 1240 46,137 35,827 241.773 2000 82,593 65,965 264.571 1260 47.022 36.546 242.482 2050 85.156 68.111 265.838 47,912 70,275 1280 37,270 243.183 2100 87,735 267.081 1300 48,807 38,000 243.877 2150 90,330 72,454 268.301 1320 49,707 38,732 244.564 2200 92,940 74,649 269.500 1340 50,612 39,470 245.243 2250 95,562 76,855 270.679 79,076 1360 51,521 40,213 245.915 2300 98,199 271.839 1380 52,434 40,960 246.582 2350 100,846 81,308 272.978 53,351 1400 41,711 247.241 2400 103,508 83,553 274.098 1420 54,273 42,466 247.895 2450 106,183 85,811 275.201 1440 55,198 43,226 248.543 2500 108,868 88,082 276.286 1460 56,128 43,989 249.185 2550 111,565 90,364 277.354 1480 57,062 44,756 249.820 2600 114,273 92,656 278.407 1500 57.999 45.528 250.450 2650 116.991 94.958 279,441 58,942 46,304 2700 119,717 97,269 1520 251.074 280.462 1540 59,888 47,084 251.693 2750 122,453 99,588 281.464 1560 60,838 47,868 252.305 2800 125,198 101,917 282.453 1580 61,792 48,655 252.912 2850 127,952 104,256 283.429 1600 62,748 49,445 253.513 2900 130,717 106,605 284.390 1620 63,709 50.240 254.111 2950 133.486 108.959 285.338

51,039

51,841

52,646

53,455

54,267

55,083

254.703

255.290

255.873

256.450

257.022

257.589

3000

3050

3100

3150

3200

3250

136,264

139,051

141,846

144,648

147,457

150,272

111,321

113,692

116,072

118,458

120,851

123,250

286.273

287.194

288.102

288.999

289.884

290.756

TABLE A-	-24						
Ideal-gas	properties of m	onatomic oxyger	ı, O				
T	Ī	ū	<u></u> s°	T	h	\overline{u}	<u></u> s°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	2400	50,894	30,940	204.932
298	6,852	4,373	160.944	2450	51,936	31,566	205.362
300	6,892	4,398	161.079	2500	52,979	32,193	205.783
500	11,197	7,040	172.088	2550	54,021	32,820	206.196
1000	21,713	13,398	186.678	2600	55,064	33,447	206.601
1500	32,150	19,679	195.143	2650	56,108	34,075	206.999
1600	34,234	20,931	196.488	2700	57,152	34,703	207.389
1700	36,317	22,183	197.751	2750	58,196	35,332	207.772
1800	38,400	23,434	198.941	2800	59,241	35,961	208.148
1900	40,482	24,685	200.067	2850	60,286	36,590	208.518
2000	42,564	25,935	201.135	2900	61,332	37,220	208.882
2050	43,605	26,560	201.649	2950	62,378	37,851	209.240
2100	44,646	27,186	202.151	3000	63,425	38,482	209.592
2150	45,687	27,811	202.641	3100	65,520	39,746	210.279
2200	46,728	28,436	203.119	3200	67,619	41,013	210.945
2250	47,769	29,062	203.588	3300	69,720	42,283	211.592
2300	48,811	29,688	204.045	3400	71,824	43,556	212.220
2350	49,852	30,314	204.493	3500	73,932	44,832	212.831

TABLE A-	-25						
Ideal-gas	properties of hy	ydroxyl, OH					
T	Ī	\overline{u}	₹°	T	\overline{h}	\overline{u}	<u></u> $ \overline{S}$ °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	2400	77,015	57,061	248.628
298	9,188	6,709	183.594	2450	78,801	58,431	249.364
300	9,244	6,749	183.779	2500	80,592	59,806	250.088
500	15,181	11,024	198.955	2550	82,388	61,186	250.799
1000	30,123	21,809	219.624	2600	84,189	62,572	251.499
1500	46,046	33,575	232.506	2650	85,995	63,962	252.187
1600	49,358	36,055	234.642	2700	87,806	65,358	252.864
1700	52,706	38,571	236.672	2750	89,622	66,757	253.530
1800	56,089	41,123	238.606	2800	91,442	68,162	254.186
1900	59,505	43,708	240.453	2850	93,266	69,570	254.832
2000	62,952	46,323	242.221	2900	95,095	70,983	255.468
2050	64,687	47,642	243.077	2950	96,927	72,400	256.094
2100	66,428	48,968	243.917	3000	98,763	73,820	256.712
2150	68,177	50,301	244.740	3100	102,447	76,673	257.919
2200	69,932	51,641	245.547	3200	106,145	79,539	259.093
2250	71,694	52,987	246.338	3300	109,855	82,418	260.235
2300	73,462	54,339	247.116	3400	113,578	85,309	261.347
2350	75,236	55,697	247.879	3500	117,312	88,212	262.429

TABLE A—26
Enthalpy of formation, Gibbs function of formation, and absolute entropy at

		\overline{h}_f°	\overline{g}_{f}°	<u></u> $ \overline{S} $
Substance	Formula	kJ/kmol	kJ/kmol	kJ/kmol · k
Carbon	C(s)	0	0	5.74
Hydrogen	$H_2(g)$	0	0	130.68
Nitrogen	$N_2(g)$	0	0	191.61
Oxygen	O ₂ (g)	0	0	205.04
Carbon monoxide	CO(<i>g</i>)	-110,530	-137,150	197.65
Carbon dioxide	$CO_2(g)$	-393,520	-394,360	213.80
Water vapor	$H_2\bar{O}(g)$	-241,820	-228,590	188.83
Water	$H_2O(\ell)$	-285,830	-237,180	69.92
Hydrogen peroxide	$H_2O_2(g)$	-136,310	-105,600	232.63
Ammonia	$NH_3(g)$	-46,190	-16,590	192.33
Methane	$CH_4(g)$	-74,850	-50,790	186.16
Acetylene	$C_2H_2(g)$	+226,730	+209,170	200.85
Ethylene	$C_2H_4(g)$	+52,280	+68,120	219.83
Ethane	$C_2H_6(g)$	-84,680	-32,890	229.49
Propylene	$C_3H_6(g)$	+20,410	+62,720	266.94
Propane	$C_3H_8(g)$	-103,850	-23,490	269.91
<i>n</i> -Butane	$C_4H_{10}(g)$	-126,150	-15,710	310.12
<i>n</i> -Octane	$C_8H_{18}(g)$	-208,450	+16,530	466.73
<i>n</i> -Octane	$C_8H_{18}(\ell)$	-249,950	+6,610	360.79
<i>n</i> -Dodecane	$C_{12}H_{26}(g)$	-291,010	+50,150	622.83
Benzene	$C_6H_6(g)$	+82,930	+129,660	269.20
Methyl alcohol	$CH_3OH(g)$	-200,670	-162,000	239.70
Methyl alcohol	CH ₃ OH(ℓ)	-238,660	-166,360	126.80
Ethyl alcohol	$C_2H_5OH(g)$	-235,310	-168,570	282.59
Ethyl alcohol	$C_2H_5OH(\ell)$	-277,690	-174,890	160.70
Oxygen	O(<i>g</i>)	+249,190	+231,770	161.06
Hydrogen	H(<i>g</i>)	+218,000	+203,290	114.72
Nitrogen	N(<i>g</i>)	+472,650	+455,510	153.30
Hydroxyl	OH(<i>g</i>)	+39,460	+34,280	183.70

Source: From JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971); Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; and API Research Project 44 (Carnegie Press, 1953).

TABLE A-27

Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, kg/kmol	Density, ¹ kg/L	Enthalpy of vaporization, ² kJ/kg	Specific heat, 1 c_p kJ/kg \cdot K	Higher heating value, ³ kJ/kg	Lower heating value, ³ kJ/kg
Carbon (s)	С	12.011	2	_	0.708	32,800	32,800
Hydrogen (g)	H ₂	2.016	_	_	14.4	141,800	120,000
Carbon monoxide (g)	CO	28.013	_	_	1.05	10,100	10,100
Methane (g)	CH ₄	16.043	_	509	2.20	55,530	50,050
Methanol (ℓ)	CH₄O	32.042	0.790	1168	2.53	22,660	19,920
Acetylene (g)	C_2H_2	26.038	_	_	1.69	49,970	48,280
Ethane (g)	C_2H_6	30.070	_	172	1.75	51,900	47,520
Ethanol (ℓ)	C_2H_6O	46.069	0.790	919	2.44	29,670	26,810
Propane (ℓ)	C_3H_8	44.097	0.500	335	2.77	50,330	46,340
Butane (ℓ)	C_4H_{10}	58.123	0.579	362	2.42	49,150	45,370
1-Pentene (ℓ)	C ₅ H ₁₀	70.134	0.641	363	2.20	47,760	44,630
Isopentane (ℓ)	C ₅ H ₁₂	72.150	0.626	_	2.32	48,570	44,910
Benzene (ℓ)	C_6H_6	78.114	0.877	433	1.72	41,800	40,100
Hexene (ℓ)	C_6H_{12}	84.161	0.673	392	1.84	47,500	44,400
Hexane (ℓ)	C_6H_{14}	86.177	0.660	366	2.27	48,310	44,740
Toluene (ℓ)	C_7H_8	92.141	0.867	412	1.71	42,400	40,500
Heptane (ℓ)	C_7H_{16}	100.204	0.684	365	2.24	48,100	44,600
Octane (ℓ)	C_8H_{18}	114.231	0.703	363	2.23	47,890	44,430
Decane (ℓ)	$C_{10}H_{22}$	142.285	0.730	361	2.21	47,640	44,240
Gasoline (ℓ)	$C_n H_{1.87n}$	100-110	0.72-0.78	350	2.4	47,300	44,000
Light diesel (ℓ)	$C_nH_{1.8n}$	170	0.78-0.84	270	2.2	46,100	43,200
Heavy diesel (ℓ)	$C_nH_{1.7n}$	200	0.82-0.88	230	1.9	45,500	42,800
Natural gas (g)	$C_nH_{3.8n}N_{0.1n}$	18	_	_	2	50,000	45,000

 $^{^1\}mbox{At }1$ atm and 20°C.

 $^{^2\}mbox{At }25\mbox{°C}$ for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.

 $^{^3\}mbox{At}$ 25°C. Multiply by molar mass to obtain heating values in kJ/kmol.

TABLE A-28

Natural logarithms of the equilibrium constant K_p

The equilibrium constant K_p for the reaction $\nu_A A + \nu_B B \Longrightarrow \nu_C C + \nu_D D$ is defined as $K_p \equiv \frac{P_C^{\nu_C} P_D^{\nu_D}}{P_A^{\nu_A} P_B^{\nu_B}}$

Temp.	,						
K	$H_2 \rightleftharpoons 2H$	$O_2 \rightleftharpoons 20$	$N_2 \rightleftharpoons 2N$	$H_2O \rightleftharpoons H_2 + \frac{1}{2}O_2$	$H_2O \rightleftharpoons {}^1/{}_2H_2 + OH$	$CO_2 \rightleftharpoons CO + \frac{1}{2}O_2$	$^{1}/_{2}N_{2} + ^{1}/_{2}O_{2} \rightleftharpoons NO$
298	-164.005	-186.975	-367.480	-92.208	-106.208	-103.762	-35.052
500	-92.827	-105.630	-213.372	-52.691	-60.281	-57.616	-20.295
1000	-39.803	-45.150	-99.127	-23.163	-26.034	-23.529	-9.388
1200	-30.874	-35.005	-80.011	-18.182	-20.283	-17.871	-7.569
1400	-24.463	-27.742	-66.329	-14.609	-16.099	-13.842	-6.270
1600	-19.637	-22.285	-56.055	-11.921	-13.066	-10.830	-5.294
1800	-15.866	-18.030	-48.051	-9.826	-10.657	-8.497	-4.536
2000	-12.840	-14.622	-41.645	-8.145	-8.728	-6.635	-3.931
2200	-10.353	-11.827	-36.391	-6.768	-7.148	-5.120	-3.433
2400	-8.276	-9.497	-32.011	-5.619	-5.832	-3.860	-3.019
2600	-6.517	-7.521	-28.304	-4.648	-4.719	-2.801	-2.671
2800	-5.002	-5.826	-25.117	-3.812	-3.763	-1.894	-2.372
3000	-3.685	-4.357	-22.359	-3.086	-2.937	-1.111	-2.114
3200	-2.534	-3.072	-19.937	-2.451	-2.212	-0.429	-1.888
3400	-1.516	-1.935	-17.800	-1.891	-1.576	0.169	-1.690
3600	-0.609	-0.926	-15.898	-1.392	-1.088	0.701	-1.513
3800	0.202	-0.019	-14.199	-0.945	-0.501	1.176	-1.356
4000	0.934	0.796	-12.660	-0.542	-0.044	1.599	-1.216
4500	2.486	2.513	-9.414	0.312	0.920	2.490	-0.921
5000	3.725	3.895	-6.807	0.996	1.689	3.197	-0.686
5500	4.743	5.023	-4.666	1.560	2.318	3.771	-0.497
6000	5.590	5.963	-2.865	2.032	2.843	4.245	-0.341

Source: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 723, table A.14. Based on thermodynamic data given in JANAF, Thermochemical Tables (Midland, MI: Thermal Research Laboratory, The Dow Chemical Company, 1971).

FIGURE A-29

Generalized enthalpy departure chart.

Source: John R. Howell and Richard O. Buckius, Fundamentals of Engineering Thermodynamics, SI Version (New York: McGraw-Hill, 1987), p. 558, fig. C.2, and p. 561, fig. C.5.

FIGURE A-30

Generalized entropy departure chart.

Source: John R. Howell and Richard O. Buckius, Fundamentals of Engineering Thermodynamics, SI Version (New York: McGraw-Hill, 1987), p. 559, fig. C.3, and p. 561, fig. C.5.

Normal Temperature Barometric Pressure: 101.325 kPa

Prepared by Center for Applied Thermodynamic Studies, University of Idaho.

FIGURE A-31

Psychrometric chart at 1 atm total pressure.

Reprinted by permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA; used with permission.

956 | Thermodynamics

$$\begin{split} \mathbf{Ma^*} &= \mathbf{Ma} \sqrt{\frac{k+1}{2+(k-1)\mathbf{Ma}^2}} \\ \frac{A}{A^*} &= \frac{1}{\mathbf{Ma}} \bigg[\bigg(\frac{2}{k+1} \bigg) \bigg(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \bigg) \bigg]^{0.5(k+1)/(k-1)} \\ \frac{P}{P_0} &= \bigg(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \bigg)^{-k/(k-1)} \\ \frac{\rho}{\rho_0} &= \bigg(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \bigg)^{-1/(k-1)} \\ \frac{T}{T_0} &= \bigg(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \bigg)^{-1} \end{split}$$

TABLE A-32

One-dimensional isentropic compressible flow functions for an ideal gas with $\emph{k}=1.4$

0	0	∞	P/P_0	ρ/ρ_0	<i>T/T</i> ₀
_	-		1.0000	1.0000	1.0000
0.1	0.1094	5.8218	0.9930	0.9950	0.9980
0.2	0.2182	2.9635	0.9725	0.9803	0.9921
0.3	0.3257	2.0351	0.9395	0.9564	0.9823
0.4	0.4313	1.5901	0.8956	0.9243	0.9690
0.5	0.5345	1.3398	0.8430	0.8852	0.9524
0.6	0.6348	1.1882	0.7840	0.8405	0.9328
0.7	0.7318	1.0944	0.7209	0.7916	0.9107
0.8	0.8251	1.0382	0.6560	0.7400	0.8865
0.9	0.9146	1.0089	0.5913	0.6870	0.8606
1.0	1.0000	1.0000	0.5283	0.6339	0.8333
1.2	1.1583	1.0304	0.4124	0.5311	0.7764
1.4	1.2999	1.1149	0.3142	0.4374	0.7184
1.6	1.4254	1.2502	0.2353	0.3557	0.6614
1.8	1.5360	1.4390	0.1740	0.2868	0.6068
2.0	1.6330	1.6875	0.1278	0.2300	0.5556
2.2	1.7179	2.0050	0.0935	0.1841	0.5081
2.4	1.7922	2.4031	0.0684	0.1472	0.4647
2.6	1.8571	2.8960	0.0501	0.1179	0.4252
2.8	1.9140	3.5001	0.0368	0.0946	0.3894
3.0	1.9640	4.2346	0.0272	0.0760	0.3571
5.0	2.2361	25.000	0.0019	0.0113	0.1667
\propto	2.2495	\propto	0	0	0

$$\begin{split} T_{01} &= T_{02} \\ \mathrm{Ma}_2 &= \sqrt{\frac{(k-1)\mathrm{Ma}_1^2 + 2}{2k\mathrm{Ma}_1^2 - k + 1}} \\ \frac{P_2}{P_1} &= \frac{1 + k\mathrm{Ma}_1^2}{1 + k\mathrm{Ma}_2^2} = \frac{2k\mathrm{Ma}_1^2 - k + 1}{k + 1} \\ \frac{\rho_2}{\rho_1} &= \frac{P_2/P_1}{T_2/T_1} = \frac{(k+1)\mathrm{Ma}_1^2}{2 + (k-1)\mathrm{Ma}_1^2} = \frac{V_1}{V_2} \\ \frac{T_2}{T_1} &= \frac{2 + \mathrm{Ma}_1^2(k-1)}{2 + \mathrm{Ma}_2^2(k-1)} \\ \frac{P_{02}}{P_{01}} &= \frac{\mathrm{Ma}_1}{\mathrm{Ma}_2} \left[\frac{1 + \mathrm{Ma}_2^2(k-1)/2}{1 + \mathrm{Ma}_1^2(k-1)/2} \right]^{(k+1)/[2(k-1)]} \\ \frac{P_{02}}{P_1} &= \frac{(1 + k\mathrm{Ma}_1^2)[1 + \mathrm{Ma}_2^2(k-1)/2]^{k/(k-1)}}{1 + k\mathrm{Ma}_2^2} \end{split}$$

TABLE A-33

One-dimensional normal shock functions for an ideal gas with k = 1.4

Ma_1	Ma ₂	P_2/P_1	ρ_2/ρ_1	T_2/T_1	P_{02}/P_{01}	P_{02}/P_1
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.8929
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	2.1328
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	2.4075
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	2.7136
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	3.0492
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	3.4133
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	3.8050
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	4.2238
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	5.1418
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	5.6404
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	6.1654
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	6.7165
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	7.2937
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	7.8969
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	8.5261
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	9.1813
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	9.8624
2.8	0.4882	8.9800	3.6636	2.4512	0.3895	10.5694
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	11.3022
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	12.0610
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	21.0681
5.0	0.4152	29.000	5.0000	5.8000	0.0617	32.6335
∞	0.3780	∞	6.0000	∞	0	∞

958 | Thermodynamics

$$\begin{split} \frac{T_0}{T_0^*} &= \frac{(k+1)\text{Ma}^2[2 + (k-1)\text{Ma}^2]}{(1+k\text{Ma}^2)^2} \\ \frac{P_0}{P_0^*} &= \frac{k+1}{1+k\text{Ma}^2} \left(\frac{2+(k-1)\text{Ma}^2}{k+1}\right)^{k/(k-1)} \\ \frac{T}{T^*} &= \left(\frac{\text{Ma}(1+k)}{1+k\text{Ma}^2}\right)^2 \\ \frac{P}{P^*} &= \frac{1+k}{1+k\text{Ma}^2} \\ \frac{V}{V^*} &= \frac{\rho^*}{\rho} = \frac{(1+k)\text{Ma}^2}{1+k\text{Ma}^2} \end{split}$$

TABLE A-34

Rayleigh flow functions for an ideal gas with k = 1.4

Ма	T_0/T_0^*	P_0/P_0^*	T/ T*	P/P*	<i>V/V</i> *
0.0	0.0000	1.2679	0.0000	2.4000	0.0000
0.1	0.0468	1.2591	0.0560	2.3669	0.0237
0.2	0.1736	1.2346	0.2066	2.2727	0.0909
0.3	0.3469	1.1985	0.4089	2.1314	0.1918
0.4	0.5290	1.1566	0.6151	1.9608	0.3137
0.5	0.6914	1.1141	0.7901	1.7778	0.4444
0.6	0.8189	1.0753	0.9167	1.5957	0.5745
0.7	0.9085	1.0431	0.9929	1.4235	0.6975
0.8	0.9639	1.0193	1.0255	1.2658	0.8101
0.9	0.9921	1.0049	1.0245	1.1246	0.9110
1.0	1.0000	1.0000	1.0000	1.0000	1.0000
1.2	0.9787	1.0194	0.9118	0.7958	1.1459
1.4	0.9343	1.0777	0.8054	0.6410	1.2564
1.6	0.8842	1.1756	0.7017	0.5236	1.3403
1.8	0.8363	1.3159	0.6089	0.4335	1.4046
2.0	0.7934	1.5031	0.5289	0.3636	1.4545
2.2	0.7561	1.7434	0.4611	0.3086	1.4938
2.4	0.7242	2.0451	0.4038	0.2648	1.5252
2.6	0.6970	2.4177	0.3556	0.2294	1.5505
2.8	0.6738	2.8731	0.3149	0.2004	1.5711
3.0	0.6540	3.4245	0.2803	0.1765	1.5882

