Herramientas y tecnologías digitales

Daniel Martiñán Otero

25/06/2025

Formación

- Ingeniero en Telecomunicación por la UVigo (2014)
- Master en Profesorado de Educación Secundaria por la UVigo (2023)

Experiencia profesional

- 2014-2015: Ingeniero de telecomunicaciones en AtlanTTic (Vigo)
 - o Comunicaciones avanzadas por sátelite, sistemas de comunicación para drones.
- 2015-2024: Ingeniero de software en CTAG (O Porriño)
 - o Diseño e implementación de sistamas ADAS y conducción autónoma.
- 2024-actualidad: Profesor de Formación Profesional en IES de Teis
 - Módulos Programación, Entornos de Desarrollo y Administración de Sistemas Gestores de Bases de Datos de CFGS de DAM, DAW y ASIR.

Indice de contenidos y programación por días

Contenido	Actividades				
Día 1	Fundamentos de digitalización, entornos IT/OT y tecnologías habilitadoras digitales. 5G. Cloud & Edge computing. RV y RA. Herramientas.				
Día 2	Ciberseguridad y protección de datos. Proyecto de transformación digital. Pensamiento computacional. Productividad. Herramientas				

Objetivos del curso

- Conocer los fundamentos de la digitalización aplicada a los sectores productivos, así como las tecnologías habilitadoras digitales.
- Identificar procesos de digitalización en el ámbito profesional.
- Familiarizarse con herramientas digitales que facilitan la digitalización de procesos.
- Conocer y aplicar nuevas herramientas digitales que utilizar como parte de la docencia del módulo de digitalización aplicada a los sectores productivos.
- Promover el uso de estas herramientas digitales el nuestro alumnado.

¿Qué no podemos esperar de este curso?

- Profundizar en cada una de las tecnologías digitales.
- Convertirse en un experto en ciberseguridad.
- Aprender a programar.
- Implementar un proyecto de transformación digital completo.
- Conocer todas las herramientas digitales disponibles.
- Convertirnos en expertos en ninguna de las herramientas digitales que mencionemos.

Herramientas y tecnologías digitales

Introducción a la digitalización

¿Qué entendemos por digitalización?

Introducción a la digitalización

La digitalización es el proceso mediante el cual una organización transforma sus procesos, productos y modelos de negocio aprovechando las tecnologías digitales. No se trata solo de utilizar ordenadores o software, sino de repensar cómo opera una empresa a partir de los datos, la conectividad y la automatización.

Introducción a la digitalización

Informatización	Digitalización
Introducción de herramientas informáticas básicas (ERP, ofimática).	Rediseño profundo de procesos usando tecnologías avanzadas.
El proceso sigue siendo manual, pero asistido.	El proceso se automatiza o se transforma.
Afecta a áreas concretas.	Afecta a toda la organización (visión sistémica).

Impacto de la digitalización

- Uso de sensores, redes de datos, analítica, IA, cloud, etc.
- Aumento de la **productividad** sin aumentar costes.
- Mejora de la sostenibilidad mediante optimización energética.
- Necesidad de nuevas competencias digitales en todos los niveles.
- Nuevos roles digitales (data analyst, integrador OT, ingeniero de datos...).
- Desaparición o transformación de tareas rutinarias.
- Modelos organizativos más horizontales y colaborativos.
- Cambios en la comunicación interna y en la relación con clientes y proveedores.

Introducción a la digitalización

La digitalización permite crear modelos como:

- Servicios como producto (as-a-service).
- Personalización masiva basada en datos.
- Producción flexible bajo demanda.
- Plataformas colaborativas de innovación.

Digitalizar no solo es cuestión de tecnología, sino de personas:

- Se necesita una mentalidad abierta al cambio y aprendizaje continuo.
- Fomento del trabajo en equipo entre perfiles técnicos, IT y producción.
- Reducción del miedo al error y mayor enfoque experimental.

Introducción a la digitalización

Ejemplos de procesos digitalizados:

- Producción inteligente: fábricas conectadas con sensores loT que monitorizan en tiempo real.
- Logística optimizada: seguimiento de mercancías con RFID y análisis predictivo de demanda.
- Atención al cliente automatizada: chatbots que resuelven consultas frecuentes.
- Mantenimiento predictivo: análisis de datos de máquinas para anticipar fallos.
- Marketing personalizado: campañas basadas en el comportamiento del usuario.
- Gestión de proyectos colaborativa: uso de herramientas digitales para coordinar equipos distribuidos.
- Formación continua: plataformas de e-learning que permiten a los empleados actualizar sus habilidades.
- **Teletrabajo y colaboración remota**: uso de videoconferencias y herramientas colaborativas para equipos distribuidos.
- Análisis de datos: uso de herramientas de Big Data para extraer insights de grandes volúmenes de información.

- Real Decreto 659/2023, de 18 de julio, por el que se desarrolla la ordenación del Sistema de Formación Profesional.
 - Anexos VI y VII: Currículo de los títulos de formación profesional de grado medio y grado superior en Digitalización aplicada a los sectores productivos.
- Resolución XXX da Dirección Xeral de Formación Profesional, pola que se ditan instruccións sobre a ordenación e a organización dos graos D e E de formación profesional para o curso 2025-2026 (pendente de publicación).

Comparativa de contenidos para GM y GS:

Contenido	GM	GS
Fundamentos de digitalización	Introducción a la digitalización, economía circular, tecnologías habilitadoras	Profundización en IT/OT, IA, Big Data, ciberseguridad
Cloud & Edge computing	Descripción básica de tecnologías	Análisis de impacto en sistemas digitales y negocio

Comparativa de contenidos para GM y GS:

Contenido	GM	GS	
Ciberseguridad	Protección de datos, brechas de seguridad	Evaluación de riesgos, diseño de sistemas seguros	
Proyecto de transformación digital	Transformación básica a modelo 4.0, diagramas de bloques	Proyecto integral con alineación estratégica, análisis de recursos humanos	

- Habilidades desarrolladas:
 - o GM: Identificación de tecnologías, elaboración de informes de viabilidad simples.
 - **GS**: Análisis crítico de datos, diseño de proyectos complejos, evaluación de impacto en competitividad y sostenibilidad.

En GM los RA son más descriptivos, mientras que en GS son más analíticos.

Digitalización, automatización, informatización y transformación digital

Concepto	Definición resumida	Exemplo		
Informatización	Sustitución de procesos manuales por sistemas informáticos	Usar una hoja de cálculo para registrar datos en vez de papel		
Automatización	Ejecución automática de tareas o procesos repetitivos	Un brazo robótico que envasa productos de forma autónoma		
Digitalización	Uso de las TIC para transformar procesos, mejorar la eficiencia o crear valor	Control remoto de parámetros de un reactor químico		
Transformación digital	Cambio profundo de cultura, estructura y modelos de negocio mediante la digitalización	Implantación de soluciones IoT y análisis predictivo en toda la planta		

Entornos IT y OT

- Entornos IT : tecnologías de la información, enfocadas en la gestión de datos y procesos empresariales.
 - Administración de sistemas, redes o bases de datos
 - Desarrollo de software, ciberseguridad, análisis de datos.
 - Gestion de la información empresarial, como ERP, CRM, etc.
 - Ingeniería de software.
- Entornos OT: tecnologías operativas, centradas en el control y supervisión de procesos físicos.
 - Sistemas de control industrial, como PLCs, SCADA, DCS.
 - Sensores, actuadores y dispositivos conectados a máquinas.
 - Supervisión y control de procesos industriales.
 - Seguridad industrial.
 - Control de procesos físicos.

Entornos IT y OT

Transformación digital implica la **convergencia** de ambos entornos:

- Integración de sistemas IT y OT para una gestión más eficiente.
- Nuevos roles que combinan habilidades de ambos mundos (ej. ingeniero de datos, integrador IT/OT).
- Necesidad de formación continua en tecnologías emergentes y ciberseguridad.

¿Por qué ahora? Porque la madurez de las tecnologías actuales lo permiten:

- Avances en IIoT, Big Data, IA y cloud computing.
- Obtención y procesado de datos en tiempo real.

Entornos IT y OT

Desafíos de la convergencia IT/OT:

- Seguridad: Integrar sistemas con diferentes niveles de seguridad.
- Interoperabilidad: Heterogeneidad de tecnologías y protocolos.
- Cambio cultural: Diferencias en mentalidad y formación entre equipos IT y OT.
- Capacitación: Necesidad de formación continua en nuevas tecnologías y ciberseguridad.

Las **tecnologías habilitadoras digitales** son herramientas y sistemas que permiten la digitalización de procesos y la creación de nuevos modelos de negocio. Algunas de las más relevantes son:

- Internet de las Cosas (IoT): Conexión de dispositivos físicos a internet para recopilar y compartir datos.
- Inteligencia Artificial (IA): Algoritmos que permiten el análisis de datos, la automatización de procesos y la toma de decisiones inteligentes.
- Big Data: Procesamiento y análisis de grandes volúmenes de datos para extraer información valiosa.

- Cloud Computing: Servicios de computación en la nube que permiten el almacenamiento, procesamiento y análisis de datos sin necesidad de infraestructura local.
- **Blockchain**: Tecnología de registro distribuido que garantiza la seguridad y trazabilidad de las transacciones digitales.
- Realidad Aumentada y Virtual (AR/VR): Tecnologías que permiten crear experiencias inmersivas y visualizaciones avanzadas de datos.
- Ciberseguridad: Conjunto de medidas y tecnologías para proteger los sistemas digitales y los datos frente a amenazas y ataques.

- **5G** y conectividad avanzada: Redes de alta velocidad que permiten la transmisión de grandes volúmenes de datos en tiempo real.
- Robótica y automatización: Sistemas que permiten la ejecución automática de tareas repetitivas o peligrosas.
- Impresión 3D: Fabricación aditiva que permite crear objetos físicos a partir de modelos digitales.

- Edge Computing: Procesamiento de datos cerca del lugar donde se generan, reduciendo la latencia y mejorando la eficiencia.
- Sistemas Ciberfísicos (CPS): Integración de componentes físicos y digitales que permiten el control y monitorización en tiempo real de procesos industriales.
- Interfaces de usuario avanzadas (HMI): Sistemas que mejoran la interacción entre humanos y máquinas, facilitando el control y supervisión de procesos.
- Simulación digital (Digital Twin): Réplicas virtuales de sistemas físicos que permiten simular y optimizar procesos antes de implementarlos en el mundo real.
- **Tecnologías hápticas**: Dispositivos que permiten la interacción táctil con sistemas digitales, mejorando la experiencia del usuario.

Ejemplos de aplicación de las TDH:

TDH	Ejemplo
IoT	Sensores que controlan temperatura y presión en un reactor químico.
Big Data	Análisis de datos históricos para optimizar fórmulas de mezcla.
IA	Algoritmos que detectan desviaciones en la calidad del producto.
Cloud Computing	Acceso a sistemas SCADA desde la nube para supervisión remota.

Ejemplos de aplicación de las TDH:

TDH	Ejemplo
Robótica avanzada	Brazo robótico que realiza tareas peligrosas en laboratorio.
Simulación digital	Réplica virtual de una línea de producción para probar cambios.
RA/RV	Formación en realidad virtual sobre protocolos de seguridad química.
Fabricación aditiva	Impresión 3D de piezas de recambio para equipos industriales.
Ciberseguridad	Protección de sistemas OT frente a accesos no autorizados.

Ejemplos de aplicación de las TDH:

TDH	Ejemplo
Edge Computing	Procesamiento local de datos de sensores para alertas inmediatas.
Blockchain	Registro seguro de transacciones en la cadena de suministro.
Sistemas Ciberfísicos	Control y monitorización en tiempo real de procesos industriales.
Interfaces HMI	Pantallas táctiles que facilitan la interacción con maquinaria.

Ideas clave:

- Las TDH no son sólo "gadgets" o modas, sino herramientas que transforman la forma en que operan las empresas.
- Es importante conocer los casos de uso y aplicaciones reales en la industria.
- Conocer las TDH nos permite identificar oportunidades de aplicación o mejora.
- La combinación de varias TDH puede generar sinergias y soluciones innovadoras.
- Promover el pensamiento digital, análisis de datos, automatización y diseño eficiente y seguro de procesos.

Tecnología 5G → Salto cualitativo frente a generaciones anteriores:

- Mayor velocidad: Hasta 10 Gbps, lo que permite la transmisión de grandes volúmenes de datos en tiempo real.
- Baja latencia: Menos de 1 ms, ideal para aplicaciones críticas como control industrial o vehículos autónomos.
- Conexiones masivas: Soporta millones de dispositivos conectados simultáneamente, facilitando el IoT a gran escala.
- Mayor fiabilidad: Redes más robustas y seguras, con menor probabilidad de caídas o interrupciones.

Evolución de las redes móviles:

Generación	Velocidad máxima	Latencia	Conexiones por km²	Aplicaciones clave
1G	2.4 kbps	Alta	Limitada	Voz analógica
2G	64 kbps	Media	2,000	SMS, voz digital
3G	2 Mbps	Baja	10,000	Navegación web, multimedia
4G	1 Gbps	Muy baja	100,000	Streaming, aplicaciones móviles
5G	10 Gbps	Ultra baja	1,000,000	loT masivo, vehículos autónomos, realidad aumentada

Otras características clave de 5G:

- Arquitectura de red flexible: Permite crear redes virtuales personalizadas para diferentes aplicaciones (network slicing).
- Bajo consumo energético: Optimización del uso de recursos, ideal para dispositivos IoT.
- Edge computing integrado: Procesamiento de datos cerca del dispositivo, reduciendo latencia y mejorando eficiencia.
- Seguridad mejorada: Protocolos avanzados para proteger la privacidad y los datos de los usuarios.

Esto permite a una fábrica:

- Conectar miles de sensores y dispositivos loT para monitorizar en tiempo real.
- Implementar sistemas de control industrial con latencia mínima, evitando cableados.
- Utilizar realidad aumentada para formación y asistencia técnica remota.
- Implementar vehículos autónomos para transporte de materiales dentro de la planta.
- Crear redes privadas 5G para mayor seguridad y control de datos.
- Integrar sistemas de ciberseguridad avanzados para proteger la infraestructura crítica.

Limitaciones y desafíos:

- Infraestructura y cobertura: Requiere una inversión significativa en infraestructura y despliegue de antenas.
- Compatibilidad de dispositivos: No todos los dispositivos actuales son compatibles con 5G
- Costes de implementación: Aunque a largo plazo puede reducir costes operativos, la inversión inicial es alta.
- Consumo energético: Aunque es más eficiente, la infraestructura 5G puede consumir más energía que las generaciones anteriores.
- Complejidad tecnológica.

Redes 6G, qué se espera:

- Velocidades de hasta 100 Gbps.
- Latencia de menos de 1 ms.
- Conexiones masivas: Soporte para billones de dispositivos conectados.
- Integración de IA y machine learning en la red para optimización automática.
- Realidad aumentada y virtual inmersiva como estándar.
- Conectividad global: Redes que funcionen en cualquier parte del mundo, incluso en zonas remotas.

5G y salud: entre el rigor científico y la percepción pública

- Investigación científica: La mayoría de estudios concluyen que las radiaciones de 5G están muy por debajo de los límites seguros establecidos por la OMS. Radiación no ionizante.
- Bulos:
 - No hay evidencia científica que respalde la relación entre 5G y problemas de salud como el COVID-19.
 - La exposición a campos electromagnéticos de 5G es similar o inferior a la de tecnologías anteriores.
 - Importante fomentar el pensamiento crítico y la alfabetización mediática para combatir la desinformación.

¿Es peligrosa la radiación del 5G?

Una comparación con otras fuentes comunes de radiación electromagnética:

Dispositivo / Fuente	Frecuencia típica	Potencia de emisión aprox.	Tipo de radiación	Distancia habitual
Microondas doméstico	2,45 GHz	600–1200 W	No ionizante	30–50 cm
Estación base 5G (urbana)	3,5 GHz / 26 GHz	10–40 W por antena	No ionizante	50–300 m
Móbil (4G/5G)	0,8-3,5 GHz	0,2–2 W	No ionizante	En contacto
Router Wi-Fi	2,4-5 GHz	0,1–0,5 W	No ionizante	1–10 m
Luz del sol (UV)	800 THz (UV-C)	Variable (dependiendo de la exposición)	Ionizante (UV-C)	150 millones km

Redes 5G y conectividad avanzada ¿Es peligrosa la radiación del 5G?

Conclusión:

- Todas estas fuentes emiten radiación no ionizante (no rompe el ADN).
- La potencia del 5G es mucho menor que la de un microondas.
- Los límites de exposición están ampliamente regulados (ICNIRP, OMS, UE).

Digitalización y bulos

Aprovechando el tema sobre el efecto de la radiación del 5G sobre la salud y su cuestionamiento desde la comunidad científica, podemos abordar la importancia de la **alfabetización mediática** y el **pensamiento crítico** en la era digital en nuestras aulas.

- Podemos hablar de los **bulos** o *fake news* y niveles de desinformación:
 - Bulos: Información falsa creada con la intención de engañar.
 - o Desinformación: Información falsa o engañosa difundida intencionadamente.
 - o Malinformación: Información verdadera pero presentada de forma engañosa o fuera de contexto.
- Podemos dar herramientas sobre cómo identificar bulos:
 - Verificar la fuente de la información.
 - Comprobar si hay evidencia científica que respalde la afirmación.
 - Buscar **opiniones de expertos** en el tema.
 - Contrastarlo con fuentes fiables y contrastadas.

Digitalización y bulos

- Herramientas de verificación y fact-checking:
 - FactCheck.org: Verifica afirmaciones políticas y noticias.
 - Snopes: Investiga rumores y leyendas urbanas.
 - Maldita.es: Plataforma en español que verifica información viral.

Digitalzación y bulos - Falacias lógicas

Falacia lógica	Descripción	Ejemplo
Ad Hominem	Atacar a la persona en lugar de sus argumentos.	"No puedes confiar en su opinión sobre el 5G, es un ingeniero sin experiencia."
Falsa dicotomía	Presentar dos opciones como las únicas posibles.	"O estás a favor del 5G o estás en contra del progreso."
Apelación a la autoridad	Usar la opinión de una figura famosa como prueba de verdad.	"El famoso actor dijo que el 5G es peligroso, por lo tanto debe ser cierto."
Falsa causa	Asumir que una cosa causa otra sin evidencia suficiente.	"Desde que se instaló el 5G, ha aumentado el número de resfriados."
Apelación al miedo	Usar el miedo para persuadir sin argumentos sólidos.	"Si no detenemos el 5G, nuestra salud estará en grave peligro."
Hombre de paja	Distorsionar el argumento del oponente para atacarlo más fácilmente.	"Los defensores del 5G dicen que no hay riesgos, pero eso es irresponsable."

Digitalización y bulos - Falacias lógicas

ice_cream_vs_shark_attacks

Redes 5G y conectividad avanzada

IoT y 5G: una combinación poderosa

- IoT: Conexión de dispositivos físicos a internet para recopilar y compartir datos.
- 5G: Red de alta velocidad y baja latencia que permite la transmisión masiva de datos en tiempo real.
- **Sinergia**: 5G potencia el IoT al permitir la conexión de millones de dispositivos simultáneamente, facilitando aplicaciones como:
 - o Ciudades inteligentes: Sensores que monitorizan tráfico, calidad del aire, alumbrado público.
 - o **Agricultura de precisión**: Sensores que controlan humedad, temperatura y nutrientes del suelo.
 - Salud conectada: Dispositivos médicos que envían datos en tiempo real a profesionales sanitarios.
 - o Logística inteligente: Seguimiento en tiempo real de mercancías y optimización de rutas.

Redes 5G y conectividad avanzada

Herramientas de aula:

- Simuladores de redes 5G:
 - Cisco Packet Tracer: Permite simular redes y dispositivos IoT.
 - GNS3: Simulación avanzada de redes, incluyendo 5G.
- Dispositivos:
 - Router 5G portátil.
 - Dispositivos IoT con conectividad 5G (demo kits).
- Herramientas de medición:
 - Speedtest: Para medir la velocidad de conexión 5G.
 - CellMapper: Aplicación para mapear cobertura de redes móviles.

¿Qué es la nube? Conjunto de servicios digitales accesibles a través de internet, que permiten almacenar, procesar y analizar datos sin necesidad de infraestructura local.

 Pueden ser públicos (ofrecidos por terceros como AWS, Google Cloud, Azure) o privados (infraestructura propia de la empresa).

¿Que es cloud computing? Modelo de prestación de servicios digitales (almacenamiento, procesamiento, redes, aplicaciones, etc.) a través de Internet, bajo demanda y con pago por uso.

• No toda la nube es cloud computing, ya que este último implica un modelo de servicio específico.

Tipos de servicios en la nube

- laaS (Infraestructura como servicio): Proporciona recursos de infraestructura como servidores, almacenamiento y redes.
 - Ejemplos: Amazon EC2, Google Compute Engine.
 - o Permite a las empresas alquilar recursos de computación sin necesidad de comprar hardware.
- PaaS (Plataforma como servicio): Ofrece un entorno de desarrollo y despliegue de aplicaciones.
 - Ejemplos: Heroku, Google App Engine.
 - Facilita a los desarrolladores crear aplicaciones sin preocuparse por la infraestructura subyacente.

Tipos de servicios en la nube

- SaaS (Software como servicio): Proporciona aplicaciones accesibles a través de internet.
 - Ejemplos: Google Workspace, Microsoft 365, Salesforce.
 - Permite a los usuarios acceder a software sin necesidad de instalarlo localmente. Solemos referirnos a aplicaciones que nos permiten crear, editar, almacenar y compartir información. No consideramos a aplicaciones como Redes Sociales, mensajería instantánea o plataformas de contenido.
- DaaS (Datos como servicio): Proporciona acceso a datos y bases de datos a través de la nube.
 - Ejemplos: Amazon RDS, Google BigQuery.
 - o Facilita el análisis y gestión de grandes volúmenes de datos sin necesidad de infraestructura local.

Algunos ejemplos de SaaS:

Servicio SaaS	Descripción
Google Workspace	Suite de productividad en la nube (Docs, Sheets, Drive)
Microsoft 365	Suite de productividad y colaboración (Word, Excel, Teams)
Salesforce	CRM en la nube para gestión de clientes y ventas
Slack	Plataforma de comunicación y colaboración empresarial
Zoom	Plataforma de videoconferencias y reuniones online

Más ejemplos de SaaS:

Servicio SaaS	Descripción
Dropbox	Almacenamiento y compartición de archivos en la nube
Trello	Herramienta de gestión de proyectos y tareas colaborativas
Notion	Plataforma de organización y gestión de información personal y de equipo
Canva	Herramienta de diseño gráfico y creación de contenidos visuales
ChatGPT	Asistente virtual basado en IA para generación de texto y conversación

Edge, Fog y Mist Computing

- Edge Computing: Procesamiento de datos cerca del lugar donde se generan, sin necesidad de enviar todo a la nube.
 - Ejemplo: En una planta química, sensores que detectan fugas o temperatura anómala procesan la información en un microcontrolador local, generando alertas inmediatas.
- **Fog Computing**: Arquitectura intermedia entre dispositivos de borde y la nube. Se usan gateways o nodos locales de procesamiento.
- Mist Computing: Procesamiento ultra-local, casi en el dispositivo sensor (nivel más bajo del borde).

Edge computing

Ventajas del Edge Computing:

- Reducción de latencia: Procesamiento local evita el tiempo de ida y vuelta a la nube.
- Ahorro de ancho de banda: Solo se envían a la nube los datos relevantes, reduciendo el tráfico de red.
- Mayor seguridad: Los datos sensibles pueden procesarse localmente sin necesidad de enviarlos a la nube.
- Resiliencia: El sistema puede seguir funcionando aunque la conexión a la nube se interrumpa.
- **Escalabilidad**: Permite añadir más dispositivos y sensores sin necesidad de aumentar la capacidad de la nube.

Edge computing

Edge, fog y mist computing

Centros de datos

- Qué son: Instalaciones físicas que albergan servidores, almacenamiento y sistemas de red.
- Elementos clave: Climatización, redundancia eléctrica, seguridad física y lógica, monitorización.
- Impacto ambiental: a tener en cuenta el consumo energético y la sostenibilidad de los centros de datos.

Software as a Service (SaaS)

• Qué es: Modelo de entrega de software donde las aplicaciones se alojan en la nube y se accede a ellas a través de internet.

Sustituye a las aplicaciones instaladas localmente, permitiendo el acceso desde cualquier dispositivo con conexión a internet.

Ventajas:

- Acceso desde cualquier lugar y dispositivo.
- Actualizaciones automáticas y mantenimiento a cargo del proveedor.
- Escalabilidad: se puede aumentar o reducir el uso según las necesidades.
- Reducción de costes de infraestructura y licencias.
- Integración sencilla con otras aplicaciones y servicios en la nube.
- Colaboración en tiempo real entre usuarios.

Google Suite & Microsoft 365

- Google Workspace: Conjunto de aplicaciones en la nube para productividad y colaboración.
 - Incluye Gmail, Google Drive, Docs, Sheets, Slides, Calendar, Meet.
 - Permite trabajar en documentos compartidos en tiempo real.
 - Integración con otras herramientas de Google y terceros.
- Microsoft 365: Suite de productividad y colaboración de Microsoft.
 - Incluye Outlook, OneDrive, Word, Excel, PowerPoint, Teams.
 - Integración con aplicaciones de escritorio y servicios en la nube.
 - Herramientas avanzadas de colaboración y comunicación.

Google Suite & Microsoft 365

Característica	Google Workspace	Microsoft 365
Correo electrónico	Gmail	Outlook
Almacenamiento en la nube	Google Drive	OneDrive
Documentos colaborativos	Google Docs, Sheets, Slides	Word, Excel, PowerPoint
Videoconferencias	Google Meet	Microsoft Teams
Calendario	Google Calendar	Outlook Calendar
Integración	Con otras aplicaciones de Google y terceros	Con aplicaciones de Microsoft y terceros

Google Suite & Microsoft 365

Es importante saber manejar las herramientas ofimáticas (tanto la opción de Google como la de Microsoft), ya que son ampliamente utilizadas en el ámbito profesional y académico. Esto implica:

- Saber crear, editar y compartir documentos de texto, hojas de cálculo y presentaciones.
- Conocer las funcionalidades avanzadas como tablas dinámicas, gráficos, fórmulas y funciones.
- Saber crear documentos bien formateados y presentaciones visualmente atractivas.

Además, fomentan la colaboración y la productividad en entornos de trabajo modernos.

- Trabajo colaborativo
- Teletrabajo
- Almacenamiento en la nube
- Accesibilidad desde cualquier dispositivo
- Integración con otras herramientas
- Características avanzas

Google Suite

Algunas funcionalidades avanzadas o menos conocidas de Google Workspace:

• Google Apps Script: Permite automatizar tareas y crear aplicaciones personalizadas dentro de Google Workspace.

Google Suite

Algunas funcionalidades avanzadas o menos conocidas de Google Workspace:

• **Versionado e historial de cambios**: Permite ver y restaurar versiones anteriores de documentos en Google Docs, Sheets y Slides.

Google Suite

Algunas funcionalidades avanzadas o menos conocidas de Google Workspace:

• Complementos (Add-ons): Extensiones que añaden funcionalidades a las aplicaciones de Google Workspace, como plantillas, herramientas de análisis o integración con otras aplicaciones.

Google Suite

Algunas funcionalidades avanzadas o menos conocidas de Google Workspace:

• Formato markdown: Permite aplicar formato a los documentos de Google Docs utilizando una sintaxis sencilla, facilitando la edición rápida de texto.

Otras Tecnologías Habilitadoras Digitales

- Realidad Virtual (VR): Entornos completamente virtuales que permiten simular situaciones y procesos.
 - Dispositivos: gafas VR, controladores de movimiento.
 - o Aplicaciones de uso: formación en entornos peligrosos, simulación de procesos industriales.
- **Gemelos digitales (Digital Twins)**: Réplicas virtuales de sistemas físicos que permiten simular y optimizar procesos.
 - o Dispositivos: sensores IoT, plataformas de simulación.
 - Aplicaciones de uso: monitorización en tiempo real, análisis predictivo, optimización de mantenimiento.
 - Self Driving Vehicles Powered by Digital Twins
 - Industrial Digital Twins for Simulating Robot Fleets

Otras Tecnologías Habilitadoras Digitales

- Realidad Aumentada (AR): Superposición de información digital sobre el mundo real, útil para formación y mantenimiento.
 - o Dispositivos: gafas AR: Microsoft HoloLens, Meta Quest, Apple Vision Pro, Meta Ray-Ban.
 - o Aplicaciones de uso: asistencia técnica, formación inmersiva, visualización de datos en tiempo real.

Ejemplos de uso:

- Mercedes Class-S Head-Up Display with AR
- Apple Vision Pro First Look

Otras Tecnologías Habilitadoras Digitales

- Realidad Mixta (MR): Combinación de AR y VR, donde objetos virtuales interactúan con el mundo real.
 - Dispositivos: Microsoft HoloLens, Magic Leap.
 - o Aplicaciones de uso: diseño colaborativo, mantenimiento asistido.