Notes sur les faisceaux

2024-2025

Table des matières

1	Fais	sceau
	1.1	Caractérisation
	1.2	Préfaisceau séparé
	1.3	Faisceautisation et espace étalé
		1.3.1 Faisceautisation I
		1.3.2 Espace étalé
		1.3.3 Faisceautisation II
	1.4	Adjonctions
	1.5	Image directe et inverse

TABLE DES MATIÈRES

Chapitre 1

Faisceau

1.1 Caractérisation

Étant donné un foncteur $\mathscr{F} \colon \mathrm{Ouv}(X) \to \mathcal{A}$, pour chaque recouvrement $\bigcup_i U_i = X$, on peut définir la suite

$$0 \to \mathscr{F}(U) \to \prod_i \mathscr{F}(U_i) \to \prod_{(i,j)} \mathscr{F}(U_i \cap U_j)$$

notée $C((U_i)_i, \mathscr{F})$. Maintenant

Être un faisceau c'est rendre la suite exacte.

1.2 Préfaisceau séparé

Un préfaisceau est séparé si il rend

$$0 \to \mathscr{F}(U) \to \prod_{x \in U} \mathscr{F}_x$$

injective.

1.3 Faisceautisation et espace étalé

Ducoup étant donné le faisceau

$$C^0(\mathscr{F})\colon U\mapsto \prod_{x\in U}\mathscr{F}_x$$

on va trouver un sous-faisceau $\mathscr{F}^\sharp\subseteq C^0(\mathscr{F}).$

1.3.1 Faisceautisation I

Y'a deux manières de le construire, la simple

$$\mathscr{F}^{\sharp}(U) := \{(s_x)_x \in \prod_{x \in U} \mathscr{F}_x | \forall x, \exists V_x, t \in \mathscr{F}(V_x), \forall P \in V_x, t_P = s_P \}$$

mais technique. Essentiellement, une section c'est la donnée d'un recouvrement (f_U, U) à équivalence faible près.

1.3.2 Espace étalé

L'autre c'est avec l'espace étalé, on définit

$$Et(\mathscr{F}) := \bigsqcup_{x \in X} \mathscr{F}_x$$

ensuite on définit la projection

$$\pi \colon Et(\mathscr{F}) \to X$$

via $s_x \mapsto x$. Puis enfin, à toute $s \in \mathcal{F}(U)$, on peut associer

$$\bar{s} \colon U \to Et(\mathscr{F})$$

qui a x associe s_x .

Remarque 1. On remarque que c'est des sections $\pi \circ \bar{s} = id_U$.

Pour la **topologie** donc via

$$\mathscr{F}(U) \ni s \mapsto \bar{s} \in \mathrm{Hom}(U, Et(\mathscr{F}))$$

on prends la topologie finale associée à l'ensemble de \bar{s} .

Remarque 2. Pour rappel U est ouvert sur X ssi $\bar{s}^{-1}(U)$ est ouvert pour tout $s \in \mathcal{F}(U)$.

1.3.3 Faisceautisation II

Maintenant on peut définir

$$\mathscr{F}^+(U) := U \mapsto \{ f \in \operatorname{Hom}_{Top}(U, Et(\mathscr{F})) | \pi \circ f = id_U \}$$

déjà on remarque que si $P \in U$ alors $f(P) \in \mathscr{F}_P$ parce que c'est une section. D'où c'est **injectif** et

$$\mathscr{F}^+(U) \subset \prod_{x \in U} \mathscr{F}_x$$

Faisceau

maintenant la continuité dit que $f^{-1}(f(U)\cap S)=U$ est ouvert ssi localement il existe s t.q $\bar{s}^{-1}(f(U)\cap S)=U$. Autrement dit $\bar{s}(P)=f(P)$ pour tout $P\in U$. On voit en fait que par définition y'a un recouvrement de $U=\bigcup_i U_i$ où

- 1. $f|_{U_i} = \bar{s}_i$.
- 2. Sur $U_i \cap U_j$, $\bar{s}_i = \bar{s}_j$ ont les mêmes fibres.

Remarque 3. Explorer un peu si y'a essentiellement un unique manière d'écrire f à "équivalence faible".

1.4 Adjonctions

1.5 Image directe et inverse