

III B.Tech. Computer Science & Engineering

CSE304: PYTHON PROGRAMMING WITH WEB FRAMEWORKS

UNIT – II: Dictionaries and Sets

By
Mrs. S. KAMAKSHI, AP-III / CSE
School of Computing

Dictionary

- Unordered collections of arbitrary objects as key-value pairs
- Accessed by key, not offset position
 - Also called as associative arrays or hashes
 - Associates a set of values with keys, so an item can be fetched from a dictionary using the key
- Variable-length, heterogeneous, and arbitrarily nestable
- Immutable key but mutable mapping

Dictionary

Embedded within {} as key:value pairs delimited by comma

```
- dict_name = {key1:value1, key2:value2, ...}
```

• Eg.

movie = {1960:"Bala Nagamma", 1961:"Jagathala Pradhapan", 1963:"Lava Kusa", 1964:"Karnan", 1967: "Sri Krishnavatharam"}

Dictionary Functions

Method	Description Description Description Description Description
dict_name[key]	Returns the value of the specified key. If key does not exist throws KeyError exception
get(key, default_value)	Returns the value of the specified key
pop(key, default_value)	Removes the element with the specified key
popitem()	Removes the last inserted key-value pair
keys()	Returns a view object that contains the dictionary's keys, reflects changes done in dictionary
values()	Returns a view object that contains all the values in the dictionary
items()	Returns a view object that contains a tuple for each key value pair
clear()	Removes all the elements from the dictionary
copy()	Returns a copy of the dictionary
fromkeys(iterable, [value])	Returns a dictionary with the specified keys and value
setdefault(key, default_value)	Returns the value of the specified key. If the key does not exist: insert the key, with the specified value
update(iterable)	Updates the dictionary with the specified key-value pairs
del dict_name[key]	Removes the element with the specified key. If key does not exist throws KeyError exception

- Retrieving value from dictionary
 - dict_name[key]
 - dict_name.get(key[, value])
 - dict_name.set_default(key[, value])
- Checking for key in dictionary
 - key in dict_name
- Converting between list and dictionary
 - list(view_object)
 - dict(2D-list or 2D-tuple)

Set

- Unordered collection of unique and immutable objects that supports operations corresponding to mathematical set theory
- An item appears exactly once no matter how many times it is added to the set
- sets are
 - Iterable
 - Can grow and shrink on demand
 - May contain a heterogeneous types of objects
- To make a set object, pass in a sequence or other iterable object to the built-in set function:

```
• Eg.
```

```
    x = set('abcde')
    y = set('bdxyz')
    x
        {'a', 'c', 'b', 'e', 'd'}
    X=set([1, 2, 3, 4]) # using constructor
    X
        {1, 2, 3, 4}
```

Set Operations

- x y
- x | y
- x & y
- x ^ y
- x > y, x < y
- 'e' in x
- x.intersection(y)
- x.union(y)

- # Difference
- # Union
- # Intersection
- # Symmetric difference (XOR)
 - # Superset, subset
 - # Membership (sets)
 - # Same as x & y

Set Operations

SASTRA

ENGINEERING-MANAGEMENT-LAW-SCIENCES-HUINANTIES-EDUCATION

DEEMED TO BE UNIVERSITY

(U/S 3 OF THE UGC ACT, 1956)

- z.add(item)
- z.update(iterable)
- z.remove('b')
- z.discard('b')
- for item in s1: print(item)
- len(s1)
- s1.issubset(s2)
- s1.issuperset(s2)
- s1.symmetric_difference(s2)
- s1.pop()

removes last item, since unordered this is not recommended

Insert one item

Merge: in-place

Delete one item

Delete one item

Set Operations

- s1.clear() # removes all elements of set
- del s1 #deletes the set itself
- s1.copy() # returns a copy of the set

26/08/20 PYTHON PROGRAMMING 9