Exercices: Limites de fonctions composées

a, b et c désignent soit un réel soit $\pm \infty$.

Rappel: Si $\lim_{x \to a} f(x) = b$ et $\lim_{x \to b} g(x) = c$ alors par composée $\lim_{x \to a} g(f(x)) = c$

Exercice 1. Justifier les limites suivantes.

1.
$$\lim_{x \to 0} \left(\frac{3x - 1}{x^2} \right)^4 = +\infty$$

$$2. \lim_{x \to -\infty} \sqrt{4 + \frac{1}{x}} = 2$$

$$3. \lim_{x \to +\infty} \cos\left(\frac{\pi x - 2}{x - 4}\right) = -1$$

Exercice 2. Etudier les limites suivantes.

1.
$$\lim_{x \to +\infty} \sqrt{x^2 - x - 3}$$

2.
$$\lim_{x \to -2^{-}} \sqrt{\frac{1+x}{4-x^2}}$$

3.
$$\lim_{x \to -\infty} \sin\left(\frac{\pi x - 2}{6x - 4}\right)$$

$$4. \lim_{x \to +\infty} \left(\sqrt{x} - x \right)^5$$

Exercice 3. Une fonction f définie sur $\mathbb{R} \setminus \{-1\}$ tel que : $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -1^-} f(x) = +\infty$ et $\lim_{x \to -1^+} f(x) = -\infty$.

- 1. Interpréter graphiquement ces limites.
- 2. Déterminer les limites suivantes.

$$-\lim_{x \to +\infty} f\left(\sqrt{x}\right)$$

$$-\lim_{x \to +\infty} f\left(-1 + \frac{1}{x}\right)$$

$$-\lim_{x \to -\infty} f\left(-1 + \frac{1}{x}\right)$$

$$-\lim_{x \to 0^{-}} f\left(\frac{1}{x}\right)$$

$$-\lim_{x \to +\infty} f\left(\frac{x^{2} + 1}{2x - 1}\right)$$

$$-\lim_{x \to -\infty} f\left(\frac{2 - x^{2}}{2 + x^{2}}\right)$$

Exercice 4. Une fonction f a pour tableau de variations celui donné ci-dessous.

X	$-\infty$			-1			2		$+\infty$
f(x)	0	/	$-\infty$		$+\infty$	/	0	1	1

Donner en utilisant ce tableau les limites suivantes.

- 1. $\lim_{x\to+\infty} f(-x+1)$
- $2. \lim_{x \to +\infty} f\left(2 + \frac{2}{x}\right)$
- 3. $\lim_{x \to -1^-} \frac{x-2}{f(x)}$
- 4. $\lim_{x \to -\infty} \frac{f(x) + x}{f(|x|) 1}$

Exercice 5. Soit f une fonction définie et dérivable sur \mathbb{R} tel que f(1) = 0 et f'(1) = -1. \mathscr{C}_f admet une asymptote d'équation y = 3 en $-\infty$ et une asymptote d'équation y = x + 4 en $+\infty$.

1. Calculer les limites suivantes.

$$-\lim_{x \to 0} f\left(\frac{x-1}{x^2}\right)$$

$$-\lim_{x \to +\infty} \frac{f(x)}{x+f(x)}$$

$$-\lim_{x \to +\infty} \frac{1}{f(x)-x+3}$$

- 2. On considère la limite suivante $\lim_{x \to +\infty} xf\left(1 + \frac{1}{x}\right)$.
 - (a) Justifier qu'il y a une présence de forme indéterminée.
 - (b) En posant $X = 1 + \frac{1}{x}$, calculer cette limite.