На правах рукописи

НАЗАРОВА КРИСТИНА ПОЛИКАРПОВНА

ПРОДУКТИВНЫЕ ПОКАЗАТЕЛИ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА МОЛОКА КОРОВ ЧЕРНО-ПЕСТРОЙ ПОРОДЫ ПРИ РАЗНЫХ ТЕХНОЛОГИЯХ ДОЕНИЯ

4.2.4 Частная зоотехния, кормление, технологии приготовления кормов и производства продукции животноводства

Автореферат

диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Ижевская государственная сельскохозяйственная академия»

Научный руководитель: Березкина Галина Юрьевна,

доктор сельскохозяйственных наук, доцент Официальные оппоненты **Морозова Нина Ивановна**,

> сельскохозяйственных доктор наук, профессор, федеральное государственное бюджетное образовательное учреждение образования «Рязанский высшего государственный аграрный университет», кафедра технологии производства переработки сельскохозяйственной продукции, заведующий

Федосеева Наталья Анатольевна,

доктор сельскохозяйственных наук, доцент, федеральное государственное бюджетное образовательное учреждение высшего образования «Российский государственный аграрный заочный университет», кафедра зоотехнии, производства и переработки продукции животноводства, заведующий

Ведущая организация

Федеральное государственное бюджетное образовательное учреждение высшего образования «Южно-Уральский государственный аграрный университет»

Защита диссертации состоится 23 декабря 2022 г. в 9^{00} часов на заседании диссертационного совета 35.2.043.01 при УдГАУ по адресу: 426069, г. Ижевск, ул. Студенческая, д. 11. Тел/факс 8 (3412) 589- 936.

C диссертацией можно ознакомиться в библиотеке Удмуртского Γ AУ и на сайте: https://izhgsha.ru, с авторефератом — на сайтах https://izhgsha.ru и http://www.vak.ed.gov.ru

Автореферат разослан «___» ____ 2022 года

Ученый секретарь диссертационного совета

Березкина Галина Юрьевна

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. К числу важнейших показателей деятельности молочного предприятия относится качественный состав молока коров или подругому, получаемая продукция. Выживаемость предприятия определяет повышение качества выпускаемой продукции в условиях рынка, темпов технического прогресса, внедрения инновационных технологий, роста эффективности производства и экономию всех используемых ресурсов на производстве. В нынешних условиях конкурентные отношения между предприятиями развиваются, главным образом, при выпуске качественной продукции.

Одними из важных компонентов питания человека являются молоко и молочные продукты, а главной задачей производителей является получение не больших объемах молока, a продукта высокого качества, только Действие соответствующего **установленным** нормам И стандартам. существующих стандартов пищевой промышленности определенным образом откладывает свой отпечаток и на использование отдельных компонентов технологии при производстве молока (Дикарев А.Г., Тюнина А.В., 2014; Кулибеков К.К., 2015; Авдеенко А.В., Молчанов А.В., Кривенко Д.В., 2016; Чекалдин А.М., 2017; Хомутова Л.А., Исаева Л.М., 2017; Шарипов Ш.И., Ибрагимова Б.Ш., 2019).

Современное молочное скотоводство ориентируется на промышленное производство молока с использованием разнообразных средств механизации всех технологических процессов. Одним из важнейших моментов является организация доения, в значительной мере влияющая в дальнейшем на качество молочной продукции, которую получают в конечном итоге. Правильно организованное доение — залог высокой эффективности функционирования промышленного предприятия по производству молока в целом (Ижболдина С.Н., Попов А.А., Ившина Л.А., 2007; Леонов А.Н., Китиков В.О., 2014; Барбакова А.С., Шурманова Е.И., 2017; Костомахин Н.М., Костомахин М.Н., 2020; Кузикина Л.И., 2020).

В Удмуртской Республике растет количество молочно-товарных ферм, оснащенных современным доильным оборудованием. При этом обязательным условием является здоровье и спокойствие коров. Одновременно с увеличением молочной продукции коров стоит задача по использованию наименее трудоемких и энергоемких современных технологий для производства молока высокого качества.

Степень разработанности темы. Влияние технологии доения на продуктивные показатели и технологические свойства молока коров, а также воспроизводительные показатели в зависимости от способа содержания и технологии доения были изучены следующими авторами: Ижболдиной С.Н. (2007), Садыковой А.Р. (2010), Баймишевой Д.Ш. (2012), Донник И.М. (2014), Загородневым Ю.П. (2016), Цикуновой О.Г. (2017), Русиновой М.О. (2018), Кисляковой Е.М., Третьяковым Е.А. (2021) и др.

Цель исследования. Цель работы — определить влияние технологии доения коров на продуктивные показатели и воспроизводительные качества.

Для достижения данной цели были поставлены следующие задачи:

- изучить условия содержания и кормления коров;
- оценить молочную продуктивность и химический состав молока коров при разных технологиях производства молока;
- оценить влияние технологии доения на характер лактационной деятельности коров;
- оценить санитарное качество молока коров при разных технологиях доения;
- оценить технологические свойства молока и качество получаемой продукции (сыр, творог, йогурт);
- выявить влияние технологии доения на воспроизводительные качества коров и продуктивное долголетие;
 - дать экономическую оценку проведенным исследованиям.

Научная новизна. Впервые в условиях Удмуртской Республики проведена комплексная оценка молочной продуктивности, качества молока и его пригодности к производству кисломолочных продуктов (йогурт и творог) и сыра, а также воспроизводительных качеств и продуктивного долголетия в условиях интенсивной технологии производства молока.

Обоснована эффективность использования различных типов доильных установок и определена экономическая эффективность производства молока.

Теоретическая практическая Проведенные И значимость. исследования доказали эффективность использования доильных установок Европараллель) (Карусель В условиях промышленной технологии производства молока. Так, на комплексах, где используются доильные установки «Карусель» и «Европараллель» коровы характеризуются высокой молочной продуктивностью, реже встречаются коровы с заболеваниями маститом, характеризуются высокими воспроизводительными качествами по сравнению с животными, доение которых проходило с использованием линейного молокопровода.

При использовании доильных установок молоко обладает лучшими технологическими свойствами: наиболее пригодно для производства йогурта, творога и сыра.

Результаты, полученные в ходе исследований, внедрены в СПК (колхоз) «Удмуртия» Вавожского района Удмуртской Республики, а также применяются в учебном процессе со студентами направлений подготовки «Зоотехния» и «Технология производства и переработки продукции животноводства» зооинженерного факультета, а также со студентами дополнительного образования.

Методология и методы исследования. Методология диссертационного исследования основана на научных методах сравнительного анализа. При решении поставленных задач были использованы зоотехнические, физиологические и биохимические методы исследования. Подробное описание

методологии и методов исследований приведены в главе «Методология и методы исследований».

Основные положения, выносимые на защиту:

- молочная продуктивность и химический состав молока коров при разных технологиях доения;
 - характер лактационной деятельности коров;
 - санитарное качество молока коров при разных технологиях доения;
- технологические свойства молока и качество получаемой продукции (сыр, творог, йогурт);
- воспроизводительные качества коров и продуктивное долголетие при разных технологиях доения;
 - экономическая оценка проведенных исследований.

Степень достоверности и апробация результатов. Исследования проведены на большом количестве коров, что подтверждает достоверность результатов, выводы по их практическому применению аргументированы и материал диссертации. Также отражают стандартизированные методики и сертифицированное оборудование. Основные положения работы докладывались на Национальной научно-практической конференции молодых ученых «Интеграционные взаимодействия молодых ученых в развитии аграрной науки» (Ижевск, 4-5 декабря 2019 года), Международной научно-практической конференции «Современная ветеринарная наука: теория и практика», посвященная 20-летию факультета ветеринарной медицины Ижевской ГСХА (Ижевск, 28-30 октября 2020 года), Ежегодной научно-практической конференции «Научный потенциал студентов и аспирантов: перспективы, достижения, инновации» (Оренбург, 25декабря 2020 года), ІІ этапе Всероссийского конкурса на лучшую научную работу среди студентов, аспирантов и молодых ученых высших учебных заведений Минсельхоза РΦ Приволжского федерального округа номинации ПО «Зоотехния» (Ижевск, 14 апреля 2022 года), III этапе Всероссийского конкурса на лучшую научную работу среди студентов, аспирантов и молодых ученых высших учебных заведений Министерства сельского хозяйства Приволжского федерального округа по номинации «Зоотехния» (Рязань, 14 мая 2022 года), 73международной научно-практической конференции «Научнотехнологические приоритеты в развитии агропромышленного комплекса России» (Рязань, 21 апреля 2022 года), Научно-практической конференции, 90-летию технологического факультета Бурятской посвященной государственной сельскохозяйственной академии им. B.P. Филиппова И пути развития производства и переработки продукции животноводства, охотничьего и рыбного хозяйства» (Улан-Удэ, 24-26 июня 2022 года).

Публикация результатов исследования. По теме диссертации опубликовано 9 научных статей, 2 из которых в изданиях, рекомендованных ВАК Минобрнауки РФ, и 1 в международной базе данных Web of Science.

Объем и структура работы. Диссертация изложена на 121 странице печатного компьютерного текста, состоит из введения, обзора литературы, методологии и методов исследования, результатов собственных исследований, заключения, предложения производству, приложения и списка литературы, который включает 258 источников, в том числе 30 зарубежных авторов. Работа включает в себя 14 таблиц, 16 рисунков, 4 приложения.

2 МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЙ

Исследования по теме диссертационной работы проводились в СПК (колхоз) «Удмуртия» Вавожского района Удмуртской Республики в период с 2019 по 2022 год.

Объектом исследования послужили коровы черно-пестрой породы.

Для проведения исследований животные были сформированы в три группы методом пар-аналогов: первая группа — способ содержания коров беспривязно-боксовый, доение на доильной установке «Карусель», вторая группа — способ содержания коров беспривязно-боксовый, доение на доильной установке «Европараллель», и третья группа — способ содержания коров привязный, доение осуществляется в линейный молокопровод.

В каждую группу вошли коровы всех возрастов, средний возраст коров в каждой группе составил 2,4 лактации по 186 голов в каждой группе. При формировании групп также учитывали и линейную принадлежность коров: Рефлекшин Соверинг 198998 (55,0 %), Вис Бэк Айдиал 1013415 (25,0 %) и Монтвик Чифтейн 95679 (20,0 %).

Схема экспериментальных исследований представлена на рисунке 1.

При подборе животных в опыт, а также анализ показателей качества молока и молочных продуктов был проведен при использовании стандартных методик: Давидов Р.Б. «Методика постановки зоотехнических и технологических опытов по молочному делу», 1963; Кугенев П.В. и Барабанщиков Н.В. «Методики постановки опытов и исследований по молочному хозяйству», 1973.

Молочная продуктивность коров изучалась на основе контрольных доений, которые проходят один раз в месяц. По результатам контрольных доений определяли удой за месяц и в целом за лактацию, а также химический состав молока.

Для определения характера лактационной деятельности коров использовали методику А.С. Емельянова (1957).

Коэффициент устойчивости лактации определяли по формуле:

$$KYJI = \frac{Y_2}{Y_1} \times 100,$$

где Y_1 – удой за первые 90-100 дней лактации; Y_2 – удой за вторые 90-100 дней лактации.

Рисунок 1 – Схема экспериментальных исследований

Для определения химического состава молока, органолептических, физико-химических, микробиологических показателей, а также технологических свойств молока и выработки продуктов (йогурт, творог, сыр) пробы отбирали на 2, 5 и 8 месяце лактации. Исследования проводили на кафедре технологии переработки продукции животноводства ФГБОУ ВО Ижевская ГСХА.

Качество молока оценивали по следующим группам показателей: органолептические; физико-химические; микробиологические; технологические, при этом оценивалась пригодность молока для производства йогурта, творога и сыра.

При определении органолептических свойств молока были оценены вкус, запах, консистенция и внешний вид в соответствии с требованиями ГОСТ Р 52054-2003 Молоко коровье сырое. Технические условия (с Изменениями 1, 2) и ГОСТ 28283-2015 Молоко коровье. Метод органолептической оценки вкуса и запаха.

Физико-химические свойства оценивали по таким показателям, как: содержание жира, % по ГОСТ Р ИСО 2446-2011 Молоко. Метод определения жира; содержание общего белка, в т.ч. казеина и сывороточных белков, СОМО, лактозы и минеральных веществ по ГОСТ 25179-2014 Молоко и молочные продукты. Методы определения массовой доли белка; плотность по ГОСТ Р 54758-2011 Молоко и продукты переработки молока. Методы определения плотности; кислотность по ГОСТ Р 54669-2011 Молоко и продукты переработки молока. Методы определения кислотности.

Микробиологические свойства молока оценивались по следующим показателям: КМАФанМ по ГОСТ 32901-2014 Молоко и молочная продукция. Методы микробиологического анализа (с поправками);содержание соматических клеток по ГОСТ 23453-2014 Молоко сырое. Методы определения соматических клеток (с поправкой);ингибирующие вещества по ГОСТ 32219-2013 Молоко и молочные продукты. Иммуноферментные методы определения наличия антибиотиков.

Технологические свойства молока оценивались по следующим показателям: свертываемость молока сычужным ферментом проводилась по методике, предложенной З.Х. Диланяном (1971);диаметр мицелл казеина, Å - по методике П.В. Кугенева и Н.В. Барабанщикова (1973);масса мицелл казеина, млн единиц молекулярного веса — по методике П.В. Кугенева и Н.В. Барабанщикова (1973);класс молока по сычужно-бродильной пробе по ГОСТ Р32901-2014 Молоко и молочная продукция. Методы микробиологического анализа;вязкость кисломолочного сгустка определяли на вязкозиметре В3-246;степень синерезиса кисломолочного сгустка определяли по методике, которую предложила В.П. Шидловская (2000).

Отбор проб и подготовка их к анализу проводились по ГОСТ 26809.1-2014 «Молоко и молочная продукция. Правила приемки, методы отбора и подготовка проб к анализу».

Йогурт производили термостатным способом, в качестве закваски использовали симбиотическую йогуртовую культуру, в состав которой входит термофильный молочнокислый стрептококк и болгарская молочнокислая палочка.

Творог производили кислотным способом. Для оценки показателей качества руководствовались требованиями ГОСТ 31453-2013 Творог.

Сыр «Столовый свежий» производили согласно ТУ 9225-134-04610209-2004 «Столовый свежий».

Дегустационная оценка продуктов проводилась согласно ГОСТ Р ИСО 22935-1-2011 Молоко и молочные продукты. Органолептический анализ.

Биологическую эффективность коров (БЭК) определяли по формуле В.Н. Лазаренко (1999):

БЭК =
$$\frac{(V \times CB)}{\mathcal{K}M}$$
,

где У – удой за 305 дней лактации, кг;

СВ – содержание сухого вещества в молоке, %;

ЖМ – живая масса коров, кг.

Коэффициент биологической полноценности (КБП) рассчитывали по формуле, предложенной Горелик О.В. (2002):

$$KB\Pi = \frac{(Y \times COMO)}{\mathcal{K}M},$$

где У – удой за 305 дней лактации, кг;

СОМО – содержание сухого обезжиренного молочного остатка, %;

ЖМ – живая масса коров, кг.

Воспроизводительную способность коров определяли по следующим показателям: продолжительность сервис-периода, продолжительность сухостойного периода, продолжительность межотельного периода, индекс осеменения и выход телят.

Выход телят определили по формуле Мальченко В.М. (1959): $BT = \frac{_{365}}{_{\Pi C+\; C\Pi}} \times 100,$

$$BT = \frac{365}{\Pi C + C\Pi} \times 100,$$

где ПС – продолжительность стельности, дней;

СП – продолжительность сервис-периода, дней.

Коэффициент воспроизводительной способности (КВС) определили по формуле Крамаренко Н.М. (1974):

$$KBC = \frac{365}{MO\Pi},$$

где МОП – межотельный период, дней.

Весь цифровой материал исследований обработан биометрически по Плохинского Н.А. (1969) и Меркурьевой Е.К. (1970) методикам персональном компьютере с использованием соответствующих программ (Microsoft Excel 97 SR-1 и Microsoft Word 97 SR-1 для Microsoft Windows XP, АРМ Супер для Селэкс версии 6.2.2 и Селеэкс версии 7.3).

ЗРЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ 3.1 Условия содержания и кормления коров

В хозяйстве используется как привязный так и беспривязно-боксовый способ содержания дойного стада коров. Молочные фермы модернизированы и оснащены высокотехнологичным оборудованием. В хозяйстве внедрена поточно-цеховая технология производства молока. Во всех отделениях применяется круглогодовая стойловая система содержания.

Доение коров на доильной установке «Карусель» осуществляется в доильном зале на 40 мест, «Европараллель» – на 32 места, при применении линейного молокопровода 45 голов на одного оператора машинного доения с помощью доильных аппаратов фирмы Westfalia. При использовании доильных установок «Карусель» и «Европараллель» до доения коров происходит обработка сосков вымени с помощью скруббера, что позволяет улучшить состояние вымени коров и стимуляцию молокоотдачи.

Данное хозяйство в полном объеме заготавливает корма. Рационы кормления составляются в зависимости от продуктивности и физиологического состояния животных. В хозяйстве применяется силосно-сенажно-концентратный тип кормления во всех группах.

3.2 Влияние технологии доения на уровень молочной продуктивности, качество молока и технологические свойства 3.2.1 Молочная продуктивность и качество молока

В таблице 1 представлена молочная продуктивность коров черно-пестрой породы за 305 дней лактации.

Таблица 1 – Молочная продуктивность коров за 305 дней лактации (по последней законченной лактации), $X \pm m_x$

Показатель	Группа			
Показатель	первая	вторая	третья	
Живая масса, кг	$544,6 \pm 6,3$	$546,8 \pm 6,8$	$550,2 \pm 6,2$	
Удой за 305 дней лактации, кг	$9229 \pm 83,8$	$9145 \pm 86,8$	$9085 \pm 85,7$	
Сухое вещество, %	$12,78 \pm 0,05$	$12,83 \pm 0,05$	$12,87 \pm 0,06$	
Массовая доля СОМО, %	$8,42 \pm 0,01$	$8,51 \pm 0,02$	$8,53 \pm 0,02$	
Массовая доля жира, %	$4,36 \pm 0,01$	$4,32 \pm 0,01$	$4,34 \pm 0,01$	
Массовая доля белка, %	$3,12\pm0,004$	$3,11 \pm 0,007$	$3,15 \pm 0,021$	
БЭК	216,6±6,3	214,6±7,6	212,5 ±5,9	
КБП	142,7±1,9	142,3±2,3	$140,8 \pm 2,1$	

Анализируя данные таблицы 1, можно сделать вывод, что удой коров за 305 дней лактации в исследуемых группах находится на уровне 9229-9085 кг. При этом наблюдается наивысший удой у коров, где использовалась доильная установка «Карусель», и составил 9229 кг, что больше по сравнению со второй и третьей группами коров на 84 кг или 0,9 % и на 144 кг или 1,6 % соответственно, где использовались доильная установка «Европараллель» и линейный молокопровод. Также необходимо отметить, что разница в группах не достоверная.

Наивысшее содержание массовой доли жира в молоке наблюдается у первой группы коров, и составляет 4,36 %, что выше по сравнению со второй и третьей группами на 0,04 и 0,02 %, соответственно.

При использовании линейного молокопровода в молоке коров наблюдается наибольшее содержание массовой доли белка— 3,15 % по сравнению с доильными установками «Карусель» и «Европараллель» на 0,03 % и 0,04 %, соответственно. Данные показателей массовой доли жира и белка между группами животных статистически не достоверные.

Показатель биологической эффективности коров в первой группе составил 216,6, что выше по сравнению со второй и третьей группой на 0,9 и 1,9 % соответственно.

Коэффициент биологической полноценности незначительно выше у коров с применением доильного зала «Карусель» и «Европараллель» по сравнение с линейным молокопроводом на 1,9 и 1,5. Эти значения не имеют статистически достоверных различий.

Анализ лактационной деятельности коров исследуемых групп показал, что наибольший удой во всех группах на 2, 3 месяце лактации, что составляет 26,7 %, 30,0 % и 28,8 % соответственно от общего удоя за 305 дней лактации. Коэффициент лактации в первой и во второй группе достоверно выше, на 11,5% ($P \ge 0,999$) и 8,1 % ($P \ge 0,999$), соответственно, по сравнению с третьей группой коров (табл. 2).

Таблица 2 – Динамика среднемесячного удоя коров

Месяц лактации		Группа			
месяц лактации	Первая	Вторая	Третья		
1	$1048 \pm 73,8$	$1253 \pm 59,8$	$1249 \pm 64,8$		
2	$1290 \pm 40,2$	$1341 \pm 17,1$	$1337 \pm 21,6$		
3	$1124 \pm 44,5$	$1355 \pm 15,0$	$1284 \pm 32,1$		
4	$1129 \pm 30,3$	$1233 \pm 18,6$	$1095 \pm 14,9$		
5	$1083 \pm 18,3$	$1174 \pm 17,1$	$998 \pm 13,2$		
6	$821 \pm 25,9$	$920 \pm 15,2$	$852 \pm 17,1$		
7	$821 \pm 24,9$	$754 \pm 17,4$	$655 \pm 21,2$		
8	$801 \pm 15,2$	$612 \pm 16,3$	$611 \pm 13,6$		
9	$674 \pm 14,8$	$587 \pm 14,4$	$551 \pm 15,0$		
10	$294 \pm 15,7$	$416 \pm 14,9$	$397 \pm 13,8$		
Коэффициент устойчивости / постоянства лактации	$87.6 \pm 2.1^{***}$	84,2 ± 1,8**	$76,1 \pm 1,6$		

Примечание: ** $P \ge 0.99$; *** $P \ge 0.999$

Было проведено исследование функциональной деятельности молочной железы коров-первотелок. Анализ исследования показал, что время доения составляет 4,05 и 4,08 мин, что является достоверно (P ≥ 0,999) меньше на 1,94 и 1,97 мин при доении коров с помощью доильных установок «Карусель» и «Европараллель», по сравнению с линейным молокопроводом. А скорость молокоотдачи в первых двух группах увеличивается на 0,4 и 0,5 кг/мин по сравнению с третьей группой.

Существенное влияние оказала технология доения на санитарные качества молока (табл.3).Выявлено, что в молоке третьей группы высокое содержание соматических клеток -526 тыс/см³, что достоверно больше по сравнению с первой группой на 417 тыс/см³и второй на 289 тыс/см³.

Таблица 3 – Показатели качества молока коров

Показатель	Группа			
Показатель	Первая	Вторая	Третья	
Кислотность, °Т	$17,1 \pm 0,8$	$16,6 \pm 0,8$	$17,1 \pm 0,1$	
Плотность, $\kappa \Gamma / M^3$	$1028,5 \pm 0,3$	$1028,0 \pm 0,3$	$1028,1 \pm 0,2$	
KMAФанM, 10 ⁵ KOE/cм ³	0.88 ± 0.04	0.91 ± 0.05	$1,94 \pm 0,07$	
Количество соматических клеток, $10^5/\text{см}^3$	$10.9 \pm 1.4^{***}$	$23.7 \pm 1.6^{**}$	$52,6 \pm 7,7$	
Наличие ингибирующих веществ	Не обнаружено			

Примечание: ** $P \ge 0.99$; *** $P \ge 0.999$

Оценка частоты заболеваемости коров маститами показала, что при использовании доильной установки «Карусель» выявлено 16 случаев субклинического мастита (соматических клеток от 200 до 500 тыс/см³).При использовании доильной установки«Европараллель» выявлено 51 случаев мастита – 25 % клинического (соматических клеток 500 тыс/см³ и выше) и 75 % субклинического. Наибольшее количество маститов выявлено при доении коров в линейный молокопровод – 173 головы, из них 67 % субклиничекий и 33 % клинический.

3.2.2 Пригодность молока для производства кисломолочных продуктов

Для определения пригодности молока при производстве кисломолочных продуктов нами было проведено сквашивание молока с помощью симбиотической йогуртовой закваски, состоящей из смеси болгарской палочки и термофильного стрептококка. Ферментацию проводили с помощью термостата при температуре 40–42 °C до образования сгустка с кислотностью 80 °T. Затем полученный продукт поставили в холодильник для охлаждения и формирования сгустка.

Органолептические показатели кисломолочного сгустка, полученные из молока коров исследуемых групп, полностью соответствуют требованиям ГОСТа (табл. 4).

Таблица 4 – Органолептические показатели кисломолочного сгустка

			v	
Помоложени	Требования	Группы		
Показатель	ГОСТ Р 31981-2013	Первая	Вторая	Третья
Внешний вид и	Однородная, в меру вязкая	Опнородная с	TNVKTVNA P M	env paskaa
консистенция	Одпородная, в меру визкая	Однородная структура в меру в		сру визкаи
Вкус и запах	Кисломолочный, без посторонних	Чистые,	кисломолоч	ные с
Вкус и запах	привкусов и запахов	выраженным вкусом и арома		роматом
Цвет	Молочно-белый,	Белый, равномерный по всей массе		nooğ waqaa
цвет	равномерный по всей массе			всеи массе

Физико-химические показатели кисломолочного сгустка отображены в таблице 5.

Таблица 5 – Физико-химические показатели кисломолочного сгустка

Показатель	Требования	Группы		
Показатель	ГОСТ Р31981-2013	Первая	Вторая	Третья
Кислотность, °Т	От 75 до 140	$80,0 \pm 0,29$	$80,5 \pm 0,36$	$80,3 \pm 0,32$
Время сквашивания, час	3 – 4 часа	$3,10\pm0,41^*$	$3,42 \pm 0,23^*$	$4,12 \pm 0,21$
Вязкость сгустка, Па/сек	_	$2,56\pm0,16^*$	$2,36 \pm 0,21$	$1,98 \pm 0,20$
Степень синерезиса, %	_	$27,6 \pm 1,11$	$29,1 \pm 1,18$	$31,2 \pm 1,14$

Примечание: * P ≥ 0,95

Анализируя данные таблицы 5 видно, что йогурт, произведенный из молока двух первых групп, сквашивался в рекомендуемые нормы (3-4 часа), а молоко третьей группы коров сквашивалось 4,12 ч, что на 12 мин дольше по сравнению с рекомендуемыми нормами. Кислотность находилась на уровне 80,0-80,5 °T во всех трех группах.

Йогурт, полученный из молока первой группы коров отличался большей густотой и вязкость сгустка была достоверно ($P \ge 0.95$) больше на 0.58 Па/сек по сравнению с третьей группой коров. Следует отметить, что йогурт, который получили из молока коров, где использовалась доильная установка «Карусель», лучше удерживал влагу в процессе хранения, и степень синерезиса составила 27.6 %, что меньше по сравнению со второй и третьей группами коров на 1.5 % и 3.6 %, соответственно.

Органолептические показатели качества творога, полученного кислотным методом из молока коров исследуемых групп, соответствуют требованиям ГОСТа (табл. 6).

Таблица 6 – Органолептические показатели качества творога

Показатели Требования		Группа		
Показатели	ГОСТ 31453-2013	Первая	Вторая	Третья
Консистенция	Мягкая, мажущаяся или	Мягкая рассыпчатая		
	рассыпчатая с наличием или без			
	ощутимых частиц молочного белка.			
Вкус и запах	Чистые, кисломолочные, без	Чистые, кисломолочный		
	посторонних привкусов и запахов.	чистые, кисломолочный		чный
Цвет	Белый или с кремовым оттенком,	Белый, равномерный по всей масс		псай масса
	равномерный по всей массе			всеи массе

Физико-химические показатели качества творога (табл. 7) показали, что массовая доля жира в исследуемых образцах творога находилась в пределах от 1,80 % до 1,82 %, массовая доля влаги варьировала от 78,6 % до 78,9 % и кислотность находилась в пределах 105,1-107,8 °T. Эти показатели соответствовали нормам ГОСТа.

Таблица 7 – Физико-химические показатели качества творога

Поморожения	Требования	Группа			
Показатели	ГОСТ 31453-2013	Первая	Вторая	Третья	
Массовая доля жира, %	Не менее 1,8	$1,80 \pm 0,01$	$1,80 \pm 0,02$	$1,82 \pm 0,01$	
Массовая доля влаги, %	Не более 80,0	$78,6 \pm 6,0$	$78,9 \pm 6,1$	$78,6 \pm 5,6$	
Кислотность, ⁰ Т	Не более 240	$107,8 \pm 7,5$	$105,3 \pm 6,7$	$105,1 \pm 7,9$	
Расход молока на 1 кг творога	_	5,61 ± 0,31**	$5,77 \pm 0,29^{**}$	6,89± 0,20	

Примечание: ** Р ≥ 0,99

Наибольший расход молока для получения 1 кг творога составил 6,89 кг в третьей группе коров, что достоверно ($P \ge 0,99$) выше по сравнению с группами коров первой на 1,28 кг и второй на 1,15 кг.

3.2.3 Сыропригодность молока

Анализ оценки сыропригодности молока (табл. 8) показал, что соотношение массовой доли жира к массовой доле белка в группах находится в пределах от 1,38 до 1,39, а массовая доля жира к сухому обезжиренному молочному остатку — на уровне 0,51, это выше оптимальных значений. Соотношение массовой доли белка к сухому обезжиренному молочному

остатку во всех трех группах находится в оптимальных значениях и равно 0,37. Молоко коров второй группы характеризовалось большим диаметром мицелл казеина $-677,1\,$ Å, что достоверно ($P \ge 0,999$) больше с двумя другими группами животных на 28,1 и 42,4 Å, соответственно. Также по массе мицелл казеина вторая группа коров имела лучшие показатели по сравнению с первой и третьей группами на 8,0 и 3, 0 млн. ед. мол. массы.

Таблица 8 – Результаты оценки сыропригодности молока

Показатель	Группа			
Показатель	Первая	Вторая	Третья	
Массовая доля белка, %	$3,09 \pm 0,004$	$3,11 \pm 0,007^*$	$3,15 \pm 0,021^*$	
в т.ч. казеина	$2,47 \pm 0,01$	$2,49\pm0,01$	$2,46 \pm 0,02$	
Массовая доля жира, %,	$4,26 \pm 0,009$	$4,32 \pm 0.01^{***}$	$4,34 \pm 0,008^{***}$	
COMO	$8,42 \pm 0,01^{***}$	$8,51 \pm 0,02$	$8,53 \pm 0,02$	
Соотношение: жир/белок	$1,38 \pm 2,29$	$1,39 \pm 1,43$	1,38± 0,38	
жир/ СОМО	0.51 ± 0.9	$0,51 \pm 0,5$	$0,51 \pm 0,4$	
белок/СОМО	0.37 ± 0.4	$0,37 \pm 0,35$	$0,37 \pm 1,05$	
Диаметр мицелл казеина, Å	649,0±2,9	677,1±3,3***	634,7±3,6	
Масса мицелл казеина, млн. ед. мол. массы	104,0±4,0	112,0±4,0	109,0±4,2	

Примечание: $^*P \ge 0.95$; $^{***}P \ge 0.999$

Исследование молока по результатам сычужной пробы показало (табл. 9), что продолжительность свертывания в образцах была в промежутке от 31,6 до 57,6 мин, но молоко, полученное от коров при использовании линейного молокопровода, имело самое длительное время свертывания — 57,6 мин, и, следовательно, фазы коагуляции и гелеобразования шли длительнее по сравнению с первой и второй группами.

Таблица 9 -Характеристика молока коров по результатам сычужной пробы

Поморожани		Группа			
Показатель	Первая	Вторая	Третья		
Продолжительность свертывания, ми	$31,6 \pm 5,1^{**}$	$32.8 \pm 4.4^{**}$	$57,6 \pm 6,2$		
в том числе:	$22,2 \pm 5,3^*$	$23.2 \pm 3.6^*$	$39,1 \pm 4,1$		
фаза коагуляции	22,2 ± 3,3	25,2 ± 5,0	37,1 ± 1 ,1		
фаза гелеобразования	$9,4 \pm 1,8^*$	$9,6 \pm 2,1^*$	$18,5 \pm 3,2$		
Распределение образцов м	олока по продолжит	ельности свертыван	ия, %		
до 10 мин	6,8	6,1	0,3		
10 – 15 мин	19,3	19,2	13,5		
свыше 15 мин	73,9	74,7	86,2		

Примечание: * P \geq 0,95; ** P \geq 0,99

Распределение образцов молока по продолжительности свертывания показал, что наибольшее количество молока сворачивается за период свыше 15 минут (третий тип свертывания), при этом в третьей группе коров этот показатель наибольший и составляет 86.2%, а в двух других группах находится на уровне 73.9–74.7%. К первому типу относится незначительное количество молока: в третьей группе коров -0.3%, а в двух первых 6.1 и 6.8%. Ко второму типу свертывания молока относятся первая и вторая группы 19.2-19.3%, а 13.5% — третья группа. Такое молоко является лучшим при производстве сыров.

По органолептическим показателям сыр «Столовый свежий» трех образцов имел вкус и запах, характерные для данного вида сыра, тесто пластичное, глазки неправильной формы, корка ровная и тонкая, цвет белый.

Анализ качества сыра (табл. 10) показал, что массовая доля жира в сухом веществе в группах находится в пределах 40,1—40,4 %. Массовая доля влаги в трех образцах варьирует от 52,7 % до 53,0 %. Данные показатели полностью отвечают требованиям на данный вид сыра.

Таблица10 – Показатели качества сыра «Столовый свежий»

Помережани	OCT 10-090-95		Группа		
Показатель		Первая	Вторая	Третья	
Массовая доля жира в сухом веществе, %	$40,0 \pm 1,6$	$40,1 \pm 0,8$	$40,2 \pm 0,9$	$40,4 \pm 1,2$	
Массовая доля влаги, не более, %	53	$53,0 \pm 0,9$	$52,8 \pm 0,9$	$52,7 \pm 1,2$	
Расход молока на 1 кг сыра, кг	_	$8,4 \pm 0,2^*$	$8,3 \pm 0,1^*$	$9,2 \pm 0,3$	

Примечание: * Р ≥ 0,95

Расход молока на 1 кг данного сыра был достоверно ($P \ge 0.95$) меньше в группе коров с применением доильной установки «Карусель» и «Европараллель» на 0.8 % и 0.9 %, по сравнению с третьей группой коров.

3.3 Воспроизводительные качества коров при разных технологиях доения

Способ содержания коров и технология доения оказали существенное влияние на воспроизводительные показатели коров (табл.11). В третьей группе, где привязное содержание коров этот показатель составил 149,3 дня, что достоверно больше по сравнению с коровами первой группы на 12,2 дня или 8,9 % ($P \ge 0.95$) и второй – на 15,9 дней или 11,9 % ($P \ge 0.99$).

Таблица 11 – Воспроизводительные качества коров

Поморожани	Группа			
Показатель	Первая	Вторая	Третья	
Продолжительность сервис-периода, дней	$137,1 \pm 3,27^*$	$133,4 \pm 2,96^{**}$	$149,3 \pm 4,59$	
Продолжительность сухостойного периода, дней	55,9 ± 0,41***	$55,4 \pm 0,33^{***}$	$58,6 \pm 0,48$	
Продолжительность межотельного периода, дней	$388,1 \pm 3,26^{**}$	$390,7 \pm 3,08^{**}$	$410,6 \pm 4,92$	
Коэффициент воспроизводительной способности, ед.	$0,94 \pm 0,03$	$0,92 \pm 0,03$	$0,89 \pm 0,04$	
Выход телят, %	$86,5 \pm 0,67$	$87,2 \pm 0,61^{**}$	$84,0 \pm 0,85$	
Индекс осеменения, доз	$1,93 \pm 0,05$	$2,13 \pm 0,07^*$	$2,1 \pm 0,06^*$	

Примечание: ${}^*P \ge 0.95$; ${}^{**}P \ge 0.99$; ${}^{***}P \ge 0.999$

Продолжительность сухостойного периода составила в первой и во второй группах 55,9 и 55,4 дней соответственно, это достоверно ($P \ge 0,999$) меньше по сравнению с третьей группой коров, на 2,7 и 3,2 дней соответственно. Показатель коэффициента воспроизводительной способности варьируется от 0,89 до 0,94. Выход телят находится на уровне 86,5- 84,0 % .

Основными причинами выбытия коров из стада явились — мастит и заболевания пищеварительной системы. Продолжительность использования коров составляет от 4,2 до 5,8 лет.

3.4 Экономическая оценка проведенных исследований

Наименьшая себестоимость 1 кг молока получена, при использовании доильной установки «Карусель» 22,26 руб., что меньше по сравнению с линейным молокопроводом на 2,17 руб. Так же в первой группе наибольшая валовая прибыль от реализации молока 56 тыс. 518 руб. (табл. 12).

Таблица 12 - Экономическая эффективность производства молока при

разных технологиях доения

Показатели	Группа		
Показатели	Первая	Вторая	Третья
Удой за 305 дней лактации, кг	9229	9145	9085
Количество молока в пересчете на базисный	10786	10617	10632
жир и белок, кг	10700	10017	10032
Содержание жира, %	4,36	4,32	4,34
Содержание белка, %	3,12	3,11	3,15
Себестоимость 1 кг молока, руб.	22,26	23,86	24,43
Цена реализации 1 кг молока, руб.		27,5	
Прибыль от реализации 1 кг молока, руб.	5,24	3,64	3,07
Валовая прибыль от реализации молока, руб.	56518	38646	32640
Уровень рентабельности, %	23,5	15,3	12,6

ЗАКЛЮЧЕНИЕ

По результатам проведенной оценки молочной продуктивности, качества молока, его технологических свойств, а также воспроизводительных качеств коров и продуктивного использования в зависимости от технологии доения в СПК (колхоз) «Удмуртия» Вавожского района Удмуртской Республики можно сделать следующие выводы:

- 1. В СПК (колхоз) «Удмуртия» Вавожского района Удмуртской Республики внедрена поточно-цеховая технология производства молока. Во всех отделениях применяется круглогодовая стойловая система содержания, используется как привязный, так и беспривязно-боксовый способ содержания дойного стада. Рационы кормления составляются в зависимости от продуктивности и физиологического состояния. В хозяйстве применяется силосно-сенажно-концентратный тип кормления.
- 2. Удой за 305 дней лактации в группах находится на уровне 9229 9085 кг. При этом наибольший удой у коров первой группы, где использовалась доильная установка «Карусель», и составил 9229 кг, что больше по сравнению со второй группой на 84 кг или 0,9 % и на 144 кг или 1,6 % по сравнению с третьей группой, где для доения используется линейный молокопровод, разница в группах не достоверная. Показатель биологической эффективности коров в группах также не имеет достоверных различий, но наибольший

показатель в первой группе и составил 216,6, что выше по сравнению со второй и третьей группой на 0,9 и 1,9 % соответственно.

- 3. Наибольший удой во всех группах на 2, 3 месяце лактации, что составляет 26,7 %, 30,0 % и 28,8 % соответственно от общего удоя за 305 дней лактации. Коэффициент устойчивости лактации при использовании доильной установки «Карусель» находится на уровне 87,6 %, что достоверно выше по сравнению с второй группой на8,1 %($P \ge 0,999$) и третьей группой на 11,5 % ($P \ge 0,999$).
- При использовании доильного оборудования «Карусель» 4. «Европараллель» уровень бактериальной обсемененности молока находится в пределах от 0.88 до 0.91×10^5 KOE/cm^3 , а в третьей группе, где для получения молока использовали линейный молокопровод, бактериальная обсемененность увеличивается, и составила $1.94 \times 10^5 \, \text{KOE/cm}^3$. В молоке коров третьей группы высокое содержание соматических клеток – 526 тыс/см³, что достоверно больше по сравнению с первой группой на 417 тыс/см 3 (P > 0.999) и второй на 289 тыс/см 3 (P \geq 0,99). При использовании доильного оборудования «Карусель» за анализируемый период выявлено 16 случаев субклинического мастита, во второй группе - 51 случай, при этом 25 % из них это клинический мастит, в третьей – 173 случая, при этом в 67 % случаях мастит проходил в субклинической форме.
- 5. Йогурт, произведенный из молока коров первой и второй группы, отличался большей густотой и лучше удерживал влагу в процессе хранения. Вязкость у них достоверно ($P \ge 0.95$) выше, чем в третьей группе. Расход молока на 1 кг творога в первой и второй группе составил 5,61 и 5,77 кг соответственно, что достоверно меньше по сравнению с третьей группой на 22,8 и 19,4 % ($P \ge 0.99$). Большим диаметром мицелл казеина в молоке характеризовались коровы второй группы (677,1), которые превосходили своих аналогов первой и второй групп соответственно на 28,1 Å и на 42,4 Å. Расход молока на 1 кг сыра во второй и третьей группах составил 8,3 и 8,4 кг соответственно, что достоверно ($P \ge 0.95$) меньше по сравнению с третьей группой на 0,8 % и 0,9 %, соответственно.
- 6. Наименьшая продолжительность сервис-периода отмечена у коров первой и второй групп и составила 137,1 и 133,4 дня, при доении с использованием доильной установки «Карусель» и «Европараллель, что меньше по сравнению с третьей группой соответственно на 12,2 дня ($P \ge 0.95$) и 15,9 дней ($P \ge 0.99$). Коэффициент воспроизводительной способности в этих группах составил 0,94 и 0,92.Основные причины выбраковки коров это травмы конечностей, гинекологические заболевания и маститы. Средний возраст выбракованных коров в первой и второй группе 5,6 и 5,8 лет соответственно, в третьей 4,2.
- 7. Наименьшая себестоимость за 1 кг молока получена, при использовании доильного оборудования «Карусель» 22,26 руб., что меньше по сравнению с линейным молокопроводом на 2,17 руб. Наибольшая валовая прибыль от реализации молока в первой группе составила 56518 руб., что

больше по сравнению со второй и третьей группой на 17872 и 23878 рублей, соответственно. Уровень рентабельности производства молока в первой группе 23,5 %, что больше по сравнению со второй группой на 8,2 и третьей – на 10,9 п.п.

ПРЕДЛОЖЕНИЕ ПРОИЗВОДСТУ

- 1. В целях повышения уровня молочной продуктивности, улучшения качества молока и повышения воспроизводительных качеств коров рекомендуем шире использовать доильную установку «Карусель» и «Европараллель».
- 2. Для повышения санитарного качества молока, производимого на ферме с использованием линейной доильной установки, рекомендуем не реже одного раза в 7 дней проводить диагностику на скрытые формы мастита.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕГО ИССЛЕДОВАНИЯ

Полученные результаты дают основу для дальнейшего и более широкого исследования молочной продуктивности и воспроизводительной способности коров черно-пестрой породы при использовании различных технологий получения молока. А также влияние способа получения молока в зависимости от доильных установок на молочную продукцию и ее качество.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

В научных изданиях, рекомендованных ВАК Минобрнауки РФ

- 1. Назарова, К. П. Молочная продуктивность и воспроизводительные показатели коров черно-пестрой породы в зависимости от технологии получения молока / К. П. Назарова, Г. Ю. Березкина // Аграрный вестник Урала. 2021. № 1(204). С. 51-59.
- 2. Закирова, Р. Р. Показатели качества сырого молока в Удмуртской Республике / Р.Р. Закирова, К.П. Назарова, Г.Ю. Березкина // Вестник Курганской ГСХА. -2021. № 1(37). C. 19-22.

В международной базе Web of Science

3. Berezkina G.Yu. Milk quality and its technological properties with intensive production technology / G.Yu. Berezkina1, K.P. Nazarova, R.R. Zakirova, O.S. Utkina, E.L. Alypova // International Journal of Ecosystems and Ecology Science (IJEES). – Vol. 12 (3): 325-332 (2022) – P. 325-332.

Публикация в других изданиях

4. Назарова, К. П. Воспроизводительные качества коров при разных технологиях доения / К. П. Назарова, Р. Р. Закирова, Г. Ю. Березкина // Состояние и пути развития производства и переработки продукции животноводства, охотничьего и рыбного хозяйства: Материалы международной

- научно-практической конференции, посвященной 90-летию технологического факультета Бурятской государственной сельскохозяйственной академии имени В.Р. Филиппова, Улан-Удэ, 24–26 июня 2022 года. Улан-Удэ: Бурятская государственная сельскохозяйственная академия имени В.Р. Филиппова, 2022. С. 187-191.
- 5. Назарова, К. П. Показатели качества молока в зависимостиот используемого доильного оборудования/ К. П. Назарова, Р. Р. Закирова, Г. Ю. Научно-технологические приоритеты Березкина // развитии агропромышленного комплекса России: Материалы 73-й Международной 2022 научно-практической конференции, Рязань, 21 апреля Министерство сельского хозяйства РΦ ФГБОУ BO государственный агротехнологический университет им. П.А. Костычева». – Рязань: Рязанский государственный агротехнологический университет им. П.А. Костычева, 2022. – С. 219-223.
- 6. Кудрин, М. Р. Технологические процессы при содержании и последовательность операций при доении коров на доильной установке «Европараллель» / М. Р. Кудрин, В. В. Иванов, К.П. Назарова // Роль ветеринарной и зоотехнической науки на современном этапе развития животноводства: Материалы Всероссийской научно-практической конференции, посвященной 70-летию доктора ветеринарных наук, профессора Геннадия Николаевича Бурдова и 60-летию доктора ветеринарных наук, профессора Юрия Гавриловича Крысенко, Ижевск, 23 июля 2021 года. Ижевск: Ижевская государственная сельскохозяйственная академия, 2021. С. 175-189.
- 7. Назарова, К. П. Молочная продуктивность и качество молока в зависимости от технологии получения молока / К. П. Назарова // Научный потенциал студентов и аспирантов: перспективы, достижения, инновации : материалы ежегодной научно-практической конференции, Оренбург, 25 декабря 2020 года / Министерство сельского хозяйства РФ, Оренбургский государственный аграрный университет. Оренбург: Оренбургский государственный аграрный университет, 2021. С. 70-73.
- 8. Назарова, К. П.Влияние технологии подготовки коров к доению на молочную продуктивность и качество молока / К. П. Назарова, Н. И. Вдовина, Г. Ю. Березкина // Наука и образование: опыт, проблемы, перспективы развития: Материалы международной научно-практической конференции, Красноярск, 20–22 апреля 2021 года. Красноярск: Красноярский государственный аграрный университет, 2021. С. 69-72.
- 9. Назарова, К. П.Влияние технологии доения на содержание соматических клеток в молоке / К. П. Назарова, Г. Ю. Березкина // Современная ветеринарная наука: теория и практика: Материалы Международной научнопрактической конференции, посвященной 20-летию факультета ветеринарной медицины Ижевской ГСХА, Ижевск, 28–30 октября 2020 года. Ижевск: Ижевская государственная сельскохозяйственная академия, 2020. С. 429-432.

НАЗАРОВА КРИСТИНА ПОЛИКАРПОВНА

ПРОДУКТИВНЫЕ ПОКАЗАТЕЛИ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА МОЛОКА КОРОВ ЧЕРНО-ПЕСТРОЙ ПОРОДЫ ПРИ РАЗНЫХ ТЕХНОЛОГИЯХ ДОЕНИЯ

4.2.4 Частная зоотехния, кормление, технологии приготовления кормов и производства продукции животноводства

Автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Подписано в печать _______ 2022 г. Формат 60х84 1/16. Усл. печ.л.1,0 Заказ № _____ Тираж 100 экз. Редакционно-издательский центр УдГАУ. 429069, Удмуртская Республика, г. Ижевск, ул. Студенческая, 11 Тел. 8(3412) 59-88-11, email: info@izhgsha.ru