СЕКЦИЯ 6. «МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ»

Мещеряков К.И. (5 к. 10 гр.) Реализация спектрального метода в применении к анализу устойчивости атмосферных потоков

Научный руководитель – ст.преп. Бондарчук А.А.

(Кафедра теоретической и компьютерной гидроаэродинамики)

Представлен численный метод расчета устойчивости атмосферных потоков, а также развития в них длинноволновых возмущений. Метод основан на разложении гидродинамических функций в тройной ряд Фурье. Приводятся результаты расчетов для сдвиговых течений в атмосфере.

Коршун М.С. (5к., 4гр.) Реализация импорта/экспорта САD-моделей в конечно-элементном программном комплексе ACELAN

Научный руководитель – к.ф.-м.н. Губа А.В.

(Кафедра математического моделирования)

Целью представленного исследования является разработка и реализация модуля «САДконвертор» конечно-элементного программного комплекса ACELAN. Модуль позволяет оперировать данными, сохраненными в нейтральном CAD-формате IGES, используемом в ведущих современных системах автоматизации проектных работ.

Жиляев И.В. (5 к. 4 г.) Численно-аналитическое моделирование протяженных сдвиговых течений со свободной границей.

Научный руководитель – доц., к.ф.-м.н. Надолин К.А., проф., д.ф.-м.н. Шевцов С.Н. (*Кафедра математического моделирования*)

Аналитически (на основе редуцированной математической модели протяженного сверхмелкого потока) и численно (средствами конечно-элементного комплекса COMSOL) исследуется двумерное течение жидкости в протяженном русле. Проведено сравнение полученных результатов.

Стояноска И. (4к., 1 гр.) Константы Лебега для матриц Адамара специального вила

Научные руководители — проф. **Пилиди В.С.**, доктор **Дж. Бирнс (Prometheus Inc., США)**

(Кафедра информатики и вычислительного эксперимента)

Работа посвящена анализу констант Лебега для некоторого класса матриц Адамара. Найдена рекуррентная формула вычисления констант Лебега. Исследованы свойства ядра Дирихле и программно реализован алгоритм вычисления констант Лебега.

Казарников А.В. (3 к. 3 гр.) Программный комплекс для исследования систем обыкновенных дифференциальных уравнений

Научный руководитель – доц. Ревина С.В.

(Кафедра вычислительной математики и математической физики)

Представлен комплекс программ для исследования математических моделей, описываемых системами обыкновенных дифференциальных уравнений. В качестве тестовых примеров рассмотрены уравнения нелинейных колебаний.

Геворков Г.М. (4 к., 3 гр.) Асимптотика сингулярно возмущенной задачи, описывающей создание РН-градиента.

Научный руководитель – проф. Жуков М.Ю.

(Кафедра вычислительной математики и математической физики)

Рассмотрена математическая модель, описывающая создание РН-градиента в бесконечнокомпонентной смеси. Математически задача сводится к исследованию сингулярно возмущенной краевой задачи, для исследования которой использован метод Вишика-Люстерника. Построен главный член асимптотики. Проведено обоснование асимптотического решения.

Маннаников Р.С. (4 к. 3 гр.) Длинноволновая асимптотика задачи устойчивости двумерных пространственно-периодических течений

Научный руководитель – доц. Ревина С.В.

(Кафедра вычислительной математики и математической физики)

Рассматривается задача устойчивости сдвиговых пространственно-периодических течений. К рассматриваемому классу принадлежит течение Колмогорова. Получены главные члены асимптотики линейной спектральной задачи.

Мороз И.В. (4 к., 3 гр.) Анализ методов расчета динамики идеальной жидкости *Научный руководитель* – доц. Говорухин В.Н.

(Кафедра вычислительной математики и математической физики)

В докладе проведен численный анализ поведения различных методов решения задачи Коши для обыкновенных дифференциальных уравнений применительно к расчету динамики идеальной жидкости. Экспериментально исследуется погрешность методов и сохранение различных инвариантов для ряда точных решений уравнений Эйлера и метода точечных вихрей.

Кругликов М.Г. (5 к., 3 гр.) Моделирование динамики пространственнонеоднородного распределения популяций

Научный руководитель – доц. Цибулин В.Г.

(Кафедра вычислительной математики и математической физики)

Изучается динамика системы уравнений параболического типа, моделирующей распределение неантогонистических популяций на интервале. На основе метода прямых представлены результаты численного эксперимента для случая неравномерных предельных численностей.

Пилюгина Д.Ф. (5 к., 3 гр.) Численное исследование движений идеальной несжимаемой жидкости в круге

Научный руководитель – доц. Петровская Н.В.

(Кафедра вычислительной математики и математической физики)

Рассматривается задача о движении идеальной несжимаемой жидкости в круге. Приближенные решения разыскиваются методом Галеркина. В качестве базисных выбраны собственные функции соответствующей линейной задачи (стационарные решения уравнений Эйлера). Численно исследуется эволюция малых возмущений таких решений.

Шестая ежегодная научная конференция студентов и аспирантов базовых кафедр Южного научного центра РАН

СЕКЦИЯ «МАТЕМАТИКА, МЕХАНИКА И МОДЕЛИРОВАНИЕ»

- **Ватулин С.В., Вернигора Г.**Д ($\mathcal{W}\Phi Y$) Конечноэлементное моделирование многофазных пьезокомпозитов в ACELAN
- **Данильченко** С.А. $(\mathcal{H}\Phi Y)$ Особенности моделирования двухточечного контакта колеса с рельсом в конечно-элементном пакете ANSYS
- **Дмитриева Е.А.** (*ЮФУ*) Применение генетических алгоритмов для идентификации параметров одномерной модели поликристаллических сегнетоэлектрических материалов
- **Дударев В.В., Недин Р.Д.** (*ЮФУ*) Идентификация неоднородного предварительного напряженного состояния в плоских упругих областях при установившихся колебаниях
- **Дудник А.А.** (*ЮФУ*) Численная реализация трехмерной модели Джила Атертона для поликристаллических сегнетоэластических материалов
- **Леви М.О.** (*ЮФУ*) Особенности распространения SH-волн в многослойном пьезоэлектрическом полупространстве
- **Лихогруд Е.А., Куриленко А.С.** (*КубГУ*) Клеточно-автоматное моделирование процессов распространения загрязняющих веществ
- Лыжов В.А. (ЮФУ) Особенности взаимодействия системы электродов
- **Окунева С.В.** (КубГУ) Разработка информационной системы экологических показателей и санитарно-гигиенических нормативов загрязнения окружающей среды
- **Пипа В.А**. ($\mathcal{H}O\Phi V$) Дисперсионные свойства слоистых пьезоэлектрических структур на диэлектрической подложке
- **Радченко М.Ю.** (*ЮФУ*) Двухуровневая модель электрического и деформационного отклика на совместные воздействия электрического поля и механических напряжений с преднапряженной электроупругой средой
- **Стратанович О.Н.** (ЮФУ) Разработка итерационных решателей для 3D-задач в ACELAN
- **Суворова Г.Ю.** ($\mathcal{H}O\Phi \mathcal{Y}$) Об одной динамической смешанной связанной задаче для термоупругого слоя
- **Чумакова Е.С**. ($\mathcal{H}O\Phi V$) Проблема регуляризации конечно-элементной системы в задаче Сен-Венана изгиба естественно закрученного стержня
- **Юрков А.М.** (*ЮФУ*) Представление тензоров упругих, пьезоэлектрических и диэлектрических модулей как функций вектора остаточной поляризации
- **Юрченко А.И.** (*ЮФУ*) Некоторые закономерности влияния свойств функциональноградиентного покрытия на динамические характеристики пьезокерамик класса 6mm