ΘΕΜΑ 2

2.1.

2.1.Α. Σωστή πρόταση η (β)

Μονάδες 4

2.1.B.

Ο συντελεστής απόδοσης μιας μηχανής Carnot δίδεται από τη σχέση

$$e = 1 - \frac{T_c}{T_h} \quad (1)$$

Μονάδες 2

Από τη σχέση (1) για e=0.75 έχουμε $T_h=4T_c$ (2)

και για
$$e' = 0.5$$
 έχουμε $T'_h = 2T_c$ (3)

Από τις σχέσεις (2 και (3) έχουμε

$$T_h' = \frac{T_h}{2} \quad (4)$$

Μονάδες 3

Επομένως

$$Π\% = \frac{\Delta T_h}{T_h} 100\%$$
 και τελικά $Π\% = -50\%$

Μονάδες 3

2.2.

2.2.Α. Σωστή απάντηση η (β)

Μονάδες 4

2.2.B.

Η αρχική ηλεκτρική δυναμική ενέργεια είναι

$$U_{\alpha\rho\chi} = k_c \frac{q^2}{r} \quad (1)$$

 $v_1 = 0 \qquad r \qquad v_2 = 0$

και η τελική ηλεκτρική δυναμική ενέργεια είναι

$$U_{\tau\varepsilon\lambda} = k_c \frac{q^2}{r'}$$
 ή $U_{\tau\varepsilon\lambda} = k_c \frac{q^2}{2r}$ και τελικά με τη βοήθεια της σχέσης (1) $U_{\tau\varepsilon\lambda} = \frac{U_{\alpha\rho\chi}}{2}$ (2)

Μονάδες 2

Το σύστημα των δύο σωματιδίων είναι μονωμένο, επομένως

$$\vec{P}_{\alpha\rho\chi} = \vec{P}_{\tau\varepsilon\lambda} \Rightarrow 0 = m_2 v_2' - m_1 v_1' \xrightarrow{m_1 = m_2} v_2' = v_1'$$
 και τελικά $K_2' = K_1' = K$ (3)

Μονάδες 3

Από την αρχή διατήρησης της μηχανικής ενέργειας έχουμε

$$K_{\alpha\rho\chi} + \ U_{\alpha\rho\chi} = K_{\tau\varepsilon\lambda} + U_{\tau\varepsilon\lambda} \xrightarrow{(1),(2),(3)} 0 + \ U_{\alpha\rho\chi} = 2K + \frac{U_{\alpha\rho\chi}}{2}$$

Μονάδες 3

και τελικά $(U_{\alpha\rho\chi}=U)$

$$K = \frac{U}{4}$$

Μονάδες 1