

(4)	12	9tg)	Sea	L Uni	a ma	tr: e	de fo	amañe	1 N A	,	0 606	ficie	ntes	del	we (po	, k	Pro	bor 9	ive k	2 2 2	sigui e	ntes	af:	l ma c	iones	Son	89 W	valen	tes							
		•		erti:																	0															
	• E	l sı	sten	na f	\x=γ	, tre	ne un	a oni	ica se	ماندره	ი გი	va te	ъФ,	y € I	k ^{o×1}																					
							Ax-																													
	٠ ﴿	×16	ite	В	- *-	• +	a A	l ∙B=	La																											
										rtico	lar	Ax-	-0	tiene	e una	66/	a s	oluc s	20																	
																				nomo	or Fism	·o.	dim	(Io	n(A))	= n	<i>.</i> :	es u	n ep	; moj	fismo		ಲು	un iso	mes 15:sm	0
																		a da.											i							
	'	'			Ľ						O						U																			
2) (12	(2tg :	Sea	k	un (were	εγ	82an	V	٠W	dos	K- @	ახძი	s ve	ector	iales	, do	nde	V ea	de	qu	ອາ2ເວ	n f	inido	1. Se	a t	f: v-	⊸ω	UQA	tron	stor	macre	ما م	neal.			
	•						f)) =		ľ l																											
	(Per	el	leare	ma	Je	la	dingi	นเอก	SC.	bemo:	, ,	que.		gim C	v) =	91	m (;	[m (¢))	+ 9	in (1	Na((ر۶	= >	9,	m (l	/) ~	dim	(Nu	ኒ (ታ))	- 0	m (Im (f))	
													Ψ																							
9 O	term	:റെ	۶ -	i ca	da (na	de la	12	i guler	tes	afire	nacior	ve7 2	ioa ve	erdaden	as	o f	alsas	, (US:	h fic	ando	en	cada	ca	so la	s (67)	puest	ła i	dada							
									-									V t												al men	ote i	nesen	der te			
		١					, N									·				7					·											
												,																								
			Sup	o GA O	mes	90	. {	. Va	v	03 6	as li	neal	ment	e de	ependi	ente	. E	a po ve	es es	(,ste	n e	scala	res	C:	e.	N	Can	À= 1.	O		ne fa	s de s	0 +	-9		
				U														f(_									*		
																		os (_									-7							
							= (_									•																	
											·				Ť																					
(b	£)((atg	Sea	v	იი	୧୯ ୬୯	.CO	vecto	/a no	de	Jime	o S/00	د	n; la	. E>	u ste	. ;&	omor f	V S mo	V	ا ر	V*														
		•													_			<i>j</i> *			•		dia	(v) =	e dim	(Nu(f)) +	Jm (In (f)) .	71	ას და	1emos	Que		
						_									Im (·													•		4		
			ls	nucl	to e	10	1 0	um Li	vje	O I I I	10-1																									
			lg	nucl	lo ea	, 10	,	yım (i	, , ,	Grin	(
			lg	nucl	lo e	, <u>{</u> 0	,	ym (i	, , =	Gra	(
			l9	nucl	lo e	40	,	am (i	, , ,	gii	(Jan.)																									
			l9	nucl	lo e	. 10	,	om ()		giii	(0.00)																									
			l9	nucl	lo e	. 10		jim (t		giii																										
			ls_	nucl	lo e	. 10		jim ((- Gin																										
			l9	nucl	lo e	. 10		gim ()		- Uni																										
			l9	nucli	o e	. 10		gim (
			l9	nucli	do el	. 10		gim ()																												
			l9	nucli	100 e	. 10		ym (l																												
			ls	nucli	100 e			ym (t																												
			el	nock	lo e	10		ym (t																												
			<i>l</i> 9	noch	lo e	3 10		ym (t																												
			el	nock	lo e	3 10		ym (t																												
			el	nock	lo e	3 10		ym ((
			el el	nock		3 10		ym (t																												
			ls	nock		10		ym (t																												
			ls .	nock		3 10																														
			ls .	nock		. 10																														
			ls .	nock																																
			ls .	nock																																
			ls .	nock																																
			ls —	nock																																
				nock																																

```
Porte Practica
 (15 plos) Sea T: R[x]n → R[x]n la transformación lieneal tal que T(p(x)) = x p(x) + p(1). Probar que T=n!
                 T(1)=1
                                                                          0 1 0 0 0
                 T(x) = x+1
                 T(x^2) = 2x^2 + 1 = 7 0 0 2 0 0
                                                                                                                        . Como es una motive diagonal el determinante es el producto de la diagonal
                                                                           ; ; ; ; ;
                                                                                                                             det = 1.1.2.3....n = n!
(5) (15 pts) Sea {u, 42, u3, un} una base del K-espaco vectorial V y consideramos VIII un , VIII un-uz, VII un-uz+us 114 e un-uz+us-un
                       Probor que para n=2,3,4 el subesespacio generado por an,..., un coincide con el subespocio generado por via, vic,..., via. Deducir que (via, vis, vis)
                       tambien es una base de V.
                                                                                                                              42= 11- 12
                                                                                                                               (1) = - 12 + 13
                         < U1, U2, ..., Un> = < V1, V2, ..., Vn>
                                                                                                                               44 = 13-14
       Para n=2
                     < 41, 12> = < 1/1. 1/2>
                      44+842 = d 1/4+8/2) = d1/4+8/1-8/12 = (0+8) 1/4-8/1/2 . . es una comb. lineal de 1/4 y 1/2 . . generan el mumo espacio
    Para n=3
                   < 41, M2, U3> = < V1, N2, V3>
                       00 Un + y Uz + EU3 = 0 v + y (va-vz) + E(-vz + v3) = 0 v + y v - y v - Ev + E v = (0+y) v + (-8-E) v + E v =
                           .. es ona comb lineal de 1/1, 1/2 y 1/3 .: generan el mismo espacio
                                    . : { V1, V2, V3, V4} es bare de U
 Para n= 4
                        < Wa, Uz, Us, Uy>= < V1, V2, V3, V4>
                         au+ buz + cus + du4 = av+ + b(11-12) +c(-12+1/3) +d(113-1/4)
                                                                                                                                                                                      . es una comb lineal de Va, Vz, V3 y V4
                                                                                    0.49 + 644 - 642 - 642 + 643 + 643 - 844
                                                                                                                                                                                    .. generan el mismo especio
                                                                                    (a+p) 41 + (-p-c) 42 + (c+q) 43 - q44
(6) Consideramos la funçan (₹: fh[x] x x fh[x] x → fh dada gor (p, q) = ∫2 p(t) q(t) dt
       @ (8 pts) Probar que ₫ es un producto interno
                                                                                                                                                                                  (9,p) = (p,q) = ((9,p)
                       ( ) ( ( p2 , q) = d ( p1 , q) + ( p2 , q)
                                                                                                                                                                                                 \int_{0}^{2} f(t) g(t) \quad \text{if } \quad = \int_{0}^{2} g(t) g(t) = \Phi (g_{1}g)
                               \( \big( \dagger p_4 (4) + \rho_2(2) \big( 2) \dagger dt \) = \( \int_2^2 \dop_4 (4) \dop( 2) + \rho_2(2) \dop( 2) \dop( 2) \)
                                                                                 - a 5 p. (8) q(t) dt + 5 p.(4) q(t) dt
                                                                                   = q Q (b 1 d) + D (b 2 d)
                      (iii) $\overline{Q}(\varphi, \varphi) \overline{Q}(\varphi, \varphi) \overline{Q}(\varphi, \varphi, \varphi) \overline{Q}(\varphi, \varphi, \varphi) \overline{Q}(\varphi, \varphi, \varp
                                           ∫<sub>0</sub><sup>2</sup> (t) dt ≥ 0 yes dad.
```


