Cheniguer Sr

تمرين شامل حول المجاميع و الجداءات في المتتاليات العددية:

عالم الرياضيات الجزائرية

كتابة عبارة الحد العام $^{\nu_n}$ بدلالة n ثم أستنتج عبارة $^{\bullet}$

$$v_n = 3 \times 2^n \quad \triangleright$$

$$u_n = v_n - 1 = 3 \times 2^n - 1 \quad \triangleright$$

 $S_n = v_0 + v_1 + \dots + v_n$ based n larger n and n

$$S_n = 3\left(\frac{1-2^{n+1}}{1-2}\right) = -3\left(1-2^{n+1}\right) = -3+6\times 2^n$$

المجموع بدلالة n المجموع 🛟

$$S'_n = u_0 + u_1 + \dots + u_n$$

: اذن $u_n = v_n - 1$ و منه $v_n = u_n + 1$: نعلم أن

 $S'_n = v_0 + v_1 + \dots + v_n \underbrace{-1 - 1}_{n+1} \underbrace{-1}_{n+1}$

$$S'_{n} = S_{n} + (-1)(n+1)$$

 $S'_{n} = S_{n} - n - 1$: اذن

 $P_n = v_0 \times v_1 \times \dots \times v_n$

لحساب هذا الجداء نكتب كل الحدود بدلالة الحد الأول و الأساس :

$$P_{n} = v_{0} \times (v_{0} \times q) \times (v_{0} \times q^{2}) \times \dots \times (v_{0} \times q^{n})$$

$$P_{n} = \underbrace{v_{0} \times v_{0} \times \dots \times v_{0}}_{i \longrightarrow n+1} \times \left[q \times q^{2} \times \dots \times q^{n} \right]$$

$$P_n = (v_0)^{n+1} \times [q^{1+2+\dots+n}] = 3^{n+1} \times (2)^{\frac{n(n+1)}{2}}$$

لتكن (u_n) متتالية عددية معرفة كما يلي:

$$u_0 = 2$$

$$u_{n+1} = 2u_n + 1$$

- $u_2 \cdot u_1$ با أحسب (١
- $v_n = u_n + 1$:نعتبر المتتالية (v_n) المعرفة ب
- بين أن المتتالية (v_n) هي متتالية هندسية يطلب تعيين أساسها و حدها الأول.
 - أكتب عبارة الحد العام $^{\mathcal{V}_n}$ بدلالة n ثم أستنتج عبارة u_n
 - أحسب بدلالة nمايلي :

$$S_n = v_0 + v_1 + \dots + v_n$$

$$S'_n = u_0 + u_1 + \dots + u_n$$

$$P''_n = v_0 \times v_1 \times \dots \times v_n$$

$$P''_{n} = v^{2}_{0} + v^{2}_{1} + \dots + v^{2}_{n}$$

$$S_n = \sqrt{v_0} + \sqrt{v_1} + \dots + \sqrt{v_n}$$

$$S_n = \frac{1}{v_0} + \frac{1}{v_1} + \dots + \frac{1}{v_n}$$

<u>الحل :</u>

$u_2 \cdot u_1$ $\underline{\qquad}$ (1

$$u_1 = 2u_0 + 1 = 5$$

 $u_2 = 2u_1 + 1 = 11$

- $v_n = u_n + 1$: نعتبر المتتالية (v_n) المعرفة ب
- اثبات أن المتتالية (v_n) هي متتالية هندسية يطلب v_n تعيين أساسها و حدها الأول.
 - $v_{n+1} = qv_n$ اذا و فقط اذا کان $(v_n) \stackrel{4}{\blacksquare}$
- $v_{n+1} = u_{n+1} + 1 = 2u_n + 2 = 2(u_n + 1) = 2v_n$ لدينا q = 2 و منه q = 2 متتالية هندسية اساسها q = 2 و حدها الأول q = 2 . q = 2
 - كتابة عبارة الحد العام $rac{\mathcal{V}_n}{n}$ بدلالة n ثم أستنتج lacktriangle

$$S_{n} = \frac{1}{v_{0}} + \frac{1}{v_{1}} + \dots + \frac{1}{v_{n}}$$

$$S_{n} = \frac{1}{3} \left[\frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} \right] = \frac{2}{3} \left[1 - \left(\frac{1}{2}\right)^{n+1} \right]$$

رسالة الى كل من استفاد من التمرين:

ان وجدت خطأ الرجاء مراسلتي عبر صفحتي:

https://www.facebook.com/mathmondedz

لا تنس نشر الملف في كل مكان كي يستفيد منه أكبر عدد ممكن من التلاميذ و الأساتذة

لا تنسوني و والدى الكريمين بالدعاء

$$S''_{n} = v_{0}^{2} + v_{1}^{2} + \dots + v_{n}^{2}$$

$$S''_{n} = v_{0} + (v_{0} \times q) + (v_{0} \times q^{2}) + \dots + (v_{0} \times q^{n})$$

$$= v_{0} \left[q \times q^{2} \times \dots \times q^{n} \right]$$

$$= v_{0} \left[q^{1+2+\dots+n} \right] = 3 \times 2^{\frac{n(n+1)}{2}}$$

$$S_{n} = \sqrt{v_{0}} + \sqrt{v_{1}} + \dots + \sqrt{v_{n}}$$

$$S_{n} = \sqrt{v_{0}} + \sqrt{v_{1}} + \sqrt{v_{2}} \dots + \sqrt{v_{n}}$$

$$S_{n} = \sqrt{v_{0}} + \sqrt{v_{0} \times q} + \sqrt{v_{0} \times q^{2}} \dots + \sqrt{v_{0} \times q^{n}}$$

$$= \sqrt{v_{0}} + \sqrt{v_{0}} \sqrt{q} + \sqrt{v_{0}} \sqrt{q^{2}} + \dots + \sqrt{v_{0}} \sqrt{q^{n}}$$

$$= \sqrt{v_{0}} \left(1 + \sqrt{q} + \sqrt{q^{2}} + \dots + \sqrt{q^{n}}\right)$$

$$\sqrt{q}$$

$$S_n = \sqrt{v_0} + \sqrt{v_1} + \sqrt{v_2} + \sqrt{v_n}$$

$$S_n = \sqrt{3} \left[\frac{1 - \sqrt{2}^{(n+1)}}{1 - \sqrt{2}} \right]$$

$$\vdots S_n = \frac{1}{v_0} + \frac{1}{v_1} + \dots + \frac{1}{v_n}$$

$$S_n = \frac{1}{v_0} + \frac{1}{v_1} + \dots + \frac{1}{v_n}$$

$$S_n = \frac{1}{v_0} + \frac{1}{v_0 \times q} + \frac{1}{v_0 \times q^2} + \dots + \frac{1}{v_0 \times q^n}$$

$$S_n = \frac{1}{v_0} \left[1 + \frac{1}{q} + \frac{1}{q^2} + \dots + \frac{1}{q^n} \right]$$

$$S_n = \frac{1}{v_0} \left[\frac{1 + \frac{1}{q} + \frac{1}{q^2} + \dots + \frac{1}{q^n}}{\frac{1}{q^n}} \right]$$