(1) Veröffentlichungsnummer:

0 124 779

A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84103819.3

22) Anmeldetag: 06.04.84

(51) Int. Cl.3: **G** 01 N 33/56

G 01 N 33/74, C 07 C 103/52

- (30) Priorität: 07.04.83 US 482384
- (43) Veröffentlichungstag der Anmeldung: 14.11.84 Patentblatt 84/46
- 84) Benannte Vertragsstaaten: CH DE FR GB IT LI NL
- (1) Anmelder: THE GEORGE WASHINGTON UNIVERSITY 2121 I Street N.W. Washington, D.C.(US)
- (72) Erfinder: Goldstein, Allan L. 2795 - 28th Street N.W. Washington, D.C., 20008(US)
- 72 Erfinder: McClure, John 747 Leicester Lane Houston, Texas 77034(US)
- (72) Erfinder: Low, Teresa L. K. 9105 Bramble Place Annandale, Virginia 22003(US)
- (2) Erfinder: Naylor, Paul H. 15702 Penn Manor Lane Bowie, Maryland 20716(US)
- (74) Vertreter: Lederer, Franz, Dr. et al,
 Patentanwälte Dr. Lederer Franz Meyer-Roxlau Reiner F.
 Lucile-Grahn-Strasse 22
 D-8000 München 80(DE)
- 54) Radioimmunverfahren für Thymosin beta 4.
- (5) Es wird ein Radiommunverfahren zur Bestimmung von Thymosin & beschrieben. Das Verfahren besteht darin, dass man die Probe mit einer bekannten menge von radioaktiv markiertem Tyr-C13-thymosin & und einem Antikörper gegen Thymosin & versetzt, den Antigen/Antikörper-Komplex vom ungebundenen radioaktiv markierten Thymosin & abtrennt, das Ausmass der Radioaktivität im Antigen/Antikörper-Komplex bestimmt und mit einer Standardkurve vergleicht.

0124779

The George Washington University, Washington D.C., U.S.A.

GW 4093/67

Radioimmunverfahren für Thymosin β_4

Thymosin β_4 ist ein hitzestabiles, saures Polypeptid. das aus 43 Aminosäureresten zusammengesetzt ist. Dieses Thymushormon wurde aus Kalbthymus isoliert und seine Aminosäuresequenz wurde bestimmt. Thymosin β_4 ist eines der vielen Polypeptide, die in der Thymosinfraktion 5 enthalten sind, welche in der Regulierung, Differenzierung und Funktion der Thymus-abhängigen Lymphozyten (T-Zellen) partizipiert. Die Isolierung, Charakterisierung und die Verwendung von Thymosin β_4 wird in grösserem Detail in U.S. Patent Nr. 4,297,276 beschrieben.

Ein Immunoassay für ein Polypeptidhormon des Thymus, welches als Thymopoietin oder Thymin bekannt ist, wird in der U.S. Patentschrift Nr. 4.055,633 beschrieben. Im besonderen beschreibt dieses Patent einen Radioimmunassay für Thymopoietin, bei dem ein Antikörper verwendet wird, der durch ein Immunogen erzeugt wird, welches gereinigtes Thymopoietin umfasst, das unter Verwendung von Glutaraldehyd kovalent an einen immunogenen Träger, wie Rindergammaglobulin gekuppelt wird. Das in diesem Assay verwendete markierte Antigen ist vorzugsweise Jod-Thymopoietin.

Es muss beachtet werden, dass Thymopoietin absolut nicht analog zu Thymosin ß, ist, und zwar in der Struk-tur, Aminosäurezusammensetzung und Sequenz, biologischer Aktivität, physikalischer Eigenschaften und immunologischer Eigenschaften.

Ein Radioimmunassay für eine teilweise gereinigte
Thymosinfraktion, und zwar Thymosinfraktion 5, von der nunmehr bekannt ist, dass sie ein Gemisch von einer Vielzahl
von Polypeptiden enthält, wird durch Schulof et al. in Fed.
Proc. 32, 1962 (1973) beschrieben. Vgl. in diesem Zusammenhang auch Goldstein et al., Fed. Proc. 33, 2053 (1974).

Im U.S. Patent Nr. 4,264,571 wird ein Radioimmunverfahren für Thymosin a beschrieben. Dieses Verfahren
verwendet einen Antikörper, der erzeugt wurde durch ein
Immunogen, das aus Thymosin a besteht, das kovalent
mittels Glutaraldehyd an Hemocyanin gebunden wurde. Als
Label wird 125 Jod-Thymosin a verwendet, das durch
Behandeln mit Bolton-Hunter-Reagens hergestellt wurde. Das
Immunverfahren verwendet die Doppel-Antikörper-Methode, um
den erhaltenen Niederschlag des Immunkomplexes zu bewerkstelligen. Ziegen-Antikaninchengammaglobulin wird als zweiter Antikörper verwendet.

25

Im U.S. Patent Nr. 4,339,427 wird ein verbessertes Radioimmunverfahren für Thymosin α₁ beschrieben, bei dem synthetisches Thymosin α₁ zur Erzeugung des Antikörpers verwendet wird und bei dem ein Analoges von Thymosin α₁, nämlich (Tyr¹)-Thymosin α₁ als markiertes Peptid verwendet wird.

Die vorliegende Erfindung betrifft ein Radioimmunverfahren zur Messung von Thymosin \mathfrak{S}_A .

35

Das bei diesem Verfahren verwendete Immunogen zur Herstellung der Antikörper wird durch kovalentes Binden von Thymosin β_4 an einen immunologischen Träger erhalten. Die Quelle für Thymosin β_4 ist für die vorliegende Erfindung nicht kritisch. Geeignetes Thymosin β_4 kann von Fraktion 5 von verschiedenen Säugern erhalten werden. So z.B. kann Thymosin β_4 verwendet werden, das aus Fraktion 5 von Menschen, Rind, Schaf oder Schwein erhalten wurde. Dies ist möglich, da die Aminosäuresequenz von Thymosin β_4 dieser verschiedener Säuger homolog ist.

10 Alternativ und vorzugsweise wird Thymosin β_4 verwendet, das nach herkömmlichen Peptidsynthesen hergestellt wurde. So z.B. kann Thymosin β_4 verwendet werden, das durch Fest- oder Flüssigphaseverfahren hergestellt wurde.

Der Begriff "immunogenes Trägermaterial" umfasst Materialien welche in der Lage sind, unabhängig in einem Wirtstier eine immunogene Reaktion hervorzurufen, und welches entweder direkt oder über die Bildung einer Peptid- oder Esterbindung zwischen freien Carboxyl-, Amino- oder Hydroxylgruppen kovalent an Thymosin \mathcal{B}_4 gekuppelt werden kann. Thymosin \mathcal{B}_4 kann auch an entsprechende Gruppen des immunogenen Trägermaterials durch eine konventionelle bifunktionelle Bindegruppe gekuppelt werden.

Das kovalente Kuppeln von Thymosin ß zum immunogenen Trägermaterial kann nach herkömmlicher Art und Weise erfolgen. So kann z.B. für ein direktes Kuppeln ein Carbodiimid, vorzugsweise Dicyclohexylcarbodiimid oder 1-Aethyl-3-(3-dimethylaminopropyl)carbodiimid als Kupplungsmittel verwendet werden. In dieser Kupplungsreaktion ist es wünschenswert, ein leicht saures Reaktionsmedium zu verwenden, z.B. ein Medium mit einem pH im Bereich von ungefähr 3-6.5, ganz besonders bevorzugt im Bereich von ungefähr 4-6.5.

35

Ein geeignetes bifunktionelles Kupplungsmittel ist ein C_{2-7} -Dialkanal, wie Glutaraldehyd. Das Kuppeln kann in

herkömmlicher Weise erfolgen, wie z.B. bei Avrameas, in Immunochemistry 6, 43 (1969) beschrieben.

Das erhaltene Immunogen kann ohne weitere Reinigung oder, obwohl nicht notwendig, nach Dialyse zur Entfernung von nichtreagiertem β_4 und Kupplungsmittel, verwendet werden.

Geeignete immunogene Trägermaterialien, welche bei der
Herstellung des Immunogens gemäss vorliegender Erfindung
verwendet werden können, umfassen Proteine, natürliche oder
synthetische polymere Verbindungen wie Polypeptide, z.B.
Polylysin oder Copolymere von Aminosäuren, Polysaccharide
und dergleichen. Besonders bevorzugte Trägermaterialien
sind Proteine und Polypeptide, insbesondere Proteine.

Die Art des Proteins. welches als immunogenes Trägermaterial zur Herstellung des Immunogens gemäss vorliegender
Erfindung verwendet wird. ist nicht kritisch. Beispiele ge20 eignete Proteine umfassen Säugerserumproteine, wie z.B.
menschliches Gammaglobulin, menschliches Serumalbumin,
Rinderserumalbumin, methyliertes Rinderserumalbumin,
Kaninchenserumalbumin, Rindergammaglobulin und Pferdegammaglobulin oder Nichtsäugerproteine wie Hemocyanin, besonders
25 Keyhole Limpet Hemocyanin (KLH). Anderer geeignete Proteine
sind dem Fachmann bestens bekannt.

Das Immunogen gemäss vorliegender Erfindung kann zur Bildung von Antikörpern verwendet werden, die spezifisch gegen Thymosin ß, gerichtet sind, indem Wirtstieren das Immunogen, vorzugsweise in Gegenwart eines Adjuvans injiziert wird. Erhöhte Titer können durch wiederholte Injektionen über eine bestimmte Zeitspanne erhalten werden. Geeignete Wirtstiere für diesen Zweck umfassen Säugetiere, wie Kaninchen, Pferde, Ziegen, Meerschweinchen, Ratten, Kühe, Schafe, etc. Die erhaltenen Antiseren enthalten Antikörper, welche selektiv mit Thymosin ß, komplexieren. Be-

dingt durch das hohe Ausmass der Homologie zwischen Thymosin \mathfrak{A}_4 -Sequenzen hergeleitet von verschiedenen Säugern ist es möglich. Antikörper zu verwenden, die in einer Spezies von Thymosin \mathfrak{A}_4 erzeugt wurden, um Thymosin \mathfrak{A}_4 einer andern Säugespezies nachzuweisen.

Tyr-Cl3-Thymosin B4 wird als Substrat für die Radioiodinierung verwendet. Das Ausdruck Tyr-Cl3-Thymosin 8, bezieht sich auf ein Polypeptid enthaltend die 13 C-termi-10 nalen Aminosäuren von Thymosin β_{a} mit Tyrosin gebunden an das N-terminale Ende. Die Verwendung dieses Analogen bedeutet einen echten Fortschritt gegenüber Methoden unter Verwendung des ganzen Moleküls, da diese entweder die Verwendung von Bolton-Hunter Radiomarkierungstechniken oder 15 chemischen Modifikationen mit nicht-markiertem Bolton--Hunter-Reagens gefolgt durch klassische Radiomarkierungtechnik verlangen. Das Analogie liefert ein markiertes Produkt hoher spezifischer Aktivität, welches ein hohes Ausmass an Immunreaktivität behält. Der Thyrosinrest, der am 20 terminalen Ende in der Sequenz eingeführt wird, bedingt eine kleinere sterische Hinderung beim Binden an den Antikörper als diejenige die erreicht würde, wenn man einen aromatischen Ring intern und möglicherweise nahe vor antigenischen Determinanten hinzufügen würde. Im weitern wurde 25 gefunden, dass Tyr-Cl3-Thymosin β_4 einheitlicher und reproduzierbarer als natürliches Thymosin B, mit Bolton--Hunter-Reagens markiert werden kann. Die Verwendung chemisch-synthetisierter Peptide in diesem Verfahren ist bevorzugt. Dies gibt dem Verfahren einen hohen Grad von Spezifität, da keine Möglichkeit einer Kontamination des Präparates mit Verbindungen besteht, welche mit dem Ausqangsgewebe mitgereinigt werden könnten. Tyr-Cl3- Thymosin \mathfrak{B}_{A} , welches als Substrat für die Radiojodierung verwendet wird, kann unter Verwendung bekannter Festphasen Peptidsynthesen hergestellt werden, wie wenn man Thymosin $\mathfrak{B}_{\mathbf{A}}$ herstellt, mit der Ausnahme, dass nur 13-Carboxy-terminale Aminosäuren von Thymosin \mathfrak{S}_4 hergestellt werden und dass

als letzte Aminosäure Tyrosin zugefügt wird.

Obwohl radiojodiertes Tyr-Cl3-Thymosin β_4 mit Vorteil im Radioimmunverfahren verwendet wird, ist es möglich andere radioaktivmarkierte Reagenzien wie (Tyr 1)-Thymosin β_4 oder (Tyr 1)-Desacetylthymosin β_4 zu verwenden, welche mit Jod 125 oder Kohlenstoff 14 (14 C) markiert werden. Durch bekannte Isotopenaustauschverfahren kann Tritium in diese Reagenzien eingefügt werden. Die Herstellung von 14 C-(Tyr)Cl3-Thymosin β_4 oder 14 C-(Tyr 1)-Desacetyl-thymosin β_4 oder 14 C-(Tyr 1)-Thymosin β_4 kann einfach bewerkstelligt werden, indem man eine oder mehrere erhältliche 14 C-markierte Aminosäuren an geeigneten Stellen der Festphasensynthese einführt.

15

Verschiedene Nachweismethoden können gemäss vorliegender Erfindung verwendet werden. In einer dieser Methoden werden bekannte Mengen einer zu untersuchenden Probe. Thymosin β_A spezifischer Antikörper und markiertes Thymosin B_A gemischt und stehengelassen. Der Antigen--Antikörperkomplex wird von den ungebunden Reagenzien durch bekannte Verfahren entfernt, z.B. durch Behandeln mit Ammoniumsulfat; Polyäthylenglykol; einem zweiten Antikörper, der entweder im Ueberschuss vorhanden ist, oder an 25 eine unlösliche Phase gebunden ist; mit Dextran oder beschichteter Aktivkohle und dergleichen. Die Konzentration von markiertem Thymosin $\beta_{\mathbf{\Delta}}$ oder vom Thymosin $\beta_{\mathbf{\Delta}}$ -Fragment wird entweder in der gebundenen oder ungebundenen Phase bestimmt, und der Thymosin β_{Λ} -Gehalt der Probe kann 30 dann entweder in der gebundenen oder in der ungebundenen Phase bestimmt werden und zwar durch Vergleich der Menge an markierter Komponente verglichen mit einer in herkömmlicher Weise erhaltenen Standardkurve. Eine geeignete Standardkurve kann durch Mischen bekannter Mengen von Thymosin \mathfrak{S}_{π} mit festen Mengen von markiertem Thymosin $\mathbf{B}_{\mathbf{A}}$ und Thymosin B_A -spezifischen Antikörper und Bestimmen des Ausmasses der Bindung für jede Menge erhalten werden.

Falls erwünscht, kann der Antikörper mit zahlreichen natürlichen Methoden zur Erhöhung der Spezifität behandelt werden. Ein geeignetes Behandlungsmittel ist Thymosin-5 Fraktion 5 jedes Säugerorgans, welches keine Thymosin β_4 -produzierende Zellen enthält. Geeignete Organe umfassen Nieren, Leber und Hirn. Säuger als Quellen für derartige Organe umfassen Kamele, Schafe, Pferde, Esel, Schweine, Menschen und dergleichen.

Die vorliegende Erfindung wird durch die nachfolgenden Beispiele weiter illustriert. In diesen Beispielen bedeutet "Boc" die Schutzgruppe t-Butyloxycarbonyl. "Bzl" die Schutzgruppe Benzyloxycarbonyl und "2-CIZ" die Schutzgruppe 2-Chlorbenzyloxycarbonyl.

Beispiel 1

Herstellung von Tyr-Cl3-Thymosin B₄:
Tyr-Lys-Glu-Thr-Ile-Glu-Glu-Lys-Gln-Ala-Gly-Glu-Ser

Boc-Ser(Bzl)-OCH₂-C₆H₄-Harz (2.5 g; 1.0 mMol) wird in ein Peptidsynthesekessel gegeben, und die Festphasensynthese wird mit den nachfolgenden Schritten in jedem Zyklus durchgeführt: (1) drei Waschungen mit CH₂Cl₂, (2) Vorwaschen mit 40%iger Trifluoressigsäure (TFA) in Methylenchlorid, (3) Rühren während 28 Minuten mit 40%iger TFA in Methylenchlorid, (4) dreimaliges Waschen mit Methylenchlorid, (5) Vorwaschen mit 10%igem Triäthylamin (Et₃N) in Methylenchlorid, (6) Rühren während 8 Minuten mit 10%igem Et₃N in Methylenchlorid, (7) dreimaliges Waschen mit Methylenchlorid, (8) Rühren während 120 Minuten mit Boc-Glu(OBzl)-OH (3 mMol: 1,01 g) und Dicyclohexylcarbodiimid (DCC) (3 mMol: 0.62 g), (9) dreimaliges Waschen mit Methylenchlorid, 50%igem Isopropylalkohol in Methylenchlorid und dann Methylenchlorid.

20

5

10

Der Synthesezyklus wird unter Verwendung der folgenden Aminosäuren sequenziell wiederholt, in Schritt (8): Boc-Gly-OH, Boc-Ala-OH, Boc-Gln-OH, Boc-Lys(2-ClZ)-OH, Boc-Glu(OBzl)-OH, Boc-Gln-OH, Boc-Glu(OBzl)-OH, Boc-Ile-OH, Boc-Thr(Bzl)-OH, Boc-Glu(OBzl)-OH, Boc-Lys(2-ClZ)-OH, Boc-Tyr(Bzl), und 1-Hydroxybenzotriazol (HOBT, 6 mMol; 0,81 g) wird zu jeder Kupplungsreaktion gegeben, bei der Boc-Gln-OH in Schritt (8) involviert ist. Nach Beendigung der Synthese erhält man 4,14 g geschütztes Peptidharz. Dieses wird dann während 0°C während 30 Minuten einer HF-Spaltung (100 ml wasserfreies HF in 10 ml Anisol) unterworfen. Nach Entfernung von überschüssigem HF wird das Peptidharz mit l%iger Essigsäure extrahiert und lyophilisiert und liefert 1.7 g rohes Produkt als leicht beiges ge-35 färbtes Pulver. Das Produkt wird dann durch Hochdruckflüssigchromatographie (HPLC) an einer μBondapak Cl8-Kolonne (10- μ m, 0,39 x 30 cm) bei 35°C gereinigt. Der Puffer in

Reservoir A war 0,05% TFA (pH 2-3) und in Reservoir B
Acetonitril enthaltend 0,05% TFA. Die Peptide wurden durch
UV-Absorption bei 210 nm bestimmt. Die Durchflussgeschwindigkeit wurde auf 1.5 ml/Min. eingestellt. Die Peptide
werden mit 5% B während 10 Minuten von der Kolonne eluiert
gefolgt durch einen linearen Gradienten 45 bis 30% B in
50 Minuten. Tyr-Cl3-Thymosin B₄ wird bei 28 Minuten von
der Kolonne eluiert. Aminosäureanalyse: Glu. 6.09; Thr.
0,85; Ser. 0,866; Gly, 1,08; Ala, 1,12; Ile, 0,90; Tyr.

Beispiel 2

a) Herstellung des Antiserums. Synthetisches Thymosin β₄
(gesamtes Molekül von 43 Resten) wird mittels Glutaraldehyd kovalent an KLH gebunden. Synthetisches Thymosin β₄
(2.75 mg) und Keyhole Limpet Hemocyanin (KLH, 4.14g) werden mit 1.5 ml 0.25M Natriumphosphat vom pH 7.4 in ein geschlossenes 12 x 75 mm Plastikröhrchen gegeben. Durch die Zugabe von 75 μl 25%igem wässrigen Glutaraldehyd wird eine endgültige Konzentration von 1.25% Glutaraldehyd (W/V) erreicht. Nach leichtem Schütteln des Reaktionsgefässes während 3 Stunden bei Raumtemperatur wird die Lösung mit steriler physiologischer Kochsalzlösung (0.15M Natriumchlorid) zu einer Konzentration von 50 μg/ml Thymosin β₄ verdünnt. Das Gemisch der Reaktionsprodukte wird ohne weitere Reinigungen zur Immunisierung verwendet.

Weisse New Zealand-Kaninchen werden mit 50 µg synthetischem Thymosin 84, welches an KLH konjugiert ist, an
20-30 intradermalen Stellen im Rücken nach der Methode von
Vaitukaitis et al. (J. Clin. Endo, 33, 988 (1971) immunisiert. Damit jedes Kaninchen 50 µg Antigen in 2 ml Emulsion erhält, wird eine Emulsion hergestellt, die gleiche
Mengen des wässrigen Proteins und Freund's vollständiges
Adjuvans enthält. Während einer 4-Monats-Periode werden
jede zwei Wochen Booster-Injektionen von 50 µg Thymosin

84 (als KLH-Konjugat) in jedes Tier injiziert (d.h. eine
primäre Immunisierung gefolgt von 8 Booster-Injektionen).
14 Tage nach der achten Booster-Injektion wird erstmals
Blut entnommen. Es werden monatlich weitere Booster-Injektionen gegeben, und es wird 10 Tage gewartet bevor die
Blutentnahmen zur Bildung des Antiserums für den Immunassay
vorgenommen werden.

b) Radiojodierung des (Tyr)-Cl3-Thymosin B. -Analogen. Es 10 wird eine Modifikation der Chloramin T-Methode zur Jodierung des (Tyr)-Thymosin β_4 -Analogen verwendet (Greenwood. F.C., Hunter, W.M. and Glover, J.S., Biochem. J. 89, 114 (1963). Das \mathfrak{B}_4 -Analoge wird in 0.5M Phosphatpuffer (pH 6.0) bei einer Konzentration von 166 µg/ml) in Lösung ge-15 bracht. Zu 12 μl des Analogen werden 5 mCi NaI 125 in 20 µl Phosphatpuffer zugegeben. Chloramin T wird bei 0.5 mg/ml Phosphatpuffer hergestellt, und es werden 10 μl unter Mischen zugegeben. Nach 90 Sekunden werden 100 µl Metabisulfat (4 nMol/100 μl/ml; 7.6 μg/ml) zur Beendi-20 gung der Reaktion zugegeben. Um ein effizientes Ueberführen auf die G-10-Kolonne, welche für die Abtrennung von freiem 125 I und markiertem Peptid nötig ist. zu bewerkstelligen. werden 50 µl normales Serum vor der Ueberführung zum Reaktionsröhrchen gegeben.

25

Die Sephadex G-10-Kolonne (0,7 x 10 cm) wird mit 10%iger Essigsäure mit 0,1% Eialbumin äquilibriert. Es werden 1 ml Aliquote gesammelt und das markierte Peptid wird als Tracer verwendet. Der Tracer wird in aliquote Anteile (5 µl) gegeben und sofort tiefgefroren. Vor dem Verfahren wird der Tracer auf 10'000 cpm/50 µl verdünnt. Nach 4 Wochen war eine Rechromatographie des Tracers möglich, was die Brauchbarkeit der einfachen Markierung auf 6-8 Wochen erweitert.

35

c) Protokoll des Radioimmunverfahrens. Es wird eine Stammlösung von Thymosin \mathbf{S}_4 in einem Radioimmunverfahrenpuffer

(RIAB) in einer Konzentration hergestellt, welche im Arbeitsbereich des Verfahrens liegt, d.h. zwischen 0,5 und 37,5 ng/100 μ 1) und bei -20°C gefroren. Der RIAB war Phosphat-gepufferte Kochsalzlösung (pH 7.4. 0.01M Natrium-5 phosphat und 0,15M Natriumchlorid) zu dem 0,05% (g/w) Natriumazid, 0.01 mM EDTA und Ammoniumsulfat fraktioniertes normales Kaninchenserum (NRS) zu einer Schlussverdünnung von 1/200 gegeben wurde. Das NRS dient sowohl als Protein zur Vermeidung nicht-spezifischer Bindung von Tracer und als Träger im Doppel-Antikörper-Fällungsschritt. Neun Standards enthaltend 0.5 bis 37.5 ng/100 µl werden aus der Stammlösung hergestellt und bei -70°C gefroren. Für unbekannte Proben wurden 5-20 µl Serum pro Verfahren verwendet, die mit Salzlösung zu 100 µl/Probe verdünnt wurden. Alle Röhrchen werden auf ein endgültiges Volumen von 15 400 µl mit RIAB eingestellt. Ein 50 µl Aliquot von Stammantiserum (1/200 Verdünnung) wird zu jedem Röhrchen gegeben. Die Verdünnung ergibt 20-25% Bindung von Tracer und eine endgültige Verdünnung von 1/2000. Nicht-spezifische Bindung wurde dadurch abgeschätzt, dass alle Röhrchen 20 enthaltend alle Verfahrensreagenzien mit Ausnahme des spezifischen Anti-Thymosin \mathfrak{B}_4 -Antiserums untersucht wurden. Die Röhrchen werden am Vortex gemischt und während 24 Stunden bei 4°C inkubiert. Die Trennung von freiem und gebundenem Tracer wird durch die Zugabe von 50 μl einer Ziegenantikaninchen IgG-Präparation bewerkstelligt. die so eingestellt wurde, dass sie maximale Fällung des Tracers bewirkt. Nach Zugabe des zweiten Antikörpers und Mischen am Vortex werden die Proben über Nacht bei 4°C inkubiert. Das Immunpräzipitat wird bei 15000 x G während 25 Minuten bei 30 4°C zentrifugiert. Die Ueberstände werden abgesaugt und verworfen. Die Radioaktivität in den Immunpräzipitaten wird in einem automatischen Gammaspektrometer gemessen. Die Counts pro Minute für Standards und unbekannte Proben (B;) werden bezüglich des nicht-spezifischen Hintergrundes, gewöhnlich 5% der gesamten Radioaktivität, korrigiert und durch die korrekte Zahl von Counts pro Minute

dividiert, die bei Röhrchen erhalten wird, in denen kein kompetitives Antigen zugefügt wird (B_O). Die Daten werden mit einem Beckman-System DP-5500 analysiert, welcher die Logdosis (x Achse) gegen die beobachteten Counts aufträgt und die vier Parameter logistische Methode berechnet, bei der die Dosis-Antwortskurve wie folgt angegeben wird:

$$Y = \frac{(A - D)}{1 + (x/C)B + D}$$

10

In dieser Gleichung bedeutet y die Antwort, x die Konzentration, A die Antwort wenn x = O(Bo). B ist der Steigungsfaktor, C die Dosis entsprechend der Antworthalbwertszeit
zwischen A und D. und D die Antwort für eine unbestimmte
Konzentration. Rodbard D. et al., Radioimmunoverfahren und
verwandte Verfahren in Med. 1, 469 (1978).

- d) Resultate unter Verwendung des Radioimmunverfahrens für Thymosin β₄. Synthetisches Thymosin β₄ kann unter Verwendung von Antikörper und 125 J-Tyr-Cl3-Thymosin β₄-Analog über ein Bereich von 0.4-37.5 ng/Röhrchen (Figur 1) gemessen werden. Die Thymosin β₄-Spiegel in den Seren von Menschen. Rindern. Mäusen. Hamstern und Meerschweinchen waren parallel zu den Standardkurven bei denen zwischen 1 und 10 μl Thymosin verwendet wird. Der minimale auffindbare Serumspiegel war 5 mg/ml und eine Endkonzentration von 1/2000 Antikörper wurde verwendet, um eine 20-25%ige Bindung von Tracer am Antikörper zu erzielen.
- Die initiale Spezifität des Radioimmunverfahrens wird auf Kreuzreaktion überprüft durch Nachweisen von Präparaten mit verschiedenen mutmasslichen Thymushormonen und verschiedenen Serumproteinen (Tabelle 1). In den Verfaren für die Präparationen wurden ansteigende Mengen jedes Proteins zum RIA-System zugegeben bis Spiegel erreicht wurden, die eindeutig über den bekannten physiologischen Konzentrationen in Blut lagen oder bis ein praktischer Wert erreicht

wurde, der durch die Menge von jeder erhältlichen Präparation bestimmt wurde. Für diejenigen Präparate die keine Antwort erzeugten, die vom Null-Dosisspiegel differierten, welche als 20%ige Inhibition bewertet wurden.

5 wurde die grösste gemessene Dosis angegeben. Nur synthetisches Thymosin β₄ und Tyr-Cl3-Thymosin β₄-Analoges verdrängten den Tracer bei Spiegeln im 0.05 ng Bereich. Prealbumin zeigte bei Spiegeln von 100 μg/Röhrchen keine Kreuzreaktion. Thymopoietin und Thymosin α₇ verdrängten 20% des Tracers bei Spiegeln von 10 μg. Thymosin α₁. welches in Serum in pg-Mengen vorhanden ist, zeigte bei 100 ng/- Röhrchen keine Kreuzreaktion.

Tabelle 1 Spezifität des RIA für Thymosin B_A

15	Spezifität des RIA	für Thymosin 8 ₄			
20	Getestetes Protein	benötigte Menge, um mindes- tens 20% ¹²⁵ Jod Tyr-Cl3- Thymosin 8 ₄ zu verdrängen			
20	A. Nicht-Thymusproteine und				
	Peptide				
	Hämocyanin (KLH)	> 100 µg			
	Albumin (menschlich)	> 100 µg			
25	Hämoglobulin (menschlich)	> 100 µg			
	Myoglobulin (Pferd)	> 100 µg			
	Polyasparagin	> 100 µg			
	Prolactin	> 10 µg			
	Prealbumin	> 100 µg			
30	**				
	B. Thymuspeptide				
	Thymopoietin II	10 μg			
	Thymosin a_{7}	10 µg			
	Thymosin B	0,1 ng			
35	Thymosin B ₄ (C ₁₄)	0,1 ng			
•	Thymosin a	1 µg			

Die Spiegel von in menschlichem Serum zirkulierendem Thymosin \mathcal{B}_4 werden in Tabelle 2 gezeigt. Obwohl die Genauigkeit des Nachweisverfahrens innerhalb des erwarteten Bereiches liegt, schwanken die normalen Spiegel erheblich zwischen den einzelnen Individuen.

 $\frac{\text{Tabelle 2}}{\text{Thymosin β_4 Spiegel in menschlichen Serum}}$

10	Quelle des	Serums	Alter(Jahre)	Zahl	Thymosin	(ng/ml)
	männliches	Blut	25-50	33	850 <u>+</u> 249*	
	weibliches	Blut	25-50	23	700 <u>+</u> 168	
15	Nabelblut		Neugeborene	20	1840 <u>+</u> 154	

 $[\]star$ ausgedrückt als Durchschnitt \pm Standardabweichung

20

25

Patentansprüche

- 1. Tyr-Cl3-Thymosin B₄.
- 2. Ein radioaktiver Tracer, welcher in einer Bestimmung für Thymosin β_4 verwendbar ist, der ein Polypeptid ausgewählt aus der Gruppe von Tyr-Cl3-Thymosin β_4 . (Tyr)-Desacetyl-Thymosin β_4 und (Tyr¹)-Thymosin β_4 enthält, welches Polypeptid an ein Radioisotop gebunden ist.

3. Ein radioaktiver Tracer wie in Anspruch 2 beansprucht, dadurch gekennzeichnet, dass er 125 Jod-(Tyr)-Cl3-Thymosin 8, ist.

- 15 4. Immunogen enthaltend Thymosin β_4 , welches kovalent an ein immunologisches Trägermaterial gebunden ist.
- 5. Ein Immunogen gemäss Anspruch 4. dadurch gekennzeichnet, dass der immunologische Träger Keyhole Limpet 20 Hämocyanin ist.
 - 6. Ein Radioimmunverfahren für Thymosin \mathbb{A}_4 in einer Probe, welches die nachfolgenden Schritte umfasst:
- 25 (a) Inkubieren der Probe mit einer bekannten Menge von radioaktiv markiertem Tyr-Cl3-Thymosin \mathfrak{B}_4 und einem Antikörper, welcher selektiv mit Thymosin \mathfrak{B}_4 komplexiert.

30

- (b) Trennung des erhaltenen Antikörper-Antigenkomplexes von ungebundenem radioaktiv markierten Thymosin β_A .
 - (c) Messen des Ausmasses der Bindung von radioaktiv markiertem Thymosin \mathcal{B}_{A} in diesem Komplex und
 - (d) Bestimmen der Menge von Thymosin \mathfrak{B}_4 in der Probe durch Vergleich des Grades der Bindung mit einer Standardkurve.

- 7. Radioimmunverfahren gemäss Anspruch 6. dadurch gekennzeichnet, dass das radioaktiv markierte Tyr-Cl3-Thymosin β_4^{125} Jod-(Tyr)-Cl3-Thymosin β_4^{125} ist.
- 8. Radioimmunverfahren gemäss Anspruch 7. dadurch gekennzeichnet, dass der Antikörper ein Antikörper ist, welcher in einem Säugetier als Antwort auf ein Immunogen enthaltend Thymosin β_4 , welches kovalent an ein immunologisches Trägermaterial gebunden wird, gebildet wird.
- 9. Radioimmunverfahren gemäss Anspruch 8. dadurch gekennzeichnet. dass das immunologische Trägermaterial Keyhole Limpet Hämocyanin ist.
- 10. Ein Antikörper, welcher das Polypeptid-Thymosin B_4 selektiv erkennt und bindet.
- 11. Antikörper gemäss Anspruch 10. der in einem Wirtstier gebildet wird. dem Thymosin β_4 , welches kovalent an 20 ein immunogenes Material gebunden wird, injiziert wurde.
 - 12. Antikörper gemäss Anspruch 11. dadurch gekennzeichnet. dass das immunogene Trägermaterial Keyhole Limpet Hämocyanin ist.

*** 25