$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$$T(c.\vec{x}) = c.T(\vec{x}) \qquad cell$$

$$T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y}). \qquad \vec{x}, \vec{y} \in \mathbb{R}^n.$$

LINEARAVBILDINGER OG AREALER

La T: $\mathbb{R}^2 \to \mathbb{R}^2$ voice lineou, chs. $T(\overline{Z}) = A\overline{Z}$ for en (2x2)-matriseA. \mathbb{R}^2 T

T \mathbb{R}^2

Q=[0,1]x[0,1].

Sporsmål: Hva e wealet til T(Q)?

$$\left(\begin{array}{cccc}
\frac{\text{Eks}}{} & \text{IR} & \longrightarrow & \text{IR}, \\
f(x) = a \cdot x, & a \in \text{IR}.
\end{array}\right)$$

Anta at
$$T(\vec{e}_1) = (a, o)$$

 $T(\vec{e}_2) = (b, c)$

SETNING: DERSOM T: 182 -> 182

ER EN UNEFERAVBILDING

SÅ FORSTORRER T AREALER

MED EN FAKTOR | det(A)|,

DER A ER STANDARDMATRISEN

TIL T,

SAMME GJELDER FRA R3-> B3.

jan 17-10:06

Eks; La $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ og anta at A aubildu en figus F pa $\frac{1}{4}$ $\frac{1}{4}$ Hva ex avealet hil F?

Howard Aveal (E) = | det(A)|. Areal (F).

Areal $(F) = \frac{1}{|det(A)|}$. 1.

EGENVERDIER OG EGENVEKTORER.

DEF: La A vove en (nrn)-matise.

(i) En vektor VERN, V+o,

sies à vove en egenvektor

deson det fins $\lambda \in \mathbb{R}$ s.a. $A \overrightarrow{V} = \lambda \cdot \overrightarrow{V}$.

(ii) à kalles egenverdien til horende egenvertoren V.

Eks:
$$A = \begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{bmatrix}$$

La $\vec{V}_1 = (1,1)$ og $\vec{V}_2 = (1,-1)$.

V(s at \vec{V}_1 og \vec{V}_2 er egenvekbrer

for A og finn egenverdære.

(a) $\begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

(a)
$$\begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 8/4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

So $A\overrightarrow{v_1} = \overrightarrow{v_1} = 1 \cdot \overrightarrow{v_1}$, so $\overrightarrow{v_1}$ es
en egenvektor med egenved $\lambda_1 = 1$.

(b)
$$\begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix} \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}$$

So $A \vec{v}_{2} = \frac{1}{2} \cdot \vec{v}_{2}$, so $\lambda_{2} = \frac{1}{4}$,

$$\vec{x}$$
, \vec{A} \vec{A} \vec{X} \vec{A} \vec{A}

Hua skjer når K-197 (avhege av startponktet x).

Eks: La
$$\vec{x}_0 = (3,1)$$
.

Observe at $x_0 = 2 \cdot \vec{v}_1 + \vec{v}_2$.

Observe at
$$X_0 = \lambda \cdot \overrightarrow{V}_1 + \overrightarrow{V}_2$$

$$A \overrightarrow{X}_0 = A \left(2 \cdot \overrightarrow{V}_1 + \overrightarrow{U}_2 \right)$$

$$= 2 \cdot A \overrightarrow{V}_1 + A \overrightarrow{V}_2$$

$$= 2 \cdot \lambda_1 \cdot \overrightarrow{V}_1 + \lambda_2 \cdot \overrightarrow{V}_2$$

$$= 2 \cdot 1 \cdot \overrightarrow{V}_1 + \frac{1}{4} \cdot \overrightarrow{V}_2$$

$$= 2 \cdot 1 \cdot \overrightarrow{V}_1 + \frac{1}{4} \cdot \overrightarrow{V}_2$$

$$= 2 \cdot 1 \cdot \overrightarrow{V}_1 + \frac{1}{4} \cdot \overrightarrow{V}_2$$

$$= 2 \cdot 1 \cdot \overrightarrow{V}_1 + \frac{1}{4} \cdot \overrightarrow{V}_2$$

$$= 2 \cdot 1 \cdot \overrightarrow{V}_1 + \frac{1}{4} \cdot \overrightarrow{V}_2$$

$$= 2 \cdot 1 \cdot \overrightarrow{V}_1 + \frac{1}{4} \cdot \overrightarrow{V}_2$$

$$= 2 \cdot 1 \cdot \overrightarrow{V}_1 + \frac{1}{4} \cdot \overrightarrow{V}_2$$

$$= 2 \cdot 1 \cdot \overrightarrow{V}_1 + \frac{1}{4} \cdot \overrightarrow{V}_2$$

jan 17-10:46

Algoritme: La A voire en @x2) x matrise.

Gitt et punkt $x_0 \in \mathbb{R}^2$ onsker ut

à bestrive lim A*. Xo.

x-100

- (i) Finn egenvektore vi og vz for A med egenvedte hog dz. (huis mulig).
- Thereskombinarjon

 (ii) Skiu V_0 som en sum au \vec{V}_1 , og \vec{V}_2 , dus. finn C_1, C_2 S.a. $C_1 \cdot \vec{V}_1 + C_2 \cdot \vec{V}_2 = \vec{V}_0$.

(iii)
$$A^{K} \vec{\lambda}_{0} = A^{K} \left(c_{1} \cdot \vec{\nu}_{1} + c_{2} \cdot \vec{\nu}_{2} \right)$$

$$= c_{1} \cdot A^{K} \cdot \vec{\nu}_{1} + c_{2} \cdot A^{K} \cdot \vec{\nu}_{2}$$

$$= c_{1} \cdot \lambda_{1}^{K} \cdot \vec{\nu}_{1} + c_{2} \cdot \lambda_{2}^{K} \cdot \vec{\nu}_{2}$$

1.10 Affinavaildinger
$$T(c\vec{x})=c\cdot T(\vec{x})$$

DEF: En availding

F: IR" - IR" talles en affinavbilding du som alt fins en (m×n)-matrise A og vektor b E IB"

s.a. F(Z) = AZ + b.

Eks: f(x) = ax + 2. $a, b \in \mathbb{R}$.

Setning 1.10.2 Anta at $F(\vec{x})=A\vec{x}+\vec{c}$ er en appinabliding og la $\vec{c}(t)=\vec{d}+t\cdot\vec{b}$, vove en linj L. $t\in\mathbb{R}$.

Deson Abto e kildt F(d) en rett lige som går gjennom F(d) med retning A(b).

Bevis: $F(\vec{a}+\vec{b}) = A(\vec{a}+\vec{b}) + \vec{c}$ $= A\vec{a} + \vec{b} + \vec{c}$ $= A\vec{a} + \vec{c} + \vec{b} + \vec{c}$ $= A\vec{a} + \vec{c} + \vec{b} + \vec{c}$ $= F(\vec{a}) + \vec{b} + \vec{c}$

MERK: Forskjellen på en linewarb.

og en affinarb. er en
homslasjon.

F(x)= Ax+ b.

En aub. F(x)= x + b kalles en hanslarjon.

Eks: Finn matriser og tonstantleddet til en affinavælding som avtildu

Kombinasjon av bo hing:

(i) Linewould.

Q —

(ii) Konstantledt e (3,17.