CONTROL

outline

- Repetition (time domain control)
- Bode plot design
- Control to follow a reference
 - stability
 - dynamics
 - bandwith
- Control for noise reduction

Standard control system

Standard set-up

Closed loop:
$$T(s) = \frac{Y(s)}{R(s)} = \frac{D(s)G(s)}{1 + D(s)G(s)H(s)}$$

 $Open \ loop: \ L(s) = D(s)G(s)H(s)$

 $Direct\ term:\ D(s)G(s)$

$$closed \quad loop = \frac{direct \quad term}{1 + open \quad loop}$$

Time domain specifications (closed loop)

Rise time $t_r \sim$ stigetid Settling time $t_s \sim$ indsvingningstid

Overshoot $M_p \sim$ oversving

Special case H(s)=1

System type=number of poles in 0 in D(s)G(s).

Example:

if
$$D(s)G(s)=\frac{10}{s(s+5)}$$
 one pole i 0 (and a pole in -5) => type 1 If $D(s)G(s)=\frac{10}{(s+10)(s+5)}$ poles in -10 and -5 system type = 0.

Notice that D(s)G(s) = L(s) OPEN LOOP

Steady state errors system type

Frequency domain analysis

- Assumption: signals are a sum of sines an cosines
- Frequency domain response specify what happens to sine signals when they are passed through a linear system – changes in phase and magnitude

A change in phase and amplitude can be illustrated in a Bode plot

Investigate the open loop D(s)G(s)H(s)

The controller react on the error signal E(s)

Open loop

Oscillating:

$$D(s)G(s)H(s) = -1 = 1 \angle -180$$

Unstable:

$$D(s)G(s)H(s) = > 1 \angle -180$$

If there is a frequency ω_1 where the phase $\angle D(\omega_1)G(\omega_1)H(\omega_1)$ is -180 then the gain $|D(\omega_1)G(\omega_1)H(\omega_1)|$ must be smaller than 1 (0 dB) for stability

Bode plot og open loop system

$$OL_1(s) = \frac{1}{s(s+0.1)(s+10)}$$

$$OL_2(s) = \frac{50}{s(s+0.1)(s+10)}$$

Stable system

Unstable system

Oscillating:

$$D(s)G(s)H(s) = -1 = 1 \angle -180$$

Stability margins:

Gain margin (GM) is the number of dB missing before the gain is 0dB at the frequency where the phase is -180 degrees. Gain and phase is calculated on the open loop function!

Phase margin, (PM) is the number of degrees missing before the phase is -180 at the frequency where the gain is 0 dB. Gain and phase is calculated on the open loop function!

Cross over frequency ω_c is the frequency where the gain is 0 dB.

Relations between margins and dynamics

Find the phase and gain margin

Is the systems stable

What is the overshoot

Phase margin and overshoot

A large phase margin => a small overshoot

Special case : H(s)=1 System type bode plot

Open Loop

Controller specifications

Specifications:

Time domaine spec's	Frequency domaine spec's		Type of spec.
Closed loop:	Closed loop:	Open loop:	
Overshoot M_p	Resonant peak M_r	Phase margin PM	Stability
Rise time t_r	Bandwidth ω_{BW}	Crossover frequency ω_c	Dynamics
Settling time t_s			Dynamics
Peak time t_p	Resonant frequency ω_r		Dynamics
		Gain margin GM	Stability
Steady state error e_{ss}	Steady state error e_{ss}	Asymptote $\omega o 0$	Steady state

Controller specifications

For the standard 2. order cloosed loop system $T(s) = \frac{A}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

Specifications	Equations
Overshoot,Resonant peak,Phase margin	$M_p = e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}}$ $M_r \approx \frac{1}{2\sin\frac{PM}{2}}$ $\zeta \approx \frac{PM}{100}$
Rise time,Bandwidth, Cross over frekvens	$t_r \approx \frac{1.8}{\omega_n}$ $\omega_{BW} \approx 1.4 \cdot \omega_n$ $\omega_c \approx 0.5 \cdot \omega_{BW}$
Settling time	$t_s = \frac{-ln(x)}{\zeta\omega_n}$ $x = ba$ and
Peak time, Resonant frequency	$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} \qquad \omega_r = \omega_n \sqrt{1 - 2\zeta^2}$

Controller design

How can we change D(s) if we want to obtain

- better stability
- better stationary conditions
- faster dynamics

Most simple controller : a constant K K in relation to stability

Example

OPEN LOOP

- Gain margin
- Phase margin
- Cross over frequency

K = 0.1, 1, 10

Closed loop stepresponse for K=0.1, K=1, K=10

BREAK

Frequency domain design (on black board)

Design example

Phase margin 45°

PID controller

A standard controller is:

$$\begin{array}{lcl} D(s) & = & K_p(1 + \frac{1}{T_i \cdot s} + T_d \cdot s) \\ & = & Proportional(1 + Integral + Differential) \\ & = & PID - controller \end{array}$$

Used in combinations

P control K

I control K/s

PI control K(Tis+1)/Tds

PD control K(Tds+1)

PID control K(TiTds2+Tis+1)/Tis

Bode plot – effect of gain, poles and zeroes

Poles:

Gain: – 20 dB/decade

Phase: - 90°

Zeros

Gain: 20 dB/decade

Phase 90°

Used in combinations

P control K

I control K/s

PI control K(Tis+1)/Tds

PD control K(Tds+1)

PID control K(TiTds2+Tis+1)/Tis

Bodeplot for the controllers on the

blackboard

- Gain:
- 20log₁₀
- Phase 0 for positive gain, -180 for negative gain

Design example

Specifications:

- Steady state error for step = 0
- Phase margin ≅ 45 degrees
- Cross over frequency > 0.5 rad/sek

Determine D(s)

Open loop with out controller

$$G(s) = \frac{1}{(S+1)^2(0.1S+1)}$$

Gain < 1 for all ω means that the phase margin are undefined, The gain margin are ok

Type 0 system=> there will be a stationary error

P control (P>1) will give a phase and gain margin + a cross over frequency

The stationary error will go down

$$\frac{Y(s)}{R(s)} = \frac{\frac{K}{(s+1)^2(0.1s+1)}}{1 + \frac{K}{(s+1)^2(0.1s+1)}}$$

Open loop $D(s) = \frac{1}{s}$ Steady
state error
=0
Phase
margin =18

Open loop $D(s) = \frac{0.45}{s}$ Cross over=
0.4
Phase
margin = 45

Controller type

Controller

$$D(s) = 1.11 \frac{s+1}{s} = 1.11(1 + \frac{1}{s})$$
$$= Proportional(1 + Integral) = PI - controller$$

No stationary error

Noise reduction

Calculate the transfer function:

$$\frac{Y(s)}{W(s)}$$

Noise reduction

$$\frac{Y(s)}{W(s)} = \frac{G(s)}{1 + G(s)H(s)D(s)}$$

Reference following

$$G(s) = \frac{7}{s+7}$$

$$K = 10, \qquad H = 1$$

$$\frac{Y(s)}{R(s)} = \frac{D(s)G(s)}{1 + G(s)H(s)D(s)}$$

$$= \frac{10 * \frac{7}{s+7}}{1 + \frac{7}{s+7} * 10 * 1} = \frac{70}{s+77}$$

DC gain (s=0) =
$$\frac{10}{11}$$

Unitstep for R(s)

Noise reduction

$$G(s) = \frac{7}{s+7}$$

$$K = 10, \qquad H = 1$$

$$\frac{Y(s)}{W(s)} = \frac{1}{1 + G(s)H(s)D(s)}$$

$$= \frac{1}{1 + \frac{7}{s+7} * 10 * 1} = \frac{s+7}{s+77}$$

DC gain (s=0) =
$$\frac{1}{11}$$

Unitstep for w(s)

Frequency domain specifications CLOSED LOOP Bandwith

Closed loop Bodeplot for the controlled system - finding the bandwith

```
s=tf('s')
D=1.11*(s+1)/s;
G=0.1/(s+1)*(s+1)*(0.1*s+1);
H=1;
T=feedback(D*G,H);
bode (T)
```

