学界 | FRATERNAL DROPOUT

2017-11-17 机器海岸线

选自 arXiv

作者: Konrad Zołna , Devansh Arpit , Dendi Suhubdy & Yoshua Bengio 等

机器海岸线编译

参与: 方建勇

FRATERNAL DROPOUT

Konrad Żołna^{1,*}, Devansh Arpit², Dendi Suhubdy² & Yoshua Bengio^{2,3}

论文链接: https://arxiv.org/pdf/1711.00066

摘要:递归神经网络(RNN)是用于语言建模和顺序预测的神经网络中重要的一类架构。然而,与前馈神经网络相比,RNN 优化是困难的。文献中提出了许多技术来解决这个问题。在本文中,我们提出了一个简单的技术,称为 FRATERNAL DROPOUT,利用 DROPOUT 来实现这一目标。具体来说,我们建议训练两个相同的副本 RNN(共享参数)与不同的 DROPOUT 掩码,同时最小化他们(pre-softmax)预测之间的差异。通过这种方式,我们的规则化鼓励 RNN 的表示与 DROPOUT 掩码是不相关的,因此是鲁棒的。我们证明了我们的正则化项是由期望 - 线性 DROPOUT 掩码是不相关的,这个目标已经被证明是为了解决由于训练和推理 DROPOUT 阶段之间的差异而导致的差距。我们评估我们的模型,并在两个基准数据集 Penn Treebank 和 Wikitext-2 上实现序列建模任务中的最新结果。我们还表明,我们的方法导致图像字幕(Microsoft COCO)和半监督(CIFAR-10)任务的性能提高很大。

¹Jagiellonian University

²MILA, Université de Montréal

³CIFAR Senior Fellow

Model	Parameters	Validation	Test	
Zaremba et al. (2014) - LSTM (medium)	10M	86.2	82.7	
Zaremba et al. (2014) - LSTM (large)	24M	82.2	78.4	
Gal & Ghahramani (2016) - Variational LSTM (medium)	20M	81.9	79.7	
Gal & Ghahramani (2016) - Variational LSTM (large)	66M	77.9	75.2	
Inan et al. (2016) - Variational LSTM	51M	71.1	68.5	
Inan et al. (2016) - Variational RHN	24M	68.1	66.0	
Zilly et al. (2016) - Variational RHN	23M	67.9	65.4	
Melis et al. (2017) - 5-layer RHN	24M	64.8	62.2	
Melis et al. (2017) - 4-layer skip connection LSTM	24M	60.9	58.3	
Merity et al. (2017a) - AWD-LSTM 3-layer	24M	60.0	57.3	
fraternal dropout + AWD-LSTM 3-layer	24M	58.9	56.8	

表 1: Penn Treebank 词级语言建模任务的复杂度。

Model	Parameters	Validation	Test
Merity et al. (2016) - Variational LSTM + Zoneout	20M	108.7	100.9
Merity et al. (2016) - Variational LSTM	20M	101.7	96.3
Inan et al. (2016) - Variational LSTM	28M	91.5	87.0
Melis et al. (2017) - 5-layer RHN	24M	78.1	75.6
Melis et al. (2017) - 1-layer LSTM	24M	69.3	65.9
Melis et al. (2017) - 2-layer skip connection LSTM	24M	69.1	65.9
Merity et al. (2017a) - AWD-LSTM 3-layer	34M	68.6	65.8
fraternal dropout + AWD-LSTM 3-layer	34M	66.8	64.1

表 2: 对 WikiText-2 字级语言建模任务的复杂度。

Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4
Show and Tell Xu et al. (2015)	66.6	46.1	32.9	24.6
Baseline	68.8	50.8	36.1	25.6
Fraternal dropout, $\kappa = 0.015$	69.3	51.4	36.6	26.1
Fraternal dropout, $\kappa = 0.005$	69.3	51.5	36.9	26.3

表 3:Microsoft COCO 图像字幕任务的 BLEU 分数, 使用 FRATERNAL DROPOUT 是模型之间的唯一区别, 剩下的超参数是一样的。

图 1: 消融研究: 使用单层 LSTM(10M 参数)对 PTB 字级模型进行训练(左)和验证(右)。 这些曲线 研究基线模型的学习动力学,模型,期望线性丢失(ELD),期望线性 dropout modification (ELDM)和 fraternal dropout (FD, 我们的算法)。 我们发现 FD 的收敛速度比正规化者要快。

图 2: 对模型和 fraternal dropout.的 PTB 词水平模型验证复杂度, 我们发现 FD 收敛速度更快。

图3: 当使用所描述的任何调节器时,平均隐藏状态激活减少。

Model	Dropout rate	Unlabeled data used	Validation	Test
Ordinary	0.1	No	$78.4 (\pm 0.25)$	$76.9 (\pm 0.31)$
None	0.0	No	$78.8 (\pm 0.59)$	$77.1 (\pm 0.3)$
Fraternal ($\kappa = 0.05$)	0.05	No	$79.3 (\pm 0.38)$	77.6 (± 0.35)
Ordinary + ∏-model	0.1	Yes	$80.2 (\pm 0.33)$	$78.5 (\pm 0.46)$
Fraternal ($\kappa = 0.15$)	0.1	Yes	$80.5 (\pm 0.18)$	$79.1 (\pm 0.37)$

表 4:基于 ResNet-56 的模型改变 (半监督) CIFAR-10 数据集的精度。我们发现我们的算法与-model 同等地执行。 当不使用未标记的数据时,普通的丢失会损害性能,而 fraternal dropout 提供稍好的结果。 这意味着我们的方法可能是有益的,当我们缺乏数据,并需要使用额外的正则化方法。

图 4: 消融研究:使用单层 LSTM(10M 参数)对 PTB 字级模型进行训练(左)和验证(右)。 这些曲线研究基线模型,时间活动正则化(TAR),预测正则化(PR),活动正则化(AR)和 fraternal dropout (FD,我们的算法)的学习动态。 我们发现 FD 比正规化器收敛速度更快,概括性更好。

		PTB		WT2	
Dropout	Fine-tuning	Validation	Test	Validation	Test
Ordinary	None	60.7	58.8	69.1	66.0
Ordinary	One	60.0	57.3	68.6	65.8
Fraternal	None	59.8	58.0	68.3	65.3
Fraternal	One	58.9	56.8	66.8	64.1
Fraternal	Two	58.5	56.2	-8	_

表 5: AWD-LSTM 3 层模型的微调的重要性。 Penn Treebank 和 WikiText-2 语言建模任务的复杂度。。

本文为机器海岸线编译	. 转载请联系	fangjianyong@zuaa.zju.edu	I.cn 获得授权。

&----