Approximating a function

In this exercise, you will implement an algorithm to approximate a function f(x) if x is on the interval [-1,1].

A degree N approximation of f(x) takes the general form

$$\hat{f}\left(x
ight) = \sum_{i=0}^{N} a_i T_i(x)$$

for which you need 3 elements:

- 1. the functions $T_i(x)$
- 2. M evaluation nodes $\{z_k\}$.
- 3. N coefficients $\{a_i\}$

1

The functions $T_i(x)$ take the form

$$T_i(x) = \cos(i imes rccos(x))$$

2.

The true function f needs to be evaluated on a set of nodes so that we can use these function evaluations for our approximation. The set of nodes where f is evaluated, $\{z_k\}$, has to be chosen wisely such that the approximation error is minimized.

It turns out to be on the form

$$z_k=-cos(rac{2k-1}{2M}\pi), \quad k=1,2,3,\ldots,M$$

3.

The N coefficients of the approximation are obtained by what is essentially a least squares regression. They are on the form

$$a_i = rac{\sum_{k=1}^M f(z_k) T_i(z_k)}{\sum_{k=1}^M T_i(z_k)^2}, \quad i = 0, 1, 2, \dots, N$$

Notes: in general one can let N < M.

Observe that we are using M evaluations of f(z) to create **each** of the N approximation coefficients. This can be done up front and needs only to be done once even if you need to approximate f on multiple x's. This is why such an approximation is useful in the context of solving an economic model. For instance, a value function may be very computationally intensive, so you'll benefit from only having to to evaluate it M times in order to get, say, K >> M function approximations.

Question 1

Create an approximator $\hat{f}\left(x
ight)$ at an $x\in\left[-1,1
ight]$ by implementing the following algorithm:

- 1. For each $k=1,\ldots,M$: compute $z_k=-cos(rac{2k-1}{2M}\pi)$
- 2. For each $k=1,\ldots,M$: compute $y_k=f(z_k)$
- 3. For each $i=0,\ldots,N$: compute $a_i=rac{\sum_{k=1}^M y_k T_i(z_k)}{\sum_{k=1}^M T_i(z_k)^2}$
- 4. Return $\sum_{i=0}^{N} a_i T_i(x)$

```
In [ ]: def f_approx(x, f, N, M):
    pass
```

Note: you can use the numpy functions $\mathsf{np.arccos}$ in T_i and $\mathsf{np.cos}$ in z_k .

Question 2

Evaluate f_approx at $x \in \{-0.5, 0.0, 0.98\}$ and report in each case also the deviation from the true value f(x).

Use the following

```
In []: f = lambda x: 1/(1+x**2) + x**3 - 0.5*x

N = 5

M = 8

xs = np.array([-0.5, 0.0, 0.98])
```