Hawking Radiation

A Comparison of Pure-state and Thermal Descriptions

Yi-Fan Wang (王 一帆)

Institut für Theoretische Physik, Universität zu Köln
Rheinische Friedrich-Wilhelms-Universität Bonn

Admissions Academy of Bonn-Cologne Graduate School for Physics and Astronomy March 30, 2017

arXiv: 1703.05373

Outline

Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators

Outline

Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators

Background space-time: spherically collapsing body

Schematic conformal (Penrose-Carter) diagram

- \blacktriangleright Each point represents an S^2
- ▶ i[∓]: past / future time-like infinities
- ▶ i⁰: space-like infinity
- $\triangleright \mathcal{I}^{\mp}$: past / future null inf.
- ▶ ½+: future event horizon
- ► Thick line: boundary of the collapsing body

Hawking Radiation

Results and interpretation [Haw74; Haw75]

 \blacktriangleright An early-time vacuum on \mathcal{I}^- in collapsing background

$$\hat{a}(p) |h\rangle := 0 \quad \Rightarrow \quad \langle h | \hat{n}_a(p) | h\rangle =: \langle \hat{n}_a(p) \rangle_b \equiv 0 \quad (1)$$

evolves to a late-time state on $\mathcal{I}^+ \cup \mathscr{R}^+$ with particles on \mathcal{I}^+

$$\langle \hat{n}_{\mathsf{on} \ \mathcal{I}^+}(\omega) \rangle_h =: \langle \hat{n}_b(\omega) \rangle_h \approx \Gamma_\omega (e^{2\pi\omega/\kappa} - 1)^{-1}.$$
 (2)

▶ Comparing eq. (2) with the Bose–Einstein distribution

$$\langle \hat{n}(\omega) \rangle_{\mathsf{BE}} = (e^{\omega/T} - 1)^{-1},$$
 (3)

one may conclude that eq. (2) describes a grey-body radiation with the Hawking temperature,

$$T_{\mathsf{H}} \coloneqq \kappa/2\pi \equiv \hbar/\mathsf{ck} \cdot \kappa/2\pi.$$

Hawking Radiation

Tension in the interpretation

▶ The state $|h\rangle$ or its density operator is pure,

$$\hat{\rho}_h = |h\rangle \langle h|, \qquad (5)$$

whilst the Bose-Einstein state of equilibrium bosonic gas

$$\hat{\rho}_{\mathsf{BE}}(T) = Z^{-1} e^{-\widehat{H}/T} \sim Z^{-1} \sum_{E} e^{-E/T} |E\rangle \langle E| \qquad \textbf{(6)}$$

is thermal and mixed.

▶ How different are they? [Kie01; HR09]

Outline

Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators

Classical theory of (1+1)d Dilaton Gravity Model I [Cal+92; DK96; APR11]

▶ The action of the dilaton gravity model reads

$$S = \int d^2x \sqrt{-g} \left\{ \frac{e^{-2\phi}}{G} \left[R + 4(\nabla\phi)^2 + 4\lambda^2 \right] - \frac{1}{2} (\nabla f)^2 \right\}, \tag{7}$$

where $\phi(x)$ is the dilaton field, f(x) a massless neutral scalar field representing, and $\lambda>0$ the cosmological constant.

 \blacktriangleright Has a solution which resembles the collapsing body in (3+1)-dimensional Einstein gravitation

Classical theory of (1+1)d Dilaton Gravity Model II [Cal+92; DK96; APR11]

Quantum theory of (1+1)d Dilaton Gravity Model I [DK96]

- ► Constraint system: Schrödinger quantisation does not apply
- ▶ (Formally) Dirac quantisation

$$\widehat{\mathcal{H}}_{\parallel}\Psi[g,\phi,f]=0,\qquad \widehat{\mathcal{H}}_{\perp}\Psi[g,\phi,f]=0. \tag{8}$$

- \blacktriangleright Semi-classical approximation: $\Psi=\mathrm{e}^{\mathrm{i}(\mathit{G}^{-1}S_{0}+S_{1}+\mathit{G}S_{2}+\ldots)}$
 - $ightharpoonup {
 m O}({\it G}^{-1})$: Hamilton–Jacobi equation for pure gravity
 - $\bullet \ \mathrm{O}(G^0): \ \Psi = D[g,\phi]\chi[g,\phi,f]; \ \text{functional Schrödinger}$ equation for matter $\mathring{\mathbb{I}}\partial_t\chi[f] = \widehat{H}_{\mathsf{m}}\chi[f], \ \text{where}$

$$\widehat{H}_{\rm m} = \frac{1}{2} \int_0^{+\infty} {\rm d}k \left(-\frac{\pmb\delta^2}{\pmb\delta f^2(k)} + k^2 f^2(k) \right). \tag{9} \label{eq:Hm}$$

► A quantum field theory in curved space-time can be derived!

Quantum theory of (1+1)d Dilaton Gravity Model II [DK96]

▶ At early time, the vacuum wave functional is

$$\chi_0[f_{\rm e}] \propto \exp\left\{-\frac{1}{2} \int_{\mathbb{R}^+} {\rm d}k \, k \, f_{\rm e}^2(k)\right\} \sim \prod_k \exp\left\{\frac{1}{2} \frac{k}{\Lambda} \, f_{\rm e}^2\right\},$$
 (10)

while at late time it evolves to

$$\chi_b[f_{\mathsf{I}}] \propto \exp\left\{-\int_{\mathbb{R}} \mathrm{d}p \, p \coth\left(\frac{\mathrm{II}p}{2\lambda}\right) |f_{\mathsf{I}}(p)|^2\right\} \sim \prod_p \mathrm{e}^{\ldots}, \quad (11)$$

where $f_{\rm e}(k)$ and $f_{\rm I}(p)$ are the Fourier transform of the matter field at early and late time, respectively.

► At late time, particle-number expectations are

$$\langle \hat{n}_b(p) \rangle_{\chi_b} = \left(e^{2\pi |p|/\lambda} - 1 \right)^{-1},$$
 (12)

leading to a Hawking-like black-body temperature

$$T_{\mathsf{HD}} \coloneqq \lambda/2\pi.$$

Outline

Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators

Correlation of Fourier Modes

The discrepancy

▶ The Fourier-mode correlators can be calculated,

$$\begin{split} \left\langle \hat{f}^{\dagger}(p_1)\hat{f}(p_2)\right\rangle &= \frac{1}{T_{\mathrm{HD}}}\delta(p_1-p_2) \cdot \begin{cases} \frac{1}{2}\frac{1}{q}, & \text{vacuum}; \\ \frac{1}{8}\frac{\tanh\frac{q}{4}}{\frac{q}{4}}, & \chi_b; \\ \frac{1}{4}\frac{\coth\frac{q}{2}}{\frac{q}{2}}, & \hat{\rho}_{\mathrm{BE}}(T_{\mathrm{HD}}), \end{cases} \end{split} \tag{14}$$

where $q := p_1/T_{HD}$

▶ Diagonal elements (fluctuations) are plotted

Correlation of Fourier Modes

Fluctuation of the Fourier modes: diagram in log-log scale

Correlation of Fourier Modes

Fluctuation of the Fourier modes: interpretation

Vacuum fluctuation

$$\left\langle \left| \hat{f} \right|^2 \right\rangle_{\text{vac}} \sim \mathcal{O}(q^{-1})$$
 (15)

A black hole does not alter the high-energy processes

$$\left\langle \left| \hat{f} \right|^2 \right\rangle_{\chi_b} \approx \left\langle \left| \hat{f} \right|^2 \right\rangle_{\text{th}} \approx \left\langle \left| \hat{f} \right|^2 \right\rangle_{\text{vac}} \sim \mathcal{O}(q^{-1}), \quad |p| \gg T_{\text{HD}}$$
(16)

► A black hole suppresses low-energy fluctuation of the pure state, while enhancing that of the thermal state

$$O(1) \sim \left\langle \left| \hat{f} \right|^2 \right\rangle_{\chi_b} \ll \left\langle \left| \hat{f} \right|^2 \right\rangle_{\text{vac}} \ll \left\langle \left| \hat{f} \right|^2 \right\rangle_{\text{th}} \sim O(q^{-2}), \quad |p| \ll T_{\text{HD}}$$

$$(17)$$

lacktriangle Critical scale $|p| \sim T_{
m HD}$

Outline

Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators

Trace Distance [Wil09, ch. 9]

Definitions

 \blacktriangleright Trace distance between Hermitian operators \widehat{M} and \widehat{N}

$$T(\widehat{M}, \widehat{N}) := \frac{1}{2} \operatorname{tr} \sqrt{(\widehat{M} - \widehat{N})^{\dagger} (\widehat{M} - \widehat{N})}$$
 (18)

- ▶ For density operators $\hat{\rho}$ and $\hat{\sigma}$,
 - $ightharpoonup 0 \le T(\hat{\rho}, \widehat{\sigma}) \le 1.$
 - ► Controlled by fidelity in [FG99]

$$1 - F(\hat{\rho}, \widehat{\sigma}) \le T(\hat{\rho}, \widehat{\sigma}) \le \sqrt{1 - F^2(\hat{\rho}, \widehat{\sigma})},$$
 (19)

where we only need

$$F(|\alpha\rangle, \widehat{\sigma}) := \sqrt{\langle \alpha \, | \, \widehat{\sigma} \, | \, \alpha \rangle}. \tag{20}$$

lacksquare In our application, T is difficult while F can be obtained.

Single-mode Distances between the Density Operators I

Bounds set by fidelity and eq. (19)

- ▶ The pure wave functional can sloppily be decomposed $\chi_b[f] \sim \sum_p \chi_b^{(p)}(f_p) \equiv \sum_p \left\langle f_p \, \middle| \, \chi_b^{(p)} \right\rangle$, where $f_p \coloneqq f(p)$
- ▶ So does the thermal density operator $\hat{\rho}_{\rm th}(T) \sim \bigotimes_{n} \hat{\rho}_{\rm th}^{(p)}(T)$
- Fidelity (in eq. (19)) can be factorised as well

$$F \equiv \langle \chi_b \, | \, \hat{\rho}_{\mathsf{th}} \, | \, \chi_b \rangle^{\frac{1}{2}} \sim \prod_p \left\langle \chi_b^{(p)} \, | \, \hat{\rho}_{\mathsf{th}}^{(p)} \, | \, \chi_b^{(p)} \right\rangle^{\frac{1}{2}} =: \prod_p F^{(p)}; \tag{21}$$

 $lackbox{ }F^{(p)}$ can be computed in order to find bounds of T

$$F^{(p)}\!\left(|p\rangle\,, \hat{\rho}_{\mathrm{th}}^{(p)}(T_{\mathrm{HD}})\right) = \frac{\sqrt{u-1}}{\sqrt[4]{u^2+u+1}}, \quad u \coloneqq \mathrm{e}^q \equiv \mathrm{e}^{|p|/T_{\mathrm{HD}}}.$$

Single-mode Distances between the Density Operators II

Bounds set by fidelity and eq. (19)

All-modes Distances between the Density Operators I

Bounds set by fidelity and eq. (19)

ightharpoonup 'Go to the continuum limit': Λ dimension regulator

$$\sum_{p} g(p) \to \frac{1}{2\pi\Lambda} \int \mathrm{d}p \, g(p), \tag{23}$$

► Analogously, to regularise a product

$$\prod_{p} f(p) \equiv \exp\left\{\sum_{p} \ln f(p)\right\} \to \exp\left\{\frac{1}{2\pi\Lambda} \int dp \ln f(p)\right\}$$
(24)

lacktriangle Regularised F can be calculated in order to set bounds of T

$$F(\chi_b, \hat{\rho}_{\rm th}) = \exp\biggl\{\frac{2}{2\pi\Lambda} \int_0^{+\infty} \mathrm{d}p \, \ln F^{(p)} \biggr\} = \exp\biggl(-\frac{\pi}{9} \frac{T_{\rm HD}}{\Lambda}\biggr) \end{(25)}$$

All-modes Distances between the Density Operators II

Bounds set by fidelity and eq. (19)

Summary

- ► Compared the pure and the thermal descriptions of the radiation within the solvable dilaton gravity model
- ► Fourier-mode fluctuation: that of the thermal state diverges faster than the vacuum case does at low energy, while the pure-state fluc. remains finite; at high energies they converge.
- Trace distance: goes exponentially small with black hole temperature going to zero.
- Outlook
 - ▶ Understand the Fourier-mode fluctuation
 - Evaluate the real space correlator
 - ▶ Understand the regulator in total trace distance
 - ► Evaluate the exact trace distance

For Further Reading I

- Lev D. Landau and E.M. Lifshitz. *Statistical Physics*. 3rd ed. Butterworth-Heinemann, Jan. 1980.
- Dénes Petz. Quantum Information Theory and Quantum Statistics. Springer Berlin Heidelberg, 2008.
- Mark M. Wilde. Quantum Information Theory. Cambridge University Press (CUP), 2009.
- Abhay Ashtekar, Frans Pretorius, and Fethi M. Ramazanoğlu. "Evaporation of two-dimensional black holes". In: *Phys Rev D* 83.4 (Feb. 2011).
- Curtis G. Callan et al. "Evanescent black holes". In: *Phys Rev D* 45.4 (Feb. 1992), R1005–R1009.
- Jean-Guy Demers and Claus Kiefer. "Decoherence of black holes by Hawking radiation". In: *Phys Rev D* 53.12 (June 1996), pp. 7050–7061.

For Further Reading II

- C.A. Fuchs and J. van de Graaf. "Cryptographic distinguishability measures for quantum-mechanical states". In: *IEEE Trans. Inf. Theory* 45.4 (May 1999), pp. 1216–1227.
- S. W. Hawking. "Black hole explosions?" In: *Nature* 248.5443 (Mar. 1974), pp. 30–31.
- S. W. Hawking. "Particle creation by black holes". In: Commun. Math. Phys. 43.3 (Aug. 1975), pp. 199–220.
- Stephen D. H. Hsu and David Reeb. "Black holes, information, and decoherence". In: *Phys Rev D* 79.12 (June 2009).
- Claus Kiefer. "Hawking radiation from decoherence". In: Classical Quantum Gravity 18.22 (Nov. 2001), pp. L151–L154.

For Further Reading III

Sandu Popescu, Anthony J. Short, and Andreas Winter. "Entanglement and the foundations of statistical mechanics". In: *Nat. Phys.* 2.11 (Oct. 2006), pp. 754–758.

More on Trace Distance [Wil09, ch. 9] Interpretation

Maximal probability-difference obtainable

$$T(\hat{\rho}, \hat{\sigma}) = \max_{0 \le \widehat{\Lambda} \le \widehat{1}} \operatorname{tr} \{ \widehat{\Lambda}(\hat{\rho} - \hat{\sigma}) \}, \tag{26}$$

where all eigenvalues of $\widehat{\Lambda}$ are in the range [0,1]

- ▶ E.g. $\widehat{\Lambda} := |\alpha\rangle\,\langle\alpha|$, $|\alpha\rangle$ eigenstate of \widehat{A} with eigenvalue α
 - $lack \operatorname{tr} \left\{ \widehat{\Lambda} \widehat{
 ho}
 ight\}$: the probability of getting lpha in measuring \widehat{A}
 - $\operatorname{tr}\{\widehat{\Lambda}(\widehat{\rho}-\widehat{\sigma})\}$: the difference of the probability above
 - $ightharpoonup T(\hat{\rho}, \widehat{\sigma})$: the maximal value of the difference above

More on Fidelity

▶ General definition [Pet08, ch. 6]

$$F(|\alpha\rangle, |\beta\rangle) = |\langle \alpha \,|\, \beta\rangle| \tag{27}$$

$$F(|\alpha\rangle, \hat{\sigma}) = \sqrt{\langle \alpha \, | \, \hat{\sigma} \, | \, \alpha \rangle}$$
 (20 rev.)

$$F(\hat{\rho}, \hat{\sigma}) = \operatorname{tr} \sqrt{\hat{\rho}^{\frac{1}{2}} \hat{\sigma} \hat{\rho}^{\frac{1}{2}}}$$
 (28)

Intepretation: faithfulness

$$F(|\alpha\rangle, |\alpha\rangle) = 1 \tag{29}$$

Another New Foundation of Statistical Physics [PSW06]

Specific and easy version of the construction

- ▶ Total isolated system U with energy constraint $\left\langle \widehat{H}_{U} \right\rangle \coloneqq E_{U}$, divided into a (sub)system S and an environment E
- ▶ Hilbert spaces $\mathcal{H}_R\supseteq\mathcal{H}_U=\mathcal{H}_S\otimes\mathcal{H}_E;\ \hat{1}_R$ identity on \mathcal{H}_R , dimension $d_R\coloneqq\dim\mathcal{H}_R<+\infty$
- \blacktriangleright Equiprobable / maximal-ignorant state of U

$$\hat{\mathcal{E}}_R \coloneqq d_R^{-1} \hat{1}_R \in \mathcal{H}_R \tag{30}$$

- \blacktriangleright Hamiltonians $\widehat{H}_U = \widehat{H}_S + \widehat{H}_E + \widehat{H}_{\rm int}$
- ▶ Canonical state of S with energy constraint [LL80, § 28]

$$\widehat{\Omega}_{S}^{(\mathsf{E})} \coloneqq \operatorname{tr}_{E} \widehat{\mathcal{E}}_{R} \propto \exp \left(-\widehat{H}_{S}/T_{\mathsf{th}}\right) \tag{31}$$

▶ Theorem: $\forall |\phi\rangle \in \mathcal{H}_B$, the reduced state of S

$$\operatorname{tr}_{E} |\phi\rangle\langle\phi| =: \hat{\rho}_{S}(\phi) \approx \widehat{\Omega}_{S}^{(\mathsf{E})}.$$

Another New Foundation of Statistical Physics [PSW06]

Generic and exact version of the construction

- ▶ Arbitrary constraint R; study the trace distance T between $\hat{\rho}_{S}(\phi)$ and $\hat{\Omega}_{S}$
- ▶ Lemma: average distance is small w.r.t. d_S/d_E^{eff}

$$\left\langle T\left(\widehat{\rho}_{S}(\phi),\widehat{\Omega}_{S}\right)\right\rangle \leq \frac{1}{2}\sqrt{d_{S}/d_{E}^{\text{eff}}}$$
 (33)

▶ Theorem: probability of large deviation is exponentially small w.r.t. the distance; an easy version

$$\frac{V\left[\left\{|\phi\rangle \mid T\left(\hat{\rho}_S(\phi), \widehat{\Omega}_S\right) \ge d_R^{-\frac{1}{3}}\right\}\right]}{V\left[\left\{|\phi\rangle\right\}\right]} \le 4\exp\left(-\frac{2d_R^{\frac{1}{3}}}{9\pi^3}\right) \quad (34)$$

Effective dimension of E: setting $\widehat{\Omega}_E = \operatorname{tr}_S \widehat{\mathcal{E}}_B$,

$$d_U/d_S \equiv d_E \geq d_E^{\rm eff} \coloneqq \left(\operatorname{tr} \widehat{\Omega}_E^2 \right)^{-1} \geq d_R/d_S. \tag{35)} \text{bcgs}$$