Présentation du projet de spécialité SLE:

Implantation d'un système de détection de piéton sur FPGA via une méthode HLS

Contexte:

* Matériel :

Carte Zybo

Camera OV9655

* Algorithme HOG et SVM

* Outils HLS : Catapult C

Enjeux, contraintes:

- * Contraintes temporelles fortes:
 - résolution 320X240 à 15 images secondes
- * Mémoire limitée : 240KB RAM

- * Algorithme complexe et coûteux :
 - Racine carré et nombreux calculs vectoriels
- * Prise en main de nouveaux outils

Solution prévue :

Solution retenue:

Validation logicielle:

Image originale

Résultat avec approximation

Résultat en double précision

Validation matérielle:

Image originale

Image HOG

Planning prévisionnel:

S1 \rightarrow S3 : étude et spécification

S3 → S5 : validation algorithme SW

S4 → S6 : prise en main Catapult C

S4 → S7 : validation des premières

fonctions HW (tests)

S6 → S7 : validation calcul gradient

S7 → S8 : validation vote cellule

S8 \rightarrow S9 : validation normalisation

S7 \rightarrow S12 : tests sur FPGA

S10 → S12 : validation SVM

Planning réalisé:

S1 → S3 : étude et spécification

S3 → S5 : validation algorithme SW

S4 → S9 : prise en main Catapult C

S4 → S8 : validation des premières

fonctions HW (tests)

S6 → S7 : validation calcul gradient

S7 → S8 : validation vote cellule

S8 -> S9 : validation normalisation

S9 → S12 : tests sur FPGA

S10 → S12: validation SVM

Problèmes rencontrés:

Compilation Catapult C et tests après synthèse → création d'un makefile spécifique et émulation de la RAM

Signaux inversés et boucles ignorées par Catapult C

Plus de license Catapult C au 1^{er} janvier 2016 pendant 2 semaines

Démonstration:

Démonstration logicielle

Démonstration sur carte