Prediction of the Number of COVID-19 Infected Using XGBoost

XGBoost를 활용한 코로나19 예측

도 시 계 획 실 습 (4) 이 훈 | 김하연 | 이산하 01

선정 배경

코로나19 (COVID-19)

2019년 12월 중국 우한에서 처음 발생한 이후 전 세계로 확산된, 새로운 유형의 코로나바이러스

팬데믹 (PANDAMIC)

세계보건기구(WHO)는 홍콩독감, 신종플루에 이어 사상 세 번째로 감염병 최고 경고 등급인 팬데믹 선언

짧아지는 전염병 주기

사스와 메르스, 코로나19까지 점점 짧아지는 전염병 발생 주기

선정 배경

선정 배경

선정 배경

① 2 연구 주제

방법론

머신 러닝 (Machine Learning)

- 인공지능(AI)의 한 분야로, 컴퓨터에 명시적인 프로그램 없이 배울 수 있는 능력을 부여하는 연구 분야
- 사람이 학습하듯이 컴퓨터에도 데이터들을 줘서 학습하게 함으로 써 새로운 지식을 얻어내게 하는 분야

회귀분석 (Regression Analysis)

- 매개변수를 이용하여 통계적으로 변수들 사이의 관계를 추정하는 분석방법
- 독립변수가 종속변수에 미치는 영향을 확인하고자 사용하는 분석 방법
- 종속변수와 관련이 있는 독립변수를 찾을 때, 또 독립변수들 간의 관계를 이해하고자 할 때 사용

방법론 - 머신러닝

XGBoost (eXtreme Gradient Boosting)

- Boosting기법중Tree Boosting기법을활용한모델
- Tree Boosting 방식에 경사하강법을 사용하여 optimization을 하는 모델
- 여러 개의 Decision Tree를 사용하지만 단순히 결과의 평균을 내는 것이 아니라 결과를 보고 오답에 대한 가중치 부여
- 가중치가적용된 오답에 대해서는 정답이 될 수 있도록 결과를 만들고 해당 결과에 대한 다른 오답을 찾아다시 똑같은 작업을 반복적으로 진행
- GBMd에 기반하고 있지만, GBM의 단점인 느린 수행시간과 과적합 규제(Regularization) 부재 등의 문제 보완
- 연산량을줄이기위해 Decision Tree를 구성할 때 병렬 처리를 사용해 빠른 시간에 학습 가능
- 분류와 회귀영역에서 뛰어난 예측 성능 발휘 및 결손값 자체 처리
- 평가 함수를 포함하여 다양한 커스텀 최적화 옵션을 제공하는 등 높은 유연성 보유
- Early Stopping 기능보유

앙상블(Ensemble)

- :여러 개의 학습 알고리즘을 사용해 더 좋은 성능을 얻는 방법
- : 방식에 따라 Bagging 과 Boosting으로 분류

Bagging

: 여러 개의 학습 알고리즘, 모델을 통해 각각 결과를 예측하고 모든 결과를 동등하게 보고 취합해서 결과를 얻는 방식

Boosting

: 여러 알고리즘, 모델의 결과를 순차적으로 취합하는데, 단순히 하나씩 취하는 방법이 아니라 이전 알고리즘, 모델이 학습 후 잘못 예측한 부분에 가중치를 줘서 다시 모델로 가서 학습하는 방식

04

연구 방법 - 데이터 및 매개 변수

데이터 수집

변수 설정

Ptmask

대중교통마스크착용의무화

Mask

마스크착용의무화

Social

사회적 거리두기 단계

Support

정부재난지원금사용기간

Event

대규모집단감염사태

dayname, day, week, month

해당요일,일자,주차,월

연구 방법 - 환경설정

Modeling

- ① 그래프시각화,한글화설정
- ② csv데이터추출, 파생변수생성
- ③ LabelEncoder모듈을 활용해 문자를 숫자로 매핑
- ④ 7:1비율로학습셋,테스트셋분할

In [33]:	from xgboost import XGBRegressor from sklearn.metrics import mean_squared_error,mean_ab
In [34]:	<pre>xgb=XGBRegressor() xgb.fit(X_train,Y_train) Y_pred=xgb.predict(X_test) print('RMSE:',np.sqrt(mean_squared_error(Y_test,Y_pred))) print('MAE:',mean_absolute_error(Y_test,Y_pred))</pre>
	RMSE: 144.88148927492082 MAE: 120.05676523844402
In [35]:	plt.figure(figsize=[15,8]) sns.lineplot(x=dt[210:],y=Y_test.to_list()) sns.lineplot(x=dt[210:],y=Y_pred) plt.ylim(0,600) plt.title('실제 확진자 수와 예측 확진자 수')
Out [35] :	Text(0.5, 1.0, '실제 확진자 수와 예측 확진자 수')

Machine Learning

- ① XGBoost모델구축
- ② 학습셋으로모델규칙생성
- ③ RMSE, MAE 추출
- ④ 그래프구현및가시성조정

회귀분석 통계량						
다중 상관계수 결정계수	0.808580916 0.653803098					
조정된 결정계수	0.637100616					
표준 오차	78,45002685					
관측수	240					
분산 분석						
	자유도	제곱합	제곱 평균	FRI	유의한F	
희귀	11	2649993.669	240908.5154	39.14406808	1.75828E-46	
단차	228	1403204,731	6154.406713			
계	239	4053198,4				
	계수	표준 오차	t 통계량	P-Zt	하위 95%	상위
/ 절편	-122,0487901	71.64599141	-1.70349782	0.089837502	-263,2217134	19.1
Deaths	11,22583701	3.768767953	2.978649031	0.003208278	3.79976922	18.
Recovered	-0.620799501	0.082577114	-7.517815401	1.26557E-12	-0.783511362	-0.4
Tmask	2.95096045	25.01919573	0.117947854	0.906212818	-46.34744313	52.2
Mask	31.32896669	29.23772804	1.071525347	0.285066196	-26,2817308	88.9
Social	3.211515372	12.24183997	0.262339271	0.793296762	-20.91009005	27.3
Support	23.00425738	23.67188187	0.971796729	0.332181512	-23.63936772	69.6
event	233,9029243	15,92199305	14.69055561	7.96012E-35	202.5298599	265.
dayname	0.827799303	2.601901077	0.31815172	0.750661069	-4.299046929	5.95
day	5.544597292	2.686534541	2.063847387	0.040164145	0.25098732	10.8
veek	-43.54753638	18.0283595	-2.415501887	0.01650134	-79.07103409	-8.02
nonth	190.1524687	78.64920444	2.41772908	0.016403266	35.18025203	345.

Regression Analysis

- ① 독립변수와종속변수의통계적상호관계확인
- ② 결정계수,유의한F,P-값확인
- ③ 유의하다고판단되는6개의 변수만으로다시 분석
- ④ 계수,Y절편으로식성립후오차계산
- ⑤ MSE, RMSE 추출

평균 제곱근 오차(RMSE: Root Mean Squared Error): 예측 오차는 양수와 음수로 나타나기 때문에 오차를 제곱하여 n으로 나눈 값인 MSE를 다시 제곱근 시킨 값 평균 절대 오차(MAE: Mean Absolute Error): 오차의 크기만 고려하기 위해 오차의 절댓값을 씌우고 데이터 수로 나눈 값

연구 결과

머신러닝 [XGBoost]

MAE: 120.06

MSE: 20,990.64

RMSE: 144.88

회귀 분석 [Regression Analysis]

MSE: 5892.36

RMSE: 76.76

결과

- 머신러닝(XGBoost)은 144.88의 RMSE를 출력
- 통계적으로 유의한지에 대한 회귀분석은 76.46의 RMSE를 출력
- 유의하다고 판단된 6개의 변수(사망자 수, 회복자 수, 대규모 집단 전염 사태, 일 자, 주차, 월)만으로 다시 진행한 회귀분석은 76.76의 RMSE를 출력

한계

- 인공지능은 보통 수만 개 이상의 타임 시리즈가 전제되어야 하지만, 연구에 사 용된 데이터는 코로나 발생이 시작된 이후의 데이터로 240일 정도에 불과
- 전염 예측에 중요한 의학 데이터나 위치 데이터 등 개인정보 관련 데이터들은 개인이 수집하는데 제한적이라테스트 셋을 설정 및 미래 예측에 한계가 존재

결론

- 회귀분석 결과, 6개의 독립변수 이외의 변수들은 통계적으로 다소 유의하지 않 은것으로판단
- 따라서, 향후 보다 전염예측에 정확하고, 효과적인 변수를 반영하여 예측 오차 를 줄이는 것에 대한 추가적인 연구가 필요할 것으로 판단

