Queueing Theory and Simulation, lecture 10

nicky

June 22, 2021

Contents

1 Overview	1
2 Applications, Exercise 6.2.4	1
3 $M^X/M/1$ queue, expected waiting time	2
1 Overview	
1.1 Past	
• renewal reward: $Y = \lambda X$	
• Little's law $E[L] = \lambda E[W]$	
• PASTA: $\pi(n) = p(n)$.	
1.2 Now	
• An exercise of 6.2.	
• Rest of 6.2 is self study. The ideas behind server planning are simple but important remember.	to
• Batch queues $M^X/M/1$.	

1.3 Next

- $M^X/M/1$ queue length distribution

1.4 General things

• Do the exercises at the end of the sections! I put the derivations in the exercises to keep the main text clear and clean.

2 Applications, Exercise 6.2.4

2.1 Model

- Fast-food stand with two servers, $S \sim \text{Exp}(5)$.
- When there is no one in the queue, people are reluctant to use the stand, fearing that the food is unsavory.
- People are also reluctant to use the stand when the queue is long.
- $\lambda(0) = 10$, $\lambda(1) = 15$, $\lambda(2) = 15$, $\lambda(3) = 10$, $\lambda(4) = 5$, $\lambda(n) = 0$, $n \ge 5$.
- Poisson arrivals, but conditional on queue length.
- This is a queue with balking.

2.2 Questions

- Calculate the steady state probabilities.
- What is the average arrival rate?
- E[L], E[Q], E[J] and E[J]

The code looks great!

2.3 Code

```
Python Code

labda = np.array([10.0, 15.0, 15.0, 10.0, 5.0])

mu = np.array([0., 5., 10., 10., 10.])

c = 2

p = np.ones_like(mu)

for i in range(len(labda)):

p[i+1] = labda[i] *p[i]/ mu[i+1]

p /= p.sum()

labdaBar = sum(labda[n] * p[n] for n in range(len(labda)))

L = sum(n * p[n] for n in range(len(p)))

Q = sum(max(n - c,0) * p[n] for n in range(len(p)))

J = L / labdaBar

W = Q / labdaBar
```

3 $M^X/M/1$ queue, expected waiting time

3.1 Model

- Jobs arrive as a Poisson process with rate λ
- Jobs arrive at batches of items
- Batch sizes $\{B_i\}$ iid, $B_i \sim B$.
- Items in batch have idd service times $\sim S$.

Goal: find an expression for the expected waiting time $\mathsf{E}[W]$ in the queue. ($\mathsf{E}[J] = \mathsf{E}[W] + \mathsf{E}[S]$)

3.2 Step 1

$$\begin{split} \rho &= \lambda \operatorname{E}[B] \operatorname{E}[S] \\ \operatorname{E}[L] &= \operatorname{E}\left[Q^B\right] \operatorname{E}[B] + \operatorname{E}\left[L_s^B\right] \\ \operatorname{E}\left[W^B\right] &= \operatorname{E}\left[Q^B\right] \operatorname{E}[B] \operatorname{E}[S] + \operatorname{E}\left[L_s^B\right] \operatorname{E}[S] \\ &= \operatorname{E}[L] \operatorname{E}[S] = \operatorname{E}[W] \,, \\ \operatorname{E}\left[Q^B\right] &= \lambda \operatorname{E}\left[W^B\right] \,, \\ &\Longrightarrow \\ \operatorname{E}[W] &= \operatorname{E}\left[W^B\right] = \frac{\operatorname{E}\left[L_s^B\right]}{1-\rho} \operatorname{E}[S] \end{split}$$

Next step: What is $E[L_s^B]$?

3.3 Find expected number at the server.

$$Y(t) = \int_0^t L_s^B(s) \, \mathrm{d}s,\tag{1}$$

$$\mathsf{E}\left[L_s^B\right] = \lim_t \frac{Y(t)}{t} = Y = \lambda X. \tag{2}$$

$$X_k = Y(D_k) - Y(D_{k-1}), (3)$$

(7)

$$E[X_k | B_k = b] = \frac{b(b+1)}{2} E[S]$$
(4)

$$E[X_k | B_k] = \frac{B_k(B_k + 1)}{2} E[S]$$
 (5)

$$X = E[E[X_k | B_k]] = \frac{E[B^2] + E[B]}{2} E[S]$$
 (6)

3.4 Rest of Section 6.3

• Polishing (see the book) gives:

$$\mathsf{E}[W] = \frac{1 + C_s^2}{2} \frac{\rho}{1 - \rho} \, \mathsf{E}[B] \, \mathsf{E}[S] + \frac{1}{2} \frac{\rho}{1 - \rho} \, \mathsf{E}[S]. \tag{8}$$

- This is remarkably similar to Sakasegawa's formula!
- Self study: a derivation of $P[L_s = i]$ by means of $Y = \lambda X$.