List of Laplace transforms

The following is a **list of Laplace transforms** for many common functions of a single variable. The <u>Laplace transform</u> is an <u>integral transform</u> that takes a function of a positive real variable t (often time) to a function of a complex variable t (frequency).

Contents

Properties

Linearity

Time shifting

Frequency shifting

Explanatory notes

Table

See also

References

Properties

The Laplace transform of a function f(t) can be obtained using the <u>formal definition</u> of the Laplace transform. However, some properties of the Laplace transform can be used to obtain the Laplace transform of some functions more easily.

Linearity

For functions \boldsymbol{f} and \boldsymbol{g} and for scalar \boldsymbol{a} , the Laplace transform satisfies

$$\mathcal{L}\{af(t)+g(t)\}=a\mathcal{L}\{f(t)\}+\mathcal{L}\{g(t)\}$$

and is, therefore, regarded as a linear operator.

Time shifting

The Laplace transform of f(t-a)u(t-a) is $e^{-as}F(s)$.

Frequency shifting

F(s-a) is the Laplace transform of $e^{at}f(t)$.

Explanatory notes

The unilateral Laplace transform takes as input a function whose time domain is the <u>non-negative</u> reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t).

The entries of the table that involve a time delay τ are required to be <u>causal</u> (meaning that $\tau > 0$). A causal system is a system where the <u>impulse response</u> h(t) is zero for all time t prior to t = 0. In general, the region of convergence for causal systems is not the same as that of anticausal systems.

The following functions and variables are used in the table below:

- ullet δ represents the Dirac delta function.
- u(t) represents the Heaviside step function.
- $\Gamma(z)$ represents the Gamma function.
- *y* is the Euler–Mascheroni constant.
- *t* is a <u>real number</u>. It typically represents *time*, although it can represent *any* independent dimension.
- s is the complex frequency domain parameter, and Re(s) is its real part.
- \blacksquare *n* is an integer.
- α , τ , and ω are real numbers.
- \blacksquare q is a complex number.

Table

Function	Time domain $f(t) = \mathcal{L}^{-1}\{F(s)\}$	Laplace s-domain $F(s) = \mathcal{L}\{f(t)\}$	Region of convergence	Reference
unit impulse	$\delta(t)$	1	all s	inspection
delayed impulse	$\delta(t- au)$	$e^{- au s}$	Re(s) > 0	time shift of unit impulse ^[2]
unit step	u(t)	$\frac{1}{s}$	Re(s) > 0	integrate unit impulse
delayed unit step	u(t- au)	$\frac{1}{s}e^{-\tau s}$	Re(s) > 0	time shift of unit step ^[3]
ramp	$t \cdot u(t)$	$\frac{1}{s^2}$	Re(s) > 0	integrate unit impulse twice
nth power (for integer n)	$t^n \cdot u(t)$	$\frac{n!}{s^{n+1}}$	Re(s) > 0 (n > -1)	Integrate unit step <i>n</i> times
qth power (for complex q)	$t^q \cdot u(t)$	$\frac{\Gamma(q+1)}{s^{q+1}}$	Re(s) > 0 $Re(q) > -1$	[4][5]
nth root	$\sqrt[n]{t} \cdot u(t)$	$\frac{1}{s^{\frac{1}{n}+1}}\Gamma\left(\frac{1}{n}+1\right)$	Re(s) > 0	Set $q = 1/n$ above.
nth power with frequency shift	$t^n e^{-\alpha t} \cdot u(t)$	$\frac{n!}{(s+\alpha)^{n+1}}$	$Re(s) > -\alpha$	Integrate unit step, apply frequency shift
delayed <i>n</i> th power with frequency shift	$(t-\tau)^n e^{-\alpha(t-\tau)} \cdot u(t-\tau)$	$\frac{n! \cdot e^{-\tau s}}{(s+\alpha)^{n+1}}$	$Re(s) > -\alpha$	Integrate unit step, apply frequency shift, apply time shift
exponential decay	$e^{-\alpha t} \cdot u(t)$	$\frac{1}{s+lpha}$	$Re(s) > -\alpha$	Frequency shift of unit step
two-sided exponential decay (only for bilateral transform)	$e^{-lpha t }$	$\frac{2\alpha}{\alpha^2-s^2}$	$-\alpha$ < Re(s) < α	Frequency shift of unit step
exponential approach	$(1-e^{-\alpha t})\cdot u(t)$	$\frac{\alpha}{s(s+\alpha)}$	Re(s) > 0	Unit step minus exponential decay
sine	$\sin(\omega t) \cdot u(t)$	$\frac{\omega}{s^2+\omega^2}$	Re(s) > 0	[6]
cosine	$\cos(\omega t) \cdot u(t)$	$\frac{s}{s^2+\omega^2}$	Re(s) > 0	[6]
hyperbolic sine	$\sinh(\alpha t) \cdot u(t)$	$\frac{\alpha}{s^2-\alpha^2}$	$Re(s) > \alpha $	[7]
hyperbolic cosine	$\cosh(\alpha t) \cdot u(t)$	$\frac{s}{s^2-\alpha^2}$	$Re(s) > \alpha $	[7]
exponentially decaying sine wave	$e^{-lpha t}\sin(\omega t)\cdot u(t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$	$Re(s) > -\alpha$	[6]

exponentially decaying cosine wave	$e^{-\alpha t}\cos(\omega t)\cdot u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$	$Re(s) > -\alpha$	[6]
natural logarithm	$\ln(t) \cdot u(t)$	$\frac{-\ln(s)-\gamma}{s}$	Re(s) > 0	[7]
Bessel function of the first kind, of order <i>n</i>	$J_n(\omega t) \cdot u(t)$	$rac{\left(\sqrt{s^2+\omega^2}-s ight)^n}{\omega^n\sqrt{s^2+\omega^2}}$	Re(s) > 0 $(n > -1)$	[7]
Error function	$\mathrm{erf}(t) \cdot u(t)$	$rac{e^{s^2/4}}{s}\left(1- ext{erf}\!\left(rac{s}{2} ight) ight)$	Re(s) > 0	[7]

See also

List of Fourier transforms

References

- 1. Distefano, J. J.; Stubberud, A. R.; Williams, I. J. (1995), *Feedback systems and control*, Schaum's outlines (2nd ed.), McGraw-Hill, p. 78, ISBN 978-0-07-017052-0
- 2. Riley, K. F.; Hobson, M. P.; Bence, S. J. (2010), *Mathematical methods for physics and engineering* (3rd ed.), Cambridge University Press, p. 455, <u>ISBN</u> <u>978-0-521-86153-3</u>
- 3. Lipschutz, S.; Spiegel, M. R.; Liu, J. (2009), "Chapter 33: Laplace transforms", *Mathematical Handbook of Formulas and Tables*, Schaum's Outline Series (3rd ed.), McGraw-Hill, p. 192, ISBN 978-0-07-154855-7
- 4. Lipschutz, S.; Spiegel, M. R.; Liu, J. (2009), "Chapter 33: Laplace transforms", *Mathematical Handbook of Formulas and Tables*, Schaum's Outline Series (3rd ed.), McGraw-Hill, p. 183, ISBN 978-0-07-154855-7
- 5. "Laplace Transform" (http://mathworld.wolfram.com/LaplaceTransform.html). Wolfram MathWorld. Retrieved 30 April 2016.
- 6. Bracewell, Ronald N. (1978), *The Fourier Transform and its Applications* (2nd ed.), McGraw-Hill Kogakusha, p. 227, ISBN 978-0-07-007013-4
- 7. Williams, J. (1973), *Laplace Transforms*, Problem Solvers, George Allen & Unwin, p. 88, ISBN 978-0-04-512021-5

Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_Laplace_transforms&oldid=945894643"

This page was last edited on 16 March 2020, at 20:13 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.