Kapitola IX. Syntaxí řízený překlad a generování vnitřního kódu

Myšlenka: Semantické akce jsou přidruženy gramatickým pravidlům. Tyto sémantické akce mohou generovat vnitřní kód a provádět kontrolu typů

Příklad:	Pravidlo:	Sémantická akce:
	$egin{array}{c} E_i ightharpoonup E_j + E_k \ E_i ightharpoonup E_j st E_k \ E_i ightharpoonup (E_j) \ E_i ightharpoonup i \end{array}$	$ \begin{cases} E_{i} \cdot a & := E_{j} \cdot a + E_{k} \cdot a \\ E_{i} \cdot a & := E_{j} \cdot a + E_{k} \cdot a \\ E_{i} \cdot a & := E_{j} \cdot a \\ E_{i} \cdot a & := E_{j} \cdot a \end{cases} $ $ \begin{cases} E_{i} \cdot a & := i \cdot val \\ E_{i} \cdot a & := i \cdot val \end{cases} $

Pravidlo: Akce:

Myšlenka: Semantické akce jsou přidruženy gramatickým pravidlům. Tyto sémantické akce mohou generovat vnitřní kód a provádět kontrolu typů

Příklad:	Pravidlo:	Sémantická akce:
	$egin{aligned} E_i & ightarrow E_j + E_k \ E_i & ightarrow E_j st E_k \ E_i & ightarrow (E_j) \ E_i & ightarrow i \end{aligned}$	$ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \end{array} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf i \cdot val} \end{array} \right\} \\ \end{array} $

Akce:

Pravidlo: $E_1 \rightarrow i$ $\begin{matrix} i \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{matrix}$

Myšlenka: Semantické akce jsou přidruženy gramatickým pravidlům. Tyto sémantické akce mohou generovat vnitřní kód a provádět kontrolu typů

Příklad:	Pravidlo:	Sémantická akce:
	$egin{aligned} E_i & ightarrow E_j + E_k \ E_i & ightarrow E_j st E_k \ E_i & ightarrow (E_j) \ E_i & ightarrow i \end{aligned}$	$ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \end{array} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf i \cdot val} \end{array} \right\} \\ \end{array} $

Akce:

Pravidlo: $E_1 \rightarrow i$ $\begin{matrix} i \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{matrix}$

Myšlenka: Semantické akce jsou přidruženy gramatickým pravidlům. Tyto sémantické akce mohou generovat vnitřní kód a provádět kontrolu typů

Příklad:	Pravidlo:	Sémantická akce:
	$egin{aligned} E_i & ightarrow E_j + E_k \ E_i & ightarrow E_j st E_k \ E_i & ightarrow (E_j) \ E_i & ightarrow i \end{aligned}$	$ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \end{array} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf i \cdot val} \end{array} \right\} \\ \end{array} $

Akce:

Pravidlo: $E_1 \rightarrow i$ $\begin{matrix} i \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{matrix}$

Příklad:	Pravidlo:	Sémantická akce:
		$ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ * \ {\bf E_k \cdot a} \right\} \\ {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ \} \\ {\bf E_i \cdot a} \ := \ {\bf i \cdot val} \ \} $

Příklad:	Pravidlo:	Sémantická akce:
	$egin{aligned} E_i & ightarrow E_j + E_k \ E_i & ightarrow E_j st E_k \ E_i & ightarrow (E_j) \ E_i & ightarrow i \end{aligned}$	$ \left\{ \begin{array}{l} \mathbf{E_{i} \cdot a} & := \mathbf{E_{j} \cdot a} + \mathbf{E_{k} \cdot a} \\ \mathbf{E_{i} \cdot a} & := \mathbf{E_{j} \cdot a} + \mathbf{E_{k} \cdot a} \\ \mathbf{E_{i} \cdot a} & := \mathbf{E_{j} \cdot a} \\ \mathbf{E_{i} \cdot a} & := \mathbf{E_{j} \cdot a} \\ \mathbf{E_{i} \cdot a} & := \mathbf{i \cdot val} \end{array} \right\} $

Příklad:	Pravidlo:	Sémantická akce:
		$ \left\{ \begin{array}{l} {\bf E_i \cdot a} & := {\bf E_j \cdot a} + {\bf E_k \cdot a} \\ {\bf E_i \cdot a} & := {\bf E_j \cdot a} + {\bf E_k \cdot a} \\ {\bf E_i \cdot a} & := {\bf E_j \cdot a} \\ {\bf E_i \cdot a} & := {\bf i \cdot val} \end{array} \right\} $

Příklad:	Pravidlo:	Sémantická akce:
		$ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ * \ {\bf E_k \cdot a} \right\} \\ {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ \} \\ {\bf E_i \cdot a} \ := \ {\bf i \cdot val} \ \} $

Myšlenka: Semantické akce jsou přidruženy gramatickým pravidlům. Tyto sémantické akce mohou generovat vnitřní kód a provádět kontrolu typů

Příklad:	Pravidlo:	Sémantická akce:
	$egin{aligned} E_i & ightarrow E_j + E_k \ E_i & ightarrow E_j st E_k \ E_i & ightarrow (E_j) \ E_i & ightarrow i \end{aligned}$	$ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \end{array} \right\} \\ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf i \cdot val} \end{array} \right\} \\ \end{array} $

Příklad:	Pravidlo:	Sémantická akce:
		$ \left\{ \begin{array}{l} \mathbf{E_{i}.a} & := \mathbf{E_{j}.a} + \mathbf{E_{k}.a} \\ \mathbf{E_{i}.a} & := \mathbf{E_{j}.a} * \mathbf{E_{k}.a} \\ \mathbf{E_{i}.a} & := \mathbf{E_{j}.a} \\ \mathbf{E_{i}.a} & := \mathbf{i.val} \end{array} \right\} $

Příklad:	Pravidlo:	Sémantická akce:
	$egin{array}{c} E_i ightharpoonup E_j + E_k \ E_i ightharpoonup E_j st E_k \ E_i ightharpoonup (E_j) \ E_i ightharpoonup i \end{array}$	$ \begin{cases} E_{i} \cdot a & := E_{j} \cdot a + E_{k} \cdot a \\ E_{i} \cdot a & := E_{j} \cdot a + E_{k} \cdot a \\ E_{i} \cdot a & := E_{j} \cdot a \\ E_{i} \cdot a & := E_{j} \cdot a \end{cases} $ $ \begin{cases} E_{i} \cdot a & := i \cdot val \\ E_{i} \cdot a & := i \cdot val \end{cases} $

Příklad:	Pravidlo:	Sémantická akce:
	$egin{array}{c} E_i ightharpoonup E_j + E_k \ E_i ightharpoonup E_j * E_k \ E_i ightharpoonup (E_j) \ E_i ightharpoonup i \end{array}$	$ \left\{ \begin{array}{l} {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ + \ {\bf E_k \cdot a} \right\} \\ {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ * \ {\bf E_k \cdot a} \right\} \\ {\bf E_i \cdot a} \ := \ {\bf E_j \cdot a} \ \} \\ {\bf E_i \cdot a} \ := \ {\bf i \cdot val} \ \} $

Tříadresný kód

• Instrukce v tříadresném kódu (3AK) má tvar:

```
(o, *a, *b, *r)
```

```
    o – operátor (+, –, *, ...)
    a – operand 1 (*a = adresa a)
    b – operand 2 (*b = adresa b)
    r – výsledek (*r = adresa r)
```

Příklady:

```
(:= , a, , c ) ... c := a

(+ , a, b, c ) ... c := a + b

(not , a, , b ) ... b := not(a)

(goto, , , L1) ... goto L1

(goto, a, , L1) ... if a = true then goto L1

(lab , L1, , ) ... label L1:
```

Syntaxí řízené generování 3AK

Základní přístupy:

1) Syntaktický analyzátor vytvoří *abstraktní syntaktický strom* (ASS), který je převeden na 3AK.

2) Syntaktický analyzátor vytvoří *postfixovou reprezentaci* programu, která je převedena na **3AK**.

3) Syntaktický analyzátor vytvoří 3AK přímo.

Z derivačního stromu k ASS: Příklad

derivační strom pro

$$x = a*b + a*b$$
:

ASS pro

$$x = a*b + a*b$$
:

Generování ASS

Myšlenka: Syntaktický analyzátor simuluje vytváření derivačního stromu a současně volá sémantické akce, které vytvářejí AST.

Příklad:

Pravidlo:	Sémantická akce:
$S \rightarrow i := E_k$	$\{ S.a := MakeTree('=', i.a, E_k.a) \}$
$E_i \rightarrow E_i + \tilde{E}_k$	$\{E_{i}a := MakeTree('+', E_{i}a, E_{k}a)\}$
$E_i \rightarrow E_i * E_k$	$\left\{E_{i}^{t}a := MakeTree(`*, E_{i}^{t}.a, E_{k}^{t}.a)\right\}$
	$\left\{ E_{i} a := E_{i} a \right\}$
$E_i^i \rightarrow i$	$\{E_{i}^{\prime}a := MakeLeaf(i.a)\}$

Poznámky:

- MakeTree(o, a, b) vytvoří nový uzel o, naváže levého syna a, pravého syna b, a vrátí ukazatel na uzel o
- MakeLeaf(i.a) vytvoří nový uzel i.a (i.a je adresa do tabulky symbolů) a vrátí ukazatel na tento uzel

Vstup	Pravidlo	Sémantická akce
i = (i+i) * i		
= (i+i) * i		
-		
	$E_1 \rightarrow i$	$E_1.a := MakeLeaf(i.a)$
) * <i>i</i> \$	$E_2 \rightarrow i$	$E_2.a := MakeLeaf(i.a)$
) * <i>i</i> \$	$E_3 \rightarrow E_1 + E_2$	E_3 .a:=MakeTree('+', E_1 .a, E_2 .a)
	$E_4 \rightarrow (E_3)$	$E_4.a := E_3.a$
<i>i</i> \$		
\$	$E_5 \rightarrow i$	$E_5.a := MakeLeaf(i.a)$
\$	$E_6 \rightarrow E_4 * E_5$	$E_6.a:=$ MakeTree('*', $E_4.a, E_5.a$)
\$	$S \rightarrow i = E_6$	$S.a := MakeTree('=', i.a, E_6.a)$
\$		
	i = (i + i) * i\$ $= (i + i) * i$ \$ $(i + i) * i$ \$ $i + i) * i$ \$	i = (i + i) * i \$ $= (i + i) * i $$ $= (i + i) * i $$ $(i + i) * i $$ $+ i) * i * i *$ $+ i * i$

Pravidlo:	Sémantická akce:

Simulace Derivačního stromu:

$$\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} (\begin{bmatrix} a \end{bmatrix} + \begin{bmatrix} b \end{bmatrix}) \end{bmatrix} * \begin{bmatrix} c \end{bmatrix}$$

Pravidlo:	Sémantická akce:
$E_1 \rightarrow i$	$E_1.a := MakeLeaf(i.a)$

Simulace Derivačního stromu:

Pravidlo:	Sémantická akce:
$egin{array}{c} E_1 ightarrow i \ E_2 ightarrow i \end{array}$	$E_1.a := MakeLeaf(i.a)$ $E_2.a := MakeLeaf(i.a)$

Simulace Derivačního stromu:

Pravidlo: Sémantická akce:	
$E_1 \rightarrow i$ $E_2 \rightarrow i$ $E_3 \rightarrow E_1 + E_2$ $E_1.a := MakeLeaf(i.a)$ $E_2.a := MakeLeaf(i.a)$ $E_3.a := MakeTree('+', E_1.a)$	$(E_2.a)$

Simulace Derivačního stromu:

Pravidlo:	Sémantická akce:
$E_1 \rightarrow i$ $E_2 \rightarrow i$ $E_3 \rightarrow E_1 + E_2$ $E_4 \rightarrow (E_3)$	$E_1.a := MakeLeaf(i.a)$ $E_2.a := MakeLeaf(i.a)$ $E_3.a := MakeTree('+', E_1.a, E_2.a)$ $E_4.a := E_3.a$

Simulace Derivačního stromu:

Pravidlo:	Sémantická akce:
$E_1 \rightarrow i$ $E_2 \rightarrow i$ $E_3 \rightarrow E_1 + E_2$ $E_4 \rightarrow (E_3)$ $E_5 \rightarrow i$	$E_1.a := MakeLeaf(i.a)$ $E_2.a := MakeLeaf(i.a)$ $E_3.a := MakeTree('+', E_1.a, E_2.a)$ $E_4.a := E_3.a$ $E_5.a := MakeLeaf(i.a)$

Simulace Derivačního stromu:

Pravidlo:	Sémantická akce:
$E_1 \rightarrow i$ $E_2 \rightarrow i$ $E_3 \rightarrow E_1 + E_2$ $E_4 \rightarrow (E_3)$ $E_5 \rightarrow i$ $E_6 \rightarrow E_4 * E_5$	$E_1.a := MakeLeaf(i.a)$ $E_2.a := MakeLeaf(i.a)$ $E_3.a := MakeTree('+', E_1.a, E_2.a)$ $E_4.a := E_3.a$ $E_5.a := MakeLeaf(i.a)$ $E_6.a := MakeTree('*', E_4.a, E_5.a)$

Simulace Derivačního stromu:

Pravidlo:	Sémantická akce:
$E_1 \rightarrow i$ $E_2 \rightarrow i$ $E_3 \rightarrow E_1 + E_2$ $E_4 \rightarrow (E_3)$ $E_5 \rightarrow i$ $E_6 \rightarrow E_4 * E_5$ $S \rightarrow i = E_6$	$E_{1}.a := MakeLeaf(i.a)$ $E_{2}.a := MakeLeaf(i.a)$ $E_{3}.a := MakeTree('+', E_{1}.a, E_{2}.a)$ $E_{4}.a := E_{3}.a$ $E_{5}.a := MakeLeaf(i.a)$ $E_{6}.a := MakeTree('*', E_{4}.a, E_{5}.a)$ $S.a := MakeTree('=', i.a, E_{6}.a)$

Simulace Derivačního stromu:

DAG: Příklad

Parse tree pro

$$x = a*b + a*b$$
:

• DAG pro

$$x = a*b + a*b$$
:

Pozn.: DAG nemá nadbytečné uzly.

Postfixová Notace

Myšlenka: Každý operátor se vyskytuje až za operandy

Příklad:

Infixová notace	Postfixová notace
a+b	<i>a b</i> +
a = b	ab =
if C then S_1 else S_2	CS_1S_2 if-then-else

Pozn.: Postfixovou notaci můžeme také získat průchodem postorder ASS.

Myšlenka: Sémantická akce vytvářejí postfixovou verzi zdrojového programu

Příklad:

Pravidlo:	Sémantická akce:
$1: E \to E + E$	{generate('+')}
$2: E \rightarrow E^*E$	{generate('*')}
$3: E \rightarrow (E)$	{ - }
$4: E \rightarrow i$	{generate(i.a) }

Výstup:

Myšlenka: Sémantická akce vytvářejí postfixovou verzi zdrojového programu

V			-	
ří	\boldsymbol{z}	9	П	lacktriangle
\mathbf{I} \mathbf{I} .		la	u	

Pravidlo:	Sémantická akce:
$1: E \to E + E$	{generate('+')}
$2: E \rightarrow E*E$	{generate('*')}
$3: E \rightarrow (E)$	{ - }
$4: E \rightarrow i$	{generate(i.a) }

Myšlenka: Sémantická akce vytvářejí postfixovou verzi zdrojového programu

Příklad:

Pravidlo:	Sémantická akce:
$1: E \to E + E$	{generate('+')}
$2: E \rightarrow E*E$	{generate('*')}
$3: E \rightarrow (E)$	{ - }
$4: E \rightarrow i$	{generate(i.a) }

Myšlenka: Sémantická akce vytvářejí postfixovou verzi zdrojového programu

Příklad:

Pravidlo:	Sémantická akce:
$1: E \to E + E$	{generate('+')}
$2: E \rightarrow E^*E$	{generate('*')}
$3: E \rightarrow (E)$	{ - }
$4: E \to i$	{generate(i.a) }

Myšlenka: Sémantická akce vytvářejí postfixovou verzi zdrojového programu

V	ъ т		-	
ří		O		
\mathbf{I}	\mathbf{L}	la	u	

Pravidlo:	Sémantická akce:
$1: E \to E + E$	{generate('+')}
$2: E \rightarrow E*E$	{generate('*')}
$3: E \rightarrow (E)$	{ - }
$4: E \rightarrow i$	{generate(i.a) }

Myšlenka: Sémantická akce vytvářejí postfixovou verzi zdrojového programu

Překladové gramatiky

Myšlenka: Překladové gramatiky překládají vstupní řetězec na výstupní řetězec

1) Překlad pomocí dvou gramatik:

2) Překlad řízený jednou gramatikou

Pozn.: V průběhu syntaktické analýzy vstupního řetězce je současně vytvářen výstupní řetězec

do postfixu:

```
Překlad z infixu Pravidla G<sub>1</sub> Pravidla G<sub>2</sub>
                         : E \rightarrow E + T
                                            1: E \rightarrow ET+
                                           2: E \rightarrow T
                        2: E \to T
                        3: T \to T^*F \qquad 3: T \to TF^*
                                      4: T \to F
                                            5: F \rightarrow E
```


Vstup:

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow i$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF*$
4: $T \rightarrow F$
6: $F \rightarrow i$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow i$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF*$
4: $T \rightarrow F$
6: $F \rightarrow i$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T^*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow i$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF^*$
4: $T \rightarrow F$
5: $F \rightarrow E$
6: $F \rightarrow i$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T^*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow i$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF^*$
4: $T \rightarrow F$
6: $F \rightarrow i$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow i$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF*$
4: $T \rightarrow F$
5: $F \rightarrow E$
6: $F \rightarrow i$

Překlad z infixuPravidla G_1 Pravidla G_2 do postfixu: $1: E \rightarrow E+T$ $1: E \rightarrow ET+$ $2: E \rightarrow T$ $2: E \rightarrow T$ $3: T \rightarrow T*F$ $3: T \rightarrow TF*$ $4: T \rightarrow F$ $4: T \rightarrow F$ $5: F \rightarrow (E)$ $5: F \rightarrow E$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T^*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow i$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF^*$
4: $T \rightarrow F$
5: $F \rightarrow E$
6: $F \rightarrow i$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T^*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow i$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF^*$
4: $T \rightarrow F$
5: $F \rightarrow E$
6: $F \rightarrow i$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T^*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF^*$
4: $T \rightarrow F$
5: $F \rightarrow E$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF*$
4: $T \rightarrow F$
5: $F \rightarrow E$

Překlad z infixu Pravidla G₁ Pravidla G₂ do postfixu: $: E \rightarrow E + T$ $1: E \rightarrow ET +$ $2: E \rightarrow T$ $2: E \rightarrow T$ $3: T \rightarrow TF^*$ $3: T \rightarrow T^*F$ $F \rightarrow F$ $4: T \rightarrow F$ $5: F \rightarrow E$

 $5: F \rightarrow (E)$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow i$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF*$
4: $T \rightarrow F$
5: $F \rightarrow E$
6: $E \rightarrow i$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF*$
4: $T \rightarrow F$
5: $F \rightarrow E$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T^*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $E \rightarrow F$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF^*$
4: $T \rightarrow F$
5: $F \rightarrow E$
6: $E \rightarrow F$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T^*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF^*$
4: $T \rightarrow F$
5: $F \rightarrow E$

Překlad z infixu
do postfixu:Pravidla G_1 Pravidla G_2 1: $E \rightarrow E+T$
2: $E \rightarrow T$
3: $T \rightarrow T*F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow i$ 1: $E \rightarrow ET+$
2: $E \rightarrow T$
3: $T \rightarrow TF*$
4: $T \rightarrow F$
5: $F \rightarrow E$
6: $E \rightarrow i$

Infix to postfix translation:

Pravidlo	Překl. element
$1: E \to E + T$	ET+
$2: E \rightarrow T$	\boldsymbol{T}
$3: T \rightarrow T*F$	TF*
$4: T \to F$	$oldsymbol{F}$
$5: F \rightarrow (E)$	\boldsymbol{E}
$6: F \rightarrow i$	\boldsymbol{i}

 \boldsymbol{E}

Vstup:

 $a + b \cdot c$

Pravidlo	Překl. element
$1: E \to E + T$	ET+
$2: E \rightarrow T$	\boldsymbol{T}
$3: T \rightarrow T*F$	TF*
$4: T \to F$	$oldsymbol{F}$
$5: F \rightarrow (E)$	\boldsymbol{E}
6: $F \rightarrow i$	\boldsymbol{i}

Pravidlo	Překl. element
$1: E \to E + T$	ET+
$2: E \rightarrow T$	\boldsymbol{T}
$3: T \rightarrow T*F$	TF*
$4: T \to F$	$oldsymbol{F}$
$5: F \rightarrow (E)$	\boldsymbol{E}
6: $F \rightarrow i$	\boldsymbol{i}

Pravidlo	Překl. element
$1: E \to E + T$	ET+
$2: E \rightarrow T$	\boldsymbol{T}
$3: T \rightarrow T*F$	TF*
$4: T \to F$	$oldsymbol{F}$
$5: F \rightarrow (E)$	\boldsymbol{E}
6: $F \rightarrow i$	\boldsymbol{i}

Pravidlo	Překl. element
$1: E \to E + T$	ET+
$2: E \rightarrow T$	\boldsymbol{T}
$3: T \rightarrow T*F$	TF*
$4: T \to F$	$oldsymbol{F}$
$5: F \rightarrow (E)$	\boldsymbol{E}
6: $F \rightarrow i$	\boldsymbol{i}

Pravidlo	Překl. element
$1: E \to E + T$	ET+
$2: E \rightarrow T$	\boldsymbol{T}
$3: T \rightarrow T*F$	TF*
$4: T \to F$	$oldsymbol{F}$
$5: F \rightarrow (E)$	\boldsymbol{E}
6: $F \rightarrow i$	\boldsymbol{i}

Pravidlo	Překl. element
$1: E \to E + T$	ET+
$2: E \rightarrow T$	\boldsymbol{T}
$3: T \rightarrow T*F$	TF*
$4: T \to F$	$oldsymbol{F}$
$5: F \rightarrow (E)$	\boldsymbol{E}
6: $F \rightarrow i$	\boldsymbol{i}

Pravidlo	Překl. element
$1: E \to E + T$	ET+
$2: E \rightarrow T$	\boldsymbol{T}
$3: T \rightarrow T*F$	TF*
$4: T \to F$	$oldsymbol{F}$
$5: F \rightarrow (E)$	\boldsymbol{E}
6: $F \rightarrow i$	\boldsymbol{i}

Pravidlo	Překl. element
$1: E \to E + T$	ET+
$2: E \rightarrow T$	\boldsymbol{T}
$3: T \rightarrow T*F$	TF*
$4: T \to F$	$oldsymbol{F}$
$5: F \rightarrow (E)$	\boldsymbol{E}
6: $F \rightarrow i$	\boldsymbol{i}

Myšlenka: SA pracující metodou zdola nahoru generuje 3AK přímo

Příklad:

```
\begin{array}{lll} \textbf{Pravidlo:} & \textbf{S\'emantick\'a} \ \textbf{akce:} \\ \textbf{1:} \ S \rightarrow \textbf{i} = E_k & \{ \ \text{generate}(`=`, E_k.loc, \ , \textbf{i.loc}) \} \\ \textbf{2:} \ E_i \rightarrow E_j + E_k & \{ \ \text{generate}(`+`, E_j.loc, E_k.loc, E_i.loc) \} \\ \textbf{3:} \ E_i \rightarrow E_j * E_k & \{ \ \text{generate}(`*`, E_j.loc, E_k.loc, E_i.loc) \} \\ \textbf{4:} \ E_i \rightarrow (E_j) & \{ \ \text{generate}(`=`, E_j.loc, \ , E_i.loc) \} \\ \textbf{5:} \ E_i \rightarrow \textbf{i} & \{ \ \text{generate}(`=`, \textbf{i.loc}, \ , E_i.loc) \} \\ \end{array}
```


Vstup: x = a + b * c

Myšlenka: SA pracující metodou zdola nahoru generuje 3AK přímo

Příklad:

Vstup

```
\begin{array}{lll} \textbf{Pravidlo:} & \textbf{S\'emantick\'a} \ \textbf{akce:} \\ \textbf{1:} \ S \rightarrow i = E_k & \{ \ \text{generate}(`=`, E_k.loc, \ ,i.loc) \} \\ \textbf{2:} \ E_i \rightarrow E_j + E_k & \{ \ \text{generate}(`+`, E_j.loc, E_k.loc, E_i.loc) \} \\ \textbf{3:} \ E_i \rightarrow E_j * E_k & \{ \ \text{generate}(`*`, E_j.loc, E_k.loc, E_i.loc) \} \\ \textbf{4:} \ E_i \rightarrow (E_j) & \{ \ \text{generate}(`=`, E_j.loc, \ ,E_i.loc) \} \\ \textbf{5:} \ E_i \rightarrow i & \{ \ \text{generate}(`=`, i.loc, \ ,E_i.loc) \} \\ \end{array}
```


Výstup: ('=', -a, E_1 .loc)

Myšlenka: SA pracující metodou zdola nahoru generuje 3AK přímo

Příklad:

Vstup

```
\begin{array}{lll} \textbf{Pravidlo:} & \textbf{S\'emantick\'a} \ \textbf{akce:} \\ \textbf{1:} \ S \rightarrow \textbf{i} = E_k & \{ \ \text{generate}(`=`, E_k.loc, \ , \textbf{i.loc}) \} \\ \textbf{2:} \ E_i \rightarrow E_j + E_k & \{ \ \text{generate}(`+`, E_j.loc, E_k.loc, E_i.loc) \} \\ \textbf{3:} \ E_i \rightarrow E_j * E_k & \{ \ \text{generate}(`*`, E_j.loc, E_k.loc, E_i.loc) \} \\ \textbf{4:} \ E_i \rightarrow (E_j) & \{ \ \text{generate}(`=`, E_j.loc, \ , E_i.loc) \} \\ \textbf{5:} \ E_i \rightarrow \textbf{i} & \{ \ \text{generate}(`=`, \textbf{i.loc}, \ , E_i.loc) \} \\ \end{array}
```

Výstup:

 $('=', -a, E_1.loc)$ $('=', -b, E_2.loc)$

Myšlenka: SA pracující metodou zdola nahoru generuje 3AK přímo

Příklad:

Pravidlo:	Sémantická akce:
$1: S \rightarrow i = E_k$	{ generate($=$, $E_k.loc$, , $i.loc$)}
$2: E_i \rightarrow E_i + \tilde{E}_k$	{ generate('+', E_j .loc, E_k .loc, E_i .loc)}
$3: E_i \rightarrow E_i * E_k$	{ generate('*', E_j .loc, E_k .loc, E_i .loc)}
$4: E_i \rightarrow (E_i)$	{ generate('=', $\vec{E_i}$.loc, , E_i .loc)}
$5: E_i \rightarrow i'$	{ generate('=', $i.loc$, , $E_i.loc$)}

$$('=', -a, E_1.loc)$$

 $('=', -b, E_2.loc)$
 $('=', -c, E_3.loc)$

Myšlenka: SA pracující metodou zdola nahoru generuje 3AK přímo

Příklad:

Vstup

```
\begin{array}{lll} \textbf{Pravidlo:} & \textbf{S\'emantick\'a} \ \textbf{akce:} \\ \textbf{1:} \ S \rightarrow i = E_k & \{ \ \text{generate}(`=`, E_k.loc, \ ,i.loc) \} \\ \textbf{2:} \ E_i \rightarrow E_j + E_k & \{ \ \text{generate}(`+`, E_j.loc, E_k.loc, E_i.loc) \} \\ \textbf{3:} \ E_i \rightarrow E_j * E_k & \{ \ \text{generate}(`*`, E_j.loc, E_k.loc, E_i.loc) \} \\ \textbf{4:} \ E_i \rightarrow (E_j) & \{ \ \text{generate}(`=`, E_j.loc, \ , E_i.loc) \} \\ \textbf{5:} \ E_i \rightarrow i & \{ \ \text{generate}(`=`, i.loc, \ , E_i.loc) \} \\ \end{array}
```

$$(`=', -a, E_1.loc)$$

 $(`=', -b, E_2.loc)$
 $(`=', -c, E_3.loc)$
 $(`*', E_2.loc, E_3.loc, E_4.loc)$

Myšlenka: SA pracující metodou zdola nahoru generuje 3AK přímo

Příklad:

Vstup:

$\begin{array}{lll} \textbf{Pravidlo:} & \textbf{S\'emantick\'a} \ \textbf{akce:} \\ \textbf{1:} \ S \rightarrow i = E_k \\ \textbf{2:} \ E_i \rightarrow E_j + E_k \\ \textbf{3:} \ E_i \rightarrow E_j * E_k \\ \textbf{4:} \ E_i \rightarrow (E_j) \\ \textbf{5:} \ E_i \rightarrow i \end{array} & \{ \ \textbf{generate(`=`, E_k.loc, E_i.loc)} \} \\ \textbf{4:} \ E_i \rightarrow i \\ & \{ \ \textbf{generate(`=`, E_j.loc, E_k.loc, E_i.loc)} \} \\ \textbf{5:} \ E_i \rightarrow i \\ & \{ \ \textbf{generate(`=`, E_j.loc, E_k.loc, E_i.loc)} \} \\ \end{array}$

$$(`=`, •a, ,E_1.loc)$$

 $(`=`, •b, ,E_2.loc)$
 $(`=`, •c, ,E_3.loc)$
 $(`*`, E_2.loc,E_3.loc,E_4.loc)$
 $(`+`, E_1.loc,E_4.loc,E_5.loc)$

Myšlenka: SA pracující metodou zdola nahoru generuje 3AK přímo

Překlad shora dolů: Úvod

- LL-gramatiky s atributy
- Dva zásobníky:
 - pro synt. analýzu
- Dva typy atributů:
 - syntetizované: (z dítěte na rodiče)

× pro sémant. analýzu

dědičné:

(z rodiče na děti nebo mezi sourozenci)

Překlad shora dolů: Aritmetické výrazy

Gramatika: Derivační strom pro a + b * c:

Proměná:

$$F \rightarrow i$$

$$E \to (F)$$

Proměná:

$$F \rightarrow i$$

$$E \rightarrow (F)$$

Proměná:

$$F \rightarrow i \ \{F.s := i.value\} \mid E \rightarrow (F)$$

$$E \to (F)$$

Proměná:

$$F \rightarrow i \ \{F.s := i.value\} \mid E \rightarrow (F)$$

$$E \to (F)$$

Proměná:

$$F \rightarrow i \{F.s := i.value\}$$

$$F \rightarrow i \{F.s := i.value\} \mid E \rightarrow (F \{F.s := E.s\})$$

I.

Ι.

I

$$E \rightarrow T \{ Q.i := T.s \} Q$$

L

$$E \rightarrow T \{ Q.i := T.s \} Q$$

L

$$E \rightarrow T \{ Q.i := T.s \} Q$$

I

$$E \rightarrow T \{ Q.i := T.s \} Q \{ E.s := Q.s \}$$

$$E \rightarrow T \{ Q.i := T.s \} Q \{ E.s := Q.s \}$$

II.

II.

$$Q_1 \rightarrow +T$$

$$Q_1 \rightarrow +T$$

$$Q_1 \rightarrow +T \{ Q_2.i := Q_1.i + T.s \} Q_2$$

$$Q_1 \rightarrow +T \{ Q_2.i := Q_1.i + T.s \} Q_2$$

$$Q_1 \rightarrow +T \{ Q_2.i := Q_1.i + T.s \} Q_2$$

$$Q_1 \rightarrow +T \{ Q_2.i := Q_1.i + T.s \} Q_2 \{ Q_1.s := Q_2.s \}$$

$$Q_1 \to +T \{ Q_2.i := Q_1.i + T.s \} Q_2 \{ Q_1.s := Q_2.s \}$$

$$Q \rightarrow \varepsilon$$

$$Q \rightarrow \varepsilon$$

$$Q \rightarrow \varepsilon$$

$$Q \rightarrow \varepsilon \quad \{Q.s := Q.i\}$$

$$Q \rightarrow \varepsilon \quad \{Q.s := Q.i\}$$

Celkově:
$$EE.s$$

$$T_{1}T_{1}.s \quad Q_{1}.i \quad Q_{1}Q_{1}.s$$

I.

I.

I

$$T \rightarrow F \{ R.i := F.s \} R$$

I

$$T \rightarrow F \{ R.i := F.s \} R$$

I.

$$T \rightarrow F \{ R.i := F.s \} R$$

I.

$$T \rightarrow F \{ R.i := F.s \} R \{ T.s := R.s \}$$

$$T \rightarrow F \{ R.i := F.s \} R \{ T.s := R.s \}$$

II.

II.

$$R_1 \to *F \{ R_2.i := R_1.i *F.s \} Q_2$$

$$R_1 \to F \{ R_2.i := R_1.i * F.s \} Q_2$$

$$R_1 \to F \{ R_2.i := R_1.i * F.s \} Q_2$$

$$R_1 \to F \{ R_2.i := R_1.i * F.s \} Q_2\{R_1.s := R_2.s \}$$

$$R_1 \to {}^*F \{ R_2.i := R_1.i * F.s \} Q_2\{R_1.s := R_2.s \}$$

$$R \rightarrow \varepsilon$$

$$R \rightarrow \varepsilon$$

$$R \rightarrow \varepsilon \quad \{R.s := R.i\}$$

$$R \rightarrow \varepsilon \quad \{R.s := R.i\}$$

Celkově:
$$T$$
 F_1
 R_1

Celkově:
$$T$$
 $T.s$

$$F_{1}F_{1}.s \quad R_{1}.i \quad R_{1}R_{1}.s$$

Gramatika pro výrazy: Celkově

```
1. E \to T \{Q.i := T.s\} Q \{E.s := Q.s\}
2. Q_1 \rightarrow +T \{Q_2.i := Q_1.i + T.s\} Q_2 \{Q_1.s := Q_2.s\}
 Q \rightarrow \varepsilon \{Q.s := 0.i\}
4. T \to F \{R.i := F.s\} R \{T.s := R.s\}
5. R_1 \to F \{R_2 : i := R_1 : i := F_2 \} R_2 \{R_1 : s := R_2 : s\}
6. R \rightarrow \varepsilon \{R.s := R.i\}
7. F \rightarrow (E \{F.s := E.s\})
8. F \rightarrow i \{F.s := i.value\}
```

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $i_1 + i_2$ \$

Prav.: $E \to T_1 \{Q_1.i := T_1.s\} Q_1 \{E.s := Q_1.s\}$

Zásobník synt. an.: Zásobník sém. an.:

Ilustrace:

E

20

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $i_1 + i_2$ \$

Prav.: $T_1 \to F_1 \{R_1 : i := F_1 : s\} R_1 \{T_1 : s := R_1 : s\}$

Zásobník synt. an.: Zásobník sém. an.:

Ilustrace:

10 + 20

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $i_1 + i_2$ \$

Prav.: $F_1 \rightarrow i_1 \{F_1.s := i.value\}$

Zásobník synt. an.: Zásobník sém. an.:

F_{1} $\{R_{1}.i := F_{1}.s\}$ R_{1} $\{T_{1}.s := R_{1}.s\}$ $\{Q_{1}.i := T_{1}.s\}$ Q_{1} $\{E.s := Q_{1}.s\}$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $i_1 + i_2$ \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

```
{F_1.s := i.value}
  \{R_1.i := F_1.s\}
  \{T_1.s := R_1.s\}
  \{Q_1^-, i := T_1^-, s\}
 \{E.s := Q_1.s\}
\{D_1 := Q_1.s\}
```


Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $+i_2$ \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

 ${F_1.s := i.value}$ $\{\hat{R}_1.i := F_1.s\}$ $\{T_1.s := R_1.s\}$ $\{Q_1.i := T_1.s\}$ $Q_1 \\ \{E.s := Q_1.s\}$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $+i_2$ \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

 $\{R_1.i := F_1.s\}$ $\{T_1.s := R_1.s\}$ $\{Q_1.i := T_1.s\}$ $Q_1 \\ \{E.s := Q_1.s\}$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $+i_2$ \$

Prav.: $R_1 \rightarrow \varepsilon \{R_1.s := R_1.i\}$

Zásobník synt. an.: Zásobník sém. an.:

R_{1} $\{T_{1}.s := R_{1}.s\}$ $\{Q_{1}.i := T_{1}.s\}$ Q_{1} $\{E.s := Q_{1}.s\}$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $+i_2$ \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $+i_2$ \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

 $\{T_1.s := R_1.s\}$ $\{Q_1.i := T_1.s\}$ $\{E.s := Q_1.s\}$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $+i_2$ \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $+i_2$ \$

Prav.: $Q_1 \rightarrow +T_2 \{Q_2.i := Q_1.i + T_2.s\} Q_2 \{Q_1.s := Q_2.s\}$

Zásobník synt. an.: Zásobník sém. an.:

 $\{E.s := Q_1.s\}$ \$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: $+i_2$ \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: *i*₂ \$

Prav.: $T_2 \to F_2 \{R_2 : i := F_2 : s\} R_2 \{T_2 : s := R_2 : s\}$

Zásobník synt. an.: Zásobník sém. an.:

$\{Q_{2}.i := Q_{1}.i + T_{2}.s\}$ Q_{2} $\{Q_{1}.s := Q_{2}.s\}$ $\{E.s := Q_{1}.s\}$ \$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: i_2 \$

Prav.: $F_2 \rightarrow i_2 \{F_2.s := i.value\}$

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: i_2 \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

 $F_2.s = 20$ $Q_1.i = 10$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.: $R_2 \rightarrow \varepsilon \{R_2.s := R_2.i\}$

Zásobník synt. an.: Zásobník sém. an.:

R_{2} $\{T_{2}.s := R_{2}.s\}$ $\{Q_{2}.i := Q_{1}.i + T_{2}.s\}$ Q_{2} $\{Q_{1}.s := Q_{2}.s\}$ $\{E.s := Q_{1}.s\}$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

 $R_2.i = 20$ $Q_1.i = 10$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

 $R_2.s = 20$ $Q_1.i = 10$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.: $Q_2 \rightarrow \varepsilon \{Q_2.s := Q_2.i\}$

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.:

Zásobník synt. an.: Zásobník sém. an.:

 $\{E.s := Q_1.s\}$

Příklad pro a + b, kde a.value = 10, b.value = 20

Vstup: \$

Prav.:

Sémantická analýza: Kontrola typů

1) Pravidlo: *E*id

Akce:

E.type := id.type

2) Pravidlo: E

Akce:

 $\underline{\mathbf{if}}$ (E_1 .type = $\mathbf{t_1}$ nebo

 E_1 .type je převeditelný na t_1)

and

 $(E_2.type = t_2 nebo)$

 E_2 .type je převeditelný na t_2)

then

$$E$$
.type := t_3

else

Semantic Error.

Operace op je definována nad typy:

$$t_1 \text{ op } t_2 \rightarrow t_3$$

Kontrola typů: Příklad 1/3

Vytvořme kontrolu typů pro následující gramatiku:

Z int na real

- $G_{expr1} = (N, T, P, E)$, kde $N = \{E, F, T\}$, $T = \{i, +, *, (,)\}$, $P = \{E \rightarrow E + T, E \rightarrow T, T \rightarrow T * F, T \rightarrow F, F \rightarrow (E), F \rightarrow i\}$
- Operatory *, + jsou definovány: Možné konverze:
 - int * int \rightarrow int
 - int + int \rightarrow int
 - real * real → real
 - real + real \rightarrow real

```
Pravidlo: F \rightarrow i { F.type := i.type; generate(:=, i.loc, F.loc) }
```

Pravidlo:
$$F_i \rightarrow (E_j)$$
 $\{F_i.type := E_j.type\}$

Pravidlo:
$$T_i \rightarrow F_j$$
 $\{T_i.type := F_j.type\}$

Pravidlo:
$$E_i \rightarrow T_j$$
 $\{E_i.type := T_j.type\}$

Kontrola typů: Příklad 2/3

```
Pravidlo: E_i \rightarrow E_i + T_k { \underline{\text{if }} E_i . type = T_k . type \underline{\text{then begin}}
                                       E_{i}.type := E_{i}.type
                              generate(+, E_i.loc, T_k.loc, E_i.loc)
                           end
                           else begin
                              generate(new.loc, h, ,)
                              if E_i .type = int then begin
                                 generate(int-to-real, E_i.loc, , h)
                                 generate(+, h, T_{l}.loc, E_{i}.loc)
                              end
                              else begin
                                 generate(int-to-real, T_k.loc, , h)
                                 generate(+, E_i.loc, h, E_i.loc)
                              end
                              \overline{E_i.t}ype := real
```

Kontrola typů: Příklad 3/3

```
Pravidlo: T_i \to T_i * F_k { \underline{\text{if }} T_i . type = F_k . type \underline{\text{then begin}}
                                      T_i.type := T_i.type
                             generate (*, T_i.loc, F_k.loc, T_i.loc)
                          end
                          else begin
                             generate(new.loc, h, ,)
                             if T_i.type = int then begin
                                generate(int-to-real, T<sub>i</sub>.loc, , h)
                                generate(*, h, F_{l}.loc, T_{i}.loc)
                             end
                             else begin
                                generate(int-to-real, F_k.loc, , h)
                                generate(*, T_i.loc, h, T_i.loc)
                             end
                             T_i.type := real
                           end
```

Zkratové vyhodnocování

Myšlenka:

```
• a = true implikuje a or ( ... ? ... ) = true
• a = false implikuje a and ( ... ? ... ) = false
Pozn.: ( ... ? ... ) není vyhodnoceno.
1) (a \text{ and } b) = p:
  if a = false then p = false
                else p = b
```

```
2) (a \text{ or } b) = p:
   if a = true then p = true
                   else p = b
```

Zkratové vyhodnocování: Graf. reprezentace

Příklad: a or (b and (not c)):

• Simulace grafické reprezentace 3AK kódem se skoky.

Zkratové vyhodnocování: Graf. reprezentace

Příklad: a or (b and (not c)):

• Simulace grafické reprezentace 3AK kódem se skoky.

Příklad: a or (b and (not c)):

True:

False:

Zkr. vyh. pomocí ASS: Implementace

• Každý ASS uzel X má přiřazeny dva atributy: X.t, X.f

Elementární ASS:

2) and.t and.f and A.t := or.t B.t := or.t A.t := L B.t := and.tA.f := L B.f := or.f A.f := and.f B.f := and.f

not.t A.t := not.fA.f := not.t

- Initializace: Necht' R je kořen ASS. Potom:
 - R.t := True, R.f := False (True & False isou návěští)
- Šíření hodnot atributů: Atributy jsou šířeny z kořene do listů použitím pravidel 1), 2) a 3).

Příklad: a or (b and (not c)):

- T = True
- $\mathbf{F} = False$

Příklad: a or (b and (not c)):

- T = True
- $\mathbf{F} = False$


```
a or (b and (not c)):
Příklad:
                                                    Note:
                    or.t := T
                                                    • T = True
ASS:
               or or f := F
                                                    • \mathbf{F} = False
                                  and.t := or.t = T
                         X: and and f := or f = F
                                     Y: not not.t := and.t = T
not.f := and.f = T
                    b.t := Y
                                      c.t := not.f (= F)
a.t := or.t (= T)
                   b.f := and.f (= F) c.f := not.t (= T)
a.f := X
 if a goto T
                                      if c goto F
                    if b goto Y
 goto X
                                      goto T
                    goto F
```

Zkr. vyh.: Přímé generování kódu 1/5

Gramatika pro boolovské výrazy:

Poznámka: Ošetřit nejednoznačnost gramatiky!

- Modifikace gramatiky:
- 1) Zaměnit pravidla 1 & 2 na:

2) Přiřadit každému pravidlu následující sémantické akce:

 $M_i \rightarrow \epsilon$ {generate " M_i . lab:"} // Generování nového návěští

$$E_i \rightarrow E_j$$
 or $M_i E_k$ { M_i .lab := GenerateNewLab;}
$$E_j.true := E_i.true; E_j.false := M_i.lab$$

$$E_k.true := E_i.true; E_k.false := E_i.false$$
 }


```
E_i 
ightarrow E_j and M_i E_k \{ M_i.lab := GenerateNewLab; \ E_j.true := M_i.lab; E_j.false := E_i.false \ E_k.true := E_i.true; E_k.false := E_i.false \}
```



```
E_{i} 
ightarrow \mathbf{not} \ E_{j} \ \{ E_{j}.true := E_{i}.false; \ E_{j}.false := E_{i}.true \ \}

Illustrace:
E_{i} \ E_{i}.true \ E_{i}.false
```



```
E_i \rightarrow (E_j) {E_j.true := E_i.true; E_j.false := E_i.false }
```

$$E_i
ightarrow id_j$$
 { generate "if id_j .val goto E_i .true"; generate "goto E_i .false"

Příklad: a and b or c and d:

$$E_0$$
. $t := L_{true}$
 E_0 . $f := L_{false}$
 E_0

a and b or c and d

Příklad: a and b or c and d:

if $m{a}$ goto $m{L_1}$ goto $m{L_0}$

Příklad: a and b or c and d:

 $| if \begin{array}{c} a & goto \\ goto \\ L_1 \end{array} |$

Příklad: a and b or c and d:

 $if m{a} \ goto \ m{L_1} \ goto \ m{L_1}: \ if m{b} \ goto \ m{L_{true}} \ goto \ m{L_0}$

Příklad: a and b or c and d:

 $if \begin{aligned} a & goto \ L_1 \ goto \ L_1 : \ if \begin{aligned} b & goto \ L_{true} \ goto \ L_0 : \ L_0 : \ \end{aligned}$

Příklad: a and b or c and d:

 $if \begin{array}{c} a & goto \\ L_1: \\ if \begin{array}{c} b & goto \\ L_{true} \\ goto \begin{array}{c} L_0: \\ L_0: \end{array}$

Příklad: a and b or c and d:

if a goto L_1 goto L_0 if **b** goto L_{true} $goto L_0$ if c goto L₂ goto L_{false}

Příklad: a and b or c and d:

if a goto L_1 goto L_0 if b goto L_{true} $goto L_0$ if c goto L₂ goto L_{false}

Příklad: a and b or c and d:

if a goto L_1 goto L_0 if **b** goto L_{true} $goto L_0$ if c goto L₂ goto L_{false} if d goto L_{true} goto L_{false}

Příklad: a and b or c and d:

 $E_3. \ t := L_1$ $E_4. \ t := E_1. \ t$ $E_5. \ t := L_2$ $E_6. \ t := E_2. \ t$ $E_3. f := E_1. f$ $E_4. f := E_1. f$ $E_5. f := E_2. f$ $E_6. f := E_2. f$

if a goto L_1 goto L_0 if **b** goto L_{true} goto L_0 if c goto L₂ goto L_{false} if d goto L_{true} goto L_{false}

Příklad: a and b or c and d:

if $oldsymbol{a}$ goto $oldsymbol{L_1}$ goto L_0 if **b** goto L_{true} goto L_0 if c goto L₂ goto L_{false} if d goto L_{true} goto L_{false} L_{true} : ... L_{false}:

Větvení: If-Then

```
Pravidlo: <if-then>
if <cond>
                   then
                            \langle stat_1 \rangle
 Sémantická akce:
    // vyhodnocení cond
    // do proměnné c.val
    (not , c.val, , c.val)
    (goto, c.val, , L1
     // kód stat<sub>1</sub>
    (lab , L1 , ,
```

Větvení: If-Then-Else

```
Pravidlo: <if-then-else>
if <cond> then <stat<sub>1</sub>> else <stat<sub>2</sub>>
   Sémantická akce:
      // vyhodnocení cond
      // do proměnné c.val
      (not , c.val, , c.val)
      (goto, c.val, , L1
       // kód stat<sub>1</sub>
      (goto, , L2
      (lab , L1 , ,
       // kód stat<sub>2</sub>
      (lab , L2
```

While cyklus

```
Pravidlo: <while-loop>
while <cond> do <stat>
  Sémantická akce:
    (lab , L1 , ,
    // vyhodnocení cond
     // do proměnné c.val
    (not , c.val, , c.val)
    (goto, c.val, , L2
     // kód stat
    (goto, , L1
    (lab , L2 , ,
```

Repeat cyklus

```
Pravidlo:<repeat-loop>
repeat <stat> until <cond>
  Sémantická akce:
     (lab , L1 , ,
     // kód stat
     // vyhodnocení cond
     // do proměnné c.val
     (not , c.val, , c.val)
     (goto, c.val, , L1
```

YACC: Základní myšlenka

- Automatická konstrukce SA z BKG
- Yacc jako překladač × Yacc jako jazyk
- *Yacc* = *Y*et *a*nother *c*ompiler *c*ompiler

Ilustrace:

Bezkontextová gramatika G

Syntaktický analyzátor pro G

YACC: Fáze kompilace

Překladač YACCu

y.tab.c

(Zdrojový program v C)

LR-parser vytvořený z BKG popsané v translate.y

→ y.tab.c

(Zdrojový prog. v YACCu) (Zdrojový program v C)

Překladač C

a.out

(Syntaktický analyzátor)

Řetězec tokenů x

a.out

Rozbor

řetězce x

Struktura zdrojového programu v YACCu

```
/* Sekce I: Deklarace */
d<sub>1</sub>,d<sub>2</sub>, ...,d<sub>i</sub>
```

%% /* Konec sekce I*/

/* Sekce II: Překladová pravidla */

$$\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_j$$

%% /* Konec sekce II*/

/* Sekce III: Pomocné procedury */

$$p_1, p_2, \dots, p_k$$

Popis gramatiky v YACCu

- Neterminály: názvy (= řetězce)
- Příklad: prog, stat, expr, ...
- Terminály: Znaky v uvozovkách nebo deklarované tokeny
- Příklad: `+', `*', `(', `)', ID, INTEGER
- Pravidla: Množina A-Pravidel: $\{A \to x_1, A \to x_2, \dots A \to x_n\}$ je zapsána: A: $\mathbf{x1}$ | $\mathbf{x2}$... | \mathbf{xn} | \mathbf{xn} | Příklad: expr: expr '+' expr | \mathbf{ID}
- Počáteční neterminál: Levá strana prvního pravidla

Sekce I: Deklarace

1) Deklarace tokenů

%token TYP TOKENU

2) Specifikace asociativit & precedencí v nejednoznačných gramatikách Stejná priorita operátorů

```
Větší priorita %left op<sub>i1</sub>, op<sub>i2</sub>, ..., op<sub>im</sub> operátorů %left op<sub>j1</sub>, op<sub>j2</sub>, ..., op<sub>jm</sub>
```

```
%right op<sub>k1</sub>, op<sub>k2</sub>, ..., op<sub>kp</sub>
```

Asociativita následujících operátorů

Příklad:

```
%token INTEGER
%token ID
%left
%left
```

Sekce II: Překladová pravidla

• Překladová pravidla jsou ve tvaru:

```
Pravidlo Semanticka_Akce
```

• **Semanticka_Akce** je podprogram, který je zavolán, pokud právě **Pravidlo** je použito. **Speciální symboly pro pravidla** *r*:

- \$\$ = atribut symbolu na levé straně pravidla r
- \mathbf{i} = atribut i-tého symbolu na pravé straně pravidla r

Příklad:

Sekce III: Pomocné procedury

Pomocné procedury jsou volány v sémantických akcí pravidel

Pozn.: Pokud YACC nespolupracuje s LEXem, musí být v této sekci implementována funkce **yylex()** plnící činnost lexikálního analyzátoru.

Příklad:

```
int yylex() {
    /* Get the next token */
    &yylval = attribute;
    return TYPE_OF_TOKEN;
}
```

Zdrojový program v YACCu

```
%token INTEGER
%token ID
%left \+'
%left \*/
%%
expr : expr '+' expr \{\$\$ = \$1 + \$3\}
       expr '*' expr {$$ = $1 * $3}
       '(' expr ')' {$$ = $2}
      INTEGER
       ID
%%
int yylex () { ... }
```