Zusammenfassung Heft 2 ANA

Ida Hönigmann

7. Dezember 2020

1 Rationale Zahlen

Definition 1.1. Ein angeordneter Körper heißt vollständig angeordnet, falls $\emptyset \neq M \subseteq K$ und M nach oben beschränkt ($\Longrightarrow M$ hat Supremum).

Lemma 1.1. vollständig angeordnet \implies archimedisch angeordnet

Satz 1.2. K und L... vollständig angeordnete Körper $\implies \exists ! \phi : L \rightarrow K$ mit + und * verträglich, bijektiv und mit \leq verträglich.

Schreibweise. $\mathbb{R} = vollständig angeordneter Körper$

Satz 1.3. $x \in \mathbb{R}, x \ge 0, n \in \mathbb{N}$ $Dann \exists ! y \in \mathbb{R}, y \ge 0 : y^n = x$

Definition 1.2. $x \in \mathbb{R}$, $x \ge 0$ Sei $\sqrt[n]{x}$ die eindeutige Zahl $y \ge 0$ mit $y^n = x$.

Bemerkung. $y \mapsto y^n$ ist bijektiv

Lemma 1.4. • $\sqrt[q]{\frac{1}{x}} = \frac{1}{\sqrt[q]{x}}$

- $\bullet \sqrt[q]{xz} = \sqrt[q]{x} * \sqrt[q]{z}$
- $(\sqrt[q]{x})^p = \sqrt[q]{x^p}$

Definition 1.3. $x \in \mathbb{R}, x > 0, r \in \mathbb{Q}, r = \frac{p}{q} mit$ $p \in \mathbb{Z} und q \in \mathbb{N}$ $x^r = (\sqrt[q]{x})^p$

Lemma 1.5. • $x^{r+s} = x^r * x^s$

- $\bullet \ (x^r)^s = x^{r*s}$
- $x^{-1} = \frac{1}{r^r}$

Bemerkung. $\mathbb{R} \supset \mathbb{Q}, \ da \ \sqrt{2} \notin \mathbb{Q}, \ \sqrt{2} \in \mathbb{R}$

Definition 1.4. $\mathbb{R} \setminus \mathbb{Q}$ heißen irrationale Zahlen, dafür schreibt man auch \mathbb{I} .

Lemma 1.6. $M, N \neq \emptyset$... $Mengen \ f: M \times N \to \mathbb{R}$ $Falls \ f(M \times N) \ nach \ oben \ beschränkt, \ so \ gilt <math>sup(\{f(m,n): (m,n) \in M \times N\}) = sup(\{s_q: q \in N\}) = sup(\{sup(\{f(m,n): m \in M\}): n \in N\})$ $Falls \ \forall n \in N\{f(m,n): m \in M\} \ nach \ oben \ beschränkt \ und \ falls \ \{sup(\{f(m,n): m \in M\}): n \in N\} \ nach \ oben \ beschränkt \ ist, \ dann \ ist \ f(M \times N) \ nach \ oben \ beschränkt.$

Bemerkung. $A,B \subset \mathbb{R} \implies sup(A+B) = sup(A) + sup(B)$

2 Komplexe Zahlen

Definition 2.1. $\mathbb{C} := \mathbb{R} \times \mathbb{R}$

Schreibweise. $(a,b) \in \mathbb{C}$ werden in der Form a+ib geschrieben. a nennt man den Realteil, b nennt man den Imaginärteil der Zahl.

Definition 2.2. $a + ib, c + id \in \mathbb{C}$ (a + ib) + (c + id) = (a + c) + i(b + d) (a + ib) * (c + id) = (ac - bd) + i(ad + bc)

Schreibweise. $a+ib\in\mathbb{C}$ mit b=0 heißt rein reell. a:=(a+ib)

 $a+ib \in \mathbb{C}$ mit a=0 heißt rein imaginär. $ib \coloneqq (a+ib)$

 $z = (a + ib) \ dann \ ist \ Rez = a \ und \ Imz = b$

Bemerkung. i ist Lösung von $x^2 + 1 = 0$.

Satz 2.1. $(\mathbb{C}, +, *)$ ist Körper. Dabei ist für $a + ib \in \mathbb{C}$:

- 0 + i0 ist additiv neutrales Element
- -a + i(-b) ist additiv inverses Element
- \bullet 1 + i0 ist multiplikativ neutrales Element
- $a+ib \neq 0 \implies \frac{a}{a^2+b^2}+i\frac{(-b)}{a^2+b^2}$ ist multiplikativ inverses Element

Bemerkung. $\mathbb C$ ist kein angeordneter Körper.

Bemerkung. \mathbb{C} ist Vektorraum über \mathbb{C} mit Dimension 1.

 \mathbb{C} ist Vektorraum über \mathbb{R} mit Dimension 2.

Definition 2.3.
$$z := (a+ib) \in \mathbb{C}$$

 $\bar{z} := a+i(-b)$ heißt konjugiert komplexe Zahl.
 $|z| = \sqrt{a^2+b^2}$ mit $|z| = 0 \Leftrightarrow (a+ib) = (0+i0)$

Bemerkung. " $\mathbb{R} \subseteq \mathbb{C}$ "

Lemma 2.2. • $|Rez| \leq |z|$

- $|Imz| \leq |z|$
- |z * w| = |z| * |w|
- $\bullet |z+w| \le |z| + |w|$
- $||z| |w|| \le |z w|$
- $|\bar{z}| = |z|$
- $z*\bar{z}=|z|^2$
- $z \neq 0 \implies \frac{1}{z} = \frac{\bar{z}}{|z|^2} = \frac{a}{|z|^2} + i \frac{-b}{|z|^2}$

3 Grenzwerte

Definition 3.1. $M = \emptyset$, $d: M \times M \to \mathbb{R}$ (M, d) heißt metrischer Raum, falls

- (M1) $d(x,y) \ge 0$ und $d(x,y) = 0 \Leftrightarrow x = y$
- (M2) d(x, y) = d(y, x)
- (M3) $x, y, z \in M \implies d(x, z) \le d(x, y) + d(y, z)$

$$\begin{array}{l} \textbf{Lemma 3.1.} \ \ p \in \mathbb{N}, \ a_1,...,a_p,b_1,...,b_p \in \mathbb{R} \\ (\sum_{j=1}^n a_j * b_j)^2 \leq (\sum_{j=1}^n a_j^2) * (\sum_{j=1}^n b_j^2) \\ (\sum_{j=1}^n (a_j + b_j)^2)^{\frac{1}{2}} \leq (\sum_{j=1}^n a_j^2)^{\frac{1}{2}} + (\sum_{j=1}^n b_j^2)^{\frac{1}{2}} \end{array}$$

Definition 3.2. X... Menge $mit \ X \neq \emptyset$ Eine Folge x ist eine Funktion $x : \mathbb{N} \to X$. Meist schreibt $man \ (x_n)_{n \in \mathbb{N}} \ mit \ x_n = x(n)$.

Definition 3.3. (M,d)... metrischer Raum, $(x_n)_{n\in\mathbb{N}}$... Folge aus $M, x \in M$ $(x_n)_{n\in\mathbb{N}}$ hei β t konvergent gegen x falls $\forall \epsilon \in \mathbb{R}, \epsilon > 0 \exists N \in \mathbb{N} \forall n \geq N : d(x_n, x) < \epsilon$ In diesem Fall schreibt man auch $\lim_{n\to\infty} x_n = x$ oder "bei $n\to\infty$ geht $x_n\to x$ " oder $(x_n)_{n\in\mathbb{N}}\to x$.

Bemerkung. $\lim_{n\to\infty} x_n = x \Leftrightarrow \lim_{n\to\infty} d(x_n, x) = 0$

Bemerkung. $k \in \mathbb{Z}$, $\mathbb{Z}_{\geq k} := \{ p \in \mathbb{Z} : p \geq k \}$ $(x_n)_{n \in \mathbb{Z}_{\geq K}} \dots$ Folge $konvergiert \Leftrightarrow \forall \epsilon > 0 \exists N \in \mathbb{Z}_{\geq K} : d(x_n, x) < \epsilon \forall n > N$

Bemerkung. Folgende Aussagen sind äquivalent:

- $\bullet \lim_{n \to \infty} x_n = x$
- $\forall \epsilon > 0 \exists N \forall n \geq N : d(x_n, x) \leq \epsilon$
- Für ein gewisses K > 0 gilt: $\forall \epsilon > 0 \exists N \forall n \geq N$: $d(x_n, x) < K * \epsilon$
- Für ein gewisses K > 0 gilt: $\forall \epsilon > 0 \exists N \forall n \geq N$: $d(x_n, x) \leq K * \epsilon$

Definition 3.4. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in M. Ist $n: \mathbb{B} \to \mathbb{N}$ streng monoton wachsend, so heißt $(x_{n(j)})_{j\in\mathbb{N}}$ eine Teilfolge von $(x_n)_{n\in\mathbb{N}}$.

Satz 3.2. (M, d)... metrischer Raum, $(x_n)_{n \in \mathbb{N}}$... Folge in $M, x \in M$

- $(x_n)_{n\in\mathbb{N}}$ hat höchstens einen Grenzwert
- $k \in \mathbb{N}$ beliebig. $(x_n)_{n \in \mathbb{N}} \to x \Leftrightarrow (x_n)_{n \in \mathbb{Z}_{>k}} \to x$
- $k \in \mathbb{N}$ beliebig. $(x_n)_{n \in \mathbb{N}} \to x \Leftrightarrow (x_n + k)_{n \in \mathbb{N}} \to x \Leftrightarrow (x_n k)_{n \in \mathbb{Z}_{>k+1}} \to x$
- $(x_n)_{n\in\mathbb{N}} \to x \land (x_{n(j)})_{j\in\mathbb{N}}$ ist Teilfolge von $(x_n)_{n\in\mathbb{N}} \Longrightarrow \lim_{j\to\infty} (x_{n(j)})_{j\in\mathbb{N}} = x$

Bemerkung. Teilfolge konvergiert \implies Folge konvertiert

Lemma 3.3. $(x_n)_{n\in\mathbb{N}} \to x$, $(y_n)_{n\in\mathbb{N}} \to y$... Folgen in (M,d)

$$\implies \lim_{n \to \infty} d(x_n, y_n) = d(x, y)$$

Lemma 3.4. (M,d)... metrischer Raum, $a_1, a_2, b_1, b_2 \in M$

$$|d(a_1, b_1) - d(a_2, b_2)| \le d(a_1, a_2) + d(b_1, b_2)$$

Definition 3.5. (M, d)... metrischer Raum

- $Y \subseteq M$ heißt beschränkt, falls $Y \neq \emptyset$ und $\exists z \in M \exists c > 0 \forall y \in Y : d(z, y) \leq c$
- $f: E \to M$ heißt beschränkt wenn $f(E) \subseteq M$ beschränkt ist.
- $(x_n)_{n\in\mathbb{N}}...$ Folge aus M heißt beschränkt, falls $x:\mathbb{N}\to M$ beschränkt ist.

Bemerkung. $\emptyset \neq Y \subseteq M$ ist beschränkt $\Leftrightarrow \forall x \in M : \exists C_x \geq 0 \forall y \in Y : d(y,x) \leq C_x$

Lemma 3.5. $(x_n)_{n\in\mathbb{N}}...Folgein(M,d)$ $\lim_{n\to\infty} x_n = x \Longrightarrow (x_n)_{n\in\mathbb{N}} \text{ ist beschränkt.}$

Lemma 3.6. $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}} \dots$ Folgen in (\mathbb{R}, d_2) mit $x_n \to x$ und $y_n \to y$

Dann gelten folgende Aussagen:

- $\exists c \in \mathbb{R} : x < c \implies \exists N \in \mathbb{N}; x_n < c \forall n \geq N.$
- $x < y \implies \exists N \forall n \ge N : x_n < y_n$
- $\exists N \in \mathbb{N} \forall n \geq N : x_n \leq y_n \implies x \leq y$

Satz 3.7. $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$, $(a_n)_{n\in\mathbb{N}}$... Folgen in (\mathbb{R}, d_2)

 $x_n \to a \land y_n \to a \land x_n \le a_n \le y_n$ für alle $n \in \mathbb{N}$ bis auf endlich viele $\implies a_n \to a$

Satz 3.8. Sei $(z_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ Folgen aus \mathbb{C} mit $z_n \to z$ und $w_n \to w$, dann gelten folgende Aussagen:

- $\lim_{n \to \infty} |z_n| = |z| \ und \lim_{n \to \infty} \bar{z_n} = \bar{z}$
- $\lim z_n + w_n = z + w$ und $\lim (-z_n) = -z$
- z = 0 und $(u_n)_{n \in \mathbb{N}}$... beschränkte Folge $\implies z_n * u_n \to 0$
- $\bullet \lim z_n * w_n = z * w$

- $\lim z_n^k = z^k$, falls $k \in \mathbb{N}$ fest
- $z \neq 0 \implies \lim \frac{1}{z_n} = \frac{1}{z}$
- $z_n \in \mathbb{R}, z_n \ge 0, z \in \mathbb{R}, z \ge 0, k \in \mathbb{N} \text{ fest } \Longrightarrow \sqrt[k]{z_n} \to \sqrt[k]{z}$

Definition 3.6. Eine Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} heißt

- monoton wachsend, falls $\forall n \in \mathbb{N} : a_n \leq a_{n+1}$
- monoton fallend, falls $\forall n \in \mathbb{N} : a_n \geq a_{n+1}$
- streng monoton wachsend, falls $\forall n \in \mathbb{N} : a_n < a_{n+1}$
- streng monoton fallend, falls $\forall n \in \mathbb{N} : a_n > a_{n+1}$

Satz 3.9. Falls $(x_n)_{n\in\mathbb{N}}$ eine monoton wachsende Folge in \mathbb{R} ist nach oben beschränkt (d.h. $\exists c > 0 \forall n \in \mathbb{N} : x_n \leq c$), dann ist $(x_n)_{n\in\mathbb{N}}$ konvergent.

$$\lim_{n \to \infty} x_n = \sup(\{x_n : n \in \mathbb{N}\})$$

Falls $(x_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge in \mathbb{R} ist nach unten beschränkt (d.h. $\exists c > 0 \forall n \in \mathbb{N} : x_n \geq c$), dann ist $(x_n)_{n\in\mathbb{N}}$ konvergent.

$$\lim_{n \to \infty} x_n = \inf(\{x_n : n \in \mathbb{N}\})$$

Definition 3.7. $(x_n)_{n\in\mathbb{N}}$... beschränkte Folge in \mathbb{R} , $N\in\mathbb{N}$

$$\begin{aligned} y_N &\coloneqq \inf\{\{x_n : n \ge N\}\} \\ z_N &\coloneqq \inf\{\{x_n : n \ge N\}\} \\ \lim_{n \to \infty} &\min x_n \coloneqq \lim_{N \to \infty} y_N = \sup\{y_N : N \in \mathbb{N}\} \\ \lim_{n \to \infty} &\min z_N = \inf\{z_N : N \in \mathbb{N}\} \end{aligned}$$

Lemma 3.10. $(x_n)_{n\in\mathbb{N}}...$ beschränkte Folge in \mathbb{R} \Longrightarrow \exists Teilfolge $(x_{n(j)})_{j\in\mathbb{N}}$ mit $\lim_{j\to\infty}x_{n(j)}=1$

$$\liminf_{n \to \infty} x_n$$

$$\Longrightarrow \exists Teilfolge (x_{n(j)})_{j \in \mathbb{N}} mit \lim_{j \to \infty} x_{n(j)} = \lim \sup x_n$$

Lemma 3.11. $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$... beschränkte Folge in \mathbb{R}

- $\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n$
- $\forall n : x_n \leq y_n \implies \liminf a_n \leq \liminf b_n \land \lim \sup a_n \leq \limsup b_n$

- $\limsup_{n \to \infty} (-x_n) = -\liminf_{n \to \infty} x_n \text{ und } \liminf_{n \to \infty} (-x_n) = -\limsup_{n \to \infty} x_n$
- $\bullet \ \lim_{n \to \infty} x_n = x \Leftrightarrow \liminf_{n \to \infty} x_n = x \wedge \limsup_{n \to \infty} x_n = x$

3.1 Cauchy-Folgen

Definition 3.8. (M,d)... metrischer Raum $(x_n)_{n\in\mathbb{N}}$ in M heißt Cauchy-Folge, falls $\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n, m \geq N : d(x_m, x_n) < \epsilon$

Bemerkung. Ob ϵ aus \mathbb{R} oder \mathbb{Q} stammt ist egal. $(x_n) \to x \Leftrightarrow \forall \epsilon > 0 \in \mathbb{Q} \forall n \geq N : d(x_n, x) < \epsilon$

Lemma 3.12. $(x_n)_{n\in\mathbb{N}}$ ist Cauchy-Folge $\implies (x_n)$ ist beschränkt.

Lemma 3.13. (M,d)... metrischer Raum $(x_n)_{n\in\mathbb{N}}$... Folge in M

Falls (x_n) konvergent ist, dann ist (x_n) auch eine Cauchy-Folge.

Bemerkung. Cauchy-Folge impliziert nicht, das die Folge konvergiert.

Definition 3.9. Ein metrischer Raum heißt vollständig, falls jede Cauchy-Folge auch gegen einen Punkt aus diesem metrischen Raum konvergiert.

Lemma 3.14. (M,d)... metrischer Raum Falls $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist und falls \exists Teilfolge $(x_{n(j)})_{j\in\mathbb{N}}$ mit $\lim_{j\to\infty} x_{n(j)} = x \in M$

$$\implies \lim_{n \to \infty} x_n = x$$

Satz 3.15. (\mathbb{R}, d_2) ist ein vollständig metrischer Raum.

Lemma 3.16. $(x_n)_{n\in\mathbb{N}}$... Folge and \mathbb{R}^p , $x_n = (\xi_{n,1},...,\xi_{n,p})$

$$x = (\xi_1, ..., \xi_p) \in \mathbb{R}^p$$

Falls $x_n \to x$ bzgl. d_1, d_2, d_∞ , dann gilt $x_n \to x$ bzgl. aller dieser Metriken. Weiters gilt $x_n \to x$ bzgl. $d_1, d_2, d_\infty \Leftrightarrow \forall j \in \{1, ..., p\} : \xi_{n,j} \to \xi_j in(\mathbb{R}, d_2)$.

Lemma 3.17. $(\mathbb{R}^p, d_{1,2oder\infty})$ ist vollständig metrischer Raum.

 $(\mathbb{C}^p, d_{1,2oder\infty})$ ist vollständig metrischer Raum.

Lemma 3.18. Eine komplexe Folge konvergiert, wenn ihr Realteil und Imaginärteil konvergieren.

Definition 3.10. $(x_n)_{n\in\mathbb{N}}$... Folge in \mathbb{R}

 $\lim_{n \to \infty} x_n = +\infty \Leftrightarrow \forall M > 0 \exists N \in \mathbb{N} \forall n \ge N : x_n > M$

$$\lim_{\substack{n \to \infty \\ M}} x_n = -\infty \Leftrightarrow \forall M < 0 \exists N \in \mathbb{N} \forall n \geq N : x_n < M$$

Bemerkung. Eine Folge kann nicht gleichzeitig gegen $x \in \mathbb{R}$ und gegen $+\infty$ oder $-\infty$ konvergieren.

Satz 3.19. $(x_n), (y_n)$... Folgen in \mathbb{R} , wobei $\lim_{n \to \infty} x_n = +\infty$

Dann gelten folgende Aussagen:

- $\bullet \lim_{n \to \infty} -x_n = -\infty$
- $\{y_n : n \in \mathbb{N}\}$... nach unten beschränkt $\Longrightarrow \lim_{n \to \infty} (x_n + y_n) = +\infty$
- $\exists C > 0 \forall n \in \mathbb{N} : y_n \ge C, \ dann \lim_{n \to \infty} (x_n * y_n) = +\infty$
- $Falls \ \forall n \in \mathbb{N} : x_n \leq y_n \implies \lim_{n \to \infty} +\infty$
- $\forall n \in \mathbb{N} : y_n > 0 \implies \lim_{n \to \infty} y_n = +\infty \Leftrightarrow \lim_{n \to \infty} \frac{1}{y_n} = 0$
- Wenn y_n monoton wachsend ist, dann gilt
 - $-\lim_{\substack{n\to\infty\\oben\ beschränkt.}}=\sup\{y_n),\ falls\ \{y_n:n\in\mathbb{N}\}\ nach$
 - $-\lim_{\substack{n\to\infty\\oben\ beschränkt\ ist.}} +\infty, \ falls\ \{y_n:n\in\mathbb{N}\}\ nicht\ nach$

Bemerkung. Gleicher Satz gilt in gleicher Form auch für $-\infty$.

3.2 Reihen

Definition 3.11. a_k ... Folge aus \mathbb{R} oder aus \mathbb{C} , $n \in \mathbb{N}$

 $S_n = \sum_{j=1}^n a_j$ heißt die j-te Partialsumme $(S_n)_{n \in \mathbb{N}}$ heißt Reihe mit Summanden a_n .

Falls $\lim_{n\to\infty} S_n$ existiert, so heißt die Reihe konvergent.

Schreibweise. Wenn eine Reihe konvergent ist schreiben wir für $\lim_{n\to\infty} S_n = x$ auch $\sum_{k=1}^{\infty} a_k = x$. Für $\lim_{n\to\infty} S - n = +\infty$ schreiben wir auch $\sum_{k=1}^{\infty} =$

 $+\infty$. Gleiches für $-\infty$.

Für (S_n) schreibt man auch $\sum_{k=1}^{\infty} a_k$.

Lemma 3.20. $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$... konvergente Reihen in \mathbb{R} oder \mathbb{C} .

Dann ailt:

- $\sum_{k=1}^{\infty} (a_k + b_k) \dots$ konvergiert gegen $(\sum_{k=1}^{\infty} a_k) + (\sum_{k=1}^{\infty} b_k)$
- $\sum_{k=1}^{\infty} (\lambda * a_k) = \lambda * \sum_{k=1}^{\infty} a_k$
- $\sum_{k=1}^{\infty} \overline{a_k} = \overline{\sum_{k=1}^{\infty} a_k}$

Lemma 3.21. \bullet $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} a'_k$... Reihen, wobei $\exists l \in \mathbb{N} \forall k \geq l : a_k = a'_k$

- $\implies \sum_{k=1}^{\infty} a_k \ konvergent \Leftrightarrow \sum_{k=1}^{\infty} a'_k \ konvergent$ giert
- $(k(j))_{j\in\mathbb{N}}...$ streng monoton wachsende Folge in

$$\sum_{n=1}^{\infty} a_n \ konvergent \implies \sum_{n=1}^{\infty} A_n \ konvergiert$$

$$mit \ A_1 = a_1 + \dots + a_{k(1)}, \ \dots \ A_k = a_{k(n-1)+1} + \dots + a_{k(n)}$$

- $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$... konvergieren mit $a_k, b_k \in$
 - $\forall k \in \mathbb{N} : a_k \leq b_k \implies \sum_{k=1}^{\infty} a_k \leq \sum_{k=1}^{\infty} b_k$
 - Falls zusätzlich gilt $\exists l \in \mathbb{N} : a_l < b_l$, dann ist $\sum_{k=1}^{\infty} a_k < \sum_{k=1}^{\infty} b_k$

Bemerkung. Eine komplexe Reihe ist konvergent, falls die Reihe der Realteile und die Reihe der Imaqinärteile konvergiert.

Lemma 3.22. $\sum_{k=1}^{\infty} a_k$... konvergent $\lim_{n \to \infty} (a_k)_{k \in \mathbb{N}} = 0$

Lemma 3.23. • $\sum_{k=1}^{\infty} a_k \dots konvergent \Leftrightarrow S_n = \sum_{k=1}^{n} a_k \dots beschränkt$

• Majorantenkriterium: $\forall k \in \mathbb{N} : a_k \leq b_k$. Falls $\sum_{k=1}^{\infty} b_k$... konvergiert, dann gilt $\sum_{k=1}^{\infty} a_k$... konvergiert.

• Minorantenkriterium: $\forall k \in \mathbb{N} : a_k \leq b_k$. Falls $\sum_{k=1}^{\infty} a_k = +\infty, \ dann \ gilt \sum_{k=1}^{\infty} b_k = +\infty.$

Definition 3.12. $\sum_{k=1}^{\infty} a_k$ heißt absolut konvergent, falls $\sum_{k=1}^{\infty} |a_k| \dots \overline{konvergent}$.

Lemma 3.24. $\sum_{k=1}^{\infty} a_k$... absolut konvergent \Longrightarrow $\sum_{k=1}^{\infty} a_k$... konvergent

Bemerkung. Die Umkehrung ist falsch.

3.3 Konvergenzkriterien

Satz 3.25. (Wurzelkriterium) $\sum_{k=1}^{\infty} a_k$... Reihe aus

- Falls $\exists q \in [0,1) \exists N \in \mathbb{N} \forall n \geq N : \sqrt[n]{|a_n|} \leq q$ dann ist die Reihe absolut konvergent.
- Falls \exists Teilfolge $(a_{n(j)})_{j \in \mathbb{N}}$ mit $\forall j \in \mathbb{N}$: $\sum_{n(j)} |a_{n(j)}| \geq 1$ dann ist die Reihe divergent.

Satz 3.26. (Quotientenkriterium) $\sum_{k=1}^{\infty} a_k \dots Reihe$ $aus \mathbb{R}/\mathbb{C}$

- Falls $\exists q \in [0,1) \exists N \in \mathbb{N} \forall n \geq N : \frac{|a_{n+1}|}{|a_n|} \leq q$, dann ist die Reihe absolut konvergent.
- Falls $\exists N \in \mathbb{N} \forall n \geq N : \frac{|a_{n+1}|}{|a_n|} \geq 1$, dann ist die Reihe divergent.

Lemma 3.27. $a_1, ..., a_m, b_1, ..., b_m \in \mathbb{R}$ oder \mathbb{C} $Dann \ gilt \sum_{n=1}^m a_n b_n = a_m * \beta_m - \sum_{n=1}^{m-1} (a_{n+1} - a_n) * \beta_n \ mit \ \forall n \in \{1, ..., m\} : \beta_n = \sum_{j=1}^n b_j$

Satz 3.28. (Dirichletsches Kriterium) (a_n) monotone Nullfolge aus \mathbb{R} , (b_n) ... Folge aus \mathbb{R} oder \mathbb{C} $\exists C \ge 0 \forall n \in \mathbb{N} : |\sum_{j=1}^{n} b_j| \le C \implies \sum_{n=1}^{\infty} a_n b_n$

Satz 3.29. (Leibnitz-Kriterium) (a_n) ... monotone Nullfolge $\Longrightarrow \sum_{n=1}^{\infty} (-1)^n * a_n$ konvergiert.