CELEN037

Seminar 9

Topics

- Applications of Definite Integrals
 - Area Calculation using Definite Integrals
 - Volume Calculation using Definite Integrals
- Numerical Integration
 - Trapezoidal Rule
 - Simpson's Rule

Area of region bounded by two curves and X-axis

The area of the region bounded by the curves $y = f_1(x)$, $y = f_2(x)$, and lines x = a, x = b is:

$$A = \left| \int_a^b [f_1(x) - f_2(x)] dx \right|$$

Area of region bounded by two curves and Y-axis

The area of the region bounded by the curves $x=g_1(y)$, $x=g_2(y)$, and lines $y=c,\ y=d$ is:

$$A = \left| \int_{c}^{d} \left[g_1(y) - g_2(y) \right] dy \right|$$

CELEN037 (UNNC) Seminar 9 3/2

Example 1: Find the area of the region bounded by the curves $y = \sec^2 x$,

$$y=2$$
 and lines $x=-\frac{\pi}{4}$ and $x=\frac{\pi}{4}$.

Solution:

$$Area = \left| \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\sec^2 x - 2) \, dx \right|$$

$$= \left| \left[\tan x - 2x \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \right|$$

$$= \left| \left(\tan \frac{\pi}{4} - 2 \cdot \frac{\pi}{4} \right) - \left[\tan(-\frac{\pi}{4}) - 2 \cdot (-\frac{\pi}{4}) \right] \right|$$

$$= \left| \left(1 - \frac{\pi}{2} \right) - \left(-1 + \frac{\pi}{2} \right) \right|$$

$$= |2 - \pi| = \pi - 2$$

Example 2: Find the area of the region bounded by the curves $y=x^2$ and $y=2x-x^2$.

Solution: First find the points of intersection

$$y = x^2$$
 and $y = 2x - x^2$ \Rightarrow $x_1 = 0, y_1 = 0$ or $x_2 = 1, y_2 = 1$

$$Area = \left| \int_0^1 (x^2 - 2x + x^2) \, dx \right|$$

$$= \left| 2 \int_0^1 (x^2 - x) \, dx \right|$$

$$= \left| 2 \left[\frac{x^3}{3} - \frac{x^2}{2} \right]_0^1 \right|$$

$$= \left| 2 \left(-\frac{1}{6} \right) \right| = \frac{1}{3}$$

Practice Problems on Worksheet:

- 1. Q1(i)
- 2. Q1(ii)

Answers:

- 1. $\frac{2(9\sqrt{3}-1)}{5}$
- 2. $\frac{9}{2}$

Volume of solids of revolution: Region bounded by one curve

• If the region bounded by the curve y=f(x), lines x=a, x=b, and the X-axis is revolved about the X-axis, then the volume of the solid of revolution is:

$$V = \pi \int_{a}^{b} y^{2} dx = \pi \int_{a}^{b} [f(x)]^{2} dx$$

Example 1: Find the volume of solid of revolution when the region bounded by the curve y=x, lines x=0, x=4 and X-axis is revolved about X-axis. **Solution:**

$$V = \pi \int_0^4 y^2 dx$$

$$= \pi \int_0^4 x^2 dx$$

$$= \pi \left[\frac{x^3}{3} \right]_0^4$$

$$= \pi \left(\frac{4^3}{3} - \frac{0^3}{3} \right) = \frac{64\pi}{3}$$

Volume of solids of revolution: Region bounded by one curve

• If the region bounded by the curve y = f(x), lines x = a, x = b, and the X-axis is revolved about the X-axis, then the volume of the solid of revolution is:

$$V = \pi \int_{a}^{b} y^{2} dx = \pi \int_{a}^{b} [f(x)]^{2} dx$$

• If the region bounded by the curve x = g(y), lines y = c, y = d, and the Y-axis is revolved about the Y-axis, then the volume of the solid of revolution is:

$$V = \pi \int_{c}^{d} x^{2} dy = \pi \int_{c}^{d} [g(y)]^{2} dy$$

CELEN037 (UNNC)

Example 2: Find the volume of solid of revolution when the region bounded by the curve x=2y, lines y=0, y=2 and Y-axis is revolved about Y-axis. **Solution:**

$$V = \pi \int_0^2 x^2 \, dy$$

$$= \pi \int_0^2 4y^2 \, dy$$

$$= \pi \left[\frac{4y^3}{3} \right]_0^2$$

$$= \pi \left(\frac{4 \times 2^3}{3} - \frac{4 \times 0^3}{3} \right) = \frac{32\pi}{3}$$

10 / 24

CELEN037 (UNNC) Seminar 9

Practice Problems on Worksheet:

- 1. Q2(ii)
- 2. Q2(iii)
- 3. Q2(iv)
- 4. Q2(v)

Answers:

1:
$$\frac{\pi^2}{2}$$

2:
$$\frac{211\pi}{5}$$

3:
$$\frac{32\pi}{5}$$

4:
$$\frac{(e^2-1)\pi}{2}$$

Volume of solids of revolution: Region bounded by two curves

• If the region bounded by two curves $y=f_1(x)$ and $y=f_2(x)$ between the points of intersection x=a, x=b is revolved about the X-axis, then the volume of the solid of revolution is:

$$V = \pi \left| \int_{a}^{b} [f_1(x)]^2 - [f_2(x)]^2 dx \right|$$

Example 1: Find the volume of solid of revolution when the region enclosed by curves y=x and $y=x^2$ is revolved about the X-axis.

Solution: First, find the points of intersection:

$$y = x \text{ and } y = x^2 \Rightarrow x^2 - x = x(x - 1) = 0$$

$$\Rightarrow x_1 = 0, y_1 = 0 \text{ or } x_2 = 1, y_2 = 1$$

$$\Rightarrow V = \pi \left| \int_0^1 (x^2 - x^4) \, dx \right|$$

$$= \pi \left| \left[\frac{x^3}{3} - \frac{x^5}{5} \right]_0^1 \right|$$

$$= \pi \left| \left(\frac{1^3}{3} - \frac{1^5}{5} \right) - \left(\frac{0^3}{3} - \frac{0^5}{5} \right) \right| = \frac{2\pi}{15}$$

13 / 24

Volume of solids of revolution: Region bounded by two curves

• If the region bounded by two curves $y=f_1(x)$ and $y=f_2(x)$ between the points of intersection x=a, x=b is revolved about the X-axis, then the volume of the solid of revolution is:

$$V = \pi \left| \int_{a}^{b} [f_1(x)]^2 - [f_2(x)]^2 dx \right|$$

• If the region bounded by two curves $x=g_1(y)$ and $x=g_2(y)$ between the points of intersection $y=c,\ y=d$ is revolved about the Y-axis, then the volume of the solid of revolution is:

$$V = \pi \left| \int_{c}^{d} [g_1(y)]^2 - [g_2(y)]^2 \, dy \right|$$

Example 2: Find the volume of solid of revolution when the region enclosed by curves $x = y^2$ and x = y + 2 is revolved about the Y-axis.

Solution: First, find the points of intersection:

$$x = y^{2} \quad \text{and} \quad x = y + 2 \quad \Rightarrow \quad y^{2} - y - 2 = (y - 2)(y + 1) = 0$$

$$\Rightarrow \quad x_{1} = 1, \ y_{1} = -1 \quad \text{or} \quad x_{2} = 4, \ y_{2} = 2$$

$$\Rightarrow \quad V = \pi \left| \int_{-1}^{2} \left[(y + 2)^{2} - y^{4} \right] dy \right|$$

$$= \pi \left| \int_{-1}^{2} \left(-y^{4} + y^{2} + 4y + 4 \right) dy \right|$$

$$= \pi \left| \left[-\frac{y^{5}}{5} + \frac{y^{3}}{3} + 2y^{2} + 4y \right]_{-1}^{2} \right|$$

$$= \frac{72\pi}{5}$$

Practice Problems on Worksheet:

- 1. Q3(ii)
- 2. Q3(iii)

Answers:

- 1: $\frac{\pi}{2}$
- 2: $\frac{3\pi}{10}$

Trapezoidal Rule (also as Trapezium Rule)

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \left[f_0 + 2(f_1 + f_2 + \dots + f_{n-1}) + f_n \right], \quad h = \frac{b - a}{n}.$$

Example 1: Evaluate $I=\int_0^1 \frac{1}{1+x}\,dx$ by using the Trapezoidal rule. Divide [0,1] into 4 subintervals of equal width. Express the answer to 4 decimal places. $(I=\ln 2=0.6932)$

Solution: Here
$$f(x) = \frac{1}{1+x}$$
 and $h = \frac{b-a}{n} = \frac{1-0}{4} = \frac{1}{4}$

x	f_n	$f(x) = \frac{1}{1+x}$
0	f_0	1
1/4	f_1	0.80000
2/4	f_2	0.66667
3/4	f_3	0.57143
1	f_4	0.50000

(i) Using the Trapezoidal rule:

$$I \approx \frac{h}{2} [f_0 + 2 (f_1 + f_2 + f_3) + f_4]$$
$$= \frac{1}{8} [1 + 2(0.8 + 0.66667 + 0.57143) + 0.5]$$
$$= 0.6970$$

Trapezoidal Rule (also as Trapezium Rule)

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \left[f_0 + 2(f_1 + f_2 + \dots + f_{n-1}) + f_n \right], \quad h = \frac{b - a}{n}.$$

Example 2: Evaluate $I = \int_0^2 e^{x^2} dx$ by using the Trapezoidal rule. Divide [0,2] into 5 subintervals of equal width. Express the answer to 3 decimal places.

Solution: Here
$$f(x) = e^{x^2}$$
 and $h = \frac{b-a}{n} = \frac{2-0}{5} = \frac{2}{5}$

x	f_n	$f(x) = e^{x^2}$
0	f_0	1
2/5	f_1	1.1735
4/5	f_2	1.8965
6/5	f_3	4.2207
8/5	f_4	12.9358
2	f_5	54.5982

$$I \approx \frac{h}{2} \left[f_0 + 2 \left(f_1 + f_2 + f_3 + f_4 \right) + f_5 \right]$$

$$= \frac{1}{5} \left[1 + 2 \left(1.1735 + \dots + 12.9358 \right) + 54.5982 \right]$$

$$= 19.010$$

Practice Problems on Worksheet:

- 1. Q4(i)
- 2. Q4(ii)

Answers:

1: 2.004

2: 17.306

Simpson's Rule

$$\int_a^b f(x) \, dx \approx \frac{h}{3} \left[f_0 + 2(f_2 + f_4 + \dots + f_{n-2}) + 4(f_1 + f_3 + \dots + f_{n-1}) + f_n \right]$$
 $h = \frac{b-a}{n}$, and n is an even number.

Example 1: Evaluate $I = \int_0^\pi \sin(x) \, dx$ by using the Simpson's rule. Divide $[0,\pi]$ into 6 subintervals of equal width. Express the answer to 3 decimal places. (I=2)

Solution: Here $f(x) = \sin(x)$ and $h = \frac{b-a}{n} = \frac{\pi-0}{6} = \frac{\pi}{6}$

x	f_n	$f(x) = \sin(x)$
0	f_0	0
$\pi/6$	f_1	0.5000
$2\pi/6$	f_2	0.8660
$3\pi/6$	f_3	1.0000
$4\pi/6$	f_4	0.8660
$5\pi/6$	f_5	0.5000
π	f_6	0

$$I \approx \frac{h}{3} [f_0 + 2 (f_2 + f_4) + 4 (f_1 + f_3 + f_5) + f_6]$$

$$= \frac{\pi}{18} [0 + 2(0.8660 + \dots) + 4(0.5000 + \dots) + 0]$$

$$= 2.001$$

Example 2: Evaluate
$$I = \int_0^1 \frac{1}{1+x} dx$$
 by using: (i) the Trapezoidal rule, and (ii)

Simpson's rule. Divide [0,1] into 4 subintervals of equal width. Express the answers to 4 decimal places. ($I = \ln 2 = 0.6932$)

Solution: Here
$$f(x) = \frac{1}{1+x}$$
 and $h = \frac{b-a}{n} = \frac{1-0}{4} = \frac{1}{4}$

(i) Using the Trapezoidal rule:

$$I \approx \frac{h}{2} [f_0 + 2(f_1 + f_2 + f_3) + f_4]$$
$$= \frac{1}{8} [1 + 2(0.8 + 0.66667 + 0.57143) + 0.5]$$
$$= 0.6970$$

x	f_n	$f(x) = \frac{1}{1+x}$
0	f_0	1
1/4	f_1	0.80000
2/4	f_2	0.66667
3/4	f_3	0.57143
1	f_4	0.50000

(ii) Using Simpson's rule:

$$I \approx \frac{h}{3} [f_0 + 2 (f_2) + 4 (f_1 + f_3) + f_4]$$

$$= \frac{1}{12} [1 + 2(0.66667) + 4(0.8 + 0.57143) + 0.5]$$

$$= 0.6933$$

Practice Problems on Worksheet:

- 1. Q5(i)
- 2. Q5(iii)

Answers:

1: 0.230

2: 14.556

Trapezoidal Rule

We divide the interval [a,b] into n subintervals of equal width $h=\displaystyle\frac{b-a}{n}$. Then

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \Big[f_0 + 2 (f_1 + f_2 + \dots + f_{n-1}) + f_n \Big]$$

$$(f_i = f(a+ih), i = 0, 1, 2, \dots, n)$$

Simpson's Rule

We divide the interval $\left[a,b\right]$ into n (n is EVEN) subintervals of equal width

$$h = \frac{b-a}{n}$$
. Then

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[f_0 + 2 \left(f_2 + f_4 + \dots + f_{n-2} \right) + 4 \left(f_1 + f_3 + f_5 + \dots + f_{n-1} \right) + f_n \right]$$

$$(f_i = f(a+ih), i = 0, 1, 2, \dots, n)$$