# Bayesian Adpative Regression Kernels

November 17, 2021

# **Problem Setting**

Regression problem

$$\mathsf{E}[Y \mid \mathbf{x}] = f(\mathbf{x}), \quad \mathbf{x} \in \mathcal{X}$$

with unknown function f(x)R Write

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j=1}^n \beta_j k(x_i, x_j)$$

where  $k(x_i, x_j)$  is a kernel function

► Linear Kernel

$$k(x_i, x_j) = x_i^T x_j$$

► Radial or Gaussian Kernel

$$k(x_i, x_j) = \exp(-\frac{\lambda}{2}((x_i - x_j)^T(x_i - x_j))$$

"support vectors"

### **Expansions**

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^J \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- $\blacktriangleright$  { $\beta_i$ }: unknown coefficients
- ▶ J: number of terms in expansion (finite or infinite)
- lacksquare  $\psi(\mathbf{x}, oldsymbol{\omega}_j)$  Dictionary elements from a "generator function" g
  - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)_+^3$$

multivariate kernels (Gaussian, Cauchy, Exponential, e.g.)

$$\psi(\mathbf{x}_i, \boldsymbol{\omega}_j) = g(\boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\chi}_j)^T \boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

### Kernel Convolution



Easy to generate  $\stackrel{\scriptscriptstyle x}{\text{non-stationarity}}$  processes

# Bayesian NonParametrics (BNP)

Goal

$$f(x) = \sum_{j=0}^{J} \psi(\mathbf{x}, \boldsymbol{\omega}_j) \beta_j$$

- ▶ Poisson prior on *J* (could be infinite!)
- $\Rightarrow J \sim \mathsf{P}(
  u_+), \qquad 
  u_+ \equiv 
  u(\mathbb{R} imes \Omega) = \iint \mathsf{v}(eta, oldsymbol{\omega}) \mathsf{d}eta \, \mathsf{d}oldsymbol{\omega}$
- $\Rightarrow \beta_j, \omega_j \mid J \stackrel{iid}{\sim} \pi(\beta, \omega) \propto \nu(\beta, \omega).$
- ▶ Finite number of "big" coefficients  $|\beta_j|$
- $\qquad \qquad \text{Possibly infinite number of } \beta \in [-\epsilon, \epsilon]$
- ▶ Coefficients  $|\beta_j|$  are absolutely summable
- ightharpoonup Conditions on  $\nu$

## $\alpha$ -Stable Lévy Measures

Lévy measure:  $\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$   $0 < \alpha < 2$  For  $\alpha$ - Stable  $\nu^+(\mathbb{R}, \Omega) = \infty$  Fine in theory, but not in practice for MCMC!

Truncate measure to obtain a finite expansion:

- ▶ Finite number of support points  $\omega$  with  $\beta$  in  $[-\epsilon, \epsilon]^c$
- Fix  $\epsilon$  (for given prior approximation error)
- Use approximate Lévy measure  $\nu_{\epsilon}(eta, \omega) \equiv \nu(eta, \omega) \mathbf{1}(|eta| > \epsilon)$
- $\Rightarrow$   $J \sim \mathsf{P}(
  u_{\epsilon}^{+})$  where  $u_{\epsilon}^{+} = 
  u([-\epsilon, \epsilon]^{\mathtt{c}}, \mathbf{\Omega})$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ (\beta_j \text{ distributed as Pareto})$

# Truncated Cauchy Process

### Restriction $|\beta| > \epsilon$



# Contours of Log Prior (in $\mathbb{R}^2$ ) – Penalties



Penalized Likelihood:

$$-\frac{1}{2\sigma^2}\sum_i (Y_i - f(\mathbf{x}_i))^2 - (\alpha + 1)\sum_j \log(|\beta_j|) - \nu_{\epsilon}^+ \dots$$

### Higher Dimensional ${\mathcal X}$

MCMC is (currently) too slow in higher dimensional space to allow

- $ightharpoonup \chi$  to be completely arbitrary; restrict support to observed  $\{x_i\}$  like in SVM
- ightharpoonup use diagonal  $\Lambda$

Kernels take form:

$$\psi(\mathbf{x}, \boldsymbol{\omega}_j) = \prod_{d} \exp\{-\frac{1}{2}\lambda_d(x_d - \chi_d)^2\}$$

$$f(\mathbf{x}) = \sum_{j} \psi(\mathbf{x}, \boldsymbol{\omega}_j)\beta_j$$

# Approximate Lévy Prior II

Continuous Approximation Student  $t(\alpha, 0, \epsilon)$  approximation:

$$\nu_{\epsilon}(d\beta, d\omega) = c_{\alpha}(\beta^2 + \alpha \epsilon^2)^{-(\alpha+1)/2} d\beta \ \gamma(d\omega)$$

Based on the following hierarchical prior

where 
$$\nu_{\epsilon}^+ = \nu_{\epsilon}(\mathbb{R}, \mathbf{\Omega}) = \frac{\alpha^{1-\alpha/2}\Gamma(\alpha)\Gamma(\alpha/2)}{\epsilon^{\alpha}\pi^{1/2}\Gamma(\frac{\alpha+1}{2})}\sin(\frac{\pi\alpha}{2})\gamma(\mathbf{\Omega})$$

Key: need to have variance of coefficients decrease as J increases

# Limiting Case

$$eta_j \mid \varphi_j \ \stackrel{\textit{ind}}{\sim} \ \mathrm{N}(0, 1/\varphi_j)$$
 $\varphi_j \ \stackrel{\textit{iid}}{\sim} \ \mathsf{G}(\alpha/2, 0)$ 

#### Notes:

- Require  $0 < \alpha < 2$  Additional restrictions on  $\omega$
- lacktriangle Cauchy process corresponds to lpha=1
- ▶ Tipping's "Relevance Vector Machine" corresponds to  $\alpha = 0$  (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Infinite dimensional analog of Cauchy priors

## Further Simplification in Case with $\alpha=1$

- Poisson number of points  $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$  with  $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha} \epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J,  $[n_1:n_n] \sim MN(J,1/(n+1))$  points supported at each kernel located at  $x_j$

The regression mean function can be rewritten as

$$f(\mathbf{x}) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(\mathbf{x}, \boldsymbol{\omega}_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \chi_{j} = \mathbf{x}_{i}\}} \beta_{j}.$$

In particular, if  $\alpha=1$ , not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} N(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} G(1/2, \epsilon^2/2)$$

At most *n* non-zero coefficients!

## BARK: Bayesian Additive Regression Kernels

```
#library(devtools)
#suppressMessages(install_github("merliseclyde/bark"))
library(bark)

set.seed(42)
n = 500
circle2 = as.data.frame(sim_circle(n, dim = 2))
```

### Circle



## Circle Example

```
set.seed(42)
train = sample(1:n, size = floor(n/2), rep=FALSE)
circle2.bark = bark(as.matrix(circle2[train, 1:2]),
                    circle2[train, 3],
                    x.test = as.matrix(circle2[-train, 1:2]
                    classification = TRUE,
                    printevery = 10000,
                    type="se")
   [1] "Starting BARK-se for this classification problem"
   [1] "burning iteration 10000, J=5, max(nj)=2"
   [1] "posterior mcmc iteration 10000, J=4, max(nj)=1"
```

### Missclassification

### **Missclassification Rate 0.02**



### **SVM**

#### **BART**

```
## [1] 0.036
```

#### Feature Selection in Kernel

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if  $\lambda_d = 0$  variable  $x_d$  is removed from all kernels
- Allow point mass on  $\lambda_h=0$  with probability  $p_\lambda\sim B(a,b)$  (in practice have used a=b=1

#### Consider 3 Scenarios

- ▶ D Different  $\lambda D$  parameters in each dimension
- ▶ S + D Different  $\lambda_d$  parameters + Selection
- ▶ S + E Selection + Equal for Remaining  $\lambda_d = \lambda$

# Regression Out of Sample Prediction

#### Average Relative MSE to best procedure

| Data Sets      |      | BARK               | SVM  | BART |       |
|----------------|------|--------------------|------|------|-------|
| Data Sets      | D    | $S + E \mid S + D$ |      |      | SVIVI |
| Friedman1      | 1.22 | 2.26               | 1.93 | 5.36 | 1.97  |
| Friedman2      | 1.07 | 1.09               | 1.04 | 4.36 | 3.64  |
| Friedman3      | 1.46 | 2.30               | 1.44 | 2.70 | 1.00  |
| Boston Housing | 1.09 | 1.23               | 1.20 | 1.56 | 1.01  |
| Body Fat       | 1.81 | 1.01               | 2.19 | 4.04 | 1.68  |
| Basketball     | 1.01 | 1.01               | 1.02 | 1.16 | 1.10  |

D: dimension specific scale  $\lambda_d$ 

E: equal scales  $\lambda_d = \lambda \, \forall \, d$ 

S: selection  $\lambda_d = 0$  with probability  $\rho$ 

### Feature Selection in Boston Housing Data

Posterior Distribution of  $\lambda_d$ 



### Classification Examples

| Name             | d  | data type  | n (train/test)     |
|------------------|----|------------|--------------------|
| Circle           | 2  | simulation | 200/1000           |
| Circle (3 null)  | 5  | simulation | 200/1000           |
| Circle (18 null) | 20 | simulation | 200/1000           |
| Swiss Bank Notes | 6  | real data  | 200 (5 <i>cv</i> ) |
| Breast Cancer    | 30 | real data  | 569 (5 <i>cv</i> ) |
| Ionosphere       | 33 | real data  | 351 (5 <i>cv</i> ) |

- Add latent Gaussian Z<sub>i</sub> for probit regression (as in Albert & Chib)
- ► Same model as before conditional on **Z**
- ightharpoonup Advantage: Draw  $oldsymbol{eta}$  in a block from full conditional
- ► Can extend to Logistic

### Predictive Error Rate for Classification

| Data Sets  |       | BARK  | SVM    | BART    |        |
|------------|-------|-------|--------|---------|--------|
| Data Sets  | D     | S + E | S + D  | 3 7 171 |        |
| Circle 2   | 4.91% | 1.88% | 1.93%  | 5.03%   | 3.97%  |
| Circle 5   | 4.70% | 1.47% | 1.65%  | 10.99%  | 6.51%  |
| Circle 20  | 4.84% | 2.09% | 3.69%  | 44.10%  | 15.10% |
| Bank       | 1.25% | 0.55% | 0.88%  | 1.12%   | 0.50%  |
| BC         | 4.02% | 2.49% | 6.09%  | 2.70%   | 3.36%  |
| Ionosphere | 8.59% | 5.78% | 10.87% | 5.17%   | 7.34%  |

D: dimension specific scale  $\lambda_d$ 

E: equal scales  $\lambda_d = \lambda \forall d$ 

S: selection  $\lambda_d=0$  with probability ho

#### Needs & Limitations

- ▶ NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- With availability of code what are caveats for users?

### Summary

#### Lévy Random Field Priors & LARK models:

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)