Kevin Sekuj

CS-225: Discrete Structures in CS

Homework 5, Part 2

Exercise Set 5.4: Problem: #3, #7, #8.a

Extra Canvas Problem

<u>Set 5.4</u>

#3.

Let the property P(n) be the statement " c_n is even" for each integer $n \ge 0$. Let c_0 , c_1 , c_2 be the sequence defined by $c_0 = 2$, $c_1 = 2$, and $c_2 = 6$.

Basis step:

P(0), P(1), and P(2). We are given $c_0 = 2$, $c_1 = 2$, and $c_2 = 6$, and 2 and 6 are all even integers. Thus, basis cases P(0), P(1), and P(2) are true.

Inductive hypothesis:

Let k be any integer with $k \ge 2$, suppose that P(i) is true for each integer i with $0 \le i \le k$.

 c_i is even for each integer i with $0 \le i \le k$.

Inductive step:

We must show that P(k+1) is true. That means we must show that c_{k+1} is even

 $c_k = 3c_{k-3}$ thus

$$c_{k+1} = 3c_{k-2}$$

By the inductive hypothesis, k-2 is definitively \leq k. Thus, c_{k-2} is even and can be expressed as 2r, as an even integer is defined as twice some integer.

$$= 3(2r)$$

Let s = (2r). Then

= 2s.

Therefore, c_{k+1} can be expressed as twice some integer, which means c_{k+1} is even. This proves that P(k+1) is true [since both the basis step and inductive step have been proved, P(n) is true for a ll integers $n \ge 0$].

#7.

Let g_0 , g_1 , g_2 be the sequence defined by $g_0 = 2$, $g_1 = 2$, and $g_k = 3g_{k-1} - 2g_{k-2}$ for each integer $k \ge 3$. Let the property P(n) be the statement " $g_n = 2^n + 1$ " for each integer $n \ge 1$, which we will prove by strong induction.

Basis step:

$$P(1) = g_1 = 2^1 + 1 = 3$$

$$P(2) = g_2 = 2^2 + 1 = 5$$

Also, we are given the values of g_1 and g_2 by the sequence definition. Thus, basis cases P(1), and P(2) are true.

Inductive hypothesis:

Let k be any integer with $k \ge 2$, suppose that P(i) is true for each integer i with $0 \le i \le k$.

 $g_i = 2^i + 1$ for all integers i from through k

Inductive step:

We must show that P(k+1) is true. That is, we must show that $g_{k+1} = 2^{k+1} + 1$.

$$g_k = 3g_{k-1} - 2g_{k-2}$$
 thus

$$g_{k+1} = 3g_{k-1+1} - 2g_{k-2+1}$$

$$=3g_k-2g_{k-1}$$

$$= 3(2^{k} + 1) - 2(2^{k-1} + 1)$$
 by inductive hypothesis

$$= 3 \cdot 2^k + 3 - 2 \cdot 2^{k-1} - 2$$
 by distributive property

$$= 3 \cdot 2^k + 3 - 2 \cdot 2^k \cdot 2^{-1} - 2$$
 by exponent laws

$$= 3 \cdot 2^{k} + 3 - (2 \cdot 2^{k} \cdot \frac{1}{2}) - 2$$
 as $2^{-1} = \frac{1}{2}$

$$= 3 \cdot 2^{k} + 3 - (2^{k} \cdot 1) - 2$$
 by arithmetic

$$= 3 \cdot 2^k - 2^k + 1$$
 ""

$$=(2^k+2^k+2^k)-2^k+1$$
 by expressing $3\cdot 2^k$ alternatively

$$= 2^k + 2^k + 1$$

$$= 2 \cdot 2^k + 1$$
 by exponent laws

$$= 2^{k+1} + 1$$

Therefore, P(k+1) is true. Also, since the basis step and inductive step have been proven, the statement P(n): " $g_n = 2^n + 1$ " for each integer $n \ge 1$ is true.

Let the property P(n) be the statement " $h_n \le 3^n$ " for each integer $n \ge 0$. Let h_0 , h_1 , h_2 be the sequence defined by $h_0 = 1$, $h_1 = 2$, and $h_2 = 3$.

Basis step:

Using $h_n \leq 3^n$

P(0):
$$h_0 = 1 \le 1 = 3^0$$

$$P(1)$$
: $h_1 = 2 \le 3 = 3^1$

P(2):
$$h_3 = 3 \le 9 = 3^2$$

Also, we are given the values of h_0 , h_1 , and h_2 by the sequence definition. Thus, basis cases P(0), P(1), and P(2) are true.

Inductive hypothesis:

Let P(0), P(1), P(2) to P(k) be true. Suppose that P(i) is true for each integer i = 0, 1, 2 ... k where $k \ge 2$.

 $h_i \leq \, 3^i \text{ for all integers } i \text{ through } k$

Inductive step:

We must show that P(k+1) is true

$$h_{k+1} = 3^{k+1}$$

$$h_{k+1} = h_{k+1-1} + h_{k+1-2} + h_{k+1-3}$$
 by sequence of $h_k = h_{k-1} + h_{k-2} + h_{k-3}$

$$= h_k + h_{k-1} + h_{k-2}$$

$$\leq 3^k + 3^{k-1} + 3^{k-2}$$
 by inductive hypothesis

$$\leq 3^k + 3^k + 3^k$$
 by $3^k \cdot 3^{k-1} \cdot 3^{k-2}$ each $\leq 3^k$

$$= 3 \cdot 3^k = 3^{k+1}$$

Therefore, P(k+1) is true. Also, since the basis step and inductive step have been proven, the statement P(n): "P(n) be the statement " $h_n \le 3^n$ " for each integer $n \ge 0$ is true.

Extra question on Canvas

a.

Basis step:

$$P(12) 12 = 3(4)$$

$$P(13) 13 = 2(4) + 1(5)$$

$$P(14) 14 = 1(4) + 2(5)$$

$$P(15) 15 = 3(5)$$

b.

Let k be any integer with $k \ge 15$. Suppose P(i) is true for each i with $12 \le i \le k$.

c.

In the inductive step, we must prove that P(k+1) is true. That is, form P(k+1) cents of postage using just 4 cent and 5 cent stamps.

d.

P(k-3) formed by 4 cent and 5 cent stamps is obtained from the inductive hypothesis. Since we have the sequence for P(12), we simply need to add one more 4 cent coin to that, thus

$$P_{(k+1)} = P_{(k-3)} + 4$$
 by sequence $P(12)$ + one 4 cent coin

=
$$(4a + 5b) + 4$$
 by inductive hypothesis where $p_i = 4a + 5b$

$$= 4a + 4 + 5b$$

$$= 4(a+1) + 5b$$
 by algebra

Therefore, P(k+1) is true. Also, since the basis step and inductive step have been proven, the given statement is true.