

Description

The AO4406 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 30V I_D = 6 A$

 $R_{DS(ON)} < 28 m\Omega \ @\ V_{GS} = 10 V \qquad R_{DS(ON)} < 42 m\Omega \ @\ V_{GS} = 4.5 \ V$

 $V_{DS} = -30V I_{D} = -7.6 A$

 $R_{DS(ON)} < 32m\Omega$ @ $V_{GS}=10V$ $R_{DS(ON)} < 40m\Omega$ @ $V_{GS}=4.5V$

Absolute Maximum Ratings (T_C=25 ℃ unless otherwise noted)

		Rating		
Symbol	Parameter	N-Ch	P-Ch	Units
VDS	Drain-Source Voltage	30	-30	V
VGS	Gate-Source Voltage	±20	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	6	-7.6	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	4.5	-5.9	Α
IDM	Pulsed Drain Current ²	20	-15	Α
EAS	Single Pulse Avalanche Energy ³	22	45	mJ
IAS	Avalanche Current	21	-30	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	2.0	2.0	W
TSTG	Storage Temperature Range	-55 to 150	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C
R _θ JA	Thermal Resistance Junction-Ambient ¹		62	°C/W
R₀JC	Thermal Resistance Junction-Case ¹		5	°C/W

N-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
2BV DSS/ 2T J	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.023		V/°C
Rds(on)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =10A		19	28	mΩ
		V _{GS} =4.5V , I _D =5A		28	42	
$V_{GS(th)}$	Gate Threshold Voltage		1.0	1.7	2.5	V
∄V _{GS(th)}	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-5.2		mV/°C
		V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	
Ipss	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	uA
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =10A		16		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.5	5	Ω
Qg	Total Gate Charge (4.5V)			7.2		
Qgs	Gate-Source Charge	V _{DS} =20V , V _{GS} =4.5V , I _D =10A		1.4		nC
Qgd	Gate-Drain Charge			2.2		
T _{d(on)}	Turn-On Delay Time			4.1		
Tr	Rise Time	V _{DD} =15V , V _{GS} =10V ,		9.8		
Td(off)	Turn-Off Delay Time	—R _G =3.3 , I _D =5A		15.5		ns
T _f	Fall Time			6.0		
Ciss	Input Capacitance			572		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		81		pF
Crss	Reverse Transfer Capacitance			65		
Is	Continuous Source Current ^{1,5}				10	Α
Іѕм	Pulsed Source Current ^{2,5}	─V _G =V _D =0V , Force Current			20	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V

Note:

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leqq 300us , duty cycle \leqq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1 mH, I_{AS} =21A
- 4 .The power dissipation is limited by 150°C junction temperature
- 5.The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

P-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30			V
®BVoss/®TJ	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.021		V/°C
		V _{GS} =-10V , I _D =-7A		24	32	
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =-4.5V , I _D =-5A		32	40	mΩ
VGS(th)	Gate Threshold Voltage		-1.0	-1.6	-2.5	V
☑VGS(th)	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, I_D =-250uA		-4.2		mV/°C
_		V _{DS} =-24V , V _{GS} =0V , T _J =25°C			1	
IDSS	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			5	- uA
Igss	Gate-Source Leakage Current	V_{GS} = $\pm 20V$, V_{DS} = $0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-7A		15		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		15	30	
Qg	Total Gate Charge (-4.5V)			9.8		
Qgs	Gate-Source Charge	V _{DS} =-20V , V _{GS} =-4.5V , I _D =-7A		2.2		nC
Qgd	Gate-Drain Charge			3.4		=
Td(on)	Turn-On Delay Time			16.4		
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V ,		20.2		
Td(off)	Turn-Off Delay Time	—R _G =3.3 , I _D =-5A		55		ns
Tf	Fall Time	1007		10		-
Ciss	Input Capacitance			930		
Coss	Output Capacitance	 V _{DS} =-15V , V _{GS} =0V , f=1MHz		148		pF
Crss	Reverse Transfer Capacitance			115		1
Is	Continuous Source Current ^{1,5}				-7.6	А
lsм	Pulsed Source Current ^{2,5}	−V _G =V _D =0V , Force Current			-15	A
Vsp	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V

Note:

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZcopper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data sh. The power dissipation is limited by ows Max. rating
- 4. The test condition is V150 $^{\circ}$ C junction temperature DD = -25 V,VGS = -10V,L=0.1mH,IAS = -30A
- 5 .The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

28

24

20

I_D=10A

N-Channel Typical Characteristics

R_{DSON} (mΩ) 16 12 4 8 2 V_{GS} (V) 10

Fig.1 Typical Output Characteristics

Fig.2 On-Resistance vs Gate-Source Voltage

Fig.3 Forward Characteristics of Reverse

Fig.4 Gate-Charge characteristics

Fig.5 Normalized V_{GS(th)} vs T_J

Fig.6 Normalized R_{DSON} vs T_J

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Waveform

P-Channel Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics of Reverse

Fig.5 Normalized V_{GS(th)} vs T_J

Fig.2 On-Resistance vs Gate-Source Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs T_J

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.11 Unclamped Inductive Waveform

Package Mechanical Data-SOP-8

Symbol	Dim in mm			
Symbol	Min	Nor	Max	
A	1. 350	1.550	1.750	
A1	0.100 0.175		0. 250	
A2	1.350	1.450	1. 550	
b	0. 330	0. 420	0. 510	
С	0. 170	0. 210	0. 250	
D	4. 800	4. 900	5. 000	
е	1. 270 (BSC)			
Е	5. 800	6. 000	6. 200	
E1	3. 800	3. 900	4. 000	
L	0.400	0.835	1. 2700	
0	0°	4°	8°	

Marking

Ordering information

Order code	Package	Baseqty	Deliverymode
UMW AO4406	SOP-8	3000	Tape and reel