Билет 99

Автор1, ..., Aвтор<math>N

22 июня 2020 г.

Содержание

0.1	билет ээ. Алгеора и о-алгеора множеств. Определе- ние, своиства, примеры. тео-
	рема о существовании минимальной σ-алгебры содержащей данное семейство мно-
	жеств. Борелевская оболочка и борелевские множества

0.1. Билет 99: Алгебра и σ-алгебра множеств. Определе- ние, свойства, примеры. Теорема о существовании минимальной σ-алгебры содержащей данное семейство множеств. Борелевская оболочка и борелевские множества.

Все рассматриваемые далее мн-ва - подмножества некоторого фиксированного мн-ва X.

Определение 0.1 (Обозначение).

 $A \sqcup B$ – дизъюнктное объединение.

$$A\cap B=\varnothing$$
 и $A\sqcup B:=A\cup B$

Замечание - напоминание.

$$A \setminus \bigcup_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

$$A \setminus \bigcap_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} (A \setminus B_{\alpha})$$

Определение 0.2.

Будет рассматривать некие семейства множеств $\mathcal{A} \subset 2^X$

Свойства семейства множеств А.

$$(\sigma_0)$$
 $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$

$$(\delta_0)$$
 $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$

$$(\sigma) A_n \in \mathcal{A} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$$

$$(\delta) A_n \in \mathcal{A} \implies \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$$

Определение 0.3.

 \mathcal{A} – симметричная, если $A \in \mathcal{A} \implies \overline{A} \in \mathcal{A}$

Утверждение 0.1.

$$\mathcal{A}$$
 – симметрично, то

$$(\sigma_0)\iff (\delta_0)$$
 и $(\sigma)\iff (\delta)$

Доказательство.

$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$

$$X \setminus \bigcup_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} (X \setminus A_n)$$

Определение 0.4.

 \mathcal{A} – алгебра множеств, если $\varnothing \in \mathcal{A}, \, \mathcal{A}$ – симметрично и обладает свойствами (δ_0) и (σ_0) .

 $\mathcal{A}-\sigma$ -алгебра множеств, если $\varnothing\in\mathcal{A},\ \mathcal{A}$ — симметрично и обладает свойствами (δ) и (σ) .

Свойства алгебры множеств.

1.
$$\varnothing, X \in \mathcal{A}$$

2.
$$A, B \in \mathcal{A} \implies A \setminus B \in \mathcal{A}$$

3.
$$A_1,...,A_n \in \mathcal{A} \implies \bigcap_{k=1}^n A_k \bowtie \bigcup_{k=1}^n A_k \in \mathcal{A}$$

Доказательство.

- 2. $A \setminus B = A \cap \overline{B}$
- 3. прошлое утверждение + индукция

Пример.

- 1. $\mathcal{A} = \{\emptyset, X\} \sigma$ -алгебра
- 2. $2^{X} \sigma$ -алгебра
- 3. $X = \mathbb{R}^n$ \mathcal{A} все ограниченные подмножества и их дополнения.

 \mathcal{A} – алгебра, но не σ -алгебра, ведь если взять объединение единичных клеточек подряд в одну строчку, то получится неограниченное мн-во, и дополнение будет тоже неограниченным.

4. \mathcal{A} – алгебра (σ -алгебра) подмножеств X.

$$Y \subset X \ \mathcal{A}_Y := \{Y \cap A : A \in \mathcal{A}\}$$

 \mathcal{A}_Y – алгебра (σ -алгебра) подмножеств Y.

Это индуцированная алгебра (σ -алгебра) - ограничили структуру на подмножество.

5. Пусть есть \mathcal{A}_{α} – алгебры (σ -алгебры). Тогда их пересечение – алгебра (σ -алгебра).

Действительно, понятно, что пустое лежит. Если лежит какое-то A, то оно лежит и во всех алгебрах, поэтому во всех алгебрах есть и дополнение A, поэтому оно есть и в пересечении.

6. Пусть $X \supset A, B$. Хотим сигма-алгебру, включающую A и B. Нарисуем:

Все, что можем собрать из кусочков на картинке должно быть в семействе множеств.

Кусочков 4, итого 16 множеств и это будет наименьшая σ -алгебра, содержащая множества A и B.

Теорема 0.2.

Для любой системы подмножеств \mathcal{E} множества X существует минимальная по включению алгебра (σ -алгебра), содержащая \mathcal{E} .

Доказательство.

Рассмотрим все σ -алгебры \mathcal{A}_{α} , содержащие \mathcal{E} .

Такие σ -алгебры точно существуют, т.к. например $2^X \supset \mathcal{E}$ и является σ -алгеброй.

Рассмотрим $\mathcal{A}:=\bigcap_{\alpha\in I}\mathcal{A}_{\alpha}\supset\mathcal{E}$

По пятому примеру, это σ -алгебра.

Билет 99 СОДЕРЖАНИЕ

Покажем, что это наименьшая по включению σ -алгебра, содержащая \mathcal{E} . Пусть \mathcal{B} — минимальная σ -алгебра, содержащая \mathcal{E} .

Тогда
$$\exists \beta \in I \quad \mathcal{A}_{\beta} = \mathcal{B}$$
, но
$$\mathcal{A} = \bigcap_{\alpha \in I} \mathcal{A}_{\alpha} \subset \mathcal{A}_{\beta} = \mathcal{B} \implies \mathcal{A} \subset \mathcal{B}$$

Определение 0.5.

 \mathcal{E} – семейство подмножеств X.

Борелевская оболочка \mathcal{E} $\mathcal{B}(\mathcal{E})$

– наименьшая σ -алгебра, содержащая $\mathcal E$

Определение 0.6.

Борелевская σ -алгебра \mathcal{B}^n — минимальная σ -алгебра, содержащая все открытые множества в \mathbb{R}^n .

Замечание.

$$\mathcal{B}^n \neq 2^{\mathbb{R}^n}$$

Более того, у них разные мощности. Первое – континуально, второе еще больше. Но поймём мы это позже.