České vysoké učení technické v Praze Fakulta elektrotechnická

Sbírka řešených příkladů

Optimalizace a teorie her

Jakub Adamec Praha, 2025

https://github.com/knedl1k/A8B010GT

Obsah

			Strai	na	
1	Prv	První týden			
	1.1	Důkaz souvislosti minima a maxima		2	
	1.2	Hledání přípustných množin		2	
	1.3	Hledání přípustných množin		2	
	1.4	Maximalisační úloha		3	
	1.5	Minimalisační úloha		3	
	1.6	Maximalisační úloha		3	
	1.7	Optimalisační úloha s nadrovinami		3	
	1.8	Optimalisační úloha se spojnicemi bodů		3	
	1.9	Optimalisační úloha s úsečkami		4	
	1.10	Vztah argmin		4	
	1.11	Uzavřená úsečka		5	
	1.12	Je nadrovina konvexní?		5	
	1.13	Je uzavřený poloprostor konvexní?		5	
	1.14	Je uzavřená koule konvexní?		5	
	1.15	Je okolí konvexní?		5	
	1.16	Je průnik množin konvexní?		6	
	1.17	Důkaz, že rozdíl a sjednocení nezachovává konvexitu		6	
	1.18	Důkaz, že afinní zobrazení je konvexní		6	
	1.19	Důkaz, že obraz konvexní množiny při afinním zobrazení je konvexní		7	
	1.20	Důkaz, že kartézský součin je konvexní		7	
	1.21	Práce s ortonormální bází a skalárním součinem		8	
	1.22	Bijekce mezi dvěma optimalisačními úlohami		8	
	1.23	Bijekce mezi dvěma optimalisačními úlohami		8	
	1.24	Určení definitnosti matic		9	
	1.25	Existence matice		9	
	1.26	Gradient vektorového součinu		9	
2	Dru	nhý týden		10	
	2.1	Věta o nejlepší aproximaci		10	
	2.2	Projekce bodu a variační nerovnost		10	
	2.3	Koule?		11	
	2.4	Věta o ortogonálním rozkladu		11	

3	Třetí týden	12
4	Čtvrtý týden	13
5	Pátý týden	14
6	Šestý týden	15
7	Sedmý týden	16
8	Osmý týden	17
9	Devátý týden	18
10	Desátý týden	19
11	Jedenáctý týden	20
12	Dvanáctý týden	21
13	Třináctý týden	22
14	Čtrnáctý týden	23

$\mathbf{\acute{U}vod}$

Tento text není psán jako učebnice, nýbrž jako soubor řešených příkladů, u kterých je vždy uveden celý korektní postup a případné moje poznámky, které často nebývají formální, a tedy by neměly být používány při oficálním řešení problémů, například při zkoušce. Jedná se pouze o pokus předat probíranou látku z různých úhlů pohledu, pokud by korektní matematický nebyl dostatečně výřečný.

Velmi ocením, pokud čtenáři zašlou své podněty, úpravy anebo připomínky k textu. Budu rád za všechnu konstruktivní kritiku a nápady na změny. Dejte mi také prosím vědět, pokud v textu objevíte překlepy, chyby a jiné.

Errata a aktuální verse textu bude na stránce https://github.com/knedl1k/A8B010GT.

Poděkování. Rád bych poděkoval docentu Martinu Bohatovi nejen za zadání, okolo kterých je postavena celá sbírka, ale také za celý předmět Optimalizace a teorie her.

Text je vysázen makrem IAT_EX Leslieho Lamporta s využitím balíků hypperref Sebastiana Rahtze a Heiko Oberdiek.

Stručné informace o textu

Všechny růžové texty jsou zároveň hypertextové odkazy. Často jsou použity u přednáškových příkladů, pomocí nichž lze vidět ukázkové řešení příkladu na přednášce.

U každého příkladu je pro ušetření místa a zpřehlednění sbírky řešení jednotlivých příkladů ihned pod zadáním.

1 První týden

1.1 Důkaz souvislosti minima a maxima

Tvrzení. Pro $f:D \to \mathbb{R}, M \subseteq D, \hat{x} \in M$ platí:

- $(1) \ \hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x) \iff \hat{x} \in \underset{x \in M}{\operatorname{argmax}} (-f(x)),$
- (2) jesliže $\hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x)$, pak $\underset{x \in M}{\min} f(x) = -\underset{x \in M}{\max} (-f(x))$.

Důkaz.

$$(1)\ \hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x), \operatorname{tj.}\ f(\hat{x}) \leq f(x), \forall x \in M \iff -f(\hat{x}) \geq -f(x), \forall x \in M, \operatorname{tj.}\ \hat{x} \in \underset{x \in M}{\operatorname{argmax}} (-f(x)). \quad \Box$$

(2) At
$$\hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x)$$
, pak $\underset{x \in M}{\min} f(x) = f(\hat{x}) = -(-f(\hat{x})) \stackrel{(1)}{=} -\underset{x \in M}{\max} (-f(x))$.

1.2 Hledání přípustných množin

minimalizujte
$$x^2 + 1$$

za podmínek
$$\frac{3}{x} \le 1$$
,

$$x \in \mathbb{N}$$

Upravíme podmínky a uděláme jejich průnik: $(x-3 \ge 0) \land (x \in \mathbb{N}) \Rightarrow M = \mathbb{N} \setminus \{1,2\}.$

Úvahou pak lze uhodnout minimum - minimum leží v bodě x = 3.

1.3 Hledání přípustných množin

maximalizujte
$$\ln x$$

za podmínek
$$x \leq 5$$
,

$$\cos(\pi x) = 1.$$

$$D(f) = (0, \infty).$$

Udělejme průnik definičního oboru funkce a podmínek: $(x \in (0, \infty)) \land (x \le 5) \land (\cos(\pi x) = 1)$.

Očividně tedy $M = \{2, 4\}.$

Úvahou pak lze uhodnout $\underset{x \in M}{\operatorname{argmax}} \ln x = \{4\}.$

1.4 Maximalisační úloha

Banka nabízí dva investiční produkty. Očekávaný měsíční výnos prvního investičního produktu (v tis. Kč) při investici x (v tis. Kč) je $\frac{2x}{4x+25}$ a očekávaný měsíční výnos druhého invetičního produktu (v tis. Kč) při investici x (v tis. Kč) je $\frac{x}{x+50}$. Jakým způsobem má investor rozdělit částku c=100000 Kč mezi uvedené dva produkty tak, aby celkový očekávaný měsíční výnos byl co největší?

1.5 Minimalisační úloha

Ve firmě potřebují nalézt rozměry otevřené krabice (tj. krabice bez horní stěny) se čtvercovou podstavou o objemu 10 dm³ tak, aby obsah plochy jejího pláště byl co nejmenší. Formulujte odpovídající optimalisační úlohu za předpokladu, že krabice je vyrobena z materiálu, jehož tloušťka je zanedbatelná. Tuto úlohu poté vyřešte.

1.6 Maximalisační úloha

V továrně vyrábějí zboží různých druhů. Označme je X_1, \ldots, X_n . Na jejich výrobu potřebují materiály Y_1, \ldots, Y_m . Na skladě mají k dispozici množství b_i materiálu Y_i a na trhu ho nakupují za cenu γ_i . Na výrobu jednotkového množství zboží X_j potřebují množství a_{ij} materiálu Y_i . Jednotkové množství výrobku X_j prodávají za cenu σ_j . Formulujte optimalisační úlohu problému nastavení množství výroby jednotlivých druhů produktů (předpokládejte, že hledaná množství nemusí být celočíselná) tak, aby celkový zisk z jejich prodeje byl co největší.

1.7 Optimalisační úloha s nadrovinami

V \mathbb{R}^n jsou dány množiny bodů $A = \{a_1, \ldots, a_k\}$ a $B = \{b_1, \ldots, b_t\}$. Ať $w \in \mathbb{R}^n$ a $\lambda \in \mathbb{R}$. Předpokládejme, že H je nadrovina o rovnici $\langle x, w \rangle + \lambda = 0$, H_1 je nadrovina o rovnici $\langle x, w \rangle + \lambda = 1$ a H_2 je nadrovina o rovnici $\langle x, w \rangle + \lambda = -1$.

- (a) Ukažte, že vzdálenost mezi nadrovinami H_1 a H_2 je $\frac{2}{||w||}$. Dále ukažte, že $\frac{1}{||w||}$ je vzdálenost H od H_2 .
- (b) Iterpretujte optimalisační úlohu

maximalisujte
$$g(w, \lambda) = \frac{2}{||w||}$$
 za podmínek $\langle a_i, w \rangle + \lambda \geq 1$ pro všechna $i = 1, \dots, k$, $\langle b_i, w \rangle + \lambda \leq -1$ pro všechna $j = 1, \dots, l$.

(c) Ukažte, že $(\hat{w}, \hat{\lambda})$ je řešením úlohy z předchozího bodu právě tehdy, když je řešením úlohy (kvadratického programování) ve tvaru

minimalisujte
$$h(w, \lambda) = \frac{1}{2}||w||^2$$

za podmínek $\langle a_i, w \rangle + \lambda \ge 1$ pro všechna $i = 1, \dots, k$,
 $\langle b_i, w \rangle + \lambda \le -1$ pro všechna $j = 1, \dots, l$.

1.8 Optimalisační úloha se spojnicemi bodů

V rovině jsou dány body $P = (0,0)^T$ a $Q = (1,1)^T$.

- (a) Formulujte optimalisační úlohu problému nalezení nejkratší spojnice bodů P a Q. Spojnicí rozumíme křivku danou grafem spojitě diferencovatelné funkce $f:[0,1] \to \mathbb{R}$.
- (b) Nalezněte řešení úlohy z předchozího bodu.¹

1.9 Optimalisační úloha s úsečkami

V rovině jsou dány body $P = (-1,0)^T$ a $Q = (1,0)^T$. Ať L je úsečka s krajními body P a Q.

- (a) Formulujte optimalisační plohu problému nalezení spojitě diferencovatelné funkce $y:[-1,1] \to \mathbb{R}$, jejíž graf má koncové body P a Q, délku l=3, leží v horní polorovině a spolu s úsečkou L ohraničuje část roviny o největším obsahu.
- (b) Ať $(x_0, x_1, ..., x_k)$ je ekvidistantní dělení intervalu [-1, 1] (tj. $x_l = l\delta$, kde $\delta = \frac{2}{k}$). Využitím tohoto dělení k aproximaci integrálu pomocí konečné sumy a derivace pomocí diferencí nalezněte optimalisační úlohu v \mathbb{R}^{k+1} , jejíž řešení aproximuje řešení úlohy z předchozího bodu.

1.10 Vztah argmin

Ať $\varphi: X \to Y$ je bijekce, $D_f \subseteq X, D_g \subseteq Y, \varphi(D_f) \subseteq D_g, M \subseteq D_f$ a $\hat{x} \in M$. Předpokládejme, že funkce $f: D_f \to \mathbb{R}$ a $g: D_g \to \mathbb{R}$ splňují $f = g \circ \varphi$. Ukažte, že $\hat{x} \in \operatorname{argmin}_{x \in M} f(x)$ právě tehdy, když $\varphi(\hat{x}) \in \operatorname{argmin}_{y \in \varphi(M)} g(y)$.

 $^{^1}$ Nápověda: Ukažte, že $g(\overline{t})=t, t\in [0,1],$ je řešením úlohy. Využijte přitom toho, že pro dvě spojité funkce f_1 a f_2 na intervalu [0,1] je $\int_0^1 \left(f_1(t),f_2(t)\right)^T \mathrm{d}T := \left(\int_0^1 f_1(t)\,\mathrm{d}t,\int_a^b f_2(t)\,\mathrm{d}t\right)^T$ a platí

 $[\]left| \left| \int_0^1 (f_1(t), f_2(t))^T \, \mathrm{d}t \right| \right| \leq \int_0^1 \left| \left| (f_1(t), f_2(t))^T \right| \right| \, \mathrm{d}t. \text{ K důkazu jednoznačnosti pak lze využít tvrzení, že rovnost v uvedené "trojúhelníkové nerovnosti pro integrály" nastává pávě tehdy, když existuje spojitá funkce <math>\lambda : [0, 1] \to \mathbb{R}$ taková, že $(f_1(t), f_2(t))^T = \lambda(t) \int_0^1 (f_1(t), f_2(t))^T \, \mathrm{d}t.$

Konvexní množiny

Definice. Množina $C \subseteq \mathbb{R}^n$ se nazve konvexní, jestliže pro každé $x, y \in C$ je $[x, y] \in C$.

1.11 Uzavřená úsečka

Nechť $x, y \in \mathbb{R}^n$. Množina

$$[x, y] := {\lambda x + (1 - \lambda)y \mid 0 \le \lambda \le 1}$$

se nazývá uzavřená úsečka s krajními body x a y.

1.12 Je nadrovina konvexní?

Definice nadroviny: $H(y; \alpha) := \{x \in \mathbb{R}^n \mid \langle x, y \rangle = \alpha\}, y \in \mathbb{R}^n, \alpha \in \mathbb{R}.$

Důkaz.

Af $x, z \in H(y, \alpha), \lambda \in [0, 1].$

Cíl: $\lambda x + (1 - \lambda)z \in H(y, \alpha)$. Tedy dokazujeme podle definice.

$$\langle \lambda x + (1 - \lambda)z, y \rangle = \lambda \underbrace{\langle x, y \rangle}_{\alpha} + (1 - \lambda) \underbrace{\langle z, y \rangle}_{\alpha} = \lambda \alpha + (1 - \lambda)\alpha = \alpha.$$

$$\Rightarrow \lambda x + (1 - \lambda)z \in H(y, \alpha). \quad \Box$$

1.13 Je uzavřený poloprostor konvexní?

1.14 Je uzavřená koule konvexní?

Definice uzavřené koule: $B(a,r)=\{a\in\mathbb{R}^n\mid ||x-a||\leq r\},$ o středu $a\in\mathbb{R}^n$ a poloměru r>0.

Důkaz.

At $x, y \in \mathbb{R}^n, \lambda \in [0, 1]$.

Cíl: $||[\lambda x + (1 - \alpha)y] - a|| \le r$. Tedy za x z definice dosadíme úsečku mezi body x a y, které jsme si vybrali a chceme ukázat, že i tato úsečka leží v uzavřené kouli, dle definice.

$$||[\lambda x + (1 - \alpha)y] - a|| = ||\lambda x - (1 - \lambda)a + (1 - \lambda)y - \lambda a|| = ||\lambda(x - a) + (1 - \lambda)(y - a)||$$

$$\leq \lambda ||\underbrace{x - a}_{\leq r}|| + (1 - \lambda)||\underbrace{y - a}_{\leq r}|| \leq \lambda r + (1 - \lambda)r = r. \quad \Box$$

1.15 Je okolí konvexní?

Definice okolí: $B(a,r) = \{a \in \mathbb{R}^n \mid ||x-a|| < r\}$, o středu $a \in \mathbb{R}^n$ a poloměru r > 0.

Důkaz.

At $x, y \in \mathbb{R}^n, \lambda \in [0, 1]$.

Cíl: $||[\lambda x + (1 - \alpha)y] - a|| < r$. Dle definice.

$$||[\lambda x + (1-\alpha)y] - a|| = ||\lambda x - (1-\lambda)a + (1-\lambda)y - \lambda a|| = ||\lambda(x-a) + (1-\lambda)(y-a)||$$

$$\leq \lambda ||\underbrace{x-a}_{\leq r}|| + (1-\lambda)||\underbrace{y-a}_{\leq r}|| < \lambda r + (1-\lambda)r = r. \quad \Box$$

1.16 Je průnik množin konvexní?

Úvaha pro 2 množiny ve \mathbb{R}^2 :

Mějme jednu modrou $(y \ge 0)$ a druhou červenou $(x \ge 0)$ konvexní množinu. Jejich průnik je pak nezáporný ortant, tedy

$$\mathbb{R}^n_+ = \{(x_1, \dots, x_n)^T \in \mathbb{R}^n \mid x_1 \ge 0, \dots, x_n \ge 0\}.$$

Visuálně je průnik nekonvexní.

Důkaz.

Nechť
$$x, y \in \bigcap_{i \in I} \mathbb{M}_i, \forall i \in I \implies [x, y] \in \mathbb{M}_i, \forall i \in I \implies [x, y] \subseteq \bigcap_{i \in I} \mathbb{M}_i.$$

1.17 Důkaz, že rozdíl a sjednocení nezachovává konvexitu

Mějme $[0,1] \setminus (0,1) = \{0,1\} = \{0\} \cup \{1\}.$

[0,1]a (0,1)jsou konvexní množiny. Jejich rozdíl ale už konvexní není.

 $\{0\}$ a $\{1\}$ jsou konvexní množiny. Jejich sjednocení ale už konvexní není.

Afinní zobrazení

Definice. Zobrazení $f: \mathbb{R}^n \to \mathbb{R}^m$ se nazývá afinní, existují-li $A \in \mathbb{M}_{m,n}(\mathbb{R})$ a $b \in \mathbb{R}^m$ tak, že f(x) = Ax + b.

1.18 Důkaz, že afinní zobrazení je konvexní

Tvrzení.

Nechť $f:\mathbb{R}^n\to\mathbb{R}^m$. Pak f je afinní \iff pro každé $x,y\in\mathbb{R}^n$ a každé $\lambda\in\mathbb{R}$ platí

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y).$$

Důkaz.

" \Rightarrow ": At f(x) = Ax + b, kde $A \in \mathbb{M}_{m,n}(\mathbb{R}), b \in \mathbb{R}^n$.

At $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$.

$$f(\lambda x + (1 - \lambda)y) = A[\lambda x + (1 - \lambda)y] + b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + \lambda$$

" \Leftarrow ": Cíl: Ukázat, že f je afinní, tedy f(x) = Ax + b.

Zvolme $\varphi(x) = f(x) - f(0)$.

Pokud je f afinní, pak zobrazení φ by mělo být dáno jako Ax, tedy být lineární.

Cíl: φ je lineární zobrazení.

Musíme ověřit uzavřenost na násobení a sčítání z definice.

(1) At $x \in \mathbb{R}^n$, $\alpha \in R$.

Cíl: $\varphi(\alpha x) = \alpha \varphi(x)$.

$$\varphi(\alpha x) = f(\alpha x) - f(0) = f(\alpha x + (1 - \alpha)0) - f(0) = \alpha f(x) + (1 - \alpha)f(0) - f(0) = \alpha f(x) - \alpha f(0) = \alpha f(x) - f(0) = \alpha \varphi(x - 0). \quad \Box$$

(2) At $x, y \in \mathbb{R}^n$.

Cíl: $\varphi(x+y) = \varphi(x) + \varphi(y)$.

$$\varphi(x+y) = \varphi\left(2\left(\frac{1}{2}(x+y)\right)\right) \stackrel{(1)}{=} 2\varphi\left(\frac{1}{2}(x+y)\right) = 2\left[f(\frac{1}{2}x + \frac{1}{2}y) - f(0)\right] = 2\left[\frac{1}{2}f(x) + \frac{1}{2}f(y) - f(0)\right] = f(x) + f(y) - f(0) - f(0) = \underbrace{f(x) - f(0)}_{\varphi(x)} + \underbrace{f(y) - f(0)}_{\varphi(y)} = \varphi(x) + \varphi(y). \quad \Box$$

1.19 Důkaz, že obraz konvexní množiny při afinním zobrazení je konvexní

Tvrzení.

Je-li $f: \mathbb{R}^n \to \mathbb{R}^m$ afinní a $C \subseteq \mathbb{R}^n$ konvexní, pak f(C) je konvexní.

Důkaz.

Mějme $a, b \in f(C) \implies \exists x, y \in C : f(x) = a, f(y) = b.$

Dle předpokladu je
$$C$$
 konvexní. $\Longrightarrow [x,y] \subseteq C \Longrightarrow \underbrace{f([x,y])}_{\subseteq f(C)} = \underbrace{[f(x),f(y)]}_{a} \subseteq f(C)$. \square

1.20 Důkaz, že kartézský součin je konvexní

Tvrzení.

Nechť $C_1 \subseteq \mathbb{R}^n$ a $C_2 \subseteq \mathbb{R}^m$. Pak C_1 a C_2 jsou konvexní množiny právě tehdy, když $C_1 \times C_2$ je konvexní množina.

Důkaz.

"\Rightarrow": Mějme
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
, $\begin{bmatrix} c \\ d \end{bmatrix} \in C_1 \times C_2$, $\lambda \in [0, 1]$

Cil:
$$\lambda \begin{bmatrix} a \\ b \end{bmatrix} + (1 - \lambda) \begin{bmatrix} c \\ d \end{bmatrix} \in C_1 \times C_2$$
. Dle definice.

$$\lambda \begin{bmatrix} a \\ b \end{bmatrix} + (1 - \lambda) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \lambda a \\ \lambda b \end{bmatrix} + \begin{bmatrix} (1 - \lambda)c \\ (1 - \lambda)d \end{bmatrix} = \begin{bmatrix} \lambda a + (1 - \lambda)c \\ \lambda b + (1 - \lambda)d \end{bmatrix} \in C_1 \times C_2. \quad \Box$$

"\(\infty\)": Definujme afinní zobrazení $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ předpisem

$$f(x,y) = x$$
.

Pak f je afinní. Navíc $f(C_1 \times C_2) = C_1$. $\Longrightarrow C_1$ je konvexní, protože afinní zobrazení zachovává konvexitu. A důkaz bude obdobný pro C_2 , zde zadefinujme afinní zobr. $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ předpisem

$$q(x,y) = y.$$

Pak g je afinní. Navíc $g(C_1 \times C_2) = C_2$. $\Longrightarrow C_2$ je konvexní, protože afinní zobrazení zachovává konvexitu. \square

1.21 Práce s ortonormální bází a skalárním součinem

Uvažme lineární prostor $\mathbb{S}^n = \{A \in \mathbb{M}_n(\mathbb{R}) \mid A^T = T\}$ reálných symetrických $n \times n$ matic se skalárním součinem $\langle AB \rangle_{\mathbb{S}_n} = Tr(AB)$.

- (a) Ukažte, že $\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ je ortonormální báze na \mathbb{S}^2 .
- (b) Ukažte, že zobrazení

$$\varphi: \begin{bmatrix} a & b \\ b & c \end{bmatrix} \in \mathbb{S}^2 \mapsto \begin{bmatrix} a \\ \sqrt{2}b \\ c \end{bmatrix} \in \mathbb{R}^3$$

je isomorfismus lineárního prostoru \mathbb{S}^2 na \mathbb{R}^3 zachovávající skalární součin (tj. $\langle A, B \rangle_{\mathbb{S}_2} = \langle \varphi(A), \varphi(B) \rangle$ pro všechna $A, B \in \mathbb{S}^2$, kde $\langle \dots \rangle$ je standardní skalární součin na \mathbb{R}^3)

- (c) Zobecněte výsledky bodů (a) a (b) do prostoru $\mathbb{S}^2 na\mathbb{R}^2$ zachovávající skalární součin.
- (d) Ať \mathbb{S}^2_+ je množina všech reálných symetrických 2×2 matic, které jsou navíc positivně semidefinitní. Ukažte, že jestliže φ je zobrazení z bodu (b), pak

$$\varphi(\mathbb{S}_{+}^{2}) = \left\{ (x, y, z)^{T} \in \mathbb{R}^{3} \mid x \ge 0, z \ge 0, 2xz - y^{2} \ge 0 \right\}.$$

1.22 Bijekce mezi dvěma optimalisačními úlohami

Je dána úloha

minimalisujte
$$\langle X, A \rangle_{\mathbb{S}_2}$$

za podmínek $\langle X, \mathbf{1} \rangle_{\mathbb{S}_2} = 2$,
 $X \in \mathbb{S}^2_+$,

kde $A = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$ a $\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Ukažte², že existuje bijekce mezi množinou všech jejich řešení a množinou všech řešení úlohy

minimalisujte
$$3x_1+2x_2+x_3$$
 za podmínek $x_1+x_3=2,$
$$x_1x_3-x_2^2\geq 0, \qquad \qquad x_1,x_3\geq 0.$$

1.23 Bijekce mezi dvěma optimalisačními úlohami

Je dána úloha

minimalisujte
$$\langle X,A\rangle_{\mathbb{S}_2}$$

za podmínek $\langle X,B\rangle_{\mathbb{S}_2}=0,$
 $\langle X,\mathbf{1}\rangle_{\mathbb{S}_2}=1,$
 $X\in\mathbb{S}_+^2,$

²Nápověda: využijte výsledků 7. a 8. příkladu.

kde $A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ a $\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Ukažte³, že existuje bijekce mezi množinou všech jejich řešení a množinou všech řešení úlohy

minimalisujte
$$2x - y$$

za podmínek $x + y = 1$,
 $x, y \ge 0$.

1.24 Určení definitnosti matic

Určete definitnost matice A, jestliže

(a)
$$\begin{bmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix};$$

(b)
$$\begin{bmatrix} 15 & 3 & 2 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix};$$

(c)
$$\begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix};$$

(d)
$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix};$$

(e)
$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 2 \\ 1 & 2 & -3 \end{bmatrix};$$

(f)
$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 1 \end{bmatrix} .$$

1.25 Existence matice

 $A\dot{t} A \in \mathbb{M}_n(\mathbb{R}).$

- (a) Ukažte, že $\langle Ax, y \rangle = \langle x, A^T y \rangle$ pro všechna $x, y \in \mathbb{R}^n$.
- (b) Ukažte, že existují matice $B, C \in \mathbb{M}_n(\mathbb{R})$ takové, že $B^T = B$, $C^T = -C$ a A = B + C. Jsou matice B a C určeny jednoznačně?
- (c) Ukažte, že existuje symetrická matice $B \in \mathbb{M}_n(\mathbb{R})$ taková, že $\langle Ax, x \rangle = \langle Bx, x \rangle$.

1.26 Gradient vektorového součinu

Nalezněte $\nabla f(x)$ a $\nabla^2 f(x)$, jestliže

- (a) $f(x) = \langle x, c \rangle$, kde $c \in \mathbb{R}^n$;
- (b) $f(x) = \langle Ax, x \rangle$, kde $A \in \mathbb{M}_n(\mathbb{R})$. Určete také $\nabla f(x)$ a $\nabla^2 f(x)$ za dodatečného předpokladu, že A je symetrická matice.

³Nápověda: využijte výsledků 7. a 8. příkladu.

$\mathbf{2}$ Druhý týden

2.1 Věta o nejlepší aproximaci

Je-li $C \subseteq \mathbb{R}^n$ neprázdná uzavřená konvexní množina, pak pro každé $x \in \mathbb{R}^n$ existuje právě jeden bod $\hat{y} \in C \text{ tak, } \check{\text{ze dist}}(x; C) = ||x - \hat{y}||.$

Důkaz.

1. Existence

Cíl: Existuje bod minima

Úvaha:

M je obecná konvexní množina.

c x
$$R=||x-z||,$$
 $Cz=M\cap B(x,R)=M\cap \{a\in \mathbb{R}^n\mid ||z-a||\leq R\}.$ † uzavřená, omezená, neprázdná

Tedy $a \mapsto ||x - a||$ je spojitá.

⇒ Spojitost na kompaktní množině znamená, že f nabývá na C_z minima dle Weierstrassova kritéria.

Ať y je bod minima. Všechny body v M mají od x vzdálenost $\geq ||x-y||$. \square

2. Jednoznačnost.

Cíl: Pokud $a,b \in \mathbb{R}^n: ||x-a|| = ||x-b|| = \overbrace{\operatorname{dist}(x,M)}^{\delta}$, pak a=b. Lemma, rovnoběžníkové pravidlo: $u,v \in \mathbb{R}^n \Rightarrow ||u+v||^2 + ||u-v||^2 = 2\left(||u||^2 + ||v||^2\right)$. Důkaz lemma:

$$||u+v||^2 + ||u-v||^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = ||u||^2 + 2\langle u, v \rangle + ||v||^2 + ||u||^2 - 2\langle u, v \rangle + ||v||^2$$

$$= 2\left(||u||^2 + ||v||^2\right). \quad \Box$$

Důkaz jednoznačnosti:

At
$$y = \frac{1}{2}a + \frac{1}{2}b$$
.

Dukaz jednoznachosti.

Af
$$y = \frac{1}{2}a + \frac{1}{2}b$$
.

Pak $\delta^2 \le ||x - y||^2 = ||x - \frac{1}{2}a - \frac{1}{2}b||^2 = ||\frac{1}{2}(x - a) + \frac{1}{2}(x - b)||^2 = \frac{1}{4}||\underbrace{(x - a)}_u + \underbrace{(x - b)}_v||^2$

$$\stackrel{\text{lemma}}{=} \frac{1}{4} \left[2 \left(\underbrace{||x-a||^2}_{\delta^2} + \underbrace{||x-b||^2}_{\delta^2} \right) - \underbrace{||(x-a)+(x-b)||^2}_{b-a} \right] = \delta^2 - \frac{1}{4} ||b-a||^2 \Rightarrow \delta^2 \leq \delta^2 - \underbrace{\frac{1}{4} ||b-a||^2}_{\leq 0 \Rightarrow a=b}.$$

2.2Projekce bodu a variační nerovnost

Nechť $C \subseteq \mathbb{R}^n$ je neprázdná uzavřená konvexní množina, $x \in \mathbb{R}^n$ a $y \in C$. Pak následující tvrzení isou ekvivalentní:

- (1) $y = P_C(x)$, kde $P_C(x)$ je projekční operátor.
- (2) Pro každé $z \in C$ je $\langle x y, z y \rangle \leq 0$.

Důkaz.

$$(1) \Rightarrow (2)$$
:

At
$$v_{\lambda} = y + \lambda(z - y), \lambda \in (0, 1].$$

Pak

$$||x-y||^2 \le ||x-v_{\lambda}||^2 = ||x-y-\lambda(z-y)||^2 = \langle (x-y)-\lambda(z-y), (x-y)-\lambda(z-y) \rangle$$

$$||x-y||^2 \le ||x-y||^2 - 2\lambda \langle x-y, z-y \rangle + \lambda^2 ||z-y||^2$$

$$\Rightarrow \langle x-y, z-y \rangle \le \frac{\lambda}{2} ||z-y||^2 \to 0 \text{ pro } \lambda \to 0^+$$

$$\Rightarrow \langle x-y, z-y \rangle \le 0. \quad \Box$$

 $(2) \Rightarrow (1)$:

Ať $z \in C$.

Pak

$$0 \ge \langle x - y, z - y \rangle = \langle x - y, (z - x) + (x - y) \rangle = \langle x - y, z - y \rangle + ||x - y||^2$$
$$\langle x - y, z - y \rangle + ||x - y||^2 \ge ||x - y||^2 - \underbrace{|\langle x - y, z - y \rangle|}_{\text{odhad shora}} \ge \star$$

$$\star = ||x - y||^2 - ||x - y|| \cdot ||z - x||.$$

Je-li $x \neq y$, pak vydělíme: $||z - x|| \geq ||x - y||$. Je-li x = y, pak $y \in C : x \in C \dots$ triviální.

2.3 Koule?

2.4 Věta o ortogonálním rozkladu

Nechť $L \subseteq \mathbb{R}^n$ je lineární podprostor. Potom platí:

- (1) $P_L: \mathbb{R}^n \to \mathbb{R}^n$ je lineární zobrazení.
- (2) Pro každé $x \in \mathbb{R}^n$ je $P_{L^{\perp}}(x) = x P_L(x)$.
- (3) Pro každé $x \in \mathbb{R}^n$ existují jednoznačně určené body $y \in L$ a $z \in L^{\perp}$ tak, že x = y + z. Navíc $y = P_L(x)az = P_{L^{\perp}}(x)$.

Důkaz.

(1)

Cíl: Dokázat vlastnosti lineárního zobrazení, tedy

- 1. $P_L(\alpha x) = \alpha \cdot P_L(x), \forall \alpha \in \mathbb{R}, x \in \mathbb{R}^n$.
- 2. $P_L(x+y) = P_L(x) + P_L(y), \forall x, y \in \mathbb{R}^n$.
- 1. : Ať $z \in L$. Pak

$$\langle \alpha x - \alpha P_L(x), z - \alpha P_L(x) \rangle = \alpha \langle x - P_L(x), z - \alpha P_L(x) \rangle$$

$$\stackrel{\alpha \neq 0}{=} \underbrace{\alpha^2}_{>0} \langle x - P_L(x), \underbrace{\frac{1}{\alpha} \cdot z}_{\in L} - P_L(x) \rangle$$

3 Třetí týden

4 Čtvrtý týden

5 Pátý týden

6 Šestý týden

7 Sedmý týden

8 Osmý týden

9 Devátý týden

10 Desátý týden

11 Jedenáctý týden

12 Dvanáctý týden

13 Třináctý týden

14 Čtrnáctý týden