EBU6018 Advanced Transform Methods

Multiresolution Analysis (MRA)

Andy Watson

Tackling the Redundancy Problem

- Because the CWT(a,b) is a continuous transform, it encodes more than enough information to reconstruct the signal. A sampled version is sufficient.
- a is scaling factor. b is translation term.
- Let us sample in a dyadic (power of 2) grid:

$$a = 2^{-m}$$
 $b = n2^{-m}$

$$CWT(2^{-m}, n2^{-m}) = \frac{1}{\sqrt{|2^{-m}|}} \int_{-\infty}^{\infty} s(t) \psi^* \left(\frac{t - n2^{-m}}{2^{-m}}\right) dt$$

$$d_{m,n} = CWT(2^{-m}, n2^{-m}) = \int_{-\infty}^{\infty} s(t)\psi^*_{m,n}dt$$

where
$$\psi_{m,n}(t) = 2^{m/2} \psi(2^m t - n)$$

Discrete (sampled) Transform

If the set of functions $\psi_{m,n}$ forms a frame, then we can recover s(t)

 $S(t) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} d_{m,n} \hat{\psi}_{m,n}(t)$

where $\hat{\psi}_{m,n}(t)$ forms the dual frame

For the orthonormal frame, we have $\hat{\psi}_{m,n}(t) = \psi_{m,n}(t)$

So we get the wavelet series (transform and inverse):

$$d_{m,n} = \int_{-\infty}^{\infty} s(t) \psi^*_{m,n} dt$$

$$s(t) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} d_{m,n} \psi_{m,n}(t)$$

So: wavelet series is not redundant (finite number of coefficients)

Multiresolution Analysis (MRA)

 Objective: To analyze a complicated function by dividing it into several simpler ones and studying them separately.

Piecewise Approximation

Basic Concept: Decompose a fine-resolution signal into

1. A coarse-resolution version of the signal, and

So: what about wavelets? Theory coming next...

Multiresolution Analysis

- If we remove the fine detail from the signal in space V⁴
- and put that in space W^3 then the approximate signal left in V^3 and the detail in W^3 have no elements in common.
- So the signal in V space and the signal in W space at a given level of decomposition are orthogonal.
- Similarly for V^2 and W^2 , etc.
- Starting at level 4 is arbitrary.

Multiresolution Analysis

With the Haar Function we saw that the scaling function can be constructed from a series of scaled and translated scaling functions. That is:

A scaling function $\phi(t)$ generates a nested subsequence of subspaces $\{V_i\}$,

$$\{0\} \longleftarrow \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots$$

and satisfies a dilation (refinement) equation

$$\phi(t) = \sum_{k} p_{k} \phi(at - k)$$
 for integer k

for some a > 0 and coefficients $\{p_k\}$

We consider a = 2 that corresponds to octave-scales, that is, dyadic.

Spaces of functions

The space V_0 is generated by $\{\phi(t-k)\}$ for integers k In general, V_j is generated by $\{\phi(2^jt-k)\}$ Then: $V_n = \bigoplus_{j=-\infty}^n W_j \quad \text{(orthorgonal sum of subspaces)}.$ $V_{n+1} = \bigoplus_{j=-\infty}^n W_j = \bigoplus_{j=-\infty}^{n-1} W_j \oplus W_n = V_n \oplus W_n$

Subspace W_n is the *orthogonal complementary subspace* of V_n in V_{n+1} .

That is, we can reconstruct the original signal by adding together V and W at lower levels. (We could also provide compression my omitting the coefficients at low levels.)

Multiresolution Analysis (cont)

Subspaces $\{V_j\}$ are nested while subspaces $\{W_j\}$ are mutually orthogonal.

Consequently,

$$\begin{cases} V_j \cap V_l = V_j & l > j; \\ W_j \cap W_l = \{0\} & j \neq l; \\ V_j \cap W_l = \{0\} & j \leq l. \\ \vdots & \vdots \end{cases}$$

 V_1

 V_0 W_0

 $oldsymbol{V}_{-1} oldsymbol{W}_{-1}$

 V_{-2} W_{-2}

i.e. V_1 can be decomposed into combination of V_0 and W_0 , etc.

EBU6018

Multiresolution Analysis (cont.)

If the Scaling function and the Wavelet function are orthogonal, as they are for the Haar Function, then we can say that because V and W are orthogonal:

Subspaces $\{W_i\}$ are generated by wavelets $\psi(t)$

And $\{V_j\}$ is generated by scaling functions $\phi(t)$

In other words, any $f_j(t) \in V_j$ can be written as $f_j(t) = \sum_k c_k^j \phi(2^j t - k)$,

And.....

Multiresolution Analysis (cont.)

.... any function
$$g_j(t) \in W_j$$
 can be written as $g_j(t) = \sum_k d_k^j \psi(2^j t - k)$, for some coefficients

$$\{c_k^j\}_{k\in z}, \ \{d_k^j\}_{k\in z}$$

Furthermore,

$$f(t) \in V_j \Leftrightarrow f(2t) \in V_{j+1}$$
$$f(t) \in V_j \Leftrightarrow f\left(t + \frac{1}{2^j}\right) \in V_j$$

Multiresolution Analysis (cont.)

Subspaces $\{V_j\}$ are called "approximation subspaces" and $\{W_j\}$ are the "wavelet subspaces".

At any level j, V_j contains the smooth part and W_j contains the "details" of the original function.

 $j \uparrow \Rightarrow f_j(t)$, a finer approximation of f(t), $j \downarrow \Rightarrow f_j(t)$, a coarser approximation of f(t).

Two-Scale Relations

Since
$$\phi(t) \in V_0 \subset V_1$$
, and $\psi(t) \in W_0 \subset V_1$;

we should be able to write $\phi(t)$ and $\psi(t)$ in terms of the bases that generate V_1 .

In other words, there exists two sequences $\{p_k\}, \{q_k\}$

such that

$$\phi(t) = \sum_{k} p_{k} \phi(2t - k),$$

$$\psi(t) = \sum_{k} q_{k} \phi(2t - k).$$

In general, for any j, the relationship between V_j,W_j with V_{j+1} is governed by $\phi(2^jt)=\sum_k p_k\phi(2^{j+1}t-k),$

$$\psi(2^{j}t) = \sum_{k} q_{k}\phi(2^{j+1}t - k).$$

Two-Scale Relations (cont.)

Example: (H: Haar)

 $p_0 = p_1 = 1$, $p_k = 0$ for integer k (except 1,0)

Decomposition Relation

Since $V_1 = V_0 + W_0$ and $\phi(2t)$, $\phi(2t-1) \in V_1$, there exist two pairs of sequences $(\{a_{2k}\}, \{b_{2k}\})$

such that

$$\phi(2t) = \sum_{k} \{a_{2k}\phi(t-k) + b_{2k}\psi(t-k)\};$$

$$\phi(2t-1) = \sum_{k} \{a_{2k-1}\phi(t-k) + b_{2k-1}\psi(t-k)\}.$$

Combining these two relations, we have

$$\phi(2t-l) = \sum_{k} \{a_{2k-l}\phi(t-k) + b_{2k-l}\psi(t-k)\}.$$

for all integer l

In general, we have

$$\phi(2^{j+1}t-l) = \sum_{k} \{a_{2k-l}\phi(2^{j}t-k) + b_{2k-l}\psi(2^{j}t-k)\}.$$

Decomposition Relation (cont.)

Example: (H: Haar)

EBU6018

Slide no: 16

Summary

We have seen that a series of sampled values of a continuous signal can be divided into two sequences:

- One which is approximations
- The other fine detail
- These two sequences are orthogonal
- The approximations can be derived as a series of scaled and shifted scaling functions, each with a coefficient (same as a linear piecewise approximation)
- The fine detail can be derived as a series of scaled and shifted wavelet functions, each with a coefficient
- These two sequences can be recombined to form the original sequence