MP Programme de colle n° 12

Chapitre 8

Espaces préhilbertiens réels

Cours:

- 3. Isométries
- 4. Endomorphismes symétriques

Les démonstrations à connaître

Sur les isométries

3.1

Théorème : caractérisations d'une isométrie et définition

Soient $u \in \mathcal{L}(E)$, \mathcal{B} base <u>orthonormée</u> de E et $A = M_{\mathcal{B}}(u)$.

Les quatre propriétés suivantes sont équivalentes :

- ❖ Conservation du produit scalaire : $\forall (x,y) \in E^2 : (u(x) \mid u(y)) = (x \mid y)$
- ❖ Conservation de la norme : $\forall x \in E : ||u(x)|| = ||x||$
- Conservation du caractère orthonormé d'une base : l'image d'une base orthonormée de E est une base orthonormée
- \bullet A est une matrice orthogonale:

Tout endomorphisme de E vérifiant l'une de ces quatre propriétés est appelé isométrie vectorielle ou automorphisme ortghogonal.

3.2.b

Propriété: caractérisation d'une symétrie orthogonale par sa matrice

Soient $\mathcal B$ une base <u>orthonormée</u> de E , $u\in\mathcal L(E)$ et $A=M_{\mathcal B}(u)$. Alors :

 $[u \text{ est une symétrie orthogonale}] \Leftrightarrow [A \text{ est symétrique et orthogonale}]$

3.5

Théorème de stabilité Si $u \in O(E)$ et si F est un sous-espace vectoriel stable par u, alors F^{\perp} est aussi stable par u.

3.6

Proposition: spectre d'une matrice orthogonale

Si
$$A \in O(n)$$
, alors $Sp_{\mathbb{R}}(A) \subset \{-1,1\}$ et $Sp_{\mathbb{C}}(A) \subset U$

où U est l'ensemble des nombres complexes de module 1.

De plus $\forall \lambda \in Sp_{\mathbb{C}}(A), \, \overline{\lambda} \in Sp_{\mathbb{C}}(A).$

Sur les endomorphismes symétriques

4.1.b

 $\underline{\operatorname{Propriét\acute{e}}}:$ Si s est un endomorphisme symétrique, alors $E=\operatorname{Ker}(s) \oplus \operatorname{Im}(s)$

4.3

Propriété : caractérisation d'un endomorphisme symétrique par sa matrice Soient \mathcal{B} une base orthonomée de E, $u \in \mathcal{L}(E)$ et $A = M_{\mathcal{B}}(u)$. [u est un endomorphisme symétrique] \Leftrightarrow [A est une matrice symétrique].

4.4

Théorème de stabilité

Si s est un endomorphisme symétrique et si F est un sous-espace vectoriel stable par s, alors F^{\perp} est aussi stable par s.

4.5 Théorèmes spectraux

<u>Lemme 1</u>: Si s est un endomorphisme symétrique, alors le polynôme caractéristique de s est scindé dans $\mathbb R$. En particulier : $Sp_{\mathbb R}(s) = Sp_{\mathbb C}(s)$ autrement dit : toutes les valeurs propres de s (dans $\mathbb C$) sont réelles.

<u>Lemme 2</u> : Si s est un endomorphisme symétrique, alors ses sous-espaces propres sont deux à deux orthogonaux.

Théorème spectral: Tout endomorphisme symétrique est diagonalisable dans une base orthonormée. On dit aussi qu'il est "**orthodiagonalisable**". autrement dit : toutes les valeurs propres de s (dans \mathbb{C}) sont réelles.

Théorème spectral pour les matrices :

 $\forall A \in \mathcal{S}_n(\mathbb{R}) : \exists P \in O(n) / P^{-1}AP$ est une matrice diagonale.