Low-Rank Factorizations for Fast Inference in Structured Models

Justin Chiu* ¹ Yuntian Deng* ² Alexander Rush ¹

¹Cornell Tech

²Harvard University

October 18, 2021

Structured Models

- Explicitly model output associations
 - Directly or through latent variables
- ► Focus on combinatorially large latent discrete structures
 - Complementary to continuous, distributed representations

Scaling Structured Models

- ▶ Prior work demonstrated: Size Performance
 - ► Hidden Markov Models (HMM)¹
 - ► Probabilistic Context-Free Grammars (PCFG)²
- ► This work: low-rank matrix factorizations
 - Generalize to hypergraph models

¹Dedieu et al., Learning higher-order sequential structure with cloned HMMs; Chiu and Rush, Scaling Hidden Markov Language Models.

²Yang, Zhao, and Tu, 'PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols'.

Inference as Matrix-Vector Products

- ► Inference: sequence of matrix-vector products
- Speed up via fast matvec methods
- Applies to a large family of structured models

Fast Matrix-Vector Products

- ▶ Matvecs take $O(L^2)$ computation
- Various fast methods
 - Sparsity (nnz entries)
 - ► Fast Fourier Transform (*L* log *L*)
 - ► <u>Low-Rank factorization</u> (*LR*)
- ► Connected to efficient attention and kernel approximations³

³Choromanski et al., *Rethinking Attention with Performers*; Peng et al., *Random Feature Attention*; Blanc and Rendle, *Adaptive Sampled Softmax with Kernel Based Sampling*.

Roadmap

- ▶ Inference in HMMs and PCFGs as matvecs
- Low-rank matvec inference
- ► Generalization to hypergraph inference
- Experiments

Inference as Matvecs

Hidden Markov Models (HMMs)

For times t, model states $z_t \in [L] = \mathcal{L}$, and tokens $x_t \in [X] = \mathcal{X}$,

with joint distribution

$$p(x,z) = \prod_{t} p(x_t \mid z_t) p(z_t \mid z_{t-1})$$

Inference in HMMs

Given observed $x = (x_1, \dots, x_T)$, we wish to maximize

$$p(x) = \sum_{z_1} \cdots \sum_{z_T} p(x, z) = \mathbf{1}^\top \Psi_1 \Psi_2 \cdots \Psi_T \mathbf{1},$$

where

$$\begin{aligned} [\Psi_t]_{z_t, z_{t+1}} &= p(z_{t+1}, x_t \mid z_t) \\ [\Psi_1]_{z_1, z_2} &= p(z_2, x_1 \mid z_1) p(z_1) \end{aligned}$$

Matvec Inference in HMMs

Algorithm 1 HMM Inference

$$\begin{array}{c} \textbf{for} \ t \leftarrow (t+1) \ \text{in right-to-left order do} \\ \beta_t \stackrel{+}{\leftarrow} \Psi_t \beta_{t+1} \\ \textbf{return} \ \beta_0^{-1} \mathbf{1} \end{array}$$

Probabilistic Context-Free Grammars (PCFG)

A context-free grammar $\mathcal{G} = (\mathcal{L}, \mathcal{R})$ where

 \mathcal{L} : Node labels; \mathcal{X} : Tokens; \mathcal{R} : Rules,

where rules take the form

$$A \rightarrow B C$$
, $A, B, C \in \mathcal{L}$
 $P \rightarrow x$, $P \in \mathcal{L}, x \in \mathcal{X}$

In a PCFG, each rule has probability mass

$$p(r) = p(B, C \mid A)$$

The joint distribution over rules in a tree t

$$p(t) = \prod_{r \in t} p(r)$$

Inference in PCFGs

- For a given observation x, compute $p(x) = \sum_{t: y \in Id(t) = x} p(t)$ via dynamic programming
- ▶ For each span (i, k), sum over split point $j \in (i, k)$:

Similar to HMMs, define

$$[\Psi]_{z_u,(z_1,z_2)} = p(B=z_1, C=z_2 \mid A=z_u),$$

for each rule

Matvec Inference in PCFGs

Algorithm 2 PCFG Inference

for
$$(i,k) \leftarrow (i,j), (j,k)$$
 in span-size order do for $z_1, z_2 \in \mathcal{L}_{i,j} \times \mathcal{L}_{j,k}$ do
$$[\beta_{i,j,k}]_{(z_1,z_2)} = [\alpha_{i,j}]_{z_1} [\alpha_{j,k}]_{z_2}$$
 $\alpha_{i,k} \stackrel{+}{\leftarrow} \Psi_{i,j,k} \beta_{i,j,k}$ return $\alpha_{1}^{\top} {}_{\tau} \mathbf{1}$

Speeding Up Inference

Low-Rank Factorization

► Factor matrices $\Psi = UV^{\top}$, $U \in \mathbb{R}^{L \times R}$, $V \in \mathbb{R}^{L' \times R}$

$$\boxed{ \qquad \qquad } \times \boxed{\beta} = \boxed{U} \times \left(\boxed{V^{\top}} \times \boxed{\beta} \right)$$

▶ Two matrix-vector products of cost O(LR) and O(L'R)

Expressiveness and Generality

- Rank constraints limit expressivity
- Only apply to a subset of parameters
 - Transition matrix for HMMs
 - Subset of the transition matrix for PCFGs
- Is it more expressive than a smaller model?
 - An L-state HMM with rank R (< L) is more expressive than an R-state HMM
- What other models does this work for?
 - An L-state HMM with rank R (< L) is more expressive than an R-state HMM

Hypergraph Marginalization

- Models where exact inference is a directed acyclic hypergraph
- Hypergraph contains a node set and hyperedge set
 - ► Nodes have label set £
 - ightharpoonup Hyperedges join a single head node u and a list of tail nodes v

Hyperedge representations for HMMs and PCFGs

Hypergraph Marginalization Algorithms

Algorithm 3 Hypergraph marginalization	
for $u \leftarrow v$ hyperedge e topologically do	
$\beta_{\mathbf{v}} \leftarrow \alpha_{\mathbf{v}_1} \alpha_{\mathbf{v}_2}^{\top}$	$\triangleright O(L^{ e })$
$\alpha_{\it u} \stackrel{+}{\leftarrow} \Psi_{\it e} \beta_{\it v}$	$\triangleright O(L^{ e +1})$
return $lpha_{\mathcal{S}}^{ op}1$	

Algorithm 4 Low-rank marginalization	
for $u \leftarrow v_1, v_2$ hyperedge e topologically do	
$\beta_{\mathbf{v}} \leftarrow \alpha_{\mathbf{v}_1} \alpha_{\mathbf{v}_2}^{\top}$	$\triangleright O(L^{ e })$
$\gamma \leftarrow V_e^ op eta_v^ op$	$\triangleright O(L^{ e }R)$
$\alpha_{\it u} \stackrel{+}{\leftarrow} U_{\it e} \gamma$	$\triangleright O(LR)$
return $lpha_{\mathcal{S}}^{ op} 1$	

Experiments

Experiments

- Compare speed vs accuracy frontier
- ► Language modeling on PENN TREEBANK⁴
 - Softmax HMM and PCFG vs low-rank versions (LHMM, LPCFG)
 - Evaluate accuracy with perplexity, a function of likelihood
- ▶ Video modeling on CrossTask⁵
 - Softmax HSMM vs low-rank HSMM
 - Evaluate accuracy with negative log-likelihood

⁴Marcus, Santorini, and Marcinkiewicz, 'Building a Large Annotated Corpus of English: The Penn Treebank'.

⁵Zhukov et al., 'Cross-task weakly supervised learning from instructional videos'.

HMM Speed vs Accuracy

PCFG Speed vs Accuracy

HSMM Speed vs Accuracy

Conclusion

- ▶ Introduce a low-rank factorization to speed up inference
- ► Applies to models with hypergraph inference
- Most effective with large models

Citations I

- Blanc, Guy and Steffen Rendle. Adaptive Sampled Softmax with Kernel Based Sampling. 2018. arXiv: 1712.00527 [cs.LG].
- Chiu, Justin T. and Alexander M. Rush. Scaling Hidden Markov Language Models. 2020. arXiv: 2011.04640 [cs.CL].
- Choromanski, Krzysztof et al. Rethinking Attention with Performers. 2021. arXiv: 2009.14794 [cs.LG].
- Dedieu, Antoine et al. Learning higher-order sequential structure with cloned HMMs. 2019. arXiv: 1905.00507 [stat.ML].
- Marcus, Mitchell P., Beatrice Santorini, and
 Mary Ann Marcinkiewicz. 'Building a Large Annotated Corpus of
 English: The Penn Treebank'. In: Computational Linguistics 19.2
 (1993), pp. 313–330. URL:
 https://www.aclweb.org/anthology/J93-2004.
- Peng, Hao et al. *Random Feature Attention*. 2021. arXiv: 2103.02143 [cs.CL].

Citations II

- Y
 - Yang, Songlin, Yanpeng Zhao, and Kewei Tu. 'PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols'. In: *CoRR* abs/2104.13727 (2021). arXiv: 2104.13727. URL: https://arxiv.org/abs/2104.13727.
- Zhukov, Dimitri et al. 'Cross-task weakly supervised learning from instructional videos'. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2019, pp. 3537–3545.

HMM Music Results

Model	Nott	Piano	Muse	JSB
RNN-NADE	2.31	7.05	5.6	5.19
R-Transformer	2.24	7.44	7.00	8.26
LSTM	3.43	7.77	7.23	8.17
LV-RNN	2.72	7.61	6.89	3.99
SRNN	2.94	8.20	6.28	4.74
TSBN	3.67	7.89	6.81	7.48
HMM	2.43	8.51	7.34	5.74
LHMM	2.60	8.89	7.60	5.80

PCFG Results

$ \mathcal{N} $	$ \mathcal{P} $	Model	Ν	PPL	Batch/s
30	60	PCFG	-	252.60	4.37
		LPCFG	8	247.02	3.75
		LPCFG	16	250.59	3.74
60	120	PCFG	-	234.01	2.99
		LPCFG	16	217.24	3.55
		LPCFG	32	213.81	3.35
100	200	PCFG	-	191.08	0.98
		LPCFG	32	203.47	1.56
		LPCFG	64	194.25	1.24

HSMM Results

Model	L	Ν	NLL	Batch/s
HSMM	2 ⁶	-	1.428 <i>e</i> 5	1.28
HSMM	2^{7}	-	1.427 <i>e</i> 5	0.45
HSMM	28	-	1.426 <i>e</i> 5	0.13
LHSMM	2 ⁷	27	1.427 <i>e</i> 5	0.24
LHSMM	2 ⁸	2^{6}	1.426 <i>e</i> 5	0.20
LHSMM	2^{9}	2^{5}	1.424 <i>e</i> 5	0.18
LHSMM	2^{10}	2 ⁴	1.423 <i>e</i> 5	0.10