DS°1 (le 18/09/2010)

NOTATIONS:

- * $\mathbb{R}[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à une indéterminée à coefficients réels ; n désignera un entier naturel et $\mathbb{R}_n[X]$ le sous-espace-vectoriel des polynômes de degré inférieur ou égal à n.
 - * On confondra, si il y a besoin, le polynôme $P \in \mathbb{R}[X]$ avec la fonction polynôme associée $x \mapsto P(x)$.
- * On note Δ l'application de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$ qui, à tout polynôme P associe le polynôme $\Delta(P)$ tel que : $\Delta(P)(X) = P(X+1) P(X)$
 - * On notera Δ_n la restriction de Δ à $\mathbb{R}_n[X]$.

PARTIE 1 : Étude des polynômes de Newton

Pour tout entier $k \ge 1$, on pose : $N_k = \frac{1}{k!}X(X-1)...(X-k+1)$, et on pose $N_0 = 1$. (polynômes de Newton).

- **1.** Montrer que la famille $(N_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$, et que la famille $(N_k)_{k \in \mathbb{N}}$ est une base de $\mathbb{R}[X]$.
- **2.** a) Vérifier Δ est un endomorphisme de $\mathbb{R}[X]$.
 - **b)** Montrer que Δ_n est un endomorphisme de $\mathbb{R}_n[X]$; calculer $\Delta_n(N_k)$ pour tout $k \in [0, n]$; en déduire la matrice de Δ_n dans la base $(N_k)_{0 \le k \le n}$.
 - **c)** Montrer que, pour $n \ge 1$, $\operatorname{Im}(\Delta_n) = \mathbb{R}_{n-1}[X]$ et $\operatorname{Ker}(\Delta_n) = \mathbb{R}_0[X]$.
 - **d)** En déduire le noyau et l'image de Δ .
- **3.** On note $\Delta^0 = \mathrm{Id}_{\mathbb{R}[X]}$ et, pour tout $k \ge 1$, on définit $\Delta^k = \Delta^{k-1} \mathbf{o} \Delta$.
 - a) Montrer que, pour tout polynôme $P \in \mathbb{R}[X]$ et tout $k \in \mathbb{N}$, on a :

$$\Delta^{k}(P)(X) = \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} P(X+i)$$

(on remarquera que $\Delta = \phi - Id_{\mathbb{R}[X]}$, où ϕ est l'endomorphisme de $\mathbb{R}[X]$ qui à tout polynôme P associe le polynôme $\phi(P) = P(X+1)$).

b) Soit $n \in \mathbb{N}^*$. Démontrer qu'il existe des réels a_1, a_2, \dots, a_n fixés (que l'on déterminera), tels que, pour tout polynôme $P \in \mathbb{R}_{n-1}[X]$, on ait :

$$P(X) = \sum_{i=1}^{n} a_i P(X+i)$$

(on pourra démontrer que $\Delta^n(P) = 0$ pour $P \in \mathbb{R}_{n-1}[X]$, et utiliser la question précédente.)

Démontrer que le n-uplet $(a_1, a_2, ..., a_n)$ est unique. (Cette question, plus difficile, pourra être admise!.)

- **4.** a) Montrer que, pour tous entiers k et ℓ tels que $0 \le k \le \ell$, on a : $\Delta^k(N_\ell) = N_{\ell-k}$. Que vaut $\Delta^k(N_\ell)$ pour $\ell < k$?
 - **b)** Démontrer, pour tout $P \in \mathbb{R}_n[X]$, l'égalité : $P = \sum_{k=0}^n \Delta^k(P)(0)N_k$

(il s'agit de la formule de Gregory qui permet d'exprimer les coordonnées de P dans la base (N_k)).

5. a) Calculer $N_k(x)$ pour tout entier $k \in \mathbb{N}$ et tout entier $x \in \mathbb{Z}$ (on distinguera les trois cas : $x \in [0, k-1]$, $x \ge k$ et x < 0).

- **b)** Soit $P \in \mathbb{R}[X]$. Montrer que les propriétés suivantes sont équivalentes :
 - (i) $\forall x \in \mathbb{Z}$, $P(x) \in \mathbb{Z}$;
 - (ii) $P(k) \in \mathbb{Z}$ pour k = 0, 1, ..., n;
 - (iii) il existe $(\lambda_0, \dots, \lambda_n) \in \mathbb{Z}^{n+1}$ tels que $P = \sum_{k=0}^n \lambda_k N_k$.

PARTIE 2 : Étude des polynômes de Bernoulli

1. En utilisant les résultats de la question I.2, démontrer que, pour tout entier $n \in \mathbb{N}^*$, il existe un unique polynôme $B_n \in \mathbb{R}[X]$ vérifiant :

$$\begin{cases} \Delta(B_n) = nX^{n-1} \\ \int_0^1 B_n(t) dt = 0 \end{cases}$$

On posera de plus : $B_0 = 1$.

- **2.** a) Déterminer le degré et le coefficient dominant de B_n .
 - **b)** Calculer B_1, B_2 et B_3 .
- **3.** a) Montrer que, pour $n \ge 2$, on a : $B_n(0) = B_n(1)$. Dans toute la suite, on notera, pour tout $n \in \mathbb{N}$, $b_n = B_n(0)$ (nombres de Bernoulli).
 - **b)** Établir, pour $n \ge 1$, la relation : $B'_n = nB_{n-1}$.

 Indication : on pourra poser $C_n = \frac{B'_n}{n}$, puis calculer $\Delta(C_n)$ ainsi que $\int_0^1 C_n(t) dt$.
- **4. a)** On pose $C_n(X) = (-1)^n B_n(1-X)$. Montrer que $C_n = B_n$ (Indication : s'inspirer de la méthode précédente.)
 - b) Quelle propriété peut-on en déduire pour la courbe représentative de B_n ?
 - c) En déduire également que, pour tout entier $k \ge 1$, B_{2k+1} s'annule en 0, 1 et $\frac{1}{2}$.
- **5. a)** Démontrer que, pour tout $n \in \mathbb{N}$:

$$\forall (x, y) \in \mathbb{R}^2 , B_n(x + y) = \sum_{k=0}^n \binom{n}{k} B_{n-k}(x) y^k$$

(Indication: on pourra utiliser la formule de Taylor).

b) En déduire les relations :

$$\forall n \in \mathbb{N} \quad , \quad \mathbf{B}_n = \sum_{k=0}^n \binom{n}{k} b_{n-k} \mathbf{X}^k$$

$$\forall n \in \mathbb{N} \quad , \quad \sum_{k=0}^n \binom{n+1}{k} \mathbf{B}_k = (n+1) \mathbf{X}^n$$

$$\forall n \in \mathbb{N}^* \quad , \quad \sum_{k=0}^n \binom{n+1}{k} b_k = 0$$

c) En déduire un algorithme (écrit en MAPLE par exemple) permettant d'obtenir la valeur des b_k . Calculer ainsi b_4 (les calculs devront figurer sur la copie).

6. a) En s'inspirant de la méthode utilisée dans les questions II.3 et II.4 , démontrer, pour tout entier $n \in \mathbb{N}$ et tout entier $p \in \mathbb{N}^*$:

$$B_n(X) = p^{n-1} \sum_{j=0}^{p-1} B_n\left(\frac{X+j}{p}\right)$$

b) En déduire, pour tout entier *n pair*, une expression de :

$$B_n\left(\frac{1}{2}\right)$$
 ; $B_n\left(\frac{1}{3}\right)$; $B_n\left(\frac{1}{4}\right)$; $B_n\left(\frac{1}{6}\right)$

en fonction de n et de b_n .

- 7. **a)** Démontrer par récurrence que, pour tout entier $n \in \mathbb{N}^*$:
 - B_{2n} admet sur l'intervalle [0,1] exactement deux racines α_n et β_n qui vérifient $0<\alpha_n<\frac{1}{2}<\beta_n<1$,
 - que les seules racines de B_{2n+1} dans [0,1] sont $0,\frac{1}{2}$ et 1,
 - et que le signe de B_{2n+1} sur $]0,\frac{1}{2}[$ est celui de $(-1)^{n-1}$.

Que vaut $\alpha_n + \beta_n$?

Quel est le signe de b_{2n} ?

- **b)** Montrer plus précisément que : $\frac{1}{6} < \alpha_n < \frac{1}{4}$
- **8.** Établir que, pour $n \in \mathbb{N}^*$:
 - a) Pour tout $x \in [0,1]$, $|B_{2n}(x)| \le |b_{2n}|$.
 - **b)** Pour tout $x \in [0,1]$, $|B_{2n+1}(x)| \le |B_{2n+1}(\alpha_n)|$
 - c) $\frac{1}{n+1} \left(1 \frac{1}{2^{2n+1}} \right) |b_{2n+2}| \le |B_{2n+1}(\alpha_n)| \le \frac{2n+1}{2} |b_{2n}|.$

PARTIE 3 : Séries de Riemann et nombres de Bernoulli

1. Montrer, pour tout entier non nul N:

$$\forall t \in]0,1[1+2\sum_{k=1}^{N} \cos(2k\pi t) = \frac{\sin((2N+1)\pi t)}{\sin(\pi t)}$$

2. Montrer que, pour tout entier n > 1, la fonction φ_n définie sur]0,1[par :

$$\forall t \in]0,1[\quad \varphi_n(t) = \frac{B_n(t) - B_n(0)}{\sin(\pi t)}$$

se prolonge sur [0,1] en une fonction de classe \mathcal{C}^1 .

3. Montrer que, pour toute fonction f de classe \mathcal{C}^1 sur [0,1], on a :

$$\lim_{x \to +\infty} \int_0^1 f(t) \sin(xt) dt = 0$$

(on pourra utiliser une intégration par parties).

4. Pour k et n entiers strictement positifs, on définit :

$$I_{n,k} = \int_0^1 B_n(t) \cos(2k\pi t) dt$$

Trouver une relation entre $I_{n,k}$ et $I_{n-2,k}$ et en déduire, selon la parité de n, l'expression de $I_{n,k}$ en fonction de n et de k.

5. En utilisant la formule établie en III.1, trouver, pour $N \in \mathbb{N}$ et $m \in \mathbb{N}^*$, une expression (sous forme d'une somme) de :

$$\int_0^1 \varphi_{2m} \sin \left((2N+1)\pi t \right) dt$$

en fonction de m, N et b_{2m} .

6. En déduire que : $\lim_{N\to+\infty}\sum_{k=1}^N\frac{1}{k^{2m}}$ existe (cette limite sera notée $\sum_{k=1}^{+\infty}\frac{1}{k^{2m}}$ ou S_{2m}) et calculer sa valeur en fonction de m et de b_{2m} (vous devriez trouver : $S_{2m}=(-1)^{m-1}b_{2m}\frac{\pi^{2m}2^{2m-1}}{(2m)!}$).

Donner en particulier les valeurs de : $\sum_{k=1}^{+\infty} \frac{1}{k^2}$ et $\sum_{k=1}^{+\infty} \frac{1}{k^4}$.

- 7. **a)** Montrer, pour $m \in \mathbb{N}^*$, la majoration : $\sum_{k=1}^{+\infty} \frac{1}{k^{2m}} \le 2$. En déduire la majoration : $\frac{|b_{2m}|}{(2m)!} \le \frac{4}{(4\pi^2)^m}$.
 - b) Plus précisément, démontrer que $\lim_{m\to +\infty} S_{2m}=1$, (utiliser un encadrement judicieux) et en déduire un équivalent de b_{2m} quand $m\to +\infty$.

PARTIE 4: Formule sommatoire d'Euler Mac-Laurin

Dans cette dernière partie, f désigne une fonction numérique de classe \mathscr{C}^{2n} sur [0,1] $(n \in \mathbb{N}^*)$. On pose, pour tout entier $k \in [0,n]$:

$$R_k = \int_0^1 \frac{f^{(2k)}(t)B_{2k}(t)}{(2k)!} dt$$

- **1.** Exprimer R_0 en fonction de R_1 , puis, pour tout entier $k \ge 1$, R_k en fonction de R_{k+1} (on pourra intégrer par parties).
- 2. En déduire :

$$\int_{0}^{1} f(t) dt = \frac{f(0) + f(1)}{2} - \sum_{j=1}^{n} \frac{b_{2j}}{(2j)!} \left[f^{(2j-1)}(1) - f^{(2j-1)}(0) \right] + R_{n}$$

- 3. Montrer que $|R_n| \le \frac{4M}{(4\pi^2)^n}$, où M désigne la borne supérieure de $|f^{(2n)}|$ sur [0,1].
- **4.** Applications : (pour les 5/2 uniquement)
 - a) En appliquant la formule précédente au cas où $f(t) = e^{at}$ où a est un nombre complexe non nul donné de module strictement inférieur à 2π , montrer que :

$$\frac{a}{2}\frac{e^{a}+1}{e^{a}-1} = 1 + \sum_{k=1}^{+\infty} \frac{b_{2k}}{(2k)!} a^{2k}$$

b) En déduire le développement en série entière sur $]-\pi,\pi[$ de la fonction $x\mapsto x\cot x$ (prolongée en 0).

Librement inspiré de : Banque PT2005, CCP Deug 2003, Centrale PC 1999, Air 1999, Agro 1999, Enac Ingénieurs 1995, St-Cyr 1995, St-Cyr 1990, Ensi 1989, Enset 1987, EITPE 1986 et je dois en oublier!!