13.1. Soit $f:[0,\infty[\to \mathbf{R}]$ une fonction uniformément continue. Montrer qu'il existe deux constantes α et β telles que pour tout $x \in [0,\infty[$:

$$|f(x)| \le \alpha x + \beta.$$

<u>Indications:</u>

- (a) Montrer qu'il existe $\delta > 0$ tel que si $x, y \in [0, \infty[, |x y| \le \delta \text{ alors } |f(x) f(y)| \le 1$.
- (b) Vérifier que $|f(n\delta) f(0)| \le n, \forall n = 0, 1, \dots$
- (c) Montrer que $|f(x)| \le 1 + m + |f(0)|$ avec $m = \left[\frac{x}{\delta}\right]$ où [y] dénote la partie entière de $y \in \mathbf{R}$.
- **13.2**. Soient $a \in \mathbf{R}$ et $f : \mathbf{R} \to \mathbf{R}$ une fonction continue en a telle que pour tout $x, y \in \mathbf{R}$:

$$f(x+y) = f(x) + f(y).$$

- 1.) Montrer que la fonction f est continue partout.
- 2.) En déduire que f est linéaire; plus précisément, pour tout $x \in \mathbf{R}$:

$$f(x) = x f(1).$$

Indications:

Montrer que f(0) = 0 et f est continue en x = 0.

Montrer que f est continue partout,

Montrer que $f(n) = n f(1), \forall n \in \mathbf{Z}$.

Montrer que $f(x) = x f(1), \forall x \in \mathbf{Q}$.