18.100A Assignment 3

Octavio Vega

February 15, 2023

Problem 1

Proof. Let $x,y \in \mathbb{R}$. By the density of \mathbb{Q} , we have that $\exists r \in \mathbb{Q}$ such that x < r < y.

Then $x + \sqrt{2} < y + \sqrt{2}$. Then $\exists r \in \mathbb{Q}$ such that

$$x + \sqrt{2} < r < y + \sqrt{2} \tag{1}$$

$$\implies x < r - \sqrt{2} < y. \tag{2}$$

But since $r \in \mathbb{Q}$ and $\sqrt{2} \notin \mathbb{Q}$, then the number $i := r - \sqrt{2} \notin \mathbb{Q}$.

So
$$x < i < y$$
 with $i \in \mathbb{R} \setminus \mathbb{Q}$, as desired.