2 appello 19 febbraio 2024

I quesiti erano gli stessi per informatica, elettronica e biomedica. Cambiava solo una domanda di teoria.

Non avevo voglia di scrivere le soluzioni perché ho dato l'esame in questo appello, e una volta avuto l'esito ho archiviato FAMP. Scusatemi, spero possiate perdonarmi :)

$$f(x,y) = x_3 + xy + y_3 - x_2y_3$$

a) DETERMINARE LA NATURA DEL PUNTO CRITICO (0,0)

SOL. 1. (ALIOLO IL GRADIENTE

$$\nabla f(x,y) = (2x + y - 2xy^2, x+2y-2x^2y)$$

2. (ALUALO LA MATRILE HESSIANA IN (0,0)

$$H_{ess} f(x,y) = \begin{bmatrix} 2-2y & 1-4xy \\ 1-4xy & 2-2x^2 \end{bmatrix} \xrightarrow{\text{gastives} (d,y)} \begin{bmatrix} z & 1 \\ 1 & z \end{bmatrix}$$

det Hess f(0,0) = 4-1 = 3

POICHE det Hess $f(o_io)=3>0$ E $f_{xx}(o_io)>0$, PER IL CRITERIO DEUL'HESSIANA SI GUXCUDE CHE (o_io) E UN PUNTO DI MINIMO LOCALE STRETTO V

b) DETERMINARE IL VALORE DEL MINIMO ASSOLUTO DI F SU B = { x² + y² ≤ 4 }

SOL. (mon so come si fu)

Question 2 Correct

▼ Flag question Sia ${\cal D}$ il dominio

 $D = \{(x,y) \in \mathbb{R}^2: \, x-5 \leq y \leq x-3, \, 2-x \leq y \leq 5-x \}.$

Utilizzando il cambio di variabile u=x-y, v=x+y calcolare l'integrale

$$\int_D 4(x-y)\sqrt{x+y}\,dx\,dy.$$

Answer: 89.0870

The correct answer is: 89.0871

(ALLOLARE
$$\int_0^1 4^{(x-y)} \sqrt{x+y} dx dy$$
 for for $0 > 0 > 0 > 0 > 0 > 0$

COSÍ FACENDO, OLTRE A SOSTITUIRE NELL'INTECNANDA U E V, DOBBIAMO (ALDUARE IL DETERMINANTE DELLA JACOBIANA E IL NUOVO DOMINIO

1. CALLOLO IL DETERMINANTE DELLA JACO BIANA

$$\begin{cases} V = X - Y \\ V = Y + U + Y \end{cases} \Rightarrow \begin{cases} X = U + Y \\ Y = Y + U + Y \end{cases} \Rightarrow \begin{cases} X = U + Y \\ Y = \frac{1}{2}V - \frac{1}{2}U \end{cases} \Rightarrow \begin{cases} X = \frac{1}{2}U + \frac{1}{2}V \\ Y = \frac{1}{2}V - \frac{1}{2}U \end{cases} \Rightarrow \begin{cases} X = \frac{1}{2}U + \frac{1}{2}V \\ Y = \frac{1}{2}U + \frac{1}{2}V \end{cases}$$

$$|3| = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

2. DETERMINO IL NUOVO DOMINIO: DEVO SPEZZARE LE DISUGUACIIANZE IN MODO DA OTTENERE U E V

3. FINALMENDE HO TUTO PER LALLOCARE L'INTECNAVE

$$\int_{0} 4(x-y) \sqrt{x+y} dx dy = \int_{\varepsilon} 40 \sqrt{V} \cdot \frac{1}{2} du dv$$

Question 3

F Flag

Sia $D = \{(x,y) \in \mathbb{R}^2: \, x^2 + y^2 \leq 4^2, \, x \leq 0\}$.

Calcolare la circuitazione di $\vec{F}(x,y)=(4xy,-8x^2)$ sul bordo di D orientato positivamente.

Answer: 512

The correct answer is: 853.3333

$$\vec{F}(x,y) = (4xy, -8x^2)$$

SOL. PER IL TEDREMA DI GREEN:

$$\int_{\partial_{x}^{+}D} F \cdot T ds = \int_{D} \frac{\partial}{\partial x} F_{2}(x, y) - \frac{\partial}{\partial y} F_{1}(x, y) dx dy$$

$$\int_{0}^{1} -16x - 4x \, dx \, dy = \int_{0}^{1} -20x = \int_{\frac{\pi}{2}}^{\frac{3}{2}\pi} \int_{0}^{4} -20e^{2} \cos t \, de \, dt = 853.3333$$

D

WOLFRAM

Information ▼ Flag question

PROBABILITA'

Question 4 Correct

▼ Flag question

Questo esercizio ha due domande.

Si stima che solo il 53% delle mail non siano spam. Un'azienda informatica dichiara che con il suo software antispam:

- 1) la probabilità di veri positivi (cioè di classificare come SPAM una mail che effettivamente è spam) è del 98%;
- 2) la probabilità di falsi positivi (cioè che una mail che non è di spam venga classificata come SPAM) è del 8%.

Domanda a). Qual è la probabilità che una data mail venga classificata dal software come SPAM?

Answer:

0.503

The correct answer is: 0.5030

Question 5 Correct

₹ Flag question Questo esercizio ha due domande.

Si stima che solo il 53% delle mail non siano spam. Un'azienda informatica dichiara che con il suo software antispam:

- 1) la probabilità di veri positivi (cioè di classificare come SPAM una mail che effettivamente è spam) è del 98%;
- 2) la probabilità di falsi positivi (cioè che una mail che non è di spam venga classificata come SPAM) è del 8%.

Domanda b). Una data mail non viene classificata dal software come SPAM. Qual è la probabilità che in realtà si tratti di spam?

Answer: 0.0189

The correct answer is: 0.0189

Question 6 Correct

▼ Flag question L'esercizio consta di 2 domande.

Sia F la funzione di distribuzione di una variabile aleatoria X data da

$$F(x) = \left\{ egin{array}{l} 0 ext{ se } x < 0, \ rac{x(4-x)}{4} ext{ se } x \in [0,2], \ 1 ext{ se } x > 2. \end{array}
ight.$$

Domanda a) Calcolare il valore atteso di X

Answer: 0.6666

The correct answer is: 0.6667

Question **7** Correct

Flag question

Come nella prima parte, $\,$ si dispone della $\,$ funzione di distribuzione F di una variabile aleatoria X data da

$$F(x) = \left\{ egin{array}{l} 0 ext{ se } x < 0, \ rac{x(4-x)}{4} ext{ se } x \in [0,2], \ 1 ext{ se } x > 2. \end{array}
ight.$$

Domanda b) Calcolare P(X>0.6).

Answer:

0.49

The correct answer is: 0.4900

Question 8
Correct
₹ Flag

Questo esercizio consta di 4 domande.

In un sistema di comunicazione ogni pacchetto di dati è costituito da 1024 bits. Ogni bit può essere ricevuto in modo errato con probabilità $p \in]0,1[$; si suppone che gli errori siano indipendenti.

Domanda 1. La variabile X che conta il numero di bit ricevuti come errati in un dato pacchetto inviato è una variabile di che tipo? Giustificare brevemente la risposta. Piccola penalità (-10%) se la risposta è errata.

	rn		

■ Binomiale

Poisson

Esponenziale

Geometrica

Uniforme

Normale

Your answer is correct.

The correct answer is:

Binomiale

question

Questo esercizio consta di 4 domande.

In un sistema di comunicazione ogni pacchetto di dati è costituito da 1024 bits. Ogni bit può essere ricevuto in modo errato con probabilità 0.00625; si suppone che gli errori siano indipendenti.

Domanda 2. Qual è la media della variabile X che conta il numero di bit ricevuti come errati in un dato pacchetto inviato di 1024 bits?

Answer:

6.4

The correct answer is: 6.4000

Question 10
Correct
Flag
question

Questo esercizio consta di 4 domande.

In un sistema di comunicazione ogni pacchetto di dati è costituito da 1024 bits. Ogni bit può essere ricevuto in modo errato con probabilità 0.00625; si suppone che gli errori siano indipendenti.

 $\textbf{Domanda 3.} \ \ \text{Qual \`e la varianza della variabile } X \ \ \text{che conta il numero di bit ricevuti come errati in un dato pacchetto inviato} \ \ \text{di 1024 bits?}$

Answer: 6.36 ✓

The correct answer is: 6.3600

Question 11
Correct
Flag

question

In un sistema di comunicazione ogni pacchetto di dati è costituito da 1024 bits. Ogni bit può essere ricevuto in modo errato con probabilità 0.00625; si suppone che gli errori siano indipendenti.

Domanda 4. Usando una opportuna approssimazione, calcolare la probabilità che vi sia un numero maggiore o uguale di 4 errori in un pacchetto di dati di 1024 bits.

Answer: 0.8810 ✓

The correct answer is: 0.8811

Information
Flag
question

DOMANDE TEORICHE

Giustificare tutte le risposte sul foglio in una pagina dedicata ESCLUSIVAMENTE alle domande teoriche.

Scrivere la risposta SOLO se ritenuta completa.

Enunciati privi di ipotesi o molto incompleti o dimostrazioni inconcludenti ottenute ricordando malamente le cose possono comportare una valutazione negativa

Question **12** Correct

Flag question

Enunciare la formula di Green e il Teorema della divergenza. Mostrare, a scelta, che il primo implica il secondo o che il secondo implica il primo.

- Risposta sul foglio

 ✓
- Non voglio rispondere

Your answer is correct.

The correct answer is:

Risposta sul foglio

Question 13

Incorrect

Flag question

Sia X variabile aleatoria continua con densità $f_X(x) = \left\{ egin{align*} 7e^{-7x} ext{ se } x \geq 0, \\ 0 ext{ se } x < 0. \end{array}
ight.$

Sia poi R la variabile definita da $R=e^X$, cioè $R(\omega)=e^{X(\omega)}$ per ogni ω dello spazio campionario.

Determinare la densità continua di ${\cal R}$ in 2.

- 0.0273
- **171800.6120**
- 0 2.5751
- 0 1202604.2841
- -171800.6120
- Altro X
- Non voglio rispondere

Your answer is incorrect.

La densità è la derivata della distribuzione $F_R(y) = P(R \leq y) = P(e^X \leq y)$.

Si ha

$$P(e^X \leq y) = \begin{cases} P(X \leq \log y) = F_X(\log y) \text{ se } y > 0, \\ 0 \text{ se } y \leq 0 \end{cases}$$

Di conseguenza la densità vale

$$f_R(y) = rac{d}{dy} F_R(y) = \left\{ egin{aligned} rac{F_X'(\log y)}{y} &= rac{f_X(\log y)}{y} & ext{se } y > 0, \\ 0 & ext{altrimenti.} \end{aligned}
ight.$$

The correct answer is: 0.0273