Extremale Gibbsmaße Hauptseminar Stochastik

Anne Weiß

Institut der Angewanden Mathematik der Rheinischen Friedrich-Wilhelms-Universität Bonn

01. Juli 2021

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 1/51

Motivation

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 2/51

Was wollen wir heute machen?

- Gibbsmaße als konvexe Menge
- elementare Eigenschaften von extremalen Gibbsmaßen
- extremale Gibbsmaße als Limes von Spezifikationen
- Anwendung auf das Ising-Modell
- extremale Zerlegung von Gibbsmaßen

3/51

Anne Weiß Extremale Gibbsmaße 01. Juli 2021

Konvexe Mengen

Definition (konvexe Kombination)

Seien ν_1 , $\nu_2 \in \mathcal{M}_1(\Omega)$ und $\lambda \in [0, 1]$, dann wird die konvexe Kombination von ν_1 und ν_2 folgendermaßen definiert:

$$(\lambda\nu_1+(1-\lambda)\nu_2)(A):=\lambda\nu_1(A)+(1-\lambda)\nu_2(A)$$

Definition (Konvexe Menge)

 $\mathscr{M}^{'}\subset\mathscr{M}_{1}(\Omega)$ ist konvex, falls jede konvexe Kombination von Elementen ν_{1} und $\nu_{2}\in\mathscr{M}^{'}$ wieder in $\mathscr{M}^{'}$ ist.

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 4/51

Wiederholung

Es gilt $\mu \in \mathscr{G}(\pi)$ falls $\mu \in \mathscr{M}_1(\Omega)$ und μ ist kompatibel mit der Spezifikation $\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$, das heißt

$$\mu = \mu \pi_{\Lambda}$$
 für alle $\Lambda \in \mathbb{Z}^d$.

Hierbei ist für $A \in \mathscr{F}$

$$\mu\pi_{\Lambda}(A) := \int \pi_{\Lambda}(A \mid \omega) \,\mathrm{d}\mu(\omega)$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 5/51

Satz

 $\mathscr{G}(\pi)$ ist konvex

Beweis.

Seien ν_1 und $\nu_2 \in \mathscr{G}(\pi)$, $\lambda \in [0,1]$. Wir wollen zeigen $\mu := \lambda \nu_1 + (1-\lambda)\nu_2 \in \mathscr{G}(\pi)$. Für alle $\Lambda \in \mathbb{Z}^d$ gilt:

$$\mu \pi_{\Lambda} = \lambda \nu_1 \pi_{\Lambda} + (1 - \lambda) \nu_2 \pi_{\Lambda} = \lambda \nu_1 + (1 - \lambda) \nu_2 = \mu \tag{1}$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 6/51

Extremalpunkte

Definition (Extremalpunkt)

Sei M eine konvexe Menge. Ein Punkt $\mu \in M$ heißt Extremalpunkt, falls für alle $a, b \in M$ und $\lambda \in (0,1)$ mit $\mu = \lambda a + (1-\lambda)b$ folgt, dass $\mu = a = b$. Die Menge der Extremalpunkte wird als Ex(M) bezeichnet.

Die Elemente aus $ex(\mathscr{G}(\pi))$ heißen auch extremale Gibbsmaße.

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 7/51

Eigenschaften von extremalen Gibbsmaßen

Definition (terminale σ -Algebra)

$$\mathscr{T}_{\infty} := \bigcap_{\Lambda = \mathbb{Z}^d} \mathscr{F}_{\Lambda^c} \tag{2}$$

Ereignisse dieser σ -Algebra werden terminal oder makroskopisch genannt.

Bemerkung.

• Falls $A\in \mathscr{T}_{\infty}$ und ω und ω' auf allen bis auf endlich vielen Stellen übereinstimmen, dann gilt

$$\mathbb{1}_A(\omega) = \mathbb{1}_A(\omega')$$

 $\bullet \ \{\omega \in \Omega : \lim_{n \to \infty} \frac{1}{|B(n)|} \sum_{j \in B(n)} \omega_j \quad \text{existiert und ist positiv} \} \in \mathscr{T}_{\infty}$

Proposition

Sei π eine Spezifikation.

- Sei $\mu \in \mathscr{G}(\pi)$ und sei $f: \Omega \to \mathbb{R}_{\geq 0}$ \mathscr{F} -messbar mit $\mu(f) = 1$. Dann ist $f \mu \in \mathscr{G}(\pi)$ genau dann, wenn es eine \mathscr{T}_{∞} -messbare Funktion h gibt, so dass $f = h \mu$ -fast überall.
- **2** Seien $\mu, \nu \in \mathcal{G}(\pi)$, sodass $\mu(A) = \nu(A)$ für alle $A \in \mathcal{T}_{\infty}$. Dann gilt schon $\mu = \nu$.

Hierbei ist $f\mu(A) := \int_A f \,\mathrm{d}\mu$.

10 / 51

Anne Weiß Extremale Gibbsmaße 01. Juli 2021

Eigenschaften von extremalen Gibbsmaßen

Satz

Sei π eine Spezifikation und $\mu \in \mathscr{G}(\pi)$. Dann sind äquivalent:

- $oldsymbol{0}$ μ ist extremal
- ② μ ist trivial auf \mathscr{T}_{∞} , d.h für alle $A \in \mathscr{T}_{\infty}$ gilt $\mu(A) = 0$ oder $\mu(A) = 1$.
- **3** Falls $f: \Omega \to \mathbb{R}$ \mathscr{T}_{∞} -messbar ist, dann ist $f \mu$ -fast sicher konstant.
- Für alle $A \in \mathcal{C}$, bzw. auch schon für alle $A \in \mathcal{F}$, gilt:

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \sup_{B \in \mathscr{F}_{\Lambda^c}} |\mu(A \cap B) - \mu(A)\mu(B)| = 0 \tag{3}$$

11 / 51

Anne Weiß Extremale Gibbsmaße 01. Juli 2021

1. μ ist extremal \Rightarrow 2. μ ist trivial auf \mathscr{T}_{∞}

Beweis.

Angenommen $A \in \mathscr{T}_{\infty}$ mit $\alpha = \mu(A) \in (0,1)$.

- $\bullet \ A \in \mathscr{T}_{\infty} \Rightarrow \tfrac{1}{\alpha} \mathbb{1}_A \text{ und } \tfrac{1}{1-\alpha} \mathbb{1}_{A^{\mathsf{c}}} \ \mathscr{T}_{\infty}\text{-messbar}.$
- $2 \mu_1 = \frac{1}{\alpha} \mathbb{1}_{A} \mu \in \mathscr{G}(\pi) \text{ und } \mu_2 = \frac{1}{1-\alpha} \mathbb{1}_{A^c} \mu \in \mathscr{G}(\pi)$
- **3** Nun gilt: $\mu = \alpha \mu_1 + (1 \alpha)\mu_2$
- **1** Da wir $\mu_1 \neq \mu_2$ haben, ist dies ein Widerspruch zur Annahme.

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 12/51

2. μ ist trivial auf $\mathscr{T}_{\infty}\Rightarrow$ 3. Falls Funktion f \mathscr{T}_{∞} -messbar ist, ist f μ -fast sicher konstant.

Beweis.

f \mathscr{T}_{∞} -messbar.

- $\{f \leq c\} \in \mathscr{T}_{\infty} \text{ und damit } \mu(f \leq c) \in \{0,1\} \text{ für alle c.}$
- 2 $c_* := \inf\{c : \mu(f \le c) = 1\}$

3

$$A_n \subset A_{n+1} \Rightarrow \mu(\bigcup_n A_n) = \lim_{n \to \infty} \mu(A_n)$$

$$A_{n+1} \subset A_n \Rightarrow \mu(\bigcap_n A_n) = \lim_{n \to \infty} \mu(A_n)$$

9 Seien $c_n^+ > c_*$ monoton fallend und $c_n^- < c_*$ monoton steigend so gewählt, dass beide gegen c_* konvergieren.

$$\mu(f=c_*)=\mu\left(\bigcap_n\{f\leq c_n^+\}\setminus\bigcup_n\{f\leq c_n^-\}
ight)=1-0=1$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 13/51

2. μ ist trivial auf $\mathscr{T}_{\infty} \Leftarrow$ 3. Falls Funktion f \mathscr{T}_{∞} -messbar ist, ist f μ -fast sicher konstant.

Beweis.

$$A \in \mathscr{T}_{\infty}$$

- $\mathbf{0}$ $\mathbb{1}_A$ \mathscr{T}_{∞} -messbar
- 2 $\mathbb{1}_A$ ist μ -fast sicher konstant.
- 3

$$\mu(A) = \mu(1_A) \in \{0, 1\}$$

14 / 51

Anne Weiß Extremale Gibbsmaße 01. Juli 2021

Als nächstes benötigen wir eine Folgerung aus dem Konvergenzsatz für Rückwärtsmartingale:

Korollar

Sei $X \in L^1$ und \mathscr{G}_n eine absteigende Folge von σ -Algebren, d.h. $\mathscr{G}_{n+1} \subset \mathscr{G}_n$. Wir definieren $\mathscr{G}_{\infty} := \bigcap_{n \in \mathbb{N}} \mathscr{G}_n$. Dann gilt:

$$\lim_{n\to\infty} E(X|\mathscr{G}_n) = E(X|\mathscr{G}_\infty) \qquad \text{fast sicher und in } L^1$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 15/51

3. Falls Funktion f \mathscr{T}_{∞} -messbar ist, ist f μ -fast sicher konstant \Rightarrow 4. Für alle $A \in \mathscr{F}$ (bzw. $A \in \mathscr{C}$) gilt:

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\sup_{B\in\mathscr{F}_{\Lambda^c}}|\mu(A\cap B)-\mu(A)\mu(B)|=0 \tag{4}$$

Beweis. $A \in \mathscr{F}$ und $\varepsilon > 0$ beliebig. Dann folgt:

$$\lim_{n\to\infty}\mu(A\mid \mathscr{F}_{\Lambda^{\mathbf{c}}_n})=\lim_{n\to\infty}\mu(\mathbb{1}_A\mid \mathscr{F}_{\Lambda^{\mathbf{c}}_n})=\mu(\mathbb{1}_A\mid \mathscr{T}_{\infty})=\mu(A\mid \mathscr{T}_{\infty}) \text{ in } L^1.$$

1 Es gibt ein $N \in \mathbb{N}$, s.d. für alle $n \geq N$

$$\parallel \mu(A \mid \mathscr{F}_{\Lambda_n^c}) - \mu(A \mid \mathscr{T}_{\infty}) \parallel_{L^1} \leq \varepsilon.$$
 (5)

② $\mu(A \mid \mathcal{T}_{\infty})$ \mathcal{T}_{∞} -messbar $\Rightarrow \mu(A \mid \mathcal{T}_{\infty})$ fast sicher konstant $\Rightarrow \mu(A \mid \mathcal{T}_{\infty}) = \mu(A)$ fast sicher.

4 L P 4 DP P 4 E P 4 E P 2 *) Y C*

16 / 51

3 Sei nun $n \geq N$, dann gilt nun für alle $B \in \mathscr{F}_{\Lambda_n}$ c:

$$|\mu(A \cap B) - \mu(A)\mu(B)| = \left| \int_{B} \mathbb{1}_{A} - \mu(A) d\mu \right|$$

$$= \left| \int_{B} \mu(A \mid \mathscr{F}_{\Lambda_{n}^{c}}) - \mu(A \mid \mathscr{T}_{\infty}) d\mu \right|$$

$$\leq ||\mu(A \mid \mathscr{F}_{\Lambda_{n}^{c}}) - \mu(A \mid \mathscr{T}_{\infty})||_{L^{1}} \leq \varepsilon$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 17/51

Lemma

Seien $\mu, \nu \in ex\mathscr{G}(\pi)$ mit $\mu \neq \nu$. Dann sind μ und ν singulär. Insbesondere gibt es ein Ereignis $A \in \mathscr{T}_{\infty}$, so dass $\mu(A) = 0$ und $\nu(A) = 1$.

Beweis.

Sei $\mu \neq \nu$.

- **1** Mit Propsition: Es gibt $A \in \mathscr{T}_{\infty}$ mit $\mu(A) \neq \nu(A)$
- **②** Mit μ ist extremal $\Leftrightarrow \mu$ ist trivial auf \mathscr{T}_{∞} , folgt die Aussage.

Anne Weiß Extremale Gibbsmaße

Extremale Gibbsmaße als Limes von Spezifikationen

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 19/51

Wiederholung

Sei $(\mu_n)_{n\in\mathbb{N}}\subset \mathscr{M}_1(\Omega)$ eine Folge. Diese konvergiert gegen $\mu\in \mathscr{M}_1(\Omega)$ falls

$$\lim_{n\to\infty}\mu_n(C)=\mu(C) \text{ für alle } C\in\mathscr{C}.$$

Wir schreiben dann auch $\mu_n \Rightarrow \mu$.

Satz

Sei $\mu \in ex\mathscr{G}(\pi)$. Dann gilt für μ fast alle ω , dass

$$\pi_{B(n)}(\cdot \mid \omega) \Rightarrow \mu.$$
 (6)

Hierbei war $B(n) := \{-n, ..., n\}^d$.

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 20/51

Wiederholung

Für eine Spezifikation π und $\mu \in \mathscr{G}(\pi)$ gilt für alle $\Lambda \subseteq \mathbb{Z}^d$

$$\mu(A \mid \mathscr{F}_{\Lambda^c})(\cdot) = \pi_{\Lambda}(A \mid \cdot) \quad \mu\text{-fast "überall"}.$$
 (7)

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 21/51

Beweis

Wir wollen nun zeigen, dass

$$\lim_{n\to\infty}\pi_{B(n)}(\textit{C}\mid\omega)=\mu(\textit{C}) \text{ für alle }\textit{C}\in\mathscr{C}.$$

① $C \in \mathscr{C}$ fest \Rightarrow es gibt ein $\Omega_{n,C}$ mit $\mu(\Omega_{n,C}) = 1$ und

$$\pi_{B(n)}(C \mid \omega) = \mu(C \mid \mathscr{F}_{B(n)^c})(\omega) \text{ für alle } \omega \in \Omega_{n,C}. \tag{8}$$

② Mit dem Rückwärtsmartingalkonvergenzsatz finden wir $\widetilde{\Omega}_C$ mit $\mu(\widetilde{\Omega}_C)=1$, so dass

$$\lim_{n \to \infty} \mu(\mathbb{1}_C \mid \mathscr{F}_{B(n)^c})(\omega) = \mu(C \mid \mathscr{T}_{\infty})(\omega) \text{ für alle } \omega \in \widetilde{\Omega}_C.$$
 (9)

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

$$\mu(C) = \mu(C \mid \mathscr{T}_{\infty})(\omega) \text{ für alle } \omega \in \Omega_C.$$
 (10)

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 22 / 51

$$\mu_{\beta,h}^+$$
 und $\mu_{\beta,h}^-$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 23 / 51

Lemma

 $\mu_{\beta,h}^+$ und $\mu_{\beta,h}^-$ sind extremal.

Beweis. Wir zeigen das Lemma nur für $\mu_{\beta,h}^+$. Für alle $\nu \in \mathscr{G}(\beta,h)$ und für jede monoton steigende, lokale Funktion gilt:

$$\nu(f) \le \mu_{\beta,h}^+(f). \tag{11}$$

1 Angenommen $\mu_{\beta,h}^+$ sei nicht extremal, d.h. es gibt ein $\lambda \in (0,1)$ und $\nu_1, \nu_2 \in \mathscr{G}(\beta,h)$ mit $\nu_1 \neq \mu_{\beta,h}^+$ so dass:

$$\mu_{\beta,h}^+ = \lambda \nu_1 + (1 - \lambda)\nu_2.$$

② $\nu_1 \neq \mu_{\beta,h}^+ \Rightarrow$ es gibt eine lokale Funktion f mit $\nu_1(f) \neq \mu_{\beta,h}^+(f)$.

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ か へ (*)

24 / 51

Anne Weiß Extremale Gibbsmaße 01. Juli 2021

Mit Lemma 3.19 wissen wir:

$$f = \sum_{A \subset \text{supp}(f)} \tilde{f}_A \prod_{j \in A} n_j. \tag{12}$$

Hierbei ist $n_j := \frac{1}{2}(1+\sigma_j)$ und $\tilde{f}_A \in \mathbb{R}$.

 \bullet $u_1(n_A)<\mu_{\beta,h}^+(n_A)$ und $u_2(n_A)\leq\mu_{\beta,h}^+(n_A)$. Insgesamt also

$$\mu_{\beta,h}^+(n_A) = \lambda \nu_1(n_A) + (1-\lambda)\nu_2(n_A) < \mu_{\beta,h}^+(n_A).$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 25 / 51

Wir erhalten, dass

$$\langle \sigma_i; \sigma_j \rangle_{\beta,h}^+ := \langle \sigma_i \sigma_j \rangle_{\beta,h}^+ - \langle \sigma_i \rangle_{\beta,h}^+ \langle \sigma_j \rangle_{\beta,h}^+$$

für $||j-i||_{\infty} \to \infty$ gegen 0 konvergiert. Hiermit erhalten wir ein schwaches Gesetz der großen Zahlen:

Korollar

Sei

$$m_{B(n)} := \frac{1}{|B(n)|} \sum_{j \in B(n)} \sigma_j.$$

Dann konvergiert $m_{B(n)} \to \mu_{\beta,h}^+(\sigma_0)$ in Wahrscheinlichkeit (bzgl. $\mu_{\beta,h}^+$), d.h.

$$\lim_{n\to\infty}\mu_{\beta,h}^+(|m_{B(n)}-\mu_{\beta,h}^+(\sigma_0)|\geq\varepsilon)=0.$$

Konvergiert die Magnetisierungsdichte auch fast sicher?

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 26 / 51

Hierfür benötigen wir Ergodizität von $\mu_{\beta,h}^+$:

Definition

$$\mathscr{M}_{1, heta}(\Omega) := \{\mu \in \mathscr{M}_1(\Omega) : \mu \text{ ist translations in variant} \}$$

$$\mathscr{I} := \{ A \in \mathscr{F} : \theta_j A = A, \text{ für alle } j \in \mathbb{Z}^d \}$$

$$\mu \in \mathscr{M}_{1,\theta}$$
 heißt ergodisch, falls für alle $A \in \mathscr{I}$ gilt $\mu(A) = 0$ oder $\mu(A) = 1$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 27 / 51

Falls $\mu_{\beta,h}^+$ nun ergodisch ist folgt die Konvergenz aus folgenden Satz:

Satz

Sei $\mu \in \mathscr{M}_{1,\theta}$ ergodisch, dann gilt für alle $f \in L^1(\mu)$, dass

$$\frac{1}{|B(n)|} \sum_{j \in B(n)} \theta_j f \to \mu(f) \quad \mu\text{-fast sicher und in } L^1(\mu). \tag{13}$$

Nun folgt falls $\mu_{eta,h}^+$ ergodisch ist und dem Fakt, dass $\sigma_j= heta_j\sigma_0$, dass

$$m = \lim_{n \to \infty} \frac{1}{|B(n)|} \sum_{j \in B(n)} \sigma_j$$

 $\mu_{\beta,h}^+$ -fast sicher existiert und gegen $\mu_{\beta,h}^+(\sigma_0)$ konvergiert.

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 28 / 51

Um die Ergodizität von $\mu_{\beta,h}^+$ zu zeigen benötigen wir ein weiteres Lemma:

Lemma

Sei $\mu \in \mathcal{M}_{1,\theta}(\Omega,\mathcal{F})$. Dann gilt für alle $A \in \mathcal{I}$, dass ein $B \in \mathcal{T}_{\infty}$ existiert mit $\mu(A \triangle B) = 0$, insbesondere $\mu(A) = \mu(B)$.

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 29 / 51

Satz

 $\mu_{\beta,h}^+$ und $\mu_{\beta,h}^-$ sind ergodisch.

Beweis.

Wir zeigen die Aussage nur für $\mu_{\beta,h}^+$.

- \bullet $\mu_{\beta,h}^+$ ist translations invariant.
- ② Sei $A \in \mathscr{I}$, dann gibt es ein $B \in \mathscr{T}_{\infty}$, sodass $\mu_{\beta,h}^+(A) = \mu_{\beta,h}^+(B)$
- \bullet Da $\mu_{\beta,h}^+$ extremal ist, gilt $\mu_{\beta,h}^+(A) = \mu_{\beta,h}^+(B) \in \{0,1\}$

Extremale Zerlegung von Gibbsmaßen

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 31/51

Beispiel

Wir betrachten nun das zweidimensionale Ising-Modell mit h = 0 und $\beta > \beta_c(2)$:

$$ex\mathscr{G}(\beta,0) = \{\mu_{\beta,0}^+, \mu_{\beta,0}^-\}.$$

Nun gilt für alle $\mu \in \mathscr{G}(\beta,0)$, dass ein $\lambda \in [0,1]$ existiert, sodass für alle $B \in \mathscr{F}$

$$\mu(B) = \lambda \mu_{\beta,0}^+(B) + (1 - \lambda)\mu_{\beta,0}^-(B).$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 32 / 51

Was wollen wir zeigen?

Definition

$$e_B(
u) :=
u(B)$$

$$e(\mathscr{P}) := \sigma(e_B : B \in \mathscr{F})$$

Satz

Für alle $\mu \in \mathscr{G}(\pi)$ folgt, dass ein eindeutiges Wahrscheinlichkeitsmaß λ_{μ} auf $(\mathscr{M}_1(\Omega), e(\mathscr{P}))$ existiert, so dass für alle $B \in \mathscr{F}$ folgende Zerlegung gilt:

$$\mu(B) = \int_{\mathsf{ex}\mathscr{G}(\pi)} \nu(B) \, \mathrm{d}\lambda_{\mu}(\nu) \tag{14}$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 33/51

Reguläre bedingte Wahrscheinlichkeiten

Wissen bereits:

$$\mu(B) = \int \mu(B \mid \mathscr{T}_{\infty})(\omega) \,\mathrm{d}\mu(\omega)$$

Nun wollen wir zeigen, dass $\mu(\cdot \mid \mathscr{T}_{\infty})$ regulär ist:

Definition (Reguläre bedingte Wahrscheinlichkeit)

 $(\mu(A\mid\mathscr{T}_{\infty}))_{A\in\mathscr{F}}$ heißt regulär, falls eine Funktion

$$Q^{\cdot}:\Omega o\mathscr{M}_1(\Omega)$$

existiert, sodass

$$Q^{\omega}(A) = \mu(A \mid \mathscr{T}_{\infty})(\omega), \quad \mu$$
-fast sicher.

Anne Weiß Extremale Gibbsmaße

Konstruktion von Q

1. Konstruktion von Q^{ω} :

Sei $\pi=(\pi_{\Lambda})_{\Lambda\Subset\mathbb{Z}^d}$. Dann definieren wir

$$\Omega_{\pi} := \bigcap_{C \in \mathscr{C}} \{ \omega \in \Omega : \lim_{n \to \infty} \pi_{B(n)}(C \mid \omega) \text{ existiert} \}$$

Falls $\omega \notin \Omega_{\pi}$ dann definieren wir $Q^{\omega} := \mu_0$ mit $\mu_0 \in \mathcal{M}_1(\Omega)$. Für $\omega \in \Omega_{\pi}$ definieren wir:

$$Q^{\omega}(\mathit{C}) := \mathit{lim}_{n o \infty} \pi_{B(n)}(\mathit{C} \mid \omega)$$
 für alle $\mathit{C} \in \mathscr{C}$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 35/51

Eigenschaften von Q:

- ullet Q^ω ist ein Wahrscheinlichkeitsmaß auf ${\mathscr F}$ für alle ω
- $\omega \mapsto Q^{\omega}(B)$ ist \mathscr{T}_{∞} -messbar für alle $B \in \mathscr{F}$
- $Q^{\cdot}(f) = \mu(f \mid \mathscr{T}_{\infty})$ fast sicher für alle beschränkten, messbaren Funktionen f.
- $\{Q^{\cdot} \in \mathscr{G}(\pi)\} \in \mathscr{T}_{\infty} \text{ und } \mu(Q^{\cdot} \in ex\mathscr{G}(\pi)) = 1.$

Korollar

Falls $\mathscr{G}(\pi) \neq \emptyset$ dann gilt auch schon $\exp(\pi) \neq \emptyset$.

Anne Weiß Extremale Gibbsmaße

Pushforward von μ

- $oldsymbol{0} \lambda_{\mu}(M) := \mu(Q \in M)$ für $M \subset \mathscr{M}_1(\Omega)$ ist ein Maß
- ② $B \in \mathscr{F}$, $e_B : \mathscr{M}_1(\Omega) \to [0,1]$ mit

$$e_B(\nu) := \nu(B) \tag{15}$$

$$\mu(B) = \int_{\Omega} \mathbb{1}_{B} d\mu = \int_{\Omega} \mu(B \mid \mathcal{T}_{\infty}) d\mu$$

$$= \int_{\Omega} Q'(B) d\mu = \int_{\Omega} e_{B}(Q') d\mu$$

$$= \int_{ex\mathscr{G}(\pi)} e_{B}(\nu) d\mu \circ (Q')^{-1}(\nu) = \int_{ex\mathscr{G}(\pi)} \nu(B) d\lambda_{\mu}(\nu)$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● める○

37 / 51

Anne Weiß Extremale Gibbsmaße 01. Juli 2021

Satz

Für alle $\mu \in \mathscr{G}(\pi)$ folgt, dass ein eindeutiges Wahrscheinlichkeitsmaß λ_{μ} auf $(\mathscr{M}(\Omega), e(\mathscr{P}))$ existiert, so dass für alle $B \in \mathscr{F}$ folgende Zerlegung gilt:

$$\mu(B) = \int_{\mathsf{ex}\mathscr{G}(\pi)} \nu(B) \, \mathrm{d}\lambda_{\mu}(\nu) \tag{16}$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □□ ♥ ♀○

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 38 / 51

Eindeutigkeit der Zerlegung.

- **1** Angenommen es gäbe ein weiteres solches Maß λ'_{μ} .
- ② Es gilt $\nu \in ex\mathscr{G}(\pi) \Rightarrow \nu(Q^{\cdot} = \nu) = 1$. Sei $\nu \in ex\mathscr{G}(\pi)$, dann ist ν trivial auf \mathscr{T}_{∞} . Nun folgt

$$\int_A \nu(B) \,\mathrm{d}\nu(\omega) = \nu(B)\nu(A) = \nu(A \cap B) \quad \text{für alle } A \in \mathscr{T}_\infty, B \in \mathscr{F}.$$

Also ist $\nu(B) = \nu(B \mid \mathscr{T}_{\infty}) = Q(B)$ fast sicher.

$$lacksquare{1}{3}$$
 Sei $M\subset \mathscr{M}_1(\Omega)\Rightarrow
u(Q^{\cdot}\in M)=\mathbb{1}_M(
u)$

$$\lambda'_{\mu}(M) = \int_{\mathsf{ex}\mathscr{G}(\pi)} \mathbb{1}_{M}(\nu) \, \mathrm{d}\lambda'_{\mu}(\nu)$$

$$= \int_{\mathsf{ex}\mathscr{G}(\pi)} \nu(Q^{\cdot} \in M) \, \mathrm{d}\lambda'_{\mu}(\nu) = \mu(Q^{\cdot} \in M) = \lambda_{\mu}(M).$$

Hiermit folgt schon $\lambda_{\mu} = \lambda'_{\mu}$.

4 D > 4 A > 4 B > 4 B > B 9 9 0

Anne Weiß Extremale Gibbsmaße

39 / 51

Fragen?

40 / 51

Anne Weiß Extremale Gibbsmaße 01. Juli 2021

- ► Hans-Otto Georgii, *Gibbs measures and phase transitions*, zweite ed., De Gruyter, 2011.
- ► Achim Klenke, *Wahrscheinlichkeitstheorie*, 4 ed., Springer Spektrum, 2020.
- ► Sacha Friedli und Yvan Velenik, *Statistical mechanics of lattice* systems:a concrete mathematical introduction, Cambridge: Cambridge University Press, 2017.

41 / 51

Anhang

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 42/51

Definition

 $\nu \ll \mu$ (ν ist absolut stetig bezüglich μ) genau dann, wenn jede μ -Nullmenge auch eine ν -Nullmenge ist.

Beweis.

 $2 \Rightarrow 1$: Sei nun μ trivial auf \mathscr{T}_{∞} . Angenommen es gibt $\mu_1, \mu_2 \in \mathscr{G}(\pi)$ und $\alpha \in (0,1) \text{ mit } \mu = \alpha \mu_1 + (1-\alpha)\mu_2$

- **1** $\mu_1 \ll \mu, \ \mu_2 \ll \mu$
- \bigcirc Sei $A \in \mathscr{T}_{\infty}$
 - Falls $\mu(A) = 0 \Rightarrow \mu_1(A) = 0, \ \mu_2(A) = 0$
 - Falls $\mu(A) = 1 \Rightarrow \mu_1(A) = 1$, $\mu_2(A) = 1$
- **1** Mit der Proposition folgt: $\mu = \mu_1 = \mu_2$.

43 / 51

Anne Weiß Extremale Gibbsmaße

Beweis.

 $4 \Rightarrow 2$: Wir nehmen bei 4, die schwächere Annahme an: für alle $A \in \mathscr{C}$ gilt:

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \sup_{B \in \mathscr{F}_{\Lambda^c}} |\mu(A \cap B) - \mu(A)\mu(B)| = 0 \tag{17}$$

• $\mu(A\cap B)=\mu(A)\mu(B)$ für alle $B\in\mathscr{T}_{\infty}$ und $A\in\mathscr{C}$ ($B\in\mathscr{F}_{\Lambda^c}$ für alle $\Lambda\Subset \mathbb{Z}^d$)

Nun wollen wir zeigen:

$$\mu(A \cap B) = \mu(A)\mu(B)$$
 für alle $A \in \mathscr{F}$ und $B \in \mathscr{T}_{\infty}$ (18)

Reicht aus, da wir für $B \in \mathscr{T}_{\infty}$ A = B setzen:

$$\mu(B) = \mu(B \cap B) = \mu(B)^2.$$

Also $\mu(B) \in \{0, 1\}.$

- 4日 > 4個 > 4 種 > 4種 > 種 の 9 @ @

Sei $B \in \mathscr{T}_{\infty}$ fest

1

$$\mathscr{D} := \{ A \in \mathscr{F} : \mu(A \cap B) = \mu(A)\mu(B) \}.$$

ist ein Dynkin System.

 ${f 2}$ ${\cal C}\subset {\cal D}$ ist eine Algebra und erzeugt ${\cal F}\Rightarrow {\cal D}={\cal F}$

Anne Weiß Extremale Gibbsmaße

Korollar

Sei

$$m_{B(n)} := \frac{1}{|B(n)|} \sum_{i \in B(n)} \sigma_i.$$

Dann konvergiert $m_{B(n)} \to \mu_{\beta,h}^+(\sigma_0)$ in Wahrscheinlichkeit (bzgl. $\mu_{\beta,h}^+$), d.h.

$$\lim_{n\to\infty}\mu_{\beta,h}^+(|m_{B(n)}-\mu_{\beta,h}^+(\sigma_0)|\geq\varepsilon)=0.$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 46 / 51

Beweis.

Wir erhalten, dass es ein r gibt, so dass $0 \le \langle \sigma_i; \sigma_j \rangle_{\beta,h}^+ \le \varepsilon$ für alle $j \notin i + B(r)$. Hiermit erhalten wir:

$$\begin{aligned} \mathsf{Var}(m_{B(n)}) &= |B(n)|^{-2} \sum_{i,j \in B(n)} \langle \sigma_i; \sigma_j \rangle_{\beta,h}^+ \\ &\leq |B(n)|^{-2} \sum_{i \in B(n)} \left[\sum_{j \in i + B(r)} \langle \sigma_i; \sigma_j \rangle_{\beta,h}^+ + \sum_{j \in B(n) \setminus \{i + B(r)\}} \langle \sigma_i; \sigma_j \rangle_{\beta,h}^+ \right] \\ &\leq \frac{|B(r)|}{|B(n)|} + \varepsilon. \end{aligned}$$

Somit haben wir $\lim_{n\to\infty} {\sf Var}(m_{B(n)}) = 0$. Da $E(m_B(n)) = \mu_{\beta,h}^+(\sigma_0)$ ist (Translationsinvarianz!), erhalten wir mit Chebyshevs Ungleichung:

$$\mu_{\beta,h}^+(|m_{B(n)}-\mu_{\beta,h}^+(\sigma_0)|\geq \varepsilon)\leq \frac{\mathsf{Var}(m_{B(n)})}{\varepsilon^2}\to 0.$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 47/51

Physikalische Relevanz von nicht-extremalen Gibbsmaßen

Beispiel

Wir betrachten nun das zweidimensionale Ising-Modell mit h = 0 und $\beta > \beta_c(2)$:

$$ex\mathscr{G}(\beta,0) = \{\mu_{\beta,0}^+, \mu_{\beta,0}^-\}.$$

Nun gilt für alle $\mu \in \mathscr{G}(\beta,0)$, dass ein $\lambda \in [0,1]$ existiert, sodass für alle $B \in \mathscr{F}$

$$\mu(B) = \lambda \mu_{\beta,0}^+(B) + (1 - \lambda) \mu_{\beta,0}^-(B).$$

Sei nun
$$\lambda \in (0,1)$$
 und $\mu := \lambda \mu_{\beta,h}^+ + (1-\lambda)\mu_{\beta,h}^-$.

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 49 / 51

Da $\mu_{\beta,h}^+$ und $\mu_{\beta,h}^-$ extremal sind, wissen wir, dass es Ereignisse $T^+,\,T^-\in\mathscr{T}_\infty$ gibt, so dass

$$\mu_{\beta,h}^+(T^+) = \mu_{\beta,h}^-(T^-) = 1, \qquad \mu_{\beta,h}^+(T^-) = \mu_{\beta,h}^-(T^+) = 0$$

Eine Konfiguration $\omega\in\Omega$ ist typisch für $\mu^+_{eta,h}$, falls $\omega\in T^+$

$$\mu(T^{+} \cup T^{-}) \ge \lambda \mu_{\beta,h}^{+}(T^{+}) + (1 - \lambda)\mu_{\beta,h}^{-}(T^{-}) = 1$$
$$\mu(T^{+}) = \lambda \mu_{\beta,h}^{+}(T^{+}) = \lambda.$$

Anne Weiß Extremale Gibbsmaße 01. Juli 2021 50 / 51

Mit

$$\mu(B \cap T^+) = \lambda \mu_{\beta,h}^+(B \cap T^+) = \lambda \mu_{\beta,h}^+(B) = \mu(T^+)\mu_{\beta,h}^+(B).$$

erhalten wir

$$\mu(B \mid T^+) = \mu_{\beta,h}^+(B).$$

Die physikalisch relevanten Gibbsmaße sind also extremal.

51 / 51

Anne Weiß Extremale Gibbsmaße 01. Juli 2021