CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/23 Paper 2 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0607	23

cao correct answer only dependent FT FT follow through after error isw ignore subsequent working on early alent SC Special Case not from wrong working seen or implied 1 (a) 0.000605 1 2 $\frac{0.6 \times 300}{2 + 10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 1 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times 7 \times 2.5^2$ oe M1 for $2 \times \frac{1}{2} \times 7 \times 2.5^2$ oe (b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ MI for $5x + 10 < 8x - 14$ MIFT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (i) $\frac{24}{150}$ oe 1	Abbreviations					
FT follow through after error isw ignore subsequent working oc or equivalent SC Special Case not from wrong working seen or implied 1 (a) 0.000 605						
isw ignore subsequent working or equivalent SC Special Case not from wrong working seen or implied 1						
oc or equivalent SC Special Case not implied Special Case not from wrong working seen or implied 1 (a) 0.000 605 (b) 7000 000 1 2 $\frac{0.6 \times 300}{2 + 10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 1 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $3 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $3 \times \frac{1}{2} \times 8 \times 3$ oe or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for $3 \times \frac{1}{2} \times 8 \times 3$ or SC2 for						
SC nfww soi Special Case not from wrong working seen or implied 1 (a) 0.000605 1 2 $\frac{0.6 \times 300}{2 + 10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 1 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe (b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 \times x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =]8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) Bigger sample oe 1						
nfww soi not from wrong working seen or implied 1 (a) 0.000605 1 2 $\frac{0.6 \times 300}{2 + 10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe (b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (ii) $\frac{24}{2}$ oe 1			or eq	uivalent		
soi seen or implied 1 (a) 0.000605 1 2 $\frac{0.6 \times 300}{2+10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 1 (b) 45 1 4 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) $\frac{24}{2}$ oe 1	SC					
1 (a) 0.000605 1 (b) 7000000 1 2 $\frac{0.6 \times 300}{2 + 10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 1 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) $\frac{24}{2}$ oe 1		W				
(b) 7000000 1 2 $\frac{0.6 \times 300}{2 + 10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe (b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) $\frac{24}{9}$ oe 1	soi		seen	or implied		
(b) 7000000 1 2 $\frac{0.6 \times 300}{2 + 10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe (b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) $\frac{24}{9}$ oe 1						
2 $\frac{0.6 \times 300}{2 + 10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 1 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe (b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (i) $\frac{24}{3}$ or $\frac{24}{3}$	1	(a)		0.000605	1	
2 $\frac{0.6 \times 300}{2 + 10}$ M1 At least 3 correct 3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 1 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe (b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (i) $\frac{24}{3}$ or						
2		(b)		7 000 000	1	
2				0.6×300		
3 (a) (i) $2^2 \times 3$ 1 (ii) $2 \times 3 \times 7^3$ 1 (b) 45 1 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (i) $\frac{24}{3}$ oe 1	2				M1	At least 3 correct
3 (a) (i) $2^2 \times 3$ 1 1					Δ1	
(ii) $2 \times 3 \times 7^3$ 1 (b) 45 1 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe (b) Rotational oe Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (i) $\frac{24}{100}$ oe 1				13	AI	
(b) 45 1 4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe (b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) $\frac{24}{2}$ oe 1	3	(a)	(i)	$2^2 \times 3$	1	
4 (a) $64 + 6.25\pi$ 3 M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe (b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (i) $\frac{24}{3}$ oe 1			(ii)	$2 \times 3 \times 7^3$	1	
(b) Rotational oe [Order] 2 1 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 1		(b)		45	1	
(b) Rotational oe [Order] 2 1 5 $x > 8$ 3 Accept $8 < x$ M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (i) $\frac{24}{2}$ oe 1	4	(a)		$64 + 6.25\pi$	3	M1 for $8 \times 5 + 2 \times \frac{1}{2} \times 8 \times 3$ oe
[Order] 2						M1 for $2 \times \frac{1}{2} \times \pi \times 2.5^2$ oe
[Order] 2		(b)		Rotational oe	1	
5		(0)				
M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (i) $\frac{24}{3}$ oe 1				[•	
6 (a) Bigger sample oe 1 M1 for $5x + 10 < 8x - 14$ M1FT for $10 + 24 < 8x - 5x$ oe or SC2 for $[x =] 8$ or $x < 8$	5			x > 8	3	Accept $8 < x$
or SC2 for $[x =] 8$ or $x < 8$ 6 (a) Bigger sample oe 1 (b) (i) $\frac{24}{3}$ oe 1						M1 for $5x + 10 < 8x - 14$
6 (a) Bigger sample oe 1 (b) (i) 24 oe 1						
(b) (i) $\frac{24}{2}$ or 1						or SC2 for $[x =] 8$ or $x < 8$
(b) (i) $\frac{24}{2}$ or 1	6	(c)		Digger completes	1	
(b) (i) — oe 1 1	U	(a)		Digger sample de	1	
$\frac{\text{(b)}}{150} = \frac{1}{150} = \frac{1}{150}$		(le)	(i)	24	1	
		(n)	(1)	$\overline{150}$ oe	1	
(ii) 480 1			(ii)	480	1	

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0607	23

7	(a)	(3.2, 2.6)	3	B2 for one co-ordinate supported by algebra
	,			or M1 for $3x + 4(\frac{1}{2}x + 1) = 20$ or other correct
				elimination of x or y
	(b) (i)	P correct	1	
				× P
	(ii)	Q correct	1	×Q
				/
8	(a)	90	1	
	(b)	35	1	
	(c)	55	2	B1 for $ABC = 90 + 35$ or $ADC = 55$
9		P P	3	B1 for each criterion correct
10	(a)	(x-5)(x+2)	2	SC1 for $(x + a)(x + b)$ where $a + b = -3$ or $ab = -10$
	(b)	$[x=] (ay)^3$ oe	2	M1 for $ay = \sqrt[3]{x}$ or $y^3 = \frac{x}{a^3}$
11	(a)	-2	1	
	(b) (i)	12	1	
	(ii)	16	1	
12		2, 2, -12	3	M2 for $a(x+3)(x-2)$
				or M1 for $(x + 3)(x - 2)$
				If 0 scored, B1 for $c = -12$
		1	l	<u>i</u>