4:19 pm

Activity: Q-Learning

$$\delta(S_1, a_1) = S_1, \quad r(S_1, a_1) = 0$$

$$\delta(S_1, a_2) = S_2, \quad r(S_1, a_2) = -1$$

$$\delta(S_2, a_1) = S_2, \quad r(S_2, a_1) = +1$$

$$\delta(S_2, a_2) = S_1, \quad r(S_2, a_2) = +5$$

Draw a picture of this world, using circles for the states and arrows for the transitions.

ii. Assuming a discount factor of r=0.9, determine:

a. the optimal policy
$$\pi^*: S \to A$$

b. the value function
$$V^*:S o R$$

c. the "
$$Q$$
" function $Q: S \times A \rightarrow R$

$$V(S_{1}, Q_{1}) = 0 + 0.9 \times V(S_{1}, Q_{1})$$

$$= 0$$

$$V(S_1, G_2) = -1 + 0.9 \times V(S_2)$$

$$V^{*}(S_{z})$$

 $V(S_{z}, a_{i}) = 1 + 0.9 \times V(S_{z}, a_{i})$
 $= 1 + 0.9 \times V(S_{z}, a_{i})$

$$V(S_{2}, q_{2}) = 5 + 0.9(-1 + 0.9 \times V(S_{2}, q_{2}))$$

= 5 - 0.9 + 0.81 $V(S_{2}, q_{2})$

$$0,19 \ V(S_{2}, a_{2}) = 4,1$$

$$V(S_{2}, a_{2}) = 21.57$$

a):
$$\pi = \begin{cases} S_1 = \alpha_2 \\ S_2 = \alpha_2 \end{cases}$$

Q a, a,

iii) Write the Q values in a matrix

 $0 + \gamma^* 0 = 0$

new Q value

 $5 + \gamma^* 6.34 = 10.70$

 $5 + \gamma^*0 = 5$

ensure convergence to the true Q values. (Initially, no exploration) new Q value

(iv) Trace through the first few steps of the Q-learning algorithm, with all Q values initially set to zero.

Explain why it is necessary to force exploration through probabilistic choice of actions, in order to

current state S_1

					•	
		S ₁		a ₂	$-1 + \gamma^*0 = -1$	
	S ₂			a ₁	$1 + \gamma^*0 = +1$	
. 1	- 1 19	laa dat.				
Q	a ₁	a ₂		(the Q table)		
			ı ,	(circ & cabic)		

chosen action

 a_1

S_2 (If forcing exploration)

chosen action

 a_2

current state

 S_2

 S_1

S ₁	a ₁	$0 + \gamma^* 0 = 0$					
S ₁	a ₂	$-1 + \gamma^* 5 = 3.5$					
S ₂	a ₁	$1 + \gamma^* 5 = 5.5$					
S ₂	a_2	$5 + \gamma^* 3.5 = 8.15$					
(the Q table)							
Q a ₁ a ₂	(**************************************	,					

 S_2

3.5

8.15

0

5.5

(C	onvergence)		
	current state	chosen action	new Q value
	S ₁	a ₁	$0 + \gamma^* 3.5 = 3.15$
	S ₁	a ₂	-1 + γ*8.15 = 6.335
	S ₂	a ₁	1 + γ*8.15 = 8.335

 a_2