281 Live Session

Week 8 - 2023/3/1

Agenda

Review Image Analysis

Preview of Assignment 5

Exercise on Feature Tracking

Blobworld paper assignment

Discussion Questions

7.1 Differential Motion		
7.2	Motion	
7.3	Feature Tracking	
7.4	Feature Tracking, Implementation	
7.5	Depth From Stereo	
7.6	Epipolar Constraints	
7.7	Planar Homography	
7.8	Reconstructing Egyptian Monuments	

- List two ways to extract motion vectors from a video
- How are object speed and frame rate related?
- What is the value being plotted in a depth-from-stereo image?
- How do we use epipolar constraints?
- What is unique about the geometry of planar surfaces in images?
- What is a homography transformation matrix?
- What is the free parameter in a homography matrix?

Image Analysis

Triangulation Cues

Ambiguity is solved by 2+ observations

Source: Held, Cooper, & Banks (2012)

Image Analysis Overview

Understanding 's'

Homogeneous coordinates are ambiguous up to an unknown scale factor

Image Analysis Overview

$$\vec{p} \times H\vec{P} = \vec{0}$$

$$\begin{pmatrix} x_s \\ y_s \\ s \end{pmatrix} \times \begin{pmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{pmatrix} \begin{pmatrix} X_w \\ Y_w \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x_s \\ y_s \\ s \end{pmatrix} \times \begin{pmatrix} h_1 X_w + h_2 Y_w + h_3 \\ h_4 X_w + h_5 Y_w + h_6 \\ h_7 X_w + h_8 Y_w + h_9 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} y_s (h_7 X_w + h_8 Y_w + h_9) - s(h_4 X_w + h_5 Y_w + h_6) \\ s(h_1 X_w + h_2 Y_w + h_3) - x_s(h_7 X_w + h_8 Y_w + h_9) \\ x_s (h_4 X_w + h_5 Y_w + h_6) - y_s (h_1 X_w + h_2 Y_w + h_3) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Discussion Questions

7.1 Differential Motion		
7.2	Motion	
7.3	Feature Tracking	
7.4	Feature Tracking, Implementation	
7.5	Depth From Stereo	
7.6	Epipolar Constraints	
7.7	Planar Homography	
7.8	Reconstructing Egyptian Monuments	

- List two ways to extract motion vectors from a video
- How are object speed and frame rate related?
- What is the value being plotted in a depth-from-stereo image?
- How do we use epipolar constraints?
- What is unique about the geometry of planar surfaces in images?
- What is a homography transformation matrix?
- What is the free parameter in a homography matrix?

Assignment 5 – Image Stitching

1. estimate homography

2. stitch

3. rectify

Group Exercise — Feature Extraction

Blobworld Paper

Carson, Chad, Serge Belongie, Hayit Greenspan, and Jitendra Malik. "Blobworld: Image segmentation using expectation-maximization and its application to image querying." IEEE Transactions on pattern analysis and machine intelligence 24, no. 8 (2002): 1026-1038.

http://www.cse.psu.edu/~rtc12/CSE586/papers/emCarson99blobworld.pdf

Upcoming ToDo's

Final project proposal due March 13th

Assignment 5 due March 14th

Read Blobworld paper for next week

Watch Async lectures for Unit 8