Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2006-2007. Esame del 16-11-2007

Nome		Cognome	
Matric	eolo /		

1) (4 punti) Si consideri il grafo in figura

applicare l'algoritmo di Dijkstra per determinare l'albero dei cammini minimi radicato nel nodo 1

2) Considerare il seguente problema di programmazione lineare:

max
$$-x_1 + 4x_2$$

con i vincoli
 $x_1 + x_2 \ge 1$
 $-1/2 x_1 + x_2 \le 2$
 $x_2 \le 5$
 $x_1 \ge 0, x_2 \ge 0$.

- a) (3 punti) disegnare la regione ammissibile e risolvere il problema graficamente;
- b) (4 punti) calcolare le direzioni estreme ed i punti estremi del poliedro;
- c) (4 punti) "aggiungere" un vincolo in modo che il punto (6,5) sia un ottimo unico.
- 3) Considerare il seguente problema di programmazione lineare:

max
$$3x_1 - 2x_2$$

con i vincoli
 $x_1 - 2x_2 \ge 4$
 $-x_1 - 3x_3 \le 1$
 $2x_2 - 5x_3 = 4$
 $x_1 \le 0, x_2 \ge 0, x_3$ non vincolata.

- a) (4 punti) formulare il corrispondente modello matematico del problema definito nella prima fase del metodo delle due fasi (n.b. non risolvere il problema);
- b) (3 punti) Formulare il duale del problema.
- 4) Si consideri il seguente problema di programmazione lineare:

max
$$-x_1 + x_2$$

con i vincoli
 $-2/5x_1 + x_2 \le 2$
 $4/5x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

- a) (6 punti) risolverlo applicando l'algoritmo del simplesso, utilizzando come base iniziale la base B={3,4};
- b) (4 punti) si determini analiticamente il range di variabilità dei coefficienti di costo che lasci invariata la base ottima.