VERMES MIKLÓS Fizikaverseny 2018. március 26. II. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

IX. osztály

I. feladat

m=2 tonna tömegű autó $v_1=54$ km/h sebességről, egyenletesen gyorsulva $L_1=500$ m egyenes útszakasz megtétele után, $v_2=72$ km/h sebességre tesz szert. Ekkor, állandó sebességgel $L_2=600$ m hosszúságú kanyart ír le, mely egy 90 fokos központi szöggel rendelkező körív. Az autó és az út közötti súrlódási együttható mindvégig $\mu=0,2$.

Határozzuk meg:

a) a motor húzóerejét az út első szakaszán;	2 p
b) a centrifugális tehetetlenségi erőt a kanyarban;	2 p
c) a teljes útszakasz megtételéhez szükséges időt;	1 p
d) azt a v_3 sebességet, amelynél megcsúszik az autó;	2 p
e) a v_4 sebességet, amelynél bekövetkezhet az autó felborulása, ha a kerekek közötti távolság	_
d = 1.5 m és az autó súlypontja $h = 0.8 m$ magasságban található.	3 p

II. feladat

- 1) Szabadon elejtett test mozgásának kezdeti szakaszában egy bizonyos hosszúságú utat $t_1 = 2$ s alatt tesz meg. A mozgásának a végén, a talajba ütközés előtt, az ugyanilyen hosszúságú utat $t_2 = \frac{t_1}{2}$ idő alatt teszi meg. Milyen magasból esett a test és milyen sebességgel csapódott a talajba?
- 2) Egy kerék vízszintes felületen csúszásmentesen gördül, tengelyének haladási sebessége *v*. Határozzuk meg a rajzon megjelölt függőleges átmérő A és B végpontjainak, valamint a C pontnak a sebességét. Ismert az OB és OC sugarak által közrezárt α szög.

III. feladat

1) Az ábrán látható berendezésnél a súrlódási együttható az M tömegű lemez és a vízszintes talaj között μ_1 , míg az m tömegű test és a lemez között μ_2 . Kezdetben a rugó megfeszítetlen állapotban van.

- a) Mekkora legkisebb erővel kell húzni a lemezt ahhoz, hogy az m tömegű test elmozduljon?
- b) Mekkora erő esetén lesz a rugó megnyúlása Δl ?

5 p 2 p

2) Egy henger palástja mentén csavarvonal alakú bemélyedés található, melynek menetemelkedése *h*. A bemélyedés felső végébe kicsiny, súlyos golyót helyezünk. A hengerre fonalat tekerünk. Milyen gyorsulással kell húznunk a fonál végét ahhoz, hogy egy megfigyelőnek úgy tűnjék, hogy a golyó szabadon esik. A henger átmérője *D*.

