Strong computable reducibility

Damir D. Dzhafarov University of Connecticut

September 21, 2015

Problems.

A problem is a Π^1_2 statement of second-order arithmetic, thought of as

for every
$$X \in Inst(P)$$
, there is a $Y \in Soln(P, X)$,

where Inst(P) and Soln(P, X) are arithmetically-definable sets.

Examples.

 RT^n_k . Every coloring $c:[\omega]^n \to k$ has an infinite homogeneous set.

COH. For every family $\vec{c} = \langle c_0, c_1, \ldots \rangle$ of colorings $c_i : \omega \to 2$ there is an infinite set H that is almost homogeneous for each c_i , i.e., if for each i there is a finite set F such that H - F is homogeneous for c_i .

Reductions.

Let P and Q be problems.

P is strongly computably reducible to Q, written $P \leq_{sc} Q$, if every $X \in Inst(P)$ computes an $\widehat{X} \in Inst(Q)$, such that every $\widehat{Y} \in Soln(Q, \widehat{X})$ computes a $Y \in Soln(P, X)$.

Reductions.

Let P and Q be problems.

P is computably reducible to Q, written $P \leq_c Q$, if every $X \in Inst(P)$ computes an $\widehat{X} \in Inst(Q)$, such that every $\widehat{Y} \in Soln(Q, \widehat{X})$, together with X, computes a $Y \in Soln(P, X)$.

As a finer metric.

Most implications between problems are formalizations of (strong) computable or (strong) Weihrauch reductions.

Theorem (Cholak, Jockusch, and Slaman). $RCA_0 \vdash RT_2^2 \rightarrow COH$.

The proof is a formalization in RCA₀ that COH $\leq_{sW} RT_2^2$.

We can tease apart subtle differences that RCA₀ alone does not see.

For all j and k, we have $RCA_0 \vdash RT_i^n \leftrightarrow RT_k^n$.

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer). If j > k, then $\mathsf{RT}^n_j \nleq_{s\mathsf{W}} \mathsf{RT}^n_k$.

Theorem (Hirschfeldt and Jockusch). If j > k, then $RT_i^n \nleq_W RT_k^n$.

Theorem (Patey). If j > k, then $RT_i^n \nleq_c RT_k^n$.

Two versions of Ramsey's theorem.

A coloring $c: [\omega]^2 \to 2$ is stable if $\lim_y c(x, y)$ exists for all x.

SRT₂. Every stable coloring has an infinite homogeneous set.

Theorem (Cholak, Jockusch, and Slaman). $RT_2^2 \equiv_{sW} SRT_2^2 \bullet COH$.

A set *L* is limit-homogeneous for a stable coloring *c* if there is an $i \in \{0, 1\}$ such that $\lim_{y} c(x, y) = i$ for all $x \in L$.

 D_2^2 . Every stable coloring has an infinite limit-homogeneous set.

Observation. $SRT_2^2 \equiv_c D_2^2$.

Pf. Thin out a limit-homogeneous set to a homogeneous one.

Theorem (Chong, Lempp, and Yang). $RCA_0 \vdash SRT_2^2 \leftrightarrow D_2^2$.

Two versions of Ramsey's theorem.

Theorem (Hirschfeldt and Jockusch). $SRT_2^2 \leq_W D_2^2 \bullet D_2^2$.

 $\textbf{Question} \text{ (Hirschfeldt and Jockusch)}. \text{ Does } \mathsf{SRT}_2^2 \leq_W \mathsf{D}_2^2? \text{ Does } \mathsf{SRT}_2^2 \leq_{sc} \mathsf{D}_2^2?$

If L is limit-homogeneous, but we do not know what color $i \in \{0, 1\}$ the elements in it limit to, then thinning it to a homogeneous set seems difficult.

Theorem (Dzhafarov). $SRT_2^2 \nleq_W D_2^2$.

Theorem (Dzhafarov). There is a stable coloring c such that every other stable coloring d has an infinite limit-homogeneous set L that computes no infinite homogeneous set for c.

Corollary. $SRT_2^2 \nleq_{sc} D_2^2$.

COH and D_2^2 .

Open question (Chong, Slaman, and Yang). Does SRT_2^2 (or D_2^2) imply COH in ω -models of RCA_0 ? Is COH $\leq_c SRT_2^2$? Equivalently, is COH $\leq_c D_2^2$?

Theorem (Dzhafarov, 2012). COH $\nleq_{sc} D_2^2$.

The proof is a computable forcing argument. Any 3-generic yields a family $\langle X_0, X_1, \ldots \rangle$ witnessing the theorem, so we can find one computable in $\emptyset^{(3)}$.

Theorem (Hirschfeldt and Jockusch; Patey). There is a family of sets $X = \langle X_0, X_1, \ldots \rangle$ such that every stable coloring d has an infinite limit-homogeneous set L that computes no infinite X-cohesive set.

The X built by Hirschfeld and Jockusch is non-hyperarithmetical. Patey's is Δ_2^0 .

Question. Given the differences between SRT_2^2 and D_2^2 under \leq_W and \leq_{sc} , what relationships hold between COH and SRT_2^2 ?

COH and SRT_2^2 .

It is possible to elaborate on the proof that COH $\nleq_W D_2^2$ to obtain:

Theorem (Dzhafarov). COH $\nleq_W SRT_2^2$ (via a computable instance).

Homogeneous sets, unlike limit-homogeneous ones, have internal structure.

E.g., suppose we are building a family of colorings \vec{c} and $\Phi^{\vec{c}}$ is to be stable.

To build a limit-homogeneous set L for $\Phi^{\vec{c}}$, we can build a finite portion F of L, and only later extend \vec{c} , say in a way to diagonalize some computation from F.

By Seetapun's argument, F can be chosen so that its elements' limits agree.

But to build a homogeneous set H for $\Phi^{\vec{c}}$, we cannot delay building \vec{c} in this way because homogeneity of any finite set directly depends on it.

Tree labeling method.

We define a certain subtree of $\omega^{<\omega}$ with labels on its nodes corresponding to diagonalization opportunities.

Paths give trivial wins (e.g., solutions that don't compute infinite sets).

If the tree is well-founded, we can use the labels to guide the construction of a homogeneous set.

Theorem (Dzhafarov). COH $\nleq_{sc} SRT_2^2$.

The tree labeling method is quite powerful for separating principles under \leq_{sc} .

Theorem (Dzhafarov, Patey, Solomon, Westrick). If j > k then $RT_j^1 \nleq_{sc} SRT_k^2$.

Theorem (Nichols). $SRT_2^2 \nleq_{sc} SPT_2^2$.

Hyperarithmetic instances.

The tree labeling method involves iteratively taking paths through subtrees of $\omega^{<\omega}$ so the instances it produces are non-hyperarithmetical.

Open question. Can the tree labeling method be made more effective?

Recall that a set X has a self-modulus if there is a function $f \equiv_T X$ such that $X \leq_T g$ from every function g > f. By a result of Solovay, X is hyperarithmetical.

Observation. If COH $\nleq_{sc} SRT_2^2$ via an instance $\vec{c} = \langle c_0, c_1, \ldots \rangle$ that has a self-modulus, then COH $\nleq_c SRT_2^2$.

Theorem (Dzhafarov, Patey, Solomon, Westrick). COH $\nleq_{sc} SRT_2^2$ via an instance \vec{c} computable in $\emptyset^{(\omega)}$ (and so at least hyperarithmetic).

Open question. Can the instance \vec{c} be chosen Δ_2^0 ?

Thank you.