VII. Réduction des endomorphismes et des matrices

8 septembre 2024

Table des matières

1	Diagonalisation en dimension finie	3
2	Polynômes annulateurs	3
3	Trigonalisation en dimension finie	3

Programme officiel

c) Diagonalisation en dimension finie

Un endomorphisme d'un espace vectoriel de dimension finie est dit diagonalisable s'il existe une base dans laquelle sa matrice est diagonale.

Une matrice carrée est dite diagonalisable si elle est semblable à une matrice diagonale. Un endomorphisme d'un espace vectoriel E est diagonalisable si et seulement si la somme de ses sous-espaces propres est égale à E. Un endomorphisme est diagonalisable si et seulement si la somme des dimensions de ses sous-espaces propres est égale à la dimension de l'espace.

Un endomorphisme est diagonalisable si et seulement si son polynôme caractéristique est scindé sur № et si, pour toute valeur propre, la dimension du sous-espace propre associé est égale à sa multiplicité.

Un endomorphisme d'un espace vectoriel de dimension n admettant n valeurs propres distinctes est dia-

Une telle base est constituée de vecteurs propres.

Interprétation en termes d'endomorphisme.

gonalisable, à des exemples de systèmes différentiels à Application au calcul des puissances d'une matrice diacoefficients constants.

Dans la pratique des cas numériques, on se limite à n=2ou n=3.

Exemple des projecteurs et des symétries.

Traduction matricielle.

Traduction matricielle.

Polynôme caractéristique scindé à racines simples. Traduction matricielle.

d) Diagonalisabilité et polynômes annulateurs

Un endomorphisme est diagonalisable si et seulement s'il admet un polynôme annulateur scindé à racines simples.

Le lemme de décomposition des noyaux est hors pro-

La démonstration n'est pas exigible.

Iraduction matricielle.

gramme.

L'endomorphisme induit par un endomorphisme diagonalisable sur un sous-espace vectoriel stable est diagona-

Un endomorphisme u est diagonalisable si et seulement $\prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda) \text{ pour polynôme annulateur.}$ s'il admet

e) Trigonalisation en dimension finie

Un endomorphisme d'un espace vectoriel de dimension finie est dit trigonalisable s'il existe une base dans laquelle sa matrice est triangulaire.

Une matrice carrée est dite trigonalisable si elle est semblable à une matrice triangulaire.

Un endomorphisme est trigonalisable si et seulement si son polynôme caractéristique est scindé sur K.

Toute matrice de $\mathcal{M}_n(\mathbb{C})$ est trigonalisable.

morphisme trigonalisable, d'une matrice trigonalisable à l'aide des valeurs propres. Expression de la trace et du déterminant d'un endo-

Interprétation en termes d'endomorphisme.

La démonstration n'est pas exigible.

Traduction matricielle.

La technique générale de trigonalisation est hors programme. On se limite dans la pratique à des exemples simples en petite dimension et tout exercice de trigonalisation effective doit comporter une indication.

- 1 Diagonalisation en dimension finie
- 2 Polynômes annulateurs
- 3 Trigonalisation en dimension finie