

Aprendé a encontrar objetos en videos

Docentes:

Franco Ronchetti

Facundo Quiroga

TEMARIO

- Introducción al procesamiento de imágenes digitales
- Introducción a Python y numPy
- Imágenes color y Filtrado por color
- Filtros morfológicos
- Aplicación (2° día)

¿QUÉ ES UNA IMAGEN DIGITAL?

 Una imagen digital es una representación estructurada y discretizada que modela a una imagen analógica, con posibilidad de ser almacenada y procesada en un sistema informático.

EL PROCESO DE DIGITALIZACIÓN

IMAGEN DIGITAL

- La estructura de una imagen es siempre una matriz de N x M pixeles.
- El pixel, entonces, es la unidad de información más pequeña en una imagen digital
- Cada pixel representa un punto en la imagen, de un color particular.

Cada pixel representa la intensidad de luz en ese punto y tiene que ser representado discretamente en una computadora.

¿Qué rango de valores se necesitan?

Comencemos con las imágenes B&N

Nuestro Monitor interpreta los "0" como color negro y los "1" como color blanco

Imágenes en escala de grises

Ahora bien, si a cada pixel le damos la posibilidad de tener 4 valores distintos, podríamos tener 4 colores.

0 1 2 3

Interpretación de la imagen (paleta de colores).

Imágenes en escala de grises

Profundidad de color: Entonces, a mayor rango de valores posibles, mayor cantidad de colores. Esto se conoce como "profundidad de color". Generalmente, la profundidad se mide en "bits".

1 bit = 2 colores

2 bits = 4 colores

8 bits = 256 colores

0	1	2	255
128	2	180	1
30	40	70	1

Imágenes en escala de grises

96	55	42	30
120	110	50	32
175	132	115	105
180	182	152	122

En una computadora, estos valores suelen estar expresados como enteros, pero en ocasiones se modelan como flotantes de 0 a 1.

IMÁGENES A COLOR

- Para representar imágenes a color, se utiliza un modelo de percepción humana. Es un sistema aditivo de color.
- Este mismo modelo utilizan todas las pantallas (monitores, celulares), incluyendo los antiguos TVs de tubos.
- Este modelo se basa en tres componentes de color: Rojo,
 Verde y Azul (Red, Green, Blue RGB).
- Con estos tres colores es posible formar cualquier otro color, visible por un ser humano.

Modelo RGB

IMÁGENES A COLOR Modelo RGB

¿De qué color es esta imagen?

El efecto se produce por un fenómeno de la visión humana

IMÁGENES A COLOR Modelo RGB

IMÁGENES A COLOR Modelo RGB (otro ejemplo)

IMÁGENES A COLOR Modelo RGB

 Entonces, para representar digitalmente una imagen color, se necesitan 3 matrices de NxM. Una para cada canal.

MODELO RGB PROFUNDIDAD DE COLOR

- ¿Cuántos bits son necesarios para modelar el color?
- En un principio se utilizaban modelos de pocos bits. Por ejemplo: 8 bits.
- Con 8 bits, tenemos: 2^8= 256 colores

Generalmente, las diferentes computadoras/consolas usaban paletas de colores para optimizar las pocas combinaciones que tenían

MODELO RGB PROFUNDIDAD DE COLOR

- Entonces: ¿Qué cantidad de bits necesitamos para ver una imagen con "buena" calidad?
- Hasta el momento, el estándar 24 bits (*TrueColor*) sigue siendo uno de los más utilizados. Un byte para cada canal.
- 24 bits= 2^24 = 16.777.216 colores
- Si bien no hay un consenso, se supone que esta cantidad supera el alcance de la visión humana.

MODELOS DE COLOR **HSV**

- El modelo RGB no es el único modelo de color. Existen diversos sistemas.
- Uno de los más utilizados para procesamiento de imágenes es el modelo HSV (Hue-Saturation-Value), debido a cómo almacena la información de los colores.
- Descompone la imagen en 3 canales: uno para el tono (Hue), otro para la saturación (Saturation), y otro para la intensidad (Value).

MODELOS DE COLOR **HSV**

OPERADORES MORFOLÓGICOS