1.2 Ejercicios sobre funciones continuas

En estos ejercicios, I denota un intervalo de \mathbb{R} y $f: I \to \mathbb{R}$ es una función continua en I.

Ejercicio 1.8. Si $g: I \to \mathbb{R}$ es otra función continua en $t_0 \in I$, demostrar que la suma $f + g: t \mapsto f(t) + g(t)$ es también continua en t_0 .

Solución: Sea $\epsilon > 0$, $\exists \delta_1, \delta_2 > 0$ tales que

$$|t - t_0| < \delta_1 \Rightarrow |f(t) - f(t_0)| < \varepsilon$$

 $|t - t_0| < \delta_1 \Rightarrow |g(t) - g(t_0)| < \varepsilon$

Para $|t - t_0| < \min\{\delta_1, \delta_2\}$ se cumple

$$|(f(t) - g(t)) - (f(t_o) - g(t_o))| \le |f(t) - f(t_o)| + |g(t) - g(t_o)| < 2\varepsilon$$

 \therefore f + g continua en t_0 .

Ejercicio 1.9. Si f(I) = J y si $h: J \to \mathbb{R}$ es continua en J, demostrar que la composición $h \circ f: t \mapsto h(f(t))$ es continua en I.

Solución: Sea $\varepsilon > 0$ y $t_o \in I$. Por continuidad de h en $f(t_o) \in J$, $\exists \delta > 0$ tal que

$$|w - f(t_o)| < \delta \Rightarrow |h(w) - h(f(t_o))| < \varepsilon$$

Por continuidad de f en t_o , $\exists \delta' > 0$ tal que

$$|t - t_0| < \delta' \Rightarrow |f(t) - f(t_0)| < \delta$$

Entonces

$$|t - t_o| < \delta' \Rightarrow |f(t) - f(t_o)| < \delta \Rightarrow |h(f(t)) - h(f(t_o))| < \varepsilon$$

h(f(t)) continua en $t_o, \forall t_o \in I$.

Ejercicio 1.10. (a) Defínase $|f|: I \to [0, \infty)$ por |f|(t) := |f(t)|. Comprobar que la función |f| es también continua en I.

Solución: Sea $\varepsilon > y$ $t_0 \in I$. Por continuidad de f en t_0 , $\exists \delta > 0$ tal que

$$|t - t_o| < \delta \Rightarrow |f(t) - f(t_o)| < \varepsilon$$

Como $||a| - |b|| \le |a - b|$, $\forall a.b \in \mathbb{R}$, entonces para $|t - t_o| < \delta$

$$||f(t)| - |f(t_o)|| \le |f(t) - f(t_o)| < \varepsilon$$

 \therefore | f | continua en t_o , $\forall t_o \in I$

(b) Si $f: I \to \mathbb{R}$ y $g: I \to \mathbb{R}$ son funciones continuas con un dominio común I, defínase

$$\underline{f\vee g}\left(t\right):=\max\{f(t),g(t)\},\quad \underline{f\wedge g}\left(t\right):=\min\{f(t),g(t)\}\quad \text{para}\quad t\in I.$$

Comprobar que las funciones $f \vee g$ y $f \wedge g$ son también continuas en I.

Solución: Para $a, b \in \mathbb{R}$ se cumplen las siguientes identidades

$$\max\{a, b\} = \frac{a + b + |a - b|}{2}$$
$$\min\{a, b\} = \frac{a + b - |a - b|}{2}$$

 $f \lor g \lor f \land g$ son continuas por ser composición de funciones continuas.

Ejercicio 1.11. (a) Usar la desigualdad $|\sec t| \le |t|$ para comprobar que la función $\underline{\sec n}$ es continua en $t_0 = 0$. Deducir que $\underline{\sec n}$ es continua en todo \mathbb{R} .

Solución: Sea $\varepsilon > 0$ y tome $\delta = \varepsilon$. Entonces para $|t - 0| < \delta$

$$|\operatorname{sen}(t) - \operatorname{sen}(0)| = |\operatorname{sen}(t)| \le |t| < \delta = \varepsilon$$

y así sen es continua en $t_0 = 0$. Además si $|t - t_o| < \delta$

$$|\sin(t) - \sin(t_0)| = \left| 2 \operatorname{sen}\left(\frac{t - t_0}{2}\right) \cos\left(\frac{t + t_0}{2}\right) \right|$$

$$\leq \left| 2 \operatorname{sen}\left(\frac{t - t_0}{2}\right) \right|$$

$$\leq 2 \frac{|t - t_0|}{2}$$

$$< \delta = \varepsilon$$

 \therefore sin es continua en todo \mathbb{R} .

(b) Demostrar que la función $h(t) := t \operatorname{sen}(1/t) [[t \neq 0]]$ es continua en $t_0 = 0$. ¿Es h una función continua en todo \mathbb{R} ?

Solución: Para $\varepsilon > 0$, tome $\delta = \varepsilon$. Si $|x - 0| < \delta$ se tiene

$$|h(x) - h(0)| = |h(x)| = |x \operatorname{sen}(1/x)| \le |x| < \delta = \varepsilon$$

por lo cual h es continua en $t_0 = 0$. Y para $t_0 \neq 0$, la función h es continua por ser producto de funciones continuas.

0

Ejercicio 1.12. Demostrar una función continua $f: [0,1] \to [0,1]$ tiene un *punto fijo*, es decir, que existe $c \in [0,1]$ con f(c) = c. [[Indicación: considerar g(t) := f(t) - t.]]

Solución: Tome g(t) como la función sugerida, la cual es continua por ser suma de funciones continuas. Se tiene que $g(0) \ge 0$, $g(1) \le 0$, entonces por teorema de valores intermedios existe $c \in (0,1)$ tal que g(c) = 0, equivalentemente, f(c) = c. Por lo tanto f tiene un punto fijo.

Ejercicio 1.13. Si $f: [a,b] \to \mathbb{R}$ es continua e inyectiva, con f(a) < f(b), demostrar que f es estrictamente creciente en [a,b].

Solución: Suponga que f no es estrictamente creciente, entonces existen x,y con f(x) = f(y) o existen tres puntos x < y < z tales que f(x) < f(y) y f(z) < f(y). La primera no se puede dar ya que contradice la inyectividad. Suponga la segunda. Si f(x) < f(z) < f(y), por teorema de valores intermedios existe $k \in (x,y)$ con f(k) = f(z), lo cual tambén es contradictorio ya que por inyectividad z = k y entonces $z \in (x,y)$. Análogamente si se considera la posibilidad f(z) < f(x) < f(y).

 \therefore f es estrictamente creciente.

Ejercicio 1.14. Comprobar que la función $f(t) := 1/(1+t^2)$ es uniformemente continua en todo \mathbb{R} . \llbracket Indicación: comparar |f(s) - f(t)| con |s - t|. \rrbracket

Solución: Vea que

$$|f(t) - f(t_0)| = \left| \frac{1}{1+t^2} - \frac{1}{1+t_0^2} \right| = \left| \frac{(t+t_0)(t-t_0)}{(1+t^2)(1+t_0^2)} \right| \le \frac{|t-t_0|}{2(1+t^2)(1+t_0^2)} (2|t| + 2|t_0|)$$

$$\le \frac{|t-t_0|}{2(1+t^2)(1+t_0^2)} ((t^2+1) + (t_0^2+1))$$

$$= \frac{|t-t_0|}{2(1+t^2)(1+t_0^2)} (t^2+1) + \frac{|t-t_0|}{2(1+t^2)(1+t_0^2)} (t_0^2+1)$$

$$= \frac{|t-t_0|}{2(1+t_0^2)} + \frac{|t-t_0|}{2(1+t^2)}$$

$$\le \frac{|t-t_0|}{2} + \frac{|t-t_0|}{2}$$

$$= |t-t_0|$$

Entonces para $\varepsilon > 0$ basta tomar $\delta = \varepsilon$ para demostrar la continuidad uniforme.

Ejercicio 1.15. (a) Una función $f:I\to\mathbb{R}$ es lipschitziana en I si hay una constante $L\geqslant 0$ tal que

$$|f(s) - f(t)| \le L|s - t|$$
 para todo $t \in I$.

Comprobar que f es uniformemente continua en I.

Solución: Sea $\varepsilon > 0$. Tomando $|s - t| < \frac{\varepsilon}{L}$ se tiene

$$|f(s) - f(t)| \le L|s - t| < L\frac{\varepsilon}{L} = \varepsilon$$

 \therefore f es uniformemente continua.

(b) Demostrar que la función $g(t) := \sqrt{t}$ es uniformemente continua en $[0, \infty)$ pero que no es lipschitziana en $[0, \infty)$.

Solución: En $[1, \infty)$ se cumple

$$|\sqrt{t} - \sqrt{t_0}| = \left| \frac{t - t_0}{\sqrt{t} + \sqrt{t_0}} \right| \le |t - t_0|$$

por lo que f es lipschitz en dicho intervalo, entonces uniformemente continua. Además como g es continua en [0,1] y este es un compacto se tiene que g es uniformemente continua. Veamos que esto implica continuidad uniforme en todo $[0,\infty)$.

Tome ε >0 y defina δ como el mínimo de los deltas que existen por continuidad uniforme en [0,1] y $[1,\infty)$. Si $|s-t|<\delta$ y s,t estan ambos en [0,1] ó $[1,\infty)$

$$|g(s) - g(t)| < \varepsilon$$

si este no es el caso, entonces $|s-1| < \delta$ y $|t-1| < \delta$ por lo cual

$$|g(s)-g(t)| \leq |g(s)-g(1)| + |g(t)-g(1)| \leq 2\varepsilon$$

De este modo g uniformemente continua aún cuando no es lipschitz en todo el dominio ya que

$$\frac{|g(s) - g(0)|}{|s - 0|} = \frac{1}{\sqrt{s}} \to \infty$$

cuando $s \to 0$.

Ejercicio 1.16. Si $\{x_n\}$ es una sucesión de Cauchy y si $\{x_{n_k}\}$ es una subsucesión convergente, con $x_{n_k} \to \ell$ cuando $k \to \infty$, demostrar que $x_n \to \ell$ cuando $n \to \infty$.

Solución: Para $\varepsilon > 0$

$$\exists N_1 > 0 : n \ge N_1 \Rightarrow |x_{n_k} - \ell| < \varepsilon$$

 $\exists N_2 > 0 : n, m \ge N_2 \Rightarrow |x_n - x_m| < \varepsilon$

así para $n \ge N \ge \max\{N_1, N_2\}$

$$|x_n - \ell| \le |x_n - x_{n_k}| + |x_{n_k} - \ell| < 2\varepsilon$$

$$\therefore x_n \to \ell.$$

Ejercicio 1.17. (a) Dados dos números reales a, b con 0 < a < b, defínase dos sucesiones $\{a_n\}$ y $\{b_n\}$ inductivamente, por $a_0 := a$, $b_0 := b$, y

$$a_{n+1} := \sqrt{a_n b_n}, \qquad b_{n+1} := \frac{a_n + b_n}{2}.$$

Comprobar que $a_n < b_n$ por inducción; y que las dos sucesiones convergen a un mismo límite: existe $m \in (a,b)$ tal que $a_n \to m$ y $b_n \to m$ cuando $n \to \infty$.

Solución: Primero vamos a demostrar que $a_n < b_n$

$$a_n < b_n \Leftrightarrow \sqrt{a_{n-1}b_{n-1}} < \frac{a_{n-1} + b_{n-1}}{2}$$

 $\Leftrightarrow 4a_{n-1}b_{n-1} < (a_{n-1} + b_{n-1})^2$
 $\Leftrightarrow 0 < (a_{n-1} - b_{n-1})^2$

Ahora, por inducción se tiene que

- $b_n > b_{n+1} \Leftrightarrow b_n > \frac{a_n + b_n}{2} \Leftrightarrow b_n > a_n$
- $a_{n+1} > a_n \Leftrightarrow \sqrt{a_n b_n} > a_n \Leftrightarrow a_n b_n > a_n^2 \Leftrightarrow b_n > a_n$

Entonces por convergencia monótona a_n y b_n son convergentes, y tomando $n \to \infty$ en $a_{n+1} = \sqrt{a_n b_n}$ se concluye que los límites coinciden. Además

$$a = a_0 < a_n < b_n < b_0 = b, \ \forall n \in \mathbb{N}$$

por lo que el límite está en (a, b).

(b) Este límite común se llama la media aritmética-geométrica de a y b, a veces denotado AGM(a,b) := m. Calcular AGM(1,2) con una exactitud de 10 cifras decimales.

Solución: Como b_n es decreciente y a_n es creciente, una aproximación con 10 decimales exactos va a cumplir la relación $b_n - a_n \le 10^{-11}$.

0

Ejercicio 1.18. Considérese la sucesión

$$a_n := \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
.

Demostrar que este sucesión converge¹ a un límite ℓ tal que $\ell \leq 1$.

Solución:

$$a_n = \sum_{i=1}^n \frac{1}{n+i} \le \sum_{i=1}^n \frac{1}{n} = 1$$

Además,

$$a_{n+1} - a_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{1}{2n+1} - \frac{1}{2n+2} > 0$$

Entonces por convergencia monótona a_n es convergente.

Adicionalmente,

$$\frac{1}{n+1} + \ldots + \frac{1}{n+n} = \frac{1}{n} \left(\frac{1}{1 + \frac{1}{n}} + \ldots + \frac{1}{1 + \frac{n}{n}} \right)$$

y esta es una suma Riemann derecha de la función $f(x) = \frac{1}{1+x}$ en el intervalo [0, 1] con de partición uniforme. Por lo tanto,

$$\frac{1}{n+1} + \ldots + \frac{1}{n+n} \to \int_0^1 \frac{1}{1+x} dx = \log(2), \ n \to \infty$$

0

Ejercicio 1.19. (a) Demostrar que una función $f: I \to \mathbb{R}$ no es uniformemente continua en I si y solo si existen $\varepsilon_1 > 0$ y dos sucesiones $\{s_n\}$ y $\{t_n\}$ en I con $|s_n - t_n| \le 1/n$ pero $|f(s_n) - f(t_n)| > \varepsilon_1$.

Solución:

 (\Rightarrow) Si f no es uniformemente continua, negando la definición tenemos

$$\exists \varepsilon > 0 \; \forall \delta > 0 \; \exists x,y: |x-y| < \delta \wedge |f(x)-f(y)| > \varepsilon$$

Entonces tome $\varepsilon_1 = \varepsilon$ y $\delta = \frac{1}{n}$, y haciendo *n* recorrer los naturales definimos t_n y s_n como los x, y que existen para cada $\delta = \frac{1}{n}$.

¹Aunque el ejercicio no pide calcular el límite, ¿podrá usted obtener el valor de *l*?

(\Leftarrow) Suponga por contradicción que f es uniformemente continua. Para el $\varepsilon_1 > 0$, $\exists \delta > 0$ tal que $|x - y| < \delta$ implica $|f(x) - f(y)| < \varepsilon$. Por arquimedianidad $\exists n \in \mathbb{N}$ tal que $|s_n - t_n| < \frac{1}{n} < \delta$, entonces por hipótesis $|f(s_n) - f(t_n)| > \varepsilon_1$ lo cual es contradictorio.

(b) Comprobar que la función continua $f(t) := \operatorname{tg} t$ no es uniformemente continua en el intervalo $(-\frac{\pi}{2}, \frac{\pi}{2})$.

Solución: Si I es un intervalo acotado y f(I) es no acotado, entonces f no puede ser uniformemente continua en I. Para demostrar esto procedemos por contradicción.

Definiendo $A_n := \{x \in I : |f(x)| \ge n\}$, construya una sucessión donde cada x_n está en A_n . Como x_n es acotada tiene una subsuceción convergente x_{n_k} y por lo tanto de Cauchy. Si f es uniformemente continua, se da $f(x_{n_k})$ es una sucesión de Cauchy y por lo tanto también convergente (\mathbb{R} es un espacio métrico completo). Lo cual es una contradicción con f(I) no acotado.

Por lo anterior, $f(t) := \operatorname{tg} t$ no puede ser uniformemente continua en $(-\frac{\pi}{2}, \frac{\pi}{2})$.

(c) La función $t \mapsto \log t$ es continua² en el intervalo $(0, \infty)$. ¿Es esta función *uniformemente* continua o no en dicho intervalo?

Solución: En (0, 1) esta función es no acotada, y por lo anterior no puede ser uniformemente convergente.

Ejercicio 1.20. Si $f: [a,b] \to [c,d]$ es una función continua y biyectiva, con *función inversa g*: $[c,d] \to [a,b]$ dada por $g(s) = t \iff f(t) = s$, demostrar que g es también continua sobre [c,d].

 \llbracket Indicación: supóngase que $s_n \to s$ en [c,d] pero $t_n \to t$ en [a,b]; luego usar el teorema de Bolzano y Weierstrass. \rrbracket

Solución: Siguiendo la indicación: Como $\{t_n\}$ es acotada, por teorema tiene una subsuceción convergente $t_{n_k} \to \ell \in [a,b]$ (por ser cerrado). Se tiene $f(t_{n_k}) \to f(l)$ por ser f continua, así $f(\ell) = f(t)$ y por inyectividad $\ell = t$. De igual manera para cualquier otra subsuceción convergente de $\{t_n\}$ se demuestra que su límite debe ser t.

Como estamos suponiendo $t_n \rightarrow t$, existe $\varepsilon_0 > 0$ y una subsuceción $\{t_{n_m}\}$ para la cual $|t_{n_m} - t| \ge \varepsilon_0$, pero al ser $\{t_{n_m}\}$ acotada debe tener una subsuceción convergente, y por lo demostrado anteriormente el límite es t lo cual es contardictorio. Y así se demuestra la caracterización de funciones continuas mediante suceciones para f^{-1} .

^{^2} Aquí $\underline{\log t} = \log_e t$ denota el logaritmo "natural" o napieriano. La antigua notación $\underline{\ln t}$ es obsoleta.