

Relative lowering of vapour pressure \rightarrow (for dilute solutions)

Abnormal molecular mass

Molecular mass is different from expected value Normal molar mass Van't Hoff factor (i)= Abnormal molar mass

Raoult's Law

For any solution, the partial vapour pressure of each volatile component is directly proportional to its mole fraction in solution phase

Obey raoult's law

Ideal solution $\rightarrow \Delta H_{miv} = \Delta V_{miv} = 0$, $\Delta S_{mix} > 0$, $\Delta G_{mix} < 0$ eg: n-hexane and n-heptane Ethyl bromide + Ethyl chloride. Chlorobenzene + Bromobenzene, etc.

Do not Obey raoult's law Non-Ideal solution $\rightarrow \Delta H_{...}$ or $\Delta V_{...} \neq 0$ $\Delta S_{miv} > 0$, $\Delta G_{miv} < 0$

Henry's Law

Partial pressure of gas in vapour phase is proportional to the mole fraction of gas in the solution.

 $p = K_{\perp} X$

K_u/k bar Gas 40.3 Ar 1.67 HCHO 1.83×10^{-5}

PHYSICS

0.413 where K_L is Henry's Law constant in water. The order of their solubility in water is: (NEET 2022)

Q. K. value for some gases at the same temperature 'T' are given:

(1) HCHO < CH₄ < CO₃ < Ar (2) Ar < CO₂ < CH₄ < HCHO

(3) Ar < CO₂ < CH₄ < HCHO

(4) HCHO < CO2 < CH4 < Ar

Azeotropes:

The mixtures of liquids which boil at constant temperature like a pure liquid and possess same composition of components in liquid as well as vapour phase are called constant boiling mixtures or azeotropic mixtures.

Minimum boiling azeotropes:

They are formed by those liquid pairs which show positive deviations from ideal behaviour, eq: ethanol-water mixture.

Maximum boiling azeotropes:

They are formed by those liquid pairs which show negative deviations from ideal behaviour e.g nitric acid-water mixture.

Positive Deviation

$$\Delta H_{mix} > 0$$

 $\Delta V_{mix} > 0$

eg: Acetone + Ethyl alcohol, Water + Ethyl alcohol, Carbon tetrachloride + Chloroform, Chloroform + Ethanol. Acetone + Carbon disulphide,

Acetone + Benzene, etc.

eg: Acetone + Aniline, HCl + H₂O, HNO₃ + H₂O,

 $\Delta H_{mix} < 0$

 $\Delta V_{mix} < 0$

H2SO4 + HO, Acetone + Chloroform(H-Bonding), HNO, + Chloroform,

Negative Deviation

Benzene + Chloroform

Pyridine + Glacial acetic acid, etc.