CPSC 538G Assignment #2

Stewart Grant 23539133

December 6, 2016

Contents

1	Que	\mathbf{st}	io	n	1																		2
	1.1	a																					2
	1.2	b																					2

1 Question 1

1.1 a

(20 points) Show, by induction on the structure of the graph, that for each vertex c, $B \to q(c)$

First we define a truth table for $B \to q(c)$

B	q(c)	$B \to q(c)$
Т	Т	T
\overline{T}	F	F
\overline{F}	Т	Т
\overline{F}	F	T

(i) $c \in \mathbf{root} \ A$

By definition q(c) = true. In the case where B = true we have $true \to true$, in the case where B is false we have $false \to true$ which holds. Therefore, $B \to q(c)$ if $c \in \text{root } A$.

(ii) $c \in \mathbf{root} \ B$

By definition q(c) = c. If B = true, then $B \to q(c)$ becomes $true \to q(c)$ where $c \in B$ which reduces to $true \to true$. If B = false, $q(c) \in [true, false]$, so $false \to [true, false]$ which holds. Therefore $B \to q(c)$ if $c \in \text{root } B$.

(iii)
$$q(c) = q(c_1) \land q(c_2)$$

If $c_1, c_2 \in A$, q(c) == true, see (i). If $c_1, c_2 \in B$, $q(c) = c_1 \wedge c_2$ and $B \to c_1 \wedge c_2$, see (ii). If $c_1 \in A \wedge c_2 \in B$ then $B \to true \wedge c_2$. Which reduces to $B \to c_2$, see (ii)

1.2 b

(20 points) Show, by induction on the structure of the graph, that for each vertex c, $(p(c) \land q(c) \rightarrow c$

First we define a truth table for $(p(c) \land q(c) \rightarrow c$; taking note that only the second case leads to a contradition.

p(c)	q(c)	c	$(p(c) \land q(c) \to c$
\overline{T}	Т	Т	Т
T	Т	F	F
\overline{T}	F	Т	Т
T	F	F	Т
F	Т	Т	Т
F	Т	F	Т
F	F	Т	T
F	F	F	T

(i) $c \in \mathbf{root} A$

If $c \in \text{root } A$, q(c) = T and p(c) = g(c). This simplifies the formulat to $T \land g(c) \rightarrow c$. Where $g(c) \in c$, $g(c) = true \rightarrow c$. If g(c) = false, $c \in [true, false]$ so $false \rightarrow [true, false]$ which holds. Therefore $q(c) \land p(c) \rightarrow c$ if $c \in \text{root } A$.

(ii) $c \in \mathbf{root} \ B$

If $c \in \text{root } B$ then p(c) = true and q(c) = c. This reduces to $true \land c \to c$, in term $true \to true$, $false \to false$. Therefore $q(c) \land p(c) \to c$ if $c \in \text{root } B$.

(iii) c has parents c_1,c_2 on variable v which is local to A

If v is local to A then $p(c) = p(c_1) \vee p(c_2)$ and $q(c) = q(c_1) \wedge q(c_2)$, so we have $(p(c_1) \vee p(c_2)) \wedge (q(c_1) \wedge q(c_2)) \rightarrow c$. Reducing p(c) to it's globals we get $(g(c_1) \vee g(c_2)) \wedge (q(c_1) \wedge q(c_2)) \rightarrow c$. If $q(c_1), q(c_2) \in A$ they resolve to true, and from **a iii** we know.