14.2 Exercice

1. Soit $k \geq 2 \in \mathbb{N}$.

$$\begin{split} \frac{1}{k^2} & \leq \frac{1}{k-1} - \frac{1}{k} \Leftrightarrow \frac{1}{k^2} \leq \frac{1}{k(k-1)} \\ & \Leftrightarrow \frac{1}{k} \leq \frac{1}{k-1} \\ & \Leftrightarrow k \geq k-1 \ (x \mapsto \frac{1}{x} \text{ est décroissante}) \end{split}$$

2. On suppose que S_n converge. Ainsi, pour $n \in \mathbb{N}$, on a d'une part :

$$\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k} \Leftrightarrow S_n \le 1 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k} \right)$$

$$\Leftrightarrow S_n \le 1 + 1 - \frac{1}{n} \text{ (t\'elescopage)}$$

$$\Leftrightarrow \lim_{n \to +\infty} S_n \le \lim_{n \to +\infty} 2 + \frac{1}{n} \text{ (Hypoth\`ese)}$$

$$\Leftrightarrow \lim_{n \to +\infty} S_n \le 2$$

D'autre part, la suite est strictement croissante, donc d'après le théorème de la limite monotone, (u_n) converge.

14.6 Exercice

1. Soit $n \in \mathbb{N}$. Lorsque a = 1, on a la relation $u_{n+1} = u_n + b$. Ainsi, (u_n) est une suite arithmétique d'expression :

$$u_n = u_0 + nb$$

2. (a) Pour $n \in \mathbb{N}$:

$$v_n = u_n + \lambda$$
donc $v_{n+1} = u_{n+1} + \lambda$

$$= au_n + b + \lambda$$

On remarque que pour $\lambda = \frac{b}{a-1}$ avec $a \neq 1$, on a :

$$v_{n+1} = au_n + b + \frac{b}{a-1}$$

$$= \frac{(a-1)(a)u_n + (a-1)b + b}{a-1}$$

$$= a \times \frac{(a-1)u_n + b}{a-1}$$

$$= a\left(u_n + \frac{b}{a-1}\right)$$

$$= av_n$$

Donc pour $\lambda = \frac{b}{a-1}$, (v_n) est géométrique.

(b)

$$v_n = u_n + \frac{b}{a-1}$$

$$\operatorname{donc} u_n = v_n - \frac{b}{a-1}$$

$$= \left(u_0 + \frac{b}{a-1}\right) \times a^n - \frac{b}{a-1}$$

$$= u_0 a^n + (a^n - 1) \frac{b}{a-1}$$

14.9 Exercice

On s'intéresse aux suites extraites $(u_{e^{2\pi n}})$ et $(u_{e^{2\pi n+\pi}})$:

$$(u_{e^{2\pi n}}) = (\cos(2\pi n))$$

 $(u_{e^{2\pi n}+\pi}) = (\cos(2\pi n + \pi))$

On a les limites:

$$\begin{array}{c} u_{e^{2\pi n}} \underset{n \to +\infty}{\longrightarrow} 1 \\ u_{e^{2\pi n + \pi}} \underset{n \to +\infty}{\longrightarrow} -1 \end{array}$$

Les deux suites extraites ne convergent pas vers la même limite, donc la suite (u_n) n'a pas de limites.

14.10Exercice

3. Soit $x \in [0, 1]$. Soit $\epsilon > 0$.

Par **densité** de \mathbb{Q} dans \mathbb{R} , on choisi $q=\frac{a}{b}\in\mathbb{Q}$ tel qu $|x-q|<\frac{\epsilon}{2}$. D'après la question 2, comme $u_{n^2b^2+2an}\underset{n\to+\infty}{\longrightarrow}\frac{a}{b}=q$, on choisit $n\in\mathbb{N}$ tel que :

$$|u_{n^2b^2+2an}-q|<\frac{\epsilon}{2} \text{ et } |u_n-x|<\epsilon$$

Donc $\{u_n, n \in \mathbb{N}\}$ est dense dans [0, 1].

D'après le critère séquentiel de la densité, tout réel de [0,1] est donc une limite d'une suite extraite de u.

14.12 Exercice

1. Soit $n \in \mathbb{N}^*$ et $u_n = (-1)^n + \frac{1}{n}$. Soit $k \in \mathbb{N}$.

$$\begin{cases} 1 \le (-1)^{2k} + \frac{1}{2k} \le \frac{3}{2} \\ -1 \le (-1)^{2k+1} + \frac{1}{2k+1} \le 0 \end{cases} \quad \text{donc } -1 \le (-1)^n + \frac{1}{n} \le \frac{3}{2}$$

 $u_2 = \frac{3}{2}$, donc d'après la caractérisation séquentielle de la borne supérieure, sup $\left\{(-1)^n + \frac{1}{n}\right\} = \frac{3}{2}$. De plus, $u_{2n+1} \xrightarrow[n \to +\infty]{} -1$, donc d'après la caractérisation séquentielle de la borne inférieure, inf $\left\{ (-1)^n + \frac{1}{n} \right\} =$

2. Soit $(p,q) \in \mathbb{Z}^2$ avec $p \neq q$ et $v_{p,q} = \frac{1}{p-q}$.

Si
$$p-q>0$$
, alors $\frac{1}{p-q}>0$ et $\frac{1}{p-q}\leq 1$ car $p-q\geq 1$

Pour tout
$$(p,q) \in \mathbb{Z}^2$$
 avec $p \neq q$, on a : $p-q \in \mathbb{Z}^* = \mathbb{Z} \setminus 0$
Si $p-q > 0$, alors $\frac{1}{p-q} > 0$ et $\frac{1}{p-q} \leq 1$ car $p-q \geq 1$
Si $p-q < 0$, alors $\frac{1}{p-q} < 0$ et $\frac{1}{p-q} \geq -1$ car $p-q \leq -1$

$$Donc -1 \le \frac{1}{p-q} \le 1$$

Donc $-1 \le \frac{1}{p-q} \le 1$ De plus, on peut prendre p=0 et q=1 pour obtenir $v_{0,1}=-1$, et p=1 et q=0 pour obtenir $v_{1,0}=1$

D'après la caractérisation séquentielle de la borne supérieure et de la borne inférieure :

$$\sup\left\{\frac{1}{p-q}\right\}(p,q) \in \mathbb{Z}^2, p \neq q = 1 \text{ et inf } \left\{\frac{1}{p-q}\right\}(p,q) \in \mathbb{Z}^2, p \neq q = -1$$

3. Soit $k \in \mathbb{N}^*$ et $w_k = \frac{(-1)^k k}{k+1}$.

Pour tout $k \in \mathbb{N}^*$:

Si k est pair, alors $w_k = \frac{k}{k+1} > 0$ et $w_k < 1$

Si k est impair, alors $w_k = -\frac{k}{k+1} < 0$ et $w_k > -1$

Donc
$$-1 < \frac{(-1)^k k}{k+1} < 1$$

Donc $-1 < \frac{(-1)^k k}{k+1} < 1$ De plus, pour k pair, $w_k = \frac{k}{k+1} \underset{k \to +\infty}{\longrightarrow} 1$

Et pour k impair, $w_k = -\frac{k}{k+1} \underset{k \to +\infty}{\longrightarrow}$

D'après la caractérisation séquentielle de la borne supérieure et de la borne inférieure :

$$\sup \left\{ \frac{(-1)^k k}{k+1} \right\}_{k \in \mathbb{N}^*} = 1 \text{ et inf } \left\{ \frac{(-1)^k k}{k+1} \right\}_{k \in \mathbb{N}^*} = -1$$

14.13 Exercice

D'une part, on a :

$$u_{n+1} - u_n = \sum_{k=n+2}^{2n+2} \frac{1}{k} - \sum_{k=n+1}^{2n} \frac{1}{k}$$

$$= \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}$$

$$= \frac{1}{2n+1} - \frac{1}{2n+2}$$

$$\geq 0$$

Donc (u_n) est bien croissante.

D'autre part, on a :

$$v_{n+1} - v_n = \sum_{k=n+2}^{2n+2} \frac{1}{k} - \sum_{k=n}^{2n} \frac{1}{k}$$

$$= \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n}$$

$$= \frac{-3n+3}{(2n+1)(2n+2)n} \le 0 \text{ (car } n \in \mathbb{N}^*)$$

Donc (v_n) est bien décroissante.

 $\quad \text{En outre}:$

$$u_n - v_n = \sum_{k=n+1}^{2n} \frac{1}{k} - \sum_{k=n}^{2n} \frac{1}{k}$$
$$= -\frac{1}{n}$$
$$\xrightarrow[n \to +\infty]{} 0$$

Donc u et v sont bien des suites adjacentes.

14.17 Exercice

1. Montrons que pour tout $x\geq 3$, la fonction $x\mapsto \frac{2x^2-3}{x+2}$ est minorée par 3: On note f la fonction $x\mapsto \frac{2x^2-3}{x+2}$.

$$f'(x) = \frac{2x^2 + 8x + 3}{(x+2)^2}$$
$$f'(x) = 0 \Leftrightarrow 2x^2 + 8x + 3 = 0$$
$$\Leftrightarrow x = 2 \pm \sqrt{\frac{5}{2}}$$

On a donc le tableau de variations suivant :

x	3	$2+\sqrt{\frac{5}{2}}$		$+\infty$
f'(x)	_	0	+	
f(x)	f(3)	$f(2+\sqrt{\frac{5}{2}})$		$\lim_{x \to +\infty}$

Ainsi, $[3, +\infty[$ est stable par la fonction f.

2. (a) a