Mathematical Statistics I

Derek Li

Contents

1	Pro	bability and Distributions	2
	1.1	Sets	2
	1.2	Probability Set Function	2
		1.2.1 Counting Rules	3
		1.2.2 Additional Properties of Probability	3
	1.3	Conditional Probability and Independence	3
		1.3.1 Independence	4

1 Probability and Distributions

1.1 Sets

Theorem 1.1 (Distributive Laws). For any sets A, B, and C,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Theorem 1.2 (DeMorgan's Laws). For any sets A and B,

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

1.2 Probability Set Function

Definition 1.1 (Probability Set Function). Let S be a sample space, let B be the set of events, P be a real-valued function defined on B. Then P is a **probability set function** if P satisfies the following three conditions:

- 1. $P(A) \ge 0, \forall A \in \mathcal{B}$.
- 2. P(S) = 1.
- 3. If $\{A_n\}$ is a sequence of events in \mathcal{B} and $A_m \cap A_n = \emptyset, \forall m \neq n$, then

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

Definition 1.2. A collection of events whose members are pairwise disjoint is said to be a *mutually exclusive collection* and its union is referred to as a disjoint union. The collection is said to be *exhaustive* if the union of its events is the sample space. A mutually exclusive and exhaustive collection of events forms a partition of S.

Theorem 1.3. For each event $A \in \mathcal{B}$, $P(A) = 1 - P(A^c)$.

Proof. We have
$$S = A \cup A^c$$
 and $A \cap A^c = A$. Thus, $P(A) + P(A^c) = A$.

Theorem 1.4. The probability of the null set is zero, i.e., $P(\emptyset) = 0$.

Proof. We have
$$\emptyset^c = \mathcal{S}$$
. Accordingly, $P(\emptyset) = 1 - P(\mathcal{S}) = 1 - 1 = 0$.

Theorem 1.5. If A and B are events s.t. $A \subset B$, then $P(A) \leq P(B)$.

Proof. We have $B = A \cup (A^c \cap B)$ and $A \cap (A^c \cap B) = \emptyset$. Hence, $P(B) = P(A) + P(A^c \cap B)$. From the definition, $P(A^c \cap B) \ge 0$, and thus $P(B) \ge P(A)$.

Theorem 1.6. For each $A \in \mathcal{B}, 0 \leq P(A) \leq 1$.

Proof. Since
$$\emptyset \subset A \subset \mathcal{S}$$
, we have $P(\emptyset) \leq P(A) \leq P(\mathcal{S})$ or $0 \leq P(A) \leq 1$.

Theorem 1.7. If A and B are events in S, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Proof. We can represent $A \cup B$ and B as a union of non-intersecting sets: $A \cup B = A \cup (A^c \cap B)$ and $B = (A \cap B) \cup (A^c \cap B)$. Hence, $P(A \cup B) = P(A) + P(A^c \cap B)$ and $P(B) = P(A \cap B) + P(A^c \cap B)$. Therefore, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Definition 1.3 (Equiprobability). Let $S = \{x_1, \dots, x_m\}$ be a finite sample space. Let $p_i = \frac{1}{m}$ for all $i = 1, \dots, m$. For all subsets A of S define

$$P(A) = \sum_{x: \in A} \frac{1}{m} = \frac{\#(A)}{m}$$

where #(A) denotes the number of elements in A. Then P is a probability on \mathcal{S} and it is referred to as the equilikely case.

1.2.1 Counting Rules

Definition 1.4 (Permutation). The number of k permutations taken from a set of n elements is

$$P_k^n = \frac{n!}{(n-k)!}$$

Definition 1.5 (Combination).

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

which is also referred to a binomial coefficient.

1.2.2 Additional Properties of Probability

Theorem 1.8. Let $\{C_n\}$ be a non-decreasing sequence of events, then

$$\lim_{n \to \infty} P(C_n) = P\left(\lim_{n \to \infty} C_n\right) = P\left(\bigcup_{n=1}^{\infty} C_n\right)$$

Let $\{C_n\}$ be a decreasing sequence of events, then

$$\lim_{n \to \infty} P(C_n) = P\left(\lim_{n \to \infty} C_n\right) = P\left(\bigcap_{n=1}^{\infty} C_n\right)$$

Theorem 1.9 (Boole's Inequality). Let $\{C_n\}$ be an arbitrary sequence of events, then

$$P\left(\bigcup_{n=1}^{\infty} C_n\right) \leqslant \sum_{n=1}^{\infty} P(C_n)$$

1.3 Conditional Probability and Independence

Definition 1.6 (Conditional Probability). Let B and A be events with P(A) > 0, then we defined the conditional probability of B given A as

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Property 1.1. We have:

- 1. $P(B|A) \ge 0$.
- 2. P(A|A) = 1.
- 3.

$$P\left(\bigcup_{n=1}^{\infty} B_n | A\right) = \sum_{n=1}^{\infty} P(B_n | A)$$

provided that B_1, \ldots, B_n are mutually exclusive events.

4.
$$P(A \cap B) = P(A)P(B|A)$$
.

Theorem 1.10 (Bayes' Theorem). Let A_1, \dots, A_k be events s.t. $P(A_i) > 0, i = 1, \dots, k$. Assume that A_1, \dots, A_k form a partition of the sample space \mathcal{S} . Let B be any event. Then

$$P(A_j|B) = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^{k} P(A_i)P(B|A_i)}$$

1.3.1 Independence

Definition 1.7 (Independence). We say A and B are *independent* if when P(A) > 0, P(B|A) = P(B), i.e., the occurrence of A does not change the probability of B; or when $P(A \cap B) = P(A)P(B)$.

Property 1.2. Suppose A and B are independent, then the following three pairs are independent: A^c and B, A and B^c , and A^c and B^c .

Proof. We have

$$P(A^{c} \cap B) = P(B) - P(A \cap B) = P(B) - P(A)P(B) = [1 - P(A)]P(B) = P(A^{c})P(B)$$

Definition 1.8 (Mutually Independence). The events are *mutually independent* iff they are pairwise independent.

Example 1.1. We say A_1, A_2 , and A_3 are mutually independent iff

$$P(A_1 \cap A_3) = P(A_1)P(A_3)$$

$$P(A_1 \cap A_2) = P(A_1)P(A_2)$$

$$P(A_2 \cap A_3) = P(A_2)P(A_3)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$