Math 189: Discrete Mathematics Proof Analysis

Rob Peterson

Part 1: List of mathematical terms

Mathematical Terms from proof	Definition	Example:
Directed Graph	A directed graph (or digraph, for short) consists of a pair (V, E). V is a set of vertices, and E, a set of directed edges, is a subset of V × V,	a
vertex	An element a set, used in a directed graph, and illustrated as dots or points	a is a vertex
vertices	Plural form of vertex.	a b
cycle	A circuit in which there are no repeated vertices except the first and last vertex.	The circuit <a,b,c,a> is a cycle</a,b,c,a>

Part 1: list of mathematical terms:

Mathematical Terms from proof	Definition	Example:
length	The number of edges in the cycle/circuit/path/walk.	The circuit <a,b,c,a> has a length of 3</a,b,c,a>
path	A walk in which no vertex is repeated.	Walk <a,b,c> is a path in this Di-Graph</a,b,c>
directed edge	A subset of VxV which is the Cartesian Product of the set of vertices of a graph. These are usually illustrated as arrows. The edge (A,C) would be represented by an arrow whose tail is at vertex A and head is at vertex C.	С
edge(v _o ,v _k)	An edge with head at labeled v_0 and tail at vertex v_k .	Vo

Part 1: list of mathematical terms:

self-loop	An edge that leads from a vertex to itself. Vertex d has a self-loop in this Di-Graph
anti-reflexive	The relation R is anti- reflexive if for every $x \in A$, it is not true that xRx There are no self-loops in this relation
strict order	A relation R is a strict order if R is transitive and anti-reflexive. This is a strict order.
transitive	The relation R is transitive if for every x,y, z ∈ A, xRy and yRz imply that xRz. This show transitivity. aRb, bRc, and aRc.
acyclic	A directed Graph is acyclic if it has no positive length cycles. There are no cycle lengths > 0.

Part 1: List of Mathematical Terms

Mathematical Terms from definitions	Definition	Example:
Circuit	A walk in which the fist vertex is the same as the last vetex.	The circuit <a,b,c,a> is a cycle</a,b,c,a>
Walk	A sequence of alternating vertices and edges that start and end with a vertex.	<a,b,c> is a walk</a,b,c>
Relation composition	The composition of relations R and S on set A is another relation on A, denoted S o R. The pair $(a, c) \in S$ o R if and only if there is a $b \in A$ such that $(a, b) \in R$ and $(b, c) \in S$.	

Part 2: List of mathematical Symbols

Part 2: List of Mathematical Symbols:

Symbols	Definition	Example:
х	Cartesian Product of two sets. The set of all ordered pairs in which the first entry comes from the first set, and the second entry comes from the second set.	$A = \{a, b, c\}$ $B = \{x, y, z\}$ $\{(a, x), (b, x), (c, x)$ $A \times B = (a, y), (b, y), (c, y)$ $(a, z), (b, z), (c, z)\}$
€	"element of"	$A=\{a,b,c,x\}$ $x\in A$
<v<sub>0,,v_k></v<sub>	Denotes a walk from vertex v ₀ to vertex v _k	A walk from v ₀ to v _k
$v_{0=}v_k$	Indicates that \mathbf{v}_0 and \mathbf{v}_k are the same vertex.	N/A
k	length of a path	N/A
(v,v)	An edge from a vertex to itself (a self-loop).	Vertex v has a self-loop in this Di-Graph
(v ₀ ,v _k)	An edge from vertex v_0 to vertex v_k .	3 → 7

Part 3: Proof StoryBoard

The following is a storyboard that illustrates the steps of the proof in Zybooks Discrete mathematics text theorem 6.8.1:

If G has a positive length cycle, then there is a path $\langle v_0,...,v_k \rangle$ in G where $v_0 = v_k$ and $k \ge 1$.

Figure 1: Directed Graph G having positive length cycle <v₀, v₂, v₃, v₀>

Figure 2: The 5 graph powers and the transitive closure are pictured for reference.

The existence of the path of length k implies that there is an edge (v_0, v_k) in G^k .

Figure 3: G^3 , depicting an edge $\langle v_0, v_0 \rangle$

All the edges in G^k are included in G⁺.

Figure 4: G^+ (Transitive closure of G), with all the edges from G^3 highlighted in red

Since $v_0 = v_k$, the edge is a self-loop, implying that G^+ cannot be anti-reflexive. Therefore G^+ is not a strict order.

Definition of Strict Order:

The relation is transitive and anti-reflexive.

 \underline{G}^+ is by definition transitive, so in order for it not to be a strict order, it must not be anti-reflexive which means that it has a self-loop.

Suppose that G⁺ has a self loop at vertex v.

See figure 3, vertex v_0 .

The edge (v, v) must be in G^k for some $k \ge 1$.

Figure 2 illustrates G^3 containing a self-loop at V_0 .

The existence of the edge (v, v) in G^k means that there is a path of length k in G that begins and ends at vertex v.

Figure 1 shows a path of length 3: $\langle v_0, v_2, v_3, v_0 \rangle$

Thus, there is a cycle of length k in G and G is not acyclic.

Part 4: Additional Questions

The first paragraph is a proof of the statement "If G^+ is a strict order, then G has no positive length cycles." What type of proof structure is used in the first paragraph of the proof?

The first paragraph of the proof negates the conclusion (*G has no positive length cycles*), and shows that the hypothesis cannot be true as a result. This is a proof by contrapositive.

What is the value of k in your illustration of the first paragraph?

The value of *k* in my illustration of the first paragraph is 3.

Why does a self-loop imply that G^+ cannot be anti-reflexive?

The definition if anti-reflexive is give in Zybook as:

"... for every $x \in A$, it is not true that xRx." If the graph G of the relation R contains a self-loopat vertex x, then xRx. Therefore the existence of self-loops dictates that the relation R cannot be anti-reflexive.

What justifies the author's statement that "Therefore G^+ is not a strict order"?

A strict order is transitive and anti-reflexive. The author has shown that the transitive closure under discussion is not anti-reflexive, therefore it cannot be a strict order.