030255WO

PLANAR, ROLLED SEMI-FINISHED PRODUCT MADE OF ALUMINUM ALLOYS

The invention relates to a planar, rolled semi-finished product made of aluminum alloys, wherein the aluminum alloys have the following alloy proportions in weight-%:

 $2 \le Mg \le 5$

 $Mn \leq 0.5$

 $Cr \leq 0.35$

 $Si \leq 0.4$

 $Fe \le 0.4$

 $Cu \le 0.3$

 $Zn \leq 0.3$

 $Ti \leq 0.15$

others at a sum of a maximum of 0.15, individually at a maximum of 0.05, residual A1, wherein the semi-finished product has been rolled off of an ingot, and during the rolling process has been subjected to at least one intermediate soft annealing between two cold roll passes and one final soft annealing, each in a batch furnace, as well as a method for the production of such a planar, rolled semi-finished product.

These planar, rolled semi-finished products are aluminum strips or sheets for the further processing by means of deforming or deep drawing, for example for the production of sheet metal for car bodies for the automobile industry. It is known that standard alloys, such as AA5052, AA5754, or AA5182, which have alloy proportions in the stated areas, have a tendency to form stretcher strains, particularly flow lines, during deep drawing.

Such stretcher strains are highly undesirable for high demands of the surface of exterior car body parts, as they are still visible after painting.

Moreover, various approaches are known from prior art, which result in the reduction or the complete avoidance of the undesired flow lines after deforming and deep drawing, respectively. These include in particular the addition of Zn and/or Cu, the omission of the intermediate soft annealing, and/or the final soft annealing in the continuous furnace. The setting of the grain size by means of the addition of Zn and/or Cu leads to the increased risk of creating a so-called orange skin during the deforming and the deep drawing, respectively. If the intermediate soft annealing is omitted, increased demands are created of the cold roll process or of the preliminary warm roll process, since the reductions per pass are limited with cold rolling. Finally, the use of a continuous furnace involves high initial purchase costs.

Furthermore, for avoiding flow lines during the deforming or deep drawing of semi-finished products, a method for the production of semi-finished products is known from US patent specification 4,151,013, in which an ingot made of aluminum alloys is cold rolled into a semi-finished product directly after the hot rolling, or after an intermediate soft annealing at a reduction of thickness of at least 40%, mostly 60% - 80%, the semi-finished product is then subjected to a final soft annealing in a continuous furnace, and is finally stretch-formed by 0.25% to 1%. It has been shown, however, that semi-finished products produced by means of the known method

do not safely avoid flow lines, for example during subsequent deep drawing.

Based on the previously described prior art, the present invention is based on the task of providing a planar, rolled semi-finished product made of aluminum alloys, and a method for the production of such a planar, rolled semi-finished product, respectively, which enables the use of standard alloys without the addition of Zn and Cu or other elements, can do without any extensive production lines, and ensures improved process safety with regard to deep drawn or deformed end products being free of flow lines.

The previously derived and shown task is solved in accordance with the first teaching of the invention in that the degree of deformation before the first intermediate soft annealing is at least 50%, and before the final soft annealing not more than 30%, and that the semi-finished product has been stretch-formed by 0.1 to 0.5% after the final soft annealing.

Initially, a rough structure is created in the semifinished product by means of a high degree of deformation
of at least 50% before the first intermediate annealing
so that the recrystallization temperature of the aluminum
alloy is reduced, and a recrystallization of the semifinished product, which is as complete as possible,
occurs during the intermediate annealing. With the
subsequent cold rolling at a maximum degree of
deformation of 30%, only few surface defects are
incorporated into the soft, recrystallized semi-finished
product so that the semi-finished product having a fine-

grained structure is conveyed to the final soft annealing. The combination of the previous processing steps with the final stretch-forming and the properties of the alloy surprisingly ensure that no flow lines appear during the deforming or deep drawing of the semifinished product. Furthermore, the semi-finished product according to the invention has a long shelf life of several years, during which the properties do not substantially change. In particular, it is not necessary to set a specific grain size so that the risk of the occurrence of an orange-peel skin is not present with the deforming. Therefore, a product free of flow lines may also be obtained at grain sizes of below 50 µm. Finally, no soft or solution annealing is necessary in the continuous furnace with subsequent quenching. In summary it can be concluded that the finishing process for the production of the planar, rolled semi-finished product according to the invention has great robustness.

An advantageous embodiment of the planar, rolled semifinished product according to the invention is that the semi-finished product has been stretch-formed after the final soft annealing by 0.2 to 0.5%. The stretch-forming by at least 0.2% further increases the process safety with the production of the semi-finished product according to the invention.

The stretch-forming of the planar, rolled semi-finished product may be performed in various manners. For example, the stretch-forming in a strip stretch-forming line, but also the stretch-forming with the assistance of the alternating turning around of the strip or the sheet on a so-called leveling line, in which the strip is stretch-

formed to the exterior radius at each turn and is compressed at the interior radius.

If the semi-finished product has a coating that has been applied in retrospect using the coil coating process, the deformability of the semi-finished product in the subsequent deforming or deep drawing steps can thus be improved by means of the associated heat treatment, without adversely affecting the lack of flow lines.

According to a second teaching of the invention, the previously derived and shown task is solved by means of a method for the production of a planar, rolled semifinished product made of aluminum alloys, in which the semi-finished product is rolled off of an ingot containing the above stated alloy proportions, during the rolling process is subjected to at least one intermediate soft annealing between two cold roll passes and one final soft annealing, each in a batch furnace, wherein the degree of deformation before the first intermediate soft annealing is at least 50%, and before the final soft annealing is not more than 30%, and the semi-finished product is stretch-formed after the final soft annealing by 0.1 to 0.5%.

As explained above, the semi-finished product produced in accordance with the method according to the invention has a further improved process safety with regard to avoiding flow lines during the subsequent deforming or deep drawing of the semi-finished product.

There is a multitude of possibilities to develop and further embody the planar, rolled semi-finished product

according to the first teaching of the invention and the method for the production of such a planar, rolled semifinished product according to the second teaching of the invention respectively. For this purpose, reference is made, for instance to the patent claim subordinate to patent claim one, on one hand, as well as to the following description in combination with the drawing, on the other hand.

The drawing shows the only figure of an embodiment of a line for the production of a planar, rolled semi-finished product made of aluminum alloys according to the first teaching of the invention and for realizing a method for the production of such a planar, rolled semi-finished product according to the second teaching of the invention, respectively.

The embodiment of the line for the production of a planar, rolled semi-finished product made of aluminum alloys according to the invention, in particular of a semi-finished product for the production of sheet metal for car bodies, has a hot roll line 1 with a reversing frame 2, and an optional subsequent, multilevel hot roll frame 3. In this hot roll line 1 an ingot 4, for example made of a standard alloy, such as AA5052, AA5754, or AA5182, is rolled off and subsequently reeled into a coil 5 on a reeling station.

After cooling of the coil 5, the strip is subjected on a first cold roll line 6 to one or more cold roll passes, wherein the degree of deformation is at least 50% for the reducing of the recrystallization temperature of the strip.

In the exemplary embodiment illustrated, the cold rolled, newly reeled strip is soft annealed in a batch furnace 7 in an intermediate process. During the intermediate soft annealing, the relatively rough structure of the strip recrystallizes nearly completely so that the strip is present in a soft and recrystallized state after the intermediate annealing. Subsequently, the intermediately soft annealed strip is again subjected to cold rolling on a second cold roll line 8 at a degree of deformation of not more than 30%. With this measure, only a low amount of surface defects is created in the strip so that the strip has a fine-grained structure after the last cold roll process.

Subsequent of the last cold roll pass, the newly reeled strip is subjected to a final soft annealing in a second batch furnace 9.

Subsequently, the cooled strip is stretch-formed by 0.1 to 0.5% on a so-called leveling line 10.

Instead of the leveling line 10, a strip stretch-forming line may also be used, on which the strip is stretch-formed across its entire cross-section.