CAPITULO 6 Elementos de Mecánica de Rocas

- Es la ciencia teórica y aplicada que trata del comportamiento mecánico de las rocas
- Es la ciencia que estudia el comportamiento mecánico de las masas rocosas que se encuentran bajo la acción de fuerzas producidas por fenómenos naturales ó impuestos por el hombre
- Búsqueda cualitativa y cuantitativa de los fenómenos naturales y 'su relación con el comportamiento de los materiales

Parámetros de la Mec. De Rocas

- La deformabilidad de los macizos rocosos
- Relación entre esfuerzo deformación
- La resistencia de los macizos rocosos
- Condiciones que producen su ruptura
- Estado del esfuerzo en condiciones iniciales
- Estado de los esfuerzos que se desarrollan en los macizos en virtud de las solicitaciones aplicadas
- Problemas estáticos y dinámicos debidos al flujo de agua

Principales aplicaciones de la mecánica de rocas

- EXCAVACIONES A CIELOABIERTO
- EXPLOTACIÓN DE BANCOS DE ROCA CUYO PRODUCTO SE UTILIZA EN:
- Escolleras
- Material de mejoramiento
- Pedraplenes
- Agregado para hormigón
- Cortes en vías
- Extracción de materiales varios

Aplicaciones de la Mec. De Rocas

- EXCAVACIONES SUBTERRÁNEAS
- Explotación de minerales
- Túneles para vías
- Túneles para conducción de aguas
- Casa de máquinas hidroeléctricas
- Almacenamiento de armas
- Almacenamiento de desperdicios atómicos
- Para alojar tuberías de presión

Aplicaciones de la M. de Rocas

- CIMENTACIÓN DE PRESAS
- Torres de tomas de agua
- Torres de transmisión
- Edificios
- Estructuras urbanas
- Reactores
- Radares
- puentes

OTRAS APLICACIONES

 FRACTURAMIENTO HIDRÁULICO PARA EXPLOTACIÓN DE PETRÓLEO

 ACTIVACIÓN DE POZOS GEOTÉRMICOS

• TRATAMIENTO DE MASAS ROCOSAS MEDIANTE INYECCIONES

Propiedades índice de las Rocas

- POROSIDAD
- CONTENIDO DE AGUA
- PESO VOLUMÉTRICO
- ALTERACIÓN
- ALTERABILIDAD
- SENSITIVIDAD
- MINERALOGÍA
- DENSIDAD

POROSIDAD

• Es la relación entre el volúmen de vacíos y el volúmen de la muestra, la cuál se expresa en porcentaje.

$$n(\%) = \underline{VV} x 100$$

$$Vm$$

La porosidad se relaciona con la resistencia al esfuerzo cortante

Tipos de porosidad:

Absoluta

De fisuración

CONTENIDO DE AGUA

- Es la relación entre el peso del agua contenida en una roca y el peso de su fase sólida. Se expresa en porcentaje
- Está muy ligado a la porosidad de la muestra y a la profundidad de la proviene la misma
- A mayor contenido de agua mayor disminución de la resistencia
- Ejemplo. ROCAS DE ESMERALDAS

PESO VOLUMÉTRICO

- Es la relación entre el peso de la muestra y el volumen de la muestra
- El peso y volumen de la muestra se realiza pesándola en el aire y luego pesándola sumergida en mercurio

Determinación del peso volumétrico

ALTERACIÓN

 LAS ROCAS AL ESTAR EXPUESTAS AL MEDIO NATURAL SUFREN MODIFICACIONES EN SU ESTRUCTURA Y COMPOSICIÓN MINERALÓGICA

 CUANDO SE ALTERA UNA ROCA SE INCREMENTA LA POROSIDAD Y POR LO TANTO SE PRODUCE MAYOR ABSORCIÓN DE AGUA

Relación de la porosidad con la absorción de agua para rocas

ROCAS	POROSIDAD %	ABSORCIÓN DE AGUA %
Granitos	3.98	1.55
	1.11	0.44
	0.44	0.20
Andesitas	10.77	4.86
	0.72	0.28
	0.10	0.05
Calizas	4.36	1.73
	1.70	0.65
	0.27	0.12
Areniscas	1.62	0.66
	9.25	4.12
	26.40	13.80
Gneis	2.24	0.84
	0.78	0.30
Mármol	2.02	0.77
	0.62	0.23

ALTERABILIDAD DE LAS ROCAS

• ES LA CAPACIDAD DE UNA ROCA PARA ALTERARSE EN EL FUTURO

- FACTORES CONDICIONANTES:
- composición mineralógica
- fisuras de la roca
- agentes agresivos
- tratamiento mecánico a que se somete

Uso de la roca deacuerdo con su alterabilidad

FISURACIÓN	ALTERABI- LIDAD ESPECÍFICA	AGREGADO PARA CONCRETO	FACHADAS	TÚNEL	CIMENTA- CIÓN
Baja	Baja	utilizable	por lo gene- ral utilizable	revestimiento innecesario	utilizable
K < 10 ⁻⁷ cm/seg	Alta	impropia	impropia	revestimiento no siempre necesario	tratamiento de relleno de la macrofisura
Alta	Baja	utilizable	por lo gene- ral utilizable	revestimiento innecesario	utilizable sin tratamiento
K > 10 ⁻⁷ cm/seg	Alta	impropia	impropia	revestimiento necesario	tratamiento necesario

Sensitividad

- La sensitividad se establece al analizar la variación de su permeabilidad al cerrarse o abrirse sus fisuras bajo el efecto de una modificación del estado de esfuerzos aplicados.
- Para medir dichas variaciones de permeabilidad se realiza una prueba que consiste en utilizar una probeta cilindrica de roca con una perforación central la cual se somete a dos tios de flujo.
- 1. Flujo convergente y
- 2. Flujo divergente

Tipos de flujo para obtener la sensitividad de una muestra de roca

Propiedades mecánicas de las rocas

Son de tipo cuantitativo que permiten predecir el comportamiento mecánico de los macizos rocosos y son directamente aplicables dentro del diseño ingenieril.

Las propiedades mecánicas más importantes son:

- 1. Deformación
- 2. Resitencia
- 3. Permeabilidad

Deformación

Cuando se somete una muestra de roca a una carga esta tiende a cambiar de forma, de volumen o bien las dos cosas simultaneamente.

Durante el período de aplicación del esfuerzo, este y la deformación son insaparables, por lo que se acostumbra a estudiar a la deformación mediante gráficas conocidas como Esfuerzo-Deformación

Curvas de Deformación

Resistencia

La resistencia tiene tres esfuerzos como variables:

- 1. De compresión.- que tiende a disminuir el volumen del material.
- 2. De tensión.- que tiende a crear fracturas en el material.
- 3. Cortante.- que tiende a desplazar una parte de la roca con respecto a las otras.
- Deacuerdo con esto la roca puede presentar resistencia a la compresión, resistencia cortante o resistencia a la tensión.

Relación entre los esfuerzos cortante y normal esfuerzos principales

$$\tau = \frac{1}{2} (\sigma_1 - \sigma_2) \text{ sen } 2\beta$$

 $\sigma = \frac{1}{2} (\sigma_1 + \sigma_2) - \frac{1}{2} (\sigma_1 - \sigma_2) \cos 2\beta$

donde β es el ángulo entre el plano de la dirección del debilitamiento esfuerzo principal mayor $\sigma_{\rm s}$

Tipos de esfuerzos

Figura 6.5. Tipos de esfuerzos. (Representación en el círculo de Mohr.) (Hoek, E. y Brown, E. T., Excavaciones subterráneas en roca, México, McGraw-Hill, 1985.)

PERMEABILIDAD

- Es la propiedad de algunos materiales de permitir el paso de fluídos a través de ellos
- Una roca es permeable cuando permite el paso de una cantidad medible de fluido en un espacio de tiempo finito
- Factores que influyen en la permeabilidad:
- Temperatura
- Existencia de cavidades
- Estratificación y estructura

Pruebas de permeabilidad

Determinación de las propiedades mecánicas

 LAS PROPIEDADES MECÁNICAS DE LAS ROCAS SE LAS PUEDE DETERMINAR TANTO EN LABORATORIO, EN EL CAMPO Y EN EL SITIO MISMO DE LA OBRA.

Resistencia

Compresión simple

Consiste en aplicar a los especímenes de roca cargas axiales sin confinamiento (figura 6.6a). Los especímenes son generalmente cilindros de 2.5 a 7.5 cm de diámetro y altura igual a dos diámetros.

Figura 6.6 a. Prueba de compresión simple.

Figura 6.6 b. Sección de un túnel (mostrando la distribución de esfuerzos).

Clasificación de las rocas de acuerdo con su resistencia a la compresión

RESISTEN- CIA EN MPa	CONDICIÓN	DESCRIPCIÓN
5 a 20	Muy débil	Sedimentarias alteradas y débilmente compactadas
20 a 40	Débil	Sedimentarias y esquistos débilmente cementados
40 a 80	Resistencia media	Sedimentarias competentes; y rocas igneas cuarzosas de densidad un poco baja
80 a 160	Resistencia alta	Igneas competentes, metamórficas; y algunas areniscas de grano fino.
160 a 320	Resistencia muy alta	Cuarcitas; rocas ígneas densas de grano fino.

(Manual de diseño de obras civiles, B.3.4, México, Comisión Federal de Electricidad, 1979.)

Prueba Triaxial

Pruebas triaxiales

Simulan el estado de esfuerzos en el que se encontraba la roca en el campo. El estado de esfuerzos es factible de representar con los esfuerzos normales principales $(\sigma_1, \sigma_2, \sigma_3)$, los cuales son ortogonales entre sí.

En los ensayos triaxiales, por simplicidad, los esfuerzos principales laterales $(\sigma, y \sigma_3)$ permanecen constantes durante la prueba.

Para analizar los resultados de los ensayos de compresión deben trazarse sus círculos de Mohr en la falla, para obtener la envolvente de falla (véase figura 6.8), que nos da la ley de resistencia de la roca.

Figura 6.8. Círculos de Mohr y envolventes de falla de una prueba de compresión simple y una triaxial. (Manual de diseño de obras civiles, B.3.4.)

Prueba de tensión directa

Ensayo de tensión Indirecta

 a) Diagramas de esfuerzo de compresión, σ_x y de tensión σ_y

 b) Zona de ruptura en una prueba brasileña

Ensayo de flexión

$$Rf = \frac{PL}{r^3}$$

Rf = Resistencia a la flexión

P = Carga aplicada

L = Longitud

r3 = Radio al cubo

Ensayo de corte

Figura 6.15. Prueba de laboratorio para la obtención de la resistencia al corte de muestras de roca. (Manual de diseño de obras civiles, B.3.4.)

Ensayo de corte

Figura 6.16. Especímenes de roca en un ensaye de corte simple. (Jaeger.)