Polynomial interpolation vs. spline interpolation

1 – Slides

Polynomial interpolation vs. spline interpolation

- polynomial interpol. may be a poor approximation for given knots (e.g., uniform distrib.)
- polynomial interpolation is not local:
 - often, this does not reflect properties of the problem under consideration
 - \blacktriangleright makes the evaluation at each point x expensive (cost: O(number knots))
 - error in one data point impacts the approximation everywhere

- 2 - Slides

An example of the cubic spline from $S^{3,2}(\Delta)$

- "not-a-knot" cubic spline for data $(i, \sin(i)), i = 0, \dots, 9$
- plot of the spline S and its derivatives: $S \in C^2$, $S' \in C^1$, $S'' \in C^0$, S''' is p.w. constant

- 3 – Slides