

Trees (Height Balanced)

Algorithms and Data Structures 2, 340300 Lecture – 2022W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria iku.at

Definition & Terminology

A tree is

- an acyclic, simple, coherent graph
- i.e. does not contain loops and cycles:
 between each pair of nodes there is at maximum one edge

Generalization of lists:

- Element (node) may have multiple successors.
- Exactly 1 node has no predecessor: root
- Nodes without successors: leaves

Frequently used data structure: decision trees, syntax trees, derivation trees, search trees, ...

Frequently used representation form: quantity, bracket, recursive indentation, graph, ...

Here: Use of trees to **store keys** and realization of dictionary operations (**search**, **insert**, **remove**) in e.g. binary trees

Definition & Terminology

Tree *B* is **ordered**, if successors of each node are ordered (1., 2., 3. etc.; left, right).

In an ordered tree, the subtrees B_i of each node form an ordered set (e.g.: arithmetic expression)

Order of B: maximum number of successors of a node

Path of length k: Follow $p_0, ..., p_k$ of nodes, such that p is successor of p_{i-1}

- Height of a tree: maximum distance of a leaf to the root.
- Depth of a node:
 distance to the root (the number of edges on a path from this node to the root)
 The nodes at level i are all nodes with depth i.

A tree of order *n* is called **complete** if all leaves have the **same depth** and the maximum number of nodes is present at each level.

Definition & Terminology

A root

B is **parent** of D and E

C is **sibling** of B

D and E are **children** of B

D, E, F, G, I are external nodes or leaves

A, B, C, H are internal nodes

The **depth** of E is 2.

The **height** of the tree is 3.

The order of B is 2, the order of C is 3.

We always have: number of edges = number of nodes - 1

Binary Trees

If *T* is a binary tree (order of all nodes <= 2) with n nodes and a height h, then T has the following properties

- Number of **external nodes** is at least **h+1** and at maximum **2**^h
- Number of **internal nodes** is at least h and at maximum $2^h 1$
- Number of nodes is at least 2h+1 and at maximum 2^{h+1}-1
- The height of T is at least log(n+1) -1 and at maximum (n-1)/2

Traversing Binary Trees

- Preorder:
 28, 16, 12, 8, 15, 19, 34, 31, 29, 49
- Postorder:
 8, 15, 12, 19, 16, 29, 31, 49, 34, 28
- Inorder:
 8, 12, 15, 16, 19, 28, 29, 31, 34, 49

Hints: If you traverse the tree starting from the root, you have

- Preorder by visiting all nodes on the left side of which you pass by.
- Postorder by visiting all nodes on the right side of which you pass by.
- Inorder by visiting all nodes on the bottom side of which you pass by.

Binary Search Trees

A binary search tree is a binary tree *T* where:

- Each internal node stores a key-value pair of a dictionary
- Keys which are stored in nodes of the left subtree of a node v, are less than or equal to the key stored in v
- Keys which are stored in nodes of the right subtree of a node v, are greater than the key stored in v
- External nodes serve only as placeholders and do not store elements

Searching in Binary Search Trees

Assumption: For each node **n** with children c_l , c_r and key **k** we have (search tree condition):

- All keys stored in subtree of c₁ are smaller than k
- All keys stored in subtree of c_r are larger than k
- All keys stored in subtree of c₁ are smaller than all keys stored in subtree of c_r

Search for key x:

- 1. Compare key **k** of inspected node **n** with **x**.
- 2. If **n** == **null**, **x** is **not in** the binary tree.
- 3. If $\mathbf{k} < \mathbf{x}$, set $\mathbf{n} = \mathbf{c}_{\mathbf{r}}(\mathbf{n})$ and jump to 1.
- 4. If $\mathbf{k} > \mathbf{x}$, set $\mathbf{n} = \mathbf{c}_{\mathbf{i}}(\mathbf{n})$ and jump to 1.
- 5. If $\mathbf{k} == \mathbf{x}$, found.

Maximum number of inspected nodes: depth of tree

Search within the nodes, e.g. by linear or binary search. As I ≤ m, the complexity is constant.

Searching in Binary Search Trees

Binary search tree is a decision tree:

in each internal node v the key to be searched for is compared with the key stored in v

Pseudocode

```
Algorithm TreeSearch(k, v)
   Input: key k to be searched, node v of a binary search tree
   Output: node w in subtree of v, for successful search internal node with key k, for unsuccessful search
   external node after all internal nodes smaller than k and before all internal nodes greater than k
   if v is an external node then
      return v
   if k = key(v) then
      return v
   else if k < key(v) then
      return TreeSearch(k, T.leftChild(v))
   else
      return Treesearch(k, T.rightChild(v))</pre>
```


Examples for Search in Binary Search Trees

TreeSearch(76, root))

(sucessful search)

TreeSearch(55, root)

(unsucessful search)

Complexity of Binary Search Trees

For **searching**, **inserting**, **removal**, nodes along a **root-leaf-path** (plus possibly siblings of such nodes) needs to be traversed.

- Complexity per node: O(1)
- Therefore the runtime is O(h), where h is the height of the tree

In worst case the height of the binary search tree is h = N (tree "degenerates" to sorted sequence)

- Worst case complexity O(N)
- Therefore, the tree must be kept balanced to allow operations in O(log N)

Trees

Problem: trees can degenerate (e.g. become lists)

Removal of a node

Very easy: Removal of a leaf

• Easy: Removal of a node **p** with 1 successor:

replace node with successor

• More difficult: Removal of a node **p** with 2 successors:

Search for the leftmost node q in right subtree (symmetric successor).

Replace **p** with **q**, remove **q** from its original position.

Cost measure: Number of nodes visited or number of search steps or key comparisons required.

Average access cost z of a tree B ...

is obtained by calculating its total path length PL as the sum of the lengths of all paths from the root to each node K_i.

$$PL(B) = \sum_{i=1}^{N} Level(K_i)$$

 $PL(B) = \sum_{i=1}^{N} Level\left(K_{i}
ight)$ The mean path length is calculated by $l = \frac{PL}{N}$

Maximum access cost We have the longest search path and thus the maximum access cost, when the binary search tree degenerates into a linear list.

$$height h = l_{max} + 1 = N$$

Maximum average access cost:

$$z_{max} = \frac{1}{N} * \sum_{i=0}^{N-1} (i+1) * 1 = N * \frac{(N+1)}{2N} = \frac{(N+1)}{2} = O(N)$$

Minimum average access cost:

- They can be expected in an almost complete or balanced tree structure.
- Total number of nodes: 2^{h-1}-1 < N ≤ 2^h-1
- height $h = [log_2N] + 1$
- Minimum average access cost: z_{min} ≈ log₂N 1

Average access cost

- Extreme cases of average access costs have only little significance.
- The difference between the average and the minimum access cost is a measure of the urgency of balancing.

Determination of the average access cost:

N different keys with values 1, 2, ..., N are given in random order.

The probability that the first key has the value **i** is $\frac{1}{N}$ (Assumption: same access probability to all nodes)

For the tree with i as root we get:

$$Z_N(i) = \frac{1}{N} * ((Z_{i-1} + 1) * (i - 1) + 1 + (Z_{N-i} + 1) * (N - i))$$

The recursive equation can be represented in non-recursive, closed form by means of the harmonic function:

$$H_N = \sum_{i=1}^N \frac{1}{i}$$

We get:

$$z_N = 2 * \frac{(N+1)}{N} * H_N - 3 = 2ln(N) - c$$

Relative additional cost:

$$\frac{z_N}{z_{min}} = \frac{2\ln(N) - c}{\log_2(N) - 1} \sim \frac{2\ln(N) - c}{\log_2(N)} = 2\ln(2) = 1,386 \dots$$

The balanced binary search tree causes the least cost for all basic operations.

However, perfect balancing at any time is very expensive.

Balanced Trees

Efficiency of dictionary operations (insert, search, remove) on trees depends directly on the tree height.

Tree with N nodes:

- Minimum height: Llog₂ NJ, maximum height: N-1
- Access on average O(log₂ N), but in worst case linear.

Aim:

- Fast access with $z_{max} \sim O(log_2 N)$
- Insert and remove operations in logarithmic complexity.

Heuristics:

For each node in the tree, the number of nodes in each of its two subtrees should be kept as constant as possible.

Balanced Trees

Two different approaches

Height-balanced trees:

The maximum allowed height difference of the two subtrees is limited

Weight-balanced trees:

The ratio of the node weights (number of nodes) of both subtrees meets certain conditions.

Height-Balanced Search Trees

B-Trees

always balanced due to balance sustaining search, insert, remove number of children per inner node between t (=m/2) and 2t (=m)

access in O(log(n))

AVL Trees

The heights of each internal node's children only differ by a maximum of 1

access in O(log(n))

Example from https://de.wikipedia.org/wiki/B-Baum

Tree structure (m-Tree) that is always balanced

- self-balancing mechanism integrated in access operations (search, insert, remove)
- maintains sorted data (keys)
- search(), insert(), remove() in logarithmic time
- supports "locality"-principle in memory organization

Graphics: Flying sheep, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19226668

- 1. Every node has at most m children (m = 2t).
- 2. Every non-leaf node (except root) has at least [t = m/2] child nodes.
- 3. The root has at least 2 children if it is not a leaf node.
- 4. A non-leaf node with **k** children contains **k**-1 keys.
- 5. All leaves appear in the same level (height h)

m = 2t ... maximum number of children per noden ... number of keys stored,

then the **height h** is:

$$h \le \log_t \left(\frac{n+1}{2}\right) + 1$$
 (therefore access in $O(\log(n))$)

 ${f t}$... minimum number of children per node

n ... th-1

let
$$t = 1024, h = 4$$
 then

$$1024^4 - 1 = (2^{10})^4 - 1 = 2^{40} - 1 = 1.099.511.627.775$$
 keys (i.e. access time 10 times lower)

Search (key = 9)

Insert

Search for insert position (inner node)

If inner node **full**

(i.e more than 2t-1 keys) then preventively split before stepping down

Graphics: Haui, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=245051, CC BY-SA 3.0, https://commons.php?curid=245051, cc BY-SA 3.0, https://curid=245051, https://curid=245051, https://curid=245051, https://curid=245051, https://curid=245051, https://curid=245051, https://curid=245051, h

Remove

Removing (**inner node**) could destroy balance

before stepping down

check whether there are enough keys in the subtree

If considered inner node in subtree has just minimum number of keys (**t-1** keys), then

Move / Merge

to prevent from imbalance after **Remove**

Move

transfer a sibling to **expand (minimum) inner node**

Merge

before stepping down

merge two a siblings
if both (left and right child)
are at minimum number of inner nodes

Remove

before deleting key from inner node separate/adjust the key ranges of both left and right child (here: inorder transfer, i.e. rightmost of left child)

Graphics: Haui, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=248208, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=248209

Example (t=2) i.e. min 1, max 3 keys per inner node

a–c) **insert** 5, 13, 27

d–e) **insert** 9 – induces **splitting** of root

f) insert 7 leaf node

g-h) **insert** 3 needs **splitting**

i–j) **remove** 9, needs induces **move** of sibling

k–l) remove 7 induces merge

m) remove 5 (leaf)

n-q) **remove** 3 induces **merge** of two children of root empty root replaced by only child

Example from https://de.wikipedia.org/wiki/B-Baum; Graphics: Haui, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=250188

AVL Trees (Adelson-Velskii, Landis 1962)

AVL trees are balanced binary search trees

An AVL tree is a binary search tree, in which the heights of each internal node's children only differ by a maximum of 1.

Example (numbers next to the nodes indicate their height):

Height of an AVL tree

Assertion: The height of an AVL tree T that stores n keys is O(log n)

Sketch of a proof:

Find n(h), the smallest possible number of internal nodes in an AVL tree of height h.

• Trivial: n(1) = 1, n(2) = 2

Height of an AVL tree

Assertion: The height of an AVL tree T that stores n keys is O(log n)

Sketch of a proof:

Find n(h), the smallest possible number of internal nodes in an AVL tree of height h.

- Trivial: n(1) = 1, n(2) = 2
- $n \ge 3$: The AVL tree of height h with minimum n(h) consists of a root node, an AVL subtree of height h-1 and an AVL subtree of height h-2.

i.e.
$$n(h) = 1 + n(h-1) + n(h-2)$$

Fibonacci progression (exponential!)

- findElement: O(logn)
- findAllElements O(log n+s) (s=number of findings)

as n(h-1) > n(h-2) it follows:

$$n(h) > 2 n(h-2)$$

 $n(h) > 4 n(h-4)$

$$n(h) > 8 n(h-6)$$

$$n(h) > 2^i n(h-2i)^2$$

then
$$n(h) \ge 2^{h/2-1}$$

Using the logarithm we get: $h < 2 \log n(h) + 2$

Therefore we have: The height of an AVL tree is O(log n)

 $\log n(h) > h/2 -1$

By **inserting** a node into an AVL tree, the **height** of some nodes in this tree changes

Insert operation may cause the AVL tree to be unbalanced

- Go up **from the new node** in the tree until the first node **x** is found, whose "grandfather" **z** is an unbalanced node.
- Since z was unbalanced by inserting a node that lies in a sub-tree with root y (where y is a child of z), we have height(y) = height(sibling(y)) + 2

Re-balancing of the sub-tree with root z requires **restructuring**:

- x, y and z are renamed to a, b, c (according to in-order traversing)
- **z** is replaced by **b**, whose children are now **a** and **c**, whose children are again **four subtrees**, which were formerly the children of x, y and z

Insert 54

Restructuring in AVL trees (Single Rotations)

Restructuring in AVL trees (Double Rotations)

Algorithm for Restructuring

Algorithm restructure (x):

```
Input:
   node x of a binary tree T with parent y and grandparent z
Output:
   tree T restructured by (single or double) rotation of nodes x, y, z

1.Let (a,b,c) be the in-order-sequence of the nodes x, y, z and let
   (To, To, To, To, To) be the in-order-sequence of the subtrees of x, y and z
2.Replace subtree with root z by subtree with root b
3.Assign a as left child of b and assign To and To as left/right subtree of a
4.Assign c as right child of b and To, To as left/right subtree of c
```


Each tree to be balanced can be divided into 7 parts:

- nodes x, y, z and
- 4 subtrees (T₀, T₁, T₂, T₃),
 with the children of x, y, z as root

Create a new tree from the 7 parts, which is balanced and in which the **in-order sequence** of the parts is retained.

Example

number 7 parts according to in-order traversal

Example

Create an array with indices 1..7

"Cut" the 4 subtrees and place them into the array according to their numbering.

"Cut" x, y and z (in the order child, parent, grandparent) and put them in the array according to their numbering

- Reassemble the tree again
- Set element at position 4 (b) as root

- Reassemble the tree again
- Set elements at position 2 and 6 as children

- Reassemble the tree again
- Set elements at position
 1, 3 or 5, 7 as child of 2 and 6

Cut/Link restructuring algorithm has the same effects as the four rotation cases previously considered

Advantage:

- No case distinction necessary
- More "elegant" solution

Disadvantage:

May require more code

The two procedures **do not differ** in terms of **complexity** (**runtime**).

Using **removeAboveExternal(w)** can unbalance a tree:

- Let z be the first unbalanced node which is visited while traversing up in the tree.
- Let y be the child of z with the largest height and let x be the child of y with largest height.
- The algorithm **restructure(x)** can be used to restructure and balance the subtree with root z.
- However, restructuring can **destroy the balance at higher levels**, so that the verification (and restructuring if necessary) must be **continued** until the root node is reached.

Example

Alternative

Example

Alternative

AVL Trees :: Complexity

Possible complexity: N = number of keys

Balanced Trees

Balanced trees are introduced as a compromise between balanced and natural search trees, whereby **logarithmic search complexity** is required in the **worst case**.

For the height h_b of an AVL tree with *N* nodes we have:

$$\lfloor \log_2 N \rfloor \leq h_b \leq 1,44 * \log_2 (N+2)$$

- The upper limit can be derived from Fibonacci trees, a subclass of the AVL trees.
- Let N(h) be the minimum number of nodes of a height-balanced tree with height h. We have:
 - N(0)=1, N(1)=2, N(2)=4, N(3)=7, N(4)=12, N(5)=20, ...
 - N(h) = 1 + N(h-1) + N(h-2) = Fib(h+3) 1
 - Fib(h) = $1/\sqrt{5}$ * ($((1 + \sqrt{5})/2)^h$ $((1 \sqrt{5})/2)^h$)
 - for all h we have: Fib(h) $\geq 1/\sqrt{5}$ * $((1 + \sqrt{5})/2)^h 1$
 - if N(h)=Fib(h+3)-1 we have: $\log_2 (N(h)+2) \ge \log_2 (1/\sqrt{5}) + (h+3) \log_2 ((1+\sqrt{5})/2)$)
- From this the estimation follows: h ≤ 1,44 log₂ (N(h)+2) → h = O (log N(h))

Minimum number of nodes grows exponential with height

→ so vice versa: height grows logarithmically with node number

0,1,1,2,3,5,8,13,21, ...

Trees (Height Balanced)

Algorithms and Data Structures 2, 340300 Lecture – 2022W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria iku.at