QUIZ 11

MATH 4242 010, AU'14

Please write your name on the top left and show all work legibly.

THE DISCRETE FOURIER TRANSFORM

Problem 1. Draw the unit circle in the complex plane and label the 3rd roots of 1, ζ_3^0 , ζ_3 , ζ_3^2 . Give expressions for the third roots of 1 without any numerical approximation (hint: these result in special angles). Use this to write the basis $\omega_0, \omega_1, \omega_2$.

Problem 2. Verify that, when n = 3, the basis $\omega_0, \omega_1, \omega_2$ is orthonormal under the averaged dot product. Verify as well that $\omega_{-1} = \omega_2$.

Problem 3. Given the sampled vector $\mathbf{f} = (1, 2, 3)$, find the Fourier coefficients c_0, c_1, c_2 . Explain why $c_{-1} = c_2$. Write the standard trigonometric interpolant and the low frequency trigonmetric interpolant and in terms of sines and cosines, and simplify as much as possible.

Problem 4. Given the coefficients $c_0 = c_1 = 1, c_2 = 2$, write the sampled data \mathbf{f} . (Hint: remember, we chose our c_k so that $\mathbf{f} = \sum_k c_k \omega_k$.)

THE FAST FOURIER TRANSFORM

Problem 5. Let $\mathbf{f} = (1, 2, -1, 0)$. Notice that $n = 4 = 2^2$.

- Break the sample vector \mathbf{f} into two sample vectors of length two, \mathbf{f}^{even} and \mathbf{f}^{odd} .
- Repeat the above step on each of the two resulting sample vectors.
- Now we are down to 4 sample vectors of length one. In this case, there is only one Fourier coefficient c_0 . In this case, $\omega_0 = (1)$ and so in each of the four cases, c_0 is equal to the only term in the sample vector.
- Now we reconstruct the higher sample vectors. Using the equation that

$$c_k = (c_k^{\text{even}} + c_k^{\text{odd}} e^{2\pi i k/2^r})/2$$

gives us the sample values at level r, iterate upward to reconstruct the fourier coefficients (Hint: see the extra Fourier examples notes for an example of this).

Google page rank

Problem 6. Given an internet with four websites labeled 1 to 4 and links $1 \to 4, 1 \to 3, 2 \to 3, 2 \to 4, 3 \to 1, 3 \to 2, 3 \to 4, 4 \to 2$ (where $a \to b$ means there is a link from a to b), draw the resulting digraph. Write the transition matrix T with a damping factor of d = 1/2.

Problem 7. For the above internet, we now estimate the page rank of each website. Recall that if we set $P_0 = (1, 1, 1, 1)$, the page rank as of website i is defined as the ith entry of $P_{\infty} = \lim_{\ell \to \infty} T^{\ell} P_0$. Compute T^2 , $T^4 = (T^2)^2$, and $T^8 = (T^4)^2$. Use $T^8 P_0$. Use $T^8 P_0$ to approximate the page rank of each website.