NYU Computer Science Bridge to Tandon Course

Winter 2021

Homework 11

Name: Yun-Ping Du

Question 5

a. Use mathematical induction to prove that for any positive integer n, 3 divides $n^3 + 2n$ (leaving no remainder).

Hint: you may want to use the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Solution. By induction on n.

Base case: n = 1.

$$n^3 + 2n = 1^3 + 2 \cdot 1 = 3$$

Therefore, for n = 1, 3 divides $n^3 + 2n$.

Inductive step: We will show that for any positive integer $k \ge 1$, if 3 divide $k^3 + 2k$, then 3 also divides $(k+1)^3 + 2(k+1)$. First We have

$$(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2 = (k^3 + 2k) + (3k^2 + 3k + 3)$$

By the inductive hypothesis we know that 3 divides $(k^3 + 2k)$, and it's also clear that 3 divides $(3k^2 + 3k + 3)$. Thus we have 3 divides $(k + 1)^3 + 2(k + 1)$.

b. Use strong induction to prove that any positive integer $n \ (n \ge 2)$ can be written as a product of primes.

Solution. By strong induction on n.

Base case: n=2. Since 2 is a prime number, it's already a product of one prime number: 2.

Inductive step: Suppose that for $k \geq 2$, any integer j in the range from 2 through k can be expressed as a product of prime numbers. We will show that k+1 can be expressed as a product of prime numbers. If k+1 is prime, then it is a product of one prime number: k+1. If k+1 is not prime, then it is composite and thus can be expressed as the product of two integers, a and b, both of which are at least 2. We will show that both a and b are at most k to apply the inductive hypothesis. Since k+1=ab, $a=\frac{k+1}{b}$. Furthermore, since $b\geq 2$, $a=\frac{k+1}{b}< k+1$, and thus $a\leq k$. By the symmetric argument we can show that $b\leq k$. Since a and b both fall in the range from 2 through k, the inductive hypothesis can be applied and they can each be expressed as a product of primes:

$$a = p_1 \cdot p_2 \cdots p_m$$
$$b = q_1 \cdot q_2 \cdots q_n$$

Now k + 1 can be expressed as a product of primes:

$$k+1 = ab = (p_1 \cdot p_2 \cdots p_m)(q_1 \cdot q_2 \cdots q_n)$$

Question 6

Solve the following questions from the Discrete Math zyBook:

a) Exercise 7.4.1

Define P(n) to be the assertion that:

$$\sum_{i=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

(a) Verify that P(3) is true.

Solution.

$$\sum_{i=1}^{3} j^2 = 1^2 + 2^2 + 3^2 = 14 = \frac{3(3+1)(2\cdot 3+1)}{6}$$

(b) Express P(k).

Solution.

$$\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$$

(c) Express P(k+1).

Solution.

$$\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

(d) In an inductive proof that for every positive integer n,

$$\sum_{i=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

what must be proven in the base case?

Solution. P(1) is true.

(e) In an inductive proof that for every positive integer n,

$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

what must be proven in the inductive step?

Solution. For all positive integers k, P(k) implies P(k+1).

- (f) What would be the inductive hypothesis in the inductive step from your previous answer? Solution. P(k).
- (g) Prove by induction that for any positive integer n,

$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

Solution. By induction on n.

Base case: n = 1. We have

$$\sum_{i=1}^{1} j^2 = 1^2 = \frac{1(1+1)(2\cdot 1+1)}{6}$$

Inductive step: We will show that for any positive integer $k \geq 1$, if P(k) is true, then P(k+1) is also true. We have

$$\sum_{j=1}^{k+1} j^2 = \sum_{j=1}^k j^2 + (k+1)^2$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \text{ (by the inductive hypothesis)}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$$

$$= \frac{(k+1)(2k^2 + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

Therefore, P(k+1) is true.

b) Exercise 7.4.3

Prove each of the following statements using mathematical induction.

(c) Prove that for
$$n \ge 1$$
, $\sum_{j=1}^{n} \frac{1}{j^2} \le 2 - \frac{1}{n}$

Hint: you may want to use the following fact: $\frac{1}{(k+1)^2} \le \frac{1}{k(k+1)}$

Solution. By induction on n.

Base case: n = 1. We have $\sum_{j=1}^{1} \frac{1}{j^2} = 1 \le 2 - \frac{1}{1}$.

Inductive step: We will shot that for any positive integer $k \ge 1$, if $\sum_{i=1}^k \frac{1}{j^2} \le 2 - \frac{1}{k}$, then

$$\sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 - \frac{1}{k+1}.$$
 We have

$$\sum_{j=1}^{k+1} \frac{1}{j^2} = \sum_{j=1}^{k} \frac{1}{j^2} + \frac{1}{(k+1)^2}$$

$$\leq 2 - \frac{1}{k} + \frac{1}{(k+1)^2} \quad \text{(by the inductive hypothesis)}$$

$$\leq 2 - \frac{1}{k} + \frac{1}{k(k+1)} \quad \text{(by the hint)}$$

$$= 2 - \frac{k+1}{k(k+1)} + \frac{1}{k(k+1)}$$

$$= 2 - \frac{1}{k+1}$$

c) Exercise 7.5.1

Prove each of the following statements using mathematical induction.

(a) Prove that for any positive integer n, 4 evenly divides $3^{2n} - 1$.

Solution. By induction on n.

Base case: n=1. We have $3^{2\cdot 1}-1=9-1=8$, and it's clear that 4 divides 8.

Inductive step: We will show that for any positive integer $k \ge 1$, if 4 divides $3^{2k} - 1$, then 4 also divides $3^{2(k+1)} - 1$. First We have

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$
$$= 9 \cdot 3^{2k} - 1$$
$$= 8 \cdot 3^{2k} + (3^{2k} - 1)$$

By the inductive hypothesis we know that 4 divides $3^{2k} - 1$, and it's also clear that 4 divides $8 \cdot 3^{2k}$. Thus 4 divides $(8 \cdot 3^{2k} + 3^{2k} - 1) = 3^{2(k+1)} - 1$.