Metody Numeryczne - sprawozdanie

Rozkład QR metodą Hauseholdera

Laboratorium nr 5

Adam Młyńczak 410702, Informatyka Stosowana

1. Cel zajęć

Na piątych zajęciach laboratoryjnych zajęliśmy się problemem wyznaczania wartości własnych danej macierzy. Aby to zrobić, użyliśmy metody rozkładu QR metodą Hauseholdera. Całość działania algorytmu prowadzący wytłumaczył w krokach na początku zajęć.

2. Opis problemu

Naszym zadaniem było wyznaczenie widma wibracyjnego cząstki acetylenu (cząstki liniowej o dwóch atomach wegla oraz dwóch atomach wodoru). Układ po wychyleniu z położenia równowago drga zgodnie z równaniami ruchu postaci:

$$m_{H} \frac{d^{2}x_{1}}{dt^{2}} = -k_{CH}x_{1} + k_{CH}x_{2},$$

$$m_{c} \frac{d^{2}x_{2}}{dt^{2}} = k_{CH}x_{1} - (k_{CH} + k_{CC}) + k_{CH}x_{2} + k_{CC}x_{3},$$

$$m_{c} \frac{d^{2}x_{3}}{dt^{2}} = k_{CC}x_{2} - (k_{CH} + k_{CC}) + k_{CH}x_{3} + k_{CH}x_{4},$$

$$m_{h} \frac{d^{2}x_{4}}{dt^{2}} = k_{CH}x_{3} - k_{CH}x_{4},$$

gdzie parametry m to odpowiednio dla H i C masy wodoru oraz wegla, k to dla CH i CC odpowiednio stałe siłowe oddziaływania węgiel-wodór oraz węgiel-węgiel, x to wychylenie atomu z położenia równowagi.

Rozwiązanie układu równań jest postaci

$$x_i(t) = A_i \exp(i\omega t),$$

dla ω równań częstotliwości drgań cząstki. Ten układ zapisujemy w postaci macierzowej:

$$\begin{bmatrix} \frac{k_{CH}}{m_H} & -\frac{k_{CH}}{m_H} & 0 & 0 \\ -\frac{k_{CH}}{m_C} & \frac{k_{CH} + k_{CC}}{m_C} & -\frac{k_{CC}}{m_C} & 0 \\ 0 & -\frac{k_{CC}}{m_C} & \frac{k_{CH} + k_{CC}}{m_C} & -\frac{k_{CH}}{m_C} \\ 0 & 0 & -\frac{k_{CH}}{m_H} & \frac{k_{CH}}{m_H} \end{bmatrix} \times \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} = \omega^2 \times \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix}.$$

Równanie to prezentuje problem własny $DA = \lambda A$, dla $\lambda = \omega^2$, równej wartości własnej macierzy współczynników D.

Na potrzeby zadania mieliśmy przyjąć następujące wartości stałych:

- $k_{CH} = 5.92 \cdot 10^2 \frac{kg}{s^2}$, $k_{CC} = 15.8 \cdot 10^2 \frac{kg}{s^2}$
- $m_H = 1$ amu,
- $m_C = 12 \, amu$.

3. Teoria

3.1. Rozkład QR metodą Hauseholdera

Metoda ta polega na iteracyjnym szukaniu macierzy transformacji Hauseholdera H, w celu odbicia kolejnych pionowych wektorów macierzy A w taki sposób, aby w każdym z nich zredukować wszystkie współrzędne do zera – oprócz jednej.

Przyjmujemy wartości początkowe postaci:

$$R = D, Q = I$$
.

Rozmiar macierzy Q przyjmujemy taki sam jak macierz D. Następnie wykonujemy N-1 pętli z następującymi działaniami:

- 1) znalezienie wektora $u=x-\|x\|e$, dla danych x to *i*-ty wektor kolumnowy macierzy R (wszystkie wartości poniżej elementu o indeksie i są wyzerowane), e jest wektorem z jednym elementem innym niż 0, jest to *i*-ty indeks,
- 2) znalezienie wektora $v = \frac{u}{\|u\|'}$
- 3) znalezienie macierzy $Q_t = I 2vv^t$,
- 4) przypisanie do Q oraz R nowych wartości:

$$Q = Q_t Q, R = Q_t R$$

Gdy zakończymy tą pętlę, macierz R jest górnotrójkątna, a do macierzy Q przypisujemy jej transpozycję. W takim przypadku D = QR. Teraz przechodzimy do wyznaczenia wartości i wektorów własnych.

- 1) Przyjmujemy H = D oraz P = I. Teraz operacje wykonujemy w pętli 200 iteracji,
- 2) znajdujemy rozkład macierzy H na QR.
- 3) do H przypisujemy iloczyn RQ.
- 4) do zmiennej P przypisujemy PQ.

Po wykonaniu tych operacji, macierz H ma na diagonali kolejne wartości własne macierzy D. Aby teraz wyznaczyć wektory własne, korzystamy z danego wzoru:

$$x_{i}(j) = \begin{cases} 0, & dla \ j > i \\ 1, & dla \ j = 1 \\ -\frac{\sum_{k=j+1}^{i} H(j,k) x_{i}(k)}{H(j,j) - H(i,i)}, dla \ j < i \end{cases}$$

Otrzymane wektory należy dodatkowo znormalizować.

4. Opracowanie wyników

Niestety, otrzymane przeze mnie wyniki (a bardziej otrzymane przez program przeze mnie napisany) nie pokrywają się z poprawnymi wynikami. Mój program wypisuje takie wartości:

```
wartosci wlasne macierzy D:
[0] = 1020.792699 |[1] = 653.393827 |[2] = -268.181195 |[3] = 139.994669 |
wekotry wlasne macierzy D:

wektor A[0]:
[0] = 0.0000000 | [1] = 1.0000000 | [2] = 0.0000000 | [3] = 0.0000000 |
wektor A[1]:
[0] = -0.0000000 | [1] = 1.0000000 | [2] = 0.0000000 | [3] = 0.0000000 |
wektor A[2]:
[0] = -nan | [1] = -nan | [2] = -nan | [3] = -nan |
wektor A[3]:
[0] = -nan | [1] = -nan | [2] = -nan | [3] = -nan |
```

Być może problem może być w metodzie rozkładu QR, który napisałem, jednakże nie mogłem znaleźć błędu, który jednoznacznie by wskazywał na błędność tych działań.

5. Podsumowanie

Rozkład QR to metoda, dzięki której w szybki sposób możemy rozwiązać układy równań liniowych. Przy odpowiednim zaimplementowaniu metody, duża część problemów nie macierzowych (które trzeba sprowadzić to tejże postaci, aby móc z tej metody korzystać), może właśnie zostać rozwiązana w taki sposób.