Unit 1 HW Answers (Final)

HW 101 (Some Answers)

2 1.

Since $\lim_{x \to -1^{-}} g(x) \neq \lim_{x \to -1^{+}} g(x)$, $\therefore \lim_{x \to -1} g(x)$ does not exist. 5.

9. 1 **16.** 5

 $\frac{1}{5}$ 23.

10

25. –48

26.

28. 12 **29.** 32

30.

HW 102

1. 27

3.

5.

7.

 $-\frac{1}{9}$ 11.

13.

15. 1

6.

8. -1

10. 108

12. -2

 $\frac{1}{2}$ **14.**

16.

HW 103 (Some Answers)

1.

y = 1 and y = -1 (Make sure to justify!) 15. y = 1 and $y = -\frac{1}{3}$ (Make sure to justify!)

Vertical asymptote: x = -2 because $\lim_{x \to -2^+} F(x) = -\infty$ (could have also said because **17.** $\lim_{x\to -2^-} F(x) = \infty).$

Horizontal asymptote: y = 5 because $\lim_{x \to \infty} F(x) = 5$

20. yes at $\left(\frac{19}{5}, 2\right)$. 21. y = x - 4

HW 104 (Some Answers)

2. a.
$$f(2) = 3$$

b.
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x+1) = 3$$
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (2x-1) = 3$$
$$\therefore \lim_{x \to 2} f(x) = 3$$

c. Since
$$f(2) = \lim_{x \to 2} f(x)$$
,
 $f(x)$ is continuous at $x = 2$.

6.
$$k = \frac{9}{16}$$

7.
$$a = -\frac{6}{5}$$
, $b = \frac{18}{5}$

8. f(x) is continuous everywhere except at x = 9 and x = -4. At x = 9, there is a removable discontinuity (hole) and at x = -4 there is a non-removable discontinuity (infinite).

9. at
$$x = 3 \left(3, \frac{11}{5}\right)$$

13. f(x) is a polynomial f(x) is continuous on [0,1]. f(0) = -1 f(1) = 10Since -1 < 0 < 10, by IVT there exists a number c such that f(c) = 0. $c \approx .215$

15.
$$\frac{1}{8}$$

16.
$$-\frac{27}{2}$$

17.
$$\lim_{x \to 0^{+}} \frac{|x|}{x} = 1$$

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = -1$$

Since $\lim_{x\to 0^+} \frac{|x|}{x} \neq \lim_{x\to 0^-} \frac{|x|}{x}$, $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

20.
$$-\frac{1}{16}$$

21.
$$\frac{3}{5}$$

HW 105

1.
$$-\frac{3}{4}$$

8.
$$\frac{1}{3}$$

11.
$$-\frac{2}{3}$$

12.
$$\pi$$

13.
$$\frac{1}{6}$$

16.
$$\frac{1}{\sqrt{3}} or \frac{\sqrt{3}}{3}$$

17. Answers will vary. Possible solution:

HW 106 (Some answers)

HW 107

b)
$$y-4 = -4(x+2)$$

c)
$$y-4 = \frac{1}{4}(x+2)$$

b)
$$y+3 = -2(x-1)$$

c)
$$y+3 = \frac{1}{2}(x-1)$$

3. a)
$$-1$$

b)
$$y-1 = -1(x-2)$$

c)
$$y-1 = x-2$$

b)
$$y+1=-3(x-0)$$

c)
$$y+1=\frac{1}{3}(x-0)$$

5.
$$f'(x) = -2x$$

6.
$$f'(x) = \frac{-2}{x^2}$$

7.
$$f(x) = x^3$$
, at $x = 3$ (limit def.)

8.
$$f(x) = x^3$$
, at $x = a$ (alternative def.)

9.
$$f(x) = \sqrt{x}$$
, at $x = 9$ (limit def.)

10.
$$f(x) = \frac{7}{(3x+5)^2}$$
, at $x = 1$

11.
$$f(x) = \sin x , at x = \frac{\pi}{2}$$

12.
$$f(x) = 3x^2 + 2x$$
, at $x = a$

13.
$$f(x) = \frac{5}{x+2}$$
, at $x = 4$

14.
$$f(x) = \sqrt{x-2}$$
, at $x = 6$

15.
$$f(x) = \tan x$$
, at $x = \pi/4$

16.
$$f(x) = \frac{1}{x}$$
, at $x = 3$

HW 108

1. D

В

E

5.

9.

2.

D

D

10. D

3. A

7. C 11. \mathbf{C}

 \mathbf{C} 4.

E 8.

12. E

0 13.

15. 0

-1/8**17.**

19. 0

21. 1/2 14.

16. ∞

18. -1

20. -1/2

2

22.

0

iv.

v.

vi. 0

f(x) is continuous everywhere except at x = 0 and x = 3. b)

At x = 0, there is a non-removable (jump) discontinuity.

At x = 3, there is a removable (hole) discontinuity.

c)

#24 - 26 Answers may vary. Check that your graph fulfills all conditions, and passes the vertical line test. Here are a few:

24.

25.

26.

- **27.** f(x) is continuous on [-1,3]. f(-1) = -4, f(3) = 4. Since -4 < 0 < 4, by IVT there exists a value c on [-1, 3] such that f(c) = 0.
- g(x) is continuous on [0, 2]. g(0) = 9, g(2) = 1. Since 1 < 6 < 9, by IVT there exists a value c on [0, 2]such that g(c) = 6.

29. a)
$$f'(2) = 10$$

b) $y - 4 = 10(x - 2)$

30. At
$$x = 0$$
, $m = 6$. $y - 2 = 6(x - 0)$

At
$$x = -1$$
, $m = \frac{3}{8}$. $y - \frac{1}{2} = \frac{3}{8}(x+1)$