Assignment 1

Garvit Shah [U21CS089]

January 2023

Hardware Details

• Memory: 8 GB 1600 MHz DDR3

• Processor: 1.8 GHz Dual-Core Intel Core i5

Software Details

 \bullet Apple clang version 14.0.0 clang-1400.0.29.202

• xcode-select version 2395.

1 Linear Search

1.1 Algorithm

- 1. Create a file pointer and Open the File
- 2. Read the number from the file.
- 3. Compare the number with the value to find.
- 4. If found exit else continue reading the file.

1.2 Observations

Time Complexity for Linear Search				
File Name	No. of Entries	Best Case	Worst Case	
File-1	1,024	0.000003	0.000156	
File 2	4,096	0.000003	0.000644	
File 3	16,384	0.000003	0.002465	
File 4	65,536	0.000003	0.009768	
File 5	2,62,144	0.000003	0.037983	
File 6	10,48,576	0.000003	0.150615	
File 7	20,97,152	0.000003	0.302565	
File 8	41,94,304	0.000003	0.601808	
File 9	88,83,608	0.000003	1.202313	
File 10	167,77,216	0.000003	0.040706	

Table 1: Time taken for linear search

1.3 Graph

1.4 Conclusion

The graph for the worst case is a straight line with some slope. A straight line implies that the change in time taken is linearly dependent on the change in the no. of elements in the file, as the line is given by y = mx + c. Therefore, it can be concluded that the time complexity for linear search is O(n). Theoretically also time complexity comes out to be O(n). Thus the conclusion matches to the theoretical value of the time complexity.

Time Complexity = $\theta(n)$

2 Bubble Sort

2.1 Algorithm -

- 1. Create a file pointer and Open the File
- 2. Insert the values into an array.
- 3. Start two loops. Outer loop as number of elements in the array, inner as no. of elements iterator
- 4. Swap the elements if the current is bigger than the next.

2.2 Observations

Time Complexity for Bubble Sort					
File Name	No. of Entries	Best Case	Average Case		
File-1	1024	0.00348914	0.003746		
File-2	4096	0.015065	0.056242		
File-3	16384	0.238351	0.902742		
File-4	65536	3.822212	14.473051		
File-5	262144	80.9	231.703174		
File-6	1048576	2635.25	3707.805908		
File-7	2097152	7541	14831.596457		
File-8	4194304	28163.8	59327.132655		
File-9	8883608	120922	266143.099830		
File-10	16777216	430619	949243.092676		

Table 2: Time taken for bubble sort

2.3 Graph

2.4 Conclusion

The graph for the worst case is a quadratic. A quadratic curve implies that the change in time taken is quadratically dependent on the change in the no. of elements in the file, as the line is given by $y = 4ax^2$. Therefore, it can be concluded that the time complexity for Bubble Sort is $O(n^2)$. Theoretically also time complexity comes out to be $O(n^2)$. Thus the conclusion matches to the theoretical value of the time complexity.

Time Complexity = $\theta(n^2)$

3 Selection Sort

3.1 Algorithm -

- 1. Create a file pointer and Open the File
- 2. Insert the values into an array.
- 3. Start two loops. Outer loop as number of elements in the array, inner as no. of elements iterator
- 4. Find the minimum and place it at the index equal to the iterator.

3.2 Observations

Time Complexity for Selection Sort					
File Name	No. of Entries	Best Case	Average Case		
File-1	1024	0.004686	0.004686		
File-2	4096	0.027157	0.047667		
File-3	16384	0.379485	0.785520		
File-4	65536	11.653376	12.791755		
File-5	262144	204.846	205.693883		
File-6	1048576	3200.145	3295.337373		
File-7	2097152	12800.532	13184.193533		
File-8	4194304	50732.0834	52742.471015		
File-9	8883608	303353.43523	236616.059310		
File-10	16777216	902341.14534	843947.960471		

Table 3: Time taken for selection sort

3.3 Graph

3.4 Conclusion

0 🖶

The graph for the worst case is a quadratic. A quadratic curve implies that the change in time taken is quadratically dependent on the change in the no. of elements in the file, as the line is given by $y = 4ax^2$. Therefore, it can be concluded that the time complexity for Selection Sort is $O(n^2)$. Theoretically also time complexity comes out to be $O(n^2)$. Thus the conclusion matches to the theoretical value of the time complexity.

88.84

No. of Entries

167.77

41.94

Time Complexity = $\theta(n^2)$