This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

re the Application of

Toshihiko AOKI

Application No.:

09/899,911

Filed: July 9, 2001

Docket No.:

109965

For:

LIGHT SPOT POSITION SENSOR AND DISPLACEMENT MEASURING DEVICE

CLAIM FOR PRIORITY

Director of the U.S. Patent and Trademark Office Washington, D.C. 20231

Sir:

The benefit of the filing dates of the following prior foreign applications filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 2000-207981 filed July 10, 2000; and Japanese Patent Application No. 2001-108185 filed April 6, 2001. In support of this claim, certified copies of said original foreign applications:

<u>X</u>	are filed herewith.
	were filed on in Parent Application No filed
	will be filed at a later date.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of these documents.

Respectfully submitted.

Registration No. 27,075

Joel S. Armstrong Registration No. 36,430

JAO:JSA/zmc

Date: August 3, 2001

OLIFF & BERRIDGE, PLC P.O. Box 19928 Alexandria, Virginia 22320 Telephone: (703) 836-6400

DEPOSIT ACCOUNT USE AUTHORIZATION Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 7月10日

出 願 番 号
Application Number:

特願2000-207981

出 願 人
Applicant(s):

株式会社ミツトヨ

2001年 7月 5日

特許庁長官 Commissioner, Japan Patent Office

特2000-207981

【書類名】 特許願

【整理番号】 00P218

【提出日】 平成12年 7月10日

【あて先】 特許庁長官 殿

【国際特許分類】 G01D 5/00

【発明の名称】 光スポット位置センサ及び変位測定装置

【請求項の数】 9

【発明者】

【特許出願人】

【住所又は居所】 神奈川県川崎市高津区坂戸1丁目20番1号 株式会社

ミツトヨ内

【氏名】 青木 敏彦

【識別番号】 000137694

【氏名又は名称】 株式会社ミツトヨ

【代理人】

【識別番号】 100092820

【弁理士】 【氏名又は名称】 伊丹 [

【電話番号】 03-5216-2501

【手数料の表示】

【予納台帳番号】 026893

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

[物件名] 図面 1

【物件名】 要約書 1

【包括委任状番号】 9706819

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 光スポット位置センサ及び変位測定装置

【特許請求の範囲】

【請求項1】 基板と、

この基板上に堆積されて互いに絶縁分離された半導体層により形成され、所定 ピッチで配列された複数の受光素子と

を備えたことを特徴とする光スポット位置センサ。

【請求項2】 前記複数の受光素子は、一次元配列された受光素子アレイを 構成している

ことを特徴とする請求項1記載の光スポット位置センサ。

【請求項3】 前記複数の受光素子は、

前記基板上に第1軸方向に配列された第1の受光素子アレイと、

この第1の受光素子アレイ上に層間絶縁膜を介して形成された、第1軸と直交する第2軸方向に配列された第2の受光素子アレイとを有する

ことを特徴とする請求項1記載の光スポット位置センサ。

【請求項4】 前記複数の受光素子の出力信号を順次走査して光スポット位置を検出する走査検出回路を有する

ことを特徴とする請求項1記載の光スポット位置センサ。

【請求項5】 前記複数の受光素子の端子電極が共通に接続された出力信号線と、この出力信号線に接続された検出回路とを備え、光スポットを光パルスとして与えて、この光パルス照射から前記検出回路の検出出力が得られるまでの遅延時間により、位置判定を行うようにした

ことを特徴とする請求項1記載の光スポット位置センサ。

【請求項6】 測定軸に沿ってスケール目盛りが形成されたスケールと、このスケールに対して測定軸方向に相対移動可能に取り付けられてスケール目盛りを読み取るセンサヘッドと、前記センサヘッドとスケールとの間の組み立て状態を光学的に検出するために前記センサヘッドに搭載された状態検出装置とを備えたことを特徴とする変位測定装置。

【請求項7】 前記状態検出装置は、

前記センサヘッドに設けられた請求項1乃至5のいずれかに記載の光スポット 位置センサと、

前記センサヘッドに設けられて前記スケールを介して前記光スポット位置センサに入射される光ビームを出力する光源とを備えて構成されている ことを特徴とする請求項6記載の変位測定装置。

【請求項8】 前記光スポット位置センサは、検出される光スポットの位置により前記センサヘッドとスケールとの間の傾き又はギャップを検出するものである

ことを特徴とする請求項7記載の変位測定装置。

【請求項9】 前記光スポット位置センサは、干渉縞の検出により前記センサヘッドとスケールとの間の平行面内での回転を検出するものであることを特徴とする請求項7記載の変位測定装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、光スポットの位置検出を行うセンサ及び変位測定装置に関する。

[0002]

【従来の技術】

従来より、変位測定装置として、測定軸に沿ってスケール目盛りが形成されたスケールと、このスケールに対して測定軸方向に相対移動可能に取り付けられてスケール目盛りを読み取るセンサヘッドと備えたものが知られている。この様な変位測定装置の基本構成は、光学式、静電容量式、磁気式のいずれでも用いられる。

[0003]

これらの変位測定装置では、スケールとセンサヘッドの組み立て状態により性能が大きく左右される。特に小型の変位測定装置では、センサヘッドの僅かの姿勢偏位や、センサヘッドとスケール間のギャップの設計値からの僅かのずれが、特性に大きく影響する。従って、変位測定装置の組み立て時のアライメント調整は重要であり、また組み立て後の姿勢変動を如何に抑えるかも重要であり、その

ための構造上の工夫は従来より種々なされている。

[0004]

【発明が解決しようとする課題】

しかし、従来の変位測定装置には、その組み立て状態を簡便に判定するための 機能は備えられていない。

この発明は、上記事情を考慮してなされたもので、組み立て状態を光学的に簡便に判定可能とした変位測定装置を提供することを目的とする。

この発明はまた、その様な変位測定装置の組み立て状態の判定等に適用して有用な光スポット位置センサを提供することを目的とする。

[0005]

【課題を解決するための手段】

この発明に係る光スポット位置センサは、基板と、この基板上に堆積されて互いに絶縁分離された半導体層により形成され、所定ピッチで配列された複数の受光素子とをを備えたことを特徴とする。

[0006]

この発明において、光スポット位置センサが一次元位置を検出するものである場合には、複数の受光素子は、一次元配列された受光素子アレイにより構成される。また、光スポット位置センサが二次元位置を検出するものである場合には、複数の受光素子は、基板上に第1軸方向に配列された第1の受光素子アレイと、この第1の受光素子アレイ上に層間絶縁膜を介して形成された、第1軸と直交する第2軸方向に配列された第2の受光素子アレイとから構成される。

[0007]

この発明に係る変位測定装置は、測定軸に沿ってスケール目盛りが形成されたスケールと、このスケールに対して測定軸方向に相対移動可能に取り付けられてスケール目盛りを読み取るセンサヘッドと、前記センサヘッドとスケールとの間の組み立て状態を光学的に検出するために前記センサヘッドに搭載された状態検出装置とを備えたことを特徴とする。

[0008]

状態検出装置は好ましくは、上述した光スポット位置センサをセンサヘッドに

設け、更にセンサヘッドにスケールを介して光スポット位置センサに入射される 光ビームを出力する光源とを備えることにより構成される。

[0009]

光スポットの一次元或いは二次元位置を検出するには、CCDイメージセンサやMOS型イメージセンサがそのまま適用可能である。これらは、単結晶シリコン基板に受光ダイオードを配列形成すると共に、それらの各受光ダイオードの出力を転送して取り出すためのCCDやMOS型スイッチを形成して構成される。一次元位置を検出するのであれば、1ラインのCCDのみで可能である。

[0010]

しかし、これらの既存のCCDセンサやMOSセンサは、光スポットの位置検 出に利用するには、構造や製造プロセスが複雑であり、高価である。この発明に よる光スポット位置センサは、適当な基板上に堆積した半導体層を用いて互いに 絶縁分離された受光素子アレイを形成して得られる。従って構造や製造プロセス も簡単であり、任意の形状、大きさのものが容易に製造できる。そしてこの様な 光スポット位置センサを用いて変位測定装置に状態検出装置を組み込むことによ り、センサヘッドとスケールの組み立て状態を簡便に判定することが可能になる

[0011]

【発明の実施の形態】

以下、図面を参照して、この発明の実施の形態を説明する。

図1は、一次元的な光スポット位置検出を行う光スポット位置センサ1の構成例を示す平面図であり、図2はそのA-A'断面図である。位置センサ1は、基板10上に、ストライプ状の受光素子(フォトダイオード)PDをx軸方向に配列形成してなる受光素子アレイPDAを有する。

[0012]

基板10は、この例の場合ガラス基板等の透明基板である。この基板10上には共通下部電極となる透明電極11が形成される。この透明電極11上に、p型アモルファス半導体層12,i型アモルファス半導体層13,p型アモルファス半導体層14及び上部電極15を順次堆積し、これらの積層膜をパターニングす

ることにより、各フォトダイオードPDが絶縁分離され、所定ピッチで配列される。受光素子アレイPDA上は保護膜16により覆われる。

[0013]

透明電極11は、ITO, SnO2, ZnO等から選ばれる。アモルファス半 導体は代表的にはSiであるが、CdS, ZnS等、他の材料が用い得る。また フォトダイオード構造は、pin構造の他、pn構造であってもよい。

[0014]

この位置センサ1の場合、図1及び図2に示すように、基板10の裏面側から 光スポットが入射される。このとき、受光素子アレイPDAのどの受光素子に出 力が得られるかを検出することにより、光スポットのx軸方向の入射位置がわか る。この位置検出は、各受光素子PDの端子を走査型検出回路20xにより順次 走査して受光出力の有無を検出することにより、可能である。

なお光スポットの位置検出の分解能は、受光素子アレイPDAの配列ピッチで決まる。測定しようとする光スポットの直径をDとしたとき、受光素子アレイPDAの素子配列ピッチぇは、少なくとも、ぇ/2≦Dとし、好ましくはぇ≦Dとする。直径Dが大き過ぎると、位置検出が難しくなる。しかしその様な場合でも、複数の受光素子の出力信号を二次元プロファイルとして捕らえ、ガウス分布に当てはめて、このガウス分布から光スポット位置の中心位置を特定することができる。

[0015]

図3は、二次元的な光スポット位置センサ2の構成例を示す平面図であり、図4はそのB-B'断面図である。この位置センサ2は、基板10上に、二つの受光素子アレイPDA1, PDA2を積層することにより構成される。第1の受光素子アレイPDA1は、先の図1及び図2で説明したものと同様に、ストライプ状の受光素子PDをx軸方向に配列して形成されている。このとき、各受光素子PDの上部電極15aは、透明電極とする。第2の受光素子アレイPDA2は、やはりストライプ状のフォトダイオードPDからなり、第1の受光素子アレイPDA1上に、層間絶縁膜16を介して重ねられて、y軸方向に所定ピッチで配列形成される。

[0016]

第2の受光素子アレイPDA2は、透明電極からなる共通下部電極21上に、 p型アモルファス半導体層22, i型アモルファス半導体層23, p型アモルファス半導体層24及び上部電極45を順次堆積し、これらの積層膜をパターニングすることにより、各フォトダイオードPDが絶縁分離される。全体は保護膜26により覆われる。

[0017]

この二次元の位置センサ2の場合も、基板10の裏面から光スポットが入射される。光スポットの二次元位置検出は、第1の受光素子アレイPDA1の出力を走査して検出する走査検出回路20xと、第2の受光素子アレイPDA2の出力を走査して検出する走査検出回路20yにより可能である。

[0018]

図5は、位置センサ1の他の構造例を、図2に対応させて示している。この構造は、各受光素子PDを絶縁膜に形成した構への埋め込みにより形成したものである。即ち、基板10には透明電極11とp型アモルファス半導体層12を全面形成して、この上に絶縁膜31を堆積する。この絶縁膜31にエッチングによりストライプ状の溝32を所定ピッチで形成する。そしてこの溝32に、i型アモルファス半導体層13,n型アモルファス半導体層14及び上部電極15を順次埋め込むことにより、受光素子アレイPDAが形成される。

[0019]

同様の埋め込み法による構造は、二次元の位置センサ2についても適用できる。図6はその様な構造例を、図4に対応させて示している。第1の受光素子アレイPDA1は、図5で説明したと同様に、絶縁膜に形成した溝への埋め込みにより形成される。この第1の受光素子アレイPDA1を覆う保護膜16の上に、更に絶縁膜33を堆積し、この絶縁膜33にエッチングによりストライプ状の溝34を形成する。そしてこの溝34に、i型アモルファス半導体層23,n型アモルファス半導体層24及び上部電極25を順次埋め込んで、第2の受光素子アレイPDA2が形成される。

[0020]

ここまでの例は、基板10を透明基板として、基板10の受光素子アレイを形成した面と反対側の面を光スポットの入射面とした。これに対し、各受光素子の上部電極を透明電極として、この上部電極側を光スポットの入射面としてもよい。この場合には、基板は透明基板でなくてもよい。また、基板10として、フレキシブル樹脂基板を用いることもできる。

[0021]

図7は、別の位置検出の手法を適用した例を、二次元位置センサ2について示している。この場合、各受光素子アレイPDA1, PDA2の端子電極は共通に出力信号線41x, 41yに接続される。これらの出力信号線41x, 41yにそれぞれ検出回路42x, 42yが接続される。光スポットは、光パルス発生器43により、駆動パルス信号により光パルスとして発生される。駆動パルス信号は、検出回路42x, 42yに基準信号として入る。

[0.022]

検出回路42x,42yは、出力信号線41x,41yに得られる受光信号を 検出する。検出回路42x,42yはまた、図8に示すように、光パルス発生の タイミングからの検出出力が得られるまでの遅延時間でを検出する。各軸方向の 複数の受光素子の端子電極が共通の出力信号線41x,41yに接続れているか ら、検出回路42x,42yから離れた位置ほど、遅延時間でが大きい。従って この遅延時間でを検出することにより、光スポットがx, y軸方向のどの位置に 当たったかを判定することができる。

[0023]

次に、以上のような光スポット位置センサを用いて、変位測定装置のスケールとセンサヘッドの組み立て状態を検出するための状態検出装置を構成した例を以下に説明する。ここで、変位測定装置としては、光学式エンコーダを例に挙げるが、これに限られるわけではなく、静電容量式や磁気式にも同様に適用可能である。

[0024]

図9は、その様な光学式エンコーダの構成である。光学式エンコーダは、スケール50と、これに対して相対移動可能に対向配置されたセンサヘッド54とか

ら構成される。スケール50はこの例では反射型であり、スケール基板の測定軸xに沿ってスケール目盛りである光学格子51が形成されている。センサヘッド54は、センサ基板52と光源53を有する。センサ基板52には、スケール50に照射される光源光を変調するインデックス格子55と、スケール50からの光を検出する受光素子アレイ56が形成されている。

[0025]

この様なセンサヘッド54におけるセンサ基板52の、受光素子アレイ56を間に挟んだ両端部に、先に図3及び図4で説明した光スポット位置センサ2と、光ビームを出す光源57とを搭載して状態検出装置を構成している。光源57からの光ビームは、スケール50に斜め方向から入射され、スケール50からの反射光ビームが位置センサ2に入るようにしている。このとき、スケール50の光源57からの光ビームが入射する側端部までスケール格子51が形成されて、その格子面からの反射光が位置センサ2に入るようにしてもよいし、或いは側端部にはスケール格子51が形成されず、スケール格子51に代わって、スケール50の長手方向に連続する反射膜を形成するようにしてもよい。

また一次元的な光スポット位置変化のみを検出するのであれば、図1及び図2 で説明した位置センサ1を用いることができる。

[0026]

光源57は、例えば図10のように構成することができる。これは、センサ基板52の上に、横方向に光ビームを出力するようにレーザダイオード60を配置し、その出力光ビームをミラー62により反射してセンサ基板52を透過してスケール50に斜め方向に入射させるようにしている。この様なミラー62は最近のマイクロマシニング技術により容易に形成することができる。

[0027]

図11は、光源57の別の構成例である。この場合、センサ基板52のスケール側の面にレーザダイオード60を配置している。レーザダイオード60から横方向に出力する光ビームは、ミラー63により反射してスケール50に斜め方向に入射させるようにしている。

[0028]

なお、光スポット位置センサ2は、図12に示すように、センサ基板52をそのまま図3の基板10として用いて、受光素子アレイ56と同時に形成してもよい。或いは図13に示すように、図3及び図4で説明したインデックス基板とは独立に作られた位置センサ2を、インデックス基板52に貼り付けるようにしてもよい。

[0029]

この様に、センサ基板52に搭載された位置センサ2と光源57により、光学式エンコーダの組み立て状態の検出が可能である。例えば、図14(a)は、センサ基板52がスケール50に対して平行に配置された正常状態(破線)と傾いた状態(実線)を示している。正常状態と傾いた状態とでは、図14(b)に示すように、光源57からの光ビームの位置センサ2への入射位置が異なることから、その光スポット位置検出によってセンサヘッドの傾きの程度を判定することができる。

[0030]

図15は、センサヘッドとスケールとの間のエアギャップが変化する場合を示している。例えば、図15(a)に破線で示すギャップが正常状態とし、実線のようにギャップが小さくなると、光スポット位置センサ2への光スポットの入射位置が図15(b)のように変化する。従って、光スポット位置検出によってセンサヘッドとスケールとのギャップの大きさを判定することができる。

[0031]

センサヘッドに、複数本の異なる方向の光ビームを出力する光源と、複数の光スポット位置センサとを搭載することもできる。図16は、その様な例を示している。センサ基板52の一対角線の両端の角部に光スポット位置センサ2a,2 bが配置されている。これらの位置センサ2a,2 bに対して、スケールを介して光ビームを照射できる光源57が、残りの一つの角部に配置される。この様な構成とすれば、センサヘッドの測定軸方向の傾きと、測定軸と直交する方向の傾きを検出することができる。

[0032]

ここまでは、光源57からの光ビームをスケール50に斜め方向に入射させて

、その反射光ビームを位置センサ2で検出するようにしたが、光源57からの光をスケール50に垂直入射させるように構成することもできる。図17は、その様な構成例である。センサヘッドのセンサ基板52の一つの辺に沿って光スポット位置センサ2を配置する。そしてこの位置センサ2の中央部近くに、光源57を配置する。

[0033]

この様な構成として、図17(b)に破線で示すように、センサ基板52がスケール50と平行の場合、光源57からの光ビームはスケール50に略垂直に入射し反射光は同じ経路を戻るようにする。実線で示すようにセンサ基板52が傾くと、光ビームはスケール50に対して傾斜した入射となり、位置センサ2に入射するスポット位置がずれる。従って、この位置ずれを検出することにより、センサヘッドの傾きを判定することができる。

[0034]

ここまでに例示した光学式エンコーダでは、センサヘッドとスケールの傾きやギャップ等の状態検出を行う場合を説明したが、光スポット位置センサによる状態検出の例として、センサヘッドとスケールの平行面内での回転を検出することも可能である。通常センサヘッドはスケールの側端にベアリングを介して摺動させるが、この側端の真直度が悪いと、摺動時に回転が生じ、この回転はセンサの出力低下をもたらす。この発明の場合、上述した回転が生じると、光スポット位置センサ上で干渉縞が生成される。この干渉縞の出力の大きさ或いは間隔を観察することにより、回転を検出することができる。この場合、右回転か左回転かを判別するためには、予め光スポットをスケールに対して所定角度、右回転又は左回転させた状態で入射させればよい。

[0035]

以上のように、光学式エンコーダに組み立て状態を検出する光学的な状態検出 装置を搭載することにより、姿勢変動やギャップ変動等を容易にチェックするこ とができる。また状態検出の結果を利用して姿勢等の制御を行うフィードバック 制御系を構成することにより、リアルタイムでの姿勢等の制御が可能である、ま た状態検出装置を構成する光スポット位置センサは、センサ基板に作り込むこと もできるが、図13に示したように、別途独立に作ってセンサ基板に貼り付ける こともできる。この様に、作成済みのセンサ基板に光スポット位置センサを貼り 付けるようにすれば、少量多品種のエンコーダにも柔軟に対応でき、有利である

[0036]

光学式エンコーダが透過型の場合にも同様に、状態検出装置を組み込むことが可能である。この場合、状態検出装置を構成する光スポット位置センサとその光源をセンサヘッドの受光部側、即ちスケールの同じ側に配置するとすれば、透過型のスケールに光スポット位置検出のための反射膜を形成することが必要になる

また以上では、センサヘッドの姿勢やギャップ等の組み立て状態の検出を行う 例を説明したが、同様の光スポット位置センサをやはりセンサ基板に組み込むこ とにより、スケールの原点検出用として利用することも可能である。

[0037]

ここまでに説明したのは光学式エンコーダであるが、この場合、変位検出に用いるスケール照射用のメインの光源53と、光スポット位置センサ用の光源57とが用いられる。光スポット位置センサ用の光源57は、レーザダイオードのような光ビームを出力するので、変位検出に悪影響を与えないようにすることは容易である。しかし、変位検出用光源53の出力光は所定の範囲の広がりをもってスケール50に照射されるので、これが反射されて光スポット位置センサにまで入り、位置検出のノイズになる可能性がある。

[0038]

このノイズの影響を除くには、例えば、光スポット位置センサに、光源57からの光ビームのみが入るような何らかの光遮蔽構造を設けることが好ましい。或いは、二つの光源53,67の波長を異ならせることも有効である。但し、後者の場合には、変位検出用の受光素子アレイ56と、光スポット位置センサ2の受光素子アレイPDAに光学フィルタを組み合わせるか、或いは、特性の異なる別の半導体材料を用いて構成することになる。

静電容量式或いは磁気式エンコーダに適用した場合には、上述したノイズの影

響はない。

[0039]

またこの発明を適用できる変位検出装置は、リニアエンコーダに限られず、ロータリエンコーダや円筒、球状等のエンコーダであってもよい。

更に、ここまでは光スポット位置センサの受光素子として、ストライプ状のフォトダイオードPDを用いたが、図18(a)に示すような櫛歯状パターンのフォトダイオードPD、図18(b)に示すようなドットパターンのフォトダイオードPDの配列を用いることもできる。

[0040]

【発明の効果】

以上述べたようにこの発明による光スポット位置センサは、適当な基板上に堆積した半導体層を用いて互いに絶縁分離された受光素子アレイを形成して得られる。従って構造や製造プロセスも簡単であり、任意の形状、大きさのものが容易に製造できる。

またこの発明による変位測定装置は、上述のような光スポット位置センサ等を 用いて構成される光学式の状態検出装置を組み込むことにより、センサヘッドと スケールの組み立て状態を簡便に判定することが可能になる。

【図面の簡単な説明】

- 【図1】 この発明の実施の形態による光スポット位置センサの構成を示す 平面図である。
 - 【図2】 図1のA-A'断面図である。
- 【図3】 この発明の別の実施の形態による光スポット位置センサの構成を 示す平面図である。
 - 【図4】 図3のB-B'断面図である。
 - 【図5】 他の実施の形態の位置センサの断面図である。
 - 【図6】 他の実施の形態の位置センサの断面図である。
 - 【図7】 他の実施の形態による位置センサの位置検出法を示す図である。
 - 【図8】 同実施の形態の位置検出の原理を説明するための波形図である。
 - 【図9】 この発明の実施の形態による光学式エンコーダの構成を示す図で

特2000-207981

ある。

- 【図10】 図9における位置検出用光源57の構成例を示す図である。
- 【図11】 図9における位置検出用光源57の他の構成例を示す図である
- 【図12】 図9における位置センサ2の構成例を示す図である。
- 【図13】 図9における位置センサ2の構成例を示す図である。
- 【図14】 位置センサによる傾き検出の原理を説明するための図である。
- 【図15】 位置センサによるギャップ検出の原理を説明するための図である。
- 【図16】 他の実施の形態による光学式エンコーダのインデックス基板の 構成を示す図である。
- 【図17】 他の実施の形態による光学式エンコーダのインデックス基板の 構成とその傾き検出の原理を説明するための図である。
 - 【図18】 位置センサに用いる受光素子の他のパターン例を示す図である

【符号の説明】 1,2…光スポット位置センサ、10…基板、11,21 …透明電極、12,22…p型アモルファス半導体層、13,23…i型アモルファス半導体層、14,24…n型アモルファス半導体層、15,25…上部電極、16,26…保護膜、PD…フォトダイオード、PDA,PDA1,PDA2…受光素子アレイ、20x,20y…走査検出回路、41x,41y…出力信号線、42x,42y…検出回路、43…光パルス発生器、50…スケール、52…センサ基板、54…センサヘッド、55…インデックス格子、56…受光素子アレイ、57…光源。

【書類名】

図面

【図1】

[図2]

[図3]

【図4】

【図5】

【図6】

【図7】

[図8]

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

特2000-207981

【書類名】 要約書

【要約】

【課題】 組み立て状態を光学的に簡便に判定可能とした変位測定装置、及びその様な変位測定装置の組み立て状態の判定等に適用して有用な光スポット位置センサを提供する。

【解決手段】 光学式エンコーダは、スケール50とこれに相対移動可能に対向配置されたセンサヘッド54とを備えて構成される。センサヘッド54のセンサ基板52には、インデックス格子55と受光素子アレイ56が形成される。センサ基板52にはまた、光スポット位置センサ2と、スケール50を介して光スポット位置センサ2に入射する光ビームを出力する光源57とを搭載して、組み立て状態を検出する状態検出装置が構成されている。

【選択図】 図9

特2000-207981

出願人履歴情報

識別番号

[000137694]

1. 変更年月日 1996年 2月14日

[変更理由] 住所変更

住 所 神奈川県川崎市高津区坂戸一丁目20番1号

氏 名 株式会社ミツトヨ