Поиск точек пересечений множества прямых

Постановка задачи

Имеется N точек на плоскости (рис. 1). Через каждую из этих точек случайным образом проведены прямые (через i-ю точку проведены M_i прямых, общее количество прямых $M = M_1 + M_2 + ... + M_i$, рис. 2). Прямые заданы с некоторой погрешностью.

Необходимо по набору M прямых найти приблизительные координаты N исходных точек.

Рис. 1. Распределение точек на плоскости. *N*=5

Рис. 2. Распределение прямых, проходящих через заданные точки. $M_i=10...15$

В общем случае решить задачу невозможно, поэтому накладываются дополнительные условия на распределение точек и прямых.

- · Исходные точки расположены в пределах рабочей области: -1000 $<= x_i, y_i <= 1000 (x_i, y_i координаты і-й точки).$
- · Минимальное расстояние между любой парой точек не менее 100.
- · Погрешность при задании прямых невелика: отличие от истинного положения в пределах рабочей области не превышает 1.
- Количества прямых M_i для разных точек отличаются не более чем в 2 раза: 1/2 <= M_i / M_j <= 2 для любых i, j.
- · Распределение наклонов прямых, проходящих через каждую точку, близко к равномерному.
- · N <= 100.

- · $M i \le 200$.
- \cdot *M i* >= *N* (кроме теста с 3 точками).

Требуется написать программу на C++, находящую по набору M прямых координаты N исходных точек. Координаты исходных точек должны быть определены с точностью не хуже 10.

Наборы данных

Для тестов прилагаются файлы данных с прямыми и с координатами исходных точек (для проверки). Имена файлов имеют вид:

```
· K-lines.txt — для прямых;
```

· K-points.txt — для точек.

Здесь К — номер набора данных.

Для проверки работы программы прилагается файл данных с прямыми: check-lines.txt.

Формат файла с прямыми

Первая строка содержит два целых числа, разделенных пробелом: M и N. (1 <= M <= 20000, 1 <= N <= 100)

Далее следуют М строк, задающие прямые, по одной строке на прямую. В каждой строке записаны координаты двух точек (x_1, y_1) , (x_2, y_2) , через которые проходит прямая, в виде последовательности 4 чисел с плавающей точкой, разделенных пробелом: x_1, y_1, x_2, y_2 . При этом -2000 <= x_1, y_1, x_2, y_2 <= 2000.

Пример файла данных (*M*=6, *N*=3):

```
6 3
0.000000 0.000000 20.000000 0.000000
0.000000 0.000000 20.000000 20.000000
0.000000 10.000000 20.000000 10.000000
0.000000 10.000000 0.000000 30.000000
10.000000 0.000000 10.000000 20.000000
```

Формат файла с точками

Первая строка содержит целое число N (1 <= N <= 100).

Далее следуют N строк, задающие точки, по одной строке на точку. В каждой строке записаны координаты точки (x_i , y_i) и количество прямых M_i : x_i , y_i , M_i (два числа с плавающей точкой и целое число, разделенные пробелами). При этом -1000 <= x_i , y_i <= 1000, 1 <= M_i <= 200.

Пример файла данных (*N*=3):

```
3
0.000000 0.000000
0.000000 10.000000
10.000000 0.000000
```

Формат выходных данных программы

Результатом работы программы должен быть текстовый файл с найденными координатами точек.

Файл должен содержать N строк.

В каждой строке должны быть записаны два числа с плавающей точкой, x и y — координаты точки.

Поскольку требуемая точность определения координат — 10, количество знаков после запятой в выводе программы не имеет принципиального значения, можно использовать любую разумную точность.