United College of Engineering and Research, Prayagraj Department of Computer Science

$\begin{array}{c} {\rm B.Tech(2020\text{-}21)} \\ {\rm Discrete~Structures~and~Theory~of~Logic(KCS~303)} \\ {\rm Assignment\text{-}2} \end{array}$

QNo.	Question	CO	Bloom's
		Type	level
1	If $D(n)$ is the set positive odd integers i.e. $D(n) = \{1,3,5,7,\dots,\}$, then prove with the help of mathematical induction $P(n) = 1+3^n$ is divisible by 4.	CO1	L4
2	Determine whether each of these functions are bijective from R to R. 1. $f(x) = x^2 + 1$ 2. $f(x) = x^3$ 3. $f(x) = \frac{x^2+1}{x^2+2}$	CO1	L4
3	Prove that $(A \cup B) \cap C = A \cup (B \cap C)$ if and only if $A \subseteq C$	CO1	L3
4	Show that $(A-B)\cap(B-A) = \phi$	CO1	L2
5	Let A be a set of 10 distinct elements. Determine the following: 1. Number of different binary relations on A. 2. Number of different reflexive binary relations on A.	CO1	L2

Bloom's Taxonomy levels (1- Remembering, 2- Understanding, 3- Applying, 4- Analyzing, 5- Evaluating, 6- Creating)

${\bf CO}$ - Course Outcome

