Package 'r2redux'

June 16, 2022

Title R2 Statistic						
Version 1.0.4						
Description R2 statistic for significance test. Variance and covariance of R2 values used to assess the 95% CI and p-value of the R2 difference.						
License GPL (>=3)						
ncoding UTF-8						
Roxygen list(markdown = TRUE)						
RoxygenNote 7.1.2						
NeedsCompilation no						
Cc_trf	. 2 . 3 . 4 . 4 . 5 . 6					
Index	13					
cc_trf cc_trf function						

Description

This function transforms the predictive ability (R2) and its standard error (se) between the observed scale and liability scale

Usage

```
cc_trf(R2, se, K, P)
```

2 olkin12_1

Arguments

R2	R2 or Coefficient of determination on the observed or liability scale
se	Standard error of R2
K	Population prevalence
P	The ratio of cases in the study samples

Value

This function will transform the R2 and its s.e between observed scale and liability scale.Output from the command is the lists of outcomes.

References

Lee, S. H., Goddard, M. E., Wray, N. R., and Visscher, P. M. A better coefficient of determination for genetic profile analysis. Genetic epidemiology,(2012). 36(3): p. 214-224.

Examples

```
To get the transformed R2 output=cc_trf(0.06, 0.002, 0.05, 0.05)

output$R21 (transformed R2 to the liability scale)
0.2679337

output$sel (transformed se to the liability scale)
0.008931123

output$R20 (transformed R2 to the observed scale)
0.01343616

output$se0 (transformed se to the observed scale)
0.000447872
```

olkin12_1

olkin12_1 function

Description

```
olkin12_1 function
```

Usage

```
olkin12_1(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

olkin12_13 3

Value

This function will be used as source code

olkin12_13

olkin12_13 function

Description

olkin12_13 function

Usage

```
olkin12_13(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

Value

This function will be used as source code

olkin12_3

olkin12_3 function

Description

olkin12_3 function

Usage

```
olkin12_3(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

Value

This function will be used as source code

4 olkin1_2

olkin12_34

olkin12_34 function

Description

olkin12_34 function

Usage

```
olkin12_34(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

Value

This function will be used as source code

olkin1_2

olkin1_2 function

Description

olkin1_2 function

Usage

```
olkin1_2(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

Value

This function will be used as source code

olkin_beta1_2 5

```
olkin_beta1_2 olkin_beta1_2 function
```

Description

This function derives Information matrix for beta 1^2 and beta 2^2 where beta 1 and 2 are regression coefficients from a multiple regression model, i.e. y = x1 beta 1 + x2 beta 2 + e, where y, x1 and x2 are column-standardised, (i.e. in the context of correlation coefficients, see Olkin and Finn 1995).

Usage

```
olkin_beta1_2(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

Value

This function will give information (variance-covariance) matrix of beta1^2 and beta2^2.Output from the command is the lists of outcomes.

References

- 1. Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.
- 2. Momin, M.M., Lee, S. Wray, N. and S. Lee, S.H. Significance tests for R2 of out-of-sample prediction using polygenic scores. bioRxiv.

```
To get information (variance-covariance) matrix of beta1^2 and beta2^2 where beta1 and 2 are regression coefficients from a multiple regression model.
```

```
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
omat=cor(dat)[1:3,1:3]
omat
1.0000000 0.1958636 0.1970060
0.1958636 1.0000000 0.9981003
0.1970060 0.9981003 1.0000000

nv=length(dat$V1)
output=olkin_beta1_2(omat,nv)
output

output$\sinfo (2x2 information (variance-covariance) matrix)
0.04146276 0.08158261
0.08158261 0.16111124

output$\sinfo (variance of beta1^2)
```

6 olkin_beta_inf

```
0.04146276

output$var2 (variance of beta2^2)
0.1611112

output$var1_2 (variance of difference between beta1^2 and beta2^2)
0.03940878
```

olkin_beta_inf olkin_beta_inf function

Description

This function derives Information matrix for beta1 and beta2 where beta1 and 2 are regression coefficients from a multiple regression model, i.e. $y = x1 \cdot beta1 + x2 \cdot beta2 + e$, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995).

Usage

```
olkin_beta_inf(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

Value

This function will generate information (variance-covariance) matrix of beta1 and beta2.Output from the command is the lists of outcomes.

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

```
To get information (variance-covariance) matrix of betal and beta2 where betal and 2 are regression coefficients from a multiple regression model.
```

```
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
omat=cor(dat)[1:3,1:3]
omat
1.0000000 0.1958636 0.1970060
0.1958636 1.0000000 0.9981003
0.1970060 0.9981003 1.0000000

nv=length(dat$V1)
output=olkin_beta_inf(omat,nv)
```

r2_diff

```
output
output$info (2x2 information (variance-covariance) matrix)
0.2531406 -0.2526212
-0.2526212  0.2530269

output$var1 (variance of beta1)
0.2531406

output$var2 (variance of beta2)
0.2530269

output$var1_2 (variance of difference between beta1 and beta2)
1.01141
```

r2_diff

r2_diff function

Description

This function estimates $var(R2(y\sim x[,v1]) - R2(y\sim x[,v2]))$ where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

Usage

```
r2_diff(dat, v1, v2, nv)
```

Arguments

dat	N by (M+1) matrix having variables in the order of cbind(y,x)
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	sample size

Value

This function will estimate significant difference between two PGS (either dependent or independent and joint or single).Output from the command is the lists of outcomes.

```
To get the test statistics for the difference between R2(y \sim x[,v1]) and R2(y \sim x[,v2]). (here we define R2_1=R2(y \sim x[,v1])) and R2_2=R2(y \sim x[,v2]))) dat=read.table("test_ukbb_thresholds_scaled") (see example files) nv=length(dat$V1) v1=c(1) v2=c(2) output=r2_diff(dat,v1,v2,nv)
```

8 r2_diff

```
output
r2redux output
output$rsq1 (R2_1)
0.03836254
output$rsq2 (R2_2)
0.03881135
output$var1 (variance of R2_1)
0.0001437583
output$var2 (variance of R2_2)
0.0001452828
output$var_diff (variance of difference between R2_1 and R2_2)
5.678517e-07
outputr2_based_p (p-value for significant difference between R2_1 and R2_2)
0.5514562
output$mean_diff (differences between R2_1 and R2_2)
-0.0004488044
output$upper_diff (upper limit of 95% CI for the difference)
0.001028172
output$lower_diff (lower limit of 95% CI for the difference)
-0.001925781
To get the test statistics for the difference between R2(y \sim x[,v1]+x[,v2]) and
R2(y \sim x[,v2]). (here R2_1=R2(y \sim x[,v1]+x[,v2]) and R2_2=R2(y \sim x[,v1]))
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
nv=length(dat$V1)
v1=c(1,2)
v2=c(1)
output=r2_diff(dat,v1,v2,nv)
output
r2redux output
output$rsq1 (R2_1)
0.03896678
output$rsq2 (R2_2)
0.03836254
output$var1 (variance of R2_1)
0.0001475195
output$var2 (variance of R2_2)
0.0001437583
```

r2_enrich_beta

```
output$var_diff (variance of difference between R2_1 and R2_2)
2.321425e-06

output$r2_based_p (p-value for significant difference between R2_1 and R2_2)
0.4369177

output$mean_diff (differences between R2_1 and R2_2)
0.0006042383

output$upper_diff (upper limit of 95% CI for the difference)
0.004887989

output$lower_diff (lower limit of 95% CI for the difference)
-0.0005574975
```

r2_enrich_beta

r2_enrich_beta

Description

This function estimates var((t1/exp) - (t2/(1-exp))), where $t1 = beta1^2$ and $t2 = beta2^2$, and beta1 and 2 are regression coefficients from a multiple regression model, i.e. $y = x1 \cdot beta1 + x2 \cdot beta2 + e$, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995). y is y is y 1 matrix having the dependent variable, and y 1 is y 1 matrix having the ith explanatory variables. y 2 indicates the ith and jth column in the data (y 1 or y 2 should be a single interger between 1 - M, see Arguments below). Note that y 2 enrich (above) and y 2 enrich beta is equivalent (identical p-value derived).

Usage

```
r2_enrich_beta(dat, v1, v2, nv, exp1)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$	
v1	These can be set as $v1=1$, $v1=2$, $v1=3$ or any value between 1 - M based on combination	
v2	These can be set as $v2=2$, $v2=1$, $v2=2$, or any value between 1 - M based on combination	
nv	sample size	
exp1	The expectation of the ratio (e.g. ratio of # SNPs in genomic partitioning)	

Value

This function will test the ratio which is significantly different from the expectation. Output from the command is the lists of outcomes.

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

10 r2_var

```
To get the test statistic for the ratio which is significantly
different from the expectation.
var[(t1/exp) - (t2/(1-exp))], where t1 = beta1^2 and t2 = beta2^2.
betal and beta2 are regression coefficients from a multiple regression model,
i.e. y = x1\tilde{A}¢â,-\hat{A}¢beta1 + x2\tilde{A}¢â,-\hat{A}¢beta2 +e, where y, x1 and x2 are column-standardised
dat=read.table("test_ukbb_enrichment_choles") (see example file)
nv=length(dat$V1)
v1=c(1)
v2=c(2)
expected_ratio=0.04
output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio)
output
r2redux output
output$beta1_sq (t1)
0.01118301
output$beta2_sq (t2)
0.004980285
output$var1 (variance of t1)
7.072931e-05
output$var2 (variance of t2)
3.161929e-05
output$var1_2 (variance of difference between t1 and t2)
0.000162113
output$cov (covariance between t1 and t2)
-2.988221e-05
output\$enrich_p2 (p-value for testing the difference between t1/exp and t2/(1-exp))
0.1997805
output$mean_diff (difference between t1/exp and t2/(1-exp))
0.2743874
output$var_diff (variance of difference, t1/exp - t2/(1-exp))
0.04579649
output$upper_diff (upper limit of 95% CI for the mean difference)
output$lower_diff (lower limit of 95% CI for the mean difference)
-0.1450549
```

r2_var 11

Description

This function estimates $var(R2(y\sim x[,v1]))$ where R2 is the R squared value of the model, where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
r2_var(dat, v1, nv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of cbind (y,x)
v1	This can be set as $v1=c(1)$, $v1=c(1,2)$ or possibly with more values
nv	sample size

Value

This function will test the null hypothesis for R2.Output from the command is the lists of outcomes.

```
To get the test statistics for R2(y \sim x[,v1])
dat=read.table("test_ukbb_thresholds_scaled") (see example file)
nv=length(dat$V1)
v1=c(1)
output=r2_var(dat,v1,nv)
r2redux output
output$rsq (R2)
0.03836254
output$var (variance of R2)
0.0001437583
output$r2\_based\_p (P-value under the null hypothesis, i.e. R2=0)
1.213645e-10
output$upper_r2 (upper limit of 95% CI for R2)
0.06435214
output$lower_r2 (lower limit of 95% CI for R2)
0.01763347
To get the test statistic for R2(y \sim x[,v1]+x[,v2]+x[,v3])
dat=read.table("test_ukbb_thresholds_scaled") (see example file)
nv=length(dat$V1)
v1=c(1,2,3)
outout=r2_var(dat,v1,nv)
```

12 r2_var

```
output
r2redux output
output$rsq (R2)
0.03917668
output$var (variance of R2)
0.0001499374
output$r2_based_p (R2 based P-value)
7.461267e-11
output$upper_r2 (upper limit of 95% CI for R2)
0.06538839
output$lower_r2 (lower limit of 95% CI for R2)
```

0.01821657

Index

D4			
*Topic R2	cc_trf,1		
cc_trf,1	olkin_beta1_2,5		
r2_diff, 7	olkin_beta_inf,6		
r2_var, 10	r2_enrich_beta,9		
*Topic Transformation	*Topic ratio		
cc_trf,1	r2_enrich_beta,9		
*Topic and	*Topic regression		
cc_trf,1	r2_enrich_beta,9		
*Topic a	*Topic scale		
r2_enrich_beta,9	cc_trf,1		
*Topic beta^2	*Topic source		
r2_enrich_beta,9	olkin12_1, <mark>2</mark>		
*Topic between	olkin12_13, 3		
cc_trf,1	olkin12_3,3		
r2_enrich_beta,9	olkin12_34, 4		
*Topic context	olkin1_2, 4		
olkin_beta1_2,5	*Topic the		
olkin_beta_inf,6	olkin_beta1_2,5		
*Topic correlation	olkin_beta_inf,6		
olkin_beta1_2,5	*Topic variance		
olkin_beta_inf,6	r2_diff, 7		
*Topic from	r2_enrich_beta, 9		
r2_enrich_beta,9	r2_var, 10		
*Topic information			
_	cc_trf,1		
olkin_beta1_2,5	33 1 40 4 2		
olkin_beta_inf,6	olkin12_1,2		
r2_diff,7	olkin12_13,3		
r2_var, 10	olkin12_3,3		
*Topic in	olkin12_34,4		
olkin_beta1_2,5	olkin1_2,4		
olkin_beta_inf, 6	olkin_beta1_2,5		
*Topic liability	olkin_beta_inf,6		
cc_trf,1	r2_diff,7		
*Topic matrix	r2_enrich_beta,9		
olkin_beta1_2,5	r2_var, 10		
olkin_beta_inf,6	12_vai, 10		
r2_diff,7			
r2_var, 10			
*Topic multiple			
r2_enrich_beta,9			
*Topic observed			
cc_trf, 1			
*Topic of			