Graphics 2 - class exercise

A cube is displayed at three different viewing angles. The coordinates of its vertices at each of the three views are given in the vertex tables 1-3. The face table is (of course!) common to all three views. Given this information predict the visibility of faces F2 and F4 for each of the three views.

Vertex table 1

V1	0	0	0	1
V2	0	0.87	0.50	1
V3	-0.5	0.43	1.25	1
V4	-0.5	-0.43	0.75	1
V5	0.87	-0.25	0.43	1
V6	0.87	0.62	0.93	1
V7	0.37	0.18	1.68	1
V8	0.37	-0.68	1.18	1

Vertex table 2

V1	0	0	0	1
V2	0	0.87	-0.50	1
V3	0.5	1.30	0.25	1
V4	0.5	0.43	0.75	1
V5	0.87	-0.25	-0.43	1
V6	0.87	0.62	-0.93	1
V7	1.37	1.05	-0.18	1
V8	1.37	0.18	0.32	1

Vertex table 3

V1	0	0	0	1
V2	-0.87	-0.43	-0.25	1
V3	-0.87	-0.93	0.62	1
V4	0	-0.50	0.87	1
V5	-0.50	0.75	0.43	1
V6	-1.37	0.32	0.18	1
V7	-1.37	-0.18	1.05	1
V8	-0.50	0.25	1.30	1

Computing cross-product

N1=E1 × E2 =

$$\begin{vmatrix} 1_{x} & 1_{y} & 1_{z} \\ x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ x_{3} - x_{2} & y_{3} - y_{2} & z_{3} - z_{2} \end{vmatrix} =$$

$$1_{x} (y_{2} - y_{1})(z_{3} - z_{2}) - (y_{3} - y_{2})(z_{2} - z_{1}) +$$

$$1_{y} (x_{3} - x_{2})(z_{2} - z_{1}) - (x_{2} - x_{1})(z_{3} - z_{2}) +$$

$$1_z (x_2 - x_1)(y_3 - y_2) - (x_3 - x_2)(y_2 - y_1)$$

Face table

F1	1	2	6	5
F2	5	6	7	8
F3	3	4	8	7
F4	1	4	3	2
F5	1	5	8	4
F6	2	3	7	6

