Transformation-Dilation(homothecy)

Transformations (Dilation)

P designate a set of points in a plane

1) <u>Definition</u>: Let Ω be a point of the plane P and K is a non-zero number. We call dilation (homothecy) of center Ω and ratio K the transformation in P, denote by h (Ω ,K), which, to every point M, associates a unique point M defined by: $\overline{\Omega M} = k\overline{\Omega M}$

We write:
$$h = h(\Omega, k)$$
: $P \rightarrow P$

$$M \mapsto M' = h(M)$$
 with $\Omega M' = k \Omega M$.

- Every point M and its image M' by h are collinear with the center Ω
- If k > 0, the homothecy is said to be positive, and if k < 0 the homothecy is said to be negative
 - The inverse of the dilation h(Ω, k) is the dilation h(Ω, 1/k).
 - If k = 1, the homothecy $h(\Omega, 1)$ is an identity mapping in the plane $P(Id_{P})$
 - If k = -1, the homothecy $h(\Omega, -1)$ is a central symmetry of center Ω
- If $k \neq 1$, $h(\Omega, k)$ has only one double point or invariant which is the center Ω

Application 1:

Let Ω and M be two points:

- a) Construct the point M' the image of M by the dilation $h(\Omega; \frac{1}{2})$.
- b) Construct the point M' the image of M by the dilation h(Ω;-2)

Application 2:

A, B, and C are three collinear points in this order, such that AB = 1 and BC = 4.

- a) Characterize the dilation that transforms A to C
- b) Characterize the dilation that transforms B to C

Solution of App2:

a) $\sin ce \ \overrightarrow{BC} = -4\overrightarrow{BA}$ thus the dilation that transforms

A to C is h(B;-4)

b) $\sin ce \ \overrightarrow{AC} = 5\overrightarrow{AB}$ thus the dilation that transforms

B to C is h(A;5)

2-Properties

- a) Characteristic property: Let $h = h(\Omega, k)$ be a dilation. If h(M) = M 'and h(N) = N' is equivalent to $\overline{M'N'} = k\overline{MN}$
- b) The image of a segment of length L by the dilation h (Ω, k) is a parallel segment of length $|k| \times L$.
- c) The image of a line by the dilation $h(\Omega, k)$ is a parallel line.
- d) The image of a vector \overline{AB} by the dilation $h(\Omega, k)$ is a vector such that $\overline{A'B'} = k\overline{AB}$.
- e) The image of a circle C (O, R) by the dilation h (Ω , k) is a circle C '(O', | k | R) with O '= h (O).
- f) The dilation preserves the collinearity, the parallelism, the orthogonality, the midpoint, the oriented angles.
- g) The dilation multiplies the lengths by | k | and the area by k^2 .

3) Complex form of a dilation:

The plane P is provided with a direct orthonormal coordinate system (O;u;v).

- Let the dilation h (Ω, k) with real k different from 0 and 1. If M (z) and M '(z') such that h (M) = M 'then z' = k z + b and the affix of Ω the center of h is $z_{\Omega} = \frac{b}{1-k}$. Where k is a real number and b is a complex number.
- Pay attention: If the center Ω of h is the point O origin of the orthonormal system, the complex form of h (O; k) is then z '= kz.

IM' - K AM

Application 4:

The plane P is provided with a direct orthonormal coordinate system $(O; \vec{u}; \vec{v})$.

- 1) Let f be the transformation of complex form z = 2z + 1 i. Determine the nature and the characteristic elements of f.
- 2) a) Write the complex form of the dilation h with center Ω (0; 1) and ratio 0.5.
 - b) Let A be the point with affix 2 + i. Determine the affix of point B image of A by h.
 - c) Determine the complex form of the transformation h⁻¹.

Solution:

- 1) z'=2z+1-i
- has the form z'=kz+b

so f is a dilation of center Ω such that

$$z_{\Omega} = \frac{b}{1-k} = \frac{1-i}{1-2} = -1+i$$

- so $\Omega(-1;1)$ and ratio k=2.
- 2)a) z'=kz+b
- k=0.5
- $b=z_{\Omega}(1-k)=i(1-0.5)=0.5i$
- so z'=0.5z+0.5i
- b) h(A)=B
- $z'_{B} = 0.5z_{A} + 0.5i$
- =0.5(2+i)+0.5i
- =1+i
- $c)h^{-1}(\Omega; \frac{1}{k}) \Leftrightarrow h^{-1}(\Omega; 2)$
- thus
- z'=kz+b
- =2z+i(1-2)
- =2z-i
- 2nd method:
- z'=0.5z+0.5i
- -0.5z = -z + 0.5i
- z = 2z' i
- thus z'=2z-i

3-Composite of 2 dilations

a) Composite of two dilations of the same center:

Let $h(\Omega, k)$ and $h'(\Omega, k')$ be two dilations with the same center Ω in P.

- If kk '= 1(reciprocal ratios), the composite of these two dilations is the identical application of P (IdP).
- If kk ' \neq 1, the composite of these two dilation is the dilation h''(Ω, kk'). where h '(Ω, k') \circ h (Ω, k) = h (Ω, k') \circ h' (Ω, k) = h " (Ω, kk').

b) Composite of two dilations with distinct centers:

Let h (Ω, k) and h $'(\Omega', k')$ be two dilations with distinct centers Ω and Ω' in P.

- If kk '= 1 (reciprocal), the composite of these two dilations is a translation. where h '(Ω ', k ') \circ h (Ω , k) = $t_{\overline{V}}$ with $v = \overline{\Omega\Omega''}$ and $\Omega'' = h'(\Omega)$.
- If kk '≠ 1, the composite of these two dilation is the dilation h''(I, kk') (I is distinct from Ω and from Ω 'and we can show that $\overline{\Omega I} = \frac{1-k'}{1-kk'}\overline{\Omega\Omega'}$). where h '(Ω', k') h (Ω, k) = h''(I, kk').

c) Composite of a dilation and a translation:

consider the dilation $h(\Omega, k)$ and the translation \vec{v} be such that $k \neq 1$ and $\vec{v} \neq \vec{0}$ So:

- $t_{\vec{v}} \circ \underline{h}(\Omega, k) = h(I, k)$ and I is distinct from Ω such that $\overrightarrow{\Omega I} = \frac{1}{1-k} \vec{V}$.
- $\underline{h}(\Omega, k) \circ t_{\overline{V}} = h(I'; k)$ and I' is distinct from Ω such that $\overline{\Omega I'} = \frac{k}{1-k} \overline{V}$.

Application 5:

- 1) [AB] is a segment, given the dilations h = h(A; 2), and $h' = h(B; \frac{1}{2})$ $h'' = h(B; \frac{1}{4})$. Determine the nature and the elements of $h' \circ h$ and $h \circ h'$, $h'' \circ h$ and $h \circ h''$.
- 2)ABC is a triangle. Let the dilation h = h(A; 2) and t be the translation $t = t_{\overline{BC}}$. Determine the nature and the elements of $h \circ t$ and $t \circ h$.

Application5:

- 1)h' o h, is a composite of 2 dilations with distinct centers and kk'=1, so it is a translation of vector $\overrightarrow{V} = \overrightarrow{AI}$ where I=h'(A) $\iff \overrightarrow{BI} = \frac{1}{2}\overrightarrow{BA}$ thus I is the midpoint of [AB].
- 2) $h \ o \ h'$, is a composite of 2 dilations with distinct centers and kk'=1, so it is a translation of vector $\overrightarrow{V}_1 = \overrightarrow{BI}$ where $I'=h(B) \Leftrightarrow \overrightarrow{AI}' = 2\overrightarrow{AB}$ thus B is the mipoint of [AI'].
- 3)h"oh, is a composite of 2 dilations with distinct centers and kk' $\neq 1$ so it is a dilation of center I" distinct of A and B

such that :
$$\overrightarrow{AI}'' = \frac{1-k'}{1-kk'}\overrightarrow{AB} = \frac{1-\frac{1}{4}}{1-\frac{1}{4}\times 2}\overrightarrow{AB} = \frac{3}{2}\overrightarrow{AB}$$
.

and ratio kk'=
$$\frac{1}{2}$$

4)ho h", is a composite of 2 dilations with distinct centers and kk' $\neq 1$ so it is a dilation of center I_1 distinct of A and B such that: $\overrightarrow{BI_1} = \frac{1-k'}{1-kk'}\overrightarrow{BA} = \frac{1-2}{1-\frac{1}{4}\times 2}\overrightarrow{BA} = -2\overrightarrow{BA}$.

and ratio kk'=
$$\frac{1}{2}$$
.

and notice - 1r - 2

part2)h o t, is a composite of dilation and translation so it is a dilation of center I' distinct from Asuch that $\overrightarrow{AI} = \frac{2}{1-2} \overrightarrow{BC} = -2 \overrightarrow{BC}$

ExI -

Determine the nature and the elements of the transformation f defined by complex form in each of the following cases:

1)
$$z' = z - 1 + i$$

$$2)z' = \sqrt{2z + i - 1}$$

$$3)z' = e^{-3}z + 3 + i$$

1)
$$z' = z - 1 + i$$
 2) $z' = \sqrt{2}z + i - 1$ 3) $z' = e^{2i\frac{\pi}{3}}z + 3 + i$ 4) $z' = -\frac{5}{2}z + 3 + 2i$

Ex2-

Let f be a dilation defined by a complex form $z'=u^2z+u-1$

Deter min e the set of complex number of u for which f is a dilation of ratio-2.

Ex 3-

Consider the point A and B of respective affixes $z_A = 1$ and $z_B = 2 + i$. let the

dilation h=h(A;3) and h'=h(B;
$$\frac{1}{3}$$
)

- 1)Write the complex form of h,h' and of h' o h.
- 2) Deduce the nature and the charateristic elements of h' o h.

Ex 4;

ABCD is a trapezoid such that $\overrightarrow{AB} = 3\overrightarrow{DC}$, O is the intersection of its diagonals.

- we denote by h the dilation of cneter O that transform A to C.
- 1)a-Determine h((AB)). Precise h(B).
- b- Prove that the ratio of h is $-\frac{1}{3}$.
- 2) The parallel (d) drawn from C to (AD) cuts (DB) at I
 - a- Prove that h((AD))=(d).
 - b- Deduce that h(D)=I
- 3) The parallel (Δ) drawn from D to (BC) cuts (AC) at J.
 - a- Using the reason of the preceding question prove that h(C)=J.
 - b- Deduce that $\overrightarrow{IJ} = \frac{1}{3}\overrightarrow{CD}$.

Ex 3-

Consider the point A and B of respective affixes $z_A = 1$ and $z_B = 2 + i$. let the

dilation h=h(A;3) and h'=h(B;
$$\frac{1}{3}$$
)

- 1) Write the complex form of h,h' and of h' o h.
- 2) Deduce the nature and the charateristic elements of h' o h.

Ex 4;

ABCD is a trapezoid such that $\overrightarrow{AB} = 3\overrightarrow{DC}$, O is the intersection of its diagonals.

we denote by h the dilation of cneter O that transform A to C.

- 1)a-Determine h((AB)). Precise h(B).
 - b- Prove that the ratio of h is $-\frac{1}{3}$.
- 2) The parallel (d) drawn from C to (AD) cuts (DB) at I
 - a- Prove that h((AD))=(d).
 - b- Deduce that h(D)=I
- 3)The parallel (Δ) drawn from D to (BC) cuts (AC) at J.
 - a- Using the reason of the preceding question prove that h(C)=J.
 - b- Deduce that $\overrightarrow{IJ} = \frac{1}{3}\overrightarrow{CD}$.