AMENDMENTS

IN THE CLAIMS:

Please cancel claims 2, 9 and 15.

(Currently Amended) A multiple wavelength output light source, 1 1. 2 comprising: a laser device having a plurality of output wavelengths; 3 a demultiplexer optically coupled to the laser device, the demultiplexer for 4 separating the plurality of output wavelengths; and 5 a plurality of modulators optically coupled to the demultiplexer, the 6 modulators associated with and configured to modulate each wavelength, wherein the 7 8 laser device, the plurality of modulators and the demultiplexer are fabricated on one substrate and comprise one module. 9 2. (Canceled) 1 (Original) The light source of claim 1, wherein the plurality of output 1 3. wavelengths represents the output spectrum of the laser device. 2 (Original) The light source of claim 1, further comprising an optical 4. 1 filter configured to receive the plurality of output wavelengths and modify each 2 3 wavelength to a predetermined profile. 5. (Original) The light source of claim 1, wherein the laser device is a 1 2 Fabry-Perot laser.

l	6. (Or	riginal) T	he light source	e of claim	l, further com	prising a comb	oining
2	device configured	to combi	ine each of the	e plurality	of modulated	wavelengths of	onto a
3	single optical fiber	r.					

- 7. (Original) The light source of claim 1, wherein the laser device has a spectral distribution including distinct peaks, each of the output wavelengths corresponding to a different one of the peaks.
- 1 8. (Currently Amended) A method for forming a broad spectrum
 2 modulated laser output, the method comprising:
- providing a laser device having a plurality of output wavelengths;
- 4 separating the plurality of output wavelengths; and
- 5 modulating each of the plurality of output wavelengths; and
- forming the laser device and performing the modulating step and the separating step on one substrate.
 - 9. (Canceled)

1

1

2

- 1 10. (Original) The method of claim 8, wherein the plurality of output wavelengths represents the output spectrum of the laser device.
 - 11. (Original) The method of claim 8, further comprising modifying each wavelength to a predetermined profile.

1	12. (Original) The method of claim 8, wherein the laser device is a Fabry-					
2	Perot laser.					
1	13. (Original) The method of claim 8, further comprising combining each					
2	of the plurality of modulated output wavelengths onto a single optical fiber.					
1	14. (Currently Amended) A method for forming a broad spectrum					
2	modulated laser output, the method comprising the steps of:					
3	providing a Fabry-Perot laser device having a plurality of outputs, each output					
4	at a different spectral location;					
5	separating the plurality of outputs; and					
6	modulating each of the plurality of outputs with communication information					
7	resulting in a plurality of modulated outputs; and					
8	forming the Fabry-Perot laser device and performing the modulating step and					
9	the separating step on one substrate.					
1	15. (Canceled)					
1	16. (Original) The method of claim 14, wherein the plurality of output					
2	wavelengths represents the output spectrum of the laser device.					
1	17. (Original) The method of claim 14, further comprising modifying each					
2	wavelength to a predetermined profile.					

1	18. (Original) The method of claim 14, further comprising combining each					
2	of the plurality of modulated outputs onto a single optical fiber.					
1	19. (Currently Amended) An optical system comprising:					
2	a laser that outputs plural wavelengths; and					
3	modulator means optically coupled to the laser, the modulator means for					
4	modulating each of the wavelengths independently, wherein the laser and the					
5	modulator means are fabricated on one substrate and comprise one module.					
1	20. (Original) The apparatus of claim 19, further comprising separator					
2	means for spatially separating the plural wavelengths upstream of their modulation by					
3	the modulator means.					
1	21. (Original) The apparatus of claim 20, further comprising combiner					
2	means for spatially combining the wavelengths as modulated by the modulator means.					
1	22. (Original) The apparatus of claim 19, wherein the laser has a spectral					
2	distribution including distinct peaks, each of the wavelengths corresponding to a					
3	different one of the peaks.					
1	23. (Currently Amended) An optical method comprising:					
2	operating a laser to provide an output characterized by plural wavelengths; and					
3	modulating the plural wavelengths independently; and					
4	forming the laser device and performing the modulating step on one substrate.					

Agilent Docket No.: 10004262-1

- 1 24. (Original) The method of claim 23, further comprising separating the plural wavelengths upstream of the modulating.
- 1 25. (Original) The method of claim 24, further comprising combining the wavelengths downstream of the modulating.
- 1 26. (Original) The method of claim 23, wherein the wavelengths
 2 correspond to distinct peaks in the spectral distribution of the output of the laser.