AI AGENTS

Definition, Types, and Use Cases

AGENDA

- Introduction to AI Agents
- Definition and Core Characteristics of AI Agents
- Types of AI Agents
- Examples of AI Agents
- Distinguishing Characteristics of Non-Agents
- Controversy and Complexity in AI Agents
- Broader Implications and Future Trends
- Use Cases of AI Agents
- Conclusion

WHAT IS AN AGENT?

Definition of an Agent

A system that senses its environment Processes information to take actions

Examples of Agents

Thermostat: Senses temperature and adjusts

heat

Chatbot: Reads messages and responds

WHAT ARE NOT AGENTS?

- Definition of Non-Agents
 - Entities lacking abilities to sense, act, or perceive
- Examples of Non-Agents
 - Rocks: Do not sense or act
 - Static Webpages: Display information without interaction
 - Simple Calculators: Process numbers without independent action or environmental perception

UNEXPECTED DETAIL

- Simple Systems as Agents
 - Motion-activated lights as an example
 - Sense motion and turn on
 - Often not considered as agents

DEFINITION OF AI AGENTS

- Definition of an Agent
 - System capable of perceiving its environment
 - Processes information to make decisions
 - Acts upon the environment to achieve goals
- Examples of Agents
 - Robots with cameras and wheels
 - Software programs like virtual assistants
 - Recommendation systems

CORE CHARACTERISTICS OF AI AGENTS

• Perception

- Sensing the environment through physical sensors or virtual inputs
- Examples: cameras for robots, user messages for chatbots
- Decision-Making
 - Processing information to determine actions
 - Range from simple rule-based decisions to complex reasoning
 - Examples: thermostats, self-driving cars

Action

- Capacity to affect the environment
- Examples: turning on a heater, navigating roads

SIMPLE REFLEX AGENTS

Simple Reflex Agents

- React based on current perception
- Follow pre-set rules
- Example: When I enter into my room, my air condition, oven and computer might turn on and other electric devices might not get activated

MODEL-BASED REFLEX AGENTS

- Model-Based Reflex Agents
 - Use a mental map of their environment
 - Make choices based on the map
 - Useful in situations where not everything is visible
 - Example: Robot vacuum navigating around furniture

GOAL-BASED AGENTS

- Goal-Based Agents
 - Have specific goals
 - Plan actions to achieve goals
 - Example: Navigation app finding the fastest route

UTILITY-BASED AGENTS

- Utility-Based Agents
 - Pick actions that offer the best outcome
 - Consider factors like time or cost
 - Example: Choosing a route that saves fuel and avoids tolls

LEARNING AGENTS

- Learning Agents
 - Improve over time by learning from experience
 - Example: Recommendation systems on shopping sites

MULTI-AGENT SYSTEMS

- Multi-Agent Systems
 - Multiple AI agents working together
- Hierarchical Agents
 - Organized in levels for complex task coordination
 - Sometimes seen as separate concepts

EXAMPLES OF SIMPLE REFLEX AGENTS

- Thermostats
 - React based on temperature
 - Turn on heater if below set point
 - Turn off heater if above set point
- Automatic Doors
 - React based on person detection
 - Open door if person detected
 - Keep door closed if no person detected
- Vacuum Cleaner Agent
 - React based on dirt detection
 - Suck up dirt when detected

EXAMPLES OF MODEL-BASED REFLEX AGENTS

- Agents and Internal State
 - Track environment using internal state
 - Handle partially observable settings by inferring current world state
- Examples of Agents
 - Roomba vacuum cleaner
 - Builds a map to clean efficiently
 - Remembers cleaned areas and obstacles
 - Wumpus World agents
 - Track visited squares and percepts
 - Infer safe paths

EXAMPLES OF GOAL-BASED AGENTS

- Perception-Decision-Action Framework
 - Applies to both simple and complex systems
 - Examples include thermostats and selfdriving cars
- Goal-Based Agents
 - Focus on achieving specific goals
 - Evaluate actions to find the best outcome
 - Use search or planning algorithms
- Examples of Goal-Based Agents
 - Route planning apps like Google Maps
 - Pac-Man search agents
- Resources for Learning
 - CS188 Pac-Man Projects

EXAMPLES OF UTILITY-BASED AGENTS

- Types of Agents
 - Simple systems like thermostats
 - Complex systems like self-driving cars
- Decision-Making Process
 - Maximize expected utility
 - Weigh outcomes based on preferences
 - Suitable for complex decision-making with trade-offs
- Examples
 - Financial trading bots
 - Game-playing agents using minimax
- Resources
 - CS188 Pac-Man Projects for Project 2 on multiagent search

EXAMPLES OF LEARNING AGENTS

- CS188 Pac-Man Projects
 - Project 3 on reinforcement learning
 - Agents learn from rewards
- Perception-Decision-Action Framework
 - Simple systems like thermostats
 - Complex systems like self-driving cars
- Improving Performance Over Time
 - Learning from experience
 - Using machine learning techniques
- Recommendation Systems
 - Netflix learns user preferences
- Reinforcement Learning Agents

EXAMPLES OF MULTI-AGENT SYSTEMS

- Definition of Multi-Agent Systems
 - Involve multiple agents interacting, cooperating, or competing
 - Effective for complex, distributed tasks
- Examples of Multi-Agent Systems
 - Autonomous vehicle fleets
 - Swarm robotics
- Resources for Multi-Agent Systems
 - <u>ARGoS</u> Simulator for large-scale swarm robotics simulations <u>example</u>
- Range of Agents
 - From simple systems like thermostats to complex systems like self-driving cars
 - Fit the perception-decision-action framework

ENTITIES THAT ARE NOT AGENTS

- Core Capabilities of Agents
 - Perception
 - Decision-making
 - Action
- Characteristics of Non-Agent Entities
 - Lack of perception
 - Inability to make decisions
 - Inability to take action

REASONS WHY THEY ARE NOT AGENTS

- Perception-Decision-Action Loop
 - Entities must engage in this loop to be considered agents
- Non-Agent Examples
 - Thermometer: perceives but does not act
 - Motor: acts but does not perceive
- Static Webpage or Database
 - Lacks autonomous interaction with the environment

Entity	Description	Reason Not an Agent
Rock	A passive object with no ability to sense or act.	Lacks perception and action capabilities.
Static Webpage	Displays information but does not interact or make decisions.	No perception or action; merely serves content.
Simple Calculator	Performs computations based on user input without autonomy or environmental interaction.	Lacks perception of an environment and autonomous action; acts as a tool.
Sensor (e.g., Thermometer)	Perceives environmental data (e.g., temperature) but does not act.	Lacks action capability; perception without decision-making or actuation.
Actuator (e.g., Motor)	Can act (e.g., move) but does not perceive or decide.	Lacks perception and decision-making; action without autonomy.
Database	Stores and retrieves data but does not make decisions or act autonomously.	No perception or action; processes data internally without environmental interaction.
Motor)	but does not perceive or decide. Stores and retrieves data but does not make decisions or act	decision-making; active without autonomy. No perception or action; processes data internally without environmental

DEBATE ON SIMPLE SYSTEMS AS AGENTS

- Definition of Agents
 - Simple systems like motion-activated lights and washing machines fit the technical definition
 - They perceive and act based on certain stimuli
- Common Usage of the Term 'Agent'
 - Often implies a level of intelligence or adaptability
 - Debate exists about the threshold for agency
- Different Perspectives
 - Some sources reserve the term for systems with learning or complex decision-making capabilities
 - Others, like Wikipedia, include even basic systems

```
modifier_ob.
  mirror object to mirror
mirror_mod.mirror_object
 peration == "MIRROR_X":
__mod.use_x = True
"Irror_mod.use_y = False
 irror_mod.use_z = False
 operation == "MIRROR_Y"
lrror_mod.use_x = False
 lrror_mod.use_y = True
 lrror_mod.use_z = False
  _operation == "MIRROR_Z"
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  Selection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modification
   irror ob.select = 0
  bpy.context.selected_ob
  lata.objects[one.name].se
  int("please select exactle
  --- OPERATOR CLASSES ----
     X mirror to the selected
    ject.mirror_mirror_x"
  ext.active_object is not
```

SOFTWARE AGENTS AND CONTEXT IN CLASSIFICATION

- Software Agents and Environmental Interaction
 - Programs like spam filters are considered agents
 - They perceive emails and act by classifying them
- Simple Scripts
 - Lack environmental interaction
 - May not be classified as agents
- Need for Context in Classification
 - Context is crucial in determining if a program is an agent

UNEXPECTED DETAIL: SIMPLE SYSTEMS AS AGENTS

- Simple Systems as Agents
 - Motion-activated lights and washing machines can be considered agents
 - They perceive via sensors and act via actuators based on rules
- Challenges Common Perceptions
 - Agents are not necessarily intelligent or software-based
 - Includes everyday devices
- Example: Wumpus World Simulator
 - Simulates simple reflex agents

HIERARCHICAL AND MULTI-AGENT SYSTEMS IN PRACTICE

- Hierarchical and Multi-Agent Systems
 - Sometimes debated as distinct types
 - Increasingly seen in practice
- Applications in Self-Driving Cars
 - Hybrid intelligent agents
 - Plan routes and react to obstacles
- Advanced Robotic Systems
 - Adapt to changing environments
 - Illustrate practical utility

CUSTOMER SERVICE

- Customer Service
 - Chatbots handle inquiries efficiently
 - cognigy

USECASE

- Customer Service
 - Chatbots handle inquiries
- Healthcare
 - Assist with treatment planning and drug management
- Emergency Response
 - Analyze social media for rescue operations during disasters
- Logistics
 - Coordinate tasks like supply chain management
- Software Development
 - Automate tasks like repository queries
- Recruitment
 - Streamline hiring processes

SOME MORE

• https://www.crewai.com/use-cases

CONCLUSION

- Transformative Technology
 - AI agents are autonomous task performers
 - They represent a significant technological advancement
- Types of AI Agents
 - Simple reflex systems
 - Hierarchical systems
 - Debate on multi-agent and hierarchical systems
- Diverse Use Cases
 - Customer service
 - Emergency response
 - Unexpected roles in modern industries
- Comprehensive Overview