to a cable modem termination system (CMTS) 20 through a second signal path 18 here shown as signal paths 18a-18d. It should be appreciated that the tunnel source 16 can functionally reside in a separate box upstream of the CMTS 20 as shown in Fig. 1. Alternatively, however, the tunnel source 16 can functionally reside within the CMTS 20 or the router 12.

The CMTS 20 includes a CMTS router 22 and a plurality of quadrature amplitude modulators (QAMs) 24a-24d generally denoted 24. Router 12 is also coupled to the CMTS 20, and in particular to the CMTS router 22, via a signal path 26. The purpose of the signal paths 14 and 26 will next be described in general overview.

In the system of the present invention, a packet encapsulation and tunneling procedure can be used which includes two different IP address spaces associated with IP over cable offerings. A first address space (referred to as an L address space) is for existing single-channel users operating in accordance with the Data Over Cable Standard Interface Specification (DOCSIS). A second address space (referred to as an F address space) is for FastChannel users (i.e. users of the protocol described herein). The router 12 is adjacent to and upstream of the CMTS 20, such that, if a packet having a destination address in the L address space is received, the router 16 12 directly routes the packet to the CMTS 20 via signal path 26 without passing through the tunneling node 16. If, however, a packet having a destination address in the F address space is received, the router 16 12 forwards the packet to the tunnel source 16. Tunnel source 16 receives data provided thereto from the router 12 and divides the serialized data stream into a plurality of parallel channels which are fed via the signal path 18a to the CMTS 20.

It should be noted that in Fig. 1, signals paths 18b-18d are shown in phantom to indicate that the parallel signals are logically separate but can be transmitted on a single physical signal path (e.g. a single wire) such as the signal path 18a.

Whether fed to the CMTS router 24 via the FastChannel path 14 or via the legacy path 26, the CMTS router 22 provides each of the signals to one of a plurality of modulators 24a-24d generally denoted 24. In this particular embodiment, where it is desirable to be compatible with

In the specification, please amend page 14 as follows:

Referring now to FIG. 2, an upstream path of a transmission system such as the transmission system 10 described above in conjunction with FIGS. 1 and 1A includes subscriber systems 36 which transmit signals through IP tunnel sources 38. The tunnel sources 38 form a plurality of channels 40a-40d each of which are coupled to one of a plurality of upstream modulators 42a-42d which in turn are coupled to an HFC 44.

The upstream plurality of parallel channels <u>51a-51D</u> are coupled to a CMTS 46 and in particular, the parallel channels are coupled to corresponding ones of a plurality of demodulators 48a-48d, generally denoted 48. The upstream demodulators provide the signal to a CMTS router 50 which in turn provides the signals to an IP tunnel destination 52 and subsequently, via 53, to a router 54.

In this manner signals can be transmitted in the upstream direction within the transmission system.

The MAC frame level technique and the (IP) packet level technique for utilizing the bandwidth of the parallel channels discussed above in the downstream case can also be used in the upstream case.

Referring now to FIG. 3, a demodulator 60 of the type which may be used in a modem coupled to receive signals from a FastChannel signal path includes a tuner 62 provided from a downconverter module 64 having a local oscillator (LO) 66 coupled thereto. The downconverter module 64 receives RF signals at a first port thereof and an LO signal at a second port thereof and provides an output signal having a frequency equal to the difference between the frequencies of the RF signal and the LO signal.

It should be appreciated that the demodulator embodiment shown in FIG. 3 requires that the parallel channels be adjacent to one another. It should also be understood that other demodulator embodiments may not require that the parallel channels be adjacent one another.

In the specification, please amend page 16 as follows:

inverse mux 82 provides signals to a plurality of upstream modulators 84a-84d, generally denoted 84. Each of the modulators 84a-84d modulates the signals fed thereto at a different frequency, designated F1-F4 in FIG. 4.

The modulators 84 provide signals to a digital signal processor DSP 86 which combines the signals at frequencies F1-F4. The DSP 86 provides a stream of bits to a digital to analog converter (DAC) 88 which receives the bit stream and generates a corresponding analog signal at an output port thereof. The analog signal is fed from the DAC 88 to a diplexor 90. Diplexor 90 is adapted to provide signals to one of the coax signal port and a downstream signal port. The diplexer 90 sends the upstream signals, which are within a first frequency band (typically 5-42 MHz) to the headend via the HFC infrastructure. It simultaneously sends the downstream signals within a second frequency band (typically this frequency band begins at 55 MHz and ends somewhere between 500 MHz and 900 MHz) to the demodulator portion of the FastChannel modem.

Referring now to FIG. 5, a system for processing data in a series of parallel channels includes a router 92 coupled via a signal path 94 to a tunnel source 96 and via a signal path 98 to a CMTS 100. The CMTS is coupled via a plurality of cable channels 102a-102N to a like plurality of tunnel destinations 104a-104N generally denoted 104 on a machine 105. The tunnel destinations are coupled to a processor or computer 106 via a standard network interface such as an Ethernet interface. Also depicted is a Personal Computer (PC) 108 having an address E. PC 108 represents a conventional DOCSIS user. This user simply uses one of the channels 103a-103N 102a-102N. In FIG. 5, the DOCSIS user is coupled to channel 103N 102N. This conventional user plays no part in the FastChannel arrangement. It merely illustrates the co-existence of the FastChannel channel system and protocol with a conventional DOCSIS system and protocol.

Assume a packet 110 arrives via the router 92 at a tunnel 96. Tunnel 96 is connected to the CMTS via an interface having an IP address designated as T1. The packet 110 originated at a source with address S (identified with reference designator 110a in FIG. 5) and is destined to the PC 106 having an address D (identified with reference designator 110b in FIG. 5). It is further

In the specification, please amend page 18 as follows:

Referring now to FIG. 6, an alternate embodiment of a demodulator portion 120 of a FastChannel modem includes a plurality of tuners 122a 122d. Each of the tuners are provided from a respective one of a plurality of down converter modules 124a 124d 126a-126d having a respective one of a plurality of local oscillators (LO) 126a-126d 124a-124d coupled thereto. Taking tuner 122a as representative of tuners 122b-122d, the down converter module 124a 126a receives RF signals at a first port thereof and an LO signal at a second port thereof and provides an output signal having a frequency equal to the difference between the frequencies of the RF signal and the LO signal.

The output signals from the tuners 122a-122d are provided to respective ones of filters 128a-128d with each of the filters having a band pass filter characteristic. The filtered signals are then fed to respective ones of a plurality of analog to digital converters (ADC) 130a-130d. The ADCs 130a-130d receive the analog signals at inputs thereof and provide at outputs thereof a stream of bits which represents the analog signal fed to each ADC.

The ADCs 130a-130d are followed by processors 132a-132d each of which perform a demodulation process, In one embodiment, processors 132a-132d perform 5 Msymbols/sec QAM demodulation. It should be understood that although multiple processors are shown, this does not mean that multiple integrated circuits would be required. The demodulators 132a-132d provide the filtered, demodulated signal to a serializer 134. Serializer 134 receives the signals in parallel from the demodulators 132a-132d and re-serializes the packets to provide a serial signal at an output port of the serializer 134.

The demodulator 120 illustrates one method for receiving FastChannel data when parallel transmission is used. It should be appreciated that in demodulator 120 multiple demodulators 132a-132d are used, and the output is combined in the serializer 134. The serializer would multiplex the received packets or frames. Such an approach should not require extensive buffering, since the headend controls the peak rate to each user. Such a demodulator can be readily implemented using currently available commercial components. An additional benefit of this approach is that any RF channels can be used, they need not be adjacent to one another. One drawback to this design is that it may be relatively expensive compared with an integrated,