Algebra Tutorial-II

Dr. Abhash Kumar Jha / MA-111

Groups

- 1. Determine which of the following are groups under the corresponding binary operations:
 - (a) \mathbb{Z} with the operation $a \cdot b = a b$.
 - (b) $\mathbb{Z} \times \mathbb{Z}$ with the operation $(a, b) \cdot (x, y) = (ad + bc, bd)$.
 - (c) The set of complex numbers with absolute value 1 under multiplication.
 - (d) $\{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Q}\}\$ with respect to addition.
 - (e) $G = \{a \in \mathbb{R} : 0 \le a < 1\}$ with the operation defined as $a \cdot b = a + b [a + b]$, where [a] is the greatest integer less or equal to a.
 - (f) Upper triangular, unipotent, orthogonal matrices under multiplication.
- 2. Define

$$\mathbb{H}:=\left\{\left(\begin{array}{cc}z&w\\-\overline{w}&\overline{z}\end{array}\right)\mid z,w\in\mathbb{C}\right\}.$$

Show that \mathbb{H} is a group under multiplication. It is called the 'skew-field' of quaternions. Later we will show that \mathbb{H} is *identical* to the set

$$G = \{a + ib + jc + kd : a, b, c, d \in \mathbb{R}\}$$
 (with some group operation)

as groups.

3. Let Q be an $n \times n$ real symmetric matrix. Then there is an analogue of the orthogonal group, defined as

$$O_Q = \left\{ A \in \mathrm{GL}_n(\mathbb{R}) : A^T Q A = Q \right\}.$$

Show that this is a subgroup of $GL_n(\mathbb{R})$.

4. Is

$$G = \left\{ X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid X^T \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$$

a group with respect to multiplication? Is it a familiar group? What about

$$H = \left\{ X = \begin{pmatrix} a & 0 \\ 0 & \frac{1}{a} \end{pmatrix} \mid a \in \mathbb{R} \setminus \{0\} \right\}?$$

1

Subgroups

- 1. Determine whether the following are subgroups of the given group $(\mathbb{C}, +)$ (Complex numbers under addition)
 - (a) \mathbb{R} (real numbers)
 - (b) \mathbb{Q}^+ (positive rationals)
 - (c) $7\mathbb{Z}$ (integer multiples of 7)
 - (d) $i\mathbb{R}$ (purely imaginary numbers)
 - (e) $\pi \mathbb{Q}$ (rational multiples of π)
 - (f) $\{\pi^n \mid n \in \mathbb{Z}\}\$ (powers of π)
- 2. Determine whether the following are subgroups of (\mathbb{C}^*,\cdot) (Nonzero complex numbers under multiplication)
 - (a) \mathbb{R}
 - (b) Q+
 - (c) $7\mathbb{Z}$
 - (d) $i\mathbb{R}$
 - (e) $\pi \mathbb{Q}$
 - (f) $\{\pi^n \mid n \in \mathbb{Z}\}$
- 3. Let G be an abelian group under multiplication. Then $H = \{x^2 \mid x \in G\}$ is a subgroup of G. What about $H' = \{x \in G \mid x^2 = e\}$, where e is the identity of G?
- 4. Show that $H = \{x \in G \mid x^n = e \text{ for some integer } n\}$ is a subgroup of G.
- 5. The center of a group G is the subset Z(G) of elements in G that commute with every element of G, i.e., $Z(G) = \{g \in G \mid ga = ag \text{ for all } a \in G\}$. Show that Z(G) is a subgroup of G.
- 6. Let a be a fixed element of a group G. The centralizer C(a) of a in G is the set of all elements in G that commute with a. Write the set notation for C(a) and show that it is a subgroup of G.
- 7. Show that Z(G) is a subgroup of C(a) for any $a \in G$. What happens when G is abelian?
- 8. Let G be an abelian group and H and K be subgroups of G. Then show that $HK = \{hk \mid h \in H, k \in K\}$ is a subgroup of G.
- 9. Consider the group $G = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{Z} \right\}$ under addition and

$$H = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G \mid a+b+c+d = 0 \right\}.$$

Prove that H is a subgroup of G.