

$Internal\ Assessment\ Test\ 1-October\ 2023$

								İ		
Sub:	Physics for CSE stream	1			Sub Code:	BPHYS102	Branch:	ISE/AIDS/AIM	L/CSE-A	AIML
Date:	31/10/2023 Duration:	90 mins	Max Marks:	50	Sem/Sec:	I Sem / A	A, B, C, D, E	E, F, G, H	CO	RBT
(Siven: $c = 3 \times 10^8$ m/s; $h = 6.625 \times 10^8$	Answer any D -34 Js; k = 1.38 x	<u>FIVE FULL Que</u> × 10 ⁻²³ J/K; m _e = 9	estions 0.1 × 10°	³¹ kg; e = 1.6 × 10) ⁻¹⁹ C		MARKS		KBI
	1. Explain how trans	mission of	light takes 1	place	in optical f	ibers.			CO1	L2
	2. Explain the princip	ple of option	cal fiber.						CO1	L3
	3. Describe the princ	iple on wh	ich optical f	iber v	works				CO1	L2
	4. Explain the mecha	nism of lig	ght propagat	ion ii	n an optical	fiber.			CO1	L3
	5. What are different	types of o	ptical fibers	? Exp	olain.				CO1	L2
	6. Define the followi	ng in optic	al fibers						CO1	L3
	a) Critical angle of	propagatio	on						CO1	L2
	b) Half angle of acc	eptance							CO1	L3
	c) Numerical apertu	ıre							CO1	L2
	7. With neat diagram	•	. , .				•		CO1	L3
	8. What is numerica	•		•			•		CO1	L2
	refractive indices		_				-		CO1	L3
	9. Obtain an express		nerical aper	ture a	and arrive a	it the condi	tion for	propagation	CO1	L2
	of signal in an opt			<i>α</i> 1						L3
	10. Describe the diffe		_		_		l core a	nd cladding	CO1	L2
	diameter, refractiv	•	•	•	1 0					
	11. With neat diagram	•		• •	•				CO1	L3
	12. What is attenuation	-		-		iation mech	anisms.		CO1	L2
	13. Obtain the express			eIIIci6	ent.				CO1	L3
	14. Why Rayleigh sca	C		1 1.					CO1	L2
	15. Mention the factor16. Discuss the variou		_			antions			CO1	L3
	17. Derive the condition								CO1	L2
	18. What are the advan							types of	CO1	L3
	communication?	mages of o	pticai comi	ilullic	ations over	omer conve	ziitioiiai	types of	CO1	L2
	19. Explain fiber-option	e communi	cation Des	oribe	noint to noi	int commun	ication	evetem	CO1	L3
	using fibers with t				point to poi	ini commu	ncanon s	system	CO1	L2
	20. Discuss point to pe	_	_		and mentio	n its advant	tages ove	er the	CO1	L3
	conventional syste		ameanon sy	500111	and menuo	n no advam	uges ov	or the	CO1	L2
	conventional syste	1113.							CO1	L3

21. Discuss the advantages and disadvantages of an optical communication system over	CO1	L2
conventional communication system.	CO1	L3
22. Explain the construction of an optical fiber and the principle on which it works.	CO1	L2
23. Explain optical fiber sensors- Intensity-based displacement sensor and Temperature	CO1	L3
sensor based on phase modulation in detail with suitable diagram.	CO1	L2
24. Obtain an expression for energy density of radiation under thermal equilibrium in terms	CO1	L3
of Einstein's coefficients.	CO1	L2
25. Mention the conditions required for Laser action.	CO1	L3
26. Discuss the requisites of a Laser system.	CO1	L2
27. Briefly give a general account of displacement sensors.	CO1	L3
28. Explain the construction and working of CO ₂ laser, with the help of suitable diagrams	CO1	L2
29. Mention the characteristics of laser beam.	CO1	L3
30. Mention four applications of lasers.	CO1	L2
31. Define a) stimulated emission b) spontaneous emission c) population inversion	CO1	L3
32. Explain the applications of lasers in defence.	CO1	L2
33. Explain the working of laser printer.		
34. What is Intensity sensor? Explain in detail.	CO1	L3
NUMERICAL:		
35. Calculate the numerical aperture, relative refractive index difference, V-number and	CO1	L2
number of modes is an optical fiber of core diameter 50 µm, core and cladding		
refreactive indices 1.41 and 1.40, at wavelength 820nm.		
36. Calculate the numerical aperture of the given optical fiber if the refractive indices of the	CO1	L3
core and cladding are 1.623 and 1.522 respectively.		
37. An optical fiber has clad of refractive index 1.50 and numerical aperture 0.39. Find the	CO1	L3
refractive index of the core and the acceptance angle. (GATE Question)	001	
38. The numerical aperture of an optical fiber is 0.2 when surrounded by air. Determine the	CO1	L3
refractive index of its core given the refractive index of cladding as 1.59. Also find the		ПЭ
acceptance angle when it is in a medium of refractive index 1.33.		
39. The refractive indices of the core and cladding of a step-index optical fiber are 1.45 and		T 2
1.40 respectively and its core diameter is 45 µm. Calculate its fractional refractive index	CO1	L2
change and numerical aperture.		
40. Calculate the numerical aperture and angle of acceptance of a given optical fiber if the		
refractive indices of the core and cladding are 1.563 and 1.498 respectively.	CO1	L3
41. A step index fiber in air has NA of 0.12, a core refractive index of 1.42 and a core of	CO1	L2

diameter of 20 cm. Determine the normalized frequency for the fiber when light	ht at a	
wavelength 0.8 μm is transmitted.		
42. An optic glass fiber of refractive index 1.450 is to be clad with another glass to	ensure CO1	L2
total internal reflection that will contain light travelling within 5° of the fibe	er axis.	
What maximum index of refraction is allowed for the cladding?		
43. An optical fiber has a NA of 0.32. The refractive index of cladding is 1.48. Ca	lculate CO1	L3
the refractive index of the core, the acceptance angle of the fiber and the fraction	ı index	
change. (GATE Question)		
44. Calculate the number of modes that can propagate inside an optical fiber,	Given CO1	L2
$n_{core}=1.53$, $n_{clad}=1.50$, core radius 50μ m, $\lambda=1\mu m$		
45. The attenuation of light is an optical-fiber is estimated at 2.2dB/km. What frac	ctional	L2
initial intensity remains after 2 km & 6 km?		112
46. A fiber 500m long has an input power of 8.6mW and output power 7.5mW. V	What is CO1	L2
the loss specification in cable?		L2
47. The average power of a laser beam of wavelength 6328 A ⁰ is 5mW. Find the n	ıumber	1.0
of photons emitted per second by the laser source.	CO1	L2
48. The attenuation in an optical-fiber is 3.6dB/km. What fractional of its initial in		
remains after3 km?	CO1	L2
49. The attenuation in an optical-fiber is 2dB/km. What fractional of its initial in	tensity	
remains after (i) 2 km, (ii) 5 km?	CO1	L2
50. An optical fiber has lost 85% its power after traversing 500m of fiber. What	is the	
loss in dB/km of this fiber?	CO1	L2
51. Find the attenuation in an optical fiber of length 500 m, when a light signal of	power CO1	L3
100 mW emerges out of the fiber with a power of 90 mW.		
52. The angle of acceptance of an optical fiber is 300 when kept in air. Find the ar	ngle of CO1	L3
acceptance when it is in a medium of refractive index 1.33.		
53. Calculate the number of modes that can propagate inside an optical fiber,	given CO1	L3
n_{core} =1.43, n_{clad} =1.40, core radius=40 μm , λ =1 μm . (GATE Question)		
54. Calculate the value of NA, V-number and number of modes in an optical fi	iber of CO1	L3
core diameter 50 µm, core and cladding refractive indices are 1.41 and 1.44 respec	ctively	
at wavelength 820 nm.		
55. An optic glass fiber of refractive index 1.50 is to be clad with another glass to	ensure CO1	L2
total internal reflection that will contain light travelling within 50 of the fiber axis	. What	
maximum index of refraction is allowed for the cladding?		
56. A glass clad fiber is made with core glass of refractive index 1.5 and cladding is do	oped to CO1	L3

give a fractional index difference of 0.0005. Determine the cladding index and the numerical aperture of the fiber.		
57. Calculate on the basis of Einstein's theory, the number of photons emitted per second by a He-	CO1	L2
Ne Laser source emitting light of wavelength 6328Å with an optical power of 10 mW.		
58. A pulse from laser with power 1mW lasts for 10 ns. If the number of photons emitted per	COL	L2
second is 3.491×10^7 , calculate the wavelength of laser.	COI	L2
59. A ruby laser emits pulses of 20 ns duration with average power/pulse being 0.1mw. If the	001	
number of photons in each pulse is 6.981 X 10 ¹⁵ , calculate the wavelength of the photons.	COI	L2
60. Find the ratio of population of the two energy levels in a medium in thermal equilibrium if the	CO1	L2
transition between them produces light of wavelength 694.3 nm. Assume the ambient		
temperature as 27°C.		
61. For a light of frequency 1.5 x 10 ¹⁵ Hz used as an excitation source at a temperature of 5000K,		
find out the ratio of spontaneous and stimulated emission.	CO1	L2
62. The transition to the ground state from the upper and lower energy states in a Ruby laser results	CO1	L3
in emission of photons of wavelengths, 6928 Å and 6943 Å respectively. Estimate the energy		
values of the two energy levels is eV.		
63. The ratio of population of two energy levels is 1.059 x 10 ⁻³⁰ . Find the wavelength of light	CO1	L2
emitted at 330K.		
64. Find the ratio of population of two energy levels in a medium in thermal equilibrium, if the	CO1	L2
wavelength of light emitted at 330 K is 632.8 nm.	COI	L2
65. Find the ratio of population of the two energy states of a medium in thermal equilibrium the		
transition between which results in the spontaneous emission of photons of wavelength 694.3		
nm. Assume the ambient temperature as 27°C.	CO1	L3
66. Find the ratio of population of the two energy levels out of which one corresponds to		
metastable state, if the wavelength of light emitted at 330K is 632.8 nm. (GATE Question)	CO1	L3
67. A He-Ne laser is generating laser beam of power 4 mW. Calculate the number of photons	CO1	L2
emitted by the laser. Given the wavelength of the emitted radiation is 680nm.		
MODULE-1		
QUANTUM MECHANICS		
V CIAL II CIII II AND CARA II I CON		
68. Define group velocity and phase velocity.	CO1	L2
69. Explain the duality of matter waves.	CO1	L3
70. Explain the energy distribution in the spectrum of blackbody. Give an account to	CO1	L2
explain the various laws to explain the spectrum.		

71. Explain the theoretical considerations which led de Broglie to the concept of matter	CO1	L2
waves.		
72. What are the matter waves? Mention their properties.	CO1	L2
73. Explain characteristics of matter waves.	CO1	L3
74. State Heisenberg's uncertainty principle and discuss its physical significance.	CO1	L2
75. What is principle of complementarity.	CO1	L3
76. Using Heisenberg's uncertainty principle, prove that electrons cannot exist in a nucleus.	CO1	L2
77. State and explain Heisenberg uncertainty principle. Discuss the significance of the	CO1	L3
principle. Prove that, using uncertainty principle, the electron emitted during β -decay is		
not the pre-existed electron in the nucleus	CO1	L3
78. Show that, a free electron cannot exist within the nucleus of an atom using the concept	CO1	L2
of beta decay process.		112
79. Derive the expression for time independent Schrodinger's equation in one dimensional.	CO1	1.0
80. What is the wave function? Give its physical significance and properties.	CO1	L2
81. Define expectation value.	CO1	L3
82. What is physical interpretation of wave function? Explain nature of eigen values and	CO1	L2
eigen functions.		
83. Define probability density, normalization of a wave function for particle by Max Born's	CO1	L2
approximation.		
84. Explain wave functions and probability densities for a particle in an infinite potential		
well for the first two states.	CO1	L3
85. Set up the time independent wave equation for a free particle in one dimension.	CO1	L2
86. Set up the time independent wave equation in one dimension.	CO1	L3
87. Obtain the solution of Schrödinger's time independent wave equation when applied to a	CO1	L2
potential box of infinite height.		
88. Explain the significance of zero point energy.	CO1	L2
89. Describe Zero potential energy. Solve the Schrödinger wave equation for the allowed	CO1	L3
energy levels in the case of particle in one dimensional potential well of infinite height.		
90. Find the eigen function and energy eigen values for a particle in a one dimensional	CO1	L3
potential well of infinite height.		
NUMERICAL:		
	CO1	L2
91. Calculate the de Broglie wavelength associated with 0.5kg cricket ball at a speed of 120 km/hr.	CO1	L3
92. Calculate the wavelength associated with electrons whose speed is 0.01 part of the speed of light.	CO1	L2
93. Calculate the de Broglie wavelength of an electron moving with one tenth part of the velocity of light.94. Calculate the wavelength associated with an electron of energy 1.5 eV.		
y calculate the manetengal accordance must all election of energy 1.5 cm.	CO1	L3

95. Calculate the wavelength associated with an electron raised through a potential difference of 2kV.	CO1	L2
96. Calculate the de Broglie wavelength of a neutron moving with kinetic energy 54eV, given the mass of Neutron = $1.675 \times 10^{-27} \text{kg}$.	CO1	L3
$97. \ \ Calculate the de Broglie wavelength associated with neutron of mass \ 1.675 \ x \ 10^{-27} kg \ with one tenth part of the velocity of light.$	~~1	
98. An electron has a wavelength of 1.66 x 10 ⁻¹⁰ m. Find the kinetic energy, Phase velocity, and group velocity of the de Broglie wave.	CO1	L3
99. Calculate de Broglie wavelength of proton whose kinetic energy is equal to the rest mass energy of the electron. Mass of proton is 1836 times that of electron. (GATE Question)	CO1	L2
100. Calculate the wavelength associated with an electron having K.E. 100 eV.		
101. If an electron has a de Broglie wavelength of 2 nanometer, find its kinetic energy and group velocity, given that it has rest mass energy of 511 keV.	CO1	L3
102. Green light has a wavelength of about 550 nm. Through what potential difference must an electron be accelerated to have this wavelength?	CO1	L3
103. Compare the energy of a photon with that of an electron when both are associated with a wavelength 0.2nm.		
104 . A particle of mass 0.65 MeV/c^2 has free energy 120 eV . Find its de Broglie wavelength, c is the velocity of light.	CO1	L3
105 . A particle of mass 940 MeV/ c^2 has kinetic energy 0.5keV. Find its de Broglie wavelength, c is the velocity of light. (Gate	CO1	L2
Question)		
106. A pulsed laser emits photons of wavelength 820 nm with 22 mW average power/ pulse. Calculate the number of photons contained in each pulse, if the duration of the pulse is 12 ns.	CO1	L2
107. A fast moving neutron is found to have an associated de Broglie wavelength of 2 x 10-12m. Find its kinetic energy and the		
phase and group velocities of the de Broglie waves ignoring the relativistic change in mass. (Given: mass of neutron =1.675 x 10^{-27} kg)	CO1	L2
108 . An electron has a speed of 4.8×10^5 m/s accurate to 0.012% . With what accuracy can be located the position of electron.		
109. The natural uncertainty in the measurement of speed of an electron in an atom is estimated to be 2.2 x 10 ⁴ m/s conceding	CO1	L3
ideal set-up and error-free measurement. Estimate the minimum width about which the electron stays confined in the atom.		
110. A spectral line of wavelength 4000Å has a width of 8 x 10 ⁻⁵ Å. Evaluate the minimum time spent by the electrons in the upper energy state between the excitation and de-excitation processes. (Gate Question)	CO1	L3
111. The velocity of an electron was measured to be 5×10^5 m/s with an uncertainty of 1%. What is the uncertainty involved in the measurement of its position.	CO1	L2
112. An electron is confined to a box of length 10-8 m. Calculate the minimum uncertainty in the velocity and comment on the result.	CO1	L2
113. An electron is bound in one dimensional potential well of width 0.18nm. Find the energy value in eV of the second excited state.	CO1	L2
114. The speed of electron is measured to within uncertainty of 2.2x10 ⁴ m/s in one dimension. What is the minimum width required to by the electron to be confined in an atom.	CO1	L3
115. The position and momentum of an electron with energy 0.5 keV are determined. What is the minimum percentage in its momentum if the uncertainty in the measurement of position is 0.5 A ⁰ .	CO1	L3
116. The inherent uncertainty in the measurement of time spent by Iridum-191 nuclei in the excited state is found to be 1.4×10^{-10}		
s. Estimate the uncertainty that results in its energy in the excited state.	CO1	L3
117. An electron is bound in one dimensional potential well of width 0.18 nm. Find its energy value in eV in the second excited state.		
118. Compute the first 3 permitted energy values for an electron in a box of width 4 Å.	CO1	L3

	An electron is bound in one dimensional infinite potential well of width 0.12 nm. Find the energy values in the ground state d also the first two excited states en eV.	CO1	L2
	Calculate the zero point energy for an electron in a box width 10Å.		
	An electron is bound in an one dimensional potential well of with 1Å, but of infinite height. Find the energy value for the	CO1	L2
	ectron in the ground state.		
122.	The first excited state energy of an electron in an infinite well is 240 eV. What will be its ground state energy when the width	CO1	L2
of	the potential well is doubled?		
	Compare the energy of a photon with that of a neutron when both are associated with a wavelength of 0.25nm.	CO1	L2
124.	An electron is confined to a potential well of infinite height and width $5A^0$. Calculate the de-Broglie wavelength when the		
ele	ectron is (i) in ground state and (ii) 3 rd excited state (Gate Question)	CO1	т 2
125.	Find the kinetic energy of an electron whose de Broglie wavelength is the same as that of a100keV X-ray.	CO1	L2
	MODULE - 02		
	ELECTRICAL PROPERTIES OF MATERIALS		
106		CO1	L2
	Describe how Cooper pairs are formed and explain the salient features of superconductivity.	CO1	L3
	Describe how BCS theory explains superconductivity.		
	What is Meissner effect?	CO1	L2
	What is superconductivity? Explain superconductivity on the basis of BCS theory.	CO1	L3
	Describe the experiment to prove that 'a superconductor is a perfect diamagnet'.	CO1	L2
	Explain Meissner effect and Different types of superconductors. Illustrate with an example.	CO1	L3
	Explain the following: i) Critical magnetic field of a superconductor as a function of temperature.	CO1	L2
	ii) Meissner effect.	CO1	L3
133.	Explain Matthiessen's rule and the temperature dependence of resistivity.		L2
134.	Distinguish between Type I and Type II superconductors.	CO1	
135.	Explain the different types of superconductors.	CO1	L3
136.	Define resistivity and mobility.	CO1	L2
137.	What are phonons? Give a brief account of how phonons are generated.	CO1	L3
138.	Give a brief account of high temperature superconductors.	CO1	L2
139.	Give a qualitative account of high temperature superconductivity. Mention any two uses of superconductivity?	CO1	L3
	Discuss the applications of superconductivity in Quantum Computing?	CO1	L2
	Define DC and AC Josephson effect.		L3
	Write short notes on Josephson junction.	CO1	
	Discuss the working of SQUIDs in brief. Mention a few of its applications.	CO1	L2
	What are dielectric materials? Give examples.	CO1	L3
	Define dielectric constant and polarization. Give the relation between them.	CO1	L2
140.	Define electric dipole and dipole moment. What are polar and non- polar dielectrics?	CO1	L3

148. Define internal field in the case of solids. Give the expression for internal field in the case of solids in one dimension as well as three dimensions. 149. What is Lorentz field? What is the expression for it? 150. Derive the Clausius - Mossotti equation for a dielectric material. NIMERICAL: 151. Calculate the Fermi velocity and the mean free path for the conduction electrons in silver, given that its Fermi energy is 5.5 eV and the relaxation time is 3.83x10 ¹¹ . 152. Calculate the mobility and the relaxation time of electrons in copper, if resistivity of copper is 1.73x10 ²¹ ohm-m, atomic wt. is 63.5, density is 8.92 g/ce. 153. Calculate the conductivity of copper at 300K. The collision time for electron scattering is 2 x 10 ²⁴ s at this temperature. Given: Density and atomic weight is 23 and it has one conduction electron/atom). 154. The Fermi level in potassitum is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99 old and 0.5(Given: 11-624 x 10 ¹⁰ eV). 155. The Fermi level in potassitum is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99 old and 0.5(Given: 11-624 x 10 ¹⁰ eV). 155. The fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 157. Find the temperature at which there is 15% probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in soldium elloride by an electric field of 600V/nm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V/m and the resulting polarization is 4.3x10 ²² calculate the dipole moment induced in each atom when the gas is in an electric field of 3010V/m. 161. A parallel plate capacitor or consists of 2 plates each of area 550 m/s in the polarization of 2.4x10 ²² m at 6.2x10 ²² m and filled with a dielectric orbitant of NeCl. 162. A parallel plate capacitor or consists of 2 plates each of area 550 m/s introduced between the plates? 163	147. Write a note on the different types of polarization mechanism.	CO1	L2
149. What is Lorentz field? What is the expression for it? 150. Derive the Clausius - Mossotti equation for a dielectric material. NIMERICAL: 151. Calculate the Fermi velocity and the mean free path for the conduction electrons in silver, given that its Fermi energy is 5.5 eV and the relaxation time is 3.83x10 ¹⁴ . 152. Calculate the mobility and the relaxation time of electrons in copper, if resistivity of copper is 1.73x10 ³ ohm-m, atomic wt. is 63.5, density is 8.92 g/cc. 153. Calculate the conductivity of copper at 300K. The collision time for electron scattering is 2 x 10 ¹⁴ s at this temperature. Given: Density and atomic weight is 23 and it has one conduction electron/atom). 154. The Fermi level in potassium is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99 (0.01 and 0.5(Given 1)= 6.24 x 10 ³ eV). 155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Find the temperature at which there is 1½ perobability at a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V/m and the resulting polarization is 4.3x10 ⁸ C/m ² , calculate the dipole moment induced in each atom when the gas is in an electric field of 30x10 ⁴ V/m. 161. A parallel plate capacitor consists of 2 plates each of area 850mm ² in the subject of 10x10 ⁴ V/m. 162. A parallel plate capacitor or consists of 2 plates each of area 850mm ² and is plates are separated by a distance of 2.45x10 ² m across which a voltage across the capacitor when a material of dielectric constant of 4mm has a charge 0.2 x10 ² V/m ² con it. What is the resultant voltage across the capacitor when a material of dielectric constant of 4mm has a charge 0.2 x1		CO1	L3
150. Derive the Clausius - Mossotti equation for a dielectric material. NUMERICAL: 151. Calculate the Fermi velocity and the mean free path for the conduction electrons in silver, given that its Fermi energy is 5.5 eV and the relaxation time in 3.83x10 ⁻¹⁴ . 152. Calculate the mobility and the relaxation time of electrons in copper, if resistivity of copper is 1.73x10 ⁻⁸ ohm-m, atomic wt. is 63.5, density is 8.92 g/cc. 153. Calculate the conductivity of copper at 300K. The collision time for electron scattering is 2 x 10 ⁻¹⁴ s at this temperature. Given: Density and atomic weight is 23 and it has one conduction electron/atom). 154. The Fermi level in potassium is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99, 0.01 and 0.5(Given 11–6.24 x 10 ⁻⁸ vV) 155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10 ⁻⁸ Cm ² , calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²² /m ² . Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10°V/m. 161. A parallel plate capacitor of area 650mm ² and a plate separation of 4mm has a charge of 2x10 °C on it. What is the resultant vollage across the capacitor when a material of dielectric constant of 5 introduced between the plates? 162. A parallel plate capacitor of area 650mm ² and a plate separation of 4mm has a charge of 2x10 °C on it. What is the resultant collage across the capacitor when			
NUMERICAL: 151. Calculate the Fermi velocity and the mean free path for the conduction electrons in silver, given that its Fermi energy is 5.5 eV and the relaxation time is 3.83x10 ⁻¹² . 152. Calculate the mobility and the relaxation time of electrons in copper, if resistivity of copper is 1.73x10 ⁻¹³ and mem. atomic wt. is 63.5, density is 8.02 g/cc. 153. Calculate the conductivity of copper at 300K. The collision time for electron scattering is 2 x 10 ⁻¹³ s at this temperature. Given: Density and atomic weight is 23 and it has one conduction electron/atom). 154. The Fermi level in potassium is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99, 0.01 and 0.5(Given 1J= 6.24 x 10 ¹³ eV) 155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 67. 157. Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 67. 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10 ⁻⁸ Cm ² , calculate the dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²³ /m ² . Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10°V/m. 161. A parallel plate capacitor consists of 2 plates cach of area 5x10 ² m ² . They are separated by a distance 1.5x10 ² m and filled with a dielectric or relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor when a material of dielectric constant 3.5 is introduced between the plates. 164. The dielectric co	·	CO1	L3
151. Calculate the Fermi velocity and the mean free path for the conduction electrons in silver, given that its Fermi energy is 5.5 eV and the relaxation time is 3.83×10 ⁻¹⁴ . 152. Calculate the mobility and the relaxation time of electrons in copper, if resistivity of copper is 1.73×10 ⁻⁴ ohm-m, atomic wt is 63.5, density is 8.9 g/ce. 153. Calculate the conductivity of copper at 300K. The collision time for electron scattering is 2 x 10 ⁻¹⁴ s at this temperature. Given: Density and atomic weight is 23 and it has one conduction electron/atom). 154. The Fermi level in potsassium is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99, 0.01 and 0.5(Given 1J=6.24 x 10 ¹⁸ eV) 155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Find the temperature at which there is 196 probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10 ⁻⁸ C/m², calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ⁻⁹ /m². Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10 ⁻⁹ /m². They are separated by a distance 1.5x10 ⁻⁹ m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 161. A parallel plate capacitor when a material of dielectric constant 3.5 is introduced between the plates, determine the capacitance, with a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, enclose the charge stored in ea	130. Derive the Clausius - Mossotti equation for a dielectric material.		
eV and the relaxation time is 3.83x10 ⁻¹⁴ . 152. Calculate the mobility and the relaxation time of electrons in copper, if resistivity of copper is 1.73x10 ⁻¹⁶ ohm-m, atomic wt. is 63.5, density is 8.92 g/cc. 153. Calculate the conductivity of copper at 300K. The collision time for electron scattering is 2 x 10 ⁻¹⁶ s at this temperature. Given: Density and atomic weight is 23 and it has one conduction electron/atom). 154. The Fermi level in potassium is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99, 0.01 and 0.5(Given 1J=6.24 x 10 ¹⁶ eV) 155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Timel the temperature at which there is 1 ¹⁶ probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10 ⁻⁸ C/m², calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²⁵ /m³, Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10 ⁻¹⁴ /m². They are separated by a distance 1.5x10 ⁻³ m and filled with a dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²⁵ /m³, Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10 ⁻¹⁴ /m². They are separated by a distance 1.5x10 ⁻³ m and filled with a dielectric constant of Helium atoms of mmn has a charge of 2x10 ⁻¹⁹ C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 5 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D an	NUMERICAL:		
152. Calculate the mobility and the relaxation time of electrons in copper, if resistivity of copper is 1.73x10 ⁻⁸ ohm-m, atomic wt. is 63.5, density is 8.92 g/cc. 153. Calculate the conductivity of copper at 300K. The collision time for electron scattering is 2 x 10 ⁻⁴⁸ s at this temperature. Given Density and atomic weight is 23 and it has one conduction electron/atom). 154. The Fermi level in potassium is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99, 0.01 and 0.5(Given IJ=6.24 x 10 ⁻⁸² eV) 155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10 ⁻⁸ C/m², calculate the dielectric constant of NaCl. 160. The dielectric constant of NaCl. 161. A parallel plate capacitor consists of 2 plates each of area 5x10 ⁻⁴ m². They are separated by a distance 1.5x10 ⁻³ m and filled with a dielectric or relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V DC supply. 161. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10 ⁻⁹² C on it. What is the resultant voltage across the capacitor has an area of 7.45x10 ⁻⁴ m and its plates are separated by a distance of 2.45x10 ⁻³ m across which a potential of 10V is applied. If a material with dielectric constant 3.5 is introduced between the plates? 162. A parallel plate capacitor has an area of 7.45x10 ⁻⁴ m³ and its plates are separated by a distance of 2.45x10 ⁻³ m across which a potential of 10V is applied. If a material with dielectric			L2
153. Calculate the conductivity of copper at 300K. The collision time for electron scattering is 2 x 10°4s at this temperature. Given: Density and atomic weight is 23 and it has one conduction electron/atom). 154. The Fermi level in potassium is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99, 0.01 and 0.5(Given I)= 6.24 x 10³4 eV) 155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10° C/m², calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²³ /m². Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10°V/m². They are separated by a distance 1.5x10°3m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10 ³³C on it. What is the resultant collaboration of 10V is applied. If a material with dielectric constant 3.5 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10°3 atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an	152. Calculate the mobility and the relaxation time of electrons in copper, if resistivity of copper is 1.73x10 ⁻⁸ ohm-m, atomic wt	CO1	L3
Given: Density and atomic weight is 23 and it has one conduction electron/atom). 154. The Fermi level in potassium is 2.1 eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99, 0.01 and 0.5(Given 1J= 6.24 x 10 18 eV) 155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Find the temperature at which there is 1½ probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10 3 Cm², calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 3/m³. Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10 Mm². They are separated by a distance 1.5x10 m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10 m² and its plates are separated by a distance of 2.45x10 m² across which a potential of 10V is applied. If a material with dielectric constant 3.5 is introduced between the plates? 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 and 5 m a			
0.01 and 0.5(Given IJ=6.24 x 10 ¹⁸ eV) 155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10° C/m², calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²⁵ /m³. Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10°V/m. 161. A parallel plate capacitor consists of 2 plates each of area 5x10 ⁴ m². They are separated by a distance 1.5x10 ³ m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor when a material of dielectric constant 5.5 is introduced between the plates? 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ³³ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, density=2.07gm/ce, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁴⁰ Fm². Assuming the internal field to be Lorentz field. Col 1.2 168. MODULE – 04		CO1	L3
155. The Fermi level in silver is 5.5 eV. Find the velocity of conduction electrons in silver. 156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCI crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10° C/m², calculate the dielectric constant of NaCI. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10°5/m³. Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10°V/m. 161. A parallel plate capacitor consists of 2 plates each of area 5x10°4m². They are separated by a distance 1.5x10°3m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor when a material of dielectric constant 6 is introduced between the plates, determine the capacitance the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10°5 atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric material has polarizability 7x10°40° Fm². Assuming the internal field to be Lorentz field. Col L2 Calculate the dielectric constant for the material has polarizability 7x10°40° Fm². Assuming the internal field to be Lorentz field. Col L2 Calculate the dielectric constant for the material if the material has 3x10°8 atoms/m³			1.2
156. Find the probability that an energy level at 0.2ev below Fermi level being occupied at temperature 300K and 1000K. 157. Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10.8 C/m², calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10.25/m³. Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10.4 C/m. 161. A parallel plate capacitor consists of 2 plates each of area 5x10.4 m². They are separated by a distance 1.5x10.3 m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10.10 C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10.4 m² and its plates are separated by a distance of 2.45x10.3 m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10.2 atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 1667. An elemental solid dielectric material has polarizability 7x10.40 Fm². Assuming the internal field to be Lorentz field. Col		COI	L3
157. Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy is occupied. 158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10° C/m², calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²⁵ /m³. Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10° V/m. 161. A parallel plate capacitor consists of 2 plates each of area 5x10° m². They are separated by a distance 1.5x10° m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10° 1°C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10° m² and its plates are separated by a distance of 2.45x10° m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric di		CO1	L2
158. What is the polarization produced in sodium chloride by an electric field of 600V/mm if it has a dielectric constant of 6? 159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10 °C /m², calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²⁵ /m³. Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10 °V/m. 161. A parallel plate capacitor consists of 2 plates each of area 5x10 °m². They are separated by a distance 1.5x10 °m and filled with a dielectric or feative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10 °°C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10 °m² and its plates are separated by a distance of 2.45x10 °m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric dielectric constant 5 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric dielectric dielectric constant 5. In the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ²⁵ satoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizabi		CO1	L3
159. If a NaCl crystal is subjected to an electric field of 1000V /m and the resulting polarization is 4.3x10 ⁻⁸ C/m², calculate the dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²⁵ /m³. Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10 ⁴ V/m. 161. A parallel plate capacitor consists of 2 plates each of area 5x10 ⁻⁴ m². They are separated by a distance 1.5x10 ³ m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10 ⁻¹⁰ C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10 ⁴ m² and its plates are separated by a distance of 2.45x10 ⁻³ m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, density=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁴⁰ Fm². Assuming the internal field to be Lorentz field. Calculate the dielectric constant for the material has 3x10 ²⁸ atoms/m³		CO1	L2
dielectric constant of NaCl. 160. The dielectric constant of Helium at 0°C is 1.000074. The density of atoms is 2.7x10 ²⁵ /m³. Calculate the dipole moment induced in each atom when the gas is in an electric field of 3x10 ⁴ V/m. 161. A parallel plate capacitor consists of 2 plates each of area 5x10 ⁴ m². They are separated by a distance 1.5x10 ³ m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10 ⁴ 0°C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10 ⁴ m² and its plates are separated by a distance of 2.45x10 ³ m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁴⁰ Fm². Assuming the internal field to be Lorentz field. COI L2 MODULE – 04		COL	Т 2
induced in each atom when the gas is in an electric field of 3x10 ⁴ V/m. 161. A parallel plate capacitor consists of 2 plates each of area 5x10 ⁴ m ² . They are separated by a distance 1.5x10 ³ m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10 ⁻¹⁰ C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10 ⁻⁴ m² and its plates are separated by a distance of 2.45x10 ⁻³ m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, density=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁻⁴⁰ Fm². Assuming the internal field to be Lorentz field. CO1 L2 MODULE – 04		COI	L3
induced in each atom when the gas is in an electric field of 3x10 ⁴ V/m. 161. A parallel plate capacitor consists of 2 plates each of area 5x10 ⁴ m ² . They are separated by a distance 1.5x10 ³ m and filled with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10 ⁻¹⁰ C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10 ⁻⁴ m² and its plates are separated by a distance of 2.45x10 ⁻³ m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁴⁰ Fm². Assuming the internal field to be Lorentz field. CO1 L2 MODULE – 04	$160. \ \ \text{The dielectric constant of Helium at 0°C is 1.000074}. \ \ \text{The density of atoms is 2.7x1025/m$^3}. \ \ \text{Calculate the dipole momentum of the dielectric constant of Helium at 0°C is 1.000074}.$	COL	Ι 3
with a dielectric of relative permittivity 6. Calculate the charge on the capacitor if it is connected to a 100V D.C supply. 162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10⁻¹0C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10⁻⁴m² and its plates are separated by a distance of 2.45x10⁻³ m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10⁻²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10⁻⁴0 Fm². Assuming the internal field to be Lorentz field. CO1 L2 MODULE - 04	induced in each atom when the gas is in an electric field of $3x10^4V/m$.		
162. A parallel plate capacitor of area 650mm² and a plate separation of 4mm has a charge of 2x10 ⁻¹⁰ C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10 ⁻⁴ m² and its plates are separated by a distance of 2.45x10 ⁻³ m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, density=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁻⁴⁰ Fm². Assuming the internal field to be Lorentz field. CO1 L2 CO1 L2 MODULE - 04		CO1	L2
voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? 163. A parallel plate capacitor has an area of 7.45x10 ⁻⁴ m ² and its plates are separated by a distance of 2.45x10 ⁻³ m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ²⁵ atoms/m ³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁻⁴⁰ Fm ² . Assuming the internal field to be Lorentz field. CO1 L2 CO1 L2 CO1 L2 MODULE – 04			
potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁻⁴⁰ Fm². Assuming the internal field to be Lorentz field. CO1 L2 CO1 L2 CO1 L2 CO1 L2 MODULE – 04		CO1	L2
the charge stored in each plate, the dielectric displacement D and the polarization. 164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7x10 ²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁴⁰ Fm². Assuming the internal field to be Lorentz field. CO1 L2 CO2 L2 MODULE – 04	$163. \ \ \text{A parallel plate capacitor has an area of } 7.45 \times 10^{-4} \text{m}^2 \text{ and its plates are separated by a distance of } 2.45 \times 10^{-3} \text{ m across which a distance of } 2.45 \times 10^{-3} \text{ m across which a distance of } 2.45 \times 10^{-3} \text{ m across which } 2.45 \times 10^{-3} \text{ m} \text{ across which } 2.45 \times 10^{-3} \text{ m} acro$		
2.7x10 ²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁻⁴⁰ Fm². Assuming the internal field to be Lorentz field. CO1 L2 MODULE – 04		CO1	L2
2.7x10 ²⁵ atoms/m³ and hence evaluate the radius of the Helium atoms. 165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m. 166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁻⁴⁰ Fm². Assuming the internal field to be Lorentz field. CO1 L2 MODULE – 04	164. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains	COL	Ιĵ
166. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁻⁴⁰ Fm². Assuming the internal field to be Lorentz field. CO1 L2 CO1 L2 MODULE – 04	2.7x10 ²⁵ atoms/m ³ and hence evaluate the radius of the Helium atoms.	COI	LZ
sulphur. Given, For sulphur, denstity=2.07gm/cc, and atomic weight = 32.07. 167. An elemental solid dielectric material has polarizability 7x10 ⁻⁴⁰ Fm ² . Assuming the internal field to be Lorentz field. CO1 L2 MODULE – 04	165. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500V/m.		
167. An elemental solid dielectric material has polarizability $7x10^{-40}$ Fm ² . Assuming the internal field to be Lorentz field. CO1 L2 MODULE – 04		CO1	L2
Colculate the dielectric constant for the material if the material has $3x10^{28}$ atoms/m ³ MODULE – 04	167. An elemental solid dielectric material has polarizability 7x10 ⁻⁴⁰ Fm ² . Assuming the internal field to be Lorentz field		
		CO1	L2
Maywell's Equations & FM Wayes	MODULE – 04		
Maxwell's Equations & EMI Waves	Maxwell's Equations & EM Waves		
168. State Coulomb's law. Express it in Vector form	168. State Coulomb's law. Express it in Vector form	CO1	L2
169. State Gauss Law. Prove Gauss Divergence Theorem.	•	CO1	L3

170. Mention Stoke's Theorem	CO1	L2
171. Explain Biot –Savart's Law and Faradays law	CO1	L3
172. Mention Maxwell's equations for free space.	CO1	L2
173. Obtain the expression for continuity equation	CO1	L3
174. Discuss modified Ampere's law. (GATE QUESTION)		
175. Discuss the difference between Conduction current density and Displacement current density.	CO1	L2
176. Derive wave equation for Electric field.	CO1	L3
177. What are uniform plane waves? Mention the relation between Electric and Magnetic field for a plane wave.	CO1	L2
178. Show that electromagnetic waves are transverse in nature.	CO1	L3
179. Briefly explain the three types of Polarization.	CO1	L2
180. Write Maxwell's equations in differential form.	CO1	L3
181. Derive Maxwell's electromagnetic wave equation for a non-conducting medium.		
182. Show that electrostatic field is equal to the negative of potential gradient and hence show that electrostatic	CO1	L2
field is conservative.		
183. What is the physical significance of divergence of of a vector field?	CO1	L2
184. Show that divergence of curl of a vector always vanishes.	CO1	L3
185. What is Poynting vector and give its significance? State and prove Poynting vector theorem.	CO1	L2
186. Write differential form of Maxwell's equations applicable in material medium.	CO1	L3
187. What do you mean by displacement current?		
188. What is the physical significance of gradient of a scalar field?	CO1	L2
189. What information does the quantity Poynting vector furnish?	CO1	L3
190. Derive differential form of ampere's circuital law for (i) steady currents and (ii) varying currents.	CO1	L2
191. Derive Maxwell's electromagnetic wave equation for linear, isotropic and homogeneous medium. Hence prove that these waves can travel in vacuum.		
192. Using Maxwell's equations prove that	CO1	L2
$ abla \bullet \overset{ ightarrow}{J} = -rac{\partial ho}{\partial t}$		
193. What is the origin of displacement current density?		
194. State and explain Ampere's law and express it in differential form. Further explain how	CO1	L3
Maxwell modified this law to accept this as one of the Maxwell's equations.		
195. Give one example for each of a solenoidal and irrotational vector field.	CO1	L3
196. Differentiate between steady current and static current.	CO1	L2
197. State Faraday's laws of electromagnetic induction.	CO1	L3
198. Derive Maxwell's electromagnetic wave equation and hence find the velocity of light in vacuum.	CO1	L2
199. What do you understand by electromagnetic spectrum?		
200. Define divergence of a vector field. Write its expression in terms of Cartesian coordinates and discuss its	CO1	L3
physical significance.		
201. Use Maxwell's equations to deduce wave equations in terms of $\overrightarrow{E} \& \overrightarrow{H}$ field vectors for free space.	CO1	L3
202. What is the significance of divergence and curl of a vector?	CO1	L2
203. Write Maxwell's equations and discuss their significance.	CO1	L3

204. Write the physical significance of gradient of a scalar function.	CO1	L2
205. "Maxwell's equations are reformulation of existing laws." Comment and justify your answer.	CO1	L3
206. What is the utility of Maxwell's equations in reference to electromagnetic waves?	CO1	L2
207. Deduce Maxwell's equation Faraday's laws of electromagnetic induction.		
208. What is modified Ampere's law? Discuss its significance in terms of Maxwell's theory and obtain an expression	CO1	L3
for displacement current density.	CO1	L2
209. Curl of a vector field represents whirling/rotational features of the field. Justify.	CO1	L3
210. Is displacement current like conduction current a source of magnetic field?	CO1	L2
211. Show that isolated magnetic poles do not exist.		
$\partial^2 E_x$ $\partial^2 E_x$		
212. If a plane electromagnetic wave satisfies the equation $\frac{\partial^2 E_x}{\partial z^2} = c^2 \frac{\partial^2 E_x}{\partial t^2}$. Find the direction in which the		
wave propagates. (GATE QUESTION)	CO1	L3
* * *	CO1	L2
213. Show that velocity of plane electromagnetic waves in free space is given by $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$		
, , , , ,		
UMERICAL:		
ightarrow		
214. Determine the constant c such that the vector $\vec{A} = (x + ay)\hat{a}_x + (y + bz)\hat{a}_y + (x + cz)\hat{a}_z$ is solenoidal.	CO1	L2
215 Comment the discourse and and of the fall and a set of the fall and a set of the fall and the	CO1	L3
215. Compute the divergence and curl of the following vector fields:		
(a) $\mathbf{E}(\mathbf{r}) = \frac{\mathbf{r}}{r^3}$, $r = \sqrt{x^2 + y^2 + z^2} >_0$ (Coulomb electric field)		
(b) $\mathbf{B}(\mathbf{r}) = \frac{y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}$, $x^2 + y^2 > 0$, (magnetic field outside a long wire)		
(c) $\mathbf{A}(\mathbf{r}) = y\mathbf{i} + x\mathbf{j}$, (vector potential for a uniform magnetic field).	CO1	L3
216. A common but erroneous claim, which stems from the notation r→V for the curl of a vector field V, is that the curl of a vector field V is everywhere orthogonal to V. Disprove this claim by exhibiting a counter-example.		
217. Show that		
(a) $r \rightarrow (rf) = 0$, where f is a function;		
(b) $\mathbf{r} \cdot (\mathbf{r} \rightarrow \mathbf{V}) = 0$, where V is a vector field;	CO1	L2
(c) $r \rightarrow r(r \rightarrow V) = r(r \cdot V) r^2 V$. Hints: Work in Cartesian coordinates. To prove equality between vectors (in (a) and (c)) it is enough to show that the identities hold		
for one component, <i>e.g.</i> , the <i>x</i> component. 218. We derived the continuity equation for electric charge from the inhomogeneous Maxwell equations. Show that an analogous	CO1	L2
computation with the homogeneous Maxwell equations yields no new equations.		
219. We used half the Maxwell equations to derive a wave equation for the magnetic field B . Using the other half of the equations,		
perform an analogous computation to derive a wave equation for E.	CO1	L2
220. Suppose that $A\sin(\mathbf{k} \cdot \mathbf{r} + \beta t) = B\sin(\mathbf{k}_0 \cdot \mathbf{r} + \beta t)$ for all \mathbf{r} and t . Show that $A = B$, $\alpha = \beta$, and $\mathbf{k} = \mathbf{k}_0$.		
221. Show that $\mathbf{V} = x\mathbf{i} z \mathbf{k}$ has vanishing divergence. Find a vector whose curl is \mathbf{V} . Show that $\mathbf{W} = xy^2 \cos z \mathbf{i} + x^2 y \cos z \mathbf{j} \frac{1}{2} x^2 y^2 \sin z \mathbf{k}$	CO1	L2
has vanishing curl. Find a function whose gradient is W .		
222. Let <i>S</i> be a closed surface and let <i>C</i> be a closed curve. Prove that (a) $HS(r \rightarrow V) \cdot dS = 0$, (b)		
$HCrf \cdot d\mathbf{l} = 0.$	CO1	L2
223. Let C be a circle of unit radius in the x-y plane, enclosing the unit disk D, and let $V = yi$. Compute (i) the line integral of V		
	CO1	L2
<i>Hint:</i> You should find that $\mathbf{V} \cdot d\mathbf{l} = Z(\mathbf{r} \rightarrow \mathbf{V}) \cdot d\mathbf{S}$.		

224. Find the electric flux through the surface of a sphere containing 15 protons and 10 electrons. Does the size of the sphere matter?	CO1	L2
225. What is the flux through any closed surface surrounding a charged sphere of radius a0 with volume charge density of $\rho = \rho_0(r/a_0)$, where r is the distance from the center of the sphere?	CO1	L3
226. A circular disk with surface charge density 2×10^{-10} C/m ² is surrounded by a sphere with radius of one meter. If the flux through the sphere is 5.2×10^{-2} V-m, what is the diameter of the disk?	CO1	L3
227. A 10 cm x 10 cm flat plate is located 5 cm from a point charge of 10.8 C. What is the electric flux through the plate due to the point charge?	CO1	L2
228. A proton rests at the center of the rim of a hemispherical bowl of radius R. What is the electric flux through the surface of the bowl?	CO1	L2
229. Find the Dot product of vectors $\vec{A}=3\hat{x}+2\hat{z}$ and $\vec{B}=\hat{y}$. Comment on the result.		
230. Find the dot product of electric field vector $\vec{E} = 2x \ \hat{x} + 5y\hat{y}$ and magnetic field vector. Discuss the conclusion.	CO1	L2 L3
231. Find the Cross product of vectors $\vec{C}=3y\hat{x}-4x\hat{y}$ and $\vec{D}=\hat{x}$.	CO1	L2
232. Find the divergence of vectors $\vec{D} = 2x^2 \hat{x} + 5y - 6\hat{z}$	CO1	L3
233. If the Electric flux density vector is given by $\vec{D} = 5x \ \hat{x} + \hat{y} + 6z^2\hat{z}$, find the volume charge density.	CO1	L2
234. Find the divergence of magnetic field vector $\vec{B}=2y^2\hat{x}+5x\hat{y}$. Discuss the conclusion.	CO1	L3
235. Find the Curl of vector electric field vector $\vec{E}=2x~\hat{x}+5y\hat{y}~$. Discuss the conclusion	CO1	L2
236. The magnetic field vector is given by $\vec{H}=2y\hat{x}+5x\hat{y}$. Find the Current density. (GATE QUESTION)	CO1	L3
MODULE – 05		
Semiconductors & Devices		
237. Explain the conductivity of semiconducting materials	CO1	L3
238. What is Fermi level? Describe the variation of Fermi level in an intrinsic and extrinsic semiconductor.	CO1	L2
239. Derive the expression for electrical conductivity of an intrinsic semiconductor.	CO1	L3
240. Give the expression of charge carriers in an intrinsic semiconductor.	CO1	L2
241. What are the expressions for concentration of electrons and holes in an intrinsic semi-conductor? Obtain the expression for electrical conductivity of intrinsic semiconductor.	CO1	L3
242. Derive the relation between Fermi level and energy gap in an intrinsic semiconductor.	CO1	L2
243. Explain Hall Effect, Hall field and Hall voltage.	CO1	L3
244. What is Hall Coefficient? Obtain expression for Hall voltage in terms of Hall coefficient.	CO1	L2
245. Discuss about photodiode & phototransistor.	CO1	L3
246. Explain the construction and working of semiconductor laser.	CO1	L2
247. Explain in detail four probe method to determine resistivity of a semiconductor.		
NUMERICAL:	CO1	L3
248. The intrinsic carrier density at room temperature in Ge is 2.37x10 ¹⁹ per m ³ . If the electron and hole mobility are 0.38 and 0.18 m ² V ⁻¹ s ⁻¹ , find the conductivity of the semiconductor.	CO1	L2
249. The band gap in germanium is 0.68 eV. Assuming that the number of electron hole pair is proportional to exp (E _g /2kT), find	CO1	L2
the percentage increase in the number of the charge carriers, when the temperature is increased from 300K to 320 K.		

250. The resistivity of intrinsic germanium semiconductor at 27° C is equal to 0.47 ohm-meter. Assuming electron and hole mobilities as 0.38 and 0.18 m ² V ⁻¹ s ⁻¹ respectively, calculate the intrinsic carrier density.	CO1	L2
•		
251. The effective mass for the electron in germanium is 0.55 m ₀ , where m ₀ is the free electron mass. Find the electron concentration in Germanium at 300 K, assuming that the Fermi level lies exactly in the middle of the energy gap, given that the energy gap for Germanium is 0.66 eV.	CO1	L2
252. For germanium the energy gap is 0.7 eV in the intrinsic state. Evaluate for the ratio between its conductivity at 600 K and that at 300 K.	CO1	L2
253. The conductivity and Hall coefficient of an n-type silicon specimen are $112/\Omega m$ and $1.25x10^{-3}$ m ³ /C respectively. Calculate the charge carrier density and electron mobility.	CO1	L2
254. The Hall coefficient of –3.68 x 10 ⁻⁵ m ³ /C. What is type of charge carriers? Also calculate the carrier concentration.	CO1	L3
255. The Hall coefficient of silicon material was found to be -7.35x10 ⁻⁵ m ³ /C from 100 K to 400 K. Find the nature of		
semiconductor. If the conductivity was found to be 200 Sm ⁻¹ , calculate the density and mobility of the charge carriers.		
256. A current of 10 mA flows through n type Ge semiconductor of 1 mm thick and 1 mm wide in	CO1	L3
a magnetic field. If the Hall voltage produced inside the semiconductor is mV, calculate the		
value of magnetic field. Given R _H =10 ⁻³ m ³ /C.	CO1	L3
257. A silicon slab of thickness 1 mm, breadth 5 mm and length 10 cm is placed in a magnetic	CO1	L2
field of 0.4 Wb/m² acting perpendicular to its thickness . If 10-3 A current is passed through its		
length, calculate the Hall voltage produced if Hall coefficient is 3.66x10 ⁻⁴ m ³ /C.		

PTO