Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕ	Г_ <u>ИУК «Информатика и управление»</u>	
КАФЕДРА	ИУК2 «Информационные системы и сети»	

ЛАБОРАТОРНАЯ РАБОТА №1

«Моделирование и расчет электрических цепей постоянного тока»

ДИСЦИПЛИНА: «Основы электроники»

Выполнил: студент гр. ИУК4-32Б	(Подпись)	(Зудин Д.В) (Ф.И.О.)		
Проверил:	(Подпись)	(Козеева О.О) (Ф.И.О.)		
Дата сдачи (защиты):					
Результаты сдачи (защиты):					
- Балльная оценка:					
- Оценка:					

Калуга, 2022 г.

Цель: формирование практических навыков моделирования электрических цепей и использование законов Ома и Кирхгофа для расчета электрических цепей.

Задачи:

- 1. Определение значения токов в ветвях с помощью моделирования схемы;
- 2. Определение значения токов в ветвях с использованием расчетных формул.

Вариант №1

Теоретические сведения

Закон Ома.

Сопротивление на участке цепи равно отношению напряжения к силе тока на этом участке.

Первый закон Кирхгофа.

Алгебраическая сумма токов в узле равна нулю.

Второй закон Кирхгофа.

Алгебраическая сумма ЭДС в любом контуре цепи равна алгебраической сумме падений напряжения на элементах этого контура. Алгебраическая сумма напряжений вдоль любого замкнутого контура равна нулю.

Исследуемая электрическая схема

Моделирование схемы

Расчетная часть

Darro: R1=6 Q4 R2 = 10 Qu

R3 = 2 Q4

R4 = 15 Q4 R5 = 5 Qu

E1 = 15 B

E2 = 5 B

 $E_3 = 70 B$

Jemesue:

1) Karwieembo yzrob k = 3

2) Karwierne bember t=5

3) Happabrenne mora 6 bember

4) flampabrenue moka & Korimypar

5) Tio I 3. Kupmogra: [-I, R - I2 - I3 = 0

I3-I4-I5 =0

$$[-I_1-I_2-I_3=0]$$

I3-I4-I5=0

 $I_1R_1-I_2R_2=E_1+E_2$

-I2R2+I3R3+I4R4=E2

I4R4-I5R5=E3

 $\prod_{1} = -T_2 - T_3$

I5= I3- I4

 $\{-16I_2-6I_3=20\}$

-10 I2 + 2 I3 + 15 I4 = 5

20I4 - 5I3 = 70

Ombem: I1 = 5, 198 A

 $I_2 = 1,119 A$

 $I_3 = -6,316 A$

I4=1,922 A

 $I_5 = -8,237A$

6) 120 II 3. Krymnogra:

IIRI-I2Ra=EI+E2

-I2R2 + I3R3 + I4R4 = E2

_I4R4-I5R5=E3

Trogemabreen znavenne u pentoen cuemeny:

 $\overline{I}_1 = -\overline{I}_2 - \overline{I}_3$

I5= I3- I4

 $6(-\overline{1}_2-\overline{1}_3)-10\overline{1}_2=20$

-10 I2 + 2 I3 + 15 I4 = 5

15 I4-5 (I3-I4) = 70

 $-16I_2 = 20 + 6I_3$

 $20I_4 = 70 + 5I_3$

 $I_2 = -\frac{20 + 6I_3}{16}$

 $I_4 = \frac{70 + 5I_3}{20}$

 $-10\left(\frac{20+613}{16}\right)+2\overline{1}_3+15\left(\frac{70+513}{20}\right)=5$

-1000-313300 [3+160]3

38I3 = -240

 $I_3 = -\frac{240}{38} \approx -6,316 A$

 $I_2 = -\frac{20+6\cdot(-6,316)}{16} \approx 1,119 A$

 $I_4 = \frac{70 + 5 \cdot (-6,316)}{20} \approx 1,922 A$

Is = -6,316-1,921 & -8,237 A

 $I_1 = *6,816 - 1,119 \approx 5,198 A$

flacime: I,-? I2 -?

I3-?

I4-? Is -? 1

Выводы:

В ходе работы были сформированы практические навыки моделирования электрических цепей и использование законов Ома и Кирхгофа для расчета электрических цепей.