Assignment 1: Sample solutions and comments

In the following, the *n*-th Fibonacci number, f(n), is given by: f(1) = f(2) = 1, and f(n) = f(n-1) + f(n-2), for all n > 2.

• [Problem 0.1]

Claim 0.1. Let $A : \mathbb{N} \to \mathbb{N}$ satisfy A(n) = A(n-1) + A(n-2) + 1 for all n > 2. Let $T : \mathbb{N} \to \mathbb{N}$ satisfy T(n) = T(n-1) + T(n-2) + Overhead(n) for all n > 2, where Overhead(n) is a function of positive integers n for which $Overhead(n) \ge 1$ for all n. If $T(1) \ge A(1)$ and $T(2) \ge A(2)$, then $T(n) \ge A(n)$ for $n \ge 1$.

Proof. The base cases for n = 1 and n = 2 are true by the statement of the claim.

Let n > 2 and suppose that $T(n') \ge A(n')$ for all n' with $1 \le n' < n$ (this is the induction hypothesis). Then,

$$T(n) = T(n-1) + T(n-2) + \text{Overhead}(n) \text{ (by definition)}$$

 $\geq T(n-1) + T(n-2) + 1 \text{ (since Overhead}(n) \geq 1 \text{ for all } n)$
 $\geq A(n-1) + A(n-2) + 1$
(by the induction hypothesis, since $1 \leq n-2 \leq n-1 < n$)
 $= A(n) \text{ (by definition of } A(n)).$

We can now apply the principle of strong mathematical induction (see mathematical induction form 3 of Keqian Li's notes from lecture 3, September 11). Let P_i be the predicate that $T(i) \geq A(i)$. By hypothesis, P_1 and P_2 both hold. The reasoning above shows that $P_{n-2} \& P_{n-1} \to P_n$ for all n > 2. The principle implies that therefore P_n holds for all $n \geq 1$, and thus $T(n) \geq A(n)$ for all $n \geq 1$.

What does this tell us about a naive method for computing Fibonacci numbers? Consider a method for computing f(n), the *n*th Fibonacci number, by recursively computing f(n-1) and f(n-2) and then summing the two. Let T(n) be the time (number of operations) needed by the algorithm to compute f(n). Then T(n) is at least the time to compute f(n-1) plus the time to compute f(n-2), plus the time to compute their sum. Thus, $T(n) \geq T(n-1) + T(n-2) + 1$. We know that $f(n) \propto ((1+\sqrt{5})/2)^n \geq (3.23/2)^n \geq (1.6)^n$ (see lecture notes 3). Thus f(n) grows exponentially with n and by the above claim, so does the running time, T(n) of the naive method for computing Fibonacci numbers.

• [Problem 0.3]

Claim 0.3. For any n > 1, f(n)f(n) - f(n-1)f(n+1) is -1 if n is even, and +1 if n is odd.

Proof. The base case is when n=2. Then f(2)f(2)-f(1)f(3)=1-2=-1.

Now let $n \ge 3$ and suppose that f(n-1)f(n-1) - f(n-1)f(n) is -1 if n-1 is even, and +1 if n-1 is odd (this is the induction hypothesis).

Then, applying the fact that f(n) = f(n-1) + f(n-2), we have

$$f(n)f(n) = f(n)(f(n-1) + f(n-2))$$

= $f(n)f(n-1) + f(n)f(n-2)$. (1)

Similarly, since f(n+1) = f(n) + f(n-1),

$$f(n-1)f(n+1) = f(n-1)(f(n) + f(n-1))$$

= $f(n)f(n-1) + f(n-1)f(n-1)$. (2)

Subtracting each side of (2) from (1), we get

$$f(n)f(n) - f(n-1)f(n+1) = f(n)f(n-2) - f(n-1)f(n-1).$$
(3)

By the principle of mathematical induction (form 1 from the notes of lecture 3), since $2 \le n-1 < n$, we have that f(n-1)f(n-1) - f(n)f(n-2) is -1 if n-1 is even and +1 if n-1 is odd. Substituting these values into the right side of (3), we have that f(n)f(n) - f(n-1)f(n+1) = -1 if n is even and +1 if n is odd, proving the claim.

• [Problem 0.5]

Claim 0.5. $f(n) \leq 2^{n-1}$, for all integers $n \geq 1$.

Proof. Let P_n denote the proposition: $(f(n) \leq 2^{n-1}) \& (f(n+1) \leq 2^n)$. We will prove that P_n holds for all $n \in \mathbb{N}$, which clearly establishes the claim. (Note: we could also use strong induction and avoid the slightly clumsy form of the proposition).

[basis] P_1 follows immediately from the fact that f(1) = f(2) = 1.

[induction step] Let k be an arbitrary element of \mathbb{N} , and suppose that P_k is true. Then both (a) $f(k) \leq 2^{k-1}$ and (b) $f(k+1) \leq 2^k$ must hold. Hence, (c) $f(k+2) = f(k+1) + f(k) \leq 2^k + 2^{k-1} \leq 2^{k+1}$. But P_{k+1} follows immediately from (b) and (c).

Thus by the Principle of Mathematical Induction (Form 1), it follows that P_n holds for all $n \in \mathbb{N}$

• [Problem 0.7]

Claim 0.7.
$$f(n) = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$$
, for all $n \in \mathbb{N}$.

Proof. Let P_n denote the proposition: $f(n) = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$. We will prove that P_n holds for all $n \in \mathbb{N}$, using the strong form of mathematical induction.

[basis] To establish the basis it suffices to note that $\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^1 - \frac{1}{\sqrt{5}}(\frac{1-\sqrt{5}}{2})^1 = 1$ and $\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^2 - \frac{1}{\sqrt{5}}(\frac{1-\sqrt{5}}{2})^2 = 1$.

[induction step] Let k > 2 be an arbitrary element of \mathbb{N} , and suppose that P_i is true, for all $i \in \mathbb{N}$ satisfying $i \leq k$. Then, in particular, both

for all
$$i \in \mathbb{N}$$
 satisfying $i \leq k$. Then, in particular, both (a) $f(k-1) = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^{k-1} - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^{k-1}$ and

(b)
$$f(k) = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^k - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^k$$
. Hence,

$$f(k+1) = f(k) + f(k-1)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^k - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^k + \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}$$
by (a) and (b) above
$$= \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{k-1} \left(1 + \frac{1+\sqrt{5}}{2}\right) - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{k-1} \left(1 + \frac{1-\sqrt{5}}{2}\right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{k-1} \left(\frac{1+\sqrt{5}}{2}\right)^2 - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{k-1} \left(\frac{1-\sqrt{5}}{2}\right)^2$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}.$$

Thus by the Principle of Mathematical Induction (Strong Form), it follows that P_n holds for all $n \in \mathbb{N}$