Required Problems

1. Using truth tables, prove both of DeMorgan's Laws for logical connectives.

(a) $\neg (P \land Q)$ is logically equivalent to $\neg P \lor \neg Q$

P	Q	$\neg P$	$\neg Q$	$(P \wedge Q)$	$\neg (P {\wedge} Q)$	$\neg P \vee \neg Q$
Т	Τ	F	F	Τ	F	F
${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$

The last two columns, for $\neg (P \land Q)$ and $\neg P \lor \neg Q$ respectively, have the same truth values for all truth assignments of P and Q; thus, they are logically equivalent.

(b) $\neg (P \lor Q)$ is logically equivalent to $\neg P \land \neg Q$

P	Q	$\neg P$	$\neg Q$	$(P \vee Q)$	$\neg(P\lor Q)$	$\neg P \land \neg Q$
T	${ m T}$	F	F	${ m T}$	F	F
${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	F
\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$	F	F
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	F	${ m T}$	${ m T}$

Once again, the last two columns, for $\neg (P \lor Q)$ and $\neg P \land \neg Q$ respectively, have the same truth values for all truth assignments of P and Q; thus, they are logically equivalent.

2. Find the contrapositive and converse of each of the following statements:

(a) "If squares have four sides, then triangles have four sides."

This has the form: (squares have four sides) \Longrightarrow (trianges have four sides).

- Contrapositive: "If triangles do not have four sides, then squares do not have four sides."
- Converse: "If triangles have four sides, then squares have four sides."

(b) "A sequence a is bounded whenever a is convergent."

This has the form: $(a \text{ is convergent}) \Longrightarrow (a \text{ is bounded}).$

- Contrapositive: "If a is not bounded, then a is not convergent."
- Converse: "If a is bounded, then a is convergent."

(c) "The differentiability of a function f is sufficient for f to be continuous.

This has the form: $(f \text{ is differentiable}) \Longrightarrow (f \text{ is continuous})$

- Contrapositive: "If f is not continuous, then f is not differentiable."
- \bullet Converse: "If f is continuous, then f is differentiable."

3. Let x and y be integers. Prove that if x and y are even, then x + y is even.

- \mathbb{Z} is the set of integers
- Def. of even: $x \in \mathbb{Z}$ is even iff $\exists k \in \mathbb{Z} \ni x = 2k$

<u>To show</u>: There exists an integer h such that x + y = 2h

Proof:

```
Let x, y \in \mathbb{Z} be even
                                                                                            (by hypothesis)
 \implies \Big(\exists \ k \in \mathbb{Z} \ni x = 2k\Big) \land \Big(\exists \ j \in \mathbb{Z} \ni y = 2j\Big)
                                                                                           (by def. of even)
 \implies x + y = 2k + 2j
                                                                                                   (summing)
 \implies x + y = 2(k+j)
                                                                                         (by distributivity)
k+j \in \mathbb{Z}
                                                                                                 (by closure)
Let h = k + j
                                                                                   (defining an integer h)
 \implies \exists h \in \mathbb{Z} \ni x + y = 2h
                                                                                  (substituting for j + k)
 \implies x + y \text{ is even}
                                                                                           (by def. of even)
```

4. Let A and B be sets. Prove that $A \subset B$ if and only if $A - B = \emptyset$.

- Statement using biconditional: $(A \subset B) \iff (A B = \emptyset)$
- Def. of subset: $A \subset B \iff (x \in A \implies x \in B)$
- Def. of set difference: $A B = \{x | x \in A \land x \notin B\}$
- Theorem (T1): $(P \implies Q)$ is logically equivalent to $(\neg P) \lor Q$
- Theorem (T2): For all sets A, $\emptyset \subset A$
- Contrapositive of (\Rightarrow) : $A B \neq \emptyset \implies A \not\subset B$

Proof by contraposition, to show: $A \not\subset B$.

 $\underline{\text{Proof}} \ (\Rightarrow)$:

Let
$$A - B \neq \emptyset$$
 (by hypothesis)
 $\Rightarrow \exists x \in A - B$ (by def. of non-empty)
 $\Rightarrow x \in A \land x \notin B$ (by def. of set difference)
 $\Rightarrow \neg (x \notin A \lor x \in B)$ (by negation)
 $\Rightarrow \neg (x \in A \Rightarrow \in B)$ (by T1)
 $\Rightarrow \neg (A \subset B)$ (by def. of subset)
 $\Rightarrow A \not\subset B$ (by negation)

 $\frac{\text{To show}}{\text{Proof } (\Leftarrow)}: A \subset B.$

Let $A - B = \emptyset$	(by hypothogia)
Let $A - D = \emptyset$	(by hypothesis)
Case 1: $A = \emptyset$	(by hypothesis)
$\implies A \subset B$	(by T2)
Case 2: $A \neq \emptyset$	(by hypothesis)
$\implies \exists \ x \in A$	(by def. of non-empty)
$\implies x \notin A - B$	(by def. of empty)
$\implies \neg(x \in A \land x \notin B)$	(by def. of set difference)
$\implies x \notin A \lor x \in B$	(by negation)
$\implies (x \in A \implies x \in B)$	(by T1)
$\implies A \subset B$	(by def. of subset)

Practice Problems

- 5. If P, Q, and R are true while S and T are false, which of the following are true?
 - (a) $Q \wedge (R \wedge S)$

Thus, $Q \wedge (R \wedge S)$ is false.

(b) $(P \vee Q) \wedge (R \vee S)$

Thus, $(P \vee Q) \wedge (R \vee S)$ is true.

(c) $(P \vee S) \wedge (P \vee T)$

Thus, $(P \lor Q) \land (P \lor T)$ is true.

- 6. Make truth tables for these propositional forms:
 - (a) $P \implies (Q \land P)$

P	Q	$Q\wedge P$	$P \implies (Q \land P)$
Τ	Τ	${ m T}$	T
${\bf T}$	\mathbf{F}	\mathbf{F}	F
F	\mathbf{T}	\mathbf{F}	${ m T}$
F	F	F	Т

(b) $(\neg P \implies Q) \lor (Q \implies P)$

	P	Q	$\neg P$	$\neg P \implies Q$	$Q \implies P$	$(\neg P \implies Q) \lor (Q \implies P)$	
	Т	Τ	F	T	T	Τ	
	${\bf T}$	\mathbf{F}	F	${ m T}$	${ m T}$	${ m T}$	
	\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$	
	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	T	

(c) $\neg Q \implies (Q \iff P)$

_	/				
	P	Q	$\neg Q$	$Q \iff P$	$\neg Q \implies (Q \iff P)$
	Τ	Τ	F	T	T
	${\bf T}$	F	${\bf T}$	\mathbf{F}	F
	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$
	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$

- 7. Rewrite each of the following sentences to be symbolic sentences using logical connectives.
 - (a) If x = 1 or x = -1, then |x| = 1.

$$(x=1 \lor x=-1) \implies |x|=1$$

(b) B is invertible is a necessary and sufficient condition for $|B| \neq 0$.

$$\exists B^{-1} \iff |B| \neq 0$$

(c) $6 \ge n - 3$ only if n > 4 or n > 10.

$$\neg(n > 4 \lor n > 10) \implies \neg(6 \ge n - 3)$$

(d) S is compact iff S is closed and bounded.

 $(S \text{ is compact}) \iff (S \text{ is closed and bounded})$

- 8. Rewrite each of the following sentences to be symbolic sentences using quantifiers. The universe of discourse for each is given in paratheses.
 - (a) Every nonzero real number is positive or negative. (Real Numbers)

$$\forall x \in \mathbb{R}, (x \ge 0 \land x \le 0)$$

(b) Every integer is greater than some integer. (Integers)

$$\forall \ x \in \mathbb{Z} \ \exists \ y \ni \mathbb{Z} \ni x > y$$

(c) There is a smallest positive real number. (Real Numbers)

$$\exists \ x \in \mathbb{R} \ni x \geq 0 \land \forall \ y \in \mathbb{R} \ni y \geq 0, x \leq y$$

9. The qualifier $\exists!$ is defined as follows:

$$\exists ! \ x \ni A(x) \iff (\exists x \ni A(x)) \land (\forall y \land \forall z, A(y) \land A(z) \implies y = z)$$

Describe in plain english the qualifer $\exists!$.

The qualifier $\exists!$ states that there exists an element making A(x) true and if A(x) is true for two values, those values must be the same. in other words, the qualifier $\exists!$ reads "there exists a uniqe," so it is the unique existential qualifier.

- 10. Let x and y be integers. Prove the following propositions:
 - (a) If x and y are even, then xy is even.

<u>To show</u>: there exists an integer h such that xy = 2h. Proof:

Let
$$x$$
 and y be even integers (by hypothesis)
$$\Rightarrow \left(\exists k \in \mathbb{Z} \ni x = 2k\right) \land \left(\exists j \in \mathbb{Z} \ni y = 2j\right)$$
 (by def. of even)
$$\Rightarrow xy = (2j)(2k)$$
 (multiplying)
$$\Rightarrow xy = 2(2jk)$$
 (by associativity)
$$2jk \in \mathbb{Z}$$
 (by closure)
$$\text{Let } h = 2jk$$
 (defining an integer h)
$$\Rightarrow xy = 2h$$
 (substituting for $2jk$)
$$\Rightarrow xy \text{ is even}$$
 (by def. of even)

4

(b) If x and y are odd, then x + y is even.

<u>To show</u>: there exists an integer h such that x + y = 2h<u>Proof</u>:

Let x and y be odd integers (by hypothesis) $\implies \left(\exists k \in \mathbb{Z} \ni x = 2k+1\right) \land \left(\exists j \in \mathbb{Z} \ni y = 2j+1\right)$ (by def. of odd) $\implies x + y = (2k + 1) + (2j + 1)$ (summing) $\implies x + y = 2k + 2j + 2$ (by associativity/commutativity) $\implies x + y = 2(k + j + 1)$ (by distributivity) $k+j+1 \in \mathbb{Z}$ (by closure) Let h = k + j + 1(defining an integer h) $\implies x + y = 2h$ (substituting for k + j + 1) $\implies x + y$ is even (by def. of even)

(c) If x is even and y is odd, then x + y is odd.

<u>To show</u>: there exists an integer h such that x + y = 2h + 1<u>Proof</u>:

Let x be an even integer and let y be an odd integer (by hypothesis) $\implies (\exists k \in \mathbb{Z} \ni x = 2k) \land (\exists j \in \mathbb{Z} \ni y = 2j + 1)$ (by def. of even and odd) $\implies x + y = 2k + 2j + 1$ (summing) $\implies x + y = 2(k+j) + 1$ (by distributivity) $k+i \in \mathbb{Z}$ (by closure) Let h = k + j(defining an integer h) $\implies x + y = 2h + 1$ (substituting for k + j) (by def. of odd) $\implies x + y \text{ is odd}$

11. Let a and b be real numbers. Prove that $|a+b| \leq |a| + |b|$.

- Lemma (L1): if a is a real number, then $-|a| \le a \le |a|$
- Lemma (L2): $|b| \le c \iff -c \le b \le c$

To show: $|a+b| \le |a| + |b|$

Proof:

Let a and b be real numbers (by hypothesis) $\implies \left(-|a| \le a \le |a|\right) \land \left(-|b| \le b \le |b|\right)$ $\implies -|a| - |b| \le a + b \le |a| + |b|$ (summing)

 $\implies -|a| - |b| \le a + b \le |a| + |b|$ (summing) $\implies |a + b| \le |a| + |b|$ (by L2)

12. Let x be an integer. Write a proof by contraposition to show that if x is even, then x+1 is odd.

• Contrapositive: if x + 1 is not odd, then x is not even

• Theorem (T1): x is not even if and only if x is odd.

Proof by contraposition <u>to show</u>: x is not even <u>Proof</u>:

Let x be an integer such that $x + 1$ is not odd	(by hypothesis)
$\implies x+1$ is even	(by T1)
$\implies \exists \ k \in \mathbb{Z} \ni x + 1 = 2k$	(by def. of even)
$\implies x = 2k - 1$	(subtracting 1 from both sides)
$\implies x = 2k - 2 + 1$	(rearranging the r.h.s)
$\implies x = 2(k-1) + 1$	(by distributivity)
k-1 is an integer	(by closure)
let j = k - 1	(defining an integer j)
$\implies x = 2j + 1$	(substituting for $k-1$)
$\implies x \text{ is odd}$	(by def. of odd)
$\implies x$ is not even	(by T1)
	_

13. Suppose a and b are positive integers. Write a proof by contradiction to show that if ab is odd, the both a and b are odd.

• Theorem (T1): x is not even if and only if x is odd.

Proof by contradiction <u>to show</u>: if a or b is not odd, then ab is odd and not odd. <u>Proof</u>:

Let
$$ab \in \mathbb{Z}_{+} \ni ab$$
 is odd and a or b is not odd $\Rightarrow a$ is even or b is even (by T1)

Case 1: a is even

$$\Rightarrow \exists k \in \mathbb{Z} \ni a = 2k$$

$$\Rightarrow ab = (2k)b$$

$$\Rightarrow ab = 2(kb)$$
(by def. of even)

$$\Rightarrow ab = 2(kb)$$
(by associativity)

 b is an integer (by closure)

$$\Rightarrow ab$$
 is even (by def. of even)

$$\Rightarrow ab$$
 is even (by proof in problem 10(a))

$$\Rightarrow ab$$
 is not odd (by T1)

Thus, a contradiction

Because every case produces the contradiction ab is odd and not odd, it must be the case that a and b are both odd.

14. Prove that if $x \notin B$ and $A \subset B$, then $x \notin A$.

To show: if $x \notin B$, then $x \notin A$:

Proof:

Let
$$A \subset B$$
 (by hypothesis)
 $\implies (x \in A \implies x \in B)$ (by def. of subset)
 $\implies [(\neg x \in B) \implies (\neg x \in A)]$ (the contrapositive)
 $\implies [x \notin B \implies x \notin A]$ (by negation)

- 15. Let $A = \{1, 3, 5, 7, 9\}$, $B = \{0, 2, 4, 6, 8\}$, and $C = \{1, 2, 4, 5, 7, 8\}$ and $D = \{1, 2, 3, 5, 6, 7, 8, 9, 10\}$. Find the following:
 - (a) $A \cup B$

$$A \cup B = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

(b) A - B

$$A - B = \{1, 3, 5, 7, 9\}$$

(c) $(A \cap C) \cap D$

$$(A \cap C) \cap D = \{1, 5, 7\}$$

(d) $A \cup (C \cap D)$

$$A \cup (C \cap D) = \{1, 2, 3, 5, 7, 8, 9\}$$

- 16. Let A, B, C, and D be sets prove that if $C \subset A$ and $D \subset B$ and A and B are disjoint, then C and D are disjoint.
 - Def. of disjoint: A and B are disjoint $\iff A \cap B = \emptyset$
 - \bullet Contrapositive: C and D are not disjoint implies A and B are not disjoint

Proof by contraposition <u>to show</u>: A and B are not disjoint <u>Proof</u>:

Let $C \subset A$ and $D \subset B$ such that C and D are not disjoint	(by hypothesis)
$\implies C \cap D \neq \emptyset$	(by def. of disjoint)
$\implies \exists x \in C \cap D$	(by def. of non-empty)
$\implies x \in C \land x \in D$	(by def. of \cap)
$\implies x \in A \land x \in B$	(by def. of subset)
$\implies x \in A \cap B$	(by def. of \cap)
$\implies A \cap B \neq \emptyset$	(by def. of non-empty)
\implies A and B are not disjoint	(by def. of disjoint)