Platform model

1 System description

Model of the platform. Based on the mechanic equation, this model calculates the speed of the car and the braking.

2 System organization

Model browser

3 Signals and parameters

Inputs

Name	Description	Note				
FA_TQ	Torque to wheel from the front axle					
RA_TQ	Torque to wheel from the rear axle	Torque to wheel from the rear axle				
FA_PLA_F_BRAKE	Force set point of mechanical brake of front	In N				
	axle					
RA_PLA_F_BRAKE	Force set point of mechanical brake of front	In N				
	axle					
ENV_VECTOR	Environment data, includes:	Bus signal				
	- Slope (%)					
	 External forces (N) 					
	 Wind speed (m/s) 					

Outputs

Name	Description	Note	Destination
PLA_SPEED	Car speed	In km/h	Driver
PLA_N	Wheel speed	In RPM	Command,
			front axle,
			rear axle

Parameters

Native

Name	Type	Unit	Description	Source	Linked to
pla_csat	Var	-	Static friction coefficient	Continental	
pla_equivalent_weight	var	kg	Car equivalentweight	BEI N7 2014	
pla_f	var	-	Friction coefficient	Continental	
pla_initial_speed	var	m/s	Initial speed	Case specific	
pla_k	var	-	Friction coefficient	Continental	
pla_kaero	var	-	Cx of the car	Continental	
pla_max_f_brakes	var	N	Maximum brakes force	Continental	
pla_wheel_radius	var	m	Wheel radius (includes tire	BEI N7 2014	
			deformation)		

None

4 Subsystems description

Mechanical behavior:

Based on Newton's second law to calculate the car speed. Each force is in a separate subsystem. Based on the BEI N7 2014 model, only the friction and adherence have been modified.

Fengines:

<u>Faero</u>

Aerodynamic resistance.

<u>Fslope</u>

Effect of a slope.

Ffriction

Friction forces.

Fbrakes

Brakes system.

<u>Adherence</u>

Adherence of the car, preventing from moving.

5 Discrete model

Same inputs, outputs and parameters. The only changes are in the red square. See part 5 ("Discrete model") of the document "HEV model" to know how are made the discrete blocs.