LVDS & M-LVDS Overview

Adam Arnold Product Marketing Engineer *Nov.* 8th , 2023

Agenda

- Overview of Differential Signaling
- LVDS TIA/EIA-644 Introduction
- M-LVDS TIA/EIA-899 Introduction
- TI Portfolio Selection
- Design Considerations
- Resources

2

Single Ended vs Differential Signaling

Ex) CMOS, TTL, GTL, ECL, RS-232, etc Voltages referenced from signal to ground (5V, 3.3V, 1.8V)

Advantages

+ Simple implementation

Disadvantages

- Vulnerable to noise
- Doesn't allow ground potential differences
- Generates FMI
- Limited by speed and distance

Differential GND

Ex) LVDS, M-LVDS, RS-422, RS-485, PECL, etc Voltages referenced from V+ to V-

Advantages

- + Noise Rejection
- + Allows ground potential differences
- + Minimal EMI emission
- + Allows high speed and long distance

Disadvantages

- Twisted Pair Cable Required

Modes of Operation

Example Application

Board to Board control and data signaling Ex) LVDS, RS-422, CML, LVPECL

Clock and data distribution, backplane Ex) M-LVDS, RS-485, CAN

Bidirectional clock, control and data transmission, backplane Ex) M-LVDS, RS-485, CAN

Differential Data Transmission Standards

	LVDS	LVPECL	RS-422	CML	M-LVDS	RS-485	CAN
Industry Standard	TIA/EIA-644-A	N/A	TIA/EIA-422-B	N/A	TIA/EIA-899-A	TIA/EIA-485-A	ISO 11898
Bus Topology	Point to Point Multidrop	Point to Point	Point to Point Multidrop	Point to Point	Point to Point Multidrop Multipoint	Point to Point Multidrop Multipoint	Point to Point Multidrop Multipoint
Number of Drivers	1	1	1	-	≤ 32	≤ 32 - 256 (UL)	≤ 30
Number of Receivers	≤ 10	1	≤ 10	-	≤ 32	≤ 32	≤ 30
Maximum Data Rate	≤ 3.125 Gbps	≤ 10 Gbps	≤ 40 Mbps	≤ 10 Gbps	≤ 500 Mbps	50 Mbps	1 Mbps
Maximum Cable Length (m)	10	-	1200	1	30	1200	400
Vcc (v)	1.8, 2.5, 3.3, 5	3.3	3.3, 5	-	3.3	3.3, 5	3.3, 5
Power Consumption	Very Low	Medium	High	Low	Low	High	High
OSI Model Layers	Physical	Physical	Physical	Physical	Physical	Physical	Physical + Datalink
DRIVER CHARACTERISTICS							
Load Resistance (Ω)	100	50	100 - 130	50	50	60	Zo
Offset Voltage Vos (V)	1.125 - 1.375	2	±3	Vcc - 0.2V	0.3 - 2.1	-1 - 3	-
Differential Output Voltage (V)	250 - 450	800	±2	400	580 - 650	1.5 - 5	-
Driver Current Load (mA)	2.5 - 4.5	15	-	-	9 - 13	~40	~50
RECEIVER CHARACTERISTICS							
Input Voltage Range (V)	0 - 2.4	2.5 / 3.3	-10 - 10	-	-1.4 - 3.8	-7 - 12	-2 - 7
Input Threshold (mV)	±100	±200	-	-	±50	±200	-
Vcm (V)	±1	Varies	±7	-	±2	±6	-

LVDS Introduction

What is LVDS?

- TIA/EIA-644, Low Voltage Differential Signaling
- High speed general purpose digital interface
- Benefits: Data Rate & Distance, Low Power, Low EMI

	LVDS
Industry Standard	TIA/EIA-644-A
Bus Topology	Point to Point Multidrop
Number of Drivers	1
Number of Receivers	≤ 10
Maximum Data Rate	≤ 3.125 Gbps
Maximum Cable Length	15m
Vcc	1.8V, 2.5V, 3.3V, 5V
Power Consumption	Very Low

LVDS | TIA/EIA-644 Electrical Spec

- Typical driver V_{CM} is 1.2V, and typical receiver common mode range is 0.2V to 2.2V
- ±1V receiver ground shift tolerance

±100mV receiver threshold

Driver output is 350mV so plenty of margin

LVDS | Why is it used?

Data Rate & Distance

- Up to 3.125Gbps depending on:
 - ✓ Cable quality
 - ✓ PCB layout
 - ✓ Distance
- Up to 10-15m depending on:
 - ✓ Data rate
 - ✓ Tolerable signal distortion
 - ✓ Common mode noise
 - ✓ Tolerable jitter

SLAA844 - How Far, How Fast LVDS?

Low Power

$$P_d = \frac{V_{diff}^2}{R} = \frac{(350mV)^2}{100\Omega} = 1.225mW$$

Over 30x less power than RS-422

SNLA156 - LVDS High Speed with mW Power

Low EMI

- EMI increases with rate and amplitude of the change in current
- LVDS manages to reduce EMI even at high signaling rates due to the very small 450mV max voltage swing

SLLA030C - Reducing EMI with LVDS

_

LVDS | How is it used?

LVDS | Example Use Cases

Industrial Automotive Personal Electronics

Interface I/O Module/AFE and FPGA/MCU

Interfacing with I/O modules and sensors typically require high data rates over long cable. This is achieved through LVDS.

Key End Equipment

- Digital Cockpit Controller
- Multi-Mode Radar
- HEV/EV Wireless Charging
- ATE Tester
- Ultrasound Scanner
- Oscilloscope & Spectrum Analyzer
- Robotic Controller
- Machine Vision Camera

SPI/UART over LVDS

Transmitting SE SPI signals over long distances distorts signal integrity due to external noise and cross talk. Implementing SPI over LVDS improves noise immunity, propagation delay, ground shift and more enabling long distance SPI transmission.

Key End Equipment

- Automotive Traction Invertor
- Elevator & Traction Inverter
- LFD Wall

Extending LVDS Reach with Buffers

Buffers are utilized to repeat LVDS signals. This enables designers to extend the reach of high speed links and hide the effect of transmission line stubs

Key End Equipment

- Ultrasound Scanner
- · Field Instrumentation
- PLC Controller
- Datacenter Switch

Interface between FPGA/MCUs

Provides high noise immunity for board to board communication at high signaling rates.

Key End Equipment

- Set Top Box & DVR
- · Automated Sorting Equipment
- Ultrasound & CT Scanners
- · Multifunction Printer (MFP)
- Oscilloscope & Spectrum Analyzer
- · AC Drive Control Module
- LED Wall

M-LVDS Introduction

M-LVDS | TIA/EIA-899 Electrical Spec

- Multipoint-LVDS for multipoint networks
 - Point-to-Point for extended reach
 - 32 total drivers and receivers on one bus
 - Requires 100Ω termination at both ends of differential pair
 - Physical layer only

Parameter	LVDS	M-LVDS
Nominal Driver Current (mA)	3.5	11.3 mA
Nominal Driver Load (Ω)	100	50
Receiver Sensitivity (mV)	±100	±50
Input Common Mode Voltage Range (V)	0 to 2.4	-1.4 to 3.8
Number of Transceivers on Bus	1	Up to 32

M-LVDS | Failsafe Receivers

Two different receivers for open input fault condition

RECEIVER TYPE	OUTPUT LOW	OUTPUT HIGH
Type 1	$-2.4 \text{ V} \le \text{V}_{\text{ID}} \le -0.05 \text{ V}$	0.05 V ≤ V _{ID} ≤ 2.4 V
Type 2	$-2.4 \text{ V} \le \text{V}_{\text{ID}} \le 0.05 \text{ V}$	0.15 V ≤ V _{ID} ≤ 2.4 V

Type 1 Receiver:

 Useful for maximizing signal speed such as data or clock lines

Vid	Output
≤ -50mV	Low
≥ 50mV	High
-50mV ≤ Vid ≤ 50mV	Indeterminate

Type 2 Receiver:

- Under open-circuit conditions, output will be low
- Useful for lower speed applications such as control lines

Vid	Output
≤ 50mV	Low
≥ 150mV	High
50mV ≤ Vid ≤ 150mV	Indeterminate

M-LVDS | Example Use Cases

Backplane Data, Clock, & Control Distribution

M-LVDS Enables a high throughput backplane (200Mbps / 100MHz) with excellent signal integrity, minimal EMI and power. These systems can use multi-drop or multipoint distribution of clock, data and control signals

Key End Equipment

- Wireless BBU
- Industrial PC
- Programmable Logic Controller
- · Condition Monitoring Module

Point-to-Point Long Cable Transmission

The benefit of M-LVDS increased driver current can be extended to point-to-point applications. These systems typically require some or all of the following: long reach, low power, high speed, high noise immunity. M-LVDS is capable of transmitting up to 500Mbps at short distances and 1000m at slow speeds.

Key End Equipment

- · Intra-DC Interconnect
- · Multifunction Relay
- Vacuum robot
- · Professional Video Camera
- · Surgical Equipment

M-LVDS | A Highspeed Alternative to RS-485

M-LVDS Benefits: Lower Prop Delay, Power, & EMI

Parameter	RS-485	M-LVDS
V _{OD} [V]	1.5 to 5.0	0.48 to 0.65
I _{DD} [mA]	28 to 93	9 to 13
I _{OS} [mA]	<250	<43
t _{RISE} / t _{FALL} Typ [ns]	5 to 50	1 to 5
Data Rate Max [Mb/s]	40	250
V _{ID} [V]	0.4 to 5.0	0.1 to 2.4
V _{ICM} [V]	-5.0 to 12.0	-1.4 to 3.8

RS-422/485 to LVDS/MLVDS P2P Guide

LVDS	RS422	Description
SN65LVDS31	AM26LS31	Quad driver, 4-line enabling scheme
SN65LVDS32	AM26LS32	Quad receiver, 4-line enabling scheme
SN65LVDS3486	MC3486	Quad receiver, 2-line enabling scheme
SN65LVDS3487	MC3487	Quad driver, 2-line enabling scheme
SN65LVDS9637	uA9637	Dual receiver
SN65LVDS9638	uA9638	Dual driver
SN65LVDS050	SN75C1167	Dual drivers/receivers with enabling scheme
SN65LVDS051	SN75C1168	Dual drivers/receivers

Consideration	S
---------------	---

 Transmission Length – Ensure distance and signaling rate do not exceed maximum limit (MLVDS ~50m | LVDS ~10m)

Cabling – Cat5 Acceptable

- MLVDSRS485DescriptionSN65LVDS179SN75LBC179Single driver/receiverSN65LVDS180SN75LBC180Single driver/receiver with enabling schemeSN65LVDM176SN75LBC176Single Transceiver with enabling
- Termination 100Ohm Termination Required

 Electrical Characteristics – Ensure max ground potential shift is acceptable (±1V LVDS | ±2V MLVDS), Backplane loading <32 nodes MLVDS

LVDS, M-LVDS | Portfolio

Standard	LVDS (DS90LVxx SN65LVDSxx)			MLVDS (DS91Mxx SN65MLVDxx)				
Function	Driver	Receiver	Transceiver	Buffer	Driver	Receiver	Transceiver	Buffer
Input Signal	LVCMOS, LVTTL	LVDS	LVDS, LVCMOS, LVTTL	LVDS	LVCMOS, LVTTL	M-LVDS	M-LVDS, LVCMOS, LVTTL	MLVDS
Output Signal	LVDS	LVCMOS, LVTTL	LVDS, LVCMOS, LVTTL	LVDS	M-LVDS	LVCMOS, LVTTL	M-LVDS, LVCMOS, LVTTL	MLVDS
Vcc (V)	5, 3.3, 2.5	5, 3.3, 2.5, 1.8	3.3	3.3	3.3	3.3	3.3	3.3
Max Signaling Rate (Mbps)	630	600	500	800	250	250	250	250
Max Channels	16	16	2	4	4	4	8	8
Features	Extended Vcm, High ESD, Integrated Termination, Fanout Buffering				Type 1	&2 Rx, Half/Full Duplex		

LVDS, M-LVDS | Feature Spotlight

LVDS, M-LVDS, PECL | Selection Guide

TI Rating

QML-V

(=) Q100

EP / QML-Q

Enabling LVDS for low power FPGAs/Processors

Channel	LVDS Driver	LVDS Receiver	Level Shifter (3.3V / 5V)
1	DS90LV011A	DS90LV012A	SN74AXC1T45 / SN74LXC1T45
2	DS90LV027A	DS90LV28A	SN74AXC2T245 / SN74LXC2T245
4	DS90LV047A	DS90LV048A	SN74AXC4T245 / SN74LXC4T245
8	SN65LVDS388A	SN65LVDS389A	SN74AXC8T245 / SN74LXC8T245

Advantages:

- Simple implementation
- Interface across wide voltage range (0.65 5V)

Disadvantages:

- Data rate limited by level translator
- Increased component count (level shifter + decoupling caps)
- Larger footprint

DS90LVRA2 - 1.8V, dual channel LVDS receiver

Enable low voltage I/O (0.65 - 3.3V with AXC and 1.1 - 5.5V with LXC)

21

LVDS | Packaging

2 Channel (Driver/Receiver)

4 Channel (Driver/Receiver)

8 Channel & 16 Channel

Time/Size

Design Considerations

LVDS | Design considerations

- PCB traces should be 100Ω (±5%) differential impedance
- Maintain equal length on traces to minimize intra-pair skew
- Maintain distance and symmetry between traces
- Minimize trace length lengths
- Minimize use of vias (<2 recommended)

LVDS | Design considerations

- Use a continuous ground plane underneath the traces
 - Avoid routing over plane splits/voids
 - Place stitching caps across split if unavoidable
- Avoid right angle turns
- Don't route traces near edge of PCB
- Keep impedance matched across entire length
- Do not route near oscillators or switching regulators

M-LVDS | Design considerations

Note – the receivers shown must not have internal terminations.

- Evenly space loads
 - 2cm typical
 - Helps to evenly distribute the loading
- The amount of transceivers depends on how well the system is designed
 - PCB layout
 - Line impedance control
 - Proper termination
 - Stub length
 - Typically, 30 nodes at >200Mbps if well optimized

Stubs

- Terminations only on both edges of the bus
- Lines and connectors connecting boards to backplane create stubs

Guidelines for stubs

- Minimize length of the stubs to minimize their effect
- How short?
 - Depends on transition time (t_R, t_F)
- Keep t_P in stubs < 30% t_R/t_F
- The shorter the better!
 - Recommended < 1"
 - Shortening to ½" → increase noise margin 50%
- Test points → unintended stubs

Example:

- tR/tF (min) = 1.5 ns from datasheet
 - → Stub Length < 0.5 ns
- For FR-4 (~1ns / 6")
 - → Stub Length < 3"

28

Selecting line characteristic impedance

- Plug-in boards on the backplane create loading on the bus
 - Due to capacitance of stubs, transceiver I/Os, connectors, vias, etc.
 - Lowers the effective characteristic impedance of the bus
- Select Z₀ to be higher than 100Ω
 - So that effective $Z_0 > 80 \Omega$
- Z₀ = 130 was found to work well for heavily-loaded backplanes
- Terminations value should match effective Z₀ of the line
 - To reduce reflections

Slots arrangement

- Evenly space loads
 - 2cm typical
 - Helps to evenly distribute the loading
- The amount of transceivers depends on how well the system is designed
 - PCB layout
 - Line impedance control
 - Proper termination
 - Stub length
 - Typically, 30 nodes at >200Mbps if well optimized
- Slot pitch of 0.8" works well with ZO of 130 Ω

Note – the receivers shown must not have internal terminations.

Cross Reference Tool - https://www.ti.com/cross-reference-search

Enter a part number

Enter a full or partial part number

Where to find more Information - https://www.ti.com/LVDS

Solution-focused LVDS Content

Getting Started with LVDS

LVDS Owners Manual

LVDS Application & Data Handbook

The LVDS Fundamentals & Precision Labs training series

Concepts made easy to understand

Туре	Content Title
TI Reference Design(s)	Transmitting SPI Signals Over LVDS Interface
Technical blog content or white paper	 High-Speed Layout Guidelines Interface Different Logic with LVDS Support 1.8V using 3.3V LVDS MLVDS Clock & Data Distribution LVDS for Noise Reduction in Motor Drives LVDS in LED Walls LVDS in Ultrasound Introduction to M-LVDS The top 5 questions when using M-LVDS in backplane applications
Selection and design tools and models	M-LVDS evaluation module

20

Q&A

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated