From Contrastive to Abductive Explanations and Back Again

Alexey Ignatiev¹, Nina Narodytska², Nicholas Asher³, and Joao Marques-Silva³

November 9, 2021 | **KR**

¹Monash University, Melbourne, Australia

²VMware Research, CA, USA

³IRIT, CNRS, Toulouse, France

Motivation

Ongoing ML Revolution

AlphaGo Zero & Alpha Zero

https://fr.wikipedia.org/wiki/Pepper_(robot)

Image & Speech Recognition

http://gradientscience.org/intro_adversarial/

And yet...

This is a cat.

Current Explanation

This is a cat:

- It has fur, whiskers, and claws.
- It has this feature:

XAI Explanation

eXplainable Al

3/9

Formal explanations

classifier $\tau : \mathbb{F} \to \mathcal{K}$, instance \mathbf{v} s.t. $\tau(\mathbf{v}) = \mathbf{c}$

classifier
$$\tau : \mathbb{F} \to \mathcal{K}$$
, instance v s.t. $\tau(v) = c$

abductive explanation $\mathfrak X$

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \in \mathcal{X}} (\mathbf{x}_{\mathbf{j}} = \mathbf{v}_{\mathbf{j}}) \rightarrow (\tau(\mathbf{x}) = \mathbf{c})$$

classifier
$$\tau : \mathbb{F} \to \mathcal{K}$$
, instance v s.t. $\tau(v) = c$

abductive explanation ${\mathfrak X}$

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \in \mathcal{X}} (\mathbf{x}_{\mathbf{j}} = \mathbf{v}_{\mathbf{j}}) \rightarrow (\mathbf{\tau}(\mathbf{x}) = \mathbf{c})$$

classifier
$$\tau : \mathbb{F} \to \mathcal{K}$$
, instance v s.t. $\tau(v) = c$

abductive explanation ${\mathfrak X}$

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \in \mathcal{X}} (\mathbf{x}_{\mathbf{j}} = \mathbf{v}_{\mathbf{j}}) \rightarrow (\mathbf{\tau}(\mathbf{x}) = \mathbf{c})$$

contrastive explanation y

$$\exists (\textbf{x} \in \mathbb{F}). \bigwedge_{\textbf{i} \not \in \textbf{y}} (\textbf{x}_{\textbf{j}} = \textbf{v}_{\textbf{j}}) \wedge (\tau(\textbf{x}) \neq c)$$

classifier $\tau : \mathbb{F} \to \mathcal{K}$, instance v s.t. $\tau(v) = c$

abductive explanation ${\mathfrak X}$

"why?"

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \in \mathcal{X}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \rightarrow (\tau(\mathbf{x}) = c)$$

contrastive explanation y

"why not?"

$$\exists (\textbf{x} \in \mathbb{F}). \bigwedge_{j \not\in \textbf{y}} (x_j = \nu_j) \wedge \big(\tau(\textbf{x}) \neq c\big)$$

this work!

$$\mathbb{F} = \{\textbf{0}, \textbf{1}, \textbf{2}\}^{5} \qquad \textbf{K} = \{\bigcirc, \bigoplus\}$$

$$\mathbb{F} = \{0, 1, 2\}^5$$
 $\mathcal{K} = \{\bigcirc, \bigoplus\}$

 R_0 :IF $x_1 = 1 \wedge x_2 = 1$ THEN \ominus R_1 :ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF} :ELSETHEN \ominus

$$\mathbb{F} = \{0, 1, 2\}^5$$
 $\mathcal{K} = \{\bigcirc, \bigoplus\}$

$$R_0$$
:IF $x_1 = 1 \wedge x_2 = 1$ THEN \ominus R_1 :ELSE IF $x_3 \neq 1$ THEN \oplus R_{DEF} :ELSETHEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \bigoplus$$

$$\mathbb{F} = \{0, 1, 2\}^5$$
 $\mathcal{K} = \{ \ominus, \oplus \}$

$$R_0$$
:IF $x_1 = 1 \wedge x_2 = 1$ THEN \ominus R_1 :ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF} :ELSETHEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \bigoplus$$

AXps
$$X = \{\{1, 2\}, \{3\}\}$$

$$\mathbb{F} = \{0, 1, 2\}^5$$
 $\mathcal{K} = \{\bigcirc, \bigoplus\}$

```
R_0:IFx_1 = 1 \wedge x_2 = 1THEN \ominusR_1:ELSE IFx_3 \neq 1THEN \ominusR_{DEF}:ELSETHEN \ominus
```

observe
$$\tau(1, 1, 1, 1, 1) = \bigcirc$$

$$AXps X = \{\{1,2\},\{3\}\}$$

 $CXps Y = \{\{1,3\},\{2,3\}\}$

Minimal hitting set duality

Minimal hitting set duality

Minimal hitting set duality

CXp computation

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathcal{K} = \{\bigcirc, \bigoplus\}$$

$$\mathbb{F} = \{0, 1, 2\}^5$$
 $\mathcal{K} = \{ \ominus, \oplus \}$

R0:IF $x_1 = 1 \land x_2 = 1$ THEN \ominus R1:ELSE IF $x_3 \neq 1$ THEN \ominus RDEF:ELSETHEN \ominus

$$\mathbb{F} = \{0, 1, 2\}^5$$
 $\mathcal{K} = \{ \ominus, \oplus \}$

R₀:IF $x_1 = 1 \land x_2 = 1$ THEN \ominus R₁:ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF}:ELSETHEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \bigcirc$$

$$\mathbb{F} = \{0, 1, 2\}^5$$
 $\mathcal{K} = \{ \ominus, \oplus \}$

 R_0 :IF $x_1 = 1 \land x_2 = 1$ THEN \ominus R_1 :ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF} :ELSETHEN \ominus

observe $\tau(1, 1, 1, 1, 1) = \ominus$ - why not \oplus ?

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathcal{K} = \{\bigcirc, \bigoplus\}$$

 R_0 :IF $x_1 = 1 \land x_2 = 1$ THEN \ominus R_1 :ELSE IF $x_3 \neq 1$ THEN \oplus R_{DEF} :ELSETHEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \ominus$$
 - why not \ominus ?

1. can we drop feature 1? $\tau(1,*,*,*,*) \not\equiv \ominus$?

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \notin \mathcal{Y}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \wedge (\tau(\mathbf{x}) \neq \mathbf{c})$$

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathcal{K} = \{\bigcirc, \bigoplus\}$$

R₀:IF $x_1 = 1 \land x_2 = 1$ THEN \ominus R₁:ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF}:ELSETHEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \ominus$$
 - why not \ominus ?

1. can we drop feature 1? $\tau(1,*,*,*,*) \not\equiv \ominus$? Yes

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \notin \mathcal{Y}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \wedge (\tau(\mathbf{x}) \neq \mathbf{c})$$

$$\mathbb{F} = \{0, 1, 2\}^5$$
 $\mathcal{K} = \{\ominus, \bigoplus\}$

```
R<sub>0</sub>:IFx_1 = 1 \land x_2 = 1THEN \ominusR<sub>1</sub>:ELSE IFx_3 \neq 1THEN \ominusR<sub>DEF</sub>:ELSETHEN \ominus
```

observe
$$\tau(1, 1, 1, 1, 1) = \ominus$$
 - why not \ominus ?

- 1. can we drop feature 1? $\tau(1,*,*,*,*) \not\equiv \ominus$? Yes
- 2. can we drop feature 2? $\tau(1,1,*,*,*) \not\equiv \ominus$?

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \notin \mathcal{Y}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \wedge (\tau(\mathbf{x}) \neq c)$$

$$\mathbb{F} = \{0, 1, 2\}^5$$
 $\mathcal{K} = \{\ominus, \bigoplus\}$

```
R<sub>0</sub>:IFx_1 = 1 \land x_2 = 1THEN \ominusR<sub>1</sub>:ELSE IFx_3 \neq 1THEN \ominusR<sub>DEF</sub>:ELSETHEN \ominus
```

observe
$$\tau(1, 1, 1, 1, 1) = \ominus$$
 - why not \ominus ?

- 1. can we drop feature 1? $\tau(1,*,*,*,*) \not\equiv \ominus$? Yes
- 2. can we drop feature 2? $\tau(1,1,*,*,*) \not\equiv \ominus$? No

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \notin \mathcal{Y}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \wedge (\tau(\mathbf{x}) \neq c)$$

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathcal{K} = \{\bigoplus, \bigoplus\}$$

R₀:IF
$$x_1 = 1 \land x_2 = 1$$
THEN \ominus R₁:ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF}:ELSETHEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \ominus$$
 - why not \ominus ?

- 1. can we drop feature 1? $\tau(1,*,*,*,*) \not\equiv \ominus$? Yes
- 2. can we drop feature 2? $\tau(1,1,*,*,*) \not\equiv \ominus$? No
- 3. can we drop feature 3? $\tau(1,*,1,*,*) \not\equiv \ominus$?

$$\mathbb{F} = \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^{\mathbf{5}} \qquad \mathbf{\mathcal{K}} = \{\boldsymbol{\ominus}, \boldsymbol{\ominus}\}$$

R₀:IF
$$x_1 = 1 \land x_2 = 1$$
THEN \ominus R₁:ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF}:ELSETHEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \ominus$$
 - why not \ominus ?

- 1. can we drop feature 1? $\tau(1,*,*,*,*) \not\equiv \ominus$? Yes
- 2. can we drop feature 2? $\tau(1,1,*,*,*) \not\equiv \ominus$? No
- 3. can we drop feature 3? $\tau(1,*,1,*,*) \not\equiv \ominus$? No
- 4. can we drop feature 4? $\tau(1,*,*,1,*) \not\equiv \ominus$?

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathfrak{K} = \{\bigcirc, \bigoplus\}$$

```
R<sub>0</sub>:IFx_1 = 1 \land x_2 = 1THEN \ominusR<sub>1</sub>:ELSE IFx_3 \neq 1THEN \ominusR<sub>DEF</sub>:ELSETHEN \ominus
```

observe
$$\tau(1, 1, 1, 1, 1) = \ominus$$
 - why not \ominus ?

- 1. can we drop feature 1? $\tau(1,*,*,*,*) \not\equiv \ominus$? Yes
- 2. can we drop feature 2? $\tau(1,1,*,*,*) \not\equiv \ominus$? No
- 3. can we drop feature 3? $\tau(1,*,1,*,*) \not\equiv \ominus$? No
- 4. can we drop feature 4? $\tau(1,*,*,1,*) \not\equiv \ominus$? Yes
- 5. can we drop feature 5? $\tau(1, *, *, 1, 1) \not\equiv \ominus$?

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \notin \mathcal{Y}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \wedge (\tau(\mathbf{x}) \neq \mathbf{c})$$

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathcal{K} = \{\ominus, \bigoplus\}$$

```
R<sub>0</sub>:IFx_1 = 1 \land x_2 = 1THEN \ominusR<sub>1</sub>:ELSE IFx_3 \neq 1THEN \ominusR<sub>DEF</sub>:ELSETHEN \ominus
```

observe
$$\tau(1, 1, 1, 1, 1) = \ominus$$
 - why not \ominus ?

- 1. can we drop feature 1? $\tau(1,*,*,*,*) \not\equiv \ominus$? Yes
- 2. can we drop feature 2? $\tau(1,1,*,*,*) \not\equiv \ominus$? No
- 3. can we drop feature 3? $\tau(1,*,1,*,*) \not\equiv \ominus$? No
- 4. can we drop feature 4? $\tau(1,*,*,1,*) \not\equiv \ominus$? Yes
- 5. can we drop feature 5? $\tau(1,*,*,1,1) \not\equiv \ominus$? Yes

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \notin \mathcal{Y}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \wedge (\tau(\mathbf{x}) \neq c)$$

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathcal{K} = \{\bigcirc, \bigoplus\}$$

```
R<sub>0</sub>:IFx_1 = 1 \land x_2 = 1THEN \ominusR<sub>1</sub>:ELSE IFx_3 \neq 1THEN \ominusR<sub>DEF</sub>:ELSETHEN \ominus
```

observe
$$\tau(1, 1, 1, 1, 1) = \ominus$$
 - why not \ominus ?

- 1. can we drop feature 1? $\tau(1, *, *, *, *) \not\equiv \ominus$? Yes
- 2. can we drop feature 2? $\tau(1,1,*,*,*) \not\equiv \ominus$? No
- 3. can we drop feature 3? $\tau(1,*,1,*,*) \not\equiv \ominus$? No
- 4. can we drop feature 4? $\tau(1,*,*,1,*) \not\equiv \ominus$? Yes
- 5. can we drop feature 5? $\tau(1,*,*,1,1) \not\equiv \ominus$? Yes

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \notin \mathcal{Y}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \wedge (\tau(\mathbf{x}) \neq c)$$

 $CXp \mathcal{Y} = \{2, 3\}$

Explanation Enumeration

Function XPENUM(τ , \mathbf{v} , c)

```
Input: \tau: ML model, v: Input instance, c = \tau(\mathbf{v}): Prediction
            \mathcal{K} = (\mathcal{N}, \mathcal{P}) \leftarrow (\emptyset, \emptyset)
                                                                                                                                                                // Block AXps & CXps
             while true:
 2
                     (st_{\lambda}, \lambda) \leftarrow \mathsf{FindMHS}(\mathcal{P}, \mathcal{N})
 3
                                                                                                                                                                 // MHS of P s.t. N
                     if \neg st_{\lambda}: break
 4
                    \mathsf{st}_{c'} \leftarrow \mathsf{SAT}(\bigwedge_{\mathbf{i} \in \lambda} (x_{\mathbf{i}} = v_{\mathbf{i}}) \wedge \tau(\mathbf{x}) \neq c)
 5
                     if \neg st_{c'}:
 6
                                                                                                                                                                  // entailment holds
                            ReportAXp(\lambda)
 7
                            \mathcal{N} \leftarrow \mathcal{N} \cup \bigvee_{i \in \lambda} (x_i \neq v_i)
 8
                     else:
 9
                            \mu \leftarrow \text{ExtractCXp}(\tau, \mathbf{v}, c, \mathcal{P})
10
                            ReportCXp(µ)
11
                            \mathcal{P} \leftarrow \mathcal{P} \cup \bigvee_{i \in \mathcal{U}} (x_i = v_i)
12
```

Explanation Enumeration

```
Function XPENUM(\tau, \mathbf{v}, c)
            Input: \tau: ML model, v: Input instance, c = \tau(\mathbf{v}): Prediction
           \mathcal{K} = (\mathcal{N}, \mathcal{P}) \leftarrow (\emptyset, \emptyset)
                                                                                                                                                // Block AXps & CXps
           while true:
 2
                   (st_{\lambda}, \lambda) \leftarrow \mathsf{FindMHS}(\mathcal{P}, \mathcal{N})
 3
                                                                                                                                                 // MHS of \mathcal{P} s.t. \mathcal{N}
                  if \neg st_{\lambda}: break
 4
                  \operatorname{st}_{c'} \leftarrow \operatorname{SAT}(\bigwedge_{i \in \lambda} (x_i = v_i) \wedge \tau(\mathbf{x}) \neq c)
 5
                  if \neg st_{c'}:
 6
                                                                                                                                                  // entailment holds
                         ReportAXp(\lambda)
                         \mathcal{N} \leftarrow \mathcal{N} \cup \bigvee_{i \in \lambda} (x_i \neq v_i)
                                                                                    implicit hitting set enumeration!
                  else:
 9
                         \mu \leftarrow \text{ExtractCXp}(\tau, \mathbf{v}, c, \mathcal{P})
10
                                                                                                  see paper for details
                         ReportCXp(µ)
11
                         \mathcal{P} \leftarrow \mathcal{P} \cup \bigvee_{i \in \mathcal{U}} (x_i = v_i)
12
```


- formal definition of contrastive explanations
 - similar to abductive explanations

- formal definition of contrastive explanations
 - similar to abductive explanations

- minimal hitting set duality between CXps and AXps
 - · explanation enumeration algorithms
 - · solving membership problems

- formal definition of contrastive explanations
 - · similar to abductive explanations

- minimal hitting set duality between CXps and AXps
 - · explanation enumeration algorithms
 - · solving membership problems

proved helpful in several papers!

- formal definition of contrastive explanations
 - similar to abductive explanations

- minimal hitting set duality between CXps and AXps
 - · explanation enumeration algorithms
 - · solving membership problems

proved helpful in several papers!

- experimental results
 - XP enumeration
 - CXp enumeration helps to debug SHAP

References i

Adnan Darwiche and Auguste Hirth.

On the reasons behind decisions.

In ECAI, pages 712-720, 2020.

Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.

On efficiently explaining graph-based classifiers.

In KR, 2021.

Yacine Izza, Alexey Ignatiev, and João Marques-Silva.

On explaining decision trees.

CoRR, abs/2010.11034, 2020.

Yacine Izza and João Marques-Silva.

On explaining random forests with SAT.

In IJCAI, pages 2584–2591, 2021.

References ii

Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and João Marques-Silva.

From contrastive to abductive explanations and back again.

In *Al*IA*, pages 335–355, 2020.

Alexey Ignatiev, Nina Narodytska, and João Marques-Silva.

On relating explanations and adversarial examples.

In NeurIPS, pages 15857-15867, 2019.

Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.

Abduction-based explanations for machine learning models.

In AAAI, pages 1511–1519, 2019.

Alexey Ignatiev and João P. Marques Silva.

SAT-based rigorous explanations for decision lists.

In SAT, pages 251–269, 2021.

References iii

João Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina Narodytska.

Explaining naive bayes and other linear classifiers with polynomial time and delay. In NeurIPS, 2020.

João Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina Narodytska.

Explanations for monotonic classifiers.

In ICML, pages 7469-7479, 2021.

Andy Shih, Arthur Choi, and Adnan Darwiche.

A symbolic approach to explaining Bayesian network classifiers.

In IJCAI, pages 5103–5111, 2018.