SVD – Best Low Rank Approx.

SVD – Best Low Rank Approx.

Theorem:

Let $A = U \sum V^T$ where $\sum : \sigma_1 \ge \sigma_2 \ge ...$, and rank(A)=r then $B = U \sum V^T$ is a **best** rank-r approx. to r

Where:

S = diagonal $n \times n$ matrix where $s_i = \sigma_i$ (i = 1...k) else $s_i = 0$ What do we mean by "best":

• B is a solution to $\min_{B} ||A-B||_{F}$ where $\operatorname{rank}(B)=k$

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & & \\ \vdots & \vdots & \ddots & & \\ x_{m1} & & & x_{mn} \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & & \\ \vdots & \ddots & & \\ u_{m1} & & & \\ m \times r \end{pmatrix} \begin{pmatrix} \sigma_{11} & 0 & \dots & & \\ 0 & \ddots & & \\ \vdots & \ddots & & \\ r \times r \end{pmatrix} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & & \\ r \times r \end{pmatrix}$$

$$\|\mathbf{A} - \mathbf{B}\|_{\mathbf{F}} = \sqrt{\Sigma_{ij} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^2}$$

SVD - Interpretation #3

Equivalent:

'spectral decomposition' of the matrix:

SVD - Interpretation #3

Equivalent:

'spectral decomposition' of the matrix

Why is setting small σ_i to 0 the right thing to do?

Vectors \mathbf{u}_{i} and \mathbf{v}_{i} are unit length, so $\mathbf{\sigma}_{i}$ scales them.

So, zeroing small σ_i introduces less error.

SVD - Interpretation #3

Q: How many σ_s to keep?

A: Rule-of-a thumb:

keep 80-90% of 'energy' (= $\sum \sigma_i^2$)

SVD - Complexity

- To compute SVD:
 - O(nm²) or O(n²m) (whichever is less)
- But:
 - Less work, if we just want singular values
 - or if we want first k singular vectors
 - or if the matrix is sparse
- Implemented in linear algebra packages like
 - LINPACK, Matlab, SPlus, Mathematica ...

SVD - Conclusions so far

- SVD: $A = U \Sigma V^T$: unique
 - U: user-to-concept similarities
 - V: movie-to-concept similarities
 - lacksquare Σ : strength of each concept
- Dimensionality reduction:
 - keep the few largest singular values (80-90% of 'energy')
 - SVD: picks up linear correlations