Table 6. Photon energies (E_p 's) in the hydrogen spectrum used to construct Table 7 and Fig. 12. Bolded E_p 's are in the range 617.3-2239.5 cm⁻¹. These E_p 's are for the points plotted in Fig. 12.

n_{i}	$n_f = 4$	[<i>i</i>]	$n_f = 5$	[i]	$n_f = 6$	[i]	$n_f = 7$	[<i>i</i>]	$n_f = 8$
5 ((High E_p 's)								
6	,	[15]	1341.2						
7		[2]	2149.9	[18]	808. 7				
8			(High E_p 's)	[15]	1333.6		(Low E_p)		
9			\downarrow	[11]	1693.5	[17]	884.8		$(\text{Low } E_p)$
10				[4]	1950.9	[16]	1142.2	[19]	617.3
11				[2]	2141.3	[15]	1332.6	[18]	807. 7
12					$(\operatorname{High} E_p 's)$	[14]	1477.5	E ring	952.6
13					\downarrow	[13]	1590.2	E ring	1065.3
14						[12]	<i>1679.6</i>	E ring	1154.8
15						[9]	1751.8	E ring	1226.9
16						[8]	1810.9	E ring	1286.0
17						[7]	1859.8	E ring	1334.9
18						[6]	1900.8	E ring	1375.9
19						[5]	1935.6	E ring	1410.7
20						[3]	1965.2	E ring	1440.3
21						A ring	1990.7	E ring	1465.8
22						A ring	2012.8	E ring	1487.9
23						A ring	2032.1	E ring	1507.2
24						A ring	2049.0	E ring	1524.1
25						A ring	2064.0	E ring	1539.1
26						A ring	2077.2	E ring	1552.3
\downarrow							\downarrow		\downarrow
∞						IE A [1]	2239.5 II	E E [10]	1714.6

A set of principal quantum numbers (n_f, n_i) defines a transition in the hydrogen atom where $n_i > n_f$. The column of integers on the far left contains values of n_i , the initial quantum number for the transition. The row of integers along the top contains values of n_f , the final quantum number for a transition. A photon energy $E_p(n_f, n_i)$ in units of cm⁻¹ is listed under each n_f and in a row where the initial quantum number is n_i .

Bolded E_p 's are assigned to individual satellites and ring inner edges in Saturn's satellite system. Unbolded E_p 's contributed to the creation of the A ring and E ring. IE A is inner edge A ring. The satellite index [i] to the left of each bolded E_p is the index assigned to a satellite or ring edge in Table 7. An [i] value associates each E_p with a particular orbital radius of a satellite or ring edge in Saturn's system. There are no unpaired E_p 's or orbital radii. Most importantly limits $E_p(7,\infty)$ and $E_p(8,\infty)$ are associated with the inner radii of the A and E rings respectively. All unbolded close E_p 's contribute to either the A or E ring of Saturn. (Low E_p) is indicated for $E_p(7,8)$ and $E_p(8,9)$ because they are out of the range of interest. (High E_p 's) is indicated for many E_p 's because they are out of range of interest. E_p 's corresponding to $n_f = 9$ or larger are not included. Apparently they did not create resonance.