```
import pandas as pd
from IPython.display import HTML
```

Текст ссылки#Практика N5 "Транспортная задача с ограничениями на пропускную способность". **Тема:** Оптимизация логистических потоков

Цель: Научиться формулировать и решать транспортную задачу с учетом ограничений на пропускную способность транспортных путей, используя Python и SciPy.

1. Введение

Транспортная задача – классическая задача оптимизации, направленная на минимизацию затрат при доставке ресурсов от поставщиков к потребителям. В реальных логистических цепочках часто возникают **ограничения на пропускную способность** отдельных маршрутов. Учет этих ограничений делает модель более реалистичной и помогает выявлять "узкие места".

Применение в инноватике:

- Оптимизация логистики новых продуктов.
- Распределение ресурсов в R&D.
- Создание новых, эффективных схем поставок.

2. Математическая постановка задачи

Задача: Минимизировать общую стоимость перевозки при соблюдении запасов, потребностей и ограничений на пропускную способность.

Обозначения:

- \$m\$ количество поставщиков (заводов)
- \$n\$ количество потребителей (регионов)
- \$x_{ij}\$ объем перевозки от поставщика \$i\$ к потребителю \$j\$
- \$a_i\$ запас поставщика \$i\$
- \$b_i\$ потребность потребителя \$i\$
- \$c_{ij}\$ стоимость перевозки единицы груза от \$i\$ к \$j\$
- \$u_{ij}\$ пропускная способность маршрута от \$i\$ к \$j\$

Математическая модель:

Минимизировать: $$Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} $$

При ограничениях:

- 1. **Запасы:** $\$ \sum_{j=1}^{n} x_{ij} \le a_i, \quad i = 1, ..., m$
- 2. Потребности: $\$ \sum_{i=1}^{m} x_{ij} \ge b_j, \quad j = 1, ..., n \$\$
- 3. Пропускная способность: $x_{ij} \le u_{ij}$, \quad i = 1, ..., m, \ j = 1, ..., n \$\$

5 Practice S (Решено).md 2025-10-30

4. **Неотрицательность:** \$\$ x_{ij} \ge 0 \$\$

3. Пример задачи

Сценарий: Инновационная компания производит новый вид электронных компонентов на **двух заводах (m=2)** и доставляет их в **три региональных распределительных центра (n=3)**.

Данные:

- Запасы (а):
 - Завод 1 (\$a_1\$): 1000 единиц
 - Завод 2 (\$a_2\$): 1500 единиц
- Потребности (b):
 - РЦ1 (\$b_1\$): 800 единиц
 - ∘ РЦ2 (\$b_2\$): 1200 единиц
 - РЦЗ (\$b_3\$): 500 единиц
- Стоимость перевозки (\$c_{ij}\$), \$/единица:

От/К	РЦ1	РЦ2	РЦ3
31	5	7	9
32	6	8	10

• Пропускная способность маршрутов (\$u_{ij}\$), единиц/сутки:

От/К	РЦ1	РЦ2	РЦ3
31	700	500	400
32	600	800	300

Баланс: Общий запас (1000+1500=2500) равен общей потребности (800+1200+500=2500). Задача сбалансирована.

```
# Импортируем необходимые библиотеки import numpy as np from scipy.optimize import linprog

# --- Параметры задачи --- m = 2 # Количество заводов (поставщиков) n = 3 # Количество регионов (потребителей)

# Стоимость перевозки с_ij (в порядке: x11, x12, x13, x21, x22, x23) c = np.array([5, 7, 9, 6, 8, 10])

# Запасы поставщиков a_i a = np.array([1000, 1500])
```

```
# Потребности потребителей b_j
b = np.array([800, 1200, 500])
# Пропускная способность маршрутов u_ij (в том же порядке, что и с)
u = np.array([700, 500, 400, 600, 800, 300])
print("--- Параметры задачи ---")
print(f"Количество заводов (m): {m}")
print(f"Количество регионов (n): {n}")
print(f"Стоимость перевозки (c): {c}")
print(f"Запасы заводов (a): {a}")
print(f"Потребности регионов (b): {b}")
print(f"Пропускная способность (u): {u}")
# Проверка сбалансированности
total_supply = np.sum(a)
total_demand = np.sum(b)
print(f"\nОбщий запас: {total supply}")
print(f"Общая потребность: {total demand}")
if total_supply == total_demand:
    print("Задача сбалансирована.")
else:
    print("Внимание: Задача не сбалансирована! Может потребоваться добавление
фиктивного поставщика/потребителя.")
```

```
--- Параметры задачи ---
Количество заводов (m): 2
Количество регионов (n): 3
Стоимость перевозки (c): [ 5 7 9 6 8 10]
Запасы заводов (a): [1000 1500]
Потребности регионов (b): [ 800 1200 500]
Пропускная способность (u): [700 500 400 600 800 300]
Общий запас: 2500
Общая потребность: 2500
Задача сбалансирована.
```

4. Подготовка ограничений для scipy.optimize.linprog

Функция linprog ожидает ограничения в определенном формате:

- с: Вектор коэффициентов целевой функции (у нас есть).
- A_ub, b_ub: Матрица и вектор для неравенств вида \$Ax \le b\$.
- A_eq, b_eq: Матрица и вектор для равенств вида \$Ax = b\$.
- bounds: Границы для каждой переменной (например, \$x_{ij} \ge 0\$).

В нашей задаче:

\$m \times n = 2 \times 3 = 6\$ переменных \$x_{ij}\$.

- \$m+n = 2+3=5\$ ограничений на запасы и потребности (в сбалансированной задаче это равенства).
- \$m \times n = 6\$ ограничений на пропускную способность (неравенства).

Переменные x_{ij} будем упорядочивать следующим образом: $(x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23})$.

```
# --- Формирование ограничений ---
# 1. Ограничения по запасам (равенства)
# Каждая строка соответствует одному заводу.
# Столбцы - переменные х_іј в нашем порядке.
A_{eq} = np.zeros((m, m * n))
for i in range(m):
    A_{eq} supply[i, i * n : (i + 1) * n] = 1 # Заполняем 1 для переменных,
исходящих от завода і
b_{eq} = a
print("Матрица A_eq_supply (запасы):\n", A_eq_supply)
print("Вектор b_eq_supply (запасы):\n", b_eq_supply)
# 2. Ограничения по потребностям (равенства)
# Каждая строка соответствует одному региону.
A_{eq} demand = np.zeros((n, m * n))
for j in range(n):
    A_{eq}_demand[j, j::n] = 1 # Заполняем 1 для переменных, входящих в регион j
b_eq_demand = b
print("\nMaтрица A eq demand (потребности):\n", A eq demand)
print("Вектор b eq demand (потребности):\n", b eq demand)
# Объединяем ограничения по равенству
A_eq = np.vstack((A_eq_supply, A_eq_demand))
b_eq = np.concatenate((b_eq_supply, b_eq_demand))
print("\nMaтрица A_eq (ограничения):\n", A_eq)
print("Вектор b_eq (ограничения):\n", b_eq)
# 3. Ограничения на пропускную способность (неравенства <=)
# Каждая строка соответствует одному маршруту х_іј
A_ub = np.eye(m * n) # Единичная матрица, т.к. каждое x_ij <= u_ij
b ub = u
print("\nМатрица A ub (пропускная способность):\n", A ub)
print("Вектор b_ub (пропускная способность):\n", b_ub)
# 4. Границы переменных (x_ij >= 0)
# linprog по умолчанию предполагает x_ij >= 0, но явно задать тоже можно
# bounds = [(0, None)] * (m * n) # Для каждой из 6 переменных нижняя граница 0,
верхняя - без ограничений
```

```
# Дополнительно: если бы были явные верхние границы, отличные от u_ij,
# их можно было бы учесть в A_ub и b_ub, или использовать bounds=[(0, u_ij)]
# Но в данном случае, u_ij уже учтены как отдельное ограничение <=,
# поэтому достаточно bounds=[(0, None)].
```

```
Матрица A_eq_supply (запасы):
 [[1. 1. 1. 0. 0. 0.]
 [0. 0. 0. 1. 1. 1.]]
Beктор b_eq_supply (запасы):
 [1000 1500]
Матрица A_eq_demand (потребности):
 [[1. 0. 0. 1. 0. 0.]
 [0. 1. 0. 0. 1. 0.]
 [0. 0. 1. 0. 0. 1.]]
Вектор b_eq_demand (потребности):
 [ 800 1200 500]
Матрица A_eq (ограничения):
 [[1. 1. 1. 0. 0. 0.]
 [0. 0. 0. 1. 1. 1.]
 [1. 0. 0. 1. 0. 0.]
 [0. 1. 0. 0. 1. 0.]
 [0. 0. 1. 0. 0. 1.]]
Вектор b_eq (ограничения):
 [1000 1500 800 1200 500]
Матрица A_ub (пропускная способность):
 [[1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 1.]]
Вектор b_ub (пропускная способность):
 [700 500 400 600 800 300]
```

5. Решение задачи с помощью scipy.optimize.linprog

Функция linprog решает задачи линейного программирования. Мы передадим ей:

- с: Коэффициенты целевой функции.
- A_ub, b_ub: Матрицу и вектор для ограничений \$\le\$.
- A_eq, b_eq: Матрицу и вектор для ограничений \$=\$.
- bounds: Границы для переменных (в нашем случае \$x_{ij} \ge 0\$).
- method='highs': Рекомендуемый современный метод для LP.

```
# --- Решение задачи ---
# Переменные: x11, x12, x13, x21, x22, x23
# Объединяем все ограничения-равенства (запасы + потребности)
# Общее число ограничений-равенств: m + n
# Общее число переменных: m * n
# Формируем итоговые матрицы для linprog
# B linprog, если есть и A_eq, и A_ub, они объединяются.
# Наша модель:
# минимизировать с*х
# при A_eq*x = b_eq
# и A_ub*x <= b_ub
# \mu bounds (x >= 0)
# Убедимся, что все данные корректны
num_vars = m * n
assert len(c) == num_vars
assert A_eq.shape == (m + n, num_vars)
assert len(b_eq) == m + n
assert A_ub.shape == (m * n, num_vars)
assert len(b_ub) == m * n
# Задаем границы для всех переменных: x_ij >= 0
# ( Верхняя граница будет задана через A_ub <= b_ub, поэтому здесь None)
bounds = [(0, None)] * num_vars
print("\nМатрица bounds (ограничения):\n", bounds)
# Вызов linprog
result = linprog(c=c,
                A_ub=A_ub,
                 b ub=b ub,
                 A_eq=A_eq
                 b_eq=b_eq,
                 bounds=bounds,
                 method='highs') # Используем эффективный метод
# --- Анализ результатов ---
print("--- Результаты оптимизации ---")
if result.success:
    print(f"Оптимальное решение найдено успешно.")
    print(f"Минимальная общая стоимость перевозки: {result.fun:.2f}")
    # Преобразуем плоский вектор х в двумерную матрицу х іј
    x_optimal = result.x.reshape((m, n))
    print("\nОптимальные объемы перевозок (x ij):")
    print("
             РЦ1 | РЦ2 | РЦ3 ")
    print("----")
    for i in range(m):
        row str = f"3{i+1}: "
        for val in x optimal[i]:
            row_str += f"{val:7.2f} | "
```

```
print(row_str)
    # --- Проверка ограничений ---
    print("\n--- Проверка ограничений ---")
    # Проверка запасов
    print("Проверка запасов (сумма отправленного <= запас):")</pre>
    for i in range(m):
        sent_sum = np.sum(x_optimal[i, :])
        print(f" Завод {i+1}: Отправлено={sent_sum:.2f}, Макс. запас={a[i]} -
{'OK' if sent_sum <= a[i] else '!!! BHUMAHUE !!!'}")</pre>
    # Проверка потребностей
    print("\nПроверка потребностей (сумма полученного >= потребность):")
    for j in range(n):
        received_sum = np.sum(x_optimal[:, j])
        print(f" Регион {j+1}: Получено={received_sum:.2f}, Мин. потребность=
\{b[j]\} - \{'OK' \text{ if received\_sum} >= b[j] \text{ else '!!! BHUMAHUE !!!'}\}"
    # Проверка пропускной способности
    print("\nПроверка пропускной способности (x_ij <= u_ij):")
    for i in range(m):
        for j in range(n):
            route_val = x_optimal[i, j]
            route_cap = u[i * n + j]
            route_name = f"3{i+1}-PU{j+1}"
            print(f" {route_name}: {route_val:.2f} (max {route_cap}) - {'OK' if
route_val <= route_cap else '!!! ΠΡΕΒЫШЕНО !!!'}")
else:
    print("Ошибка: Не удалось найти оптимальное решение.")
    print(f"Cooбщение: {result.message}")
```

5 Practice S (Решено).md 2025-10-30

```
Проверка потребностей (сумма полученного >= потребность):
Регион 1: Получено=800.00, Мин. потребность=800 - ОК
Регион 2: Получено=1200.00, Мин. потребность=1200 - ОК
Регион 3: Получено=500.00, Мин. потребность=500 - ОК

Проверка пропускной способности (x_ij <= u_ij):
31->РЦ1: 400.00 (max 700) - ОК
31->РЦ2: 400.00 (max 500) - ОК
31->РЦ3: 200.00 (max 400) - ОК
32->РЦ1: 400.00 (max 600) - ОК
32->РЦ2: 800.00 (max 800) - ОК
32->РЦ3: 300.00 (max 300) - ОК
```

6. Анализ результатов и выводы

Что мы получили?

- **Минимальная стоимость:** result.fun показывает наименьшую возможную стоимость перевозки при соблюдении всех условий.
- Оптимальные объемы перевозок: Матрица x_optimal показывает, сколько единиц груза нужно отправить по каждому маршруту.

Интерпретация:

- Маршруты, работающие на пределе (\$x_{ij} \approx u_{ij}\$): Это "узкие места" нашей логистической системы. Они ограничивают общую пропускную способность.
- Маршруты с большим запасом (\$x_{ij} \II u_{ij}\$): Есть потенциал для оптимизации или перераспределения потоков.
- Выводы для инноваций:
 - Понимание, какие маршруты критичны.
 - Обоснование для инвестиций в расширение пропускной способности.
 - Создание более эффективных и надежных логистических цепочек.

7. Заключение

Транспортная задача с ограничениями на пропускную способность – важный инструмент для:

- Реалистичного моделирования логистических систем.
- Выявления и устранения "узких мест".
- Оптимизации затрат и повышения эффективности.

Python с библиотеками SciPy и NumPy делает решение таких задач доступным и практичным.

8. Задачи для самостоятельного решения (для практики)

1. **Измените запасы и потребности:** Сделайте задачу несбалансированной (например, запасы > потребностей). Как это повлияет на постановку и решение? (Возможно, потребуется ввести

фиктивного потребителя).

- 2. Измените стоимость перевозки: Как изменение цен повлияет на оптимальные маршруты?
- 3. **Уменьшите пропускную способность одного из маршрутов:** Что произойдет с общей стоимостью и распределением потоков?
- 4. Добавьте новый завод или регион: Как изменится постановка и размерность задачи?

```
# Задача 1: Несбалансированная транспортная задача (запасы > потребностей)
import numpy as np
from scipy.optimize import linprog
print("=== ЗАДАЧА 1: НЕСБАЛАНСИРОВАННАЯ ТРАНСПОРТНАЯ ЗАДАЧА ===\n")
# Параметры задачи (запасы > потребностей)
m, n = 2, 3
c = np.array([5, 7, 9, 6, 8, 10]) # Стоимости
a = np.array([1200, 1800])
                                # Увеличенные запасы
b = np.array([800, 1200, 500]) # Потребности прежние
u = np.array([700, 500, 400, 600, 800, 300]) # Пропускная способность
print(f"Запасы: {a}, Потребности: {b}")
print(f"Общий запас: {sum(a)}, Общая потребность: {sum(b)}")
# Вместо фиктивного потребителя используем неравенства для запасов
A_ub_supply = np.zeros((m, m*n))
for i in range(m):
    A_{ub}_{supply}[i, i*n:(i+1)*n] = 1
A_ub_demand = np.zeros((n, m*n))
for j in range(n):
    A ub demand[j, j::n] = -1 # Для неравенства >=
A_ub = np.vstack((A_ub_supply, A_ub_demand))
b ub = np.concatenate((a, -b)) # Обратите внимание на знак для потребностей
# Ограничения пропускной способности
A_ub_capacity = np.eye(m*n)
b ub capacity = u
# Объединяем все неравенства
A ub total = np.vstack((A ub, A ub capacity))
b_ub_total = np.concatenate((b_ub, b_ub_capacity))
# Решение
result = linprog(c=c, A_ub=A_ub_total, b_ub=b_ub_total,
                 bounds=(0, None), method='highs')
if result.success:
    x_opt = result.x.reshape((m, n))
    print(f"\nМинимальная стоимость: {result.fun:.2f}")
    print("Оптимальные перевозки:")
    print("
                  РЦ1
                        РЦ2 РЦ3")
    for i in range(m):
```

```
print(f"3{i+1}: {x_opt[i,0]:6.1f} {x_opt[i,1]:6.1f} {x_opt[i,2]:6.1f}")

# Проверка использования запасов
unused = a - np.sum(x_opt, axis=1)
print(f"\nHеиспользованные запасы: Завод 1: {unused[0]:.1f}, Завод 2:
{unused[1]:.1f}")
print(f"Общий неиспользованный запас: {sum(unused):.1f} единиц")
```

```
=== ЗАДАЧА 1: НЕСБАЛАНСИРОВАННАЯ ТРАНСПОРТНАЯ ЗАДАЧА ===
Запасы: [1200 1800], Потребности: [ 800 1200 500]
Общий запас: 3000, Общая потребность: 2500
Минимальная стоимость: 18200.00
Оптимальные перевозки:
    РЦ1 РЦ2 РЦ3
З1: 600.0 400.0 200.0
З2: 200.0 800.0 300.0

Неиспользованные запасы: Завод 1: 0.0, Завод 2: 500.0
Общий неиспользованный запас: 500.0 единиц
```

```
# Задача 2: Изменение стоимости перевозки и анализ чувствительности
import numpy as np
from scipy.optimize import linprog
print("\n=== ЗАДАЧА 2: АНАЛИЗ ЧУВСТВИТЕЛЬНОСТИ К СТОИМОСТИ ===\n")
# Исходные параметры
m, n = 2, 3
a = np.array([1000, 1500])
b = np.array([800, 1200, 500])
u = np.array([700, 500, 400, 600, 800, 300])
# Сценарии изменения стоимости
scenarios = [
    ("Базовая", [5, 7, 9, 6, 8, 10]),
    ("Удорожание 31->РЦ1", [8, 7, 9, 6, 8, 10]),
    ("Удешевление 32->РЦЗ", [5, 7, 9, 6, 8, 7]),
    ("Изменение всех цен", [6, 6, 8, 7, 7, 9])
]
def solve_transport(costs):
    A_{eq} = np.zeros((m, m*n))
    for i in range(m):
        A_{eq}\sup\{i, i^*n: (i+1)^*n\} = 1
    A eq demand = np.zeros((n, m*n))
```

```
for j in range(n):
        A_eq_demand[j, j::n] = 1
    A_eq = np.vstack((A_eq_supply, A_eq_demand))
    b_eq = np.concatenate((a, b))
    A_ub = np.eye(m*n)
    b_ub = u
    result = linprog(c=costs, A_ub=A_ub, b_ub=b_ub,
                      A_eq=A_eq, b_eq=b_eq, bounds=(0, None), method='highs')
    return result
for scenario_name, costs in scenarios:
    result = solve_transport(costs)
    if result.success:
        x_opt = result.x.reshape((m, n))
        print(f"{scenario_name}:")
        print(f" Стоимость: {result.fun:.2f}")
        print(f" Распределение: 31->PЦ1:{x_opt[0,0]:.0f}, 31->PЦ2:
\{x_{opt}[0,1]:.0f\}, 31->PU3:\{x_{opt}[0,2]:.0f\}"\}
        print(f"
                                 32 \rightarrow PU1:\{x_{opt}[1,0]:.0f\}, 32 \rightarrow PU2:\{x_{opt}[1,1]:.0f\},
32->PЦ3:{x_opt[1,2]:.0f}")
```

```
=== ЗАДАЧА 2: АНАЛИЗ ЧУВСТВИТЕЛЬНОСТИ К СТОИМОСТИ ===
Базовая:
  Стоимость: 18400.00
 Распределение: 31->РЦ1:400, 31->РЦ2:400, 31->РЦ3:200
               32->РЦ1:400, 32->РЦ2:800, 32->РЦ3:300
Удорожание 31->РЦ1:
 Стоимость: 19000.00
 Распределение: 31->РЦ1:200, 31->РЦ2:500, 31->РЦ3:300
               32->РЦ1:600, 32->РЦ2:700, 32->РЦ3:200
Удешевление 32->РЦ3:
 Стоимость: 17500.00
 Распределение: 31->РЦ1:400, 31->РЦ2:400, 31->РЦ3:200
               32->РЦ1:400, 32->РЦ2:800, 32->РЦ3:300
Изменение всех цен:
 Стоимость: 17500.00
 Распределение: 31->РЦ1:400, 31->РЦ2:400, 31->РЦ3:200
               32->РЦ1:400, 32->РЦ2:800, 32->РЦ3:300
```

```
# Задача 3: Уменьшение пропускной способности критического маршрута import numpy as np from scipy.optimize import linprog print("\n=== ЗАДАЧА 3: АНАЛИЗ 'УЗКИХ МЕСТ' ===\n")
```

```
m, n = 2, 3
c = np.array([5, 7, 9, 6, 8, 10])
a = np.array([1000, 1500])
b = np.array([800, 1200, 500])
# Сценарии с разной пропускной способностью
capacity_scenarios = [
    ("Базовая", [700, 500, 400, 600, 800, 300]),
    ("Ограничение 32->РЦ2", [700, 500, 400, 600, 400, 300]),
    ("Сильное ограничение 31->РЦ1", [200, 500, 400, 600, 800, 300]),
    ("Множественные ограничения", [300, 300, 300, 400, 500, 200])
]
def solve_with_capacity(u_values):
    A_{eq} = np.zeros((m, m*n))
    for i in range(m):
        A_{eq} = \sup \{i, i*n: (i+1)*n\} = 1
    A_{eq} demand = np.zeros((n, m*n))
    for j in range(n):
        A_{eq}_demand[j, j::n] = 1
    A_eq = np.vstack((A_eq_supply, A_eq_demand))
    b_eq = np.concatenate((a, b))
    A_ub = np.eye(m*n)
    b_ub = u_values
    result = linprog(c=c, A_ub=A_ub, b_ub=b_ub,
                     A_eq=A_eq, b_eq=b_eq, bounds=(0, None), method='highs')
    return result
for scenario name, u values in capacity scenarios:
    result = solve_with_capacity(u_values)
    if result.success:
        print(f"{scenario_name}:")
        print(f" Минимальная стоимость: {result.fun:.2f}")
        print(f" Пропускная способность: {u_values}")
        # Анализ использования мощностей
        x_{opt} = result.x
        utilization = []
        for i in range(len(x opt)):
            if u_values[i] > 0:
                util = x_opt[i] / u_values[i] * 100
                utilization.append(util)
                if util > 95:
                    print(f" ВНИМАНИЕ: Маршрут {i+1} используется на
{util:.1f}%!")
```

```
=== ЗАДАЧА 3: АНАЛИЗ 'УЗКИХ МЕСТ' ===
```

```
Базовая:
Минимальная стоимость: 18400.00
Пропускная способность: [700, 500, 400, 600, 800, 300]
ВНИМАНИЕ: Маршрут 5 используется на 100.0%!
ВНИМАНИЕ: Маршрут 6 используется на 100.0%!
Сильное ограничение 31->РЦ1:
Минимальная стоимость: 18400.00
Пропускная способность: [200, 500, 400, 600, 800, 300]
ВНИМАНИЕ: Маршрут 1 используется на 100.0%!
ВНИМАНИЕ: Маршрут 2 используется на 100.0%!
ВНИМАНИЕ: Маршрут 4 используется на 100.0%!
```

```
# Задача 4: Добавление нового завода
import numpy as np
from scipy.optimize import linprog
print("\n=== ЗАДАЧА 4: РАСШИРЕНИЕ ПРОИЗВОДСТВА ===\n")
# Добавляем третий завод
m, n = 3, 3
c = np.array([5, 7, 9, # Завод 1 6, 8, 10, # Завод 2
              4, 6, 8])
                           # Новый завод 3 (более низкие стоимости)
a = np.array([1000, 1500, 800]) # Запасы + новый завод
b = np.array([800, 1200, 500])
u = np.array([700, 500, 400, # Завод 1
600, 800, 300, # Завод 2
              500, 600, 400]) # Новый завод 3
print(f"Новые параметры:")
print(f"Заводы: {m}, Регионы: {n}")
print(f"Запасы: {a}")
print(f"Потребности: {b}")
print(f"Стоимости: {c.reshape(3,3)}")
# Формирование ограничений
A_{eq} = np.zeros((m, m*n))
for i in range(m):
    A_{eq}\sup[i, i*n:(i+1)*n] = 1
A eq demand = np.zeros((n, m*n))
for j in range(n):
    A_{eq} demand[j, j::n] = 1
A_eq = np.vstack((A_eq_supply, A_eq_demand))
b_eq = np.concatenate((a, b))
A_ub = np.eye(m*n)
b ub = u
result = linprog(c=c, A_ub=A_ub, b_ub=b_ub,
```

5 Practice S (Решено).md 2025-10-30

```
A_eq=A_eq, b_eq=b_eq, bounds=(0, None), method='highs')
if result.success:
   x_opt = result.x.reshape((m, n))
   print(f"\nPeзультат с новым заводом:")
   print(f"Минимальная стоимость: {result.fun:.2f}")
   print("\nОптимальные перевозки:")
   print("
                 РЦ1
                      РЦ2
   for i in range(m):
        print(f"3{i+1}: {x_opt[i,0]:6.1f} {x_opt[i,1]:6.1f} {x_opt[i,2]:6.1f}")
   # Сравнение с исходной задачей
   original_cost = 18400.00 # Из предыдущего решения
   improvement = original_cost - result.fun
    print(f"\nЭкономия от нового завода: {improvement:.2f}
({improvement/original_cost*100:.1f}%)")
```

```
=== ЗАДАЧА 4: РАСШИРЕНИЕ ПРОИЗВОДСТВА ===

Новые параметры:
Заводы: 3, Регионы: 3
Запасы: [1000 1500 800]
Потребности: [ 800 1200 500]
Стоимости: [[ 5 7 9]
  [ 6 8 10]
  [ 4 6 8]]
```

9. Анализ и выводы по дополнительным задачам

- **Несбалансированные задачи:** Вводятся фиктивные элементы (поставщики/потребители) для выравнивания предложения и спроса, сохраняя сбалансированную структуру LP.
- **Ограничения на уровне потребителей:** Добавляются новые строки в матрицу \$A_{ub}\$ и \$b_{ub}\$, что усложняет задачу, но делает ее более реалистичной.
- Задачи с фиксированной стоимостью/минимальными партиями: Требуют перехода к целочисленному или смешанному целочисленному программированию (MILP), что выходит за рамки linprog.

Эти примеры демонстрируют, как математическая постановка может быть адаптирована для отражения более сложных реальных сценариев.

10. Задачи для самостоятельного решения

- 1. **Измените пропускную способность маршрутов:** Попробуйте значительно уменьшить пропускную способность одного из маршрутов (например, до 100 единиц). Как это повлияет на общую стоимость и распределение потоков?
- 2. **Введите новое ограничение:** Допустим, маршрут 31->PЦ2 теперь имеет ограничение, что по нему можно перевезти **минимум** 300 единиц, если он вообще используется. Как это можно

- смоделировать? (Это сложно сделать напрямую в linprog, но дает представление о более сложных задачах).
- 3. **Решите задачу без ограничений на пропускную способность:** Сравните результат с задачей, где эти ограничения учтены. Что это говорит об эффективности маршрутов?

```
# Задача 5: Решение без ограничений пропускной способности
import numpy as np
from scipy.optimize import linprog
print("\n=== ЗАДАЧА 5: СРАВНЕНИЕ С ЗАДАЧЕЙ БЕЗ ОГРАНИЧЕНИЙ ===\n")
m, n = 2, 3
c = np.array([5, 7, 9, 6, 8, 10])
a = np.array([1000, 1500])
b = np.array([800, 1200, 500])
u = np.array([700, 500, 400, 600, 800, 300])
# Решение с ограничениями пропускной способности
A_{eq} = np.zeros((m, m*n))
for i in range(m):
    A_{eq}\sup[i, i*n:(i+1)*n] = 1
A_eq_demand = np.zeros((n, m*n))
for j in range(n):
    A_{eq} demand[j, j::n] = 1
A_eq = np.vstack((A_eq_supply, A_eq_demand))
b_eq = np.concatenate((a, b))
# С ограничениями
A_{ub} = np.eye(m*n)
b ub with = u
result_with = linprog(c=c, A_ub=A_ub_with, b_ub=b_ub_with,
                      A eq=A eq, b eq=b eq, bounds=(0, None), method='highs')
# Без ограничений пропускной способности
result without = linprog(c=c, A eq=A eq, b eq=b eq, bounds=(0, None),
method='highs')
if result with.success and result without.success:
    print("Сравнение результатов:")
    print(f"C ограничениями пропускной способности:")
    print(f" Стоимость: {result_with.fun:.2f}")
    x_with = result_with.x.reshape((m, n))
    print(f" Распределение: {x_with.flatten()}")
    print(f"\nБез ограничений пропускной способности:")
    print(f" Стоимость: {result without.fun:.2f}")
    x_without = result_without.x.reshape((m, n))
    print(f" Распределение: {x_without.flatten()}")
    cost difference = result with.fun - result without.fun
```

5 Practice S (Решено).md

```
=== ЗАДАЧА 5: СРАВНЕНИЕ С ЗАДАЧЕЙ БЕЗ ОГРАНИЧЕНИЙ ===

Сравнение результатов:
С ограничениями пропускной способности:
Стоимость: 18400.00
Распределение: [400. 400. 200. 400. 800. 300.]

Без ограничений пропускной способности:
Стоимость: 18400.00
Распределение: [ 0. 1000. 0. 800. 200. 500.]

Разница в стоимости: 0.00
Ограничения увеличили стоимость на 0.0%

Анализ ограничивающих факторов:
Маршрут 32->РЦ2: 800.0/800 (100.0%) - ОГРАНИЧИВАЕТ!
Маршрут 32->РЦ3: 300.0/300 (100.0%) - ОГРАНИЧИВАЕТ!
```