IE 400 Fall 2019 Study Set 4 Solutions

1)

a) b)

Activity	Slack	
Α	0	
В	0	
С	30	
D	30	
E	3	
F		
G	8	
Н	8	
I	8	
J	0	
K	30	
L	0	

- c) Since the slack for cutting the onions and mushrooms is 3, the dinner will be delayed 6-3=3 minutes. If the cutting time is 2 minutes, slack is 10 (latest finish time) 2 (task duration) = 8 minutes. Since the slack time is more than the delay time, it does not delay the dinner.
- d) Let N be the set of activities and A be the set of arc in the project network.

<u>Parameters</u>

 a_i : task duration of activity i, for all i ϵ

N d: project duration (75)

Decision Variables

 x_i : start time of activity i, for all i $\in N$

<u>Model</u>

Max Σ x_i

s.t $x_j \ge x_i + a_i$ for all $i, j \in \mathbb{N}$

 $x_{end} \le d$

 $x_i \ge 0$ for all $i \in N$

 $x_{\text{start}} = 0$

2)

End of Year	Principal Repayment	Interest payment	Remaining Balance
0			\$10,000
1	\$1,671	\$900	\$8,329
2	\$1,821	\$750	\$6,508
3	\$1,985	\$586	\$4,523
4	\$2,164	\$407	\$2,359
5	\$2,359	\$212	\$0

3) P = \$7,000(P/F, 6%, 2) + \$6,000(P/F, 6%, 5) + \$5,000(P/F, 6%, 7) = \$14,038

4)

Critical paths: A-B-C-G and A-B-E-F-G

Duration: 26 days

b) D can be delayed for 8 days.

भुर	: # days duration of o	activity is reduced.	Decision voriables
min st		90 + 20 y = + 30 y = +1 y A ≤ 2 y B ± 3 y c ≤ 1 y b € 2 y € ± 3 y € ± 3 y € ₹ 1	wo ye OR define the parameters: criccitof reduction crimax reduction driduction driduction T = 197 st yr > rr xr>xi+di-yi V(ii))e A xend & 20 yr), 0 and integer yr
	XG > Xf +6-9f Xend > X6+3-96 Xend > X8+5-98 Xotort =0 Xend & 20 YA, 98, 4c, 48, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46	a g	

5)

$$F = 2P = P(1+0.15)^N$$

$$log 2 = N log (1.15)$$

N = 4.96 years

6)

Selecting the base period at n = 0, we find

$$$100(P/A,13\%,5) + $20(P/A,13\%,3)(P/F,13\%,2) = A(P/A,13\%,5)$$

 $$351.72 + $36.98 = (3.5172)A$
 $A = 110.51

7) (I

(7) You need a mornine (much) for the next 5 years

A new mch costs \$1000

Cast at maintaining the men during its it year at operation is $m_1 = 160$ $m_2 = 180$ $m_3 = 1120$

A mach can be kept up to I years.

The trade in value ofter i years is s_i : $s_i = $800 \quad s_i = $600 \quad s_i = 500

min cost over 5 years.

fk(i) = min cast from time k to time 5 if the mch is i years old at time k.

Dose case: f= (1) =-Sq , 7=1,2,3

Recursion ! for k = 4, 1, 2, 1

8)

mox $\sum_{j=1}^{n} a_j x_j \leq b_1$ $\sum_{j=1}^{n} d_j x_j \leq b_2$

Think by and be as resources and we have a type items

×1 >,0 Vg and integer

 x_j : decision at stage j, j: 1,...n (amount of type i items taken) ℓ_1, ℓ_2 : amount of resources available

(& 1, & p) -> state

fi (lile): maximum value of the objective function considering stages (items) 3.7+1,...n with available resources li and le

so the recursion function is as follows:

$$f_{2}(1, f_{3}) = \max \left\{ c_{2}x_{1} + f_{2+1}(f_{1} - a_{2}x_{2}^{2}, f_{3} - a_{2}x_{2}) \right\} \quad \forall j \in I, \dots, u$$

$$f_{2}(1, f_{3}) = \max \left\{ c_{2}x_{1} + f_{2+1}(f_{1} - a_{2}x_{2}^{2}, f_{3} - a_{2}x_{3}) \right\}$$

Bose cose: fart(k1,k2)=0 V k1,k2
Optimal solution value: fi(b1,b2)