

# Méthode SPH implicite d'ordre 2 appliquée à des fluides incompressibles Smoothed-particle hydrodynamics

Damien Rioux Lavoie Université de Montreal

2 janvier 2016

#### Table des matières



Introduction

Formalisme lagrangien et Navier-Stokes

Discrétisation temporelle

Smoothed-particle hydrodynamics

Traitement des frontières

Écoulement de Poiseuille

Conclusion

References



- ▶ C'est une méthode sans maillage utilisant un formalisme lagrangien.
- Développé par Gingold et Monaghan en 1977 et, indépendamment la même année, par Lucy.
- Développement par Cummins, en 1999, d'une méthode complètement incompressible utilisant la méthode de projection développée par Chorin en 1968.
- Avantages : Interprétation naturelle, traitement des géométries complexes, traitement des déformations du domaine, calcul concentré là où il y a des particules...
- Application : Astrophysique, écoulements multi-phases, écoulements avec surface libre, impacts et explosions...



- Weakly compressible smoothed-particle hydrodynamics (WCSPH)
  - ► On suppose que le fluide est légèrement compressible.
  - Introduis une vitesse du son pour relier la pression et la densité volumique.
  - Entraîne une condition CFL très stricte sur le pas de temps.
  - Fluctuation de la densité peut conduire à des oscillations importantes de la pression et donc de l'instabilité.
  - Réflection sur les frontières.
- Projection smoothed-particle hydrodynamics (PSPH)
  - ► Complètement incompressible.
  - Méthode de projection introduisant des champs auxiliaires.
  - Solutions plus lisses.
  - Les conditions aux limites à appliquer sur les champs auxiliaires sont non triviales



- Écoulement planaire dans un intervalle de temps  $I = (-\epsilon, \epsilon) \subset [-T, T]$ .
- ▶ Temps initial t = 0.
- Soit  $\Omega_0$ , ouvert, le domaine géométrique en t=0, munie de la frontière  $\Gamma_0 = \overline{\Omega}_0 \setminus \Omega_0$ .
- Soit Ψ le domaine matériel.il s'agit de l'ensemble des étiquettes i des particules matérielles.
- Soit i ∈ Ψ, partant de la position initiale ξ<sub>i</sub> ∈ Ω<sub>0</sub>. la trajectoire de i, noté x<sub>i</sub>(t), est la solution de :

$$\frac{\mathrm{d}}{\mathrm{d}t}\underline{x}_i(t) = \underline{u}(\underline{x}_i(t),t) \quad t \in I, \quad \underline{x}_i(t_0) = \underline{\xi}_i$$

ou  $u : \mathbb{R}^2 \times I \to \mathbb{R}^2$  est le champs de vitesse de l'écoulement.



▶ Soit la famille d'application  $\{S(t)\}_{t\in I}$ , nommé le flot, définit par :

$$S(t): \mathbb{R}^2 \to \mathbb{R}^2$$
  
 $\underline{\xi}_i \mapsto S(t)\underline{\xi}_i = \underline{x}_i(t)$ 

- ▶ On définit  $\Omega(t) = S(t)\Omega_0 = \left\{S(t)\underline{\xi}_i \,\middle|\, \underline{\xi}_i \in \Omega_0\right\}$  et  $\Gamma(t) = S(t)\Gamma_0$ .
- ▶ On définit la dérivée matérielle :

$$\frac{\mathsf{D}}{\mathsf{D}\,t}f(\underline{x}_i,t) = \frac{\mathrm{d}}{\mathrm{d}t}f(\underline{x}_i(t),t) 
= \frac{\partial}{\partial t}f(\underline{x}_i,t) + \underline{u}(\underline{x}_i,t) \cdot \nabla f(\underline{x}_i,t)$$

▶ Nous allons employer la notation  $\Omega \times I = \bigcup_{t \in I} \Omega(t) \times \{t\}$ .



Nous avons deux approches différentes pour décrire l'écoulement :

Eulérien  $(\underline{x},t)$ : On étudie un point arbitraire  $\underline{x} \in \mathbb{R}^2$  et considérons le champs de vitesse  $\underline{u}(\underline{x},t)$  en ce point. On étudie donc le domaine géométrique  $\Omega$ .

Lagrangien  $(\underline{\xi}_i,t)$ : On étudie une particule  $i\in \Psi$ , de coordonnée initiale  $\underline{\xi}_i\in \Omega_0$ , et considérons sa trajectoire  $\underline{x}_i(t)=S(t)\underline{\xi}_i$ . On étudie donc le domaine matériel  $\Psi$ .

Nous allons nous concentrer sur l'approche lagrangienne.

# Équations de Navier-Stokes



- ▶ Un fluide incompressible, est un fluide tel que  $\frac{D \rho}{D t} = 0$ , ou  $\rho \colon \Omega \times I \to \mathbb{R}$  est la densité .
- ▶ Un fluide newtonien est un fluide dont dont la vitesse de déformation est une fonction linéaire du gradient de la vitesse.
- Les equations de Navier-Stokes pour un fluide incompressible newtonien sont :

$$\begin{aligned} \frac{\mathsf{D}\,\underline{u}}{\mathsf{D}\,t} &= \frac{1}{\rho}\underline{\nabla}\cdot\underline{\sigma} + \underline{f} & \mathsf{dans}\ \ \Omega\times I \\ \underline{\sigma} &= -p\underline{\delta} + \eta\left(\underline{\nabla}\underline{u} + (\underline{\nabla}\underline{u})^\mathsf{T}\right) \\ \underline{\nabla}\cdot\underline{u} &= 0 & \mathsf{dans} & \mathsf{dans}\ \ \Omega\times I \end{aligned}$$

ou  $\underline{f}: \Omega \times I \to \mathbb{R}^2$  la force par unité de masse associée à la force externe  $\underline{F}_V$ ,  $\eta$  est la viscosité et  $\underline{\sigma}\colon \mathbb{R}^2 \to \mathbb{R}^{2\times 2}$  le tenseur des contraintes.



- ➤ Soit L une longueur de référence et U une vitesse de référence, de l'écoulement.
- Les variables adimensionnées sont :

$$\underline{x} = L\underline{x}^{\star}, \ \underline{u} = U\underline{u}^{\star}, \ t = \frac{L}{U}t^{\star}, \ p = \frac{\eta U}{L}p^{\star}, \ \underline{f} = \frac{U^{2}}{L}\underline{f}^{\star}.$$

▶ On définit le nombre de Reynold Re =  $\frac{\rho UL}{\eta}$ , une constante sans dimension.



- On suppose que la viscosité est constante
- On obtient la forme de Laplace des équations de Navier-Stokes adimensionnés :

Nous avons laissé tomber la notation étoilée.



## Theorem (Théorème de décomposition de Helmholtz-Hodge)

Soit  $\underline{\xi} \in \mathcal{C}^1\left(\overline{\Omega}\right)$ , où  $\Omega$  est un domaine ouvert de frontière  $\Gamma$  supposée lipschitzienne. Alors, il existe un champ vectoriel  $\underline{A}$  et un champ scalaire  $\phi$ , définis sur  $\overline{\Omega}$ , tels que :

$$\underline{\xi} = \underline{\nabla} \times \underline{A} + \underline{\nabla} \phi = \underline{u} + \underline{\nabla} \phi$$

#### Remarque

- Certaines hypothèses de l'énoncé peuvent être affaiblies.
- ▶ Lorsque  $\Gamma \neq \emptyset$ , il n'est pas toujours possible de garantir l'orthogonalité, au sens de  $L^2$ , de la décomposition et elle n'est jamais unique. En effet, ceci dépendra des conditions aux frontières imposées sur u et  $\phi$ .

## Discrétisation temporelle



- ▶ Soit  $\Delta t$ , un intervalle de temps et la notation  $t^n = n\Delta t$ .
- Nous allons utiliser les notations  $\underline{x}_i^n$  et  $g_i^n$  pour désigner les valeurs approximatives de  $\underline{x}_i(t^n)$  et  $g(\underline{x}_i(t^n), t^n)$ .
- ▶ On intègre la forme de Laplace de  $t^n$  a  $t^{n+1}$  le long des trajectoires  $\underline{x}_i(t)$ .
- ▶ On discrétise à l'aide d'une différence centrée, de la méthode du trapèze et celle du point milieu pour obtenir  $\mathcal{O}(\Delta t^2)$ .
- ➤ On découple la vitesse de la pression à l'aide du théorème de décomposition de Helmholtz-Hodge :

$$\underline{u}^{n+1} = \underline{u}^* - \Delta t \underline{\nabla} \phi^{n+1}$$

où nous choisissons  $\phi^{n+1}$  de façon à forcer l'incompressibilité de  $u^{n+1}$ .



Nous obtenons le schéma temporel d'ordre  $\mathcal{O}(\Delta t^2)$  :

$$\begin{split} \underline{u}_{i}^{*} - \frac{\Delta t}{2 \operatorname{Re}} \Delta \underline{u}_{i}^{*} &= \underline{u}_{i}^{n} + \Delta t \left[ -\frac{1}{\operatorname{Re}} \underline{\nabla} q^{n + \frac{1}{2}} + \frac{1}{2 \operatorname{Re}} \Delta \underline{u}_{i}^{n} + \underline{f}_{i}^{n + \frac{1}{2}} \right] \\ \Delta \phi_{i}^{n+1} &= \frac{1}{\Delta t} \underline{\nabla} \cdot \underline{u}_{i}^{*} \\ \underline{u}_{i}^{n+1} &= \underline{u}_{i}^{*} - \Delta t \underline{\nabla} \phi_{i}^{n+1} \\ q^{n + \frac{1}{2}} &= p_{i}^{n + \frac{1}{2}} - \operatorname{Re} \phi_{i}^{n+1} + \frac{1}{2} \underline{\nabla} \cdot \underline{u}_{i}^{*} + K \\ \underline{x}_{i}^{n+1} &= \underline{x}_{i}^{n} + \frac{\Delta t}{2} \left( \underline{u}_{i}^{n} + \underline{u}_{i}^{n+1} \right) \end{split}$$



En posant  $q^{n+\frac{1}{2}}=0$ , nous obtenons le schéma PMIII :

$$\begin{split} \underline{u}_{i}^{*} - \frac{\Delta t}{2\operatorname{Re}} \Delta \underline{u}_{i}^{*} &= \underline{u}_{i}^{n} + \Delta t \left[ \frac{1}{2\operatorname{Re}} \Delta \underline{u}_{i}^{n} + \underline{f}_{i}^{n+\frac{1}{2}} \right] \\ \Delta \phi_{i}^{n+1} &= \frac{1}{\Delta t} \underline{\nabla} \cdot \underline{u}_{i}^{*} \\ \underline{u}_{i}^{n+1} &= \underline{u}_{i}^{*} - \Delta t \underline{\nabla} \phi_{i}^{n+1} \\ p_{i}^{n+\frac{1}{2}} &= \operatorname{Re} \phi_{i}^{n+1} - \frac{1}{2} \underline{\nabla} \cdot \underline{u}_{i}^{*} + K \\ \underline{x}_{i}^{n+1} &= \underline{x}_{i}^{n} + \frac{\Delta t}{2} \left( \underline{u}_{i}^{n} + \underline{u}_{i}^{n+1} \right) \end{split}$$

Lorsque nous posons  $q^{n+\frac{1}{2}}=p^{n-\frac{1}{2}}$ , nous obtenons un schéma nommé PMII.



▶ Identité de convolution :

$$f(\underline{x}) = \int_{\Omega} f(\underline{x}') \delta(\underline{x} - \underline{x}') d\underline{x}'$$

où  $\delta$  est la distribution de Delta-Dirac.

- ▶ On approxime  $\delta(\underline{x})$  par une fonction de lissage  $W(\underline{x}, h)$ , munie d'une longueur de lissage h définissant un support compact.
- Approximation de lissage :

$$\langle f(\underline{x}) \rangle = \int_{\Omega} f(\underline{x}') W(\underline{x} - \underline{x}', h) d\underline{x}'$$

## Fonction de lissage



- ▶ Pour bien approximer  $\delta$ , W doit satisfaire :
  - 1. Aire unité :  $\int_{\Omega} W(\underline{x}, h) d\underline{x} = 1$ .
  - 2. Convergence au sens des distributions :  $\lim_{h\to 0}W\left(\underline{x},h\right)=\delta\left(\underline{x}\right)$ .
- Les propriétés additionnelles suivantes sont aussi suggérées :
  - 3. Support compact sphérique :  $\exists k > 0$  tel que  $W(\underline{x}, h) = 0$  lorsque  $|\underline{x}| > kh$ .
  - 4. Symétrie :  $W(\underline{x}, h) = W(-\underline{x}, h)$
  - 5. Décroissance : Elle doit décroître rapidement à mesure que l'on s'éloigne de x=0.

## Fonction spline cubique



Nous avons opté pour la fonction spline cubique définie par :

$$W(r,h) = w_0 egin{cases} rac{2}{3} - q^2 + rac{1}{2}q^3 & ext{ si } 0 \leq q < 1 \ rac{1}{6}\left(2 - q\right)^3 & ext{ si } 1 \leq q < 2 \ 0 & ext{ si } q \geq 2 \end{cases}$$

où 
$$q=rac{r}{h}$$
 et, pour  $\Omega\subset\mathbb{R}^2$ ,  $w_0=rac{15}{7\pi h^2}$ .



le support compact est de rayon 2h.

## Erreur de lissage



- Notons  $B_{\underline{x}} = B(\underline{x}, kh) = \{\underline{x}' \in \Omega \mid ||\underline{x} \underline{x}'||_2 \le kh\}.$
- ▶ ATTENTION : Nous allons supposer pour le reste de cette section, que  $B_{\underline{x}} \subset \Omega$ .
- ▶ Par Taylor et les propriétés de W, on trouve :

$$\langle f(\underline{x}) \rangle = \int_{B_{\underline{x}}} \left[ f(\underline{x}) + \left[ \operatorname{Jac} f \right]_{\underline{x}} (\underline{x} - \underline{x}') \right] W(\underline{x} - \underline{x}', h) \, d\underline{x}'$$

$$+ \int_{B_{\underline{x}}} \mathcal{O} \left( \left\| \underline{x} - \underline{x}' \right\|_{2}^{2} \right) W(\underline{x} - \underline{x}', h) \, d\underline{x}'$$

$$= f(\underline{x}) + \mathcal{O} \left( h^{2} \right)$$

#### Remarque

Ceci n'est pas toujours vrai lorsque  $B_{\underline{x}} \not\subset \Omega$ , car le terme contenant le jacobien ne s'annulera pas complètement.

## Discrétisation de l'approximation de lissage



- ▶ Notons  $\mathcal{B}_i = \mathcal{B}(i, kh) = \{j \in \Psi \mid r_{ij} \leq kh\}$  et  $\mathcal{B}'_i = \mathcal{B}_i \setminus \{i\}$ .
- ▶  $\forall i \in \Psi$ , on associe une position  $\underline{x}_k$ , une masse  $m_k$  et une densité  $\rho_k$ ,
- ▶ On discrétise sur les éléments de masse en remarquant que :  $\operatorname{d} m(\underline{x}) = \rho(\underline{x})\operatorname{d} \underline{x}$
- ▶ On obtient  $f_i$ , la valeur discrétisée de  $\langle f(\underline{x}_i) \rangle$  :

$$f_i = \sum_{j \in \mathcal{B}_i} \frac{m_j}{\rho_j} f_j W_{ij,h}$$

où 
$$W_{ij,h} := W(\underline{x}_i - \underline{x}_j, h)$$
.

- L'obtention de l'approximation du gradient se fait en substituant  $\nabla f$  dans l'approximation de lissage.
- On obtient à l'aide d'une intégration par parties et du théorème de la divergence :

$$[\underline{\nabla}f]_i = -\sum_{j \in \mathcal{B}_i'} \frac{m_j}{\rho_j} f_j \underline{\nabla}_j W_{ij,h}$$

- ▶ L'erreur de lissage reste  $\mathcal{O}(h^2)$ .
- Nous allons utiliser une forme plus élaborée.



- Nous allons supposer que  $m_k = m$ ,  $\eta_k = \eta$  et  $\rho_k = \rho$ .
- les approximations discrètes des opérateurs différentiels que nous allons utiliser sont :

$$\begin{split} [\nabla \phi]_{i} &= \sum_{j \in \mathcal{B}'_{i}} \frac{m}{\rho} (\phi_{i} + \phi_{j}) \underline{x}_{ij} \frac{1}{r_{ij}} \frac{\partial W_{ij,h}}{\partial r_{ij}} \\ [\nabla \cdot \underline{u}]_{i} &= \sum_{j \in \mathcal{B}'_{i}} \frac{m}{\rho} (\underline{u}_{i} + \underline{u}_{j}) \cdot \underline{x}_{ij} \frac{1}{r_{ij}} \frac{\partial W_{ij,h}}{\partial r_{ij}} \\ [\Delta \underline{u}]_{i} &= \sum_{j \in \mathcal{B}'_{i}} 2 \frac{m}{\rho} \underline{u}_{ij} \frac{1}{r_{ij}} \frac{\partial W_{ij,h}}{\partial r_{ij}} \\ [\Delta \phi]_{i} &= \sum_{j \in \mathcal{B}'_{i}} 2 \frac{m}{\rho} \phi_{ij} \frac{1}{r_{ij}} \frac{\partial W_{ij,h}}{\partial r_{ij}} \end{split}$$



En substituant, nous obtenons le schéma de discrétisation PMIII temporel et spatial :

$$\left(1 - \sum_{j \in \mathcal{B}_{i}^{n+1,\prime}} a_{ij}^{n+1}\right) \underline{u}_{i}^{*} + \sum_{j \in \mathcal{B}_{i}^{n+1,\prime}} a_{ij}^{n+1} \underline{u}_{j}^{*} = \underline{u}_{i}^{n} + \sum_{j \in \mathcal{B}_{i}^{n,\prime}} a_{ij}^{n} \left(\underline{u}_{i}^{n} - \underline{u}_{j}^{n}\right) \\
+ \Delta t \underline{f}_{i}^{n+\frac{1}{2}} \\
\left(\sum_{j \in \mathcal{B}_{i}^{n+1,\prime}} c_{ij}^{n+1}\right) \phi_{i}^{n+1} - \sum_{j \in \mathcal{B}_{i}^{n+1,\prime}} c_{ij}^{n+1} \phi_{j}^{n+1} = \sum_{j \in \mathcal{B}_{i}^{n+1,\prime}} \underline{d}_{ij}^{n+1} \cdot \left(\underline{u}_{i}^{*} + \underline{u}_{j}^{*}\right) \\
\underline{u}_{i}^{n+1} = \underline{u}_{i}^{*} - \sum_{j \in \mathcal{B}_{i}^{n+1,\prime}} \underline{e}_{ij}^{n+1} \left(\phi_{i}^{n+1} + \phi_{j}^{n+1}\right) \\
p_{i}^{n+\frac{1}{2}} = \operatorname{Re} \phi_{i}^{n+1} - \sum_{i \in \mathcal{B}_{i}^{n+1,\prime}} \underline{f}_{ij}^{n+1} \cdot \left(\underline{u}_{i}^{*} + \underline{u}_{j}^{*}\right) + K$$



Reviens à résoudre les systèmes linéaires :

$$A\underline{u}^* = \underline{a}$$
 et  $B\phi^{n+1} = b$ 

- A est définie positive.
- ► -B est semi-définie positive. On va résoudre  $-B\phi^{n+1} = -b$ .
  - ▶ Problème de Poisson avec conditions de Neumann, Donc −B sera singulière.
  - ▶ On ajoute 1 à un élément *i* de la diagonale pour fixer  $\phi_i = 0$ .
  - On devra forcer la condition de compatibilité.
- On résout à l'aide de la méthode du gradient conjugué préconditionnée couplée à une décomposition incomplète de Cholesky.



Plusieurs problèmes sont rencontrés lorsque nous étudions une particule située à proximité de la frontière.

▶ Un vide de particule se crée. Ainsi, il y a une chute dans la densité :

$$\rho_i = \sum_{j \in \mathcal{B}_i} m_j W_{ij,h}$$

- ► Terme résiduel contenant le Jacobien dans l'erreur de lissage.
- Comment imposer les conditions aux limites?
- ▶ Quelles conditions aux limites doit-on imposer sur  $\underline{u}^*$  et  $\phi^{n+1}$ ?



#### Lorsque la frontière est une droite :

- Étape 1 Pour chaque particule i, on crée une particule image i' à l'extérieur du domaine de façon symétrique.
- Étape 2 On impose des valeurs spécifiques aux champs des particules images pour satisfaire les conditions aux limites.

## Valeurs attribuées aux particules images



Le but est de satisfaire les conditions aux limites lorsque nous y évaluons l'approximation de lissage.

Condition de Dirichlet : Soit une condition de la forme :

$$[f(\underline{x})]_{\Gamma} = f_b(\underline{x})$$

Alors, on obtient par extrapolation linéaire :

$$f_{i'}=2f_{i_b}-f_i$$

οù,  $i_b$  est la projection de i sur  $\Gamma$ .

Condition de Neumann : Soit une condition de la forme :

$$\left[\frac{\partial f(\underline{x})}{\partial \underline{n}}\right]_{\Gamma} = g(\underline{x})$$

Alors, on obtient par différence centrée :

$$f_{i'} = 2r_{ii_b}g_{i_b} + f_i$$

## Méthode des tangentes multiples I



#### Lorsque la frontière est courbée et lisse :

- Étape 1 Trouver les tangentes à la courbe  $\underline{\tau}_k$  sur chacun des marqueurs frontières k.
- Étape 2 Pour chaque voisin j de k, on crée une particule image  $j_k$  symétrique par rapport à  $\underline{\tau}_k$ .
- Étape 3 On impose des valeurs spécifiques aux champs des particules images  $j_k$  pour satisfaire les conditions aux limites de leurs marqueurs associés k.
- Étape 4 On garde, dans le voisinage d'une particule d'intérêt i, les images  $j_k$  dont :
  - i) l'image  $j_k$  est dans le voisinage de i;
  - ii) le marqueur frontière k est dans le voisinage de i;
  - iii) la particule mère j est dans le voisinage de i;



- iv) l'image  $j_k$ ' n'est pas dans l'intérieur du domaine;
- v) il existe un chemin reliant la particule d'intérêt i et la particule mère j, complètement contenue dans le support compact. Dans le cas contraire, nous rejetons aussi la particule mère j.
- vi) D'autre conditions peuvent êtres appliquées.
- Étape 5 Si la particule d'intérêt i possède comme voisin plusieurs particules images  $j_k$  issues d'une même particule mère j, nous pondérons la masse des images en divisant par ce nombre d'occurrences.



Nous allons modifier l'étape 5 de la méthode

Etape 5 Si la particule d'intérêt i possède, comme voisin, plusieurs particules images  $j_k$  issues d'une même particule mère j, on pose  $m_{i_k'} = \alpha_{i_k'} m_j$ , où :

$$\alpha_{j_{k'}} = \frac{W(ij_{k'}, h)}{\sum_{l} W(ij_{l'}, h)}$$

▶ De cette façon, l'impact qu'une particule image  $j_k$  à sur la particule i dépend, de manière consistante et continue, de la position relative de la particule image  $j_k$  par rapport à la position de i.

# Frontière non-lisse et conditions aux limites discontinues



- Soit  $\underline{x}_k \in \Gamma = \Gamma_- \bigcup \{\underline{x}_k\} \bigcup \Gamma_+$  un point singulier ou de discontinuité des conditions aux limites, séparant la frontière en deux parties.
  - Étape 1 On trouve les prolongements tangentiels  $\underline{\tau}_{k\pm}$  des courbes  $\Gamma_{\pm}$  en k, à l'aide de différences arrière et avant. On définit la tangente moyenne  $\underline{\tau}_k$ , en se point.
  - Étape 2 On duplique le marqueur. On obtient  $k_-$  associé à  $\Gamma_-$  et  $k_+$  associé à  $\Gamma_+$ .
  - Étape 3 On impose sur  $k_{\pm}$  les conditions aux limites de  $\Gamma_{\pm}$ , respectivement.
  - Étape 4 Toutes particules images issues des marqueurs  $k_{\pm}$  verront leurs contributions coupées de moitié, c'est-à-dire que nous diviserons leurs masses de moitié.
  - Étape 5 On applique ensuite la méthode des tangentes multiples pondérées, en utilisant  $\tau_k$ .



## Obstacle rigide : Conditions de non-pénétration et de non-dérapage.

- ▶ Définit par  $\underline{u}^{n+1} = \underline{0}$ .
- ▶ On pose  $\frac{\partial}{\partial n}\phi^{n+1}=0$ .
- Alors,

$$\underline{u}^* \cdot \underline{n} = 0$$

$$\underline{u}^* \cdot \underline{t} = \Delta t \underline{\nabla} \tilde{\phi}^{n+1} \cdot \underline{t}$$

- ▶ lci,  $\tilde{\phi}^{n+1}$  est une approximation de  $\phi^{n+1}$ .
- ▶ Par exemple,  $\tilde{\phi}^{n+1} = \phi^n$ .



Symétrique : Conditions de non-pénétration de force de cisaillement nulle.

- ▶ Définit par  $\underline{u}^{n+1} \cdot \underline{n} = 0$  et  $\underline{t} \cdot \underline{\underline{\sigma}}^{n+1} \cdot \underline{n} = 0$ .
- ▶ On suppose que la ligne de symétrie est en x=0. La seconde condition devient  $\frac{\partial}{\partial n} \left[ \underline{u}^{n+1} \cdot \underline{t} \right] = 0$ .
- On pose  $\frac{\partial}{\partial n}\phi^{n+1}=0$ .
- Alors,

$$\underline{u}^* \cdot \underline{n} = 0$$
$$\frac{\partial}{\partial n} [\underline{u}^* \cdot \underline{t}] = 0$$

#### Conditions aux limites - Surface libre



#### Surface libre : Conditions cinématique et dynamique :

- ▶ Définit par  $\underline{U}^{n+1} \cdot \underline{n} = \underline{u}^{n+1} \cdot \underline{n}$  et  $\left[\underline{\underline{\sigma}}\right] \cdot \underline{n} = \tau \kappa \underline{n}$ . où  $\underline{U}$  est la vitesse des marqueurs frontières,  $\left[\underline{\underline{\sigma}}\right] = \underline{\underline{\sigma}}_f \underline{\underline{\sigma}}_g$  est le saut de stresse sur l'interface,  $\underline{\underline{\sigma}}_g$  est le tenseur de Cauchy du gaz et  $\underline{\underline{\sigma}}_f$  celui du fluide,  $\tau$  est la tension de surface et  $\kappa$  la courbure.
- ▶ On suppose que  $\tau = 0$  et la pression du gaz  $p_g = 0$ . Ainsi,  $\underline{\sigma}_f \cdot \underline{n} = \mathbf{0}$ .
- ► Approximation non-visqueuse : sur une frontière libre, on suppose que les termes visqueux deviennent négligeables.
- ▶ On déduit que  $p^{n+\frac{1}{2}} = 0$ .
- ▶ En substituant dans le schéma PMIII, nous obtenons :

$$\phi^{n+1} = \frac{1}{2\operatorname{Re}} \underline{\nabla} \cdot \underline{u}^*$$

▶ Pour calculer  $\underline{u}^*$  près de la frontière, nous allons normaliser  $W_{ij}$ , en le divisant par  $\sum \frac{m}{\rho} W_{ij}$ .

# Évolution implicite du domaine et de la surface libre



▶ Suite d'approximations successives  $\left\{\underline{x}^{n,[k]}\right\}_{k\in\mathbb{N}}$  de  $\underline{x}^{n+1}$ , tel que :

$$\begin{cases} \underline{x}^{n,[0]} = \underline{x}^n + \Delta t \underline{u}^n \\ \lim_{k \to \infty} \underline{x}^{n,[k]} = \underline{x}^{n+1} \end{cases}$$
 (2)

Résoudre, par la méthode de Broyden, les systèmes d'équations non-linéaires :

$$\underline{0} = \underline{g}_{i}^{n,[k]}(\underline{z}) = \underline{z} - \underline{x}_{i}^{n} - \frac{\Delta t}{2} \left[ \underline{u}_{i}^{n} + \underline{u}^{n+1,[k]}(\underline{z}) \right]$$

οù

$$\underline{u}^{n+1,[k]}(\underline{z}) = \sum_{j \in \mathcal{B}_{z}^{n+1,[k]}} \frac{m}{\rho} \underline{u}_{j}^{n+1,[k]} W\left(\underline{z} - \underline{x}_{j}^{n}, h\right)$$



- C'est un écoulement causé par un gradient de pression constant situé entre 2 plaques infinies et parallèles fixées, séparées d'une longueur H.
- Soit le domaine  $\Omega = \left\{ \underline{x} = (x, y) \in \mathbb{R}^2 \,\middle|\, \frac{H}{2} < y < \frac{H}{2} \right\}$  et la frontière  $\Gamma = \left\{ (x, -\frac{H}{2}) \in \mathbb{R}^2 \right\} \cup \left\{ (x, \frac{H}{2}) \in \mathbb{R}^2 \right\}$
- Condition initiale :

$$\underline{u}(\underline{x},0)=0$$

► Conditions aux limites :

$$\underline{u}(\Gamma, t) = 0$$

▶ On suppose que  $\underline{u} = (u(y, t), 0)$ .

## Solution analytique



- ▶ Soit  $\underline{f} = (f, 0)$  la force par unité de masse générant cet écoulement.
- ▶ La vitesse maximale de l'écoulement sera  $U = \frac{fH^2}{8\nu}$  avec  $\nu = \frac{\eta}{\rho}$ , le coefficient de viscosité dynamique.
- ► On adimensionne avec *U* et *H*. Ainsi, la solution analytique adimensionnée est :

$$\begin{split} u(y,t) &= -4\left(y+\frac{1}{2}\right)\left(y-\frac{1}{2}\right) \\ &-\frac{32}{\pi^3}\sum_{n=0}^{\infty}\frac{1}{(2n+1)^3}\sin\left[\pi(2n+1)\left(y+\frac{1}{2}\right)\right] \\ &\cdot\exp\left[-\frac{\pi^2}{\mathrm{Re}}(2n+1)^2t\right] \end{split}$$

où, maintenant,  $f = \frac{8}{Re}$ .



- ▶ Pour économiser sur le calcul, nous allons profiter de la symétrie du problème.
- ▶ Domaine de résolution :  $\Omega = \left\{ \underline{x} = (x, y) \in \mathbb{R}^2 \,\middle|\, -H \le x < 0, \, 0 < y < \frac{H}{2} \right\}$
- Les conditions aux limites sont donc :

$$\begin{split} & \Gamma_m = \left\{ (x, \frac{H}{2}) \, \middle| \, -H \leq x < 0 \right\} & \longrightarrow \text{Obstacle rigide} \\ & \Gamma_s = \left\{ (x, 0) \, \middle| \, -H \leq x < 0 \right\} & \longrightarrow \text{Symétrique} \\ & \Gamma_i = \left\{ (-H, y) \, \middle| \, 0 < y < \frac{H}{2} \right\} & \longrightarrow \text{Périodique} \\ & \Gamma_o = \left\{ (0, y) \, \middle| \, 0 < y < \frac{H}{2} \right\} & \longrightarrow \text{Périodique} \end{split}$$



Répartition initiale des particules sur une grille régulière :

$$\left\{ \left(x_{i},y_{j}\right) \middle| 1 \leq i \leq N, 1 \leq j \leq \frac{N}{2} \right\}$$

οù

$$(x_i, y_j) = \left(\left[i - \frac{1}{2}\right] dx - 1, \left[j - \frac{1}{2}\right] dy\right)$$

- $\triangleright$   $N^2$  est le nombre de particules dans le domaine complet.
- ▶  $dx = dy = \frac{H}{N}$  sont les distances horizontales et verticales initiales interparticulaires.
- ▶ Paramètres physiques :  $\rho = 10^3$ ,  $\eta = 10^{-3}$ ,  $H = 10^{-3}$  et  $U = 1.25 \times 10^{-5}$ .
- ▶ Temps final adimensionné  $T = 1.25 \times 10^{-2}$ .
- ▶ Pas de temps adimensionné  $\Delta t = 1.25 \times 10^{-4}$ .

### Animation



Écoulement de Poiseuille

# Estimation à priori de l'erreur



- Supposons que le problème est unidimensionnel et que les particules sont distribuées uniformément.
- ▶ Supposons aussi que  $\frac{h}{\Delta x} \in \left\{ \frac{2n+1}{4} \mid n \in \mathbb{N} \right\}$ .
- ► Alors, l'erreur total est donnée par :

$$\begin{split} E_t &= E_l + E_d = f_i' - \sum_{j \in \mathcal{B}_i'} \Delta x f_j W_j' \\ &\approx -Ah^2 + \mathcal{O}(h^4) + B\left(\frac{h}{\Delta x}\right)^{-4} \left[C + \mathcal{O}(h^2)\right] + \mathcal{O}\left(\left[\frac{h}{\Delta x}\right]^{-6}\right) \end{split}$$

## Remarque

Ceci n'est pas exactement vrai pour la fonction spline cubique. En effet, ce résultat est exact seulement pour des  $W \in C^{\infty}$  sur l'intérieur de leurs supports compacts de rayon 2h et de régularité  $\beta = 2$  sur les frontières.



- L'erreur dépend simultanément de h et du ratio  $\frac{h}{\Delta x}$ .
- ▶ Lorsque  $\left(\frac{h}{\Delta x}\right)^{-1} \rightarrow 0$ , l'erreur de lissage dominera avec  $h^2$ .
- ▶ Lorsque  $h \to 0$  et que  $\Delta x$  est fixé, l'erreur de discrétisation domine avec  $\left(\frac{h}{\Delta x}\right)^{-4}$
- ► Ce n'est pas suffisant d'avoir  $h \to 0$ , nous devons aussi veiller à ce que  $\frac{h}{\Delta x}$  reste suffisamment gros par rapport à h.



Nous avons supposé une relation de proportionnalité  $\frac{h}{\Delta x} = k$ 



FIGURE: Erreurs en fonction de k pour différents  $\Delta x$  fixés II s'agit de l'erreur moyenne quadratique.

# Interprétations des résultats



- ▶ Lorsque *h* est trop petit, nous perdons la convergence d'ordre 2.
- L'erreur de discrétisation se comporte comme  $\left(\frac{h}{\Delta x}\right)^{-2}$ . Les particules se déplacent!
- ► L'erreur ne se comporte pas de façon monotone. L'analyse est exacte que pour certains k
- Nous pouvons facilement observer que le comportement local de l'erreur, là où l'erreur de discrétisation domine, change sur une période  $\Delta k$  correspondant à l'ajout d'un aire  $\Delta x$  de chaque côté du support compact.
  - Chevauchement des éléments de masses sur le support
- ► En fait, ceci n'est pas exactement vrai. En effet, il y a un léger décalage entre les k associés à ces minimums locaux et ceux que nous observons.
  - Deux dimensions
- ▶ Il existe un minimum global de l'erreur en  $k \approx 1.52$ .



Figure: Ordre de convergence en fonction de  $\Delta x$  pour différentes valeurs de k

Comme nous pouvons le voir, en choisissant raisonnablement k, nous obtenons l'ordre de convergence désiré  $\mathcal{O}(\Delta x^2)$ .



#### Dans ce travail nous avons :

- Obtenu une meilleur compréhension du comportement global de l'erreur.
- ▶ Développé une méthode sans maillage et lagrangienne d'ordres  $\mathcal{O}(\Delta t^2)$ ,  $\mathcal{O}(\Delta x^2)$  et  $\mathcal{O}\left(\left[\frac{h}{\Delta x}\right]^{-4}\right)$ .
- Trouvé une approximation des conditions aux limites sur une surface libre.
- Perfectionné un algorithme pour bien gérer les surfaces libres, frontières non-lisses et conditions aux limites discontinues. (Bientot finit!)



- B. Ataie-Ashtiani, G. Shobeyri et L. Farhadi. *Modified incompressible SPH method for simulating free surface problems*. Fluid Dyn. Research, **40**: 637–661, 2008.
- M. Benoune, J. Morin-Drouin et R.G. Owens. On the condition for the immersed interface method.
- F. Bierbrauer, P.C. Bollada et T.N. Phillips. A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Engrg., 198: 745–762, 2009.
- D.L. Brown, R. Cortez et M.L. Minion. Accurate projection methods for the incompressible Navier–Stokes equations. J. Comp. Phys., 168: 464–499, 2001.
- A.J. Chorin. *Numerical Solution of the Navier Stokes Equations*. Math. Computation, **22**: 3400–34102, 1968.

### References II



- A.J. Chorin et J.E. Marsden. *A Mathematical Introduction to Fluid Mechanics*. Springer, third edition, 1992.
- S. Claus. PhD thesis.
- T. El-Gammal, E.E. Khalil, H. Haridy et E. Abo-Serie. *Influence of smoothing length and virtual particles on SPH Accuracy*. Int. J. Mat. Mech. Manu., **1**: 166–170, 2013.
- S. J. Cummins et M. Rudman. An SPH projection method. J. Comp. Phys., 152: 584–607, 1999.
- J. Kim et P. Moin. Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations. J. Comp. Phys., 59: 308–323, 1985.
- A. Limache et S. Idelsohn. Laplace form of navier-stokes equations: A safe path or a wrong way? Mecánica Computaciona, **XXV**: 151 168, 2006.



- M.B. liu et G.R. Liu. Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments. Arch. Comp. Meth., 17: 25–76, 2010.
- J.J. Monaghan. *Smoothed Particle Hydrodynamics*. Rep. Prog. Phys., **68**: 1703–1759, 2005.
- R.G.K. Noutcheuwa. Une nouvelle méthode smoothed particle hydrodynamics: simulation des interfaces immergées et de la dynamique Brownienne des molécules avec des interactions hydrodynamiques. PhD thesis, Université de Montréal, 2012.
- R.G.K. Noutcheuwa et R.G. Owens. *A new incompressible smoothed particle hydrodynamics-immersed boundary method*. Int. J. Num. Analysis. Model., **3**: 126–167, 2012.
- N.J. Quinlan, M. Basa et M. Lastiwka. *Truncation error in mesh-free particle methods*. Int. J. Num. Meth. Engrg., **66**: 2064–2085, 2006.

### References IV



- S.H. Sadek. Modeling die swell of second-order fluids using sph. Master's thesis, Sabanci University, 2010.
- S.M. Shadloo, A. Zainali, S.H.. Sadek et M. Yildiz. *Improved Incompressible Smoothed Particle Hydrodynamics method for simulating flow around bluff bodies*.

  Comput. Methods Appl. Mech. Engrg. 200: 1008-1020-201
  - Comput. Methods Appl. Mech. Engrg., **200**: 1008–1020, 2011.
- S. Shao et Edmond Y.M. Lo. *Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface*. Adv. Water. Resc., **26**: 787–800, 2003.
- S. Viau, P. Bastien et S-H. Cha. An implicit method for radiative transfert with diffusion approximation in smooth particle hydrodynamics. Astrophys. J., **639**: 559–570, 2006.
- M. Yildiz, R.A. Rook et A. Suleman. *SPH with the multiple boundary tangent method*. Int. J. Num. Meth. Engrg., **77**: 1416–1438, 2008.