oakland-crime-statistics

2022年3月19日

- 1 数据挖掘作业一
- 1.1 姓名: 林金坤学号: 3220211034
- 1.2 数据集: Oakland Crime Statistics 2011 to 2016

```
[3]: # 导入必要的包
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from scipy import stats
from collections import Counter
from math import isnan
import math
```

1.3 查看数据集并对数据集进行了解

E:\homework-1\data\oakland-crime-statistics-2011-to-2016\records-for-2011.csv E:\homework-1\data\oakland-crime-statistics-2011-to-2016\records-for-2012.csv

```
E:\homework-1\data\oakland-crime-statistics-2011-to-2016\records-for-2013.csv
E:\homework-1\data\oakland-crime-statistics-2011-to-2016\records-for-2014.csv
E:\homework-1\data\oakland-crime-statistics-2011-to-2016\records-for-2015.csv
E:\homework-1\data\oakland-crime-statistics-2011-to-2016\records-for-2016.csv
```

[5]: # 读取数据集 path = 'E:\homework-1\data\oakland-crime-statistics-2011-to-2016/' data = pd.read_csv(path+'records-for-2011.csv',index_col=0)

data.head()# 默认展示前五行数据

[5]:		Create	Time	Locatio	n Area Id	Beat	Priority	\
	Agency							
	0P	2011-01-01T00:00:0	00.00	ST&SAN PABLO A	V 1.0	06X	1.0	
	0P	2011-01-01T00:01:1	1.000	ST&HANNAH ST	1.0	07X	1.0	
	0P	2011-01-01T00:01:2	25.000	ST&MARKET ST	1.0	10Y	2.0	
	0P	2011-01-01T00:01:3	35.000	PRENTISS ST	2.0	21Y	2.0	
	OP	2011-01-01T00:02:1	0.000	AV&FOOTHILL BLVD	2.0	20X	1.0	
		Incident Type Id Ir	ıcident	Type Description	Event 1	Number	\	
	Agency							
	0P	PDOA	POSS	SIBLE DEAD PERSON	LOP1101010	00001		
	0P	415GS		415 GUNSHOTS	LOP1101010	000002		
	OP	415GS		415 GUNSHOTS	LOP1101010	00003		

415 GUNSHOTS LOP110101000005

415 GUNSHOTS LOP110101000004

Closed Time

415GS

415GS

Agency

0P

OΡ

OP 2011-01-01T00:28:17.000
OP 2011-01-01T01:12:56.000
OP 2011-01-01T00:07:20.000
OP 2011-01-01T00:02:28.000
OP 2011-01-01T00:50:04.000

[6]: data.dtypes # 每列数据的数据类型

[6]: Create Time object Location object Area Id float64 Beat object Priority float64 Incident Type Id object Incident Type Description object Event Number object Closed Time object dtype: object

[7]: data.shape # 数据集的大小

[7]: (180016, 9)

2 数据分析要求

2.1 数据可视化和摘要

2.1.1 数据摘要

(1) 标称属性,给出每个可能聚会的频数

```
[8]: # 由上面对数据集各列进行分析得知,该数据集的标称属性有'Createu → Time','Location','Beat','Incident Type Id',
#'Incident Type Description','Event Number','Closed Time' 七个标称属性
# 下面给出每个属性取值的频数
#(1)Create Time
pd.value_counts(data['Create Time'])
```

```
[8]: 2011-06-02T00:00:00.000 4
2011-03-27T00:22:41.000 3
2011-09-21T14:05:59.000 3
2011-03-13T23:16:51.000 2
2011-03-21T11:07:15.000 2
...
2011-05-05T14:20:08.000 1
2011-05-05T14:20:57.000 1
```

```
2011-05-05T14:22:28.000
      2011-12-31T23:58:08.000
      Name: Create Time, Length: 179451, dtype: int64
 [9]: #(2) Location
      pd.value_counts(data['Location'])
 [9]: INTERNATIONAL BLVD
                                 3866
      MACARTHUR BLVD
                                 3129
      AV&INTERNATIONAL BLVD
                                 3067
      BROADWAY
                                 2132
      FOOTHILL BLVD
                                 1791
      54TH PANORAMIC WY
                                    1
      54TH 10TH AV
                                    1
      54TH 46TH ST
                                    1
      540A AV&FOOTHILL BLVD
                                    1
      WOODSON B ST
      Name: Location, Length: 32505, dtype: int64
[10]: #(3) Beat
      pd.value_counts(data['Beat'])
[10]: 04X
              7410
      X80
              6885
      26Y
              5478
      30Y
              5295
      06X
              5119
      23X
              5051
      30X
              4956
      19X
              4955
      34X
              4673
      29X
              4483
      20X
              4287
      27Y
              4159
      07X
              4134
```

2011-05-05T14:21:31.000

31Y	4082
25X	4022
35X	3880
33X	3849
03X	3819
32X	3711
27X	3703
09X	3630
21Y	3435
32Y	3125
22X	3061
26X	2978
02Y	2970
10X	2967
14X	2733
03Y	2726
22Y	2664
12Y	2651
05X	2633
02X	2614
31X	2603
21X	2593
17Y	2582
24Y	2575
13Z	2546
15X	2509
24X	2459
12X	2422
10Y	2383
O1X	2210
28X	2191
17X	2133
11X	2087
13Y	2017
35Y	1956
31Z	1870

```
16Y
              1561
      14Y
              1492
      25Y
              1482
      13X
              1122
      18X
              1063
      16X
               994
      05Y
               710
      PDT2
                20
      Name: Beat, dtype: int64
[11]: #(4) Incident Type Id
      pd.value_counts(data['Incident Type Id'])
[11]: 933R
                17348
      911H
                12817
      SECCK
                11393
      415
                10752
      10851
                 7180
      970A
                    1
      148
      963
                    1
      346
                    1
                    1
      YELALT
      Name: Incident Type Id, Length: 263, dtype: int64
[12]: #(5) Incident Type Description
      pd.value_counts(data['Incident Type Description'])
[12]: ALARM-RINGER
                               17348
      911 HANG-UP
                               12817
      SECURITY CHECK
                               11393
      STOLEN VEHICLE
                                7180
                                6624
      415 UNKNOWN
      INJURE TELEPHONE/POW
                                   1
```

18Y

1778

```
CONSPIRACY COURT ORD
                                  1
      POSSESSION/MANUFACTU
      PLAYING BALL IN STRE
                                  1
      YELLOW ALERT AT THE
                                  1
      Name: Incident Type Description, Length: 265, dtype: int64
[13]: #(6)Event Number
      pd.value_counts(data['Event Number'])
[13]: LOP110101000001
                         1
     LOP110830000198
     LOP110830000186
     LOP110830000187
     LOP110830000189
     LOP110505000405
     LOP110505000404
                         1
     LOP110505000408
                         1
     LOP110505000409
     LOP111231001017
                         1
      Name: Event Number, Length: 180015, dtype: int64
[14]: #(7)Closed Time
      pd.value_counts(data['Closed Time'])
[14]: 2011-05-31T01:35:18.000
                                 2
      2011-11-28T15:55:49.000
                                 2
      2011-05-27T18:57:03.000
      2011-11-20T12:39:22.000
                                 2
      2011-09-17T02:40:43.000
                                 2
      2011-05-05T14:38:16.000
                                 1
      2011-05-05T17:39:54.000
                                 1
      2011-05-05T14:58:20.000
      2011-05-05T15:51:33.000
                                 1
      2012-01-01T02:59:48.000
                                 1
      Name: Closed Time, Length: 179506, dtype: int64
```

(2) 数值属性,给出5数概括及缺失值的个数

```
[15]: # 这里的数值属性包括 points 和 price
# 用 describe 函数对数据的 5 数进行概括
digital_data = ['Area Id','Priority']
data[digital_data].describe()
```

Area Id [15]: Priority 179112.000000 180015.000000 1.740648 1.796111 mean0.746468 0.402916 std min 1.000000 0.000000 25% 1.000000 2.000000 50% 2.000000 2.000000 75% 2.000000 2.000000 3.000000 2.000000 max

Area Id: 最大值 3,最小值 1,均值 1.74,中位数 2,四分位数 [1,2,2], 缺失值个数为 904

Priority: 最大值 2,最小值 0,均值 1.80,中位数 2,四分位数 [2,2,2],缺失值个数为 1

```
[16]: # 给出 points 和 price 缺失值个数 print("The Null num of 'Area Id' is:",data['Area Id'].isnull().sum())
```

The Null num of 'Area Id' is: 904

```
[17]: print("The Null num of 'Priority' is:",data['Priority'].isnull().sum())
```

The Null num of 'Priority' is: 1

2.1.2 数据可视化

(1) 绘制 Area Id 的直方图、盒图、qq 图(此处只针对数值类型的数据)

```
[18]: # coding=utf-8
plt.figure(figsize = (10,10))

# 直方图
plt.subplot(2,2,1)
plt.title("Area Id hist")
```

```
data['Area Id'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数

# 盒图
plt.subplot(2,2,2)
plt.title("Area Id box")
data['Area Id'].plot(kind='box',notch=True,grid=True)

#q-q 图
plt.subplot(2,2,3)
stats.probplot(data['Area Id'],dist="norm",plot=plt)

# 去除缺失值再绘制 q-q 图
plt.subplot(2,2,4)
data_drop=pd.DataFrame(data['Area Id'].copy(deep=True))
data_drop = data_drop.dropna()
stats.probplot(data_drop['Area Id'], dist="norm", plot=plt)

plt.show()
```



```
[19]: # 绘制 price 的直方图、盒图、qq 图 plt.figure(figsize = (10,10))

# 直方图 plt.subplot(2,2,1) plt.title("Priority hist") data['Priority'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 坚条数 # 盒图 plt.subplot(2,2,2)
```

```
plt.title("Priority box")
data['Priority'].plot(kind='box',notch=True,grid=True)

#q-q 图
plt.subplot(2,2,3)
stats.probplot(data['Priority'],dist="norm",plot=plt)

# 去除缺失值再绘制 q-q 图
plt.subplot(2,2,4)
pricewithooutnulldata = pd.DataFrame(data['Priority'])
pricewithooutnulldata = pricewithooutnulldata.dropna()
stats.probplot(data['Priority'],dist="norm",plot=plt)

plt.show()
```


2.1.3 由上图可以得出结论:

Area Id 属性、Priority 属性分布均不符合正态分布。

3 数据缺失处理

```
[20]: # 绘制表格查看数据缺失值并检验四种方案填充后是否还有缺失值 def missing_data(datatodel): missing_num = datatodel.isnull().sum()
```

由上表可以看出,数值型数据 price 存在缺失值

标称型数据 country, designation, province, region 1, region 2 存在缺失值

这里缺失的原因可能是由于未完全记录、遗漏或无法获取

3.1 方案一缺失值剔除

[21]: # 未处理前的原始数据

missing_data(data)

[21]:		missing_num	missing_percent	Types	
	Create Time	1	0.000556	object	
	Location	0	0.000000	object	
	Area Id	904	0.502178	float64	
	Beat	520	0.288863	object	
	Priority	1	0.000556	float64	
	Incident Type Id	1	0.000556	object	
	Incident Type Description	1	0.000556	object	
	Event Number	1	0.000556	object	
	Closed Time	7	0.003889	object	

```
[22]: del_null_data = data.copy(deep=True)
    del_null_data = del_null_data.dropna()
```

[23]: # 处理缺失数据后的数据展示

missing_data(del_null_data)

Types	missing_percent	missing_num	[23]:
object	0.0	0	Create Time
object	0.0	0	Location
float64	0.0	0	Area Id
object	0.0	0	Beat

```
0.0 float64
Priority
                                     0
Incident Type Id
                                      0
                                                     0.0
                                                           object
Incident Type Description
                                                           object
                                                     0.0
Event Number
                                      0
                                                     0.0
                                                           object
Closed Time
                                      0
                                                     0.0
                                                           object
```

```
[24]: # Area Id 可视化对比新旧数据
     plt.figure(figsize = (10,10))
     # 直方图
     plt.subplot(3,2,1)
     plt.title("Area Id hist")
     data['Area Id'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 直方图
     plt.subplot(3,2,2)
     plt.title("new Area Id hist")
     del_null_data['Area Id'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 盒图
     plt.subplot(3,2,3)
     plt.title("Area Id box")
     data['Area Id'].plot(kind='box',notch=True,grid=True)
     # 盒图
     plt.subplot(3,2,4)
     plt.title("new Area Id box")
     del_null_data['Area Id'].plot(kind='box',notch=True,grid=True)
     #q-q 图
     plt.subplot(3,2,5)
     stats.probplot(data['Area Id'],dist="norm",plot=plt)
     plt.subplot(3,2,6)
```

```
stats.probplot(del_null_data['Area Id'],dist="norm",plot=plt)
plt.show()
```



```
[25]:  # Priority 可视化对比新旧数据

plt.figure(figsize = (10,10))

# 直方图
plt.subplot(3,2,1)
```

```
plt.title("Priority hist")
data['Priority'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
# 直方图
plt.subplot(3,2,2)
plt.title("new Priority hist")
del_null_data['Priority'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
# 盒图
plt.subplot(3,2,3)
plt.title("Priority box")
data['Priority'].plot(kind='box',notch=True,grid=True)
# 盒图
plt.subplot(3,2,4)
plt.title("new Priority box")
del_null_data['Priority'].plot(kind='box',notch=True,grid=True)
#q-q 图
plt.subplot(3,2,5)
stats.probplot(data['Priority'],dist="norm",plot=plt)
plt.subplot(3,2,6)
stats.probplot(del_null_data['Priority'],dist="norm",plot=plt)
plt.show()
```


[26]: del_null_data[['Area Id','Priority']].describe() # 缺失部分剔除后数据的 5 数概况

[26]:		Area Id	Priority
	count	178771.000000	178771.000000
	mean	1.740898	1.795252
	std	0.746487	0.403546
	min	1.000000	0.000000
	25%	1.000000	2.000000
	50%	2.000000	2.000000
	75%	2.000000	2.000000

max 3.000000 2.000000

缺失部分剔除后

Area Id: 最大值 3, 最小值 1, 均值 1.74, 中位数 2, 四分位数 [1,2,2], 缺失值个数为 0

Priority: 最大值 2,最小值 0,均值 1.80,中位数 2,四分位数 [2,2,2],缺失值个数为 0

3.2 用最高频率值来填补缺失值

[28]: # 查看填充后是否还有数据缺失

missing_data(fill_data_with_most_frequency)

[28]:		missing_num	missing_percent	Types
	Create Time	1	0.000556	object
	Location	0	0.000000	object
	Area Id	0	0.000000	float64
	Beat	520	0.288863	object
	Priority	0	0.000000	float64
	Incident Type Id	1	0.000556	object
	Incident Type Description	1	0.000556	object
	Event Number	1	0.000556	object
	Closed Time	7	0.003889	object

```
[29]: #Area Id 可视化对比新旧数据
     plt.figure(figsize = (10,10))
     # 直方图
     plt.subplot(3,2,1)
     plt.title("Area Id hist")
     data['Area Id'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 直方图
     plt.subplot(3,2,2)
     plt.title("new Area Id hist")
     fill_data_with_most_frequency['Area Id'].hist(alpha=0.5,bins=15) #alpha 透明度,
     bins 竖条数
     # 盒图
     plt.subplot(3,2,3)
     plt.title("Area Id box")
     data['Area Id'].plot(kind='box',notch=True,grid=True)
     # 盒图
     plt.subplot(3,2,4)
     plt.title("new Area Id box")
     fill_data_with_most_frequency['Area Id'].plot(kind='box',notch=True,grid=True)
     #q-q 图
     plt.subplot(3,2,5)
     stats.probplot(data['Area Id'],dist="norm",plot=plt)
     plt.subplot(3,2,6)
     stats.probplot(fill_data_with_most_frequency['Area Id'],dist="norm",plot=plt)
     plt.show()
```



```
[30]: #Priority 可视化对比新旧数据

plt.figure(figsize = (10,10))

# 直方图
plt.subplot(3,2,1)
plt.title("Priority hist")
data['Priority'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
```

```
# 直方图
plt.subplot(3,2,2)
plt.title("new Priority hist")
fill_data_with_most_frequency['Priority'].hist(alpha=0.5,bins=15) #alpha 透明度,
bins 竖条数
# 盒图
plt.subplot(3,2,3)
plt.title("Priority box")
data['Priority'].plot(kind='box',notch=True,grid=True)
# 盒图
plt.subplot(3,2,4)
plt.title("new Priority box")
fill_data_with_most_frequency['Priority'].plot(kind='box',notch=True,grid=True)
#q-q 图
plt.subplot(3,2,5)
stats.probplot(data['Priority'],dist="norm",plot=plt)
plt.subplot(3,2,6)
stats.probplot(fill_data_with_most_frequency['Priority'],dist="norm",plot=plt)
plt.show()
```


[31]: # 对填充后的新数据进行描述 fill_data_with_most_frequency[['Area Id','Priority']].describe()

[31]:		Area Id	Priority
	count	180016.000000	180016.000000
	mean	1.736929	1.796113
	std	0.746430	0.402915
	min	1.000000	0.000000
	25%	1.000000	2.000000
	50%	2.000000	2.000000

```
75% 2.000000 2.000000
max 3.000000 2.000000
```

3.3 通过属性的相关关系来填补缺失值

```
[32]: # 查看相关的属性关系 data.corr()

[32]: Area Id Priority Area Id 1.000000 -0.023366 Priority -0.023366 1.000000

[33]: # 通过属性的相关关系来填补缺失值 target_data = data['Area Id'].copy(deep=True) source_data = data['Priority'].copy(deep=True)
```

```
target_data = data['Area Id'].copy(deep=True)
source_data = data['Priority'].copy(deep=True)

flag1 = target_data.isnull().values
flag2 = source_data.isnull().values

i=0
for _,value in target_data.iteritems():
    if(flag1[i]==True) and (flag2[i]==False):
        target_data[i] = 3 - source_data[i]
    i=i+1
```

```
[34]: #Area Id 可视化对比新旧数据

plt.figure(figsize = (10,10))

# 直方图
plt.subplot(3,2,1)
plt.title("Area Id hist")
data['Area Id'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数

# 直方图
plt.subplot(3,2,2)
plt.title("new Area Id hist")
```

```
target_data.hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数

# 盒图
plt.subplot(3,2,3)
plt.title("Area Id box")
data['Area Id'].plot(kind='box',notch=True,grid=True)

# 盒图
plt.subplot(3,2,4)
plt.title("new Area Id box")
target_data.plot(kind='box',notch=True,grid=True)

#q-q 图
plt.subplot(3,2,5)
stats.probplot(data['Area Id'],dist="norm",plot=plt)

plt.subplot(3,2,6)
stats.probplot(target_data,dist="norm",plot=plt)

plt.show()
```


[35]: # 补充后的 Area Id 数据描述 target_data.describe()

[35]: co	unt	180015	.000000
me	an	1.	.737089
st	d	0	.746381
mi	n	1	.000000
25	%	1	.000000
50	%	2	.000000
75	%	2	.000000

max 3.000000 Name: Area Id, dtype: float64

```
[36]: # 通过属性的相关关系来填补 Priority 缺失值
target_data = data['Priority'].copy(deep=True)
source_data = data['Area Id'].copy(deep=True)

flag1 = target_data.isnull().values
flag2 = source_data.isnull().values

i=0
for _,value in target_data.iteritems():
    if(flag1[i]==True) and (flag2[i]==False):
        target_data[i] = 3 - source_data[i]
    i=i+1
```

```
[37]: #Priority 可视化对比新旧数据

plt.figure(figsize = (10,10))

# 直方图
plt.subplot(3,2,1)
plt.title("Priority hist")
data['Priority'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 坚条数

# 直方图
plt.subplot(3,2,2)
plt.title("new Priority hist")
target_data.hist(alpha=0.5,bins=15) #alpha 透明度, bins 坚条数

# 盒图
plt.subplot(3,2,3)
plt.title("Priority box")
data['Priority'].plot(kind='box',notch=True,grid=True)

# 盒图
```

```
plt.subplot(3,2,4)
plt.title("new Priority box")
target_data.plot(kind='box',notch=True,grid=True)

#q-q 
plt.subplot(3,2,5)
stats.probplot(data['Priority'],dist="norm",plot=plt)

plt.subplot(3,2,6)
stats.probplot(target_data,dist="norm",plot=plt)

plt.show()
```


[38]: # 补充后的 Priority 数据描述 target_data.describe()

```
[38]: count
               180015.000000
                    1.796111
     mean
      std
                    0.402916
     min
                    0.000000
     25%
                    2.000000
     50%
                    2.000000
      75%
                    2.000000
                    2.000000
     max
     Name: Priority, dtype: float64
```

3.4 通过对象的相似性填补缺失值

```
[39]: numeric_attr = ['Area Id', 'Priority']
     # 查找两个对象间的相似性
     # 如果通过暴力法求解耗时耗力
     # 所以选择通过二分法查找的方法进行相似性选择
     def find_dis_value(dataset, pos, numeric_attr):
         def dis_objs(tar_obj_index, sou_obj_index):
             tar_obj = dataset.iloc[tar_obj_index]
             sou_obj = dataset.iloc[sou_obj_index]
             dis_value = 0
             for column in tar_obj.index:
                 if column == 'Priority':
                    if (not math.isnan(tar_obj[column])) and (not math.
      →isnan(sou_obj[column])):
                        dis_value += sou_obj[column] - tar_obj[column]
                    else:
                        dis_value += 9998
             return dis_value
```

```
mindis = 9999
   result pos = -1
   leftindex = 0;
   rightindex = dataset.shape[0]-1
   #二分查找返回最近距离的一个 result_pos
   while leftindex<=rightindex:</pre>
       midindex = int((leftindex+rightindex)/2)
       tmpdis = dis_objs(pos,midindex)
       if(tmpdis>0):
           rightindex = midindex-1
       elif(tmpdis == 0):
           result_pos = midindex
           break;
       else:
           leftindex = midindex+1
       if(tmpdis<mindis):</pre>
           result_pos = midindex
   return result_pos
# 通过数据对象之间的相似性来填补缺失值
numical_datasets = pd.DataFrame(data[numeric_attr].copy(deep=True))
# 对 numical_datasets 排序
numical_datasets.sort_values("Priority",inplace=True)
data_area_id = numical_datasets['Area Id'].copy(deep=True)
print('空数据数量为:',data_area_id.isnull().sum())
length = numical_datasets.shape[0]
count=1;
for i in range(length):
   if math.isnan(numical_datasets['Area Id'].iloc[i]):
         print(' 当前处理第 '+str(count)+" 个")
```

```
# print(i,numical_datasets.iloc[i])
result_pos = find_dis_value(numical_datasets, i, numeric_attr)
# print(result_pos,numical_datasets.iloc[result_pos])
data_area_id.iloc[i] = data_area_id.iloc[result_pos]
# print(i,data_area_id.iloc[i])
count+=1
```

空数据数量为:904

```
[40]: # 填充后的空数据数量 print(data_area_id.isnull().sum())
```

0

```
[41]: #Area Id 可视化对比新旧数据
     plt.figure(figsize = (10,10))
     # 直方图
     plt.subplot(3,2,1)
     plt.title("Area Id hist")
     data['Area Id'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 直方图
     plt.subplot(3,2,2)
     plt.title("new Area Id hist")
     data_area_id.hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 盒图
     plt.subplot(3,2,3)
     plt.title("Area Id box")
     data['Area Id'].plot(kind='box',notch=True,grid=True)
     # 盒图
     plt.subplot(3,2,4)
     plt.title("new Area Id box")
```

```
data_area_id.plot(kind='box',notch=True,grid=True)

#q-q 
plt.subplot(3,2,5)

stats.probplot(data['Area Id'],dist="norm",plot=plt)

plt.subplot(3,2,6)

stats.probplot(data_area_id,dist="norm",plot=plt)

plt.show()
```


[42]: #area id 的数据描述 data_area_id.describe() # # 通过数据对象之间的相似性来填补后数据的 5 数概况

```
[42]: count
               180016.000000
                    1.741956
     mean
      std
                    0.744823
     min
                    1.000000
      25%
                    1.000000
      50%
                    2.000000
      75%
                    2.000000
                    3.000000
     max
      Name: Area Id, dtype: float64
```

通过相似性填补后

Area Id: 最大值 3, 最小值 1, 均值 1.74, 中位数 2, 四分位数 [1,2,2], 缺失值个数为 0

```
[43]: # 使用 id 对 priority 进行填补
     numeric_attr = ['Area Id','Priority']
     # 查找两个对象间的相似性
     # 如果通过暴力法求解耗时耗力
     # 所以选择通过二分法查找的方法进行相似性选择
     def find_dis_value(dataset, pos, numeric_attr):
         def dis_objs(tar_obj_index, sou_obj_index):
             tar_obj = dataset.iloc[tar_obj_index]
             sou_obj = dataset.iloc[sou_obj_index]
             dis_value = 0
             for column in tar_obj.index:
                 if column == 'Area Id':
                    if (not math.isnan(tar_obj[column])) and (not math.
      →isnan(sou_obj[column])):
                        dis_value += sou_obj[column] - tar_obj[column]
                    else:
                        dis_value += 9998
             return dis_value
```

```
mindis = 9999
   result_pos = -1
   leftindex = 0;
   rightindex = dataset.shape[0]-1
   #二分查找返回最近距离的一个 result_pos
   while leftindex<=rightindex:</pre>
       midindex = int((leftindex+rightindex)/2)
       tmpdis = dis_objs(pos,midindex)
       if(tmpdis>0):
           rightindex = midindex-1
       elif(tmpdis == 0):
           result_pos = midindex
           break:
       else:
           leftindex = midindex+1
        if(tmpdis<mindis):</pre>
           result_pos = midindex
   return result_pos
# 通过数据对象之间的相似性来填补缺失值
numical_datasets = pd.DataFrame(data[numeric_attr].copy(deep=True))
# 对 numical_datasets 排序
numical_datasets.sort_values("Area Id",inplace=True)
data_Priority = numical_datasets['Priority'].copy(deep=True)
print('空数据数量为:',data_Priority.isnull().sum())
length = numical_datasets.shape[0]
count=1;
for i in range(length):
   if math.isnan(numical_datasets['Priority'].iloc[i]):
```

```
# print(' 当前处理第'+str(count)+" 个")
# print(i,numical_datasets.iloc[i])

result_pos = find_dis_value(numical_datasets, i, numeric_attr)

print(result_pos,numical_datasets.iloc[result_pos])

data_Priority.iloc[i] = data_Priority.iloc[result_pos]

print(i,data_area_id.iloc[i])

count+=1
```

空数据数量为: 1

```
[44]: # 补充后的 Priority 的空数据数量 print(data_Priority.isnull().sum())
```

0

```
[45]: #Priority 可视化对比新旧数据
     plt.figure(figsize = (10,10))
     # 直方图
     plt.subplot(3,2,1)
     plt.title("Priority hist")
     data['Priority'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 直方图
     plt.subplot(3,2,2)
     plt.title("new Priority hist")
     data_Priority.hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 盒图
     plt.subplot(3,2,3)
     plt.title("Priority box")
     data['Priority'].plot(kind='box',notch=True,grid=True)
     # 盒图
     plt.subplot(3,2,4)
```

```
plt.title("new Priority box")
data_Priority.plot(kind='box',notch=True,grid=True)

#q-q 
plt.subplot(3,2,5)
stats.probplot(data['Priority'],dist="norm",plot=plt)

plt.subplot(3,2,6)
stats.probplot(data_Priority,dist="norm",plot=plt)

plt.show()
```


[46]: #Priority 的数据描述

data_Priority.describe()

[46]: count 180016.000000 1.796107 meanstd 0.402919 0.000000 \min 25% 2.000000 50% 2.000000 75% 2.000000 max2.000000

Name: Priority, dtype: float64