Homework: Week 5

Joseph Ismailyan

Math 100

Due: November 3, 2017

Professor Boltje MWF 9:20a-10:25a

Chapter 5

6.

Proposition:

If $x \le -1$ then $x^3 - x \ge 0$. Proof. (Contrapositive) Suppose $x \in \mathbb{R}$, and it is not the case that x > -1, so $x \le -1$. Then x^3 and x are less than or equal to -1. Therefore $x^3 - x \le 0$. Thus it is not true that $x^3 - x > 0$.

18.

Proposition: For any $a, b \in \mathbb{Z}$, it follows that $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$. Proof. Consider $(a+b)^3 - a^3 + b^3$. By the process of simplification, we get the following steps: $(a+b)^3 - (a^3+b^3) = (a^3 + 3a^2b + 3ab^2 + b^3) - a^3 - b^3 = 3a^2b + 3ab^2$. Since $a, b \in \mathbb{Z}$, we can say that $3(a^2b + ab^2)$ is an integer. Then $(a^2b + ab^2)$ had the property of $(a+b)^3 - a^3 + b^3 = 3(a^2b + ab^2)$. Then it is proper to say $3|((a+b)^3 - a^3 + b^3)$. Therefore $(a+b)^3 \equiv a^3 + b^3 \pmod{n}$.

22.

Proposition: Let $a \in \mathbb{Z}, n \in \mathbb{N}$. If a has a remainder r when divided by n, then $a \equiv r \pmod{n}$.

Proof. Suppose a has a remainder r when divided by n. Then it follows that a = qn+r for some integer q. We can simplify this into $\frac{a}{n} = q + \frac{r}{n} \to -q = \frac{r}{n} - \frac{r}{n}$ which becomes -qn = r - a and since q is an arbitrary integer, we can say $c, c \in \mathbb{Z}, c = -q$. So then -qn = r - a becomes cn = r - a, which clearly shows that r - a is divisible by n, or just n|r - a. Therefore $a \equiv r \pmod{n}$.

Chapter 6

6.

Proposition: If $a, b \in \mathbb{Z}$, then $a^2 - 4b - 2 \neq 0$.

Proof. For the sake of contradiction, suppose $a^2 - 4b - 2 = 0$. Then $a^2 = 4b + 2 \rightarrow a^2 = 2(2b + 1)$ which means a^2 is even, which implies a is even. Then a = 2n for some integer n. Substituting back into our original equation, we get $(2n)^2 - 4b - 2 = 0$ and through we series of simplification we get $4n^2 - 4b - 2 = 0 \rightarrow 4(n^2 - b) = 2 \rightarrow 2(n^2 - b) = 1$, which implies that 1 is even because it's the result of multiplying two even numbers, but it is really not even so we've reached a contradiction.

16.

Proposition: If a and b are positive real numbers, then $a + b \ge 2\sqrt{ab}$.

Proof. For the sake of contradiction, suppose $a+b < 2\sqrt{ab}$. Then through a series of simplification we get

$$(a+b)^2 < 4ab$$

$$\rightarrow a^2 + 2ab + b^2 < 4ab$$

$$\to a^2 + b^2 < 2ab$$

$$\rightarrow a^2 - 2ab - b^2 < 0$$

 $\rightarrow (a-b)^2 < 0$ which is a contradiction because a and b are positive real numbers and when their difference is squared, it cannot be less than 0.

20.

Proposition: The curve $x^2 + y^2 - 3 = 0$ has no rational points.

Proof. For the sake of contradiction, suppose $x^2 + y^2 - 3 = 0$ has a rational point. Now suppose that the positive numbers x, y have a rational point (x, y) line on the curve. Then x and y can be rewritten as $x = \frac{a}{b}, y = \frac{c}{d}, 0 < a, b, c, d \in \mathbb{N}$ where a and b are relatively prime so then qcd(a,b) = 1 and qcd(c,d) = 1. Then by substation, we get $(\frac{a}{b})^2 + (\frac{c}{d})^2 - 3 = 0 \rightarrow$ $(ad)^2 + (bc)^2 - 3(bd)^2 = 0$ $\rightarrow (ad)^2 + (bc)^2 = 3(bd)^2$. Then we must have $(ad)^2 + (bc)^2 \equiv 0 \pmod{3}$. But recall we must have $x \equiv 0 \pmod{3}$ or $x \equiv \pm 1 \pmod{3}$, thus $x^2 \equiv 0 \pmod{3}$ or $x^2 \equiv 1 \pmod{3}$ by properties of congruency. Then $(ad)^2 + (bc)^2 \equiv 0 \pmod{3} \implies$ $(ad)^2 \equiv 0 \pmod{3}$ and $(bc)^2 \equiv 0 \pmod{3}$ again by properties of congruency. Then $(ad) \equiv 0 \pmod{3}$ and $(bc) \equiv 0 \pmod{3}$. Since 3 is prime, we must have $a \equiv$ $0 \pmod{3}$ or $d \equiv 0 \pmod{3}$, and $b \equiv$ $0 \pmod{3}$ or $c \equiv 0 \pmod{3}$. Then if $b \equiv 0 \pmod{3}$ then $a \not\equiv 0 \pmod{3}$ since qcd(a,b) = 1. Then since $b \equiv$ $0 \pmod{3}$ then $d \equiv 0 \pmod{3}$. It follows that $b = 3n, d = 3m, 0 < n, m \in \mathbb{N}$. Therefore, $(ad)^2 + (bc)^2 = 3(bd)^2 \implies$ $(3am)^2 + (3cn)^2 = 3(9mn)^2$. Thus, we have $(am)^2 + (cn)^2 = 27(mn)^2$ so $3|(am)^2+(cn)^2$ which means qcd(a,b) > 3and $gcd(c,d) \geq 3$.

24.

Proposition: $\log_2 3$ is irrational.

Proof. For the sake of contradiction, suppose $\log_2 3$ is rational. By definition of rational numbers, that means $\log_2 3$ can be written in the form $\frac{a}{b}$ for arbitrary integers a and b. Therefore we can say $2^{\frac{a}{b}} = \frac{a}{b}$ using the definition of logarithms. Then we can simplify to $2^a = 3^b$ which we know is false because an even number raised to an integer cannot be equal to an odd number raised to an integer.