Problem 1. $V(J) \subseteq B$ を閉集合として, $f^*(V(J)) = V(f^{-1}(J))$ を示す. $\mathfrak{p} \in f^*(V(J))$ とすれば, ある $\mathfrak{q} \in V(J)$ が存在して,

$$f^*(\mathfrak{q}) = f^{-1}(\mathfrak{q}) = \mathfrak{p}$$

となる. 今, $J\subseteq\mathfrak{q}$ より, $f^{-1}(J)\subseteq f^{-1}(\mathfrak{q})=\mathfrak{p}$ なので, $\mathfrak{p}\in V(f^{-1}(J))$ が成り立つ. あとは $V(f^{-1}(J))\subseteq f^*(V(J))$ を示せばよいが, これは f^* の制限によって $\operatorname{Spec} B/J\to\operatorname{Spec} A/f^{-1}(J)$ が全射であることと同値である.

まず, f が integral であることと (5.6) より, $\iota: f(A) \to B$ を包含射とすれば, B/J は $f(A)/\iota^{-1}(J)$ 上整である. また, $f(A)/\iota^{-1}(J) \subseteq B/J$ とみれば, (5.10) より,

$$\operatorname{Spec} B/J \to \operatorname{Spec} f(A)/\iota^{-1}(J)$$

は全射である. ここで, $f(A)\cong A/\ker f$ と $f^{-1}(\iota^{-1}(J))=f^{-1}(J)$ を考えれば,

$$f(A)/\iota^{-1}(J) \cong (A/\ker f)/(f^{-1}(J)/\ker f) \cong A/f^{-1}(J)$$

となるので,

$$\begin{array}{ccc} A & \longrightarrow & B \\ \downarrow & & \downarrow \\ A/f^{-1}(J) & \longrightarrow & B/J \end{array}$$

が可換であることから,

$$\operatorname{Spec} B/J \longrightarrow \operatorname{Spec} A/f^{-1}(J)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} B \longrightarrow \operatorname{Spec} A$$

も可換であることに注意すれば、 f^* の制限によって $\operatorname{Spec} B/J \to \operatorname{Spec} A/f^{-1}(J)$ が全射であることが従う.

Problem 2. $\mathfrak{p} = \ker f$ とする. (5.10) より、ある \mathfrak{q} が存在して、 $\mathfrak{p} = \mathfrak{q} \cap A$ が成り立つ. このとき、

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\downarrow & & \downarrow \\
A/\mathfrak{p} & \xrightarrow{\iota_0} & B/\mathfrak{q}
\end{array}$$

が可換であり、 ι_0 が単射なので、 $A/\mathfrak{p}\subseteq B/\mathfrak{q}$ としてよい。(5.6) より、これは整拡大である。また、 $A/\mathfrak{p}, B/\mathfrak{q}$ が ともに整域であることから、 $K(A/\mathfrak{p})\subseteq K(B/\mathfrak{q})$ は代数的拡大になる。さらに、 $f(A)\cong A/\ker f$ であることから、 $K(f(A))\subseteq K(B/\mathfrak{q})$ とみれば、 $K(f(A))\subseteq \Omega$ でもあるので、 $K(B)\subseteq \Omega$ とみなせる。

Problem 3. $D \subseteq B' \otimes_A C$ を $(f \otimes_A 1)(B \otimes C)$ 上整な元の集合とすれば、(5.3) より、 $B' \otimes_A C$ の部分環である。また、B,C が A-代数であることと、f が代数準同型であることから、 $x \otimes y \in B' \otimes_A C$ が $(f \otimes_A 1)(B \otimes C)$ 上整であることを示せば、十分である。ここで、x は f(B) 上整なので、 $b^n = 1$ とすれば、ある $b_i \in B'$ が存在して、

$$\sum_{i=0}^{n} b_i x^i = 0$$

となる. このとき,

$$\sum_{i=0}^{n} (b_i \otimes y^{n-i})(x \otimes y) = \sum_{i=0}^{n} ((b_i x) \otimes y^n) = \left(\sum_{i=0}^{n} b_i x^i\right) \otimes y^n = 0$$

となるので, $x \otimes y \in B' \otimes_A C$ は $B \otimes_A C$ 上整である.

$$\mathfrak{m} = A \cap (x-1)B = (x^2 - 1)A$$

となることに注意する.

1/(x+1) が $A_{\mathfrak{m}}$ 上整と仮定する. このとき, $a_0=1$ となるようなある $a_i\in A$ と $s_i\in A\setminus \mathfrak{m}$ が存在して,

$$\sum_{i=0}^{n} a_i s_i (x-1)^i = 0$$

が成り立つ. このとき, $s_0 \in (x-1) \cap A = \mathfrak{m}$ となるが, これは矛盾.

Problem 5. (1) x の B における逆元を $y \in B$ とする. B は A 上整なので, $a_i \in A$ が存在して,

$$y^n + \dots + a_{n-1}y + a_n = 0$$

となるが, n=1 のときには $y=a_1\in A$ なので, 成り立つ. 次に, n-1 のときには, 主張が成り立つと 仮定する.

$$-xa_n = y^{n-1} + \dots + a_{n-1}$$

なので, a_{n-1} を $-xa_n$ でおきなおせば,

$$y^{n-1} + \dots + a_{n_1} = 0$$

となる. 帰納法の仮定より, $y \in A$ が成り立つ. ゆえに, x は A においても単元.

(2) (5.10) より、縮約による全射 Spec $B\to \mathrm{Spec}\,A$ が存在するが、特に縮約による全射 $\mathrm{Max}\,B\to \mathrm{Max}\,A$ も存在するので、共通部分の逆像が逆像の共通部分であることから、主張が成り立つ.