Teorema de la cota de Hamming

Enunciar el teorema de la cota de Hamming y probarlo

El teorema de Hamming nos dice que, sea C un código de longitud n, $\delta=\delta(C)$ y $t=\lfloor\frac{\delta-1}{2}\rfloor$, entonces

$$\#C \leq rac{2^n}{\sum_{i=0}^t inom{n}{i}}$$

Para demostrarlo, vamos a recordar la definición de distancias, los discos y sus propiedades:

- Dado un código C, la distancia de Hamming entre dos palabras v y w es la cantidad de bits de diferencia entre v y w. Denotamos a esta como d(v, w).
- Dada una palabra $v\in\{0,1\}^n$ y $r\in N_0$, definimos el disco de radio r alrededor de v como $D_r(v)=\{w\in\{0,1\}^n:d(v,w)\leq r\}$
- Un código C detecta r errores si $D_r(v) \cap C = \{v\} \forall v \in C$
- Un código C corrige r errores si $D_r(v) \cap D_r(w) \neq \emptyset \forall v, w \in C : v \neq w$
- Sea C un código y $\delta = \delta(C)$, entonces
 - C detecta $\delta-1$ errores pero no detecta δ
 - Si $t=\lfloor rac{\delta-1}{2}
 floor$, entonces C corrige t errores pero no corrige t+1 errores

Dicho esto, consideremos $A = \cup_{v \in C} D_t(v)$.

Como $t=\lfloor \frac{\delta(C)-1}{2} \rfloor$, entonces C corrige t errores. Luego, esto significa que $D_t(v)\cap D_t(w)=\emptyset \forall v,w\in C.$

Por ello, entonces, A es una unión disjunta, por lo que $\#A = \sum_{v \in C} \#D_t(v)$.

Ahora, para ver los D_t , consideremos los conjuntos $S_r(v)=\{w\in\{0,1\}^n:d(v,w)=r\}$. Luego, por definición de disco, tenemos que $D_t(v)=\cup_{r=0}^t S_r(v)$, la cual es, claramente, una unión disjunta (porque las distancias son distintas por r). Luego, $\#D_t(v)=\sum_{r=0}^t \#S_r(v)$.

Ahora, si vemos S_r , notemos que si $w \in S_r(v)$ entonces significa que difiere de v en exactamente r posiciones.

Dado esto, quiero ver cuántas w posibles hay. Para ello, notemos que si difiere en r posiciones, entonces hay $\binom{n}{r}$ conjuntos de posiciones distintos para considerar.

Ahora, como solo tenemos los elementos 0,1, entonces que sea distinto significa que se le asigna el otro posible valor.

Luego, para $S_r(v)$ hay $\binom{n}{r} imes 1^r = \binom{n}{r}$ posibles elementos.

Dicho esto, si reemplazamos todo tenemos que:

$$\#S_r(v) = \binom{n}{r}$$
 $\#D_t(v) = \sum_{r=0}^t S_r(v) = \sum_{r=0}^t \binom{n}{r}$ $\#A = \sum_{v \in C} \#D_t(v) = \sum_{v \in C} (\sum_{r=0}^t \binom{n}{r})$

Luego, como la última suma considerada para #A no depende de v, tenemos que

$$\#A = \#C imes \sum_{r=0}^t inom{n}{r}$$

Ahora, como A es un subconjunto de $\{0,1\}^n$, entonces $\#A \leq 2^n$. Dicho esto, tenemos que:

$$\#C = rac{\#A}{\sum_{r=0}^t \binom{n}{r}} \leq rac{2^n}{\sum_{r=0}^t \binom{n}{r}}$$

con lo que queda demostrado.