Lecture 6: Abel's limit theorem

Math 660—Jim Fowler

Monday, June 27, 2011

Homework questions

How did it go?

Abel's limit theorem

Suppose $\sum a_n$ converges and let $f(z) = \sum a_n z^n$. Then $\lim_{z\to 1} f(z) = f(1)$ provided $z\to 1$ so that

$$\frac{|1-z|}{1-|z|}$$

remains bounded.

Wlog $\sum a_n = 0$ by changing a_0 .

$$s_n(z) = a_0 + a_1 z + \dots + a_n z^n$$

$$= s_0 + (s_1 - s_0)z + \dots + (s_n - s_{n-1})z^n$$

$$= s_0(1 - z) + s_1(z - z^2) + \dots + s_{n-1}(z^{n-1} - z^n) + s_n z^n$$

$$= (1 - z)(s_0 + \dots + s_{n-1}z^{n-1}) + s_n z^n$$

Since $s_n z^n \to 0$, we conclude

$$f(z) = (1-z)\sum s_n z^n$$

Then

$$|f(z)| \leq |1-z| \left| \sum_{n=0}^{m-1} s_n z^n \right| + M\epsilon$$

Applications

$$\sum_{k=0}^{\infty} (-1)^n / (n+1) = \log 2$$
$$\sum_{k=0}^{\infty} (-1)^n / (2n+1) = \pi/4$$

we can extend the objects under consideration.

Armed with a good theorem,

Armed with a good theorem,	

we can extend the objects under consideration.

Abel summability

Let $\sum a_n$ be a series—convergent or not!

 $f(z) = \sum a_n z^n$ is more likely to converge for |z| < 1 than $\sum a_n$.

say that a_n is Abel summable, with Abel sum L

If $\sum a_n z^n$ converges for |z| < 1, and $\lim_{x\to 1^-} f(x) = L$,

Let $\sum a_n$ be a series—convergent or not! $f(z) = \sum a_n z^n$ is more likely to converge

 $f(z) = \sum a_n z^n$ is more likely to converge for |z| < 1 than $\sum a_n$.

If $\sum a_n z^n$ converges for |z| < 1, and $\lim_{x \to 1^-} f(x) = L$, say that a_n is Abel summable, with Abel sum L

How does Abel summability relate to usual summability?

Quiz

Tauber's theorem

Suppose a_n is Abel summable, and $\lim_{n\to\infty} n \, a_n = 0$. Then $\sum a_n$ converges in the usual sense.

Tauber's theorem

Suppose a_n is Abel summable, and $\lim_{n\to\infty} n \, a_n = 0$. Then $\sum a_n$ converges in the usual sense.

There are other such theorems, known as Tauberian theorems (and so-called Abelian theorems, which go the other way).

Divergent series

A summability method associates to $\sum a_n$ a sum L.

Divergent series

A summability method associates to $\sum a_n$ a sum L.

A summability method is *regular* if it yields the honest value for convergent series.

Divergent series

A summability method associates to $\sum a_n$ a sum L.

A summability method is *regular* if it yields the honest value for convergent series.

Abel's theorem: Abel summability is regular.

Use Abel summation to "sum"

$$1 - 2 + 3 - 4 + 5 - \cdots =$$

Use Abel summation to "sum"

$$1 - 2 + 3 - 4 + 5 - \cdots =$$

Amusingly, consider
$$(1-1+1-1+\cdots)^2$$
.

Define $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$.

Define $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$. $2^{-s}\zeta(s) = \sum_{n=1}^{\infty} (2n)^{-s}$.

Define
$$\zeta(s) = \sum_{n=1}^{\infty} r^n$$

Define $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$.

Define
$$\zeta(s) = \sum_{n=1}^{\infty} n^n$$

Define
$$\zeta(s) = \sum_{n=1}^{\infty} n^n$$

 $2^{-s}\zeta(s) = \sum (2n)^{-s}$.

Define
$$\zeta(s) = \sum_{n=1}^{\infty} n^n$$

eithe
$$\zeta(s) = \sum_{n=1}^{n} \pi^{-s}$$

 $(1-2\cdot 2^{-s})\zeta(s) = \sum (-1)^{n+1}n^{-s}$.

Define
$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$
.

 $2^{-s}\zeta(s) = \sum (2n)^{-s}$.

 $(1-2\cdot 2^{-s})\zeta(s) = \sum (-1)^{n+1}n^{-s}$. When s = -1, this is

 $(1-2\cdot 2^1)\zeta(-1)=1-2+3-4+\cdots=1/4$

Define $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$.

 $2^{-s}\zeta(s) = \sum (2n)^{-s}$.

When s = -1, this is

$(1-2\cdot 2^{-s})\zeta(s) = \sum (-1)^{n+1}n^{-s}$.

 $(1-2\cdot 2^1)\zeta(-1)=1-2+3-4+\cdots=1/4$

so $1+2+3+4+\cdots=-1/12$.

So what about $1 + 2 + 3 + 4 + \cdots$?

So what about $1+2+3+4+\cdots$? Define $\zeta(s)=\sum_{n=1}^{\infty}n^{-s}$ when the real part of s is larger than 1, but there is an analytic function agreeing with $\zeta(s)$ with $\zeta(-1)=-1/12$.

What about $1 + 2 + 4 + 8 + 16 + \cdots$?

What about $1 + 2 + 4 + 8 + 16 + \cdots$? Consider f(x) = 1/(1 - 2x). What about $1 + 2 + 4 + 8 + 16 + \cdots$? Consider f(x) = 1/(1 - 2x).

So $\sum = -1$? Does this make any sense?