Основи машинного навчання

Лекція № **5**

Постановка задачі навчання

- Розділити дані на дві частини:
 - навчальна вибірка (більша частина)
 - тестувальна вибірка
- Навчити машину за існуючою базою даних (навчальною вибіркою) приймати необхідне рішення – побудувати алгоритм прийняття рішень
- Перевірити побудований алгоритм на тестувальній вибірці

Постановка задачі навчання

- Множина об'ектів X^N (інформаційний стан): $\{xi, ..., xN\}$
- Множина відповідей Y (оцінка, передбачення, прогноз)
- Target function $y: X \to Y$ невідома залежність яка для кожного інформаційного стану ставить у відповідність певну відповідь

Дано

- Навчальна вибірка $\{x_1, ..., x_\ell \subset X\}$
- Відомі відповіді $y_i = y(x_i)$, i = 1, ... , ℓ

Знайти

• $a: X \to Y$ алгоритм, що визначає функцію y та наближає її на всій множині X

Ознаковий опис

 $f_i:X o Dj, j=1,\ldots,n$ ознаки об'єктів

- $D_j = \{0,1\}$ бінарна ознака f_j
- $|D_j| < \infty$ номінальна ознака f_j
- $|D_j| < \infty$, D_j упорядковано порядкова ознака f_j
- $D_j = \mathbb{R}$ кількісна ознака f_j

Вектор $(f_1(x), ..., f_n(x))$ — ознаковий опис об'єкта x Набір даних - матриця «об'єкти-ознаки»:

 ℓ об'єктів з n признаками

$$F = \|f_j(xi)\|_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \cdots & f_n(x_1) \\ \cdots & \cdots & \cdots \\ f_1(x_\ell) & \cdots & f_n(x_\ell) \end{pmatrix}$$

Відповіді та приклади задач

Задачі навчання з учителем

Задачі класифікації (classification)

- $Y = \{-1, +1\}$ класифікація на два класи
- $Y = \{1, M\}$ класифікація на M класів, що не перетинаються
- $Y = \{0,1\}^M$ класифікація M класів, що можуть перетинатися

Задачі відтворення регресії (regression)

• Y = R abo Y = RM

Задачі ранжування (ranking,learning to rank)

• Y – кінцева упорядкована множина

Задачі навчання без учителя

• Відповідей немає. Необхідно щось робити із самими об'єктами.

Статистичне навчання з учителем

- Навчання за прецедентами
- Відтворення залежностей за існуючими емпіричними даними
- Передбачувальне моделювання
- Апроксимація функцій за заданими точками

Два основних типи задач: класифікація та регресія

Приклад: класифікація квітів ірису (Фішер 1936)

n=4 ознаки,Y=3 класи, довжина вибірки $\ell=150$

Приклад: задача регресії

$$X = Y = \mathbb{R}$$
, $\ell = 200$, $n = 3$ ознаки: $\{x, x^2, 1\}$ або $\{x, \sin x, 1\}$

$$\{x, x^2, 1\}$$
 afo $\{x, \sin x, 1\}$

- Генерація ознак (features generation) збагачує модель
- На практиці дуже важливо «правильно вгадати модель»

Модель алгоритмів (передбачувана модель)

Модель (predictive model) – параметричне сімейство функцій

$$A = \{g(x, \theta) \mid \theta \in \Theta\},\$$

де $g: X imes \Theta o Y$ — фіксована функція Θ — Множина допустимих значень параметра heta

Приклад

Лінійна модель з вектором параметрів

$$\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$$
:

$$g(x, heta) = \sum_{j=1}^n heta_j f_j(x) \; - \;$$
для регресії та ранжування, $Y = \mathbb{R}$

$$g(x, heta)= \operatorname{sign} \sum_{j=1}^n heta_j f_j(x)$$
 — для класифікації, $Y=\{-1,+1\}$

Метод навчання

Етап навчання (train):

Метод навчання (training algorithm) $\mu\colon (X\times Y)^\ell \to A$ За вибіркою $X^\ell=(x_i,y_i)_{i=1}^\ell$ будує алгоритм $a=\mu(X^\ell)$:

$$\begin{bmatrix}
f_1(x_1) & \dots & f_n(x_1) \\
\dots & \dots & \dots \\
f_1(x_\ell) & \dots & f_n(x_\ell)
\end{bmatrix} \xrightarrow{y} \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix} \xrightarrow{\mu} a$$

Етап застосування (test):

Алгоритм а для нових об'єктів x'_i видає відповіді $a(x'_i)$:

$$\begin{pmatrix} f_1(x'_1) & \dots & f_n(x'_1) \\ \dots & \dots & \dots \\ f_1(x'_k) & \dots & f_n(x'_k) \end{pmatrix} \stackrel{\textbf{a}}{\longrightarrow} \begin{pmatrix} \textbf{a}(x'_1) \\ \dots \\ \textbf{a}(x'_k) \end{pmatrix}$$

Функціонали якості

 $\mathscr{L}(a,x)$ — функція втрат (loss function) — величина помилки алгоритму $a\in A$ на об'єкті $x\in X$

Функція втрат для задач класифікації:

ullet $\mathscr{L}(a,x) = igl[a(x)
eq y(x) igr] -$ індикатор помилки

Функція втрат для задач регресії:

- ullet $\mathscr{L}(a,x)=ig|a(x)-y(x)ig|$ абсолютне значення помилки
- ullet $\mathscr{L}(a,x) = ig(a(x) y(x)ig)^2$ квадратична помилка

Емпіричний ризик – функціонал якості алгоритму a на вибірці X^{ℓ}

$$Q(a,X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathscr{L}(a,x_i)$$

Зведення задачі навчання до задачі оптимізації

Метод мінімізації емпіричного ризику (Empirical Risk Minimization, ERM):

$$\mu(X^{\ell}) = \arg\min_{a \in A} Q(a, X^{\ell})$$

Приклад: задача регресії $Y=\mathbb{R};$ n числових ознак $f_j(x),\ j=1,\dots,n;$ лінійна модель регресії: $g(x,\theta)=\sum\limits_{j=1}^n\theta_jf_j(x),\ \theta\in\mathbb{R}^n;$ квадратична функція втрат: $\mathscr{L}(a,x)=\left(a(x)-y(x)\right)^2.$

Метод найменший квадратів – окремий випадок ERM:

$$\mu(X^{\ell}) = \arg\min_{\theta} \sum_{i=1}^{\ell} (g(x_i, \theta) - y_i)^2$$

Приклад Рунге Апроксимація функції поліномом

Функція
$$y(x)=rac{1}{1+25x^2}$$
 на відрізку $x\in[-2,2]$
Ознаковий опис об'єкта $x\mapsto(1,x^1,x^2,\dots,x^n)$

Модель поліноміальної регресії

$$a(x,\theta) = \theta_0 + \theta_1 x + \cdots + \theta_n x^n$$
 — поліном ступеня n

Навчання методом найменших квадратів:

$$Q(\theta, X^{\ell}) = \sum_{i=1}^{\ell} (\theta_0 + \theta_1 x_i + \dots + \theta_n x_i^n - y_i)^2 \to \min_{\theta_0, \dots, \theta_n}$$

Навчальна вибірка:
$$X^{\ell} = \{x_i = 4rac{i-1}{\ell-1} - 2 \mid i = 1, \dots, \ell\}$$

Контрольна вибірка:
$$X^k = \left\{ x_i = 4 rac{i-0.5}{\ell-1} - 2 \mid i = 1, \dots, \ell-1 \right\}$$

Що відбувається з $Q(\theta, X^{\ell})$ та $Q(\theta, X^{k})$ при збільшенні n?

Приклад Рунге Перенавчання при $n=38, \ell=50$

$$y(x) = \frac{1}{1 + 25x^2}$$
; $a(x)$ — поліном ступеня $n = 38$

Приклад Рунге 3алежність Q від ступеня поліному n

Перенавчання – це коли $Q(\mu(X^{\ell}), X^k) \gg Q(\mu(X^{\ell}), X^{\ell})$: Q0.7 0.6 0.5 0.4 0.3 0.2 0.1 -0.0 12 18 22 24 26 16 20 30 nПомилка на Оптимум __ Помилка на складності навчанні контролі

Проблеми недонавчання та перенавчання

- Недонавчання (underfitting): модель досить проста, недостатня кількість параметрів *n* (ознак)
- Перенавчання (overfitting:) модель досить складна, завелика кількість параметрів *n* (ознак)

Навчання регресії – оптимізація

Навчальна вибірка: $X^\ell=(x_i,y_i)_{i=1}^\ell$, $x_i\in\mathbb{R}^n$, $y_i\in\mathbb{R}$

• Модель регресії – лінійнα:

$$a(x, w) = \langle x, w \rangle = \sum_{j=1}^{n} w_j f_j(x), \qquad w \in \mathbb{R}^n$$

Функція втрат – квадратична:

$$\mathscr{L}(a,y) = (a-y)^2$$

Метод навчання – метод найменших квадратів:

$$Q(w) = \sum_{i=1}^{\ell} (a(x_i, w) - y_i)^2 \to \min_{w}$$

 $oldsymbol{\Phi}$ Перевірка по тестовій вибірці $X^k = (ilde{x}_i, ilde{y}_i)_{i=1}^k$:

$$\bar{Q}(w) = \frac{1}{k} \sum_{i=1}^{k} (a(\tilde{x}_i, w) - \tilde{y}_i)^2$$

Навчання класифікації – оптимізація

Навчальна вибірка: $X^\ell = (x_i, y_i)_{i=1}^\ell$, $x_i \in \mathbb{R}^n$, $y_i \in \{-1, +1\}$

1 Модель класифікації – *лінійнα*:

$$a(x, w) = \operatorname{sign}\langle x, w \rangle = \operatorname{sign} \sum_{j=1}^{n} w_j f_j(x)$$

2 Функція втрат – *бінарна або її апроксимація*:

$$\mathscr{L}(a,y) = [ay < 0] = [\langle x, w \rangle y < 0] \leqslant \mathscr{L}(\langle x, w \rangle y)$$

Метод навчання – мінімізαція емпіричного ризику:

$$Q(w) = \sum_{i=1}^{\ell} \left[\langle x_i, w \rangle y_i < 0 \right] \leqslant \sum_{i=1}^{\ell} \mathscr{L}\left(\langle x_i, w \rangle y_i \right) \to \min_{w}$$

 $oldsymbol{0}$ Перевірка по тестовій вибірці $X^k = (ilde{x}_i, ilde{y}_i)_{i=1}^k$:

$$\bar{Q}(w) = \frac{1}{k} \sum_{i=1}^{k} \left[\langle \tilde{x}_i, w \rangle \tilde{y}_i < 0 \right]$$

Поняття відступу (marging) для розділяючих класифікаторів

Розділяючий класифікатор: $a(x,w) = \mathrm{sign}\, g(x,w)$ g(x,w) - Розділяюча (дискримінантна) функція g(x,w) = 0 - Рівняння розділяюччої поверхні $M_i(w) = g(x_i,w)y_i -$ Відступ (marging) об'єкта x_i $M_i(w) < 0 \iff$ алгоритм a(x,w) помиляється на x_i

Ранжування об'єктів за зростанням відступів $M_i(w)$:

Неперервні апроксимації порогової функції втрат

Часто використовувані неперервні функції втрат $\mathscr{L}(M)$:

$$V(M) = (1 - M)_{+}$$
 $H(M) = (-M)_{+}$
 $L(M) = \log_{2}(1 + e^{-M})$
 $Q(M) = (1 - M)^{2}$
 $S(M) = 2(1 + e^{M})^{-1}$
 $E(M) = e^{-M}$
 $[M < 0]$

- кусочно-лінійна (SVM);
- кусочно-лінійна (Hebb's rule);
- логарифмічна (LR);
 - квадратична (FLD);
 - сигмоїдна (ANN);
- експоненціальна (AdaBoost);
- порогова функція втрат

Метод градієнтного спуску для мінімізації емпіричного ризику

Мінімізація емпіричного ризику (регресія, класифікація):

$$Q(w) = \sum_{i=1}^{\ell} \mathscr{L}_i(w) \to \min_{w}.$$

Мінімізація методом градієнтного спуску:

 $w^{(0)}$ – початкове наближення

$$w^{(t+1)} := w^{(t)} - h \cdot \nabla Q(w^{(t)}), \qquad \nabla Q(w) = \left(\frac{\partial Q(w)}{\partial w_j}\right)_{j=0}^n,$$

deh — градієнтний крок, також називається темпом навчання

$$w^{(t+1)} := w^{(t)} - h \sum_{i=1}^{\ell} \nabla \mathscr{L}_i(w^{(t)}).$$

Ідея прискорення збіжності алгоритму:

брати (x_i, y_i) по одному й одразу поновлювати вектор ваг

Перенавчання— ключов проблема в машинному навчанні

- Через що виникає перенавчання?
 - Надлишкові параметри в моделі $g(x, \theta)$ «витрачаються» на надмірно точну підгонку за навчальною вибіркою
 - Вибір алгоритму a з A відбувається за неповною інформацією X^ℓ
- Як виявити перенавчання?
 - Емпірично, шляхом розбиття вибірки на навчальну (train) та тестову (test), причому на тестовій вибірці мають бути відомі правильні відповіді
- Позбутися його не можна. Як його мінімізувати?
 - Накладати обмеження на heta (регуляризація)
 - Мінімізувати одну з теоретичних оцінок

Дякую за увагу