Midterm Exam

BX25203 Engineering Mathematics (I), Fall 2020 School of BioMedical Convergence Engineering, PNU Oct. 21. 10:30 - 12:00

I. REMARK

- This is a closed book exam. You are permitted on one page of notes.
- There are a total of 100 points in the exam. Each problem specifies its point total.
- · You must SHOW YOUR WORK to get full credit.

II. PROBLEM SET

- 1) [20 points] Mark each statement True or False. You don't need to justify each answer in this problem.
 - a) If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then \mathbf{b} is in the set spanned by the columns of A. [True/False]
 - b) The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution if and only if the equation has at least one free variable. [True/False]
 - c) If x and y are linearly independent, and if $\{x, y, z\}$ is linearly dependent, then z is in Span $\{x, y\}$. [True/False]
 - d) If A is a 3×2 matrix, then the transformation $\mathbf{x} \to A\mathbf{x}$ cannot be one-to-one.[True/False]
 - e) If A and B are 3×3 and $B = [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3]$, then $AB = [A\mathbf{b}_1 + A\mathbf{b}_2 + A\mathbf{b}_3]$. [True/False]
 - f) The dimension of Col A is the number of pivot columns of A. [True/False]
 - g) \mathbb{R}^2 is the subspace of \mathbb{R}^4 . [True/False]
 - h) If the columns of $A \in \mathbb{R}^{n \times n}$ are linearly dependent, then $\det A = 0$. [True/False]
 - i) If H is a p-dimensional subspace of \mathbb{R}^n , then a linearly independent set of p vectors in H is a basis for H.
 - j) If A and B are $n \times n$, then $(A+B)(A-B) = A^2 B^2$. [True/False]
- 2) [15 points] $T: \mathbb{R}^2 \to \mathbb{R}^2$ first rotates points through $\pi/2$ radian, counter-clockwise ((A) to (B)) and then reflects points through the vertical x_2 -axis ((B) to (C)). Find the standard matrix of T. Also, find the matrix of T^{-1} .

3) [20 points] Let $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 3 & 2 & -1 \\ -4 & -8 & 0 & 0 \\ -1 & 1 & 6 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 5 \\ 0 \\ 15 \end{bmatrix}.$$

- a) Find a solution set x if it is consistent.
- b) Find a basis of ColA.
- c) Find a basis of NulA.
- d) Find an LU factorization of the matrix A. Note that $L \in \mathbb{R}^{3 \times 3}$ and $U \in \mathbb{R}^{3 \times 4}$.
- 4) [10 points] A set $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and a vector \mathbf{a} are given as

$$\mathbf{b}_{1} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \mathbf{b}_{2} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{b}_{3} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 3 \end{bmatrix}, \mathbf{a} = \begin{bmatrix} -1 \\ -3 \\ 0 \\ 0 \end{bmatrix},$$

- a) Is a in span B?
- b) Is a set $C = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{a}\}$ a basis of \mathbb{R}^4 ?
- 5) [10 points] Suppose that A is a 3 \times 3 matrix with the property that $A\mathbf{v}_1=\mathbf{e}_1,\,A\mathbf{v}_2=\mathbf{e}_2$ and $A\mathbf{v}_3=\mathbf{e}_2+\mathbf{e}_3$ where

$$\mathbf{v}_1 = \begin{bmatrix} -4\\2\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\-1\\1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 3\\3\\0 \end{bmatrix}.$$

Find A^{-1} . (\mathbf{e}_1 , \mathbf{e}_2 and \mathbf{e}_3 denote the standard basis vectors in \mathbb{R}^3)

6) [15 points] A matrix A is given as

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}.$$

- a) Show that $A + A^{-1} = 2I$.
- b) Find a determinant of A^{100} .
- c) Find A^{100} .
- 7) [10 points] Let $C=AB\in\mathbb{R}^{3\times 3}$ where $A\in\mathbb{R}^{3\times 2}$ and $B\in\mathbb{R}^{2\times 3}.$
 - a) Show that the first column vector of C is the linear combination of the column vectors of A.
 - b) Is C invertable? Justify your answer.