2 C 825 F84 +

Survey of Endia.

PROFESSIONAL PAPERS.

1905.

SERIAL NO. 8.

EXPERIMENTS MADE TO DETERMINE THE TEMPERATURE CO-EFFICIENTS OF WATSON'S MAGNETOGRAPHS,

BY

CAPTAIN H. A. DENHOLM FRASER, R.E., DEPUTY SUPERINTENDENT SURVEY OF INDIA.

PREPARED UNDER THE DIRECTION OF

COLONEL J. R. HOBDAY, I.A.,

OFFG. SURVEYOR GENERAL OF INDIA.

CALCUTTA:
OFFICE OF THE SUPERINTENDENT OF GOVERNMENT PRINTING, INDIA.
1905.

CORNELL UNIVERSITY LIBRARY

ENGINEERING LIBRARY

Cornell University Library QC 825.5.F84

Experiments made to determine the temper

3 1924 004 600 023

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

Professional Papers.
1905.

SERIAL No. 8.

Agents for the sale of Books published by the Superintendent of Government Printing, India, Calcutta.

IN ENGLAND.

E. A. Arnold, 41 & 43, Madox Street, Bond Street, London, W.

CONSTABLE & Co., 16, James Street, Haymarket, London, W.

P. S. King & Son, 2 & 4, Great Smith Street, Westminster, London.

KEGAN PAUL, TRENCH TRÜBNER & Co., Charing Cross Road, London.

BERNARD QUARITCH, 15, Piccadilly, London.

B. H. BLACKWELL, 50 & 51, Broad Street, Oxford.

DEIGHTON BELL & Co., Cambridge.

H. S. Kinc & Co., 65, Cornhill, and 9, Pall Mall, London.

On the Continent.

R. FRIEDLÄNDER & SOHN, 11, Carlstrasse, Berlin, N.W.

OTTO HARRASSOWITZ, Leipzig.

K ARL HIERSEMANN, Leipzig.

ERNEST LEROUX, 28, Rue Bonaparte, Paris. MARTINUS NIJHOFF, The Hague, Holland.

IN INDIA.

THACKER, SPINK & Co., Calcutta and Simla.

NEWMAN & Co., Calcutta.

S. K. Lahiri & Co., Calcutta.

R. CAMBRAY & Co., Calcutta.

HIGGINBOTHAM & Co., Madras.

V. KALYANARAMA, AIYER & Co., Madras.

G. A. NATESAN & Co., Madras.

THACKER & Co., LD., Bombay.

A. J. Combridge & Co., Bombay.

D. B. TARAPOREVALA, Sons & Co., Bombay.

RADHABAI ATMARAM SAGOON, Bombay.

N. B. MATHUR, Superintendent, Nazair Kanun Hind Press, Allahabad.

Rai Sahib M. Gulab Singh & Sons, Mufid-I-Am Press, Lahore.

Superintendent, American Baptist Mission Press, Rangoon.

Survey of Endia.

PROFESSIONAL PAPERS.

1905.

SERIAL NO. 8.

PREPARED UNDER THE DIRECTION OF

COLONEL J. R. HOBDAY, I.A.,

OFFG. SURVEYOR GENERAL OF INDIA.

CALCUTTA:

OFFICE OF THE SUPERINTENDENT OF GOVERNMENT PRINTING, INDIA. 1905.

CALCUTTA:
GOVERNMENT OF INDIA CENTRAL PRINTING OFFICE,
8, HASTINGS STREET.

THE TEMPERATURE EXPERIMENTS.

BY CAPTAIN H. A. DENHOLM FRASER, R.E., DEPUTY SUPERINTENDENT, SURVEY OF INDIA.

Preliminary arrangements.

At this time the two remaining sets of Watson's Magnetographs was erected in the underground room temperature co-efficient for the horizontal force instrument. At this time the two remaining sets of Watson's Magnetographs had been received, and as the magnets and quartz fibres were interchangeable in all three sets, an excellent opportunity was at hand for finding the correction constant for each instrument.

In order to correct for changes in the horizontal component during the period occupied by each experiment, magnetograph No. 2 was temporarily erected on wooden trestles in a room in the 12-inch photo-heliograph observatory. This room was moderately well protected from changes of temperature, but being very close to the massive iron dome of the observatory, could only be used for magnetic work on the condition that the dome remained unshifted, and this condition was maintained throughout.

Two small brass stoves for burning charcoal and the necessary connecting pipes having been prepared, the first experiment was commenced on 3rd January 1902. Previously to this date, and at frequent intervals during the whole series of experiments, absolute observations were taken with No. 1 Magnetograph by Cooke for finding and checking the base line values of both magnetographs, and for the determination of the value of the moment of the magnet used in the deflection experiments for finding the scale values of the horizontal force magnetographs.

- 2. Work commenced as early as possible in the day, by the observer noting the temperature of the H. F. thermometer in No. 2 Magnetograph together with the time. He then did the same in the underground room (No. 1 Magnetograph) and lit the fires. Thereafter temperature readings were taken every 15 minutes in the underground room and every half hour for No. 2 instrument, and the fires were replenished with fuel as often as necessary. After a high temperature had been maintained for some hours, the doors were opened, the fires removed, and the room was allowed to cool down. Usually no readings were taken after 4 P.M.
 - 3. No. 2 set was started on 18th December and records were taken daily till the 3rd January, the date of the first experiment, to make sure that the instruments were in a stable condition.

In the first experiment magnet No. 1 with fibre 2 was mounted in No. 1 instrument, and magnet 2 with fibre 12 in No. 2 instrument.

The first experiment failed after a few hours' work owing to No. 2 instrument (which was mounted on trestles), receiving a jar whilst a temperature was being read, which threw it out of adjustment. During this experiment the glass covers had been kept in place over No. 1 instrument in the underground room, but it was found that the lag of temperature under the cover was so great, that it would be necessary to remove them in order to complete an experiment within the limits of a working day. Accordingly the cover of the H. F. instrument was removed, No. 2 instrument was re-adjusted, and after working satisfactorily for two days, the second experiment was started on the 6th January, a little after 7 o'clock in the morn ng, the doors of the underground.

room having been left open all the previous night in order to start with as low a temperature as possible.

The next few days were occupied in the temporary reduction of the observations to see whether any change of procedure should be adopted in future experiments, and as the results seemed satisfactory, the following changes were made on the 13th January: Magnet No. 1 and fibre 2 were transferred to No. 2 instrument, and magnet No. 2 with fibre 12 was adjusted in their place in No. 1 instrument. After allowing a short time for settlement, the 2nd experiment was carried through successfully on 15th January. This experiment was repeated on the 20th January, and on the 22nd magnet 2 and fibre 12 were removed and magnet 3 with fibre 6 was mounted in their place in No. 1 instrument. No. 2 instrument was not altered.

The next day another temperature experiment was made with this new arrangement and was repeated on the 28th. During the experiments made previously to the 23rd January, temperatures were read on a Fahrt. thermometer a few feet away from the Cent. thermometer in the horizontal force instrument, but as the temperature changes in the room were often very rapid indeed, it was afterwards thought advisable to read a third (Centigrade) thermometer suspended vertically almost in contact with the torsion tube of the horizontal force instrument. This enabled a record of the differences of the temperatures of the magnet itself and the air immediately surrounding the instrument to be maintained.

On the 29th January, magnet 3 and fibre 6 were removed from No. 1 instrument and magnet 2 and fibre 12 remounted. In removing this magnet on the 22nd, one of the 5 delicate glass hard magnets was accidentally broken. A spare magnet was mounted in its place, but this made it advisable to determine the temperature co-efficient afresh and find out whether the repair had caused any change. After completing satisfactorily this 3rd experiment with No. 2 magnet, the original intention was to close the cycle by repeating the first experiment, thus giving two independent determinations for each magnet and fibre.

However, an examination of the records obtained during the experiments with No. 3 magnet, revealed the fact that it had behaved abnormally. Either owing to a shift of the torsion tube as a whole or to the slipping of the quartz fibre at its points of attachment to the metal clips, certain sudden jumps were observable in the photographic records, which led to a further investigation pointing to the fact that a considerable slow shift in the base line value had been taking place. As it was thought that the peculiarity must be due to slip, the ends of the quartz fibre were resoldered, but on remounting magnet 3 and fibre 6, and observing their behaviour by eye, it became evident that the slip was worse than before, so that No. 5 fibre was then tried in its place.

A series of deflections taken with this fibre in use showed that the magnet was steadily shifting into a position of less strain, the effect being apparently due to the inability of the solder to hold the ends of the quartz fibre rigidly.

This fibre was tried only for a short time, and was then removed and replaced by fibre No. 3. The first set of deflections taken showed evidence of a similar but smaller slip, so the system was left in position for $1\frac{1}{2}$ hours and again tested by deflections which this time gave no evidence of any tendency to drift. On the 5th February a trace was taken and the next day the temperature experiment was proceeded with.

The trace taken on the 5th when developed showed unmistakable evidence of the instability of the system, so no further trial was made with this fibre. On the afternoon of the 7th February, fibre No. 4 was substituted for No. 3 and traces taken on the 8th and 9th. Though considerable drift had occurred at first, the system seemed to have settled down on the 9th and a temperature experiment was therefore made on the 10th February. On the 11th the fibre appeared to be still giving results free from drift, so the 2nd experiment was made on the 12th. From that date till

the 20th records were continuously taken with magnet 3 and fibre 4, in order to test the behaviour of the system, and on the 21st, magnet 1 and fibre 2 were removed from No. 2 instrument (in which they had been giving records since the 13th January), and were suspended again in No. 1 instrument.

Fibre 4 and magnet 3 were then erected in No. 2 instrument and satisfactory records were taken on both till the 24th February on which date the second temperature experiment with magnet 1 and fibre 2 was carried out, thus closing the series.

From this date onwards No. 1 instrument has been used for the routine work of the observatory, but No. 2 instrument was dismantled after further records for about one month had been taken in order to test the behaviour of fibre No. 4.

The reduction of the results was postponed till some months later owing to urgent work at the time, and there was no further opportunity of repeating any of the experiments which proved doubtful.

4. The first thing was to obtain an approximate value for the temperature co-efficient, in order to correct the records of No. 2 Magnetograph during the experiments made with No. 1, and to evaluate the base lines of both instruments.

As a first approximation it was assumed that the temperature co-efficient was the same for both instruments. Several experiments were then worked out on Form C, the figures in column 10 and 14 being omitted and those in column 4 corrected by subtracting from them the corresponding figures in column 9.

Column 15 was then column 7—column 13, and the approximate results in column 16 were obtained by dividing the figures in column 15 as thus altered by those in column 4 corrected as explained.

In this manner it was found that $+1^{\circ}$ Centigrade was approximately equivalent to $-12^{\circ}0\gamma^{*}$ of ordinate, and this value was used in both experiments made with magnet 1 and fibre 2, for reducing the values given by No. 2 Magnetograph (vide forms C 1 and C 10).

(When subsequently working out the first of these experiments it was found that the temperature co-efficient of magnet 1 and fibre 2 was very nearly 12.77 and as this system was suspended in No. 2 Magnetograph during the whole of the experiments with the other magnets, it was used throughout the reductions entered in forms C 2 to C 9 inclusive. In view of the small range of temperature of No. 2 instrument it is clear that the errors introduced in reductions C 1 and C 10 due to taking the temperature co-efficient as 12'0 instead of about 12'57 can only change the results very slightly and it has not been thought necessary to recompute these two experiments using the latter more correct value.)

The absolute observations were then reduced and a mean value obtained for m° (the moment of magnet 1A at zero Centigrade). This magnet was used throughout the experiments when taking deflections for finding the scale values of the different systems in the manner now to be explained.

5. In Watson's Magnetograph the scale value of the H. F. instrument is found by noting the Method of finding the scale value of the H. F. deflections produced at a known distance by a magnet Magnetograph. of known moment placed in the "end on" position due south of the suspended magnet.

^{*} γ is the symbol generally used to denote o oooo C. G. S. units, where C. G. S. stand for centimetre, gramme, second respectively. In the English system the corresponding units are the foot, the grain, and the second.

In the figure, S_1 N_1 is the H. F. magnet constrained into a position of 90° from the magnetic meridian by the torsion of the suspending quartz fibre. Calling T the torsion co-efficient of the fibre and A the total twist in degrees imparted to its upper end in order to carry the magnet from the magnetic meridian into the position shown, then the torsion couple is represented by T $(A-90^{\circ})$.

Then if m_1 be the moment of the suspended magnet and H the horizontal intensity, we have—

$$T(A-90^{\circ}) = m_1 H \sin 90^{\circ} = m_1 H \dots (t)$$

Suppose H to become $H - \Delta H$, the magnet will be deflected in the manner shown through a small angle α , and we get—

$$T \{A-(90^{\circ}+\alpha)\} = m_1 (H-\Delta H) \sin (90^{\circ}+\alpha)$$
$$= m_1 (H-\Delta H) \cos \alpha \dots (2)$$

Now let us suppose that H does not change, but that the magnet is brought into the position of equilibrium represented in equation (2) by means of another magnet of known moment m placed as shown in the figure at a distance $r=CC_1$.

Then, provided α is small so that $\cos \alpha$ is sensibly equal to unity, the couple acting on the suspended magnet $=\frac{2 m m_1}{r^3}$ $(1 + \frac{P}{r^2})$ where P is the distribution co-efficient of the magnets.

This couple has by supposition caused a deflection α so that—

$$T\alpha = \frac{2 m m_1}{r^3} (1 + \frac{P}{r^2}).$$

whence from equation (1) -

$$T \{A - (90^{\circ} + \alpha)\} = m_1 H - \frac{2 m m_1}{r^3} (I + \frac{P}{r^2}).$$

Substituting in equation (2) we have-

$$m_1 H = \frac{2mm_1}{r^3} (i + \frac{P}{r^2}) = m_1 (H - \Delta H) \cos \alpha$$

or
$$\Delta H = H \left(1 - \sec \alpha\right) + \sec \alpha \frac{2m}{r^3} \left(1 + \frac{P}{r^2}\right)$$

Putting sec $\alpha = 1$, this reduces to

$$\Delta H = \frac{2m}{r^3} (\mathbf{I} + \frac{P}{r^3})$$

In practice r is about 1 metre, so that $\frac{P}{r^2}$ is negligible and we obtain

$$\Delta H = \frac{2m}{r^3}$$

Then if x be the scale value in C. G. S. units corresponding to 1 mm of ordinate on the paper, and if n be the measure in millimetres of the deflection produced by the magnet whose moment is m, acting at the distance r from the suspended magnet, we have

$$xn = \Delta H = \frac{2m}{r^3} \text{ or } x = \frac{2m}{nr^3}....(3)$$

In this expression m is the actual moment of the magnet as used for taking deflections and should be written m_t where t is the temperature of the magnet. Calling m_0 the moment of the magnet at zero Cent., we have

$$m_t = m_0 \{ 1 - qt - q_1 t^2 \}$$
 or $m_0 \{ 1 - Qt \}$

where Q is taken from the table of temperature corrections for the magnet.

Hence equation (3) should be written

$$x = \frac{2m_0 \{1 - Qt\}}{nr^3}....(4)$$

But as the measuring scale used is divided into twenty-fifths of an inch, whereas x in formula (4) is in terms of 1 millimetre, the factor 1.016 must be inserted, and we get finally

$$x_1 = 1.019 \times \frac{2m_0 \{1 - Qt\}}{nr^3}$$
, where x_1 is the scale value corresponding to 1-25th inch.

The distance r was measured with beam compasses from the centre of the suspended magnet to the centre of the deflecting magnet and the accordance of independent measures taken by different observers was greater than might have been expected, the greatest difference being less than 1-50th inch. As a matter of fact r is not required with any very great accuracy, for in practice the average length of ordinate is about $60 \, mm$, and it will suffice to measure this correctly within $0.0001 \, \text{C}$. G. S., i.e. 17. Taking x = 57 (its approximate actual value), we see that it will suffice to find x within $\frac{x}{5} \div 60 = \frac{1}{300}$ of its true value.

Then by giving approximate values as follows: m=920 C. G. S., r=100 cms., $x=5\gamma$, and substituting in equation (3), we find n=36.8 mm. If we now change x into $x + \frac{x}{300}$ and using the value just found for n again solve equation (3), we obtain r=99.89 cms.

Thus it will suffice to measure r correctly to o'1 cm., or say 1-25th inch, and the method actually adopted of measuring the distance by beam compasses is therefore quite good enough for practical purposes.

In Watson's Magnetographs there is a simple arrangement for taking visual deflection readings, and the time taken for recording a complete set of five readings, the magnet being reversed every time, is only about two minutes.

In No. 1 magnetograph two deflection distances were used at about 100 and 120 cms.; in No. 2 instrument the nearer distance only is available.

The following tables show the values of the scale co-efficients determined during the various experiments and used in the reduction of the results:—

Table A 1.

Abstract of scale values found for No. 2 H. F. Magnetograph during the temperature experiments.

Formula $x_1=1.016\frac{2m_0(1-Qt)}{nr^3}$ where x_1 is the scale co-efficient for 1-25th inch. The mean moment m_0 of the deflecting magnet 1A=1004'23 (Table B).

Per	10 D.	Suspend ed	Quartz	Mean observed	Mean obser- ved deflec-	Distance between	Resulting	Remarks.
From	То	Magnet.	fibre.	ture=t.	tion =n.	magnets=r	cient $=x_1$.	Nemarrs.
1902.	1902.	No.	No.	Cent.	mm.	cms.	γ.	
3rd January	12th January	2	12	14	35'74	100.500	5'64	
13th January	22nd January	I	2	15	54.26	100.361	3.70)
22nd January	3rd February	1	2	15	54*25	100,361	3'70	The mean value
4th February	20th February	I	2	16	54.08	100.361	3.41	used through- out this period.
21st February	4th March .	3	4	19	44.36	100.361	4'53	J
				}				

Table A 2.

Abstract of scale values found for No. 1 H. F. Magnetograph during the temperature experiments.

Formula $x_1 = 1.016 \frac{2mm_0(1 \rightarrow Qt)}{nr^3}$ where x_1 is the scale co-efficient for 1-25th inch. The mean moment m_0 of the deflecting magnet 1A=1004'23 (Table B).

						I		γ	II			
Per	RIOD.	magnet.	di.	ved tem-	observed de- n=n.	be tween	scale co-	ved de-	between r.	scale co-	co-effi-	
From	То	Suspended	Quartz fibre.	Mean observed perature = t .	Mean obse flection=n	Distance Magnet's=	Resulting s	Mean observed flection = n ,	Distance Magnets=	Resulting scalefficient $= x_1$.	Mean scale	REMARKS.
1902.	1902.	No.	No.	cent.	mm.	cms.	γ.	mm.	ćms.	γ.	γ.	
3rd January	12th January	I	2	20	53.60	96.028	4'27	27.2	119.954	4.56	4.52	
13th January	22nd January	2	12	21	41.82	96.079	5.46	21.41	120.002	5.47	5*46	
22nd January	28th January	3	6	21	47'43	96.038	4.82	24.31	119.954	4.82	4'82	
29th Junuary	3rd February	2	12	21	3578	96.079	б•49	17.08	120.002	6.21	6.20	
4th February	7th February	3	3	21	47.57	96.023	4.80	24.54	119'980	4.83	4.81	
81h February	20th February	3	4	22	45.74	95.301	5 ' ot	23.40	119.827	5.03	5.95	
21st February	28th February	1	2	22	57*02	96.028	4.01	29'14	119'954	4'01	4.01	

The agreement between the two values of the scale co-efficient for No. 1 instrument as shown in this last table is satisfactory and justifies the omission from the formula of the term involving P.

It should be noted that the distance r was measured once only for each instrument and subsequently corrections were applied to this distance by noting the distance of the centre of the magnet under trial from the centre of the box in which it was suspended.

6. Using the values found above, tables B 1 and B 2 were then completed, which give the Reduction of results resumed.

Base line values obtained by using an assumed temperature co-efficient of 12.5 γ per degree Cent. throughout. The greatest differences of temperature from the selected mean amounted in the case of No. 1 instrument to + 1°.3 and -1°.2 on the 24th and 4th January, respectively, and in the case of No. 2 instrument to +3°.2 and +1°.9 on the 19th February and 30th January, respectively. Consequently the errors due to taking an assumed value for the temperature co-efficient in place of the actual values subsequently determined does not appreciably affect the results.

The reduction of the ten temperature experiments was then completed, the results of which are exhibited in tables C 1 to C 10.

The charts reproduced at the end of this paper were then plotted and tables D 1 to D 10 drawn up with a view to studying the behaviour of the instruments during each experiment. The conclusions arrived at are printed at the foot of each table and dealt with in the Appendix, and show that in most cases there is good reason to suppose that the magnet and fibre under experiment underwent changes during the course of experiment, and the only results that can be accepted with perfect confidence are those given by experiments Nos. 1 and 2 with magnet 1 and fibre 2.

7. The effect of a rise of temperature on a system consisting of a magnet suspended per
General considerations.

pendicular to the meridian by a quartz fibre is (1)

to increase the torsional resistance of the fibre,*

and (2) to reduce the magnetic moment of the magnet, so that on both accounts the value of the horizontal force will appear to diminish. But if the temperatures of the fibre and magnet are not the same, the resulting value of the temperature co-efficient will necessarily be incorrect.

Thus, supposing the temperature of the magnet (and therefore its moment) to remain constant whilst the quartz fibre is heated, we should expect to find an apparent decrease of H. F., and vice versa if the fibre were cooled. Consequently, if during any period of the temperature experiment the fibre is hotter cooler than the magnet, the resulting temperature co-efficient will be

too large small by an amount probably bearing a certain ratio to the difference of temperature between the magnet and its fibre.

On the other hand, for a rising falling temperature, the effect of any lag of temperature of the magnet behind that of the attached thermometer would make the temperature co-efficient too small large, because the apparent change of force as measured from the curve would be divided by too large small a quantity.

Disturbances produced by air currents would not be expected in an instrument of this class because (1) the volume of air immediately surrounding the magnet is very small, and (2) the period of the magnet is very short and the copper damper acts rapidly.

^{*} Threlfall (Phil. Mag., July 1800).

As a matter of fact there is no sign of fuzziness about any of the traces during the temperature experiments, and it is clear that this source of error did not exist.

A study of the diagrams shows that in every case the temperature co-efficient commences almost at once with an abnormally high value, which falls very rapidly whilst the temperature of the room is still rising considerably. This, as above shown, is conclusive evidence that there was no appreciable lag of temperature of the magnet, so that the readings of the thermometer in the damping box of the instrument may be accepted as giving the true temperature of the magnet very closely.

The quartz fibre is carried in a small brass tube, whereas the magnet itself is surrounded closely by a considerable mass of copper, and as both were equally exposed to the air during the experiments one would expect the tube and its contents to pick up the changes of temperature more quickly than the magnet and its damping box. Consequently, though the temperatures recorded by the thermometer may, and probably do, give the temperatures of the magnet throughout the experiment without appreciable error, there is prind facie reason to expect that the temperature of the quartz fibre must have been ahead of behind that of the magnet according as

the temperature of the room was rising falling.

Now an examination of the charts shows that in every case the air temperature considerably exceeded that of the magnet till the process of cooling off commenced by opening the doors of the room and removing the fires. Thereafter the temperature of the magnet read higher than that of the air, the difference between the two becoming less and less, but being generally quite appreciable at the close of the experiment.

From previous considerations one would therefore expect to find the values of the temperature co-efficient too great during the first or heating up stage, then dropping rather suddenly, though slightly, as soon as the doors were opened, and finally rising again to its real value as the difference between the temperature of the air and the magnet gradually disappeared.*

Tables C I to C 10 and the diagrams show that there has been a general tendency throughout the whole series of experiments for the value of the scale co-efficient to behave in this way, except that in the majority of cases the scale value has shown no tendency to increase again towards the close of the experiment.

If any displacement of the instrument as a whole occurred as a result of the rapid temperature changes, such shift would be shown by a displacement of the base line formed by the light reflected from the small mirror attached to the base of the instrument. A careful examination of the curves shows that the amount of shift from this cause was very gradual and small in amount, in fact too small to be taken into account as its maximum amount never exceeded 0.2 scale division, i.e., .008 of an inch.

8. As above noted, tables C 1 to C 10 show that there is a general tendency for the computed values of the temperature co-efficient to decrease somewhat largely towards the close of each experiment. During this period the system was cooling, so that, as explained in paragraph 7, an effect of this kind was to be expected. But the diagrams show that whereas the differences of the temperatures of the fibre and magnet were small, the drop in the temperature co-efficient was generally large and could hardly be fully accounted for in this manner.

^{*} Throughout the reductions the temperature used in computing the temperature co-efficient was that recorded by the thermometer embedded in the damping box of the H. F. magnet.

As however the drop in the temperature co-efficient could be explained by supposing that the system under trial had given way or slipped under the strains induced by the rapid changes of temperature, it became necessary to investigate this point by comparing the records given by the two sets of magnetographs before and after each experiment.

Consequently Tables D 1 to D 10 were drawn up and they show conclusively that, except in some few cases, slip must have occurred.

The curves taken during the actual experiments when examined showed unmistakable evidence of slip only in two cases, viz., on the 20th and on the 24th January. In the first case (Fig. 3 of Plate II) the experiment has been rejected but in the second case (Fig. 1 of Plate III) as the shift occurred only at the end of the experiment an attempt has been made to correct for it. In all other cases it has been assumed that where slip did occur, it occurred gradually and uniformly and might be allowed for by distributing the amount noted uniformly according to the elapsed interval.

It may be noted that the evidence at disposal shows that in these cases (1) a certain slip has actually occurred and (2) that this slip did not manifest itself by sudden breaks in the curve: there is no evidence that the slip occurred uniformly throughout the course of an experiment, but the assumption that this was the case is not contrary to facts and seems the most reasonable one that can be made under the circumstances.

Tables C 4, 6, 8, 9, were then corrected on this assumption and the new curves so obtained plotted alongside of the old ones.

g. The next point for consideration is what portions of the experiments are to be selected as the most trustworthy for the purposes of finding the true mean values of the temperature correction?

As regards the reading of the thermometers, small errors in reading are of consequence only in the case of the Cent. thermometers embedded in the damping boxes of the two instruments, and as the changes of temperature of these thermometers were always negligible in the space of the few seconds occupied in taking the reading, the liability to errors in the recorded temperatures may be considered equal at all stages of the experiment. Consequently the "Increment in temperature after start" as recorded in column 4 of form C I has a much greater probable percentage of error at the commencement and end of each experiment than during the intermediate period.

Errors in scaling off ordinates from the curve are greatest where the inclination of the curve to the base line is greatest, and consequently the first few measures are in each case more doubtful than the rest and the percentage of error in the figures in column 6 of form C 1 obviously decreases in proportion to the increase in the figures.

On both accounts it is plain that, apart from differences of temperature between the magnet and quartz fibre which were always greatest during the first part of each experiment, this and the last portion of each experiment have much less weight than that part in which the figures in columns 4 and 6 of form C are greatest, and the curves showing the values of the derived temperature co-efficient may therefore be expected to show marked irregularities at the beginning and end of each experiment.

What is desirable is to have a long period of uniformly high temperature during which the recorded temperatures of the thermometers within and without the H. F. instrument are in very close agreement.

In practice such conditions could not be attained, for the constant stoking of the stoves necessary to maintain a high temperature produced considerable fluctuations in the recorded

temperatures and until the fires were allowed to die down the temperature of the air was always in advance of that of the magnet.

Moreover, the copper damping box in which the magnet and its thermometer are contained is close to the base of the instrument, which is rigidly attached to the supporting pillar by means of three stout brass footscrews leaded into recesses cut in the stone cap of the pillar. Consequently a considerable amount of heat must have been continuously conducted away and lost in the pillar which would be slow to attain the temperature of the air.

In all the curves there is a well defined critical point at which the temperature of the air coincides with that of the magnet, and it is in the neighbourhood of this point that all the desirable conditions are most nearly fulfilled.

This point is indicated in the curves by a continuous ordinate, which gives the time of its occurrence on the time scale.

That value of the temperature co-efficient found from the observations taken nearest to itis critical point seems therefore the best individual value of the series, but in order to get rid of the errors to which any single observation is liable, it has been considered advisable to derive the temperature co-efficient in each case from a series of 9 values situated symmetrically about this point. In the first four of these values the air temperature was above that of the magnet and in the last four these conditions were reversed, so that the errors arising from this cause should to a large extent cancel out in the mean.

10. Working in this way certain mean values have been obtained in each case which are grouped together in the following table for convenience of reference:—

1902. Date.			No. of Fibre.	No. of Mag- net.	Mean values of temperature co-efficient.	Final value of tempera- ture co-effi- cient.	Remarks.
6th January . 24th February	•	•	2	I	12.60	} 12.6	
15th January.	•		12	2	11.00	•••	
20th January .	•	•	,,	"	11.69		
31st January .	•		39	,,	12.60	12.6	After repairing magnet, corrected for slip (10 γ).
23rd January .	•		6	3	12'07	•••	Corrected for slip (15 γ).
28th January .			7)	"	12.17		
6th February	•		3	,,,	12.30	•••	
10th February			4	3	12.49	}	" " (19 γ).
12th February	•		**	,,	12.49	} 12.2	" " (II y).

There is very little doubt that the results for magnet 1 and fibre 2 may be confidently accepted. These are now in use in No. 1 Magnetograph at the Dehra Dun Observatory, where the results of the temperature readings during the first complete year of work show that the annual range in the underground room is not likely to exceed 6° or 6° 5 Cent.* Thus the largest multiplier that will be used in this case may be taken as 3.3, and as one cannot hope to read the curves with greater accuracy than 1γ , the error permissible in finding the temperature co-efficient is $\frac{1\gamma}{3\cdot 3} = 0.3 \gamma$. The accordance of the two results makes it highly probable that in this case the temperature co-efficient has been found with all desirable accuracy.

Magnet 2 and fibre 12 have been in use in No. 2 Magnetograph since September 1902 at Kodaikanal. It seems clear that the temperature co-efficient of the magnet itself altered considerably after it was repaired in January, and it is unfortunate that only one determination of the temperature co-efficient of the system was made after that date. At Kodaikanal the annual range of temperature in the underground room is not yet known, but the data available indicate that it will be less than 2° Cent. If this is the case, the greatest multiplier will be 1 and the error permissible in the temperature co-efficient will be 17. So that although the single experiment made on the 31st January with the system as now in use at Kodaikanal is not perfectly satisfactory, it seems likely that it is sufficiently good for the very favourable temperature conditions appertaining to the observatory where it is being used.

With regard to the various experiments made with magnet 3 and fibres 3, 4 and 6, the agreement in the case of the two experiments with No. 6 fibre is good, and in the case of No. 4 fibre it is remarkable. But three out of four of these experiments have been corrected for slip and it is hardly possible therefore to trust them implicitly.

Moreover, it is disconcerting to find that the value of the temperature co-efficient when using the same magnet should vary from 12'1 to 12'9 when the quartz suspension is changed, for from the nature of a quartz fibre, one would expect different fibres to behave in a uniform manner under similar conditions of changing temperatures.

Whilst therefore it is likely that the results in each case with No. 3 magnet are near the truth, the mere agreement of the results derived from pairs of experiments is not sufficient to justify their acceptance as being exceedingly accurate.

An inspection of the base line values of No. 2 Magnetograph (Table B 2) from the 22nd to 25th February inclusive, shows that magnet 3, with fibre 4, behaved fairly well when transferred to No. 2 Magnetograph during the last experiment with magnet No. 1.

However, in order to see whether fibre No. 4 was really in a stable condition and fit for use at the Barrackpore Observatory, a further prolonged comparison was made throughout March. The result is exhibited in Table D 9 and is not entirely satisfactory, for although there is no evidence of a sudden slip having occurred and the discrepancies noted may very probably be largely due to the fact that No. 2 instrument was supported merely on trestles of wood, which proved by its behaviour to be only partially seasoned, still the fact remains that the results given by the two instruments were not in close accord throughout the period.

^{*} Highest temperature = 28.44 on 20th September 1902. Lowest ,, = 22.00 on 28th March 1903.

Change in scale value due to change in temperature.

Change in scale value due to change in temperature.

Change in scale value due to change in temperature.

The resulting values are tabulated below:—

		ļ.		2	3	4	5	6	7	8	9	10	11	
	Per	iod.		O	RDIN	ARY DEF	LECTIO	NS.		L DEFLECT				
				at 96 c	ms.	at 120	cms.	pera-	EXI	PERIMENTS	•			
	1902 From		1902 To	Mean deflection.	No. of observa- tions.	Mean deflection.	No. of observa- tions.	Approximate tempera- ture of room.	at 96 cms.	at 120 cms.	Tem- pera- ture of Instru- ment.	Col. 2—Col. 7.	Col. 4-Col. 8.	
13th	January	20th	January	41.82	5	21'41	5	21°	42.30	21.65	31.03	-0.48	0'24	
	•••		•••	•••					42.12		31.8	0.33		
22nd	January	20th	January	47'43	5	24.31	4	210	47'94	24.24	33.3	~0.21	- 0°23	
	•••		•••						47*68	24.43	33.8	-0.22	-0.15	
29th	January	lst	February	35.18	3	17.98	3	210	35'13	18.04	35.7	+0.02	-0.06	
4th	February	7th	February	47 [.] 57	4	24`24	3	210	47.88	24 [.] 4 7	35.4	-0.31	-0.53	i I
7th	February	18th	February	45 .7 4	8	23.40	8	220	46'39	23.74	34'9	-o·65	-0 '34	
	•••					•••	••		46.27	23.74	36.6	- o.23	- 0'34	
2 ist	February	28th	February	57.02	8	29'14	8	22°	57*53	29.46	29'9	-0.21	-0·32	
												- 0'41	-0.54	Means.

The accordance of the signs in the last two columns renders it unlikely that the difference in the deflection values obtained during the experiments is the result of chance. Also it will be noted that the deflection at 120 cms. is approximately one-half of the deflection at 96 cms. and that the mean difference in the last column bears approximately the same proportion to that derived from the column before it.

Thus there are strong grounds for supposing that the deflections do actually increase with the temperature, that is to say, the scales value diminishes or the system becomes more sensitive.

Any rise in temperature ought (1) to increase the stiffness of the fibre, (2) to decrease the moment of the suspended magnet and (3) to decrease the moment of the deflecting magnet. On all three counts one would expect to find the deflection decrease slightly for a rise in temperature, and the fact that this is not the case indicates that some important factor has been left out of consideration.

The greatest difference in the deflections occurs during the first temperature experiment with magnet 3 and fibre 4 on the 10th February. The scale values from the special deflections taken at a temperature of 34'09 Cent. are 4'92 and 4'93 from the near and far distances respectively as compared with 5'01 and 5'02 from the mean values under ordinary conditions, so that

the change in the scale value amounts to only. This is sufficiently large to slightly alter the results of the temperature experiment, as the range of ordinate amounts to almost 40 scale divisions and the resulting change in force would be therefore less by about 47 than that derived from the scale value adopted.*

There are not sufficient data to justify any attempt at correcting the results for the change in the scale value, and the above figures are chiefly of interest as showing that there appears to have been some unknown factor at work tending to make the resulting values for the temperature co-efficient slightly higher than they should be.

Statement of results accepted.

12. The following results derived from thes experiments have been accepted:-

(a) The temperature co-efficient for the system, magnet 1 and fibre 2 (b) 2 $=12.6^{1}$ " " ,, 3

The experiments would lead one to accept these values as approximately correct and good enough for the desired standard of accuracy in reading the H. F. curves, but it must be said that they differ very widely from the results anticipated.

In the Kew certificate accompanying No. 1 set of Watson's Magnetographs it is stated that the temperature co-efficient per degree Cent. was found to be approximately 5.87 (using magnet No. 1 and an unknown fibre), whilst Eschenhagen gives for his somewhat similar instrument an approximate value of 7y per degree Cent. †

Then putting m = 1004.23 at 0° Cent. We obtain from the temperature corrections for the magnet used

$$m = 996.44$$
 at 20° Cent.
 $m = 992.28$ at 30° Cent.

Hence, since the value of the scale co-efficient varies directly as m., the error introduced by assuming the temperature of the deflecting magnet to be the same as that of the room would in this case be roughly 0.4 per cent. only, whereas the average charge actually found exceeded one per cent.

When the deflections at high temperatures were taken, the deflecting magnet was warmed up for some time by exposing it to the sun before bringing it into the room and it is therefore most unlikely that its temperature even at the time of taking the first deflection, was ever as much as 10° from the truth.

Consequently the change in the scale values noted at high temperatures cannot be explained by assuming a large error in the temperature of the deflecting magnet.

Dr. Chree, F.R.S., has offered the following explanation of the discrepancy here noted. Let us call Co the torsion couple at temperature oo Cent. for unit angle of twist and suppose this to increase to C at some definite temperature t. Treating for the time being the magnet's own moment as unaffected by temperature, call A H the couple exerted on

it when perpendicular to the magnetic meridian at a place where H is the horizontal force.

Suppose θ_0 the total twist of the fibre when the temperature is o° Cent.

and
$$\theta$$
 , , , , is t , Then $C_o \theta_o = C \theta = A H$ or $\theta - \theta_o = \frac{A H (C_o - C)}{C C_o}$

For a given value of t , $\frac{(A C_o - C)}{C C_o} = B$, a constant and so $\theta - \theta_o = B H$

Thus the twisting accompanying a given change of temperature varies as the force at the place and since $\theta = \theta_0$ means a given change of ordinate, the effect of a given change of temperature on the ordinate varies directly as H. At Dehra Dun, H=0'335 C. G. S. approximately, whilst, at Kew H = 0'185 approximately, so that neglecting the tem-

perature co efficient of the magnet, the temperature co-efficient of the system at Dehra Dun should be $\frac{335}{185} \times 5^{\circ}8 = 10^{\circ}5\gamma$.

If therefore the effect of temperature on the moment of the magnet is small, the results at Dehra are not incompatible with those obtained at Kew.

^{*} Suppose the temperature of the room to be 30° and that of the deflecting magnet 20° (on the average) whilst a set of deflections was being taken.

Facts inferred from the experiments.

- 13. The following conclusions based on these experiments are worthy of consideration:—
- (1) It is the exception to find a quartz suspension as used in these instruments which does not exhibit signs of slip even after having been in use for a considerable number of days.
- (2) The increase in sensitiveness of each system for a rise in temperature is contrary to anticipation and cannot at present be explained.
- (3) The method of finding the scale values by deflections at a known distance with a magnet of known moment is quite satisfactory.

H. A. DENHOLM FRASER, CAPTAIN, R.E.

BI.

Abstract of absolute observations for H. F. and computation of the value of the Base line of the H. F. Magnetograph No. 1 for the months of January and February 1902.

 $\left\{ \begin{array}{l} \text{Selected mean temperature} = 2\,r^{o} \text{o cent.} \\ \text{Temperature co-efficient for } r^{o} \text{ cent.} = 12.5\,\gamma \text{ throughout.} \end{array} \right.$

Magnetometer No. 1 By T. Cooke & Sons.

Magnet No. 1A.

MAGNET I, FIBRE 2.

	_ 1			î			l _	í	1	1	1	[1	1	1
I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Date.	Time of observation.	Vibration of Deflection,	Moment of Magnet at zero = m ₀ .	P. from 22'5 and 30 cms.	P. from 30 and 40 cms.	Measures of ordinate at the times given in col. 2.	Ordinate converted into Force.	Interpolated Temperature of H. f. thermometer at the times given in col. 2.	Difference of each temperature from the selected mean.	Correction for temperature.	Ordinate corrected to mean temperature = (8) + (11).	Means of corresponding pairs.	Observed value of H.	Value of Base line = (14) - (13).	REMARKS. [The base line is evaluated from the observations taken with magnet 1A in Magnetometer No. 1 by Cooke & Sons.]
Civil.	L. M. T.		C. G. S.			Sc. div.	γ	С.	c.	γ	γ	γ	C. G. S.	C.G.S.	
4 Ja o. 1902 . ,, ,, ,, ,, ,,	h, m. 2 30 2 58 3 32 12 22 12 47 1 18	v } v } v } v } v } v } v } v } v } v }	1004'18 1004'13 1004'50 	7'479	7.201 7.155	68·2 69·0 69·2 68·3 68·3	291°2 294°6 295°5 291°6 291°6	19'80 19'80 20'16 20'21 20'29	-1'2 -1'2 -1'2 -0'8 -0'8 -0'7	-15'0 -15'0 -10'0 -8'8	276°2 279°6 280°5 281°6 281°6 285°8	} 277'9 280'1 } 281'6 283'7	0·33497 0·33496 0·33514 0·33507	*33219 216 232 	Scale coefficient =4.27 \gamma. First experiment on 6th Jan. 1902.
						Mac	SNET	2, F1B	RE 12						
13 %	2 49 3 18 3 46	v} v}	1004'20	 7 ⁻ 427	 7*716	56°9 57°5	310'7 311'2 314'0	20'36 20'36	-0.6 -0.6	-7.5 -7.5	303'7 306'5	} 303'5	0·33498 0·33499	33194	Scale co-efficient =5.46 γ .
14 ,, .	12 9	v}	1004.59	 7 [*] 427	 6 [.] 967	58'4 58'0	316.4 316.4	20'40 20'40	-0.6 -0.6	-7.5 -7.5	311'4	310'3	o·33519 	209 212	
,, .	1 3 1 20 12 38	v) v v ₂		***		57'3 57'3 52'1	312.9 312.9 284.2	20'40 20'40 20'40	-0.6 -0.6	-7'5 -7'5 -7'5	305°4 305'4 277°0	305.4	0·33519 0·33517 0·33493	212	From mean "m." 1st experiment on 15th Jan. 1902.
27 •	1 6 1 32 2 30	ν } ν } νγ	1004'32	7°400 	7°295 	52°8	283'9 284'5 288'3	20'40 20'40 20'40	-0.6 -0.6	-7'5 -7'5 -7'5	275°4 277°0 280°8	281°6	 0·33491 0·33493	214 211	egen Jane 1902.
23 *	2 54 3 19 3 43	υ) γ) ν)	 1004'27 1004'22	7°505 7°427	7'110 8'043	53°1 53°5 54°0	289'9 292'7 294'8	20'40 20'40 20'40	-0.6 -0.6	-7'5 -7'5 -7'5	282.4 282.3	} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	 0·33493 0·33495	209 209	

54'4 297'0 20'40 -0'6 -7'5 289'5

BI-contd.

Abstract of absolute observations for H. F. and computation of the value of the Base line of the H. F. Magnetograph No. 1 for the months of January and February 1902.

Magnet No. 1A.

Magnetometer No. 1 By T. Cooke & Sons.

MAGNET 2, FIBRE 12.

			_				M.	AONE D	2, F1	BRE 12	2.					
1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Date.		Time of observation.	Vibration or Deflection.	Moment of magnet at zero =π ₀ ,	P. from 225 and 30 cms.	P. From 30 and 40 cms.	Measures of ordinate at the times given in col. 2.	Ordinate converted into force.	Interpolated Temperature of H. F. thermometer at the times given in col. 2.	Difference of each tem- perature from the select- ed mean.	Correction for temperature.	Ordinate corrected to mean temperature = (3) + (11).	Means of corresponding pairs,	Observed values of H,	Value of Base line=(14) (13).	Remarks.
Civil.		L.M.T.		C.G.S.			Sc.	γ	C.	G.	γ	γ	γ	C.G.S.	G.G.S.	
19 Jan. 190	. 1	h. m. 11 10 11 34 11 58 1 58 2 23 2 46	v v v v	1004'22 1004'27 1004'20 1004'18	 7*582 7*504	7.201 7.716	51°3 51°3 53°0	280'1 280'1 281'7 284'5 289'4	20.69 20.69 20.69 20.69	-0.3 -0.3 -0.3	-3.8 -3.8 -3.8 -3.8 -3.8	276·3 276·3 277·9 277·9 280·7 285·6	276·3 } 277·1 } 279·3 283·2	0·33486 0·33487 ·33489 •33488	210 210 -33210 205	2nd experiment on 20th January.
							Mai	GNET	3, F12	RE 6.						
22 ,,	1	2 42 3 10	v } }	1004°0б	 7.660	 7°110	57°4 58°3	276°7	30.20 30.20	-0 ⁻ 4	—5.0	271°7	}, 273.9	•33500	•33226	Scale coefficient =4.82 y.
,,		3 36	v Š	1004*25	•••		59.6	287'3	20.60	- 0'4	-5.0	282.3	} 279°2	•33507	-33228	
24 "	. 1		v }	1004*34	 7·479	 7·529	65.0 65.4	313·3 315·2	22·3 22·3	+1.3	+ 16.3		} ₃₃₀₋₆	•33518	187	on 23rd Janu- ary 1902.
,,	1	2 53	ر { _ه	1004'38			66.1	318-6	22.3	+1.3	+ 16.3		} 333.2	•33520	187	
"		1 14	ررو	1004.22	7:374	7.576	66·5	320.5	22.3	+ 1.3	+ 16·3 + 16·3		335·9 335·9	·33525 ·33526	189	Mean value of Base line
26 "	- 1	2 5	D)		7.452	7.903	73.2	352.8	21.18	.+0.2		355.3	333.9	30320	190	=0.33186.
,,	. 1	2 31	ν} _ζ	1004'43	***		75∙0	361.5	21:18	+0.2	+ 2.5	364.0	} 2 359·7	·33 5 41	181	
**	•]1	2 55	D }	1004°36	7:479	7•249	75·o	361-5	21,18	+ 0.2	+ 2.5	364.0	} _{364.0}	•33544	180	2nd experiment on 28th Janu- ary 1902.
							MA	GNET	2, F11	BRE I	2.					
30 "	• [1	2 1	v	•••	•••	***	58·o	377.0	21.60	+0.6	+ 7.5	384.5	384.5	•33530	/33145	Frommean"m."
,,	. 1	2 24 2 47	v.}	1004*13		7.482	58·o	1		+0.6	1	384-5	384.5	:33520	135	Scale coefficient =6.50y.
92 27		1 10	v }	1003,88	7·192 	7·4 ^{\$} 3		ł	21.60 21.60	+0·6 +0·6		384·5 382·6	383.6	÷33515	131	Mean value of Base line = 0.33137. 3rd experiment on 31st Janu- ary 1902.

B I-contd.

Abstract of absolute observations for H. F. and Computation of the value of the Base line of the H. F. Magnetograph No. 1 for the months of Fanuary and February 1902.

Magnet No. 1 A.

Magnetometer No. 1 By T. Cooke & Sons.

MAGNET 3, FIBRE 3. 1 6 16 3 4 5 12 7 q 13 14 15 nterpolated Temperatures of H. F. thermometer at three times given in col. 2. temper-selected line=(14) 75 at into Moment of Magnet at zero Correction for temperature. corresponding Ordinate corrected to mean temperature=(8) + (11). of ordinate given in col. 30 cms. from 30 and 40 cms. Vibration or Deflection ij converted Time of observation, Observed values of each the 22.5 and Base Date. Difference of e REMARKS. Measures the times ゃ Ordinate Force. Value of -(13). from ature mean. Means pairs. C Civil. L.M.T. C.G.S. C C.G.S. C.G.S. λ γ Y γ +0.4 296.7 5 Feb. 1902 . 1004'38 60.8 292.4 21:39 +5.0 297.4 .33520 .33223 Scale coefficient =4.81 Y ζ۵ 11 7:374 7:529 60.5 291.0 21.39 +0.4 + 5.0 296.0 Mean value of Base line v 296.5 ι2 1004'36 60.7 292.0 21.39 +0.4 +5.0 297.0 .33519 222 **=**0.33223. \mathbf{D} +5.0 298.4 Experiment on 293.4 +0.4 224 12 37 1004'29 7.400 7.435 61.0 21.39 297.7 .33522 ,, 6th February 1902. 64.0 +0.4 Commenced slip-21.39 33527 1004'45 ping at 12.50. MAGNET 3, FIBRE 4. ·33495 | ·33244| Scale coefficient 251.2 8 Feb. 1902 . |11 1004'36 51.1 256.5 20.5 -o·5 -6.3 250.2 1 30 ••• D S -3.8 252.2 56 256∙0 -0.3 111 7:349 7.483 51.0 20.7 -3.8 248.7 v 250.5 .33494 12 21 1004'34 50.3 252.5 20.7 -0.3 243 248.6 243 46 D) 7.483 251.0 20.8 -0.2 -2.5 248.5 .33492 12 1004'38 7.244 50.0 241.0 .33485 ν 20.8 -0.2 -2.5 233.4 244 235.9 1 11 1004'18 47.0 Experiment 38 176 ıst 346.4 20.8 -0.2 -2.5 343.9 33520 11 1004'35 60.0 ,, on 10th Febru-D) 20.8 -2.5 344.9 ary 1902. 7.483 69.2 347.4 12 7.322 2 ٧) 346.4 20.8 344.4 .33520 176 - 2.5 343.9 12 27 1004'36 69.0 12 27 D) 7-483 68.4 343.4 20.8 -0.2 -2.5 341.9 342.9 .33518 33175 12 1004.41 7:322 51 nd Experiment on 12th Febru-2nd -2.5 338.4 340.2 341.9 20.8 .33511 171 1004-20 1 15 ,, 128 370.4 ·33498 72.4 363.4 21.6 +0.6 +7.5 370.9 ary 1902. 2 59 1004'20 19 21.6 +0.6 +7.5 369.9 7.856 72.2 362.4 7.400 3 19 " MAGNET I. FIBRE 2. .33511 ,.33284 Scale coefficient + 5.0 | 226.8 227.4 55.3 221.8 21.4 +0.4 1004-29 22 39 ••• =4.01 y. +5.0 228.0 D § 8.043 55.6 21.4 +0.4 223.0 7.374 12 228.9 280 21.5 +0.5 +6.3 229.7 .33509 V 1004-22 55.7 223.4 12 31 ••• 280 D) 1004-18 7.669 224.2 21.5 +0.5 +6.3 230.5 230.1 33510 55.9 7.244 12 55 +0.5 V 55.6 223.0 21.5 +6.3 229.3 229.9 .33505 275 1004.02 1 19

B I-concld.

Abstract of absolute observations for H. F. and Computation of the value of the Base line of the H. F. Magnetograph No. 1 for the months of January and February 1902.

Magnet No. 1 A.

Magnetometer No. 1 by T. Cooke & Sons.

MAGNET I, FIBRE 2. I 16 14 15 2 3 4 5 б 7 8 11 12 13 Interpolated Temperature of H. F. thermometer at the times given in col. 2.

Difference of each temperature from the selected mean. at the into corresponding ಕಿತ್ರ Correction for temperature, from 22.5 and 30 cms. Magnet Measures of ordinate at times given in col. 2. Vibration of Deflection. P. from 30 and 40 cms. line converted Observed value of H. Time of observation. Base Date. REMARKS. of m₀. 늉 le of (13). Ordinate mean to Ordinate Force. Ξ Moment Mean pairs. Value - (1) Civil. L, M. T. C. G. S C. G. S. C.G.S. C. C. γ γ γ γ h, m. ٧ŋ 23 Feb. 1902 1004-13 21.6 +7.5 244.5 237.0 +0.6 244.3 *335241 280 σSi 21.6 +7.5 244.1 12 236.6 4 7.530 7.295 59.0 +0.6 29 58.3 +7.5 241.3 242.7 12 1004.06 21.6 +0.6 .33522 233.8 279 12 1004-11 7-623 58·o +0.6 +7.5 240-1 240-7 279 54 7:349 232.6 33520 v 238.3 1 20 1004-04 57.1 229.0 21.6 +0.6 +7.5 236.5 .33518 280 296 2nd Experiment on 24th Febru-21.8 + 10.0 230.6 25 11 51 1004-36 55.0 220.6 +0.8 230.2 -33516 D ک 21.8 16 ary 1902. 12 7.856 54.8 +10.0 229.7 7.427 219.7 +0.8 12 1003.88 21.9 + 11.3 233.1 231.4 39 221.8 ·3350o 269 55.3 +0.9 2 1003.76 56∙**o** 22:0 + 12.5 237.1 235-1 7.374 7.342 224.6 + 1.0 .33504 **2**69 V 3 1003-92 22:0 + 12.2 233.9 235.5 24 55-2 221.4 +1.0 ·33510 274 Means 1004-23 7.510 ••• 7.403

B 2.

Computation of the value of the Base Line of the H. F. Magnetograph No. 2 for the months of January and February 1902.

MAGNET 2, FIBRE 12. Temperature Coefft. for 1° C.= 12'57 throughout.

_									WIA	GNET	2, FII	KE 12	. 16	empera	ature Coe	itt. for 1	° C.≕ I	2.57 throughout.
_		J restor	·	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	ľ	Date.		Time of observation,	Vibration or Deflection.	Moment of Magnet at zero = mo.	P. from 22.5 and 30 cms,	P. from 30 and 40 cms.	Measures of ordinates at times given in col. 2.	Ordinate converted into Force,	Interpolated temperatures of the H. F. thermometer at times given in col. 2.	Difference of each temperature from the selected mean.	Correction for temperature.	Ordinate corrected to mean temperature == (8) + (11).	Means of corresponding pairs.	Observed value of H,	Value of Base line = (14) - (13).	REMARKS. (The base line is evaluated from the observations taken with Magnet 1A in Magnetometer No. 1 by Cook & Sons. —The figures in columns 4,5 and 6 are therefore omitted being given in Table B 1.)
	Ci	ivil.		L.M.T		C.G.S.	ļ		Sc. div.	., γ	С	C	γ	γ	γ	C.G.S.	C.G.S.	-
4		1902		h. m. 2 30 2 58	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•••	***	•••	54·6 55·0	307-9	13·5 13·6	0.0	0.0		309.7	•33497	-33187	Selected mean temperature = 13°.5°C. Scale Coefft.
7	"			3 32 12 22 12 47 1 18	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		•••	•••	54·9 55·0 55·0 55·7	309·6 310·2 310·2 314·1	13.7 13.2 13.3 13.3	+0·2 -0·3 -0·2 -0·2	+ 2.5 - 3.8 - 2.5 - 2.5	312·1 306·4 307·7	311-8 307-1 309-7	•33496 •33514 •33507	184 207 197	= 5.64γ. Mean value of Base line =
	•								MA	GNET	1, F1:	BR E 2	•					
	Jan. "	1902		2 49 3 18 3 46	v} }		•••		56.2 57.0 57.8	207·9 210·9 213·9	14·7 14·7 14·7	-0·3 -0·3 -0·3	- 3.8 - 3.8 - 3.8	207·I 210·I	208.6	•33498 •33499		temperature =15°.0°C.
18	22 23 22 23 23 23			12 9 12 35 1 3 1 20 12 38 1 6 1 32	V			•••	59·9 58·6 54·9 54·2 54·3	225.7 221.6 217.9 216.8 203.1 200.5 200.9	14·3 14·4 14·5 13·9 14·0 14·1	-0·7 -0·6 -0·5 -1·1 -1·0 -0·9	- 8.8 - 7.5 - 6.3 - 13.8 - 12.5 - 11.3		214·9 211·6 210·5 188·7 188·8	•33519 •33517 •33493 •33491	304 307 306 304 302	Scale Coefft. =3.70.
19	>> >> >> >> >> >> >> >> >> >> >> >> >>		.	2 30 2 54 3 19 3 43 4 7 11 10	V		····	***	55.0 55.4 55.8 56.3 57.0 55.1 55.0	203.5 205.0 206.5 208.3 210.9 203.9 203.5	14·3 14·3 14·4 14·4 14·5 13·9 13·9	-0·7 -0·7 -0·6 -0·6 -0·5 -1·1	- 8.8 - 7.5 - 7.5 - 6.3 - 13.8 - 13.8	194·7 196·2 199·0 200·8 204·6 190·1 189·7	195.5 197.6 199.9 202.7 189.9	•33493 •33493 •33495 •33494 •33486	297 295 295 291 •33295	Mean Base line
22	33 33 33 33 33	•		11 58 12 23 12 46 2 42 3 10 3 36	V1	101 100 100 101 101	•••	•••	55.0 56.5 57.9 58.4 59.9 62.0	203·5 207·2 209·1 214·2 216·1 221·6 229·4	13·9 14·0 14·0 14·9 15·0 15·1	-1·1 -1·0 -1·0 -0·1 0·0 +0·1 +0·3	- 1·3 - 0·0 + 1·3 + 3·8	196·6 212·9 216·1 222·9	189-7 192-2 195-7 214-5 219-5 233-6	•33487 •33489 •33488 •33500 •33507 •33518	297 297 292 285 287 284	value to 19-1-02 incl.=-33297.
26))))))))))))	•	1 1 1 1 1	12 25 12 53 1 14 1 36 12 5 12 31 12 55	V		•••	···	62.2 63.1 63.4 62.6 69.4 70.8 71.2	230·1 233·5 234·6 231·6 256·8 262·0 263·4	15·3 15·3 15·4 15·4 15·4 15·4 15·5	+0·3 +0·3 +0·4 +0·4 +0·4 +0·5	+ + + + + + + + + + + + + + + + + + + +	237·3 239·6 236·6	2356	•33520 •33525 •33526 •33541 •33544	284 286 288 277 276	Mean value of

B 2.—contd.

Computation of the value of the Base Line of the H. F. Magnetograph No. 2 for the months of January and February 1902.

MAGNET I, FIBRE 2. Temperature Coefft. for 10 C .= 12.57 throughout.

I	2	3	4	5	6	7	8	9	10	11	12	13	14	-15	16
Date.	Time of observation.	Vibration or Deflection.	Moment of Magnet at zero = mo.	P. from 22.5 and 30 cms.	P. from 30 and 40 cms.	Measures of ordinates at times given in col. 2.	Ordinate converted into Force.	Interpolated temperatures of the H. F. thermometer at times given in col. 2.	Difference of each temperature from the selected mean.	Correction for temperature.	Ordinate corrected to mean tem- perature = (8) + (11).	Means of corresponding pairs.	Observed value of H.	Value of Base line = (14) - (13).	REMARKS. (The base line is evaluated from the observations taken with Magneton Magneton No. 1 by Cook & Sons. —The figures in columns 4,5 and 6 are therefore omitted being given in Table B 1).
Civil.	L.M.T.		C.G.S.			Sc. div.	γ	С	С	γ	γ	γ	C.G.S.	C.G.S.	
30 Jan. 1902	h. m. 12 1 12 24 12 47 1 10 11 26 11 49 12 14 11 30 11 30 11 30 11 30 11 31 12 21 12 26 1 11 13 38 12 2 12 27 12 27 12 59 3 19	>				57-9 57-7 57-2 56-4 64-3 64-1 64-3 64-0 60-1 58-7 55-7 65-3 65-7 65-4 63-9 50-8	214·2 213·5 211·6 208·7 237·9 237·2 237·2 237·9 236·8 225·7 222·4 217·2 203·5 241·6 243·1 240·5 238·3 236·4 188·7 188·6	16·9 16·9 16·9 15·0 15·0 15·1 15·2 14·6 14·6 14·7 14·9 15·0 15·1 18·1	+1·9 +1·9 +1·9 0·0 0·0 +0·1 +0·2 -0·4 -0·4 -0·3 -0·2 -0·1 0·0 +0·1 +1·3·1 +3·2	+ 23.8 + 23.8 + 23.8 + 23.8 + 23.8 + 23.8 - 0.0 0.0 0.1 1.3 - 5.0 - 5.0 0.0 0.0 1.3 - 2.5 - 0.0 0.0 0.0 + 1.3 - 1.	238·0 237·3 235·4 232·5 237·9 237·2 239·2 239·2 239·3 20·0 220·7 217·4 201·0 240·3 243·1 240·5 237·7 227·5 228·0	215.4 207.2 241.7 241.8 240.1 238.7 227.8	33530 33520 33515 33520 33519 33527 32495 33494 33492 33485 33520 33520 33518 33511 33498	292 284 281 282 284 288 275 277 278 278 278 278 278 278	
_						Ма	GNET	3, F11	BRE 4.						
22 Feb. 1902	11 39 12 5 12 31 12 55 1 19 11 40 12 4 12 29 12 54 1 20 11 51 6 12 39 1 2 4 24 1 24 1 25 16 12 39 1 2 4 1 24 1 25 1 15 16 12 39 1 2 1 24 1 24 1 24 1 24 1 24 1 24 1 24	V D VDV VDV VDV VDV VDV VDV VDV VDV VDV				66.6 66.7 66.9 66.6 70.0 69.4 69.0 68.1 66.8 66.5 67.2 67.7 66.9	301·7 302·2 303·1 303·1 301·7 318·0 317·1 314·4 312·6 308·5 302·6 301·2 304·4 306·7 303·1	18·1 18·1 18·2 18·2 18·2 18·3 18·3 18·4 18·4	-0·4 -0·3 -0·3 -0·2 -0·2 -0·1 -0·1 -0·1 +0·2 +0·2 +0·3	- 5.0 - 3.8 - 2.5 - 2.5 - 1.3 - 1.3 - 0.0 0.0 + 1.3 + 2.5 + 3.8 + 3.8	298·4 299·3 300·6 299·2 315·5 315·8 313·1 312·6 308·5 303·9 303·7 306·9	298-9 300-0 299-9 315-7 314-5 312-9 310-6 303-8 305-3 308-7	*33511 *33509 *33510 *33524 *33522 *33526 *33516 *33500 *33504 *33510	210 210 205 205 207 207 212 195 201	temperature =18.4 Scale Coefft. =4.5333210. -33207.

Ct.

Reduction of temperature coefficients of H. F. Magnetographs (Watson's)

First experiment with Magnet 1 and Fibre 2.

		Mag	net 1,	Fibre 2	e. In	st. 1.	Ma	gnet 2.		Fibre	12.	Inst	. 2.			
1	2	3	4	5	б	7	8	9	to	11	12	13	14	15	16	REMARKS.
Date.	Time.	Temperature Thermometer No. 909.	Increment in temperature after start,	Ordinate.	Difference in ordinate after start.	Difference in ordinate converted into Force.	Temperature Thermometer No. 910.	Increment in temperature after start.	Correction for temperature.	Ordinate.	Difference in ordinate after start.		Difference in ordinate corrected for temperature i.e., (13) + (10).	Actual change in ordinate due to change in temperature (7) — (14).	Temperature co-efficient for $+ 1^{\circ}C$, <i>i. e.</i> (15) \div (4).	y='00001, C. G. Sunits. Temperature co-efficient for No. 2 Inst. assumed at τ C=-12 γ. Sc. value of No. Inst. = 4'27 γ. Sc. value of No. 2 Inst. = 5'6 γ.
		Cent.	Cent.	Sc. divns.	Sc. divns.	γ	Cent.	Cent.	γ	Sc. divns.	Sc. divns.	γ	γ.	γ	γ	
6th Jan. 1902.	b. m. 7 25 7 45 8 15 30 9 15 30 45 10 15 30 45 11 0 13 45 12 15 30 45 14 15 30 45 15 30 45 16 15 30 45 17 45 18 45 19 45 19 45 45 45 45 45 45 45 45 45 45 45 45 45	20-15 20-45 21-30 22-75 23-81 24-90 25-20 26-80 27-10 28-90 28-95 29-90 28-95 29-90 28-95 29-90 28-95 29-90 28-95 29-90 28-95 29-90 28-90	+ 0·30 1·15 2·60 3·66 4·41 4·75 5·85 6·95 7·85 8·80 9·05 9·45 9·45 9·45 8·35 7·35 6·30 8·30 9·45 9·45 9·45 8·35 7·35 8·30 9·45 9·45 9·45 9·45 9·45 9·45 9·45 9·45	72.6 70.0 64.7 60.8 60.0 58.7 55.0 50.0 50.0 48.3 48.5 48.5 48.0 46.4 47.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	13·1 14·4 17·1 19·5 20·4 20·8 22·1 23·1 24·4 24·3 24·1 26·7 26·3 24·1 21·9 20·2 13·1 11·3 10·1 8·7	105.9 107.2 104.2 103.8 105.0 107.2 111.4 114.0 112.3 111.4 106.8 102.9 98.6 93.5 86.3 76.0 64.9 555.9 48.3 43.1	96 12-96 -97 12-98 -98 12-98 -99 13-00 -00 13-00 -13-02 -13-13-20 -25 13-32 -31 -31 13-32 13-42 13-65 13-70 -74	-000 -011 -022 -004 -004 -004 -004 -002 -002 -002	-0.2 -0.2 -0.1 0.0 0.0 0.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.3 + 1.3 + 3.7 + 3.8 + 5.6 + 7.8 + 7.8 + 8.9 + 8.9	58-9-1 59-1-59-8 59-7-59-8 59-7-59-8 59-0 59-0 59-0 59-0 59-0 59-0 59-0 59-0	+ 0.4 + 0.6 + 0.6 + 1.2 + 1.2 + 1.3 + 0.9 + 0.5 + 0.5 + 0.5 + 0.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.2 + 1.5 + 1.5	+ 2.8 0.0 - 2.8 - 3.9 - 6.8 - 8.5 - 10.7 - 13.5 - 14.7 - 13.5 - 13.5 - 11.8 - 11.9 - 9.9	+ 2·3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3	114.7 116.5 118.9 119.9 115.3 112.2 115.3 12.2 106.6 99.8 87.6 78.0 67.5 56.3 49.6 42.6 39.7 34.7	15.7 13.9 13.3 13.1 12.9 13.1 12.9 12.8 12.7 12.7 12.7 12.6 12.7 12.7 12.6 12.7 12.7 12.6 12.7 12.7 12.7 12.6 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	Mean = 12.60 Y. Both doors slightly opened at 1-35. Inside door opened to the following at 2-2. Removed fires.

C 2.

Reduction of temperature coefficients of H. F. Magnetographs (Watson's)

First experiment with Magnet 2 and Fibre 12.

		Mag	net 2.	Fįbre	1 2. Ir	ıst. 1.	M	lagnet		Fibre	2.	Ins	st. 2.			
Ι.	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	REMARKS.
Date,	Time.	Temperature,	Increment in temperature after start.	Ordinate.	Difference in ordinate after start,	Difference in ordinate converted into Force,	Temperature,	Increment in temperature after start.	Correction for temperature,	Ordinate.	Difference in ordinate	Difference in ordinate converted into Force,	Difference in ordinate corrected for temperature i.e. (13) + (10).	Actual change in ordinate due to change in temperature (7) — (14).	Temperature coefficient for + 1°c i.e., (15) + (4).	y='ooooi C. G. S. Units. Sc. value of No. I Inst.=5'46 y. Sc. value of No. Inst.=3'70 y. Temperature coefficient of Magnet I and fibre 2 in No. 2 Inst. is taken from experiment on 6th January 1902,
		Cent.	Cent.	Sc. divns.	Sc. divns.	γ	Cent.	Cent.	γ	Sc. divns.	Sc. divos.	γ	γ	γ	γ	viz., 1°C.=-12.7γ
27 • 27 • 27 • 27 • 27 • 27 • 27 • 27 •	h. m. 7 30 8 45 8 0 15 30 9 15 30 45 10 0 15 30 45 11 15 30 45 12 0 15 30 45 14 0 15 30 45 15 15 30 45 16 0	20-50 20-74 22-74 24-80 27-90 28-20 29-95 29-95 30-15 31-10 31-25 31-30 30-45 30-98 30-45 30-98 30-45 29-95 29-95 20-90 27-21 26-50 25-78 25-78 25-78 25-78 23-60 23-60 23-60 23-60 23-60 23-60	+ 0.24 1.94 4.30 6.50 7.20 7.60 7.46 7.70 8.55 8.55 9.65 9.60 9.95	58.7 54.2 48.99 42.1 40.8 40.6 36.8 35.3 35.8 35.1 33.6 33.4 34.3 35.7	10·4 15·4 17·2 18·5 18·7 19·0 20·3 22·5 23·1 24·0 24·3		33 14'30 28 14'26 28 14'36 32 14'33 34 14'38 38 14'38 14'38 14'38 14'38 14'38 14'40 14'50 14'50 14'51 14'50 14'53 14'58 463 14'72 14'53 14'68 14'72 14'53 14'68 14'72 14'68 14'92 14'93 14'93	- 0.03 - 0.06 - 0.08 - 0.10 - 0.08 - 0.06	0 0 48 0 3 0 8 5 5 4 3 3 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0	62.55.66.1.1.0.01.2.7.7.0.8.5.5.66.2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -0.4 -0.8 -2.5 -3.2 -4.3 -6.0 -9.8 -13.2 -17.7 -16.0 -14.9 -17.8 -9.6 -10.0 -7.8 -9.6 -10.0 -9.6 -11.1 -19.3 -7.4 -5.4 -3.9 -3.0	0-0 -2-9 27-0 54-3 80-9 80-9 95-0 92-3 90-7 115-0 117-8 116-0 112-1 130-2 130-7	0:0 12:1 13:9 12:6 12:4 12:3 12:1 12:3 12:3 12:3 12:4 12:3 12:2 12:1 12:1 12:0 11:8 11:7 11:6 11:4 11:5 11:5 11:1 11:5	Deflections taken. Mean=11'90 Y. Both doors slightly opened, Inner door opened wide. Outer door opened wide. Removed fires.

C 3.

Reduction of temperature coefficient of H. F. Magnetographs (Watson's)

Second experiment with Magnet 2 and Fibre 12.

		MAG	NE T 2.	Fibre	12. l	1ST, 1.	M	I ag net	ı. I	IBRE 2	. 1	NST. 2.				
1	2	3	4	5	б	7	8	9	10	I I	12	13	14	15	16	REMARKS.
Date.	Time.	Temperature.	Increment in temperature after start.	Ordinate.	Difference in ordinate after start.	Difference in ordinate converted into Force.	Temperature.	Increment in temperature after start.	Correction for temperature.	Ordinate.	Difference in Ordinate after start.	Difference in ordinate converted into Force.	Difference in ordinate corrected for temperature, i.e., (13) + (10).	Actual change in ordinate due to change in temperature (7)—(14).	Temperature coefficient for $+1^{\circ}$ C., <i>i.e.</i> (15) \div (4).	γ = .00001 C.G.S. Units. Sc. value of No. 4 Inst.=5.46 γ. Sc. value of No. 2 Inst.=3.70 γ. Temp. coefft. for No. 2 Inst. taken =12-7 γ.
		Cent.	Cent.	Sc. divns.	Sc. divns.		Cent.	Cent.	γ	Sc. divns.	Sc. divns.	γ	γ	γ	γ	
20 Jan. 1902 .	h.m. 7-30	20.63	0.00	56-1	0.0	0.0	13.99	0.00	0.0	61.6	0.0	0.0	0.0	0.0		Fires lighted at
27	45 8-0 15 30 45 10-0 15 30 45 11-0 15 30 45 12-0 15 30 45 12-0 15 30 45 12-0 15 30 45 12-0 15 30 45 12-0 15 30 45 15-3 30 45 15-3 30 45 16-0 16-0 16-0 16-0 16-0 16-0 16-0 16-0	21·10 23·95 26·80 28·16 28·32 28·00 28·43 29·03 29·60 30·42 30·72 30·45 30·78 31·95 31·95 31·95 31·95 31·95 22·20 26·55 26·20 25·45 24·72 24·15 23·40	+ 0.47 3.32 6.17 7.53 7.63 7.37 7.88.35 8.40 9.79 9.82 9.95 10.59 11.31 10.97 10.97 4.82 5.57 5.57 4.82 4.09 3.52 2.30	33.9 31.6 30.6 30.0 28.0 28.0 28.0 28.0 30.7 32.4 34.9 37.6 39.7 41.1 41.9 43.6 47.0 48.3 49.3	7.9 14.1 17.1 16.9 18.4 19.8 22.2 24.5 25.5 25.5 27.8 28.1 27.8 28.1 27.6 25.4 23.7 21.8 5.9 15.6 5.9	43.1 77.0 93.9 93.4 92.3 100.5 107.0 108.1 121.2 131.8 136.5 139.2 142.5 151.8 153.4 153.4 153.4 153.4 153.4 153.4 153.4 153.4 157.5 129.4 115.8 101.0 89.5 67.5 67.2 57.3 49.7 42.6 33.1 32.2	13.99 .98 13.97 .97 13.97 .98 14.00 .00 14.00 .01 14.03 .06 14.10 .13 .16 14.22 .26 14.30 .34 14.38 .39 14.45 .45 14.50	0.00 -0.01 -0.02 -0.02 -0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.02 +0.04 +0.14 +0.17 +0.21 +0.23 +0.27 +0.31 +0.46 +0.55 +0.58 +0.62 +0.67	+0·1 +0·1 +0·1 +0·1 +0·1 +0·3 +0·5 +1·4 +1·8 +2·7 +2·7 +3·4 +5·1 +5·2 +7·0 +7·0 +7·0	61.9 62.0 62.0 62.0 61.2 50.6 55.3 56.3 56.1 56.0 56.1 56.0 56.0 56.1 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0	+0·4 +0·4 +0·4 +0·4 +0·4 +0·4 +0·4 +0·4	-18.1 -19.6 -20.4 -20.7 -21.1 -20.7 -19.6 -19.6 -20.7 -20.4 -20.4 -30.4 -18.1 -20.7 -20.7 -20.7 -20.7 -20.7 -20.7 -20.7	+ 1.2 + 0.8 - 1.5 - 1.3 -	31·5 27·5	14-0 13-4 12-7 12-6 12-3 12-6 12-3 12-6 12-3 12-6 12-4 12-2 12-1 12-2 12-0 11-8 11-1 11-6 11-1 10-7 10-4 10-7 10-3 9-9 9-5 9-3	No fuel added after 11-30. Deflections taken. Mean = 11·69 γ Both doors slightly opened. Finer door opened wide, Outer door opened wide. Fires removed.

C 4.

Reduction of temperature coefficient of H. F. Magnetographs (Watson's)

First experiment with Magnet 3 and Fibre 6.

		MAGN	ET 3.	FIBRE	б. In:	ST. 1.		Magn	ET I.	Fibre	2. l	NST. 2.				
I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	REMARKS.
Date.	Time.	Temperature.	Increment in temperature after start.	Ordinate.	Difference in ordinate after start.	Difference in ordinate converted into Force.	Temperature.	Increment in temperature after start.	Correction for temperature.	Ordinate.	Difference in ordinate after start.	Difference in ordinate converted into Force.	Difference in ordinate corrected for temperature, i.e. (13) + (10).	Actual change in ordinate due to change in temperature (7)—(14).	Temperature coefficient for +1°C, i.e. (15)+(4).	7 = 0000 1 C. Units. Sc. value of No. 1 Inst.=4'82 y. Sc. value of No. 2 Inst.=3'70 y. Temp. coefft. for No. 2 Inst. taken =12'70 y.
		Cent.	Cept.	Sc. divns.	Sc. divns.		Cent.	Cent.	γ	Sc. divns.	Sc. divns.	γ	γ	γ	γ	
29 29 29 27 29 29 29 29 39 39	•] 3	5 20-8c 21-16 21-1	+ 0.36 2 3.32 3 6.03 8 8.30 8 9.37 9 9.58 10.23 10.25 11.80 12.368 12.66 12.10 11.40 10.59 9.30 8.20 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.3	63-64-64-64-64-64-64-64-64-64-64-64-64-64-	-0.8 -10.4 -16.2 -21.7 -24.1 -25.3 -26.5 -27.9 -28.8 -35.0 -35.4 -33.6 -35.4 -35.1 -	-3.9 50-1 78-1 104-6 116-2 121-9 127-7 134-5 137-4 138-8 143-6 152-3 162-0 151-8 138-8 122-4 109-4 98-7 74-7 68-6 60-7 56-4 56-4 39-6 33-6	14-90 -90 14-90 -91 14-92 -93 14-94 -95 14-95 -96 14-96 -98 15-00 15-10 -20 15-10 -20 15-20 15-20 15-20 15-20 -95 -95 -95 -95 -95 -95 -95 -95	0.00 0.00 0.00 0.00 0.00 1.00	+ 1·3 + 1·5 + 1·9 + 2·2 + 2·3 + 3·3 + 3·4 + 5·5 + 5·5 + 5·5 + 5·5 + 5·5 + 7·9	56-0 55-4 55-0 55-0 55-0 55-0 55-0 55-0 55		+ 1·1 + 0·4 + 0·7 - 2·6 - 5·9 - 13·6 - 15·9 - 13·1 - 23·1 - 24·1	+ 1·1 + 0·4 + 0·4 + 0·4 + 0·4 - 0·7 - 2·6 - 12·6 - 12·6 - 22·5 - 22·5 - 22·5 - 22·5 - 23·5 - 23·	-5.0 50·5 78·5 103·9 113·6 116·1 118·7 121·9 122·0 120·4 123·1 144·7 146·8 138·5 128·5 115·9 100·2 87·8 76·4 66·2 53·7 46·8 37·2 33·3 25·6 20·4 116·9 116·9 116·9 117·9 129·9 149·9	13-9 15-2 13-0 12-5 12-1 12-0 11-8 11-8 11-6 12-0 11-9 11-8 11-3 10-9 10-8 10-9 10-3 10-9 8-9 8-9 8-9 8-9 6-3 6-4 6-4	No fuel added after 11-0. Deflections taken. Both doors opened slightly. Inner doors opened wide. Outer doors opened wide. Fires removed. Sharp rise of odivn. at 3 P. M. in trace of No. 1 Inst

C 4a.

Table showing results of Temperature Experiment No. 1 with Magnet 3 and Fibre 6 corrected for slip.

1	2	3	4	5	6	7	
Date.	Time.	Increment in temperature after start,	Actual change in ordinate due to change in temperature.	Correction for slip.	True change io ordinate due to change in temperature = 4+5.	Temperature coefficient for 1° Cent=6÷3.	Remarks.
Civil.	L. M. T.	C.	γ	γ	γ	γ	
23-I-1902	7'45 8'0 '16 '30 '45 9'0 '15 '30 '45 10'0 '15 '30 '45 11'0 '15 '30 '45 14'0 '16 '30 '45 14'0 '16 '30 '45 15'0 '16 '30 '45 16'0	0.00 +0.36 3.32 6.03 8.30 9.37 9.58 9.86 10.23 10.30 10.20 10.58 11.80 12.30 12.68 12.60 12.10 11.40 10.59 9.30 8.20 7.40 6.50 5.56 4.80 4.20 3.80 3.40 3.13 2.98 2.62 2.50	0.0 -5.0 50.5 78.5 103.9 113.6 116.1 118.7 121.9 122.0 120.4 123.1 129.8 140.1 144.7 149.5 146.8 138.5 128.5 115.9 100.2 87.8 76.4 66.2 53.7 46.8 37.2 33.3 28.8 25.6 20.4 18.9 16.8 15.9	0.0 -0.4 -0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.6 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 10.0 10.4 10.8 11.6 15.0 15.0 15.0	0°0 -5'4 51'3 79'7 105'5 115'6 118'5 125'1 125'6 145'3 150'3 155'5 145'3 135'7 123'5 108'2 96'2 85'2 75'4 63'3 56'8 47'6 44'1 40'0 37'2 35'4 33'9 31'8 30'9	-150 1555 1322 127 123 124 123 122 122 122 123 1223 1223 1	Columns 1, 2, 3 and 4 are copied from columns 1, 2, 4 and 15 of the Temperature Experiment. The total slip measured from 7'45 to 16'0 is 15 \gamma. The curve shows a sudden jump of 0'7 Scale divns.=3'4 \gamma at 15'0. Con sequently, a slip amounting to 11'6 \gamma has been applied uniformly up till 15'0, nd after that hour a slip of 15 \gamma has been assumed. Mean 12'07 \gamma

C 5

Reduction of temperature coefficient of H. F. Magnetograph (Watson's) Second Experiment with Magnet 3 and Fibre 6.

							1 agn	et 3	and.	Fibre	? 6. ———					
		Mag	NET 3,	Fibre	б, Іп	ST. 1.	M.	AGNET	1,	FIBRE	2,	Inst	. 2.			
I	2	3	4	5	б	7	8	9	10	11	12	13	14	15	16	Remarks.
Date,	Time.	Temperature.	Increment in temperature after start.	Ordinate.	Difference in ordinate after start.	Difference in ordinate converted into force.	Temperature.	Increment in temperature after start.	Correction for temperature.	Ordinate.	Difference in ordinate after start,	Difference in ordinate converted into force.	Difference in ordinate cerrected for temperature, i.e. (13) + (10).	Actual change in ordinate due to change in temperature (7)—(14).	Temperature coefficient for + 1°C, i.e., (15) ÷ (4).	y .00001 C. G. S Units. Scale coefficient of No. 1 Inst.=4.827. Scale coefficient of No. 2 Instrument =3.70y. Temperature co- efficient for No. 2 instrument taker -12.77.
	h.m.	Cent.	Cent.	Sc. divns.	Sc. divns.	γ	Cent.	Cent.	γ	Sc. divns.	Sc. divns.	γ	γ	γ	γ	
28th Jan. 1902	7-45 8-0 15 30 45 9-0 15 30 45 11-0 15 30 45 12-0 15 30 45 14-0 15 30 45 15-0 15 30 15-0 15 30	21·38 21·42 21·63 23·83 26·84 29·18 29·92 31·69 33·20 33·20 33·20 33·53 33·63 22·58 33·62 29·38 27·88 25·56 25·58 25·56 23·36	0.000 + 04 0.29 2.43 5.46 7.80 8.541 9.71 10.29 11.82 11.78 11.22 11.78 11.20 10.54 8.00 6.50 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76	74·3 73·0 68·0 55·5 53·9 44·8 42·8 41·8 43·8 45·2 55·6 66·0 67·2 66·0 68·7 68·8 69·7 70·0 70·0	0·0 -0·7 2·0 7·0 15·5 21·1 23·7 26·0 28·1 30·2 33·9 33·2 23·8 20·0 11·0 9·0 6·3 5·3 5·1 5·0 4·8	0.0 -3.4 9.6 33.7 72.3 94.0 101.7 114.2 125.3 135.4 145.6 155.2 160.0 150.4 143.6 114.7 96.4 78.1 62.7 53.0 47.2 43.4 33.7 63.7 33.7 43.6 24.9 25.5 24.6 24.1 23.1 23.1	15-60 15-62 -61 15-60 15-66 15-70 -71 15-72 -73 15-74 -77 15-78 -79 15-80 -81 15-83 -93 -93 -93 -10-00 16-03 -10-00 16-13 -17 16-20 -24 16-35	0.00 + 0.02 0.01 0.00 0.01 0.02 0.14 0.15 0.19 0.20 0.21 0.23 0.26 0.30 0.33 0.49 0.43 0.53 0.57 0.60 0.64 0.68 0.75	+ 0·3 0·1 0·0 0·3 0·3 0·3 1·4 1·5 1·9 2·0 2·3 2·4 2·7 2·3 3·3 3·4 4·7 7·7 7·6 8·1 8·1 8·1	62-0 62-6 62-9 63-9 63-9 64-1 64-2 63-5 62-8 59-9 59-9 59-9 59-1 60-1 60-0 58-9 58-9 58-7 58-5 58-5 58-5 58-5 58-5 58-5 58-5	0·0 +0·6 +0·9 +1·9 +1·9 +2·1 +2·2 +1·5 +0·2 -2·1 -3·1 -2·9 -2·5 -2·0 -1·9 -2·2 -3·3 -3·3 -3·9 -4·1 -4·6	-15·2 -16·7	-8.5 -8.1 -6.9 -4.9 -4.1 -4.1 -4.1 -4.3 -6.9 -7.9 -7.1 -5.0 -5.1 -5.8 -5.4 -6.3	-5.9 13.0 39.6 79.4 102.1 111.6 132.3 139.1 142.2 154.2 150.5 141.9 135.5 141.9 135.5 125.7 40.3 35.5 27.4 25.4 24.8 21.2 20.1 18.3 17.5 15.6		No fuel added after 10-15. Deflections taken. Mean 12-177. Opened both doors wide.

C 6.

Reduction of temperature coefficient of H. F. Magnetograph (Watson's). Third experiment with Magnet 2 and Fibre 12.

		M	AGNET	2. F1	BRE 12.	Inst	. 1.	М.	AGNET	ı. Fie	BRE 2.	Inst.	2.			•
I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	REMARKS.
Date.	Time.	Temperature.	Increment in temperature after start.	Ordinate.	Difference in ordinate after start.	Difference in ordinate converted into force.	Temperature,	Increment in temperature after start.	Correction for tempera-	Ordinate.	Difference in a rdinate after start.	Difference in ordinate converted into force.	Difference corrected for temperature, i.e., (13) + (10).	Actual change in ordinate due to change in temperature, i.e., (7)—(14).	Temperature coefficient for $+1^{\circ}$ C., i.e. $(15) \div (4)$.	γ = .00001 C. G.S. Units. Sc. Coefft. of No. 1 Inst.=6.50 γ. Sc. Coefft. of No. 2 Inst. =3.70 γ. Temp. Coefft. of No. 2 Inst. taken = -12.7 γ.
	h.m.	Cent.	Cent.	Sc. Divn.	Sc. Divn.	γ	Cent.	Cent.	γ.	Sc. Divn.	Sc. Divn.	γ.	γ.	γ.	γ.	
31st Jan. 1902	7-52 8-0 15 30 45 9-0 15 30 45 10-0 15 30 45 11-0 15 30 45 12-00 45 12-00 45 12-00 45 13-0 15 30 45 11-0 15 30 45 11-0 15 30 45 10-0 15 30 45 10-0 15 30 45 10-0 15 30 45 10-0 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	19.64 19.81 20.86 25.90 28.59 30.64 31.63 32.63 33.40 34.75 34.80 35.70 34.70 34.70 34.70 32.28 30.88 29.72 28.26 27.08 25.14 24.72 24.42 24.42 24.48 23.60 23.74 23.60 23.74 23.60 23.74 23.60 23.74 23.60 23.74 23.60 23.74	0.00 + 0.17 1.22 5.36 8.86 11.09 13.04 13.76 15.16 15.16 15.06 14.76 14.76 14.16 14.	62·0 61·7 59·3 44·8 40·2 38·1 36·0 34·7 32·2 31·1 29·2 31·1 31·0 33·0 38·7 44·7 49·8 50·9 51·9 52·4 52·9 53·4 53·9 54·1	0·0 -0·3 3·0 10·7 17·2 21·3 22·0 27·3 29·0 30·9 32·2 30·9 31·0 26·0 23·3 29·0 26·0 21·3 10·1 10	0.0 -2.0 19.5 69.6 111.8 141.7 155.4 169.0 177.5 191.3 200.9 213.2 200.9 201.5 198.3 169.0 151.5 112.5 96.9 87.8 79.3 72.2 67.0 62.4 59.2 57.9	.47 16.48 .49 16.50 .52 16.54 .61 16.62 .63 16.64 .67 16.70	-0.02 -0.02 -0.01 +0.01 +0.02 +0.03 +0.05	0·03 -0·33 -0·33 -0·33 -0·33 -0·33 -0·34 +0·46 +0·34 +0·45 +1·59 +2·25 +2·25 +3·36 +4·55 +4·55 +5·86 +5·86 +6 +6 +6 +6 +6 +6 +6 +6 +6 +	59·8 60·0 60·0 60·0 59·8 59·0 59·0 55·0 55·2 55·0 55·3 55·2 55·3 55·3 55·1 55·1 55·1 55·3 55·3 55·3	-5.7 -5.2 -4.5 -3.8 -4.6 -4.7 -4.4 -4.3 -4.7 -4.7 -4.6 -4.7 -4.7 -4.7 -4.7		-10.9	0.0 - 2.4 19.9 70.0 112.2 141.0 155.1 165.7 174.4 187.1 189.9 191.7 203.1 185.8 173.7 153.1 132.7 153.1 132.7 153.1 155.5 55.5 55.6 49.7 47.8 44.8 42.7		Fire started 7:55. Deflections taken. Both doors slightly opened. Both doors opened wide. Fire removed. At 14:56 the curve of No. 2 has been displaced sharply by 1'o Sc. divns. All measures after 15 have been cleared from this irregularity which is evidently accidental, as there is no sign of it in the curve of No. 1 lnst.

C 6a.

Table showing results of Temperature Experiment No. 3 with Magnet 2 and Fibre 12 corrected for slip.

1	2	3	4	5	6	7				
Date.	Time.	Increment in tempera- ture after start.	Actual change in ordinate due to change in temperature.	Correction for slip.	True change in ordinate due to change in temperature.	Temperature coefficient for 1° Cent = 6 ÷ 3.	Remarks,			
Civil.	L. M. T.	С	, γ	γ	γ	γ				
31st Jan. 1902	7'52 8'0 15 30 45 9'0 15 30 45 10'0 15 30 45 12'0 15 30 45 14'0 15 30 45 15'0 15'0 15'0 45 15'0 15'0 15'0 15'0 15'0 15'0 15'0 16'0 16'0 16'0 16'0 16'0 16'0 16'0 16	0°0 +0°17 1°22 5°36 8°86 11°00 11°99 13°04 13°76 14°76 15°16 15°06 15°06 15°06 14°78 14°16 12°64 11°24 10°08 8°62 7°44 10°08 8°62 7°44 10°08 4°78 4°54 4°10 3°96 3°84	0°0 -2'4 19'9 70'0 112'2 141'0 155'1 165'7 174'4 187'1 189'9 191'7 203'1 196'0 185'1 185'8 173'7 119'7 98'3 85'5 73'6 65'1 59'5 55'6 49'7 47'3 45'8 44'1 41'8 42'7	0°0 0°3 0°9 1°2 1°8 2°1 2°4 2°7 3°3 3°3 4°6 6°7 7°3 8°5 8°8 9°1 9°7 10°0	0°0 -2°7 20°5 70°9 113'4 142'5 156'9 167'8 189'8 192'0 206'7 200'0 189'4 190'1 186'7 178'9 158'6 138'5 125'8 104'7 92'2 80'6 72'4 67'1 62'9 60'8 58'2 56'1 54'9 53'5 52'7	15'9 16'8 13'2 12'8 13'0 13'1 12'9 12'9 12'9 12'7 12'6 12'7 12'6 12'5 12'3 12.5 12'1 12'4 12'4 12'5 12'2 12'4 12'7 12'8 13'0 13'0 13'7	Columns 1, 2, 3 and 4 are copied from columns 1, 2, 4 and 15 of the temperature experiment. The total slip measured from 7'50 to 16'0 is 10'y and this has been distributed uninformly throughout. Mean 12'60y.			

C. 7.

Reduction of temperature coefficient of Horizontal Force Magnetograph (Watson's).

First Experiment with Magnet 3 and Fibre 3.

		MAG	NET 3.	Fibri	z 3. I1	NST. 1.	М	AGNET	1.	FIBRE	2.	INST	. 2.			
I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Remarks.
Date.	Time.	Temperature.	Increment in temperature after start,	Ordinate,	Difference in ordinate after start.	Difference in ordinate converted into force,	Temperature.	Increment in temperature after start.	Correction for temperature.	Ordinate.	Difference in ordinate after start,	Differences in ordinate converted into force.	Difference in ordinate corrected for temperature, i.e., (13) + (10).	Actual change in ordinate due to change in temperature (7) - (14).	Temperature coefficient for +1°C, i.e., (15)÷(4).	y = 00001 C. G. S. Units. Scale coefficient of No. 1 Instrument = 4.81 y. Scale coefficient of No. 2 Instrument = 3.71 y. Temperature coefficient of No. instrument taken=
	h. m.	Cent.	Cent.	Sc. Divn.	Sc. divn.	γ	Cent.	Cent.	γ	S. C. divn.	S. C.	γ	γ	γ	γ	-12·7 γ.
6th Feby. 1902	45	21-05 21-29 22-80 26-60 29-50 30-63 31-80 33-50 33-80 34-15 34-25 34-56 35-18 35-40 34-78 33-84 32-86 31-76 Omitted. 28-90 26-60 22-450 24-25-70 24-25-70 24-25-70 24-25-70 24-25-70 22-95 22-95 22-95 22-75	0.00 + 0.24 1.75 5.55 8.45 9.58 10.75 12.45 13.05 13.51 14.13 14.13 14.13 14.13 10.71 7.85 5.40 2.80 2.80 2.50 2.80 2.15 2.95 1.90 1.85 1.70	75·0 74·3 70·0 59·5 52·3 49·0 45·9 38·9 38·9 38·3 37·5 35·1 37·1 39·8 42·5 46·2 50·6 62·3 66·9 66·9 66·9 67·5 68·4 66·9 67·5 68·7 70·4	0·0 -0·7 5·0 15·5 22·7 26·0 29·1 32·9 35·2 36·2 39·9 37·5 39·2 39·9 35·2 32·5 28·8 24·4 21·6 15·6 15·6 15·6 15·6 15·5 5·5 5·5 5·3 4·6	0.0 -3.4 24.1 74.6 109.2 1125.1 140.0 158.2 169.3 173.6 180.4 188.6 191.9 182.3 156.3 138.5 117.4 103.9 84.7 72.2 61.1 43.3 39.0 36.1 33.5 25.5 22.1	·32 15·36	0.00 -0.01 -0.02 -0.03 -0.01 +0.01 +0.01 +0.03 +0.03 +0.03 +0.05 +0.07 +0.12 +0.17 +0.17 +0.19 +0.22 +0.25 +0.37 +0.41 +0.49 +0.53 +0.65 +0.65	+2.8 +3.2 +3.7 +4.7 +5.2 +5.7 +6.7 +7.7	64·3 64·4 65·1 65·0 64·7 64·3 64·1 63·9 62·8 62·8 62·8 62·8 63·8 64·1 63.8 63·9 63·9 63·4 63·4 63·4 63·4 63·4 63·4 63·7 63·7 63·7 64·2	0·0 +0·1 +0·8 +0·7 +0·4 0·0 -0·2 -0·4 -1·3 -1·5 -1·5 -1·5 -1·5 -1·5 -0·5 -0·5 -0·6 -1·2 -0·7 -0·9 -1·0 -0·1 -0·1	0·0 +0·4 +3·6 +1·5 0·0 -0·7 -1·5 -5·6 -5·6 -5·6 -1·9 -1·5 -1·9 -1·5 -3·3 -3·3 -3·3 -3·3 -3·3 -2·2 -2·2 -0·4	0·37 +2·2·2 +1·2·1 -1-5·5·5·2 -1-5·5·2 -1-5·5·5·2 -1-5·5·5·2 -1-5·5·5·5·2 -1-5·5·5·5·5·5·2 -1-5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5	0.0 — 3.7 7 26.8 76.8 110.4 125.0 139.3 156.8 164.6 168.5 77.1 174.9 1836.7 177.1 164.1 151.2 137.2 117.6 113.5 48.3 44.9 4 38.0 35.6 34.2 33.0 31.5 31.0 30.0	15.4 15.4 15.3 13.6 12.9 13.0 12.9 13.0 12.9 13.0 12.9 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.6 13.0 14.0 14.1 15.2 15.4 15.2 15.4 15.2 15.3 15.0 14.0 14.0 15.2 15.0 16.1 16.6 16.1 16.6 16.1	Last fuel added Deflection taken. Mean 12-90 y. Both doors hal opened. Both doors opened wide. Fires removed.

Reduction of temperature coefficient of Horizontal Force Magnetograph (Watson's).

First experiment with Magnet 3 and Fibre 4.

		Magn	NET 3.	FIBRE	4. In	ST. I.		Magn	ET 1.	FIBRE	2. IN	IST. 2.				
I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Remark.s
Date	Time.	Temperature.	Increment in temperature after start.	Ordinate.	Difference in ordinate after start.	Difference in ordinate converted into force.	Temperature.	Increment in temperature after start.	Correction for temperature.	Ordinate.	Difference in ordinate after start,	Difference in ordinate converted into force.	Difference in ordinate corrected for temperature, i.e., (13) + (10).	Actual change in ordinate due to change in temperature $(7)-(14)$.	Temperature coefficient for $+ 1^{\circ}$ C, <i>i.e.</i> , (15) \div (4).	γ = ·00001 C. G. S Units. Scale value of No. 1 instrument=5·02γ Scale value of No. 2 instrument=3·71γ. Temoerature co- efficient for No. 2 instrument taken
	h. m.	Cent.	Cent.	Sc. divns.	Sc. divns.	γ	Cent.	Cent.	γ	Sc. divns.	Sc. divns.	γ	γ	γ	γ	= -12.7 γ.
noth Feb. 1902	47 8-2 17 32 47 9-2 16 30 44 11-0 15 30 45 12-0 15 30 45 15-3 30 45 15-3 30 45 15-3 30 45 15-3 30 45 15-3 45 15-3 45 15-3 45 15-4 15-4 15-4 15-4 15-4 15-4 15-4 1	19-90 20-35 22-20 26-80 29-20 31-40 32-20 33-60 34-50 35-24 34-70 35-38 35-70 35-24 34-42 33-50 31-70 30-25 28-70 27-50 26-40 25-70 25-20 24-80 24-50 24-25 24-10 23-90 23-50 23-50 23-50 23-50 23-50	0.00 + 0.45 2.30 6.90 9.30 11.50 12.30 13.70 15.54 14.60 15.48 15.88 15.84 14.52 13.60 10.35 8.80 7.60 6.50 5.80 5.80 4.90 4.90 4.90 4.90 4.90 3.80 3.70 3.80 3.70 3.80 3.70 3.80 3.70 3.80 3.70	63.9 57.8 45.0 39.9 33.9 35.9 30.0 27.4 26.3 25.0 26.8 28.9 26.0 25.3 30.0 32.8 37.8 42.0 49.6 51.9 53.5 56.3 56.8 57.7	0·0 -1·1 7·2 20·0 25·1 29·1 31·1 35·0 37·6 38·2 36·0 39·0 39·7 35·0 32·2 27·2 23·0 18·8 15·4 10·5 9·8 88·7 7·8 7·8 7·8 7·9 6·9	0-0 -5-5 36-1 100-4 126-0 146-1 175-7 188-8 191-8 191-8 181-2 180-7 195-8 199-3 175-7 161-6 136-5 14-2	14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·70 14·70 ·71 14·72 ·75 ·82 14·98 15·00 ·02 14·98 15·00 ·02 15·17 ·21 ·25 ·29 15·33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00		63·1 63·0 63·6 64·3 64·4 64·2 64·0 63·1 63·0 62·4 62·0 61·8 61·6 61·9 61·0 60·6 60·1 59·9 59·2 59·3 58·3 58·3 58·3	0·0 -0·1 +0·5 +1·2 +1·3 +1·1 +0·9 +0·3 -0·1 -0·7 -1·1 -1·4 -1·2 -1·3 -1·5 -1·2 -1·3 -1·5 -3·2 -3·9 -4·1 -4·8 -5·0 -4·8 -5·0	0.0 -0.4 +1.9 +4.5 +4.8 +4.8 +4.1 +3.3 +1.1 -0.0 -0.4 -0.0 -2.6 -4.1 -5.2 -4.8 -5.6 -4.5 -4.8 -5.6 -4.5 -1.1.9 -1.1.9 -1.1.1 -1.1.9 -1.1.8 -1.1.8 -1.1.8 -1.1.8 -1.1.8 -1.1.8 -1.1.8 -1.1.8 -1.1.8	-11.8 -12.1 -10.8	0·0 -5·1 38·0 104·9 130·8 150·9 140·2 179·0 189·9 194·2 200·1 191·5 180·5 177·8 191·4 194·0 156·3 132·6 112·8 91·8 73·4 60·8 73·4 41·4 37·1 33·8 33·2 29·4 27·1 25·8 23·7 24·0		Last fuel added. Deflections taken. Both doors opened slightly. Both doors opened wide. Fires removed.

C 8a.

Table showing results of Temperature Experiment No. 1 with Magnet 3 and Fibre 4 corrected for slip.

1	2	3	4	5	6	7	
Date.	Time.	Increment in tempera- ture after start.	Actual change in ordinate due to change in temperature.	Correction for slip.	True change in ordinate due to change in temperature.	Temperature coefficient for 1° Cent. = 6	Remarks.
Civil.	L.M.T.	Cent.	γ	γ	γ	γ	
10th Feb. 1902	7°32	0°0 +0°45 2°30	38.0 —2.1	0.0 -0.2	 —5.6	12°4 17°0	Columns 1, 2, 3 and 4 are copied from columns 1, 2, 4 and 15 of the Temperature Experiment. The total slip measured from 7-30 to 16 o is 10 and this has been distributed uniformly the complete of the contract of the contr
27	32 47 9.2 17 32 47 10.2 16 30 44 11.0 15 30 45 12.0 15 30 45 14.0 15 30 45 14.0 15 30 45 15.0 15 30 45 16 30 45 16 30 45 17 18 18 18 18 18 18 18 18 18 18 18 18 18	9'30 11'50 12'30 13'70 14'70 15'30 15'90 15'54 14'80 15'34 14'52 13'60 11'80 10'35 8'80 7'60 6'50 5'80 4'90 4'60 4'35 4'20 4'00 3'80 3'70 3'60 3'45	104'9 130'8 150'9 160'2 179'0 189'9 194'2 200'1 191'5 180'5 177'8 191'4 194'0 184'8 171'0 156'3 132'6 112'8 91'8 73'4 60'8 51'5 45'4 41'4 37'1 33'8 31'2 29'4 27'1 2 '8 2 7 24'0	1'7 2'3 2'9 3'5 4'1 4'7 5'8 6'9 7'4 8'0 8'5 9'1 10'2 10'7 11'3 11'8 12'4 12'9 13'5 14'0 14'6 15'1 15'7 16'8 17'3 17'9 18'4	106·6 133·1 153·8 163·7 183·1 194·6 199·4 205·9 187·4 185·2 199·4 202·5 193·9 180·6 166·5 143·3 124·1 103·6 85·8 73·7 65·0 52·2 49·5 44·4 43·7 42·1 43·0	15'4 14'3 13'4 13'3 13'4 13'2 13'0 12'7 12'7 12'7 12'9 12'8 12'6 12'4 12'2 12'1 12'0 11'3 11'4 11'3 11'4 11'3 11'6 11'7 11'8 11'7 12'5	Mean 12'49γ.

C. 9.

Reduction of temperature coefficient of Horizontal Force Magnetograph (Watson's).

Second experiment with Magnet 3 and Fibre 4.

,	м	AGNET	3. F16	BRE 4.	Inst.	1.	1	Magne	т 1.	FiBR	E 2.	lnst.	2.			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Remarks.
Date.	Time	Temperature.	Increment in temperature after start,	Ordinate.	Difference in ordinate after start.	Difference in ordinate converted into force.	Temperature.	Increment in temperature after start.	Correction for temperature.	Ordinate,	Difference in ordinate after start.	Difference in ordinate converted into force,	Difference in ordinate corrected for temperature i.e. (13)+(10).	Actual change in ordinate due to change in temperature (7) = (14).	Temperature coefficient for +1'C, i.e. (15) ÷ (4).	y =.00001 C. G. S. Units. Scale value of No. 1 instrument = 5.02y. Scale value of No. 2 instrument = 3.71y. Temperature co- efficient of No. 2 instrument taken
	h. m.	Cent.	Cent.	C. divns.	Sc. divns.	γ	Cent.	Cent.	γ	Sc. divns.	Sc. divns.	γ	γ	γ	γ	=-12'7 γ.
12th Feb. 1go2	45 8-0 15 30 45 9-0 15 30 45 10-0 15 30 45 11-0 15 30 45 12-0 15 30 45 13-0 15 30 45 13-0 15 30 45 15 30 45 10-0 15 30 45 10-0 15 30 45 10-0 15 30 45 10-0 10-0 10-0 10-0 10-0 10-0 10-0 10-	20-05 20-70 24-50 28-40 30-70 32-20 33-60 35-20 35-30 35-40 36-60 36-85 36-16 35-78 35-78 35-78 35-78 35-78 35-78 29-80 20-80		70·7 69·4 57·5 43·7 35·3 32·9 33·1 32·4 33·3 32·1 33·9 37·6 42·1 49·2 52·7 56·0 57·5 57·6 58·3 59·4 59·7 59·0	0.0	90·4 80·3 73·8 68·8 66·3 65·8 62·2 58·7 56·7 55·2	15:36 :34 15:30 :33 15:36 :35 :35 :35 :35 :37 :35 :37 :37 :5:38 :42 :45 :55 :55 :55 :55 :56 :56 :56 :56 :56 :5	+ 0·13 + 0·15 + 0·18 + 0·21 + 0·25 + 0·30 + 0·34 + 0·43 + 0·47 + 0·56 + 0·61 + 0·66	+ 1.9 + 2.3 + 2.7 + 3.2 + 4.3 + 4.8 + 5.5 + 6.5 + 7.7 + 7.7 + 8.4 + 5.4 + 5.5	63.5 64.6 65.7 65.5 64.3 64.3 64.3 64.0 64.0 64.0 65.1 65.1 65.1 65.1 65.1 65.1 65.1 65.1	0.0 +1.1 +1.2 +1.4 +1.0 +1.4 +0.1 +0.5 +	-18.9	0.0 + 4.1 + 6.4 + 6.5 + 4.3 + 2.9 + 2.3 + 2.3 + 2.3 + 2.3 + 2.3 + 2.3 + 2.3 + 2.3 + 2.5 + 2.5 + 2.5 + 3.2 +	0-0 -10-6 75-2 124-3 142-0 160-3 182-0 193-0 194-6 194-9 195-9 201-3 211-3 212-5 201-8 197-8 192-0 173-8 192-0 173-8 192-0 173-8 151-4 132-7 109-1 92-9 67-7 62-5 58-8 55-7 7 53-2 53-2 64-6	-16·3 16·9 14·9 13·3 13·2 13·4 12·9 12·7 12·8 12·8 12·8 12·6 12·5 12·6 12·4 12·1 11·0 11·0 11·0 11·0 11·0 11·0 11·0	Deflection taken. Last fuel added. Both doors opened slightly. Both doors opened wide. Fires removed.

C 9a.

Table showing results of Temperature Experiment No. 2 with Magnet 3 and Fibre 4 corrected for slip.

Actual change in ordinate due to change in temperature. nt. γ 0'00 0'0 -0'65 4'45 75'2 8'35 124'3 10'65 142'0 12'15 160'3 13'55 182'0 14'95 193'0 15'05 191'7 15'15 194'6	Correction for temperature. 7 0'0 -0'3 0'6 1'0 1'3 1'6 2'0 2'4 2'7 3'0	7 o'o -10'9 75'8 125'3 143'3 161'9 184'0 195'4	Temperature coefficient for 1° Cent.=6 ÷ 3. γ	Columns 1, 2, 3 and 4 are copied from columns 1, 2, 4 and 5 of the Temperature Experiment. The total slip measured from 7'20 to 15'45 is 11 % and this has been distributed uniformly throughout.
0'00 0'0 -0'65 —10'6 4'45 75'2 8'35 124'3 10'65 142'0 12'15 160'3 13'55 182'0 14'95 193'0 15'05 191'7 15'15 194'6	0°0 -0°3 0°6 1°0 1°3 1°6 2°0 2°4 2°7	0°0 10°975°8 125°3 143°3 161°9 184°0 195°4	 -16.8 17.0 15.0 13.5	Columns 1, 2, 4 and 5 of the Temperature Experiment. The total slip measured from 7'20 to 15'45 is 11 y, and this has been distributed uni-
-0.65 —10.6 4.45 75.2 8.35 124.3 10.65 142.0 12.15 160.3 13.55 182.0 14.95 193.0 15.05 191.7 15.15 194.6	-0°3 0°6 1°0 1°3 1°6 2°0 2°4 2°7	-10'9 75'8 125'3 143'3 161'9 184'0 195'4	-16.8 17.0 15.0 13.5	Columns 1, 2, 4 and 5 of the Temperature Experiment. The total slip measured from 7'20 to 15'45 is 11 y, and this has been distributed uni-
4'45 75'2 8'35 124'3 10'65 142'0 12'15 160'3 13'55 182'0 14'95 193'0 15'05 191'7 15'15 194'6	0.6 1.0 1.3 1.6 2.0 2.4 2.7	75.8 125.3 143.3 161.9 184.0 195.4	13'3	is 11 y, and this has been distributed uni-
8'35 124'3 10'65 142'0 12'15 160'3 13'55 182'0 14'95 193'0 15'05 191'7 15'15 194'6	1.0 1.3 1.6 2.0 2.4 2.7	125'3 143'3 161'9 184'0 195'4	13.2	is 11 y, and this has been distributed uni-
12'15 160'3 13'55 182'0 14'95 193'0 15'05 191'7 15'15 194'6	1.6 2.0 2.4 2.7	143'3 161'9 184'0 195'4	13.2	is 11 y, and this has been distributed uni-
12'15 160'3 13'55 182'0 14'95 193'0 15'05 191'7 15'15 194'6	1.6 2.0 2.4 2.7	161°9 184°0 195°4	13'3	is 11 y, and this has been distributed uni-
13.55 182.0 14.95 193.0 15.05 191.7 15.15 194.6	2.0 2.4 3.7	184.0 192.4	13'3	tormty throughout.
14'95 193'0 15'05 191'7 15'15 194' 6	2.4 3.4	195'4	13'6	
15.12 191.4 12.12 194.9	2.7			
15.12 194.6			13,1	
		194.4	13'0	
15'25 194'9	3.4	198.3	13.0	
15'35 195'9	3'7	199.6	13.0	
15.95 204.9	4.0	208'9	13.1	
16'55 211'3 16'80 212'5	4.4 4.2	217.2	13.0	
16.11 501.6	5.0	206.6	12.8	i
15.22 194.8	5'4	200'2	12.9	11
15.73 197.8	5:7	203.2	12'9	
15'45 192'0 14'35 173'8	6°0 6'4	180.5	12·8 12·6	1 mean 12 49.9
14'35 173' 8	6.4	128.1	12.2	†
11.22 132.4	7.0	139.7	12.1	
9'75 109'I	7.4	116.2	11'9	Ŋ
8.35 92.9 7.45 82.2	7.7 8.0	100°6	12.0	
7.45 82.2 6.65 72.9	8.4	81.3	12.3	
6.50 62.4	8.7	76.4	12.3	
	9.0	71.2		
			12.6	1
	10'4	61.4	12.2	
4.65 48.0	10.4	58.7		
		_		
•• •••	***	•••	•••	
	5'25 62'5 5'25 58'8 5'21 55'7 5'00 53'2 4'90 51'0 4'65 48'0 4'45 47'6	5·25? 62·5 9·0 5·25? 58·8 9·4 5·21 55·7 9·7 5·00 53·2 10·0 4·90 51·0 10·4 4·65 48·0 10·7 4·45 47·6 11·0	5.25? 62.5 9.0 71.5 5.25? 58.8 9.4 68.2 5.21 55.7 9.7 65.4 5.00 53.2 10.0 63.2 4.90 51.0 10.4 61.4 4.65 48.0 10.7 58.7 4.45 47.6 11.0 58.6	5.25? 62.5 9.0 71.5 5.25? 58.8 9.4 68.2 5.21 55.7 9.7 65.4 12.6 5.00 53.2 10.0 63.2 12.6 4.90 51.0 10.4 61.4 12.5 4.65 48.0 10.7 58.7 12.6 4.45 47.6 11.0 58.6 13.1

		Magne	T 1.	Fibre	2.	NST.	Magn	ET 3.	Fibre	4.	Ins	т. 2.				
I	2	3	4	5	6	7	8	9	10	ri ,	12	13	14	15	16	REMARKS.
Date.	Time.	Temperature,	Increment in temperature after start.	Ordinate.	Difference in ordinate after, start.	Difference in ordinate converted into force.	Temperature.	Increment in temperature	Correction for temperature.	Ordinate.	Difference in ordinate after start.	Difference in ordinate converted into force.	Difference in ordinate corrected for temperature, 1.6., (13)+(10).	Actual change in ordinate due to change in temperature (7)—(14).	Temperature coefficient for +1°C. i.e., (15) +(4).	y='00001 C. G. S. Units. Sc. value of No. 1 Inst.=4'01 y. Sc. value of No. 2 Inst=4'53Y Temperature co- efficient for No. 2 Inst. taken.
	h.m.	Cent.	Cent.	Sc. divns.	Sc, divns,	γ	Cenţ.	Cent,	γ	Sec. divns.	Sec. divns.	γ	y	γ	γ	=-12γ.
))))))))))))))))))))))))))	10 1 1 2 2 3 4 4 1 1 2 1 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.865 20.865 20.865 20.865 20.265 20.265 20.218	+0.15 +1.85 9.75 11.50 12.85 12.85 12.85 13.35 13.35 14.33 13.55 13.33 13.35 1	57.76 53.88 25.97 20.71 19.88 20.72 10.98 10	-0-4 7-13 32-2 33-4-0-3 38-3-3 40-0-0-1 38-3-3 40-0-0-1 38-3-3 38-3-3 40-0-0-1 38-3-3 40-0-0-1 38-3-3 40-0-0-1 38-3-3 40-0-0-1 38-3-3 40-0-0-1 38-3-3 40-0-0-1 38-3-3 40-0-0-1 38-3-3 40-0-0-1 38-3-3 40-0-0-1 38-3-3 40-0-1 38-3-3 40-0-1 38-3-3 40-0-1 38-3-3 40-0-1 38-3-3 40-0-1 38-3-3 40-0-1 38-3-3 40-0-1 38-3-3 40-0-1 40-1 40-1 40-1 40-1 40-1 40-1 40	-1.6 28.5 97.4 129.1 150.0 152.4 160	18-40 18-40 18-40 18-40 18-40 18-40 18-42 18	0-00 0-00 0-00 0-00 0-00 0-00 1+0-02 1+0-03 1+0-13 1+0-12 1+0-22 1+0-22 1+0-22 1+0-23 1+0-23 1+0-23 1+0-23 1+0-23 1+0-25 1+0-26 1+0-55 1+0-55 1+0-66 1+0-66	12.26.45.44.45.45.45.45.45.45.45.45.45.45.45.	68:1 68:5 69:1 69:0 70:0 70:0 69:0 69:0 68:6 68:6 68:6 68:6 68:6 68:6 68:6 68	00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+5.9 +5.9 +7.2 +9.1 +10.4 +12.9 +10.0 +10.0 +10.0 +10.0 +14.0 +14.0 +14.0 +14.0 +15.0 +14.0 +15.0 +15.0 +15.0 +15.0 +16.0 +16.0 +17.	+ 1.86 + 3.60 + 5.93 + 10.28 + 11.28 + 11.26 + 12.16 + 22.16 + 22.16 + 24.16 + 11.42 + 11.62 + 11.63 +	153-6 157-4 159-5 167-7 169-7 171-7 166-8 174-9 185-0 183-8 176-8 174-9 95-98 95-98 71-3 66-8 71-3 66-8 71-3 71-3 71-3 71-3 71-3 71-3 71-3 71-3	13-1 13-1 13-1 13-0 12-9 12-9 12-9 12-9 12-7 12-7 12-4 12-3 12-4 12-4 12-3 12-3 12-4 12-3 12-3 12-4 12-3 12-3 12-4 12-3 12-3 12-4 12-3 12-3 12-3 12-4 12-3 12-3 12-3 12-4 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3	Last fuel added. Both doors opened Slightly. Mean 12'677 Both doors opened wide. Fires removed. Deflections taken.

APPENDIX.

Abstract of deductions made from the Tables of comparisons of the two Magnetographs, and the base line values found for each.

The H. F. Magnet is constrained by the torsion in the fibre to lie with its North end East and the recording arrangement is such that an increase of H. F. corresponds to an increase of ordinate.

If the fibre slips or gives way under the strain, the ordinates will increase; consequently a sudden increase of ordinate not common to both instruments presumably denotes a slip in that one in which the increase occurred. Hence also as the last column of the tables of comparisons gives the quantity instrument 1—instrument 2, an increase in the values in this column shows that a slip has occurred in No. 1 instrument, whereas a decrease would show that a slip had occurred in No. 2 instrument.

Now an examination of the base line values of No. 2 instrument and of the comparative tables shows that no great slip occurred at any time in No. 2 instrument. Between the 13th January and 10th February there is a decrease in the base line value from '32291 to '33270, and this probably represents pretty closely the slip or settlement that occurred in fibre No. 2 diffing that period. The deflections obtained during the above period show that there has been no marked change in the moment of the suspended magnet and any decrease in the moment would make the ordinates also decrease and thus increase the base line value. An examination of the curves shows a sudden decrease of ordinates at 15'30 on the 27th January amounting to 157 and a sudden increase at 15'0 on 31st January amounting to about 47. No certain explanation can be given of these changes the first of which, it may be noted, is in a contrary direction to that of a slip, but it is probable that they were due to an actual deflection caused by the approach of some magnetic substance thereafter left in position. The base lines at these points are unchanged and no general shift of the instrument can therefore have occurred. Consequently there is strong evidence for accepting the changes given by No. 2 instrument as showing the real changes that occurred during any short period such as that occupied by an entire temperature experiment.

All the temperature experiments were made with No. 1 instrument.

The two experiments with magnet 1 and fibre 2 were made on the 6th January and 24th February and an examination of comparative tables Nos. D1 and D8 shows that on both occasions not only were both instruments in accord before and after the experiments but also that there is no evidence of slip during the experiment itself.

These two experiments seem therefore quite satisfactory, and the results are in close accord.

Magnet 2 and fibre 12 were tried on the 15th and 20th January and the first experiment seems satisfactory but the second must be rejected as there is unmistakable evidence of sudden shifting having occurred during its progress. Shortly afterwards it was broken and after repairs, was again tested on the 31st January and the experiment on that date is moderately satisfactory. Such slip as occurred in the course of it was probably gradual as the curve is smooth throughout and a correction has therefore been applied on the assumption that this was the case.

Magnet 3 was tried with three different fibres, vis., Nos. 6, 3 and 4. The first trial with fibre 3 on the 23rd January is unsatisfactory as slip undoubtedly occurred, but as the curve is smooth except where a well marked jump occurred towards the end of the experiment, an attempt has been made to correct the results by distributing the slip on the assumption that it was uniform up to this jump.

The second experiment on the 28th seems quite satisfactory.

Fibre 3 behaved very badly at first but seems to have steaded down before the experiment was made on the 6th February and there seems no reason why the result should be rejected.

The pair of experiments with fibre 4 were made on the 10th and 12th February and by correcting the results on the assumption of uniformity of slip, a close approximation to the truth has probably been obtained. The curves are smooth throughout and table 7 shows that the fibre was slipping steadily with a small but fairly uniform rate throughout the whole period during which it was suspended in No. 1 instrument. Subsequently when tried in No. 2 instrument the fibre seems to have behaved fairly well.

DI.

Comparison of Magnetographs Nos. 1 and 2 during the Temperature Experiments.

			S	selected		e co-eff of Ba tempe	se line= rature=	=4·27¥• =·33223 =21° c.	i.		Selecte	_	le coeff e of Ba n tempe	se line: crature	=5·647· =•33194 ==13°·5	Ċ.	ıst Mag	experiment with net 1 and Fibre 2.
1	Date.	Hour.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate.	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate,	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Difference Inst. 1-Inst. 2.	REMARKS.
	Civil.	L.M. T.	C.	C.	γ.	Sc. divn.	γ.	γ.	C.G.S.	C.	C.	γ.	Sc. divn.	γ.	γ.	C.G.S.	γ.	
4th] 5th]an. 1902 "	14-0 11-0 16-10	19·8 19·3	-1·2 -1·7 -1·7	-15·0 -21·3 -21·3	67·6 74·5 72·1	288·7 318·1 307·9	273·7 296·8 286·6	•33497 520 510	13.4	-0·1 -0·5	-1·3 -6·3	59•0	305·7 332·8 311·9	304·4 326·5 311·9	·33498 521 506	-1 -1 +4	The temperatures given were observed.
6th	» »	7-25 16-30	20·2 22·6	-0·8 +1·6	-10·0 +20·0	72·9 б5·о	311·3 277·6	301·3 297·6	524 521	13·0 13·8	-0·5 +0·3	- 6⋅3		328-2	321.9	516 515	+8	Temperature Experiment.
7th	"	10-20	19·4 20·1	-1·6 -0·9	-20·0 -11·3	71·1 69·0	303·6 294·6	283·6 283·3	50 7 506	13.1	-0·4 -0·3	-5·0 -3·8		316·4 313·0	311-4	505 503	+2	
	29	14-42	20.5	-o·5	-6.3	7 0•0	298-9	292-6	516	13.5	0.0	0.0	56-0	315.8	315.8	510	+6	
9th	33	15-35	20.9	-0-1	-1.3	6 9•0	294.6	293.3	516	14· 1	+0∙6	+7.5	55.0	310-2	317-7	512	+4	
10th 11th	>> >>	13-10	20·9 20·8	-0.1	-1·3 -2·5	70·5 66·8	301·0 285·2	299•7 282•7	523 506	14-4	+0.6	+11.3		311·3 298·4	322·6 305·9	517 500	+6	

During the above comparison the arrangement was-

No. 1 Inst. Magnet 1. Fibre 2.

^{,, 2 ,, ,, 2. ,, 12.}

It appears that the instruments gave fairly accordant results throughout and that there was no change in No. 1 instrument after the temperature experiment on 6th January.

D 2.

Comparison of Magnetographs Nos. 1 and 2 during the Temperature Experiments.

				Selected	Magne Scal n value I mean peratur	e coeff of Bas temper	icient= e line= ature=	5·46γ· •33208 •21°0 C	ent.		Selecte	Magne Sca n value d mean nperatu	le coeff of Base tempe	icient= e line= rature=	3·70 7 •33297• •15°•o (Cent.	ıst an wit	d 2nd Experiments h Magnet 2 and Fibre 12.
	Date.	Hour.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate,	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate,	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Difference Inst. 1-Inst. 2.	Remarks.
	Civil.	L.M. T.	c.	C.	γ.	Sc. divo.	γ.	γ.	C.G.S.	C.	C.	γ.	Sc. divn.	γ.	γ.	C.G.S.	γ.	
<u> </u>																		
13th	Jan. 1902	16-0	20-4	-0.6	-7.5	57.5	314.0	306.5	-33515	14.7	-0.3	-3.8	57-8	213-9	210-1	•33507	+8	The temperatures given were observed.
14t h	"	11-10	20-4	-0.6	-7 ·5	59.8	326.5	319.0	527	14.2	- 0∙8	-10.0	63-1	233.5	223.5	521	+6	obscived.
	,,	15-0	20-4	-0.б	−7: 5	58.3	318-3	310-8	519	14.7	-0.3	-3.8	5 9·2	219.0	215.2	512	+7	
15th	"	7-30	20.5	-0.5	-6.3	59.0	322-1	315.8	524	14-4	-0.6	-7.5	62-1	229.8	222.3	519	+5	Ist temperature Experiment.
	79	16-0	23.0	+2.0	+ 25.0	53-1	289.9	314-9	523	15.0	0.0	-0.0	59•2	219.0	219.0	516	+7	Experiment.
16th	"	10-30	21.1	-0.1	-1.3	49∙0	267.5	266.2	474	14.2	-0.8	-10.0	50.0	185.0	175.0	472	+2	
18t b	53	11-20	20.4	-0-6	-7.5	53-1	289-9	282•4	490	13.7	-1.3	-16.3	57.2	211.6	195:3	492	-2	
	"	13-45	20.4	-0.6	-7.5	52•3	285.6	278-1	486	14-1	-0-9	-11.3	54.7	202-4	191-1	488	-2	
19 th	23	10-20	20.7	-0.3	-3.8	51.9	283-4	279.6	488	13.9	-1.1	-13.8	56.2	207.9	194.1	491	-3	
	39	13.0	20.7	-0-3	-3.8	53-1	2 8 9·9	286-1	494	14.0	-1.0	12.5	56.7	209-8	197-3	494	0	
20th	»	7- 30	20-6	04	-5.0	55 ·8	304.7	299-7	508	14-0	-1.0	-12.5	61.2	225.4	213.9	511	-3	2nd temperature
	,,	16-о	22-9	+1.9	+23.8	51.0	278·5	302•3	510	14.7	0.3	-3.8	57•3	212.0	208-2	505	+5	experiment.

During the above comparison the arrangement was-

No. 1 Inst. Magnet 2. Fibre 12.

.. 2 1. .. 2.

There is nothing in the above figures to show that any serious shift occurred in either instrument during the first experiment with Magnet 2 and Fibre 12. In the 2nd experiment the Fibre seems to have slipped to the extent of 8 C.G.S. units and an inspection of the curve shows several sharp jumps. The 2nd experiment must therefore be rejected.

D 3. Comparison of Magnetographs Nos. 1 and 2 during the Temperature Experiments.

Civil. L. M. C. C. Y. Sc. Y. Y. C. G. C. C. Y. Sc. Y. Sc. Y. Sc. Sc. C. C. Y. Sc. Sc. Sc. Sc. Sc. Sc. Sc. Sc. Sc. Sc						Mear Se	Scale value elected	e co-effi of Base mean to	oh No. 1 cient= line= emp.=2 cient=1	4·82 7• ·31186. 21°•o C	ent.		Mean S	Scale value elected	etograp co-effi of Base mean t	cient≐. line⇒ temp.=	3'7ô 7 ·33283. ·15° • o C	Cent.	1st with	and 2nd Experi Magnet 3 and	ments Fibre 6.
22nd Jan. 1901 15 50 20.6 -0.4 -5.0 60.0 289.2 284.2 :33470 15.1 +0.1 +1.3 60.0 222.0 223.3 :33506 -36 The temperature decorded were ved. 23rd , 7 45 20.8 -0.2 -2.5 64.1 309.0 306.5 493 14.9 -0.1 -1.3 61.3 226.8 225.5 509 -16 3 16 0 23.3 +2.3 +28.8 58.0 279.6 308.4 494 15.5 +0.5 +6.3 55.7 266.1 212.4 495 - 1 24th , 11 0 22.4 +1.4 +17.5 64.9 312.8 330.3 516 15.2 +0.2 +2.5 62.0 229.4 231.9 515 + 1 3 15 0 22.3 +1.3 +16.3 64.2 309.4 325.7 512 15.6 +0.6 +7.5 59.0 218.3 225.8 509 + 3 26th , 11 20 21.2 +0.2 +2.5 71.3 343.7 346.2 532 15.4 +0.4 +5.0 67.5 249.8 254.8 538 - 6 3 13 15 21.2 +0.2 +2.5 75.2 362.5 365.0 551 15.6 +0.6 +7.5 61.8 228.7 270.2 553 - 2 28th , 7 40 21.4 +0.4 +5.0 74.7 360.1 365.1 551 15.6 +0.6 +7.5 61.8 228.7 236.2 519 +32 76.2 229.8 16.3 +1.3 +16.3 57.1 211.2 227.5 511 +35 61.0 22.8 +1.8 +22.5 70.0 337.4 359.9 546 16.3 +1.3 +16.3 57.1 211.2 227.5 511 +35 61.0 22.8 -0.2 -2.5 70.4 339.3 336.8 523 16.4 +1.4 +17.5 51.0 188.7 206.2 489 +34) 29th , 10 50 20.8 -0.2 -2.5 70.4 339.3 336.8 523 16.4 +1.4 +17.5 51.0 188.7 206.2 489 +34)	D	ate.	Ho	our.	Temperature,	Difference of temperature from selected mean.	Correction for temperature.	Ordinate	converted	<u>ء</u> ا	Value of H. R.	Temperature.	Difference of temperature from selected mean.		Ordinate.	converted	Ordinate corrected to mean temperature.	Ĭ	ı, İnst.	REMARI	ζs.
22nd Jan. 1901 15 50 206	C	livil.	L.	М.	C.	c.	γ.		γ.	γ.	C. G. S.	C.	C.	γ.	Sc. divn.	γ.	γ.		γ.	,	
23rd , 7 45 20-8	22nd Ja	an. 1901	H. 15	M. 50	20.6	-0.4	-5.0	60.0	289-2	284.2	·3347º	15-1	+ o·i	+ 1.3	бо-о	222.0	223.3	•33506	-36	The temperat	ureș re
"" 16 0 23·3 + 2·3 + 28·8 58·0 279·6 308·4 494 15·5 + 0·5 + 6·3 55·7 26·1 212·4 495 - 1	23r d	"	7	45	20.8	-0.2	- 2.2	64-1	309∙0	ვინ•5	493	14.9	-o·i	-1.3	61.3	226.8	225.5	509	-16) Temperature	experi
"" I5 0 22·3 + 1·3 + 16·3 64·2 309·4 325·7 512 15·6 + 0·6 + 7·5 59·0 218·3 225·8 509 + 3 26th "" I1 20 21·2 + 0·2 + 2·5 71·3 343·7 346·2 532 15·4 + 0·4 + 5·0 67·5 249·8 254·8 538 - 6 "" I3 15 21·2 + 0·2 + 2·5 75·2 362·5 365·0 551 15·6 + 0·6 + 7·5 71·0 262·7 270·2 553 - 2 28th "" 7 40 21·4 + 0·4 + 5·0 74·7 360·1 365·1 551 15·6 + 0·6 + 7·5 61·8 228·7 236·2 519 + 3²2 28th "" 16 0 22·8 + 1·8 + 22·5 70·0 337·4 359·9 546 16·3 + 1·3 + 16·3 57·1 211·2 227·5 511 + 35 29th "" 10 50 20·8 -0·2 - 2·5 70·4 339·3 336·8 523 16·4 + 1·4 + 17·5 51·0 188·7 206·2 489 + 34		"	16	o	23.3	+ 2.3	+ 28.8	58-0	279.6	308-4	494	15.5	+0.5	+6.3	55.7	206-1	212-4	495	- 1	15 C. G. S.	units.
26th ,, 11 20 21·2 +0·2 +2·5 71·3 343·7 346·2 532 15·4 +0·4 +5·0 67·5 249·8 254·8 538 - 6	24th	"	ļ		22-4	+ 1.4	+ 17.5	64.9	312.8	330-3	516	15.2	+ 0.2	_	İ						
" 13 15 21·2 +0·2 +2·5 75·2 362·5 365·0 551 15·6 +0·6 +7·5 71·0 262·7 270·2 553 - 2 28th " 7 40 21·4 +0·4 +5·0 74·7 360·1 365·1 551 15·6 +0·6 +7·5 61·8 228·7 236·2 519 +3²2 Tem-+1²7 perature " 16 0 22·8 +1·8 +22·5 70·0 337·4 359·9 546 16·3 +1·3 +16·3 57·1 211·2 227·5 511 +35 experi-+20-ment on 29th " 10 50 20·8 -0·2 -2·5 70·4 339·3 336·8 523 16·4 +1·4 +17·5 51·0 188·7 206·2 489 +34)	-64L	"			-			1			-					ŀ	ŀ				
28th ., 7 40 21.4 +0.4 +5.0 74.7 360.1 365.1 551 15.6 +0.5 +7.5 61.8 228.7 236.2 519 +32 Tem- +17 perature ,, 16 0 22.8 +1.8 +22.5 70.0 337.4 359.9 546 16.3 +1.3 +16.3 57.1 211.2 227.5 511 +35 Perature 29th ., 10 50 20.8 -0.2 -2.5 70.4 339.3 336.8 523 16.4 +1.4 +17.5 51.0 188.7 206.2 489 +34	Joth					1			, ,	_		-	[]					1	1		
"" 16 0 22-8 +1-8 +22-5 70-0 337-4 359-9 546 16-3 +1-3 +16-3 57-1 211-2 227-5 511 +35 experi- +20- 29th "" 10 50 20-8 -0-2 -2-5 70-4 339-3 336-8 523 16-4 +1-4 +17-5 51-0 188-7 206-2 489 +34 28th +19	28th		_			ĺ					1						1	ļ		Tem- +17	These
29th ,, 10 50 20·8 -0·2 -2·5 70·4 339·3 336·8 523 16·4 +1·4 +17·5 51·0 188·7 206·2 489 +34 ment on 28th +19			1				1	1	-							'	•		1 [perature	amend- ed fig-
	29th	"	01	50	20.8	-0.2	- 2.5	70-4		1			"	+ 17.5	"		206-2	1	1 1	ment on 28th +19	gures, vide Table D4.

During the above comparison the arrangement was—
No. 1 Inst. Magnet 3 Fibre 6.
No. 2

There is evidence that Fibre 6 began slipping as soon as erected on 22nd January and seems to have slipped uniformly up till the conclusion of the 1st experiment on 23rd. From 4 P.M. on that date it seems to have remained steady till about 8 A.M. on 27th, During the next 12 hours, i.e., till 8 P.M. on 27th a gradual slip, amounting to about 15 C. G. S. units took place. But during the 28th and up till the time of removal on 29th there is no evidence of any further appreciable slip having occurred. Consequently it would seem that the second temperature experiment may be accepted with confidence. The gradual slip from 8 A.M. to 8 P.M. on 27th is investigated on the next sheet from which the above deduction is drawn. is drawn.

D 4. Comparison of Magnetographs Nos. 1 and 2 during the Temperature Experiments,

					Sca value elected	etograp le co=sff of Bas mean t . co-effi	icient= e line= emp.=	4·82γ• = 33186 21°•0C€				Scal n value elected	of Bas mean	ph No. icient= ie line= temp.= icient=	3.707 '33283. 15°'0 (2nd		with Magnet 3 I Fibre 6.
1	Date.	Hour.	Temperature.	Difference of temperature from selected meao.	Correction for temperature.	Ordinate,	Ordinate converted into	Ordinate corrected to mean temperature,	Value of H.F.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate.	Ordinate converted into	Ordinate corrected to mean temperature.	Value of H. F.	Difference Inst. 1-Inst. 2.		Remarks.
(Civiļ.	L, M.	Ç.	C,	γ.	Sc. divn.	γ.	γ.	C. G. S.	ϵ .	€,	γ,	So, divn.	γ.	γ.	Ç. G. S,	γ.		
26th]	an. 1902	14	21.2	+0.2	+ 2.5	73.1	352.3	354.8	33541	15.8	+ 0.8	+10.0	6719	251.2	261-2	33544	– 3	The	temperatures on
	1)	16	21.2	0.2	2.5	65.0	313.3	315.8	502	16∙0	1.0	12.5	5711	211.3	223.8	507	– 5	int	s sheet have been erpolated from
	99	18	21.2	0.3	2.5	63.4	305.6	308-1	494	16.1	3-1	13.8	54.8	202.8	215.6	499	- 5	ten	tain observed
	,,	2 0	21.3	0.3	3.8	66.4	320.0	323.8	510	99	J -1	99	57.8	213.9	227.7	5 1 t	- 1	mo	aid of the ther- graph sheets.
	"	22	21.3	0.3	3.8	66∙7	321.5	325.3	511	,,	1.1	**	58 -0	214.6	228-4	511	0	is	e maximum error probably not
	,,	Mid	21.4	Q•4	5.0	66.3	319.2	324.6	511	,,,	1.1	99	58∙0	214.6	228-4	511	0		eater than o'r or Cent.
27th	**	2	"	3,	ود	67.7	326-3	331.3	517	,,	1.1	99	бою	222.0	23,5•8	51 9	- 2		
	"	4	29	29	Þ	66.7	321.5	326.5	513	15.9	0.9	11.3	59⊦1	218.7	230.0	5 13	0	,	The paper was
	,,	6	"	ų	1,0	67.1	323.4	328.4	514	15.7	0.7	8.8	бо-2	222.7	23,1.5	5 ¹ 5	– 1		changed on No. 2 inst.
	,,	8	,,	ų	עג	68.6	330.7	335.7	52 2	15.6	0.6	7.5	8.19	228.7	236.2	519	+ 3		between 3-27 and 3.39 P.M.
	,,	10	"	ę	29	66.2	319-1	324.1	510	15.6	0.6	7.5	58-1	215.0	222.5	506	+ 4		Comparison of the ordinates at
	,,	12	,,	2º	22	68.9	332-1	337-1	523	15.7	0.7	8.8	ба•з	223.1	231.9	515	+ 8		these hours shows a shift of
	,,	14	99	ų,	,,	69.2	333.5	338.5	5 25	15.9	0.9	11.3	бою	222.0	23,3·3	516	+ 9		4 Sc. divns.
	,,	16	22	y,	, پر	69.0	332.6	33,7.6	524	16.1	1-1	13.8	55;·o	203.5	217.3	500	+ 24	+ 9	the interval $\left\{ = 15 \gamma \right\}$. But
	"	18	"	,,	59	69.4	334.5	339.5	5 26	16-1	1-1	13.8	54:4	20,1-3	215.1	498	+ 28	+13	the trace of
	,,	20	99	,,	ų	70.7	340.8	345.8	532	16.1	1.1	13.8	55:4	205.0	218.8	502	+ 30	+ 15	No. 1 Inst.
	,,	22	37	,,	, l	71.0	342.2	347.2	53 3	16.0	1.0	12.5	56∙2	207-9	220-4	503	+30	+ 15	there was no change in the
	,,	Mid	,,	ų	ָּ	71.4	344-1	349-1	535	1 6 ∙0	1.0	ų	56.9	210-5	223.0	5 06	+ 29	#14	force during this interval.
8th	,,	2	,,	20	,	71.4	344-1	349-1	535	16.0	1.0	22	57.0	210-9	223.4	506	+29	+14	Hence the ordi- nates of the
	"	4	,,	*	3,	72.0	347.0	352.0	538	15.8	o·8	10.0	57:9	21,4-2	- 224.2	507	÷31	+ 16	curves on 27th to 29th have
	,,	6	"	y ,	,,	72.9	351.4	356.4	542	15.7	0.7	8-8	59-1	248.7	247.5	511	+31	+ 16	been corrected accordingly.

This tabulation was made to account for and show the nature of the divergence which occurred in the results given by the two instruments between 1-15 P.M. on 26th January 1902 and 7-40 A.M. on 28th January 1902, as shown in Table D3.

The figures indicate that there was no appreciable difference between the instruments up till 8 A.M. on 27th. From that hour till 8 P.M. a gradual shift of one of the instruments relatively to the other seems to have taken place. After 8 P.M. on 27th till the system in No. 1 instrument was changed on 29th, no appreciable change has occurred. The investigation is complicated by the sudden shift which occurred in No. 2 Instrument, when changing papers on 27th; the reason for this shift is not known, but the evidence that it occurred is perfectly clear.

D 5. Comparison of Magnetographs Nos. 1 and 2 during the Temperature Experiments.

		Selecte		e co-ef of Bas temper	rature=	=6.20 X =33137 =21°0 (Cent.		Mea	Scale n value selected	of Bas mean	ph No. icient= icient= temp.= ficient=	3*70 ¥ :33286. =15°°0 (Cen t.	Ma	3rd Expt. with agnet 2 and Fibre 12.
Date. Hour.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate.	Ordinate converted into force,	Ordinate corrected to mean temperature.	Value of H. F.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate.	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Difference Inst. 1-Inst. 2.	Remarks.
29th Jan. 1902 13 10	,	i '		_	369-2		-33511			+ 20.0		210.9		-33517	-6 -1	The temperatures given were observed.
	19.6	+0.6		_	373°8 398·5			16.8 16.4		+ 22.5	57.0	210-9	_		- ₅	
ı, 16 o	1	'		_						+ 17.5	59·3	219·4				*There is a sudden
2nd Feb. 1902 13 20	23-5	ĺ	+ 31-3		351·0 364·7	_		15-2		+ 23.8 + 2.5	55·3* 59·3	204·6	-		+5 +3	There is a sudden break or rise of 1 Sec. divn. in the curve of No. 2 Instrument at 3 P.M., which bas been allowed for in this and the next measure taken on 2nd February.
													:			

During the above comparison the arrangement was—No. 1 Inst. Magnet 2 and F ibre12.

The agreement between the instruments is not good before the temperature experiment during which a slip of 10 γ seems to have occurred but as there is no evidence from the curve of No. 1 lnst. of any sudden movement, the slip probably occurred gradually and may be allowed for in the computations.

D 6.

Comparison of Magnetographs Nos. 1 and 2 during the Temperature Experiments.

				S	Mean Selected	value (co-effi of Base tempe	cient=/ : line=/ rature=	4·81 γ· 33 ²² 3. =21°·oC			Mean Selected	Magne Scale value o I mean peraturo	co-effic of Base temper	cient = 3 line = - ature =	3•70¥• 33284. 15°•oC.			experiment with net 3 and Fibre 3.
	Date.		Hour.	Temperature.	Lifference of temperature from selected mean.	Correction for temperature.	Ordinate.	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate.	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Difference Inst. 1 - Inst. 2.	Remarks.
	Civil.		L. M. T.	С	С	γ.	Sc. divn.	γ.	γ.	C.G.S.	С	С	γ.	Sc. divn.	γ.	γ.	C.G.S.	γ.	
5th I	Feb. 190	02.	10.0	21-4	+ 0.4	+5.0	62-3	299.7	304.7	·33528	14.9	-0.1	—1·3	66.8	247-2	245.9	·3 3 530	-2	The temperatures recorded were observed.
	79	•	11-0	>>	,,	ور	б1∙о	293-4	298•4	521	15.0	0.0	0.0	65∙0	240.5	240.5	525	-4	
	>		12-0	"	"	"	бо-5	291-0	2 96 .0	519	15.0	0.0	0.0	64.4	236.8	236-8	521	- 2	
	,,	•	13-0	"	,,,	"	63-1	303.5	308-5	532	15.2	+0.2	+2.5	64∙0	236-8	239.3	523	+9	
	"		14-0	,,	,,	,,,	71.9	345-8	350-8	574	15.2	+0.2	+ 2.5	бз∙1	233.5	236.0	520	+54	-
	,,		15-0	21.5	0.5	6.3	70.9	341-0	347.3	570	15.4	+ 0.4	+ 5.0	б1∙3	226.8	231.8	516	+54	
	بو		16-0	21.4	0.4	5.0	70.9	341.0	346-0	569	15∙6	+0.6	+75	60•9	225.3	232.8	517	+ 52	
6th	,		7·4 5	21-1	0-1	1.3	74.4	357-9	359-2	582	14.8	-0.2	-2.5	63-9	236-4	233-9	518	+64	Temperature
	79		16-0	22.8	1.8	22.5	70-1	337-2	359·7	583	15.4	+0.4	+5•0	63•7	235.7	240.7	525	+58	experiment.
7th	373		14-0	22.2	1.2	15.0	69 ·9	336-2	351.2	574	15.0	0.0	0.0	61.9	229.0	229.0	513	+61	

During the above comparison the arrangement was—No. 1 Instrument, Magnet 3 and Fibre 3

The absolute observations from which the base line values are derived occupied from 11.25 to 13.1 on the 5th February and in the case of No. 1 Instrument the last result had to be rejected owing to the appearance of the large and sudden slip that commenced about 12.50 and ended

at 13.30.

From this time onwards till Magnet 3 and Fibre 3 were dismounted the agreement between the instruments is fair and there is certainly no evidence of slip in No. 1 Inst. during the experiment. If anything it would seem that the other instrument was at fault, but the slight discordance of the last three values in the last column is probably accidental. On the whole, it would appear that the temperature experiment with Magnet 3 and Fibre 3 may be accepted and it is regrettable that a further trial was not made with the system. The very obvious shift that occurred just afternoon on the 5th lead to the impression that the fibre was unstable and another one was tried as soon as the trace showed this fault after development on the 7th february (see Plate V, Fig. 1).

D 7. Comparison of Magnetographs Nos. 1 and 2 during the Temperature Experiment. 1st and 2nd Experiments with Magnet 3 and Fibre 4.

	Magnetograph No. 1. Scale co-efficient=5.02γ. Mean value of Base line=.33175. Selected mean temperature=21°.0C. Temperature co-efficient=12.5γ.						Magnetograph No. 2. Scale co-efficient=3.70 γ . Mean value of Base line=.33 ² 77. Selected mean temperature=15 ⁰ .0C. Temperature co-efficient=12.5 γ .										
Date.	Hour.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate,	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate,	Ordinate converted into force,	Ordinate corrected to mean temperature.	Value of H. F.	Difference Inst. 1-Inst. 2.	Remarks.
Civil.	L.M. T.	с.	C.	γ.	Sc. divn.	γ.	γ.	c.g.s.	c.	C.	γ.	Sc. divn.	γ.	γ.	C.G.S.	γ.	
8th Feb. 1902 "" 1oth "" 11th "" 12th "" 13th "" 15th "" 15th "" 16th "" 17th "" 18th "" 10th "" 10	11-0 12-0 13-0 14-0 15-0 16-0 10-0 11-0 15-0 15-0 16-0 10-0 13-0 16-0 10-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 10-0 13-0 16-0 10-0 13-0 16-0 10-0 10-0 10-0 10-0 10-0	20.5 20.7 20.8 21.0 21.1 19.9 23.4 20.7 20.1 24.5 21.2 21.2 21.2 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 21.9	-0.5 -0.3 -0.2 -0.0 +0.1 +2.4 -0.3 -0.2 ;; -0.9 +3.5 +0.2 +0.2 +1.0 +1.1 +1.0 +1.0 +1.0 +1.0 +1.0 +0.8 +0.6 +0.4 +0.4 +0.4 +0.4 +0.6	-3.8 -3.2.5 -1.3.0.8 +1.3.0.8 +3.3.8 +3.3.8 +2.5 -11.3.8 +2.5.5 +12.5.5 +12.5.5 +11.3.8 +11.3.	47.6 48.1 49.9 49.6 58.0 67.9 68.1 69.1 68.7 66.8 66.9 69.3 59.0 73.1 73.1	258·0 256·5 239·0 241·5 250·5 247·0 324·3 291·2 340·9 341·9 337·8 335·8 347·9 296·2 367·5 356·9 336·5 342·4 349·9 337·5 341·4 361·9 371·5 361·4 361·4 371·5	251-7 252-7 236-5 239-0 250-5 248-3 312-5 321-2 337-1 339-4 344-4 342-4 342-4 342-4 342-4 335-3 336-6 340-0 359-4 339-3 380-5 351-4 381-6 351-2 371-2 382-8 371-8 382-8 371-8 371-0	-33427 428 412 414 426 423 486 512 514 519 517 510 508 512 515 534 514 556 530 539 526 539 554 555 548 538 538 538 555 549 555 549 556 559 557	14-6 14-8 14-8 15-1 15-1 15-1 15-2 15-7 15-4 16-3 16-3 16-3 16-6 16-9 17-2 17-8 17-9 17-8 17-9 17-9 17-9 17-9 18-4	-0.4 -0.4 -0.2 -0.3 -0.2 -0.3 -0.2 -0.0 +0.1 +0.7 +0.4 +1.1 +1.3 +1.5 +1.5 +1.5 +1.6 +1.9 +2.3 +2.3 +2.3 +2.4	-5.0 5.0 5.0 5.5 0	55.9 55.9 57.7 56.2 62.6	224-2 225-7 206-8 206-8 213-5 207-9 231-6 213-1 238-7 240-1 243-8 237-9 230-9 214-6 255-7 227-6 226-8 211-3 207-6 237-5 229-8 211-3 207-6 214-6 225-7 227-6 227-6 227-6 227-6 227-7 227-6 227-7 227-6 227-7 227-6 227-7 201-3 188-7 196-1	219'2 220'7 204'8 205'8 214'8 210'4 227'8 216'9 237'6 243'8 239'2 233'4 232'2 233'4 261'9 249'0 230-9 264-5 241'4 240-6 230-1 250-7 216-8 239'1 227'0 238'4 249-1 227-0 238-7 233-8 235-7 233-8 235-7 233-8 235-0 230-0	*33496 498 481 482 487 503 505 508 513 505 508 513 505 507 507 507 504 517 504 515 507	-66 -64 -17 +2 -1 -12 +10 -10 +16 +16 +14 +12 +19 +26 +31 +32 +31 +36	The temperature given werelobserved. Slip of 197 in 1st experiment. Date of absolute observations 1. Slip of 11 7 in 2nd experiment. 7. 13. 20. 26. Temperature of No. 2 at 16 hrs. is abnormal. 31. 336.

During the above comparison the arrangement was—No. 1 lnst., Magnet 3, and Fibre 4.

A large slip occurred between the 8th and 18th. During the first temperature experiment a slip of about 19 7 occurred and during the second experiment a slip of 10 γ . Between the two experiments there was no slip, but after the second a steady slip of about 5 to 7 7 seems to have continued till the system was dismantled.

Obviously these two temperature experiments are unreliable, and as far as the above figures go Fibre No. 4 seems to have been in an unstable condition.

D 8. Comparison of Magnetographs Nos. 1 and 2 during the Temperature Experiment.

	Magnetograph No. 1. Scale co-efficient = 4·01γ. Mean value of Base line = ·33280. Selected mean temp. = 21°·0 C. Temp. co-efficient = 12·5γ.								Magnetograph No. 2. Scale co-efficient = 4.53 y. Mean value of Base line ≈ .33207. Selected mean temp. = 18°.4 C. Temp. co-efficient = 12.5 y.							2 n d	2nd expt. with Magnet and Fibre 2.		
Date.		Hour.	Temperature.	Difference of temperature from selected mean.	Correction for temperature.	Ordinate.	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Temperature,	Difference of temperature from selected mean.	Correction for temperature.	Ordinate.	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Difference Instrument 1—Instrument 2.	Remarks.	
	Civil.	•	L. M. T.	C.	C.	γ.	Sc. divn.	γ.	γ.	C. G. S.	C.	c.	γ.	Sc. divn.	γ.	γ.	C. G. S.	γ.	
21st	Feb.	1902	15·o	21.4	+ 0-4	+5.0	49.6	198.9	203.9	•33484	19-1	+0.7	+8.8	56-1	254-1	262•9	•33470	+14	+13. Both curve standardized by absolute observa
	".	•	16-0	21.4	+0-4	5.0	48-1	192-9	197-9	478	18.9	+0.5	+6.3	56∙ი	253.7	260∙0	467	+11	tions taken on th 23rd February.
22nd	"	•	10-0	21.4	+ 0.4	5.0	55·1	221.0	226∙0	506	18.0	-0.4	– 5∙o	66.6	301.7	296.7	504	+2)+2. The tempera
	77	٠	13 0	21.5	+0.5	6.3	55.7	223-4	229.7	510		0.2	-2.5	66.8	302∙6	300-1	507	+3	
	"	•	16-0	21.6	+0∙6	7.5	52.2			497	Ι.	+0.2	-	63.0	285.4	287.9	495	+2	,
2 3rd	"	•	10-0	21.6	79	,,	57.3			i	18.2	-0.2	-2.5	68-9	312-1	309•6	517	0	
	"	•	13-0	21.6	•,	29	57.9		239.7	52 0 506		0.0		68·9 64·6	312-1	312-1	519 505	+1	
+ h	>,	•	16 0	20.7	• • • • • • • • • • • • • • • • • • •	"	54·5 57·7	231.4	226·0	508	_	+0.4	+ 5·0 0·0	66.0	292·6 299·0	297.6 29 9 .0	506	+2	
24t h	"		7-30	24.4	- 0·3 + 3·4	-3.8 +42.5	37·7 46·8	187.7	230.2	-	19.0	+0.6		65.1	294.9	302.4	509	+1	+2. Temperatur experiment.
25th	37 27	Ī	10-0	21.4	+0.4	+5.0	57.8	231.8	236.8	517	18.4	0.0	0.0	68.2	308.9	308-9	516	+ 1)
234-2	"		13-0	22.0	+1.0	12.5	56∙1	225.0	237.5	518	18.7	+0.3	+3.8	67.6	306.2	310.0	517	+1	5 +1.
26th	,,		10-0	21.8	+0.8	10.0	50.0	200.5	210.5	491	18.2	-0.2	-2.5	62.6	283.6	281.1	488	+3	7
		•	16∙0	21.9	+0.9	11.3	52.2	209.3	220.6	501	18.8	+ 0.4	+ 5.0	63.0	285.4	290-4	497	+4	} +4.
27th	19		10-0	22.0	+1.0	12.5	54.3	217.7	230-2	510	18.4	0.0	0.0	66.2	299•9	299-9	5 07	+3	
	"		16-40	22:0	+1.0	12.5	55.0	220-6	233.1	513	19-2	+0.8	+10.0					- 1	
28th	"		10-10	21.9	+0.9	11.3	58-0	232 ·6	243-9	524	18.8	+0.4	+5.0					}	
	"	•	15-7	21.7	+ ò.7	8.8	57· 3	229.8	238-6	519	19.4	+1.0	+ 12.5						
				-															

During the above comparison the arrangement was—No. 1 Instrument, Magnet, 1 and Fibre 2.

The magnets were rearranged on the 21st. From 10 A. M. on the 22nd till the 27th February the curves agreed remarkably well and also during the actual temperature experiment no shift seems to have occurred, so that the result may be accepted with confidence.

D 9.

Comparison of Magnetographs Nos. 1 and 2 after the Temperature Experiments.

				_	etograp				co-effic	4'00 ' V-	1 -	netogra	-			co-effici	ent= 1.45γ·		
				Fibre	2 ∫1	l'e mp	value d erature mperat	co-effi	e line = 315 C. cient =	G. S.	Fibr	e 4)	Temp	value o erature mperatu	co-effic	ine = 300 C.	G. S.		
r)ate.		Hour.	Temperature.	Difference of temperature from selected mean.	Correction for tempera- ture.	Ordinate.	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Temperature.	Difference of temperatue from selected mean,	Correction for tempera-	Ordinate,	Ordinate converted into force.	Ordinate corrected to mean temperature,	Value of H. F.	Difference lust, 1-Inst. 2.	Remarks.
	Civil.		L. M. T.	Cent.	Cent.	γ.	Sc. divns.	γ.	γ.	C. G. S.	Cent.	Cent.	γ.	Sc. divns.	γ.	γ.	C. G. S.	γ.	
28th I 1st N			16-0 10-20	21·7 2 2·0	-0.3 0.0		 6o∙6	 24 2	 242	 •335 57	19·6		-30 -38	61.8 66.4		245 257	·33557		The value of the base line of No. 2 has been arbitrarily fixed to make the instru- ments agree at 10-20 on 1st March.
2nd	"	:	16-9 13-0 16-0	22.0 21.8 21.8	-0.2	-3	56.9 58.0 53.2	228 232 2 13	228 229 2 10	543 544 525	19•3 19•5 19•6	-2.5		62.0 63.9 5 8.5	284	242 253 230		-9	The value of the base line of No. 1 is the actual mean value
3rd 4th 5th	31 37 22 23	:	13-0 16-0 10-15 13-0	21·9 21·9 21·8 21·8	-0·1	-1 -3	60·5 57·0 60·7 62·7	243	241 227 240 248	555	19·8 19·4	-2·2 -2·6	-28 -33	65.7 61.1 65.8 58.6	272 293	244 260	5 44 5бо	-5	Mean value of base line of No. 2=.33325. No. 2 Instrument was re-adjusted on the 4th after receiving a jar whilst changing the papers at 10-20. Hence a fresh arbitrary value has been given to its
6th 7th 8th 9th 10th 11th 12th 13th	y ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0 16-0 13-0	21.9 21.8 21.8 21.8 21.8 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	-0.2 -0.2 -0.3 -0.2 -0.2 -0.2 -0.0 0.0 0.0 -0.1 -0.1 -0.1 +0.1 +0.1	-3 -3 -4 -3 -3 -3 -3 -3 -0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1	55.9 62.2 57.3 57.5 54.1 55.9 53.7 60.2 57.5 53.9 57.5 53.9 55.2 56.5	224 249 229 230 216 232 215 221 228 230 216 220 221 226	241 221 245 226 227 213 232 215 228 215 241 227 230 216 227 222 229	541 542 528 547 530 543 530 556 542 545 545 537	21·2 21·6 21·8 22·2 22·3 22·7 22·3 22·4 22·0 22·2 21·6 22·2 21·5 22·3	-0.8 -0.4 -0.2 +0.2 +0.3 +0.6 +0.2 +0.6 +0.2 +0.0 -0.5 -0.5 -0.5	-10 -5 -3 +4 +9 +8 +3 +5 -6 -6 -3	53.0 54.1 48.6 53.3 48.0 44.0 49.0 49.5 49.5 52.8 49.8 51.4 47.2 49.0 51.0 46.5	241 216 237 214 196 218 197 220 201 235 222 229 210 227 218	231 211 234 217 218 205 222 205 223 206 235 225 224 210 221 218	56 36 59 42 43 30 48 31 60 50 49 35 46	0 + I - I - I - 2 0	base line after the adjustment to make the instruments agree on the 5th March at 13 hours.

D 9—contd.

Comparison of Magnetographs Nos. 1 and 2 after the Temperature Experiments—contd.

	-	netogra	•			co-effici	4.00 Y.	_	ietogra	=		cale co		nt •45 7 •			
	Fibre	2 ∫	Temp	value o erature mperati	co-effi	cient =		ribre	ted mea	Fempe i	ature c	o-efficie	ine = 300 C. (ent = 1 = 22° (2'5 γ.			
Date. Hour.	Temperature.	Difference of temperature from selected mean.	Correction for tempera-	Ordinate,	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Temperature.	Difference of temperature from selected mean.	Correction for tempera- ture.	Ordinate.	Ordinate converted into force.	Ordinate corrected to mean temperature.	Value of H. F.	Difference Instrument - Instrument 2.	Remark	S.
Civil. L. M.	Cent.	Cent.	γ.	Sc. divns.	γ.	γ.	C.G. S.	Cent.	Cent.	γ.	Sc. divns.	γ.	γ.	C. G. S.	γ.		
15th Mar. 1902 16th " 13-0 17th " 13-0 18th " 13-0 18th " 13-0 19th " 13-0 20th " 13-0 21st " 13-0 22td " 13-0 23rd " 13-0 24th " 13-0 25th " 13-0 25th " 13-0 26th " 13-0 27th " 13-0 26th " 13-0 27th " 13-0 28th " 13-0 28th " 13-0 28th " 13-0 29th " 13-0 29th " 13-0 20th " 13-0 20	22.5 22.5 22.5 22.6 22.6	+0222222222222222222222222222222222222	+ + + + + + + + + + + + + + + + + + +	54·6 57·3 54·1 55·0 57·3	218 231 216 220 207 224 212 229 212 224 244 217 239 216 221 204 224 204 221 201 201 228 208 208 223 227 224 232 242 243 253 264 27 27 27 27 27 27 27 27 27 27 27 27 27	221 234 219 223 210 227 215 232 215 250 227 247 2242 219 209 209 236 217 229 209 236 217 227 247 229 209 236 2129 209 236 2129 209 236 2129 209 236 2129 209 236 2129 209 236 2129 209 236 2121 231	538 525 547 530 547 530 547 534 534 534 544 524 534 534 534 534 534 534 532 532 532 532 532 532 532 532	23.8 24.2	+ 0.8 + 0.5 + 0.4 + 0.6 - 0.1 0 0.2 - 0.2 - 0.2 + 0.2 + 0.2 + 0.2 + 1.4 + 1.4 + 1.4 + 1.4 + 1.6 + 1.6	+ 23 + 28	41.9 49.6 44.1 51.7 46.5 51.0 52.8 51.5 45.7 48.1 41.7	244 217 236 230 231 204 235 188 220 191 198 230 207 237 227 235 229 203 214	221 209 226 211 241 221 239 214 235 230 228 207 232 201 213 204 234 214 224 226 240 228 228 227 227	51 37 41 29 46 34 36 66 64 39 60 55 53 22 26 59 59 59 59 57 74 50 55 50 50 50 50 50 50 50 50 50 50 50	+1 -2 -3 -3 -4 -4 -4 -6 -1 -2 -2 -2 -10 -10 -9		

The instruments are in fair accordance up to 28th March, though it seems that No. 2 has given way slightly relatively to No. 1. After the 28th March up till the end of the comparison the agreement is again good. The relative displacement of the instruments which occurred about the 28th March may or may not be due to slip of the fibre, for it must be borne in mind that No. 2 Instrument was not rigidly fixed like No. 1 and that the result noted might have been caused by a shift of one of the wooden tripods due to shrinkage of the wood with the increasing heat. On the whole it may be concluded that Fibre No. 4 behaved satisfactorily.

PLATE I.

The curves are traced from the originals and reduced by photography to 4 scale.

Fig. 1.

Temperature Experiment No. 1.

Magnet 1 and Fibre 2 in Instrument No. 1.

Date 6-1-02.

Fig. 3.
Temperature Experiment No. 10.
Magnet 1 and Fibre 2 in Instrument No. 1.
Date 24-2-02.

Fig. 2.

Magnet 2 and Fibre 12 in Instrument No. 2.

Date 6-1- 02.

PLATE II.

The curves are traced from the originals and reduced by photography to $\frac{1}{3}$ scale.

Fig. 2.

Magnet 1 and Fibre 2 in Instrument No. 2.

Date 15-1- 02.

PLATE III.

The curves are traced from the originals and reduced by photography to 1 scale.

Fig. 1. Temperature Experiment No. 4. Magnet 3 and Fibre 6 in Instrument No. 1.

Fig. 3. Temperature Experiment No. 5. Magnet 3 and Fibre 6 in Instrument No. 1. Date 24-1-02. Date 28-1-02.

Fig. 2. Magnet 1 and Fibre 2 in Instrument No. 2. Date 24-1- 02.

Fig. 4. Magnet 1 and Fibre 2 in Instrument No. 2.

Date 28-1-02.

PLATE IV.

The curves are traced from the originals and reduced by photography to \(\frac{1}{4}\) scale.

Fig. 1.

Temperature Experiment No. 6.

Magnet 2 and Fibre 12 in Instrument No. 1.

Date 31-1-02.

Fig. 2.

Magnet 1 and Fibre 2 in Instrument No. 2.

Date 31-1-02.

•

		ý.

PLATE V.

The curves are traced from the originals and reduced by photography to \(\frac{1}{2}\) scale.

Fig. 1.

Portion of Curve on 5-2-02

Showing the Slip of Fibre No. 3

Mounted in Instrument No. 1.

Fig. 2.

Portion of Curve on 5-2-02

Corresponding to that shown in Fig. 1

Magnet 1 and Fibre 2 in Instrument No. 2.

Fig:~4. Magnet 1 and Fibre 2 in Instrument No. 2. Date 6-2-02.

		•
	•	
;		
•		
*** *** ******************************		

PLATE VI.

The corves are traced from the originals and reduced by photography to \(\frac{1}{4}\) scale.

Fig. 1.
Temperature Experiment No. 8.
Magnet 3 and Fibre 4 in Instrument No. 1.
Date 10-2-02.

Fig. 3.

Temperature Experiment No. 9.

Magnet 3 and Fibre 4 in Instrument No. 1.

Date 12-2-02.

Fig. 2.

Magnet 1 and Fibre 2 in Instrument No. 2.

Date 10-2-02.

•	

II. 6th Jan. 02.

II. 6th Jan. 02.

NOTE.—A=H. F. Thermometer

B=Thermometer on table

C=Thermometer near H. F. tube

Temp. Scale (Centigrado).

III. 31st Jan. 02.

Time Scale.

II. 20th Jan. 02.

III. 31st Jan. 02.

B=Thermometer on table

C=Thermometer near H. F. tube

Magnet 3 Fibre 6 I. 23rd Jan. 02.

II. 28th Jan. 02.

NOTE.—A=H. F. Thermometer

B=Thermometer on table

C=Thermometer near H. F. tube

NOTE.—A=H. F. Thermometer

B=Thermometer on table

C=Thermometer near H. F. tube

The number inside the circle is the Serial No. of the experiment.

NOTE.-A=Horizontal Force Thermometer

B=Thermometer on table

C=Thermometer near H. F. tube

Survey of Endia.

PROFESSIONAL PAPERS. 1905.

SERIAL NO. 8.

EXPERIMENTS MADE TO DETERMINE THE TEMPERATURE CO-EFFICIENTS OF WATSON'S MAGNETOGRAPHS,

BY

CAPTAIN H. A. DENHOLM FRASER, R.E.,

DEPUTY SUPERINTENDENT SURVEY OF INDIA.

PREPARED UNDER THE DIRECTION OF

COLONEL J. R. HOBDAY, I.A.,

OFFG. SURVEYOR GENERAL OF INDIA.

CALCUTTA:
OFFICE OF THE SUPERINTENDENT OF GOVERNMENT PRINTING, INDIA.
1905.