Introduction to Machine Learning

Instructor: Lara Dolecek

TA: Zehui (Alex) Chen, Ruiyi (John) Wu

1. Consider 3 random variables A,B and C with joint probabilities P(A,B,C) listed in the following table.

	C=0		C=1	
	B=0	B=1	B=0	B=1
A=0	0.096	0.024	0.27	0.03
A=1	0.224	0.056	0.27	0.03

Calculate the distributions in (a) and (b). Answer the questions in (c), (d), and (e):

(a) P(A|C=0), P(B|C=0) and P(A,B|C=0). Solution:

$$P(A|C=0) = \begin{cases} 0.3, A=0\\ 0.7, A=1 \end{cases} \qquad P(B|C=0) = \begin{cases} 0.8, B=0\\ 0.2, B=1 \end{cases}$$

$$P(A, B|C = 0) = \begin{cases} 0.24, A = 0, B = 0\\ 0.06, A = 0, B = 1\\ 0.56, A = 1, B = 0\\ 0.14, A = 1, B = 1 \end{cases}$$

(b) P(A|C = 1), P(B|C = 1) and P(A, B|C = 1). Solution:

$$P(A|C=1) = \begin{cases} 0.5, A=0\\ 0.5, A=1 \end{cases} \qquad P(B|C=1) = \begin{cases} 0.9, B=0\\ 0.1, B=1 \end{cases}$$

$$P(A, B|C = 1) = \begin{cases} 0.45, A = 0, B = 0\\ 0.05, A = 0, B = 1\\ 0.45, A = 1, B = 0\\ 0.05, A = 1, B = 1 \end{cases}$$

- (c) Is A conditional independent of B given C? Solution: Yes. From above, we can verify P(A|C=1)P(B|C=1)=P(A,B|C=1) and P(A|C=0)P(B|C=0)=P(A,B|C=0).
- (d) P(A), P(B) and P(A, B).

Solution:

$$P(A) = \begin{cases} 0.42, A = 0 \\ 0.58, A = 1 \end{cases} \qquad P(B) = \begin{cases} 0.86, B = 0 \\ 0.14, B = 1 \end{cases}$$

$$P(A,B) = \begin{cases} 0.366, A = 0, B = 0\\ 0.034, A = 0, B = 1\\ 0.494, A = 1, B = 0\\ 0.086, A = 1, B = 1 \end{cases}$$

(e) Is A independent of B?

Solution: No. It is easy to verify that $P(A)P(B) \neq P(A,B)$.

2. The pdf for two jointly Gaussian random variables X and Y is of the following form parameterized by the scalars m_1 , m_2 , σ_1 , σ_2 and ρ_{XY} :

$$f_{X,Y}(x,y) = \frac{\exp\left\{\frac{-1}{2(1-\rho_{XY}^2)} \left[\left(\frac{x-m_1}{\sigma_1}\right)^2 - 2\rho_{XY} \left(\frac{x-m_1}{\sigma_1}\right) \left(\frac{y-m_2}{\sigma_2}\right) + \left(\frac{y-m_2}{\sigma_2}\right)^2 \right] \right\}}{2\pi\sigma_1\sigma_2\sqrt{1-\rho_{XY}^2}}.$$
 (1)

The pdf for multivariate jointly Gaussian random variable $Z \in \mathbb{R}^k$ is of the following form parameterized by $\mu \in \mathbb{R}^k$ and $\Sigma \in \mathbb{R}^{k \times k}$.

$$f_Z(z) = \frac{\exp\left\{-\frac{1}{2}(z-\mu)^T \Sigma^{-1}(z-\mu)\right\}}{\sqrt{(2\pi)^k |\Sigma|}}.$$
 (2)

Suppose $Z = [X, Y]^T$, i.e., $z = [x, y]^T$, find μ , Σ^{-1} and Σ in terms of m_1 , m_2 , σ_1 , σ_2 and ρ_{XY} .

Solution: We find the following result by directly comparing (1) and (2):

$$\mu = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix},$$

$$\Sigma^{-1} = \frac{1}{\sigma_1^2 \sigma_2^2 (1 - \rho_{XY}^1)} \begin{bmatrix} \sigma_1^2 & -\rho_{XY} \sigma_1 \sigma_2 \\ -\rho_{XY} \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix},$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho_{XY} \sigma_1 \sigma_2 \\ \rho_{XY} \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}.$$

and

One can verify that by plugging the above expressions into (2), we get (1) back.

3. Consider the jointly Gaussian random variables X and Y that have the following joint PDF:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{\sigma_X^2} + \frac{y^2}{\sigma_Y^2} - \frac{2\rho xy}{\sigma_X\sigma_Y}\right)\right].$$

(a) Prove that Y is a Gaussian random variable by deriving its marginal PDF, $f_Y(y)$. Find the mean and variance of Y.

Solution:

The marginal PDF of Y, $f_Y(y)$ is derived as follows:

$$f_Y(y) = \int_{x=-\infty}^{\infty} f_{X,Y}(x,y)dx$$

$$= \int_{x=-\infty}^{\infty} \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{\sigma_X^2} + \frac{y^2}{\sigma_Y^2} - \frac{2\rho xy}{\sigma_X\sigma_Y}\right)\right] dx.$$

To perform this integral, we need to complete a square inside the argument of the exponential.

$$\begin{aligned} \text{Exp_arg} &= -\frac{1}{2(1 - \rho^2)} \left(\frac{x^2}{\sigma_X^2} + \frac{y^2}{\sigma_Y^2} - \frac{2\rho xy}{\sigma_X \sigma_Y} \right) \\ &= -\frac{1}{2(1 - \rho^2)} \left(\left[\frac{x}{\sigma_X} - \frac{\rho y}{\sigma_Y} \right]^2 - \frac{\rho^2 y^2}{\sigma_Y^2} + \frac{y^2}{\sigma_Y^2} \right) \\ &= -\frac{1}{2(1 - \rho^2)} \left[\frac{x}{\sigma_X} - \frac{\rho y}{\sigma_Y} \right]^2 - \frac{1}{2(1 - \rho^2)} \frac{(1 - \rho^2)y^2}{\sigma_Y^2} \\ &= -\frac{1}{2(1 - \rho^2)\sigma_X^2} \left[x - \frac{\rho \sigma_X y}{\sigma_Y} \right]^2 - \frac{y^2}{2\sigma_Y^2}. \end{aligned}$$

Substituting this exponential argument in the integral of $f_Y(y)$ gives us:

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_Y} \exp\left[-\frac{y^2}{2\sigma_Y^2}\right] \int_{x=-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_X \sqrt{1-\rho^2}} \exp\left[-\frac{\left[x - \frac{\rho\sigma_X y}{\sigma_Y}\right]^2}{2\sigma_X^2 (1-\rho^2)}\right] dx$$

The value of this integral is 1. Thus,

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_Y} \exp\left[-\frac{y^2}{2\sigma_Y^2}\right], -\infty < y < -\infty,$$

which proves that Y is a Gaussian random variable with mean 0 and variance σ_Y^2 .

(b) Prove that $f_{X|Y}(x|y)$ corresponds to another Gaussian random variable, then find its mean and variance.

Solution:

The conditional PDF $f_{X|Y}(x|y)$ is derived as follows:

$$f_{X|Y}(x|y) = f_{X,Y}(x,y)/f_Y(y)$$

$$= \frac{1}{\sqrt{2\pi}\sigma_X\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{\sigma_X^2} + \frac{y^2}{\sigma_Y^2} - \frac{2\rho xy}{\sigma_X\sigma_Y}\right) + \frac{y^2}{2\sigma_Y^2}\right].$$

One more time, we operate on the exponential argument:

$$\begin{split} \text{Exp_arg} &= -\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{\sigma_X^2} + \frac{y^2}{\sigma_Y^2} - \frac{2\rho xy}{\sigma_X \sigma_Y} \right) + \frac{y^2}{2\sigma_Y^2} \\ &= -\frac{1}{2(1-\rho^2)} \left[\frac{x}{\sigma_X} - \frac{\rho y}{\sigma_Y} \right]^2 + \frac{1}{2(1-\rho^2)} \left[\frac{\rho^2 y^2}{\sigma_Y^2} - \frac{y^2}{\sigma_Y^2} \right] + \frac{y^2}{2\sigma_Y^2} \\ &= -\frac{1}{2(1-\rho^2)} \left[\frac{x}{\sigma_X} - \frac{\rho y}{\sigma_Y} \right]^2 - \frac{y^2}{2\sigma_Y^2} + \frac{y^2}{2\sigma_Y^2} \\ &= -\frac{1}{2\sigma_X^2 (1-\rho^2)} \left[x - \frac{\rho \sigma_X y}{\sigma_Y} \right]^2. \end{split}$$

Consequently, we conclude that:

$$f_{X|Y}(x|y) = \frac{1}{\sqrt{2\pi}\sigma_X\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2\sigma_X^2(1-\rho^2)} \left[x - \frac{\rho\sigma_X y}{\sigma_Y}\right]^2\right],$$

where $-\infty < x < \infty$. This proves that $f_{X|Y}(x|y)$ corresponds to another Gaussian random variable with mean $\rho \sigma_X y / \sigma_Y$, and variance $\sigma_X^2 (1 - \rho^2)$.

4. Let us revisit the restaurant selection problem in HW3. You are trying to choose between two restaurants (sample 9 and sample 10) to eat at. To do this, you will train a classifier based on your past experiences (sample 1-8). The features for each restaurants and your judgment on the goodness of sample 1-8 are summarized by the following chart.

Sample #	HasOutdoorSeating	HasBar	IsClean	HasGoodAtmosphere	IsGoodRestaurant
1	0	0	1	1	1
2	1	0	0	0	0
3	0	1	1	1	1
4	0	0	0	0	0
5	1	1	0	0	0
6	1	0	1	0	1
7	1	0	0	1	1
8	0	0	1	1	1
9	0	1	0	1	?
10	1	1	1	1	?

In this exercise, instead of a decision tree, you will use the Naive Bayes classifier to decide whether restaurant 9 and 10 are good or not. For clarity, we abbreviate the names of the features and label as follows: HasOutdoorSeating $\to O$, HasBar $\to B$, IsClean $\to C$, HasGoodAtmosphere $\to A$, and IsGoodRestaurant $\to G$.

(a) Train the Naive Bayes classifier by calculating the maximum likelihood estimate of class priors and class conditional distributions. Namely, calculate the maximum likelihood estimate of the following: P(G), and P(X|G), $X \in \{O, B, C, A\}$. Solution: The maximum likelihood of class priors are just the relative frequency of each class. We therefore have:

$$P(G=0) = \frac{3}{8}, P(G=1)\frac{5}{8}.$$

The class conditional distribution can be estimated similarly by calculating the relative frequency of the features conditional on the class. We get:

$$P(O = 0|G = 0) = \frac{1}{3}, P(O = 0|G = 1) = \frac{3}{5};$$

$$P(B = 0|G = 0) = \frac{2}{3}, P(B = 0|G = 1) = \frac{4}{5};$$

$$P(C = 0|G = 0) = 1, P(C = 0|G = 1) = \frac{1}{5};$$

$$P(A = 0|G = 0) = 1, P(A = 0|G = 1) = \frac{1}{5}.$$

(b) For Sample #9 and #10, make the decision using

$$\hat{G}_i = \underset{G_i \in \{0,1\}}{\operatorname{argmax}} \quad P(G_i)P(O_i, B_i, C_i, A_i | G_i),$$

where O_i, B_i, C_i , and A_i are the feature values for the *i*-th sample.

Solution: Using previous results, for i = 9:

$$P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0) = \frac{3}{8} \times \frac{1}{3} \times \frac{1}{3} \times 1 \times 0 = 0,$$

and

$$P(G_i = 1)P(O_i, B_i, C_i, A_i | G_i = 1) = \frac{5}{8} \times \frac{3}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{4}{5} > P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0).$$

We then decide $\hat{G}_9 = 1$.

For i = 10:

$$P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0) = \frac{3}{8} \times \frac{2}{3} \times \frac{1}{3} \times 0 \times 0 = 0,$$

and

$$P(G_i = 1)P(O_i, B_i, C_i, A_i | G_i = 1) = \frac{5}{8} \times \frac{2}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{4}{5} \times \frac{4}{5} > P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0).$$

We then decide $\hat{G}_{10} = 1$.

5. In class, we learned a Naive Bayes classifier for binary feature values, i.e., $x_j \in 0, 1$ where we model the class conditional distribution to be Bernoulli. In this exercise, you are going to extend the result to the case where features that are non-binary.

We are given a training set $\{(x^{(i)}, y^{(i)}); i = \{1, \dots, m\}\}$, where $x^{(i)} \in \{1, 2, \dots, s\}^n$ and $y^{(i)} \in \{0, 1\}$. Again, we model the label as a biased coin with $\theta_0 = P(y^{(i)} = 0)$ and $1 - \theta_0 = P(y^{(i)} = 1)$. We model each non-binary feature value $x_j^{(i)}$ (an element of $x^{(i)}$) as a biased dice for each class. This is parameterized by:

$$P(x_j = k | y = 0) = \theta_{j,k|y=0}, k = 1, \dots, s-1;$$

$$P(x_j = s | y = 0) = \theta_{j,s|y=0} = 1 - \sum_{k=1}^{s-1} \theta_{j,k|y=0};$$

$$P(x_j = k | y = 1) = \theta_{j,k|y=1}, k = 1, \dots, s-1;$$

$$P(x_j = s | y = 1) = \theta_{j,s|y=1} = 1 - \sum_{k=1}^{s-1} \theta_{j,k|y=1};$$

Notice that we do not model $P(x_j = s|y = 0)$ and $P(x_j = s|y = 1)$ directly. Instead we use the above equations to guarantee all probabilities for each class sum to 1.

(a) Using the **Naive Bayes (NB) assumption**, write down the joint probability of the data:

$$P(x^{(1)}, \cdots, x^{(m)}, y^{(1)}, \cdots, y^{(m)})$$

in terms of the parameters θ_0 , $\theta_{j,k|y=0}$ and $\theta_{j,k|y=1}$. You may find the indicator function $\mathbf{1}(\cdot)$ useful.

Solution:

$$P(x^{(i)}, \dots, x^{(m)}, y^{(i)}, \dots, y^{(m)})$$

$$= \prod_{i=1}^{m} P(x^{(i)}, y^{(i)})$$

$$= \prod_{i=1}^{m} \theta_0^{\mathbf{1}(y^{(i)}=0)} (1 - \theta_0)^{\mathbf{1}(y^{(i)}=1)} \prod_{j=1}^{n} \prod_{k=1}^{s} \theta_{j,k|y=0}^{\mathbf{1}(x_j^{(i)}=k \wedge y^{(i)}=0)} \theta_{j,k|y=1}^{\mathbf{1}(x_j^{(i)}=k \wedge y^{(i)}=1)}.$$
(3)

(b) Maximizing the joint probability you get in (a) with respect to θ_0 , $\theta_{j,k|y=0}$ and $\theta_{j,k|y=1}$. Write down your resulting θ_0 , $\theta_{j,k|y=0}$ and $\theta_{j,k|y=1}$ and show intermediate steps. Use words to explain the meaning of your results.

Solution: Take the negative log of Equation (1) and we get:

$$J(\theta_0, \theta_{j,k|y=0}, \theta_{j,k|y=1}) = -\sum_{i=1}^{m} \left\{ \mathbf{1}(y^{(i)} = 0) \log(\theta_0) + \mathbf{1}(y^{(i)} = 1) \log(1 - \theta_0) + \sum_{j=1}^{n} \sum_{k=1}^{s} \left[\mathbf{1}(x_j^{(i)} = k \wedge y^{(i)} = 0) \log(\theta_{j,k|y=0}) + \mathbf{1}(x_j^{(i)} = k \wedge y^{(i)} = 1) \log(\theta_{j,k|y=1}) \right] \right\}.$$

We first find θ_0 that minimize J.

$$\frac{\partial J}{\partial \theta_0} = -\frac{\sum_{i=1}^m \mathbf{1}(y^{(i)} = 0)}{\theta_0} + \frac{\sum_{i=1}^m \mathbf{1}(y^{(i)} = 1)}{1 - \theta_0}.$$

Setting the derivative to 0 we get

$$\theta_0 = \frac{\sum_{i=1}^m \mathbf{1}(y^{(i)} = 0)}{m}.$$

Next we find $\theta_{j,k|y=0}$ for a particular j and $k \neq s$. We first take the derivative with respect to $\theta_{j,k|y=0}$. Notice that in J, we also have $\theta_{j,s|y=0}$ that also depends on $\theta_{j,k|y=0}$.

$$\frac{\partial J}{\partial \theta_{j,k|y=0}} = -\frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = k \wedge y^{(i)} = 0)}{\theta_{j,k|y=0}} + \frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = s \wedge y^{(i)} = 0)}{\theta_{j,s|y=0}}.$$

Setting the derivative to 0 we get

$$\theta_{j,k|y=0} = \frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = k \land y^{(i)} = 0)}{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = s \land y^{(i)} = 0)} \theta_{j,s|y=0}.$$

Using the above equation for all $k \neq s$ and $\theta_{j,s|y=1} = 1 - \sum_{k=1}^{s-1} \theta_{j,k|y=1}$ we get:

$$\theta_{j,k|y=0} = \frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = k \land y^{(i)} = 0)}{\sum_{i=1}^{m} \mathbf{1}(y^{(i)} = 0)}.$$

Similarly, we have:

$$\theta_{j,k|y=1} = \frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = k \land y^{(i)} = 1)}{\sum_{i=1}^{m} \mathbf{1}(y^{(i)} = 1)}.$$