Machine Learning

Lecture 3

Simple Classifiers: Nearest Centroids and KNN

Felix Bießmann

Beuth University & Einstein Center for Digital Future

Overview of today's lecture

- Today we will introduce two simple classifiers
 - 1. Nearest Centroid Classifier (NCC)
 - 2. K-Nearest Neighbor (KNN)

Introduction

- These algorithms are extremely powerful
- Often they can compete with complex algorithms

Prototypes: Psychological Models of Abstract Ideas

Psychologists postulated that we learn **prototypes** [Jaekel, 2007; Posner and Keele, 1968]

Toy data example:

Two dimensional input $\mathbf{x} \in \mathbb{R}^2$ Two *classes* of data, Δ and \circ

Prototypes: Psychological Models of Abstract Ideas

Prototypes μ_{Λ} and μ_{α} can be the class means

$$egin{aligned} oldsymbol{\mu}_{\Delta} = & 1/N_{\Delta} \sum_{n}^{N_{\Delta}} \mathbf{x}_{\Delta,n} \\ oldsymbol{\mu}_{o} = & 1/N_{o} \sum_{n}^{N_{o}} \mathbf{x}_{o,n} \end{aligned}$$

Distance from w_{Λ} to new data x

$$\|\mu_{\Lambda} - \mathbf{x}\|_2$$

For new data x check: Is x more similar to μ_a ?

$$\|oldsymbol{\mu}_{\Delta} - \mathbf{x}\| > \|oldsymbol{\mu}_{o} - \mathbf{x}\|$$

yes? ightarrow x belongs to μ_o no? ightarrow x belongs to μ_Δ This is called a nearest centroid classifier

Nearest Centroid Classification Algorithm (Batch Mode)

Algorithm 1 Computation of Class-Centroids

Require: data $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^D$, labels $y_1, \dots, y_N \in \{1, \dots, K\}$

Ensure: Class means μ_k , $k \in \{1, ..., K\}$

- 1: # Initialize means and counters for each class
- 2: # Computation of class means
- 3: for Class $k = 1, \ldots, K$ do
- $\mu_k = \frac{1}{N_i} \sum_{i=1}^{N_k} \mathbf{x}_i$
- 5: end for

Batch Computations vs. Streaming

Solutions for algorithms can be obtained

- In Batch Mode:
 - Use all available data at once
 - Requires to store all data in memory
- In Streaming Mode:
 - Use one data point at a time
 - Requires to store only centroids

Iterative Computation of the Mean

Given the mean μ_{N-1} computed from N-1 samples we want to update μ_{N-1} with the Nth sample \mathbf{x}_N to obtain μ_N

$$\mu_{N} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}$$

$$= \frac{1}{N} \sum_{n=1}^{N-1} \mathbf{x}_{n} + \frac{1}{N} \mathbf{x}_{N}$$

$$= \frac{N-1}{N} \underbrace{\frac{1}{N-1} \sum_{n=1}^{N-1} \mathbf{x}_{n}}_{\mu_{N-1}} + \frac{1}{N} \mathbf{x}_{N}$$

$$= \frac{N-1}{N} \mu_{N-1} + \frac{1}{N} \mathbf{x}_{N}$$

Nearest Centroid Classification Algorithm (Streaming)

Algorithm 2 Iterative computation of Class-Centroids

Require: data $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^D$, labels $y_1, \dots, y_N \in \{1, \dots, K\}$

Ensure: Class means μ_k , $k \in \{1, ..., K\}$

1: # Initialize means and counters for each class

2: $\forall k$: $\mu_k = \mathbf{I} \cdot \mathbf{0}, N_k = \mathbf{0}$

3: # Iterative computation of class means

4: for Data point i = 1, ..., N do

5: # Update means and counters

6: $k = y_i$

 $\mu_k = \frac{N_k}{N_k+1} \ \mu_k + \frac{1}{N_k+1} \ \mathsf{x}_i$

8: $N_{\nu} = N_{\nu} + 1$

9: end for

Nearest Centroid Classification

Algorithm 3 Nearest Centroid Prediction

Require: Data point $\mathbf{x} \in \mathbb{R}^D$, class centroids μ_k , $k \in \{1, \dots, K\}$

Ensure: Class membership k^*

1: # Compute nearest class centroid

2: $k^* = \operatorname{argmin}_k \| \mu_k - \mathbf{x} \|_2$.

Toy Data Example NCC

From Prototypes to Linear Classification

$$\begin{split} \mathsf{distance}(\mathbf{x}, \mu_{\Delta}) > & \mathsf{distance}(\mathbf{x}, \mu_{o}) \\ & \|\mathbf{x} - \mu_{\Delta}\| > & \|\mathbf{x} - \mu_{o}\| \end{split} \tag{1}$$

From Prototypes to Linear Classification

$$\begin{aligned} \mathsf{distance}(\mathbf{x}, \mu_{\Delta}) > & \mathsf{distance}(\mathbf{x}, \mu_{o}) \\ \|\mathbf{x} - \mu_{\Delta}\| > & \|\mathbf{x} - \mu_{o}\| \\ \Leftrightarrow \|\mathbf{x} - \mu_{\Delta}\|^{2} > & \|\mathbf{x} - \mu_{o}\|^{2} \\ \Leftrightarrow & \mathbf{x}^{\top}\mathbf{x} - 2\mu_{\Delta}^{\top}\mathbf{x} + \mu_{\Delta}^{\top}\mu_{\Delta} > & \mathbf{x}^{\top}\mathbf{x} - 2\mu_{o}^{\top}\mathbf{x} + \mu_{o}^{\top}\mu_{o} \\ \Leftrightarrow & \mu_{\Delta}^{\top}\mathbf{x} - \mu_{\Delta}^{2}/2 < \mu_{o}^{\top}\mathbf{x} - \mu_{o}^{2}/2 \\ \Leftrightarrow & 0 < \underbrace{(\mu_{o} - \mu_{\Delta})^{\top}\mathbf{x} - 1/2}_{\mathbf{w}} \underbrace{(\mu_{o}^{\top}\mu_{o} - \mu_{\Delta}^{\top}\mu_{\Delta})}_{\beta} \end{aligned}$$

From Prototypes to Linear Classification

$$\begin{aligned} \operatorname{distance}(\mathbf{x}, \boldsymbol{\mu}_{\Delta}) > & \operatorname{distance}(\mathbf{x}, \boldsymbol{\mu}_{o}) \\ & \|\mathbf{x} - \boldsymbol{\mu}_{\Delta}\| > \|\mathbf{x} - \boldsymbol{\mu}_{o}\| \\ \Leftrightarrow & \|\mathbf{x} - \boldsymbol{\mu}_{\Delta}\|^{2} > \|\mathbf{x} - \boldsymbol{\mu}_{o}\|^{2} \\ \Leftrightarrow & \mathbf{x}^{\top}\mathbf{x} - 2\boldsymbol{\mu}_{\Delta}^{\top}\mathbf{x} + \boldsymbol{\mu}_{\Delta}^{\top}\boldsymbol{\mu}_{\Delta} > & \mathbf{x}^{\top}\mathbf{x} - 2\boldsymbol{\mu}_{o}^{\top}\mathbf{x} + \boldsymbol{\mu}_{o}^{\top}\boldsymbol{\mu}_{o} \\ \Leftrightarrow & \boldsymbol{\mu}_{\Delta}^{\top}\mathbf{x} - \boldsymbol{\mu}_{\Delta}^{2}/2 < \boldsymbol{\mu}_{o}^{\top}\mathbf{x} - \boldsymbol{\mu}_{o}^{2}/2 \\ \Leftrightarrow & 0 < \underbrace{(\boldsymbol{\mu}_{o} - \boldsymbol{\mu}_{\Delta})}_{\mathbf{w}}^{\top}\mathbf{x} - 1/2\underbrace{(\boldsymbol{\mu}_{o}^{\top}\boldsymbol{\mu}_{o} - \boldsymbol{\mu}_{\Delta}^{\top}\boldsymbol{\mu}_{\Delta})}_{\beta} \end{aligned}$$

Linear Classification

$$\mathbf{w}^{\top}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to class } \circ \\ < 0 & \text{if } \mathbf{x} \text{ belongs to class } \Delta \end{cases}$$
 (2)

$$\mathbf{w}^{\top}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to } o \\ < 0 & \text{if } \mathbf{x} \text{ belongs to } \Delta \end{cases}$$

$$\mathbf{w}^{\top}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to } o \\ < 0 & \text{if } \mathbf{x} \text{ belongs to } \Delta \end{cases}$$

The offset β can be included in \mathbf{w}

$$\tilde{\mathbf{x}} \leftarrow \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} \qquad \tilde{\mathbf{w}} \leftarrow \begin{bmatrix} -\beta \\ \mathbf{w} \end{bmatrix}$$

such that

$$\tilde{\mathbf{w}}^{\top}\tilde{\mathbf{x}} = \mathbf{w}^{\top}\mathbf{x} - \beta.$$

- What is a good w?
- Some proposals:
 - Logistic Regression
 - Perceptrons
 - Support Vector Machines
 - Ridge Regression
- Linear methods have different ways of defining what a good w is

Nearest Centroid Classification is a simple linear classifier

$$\mathbf{w} = \boldsymbol{\mu}_o - \boldsymbol{\mu}_{\Delta}$$
 (3)
$$\beta = -1/2(\boldsymbol{\mu}_o^{\top} \boldsymbol{\mu}_o - \boldsymbol{\mu}_{\Delta}^{\top} \boldsymbol{\mu}_{\Delta})$$

Problems with Linear Classification

Linear Classifiers fail on non-linear problems:

Try to separate these two-class data sets with a single line

Problems with Perceptrons

If we can model the non-linearity, we can create new features $\tilde{\mathbf{x}}$ which are linearly separable

But what if we do not know the non-linearity?

K-Nearest Neighbor Classifier

- Nearest Centroid Classifiers require estimation of centroids
- K-Nearest Neighbor is simpler
- Idea:
 - 1. Find the k closest neighbors for a new data point x
 - 2. Look up labels of k closest neighbors
 - 3. Assign majority vote label for x

K-Nearest Neighbor Classifier

We do not need to train a model for KNN the data is the model

But (as with NCC) we need a distance function Usually the euclidean distance is chosen:

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_2 \qquad j \in [1, \dots, N]$$
 (4)

where N is the number of data points

K-Nearest Neighbor Classifier: Pseudocode

Algorithm 4 K-Nearest Neighbour Prediction

Require: Test data point $\mathbf{x}_i \in \mathbb{R}^D$, training data $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N] \in \mathbb{R}^{D \times N}$, corresponding labels $\mathbf{y} = [y_1, \dots, y_N]^{\top} \in \mathbb{R}^N$, number of neighbours K

Ensure: Predicted label yi

1: for x_i in X do

Compute distance between test data x_i and training data x_i

3: end for

4: Initialize a K-dimensional zero vector γ

5: **for** *k* in **do**

6: Count label of the k-nearest neighbor

 $\# \gamma_{\mathbf{y}_k} \leftarrow \gamma_{\mathbf{y}_k} + 1$

8: end for

9: Predicted label is that with most votes (ties are broken at random)

10: $\mathbf{y}_i = \operatorname{argmax}_k(\gamma)$

K-Nearest Neighbor Classifier

Toy data problem: Linear classification

K-Nearest Neighbor Classifier

Toy data problem: Nonlinear classification

Problems with KNN

Linear Classification

- Hyperparameter k needs to be set appropriately:
 - k small: complex decision boundaries
 - k large: smooth/simple decision boundaries
- Consider N data points $\mathbf{x} \in \mathbb{R}^D$
- Find K Neighbors requires O(NND) operations
- For large data sets this is too costly
- Speedups can be gained by:
 - Trees for distance computations
 - Locality Sensitive Hashing for finding neighbors

Summary

Psychologists postulated we learn Prototypes

Prototypes can be the class means Prototype theory is closely related to linear classification

Nearest Centroid Classification

New data is assigned to class with closest centroid Memory efficient: only requires to store D-dimensional centroids Iterative/Streaming version can scale to large data sets

K-Nearest Neighbor Classifier

Simple nonlinear classifier
State-of-the-art prediction performance
No training required
Needs to evaluate pairwise distances of all data points

References

F. Jaekel. Some Theoretical Aspects of Human Categorization Behaviour. Similarity and Generalization. PhD thesis, 2007.

M. I. Posner and S. W. Keele. On the genesis of abstract ideas. Journal of Experimental Psychology, 77(3):353–363, 1968.

