Laboratórna úloha č. 2

Maxwellovo kyvadlo

Úloha: Z nameraných charakteristických hodnôt Maxwellovho kyvadla určiť moment zotrvačnosti zotrvačníka tohto kyvadla a priemernú veľkosť sily pôsobiacej proti jeho pohybu

Teoretický úvod

Maxwellovo kyvadlo je kotúč na hriadeli (zotrvačník) s pomerne veľkým momentom zotrvačnosti, zavesený na dvoch vláknach (obrázok 1). Vláknami, ktorých konce sú pevne spojené s hriadeľom, je zotrvačník zavesený na rám stojana, pričom os zotrvačníka sa môže pohybovať vo zvislom vedení rámu. Keď sa v hornej polohe zotrvačník uvoľní, začne klesať, vlákna sa začnú z hriadeľa odvíjať a zotrvačník klesajúc sa začne roztáčať. Pri prechode dolnou úvraťou, keď sa nite celkom odvinuli, zotrvačník sa zotrvačnosťou otáča ďalej tým istým smerom a nite sa začnú na hriadeľ navíjať, takže zotrvačník začne stúpať.

Obr. 1: Maxwellovo kyvadlo.

Pohyb zotrvačníka posúdime z energetického hľadiska. Východiskovej hornej polohe priradíme výškovú súradnicu y_0 , takže polohová energia zotrvačníka je vtedy mgy_0 , kinetická energia je nulová. Predpokladajme, že v istom časovom okamihu je zotrvačník vo výške $y < y_0$, takže jeho potenciálna energia je už menšia. Časť potenciálnej energie sa premenila na kinetickú energiu (tá má dve zložky – translačnú a rotačnú), časť sa spotrebovala na prekonávanie odporu prostredia. Zo zákona zachovania energie tak vyplýva vzťah

$$mgy_0 - mgy = \frac{1}{2}mv^2 + \frac{1}{2}J_0\omega^2 + F(y_0 - y)$$
 (1)

kde m je hmotnosť zotrvačníka spolu s hriadeľom, v translačná rýchlosť ťažiska zotrvačníka a ω uhlová rýchlosť otáčania zotrvačníka. Veličina J_0 je moment zotrvačnosti zotrvačníka

s hriadeľom vzhľadom na ich os súmernosti, ktorá prechádza osou otáčania. Veličina F predstavuje celkovú odporovú silu pôsobiacu proti pohybu zotrvačníka.

Keď si uvedomíme, že medzi uhlovou rýchlosťou ω a rýchlosťou v platí vzťah $\omega = v/r$, lebo vlákna sa odvíjajú z hriadeľa, ktorý má polomer r, môžeme rovnicu (1) upraviť:

$$\frac{1}{2}mv^2 + \frac{1}{2}J_0\omega^2 = (mg - F)(y - y_0) \implies \left(m + \frac{J_0}{r^2}\right)v^2 = 2(mg - F)(y_0 - y) \tag{2}$$

Vo vyplývajúcej rovnici závisia od času iba veličiny v a y. Jej deriváciou podľa času dostaneme

$$\left(m + \frac{J_0}{r^2}\right) 2v \frac{\mathrm{d}v}{\mathrm{d}t} = 2(mg - F) \frac{\mathrm{d}y}{\mathrm{d}t} (-1)$$
(3)

pričom dy/dt je rýchlosť ťažiska zotrvačníka a dv/dt jeho zrýchlenie. Pri klesaní zotrvačníka sa súradnica y s časom zmenšuje, teda dy/dt < 0, čo vo vzťahu (3) v súčine s číslom (-1) poskytne kladnú hodnotu. Pre veľkosť (absolútnu hodnotu) zrýchlenia a_k pri klesaní zotrvačníka dostaneme ďalšou úpravou vzťah

$$a_{k} = \frac{r^{2}(mg - F)}{J_{0} + mr^{2}} \tag{4}$$

Odtiaľ vyplýva, že za predpokladu nemennosti sily F je zrýchlenie konštantné. To znamená, že za časový interval Δt_k zotrvačník prejde dráhu s_k (mal nulovú začiatočnú rýchlosť):

$$s_{k} = \frac{1}{2} a_{k} (\Delta t_{k})^{2} = \frac{r^{2} (mg - F)}{2(J_{0} + mr^{2})} (\Delta t_{k})^{2}$$
(5)

Z tejto rovnice, ktorá popisuje klesanie zotrvačníka, určíme jeho moment zotrvačnosti:

$$J_0 = \frac{r^2 (mg - F)(\Delta t_k)^2}{2s_k} - mr^2 \tag{6}$$

Úvahami o energetickej bilancii pri stúpaní zotrvačníka by sme pre moment zotrvačnosti dostali analogický vzťah

$$J_0 = \frac{r^2(mg + F)(\Delta t_{\rm s})^2}{2s_{\rm s}} - mr^2$$
 (7)

v ktorom $\Delta t_{\rm s}$ predstavuje časový interval potrebný na výstup do hornej úvrate po dráhe s dĺžkou $s_{\rm s}$. Keď poznáme veľkosti veličín m a r a zmeriame veličiny $s_{\rm k}$, $\Delta t_{\rm k}$, $s_{\rm s}$ a $\Delta t_{\rm s}$, v rovniciach (6) a (7) zostanú iba dve neznáme – moment zotrvačnosti J_0 a sila F predstavujúca odpor prostredia spolu s trením. Z rovníc ich teda možno vypočítať. Po vylúčení sily F dostaneme pre moment zotrvačnosti vzťah

$$J_0 = mr^2 \left(\frac{g}{\frac{S_k}{\Delta t_k^2} + \frac{S_s}{\Delta t_s^2}} - 1 \right)$$
 (8)

Silu F budeme určovať samostatným meraním, ako bude uvedené ďalej.

Poznámka. Rovnaký výsledok dostaneme, keď riešime pohybovú rovnicu $\vec{M}=J\vec{\alpha}$, opisujúcu rotačný pohyb telesa okolo osi. V tejto rovnici J je moment zotrvačnosti telesa

vzhľadom na os otáčania (povrchová priamka hriadeľa, v ktorej sa vlákno od neho odpája), \vec{M} moment vonkajších síl pôsobiacich na teleso vzhľadom na tú istú os a $\vec{\alpha}$ uhlové zrýchlenie otáčania telesa. Vonkajšími silami pôsobiacimi na zotrvačník sú jeho tiaž $m\vec{g}$, reakcie na sily, ktorými sú napínané závesné vlákna, a odpor prostredia spolu s trením. Moment tiažovej sily vzhľadom na os otáčania je $\vec{r} \times m\vec{g}$, má smer jednotkového vektora $\vec{\eta}$ (na obr. 1 smeruje k čitateľovi), takže sa dá vyjadriť v tvare $mgr\vec{\eta}$, kde $r=|\vec{r}|$ je polomer hriadeľa. Moment síl reakcie na napínanie vlákien je však vzhľadom na os otáčania nulový, takže nevstupuje do pohybovej rovnice. Sily odporu prostredia, ktorých výslednica \vec{F} pôsobí v ťažisku zotrvačníka, majú nenulový moment $\vec{r} \times \vec{F}$ (veľkosť momentu je Fr), takže ho treba zahrnúť do pohybovej rovnice. Zatiaľ čo moment tiažovej sily má smer jednotkového vektora $\vec{\eta}$, pri pohybe zotrvačníka nadol smeruje moment sily $\vec{r} \times \vec{F}$ opačným smerom, takže pohybová rovnica má tvar

$$J\vec{\alpha} = mgr\vec{\eta} - Fr\vec{\eta} \tag{9}$$

Vektor uhlovej rýchlosti pri klesaní zotrvačníka má smer vektora $\vec{\eta}$. Veľkosť uhlovej rýchlosti sa zväčšuje, takže aj vektor uhlového zrýchlenia $\vec{\alpha}$ pri klesaní zotrvačníka má smer vektora $\vec{\eta}$. Jeho veľkosť sa rovná podielu zrýchlenia a_k ťažiska a polomeru r hriadeľa, takže platí vzťah $\vec{\alpha} = (a_k/r)\vec{\eta}$. Moment zotrvačnosti J vzhľadom na os otáčania sa podľa Steinerovej vety rovná súčtu $J_0 + mr^2$, kde J_0 je moment zotrvačnosti vzhľadom na os prechádzajúcu ťažiskom, teda os súmernosti zotrvačníka. Po dosadení uvedených vzťahov do pohybovej rovnice dostaneme

$$(J_0 + mr^2) \frac{a_k}{r} \vec{\eta} = (mgr - Fr) \vec{\eta} \implies (J_0 + mr^2) a_k = mgr^2 - Fr^2$$
 (10)

odkiaľ pre veľkosť zrýchlenia získame rovnicu zhodnú s rovnicou (4).

Metóda merania

Ak Maxwellovo kyvadlo spustíme z výšky y_0 , začne klesať, a keď dosiahne najnižšiu polohu y_z , začne stúpať. V dôsledku strát energie nevystúpi do pôvodnej výšky y_0 , ale iba do výšky y_1 . Potom znova začne klesať a proces sa viackrát opakuje. V prvom priblížení môžeme predpokladať, že energetické straty sú úmerné celkovej dĺžke dráhy, ktorú zotrvačník prešiel a že sila odporu je konštantná. To znamená, že ak sa zotrvačník po prvom cykle zastaví vo výške y_1 , potom platí

$$mg(y_0 - y_1) = F(s_k + s_s)$$
 (11)

kde $s_{\rm k}=y_0-y_{\rm z},\,s_{\rm s}=y_1-y_{\rm z}.$ Z tohto vzťahu vypočítame silu F:

$$F = \frac{mg(y_0 - y_1)}{s_k + s_s} \tag{12}$$

ktorá predstavuje odpor proti pohybu zotrvačníka. Týmto spôsobom môžeme určiť veľkosť sily bez merania časových intervalov. Veľkosť sily sa však v priebehu pohybu pravdepodobne mení a môžeme očakávať, že závisí aj od rýchlosti pohybu. Maximálna rýchlosť

pohybu závisí od výšky y_0 , z ktorej zotrvačník púšťame, čo by sa malo prejaviť aj na veľkosti sily vypočítanej pomocou vzťahu (12). Preto sa pri meraní veľkosti sily F zameriame aj na určenie jej závislosti od začiatočnej polohy y_0 .

Postup pri meraní a vyhodnotenie merania

- 1. Na viacerých miestach zmeriame priemer hriadeľa a z aritmetického priemeru nameraných hodnôt určíme jeho polomer (tab. 1). Pomocou váh určíme hmotnosť zotrvačníka s oskou.
- 2. Na zvislom meradle určíme najnižšiu polohu y_z zotrvačníka. Navíjaním nití na hriadeľ zdvihneme zotrvačník do východiskovej hornej polohy y_0 , pričom dbáme, aby hriadeľ bol vodorovný. Po uvoľnení zotrvačník striedavo klesá k najnižšej polohe (dolnej úvrati) y_z a stúpa naspäť. Všímať si však budeme iba prvý cyklus. Do tabuľky 3 zaznamenáme východiskovú polohu y_0 a hornú polohu y_1 , do ktorej sa zotrvačník vrátil. Meranie opakujeme 10-krát pri postupne sa zmenšujúcej hodnote y_0 . Pre každé meranie vypočítame silu F a nakreslíme graf jej závislosti od začiatočnej polohy y_0 .
- 3. Na určenie momentu zotrvačnosti pomocou vzťahu (8) treba zmerať aj časové intervaly potrebné na prechod zotrvačníka z hornej polohy y_0 do dolnej polohy y_z (Δt_k) a z dolnej polohy do novej hornej polohy y_1 (Δt_s). Na určenie týchto časových intervalov potrebujeme tieto časové údaje: čas t_0 , v ktorom zotrvačník uvoľníme z hornej polohy, čas t_z , v ktorom dosiahne najnižšiu polohu, a čas t_h , v ktorom sa vráti do najvyššej polohy. Údaje zapisujeme do tabuľky (tab. 4) a pomocou nich vypočítame moment zotrvačnosti J_0 . Meranie opakujeme 10 krát, vypočítame aritmetický priemer momentov zotrvačnosti zotrvačníka, ako aj smerodajnú odchýlku aritmetického priemeru (t. j. smerodajnú odchýlku výberového priemeru). Na základe výsledkov zhodnotíme meranie.

Otázky a úlohy

- 1. Dôsledne odvoď te vzťah (7).
- 2. Teoreticky vyjadrite pomer dráh $s_{\rm k}/s_{\rm s}$, teda dráhy prejdenej pri klesaní k dráhe prejdenej pri stúpaní.
- 3. Aké podmienky by museli byť splnené, aby pohyb kyvadla bol periodický?
- 4. Ukážte, že dĺžka dráhy s_n pri n-tom klesaní zotrvačníka je exponenciálnou funkciou poradového čísla n.
- 5. Vyjadrite vzájomný pomer rotačnej a translačnej časti kinetickej energie zotrvačníka.

Protokol laboratórnej úlohy č. 2

Maxwellovo kyvadlo

Stručný opis metódy merania

Vzťahy, ktoré sa používajú pri meraní

Prístroje a pomôcky

Záznam merania, výpočty a výsledky

Tabuľka 1: Meranie polomeru hriadeľa.

meranie	1	2	3	4	5	6	7	8	9	10
$2r (\mathrm{mm})$										

Tabuľka 2: Stále veličiny. Nezabudnite ich uviesť aj s jednotkami.

hmotnosť zotrvačníka	polomer hriadeľa	najnižia poloha zotrvačníka			
m =	r =	$y_{z} =$			

Tabuľka 3: Meranie silv od	poru. Pokiaľ neuvediete inak,	používajte jednotky cm a N .
----------------------------	-------------------------------	--

i	1	2	3	4	5	6	7	8	9	10
y_0										
y_1										
$y_0 - y_1$										
$s_{\mathbf{k}} = y_0 - y_{\mathbf{z}}$										
$s_{\rm s} = y_1 - y_{\rm z}$										
F										

Sem vpíšte jeden konkrétny výpočet s uvedením veľkostí a rozmerov (jednotiek) fyzikálnych veličín:

$$F =$$

Aritmetický priemer sily: F =

Smerodajná odchýlka aritmetického primeru sily: $s_F =$

Tabuľka 4: Meranie momentu zotrvačnosti.

i	1	2	3	4	5	6	7	8	9	10
y_0										
y_1										
$y_0 - y_1$										
$s_{\mathbf{k}} = y_0 - y_{\mathbf{z}}$										
$s_{\rm s} = y_1 - y_{\rm z}$										
t_0										
$t_{ m z}$										
$t_{ m h}$										
$\Delta t_{\rm k} = t_{\rm z} - t_0$ $\Delta t_{\rm s} = t_{\rm h} - t_{\rm z}$										
$\Delta t_{\rm s} = t_{\rm h} - t_{\rm z}$										
J_{0i}										

Sem vpíšte jeden konkrétny výpočet s uvedením veľkostí a rozmerov fyzikálnych veličín [podľa vzťahu (8)]:

$$J_{0i} =$$

Aritmetický priemer momentov zotrvačnosti:

$$\bar{J}_0 = \frac{1}{n} \sum_{i=1}^n J_{0i} =$$

Smerodajná odchýlka aritmetického priemeru:

$$s_J = \sqrt{\frac{\sum_{i=1}^{n} (J_{0i} - \bar{J}_0)^2}{n(n-1)}}$$

Výsledok merania s uvedením neistoty merania:

$$J_0 =$$

Prílohy

 $\bullet\,$ graf závislosti sily odporuFod začiatočej výšky y_0

Zhodnotenie výsledkov

Dátum odovzdania protokolu:

Podpis študenta:

Hodnotenie a podpis učiteľa: