제3장 관용 암호 방식

한국IT 정보보안학부

수업 내용

- ❖ 환자 암호
- ❖ 전치 암호
- ❖ 적 암호(전치+환자)
- ❖ 스트림 암호
- ❖ 암호 해독
- Questions & Answers

관용 암호 방식

- ❖ 암호화와 복호화에 동일한 키를 사용
- ❖ 공통키 암호 방식 또는 암호화와 복호화 과정이 대 칭적이어서 대칭 암호 방식 이라고도 호칭함
- ❖ 수 천년 전부터 사용되어 오고 있는 암호 방식
- ❖ 평문의 문자를 다른 문자로 환자(치환)하거나 또는 문자의 위치를 바꾸는 전치과정으로 구성

환자 암호

환자 암호

- ❖ 시프트 암호
- ❖ 단순 환자 암호
- ❖ Affine 암호
- ❖ 동음이의 환자 암호
- ❖ 다표식 환자 암호
- ❖ 철자 환자 암호
 - Hill 암호
 - Playfair 암호

시프트 암호(시저암호, 카이사르암호)

- ❖ 환자 암호 중에 가장 간단한 방법.
 - 영문자를 순서대로 나열하고 일정 방향으로 일정 간격 시프트 (shift) 시키는 방법
 - 특히 시프트 간격을 3으로 한 경우를 Caesar 암호라고 한다.

시프트 암호

❖ Caesar 암호의 예 (k=3)

abcdefghijklmnopqrstuvwxyz DEFGHIJKLMNOPQRSTUVWXYZABC

평문 M information 암호문 C L Q I R U P D W L R Q

시프트 암호

❖ 수식 표현

abcdefghijk...z DEFGHIJKLMN...C

$$C = M + K \mod 26$$

 $K = 3$

a b c d e f g h i j k ... z 0 1 2 3 4 5 6 7 8 9 10 ... 25

예제

❖ 시프트 암호의 키가 K=11일 때, 다음의 평문 M을 암호화해 보자.

평문 substitution cipher

시프트 암호의 안전성

- ❖ 법 26을 이용한 시프트 암호는 안전하지 못하다.
- ❖ 침해자가 K에 0부터 25까지 키를 대입해보면 의미 있는 문장을 찾을 수 있음
- ❖ 시프트 암호는 이러한 소모적 공격(exhaustive key search)에 매우 취약함

예제

❖ 시프트 암호에 의한 암호문 C가 다음과 같다. 소모 적 공격으로 평문 M을 찾아보자.

암호문 RYGKBOIYEQODDSXQYX

단순 환자 암호(simple substitution)

- ❖ 평문 문자를 암호문 문자로 치환하는 방식
 - 알파벳을 임의의 알파벳으로 치환하는 방식
 - 평문과 암호문 알파벳을 일대일로 매핑
 - 알파벳 26자의 순열
 - 키의 개수: 26
- ❖ 평문 영문자를 무작위로 다른 영문자로 치환하여 암 호문을 만드는 단순 환자 암호표
 - p.68 [그림3.3] 참고
- ❖ 단순 환자 암호 복호표
 - p.69 [그림3.4] 참고

단순 환자 암호의 예

abedefghijklmnopqrstuvwxyz EGLTBNMQPAOWCRXHIYZDSFJKUV

평문 M information 암호문 C PRNXYCE DPXR

단순 환자 암호의 안전성

❖ 시프트 암호보다 전사공격에는 안전

키의 수 = 26!(약 4 * 10²⁶ 개)

❖ 빈도수에 의한 통계적 분석으로 해독 가능

- 충분한 길이의 암호문, 암호문의 양이 많을 수록 통계적 성질이 많이 유지되어 암호문 해독이 용이함
- p.69 [丑3.1], p.70 [丑3.2], [丑3.3]

Affine 암호

❖ 시프트 암호 방식

• $C \equiv M + K \mod 26$, K = 3

❖ Affine 암호

- $C \equiv K_1 M + K_2 \mod 26$
- $gcd(K_1, 26) = 1$
 - ax = b mod m 에서 gcd(a,m)=1 이면 유일한 해 x 존재함
 - m 과 서로소인 K1=1,3,5,7,9,11,15,17,19,21,23,25 12개
- 12개의 K₁ 과 26개의 K₂의 조합이 키가 될 수 있으므로 키 숫자 는 12*26=312

예제

❖ K₁=3, K₂=15 일 때 information security를 Affine 암호화 하자.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Affine 암호의 예

- ❖ K₁ = {1,3,5,7,9,11,15,17,19,21,23,25} 중
- $*K_1 = 3$
- ❖ K₂ = 2 일 때
- ❖ BAEKS을 암호화 하시오.

A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

동음이의 환자 암호

- ❖ 단순 환자 암호 방식처럼 언어 통계학적 성질을 이용한 해독에 취약한 것을 보완하기 위해 고안된 방식
- ❖ 암호문의 문자 빈도가 균등하게 분포되도록 만드는 방식

동음이의 환자 암호

❖ 미국의 T.J.Beale이 고안한 Beale 암호 방식

평문	빈도%	암 호 문	평문	빈도%	암 호 문
a	8.2	56, 20, 44, 35, 12, 38, 09, 29	n	6.7	89, 84, 73, 78, 68
b	1.5	04	0	7.5	67, 41, 62, 46, 43, 53, 16
с	2.8	11, 95	р	1.9	06
d	4.3	64, 71, 47, 39	q	0.1	10
e	12.7	48, 25, 19, 72, 80, 91, 93, 02, 92, 82, 79, 58	r	6	13, 66, 86, 88, 63, 36
f	2.2	21, 30	s	6.3	77, 94, 09, 87, 45, 22
g	2	81, 18	t	9.1	65, 55, 76, 23, 85, 74, 54, 57, 14
h	6.1	03, 59, 49, 70, 31, 17	u	2.8	08, 15
i	7	27, 42, 07, 83, 90, 60, 32	v	1	24
j	0.2	52	w	2.3	75, 40
k	0.8	96	x	0.1	37
1	4	61, 69, 51, 53	y	0.2	26
m	2.4	50, 34	z	0.1	28

동음이의 환자 암호의 예

❖ p.73 [최하단]

h	0	m	0	p	h	0	n	i	C	S	u	b	S	t	i
03	67	50	41	06	59	62	89	27	11	77	08	04	94	65	42

❖예)

```
informations ecurity
27 89 21 67 13 50 44 65 42 41 84 77 48 11 08 66 07 55 26
```

다표식 환자 암호 (Vigenere cipher)

❖ 다중문자치환(polyalphabetic substitution)

- 한번에 복수의 문자를 치환하는 암호방식
- 19th 세기에 알려져, 현재 "Vigenère cipher" 로 알려짐
- 일대일 매핑 방식의 암호는 통계적 공격에 안전하지 않기 때문에, 평문과 암호문의 알파벳 빈도수를 다르게 할 필요가 있음
- 현대 암호는 일대다 매핑 방식임
 - 암호문의 알파벳 빈도수 분포가 원문의 알파벳 빈도수 분포와 일치하지 않음
- 시저(카이사르) 암호 방식을 확장
 - 키를 구성하는 각각의 알파벳 크기 만큼 원문 알파벳을 오른쪽으로 시프트 함

다표식 환자 암호 (Vigenere cipher)

- ❖ 비즈네르 암호(Vigenere cipher)
 - 다표식 암호 중 반복키 암호
 - ▶ 단어나 구조로된 키워드를 필요만큼(평문자 수) 반복해 KEY 로 사용하는 암호방식

ex)

- 키 : apple
- 평문 : hello world
- 암호문 : htaws wdgwh

다표식 환자 암호(Vigenere cipher)표

평문 키워드	a	ь	С	d	е	f	g	h	i	j	k	1	m	n	0	p	q	ſ	s	t	u	v	w	х	у	z
A	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	Μ	Ν	0	P	Q	R	S	Т	U	V	W	Х	Y	Z
В	В	С	D	Ε	F	G	Н	Ι	J	K	L	Μ	Ν	0	P	Q	R	S	Т	U	V	W	X	Y	Z	Α
C	С	D	Ε	F	G	Н	Ι	J	K	L	Μ	Ν	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	Α	В
D	D	Ε	F	G	H	Ι	J	K	L	Μ	Ν	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	С
E	Ε	F	G	Н	I	J	K	L	Μ	Ν	0	P	Q	R	S	Т	U	V	W	X	Y	Z	Α	В	С	D
F	F	G	Н	Ι	J	K	L	M	Ν	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	С	D	Е
G	G	Н	Ι	J	K	L	М	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	С	D	Ε	F
H	H	Ι	J	K	L	M	Ν	0	P	Q	R	S	Т	U	V	W	X	Y	Z	Α	В	С	D	Ε	F	G
I	Ι	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	Х	Y	Z	Α	В	С	D	Ε	F	G	Η
J	J	K	L	М	N	0	P	Q	R	S	T	U	V	W	Х	Y	Z	Α	В	С	D	Ε	F	G	Η	Ι
K	K	L	М	Ν	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	С	D	Ε	F	G	Η	Ι	J
L	L	М	Ν	0	P	Q	R	S	T	U	V	W	Х	Y	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K
M	M	Ν	0	P	Q	R	S	T	U	V	W	Х	Y	Z	Α	В	С	D	Ε	F	G	Η	Ι	J	K	L
N	N	0	P	Q	R.	S	Т	U	V	W	Х	Y	Z	Α	В	С	D	Ε	F	G	Η	Ι	J	K	L	М
0	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	С	D	E	F	G	Н	Ι	J	K	L	М	Ν
P	P	Q	R	S	T	U	V	W	Х	Y	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	Ν	0
Q	Q	R	S	Т	U	V	W	X	Y	Z	Α	В	С	D	Ε	F	G	Η	Ι	J	K	L	М	Ν	0	P
R	R	S	Т	U	V	W	X	Y	Z	Α	В	С	D	Ε	F	G	Η	Ι	J	K	L	Μ	Ν	0	P	Q
S	S	Т	U	V	W	X	Y	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	Ν	О	P	Q	R
T	Т	U	V	W	X	Y	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	0	P	Q	R	S
U	U	V	W	Х	Y	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	Μ	Ν	0	P	Q	R	S	Т
V	V	W	X	Y	Z	A	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	Ν	0	P	Q	R	S	Т	U
W	W	Х	Y	Z	A	В	С	D	Ε	F	G	Η	Ι	J	K	L	Μ	Ν	О	P	Q	R	S	Т	U	V
X	X	Y	Z	A	В	С	D	Ε	F	G	Η	Ι	J	K	L	М	Ν	0	P	Q	R	S	Т	U	V	W
Y	Y	Z	A	В	С	D	Ε	F	G	Η	Ι	J	K	L	М	Ν	0	P	Q	R	S	T	U	V	W	X
Z	Z	Α	В	С	D	Ε	F	G	Η	Ι	J	Κ	L	Μ	Ν	0	P	Q	R	S	T	U	V	W	X	Y

예제

❖ 키워드 SECURITY로 Vigenere 암호 방식에 따라 다음을 암호화 해 보자

평문 thiscryptosystemisnotsecure 키워드 SECURITYSECURITYSECURITYSEC 암호문 LLKMTZRNLSUSJBXKAWPIKAXAMVG

철자 환자 암호

- ❖ Hill 암호
- ❖ Playfair 암호

철자 환자 암호 - Hill 암호

- ❖ 다형 환자 암호
- Polygram substitution cipher
- ❖ 두 문자 이상을 묶어 이들을 다른 문자나 숫자로 변환
- **❖ Invented by Lester S. Hill in 1929**

철자 환자 암호 - Hill 암호

❖ 철자 환자 암호 - Hill 암호

$$c_1 = k_{11}m_1 + k_{12}m_2 + k_{13}m_3$$

 $c_2 = k_{21}m_1 + k_{22}m_2 + k_{23}m_3$
 $c_3 = k_{31}m_1 + k_{32}m_2 + k_{33}m_3$
 $C = KM$
 $M = K^{-1}C = K^{-1}KM$

예제

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

❖ 다음 행렬 K로 Hill 암호 및 복호화 하기

$$M = op, K \equiv \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \mod 26, K^{-1} \equiv \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix} \mod 26$$

$$C \equiv MK \mod 26$$

$$C \equiv \begin{pmatrix} 14 & 15 \end{pmatrix} \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \mod 26$$

$$\equiv (154 + 45,112 + 105) \mod 26$$

$$\equiv$$
 (17,9) mod 26

$$\equiv RJ$$

$$M \equiv CK^{-1} \mod 26$$

$$C \equiv \begin{pmatrix} 17 & 9 \end{pmatrix} \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix} \mod 26$$

$$\equiv (119 + 207,306 + 99) \mod 26$$

$$\equiv (14,15) \bmod 26$$

$$\equiv op$$

The Playfair system was invented by <u>Charles Wheatstone</u>, who first described it in 1854.

Lord Playfair, who heavily promoted its use.

❖ Playfair 암호표의 예

TIGER

S A B C D

F H K L M

NOPQU

V W X Y Z

❖암호표 생성 규칙

- 키워드의 문자를 테이블에 좌→우, 위→아래 방향으로 하나씩 채움(단, 중복 문자는 버림)
- 나머지 남는 공간은 알파벳 순서로 채움
- 알파벳의 개수(25)를 맞추기 위해 일반적으로 "J" 를 생략 (J=I)
- 또는 많이 사용되지 않는"Q" 를 생략(Q=Z)

❖ Playfair 암호표의 예2

Using "playfair example" as the key, the table becomes

❖ Playfair 암호화 절차

- 먼저 평문의 띄어쓰기를 없애면서, 2문자씩 분리하는데
- 연속되는 문자(예 PP)가 있으면 같은 문자 사이에 X를 삽입(예 PXP)하여 같은 알파벳이 중복되지 않도록 하면서 다시 2문자씩 분리하는 방법을 계속함
- 전체의 글자 수가 홀수이면 맨 마지막에 X를 추가하여 짝수개로 만듬

❖ Playfair 암호화 절차

- 1) 동일 행에 $m_1 m_2$ 가 있으면 $c_1 c_2$ 는 우측문자
- 2) 동일 열에 $m_1 m_2$ 가 있 으면 $c_1 c_2$ 는 아래문자
- 3) 다른 행 열에 $m_1 m_2$ 가 있으면 $c_1 c_2$ 는 대각 문자

Hence, OR -> YZ

Hence, OR -> ZX

Hence, OR -> BY

예제

❖ 아래의 표를 참고하여 평문 informationsecurity를 Playfair암호화 하기

```
T I G E R
S A B C D
F H K L M
N O P Q U
V W X Y Z rmationsecurityx
学 学 至 七 - TOHNDUSIAWVFCLZDGIZY
```


전치 암호

전치 암호(transposition cipher)

❖ 평문 문자의 순서를 어떤 특별한 절차에 따라 재배 치하여 평문을 암호화하는 방식

- 평문의 알파벳 위치를 변경
- 평문의 알바펫들은 손실없이 유지됨
- 평문의 알파벳 빈도수 분포가 암호문에 그대로 유지됨

예1)레일펜스암호

• 열단위로 매핑하고 행단위로 읽기

예2) Row Transposition

- 평문을 행렬테이블에 행단위로 입력. 남는부분은 임의의문자
- 암호문은 키의 열 번호 순으로 읽기
- ❖ scytale 암호
- ❖ 단순전치 암호
- ❖ Nihilist 암호

scytale 암호

as bc cy dt ea fl ge

단순 전치 암호

- simple transposition cipher
- ❖ 정상적인 평문 배열을 특정한 키의 순서에 따라 평 문 배열을 재조정하여 암호화하는 방식

예제

❖ 단순 전치 암호의 키가 다음과 같을 때 information security를 암호화 하자

암호화

복호화

평문 informationsecurityxyzab 암호문 FRIMONINASOTUIETRCYAYBZX

Nihilist 암호

- ❖ 단순 전치 암호의 암호 강도를 높이기 위해 행은 물론 열에 대해서도 전치를 적용한 암호
- ❖ 키워드에 따라 먼저 행을 일정 간격으로 전치시키고 다시 키워드의 순서에 따라 열을 일정 간격으로 전 치시킨다.
- ❖ 때로는, 전치를 대각선 방향으로 하는 경우도 있다.

예제

❖ LEMON이라는 키워드를 이용한 Nihilist 암호를 구성해 보자

		L	E 1	\mathbf{M}	О	N
		2	1	3	5	4
L	2	h	t s f c i	i	i	s
E	2 1 3	g	S	o	d	0
\mathbf{M}	3	0	f	r	e	S
Ο	5	u	c	r	c	e
Ν	4	р	i	h	r	e

평문 thisisgood for securecipher 암호문 GSODOHTIISOFRE SPIHREUCRCE

적 암호

적 암호(product cipher)

- ❖ 암호 강도를 향상시키기 위해 전치와 환자를 혼합한 암호 방식
- ❖ 대표적인 예
 - 제 1차 세계 대전 때 독일군이 사용하던 ADFGVX 암호
- ❖ 대부분의 현대 관용 암호 방식은 적 암호 방식을 이용하고 있음

적 암호

- ❖ ADFGVX 암호
- Feistel
- **DES**
- Rijndael(AES)
- **❖ SEED**

ADFGVX 암호

❖ ADFGVX의 여섯 개의 문자를 행과 열로 나열한 다음 36개의 열과 행이 직교하는 위치에 26개의 문자와 10개의 숫자를 무작위로 대입하여 암호화

ADFGVX 암호

❖ ADFGVX 암호 환자표

	Α	D	F	G	\vee	Χ
Α	f	X g b j 4	а	9	u	1
D	n	g	0		d	0
F	5	b	k	2	h	Z
G	m	j	S	У	t	V
V	7	4	3	е	8	i
Χ	С	W	q	6	r	р

예제

- ❖ 평문 conventional cryptography를 앞의 표에 따라 전치 키워드 CIPHER로 ADFGVX 암호화해 보자.
 - 중간 암호문 작성(환자)

C O N V e N t i O N a l 전치 XA DX DA GX VG DA GV VX DX DA AF DG

С	r	У	р	t	0	g	r	а	р	h	у
XA	XV	GG	XX	GV	DX	DD	XV	AF	XX	FV	GG

[참고] Claude Shannon

- Claude Elwood Shannon
- April 30, 1916 February 24, 2001
- an American electronic engineer and mathematician, is known as "the father of information theory". Claude Elwood Shannon
- ❖정보이론의 아버지

Feistel 암호

❖ Shannon의 암호 이론을 근거로 전치와 환자를 반복 적용한 적 암호를 구성함

❖ 간편한 방식과 암호의 안전성이 높아 대부분의 현대 관용 암호 방식 설계에 Feistel 암호 방식이 이용되 고 있음

Feistel 암호 방식

Feistel 암호 방식

❖ 관계식

$$LE_{16} = RE_{15}$$

$$RE_{16} = LE_{15} \bigoplus f(RE_{15}, K_{16})$$

Feistel 암호 방식의 복호화 과정

❖ 복호화 과정

$$LD_1 = RD_0 = LE_{16} = RE_{15}$$

 $RD_1 = LD_0 \oplus f(RD_0, K_{16})$
 $= RE_{16} \oplus f(RD_0, K_{16})$
 $= [LE_{15} \oplus f(RE_{15}, K_{16})] \oplus f(RE_{15}, K_{16})$
 $= LE_{15}$
 $LD_{16} = RE_0$
 $RD_{16} = LE_0$

$$A \oplus B \oplus B = A$$

스트림 암호

스트림 암호

- ❖ 비트 단위의 암호화를 수행
- ❖메시지열과 키계열을 이진합하여 암호화하는 방식

평문 10111011 암호문01111110 키계열 11000101 키계열11000101 암호문 01111110 평문 10111011

스트림 암호

- ❖ 스트림 암호 방식의 암호 강도는 키 계열의 무작위성이 결정한다.
- ❖ 키스트림의 비예측성(unpredictability)을 충족하기 위해서 최대주기, 선형복잡도, 난수성 필요
- ❖ 일반적으로 키 계열은 선형 궤환 시프트 레지스터 (linear feedback shift register, LFSR)를 이용하여 생성함

4단 선형 궤환 시프트 레지스터

❖ 플립플롭의 초기값은 모두 0이어서는 안됨

- 왜냐하면, 출력 키 계열은 계속해서 0만 출력함
- 스트림 암호는 암호문과 평문이 동일하게 됨

예제

❖ [그림3.8]의 선형 궤환 시프트 레지스터의 플립플롭 F/F_i 의 초기값이 1010일 때 키 계열을 구해 보자.

암호 해독

환자 암호의 해독

암호 해독

- ❖ 암호 방식의 정규 참여자가 아닌 제삼자로 암호문으로부터 평문을 찾으려는 시도를 암호 해독 또는 공격이라 함
- ❖ 암호 해독자, 제삼자, 침해자
 - eavesdropper (사적인 대화를) 엿듣는 사람.

암호 해독 방법

- ❖ 암호문 단독 공격 (Ciphertext-only Attack)
- ❖ 기지 평문 공격 (Known-plaintext Attack)
- ❖ 선택 평문 공격 (Chosen-plaintext Attack)
- ❖ 선택 암호문 공격 (Chosen-ciphertext Attack)

암호문 단독 공격 (Ciphertext-only)

기지 평문 공격 (Known-plaintext)

선택 평문 공격 (Chosen-plaintext)

선택 암호문 공격 (Chosen-ciphertext)

[참고] 환자 암호의 해독

❖ 교재 p.94

연습문제

- 환자 암호방식, 전치 암호방식, 적 암호 방식에 대해 각각 설명하고 간단히 예를 들어 보라.
- 2. 시프트암호의 키가 9 일때 다음의 암호문을 복호화 하라.

암호문 : yujrwcngc

3. CIPHER 라는 키워드를 사용하여 Nihilist 암호를 구성하라.

평문: The name of the book is modern cryptography

4. 평문 modern cryptography를 다음의 표에 따라 ADFGVX 암호화 하라. (단,전치키워드는 cryoto이다)

	A	D	F	G	V	X
A	p	a	0	2	1	X
D	d	q	u	k	g	3
F	7	4	h	6	y	t
G	С	i	v	9	b	5
V	r	0	Z	s	m	8
X	j	w	n	e	1	f