D. Maximum Xor Secondary

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard output

Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers $x_1, x_2, ..., x_k \ (k \ge 1)$ is such maximum element x_i , that the following inequality holds: .

The lucky number of the sequence of distinct positive integers $x_1, x_2, ..., x_k (k \ge 1)$ is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence.

You've got a sequence of distinct positive integers $s_1, s_2, ..., s_n$ ($n \ge 1$). Let's denote sequence $s_l, s_{l+1}, ..., s_r$ as s[l..r] ($1 \le l \le r \le n$). Your task is to find the maximum number among all lucky numbers of sequences s[l..r].

Note that as all numbers in sequence *s* are distinct, all the given definitions make sence.

Input

The first line contains integer n ($1 \le n \le 10^5$). The second line contains n distinct integers $s_1, s_2, ..., s_n$ ($1 \le s_i \le 10^9$).

Output

Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r].

Examples

```
input

5 2 1 4 3

output

7
```

```
input
5
9 8 3 5 7

output
15
```

Note

For the first sample you can choose $s[4..5] = \{4, 3\}$ and its lucky number is (4 xor 3) = 7. You can also choose s[1..2].

For the second sample you must choose $s[2..5] = \{8, 3, 5, 7\}$.