CONTRACTS: PRACTICAL CONTRIBUTION INCENTIVES FOR P2P LIVE STREAMING

April 7, 2010

Introduction

NSDI'2010

Authors: Michael Piatek¹, Arvind Krishnamurthy¹, Arun Venkataramani², Richard Yang³, David Zhang⁴, Alexander Jaffe¹

Principal Ways Where Contracts Differs from Existing Techniques

- A contract specifies an agreement between a client and the overall system
- Incentives for peers meet the global optimization requirements

Steps

- 1. Measurements show the limits of bilateral trading
- 2. Contracts

¹U. of Washington

²U. of Mass

³Yale

⁴PPLive

STRUCTURING FOR PERFORMANCE AND INCENTIVES

CONTRACTS
Contribution Contracts
Topology Updating Policy

EVALUATION

STRUCTURING FOR PERFORMANCE AND INCENTIVES

Contracts

Contribution Contracts
Topology Updating Policy

EVALUATION

- Heterogeneity
- Limited bandwidth needs
- Limited trading opportunities
- Delay sensitivity

- μ , σ : respectively denote the mean and variance of upload capacity
- S: the skew of upload capacity distribution, $S = \sigma/\mu$
- E: the efficiency, $E = r/\mu$, where r is the stream rate
- ullet I: the imbalance, $I=rac{1}{\mu}[rac{\sum_i(x_i-r)^2}{N}]^{1/2}$

THEOREM

High efficiency and high skew imply high imbalance. Specifically, (a) If peers upload at a rate proportional to their capacity, $I = E \cdot S$. (b) For any feasible set of upload rates, I is bounded from below by a function that monotonically increases from 0 to S as E increases from 0 to S

- Heterogeneity
- Limited bandwidth needs
- Limited trading opportunities
- Delay sensitivity

In live streaming, once a client is downloading data at the rate of production, a further increase in download rate is not possible

Live streaming provides clients limited opportunities for mutually beneficial trading

- Heterogeneity
- Limited bandwidth needs
- Limited trading opportunities
- Delay sensitivity

FIGURE: The impact of distance from the broadcast source on bilateral exchange. Requiring balanced exchange significantly limits trading opportunities as does distance from the source

THEOREM

Any topology in which a peer i has lower bandwidth than peer j but i has more descendants than j has higher average block delay than the topology obtained by swapping i and j if one of the following two conditions hold: (a) the topology is a balanced tree, or (b) i is an ancestor of j

- Heterogeneity
- Limited bandwidth needs
- Limited trading opportunities
- Delay sensitivity

FIGURE: Illustration for Theorem \ref{figure} : Node \ref{figure} has higher upload capacity than node \ref{figure} but has fewer descendants

STRUCTURING FOR PERFORMANCE AND INCENTIVES

Contracts

Contribution Contracts
Topology Updating Policy

EVALUATION

STRUCTURING FOR PERFORMANCE AND INCENTIVES

- High download rate v.s. robust playback quality
- Placing high capacity peers close to the source have two benefits
 - ► Overall playback quality
 - ► Local playback quality

FIGURE: Cumulative fraction of clients with a given block delivery rate for different topologies. Placing high capacity clients near the source improves quality

FIGURE: The fraction of blocks missing playback deadlines as a function of distance from the broadcast source. Playback quality is best for clients nearest to the source

STRUCTURING FOR PERFORMANCE AND INCENTIVES

Contracts

Contribution Contracts
Topology Updating Policy

EVALUATION

Contracts

Design choices motivated by the considerations unique to live streaming

• Contracts rather than bilateral reciprocation

Contracts

Design choices motivated by the considerations unique to live streaming

- Contracts rather than bilateral reciprocation
- Global topology optimization

STRUCTURING FOR PERFORMANCE AND INCENTIVES

Contracts

Contribution Contracts

Topology Updating Policy

EVALUATION

CONTRIBUTION CONTRACTS

Performance metrics:

- $B(x \to y)$: the contribution rate from x to y
- \bullet B(x): the total rate contributed by node x
- BC(x): the discrete classes mapped from B(x) the deciles of the observed capacity distribution from PPLive

CONTRIBUTION CONTRACTS (CONT.)

I(x) is the one-hop propagation of x's contributions:

$$I(x) = \sum_{p \in peers(x)} B(x \to p) \cdot D_{BW}(BC(p))$$

 $D_{BW} \in [0,1]$ is a weight specified by the cumulative distribution function of peer upload capacities

FIGURE: Evaluation / for client 1. Contribution from $1 \rightarrow 2$ is weighted by rates from $2 \rightarrow 3, 4, 5$. Contribution of $1 \rightarrow 3$ is weighted by the rates from $3 \rightarrow 2, 6$

CONTRIBUTION CONTRACTS (CONT.)

Global evaluation function V(x) with comparison operator:

$$V(x) > V(y) \iff BC(x) > BC(y) \text{ or}$$

 $BC(x) = BC(y) \text{ and } I(x) > I(y)$

- Peer selection: Each node selects the top k peers by rank-ordering their $V(\cdot)$ values
- Block request servicing: Each client prioritizes requests with the maximum $B(\cdot)$ value

STRUCTURING FOR PERFORMANCE AND INCENTIVES

Contracts

Contribution Contracts
Topology Updating Policy

EVALUATION

- Incentive-aware gossip
- Bootstrapping new clients
- Verifying contributions
- Collusion resistance

- Each client is aware of the capacities $BC(\cdot)$ of its one-hop neighbors
- It sorts $p \in (Peers \circ Peers)(c)$ by BC(p), and connects to them in descending order

Topology Updating Policy

- Incentive-aware gossip
- Bootstrapping new clients
- Verifying contributions
- Collusion resistance

- Each client is aware of the capacities $BC(\cdot)$ of its one-hop neighbors
- It sorts $p \in (Peers \circ Peers)(c)$ by BC(p), and connects to them in descending order

FIGURE: Suppose $BC(y_1) > BC(x_1)$, E would increase its V-value by sending to y_1 directly rather than through x_1

- Incentive-aware gossip
- Bootstrapping new clients
- Verifying contributions
- Collusion resistance

- New clients are typically placed far from the data source and overlooked
- Contracts clients advertise a bootstrapping block to inform excess capacity
- ullet The probability of requesting bootstrapping blocks: $1-\frac{\text{Peers with excess capacity}}{\text{Total peers}}$

- Incentive-aware gossip
- Bootstrapping new clients
- Verifying contributions
- Collusion resistance

- P sends Q a receipt containing $< N_Q, K_P \rightarrow K_Q : V >_{K_P}$
- Receipts are used to verify the contribution in both distributed and centralized manners

- Incentive-aware gossip
- Bootstrapping new clients
- Verifying contributions
- Collusion

- Limited identity creation
- Flow integrity check
- Global and diversity weighting

STRUCTURING FOR PERFORMANCE AND INCENTIVES

Contracts

Contribution Contracts
Topology Updating Policy

EVALUATION

PERFORMANCE AND INCENTIVES

Performance

FIGURE: Performance comparison of unmodified FlightPath, PPLive, rate-based tit-for-tat, and Contracts

Incentives

FIGURE: Delivery rate as a function of contribution

Convergence

- Client capacity: Low capacity peers can quickly discover the stable matchings, while high capacity peers need several rounds to stabilize
- The number of clients: The number of rounds increases logarithmically with the number of joining peers

FIGURE: The number of peer exchanges required for a set of newly joined clients to reach stable places in the topology

STRUCTURING FOR PERFORMANCE AND INCENTIVES

Contracts

Contribution Contracts
Topology Updating Policy

EVALUATION

Conclusion

Peer resource (upload capacity) \Downarrow Robust playback quality \Downarrow Topology optimization

THANKS

The end, thank you.

Theorem 1

$$E \cdot S = \frac{r}{\mu^{2}} \sigma$$

$$= \frac{r}{\mu^{2}} \left[\sum_{i} \frac{1}{N} (c_{i} - \mu)^{2} \right]^{1/2}$$

$$= \frac{1}{\mu} \left[\sum_{i} \frac{1}{N} \left(\frac{c_{i}^{2}}{\mu^{2}} r^{2} + r^{2} - 2 \frac{c_{i}}{\mu} r^{2} \right) \right]^{1/2}$$

$$= \frac{1}{\mu} \left[\sum_{i} \frac{1}{N} \left(\frac{(f \cdot x_{i})^{2}}{\mu^{2}} r^{2} + r^{2} - 2 \frac{f \cdot x_{i}}{\mu} r^{2} \right) \right]^{1/2}$$

$$= \frac{1}{\mu} \left[\sum_{i} \frac{1}{N} (x_{i}^{2} + r^{2} - 2x_{i}r) \right]^{1/2}$$

$$= I$$

$$f = \frac{c_i}{x_i} = \frac{\mu}{r}$$