Food Inspections For the Ordinary

My Domain Knowledge

Inspection Grade

The Problem

& Proposed Solution

Restaurant health inspection records are public but often stored in difficult-to-navigate formats, making it hard for customers to access crucial information about prior violations. My goal with **FiFo** is to present this data in a clear, engaging way to help people make informed dining choices.

"Encourage people to make more educated & healthier choices on things which may impact their health and well-being greatly."

01 The Data

Exploring, cleaning, and visualising the **Chicago Food Inspections** dataset.

Inspection Type Ratios

Inspection Type Ratios Canvass Standard Inspection Inspection Due to Customer Complaint Standard Re-Inspection Inspection Required Inspection to Open **Revisiting Complaint Inspection** Revisiting Inspection to Open Suspected Food Poisoning (Uh Oh!) Revisiting Suspected Food Poisoning

0.0

0.1

0.2

0.3

0.4

0.5

Inspection Type Ratios

Designing New Features

Violation Count - First vs. Second Visit

Violation Count - First vs. Second Visit

Distribution of Average Severity Levels

02 The Model

Predicting inspection results of Chicago restaurants.

Logistic Regression

Binary Classification - Pass / Fail

Logistic Regression

Binary Classification - Pass / Fail

Interpretability

Allow restaurant owners to understand the factors influencing inspection outcomes

Binary Classification - Pass / Fail

Interpretability

Allow restaurant owners to understand the factors influencing inspection outcomes

Recall

Minimize the risk of missing critical inspection failures

Class Balance

77.04%

(Negative Class)
Pass

22.96%

(Positive Class)

Pipeline

Iterations	Accuracy	Precision	Recall	F1
First	87%	76%	60%	67%

Iterations	Accuracy	Precision	Recall	F1
First	87%	76%	60%	67%
Second	86%	67%	77%	71%

Iterations	Accuracy	Precision	Recall	F1
First	87%	76%	60%	67%
Second	86%	67%	77%	71%
Third	85%	64%	81%	71%

Iterations	Accuracy	Precision	Recall	F1
First	87%	76%	60%	67%
Second	86%	67%	77%	71%
Third	85%	64%	81%	71%

Recall vs. Accuracy

Recall vs. Accuracy 1.0 **Highest Recall** 0.8 Recall Accuracy **Score** 0.6 **Best Threshold** 0.2 0.0 0.0 0.2 0.4 0.6 8.0 1.0 **Threshold**

Model Conclusion

Model Conclusion

Potential Issues

Preprocessing Challenges

Broken Assumptions

<mark>03</mark> Арр

Running a demo in Streamlit

Future of Fifo

App Development

Many design features and graphs still needed but the demo was really fun to build.

Model

Explore different classifiers apart from **Logistic Regression**

Next Steps

- Explore more in depth each violation and its nuances.
- Scaling my work to apply for multiple cities and different types of establishments.

Thank you!

