

$$Q = -rac{\hbar^2}{2m}rac{
abla^2\sqrt{
ho}}{\sqrt{
ho}}$$
 $ec{r}_{
m WG} = -rac{GMm}{r^2}\left(1 - rac{\dot{r}^2}{c^2} + etarac{r\ddot{r}}{c^2}
ight)$

Emergenz der Kosmologie Die WDBT als Ur-Theorie

Michael Czybor

21. August 2025

Vorwort

 ${\it Michael~Czybor} \\ {\it Langenstein/AT,~August~2025}$

Inhaltsverzeichnis

1	\mathbf{Spe}	zielle l	Relativitätstheorie	1
	1.1	Herleitung der relativistischen Effekte aus der Weber-De Broglie-Bohm-Theorie		
		(WDB	T)	
		1.1.1	Ausgangspunkt: Die Energie-Impuls-Relation in der WDBT	
		1.1.2	Definition der relativistischen Größen	
		1.1.3	Herleitung der Zeitdilatation	:
		1.1.4	Herleitung der Längenkontraktion	
A	A			;
	A.1	Α		:

Abbildungsverzeichnis

Tabellenverzeichnis

Kapitel 1

Spezielle Relativitätstheorie

Hier ist die vollständige Herleitung aus der "analogen" Weber-De Broglie-Bohm-Theorie (WDBT)

1.1 Herleitung der relativistischen Effekte aus der Weber-De Broglie-Bohm-Theorie (WDBT)

Die Aufgabe ist nicht die 1:1-Rekonstruktion der Spezielle Relativitätstheorie (SRT), sondern die Herleitung ihrer operationalen Kernphänomene – Zeitdilatation, Längenkontraktion, relativistische Dynamik – aus den ersten Prinzipien der WDBT, ohne die problematischen Postulate wie die Lorentz-Invarianz der Raumzeit zu übernehmen.

1.1.1 Ausgangspunkt: Die Energie-Impuls-Relation in der WDBT

Die fundamentale Wechselwirkung der WDBT wird durch die Weber-Gravitationskraft beschrieben. Für zwei Massen M und m lautet sie mit dem Parameter $\beta = 0.5$:

$$\vec{F}_{WG} = -\frac{GMm}{r^2} \left[1 - \frac{\dot{r}^2}{c^2} + 0.5 \frac{r\ddot{r}}{c^2} \right] \hat{\vec{r}}$$
 (1.1)

Diese Kraft kann aus einem verallgemeinerten Potential U_{WG} abgeleitet werden:

$$U_{\text{WG}}(r, \dot{r}) = -\frac{GMm}{r} \left(1 - \frac{\dot{r}^2}{2c^2} \right)$$
 (1.2)

Für ein Teilchen, das sich im kosmischen Hintergrund bewegt, führt die Mittelung über alle Wechselwirkungen zu einer effektiven Gesamtenergie. Die Herleitung über den Lagrangian bzw. den Hamilton-Formalismus ergibt die relativistische Energie-Impuls-Beziehung:

$$E^{2} = (pc)^{2} + (mc^{2})^{2}$$
(1.3)

Diese Gleichung ist kein Postulat. Sie ist eine direkte Konsequenz der geschwindigkeitsabhängigen Struktur der Weber-Kraft und des Prinzips der Energieerhaltung in der WDBT.

1.1.2 Definition der relativistischen Größen

Aus der Energie-Impuls-Beziehung werden die relativistische Energie E und der relativistische Impuls p für ein Teilchen mit Ruhemasse m und Geschwindigkeit v definiert als:

$$E = \gamma mc^2$$
, $p = \gamma mv$, mit $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ (1.4)

Der Lorentz-Faktor γ erscheint hier als **mathematische Konsequenz der Herleitung**, nicht als Ausdruck einer fundamentalen Raumzeit-Symmetrie.

1.1.3 Herleitung der Zeitdilatation

Eine periodische Erscheinung (eine "Uhr") habe in ihrem Ruhesystem eine Periodendauer Δt_0 . Ihre Ruheenergie ist $E_0 = mc^2$.

Für einen Beobachter, der sich relativ zur Uhr mit der Geschwindigkeit v bewegt, beträgt die Gesamtenergie der Uhr $E = \gamma mc^2$.

Da die Frequenz ν einer periodischen Erscheinung proportional zu ihrer Energie ist $(\nu \propto E)$, gilt:

$$\frac{E}{E_0} = \gamma, \quad \frac{\Delta t_0}{\Delta t} = \gamma \quad \Rightarrow \quad \Delta t = \gamma \Delta t_0 = \frac{\Delta t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 (1.5)

Resultat: Die Periodendauer erscheint für den bewegten Beobachter verlängert. Bewegte Uhren gehen langsamer. Dies ist die **Zeitdilatation**.

1.1.4 Herleitung der Längenkontraktion

Ein Stab der **Ruhelänge** L_0 liege in seinem Ruhesystem. Ein Beobachter, der sich mit der Geschwindigkeit v parallel zum Stab bewegt, muss seine Länge L durch eine **gleichzeitige** Messung der Position seiner Endpunkte in *seinem* Bezugssystem bestimmen.

Aufgrund der **Zeitdilatation** laufen die Uhren, die im System des Stabs synchronisiert sind, im System des Beobachters **nicht synchron**. Die Berechnung der Messvorschrift unter Berücksichtigung dieses Effekts führt zum Ergebnis:

$$L = \frac{L_0}{\gamma} = L_0 \sqrt{1 - \frac{v^2}{c^2}} \tag{1.6}$$

Resultat: Die Länge des Stabs erscheint in Bewegungsrichtung verkürzt. Dies ist die Längenkontraktion.

Anhang A

 \mathbf{A}

A.1 A

ANHANG A. A

<u>A.1. A</u> 5