CS 480 – Introduction to Artificial Intelligence

TOPIC: LOGICAL AGENTS

CHAPTER: 7

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

HUMANLY VS. RATIONALLY & THINKING VS. ACTING

Humanly Rationally

Think

Act

Thinking humanly	Thinking rationally
Acting humanly	Acting rationally

- This class: acting rationally.
- •Acting rationally requires thinking rationally.
- •This lecture: thinking rationally.

Model-Based Reflex Agents

3

Model-Based & Goal-Based Agent

4

KNOWLEDGE-BASED AGENTS

- Knowledge base (KB): A set of sentences
- Sentence
 - Expressed in a knowledge representation language
 - Represents some assertion about the world

INFERENCE

- Given a KB, we would like to
 - Generate new sentences and them to the KB
 - Ask what is known
- This is called **inference**
- Adding new sentences: **TELL**
- Querying KB: ASK

KB-AGENT

function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t)) $action \leftarrow Ask(KB, Make-Action-Query(<math>t$)) Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t+1$ return action

7

RUNNING EXAMPLE – THE WUMPUS WORLD

- The Wumpus computer game
- The agent explores a cave consisting of rooms connected by passageways.
- Lurking somewhere in the cave is the Wumpus, a beast that eats any agent that enters its room.
- Some rooms contain bottomless pits that trap any agent that wanders into the room.
- Occasionally, there is a heap of gold in a room.
- The goal is to collect the gold and exit the cave without being eaten

A Typical Wumpus World

4	SSSSS Stench		-Breeze	PIT
3	10 B 1	Breeze SStench S Gold	PIT	Breeze
2	SSSSS Stench		Breeze	
1	START	-Breeze	PIT	Breeze
	1	2	3	4

9

WUMPUS PEAS

• Performance measure:

gold +1000, death -1000, -1 per step, -10 use arrow

• Environment:

Squares adjacent to wumpus are smelly

Squares adjacent to pit are breezy

Glitter iff gold is in the same square

Bump iff move into a wall

Shooting kills wumpus if you are facing it

Woeful scream iff the wumpus is killed

Shooting uses up the only arrow

Grabbing picks up gold if in same square

- Actuators: Left turn, Right turn, Forward, Grab, Shoot
- Sensors: Stench, Breeze, Glitter, Bump, Scream

A Typical Wumpus World

- Start at [1,1]
- o The task is to

 find the gold,

 grab it, return to

 [1,1], and climb

 out

SSSSS Stench		Breeze	PIT
4000	Breeze SSSSSS Stench Gold	PIT	Breeze
SSSSSSS Stench		Breeze	
START	Breeze	PIT	Breeze
1	2	3	4

11

ENVIRONMENT CHARACTERISTICS

- Observable?
 - No, only local perception
- Deterministic?
 - Yes, outcome exactly specified
- Episodic or Sequential?
 - Sequential
- Static?
 - Yes, the Wumpus and pits do not move
- Discrete?
 - Yes
- Single-agent?
 - Yes, Wumpus acts as a feature

THE FIRST STEPS

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

Percept: {Stench?,Breeze?, Glitter?,Bump?, Scream?}

The first perceptis {None, None,None, None,None}

THE NEXT STEP

- Forward
 - The agent is in $\{2,1\}$.
- The percept is
 - {None, Breeze,None, None,None}
- What can we infer?

V OK	B OK	Pi	
1,1	2,1	3,1 P?	4,1
ОК			
1,2	2,2 P ?	3,2	4,2
1,3	2,3	3,3	4,3
1,4	2,4	3,4	4,4

THE NEXT STEPS

- Left turn, left turn, forward, forward, right turn, forward
 - At [1,2]
- The percept is {Stench, None,None, None, None}
- What can we infer?

1,4	2,4	3,4	4,4
.,.	_, .	0, .	.,.
l .			
l .			
l			
1.0	2.2	2.2	4.2
^{1,3} w!	2,3	3,3	4,3
l			
l			
1.0	0.0	0.0	4.0
1,2	2,2	3,2	4,2
S			
OK	OK		
1,1	2,1 _P	3,1	4,1
1 ', '	^{2, 1} B	^{3, 1} P!	7,1
\mathbf{v}	\mathbf{v}		
OK			
UK	OK		

Logic

- A formal language
 - Syntax what expressions are legal (well-formed)
 - **Semantics** what legal expressions mean
 - in logic the truth of each sentence with respect to each possible world.
- E.g., the language of arithmetic
 - x+y = 4 is a sentence, x4+y= is not a sentence
 - x+y = 4 is true in a world where x=1 and y=3
 - x+y = 4 is false in a world where x=0 and y=6

MODEL

- A **model** is a mathematical abstraction of a possible world
- Very much like arithmetic, logic expressions (sentences), contain variables
 - A possible world (a model), is an assignment of values to those variables
- If a sentence α is true in a model m, then we say m satisfies α , or m is a model of α
 - $M(\alpha)$: The set of all models of α
- Example:
 - x+y=4, where x and y are non-negative integers, is a sentence
 - What are the possible worlds (models) in this domain?
 - Which model(s) satisfy this sentence, i.e., what is M(x+y=4)?

MODEL EXAMPLE – PIT? IN [3,1], [1,2], [2,2]

Why do we have eight models? Which model(s) satisfy "No Pit in [1,2]"?

Logical Reasoning — Entailment

- We would like to both
 - Add new sentences
 - Ask queries
- Does a sentence β follow logically from another sentence α? Does α entail β?
 - $\alpha \models \beta$?
- $\alpha \models \beta$ if and only if, in every model in which α is true, β is also true.

$$M(\alpha) \subseteq M(\beta)$$

KB = A SENTENCE?

- The percepts, combined with the knowledge of how the world works, constitute the KB
- KB can be thought of a set of sentences or a giant sentence that asserts all the individual sentences
 - Thus, it makes perfect sense to ask whether KB is true or false *and* whether it entails another sentence
- KB is false in models that contradict what the agent knows

M(KB) IN THE WUMPUS WORLD

21

WHAT IS M(NO PIT IN [1,2])?

22

WHAT IS M(No Pit in [2,2])?

CS 480 – Introduction to Artificial Intelligence – Illinois Institute of Technology

LOGICAL INFERENCE

- The notion of entailment can be used for logical inference
 - Model checking: enumerate all possible models and check whether α is true.
- If an algorithm derives only entailed sentences it is called **sound** or **truth preserving**
 - Otherwise it just makes things up. i is sound if whenever $KB \mid -i$ α it is also true that $KB \mid = \alpha$
- Completeness: the algorithm can derive any sentence that is entailed.
 - *i* is complete if whenever $KB \mid = \alpha$ it is also true that $KB \mid -_i \alpha$

WE'LL COVER TWO TYPES OF LOGIC

- Propositional logic
 - $A \wedge B \Rightarrow C$
- First-order logic
 - $(\forall x)(\exists y)$ Mother(y,x)

PROPOSITIONAL LOGIC LANGUAGE

- Propositional symbols
 - P, Q, R, ...
 - True, False
- Connectives
 - $\bullet \quad \neg, \, \land, \, \lor, \, \Rightarrow, \, \Leftarrow, \, \Leftrightarrow$

More on the Connectives

- $\circ \neg$ (negation)
- \circ \wedge (and): $P \wedge Q$ is called a **conjunction** and P and Q are **conjuncts**
- v (or): P v Q is called a disjunction and P and Q are disjuncts
- $\circ \Rightarrow$ (implies): $P \Rightarrow Q$ is called an **implication**. P is the **premise** or **antecedent** and Q is its **conclusion** or **consequent**
- $\circ \Leftrightarrow$ (if and only if): $P \Leftrightarrow Q$ is called a **biconditional**

SYNTAX

- Sentence → AtomicSentence | ComplexSentence
- o AtomicSentence → True | False | P | Q | R | ...
- \circ ComplexSentence \rightarrow
 - ¬ sentence
 - sentence \(\sigma \) sentence
 - sentence \vee sentence
 - sentence \Rightarrow sentence
 - sentence \Leftrightarrow sentence
- Operator precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow

SEMANTICS

- Semantics define the rules for determining the truth of a sentence with respect to a **model**
- A model fixes the truth value of for every proposition
- Going back to the Wumpus world

MODEL EXAMPLE – PIT? IN [3,1], [1,2], [2,2]

With n propositions, how many possible models are there?

SEMANTICS OF PROPOSITIONAL LOGIC

- It specifies how to determine the truth value of any sentence in a model *m*
- The truth value of *True* is *True*
- The truth value of False is False
- The truth value of each atomic sentence is given by *m*
- The truth value of every other sentence is obtained recursively by using truth tables

TRUTH RULES

- o ¬P is true iff P is false
- \circ P \wedge Q is true iff both P and Q are true
- PvQ is true iff either P or Q or both are true
- \circ P \Rightarrow Q is true unless P is true and Q is false
- P⇔Q is true iff P and Q have equal truth values;
 i.e., iff both P and Q are true or iff both P and Q
 are false

TRUTH TABLES

P	Q	$\neg \mathbf{P}$	P∧Q	PvQ	P⇒Q	P⇔Q
T	T					
T	F					
F	T					
F	F					

NEGATION

P	Q	$\neg \mathbf{P}$	P∧Q	PvQ	P⇒Q	P⇔Q
T	T	F				
T	F	F				
F	T	T				
F	F	T				

AND

P	Q	$\neg \mathbf{P}$	P∧Q	PvQ	P⇒Q	P⇔Q
T	T	F	T			
T	F	F	F			
F	T	T	F			
F	F	T	F			

$\mathbf{O}\mathbf{R}$

P	Q	$\neg \mathbf{P}$	$P \wedge Q$	P∨Q	P⇒Q	P⇔Q
T	T	F	T	T		
T	F	F	F	T		
F	T	T	F	T		
F	F	T	F	F		

IMPLICATION

P	Q	$\neg \mathbf{P}$	P∧Q	P∨Q	P⇒Q	P⇔Q
T	T	F	T	T	T	
T	F	F	F	T	F	
F	T	T	F	T	T	
F	F	T	F	F	T	

BICONDITIONAL

P	Q	$\neg \mathbf{P}$	P∧Q	P∨Q	P⇒Q	P⇔Q
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Possible Confusion about ⇒

- \circ P \Rightarrow Q is true unless P is true and Q is false
- If 5 is odd, then 7 is odd. T or F?
- If 5 is odd, then 10 is odd. T or F?
- If 5 is even, then 7 is even. T or F?
- If 5 is even, then 7 is odd. T or F?
- o If 5 is even, then 10 is even. T or F?
- If 5 is even, then Chicago is the capital of US. T or F?
- The key: Logic does not assume any causation or correlation between P and Q.

39

WUMPUS WORLD SENTENCES

- \circ P_{x,y} is true if there is a pit in [x,y]
- W_{x,y} is true if there is a wumpus in [x,y], dead or alive
- \circ B_{x,y} is true if the agent perceives a breeze in [x,y]
- \circ $S_{x,y}$ is true if the agent perceives a stench in [x,y]
- "A square is breezy if and only if there is an adjacent pit"
 - $B_{11} \Leftrightarrow P_{12} \vee P_{21}$
 - $B_{21} \Leftrightarrow ???$
- "A square is stenchy if and only if there is an adjacent wumpus"
- A few others for Glitter, Bump, Scream, wumpus being dead or alive, etc.

THE FIRST TWO STEPS

- \circ R₁: \neg P_{1,1}
- \circ R₂: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}
- \circ R₃: B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}
- \circ R₄: \neg B_{1,1}
- \circ R₅: B_{2,1}
- Does KB $\models \neg P_{1,2}$?

How can we check if KB entails $\neg P_{1,2}$?

ALGORITHMS

- 1. Model checking
- 2. Logical equivalence rules
- 3. Proof-by-contradiction
 - Resolution
- 4. Forward chaining
- 5. Backward chaining

Model Checking

- For all models of KB (i.e., for all possible worlds where KB is True), $\neg P_{1,2}$ has to be True.
- We have the following symbols:
 - $B_{1,1}, B_{2,1}, P_{1,1}, P_{1,2}, P_{2,1}, P_{2,2}, P_{3,1}$
- o How many possible worlds?

Model Checking

$\mathbf{B}_{1,1}$	$oxed{B_{2,1}}$	$P_{1,1}$	$\mathbf{P}_{1,2}$	$\mathbf{P}_{2,1}$	$\mathbf{P}_{2,2}$	$\mathbf{P}_{3,1}$	R_1	$ m R_2$	${f R}_3$	$ m R_4$	$ m R_{5}$	KB
T	T	T	T	T	T	T						
•••												
F	T	F	F	T	F	F						
F	T	F	F	F	T	T						
F	T	F	F	F	T	F						
F	T	F	F	F	F	T						
F	T	F	F	F	F	F						
•••												
F	F	F	F	F	F	F						

LOGICAL EQUIVALENCE

- Commutativity
 - $\alpha \wedge \beta \equiv \beta \wedge \alpha$
 - $\alpha \vee \beta \equiv \beta \vee \alpha$
- Associativity
 - $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$
 - $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$
- Double negation elimination
 - $\neg(\neg\alpha) \equiv \alpha$
- Contraposition
 - $\alpha \Rightarrow \beta \equiv \neg \beta \Rightarrow \neg \alpha$

LOGICAL EQUIVALENCE CONT.

- Implication elimination
 - $\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$
- Biconditional elimination
 - $\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
- De Morgan
 - $\neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$
 - $\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$
- Distributivity ∧ of over ∨
 - $\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$
- Distributivity of ∨ over ∧
 - $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$

INFERENCE RULES

- o Modus Ponens
 - Given
 - $\circ \alpha \Rightarrow \beta$
 - $\circ \alpha$
 - Conclude
 - ο β
- And-Elimination
 - Given
 - $\circ \alpha \wedge \beta$
 - Conclude
 - $\circ \alpha$
 - ο β

Prove $\neg P_{1,2}$ from R_1 through R_5

- \circ R₁: \neg P_{1,1}
- \circ R₂: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}
- \circ R₃: B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}
- \circ R₄: \neg B_{1.1}
- R₅: B_{2,1}

META-SOLUTION

- R6 = biconditional elimination from R2
- \circ R7 = and-elimination from R6
- R8 = controposition of R7
- R9 = modes ponens from R8 and R4
- \circ R10 = de morgan of R9

Note: We haven't used R1, R3, and R5. We used only R2 and R4. That is, we haven't touched the symbols $B_{2,1}$, $P_{1,1}$, $P_{2,2}$, and $P_{3,1}$ at all. Vanilla model checking would include these symbols.

SEARCHING FOR PROOFS

- o Initial state: the initial knowledge base
- Actions: apply one of the inference rules
- **Result**: add the derived sentence
- Goal: the sentence we are trying to prove

VALID

- A sentence is **valid** if it is true in *all* models
 - E.g, True, $P \vee \neg P$, False $\Rightarrow P$

• Deduction theorem:

- α | β if and only if the sentence α ⇒ β is valid
 How would you prove it?
- To check KB $\models \alpha$, we need to check if KB $\Rightarrow \alpha$ is valid

SATISFIABILITY

- A sentence is **satisfiable** if it is true in, or satisfied by, *some* model
- o How can you check satisfiability?
 - By enumerating all possible models until one is found
- Checking for satisfiability, SAT, is NP-complete

SATISFIABILITY AND VALIDITY

- Satisfiability and validity
 - A sentence α is valid iff $\neg \alpha$ is unsatisfiable
- Deduction theorem revisited
 - $\circ \alpha \models \beta$ iff the sentence $\alpha \Rightarrow \beta$ is valid
 - $\circ \alpha \models \beta$ iff the sentence $\neg(\alpha \Rightarrow \beta)$ is unstasfiable
 - $\circ \alpha \models \beta$ iff the sentence $\alpha \land \neg \beta$ is unstasfiable

ALGORITHMS

- 1. Model checking
- 2. Logical equivalence rules
- 3. Proof-by-contradiction
 - Resolution
- 4. Forward chaining
- 5. Backward chaining

PROOF BY CONTRADICTION

- To prove β entails from α , check the unsatisfiability of $\alpha \land \neg \beta$
 - Assume α is True
 - Assume β is False (i.e., assume $\neg \beta$ is True)
 - Show that this leads to a contradiction (i.e., it leads to False)
- To prove β entails from KB, check the unsatisfiability of KB $\land \neg \beta$
 - The agent already knows KB
 - The agent now assumes it knows $\neg \beta$
 - And then the agent arrives at a contradiction

RESOLUTION

Unit Resolution

- Given
 - $l_1 \lor ... \lor l_{i-1} \lor l_i \lor l_{i+1} \lor ... \lor l_k$
 - 2. u, where u and l_i are complementary (one is the negation of the other)
- Conclude

$$l_1 \vee ... \vee l_{i-1} \vee l_{i+1} \vee ... \vee l_k$$

- Example
 - o From R1: P $\vee \neg Q$ and R2: Q conclude R3: ?

RESOLUTION

• Full Resolution

- Given
 - $l_1 \lor l_1 \lor \ldots \lor l_{i-1} \lor l_i \lor l_{i+1} \lor \ldots \lor l_k$
 - 2. $u_1 \vee ... \vee u_{j-1} \vee u_j \vee u_{j+1} \vee ... \vee u_n$, where u_j and l_i are complementary (one is the negation of the other)
- Conclude

$$\bullet \ l_1 \lor \ldots \lor l_{\mathbf{i-1}} \lor l_{\mathbf{i+1}} \lor \ldots \lor l_{\mathbf{k}} \lor u_1 \lor \ldots \lor u_{\mathbf{j-1}} \lor u_{\mathbf{j+1}} \lor \ldots \lor u_{\mathbf{n}}$$

- Example
 - o From R1: P \vee Q and R2: \neg Q \vee \neg S conclude R3=?

A FEW EXAMPLES OF RESOLUTION

- Given:
 - $\bullet \quad P \vee Q$
 - ¬P
- Given:
 - $P \lor Q \lor R$
 - ¬Q ∨ 5
- Given:
 - $P \lor Q \lor R$
 - $\neg Q \lor R$

- Given:
 - P
 - ¬P
- Given:
 - \bullet P \vee Q
 - ¬P ∨ ¬Q
- Given:
 - $P \lor Q \lor \neg R$
 - $\neg Q \lor R$

CONJUCTIVE NORMAL FORM

- The resolution applies to clauses, i.e., disjunctions (v) of literals
- Every sentence of propositional logic can be converted into conjunctive normal form (CNF)
- CNF is conjunction (∧) of disjunctions (∨)
- Are the following in CNF form?
 - $P \Rightarrow Q$?
 - P \cdot Q ?
 - $P \wedge Q$?
 - $(P \vee Q) \wedge (R \vee S)$?
 - $(P \land Q) \lor (R \land S)$?

CONVERSION TO CNF

- 1. Eliminate ⇔
- 2. Eliminate \Rightarrow
- 3. Move inwards
- 4. Distribute \vee over \wedge

EXAMPLE CONVERSION

- \circ $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
- $\circ (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- \circ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- \circ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

RESOLUTION ALGORITHM

- o To prove KB $\models \alpha$, prove unsatisfiability of KB ∧ $\neg \alpha$
- First convert KB $\wedge \neg \alpha$ into CNF
- Then apply resolution until
 - No new clauses can be added
 - KB does not entail α
 - Empty clause is generated, i.e., contradiction
 - KB entails α

THE RESOLUTION ALGORITHM

Sound and complete

```
function PL-RESOLUTION(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
  clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha
  new \leftarrow \{ \}
  loop do
       for each pair of clauses C_i, C_j in clauses do
           resolvents \leftarrow PL-RESOLVE(C_i, C_j)
           if resolvents contains the empty clause then return true
           new \leftarrow new \cup resolvents
       if new \subseteq clauses then return false
       clauses \leftarrow clauses \cup new
```

AN APPLICATION OF RESOLUTION

- No Breeze in [1,1]
- Prove that there is no pit in neighboring squares
- KB is: $(B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1}$
- o Prove: $\neg P_{1,2}$

A MORE RESTRICTED REPRESENTATION: HORN CLAUSES

- A **Horn clause** is a *disjunction* of literals of which at most one is positive
- Horn clauses are closed under resolution; if you resolve two Horn clauses, you get another Horn clause.
- All Horn clauses can be written as an implication whose premise is a conjunction of positive literals and whose conclusion is a single positive literal
- The premise is called the **body** and the conclusion is called the **head**
- A sentence consisting of a single positive literal is called a **fact**. It can be also written in an implication form. How?
- Sentences with no positive literals are called **goal clauses**. How can we write them in implication form?

INFERENCE WITH HORN CLAUSES

- Entailment can be decided in time that is linear in the size of the KB!
- 1. Forward chaining
- 2. Backward chaining

FORWARD CHAINING

- \circ KB $\models \alpha$?
- Start with the facts
- If all the premises of an implication are known, then add its conclusion to the known facts
- Continue this process until α is added or no further inferences can be made
- This is an instance of data-driven reasoning

FORWARD CHAINING

function PL-FC-ENTAILS?(KB, q) returns true or false

Sound and complete

Linear

```
inputs: KB, the knowledge base, a set of propositional definite clauses
        q, the query, a proposition symbol
count \leftarrow a table, where count[c] is the number of symbols in c's premise
inferred \leftarrow a table, where inferred[s] is initially false for all symbols
agenda \leftarrow a queue of symbols, initially symbols known to be true in KB
while agenda is not empty do
   p \leftarrow POP(agenda)
   if p = q then return true
   if inferred[p] = false then
       inferred[p] \leftarrow true
       for each clause c in KB where p is in c.PREMISE do
           decrement count[c]
           if count[c] = 0 then add c.CONCLUSION to agenda
return false
```

FORWARD CHAINING EXAMPLE

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A

(a)

69

FORWARD CHAINING

Queue

FORWARD CHAINING – POP A

Queue

В

FORWARD CHAINING – POP B

Queue

FORWARD CHAINING – POP L

Queue

 M

FORWARD CHAINING – POP M

Queue

Р

74

FORWARD CHAINING - POP P

Queue

Q I

FORWARD CHAINING – POP Q

Queue

L

76

FORWARD CHAINING - POP L

Queue

L was processed before. Nothing is done. (See algorithm 7.15)

77

BACKWARD CHAINING

- Motivation: Need goal-directed reasoning to avoid getting overwhelmed with irrelevant consequences
- Main idea:
 - Work backwards from query α
 - To prove α :
 - Check if α is known already
 - \circ Prove by backward chaining all premises of some rule concluding α
- This is an instance of **goal-driven** reasoning

BACKWARD CHAINING EXAMPLE

79

NEXT

- So far we discussed propositional logic
 - Syntax
 - Semantics
 - Entailment
 - Rules of inference
 - Resolution
 - Forward chaining
 - Backward chaining
- Next
 - First-order logic