Using ontology embeddings with deep learning architectures to improve prediction of ontology concepts from literature

PRATIK DEVKOTA¹, SOMYA D. MOHANTY², PRASHANTI MANDA¹

¹ INFORMATICS AND ANALYTICS,

UNIVERSITY OF NORTH CAROLINA AT GREENSBORO

²UNITED HEALTHCARE

Outline

- Automation of ontology annotation of scientific literature
- Deep Learning for Named Entity Recognition
- Deep Learning for Ontology Embeddings
- Information augmentation with ontology embeddings
- Performance/Results
- Discussion

Recent works

A Gated Recurrent Unit based architecture for recognizing ontology concepts from biological literatures

Pratik Devkota, Somya D. Mohanty, Prashanti Manda

2022, DOI: 10.1186/s13040-022-00310-0

Knowledge of the Ancestors: Intelligent Ontology-aware Annotation of Biomedical Literature using Semantic Similarity

Pratik Devkota, Somya Mohanty, Prashanti Manda 2022

Ontology-powered Boosting for Improved Recognition of Ontology concepts from Biological literatures

Pratik Devkota, Somya Mohanty, Prashanti Manda

2023, DOI: 10.5220/0011683200003414

Goal: Develop deep learning architectures that capture context from **both** scientific literatures and Gene Ontology structures using embeddings.

Methodology

Two-step process:

- Compute embeddings for all Gene Ontology concepts
- 2. Train **deep learning models** with the information from the training dataset as well as semantic relationship from ontology hierarchy.

Methodology

Step 1: Compute **embeddings** for Gene Ontology (GO) concepts.

Embeddings

Embeddings is the concept of representing texts and words as vectors of numbers that capture their semantics or meaning.

Embeddings from context

- 1. A man from Chicago married a woman from New York.
- 2. King Aldric, of Valeria married Princess Elara, daughter of King Adrian of Lunaria. Elara is now the queen of Valeria.
- 3. They gave birth to a beautiful baby boy, Prince Cedric.

Node2Vec algorithm:

- 1. Use biased random walks to generate sequence of ontology concepts.
- 2. Use the generated sequences as input to deep learning algorithm (word2vec) for the generation of embedding vectors.

QuickGO - https://www.ebi.ac.uk/QuickGO

Random Walk parameters:

- 1. walk length \Rightarrow # nodes to explore
- 2. walk number \Rightarrow # samples
- 3. $p \Rightarrow probability$, 1/p, of returning to source
- q ⇒ probability, 1/q, of moving further away from source node

QuickGO - https://www.ebi.ac.uk/QuickGO

Random Walk parameters:

- 1. walk length \Rightarrow \$ nodes to explore
- 2. walk number ⇒ \$600 amples
- 3. $p \Rightarrow \beta r 25$ ability, 1/p, of returning to source
- **4.** $q \Rightarrow 2$ robability, 1/q, of moving further away from source node

macromolecule biosynthetic process is a organic substance biosynthetic macromolecule biosynthetic process is a macromolecule metabolic process macromolecule biosynthetic process is a cellular biosynthetic process 11

Embeddings in 128 dimensions

Methodology

Step 2: Train deep learning models.

Training dataset

CRAFT: THE COLORADO RICHLY ANNOTATED FULL TEXT CORPUS

- 97 articles from the PubMed Central Open Access subset
- 750,479 tokens (34,224 unique tokens)
- 29,015 sentences
- 25,832 concept annotations to Gene Ontology
 - Biological Process (BP)
 - Cellular Component (CC)
 - Molecular Function (MF)

Data Preprocessing

1. Each sentence in the article is an **input sequence**. The sequence is broken down as list of words called tokens.

Sentence: Well formed pedicles and spherules were not evident.

Tokens: [Well formed Pedicles and spherules were not evident .

Model Training

2. For each token, we specify whether it represents a concept or not.

Sentence: Well formed pedicles and spherules were not evident.

Tokens:	[Well	formed	pedicles	and	spherules	were	not	evident]
Outputs:	[0	0	GO:0044316	0	GO:0044317	0	0	0	0]

0.01	0.13	 0.08	0.69
0.73	0.04	 0.07	0.08
0.00	0.08	 0.03	0.86
0.03	0.81	 0.02	0.06
0.01	0.09	 0.02	0.04
0.01	0.78	 0.01	0.08
0.00	0.03	 0.84	0.10
0.00	0.02	 0.02	0.91
0.55	0.01	 0.02	0.21

0

0

GO:0044316

GO:0044317

16

Model Training

2. For each token, we specify whether it represents a concept or not.

Sentence: Well formed pedicles and spherules were not evident.

Tokens:	[Well	formed	pedicles	and	spherules	were	not	evident]
Outputs:	[0	0	GO:0044316	0	GO:0044317	0	0	0	0]

0.13		0.08	0.69
0.04		0.07	0.08
0.08		0.03	0.86
0.81		0.02	0.06
0.09		0.02	0.04
0.78		0.01	0.08
0.03		0.84	0.10
0.02		0.02	0.91
0.01		0.02	0.21
	0.04 0.08 0.81 0.09 0.78 0.03	0.04 0.08 0.81 0.09 0.78 0.03	0.04 0.07 0.08 0.03 0.81 0.02 0.09 0.02 0.78 0.01 0.03 0.84 0.02 0.02

0
0
GO:0044316
0
GO:0044317
0
0
0
O 17

Model Training

2. For each token, we specify whether it represents a concept or not.

Sentence: Well formed pedicles and spherules were not evident.

Tokens:	[Well	formed	pedicles	and	spherules	were	not	evident]
Outputs:	[0	0	GO:0044316	0	GO:0044317	0	0	0	0]

0.01	0.13	 0.08	0.71
0.03	0.04	 0.07	0.81
0.85	0.08	 0.03	0.05
0.03	0.06	 0.02	0.81
0.01	0.79	 0.02	0.04
0.01	0.08	 0.01	0.78
0.00	0.03	 0.10	0.84
0.00	0.02	 0.02	0.91
0.21	0.01	 0.02	0.55

1	0
1	0
5	GO:0044316
1	0
1	GO:0044317
3	0
1	0
1	0
5	O 18

Baseline Model Architecture

Baseline Model Architecture

Cross Connected Model Architecture

Performance evaluation metrics

- Precision
- Recall
- Modified F1 score
- Jaccard semantic similarity

Model's performance

Architecture	Ontology Embedding F1 Score	Ontology Embedding Similarity Score	Tag F1 Score	Tag Similarity Score				
Baseline Architectures								
Tag - Only (TO)		_	0.80	0.83				
Ontology Embedding Only (OEO)	0.65	0.74	_	_				
	Cross - connected Architectures							
Tag to Ontology Embedding (T → OE)	0.80	0.81	0.83	0.84				
Ontology Embedding to Tag (OE → T)	0.64	0.75	0.83	0.84				
Multi - connected Architectures								
OE → T → OE	0.78	0.80	0.82	0.83				

Discussion

Good Performance but limited predictability

Can only predict 1000/47000 GO concepts

Improved performance and higher predictability

Higher predictability but with poor performance

Future Works

Employing Large Language Models (LLMs) for:

- Improved prediction of ontology annotations
- Implicit understanding of how ontologies are structured

Acknowledgment

This work is funded by a CAREER grant to Dr. Prashanti Manda from the Division of Biological Infrastructure at the National Science Foundation (#1942727).

Thank You!

CONTACT ME

p_devkota@uncg.edu