# Home

### **Course Information**

## Schedule

| Week | Date       | Торіс                                                                                                                                                                        | Test                                                                                             |
|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1.   | Sept<br>6  | Requirements. ROS introduction. Setup the development environment.                                                                                                           | -                                                                                                |
| 2.   | Sept<br>13 | Setup the development environment. Linux principles. ROS principles. Running examples. ROS package. Basics of ROS communication, implementation of publisher and subscriber. | Project topic announcements.                                                                     |
| 3.   | Sept<br>20 | Python principles. Practicing ROS communication, solving examples.                                                                                                           | -                                                                                                |
| 5.   | Oct<br>4   | Principles of robotics.  Programming a da Vinci surgical robot in simulated environment I.                                                                                   | -                                                                                                |
| 6.   | Oct<br>11  | Principles of robotics.  Programming a da Vinci surgical robot in simulated environment II.                                                                                  | <b>Test 1</b> : ROS princiles, publisher, subscriber. Python principles. Principles of robotics. |
| 7.   | Oct<br>18  | Versioning, Git. Project labor I.                                                                                                                                            | -                                                                                                |

| Week | Date      | Торіс                                                                                                       | Test                                                                                                                                     |
|------|-----------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 8.   | Oct<br>25 | Roslaunch, ROS parameter server. Rosbag.                                                                    | -                                                                                                                                        |
| 10.  | Nov<br>8  | Kinematics, inverse<br>kinematics, programming a<br>simulated robot arm in joint<br>space and workspace I.  | -                                                                                                                                        |
| 11.  | Nov<br>15 | Kinematics, inverse<br>kinematics, programming a<br>simulated robot arm in joint<br>space and workspace II. | _                                                                                                                                        |
| 13.  | Nov<br>29 | Project labor II.                                                                                           | -                                                                                                                                        |
| 14.  | Nov<br>6  | -                                                                                                           | Project presentations. Retake. <b>Test 2</b> : Roslaunch, ROS parameter server. ROS service. ROS action. Kinematics, inverse kinematics. |



The schedule may change during the semester!

## Course Requirements

### Project

- Proved to be the student's own work
- Running results valid output

• Grading: completeness of the soultion, proper ROS communication, proper structure of the program, quality of implementation, documentation

#### Grading

Personal attendance on the classes is mandatory (min 70%).

To pass the course, Tests and the Project must be passed (grade 2). One of the Test can be taken again.



 $(Jegy = (Test1 + Test2 + 2 \land Project) / 4)$ 

#### Course Supervisor

Dr. Péter Galambos peter.galambos@irob.uni-obuda.hu

#### **Teachers**

Tamás D. Nagy tamas.daniel.nagy@irob.uni-obuda.hu

Borsa Détár detar.borsa@gmail.com

Antal Bejczy Center for Intelligent Robotics (BARK/IROB)





ÓBUDAI EGYETEM

BEJCZY ANTAL INTELLIGENS ROBOTTECHNIKAI KÖZPONT

https://irob.uni-obuda.hu

#### irob-saf

(iRob Surgical Automation Framework)



https://github.com/ABC-iRobotics/irob-saf

### PlatypOUs

https://github.com/ABC-iRobotics/PlatypOUs-Mobile-Robot-Platform