EX.NO: 10

IMPLEMENTING ARTIFICIAL NEURAL NETWORKS FOR AN APPLICATION USING PYTHON - CLASSIFICATION

AIM:

To implementing artificial neural networks for an application in classification using python. Source Code:

sklearn.model_selection import train_test_split
from sklearn.datasets import make_circles
import from sklearn.neural_network import MLPClassifier
from numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

X_train, y_train = make_circles(n_samples=700, noise=0.05) X test, y test = make circles(n samples=300, noise=0.05) sns.scatterplot(X_train[:,0], X_train[:,1], hue=y_train) plt.title("Train Data") plt.show() clf = MLPClassifier(max iter=1000) clf.fit(X train, y train) print(f"R2 Score for Training Data = {clf.score(X_train, y_train)}") print(f"R2 Score for Test Data = {clf.score(X_test, y_test)}") y_pred = clf.predict(X_test) fig, ax =plt.subplots(1,2) sns.scatterplot(X_test[:,0], X_test[:,1], hue=y_pred, ax=ax[0]) ax[1].title.set_text("Predicted Data") sns.scatterplot(X_test[:,0], X_test[:,1], hue=y_test, ax=ax[1]) ax[0].title.set_text("Test Data") plt.show()

OUTPUT:

RESULT:

Thus the python code is implemented and the output is verified