Complementos ortogonais e projeções ortogonais Álgebra Linear – Videoaula 19

Luiz Gustavo Cordeiro

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Seja V um EPI. Para cada $v \in V$, a transformação

$$x \mapsto \langle v, x \rangle$$

é linear. Qual o seu núcleo?

Definição

Seja V um EPI.

- (Revisão) Dois vetores $u, v \in V$ são **ortogonais** se $\langle u, v \rangle = 0$. Escrevemos $u \perp v$.
- Dois subconjuntos $X, Y \subseteq V$ são **ortogonais** se $x \perp y$ para todos $x \in X$ e $y \in Y$. Escrevemos $X \perp Y$.
- Escrevemos $v \perp X$ (ou $X \perp v$) se $\{v\} \perp X$.
- O complemento ortogonal de $X \subseteq V$ é

$$X^{\perp} = \{ v \in V : v \perp X \}$$

Teorema

Seja V um EPI.

- **①** O complemento ortogonal X^{\perp} de qualquer subconjunto $X \subseteq V$ é um subespaço de V.
- 2 Para cada subespaço W de V, vale que

$$W \cap W^{\perp} = \{0_V\}$$

Propriedades básicas

Para cada $x \in X$, considere a transformação linear

$$T_x\colon V\to\mathbb{R}, \qquad T_x(v)=\langle v,x\rangle.$$

Note que $X^{\perp} = \bigcap_{x \in X} \ker(T_x)$, uma intersecção de subespaços, logo um subespaço vetorial.

Se $v \in W \cap W^{\perp}$, então $\langle v, v \rangle = 0$, logo $v = 0_V$ (pela positividade estrita do produto). Portanto $W \cap W^{\perp} = \{0_V\}$.

São complementos mesmo?

Segue que a soma $W+W^{\perp}$ é sempre direta.

Pergunta

Quando que um EPI V é $V=W\oplus W^{\perp}$ para $W\subseteq V$ subespaço?

Teorema

Seja $V = U \oplus W$. São equivalentes:

- \cup $U \perp W$;
- **2** $W = U^{\perp}$:
- $0 U = W^{\perp}$.

Basta provar $(1) \Rightarrow (2)$.

São complementos mesmo?

Teorema

Seja $V = U \oplus W$. São equivalentes:

- $0 U \perp W$;
- **2** $W = U^{\perp}$;
- $U = W^{\perp}.$

(1)⇒**(2)**:

 $\overline{\mathsf{Se}\ U\perp W}$, então $W\subseteq U^\perp$. Daí

$$V = U \oplus W \subseteq U \oplus U^{\perp} \subseteq V.$$

Logo as inclusões são igualdades, $U\subseteq U$ e $W\subseteq U^{\perp}$ Elon, ex. 2.34 $W=II^{\perp}$

São complementos mesmo?

Teorema,

Seja $V = U \oplus W$. São equivalentes:

- $0 U \perp W$;
- **2** $W = U^{\perp}$;
- $0 U = W^{\perp}.$

$(1) \Rightarrow (2)$:

Alternativamente, se $U \perp W$, então $W \subseteq U^{\perp}$.

Se $v \in U^{\perp}$, então v = u + w, onde $u \in U$, $w \in W$. Mas daí

$$0 = \langle v, u \rangle = \langle u, u \rangle + \langle w, u \rangle = \langle u, u \rangle,$$

logo $u = 0_V$ e $v = w \in W$.

Projeções

Definição

Seja V um espaço vetorial. Uma **projeção** é uma transformação linear $P \colon V \to V$ tal que $P^2 = P$. (Também se diz que P é **idempotente**.) Se W = P(V), dizemos que P é uma projeção **sobre** W.

Por exemplo:

• Se $V = X \oplus Y$, pondo, para todos $x \in X$ e $y \in Y$

$$P_X(x+y) = x, \qquad P_Y(x+y) = y$$

então P_X e P_Y são projeções.

② Se P é uma projeção, então $V = \operatorname{im}(P) \oplus \ker(P)$, e P(x+y) = x para $x \in \operatorname{im}(P)$ e $y \in \ker(P)$.

Projeções

3 As transformações $P, Q: \mathbb{R}^2 \to \mathbb{R}^2$,

$$P(x,y) = (-2x - 6y, x + 3y)$$
 e $Q(x,y) = (x, -\frac{1}{2}x)$

são projeções distintas sobre o mesmo subespaço span $\{(-2,1)\}$.

Definição

Uma projeção $P \colon V \to V$ em um EPI é dita ser uma **projeção ortogonal** se $(v - P(v)) \perp \operatorname{im}(P)$ para todo $v \in V$.

Teorema

Para cada subespaço W de um EPI V, existe no máximo uma única projeção ortogonal sobre W.

Note que se P é uma projeção ortogonal sobre W, então para quaisquer $v \in V$ e $w \in W$.

$$\langle v - P(v), w \rangle = 0,$$
 ou seja, $\langle v, w \rangle = \langle P(v), w \rangle.$

Unicidade

Suponha que P_1, P_2 são projeções ortogonais de V sobre W. Então para qualquer $v \in V$,

- $\langle v, P_2(v) \rangle = \langle P_1(v), P_2(v) \rangle;$

Segue que

$$||P_1(v) - P_2(v)||^2 = \langle P_1(v), P_1(v) \rangle - \langle P_1(v), P_2(v) \rangle - \langle P_2(v), P_1(v) \rangle + \langle P_2(v), P_2(v) \rangle = \langle v, P_1(v) \rangle - \langle v, P_2(v) \rangle - \langle v, P_1(v) \rangle + \langle v, P_2(v) \rangle = 0$$

logo $P_1(v) = P_2(v)$, qualquer que seja v.

Definição

Sejam V um EPI e W um subespaço. Quando existir, a projeção ortogonal de W em V é denotada por $\operatorname{proj}_W \colon V \to V$.

Dimensão finita

Teorema

Sejam V um EPI, W um subespaço de dimensão finita e $\mathbb{O} = \{u_1, u_2, \dots, u_m\}$ uma base ortonormal para W. Então existe a projeção ortogonal de V sobre W, que é dada por

$$P(v) = \sum_{i=1}^{m} \langle v, u_i \rangle u_i.$$

Note que

- Se $w \in W$, então P(w) = w;
- Se $v \in V$, então $P(v) \in W$, logo P(P(v)) = P(v).
- Portanto $P^2 = P$, ou seja, P é uma projeção.

Dimensão finita

Dados $v \in V$ e $j \in \{1, ..., m\}$, temos que

$$\langle P(v), u_j \rangle = \left\langle \sum_{i=1}^n \langle v, u_i \rangle u_i, u_j \right\rangle$$
$$= \sum_{i=1}^n \langle v, u_i \rangle \langle u_i, u_j \rangle$$
$$= \langle v, u_j \rangle$$

Assim, $\langle P(v) - v, u_j \rangle = 0$ para qualquer j, i.e., $(P(v) - v) \perp u_j$. $\xrightarrow{\text{combinações lineares}} (P(v) - v) \perp W$ para todo $v \in V$.

Propriedades

Teorema

Seja $\operatorname{proj}_W \colon V \to V$ uma projeção ortogonal em um EPI V.

- **1** $w = \text{proj}_W(v)$ é o **único** vetor de W para o qual $(v w) \perp W$.
- ② $\operatorname{proj}_W(v)$ é a **melhor aproximação** de v em W, no sentido de que se $w \in W \setminus \{\operatorname{proj}_W(v)\}$, então $\|v \operatorname{proj}_W(v)\| < \|v w\|$.
- **3** Designaldade de Bessel: $\|\operatorname{proj}_{W}(v)\| \leq \|v\|$.

Propriedades: $\mathbf{0} \ w = \operatorname{proj}_{W}(v)$ é o **único** vetor para o qual $(v - w) \perp W$.

O problema de (1) é mostrar a unicidade do vetor $w \in W$ tal que $(v-w)\perp W$.

Suponha que $w_1, w_2 \in W$ são tais que $(v - w_i) \perp W$, i.e., $(v - w_i) \in W^{\perp}$ para i=1,2. Então

$$w_1 - w_2 \in W$$
, $e w_1 - w_2 = (v - w_2) - (v - w_1) \in W^{\perp}$,

 $logo w_1 = w_2$.

Propriedades:

② $\operatorname{proj}_W(v)$ é a **melhor aproximação** de v em W, no sentido de que se $w \in W \setminus \{\operatorname{proj}_W(v)\}$, então $\|v - \operatorname{proj}_W(v)\| < \|v - w\|$.

Nas hipóteses do item (2):

Como
$$(v - \text{proj}_{W}(v)) \perp (\text{proj}_{W}(v) - w)$$
, então $\|v - w\|^{2} = \|(v - \text{proj}_{W}(v)) + (\text{proj}_{W}(v) - w)\|^{2}$
 $= \|v - \text{proj}_{W}(v)\|^{2} + \|\text{proj}_{W}(v) - w\|^{2}$
 $> \|v - \text{proj}_{W}(v)\|^{2}$,

$$\log ||v - w|| > ||v - \operatorname{proj}_{W}(v)||.$$

Propriedades:

3 Desigualdade de Bessel: $\|\operatorname{proj}_{W}(v)\| \leq \|v\|$.

Como
$$(v - \operatorname{proj}_{W}(v)) \perp \operatorname{proj}_{W}(v)$$
, então
$$\|v\|^{2} = \|(v - \operatorname{proj}_{W}(v)) + \operatorname{proj}_{W}(v)\|^{2}$$

$$= \|(v - \operatorname{proj}_{W}(v))\|^{2} + \|\operatorname{proj}_{W}(v)\|^{2}$$

$$\geq \|\operatorname{proj}_{W}(v)\|^{2},$$

portanto $||v|| \ge ||\operatorname{proj}_{W}(v)||$.

Propriedades em dimensão finita

Teorema (Desigualdade de Bessel em dimensão finita)

Sejam V um EPI e $\textbf{O} = \{e_1, \dots, e_m\}$ um subconjunto ortonormal. Então

$$\sum_{i=1}^m \langle v, e_i \rangle^2 \leq \|v\|^2.$$

Expansão de Fourier

Definição

Se $\mathbb{O}=\{e_1,\ldots,e_m\}$ é um subconjunto ortonormal de um EPI V e $v\in V$, chamamos

$$\operatorname{proj}_{\operatorname{\mathsf{span}}\, 0}(v) = \sum_{i=1}^m \langle v, e_i \rangle e_i$$
 $= \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m$

de expansão de Fourier de v com respeito a O.

DE SANTA CATARINA

Decomposição ortogonal

Teorema (Teorema da decomposição ortogonal)

Sejam V um EPI e $W\subseteq V$ um subespaço. Então V se decompõe como

$$V = W \oplus W^{\perp}$$

se, e somente se, existe a projeção ortogonal proj_W de V sobre W.

Decomposição ortogonal

Se $V=W\oplus W^{\perp}$, então a transformação

$$P: V \to V$$
, $P(x+y) = x$ para $x \in W, y \in W^{\perp}$,

é a projeção ortogonal de V em W:

- $P(P(x+y)) = P(x) = P(x+0_V) = P(x+y)$
- Se $v = x + y \in V$, então

$$v - P(v) = v - x = y \in W^{\perp}$$

ou seja, $(v - P(v)) \perp W$.

Decomposição ortogonal

Se existe a projeção ortogonal proj_W , então para todo $v \in V$ temos $(v - \operatorname{proj}_W(v)) \in W^\perp$ e

$$v = \underbrace{(v - \operatorname{proj}_{W}(v))}_{\in W^{\perp}} + \underbrace{\operatorname{proj}_{W}(v)}_{\in W},$$

portanto $V=W+W^{\perp}$. Já sabemos que $W\cap W^{\perp}=\{0_V\}$, logo $V=W\oplus W^{\perp}$.

Propriedades elementares

Teorema

Sejam V um EPI e proj_W uma proje ção ortogonal sobre um subespaço W. Ent ão

1 Para todos $v \in V$ e $w \in W$, vale que

$$\langle v, w \rangle = \langle \operatorname{proj}_W(v), w \rangle$$

- $(W^{\perp})^{\perp} = W$
- $W^{\perp} = \ker(\operatorname{proj}_{W})$

Item já foi visto no slide 10.

Propriedades elementares

Já sabemos que $V = W \oplus W^{\perp}$, onde $(W^{\perp}) \perp W$.

Pelo Teorema do slide 5 com $U=W^{\perp}$, obtemos $W=U^{\perp}=(W^{\perp})^{\perp}$.

Isto termina o item (2).

Propriedades elementares

Como $V=W^\perp\oplus W=W^\perp\oplus (W^\perp)^\perp$, o teorema do slide 21 implica que existe a projeção ortogonal proj $_{W^\perp}$.

Dado $v \in V$, seja $k = v - \operatorname{proj}_W(v)$. Então

$$k \perp W$$

ou seja,

• $k \in W^{\perp}$

Propriedades elementares

• $k \in W^{\perp}$

Além disso,

$$v - k = \operatorname{proj}_{W}(v) \perp W^{\perp}$$

ou seja,

•
$$(v-k) \perp W^{\perp}$$

Pela parte de unicidade do teorema do slide 15(1), obtemos

$$\operatorname{proj}_{W^{\perp}}(v) = k = v - \operatorname{proj}_{W}(v)$$

para qualquer v.

Isso significa que $\operatorname{proj}_{W^{\perp}} = \operatorname{id}_{V} - \operatorname{proj}_{W}$, que é o item (3).

Propriedades elementares

Como
$$\operatorname{proj}_{W^{\perp}} = \operatorname{id}_{V} - \operatorname{proj}_{W}$$
, então
$$v \in W^{\perp} \iff \operatorname{proj}_{W^{\perp}}(v) = v \\ \iff (\operatorname{id}_{V} - \operatorname{proj}_{W})(v) = v \\ \iff v - \operatorname{proj}_{W}(v) = v \\ \iff \operatorname{proj}_{W}(v) = 0_{V} \\ \iff v \in \ker(\operatorname{proj}_{W})$$

Teorema

Seja $\mathbb{O} = \{e_1, e_2, \dots, e_n\}$ um subconjunto ortonormal de um EPI V e $W = \text{span}(\mathbb{O})$. São equivalentes:

- O é uma base ortonormal para V;
- $0^{\perp} = \{0_V\};$
- **3** Todo $v \in V$ é igual à sua expansão de Fourier com respeito a 0:

$$v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$$

(continua...)

DE SANTA CATARINA

Teorema (...continuação)

• Para todo $v \in V$, vale a **identidade de Parseval** (versão 1):

$$||v||^2 = \langle v, e_1 \rangle^2 + \cdots + \langle v, e_n \rangle^2$$

5 Para todos $v, w \in V$, vale a **identidade de Parseval** (versão 2):

$$\langle v, w \rangle = \langle v, e_1 \rangle \langle w, e_1 \rangle + \cdots + \langle v, e_n \rangle \langle w, e_n \rangle$$

- $oldsymbol{0}$ $oldsymbol{0}$ é uma base ortonormal para V;
- $0^{\perp} = \{0_V\};$
- **3** Todo $v \in V$ é igual à sua expansão de Fourier com respeito a 0:

$$v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$$

 $(1)\Rightarrow(3)\Rightarrow(2)$ já sabemos.

Se (2) vale, então

$$(\operatorname{span} \mathfrak{O})^{\perp} = \ker(\operatorname{proj}_{\operatorname{span} \mathfrak{O}}) = \mathfrak{O}^{\perp} = \{0_V\}.$$

Mas daí

$$\operatorname{span} \mathfrak{O} = \{0_V\}^{\perp} = V,$$

logo O é gerador e ortonormal, portanto uma base ortonormal.

- \bigcirc 0 é uma base ortonormal para V;
- $0^{\perp} = \{0_V\};$
- **1** Para todo $v \in V$, vale a **identidade de Parseval** (versão 1):

$$||v||^2 = \langle v, e_1 \rangle^2 + \cdots + \langle v, e_n \rangle^2$$

5 Para todos $v, w \in V$, vale a identidade de Parseval (versão 2):

$$\langle v, w \rangle = \langle v, e_1 \rangle \langle w, e_1 \rangle + \cdots + \langle v, e_n \rangle \langle w, e_n \rangle$$

 $(1)\Rightarrow(5)\Rightarrow(4)\Rightarrow(2)$ são fáceis, e acabamos de ver $(2)\Rightarrow(1)$.