

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ

По лабораторной работе № 2

По курсу: «Планирование эксперимента»

Тема: «ПФЭ на имитационной модели одноканальной СМО»

Вариант: 4

Студент: Керимов А. Ш.

Группа: ИУ7-84Б

Преподаватель: Куров А. В.

1 Задание

Реализация ПФЭ на имитационной модели функционирования СМО.

Составить матрицу планирования для проведения ПФЭ для одноканальной СМО с одним генератором заявок.

Интервалы варьирования факторов выбрать на основе результатов первой л. р., в рамках которой исследовались зависимости выходной величины (среднего времени ожидания (пребывания)) от входных параметров (интенсивность поступления, интенсивность обслуживания). В итоге получить зависимость выходной величины от загрузки.

По результатам ПФЭ вычислить коэффициенты линейной и частично нелинейной регрессионной зависимости.

Предусмотреть возможность сравнения рассчитанной величины с реальной, полученной по результатам имитационного моделирования.

2 Теоретическая часть

Коэффициент загрузки одноканальной СМО и среднее время ожидания определяются формулами:

$$\rho = \frac{\lambda}{\mu}, \qquad \overline{t_{\text{ож}}} = \frac{\rho}{(1 - \rho)\lambda} \tag{1}$$

где λ — интенсивность входящего потока заявок, μ — интенсивность обслуживания.

Интервалы времени между приходом заявок распределены по равномерному закону $(X \sim R(a,b))$, коэффициенты a и b которого рассчитываются как

$$a = \frac{1}{\lambda} - \sqrt{3}\sigma_{\lambda},$$

$$b = \frac{1}{\lambda} + \sqrt{3}\sigma_{\lambda}.$$
(2)

Времена обслуживания заявок распределены по закону Вейбулла $(X \sim W(k,\lambda))$ с параметром k=2. Коэффициент λ распределения

определяется по формуле

$$\lambda = \frac{1}{\mu\Gamma\left(1 + \frac{1}{k}\right)}. (3)$$

Для проведения ПФЭ при трёх факторах необходимо $N=2^3$ опытов. В таблице 1 представлена матрица планирования для проведения ПФЭ.

№ опыта	x_1	x_2	x_3	x_1x_2	x_1x_3	x_2x_3	$x_1x_2x_3$	y
1	-1	-1	-1	+1	+1	+1	-1	y_1
2	-1	-1	+1	+1	-1	-1	+1	y_2
3	-1	+1	-1	-1	+1	-1	+1	y_3
4	-1	+1	+1	-1	-1	+1	-1	y_4
5	+1	-1	-1	-1	-1	+1	+1	y_5
6	+1	-1	+1	-1	+1	-1	-1	y_6
7	+1	+1	-1	+1	-1	-1	-1	y_7
8	+1	+1	+1	+1	+1	+1	+1	y_8

Таблица 1 — Матрица планирования

Линейная регрессия для трёх факторов:

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3. (4)$$

Частично нелинейная регрессия для трёх факторов:

$$y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3 + a_{123}x_1x_2x_3.$$
 (5)

Однородность ряда дисперсий можно проверить по критерию Кохрена. При равномерном дублировании экспериментов однородность ряда дисперсий проверяют с помощью G-критерия Кохрена, представляющего собой отношение максимальной дисперсии к сумме всех дисперсий. Дисперсии однородны, если расчётное значение G_p -критерия не превышает табличного значения. Иначе исследуемая величина неоднородна и не подчиняется нормальному закону.

Если ряд дисперсий однороден, то дисперсию воспроизводимости вычисляют, как отношение суммы ряда дисперсий к числу строк матрицы

планирования.

Дисперсией воспроизводимости эксперимента D_y называется дисперсия наблюдаемой переменной. Эксперимент идеален при $D_y = 0$.

После расчёта коэффициентов модели и проверки их значимости определяют дисперсию $s_{\rm ag}^2$ адекватности. Остаточная дисперсия, или дисперсия адекватности, характеризует рассеяние эмпирических значений y относительно расчётных \overline{y} , определённых по найденному уравнению регрессии.

Проверку гипотезы адекватности найденной модели производят по F-критерию Фишера, рассчитываемому как отношение дисперсии адекватности к дисперсии воспроизводимости.

3 Реализация

На рисунке 1 представлен интерфейс программы.

Рисунок 1 — Интерфейс программы

4 Моделирование

Результат работы программы представлен на рисунке 2.

Рисунок 2 — Результат работы программы