學號:B04902004 系級: 資工二 姓名:王佑安

1. 請簡明扼要地闡述你如何抽取模型的輸入特徵 (feature)

答:

計算每個 feature 與 PM2.5 的相關係數,選擇相關係數較高的

2.請作圖比較不同訓練資料量對於 PM2.5 預測準確率的影響答:

資料量	前一個月	前三個月	前六個月	全部十二個月		
Training error	5.839	5.862	5.737	5.719		
Testing error	66.857	6.679	6.136	5.963		
*以上數據為每次隨機取全部資料中 20%作 validation set 後 test 五次下的平均						

由表格可以看出,越多資料量,預測準確度越高。

3. 請比較不同複雜度的模型對於 PM2.5 預測準確率的影響

答:

n	1	2	3	4
Training error	5.746	5.719	5.695	5.684
Testing error	5.857	5.963	6.895	9.657

^{*}以上數據為每次隨機取全部資料中 20%作 validation set 後 test 五次下的平均

^{*} n 表示將選取的 feature 取 n 次方後做 normalization 成為新的 feature

可以看出,複雜度越高的 model 在 training error 上越低,但在 testing data 上會出現 overfitting 的情形。雖然在 validation test 上 n=1 的表現比 n=2 好,但在 kaggle 上的 public data n=1 的 model 出現較高的 error,因此最後選擇 n=2 的 model。

4. 請討論正規化(regularization)對於 PM2.5 預測準確率的影響答:

λ	0	1e-3	1	1000		
Training error	5.719	5.719	5.725	7.473		
Testing error	5.963	5.963	5.984	9.701		
*以上數據為每次隨機取全部資料中 20%作 validation set 後 test 五次下的平均						

在這個 Linear regression 的例子中,正規化似乎對準確率沒有明顯的幫助,只在 λ 過大時讓準確率下降。

5. 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (y^n - w \cdot x^n)^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ ... \ \mathbf{x}^N]$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ ... \ \mathbf{y}^N]^\mathsf{T}$ 表示,請以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} 。答:

$$w = (X^T X)^{-1} X^T \cdot y$$