SABANCI UNIVERSITY, CS 302 Automata Theory, Fall 2023 Answers for the Midterm Examination

ANSWER 1

- (a) (10 pts) See the relevant slides.
- **(b)** (15 pts) First sketch the ε -NFA **W** for **E** as below:

The corresponding NFA V without E-transitions are

(c) (25 pts) Let N be given in PL and choose $\mathbf{w} = \mathbf{0}^N \mathbf{1}^N \mathbf{0}^N$ then $\mathbf{w} = \mathbf{w}^R$ hence it is in L and $|\mathbf{w}| = 3N > N$ as required by the PL. Now by the PL $\mathbf{w} = \mathbf{x}.\mathbf{y}.\mathbf{z}$ and so $\mathbf{x}.\mathbf{y} = \mathbf{0}^p$; $\mathbf{p} \leq \mathbf{N}$ and $\mathbf{y} = \mathbf{0}^q$ with $\mathbf{q} > \mathbf{0}$. So $\mathbf{z} = \mathbf{0}^{N-p}$. $\mathbf{1}^N.\mathbf{0}^N$ and $\mathbf{x}.\mathbf{z} = \mathbf{0}^{p-q} \mathbf{0}^{N-p}$. $\mathbf{1}^N.\mathbf{0}^N = \mathbf{0}^{N-q}$. $\mathbf{1}^N.\mathbf{0}^N$ which is **not** a palindrome and not in L since $\mathbf{q} > \mathbf{0}$ so it violates the PL and L is not regular.

ANSWER 2

(a)&(b) (50 pts) First note that $L_2 = L_1^c$ and also $L_1 = L_2^c$ so it is enough to find regular expressions for L_1 and L_2 .

$$E_I = (0*. \ 1. \ 0*. \ 1. \ 0*)* --> even number of 1's$$

$$E_2 = 0*. 1. (0*. 1. 0*. 1. 0*)*. 0*--> odd number of 1's$$

We shall find a minimal state DFA X for E_1 and through its complement Y for E_2 and the entire problem shall be solved.

The epsilon-NFA W for E_1 and its equivalent DFA U are given as below:

State	Input	Next State
> A=1*	0	A
A	1	В
B=2	0	В
В	1	AC
AC=3*	0	AC
AC	1	В

The DFA for E_2 , namely V, is the complement of U as given below.

The table above is the result of the *table filling algorithm* both for U and V and for both cases states I and S are equivalent. And so the *minimal state* automata S and S for S and S respectively are given below.

