清华大学 2024-2025 秋季学期, 群与 Galois 理论, 作业 1

请用 A4 大小的纸张**正反面**用钢笔,签字笔或者圆珠笔书写,并注明自己的姓名、年级(书院或系)和作业的**总页数**。除定理公式所涉及的人名之外,请使用**中文**。本次作业请扫描并上传至网络学堂,具体截止日期请查阅网络学堂,逾期视作零分。

A. 乘积结构

A1) (G_1,\cdot_1) 和 (G_2,\cdot_2) 是群,在 $G_1\times G_2$ 上如下定义乘法:

$$(g_1, g_2) \cdot (g'_1, g'_2) := (g_1 \cdot_1 g'_1, g_2 \cdot_2 g'_2).$$

证明,在以上乘法下, $G_1 \times G_2$ 是群并且其单位元为(1,1,2)。这个群被称为 G_1 与 G_2 的**乘积**。

A2) 证明,投影映射

$$\pi_1: G_1 \times G_2 \to G_1, \ (g_1, g_2) \mapsto g_1,$$

和

$$\pi_2: G_1 \times G_2 \to G_2, \ (g_1, g_2) \mapsto g_2,$$

是群同态。它们的核是什么?

A3) (泛性质) 给定群 (G_1, \cdot_1) 和 (G_2, \cdot_2) 。证明,存在唯一的¹群 G 以及唯一的群同态 $p_i: G \to G_i$ (i=1,2) 使得对任意的群 H 和任意的群同态 $\varphi_i: H \to G_i$ (i=1,2),存在唯一的 $\psi: H \to G$,使得 $p_i \circ \psi = \varphi_i$ (i=1,2)。

$$H \xrightarrow{\varphi_1} G_1$$

$$\varphi_2 \downarrow \qquad \psi \qquad \uparrow p_1$$

$$G_2 \xleftarrow{p_2} G$$

特别地,我们有如下的集合之间的同构:

$$\operatorname{Hom}(H, G_1 \times G_2) \simeq \operatorname{Hom}(H, G_1) \times \operatorname{Hom}(H, G_2), \quad \psi \mapsto (p_1 \circ \psi, p_2 \circ \psi).$$

(提示:利用 A2)给出 G 的存在性;利用 ψ 的唯一性证明 G 的唯一性)

A4) 给定互素的正整数 n_1 和 n_2 。利用 A3) 证明,

$$\mathbb{Z}/_{n_1 n_2 \mathbb{Z}} \to \mathbb{Z}/_{n_i \mathbb{Z}}, \ \overline{k} \mapsto k \pmod{n_i}, \ i = 1, 2,$$

给出了群同构

$$\mathbb{Z}/_{n_1n_2\mathbb{Z}} \xrightarrow{\simeq} \mathbb{Z}/_{n_1\mathbb{Z}} \times \mathbb{Z}/_{n_2\mathbb{Z}}.$$

以上, $\mathbb{Z}_{n\mathbb{Z}}$ 表示的是(加法)循环群。

A5) C_1 和 C_2 是两个有限阶的循环群,那么, $C_1 \times C_2$ 是否是循环群?

¹在同构的意义下

A6) $(A_1, +_1, \cdot_1)$ 和 $(A_2, +_2, \cdot_2)$ 是环。我们在 $A_1 \times A_2$ 上如下定义加法 + 和乘法 ::

$$(a_1, a_2) + (a'_1, a'_2) := (a_1 + a'_1, a_2 + a'_2), (a_1, a_2) \cdot (a'_1, a'_2) := (a_1 \cdot a'_1, a'_2 \cdot a'_2).$$

证明,选取加法单位元 $(0_1,0_2)$ 和乘法单位元 $(1_1,1_2)$, $A_1 \times A_2$ 在以上运算下是环。我们把这个环称 作是 A_1 与 A_2 的**乘积**。进一步证明,投影映射

$$\pi_1: A_1 \times A_2 \to A_1, (a_1, a_2) \mapsto a_1,$$

和

$$\pi_2: A_1 \times A_2 \to A_2, \ (a_1, a_2) \mapsto a_2,$$

是环同态。

A7) (泛性质) 给定环 A_1 和 A_2 。证明,存在唯一的²环 A 以及唯一的环同态 $p_i:A\to A_i$ (i=1,2) 使得对任意的环 B 和任意的环同态 $\varphi_i:B\to A_i$ (i=1,2),存在唯一的 $\psi:B\to A$,使得 $p_i\circ\psi=\varphi_i$ (i=1,2)。

$$\begin{array}{c}
B \xrightarrow{\varphi_1} A_1 \\
\varphi_2 \downarrow & \uparrow_{p_1} \\
A_2 \xleftarrow{p_2} A
\end{array}$$

A8) 给定互素的正整数 m 和 n。证明,我们有**环同构**³

$$\mathbb{Z}_{mn\mathbb{Z}} \xrightarrow{\simeq} \mathbb{Z}_{m\mathbb{Z}} \times \mathbb{Z}_{n\mathbb{Z}}.$$

(提示: 使用中国剩余定理)

A9) A 和 B 是环, A^{\times} 和 B^{\times} 是它们的乘法可逆元所构成的(乘法)群。证明,我们有群同构

$$(A \times_{\text{ring}} B)^{\times} \simeq A^{\times} \times_{\text{group}} B^{\times},$$

其中, ×_{ring} 代表着环的乘积, ×_{group} 代表着群的乘积。

B. 域的有限乘法子群是循环群

给定正整数 n, Euler 的 ϕ -函数给出 $1, \dots, n$ 中与 n 互素的数的个数:

$$\phi(n) = |\{1 \le k \le n | (k, n) = 1\}|.$$

- B1) 证明, $\left| \left(\mathbb{Z}_{n\mathbb{Z}} \right)^{\times} \right| = \phi(n)$,其中, $\left(\mathbb{Z}_{n\mathbb{Z}} \right)^{\times}$ 是环 $\mathbb{Z}_{n\mathbb{Z}}$ 的可逆元组成的(乘法)子群。
- B2) 证明, ϕ 具有如下乘性: 对任意互素的正整数 n 和 m, 有

$$\phi(nm) = \phi(n)\phi(m).$$

进一步,如果 $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ 是它的素因子分解,其中, p_i 为不同的素数而指标 α_i 均为正整数,证明:

$$\phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\cdots(1 - \frac{1}{p_k}).$$

²在同构的意义下

³请与 A4) 仔细对比

- B3) 证明,对任意正整数 n,对任意与 n 互素的整数 a,有 $a^{\phi(n)} \equiv 1 \pmod{n}$ 。特别地,当 p 为素数时,这 给出了 Fermat 小定理。
- B4) (有限循环群子群的分类) 证明,作为加法群,对每个 n 的因子 d, $\mathbb{Z}/_{n\mathbb{Z}}$ 恰有一个阶为 d 的循环子群 C_d 。进一步, $\mathbb{Z}/_{n\mathbb{Z}}$ 的每个子群均形如 C_d ,其中,d|n。
- B5) 证明,对任意的正整数 n,我们有公式

$$n = \sum_{d|n} \phi(d).$$

B6) K 是域, $G < K^{\times}$ 是有限群, |G| = n。对任意的 d|n,令 G_d 为 G 中阶为 d 的元素组成的集合。证明,

$$n = \sum_{d|n, G_d \neq \emptyset} \phi(d).$$

- B7) 证明, G 是循环群。
- B8) 证明, $\left(\mathbb{Z}_{p\mathbb{Z}}\right)^{\times}$ 是循环群,其中,p 是素数。
- B9) 对于奇素数 p 和 $m \ge 2$,我们证明 $\left(\mathbb{Z}_{p^m\mathbb{Z}}\right)^{\times}$ 是循环群:
 - $证明, \ (1+p)^{p^k} \equiv 1+p^{k+1} \ \bmod p^{k+2}, \ \ \underline{\text{其中}} \ k \geqslant 0. \ \ \underline{\text{据此证明}} \ \overline{p+1} \in \left(\mathbb{Z}/p^m\mathbb{Z}\right)^{\times} \ \text{的阶为} \ p^{m-1}.$
 - 证明,存在 $\overline{k} \in \left(\mathbb{Z}_{p^m\mathbb{Z}}\right)^{\times}$,其阶为 p-1。
 - 证明,存在 $\bar{l} \in \left(\mathbb{Z}_{p^m \mathbb{Z}}\right)^{\times}$,使得 $\langle \bar{l} \rangle = \left(\mathbb{Z}_{p^m \mathbb{Z}}\right)^{\times}$ 。
- B10) 对于 $m \ge 2$,我们给出 $\left(\mathbb{Z}_{2^m\mathbb{Z}}\right)^{\times}$ 的结构:
 - 证明, $(1+2^2)^{2^k} \equiv 1+2^{k+2} \mod 2^{k+3}$,其中 $k \ge 0$ 。据此证明, $\overline{5} \in \left(\mathbb{Z}_{2^m \mathbb{Z}}\right)^{\times}$ 的阶为 2^{m-2} 。
 - 证明,映射(以下左边是加法群,右边是乘法群)

$$\mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2^{m-2}\mathbb{Z}} \longrightarrow \left(\mathbb{Z}_{2^m\mathbb{Z}}\right)^{\times}, \quad (a,b) \mapsto (-1)^a 5^b \mod 2^m.$$

是群同构。

B11) (Gauss) 证明,对任意正整数 n, $\left(\mathbb{Z}/_{n\mathbb{Z}}\right)^{\times}$ 是循环群当且仅当 n 形如 $1,2,4,p^m$ 或 $2p^m$,其中, $m \geqslant 1$ 而 p 为奇素数。此时, $\left(\mathbb{Z}/_{n\mathbb{Z}}\right)^{\times}$ 的每个生成元 \overline{l} 都被称为 n 的**原根**。

C. 线性群中元素的阶的几个命题

C1) \Rightarrow **M**_n(\mathbb{Z}) 为整系数的 $n \times n$ 矩阵的集合,令

$$\mathbf{GL}(n;\mathbb{Z}) = \{ A \in \mathbf{M}_n(\mathbb{Z}) | A$$
可逆并且 $A^{-1} \in \mathbf{M}_n(\mathbb{Z}) \}.$

- 证明, $\mathbf{GL}(n; \mathbb{Z}) = \{ A \in \mathbf{M}_n(\mathbb{Z}) | \det(A) = \pm 1 \}.$
- 如果 $A \in GL(2; \mathbb{Z})$ 的阶有限,证明,ord(A) ∈ {1,2,3,4,6}。

- 证明,存在只依赖于 n 的常数 C_n , 若 $A \in \mathbf{GL}(n;\mathbb{Z})$ 的阶有限,则 $|\operatorname{ord}(A)| \leq C_n$ 。
- C2) p 是素数, q 是 p 的幂, 域 \mathbb{F}_q 有 q 个元素。我们已知 $\mathbf{GL}(n;\mathbb{F}_q)$ 共有 $\prod_{k=0}^{n-1}(q^n-q^k)$ 个元素。
 - 对任意的 $A \in \mathbf{GL}(n; \mathbb{F}_q)$,证明,集合 $\left\{P(A)\middle|P \in \mathbb{F}_q[X]\right\}$ 至多有 q^n 个元素。以上,对于 $P(X) = \sum_{k=0}^n a_k X^k$,其中, $a_k \in \mathbb{F}_q$,我们定义 $P(A) = \sum_{k=0}^n a_k \cdot A^k$ 。
 - 证明, 对任意的 $A \in \mathbf{GL}(n; \mathbb{F}_q)$, ord $(A) \leq q^n 1$.
 - 给定如下的结论: 存在 $K = \mathbb{F}_q$ 的域扩张 $L = \mathbb{F}_{q^n}$,使得 [L:K] = n。证明,存在 $A \in \mathbf{GL}(n;\mathbb{F}_q)$,ord $(A) = q^n 1$ 。

所以, $GL(n; \mathbb{F}_q)$ 中元素的阶的最大值恰好是 $q^n - 1$ 。

D. 有限群乘积的消去定理

我们先证明群论中三个标准的定理:

• (第二同构定理) G 是群, K < G, $N \triangleleft G$ 。证明, $N \cap K \triangleleft K$ 并且有自然的群同构:

$$K_{N \cap K} \xrightarrow{\simeq} NK_{N}$$

其中, 首先说明 $NK = \{x \cdot y | x \in N, y \in K\}$ 是 G 的子群。

• (第三同构定理) G 是群, $K \triangleleft G$, $H \triangleleft G$ 并且 K < H。证明, $H_{/K} \triangleleft G/_{K}$ 并且有自然的群同构:

$$(G_{K})_{(H_{K})} \xrightarrow{\simeq} G_{H}.$$

• (子群对应定理) $\varphi: G \to G'$ 是满的群同态, 我们有如下双射:

$$\left\{H\big|H < G, H \supset \operatorname{Ker}(\varphi)\right\} \xrightarrow{1:1} \left\{H'\big|H' < G'\right\}, \ \ H \mapsto \varphi(H).$$

进一步,假设以上对应把 H 映射成 H',那么,H 是 G 的正规子群当且仅当 H' 是 G' 的正规子群。

下面证明有限群乘积的消去定理。给定有限群 G,G',以下两个数值是非负整数:

$$M(G,G') = |\text{Hom}(G,G')|, \quad I(G,G') = |\{\varphi \in \text{Hom}(G,G')|\varphi 为单射\}|.$$

D1) 证明如下等式,其中,以下是对所有G的正规子群H来求和:

$$M(G, G') = \sum_{H \triangleleft G} I(G_{/H}, G')$$

D2) 证明,对每个 G 的正规子群 H 存在整数 λ_H , 使得

$$I(G,G') = \sum_{H \triangleleft G} \lambda_H \cdot M \left({}^{G}\!\!/_{H},G' \right).$$

特别地,以上等式中的系数 $\{\lambda_H | H \triangleleft g\}$ 不依赖于 G'。

- D3) 假设 G_1, G_2, G' 是有限群并且 $G_1 \times G' \simeq G_2 \times G'$ 。证明, $I(G_1, G') = I(G_2, G')$ 。
- D4) (消去定理) 证明,若 G_1,G_2,G' 是有限群并且 $G_1\times G'\simeq G_2\times G'$,则 $G_1\simeq G_2$ 。
- D5) 令 G_1 和 G_2 为有限维 \mathbb{F}_2 -线性空间,G' 为 \mathbb{F}_2 -线性空间且其基有可数无限个元素。证明, $G_1\times G'\simeq G_2\times G'$ 。特别地,这一组 G_1,G_2,G' 不满足消去定理。

Algebra is the metaphysics of arit	hmetic.
	— John Ray

练习题 (不提交)

- 1. G 是群, $H \subset G$ 是有限子集并且对乘法封闭⁴。证明,H 是子群。
- 2. 假设 $\{G_i\}_{i\in I}$ 是 G 的一族正规子群,那么, $\bigcap_{i\in I}G_i$ 也是正规子群。
- 3. 有限集 G 上定义了满足结合律的乘法 $G \times G \to G$, $(g_1, g_2) \mapsto g_1 \cdot g_2$ 。假设以下两点成立:
 - 对任意的 $g, x, y \in G$, 有 $g \cdot x = g \cdot y \Rightarrow x = y$;
 - 对任意的 $g, x, y \in G$, 有 $x \cdot g = y \cdot g \Rightarrow x = y$.

证明, G 在此乘法下是群。

- 4. 试给出所有(在同构意义下)阶数不超过5的群。
- 5. G 是群,H < G 是子群并且 [G:H] = 2。证明, $H \triangleleft G$ 是正规子群。如果 [G:H] = n,其中, $n \geqslant 3$,结论是否成立?
- 6. G 是群,H < G 是子群并且 [G:H] = n。证明,如果 H 是唯一的指标为 n 的子群,那么 $H \triangleleft G$ 是正规子群。
- 7. (循环群的分类) G 是循环群。证明,或 $G \simeq \mathbb{Z}$,或有正整数 n 使得 $G \simeq \mathbb{Z}/_{n\mathbb{Z}}$,二者必居其一。
- 8. G 是 mn 阶的交换群,其中,m,n 为互素。如果存在 $g,h\in G$,使得其阶分别为 m 和 n,证明,G 为循环群。
- 9. G 是群并且它只有有限个子群。证明, G 是有限群。
- 10. G 是群。对任意的 $g \in G$,共轭映射 Int(g) 的定义如下:

$$\operatorname{Int}(g): G \to G, h \mapsto \operatorname{Int}(g)(h) = ghg^{-1}.$$

证明,以上映射给出群同态:

$$G \to \operatorname{Aut}(G), g \mapsto \operatorname{Int}(g).$$

并且 Ker(Int) = Z(G) 而 $Im(Int) \triangleleft Aut(G)$ 是正规子群。

- 11. 试在二面体群 \mathfrak{D}_4 中找到两个子群 K < H < G,使得 $K \triangleleft H$, $H \triangleleft \mathfrak{D}_4$,但是 K 不是 \mathfrak{D}_4 的正规子群? 这表明正规子群的关系并不传递。
- 12. G 是群,K 和 H 为其子群并且 $K \lhd H$, $H \lhd G$ 。证明,如果 H 是循环群,那么 $K \lhd G$ 。
- 13. (四元数群) 令 $\mathbf{Q}_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, 一共有 8 个元素。定义 1 为单位元; 对任意的 $\pm x \in \mathbf{Q}_8$, 令 $(-1) \cdot (\pm x) = (\pm x) \cdot (-1) = \mp x$; 定义乘法:

$$i \cdot j = -j \cdot i = k, \ j \cdot k = -k \cdot j = i, \ k \cdot i = -i \cdot k = j, \ i^2 = j^2 = k^2 = -1.$$

证明,以上给出群结构。试找出它所有的子群并证明这些子群都是正规子群。 \mathbf{Q}_8 与二面体群 \mathfrak{D}_4 是否同构?

⁴即对任意的 $h_1, h_2 \in H, h_1 \cdot h_2 \in H$ 。

14. (Cayley 定理:每个(有限)群都同构于(有限)对称群的子群)G是群。令X=G,定义映射:

$$\varphi: G \to \mathfrak{S}_X, \ g \mapsto \varphi(g): x \mapsto g \cdot_G x, \ \forall x \in X.$$

证明, G 是单的群同态 (从而, $G \simeq \text{Im}(\varphi)$)。

- 15. 证明, $\mathbb{Q}_{\mathbb{Z}}$ 是无限群但是每个元素的阶都是有限的。
- 16. G 是群, 定义映射

Inv:
$$G \to G$$
, $g \mapsto g^{-1}$.

证明, G 是交换群当且仅当 Inv 是群同态。

- 17. G 是群,如果对任意的 $g \in G$, $g^2 = 1$,证明,G 是交换群
- 18. $\mathbb{Z}_{p\mathbb{Z}}$ 是 p-阶加法循环群,其中,p 是素数。证明, $\operatorname{Aut}(\mathbb{Z}_{p\mathbb{Z}})$ 是循环群。如果把 p 替换成 6 或者 8,结论是否成立?
- 19. G 是群,H, K 为其子群。我们定义 $H\cdot K=\{h\cdot k|h\in H, k\in K\}$ 。证明, $H\cdot K$ 为子群当且仅当 $H\cdot K=K\cdot H$ 。
- 20. G 是群, H, K 为其有限子群。证明,

$$|H \cdot K| = \frac{|H||K|}{|H \cap K|}.$$

21. G 是群, H,K 为其子群。证明, $H \cap K < H$ 并且

$$[H:H\cap K]\leqslant [G:K].$$

假设 [G:K] 有限,进一步证明以上等号成立当且仅当 $G=K\cdot H$ 。

22. G 是群, H, K 为其有限指标的子群。证明,

$$[G:H\cap K]\leqslant [G:H][G:K].$$

并且等号成立当且仅当 $G = K \cdot H$ 。

23. $\varphi: G \to A$ 是群同态, A 是交换群。证明, G 中任意的包含 $Ker(\varphi)$ 的子群都是正规子群。