ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ высшего образования «Московский физико-технический институт (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Отчёт по лабораторной работы 1.3.3 ИЗМЕРЕНИЕ ВЯЗКОСТИ ВОЗДУХА ПО ТЕЧЕНИЮ В ТОНКИХ ТРУБКАХ.

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

Используемое оборудование: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

Теоретические сведения и методика измерений: Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Движение жидкости или газа вызывается перепадом внешнего давления на концах ΔP трубы, чему в свою очередь препятствуют силы вязкого («внутреннего») трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы. Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона:

$$\tau_{(xy)} = -\eta \frac{\partial v_x}{\partial y}$$

Объёмным расходом (или просто расходом) Q называют объём жидкости, протекающий через сечение трубы в единицу времени. Величина Q зависит от перепада давления ΔP , а также от свойств газа (плотности ρ и вязкости η) и от геометрических размеров (радиуса трубы R и её длины L). Основная задача данной работы — исследовать эту зависимость экспериментально. Характер течения в трубе может быть ламинарным либо турбулентным. При ламинарном течении поле скоростей $\mathbf{u}(\mathbf{r})$ образует набор непрерывных линий тока, а слои жидкости не перемешиваются между собой. Турбулентное течение характеризуется образованием вихрей и активным перемешиванием слоев, при этом даже в стационарном течении в каждой точке имеют место существенные флуктуации скорости течения и давления. Характер течения определяется безразмерным параметром задачи — числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta} = \frac{\rho \overline{u}R}{\eta}$$

— плотность среды, и — характерная скорость потока, η — коэффициент вязкости среды, а — характерный размер системы (размер, на котором существенно меняется скорость течения).

$$Q=rac{\pi R^4\Delta P}{8\eta l}$$
- формула Пуазейля.

$$Q = \pi R^2 \overline{u}$$

 $l_{\text{уст}} = 0, 2R * Re$ - длина, на которой устанавливается поток.

P = l * 0, 2 * 9,8067 - выражение давления через показания микроманометра.

Рис. 1: Экспериментальная установка

Результаты измерений и обработка данных:

- 1. Запишем исходные данные: $d_1=4,10\pm0,05$ мм, $d_2=3,00\pm0,1$ мм, $d_3=5,20\pm0,05$ мм, погрешности: $\sigma_{\Delta V}=0,02$ л, $\sigma_l=1$ мм
- 2. Рассчитаем длину на которой поток можно считать установившимся:

$$l_{\text{уст1}} = 0, 2R * Re = 41, 0 \pm 0, 5$$
см

$$l_{\text{уст2}} = 0, 2R * Re = 30 \pm 1$$
см

$$l_{\text{уст3}} = 0,2R*Re = 52,0\pm0,5$$
см

3. Измерим зависимости перепада давления ΔP на выбранном участке трубки от расхода газа Q для каждой трубки. Построим графики зависимости расхода от давления.

\overline{N}	ΔV , л	l, mm	t_1, c	t_2, c	t_3, c	$Q, 10^{-3} \frac{\pi}{c}$	ΔP , Πa
1	1.0	35	22,27	23,34	23,94	42,9	68,6
2	1.0	41	20,45	20,21	21,02	49,5	80,36
3	1.0	56	16,25	16,92	16,60	60,9	109,76
4	1.0	60	15,88	15,78	15,79	63,2	117,6
5	1.0	69	14,06	14,68	14,34	69,9	135,24
6	1.0	74	13,46	13,93	13,32	74,0	145,04
7	1.0	79	13,15	12,94	13,12	76,3	154,84
8	1.0	91	11,64	11,73	11,78	85,4	178,36
9	1.5	101	11,52	11,33	11,09	94,9	197,96
10	1.5	110	10,86	10,84	10,96	107,6	215,6
11	1.5	115	10,27	10,32	10,70	114,2	225,4
12	1.5	122	10,24	9,86	9,81	121,5	239,12
13	2.0	130	12,43	12,59	12,47	131,2	254,8
14	2.0	140	11,95	11,58	12,42	146,6	274,4

Таблица 1: Данные для трубы d1

Рис. 2:

4. Коэффициент угла наклона графика: $k=(0,479\pm0,002)\cdot10^{-6\frac{\Pi a\cdot c}{M^3}}$ Искомая вязкость:

$$\eta = \frac{\pi r^4}{8kl} = (18.6 \pm 0.7) \cdot 10^{-6} \Pi a \cdot c$$

По графику определим, когда ламинарный поток переходит в турбулентный: $Q\approx 100\cdot 10^{-3}\frac{\pi}{c}$. Число Рейнольдса: $Re=\frac{Q\rho}{\pi r\eta}\approx 954\pm 89$

N	ΔV , л	l, mm	t_1, c	t_2, c	t_3, c	$Q, 10^{-3} \frac{\pi}{c}$	$\Delta P, \Pi a$
1	0.5	25	15,16	15,14	15,64	32,6	49
2	0.5	35	$12,\!27$	$12,\!27$	12,00	41,3	68,6
3	0.5	40	10,95	11,45	10,65	44,6	78,4
4	0.5	45	10,29	$10,\!12$	10,21	49,0	88,2
5	0.5	50	9,57	9,76	9,38	52,6	98
6	0.5	60	8,20	8,50	8,50	59,5	117,8
7	0.5	65	7,98	8,06	7,77	62,5	127,4
8	1.0	75	$14,\!32$	$14,\!50$	14,87	68,9	147
9	1.0	85	13,76	13,33	13,62	74,0	166,6
10	1.0	90	12,81	$13,\!15$	13,05	77,2	176,4
11	1.0	95	12,46	12,51	12,98	78,7	186,2
12	1.0	100	12,19	12,4	12,24	82,9	196
13	1.0	105	12,38	11,92	11,85	88,3	205,8
14	1.0	115	11,43	11,30	11,64	96,9	225,4

Таблица 2: Данные для трубы d2

Рис. 3:

5. Коэффициент угла наклона графика: $k=(0,536\pm0,003)\cdot 10^{-6\frac{\Pi \text{a-}c}{\text{M}^3}}$ Искомая вязкость:

$$\eta = \frac{\pi r^4}{8kl} = (17.3 \pm 0.9) \cdot 10^{-6} \Pi a \cdot c$$

По графику определим, когда ламинарный поток переходит в турбулентный: $Q\approx 82\cdot 10^{-3}\frac{\pi}{c}$. Число Рейнольдса: $Re=\frac{Q\rho}{\pi r\eta}\approx 1044\pm 93$

N	ΔV , л	l, MM	t_1, c	t_2, c	t_3, c	$Q, 10^{-3} \frac{\pi}{c}$	ΔP , Πa
1	1.0	50	6,98	6,96	6,89	144,9	98
2	1.0	55	6,42	6,58	6,71	151,1	107,8
3	1.0	60	6,17	6,18	6,32	161,2	117,6
4	1.0	70	5,78	5,89	5,79	172,4	137,2
5	1.0	80	5,27	5,40	5,25	188,6	156,8
6	1.0	90	5,21	5,07	5,05	196,0	176,4
7	1.0	100	4,76	4,79	4,59	210,3	196
8	1.0	110	4,66	4,60	4,55	217,3	216,6
9	1.5	115	$6,\!55$	6,86	6,48	227,2	225,4
10	1.5	120	6,52	6,29	$6,\!56$	234,3	235,2
11	1.5	125	6,48	6,11	6,49	241,9	245
12	1.5	130	6,11	6,34	6,20	245,9	254,8
13	1.5	135	6,18	6,07	6,04	250,0	264,6
14	1.5	140	6,18	6,05	5,72	255,3	274,4

Таблица 3: Данные для трубы d3

Рис. 4:

6. Коэффициент угла наклона графика: $k=(1,112\pm0,005)\cdot10^{-6\frac{\Pi a\cdot c}{M^3}}$ Искомая вязкость:

$$\eta = \frac{\pi r^4}{8kl} = (19 \pm 1) \cdot 10^{-6} \Pi a \cdot c = > \overline{\eta} = (18, 3 \pm 0, 9) \cdot 10^{-6} \Pi a \cdot c$$

По графику определим, когда ламинарный поток переходит в турбулентный: $Q\approx 220\cdot 10^{-3}\frac{\pi}{c}$. Число Рейнольдса: $Re=\frac{Q\rho}{\pi r\eta}\approx 1769\pm 88$

7. Измерим перепады давления вдоль трубки d1, результат представим в виде графика и таблицы.

N	ΔP , Πa	L, см
1	166,6	10,5
2	176,4	30
3	192	40
4	245	50
5	318	70
6	467	90
7	633	120
8	702	130

Таблица 4: Данные давления и расстояния

Рис. 5:

Таким образом получаем, что длина установления потока $l \approx 45$ см.

Теоретическая оценка: $l_{\text{уст}} = 0, 2R*Re = 42 \pm 3$ см

8. Измерим зависимость расхода от радиуса трубы при заданном градиенте давления. Построим график $\ln Q(\ln R)$

	ΔV , л	1, мм	Δt , c	ΔP , Πa
d_1	1	55	10,55	107,8
d_2	1	52	14,41	101,9
d_3	1	55	5,15	107,8

Таблица 5: Данные давления и расстояния

Рис. 6:

Таким образом мы получили наклон прямой $k=4,0\pm0,1,$ что соответствует теоретической оценке.

Обсуждение результатов и вывод: В данной работе мы экспериментально исследовали свойства течения газов по тонким трубкам Измерили зависимости перепада давления ΔP на выбранном участке трубки от расхода газа Q. Измерили распределение давления газа вдоль трубки. Измерили зависимость расхода от радиуса трубы при заданном градиенте давления. По полученным данным построили графики и таблицы. Выявили область применимости закона Пуазейля и с его помощью определили коэффициент вязкости воздуха $\overline{\eta} = (18, 3 \pm 0, 9) \cdot 10^{-6} \Pi a \cdot c$.