CS294-248 Special Topics in Database Theory Unit 3: Proof of Trakhtentbrot's Theorem

Dan Suciu

University of Washington

Trakhtenbrot's Undecidability Theorem

Static Analysis

Trakhtenbrot's Theorem: SATfin is undecidable.

We already used it twice. Where??

In general, any semantic property of FO queries is undecidable.

Very important theorem, so we will prove it next.

Bonus: the proof construction is standard today, and we will reuse it later.

Trakhtenbrot's Theorem

Theorem

If the vocabulary includes at least one relation of arity ≥ 2 , then the problem: given φ , check whether $SAT_{fin}(\varphi)$ is undecidable. It follows that VAL_{fin} is also undecidable.

Consequence of Trakhtenbrot's Theorem

SAT_{fin} is r.e. In other words, there exists an algorithm that enumerates all finitely satisfiable FO sentences: SAT_{fin} = $\{\varphi_0, \varphi_1, \varphi_2, \ldots\}$ HOW?

Corollary

There is no axiomatization for $\models_{fin} \varphi$.

Proof Otherwise, we could enumerate $VAL_{fin} = \{\varphi_0, \varphi_1, \varphi_2, \ldots\}$. This gives a decision procedure for both SAT_{fin} and VAL_{fin} HOW?

Main take-away:

- Finite models: SATfin is r.e. VALfin is not r.e.
- Unrestricted models: VAL is r.e. SAT is not r.e.

Proof of Trakhtenbrot's Theorem (1/4)

Proof is by reduction from the halting problem of Turing Machines.

Theorem

The following problem is undecidable: given a Turing Machine T, check whether T halts on the empty input tape.

Given any TM T we will construct a sentence Φ_T s.t.

$$T$$
 halts iff $SAT_{fin}(\Phi_T)$.

Proof of Trakhtenbrot's Theorem (2/4)

Binary relations SUCC, LT. Φ_T asserts:

• LT is a total order:

$$\forall x \neg LT(x, x)$$

$$\forall x \forall y \neg (LT(x, y) \lor x = y \lor LT(y, x))$$

$$\forall x \forall y \forall z (LT(x, y) \land LT(y, z) \Rightarrow LT(x, z))$$

• SUCC is the immediate successor:

$$\forall x, y (\texttt{SUCC}(x, y) \Leftrightarrow \texttt{LT}(x, y) \land \neg \exists z (\texttt{LT}(x, z) \land \texttt{LT}(z, y))$$

We actually need only SUCC, but we can only define it using LT.

Proof of Trakhtenbrot's Theorem (3/4)

Assume the TM T has tape alphabet $\{a,b\}$ and states $\{q_0,\ldots,q_f\}$.

A configuration Γ of T consists of:

- The state q_i .
- The tape $\sigma_0 \sigma_1 \dots \sigma_m \in \{a, b\}^*$.
- The head position $s \in \{0, 1, \dots, m\}$.

A sequence of configurations $\bar{\Gamma} = \Gamma_0, \Gamma_1, \dots, \Gamma_n$ is valid if:

- Γ_0 is the initial configuration (empty tape, state q_0)
- Γ_n the final configuration (state q_f).
- The TM allows the transition from Γ_{t-1} to Γ_t , for all t=1,n.

Next we define Φ_T such that:

iff

Proof of Trakhtenbrot's Theorem (4/4)

Add the following relations:

- A(t,s): tape has symbol a on position s at time t; B(t,s) similarly.
- H(t,s): the head is on position s at time t.
- $Q_i(t)$: the TM is in state q_i at time t, for i = 0, 1, ..., f.

Then Φ_T checks that $A, B, H, Q_0, \ldots, Q_n$ encode a valid $\bar{\Gamma}$:

- $\forall t, \forall s$ exactly one of A(t,s), B(t,s) is true
- $\forall t$ there exists exactly one s s.t. H(t,s) is true.
- $\forall t$ exactly one of $Q_0(t), \dots Q_f(t)$ is true.
- $\forall t_1, t_2$, if SUCC (t_1, t_2) then the transition from t_1 to t_2 is correct. This depends on the transitions of T in an obvious way. (Exercise!

Lots of details, but they are all straightforward.

Proof of Trakhtenbrot's Theorem (4/4)

Add the following relations:

- A(t,s): tape has symbol a on position s at time t; B(t,s) similarly.
- H(t,s): the head is on position s at time t.
- $Q_i(t)$: the TM is in state q_i at time t, for i = 0, 1, ..., f.

Then Φ_T checks that $A, B, H, Q_0, \ldots, Q_n$ encode a valid $\bar{\Gamma}$:

- $\forall t, \forall s$ exactly one of A(t, s), B(t, s) is true.
- $\forall t$ there exists exactly one s s.t. H(t, s) is true.
- $\forall t$ exactly one of $Q_0(t), \dots Q_f(t)$ is true.
- $\forall t_1, t_2$, if SUCC (t_1, t_2) then the transition from t_1 to t_2 is correct. This depends on the transitions of T in an obvious way. (Exercise!)

Lots of details, but they are all straightforward.

Discussion of the Proof

- We skipped details; see [Libkin, 2004].
- We need SUCC for time $t = 0, 1, 2, \ldots$ and space $s = 0, 1, 2, \ldots$
- We encoded a sequence of configurations $\Gamma_0, \Gamma_n, \ldots$ as a finite structure $\mathbf{D} = (D, R_1^D, R_2^D, \ldots)$. Think of \mathbf{D} as three $s \times t$ matrices A(t, s), B(t, s), H(t, s).
- We used several binary relations, but we can use only one binary relation, using a tedious encoding.
- What if we all relations are unary? Then SATfin is decidable! Homework

Undecidability

Libkin, L. (2004).

Elements of Finite Model Theory.

Texts in Theoretical Computer Science. An EATCS Series. Springer.