# **Predictive Modeling**

Name: Sanjana K Venkatesh

Date: 07/06/2024

# Table of Contents

| Executive Summary             |                             | 5  |
|-------------------------------|-----------------------------|----|
| Data Description              |                             | 5  |
| Exploratory Data Analysis     |                             | 6  |
| Let us check the types of     | variables in the data frame | 6  |
| Check for missing values i    | n the dataset:              | 7  |
| Check for duplicate values    | s in the dataset:           | 7  |
| Treat the bad data i.e miss   | sing values in the dataset: | 7  |
| Overview of Linear Regression | on Model                    | 25 |
| 1. Simple Linear Regres       | sion                        | 25 |
| 2. Multiple Linear regre      | ession                      | 25 |
| Steps in Linear Regression    | 1                           | 25 |
| Assumptions of Linear Re      | gression                    | 25 |
| Model building:               |                             | 25 |
| Linearity:                    |                             | 28 |
| Test for Normality:           |                             | 28 |
| HOMOSCEDASTICITY              |                             | 30 |
| Predictions                   |                             | 30 |
| The final result summary      |                             | 31 |
| The linear equation           |                             | 31 |
| Actionable Business Insights  | s and recommendation:       | 31 |
| Executive Summary             |                             | 32 |
| Data Description              |                             | 32 |
| Exploratory Data Analysis     |                             | 33 |
| Let us check the types of     | variables in the data frame | 33 |
| Check for missing values i    | n the dataset:              | 33 |
| Check for duplicate values    | s in the dataset:           | 33 |
| Treat the bad data i.e miss   | sing values in the dataset: | 34 |
| Overview of Logistic Regress  | sion                        | 43 |
| Steps for Logistic Regressi   | on                          | 43 |
| Steps Model building:         |                             | 43 |
| Actionable Insights and reco  | mmendation:                 | 46 |
| Overview of LINEAR DISCRIN    | /INANT ANALYSIS             | 47 |
| Stens to Ruild LDA Models     |                             | 47 |

| Model Building steps:                                | 47 |
|------------------------------------------------------|----|
| Generate the coefficients and LDA function           | 49 |
| Observation and insights                             | 50 |
| Overview of Decision Tree                            | 51 |
| Model building                                       | 51 |
| Model Evaluation                                     | 52 |
| Actionable Insights and recommendations:             | 54 |
| Compare the Model                                    | 55 |
| List of figures                                      |    |
| Univariant analysis                                  | 8  |
| Correlation plot:                                    | 14 |
| Outlier treatment                                    | 14 |
| Univariant analysis for Categorical variable         | 22 |
| Bivariant analysis                                   | 22 |
| Categorical vs numerical                             | 24 |
| Univariant Analysis                                  | 35 |
| Correlation plot: Relation between numeric variables | 35 |
| Outlier treatment:                                   | 36 |
| Univariant analysis for Categorical variable         | 38 |
| Bivariant analysis                                   | 41 |
| Categorical vs numerical                             | 42 |
| Classification report for train data                 | 45 |
| Classification report for test data                  | 46 |
| Confusion Matrix for train data                      | 47 |
| Classification report for train data                 | 47 |
| AUC for the Training Data.                           | 48 |
| Confusion Matrix for test data                       | 48 |
| Classification report for test data                  | 48 |
| AUC-ROC for test data                                | 49 |
| AUC and ROC Curve on training data.                  | 52 |
| AUC and ROC Curve on test data.                      |    |
| Confusion Matrix for the training data               |    |
| Classification report on training data               | 53 |
| Confusion matrix on test data                        | 54 |

| The Classification report on test data | 54 |
|----------------------------------------|----|
|                                        |    |
|                                        |    |
|                                        |    |
| List of Tables                         |    |
| Sample of the dataset:                 | 6  |
|                                        |    |
| Sample of the dataset:                 | 32 |
| Check for summary statistics           | 7  |
|                                        |    |
| Check the summary statistics.          | 33 |

### **Executive Summary**

The comp-activ database comprises activity measures of computer systems. Data was gathered from a Sun Sparcstation 20/712 with 128 Mbytes of memory, operating in a multi-user university department. Users engaged in diverse tasks, such as internet access, file editing, and CPU-intensive programs.

Being an aspiring data scientist, you aim to establish a linear equation for predicting 'usr' (the percentage of time CPUs operate in user mode). Your goal is to analyze various system attributes to understand their influence on the system's 'usr' mode.

### **Data Description**

- 1. Iread Reads (transfers per second ) between system memory and user memory.
- 2. lwrite writes (transfers per second) between system memory and user memory.
- 3. scall Number of system calls of all types per second
- 4. sread Number of system read calls per second .
- 5. swrite Number of system write calls per second.
- 6. fork Number of system fork calls per second.
- 7. exec Number of system exec calls per second.
- 8. rchar Number of characters transferred per second by system read calls
- 9. wchar Number of characters transfreed per second by system write calls
- 10. pgout Number of page out requests per second
- 11. ppgout Number of pages, paged out per second
- 12. pgfree Number of pages per second placed on the free list.
- 13. pgscan Number of pages checked if they can be freed per second
- 14. atch Number of page attaches (satisfying a page fault by reclaiming a page in memory) per second
- 15. pgin Number of page-in requests per second
- 16. ppgin Number of pages paged in per second
- 17. pflt Number of page faults caused by protection errors (copy-on-writes).
- 18. vflt Number of page faults caused by address translation.
- 19. runqsz Process run queue size (The number of kernel threads in memory that are waiting for a CPU to run.

Typically, this value should be less than 2. Consistently higher values mean that the system might be CPU-bound.)

### 20. freemem - Number of memory pages available to user processes

# Sample of the dataset:



Dataset is in the shape of 8192, 22.

### **Exploratory Data Analysis**

Let us check the types of variables in the data frame.

```
Data columns (total 22 columns):
 # Column Non-Null Count Dtype
                     -----
     lread
                    8192 non-null int64
 1 lwrite 8192 non-null int64
 2 scall 8192 non-null int64
3 sread 8192 non-null int64
 4 swrite 8192 non-null int64
                 8192 non-null float64
 5 fork
 6 exec
                    8192 non-null float64
 7 rchar 8088 non-null float64
 8 wchar 8177 non-null float64
8 wchar 8177 non-null float64
9 pgout 8192 non-null float64
10 ppgout 8192 non-null float64
11 pgfree 8192 non-null float64
12 pgscan 8192 non-null float64
13 atch 8192 non-null float64
14 pgin 8192 non-null float64
15 ppgin 8192 non-null float64
16 pflt 8192 non-null float64
17 vflt 8192 non-null float64
18 runqsz 8192 non-null object
19 freemem 8192 non-null int64
 19 freemem 8192 non-null int64
 20 freeswap 8192 non-null int64
                      8192 non-null int64
 21 usr
```

Total 22 columns with 5 rows. Out of 22 columns, 13 are float, 8 are integer and 1 is object data type.

### Check for summary statistics

|          | count  | mean         | std           | min    | 25%       | 50%       | 75%         | max        |
|----------|--------|--------------|---------------|--------|-----------|-----------|-------------|------------|
| Iread    | 8192.0 | 1.955969e+01 | 53.353799     | 0.0    | 2.0       | 7.0       | 20.000      | 1845.00    |
| lwrite   | 8192.0 | 1.310620e+01 | 29.891726     | 0.0    | 0.0       | 1.0       | 10.000      | 575.00     |
| scall    | 8192.0 | 2.306318e+03 | 1633.617322   | 109.0  | 1012.0    | 2051.5    | 3317.250    | 12493.00   |
| sread    | 8192.0 | 2.104800e+02 | 198.980146    | 6.0    | 86.0      | 166.0     | 279.000     | 5318.00    |
| swrite   | 8192.0 | 1.500582e+02 | 160.478980    | 7.0    | 63.0      | 117.0     | 185.000     | 5456.00    |
| fork     | 8192.0 | 1.884554e+00 | 2.479493      | 0.0    | 0.4       | 8.0       | 2.200       | 20.12      |
| exec     | 8192.0 | 2.791998e+00 | 5.212456      | 0.0    | 0.2       | 1.2       | 2.800       | 59.56      |
| rchar    | 8088.0 | 1.973857e+05 | 239837.493526 | 278.0  | 34091.5   | 125473.5  | 267828.750  | 2526649.00 |
| wchar    | 8177.0 | 9.590299e+04 | 140841.707911 | 1498.0 | 22916.0   | 46619.0   | 106101.000  | 1801623.00 |
| pgout    | 8192.0 | 2.285317e+00 | 5.307038      | 0.0    | 0.0       | 0.0       | 2.400       | 81.44      |
| ppgout   | 8192.0 | 5.977229e+00 | 15.214590     | 0.0    | 0.0       | 0.0       | 4.200       | 184.20     |
| pgfree   | 8192.0 | 1.191971e+01 | 32.363520     | 0.0    | 0.0       | 0.0       | 5.000       | 523.00     |
| pgscan   | 8192.0 | 2.152685e+01 | 71.141340     | 0.0    | 0.0       | 0.0       | 0.000       | 1237.00    |
| atch     | 8192.0 | 1.127505e+00 | 5.708347      | 0.0    | 0.0       | 0.0       | 0.600       | 211.58     |
| pgin     | 8192.0 | 8.277960e+00 | 13.874978     | 0.0    | 0.6       | 2.8       | 9.765       | 141.20     |
| ppgin    | 8192.0 | 1.238859e+01 | 22.281318     | 0.0    | 0.6       | 3.8       | 13.800      | 292.61     |
| pflt     | 8192.0 | 1.097938e+02 | 114.419221    | 0.0    | 25.0      | 63.8      | 159.600     | 899.80     |
| vflt     | 8192.0 | 1.853158e+02 | 191.000603    | 0.2    | 45.4      | 120.4     | 251.800     | 1365.00    |
| freemem  | 8192.0 | 1.763456e+03 | 2482.104511   | 55.0   | 231.0     | 579.0     | 2002.250    | 12027.00   |
| freeswap | 8192.0 | 1.328126e+06 | 422019.426957 | 2.0    | 1042623.5 | 1289289.5 | 1730379.500 | 2243187.00 |
| usr      | 8192.0 | 8.396887e+01 | 18.401905     | 0.0    | 81.0      | 89.0      | 94.000      | 99.00      |

summary of the statistics ranges from 0 to max 2526649.00 in different columns.

### Check for missing values in the dataset:

From the above results we can see that there missing data for rchar and wchar we need to trat the bad data.

### Check for duplicate values in the dataset:

There are no duplicates in the dataset.

### Treat the bad data i.e missing values in the dataset:

Plot the boxplot to check if the dataset is uniformly distributed. If it is normally distributed then we could go for mean imputation for missing values. In our dataset looks like there are outliers hence it can't be normally distributed. Hence will impute median for both rchar and wchar.

# rchar:



# wchar:



Univariant analysis



lwrite has too many outliers. The max value is 6K+ for writes between system memory and user memory.

Scall has median around 2000 but it also has outliers. Which is 12k+.



### Observations:

Number of system read calls per second has very minimal mean and median is around 1. Very few outboxed outliers. But it has crossed 6k+.

Number of system write calls per second(Swrite) is showing same behaviour has sread.



The fork is having wide range of observations from 0 to 12.5. Huge outliers found.

The exec is having less observations only few calls have reached 7k+.



### Observations:

Rchar and wchar both are almost having similar behaviour. Except that wchar has less outliers compared to rchar. The characters transferred is around 1.



Pgout and ppgout both are right skewed. Data is not symmetric and there is 0.5 median.



### Observations:

Pgfree and pgscan right skewed. Both pgscan and pgfree has 0 median with least mean like 1.



| atch | 8192.0 | 1.127505e+00 | 5.708347  | 0.0 | 0.0 | 0.0 | 0.600 |
|------|--------|--------------|-----------|-----|-----|-----|-------|
| pgin | 8192.0 | 8.277960e+00 | 13.874978 | 0.0 | 0.6 | 2.8 | 9.765 |

The mean value is 8 for pgin. The observations are not normally distributed for both. The atch has 0 median.



### Observations:

Ppgin has min value of 0 with max value has 292.

Pflt has median of 62.8 and the data is right skewed.



Vflt and freemem both are not normally distributed. The value for vflt is spread from min,max(0.2,1365). The freemem i.e the number of memory pages available to user process is very less.



### Observations:

The usr is the target variable. freewasp and usr both are left skewed. We can see very few data points in freewap and usr in the range 0,1 and 0-50.

### Correlation plot:

Relation between all numeric variables.



From the correlation plot, we can see that various attributes of the car are highly correlated to each other. Correlation values near to 1 or -1 are highly positively correlated and highly negatively correlated respectively. Correlation values near to 0 are not correlated to each other.

### Outlier treatment

After the box plot technique of outlier treatment, the outliers are removed. It uses a technique of lower index and upper index for eliminating the outliers.

lower range -25.0 and upper range 47.0



lower range -15.0 and upper range 25.0



lower range -2445.875 and upper range 6775.125



lower range -203.5 and upper range 568.5



lower range -120.0 and upper range 368.0



lower range -2.300000000000003 and upper range 4.9





lower range -310940.875 and upper range 611196.125



lower range -101611.125 and upper range 230625.875



lower range -3.59999999999999 and upper range 6.0



lower range -6.30000000000001 and upper range 10.5



lower range -7.5 and upper range 12.5



lower range 0.0 and upper range 0.0



lower range -0.8999999999999999999 and upper range 1.5



lower range -13.147500000000003 and upper range 23.512500000000003



lower range -19.2 and upper range 33.6



lower range -176.899999999999 and upper range 361.5



lower range -264.2000000000005 and upper range 561.400000000001



lower range -2425.875 and upper range 4659.125



lower range 10989.5 and upper range 2762013.5



lower range 61.5 and upper range 113.5



# Univariant analysis for Categorical variable





### Observations:

We have one categorical variable runqsz. The number of kernel threads in memory that are waiting for a CPU to run is around 3800 and other way its around 4500.

# Bivariant analysis

<Axes: xlabel='Iread', ylabel='lwrite'>



The correlation is increasing as and when the no of writes is increasing. Its slightly positively correlated.



### Observations:

The correlation is increasing as and when the no of writes is increasing. Its higly positively correlated with sread.

<Axes: xlabel='rchar', ylabel='wchar'>



We can see different patterns. When exec is 0.0 there is strong correlation. But when exec is 6 its not correlated much.

<Axes: xlabel='pgout', ylabel='ppgout'>



### Observations:

The number of pages out is correlated.

# Categorical vs numerical

<Axes: xlabel='rchar', ylabel='runqsz'>



### Overview of Linear Regression Model

Linear regression is a method - Relationship between a dependent variable and one or more independent variables. The goal of linear regression is to find the best-fitting linear relationship between the dependent and independent variables.

1. Simple Linear Regression: Where there will be only one independent variable.

Equation:  $y=\beta 0+\beta 1x+\epsilon$ 

- y is the dependent variable.
- x is the independent variable.
- β0\beta\_0β0 is the intercept.
- β1\beta\_1β1 is the slope of the line (regression coefficient).
- ε\epsilonε is the error term (residual).
- 2. Multiple Linear regression: Where there will be more than one independent variable.

Equation:  $y=\beta 0+\beta 1x1+\beta 2x2+...+\beta nxn+.....+\epsilon$ 

### Steps in Linear Regression:

- 1. Model building: Fit a linear regression model.
- 2. Model Evaluation: Using R<sup>2</sup>, adjusted R<sup>2</sup>, Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).
- 3. Prediction: Use the model built for prediction with new data.

### Assumptions of Linear Regression:

- 1. Linearity
- 2. Independence
- 3. Homoscedasticity
- 4. Normality
- 5. No Multicollinearity

### Model building:

1. Create dummy variables for the categorical variables.

| - |        |      |      |       |        |        |         |          |     |                      |
|---|--------|------|------|-------|--------|--------|---------|----------|-----|----------------------|
|   | pgscan | atch | pgin | ppgin | pflt   | vflt   | freemem | freeswap | usr | runqsz_Not_CPU_Bound |
|   | 0.0    | 0.0  | 1.6  | 2.6   | 16.00  | 26.40  | 4670    | 1730946  | 95  | 0                    |
|   | 0.0    | 0.0  | 0.0  | 0.0   | 15.63  | 16.83  | 7278    | 1869002  | 97  | 1                    |
|   | 0.0    | 1.2  | 6.0  | 9.4   | 150.20 | 220.20 | 702     | 1021237  | 87  | 1                    |
|   | 0.0    | 0.0  | 0.2  | 0.2   | 15.60  | 16.80  | 7248    | 1863704  | 98  | 1                    |
|   | 0.0    | 0.0  | 1.0  | 1.2   | 37.80  | 47.60  | 633     | 1760253  | 90  | 1                    |

- 2. On the dummy data, drop the target variable and save to X and pop the target variable to y.
- 3. Split the data in train and test. Test data as 30% and train data as 70%. Using train\_test\_split function.
- 4. Add a intercept to data.
- 5. Fit the linear model using fit function. Ordinal least square method pass the Y and X train data.
- 6. OLS regression summary will have all the variables. R2 and adj-R2 and covariance

|                                         |                 | legress      |            |                                 |       |                        |                 |  |
|-----------------------------------------|-----------------|--------------|------------|---------------------------------|-------|------------------------|-----------------|--|
| D V1-1                                  |                 | usr          |            |                                 |       | 0.643                  |                 |  |
| Dep. Variable:<br>Model:                |                 | OLS          |            | uared:<br>R-squared:            |       | 0.643                  |                 |  |
|                                         | Least Squares F |              |            |                                 |       |                        |                 |  |
|                                         | Wed, 03 Jul     |              |            | .aciscic:<br>) (F-statistic)    |       | 489.6                  |                 |  |
| Time:                                   |                 |              |            | · (F-Statistic)<br>·Likelihood: | •     | 0.00<br>-21788.        |                 |  |
| No. Observations:                       |                 | 5734         | AIC:       |                                 |       | 4.362e+04              |                 |  |
| Df Residuals:                           |                 | 5734<br>5712 | BIC:       |                                 |       | 4.362e+64<br>4.377e+04 |                 |  |
| Df Model:                               |                 |              | BIC:       |                                 |       | 4.3//6+04              |                 |  |
| Covariance Type:                        |                 | 21           |            |                                 |       |                        |                 |  |
| Covariance Type:                        | nonro           |              |            |                                 |       |                        |                 |  |
|                                         | coef            | std          | err        | t                               | P> t  | -                      | 0.975]          |  |
| const                                   | 44.6380         |              | 746        | 59.831                          | 0.000 | 43.175                 | 46.101          |  |
| lread                                   | -0.0199         |              | 903        |                                 | 0.000 | -0.026                 | -0.014          |  |
| lwrite                                  | 0.0048          |              | 306<br>306 | 0.795                           | 0.427 | -0.020                 | 0.017           |  |
| scall                                   | 0.0048          |              | 900        |                                 | 0.000 | 0.001                  | 0.001           |  |
| sread                                   | -0.0005         |              | 302        |                                 | 0.797 | -0.004                 | 0.003           |  |
| swrite                                  | -0.0020         |              | 302<br>302 | -1.018                          | 0.797 | -0.004                 | 0.002           |  |
| fork                                    | -0.0020         |              | 244        | -1.018                          | 0.000 |                        |                 |  |
|                                         | -0.0896         |              |            | -1.879                          |       | -2.201<br>-0.183       | -1.244<br>0.004 |  |
| exec<br>rchar                           |                 |              | 348        |                                 | 0.060 |                        |                 |  |
|                                         | -4.062e-06      |              |            |                                 | 0.000 |                        | -2.44e-06       |  |
| wchar                                   | -1.164e-05      | 1.28e        |            | -9.118                          | 0.000 |                        | -9.14e-06       |  |
| pgout                                   | -0.1739         |              | 364        | -2.717                          | 0.007 | -0.299                 | -0.048          |  |
| ppgout                                  | 0.0989          |              | 337        | 2.701                           | 0.007 | 0.027                  | 0.171           |  |
| pgfree                                  | -0.0703         |              | 320        | -3.508                          | 0.000 | -0.110                 | -0.031          |  |
| pgscan                                  | 0.0086          |              | 306        | 1.362                           | 0.173 | -0.004                 | 0.021           |  |
| atch                                    | -0.0786         |              | 327        | -2.949                          | 0.003 | -0.131                 | -0.026          |  |
| pgin                                    | 0.0913          |              | 329        | 3.103                           | 0.002 | 0.034                  | 0.149           |  |
| ppgin                                   | -0.0594         |              | 319        | -3.128                          | 0.002 | -0.097                 | -0.022          |  |
| pflt                                    | -0.0415         |              | 304        | -9.697                          | 0.000 | -0.050                 | -0.033          |  |
| vflt                                    | 0.0223          |              | 303        |                                 | 0.000 | 0.016                  | 0.029           |  |
| freemem                                 | -0.0016         |              |            |                                 | 0.000 | -0.002                 | -0.001          |  |
| freeswap                                | 3.219e-05       |              |            |                                 | 0.000 |                        |                 |  |
| runqsz_Not_CPU_Bound                    |                 |              | 303        | 25.693                          | 0.000 | 7.196                  | 8.385           |  |
| Omnibus:                                |                 | 7.319        |            | in-Watson:                      |       | 2.057                  |                 |  |
| Prob(Omnibus):                          | e               | .000         | Jaro       | ue-Bera (JB):                   |       | 4768.238               |                 |  |
| Skew:                                   |                 | .333         |            |                                 |       | 0.00                   |                 |  |
| Kurtosis:                               |                 | .585         |            | I. No.                          |       | 7.48e+06               |                 |  |
| ======================================= |                 |              |            |                                 |       |                        |                 |  |

### 7. check the VIF of the predictors

<sup>[1]</sup> Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 7.48e+06. This might indicate that there are

```
VIF values:
const
                         27.191591
lread
                          1.472618
                          1.405898
lwrite
                          2.414301
scall
                          6.836403
sread
swrite
                          5.320692
                         18.210503
fork
                          3.059950
exec
rchar
                          1.974726
wchar
                          1.553348
pgout
                          5.776005
                         15.906900
ppgout
                         20.437584
pgfree
pgscan
                         9.237017
atch
                          1.087328
pgin
                          8.075699
ppgin
                          8.672927
pflt
                         11.834374
vflt
                         20.233207
freemem
                         1.677241
freeswap
                          1.761193
runqsz_Not_CPU_Bound 1.118922
dtype: float64
```

- **8.** The highest value needs to be removed to reduce the multicollinearity. Let's remove/drop multicollinear columns one by one and observe the effect on our predictive model.
- **9.** The model after reducing the multicollinearity the VIF values will be less than 3 it looks like

### VIF values:

| const                | 25.301809 |
|----------------------|-----------|
| lread                | 1.428892  |
| lwrite               | 1.391261  |
| scall                | 2.142416  |
| swrite               | 1.866997  |
| exec                 | 1.885393  |
| rchar                | 1.602251  |
| wchar                | 1.516248  |
| pgout                | 2.313369  |
| pgfree               | 2.730511  |
| atch                 | 1.062284  |
| pgin                 | 1.580404  |
| pflt                 | 2.327540  |
| freemem              | 1.676020  |
| freeswap             | 1.654054  |
| runqsz_Not_CPU_Bound | 1.117147  |
| 44                   |           |

10. Check on Assumptions of Linear Regression

|   | <b>Actual Values</b> | Fitted Values | Residuals |
|---|----------------------|---------------|-----------|
| 0 | 91                   | 95.050641     | -4.050641 |
| 1 | 94                   | 94.596232     | -0.596232 |
| 2 | 0                    | 3.871835      | -3.871835 |
| 3 | 83                   | 79.334276     | 3.665724  |
| 4 | 94                   | 95.181988     | -1.181988 |

# Linearity:

# Plot the fitted value vs residuals



# Test for Normality:

The plot is slightly left skewed. Plot the QQ plot for residuals to check the normal assumptions.





Few of the points are lying on the straight line in QQ plot. The Shapiro-Wilk test can also be used for checking the normality. The null and alternate hypotheses of the test are as follows:

Null hypothesis - Data is normally distributed. Alternate hypothesis - Data is not normally distributed.

Since p-value > 0.05, the residuals are not normal as per shapiro test. As an approximation, we might be willing to accept this distribution as close to being normal.

#### **HOMOSCEDASTICITY**

Homoscedacity - If the variance of the residuals are symmetrically distributed across the regression line, then the data is said to homoscedastic.

Heteroscedacity - If the variance is unequal for the residuals across the regression line, then the data is said to be heteroscedastic. In this case the residuals can form an arrow shape or any other non symmetrical shape.

Why the test?

The presence of non-constant variance in the error terms results in heteroscedasticity. Generally, non-constant variance arises in presence of outliers.

Check if model has Heteroscedasticity: Can use the goldfeldquandt test. If we get p-value > 0.05 we can say that the residuals are homoscedastic, otherwise they are heteroscedastic.

Deal with Heteroscedasticity: Can be fixed via adding other important features or making transformations. The null and alternate hypotheses of the goldfeldquandt test are as follows:

Null hypothesis: Residuals are homoscedastic

Alternate hypothesis: Residuals have hetroscedasticity

We transformed freeswap into sqare that resulted in below.

Use transformation like square to transform the residuals. After Transformation the datapoints i.e p value is > 0.05 hence its homoscedastic.

### **Predictions**

#### Params

```
const
                   1.387265e+01
lread
                   -9.433174e-03
lwrite
                   -4.684806e-03
                   -1.984157e-03
scall
swrite
                   -1.827653e-03
exec
                   -3.366683e-01
rchar
                   -1.248302e-06
wchar
                   -4.922668e-06
                  -2.373899e-02
pgout
                  -6.277765e-03
pgfree
                    1.555257e-02
atch
pgin
                   -5.771292e-02
vflt
                   -2.160753e-02
                   6.946097e-04
freemem
                   1.272636e-04
freeswap
freeswap_sq
                   -4.623125e-11
```

### The final result summary

|                      | OLS I       | Regress        | sion | Results                    |       |           |           |
|----------------------|-------------|----------------|------|----------------------------|-------|-----------|-----------|
|                      |             |                |      |                            |       |           |           |
| Dep. Variable:       |             | usr            |      | quared:                    |       | 0.964     |           |
| Model:               |             | OLS            |      | . R-squared:               |       | 0.964     |           |
|                      | Least Squ   |                |      |                            |       | 9549.     |           |
| Date:                | Sun, 07 Jul | 2024           | Pro  | <pre>b (F-statistic)</pre> | ):    | 0.00      | )         |
| Time:                | 15:0        | 94:08          | Log  | -Likelihood:               |       | -15214.   |           |
| No. Observations:    |             | 5734           | AIC  | :                          |       | 3.046e+04 |           |
| Df Residuals:        |             | 5717           | BIC  | :                          |       | 3.058e+04 |           |
| Df Model:            |             | 16             |      |                            |       |           |           |
| Covariance Type:     | nonro       | obust          |      |                            |       |           |           |
|                      |             |                |      |                            |       |           |           |
|                      | coef        | std            | err  | t                          | P> t  | [0.025    | 0.975]    |
| const                | 13.8770     | 0.             | 270  | 51.416                     | 0.000 | 13.348    | 14.406    |
| lread                | -0.0115     |                |      | -11.515                    | 0.000 | -0.014    |           |
| lwrite               | -0.0031     | 0.             | 002  | -1.640                     | 0.101 | -0.007    | 0.001     |
| scall                | -0.0020     | 4.286          | -05  | -46.290                    | 0.000 | -0.002    | -0.002    |
| swrite               | -0.0018     |                |      | -4.795                     | 0.000 | -0.003    | -0.001    |
| exec                 | -0.3358     | 0.             | 013  | -26.446                    | 0.000 | -0.361    | -0.311    |
| rchar                | -1.248e-06  | 2.39€          | -07  | -5.224                     | 0.000 | -1.72e-06 |           |
| wchar                | -4.922e-06  | 4.05€          | -07  | -12.168                    | 0.000 | -5.72e-06 | -4.13e-06 |
| pgout                | -0.0237     | 0.             | 013  | -1.840                     | 0.066 | -0.049    | 0.002     |
| pgfree               | -0.0063     | 0.             | 002  | -2.690                     | 0.007 | -0.011    | -0.002    |
| atch                 | 0.0155      | 0.             | 800  | 1.851                      | 0.064 | -0.001    | 0.032     |
| pgin                 | -0.0571     | 0.             | 004  | -13.722                    | 0.000 | -0.065    | -0.049    |
| vflt                 | -0.0216     | 0.             | 000  | -52.555                    | 0.000 | -0.022    | -0.021    |
| freemem              | 0.0007      | 2.66           | -05  | 26.771                     | 0.000 | 0.001     | 0.001     |
| freeswap             | 0.0001      | 4.41€          | -07  | 288.633                    | 0.000 | 0.000     | 0.000     |
| rungsz_Not_CPU_Bound | 1.8630      | 0.             | 100  | 18.701                     | 0.000 | 1.668     | 2.058     |
| freeswap_sq          |             |                |      | -230.814                   | 0.000 |           | -4.58e-11 |
| Omnibus:             |             |                |      | <br>bin-Watson:            |       | <br>2.006 |           |
| Prob(Omnibus):       |             |                |      | que-Bera (JB):             |       | 1834.502  |           |
| Skew:                |             | 0.000<br>0.135 |      |                            |       | 0.00      |           |
| Kurtosis:            |             | 0.135<br>5.758 |      | d. No.                     |       | 1.31e+13  |           |
| Kur-COSIS:           | :           | 5./58          | con  | u. NO.                     |       | 1.31e+13  |           |

### The linear equation:

usr =  $13.87704181325071 + -0.011539814453154796 * (lread) + -0.00312871982 06714426 * (lwrite) + -0.0019833547009546204 * (scall) + -0.001817790078149 5213 * (swrite) + -0.33582150503431696 * (exec) + -1.2475911941737436e-06 * (rchar) + -4.922359043197979e-06 * (wchar) + -0.023684172733254558 * (pgo ut) + -0.006315744294497376 * (pgfree) + 0.01550951818904095 * (atch) + -0.0571324104859776 * (pgin) + -0.02157824897176316 * (vflt) + 0.000694868783 96285 * (freemem) + 0.0001272527125047064 * (freeswap) + 1.8630417754721 984 * (runqsz_Not_CPU_Bound) + -4.622657406683585e-11 * (freeswap_sq)$ 

# Actionable Business Insights and recommendation:

- R-squared of the model is 0.964 and adjusted R-squared is 0.964, which shows that the model is able to explain ~96% variance in the data. This is quite good.
- A unit increase in the atch will result in a 0.0155 unit increase in the usr, all other variables remaining constant.
- The usr of runqsz\_Not\_CPU\_Bound will be 1.8630 units higher than runqsz\_Not\_CPU not bound.
- When rchar and wchar decrease then usr decreases by a factor of -4.922e-06 and 1.248e-06
- The MAE on train data is 2 and on test its 3. That means we have reduced the no of errors. The RMSE on train data is 3 and on test its 3.

### **Executive Summary**

In your role as a statistician at the Republic of Indonesia Ministry of Health, you have been entrusted with a dataset containing information from a Contraceptive Prevalence Survey. This dataset encompasses data from 1473 married females who were either not pregnant or were uncertain of their pregnancy status during the survey.

Your task involves predicting whether these women opt for a contraceptive method of choice. This prediction will be based on a comprehensive analysis of their demographic and socio-economic attributes.

Introduction

### **Data Description**

- 1. Wife's age (numerical)
- 2. Wife's education (categorical) 1=uneducated, 2, 3, 4=tertiary
- 3. Husband's education (categorical) 1=uneducated, 2, 3, 4=tertiary
- 4. Number of children ever born (numerical)
- 5. Wife's religion (binary) Non-Scientology, Scientology
- 6. Wife's now working? (binary) Yes, No
- 7. Husband's occupation (categorical) 1, 2, 3, 4(random)
- 8. Standard-of-living index (categorical) 1=verlow, 2, 3, 4=high
- 9. Media exposure (binary) Good, Not good
- 10. Contraceptive method used (class attribute) No, Yes

# Sample of the dataset:

|      | Wife_age | Wife_<br>education | Husband_education | No_of_children_born | Wife_religion | Wife_Working | Husband_Occupation | Standard_of_living_index | Media_ |
|------|----------|--------------------|-------------------|---------------------|---------------|--------------|--------------------|--------------------------|--------|
| 0    | 24.0     | Primary            | Secondary         | 3.0                 | Scientology   | No           | 2                  | High                     |        |
| 1    | 45.0     | Uneducated         | Secondary         | 10.0                | Scientology   | No           | 3                  | Very High                |        |
| 2    | 43.0     | Primary            | Secondary         | 7.0                 | Scientology   | No           | 3                  | Very High                |        |
| 3    | 42.0     | Secondary          | Primary           | 9.0                 | Scientology   | No           | 3                  | High                     |        |
| 4    | 36.0     | Secondary          | Secondary         | 8.0                 | Scientology   | No           | 3                  | Low                      |        |
|      |          |                    |                   |                     |               |              |                    |                          |        |
| 1468 | 33.0     | Tertiary           | Tertiary          | NaN                 | Scientology   | Yes          | 2                  | Very High                |        |
| 1469 | 33.0     | Tertiary           | Tertiary          | NaN                 | Scientology   | No           | 1                  | Very High                |        |
| 1470 | 39.0     | Secondary          | Secondary         | NaN                 | Scientology   | Yes          | 1                  | Very High                |        |
| 1471 | 33.0     | Secondary          | Secondary         | NaN                 | Scientology   | Yes          | 2                  | Low                      |        |
| 1472 | 17.0     | Secondary          | Secondary         | 1.0                 | Scientology   | No           | 2                  | Very High                |        |
|      |          |                    |                   |                     |               |              |                    |                          |        |

1473 rows × 10 columns

Dataset is in the shape of 1473, 10.

### **Exploratory Data Analysis**

Let us check the types of variables in the data frame.

Total 10 columns with 1473 rows. Out of 10 columns, 2 are float, 1 is integer and 7 is object data type.

### Check the summary statistics

|                     | count  | mean      | std      | min  | 25%  | 50%  | 75%  | max  |
|---------------------|--------|-----------|----------|------|------|------|------|------|
| Wife_age            | 1402.0 | 32.606277 | 8.274927 | 16.0 | 26.0 | 32.0 | 39.0 | 49.0 |
| No_of_children_born | 1452.0 | 3.254132  | 2.365212 | 0.0  | 1.0  | 3.0  | 4.0  | 16.0 |
| Husband_Occupation  | 1473.0 | 2.137814  | 0.864857 | 1.0  | 1.0  | 2.0  | 3.0  | 4.0  |

### Check for missing values in the dataset:

From the above results we can see that there missing data for Wife\_age and No\_of\_childern\_born we need to treat the bad data.

### Check for duplicate values in the dataset:

There are 80 duplicates in the dataset. Drop the duplicates.

### Treat the bad data i.e missing values in the dataset:

Wife\_age:

<Axes: xlabel='Wife\_age'>



Its normally distributed hence we can impute Wife\_age with mean.

No\_of\_children\_born:

<Axes: xlabel='No\_of\_children\_born'>



Its not normally distributed hence we can impute No\_of\_children\_born with median not with mean.

# **Univariant Analysis**



### Observation:

The Wife\_age is normally distributed. The median is 32.

The No\_of\_children\_born have outliers. Mean is around 3 and max is going to 16 which is out of normal range.

Husband\_Occupation doesn't have Q1.

Correlation plot: Relation between numeric variables.

<Axes: >



From the correlation plot, we can see that various attributes of the car are highly correlated to each other. Correlation values near to 1 or -1 are highly positively correlated and highly negatively correlated respectively. Correlation values near to 0 are not correlated to each other.

### Outlier treatment:

After the box plot technique of outlier treatment, the outliers are removed. It uses a technique of lower index and upper index for eliminating the outliers.

lower range 8.0 and upper range 56.0



lower range -5.0 and upper range 11.0



lower range -2.0 and upper range 6.0



## Univariant analysis for Categorical variable

## Wife\_ education



The number of uneducated in women is 150 around. The highest educated women is 500+ which is pretty hight that means womens are more educated. Basic education of primary is done by 350 people.

## Husband\_education



The highest educated women is 800+ which is pretty hight that means Men are more educated in highest degree. There are very few less uneducated men.





We see scientology more than other.

## Wife\_Working



The Wife working count is very less compared to non working women.

## Standard\_of\_living\_index



Stndard living index is in all ranges from very hight to very low. Majority lifestyle looks very high.

## Media\_exposure



More than half of the population is exposed to media to know about contracetive.

Contraceptive\_method\_used



Most of the population have opted for Contraceptive.

# Bivariant analysis

<Axes: xlabel='Husband\_Occupation', ylabel='Wife\_age'>



# Categorical vs numerical

<Axes: xlabel='Husband\_Occupation', ylabel='Wife\_Working'>



## Overview of Logistic Regression

Logistic regression is a method for binary classification problem. The model helps to classifies the dataset into different groups.

### Steps for Logistic Regression

- 1)Model building Fit the model
- 2)Model evaluation Confusion matrix, Classification report, F1 score, recall and precision score.
- 3)Model prediction AUC-ROC curve.

#### Steps Model building:

- 1) Pre process the data
- 2) Check for object data type which are categorical transform them using one hot encoding or some grouping basis.
- 3) Converting the other 'object' type variables as dummy variables

| Media_exposure | Contraceptive_method_used | Wife_<br>education_UnEducated | Husband_education_UnEduc |
|----------------|---------------------------|-------------------------------|--------------------------|
| 1              | 0                         | 0                             |                          |
| 1              | 0                         | 1                             |                          |
| 1              | 0                         | 0                             |                          |
| 1              | 0                         | 0                             |                          |
| 1              | 0                         | 0                             |                          |
| 4              |                           |                               | -                        |

- 4) Split the Train and test split. With X as independent variable and y as dependent variable.
- 5) Fit the logistic regression model.
  - ▼ LogisticRegression LogisticRegression()
- 6) Predicting on Training and Test dataset.
- 7) Evaluate the model. Calculate the mode score to get accuracy from both training and test data. For training the accuracy is 67%. and test data accuracy is 61%
- 8) AUC-ROC for the train data



# 9)AUC-ROC for test data

AUC: 0.703



## 10)Compute the Confusion matrix for training data



Classification report for train data

| precision    | reca | II f1- | score | supp | ort |   |
|--------------|------|--------|-------|------|-----|---|
| 0 0.         | 68 ( | 0.48   | 0.56  | 6 4  | 118 |   |
| 1 0.         | 68 ( | 0.83   | 0.7   | 5 5  | 555 |   |
| accuracy     |      |        | 0.68  | 3 9  | 73  |   |
| macro avg    | 0.68 | _      | .65   | 0.65 | 973 |   |
| weighted avg | 0.6  | 8      | 0.68  | 0.67 | 973 | 3 |

11)Compute the Matrix for test data



#### Classification report for test data

| precision | recall       | f1-sc        | ore        | suppo      | ort        |     |
|-----------|--------------|--------------|------------|------------|------------|-----|
| 0<br>1    | 0.66<br>0.61 | 0.40<br>0.82 | _          | .50<br>.69 | 196<br>222 |     |
| accuracy  | ı 0.6        | 2            | 0.<br>0.61 | 62<br>0.6  | 418        | 418 |
| macro avg |              | _            | 0.62       | 0.6        | 0<br>60    | 418 |

## Actionable Insights and recommendation:

- There is no overfitting in the dataset. Since train and test dataset values are same.
- The Accuracy score is 70%. Can be considered as moderately best model.
- The Recall of class 1 is high 0.83 means the type 2 error is low.
- But for class 0 its low hence we can say the type 2 error exists.
- The Precision for class 1 and 0 is 0.68 which means the ratio of contr aceptive used by total of used and false predicted.
- There is a chance of type 1 error.
- In this case the Type 1 error could be more looked into since if the n
  umber of false positives increases then chances are No of Childers b
  orn might increase due to non-usage of contraceptive.

#### Overview of LINEAR DISCRIMINANT ANALYSIS

LDA is classification technique used to classify the features into two or more classes. It is also used for dimensionality reduction technique.

### Assumption of LDA:

- The data is normally distributed.
- Features are linearly separable.
- Homogeneity of variance-covariance.

#### Steps to Build LDA Model:

- 1)Model building Fit the model
- 2)Model evaluation Confusion matrix, Classification report, F1 score, recall and precision score.
- 3)Model prediction AUC-ROC curve.

### Model Building steps:

- 1) Transform the model with still object categorical type into numerical.
- 2) Split the train and test data in the ratio of 70 and 30.
- 3) Scale the data using StandardScaler
- 4) Build a LDA Model and fit the data.
- 5) Predication on train and test data.

#### Confusion Matrix for train data.



### Classification report for train data

precision recall f1-score support

0 0.67 0.51 0.58 429 1 0.67 0.80 0.73 544

accuracy 0.67 973 macro avg 0.67 0.65 0.65 973 weighted avg 0.67 0.67 0.66 973

## AUC for the Training Data:

0.716

## [<matplotlib.lines.Line2D at 0x20671510150>]



## Confusion Matrix for test data



Classification report for test data

## precision recall f1-score support

| 0 | 0.64 | 0.44 | 0.52 | 185 |
|---|------|------|------|-----|
| 1 | 0.64 | 0.80 | 0.72 | 233 |

| accuracy     | 0.6  | 4 41 | 8    |     |
|--------------|------|------|------|-----|
| macro avg    | 0.64 | 0.62 | 0.62 | 418 |
| weighted avg | 0.64 | 0.64 | 0.63 | 418 |

### AUC-ROC for test data

## 9) AUC for the Test Data: 0.664



## Generate the coefficients and LDA function

array([[-0.59, 0.52, 0.02, 0.74, -0.18, -0.08, 0.15, 0.31, 0.09]])

## Observation and insights

By the above equation and the coefficients, it is clear that ¶

- 1) No\_of\_children\_born has the largest magnitude thus this helps in classifying the best.
- 2) Wife age has the small magnitude thus this helps in classifying the least.
- 3) The Recall of class 1 is high 0.80 means the type 2 error is low.But for class 0 its low hence we can say the type 2 error exists.
- 4) The Precision for class 1 and 0 is 0.67 which means the ratio of contraceptive used by total of used and false predicted.
- 5) In this case the Type 1 error could be more looked into since if the number of false positives increases then chances are No of Childers born might increase due to non-usage of contraceptive.

#### Overview of Decision Tree

Decision tree is used for both classification and regression tasks. It splits the data into subsets based on the feature values, creating a tree-like.

- 1) Decision tree in Python can take only numerical / categorical columns. It cannot take string / object types. So, convert all objects into int8 and float8.
- 2) Split the data into train and test.

### Model building

- 1) Create a object of DecisionTreeClassifier and fit the model using gini criteria.
- 2) After model is trained the decision tree looks with many branches since there were no limit set for leaf node.
- 3) Check on the important variable

| Imp      |                                                                                              |
|----------|----------------------------------------------------------------------------------------------|
| 0.305948 |                                                                                              |
| 0.261204 |                                                                                              |
| 0.114722 |                                                                                              |
| 0.100121 |                                                                                              |
| 0.061655 |                                                                                              |
| 0.054908 |                                                                                              |
| 0.049657 |                                                                                              |
| 0.041117 |                                                                                              |
| 0.010668 |                                                                                              |
|          | 0.305948<br>0.261204<br>0.114722<br>0.100121<br>0.061655<br>0.054908<br>0.049657<br>0.041117 |

- 4) Regularising the Decision Tree with grid searchCV. The hyper tuning parameters are set to prune the tree.
  - a. Parameters like:
    - i. Max depth
    - ii. Min samples
    - iii. criteria
- 5) Generate the new decision tree and check on IMP variables.

|                          | Imp      |
|--------------------------|----------|
| No_of_children_born      | 0.354518 |
| Wife_age                 | 0.278700 |
| Wife_ education          | 0.145261 |
| Standard_of_living_index | 0.074061 |
| Wife_Working             | 0.040893 |
| Husband_education        | 0.038280 |
| Husband_Occupation       | 0.036408 |
| Wife_religion            | 0.018281 |
| Media_exposure           | 0.013598 |

- 6) Predicting on Training and test data.
- 7) Predicting the probabilities with proba function

## Model Evaluation

AUC and ROC Curve on training data.





AUC and ROC Curve on test data.

## AUC: 0.661



# Confusion Matrix for the training data



## 1) Data Accuracy for training is around 85%.

# Classification report on training data

| support | f1-score | recall | precision |              |
|---------|----------|--------|-----------|--------------|
| 418     | 0.82     | 0.78   | 0.86      | 0            |
| 555     | 0.87     | 0.91   | 0.84      | 1            |
| 973     | 0.85     |        |           | accuracy     |
| 973     | 0.85     | 0.84   | 0.85      | macro avg    |
| 973     | 0.85     | 0.85   | 0.85      | weighted avg |

### Confusion matrix on test data



2) The test data accuracy is around 64%.

The Classification report on test data

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.64      | 0.52   | 0.57     | 196     |
| 1            | 0.64      | 0.75   | 0.69     | 222     |
| accuracy     |           |        | 0.64     | 418     |
| macro avg    | 0.64      | 0.63   | 0.63     | 418     |
| weighted avg | 0.64      | 0.64   | 0.63     | 418     |

# Actionable Insights and recommendations:

- 1) The train data has a accuracy of 85% whereas the test data as around 64% . The model is overfit. Since its not same.
- 2) The Precision is 86% and 84% for class 0 and 1. Which means the Type 1 error.
- 3) The recall is pretty high which indicates the type 2 error.
- 4) It falls into type1 error type.
- 5) 375 are class 0(no contraceptive used) and 598 are people where contrace ptive used.

6) I recommend to lower the overfit of the model using Lasso and ridge metho ds and then train the datasets.

## Compare the Model

The Logistic regression and LDA model performed pretty same. The accuracy of Logistic regression is 70% and can be considered as moderately good model.

Based on AUC-ROC curve the graph is showing 70% for train and 64 for test. Minor difference in train and test data. Still can be considered best model.

The Type 1 error is significantly can affect in this problem. False positive can lead to a situation of not exposed to media and not knowing about the contraceptive and hence the population could increase.

The decision tree had overfitting issue. The tree was pruned for max-leaf and width to reduce the branches. The accuracy was around 92 in train data.

Based on analysis I would recommend Logistic regression as best fit.