Моделирование интерференции газовых скважин с применением метода конечных объёмов

С. Е. Абрамкин¹, С. Е. Душин², Д. Д. Сирота³ Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

¹abrsergey@yandex.ru, ²dushins@yandex.ru, ³sdd.spb@outlook.com

Аннотация. Моделирование пласта является мощным инструментом получения информации о процессах, связанных с разработкой месторождения. В данной работе представлены модели процессов фильтрации газа в виде дифференциальных уравнений в частных производных, численная модель, использующая неявную конечноразностную схему, и применен метод конечных объёмов. С использованием полученных моделей было разработано программное обеспечение, позволяющее производить моделирование для двумерного случая нестационарной фильтрации газа и учитывающее влияние скважин.

Ключевые слова: компьютерное моделирование; газовые скважины; интерференция скважин; метод конечных объёмов; моделирование пластов

I. Введение

Текущая разработка ведется с целью получения компьютерной модели неустановившейся фильтрации газа в пласте, в рамках создания математической модели единого управляемого газодобывающего Использование моделей, основанных на комплекса. содержательных математических законах, управлять разработкой месторождений, подбирая такие режимы эксплуатации, при которых снижаются риски возникновения и развития осложнений, а повышаются коэффициенты извлечения углеводородов. При создании динамических моделей можно исследовать пласт более детально за счет разбиения его на блоки и применения к каждому из них уравнений фильтрации, что позволяет моделировать нестационарные процессы в пласте. Имеющиеся для этой цели пакеты программ (Eclipse, Tempest, tNavigator и др.) имеют высокую стоимость, требуют ежегодного обновления лицензии, и главное, выполнены в виде «черного ящика». В результате отсутствует возможность корректировать чего. программное обеспечение с целью создания моделей управляемых (и даже неуправляемых) процессов и разработки систем, базирующихся, в том числе, на современных методах и технологиях управления. Таким разработки образом, возникает необходимость математических и компьютерных моделей процессов фильтрации в пласте, а также программного обеспечения численного моделирования. Современная управления предлагает множество высокоэффективных ограничиваясь только простейшими метолов. не Поэтому важной характеристикой регуляторами.

программного обеспечения является возможность работы в режиме реального времени. Основные задачи данной работы:

- построение численной модели неустановившейся фильтрации методом конечных объёмов;
- разработка программы моделирования фильтрационных процессов (симулятор);
- анализ возможностей быстродействия компьютерной модели.

II. ПОСТРОЕНИЕ ЧИСЛЕННОЙ МОДЕЛИ ФИЛЬТРАЦИИ

Основной формой пластовой энергии, обеспечивающей приток газа к скважинам, является энергия упругой деформации газа и твердого скелета пласта. Математическая модель неустановившейся фильтрации газа в деформируемой пористой среде, при допущениях, что проницаемость и вязкость постоянны, формируется путем подстановки закона сохранения импульса (в виде закона фильтрации Дарси) в уравнение неразрывности потока [1]. Тогда уравнение неразрывности потока и закон Дарси, соответственно:

$$-\left(\frac{\partial \rho \phi}{\partial t}\right) = \frac{\partial (\rho w_x)}{\partial x} + \frac{\partial (\rho w_y)}{\partial y} + \frac{\partial (\rho w_z)}{\partial z},$$

$$w = -\frac{k}{\mu} \left(\frac{\partial p}{\partial x} + \frac{\partial p}{\partial y} + \frac{\partial p}{\partial z}\right),$$

где p — давление, t — время, ϕ — пористость, k — проницаемость, μ — вязкость, ρ — плотность газа, w — скорость фильтрации.

В результате математическая модель неустановившейся фильтрации газа имеет вид [2]:

$$\frac{\partial p}{\partial t} = \kappa \left(\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} \right), \quad \kappa = \frac{k}{\mu(\beta_{\Pi} + \phi \beta_{\Gamma})},
\beta_{\Pi} = -\frac{1}{V} \frac{\partial V}{\partial p} = \frac{\partial \phi}{\partial p}, \quad \beta_{\Gamma} = \frac{1}{\rho} \frac{\partial \rho}{\partial p},$$
(1)

где κ — коэффициент пьезопроводности, β_{Π} , β_{Γ} — коэффициенты сжимаемости породы и газа соответственно.

Уравнение (1) — основное уравнение теории упругого режима фильтрации. Коэффициент κ характеризует скорость перераспределения пластового давления при неустановившейся фильтрации упругого флюида в упругой пористой среде.

А. Дискретизация уравнения неустановившейся фильтрации для одномерного случая

Преобразуем уравнение фильтрации конечными разностями, используя неявную схему, так как неявные схемы обладают повышенными свойствами устойчивости по сравнению с явными, хотя и уступают им в быстродействии. Рассмотрим одномерный пласт длиной L, разделенный на N пространственных блоков — конечных объемов, с использованием блочно-центрированной схемы (узлы сетки располагаются в центрах блоков). В результате аппроксимации частных производных соответствующими конечными разностями получается следующая система линейных алгебраических уравнений [3]:

$$\frac{p_i^{n+1} - p_i^n}{\Delta t} = \kappa \frac{p_{i-1}^{n+1} - 2p_i^{n+1} + p_{i+1}^{n+1}}{\left(\Delta x^2\right)}$$

Вынесем временную и пространственную составляющие в виде отдельного множителя:

$$\eta = \frac{\kappa \Delta t}{\left(\Delta x\right)^2}$$

Тогда уравнение одномерной фильтрации примет вид:

$$-\eta p_{i-1}^{n+1} + (1+2\eta)p_i^{n+1} - \eta p_{i+1}^{n+1} = p_i^n.$$

Система уравнений для блоков в матричной форме:

$$(\mathbf{I} + \eta \mathbf{A}) \mathbf{p}^{n+1} = \mathbf{p}^{n}. \tag{2}$$

Конечно-разностные соотношения частных производных компонентов закона фильтрации, представленные выше, имеют размерность давления. Однако, в случаях моделирования пласта с учетом скважин, более предпочтительной является запись в единицах расхода. Чтобы преобразовать к данному виду уравнение фильтрации, добавим следующее соотношение:

$$\frac{A\Delta x \phi c_t}{B_w \Delta t} = \frac{V \phi c_t}{B_w \Delta t},$$

где A, V — площадь и объем блока соответственно, B_w — объемный коэффициент флюида, c_t — сжимаемость.

Для удобства, введем соответствующие переменные для блоков:

$$B_i = \frac{V \phi c_t}{B_w}, \quad T_i = \frac{kA}{\mu B_w \Delta x}.$$

T и B обладают физическим смыслом. Коэффициент B отражает емкостные свойства блока, а T (проводимость) — фильтрационные. Для системы уравнений одномерной фильтрации матрица проводимости является трёхдиагональной. Система уравнений (2), приведенная к единицам расхода, с учетом граничных условий [4]:

$$\begin{bmatrix} \frac{1}{\Delta t} \begin{pmatrix} B_1 & & & \\ & B_2 & & \\ & & \ddots & \\ & & & B_N \end{pmatrix} + \begin{pmatrix} T(1+2\omega_1) & -T & 0 & 0 \\ -T & 2T & -T & 0 \\ 0 & \ddots & \ddots & \ddots \\ 0 & 0 & -T & T(1+2\omega_2) \end{pmatrix} \\ \mathbf{\tilde{B}} & \mathbf{\tilde{T}} \end{bmatrix}$$

$$\begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_N \end{pmatrix}^{n+1} = \frac{1}{\Delta t} \begin{pmatrix} B_1 & & & \\ & B_2 & & \\ & & \ddots & \\ & & & B_N \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_N \end{pmatrix}^n + \begin{pmatrix} 2\omega_1 T p_{B1} \\ 0 \\ \vdots \\ 2\omega_2 T p_{B2} \end{pmatrix}$$

$$\mathbf{\tilde{B}} & \mathbf{\tilde{p}}^n \end{pmatrix}$$

$$\mathbf{\tilde{Q}}$$

$$\omega = \begin{cases} 0, & \text{если граничные условия Неймана (2 рода)} \\ 1, & \text{если граничные условия Дирихле (1 рода)} \end{cases}$$

где $p_{B1},\ p_{B2}$ — давления для соответствующих граничных условий.

Или кратко:

$$\left(\mathbf{T} + \frac{\mathbf{B}}{\Delta t}\right)\mathbf{p}^{n+1} = \frac{\mathbf{B}}{\Delta t}\mathbf{p}^n + \mathbf{Q},\tag{3}$$

где Q — расход флюида в блоке в результате действия источников/стоков (скважин).

В. Дискретизация уравнения неустановившейся фильтрации для двумерного случая

Рассмотрим двумерный пласт длиной L и шириной W (рис. 1). Дискретизация по пространству выполняется путем разбиения моделируемой области на NX и NY узлов. Суммарное число блоков составляет $N=NX\times NY$. Каждый конечный объем обозначается индексами i и j. Вместе с тем, возможна нумерация блоков одним целочисленным индексом, что является удобным при разработке алгоритмов для компьютерной модели. В данной работе принята нумерация пространственных блоков, в соответствии с соотношением: l=(j-1)NX+i [4].

Рис. 1. Продуктивный пласт, дискретизированный по пространству с использованием l – нумерации

В случае двумерной фильтрации, каждый блок взаимодействует с двумя, тремя или четырьмя соседними блоками, что определяет вид матрицы проводимостей. В качестве примера, рассмотрим вид **Т** для системы из рис. 1, при непроницаемых границах пласта (граничные условия 2 рода) и отсутствии скважин:

$$\mathbf{T} = \begin{pmatrix} 2T & -T & & -T & & & & & & \\ -T & 3T & -T & & & -T & & & & & \\ & -T & 3T & -T & & & -T & & & & \\ & -T & 3T & -T & & & -T & & & & \\ & -T & & & 3T & -T & & & -T & & & \\ & -T & & & -T & 4T & -T & & & -T & & \\ & & -T & & & -T & 4T & -T & & & -T & \\ & & & -T & & & -T & 3T & & & & -T \\ & & & & & -T & & & -T & 3T & -T & \\ & & & & & -T & & & -T & 3T & -T & \\ & & & & & -T & & & -T & 2T \end{pmatrix}$$

Таким образом, при использовании l-нумерации, матрица проводимостей является пятидиагональной. В остальном, система уравнений для двумерного случая аналогична системе (3).

III. РАЗРАБОТКА КОМПЬЮТЕРНОЙ МОДЕЛИ

А. Интерпретация скважин

В рамках данной работы рассматривается случай однофазной фильтрации газа, при допущениях, что совершенными продуктивный пласт, вскрывается которые скважинами с вертикальным окончанием, интерпретируются как внутренние границы пласта. Моделируемые скважины располагаются в центре блока. В пластовых симуляторах наиболее распространены два типа граничных условий (не считая смешанных): в виде заданного давления на забое (граничные условия 1 рода) или в виде заданного дебита скважины (граничные условия 2 рода). При такой постановке возможен расчет забойного давления, при заданном дебите и наоборот расчет дебита, при заданном забойном давлении в Существует зависимости ОТ времени. несколько связывающих соотношений для расчета неизвестных: модель Ван-Полена, модель Писмана и модель Абу-Кассема и Азиза. В настоящее время модель Ван-Полена почти не используется [4], а модель Абу-Кассема и Азиза удобна для расчетов при расположении скважин не в центре блоков. Поэтому, для учета скважин в данной работе используется модель Писмана, которая хорошо подходит для расчетов в блочно-центрированных сетках. Согласно данной модели радиус, при котором давление в блоке со скважиной соответствует средневзвешенному давлению в пласте (эквивалентный радиус) для случая квадратной сетки, задается следующим соотношением:

$$r_{eq} = 0,2\Delta x.$$

Чтобы перейти к расчету забойного давления добывающей скважины, работающей в режиме постоянного расхода, используется следующее соотношение [4]:

$$P_{\rm 3a\delta} = P_l - \frac{q_{\rm ckb} \mu B}{2\pi kh} ln \left(\frac{0.2\Delta x}{r_{\rm ckb}}\right) = P_l - \frac{q_{\rm ckb}}{J_l^{\rm ckb}}$$

где J — коэффициент продуктивности скважины, $r_{\text{скв}}$ — радиус скважины, P_I — средневзвешенное давление в блоке.

В. Компьютерная модель

Компьютерная модель может быть реализована различными способами. В данной разработке был выбран язык программирования Python, за счет имеющихся в наличии эффективных расширений для работы с массивами и матрицами и отсутствия необходимости в приобретении лицензии. Тем не менее, компьютерная модель может быть успешно реализована и, например, средствами Matlab, С++ и др.

Решаемая симулятором задача математически сводится к аппроксимации дифференциальных уравнений двумерной неустановившейся фильтрации газа в пласте (трёхмерность реальных месторождений учитывается введением мощности пласта). Координаты и расходы скважин, начальные и граничные условия, пластовые свойства и параметры флюида задаются в исходных данных. Затем рассчитывается коэффициенты **Т** и **В**. Вычисляются номера блоков, содержащих скважины. Далее полученные матрицы, совместно с вектором расхода **Q**, преобразуются из плотных матриц в разреженные.

Выходными данными являются вычисленные значения давления в блоках с первым порядком точности по времени и вторым порядком точности по пространственной координате. Модель учитывает скважины, их взаимное влияние и рассчитывает давления на забое в зависимости от времени.

Для оценки возможностей быстродействия, решение задачи моделирования в симуляторе реализовано различными методами. В качестве исходных данных по части параметров флюида и породы-коллектора для вычислительного эксперимента использовались осредненные промысловые данные одного из объектов разработки существующего газового месторождения.

ТАБЛИЦА І ИСХОДНЫЕ ДАННЫЕ ДЛЯ МОДЕЛИРОВАНИЯ

Параметр	Значение
Длина пласта (м)	3000
Ширина пласта (м)	3000
Высота пласта (м)	20
Пористость (д. ед.)	0,2
Проницаемость коллектора (м ²)	12,9□10 ⁻¹⁵
Начальное давление (Па)	$7 \square 10^6$
Вязкость газа (Па·с)	2 □ 10 ⁻⁵
Координаты (х; у) добывыющей скважины №1 (м)	(1000; 1500)
Координаты (x; y) добывыющей скважины №2 (м)	(2000; 1500)
Расход газа в добывающей скважине №1 (м ³ /сут)	$360 \square 10^3$
Расход газа в добывающей скважине №2 (м ³ /сут)	$480 \square 10^{3}$

Скважины вскрывают пласт полностью и пускаются в работу одновременно, при этом пласт считается однородным. Пласт дискретизирован по пространственной координате на 90601 блоков (301 x 301 узел). Конечное время моделирования — 30 сут с шагом в 1 сут. Полученные результаты моделирования процессов представлены на рис. 2-3.

Рис. 2. Давление на забоях скважин и центральной точке пласта в зависимости от времени

Результаты моделирования показали, что в заданном пласте, при пуске в эксплуатацию двух добывающих скважин с соответствующими дебитами 360 и 480 тыс. м³/сут, значение давления в центральной области пласта на конечное время расчета составило 6997720 Па, в отличие от скважин №1 и №2, где давление на забое равно 6990840 и 6988011 Па соответственно. Темпы снижения давления особенно высоки в первые дни после запуска скважин.

С течением времени, характер и скорость снижения давления выравнивается по всей площади дренирования. Это связано со свойствами пласта, в частности, с коэффицинтом пьезопроводности, который характеризует темпы распределения пластового давления.

Рис. 3. Распределение давления в пласте на конечное время моделирования

В табл. 2 представлено сравнение быстродействия реализованных методов расчета для заданного случая, а также расхождения между полученными решениями в точке забоя скважины №2 на конечное время моделирования. Моделирование производилось на процессоре Intel Core i5-6500 (3200MHz) и 16 Gb O3У.

ТАБЛИЦА II Быстродействие использованных методов

Метод	Время расчета (c)	Полученное решение (Па)
LU – разложение	31.32	6988011.54
Метод сопряженных градиентов (CG)	4.29	6988011.56
Метод минимальных невязок (MinRes)	24.83	6988011.59
Обобщенный метод минимальных невязок (GMRes)	11.68	6988011.59
Стабилизированный метод бисопряженных градиентов (biCGStab)	7.14	6988011.61
Сдвоенный метод сопряженных градиентов (CGS)	12.86	6988011.51

Среди использованных итерационных алгоритмов, метод сопряженных градиентов, оказался наиболее близким к ответу, полученному прямым методом, при этом более, чем в 7 раз эффективнее по затратам времени.

ЗАКЛЮЧЕНИЕ

При управлении разработкой месторождений газа, в качестве управляющих воздействий можно рассматривать расходы добывающих скважин. Полученная компьютерная программа-симулятор, при заданных значениях параметров пласта, флюида и расхода газа на выходе из скважин, рассчитывает распределение поля давления в однородном двумерном пласте в зависимости от времени, учитывая изменения забойных давлений скважин. Реализованные в симуляторе алгоритмы расчета показали высокую эффективность метода сопряженных градиентов, что делает возможным применение данной модели для

целей синтеза системы управления газодобывающим комплексом.

Список литературы

[1] Азиз X., Сеттари Э. Математическое моделирование пластовых систем. М.-Ижевск: Институт компьютерных исследований, 2004. 416 с.

- [2] Куштанова Г.Г. Подземная гидромеханика. Казань: Изд-во Казан. (Приволж.) федер. ун-та, 2010. 67 с.
- [3] Алишаев М.Г. Моделирование и расчёт в прикладной механике и добыче нефти. Махачкала: Изд-во АЛЕФ, 2015. 288 с.
- [4] Эртекин Т., Абу-Кассем Дж., Кинг Г. Основы прикладного моделирования пластов. М.-Ижевск: Институт компьютерных исследований, 2012. 1060 с.