Enhancing Efficiency and Reducing Waste in Blister Packaging at Laurus Labs

-A DMAIC Approach

Role of Operations and Excellence Team

1. Order Division and Execution:

- The Operations and Excellence team is responsible for dividing large orders into manageable batches.
- These batches are executed over multiple days to optimize resource utilization and ensure consistent production flow.
- Coordinating with different departments to ensure seamless integration of activities.

2. Elimination of Non-Value Added Activities:

- Identifying and removing non-value-added activities to streamline the manufacturing process.
- Implementing LEAN principles to reduce waste and enhance efficiency.
- Continuously monitoring and improving processes to maintain high standards of operational excellence.

INTRODUCTION

Purpose of the Study:

To increase efficiency and reduce waste during blister packaging processes at Laurus Labs.

Objectives:

- Identify key waste issues.
- Propose effective solutions.
- Ensure sustainable improvements through continuous monitoring.

Measure Phase

1. Data Collection Methods:

- Machine logs: Recording downtimes and errors.
- Batch records: Tracking material usage and wastage.
- Operator insights: Gaining insights into operational challenges.
- Observations: Identifying inefficiencies in real-time.

2. Key Metrics:

- Waste percentage
- Frequency of power failures
- Size of roll changeovers
- Training duration for operators

3. Baseline Performance:

- Waste rates: 16.32% (IMA C350), 11.71% (BMAX)
- Power failures: Average of 2 incidents per day.

20.00%

<u>Analyze Phase</u>

- Waste Quantification:
- Batch Size: 1,800,000 tablets.
- Total Packing Material Required: 305.1 kg.
- Wastage in IMA C350: 16.32%, translating to 49.79 kg per batch.
- Wastage in BMAX: 11.71%, translating to 35.73 kg per batch.
- Fixed Waste (Trimming and Splice Joints):
- Constant Waste Across Both Machines: 26.8 kg.

- Remaining Waste Calculation:
- IMA C350: Total Waste Fixed Waste = 49.79 kg 26.8 kg = 22.99 kg.
- BMAX: Total Waste Fixed Waste = 35.73 kg 26.8 kg = 8.93 kg.
- Difference Due to Machine Issues:
- Difference Between IMA C350 and BMAX: 22.99 kg
 8.93 kg = 14.06 kg.
- Attributable to Feeding Mechanism and PRC Alignment Issues in IMA C350: 14.06 kg.

Analyze Phase

Root Cause Analysis:

Feeding Mechanism & PRC

Alignment: Significant waste in IMA

C350.

Power Failures: 2 kg of waste per

batch.

Roll Changeover: 0.5 kg of waste per

batch.

Restart Waste: 0.5 kg of waste per

batch.

Incorrect Settings: 5.93 kg of waste

per batch.

Improve Phase

Machine Enhancements:

- 1. Channel Feeding Mechanism and Pressure Sealing Roller Improvement:
 - Current Extra Waste: 14.06 kg
 - Implementation:
 - Replace drum feeding mechanism with channel feeding mechanism in IMA C350.
 - Aim: Reduce feeding mechanism and PRC alignment issues.

2. Pressure Sealing Roller Improvement:

- Implementation:
 - Increase the lifetime and efficiency of pressure sealing rollers.
 - Aim: Reduce waste due to PRC alignment issues.

Training:

1. Extended Training Period:

Current Waste: 5.93 kg

Improved Waste: 3 kg

• Implementation:

- Extend operator training from 1-2 months to 6 months.
- Aim: Enhance operator skills to minimize errors and improve efficiency.

Improve Phase

Operational Improvements

UPS System:

Power Failure Mitigation:

Current Waste: 2 kg

Improved Waste: 0 kg

Implementation:

Install an Uninterruptible Power Supply (UPS) system.

Aim: Ensure continuous operation during power

outages.

Roll Changeover:

Longer Roll Lengths:

Current Waste: 0.5 kg

Improved Waste: 0.33 kg

Implementation:

Increase roll length from 12 kg to 18 kg.

Aim: Reduce waste from roll changeovers.

Shift Coordination:

Improved Shift Management:

Current Waste: 0.5 kg

Improved Waste: 0 kg

Implementation:

Improve shift coordination to ensure seamless transitions.

Aim: Reduce waste during restarts.

20

POSSIBLE COST REDUCTION (Assuming Rs650/kg)

10

IMA C350:

- Current Cost: ₹32,344per batch (49.79*650).
- New Waste Reduction: 19.66kg (from 49.79 kg to 30.13 kg).
- New Cost: ₹19,584.50 per batch.
- Savings per Batch: ₹12,759.5

BMAX:

- Current Cost: ₹23,224.50 per batch.
- New Waste Reduction: 5.6 kg (from 35.73 kg to 30.13 kg).
- New Cost: ₹19,584.50 per batch.
- Savings per Batch: ₹3,640

Control Phase

Monitoring Plan:

- Regular collection and analysis of waste data.
- Use control charts to monitor waste reduction progress.

Control Charts & KPIs:

- Key Performance Indicators (KPIs) to track progress.
- Establishment of control limits for acceptable waste levels.

SOPs:

 Develop and implement standard operating procedures for consistent operations.

Training Programs:

Continuous training and retraining of operators.

CONCLUSION

- Summary of Findings:
- Identified major waste contributors: feeding mechanism, PRC alignment, power failures, roll changeovers, restart waste, incorrect settings.
- Impact on Operations:
- Expected waste and cost reduction and efficiency improvements.
- Enhanced operator skills and better machine performance.

Possible outcome after Implementing Solutions

THANK YOU!

SUYASH SINHA 2022A5PS1447P