ABOUT THE TEST FoundationOne®CDx is a next-generation sequencing (NGS) based assay that identifies genomic findings within hundreds of cancer-related genes.

REPORT DATE 22 Feb 2022 ORDERED TEST # ORD-1301523-01

PATIENT

DISEASE Brain glioblastoma (GBM)
NAME Tang, Li-Na
DATE OF BIRTH 30 May 1951
SEX Female
MEDICAL RECORD # 48114303

FOUNDATION**ONE®CD**x

PHYSICIAN

ORDERING PHYSICIAN Yeh, Yi-Chen
MEDICAL FACILITY Taipei Veterans General Hospital
ADDITIONAL RECIPIENT None
MEDICAL FACILITY ID 205872
PATHOLOGIST Not Provided

SPECIMEN

SPECIMEN SITE Brain
SPECIMEN ID S111-03716B (PF22017)
SPECIMEN TYPE Slide Deck
DATE OF COLLECTION 24 January 2022
SPECIMEN RECEIVED 15 February 2022

Biomarker Findings

Tumor Mutational Burden - 11 Muts/Mb Microsatellite status - MS-Stable

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

FGFR1 K656E
CCND2 amplification - equivocal[†]
CDK4 amplification
MDM2 amplification

3 Disease relevant genes with no reportable alterations: *EGFR*, *IDH1*, *PDGFRA*

† See About the Test in appendix for details.

Report Highlights

- Targeted therapies with potential clinical benefit approved in another tumor type: Infigratinib (p. 5)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 6)

BIOMARKER FINDINGS	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
Tumor Mutational Burden - 11 Muts/Mb	none	none
2 Trials see p. 6		
Microsatellite status - MS-Stable	No therapies or clinical trials. see B	iomarker Findings section
GENOMIC FINDINGS	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
FGFR1 - K656E	none	Infigratinib
10 Trials see p. 11		
CCND2 - amplification - equivocal	none	none
10 Trials see p. 7		
CDK4 - amplification	none	none
10 Trials see p. 9		
MDM2 - amplification	none	none
6 Trials see p. 13		

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and exhaustive. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies.

Therapies contained in this report may have been approved by the US FDA.

BIOMARKER FINDINGS

BIOMARKER

Tumor Mutational Burden

RESULT 11 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1¹⁻³, anti-PD-1 therapies¹⁻⁴, and combination nivolumab and ipilimumab⁵⁻¹⁰. In glioma, a lack of association between TMB and clinical benefit from immune checkpoint inhibitors has been reported^{1,11-12}. However, multiple case studies have reported that patients with ultramutated gliomas driven by POLE mutations have benefited from treatment with anti-PD-1¹³⁻¹⁴ or anti-PD-L1¹⁵ therapies. Therefore, although increased TMB alone may not be a

strong biomarker for PD-1 or PD-L1 inhibitors in this cancer type, these agents may have efficacy for patients with glioma harboring both high TMB and POLE mutation.

FREQUENCY & PROGNOSIS

Glioblastoma (GBM) harbors a median TMB of 2.7 mutations per megabase (muts/Mb), and 4.2% of cases have high TMB (>20 muts/Mb)¹6. For pediatric patients, high TMB has been reported in a subset of high-grade gliomas, frequently in association with mutations in mismatch repair or proofreading genes and in TP53, whereas BRAF alterations or other oncogene fusions were observed more frequently in brain tumors harboring low TMB¹¹⁻¹¹8. Increased TMB has been reported to correlate with higher tumor grade in glioma¹¹9 and glioblastoma (GBM) tissue samples with biallelic mismatch repair deficiency (bMMRD)¹³, as well as with shorter OS of patients with diffuse glioma²⁰.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as

mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma²¹⁻²² and cigarette smoke in lung cancer²³⁻²⁴, treatment with temozolomide-based chemotherapy in glioma²⁵⁻²⁶, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes²⁷⁻³¹, and microsatellite instability (MSI)^{27,30-31}. This sample harbors a TMB below levels that would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents, for patients with glioma^{1,11-15}. Although efficacy of immune checkpoint inhibitors has been observed for patients with other solid tumor types harboring TMB levels such as seen here^{1-4,32}, an association between TMB and clinical benefit has generally not been observed for patients with glioma^{1,11-12}, except for those with ultramutated glioma with POLE $mutation ^{13\text{-}15}.$

BIOMARKER

Microsatellite status

RESULT

MS-Stable

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors³³⁻³⁵, including approved therapies nivolumab and pembrolizumab³⁶. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were

MSI-H and experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, $p=0.001)^{37}$.

FREQUENCY & PROGNOSIS

Low-level MSI has been reported in 5-9% of glioblastoma (GBM) samples $^{38-40}$. A large-scale study did not find high-level microsatellite instability (MSI-H) in any of 129 GBM samples 38 , although a small-scale study reported MSI-H in 4 of 15 pediatric GBMs and 1 of 12 adult GBMs 41 . The frequency of MSI has been reported to be increased in relapsed compared to primary GBM 38 , in GBMs with a previous lower grade astrocytoma 39 , and in giant cell GBM compared to classic GBM 40 .

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor⁴². Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH₂, MSH₆, or PMS₂⁴²⁻⁴⁴. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers⁴⁵⁻⁴⁷. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins^{42,44,46-47}.

GENOMIC FINDINGS

GENE

FGFR1

ALTERATION K656E

TRANSCRIPT ID NM_023110

CODING SEQUENCE EFFECT

1966A>G

VARIANT ALLELE FREQUENCY (% VAF)

90.1%

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

Alterations that activate FGFR1 may predict sensitivity to selective FGFR inhibitors including erdafitinib⁴⁸⁻⁵⁰, pemigatinib⁵¹, infigratinib⁵²⁻⁵³, rogaratinib⁵⁴, Debio 1347⁵⁵⁻⁵⁶, futibatinib⁵⁷, and derazantinib⁵⁸, or multikinase inhibitors such as pazopanib⁵⁹ and ponatinib⁶⁰⁻⁶². In the context of FGFR1 mutation, clinical responses have been

reported in patients with primary brain tumors^{55,57} and lung squamous cell carcinoma⁶³ treated with FGFR inhibitors. In a phase 1 study of futibatinib, 2 patients with FGFR1-mutated primary brain tumors exhibited PRs⁵⁷. A patient with FGFR1-mutated glioblastoma exhibited a PR when treated with infigratinib⁶⁴. For pediatric patients with FGFR1-mutated gliomas, a case series reported 1 sustained PR for a patient with high grade glioma, and a sustained SD and 1 PD for patients with low grade gliomas following treatment with Debio 1347⁵⁵.

FREQUENCY & PROGNOSIS

In the Brain Lower Grade Glioma TCGA dataset and the Glioblastoma Multiforme TCGA dataset, mutation of FGFR1 has been found in less than 1% of cases⁶⁵⁻⁶⁶. In pediatric patients, FGFR1 alterations have been identified in 18% of low-grade gliomas¹⁸, including 5/9 pilomyxoid astrocytomas, 8% of high-grade gliomas¹⁸, and in 6% (4/64) of thalamic gliomas⁶⁷. FGFR1 mutation has also been reported in 5% (5/96) of pilocytic

astrocytomas⁶⁸. Mutations in the FGFR1 kinase domain have been reported in both lower-grade gliomas and glioblastomas; one of these mutations has been described as an oncogenic mutation that disrupted autophosphorylation⁶⁹⁻⁷¹. FGFR fusions were identified in 3/85 IDH1 and IDH2 wild-type gliomas, but were not found in any of 126 IDH1-or IDH2-mutant gliomas⁷². Three patients with FGFR1-mutated pilocytic astrocytomas experienced relatively short survival in one study⁷³, although published data investigating the prognostic implications of FGFR1 alterations in gliomas are limited (PubMed, Mar 2021)⁶⁷.

FINDING SUMMARY

FGFR1 encodes the protein fibroblast growth factor receptor 1, which plays key roles in regulation of the cell cycle and angiogenesis and is an upstream regulator of the RAS, MAPK, and AKT signaling pathways⁷⁴. The FGFR1 alteration observed here has been characterized as activating and is predicted to be oncogenic^{70,75-77}.

GENE

CCND2

ALTERATION

amplification - equivocal

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Although preclinical studies suggest that cyclin D2 activates CDK4/6⁷⁸⁻⁷⁹, it is unknown whether CCND2 amplification or activating mutation predicts response to CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib. Clinical studies of CDK4/6 inhibitors have shown the most promise for estrogen receptor-positive breast

cancer80-81.

FREQUENCY & PROGNOSIS

In the TCGA dataset, CCND2 amplification was observed in 3% of glioblastoma cases⁶⁵ and 7% of lower grade glioma cases⁶⁶. CCND2 amplification has been reported in 3% of primary malignant gliomas in one study, with amplification occurring in one anaplastic astrocytoma and two glioblastoma cases⁸². CCND2 mRNA expression has been reported to be increased in higher grade (3 and 4) astrocytoma tumors as compared to lower grade tumors⁸³. Cyclin D2 has been reported to be the main cyclin expressed in glioblastoma stem cells (GSCs) but was barely detectable in differentiated glioblastoma cells⁸⁴. Cyclin D2, in complex with CDK4/6, has been

reported to be involved in the cell cycle progression of undifferentiated GSCs, but not differentiated GSCs, and to be involved in their tumorigenicity⁸⁴. High CCND2 nuclear expression at the time of initial surgery for patients with glioblastoma was reported to significantly associate with early mortality in a multivariate analysis of 72 patients⁸⁵.

FINDING SUMMARY

CCND2 encodes the protein cyclin D2, which binds and regulates the cyclin-dependent kinases that control cell cycle progression, and is a downstream target of cancer signaling pathways including hedgehog and PI₃K⁸⁶⁻⁸⁷. CCND2 has been reported to be amplified in cancer⁸⁸, and may be biologically relevant in this context⁸⁹⁻⁹⁰.

GENOMIC FINDINGS

CDK4

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

CDK4 amplification or activation may predict sensitivity to CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib⁹¹⁻⁹⁴. Clinical benefit has been reported for limited tumor types including patients with

CDK4-amplified liposarcoma and sarcoma in response to treatment with abemaciclib⁹⁵, palbociclib^{91,96}, and ribociclib⁹⁷.

FREQUENCY & PROGNOSIS

Across TCGA and MKSCC studies, CDK4 amplification has been reported in 4.0-9.4% of glioma cases and 14% of glioblastoma multiforme cases (cBioPortal, Sep 2021)^{65,88,98-100}. A study has reported amplification of the 12q14-15 region, where CDK4 and MDM2 reside, in 5% (2/42) of glioblastomas¹⁰¹. Amplification of CDK4 and corresponding increased CDK4 protein expression has been reported to be associated with a poorer patient outcome in anaplastic astrocytoma and

glioblastoma¹⁰²⁻¹⁰⁵.

FINDING SUMMARY

CDK4 encodes the cyclin-dependent kinase 4, which regulates the cell cycle, senescence, and apoptosis¹⁰⁶. CDK4 and its functional homolog CDK6 are activated by D-type cyclins and promote cell cycle progression by inactivating the tumor suppressor Rb¹⁰⁷⁻¹⁰⁸. Amplification of the chromosomal region that includes CDK4 has been reported in multiple cancer types, including lung cancer, glioblastoma, and liposarcoma, and has been associated with overexpression of CDK4 protein^{91,109-115}.

GENE

MDM2

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

MDM2 antagonists disrupt the MDM2-p53 interaction, thereby stabilizing p53116. Preclinical studies have suggested that the amplification of MDM2, in the absence of concurrent TP53 mutations, may increase sensitivity to these agents117-118. Preliminary Phase 1 studies of the MDM2-p53 antagonist alrizomadlin (APG-115) reported a PR in a patient with liposarcoma harboring an MDM2 amplification and wildtype for TP53 and SD in 21%-38% (6/28 and 5/13, respectively) of patients in genomically unselected solid tumors119-120. A Phase 2 trial of alrizomadlin in combination with pembrolizumab reported a PR in 1 of 3 patients with malignant peripheral nerve sheath tumor that had failed standard therapy, as well as PRs in patients with multiple

types of solid tumors that had failed immunotherapy, including 1 out of 14 patients with non-small cell lung cancer; 1 out of 5 patients with urothelial carcinoma; and 2 out of5, 1 out of 5, and 1 out of 11 patients with mucosal, uveal, and cutaneous melanoma, respectively¹²¹. Phase 1b studies of the MDM2 inhibitor idasanutlin for refractory AML in combination with cytarabine or venetoclax reported anti-leukemic response rates of 33% (25/75) and 37% (11/30), respectively¹²²⁻¹²³; clinical benefit (58% ORR, 7/12) with idasanutlin monotherapy has been reported for patients with polycythemia vera¹²⁴. The dual MDM2/MDM4 inhibitor ALRN-6924 led to an ORR of 27% (4/15) for patients with TP53 wildtype peripheral T-cell lymphoma in a Phase 2 study¹²⁵; responses have also been observed in TP53 wildtype AML, MDS, Merkel cell carcinoma, colorectal cancer, and liposarcoma¹²⁶⁻¹²⁷.

FREQUENCY & PROGNOSIS

In the Glioblastoma Multiforme (GBM) TCGA dataset, amplification of MDM2 has been found in 8% of cases⁶⁵. A study has reported amplification of the 12q14–15 region, where MDM2 and CDK4 reside, in 5% (2/42) of GBMs¹⁰¹. Amplification of

MDM2 has been associated with poor survival in patients with glioblastoma 101,128 .

FINDING SUMMARY

MDM2 encodes an E3 ubiquitin protein ligase, which mediates the ubiquitination and subsequent degradation of p53, Rb1, and other proteins 129-131. MDM2 acts to prevent the activity of the tumor suppressor p53; therefore, overexpression or amplification of MDM2 may be oncogenic 132-133. Overexpression or amplification of MDM2 is frequent in cancer⁹⁰. Although two retrospective clinical studies suggest that MDM2 amplification may predict a short time-to-treatment failure on anti-PD-1/PD-L1 immune checkpoint inhibitors. with 4/5 patients with MDM2 amplification¹³⁴ and 2/3 patients with MDM2 or MDM4 amplification¹³⁵ experiencing tumor hyperprogression, amplification of MDM2 or MDM4 was not associated with shorter progression-free survival (PFS) in a retrospective analysis of non-small cell lung cancer (NSCLC) outcomes with immune checkpoint inhibitors (hazard ratio of 1.4, p=0.44)136. The latter study reported PFS of >2 months for 5/8 patients with MDM₂/MDM₄ amplification¹³⁶.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Infigratinib

Assay findings association

FGFR1 K656E

AREAS OF THERAPEUTIC USE

Infigratinib is a TKI that inhibits FGFR1, FGFR2, and FGFR3. It is FDA approved for the treatment of patients with unresectable locally advanced or metastatic cholangiocarcinoma who have FGFR2 rearrangements or fusions and have progressed after prior therapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

Based on individual responses in patients with FGFR1-mutated glioblastoma⁶⁴ and lung squamous cell carcinoma⁶³, FGFR1 mutation may predict sensitivity to

infigratinib.

SUPPORTING DATA

A Phase 2 study of infigratinib for patients with recurrent high-grade gliomas harboring FGFR alterations, reported a 9.5% (2/21) ORR, 1.7 month median PFS, and 6.7 month median OS 64 . Disease control greater than one year was observed in 4 patients, including a PR in a patient with FGFR1-mutated glioma, and SD in patients with glioma harboring FGFR1 mutation, FGFR3 mutation, or FGFR3-TACC3 fusion 64 .

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial → Geographical proximity > Later trial phase. Clinical trials listed here may have additional enrollment criteria that may require

medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomictesting#support-services.

BIOMARKER

Tumor Mutational

Burden

RESULT 11 Muts/Mb

RATIONALE

Increased tumor mutational burden may predict response to anti-PD-1 (alone or in combination

with anti-CTLA-4) or anti-PD-L1 immune checkpoint inhibitors.

NCT04977453	PHASE 1/2
GI-101 as a Single Agent or in Combination With Pembrolizumab, Lenvatinib or Local Radiotherapy in Advanced Solid Tumors	TARGETS FGFRS, RET, PDGFRA, VEGFRS, KIT, PD-1, CTLA-4

LOCATIONS: Suwon-si (Korea, Republic of), Seoul (Korea, Republic of)

NCT04773951	PHASE 1
A Phase I Study to Evaluate the Safety, Tolerability and Pharmacokinetics of JS004 in Advanced Solid Tumors	TARGETS BTLA, PD-1
LOCATIONS: Beijing (China)	

CLINICAL TRIALS

GENE	
CCND2	2

RATIONALE

CCND2 amplification or activation may predict

sensitivity to CDK4/6 inhibitors.

ALTERATION amplification - equivocal

NCT04282031	PHASE 1/2
A Study of BPI-1178 in Patients With Advanced Solid Tumor and HR+/HER2- Breast Cancer	TARGETS CDK6, CDK4, ER, Aromatase
LOCATIONS: Shanghai (China)	

NCT04594005	PHASE 1/2
CDK4/6 Tumor, Abemaciclib, Paclitaxel	TARGETS CDK4, CDK6

LOCATIONS: Seoul (Korea, Republic of)

NCT04391595	PHASE NULL
LY3214996 Plus Abemaciclib in Recurrent Glioblastoma Patients	TARGETS CDK4, CDK6, ERK1, ERK2

LOCATIONS: Arizona

NCT03834740	PHASE NULL
PhO/2 Ribociclib & Everolimus	TARGETS CDK6, CDK4, mTOR

LOCATIONS: Arizona

NCT02933736	PHASE NULL
Ribociclib (LEE011) in Preoperative Glioma and Meningioma Patients	TARGETS CDK6, CDK4
LOCATIONS: Arizona	

NCT04801966	PHASE NULL
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF
LOCATIONS: Melbourne (Australia)	

CLINICAL TRIALS

NCT03994796	PHASE 2
Genetic Testing in Guiding Treatment for Patients With Brain Metastases	TARGETS TRKB, ALK, TRKC, ROS1, TRKA, CDK4, CDK6, PI3K, mTOR
LOCATIONS: Washington, Oregon, Idaho, Montana	
NCT03310879	PHASE 2
Study of the CDK4/6 Inhibitor Abemaciclib in Solid Tumors Harboring Genetic Alterations in Genes Encoding D-type Cyclins or Amplification of CDK4 or CDK6	TARGETS CDK4, CDK6
LOCATIONS: Massachusetts	
NCT03158389	PHASE 1/2
NCT Neuro Master Match - N ² M ² (NOA-20)	TARGETS ALK, RET, CDK4, CDK6, mTOR, MDM2, PD-L1, SMO
LOCATIONS: Berlin (Germany), Dresden (Germany), Regensburg (Germany), Bochum (Germany), Frankfurt am Main (Germany), Essen (Germany), Mainz (Germany), Heidelberg (Germany), Cologne (Germany), Mannheim (Germany)	
NCT02981940	PHASE 2
A Study of Abemaciclib in Recurrent Glioblastoma	TARGETS CDK4, CDK6
LOCATIONS: Utah, California, Massachusetts	

CLINICAL TRIALS

GENE	
CD	Κ4

RATIONALE

CDK4 amplification may predict sensitivity to

CDK₄/6 inhibitors.

EGFR, ERBB4, ERBB2, PARP, mTOR, MET, ROS1, RET, VEGFRs, BRAF, CDK4,

ALTERATION
amplification

Event

NCT04282031	PHASE 1/2
A Study of BPI-1178 in Patients With Advanced Solid Tumor and HR+/HER2- Breast Cancer	TARGETS CDK6, CDK4, ER, Aromatase
LOCATIONS: Shanghai (China)	
NCT03239015	PHASE 2
Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular	TARGETS

LOCATIONS: Shanghai (China)

NCT04594005	PHASE 1/2
CDK4/6 Tumor, Abemaciclib, Paclitaxel	TARGETS CDK4, CDK6

LOCATIONS: Seoul (Korea, Republic of)

LOCATIONS: Arizona

NCT04391595	PHASE NULL
LY3214996 Plus Abemaciclib in Recurrent Glioblastoma Patients	TARGETS CDK4, CDK6, ERK1, ERK2
LOCATIONS: Arizona	

NCT03834740	PHASE NULL
Ph0/2 Ribociclib & Everolimus	TARGETS CDK6, CDK4, mTOR

NCT02933736	PHASE NULL
Ribociclib (LEE011) in Preoperative Glioma and Meningioma Patients	TARGETS CDK6, CDK4
LOCATIONS: Arizona	

CLINICAL TRIALS

TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK,
PARP, PD-1, BRAF
PHASE 2
TARGETS TRKB, ALK, TRKC, ROS1, TRKA, CDK4, CDK6, PI3K, mTOR
PHASE 2
TARGETS CDK4, CDK6
PHASE 1/2
TARGETS ALK, RET, CDK4, CDK6, mTOR, MDM2, PD-L1, SMO

CLINICAL TRIALS

GEN	E	
FG	FR	1

RATIONALE

FGFR inhibitors may be relevant in tumors with

alterations that activate FGFR1.

ALTERATION K656E

NCT04169672	PHASE 2
Study of Surufatinib Combined With Toripalimab in Patients With Advanced Solid Tumors	TARGETS FGFR1, CSF1R, VEGFRs, PD-1

LOCATIONS: Shanghai (China), Beijing (China)

NCT04803318	PHASE 2
Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors	TARGETS mTOR, FGFRs, RET, PDGFRA, VEGFRs, KIT, MEK

LOCATIONS: Guangzhou (China)

NCT04977453	PHASE 1/2
GI-101 as a Single Agent or in Combination With Pembrolizumab, Lenvatinib or Local Radiotherapy in Advanced Solid Tumors	TARGETS FGFRS, RET, PDGFRA, VEGFRS, KIT, PD-1, CTLA-4

LOCATIONS: Suwon-si (Korea, Republic of), Seoul (Korea, Republic of)

NCT03564691	PHASE 1
Study of MK-4830 as Monotherapy and in Combination With Pembrolizumab (MK-3475) in Participants With Advanced Solid Tumors (MK-4830-001)	TARGETS ITL4, FGFRs, RET, PDGFRA, VEGFRs, KIT, PD-1

LOCATIONS: Seoul (Korea, Republic of), Haifa (Israel), Petah Tikva (Israel), Ramat Gan (Israel), Tel Aviv (Israel), Warszawa (Poland), Gdansk (Poland), Heraklion (Greece), Washington, Hospitalet de Llobregat (Spain)

NCT03547037	PHASE 1
A Study to Evaluate the Safety, Pharmacokinetics, Pharmacodynamics, and Immunogenicity of JNJ-63723283, an Anti-Programmed Cell Death (PD)-1 Monoclonal Antibody, as Monotherapy or in Combination With Erdafitinib in Japanese Participants With Advanced Solid Cancers	TARGETS PD-1, FGFRs
LOCATIONS: Chuo-Ku (Japan), Kashiwa (Japan)	

NCT04008797	PHASE 1
A Study of E7386 in Combination With Other Anticancer Drug in Participants With Solid Tumor	TARGETS CBP, Beta-catenin, FGFRs, RET, PDGFRA, VEGFRs, KIT
LOCATIONS: Osakasayama (Japan), Chuo-Ku (Japan), Kashiwa (Japan)	

CLINICAL TRIALS

NCT04424966	PHASE NULL
Infigratinib in Recurrent Glioblastoma Patients	TARGETS FGFR3, FGFR1, FGFR2
LOCATIONS: Arizona	
NCT04565275	PHASE 1/2
A Study of ICP-192 in Patients With Advanced Solid Tumors	TARGETS FGFR2, FGFR1, FGFR3, FGFR4
LOCATIONS: Macquarie Park (Australia), Melbourne (Australia), Clayton (Australia), Frankston (Aust	ralia), Colorado, Minnesota, Arizona, Ohio, Florida
NCT02549937	PHASE 1/2
A Multi-Center, Open-Label Study of Sulfatinib(HMPL-012) in Patients With Advanced Solid Tumors	TARGETS FGFR1, CSF1R, VEGFRs
LOCATIONS: Milano (Italy), California, Colorado, Texas, New York, Tennessee, Virginia, Florida	
NCT04729348	PHASE 2
Pembrolizumab And Lenvatinib In Leptomeningeal Metastases	TARGETS PD-1, KIT, VEGFRS, FGFRS, PDGFRA, RET
LOCATIONS: Massachusetts	

CLINICAL TRIALS

GENE MDM2

RATIONALE

Inhibitors of the MDM2-p53 interaction are being tested in clinical trials. Overexpression or

amplification of MDM2 may increase sensitivity to these agents, but more data are required.

ALTERATION amplification

NCT04589845	PHASE 2
Tumor-Agnostic Precision Immuno-Oncology and Somatic Targeting Rational for You (TAPISTRY) Platform Study	TARGETS TRKB, ALK, TRKC, ROS1, TRKA, RET, PD-L1, AKTs, ERBB2, MDM2, PI3K- alpha

LOCATIONS: Zhongzheng Dist. (Taiwan), Taipei City (Taiwan), Taoyuan County (Taiwan), Tainan (Taiwan), Hong Kong (Hong Kong), Seoul (Korea, Republic of), Xi'an (China), Tianjin (China), Beijing (China), Chengdu City (China)

NCT03449381	PHASE 1
This Study Aims to Find the Best Dose of BI 907828 in Patients With Different Types of Advanced Cancer (Solid Tumors)	TARGETS MDM2

LOCATIONS: Tokyo, Chuo-ku (Japan), Berlin (Germany), Tübingen (Germany), Leuven (Belgium), Barcelona (Spain), Ottawa (Canada), Connecticut, New York, Tennessee, Florida

NCT03611868	PHASE 1/2
A Study of APG-115 in Combination With Pembrolizumab in Patients With Metastatic Melanomas or Advanced Solid Tumors	TARGETS MDM2, PD-1

LOCATIONS: Brisbane (Australia), South Brisbane (Australia), Bedford Park (Australia), California, Arizona, Missouri, Arkansas, Pennsylvania, New York

NCT03158389	PHASE 1/2
NCT Neuro Master Match - N ² M ² (NOA-20)	TARGETS ALK, RET, CDK4, CDK6, mTOR, MDM2, PD-L1, SMO

LOCATIONS: Berlin (Germany), Dresden (Germany), Regensburg (Germany), Bochum (Germany), Frankfurt am Main (Germany), Essen (Germany), Mainz (Germany), Heidelberg (Germany), Cologne (Germany), Mannheim (Germany)

NCT03107780	PHASE 1
MDM2 Inhibitor AMG-232 in Treating Patients With Recurrent or Newly Diagnosed Glioblastoma	TARGETS MDM2

LOCATIONS: California, Michigan, Pennsylvania, Massachusetts, New York, Maryland, North Carolina, Alabama

NCT03725436	PHASE 1
ALRN-6924 and Paclitaxel in Treating Patients With Advanced, Metastatic, or Unresectable Solid Tumors	TARGETS MDM2, MDM4
LOCATIONS: Texas	

TSC2 E1490G

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

ATRX AXL BRCA1 E1464del R490C N909I **EP300 GATA3** CSF1R V229I S110F M755I MLL2 MPL MST1R N2965S P70L V670G RAD52 ROS1 TBX3 amplification A174E E401K

PARP1 S504P

MAP3K13

BRCA2

N108S

amplification

APPENDIX

Genes Assayed in FoundationOne®CDx

FoundationOne CDx is designed to include genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 324 genes as well as introns of 36 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B)	APC
AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2
BTK	C11orf30 (EMSY)	C17orf39 (GID4)	CALR	CARD11	CASP8	CBFB	CBL	CCND1
CCND2	CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73
CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B
CDKN2C	CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1
DDR2	DIS3	DNMT3A	DOT1L	EED	EGFR	EP300	ЕРНАЗ	EPHB1
EPHB4	ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2
FAM46C	FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12
FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3
FGFR4	FH	FLCN	FLT1	FLT3	FOXL2	FUBP1	GABRA6	GATA3
GATA4	GATA6	GNA11	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3F3A
HDAC1	HGF	HNF1A	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNK1	MLH1	MPL	MRE11A	MSH2	MSH3
MSH6	MST1R	MTAP	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	NOTCH3
NPM1	NRAS	NSD3 (WHSC1L1)	NT5C2	NTRK1	NTRK2	NTRK3	P2RY8	PALB2
PARK2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)	PDGFRA
PDGFRB	PDK1	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIM1	PMS2
POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI	PTCH1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	REL	RET
RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC	SDHD	SETD2
SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1
SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3	STK11	SUFU
SYK	TBX3	TEK	TET2	TGFBR2	TIPARP	TNFAIP3	TNFRSF14	TP53
TSC1	TSC2	TYRO3	U2AF1	VEGFA	VHL	WHSC1	WT1	XPO1
XRCC2	ZNF217	ZNF703						
DNA GENE LIS	T: FOR THE DETE	CTION OF SELECT	T REARRANGE	MENTS				
ΔIK	RCI 2	RCR	RRAF	RRC A1	RRCA2	CD74	FGFR	FTV4

ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)
MSH2	MYB	MYC	NOTCH2	NTRK1	NTRK2	NUTM1	PDGFRA	RAF1
RARA	RET	ROS1	RSPO2	SDC4	SLC34A2	TERC*	TERT**	TMPRSS2

^{*}TERC is an NCRNA

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Loss of Heterozygosity (LOH) score Microsatellite (MS) status Tumor Mutational Burden (TMB)

^{**}Promoter region of TERT is interrogated

FoundationOne CDx fulfills the requirements of

diagnostic medical devices and is registered as a

CE-IVD product by Foundation Medicine's EU

the European Directive 98/79 EC for in vitro

ORDERED TEST # ORD-1301523-01

Using an Illumina® HiSeq platform, hybrid capture–selected libraries will be sequenced to high uniform depth (targeting >500X median coverage with >99% of exons at coverage >100X). Sequence data will be processed using a customized analysis pipeline designed to accurately detect all classes of genomic alterations, including base substitutions, indels, focal copy number amplifications, homozygous gene deletions, and selected genomic rearrangements (e.g.,gene fusions). Additionally, genomic signatures including loss of heterozygosity

(LOH), microsatellite instability (MSI) and tumor

mutational burden (TMB) will be reported.

ABOUT FOUNDATIONONE CDX

Cipalstraat 3, 2440 Geel, Belgium.

Authorized Representative, Qarad b.v.b.a,

FoundationOne CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

Please refer to technical information for performance specification details: www.rochefoundationmedicine.com/f1cdxtech.

INTENDED USE

FoundationOne®CDx (F1CDx) is a next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alterations (indels), and copy number alterations (CNAs) in 324 genes and select gene rearrangements, as well as genomic signatures including microsatellite instability (MSI), tumor mutational burden (TMB), and for selected forms of ovarian cancer, loss of heterozygosity (LOH) score, using DNA isolated from formalin-fixed, paraffinembedded (FFPE) tumor tissue specimens. The test is intended as a companion diagnostic to identify patients who may benefit from treatment with therapies in accordance with approved therapeutic product labeling. Additionally, F1CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with solid malignant neoplasms.

TEST PRINCIPLES

FoundationOne CDx will be performed exclusively as a laboratory service using DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tumor samples. The proposed assay will employ a single DNA extraction method from routine FFPE biopsy or surgical resection specimens, 50-1000 ng of which will undergo whole-genome shotgun library construction and hybridization-based capture of all coding exons from 309 cancer-related genes, one promoter region, one non-coding (ncRNA), and select intronic regions from 34 commonly rearranged genes, 21 of which also include the coding exons. The assay therefore includes detection of alterations in a total of 324 genes.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. The F1CDx report may be used as an aid to inform molecular eligibility for clinical trials. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne CDx identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne CDx for identifying a copy number amplification is four (4) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that the FoundationOne CDx analytical methodology has identified as being present in <10% of the assayed tumor DNA.

APPENDIX

About FoundationOne®CDx

Ranking of Therapies and Clinical Trials Ranking of Therapies in Summary Table
Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials
Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK* (NCCN*) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Limitations

1. In the fractional-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the F1CDx assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by analytical concordance to a PCR comparator assay using a pan-tumor FFPE tissue sample set. Patients with results categorized as "MS-

- Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.
- 2. TMB by F1CDx is determined by counting all synonymous and non-synonymous variants present at 5% allele frequency or greater (after filtering) and the total number is reported as mutations per megabase (mut/Mb) unit. Observed TMB is dependent on characteristics of the specific tumor focus tested for a patient (e.g., primary vs. metastatic, tumor content) and the testing platform used for the detection; therefore, observed TMB results may vary between different specimens for the same patient and between detection methodologies employed on the same sample. The TMB calculation may differ from TMB calculations used by other assays depending on variables such as the amount of genome interrogated, percentage of tumor, assay limit of detection (LoD), filtering of alterations included in the score, and the read depth and other bioinformatic test specifications. Refer to the SSED for a detailed description of these variables in FMI's TMB calculation https://www.accessdata.fda.gov/cdrh_docs/ pdf17/P170019B.pdf. The clinical validity of TMB defined by this panel has been established for TMB as a qualitative output for a cut-off of 10 mutations per megabase but has not been established for TMB as a quantitative score.
- 3. The LOH score is determined by analyzing SNPs spaced at 1Mb intervals across the genome on the FoundationOne CDx test and extrapolating an LOH profile, excluding armand chromosome-wide LOH segments. Detection of LOH has been verified only for ovarian cancer patients, and the LOH score result may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas. The LOH score will be reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine LOH. Performance of the LOH classification has not been established for samples below 35% tumor content. There may be potential interference of ethanol with LOH detection. The interfering effects of xylene, hemoglobin, and triglycerides on the LOH score have not been demonstrated.
- 4. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. The test does not provide information about susceptibility.
- Biopsy may pose a risk to the patient when archival tissue is not available for use with the assay. The patient's physician should determine

whether the patient is a candidate for biopsy.

6. Reflex testing to an alternative FDA approved

companion diagnostic should be performed for patients who have an ERBB2 amplification result detected with copy number equal to 4 (baseline ploidy of tumor +2) for confirmatory testing. While this result is considered negative by FoundationOne®CDx (F1CDx), in a clinical concordance study with an FDA approved FISH test, 70% (7 out of 10 samples) were positive, and 30% (3 out of 10 samples) were negative by the FISH test with an average ratio of 2.3. The frequency of ERBB2 copy number 4 in breast cancer is estimated to be approximately 2%. Multiple references listed in https://www.mycancergenome.org/content/ disease/breast-cancer/ERBB2/238/ report the frequency of HER2 overexpression as 20% in breast cancer. Based on the F1CDx HER2 CDx concordance study, approximately 10% of HER2 amplified samples had copy number 4. Thus, total frequency is conservatively estimated to be

approximately 2%. **REPORT HIGHLIGHTS**

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANT ALLELE FREQUENCY

Variant Allele Frequency (VAF) represents the fraction of sequencing reads in which the variant is observed. This attribute is not taken into account for therapy inclusion, clinical trial matching, or interpretive content. Caution is recommended in interpreting VAF to indicate the potential germline or somatic origin of an alteration, recognizing that tumor fraction and tumor ploidy of samples may vary.

APPENDIX

About FoundationOne®CDx

Precision of VAF for base substitutions and indels

BASE SUBSTITUTIONS	%CV*
Repeatability	5.11 - 10.40
Reproducibility	5.95 - 12.31
INDELS	%CV*
INDELS Repeatability	%CV*

^{*}Interquartile Range = 1st Quartile to 3rd Quartile

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear

APPENDIX

About FoundationOne®CDx

cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne CDx.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. FoundationOne CDx is performed using DNA derived from tumor, and as such germline events may not be reported.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ткі	Tyrosine kinase inhibitor

MR Suite Version 6.0.0

The median exon coverage for this sample is 872x

APPENDIX F

References

- 1. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 2. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- 3. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 4. Cristescu R, et al. Science (2018) pmid: 30309915
- 5. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 7. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 8. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 9. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 10. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 11. Zhao J, et al. Nat. Med. (2019) pmid: 30742119
- 12. Touat M, et al. Nature (2020) pmid: 32322066
- 13. Bouffet E, et al. J. Clin. Oncol. (2016) pmid: 27001570
- 14. Johanns TM, et al. Cancer Discov (2016) pmid:
- 27683556 15. Lukas RV. et al. J. Neurooncol. (2018) pmid: 30073642
- 16. Chalmers ZR, et al. Genome Med (2017) pmid:
- 28420421

 17. Patel RR, et al. Pediatr Blood Cancer (2020) pmid:
- 32386112
- 18. Johnson A, et al. Oncologist (2017) pmid: 28912153
- Draaisma K, et al. Acta Neuropathol Commun (2015) pmid: 26699864
- 20. Wang L, et al. BMC Cancer (2020) pmid: 32164609
- 21. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 22. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 23. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 24. Rizvi NA, et al. Science (2015) pmid: 25765070
- 25. Johnson BE, et al. Science (2014) pmid: 24336570
- **26.** Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 27. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 28. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 29. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 30. Nature (2012) pmid: 22810696
- **31.** Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- **32.** Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- 33. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 34. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 35. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- **36.** Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 37. Ayers et al., 2016; ASCO-SITC Abstract P60
- **38.** Martinez R, et al. Oncology (2004) pmid: 15331927
- **39.** Martinez R, et al. J. Cancer Res. Clin. Oncol. (2005) pmid: 15672285
- Martinez R, et al. Cancer Genet. Cytogenet. (2007) pmid: 17498554
- 41. Szybka M, et al. Clin. Neuropathol. () pmid: 12908754
- 42. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- **43**. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 44. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid:

- 24623249
- 45. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- **46.** Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- 47. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 48. Loriot Y, et al. N. Engl. J. Med. (2019) pmid: 31340094
- **49.** Tabernero J, et al. J. Clin. Oncol. (2015) pmid: 26324363
- Karkera JD, et al. Mol. Cancer Ther. (2017) pmid: 28416604
- 51. Necchi et al., 2018; ESMO Abstract 900P
- 52. Pal SK, et al. Cancer Discov (2018) pmid: 29848605
- 53. Pal SK, et al. Cancer (2020) pmid: 32208524
- 54. Schuler M, et al. Lancet Oncol. (2019) pmid: 31405822
- Farouk Sait S, et al. JCO Precis Oncol (2021) pmid: 34250399
- **56.** Voss MH, et al. Clin. Cancer Res. (2019) pmid: 30745300
- **57.** Bahleda R, et al. Ann Oncol (2020) pmid: 32622884
- 58. Papadopoulos KP, et al. Br. J. Cancer (2017) pmid: 28972963
- Cheng FT, et al. J Natl Compr Canc Netw (2017) pmid: 29223982
- Khodadoust MS, et al. Leukemia (2016) pmid: 26055304
- 61. Tanasi I, et al. Blood (2019) pmid: 31434701
- 62. Strati P, et al. Leuk. Lymphoma (2018) pmid: 29119847
- 63. Slosberg ED, et al. Oncotarget (2018) pmid: 29765547
- 64. Lassman et al., 2019; SNO Abstract ACTR-33
- **65.** Brennan CW, et al. Cell (2013) pmid: 24120142
- Cancer Genome Atlas Research Network, et al. N. Engl. J. Med. (2015) pmid: 26061751
- Ryall S, et al. Acta Neuropathol Commun (2016) pmid: 27577993
- 68. Jones DT, et al. Nat. Genet. (2013) pmid: 23817572
- Rand V, et al. Proc. Natl. Acad. Sci. U.S.A. (2005) pmid: 16186508
- 70. Lew ED, et al. Sci Signal (2009) pmid: 19224897
- **71.** Zhang J, et al. Nat. Genet. (2013) pmid: 23583981
- **72.** Di Stefano AL, et al. Clin. Cancer Res. (2015) pmid: 25609060
- Becker AP, et al. J. Neuropathol. Exp. Neurol. (2015) pmid: 26083571
- **74.** Turner N, et al. Nat. Rev. Cancer (2010) pmid: 20094046
- **75.** Liu A, et al. Development (2003) pmid: 14602678
- 76. Petiot A, et al. Dev. Dyn. (2002) pmid: 12112473
- **77.** Hart KC, et al. Oncogene (2000) pmid: 10918587
- Busk PK, et al. Exp. Cell Res. (2005) pmid: 15707582
 Busk PK, et al. Cell Cycle () pmid: 12695654
- 80. Finn RS, et al. Lancet Oncol. (2015) pmid: 25524798
- 81. DeMichele A, et al. Clin. Cancer Res. (2015) pmid: 25501126
- 82. Büschges R, et al. Brain Pathol. (1999) pmid: 10416984
- 83. Kheirollahi M, et al. Med. Oncol. (2011) pmid: 20077038
- 84. Koyama-Nasu R, et al. Oncogene (2013) pmid: 22964630
- 85. Bouchart C, et al. Cancer Med (2019) pmid: 31568682
- 86. Katoh Y, et al. Curr. Mol. Med. (2009) pmid: 19860666
- 87. White PC, et al. Oncogene (2006) pmid: 16301994
- Gao J, et al. Sci Signal (2013) pmid: 23550210
 Zack TI, et al. Nat. Genet. (2013) pmid: 24071852

- 90. Beroukhim R, et al. Nature (2010) pmid: 20164920
- 91. Dickson MA, et al. J. Clin. Oncol. (2013) pmid: 23569312
- 92. Flaherty KT, et al. Clin. Cancer Res. (2012) pmid: 22090362
- 93. Patnaik A, et al. Cancer Discov (2016) pmid: 27217383
- Infante JR, et al. Clin. Cancer Res. (2016) pmid: 27542767
- 95. Dickson et al., 2019; ASCO Abstract 11004
- 96. Dickson MA, et al. JAMA Oncol (2016) pmid: 27124835
- 97. Peguero et al., 2016; ASCO Abstract 2528
- 98. Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- 99. Jonsson P, et al. Clin. Cancer Res. (2019) pmid: 31263031
- 100. Ceccarelli M, et al. Cell (2016) pmid: 26824661
- 101. Zheng S, et al. Genes Dev. (2013) pmid: 23796897
- **102.** Kim H, et al. Proc. Natl. Acad. Sci. U.S.A. (2010) pmid: 20080666
- 103. Ruano Y, et al. Am. J. Clin. Pathol. (2009) pmid: 19141386
- **104.** Fischer U, et al. Mol. Cancer Res. (2008) pmid: 18403636
- 105. Bäcklund LM, et al. Br. J. Cancer (2005) pmid: 15970925
- 106. Choi YJ, et al. Oncogene (2014) pmid: 23644662
- **107.** Cell (1995) pmid: 7736585
- 108. Musgrove EA, et al. Nat. Rev. Cancer (2011) pmid: 21734724
- 109. Wikman H, et al. Genes Chromosomes Cancer (2005) pmid: 15543620
- 110. Rao SK, et al. J. Neurooncol. (2010) pmid: 19609742
- 111. Chung L, et al. Am. J. Surg. Pathol. (2009) pmid: 19574885
- 112. Ragazzini P, et al. Histol. Histopathol. (2004) pmid: 15024701
- 113. Dujardin F, et al. Mod. Pathol. (2011) pmid: 21336260
- 114. Zhang K, et al. Cancer Res. (2013) pmid: 23393200
- 115. Horvai AE, et al. Mod. Pathol. (2009) pmid: 19734852
- 116. Cheok CF, et al. Nat Rev Clin Oncol (2011) pmid: 20975744
- 117. Ohnstad HO, et al. Cancer (2013) pmid: 23165797
- 118. Gamble LD, et al. Oncogene (2012) pmid: 21725357
- 119. Zhang et al., 2019; ASCO Abstract 3124
- 120. Rasco et al., 2019; ASCO Abstract 3126
- 121. Tolcher et al., 2021; ASCO Abstract 2506
- **122.** Martinelli et al., 2016; EHA21 Abstract S504 **123.** Daver et al., 2018; ASH Abstract 767
- 124. Mascarenhas et al., 2019; ASH Abstract 134
- **125.** Shustov et al., 2018; ASH Abstract 1623
- 126. Sallman et al., 2018: ASH Abstract 4066
- 127. Meric-Bernstam et al., 2017; ASCO Abstract 2505
- 128. Fischer U, et al. Int. J. Cancer (2010) pmid: 19839052
- 129. Sdek P, et al. Mol. Cell (2005) pmid: 16337594
- 130. Brady M, et al. Mol. Cell. Biol. (2005) pmid: 15632057
- 131. Li M, et al. Mol. Cell (2004) pmid: 15053880
- 132. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675133. Cordon-Cardo C, et al. Cancer Res. (1994) pmid:
- 8306343 134. Kato S, et al. Clin. Cancer Res. (2017) pmid: 28351930
- **135.** Singavi et al., 2017; ESMO Abstract 1140PD **136.** Rizvi H, et al. J. Clin. Oncol. (2018) pmid: 29337640