Package 'FPSOmics'

January 15, 2022

Type Package	
Title Ferroptosis Score and associated multi-Omics	
Version 0.1.0	
Author YiHe, YuDong, Xiang Chen#, Youqiong Ye# and Hong Liu#	
Maintainer YiHe <yihe0902@163.com> and YuDong <yudong123@sjtu.edu.cn></yudong123@sjtu.edu.cn></yihe0902@163.com>	
Description FPSOmics is an R package to calculate ferroptosis score and multidimensional ferroptosis- associated molecular signatures.	
License GPL-3	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.1.1	
Suggests knitr, rmarkdown	
VignetteBuilder knitr	
R topics documented:	
FPSmultiOmicsSigEnrich	1 3
Index	5
FPS Calculate of ferroptosis score	_

Description

We firstly calculate enrichment score (ES) of ferroptosis-promote genes(pro-FRGs) and ferroptosis-inhibit genes(anti-FRGs) using single sample gene set enrichment analysis (ssGSEA), then ferroptosis score was defined by the ES of pro-FRGs minus anti-FRGs.

2 FPSmultiOmicsSig

Usage

```
FPS(input_exp_data)
```

Arguments

```
input_exp_data
```

expression matrix (rownames of the variable must be gene symbol, each column is a sample)

Value

data.frame of ferroptosis score, column of pro is pro-ferroptosis score, column of anti is antiferroptosis score, column of FPS is Ferroptosis score, column of barcode is samples, column of myclusters is high and low group divided by median ferroptosis score

Examples

```
data(m1_input_mRNA,package='FPSOmics')
FPS_score=FPS(m1_input_mRNA)
```

FPSmultiOmicsSig

Calculation of ferroptosis-associated molecular signatures

Description

A propensity score matching (PSM) algorithm, which appropriately control the effects of clinical confounding factors, was used to calculate ferroptosis-associated molecular signatures between high and low ferroptosis score group.

Usage

```
FPSmultiOmicsSig(input_Clinical, input_FPS_score, input_omics)
```

Arguments

```
input_Clinical
```

data.frame of the clinical information, the column of barcode is samples and the rest column is each clinical feature(For continuous variables, the name could be age_continuous; For discrete variables, the name could be gender_discrete)

input_FPS_score

ferroptosis score result from FPS function

input_omics molecular matrix (rownames of the variable must be molecular symbol, each column is a sample)

Value

data.frame of a propensity score matching (PSM) algorithm result with fdr < 0.05,column of feature.sig is each gene, column of pvalue.sig is p value, column of fdr.sig is fdr, column of coef.sig is coefficient, column of mean0.sig is mean of low group, column of mean1.sig is mean of high group, column of mean1.sig.w is weighted mean of high group

Examples

```
data(m3_input_Clinical,package='FPSOmics')
data(m3_input_FPS_score,package='FPSOmics')
data(m3_input_mRNA,package='FPSOmics')
PSM_result=FPSmultiOmicsSig(m3_input_Clinical,m3_input_FPS_score,m3_input_mRNA)
```

FPSmultiOmicsSigEnrich

Function enrichment

Description

Study the differences of different ferroptosis status in cancer hallmarks, KEGG pathway by Gene Set Enrichment Analysis (GSEA) and GO, KEGG enrichment.

Usage

```
FPSmultiOmicsSigEnrich(input_PSM, input_gs_kegg, temp_folder)
```

Arguments

Value

table and figures of GO, KEGG and GSEA enrichemnt result

Examples

```
data(m4_input_gs_kegg,package='FPSOmics')
data(m4_input_PSM,package='FPSOmics')
enrichment_result=FPSmultiOmicsSigEnrich(m4_input_PSM,m4_input_gs_kegg,'temp_folder')
```

FPSsurvival

Calculation of ferroptosis score and survival analysis between high and low ferroptosis score groups.

Description

We firstly calculate enrichment score (ES) of ferroptosis-promote genes(pro-FRGs) and ferroptosis-inhibit genes(anti-FRGs) using single sample gene set enrichment analysis (ssGSEA), then ferroptosis score was defined by the ES of pro-FRGs minus anti-FRGs. Secondly, survival analysis between high and low ferroptosis score groups.

4 FPSsurvival

Usage

```
FPSsurvival(input_exp_data, input_survival_data)
```

Arguments

```
input_exp_data
```

expression matrix (rownames of the variable must be gene symbol, each column is a sample)

```
input_survival_data
```

data.frame of the survival time information, the name of first colume is barcode which means samples, the name of second colume is OS which means censos status, the name of third colume is OS.time which means survival time

Value

data.frame of ferroptosis score, column of pro is pro-ferroptosis score, column of anti is anti-ferroptosis score, column of FPS is Ferroptosis score, column of barcode is samples, column of myclusters is high and low group divided by median ferroptosis score; score_MK_plot is MK curve for high and low ferroptosis score

Examples

```
data(m1_input_mRNA,package='FPSOmics') #load mRNA matrix
data(m2_input_survival_data,package='FPSOmics') #load survival time
FPS_survival_result=FPSsurvival(m1_input_mRNA,m2_input_survival_data)
```

Index

```
FPS, 1
FPSmultiOmicsSig, 2
FPSmultiOmicsSigEnrich, 3
FPSsurvival, 3
```