

Logic and Computer Design Fundamentals

Chapter 3 – Combinational Logic Design

Part 1 – Implementation Technology and Logic Design

Asst.Prof.Dr. Preecha Tangworakitthaworn Semester 2/2023

Overview

Part 1

What is Combinational Circuits? Design Procedure

- Steps
 - Specification
 - Formulation
 - Optimization
 - Technology Mapping
 - Verification

Combinational Circuits

- A combinational logic circuit has:
 - A set of m Boolean inputs,
 - A set of n Boolean outputs, and
 - n switching functions, each mapping the 2^m input combinations to an output such that the current output depends only on the current input values
- A block diagram:

m Boolean Inputs

1. Specification

Write a specification for the circuit if one is not already available

2. Formulation

• Derive a truth table or initial Boolean equations that define the required relationships between the inputs and outputs, if not in the specification

3. Optimization

• Optimize the expression until meets the smallest literals using K-Map technique

4. Technology Mapping

 Draw a logic diagram for the resulting circuit using ANDs, ORs, and inverters

5. Verification (optional step)

• Verify the correctness of the final design manually or using simulation

Design Example

1. Specification

- BCD to Excess-3 code converter
- Transforms BCD code for the decimal digits to Excess-3 code for the decimal digits
- BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively
- Excess-3 code words for digits 0 through 9: 4bit patterns consisting of 3 (binary 0011) added to each BCD code word
- Implementation:
 - multiple-level circuit
 - NAND gates (including inverters)

Design Example (continued)

2. Formulation

- Conversion of 4-bit codes can be most easily formulated by a truth table
- Variables
 - <u>BCD</u>: A,B,C,D
- Variables
 - <u>Excess-3</u> W,X,Y,Z
- Don't Cares
 BCD 1010
 to 1111

Input BCD	Output Excess-3
A B C D	WXYZ
0 0 0 0	0 0 1 1
0001	0100
0 0 1 0	0101
0 0 1 1	0110
0 1 0 0	0111
0 1 0 1	1000
0110	1001
0111	1010
1000	1011
1001	1100

Design Example (continued)

3. Optimization^z

a. 2-level usingK-maps

$$\mathbf{W} = \mathbf{A} + \mathbf{BC} + \mathbf{BD}$$
$$\mathbf{X} = \overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{B}}\mathbf{D} + \mathbf{B}\overline{\mathbf{C}}\overline{\mathbf{D}}$$

$$Y = CD + \overline{C}\overline{D}$$

$$Z = \overline{D}$$

7				<u> </u>	
	1	1	3	1	-
	1	5	7	1 6	_
	X 12	X 13	X 15	X 14	В
A_	1	9	X 11	X 10	_
·			D^{-1}		

X				C,	
	0	1	1	1	
	1	5	7	6	
	X 12	X 13	X 15	X 14	В
Α	8	1 9	X 11	X 10	
			D		

y				С	
y	1	1	1 3	2	
	1 4	5	1 7	6	_ (
	X 12	X 13	X 15	X 14	В
Α	1	9	X	X 10	
)		•

Design Example (continued)

4. Technology Mapping

Mapping to a final logic diagram

2nd Example

Design of a BCD-to-Seven-Segment Decoder

Sample:

https://www.youtube.com/watch?v=dS7VLZwz6bY https://www.youtube.com/watch?v=-aCqfE2330w

Step 1 Specification

1.1 Segment Designation

1.2 Display LED Designation

Step 2 Formulation (Truth table)

Method 1
Without
"Don't care"

	Input						O	utp	ut		
Dec	A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
All other inputs				0	0	0	0	0	0	0	

Step 3 Optimization (K-Map)

Step 3 Optimization (results Boolean functions)

$$a = \overline{AC} + \overline{A} \, \overline{B} \, \overline{D} + \overline{ABD} + A\overline{B} \, \overline{C}$$

$$b = \overline{A} \, \overline{B} + \overline{B} \, \overline{C} + \overline{A} \, \overline{C} \, \overline{D} + \overline{ACD}$$

$$c = \overline{AB} + \overline{BC} + \overline{AD}$$

$$d = \overline{ABCD} + A\overline{B} \, \overline{C} + \overline{A} \, \overline{BD} + \overline{A} \, \overline{BC} + \overline{ACD}$$

$$e = \overline{B} \, \overline{C} \, \overline{D} + \overline{ACD}$$

$$f = A\overline{B} \, \overline{C} + \overline{ABD} + \overline{ABC} + \overline{A} \, \overline{C} \, \overline{D}$$

$$g = A\overline{B} \, \overline{C} + \overline{ABC} + \overline{A} \, \overline{BC} + \overline{ACD}$$

Step 4 Technology Mapping (Logic Diagram)

refer to your solution of "In-class Activity 9"

Step 2 Formulation (Truth table)

Method 2
With
"Don't care"

	Input						C	utp	ut		
Dec	A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
All other inputs				X	X	X	X	X	X	X	

Step 3 Optimization (K-Map)

Output "g"

$$a = A + C + BD + \overline{B} \ \overline{D}$$

$$b = \overline{B} + \overline{C} \overline{D} + CD$$

$$c = B + \overline{C} + D$$

$$d = \overline{B} \overline{D} + C \overline{D} + B \overline{C} D + \overline{B} C + A$$

$$e = \overline{B} \overline{D} + C \overline{D}$$

$$f = A + \overline{C} \overline{D} + B \overline{C} + B \overline{D}$$

$$g = A + B \overline{C} + \overline{B} C + C \overline{D}$$

Step 4 Technology Mapping (Logic Diagram)

