GZHU I WANT TO EAT KFC

c++11

#pragma GCC diagnostic error "-std=c++11"

C++IO

```
// 简版
template <class I> void read(I& x) {
   char c;
    while ((c = getchar()) < '0' \&\& c > '9');
    for (x = c - '0'; (c = getchar()) >= '0' && c <= '9'; x = x * 10 + c - '0');
// io完全体
namespace io {
    const int BUFLEN = (1 << 21) + 1;
    bool EOFError;
    inline char gc() {
        static char buf[BUFLEN], *st = nullptr, *ed = nullptr;
        if (st == ed) (ed = (st = buf) + fread(buf, 1, BUFLEN, stdin));
        return (st == ed) ? -1 : (*st++);
    inline bool check(char x) {
        return x == '-' || x == '\n' || x == ' '| || x == '\r' || x == '\t';
    template <class I> inline void read(I& x) {
        char c; int f = 1;
        while (check(c = gc())) if (c == '-') f = -1;
        if (c == -1) { EOFError = 1; return; }
        for (x = c - '0'; (c = gc()) >= '0' && c <= '9'; x = x * 10 + (c & 15)); x *= f;
    inline void gstr(char *s, int len) {
        char c; for (c = gc(); c < 'a' || c > 'z'; c = gc());
        if (c == -1) return;
        for (len = 0; c \ge a' \& c \le z'; c = gc()) s[len++] = c; s[len] = 0;
    char obuf[BUFLEN], *ost = obuf, *oed = obuf + BUFLEN - 1, Stack[55], Top;
    inline void flush() { fwrite(obuf, 1, ost - obuf, stdout); ost = obuf; }
    inline void pc(char x) { *ost++ = x; if (ost == oed) flush(); }
    template <class I> inline void print(I x) {
        if (!x) pc('0');
        if (x < 0) pc('-'), x = -x;
        while (x) Stack[++Top] = x \% 10 + '0', x /= 10;
        while (Top) pc(Stack[Top--]);
```

```
}
template <class I> inline void println(I x) { print(x), pc('\n'); }
inline void pstr(char *s) { for (int i = 0, n = strlen(s); i < n; i++) pc(s[i]); }
struct IOFLUSHER { ~IOFLUSHER() { flush(); } } _ioflusher_;
}
using namespace io;
</pre>
```

Java template

■ BigInteger

Modifier and Type	Method and Description
BigInteger	abs() Returns a BigInteger whose value is the absolute value of this BigInteger.
BigInteger	add(BigInteger val)
biginteger	Returns a BigInteger whose value is (this + val).
BigInteger	and(BigInteger val) Returns a BigInteger whose value is (this & val).
BigInteger	andNot(BigInteger val) Returns a BigInteger whose value is (this & -val).
int	bitCount() Returns the number of bits in the two's complement representation of this BigInteger that differ from its sign bit.
int	bitLength() Returns the number of bits in the minimal two's-complement representation of this BigInteger, excluding a sign bit.
byte	byteValueExact() Converts this BigInteger to a byte, checking for lost information.
BigInteger	clearBit(int n) Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit cleared.
int	<pre>compareTo(BigInteger val) Compares this BigInteger with the specified BigInteger.</pre>
BigInteger	divide(BigInteger val) Returns a BigInteger whose value is (this / val).
BigInteger[]	<pre>divideAndRemainder(BigInteger val) Returns an array of two BigIntegers containing (this / val) followed by (this % val).</pre>
double	doubleValue() Converts this BigInteger to a double.
boolean	equals(Object x) Compares this BigInteger with the specified Object for equality.
BigInteger	<pre>shiftRight(int n) Returns a BigInteger whose value is (this >> n).</pre>
short	shortValueExact() Converts this BigInteger to a short, checking for lost information.
int	signum() Returns the signum function of this BigInteger.
BigInteger	<pre>subtract(BigInteger val) Returns a BigInteger whose value is (this - val).</pre>
boolean	testBit(int n) Returns true if and only if the designated bit is set.
byte[]	toByteArray() Returns a byte array containing the two's-complement representation of this BigInteger.
String	toString() Returns the decimal String representation of this BigInteger.
String	toString(int radix) Returns the String representation of this BigInteger in the given radix.
BigInteger	xor(BigInteger val) Returns a BigInteger whose value is (this ^ val).

BigInteger	mod(BigInteger m) Returns a BigInteger whose value is (this mod m).
BigInteger	modInverse(BigInteger m) Returns a BigInteger whose value is (this mod m).
BigInteger	modPow(BigInteger exponent, BigInteger m) Returns a BigInteger whose value is (thisexponent mod m).
BigInteger	multiply(BigInteger val) Returns a BigInteger whose value is (this * val).
BigInteger	negate() Returns a BigInteger whose value is (-this).
BigInteger	nextProbablePrime() Returns the first integer greater than this BigInteger that is probably prime.
BigInteger	not() Returns a BigInteger whose value is (~this).
BigInteger	or(BigInteger val) Returns a BigInteger whose value is (this val).
BigInteger	pow(int exponent) Returns a BigInteger whose value is (this exponent).
BigInteger	remainder(BigInteger val) Returns a BigInteger whose value is (this % val).
BigInteger	setBit(int n) Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit set.
BigInteger	<pre>shiftLeft(int n) Returns a BigInteger whose value is (this << n).</pre>
BigInteger	flipBit(int n) Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit flipped.
float	floatValue() Converts this BigInteger to a float.
BigInteger	gcd(BigInteger val) Returns a BigInteger whose value is the greatest common divisor of abs(this) and abs(val).
int	getLowestSetBit() Returns the index of the rightmost (lowest-order) one bit in this BigInteger (the number of zero bits to the right of the rightmost one bit).
int	hashCode() Returns the hash code for this BigInteger.
int	intValue() Converts this BigInteger to an int.
int	<pre>intValueExact() Converts this BigInteger to an int, checking for lost information.</pre>
boolean	isProbablePrime(int certainty) Returns true if this BigInteger is probably prime, false if it's definitely composite.
long	longValue() Converts this BigInteger to a long.
long	longValueExact() Converts this BigInteger to a long, checking for lost information.
BigInteger	max(BigInteger val) Returns the maximum of this BigInteger and val.
BigInteger	min(BigInteger val) Returns the minimum of this BigInteger and val.

Java

```
// min
import java.io.BufferedInputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(new BufferedInputStream(System.in));
        PrintWriter out = new PrintWriter(System.out);
        Task solver = new Task();
        try {
```

```
solver.solve(in, out);
} catch (NoSuchElementException e) {
    out.close();
}

private static BigInteger[] a = new BigInteger[1005];
public static class Task {
    public static void solve(Scanner in, PrintWriter out) {
        // Your code start here.
    }
}
```

```
// max
import java.io.*;
import java.util.StringTokenizer;
public class Main {
   public static void main(String[] args) {
        InputReader in = new InputReader(System.in);
        PrintWriter out = new PrintWriter(System.out);
        Task solver = new Task();
        try {
            while (true) {
                solver.solve(in, out);
            }
        } catch(RuntimeException e) {
            out.close();
        }
   }
   public static class Task {
        void solve(InputReader in, PrintWriter out) {
            // Code start here
       }
   }
    static class InputReader {
        public BufferedReader reader;
        public StringTokenizer tokenizer;
        public InputReader(InputStream stream) {
            reader = new BufferedReader(new InputStreamReader(stream), 32768);
            tokenizer = null;
        }
        public String next() {
            while (tokenizer == null | !tokenizer.hasMoreTokens()) {
                try {
                    tokenizer = new StringTokenizer(reader.readLine());
                } catch (IOException e) {
                    throw new RuntimeException(e);
                }
            }
```

```
return tokenizer.nextToken();
}

public int nextInt() {
    return Integer.parseInt(next());
}

public long nextLong() {
    return Long.parseLong(next());
}

public double nextDouble() {
    return Double.parseDouble(next());
}

public BigInteger nextBigInteger() {
    return new BigInteger(next());
}

public BigDecimal nextBigDecimal() {
    return new BigDecimal(next());
}
```

数据结构

Fenwic Tree(树状数组)

■ 维护&求值均为O(log(n))

```
struct Fenwick {
   static const int maxn = 1e5 + 5;
    int a[maxn];
   void init() { memset(a, 0, sizeof a); }
   inline int lowbit(int i) { return (i & (-i)); }
   void upd(int i, int x) {
        for (; i < maxn; i += lowbit(i)) {</pre>
            a[i] += x;
        }
   int sum(int i) {
        int res = 0;
        for (; i > 0; i \rightarrow lowbit(i)) {
            res += a[i];
        return res;
   }
    inline int query(int 1, int r) {
        return sum(r) - sum(1 - 1);
    int upper_bound(int x) {
        int res = 0, ptr = 0;
        while ((1 << (ptr + 1)) <= n) ++ptr;
        for (; ptr >= 0; ptr--) {
```

```
int p = res + (1 << ptr);
    if (p <= n && a[p] <= x) {
        x -= a[p];
        res += 1 << ptr;
    }
}
return res;
}</pre>
```

spare_table_rmq

■ build O(n log n), query O(1)

```
const int MAX = 1e6 + 5;

int dp[MAX][25];

void rmq(int n) {
    int len = (int)(log(n) / log(2.0));
    for (int j = 1; j <= len; j++) {
        for (int i = 1; i + (1 << j) - 1 <= n; i++) {
            dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
        }
    }
}

int query(int 1, int r) {
    int p = (int)(log(r - 1 + 1) / log(2.0));
    return min(dp[1][p], dp[r - (1 << p) + 1][p]);
}</pre>
```

Disjoin_set_union(并查集)

```
struct Dsu {
    static const int maxn = 1e5 + 5;
    int fa[maxn], sz[maxn];
    void init(int n) {
        for (int i = 0; i <= n; i++) {
            fa[i] = i, sz[i] = 0;
        }
    }
    int find(int x) {
        return x == fa[x] ? x : fa[x] = find(fa[x]);
}</pre>
```

```
bool unite(int u, int v) {
    int a = find(u), b = find(v);
    if (a == b) return false;
    if (sz[a] < sz[b]) fa[a] = b;
    else fa[b] = a, sz[a] += (sz[a] == sz[b]);
    return true;
}
</pre>
```

Segment_Tree(线段树)

■ build O(n log n), update&modify O(log n), query O(log n)

```
struct Segment Tree {
    static const int maxn = 1e3 + 5;
    int a[maxn << 2], lazy[maxn << 2], cover[maxn << 2];</pre>
    bool covered[maxn << 2];</pre>
#define lson i << 1, 1, mid
#define rson i << 1 | 1, mid + 1, r
#define Lson i << 1
#define Rson i << 1 | 1
    void build(int i, int l, int r, int *arr) {
        a[i] = lazy[i] = 0;
        if (1 == r) {
            a[i] = arr[1];
            return;
        }
        int mid = (1 + r) \gg 1;
        build(lson, arr), build(rson, arr);
    }
    inline void pushdown(int i) {
        if (covered[i]) {
            a[Lson] = a[Rson] = cover[Lson] = cover[Rson] = cover[i];
            covered[Lson] = covered[Rson] = true;
            lazy[Lson] = lazy[Rson] = 0;
            covered[i] = false;
        if (lazy[i]) {
            a[Lson] += lazy[i];
            a[Rson] += lazy[i];
            lazy[Lson] += lazy[i];
            lazy[Rson] += lazy[i];
            lazy[i] = 0;
        }
    }
    inline void pushup(int i) {
        a[i] = min(a[Lson], a[Rson]);
```

```
}
    void update(int L, int R, int i, int l, int r, int x) {
        if (L <= 1 && r <= R) {
            a[i] += x, lazy[i] += x;
            return;
        pushdown(i);
        int mid = (1 + r) >> 1;
        if (R <= mid) update(L, R, lson, x);</pre>
        else if (mid < L) update(L, R, rson, x);</pre>
        else update(L, R, lson, x), update(L, R, rson, x);
        pushup(i);
    }
    void modify(int L, int R, int i, int 1, int r, int x) {
        if (L \le 1 \&\& r \le R) {
            a[i] = x; lazy[i] = 0; cover[i] = x; covered[i] = true;
            return;
        pushdown(i);
        int mid = (1 + r) \gg 1;
        if (R \leftarrow mid) modify(L, R, lson, x);
        else if (mid < L) modify(L, R, rson, x);
        else modify(L, R, lson, x), modify(L, R, rson, x);
        pushup(i);
    }
    int query(int L, int R, int i, int l, int r) {
        if (L \le 1 \&\& r \le R) {
            return a[i];
        }
        pushdown(i);
        int mid = (1 + r) >> 1;
        if (R <= mid) return query(L, R, lson);</pre>
        else if (mid < L) return query(L, R, rson);</pre>
        else return min(query(L, R, lson), query(L, R, rson));
    }
};
```

leftist_heap(左偏堆)

■ 均摊O(log n)

```
struct leftist_heap {
    static const int maxn = 2e5 + 5;
    static const int maxm = 1e3 + 5;

int root[maxm], tot;
    int v[maxn], ch[maxn][2], size[maxn], stk[maxn], tp;
```

```
inline void init(int &n) {
            tot = tp = 0;
            memset(root, 0, (n + 1) * sizeof(int));
        }
        inline int newnode(int x) {
            int rt = (tp > 0) ? stk[--tp] : (tot++);
            v[rt] = x, size[rt] = 1, ch[rt][0] = ch[rt][1] = 0;
            return rt;
        }
        int merge(int a, int b) {
            if (!a | !b) {
                return a ? a : b;
            if (v[a] > v[b]) {
                swap(a, b);
            ch[a][1] = merge(ch[a][1], b);
            if (size[ch[a][0]] < size[ch[a][1]]) {</pre>
                swap(ch[a][0], ch[a][1]);
            size[a] = size[ch[a][1]] + 1;
            return a;
        }
        void Merge(int a, int b) {
            root[a] = merge(root[a], root[b]);
            root[b] = 0;
        }
        void insert(int i, int val) {
            int tmp = newnode(val);
            root[i] = merge(root[i], tmp);
        }
        inline int top(int i) {
            return (root[i] > 0) ? v[root[i]] : -1;
        }
        inline void pop(int i) {
            (root[i] > 0) ? (stk[tp++] = root[i], root[i] = merge(ch[root[i]][0], ch[root[i]]
[1])) : 0;
   };
```

Trie(字典树) O(len)

```
struct Trie {
   static const int maxn = 1e5 + 5;
   int tot, ch[maxn][30], ed[maxn], cnt[maxn];
```

```
void init() { tot = 0; cnt[0] = 0; ed[0] = 0; memset(ch[0], 0, size of ch[0]); }
   int newnode() {
        cnt[++tot] = 0; ed[tot] = 0;
        memset(ch[tot], 0, sizeof ch[tot]);
        return tot;
   }
   void insert(char *s, int len) {
        int now = 0;
        for (int i = 0; i < len; i++) {
            if (ch[now][s[i] - 'a'] == 0) {
                ch[now][s[i] - 'a'] = newnode();
            cnt[now]++;
            now = ch[now][s[i] - 'a'];
        cnt[now]++;
        ed[now] = 1;
   }
   int count(char *s, int len) {
        int now = 0;
        for (int i = 0; i < len; i++) {
            if (ch[now][s[i] - 'a'] == 0) {
                return 0;
            }
            now = ch[now][s[i] - 'a'];
       return cnt[now];
   }
   bool check(char *s, int len) {
        int now = 0;
        for (int i = 0; i < len; i++) {
            if (ch[now][s[i] - 'a'] == 0) {
                return false;
            }
            now = ch[now][s[i] - 'a'];
       return ed[now];
   }
};
```

BM推公式大法

```
#include <bits/stdc++.h>
using namespace std;
struct BM {
    static const int MAXN = 10005;
```

```
int n;
    vector<double> ps[MAXN];
    int pn, fail[MAXN];
    double delta[MAXN];
    void Solve(double x[], const int& n)
    {
        pn = 0;
        memset(fail, 0, sizeof fail);
        memset(delta, 0, sizeof delta);
        ps[0].clear();
        for (int i = 1; i \leftarrow n; i++) {
            double dt = -x[i];
            for (int j = 0; j < ps[pn].size(); j++) {</pre>
                 dt += x[i - j - 1] * ps[pn][j];
            delta[i] = dt;
            if (fabs(dt) <= 1e-8) continue;</pre>
            fail[pn] = i;
            if (!pn) {
                 ps[++pn].resize(1);
                 continue;
            }
            vector<double>& ls = ps[pn - 1];
            double k = -dt / delta[fail[pn - 1]];
            vector<double> cur(i - fail[pn - 1] - 1);
            cur.push_back(-k);
            for (int j = 0; j < ls.size(); j++) {
                 cur.push_back(ls[j] * k);
            }
            if (cur.size() < ps[pn].size()) {</pre>
                 cur.resize(ps[pn].size());
            for (int j = 0; j < ps[pn].size(); j++) {</pre>
                 cur[j] += ps[pn][j];
            ps[++pn] = cur;
        }
    }
    void print()
        for (int i = 0; i < ps[pn].size(); i++) {</pre>
            printf("%lf ", ps[pn][i]);
        printf("\n");
    }
}B;
double x[BM::MAXN];
```

```
int main()
{
    int n;
    while (scanf("%d", &n) == 1) {
        for (int i = 1; i <= n; i++) {
            scanf("%lf", &x[i]);
        }
        B.Solve(x, n);
        B.print();
    }
}</pre>
```

最长递增子序列O(n log n)

```
const int MAX = 500005;
typedef long long 11;
11 v[MAX], stack[MAX];
int upb(int 1, int r, int k) {
    int mid;
    while (l < r) {
        mid = (1 + r) >> 1;
        if (stack[mid] > k) r = mid;
        else l = mid + 1;
    }
    return r;
}
void solve() {
    int n; cin >> n;
    for (int i = 1; i \leftarrow n; i++) cin \rightarrow v[i];
    int top = 0;
    for (int i = 1; i <= n; i++) {
        if (top == 0) stack[++top] = v[i];
        else if (stack[top] \leftarrow v[i]) stack[++top] = v[i];
        else {
             int pos = upb(1, top, v[i]);
             stack[pos] = v[i];
        }
    }
    cout << top << endl;</pre>
}
```

最长回文子序列(记忆化搜索)(O(n^2))

```
int len;
char v[1300];
int dp[1300][1300];
int dfs(int 1, int r) {
    if (1 == r) return 1;
    if (1 > r) return 0;
    if (dp[l][r] != -1) return dp[l][r];
    int res = \max(dfs(1, r - 1), dfs(1 + 1, r));
    if (v[1] == v[r]) {
        res = \max(\text{res}, dfs(1 + 1, r - 1) + 2);
    }
    else {
        return dp[l][r] = res;
    }
}
int main() {
    while (scanf("%s", v) != EOF) {
        len = strlen(v);
        for (int i = 0; i < len; i++) {
            v[i] = tolower(v[i]);
        memset(dp, -1, sizeof dp);
        printf("%d\n", len - dfs(0, len - 1));
    }
}
```

FastTransform

FFT O(n log n)

```
/*
    Example:
        Complex[] a; int len1 = length(a);
        Complex[] b; int len2 = length(b);
        int Len = FFT::trans(len1 + len2 - 1);
        FFT::DFT(a, Len, 1);
        Ffr::DFT(b, Len, 1);
        for i in range(0, 1):
            a[i] *= b[i]
        FFT::DFT(a, Len, -1);

*/
namespace FFT {
        const double PI = acos(-1.0);
        // Complex
        struct Complex {
            double r, i;
            Complex(double x = 0, double y = 0) : r(x), i(y) {}
}
```

```
Complex(int n) : r(cos(2 * PI / n)), i(sin(2 * PI / n)) \{ \}
    Complex operator + (const Complex& b)const {
        return Complex(r + b.r, i + b.i);
    Complex operator - (const Complex& b)const {
        return Complex(r - b.r, i - b.i);
    Complex operator * (const Complex& b)const {
        return Complex(r * b.r - i * b.i, r * b.i + i * b.r);
    friend Complex& operator *= (Complex& a, const Complex& b) {
        a = a * b;
        return a;
};
// bit reverse
void rev(Complex *a, int n) {
    for (int i = 1, j = n >> 1, k; i < n - 1; i++) {
        if (i < j) swap(a[i], a[j]);</pre>
        for (k = n >> 1; j >= k; j -= k, k >>= 1);
        j += k;
    }
}
// Discrete Fourier transform
// t -> 1, DFT
// t -> -1, IDFT
void DFT(Complex *a, int n, int t) {
    rev(a, n);
    for (int i = 2; i \le n; i \le 1) {
        Complex wi(i * t);
        for (int j = 0; j < n; j += i) {
            Complex w(1, 0);
            for (int k = j, h = i >> 1; k < j + h; k++) {
                Complex t = w * a[k + h], u = a[k];
                a[k] = u + t;
                a[k + h] = u - t;
                w *= wi;
            }
        }
    if (t == -1) for (int i = 0; i < n; i++) a[i].r /= n;
}
// Get FFT Len
// min(2 ^ p) which (2 ^ p) > x
int trans(int x) {
    int i = 0;
    for (; x > (1 << i); i++);
    return 1 << i;
}
```

}

FWT O(n log n)

```
const int MOD = 1e9 + 7;
int qpow(int a, int t) {
    int b = 1;
    while (t > 1) {
        if (t & 1) b = b * a % MOD;
        a = a * a % MOD;
        t >>= 1;
    }
    return b;
}
const int inv2 = qpow(2, MOD - 2); // (x/2) % MOD == x*inv2 % MOD
inline int trans(int n) {
    int k = 1;
    for (; k < n; k < = 1);
    return k;
void fwt(int a[], int n) {
   for (int d = 1; d < n; d <<= 1) {
        for (int i = 0, k = d << 1; i < n; i += k) {
            for (int j = 0; j < d; j++) {
                int x = a[i + j], y = a[i + j + d];
                a[i + j] = (x + y) \% MOD;
                a[i + j + d] = (x - y + MOD) \% MOD;
                // xor : a[i + j] = x + y, a[i + j + d] = x - y
                // and : a[i + j] = x + y
                // or : a[i + j + d] = x + y
           }
       }
   }
}
void ifwt(int a[], int n) {
    for (int d = 1; d < n; d <<= 1) {
        for (int i = 0, k = d << 1; i < n; i += k) {
            for (int j = 0; j < d; j++) {
                int x = a[i + j], y = a[i + j + d];
                a[i + j] = 111 * (x + y) * inv2 % MOD;
                a[i + j + d] = (111 * (x - y) * inv2 % MOD + MOD) % MOD;
                // xor : a[i + j] = (x + y) / 2, a[i + j + d] = (x - y) / 2
                // and : a[i + j] = x - y
                // or : a[i + j + d] = y - x;
           }
       }
   }
}
```

Graph(图相关)

匈牙利二分图匹配 O(n(n+m))(real?)

```
const int maxn = 1e5 + 5;
vector<int> e[maxn];
int link[maxn], vis[maxn];
void init() {
    for (int i = 0; i < maxn; i++) {
        e[i].clear();
    }
}
void addedge(int u, int v) {
    e[u].push_back(v);
    // e[v].push_back(u);
}
bool find(int u) {
    for (int i = 0; i < (int)e[u].size(); i++) {</pre>
        int v = e[u][i];
        if (!vis[v]) {
            vis[v] = 1;
            if (link[v] == -1 | find(link[v])) {
                link[v] = u;
                // link[u] = v;
                return true;
            }
        }
    }
    return false;
}
int solve(int n) {
    int res = 0;
    memset(link, -1, sizeof link);
    for (int i = 1; i <= n; i++) {
        if (link[i] == -1) {
            memset(vis, 0, sizeof vis);
            res += find(i);
        }
    }
    return res;
}
```

```
const int INF = 0x3f3f3f3f;
const int maxn = 205;
const int N = 205;
int nx, ny; // point num
int g[maxn][maxn]; // graph
int linker[maxn], lx[maxn], ly[maxn];
int slack[N];
bool visx[N], visy[N];
bool dfs(int x) {
   visx[x] = 1;
    for (int y = 0; y < ny; y++) {
        if (visy[y]) continue;
        int tmp = lx[x] + ly[y] - g[x][y];
        if (tmp == 0) {
            visy[y] = 1;
            if (linker[y] == -1 | dfs(linker[y])) {
                linker[y] = x;
                return 1;
            }
        }
        else if (slack[y] > tmp) slack[y] = tmp;
   return false;
}
int KM() {
    memset(linker, -1, sizeof linker);
    memset(ly, 0, sizeof ly);
    for (int i = 0; i < nx; i++) {
        lx[i] = -INF;
        for (int j = 0; j < ny; j++) {
            if (g[i][j] > lx[i]) {
                lx[i] = g[i][j];
            }
        }
    }
    for (int x = 0; x < nx; x++) {
        memset(slack, 0x3f, sizeof slack);
        while (1) {
            memset(visx, 0, sizeof visx);
            memset(visy, 0, sizeof visy);
            if (dfs(x)) break;
            int d = INF;
            for (int i = 0; i < ny; i++) {
                if (!visy[i] && d > slack[i]) {
                    d = slack[i];
                }
            }
            for (int i = 0; i < nx; i++) {
                if (visx[i]) {
                    lx[i] -= d;
                }
            for (int i = 0; i < ny; i++) {
                if (visy[i]) {
                    ly[i] += d;
                }
```

```
else slack[i] -= d;

}

}

int res = 0;

for (int i = 0; i < ny; i++) {
    if (~linker[i]) {
        res += g[linker[i]][i];
    }
}

return res;
}</pre>
```

Kruskal O(n log n)

```
const int MAX = 1e5 + 5;
struct edge {
    int u, v, w;
    edge(int uu = 0, int vv = 0, int ww = 0) : u(uu), v(vv), w(ww) {}
    bool operator< (const edge& b) const { return w < b.w; }</pre>
}e[MAX * 2];
int tot, cnt, ans, fa[MAX];
void init(int n) {
    ans = tot = cnt = 0;
    for (int i = 0; i \leftarrow n; i++) fa[i] = i;
inline void addedge(int u, int v, int w) { e[tot++] = edge(u, v, w); }
int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
void kruskal(int n) {
    sort(e, e + tot);
    for (int i = 0; i < tot && cnt < n - 1; i++) {
        int u = find(e[i].u), v = find(e[i].v);
        if (u != v) {
            cnt++, ans += e[i].w;
            fa[fa[v]] = fa[u];
    }
}
```

$Dijkstra\ O(n\ log\ n)$

```
const int MAX = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct edge { int v, w; edge(int vv = 0, int ww = 0) : v(vv), w(ww) {} };
vector<edge> G[MAX];
int dis[MAX], vis[MAX];
void init(int n) {
   for (int i = 0; i <= n; i++) {
        G[i].clear();
        dis[i] = INF, vis[i] = 0;
    }
}
void addedge(int u, int v, int w) {
   G[u].emplace_back(v, w);
    G[v].emplace_back(u, w);
inline bool chkmin(int& x, int y) { return (x > y) ? (x = y, 1) : 0; }
void Dijkstra(int st, int ed) {
    priority_queue<pair<int, int>> Q;
    Q.emplace(0, st); dis[st] = 0;
    while (!Q.empty()) {
        int u = Q.top().second; Q.pop();
        if (u == ed) return;
        if (vis[u]) continue; else vis[u] = 1;
        for (edge& e : G[u]) {
            if (!vis[e.v] && chkmin(dis[e.v], dis[u] + e.w)) {
                Q.emplace(-dis[e.v], e.v);
            }
        }
   }
}
```

SPFA

```
const int MAX = 1e5 + 5;
const int INF = 0x3f3f3f3f;

struct edge { int v, w; edge(int vv = 0, int ww = 0) : v(vv), w(ww) {} };

vector<edge> e[MAX];
int dis[MAX], inq[MAX];
queue<int> Q;
```

```
void init(int n) {
    for (; !Q.empty(); Q.pop());
    for (int i = 0; i <= n; i++) {
        e[i].clear();
        dis[i] = INF, inq[i] = 0;
    }
}
void addedge(int u, int v, int w) {
    e[u].emplace_back(v, w);
    e[v].emplace back(u, w);
}
void spfa(int st, int ed) {
    Q.push(st); dis[st] = 0; inq[st] = 1;
    while (!Q.empty()) {
        int u = Q.front(); Q.pop(); inq[u] = 0;
        for (edge v : e[u]) {
            if (dis[v.v] > dis[u] + v.w) {
                dis[v.v] = dis[u] + v.w;
                if (!inq[v.v]) Q.push(v.v), inq[v.v] = 1;
        }
   }
}
```

Dinic O(VVE)

```
const int MAX = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct edge {
    int v, w, next;
    edge(int vv = 0, int ww = 0, int nn = 0) : v(vv), w(ww), next(nn) {}
}e[MAX << 2];
int n, tot, ans, head[MAX], level[MAX];
void init() {
   tot = ans = 0;
    for (int i = 0; i <= n; i++) {
        head[i] = -1;
    }
}
void addedge(int u, int v, int w) {
    e[tot] = edge(v, w, head[u]); head[u] = tot++;
    e[tot] = edge(u, 0, head[v]); head[v] = tot++;
}
queue<int> Q;
bool bfs(int st, int ed) {
    for (int i = 0; i <= n; i++) level[i] = 0;
```

```
while (!Q.empty()) Q.pop();
    Q.push(st); level[st] = 1;
    while (!Q.empty()) {
        int u = Q.front(); Q.pop();
        for (int i = head[u]; \sim i; i = e[i].next) {
            int v = e[i].v, w = e[i].w;
            if (level[v] == 0 && w > 0) {
                level[v] = level[u] + 1;
                Q.push(v);
            }
        }
    }
    return level[ed] != 0;
}
int dfs(int u, int ed, int flow) {
    if (u == ed) return flow;
    int ret = 0;
    for (int i = head[u]; flow > 0 && (~i); i = e[i].next) {
        int v = e[i].v;
        if (level[v] == level[u] + 1 && e[i].w > 0) {
            int tmp = dfs(v, ed, min(flow, e[i].w));
            if (tmp == 0) continue;
            e[i].w -= tmp; e[i ^ 1].w += tmp;
            flow -= tmp; ret += tmp;
        }
    }
    return ret;
void Dinic(int st, int ed) {
   while (bfs(st, ed)) {
        ans += dfs(st, ed, INF);
   }
}
```

Tarjan Sccno(强连通) O(n+m)

```
const int MAX = 1e5 + 5;
vector<int> e[MAX];
stack<int> S;
int index, tot, def[MAX], low[MAX], ins[MAX], scc[MAX];

void init(int n) {
    for (int i = 0; i <= n; i++) {
        e[i].clear();
        scc[i] = -1;
    }
}

inline void addedge(int u, int v) {</pre>
```

```
e[u].push_back(v);
}
void dfs(int u) {
    def[u] = low[u] = ++index;
    S.push(u); ins[u] = 1;
    int v;
    for (int i = 0; i < (int)e[u].size(); i++) {</pre>
        v = e[u][i];
        if (!def[v]) {
            dfs(v);
            low[u] = min(low[u], low[v]);
        else if (ins[v]) {
            low[u] = min(low[u], def[v]);
        }
    }
    if (def[u] == low[u]) {
        ++tot;
        do {
            v = S.top();
            S.pop(); ins[v] = 0;
            scc[v] = tot;
        } while (u != v);
    }
}
void solve(int n) {
    index = tot = 0;
    for (int i = 0; i \leftarrow n; i++) {
        def[i] = low[i] = 0;
    }
    while (!S.empty()) S.pop();
    for (int i = 1; i <= n; i++) {
        (!def[i]) && (dfs(i), 1);
    }
}
```

倍增法LCA O(log n)

```
const int maxn = 1e4 + 5;

vector<int> e[maxn];
int dep[maxn], dp[maxn][15], maxb;

void init() {
    for (int i = 0; i < maxn; i++) {
        e[i].clear(), dep[i] = 0;
        memset(dp[i], -1, sizeof dp[i]);
    }
}</pre>
```

```
void DFS(int u, int d, int pre) {
    dp[u][0] = pre;
    dep[u] = d;
    for (int i = 0; i < (int)e[u].size(); i++) {</pre>
        if (e[u][i] != pre) {
            DFS(e[u][i], d + 1, u);
        }
    }
}
void gao(int n) {
    maxb = 0;
    while ((1 << \max b) <= n) ++\max b;
    for (int j = 1; j < maxb; j++) {
        for (int i = 1; i \le n; i++) {
            (\sim dp[i][j-1]) \&\& (dp[i][j] = dp[dp[i][j-1]][j-1]);
        }
    }
}
int LCA(int u, int v) {
    if (dep[u] < dep[v]) swap(u, v);
    for (int j = maxb - 1; ~j; j--) {
        if (dep[dp[u][j]] >= dep[v]) {
            u = dp[u][j];
        }
    }
    if (u == v) return u;
    for (int j = maxb - 1; ~j; j--) {
        if (dp[u][j] != dp[v][j]) {
            u = dp[u][j], v = dp[v][j];
        }
    }
    return dp[u][0];
}
```

$Tarjan\ LCA\ O(n+q)$ (离线)

```
const int maxn = 1e5 + 5;

struct query {
    int v, i;
    query(int a = 0, int b = 0) : v(a), i(b) {}
};

int fa[maxn];
int ans[maxn], color[maxn];
vector<int> e[maxn];
vector<query> Q[maxn];
```

```
void init() {
    for (int i = 0; i < maxn; i++) {
        fa[i] = i, ans[i] = -1, color[i] = 0;
        e[i].clear(), Q[i].clear();
    }
}
int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
bool unite(int u, int v) {
    u = find(u), v = find(v);
    if (u != v) {
        fa[v] = u;
        return true;
    return false;
}
void addedge(int u, int v) {
    e[u].push_back(v);
    e[v].push_back(u);
void addquery(int u, int v, int i) {
    Q[u].push\_back(query(v, i));
    Q[v].push_back(query(u, i));
}
void DFS(int u, int pre) {
    for (int i = 0; i < (int)e[u].size(); i++) {</pre>
        if (!color[e[u][i]] && e[u][i] != pre) {
            DFS(e[u][i], u);
        }
    }
    for (int i = 0; i < (int)Q[u].size(); i++) {</pre>
        if (color[Q[u][i].v]) {
            ans[Q[u][i].i] = find(Q[u][i].v);
        }
    }
    color[u] = 1;
    if (pre != -1) unite(pre, u);
}
void solve() { DFS(1, -1); }
```

拓扑排序O(n + m)

```
const int maxn = 1e5 + 5;
vector<int> e[maxn];
int seq[maxn], vis[maxn], tot, circle;
void init(int n) {
```

```
tot = 0; cirlce = 0;
    for (int i = 0; i <= n; i++) {
        e[i].clear(), vis[i] = 0;
    }
}
void addedge(int u, int v) {
    e[u].push_back(v);
}
void DFS(int u) {
    vis[u] = 1;
    for (int i = 0; i < (int)e[u].size(); i++) {</pre>
        int& v = e[u][i];
        if (vis[v] == 1) circle = true;
        else if (vis[v] == 0) DFS(v);
    }
    vis[u] = 2;
    seq[tot++] = u;
}
void solve(int n) {
    for (int i = 1; i \le n; i++) {
        if (!vis[i]) {
            DFS(i);
        }
    }
    reverse(seq, seq + tot);
}
```

String

$AC_automaton$

```
struct Aho_Corasick {
    static const int maxn = 5e5 + 5000;
    static const int sigma = 26;

    int tot, son[maxn][sigma], cnt[maxn], fail[maxn];

    inline void init() {
        tot = cnt[0] = fail[0] = 0;
        memset(son[0], 0, sizeof son[0]);
    }

    inline int trans(int x) {
        return x - 'a';
    }

    void insert(char *s) {
        int now = 0, n = strlen(s);
}
```

```
for (int i = 0; i < n; i++) {
            int c = trans(s[i]);
            if (!son[now][c]) {
                cnt[++tot] = 0; fail[tot] = 0;
                memset(son[tot], 0, sizeof son[tot]);
                son[now][c] = tot;
            }
            now = son[now][c];
        cnt[now]++;
   }
    std::queue<int> Q;
   void build() {
        while (!Q.empty()) Q.pop();
        for (int i = 0; i < sigma; i++) {
            if (son[0][i]) {
                Q.push(son[0][i]);
        while (!Q.empty()) {
            int u = Q.front(); Q.pop();
            for (int i = 0; i < sigma; i++) {
                if (son[u][i]) {
                    fail[son[u][i]] = son[fail[u]][i];
                    Q.push(son[u][i]);
                else son[u][i] = son[fail[u]][i];
            }
        }
   }
   int solve(char *s) {
        int ret = 0, n = strlen(s);
        for (int i = 0, now = 0, c; i < n; i++, now = son[now][c]) {
            c = trans(s[i]);
            for (int u = son[now][c]; u; u = fail[u]) {
                ret += cnt[u]; cnt[u] = 0;
            }
        }
        return ret;
   }
}Accepted;
```

回文树

```
struct Palindromic_Tree {
    static const int maxn = 2e6 + 5;
    static const int char_db = 10;
```

```
int tot, len[maxn], fail[maxn], ch[maxn][char_db];
    long long sum[maxn];
   // even root -> 0, odd root -> 1
   inline int newnode(int val) {
        sum[tot] = 0, len[tot] = val;
        memset(ch[tot], 0, sizeof ch[tot]);
        return tot++;
   }
   void init() {
       tot = 0;
        newnode(0); newnode(-1);
        fail[0] = 1, fail[1] = 0;
   }
   int getfail(char *s, int cur, int i) {
        while (i - len[cur] - 1 < 0 || s[i] != s[i - len[cur] - 1]) {
            cur = fail[cur];
        }
        return cur;
   }
   void build(char *s, int n) {
        int cur = 1;
        for (int i = 0; i < n; i++) {
            cur = getfail(s, cur, i);
            if (!ch[cur][s[i] - '0']) {
                int nxt = newnode(len[cur] + 2);
                fail[nxt] = ch[getfail(s, fail[cur], i)][s[i] - '0'];
                ch[cur][s[i] - '0'] = nxt;
            cur = ch[cur][s[i] - '0'];
       }
   }
}pt;
```

strHash

```
struct strhash {
    vector<ull> h, p;
    strhash(int n = 0) : h(n + 5, 0), p(n + 5, 0) {}

    void init(char *s) {
        for (int i = 0; s[i]; i++) {
            if (i) h[i] = h[i - 1] * 131, p[i] = p[i - 1] * 131;
            else p[i] = 1;
            h[i] += s[i] - 'a' + 1;
        }
    }
    inline ull gethash(int l, int r) {
```

```
ull ret = h[r];
  if (l) ret -= h[l - 1] * p[r - l + 1];
  return ret;
}
```

后缀数组

```
namespace SuffixArray {
    const int maxn = "edit";
    int wa[maxn], wb[maxn], c[maxn], d[maxn];
    inline bool cmp(int *r, int a, int b, int k) {
        return (r[a] == r[b]) && (r[a + k] == r[b + k]);
    void da(int *r, int *sa, int n, int m) {
        int i, j, p, *x = wa, *y = wb, *t;
        for (i = 0; i < m; i++) d[i] = 0;
        for (i = 0; i < n; i++) d[x[i] = r[i]]++;
        for (i = 1; i < m; i++) d[i] += d[i - 1];
        for (i = n - 1; i >= 0; i--) sa[--d[x[i]]] = i;
        for (j = 1, p = 1; j \le n; j \le 1, m = p) {
            for (p = 0, i = n - j; i < n; i++) y[p++] = i;
            for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
            for (i = 0; i < n; i++) c[i] = x[y[i]];
            for (i = 0; i < m; i++) d[i] = 0;
            for (i = 0; i < n; i++) d[c[i]]++;
            for (i = 1; i < m; i++) d[i] += d[i - 1];
            for (i = n - 1; i \ge 0; i--) sa[--d[c[i]]] = y[i];
            for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++) {
                x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? (p - 1) : (p++);
        }
    }
    int rank[maxn], height[maxn];
    void calheight(int *r, int *sa, int n) {
        int i, j, k = 0;
        for (i = 1; i \le n; i++) rank[sa[i]] = i;
        for (i = 0; i < n; i++) {
            if (k) --k;
            for (j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++);
            // blank
            height[rank[i]] = k;
```

```
}
}
```

KMP

```
int n, m;
char s[1005], t[1005];
int fail[1005];
void getfail() {
    int i, j;
    n = strlen(s), m = strlen(t);
    for (i = 0, j = fail[0] = -1; i < m; i++) {
        while (j \ge 0 \&\& t[j] != t[i]) j = fail[j];
        fail[i + 1] = j + 1;
    }
}
int solve() {
    getfail();
    int i, j, res;
    for (i = j = res = 0; i < n;) {
        while (j \ge 0 \&\& s[i] != t[j]) {
            j = fail[j];
        }
        ++i, ++j;
        if (j >= m) {
            ++res, j = 0;
        }
    }
    return res;
}
```

exKMP

```
// nxt[i]: t[i...m-1]与t[0...m-1]的最长公共前缀
// extend[i]: s[i...n-1]与t[0...m-1]的最长公共前缀

const int maxn = 1e6 + 5;
int nxt[maxn], extend[maxn];
void exkmp(char *s, int n, char *t, int m) {
    int j = 0, k = 1;
    for (; j + 1 < m && t[j] == t[j + 1]; ++j);
    nxt[0] = m, nxt[1] = j;
```

```
for (int i = 2; i < m; i++) {
            int p = nxt[k] + k - 1, L = nxt[i - k];
            if (p + 1 - i - L > 0) {
                nxt[i] = L;
            }
            else {
                for (j = (p - i + 1 > 0)) (p - i + 1) (j = i + j) (j = i + j) (j = i + j) (j = i + j)
                // blank
                nxt[i] = j, k = i;
            }
        }
        j = k = 0;
        for (; j < n && j < m && t[j] == s[j]; ++j);
        extend[0] = j;
        for (int i = 1; i < n; i++) {
            int p = extend[k] + k - 1, L = nxt[i - k];
            if (p + 1 - i - L > 0) {
                extend[i] = L;
            else {
                for (j = (p - i + 1 > 0) ? (p - i + 1) : 0; i + j < n && j < m && s[i + j] ==
t[j]; ++j);
                // blank
                extend[i] = j, k = i;
            }
        }
    }
```

manacher

```
const int maxn = 110005;

int p[maxn << 1];
char str[maxn << 1];

int manacher(char *s, int n) {
    str[0] = '$'; str[1] = '#';

    for (int i = 0; i < n; i++) {
        str[(i << 1) + 2] = s[i];
        str[(i << 1) + 3] = '#';
    }

    n = (n + 1) << 1;
    str[n] = 0;

int ret = 0, mx = 0, pos;
    for (int i = 1; i < n; i++) {
        p[i] = mx > i ? min(p[(pos << 1) - i], mx - i) : 1;
}</pre>
```

数论

九余数定理

- 一个数各位数字之和等于这个数对9取模所得的数
- 每次将指数进行一次log(N)级别的变换
- 快速乘: 利用二进制实现ab(mod p), 防止溢出

母函数(组合数学)

■ 详见模板和实例

五边形数定理

- 五边形数: 1, 5, 12, 22,
- 第(n-1)个三角数+n^2为第n个五边形数
- $S_n = S_{n-1} + 3n-2$

zeckendorf定理

■ 任何正整数可以表示为若干个不连续的Fibonacci数之和(斐波納契博弈)

错排公式

d(n) = (n-1)(d[n-2] + d[n-1])

不定方程

■ 二元一次不定方程ax+by=c有解的充要条件是(a,b)|c

欧拉定理

- 欧拉函数: φ(n)是小于等于n的正整数中与n互质的数的数目
- 若n, a为正整数且n与a互质, 则a^φ(n)≡1(mod n)
- 费马小定理(Fermat小定理): 对任意a和任意质数p: a^p=a(mod p), 若a不能被p整除, a^(p-1)=1(mod p)
- 欧拉降幂: $x^y \pmod p = x^{y \pmod phi(p) \ phi(p)}$, $y \pmod phi(p)$, $y \pmod phi(p)$

```
# (x ^ y) % p
def calc(x, y, p):
    if y < p:
        return qpow(x, y, p)
else:
    # (x ^ y) % p = (x ^ (y % \( \phi(p) + \( \phi(p) \))) % p
    return qpow(x, y % phi[p] + phi[p], p)</pre>
```

费马大定理&& 费马方程

■ \$x^n + y^n = z^n\$, 由费马大定理可知: 若\$n≥2\$且\$n\$为整数, 则不存在整数解\$(x,y,z)(xyz≠0)\$

SG(Sprague-Grundy) 函数

- 对于任意状态x, 它的SG函数值g(x)=mex{g(y)|y是x的后续状态}, mex是一个对于非负整数集合S的运算, mex(S)为S中没有出现的最小非负整数
- 终止状态的SG函数值为0
- 博弈打表(待更新)

pick定理(实际上属于计算几何)

■ 给定正方形格子点的简单多边形, i为其内部格点数目, b为其边上格点数, 则其面积\$A=i+b/2-1\$

逆元(费马小定理)

■ 当p为素数时, \$a / b \mod p = ab 1 \mod p, b 1 = b ^ {p - 2} \mod p\$

威尔逊定理

■ 当且仅当p为素数时: \$(p-1)!=-1(\mod p)\$

杨辉三角(应用于排列组合)

- 第n行的元素个数有n个
- 第n行的元素之和为2^(n-1)
- 第n行第m个数的值为C(n-1,m-1),C为组合数
- (a+b)^n展开后的各项系数等于第n+1行的值
- 第n行第m个数的奇偶判断(m-1)&(n-1)==(m-1)?odd:even

第一类斯特林数

- \$S(p, k)\$表示把p个人分成k组作环排列的方案数
- $S(p, k) = (p-1) * S(p-1, k) + S(p-1, k-1), 1 \leq k \leq p-1$
- S(p,0)=0, p\geq1\$
- \P \$S(p,p)=1, p\geq0\$
- 使第p个人单独构成一个环排列,前p-1人构成k-1个环排列,方案数\$S(p-1,k-1)\$。
- 使前p-1个人构成k个环排列,第p个人插入到第i人左边,方案数\$S(p-1,k)\$

第二类斯特林数

- 将p个物体分成k个非空的不可辨别的集合的方案数
- $SS(p, k) = k * S(p-1, k) + S(p-1, k-1), 1 \leq k \leq p 1$
- S(p,0)=0, p\geq1\$
- \P \$S(p,p)=1, p\geq0\$
- 考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为 \$\$(p-1,k-1)\$

■ 也可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有\$kS(p-1,k)\$种方法。

Lucas定理(大组合数取模)

■ \$C(n, m) \mod p = C(n / p, m / p) C(n \mod p, m \mod p) \mod p\$, 其中p为质数

```
// C(n, m) % p = C(n % p, m % p) * C(n / p, m / p) % p
// p is a prime

typedef long long 11;
const int MOD = 1e9 + 7;

// calc C(n, m) % MOD
inline 11 C(11 n, 11 m);

11 lucas(11 n, 11 m) {
    if (n < MOD && m < MOD) {
        return C(n, m);
    }
    return C(n % MOD, m % MOD) * lucas(n / MOD, m / MOD) % MOD;
}</pre>
```

欧拉&素数线性筛

```
struct Seive {
    int maxn;
    vector<int>phi;
    Seive(int n) : maxn(n + 5), phi(n + 5) {
        phi[0] = 0;
        phi[1] = 1;
        for(int i = 2; i < maxn; i++) {</pre>
            if(!phi[i]) {
                for(int j = i; j < maxn; j += i) {
                    if(!phi[j]) {
                        phi[j] = j;
                    phi[j] -= phi[j] / i;
                }
            }
        }
    inline bool chkpri(int x) {return phi[x] == x - 1;}
    inline int getphi(int x) {return phi[x];}
};
```

组合数打表

```
const int MOD = 1e9 + 7;
long long C[1005][1005];
void init() {
    for (int i = C[0][0] = 1; i < 1005; i++) {
        for (int j = C[i][0] = 1; j <= i; j++) {
            C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
        }
    }
}</pre>
```

Simpson求积分

```
double simpson(const double& a, const double& b)
{
    double c = (a + b) / 2;
    return (F(a) + 4 * F(c) + F(b)) * (b - a) / 6;
}

double asr(double a, double b, double eps, double A)
{
    double c = (a + b) / 2;
    double L = simpson(a, c), R = simpson(c, b);
    if (fabs(L + R - A) <= 15 * eps)
        return L + R + (L + R - A) / 15.0;
    return asr(a, c, eps / 2, L) + asr(c, b, eps / 2, R);
}</pre>
```

Meissel-Lehmer(求[1, n]之间的素数个数)(O(n^{2/3}))

```
}
    }
    return cnt;
}
const int M = 7;
const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
int phi[PM + 1][M + 1], sz[M + 1];
void init() {
    getprime();
    sz[0] = 1;
    for (int i = 0; i \leftarrow PM; i++) {
        phi[i][0] = i;
    }
    for (int i = 1; i \le M; i++) {
        sz[i] = prime[i] * sz[i - 1];
        for (int j = 1; j \leftarrow PM; j++) {
            phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
        }
    }
}
int sqrt2(11 x) {
    ll r = ll(sqrt(x - 0.1));
    while (r * r <= x) ++r;
    return int(r - 1);
}
int sqrt3(11 x) {
    11 r = 11(cbrt(x - 0.1));
    while (r * r * r \leftarrow x) ++r;
    return int(r - 1);
}
11 getphi(ll x, int s) {
    if (s == 0) {
        return x;
    if (s <= M) {
        return phi[x \% sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
    if (x <= prime[s] * prime[s]) {</pre>
        return pi[x] - s + 1;
    }
    if (x \leftarrow prime[s] * prime[s] * prime[s] && x < N) {
        int s2x = pi[sqrt2(x)];
        11 ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
        for (int i = s + 1; i \le s2x; i++) {
            ans += pi[x / prime[i]];
        }
        return ans;
    return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
}
```

```
11 getpi(ll x) {
        if (x < N) {
            return pi[x];
        ll ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
        for (int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i \le ed; ++i) {
            ans -= getpi(x / prime[i]) - i + 1;
        return ans;
    }
    11 lehmer(11 x) {
        if (x < N) {
            return pi[x];
        int a = int(lehmer(sqrt2(sqrt2(x))));
        int b = int(lehmer(sqrt2(x)));
        int c = int(lehmer(sqrt3(x)));
        11 \text{ sum = getphi}(x, a) + 11(b + a - 2) * (b - a + 1) / 2;
        for (int i = a + 1; i \leftarrow b; i++) {
            11 w = x / prime[i];
            sum -= lehmer(w);
            if (i > c) {
                continue;
            }
            11 lim = lehmer(sqrt2(w));
            for (int j = i; j \leftarrow lim; j++) {
                sum -= lehmer(w / prime[j]) - (j - 1);
        }
        return sum;
   }
}
```

扩展欧几里得与中国剩余定理

```
pll exgcd(const ll x, const ll y)
{
    if(!y)
    {
        return make_pair(1, 0);
    }
    pll cur = exgcd(y, x % y);
    return make_pair(cur.second, cur.first - (x / y) * cur.second);
}
pll crt(const vector<pll> & v)
{
    //v里每个pll中first为被模数, second为模数
    ll a = 1, r = 0;
    const int len = v.size();
    for(int i = 0; i < len; i++) {
        pll cur = exgcd(a, v[i].first);
}
```

```
ll gcd = a * cur.first + v[i].first * cur.second;
if((v[i].second - r) % gcd != 0){
    return make_pair(-1, -1);
}
const ll p = v[i].first / gcd;
r += mod(cur.first * ((v[i].second - r) / gcd), p) * a;
a *= p;
}
return make_pair(a, r);
}
```

大随机数生成与素性测试

```
ull randull()
    static random_device rd;
    static mt19937 64 eng(rd());
    static uniform_int_distribution<ull>distr;
   return distr(eng);
ull randint(ull const& min = 0, ull const& max = 0)
    return double(randull()) / ULLONG MAX * (max - min + 1) + min;
bool is_prime(ll n)
   if (n == 2) return true;
    if (n < 2 | (~n & 1)) return false;
    11 m = n - 1, k = 0;
    while (!(m & 1))
        k++;
       m >>= 1;
    for (int i = 1; i \le 30; i++)
        ll a = randint((ull)1, (ull)(n - 1));
        ll x = fpow(a, m, n);
        11 y;
        for (int j = 1; j <= k; j++)
           y = fmul(x, x, n);
           if (y == 1 && x != 1 && x != n - 1)
               return false;
           x = y;
        }
        if (y != 1)
        {
            return false;
        }
```

```
}
return true;
}
```

蔡勒公式

```
int zeller(int y, int m, int d)
{
    //星期日为0
    if (m == 1 || m == 2)
    {
        m += 12;
        y--;
    }
    int c = y / 100;
    y = y % 100;
    int w = y + y / 4 + c / 4 - 2 * c + (26 * (m + 1)) / 10 + d - 1;
    w = ((w % 7) + 7) % 7;
    return w;
}
```

后缀表达式

```
const int MXLEN = 1000 + 5;
int fst[MXLEN];
char str[MXLEN];
typedef double CSS;
CSS jud(int begin, int end)
    int i;
   CSS k;
   //越往后优先级越高
    for (i = begin; i \leftarrow end; i++)
        if (str[i] == '+' && fst[i] == fst[begin])
            k = jud(begin, i - 1) + jud(i + 1, end);
            return k;
    for (i = end; i >= begin; i--)
        if (str[i] == '-' && fst[i] == fst[begin])
        {
            k = jud(begin, i - 1) - jud(i + 1, end);
            return k;
```

```
}
    }
    if (str[begin] == '(')
        for (i = begin + 1; fst[i] >= fst[begin + 1]; i++);
        k = jud(begin + 1, i - 1);
    }
    else
    {
        char *p = str;
        sscanf(p + begin, "%lf", &k);
   return k;
CSS solve()
    const int len = strlen(str);
    for (int i = 1; i <= len - 1; i++)
        if (str[i - 1] == '(')
           fst[i] = fst[i - 1] + 1;
        }
        else
        {
            if (str[i] == ')')
                fst[i] = fst[i - 1] - 1;
            }
            else
                fst[i] = fst[i - 1];
            }
        }
    return jud(0, len);
}
```

java大数牛顿迭代法开方

```
public static BigInteger sqrt(BigInteger n) {
   String a = n.toString();
   final int len = a.length();
   if((~len & 1) == 1) {
        a = a.substring(0, len / 2 + 1);
   } else {
        a = a.substring(0, len / 2);
   }
   BigInteger x = new BigInteger(a);
   final BigInteger two = BigInteger.valueOf(2);
```

```
if(a == "0" || a == "1") {
    return n;
} else {
    while(n.compareTo(x.multiply(x)) < 0) {
        x = (x.add(n.divide(x))).divide(two);
    }
    return x;
}</pre>
```