Eine alte Gleichung mit Fibonacci-Zahlen

Die Fibonacci¹-Zahlen $f_n(n \in \mathbb{Z}, n \ge 0)$ sind definiert durch

$$f_0 = 0, f_1 = 1, f_{n+1} = f_n + f_{n-1}$$
 für $n \ge 1$.

Man verwende immer nur diese Definition, insbesondere die Anfangswerte $f_0=0$ und $f_1=1$.

Viele zahlentheoretische Eigenschaften der Fibonaccizahlen (die von Teilnehmenden immer wieder durch vollständige Induktion bewiesen werden) folgen aus einer Gleichung, die schon im 19. Jahrhundert von Lucas² bewiesen wurde:

Satz:

Für alle $a, b \in \mathbb{Z}$ mit $a \ge 0$ und $b \ge 0$ gilt $ggT(f_a, f_b) = f_{ggT(a,b)}$.

Beweis:

Zunächst werden einige Hilfssätze bewiesen.

Hilfssatz 1:

Für alle $n, k \in \mathbb{Z}$ mit $n \ge 0$ und k > 0 gilt $f_{n+k} = f_n f_{k-1} + f_{n+1} f_k$.

Beweis durch Induktion über *n*:

Sei n=0. So gilt $f_k=0 \cdot f_{k-1}+1 \cdot f_k=f_0 f_{k-1}+f_1 f_k$.

Sei
$$n=1$$
. So gilt $f_{1+k}=1 \cdot f_{k-1}+1 \cdot f_k=f_1 f_{k-1}+f_2 f_k$, denn es ist $f_2=f_1+f_0=1+0=1$.

Schluss von n-1 und n auf n+1 ($n \ge 1$):

Es gilt unter Verwendung der Induktionsvoraussetzung

$$f_{(n+1)+k} = f_{n+k} + f_{(n-1)+k} = f_n f_{k-1} + f_{n+1} f_k + f_{n-1} f_{k-1} + f_n f_k$$

$$= (f_n + f_{n-1}) f_{k-1} + (f_{n+1} + f_n) f_k = f_{n+1} f_{k-1} + f_{n+2} f_k = f_{n+1} f_{k-1} + f_{(n+1)+1} f_k.$$

Hilfssatz 2:

Für alle $k \in \mathbb{Z}$ mit k > 0 gilt $ggT(f_{k-1}, f_k) = 1$.

Beweis durch Induktion über *k*:

Sei k=1. So gilt $ggT(f_0, f_1)=ggT(0,1)=1$.

Schluss von k auf k+1 ($k \ge 1$):

Es gilt unter Verwendung der Induktionsvoraussetzung

$$ggT(f_k, f_{k+1}) = ggT(f_k, f_k + f_{k-1}) = ggT(f_k, f_{k-1}) = ggT(f_{k-1}, f_k) = 1.$$

Hilfssatz 3:

Für alle $a, b \in \mathbb{Z}$ mit $a \ge b > 0$ gilt $ggT(f_{a-b}, f_b) = ggT(f_a, f_b)$.

Beweis:

Mit n=a-b und k=b ist dies äquivalent zu $ggT(f_n,f_k)=ggT(f_{n+k},f_k)$ mit $n\geq 0$ und k>0. Zunächst ist $ggT(f_n,f_k)$ ein Teiler von f_n und f_k , also auch von $f_{n+k}=f_nf_{k-1}+f_{n+1}f_k$ nach Hilfssatz 1. Also ist $ggT(f_n,f_k)$ auch ein Teiler von $ggT(f_{n+k},f_k)$.

Andererseits ist $ggT(f_{n+k},f_k)$ ein Teiler von f_{n+k} und f_k , also auch von $f_{n+k}-f_{n+1}f_k=f_nf_{k-1}$ (ebanfalls Hilfssatz1) sowie von f_nf_k . Nach Hilfssatz 2 ist $ggT(f_{n+k},f_k)$ ein Teiler von $ggT(f_nf_{k-1},f_nf_k)=f_n\cdot ggT(f_{k-1},f_k)=f_n$, also auch von $ggT(f_n,f_k)$.

Dies zeigt
$$ggT(f_n, f_k) = ggT(f_{n+k}, f_k)$$
.

¹nach Leonardo Fibonacci, auch Leonardo de Pisa genannt, * um 1170, † nach 1240, italienischer Mathematiker.

²François Édouard Anatole Lucas, * 1842, † 1891, französischer Mathematiker.

Beweis des Satzes:

Zunächst gilt $ggT(f_0, f_0) = ggT(0,0) = 0 = f_0$.

Im Folgenden seien a, b nicht beide Null, o. B. d. A. b>0.

Wird nun a mit Rest durch b dividiert so erhält man q, $r \in \mathbb{Z}$ mit a = bq + r, $q \ge 0$ und $0 \le r < b$. Man erhält durch q-malige Anwendung der Gleichung ggT(a-b,b) = ggT(a,b) schließlich ggT(a,b) = ggT(r,b) = ggT(b,r). Durch q-malige Anwendung von Hilfssatz 3 erhält man $ggT(f_a,f_b) = ggT(f_r,f_b) = ggT(f_b,f_r)$.

Nun bildet man entsprechend dem Euklidischen Algorithmus eine Folge a_0, a_1, \ldots mit $a_0 = a, a_1 = b$ und für $i \ge 1$: a_{i+1} als Rest der Division von a_{i-1} durch a_i . Also gilt $a_{i-1} = a_i q_i + a_{i+1}$ für geeignete q_i und $0 \le a_{i+1} < a_i$, weiter $ggT(a_{i+1}, a_i) = ggT(a_i, a_{i-1})$. Damit gibt es ein h > 1 mit $a_h = 0$ (Abstieg!); mit a_h endet die Folge. Sei $g = a_{h-1}$, so folgt mit Induktion über i:

$$ggT(a,b)=ggT(a_0,a_1)=ggT(a_{h-1},a_h)=ggT(g,0)=g.$$

Bildet man nun die Folge der Fibonaccizahlen f_{a_0} , f_{a_1} , ..., f_{a_h} , so ergibt sich $f_{a_0} = f_a$, $f_{a_1} = f_b$, $f_{a_{h-1}} = f_g$ und $f_{a_h} = f_0$, damit gilt nach obiger Überlegung (Anwendung von Hilfssatz 3):

$$ggT(f_a, f_b) = ggT(f_a, f_0) = ggT(f_a, 0) = f_a = f_{ggT(a,b)}.$$

Übungen:

Bestimme ggT(f_{1960} , f_{2023}).

Zeige ohne Induktion, dass genau jede dritte Fibonaccizahl (also die Zahlen f_0 , f_3 , f_6 ,...) gerade ist und genau jede vierte Fibonaccizahl (also die Zahlen f_0 , f_4 , f_8 ,...) durch 3 teilbar.

Zeige: Ist f_p eine Primzahl, so ist p eine ungerade Primzahl oder gleich 4.

Zeige, dass $F_1 = F_2 = 1$, $F_4 = 3$ die einzigen Dreierpotenzen unter den Fibonaccizahlen sind.