7. Duality

- Lagrange dual problem
- weak and strong duality
- saddle-point interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$\begin{cases} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{cases}$$

variable $x \in \mathbf{R}^n$, domain $\underline{\mathcal{D}}$, optimal value p^*

Lagrangian: $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with $\mathbf{dom} L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$,

- weighted sum of objective and constraint functions
- $\underline{\lambda_i}$ is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$\frac{g(\lambda,\nu)}{\sum_{x\in\mathcal{D}}L(x,\lambda,\nu)}$$

$$\frac{g(\lambda,\nu)}{=\inf_{x\in\mathcal{D}}L(x,\lambda,\nu)} = \inf_{x\in\mathcal{D}}\left(\underline{f_0(x)} + \sum_{i=1}^m \lambda_i \underline{f_i(x)} + \sum_{i=1}^p \nu_i \underline{h_i(x)}\right) \quad \text{pointwise min of family of convex (affine) functions}$$

g is concave, can be $-\infty$ for some λ , ν

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then $f(\tilde{x}) \leq 0$, $h(\tilde{x}) = 0$

$$fi(\tilde{x}) \leq 0$$
, $hi(\tilde{x}) = 0$

$$\underbrace{f_0(\tilde{x})} \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

Least-norm solution of linear equations

dual function

• Lagrangian is $L(x, \nu) = x^T x + \nu^T (Ax - b)$ $g(y) = \inf_{x \in \mathbb{R}^n} L(x, \nu)$

ullet to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^TAA^T\nu - b^T\nu \qquad \text{concave quadratic}$$

a concave function of ν

concave
quadratic
fot of v,
dom g = 12^n

lower bound property: $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Standard form LP

dual function

• Lagrangian is

$$L(x, \underline{\lambda}, \underline{\nu}) = c^T x + \underline{\nu}^T (Ax - b) - \underline{\lambda}^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

• L is linear in x, hence

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

lower bound property:
$$p^* \ge -b^T \nu$$
 if $A^T \nu + c \succeq 0$ $P^* \ge g(\lambda \nu)$ for any $\lambda \nu \in domg$

Equality constrained norm minimization

$$\begin{bmatrix} \text{minimize} & \|x\| \\ \text{subject to} & Ax = b \\ L(x, v) = \|x\| + y^{\mathsf{T}}(Ax - b) = \|x\| - y^{\mathsf{T}}Ax + b^{\mathsf{T}}y \end{bmatrix}$$

dual function

$$\underline{g(\nu)} = \inf_{x}(\|x\| - \nu^T A x + b^T \nu) = \left\{ \begin{array}{l} \underline{b^T \nu} \\ \underline{-\infty} \end{array}, \begin{array}{l} \|A^T \nu\|_* \le 1 \\ \hline \text{otherwise} \end{array} \right.$$

where $||v||_* = \sup_{\|u\| \le 1} u^T v$ is dual norm of $\|\cdot\|$

proof: follows from $\inf_x(\|x\|-y^Tx)=0$ if $\|y\|_*\leq 1$, $-\infty$ otherwise

- \longrightarrow if $||y||_* \le 1$, then $||x|| y^T x \ge 0$ for all x, with equality if x = 0
 - if $||y||_* > 1$, choose x = tu where $||u|| \le 1$, $u^T y = ||y||_* > 1$:

$$||t|||u|| - tu^{\mathsf{T}}y = \overline{+}||u|| - t||\overline{y}||_{*}$$

$$||x|| - y^{\mathsf{T}}x = t(||\underline{u}|| - ||y||_{*}) \to -\infty \quad \text{as } \underline{t \to \infty}$$

lower bound property: $p^{\star} \geq b^T \nu$ if $\|A^T \nu\|_* \leq 1$

 $L(x,v) = ||x|| - (A^{T}y)^{T}x + b^{T}y$ $g(y) = \inf_{x} L(x_i y) = b^T y + \inf_{x} (\|x\| - (A^T y)^T x) = b^T y + \begin{cases} 0, \|A^T y\|_{x} \le 1 \\ -\infty, \text{ other} \end{cases}$ dual norm of $||x||: ||y||_{*} = \sup_{x \to \infty} y^{T}x$ |xy| \le ||x|| ||y||* (generalization of Cauchy-Schwarz & Holdering)

(2Ty \le ||x| if ||y||* \le |

(2Ty \le ||x| - xTy > 0

Goemans & Williamson on max-cut (late 90's)

Example: two-way partitioning

minimize
$$x^T W x = \sum_{i,j=1}^n \mathcal{W}_{ij} \widehat{\mathbf{x}}_i \widehat{\mathbf{x}}_j$$
 subject to $x_i^2 = 1, \dots, n$ $\mathbf{x}_i \in \{-1,+1\}$

- a **nonconvex** problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1,\ldots,n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets

dual function
$$= -\mathbf{1}^{\mathsf{T}} \mathbf{v} + \mathbf{x}^{\mathsf{T}} \begin{bmatrix} \mathbf{v}_{1} & \mathbf{o} \\ \mathbf{o} & \mathbf{v}_{n} \end{bmatrix} \mathbf{x}$$

$$g(\nu) = \inf_{x} (x^{T} W x + \sum_{i} \nu_{i} (x_{i}^{2} - 1)) = \inf_{x} (x^{T} (W + \mathbf{diag}(\nu)) x - \mathbf{1}^{T} \nu)$$

$$= \begin{cases} -\mathbf{1}^{T} \nu & W + \mathbf{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

lower bound property:
$$\underline{p^{\star} \geq -1^{T}\nu}$$
 if $\underline{W + \operatorname{diag}(\nu) \succeq 0}$ example: $\nu = -\lambda_{\min}(W)\mathbf{1}$ gives bound $\underline{p^{\star} \geq n\lambda_{\min}(W)}$
$$W - \begin{bmatrix} \lambda_{\min}(\omega) \\ \lambda_{\min}(\omega) \end{bmatrix} = W - \lambda_{\min}(\omega)\mathbf{I} \qquad \lambda_{\min}(\omega)\mathbf{I} \end{pmatrix} = \lambda_{\min}(\omega)\mathbf{I}$$

bound: I'v = n min (W)

min.
$$x^{T}Wx$$

sit. $x^{2}=1$

relax

sit. $x^{T}Wx$

sit. $x^{T}Wx$
 x^{T

min
$$x^T W x = n \lambda \min(W)$$

s.t. $\|x\|_z = \sqrt{n}$

Announcements

- . For midterm, bring a 'blue book' or some sheets of paper (that you clip or staple). Submit your cheat sheets.
- · Main results from lecture can be quoted & used without re-proving (e.g. properties that preserve convexity, convexity of basic sets / fcts shown in lecture, key theorems, etc)

împortance & use of duality: - physical interpretation

-lower bd on hard non-convex problems
- primal/dual algorithm for convex
solve primal & dual prob's together; good stopping criterion

244 = f(24, ...)

The dual problem

primal problem Lagrange dual problem

- finds best lower bound on p^* , obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^*
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

example: standard form LP and its dual (page 7–5)

minimize
$$\underline{c}^T x$$
 subject to $\underline{A} x = \underline{b}$ subject to $\underline{A}^T \nu + \underline{c} \succeq 0$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP $g(v) = \begin{cases} -1^{\tau}v & \text{if } V \neq 0 \\ -\infty & \text{other} \end{cases}$

gives a lower bound for the two-way partitioning problem on page 7–7

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

$$\begin{cases} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & Ax = b \end{cases}$$

if it is strictly feasible, i.e.,
$$D = intersection of domains of for first fine for the strictly feasible for the strict$$

$$\exists x \in \mathbf{int} \, \mathcal{D}$$

$$\exists \underline{x} \in \underline{\mathbf{int}\,\mathcal{D}}: \qquad \underline{f_i(x) < 0}, \quad i = 1, \dots, m, \qquad \underline{Ax = b}$$

$$Ax = b$$

- ullet also guarantees that the dual optimum is attained (if $p^\star > -\infty$)

Inequality form LP

primal problem

$$L(x_{1}\lambda) = c^{T}x + \lambda^{T}(Ax-b)$$

$$= (c+A^{T}\lambda)^{T}x - b^{T}\lambda$$

$$\text{subject to } Ax \leq b$$

$$g(\lambda) = \inf_{x} L(x_{1}\lambda)$$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases} \frac{-b^T \lambda}{-\infty} & \frac{A^T \lambda + c = 0}{\text{otherwise}} \end{cases}$$

dual problem

- from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}
- ullet in fact, $p^\star=d^\star$ except when primal and dual are infeasible

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^n$)

$$\begin{cases} \text{minimize} & x^T P x \\ \text{subject to} & Ax \leq b \end{cases}$$

dual function

$$g(\lambda) = \inf_{x} \left(x^{T} P x + \underbrace{\lambda^{T} (A x - b)}_{x} \right) = \underbrace{\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda}_{\nearrow 0}$$

dual problem $\nabla L(\lambda) = 0$ $ZP_{x+} A^{T} \lambda = 0 \Rightarrow x = -\frac{1}{2} P^{-1} A^{T} \lambda$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^* = d^*$ always

Economic (price) interpretation

 $f_0(x)$ is cost of operating firm at operating condition \overline{x} ; constraints give resource limits.

suppose:

- can violate $f_i(x) \leq 0$ by paying additional cost of λ_i (in dollars per unit violation), i.e., incur cost $\lambda_i f_i(x)$ if $f_i(x) > 0$
- can sell unused portion of ith constraint at same price, i.e., gain profit $\lambda_i f_i(x)$ if $f_i(x) < 0$

total cost to firm to operate at x at constraint prices λ_i : $\lambda \geqslant o$

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$$

interpretations:

dual function: $g(\lambda) = \inf_x L(x,\lambda)$ is optimal cost to firm at constraint prices λ_i

weak duality: cost can be lowered if firm allowed to pay for violated constraints (and get paid for non-tight ones)

duality gap: advantage to firm under this scenario

strong duality: λ^* give prices for which firm has no advantage in being allowed to violate constraints . . .

market-clearing prices
$$\begin{bmatrix} \max & g(\lambda) \\ s.t. & \lambda > 0 \end{bmatrix}$$

Min-max & saddle-point interpretation $\begin{cases} \min_{x} f_{\delta}(x) \\ x \end{cases}$ s.t. $f_{i}(x) \leq 0$

can express primal and dual problems in a more symmetric form:

 $L(x/\lambda)$

$$\sup_{\underline{\lambda}\succeq 0} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right) = \begin{cases} \underbrace{f_0(x)}_{0} & \underbrace{f_i(x)} \leq 0, \\ +\infty & \text{otherwise,} \end{cases}$$

weak duality can be expressed as

$$\sup_{\lambda\succeq 0}\inf_{x}L(x,\lambda)\leq \inf_{x}\sup_{\lambda\succeq 0}L(x,\lambda)$$

strong duality when equality holds. means can switch the order of minimization over x and maximization over $\lambda \succeq 0$.

if x^* and λ^* are primal and dual optimal and strong duality holds, they form a saddle-point for the Lagrangian (converse also true).

y game theory

Example problems for review:

1. Is this set convex:

$$S = \{(a_ib_ic) \in \mathbb{R}^3 \mid a_ix^2 + b_ix + c = 0 \text{ has no real solutions, } c > 0\}$$
 $p \ge z \text{ Cinteger})$

axt+bx+c=0 has no real solutions = axt+bx+c>0 \x =1R

for every z, a half-space in a,b,e

=> S = intersection of half-spaces => convex.

2. Is
$$f(X) = det(X)$$
 dom $f = S_{++}^n$ convex, concave, neither?

log det X concave $\Rightarrow f(X) = \exp(\log \det X) \Rightarrow \text{composition rules}$ concave $\Rightarrow f(X) = \exp(\log \det X) \Rightarrow \text{don't work here!}$

try to find a counter-example:

$$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$$
 even simpler: $X = \begin{bmatrix} x & 0 \\ 0 & z \end{bmatrix}$ det $X = f(x_1 z) = x_2 z$

 $f(x, \bar{z}) = x\bar{z}$, xzo, zzo not convex: Hessian $\nabla^2 f(x)$ is indefinite

$$(f(x) = (det(x))^{t_n} isn't helpful either)$$
determinant

determinaut Trace

⇒ eig's are both positive a negative

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$\underbrace{f_0(x^*) = g(\lambda^*, \nu^*)}_{x} = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right) \xrightarrow{\lambda_i^*, \nu^*} \underbrace{f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)}_{\geq o} \xrightarrow{L(x_i, y_i)} \underbrace{\lambda_i^*, \nu^*}_{\leq o} \right)$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*) \rightarrow if L$ differentiable wrt $x : \nabla_x L(x, \lambda^*, \nu^*) = o$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$ for $\underline{i = 1, \dots, m}$ (known as complementary slackness):

[min. fo(x)
$$\frac{\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0}{s.+.}, \qquad \underbrace{f_i(x) \leq 0} \Longrightarrow \lambda_i > 0 \implies f_i(x) = 0, \quad \underbrace{f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0}_{f_i(x) \leq 0}$$

$$f_i(x) \leq 0 \Longrightarrow f_i(x) = 0, \quad \underbrace{f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0}_{f_i(x) \leq 0}$$

Announcements

- · HW6 due tonight, HW7 will be posted tonight
- · Midterms being graded (will post sol's & grades by end of week)
- · CUX/CUXPY (examples from the book on CUX website)
- Final exam: ~10-hr take home, can be taken on Sort March 9 or Sun March 10.

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to \boldsymbol{x} vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 7–16: if strong duality holds and \underline{x} , $\underline{\lambda}$, ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

 \rightarrow if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness:
$$f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$$

• from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$

• from complementary slackness:
$$f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$$
• from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$
 $\forall_{\mathbf{x}} L(\mathbf{x}, \tilde{\lambda}, \tilde{\nu}) |_{\mathbf{x} = \tilde{\mathbf{x}}} = 0$

L($\mathbf{x}, \tilde{\lambda}, \tilde{\nu}$)

L($\mathbf{x}, \tilde{\lambda}, \tilde{\nu}$)

 $L(\mathbf{x}, \tilde{\lambda}, \tilde{\nu}) = f_0(\mathbf{x}) + \sum \tilde{\lambda}_i f_1(\mathbf{x}) + \sum \tilde{\nu}_i h_1(\mathbf{x})$

g($\tilde{\lambda}, \tilde{\nu}$) = inf $L(\mathbf{x}, \tilde{\lambda}, \tilde{\nu})$

if Slater's condition is satisfied:

if Slater's condition is satisfied:

x is optimal if and only if there exist λ , ν that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- $\bullet_{\mathbf{x}}$ generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

KKT conditions

example: water-filling (assume $\alpha_i > 0$)

$$\begin{cases} \text{minimize} & -\sum_{i=1}^n \log(x_i + \alpha_i) \\ \text{subject to} & x \succeq 0, \quad \mathbf{1}^T x = 1 \end{cases}$$
 subject to
$$x \succeq 0, \quad \mathbf{1}^T x = 1$$

x is optimal iff $x \succeq 0$, $\mathbf{1}^T x = 1$, and there exist $\lambda \in \mathbf{R}^n$, $\nu \in \mathbf{R}$ such that

$$\lambda \geq 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

- if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu \alpha_i$
- if $\nu \geq 1/\alpha_i$: $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$
- \bullet determine ν from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu \alpha_i\} = 1$

interpretation

- ullet n patches; level of patch i is at height α_i
- flood area with unit amount of water
- resulting level is $1/\nu^*$

KKT conditions:

→ 3)
$$\lambda_i^* z_i^* = 0$$

$$L(x_i \overset{\star}{\lambda_i} \overset{\star}{\nu}) = -\sum_{i=1}^{n} log(ni+di) - \overset{\star}{\lambda^T} x_i + \overset{\star}{\nu^T} (\overset{t}{1} \overset{\tau}{\lambda} - 1)$$

$$\nabla_{x_i} L(x_i \lambda_i v) = -\frac{1}{x_i + \alpha_i} - \lambda_i + y^*$$

$$\nabla_{\chi_i} = 0 \Rightarrow y^* = \lambda_i^* + \frac{1}{\chi_i^* + \alpha_i}$$

from (3):
$$\lambda_i^* = 0$$

$$\lambda_i^* = 0 \Rightarrow \lambda_i^* = \lambda_i^* + \lambda_i^* \Rightarrow \lambda_i^* = \lambda_i^* + \lambda_i^*$$
from $\lambda_i^* = 0 \Rightarrow \lambda_i^* = \frac{1}{\lambda_i^* + \lambda_i^*} \Rightarrow \lambda_i^* = \lambda_i^* + \lambda_i^*$
from $\lambda_i^* = 0 \Rightarrow \lambda_i^* = \frac{1}{\lambda_i^* + \lambda_i^*} \Rightarrow \lambda_i^* = \lambda_i^* + \lambda_i^*$
from $\lambda_i^* = 0 \Rightarrow \lambda_i^* = \lambda_i^* + \lambda_i^*$

$$7x^*=7$$
: $\sum_{i=1}^{n} \min\{0, \frac{1}{y^*}-x_i\}=7$ \Rightarrow scalar valued equation in y^*

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

perturbed problem and its dual

- \bullet x is primal variable; u, v are parameters
- $p^*(u,v)$ is optimal value as a function of u, v
- ullet we are interested in information about $p^{\star}(u,v)$ that we can obtain from the solution of the unperturbed problem and its dual

global sensitivity result

assume strong duality holds for unperturbed problem, and that λ^* , ν^* are dual optimal for unperturbed problem

apply weak duality to perturbed problem:

$$p^{\star}(u,v) \geq g(\lambda^{\star},\nu^{\star}) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$
$$= p^{\star}(0,0) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$

sensitivity interpretation

- if λ_i^{\star} large: p^{\star} increases greatly if we tighten constraint i ($u_i < 0$)
- if λ_i^* small: p^* does not decrease much if we loosen constraint i ($u_i > 0$)
- if ν_i^{\star} large and positive: p^{\star} increases greatly if we take $v_i < 0$; if ν_i^{\star} large and negative: p^{\star} increases greatly if we take $v_i > 0$
- if ν_i^{\star} small and positive: p^{\star} does not decrease much if we take $v_i > 0$; if ν_i^{\star} small and negative: p^{\star} does not decrease much if we take $v_i < 0$

local sensitivity: if (in addition) $p^*(u,v)$ is differentiable at (0,0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

proof (for λ_i^*): from global sensitivity result,

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \searrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \ge -\lambda_i^{\star}$$

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \nearrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \le -\lambda_i^{\star}$$

hence, equality

 $p^{\star}(u)$ for a problem with one (inequality) constraint:

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
 - e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

$$\begin{bmatrix}
\text{minimize} & f_0(Ax + b) \\
\mathbf{x} & \mathbf{y}
\end{bmatrix}$$

- dual function is constant: $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

norm approximation problem: minimize ||Ax - b||

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$\underline{g(\nu)} = \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu)$$

$$= \begin{cases} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{b^T \nu}{-\infty} & A^T \nu = 0, & \|\nu\|_* \le 1 \\ \frac{-\infty}{-\infty} & \text{otherwise} \end{cases}$$

(see page 7-4)

dual of norm approximation problem

Implicit constraints

LP with box constraints: primal and dual problem

dual function
$$g(\nu) = \inf_{\substack{-1 \leq x \leq 1 \\ = -b^T \nu - \|A^T \nu + c\|_1}} (c^T x + \nu^T (Ax - b)) = \inf_{\substack{-1 \leq x \leq 1 \\ = -b^T \nu - \|A^T \nu + c\|_1}} (c + A^T \nu)_i > 0 \rightarrow \infty : = 1$$

$$\text{dual problem: maximize } -b^T \nu - \|A^T \nu + c\|_1 \qquad (c + A^T \nu)_i < 0 \rightarrow \infty : = 1$$

Problems with generalized inequalities

$$\begin{cases} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq_{K_i} 0, \quad i = 1, \dots, \underline{m} \\ \hline h_i(x) = 0, \quad i = 1, \dots, p \end{cases}$$

 \preceq_{K_i} is generalized inequality on \mathbf{R}^{k_i}

definitions are parallel to scalar case:

- Lagrange multiplier for $f_i(x) \leq_{K_i} 0$ is vector $\lambda_i \in \mathbf{R}^{k_i}$
- Lagrangian $L: \mathbf{R}^n \times \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$L(x, \lambda_1, \cdots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^m \nu_i h_i(x)$$

• dual function $g: \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$g(\lambda_1, \dots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \dots, \lambda_m, \nu) \leq p^*$

proof: if
$$\tilde{x}$$
 is feasible and $\lambda \succeq_{K_i^*} 0$, then
$$\chi^* = \{ y \mid \angle y, \varkappa \rangle \geqslant 0, \forall \varkappa \in K \}$$

$$\underline{f_0(\tilde{x})} \geq f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x}) \qquad \lambda_i \in K_i^*$$

$$\geq \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu) \qquad \lambda_i \geqslant 0$$

$$= g(\lambda_1, \dots, \lambda_m, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda_1, \dots, \lambda_m, \nu)$

dual problem

- weak duality: $p^{\star} \geq d^{\star}$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $(F_i, G \in S^k)$

- Lagrangian $L(x,Z) = c^T x + \mathbf{tr} \left(Z(x_1 F_1 + \dots + x_n F_n G) \right)$
- dual function $= \sum cini + \sum ni tr(zFi) trzG$ $= \sum (ci + tr(zFi))ni tr(zG)$ $= \begin{cases} -tr(GZ) & tr(FiZ) + ci = 0, \\ -\infty & otherwise \end{cases} i = 1, \dots, n$

dual SDP

maximize
$$-\mathbf{tr}(GZ)$$
 subject to $Z \succeq 0$, $\mathbf{tr}(F_iZ) + c_i = 0$, $i = 1, \dots, n$

 $p^* = d^*$ if primal SDP is strictly feasible ($\exists x$ with $x_1F_1 + \cdots + x_nF_n \prec G$)

A nonconvex problem with strong duality

 $A \not\succeq 0$, hence nonconvex

dual function:
$$g(\lambda) = \inf_x (x^T(A + \lambda I)x + 2b^Tx - \lambda)$$

- unbounded below if $A + \lambda I \not\succeq 0$ or if $A + \lambda I \succeq 0$ and $b \not\in \mathcal{R}(A + \lambda I)$
- minimized by $x = -(A + \lambda I)^{\dagger}b$ otherwise: $g(\lambda) = -b^{T}(A + \lambda I)^{\dagger}b \lambda$

dual problem and equivalent SDP:

$$\begin{array}{ll} \text{maximize} & -b^T (A + \lambda I)^\dagger b - \lambda \\ \text{subject to} & A + \lambda I \succeq 0 \\ & b \in \mathcal{R}(A + \lambda I) \end{array} \qquad \text{maximize} \quad -t - \lambda \\ \text{subject to} \quad \begin{bmatrix} A + \lambda I & b \\ b^T & t \end{bmatrix} \succeq 0$$

strong duality although primal problem is not convex (not easy to show; if interested, see appendix B in book)