- Modules 1-2:The basics
- Modules 3-5: Speech synthesis
- Modules 6-9: Speech recognition

- Modules 1-2:The basics
- Modules 3-5: Speech synthesis
- Modules 6-9: Speech recognition

- Week
 - Module I: introduction, brief look at speech production and perception
- Week 2
 - Foundations: signals
 - Module 2: speech signals and the source-filter model
- Week 3
 - Foundations: phonetics

See slides from: Foundations for Speech Processing > Phonetics

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015)

CONSONANTS (PULMONIC)

© 2015 IPA

	Bila	abial	Labiod	lental	Dent	al	Alveola	ar l	Postalve	olar	Retro	oflex	Pala	atal	Ve	lar	Uv	ular	Phary	ngeal	Glo	ttal
Plosive	p	b					t d				t	d	C	J	k	g	q	G			3	
Nasal		m		m			11					η		ŋ		ŋ		N				
Trill		В					r											R				
Tap or Flap				V			ſ					t										
Fricative	ф	β	f	V	θ	δ	SZ	,		3	Ş	Z	ç	j	X	Y	χ	R	ħ	S	h	h
Lateral fricative							1 3	,														
Approximant				υ			J	-				J		j		Щ						
Lateral approximant							1					1		Λ		L						

IPA Chart, http://www.internationalphoneticassociation.org/content/ipa-chart, available under a Creative Commons Attribution-Sharealike 3.0 Unported License. Copyright © 2015 International Phonetic Association.

VOWELS

Where symbols appear in pairs, the one to the right represents a rounded vowel.

IPA Chart, http://www.internationalphoneticassociation.org/content/ipa-chart, available under a Creative Commons Attribution-Sharealike 3.0 Unported License. Copyright © 2015 International Phonetic Association.

- Modules 1-2:The basics
- Modules 3-5: Speech synthesis
- Modules 6-9: Speech recognition

- Modules 1-2: The basics
- Modules 3-5: Speech synthesis
- Modules 6-9: Speech recognition

- Week 3
 - Module 3: text processing
- Week 4
 - Class trip
 - Module 4: pronunciation & prosody
- Week 5
 - Assignment Q&A
 - Module 5: waveform generation
- Week 6
 - Submission of first assignment

What you should already know

- From the videos & readings
 - text-to-speech pipeline
 - dealing with Non-Standard Words (NSWs)

What you should already know

- From the videos & readings
 - text-to-speech pipeline
 - dealing with Non-Standard Words (NSWs)

Speech synthesis - text processing

- Representing linguistic information using data structures
- Designing features for classifying Non-Standard Words (NSWs) into categories
- Writing algorithms to expand NSWs

- The Heterogeneous Relation Graph (HRG) formalism (as used in Festival)
- Basic data structure to represent a linguistic item: feature structure
 - an unordered list of key-value pairs (like a Python dictionary)

```
word: egin{array}{c} NAME \ abuse_1 \ POS \ noun \ TEXT \ abuse \ PRON \ /@buws/ \ \end{array}
```

Example taken from Taylor - Section 4.5

Nesting: values can themselves be feature structures

- The Heterogeneous Relation Graph (HRG) formalism (as used in Festival)
- Basic data structure to represent a linguistic item: feature structure
 - an unordered list of key-value pairs (like a Python dictionary)
- Relations between linguistic items

Figure 4.1 The three types of relation: (a) list relation, (b) tree relation and (c) ladder relation.

List - for example, relation between the words in a sentence

Tree - for example, relation between words, syllables and phones

Ladder - for example, relation between syllables and pitch accents

Speech synthesis - text processing

- Representing linguistic information using data structures
- Designing features for classifying Non-Standard Words (NSWs) into categories
- Writing algorithms to expand NSWs

Design some features that might be useful for classifying NSWs

TABLE I. Taxonomy of non-standard words used in hand-tagging and in the text normalization models

	EXPN	abbreviation	adv, N.Y, mph, gov't
alpha	LSEQ	letter sequence	CIA, D.C, CDs
	ASWD	read as word	CAT, proper names
	MSPL	misspelling	geogaphy
	NUM	number (cardinal)	12, 45, 1/2, 0.6
	NORD	number (ordinal)	May 7, 3rd, Bill Gates III
	NTEL	telephone (or part of)	212 555-4523
	NDIG	number as digits	Room 101
N	NIDE	identifier	747, 386, I5, pc110, 3A
U	NADDR	number as street address	5000 Pennsylvania, 4523 Forbes
M	NZIP	zip code or PO Box	91020
В	NTIME	a (compound) time	<i>3</i> ·20, <i>11:45</i>
E	NDATE	a (compound) date	2/2/99, 14/03/87 (or US) 03/14/87
R	NYER	year(s)	1998, 80s, 1900s, 2003
S	MONEY	money (US or other)	\$3.45, HK\$300, Y20,000, \$200K
	BMONEY	money tr/m/billions	\$3.45 billion
	PRCT	percentage	75%, 3·4%
	SPLT	mixed or "split"	WS99, x220, 2-car
	G		(see also SLNT and PUNC examples)
3.6	SLNT	not spoken,	word boundary or emphasis character:
M	DIDIG	word boundary	M.bath, KENT*RLTY, _really_
	PUNC	not spoken,	non-standard punctuation: "***" in
S	EN IGE	phrase boundary	\$99,9K***Whites, "" in <i>DECIDE</i> Year
C	FNSP	funny spelling	slloooooww, sh*t
	URL	url, pathname or email	http://apj.co.uk,/usr/local,phj@tpt.com
	NONE	should be ignored	ascii art, formatting junk

Table I from Sproat et al, "Normalization of non-standard words" Computer Speech and Language (2001) 15, 287–333

doi:10.1006/csla.2001.0169

Speech synthesis - text processing

- Representing linguistic information using data structures
- Designing features for classifying Non-Standard Words (NSWs) into categories
- Writing algorithms to expand NSWs

Write an algorithm to expand LSEQ (letter sequence) to words

- Your algorithm must handle these examples
 - IBM
 - DVD
 - UN
 - ABC

Write an algorithm to expand NUM (cardinal number) to words

- Your algorithm must handle these examples
 - 7
 - 2
 - -9
 - 3.1
 - 99.9

Write an algorithm to expand PRCT (percentage) to words

- Your algorithm must handle these examples
 - 50%
 - -30%
 - 4.5%