

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «Київський політехнічний інститут»

інформатики та обчислювальної техніки назва факультету (інституту))

РЕКТОРСЬКИЙ КОНТРОЛЬ ВЕСНА ' 2007

для студентів IV курсу

	обчислювальної техніки
	(назва кафедри)
	= 0.01=0.1
	7.091501 (код спеціальності)
	(код спеціальності)
	Комп'ютерні системи та мережі
	(назва спеціальності)
	Комп'ютерні системи
	(назва дисципліни)
D	
	ва Ольга Веніамінівна 454-9338 обник дисципліни (ПІБ), конт. телефони)
(posp	ооник дисциплини (1116), конт. телефони)
ЗАТВЕРДЖУЮ	
DAIDEPAMIO	
Завідувач кафедри	
	Луцький Г.М.
(підпие)	(прізвище та ініціали)
(///	(F
	«»2007 року

Для заданої топології мультикомп'ютерної

системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D = \max\{r_{ij}\}$, де r_{ij} – мінімальна відстань між і-м та j-м вузлами системи, n – кількість вузлів системи, і=1..n, ј=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8	9
1		1						1	1
2	1		1						1
3		1		1					1
4			1		1				1
5				1		1			1
6					1		1		1
7						1		1	1
8	1						1		1
9	1	1	1	1	1	1	1	1	

S визначаеться як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицюмінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8	9
1		1	2	2	2	2	2	1	1
2	1		1	2	2	2	2	2	1
3	2	1		1	2	2	2	2	1
4	2	2	1		1	2	2	2	1
5	2	2	2	1		1	2	2	1
6	2	2	2	2	1		1	2	1
7	2	2	2	2	2	1		1	1
8	1	2	2	2	2	2	1		1
9	1	1	1	1	1	1	1	1	

Відповідь:

$$D=2$$

$$D_s = 1.555$$

$$S=8$$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1		1	1			
2	1		1			1		
3		1		1			1	
4	1		1					1
5	1					1		1
6		1			1		1	
7			1			1		1
8				1	1		1	

S визначаеться як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	1	1	2	3	2
2	1		1	2	2	1	2	3
3	2	1		1	3	2	1	2
4	1	2	1		2	3	2	1
5	1	2	3	2		1	2	1
6	2	1	2	3	1		1	2
7	3	2	1	2	2	1		1
8	2	3	2	1	1	2	1	

Відповідь:

$$D=3$$

$$D_s = 1.714$$

$$S=3$$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де $r_{ij}-$ мінімальна відстань між і-м та j-м вузлами системи, n- кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S — ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8	9	10
1		2	1	1	2	1	2	2	2	2
2	2		2	1	1	2	1	2	2	2
3	1	2		2	1	2	2	1	2	2
4	1	1	2		2	2	2	2	1	2
5	2	1	1	2		2	2	2	2	1
6	1	2	2	2	2		1	2	2	1
7	2	1	2	2	2	1		1	2	2
8	2	2	1	2	2	2	1		1	2
9	2	2	2	1	2	2	2	1		1
10	2	2	2	2	1	1	2	2	1	

Відповідь:

D=2

 $D_s = 1.666$

T=1.111

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- середній діаметр системи (D_s);
- ступінь системи (S);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де $r_{ij}-$ мінімальна відстань між і-м та j-м вузлами системи, n- кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6
1		1	1			
2	1		1	1	1	
3	1	1			1	1
4		1			1	
5		1	1	1		1
6			1		1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6
1		1	1	2	2	2
2	1		1	1	1	2
3	1	1		2	1	1
4	2	1	2		1	2
5	2	1	1	1		1
6	2	2	1	2	1	

Відповідь:

$$D_s=1.4$$

$$S=4$$

$$T=0.7$$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S – ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6
1		1	1	1	2	2
2	1		1	2	1	2
3	1	1		2	2	1
4	1	2	2		1	1
5	2	1	2	1		1
6	2	2	1	1	1	

Відповідь:

D=2

 $D_{s}=1.4$

T=0.933

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S — ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7
1		1	2	1	1	2	3
2	1		1	2	1	1	2
3	2	1		3	2	1	1
4	1	2	3		1	2	3
5	1	1	2	1		1	2
6	2	1	1	2	1		1
7	3	2	1	3	2	1	

Відповідь:

D=3

 $D_s = 1.619$

T=0.809

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- середній діаметр системи (D_s);
- ступінь системи (S);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Де r_{ij} — мінімальна відстань між і-м та ј-м вузлами системи, n — кількість вузлів системи. Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6
1		1		1		1
2	1		1		1	
3		1		1		
4	1		1		1	
5		1		1		1
6	1				1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6
1		1	2	1	2	1
2	1		1	2	1	2
3	2	1		1	2	3
4	1	2	1		1	2
5	2	1	2	1		1
6	1	2	3	2	1	

Відповідь:

 $D_s = 1.533$

S=3

T=1.022

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де $r_{ij}-$ мінімальна відстань між і-м та j-м вузлами системи, n- кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи. Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7
1		1		1			
2	1		1		1		1
3		1		1			
4	1		1			1	
5		1				1	
6				1	1		1
7		1				1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7
1		1	2	1	2	2	2
2	1		1	2	1	2	1
3	2	1		1	2	2	2
4	1	2	1		2	1	2
5	2	1	2	2		1	2
6	2	2	2	1	1		1
7	2	1	2	2	2	1	

Відповідь:

D=2

 $D_s = 1.571$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- кількість ребер системи (R);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1				1	1	
2	1		1		1		1	1
3		1		1				1
4			1		1			1
5		1		1		1	1	1
6	1				1		1	
7	1	1			1	1		
8		1	1	1	1			

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	3	2	1	1	2
2	1		1	2	1	2	1	1
3	2	1		1	2	3	2	1
4	3	2	1		1	2	2	1
5	2	1	2	1		1	1	1
6	1	2	3	2	1		1	2
7	1	1	2	2	1	1		2
8	2	1	1	1	1	2	2	

Відповідь:

D=3

R = 15

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- кількість ребер системи (R);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1		1				
2	1		1	1	1			
3		1			1			
4	1	1			1	1	1	
5		1	1	1			1	1
6				1			1	
7				1	1	1		1
8					1		1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	1	2	2	2	3
2	1		1	1	1	2	2	2
3	2	1		2	1	3	2	2
4	1	1	2		1	1	1	2
5	2	1	1	1		2	1	1
6	2	2	3	1	2		1	2
7	2	2	2	1	1	1		1
8	3	2	2	2	1	2	1	

D.	•
Відп	овідь

D=3

R = 13

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де $r_{ij}-$ мінімальна відстань між і-м та j-м вузлами системи, n- кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи. Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1		1		1		
2	1		1				1	
3		1			1			1
4	1				1	1		
5			1	1				1
6	1			1			1	
7		1				1		1
8			1		1		1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	1	2	1	2	3
2	1		1	2	2	2	1	2
3	2	1		2	1	3	2	1
4	1	2	2		1	1	2	2
5	2	2	1	1		2	2	1
6	1	2	3	1	2		1	2
7	2	1	2	2	2	1		1
8	3	2	1	2	1	2	1	

Відповідь:

D=3

 $D_s = 1.642$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи. Для визначення S побудуємо матрицю

суміжностей:

	1	2	3	4	5	6	7	8
1			1	1				
2				1	1		1	1
3	1				1	1	1	
4	1	1						
5		1	1					
6			1					1
7		1	1					
8		1				1		

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		2	1	1	2	2	2	3
2	2		2	1	1	2	1	1
3	1	2		2	1	1	1	2
4	1	1	2		2	3	2	2
5	2	1	1	2		2	2	2
6	2	2	1	3	2		2	1
7	2	1	1	2	2	2		2
8	3	1	2	2	2	1	2	

Відповідь:

D=3

 $D_s = 1.714$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- ступінь системи (S);
- кількість ребер системи (R).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8	9
1				1	1				
2					1	1			
3						1			
4	1						1	1	
5	1	1						1	1
6		1	1						1
7				1					
8				1	1				
9					1	1			

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8	9
1		2	4	1	1	3	2	2	2
2	2		2	3	1	1	4	2	2
3	4	2		5	3	1	6	4	2
4	1	3	5		2	4	1	1	3
5	1	1	3	2		2	3	1	1
6	3	1	1	4	2		5	3	1
7	2	4	6	1	3	5		2	4
8	2	2	4	1	1	3	2		2
9	2	2	2	3	1	1	4	2	

D •	•	
KITH	JDITL	•
идис	відь	•

D=6

S=4

R = 10

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- середній діаметр системи (D_s);
- ступінь системи (S);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи. Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8	9
1		1			1				
2	1		1						
3		1			1				
4					1				
5	1		1	1		1	1		1
6					1				
7					1			1	
8							1		1
9					1			1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8	9
1		1	2	2	1	2	2	3	2
2	1		1	3	2	3	3	4	3
3	2	1		2	1	2	2	3	2
4	2	3	2		1	2	2	3	2
5	1	2	1	1		1	1	2	1
6	2	3	2	2	1		2	3	2
7	2	3	2	2	1	2		1	2
8	3	4	3	3	2	3	1		1
9	2	3	2	2	1	2	2	1	

Відповідь:

 $D_s=2$

S=6

T=0.666

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S – ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8	9
1		1	2	3	2	3	2	1	1
2	1		1	2	3	4	3	2	2
3	2	1		1	2	3	2	3	1
4	3	2	1		1	2	3	4	2
5	2	3	2	1		1	2	3	1
6	3	4	3	2	1		1	2	2
7	2	3	2	3	2	1		1	1
8	1	2	3	4	3	2	1		2
9	1	2	1	2	1	2	1	2	

D •	•	
Кіппо	DITI	•
Відпо	рідр	•

D=4

 $D_s=2$

T=1

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- кількість ребер системи (R);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1				1		
2	1		1					
3		1		1				
4			1		1			
5				1		1		
6	1				1		1	1
7						1		1
8						1	1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	3	2	1	2	2
2	1		1	2	3	2	3	3
3	2	1		1	2	3	4	4
4	3	2	1		1	2	3	3
5	2	3	2	1		1	2	2
6	1	2	3	2	1		1	1
7	2	3	4	3	2	1		1
8	2	3	4	3	2	1	1	

D •	•	
KITHA	DITI	•
Відпо	ыдь	•
r 1	r 1	

D=4

R=9

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- середній діаметр системи (D_s);
- ступінь системи (S);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Де r_{ij} – мінімальна відстань між і-м та ј-м вузлами системи, n – кількість вузлів системи. Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6
1		1		1		
2	1		1			
3		1		1		
4	1		1		1	1
5				1		
6				1		

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6
1		1	2	1	2	2
2	1		1	2	3	3
3	2	1		1	2	2
4	1	2	1		1	1
5	2	3	2	1		2
6	2	3	2	1	2	

Відповідь:

 $D_s = 1.733$

S=4

T=0.867

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S – ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6
1		2	1	2	3	3
2	2		1	2	3	3
3	1	1		1	2	2
4	2	2	1		1	1
5	3	3	2	1		2
6	3	3	2	1	2	

Відповідь:

D=3

 $D_s = 1.933$

T=1.289

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- ступінь системи (S);
- кількість ребер системи (R).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} – мінімальна відстань між і-м та j-м вузлами системи, n – кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8	9
1		1	1					1	
2	1			1					1
3	1				1				
4		1			1				
5			1	1		1	1		
6					1			1	
7					1				1
8	1					1			1
9		1					1	1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8	9
1		1	1	2	2	2	3	1	2
2	1		2	1	2	3	2	2	1
3	1	2		2	1	2	2	2	3
4	2	1	2		1	2	2	3	2
5	2	2	1	1		1	1	2	2
6	2	3	2	2	1		2	1	2
7	3	2	2	2	1	2		2	1
8	1	2	2	3	2	1	2		1
9	2	1	3	2	2	2	1	1	

T .	•	
Кіппо	DITI	•
Відпо	рідр	•
r 1	r 1	

D=3

S=4

R=12

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S);

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1				1				
2				1	1			
3					1			
4	1	1				1	1	
5		1	1				1	1
6				1				
7				1	1			
8					1			

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		2	4	1	3	2	2	4
2	2		2	1	1	2	2	2
3	4	2		3	1	4	2	2
4	1	1	3		2	1	1	3
5	3	1	1	2		3	1	1
6	2	2	4	1	3		2	4
7	2	2	2	1	1	2		2
8	4	2	2	3	1	4	2	

Відповідь:

D=4

 $D_s = 2.14$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S);

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7
1		1	1	1			
2	1			1			
3	1			1			
4	1	1	1		1	1	1
5				1			1
6				1			1
7				1	1	1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7
1		1	1	1	2	2	2
2	1		2	1	2	2	2
3	1	2		1	2	2	2
4	1	1	1		1	1	1
5	2	2	2	1		2	1
6	2	2	2	1	2		1
7	2	2	2	1	1	1	

Відповідь:

D=2

 $D_s = 1.524$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- ступінь системи (S);
- кількість ребер системи (R).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8	9
1		1	1	1					
2	1		1		1	1			
3	1	1		1	1				
4	1		1		1			1	
5		1	1	1		1	1	1	
6		1			1		1		1
7					1	1		1	1
8				1	1		1		1
9						1	1	1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8	9
1		1	1	1	2	2	3	2	3
2	1		1	2	1	1	2	3	2
3	1	1		1	1	2	2	2	3
4	1	2	1		1	2	2	1	2
5	2	1	1	1		1	1	1	2
6	2	1	2	2	1		1	2	1
7	3	2	2	2	1	1		1	1
8	2	3	2	1	1	2	1		1
9	3	2	3	2	2	1	1	1	

D.	•
Відпо	IRITL
иди	лици

D=3

S=6

R=18

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S);

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8	9
1		1	1	1					1
2	1		1		1				
3	1	1		1	1				
4	1		1		1				
5		1	1	1		1	1	1	
6					1		1		1
7					1	1		1	1
8					1		1		1
9	1					1	1	1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8	9
1		1	1	1	2	2	2	2	1
2	1		1	2	1	2	2	2	2
3	1	1		1	1	2	2	2	2
4	1	2	1		1	2	2	2	2
5	2	1	1	1		1	1	1	2
6	2	2	2	2	1		1	2	1
7	2	2	2	2	1	1		1	1
8	2	2	2	2	1	2	1		1
9	1	2	2	2	2	1	1	1	

Відповідь:

D=2

 $D_{s}=1.5$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S – ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7
1		1	1	1	2	2	2
2	1		2	2	1	1	3
3	1	2		2	3	1	3
4	1	2	2		3	1	1
5	2	1	3	3		2	4
6	2	1	1	1	2		2
7	2	3	3	1	4	2	

Відповідь:

D=4

 $D_s = 1.905$

T=1.270

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- ступінь системи (S);
- кількість ребер системи (R).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} – мінімальна відстань між і-м та j-м вузлами системи, n – кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1						
2	1		1	1				1
3		1		1				
4		1	1		1	1		
5				1		1		
6				1	1		1	1
7						1		
8		1				1		

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	2	3	3	4	2
2	1		1	1	2	2	3	1
3	2	1		1	2	2	3	2
4	2	1	1		1	1	2	2
5	3	2	2	1		1	2	2
6	3	2	2	1	1		1	1
7	4	3	3	2	2	1		2
8	2	1	2	2	2	1	2	

T .	•	
Кіппо	DITI	•
Відпо	рідр	•
r 1	r 1	

D=4

S=4

R = 10

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- ступінь системи (S);
- кількість ребер системи (R).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} – мінімальна відстань між і-м та j-м вузлами системи, n – кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1	1		1			1
2	1			1		1	1	
3	1			1		1	1	
4		1	1		1			1
5	1			1		1	1	
6		1	1		1			1
7		1	1		1			1
8	1			1		1	1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	1	2	1	2	2	1
2	1		2	1	2	1	1	2
3	1	2		1	2	1	1	2
4	2	1	1		1	2	2	1
5	1	2	2	1		1	1	2
6	2	1	1	2	1		2	1
7	2	1	1	2	1	2		1
8	1	2	2	1	2	1	1	

Відповідь:

D=2

S=4

R = 16

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S — ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6
1		1	1	2	1	1
2	1		1	1	2	1
3	1	1		1	1	2
4	2	1	1		1	1
5	1	2	1	1		1
6	1	1	2	1	1	

Відповідь:

D=2

 $D_s=1.2$

T=0.6

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S);

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7
1		1	1				
2	1		1	1			
3	1	1		1			
4		1	1		1	1	
5				1		1	1
6				1	1		1
7					1	1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7
1		1	1	2	3	3	4
2	1		1	1	2	2	3
3	1	1		1	2	2	3
4	2	1	1		1	1	2
5	3	2	2	1		1	1
6	3	2	2	1	1		1
7	4	3	3	2	1	1	

Відповідь:

D=4

 $D_s = 1.810$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S – ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8	9
1		1	2	1	3	3	2	3	4
2	1		1	1	2	2	2	3	3
3	2	1		2	1	1	2	2	2
4	1	1	2		2	3	1	2	3
5	3	2	1	2		2	1	2	3
6	3	2	1	3	2		2	1	1
7	2	2	2	1	1	2		1	2
8	3	3	2	2	2	1	1		1
9	4	3	2	3	3	1	2	1	

Відповідь:

D=4

 $D_s = 1.944$

T=1.296

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- середній діаметр системи (D_s);
- ступінь системи (S);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи. Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7
1		1		1			
2	1		1	1			
3		1		1			
4	1	1	1		1	1	1
5				1			
6				1			
7				1			

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7
1		1	2	1	2	2	2
2	1		1	1	2	2	2
3	2	1		1	2	2	2
4	1	1	1		1	1	1
5	2	2	2	1		2	2
6	2	2	2	1	2		2
7	2	2	2	1	2	2	

Відповідь:

 $D_s = 1.619$

S=6

T=0.540

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S — ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	2	1	2	2	1
2	1		1	2	2	1	2	2
3	2	1		1	2	2	1	2
4	2	2	1		1	2	2	1
5	1	2	2	1		1	2	2
6	2	1	2	2	1		1	2
7	2	2	1	2	2	1		1
8	1	2	2	1	2	2	1	

Відповідь:

D=2

 $D_s = 1.571$

T=1.047

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- середній діаметр системи (D_s);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи. Для визначення S побудуємо матрицю

суміжностей:

	1	2	3	4	5	6	7	8
1		1	1		1			
2	1		1	1				
3	1	1		1				
4		1	1					1
5	1					1	1	
6					1		1	1
7					1	1		1
8				1		1	1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	1	2	1	2	2	3
2	1		1	1	2	3	3	2
3	1	1		1	2	3	3	2
4	2	1	1		3	2	2	1
5	1	2	2	3		1	1	2
6	2	3	3	2	1		1	1
7	2	3	3	2	1	1		1
8	3	2	2	1	2	1	1	

Відповідь:

$$D=3$$

$$D_s = 1.786$$

$$S=3$$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1					1	
2	1		1					1
3		1		1	1			
4			1			1		
5			1			1		
6				1	1		1	
7	1					1		1
8		1					1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	3	3	2	1	2
2	1		1	2	2	3	2	1
3	2	1		1	1	2	3	2
4	3	2	1		2	1	2	3
5	3	2	1	2		1	2	3
6	2	3	2	1	1		1	2
7	1	2	3	2	2	1		1
8	2	1	2	3	3	2	1	

Відповідь:

D=3

 $D_s = 1.857$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- ступінь системи (S);
- кількість ребер системи (R).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1		1				1
2	1		1					
3		1		1				
4	1		1		1			
5				1		1		1
6					1		1	
7						1		1
8	1				1		1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	1	2	3	2	1
2	1		1	2	3	4	3	2
3	2	1		1	2	3	4	3
4	1	2	1		1	2	3	2
5	2	3	2	1		1	2	1
6	3	4	3	2	1		1	2
7	2	3	4	3	2	1		1
8	1	2	3	2	1	2	1	

Віді	повідь	

D=4

S=3

R = 10

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S – ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	2	1	2	2	1
2	1		1	2	2	3	3	2
3	2	1		1	2	3	3	2
4	2	2	1		1	2	2	1
5	1	2	2	1		1	2	2
6	2	3	3	2	1		1	2
7	2	3	3	2	2	1		1
8	1	2	2	1	2	2	1	

Відповідь:

$$D=3$$

$$D_s = 1.786$$

$$T=1.19$$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- ступінь системи (S);
- кількість ребер системи (R).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D = \max\{r_{ij}\}$, де r_{ij} – мінімальна відстань між і-м та j-м вузлами системи, n – кількість вузлів системи, і=1..n, ј=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1		1				
2	1					1	1	
3				1		1	1	
4	1		1					
5						1		1
6		1	1		1			
7		1	1					1
8					1		1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	1	3	2	2	3
2	1		2	2	2	1	1	2
3	2	2		1	2	1	1	2
4	1	2	1		3	2	2	3
5	3	2	2	3		1	2	1
6	2	1	1	2	1		2	2
7	2	1	1	2	2	2		1
8	3	2	2	3	1	2	1	

Відповідь	:
D=3	
7 0	

R = 10

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S — ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	1	2	2	3	3
2	1		1	2	2	3	4	3
3	2	1		2	1	3	3	2
4	1	2	2		1	1	2	2
5	2	2	1	1		2	2	1
6	2	3	3	1	2		1	2
7	3	4	3	2	2	1		1
8	3	3	2	2	1	2	1	

Відповідь:

D=4

 $D_s = 1.964$

T=1.31

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- ступінь системи (S);
- кількість ребер системи (R).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де r_{ij} — мінімальна відстань між і-м та j-м вузлами системи, n — кількість вузлів системи, i=1..n, j=1..n-1

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

R=8

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1		1				1
2	1							
3				1				
4	1		1		1			
5				1		1		1
6					1			
7								1
8	1				1		1	

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	1	2	3	2	1
2	1		3	2	3	4	3	2
3	2	3		1	2	3	4	3
4	1	2	1		1	2	3	2
5	2	3	2	1		1	2	1
6	3	4	3	2	1		3	2
7	2	3	4	3	2	3		1
8	1	2	3	2	1	2	1	

Відповідь :	
D=4	
S=3	

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- ступінь системи (S).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи D= $\max\{r_{ij}\}$, де r_{ij} – мінімальна відстань між і-м та j-м вузлами системи, n – кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$.

Ступінь системи (S) це максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення S побудуємо матрицю суміжностей:

	1	2	3	4	5	6	7	8
1		1	1		1			
2	1		1	1			1	
3	1	1				1		1
4		1			1		1	
5	1			1		1	1	1
6			1		1			1
7		1		1	1			
8			1		1	1		

S визначається як максимальна сума одиниць в рядку матриці

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	1	2	1	2	2	2
2	1		1	1	2	2	1	2
3	1	1		2	2	1	2	1
4	2	1	2		1	2	1	2
5	1	2	2	1		1	1	1
6	2	2	1	2	1		2	1
7	2	1	2	1	1	2		2
8	2	2	1	2	1	1	2	

Відповідь:

D=2

 $D_{s}=1.5$

Для заданої топології мультикомп'ютерної системи обчислити наступні параметри:

- діаметр системи (D);
- середній діаметр системи (D_s);
- топологічний трафік системи (Т).

Еталонне розв'язання завдання:

Діаметр системи (D) це мінімальна відстань між двома найбільш віддаленими вузлами системи $D=\max\{r_{ij}\}$, де $r_{ij}-$ мінімальна відстань між і-м та j-м вузлами системи, n- кількість вузлів системи, i=1..n, j=1..n-1

Середній діаметр (D_s) визначається за формулою: $D_s = \sum_{i=1}^n \sum_{j=1}^{n-1} \frac{r_{ij}}{n \cdot (n-1)}$

Топологічний трафік системи (T) визначається за формулою: $T = \frac{2D_s}{S}$,

де S – ступінь системи, який визначається як максимальна кількість ребер інцедентних вузлу графа системи.

Для визначення D та D_s побудуємо матрицю мінімальних відстаней між вузлами системи:

	1	2	3	4	5	6	7	8
1		1	2	3	2	1	2	1
2	1		1	2	1	2	3	2
3	2	1		1	2	3	2	1
4	3	2	1		1	2	1	2
5	2	1	2	1		1	2	3
6	1	2	3	2	1		1	2
7	2	3	2	1	2	1		1
8	1	2	1	2	3	2	1	

Відповідь:

D=3

$$D_s = 1.714$$

T=1.143