Минимальные и максимальные элементы

Элемент $a \in M$ называется *максимальным элементом* упорядоченного множества (M, R), если не существует такого элемента $y \in M$ $(a \neq y)$, что aRy.

Другими словами, a есть максимальный элемент, если не существует отличного от a элемента, c которым элемент a находится в отношении R.

Элемент $a \in M$ называется *минимальным* элементом множества (M, R), если не существует такого элемента $y \in M$ $(a \neq y)$, что yRa.

То есть, *а* есть *минимальный элемент*, если не существует элемента, *который* находится в отношении R с элементом *а*.

Пример 1: $M=\{2,3,4,6,7,9,12\}, xRy \Leftrightarrow y/x$ – целое число

- *Максимальные элементы* {7, 12, 9} Каждый из этих элементов не находится в отношении R ни с каким другим элементом множества М.
- *Максимальные элементы* {2, 3, 7} Каждый из этих элементов не находится в отношении R ни с каким другим элементом множества М.

В любом конечном упорядоченном множестве есть и максимальные и минимальные элементы.

Диаграмма Хассэ примера 1

Пример 2: В множестве (\mathbb{Z} , \leq) нет ни максимальных, ни минимальных элементов

Наибольшие и наименьшие элементы

Элемент $a \in M$ называется *наибольшим элементом* упорядоченного множества (M, R), если для каждого элемента $y \in M$ выполняется yRa, и наименьшим элементом, если для каждого $y \in M$ выполняется aRy.

Другими словами, *наибольший элемент* это такой элемент, *с которым* все элементы множества находятся в отношении R. *Наименьший элемент* – тот *который* находится в отношении R со всеми элементами множества.

Пример 1:
$$M=\{1,2,3,4,6,7\}, xRy \Leftrightarrow y/x$$
 – целое (рис.1)

- *Наибольшего элемента нет* (т.к. нет элемента, с которым все элементы множества М находятся в отношении R
- *Наименьший элемент единица* (т.к. этот элемент находится в отношении R со всеми остальными элементами множества M.

Пример 2: $M=\{1,2,3,4,6,7\}, xRy \iff x \le y \text{ (рис.2)}$

Пример 3: В множестве (N, ≤) есть наименьший элемент, наибольшего элемента нет.

Пусть A и B – множества, $f \subseteq A \times B$.

Отношение f между множествами A и B называется ϕ ункциональным отношением (или ϕ ункцией), если ∂ ля каждого элемента $x \in A$ существует eдинственный элемент $y \in B$, такой что xfy. Функция f из A в B обозначается как $f: A \to B$.

Если $f: A \to B$ – функция и xfy, то пишут y = f(x).

Множество A называют *областью определения* функции f.

Если $X \subseteq A$, то множество $f(X) = \{y \in B | f(x) = y$ для некоторого $x \in X\}$ называется образом множества X (рис.1)

Образ всего множества A называется областью значений функции f (рис.2)

Функция $f: A \to B$ называется также **отображением**, при этом говорят, что функция f **отображает** A в B.

1) Функция $f: A \to B$ — называется **инъективной** (или **инъекцией**), если

$$f(x_1) = f(x_2) \rightarrow x_1 = x_2$$
 $(x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

Если A и B — конечные множества и функция $f: A \to B$ есть инъекция, то $|A| \le |B|$

2) Функция $f: A \to B$ — называется *сюръективной* (или *сюръекцией*), если для каждого $y \in B$ найдется некоторый $x \in A$, такой что f(x) = y.

Если A и B – конечные множества и функция $f: A \to B$ есть сюръекция, то $|A| \ge |B|$

3) Функция, которая является одновременно и инъективной и сюръективной называется взаимно однозначным соответствием или биекцией.

Биекцию называют также 1-1 функцией.

Если функция $f: A \to B$ есть биекция, то обратное отношение f^{-1} есть функция из В в А, причем биекция.

Если A и B – конечные множества и функция $f: A \to B$ есть биекция, то |A| = |B|

Сравнение бесконечных множеств

Множества A и B называют *равномощными*, если существует биекция $f: A \to B$. В этом случае пишут |A| = |B|.

Равномощность есть отношение между множествам. Каковы свойства этого отношения?

- Отношение равномощности *рефлексивно:* каждое множество равномощно самому себе.
- Отношение *симметрично*: если множество A равномощно множеству B, то и множество B равномощно A.
- Отношение *танзитивно*:. если |A| = |B| и |B| = |C|, то |A| = |C|

Следовательно отношение равномощности есть эквивалентность на множестве 2^{U} любого универса U.

- Если существует биекция $f: A \to B$, то |A| = |B|.
- Если существует инъекция $f: A \to B$, то говорят, что мощность множества А не больше мощности множества В: $|A| \le |B|$.

Сравнение бесконечных множеств

Пример: Множество точек любых двух отрезков равномощны т.е. |[a,b]| = |[c,d]|

Пример: Покажем, что |N|=|Z|.

Z	0	-1	1	-2	2		-Z	Z	
‡	‡	‡	‡	‡	‡	= 4	‡	‡	
N	1	2	3	4	5		2 z :	2n+1	

$$f(z) = \begin{cases} 2z + 1, z \ge 0 \\ 2|z|, z < 0 \end{cases}$$

 $f: Z \rightarrow N$ – есть биекция

Счетные множества

Каждое множество A, равномощное множеству N натуральных чисел называется *счетным*.

Если множество A счетно, то существует биекция $f: \mathbb{N} \to A$,и элементы множества A можно расположить в последовательность $A = \{f(1), f(2), f(3), ...\}$

И наоборот, если элементы множества A образуют бесконечную последовательность $A = \{a_1, a_2, a_3, ...\}$, то отображение $f(a_i) = i$ есть биекция множества A в N.

Другими словами множество счетно, если его элементы можно расположить в бесконечную последовательность

Примеры счетных множеств:

- Множество ℤ счетно, то есть |N /=/ Z/.
- Множество \mathbb{N}^2 счетно.
- Множество Q рациональных чисел счетно.

Счетные множества

Покажем, что множество \mathbb{N}^2 счетно.

Множество $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ - есть множество пар вида (n, m), где $n, m \in \mathbb{N}$.

Рассмотрим сумму (m + n) = k. При каждом k число таких пар будет равно (k - 1).

Расположим все пары по возрастанию суммы (m+n). Если суммы одинаковы, то по возрастанию первых элементов пар.

В результате получим бесконечную последовательность:

$$(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), \dots$$

Очевидно, что каждая пара встретится в этой последовательности, причем один раз.

Счетные множества

Докажем, что множество $\mathbb Q$ рациональных чисел счетно.

Пусть \mathbb{Q}^+ - множество, состоящее из всех *положительных рациональных чисел*.

Каждое такое число можно однозначно представить $\frac{d}{dt}$, каждой такой дроби можно поставить в соответствие пару $(a, b) \in \mathbb{N}^2$.

Существует *инъекция* из
$$\mathbb{Q}^+$$
 в $\mathbb{N}^2 \Rightarrow |\mathbb{Q}^+| \leq |\mathbb{N}^2| = |\mathbb{N}|$
С другой стороны $\mathbb{N} \subseteq \mathbb{Q}^+ \Rightarrow |\mathbb{N}| \leq |\mathbb{Q}^+|$

Множество \mathbb{Q}^+ - счетно, и его элементы можно расположить в последовательность:

$$\mathbb{Q}^+ = \{a_1, a_2, a_3, \dots\}.$$

Вставим в эту последовательность после каждого числа a_i тоже число со знаком минус, добавив 0 в качестве первого элемента:

$$\mathbb{Q} = \{0, a_1, -a_1, a_2, -a_2, a_3, -a_3 \dots\}$$

СВОЙСТВА СЧЕТНЫХ МНОЖЕСТВ

Свойство 1. Любое подмножество счетного множества конечно или счетно.

Доказательство: Пусть А – счетное множество, В – некоторое подмножество А.

Множество А – счетно

Элементы А можно занумеровать:

$$A = \{a_1, a_2, a_3, \dots\}$$

$$B = \{a_{k1}, a_{k2}, a_{k3}, \dots\}$$

Если среди чисел k_1 , k_2 , k_3 - есть наибольшее, то множество **В конечно**.

Если нет – В счетно, так как его элементы образуют бесконечную последовательность и каждый элемент имеет свой уникальный номер. .

Свойство 2. Любое бесконечное множество содержит счетное подмножество.

Иногда говорят, что счетное множество является «самым маленьким» из бесконечных множеств, т.е. обладает наименьшей мощностью.

Доказательство: Пусть M – бесконечное множество. Выберем в нем элемент a_1 , затем $a_2 \neq a_1$, затем $a_3 \neq a_2 \neq a_1$ и т.д. Продолжая этот процесс, который не может оборваться из-за нехватки элементов в силу бесконечности множества М, мы получаем подмножество $A = \{a_1, a_2, a_3, ...\}$. Это подмножество счетно, так как его элементы занумерованы.

СВОЙСТВА СЧЕТНЫХ МНОЖЕСТВ

Свойство 3. Объединение любого конечного либо счетного числа счетных множеств есть счетное множество.

Доказательство: 1) Пусть A_1, A_2, A_3, \ldots – попарно не пересекающиеся счетные множества. Запишем элементы этих множеств в виде таблицы

A ₁	a ₁₁ —	$\rightarrow a_{12}$	a ₁₃	$\Rightarrow a_{14}$	•••
A ₂	a ₂₁	A 22	a ₂₃	a ₂₄	•••
A_3	a ₃₁	a ₃₂	a ₃₃	a ₃₄	•••
A_4	a ₄₁	a ₄₂	a ₄₃	a ₄₄	•••
•••	•••	•••	•••	•••	•••

2) Если эти множества пересекаются, то в этом случае следует рассматривать множества $A_1, A_2 - A_1, A_3 - (A_1 \cup A_2)$ и т.д. Эти множества не пересекаются , каждое из них не более чем счетно и их объединение равно объединению множеств A_1, A_2, A_3, \dots