NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING

SEMESTER I (2008-2009) EXAMINATION FOR

CS4212 COMPILER DESIGN

December 2008	Time Allowed: 2 Hou
= ••••······	1 11110 1 1110 1 0

INSTRUCTIONS TO CANDIDATES

- 1) This examination paper contains FIVE questions and comprises SIXTEEN printed pages.
- 2) Answer ALL the questions in the spaces provided.
- 3) This is an **OPEN-BOOK** examination.
- 4) The maximum mark of this paper is 100%.
- 5) The questions are **not** arranged according to the order of increasing difficulty.

Matriculation Number:

	For Examiner's Use Only		
Question	Maximum	Marks	Check
Q1(a,b)	12	_	
Q1(c,d)	16		
Q1(e)	7		
Q2(a)[a,b]	11		
Q2(b)	10		
Q3	7		
Q4(a)	7		<u> </u>
Q4(b)	7		
Q5(a)	8		
Q5(b)	7		
Q5(c)	8		
TOTAL:	100		

This space is intentionally left blank.

1. Consider the following CFG:

$$S \rightarrow A$$
\$

$$A \rightarrow B$$

$$A \rightarrow B \mathbf{1} A$$

$$B \rightarrow 0$$

(a) [6%] Generate the set of items (specifically, LR(0) items) from the above rules. The first item is given as $S \to A$ \$

Ans:

(b) [6%] Build the set of closures from the set of items.

(c)[8%] Build (by drawing) a DFA out of the set of closures.

(d) [8%] Construct a parse table from the DFA built.

Ans:

	0	1	\$	A	В
1					
2					
3					
			_		

(e) [7%] There exists some conflict in the parse table you have just built. Identify at least one such conflict and explain clearly how it can be resolved.Ans: 2. Given a CFG G, for any non-terminal A in G, we say that A is **nullable** if and only if it can derive a null string (i.e., empty string, ε). Moreover, we say that the **first-set** associated with A is the set of tokens (including the empty string) that can begin a string derivable from A. We say that the **follow-set** associated with A is the set of tokens (excluding the empty string) that can come after A in a sentential form; and if A can appear last in a sentential form, then its **follow-set** includes \$, representing the endmarker. (Reference: page 220 of the textbook, slides 7 – 12 of the lecture note w6.pdf.) Consider the following CFG ζ containing three non-terminals, S, T, E:

$$S \rightarrow 0E1TS \mid TT \mid 2$$

 $T \rightarrow 3S \mid \varepsilon$
 $E \rightarrow 4$

- (a) Answer the following questions pertaining to the CFG ζ :
 - a. [3%] Which of these non-terminals are nullable?Ans:

b. [8%] What are the first-sets and follow-sets associated with each of the non-terminals?

	First-set	Follow-set	
E			
T			
S			-

(b) [10%] The definition of the CFG ζ is repeated below for easy reference:

$$S \rightarrow 0E1TS | TT | 2$$

 $T \rightarrow 35 | \epsilon$

 $E \rightarrow 4$

Given a parse tree generated from ζ , we associate each node in the tree with three attributes:

- i) Nullable: A.Nullable returns True if A derives to empty string
- ii) first: A.first returns the first token derivable from A
- iii) follow: A.follow returns the token following immediately from the derivation of A.

Provide a syntax directed definition of these three attributes [Hint: There is no need to follow the left-to-right ordering in computing attributes.]

PRODUCTION	SEMANTIC RULES
$S \rightarrow 0 E 1 T S'$	
S → T T'	
16	

Additional Working space.

PRODUCTION	SEMANTIC RULES
	·
	

3. [7%] Determine the type of the following expression:

fun
$$f(x) = ((fun g(y) = y) x)$$

- 4. Some languages, like PL/I, will coerce a boolean value into an integer, with True identified with 1 and False with 0. For example, 3 < 4 < 5 is grouped left associatively. Moreover, (3 < 4) has the value True, which will be coerced to 1, and 1 < 5 has the value True (rather than 1).
 - (a) [7%] Write a small CFG for accepting expressions of the above form, such that:
 - a. Only "<" operation is available, and the "<" operator is left associative.
 - b. There can be finitely many "<" in the sentence
 - c. All the operands are either "<" operations or identifiers denoted by token id.

(b) [7%] Write translation rules for expressions defined by your CFG. Your translation rules will produce three-address code, which will also produce code that coerces Boolean values to integers when necessary. The format of the coercion instruction is given as follows:

X := (int) Y

- 5. This question is about register allocation.
 - (a) [8%] Consider the following block of code very similar to three-address code:

Suppose that variables d, j, and u are expected to be live at the end of the block. Perform a live variable analysis to determine the sets of live variables before and after each statement. Write your answer in the table provided below.

Statements	Live variable information
g := j + 4	
h := u * 10	
y := g - h	
e := arr [j+8]	
a := arr[j+12]	
b := arr[y]	
c := e + 8	
d := c	
u := a + 4	
j := b * 3	
	d, j, u

(b) [7%] Given the following sets of variables, where variables in each set are live simultaneously.

$$\{x,y,f\},\ \{x,y,z\},\ \{c,y,z\},\ \{u,y,z\},\ \{u,v,z\},\ \{u,v,j\}$$

Assuming that all variables used are symbolic registers.

Generate a register-interference graph from these sets.

(c) [8%] Consider the following register-interference graph,

What is the minimum number of registers required to be allocated in order to ensure that there is no spilling effect in register allocation? Support your answer with a detailed labeling of physical registers (e.g., R1, R2, ...) to each node in the register-interference graph. Write your answer at the end of the following page.

[Working draft 1]

[Working draft2]

[Working draft 3]

[Your answer]

The minimum number of registers required is:

The final register allocations are as follows:

This space is intentionally left blank.