Segmentez des clients d'un site e-commerce

Projet 4 parcours IML OpenClassrooms juillet 2022

TABLE DES MATIÈRES

Contexte et problématique

Préparation et exploration des données

Segmentation avec RFM features

Segmentation avec KMeans algorithme

Sensibilité temporelle du modèle

Conclusion

Introduction

Contexte

Problématique

Objectif

Contexte

- Toute entreprise aspire à un retour de ces clients afin d'exploiter mieux leurs comportements
- ❖ Dans le cas des sites d'e-commerces, les entreprises préconisent la segmentation pour réduire les ressources allouées et viser de façon efficace leurs clients.
- La segmentation des clients consiste à découper automatiquement un dataset en sous-ensemble homogènes
- Ce types de segments constituent la base d'exploitation des campagnes de communication des équipes de marketing,

Problématique et objectif

Mission de consultant pour Olist, une entreprise de vente e-commerce

Objectifs:

- Fournir aux équipes d'e-commerce une segmentation de l'ensemble de ses clients pour les campagnes de communication
- Comprendre les différentes caractéristiques d'utilisateurs
- Etablir une description exploitable de la segmentation
- Etablir une période de maintenance de la segmentation

Préparation et exploration

Cleaning et exploration

Feature engineering

Cleaning et exploration

Données réparties en 9 tables: clients / géolocalisation / commandes / paiements / produits / vendeurs / catégories de produits

Principales tâches

- Types de données
- Imputation des données manquantes
- suppression des colonnes non importantes
- Analyse exploratoire
- Création de nouvelles features
- Création d'un dataset de clients étendue.
- ACP réduction

Feature engineering

Features caractérisant le comportement des clients

- Nombre d'achats
- Catégories des produits plus condensées
- RFM features
- périodes favorites d'achat (jour, heure, mois)
- Facilités de paiement (moyenne)
- Moyen de paiement (moyenne)
- score moyenne
- Etc

Exploration

Absence de corrélation linéaire poids et volume des produits significativement corrélé

Segmentation RFM features

RFM segmentation

=

- R : nombre de jour écoulé du dernier achat
- F : nombre d'achats effectués.
- 3. M : somme totale dépensée.

RFM-Kmeans clustering

K=5 silhouette maximale (cluster avec peu de clients) K=4 le nombre de cluster choisi

	recency		frequency		monetary		number_customer
	mean	std	mean	std	mean	std	
cluster							
0	12.910595	3.199097	1.123105	0.340857	169.656791	215.163690	37667
1	4.247419	2.409993	1.114302	0.322212	169.284811	209.054645	51145
2	7.645833	4.338122	14.250000	14.034894	23827.422917	20235.140205	24
3	7.689066	4.732042	4.088938	2.164893	1096.495183	1384.908121	3643

- Top-loyal customers : Les promotions ne sont pas nécessaires pour ce type de clients.
- Loyal customers : Aussi les promotions ne sont pas nécessaires pour ce type de clients, des points de fidélité peut suffire pour les garder.
- Churned customers On peut les attirer à reprendre l'abonnement par une proposition de certaines bénéfices attirantes.
- Casual customers : Afin de les encourager, on peut fournir à ce type de clients des bons sous forme de cashback avec un seuil d'éligibilité.

Segmentation avec KMeans algorithme (dataset total)

KMeans clusternig (Elbow method)

- Répartition en 5 cluster 5 : (silhouette score : 0.28)
- * Répartition compacte selon la distance intercluster
- Stabilité à l'initiation

Clustering hiérarchique (5 clusters)

Modèle retenu (Kmeans avec 5 clusters)

5 Clusters identifiés avec des caractéristiques des clients de chaque cluster Projection Radar des features

Averages comparaison of product categories features per Cluster

Modèle retenu (Kmeans avec 5 clusters)

Averages comparaison of numerical features per Cluster

Averages comparaison of categorial features per Cluster

Sensibilité temporelle du modèle

Identification de la période de maintenance:

 Vérification de la stabilité des clients dans le temps, avec ARI score, du coefficient de silhouette sur une durée d'une année tous les 2 mois

- période de mise à jour : 2 mois
- ARI score décroît avec un point d'inflexion au point 2 mois.
- Coefficient de silhouette quasi-stable sur les deux premiers mois

Conclusion

Application des approches de classification non supervisée à un problème métier

L'analyse RFM est plus pratique, permet d'identifier différentes clients (ex: les meilleurs)

L'analyse RFM à des limites lorsque les clients ont un seul achats (frequency proche de 1)

Les algorithmes automatiques sont flexibles avec plus de choix de features

Merci de votre attention!

