EC2 (Elastic Compute Cloud)

EC2 lets you "rent" virtual computers in the cloud.

Think of EC2 instances as virtual machines (VMs) that you can:

- Spin up instantly: Get a new computer ready in minutes.
- **Choose the size:** Pick from tiny ones (like a small laptop) to massive ones with many CPUs and powerful GPUs (like a supercomputer).
- Pay only for what you use: You pay by the hour (or even by the second) for the time the virtual computer is running. When you shut it down, you stop paying for the compute time.
- **Customize:** You can choose the operating system (Linux, Windows), the software installed, and even attach extra storage.

Simple Analogy:

Imagine you walk into a **cloud computer shop**. You say:

"Give me a computer with Ubuntu, 8 GB RAM, 4 CPUs, and a GPU... but I only want it for 3 hours."

AWS says:

"Sure. We'll spin up that computer instantly, charge you just for the time, and shut it down when you're done."

That's EC2.

The "Elastic" in EC2 means it's super flexible – you can easily scale up (get bigger computers or more of them) or scale down (shut them down) based on your needs.

EC2 Instance Has 3 Key Components:

Component	Meaning
AMI (Amazon Machine Image)	Like a pre-installed OS (e.g. Ubuntu 22, Amazon Linux 2)
Instance Type	Hardware power (RAM, CPU, GPU) — like t2.micro , t3.large , p3.2xlarge
Key Pair	SSH access (your password to connect securely)

What Can You Do With EC2?

Use Case	Description
Train machine learning models	Use powerful CPU or GPU machines to run large datasets
⊕ Host websites/apps	Flask, FastAPI, Streamlit, Django, etc.
Run Python scripts on schedule	Automate tasks without keeping your laptop on
Transfer and preprocess large files	Do heavy data operations in the cloud
Deploy Al models	Serve models as APIs with fast response

How is EC2 useful for Data Science?

EC2 is a powerhouse for data scientists because it provides the raw compute power needed for demanding tasks that your local machine might not handle:

- **Big Data Processing:** Running Spark jobs, Dask clusters, or custom Python scripts on datasets that are too large for your laptop's memory.
- Machine Learning Model Training: Especially for deep learning, training models can require specialized hardware like GPUs. EC2 offers instances specifically designed with powerful GPUs (e.g., P, G, or Inf instances).
- Custom Environments: You need a very specific version of Python,
 TensorFlow, PyTorch, or a custom library? You can set up your EC2 instance exactly how you need it.
- **Experimentation & Development:** Spin up an instance, try out a new library or framework, and then terminate it when you're done, without cluttering your local machine.
- **Hosting APIs:** After training a model, you might want to deploy it as a web service (API) for real-time predictions. An EC2 instance can host this API.
- **Running Jupyter Notebooks:** You can set up a Jupyter Notebook server on an EC2 instance, allowing you to access a powerful coding environment from your web browser, even on a less powerful local machine.

▼ Free Tier for Beginners

You can use **EC2 completely free** for up to **750 hours/month** using:

- Instance Type: t2.micro or t3.micro
- OS: Amazon Linux 2, Ubuntu, etc.
- Region: Any (e.g. ap-south-1 = Mumbai)

This is great for:

- Practicing AWS
- Hosting small apps

• Running lightweight ML tasks

Step-by-Step: Launch Your First EC2 Instance

Step 1: Go to EC2

- Login to AWS Console
- In the search bar, type EC2
- Click: EC2 Dashboard → Launch Instance

♦ Step 2: Fill Instance Details

Field	What to Select
Name	my-first-ec2
AMI	Ubuntu Server 22.04
Instance Type	t2.micro (Free Tier)
Key Pair	Create new → Download .pem file (keep it safe!)
Storage	Default (8 GB is fine)
Network Settings	Allow SSH (port 22), HTTP (port 80 if hosting site)
Click	✓ "Launch instance"

In 1–2 minutes, your instance is running!

◆ Step 3: Connect to EC2 (via SSH)

- 1. Open your terminal (CMD, PowerShell, or Git Bash)
- 2. Navigate to where you saved the pem file
- 3. Make sure the file has proper permissions:

chmod 400 my-key.pem

4. Connect using SSH:

ssh -i my-key.pem ubuntu@<EC2-Public-IP>

Now you're inside your cloud computer.

You can now:

- Run Python code
- Install packages (sudo apt update && sudo apt install python3-pip)
- Upload scripts or notebooks
- Train models

EC2 Pricing (Simplified)

Туре	Cost (India)	Best For
t2.micro	₹8/hour (~₹500/month)	Free tier eligible (750 hrs free).
g4dn.xlarge (GPU)	₹84/hour	AI/ML training.
Spot Instances	~70% cheaper	Non-urgent jobs (e.g., batch processing).

Key Point: Stop instances when unused to avoid bills!

Practical

Open EC2

FIRST, SELECT THE RESION

Click Launch Instance

Enter name & Select the AMI

· Check the free tier eligibility

Set Instance type

Key pair (login)

- Required to access this with your personal computer
- Create the key-pair

.pem file will be downloaded.

Network settings

- 0.0.0.0 is accessible from anywhere
- · If you want to use from your own PC, you can give YOUR IP address

Configure storage

Launch Instance

The instance is running

Click on the ID to get detailed info

SSH connection to your EC2 instance

1. Open cmd from download folder (where .pem file is located)

2. Run this command

You have

successfully connected to your EC2 instance! This is a fantastic step. You are now controlling a virtual computer in the AWS cloud from your Windows command prompt.

```
[ec2-user@ip-172-31-14-20 ~]$ cat /etc/os-release
NAME="Amazon Linux"
VERSION="2023<u>"</u>
ID="amzn"
ID LIKE="fedora"
VERSION ID="2023"
PLATFORM_ID="platform:al2023"
PRETTY NAME="Amazon Linux 2023.7.20250609"
ANSI COLOR="0;33"
CPE NAME="cpe:2.3:o:amazon:amazon linux:2023"
HOME_URL="https://aws.amazon.com/linux/amazon-linux-2023/"
DOCUMENTATION_URL="https://docs.aws.amazon.com/linux/"
SUPPORT URL="https://aws.amazon.com/premiumsupport/"
BUG_REPORT_URL="https://github.com/amazonlinux/amazon-linux-2023"
VENDOR NAME="AWS"
VENDOR URL="https://aws.amazon.com/"
SUPPORT END="2029-06-30"
[ec2-user@ip-172-31-14-20 ~]$ _
```

RAM:

```
[ec2-user@ip-172-31-14-20 ~]$ free -m
               total
                             used
                                          free
                                                     shared buff/cache
                                                                           available
                  949
                              114
Mem:
                                           628
                                                          0
                                                                     206
                                                                                 697
                    0
                                             0
Swap:
                                0
[ec2-user@ip-172-31-14-20 ~]$ _
```

CPU:

```
ec2-user@ip-172-31-14-20 ~]$ lsc
                                            x86 64
 rchitecture:
  CPU op-mode(s):
Address sizes:
                                           32-bit, 64-bit
46 bits physical, 48 bits virtual
Little Endian
  Byte Order:
 PU(s):
On-line CPU(s) list:
 endor ID:
Model name:
                                            GenuineIntel
                                            Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
     CPU family:
     Model:
     Thread(s) per core:
     Core(s) per socket:
Socket(s):
     Stepping:
BogoMIPS:
Flags:
                                            fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr ss
                                           e sse2 ht syscall nx rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pn i pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xs ave avx f16c rdrand hypervisor lahf_lm abm cpuid_fault invpcid_single pti fsgsbase bmi1 avx
                                           2 smep bmi2 erms invpcid xsaveopt
Virtualization features:
  Hypervisor vendor:
Virtualization type:
                                            ful1
                                           32 KiB (1 instance)
```

Connect SSH from AWS website

Click connect

Security Groups

Some ports you should be aware of:

- HTTP (Port 80) Unencrypted web traffic.
- HTTPS (Port 443) Encrypted web traffic (SSL/TLS).
- SSH (Port 22) Secure remote access to servers (Linux/Unix).
- FTP (Port 21) File Transfer Protocol (unsecured).
- SFTP (Port 22) Secure File Transfer Protocol.
- SMTP (Port 25) Simple Mail Transfer Protocol (email sending).
- RDP (Port 3389) Remote Desktop Protocol (Windows remote access).
- MySQL (Port 3306) MySQL database connections.
- PostgreSQL (Port 5432) PostgreSQL database connections.
- DNS (Port 53) Domain Name System (converts domain names to IP addresses).

Host HTML/CSS Website

Run the code line by line. Do not run 2 lines at same time

Connect to Your EC2 (SSH):

ssh -i your-key.pem ec2-user@your-ec2-public-ip

Install Apache:

sudo dnf update -y sudo dnf install httpd -y

```
ec2-user@ip-172-31-14-20;/var/www/html
                                                                                                                                                       [ec2-user@ip-172-31-14-20 ~]$ sudo dnf update -y
sudo dnf update -y sudo dnf update -y sudo dnf update -y sudo dnf install httpd -yAmazon Linux 2023 Kernel Livepatch repos [=: Amazon Linux 2023 Kernel Livepatch repository Last metadata expiration check: 0:00:01 ago on Sat Jun 21 20:18:03 2025. Dependencies resolved.
                                                                                                                                                              B/
                                                                                                                      153 kB/s | 17 kB
                                                                                                                                                    00:00
Nothing to do.
Complete!
[ec2-user@ip-172-31-14-20 ~]$ sudo systemctl start httpd
Failed to start httpd.service: Unit httpd.service not found.

[ec2-user@ip-172-31-14-20 ~]$ sudo dnf install httpd -y 
Last metadata expiration check: 0:00:42 ago on Sat Jun 21 20:18:03 2025.
Dependencies resolved.
 Package
                                            Architecture
                                                                                                                         Repository
                                                                     Version
                                                                                                                                                          Size
Installing:
                                            x86_64
                                                                     2.4.62-1.amzn2023
                                                                                                                         amazonlinux
                                                                                                                                                          48 k
Installing dependencies:
                                                                                                                        amazonlinux
                                                                     1.7.5-1.amzn2023.0.4
                                                                                                                                                         129 k
                                            x86_64
                                                                      1.6.3-1.amzn2023.0.1
                                                                                                                        amazonlinux
                                                                      18.0.0-12.amzn2023.0.3
                                                                                                                        amazonlinux
                                                                                                                                                          19 k
                                                                     2.4.62-1.amzn2023
2.4.62-1.amzn2023
                                            x86_64
                                                                                                                        amazonlinux
                                                                                                                        amazonlinux
                                                                                                                                                          14 k
                                            noarch
 httpd-tools
libbrotli
                                           x86_64
x86_64
                                                                     2.4.62-1.amzn2023
                                                                                                                        amazonlinux
                                                                     1.0.9-4.amzn2023.0.2
                                                                                                                                                         315 k
                                                                                                                        amazonlinux
                                                                     2.1.49-3.amzn2023.0.3
                                                                                                                                                          33 k
                                                                                                                        amazonlinux
                                            noarch
Installing weak dependencies:
                                                                                                                        amazonlinux
                                                                                                                                                          17 k
                                            x86_64
                                                                     1.6.3-1.amzn2023.0.1
                                            x86_64
                                                                                                                                                          166 k
                                                                      2.0.27-1.amzn2023.0.3
                                                                      2.4.62-1.amzn2023
                                                                                                                         amazonlinux
                                                                  sudo dnf update -y
                                                                  sudo dnf install httpd -y
```

Start the server:

sudo systemctl start httpd sudo systemctl enable httpd

```
[ec2-user@ip-172-31-14-20 ~]$ sudo systemctl start httpd
[ec2-user@ip-172-31-14-20 ~]$ sudo systemctl enable httpd
Created symlink /etc/systemd/system/multi-user.target.wants/httpd.service → /usr/lib/systemd/system/httpd.service.
```

Create the HTML Page:

cd /var/www/html sudo nano index.html

Paste your HTML content:

Code:

```
p {
      font-size: 1.2em;
    .container {
      background-color: #ffffff;
      border-radius: 10px;
      box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
      padding: 30px;
      max-width: 600px;
      margin: 20px auto;
  </style>
</head>
<body>
  <div class="container">
    <h1>Hello from AWS EC2!</h1>
    This is my very first website, hosted on an Amazon Linux 2023 instan
ce.
    AWS is awesome for Data Science and Web Hosting!
    Date and Time: <span id="datetime"></span>
  </div>
  <script>
    function updateDateTime() {
      const now = new Date();
      document.getElementById('datetime').textContent = now.toLocaleStrin
g();
    setInterval(updateDateTime, 1000); // Update every second
    updateDateTime(); // Initial call
  </script>
</body>
</html>
```

To Exit nano (Save and Exit, or Discard Changes and Exit):

Look at the bottom of your nano screen. It shows you the common commands. The symbol means ctrl.

1. To Save and Exit:

- Press Ctrl + O (Ctrl + O for "Write Out" or Save).
 - Nano will then ask you "File Name to Write: index.html" (or whatever file you are editing). Just press Enter to confirm the current file name.
- Press Ctrl + X for "Exit").

2. To Discard Changes and Exit:

- Press Ctrl + X (Ctrl + X for "Exit").
- Nano will then ask you "Save modified buffer (y/n/d)?"
 - Press N (for "No") if you do NOT want to save the changes you've made.
 - Press (for "Yes") if you want to save. (This will then prompt for the filename as in step 1).
 - Press (for "Discard") to discard without asking to save.

So, the commands would be:

- 1. Press Ctrl + 0
- 2. **Press** Enter (to confirm saving to index.html)
- 3. Press Ctrl + X

sudo systemctl restart httpd

View Website:

Copy & paste the public IP

Terminate Instance

Instance Types:

- Case 1: Small Website or Blog
 - Suitable Type: t3.micro or t3.small (General Purpose)
- Case 2: E-Commerce Application
 - Suitable Type: m5.large or m5.xlarge (General Purpose)
- Case 3: Real-Time Video Rendering and Streaming (Accelerated Computing)
 - Instance Type: g5.12xlarge or g5.24xlarge
- Case 4: In-Memory Database for Real-Time Analytics (Memory Optimized)
 - r6g.16xlarge or x2idn.32xlarge (Memory Optimized)