Beginner Track (Codeforces ≤ 1300 / CodeChef ≤ 1700)

Number System

Base conversions and working with different number systems.

2. Bit Manipulation Basics

Binary Number System, Bitwise operators, 1's complement, 2's complement

3. Euclid Algorithm

Efficiently find HCF/GCD and LCM using the Euclidean algorithm in O(log N) time.

4. Efficient Prime and Factor Computations

O(Sqrt N) method for finding factors, performing prime factorization, and checking primality.

5. Sieve of Eratosthenes

Efficient algorithm to generate prime numbers and its applications like precomputing factors, prime-factorisation, etc.

6. Modular Arithmetic

Modulo Properties, Mod Inverse

7. Binary Exponentiation

Compute large powers in logarithmic time using an efficient algorithm.

8. Basic Combinatorics

Permutations and combinations (Class 11th-12th level).

9. Basic Probability and Expected Value

Probability and calculating expected values (Class 11th-12th level).

10. nCr Modulo P

Efficiently answer binomial coefficient queries using precomputation and O(1) time queries.

Advanced Track (Codeforces > 1300 / CodeChef > 1700)

- 1. All Topics in Beginner Track
- 2. Advanced Number Theory.

Refer to Cp-Algorithms Topics List.

3. Matrix Exponentiation

Efficiently solve recurrence relations using matrix multiplication.

4. Advanced Combinatorics, Probability and Expected Value

Catalan Numbers, advanced probability calculations and Inclusion-Exclusion Principle.

5. **Digit DP**

Count numbers following specific properties super efficiently using Digit DP.

6. Game Theory

Grundy Numbers, Nim Game and strategy-based problem-solving.