ESO 208 COMPUTER ASSIGNMENT-02

ISHAN SINGH ROLL NO: 200457

Gauss elimination (GE; without pivoting)

Enter the number in front of the method you want to use

- 1. Gauss Elimination(without pivoting)
- 2. Gauss Elimination(with pivoting)
- 3. GE (with scaling and pivoting)
- 4. LU decomposition by using GE (without pivoting)
- 5. LU decomposition by using GE (with pivoting)
- 6. LU decomposition by Crout's method (without pivoting)
- 7. Cholesky decomposition (for symmetric positive definite matrix 1

TEST CASE 1:

<u>Input</u>

3

4.0 2.0 0.0 10.0

2.0 4.0 1.0 11.5

0.0 1.0 5.0 4.5

Output

X:

1.5000

2.0000

0.5000

TEST CASE 2:

<u>Input</u>

3

4.0 2.0 0.0 10.0

2.0 4.0 1.0 11.5

0.0 1.0 5.0 5

Output:

X:

1.5179

1.9643

0.6071

GE (with pivoting)

Enter the number in front of the method you want to use

- 1. Gauss Elimination(without pivoting)
- 2. Gauss Elimination(with pivoting)
- 3. GE (with scaling and pivoting)
- 4. LU decomposition by using GE (without pivoting)
- 5. LU decomposition by using GE (with pivoting)
- 6. LU decomposition by Crout's method (without pivoting)
- 7. Cholesky decomposition (for symmetric positive definite matrix 2

TEST CASE 1

Input

3

4.0 2.0 0.0 10.0

2.0 4.0 1.0 11.5

0.0 1.0 5.0 4.5

<u>Output</u>

X:

1.5000

2.0000

0.5000

Permutation Matrix:

1.0000 0.5000 0 2.5000

0 1.0000 0.3333 2.1667

0 0 4.6667 2.3333

TEST CASE 2:

<u>Input</u>

3

4.0 2.0 0.0 10.0

2.0 4.0 1.0 11.5

0.0 1.0 5.0 5

<u>Output</u>

X:

1.5179

1.9643

0.6071

Permutation Matrix:

1.0000 0.5000 0 2.5000

0 1.0000 0.3333 2.1667

0 0 4.6667 2.8333

LU decomposition by using Crout method (without pivoting)

Enter the number in front of the method you want to use

- 1. Gauss Elimination(without pivoting)
- 2. Gauss Elimination(with pivoting)
- 3. GE (with scaling and pivoting)
- 4. LU decomposition by using GE (without pivoting)
- 5. LU decomposition by using GE (with pivoting)
- 6. LU decomposition by Crout's method (without pivoting)
- 7. Cholesky decomposition (for symmetric positive definite matrix 6

TEST CASE 1:

Input File

3

4.0 2.0 0.0 10.0

2.0 4.0 1.0 11.5

0.0 1.0 5.0 4.5

Output File

```
L:
```

```
4.0000 0 0
2.0000 3.0000 0
0 1.0000 4.6667
```

U:

```
1.0000 0.5000 0
0 1.0000 0.3333
0 0 1.0000
```

X:

1.5000

2.0000

0.5000

TEST CASE 2

<u>Input</u>

3

4.0 2.0 0.0 10.0

2.0 4.0 1.0 11.5

0.0 1.0 5.0 5

Output

L:

```
4.0000 0 0
2.0000 3.0000 0
0 1.0000 4.6667
```

U:

```
1.0000 0.5000 0
0 1.0000 0.3333
0 0 1.0000
```

X:

1.5179

1.9643

0.6071

Cholesky decomposition (for symmetric positive definite matrix)

Enter the number in front of the method you want to use

- 1. Gauss Elimination(without pivoting)
- 2. Gauss Elimination(with pivoting)
- 3. GE (with scaling and pivoting)
- 4. LU decomposition by using GE (without pivoting)
- 5. LU decomposition by using GE (with pivoting)
- 6. LU decomposition by Crout's method (without pivoting)

7. Cholesky decomposition (for symmetric positive definite matrix 7

TEST CASE 1:

<u>Input File</u>

3

4.0 2.0 0.0 10.0

2.0 4.0 1.0 11.5

0.0 1.0 5.0 4.5

Output File

Cholesky factor LC:

2.0000 0 0 1.0000 1.7321 0 0 0.5774 2.1602

X:

1.5000

2.0000

0.5000