.PAT-NO:

JP361183868A

DOCUMENT-IDENTIFIER:

JP 61183868 A

TITLE:

PASTE TYPE POSITIVE ELECTRODE FOR ALKALINE

STORAGE

BATTERY

PUBN-DATE:

August 16, 1986

INVENTOR - INFORMATION:

NAME

URAMOTO, HIROSHI OSHITANI, MASAHIKO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

YUASA BATTERY CO LTD

N/A

APPL-NO:

JP60024233

APPL-DATE:

February 8, 1985

INT-CL (IPC): H01M004/52

ABSTRACT:

PURPOSE: To improve an active material utilization rate by mixing CoO powder

with the active material powder in a eutectic state of a fixed amount of nickel

hydroxide, cobalt hydroxide and cadmium hydroxide.

CONSTITUTION: A water solution consisting of 92mol% of nickel sulphate,

5mol% of cobalt sulphate and 3mol% of cadmium sulphate is dropped into a 30wt%

of caustic potash water solution for being changed into hydroxide followed by

being washed and dried to be made into an active material. Next, 10wt% of CoO

powder and 90wt% of said active material in a eutectic state are crashed and

mixed and then water and carboxymethylcellulose are added for being

made into a pasty state. Said paste is filled into a prescribed nickel fiber sintered body for being made into a positive electrode 0.7mm thick by drying and thickness regulation. Accordingly, the active material utilization rate of the positive electrode can be improved.

COPYRIGHT: (C) 1986, JPO&Japio

(B) 日本国特許庁(JP)

⑪特許出願公開

四公開特許公報(A) 昭61 - 183868

@Int.Cl.4

識別記号

庁内整理番号

四公開 昭和61年(1986)8月16日

H 01 M 4/52

2117-5H

審査請求 未請求 発明の数 1 (全3頁)

69発明の名称

アルカリ蓄電池用ペースト式正極板

②特 顧 昭60-24233

田の 願 昭60(1985)2月8日

個発 明者 本

高槻市城西町6番6号 湯浅電池株式会社内 弘

明 者 谷

政 彦 高槻市城西町6番6号 湯浅電池株式会社内

湯浅電池株式会社

高槻市城西町6番6号

1.発明の名称

アルカリ菩能池用ペースト式正信板

2.特許請求の範囲

水酸化ニッケル 85~95モルミ、水酸化コ **パルトろ~8モルダ、及び水酸化カドミウム2** ~7 モルダの共晶状態にある活物質粉末に 0o0 粉束5~50 Vtダを混合することを特徴とする アルカリ智能池用ペースト式正価板。

3.発明の詳細な説明

産業上の利用分野

本発明は、アルカリ蓄電池用正抵板、特に ペースト式ニッケル正板板に関するものであ 5 .

従来技術とその問題点

従来アルカリ智電池用ニッケル正極板とし ては、ニッケル粉末を穿孔鋼板あるいはユッ ケルネット等に焼結させた基板に活動質を含 長させたものがある。このものは、ニッケル 粉末粒子間の結合が弱く、高多孔皮の基板で

は脱落を生じるために、実用上薪板の多孔度 は80メ経度が展界である。又、穿孔飼板、 ッケルネット等の芯金を必要とするために 活物質の充填密度が小さい。焼箱されたニッ ナル粉末の細孔は、10μm以下と 小さいた めに、活動質の完填方法は、煩雑な工程を数 サイクルも輪返す溶放合浸染に限定されてい

これらの欠点を改良する試みとして、例え ば芯金を持たない形でルカリ性金属繊維統結 体、あるいはポリプロピレン不能布写の戦機 炭素繊維不能布等に耐アルカリ性金属を コーティングし、直接水酸化ニッケル活物質 粉末を水及び 0 X 0 巻でペースト状として完 填するペースト式充填方法が行なわれている。

金属機能は切削加工法あるいは、金属粉末 を彼体でベースト化し戦績状に押し出し、乾 **強 後 統 約 加 工 す る 方 狭 寒 に よ り 安 価 に 観 澄 さ** れる。この機能をエアーレート方法やその他 の方法によつて均一分布させた後、約1000

℃前後の高温還元雰囲気下で焼結して、多孔 体基板が得られる。この多孔体基板は線線量、 焼結退皮、時間等をコントロールすることに より、多孔度85~985程度の実用強度を 有するものが得られる。

従来これらの多孔体基板に水酸化ニッケル 活物質を完填した場合、統結式循根に比べ等 しく活物質利用率が悪く、しかも完放電に伴 なう極板膨張が大きいため、活物質の脱落、 祭電体と活物質粒子の接触不良が発生する等 の欠点を有している。

器四の目的

wa 🗼 🛵

本発明はペースト式正循板の活物質利用率 の向上、ならびに極板影張の減少による、高 性能でかつ生産性の高いアルカリ書電池用ペ ースト式正価板を提供することを目的とする。 '発明の構成

本発明は上記目的を遊成するべく、正衡活 物質であるところの水酸化ニッケル 85~95 モルダ、水酸化コペルト3~8モルる及び水

ケル総裁焼紡体に完填し、乾燥、厚味醤紡等 あることが望ましい。 により、厚味 D.7 mmの正極板とする。

上記の如く作成した正確板を、カドミウム 食柩板を対極として、此意 1.20 の奇性カリ ウム溶液中において、周囲温度5℃、充電々 旅 0.5 0▲ で 5 時間 充電後、放電々流 1 0▲ で D V vs. Hg/HgO まで放電する操作を5~ 雑返した。この時の極板厚味増加率を勘定し、 比較した。

第1回は、Ni (OH)zが 95モルミの場合に おける活物質組成と過売気における極板厚除 増加率の関係を示したものである。

第2図は Ni (OH)2 が 90モルギの場合にお ける同上の関係を示したものである。

第3図はNi(OH)。 が 85モルギの紹合にお ける岡上の関係を示したものである。図に示 す如く、本発明に用いる共品状態の活物質で は、循板の膨張が抑えられる。ことにおいて、 コパルト、カドミウム等は、直接放電に寄与 ... するものでないので、でき得るかぎり少量で

酸化オドもウム2~7モルギの共島状態にお る 活物 質粉 束に 000 粉 束 5~30 Vt メ を 混合 「するアルカリ蓄電池用ペースト式紙板である。

以下本発明の一実施例について貸込する。 確酸ニッケル 92 モル系、硫酸コパルト5 モルダ、健康カドミウムるモルダからなる水 潜放を30wtがの労性カリウム水溶液中に資 下して、水酸化物に変化せしめる。しかる後、 水洗、温風乾燥して活物質とする。

一方、000粉末は上紀と同様硫酸コペルト 水溶液と労性アルカリ水溶液とを反応させて、 水洗、乾燥させて水酸化コパルトに変化させ た後、このものを高温加熱分解させて得る。 この数、不活性な 00,04 の 生成を極力生じな いことが必要である。この GoO 粉末 10 vt 🗲 と上記の共晶状態にある活物費 90 wt% と粉 砕混合した後、水およびカルポキシメテルセ ロロース等を加えてペースト状とする。この ペーストを多孔度 95%、厚味 1.5 四のニッ

このことより、水酸化ニッケルに対して、 水酸化コペルトろ~8モルダ、水酸化カドミ カ▲2~7モル系の範囲が適切である。

置潜体化していない遊離のCoO 粉末の混合 は、活物質利用率の向上を目的とするもので ある。第4図は、CoO 粉末の混合による活物 質利用率との関係を示したものである。遊離 の000粉末の混合率が7ヵ付近から若しく利 用率が向上することが認められる。000 粉末 も直接反応に寄与するものでないので、少量 であることが貧ましく、実用上5~30 wt % 範囲に固定される。

上述の水酸化ニッケル、水酸化カドミウム、 水酸化コペルトの適切な範囲の共晶状態の活 物質に適切な量の遊離CoO 粉末を混合するこ とにより、極板の摩礙が無い、高利用率の正 極板を得る。

この選由は、水酸化ニッケルにコメルト、 カドミウムが共長状態で添加されると、低密 度のオキシ水酸化ニッケルである Tー H100H の生成が防止されるため、極板の夢張がなく

一方遊艇状態で混合された OoG は、種板が アルカリ潜放中で約10時間以上浸漉放置さ れた場合、溶解し HQ oOg を介して Co (OE)。 が活物質表面上にコーティングする。放置後 の充電により、 Co (OE)。 は高電導性の CoOOE に変化し、活動質の隅々まで電導性を与える ためと考えられる。

薨明の効果

上述した如く、本発明によるアルカリ普電 池用ペースト式正板板は、活物質利用率が向 上し、且つ循板影説の減少によって高性能で 生産性の高い極板となり、その工業的価値は 着めて大である。

4.図面の簡単な説明

第1回・第2回・第3回は活物質組成と極収 の彦頭の関係を示した図であり、第4図はCoO の混合量と活物質利用率の関係を示したもので

、なるものと考えられる。

88.

备线器池株式会社 **丛 處 人**

