Indian Institute of Technology Delhi MAL 502: Complex Analysis MAJOR TEST (2006-2007)

- (1) (a) Let f be analytic in the disc $\{z : |z| < 3\}$. Let $f(\frac{1+2i}{1+i}) = \frac{1+i}{1-i}$ and $|f(z)| \le 1$ if |z| < 2. What is $f'(\frac{1+2i}{1+i})$?
 - (b) Let $f(z) = \frac{i-z}{i+z}$. Show that f maps the upper half plane into the unit disc.
 - (c) How many zeros does the polynomial $2z^5 + 4z^2 + 1$ have in the disc |z| < 1?
 - (d) Let $f(z) = e^z + \sin z$. Find the angle between the images of y = 0 and y = x under f.

 $[4 \times 2]$

- (2) (a) Let the points z_1, z_2, z_3 lie on the unit circle of the complex plane and satisfy $z_1 + z_2 + z_3 = 0$. Show that z_1, z_2, z_3 form the vertices of an equilateral triangle.
 - (b) Evaluate $\int_0^{2\pi} e^{e^{it}} dt$.
 - (c) Show that the series $\sum_{n=0}^{\infty} \frac{z}{(1+z^2)^n}$ converges for all complex numbers z satisfying $|1+z^2| > 1$.
 - (d) Prove that $f \in \mathfrak{F}_a$ for all a > 0, where $f(z) = e^{-\pi z^2}$.
 - (c) Let $\lambda > 1$. Prove that the equation $ze^{\lambda-z} = 1$ has exactly one root in the unit disc and this root is real.

 $[5 \times 3]$

(3) Let f(z) = u(x,y) + iv(x,y), z = x + iy, be analytic in a domain Ω , where u and v are real valued. Suppose there are real constants a, b and c such that $a^2 + b^2 \neq 0$ and

$$au(x,y) + bv(x,y) = c$$

in Ω . Show that f is constant in Ω .

[5]

(4) Let Γ be a contour whose interior contains 0. Evaluate the integral

$$\int_{\Gamma} z^n \sin \frac{1}{z} dz,$$

where n is a non-negative integer.

[5]

(5) Let f be an entire function and let a > 0, b > 0 be constants. If $|f(z)| \le a|z|^{1/2} + b$ for all z, prove that f is a constant.

[5]

(6) Let $a \in \mathbb{R}$ and Γ_R be the rectangle with vertices 0, R, R + ia, ia followed in the counterclockwise direction. Integrate the function e^{-z^2} around Γ_R and let $R \to \infty$ to find the value of the integral

$$\int_0^\infty e^{-x^2}\cos 2ax\ dx.$$

You can use $\int_0^\infty e^{-x^2} dx = \frac{1}{2}\sqrt{\pi}$.

[5]

(7) (a) Show that the map

$$\varphi(z) = \frac{1+z}{1-z}$$

maps the unit disc $\mathbb{D} = \{z : |z| < 1\}$ onto the right half plane $H = \{z : \text{Re } z > 0\}$.

(b) Let f be analytic on the right half plane and suppose that $|f(z)| \leq 1$ for $z \in H$. Suppose also that f(1) = 0. Show that $|f'(1)| \leq \frac{1}{2}$. Can this upper bound be archived by some such f?