Caltech

Deep Multi-State Dynamic Recurrent Neural Networks Operating on Wavelet Based Neural Features for Robust Brain Machine Interfaces

Benyamin Haghi^{1*}, Spencer Kellis², Sahil Shah¹, Maitreyi Ashok¹, Luke Bashford², Daniel Kramer³, Brian Lee³, Charles Liu³, Richard Andersen², and Azita Emami¹

- 1. Electrical Engineering, Caltech, Pasadena, CA, USA
- 2. Biology and Biological Engineering, Caltech, Pasadena, CA, USA
- 3. Neurorestoration Center and Neurosurgery, Keck School of Medicine, USC, L.A., USA

*benyamin.a.haghi@caltech.edu

NeurIPS poster session: Dec. 8 – Dec 14

Applications of BMI

A Sci-Fi Becomes Reality

Implantable Wireless Medical Devices

Intra-Ocular Pressure Sensor

1mm x 0.5mm classifier CMOS chip for seizure prediction

Injectable Glucose Sensor

ATOMS, Smart Pill

External Reader

Goals

Challenges

- Minimize Treatment Cost
- Low Power/Area Chip
- Robustness
- High Performance

- Achieving High Speed Design
- Non-Stationarity of Neural Data
- Noise
- Limited Data

Deep Multi-state DRNN Architecture

$$\begin{cases} s_{k} = W_{ss}s_{k-1} + W_{sr}r_{k-1} + W_{si}u_{k} + W_{sf}z_{k} + b_{s} \\ r_{k} = \tanh(s_{k}) \\ h_{k}^{(1)} = \tanh\left(W_{h^{(1)}h^{(1)}}h_{k-1}^{(1)} + W_{h^{(1)}r}r_{k} + b_{h^{(1)}}\right) \\ h_{k}^{(i)} = \tanh\left(W_{h^{(i)}h^{(i)}}h_{k-1}^{(i)} + W_{h^{(i)}h^{(i-1)}}h_{k}^{(i-1)} + b_{h^{(i)}}\right) \\ \widehat{y}_{k} = W_{yh^{(l)}}h_{k}^{(l)} + b_{y} \\ \widehat{y}_{k} = tanh(\widehat{y}_{k}) \quad |\widehat{y}_{k}| > 1 \\ z_{k} \leftarrow \widehat{y}_{k} \text{ or } y_{k} \text{ (Scheduled Sampling)} \end{cases}$$

Architecture of BMI System

- 32 year-old tetraplegic (C5-C6) human
- Sampling Rate: 30 KHz

FDA- and IRB-approved

Utah electrode arrays

192 Channels

AIP: Anterior Intraparietal

BA5: Broadman's Area 5

Features	Frequency Range
HWT, HFT, HPF	> 3.75KHz
TCs, LFADS	250Hz – 5KHz
MWT, MFT, MUA	234Hz – 3.75KHz
LWT, LFT, LPF	< 234HZ

Single-day Analysis with Mid-Wavelet Feature

Fig.1. Regression of different algorithms on test data from the same day 2018-04-23: true target motion (black) and reconstruction (red)

System architecture

- Decoding kinematics from Anterior intraparietal sulcus (AIP) and Brodmann's Area 5 (BA5)
- Open loop phase of Center-Out reaching task
- 53 trials each 3 minutes long
- Five such sessions

Multi-Day Performance of the Decoders

Fig. 2. The DRNN operating on different features.

Multi-Day Performance of the Decoders

Fig.3. Multi-day performance of the decoders.

Multi-Day Performance of the Decoders

Fig.4. (Left) Effect of number of training days on the performance of the decoders. (Right) The DRNN operating in different training scenarios.

Summary

Neural networks for BMI: promising

Hardware requirements of NN: challenges toward implantable devices

Algorithms that can translate to energy-efficient hardware

 Need to deal with significant variations and nonstationary conditions

Team Members

Azita Emami

Benyamin Haghi

Sahil Shah

Maitreyi Ashok

Spencer Kellis

Richard Andersen

Luke Bashford

Thank you!

Paper:

https://www.biorxiv.org/content/biorxiv/early/2019/08/30/710327.full.pdf

Codes, Poster, and Slides:

https://github.com/BenyaminHaghi/DRNN-NeurIPS2019

