ANALYSIS QUALIFYING EXAMINATION JANUARY 1998.

Throughout this examination, unless otherwise specified, the terms measurable, a.e., refer to the Lebesgue measure m on the real line \mathbb{R} , and L^p of an interval to L^p of that interval with respect to Lebesgue measure on that interval. Integrals w.r.t. Lebesgue measure will be denoted by $\int f dx$. Problems one through eight are 10 points each. Problem 9 is 20 points.

- 1. Let $g \in L_1(\mathbb{R})$, f_n measurable functions such that $f_n \geq g$ and $f_n \uparrow f$ a.e. Prove that $\int f_n dx \uparrow \int f dx$. (Note that by definition $\int h dx = \int h^+ dx \int h^- dx$ as long as at least one of the two integrals on the right is finite.)
- 2. Let F, f and g be nondecreasing functions on [a, b] such that f + g = F and F(a) = f(a) = g(a) = 0. Prove that f is absolutely continuous whenever F is absolutely continuous.
- 3. Let $E \subset \mathbb{R}$ be such that there exist $a \in \mathbb{R}$ and $\delta > 0$ such that for all $|t| < \delta$ we have that $a t \in E$ or $t a \in E$. Prove that $m^*(E) \geq \delta$.
- **4.** Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that there exists a c > 0 with $|f(x) f(y)| \ge c|x y|$ for all $x, y \in \mathbb{R}$.
 - a. Show that $f(\mathbb{R})$ is closed in \mathbb{R} .
 - b. Show that f is onto.
- 5. Let $f \in L_2([0,1])$. Let g(x,y) = f(x)f(y).
 - a. Prove that g is measurable with respect to the product Lebesgue measure.
 - b. Prove that $g \in L_2([0,1] \times [0,1])$ and $||g||_2 = \int |f(x)|^2 dx$.
- 6. Let f be a measurable function on \mathbb{R} with $f \geq 0$. Prove that there exist measurable sets E_n and $\alpha_n \geq 0$ such that

$$f = \sum_{1}^{\infty} \alpha_n \, \chi_{E_n}.$$

- 7. Let $G \subset \mathbb{C}$ be an open set containing the closed disk $\overline{D_r(a)} = \{z : |z-a| \leq r\}$. Let $\langle f_n \rangle$ be a sequence of analytic functions on G such that $f_n(z) \to 0$ uniformly on $\{z : |z-a| = r\}$. Prove that $f_n(z) \to 0$ for all z in the open disk $D_r(a)$.
- 8. Let f be an analytic function on G, where G contains the closed unit disk $\{z: |z| \leq 1\}$ and assume that |f(z)| > 2 on $\{z: |z| = 1\}$ and f(0) = 1. Does f have to have a zero in the open unit disk?

