2-1: Introduction to Non-Personalized Recommenders

Introduction to Recommender Systems

The Story of Zagat

Learning Objectives

- To understand the value of non-personalized recommenders, and domains where they are most useful
- To understand the drawbacks of nonpersonalized recommender systems
- To understand the basics of:
 - Aggregated opinion recommenders
 - Basic product association recommenders
- Review examples of the above ...

Introduction to Recommender Systems

The Zagat Guide ...

Secrets Revealed!

- The "secret" formula
 Rating = {0, 1, 2, 3}
 Score = round (MEAN(ratings) * 10)
 - OK, maybe not so secret but effective!

Introduction to Recommender Systems

Same idea, different formula

- Conde Nast Traveller tallies the percentage of people who rate a particular hotel, cruise, etc. as "very good" or "excellent"
- Relative merits of the two techniques ...
 - How do we treat a score of "good" vs. "awful"

Many other examples

- Tripadvisor travel reviews and ratings
- Billboard top 200/100/20 ...
- Movie charts by box office revenue
- All nonpersonalized

Introduction to Recommender Systems

Averages can be Misleading

- Later this module ... we'll discuss ways to mislead using averages.
- See if you can come up with examples or ideas (post to the class forum, and vote up the ones you find most compelling)

Introduction to Recommender Systems

People who X also Y ...

- Great idea, but how to formalize
- First, what's our dataset
 - User profiles (people who ever bought one and the other)? – not good for ketchup
 - Transaction data (people who bought them at the same time)? – not good for follow-up sales
 - User profiles but time-constrained (within a month, afterwards, …)?

Averages Lack Context ...

- Ordering an ice-cream sundae
 - You want a recommendation for a sauce
 - Do you want to hear that ketchup is the most popular sauce?
- One interesting context is a current product (or set of products) – what sauce is most commonly associated with a sundae??
- This leads to the concept of product association recommenders!

Introduction to Recommender Systems

Computing the ranking

 Start simple: percentage of X-buyers who also bought Y

X and Y
-----X

- Intuitively right, but is it useful? What if X is anchovy paste and Y is bananas??
- Challenge doesn't compensate for overall popularity of Y

Take two – does X make Y more likely??

 Let's adjust by looking at whether X makes Y more likely than not X(!X)

This formula focuses on increase in Y associated with X

Introduction to Recommender Systems

Other solutions ...

 Association rule mining brings us the lift metric:

- This looks at non-directional assocation
- More generally association rules look at baskets of products, not just individuals

Back to Zagat

- Some early Zagat fans argue the guide has been getting worse. Why?
 - Too many mediocre restaurants with good scores
 - Too many excellent restaurants with mediocre scores
- What's happening here?
 - Self-selection bias
 - Increased diversity of raters

Some take-away lessons

- Non-personalized averages can be effective in the right application
 - Need to understand relationship between average and user need; correct average
- Product associations can provide useful nonpersonalized recommendations in a context
 - Need to identify context; data source/scope
- Still face challenges in a clustered diverse population (e.g., maybe we don't all want bananas)

Introduction to Recommender Systems

2-1: Introduction to Non-Personalized Recommenders

Moving Forward

- Assignments this Module
 - Review an existing recommender
 - Hand-exercise: non-personalized recommender
 - Programming: non-personalized recommender
- Next lectures: about ratings, predictions and recommendations, rating scales
- Then, you should be able to:
 - Work out non-personalized recommendations
 - For programmers: program them too!

Introduction to Recommender Systems