Segment Routing Innovations in IOS XE (Enterprise)

Jason Yang, Principle Technical Marketing Engineer Sumant Mali, Engineering Product Manager
BRKENT-1520

cisco Live!

#CiscoLive

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 7, 2024.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKENT-1520

Why SRv6 in Enterprise

SRv6 Use Cases in EN

SRv6 Introduction

The Legacy Service Creation

Today "Network as a Fabric" for Service Creation

SR-MPLS

Future "Network as an API" for Service Creation SR_V6

SRv6 Use Cases in Enterprise

SRv6 Use Cases in Enterprise

Segments

- National Critical Infra
- Energy Services
- Military Protected Core
- Large Enterprise

They all have their own private WAN, w/ public networks as add-on

Needs

- Reliable and resilient network second to none
- Network makes their own routing decision, no dependency on controller.
- Security domain compliance in each country

Solution - SRv6

- Simplify network stack no legacy protocol encap
- · Universality: WAN, xHaul, DC, Metro, IoT, Host, etc.
- Enables tight application interaction w/ network i.e. application-driven network programmability
- Seamless brownfield deployment with classic IPv6

Automation

Single protocol

TE

FRR

VPN

NFV

Scalability

Case Study 1 - National Critical Infra

Customer Requirements:

- IPv6 over multiple transports
- L3 Segmentation
- Voice & Video needs to be routed to low latency path
- M365 needs to be routed to high BW path
- Business critical app needs to be routed over Transport1, if unreachable find the best alternative SLA path
- If primary path fail, then traffic needs to be re-routed to alternative path within few seconds

Case Study 2 - Manufacturing Network

Customer Requirements:

- IPv6 native to SRv6 migration
- Multi-sites connected via private WAN
- App(IPv6), VPN(IPv4) and traffic segmentation
- Remote VPN can not be terminated in regional sites but in DC VPN headend
- Bridge-domain for L2 with BDI for L3
- Fast Reroute for link/node failure
- WAN MACsec

Case Study 3 - Transportation Requirement

Customer Requirements

- MPLS to SRv6 migration
- Turn CE into CPEs to have end to end SRv6 uSID and only one touchpoint to provision new services to the "object" directly on the cPE.
- "Always-on / never out" network

Existing network problems:

- MPLS VPN with VRF lite to CE and a lot of touchpoint to provision services,
- · slow convergence and
- complex redundancy

SRv6 Introduction

SRv6

- IPv6 Header
- Destination IP address
- Next header field:
 - TCP, UDP, ICMP....
 - IPv4, IPv6, L2
 - Hop by Hop, Dest. Options, Fragmentation, Authentication Header ...
 - Routing Header
 - 0 Source Route (deprecated)
 - 1 Nimrod (deprecated)
 - 2 Type 2 (RFC 6275)
 - 3 RPL (RFC 6554)
 - 4 SRH (RFC 8754)

SRH

- Segment Routing Header
- First Segment
 - Pointer to very first SID
- Segments left
 - Pointer to Active SID
 - Active SID always in destination addr

BGP:2001:db8:0:4:eeee::

```
SA:2001::1

DA:2001:db8:0:1:1::

NH:RH

Type:4(SRH)

NH:IPv4|SL:3

Segment List:

[0]:2001:db8:0:4:eeee::

[1]:2001:db8:0:3:48::

[2]:2001:db8:0:2:1::

[3]:2001:db8:0:1:1::
```

```
SA:2001::1
DA:2001:db8:0:2:1::
NH:RH

Type:4(SRH)
NH:IPv4|SL:2
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:48::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```

```
SA:2001::1
DA:2001:db8:0:3:48::
NH:RH

Type:4(SRH)
NH:IPv4(SL:1
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:48::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```

SA:2001::1 DA:2001:db8:0:4:eeee:: NH:IPv4

SID Structure

128 Bits Like IPv6 address but different semantics

Why SRv6 uSID

: 0100 : =SRV6 uSID

16 bits here, but can be anything

SRV6 uSID Container

2001 :0db8 : 0100 : 0200 : 0300 : 0400 : 0500 : 0000

SRv6 uSID uSID uSID uSID uSID uSID EoC
Block 1 2 3 4 5 6

32 bits here,
but can be anything

cisco Live!

SRV6 Encapsulation

SA:2001::1 DA:2001:db8:0:4:1:0:0:0 NH:RH

NH:IPv4|SL:1 Segment List: [0]: 2001:db8:0:5:45:0:0:0 [1]: 2001:db8:0:4:1:0:0:0

[2]: 2001:db8:0:4:1:0:0:0 [2]: 2001:db8:0:3:48:0:0:0 [3]: 2001:db8:0:2:1:0:0:0 [4]: 2001:db8:0:1:42:0:0:0

SA:7.5.4.3 DA:11.6.19.71 Port:UDP

Type: 4 (SRH)

UDP Header/Data

SRV6 uSID Encapsulation

SA:2001::1 DA:2001:db8:100:200:300:400:500:: NH:IPv4

SA:7.5.4.3 DA:11.6.19.71 Port:UDP

UDP Header/Data

BGP:2001:db8:4:eeee::

```
SA:2001::1
DA:2001:db8:1:2:3:e000:4:eeee
NH:IPV4
```

```
SA:2001::1
DA:2001:db8:2:3:e000:4:eeee::
NH: IPV4
```

```
SA:2001::1
DA:2001:db8:3:e000:4:eeee:
NH:IPV4
```

SA:2001::1 DA:2001:db8:4:eeee:: NH:IPV4

SRv6 functions: Network Programming and Services What is supported in IOS XE

Codename		Behavior		
End	uN	END with Next - Default endpoint	[Node SID]	
End.X	uA	Endpoint with Layer-3 cross-connect	[Adj SID]	
End.DT6	uDT6	Endpoint with decapsulation and specific IPv6 table lookup	[L3VPN IPv6 Per-VRF]	
End.DT4	uDT4	Endpoint with decapsulation and specific IPv4 table lookup	[L3VPN IPv4 Per-VRF]	
End.DT46	uDT46	Endpoint with decapsulation and lookup IPv4 and IPv6 in same VRF	[L3VPN single SID for both IPv4 and IPv6]	

IS-IS for SRv6

LSP (Link State Packet):

TLVs:

Hostname: r2

Interfaces: Ten0/0/0 uA:fcbb:0:2:e001::

Structure: BL=32;NL=16;FL=16;AL=0

Te0/0/1 uA:fcbb:0:2:e002::

Structure: BL=32;NL=16;FL=16;AL=0

Lo0

Neighbors: r1

r3

IP addresses: fcbb:0:2::1/128

2001:12::2/64

Locator: fcbb:0:2::/48

uN:fcbb:0:2::

Structure: BL=32;NL=16;FL=0,AL=80

Capabilities: Algorithms

SIDs can insert SIDs can decap

.....

BRKENT-1520

BGP for SRv6

L3 VPN Forwarding

SRv6 Policy

Per-Destination Policy (PDP)

- The policy determines which candidate path to use based on the candidate path's preference and state
- A candidate path is either dynamic or explicit

Per-Flow Policy (PFP)

• A PFP is identified by <color, endpoint>. It is configured with a per-flow forwarding class (FC) table with up to 8 entries, with each entry indexed by an FC and pointing to a PDP

Per-Flow Policy w/ ODN/AS

- The egress node advertise BGP route for a prefix A to the ingress node with SLA hint "color-blue" encoded with an ext. BGP color community.
- BGP dynamically instantiate SRv6 policies to steer traffic onto on-demand next-hop (ODN)
- An ePBR policy is applied to the ingress interface to classify traffic and associated with the FC.

Performance Measurement for SRv6

PM Liveness Detection

- PM probes all the segment lists of every candidate paths
- Probes are sent every 3 seconds
- Option to configure the path programmed in HW only after it was validated with PM probes
- Reoptimize to a different candidate path if PM probes failed
- · Or bring the policy down if no other paths available

PM delay measurement

- 1-way mode delay measurement E2E =(T2-T1)
- 2-way mode delay measurement E2E =(T4-T1)-(T3-T2)

Case Study 1 Solution - National Critical Infra

- IS-IS w/ SRv6 extension as transport
- SRv6 over GRE with Tunnel Protection for public transport
- SRv6 over MACsec for private transport
- SRv6 BGP L3VPN ODN/AS
- SRv6 PDP/PFP policy to route the right app to the right path
- PM for policy liveness detection and latency measurement

BRKENT-1520

Case Study 2 Solution - Manufacturing Network

- IS-IS w/ SRv6 extension as transport
- SRv6 over MACsec
- SRv6 BGP as service for L3VPN
- SRv6 TI-LFA

Case Study 3 Solution - Transportation Network

- IS-IS w/ SRv6 extension
- 3 different IGP domains
- PCE for inter-domain reachability
- SRv6 BGP for L3VPN service
- SRv6 TI-LFA
- SRv6 Policy with Flex Algo

SRv6 Capabilities in EN Routing

IOS XE 17.12

- IS-IS SRv6 extension
- BGP L3VPN (v4/v6) for SRv6
- SRv6 policy select egress interface on ingress PE via PFP
- Static route for IPv6 and IPv4
- SRv6 over IPv6 GRE with Tunnel Protection
- SRv6 path failure detection and reroute

IOS XE 17.12 - cont'd

- SRv6 OAM (ping/traceroute)
 - IPv6 ping/traceroute CE-CE
 - IPv4 ping/traceroute CE-CE
 - 3. IPv6 ping/traceroute PE-CE
 - 4. IPv4 ping/traceroute PE-CE
 - 5. IPv6 SID ping/traceroute PE-PE
 - 6. IPv6 VRF ping/traceroute PE-CE using custom SRv6 SID list

IOS XE 17.12 - cont'd

- SRv6 Performance Measurement (PM)
 - PM liveness for path-proofing and re-optimization
 - PM over IPv6 links for delay metric
 - End-to-end delay measurement

IOS XE 17.13

• BGP L3VPN On-Demand Next-hop (ODN) and auto steering (AS)

IOS XE SRv6 uSID and Behaviors

- Supports uSID (F3216), consistent with customer deployment blueprint
- Support End-behaviors*:
 - uN (PSP/USD)
 - uA (PSP/USD)
 - uDT6
 - uDT4
 - uDT46
- Support Policy Headend behaviors*:
 - · H.Encaps.Red

*Behaviors reference: rfc8986

Scale

- Support up to 16 segments in the forwarding list
- 200 PFP
- 1000 PDP
- 2000 Candidate Paths (2 per PDP)
- Max 2 ECMP paths per Candidate Path
- 1000 PDPs * 2 Candidate Paths/PDP * 2 ECMP Paths/Candidate path = 4000 PM Sessions

Platforms

- Catalyst 8500/8500L
- Catalyst 8300
- Catalyst 8200
- Catalyst 8000V
- ASR1002-HX
- ASR1001-HX
- ASR1000-RP3/ESP100-X

SRv6 Journey

SRv6 - the journey

17.15

- SRv6 TI-LFA
- SRv6 OAM TE
- SRv6 Micro Loop (uLoop) Avoidance
- SRv6 Path MTU

Radar

- Flex Algo
- Flex Algo with TI-LFA
- Oper models
- DX2
- DT2U
- DT2M

SR Learning Path

Session ID	Title	Session Type	Speakers	Schedule and location
TECSPG-1000	Segment Routing Masterclass		Jose Liste Jakub Horn	Jun 2 9:00 am - 1:00 pm L2, Breakers BH
BRKMPL-2203	Introduction to SRv6 uSID Technology	Breakout	Jakub Horn	Jun 3 10:30 am - 12:00 pm L3, South Seas B
BRKMPL-2135	Preparing for a Successful Segment Routing Deployment -	Breakout	Jose Liste	Jun 3 10:30 am - 12:00 pm L2, Surf EF
BRKENT-1520	Segment Routing Innovations in IOS XE	Breakout	Jason Yang Sumant Mali	Jun 3 9:30 am - 10:30 am L3, Palm D
BRKMPL-2131	Deploying VPNs over Segment Routed Networks Made Easy	Breakout	Krishnan Thirukonda	Jun 3 01:00 PM / LL, Tradewinds DEF
BRKMPL-2177	Empower Your Network with Segment Routing and MPLS Network Migration	Breakout	Thomas Wang	Jun 3 9:30 am - 10:30 am LL, Tradewinds DEF
BRKMPL-2043	Simplify Your Journey to SR and SRv6 with Cisco Crosswork Automation	Breakout	Sujay Murthy Eric Ortheau	Jun 4 04:00 PM / LL, Tradewinds ABC

SR Learning Path

Session ID	Title	Session Type	Speakers	Schedule and location
BRKSPG-2474	Reduced Resolution Time with Svc-centric Approach to Troubleshooting	Breakout	Paola Arosia	
1 12221 11110	Explore the Power of SRv6: Unleashing the Potential of Next-Generation Networking -	Instructor-led Lab	Marius Stoica Alex	Jun 5 8:00 am - 12:00 pm Luxor - L1, Lotus 3
BRKMPL-2133	Circuit-Style Segment Routing and Service Emulation -	Breakout	I nomae Wand	Jun 5 4:00 pm - 5:00 pm L2, Surf CD
BRKSPG-2263	Design, Deploy and Manage Transport Slices using SDN Controller and Assurance	Breakout	SILION MILITAN	Jun 6 09:30 AM / LL, Tradewinds ABC
BRKSPG-2870	Automate Transport Service Provisioning, Optimization, and Assurance with SDN Controller	Breakout	Deenak Khardaya	Jun 6 01:00 PM / L3, South Seas J
LABMPL-1201	SRv6 Basics	Walk-in Lab	Luc De Ghein	
LABSP-3393	Implementing Segment Routing v6 (SRv6) Transport on NCS 55xx/5xx and Cisco 8000: Advanced -	Walk-in Lab	Paban Sarma Gautam Renjen Alexey Babaytsev	
	Configure and Implement BGP-EVPN with Segment Routing using NCS 55xx/5xx Platforms	Walk-in Lab	Tejas Lad Paban Sarma	

Call to Action

Explore how SRv6 can help to solve problems in your network and develop your own use case

Complete Your Session Evaluations

Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to **win 1 of 5 full conference passes** to Cisco Live 2025.

Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.

Level up and earn exclusive prizes!

Complete your surveys in the Cisco Live mobile app.

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Contact me at: jayang@cisco.com

Thank you

