Paper Review

Deep Residual Learning for Image Recognition (2016 CVPR)

JooYoung Song

Department of Electronics and Computer Engineering
Hongik University

Contents

- Abstract
- Introduction
- Related Work
- Deep Residual Learning
- Experiments
- Conclusions

Abstract

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Abstract

ResNet @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" 152-layer nets.
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

Introduction

Is learning better networks as simple as stacking more layers?

Is learning better networks as simple as stacking more layers?

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Introduction

Related Work

Shortcut Connection (Skip Connection)

GoogleNet vs ResNet

- Low parameter
- Not required Auxillary Classifier separately.

Highway Networks vs ResNet

- Low parameter (identity shortcut parameter free)
- Not demonstrated accuracy gains with extremely increased depth (highway)

Residual Learning

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identify, easier to find small functions

Residual block

Residual Learning

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identify, easier to find small functions

$$y = F(x, W_i) + W_s x$$

Residual block

Residual Learning

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identify, easier to find small functions $m{F}(m{x})$

$$y = W_1 x + x = (W_1 + 1)x$$

Residual block

Network Architectures

- Keep it simple
- Basic design (VGG-style)
 - All 3×3 conv (almost)
 - Spatial size / 2 => # filters × 2
 - Simple design; just deep!

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameter layers (3.6 billion FLOPs). Right: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.

Network Architectures

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

ImageNet experiments

Plain networks of 18 and 34 layers.

ResNets of 18 and 34 layers.

ImageNet experiments

Plain networks of 18 and 34 layers.

ImageNet experiments

ResNets of 18 and 34 layers.

CIFAR-10 experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

Does the performance continue to increase if you continue to increase the layers of the model?

Does the performance continue to increase if you continue to increase the layers of the model?

No → Because of overfitting.

But it could be studied by adding regularization.

Conclusions

- Deep Residual Networks:
 - Easy to train
 - Simply gain accuracy from depth
 - Well transferable