Universidad de las Fuerzas Armadas

E.S.P.E.

LABORATORIO #6
CARACTERÍSTICAS DE LA ONDA SENOIDAL.

LOPÉZ DAVID CORREA MARIÚ

4877

Cálculos del Laboratorio 6.

Procedimiento:

7.5.1. Implemente el circuito que se presenta en la figura 7.1.

Figura 7.1. Circuito con alimentación en c.a.

7.5.2. Ajuste el generador de funciones, para que proporcione una señal de 20 Vpp a una frecuencia de 2.5 khz.

7.5.3. Conecte el osciloscopio al resistor de carga RL. Observe la señal que aparece en el osciloscopio.

Para el voltaje en R_L :

ley de Ohm (I=V/R)

La corriente:

$$I_L = \frac{V_S}{R_S + R_L} = \frac{20 \, V}{1000 \, \Omega + 2200 \, \Omega} = 6.25 \, mA$$

Voltaje:

Se despeja la Ley de Ohm ($V_L = I_L * R_L$)

$$V_L = 0.00625 \, A * 2200 \, \Omega = 13.75 \, V$$

El V_{PP} en R_L sería : 13.75 V

El V_P :

$$V_P = \frac{V_{PP}}{2} = \frac{13.75 \, V}{2} = 6.875 \, V$$

Para calcular V_{rms} :

$$V_{rms} = 0.707 * V_P = 0.707 * 6.875 = 4.860625 V$$

Cálculo para el periodo y la frecuencia angular

Frecuencia dada en el enunciado:

Frecuencia: 2.5 kHz

$$2.5 \, kHz * \frac{1000 \, Hz}{1 \, kHz} = 2500 \, Hz$$

Periodo:

$$P = \frac{1}{f} = \frac{1}{2500 \, Hz} = 0.0004 \, s$$

Frecuencia Angular:

$$\omega = 2\pi f = 2\pi 2500 \, Hz = 15707.96327 \left(\frac{rad}{s}\right)$$

Calculo de Error:

$$\%E = \frac{valor\ te\'orico - valor\ calculado}{valor\ te\'orico} * 100$$

Calculo de Error para el V_{PP} :

$$\%E = \frac{13.75 - 13.72}{13.75} * 100 = 0.22\%$$

Calculo de Error para el V_P :

$$\%E = \frac{6.875 - 6.86}{6.875} * 100 = 0.22\%$$

Calculo de Error para el V_{rms} :

$$\%E = \frac{4.860625 - 4.850}{4.860625} * 100 = 0.2186\%$$

Calculo de Error para el periodo:

$$\%E = \frac{0.0004 \, s \, - 0.0004 \, s}{0.0004 \, s} * 100 = 0\%$$