Algebraic Number Theory (MA3A6) - Problem Sheet 6

This sheet is not for submission, but you may ask for help or feedback if you wish. You could also review questions from previous sheets.

1. In $\mathbb{Z}[\sqrt{-13}]$, define the ideals

$$\begin{split} \mathfrak{p} &= (2, 1 + \sqrt{-13}), \\ \mathfrak{q} &= (7, 1 + \sqrt{-13}), \\ \mathfrak{r} &= (7, 1 - \sqrt{-13}). \end{split}$$

Prove that these are maximal ideals, hence prime. Show that

$$\mathfrak{p}^2 = (2),$$
 $\mathfrak{qr} = (7),$ $\mathfrak{pq} = (1 + \sqrt{-13}),$ $\mathfrak{pr} = (1 - \sqrt{-13}).$

Factorise the ideal (14) of of $\mathbb{Z}[\sqrt{-13}]$ into prime ideals and find two different factorisations of the element 14 into irreducible elements.

- 2. Prove that the ideals \mathfrak{p} , \mathfrak{q} , \mathfrak{r} in the previous exercise cannot be principal.
- 3. Find all ideals in $\mathbb{Z}[\sqrt{-13}]$ that contain the element 14.
- 4. Which of these rings are Dedekind domains? Explain your answer fully.
 - (i) $\overline{\mathbb{Z}}$
 - (ii) $\mathbb{Z}[x]$
 - (iii) $\mathbb{Z}[\frac{1}{2}]$
 - (iv) $\mathbb{C}[x]$
 - (v) $\mathbb{C}[x,y]$
 - (vi) $\mathbb{Z}[\sqrt{8}]$
 - (vii) $\mathbb{Z}[i]$
 - (viii) $\mathbb{Z}[\sqrt{17}]$
 - (ix) $\mathbb{C}[x^2, x^3]$
 - (x) $\mathbb{C}[x,y]/(x^2+y^2)$
- 5. For each of these ideals, determine whether they are prime and whether they are maximal as ideals of $\mathbb{Z}[x]$ and as ideals of $\mathbb{Q}[x]$:

$$(x-7,3), (x^2-7), (x^2-7,3), (x^2-7,5).$$