Algebra III

April 1, 2024

Chapter 0: Review

Definition: Category

A category $\mathcal C$ consists of the following data:

- 1. A class of objects, Obj(C).
- 2. For any pair of objects $X, Y \in \text{Obj}(\mathcal{C})$, a set of morphisms $\text{Mor}_{\mathcal{C}}(X, Y)$, $\text{Hom}_{\mathcal{C}}(X, Y)$ or $\mathcal{C}(X, Y)$.
- 3. For any triple of objects $X, Y, Z \in Obj(\mathcal{C})$, a map

$$\operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(Y,Z)$$

 $(g,f) \mapsto g \circ f$

called compositions subject to the following axioms:

- 1. Associativity: $f \circ (g \circ h) = (f \circ g) \circ h$ whenever this makes sense.
- 2. For every object $X \in \text{Obj}(\mathcal{C})$, there exists a morphism $\text{id}_X \in \text{Hom}_{\mathcal{C}}(X,X)$ such that

$$id_X \circ f = f$$
 and $g \circ id_X = g$, $\forall f \in Hom_{\mathcal{C}}(W, X), g \in Hom_{\mathcal{C}}(X, W)$

Example 1

Let E be a set (or a class).

Define
$$\mathcal{C}$$
 by taking $\operatorname{Obj}(\mathcal{C}) = E$ and $\operatorname{Hom}_{\mathcal{C}}(X,Y) = \begin{cases} \emptyset & \text{if } x \neq y \\ \{\operatorname{id}_X\} & \text{if } x = y \end{cases}$.

Example 2

Let C = Set the category of all sets with set functions acting as morphisms.

Let C = Grp the category of all groups with group homomorphisms acting as morphisms.

Abelian Rings: Ab, Rings: Ring, Commutative Rings: CRing, Vector Spaces over F: Vect $_F$, Topological Spaces: Top, etc.

Example 3

Let G be a group (or more generally a monoid).

Define
$$Obj(\mathcal{C}) = \{*\}, Hom_{\mathcal{C}}(*, *) = G$$
 and

$$\operatorname{Hom}_{\mathcal{C}}(*,*) \times \operatorname{Hom}_{\mathcal{C}}(*,*) \to \operatorname{Hom}_{\mathcal{C}}(*,*)$$

the group operator.

Example 4

Let (E, \leq) be a preordered set (i.e. reflexive and transitive). Define \mathcal{C} by $\mathsf{Obj}(\mathcal{C}) = E$,

$$\operatorname{Hom}_{\mathcal{C}}(x,y) = \begin{cases} \emptyset & \text{if } x \nleq y \\ \{f_{xy}\} & \text{if } x \leq y \end{cases}$$

Notation

If $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ we write $X \xrightarrow{f} Y$ in \mathcal{C} .

Definition: Isomorphism

A morphism $f: X \to Y$ in \mathcal{C} is an isomorphism if $\exists g: Y \to X$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$.

Definition: Endomorphism

A morphism on X with $f: X \to X$.

Definition: Automorphism

An automorphism on X is just an isomorphism $f: X \tilde{\to} X$ from X to itself. Note that $\operatorname{Aut}_{\mathcal{C}}(X) \subseteq \operatorname{End}_{\mathcal{C}}(X) = \operatorname{Hom}_{\mathcal{C}}(X,X)$.

Remark:

The collection of all endomorphisms on *X* form a monoid.

The collection of all automorphisms on X forms a group called the automorphism group of X.

Example 1

Let
$$C = \text{Set}$$
, $X = \{1, ..., n\}$. Then $\text{Aut}_{\text{Set}}(\{1, ..., n\}) = \text{Perm}(X) = S_n$.

Example 2

Let $C = \text{Vect}_F$, $X = F^n$. Then $\text{Aut}_{\text{Vect}_F}(F^n) = \text{GL}_n(F)$.

Definition: Functors

Let \mathcal{C} and \mathcal{D} be categories.

A functor $F: \mathcal{C} \to \mathcal{D}$ from \mathcal{C} to \mathcal{D} consists of the following data

- 1. For each object $X \in \mathsf{Obj}(\mathcal{C})$, a chosen object $F(X) \in \mathsf{Obj}(\mathcal{D})$.
- 2. For each pair of objects $X, Y \in \mathsf{Obj}(\mathcal{C})$, a function

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{D}(F(X),F(Y))$$

 $f \mapsto F(f)$

2

such that

- 1. For any two composable morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{C} , we have $F(g \circ f) = F(g) \circ F(f)$.
- 2. For each object $X \in \text{Obj}(\mathcal{C})$, $F(\text{id}_X) = \text{id}_{F(X)}$.

Example 1

For $\mathcal{D} := \mathcal{C}$, $\operatorname{Id} : \mathcal{C} \to \mathcal{C}$, $X \mapsto X$, $f \mapsto f$.

Example 2: Forgetful Functors

 $\mathcal{U}: \mathsf{Grp} \to \mathsf{Set} \ \mathsf{given} \ \mathsf{as} \ (G, \cdot) \mapsto G.$ Ring $\to \mathsf{Ab} \ \mathsf{given} \ \mathsf{as} \ (R, +, \cdot) \mapsto (R, +).$

Example 3: Tensors

Let R be a commutative ring, $M \in Mod_R$.

Then $\otimes_R M : \mathsf{Mod}_R \to \mathsf{Mod}_R$ and $\mathsf{Hom}_R(M, -) : \mathsf{Mod}_R \to \mathsf{Mod}_R$.

Definition:

Let X be an object in a category $\mathcal C$ and G a group. An action of G on X is a group homomorphism $G \to \operatorname{Aut}_{\mathcal C}(X)$.

Example 1

Let C = Set.

A G-set is a set $X \in Set$ equipped wit a group homomorphism

$$G \rightarrow \mathsf{Perm}(X) = \mathsf{Aut}_{\mathsf{Set}}(X)$$

Exercise 1

A *G*-set is the same thing as a functor $G \to \text{Set}$, $* \mapsto X$, $\text{Hom}_{\mathcal{C}}(*,*) \to \text{Hom}_{\text{Set}}(X,X)$ ($G \to \text{Aut}_{\text{Set}}(X)$).

Definition: Adjunctions

Let \mathcal{C} and \mathcal{D} be categories and $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ be functors.

We say that F is left adjoint to G (and that G is right adjoint to F, and that we have a pair of adjoint functors) if for each object $X \in \text{Obj}(\mathcal{C})$ and $Y \in \text{Obj}(\mathcal{D})$, we have a bijection

$$\operatorname{Hom}_{\mathcal{D}}(F(X),Y) \tilde{\to} \operatorname{Hom}_{\mathcal{C}}(X,G(Y))$$

which is "natural in X and Y":

For any $f: X \to X'$ in C,

$$\operatorname{Hom}_{\mathcal{D}}(F(X'),Y) \stackrel{\sim}{\to} \operatorname{Hom}_{\mathcal{C}}(X',G(Y))$$

 $-\circ F(f)\downarrow \qquad \qquad \downarrow -\circ f$
 $\operatorname{Hom}_{\mathcal{D}}(F(X),Y) \stackrel{\sim}{\to} \operatorname{Hom}_{\mathcal{C}}(X,G(Y))$

and for every $g: Y \to Y'$ in \mathcal{D}

$$\operatorname{Hom}_{\mathcal{D}}(F(X),Y) \stackrel{\tilde{\rightarrow}}{\rightarrow} \operatorname{Hom}_{\mathcal{C}}(X,G(Y))$$

 $g \circ - \downarrow \qquad \qquad \downarrow G(g) \circ -$
 $\operatorname{Hom}_{\mathcal{D}}(F(X),Y') \stackrel{\tilde{\rightarrow}}{\rightarrow} \operatorname{Hom}_{\mathcal{C}}(X,G(Y'))$

We write

$$C$$
 $F \uparrow \downarrow G$
 D

Example 1

For $M \in \mathsf{Mod}_R$ we have

$$\mathsf{Mod}_R$$
 $-\otimes_R M \updownarrow \mathsf{Hom}_R(M,-)$
 Mod_R

where

$$\operatorname{Hom}_R(M_1 \otimes M_2, N) \cong \operatorname{Hom}_R(M_1, \operatorname{Hom}_R(M, \operatorname{Hom}_R(M_2, N)))$$

 $f \mapsto (x \mapsto (y \mapsto f(x \otimes y)))$

Example 2

Let $R \xrightarrow{\phi} S$ be a ring homomorphism. We can regard an S-module N as an R-module via

$$r \cdot x := \phi(r)x, \quad \forall r \in R, ; x \in N$$

This defines a functor $Mod_S \to Mod_R$ called a "restriction of scalars", which has a left adjoint called "extension of scalars."

$$S \otimes_R - \uparrow \downarrow$$
$$\mathsf{Mod}_S$$

Recall

For commutative ring R, $\rightsquigarrow Mod_R$. e.g. R = F a field, $Mod_R \equiv Vect_F$; $R = \mathbb{Z}$, $Mod_R \equiv Ab$.

Definition: R-Algebra

An R-algebra is an Abelian group (A, +) that has both the structure of

- 1. an R-module and
- 2. a ring

which are compatible in that

$$r(ab) = (ra)b = a(rb), \quad \forall r \in \mathbb{R}, \ a, b \in A$$

Example 1

The polynomial ring R[x] is an R-algebra.

Example 2

The ring of $n \times n$ matrices $M_n(R)$ is an R-algebra.

Example 3

If $R \xrightarrow{\phi} S$ is a homomorphism of commutative rings, then S is an R-algebra via $r := \phi(r)a$, $\forall r \in R$, $a \in S$.

Example 4

 $\mathbb{R} \hookrightarrow \mathbb{C}$. So \mathbb{C} is an \mathbb{R} -algebra.

 $R \hookrightarrow R[x].$

More generally, $R[x_1, x_2, ..., x_n]$ is an R-algebra.

Commutative R-Algebras

An R-algebra is commutative if it is commutative as a ring. $CAlg_R \subset Alg_R$.

Question: Why are polynomials important?

An algebraic perspective: they are the "free commutative algebras."

Recall

For R a commutative ring, we have the notion of a free R-module – one that admits a basis. Categorically, we have an adjunction.

Set
$$f \uparrow \downarrow \mathcal{U}$$
 Mod_R

The left adjoint of the forgetful functor sends a set *I* to the free *R*-module with basis *I*.

$$F(I) = R^{(I)} = \bigoplus_{i \in I} R$$

The adjunction says that for any set I and R-module M,

$$\operatorname{Hom}_{\operatorname{\mathsf{Mod}}_R}(R^{(I)},M) \tilde{\to} \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Set}}}(I,M)$$
 $\exists !R\text{-linear map}_{\substack{f:R^{(I)} \to M \ e_i \mapsto x_i}} \longleftrightarrow \{x_i\}_{i \in I}$

Similarly, the forgetful functor $\mathcal{U}: \mathsf{CAlg}_R \to \mathsf{Set}$ has a left adjoint

Set
$$f \uparrow \downarrow \mathcal{U}$$
 CAlg_{R}

which sends a set I to the "free commutative R-algebra on I." Explicitly, $F(I) = R[\{x_i\}_{i \in I}]$ the polynomial algebra with an indeterminate x_i for each $i \in I$.

Example 1

$$I = \{*\} \rightsquigarrow F(\{*\}) = R[x].$$

$$I = \{1, ..., n\} \rightsquigarrow F(\{1, ..., n\}) = R[x_1, ..., x_n].$$

$$I = \mathbb{N} \rightsquigarrow F(\mathbb{N}) = R[x_1, x_2, ...].$$

Adjunction

For any set I and commutative R-algebra $A \in CAlg_R$, we have a bijection

$$\operatorname{Hom}_{\operatorname{CAlg}_R}(R[\{x_i\}_{i\in I},A)\cong\operatorname{Hom}_{\operatorname{Set}}(I,A)$$

 $\exists !R\text{-algebra homomorphism}_{R[\{x_i\}_{i\in I}]\to A} \longleftrightarrow \{a_i\}_{i\in I}$

Exmple 1

Let A be a commutative R-algebra.

For any $a \in A$, there exists a unique R-algebra homomorphism $R[x] \to A$ which sends $X \mapsto a$. Explicitly, $f(x) \mapsto f(a)$.

Corollary

Let $R \xrightarrow{\phi} S$ be a homomorphism of commutative rings.

For any $a \in S$, there is a unique ring $R[x] \xrightarrow{\overline{\phi}} S$ such that $\overline{\phi}|_R = \phi$ and $\overline{\phi}(X) = a$.

Example 1

Let $R \subseteq S$ be a subring.

For each $a \in S$, there is a unique ring homomorphism $R[x] \xrightarrow{\phi} S$ such that $\phi|_R = \operatorname{id}$ and $\phi'(X) = a$. We call this the "evaluation at a."

$$R[x] \xrightarrow{\operatorname{ev}_a} S$$
$$f \mapsto f(a)$$

Definition: Subalgebra

Let *A* be a commutative *R*-algebra, and let $S \subset A$ be a subset.

The subalgebra of A generated by S, denoted R[S], is the intersection of all subalgebras of A which contain S. Explicitly,

$$R[S] = \{a \in A : \exists n \ge 1, s_1, \dots, s_n \in S, f \in R[x_1, \dots, x_n], a = f(s_1, \dots, s_n)\}$$

Example 1

Let A = R[x]. Then A = R[x]. That is, A is generated by $\{x\}$ as an algebra. Similarly, $R[x_1, ..., x_n]$ is generated as an algebra by $\{x_1, ..., x_n\}$.

Example 2

If R[x]/I with $I \subset R[x]$ an ideal, and $x := \overline{X} \in A$, then A = R[x]. That is, A is generated by $x = \overline{X}$ as an algebra. More generally, if $I \subset R[x_1, ..., x_n]$ an ideal, then $R[x_1, ..., x_n]/I$ is generated by $\{\overline{x}_1, ..., \overline{x}_n\}$.

Proposition

If $A \in \mathsf{CAlg}_R$ is a finitely generated, commutative R-algebra, then $A \cong R[x, ..., x_n]/I$ for some $n \ge 1$ and ideal $I \subset R[x_1, ..., x_n]$.

April 3, 2024

Definition: Symmetric Polynomials

Let R be a commutative ring.

A polynomial $f \in R[x_1, \ldots, x_n]$ is symmetric if $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)} = f(x_1, \ldots, x_n)$ for all $\sigma \in S_n$. In more detail: the smmetric group S_n acts on $R[x_1, \ldots, x_n]$ by R-algebra homomorphism. $\sigma \in S_n \leadsto R[x_1, \ldots, x_n] \to R[x_1, \ldots, x_n]$ given by $x_i \mapsto x_{\sigma(i)}$. The canonical action of S_n on $\{1, \ldots, n\}$ is

$$S_n \to \operatorname{Set} \xrightarrow{F} \operatorname{CAlg}_R$$

 $* \mapsto \{1, \dots, n\} \mapsto R[x_1, \dots, x_n]$

Exercise 1

The symmetric polynomials form a subalgebra of $R[x_1,...,x_n]$.

Example 1

Consider the polynomial

(*)
$$(t-x_1)(t-x_2)\cdots(t-x_n) \in R[x_1,\ldots,x_n][t]$$

Write

$$t^{n} - s_{1}t^{n-1} + s_{2}t^{n-2} + \cdots + (-1)^{n}s_{n}$$

where $s_1, \ldots, s_n \in R[x_1, \ldots, x_n]$.

Examples

Let n = 2.

$$(t-x_1)(t-x_2) = t^2 - \underbrace{(x_1+x_2)}_{s_1} t + \underbrace{x_1x_2}_{s_2}$$

Let n = 3.

$$(t-x_1)(t-x_2)(t-x_3) = t^3 - \underbrace{(x_1+x_2+x_3)}_{s_1} t^2 + \underbrace{(x_1x_2+x_2x_3+x_1x_3)}_{s_2} t - \underbrace{x_1x_2x_3}_{s_3}$$

Exercise 2

Show that the polynomials $s_1, ..., s_n \in R[x_1, ..., x_n]$ are symmetric using the fact that (*) is unchanged by permuting the x_i s.

Definition: Elementary Symmetric Polynomials

The polynomials $s_1, ..., s_n \in R[x_1, ..., x_n]$ are the elementary symmetric polynomials in n variables. Explicitly,

$$s_1 = x_1 + x_2 + \dots + x_n$$

$$s_2 = \sum_{1 \le i \le j \le n} x_i x_j$$

$$\vdots$$

$$s_k = \sum_{1 \le i_1 \le \dots \le i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

$$\vdots$$

$$s_k = x_1 x_2 \cdots x_n$$

Theorem: Fundamental Theorem on Symmetric Polynomials

Every symmetric polynomial $f \in R[x_1,...,x_n]$ can be expressed in a unique way as a polynomial in the elementary symmetric polynomials.

In particular, $R[s_1, ..., s_n] \subseteq R[x_1, ..., x_n]$ is the subalgebra of symmetric polynomials.

Recall: Group of Units

If R is a ring, then $U(R) = R^{\times} = \{a \in R : a \text{ is invertible}\}$. This is the multiplicative group of units in R.

Exercise 3

This determines a functor Ring \rightarrow Grp.

Definition: Field

A field is a nonzero commutative ring F in which every nonzero element is invertible (i.e. $F^{\times} = F \setminus \{0\}$).

Remarks:

A field has no nontrivial ideals.

A commutative ring R is a field if and only if (0) is a maximal ideal.

If $I \subset R$ is an ideal in a commutative ring then $R \setminus I$ is a field if and only if I is a maximal ideal.

Definition: Domain

A (integral) domain is a nonzero commutative ring R such that $\forall a, b \in R$, $ab = 0 \implies a = 0$ or b = 0.

Remarks:

A commutative ring R is a domain if and only if (0) is a prime ideal.

If $I \subset R$ is an ideal in a commutative ring, then $R \setminus I$ is a domain if and only if I is a prime ideal.

Example 1

Every field is a domain.

In fact, every subring of a field is a domain.

Conversely, domains can be characterized as the subrings of fields.

Definition: Field of Fractions

Let R be a domain.

Its field of fractions, Frac(R), is the set of all "formal fractions"

$$\operatorname{Frac}(R) = \left\{ \frac{a}{b} : a, b \in R, b \neq 0 \right\}$$

More precisely, $Frac(R) = (R \times (R \setminus \{0\})) / \sim \text{ where}$

$$(a_1, b_1) \sim (a_2, b_2) \iff a_1 b_2 = a_2 b_1$$

and we define $\frac{a}{b} := [(a, b)]$.

It is a field under addition and multiplication of fractions

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2}$$
 and $\frac{a_1}{b_1} \frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2}$

We have an injective ring homomorphism

$$R \hookrightarrow \operatorname{Frac}(R)$$
$$a \mapsto \frac{a}{1}$$

Example 1

 $\mathbb{Q} = \operatorname{Frac}(\mathbb{Z}).$

Remark:

 \mathbb{Z} is a domain.

Its ideals are $n\mathbb{Z}$ for n = 0, 1, 2, ...

Its prime ideals are (0) and $p\mathbb{Z}$ for p prime.

Definition: Root

Let R be a commutative ring and $f \in R[x]$.

A root or zero of f is an element $r \in R$ such that f(a) = 0.

$$R[x] \xrightarrow{\operatorname{ev}_a} R$$
$$f \longmapsto 0$$

The kernel is (x - a).

That is f(a) = 0 if and only if $f \in (x - a)$, if and only if $x - a \mid f$, if and only if f(x) = (x - a)g(x) for some $g \in R[x]$.

Proposition:

Let R be a domain. Then

- 1. R[x] is a domain.
- 2. deg(fg) = deg(f) + deg(g).
- 3. $R[x]^{\times} = R^{\times}$ (i.e. $f \in R[x]^{\times} \iff f(x) = b_0$ with $b_0 \in R^{\times}$).

Example 1

If R = F a field, $F[x]^{\times}$ = the nonzero constant polynomials.

Remark:

If R a domain and $a \in R$ a root of $f \in R[x]$, then

$$f(x) = (x - a)^m g(x)$$

with $g(a) \neq 0$. The m is uniquely determined and called the multiplicity of the root. Roots of multiplicity 1 are called simple roots.

Remark:

If R is a domain, a polynomial $f \in R[x]$ of degree d has at most d roots. In fact, at most d roots counted with multiplicity.

Definition: Formal Derivative

The formal derivative of a polynomial

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_2 x^2 a_1 x + a_0 \in R[x]$$

is the polynomial $Df = f' \in R[x]$ defined by

$$f'(x) = da_d x^{d-1} + \dots + 2a_2 x + a_1$$

10

Remark: Properties

$$(f+g)' = f'+g'$$
 $R[x] \to R[x]$ is R -linear $(af)' = af'$ for $a \in R$ $(fg)' = fg' + f'g$ (Leibniz Formula)

Proposition:

 $a \in R$ is a multiple root of $f \in R[x]$ if and only if f(a) = 0 and f'(a) = 0.

Proof

$$f(x) = (x-a)^m g(x), g(a) \neq 0.$$

Therefore, by Lebniz, $f'(x) = m(x-a)^{m-1} g(x) + (x-a)^m g'(x).$

Recall:

For a field F, the polynomial ring F[x] is a PID. \mathbb{Z} is also a PID.

Proposition:

Let R be a PID.

Every nonzero prime ideal is maximal.

Proof

Let $0 \neq p$ be a nonzero prime ideal.

Suppose $p \subseteq I$. Then p = (p) and I = (a) for some $a \in R$ and prime element $p \in R$. Then $(p) \subseteq (a)$ and p = ab for some $b \in R$. So $p \mid a$ or $p \mid b$. If $p \mid a$, then p = I. If, instead, b = pc for some $c \in R$, then

$$p = acp \implies 1 = ac \implies a \in R^{\times} \implies (a) = R$$

Example 1

If $f \in F[x]$ is an irreducable polynomial then F[x]/(f) is a field. For example, $R[x]/(x^2+1)$ is a field ($\cong \mathbb{C}$). Also, $\mathbb{F}_p = \mathbb{Z}/pz$ is a field.

Example 2

On the other hand,

$$(\mathbb{Z}/n)^{\times} = \{ a \in \mathbb{Z}/n : \gcd(a, n) = 1 \}$$

 $|(\mathbb{Z}/n)^{\times}| = |\{ 0 \le k \le n - 1 : \gcd(k, n) = 1 \}| = \phi(n)$

Euler's Totient Function.

Remark

Later in the course, we will prove the Fundamental Theorem of Algebra which states that every nonconstant complex polynomial $f \in \mathbb{C}[x]$ has a root.

This implies that if $f \in \mathbb{C}[x]$ is a monic polynomial with complex coefficients then $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ with $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$.

Write it as

$$f(x) = x^d + a_1 x^{d-1} + \dots + a_n$$

with coefficients $a_1, \ldots, a_n \in \mathbb{C}$. Then

$$a_1 = -s_1(\alpha_1, \dots, \alpha_n) = -(\alpha_1 + \dots + \alpha_n)$$

$$a_k = (-1)^k s_k(\alpha_1, \dots, \alpha_n)$$

$$a_n = (-1)^n \alpha_1 \dots \alpha_n$$

Example 1

$$f(x) = x^2 + bx + c = (x - \alpha_1)(x - \alpha_2)$$

where
$$\alpha_1=\frac{-b+\sqrt{b^2-4ac}}{2}$$
 and $\alpha_2=\frac{-b-\sqrt{b^2-4ac}}{2}$. So $\alpha_1+\alpha_2=-b$ and $\alpha_1\alpha_2=c$.

Bottom Line

The coefficients of a monic polynomial are very simple expressions of the roots of the polynomial.

Motivating Question

Can we go the other around?

Can we find simple expressions of the roots of a polynomial in terms of the coefficients.