It is the information about the task N26

1) Th-234 has a half-life of 24.1 days. Your answer is:

$$T_{1/2} = 24.106 \pm 0.007 \text{ s.}$$

- 2),3) and 5) I agree with your answers.
- 4) It is a good that you know the telegraph equation. The variable x is a coordinate along the coaxial cable. If you solve the system

$$\begin{split} \frac{\partial^2 V}{\partial t^2} &= u^2 \frac{\partial^2 V}{\partial x^2}, \\ \frac{\partial^2 I}{\partial t^2} &= u^2 \frac{\partial^2 I}{\partial x^2}, \end{split}$$

how would you find the magnetic and electric fields $\vec{B}(r,t)$, $\vec{E}(r,t)$ (where $b \le r \le a$ is the distance from the center of the cable)?

4) A coaxial cable consists of a wire with radius a (the core of the cable), which is wrapped with insulating material with dielectric constant ε , until radius b (called the insulator).

- 1. There may be a misprint, the correct unit is "days".
- 2. With known functions V(x,t) and I(x,t) the fields can be calculated directly from Maxwell equations, e.g. with the method demonstrated in the calculation of the cable's parameters.