

Outlook	Temperature	Humidity	Wind	PlayTennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

Логические правила

- Легко объяснить, как работают
- Находят нелинейные закономерности

- Нужно как-то искать хорошие логические правила
- Нужно уметь составлять модели из логических правил

Outlook	Temperature	Humidity	Wind	PlayTennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

Геометрическая интерпретация

Геометрическая интерпретация

Внутренние вершины: предикаты $[X_j < t]$

Листья: прогнозы $c \in \mathbb{Y}$

gini = 0.0

Предикаты

 $x_j < t$

Предикаты

Предикаты

Прогнозы в листьях

Наш выбор: константные прогнозы $c_v \in \mathbb{Y}$

Регрессия:

$$c_v = \frac{1}{|R_v|} \sum_{(x_i, y_i) \in R_v} y_1$$

Классификация:

$$c_v = \underset{k \in \mathbb{Y}}{\operatorname{argmax}} \sum_{(x_i, y_i) \in R_v} [y_i = k]$$

Прогнозы в листьях

Прогнозы в листьях

Формула для дерева

Дерево разбивает признаковое пространство на области R_1,\dots,R_J

Каждая область R_i соотвествует листу

В области R_j прогноз c_j константный

$$a(x) = \sum_{j=1}^{J} c_j [x \in R_j]$$

Как сравнить разбиения?

ИЛИ

Критерии информативности (impurity criterion)

Возможные функции H(q):

Энтропия:

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

Индекс Джини:

$$H(p_1, ..., p_n) = \sum_{i=1}^{K} p_i (1 - p_i)$$

Энтропия

Мера неопределённости распределения

Энтропия

Мера неопределённости распределения

Энтропия

Дискретное распределение

Принимает n значений c вероятностями p_1 , ..., p_n

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

Энтропия

Дискретное распределение

Принимает n значений c вероятностями p_1 , ..., p_n

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

(0.2, 0.2, 0.2, 0.2, 0.2)

(0.9,0.05,0.05,0,0)

(0,0,0,1.0)

H=1.60944

H=0.394398

H=0

Как сравнить разбиения?

(0.5, 0.5, 0)

(0,0,1)

$$H(p_L)$$
= 0.693

$$H(p_R)=0$$

ИЛИ

(0.3, 0.3, 0.3)

(0.3, 0.3, 0.3)

$$H(p_L)$$
= 1.09

$$H(p_R)$$
= 1.09

$$H = \frac{L}{Q}H(p_L) + \frac{R}{Q}H(p_R)$$

$$H = 0.693 + 0 = 0.693$$

$$H = 1.09 + 1.09 = 2.18$$

Критерии информативности (impurity criterion)

Outlook	Temperature	Humidity	Wind	PlayTennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

Характкристика «хаотичности» вершиныы

Критерий Джини

$$H(p_1, ..., p_n) = \sum_{i=1}^{K} p_i (1 - p_i)$$

Критерии информативности (impurity criterion)

$$Q = 20$$
 , $p_Q = \frac{9}{20}$

$$H(p_L) + H(p_R) \rightarrow min$$

Как сравнить разбиения?

$$H(p_L)$$
= 0.65

$$H(p_R)$$
= 0.65

ИЛИ

$$(\frac{6}{11}, \frac{5}{11})$$

$$H(p_L)$$
= 0.994

$$H(p_R)$$
= 0

(0,1)

$$H = H(p_L) + H(p_R)$$

$$H = 0.65 + 0.65 = 1.3$$

$$H = 0.994 + 0 = 0.994$$

Как сравнить разбиения?

$$H(p_L)$$
= 0.65

$$H(p_R)$$
= 0.65

ИЛИ

$$(\frac{6}{11},\frac{5}{11})$$

$$H(p_L) = 0.994$$

$$H(p_R)$$
= 0

$$H = \frac{L}{Q}H(p_L) + \frac{R}{Q}H(p_R)$$

$$H = \frac{1}{2} * 0.65 + \frac{1}{2} * 0.65 = 0.65$$

$$H = \frac{11}{12} * 0.994 + \frac{1}{12} * 0 = 0.991$$

Для регрессии

$$H = H(L) + H(R) = 40.44$$

Для регрессии

$$H = H(L) + H(R) = 1.33$$

Для регрессии

$$H(R) = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - y_R)^2$$

$$y_{R} = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} y_i$$

Жадное построение дерева

Как строить дерево?

Оптимальный вариант: перебрать все возможные деревья

Слишком долго

Жадное построение дерева

Как строить дерево?

- Мы уже умеем выбрать лучший предикат для разбиения вершины
- Будем строить жадно
- Начнём с корня дерева, будем разбивать последовательно, пока не выполнится некоторый критерий остановка

Критерий остановка

- Ограничить глубину
- Ограничить количество листьев
- Задать минимальное число объектов в вершине
- Задать минимальное уменьшение хаотичности при разбиении
- И так далее

- 1. Поместить в корень всю выборку: $R_1 = X$
- 2. Запустить построение из корня : SplitNode(1, R_1)

SplitNode(m, R_m)

- 1. Если выполнен критерий остановка, то выход
- 2. Ищем лучший предикат: $j,t = \underset{j,t}{\operatorname{argmin}} Q(R_m,j,t)$
- 3. Разбиваем с его помощью объектов: $R_l = \{(x,y) \in R_m \mid [x_j < t]\}$, $R_r = \{(x,y) \in R_m \mid [x_j \ge t]\}$
- 4. Повторяем для дочерних вершин: SplitNode(l, R_l), : SplitNode(r, R_r)

$$H = \frac{4}{13}H(p_L) + \frac{9}{13}H(p_R) = 0.65$$

$$H = \frac{5}{13}H(p_L) + \frac{8}{13}H(p_R) = 0.62$$

$$H = \frac{4}{13}H(p_L) + \frac{9}{13}H(p_R) = 0.47$$

Разбиения по признаку 2

 X_2

 $(\frac{4}{6},\frac{2}{6})$

 $H(p_L) = 0.5$

$$H = \frac{7}{13}H(p_L) + \frac{6}{13}H(p_R) = 0.66$$

 $(\frac{4}{7},\frac{3}{7})$

 $H(p_R)$ = 0.69

$$(\frac{1}{2}, \frac{1}{2})$$

$$H(p_L)$$
= 0.69

$$H = \frac{9}{13}H(p_L) + \frac{4}{13}H(p_R) = 0.53$$

$$(\frac{6}{9}, \frac{3}{9})$$

$$H(p_R)$$
= 0.46

Разбиения по признаку 2

$$(\frac{4}{9}, \frac{5}{9})$$

$$H(p_L)$$
= 0.69

$$H = \frac{4}{13}H(p_L) + \frac{9}{13}H(p_R) = 0.47$$

(1,0)

$$H(p_R)$$
= 0

Лучшее разбиение!

