

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

«Обработка разреженных матриц»

Студент Фролов Евгений

Группа ИУ7 — 35Б

Цель работы: реализация алгоритмов обработки разреженных матриц, сравнение этих алгоритмов со стандартными алгоритмами обработки матриц при различном размере матриц и степени их разреженности.

Условие задачи (3 вариант):

Разреженная матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор ЈА содержит номера столбцов для элементов вектора А;
- связный список IA, в элементе Nk которого находится номер компонент в A и JA, с которых начинается описание строки Nk матрицы A.
- 1. Смоделировать операцию умножения матрицы и вектора-столбца, хранящихся в этой форме, с получением результата в той же форме.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Входные данные:

Матрица и вектор столбец(одномерный массив). У пользователя есть возможность ввести матрицу автоматически, указывая только размеры матрицы и процент заполняемости. Тоже самое для массива; ручной ввод; ввод только ненулевых элементов и их индексы в матрице.

Выходные данные:

Матрица – результат умножения матрицы и вектора столбца; время, затраченное на умножение.

Возможные ошибки:

- Ввод некорректных данных
- Ввод по неправильному индексу элемента

<u>Обращение к программе:</u> через консоль командой ./main.exe

Флаги при компиляции:

gcc -std=c99 main.c func.c -o main.exe

Описание функций:

• Функция для умножение матрицы хранящейся в связанном списке и вектора столбца

(void multiplicate(int n, int *A, int *JA, int *IA, int *x, int *b))

• Функция для ручного ввода матриц. Принимает массив и указатели на размеры матрицы.

(int mtr_input(int a[][NMAX], int *n, int *m))

• Функция для обычного умножения матрицы.

(void multiply_basic(int a[][NMAX], int n, int m,int *b,int c[][NMAX]))

• Вывод массива.

(void print_array(int *mtr, int len))

• Функция для преобразования матрицы в связанный список.

(void convert_matrix(const int matr[][NMAX], int n, int m, int *A, int *JA, int *IA, int *count))

• Функция для генерирования матрицы с определенным процентом кол-ва целых.

(void generate_matrix(int matr[][NMAX], int n, int m, int fill))

• Функция для вывода времени в тиках.

(unsigned long long tick(void))

• <u>Функция для генерирования вектора столбца с определенным кол-вом целых.</u> (void generate_array(int *x, int n, int fill))

Тестирование:

Входные данные	Вывод
Неверный ввод пункта меню для	Input ERROR(you can choose 1, 2, 3
ввода матрицы	only)
Неверный ввод размеров матрицы	Input ERROR
(Например: n e)	
Неверный ввод элементов матрицы	Input ERROR
или вектора столбца	
Неверный ввод кол-ва ненулевых	Input ERROR
элементов(больше чем количество	
элементов в матрице или символ)	
Неверный ввод значения, позиций в	Input ERROR
матрице ненулевых элементов	

Структуры данных:

int a[NMAX][NMAX], n_a, m_a; //матрица, которую вводит пользователь int c1[NMAX];//результирующая матрица int a1[NMAX], count;//массив для хранения ненулевых элементов int ja1[NMAX];// массив для хранение индексов столбцов int ia1[NMAX];// связный список IA, в элементе Nk которого находится номер компонент в A и JA, с которых начинается описание строки Nk матрицы A

Анализ	эффективности	(по	памяти	И	времени):

Размерность	Заполнение,	Время, нс		Память, байт	
	% ненулевых эл-тов	Простая	Разреженная	Простая	Разреженная
10 5	1	8	20	440	136
	5	10	37		168
	20	11	53		288
	50	15	116		528
	100	14	137		928
100	1	309	109	40400	2008
	5	181	810		5208
	20	283	1592		17208
	50	429	2031		41208
	100	538	3035		81208
500 5	1	2704	151	1002000	26008
	5	3145	3056		106008
	20	4025	9578		406008
	50	6362	18573		1006008
	100	8364	26385		2006008
1000	1	11783	3403	4004004	92008
	5	11375	9463		412008
	20	12643	34678		1612008
	50	13043	67436		4012008
	100	13954	85276		8012028

Вывод:

Использование разреженной матрицы выгодно при малом проценте заполнения и большой размерности матрицы (от 100). Мы получаем выигрыш по памяти при заполении матрицы примерно до 20-30%, а выигрыш во времени примерно при 5-7%.

Контрольные вопросы:

1) Что такое разреженная матрица, какие схемы хранения таких матриц вы знаете?

Разреженная матрица — матрица, большая часть которой заполнена нулями. Можно хранить индекс (i,j) ненулевого элемента и его значение . Можно хранить значения ненулевых элементов, их индексы строки/столбца, номера элементов, с которых начинается очередная строка.

2) Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы.

Под обычную матрицу выделяется n*m*sizeof(element) байт памяти. Требуемая память под хранение разреженной матрицы зависит от выбранного типа хранения, количества ненулевых элементов.

3) Каков принцип обработки разреженной матрицы?

Сократить время обработки позволяет тот момент, что обрабатываются только ненулевые элементы.

4) В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Эффективнее применять стандартные алгоритмы обработки матриц при достижении определенного уровня заполненности матрицы.