# 2014 자료구조및실습 실습과제 2

※ 다음 기능을 하는 프로그램을 작성하시오.

### 1. 프로그램의 실제 실행 시간 측정

1부터 n까지의 합을 구하는 함수를 다음과 같은 3가지 알고리즘으로 구현해 보시오. 각 알고리즘의 실제수행 시간을 측정하여 이론적인 분석과 같게 나 오는지를 조사해보라.

```
□알고리즘 A: sum = n(n + 1)/2 공식 사용
```

```
□알고리즘 B: sum = 1 + 2+ ... + n
```

```
□알고리즘 C: sum = (1) + (1 + 1) + (1 + 1 + 1) + ..., (1 + 1 + ... + 1)
```

- 구현할 함수 이름 (예)

```
int hkd_sum_O1(int n)
int hkd_sum_On(int n)
int hkd_sum_Onn(int n)
```

- 실제 수행시간 측정을 위한 함수를 사용한다.(교재의 함수 등)
- 처리시간이 너무 짧으면 중간에 고의적인 시간지연함수를 동일하게 넣을 수 있다. 예: Sleep(10); //고의적인 시간지연함수
- n 값은 다음과 같이 다양하게 적용한다: 100, 1000, 10000, 100000, 1000000, ...
- n에 대한 실제 수행시간 표를 만들고, 엑셀 등을 이용해 선 그래프로 나타낸다. 결과 예:



## 2. 시간 복잡도가 다른 두 알고리즘의 비교.

아래의 알고리즘 A는 O(n)이고 알고리즘 B는 O(n2)이지만 n이 작을 때는 프로그램 B가 더 빠를 수도 있다. 두 개의 프로그램을 구현하여 수행 시간을 측정하여 n이 어느 정도로 커져야 프로그램 B가 시간이 더 걸리는지를 실험하라.

### □알고리즘 A:

```
mul = 1;

for(i=0;i<n;i++)

for(j=1;j<1000;j++)

mul = mul *j;
```

#### □알고리즘 B:

```
mul = 1;
for(i=0;i<n;i++)
for(j=1;j<n;j++)
mul = mul *j;
```

- 실제 처리시간이 역전되는 n 값을 자동으로 찾을 수 있도록 하시오.
- 이때의 각 알고리즘별 실제 처리 시간을 출력하시오.

#### 결과 예)

|          | 알고리즘A     | 알고리즘B     |
|----------|-----------|-----------|
| n = 9000 | 0.37400 초 | 0.34300 초 |
| n = 9100 | 0.39000 초 | 0.35900 초 |
| n = 9200 | 0.39000 초 | 0.35900 초 |
| n = 9300 | 0.39000 초 | 0.35900 초 |
| n = 9400 | 0.40500 초 | 0.37500 초 |
| n = 9500 | 0.40500 초 | 0.37500 초 |
| n = 9600 | 0.40600 초 | 0.39000 초 |
| n = 9700 | 0.40500 초 | 0.40600 초 |

표2. 1차 실험 - 알고리즘A가 효율적이 되는 n값

|           | 알고리즘A     | 알고리즘B     |
|-----------|-----------|-----------|
| n = 9000  | 0.39000 초 | 0.34300 초 |
| n = 9100  | 0.39000 초 | 0.34300 초 |
| n = 9200  | 0.39000 초 | 0.35900 초 |
| n = 9300  | 0.40500 초 | 0.35900 초 |
| n = 9400  | 0.40600 초 | 0.37400 초 |
| n = 9500  | 0.40600 초 | 0.37400 초 |
| n = 9600  | 0.40600 초 | 0.39000 초 |
| n = 9700  | 0.42100 초 | 0.39000 초 |
| n = 9800  | 0.42100 초 | 0.40600 초 |
| n = 9900  | 0.42100 초 | 0.42100 초 |
| n = 10000 | 0.42100 초 | 0.42200 초 |

표3. 2차 실험 - 알고리즘A가 효율적이 되는 n값