

Design Thinking: The Iterative Design Process

ONE APPROACH TO DATA SCIENCE

- 1. Start with some data
- 2. Figure out what problems you can solve with the data
- 3. Do analysis
- 4. Present the results

A BETTER APPROACH

- 1. Start with the End User
- 2. **Brainstorm** ideas based on what problems the end user is facing and possible ways to help address their problem
- 3. Prototype some of these ideas to create a <u>Minimum</u> <u>Viable Product (MVP)</u>
- 4. Iterate

THINGS TO REMEMBER

1. Start w/ End User

Human-centered design and empathy

Focus on the end user and goal instead of on modeling

2. Brainstorm

Brainstorm ideas before you even touch the data!

Keep your time - resources - scope constraints in mind

3. MVP and Iterate

Always start simple

Create a simple,
working solution before
moving forward

Ask for feedback

Minimum Viable Product (MVP)

METIS

WHAT MAKES A GOOD MVP?

Minimum: Could something simpler / quicker accomplish a similar outcome?

Viable: Does the MVP work (more details on next slide)?

Product: Does the MVP address a need of the audience / add value?

Not like this....

Like this!

PRINCIPLES OF GOOD DESIGN

- <u>Define your Minimum Viable Product</u> before beginning to work on anything.
- Build each step (data cleaning, exploration, plotting) like you're planning to iterate it.
 - Comments and documentation
 - Clear thought process
 - Functional > Perfect
- Use later steps (like building a model) to <u>inform decisions on earlier</u>
 <u>steps</u> (like data scraping)

GROUP EXERCISE

Break out into your project groups.

Discussion points:

- What have you learned from this presentation?
- What will you do differently as a group today?