CSE340: Theory of Computation (Problem Set)

Question 1. Construct DFAs for the following languages.

- 1. $L_1 = \{w \in \{0,1\}^* | \#_0(w) \text{ is even and } \#_1(w) \text{ is odd} \}$
- 2. $L_2 = \{w \in \{0\}^* | |w| \text{ is divisible by 2 or 7} \}$
- 3. $L_3 = \{w \in \{0,1\}^* | w \text{ is divisible by } 5\}$

Remark. $\#_0(w)$ denotes the number of occurrences of 0 in w. Similarly $\#_1(w)$.

Question 2. Consider the following language

$$L = \{w \in \{0,1\}^* \mid \text{the 3rd last symbol of } w \text{ is 1}\}$$

Construct a DFA for the above language. What can you say about the size (i.e. no. of states) of the DFA compared to the NFA? Consider the language

$$L_k = \{w \in \{0,1\}^* \mid \text{the } k\text{-th last symbol of } w \text{ is } 1\}$$

What is the smallest sized NFA that can accept L_k (as a function of k)? What about the smallest sized DFA?

Question 3. Solve problem 1.5 from chapter 1 in the textbook.

Question 4. For a language $L \subseteq \Sigma^*$, define

SecondHalves
$$(L) = \{y \mid \exists x \text{ such that } |x| = |y|, xy \in L\}.$$

Prove that if L is regular, SecondHalves(L) is also regular.

Question 5. For a language L, let

$$MiddleThirds(L) = \{y \mid \exists x, z \text{ and } |x| = |y| = |z| \text{ and } xyz \in L\}$$

For example, MiddleThirds($\{\epsilon, a, ab, bab, bbab, aabbab\}$) = $\{\epsilon, a, bb\}$. Prove that if L is regular, MiddleThirds(L) is also regular.

Question 6. Given $L \subseteq \{0,1\}^*$, define

$$L' = \{xy \mid x1y \in L\}.$$

Show that if L is regular then L' is also regular.

Question 7. For a language A, let

$$A'' = \{xz \mid \exists y \text{ and } |x| = |y| = |z| \text{ and } xyz \in A\}$$

Show that even if A is regular, A'' is not necessarily regular.

Question 8. Show that the following languages are not regular.

- 1. $\{0^{n^2}1^n \mid n \ge 0\}$
- 2. $\{0^n 1^m \mid n > m\}$
- 3. $\{ww \mid w \in \{0,1\}^*\}$
- 4. $\{a^i b^j c^k \mid i \neq 2 \text{ or } j = k\}$

Question 9. Verify that \approx (defined in lecture 7) is an equivalence relation.

Question 10. Show that the δ' (define in lecture 7) is well defined. In other words, if [p] = [q], then $[\delta(p,a)] = [\delta(q,a)]$ for all $a \in \Sigma$.

Question 11. Can you collapse the quotient DFA any further? What happens if you try to do so?

Question 12. Minimize the following DFA.

Question 13.

$$\begin{array}{ccc} S & \longrightarrow & ASB \mid \epsilon \\ A & \longrightarrow & a \end{array}$$

$$B \longrightarrow bb$$

The language generated by the above grammar is

$$L = \{a^n b^{2n} \mid n \ge 0\}$$

which is not regular. What happens if we add the production rule

$$B \longrightarrow \epsilon$$

to the above grammar?

Question 14. Prove Theorem 4 from lecture 8.

Question 15. Give an example of an unambiguous grammar that has at least 2 derivations for some string.

Question 16. Solve problem 2.14 from textbook.

Question 17. Prove that the following languages are not context-free.

1.
$$L_1 = \{a^n b^m c^n d^m \mid n, m \ge 0\}$$

2.
$$L_2 = \{0^n 1^{n^2} \mid n \ge 0\}$$

3.
$$L_3 = \{0^n \mid n \text{ is prime}\}\$$

Question 18. Construct PDA for the following languages

(i)
$$L_1 = \{ w \in \{0,1\}^* \mid \#_0(w) = \#_1(w) \}$$

(ii)
$$L_2 = \{0^{2n}1^{3n} \mid n \ge 0\}$$

Question 19. Construct PDA for the following languages

(i)
$$L_1 = \{a^i b^j c^k \mid j \le i + k \le 2j\}$$

(ii)
$$L_2 = \{a^i b^j \mid i \neq j\}$$

(iii)
$$L_3 = L(a^*b^*c^*) \setminus \{a^nb^nc^n \mid n \ge 0\}$$

(iv)
$$L_4 = \overline{L}$$
, where $L = \{ww \mid w \in \{a, b\}^*\}$

Question 20. Show that CFLs are closed under homomorphism and inverse inverse homomorphism.

(*Hint*: For homomorphism start with a CFG and for inverse homomorphism start with a PDA.)

Question 21. Construct a DPDA for the language $L_1 = \{0^n 1^n \mid n \ge 0\}$.

Question 22. Show that there is a CFL that is not a DCFL and has an unambiguous grammar.