তড়িৎ চৌম্বক আবেশ ও দিক পরিবর্তী প্রবাহ 0

TYPE - 01

তড়িৎ চৌম্বকীয় আবেশ

FORMULA:

 $\mathbf{2} \quad \epsilon = \frac{Nd\phi}{dt} = \frac{Nd\phi}{dt} \text{ (NAB cos wt)}$

= WNBA sin wt

 $\phi =$ চৌম্বক ফ্লাক্স।

do = চৌম্বক ফ্রাক্সের পরিবর্তন।

ε = আবিষ্ট তড়িচ্চালক শক্তি

সুত্রাবলী : $\phi_B=\oint \overrightarrow{B}.\overrightarrow{dA}=\mathrm{BAcos}\theta$ যেখানে, $\phi_B\to$ চৌম্বক ফ্লাক্স বা বলরেখা।

 $\overrightarrow{dA}
ightarrow$ সমগ্র পৃষ্ঠ $\mathbf A$ এর একটি ক্ষুদ্র অংশ যার দিক পৃষ্ঠের লম্ব বরাবর

 $\vec{B} \rightarrow$ চৌম্বক ক্ষেত্র যার দিক যেকোন দিক হতে পারে।

 $heta
ightarrow ag{range}$ কেনে ও তলে লম্বের মধ্যবর্তী কোন।

 $heta-90^0$ হলে ফ্লাক্স শূন্য হয়।

ফ্যারাডের আবেশ সুত্রঃ বদ্ধ কুন্ডলীতে আবিষ্ট তড়িৎ চালক বল, $arepsilon_0 = -rac{d\phi_B}{dt}$

কুন্ডলীর পাক সংখ্যা N হলে, $\varepsilon=-rac{d(N\phi_B)}{dt}=-Nrac{d\phi_B}{dt}$; $N\phi_B o N$ পাক বিশিষ্ট কুন্ডলীর ভেতর দিয়ে

বিস্তৃত মোট বলরেখার সংখ্যা বা মোট ফ্লাক্স। $\therefore \phi_B = \oint \vec{B} \cdot d\vec{\mathrm{A}} \;,\; \varepsilon = -N \cdot \frac{d}{dt} \oint \vec{B} \cdot d\vec{\mathrm{A}}$

 $EXAMPLE - 01:0.01\ T$ এর চৌম্বক প্রাবল্যের একটি চৌম্বক ক্ষেত্রে $300 \times 10^{-4}\ m^2$ ক্ষেত্রফল এর একটি কুন্ডলী লম্বভাবে স্থাপিত। (i) কুন্ডলীর মধ্য দিয়ে চৌম্বকপ্রবাহ বা ফ্লাক্সে নির্ণয়কর।

(ii) যদি কুন্ডলীর উল্লম্ব দিক চৌম্বক ক্ষেত্রের সাথে 60° কোণে অবস্থিত হত তবে চৌম্বক ফ্লাক্স কত হবে ?

SOLVE: (i) $Q = BA = 0.01 \times 300 \times 10^{-4} = 300 \times 10^{-6} \text{ wb} = 0.3 \text{ mwb}$

(ii) $Q = BA \cos 60^{\circ} = 0.01 \times 300 \times 10^{-4} \times \frac{1}{2} = 0.15 \text{ mwb}$ [Ans.]

EXAMPLE - 02: 100 পাক বিশিষ্ট একটি সংবদ্ধ তার কুন্ডলীর ব্যাসার্ধ 50 cm কুন্ডলীটি 0.30 sec এ $0.25~{
m wb/m^2}$ থেকে $0.50~{
m wb/m^2}$ ফ্লাক্স ঘনতে সরানো হল। কুন্ডলীতে আবিষ্ট তড়িচ্চালক বলের মান নির্ণয় কর।

SOLVE:
$$Q = AB_1 = \pi \times (50 \times 10^{-2})^2 \times 0.25 \text{ wb}$$

 $Q = AB_2 = \pi \times (50 \times 10^{-2})^2 \times 0.50 \text{ wb}$ $\therefore dQ = Q_2 - Q_1 = \pi (50 \times 10^{-2})^2 (0.50 - 0.25)$
 $\therefore \epsilon = -\frac{Nd\phi}{dt} = \frac{100 \times \pi \times (50 \times 10^{-2})^2 (0.50 - 0.25)}{0.30} = 65.42 \text{ V [Ans.]}$

EXAMPLE - 03:450 পাকের একটি কুঙলীর মধ্যদিয়ে চৌম্বক ফ্লাক্স $4 \times 10^{-20} {
m s}$ এ $40~\mu {
m wb}$ হতে $80~\mu {
m wb}$ এ পরিবর্তেত হলে কুন্ডলীতে আবিষ্ট তড়িৎ চালক বলের মান নির্ণয় কর।

$$\varepsilon = -N \frac{d\phi_B}{dt} = 450 \times \frac{(80-40)\times10^{-6}}{4\times10^{-2}} = 0.45$$
v

 $\varepsilon=-Nrac{d\phi_B}{dt}=450 imesrac{(80-40) imes10^{-6}}{4 imes10^{-2}}=0.45 ext{v}$ উদাহরণ-০২ ঃ 100 পাকের একটি কুশুলীর প্রতি পাকের ক্ষেত্রফল $100 ext{m}^2$ এবং 0 . $05 ext{s}$ এ চৌম্বক ক্ষেত্র অপসারণ করলে কুন্ডলীতে কত তড়িচ্চালক বল অবিষ্ট হবে?

$$\varepsilon = N \frac{d\phi_B}{dt} = \frac{(100 - 250)}{0.05} = 5 \times 10^5 \text{v} , \phi_B = 5 \times 100 \cos 60^0 = 250 \text{wb}, \\ d\phi_B = (250 - 0) = 250 \text{wb}.$$

TRY YOURSELF

EXERCISE – 01: একটি কুন্ডলীর পাকসংখ্যা 100. একে একটি চুম্বকের নিকট হতে $0.04_{
m S}$ এ সরিয়ে প্রতি পাকের চৌম্বক ফ্লাক্স $30 imes 10^{-5}~{
m wb}$ হতে $2 imes 10^{-5}~{
m wb}$ এ পরিণত করা যায়। কুন্ডলীর আবিষ্ট বিদ্যুচ্চালক শক্তি নির্ণয় কর। [Ans. 0.7V]

EXERCISE – 02: $1.5 \times 10^3 \; Nwb^{-1}$ প্রাবল্যের একটি চৌম্বক ক্ষেত্রে $0.3 \times 10^{-4} \; m^2$ ক্ষেত্রফল বিশিষ্ট একটি লোহার দন্ডে $2.5 \times 10^{-5}~{
m wb}$ চৌম্বক ফ্লাক্স উৎপন্ন হয়। চৌম্বক আবেশ নির্ণয় করে। [${
m Ans.}~0.833$ wbm²]

EXERCISE – 03: 500 পাক বিশিষ্ট একটি কুন্ডলীর মধ্য দিয়ে $8 \times 10^{-3}~{
m wb}$ চৌম্বক ফ্লাক্স অতিক্রম করে। 0.015s এ ফ্লাক্সহ্রোস পেয়ে 3×10^{-3} এ পরিণত হয়। আবিষ্ট তড়িচ্চালক শক্তি কত ? [Ans.166.66 volt] **EXERCISE – 04:** $125 \times 10^{-6} \text{ m}^2$ একটি ক্ষুদ্র অনুসন্ধান কুন্ডলীর পাক সংখ্যা 50 কুন্ডলীটি একটি চুম্বকের দুই মেরুর মধ্যবর্তী স্থানে লম্বভাবে স্থাপিত আছে। কুন্ডলীটিকে এক হ্যাচকা টানে $60~\mathrm{ms}$ এ একটি চৌম্বক ক্ষেত্র মুক্ত স্থানে নিয়ে যাওয়া হলে গড়ে $0.07\mathrm{V}$ তড়িচ্চালক বল আবিষ্ট হল। মেরুদ্বয়ের মধ্যকার চৌম্বক ক্ষেত্র কত ছিল ? [Ans. 0.672 T]

EXERCISE – 05: 100 পাক কুন্ডলীর $80~{
m cm}^2$ ক্ষেত্রফল বিশিষ্ট একটি ছোট জেনারেটর গিয়ার সিস্টেমে চালানো হচ্ছে। যদি কুন্ডলীটি $20 \mathrm{Hz}$ কম্পাঙ্কে ঘোরে এবং $0.30~\mathrm{T}$ চৌম্বকক্ষেত্রে থাকে তবে আবিষ্ট তড়িচ্চালক . শক্তি নির্ণয় কর। [Ans. 30 sin (40πt) volt]

EXERCISE – 06: একটি কুন্ডলীর পাক সংখ্যা 10 এবং কুন্ডলীর ক্ষেত্রফল $4 \times 10^{-4} \text{ m}^2$ কুন্ডলীটিকে $10^{-2}~{
m T}$ ফ্রাক্স ঘনতু বিশিষ্ট একটি চৌম্বক মধ্যে লম্বভাবে রেখে $0.5~{
m sec}$ পরে চৌম্বকক্ষেত্রে সরিয়ে নেয়া হল। (ক) ঐ কুন্ডলীর উৎপন্ন তড়িচ্চালক বল কত ?

(খ) যদি ঐ কুন্ডলীকে এর মধ্যে বিন্দুগামী একটি অক্ষের চারিদিকে ঘোরানো হয় যাতে 0.2 sec পরে ঐ কুন্ডলী চৌম্বক ক্ষেত্রের সাথে 30° কোণে আনত থাকে, তবে গড় আবিষ্ট তড়িচ্চালক বল কত ? [Ans. (ক) 8×10^{-5} V, (খ) 10^{-4} V]

TYPE - 02

❖ স্বকীয় আবেশ আবেশ, পাস্পরিক আবেশ

FORMULA:

 $oldsymbol{0}$ $N \phi = LI$ $oldsymbol{2}$ $\epsilon = \frac{LdI}{dt}$ $oldsymbol{3}$ $L = \frac{\pi \mu N^2 r}{2}$ [বৃত্তাকার কুন্ডলী]

$$m{\Theta} \; L = \mu_o \; n^2 \; / \; A \; [$$
সলিনয়েড] $m{\Theta} \; rac{\epsilon_p}{\epsilon_c} = rac{I_S}{I_D} = rac{N_P}{N_S}$

L = স্বকীয় আবেশ গুণাঙ্ক

dI = প্রবাহমাত্রার পরিবর্তন

M = পারস্পরিক আবেশ গুণাঙ্ক

ড চৌম্বক ক্ষেত্রে সঞ্চিত শক্তি

স্বকীয় আবেশ (self inductance) (L): একক হেনরি বা 'H'

 ${
m form-1}: \ arepsilon=-Lrac{di}{dt}; \ L o$ স্বকীয় আবেশ বা স্বকীয় আবেশ গুনাংক (Henry, হেনরী) ${
m form-2}: \ arepsilon=-rac{d\phi_B}{dt}$ এবং $\phi_B\propto {
m i}\ , L=rac{\phi_B}{i}$

form 3: $|L| = \frac{\varepsilon}{\underline{d}i}$

from 4: সলিনয়েডের জন্য, $L = \mu_0 n^2 lA$

যেখানে, μ_0 শূন্য স্থানে চৌম্বক প্রবেশ্যতা l দৈর্ঘ্য , A প্রস্তুচেছেদের ক্ষেত্রফল এবং একক দৈর্ঘ্যে পাক সংখ্যা n . মোট পাক সংখ্যা, N = nl.

 $A = \pi r^2$ [l >> r হলে সুত্রটি ভালো কাজ করে]

সঞ্চিত চৌম্বক শক্তি, $U=\frac{1}{2}\,Li^2$

st পারস্পারিক আবেশ [(M) [Henry, 'হেনরি] 'H'] ঃ $arepsilon=-Mrac{di}{dt}=-rac{d\phi_B}{dt}$ যেখানে , $oldsymbol{\phi}_B=Mi$

EXAMPLE - 01:1000 পাক বিশিষ্ট একটি কুন্ডলীর মধ্য দিয়ে 2.5~A তড়িৎ প্রবাহকালে $0.5 \times 10^{-3}~wb$ চৌম্বক ফ্লাক্স উৎপন্ন হয়। কুন্ডলীর স্বকীয় আবেশ গুণাঙ্ক নির্ণয় কর।

Solve: আমরা জানি,
$$L=\frac{N\phi_B}{I}$$

$$=\frac{1000\times0.5\times10^{-3}\,\text{wb}}{2.5\text{A}}=0.2\;\text{H}=20\;\text{mH}$$

$$I=2.5\;\text{A}$$

$$\phi_B=0.5\times10^{-3}\;\text{wb}$$

EXAMPLE - 02: 100 পাকের একটি ঘন সন্নিবিষ্ট কুশুলীর মধ্য ব্যাসার্ধ 0.1m এর স্বকীয় আবেশ গুণাঙ্ক বের কর।

SOLVE : আমরা জানি,
$$L=\frac{N\phi_B}{2}$$

$$=\frac{\pi\times 4\pi\times 10^{-7}(100)^2\times 0.1}{2}=0.002~H~~[Ans.]$$

EXAMPLE-03: একটি আবেশ কুন্ডলীর মধ্য দিয়ে প্রবাহিত তড়িৎ প্রবাহের মান শূন্য থেকে 5~A এ বৃদ্ধি করা হলো। যদি কুন্ডলীর স্বকীয় আবেশ গুণাঙ্ক 0.4~H হয় তবে ঐ কুন্ডলীতে সঞ্চিত শক্তির মান বের কর।

SOLVE : আমরা জানি,
$$W = \frac{1}{2}LI^2$$

$$= \frac{1}{2} \times 0.4 \times 5^2 = 5 \text{ J [Ans.]}$$
 q খানে,
$$L = 0.4 \text{ H}$$
 $r = 5 \text{ A}$

EXAMPLE – 04: দুটি কুন্ডলীর পারস্পরিক আবেশ গুণাঙ্ক 0.2 H যদি কোন কুন্ডলীতে বিদ্যুৎ প্রবাহ 5ms এ 100mA থেকে 600mA এ উন্নীত হয় তাহলে-

- (a) এ সময় দ্বিতীয় কুন্ডলীতে গড় আবিষ্ট তড়িচ্চালক বল নির্ণয় কর।
- (b) দ্বিতীয় কুন্ডলীর পাকসংখ্যা যদি 500 হয়, তবে দ্বিতীয় কুন্ডলীর চৌম্বক প্রবাহের পরিবর্তন নির্ণয় কর।

SOLVE: (a)
$$\epsilon = M = \frac{dI}{dt} = \frac{0.2 \times 500 \times 10^{-3}}{5 \times 10^{-3}} = 20V$$

(b)
$$dQ = M = \frac{dI}{N_2} = 0.2 \frac{500 \times 10^{-3}}{500} = 0.2 \times 10^{-3} \text{ wb} \text{ [Ans.]}$$

EXAMPLE – 05: A ও B দুটি পাশাপাশি কুন্ডলীর পারস্পরিক আবেশ গুণাঙ্ক 2H. A কুন্ডলীতে তড়িৎ প্রবাহমাত্রা 0.05~s এ শূন্য হতে বৃদ্ধি পেয়ে 10~A হলে B তে আবিষ্ট তড়িচ্চালক শক্তির মান নির্ণয় কর। B এর পাক সংখ্যা 500 হলে চৌম্বক ফ্লাক্সের গড় পরিবর্তন কত হবে ?

EXAMPLE – 06: একটি ট্রান্সফরমারের গৌণ কুশুলীর পাকসংখ্যা মুখ্য কুশুলীর 200 গুণ। ট্রান্সফরমারটির প্রাথমিক কুশুলীতে প্রয়োগকৃত বিভব পার্থক্য 110V হলে গৌণ কুশুলীতে আবিষ্ট বিভব পার্থক্য কত? গৌণ কুশুলীতে প্রবাহমাত্রা 40 mA হলে মুখ্য কুশুলীর প্রবাহমাত্রা কত? কর্মদক্ষতা কত?

$$\begin{aligned} & \text{SOLVE}: \text{আমরা জান}, \ \frac{\epsilon_p}{\epsilon_s} = \frac{N_p}{N_s} \Rightarrow \epsilon_s = \frac{\epsilon_p \times N_s}{N_p} \\ & = \frac{110 \times 200 N_p}{N_p} = 22 \times 10^3 \text{ V [Ans.]} \\ & \text{আবার,} \quad \frac{N_p}{N_s} = \frac{I_s}{I_p} \Rightarrow & \text{Ip} = \frac{I_s \, N_s}{N_p} = \frac{40 \times 10^{-3} \times 200 N_p}{N_p} = 8 \text{ A} \end{aligned} \qquad \begin{aligned} \epsilon_p &= 110 \text{ V} \\ I_s &= 40 \text{ mA} \\ \epsilon_s &= ? \\ I_p &= ? \end{aligned}$$

EXAMPLE-07: একটি কুন্ডলীতে 1.015s এ তড়িৎ প্রবাহ 0.1A হতে 0.5A এ পরিবর্তিত হওয়ার কারণে কুন্ডলীতে 10~volt~ তড়িৎ চালক শক্তি আবিষ্ট হয় । কুন্ডলীয় স্বকীয় আবেশ গুনাংক নির্ণয় কর । $\varepsilon = L \frac{di}{dt} \Rightarrow 10 = L \times \frac{0.5-0.1}{1.015} \Rightarrow L = 25.~38H$

EXAMPLE - 08: একটি কুন্ডলীর স্কনীয় আবেশ গুণাংক 50H এবং রোধ 120Ω যদি 225 volt তড়িৎ চালক বল প্রয়োগ করা হয় তবে তড়িৎ প্রবাহ তার সর্বোচ্চ মানে পৌছেঁ চৌম্বক ক্ষেত্রে সঞ্চিত্র শক্তির পমিরান লশ ? $U_B = \frac{1}{2} \operatorname{Li}^2 = \frac{1}{2} \times 50 \times (\frac{225}{120})^2 = 87. \ 89J$ উদাহরণ -3: 20cm দৈর্ঘ্য এবং 2cm ব্যাস বিশিষ্ট কুন্ডলীর আবেশিতা নির্ণয় কর। পাক সংখ্যা 400 এবং

ডদাইরণ -3: $20\mathrm{cm}$ দেঘ্য এবং $2\mathrm{cm}$ ব্যাস বিশেষ্ট কুণ্ডলার আবোশতা নিণয় কর। পাক সংখ্য $\mu_0 = 4\pi imes 10^{-7} \mathrm{H/m}.$

$$L = \mu_0 n^2 lA = 4\pi \times 10^{-7} \times (\frac{400}{2})^2 \times 0.2 \times \pi \times (0.01)^2 = 3.16 \times 10^{-4} H$$

TRY YOURSELF

EXERCISE – 01: একটি কুন্ডলীর স্বকীয় আবেশ গুণাঙ্ক $500 \mathrm{mH}$. এই কুন্ডলীর ভেতর দিয়ে $10^{-1}~\mathrm{s}$ এ তড়িৎ প্রবাহমাত্রা $1~\mathrm{A}$ থেকে বৃদ্ধি করে $5~\mathrm{A}$ করা হলো। এই কুন্ডলীতে আবিষ্ট তড়িচ্চালক বলের মান নির্ণয় কর। $[\mathrm{Ans.}~20~\mathrm{V}]$

EXERCISE – 02: 120~V এর ব্যাটারীর সাথে $5~\pi$ রোধে একটি তার কুন্ডলী যুক্ত আছে। বর্তনীর স্থির প্রবাহমাত্রা 20~A শূন্য নামতে 0.04~s লাগে। কুন্ডলীর স্বকীয় আবেশ গুণাঙ্ক নির্ণয় কর। [Ans.~0.04~H]

EXERCISE – 03: 2~A বিদ্যুৎ প্রবাহ 400 পাকের একটি কুন্ডলীর মধ্য দিয়ে $10^{-4}~wb$ এর চৌম্বক প্রবাহ সৃষ্টি করে। সঞ্চিত্ত শক্তি নির্ণয় কর। [Ans.~0.04~J]

EXERCISE – 04: $30~{\rm cm}$ দৈর্ঘ্য এবং $3~{\rm cm}$ ব্যাস বিশিষ্ট কুণ্ডলীর স্বকীয় আবেশ গুণাঙ্ক নির্ণয় কর। পাক সংখ্যা = $400~{\rm g}~3\mu_{\rm o}=4\pi\times10^{-7}~{\rm H/m}$. [Ans. $4.73\times10^{-4}~{\rm H/m}$]

EXERCISE – 05: দেখাও যে, L_1 ও L_2 স্বকীয় আবেশ গুণাঙ্কের দুটি কুন্ডলীর স্বকীয় আবেশ গুণাঙ্ক এবং পারস্পরিক আবেশ গুণাঙ্কের মধ্যে সম্পর্ক $M=\sqrt{L_1L_2}$

EXERCISE – 06: একটি আরোহী ট্রান্সফরমারে 200~V থেকে 4000~V পাওয়া যায়। এই ট্রান্সফরমারে মুখ্য কুন্ডলীর পাক সংখ্যা ও রোধ যথাক্রমে $200~{\rm s}~0.5\pi$ হলে গৌণ কুন্ডলীর (ক) পাক সংখ্যা (খ) প্রবাহ (গ) রোধ কত ? $[{\rm Ans.}~({\rm fi})~4000~({\rm fi})~400~{\rm A}~({\rm fi})~200~\pi]$

EXERCISE – 07: একটি স্টেপ আপ ট্রাঙ্গফরমারে 200 V সরবরাহ করে 3 A প্রবাহ পাওয়া গেল। এর মুখ্য ও গৌণ কুন্ডলীর পাক সংখ্যার অনুপাত 1:25 হলে গৌণ কুন্ডলীতে প্রাপ্ত ভোল্টেজ ও মুখ্য কুন্ডলীর প্রবাহ ও ট্রাঙ্গফর্মারের বহিঃক্ষমতা বের কর। [Ans. 5000 V, 75 A, 15000 W]

EXERCISE – 08: 1 m দীর্ঘ এবং 0.05 m ব্যাসার্ধের $1000 \text{ পাকযুক্ত একটি সলিনয়েডের মধ্য দিয়ে 4 A বিদ্যুৎ প্রবাহিত হইলে সঞ্চিত শক্তির পরিমাণ নির্ণয় কর। [Ans. <math>0.316 \text{ J}$]

TYPE - 03

💠 দিক পরিবর্তী প্রবাহ ও তড়িচ্চালক বল

FORMULA:

$$\bullet I = Io \sin \omega t = Io \sin 2\pi ft$$

$$\mathbf{2} \ \overline{\epsilon} = \frac{2I_o}{r}$$

$$\bullet I_{r.m.s} = \frac{I_o}{\sqrt{2}}$$

 $oldsymbol{5}$ উত্তাপজনিত শক্তিক্ষয় $P_{av}=I^2R$

*দিক পরিবর্তী প্রবাহ:

আবিষ্ট তড়িচ্চালক শক্তি, $arepsilon = arepsilon_0 \sin \omega t$

আবিষ্ট তড়িৎ প্রবাহ, $I=l_0 \sin \omega {
m t}$

উৎসঃ $\varepsilon-N\,rac{d\phi_B}{dt}=-N\,rac{d(BAcos\omega t)}{dt}=NBA\omega sin\omega t$ শর্তঃ $\omega t=90^0$ হলে, arepsilon সবোর্চ হয়, $arepsilon_{
m max}=NBA\omega$.

** দিক পরিবর্তী প্রবাহের কার্যকর মান = বর্গমূলীয় গড়মান, $i_{eff}=i_{rms}=rac{i}{\sqrt{2}}=0.707i_0$ [দিক পরিবর্তী প্রবাহের তাৎক্ষনিক মান $i=l_0\sin\omega t$]

7

$$\varepsilon_{\rm eff} = \varepsilon_{\rm rms} = \frac{\varepsilon_0}{\sqrt{2}} \left[i^2 = \frac{\int_0^T i_0^2 sin^2 \omega t dt}{\int_0^T dt} \right]$$

** দিক পরিবর্তী প্রবাহের অর্ধ চক্রের মান = অর্ধ চক্রের গড় মান ।

Note : দিক পরিবর্তী প্রবাহের পূর্ণ চক্রের গড় মান শূণ্য।

$$I_{av} = 0.637I_o = \frac{2I_o}{\pi}$$

$$\varepsilon_{\rm av} = 0.367 \ \varepsilon_0 = \frac{2\varepsilon_0}{\pi}$$

** আকৃতি গুণাংক : আকৃতি গুণাংক =
$$\frac{I_{rms}}{I_{average}} = \frac{\varepsilon_{rms}}{\varepsilon_{average}} = \frac{I_{o/\sqrt{2}}}{2I_{0/\pi}} = \frac{\pi}{2\sqrt{2}} = 1.11$$

EXAMPLE - 01: একটি sine তরঙ্গের বিস্তার 14.14 V. একে 5π রোধের দুৎপ্রান্তে প্রয়োগ করা হলো।

- i. রোধের দু'প্রান্তের বিভব পার্থক্যের কার্যকরী মান।
- ii. রোধের মধ্য দিয়ে বিদ্যুৎ প্রবাহহের কার্যকরী মান। iii. শীর্ষমান।
- iv. আকার গুণক। v. শীর্ষ গুণক। vi. উত্তাপজনিত শক্তিক্ষয়।

SOLVE: i.
$$\epsilon_{r.m.s} = \frac{\epsilon_o}{\sqrt{2}} = \frac{14.14}{\sqrt{2}} = 10 \text{ V}$$
 ii. $I_{r.m.s} = \frac{\epsilon_{r.m.s}}{R} = \frac{10}{5} = 2 \text{ A}$

iii.
$$I_{r.m.s} = \frac{I_o}{\sqrt{2}} \Rightarrow I_o = \sqrt{2} \times I_{rms} = 2\sqrt{2}$$
 iv. $I = \frac{2}{\pi}I_o = \frac{2\times2\sqrt{2}}{\pi} = 1.8$ A

$$\therefore$$
 আকার গুণক $=rac{I_{rms}}{I}=rac{2}{1.8}=1.11$

v. শীৰ্ষ গুণক =
$$\frac{I_o}{I_{rms}} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$
 vii. $P_{av} = I_{rms}^2 R = \left(2\sqrt{2}\right)^2 \times R = 8 \times 5 = 40W$

EXAMPLE - 02: (ক) 230 V − 50Hz সরবরাহ লাইনে দিক পরিবতী তড়িচ্চালক বলের সমীকরণ লিখ।

- (খ) এই তড়িচ্চালক বলের পর্যায়কাল কত ? (গ) কত সময় ব্যবধানে প্রবাহের অভিমুখ উল্টাবে?
- (ঘ) কত সময় পর প্রবাহের মান শূন্য হবে ? (৬) কত সময় পর একই অভিমুখে প্রবাহমান শীর্ষে উঠে?
- (চ) প্রবাহ শূন্য হতে শীর্ষে পৌছাতে কত সময় লাগবে?

SOLVE : দেওয়া আছে, $~\epsilon_{rms}=230~V~;~f=~50~Hz~$ $\therefore~\omega=2\pi f=100\pi~rads-1$

$$\epsilon_o = \sqrt{2}~\epsilon_{r.m.s}~= \sqrt{2} \times 230 = 325.22~V$$

 $\overline{\Phi}$) $\varepsilon = \varepsilon_0 \sin \omega t = 325.22 \sin 100\pi t$

(
$$\forall$$
) $T = \frac{1}{f} = \frac{1}{50} = 0.02 \text{ s}$

(গ) প্রবাহের অভিমুখ বদলায় $\frac{T}{2}$ সময় ব্যবধানে \therefore সময় ব্যবধান $= \frac{0.02}{2} = 0.01~\mathrm{s}$

(ঘ) প্রবাহের মান শূন্য হবে
$$\frac{T}{2}$$
 সময় পরে \therefore নির্ণেয় সময় $=\frac{T}{2}=0.01~\mathrm{s}$

(৬) প্রবাহ অভিমুখে প্রবাহ শীর্ষমানে উঠবে $T=0.02~{
m sec}$ পরে

(চ) প্রবাহ শূন্য থেকে শীর্ষে পৌঁছাতে লাগে
$$\frac{T}{4}$$
 সময় \therefore নির্ণেয় সময় $=\frac{0.02}{4}=5 imes10^{-3}~{
m sec}$

8

 $\mathbf{EXAMPLE} - \mathbf{O3}$: $\mathbf{I} = \mathbf{I_o} \ \mathrm{sinwt}$ এবং $\mathbf{I} = \mathbf{I_o} \ \mathrm{sin} \left[\omega \left(t + \frac{T}{12} \right) \right]$ সমীকরণ দ্বারা নির্দেশিত প্রবাহদ্বয়ের

মধ্যে আদি দশা ও দশা পার্থক্য কত ?

 ${f SOLVE}$: ${f t}$ সময়ে প্রথম প্রবাহের দশা $=\omega t$ \therefore আদি দশা $({f t}=0)$ সময়ে =0

এবং t সময়ে দিতীয় প্রবাহের দশা $= \frac{\omega t}{12} + \omega t$ \therefore আদি দশা (t=0) সময়ে $= \frac{\omega t}{12}$

 \therefore আদি দশা পার্থক্য = $\frac{\omega t}{12} = \frac{2\pi}{T} \times \frac{T}{12} = \frac{\pi}{6}$

$$\therefore$$
 দশা পাৰ্থক্য = $\frac{\omega t}{12} + \omega t - \omega t = \frac{2\pi}{T} \times \frac{T}{12} = \frac{\pi}{6}$ [Ans.]

 $EXAMPLE - 04: I = 30 \sin 628 t$ হলে তড়িং প্রবাহের (i) শীর্ষমান, (ii) কম্পাঙ্ক এবং (iii) মূল গড় বর্গের মান নির্ণয় কর।

SOLVE: $I = I_0 \sin \omega t$ এর সাথে তুলনা করে, $w = 628 \Longrightarrow 2\pi f = 628$

$$\Rightarrow f = \frac{628}{2\pi} = 100 \text{ Hz [Ans.]}$$

$$\therefore$$
 তড়িৎ প্রবাহের শীর্ষমান $I=30~A~\therefore~I_{r.m.s}=rac{I_o}{\sqrt{2}}=rac{30}{\sqrt{2}}=21.21~A~~[Ans.]$

 $\mathbf{EXAMPLE}$ – $\mathbf{05}$: একটি প্রত্যাবর্তী গ্রাহকে $\mathbf{i}=40~\sin 600\pi \mathbf{t}$ সমীকরণ দ্বারা নির্দেশ করলে। প্রবাহের কম্পাংক, বর্গমূলীয় গড়মান নির্ণয় কর। 5min পর তড়িৎ প্রবাহের তাৎক্ষণিক মান কত বের কর।

 $2\pi f = 600\pi \Rightarrow f = 300 \text{ Hz} \leftarrow$ কম্পাংক , বর্গমূলীয় গড়মান, $I_{rms} = \frac{I_0}{\sqrt{2}} = \frac{40}{\sqrt{2}} = 20\sqrt{2} \text{amp} = 28.28$

তড়িৎ প্রবাহের তাৎক্ষণিক মান, $i_{ins} = 40 \sin 600\pi \times 5 \times 60 = 38.32$ amp

 $\mathbf{EXAMPLE}$ – $\mathbf{06}$: একটি $\mathbf{A.C}$ উৎসের বিস্তার $160\mathrm{v}$ এবং কম্পাংক $60~\mathrm{Hz}$ উৎসের সাথে 20Ω রোধ যুক্ত করলে কার্যকর ভোল্টেজ, কার্যকর প্রবাহ মাত্রা ও উত্তাপজনিত শক্তি ক্ষয় নির্ণয় কর।

 $\varepsilon_{\rm eff} = \varepsilon_{\rm rms} = \frac{\varepsilon_0}{\sqrt{2}} = 0.707 \times 160 = 113. 12 \text{ amp}$

$$I_{eff} = I_{rms} = \frac{113.12}{20} = 5.565 \text{ amp.}$$

 $I_{\rm eff}=I_{
m rms}=rac{\sqrt{2}}{20}=5.565~
m amp.$ উত্তাপ জনিত শক্তি ক্ষয়ের হার $=I_{rms}^2 R=639.8~
m Js^{-1}$

EXAMPLE - 07: 220 V AC ও 220V D.C লাইনে তোমাকে শক্ দেখাতে হবে ? কোনটিতে বেশি শক্ পাবে? তোমার বডির রোধ R.

 $220 \text{V} \;\; \text{D.C}$ তে শক্ পাবে $= \frac{220}{R} \; \text{amp}$, $220 \text{V} \;\; \text{A.C} \;\;$ তে শক্ পাবে $= \;\; \frac{220 \sqrt{2}}{R} \;\; \text{amp}$.

 ${f EXAMPLE-08}$: একটি পরিবতী প্রবাহ $i=10 \sin 100\pi t$ সমীকরণটি 5Ω রোধের তারের মধ্যে দিয়ে চললে আবিষ্ট তড়িচ্চালক শক্তির সমীকরন নির্ণয় কর।

সমাধান ៖ $\varepsilon = \varepsilon_0 \sin \omega t = 10 \sin 100\pi t$

 ${
m EXAMPLE-09:~100}$ পাকের আয়তকার কুন্ডলীটি $5{
m wb/m^2}$ সুষম চৌম্বক ক্ষেত্রে $100~\pi~{
m rads^{-1}}$ সমকৌনিক বেগে ঘূর্ণয়মান আছে। প্রতিটি কুন্ডলীয় ক্ষেত্রফল $10{
m m^2}$ এবং এর সাথে সংযুক্ত রোধের মান $100~\Omega$ । তড়িৎ বর্তনীতে স্ককীয় আবেশ ও প্রবাহিত সর্বোচ্চ প্রবাহমাত্রা নির্ণয় কর।

$$arepsilon_{
m max} = {
m NBA}\omega = 100 imes 5 imes 10 imes 100\pi = 1.57 imes 10^6 {
m V}.$$
 $I_{
m o} = rac{arepsilon_{
m max}}{R} = rac{1.57 imes 10^6}{100} = 1.57 imes 10^4 {
m Amp} \leftarrow$ সর্বোচ্চ প্রবাহ মাত্রা . From-2 হতে: $L = rac{\phi_B}{i} = rac{BAN}{i} = rac{5 imes 10 imes 100}{1.57 imes 10^4} = 31.85 {
m H}$

EXAMPLE-10: একটি পরিবর্তনশীল চৌম্বক ক্ষেত্র $\phi_B=0.6t^2+0.7t$ সমীকরণ অনুযায়ী চলে। এটাকে 100Ω রোধের সাথে যুক্ত করলে 5 min এ এর তঢ়িচ্চালক বলের মান নির্ণয় কর।

$$\varepsilon = \frac{d\phi_B}{dt} = 1.2t + 0.7$$
, 5min $\le \varepsilon = 1.2 \times 5 \times 60 + 0.7 = 360.7$ V

EXAMPLE – 11: একটি স্টেপ আপ ট্রান্সফরমারে 100V সরবরাহ করে 2A প্রবাহ পাওয়া গেল; এর মুখ্য ও গৌণ কুণ্ডলীর পাক সংখ্যার অনুপাত 1: 20 হলে গৌণ কুণ্ডলীতে প্রাপ্ত ভোল্টেজ, মুখ্য কুণ্ডলীর প্রবাহ মাত্রা ও ট্রান্সফরমারের ক্ষমতা নির্ণয় কর।

আমরা জানি,
$$\frac{arepsilon_p}{arepsilon_{S}}=rac{N_P}{N_S}$$
 বা, $arepsilon_{S}=rac{N_S}{N_P} imesarepsilon_p=rac{20}{1} imes100~V=2000~V$

আবার,
$$\frac{\varepsilon_p}{\varepsilon_{\scriptscriptstyle S}}=\frac{I_S}{I_P}$$
 বা, $I_P=\frac{\varepsilon_{\scriptscriptstyle S}}{\varepsilon_p} imes I_S=\frac{2000\, V}{100\, V} imes 2A=40A$

ক্ষমতা , $P = V \times I = 2000 \ V \times 2A = 4000 \ W$, ক্ষমতা P = ?

Ans: 2000 V, 40 A, 4000 W.

EXAMPLE - 12: কোন দিক পরিবর্তী প্রবাহের শীর্ষ মান 5A এবং এর কম্পাঙ্ক 60~Hz । এর গড়বর্গের বর্গমূল মান কত ? শূন্য থেকে শীর্ষমানে পোঁছাতে কত সময় লাগবে ?

সমাধান ঃ

 $I_{rms} = 0.707 \ I_0 = 0.707 imes 5A = 3.535 \ A$ পর্যায়কাল, $\mathrm{T} = rac{1}{f}$, এবং সর্বোচ্চ মানের পোঁছানোর সময়

$$t = \frac{T}{4} = \frac{1}{4f} := \frac{1}{4 \times 60Hz} = \frac{1}{240}s = 4.16 \times 10^{-3}s$$

TRY YOURSELF

EXERCISE – 01: একটি এসি উৎসের বিস্তার 160V এবং কম্পাঙ্ক 60~Hz. এই উৎসের সাথে 20π রোধক যুক্ত করা হলে কার্যকর ভোল্টেজ, কার্যকর প্রবাহমাত্রা এবং উত্তাপজনিত ক্ষয়শক্তি নির্ণয় কর।

[Ans. 113.15 V, 5.66 A, 640.7 W]

EXERCISE – 02: 220~V মেইন এর সাথে সংযোগ দেওয়া 1~kW এর একটি চুল শুকানোর যন্ত্রের রোধ ও এর মধ্য দিয়ে সর্বোচ্চ বিদ্যুৎ প্রবাহের মান কত? $[Ans.~48.40\pi,~6.428~A]$ ।

EXERCISE – 03: $I=I_0\sin\omega t$ এবং $I=I_0\cos\omega t$ সমীকরণদ্বয় দারা নির্দেশিত প্রবাহদ্বয়ের মধ্যে

(ক) আদি দশা পার্থক্য কত? (খ) দশা পার্থক্য কত? [Ans. (ক) $\frac{\pi}{2}$, (খ) $\frac{\pi}{2}$]

EXERCISE – 04: 220~V-50~Hz সরবরাহ লাইনের দিক পরিবর্তী তড়িচ্চালক বলের সমীকরণ নির্ণয় কর ৷ $[Ans.~311.127~sin~100~\pi t]$

EXERCISE – 05 : $\varepsilon=100~{
m sinwt}$ এর কম্পাঙ্ক, তড়িচ্চালক বলের শীর্ষ মান ও মূল গড় বর্গমান নির্ণয়

কর। [Ans.
$$\frac{1}{2\pi}$$
, 100 V, 70.7 V]

MCQ:

1. 100 পাকের একটি কুন্ডলীতে চৌম্বক ফ্লাক্স $0.025 \mathrm{s}$ এ শূন্য হতে $2 \times 10^{-5} \mathrm{wb}$ এ উন্নীত হয়।কুন্ডলীতে কি পরিমান বল আবিষ্ট হবে?

$$\varepsilon = \text{N.} \frac{d\phi_B}{dt} = 100 \times \frac{2 \times 10^{-5}}{0.025} = 0.08\text{V.}$$

(A)0.05v(B) 0.08v(C) 0.02v(D) 0.06v

2. একটি সলিনয়েডের স্বকীয় আবেশ গুনাংক $9.8 \times 10^{-3} \mathrm{J}$ সলিনয়েডের মধ্যদিয়ে $4 \mathrm{A}$ তড়িৎ প্রবাহিত হলে সঞ্চিত শক্তির পরিমাণ হবে?

$$U = \frac{1}{2} \text{Li}^2 = \frac{1}{2} \times 9.8 \times 10^{-3} \times 4^2$$

$$= 78.4 \times 10^{-3} \text{J}$$
(A)78.4 × 10⁻³ J (B) 156.8 × 10⁻³ J
(C) 3.84 × 10⁻⁴ J (D) 7.68 × 10⁻⁴ J

3. একটি আবেশকে $3 imes 10^{-3} s$ এ 10A হতে 8.5A তড়িৎ প্রবাহ পরিবর্তীত হলে আবেশকে 500v তড়িচ্চালক শক্তি উৎপন্ন হয়। আবেশকের স্কনীয় আবেশ গুণাংক নির্ণয় কর।

$$\varepsilon = L \frac{di}{dt} \Rightarrow 500 = L \times \frac{1.5}{3 \times 10^3}, L = 1H.$$

(A) 10H (B) 1H(C) 2H (D) 5H

4.~400~ পাকের একটি কুন্ডলীর স্ককীয় আবেশ গুনাংক $8 \mathrm{mH}$, তড়িৎ প্রবাহ $5 \times 10^{-3} \mathrm{A}$ হলে কুন্ডলীর মধ্য দিয়ে চৌম্বক ফ্লাক্সের পরিমাণ নির্ণয় কর।

L =
$$\frac{N\phi_B}{I}$$
, $\phi_B = \frac{5 \times 10^{-3} \times 8 \times 10^{-3}}{400} = 10^{-7} \text{wb}$
(A) 10^{-8} wb (B) 2.5×10^{-7} wb

- (C) 10^{-7} wb (D) 4×10^{-5} wb.

5. একটি $10\mathrm{H}$ আবেশক স্থির তড়িৎ প্রবাহ $2\mathrm{A}$ বহন করে। কিভাবে আবেশকে $100\mathrm{v}$ তড়িচ্চলক বল আবিষ্ট করা যাবে?

$$\frac{di}{dt} = \frac{100}{10} = 10amps^{-1}$$

- (A) 10amp/s হারে পরিবর্তন ঘটিয়ে
- (B) 100 amp বৃদ্ধি করে
- (C) 10 amp হ্রাস করে
- (D) কোনটিই নয়।
- 6. 1000 পাক বিশিষ্ট একটি সলিনয়েডের মধ্য দিয়ে 2.5 amp তড়িৎ প্রবাহিত হলে 0.5 μwb চৌম্বক ফ্যাক্স উৎপন্ন হয়। সলিনয়েডের স্ককীয় আবেশ গুনাংক কত?

$$L = \frac{1000 \times 0.5 \times 10^{-6}}{2.5} = 2 \times 10^{-4} H$$

- (A) 7.5×10^{-3} H (B) 2×10^{-4} H
- (C) 2×10^{-7} H (D) 7.5×10^{-5} H

 $*~0.5~{
m H}~$ মানের দুটি আবেশকে সমান্তরালে যুক্ত করে $0.75{
m H}~$ মানের তৃতীয় একটি আবেশকের সাথে শ্রেণীতে যুক্ত করলে তুল্য আবেশিতা নির্ণয় কর।

$$\frac{0.5 \times 05}{1} + 0.75 = IH$$

0.43H(ii) 1.75H (iii)1.75 H(iv) 1H

*একটি দিক পরিবর্তী তড়িচ্চালক বলকে, $arepsilon=50~{
m sin}400\pi t$ সমীকরণ দ্বারা প্রকাশ করা হল। এর সর্বোচ্চ মান হতে শূন্য হতে শূন্য মানে পৌছাতে কত সময় লাগবে ?

প্রয়োজনীয় সময় $^T/_2$. $\therefore 400\pi = 25~\pi~\mathrm{f}$

$$f = 200$$
, $t = \frac{1}{400} = 2.5 \times 10-3s$

বৰ্গমূলীয় গড় মান = $\varepsilon_{\rm eff} = \varepsilon_{\rm rms} = \frac{\varepsilon_o}{\sqrt{2}} = \frac{50}{\sqrt{2}}$

= 35.36v

- (A) 2.5×10^{-3} s (B) 0.5×10^{-3} s
- (C) 5×10^{-3} s (D) 25×10^{-3} s

EXERCISES

- (১) পরস্পরের কাছাকাছি দুটি কুন্ডলী A ও Bএর পাক সংখ্যা 200 ও 1000। কুন্ডলী A দিয়ে 2A তড়িৎ প্রবাহের জন্য A কুন্ডলীতে $2.4 \times 10^{-4} wb$ এবং B কুন্ডলীতে $1.6 \times 10^{-4} wb$ চৌম্বক ফ্লাক্স উৎপন্ন হয়।
- (i) A কুন্ডলীতে স্ককীয় আবেশ গুণাংক , (ii) B কুন্ডলীতে পারস্পারিক আবেশ গুনাংক
- (iii) A কুন্ডলীতে প্রবাহমাত্রা 0.4s এ থেমে গেলে B কুন্ডলীতে আবিষ্ট তড়িৎচালক শক্তি নির্ণয় কর। Ans: (i) 0.024H(ii) 0.08H (iii) 0.4V
- (২) দুটি চুম্বক মেরুর মাঝে এক স্থান থেকে অন্য স্থান 100 পাকের একটি কুণ্ডলীকে $0.04~{
 m s}$ এ নিয়ে যাওয়া হল । এত চৌম্বক ফ্লাক্স $30 \times 10^{-5} Wb$ থেকে $2 \times 10^{-5} Wb$ পরিবর্তিত হল । কুণ্ডলীতে আবিষ্ট তড়িচ্চালক শক্তির মান কত ? $[{
 m Ans:}~0.7~{
 m V}]$
- (৩) কোন কুণ্ডলীতে তড়িৎ প্রবাহের হার $30~As^{-1}$ হলে 8V তড়িচ্চালক শক্তি আবিষ্ট হয়। ঐ কুণ্ডলীর স্বকীয় আবেশ গুণাঙ্ক কত হবে ? $[{\bf Ans}: 267~{
 m mH}]$
- (8) 10 হেনরি স্বকীয় আবেশ গুণাঙ্কবিশিষ্ট একটি আবেশকের মধ্যে $0.2~{
 m A}$ স্থির তড়িৎ প্রবাহ চালু আছে। আবেশকটিকে $100~{
 m V}$ আবিষ্ট তড়িচালক শক্তি কীভাবে উৎপন্ন করা যায় ?

[Ans :তড়িৎ প্রবাহ $10~As^{-1}$ হারে পরিবর্তন করে]

- (৫) কোন একটি তার কুণ্ডলীর তড়িৎ প্রবাহ 2A কুণ্ডলীর তড়িৎ প্রবাহ $8\times 10^{-2}s$ এ থামতে 0.5 ভোল্ট তড়িচ্চালক শক্তি আবিষ্ট হল। কুণ্ডলীর স্বকীয় আবেশ গুণাঙ্ক কত ? $[{\bf Ans}: 2\times 10^{-2}~{
 m H}]$
- (৬) 400 পাক বিশিষ্ট একটি কুণ্যলন্সীর মধ্যে দিয়ে 2A বিদ্যুৎ প্রবাহকালে $4 \times 10^{-4} Wb$ চৌম্বক ফ্লাক্স উৎপন্ন হয়। কুণ্ডলীর স্বকীয় গুণাঙ্ক নির্ণয় কর। $[{f Ans}: 0.08~{f H}]$
- (৭) একটি স্টেপ আপ ট্রান্সফরমারে 220~V সরবরাহ করে 3A প্রবাহ পাওয়া গেল। এর মুখ্য ও গৌণ কুণ্ডলীর পাক সংখ্যার অনুপাত 1:25 হলে গৌণ কুণ্ডলীতে প্রাপ্ত ভোল্টেজ ও মুখ্য কুণ্ডলীয় প্রবাহ ও ট্রান্স ফরমারের বহিঃক্ষমতা বের কর। $[Ans: \epsilon_s = 5500V. I_P = 75A$ ক্ষমতা = 16500~V.]
- (৮) একটি আরোহী ট্রান্সফরমারে $200\ V$ থেকে $2000\ V$ পাওয়া যায় । এই ট্রান্সফরমারে মুখ্য কুন্ডলীর পাক সংখ্যা ও রোধ যথক্রমে ৩০০ ও ০.৫ Ω হলে গৌণ কুন্ডলীর (ক) পাকসংখ্যা কত ? (খ) প্রবাহ কত ? (গ) রোধ কত ? $[Ans:\ N_S=3000,\ I_S=40\ A,R_S=50\Omega]$
- (১০) একটি ট্রান্সফরমারের মুখ্য ও গৌণ কুওলীয় পাক সংখ্যা যথাক্রমে 100 ও 200। মুখ্য কুওলীতে ভোল্টজ ২২০ ভোল্ট হলে গৌণ কুওলীতে কী পরিমাণ ভোল্টেজ সৃষ্টি হবে ? $[{\bf Ans}: 440\ {
 m V}]$
- (১১) একটি ট্রান্সফরমারের মুখ্য কুণ্ডলীর ভোল্টেজ $10\ V$ এবং তড়িৎ প্রবাহ 4A গৌণ কুণ্ডলীর ভোল্টেজ $20\ V$ হলে, এত প্রবাহ কত হবে, নির্ণয় কর। $[{f Ans} : 2A]$