Tutoría 02

Problema 1: Considere el siguiente circuito:

Si la onda de tensión de la fuente independiente es $V_{ent}(t)=5\cos(50t)$ V, determine:

- a) Determine el valor fasorial de la tensión de $V_{Thevenin}$ visto desde la salida del circuito V_{sal} .
- b) Determine el valor fasorial de la corriente I_{Norton} vista desde la salida del circuito V_{sal} .
- c) Calcule la impedancia equivalente Z_{eq} en notación polar vista desde la salida del circuito, para ello deberá utilizar una fuente de prueba $I_{test}=1 \angle 0^0\,A$.
- d) Determine el valor de la impedancia de carga $\boldsymbol{Z_L}$ que deberá conectar a la salida del circuito para alcanzar una máxima transferencia de potencia a dicha carga y calcule la potencia disipada para ese valor de impedancia de carga.

Problema 2: Considere el siguiente circuito:

Asuma que la frecuencia angular para todo el circuito es de $\omega = 10 \, rad/s$. Determine:

- a) Determine la constante B, conociendo que la impedancia de Thévenin vista desde las terminales a-b es de $Z_{Th} = -\frac{38}{89} + j\frac{46}{89} \Omega$.
- b) Determine las corrientes I_A , I_B , I_c , I_D e I_x , para ello asuma el valor de B calculado en a) y que la tensión eléctrica en el capacitor es de $V_c = 17,92 \angle -179,37^o V$.
- c) Esboce el diagrama fasorial de las corrientes calculadas en el punto b). Rotule de manera adecuada los ejes del plano complejo.
- d) Determine el equivalente de Thévenin y de Norton, considerando el valor de B=2 para la fuente dependiente de corriente.
- e) Determine la impedancia de carga $\boldsymbol{Z_L}$ que permite la máxima transferencia de potencia.

Problema 3: Considere las señales $v(t) = 160\cos(50t) \ V \ e \ i(t) = -33\sin(50t - 30^{\circ}) \ A$, y determine la potencia instantánea y la potencia promedio.

Problema 4: En referencia al siguiente circuito, determine la potencia promedio absorbida por la resistencia de 10Ω .

Problema 5: Según el siguiente circuito, este constituye un amplificador operacional el cual es alimentado por una tensión eléctrica $V_S = 10 \angle 30^\circ V_{rms}$. Con base a lo anterior determine la potencia promedio absorbida por la resistencia de 20 k Ω .

Problema 6: Determine el valor RMS para cada una de las siguientes señales:

a)
$$i(t) = 10 A$$

b)
$$v(t) = 4 + 3\cos(5t)V$$

c)
$$i(t) = 8 - 6\sin(2t) A$$

d)
$$v(t) = 5\sin(t) + 4\cos(t) V$$

Problema 7: Determine el valor RMS para la siguiente señal eléctrica:

