EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais

Programa novo implementado em 2005/2006

Duração da prova: 120 minutos 1.ª FASE

2006

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implica a anulação de todos os itens de escolha múltipla.

Identifique claramente os grupos e os itens a que responde.

Utilize apenas caneta ou esferográfica de tinta azul ou preta (excepto nas respostas que impliquem a elaboração de construções, desenhos ou outras representações).

É interdito o uso de «esferográfica-lápis» e de corrector.

As cotações da prova encontram-se na página 11.

A prova inclui um formulário (pág. 3).

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

Losango:
$$\frac{Diagonal \, maior \times Diagonal \, menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Sector circular:
$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$
 $(r - raio da base; q - geratriz)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen (a + b) = sen a . cos b + sen b . cos a$$

$$cos(a + b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \ = \ \sqrt[n]{\rho} \ \cos \frac{\theta + 2 \, k \, \pi}{n} \ , \ k \in \{0,..., \, n-1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Grupo I

- Os sete itens deste grupo são de escolha múltipla.
- Para cada um deles, são indicadas quatro alternativas de resposta, das quais só uma está correcta.
- Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma letra, o item será anulado, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos, nem justificações.
- **1.** Na figura estão representadas, em referencial o.n. xOy, partes dos gráficos de duas funções, f e g, contínuas em \mathbb{R} . Tal como a figura sugere,
 - nenhum dos gráficos intersecta o eixo Ox;
 - os gráficos de g e de f intersectam o eixo Oy nos pontos de ordenadas $0,5\,$ e $\,2,\,$ respectivamente.

Apenas uma das equações seguintes é impossível. Qual delas?

(A)
$$f(x) + g(x) = 0$$

(B)
$$f(x) - g(x) = 0$$

(C)
$$f(x) \times g(x) = 1$$

(D)
$$\frac{f(x)}{g(x)} = 1$$

Seja g a função definida em \mathbb{R} por $g(x) = \frac{e^x + 5}{2 + \cos x}$ 2.

Considere a sucessão de termo geral $u_n = \frac{n+1}{n^2}$

Indique o valor de $\lim_{n \to +\infty} g(u_n)$

- **(A)** 4
- **(B)** 3
- **(C)** 2
- **(D)** 1

3. Seja h a função, de domínio \mathbb{R} , definida por

$$h(x) = \frac{\ln\left(\sqrt{e^x}\right)}{2} \qquad \qquad \text{(ln designa logaritmo de base } e\text{)}$$

Qual das seguintes expressões pode também definir $\,h\,$?

- (A) \sqrt{x} (B) $\frac{x}{2}$ (C) $\frac{x}{4}$

- (D) $\frac{\sqrt{x}}{2}$
- 4. Na figura está representada parte do gráfico de uma função polinomial f. Tal como a figura sugere, o gráfico de $\,f\,$ tem a concavidade voltada para cima em $]-\infty,0]$ e voltada para baixo em $[0,+\infty[$.

A recta $\,r_{\!\scriptscriptstyle 1}\,$ tangente ao gráfico de $\,f_{\!\scriptscriptstyle 1}\,$ no ponto de abcissa $\,0_{\!\scriptscriptstyle 1}\,$ é paralela à bissectriz dos quadrantes ímpares e intersecta o eixo Ox no ponto de abcissa -2.

Sabendo que $\,f'\,$ e $\,f''\,$ designam, respectivamente, a primeira e a segunda derivadas de $\,f,\,$ indique o valor de $\,f(0)+f'(0)+f''(0)$

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4

5. Seja $\,\Omega\,$ o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$).

Sabe-se que P(A) = 0.3

Apenas um dos acontecimentos seguintes pode ter probabilidade inferior a 0,3.

Qual deles?

- (A) $A \cup B$ (B) $\overline{A} \cup B$ (C) $A \cap B$ (D) $\overline{A \cap B}$
- 6. Uma variável aleatória $\,X\,$ tem a seguinte distribuição de probabilidades:

x_i	0	1
$P(X=x_i)$	$\frac{^{2005}C_{99}}{^{2006}C_{100}}$	$\frac{a}{2006C_{100}}$

Indique o valor de a.

- (A) $^{2005}C_{99}$ (B) $^{2005}C_{100}$ (C) $^{2006}C_{99}$ (D) $^{2006}C_{100}$
- 7. Os pontos A e B, representados na figura, são as imagens geométricas, no plano complexo, das raízes quadradas de um certo número complexo z.

Qual dos números complexos seguintes pode ser z?

- (A) 1 (B) i (C) -1 (D) -i

Grupo II

Nos itens deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o **valor exacto**.

- **1.** Seja $\mathbb C$ o conjunto dos números complexos; i designa a unidade imaginária.
 - **1.1.** Sem recorrer à calculadora, determine $\frac{4 + 2i\left(cis\frac{\pi}{6}\right)^6}{3 + i}$ apresentando o resultado final na forma trigonométrica.
 - **1.2.** Considere que, para qualquer número complexo z não nulo, arg(z) designa o argumento de z que pertence ao intervalo $[0,2\pi[$.

Represente a região do plano complexo definida pela condição, em \mathbb{C} ,

$$\frac{1}{2} \le |z| \le 1$$
 \wedge $\frac{3\pi}{4} \le arg(z) \le \frac{5\pi}{4}$

e determine a sua área.

2.

2.1. Uma coluna com a forma de um prisma hexagonal regular está assente no chão de um jardim. Dispomos de seis cores (amarelo, branco, castanho, dourado, encarnado e verde) para pintar as sete faces visíveis (as seis faces laterais e a base superior) desse prisma.

Admita que se pintam de verde duas faces laterais opostas.

Determine de quantas maneiras diferentes podem ficar pintadas as restantes **cinco** faces, de tal modo

- que duas faces que tenham uma aresta comum fiquem pintadas com cores diferentes
- e que duas faces laterais que sejam opostas fiquem pintadas com a mesma cor.
- **2.2.** Considere um prisma hexagonal regular num referencial o.n. Oxyz, de tal forma que uma das suas bases está contida no plano de equação z=2. Escolhendo ao acaso dois vértices do prisma, qual é a probabilidade de eles definirem uma recta paralela ao eixo Oz? Apresente o resultado na forma de fracção irredutível.

3. De uma caixa com dez bolas brancas e algumas bolas pretas, extraem-se sucessivamente, e ao acaso, duas bolas, não repondo a primeira bola extraída, antes de retirar a segunda. Considere os acontecimentos:

A: «a primeira bola extraída é preta»;

B: «a segunda bola extraída é branca».

Sabe-se que $P(B|A) = \frac{1}{2}$ (P(B|A) designa probabilidade de B, se A)

Quantas bolas pretas estão inicialmente na caixa? Numa pequena composição, justifique a sua resposta, começando por explicar o significado de P(B|A), no contexto da situação descrita.

- **4.** Na figura estão representados:
 - lacktriangle parte do gráfico da função f, de domínio \mathbb{R} , definida por $f(x)=e^{-x}$
 - $\begin{array}{ccc} \bullet & \text{um} & \text{triângulo} & \textbf{isósceles} \\ \left(\overline{PO} = \overline{PQ} \right) \! , & \text{em que:} \end{array}$

- P é um ponto do gráfico de f;
- ullet Q pertence ao eixo das abcissas.

Considere que o ponto $\,P\,$ se desloca no primeiro quadrante (eixos não incluídos), ao longo do gráfico de $\,f\,$.

O ponto Q acompanha o movimento do ponto P, deslocando-se ao longo do eixo das abcissas, de tal modo que \overline{PO} permanece sempre igual a \overline{PQ} .

Seja A a função, de domínio \mathbb{R}^+ , que faz corresponder, à abcissa x do ponto P, a área do triângulo [OPQ].

- **4.1.** Mostre que, para cada $x \in \mathbb{R}^+$, se tem $A(x) = x e^{-x}$
- **4.2.** Sem recorrer à calculadora, estude a função A quanto à monotonia e conclua qual é o valor máximo que a área do triângulo [OPQ] pode assumir.
- **5.** De uma certa função f, de domínio \mathbb{R} , sabe-se que:
 - f é contínua;
 - a recta de equação y=x é assimptota do gráfico de f, quer quando $x\to +\infty$, quer quando $x\to -\infty$.

Mostre que o gráfico da função $\,g,\,\,$ definida, em $\,\mathbb{R},\,\,$ por $\,g(x)=x\,f(x),\,\,$ não tem qualquer assimptota.

6. Na figura está representada uma esfera suspensa de um fio com 1 metro de comprimento, fixo no ponto O.

O centro da esfera oscila entre os pontos A e B, que são simétricos relativamente à recta vertical r.

A recta r passa pelo ponto O e é perpendicular à recta OS.

No instante inicial, o centro da esfera coincide com o ponto A.

Admita que, $\,t\,$ segundos após esse instante inicial, o centro da esfera está num ponto $\,P\,$ tal que a amplitude, em radianos, do ângulo $\,SOP\,$ é dada (aproximadamente) por

$$\alpha(t) = \frac{\pi}{2} - \frac{\pi}{6} \cos\left(\sqrt{9.8} \ t\right)$$

Nas duas alíneas seguintes, **não utilize a calculadora**, a não ser para efectuar eventuais cálculos numéricos.

- **6.1.** Determine a distância do centro da esfera à recta OS, no instante inicial.
- **6.2.** Determine o instante em que o centro da esfera passa pela primeira vez na recta $\,r$. Apresente o resultado em segundos, arredondado às décimas.
- **7.** Considere a função f definida no intervalo [1,2] por $f(x) = \cos(x-1) + \ln x$ (In designa logaritmo de base e).

Para um certo valor real positivo a e para um certo valor real b, a função g, definida no intervalo [1,2] por g(x)=a. f(x)+b, tem por contradomínio o intervalo [4,5].

Utilizando as capacidades gráficas da sua calculadora, determine os valores de $\,a\,$ e de $\,b\,$, arredondados às centésimas.

Explique como procedeu. Na sua explicação, deve incluir o gráfico, ou gráficos, que tenha visualizado na calculadora, bem como coordenadas relevantes de algum, ou alguns, pontos. Sempre que, em valores intermédios, proceder a arredondamentos, conserve um mínimo de três casas decimais.

COTAÇÕES

Grupo	I	63
	Cada resposta certa	. 0
Grupo	II	137
	1	21
	2.1	20
	3	12
	4. 4.1 4.2 14	28
	5	14
	6	28
	7	14
ΤΩΤΔΙ		200