Student Solutions Manual

to accompany

Applied Linear Statistical Models

Fifth Edition

Michael H. Kutner
Emory University
Christopher J. Nachtsheim
University of Minnesota
John Neter
University of Georgia
William Li
University of Minnesota

2005 McGraw-Hill/Irwin Chicago, IL Boston, MA

PREFACE

This Student Solutions Manual gives intermediate and final numerical results for all starred (*) end-of-chapter Problems with computational elements contained in *Applied Linear Statistical Models*, 5th edition. No solutions are given for Exercises, Projects, or Case Studies.

In presenting calculational results we frequently show, for ease in checking, more digits than are significant for the original data. Students and other users may obtain slightly different answers than those presented here, because of different rounding procedures. When a problem requires a percentile (e.g. of the t or F distributions) not included in the Appendix B Tables, users may either interpolate in the table or employ an available computer program for finding the needed value. Again, slightly different values may be obtained than the ones shown here.

The data sets for all Problems, Exercises, Projects and Case Studies are contained in the compact disk provided with the text to facilitate data entry. It is expected that the student will use a computer or have access to computer output for all but the simplest data sets, where use of a basic calculator would be adequate. For most students, hands-on experience in obtaining the computations by computer will be an important part of the educational experience in the course.

While we have checked the solutions very carefully, it is possible that some errors are still present. We would be most grateful to have any errors called to our attention. Errata can be reported via the website for the book: http://www.mhhe.com/KutnerALSM5e.

We acknowledge with thanks the assistance of Lexin Li and Yingwen Dong in the checking of Chapters 1-14 of this manual. We, of course, are responsible for any errors or omissions that remain.

Michael H. Kutner Christopher J. Nachtsheim John Neter William Li

Contents

1	LINEAR REGRESSION WITH ONE PREDICTOR VARIABLE	1-1
2	INFERENCES IN REGRESSION AND CORRELATION ANALYSIS	2-1
3	DIAGNOSTICS AND REMEDIAL MEASURES	3-1
4	SIMULTANEOUS INFERENCES AND OTHER TOPICS IN REGRES SION ANALYSIS	4-1
5	MATRIX APPROACH TO SIMPLE LINEAR REGRESSION ANALY SIS	- 5-1
6	MULTIPLE REGRESSION – I	6-1
7	MULTIPLE REGRESSION – II	7-1
8	MODELS FOR QUANTITATIVE AND QUALITATIVE PREDICTORS	8-1
9	BUILDING THE REGRESSION MODEL I: MODEL SELECTION AND VALIDATION	9-1
10	BUILDING THE REGRESSION MODEL II: DIAGNOSTICS	10-1
11	BUILDING THE REGRESSION MODEL III: REMEDIAL MEASURES	1 1-1
12	AUTOCORRELATION IN TIME SERIES DATA	12-1
13	INTRODUCTION TO NONLINEAR REGRESSION AND NEURAL NEWORKS	T- 13-1
14	LOGISTIC REGRESSION, POISSON REGRESSION, AND GENERAL IZED LINEAR MODELS	 14-1
15	INTRODUCTION TO THE DESIGN OF EXPERIMENTAL AND OBSERVATIONAL STUDIES	- 15-1
16	SINGLE-FACTOR STUDIES	16-1
17	ANALYSIS OF FACTOR LEVEL MEANS	17-1

18	ANOVA DIAGNOSTICS AND REMEDIAL MEASURES	18-1
19	TWO-FACTOR STUDIES WITH EQUAL SAMPLE SIZES	19-1
20	TWO-FACTOR STUDIES – ONE CASE PER TREATMENT	20-1
21	RANDOMIZED COMPLETE BLOCK DESIGNS	21-1
22	ANALYSIS OF COVARIANCE	22-1
23	TWO-FACTOR STUDIES – UNEQUAL SAMPLE SIZES	23-1
24	MULTIFACTOR STUDIES	24-1
25	RANDOM AND MIXED EFFECTS MODELS	25-1
26	NESTED DESIGNS, SUBSAMPLING, AND PARTIALLY NESTED DISIGNS	E- 26-1
27	REPEATED MEASURES AND RELATED DESIGNS	27-1
28	BALANCED INCOMPLETE BLOCK, LATIN SQUARE, AND RELATIDESIGNS	ED 28-1
29	EXPLORATORY EXPERIMENTS – TWO-LEVEL FACTORIAL AN FRACTIONAL FACTORIAL DESIGNS	D 29-1
30	RESPONSE SURFACE METHODOLOGY	30-1

LINEAR REGRESSION WITH ONE PREDICTOR VARIABLE

1.20. a.
$$\hat{Y} = -0.5802 + 15.0352X$$

d.
$$\hat{Y}_h = 74.5958$$

1.21. a.
$$\hat{Y} = 10.20 + 4.00X$$

b.
$$\hat{Y}_h = 14.2$$

d.
$$(\bar{X}, \bar{Y}) = (1, 14.2)$$

1.24. a.
$$\frac{i:}{e_i:}$$
 1 2 ... 44 45 $\frac{1}{e_i:}$ -9.4903 0.4392 ... 1.4392 2.4039

$$\sum e_i^2 = 3416.377$$

$$Min Q = \sum e_i^2$$

b.
$$MSE = 79.45063$$
, $\sqrt{MSE} = 8.913508$, minutes

1.25. a.
$$e_1 = 1.8000$$

b.
$$\sum e_i^2 = 17.6000, MSE = 2.2000, \sigma^2$$

1.27. a.
$$\hat{Y} = 156.35 - 1.19X$$

b. (1)
$$b_1 = -1.19$$
, (2) $\hat{Y}_h = 84.95$, (3) $e_8 = 4.4433$,

(4)
$$MSE = 66.8$$

INFERENCES IN REGRESSION AND CORRELATION ANALYSIS

- 2.5. a. $t(.95; 43) = 1.6811, 15.0352 \pm 1.6811(.4831), 14.2231 \le \beta_1 \le 15.8473$
 - b. H_0 : $\beta_1=0$, H_a : $\beta_1\neq 0$. $t^*=(15.0352-0)/.4831=31.122$. If $|t^*|\leq 1.681$ conclude H_0 , otherwise H_a . Conclude H_a . P-value=0+
 - c. Yes
 - d. H_0 : $\beta_1 \le 14$, H_a : $\beta_1 > 14$. $t^* = (15.0352 14)/.4831 = 2.1428$. If $t^* \le 1.681$ conclude H_0 , otherwise H_a . Conclude H_a . P-value= .0189
- 2.6. a. $t(.975; 8) = 2.306, b_1 = 4.0, s\{b_1\} = .469, 4.0 \pm 2.306(.469),$ $2.918 \le \beta_1 \le 5.082$
 - b. H_0 : $\beta_1 = 0$, H_a : $\beta_1 \neq 0$. $t^* = (4.0 0)/.469 = 8.529$. If $|t^*| \leq 2.306$ conclude H_0 , otherwise H_a . Conclude H_a . P-value= .00003
 - c. $b_0 = 10.20, s\{b_0\} = .663, 10.20 \pm 2.306(.663), 8.671 \le \beta_0 \le 11.729$
 - d. H_0 : $\beta_0 \le 9$, H_a : $\beta_0 > 9$. $t^* = (10.20 9)/.663 = 1.810$. If $t^* \le 2.306$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value= .053
 - e. H_0 : $\beta_1 = 0$: $\delta = |2 0|/.5 = 4$, power = .93 H_0 : $\beta_0 \le 9$: $\delta = |11 - 9|/.75 = 2.67$, power = .78
- 2.14. a. $\hat{Y}_h = 89.6313$, $s\{\hat{Y}_h\} = 1.3964$, t(.95; 43) = 1.6811, $89.6313 \pm 1.6811(1.3964)$, $87.2838 \leq E\{Y_h\} \leq 91.9788$
 - b. $s\{\text{pred}\} = 9.0222, 89.6313 \pm 1.6811(9.0222), 74.4641 \le Y_{h(\text{new})} \le 104.7985, \text{ yes}, \text{ yes}$
 - c. 87.2838/6 = 14.5473, 91.9788/6 = 15.3298, $14.5473 \le \text{Mean time per machine} \le 15.3298$
 - d. $W^2 = 2F(.90; 2, 43) = 2(2.4304) = 4.8608, W = 2.2047, 89.6313 \pm 2.2047(1.3964),$ $86.5527 \le \beta_0 + \beta_1 X_h \le 92.7099$, yes, yes
- 2.15. a. $X_h=2$: $\hat{Y}_h=18.2,\ s\{\hat{Y}_h\}=.663,\ t(.995;\ 8)=3.355,\ 18.2\pm3.355(.663),\ 15.976\leq E\{Y_h\}\leq 20.424$

$$X_h = 4$$
: $\hat{Y}_h = 26.2$, $s\{\hat{Y}_h\} = 1.483$, $26.2 \pm 3.355(1.483)$, $21.225 \le E\{Y_h\} \le 31.175$

- b. $s\{\text{pred}\} = 1.625, 18.2 \pm 3.355(1.625), 12.748 \le Y_{h(\text{new})} \le 23.652$
- c. $s\{\text{predmean}\} = 1.083, 18.2 \pm 3.355(1.083), 14.567 \leq \bar{Y}_{h(\text{new})} \leq 21.833, 44 =$ $3(14.567) \leq \text{Total number of broken ampules} \leq 3(21.833) = 65$

d.
$$W^2 = 2F(.99; 2, 8) = 2(8.649) = 17.298, W = 4.159$$

$$X_h = 2$$
: $18.2 \pm 4.159(.663)$, $15.443 \le \beta_0 + \beta_1 X_h \le 20.957$

$$X_h = 4$$
: $26.2 \pm 4.159(1.483)$, $20.032 \le \beta_0 + \beta_1 X_h \le 32.368$

yes, yes

2.24. a.

Source	SS	df	MS
Regression	76,960.4	1	76,960.4
Error	3,416.38	43	79.4506
Total	80,376.78	44	

Source	SS	df	MS
Regression	76,960.4	1	76,960.4
Error	3,416.38	43	79.4506
Total	80,376.78	44	
Correction for mean	261,747.2	1	
Total, uncorrected	342.124	45	

- b. H_0 : $\beta_1 = 0$, H_a : $\beta_1 \neq 0$. $F^* = 76,960.4/79.4506 = 968.66$, F(.90;1,43) = 2.826. If $F^* \leq 2.826$ conclude H_0 , otherwise H_a . Conclude H_a .
- 95.75% or 0.9575, coefficient of determination
- +.9785d.
- R^2 e.

2.25. a.

Source	SS	df	MS
Regression	160.00	1	160.00
Error	17.60	8	2.20
Total	177.60	9	

- b. H_0 : $\beta_1 = 0$, H_a : $\beta_1 \neq 0$. $F^* = 160.00/2.20 = 72.727$, F(.95; 1, 8) = 5.32. If $F^* \leq 5.32$ conclude H_0 , otherwise H_a . Conclude H_a .
- c. $t^* = (4.00 0)/.469 = 8.529, (t^*)^2 = (8.529)^2 = 72.7 = F^*$
- d. $R^2 = .9009, r = .9492, 90.09\%$
- 2.27. a. H_0 : $\beta_1 \geq 0$, H_a : $\beta_1 < 0$. $s\{b_1\} = 0.090197$, $t^* = (-1.19 - 0)/.090197 = -13.193, t(.05; 58) = -1.67155.$ If $t^* \geq -1.67155$ conclude H_0 , otherwise H_a . Conclude H_a . P-value= 0+
 - c. $t(.975; 58) = 2.00172, -1.19 \pm 2.00172(.090197), -1.3705 \le \beta_1 \le -1.0095$

- 2.28. a. $\hat{Y}_h = 84.9468$, $s\{\hat{Y}_h\} = 1.05515$, t(.975;58) = 2.00172, $84.9468 \pm 2.00172(1.05515)$, $82.835 \le E\{Y_h\} \le 87.059$
 - b. $s\{Y_{h(\text{new})}\} = 8.24101, 84.9468 \pm 2.00172(8.24101), 68.451 \le Y_{h(\text{new})} \le 101.443$
 - c. $W^2 = 2F(.95; 2, 58) = 2(3.15593) = 6.31186, W = 2.512342,$ $84.9468 \pm 2.512342(1.05515), 82.296 \le \beta_0 + \beta_1 X_h \le 87.598$, yes, yes
- 2.29. a.

i:	1	2	 59	60
$Y_i - \hat{Y}_i$:	0.823243	-1.55675	 -0.666887	8.09309
$\hat{Y}_i - \bar{Y}$:	20.2101	22.5901	 -14.2998	-19.0598

b.

Source	SS	df	MS
Regression	11,627.5	1	11,627.5
Error	3,874.45	58	66.8008
Total	15,501.95	59	

- c. H_0 : $\beta_1 = 0$, H_a : $\beta_1 \neq 0$. $F^* = 11,627.5/66.8008 = 174.0623$, F(.90; 1,58) = 2.79409. If $F^* \leq 2.79409$ conclude H_0 , otherwise H_a . Conclude H_a .
- d. 24.993% or .24993
- e. $R^2 = 0.750067$, r = -0.866064
- 2.42. b. .95285, ρ_{12}
 - c. $H_0: \rho_{12}=0, H_a: \rho_{12}\neq 0.$ $t^*=(.95285\sqrt{13})/\sqrt{1-(.95285)^2}=11.32194,$ t(.995;13)=3.012. If $|t^*|\leq 3.012$ conclude H_0 , otherwise H_a . Conclude H_a .
 - d. No
- 2.44. a. $H_0: \rho_{12} = 0, H_a: \rho_{12} \neq 0.$ $t^* = (.87\sqrt{101})/\sqrt{1 (.87)^2} = 17.73321, t(.95; 101) = 1.663.$ If $|t^*| \leq 1.663$ conclude H_0 , otherwise H_a . Conclude H_a .
 - b. $z'=1.33308,\ \sigma\{z'\}=.1,\ z(.95)=1.645,\ 1.33308\pm 1.645(.1),\ 1.16858\le \zeta\le 1.49758,\ .824\le \rho_{12}\le.905$
 - c. $.679 \le \rho_{12}^2 \le .819$
- 2.47. a. -0.866064,
 - b. $H_0: \rho_{12}=0, H_a: \rho_{12}\neq 0.$ $t^*=(-0.866064\sqrt{58})/\sqrt{1-(-0.866064)^2}=-13.19326, t(.975;58)=2.00172.$ If $|t^*|\leq 2.00172$ conclude H_0 , otherwise H_a . Conclude H_a .
 - c. -0.8657217
 - d. H_0 : There is no association between X and Y H_a : There is an association between X and Y $t^* = \frac{-0.8657217\sqrt{58}}{\sqrt{1-(-0.8657217)^2}} = -13.17243$. t(0.975, 58) = 2.001717. If $|t^*| \le 1.001717$.
 - $2.0017\dot{1}7$, conclude H_0 , otherwise, conclude H_a . Conclude H_a .

DIAGNOSTICS AND REMEDIAL MEASURES

3.4.c and d.

i:	1	2	 44	45
\hat{Y}_i :	29.49034	59.56084	 59.56084	74.59608
e_i :	-9.49034	0.43916	 1.43916	2.40392

e.

Ascending order:	1	2	 44	45
Ordered residual:	-22.77232	-19.70183	 14.40392	15.40392
Expected value:	-19.63272	-16.04643	 16.04643	19.63272

 H_0 : Normal, H_a : not normal. r = 0.9891. If $r \geq .9785$ conclude H_0 , otherwise H_a . Conclude H_0 .

g. $SSR^* = 15,155, SSE = 3416.38, X_{BP}^2 = (15,155/2) \div (3416.38/45)^2 = 1.314676,$ $\chi^2(.95;1) = 3.84.$ If $X_{BP}^2 \le 3.84$ conclude error variance constant, otherwise error variance not constant. Conclude error variance constant.

3.5. c.

e.

 H_0 : Normal, H_a : not normal. r = .961. If $r \ge .879$ conclude H_0 , otherwise H_a . Conclude H_0 .

g. $SSR^* = 6.4$, SSE = 17.6, $X_{BP}^2 = (6.4/2) \div (17.6/10)^2 = 1.03$, $\chi^2(.90; 1) = 2.71$. If $X_{BP}^2 \le 2.71$ conclude error variance constant, otherwise error variance not constant. Conclude error variance constant.

Yes.

3.7.b and c.

i:	1	2	 59	60
e_i :	0.82324	-1.55675	 -0.66689	8.09309
\hat{Y}_i :	105.17676	107.55675	 70.66689	65.90691

d.

Ascending order:	1	2	 59	60
Ordered residual:	-16.13683	-13.80686	 13.95312	23.47309
Expected value:	-18.90095	-15.75218	 15.75218	18.90095

 H_0 : Normal, H_a : not normal. r=0.9897. If $r\geq 0.984$ conclude H_0 , otherwise H_a . Conclude H_0 .

e. $SSR^* = 31,833.4, SSE = 3,874.45,$

 $X_{BP}^2=(31,833.4/2)\div(3,874.45/60)^2=3.817116,~\chi^2(.99;1)=6.63.$ If $X_{BP}^2\leq6.63$ conclude error variance constant, otherwise error variance not constant. Conclude error variance constant. Yes.

3.13. a. H_0 : $E\{Y\} = \beta_0 + \beta_1 X$, H_a : $E\{Y\} \neq \beta_0 + \beta_1 X$

b. $SSPE = 2797.66, SSLF = 618.719, F^* = (618.719/8) \div (2797.66/35) = 0.967557,$ F(.95; 8, 35) = 2.21668. If $F^* \le 2.21668$ conclude H_0 , otherwise H_a . Conclude H_0 .

3.17. b.

$$\frac{\lambda:}{SSE:}$$
 $\frac{.3}{1099.7}$ $\frac{.4}{967.9}$ $\frac{.5}{916.4}$ $\frac{.6}{942.4}$ $\frac{.7}{1044.2}$

c. $\hat{Y}' = 10.26093 + 1.07629X$

e.

i:	1	2	3	4	5
č			.31		.30
\hat{Y}_i' :	10.26	11.34	12.41	13.49	14.57
Expected value:	24	.14	.36	14	.24
i:	6	7	8	9	10
e_i :	41	.10	47	.47	07
e_i :	41	.10		.47	07

f. $\hat{Y} = (10.26093 + 1.07629X)^2$

SIMULTANEOUS INFERENCES AND OTHER TOPICS IN REGRESSION ANALYSIS

- 4.3. a. Opposite directions, negative tilt
 - b. $B = t(.9875; 43) = 2.32262, b_0 = -0.580157, s\{b_0\} = 2.80394, b_1 = 15.0352, s\{b_1\} = 0.483087$

$$-0.580157 \pm 2.32262(2.80394)$$
 $-7.093 \le \beta_0 \le 5.932$ $15.0352 \pm 2.32262(0.483087)$ $13.913 \le \beta_1 \le 16.157$

- c. Yes
- 4.4. a. Opposite directions, negative tilt
 - b. $B = t(.9975; 8) = 3.833, b_0 = 10.2000, s\{b_0\} = .6633, b_1 = 4.0000, s\{b_1\} = .4690$ $10.2000 \pm 3.833(.6633)$ $7.658 \le \beta_0 \le 12.742$ $4.0000 \pm 3.833(.4690)$ $2.202 \le \beta_1 \le 5.798$
- 4.6. a. $B = t(.9975; 14) = 2.91839, b_0 = 156.347, s\{b_0\} = 5.51226, b_1 = -1.190, s\{b_1\} = 0.0901973$

$$156.347 \pm 2.91839(5.51226)$$
 $140.260 \le \beta_0 \le 172.434$ $-1.190 \pm 2.91839(0.0901973)$ $-1.453 \le \beta_1 \le -0.927$

- b. Opposite directions
- c. No
- 4.7. a. F(.90; 2, 43) = 2.43041, W = 2.204727

$$X_h = 3$$
: $44.5256 \pm 2.204727(1.67501)$ $40.833 \le E\{Y_h\} \le 48.219$

$$X_h = 5$$
: $74.5961 \pm 2.204727(1.32983)$ $71.664 \le E\{Y_h\} \le 77.528$

$$X_h = 7$$
: $104.667 \pm 2.204727(1.6119)$ $101.113 \le E\{Y_h\} \le 108.221$

- b. F(.90; 2, 43) = 2.43041, S = 2.204727; B = t(.975; 43) = 2.01669; Bonferroni
- c. $X_h = 4$: $59.5608 \pm 2.01669 (9.02797)$ $41.354 \le Y_{h(\text{new})} \le 77.767$

$$X_h = 7$$
: $104.667 \pm 2.01669(9.05808)$ $86.3997 \le Y_{h(\text{new})} \le 122.934$

4.8. a.
$$F(.95; 2, 8) = 4.46, W = 2.987$$

$$X_h = 0$$
: $10.2000 \pm 2.987(.6633)$ $8.219 \le E\{Y_h\} \le 12.181$

$$X_h = 1$$
: $14.2000 \pm 2.987(.4690)$ $12.799 \le E\{Y_h\} \le 15.601$

$$X_h = 2$$
: $18.2000 \pm 2.987(.6633)$ $16.219 \le E\{Y_h\} \le 20.181$

b.
$$B = t(.99167; 8) = 3.016$$
, yes

c.
$$F(.95; 3, 8) = 4.07, S = 3.494$$

$$X_h = 0$$
: $10.2000 \pm 3.494(1.6248)$ $4.523 \le Y_{h(\text{new})} \le 15.877$

$$X_h = 1$$
: $14.2000 \pm 3.494(1.5556)$ $8.765 \le Y_{h(\text{new})} \le 19.635$

$$X_h = 2$$
: $18.2000 \pm 3.494(1.6248)$ $12.523 \le Y_{h(\text{new})} \le 23.877$

d.
$$B = 3.016$$
, yes

4.10. a.
$$F(.95; 2, 58) = 3.15593, W = 2.512342$$

$$X_h = 45$$
: $102.797 \pm 2.512342(1.71458)$ $98.489 \le E\{Y_h\} \le 107.105$

$$X_h = 55$$
: $90.8968 \pm 2.512342(1.1469)$ $88.015 \le E\{Y_h\} \le 93.778$

$$X_h = 65$$
: $78.9969 \pm 2.512342(1.14808)$ $76.113 \le E\{Y_h\} \le 81.881$

b.
$$B = t(.99167; 58) = 2.46556$$
, no

c.
$$B = 2.46556$$

$$X_h = 48: 99.2268 \pm 2.46556(8.31158) \quad 78.734 \le Y_{h(\text{new})} \le 119.720$$

$$X_h = 59$$
: $86.1368 \pm 2.46556(8.24148)$ $65.817 \le Y_{h(\text{new})} \le 106.457$

$$X_h = 74$$
: $68.2869 \pm 2.46556(8.33742)$ $47.730 \le Y_{h(\text{new})} \le 88.843$

d. Yes, yes

4.16. a.
$$\hat{Y} = 14.9472X$$

b.
$$s\{b_1\} = 0.226424, \ t(.95; 44) = 1.68023, \ 14.9472 \pm 1.68023(0.226424), \ 14.567 \le \beta_1 \le 15.328$$

c.
$$\hat{Y}_h = 89.6834$$
, $s\{\text{pred}\} = 8.92008$, $89.6834 \pm 1.68023(8.92008)$, $74.696 \le Y_{h(\text{new})} \le 104.671$

4.17. b.

No

c. H_0 : $E\{Y\} = \beta_1 X$, H_a : $E\{Y\} \neq \beta_1 X$. SSLF = 622.12, SSPE = 2797.66, $F^* = (622.12/9) \div (2797.66/35) = 0.8647783$, F(.99; 9, 35) = 2.96301. If $F^* \leq 2.96301$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = 0.564

MATRIX APPROACH TO SIMPLE LINEAR REGRESSION ANALYSIS

5.4. (1) 503.77 (2)
$$\begin{bmatrix} 5 & 0 \\ 0 & 160 \end{bmatrix}$$
 (3) $\begin{bmatrix} 49.7 \\ -39.2 \end{bmatrix}$

5.6. (1) 2,194 (2)
$$\begin{bmatrix} 10 & 10 \\ 10 & 20 \end{bmatrix}$$
 (3) $\begin{bmatrix} 142 \\ 182 \end{bmatrix}$

$$5.12. \qquad \left[\begin{array}{cc} .2 & 0 \\ 0 & .00625 \end{array} \right]$$

5.14. a.
$$\begin{bmatrix} 4 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 25 \\ 12 \end{bmatrix}$$

b.
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 4.5 \\ 1 \end{bmatrix}$$

5.18. a.
$$\begin{bmatrix} W_1 \\ W_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{bmatrix}$$

b.
$$\mathbf{E}\left\{ \begin{bmatrix} W_1 \\ W_2 \end{bmatrix} \right\} = \begin{bmatrix} \frac{1}{4}[E\{Y_1\} + E\{Y_2\} + E\{Y_3\} + E\{Y_4\}] \\ \frac{1}{2}[E\{Y_1\} + E\{Y_2\} - E\{Y_3\} - E\{Y_4\}] \end{bmatrix}$$

c.
$$\sigma^{2}\{\mathbf{W}\} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \sigma^{2}\{Y_{1}\} & \sigma\{Y_{1}, Y_{2}\} & \sigma\{Y_{1}, Y_{3}\} & \sigma\{Y_{1}, Y_{4}\} \\ \sigma\{Y_{2}, Y_{1}\} & \sigma^{2}\{Y_{2}\} & \sigma\{Y_{2}, Y_{3}\} & \sigma\{Y_{2}, Y_{4}\} \\ \sigma\{Y_{3}, Y_{1}\} & \sigma\{Y_{3}, Y_{2}\} & \sigma^{2}\{Y_{3}\} & \sigma\{Y_{3}, Y_{4}\} \\ \sigma\{Y_{4}, Y_{1}\} & \sigma\{Y_{4}, Y_{2}\} & \sigma\{Y_{4}, Y_{3}\} & \sigma^{2}\{Y_{4}\} \end{bmatrix}$$

$$\times \begin{bmatrix} \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{2} \\ \frac{1}{4} & -\frac{1}{2} \end{bmatrix}$$

Using the notation σ_1^2 for $\sigma^2\{Y_1\}, \sigma_{12}$ for $\sigma\{Y_1, Y_2\}$, etc., we obtain:

$$\sigma^2\{W_1\} = \frac{1}{16}(\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2 + 2\sigma_{12} + 2\sigma_{13} + 2\sigma_{14} + 2\sigma_{23} + 2\sigma_{24} + 2\sigma_{34})$$

$$\sigma^{2}\{W_{2}\} = \frac{1}{4}(\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} + \sigma_{4}^{2} + 2\sigma_{12} - 2\sigma_{13} - 2\sigma_{14} - 2\sigma_{23} - 2\sigma_{24} + 2\sigma_{34})$$

$$\sigma\{W_{1}, W_{2}\} = \frac{1}{8}(\sigma_{1}^{2} + \sigma_{2}^{2} - \sigma_{3}^{2} - \sigma_{4}^{2} + 2\sigma_{12} - 2\sigma_{34})$$

$$5.19. \qquad \left[\begin{array}{cc} 3 & 5 \\ 5 & 17 \end{array}\right]$$

5.21. $5Y_1^2 + 4Y_1Y_2 + Y_2^2$

5.23. a. (1)
$$\begin{bmatrix} 9.940 \\ -.245 \end{bmatrix}$$
 (2) $\begin{bmatrix} -.18 \\ .04 \\ .26 \\ .08 \\ -.20 \end{bmatrix}$ (3) 9.604 (4) .148 (5) $\begin{bmatrix} .00987 & 0 \\ 0 & .000308 \end{bmatrix}$ (6) 11.41 (7) .02097

$$(5) \begin{bmatrix} .00987 & 0 \\ 0 & .000308 \end{bmatrix} \qquad (6) 11.41 \qquad (7) .02097$$

c.
$$\begin{bmatrix} .6 & .4 & .2 & 0 & -.2 \\ .4 & .3 & .2 & .1 & 0 \\ .2 & .2 & .2 & .2 & .2 \\ 0 & .1 & .2 & .3 & .4 \\ -.2 & 0 & .2 & .4 & .6 \end{bmatrix}$$

$$\begin{array}{c} \text{d.} & \begin{bmatrix} .01973 & -.01973 & -.00987 & .00000 & .00987 \\ -.01973 & .03453 & -.00987 & -.00493 & .00000 \\ -.00987 & -.00987 & .03947 & -.00987 & -.00987 \\ .00000 & -.00493 & -.00987 & .03453 & -.01973 \\ .00987 & .00000 & -.00987 & -.01973 & .01973 \end{bmatrix}$$

5.25. a. (1)
$$\begin{bmatrix} .2 & -.1 \\ -.1 & .1 \end{bmatrix}$$
 (2) $\begin{bmatrix} 10.2 \\ 4.0 \end{bmatrix}$ (3) $\begin{bmatrix} 1.8 \\ -1.2 \\ -1.2 \\ 1.8 \\ -.2 \\ -1.2 \\ -2.2 \\ .8 \\ .8 \end{bmatrix}$

(5) 17.60 (6)
$$\begin{bmatrix} .44 & -.22 \\ -.22 & .22 \end{bmatrix}$$
 (7) 18.2 (8) .44

MULTIPLE REGRESSION - I

6.9. c.
$$\begin{array}{c} Y \\ X_1 \\ X_2 \\ X_3 \end{array} \left[\begin{array}{cccccc} 1.0000 & .2077 & .0600 & .8106 \\ & 1.0000 & .0849 & .0457 \\ & & 1.0000 & .1134 \\ & & & & 1.0000 \end{array} \right]$$

6.10. a. $\hat{Y} = 4149.89 + 0.000787X_1 - 13.166X_2 + 623.554X_3$ b&c.

- e. $n_1 = 26$, $\bar{d}_1 = 145.0$, $n_2 = 26$, $\bar{d}_2 = 77.4$, s = 81.7, $t_{BF}^* = (145.0 77.4)/[81.7\sqrt{(1/26) + (1/26)}] = 2.99$, t(.995; 50) = 2.67779. If $|t_{BF}^*| \leq 2.67779$ conclude error variance constant, otherwise error variance not constant. Conclude error variance not constant.
- 6.11. a. H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$, H_a : not all $\beta_k = 0$ (k = 1, 2,3). MSR = 725, 535, MSE = 20, 531.9, $F^* = 725, 535/20, 531.9 = 35.337$, F(.95; 3, 48) = 2.79806. If $F^* \leq 2.79806$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+.

b.
$$s\{b_1\} = .000365, s\{b_3\} = 62.6409, B = t(.9875; 48) = 2.3139$$

 $0.000787 \pm 2.3139(.000365) - .000058 \le \beta_1 \le 0.00163$
 $623.554 \pm 2.3139(62.6409)$ $478.6092 \le \beta_3 \le 768.4988$

- c. $SSR = 2,176,606, SSTO = 3,162,136, R^2 = .6883$
- 6.12. a. F(.95; 4, 48) = 2.56524, W = 3.2033; B = t(.995; 48) = 2.6822

X_{h1}	X_{h2}	X_{h3}		
302,000	7.2	0:	$4292.79 \pm 2.6822(21.3567)$	$4235.507 \le E\{Y_h\} \le 4350.073$
245,000	7.4	0:	$4245.29 \pm 2.6822(29.7021)$	$4165.623 \le E\{Y_h\} \le 4324.957$
280,000	6.9	0:	$4279.42 \pm 2.6822(24.4444)$	$4213.855 \le E\{Y_h\} \le 4344.985$
350,000	7.0	0:	$4333.20 \pm 2.6822(28.9293)$	$4255.606 \le E\{Y_h\} \le 4410.794$
295,000	6.7	1:	$4917.42 \pm 2.6822 (62.4998)$	$4749.783 \le E\{Y_h\} \le 5085.057$
b.Yes, no				

6.13.F(.95; 4, 48) = 2.5652, S = 3.2033; B = t(.99375; 48) = 2.5953 X_{h1} X_{h2} X_{h3} 230,000 7.50: $4232.17 \pm 2.5953(147.288)$ $3849.913 \le Y_{h(\text{new})} \le 4614.427$ $3871.486 \le Y_{h(\text{new})} \le 4629.614$ 250,0007.3 0: $4250.55 \pm 2.5953(146.058)$ $3900.124 \le Y_{h(\text{new})} \le 4653.456$ 280,000 7.10: $4276.79 \pm 2.5953(145.134)$ 340,0006.9 0: $4326.65 \pm 2.5953(145.930)$ $3947.918 \le Y_{h(\text{new})} \le 4705.382$

- 6.14. a. $\hat{Y}_h = 4278.37$, $s\{\text{predmean}\} = 85.82262$, t(.975; 48) = 2.01063, $4278.37 \pm 2.01063(85.82262)$, $4105.812 \le \bar{Y}_{h(\text{new})} \le 4450.928$
 - b. $12317.44 \le \text{Total labor hours} \le 13352.78$

c. $\hat{Y} = 158.491 - 1.1416X_1 - 0.4420X_2 - 13.4702X_3$

d&e.

$$i$$
:12...4546 e_i :.1129-9.0797...-5.538010.0524Expected Val.:-0.8186-8.1772...-5.43148.1772

- f. No
- g. $SSR^* = 21,355.5$, SSE = 4,248.8, $X_{BP}^2 = (21,355.5/2) \div (4,248.8/46)^2 = 1.2516$, $\chi^2(.99;3) = 11.3449$. If $X_{BP}^2 \le 11.3449$ conclude error variance constant, otherwise error variance not constant. Conclude error variance constant.
- 6.16. a. H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$, H_a : not all $\beta_k = 0$ (k = 1, 2, 3). MSR = 3,040.2, MSE = 101.2, $F^* = 3,040.2/101.2 = 30.05$, F(.90; 3, 42) = 2.2191. If $F^* \leq 2.2191$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0.4878

b.
$$s\{b_1\} = .2148, \ s\{b_2\} = .4920, \ s\{b_3\} = 7.0997, \ B = t(.9833; 42) = 2.1995$$

 $-1.1416 \pm 2.1995(.2148)$ $-1.6141 \le \beta_1 \le -0.6691$
 $-.4420 \pm 2.1995(.4920)$ $-1.5242 \le \beta_2 \le 0.6402$
 $-13.4702 \pm 2.1995(7.0997)$ $-29.0860 \le \beta_3 \le 2.1456$

- c. SSR = 9,120.46, SSTO = 13,369.3, R = .8260
- 6.17. a. $\hat{Y}_h = 69.0103$, $s\{\hat{Y}_h\} = 2.6646$, t(.95;42) = 1.6820, $69.0103 \pm 1.6820(2.6646)$, $64.5284 \le E\{Y_h\} \le 73.4922$
 - b. $s\{\text{pred}\} = 10.405, 69.0103 \pm 1.6820(10.405), 51.5091 \le Y_{h(\text{new})} \le 86.5115$

MULTIPLE REGRESSION – II

- 7.4. a. $SSR(X_1) = 136,366, SSR(X_3|X_1) = 2,033,566, SSR(X_2|X_1,X_3) = 6,674, SSE(X_1,X_2,X_3) = 985,530, df$: 1, 1, 1,48.
 - b. H_0 : $\beta_2 = 0$, H_a : $\beta_2 \neq 0$. $SSR(X_2|X_1, X_3) = 6,674$, $SSE(X_1, X_2, X_3) = 985,530$, $F^* = (6,674/1) \div (985,530/48) = 0.32491$, F(.95;1,17) = 4.04265. If $F^* \leq 4.04265$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = 0.5713.
 - c. Yes, $SSR(X_1) + SSR(X_2|X_1) = 136,366 + 5,726 = 142,092, SSR(X_2) + SSR(X_1|X_2) = 11,394.9 + 130,697.1 = 142,092.$ Yes.
- 7.5. a. $SSR(X_2) = 4,860.26$, $SSR(X_1|X_2) = 3,896.04$, $SSR(X_3|X_2,X_1) = 364.16$, $SSE(X_1,X_2,X_3) = 4,248.84$, df: 1, 1, 1, 42
 - b. H_0 : $\beta_3=0,\ H_a$: $\beta_3\neq 0.\ SSR(X_3|X_1,X_2)=364.16,\ SSE(X_1,X_2,X_3)=4,248.84,$ $F^*=(364.16/1)\div(4,248.84/42)=3.5997,\ F(.975;1,42)=5.4039.$ If $F^*\leq 5.4039$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value =0.065.
- 7.6. H_0 : $\beta_2 = \beta_3 = 0$, H_a : not both β_2 and $\beta_3 = 0$. $SSR(X_2, X_3 | X_1) = 845.07$, $SSE(X_1, X_2, X_3) = 4,248.84$, $F^* = (845.07/2) \div (4,248.84/42) = 4.1768$, F(.975; 2,42) = 4.0327. If $F^* \le 4.0327$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0.022.
- 7.9. H_0 : $\beta_1 = -1.0$, $\beta_2 = 0$; H_a : not both equalities hold. Full model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i$, reduced model: $Y_i + X_{i1} = \beta_0 + \beta_3 X_{i3} + \varepsilon_i$. SSE(F) = 4,248.84, $df_F = 42$, SSE(R) = 4,427.7, $df_R = 44$, $F^* = [(4427.7 4248.84)/2] \div (4,248.84/42) = .8840$, F(.975; 2, 42) = 4.0327. If $F^* \leq 4.0327$ conclude H_0 , otherwise H_a . Conclude H_0 .
- 7.13. $R_{Y1}^2 = .0431, \ R_{Y2}^2 = .0036, \ R_{12}^2 = .0072, \ R_{Y1|2}^2 = 0.0415, \ R_{Y2|1}^2 = 0.0019, \ R_{Y2|13}^2 = .0067 \ R^2 = .6883$
- 7.14. a. $R_{Y1}^2 = .6190, R_{Y1|2}^2 = .4579, R_{Y1|23}^2 = .4021$ b. $R_{Y2}^2 = .3635, R_{Y2|1}^2 = .0944, R_{Y2|13}^2 = .0189$
- 7.17. a. $\hat{Y}^* = .17472X_1^* .04639X_2^* + .80786X_3^*$ b. $R_{12}^2 = .0072, R_{13}^2 = .0021, R_{23}^2 = .0129$

c.
$$s_Y = 249.003, s_1 = 55274.6, s_2 = .87738, s_3 = .32260 \ b_1 = \frac{249.003}{55274.6}(.17472) = .00079, b_2 = \frac{249.003}{.87738}(-.04639) = -13.16562, b_3 = \frac{249.003}{5.32260}(.80786) = 623.5572, b_0 = 4363.04 - .00079(302,693) + 13.16562(7.37058) - 623.5572(0.115385) = 4149.002.$$

7.18. a.
$$\hat{Y}^* = -.59067X_1^* - .11062X_2^* - .23393X_3^*$$

b.
$$R_{12}^2 = .32262, R_{13}^2 = .32456, R_{23}^2 = .44957$$

c.
$$s_Y = 17.2365$$
, $s_1 = 8.91809$, $s_2 = 4.31356$, $s_3 = .29934$, $b_1 = \frac{17.2365}{8.91809}(-.59067) = -1.14162$, $b_2 = \frac{17.2365}{4.31356}(-.11062) = -.44203$, $b_3 = \frac{17.2365}{.29934}(-.23393) = -13.47008$, $b_0 = 61.5652 + 1.14162(38.3913) + .44203(50.4348) + 13.47008(2.28696) = 158.4927$

7.25. a.
$$\hat{Y} = 4079.87 + 0.000935X_2$$

c. No,
$$SSR(X_1) = 136,366, SSR(X_1|X_2) = 130,697$$

d.
$$r_{12} = .0849$$

7.26. a.
$$\hat{Y} = 156.672 - 1.26765X_1 - 0.920788X_2$$

c. No,
$$SSR(X_1) = 8,275.3$$
, $SSR(X_1|X_3) = 3,483.89$
No, $SSR(X_2) = 4,860.26$, $SSR(X_2|X_3) = 708$

d.
$$r_{12} = .5680, r_{13} = .5697, r_{23} = .6705$$

MODELS FOR QUANTITATIVE AND QUALITATIVE PREDICTORS

- 8.4. a. $\hat{Y} = 82.9357 1.18396x + .0148405x^2$, $R^2 = .76317$
 - b. H_0 : $\beta_1 = \beta_{11} = 0$, H_a : not both β_1 and $\beta_{11} = 0$. MSR = 5915.31, MSE = 64.409, $F^* = 5915.31/64.409 = 91.8398$, F(.95; 2, 57) = 3.15884. If $F^* \leq 3.15884$ conclude H_0 , otherwise H_a . Conclude H_a .
 - c. $\hat{Y}_h = 99.2546$, $s\{\hat{Y}_h\} = 1.4833$, t(.975; 57) = 2.00247, $99.2546 \pm 2.00247(1.4833)$, $96.2843 \le E\{Y_h\} \le 102.2249$
 - d. $s\{\text{pred}\} = 8.16144, 99.2546 \pm 2.00247(8.16144), 82.91156 \le Y_{h(\text{new})} \le 115.5976$
 - e. H_0 : $\beta_{11} = 0$, H_a : $\beta_{11} \neq 0$. $s\{b_{11}\} = .00836$, $t^* = .0148405/.00836 = 1.7759$, t(.975;57) = 2.00247. If $|t^*| \leq 2.00247$ conclude H_0 , otherwise H_a . Conclude H_0 . Alternatively, $SSR(x^2|x) = 203.1$, $SSE(x,x^2) = 3671.31$, $F^* = (203.1/1) \div (3671.31/57) = 3.15329$, F(.95;1,57) = 4.00987. If $F^* \leq 4.00987$ conclude H_0 , otherwise H_a . Conclude H_0 .
 - f. $\hat{Y} = 207.350 2.96432X + .0148405X^2$
 - g. $r_{X,X^2} = .9961, r_{x,x^2} = -.0384$
- 8.5. a. $\frac{i:}{e_i:}$ 1 2 3 ... 58 59 60 $\frac{1}{e_i:}$ -1.3238 -4.7592 -3.8091 ... -11.7798 -.8515 6.22023
 - b. H_0 : $E\{Y\} = \beta_0 + \beta_1 x + \beta_{11} x^2$, H_a : $E\{Y\} \neq \beta_0 + \beta_1 x + \beta_{11} x^2$. MSLF = 62.8154, MSPE = 66.0595, $F^* = 62.8154/66.0595 = 0.95$, F(.95; 29, 28) = 1.87519. If $F^* \leq 1.87519$ conclude H_0 , otherwise H_a . Conclude H_0 .
 - c. $\hat{Y} = 82.92730 1.26789x + .01504x^2 + .000337x^3$
 - H_0 : $\beta_{111} = 0$, H_a : $\beta_{111} \neq 0$. $s\{b_{111}\} = .000933$, $t^* = .000337/.000933 = .3612$, t(.975;56) = 2.00324. If $|t^*| \leq 2.00324$ conclude H_0 , otherwise H_a . Conclude H_0 . Yes. Alternatively, $SSR(x^3|x,x^2) = 8.6$, $SSE(x,x^2,x^3) = 3662.78$, $F^* = (8.6/1) \div (3662.78/56) = .13148$, F(.95;1,56) = 4.01297. If $F^* \leq 4.01297$ conclude H_0 , otherwise H_a . Conclude H_0 . Yes.
- 8.19. a. $\hat{Y} = 2.81311 + 14.3394X_1 8.14120X_2 + 1.77739X_1X_2$

b. $H_0: \beta_3 = 0, H_a: \beta_3 \neq 0.$ $s\{b_3\} = .97459, t^* = 1.77739/.97459 = 1.8237, t(.95; 41) = 1.68288.$ If $|t^*| \leq 1.68288$ conclude H_0 , otherwise H_a . Conclude H_a . Alternatively, $SSR(X_1X_2|X_1,X_2) = 255.9, SSE(X_1,X_2,X_1X_2) = 3154.44, F^* = (255.9/1) \div (3154.44/41) = 3.32607, F(.90; 1, 41) = 2.83208.$ If $F^* \leq 2.83208$ conclude H_0 , otherwise H_a . Conclude H_a .

BUILDING THE REGRESSION MODEL I: MODEL SELECTION AND VALIDATION

9.9.

Variables in Model	R_p^2	AIC_p	C_p	$PRESS_p$
None	0	262.916	88.16	13,970.10
X_1	.6190	220.529	8.35	$5,\!569.56$
X_2	.3635	244.131	42.11	$9,\!254.49$
X_3	.4155	240.214	35.25	8,451.43
X_1, X_2	.6550	217.968	5.60	$5,\!235.19$
X_{1}, X_{3}	.6761	215.061	2.81	4,902.75
X_{2}, X_{3}	.4685	237.845	30.25	8,115.91
X_1, X_2, X_3	.6822	216.185	4.00	5,057.886

9.10. b.

c.
$$\hat{Y} = -124.3820 + .2957X_1 + .0483X_2 + 1.3060X_3 + .5198X_4$$

9.11. a.

Subset	$R_{a,p}^2$
X_1, X_3, X_4	.9560
X_1, X_2, X_3, X_4	.9555
X_{1}, X_{3}	.9269
X_1, X_2, X_3	.9247

9.17. a. X_1, X_3

b. .10

c. X_1, X_3

d. X_1, X_3

9.18. a.
$$X_1, X_3, X_4$$

9.21.
$$PRESS = 760.974, SSE = 660.657$$

9.22. a.

b.

	Model-building	Validation
	data set	data set
b_0 :	-127.596	-130.652
$s\{b_0\}$:	12.685	12.189
b_1 :	.348	.347
$s\{b_1\}$:	.054	.048
b_3 :	1.823	1.848
$s\{b_3\}$:	.123	.122
MSE:	27.575	21.446
R^2 :	.933	.937

c.
$$MSPR = 486.519/25 = 19.461$$

d.
$$\hat{Y} = -129.664 + .349X_1 + 1.840X_3, s\{b_0\} = 8.445, s\{b_1\} = .035, s\{b_3\} = .084$$

BUILDING THE REGRESSION MODEL II: DIAGNOSTICS

10.10.a&f.

t(.9995192;47)=3.523. If $|t_i|\leq 3.523$ conclude no outliers, otherwise outliers. Conclude no outliers.

b.
$$2p/n = 2(4)/52 = .15385$$
. Cases 3, 5, 16, 21, 22, 43, 44, and 48.

c.
$$\mathbf{X}'_{\text{new}} = [1 \ 300,000 \ 7.2 \ 0]$$

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} 1.8628 & -.0000 & -.1806 & .0473 \\ & .0000 & -.0000 & -.0000 \\ & & .0260 & -.0078 \\ & & & .1911 \end{bmatrix}$$

 $h_{\text{new, new}} = .01829$, no extrapolation

d.

		DFBETAS					
	DFFITS	b_0	b_1	b_2	b_3	D	
Case 16:	554	2477	0598	.3248	4521	.0769	
Case 22:	.055	.0304	0253	0107	.0446	.0008	
Case 43:	.562	3578	.1338	.3262	.3566	.0792	
Case 48:	147	.0450	0938	.0090	1022	.0055	
Case 10:	.459	.3641	1044	3142	0633	.0494	
Case 32:	651	.4095	.0913	5708	.1652	.0998	
Case 38:	.386	0996	0827	.2084	1270	.0346	
Case 40 :	.397	.0738	2121	.0933	1110	.0365	

e. Case 16: .161%, case 22: .015%, case 43: .164%, case 48: .042%, case 10: .167%, case 32: .227%, case 38: .152%, case 40: .157%.

t(.998913;41) = 3.27. If $|t_i| \le 3.27$ conclude no outliers, otherwise outliers. Conclude no outliers.

b.
$$2p/n = 2(4)/46 = .1739$$
. Cases 9, 28, and 39.

c.
$$\mathbf{X}'_{\text{new}} = [1 \ 30 \ 58 \ 2.0]$$

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} 3.24771 & .00922 & -.06793 & -.06730 \\ & .00046 & -.00032 & -.00466 \\ & & .00239 & -.01771 \\ & & & .49826 \end{bmatrix}$$

 $h_{\text{new, new}} = .3267$, extrapolation

d.

	DFFITS	b_0	b_1	b_2	b_3	D	
Case 11:	.5688	.0991	3631	1900	.3900	.0766	
Case 17:	.6657	4491	4711	.4432	.0893	.1051	
Case 27:	6087	0172	.4172	2499	.1614	.0867	

e. Case 11: 1.10%, case 17: 1.32%, case 27: 1.12%.

10.16. b.
$$(VIF)_1 = 1.0086, (VIF)_2 = 1.0196, (VIF)_3 = 1.0144.$$

10.17. b.
$$(VIF)_1 = 1.6323$$
, $(VIF)_2 = 2.0032$, $(VIF)_3 = 2.0091$

10.21. a.
$$(VIF)_1 = 1.305$$
, $(VIF)_2 = 1.300$, $(VIF)_3 = 1.024$ b&c.

i:	1	2	3	 32	33
e_i :	13.181	-4.042	3.060	 14.335	1.396
$e(Y \mid X_2, X_3)$:	26.368	-2.038	-31.111	 6.310	5.845
$e(X_1 \mid X_2, X_3)$:	330	050	.856	 .201	.111
$e(Y \mid X_1, X_3)$:	18.734	-17.470	8.212	 12.566	-8.099
$e(X_2 \mid X_1, X_3)$:	-7.537	18.226	-6.993	 2.401	12.888
$e(Y \mid X_1, X_2)$:	11.542	-7.756	15.022	 6.732	-15.100
$e(X_3 \mid X_1, X_2)$:	-2.111	-4.784	15.406	 -9.793	-21.247
Exp. value:	11.926	-4.812	1.886	 17.591	940

10.22. a.
$$\hat{Y}' = -2.0427 - .7120X_1' + .7474X_2' + .7574X_3'$$
, where $Y' = \log_e Y$, $X_1' = \log_e X_1$, $X_2' = \log_e (140 - X_2)$, $X_3' = \log_e X_3$

b.

$$i$$
: 1 2 3 \cdots 31 32 33 e_i : $-.0036$ 0.005 0.00

c.
$$(VIF)_1 = 1.339$$
, $(VIF)_2 = 1.330$, $(VIF)_3 = 1.016$

d&e.

i:
 1
 2
 3
 ...
 31
 32
 33

$$h_{ii}$$
:
 .101
 .092
 .176
 ...
 .058
 .069
 .149

 t_i :
 -.024
 .003
 -.218
 ...
 -.975
 1.983
 .829

t(.9985;28) = 3.25. If $|t_i| \le 3.25$ conclude no outliers, otherwise outliers. Conclude no outliers.

f.

		DFBETAS					
Case	DFFITS	b_0	b_1	b_2	b_3	D	
28	.739	.530	151	577	187	.120	
29	719	197	310	133	.420	.109	

BUILDING THE REGRESSION MODEL III: REMEDIAL MEASURES

b. $SSR^* = 123,753.125, SSE = 2,316.500,$

 $X_{BP}^2=(123,753.125/2)/(2,316.500/12)^2=1.66,~\chi^2(.90;1)=2.71.$ If $X_{BP}^2\leq 2.71$ conclude error variance constant, otherwise error variance not constant. Conclude error variance constant.

d.
$$\hat{v} = -180.1 + 1.2437X$$

$$i$$
:
 1
 2
 3
 4
 5
 6

 weight:
 .01456
 .00315
 .00518
 .00315
 .01456
 .00518

 i :
 7
 8
 9
 10
 11
 12

 weight:
 .00518
 .00315
 .01456
 .00315
 .01456
 .00518

e.
$$\hat{Y} = -6.2332 + .1891X$$

f.

g.
$$\hat{Y} = -6.2335 + .1891X$$

11.10. a.
$$\hat{Y} = 3.32429 + 3.76811X_1 + 5.07959X_2$$

d.
$$c = .07$$

e.
$$\hat{Y} = 6.06599 + 3.84335X_1 + 4.68044X_2$$

11.11. a.
$$\hat{Y} = 1.88602 + 15.1094X$$
 (47 cases)

$$\hat{Y} = -.58016 + 15.0352X$$
 (45 cases)

smallest weights: .13016 (case 47), .29217 (case 46)

- c. $\hat{Y} = -.9235 + 15.13552X$
- d. 2nd iteration: $\hat{Y} = -1.535 + 15.425X$

3rd iteration: $\hat{Y} = -1.678 + 15.444X$

smallest weights: .12629 (case 47), .27858 (case 46)

AUTOCORRELATION IN TIME SERIES DATA

12.6. $H_0: \rho = 0, H_a: \rho > 0.$ $D = 2.4015, d_L = 1.29, d_U = 1.38.$ If D > 1.38 conclude H_0 , if D < 1.29 conclude H_a , otherwise the test is inconclusive. Conclude H_0 .

12.9. a.
$$\hat{Y} = -7.7385 + 53.9533X$$
, $s\{b_0\} = 7.1746$, $s\{b_1\} = 3.5197$

c. $H_0: \rho = 0, H_a: \rho > 0.$ $D = .857, d_L = 1.10, d_U = 1.37.$ If D > 1.37 conclude H_0 , if D < 1.10 conclude H_a , otherwise the test is inconclusive. Conclude H_a .

12.10. a.
$$r = .5784, 2(1 - .5784) = .8432, D = .857$$

b.
$$b'_0 = -.69434$$
, $b'_1 = 50.93322$
 $\hat{Y}' = -.69434 + 50.93322X'$
 $s\{b'_0\} = 3.75590$, $s\{b'_1\} = 4.34890$

c. $H_0: \rho = 0, H_a: \rho > 0.$ $D = 1.476, d_L = 1.08, d_U = 1.36.$ If D > 1.36 conclude H_0 , if D < 1.08 conclude H_a , otherwise the test is inconclusive. Conclude H_0 .

d.
$$\hat{Y} = -1.64692 + 50.93322X$$

 $s\{b_0\} = 8.90868, s\{b_1\} = 4.34890$

- f. $F_{17} = -1.64692 + 50.93322(2.210) + .5784(-.6595) = 110.534$, $s\{\text{pred}\} = .9508$, t(.975; 13) = 2.160, $110.534 \pm 2.160(.9508)$, $108.48 \le Y_{17(\text{new})} \le 112.59$
- g. $t(.975; 13) = 2.160, 50.93322 \pm 2.160(4.349), 41.539 \le \beta_1 \le 60.327.$

- b. $\hat{Y}' = -.5574 + 50.8065X', s\{b'_0\} = 3.5967, s\{b'_1\} = 4.3871$
- c. $H_0: \rho = 0, H_a: \rho > 0.$ $D = 1.499, d_L = 1.08, d_U = 1.36.$ If D > 1.36 conclude H_0 , if D < 1.08 conclude H_a , otherwise test is inconclusive. Conclude H_0 .
- d. $\hat{Y} = -1.3935 + 50.8065X$, $s\{b_0\} = 8.9918$, $s\{b_1\} = 4.3871$
- f. $F_{17} = -1.3935 + 50.8065(2.210) + .6(-.6405) = 110.505, s\{pred\} = .9467, t(.975; 13) = 2.160, 110.505 \pm 2.160(.9467), 108.46 \le Y_{17(new)} \le 112.55$
- 12.12. a. $b_1 = 49.80564, s\{b_1\} = 4.77891$
 - b. $H_0: \rho = 0, H_a: \rho \neq 0.$ D = 1.75 (based on regression with intercept term), $d_L = 1.08, d_U = 1.36$. If D > 1.36 and 4 D > 1.36 conclude H_0 , if D < 1.08 or 4 D < 1.08 conclude H_a , otherwise the test is inconclusive. Conclude H_0 .
 - c. $\hat{Y} = .71172 + 49.80564X, s\{b_1\} = 4.77891$
 - e. $F_{17} = .71172 + 49.80564(2.210) .5938 = 110.188, s\{pred\} = .9078, t(.975; 14) = 2.145, 110.188 \pm 2.145(.9078), 108.24 \le Y_{17(new)} \le 112.14$
 - f. $t(.975; 14) = 2.145, 49.80564 \pm 2.145(4.77891), 39.555 \le \beta_1 \le 60.056$

INTRODUCTION TO NONLINEAR REGRESSION AND NEURAL NETWORKS

13.1. a. Intrinsically linear

$$\log_e f(\mathbf{X}, \, \boldsymbol{\gamma}) = \gamma_0 + \gamma_1 X$$

- b. Nonlinear
- c. Nonlinear
- 13.3. b. 300, 3.7323

13.5. a.
$$b_0 = -.5072512, b_1 = -0.0006934571, g_0^{(0)} = 0, g_1^{(0)} = .0006934571, g_2^{(0)} = .6021485$$

b. $g_0 = .04823, g_1 = .00112, g_2 = .71341$

13.6. a.
$$\hat{Y} = .04823 + .71341 \exp(-.00112X)$$

City A							
i:	1	2	3	4	5		
\hat{Y}_i :	.61877	.50451	.34006	.23488	.16760		
e_i :	.03123	04451	00006	.02512	.00240		
Exp. value:	.04125	04125	00180	.02304	.00180		
i:	6	7	8				
\hat{Y}_i :	.12458	.07320	.05640	•			
e_i :	.02542	01320	01640				
Exp. value:	.02989	01777	02304				
City B							
i:	9	10	11	12	13		
\hat{Y}_i :	.61877	.50451	.34006	.23488	.16760		
e_i :	.01123	00451	04006	.00512	.02240		
Exp. value:	.01327	00545	02989	.00545	.01777		

13.7. $H_0: E\{Y\} = \gamma_0 + \gamma_2 \exp(-\gamma_1 X), H_a: E\{Y\} \neq \gamma_0 + \gamma_2 \exp(-\gamma_1 X).$

SSPE = .00290, SSE = .00707, MSPE = .00290/8 = .0003625,

 $MSLF = (.00707 - .00290)/5 = .000834, F^* = .000834/.0003625 = 2.30069, F(.99; 5, 8) = 6.6318.$ If $F^* \le 6.6318$ conclude H_0 , otherwise H_a . Conclude H_0 .

13.8. $s\{g_0\} = .01456, s\{g_1\} = .000092, s\{g_2\} = .02277, z(.9833) = 2.128$

$$.04823 \pm 2.128(.01456)$$

$$.01725 \le \gamma_0 \le .07921$$

$$.00112 \pm 2.128(.000092)$$

$$.00092 \le \gamma_1 \le .00132$$

$$.71341 \pm 2.128(.02277)$$

$$.66496 \le \gamma_2 \le .76186$$

13.9. a. $g_0 = .04948$, $g_1 = .00112$, $g_2 = .71341$, $g_3 = -.00250$

b. z(.975) = 1.96, $s\{g_3\} = .01211$, $-.00250 \pm 1.96(.01211)$, $-.02624 \le \gamma_3 \le .02124$, yes, no.

13.13. $g_0 = 100.3401, g_1 = 6.4802, g_2 = 4.8155$

13.14. a. $\hat{Y} = 100.3401 - 100.3401/[1 + (X/4.8155)^{6.4802}]$

b.

i:	1	2	3	4	5	6	7
\hat{Y}_i :	.0038	.3366	4.4654 11	1.2653 1	1.2653	23.1829	23.1829
e_i :	.4962	1.9634 -	1.0654	.2347 -	3653	.8171	2.1171
Expected Val.:	.3928	1.6354 -	1.0519 -	1947 -	5981	.8155	2.0516
i:	8	9	10	11	12	13	14
\hat{Y}_i :	39.3272	39.3272	56.2506	56.2506	70.530	08 70.5	308 80.8876
e_i :	.2728	-1.4272	-1.5506	.5494	.269	-2.13	308 1.2124
Expected Val.:	.1947	-1.3183	-1.6354	.5981	.000	00 -2.0	516 1.0519
i:	15	16	17	18	19		
\hat{Y}_i :	80.8876	87.7742	92.1765	96.7340	98.626	3	
e_i :	2876	1.4258	2.6235	5340	-2.226	3	
Expected Val.:	3928	1.3183	2.7520	8155	-2.752	0	

13.15.
$$H_0: E\{Y\} = \gamma_0 - \gamma_0/[1 + (X/\gamma_2)^{\gamma_1}], H_a: E\{Y\} \neq \gamma_0 - \gamma_0/[1 + (X/\gamma_2)^{\gamma_1}].$$

SSPE = 8.67999, SSE = 35.71488, MSPE = 8.67999/6 = 1.4467, MSLF = (35.71488 - 8.67999)/10 = 2.7035, $F^* = 2.7035/1.4467 = 1.869$, F(.99; 10, 6) = 7.87. If $F^* \le 7.87$ conclude H_0 , otherwise H_a . Conclude H_0 .

13.16.
$$s\{g_0\} = 1.1741$$
, $s\{g_1\} = .1943$, $s\{g_2\} = .02802$, $z(.985) = 2.17$

$$100.3401 \pm 2.17(1.1741)$$
 $97.7923 \le \gamma_0 \le 102.8879$

$6.4802 \pm 2.17 (.1943)$	$6.0586 \le \gamma_1 \le$	6.9018
$4.8155 \pm 2.17(.02802)$	$4.7547 \le \gamma_2 \le$	4.8763

14.5. a. $E\{Y\} = [1 + \exp(-20 + .2X)]^{-1}$

LOGISTIC REGRESSION, POISSON REGRESSION,AND GENERALIZED LINEAR MODELS

b.
$$100$$

c. $X = 125$: $\pi = .006692851$, $\pi/(1 - \pi) = .006737947$
 $X = 126$: $\pi = .005486299$, $\pi/(1 - \pi) = .005516565$
 $005516565/.006737947 = .81873 = \exp(-.2)$
14.7. a. $b_0 = -4.80751$, $b_1 = .12508$, $\hat{\pi} = [1 + \exp(4.80751 - .12508X)]^{-1}$
c. 1.133
d. $.5487$
e. 47.22
14.11. a.
$$\frac{j: \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}{p_j: \quad .144 \quad .206 \quad .340 \quad .592 \quad .812 \quad .898}$$

b. $b_0 = -2.07656$, $b_1 = .13585$
 $\hat{\pi} = [1 + \exp(2.07656 - .13585X)]^{-1}$
d. 1.1455
e. $.4903$
f. 23.3726
14.14. a. $b_0 = -1.17717$, $b_1 = .07279$, $b_2 = -.09899$, $b_3 = .43397$
 $\hat{\pi} = [1 + \exp(1.17717 - .07279X_1 + .09899X_2 - .43397X_3)]^{-1}$
b. $\exp(b_1) = 1.0755$, $\exp(b_2) = .9058$, $\exp(b_3) = 1.5434$
c. $.0642$
14.15. a. $z(.95) = 1.645$, $s\{b_1\} = .06676$, $\exp[.12508 \pm 1.645(.06676)]$,

- $1.015 \le \exp(\beta_1) \le 1.265$
- b. $H_0: \beta_1 = 0, H_a: \beta_1 \neq 0.$ $b_1 = .12508, s\{b_1\} = .06676, z^* = .12508/.06676 = 1.8736.$ $z(.95) = 1.645, |z^*| \leq 1.645,$ conclude H_0 , otherwise conclude H_a . Conclude H_a . P-value=.0609.
- c. $H_0: \beta_1 = 0, H_a: \beta_1 \neq 0.$ $G^2 = 3.99, \chi^2(.90; 1) = 2.7055.$ If $G^2 \leq 2.7055$, conclude H_0 , otherwise conclude H_a . Conclude H_a . P-value=.046
- 14.17. a. z(.975) = 1.960, $s\{b_1\} = .004772$, $.13585 \pm 1.960(.004772)$, $.1265 \le \beta_1 \le .1452$, $1.1348 \le \exp(\beta_1) \le 1.1563$.
 - b. $H_0: \beta_1=0, H_a: \beta_1\neq 0.$ $b_1=.13585, s\{b_1\}=.004772, z^*=.13585/.004772=28.468.$ $z(.975)=1.960, |z^*|\leq 1.960,$ conclude H_0 , otherwise conclude H_a . Conclude H_a . P-value=0+.
 - c. $H_0: \beta_1 = 0, H_a: \beta_1 \neq 0.$ $G^2 = 1095.99, \chi^2(.95; 1) = 3.8415.$ If $G^2 \leq 3.8415,$ conclude H_0 , otherwise conclude H_a . Conclude H_a . P-value = 0+.
- 14.20. a. $z(1-.1/[2(2)]) = z(.975) = 1.960, s\{b_1\} = .03036, s\{b_2\} = .03343, \exp\{30[.07279 \pm 1.960(.03036)]\}, 1.49 \le \exp(30\beta_1) \le 52.92, \exp\{25[-.09899 \pm 1.960(.03343)]\}, .016 \le \exp(2\beta_2) \le .433.$
 - b. $H_0: \beta_3 = 0, H_a: \beta_3 \neq 0.$ $b_3 = .43397, s\{b_3\} = .52132, z^* = .43397/.52132 = .8324.$ $z(.975) = 1.96, |z^*| \leq 1.96$, conclude H_0 , otherwise conclude H_a . Conclude H_0 . P-value= .405.
 - c. $H_0: \beta_3 = 0, H_a: \beta_3 \neq 0.$ $G^2 = .702, \chi^2(.95; 1) = 3.8415.$ If $G^2 \leq 3.8415$, conclude H_0 , otherwise conclude H_a . Conclude H_0 .
 - d. $H_0: \beta_3 = \beta_4 = \beta_5 = 0$, $H_a:$ not all $\beta_k = 0$, for k = 3, 4, 5. $G^2 = 1.534$, $\chi^2(.95;3) = 7.81$. If $G^2 \leq 7.81$, conclude H_0 , otherwise conclude H_a . Conclude H_0 .
- 14.22. a. X_1 enters in step 1; X_2 enters in step 2; no variables satisfy criterion for entry in step 3.
 - b. X_{11} is deleted in step 1; X_{12} is deleted in step 2; X_3 is deleted in step 3; X_{22} is deleted in step 4; X_1 and X_2 are retained in the model.
 - c. The best model according to the AIC_p criterion is based on X_1 and X_2 . $AIC_3 = 111.795$.
 - d. The best model according to the SBC_p criterion is based on X_1 and X_2 . $SBC_3 = 121.002$.

14.23.

j:	1	2	3	4	5	6
O_{j1} :	72	103	170	296	406	449
E_{j1} :	71.0	99.5	164.1	327.2	394.2	440.0
O_{j0} :	428	397	330	204	94	51
E_{i0} :	429.0	400.5	335.9	172.9	105.8	60.0

$$H_0: E\{Y\} = [1 + \exp(-\beta_0 - \beta_1 X)]^{-1},$$

$$H_a: E\{Y\} \neq [1 + \exp(-\beta_0 - \beta_1 X)]^{-1}.$$

 $X^2 = 12.284$, $\chi^2(.99;4) = 13.28$. If $X^2 \le 13.28$ conclude H_0 , otherwise H_a . Conclude H_0 .

14.25. a.

Class j	$\hat{\pi}^{'}$ Interval	Midpoint	n_{j}	p_{j}
1	-1.1 - under 4	75	10	.3
2	4 - under .6	.10	10	.6
3	.6 - under 1.5	1.05	10	.7

b.

14.28. a.

$$j$$
:
 1
 2
 3
 4
 5
 6
 7
 8

 O_{j1} :
 0
 1
 0
 2
 1
 8
 2
 10

 E_{j1} :
 .2
 .5
 1.0
 1.5
 2.4
 3.4
 4.7
 10.3

 O_{j0} :
 19
 19
 20
 18
 19
 12
 18
 10

 E_{j0} :
 18.8
 19.5
 19.0
 18.5
 17.6
 16.6
 15.3
 9.7

b.
$$H_0: E\{Y\} = [1 + \exp(-\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3)]^{-1},$$

$$H_a: E\{Y\} \neq [1 + \exp(-\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3)]^{-1}.$$

 $X^2 = 12.116$, $\chi^2(.95; 6) = 12.59$. If $X^2 \le 12.59$, conclude H_0 , otherwise conclude H_a . Conclude H_0 . P-value = .0594.

c.

14.29 a.

b.

i:	1	2	3		28	29	30
ΔX_i^2 :	.3885	3.2058	.3885		4.1399	.2621	.2621
Δdev_i :	.6379	3.0411	.6379	• • •	3.5071	.4495	.4495
D_i :	.0225	.1860	.0225		.2162	.0148	.0148

14.32 a.

b.

$$i$$
:
 1
 2
 3
 ...
 157
 158
 159

 ΔX_i^2 :
 .1340
 .1775
 1.4352
 ...
 .0795
 .6324
 2.7200

 Δdev_i :
 .2495
 .3245
 1.8020
 ...
 .1478
 .9578
 2.6614

 D_i :
 .0007
 .0008
 .0395
 ...
 .0016
 .0250
 .0191

14.33. a.
$$z(.95) = 1.645$$
, $\hat{\pi}'_h = .19561$, $s^2\{b_0\} = 7.05306$, $s^2\{b_1\} = .004457$, $s\{b_0, b_1\} = -.175353$, $s\{\hat{\pi}'_h\} = .39428$, $.389 \le \pi_h \le .699$

b.

Cutoff	Renewers	Nonrenewers	Total
.40	18.8	50.0	33.3
.45	25.0	50.0	36.7
.50	25.0	35.7	30.0
.55	43.8	28.6	36.7
.60	43.8	21.4	33.3

- c. Cutoff = .50. Area = .70089.
- 14.36. a. $\hat{\pi}_h' = -1.3953$, $s^2\{\hat{\pi}_h'\} = .1613$, $s\{\hat{\pi}_h'\} = .4016$, z(.95) = 1.645. L = -1.3953 1.645(.4016) = -2.05597, U = -1.3953 + 1.645(.4016) = -.73463. $L^* = [1 + \exp(2.05597)]^{-1} = .11345$, $U^* = [1 + \exp(.73463)]^{-1} = .32418$.

b.

Cutoff	Received	Not receive	Total
.05	4.35	62.20	66.55
.10	13.04	39.37	52.41
.15	17.39	26.77	44.16
.20	39.13	15.75	54.88

- c. Cutoff = .15. Area = .82222.
- 14.38. a. $b_0 = 2.3529$, $b_1 = .2638$, $s\{b_0\} = .1317$, $s\{b_1\} = .0792$, $\hat{\mu} = \exp(2.3529 + .2638X)$.

b.

$$i:$$
 1 2 3 \cdots 8 9 10 $dev_i:$.6074 $-.4796$ $-.1971$ \cdots .3482 .2752 .1480

c.

$$X_h$$
: 0 1 2 3
Poisson: 10.5 13.7 17.8 23.2
Linear: 10.2 14.2 18.2 22.2

e. $\hat{\mu}_h = \exp(2.3529) = 10.516$

$$P(Y \le 10 \mid X_h = 0) = \sum_{Y=0}^{10} \frac{(10.516)^Y \exp(-10.516)}{Y!}$$
$$= 2.7 \times 10^{-5} + \dots + .1235 = .5187$$

f.
$$z(.975) = 1.96, .2638 \pm 1.96(.0792), .1086 \le \beta_1 \le .4190$$

INTRODUCTION TO THE DESIGN OF EXPERIMENTAL AND OBSERVATIONAL STUDIES

- 15.9. a. Observational.
 - b. Factor: expenditures for research and development in the past three years. Factor levels: low, moderate, and high.
 - c. Cross-sectional study.
 - d. Firm.
- 15.14. a. Experimental.
 - b. Factor 1: ingredient 1, with three levels (low, medium, high).Factor 2: ingredient 2, with three levels (low, medium, high).There are 9 factor-level combinations.
 - d. Completely randomized design.
 - e. Volunteer.
- 15.20. a. 2^3 factorial design with two replicates.
 - c. Rod.
- 15.23. a. H_0 : $\bar{W} = 0$, H_a : $\bar{W} \neq 0$. $t^* = -.1915/.0112 = -17.10$, t(.975, 19) = 2.093. If $|t^*| > 2.093$ conclude H_0 , otherwise conclude H_a . Conclude H_a . P-value = 0+. Agree with results on page 670. They should agree.
 - b. H_0 : $\beta_2 = \cdots = \beta_{20} = 0$, H_a : not all β_k $(k = 2, 3, \dots, 20)$ equal zero. $F^* = [(.23586 .023828)/(38 19)] \div [.023828/19] = 8.90$, F(.95; 19, 19) = 2.17. If $F^* > 2.17$ conclude H_0 , otherwise conclude H_a . Conclude H_a . P-value = 0+.

Not of primary interest because blocking factor was used here to increase the precision.

SINGLE-FACTOR STUDIES

16.7. b.
$$\hat{Y}_{1j} = \bar{Y}_{1.} = 6.87778, \ \hat{Y}_{2j} = \bar{Y}_{2.} = 8.13333, \ \hat{Y}_{3j} = \bar{Y}_{3.} = 9.20000$$

c. e_{ij} :

d.

Source	SS	df	MS
Between levels	20.125	2	10.0625
Error	15.362	24	.6401
Total	35.487	26	

- e. H_0 : all μ_i are equal (i = 1, 2, 3), H_a : not all μ_i are equal. $F^* = 10.0625/.6401 = 15.720$, F(.95; 2, 24) = 3.40. If $F^* \leq 3.40$ conclude H_0 , otherwise H_a . Conclude H_a .
- f. P-value = 0+

16.10. b.
$$\hat{Y}_{1j} = \bar{Y}_{1.} = 21.500, \ \hat{Y}_{2j} = \bar{Y}_{2.} = 27.750, \ \hat{Y}_{3j} = \bar{Y}_{3.} = 21.417$$

c. e_{ij} :

d.

Source	SS	df	MS
Between ages	316.722	2	158.361
Error	82.167	33	2.490
Total	398.889	35	

- e. H_0 : all μ_i are equal (i = 1, 2, 3), H_a : not all μ_i are equal. $F^* = 158.361/2.490 = 63.599$, F(.99; 2, 33) = 5.31. If $F^* \leq 5.31$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+
- 16.11. b. $\hat{Y}_{1j} = \bar{Y}_{1.} = .0735, \ \hat{Y}_{2j} = \bar{Y}_{2.} = .1905, \ \hat{Y}_{3j} = \bar{Y}_{3.} = .4600, \ \hat{Y}_{4j} = \bar{Y}_{4.} = .3655,$ $\hat{Y}_{5j} = \bar{Y}_{5.} = .1250, \ \hat{Y}_{6j} = \bar{Y}_{6.} = .1515$
 - c. e_{ij} :

Yes

d.

Source	SS	df	MS
Between machines	2.28935	5	.45787
Error	3.53060	114	.03097
Total	5.81995	119	

- e. H_0 : all μ_i are equal (i = 1, ..., 6), H_a : not all μ_i are equal. $F^* = .45787/.03097 = 14.78$, F(.95; 5, 114) = 2.29. If $F^* \le 2.29$ conclude H_0 , otherwise H_a . Conclude H_a .
- f. P-value = 0+

16.18. a.

b.

$$\mathbf{X}\boldsymbol{\beta} = \begin{bmatrix} \mu_{\cdot} + \tau_{1} & \mu_{\cdot} + \tau_{1} & \mu_{1} \\ \mu_{\cdot} + \tau_{1} & \mu_{1} & \mu_{1} \\ \mu_{\cdot} + \tau_{2} & \mu_{2} & \mu_{2} \\ \mu_{\cdot} - \tau_{1} - \tau_{2} & \mu_{3} \\ \mu_{\cdot} - \tau_{1} - \tau_{2} & \mu_{2} \\ \mu_{\cdot} -$$

c. $\hat{Y} = 8.07037 - 1.19259X_1 + .06296X_2$, μ defined in (16.63)

d.

Source	SS	df	MS
Regression	20.125	2	10.0625
Error	15.362	24	.6401
Total	35.487	26	

e. H_0 : $\tau_1 = \tau_2 = 0$, H_a : not both τ_1 and τ_2 equal zero. $F^* = 10.0625/.6401 = 15.720$, F(.95; 2, 24) = 3.40. If $F^* \le 3.40$ conclude H_0 , otherwise H_a . Conclude H_a .

16.21. a. $\hat{Y} = 23.55556 - 2.05556X_1 + 4.19444X_2$, μ defined in (16.63)

b.

Source	SS	df	MS
Regression	316.722	2	158.361
Error	82.167	33	2.490
Total	398.889	35	

 H_0 : $\tau_1 = \tau_2 = 0$, H_a : not both τ_1 and τ_2 equal zero. $F^* = 158.361/2.490 = 63.599$, F(.99; 2, 33) = 5.31. If $F^* \le 5.31$ conclude H_0 , otherwise H_a . Conclude H_a .

16.25.
$$\mu = 7.889, \ \phi = 2.457, \ 1 - \beta \cong .95$$

16.27
$$\mu_{\cdot} = 24, \, \phi = 6.12, \, 1 - \beta > .99$$

16.34. a.
$$\Delta/\sigma = .15/.15 = 1.0, n = 22$$

b.
$$\phi = \frac{1}{.15} \left[\frac{22}{6} (.02968) \right]^{1/2} = 2.199, 1 - \beta \ge .97$$

c.
$$(.10\sqrt{n})/.15 = 3.1591, n = 23$$

ANALYSIS OF FACTOR LEVEL MEANS

```
17.8. a. \bar{Y}_{1.} = 6.878, \, \bar{Y}_{2.} = 8.133, \, \bar{Y}_{3.} = 9.200
                     b. s\{\bar{Y}_{3.}\} = .327, t(.975; 24) = 2.064, 9.200 \pm 2.064(.327), 8.525 \le \mu_3 \le 9.875
                     c. \hat{D} = \bar{Y}_{2.} - \bar{Y}_{1.} = 1.255, \ s\{\hat{D}\} = .353, \ t(.975; 24) = 2.064, 1.255 \pm 2.064(.353),
                                   .526 < D < 1.984
                    d. \hat{D}_1 = \bar{Y}_{3.} - \bar{Y}_{2.} = 1.067, \ \hat{D}_2 = \bar{Y}_{3.} - \bar{Y}_{1.} = 2.322, \ \hat{D}_3 = \bar{Y}_{2.} - \bar{Y}_{1.} = 1.255, \ s\{\hat{D}_1\} = 1.255, \ s\{\hat{
                                    .400, s\{\hat{D}_2\} = .422, s\{\hat{D}_3\} = .353, q(.90; 3, 24) = 3.05, T = 2.157
                                                     1.067 \pm 2.157(.400)
                                                                                                                                                   .204 \le D_1 \le 1.930
                                                                                                                                                 1.412 \le D_2 \le 3.232
                                                     2.322 \pm 2.157(.422)
                                                     1.255 \pm 2.157(.353)
                                                                                                                                                    .494 \le D_3 \le 2.016
                      e. F(.90; 2, 24) = 2.54, S = 2.25
                                  B = t(.9833; 24) = 2.257
                                  Yes
17.11. a. \bar{Y}_{1.} = 21.500, \, \bar{Y}_{2.} = 27.750, \, \bar{Y}_{3.} = 21.417
                     c. \hat{D} = \bar{Y}_{3.} - \bar{Y}_{1.} = -.083, \ s\{\hat{D}\} = .644, \ t(.995; 33) = 2.733, \ -.083 \pm 2.733(.644),
                                    -1.843 < D < 1.677
                     d. H_0: 2\mu_2 - \mu_1 - \mu_3 = 0, H_a: 2\mu_2 - \mu_1 - \mu_3 \neq 0. F^* = (12.583)^2 / 1.245 = 127.17,
                                   F(.99; 1, 33) = 7.47. If F^* \le 7.47 conclude H_0, otherwise H_a. Conclude H_a.
                     e. \hat{D}_1 = \bar{Y}_{3.} - \bar{Y}_{1.} = -.083, \ \hat{D}_2 = \bar{Y}_{3.} - \bar{Y}_{2.} = -6.333, \ \hat{D}_3 = \bar{Y}_{2.} - \bar{Y}_{1.} = 6.250,
                                    s\{\hat{D}_i\} = .644 \ (i = 1, 2, 3), \ q(.90; 3, 33) = 3.01, \ T = 2.128
                                                         -.083 \pm 2.128(.644)
                                                                                                                                 -1.453 \le D_1 \le 1.287
                                                     -6.333 \pm 2.128(.644) -7.703 \le D_2 \le -4.963
                                                          6.250 \pm 2.128(.644)
                                                                                                                            4.880 \le D_3 \le 7.620
                              B = t(.9833; 33) = 2.220, no
17.12. a. \bar{Y}_{1.} = .0735, \, \bar{Y}_{2.} = .1905, \, \bar{Y}_{3.} = .4600, \, \bar{Y}_{4.} = .3655, \, \bar{Y}_{5.} = .1250, \, \bar{Y}_{6.} = .1515
```

- b. $MSE = .03097, \ s\{\bar{Y}_{1.}\} = .0394, \ t(.975;114) = 1.981, \ .0735 \pm 1.981(.0394), \ -.005 \leq \mu_1 \leq .152$
- c. $\hat{D} = \bar{Y}_{2.} \bar{Y}_{1.} = .1170, \ s\{\hat{D}\} = .0557, \ t(.975; 114) = 1.981, \ .1170 \pm 1.981(.0557), \ .007 \le D \le .227$
- e. $\hat{D}_1 = \bar{Y}_{1.} \bar{Y}_{4.} = -.2920$, $\hat{D}_2 = \bar{Y}_{1.} \bar{Y}_{5.} = -.0515$, $\hat{D}_3 = \bar{Y}_{4.} \bar{Y}_{5.} = .2405$, $s\{\hat{D}_i\} = .0557$ (i = 1, 2, 3), B = t(.9833; 114) = 2.178

Test Comparison

i	i	t_i^*	Conclusion
1	D_1	-5.242	H_a
2	D_2	925	H_0
3	D_3	4.318	H_a

- f. q(.90; 6, 114) = 3.71, T = 2.623, no
- 17.14. a. $\hat{L} = (\bar{Y}_{1.} + \bar{Y}_{2.})/2 \bar{Y}_{3.} = (6.8778 + 8.1333)/2 9.200 = -1.6945,$ $s\{\hat{L}\} = .3712, t(.975; 24) = 2.064, -1.6945 \pm 2.064(.3712), -2.461 \le L \le -.928$
 - b. $\hat{L} = (3/9)\bar{Y}_{1.} + (4/9)\bar{Y}_{2.} + (2/9)\bar{Y}_{3.} = 7.9518, \ s\{\hat{L}\} = .1540, \ t(.975; 24) = 2.064, 7.9518 \pm 2.064(.1540), 7.634 \le L \le 8.270$
 - c. F(.90; 2, 24) = 2.54, S = 2.254; see also part (a) and Problem 17.8.

$$1.067 \pm 2.254(.400)$$
 $.165 \le D_1 \le 1.969$

$$2.322 \pm 2.254(.422)$$
 $1.371 \le D_2 \le 3.273$

$$1.255 \pm 2.254(.353)$$
 $.459 \le D_3 \le 2.051$

$$-1.6945 \pm 2.254(.3712)$$
 $-2.531 \le L_1 \le -.858$

- 17.16. a. $\hat{L} = (\bar{Y}_{3.} \bar{Y}_{2.}) (\bar{Y}_{2.} \bar{Y}_{1.}) = \bar{Y}_{3.} 2\bar{Y}_{2.} + \bar{Y}_{1.} = 21.4167 2(27.7500) + 21.500 = -12.5833, s{\hat{L}} = 1.1158, t(.995; 33) = 2.733, -12.5833 \pm 2.733(1.1158), -15.632 < L < -9.534$
 - b. $\hat{D}_1 = \bar{Y}_{2.} \bar{Y}_{1.} = 6.2500$, $\hat{D}_2 = \bar{Y}_{3.} \bar{Y}_{2.} = -6.3333$, $\hat{D}_3 = \bar{Y}_{3.} \bar{Y}_{1.} = -.0833$, $\hat{L}_1 = \hat{D}_2 \hat{D}_1 = -12.5833$, $s\{\hat{D}_i\} = .6442$ (i = 1, 2, 3), $s\{\hat{L}_1\} = 1.1158$, F(.90; 2, 33) = 2.47, S = 2.223

$$6.2500 \pm 2.223(.6442)$$
 $4.818 \le D_1 \le 7.682$
 $-6.3333 \pm 2.223(.6442)$ $-7.765 \le D_2 \le -4.901$
 $-0.833 \pm 2.223(.6442)$ $-1.515 \le D_3 \le 1.349$
 $-12.5833 \pm 2.223(1.1158)$ $-15.064 \le L_1 \le -10.103$

- 17.17. a. $\hat{L} = (\bar{Y}_{1.} + \bar{Y}_{2.})/2 (\bar{Y}_{3.} + \bar{Y}_{4.})/2 = (.0735 + .1905)/2 (.4600 + .3655)/2$ = -.28075, $s\{\hat{L}\} = .03935$, t(.975; 114) = 1.981, -.28075±1.981(.03935), -.3587 $\leq L \leq -.2028$
 - b. $\hat{D}_1 = -.1170$, $\hat{D}_2 = .0945$, $\hat{D}_3 = -.0265$, $\hat{L}_1 = -.28075$, $\hat{L}_2 = -.00625$, $\hat{L}_3 = -.2776$, $\hat{L}_4 = .1341$, $s\{\hat{D}_i\} = .0557$ (i = 1, 2, 3), $s\{\hat{L}_1\} = s\{\hat{L}_2\} = .03935$, $s\{\hat{L}_3\} = s\{\hat{L}_4\} = .03408$, B = t(.99286; 114) = 2.488

$$-.1170 \pm 2.488(.0557) \qquad -.2556 \le D_1 \le .0216$$

$$\begin{array}{ll} .0945 \pm 2.488 (.0557) & -.0441 \leq D_2 \leq .2331 \\ -.0265 \pm 2.488 (.0557) & -.1651 \leq D_3 \leq .1121 \\ -.28075 \pm 2.488 (.03935) & -.3787 \leq L_1 \leq -.1828 \\ -.00625 \pm 2.488 (.03935) & -.1042 \leq L_2 \leq .0917 \\ -.2776 \pm 2.488 (.03408) & -.3624 \leq L_3 \leq -.1928 \\ .1341 \pm 2.488 (.03408) & .0493 \leq L_4 \leq .2189 \end{array}$$

17.19. a.
$$L_1 = \mu_1 - \mu$$
. $L_2 = \mu_2 - \mu$. $L_3 = \mu_3 - \mu$. $L_4 = \mu_4 - \mu$. $L_5 = \mu_5 - \mu$. $L_6 = \mu_6 - \mu$. $\hat{L}_1 = .0735 - .2277 = -.1542$, $\hat{L}_2 = .1905 - .2277 = -.0372$ $\hat{L}_3 = .4600 - .2277 = .2323$, $\hat{L}_4 = .3655 - .2277 = .1378$ $\hat{L}_5 = .1250 - .2277 = -.1027$, $\hat{L}_6 = .1515 - .2277 = -.0762$ $s\{\hat{L}_i\} = \sqrt{\frac{.03097}{20} \left(\frac{25}{36}\right) + \frac{.03097}{36} \left(\frac{5}{20}\right)} = .0359$ $B = t(.99583; 114) = 2.685$ $-.1542 \pm 2.685(.0359)$ $.2506 \le L_1 \le -.0578$ $-.0372 \pm 2.685(.0359)$ $.1359 \le L_3 \le .3287$ $.1378 \pm 2.685(.0359)$ $.0414 \le L_4 \le .2342$ $-.1027 \pm 2.685(.0359)$ $-.1991 \le L_5 \le -.0063$ $-.0762 \pm 2.685(.0359)$ $-.1726 \le L_6 \le .0202$

Conclude not all μ_i are equal.

17.25. Bonferroni, n = 45

17.29. a.
$$\hat{Y} = .18472 + .06199x + .01016x^2$$

b. e_{ij} :

i	j = 1	j = 2	j = 3	j = 4	j = 5	j = 6	j = 7
1	2310	.1090	0210	.0890	.2890	.0090	1310
2	.2393	1107	1007	.2493	.0193	1607	3407
3	2440	.3260	1340	0040	2340	1040	.0860
4	.1268	.2168	.1568	0732	0932	.1868	.0368
5	2969	.1631	0469	.0031	.1231	.0431	0969
6	0802	1802	.1498	.3398	0102	.1398	0502
i	j = 8	j = 9	j = 10	j = 11	j = 12	j = 13	j = 14
	j = 8 3610	j = 9.1790	j = 10 3010	j = 11 .2990	j = 12 1610	j = 13 1110	j = 14 .1890
				.2990			
1	3610	.1790	3010	.2990	1610	1110	.1890
$\frac{1}{2}$	3610 .1093	.1790 1607	3010 2507	.2990 1707	1610 .3093	1110 .1993	.1890
1 2 3	3610 .1093 2140	.1790 1607 .0160	3010 2507 .1660	.2990 1707 .0160	1610 .3093 .0960	1110 .1993 .1360	.1890 .0693 .2560

```
j = 18
   j = 15
            j = 16
                     j = 17
                                        j = 19
                                                 j = 20
   -.0010
             .0390
                      .1690
                               -.0210
                                        -.1010
                                                 -.2810
2
    .1393
            -.1807
                     -.0507
                              -.2007
                                        -.1107
                                                 -.1007
3
   -.0040
             .0260
                     -.0140
                                        -.2540
                                                   .1560
                               .0460
4
    .1168
             .1768
                      .1468
                               .0568
                                        .0868
                                                 -.1632
5
   -.3069
             .1331
                      .0931
                               .0331
                                         .2431
                                                 -.2869
  -.1902
            -.0002
                      .2998
                               .2198
                                        -.2202
                                                 -.0802
```

- c. $H_0: E\{Y\} = \beta_0 + \beta_1 x + \beta_{11} x^2$, $H_a: E\{Y\} \neq \beta_0 + \beta_1 x + \beta_{11} x^2$. SSPE = 3.5306, SSLF = .0408, $F^* = (.0408/3) \div (3.5306/114) = .439$, F(.99; 3, 114) = 3.96. If $F^* \leq 3.96$ conclude H_0 , otherwise H_a . Conclude H_0 .
- d. $H_0: \beta_{11} = 0, H_a: \beta_{11} \neq 0.$ $s\{b_{11}\} = .00525, t^* = .01016/.00525 = 1.935, t(.995; 117) = 2.619.$ If $|t^*| \leq 2.619$ conclude H_0 , otherwise H_a . Conclude H_0 .

ANOVA DIAGNOSTICS AND REMEDIAL MEASURES

- 18.4. a. See Problem 16.7c.
 - b. r = .992
 - c. t_{ij} :

 H_0 : no outliers, H_a : at least one outlier. t(.999815; 23) = 4.17. If $|t_{ij}| \le 4.17$ conclude H_0 , otherwise H_a . Conclude H_0 .

- 18.7. a. See Problem 16.10c.
 - b. r = .984
 - d. t_{ij} :

 H_0 : no outliers, H_a : at least one outlier. t(.99965; 32) = 3.75.

If $|t_{ij}| \leq 3.75$ conclude H_0 , otherwise H_a . Conclude H_0 .

18.8. a. See Problem 16.11c.

- b. r = .992
- d. t_{ij} :

i	j = 1	j=2	j = 3	j = 4	j = 5	j = 6	j = 7
1	-1.2477	.7360	0203	.6192	1.8045	.1538	6601
2	1.5815	4677	4095	1.6415	.2874	7594	-1.8287
3	-1.4648	1.8864	8150	0580	-1.4052	6396	.4648
4	.7243	1.2537	.9000	4386	5551	1.0764	.2003
5	-1.8560	.8443	3775	0871	.6105	.1451	6688
6	5901	-1.1767	.7477	1.8773	1829	.6893	4153
i	j = 8	j = 9	j = 10	j = 11	j = 12	j = 13	j = 14
1	-2.0298	1.1472	-1.6656	1.8651	8355	5434	1.2063
2	.8121	7594	-1.2892	8179	2.0053	1.3427	.5784
3	-1.2863	.0580	.9323	.0580	.5230	.7565	1.4648
4	-1.3189	.6659	1480	-2.1035	2061	-1.0823	-1.3784
5	.5522	.9616	.0871	.4357	1.0204	-1.3754	.8443
6	.1074	1.6355	-1.2952	.2816	8238	2990	.0493
i	j = 15	j = 16	j = 17	j = 18	j = 19	j = 20	
1	.0958	.3281	1.0882	0203	4852	-1.5455	
2	.9881	8765	1190	9940	4677	4095	
3	0580	.1161	1161	.2322	-1.5246	.8736	
4	.6659	1.0175	.8414	.3165	.4910	9646	
5	-1.9168	.6688	.4357	.0871	1.3160	-1.7954	
6	-1.2359	1248	1.6355	1.1590	-1.4141	5901	

 H_0 : no outliers, H_a : at least one outlier. t(.9999417;113) = 4.08.

If $|t_{ij}| \leq 4.08$ conclude H_0 , otherwise H_a . Conclude H_0 .

- 18.11. H_0 : all σ_i^2 are equal $(i=1,2,3), H_a$: not all σ_i^2 are equal. $\tilde{Y}_1=6.80, \tilde{Y}_2=8.20, \tilde{Y}_3=9.55, MSTR=.0064815, MSE=.26465, <math>F_L^*=.0064815/.26465=.02, F(.95;2,24)=3.40.$ If $F_L^*\leq 3.40$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .98
- 18.13. a. H_0 : all σ_i^2 are equal $(i=1,2,3), H_a$: not all σ_i^2 are equal. $s_1=1.7321, s_2=1.2881, s_3=1.6765, n_i\equiv 12, H^*=(1.7321)^2/(1.2881)^2=1.808, \\ H(.99;3,11)=6.75. \text{ If } H^*\leq 6.75 \text{ conclude } H_0, \text{ otherwise } H_a. \text{ Conclude } H_0. \\ P\text{-value}>.05$
 - b. $\tilde{Y}_1=21.5, \, \tilde{Y}_2=27.5, \, \tilde{Y}_3=21.0, \, MSTR=.19444, \, MSE=.93434,$ $F_L^*=.19444/.93434=.21, \, F(.99;2,33)=5.31. \, \text{ If } F_L^*\leq 5.31 \, \text{ conclude } H_0, \, \text{ otherwise } H_a. \, \text{Conclude } H_0. \, P\text{-value}=.81$
- 18.14. a. H_0 : all σ_i^2 are equal (i=1,...,6), H_a : not all σ_i^2 are equal. $s_1=.1925,\ s_2=.1854,\ s_3=.1646,\ s_4=.1654,\ s_5=.1727,\ s_6=.1735,\ n_i\equiv 20,\ H^*=(.1925)^2/(.1646)^2=1.3677,\ H(.99;\ 6,\ 19)=5.2.$ If $H^*\leq 5.2$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value >.05

b. $\tilde{Y}_1 = .08$, $\tilde{Y}_2 = .12$, $\tilde{Y}_3 = .47$, $\tilde{Y}_4 = .41$, $\tilde{Y}_5 = .175$, $\tilde{Y}_6 = .125$, MSTR = .002336, MSE = .012336, $F_L^* = .002336/.012336 = .19$, F(.99; 5, 114) = 3.18. If $F_L^* \le 3.18$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .97

18.17. a.
$$\bar{Y}_{1.}=3.5625, \, \bar{Y}_{2.}=5.8750, \, \bar{Y}_{3.}=10.6875, \, \bar{Y}_{4.}=15.5625$$

 e_{ij} :

i	j = 1	j=2	j = 3	j=4	j = 5	j = 6
1	.4375	5625	-1.5625	5625	.4375	.4375
2	1.1250	.1250	-1.8750	.1250	1.1250	-3.8750
3	1.3125	-4.6875	3.3125	1.3125	6875	-1.6875
4	.4375	-1.5625	-9.5625	3.4375	-3.5625	-5.5625
i	j = 7	j = 8	j = 9	j = 10	j = 11	j = 12
1	5625	2.4375	1.4375	.4375	-1.5625	.4375
2	3.1250	8750	8750	3.1250	-2.8750	2.1250
3	1.3125	6.3125	-3.6875	-4.6875	1.3125	.3125
4	5625	8.4375	-5.5625	7.4375	1.4375	4.4375
i	j = 13	j = 14	j = 15	j = 16	_	
	.4375		5625	.4375		
2	.1250	-1.8750	1.1250	.1250		
3	-4.6875	2.3125	6875	3.3125		
4	5625	2.4375	-7.5625	6.4375		

c. H_0 : all σ_i^2 are equal $(i=1,2,3,4), H_a$: not all σ_i^2 are equal.

 $\tilde{Y}_1=4.0,\ \tilde{Y}_2=6.0,\ \tilde{Y}_3=11.5,\ \tilde{Y}_4=16.5,\ MSTR=37.1823,\ MSE=3.8969,\ F_L^*=37.1823/3.8969=9.54,\ F(.95;\ 3,\ 60)=2.76.$ If $F_L^*\le 2.76$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

d.

i	$\bar{Y}_{i.}$	s_i
1	3.5625	1.0935
2	5.8750	1.9958
3	10.6875	3.2397
4	16.5625	5.3786

e.

λ	SSE	λ	SSE
-1.0	1,038.26	.1	410.65
8	790.43	.2	410.92
6	624.41	.4	430.49
4	516.16	.6	476.68
2	450.16	.8	553.64
1	429.84	1.0	669.06
0	416.84		

Yes

18.18. a.
$$\bar{Y}'_{1.}=.5314,\, \bar{Y}'_{2.}=.7400,\, \bar{Y}'_{3.}=1.0080,\, \bar{Y}'_{4.}=1.1943$$

$$e'_{ij}$$
:

- b. r = .971
- c. H_0 : all σ_i^2 are equal (i=1,2,3,4), H_a : not all σ_i^2 are equal. $\tilde{Y}_1=.6021, \, \tilde{Y}_2=.7782, \, \tilde{Y}_3=1.0603, \, \tilde{Y}_4=1.2173, \, MSTR=.001214, \\ MSE=.01241, \, F_L^*=.001214/.01241=.10, \, F(.95;\,3,\,60)=2.76.$ If $F_L^*\leq 2.76$ conclude H_0 , otherwise H_a . Conclude H_0 .

18.20.

$$s_i$$
: 1.09354 1.99583 3.23973 5.37858
 w_i : .83624 .25105 .09528 .034567
 H_0 : all μ_i are equal $(i = 1, 2, 3, 4)$, H_a : not all μ_i are equal.
 $SSE_w(F) = 60$, $df_F = 60$, $SSE_w(R) = 213.9541$, $df_R = 63$,
 $F_w^* = [(213.9541 - 60)/3] \div (60/60) = 51.32$, $F(.99; 3, 60) = 4.13$.

If $F_w^* \le 4.13$ conclude H_0 , otherwise H_a . Conclude H_a .

- 18.23. a. H_0 : all μ_i are equal $(i=1,2,3,4), H_a$: not all μ_i are equal. $MSTR = 470.8125, MSE = 28.9740, F_R^* = 470.8125/28.9740 = 16.25,$ F(.95; 2, 24) = 3.40. If $F_R^* \leq 3.40$ conclude H_0 , otherwise H_a . Conclude H_a .
 - b. P-value = 0+

e.
$$\bar{R}_{1.} = 6.50, \, \bar{R}_{2.} = 15.50, \, \bar{R}_{3.} = 22.25, \, B = z(.9833) = 2.13$$

Comparison	Testing Limits				
1 and 2	$-9.00 \pm 2.13(3.500)$	-16.455 and -1.545			
1 and 3	$15.75 \pm 2.13(4.183)$	-24.660 and -9.840			
2 and 3	$-6.75 \pm 2.13(3.969)$	-15.204 and 1.704			

Group 1Group 2Low Level
$$i = 1$$
Moderate level $i = 2$ High level $i = 3$

18.24. a.
$$H_0$$
: all μ_i are equal $(i = 1, 2, 3)$, H_a : not all μ_i are equal.
$$MSTR = 1,297.0000, MSE = 37.6667, F_R^* = 1,297.0000/37.6667 = 34.43,$$

F(.99; 2, 33) = 5.31. If $F_R^* \leq 5.31$ conclude H_0 , otherwise H_a . Conclude H_a .

b. P-value = 0+

e.
$$\bar{R}_{1.}=12.792, \, \bar{R}_{2.}=30.500, \, \bar{R}_{3.}=12.208, \, B=z(.9833)=2.128$$

Comparison	Testing Limits				
1 and 2	$-17.708 \pm 2.128(4.301)$	-26.861 and -8.555			
1 and 3	$.584 \pm 2.128(4.301)$	-8.569 and 9.737			
2 and 3	$18.292 \pm 2.128(4.301)$	9.140 and 27.445			

Group 1Group 2Young
$$i = 1$$
Middle $i = 2$ Elderly $i = 3$

TWO-FACTOR STUDIES WITH EQUAL SAMPLE SIZES

19.4. a.
$$\mu_{1} = 31, \, \mu_{2} = 37$$

b.
$$\alpha_1 = \mu_1 - \mu_2 = 31 - 34 = -3, \ \alpha_2 = \mu_2 - \mu_2 = 37 - 34 = 3$$

19.7. a.
$$E\{MSE\} = 1.96, E\{MSA\} = 541.96$$

19.10. a.
$$\bar{Y}_{11.}=21.66667, \, \bar{Y}_{12.}=21.33333, \, \bar{Y}_{21.}=27.83333, \,$$

$$\bar{Y}_{22.}=27.66667, \, \bar{Y}_{31.}=22.33333, \, \bar{Y}_{32.}=20.50000 \,$$

b. e_{ijk} :

i	j = 1	j=2	i	j = 1	j=2	i	j = 1	j=2
1	66667	33333	2	2.16667	-1.66667	3	2.66667	2.50000
	1.33333	.66667		1.16667	1.33333		33333	-1.50000
	-2.66667	-1.33333		-1.83333	66667		.66667	50000
	.33333	33333		.16667	.33333		-1.33333	.50000
	.33333	-2.33333		83333	66667		33333	50000
	1.33333	3.66667		83333	1.33333		-1.33333	50000

d.
$$r = .986$$

19.11. b.

Source	SS	df	MS
Treatments	327.222	5	65.444
$\overline{A \text{ (age)}}$	316.722	2	158.361
B (gender)	5.444	1	5.444
AB interactions	5.056	2	2.528
Error	71.667	30	2.389
Total	398.889	35	

Yes, factor A (age) accounts for most of the total variability.

c. H_0 : all $(\alpha\beta)_{ij}$ equal zero, H_a : not all $(\alpha\beta)_{ij}$ equal zero.

$$F^* = 2.528/2.389 = 1.06, F(.95; 2, 30) = 3.32.$$

If $F^* \leq 3.32$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .36

d. H_0 : all α_i equal zero (i = 1, 2, 3), H_a : not all α_i equal zero.

$$F^* = 158.361/2.389 = 66.29, F(.95; 2, 30) = 3.32.$$

If $F^* \leq 3.32$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

 H_0 : $\beta_1 = \beta_2 = 0$, H_a : not both β_1 and β_2 equal zero.

$$F^* = 5.444/2.389 = 2.28, F(.95; 1, 30) = 4.17.$$

If $F^* \leq 4.17$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .14

- e. $\alpha \leq .143$
- g. SSA = SSTR, SSB + SSAB + SSE = SSE, yes

19.14. a.
$$\bar{Y}_{11.} = 2.475$$
, $\bar{Y}_{12.} = 4.600$, $\bar{Y}_{13.} = 4.575$, $\bar{Y}_{21.} = 5.450$, $\bar{Y}_{22.} = 8.925$, $\bar{Y}_{23.} = 9.125$, $\bar{Y}_{31.} = 5.975$, $\bar{Y}_{32.} = 10.275$, $\bar{Y}_{33.} = 13.250$

b. e_{ijk} :

- d. r = .988
- 19.15. b.

Source	SS	df	MS
Treatments	373.105	8	46.638
A (ingredient 1)	220.020	2	110.010
B (ingredient 2)	123.660	2	61.830
AB interactions	29.425	4	7.356
Error	1.625	27	.0602
Total	374.730	35	

- c. H_0 : all $(\alpha\beta)_{ij}$ equal zero, H_a : not all $(\alpha\beta)_{ij}$ equal zero. $F^* = 7.356/.0602 = 122.19$, F(.95; 4, 27) = 2.73. If $F^* \leq 2.73$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+
- d. H_0 : all α_i equal zero (i=1,2,3), H_a : not all α_i equal zero. $F^*=110.010/.0602=1,827.41$, F(.95;2,27)=3.35. If $F^*\leq 3.35$ conclude H_0 , otherwise H_a . Conclude H_a . P-value =0+

 H_0 : all β_j equal zero (j = 1, 2, 3), H_a : not all β_j equal zero. $F^* = 61.830/.0602 = 1,027.08$, F(.95; 2, 27) = 3.35. If $F^* \leq 3.35$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

- e. $\alpha \leq .143$
- 19.20. a. $\bar{Y}_{11.} = 222.00, \, \bar{Y}_{12.} = 106.50, \, \bar{Y}_{13.} = 60.50, \, \bar{Y}_{21.} = 62.25, \, \bar{Y}_{22.} = 44.75, \, \bar{Y}_{23.} = 38.75$
 - b. e_{ijk} :

i	j = 1	j=2	j = 3	i	j = 1	j=2	j = 3
1	18	3.5	-4.5	2	8.75	2.25	-1.75
	-16	11.5	5		-9.25	7.25	-5.75
	-5	-3.5	7.5		5.75	-13.75	1.25
	3	-11.5	-2.5		-5.25	4.25	6.25

d. r = .994

19.21. b.

Source	SS	df	MS
Treatments	96,024.37500	5	19, 204.87500
A (type)	39, 447.04167	1	39,447.04167
B (years)	36,412.00000	2	18,206.00000
AB interactions	20, 165.33333	2	10,082.66667
Error	1,550.25000	18	86.12500
Total	97, 574.62500	23	

- c. H_0 : all $(\alpha\beta)_{ij}$ equal zero, H_a : not all $(\alpha\beta)_{ij}$ equal zero. $F^* = 10,082.66667/86.12500 = 117.07$, F(.99;2,18) = 6.01. If $F^* \leq 6.01$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+
- d. H_0 : $\alpha_1 = \alpha_2 = 0$, H_a : not both α_1 and α_2 equal zero. $F^* = 39,447.04167/86.12500 = 458.02$, F(.99;1,18) = 8.29. If $F^* \leq 8.29$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

 H_0 : all β_j equal zero $(j=1,2,3), H_a$: not all β_j equal zero. $F^*=18,206.0000/86.12500=211.39, <math>F(.99;2,18)=6.01$. If $F^*\leq 6.01$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

e. $\alpha \leq .030$

19.27. a.
$$B = t(.9975; 75) = 2.8925, q(.95; 5, 75) = 3.96, T = 2.800$$

b.
$$B = t(.99167; 27) = 2.552, q(.95; 3, 27) = 3.51, T = 2.482$$

19.30. a.
$$s\{\bar{Y}_{11.}\} = .631, t(.975; 30) = 2.042, 21.66667 \pm 2.042(.631), 20.378 \le \mu_{11} \le 22.955$$

b.
$$\bar{Y}_{.1.} = 23.94, \, \bar{Y}_{.2.} = 23.17$$

c.
$$\hat{D} = .77, s\{\hat{D}\} = .5152, t(.975; 30) = 2.042, .77 \pm 2.042(.5152), -.282 \le D \le 1.822$$

d.
$$\bar{Y}_{1..} = 21.50, \, \bar{Y}_{2..} = 27.75, \, \bar{Y}_{3..} = 21.42$$

e.
$$\hat{D}_1 = \bar{Y}_{1..} - \bar{Y}_{2..} = -6.25, \, \hat{D}_2 = \bar{Y}_{1..} - \bar{Y}_{3..} = .08, \, \hat{D}_3 = \bar{Y}_{2..} - \bar{Y}_{3..} = 6.33, \, s\{\hat{D}_i\} = .631$$

 $(i = 1, 2, 3), \, q(.90; 3, 30) = 3.02, \, T = 2.1355$

$$-6.25 \pm 2.1355(.631)$$
 $-7.598 \le D_1 \le -4.902$
 $.08 \pm 2.1355(.631)$ $-1.268 \le D_2 \le 1.428$
 $6.33 \pm 2.1355(.631)$ $4.982 \le D_3 \le 7.678$

f. Yes

g.
$$\hat{L} = -6.29$$
, $s\{\hat{L}\} = .5465$, $t(.976; 30) = 2.042$, $-6.29 \pm 2.042(.5465)$, $-7.406 \le L \le -5.174$

h.
$$L = .3\mu_{12} + .6\mu_{22} + .1\mu_{32}, \ \hat{L} = 25.05000, \ s\{\hat{L}\} = .4280, \ t(.975;30) = 2.042, \ 25.05000 \pm 2.042(.4280), \ 24.176 \le L \le 25.924$$

19.32. a.
$$s\{\bar{Y}_{23.}\}=.1227, t(.975;27)=2.052, 9.125\pm2.052(.1227), 8.873\leq\mu_{23}\leq9.377$$

b.
$$\hat{D} = 2.125, s\{\hat{D}\} = .1735, t(.975; 27) = 2.052, 2.125 \pm 2.052(.1735), 1.769 \le D \le 2.481$$

c.
$$\hat{L}_1 = 2.1125$$
, $\hat{L}_2 = 3.5750$, $\hat{L}_3 = 5.7875$, $\hat{L}_4 = 1.4625$, $\hat{L}_5 = 3.6750$, $\hat{L}_6 = 2.2125$, $s\{\hat{L}_i\} = .1502$ $(i = 1, 2, 3)$, $s\{\hat{L}_i\} = .2125$ $(i = 4, 5, 6)$, $F(.90; 8, 27) = 1.90$, $S = 3.899$

$$2.1125 \pm 3.899(.1502) \qquad 1.527 \le L_1 \le 2.698$$

$$3.5750 \pm 3.899(.1502) \qquad 2.989 \le L_2 \le 4.161$$

$$5.7875 \pm 3.899(.1502) \qquad 5.202 \le L_3 \le 6.373$$

$$1.4625 \pm 3.899(.2125) \qquad .634 \le L_4 \le 2.291$$

$$3.6750 \pm 3.899(.2125) \qquad 2.846 \le L_5 \le 4.504$$

$$2.2125 \pm 3.899(.2125) \qquad 1.384 \le L_6 \le 3.041$$

d.
$$s\{\hat{D}_i\} = .1735, q(.90; 9, 27) = 4.31, T = 3.048, Ts\{\hat{D}_i\} = .529, \bar{Y}_{33} = 13.250$$

e.

19.35. a.
$$s\{\bar{Y}_{23.}\} = 4.6402, t(.995; 18) = 2.878,$$

$$38.75 \pm 2.878(4.6402), 25.3955 \le \mu_{23} \le 52.1045$$

b.
$$\hat{D} = 46.00, s\{\hat{D}\} = 6.5622, t(.995; 18) = 2.878,$$

 $46.00 \pm 2.878(6.5622), 27.114 < D < 64.886$

c.
$$F(.95; 5, 18) = 2.77, S = 3.7216, B = t(.99583; 18) = 2.963$$

d.
$$\hat{D}_1 = 159.75$$
, $\hat{D}_2 = 61.75$, $\hat{D}_3 = 21.75$, $\hat{L}_1 = 98.00$, $\hat{L}_2 = 138.00$, $\hat{L}_3 = 40.00$, $s\{\hat{D}_i\} = 6.5622$ $(i = 1, 2, 3)$, $s\{\hat{L}_i\} = 9.2804$ $(i = 1, 2, 3)$, $B = t(.99583; 18) = 2.963$

```
\begin{array}{ll} 159.75 \pm 2.963(6.5622) & 140.31 \leq D_1 \leq 179.19 \\ 61.75 \pm 2.963(6.5622) & 42.31 \leq D_2 \leq 81.19 \\ 21.75 \pm 2.963(6.5622) & 2.31 \leq D_3 \leq 41.19 \\ 98.00 \pm 2.963(9.2804) & 70.50 \leq L_1 \leq 125.50 \\ 138.00 \pm 2.963(9.2804) & 110.50 \leq L_2 \leq 165.50 \\ 40.00 \pm 2.963(9.2804) & 12.50 \leq L_3 \leq 67.50 \end{array}
```

- e. $q(.95;6,18)=4.49, T=3.1749, s\{\hat{D}\}=6.5622, Ts\{\hat{D}\}=20.834, \bar{Y}_{23.}=38.75, \bar{Y}_{22.}=44.75$
- f. $B = t(.9875; 18) = 2.445, s\{\bar{Y}_{ij.}\} = 4.6402$ $44.75 \pm 2.445(4.6402)$ $33.405 \le \mu_{22} \le 56.095$ $38.75 \pm 2.445(4.6402)$ $27.405 \le \mu_{23} \le 50.095$

g.

i	j	$1/\bar{Y}_{ij.}$	$\log_{10} \bar{Y}_{ij.}$
1	1	.00450	2.346
1	2	.00939	2.027
1	3	.01653	1.782
2	1	.01606	1.794
2	2	.02235	1.651
2	3	.02581	1.588

19.38.
$$\Delta/\sigma = 2, 2n = 8, n = 4$$

19.40.
$$.5\sqrt{n}/.29 = 4.1999, n = 6$$

19.42.
$$8\sqrt{n}/9.1 = 3.1591, n = 13$$

TWO-FACTOR STUDIES – ONE CASE PER TREATMENT

20.2. b.

Source	SS	df	MS
Location	37.0050	3	12.3350
Week	47.0450	1	47.0450
Error	.3450	3	.1150
Total	84.3950	7	

 H_0 : all α_i equal zero (i = 1, ..., 4), H_a : not all α_i equal zero.

 $F^* = 12.3350/.1150 = 107.26$, F(.95; 3, 3) = 9.28. If $F^* \le 9.28$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .0015

 H_0 : $\beta_1 = \beta_2 = 0$, H_a : not both β_1 and β_2 equal zero.

 $F^* = 47.0450/.1150 = 409.09$, F(.95; 1, 3) = 10.1. If $F^* \le 10.1$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .0003. $\alpha \le .0975$

c.
$$\hat{D}_1 = \bar{Y}_{1.} - \bar{Y}_{2.} = 18.95 - 14.55 = 4.40, \ \hat{D}_2 = \bar{Y}_{1.} - \bar{Y}_{3.} = 18.95 - 14.60 = 4.35, \ \hat{D}_3 = \bar{Y}_{1.} - \bar{Y}_{4.} = 18.95 - 18.80 = .15, \ \hat{D}_4 = \bar{Y}_{2.} - \bar{Y}_{3.} = -.05, \ \hat{D}_5 = \bar{Y}_{2.} - \bar{Y}_{4.} = -4.25, \ \hat{D}_6 = \bar{Y}_{3.} - \bar{Y}_{4.} = -4.20, \ \hat{D}_7 = \bar{Y}_{.1} - \bar{Y}_{.2} = 14.30 - 19.15 = -4.85, \ s\{\hat{D}_i\} = .3391 \ (i = 1, ..., 6), \ s\{\hat{D}_7\} = .2398, \ B = t(.99286; 3) = 5.139$$

$$\begin{array}{lll} 4.40 \pm 5.139 (.3391) & 2.66 \leq D_1 \leq 6.14 \\ 4.35 \pm 5.139 (.3391) & 2.61 \leq D_2 \leq 6.09 \\ .15 \pm 5.139 (.3391) & -1.59 \leq D_3 \leq 1.89 \\ -.05 \pm 5.139 (.3391) & -1.79 \leq D_4 \leq 1.69 \\ -4.25 \pm 5.139 (.3391) & -5.99 \leq D_5 \leq -2.51 \\ -4.20 \pm 5.139 (.3391) & -5.94 \leq D_6 \leq -2.46 \\ -4.85 \pm 5.139 (.2398) & -6.08 \leq D_7 \leq -3.62 \end{array}$$

20.3. a.
$$\hat{\mu}_{32} = \bar{Y}_{3.} + \bar{Y}_{.2} - \bar{Y}_{..} = 14.600 + 19.150 - 16.725 = 17.025$$

b.
$$s^2\{\hat{\mu}_{32}\} = .071875$$

c.
$$s\{\hat{\mu}_{32}\} = .2681, t(.975; 3) = 3.182, 17.025 \pm 3.182(.2681), 16.172 \le \mu_{32} \le 17.878$$

21.4.
$$\hat{D} = (-4.13473)/(18.5025)(11.76125) = -.019, SSAB^* = .0786, SSRem^* = .2664.$$

 H_0 : $D=0,\ H_a$: $D\neq 0$. $F^*=(.0786/1)\div (.2664/2)=.59,\ F(.975;1,2)=38.5.$ If $F^*\leq 38.5$ conclude H_0 , otherwise H_a . Conclude H_0 .

RANDOMIZED COMPLETE BLOCK DESIGNS

21.5. b. e_{ij} :

d. H_0 : D = 0, H_a : $D \neq 0$. $SSBL.TR^* = .13$, $SSRem^* = 112.20$, $F^* = (.13/1) \div (112.20/17) = .02$, F(.99; 1, 17) = 8.40. If $F^* \leq 8.40$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .89

21.6. a.

Source	SS	df	MS
Blocks	433.36667	9	48.15185
Training methods	1,295.00000	2	647.50000
Error	112.33333	18	6.24074
Total	1,840.70000	29	

- b. $\bar{Y}_{.1} = 70.6, \, \bar{Y}_{.2} = 74.6, \, \bar{Y}_{.3} = 86.1$
- c. H_0 : all τ_j equal zero $(j=1,2,3), H_a$: not all τ_j equal zero. $F^*=647.50000/6.24074=103.754, <math>F(.95;2,18)=3.55$. If $F^*\leq 3.55$ conclude H_0 , otherwise H_a . Conclude H_a . P-value =0+
- d. $\hat{D}_1 = \bar{Y}_{.1} \bar{Y}_{.2} = -4.0, \ \hat{D}_2 = \bar{Y}_{.1} \bar{Y}_{.3} = -15.5, \ \hat{D}_3 = \bar{Y}_{.2} \bar{Y}_{.3} = -11.5,$ $s\{\hat{D}_i\} = 1.1172 \ (i = 1, 2, 3), \ q(.90; 3, 18) = 3.10, \ T = 2.192$

$$-4.0 \pm 2.192(1.1172) \qquad -6.45 \le D_1 \le -1.55$$

$$-15.5 \pm 2.192(1.1172) \qquad -17.95 \le D_2 \le -13.05$$

$$-11.5 \pm 2.192(1.1172) \qquad -13.95 \le D_3 \le -9.05$$

e. H_0 : all ρ_i equal zero (i = 1, ..., 10), H_a : not all ρ_i equal zero. $F^* = 48.15185/6.24074 = 7.716$, F(.95; 9, 18) = 2.46. If $F^* \leq 2.46$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .0001

21.12. b.
$$\bar{Y}_{1..}=7.25, \, \bar{Y}_{2..}=12.75, \, \hat{L}=\bar{Y}_{1..}-\bar{Y}_{2..}=-5.50, \, s\{\hat{L}\}=1.25,$$

$$t(.995;8)=3.355, \, -5.50\pm 3.355(1.25), \, -9.69 \leq L \leq -1.31$$

21.14.
$$\phi = \frac{1}{2.5} \sqrt{\frac{10(18)}{3}} = 3.098, \ \nu_1 = 2, \ \nu_2 = 27, \ 1 - \beta > .99$$

- 21.16. n = 49 blocks
- 21.18. $\hat{E} = 3.084$

ANALYSIS OF COVARIANCE

22.7. a.
$$e_{ij}$$
:

- b. r = .988
- c. $Y_{ij} = \mu_{\cdot} + \tau_{1}I_{ij1} + \tau_{2}I_{ij2} + \gamma x_{ij} + \beta_{1}I_{ij1}x_{ij} + \beta_{2}I_{ij2}x_{ij} + \varepsilon_{ij}$ H_{0} : $\beta_{1} = \beta_{2} = 0$, H_{a} : not both β_{1} and β_{2} equal zero. SSE(F) = .9572, SSE(R) = 1.3175, $F^{*} = (.3603/2) \div (.9572/21) = 3.95$, F(.99; 2, 21) = 5.78.
 - If $F^* \leq 5.78$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .035
- d. Yes, 5
- 22.8. b. Full model: $Y_{ij} = \mu_{\cdot} + \tau_1 I_{ij1} + \tau_2 I_{ij2} + \gamma x_{ij} + \varepsilon_{ij}$, $(\bar{X}_{\cdot \cdot} = 9.4)$. Reduced model: $Y_{ij} = \mu_{\cdot} + \gamma x_{ij} + \varepsilon_{ij}$.
 - c. Full model: $\hat{Y} = 7.80627 + 1.65885I_1 .17431I_2 + 1.11417x$, SSE(F) = 1.3175Reduced model: $\hat{Y} = 7.95185 + .54124x$, SSE(R) = 5.5134 H_0 : $\tau_1 = \tau_2 = 0$, H_a : not both τ_1 and τ_2 equal zero.

 $T_0 = T_1 = T_2 = 0, \quad T_a = 100 \quad \text{for } T_1 \text{ and } T_2 \text{ equal zero.}$

 $F^* = (4.1959/2) \div (1.3175/23) = 36.625, F(.95; 2, 23) = 3.42.$

If $F^* \leq 3.42$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

- d. MSE(F) = .0573, MSE = .6401
- e. $\hat{Y} = \hat{\mu}_{.} + \hat{\tau}_{2} .4\hat{\gamma} = 7.18629$, $s^{2}\{\hat{\mu}_{.}\} = .00258$, $s^{2}\{\hat{\tau}_{2}\} = .00412$, $s^{2}\{\hat{\gamma}\} = .00506$, $s\{\hat{\mu}_{.},\hat{\tau}_{2}\} = -.00045$, $s\{\hat{\tau}_{2},\hat{\gamma}\} = -.00108$, $s\{\hat{\mu}_{.},\hat{\gamma}\} = -.00120$, $s\{\hat{Y}\} = .09183$, t(.975;23) = 2.069, 7.18629 + 2.069(.09183), $6.996 \le \mu_{.} + \tau_{2} .4\gamma \le 7.376$

f.
$$\hat{D}_1 = \hat{\tau}_1 - \hat{\tau}_2 = 1.83316$$
, $\hat{D}_2 = \hat{\tau}_1 - \hat{\tau}_3 = 2\hat{\tau}_1 + \hat{\tau}_2 = 3.14339$, $\hat{D}_3 = \hat{\tau}_2 - \hat{\tau}_3 = 2\hat{\tau}_2 + \hat{\tau}_1 = 1.31023$, $s^2\{\hat{\tau}_1\} = .03759$, $s\{\hat{\tau}_1, \hat{\tau}_2\} = -.00418$, $s\{\hat{D}_1\} = .22376$, $s\{\hat{D}_2\} = .37116$, $s\{\hat{D}_3\} = .19326$, $F(.90; 2, 23) = 2.55$, $S = 2.258$

$$1.83316 \pm 2.258(.22376)$$
 $1.328 \le D_1 \le 2.338$

$$3.14339 \pm 2.258(.37116)$$
 $2.305 \le D_2 \le 3.981$

$$1.31023 \pm 2.258(.19326)$$
 $.874 \le D_3 \le 1.747$

22.15. a. e_{ijk} :

b.
$$r = .974$$

c.
$$Y_{ijk} = \mu_{..} + \alpha_1 I_{ijk1} + \alpha_2 I_{ijk2} + \beta_1 I_{ijk3} + (\alpha \beta)_{11} I_{ijk1} I_{ijk3}$$

 $+(\alpha \beta)_{21} I_{ijk2} I_{ijk3} + \gamma x_{ijk} + \delta_1 I_{ijk1} x_{ijk} + \delta_2 I_{ijk2} x_{ijk}$
 $+\delta_3 I_{ijk3} x_{ijk} + \delta_4 I_{ijk1} I_{ijk3} x_{ijk} + \delta_5 I_{ijk2} I_{ijk3} x_{ijk} + \epsilon_{ijk}$

 H_0 : all δ_i equal zero (i = 1, ..., 5), H_a : not all δ_i equal zero.

$$SSE(R) = 8.2941, SSE(F) = 6.1765,$$

$$F^* = (2.1176/5) \div (6.1765/24) = 1.646, F(.99; 5, 24) = 3.90.$$

If $F^* \leq 3.90$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .19

22.16. a.
$$Y_{ijk} = \mu_{..} + \alpha_1 I_{ijk1} + \alpha_2 I_{ijk2} + \beta_1 I_{ijk3} + (\alpha \beta)_{11} I_{ijk1} I_{ijk3} + (\alpha \beta)_{21} I_{ijk2} I_{ijk3} + \gamma x_{ijk} + \epsilon_{ijk}$$

$$I_{ijk1} = \begin{cases} 1 & \text{if case from level 1 for factor } A \\ -1 & \text{if case from level 3 for factor } A \\ 0 & \text{otherwise} \end{cases}$$

$$I_{ijk2} = \begin{cases} 1 & \text{if case from level 2 for factor } A \\ -1 & \text{if case from level 3 for factor } A \\ 0 & \text{otherwise} \end{cases}$$

$$I_{ijk3} = \left\{ \begin{array}{cc} 1 & \text{if case from level 1 for factor } B \\ -1 & \text{if case from level 2 for factor } B \end{array} \right.$$

$$x_{ijk} = X_{ijk} - \bar{X}_{...}$$
 $(\bar{X}_{...} = 3.4083)$

$$\hat{Y} = 23.55556 - 2.15283I_1 + 3.68152I_2 + .20907I_3 - .06009I_1I_3 - .04615I_2I_3 + 1.06122x$$

$$SSE(F) = 8.2941$$

b. Interactions:

$$Y_{ijk} = \mu_{..} + \alpha_1 I_{ijk1} + \alpha_2 I_{ijk2} + \beta_1 I_{ijk3} + \gamma x_{ijk} + \epsilon_{ijk}$$

$$\hat{Y} = 23.55556 - 2.15400I_1 + 3.67538I_2 + .20692I_3 + 1.07393x$$

$$SSE(R) = 8.4889$$

Factor A:

$$Y_{ijk} = \mu_{..} + \beta_1 I_{ijk3} + (\alpha \beta)_{11} I_{ijk1} I_{ijk3} + (\alpha \beta)_{21} I_{ijk2} I_{ijk3} + \gamma x_{ijk} + \epsilon_{ijk}$$

$$\hat{Y} = 23.55556 + .12982 I_3 + .01136 I_1 I_3 + .06818 I_2 I_3 + 1.52893 x$$

$$SSE(R) = 240.7835$$

Factor B:

$$Y_{ijk} = \mu_{..} + \alpha_1 I_{ijk1} + \alpha_2 I_{ijk2} + (\alpha \beta)_{11} I_{ijk1} I_{ijk3}$$
$$+ (\alpha \beta)_{21} I_{ijk2} I_{ijk3} + \gamma x_{ijk} + \epsilon_{ijk}$$

$$\hat{Y} = 23.55556 - 2.15487I_1 + 3.67076I_2 - .05669I_1I_3 - .04071I_2I_3 + 1.08348x$$

 $SSE(R) = 9.8393$

- c. H_0 : $(\alpha\beta)_{11} = (\alpha\beta)_{21} = 0$, H_a : not both $(\alpha\beta)_{11}$ and $(\alpha\beta)_{21}$ equal zero. $F^* = (.1948/2) \div (8.2941/29) = .341$, F(.95; 2, 29) = 3.33. If $F^* \leq 3.33$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .714
- d. H_0 : $\alpha_1 = \alpha_2 = 0$, H_a : not both α_1 and α_2 equal zero. $F^* = (232.4894/2) \div (8.2941/29) = 406.445, F(.95; 2, 29) = 3.33.$

If $F^* \leq 3.33$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

e. H_0 : $\beta_1 = 0$, H_a : $\beta_1 \neq 0$. $F^* = (1.5452/1) \div (8.2941/29) = 5.403, F(.95; 1, 29) = 4.18.$ If $F^* \leq 4.18$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .027

f.
$$\hat{D}_1 = \hat{\alpha}_1 - \hat{\alpha}_2 = -5.83435$$
, $\hat{D}_2 = \hat{\alpha}_1 - \hat{\alpha}_3 = 2\hat{\alpha}_1 + \hat{\alpha}_2 = -.62414$, $\hat{D}_3 = \hat{\alpha}_2 - \hat{\alpha}_3 = 2\hat{\alpha}_2 + \hat{\alpha}_1 = 5.21021$, $\hat{D}_4 = \hat{\beta}_1 - \hat{\beta}_2 = 2\hat{\beta}_1 = .41814$, $s^2\{\hat{\alpha}_1\} = .01593$, $s^2\{\hat{\alpha}_2\} = .01708$, $s\{\hat{\alpha}_1, \hat{\alpha}_2\} = -.00772$, $s^2\{\hat{\beta}_1\} = .00809$, $s\{\hat{D}_1\} = .22011$, $s\{\hat{D}_2\} = .22343$, $s\{\hat{D}_3\} = .23102$, $s\{\hat{D}_4\} = .17989$, $B = t(.9875; 29) = 2.364$

$$-5.83435 \pm 2.364(.22011) -6.355 \le D_1 \le -5.314$$

$$-.62414 \pm 2.364(.22343) -1.152 \le D_2 \le -.096$$

$$5.21021 \pm 2.364(.23102) 4.664 \le D_3 \le 5.756$$

$$-.007 \le D_4 \le .843$$

22.19. b.
$$Y_{ij} = \mu_{..} + \rho_1 I_{ij1} + \rho_2 I_{ij2} + \rho_3 I_{ij3} + \rho_4 I_{ij4} + \rho_5 I_{ij5} + \rho_6 I_{ij6}$$
$$+ \rho_7 I_{ij7} + \rho_8 I_{ij8} + \rho_9 I_{ij9} + \tau_1 I_{ij10} + \tau_2 I_{ij11} + \gamma x_{ij} + \epsilon_{ij}$$

 $I_{ij1} = \begin{array}{c} 1 \text{ if experimental unit from block 1} \\ -1 \text{ if experimental unit from block 10} \\ 0 \text{ otherwise} \end{array}$

 I_{ij2}, \ldots, I_{ij9} are defined similarly

 $I_{ij10} = \begin{array}{c} 1 \text{ if experimental unit received treatment 1} \\ -1 \text{ if experimental unit received treatment 3} \\ 0 \text{ otherwise} \end{array}$

 $I_{ij11} = \begin{array}{c} 1 \text{ if experimental unit received treatment 2} \\ -1 \text{ if experimental unit received treatment 3} \\ 0 \text{ otherwise} \end{array}$

$$x_{ij} = X_{ij} - \bar{X}_{..}$$
 $(\bar{X}_{..} = 80.033333)$

- c. $\hat{Y} = 77.10000 + 4.87199I_1 + 3.87266I_2 + 2.21201I_3 + 3.22003I_4$ $+1.23474I_5 + .90876I_6 - 1.09124I_7 - 3.74253I_8 - 4.08322I_9$ $-6.50033I_{10} - 2.49993I_{11} + .00201x$ SSE(F) = 112.3327
- d. $Y_{ij} = \mu_{..} + \rho_1 I_{ij1} + \rho_2 I_{ij2} + \rho_3 I_{ij3} + \rho_4 I_{ij4} + \rho_5 I_{ij5} + \rho_6 I_{ij6}$ $+ \rho_7 I_{ij7} + \rho_8 I_{ij8} + \rho_9 I_{ij9} + \gamma x_{ij} + \epsilon_{ij}$ $\hat{Y} = 77.10000 + 6.71567 I_1 + 5.67233 I_2 + 3.61567 I_3 + 4.09567 I_4$ $+1.14233 I_5 + .33233 I_6 - 1.66767 I_7 - 5.33100 I_8 - 5.18767 I_9 - .13000 x$ SSE(R) = 1,404.5167
- e. H_0 : $\tau_1 = \tau_2 = 0$, H_a : not both τ_1 and τ_2 equal zero. $F^* = (1, 292.18/2) \div (112.3327/17) = 97.777$, F(.95; 2, 17) = 3.59. If $F^* \leq 3.59$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+
- f. $\hat{\tau}_1 = -6.50033$, $\hat{\tau}_2 = -2.49993$, $\hat{L} = -4.0004$, $L^2\{\hat{\tau}_1\} = .44162$, $s^2\{\hat{\tau}_2\} = .44056$, $s\{\hat{\tau}_1, \hat{\tau}_2\} = -.22048$, $s\{\hat{L}\} = 1.1503$, t(.975; 17) = 2.11, $-4.0004 \pm 2.11(1.1503)$, $-6.43 \le L \le -1.57$

22.21. a.

Source	SS	df	MS
Between treatments	25.5824	2	12.7912
Error	1.4650	24	.0610
Total	27.0474	26	

b. Covariance: $MSE = .0573, \, \hat{\gamma} = 1.11417$

TWO-FACTOR STUDIES – UNEQUAL SAMPLE SIZES

23.4. a.
$$Y_{ijk} = \mu_{..} + \alpha_1 X_{ijk1} + \alpha_2 X_{ijk2} + \beta_1 X_{ijk3} + \beta_2 X_{ijk4}$$

$$+(\alpha\beta)_{11}X_{ijk1}X_{ijk3} + (\alpha\beta)_{12}X_{ijk1}X_{ijk4}$$

$$+(\alpha\beta)_{21}X_{ijk2}X_{ijk3} + (\alpha\beta)_{22}X_{ijk2}X_{ijk4} + \epsilon_{ijk}$$

$$X_{ijk1} =$$
1 if case from level 1 for factor A
0 otherwise

 $X_{ijk2} = egin{array}{ll} 1 & \text{if case from level 2 for factor } A \\ -1 & \text{if case from level 3 for factor } A \\ 0 & \text{otherwise} \end{array}$

 $X_{ijk3} =$ 1 if case from level 1 for factor B 0 otherwise

 $X_{ijk4} = \begin{array}{c} 1 \text{ if case from level 2 for factor } B \\ -1 \text{ if case from level 3 for factor } B \\ 0 \text{ otherwise} \end{array}$

b. \mathbf{Y} entries: in order $Y_{111},\,...,\,Y_{114},\,Y_{121},\,...,\,Y_{124},\,Y_{131},\,...,\,Y_{134},Y_{211},\,...$

$$\boldsymbol{\beta}$$
 entries: $\mu_{..}$, α_1 , α_2 , β_1 , β_2 , $(\alpha\beta)_{11}$, $(\alpha\beta)_{12}$, $(\alpha\beta)_{21}$, $(\alpha\beta)_{22}$

X entries:

A	B	Freq.		X_1	X_2	X_3	X_4	X_1X_3	X_1X_4	X_2X_3	X_2X_4
1	1	4	1	1	0	1	0	1	0	0	0
1	2	4	1	1	0	0	1	0	1	0	0
1	3	4	1	1	0	-1	-1	-1	-1	0	0
2	1	4	1	0	1	1	0	0	0	1	0
2	2	4	1	0	1	0	1	0	0	0	1
2	3	4	1	0	1	-1	-1	0	0	-1	-1
3	1	4	1	-1	-1	1	0	-1	0	-1	0
3	2	4	1	-1	-1	0	1	0	-1	0	-1
3	3	4	1	-1	-1	-1	-1	1	1	1	1

c. $X\beta$ entries:

d.
$$\hat{Y} = 7.18333 - 3.30000X_1 + .65000X_2 - 2.55000X_3 + .75000X_4 + 1.14167X_1X_3 - .03333X_1X_4 + .16667X_2X_3 + .34167X_2X_4$$
 $\alpha_1 = \mu_{1.} - \mu_{..}$

e.

Source	SS	df
Regression	373.125	8
X_1	212.415	1] A
$X_2 \mid X_1$	7.605	1] A
$X_3 \mid X_1, X_2$	113.535	1] <i>B</i>
$X_4 \mid X_1, X_2, X_3$	10.125	1] <i>B</i>
$X_1X_3 \mid X_1, X_2, X_3, X_4$	26.7806	1] AB
$X_1X_4 \mid X_1, X_2, X_3, X_4, X_1X_3$.2269	1] AB
$X_2X_3 \mid X_1, X_2, X_3, X_4, X_1X_3, X_1X_4$	1.3669	1] AB
$X_2X_4 \mid X_1, X_2, X_3, X_4, X_1X_3, X_1X_4, X_2X_3$	1.0506	1] AB
Error	1.625	27
Total	374.730	35

Yes.

f. See Problem 19.15c and d.

23.6. a.
$$Y_{ijk} = \mu_{..} + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

 $Y_{ijk} = \mu_{..} + \alpha_1 X_{ijk1} + \alpha_2 X_{ijk2} + \beta_1 X_{ijk3} + (\alpha\beta)_{11} X_{ijk1} X_{ijk3}$

$$+(\alpha\beta)_{21}X_{ijk2}X_{ijk3} + \epsilon_{ijk}$$

1 if case from level 1 for factor A

 $X_{ijk1} = -1$ if case from level 3 for factor A 0 otherwise

1 if case from level 2 for factor A

 $X_{ijk2} = -1$ if case from level 3 for factor A 0 otherwise

b. $\boldsymbol{\beta}$ entries: $\mu_{..}, \alpha_1, \alpha_2, \beta_1, (\alpha\beta)_{11}, (\alpha\beta)_{21}$

X entries:

A	B	Freq.		X_1	X_2	X_3	X_1X_3	X_2X_3
1	1	6	1	1	0	1	1	0
1	2	6	1	1	0	-1	-1	0
2	1	5	1	0	1	1	0	1
2	2	6	1	0	1	-1	0	-1
3	1	6	1	-1	-1	1	-1	-1
3	2	5	1	-1	-1	-1	1	1

c. $X\beta$ entries:

- d. $Y_{ijk} = \mu_{..} + \alpha_1 X_{ijk1} + \alpha_2 X_{ijk2} + \beta_1 X_{ijk3} + \epsilon_{ijk}$
- e. Full model:

$$\hat{Y} = 23.56667 - 2.06667X_1 + 4.16667X_2 + .36667X_3 - .20000X_1X_3 - .30000X_2X_3,$$

$$SSE(F) = 71.3333$$

Reduced model:

$$\hat{Y} = 23.59091 - 2.09091X_1 + 4.16911X_2 + .36022X_3,$$

$$SSE(R) = 75.5210$$

 H_0 : $(\alpha\beta)_{11} = (\alpha\beta)_{21} = 0$, H_a : not both $(\alpha\beta)_{11}$ and $(\alpha\beta)_{21}$ equal zero.

$$F^* = (4.1877/2) \div (71.3333/28) = .82, F(.95; 2, 28) = 3.34.$$

If $F^* \leq 3.34$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .45

f. A effects:

$$\hat{Y} = 23.50000 + .17677X_3 - .01010X_1X_3 - .49495X_2X_3,$$

 $SSE(R) = 359.9394$

 H_0 : $\alpha_1 = \alpha_2 = 0$, H_a : not both α_1 and α_2 equal zero.

$$F^* = (288.6061/2) \div (71.3333/28) = 56.64, F(.95; 2, 28) = 3.34.$$

If $F^* \leq 3.34$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

B effects:

 $\hat{Y} = 23.56667 - 2.06667X_1 + 4.13229X_2 - .17708X_1X_3 - .31146X_2X_3,$

SSE(R) = 75.8708

 $H_0: \beta_1 = 0, H_a: \beta_1 \neq 0.$

 $F^* = (4.5375/1) \div (71.3333/28) = 1.78, F(.95; 1, 28) = 4.20.$

If $F^* \leq 4.20$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .19

g. $\hat{D}_1 = \hat{\alpha}_1 - \hat{\alpha}_2 = -6.23334$, $\hat{D}_2 = \hat{\alpha}_1 - \hat{\alpha}_3 = 2\hat{\alpha}_1 + \hat{\alpha}_2 = .03333$, $\hat{D}_3 = \hat{\alpha}_2 - \hat{\alpha}_3 = 2\hat{\alpha}_2 + \hat{\alpha}_1 = 6.26667$, $s^2\{\hat{\alpha}_1\} = .14625$, $s^2\{\hat{\alpha}_2\} = .15333$, $s\{\hat{\alpha}_1, \hat{\alpha}_2\} = -.07313$, $s\{\hat{D}_1\} = .6677$, $s\{\hat{D}_2\} = .6677$, $s\{\hat{D}_3\} = .6834$, q(.90; 3, 28) = 3.026, T = 2.140

$$-6.23334 \pm 2.140(.6677)$$
 $-7.662 \le D_1 \le -4.804$
 $.03333 \pm 2.140(.6677)$ $-1.396 \le D_2 \le 1.462$
 $6.26667 \pm 2.140(.6834)$ $4.804 \le D_3 \le 7.729$

- h. $\hat{L} = .3\bar{Y}_{12.} + .6\bar{Y}_{22.} + .1\bar{Y}_{32.} = .3(21.33333) + .6(27.66667) + .1(20.60000) = 25.06000,$ $s\{\hat{L}\} = .4429, \ t(.975;28) = 2.048, \ 25.06000 \pm 2.048(.4429), \ 24.153 \le L \le 25.967$
- 23.7. a. $Y_{ijk} = \mu_{..} + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk}$

$$Y_{ijk} = \mu_{..} + \alpha_1 X_{ijk1} + \alpha_2 X_{ijk2} + \beta_1 X_{ijk3} + \beta_2 X_{ijk4}$$

$$+ (\alpha \beta)_{11} X_{ijk1} X_{ijk3} + (\alpha \beta)_{12} X_{ijk1} X_{ijk4} + (\alpha \beta)_{21} X_{ijk2} X_{ijk3}$$

$$+ (\alpha \beta)_{22} X_{ijk2} X_{ijk4} + \epsilon_{ijk}$$

1 if case from level 1 for factor A

 $X_{ijk1} = -1$ if case from level 3 for factor A 0 otherwise

1 if case from level 2 for factor A

 $X_{ijk2} = -1$ if case from level 3 for factor A 0 otherwise

1 if case from level 1 for factor B

 $X_{ijk3} = -1$ if case from level 3 for factor B 0 otherwise

1 if case from level 2 for factor B

 $X_{ijk4} = -1$ if case from level 3 for factor B 0 otherwise

b. $\boldsymbol{\beta}$ entries: $\mu_{..}$, α_1 , α_2 , β_1 , β_2 , $(\alpha\beta)_{11}$, $(\alpha\beta)_{12}$, $(\alpha\beta)_{21}$, $(\alpha\beta)_{22}$

X entries:

A	B	Freq.		X_1	X_2	X_3	X_4	X_1X_3	X_1X_4	X_2X_3	X_2X_4
1	1	3	1	1	0	1	0	1	0	0	0
1	2	4	1	1	0	0	1	0	1	0	0
1	3	4	1	1	0	-1	-1	-1	-1	0	0
2	1	4	1	0	1	1	0	0	0	1	0
2	2	2	1	0	1	0	1	0	0	0	1
2	3	4	1	0	1	-1	-1	0	0	-1	-1
3	1	4	1	-1	-1	1	0	-1	0	-1	0
3	2	4	1	-1	-1	0	1	0	-1	0	-1
3	3	4	1	-1	-1	1	-1	1	1	1	1

c. $X\beta$ entries:

d.
$$Y_{ijk} = \mu_{..} + \alpha_1 X_{ijk1} + \alpha_2 X_{ijk2} + \beta_1 X_{ijk3} + \beta_2 X_{ijk4} + \epsilon_{ijk}$$

e. Full model:

$$\hat{Y} = 7.18704 - 3.28426X_1 + .63796X_2 - 2.53426X_3 + .73796X_4$$
$$+1.16481X_1X_3 - .04074X_1X_4 + .15926X_2X_3 + .33704X_2X_4,$$

$$SSE(F) = 1.5767$$

Reduced model:

$$\hat{Y} = 7.12711 - 3.33483X_1 + .62861X_2 - 2.58483X_3 + .72861X_4,$$

 $SSE(R) = 29.6474$

 H_0 : all $(\alpha\beta)_{ij}$ equal zero, H_a : not all $(\alpha\beta)_{ij}$ equal zero.

$$F^* = (28.0707/4) \div (1.5767/24) = 106.82, F(.95; 4, 24) = 2.78.$$

If $F^* \leq 2.78$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

f. $\bar{Y}_{11.}=2.5333, \ \bar{Y}_{12.}=4.6000, \ \bar{Y}_{13.}=4.57500, \ \bar{Y}_{21.}=5.45000, \ \bar{Y}_{22.}=8.90000, \ \bar{Y}_{23.}=9.12500, \ \bar{Y}_{31.}=5.97500, \ \bar{Y}_{32.}=10.27500, \ \bar{Y}_{33.}=13.25000, \ \hat{L}_1=2.0542, \ \hat{L}_2=3.5625, \ \hat{L}_3=5.7875, \ \hat{L}_4=1.5083, \ \hat{L}_5=3.7333, \ \hat{L}_6=2.2250, \ s\{\hat{L}_1\}=.1613, \ s\{\hat{L}_2\}=.1695, \ s\{\hat{L}_3\}=.1570, \ s\{\hat{L}_4\}=.2340, \ s\{\hat{L}_5\}=.2251, \ s\{\hat{L}_6\}=.2310, \ F(.90;8,24)=1.94, \ S=3.9395$

$$\begin{array}{lll} 2.0542 \pm 3.9395 (.1613) & 1.419 \leq L_1 \leq 2.690 \\ 3.5625 \pm 3.9395 (.1695) & 2.895 \leq L_2 \leq 4.230 \\ 5.7875 \pm 3.9395 (.1570) & 5.169 \leq L_3 \leq 6.406 \\ 1.5083 \pm 3.9395 (.2340) & .586 \leq L_4 \leq 2.430 \\ 3.7333 \pm 3.9395 (.2251) & 2.846 \leq L_5 \leq 4.620 \\ 2.2250 \pm 3.9395 (.2310) & 1.315 \leq L_6 \leq 3.135 \end{array}$$

23.12. a. See Problem 19.14a. $\hat{D}_1 = \bar{Y}_{13.} - \bar{Y}_{11.} = 2.100, \ \hat{D}_2 = \bar{Y}_{23.} - \bar{Y}_{21.} = 3.675,$

 $\hat{D}_3 = \bar{Y}_{33.} - \bar{Y}_{31.} = 7.275, \ \hat{L}_1 = \hat{D}_1 - \hat{D}_2 = -1.575, \ \hat{L}_2 = \hat{D}_1 - \hat{D}_3 = -5.175, \ MSE = .06406, \ s\{\hat{D}_i\} = .1790 \ (i = 1, 2, 3), \ s\{\hat{L}_i\} = .2531 \ (i = 1, 2), \ B = t(.99; 24) = 2.492$

$$2.100 \pm 2.492(.1790) \qquad 1.654 \le D_1 \le 2.546$$

$$3.675 \pm 2.492(.1790) \qquad 3.229 \le D_2 \le 4.121$$

$$7.275 \pm 2.492(.1790) \qquad 6.829 \le D_3 \le 7.721$$

$$-1.575 \pm 2.492(.2531) \qquad -2.206 \le L_1 \le -.944$$

$$-5.175 \pm 2.492(.2531) \qquad -5.806 \le L_2 \le -4.544$$

b. H_0 : $\mu_{12} - \mu_{13} = 0$, H_a : $\mu_{12} - \mu_{13} \neq 0$. $\hat{D} = \bar{Y}_{12}$. $-\bar{Y}_{13} = .025$, $s\{\hat{D}\} = .1790$, $t^* = .025/.1790 = .14$, t(.99; 24) = 2.492. If $|t^*| \leq 2.492$ conclude H_0 , otherwise H_a . Conclude H_0 .

 H_0 : $\mu_{32} - \mu_{33} = 0$, H_a : $\mu_{32} - \mu_{33} \neq 0$. $\hat{D} = \bar{Y}_{32}$. $-\bar{Y}_{33} = -2.975$, $s\{\hat{D}\} = .1790$, $t^* = -2.975/.1790 = -16.62$, t(.99; 24) = 2.492. If $|t^*| \leq 2.492$ conclude H_0 , otherwise H_a . Conclude H_a . $\alpha \leq .04$

23.14. a. See Problem 19.20a. $\hat{D}_1 = \bar{Y}_{12.} - \bar{Y}_{13.} = 46.0, \ \hat{D}_2 = \bar{Y}_{22.} - \bar{Y}_{23.} = 6.0,$

 $\hat{L}_1 = \hat{D}_1 - \hat{D}_2 = 40.0, MSE = 88.50, s\{\hat{D}_1\} = s\{\hat{D}_2\} = 6.652, s\{\hat{L}_1\} = 9.407, B = t(.99167; 15) = 2.694$

$$46.0 \pm 2.694(6.652)$$
 $28.080 \le D_1 \le 63.920$
 $6.0 \pm 2.694(6.652)$ $-11.920 \le D_2 \le 23.920$
 $40.0 \pm 2.694(9.407)$ $14.658 \le L_1 \le 65.342$

b. H_0 : $\mu_{22} - \mu_{23} \le 0$, H_a : $\mu_{22} - \mu_{23} > 0$. $\hat{D} = \bar{Y}_{22} - \bar{Y}_{23} = 6.0$, $s\{\hat{D}\} = 6.652$, $t^* = 6.0/6.652 = .90$, t(.95; 15) = 1.753. If $t^* \le 1.753$ conclude H_0 otherwise H_a . Conclude H_0 . P-value = .19

23.16. a.
$$Y_{ij} = \mu_{..} + \rho_1 X_{ij1} + \rho_2 X_{ij2} + \rho_3 X_{ij3} + \rho_4 X_{ij4} + \rho_5 X_{ij5} + \rho_6 X_{ij6} + \rho_7 X_{ij7} + \rho_8 X_{ij8} + \rho_9 X_{ij9} + \tau_1 X_{ij10} + \tau_2 X_{ij11} + \epsilon_{ij}$$

 $X_{ij1} =$ 1 if experimental unit from block 1 $X_{ij1} =$ 0 otherwise

 $X_{ij2}, ..., X_{ij9}$ are defined similarly

 $X_{ij10} = 1$ if experimental unit received treatment 1 0 otherwise

 $X_{ij11} = \begin{array}{c} 1 \text{ if experimental unit received treatment 2} \\ -1 \text{ if experimental unit received treatment 3} \\ 0 \text{ otherwise} \end{array}$

b.
$$\hat{Y} = 77.10000 + 4.90000X_1 + 3.90000X_2 + 2.23333X_3 + 3.23333X_4 + 1.23333X_5 + .90000X_6 - 1.10000X_7 - 3.76667X_8 - 4.10000X_9 - 6.50000X_{10} - 2.50000X_{11}$$

c.

Source	SS	df	MS
Regression	1,728.3667	1	157.1242
$X_1, X_2, X_3, X_4, X_5, X_{6}, X_7, X_{8}, X_9$	433.3667	9	48.1519
$X_{10}, X_{11} X_1, X_2, X_3, X_4, X_5, X_{6}, X_7, X_{8}, X_9$	1,295.0000	2	647.5000
Error	112.3333	18	6.2407
Total	1,840.7000	29	

d. H_0 : $\tau_1 = \tau_2 = 0$, H_a : not both τ_1 and τ_2 equal zero. $F^* = (1, 295.0000/2 \div (112.3333/18) = 103.754, F(.95; 2, 18) = 3.55.$ If $F^* \leq 3.55$ conclude H_0 , otherwise H_a . Conclude H_a .

23.18. a.
$$Y_{ij} = \mu_{..} + \rho_i + \tau_j + \epsilon_{ij}$$

$$Y_{ij} = \mu_{..} + \rho_1 X_{ij1} + \rho_2 X_{ij2} + \rho_3 X_{ij3} + \rho_4 X_{ij4} + \rho_5 X_{ij5} + \rho_6 X_{ij6}$$

$$+ \rho_7 X_{ij7} + \rho_8 X_{ij8} + \rho_9 X_{ij9} + \tau_1 X_{ij10} + \tau_2 X_{ij11} + \epsilon_{ij}$$

$$1 \text{ if experimental unit from block 1}$$

 $X_{ij1} = -1$ if experimental unit from block 10 0 otherwise

 X_{ij2}, \dots, X_{ij9} are defined similarly

 $X_{ij10} = 1$ if experimental unit received treatment 1 0 otherwise

 $X_{ij11} = 1$ if experimental unit received treatment 2 0 otherwise

b.
$$Y_{ij} = \mu_{..} + \rho_1 X_{ij1} + \rho_2 X_{ij2} + \rho_3 X_{ij3} + \rho_4 X_{ij4} + \rho_5 X_{ij5} + \rho_6 X_{ij6}$$

$$+\rho_7 X_{ij7} + \rho_8 X_{ij8} + \rho_9 X_{ij9} + \epsilon_{ij}$$

c. Full model:
$$\hat{Y} = 77.15556 + 4.84444X_1 + 4.40000X_2 + 2.17778X_3 + 3.17778X_4 + 1.17778X_5 + .84444X_6 - 1.15556X_7 - 3.82222X_8 - 4.15556X_9 - 6.55556X_{10} - 2.55556X_{11}$$

$$SSE(F) = 110.6667$$

Reduced model:
$$\hat{Y} = 76.70000 + 5.30000X_1 + .30000X_2 + 2.63333X_3 + 3.63333X_4 + 1.63333X_5 + 1.30000X_6 - .70000X_7 - 3.36667X_8 - 3.70000X_9$$

$$SSE(R) = 1,311.3333$$

 H_0 : $\tau_1 = \tau_2 = 0$, H_a : not both τ_1 and τ_2 equal zero.

$$F^* = (1, 200.6666/2) \div (110.6667/17) = 92.22, F(.95; 2, 17) = 3.59.$$

If $F^* \leq 3.59$ conclude H_0 , otherwise H_a . Conclude H_a .

d.
$$\hat{L} = \hat{\tau}_2 - \hat{\tau}_3 = 2\hat{\tau}_2 + \hat{\tau}_1 = -11.66667, \ s^2\{\hat{\tau}_i\} = .44604 \ (i=1,2), \ s\{\hat{\tau}_1,\hat{\tau}_2\} = -.20494, \ s\{\hat{L}\} = 1.1876, \ t(.975;17) = 2.11,$$

 $-11.66667 \pm 2.11(1.1876), \ -14.17 \le L \le -9.16$

- 23.20. See Problem 19.10a. $L_1 = .3\mu_{11} + .6\mu_{21} + .1\mu_{31}, L_2 = .3\mu_{12} + .6\mu_{22} + .1\mu_{32}.$ H_0 : $L_1 = L_2, H_a$: $L_1 \neq L_2$. $\hat{L}_1 \hat{L}_2 = 25.43332 25.05001 = .38331, MSE = 2.3889, s\{\hat{L}_1 \hat{L}_2\} = .6052,$ $t^* = .38331/.6052 = .63, t(.975; 30) = 2.042.$ If $|t^*| \leq 2.042$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .53
- 23.23. H_0 : $\frac{4\mu_{11}+4\mu_{12}+2\mu_{13}}{10}=\frac{4\mu_{21}+4\mu_{22}+3\mu_{23}}{11}$, H_a : equality does not hold. $\bar{Y}_{...}=93.714$, $\bar{Y}_{1...}=143$, $\bar{Y}_{2...}=48.91$ $SSA=10(143-93.714)^2+11(48.91-93.714)^2=46,372$ $F^*=(46,372/1)\div(1,423.1667/15)=488.8$, F(.99;1,15)=8.68. If $F^*\leq 8.68$ conclude H_0 , otherwise H_a . Conclude H_a . P-value =0+

MULTIFACTOR STUDIES

24.6. a. e_{ijkm} :

b.
$$r = .973$$

24.7. a.
$$\bar{Y}_{111.}=36.1333, \ \bar{Y}_{112.}=56.5000, \ \bar{Y}_{121.}=52.3333, \ \bar{Y}_{122.}=71.9333, \ \bar{Y}_{211.}=46.9000, \ \bar{Y}_{212.}=68.2667, \ \bar{Y}_{221.}=64.1333, \ \bar{Y}_{222.}=83.4667$$

b.

Source	SS	df	MS
Between treatments	4,772.25835	7	681.75119
A (chemical)	788.90667	1	788.90667
B (temperature)	1,539.20167	1	1,539.20167
C (time)	2,440.16667	1	2,440.16667
AB interactions	.24000	1	.24000
AC interactions	.20167	1	.20167
BC interactions	2.94000	1	2.94000
ABC interactions	.60167	1	.60167
Error	53.74000	16	3.35875
Total	4,825.99835	23	

- c. H_0 : all $(\alpha\beta\gamma)_{ijk}$ equal zero, H_a : not all $(\alpha\beta\gamma)_{ijk}$ equal zero. $F^* = .60167/3.35875 = .18$, F(.975; 1, 16) = 6.12. If $F^* \leq 6.12$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .68
- d. H_0 : all $(\alpha\beta)_{ij}$ equal zero, H_a : not all $(\alpha\beta)_{ij}$ equal zero. $F^* = .24000/3.35875 = .07$, F(.975; 1, 16) = 6.12. If $F^* \leq 6.12$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .79

 H_0 : all $(\alpha \gamma)_{ik}$ equal zero, H_a : not all $(\alpha \gamma)_{ik}$ equal zero. $F^* = .20167/3.35875 = .06$, F(.975; 1, 16) = 6.12. If $F^* \leq 6.12$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .81

 H_0 : all $(\beta\gamma)_{jk}$ equal zero, H_a : not all $(\beta\gamma)_{jk}$ equal zero. $F^* = 2.94000/3.35875 = .875$, F(.975; 1, 16) = 6.12. If $F^* \leq 6.12$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .36

e. H_0 : all α_i equal zero (i = 1, 2), H_a : not all α_i equal zero. $F^* = 788.90667/3.35875 = 234.88$, F(.975; 1, 16) = 6.12. If $F^* \leq 6.12$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

 H_0 : all β_j equal zero (j=1,2), H_a : not all β_j equal zero. $F^*=1,539.20167/3.35875=458.27$, F(.975;1,16)=6.12. If $F^*\leq 6.12$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

 H_0 : all γ_k equal zero (k = 1, 2), H_a : not all γ_k equal zero. $F^* = 2,440.1667/3.35875 = 726.51$, F(.975; 1, 16) = 6.12. If $F^* \leq 6.12$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

- f. $\alpha < .1624$
- 24.8. a. $\hat{D}_1 = 65.69167 54.22500 = 11.46667$, $\hat{D}_2 = 67.96667 51.95000 = 16.01667$, $\hat{D}_3 = 70.04167 49.87500 = 20.16667$, MSE = 3.35875, $s\{\hat{D}_i\} = .7482$ (i = 1, 2, 3), B = t(.99167; 16) = 2.673 $11.46667 \pm 2.673(.7482) \quad 9.467 \le D_1 \le 13.467$ $16.01667 \pm 2.673(.7482) \quad 14.017 \le D_2 \le 18.017$ $20.16667 \pm 2.673(.7482) \quad 18.167 \le D_3 \le 22.167$
 - b. $\bar{Y}_{222.} = 83.46667$, $s\{\bar{Y}_{222.}\} = 1.0581$, t(.975; 16) = 2.120, $83.46667 \pm 2.120(1.0581)$, $81.2235 \le \mu_{222} \le 85.7098$
- 24.15. a. $Y_{ijkm} = \mu_{...} + \alpha_1 X_{ijkm1} + \beta_1 X_{ijkm2} + \gamma_1 X_{ijkm3} + (\alpha \beta)_{11} X_{ijkm1} X_{ijkm2} + (\alpha \gamma)_{11} X_{ijkm1} X_{ijkm3} + (\beta \gamma)_{111} X_{ijkm2} X_{ijkm3} + (\alpha \beta \gamma)_{111} X_{ijkm1} X_{ijkm2} X_{ijkm3} + \epsilon_{ijkm}$

$$X_{ijk1} = egin{array}{ccccc} 1 & \mbox{if case from level 1 for factor } A \\ -1 & \mbox{if case from level 2 for factor } A \end{array}$$

$$X_{ijk2} = egin{array}{c} 1 \ \mbox{if case from level 1 for factor } B \ -1 \ \mbox{if case from level 2 for factor } B \end{array}$$

$$X_{ijk3} =$$

$$\begin{array}{c}
1 \text{ if case from level 1 for factor } C \\
-1 \text{ if case from level 2 for factor } C
\end{array}$$

- b. $Y_{ijkm} = \mu_{...} + \beta_1 X_{ijkm2} + \gamma_1 X_{ijkm3} + (\alpha \beta)_{11} X_{ijkm1} X_{ijkm2} + (\alpha \gamma)_{11} X_{ijkm1} X_{ijkm3} + (\beta \gamma)_{11} X_{ijkm2} X_{ijkm3} + (\alpha \beta \gamma)_{111} X_{ijkm1} X_{ijkm2} X_{ijkm3} + \epsilon_{ijkm}$
- c. <u>Full model</u>:

$$\hat{Y} = 60.01667 - 5.67500X_1 - 8.06667X_2 - 10.02500X_3 + .04167X_1X_2 + .15000X_1X_3 - .40833X_2X_3 + .10000X_1X_2X_3,$$

$$SSE(F) = 49.4933$$

Reduced model:

$$\hat{Y} = 61.15167 - 9.20167X_2 - 8.89000X_3 - 1.09333X_1X_2 + 1.28500X_1X_3 - 1.54333X_2X_3 - 1.03500X_1X_2X_3,$$

$$SSE(R) = 667.8413$$

$$H_0: \alpha_1 = 0, H_a: \alpha_1 \neq 0.$$

$$F^* = (618.348/1) \div (49.4933/14) = 174.91, F(.975; 1, 14) = 6.298.$$

If $F^* \leq 6.298$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

d.
$$\hat{D} = \hat{\mu}_{2..} - \hat{\mu}_{1..} = \hat{\alpha}_2 - \hat{\alpha}_1 = -2\hat{\alpha}_1 = 11.35000, \ s^2\{\hat{\alpha}_1\} = .18413, \ s\{\hat{D}\} = .8582, \ t(.975; 14) = 2.145,$$

$$11.35000 \pm 2.145(.8582), 9.509 \le D \le 13.191$$

24.17.
$$\frac{2\sqrt{n}}{1.8} = 4.1475, n = 14$$

RANDOM AND MIXED EFFECTS MODELS

- 25.5. b. H_0 : $\sigma_{\mu}^2 = 0$, H_a : $\sigma_{\mu}^2 > 0$. $F^* = .45787/.03097 = 14.78$, F(.95; 5, 114) = 2.29. If $F^* \le 2.29$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+
 - c. $\bar{Y}_{..} = .22767, n_T = 120, s\{\bar{Y}_{..}\} = .06177, t(.975; 5) = 2.571,$ $.22767 \pm 2.571(.06177), .0689 \le \mu_{.} \le .3865$

25.6. a.
$$F(.025; 5, 114) = .1646, F(.975; 5, 114) = 2.680, L = .22583, U = 4.44098$$

$$.1842 \le \frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2} \le .8162$$

- b. $\chi^2(.025; 114) = 90.351, \, \chi^2(.975; 114) = 145.441, \, .02427 \le \sigma^2 \le .03908$
- c. $s_{\mu}^2 = .02135$
- d. Satterthwaite:

$$df = (ns_{\mu}^{2})^{2} \div [(MSTR)^{2}/(r-1) + (MSE)^{2}/r(n-1)]$$

= $[20(.02135)]^{2} \div [(.45787)^{2}/5 + (.03907)^{2}/6(19)] = 4.35,$

$$\chi^2(.025;4) = .484,\, \chi^2(.975;4) = 11.143$$

$$.0083 = \frac{4.35(.02135)}{11.143} \le \sigma_{\mu}^{2} \le \frac{4.35(.02135)}{.484} = .192$$

$$\begin{split} MLS: \ c_1 &= .05, \ c_2 = -.05, \ MS_1 = .45787, \ MS_2 = .03907, \ df_1 = 5, \ df_2 = 114, \\ F_1 &= F(.975; 5, \infty) = 2.57, \ F_2 = F(.975; 114, \infty) = 1.28, \ F_3 = F(.975; \infty, 5) = \\ 6.02, F_4 &= F(.975; \infty, 114) = 1.32, F_5 = F(.975; 5, 114) = 2.68, F_6 = F(.975; 114, 5) = \\ 6.07, \ G_1 &= .6109, \ G_2 = .2188, \ G_3 = .0147, \ G_4 = -.2076, \ H_L = .014, \ H_U = .115, \\ .02135 - .014, \ .02135 + .115, \ .0074 \leq \sigma_{\mu}^2 \leq .1364 \end{split}$$

- 25.16. a. H_0 : $\sigma_{\alpha\beta}^2 = 0$, H_a : $\sigma_{\alpha\beta}^2 > 0$. $F^* = 303.822/52.011 = 5.84$, F(.99; 4, 36) = 3.89. If $F^* \le 3.89$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .001
 - b. $s_{\alpha\beta}^2 = 50.362$
 - c. H_0 : $\sigma_{\alpha}^2 = 0$, H_a : $\sigma_{\alpha}^2 > 0$. $F^* = 12.289/52.011 = .24$, F(.99; 2, 36) = 5.25. If $F^* \le 5.25$ conclude H_0 , otherwise H_a . Conclude H_0 .

d. H_0 : all β_j equal zero (j = 1, 2, 3), H_a : not all β_j equal zero. $F^* = 14.156/303.822 = .047$, F(.99; 2, 4) = 18.0.

If $F^* \leq 18.0$ conclude H_0 , otherwise H_a . Conclude H_0 .

e. $\bar{Y}_{.1.} = 56.133, \ \bar{Y}_{.2.} = 56.600, \ \bar{Y}_{.3.} = 54.733, \ \hat{D}_{1} = \bar{Y}_{.1.} - \bar{Y}_{.2.} = -.467, \ \hat{D}_{2} = \bar{Y}_{.1.} - \bar{Y}_{.3.} = -1.400, \ \hat{D}_{3} = \bar{Y}_{.2.} - \bar{Y}_{.3.} = 1.867, \ s\{\hat{D}_{i}\} = 6.3647 \ (i = 1, 2, 3), \ q(.95; 3, 4) = 5.04, \ T = 3.5638$

 $-.467 \pm 3.5638(6.3647)$ $-23.150 \le D_1 \le 22.216$ $-1.400 \pm 3.5638(6.3647)$ $-24.083 \le D_2 \le 21.283$ $1.867 \pm 3.5638(6.3647)$ $-20.816 \le D_3 \le 24.550$

- f. $\hat{\mu}_{.1} = 56.1333$, MSA = 12.28889, MSAB = 303.82222, $s^2\{\hat{\mu}_{.1}\} = (2/45)(303.82222) + (1/45)(12.28889) = 13.7763$, $s\{\hat{u}_{.1}\} = 3.712$, $df = (13.7763)^2 \div \{[(2/45)(303.82222)]^2/4 + [(1/45)(12.28889)]^2/2\} = 4.16$, t(.995;4) = 4.60, $56.1333 \pm 4.60(3.712)$, $39.06 \le \mu_{.1} \le 73.21$
- g. $MSA = 12.28889, \ MSE = 52.01111, \ s_{\alpha}^2 = (MSA MSE)/nb = -2.648, \ c_1 = 1/15, \ c_2 = -1/15, \ df_1 = 2, \ df_2 = 36, \ F_1 = F(.995; 2, \infty) = 5.30, \ F_2 = F(.995; 36, \infty) = 1.71, \ F_3 = F(.995; \infty, 2) = 200, \ F_4 = F(.995; \infty, 36) = 2.01, \ F_5 = F(.995; 2, 36) = 6.16, \ F_6 = F(.995; 36, 2) = 199.5, \ G_1 = .8113, \ G_2 = .4152, \ G_3 = .1022, \ G_4 = -35.3895, \ H_L = 3.605, \ H_U = 162.730, -2.648 3.605, \ -2.648 + 162.730, -6.253 \le \sigma_{\alpha}^2 \le 160.082$
- 25.19. a. e_{ij} :

c. H_0 : D = 0, H_a : $D \neq 0$. $SSBL.TR^* = 27.729$, $SSRem^* = 94.521$, $F^* = (27.729/1) \div (94.521/27) = 7.921$, F(.995; 1, 27) = 9.34. If $F^* \leq 9.34$ conclude H_0 , otherwise H_a . Conclude H_0 .

25.20. a.

Source	SS	df	MS
Blocks	4,826.375	7	689.48214
Paint type	531.350	4	132.83750
Error	122.250	28	4.36607
Total	5,479.975	39	

b. H_0 : all τ_j equal zero (j = 1, ..., 5), H_a : not all τ_j equal zero.

 $F^* = 132.83750/4.36607 = 30.425, F(.95; 4, 28) = 2.71.$

If $F^* \leq 2.71$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

- c. $\bar{Y}_{.1} = 20.500, \ \bar{Y}_{.2} = 23.625, \ \bar{Y}_{.3} = 19.000, \ \bar{Y}_{.4} = 29.375, \ \bar{Y}_{.5} = 21.125, \ \hat{L}_{1} = 20.500$ $\hat{Y}_{.1} - \bar{Y}_{.2} = -3.125, \ \hat{L}_2 = \bar{Y}_{.1} - \bar{Y}_{.3} = 1.500, \ \hat{L}_3 = \bar{Y}_{.1} - \bar{Y}_{.4} = -8.875, \ \hat{L}_4 = -8.875$ $\bar{Y}_{.1} - \bar{Y}_{.5} = -.625, \ s\{\hat{L}_i\} = 1.0448 \ (i = 1, ..., 4), \ B = t(.9875; 28) = 2.369$
 - $-5.60 \le L_1 \le -.65$ $-3.125 \pm 2.369(1.0448)$
 - $1.500 \pm 2.369 (1.0448)$ $-.98 < L_2 < 3.98$
 - $-.98 \le L_2 \le 3.98$
 $-11.35 \le L_3 \le -6.40$ $-8.875 \pm 2.369(1.0448)$
 - $-.625 \pm 2.369(1.0448)$ $-3.10 \le L_4 \le 1.85$
- d. $\hat{L} = \frac{1}{3}(\bar{Y}_{.1} + \bar{Y}_{.3} + \bar{Y}_{.5}) \frac{1}{2}(\bar{Y}_{.2} + \bar{Y}_{.4}) = -6.29167, s\{\hat{L}\} = .6744, t(.975; 28) = 2.048,$ $-6.29167 \pm 2.048(.6744), -7.67 \le L \le -4.91$
- 25.23. a. H_0 : $\sigma_{\alpha\beta\gamma}^2 = 0$, H_a : $\sigma_{\alpha\beta\gamma}^2 > 0$. $F^* = MSABC/MSE = 1.49/2.30 = .648$, F(.975; 8, 60) = 2.41. If $F^* \leq 2.41$ conclude H_0 , otherwise H_a . Conclude H_0 .
 - b. H_0 : $\sigma_{\alpha\beta}^2 = 0$, H_a : $\sigma_{\alpha\beta}^2 > 0$. $F^* = MSAB/MSABC = 2.40/1.49 = 1.611$, F(.99;2,8) = 8.65. If $F^* \leq 8.65$ conclude H_0 , otherwise H_a . Conclude H_0 .
 - c. H_0 : $\sigma_{\beta}^2 = 0$, H_a : $\sigma_{\beta}^2 > 0$. $F^{**} = MSB/(MSAB + MSBC MSABC) = 0$ 4.20/(2.40+3.13-1.49) = 1.04, df = 16.32161/5.6067 = 2.91, F(.99;1,3) = 34.1.If $F^{**} \leq 34.1$ conclude H_0 , otherwise H_a . Conclude H_0 .
 - d. $s_{\alpha}^2 = (MSA MSAB MSAC + MSABC)/nbc = .126$ $df = [(8.650/30) - (2.40/30) - (3.96/30) + (1.49/30)]^{2}$

$$\div \left[\frac{(8.65/30)^2}{2} + \frac{(2.40/30)^2}{2} + \frac{(3.96/30)^2}{8} + \frac{(1.49/30)^2}{8} \right] = .336$$

 $\chi^2(.025;1) = .001, \, \chi^2(.975;1) = 5.02$

$$.008 = \frac{.336(.126)}{5.02} \le \sigma_{\alpha}^2 \le \frac{.336(.126)}{.001} = 42.336$$

- 25.26. a. $\hat{\mu}_{..} = 55.593$, $\hat{\beta}_1 = .641$, $\hat{\beta}_2 = .218$, $\hat{\sigma}_{\alpha}^2 = 5.222$, $\hat{\sigma}_{\alpha\beta}^2 = 15.666$, $\hat{\sigma}^2 = 55.265$, no (Note: Unrestricted estimators are same except that variance component for random effect A is zero.)
 - b. Estimates remain the same.
 - c. H_0 : $\sigma_{\alpha\beta}^2 = 0$, H_a : $\sigma_{\alpha\beta}^2 > 0$. z(.99) = 2.326, $s\{\hat{\sigma}_{\alpha\beta}^2\} = 13.333$, $z^* = 15.666/13.333 = 15.666/13.333$ 1.175. If $z^* \leq 2.326$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .12.
 - d. H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$, H_a : not all $\beta_j = 0$ (j = 1, 2, 3). $-2\log_e L(R) = 295.385$, $-2\log_e L(F) = 295.253, X^2 = 295.385 - 295.253 = .132, \chi^2(.99; 2) = 9.21.$ If $X^2 \le 9.21$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .94.
 - $z(.995) = 2.576, 15.666 \pm 2.576(13.333), -18.680 \le \alpha_{\alpha\beta}^2 \le 50.012$

NESTED DESIGNS, SUBSAMPLING, AND PARTIALLY NESTED DESIGNS

26.9. a. e_{ijk} :

		i = 1				i = 2	
k	j=1	j=2	j=3	k	j=1	j=2	j=3
1	1.8	-12.8	-9.6	1	-7.2	-2.6	8.8
2	15.8	8	7.4	2	3.8	-15.6	-8.2
3	-5.2	3.2	16.4	3	-15.2	6.4	-10.2
4	2	-3.8	-14.6	4	7.8	11.4	11.8
5	-12.2	14.2	.4	5	10.8	.4	-2.2

26.10. a.

Source	SS	df	MS
States (A)	6,976.84	2	3,488.422
Cities within states $[B(A)]$	167.60	6	27.933
Error (E)	3,893.20	36	108.144
Total	11,037.64	44	

- b. H_0 : all α_i equal zero (i=1,2,3), H_a : not all α_i equal zero. $F^*=3,488.422/108.144=32.257$, F(.95;2,36)=3.26. If $F^*\leq 3.26$ conclude H_0 , otherwise H_a . Conclude H_a . P-value =0+
- c. H_0 : all $\beta_{j(i)}$ equal zero, H_a : not all $\beta_{j(i)}$ equal zero. $F^* = 27.933/108.144 = .258$, F(.95; 6, 36) = 2.36. If $F^* \leq 2.36$ conclude H_0 , otherwise H_a . Conclude H_0 .

P-value = .95

d.
$$\alpha < .10$$

- 26.11. a. $\bar{Y}_{11.} = 40.2$, $s\{\bar{Y}_{11.}\} = 4.6507$, t(.975; 36) = 2.0281, $40.2 \pm 2.0281(4.6507)$, $30.77 \le \mu_{11} \le 49.63$
 - b. $\bar{Y}_{1..}=40.8667, \ \bar{Y}_{2..}=57.3333, \ \bar{Y}_{3..}=26.8667, \ s\{\bar{Y}_{i..}\}=2.6851 \ (i=1,2,3), \ t(.995;36)=2.7195$

$$40.8667 \pm 2.7195(2.6851)$$
 $33.565 \le \mu_1 \le 48.169$
 $57.3333 \pm 2.7195(2.6851)$ $50.031 \le \mu_2 \le 64.635$
 $26.8667 \pm 2.7195(2.6851)$ $19.565 \le \mu_3 \le 34.169$

c. $\hat{L}_1 = \bar{Y}_{1..} - \bar{Y}_{2..} = -16.4666$, $\hat{L}_2 = \bar{Y}_{1..} - \bar{Y}_{3..} = 14.0000$, $\hat{L}_3 = \bar{Y}_{2..} - \bar{Y}_{3..} = 30.4666$, $s\{\hat{L}_i\} = 3.7973$ (i = 1, 2, 3), q(.90; 3, 36) = 2.998, T = 2.120

$$-16.4666 \pm 2.120(3.7973)$$
 $-24.52 \le L_1 \le -8.42$
 $14.0000 \pm 2.120(3.7973)$ $5.95 \le L_2 \le 22.05$
 $30.4666 \pm 2.120(3.7973)$ $22.42 \le L_3 \le 38.52$

- d. $\hat{L} = 12.4, s\{\hat{L}\} = 6.5771, t(.975; 36) = 2.0281, 12.4 \pm 2.0281(6.5771), -.94 \le L \le 25.74$
- 26.12. a. $\beta_{j(i)}$ are independent $N(0, \sigma_{\beta}^2)$; $\beta_{j(i)}$ are independent of $\epsilon_{k(j)}$.
 - b. $\hat{\sigma}_{\beta}^2 = 0$, yes.
 - c. H_0 : $\sigma_{\beta}^2 = 0$, H_a : $\sigma_{\beta}^2 > 0$. $F^* = 27.933/108.144 = .258$, F(.90; 6, 36) = 1.94. If $F^* \le 1.94$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .95
 - d. H_0 : all α_i equal zero $(i=1,2,3), H_a$: not all α_i equal zero. $F^*=3,488.422/27.933=124.885, <math>F(.90;2,6)=3.46$. If $F^*\leq 3.46$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+
 - e. See Problem 26.11c. $s\{\hat{L}_i\} = 1.9299 \ (i=1,2,3), \ q(.90;3,6) = 3.56, \ T=2.5173$ $-16.4666 \pm 2.5173(1.9299) \qquad -21.32 \le L_1 \le -11.61$ $14.0000 \pm 2.5173(1.9299) \qquad 9.14 \le L_2 \le 18.86$ $30.4666 \pm 2.5173(1.9299) \qquad 25.61 \le L_3 \le 35.32$
 - f. H_0 : all $\sigma^2\{\beta_{j(i)}\}$ are equal (i = 1, 2, 3), H_a : not all $\sigma^2\{\beta_{j(i)}\}$ are equal. $H^* = 37.27/16.07 = 2.32$, H(.95; 3, 2) = 87.5. If $H^* \leq 87.5$ conclude H_0 , otherwise H_a . Conclude H_0 .
- 26.13. a. α_i are independent $N(0, \sigma_{\alpha}^2)$; $\beta_{j(i)}$ are independent $N(0, \sigma_{\beta}^2)$; $\alpha_i, \beta_{j(i)}$, and $\epsilon_{k(ij)}$ are independent.
 - b. $\hat{\sigma}_{\beta}^2 = 0$, $\hat{\sigma}_{\alpha}^2 = 230.699$
 - c. H_0 : $\sigma_{\alpha}^2 = 0$, H_a : $\sigma_{\alpha}^2 > 0$. $F^* = 3,488.422/27.933 = 124.885$, F(.99;2,6) = 10.9. If $F^* \le 10.9$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

- d. $c_1 = 1/15, c_2 = -1/15, MS_1 = 3488.422, MS_2 = 27.933, df_1 = 2, df_2 = 6,$ $F_1 = F(.995; 2, \infty) = 5.30, F_2 = F(.995; 6, \infty) = 3.09, F_3 = F(.995; \infty, 2) = 200,$ $F_4 = F(.995; \infty, 6) = 8.88, F_5 = F(.995; 2, 6) = 14.5, F_6 = F(.995; 6, 2) = 199,$ $G_1 = .8113, G_2 = .6764, G_3 = -1.2574, G_4 = -93.0375, H_L = 187.803, H_U = 46,279.30, 230.699 - 187.803, 230.699 + 46,279.30, 42.90 <math>\leq \sigma_{\alpha}^2 \leq 46,510.00$
- e. $\bar{Y}_{...} = 41.6889$, $s\{\bar{Y}_{...}\} = 8.8046$, t(.995; 2) = 9.925, $41.6889 \pm 9.925(8.8046)$, $-45.70 < \mu_{..} < 129.07$

26.19. e_{ijk} :

		i = 1				i=2	
k	j = 1	j=2	j=3	k	j=1	j=2	j=3
1	4000	.0333	3667	1	.0667	.4333	2000
2	.0000	.3333	.0333	2	2333	.0667	.3000
3	.4000	3667	.3333	3	.1667	3667	1000
		i = 3				i = 4	
k	j = 1	j=2	j=3	k	j=1	j=2	j=3
1	4333	1333	3667	1	0667	3000	.4000
2	.1667	.4667	.3333	2	.4333	.2000	.0000
3	.2667	3333	0667	3	3667	.1000	4000
r =	.972						

26.20. a.

Source	SS	df	MS
Plants	343.1789	3	114.3930
Leaves, within plants	187.4533	8	23.4317
Observations, within leaves	3.0333	24	.1264
Total	533.6655	35	

- b. H_0 : $\sigma_{\tau}^2 = 0$, H_a : $\sigma_{\tau}^2 > 0$. $F^* = 114.3930/23.4317 = 4.88$, F(.95; 3, 8) = 4.07. If $F^* \le 4.07$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .03
- c. H_0 : $\sigma^2 = 0$, H_a : $\sigma^2 > 0$. $F^* = 23.4317/.1264 = 185.38$, F(.95; 8, 24) = 2.36. If $F^* \le 2.36$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+
- d. $\bar{Y}_{...} = 14.26111, \ s\{\bar{Y}_{...}\} = 1.7826, \ t(.975;3) = 3.182,$ $14.26111 \pm 3.182(1.7826), \ 8.59 \leq \mu_{..} \leq 19.93$
- e. $\hat{\sigma}_{\tau}^2 = 10.1068$, $\hat{\sigma}^2 = 7.7684$, $\hat{\sigma}_{\eta}^2 = .1264$
- f. $c_1=1/9=.1111,\ c_2=-1/9=-.1111,\ MS_1=114.3930,\ MS_2=23.4317,\ df_1=3,\ df_2=8,\ F_1=F(.95;3,\infty)=2.60,\ F_2=F(.95;8,\infty)=1.94,\ F_3=F(.95;\infty,3)=8.53,\ F_4=F(.95;\infty,8)=2.93,\ F_5=F(.95;3,8)=4.07,\ F_6=F(.95;8,3)=8.85,\ G_1=.6154,\ G_2=.4845,\ G_3=-.1409,\ G_4=-1.5134,\ H_L=9.042,\ H_U=95.444,\ 10.1068-9.042,\ 10.1068+95.444,\ 1.065\leq\sigma_{\tau}^2\leq105.551$

REPEATED MEASURES AND RELATED DESIGNS

27.6. a. e_{ij} :

r = .992

d. H_0 : $D=0,\ H_a$: $D\neq 0$. $SSTR.S=9.5725,\ SSTR.S^*=2.9410,\ SSRem^*=6.6315,\ F^*=(2.9410/1)\div(6.6315/13)=5.765,\ F(.99;1,13)=9.07.$ If $F^*\leq 9.07$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value =.032

27.7. a.

Source	SS	df	MS
Stores	745.1850	7	106.4550
Prices	67.4808	2	33.7404
Error	9.5725	14	.68375
Total	822.2383	23	

- b. H_0 : all τ_j equal zero $(j=1,2,3), H_a$: not all τ_j equal zero. $F^*=33.7404/.68375=49.346, <math>F(.95;2,14)=3.739.$ If $F^*\leq 3.739$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+
- c. $\bar{Y}_{.1} = 55.4375$, $\bar{Y}_{.2} = 53.6000$, $\bar{Y}_{.3} = 51.3375$, $\hat{L}_{1} = \bar{Y}_{.1} \bar{Y}_{.2} = 1.8375$, $\hat{L}_{2} = \bar{Y}_{.1} \bar{Y}_{.3} = 4.1000$, $\hat{L}_{3} = \bar{Y}_{.2} \bar{Y}_{.3} = 2.2625$, $s\{\hat{L}_{i}\} = .413446$ (i = 1, 2, 3), q(.95; 3, 14) = 3.70, T = 2.616

$$1.8375 \pm 2.616(.413446)$$
 $.756 \le L_1 \le 2.919$
 $4.1000 \pm 2.616(.413446)$ $3.018 \le L_2 \le 5.182$

 $2.2625 \pm 2.616(.413446) \qquad 1.181 \le L_3 \le 3.344$

d.
$$\hat{E} = 48.08$$

27.9. H_0 : all τ_j equal zero (j = 1, 2, 3), H_a : not all τ_j equal zero. MSTR = 8, MSTR.S = 0, $F_R^* = 8/0$. Note: Nonparametric F test results in SSTR.S = 0 and therefore should not be used.

27.13. a. e_{ijk} :

r = .981

27.14. a.
$$H_0$$
: $\sigma^2\{\rho_{i(1)}\} = \sigma^2\{\rho_{i(2)}\}$, H_a : $\sigma^2\{\rho_{i(1)}\} \neq \sigma^2\{\rho_{i(2)}\}$.
 $SSS(A_1) = 1,478,757.00$, $SSS(A_2) = 1,525,262.25$,
 $H^* = (1,525,262.25/3) \div (1,478,757.00/3) = 1.03$, $H(.99;2,3) = 47.5$.
If $H^* \leq 47.5$ conclude H_0 , otherwise H_a . Conclude H_0 .

b.
$$H_0$$
: $\sigma^2\{\epsilon_{1jk}\} = \sigma^2\{\epsilon_{2jk}\}$, H_a : $\sigma^2\{\epsilon_{1jk}\} \neq \sigma^2\{\epsilon_{2jk}\}$.
 $SSB.S(A_1) = 1,653.00$, $SSB.S(A_2) = 2,172.25$,
 $H^* = (2,172.25/9) \div (1,653.00/9) = 1.31$, $H(.99;2,9) = 6.54$.
If $H^* \leq 6.54$ conclude H_0 , otherwise H_a . Conclude H_0 .

27.15. a.

Source	SS	df	MS
\overline{A} (type display)	266, 085.1250	1	266, 085.1250
S(A)	3,004,019.2500	6	500,669.8750
B (time)	53,321.6250	3	17,773.8750
AB interactions	690.6250	3	230.2083
Error	3,825.2500	18	212.5139
Total	3, 327, 941.8750	31	

b.
$$\bar{Y}_{.11}=681.500, \ \bar{Y}_{.12}=696.500, \ \bar{Y}_{.13}=671.500, \ \bar{Y}_{.14}=785.500, \ \bar{Y}_{.21}=508.500, \ \bar{Y}_{.22}=512.250, \ \bar{Y}_{.23}=496.000, \ \bar{Y}_{.24}=588.750$$

c.
$$H_0$$
: all $(\alpha \beta)_{jk}$ equal zero, H_a : not all $(\alpha \beta)_{jk}$ equal zero.
 $F^* = 230.2083/212.5139 = 1.08$, $F(.975; 3, 18) = 3.95$.
If $F^* \leq 3.95$ conclude H_0 , otherwise H_a . Conclude H_0 . P -value = .38

d.
$$H_0$$
: $\alpha_1 = \alpha_2 = 0$, H_a : not both α_j equal zero.
 $F^* = 266,085.1250/500,669.8750 = .53$, $F(.975;1,6) = 8.81$.

If $F^* \leq 8.81$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .49

 H_0 : all β_k equal zero (k = 1, ..., 4), H_a : not all β_k equal zero.

$$F^* = 17,773.8750/212.5139 = 83.636, F(.975;3,18) = 3.95.$$

If $F^* \leq 3.95$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = 0+

e. $\bar{Y}_{.1.} = 708.750$, $\bar{Y}_{.2.} = 526.375$, $\bar{Y}_{..1} = 595.000$, $\bar{Y}_{..2} = 604.375$, $\bar{Y}_{..3} = 583.750$, $\bar{Y}_{..4} = 687.125$, $\hat{L}_1 = 182.375$, $\hat{L}_2 = -9.375$, $\hat{L}_3 = 20.625$, $\hat{L}_4 = -103.375$, $s\{\hat{L}_1\} = 250.1674$, $s\{\hat{L}_i\} = 7.2889$ (i = 2, 3, 4), $B_1 = t(.9875; 6) = 2.969$, $B_i = t(.9875; 18) = 2.445$ (i = 2, 3, 4)

$$182.375 \pm 2.969(250.1674)$$
 $-560.372 \le L_1 \le 925.122$ $-9.375 \pm 2.445(7.2889)$ $-27.196 \le L_2 \le 8.446$ $20.625 \pm 2.445(7.2889)$ $2.804 \le L_3 \le 38.446$ $-103.375 \pm 2.445(7.2889)$ $-121.196 \le L_4 \le -85.554$

27.18. a. e_{ijk} :

	j =	= 1	j =	= 2
i	k = 1	k=2	k=1	k=2
1	045	.045	.045	045
2	120	.120	.120	120
3	.080	080	080	.080
4	045	.045	.045	045
5	.080	080	080	.080
6	.055	055	055	.055
7	.030	030	030	.030
8	045	.045	.045	045
9	.055	055	055	.055
10	045	.045	.045	045
r = .	973			

27.19. a.

Source	SS	df	MS
Subjects	154.579	9	17.175
A	3.025	1	3.025
B	14.449	1	11.449
AB	.001	1	.001
AS	2.035	9	.226
BS	5.061	9	.562
ABS	.169	9	.019
Total	176.319	39	

- b. $\bar{Y}_{.11} = 3.93, \, \bar{Y}_{.12} = 5.01, \, \bar{Y}_{.21} = 4.49, \, \bar{Y}_{.22} = 5.55$
- c. H_0 : all $(\alpha\beta)_{jk}$ equal zero, H_a : not all $(\alpha\beta)_{jk}$ equal zero.

$$F^* = .001/.019 = .05, F(.995; 1, 9) = 13.6.$$

If $F^* \leq 13.6$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .82

d. H_0 : $\alpha_1 = \alpha_2 = 0$, H_a : not both α_j equal zero.

$$F^* = 3.025/.226 = 13.38, F(.995; 1, 9) = 13.6.$$

If $F^* \leq 13.6$ conclude H_0 , otherwise H_a . Conclude H_0 . P-value = .005

$$H_0$$
: $\beta_1 = \beta_2 = 0$, H_a : not both β_k equal zero.

$$F^* = 11.449/.562 = 20.36, F(.995; 1, 9) = 13.6.$$

If $F^* \leq 13.6$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .001

e.
$$\hat{L}_1 = .56$$
, $\hat{L}_2 = 1.08$, $\hat{L}_3 = -.52$, $\hat{L}_4 = 1.62$,

$$s\{\hat{L}_i\} = .0613 \ (i = 1, ..., 4), \ B = t(.99375; 27) = 3.11$$

$$.56 \pm 3.11(.0613)$$
 $.37 \le L_1 \le .75$

$$1.08 \pm 3.11(.0613)$$
 $.89 \le L_2 \le 1.27$

$$-.52 \pm 3.11(.0613)$$
 $-.71 \le L_3 \le -.33$

$$1.62 \pm 3.11(.0613)$$
 $1.43 \le L_4 \le 1.81$

BALANCED INCOMPLETE BLOCK, LATIN SQUARE, AND RELATED DESIGNS

28.8. e_{ij} :

i	j = 1	j = 2	j = 3	j = 4
1	13.2083	8.8333	-22.0417	
2	-7.9167	4.7083		3.2083
3	-5.2917		-1.5417	6.8333
4		-13.5417	23.5833	-10.0417

r = .996

28.9. a.
$$\hat{\mu}_{..} = 297.667$$
, $\hat{\tau}_1 = -45.375$, $\hat{\tau}_2 = -41.000$, $\hat{\tau}_3 = 30.875$, $\hat{\tau}_4 = 55.550$ $\hat{\mu}_{.1} = 252.292$, $\hat{\mu}_{.2} = 256.667$, $\hat{\mu}_{.3} = 328.542$, $\hat{\mu}_{.4} = 353.167$

- b. H_0 : $\tau_1 = \tau_2 = \tau_3 = 0$, H_a : not all τ_j equal zero. SSE(F) = 1750.9, SSE(R) = 22480, $F^* = (20729.1/3) \div (1750.9/5) = 19.73$, F(.95; 3, 5) = 5.41. If $F^* \le 5.41$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .003
- c. H_0 : $\rho_1 = \rho_2 = \rho_3 = 0$, H_a : not all ρ_i equal zero. SSE(F) = 14.519, SSE(R) = 22789, $F^* = (21038.1/3) \div (1750.9/5) = 20.03$, F(.95; 3, 5) = 5.41. If $F^* \le 5.41$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .003
- d. $\hat{\mu}_{.1} = 252.292, \ s^2(\hat{\mu}_{.1}) = s^2(\hat{\mu}_{..}) + s^2(\hat{\tau}_1) = (.08333 + .28125)350.2 = 127.68,$ $B = t(.975; 5) = 2.571, \ 252.292 \pm 2.571(11.30), \ 223.240 \le \mu_{.1} \le 281.344$

e.

95% C.I.	lower	center	upper
$\mu_{.1} - \mu_{.2}$	-64.19	-4.375	55.44
$\mu_{.1} - \mu_{.3}$	-136.07	-76.250	-16.43
$\mu_{.1} - \mu_{.4}$	-160.69	-100.875	-41.06
$\mu_{.2} - \mu_{.3}$	-131.70	-71.87	-12.06
$\mu_{.2} - \mu_{.4}$	-156.30	-96.50	-36.68
$\mu_{.3} - \mu_{.4}$	-84.44	-24.63	35.19

28.10.
$$r = 4$$
, and $r_b = 3$, $df_e = 4n - 4 - 4n/3 + 1 = 8n/3 - 3$.

Since
$$n_p = n(3-1)/(4-1) = 2n/3$$
, $\sigma^2\{\hat{D}_j\} = 2\sigma^2(3)/(4n_p) = 9\sigma^2/(4n)$
 $T\sigma\{\hat{D}_j\} = \frac{1}{\sqrt{2}}q[.95; 4, 8n/3 - 3]\sqrt{\frac{9\sigma^2}{4n}}$

For $\sigma^2 = 2.0$ and $T\sigma\{\hat{D}_j\} \leq 1.5$, so we need to iterate to find n so that $n \geq 2q^2[.95; 4, 8n/3 - 3]$

We iteratively find $n \geq 28$. Since design 2 in Table 28.1 has n = 3, we require that design 2 be repeated 10 times. Thus, n = 30, and $n_b = 40$.

28.14. e_{ijk} :

28.15. a.
$$\bar{Y}_{..1} = 1.725, \, \bar{Y}_{..2} = 1.900, \, \bar{Y}_{..3} = 2.175, \, \bar{Y}_{..4} = 2.425$$

b.

Source	SS	df	MS
Rows (sales volumes)	5.98187	3	1.99396
Columns (locations)	.12188	3	.04062
Treatments (prices)	1.13688	3	.37896
Error	.11875	6	.01979
Total	7.35938	15	

 H_0 : all τ_k equal zero (k=1,...,4), H_a : not all τ_k equal zero. $F^*=.37896/.01979=19.149$, F(.95;3,6)=4.76. If $F^*\leq 4.76$ conclude H_0 , otherwise H_a . Conclude H_a . P-value = .002

c.
$$\hat{L}_1 = \bar{Y}_{..1} - \bar{Y}_{..2} = -.175$$
, $\hat{L}_2 = \bar{Y}_{..1} - \bar{Y}_{..3} = -.450$, $\hat{L}_3 = \bar{Y}_{..1} - \bar{Y}_{..4} = -.700$, $\hat{L}_4 = \bar{Y}_{..2} - \bar{Y}_{..3} = -.275$, $\hat{L}_5 = \bar{Y}_{..2} - \bar{Y}_{..4} = -.525$, $\hat{L}_6 = \bar{Y}_{..3} - \bar{Y}_{..4} = -.250$, $s\{\hat{L}_i\} = .09947$ $(i = 1, ..., 6)$, $q(.90; 4, 6) = 4.07$, $T = 2.8779$

$$\begin{array}{lll} -.175 \pm 2.8779 (.09947) & -.461 \leq L_1 \leq .111 \\ -.450 \pm 2.8779 (.09947) & -.736 \leq L_2 \leq -.164 \\ -.700 \pm 2.8779 (.09947) & -.986 \leq L_3 \leq -.414 \\ -.275 \pm 2.8779 (.09947) & -.561 \leq L_4 \leq .011 \\ -.525 \pm 2.8779 (.09947) & -.811 \leq L_5 \leq -.239 \\ -.250 \pm 2.8779 (.09947) & -.536 \leq L_6 \leq .036 \end{array}$$

28.16. a.
$$\hat{E}_1 = 21.1617, \, \hat{E}_2 = 1.2631, \, \hat{E}_3 = 25.9390$$

28.20.
$$\phi = 3.399, 1 - \beta \cong .99$$

28.24. a.
$$Y_{ijk} = \mu_{...} + \rho_1 X_{ijk1} + \rho_2 X_{ijk2} + \rho_3 X_{ijk3} + \kappa_1 X_{ijk4} + \kappa_2 X_{ijk5} + \kappa_3 X_{ijk6} + \tau_1 X_{ijk7} + \tau_2 X_{ijk8} + \tau_3 X_{ijk9} + \epsilon_{(ijk)}$$

$$X_{ijk1} = \begin{cases} 1 & \text{if experimental unit from row blocking class 1} \\ -1 & \text{if experimental unit from row blocking class 4} \\ 0 & \text{otherwise} \end{cases}$$

 X_{ijk2} and X_{ijk3} are defined similarly

$$X_{ijk4} = \begin{cases} 1 & \text{if experimental unit from column blocking class 1} \\ -1 & \text{if experimental unit from column blocking class 4} \\ 0 & \text{otherwise} \end{cases}$$

 X_{ijk5} and X_{ijk6} are defined similarly

$$X_{ijk7} = \begin{cases} 1 & \text{if experimental unit received treatment 1} \\ -1 & \text{if experimental unit received treatment 4} \\ 0 & \text{otherwise} \end{cases}$$

 X_{ijk8} and X_{ijk9} are defined similarly

b. Full model:

$$\hat{Y} = 2.05625 - .70625X_1 - .45625X_2 + .34375X_3 + .14375X_4 - .05625X_5 - .00625X_6 - .33125X_7 - .15625X_8 + .11875X_9 SSE(F) = .1188$$

Reduced model:

$$\hat{Y} = 2.05625 - .70625X_1 - .45625X_2 + .34375X_3 + .14375X_4 - .05625X_5 - .00625X_6$$

$$SSE(R) = 1.2556$$

 H_0 : all τ_k equal zero (k = 1, 2, 3), H_a : not all τ_k equal zero. $F^* = (1.1368/3) \div (.1188/6) = 19.138$, F(.95; 3, 6) = 4.76. If $F^* \le 4.76$ conclude H_0 , otherwise H_a . Conclude H_a .

c.
$$\hat{L} = \hat{\tau}_3 - (-\hat{\tau}_1 - \hat{\tau}_2 - \hat{\tau}_3) = 2\hat{\tau}_3 + \hat{\tau}_1 + \hat{\tau}_2 = -.250, \ s^2\{\hat{\tau}_i\} = .00371 \ (i = 1, 2, 3), \ s\{\hat{\tau}_1, \hat{\tau}_2\} = s\{\hat{\tau}_1, \hat{\tau}_3\} = s\{\hat{\tau}_2, \hat{\tau}_3\} = -.00124, \ s\{\hat{L}\} = .09930, \ t(.975; 6) = 2.447, \ -.250 \pm 2.447(.09930), \ -.493 \le L \le -.007$$

d. (i) Full model:

$$\hat{Y} = 2.02917 - .67917X_1 - .53750X_2 + .37083X_3 + .17083X_4 - .02917X_5$$
$$-.08750X_6 - .30417X_7 - .23750X_8 + .14583X_9$$
$$SSE(F) = .0483$$

Reduced model:

$$\hat{Y} = 2.05556 - .70556X_1 - .45833X_2 + .34444X_3 + .14444X_4 - .05556X_5 - .00833X_6$$

$$SSE(R) = 1.2556$$

 H_0 : all τ_k equal zero (k = 1, 2, 3), H_a : not all τ_k equal zero. $F^* = (1.2073/3) \div (.0483/5) = 41.66$, F(.95; 3, 5) = 5.41. If $F^* \le 5.41$ conclude H_0 , otherwise H_a . Conclude H_a .

(ii)
$$\hat{L} = \hat{\tau}_1 - \hat{\tau}_2 = -.06667$$
, $s^2\{\hat{\tau}_1\} = .00191$, $s^2\{\hat{\tau}_2\} = .00272$, $s\{\hat{\tau}_1, \hat{\tau}_2\} = -.00091$, $s\{\hat{L}\} = .0803$, $t(.975; 5) = 2.571$, $-.06667 \pm 2.571(.0803)$, $-.273 \le L \le .140$

EXPLORATORY EXPERIMENTS – TWO-LEVEL FACTORIAL AND FRACTIONAL FACTORIAL DESIGNS

- 29.3. a. Six factors, two levels, 64 trials
 - b. No

29.6. a.
$$\sigma^2\{b_1\} = \sigma^2/n_T = 5^2/64 = .391$$
. Yes, yes

b.
$$z(.975) = 1.96, n_T = [1.96(5)/(.5)]^2 = 384.16, 384.16/64 = 6$$
 replicates

29.7. a.
$$Y_i = \beta_0 X_{i0} + \beta_1 X_{i1} + \dots + \beta_5 X_{i5} + \beta_{12} X_{i12} + \dots + \beta_{45} X_{i45} + \beta_{123} X_{i123} + \dots + \beta_{345} X_{i345} + \beta_{1234} X_{i1234} + \dots + \beta_{2345} X_{i2345} + \beta_{12345} X_{i12345} + \epsilon_i$$

Coef.	b_q	Coef.	b_q	Coef.	b_q	Coe	f. b_q
b_0	6.853	b_{14}	239	b_{123}	.070	b_{245}	.076
b_1	1.606	b_{15}	.611	b_{124}	.020	b_{345}	576
b_2	099	b_{23}	134	b_{125}	118	b_{1234}	.062
b_3	1.258	b_{24}	127	b_{134}	378	b_{1235}	.323
b_4	-1.151	b_{25}	045	b_{135}	138	b_{1245}	.357
b_5	-1.338	b_{34}	311	b_{145}	183	b_{1345}	122
b_{12}	033	b_{35}	.912	b_{234}	.233	b_{2345}	292
b_{13}	.455	b_{45}	198	b_{235}	.055	b_{1234}	.043

29.8. a.
$$Y_i = \beta_0 X_{i0} + \beta_1 X_{i1} + \dots + \beta_5 X_{i5} + \beta_{12} X_{i12} + \dots + \beta_{45} X_{i45} + \epsilon_i$$

Coef.	b_q	P-value	Coef.	b_q	P-value
b_0	6.853		b_{14}	239	.340
b_1	1.606	.000	b_{15}	.611	.023
b_2	099	.689	b_{23}	134	.589
b_3	1.258	.000	b_{24}	127	.610
b_4	-1.151	.000	b_{25}	045	.855
b_5	-1.338	.000	b_{34}	311	.219
b_{12}	033	.892	b_{35}	.912	.002
b_{13}	.455	.080	b_{45}	198	.426

- b. H_0 : Normal, H_a : not normal. r = .983. If $r \ge .9656$ conclude H_0 , otherwise H_a . Conclude H_0 .
- c. H_0 : $\beta_q=0$, H_a : $\beta_q\neq0$. $s\{b_q\}=.2432$. If P-value $\geq .0034$ conclude H_0 , otherwise H_a . Active effects (see part a): $\beta_1,\ \beta_3,\ \beta_4,\ \beta_5,\ \beta_{35}$
- 29.15. Defining relation: 0 = 123 = 245 = 1345

Confounding scheme:

Resolution = III, no

- 29.18. a. Defining relation: 0 = 1235 = 2346 = 1247 = 1456 = 3457 = 1367 = 2567, resolution = IV, no
 - b. Omitting four-factor and higher-order interactions:

c.
$$Y_i = \beta_0 X_{i0} + \beta_1 X_{i1} + \dots + \beta_7 X_{i7} + \beta_{12} X_{i12} + \beta_{13} X_{i13} + \beta_{14} X_{i14}$$

$$+\beta_{15}X_{i15} + \beta_{16}X_{i16} + \beta_{17}X_{i17} + \beta_{26}X_{i26} + \epsilon_i$$

Coef.	b_q	Coef.	b_q	Coef.	b_q
b_0	8.028	b_5	.724	b_{14}	316
b_1	.127	b_6	467	b_{15}	.318
b_2	.003	b_7	766	b_{16}	.117
b_3	.021	b_{12}	.354	b_{17}	.021
b_4	-2.077	b_{13}	066	b_{26}	182

e. H_0 : $\beta_{12} = \cdots = \beta_{17} = \beta_{26} = 0$, H_a : not all $\beta_q = 0$. $F^* = (6.046/7) \div (.1958/1) = 4.41$, F(.99;7,1) = 5,928. If $F^* \leq 5,928$ conclude H_0 , otherwise H_a . Conclude H_0 .

29.19. a.

(Coef.	b_q	P-value	Coef.	b_q	P-value
	b_0	8.028		b_4	-2.077	.000
	b_1	.127	.581	b_5	.724	.011
	b_2	.003	.989	b_6	467	.067
	b_3	.021	.928	b_7	766	.008

- b. H_0 : Case *i* not an outlier, H_a : case *i* an outlier (i = 3, 14). $t_3 = 2.70$, $t_{14} = -4.09$, t(.99844; 7) = 4.41. If $|t_i| \le 4.41$ conclude H_0 , otherwise H_a . Conclude H_0 for both cases.
- c. H_0 : Normal, H_a : not normal. r=.938. If $r\geq .929$ conclude H_0 , otherwise H_a . Conclude H_0 .
- d. H_0 : $\beta_q = 0$, H_a : $\beta_q \neq 0$. $s\{b_q\} = .2208$. If P-value $\geq .02$ conclude H_0 , otherwise H_a . Active effects (see part a): β_4 , β_5 , β_7
- e. Set $X_4 = -1$, $X_5 = 1$, $X_7 = -1$ to maximize extraction.
- 29.26. b. The seven block effects are confounded with the following interaction terms: β_{135} , β_{146} , β_{236} , β_{245} , β_{1234} , β_{1256} , β_{3456}

No, no

c.
$$Y_{i} = \beta_{0}X_{i0} + \beta_{1}X_{i1} + \dots + \beta_{6}X_{i6} + \beta_{12}X_{i12} + \dots + \beta_{56}X_{i56} + \beta_{123}X_{i123}$$
$$+ \dots + \beta_{456}X_{i456} + \beta_{1235}X_{i1235} + \dots + \beta_{2456}X_{i2456} + \beta_{12345}X_{i12345}$$
$$+ \dots + \beta_{23456}X_{i23456} + \beta_{123456}X_{i123456} + \alpha_{1}Z_{i1} + \dots + \alpha_{7}Z_{i7} + \epsilon_{i}$$

where $\alpha_1, ..., \alpha_7$ are the block effects

Coef.	b_q	Coef.	b_q	Coef.	b_q	Coef.	b_q
$\overline{b_0}$	63.922	b_{34}	.297	b_{246}	391	b_{2356}	.766
b_1	2.297	b_{35}	.266	b_{256}	.078	b_{2456}	.203
b_2	5.797	b_{36}	.984	b_{345}	672	b_{12345}	297
b_3	2.172	b_{45}	422	b_{346}	.734	b_{12346}	391
b_4	2.359	b_{46}	141	b_{356}	734	b_{12356}	734
b_5	2.828	b_{56}	.516	b_{456}	234	b_{12456}	422
b_6	2.922	b_{123}	.422	b_{1235}	.578	b_{13456}	109
b_{12}	.547	b_{124}	.172	b_{1236}	.922	b_{23456}	.203
b_{13}	266	b_{125}	1.391	b_{1245}	.453	b_{123456}	.016
b_{14}	203	b_{126}	.984	b_{1246}	.109	Block 1	-4.172
b_{15}	797	b_{134}	.297	b_{1345}	797	Block 2	422
b_{16}	141	b_{136}	641	b_{1346}	.547	Block 3	1.203
b_{23}	641	b_{145}	109	b_{1356}	-1.109	Block 4	6.703
b_{24}	-1.141	b_{156}	547	b_{1456}	109	Block 5	797
b_{25}	.891	b_{234}	.234	b_{2345}	.328	Block 6	-1.047
b_{26}	.047	b_{235}	.266	b_{2346}	578	Block 7	-9.547

29.27. a.

Coef.	b_q	P-value	Coef.	b_q	P-value
b_0	63.922		b_{26}	.047	.935
b_1	2.297	.000	b_{34}	.297	.607
b_2	5.797	.000	b_{35}	.266	.645
b_3	2.172	.001	b_{36}	.984	.094
b_4	2.359	.000	b_{45}	422	.466
b_5	2.828	.000	b_{46}	141	.807
b_6	2.922	.000	b_{56}	.516	.373
b_{12}	.547	.346	Block 1	-4.172	.009
b_{13}	266	.645	Block 2	422	.782
b_{14}	203	.725	Block 3	1.203	.432
b_{15}	797	.172	Block 4	6.703	.000
b_{16}	141	.807	Block 5	797	.602
b_{23}	641	.270	Block 6	-1.047	.494
b_{24}	-1.141	.054	Block 7	-9.547	.000
b_{25}	.891	.128			

- b. H_0 : Normal, H_a : not normal. r = .989. If $r \ge .9812$ conclude H_0 , otherwise H_a . Conclude H_0 .
- c. H_0 : $\beta_q = 0$, H_a : $\beta_q \neq 0$. $s\{\hat{\alpha}_i\} = 1.513$ for block effects, $s\{b_q\} = .5719$ for factor effects. If P-value $\geq .01$ conclude H_0 , otherwise H_a . Active effects (see part a): Block effects 1, 4, 7, all main effects
- 29.28. a. See Problem 29.27a for estimated factor and block effects. (These do not change with subset model.)
 - b. Maximum team effectiveness is accomplished by setting each factor at its high level.

c. $\hat{Y}_h = 82.297$, $s\{\text{pred}\} = 4.857$, t(.975; 50) = 2.009, $82.297 \pm 2.009(4.857)$, $72.54 \le Y_{h(new)} \le 92.05$

29.32. a.

b. $\widehat{\log_e s_i^2} = -3.651 + .331X_{i1} + 1.337X_{i2} - .427X_{i3} - .275X_{i4} - .209X_{i12} + .240X_{i13} + .477X_{i14}$.

 X_2 appears to be active.

- c. $\hat{v}_i = .006819$ (for i = 1, 2, 5, 6) $\hat{v}_i = .09887$ (for i = 3, 4, 7, 8)
- d. $\hat{Y}_i = 7.5800 + .0772X_{i1}$
- e. From the location model: $X_1 = +1$; from the dispersion model: $X_2 = -1$
- f. From dispersion model: $\hat{s}^2 = \exp[-3.651 + 1.337(-1)]) = .006819$, and a 97.5% P.I. is $[\exp(-6.16), \exp(-3.82)]$, or (.00211, .0219).
- g. $\widehat{MSE} = .006819 + (8 7.659)^2 = .124$

RESPONSE SURFACE METHODOLOGY

30.11. b.

Coef.	b_q	P-value	Coef.	b_q	P-value
b_0	1.868		b_{13}	038	.471
b_1	.190	.007	b_{23}	062	.251
b_2	.195	.006	b_{11}	.228	.044
b_3	120	.039	b_{22}	047	.602
b_{12}	.162	.020	b_{33}	.028	.757

d. H_0 : $\beta_q = 0$, H_a : $\beta_q \neq 0$. $s\{b_q\} = .0431$ (for linear effects), $s\{b_q\} = .0481$ (for interaction effects), $s\{b_q\} = .0849$ (for quadratic effects). If P-value $\geq .05$ conclude H_0 , otherwise H_a . Active effects (see part b): β_1 , β_2 , β_3 , β_{12} , β_{11}

30.12. a.

Coef.	b_q	Coef.	b_q
b_0	1.860	b_3	120
b_1	.190	b_{12}	.162
b_2	.195	b_{11}	.220

b. H_0 : Normal, H_a : not normal. r = .947. If $r \ge .938$ conclude H_0 , otherwise H_a . Conclude H_0 .

D .	3 f
L)esign	Matrix:
Dongii	MIGULIA.

Design Ma	Design Matrix.		
X_1	X_2		
707	707		
.707	707		
707	.707		
.707	.707		
-1	0		
1	0		
0	-1		
0	1		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		

Corner Points:

$$\begin{array}{c|cc} X_1 & X_2 \\ \hline -.707 & -.707 \\ .707 & -.707 \\ -.707 & .707 \\ .707 & .707 \end{array}$$

b.

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} .125 & 0 & 0 & -.125 & -.125 & 0 \\ 0 & .250 & 0 & 0 & 0 & 0 \\ 0 & 0 & .250 & 0 & 0 & 0 \\ -.125 & 0 & 0 & .5 & 0 & 0 \\ -.125 & 0 & 0 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

30.16. a.

$$\mathbf{b}^* = \begin{bmatrix} -2.077 \\ .724 \end{bmatrix} \qquad s = 2.200$$

b.

$$\begin{array}{c|cccc} t & X_1 & X_2 \\ \hline 1.5 & -1.416 & .494 \\ 2.5 & -2.361 & .823 \\ 3.5 & -3.304 & 1.152 \\ \end{array}$$