

Digital Electronics 203105201

Prof. Mitul M. Patel, Assistant Professor Electronics & Communication Engineering

CHAPTER-3

COMBINATIONAL CIRCUITS

4.1: Introduction to Combinational circuits:

- Combinational circuit is a circuit in which we combine the different gates in the circuit, for example encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of combinational circuits are following:
- The output of combinational circuit at any instant of time depends only on the levels present at input terminals.
- This circuit do not use any memory. The previous state of input does not have any effect on the present state of the circuit.
- It can have an n number of inputs and m number of outputs.

4.2: Design Procedure

- The procedure involves the following steps:
- The problem is stated.
- The number of available input variables and required output variables is determined.
- The input and output variables are assigned letter symbols.
- The truth table that defines the required relationships between inputs and outputs is derived.
- The simplified Boolean function for each output is obtained.
- The logic diagram is drawn.

4.3: Adders

4.3.1: Half Adder:

•The half adder circuit is designed to add two single bit binary number A and B. It is the basic building block for addition of two single bit numbers. This circuit has two outputs carry and sum.

•S =	: A'B	+	AB'
------	-------	---	-----

•C=AB

Inputs		Outputs		
Α	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

4.3.1: Half Adder (Continue..):

- $\bullet S = A'B + AB'$
- •C=AB
- •Based on the above equations, the circuit can be designed as shown here.

4.3.2: Full Adder:

- •Full adder overcomes the drawback of Half Adder circuit.
- •It can add two one-bit numbers A and B, and carry C.
- •The full adder is a three input and two output (Sum and Carry out) combinational circuit.

4.3.2: Full Adder (Continue):

	Inputs	;	Out	puts
А	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4.3.2: Full Adder (Continue):

•From the derived equations, circuit of full adder can be designed as shown in figure.

4.4.1: Half Subtractor:

- •A half-subtractor is a combinational circuit that subtracts two bits and produces their difference.
- •It also has an output to specify if a 1 has been borrowed.

Inputs		Outputs	
Α	В	Sum	Carry
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Imaga sauraa i Caagla

4.4.1: Half Subtractor (Continue..):

- •The simplified expressions for Sum and carry are as follows.
- $\bullet D = A'B + AB'$
- •B=A'B
- •From the derived equations, the circuit of half subtractor can be designed as shown in figure.

4.4.2: Full Subtractor:

- •Full subtractor overcomes the disadvantage of half-subtractor.
- •A full-subtractor performs a subtraction between two bits, taking into account that a 1 may have been borrowed by a lower significant stage.
 - It is a combinational circuit with three inputs A,B,C and two output D and B. A is the 'minuend', B is 'subtrahend', B is the 'borrow' produced by the previous stage, D is the difference output and C' is the borrow output.

4.4.2: Full Subtractor (Continue..):

Inputs			Out	puts
Α	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

4.4.2: Full Subtractor (Continue..):

•From the expressions derived in previous slide, the circuit of full subtractor can be designed as shown here.

4.5: N-Bit Parallel Adder

- To add two n-bit binary numbers we need to use the n-bit parallel adder. It
 uses a number of full adders in cascade. The carry output of the previous full
 adder is connected to carry input of the next full adder.
- 4-bit parallel adder is shown here.

Imaga sauraa i Caagla

4.6: N-Bit Parallel Subtractor

- To subtract one n-bit binary numbers from the other n-bit binary number, we need to use the n-bit parallel subtractor. It uses a number of full adders in cascade. But B is complemented then added to A.
- So, A + Complement of B = A-B
- 4-bit parallel subtractor is shown here.

4.7: Multiplexers

- A digital multiplexer selects binary information from one of many input lines and directs it to a single output line.
- The selection of a particular input line is controlled selection lines.

4.7: Multiplexers (Continue..)

4:1 Multiplexer

- •Truth table and block diagram of 4:1 multiplexer are shown here.
- •From the truth table, the Boolean expression is derived as follows.
- •Y=S1'S0'I0+S1'S0I1+S1S0'I2+S1S0I3

Selection	Selection lines	
S ₁	S ₀	Υ
0	0	I ₀
0	1	l ₁
1	0	l ₂
1	1	l ₃

4.8: De-Multiplexers

- A de-multiplexer performs the reverse operation of a multiplexer i.e. it receives one input and distributes it over several outputs.
- It has only one input, n outputs, m select input.
- De-multiplexer come in multiple variations:
 - 1:2 demultiplexer
 - 1:4 demultiplexer
 - 1:16 demultiplexer
 - 1:32 demultiplexer

4.8: De-Multiplexers

1:4 De-multiplexer

- •1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four outputs Y3, Y2, Y1 & Y0.
- •The block diagram or symbol of multiplexer is as shown here.

4.8: De-Multiplexers (Continue..)

1:4 De-multiplexer (Continue..)

- •From the above Truth table, we can directly write the Boolean functions for each output as
- •Y3=s1s0I
- •Y2=s1s0'l
- •Y1=s1's0I
- •Y0=s1's0'I

Selection Inputs		Outputs			
S ₁	S ₀	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	ı
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

4.8: De-Multiplexers (Continue..)

1:4 De-multiplexer (Continue..)

- Y3=s1s0I
- Y2=s1s0'l
- Y1=s1's0I
- Y0=s1's0'l
- •From the above Boolean functions, we can design the circuit as shown here.

4.9: Decoder

 A decoder is a combinational circuit that has n input and to a maximum m = 2n outputs. Decoder is identical to a de-multiplexer without any data input.

2 to 4 decoder

The block diagram of 2 to 4 decoder is shown here.

4.9: Decoder (Continue..)

2 to 4 decoder (Continue..)

- The truth table of 2 to 4 decoder is shown here.
- •From the truth table, the derived Boolean functions are:
 - Y3=E.A1.A0
 - Y2=E.A1.A0'
 - Y1=E.A1'.A0
 - Y0=E.A1'.A0'

	Enable	Inp	Inputs		Out	puts	
	E	A ₁	\mathbf{A}_{0}	Y ₃	Y ₂	Y ₁	Y ₀
	0	X	Χ	0	0	0	0
	1	0	X	0	0	0	1
ĺ	1	0	1	0	0	1	0
	1	1	0	0	1	0	0
	1	1	1	1	0	0	0

4.9: Decoder (Continue..)

2 to 4 decoder (Continue..)

- •From the derived Boolean functions, the circuit of 2 to 4 decoder can be designed as shown here.
- •Using similar method, 3 to 8 decoder can also be designed.

4.10: Encoder

- An Encoder is a combinational circuit that performs the reverse operation of Decoder.
- It has maximum of 2n input lines and 'n' output lines. It will produce a binary code equivalent to the input, which is active High.

4 to 2 Encoder:

•The 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The block diagram of 4 to 2 Encoder is shown here.

4.10: Encoder (Continue..)

• The truth table of encoder is shown here.

Inputs			Out	puts	
Y ₃	Y ₂	Y ₁	Y ₀	A ₁	A ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

• The Boolean function for each output are as follows:

$$A_1 = Y_3 + Y_2$$

$$A_0 = Y_3 + Y_1$$

4.11: Code-Converters

- The combinational circuits, which convert one code to other code are called as code converters.
- These circuits mainly consist of Logic gates.
- For example,

Binary code to Gray code converter

It is the combinational circuit which is designed to converts a 4-bit binary code B₃B₂B₁B₀ into its equivalent Gray code G₃G₂G₁G₀.

4.11: Code-Converters (Continue..)

Binary code B¸B¸B¸B¸	Gray code G¸G¸G¸G¸
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000

From Truth table, we can design Boolean expression using K-maps.

4.11: Code-Converters (Continue..)

- From the truth table, k-map can be generated.
- From truth table and k-map, the simplified expression output digits are

$$G_0 = B_1'B_0 + B_1B_0' \bigcirc G_0 = B_1 \oplus B_0$$

And G3=B3

B ₁ B ₀	K-map for G ₀						
B ₃ B ₂	00	01	11	10			
00	0	1	0	/I\			
01	0	1	0	1			
11	0	1	0	1			
10	0	1	0	1			

4.11: Code-Converters (Continue..)

 From the above derived Boolean expressions, we can design the combinational circuit using logic gates as follows.

DIGITAL LEARNING CONTENT

Parul[®] University

