变质量动力学

曾凡林

哈尔滨工业大学理论力学教研组

本讲主要内容

- 1、变质量质点的运动微分方程
- 2、变质量动力学在火箭发射中的应用
- 3、变质量质点的动力学普遍定理

1、变质量质点的运动微分方程

1、变质量质点的运动微分方程

t+dt

(1) 变质量质点的运动微分方程

在时刻t,质点的质量为m,速度为v在时刻t+dt,并入速度为 v_1 的微小质量dm

并入后,系统质量变为m+dm,速度变为v+dv

质点系在t 瞬时的动量: $p_1 = mv + dm \cdot v_1$

质点系在t+dt 瞬时的动量: $\mathbf{p}_2 = (m+dm)(\mathbf{v}+d\mathbf{v})$

根据动量定理有: $d\mathbf{p} = \mathbf{p}_2 - \mathbf{p}_1 = \mathbf{F}^{(e)} dt$

 $\implies m d\mathbf{v} + dm \cdot \mathbf{v} + dm \cdot d\mathbf{v} - dm \cdot \mathbf{v}_1 = \mathbf{F}^{(e)} dt$

略去高阶微量 $dm \cdot dv$,并在等式两边同时除以dt, 得: $m \frac{dv}{dt} - \frac{dm}{dt}(v_1 - v) = F^{(e)}$

式中 v_1 - $v=v_r$ 为微小质量在并入前相对于质点m的相对速度,令 $F_{\phi} = \frac{\mathrm{d}m}{\mathrm{d}t}v_r$

则有: $m \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} = \mathbf{F}^{(e)} + \mathbf{F}_{\phi}$ —变质量质点的运动微分方程

方程形式与常质量质点运动微分方程相似,仅在右端多了一项 F_{ϕ} ,它具有力的量纲,常称为反推力。当 $\mathrm{d}m/\mathrm{d}t>0$ 时, F_{ϕ} 与 v_{r} 同向;当 $\mathrm{d}m/\mathrm{d}t<0$ 时, F_{ϕ} 与 v_{r} 反向。

变质量动力学

(2) 常用的几种质量变化规律

i质量按线性规律变化

$$m = m_0(1 - \beta t)$$
 , $\beta t < 1$

由
$$\frac{\mathrm{d}m}{\mathrm{d}t} = -m_0\beta$$
 知,其反推力为: $F_{\phi} = \frac{\mathrm{d}m}{\mathrm{d}t} v_{\mathrm{r}} = -m_0\beta v_{\mathrm{r}}$

当v,为常量时,反推力也为常量,且与v,方向相反。

ii 质量按指数规律变化

$$m = m_0 e^{-\beta t}$$

由
$$\frac{\mathrm{d}m}{\mathrm{d}t} = -\beta m_0 e^{-\beta t}$$
知, 其反推力为: $F_{\phi} = \frac{\mathrm{d}m}{\mathrm{d}t} v_{\mathrm{r}} = -\beta m_0 e^{-\beta t} v_{\mathrm{r}}$

 $\Diamond a_{\phi}$ 表示仅在反推力 F_{ϕ} 作用下变质量质点的加速度,则:

$$\boldsymbol{a}_{\phi} = \frac{\boldsymbol{F}_{\phi}}{m} = \frac{-\beta m_0 e^{-\beta t} \boldsymbol{v}_{r}}{m_0 e^{-\beta t}} = -\beta \boldsymbol{v}_{r}$$

1、变质量质点的运动微分方程

变质量动力学