Algebra Zusammenfassung

Jan Arends

1 Die Menge der ganzen Zahlen

1.1 Die Rechenstruktur \mathbb{Z}

1.2 Teilbarkeit

1.2.1 Division mit Rest

Seien $a \in \mathbb{Z} \wedge b \in \mathbb{N}$:

$$\exists q \in \mathbb{Z} \land \exists r \in \mathbb{N}_0 : a = b \cdot q + r$$

 $\min \, 0 \leq r < b$

Modulo Alternative Schreibweisen:

$$a = r(m) \Leftrightarrow a = m \cdot q + r \Leftrightarrow m|a - r|$$

1.2.2 Division ohne Rest

Ess gilt für $b \neq 0$

$$b|a \Leftrightarrow \exists q \in \mathbb{Z} : a = b \cdot q$$

$$a|b(m) \Leftrightarrow a = m \cdot q + b$$

Korollar 1.2 Seiten $a, b, c, d, x, y \in \mathbb{Z}$:

	Aussage	Bemerkung
a)	0 a nur dann, wenn $a=0$	
b)	a 0	Für $a \in \mathbb{Z}$: $\frac{0}{a} = 0$
c)	1 a und a a	triviale Teiler, $\frac{a}{1} = a, \frac{a}{a} = 1$
d)	$a b \wedge b c \Rightarrow a c$	Transitivität
e)	$a b \wedge c d \Rightarrow ac bd$	
f)	$ca cb \Rightarrow a b$	Kürzungsregel (Für $c \neq 0$)
g)	$a b \wedge a c \Rightarrow a xb + yc$	Linearkombinationsregel
h)	$a b \wedge a b + c \Rightarrow a c$	
i)	$a = bc + d \wedge b a \implies b d$	
j)	$a b,b a \implies a=b \lor a=-b$	
k)	$bc a \implies b a \wedge c a$	

1.2.3 Restklassen

Äquivalenzrelation

1.3 Größter gemeinsamer Teiler

1.3.1 Das Lemma von Bézout - Linearkombination

Seien $a, c \in \mathbb{Z}$. Dann gilt

- $\exists x, y \in \mathbb{Z} : ax + by = (a, b)$
- $(a,b) = 1 \Rightarrow \exists x, y \in \mathbb{Z} : ax + by = 1$

Die Koeffizienten $x,y\in\mathbb{Z}$ erhält man mit dem erweiterten euklidischen Algorithmus.

1.3.2 Berechnung des GGTs

- Euklidischer Algorithmus
- Anhand von Primfaktorzerlegung

Erweiteter euklidischer Algorithmus Zum Berechnen von:

- Linearkombination (s.o.)
- Modularen Inversen

2 Gruppen

Definition 2.2 - Gruppenaxiome Sei A(M,*). Falls G:

$$abgeschlossen \implies algebraischeStruktur \\ assoziativ \implies Halbgruppe \\ Einselement \implies Monoid \\ Inverse \implies Gruppe \\ Kommutativ \implies zusatzabelsch \\ \forall a, b, c \in M : (a*b)*c = a*(b*c) \\ \forall a \in M : a*e = e*a = a \\ \forall a \in M \exists a^{-1} \in M : a*a^{-1} = a^{-1}*a = e \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b \in M \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b \in M \\ \forall a, b \in M : a*b \in M \\ \forall a, b \in M : a*b = b*a \\ \forall a, b \in M : a*b \in M \\ \forall a, b \in M : a*b \in M \\ \forall a, b \in M : a*b = b*a \\ \forall a, b$$

 \mathcal{G} endlich $\Longrightarrow ord_{\mathcal{G}} = |\mathcal{G}|$ die Ordnung von \mathcal{G} (Gruppenordnung). Sei $a \in \mathcal{G}$ und e das Einselement von \mathcal{G} . Dann heißt

$$ord_{\mathcal{G}}(a) = min\{k \in \mathbb{N} | a^k = e\}$$

die Ordnung von a in \mathcal{G} .

2.1 Untergruppen

$$\langle a \rangle = \left\{ a^1, a^2, \dots, a^n \right\}$$

wobei $a^{n+1} = a(m)$. Der einfachhalthalber: Jeweils Vorgänger mit a multiplizieren.

Untergruppenkriterium Sei $\mathcal{G} = (M, *)$ und $U \subseteq M$. Dann ist \mathcal{G}_U eine Untergruppe von \mathcal{G} genau dann. wenn gilt: $a, b, \in \mathcal{G}_U$, dann ist auch

$$a^{-1} * b \in \mathcal{G}_U$$

bzw.

$$a * b^{-1} \in \mathcal{G}_U$$

Zyklische Gruppen Gdw. $\exists a : \langle a \rangle = \mathcal{G}.a$ heißt Generator. Zyklische Gruppen sind abelsch.

2.2 Faktorisierung von Gruppen

Nebenklassen Sei G = (M, *) Gruppe, $U \subseteq M$ und \mathcal{G}_U Untergruppe von G sowieso $a \in G$ Linksnebenklasse:

$$a*G_U$$

Rechtsnebenklasse:

$$G_U * a$$

a heißt Repräsentant der Nebenklasse.

Gilt $\forall a \in \mathcal{G} : a * \mathcal{G}_U = \mathcal{G}_U * a$, dann heißt G_U Normalteiler von \mathcal{G} (automatisch, wenn Operator kommutativ). Außerdem: Nebenklassen sind unabhängig vom Repräsentaten.

Faktorgruppen Sei $\mathcal{G}_{\mathcal{U}}$ Normalteiler von \mathcal{G} . Dann bildet $\mathcal{G}/\mathcal{G}_U$ bzw. $\mathcal{G}/< a > \text{mit}$:

$$(a * \mathcal{G}_U) *_U (b * \mathcal{G}_U) = (a * b) * \mathcal{G}_U$$

die sog. Faktorgruppe.

Am einfachsten dann Verknüpfungstafel aufstellen.

Satz von Lagrange (Ausschnitt)

- Nebenklassen sind entweder identisch oder disjunkt.
- \bullet Die Nebenklassen legen eine Äquivalenzrelation und damit eine Partition auf $\mathcal G$ fest.
- Alle Links- und alle Rechtsnebenklassen haben dieselbe Anzahl an Elementen, nämlich die der Untergruppe.
- Die Ordnungen von Untergruppen sind also immer Teiler der Gruppenordnung.

Funktionen/Abbildungen Total: $\forall_{x \in A} \exists_{y \in B}$

Injektivität: Jedes Element der Zielmenge hat höchstens ein Urbild. Surjektivität: Jedes Element der Zielmenge hat mindestens ein Urbild.

Bijektivität: Abbildung ist total, injektiv und surjektiv

Gruppenhomomorphismus Seien $\mathcal{G}_1 = (M_1, *_1)$ und $\mathcal{G}_2 = (M_2, *_2)$ zwei Gruppen sowie $\varphi : \mathcal{G}_1 \to \mathcal{G}_2$ eine Abbildung. φ heißt (Gruppen-)Homomorphismus von \mathcal{G}_1 nach \mathcal{G}_2 , falls

- φ total ist
- $\forall_{a,b \in \mathcal{G}_1}$ die Strukturgleichung $\varphi(a *_1 b) = \varphi(a) *_2 \varphi(b)$ erfüllt ist.

Isomorphismus falls φ bijektiv, d.h.:

- injektiv
- surjektiv

Schreibweise: $\mathcal{G}_1 \cong \mathcal{G}_2$

Automorphismus Isomorphismus auf sich selbst: $\mathcal{G} \cong \mathcal{G}$

Kerne von Homomorphismen Sei $\varphi : \mathcal{G}_1 \to \mathcal{G}_2$ Homomorphismus. Der Kern von φ enthält alle Elemente von \mathcal{G}_1 , die auf das Einselement von \mathcal{G}_2 abgebildet werden:

$$Kern(\varphi) = \{x \in \mathcal{G}_1 | \varphi(x) = e_2\}$$

 $|Kern(\varphi)| = 1 \Rightarrow \varphi$ ist injektiv.

3 Ringe, Integritätsbereiche und Körper

3.1 Ringe

Die alg. Struktur $R = (M, *_1, *_2)$ heißt Ringe, falls

- $(M, *_1)$ abelsche Gruppe
- $(M, *_2)$ Halbgruppe
- Distributivgesetze erfüllt sind: $\forall_{a,b,c \in M}$:

$$a *_{2} (b *_{1} c) = (a *_{2} b) *_{1} (a *_{2} c)$$

$$(b *_1 c) *_2 a = (b *_2 a) *_1 (c *_2 a)$$

Sonstige Eigenschaften

- $*_2$ kommutative \implies kommutative Ring
- $(M, *_2)$ Monoid \implies Ring mit Einselement

Bsp: $(\mathbb{Z}_m, +, \cdot)$ der ganzen Addition und Multiplikation bildet kommutativen Ring mit Einselement.

 $(M, *_1)$ ein abelsches Monoid und $(M, *_2)$ ein Monoid \implies Semiring

Einheiten

- \mathcal{R} Ring, $a \in \mathcal{R}$ (multiplikativ) invertierbar \implies Einheit.
- \mathcal{R}^* ist die Menge aller Einheiten von \mathcal{R} .
- \mathcal{R} Ring mit Einselement $\implies \mathcal{R}^*$ bildet (multiplikative) Gruppe, die sog. Einheitsgruppe.

Nullteiler Sei \mathcal{R} ein Ring, $a \in \mathcal{R}$ mit $a \neq 0$.

 $\exists_{b \in \mathcal{R}} a \cdot b = 0 \implies \text{Nullteiler in R.}$

Enthält \mathcal{R} keine Nullteiler $\implies \mathcal{R}$ nullteilerfrei.

Bsp: Besitzen Nullteiler: $\mathbb{Z}_4, \mathbb{Z}_6, \mathbb{Z}_8, \mathbb{Z}_{14}$

3.2 Integritätbereich

Ring mit folgenden Eingeschaften:

- kommutativ
- nullteilerfrei

Bsp: $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7$

3.3 Körper

 $\mathcal{A} = (\mathcal{M}, *_1, *_2)$ ist ein Körper, falls:

- $(\mathcal{M}, *_1)$ abelsche Gruppe mit Einselement e_1 ,
- $(\mathcal{M} \{e_1\}, *_2)$ abelsche Gruppe mit Einselement e_2 ,
- Distributivgesetz gilt: $\forall_{a,b,c\in\mathcal{M}}$:

$$a *_{2} (b *_{1} c) = a *_{2} b *_{1} a *_{2} c$$

Alternativ:

Körper Sei $\mathcal{A} = (\mathcal{M}, *_1, *_2)$ ein Ring. Falls

• $(\mathcal{M} - \{e_1\}, *_2)$ abelsche Gruppe

dann ist $\mathcal R$ ein Körper. Beispiele: $(\mathbb Q,+,\cdot),(\mathbb R,+,\cdot)$

Korollar:

Sei K Körper, dann ist $K^* = K - 0$

Jeder Körper ist ein Integritätsbereich \rightarrow nullteilerfrei

3.4 Sätze von Euler und Fermat

Eulersche φ -Funktion

$$\varphi: \mathbb{N} \to \mathbb{N}: \varphi(m) = ord_{\mathbb{Z}_{m}^{*}} = |\mathbb{Z}_{m}^{*}|$$

Korollar 3.7:

- a) Es ist $\varphi(m) = \{a \in \mathbb{Z}_m | (a, m) = 1\}$
- b) Für $p \in \mathbb{P} : \varphi(p) = p 1$

Korollar 3.8: Sei $p \in \mathbb{P}, \alpha \in \mathbb{N}, \alpha \geq 2$, dann gilt $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$

Sei $a=c\cdot b$ und c und b teilerfremd, dann gilt: $\varphi(a)=\varphi(b\cdot c)=\varphi(b)\cdot \varphi(c)$ Weitere Beobachtung: Ergebnis von φ ist immer eine gerade Zahl.

Satz von Euler

$$\forall_{a \in \mathbb{Z}_m^*} : a^{\varphi(m)} = 1(m)$$

Kleiner Satz von Fermat Sei $p \in \mathbb{P}$

$$\forall_{a \in \mathbb{F}_p^*} : a^{p-1} = 1(p)$$

Äquivalent dazu: $a^m = a(m)$ Korollar:

- a) Sei $p \in \mathbb{P}$ und $a \in \mathbb{N} = 1$, dann ist $a^{p-1} = 1(p)$
- b) Sei $n \in \mathbb{N}$ und $a \in \mathbb{N}$ mit (a,b) = 1 und $a^{n-1} \neq 1(n)$, dann ist $n \notin \mathbb{P}$

3.5 Polynome

4 Erweiterung endlicher Körper

. . .

5 Modulare Arithmetik

5.1 Algorithmus, der aus dem Chinesischen Restsatz resultiert

Bedingung: gewählte Module müssen paarweile teilerfremd sein, also $(m_i, m_j) = 1$.

1. Lineares Kongruenzgleichungssystem aufstellen

$$x = a_1(m_1)$$

$$x = a_2(m_2)$$

$$\dots$$

$$x = a_n(m_n)$$

- 2. Produkt $M=m_1\cdot m_2\cdot\ldots\cdot m_n$ der Moduln und $M_i=\frac{M}{m_i}$ berechnen
- 3. Inversen b_i der M_i modulo m_i bestimmen

$$b_1 \cdot M_1 = 1(m_1)$$

$$b_2 \cdot M_1 = 1(m_2)$$

$$\cdots$$

$$b_n \cdot M_n = 1(m_n)$$

4. Gleichung lösen

$$x = a_1 \cdot b_1 \cdot M_1 + a_2 \cdot b_2 \cdot M_2 + \ldots + a_n \cdot b_n \cdot M_n$$

5.2 Modulare Addition und Multiplikation

5.3 Effizientes Protenzieren

 $b^e(m)$

- 1. Exponenten in Binärdarstellung umwandeln. Länge n feststellen
- 2. Faktoren $a_i, 0 \le i < n$ mitels wiederholten Quadrieren berechnen. Alles modulo m

$$a_{0} = b^{2^{0}} = b^{1} = b$$

$$a_{1} = b^{2^{1}} = b^{2} = b \cdot b$$

$$a_{2} = b^{2^{2}} = b^{4} = b^{2} \cdot b^{2}$$

$$a_{3} = b^{2^{3}} = b^{8} = b^{4} \cdot b^{4}$$

$$\vdots$$

$$a_{n} = b^{2^{n}} = b^{\dots} = b^{2^{k-1}} \cdot b^{2^{k-1}}$$

3. Produkt der a_i berechnen, bei denen das i in der Binärdarstellung des Exponenten auf 1 gesetzt sind. Am einfachsten: Schrittweise bei gleichzeitiger Reduktion.

6 Primzahlen und Primzahltests

Pseudoprimzahl Ist $m \in \mathbb{N} - \mathbb{P}$ mit (2, m) = 1 und $2^m = 2(m) \Rightarrow$ Pseudoprimzahl. Anders ausgedrückt also Zahlen, bei denen der Fermat-Test prim? ausgeben würde, es aber keine Primzahlen sind.

Andere Basen auch möglich: Dann pseudoprim zur Basis a.

Carmichael-Zahlen Eine zusammengesetze Zahl $m \in \mathbb{N}$, $m \geq 3$ heißt Carmichel-Zahl \Leftrightarrow für alle Basen a mit (m, a) = 1 der Fermat-Test prim? ausgibt.

Fermat-Test m soll untersucht werden: Wähle (zufällig) $a \in \mathbb{Z}$ mit (a, m) = 1. Gilt:

- $a^{m-1} = 1(m)$ bzw. $a^m = a(m) \Rightarrow Ja \rightarrow prim?$
- ansonsten Nein \rightarrow nicht prim!!

Miller-Rabin Seien $m \in \mathbb{N}$ (die zu untersuchende Zahl).

- Bestimme s und d anhand Zerlegung, sodass gilt $m-1=2^s\cdot d$ gilt mit s als größt möglichen Wert.
- $b \in \mathbb{Z}_m^*$ ist die vorgegebene Basis.
- Ermittel Anzahl Elemente in b-Sequenz und stell ggf. Exponenten auf
- ullet Bilde die b-Sequenzen. Angefangen bei b^d kann man daraufhin immer das Ergebnis quadrieren.
- Letzes Element der b-Sequenzen ist $b^{2^s \cdot d}$

7 Kryptographie

. . .

8 Vektorräume

Anzahl Elemte im Vektorraum über K mit |K| = k und dim(V) = n ist:

$$|\mathcal{V}| = k^n$$

Lin. Unabhängigkeit Verschiedene Möglichkeiten zur Prüfung:

1. Schnellste Lösung:

Man sieht, dass sich ein Vektor aus den anderen erzeugen lässt. Dann lin. unab.

- 2. Falls eine quadratische Matrix erzeugt werden kann und Determinate $\neq 0$, dann lin. unab.
- 3. Prüfe, ob für jede Linearkombination der Vektoren gilt:

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = \vec{0}$$

$$\Leftrightarrow \lambda_1, \lambda_2, \dots + \lambda_n = 0$$

D.h. LGS aufstellen und auflösen.

Erzeugendensystem Menge an Vektoren $\mathcal{U} \subseteq \mathcal{V}$ durch welche jeder Vektor im Raum dargestellt werden kann:

$$Span_{\mathcal{U}} = \mathcal{V}$$

Basis

- Erzeugendensystem mit linear unabhängigen Vektoren
- Lösung für einen Ergebnisvektor ist eindeutig

Standardbasen: Z.b. für $\mathbb{R}^2: \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Dimension Die Anzahl Basisvektoren ist die Dimension des Vektorraums: $dim(\mathcal{V})$

Unterraum $\mathcal{U} \subseteq \mathcal{V}$ Bedingungen:

- $\mathcal{U} \neq 0$
- $\forall a, b \in \mathcal{U} : a + b \in \mathcal{U}$ Abgeschlossen
- $\forall \lambda \in \mathcal{K}, \forall a \in \mathcal{U} : \lambda a \in \mathcal{U}$ Linearkombination wieder im Unterraum

8.1 Lineare Gleichungssysteme und Matrizen

Matrixmultiplikation Die Anzahl an Spalten von A muß mit der Anzahl an Zeilen von B übereinstimmen. Die Matrixmultiplikation ist assoziativ, aber im allgemeinen nicht kommutativ.

Lineare Abbildung falls

Zeilenreduktion Elementaroperationen:

- $\bullet \ C(i,j)$: Vertauschen der Zeilen i und j
- $M(i,\alpha)$ Multiplikation aller Elemente von Zeile i mit dem α -fachen
- $S(i,j,\alpha)$ Addition aller Elemente von Zeile i mit den α -fachen der Elemente der j-ten Zeile

Für eine Matrix in Zeilenstufenform gelten folgende drei Eigenschaften:

- 1. Das erste von Null verschiedene Element einer Zeile ist 1. Dieses Element heißt *Pivot* oder Pivotelement
- 2. Das Pivotelement in Zeile i+1 steht rechts von dem in Zeile i.
- 3. Alle Spaltenelemente oberhalb eines Pivots sind Null.

Rang einer Matrix Die maximale Anzahl linear unabhängiger Zeilen- bzw. Spaltenvektoren einer Matrix.

Invertierbarkein von Matrixen Gdw die Determinate ungleich Null ist.

Gaußsches Eliminationsverfahren Zum Lösem von LGS in Matrixform.

- 1. Erweiterte Koeffizientenmatrix (A|b) aufstellen.
- 2. Zeilenreduktionen anwenden bis Einheitsmatrix eingebaut ist
- 3. Rang bestimmen
- 4. Anhand dessen kann man feststellen, ob LGS
 - keine: rang(A|b) > rang(A) (bedeutet, dass in der b-Spalte steht ein Pivot)
 - eine eindeutige: rang(A|b) = rang(A) = n
 - oder mehrdeutige Lösungen: rang(A|b) = rang(A) < n

hat.

- 5. Dimension feststellen: dim() = n rang(A). Nun weiß man die Anzahl Basisvektoren.
- 6. Wähle allgemeine λ Lösung (?!)