Algorithmische Mathematik II

Dozent PROFESSOR DR. PATRIK FERRARI

Mitschrift Maximilian Kessler

Inhaltsverzeichnis

1	\mathbf{Disl}	krete Stochastik 2
	1.1	Einleitung
	1.2	Ereignisse und Wahrscheinlichkeiten
	1.3	Diskrete Verteilungen
	1.4	Die Gleichverteilung
	1.5	Die empirische Verteilung
	1.6	Zufallsvariablen
		1.6.1 Die Bernoulli-Verteilung
		1.6.2 Die Binomial-Verteilung
		1.6.3 Die Poisson-Verteilung
		1.6.4 Die geometrische Verteilung
	1.7	Simulation von Gleichverteilung
		1.7.1 Lineare Kongruenzgeneratoren (LCG) 21
		1.7.2 Zufallsvariablen aus $[0,1)$
		1.7.3 Zufallspermutationen
		1.7.4 Geometrische Verteilung
	1.8	Erwartungswert und Varianz

Lecture 1: Grundbegriffe

Mo 12 Apr 2021 10:16

- $\bullet\,$ Es gibt ein Helpdesk, auch explizit für Studentinnen
- die Vorlesung wird aufgenommen, und zwar ohne Videos der Teilnehmenden sowie des Dozenten, die Aufzeichnung werden anschließend in Sciebo hochgeladen.
- Es gibt ein Diskussionsforum für Fragen (auf eCampus).
- Ab heute Abend, 18 Uhr (Mo 12 Apr 2021 18:00), kann man sich auf eCampus für die Übungsgruppen registrieren und endet am Dienstag Abend um 24 Uhr (Di 12 Apr 2021 24:00), es wird versucht, die Studenten gleichmäßig zu verteilen.
- Falls ihr in der Warteliste landet und gewünscht ist, in der Gruppe abzugeben, schreibt eine Mail mit den gewünschten Abgabepartner, dann kann eine gemeinse Einteilung erfolgen.

- Es gibt auch das Modul AlmaIIb. Registriert euch noch nicht, dies ist für den 2. Teil der Vorlesung notwendig.
- Die Abgabe der Übungsblätter erfolgt einheitlich jeden Freitag um 12 Uhr.
- Gruppenabgaben sind erlaubt, bis zu einer Größe von maximal 4 Student
Innen.
- Das 1. Blatt ist freiwillig und gibt Bonuspunkte.
- $\bullet\,$ Für die Klausurzulassung werden 50% der Punkte benötigt. Von den Programmieraufgaben müssen mindestens 4 von 6 zufriedenstellend bearbeitet werden.
- Programmieraufgaben gibt es ab dem 2. Übungsblatt auf jedem 2. Blatt.
 Die Bearbeitungszeit beträgt dann 2 Wochen.

Einleitung

In der Vorlesung werden wir sehen:

Teil 1: Diskrete Stochastik • Zufallsvariablen

- Bedingte Wahrscheinlichkeiten
- Unabhängigkeit von Variablen
- Monte-Carlo Methoden

Teil 2: Numerische Analysis • Iterative Verfahren

- Interpolation von Daten (durch Polynome, trigonometrische Funktionen, \dots)
- Numerische Verfahren für die Integration

1 Diskrete Stochastik

1.1 Einleitung

Ziel. Beschreibung von Systemen, die einen Anteil an **Zufall** haben, d.h. nicht 100% deterministisch sind.

Beispiel. • Spiele: Kartenspiele, Glücksspiele, ...

- Statistik: Umfragen, Versicherung
- Komplexe Systeme: Wettermodelle, Finanzmärkte

Was sind Quellen von Zufall?

- Zu komplexe Systeme. Dann sieht der Gesamteffekt zufällig aus.
- Fehlende Informationen (z.B. bei einem Kartenspiel)
- Chaotische Systeme (Wetter

• Intrinsisch unvorhersagbare Systeme (z.B. radioaktiver Zerfall)

Frage. (1) Wie modelliert man ein System mit Zufall?

- (2) Wie simuliert man ein System mit Zufall? (anwendungstechnischer)
- (3) Welche Voraussagen kann man machen?

Beispiel. Die Brown'sche Bewegung. Das System ist implizit ein Pollen mit vielen Wassermolekülen ($\sim 10^{23}$), die sich im Prinzip deterministisch bewegen.

 \Rightarrow Wir erhalten ein Gleichungssystem mit $(N+1)\cdot 6$ (3 Positionen, 3 Geschwindigkeit) Variablen. Dieses ist de facto unlösbar.

Was wollen wir hier eigentlich untersuchen? -> Die Bewegung des Pollens, jedoch nicht die der einzelnen Wassermoleküle.

In einer **Modellierung** ersetzt man die Stöße, die 'durch die Wassermoleküle entstehen durch **zufällige Stöße**.

<u>Diskretes Modell:</u> Die Zeit bewegt sich in $n \in \{0, 1, 2, \ldots\}$. Sei

$$Z(n) := (\text{Position des Pollens zur Zeit } n) \in \mathbb{Z}^3.$$

OBdA setzen wir Z(0) = 0.

<u>Dynamik</u>: $Z(n+1) = Z(n) + \xi_n$, wobei wir ξ_n aus dem Ergebnis eines Würfelwurfs bestimmen werden:

$$\xi_n = \begin{cases} (1,0,0) & \text{wenn W\"{u}rfel} = 1\\ (-1,0,0) & \text{wenn W\"{u}rfel} = 2\\ (0,1,0) & \text{wenn W\"{u}rfel} = 3\\ (0,-1,0) & \text{wenn W\"{u}rfel} = 4\\ (0,0,1) & \text{wenn W\"{u}rfel} = 5\\ (0,0,-1) & \text{wenn W\"{u}rfel} = 6 \end{cases}$$

Frage . Welche Fragen können wir mit solch einem System nun beantworten? Was pasiert, wenn $n \gg 1$.

- (a) Typischerweise erhalten wir $|Z(n)| = O(\sqrt{n})$
- (b) Wenn wir die Frequenz von $[Z(n)]_i$ betrachten, sehen wir typischerweise: (Füge Graph mit grober Binomialverteilung ein) Für $n \gg 1$ sieht diese Verteilung dann ungefähr wie die Gaussglocke aus.

Skalierung: Wir setzen nun

$$B(t) = \lim_{n \to \infty} \frac{Z(\lfloor nt \rfloor)}{\sqrt{n}}.$$

und dies ist dann die Brownsche Bewegung.

Frage. • Ist Z(n) in einer gegebenen Menge A?

- -> Im Allgemeinen kann man das nicht mit 'Ja' oder 'Nein' beantworten.
- Wenn man Z(n) beobachtet, wie häufig wird Z(n) in A sein?
 - -> Diese Frage lässt sich mit einer Zahl $\in [0, 1]$ beantworten.

1.2 Ereignisse und Wahrscheinlichkeiten

Wir benötigen 3 Grundelemente:

- (1) Die Menge Ω von möglichen **Ergebnissen**. die Elemente von Ω heißen auch **Elementarereignisse**.
- (2) Die Menge \mathcal{F} der **Ereignisse**. Ein Ereignis E ist eine Eigenschaft, die an einer Teilmenge von $G \subseteq \Omega$ assoziiert ist: $\omega \in G \Leftrightarrow$ Eigenschaft E ist erfüllt.
- (3) Eine Wahrscheinlichkeitsverteilung (auch W-maß):

$$\mathbb{P}: \mathcal{F} \to [0,1].$$

Bemerkung. Wir werden noch sehen, dass gewisse Dinge für unsere Begriffe erfüllt sein müssen, dazu aber später mehr.

Beispiel. Eine Urne hat 12 nummerierte Kugeln (von 1 bis 12).

(1) Das <u>Zufallsexperiment</u> besteht daraus, dass wir eine Kugel aus der Urne <u>ziehen und die Zahl</u> notieren, die wir sehen. D.h.

$$\Omega = \{1, \ldots, 12\}.$$

Ein Elementarereignis ist nun z.B. gegeben durch $\omega = \{5\} \equiv 5$ (wir vereinfachen die Notation).

(2) Mögliche Ereignisse sind z.B:

$$A =$$
 "Die Zahl ist gerade
$$B =$$
 "Die Zahl ist ≤ 5 (1)
$$C =$$
 "Die Zahl ist 8

Die assoziierten Mengen sind dann

$$A = \{2, 4, 6, 8, 10, 12\}$$

$$B = \{1, 2, 3, 4, 5\}$$

$$C = \{8\}$$
(2)

(3) Für die Wahrscheinlichkeiten nehmen wir an, dass jede Kugel die

gleiche Chance hat, gezogen zu werden, d.h.

$$\forall G \in \mathcal{F} : \mathbb{P}(G) = \frac{|G|}{|\Omega|}.$$

Wir erhalten als

$$\mathbb{P}(A) = \frac{6}{12} = \frac{1}{2}$$
 $\mathbb{P}(B) = \frac{5}{12}$ $\mathbb{P}(C) = \frac{1}{12}$.

Notation. $A \equiv \{\omega \in \Omega \mid \omega \in A\} \equiv \{\omega \in A\} \equiv \{A \text{ tritt ein}\}\$

Lecture 2: Wahrscheinlichkeitsräume

Mi 14 Apr 2021 10:17

Wir kennen nun die Grundbegriffe $\Omega, \mathcal{F}, \mathbb{P}$ zur Beschreibung von Zufallsexperimenten, die wir uns nun genauer ansehen wollen:

Frage . Welche Struktur muss \mathcal{F} besitzen.

Sein $A, B \in \mathcal{F}$, dann können wir das Ereignis $A \cap B$ betrachten, d.h. beide der Eigeschaften treten ein. Genauso sollte

$$A^c := \Omega \backslash A.$$

, das Komplement von A, bzw. das Gegenereignis von A ebenfalls in \mathcal{F} sein. Aus den beiden vorherigen Eigenschaften folgt bereits, dass

$$A \cup = (A^c \cap B^c)^c$$
.

ebenfalls in \mathcal{F} sein wird. Eine Menge \mathcal{F} mit solchen Eigenschaften heißt Algebra, d.h. wir fordern von \mathcal{F} , dass es sich um eine solche Algebra handelt. Seien nun $A, B(A_i)_{i \in I}$ Ereignisse, wobei I endlich oder abzählbar sei. Dann notieren wir folgendermaßen

- (a) $A \cup B : \omega \in A \cup B \Leftrightarrow \omega \in A \vee \omega \in B$, d.h. $A \cup B$ tritt ein, genau dann, wenn A eintritt oder B eintritt
- (b) $\bigcup_{i \in I} A_i$: $\omega \in \bigcup_{i \in I} A_i$, wenn es ein $i \in I$ gibt, sodass $\omega \in A_i$
- (c) $A \cap B$: $\omega \in A \cap B \Leftrightarrow A$ und B treten ein.
- (e) $A = \emptyset$ ist das Ereignis, das <u>nie</u> eintritt. $A = \Omega$ ist das Ereignis, dass immer eintritt.

Definition 1.1. Sei \mathcal{F} eine nicht leere Menge von Teilmengen von Ω mit den Eigenschaften:

- $\begin{array}{l} \text{ (a) } \Omega \in \mathcal{F} \\ \\ \text{ (b) } \forall A \in \mathcal{F} \colon A^c \in \mathcal{F}. \end{array}$

(c) Falls $(A_i)_{i\in I} \in \mathcal{F}$, dann auch $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Dann nennen wir \mathcal{F} eine σ -Algebra und das Paar Ω, \mathcal{F}) einen Messraum.

Lemma 1.2. Sei \mathcal{F} eine σ -Algebra, dann ist:

- (a) $\emptyset \in \mathcal{F}$ (b) $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F} \text{ und } A \cap B \in \mathcal{F}.$ (c) $(A_i)_{i \in I} \in \mathcal{F} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}.$

Beweis. (a) $\emptyset = \Omega^c \in \mathcal{F}$ nach Eigenschaften (a) und (b) aus der Definition.

- (b) $A \cup B = A \cup B \cup \emptyset \cup \emptyset \dots \in \mathcal{F}$ nach Eigenschaften (b) und (c). $A \cap B = (A^c \cup B^c)^c \in \mathcal{F}$
- $(c) \bigcap_{i=1}^{\infty} A_i = \left(\bigcup_{i=1}^{\infty} A_i^c\right)^c \in \mathcal{F} \text{ nach } (b) \text{ und } (c).$

Wir haben nun (Ω, \mathcal{F}) näher untersucht, es fehlt nun noch \mathbb{P} . Seien $A, B \in \mathcal{F}$ mit $A \cap B = \emptyset$, d.h. A und B können nicht gleichzeitig eintreten. Dann fordern wir

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) \quad \text{(endliche Additivit"at)}.$$

Dazu wollen wir, dass $\Omega \in \mathcal{F}$ immer eintritt, d.h. $\mathbb{P}(\Omega) = 1 \equiv 100\%$ (Normierung).

Definition 1.3. Sei (Ω, \mathcal{F}) ein Messraum. Eine Abbildung $\mathbb{P}: \mathcal{F} \to \mathbb{R}_+$ ist eine Wahrscheinlichkeitsverteilung auf (Ω, \mathcal{F}) , falls

- (1) $\mathbb{P}(\Omega) = 1$ (2) $(A_i)_{i \in I} \in \mathcal{F}$ mit $A_i \cap A_j = \emptyset$ für $i \neq j$, dann ist:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_{i})\quad(\sigma\text{-Additivit"at}).$$

Definition 1.4. Ein Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ besteht aus einer Menge Ω , einer σ -Algebra $F \subseteq \mathbb{P}(\otimes)$ und einem Wahrschenilichkeitsmass \mathbb{P} auf (Ω, \mathcal{F})

Lemma 1.5. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Dann ist

$$(a) \mathbb{P}(\emptyset) = 0$$

(b) $\forall A, B \in \mathcal{F} \text{ mit } A \cap B = \emptyset \text{ ist}$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B).$$

 \bigcirc $\forall A, B \in \mathcal{F} \text{ mit } A \subseteq B \text{ ist}$

$$\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A)$$

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

$$\mathbb{P}(A) \leqslant \mathbb{P}(B) \leqslant 1$$
(3)

 $(d) \ \forall A, B \in \mathcal{F}$ ist

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

$$\leq \mathbb{P}(A) + \mathbb{P}(B)$$
(4)

(e) Wenn A_n

Beweis. (a) Wir wissen:

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(\Omega \cup \varnothing \cup \varnothing \cup \varnothing \ldots) = \mathbb{P}(\Omega) + \mathbb{P}(\varnothing) + \mathbb{P}(\varnothing) + \ldots$$

subtrahieren von $\mathbb{P}(\Omega) = 1$ liefert dann $\mathbb{P}(\emptyset) = 0$.

(b) Sei $A \cap B = \emptyset$, dann ist:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \cup B \cup \emptyset \cup \emptyset \cup \dots)$$

$$\overset{\sigma - \text{Additivität}}{=} \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) + \dots$$

$$= \mathbb{P}(A) + \mathbb{P}(B)$$
(5)

© Sei $A \subseteq B$. Dann ist $B = A \cup (B \backslash A)$ eine disjunkte Vereinigung, also erhalten wir

$$\mathbb{P}(B) = \mathbb{P}(A) + \underbrace{\mathbb{P}(B \backslash A)}_{\geqslant 0} \geqslant \mathbb{P}(A).$$

Mit $B = \Omega$ ergibt sich $1 = \mathbb{P}(A) + \mathbb{P}(A^c)$

(d) Es ist

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}((A \cup B) \setminus A)$$

$$= \mathbb{P}(A) + \mathbb{P}(B \setminus (A \cap B))$$

$$= \mathbb{P}(A) + \mathbb{P}(B) - \underbrace{\mathbb{P}(A \cap B)}_{\geqslant 0}$$

$$\geqslant \mathbb{P}(A) + \mathbb{P}(B)$$
(6)

(e) Übung

Korollar 1.6 (Einschluss-Ausschluss-Prinzip). Seien $A_1, \ldots, A_n \in \mathcal{F}$. Dann gilt

$$\mathbb{P}(A_1 \cup \ldots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \ldots < i_k \le n} \mathbb{P}(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}).$$

Beweis. Per Induktion, der Induktionsanfang lautet $\mathbb{P}(A_1) = \mathbb{P}(A_1)$ und ist offensichtlich wahr.

Die Aussage gelte nun für ein $n \in \mathbb{N}$, dann erhalten wir

$$\mathbb{P}\left(\bigcup_{i=1}^{n+1} A_i\right) = \mathbb{P}\left(\left(\bigcup_{i=1}^{n} A_i\right) \cup A_{n+1}\right) \\
= \mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) + \mathbb{P}(A_{n+1}) - \mathbb{P}\left(\left(\bigcup_{i=1}^{n} A_i\right) \cap A_{n+1}\right) \\
= \mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) + \mathbb{P}(A_{n+1}) - \mathbb{P}\left(\bigcup_{i=1}^{n} \underbrace{(A_i \cap A_{n+1})}_{=:\tilde{A}_i}\right) \\
= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i < \dots < i_k \leq n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) + \mathbb{P}(A_{n+1}) \\
- \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n} \mathbb{P}\left(\underbrace{\tilde{A}_{i_1} \cap \dots \cap \tilde{A}_{i_k}}_{A_{i_1} \cap \dots \cap A_{i_1} \cap A_{n+1}}\right)$$

Andererseits ist aber auch:

$$\sum_{k=1}^{n+1} (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n+1} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

$$+ \sum_{k=2}^{n+2} (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_{k-1} \leq n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_{k-1}} \cap A_{n+1})$$

$$\downarrow_{i:=k-1}^{n+2} \sum_{1 \leq i_1 < \dots < i_{k-1} \leq n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k} \cap A_{n+1})$$

$$\downarrow_{i:=k-1}^{n} \sum_{1 \leq i_1 < \dots < i_l \leq n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_l} \cap A_{n+1})$$

$$\uparrow_{i:=k-1}^{n} \subset \mathbb{P}(A_{n+1})$$

und damit sehen wir, dass die beiden Ausdrücke übereinstimmen, also ist der Induktionsschritt erbracht. $\hfill\Box$

1.3 Diskrete Verteilungen

• Sei nun Ω endlich oder abzählbar.

• Falls wir \mathcal{F} nicht explizit angeben, dann wird $\mathcal{F} = \mathcal{P}(\Omega)$ gewählt, d.h.

$$\operatorname{Card}(\mathcal{P}(\Omega)) \equiv |\mathcal{P}(\Omega)| = 2^{|\Omega|}.$$

Beispiel (Münzwurf). Es sei $\Omega = \{K, Z\}$, wobei K für Kopf stehe und Z für Zahl. Dann ist

$$\mathcal{F} = \{\{K\}, \{Z\}, \{Z, K\}, \emptyset\}.$$

Sei $p \in [0,1]$ die Wahrscheinlichkeit, dass man Kopf erhält. Da $\mathbb P$ für alle Element aus $\mathcal F$ definiert sein muss, erhalten wir

$$\mathbb{P}(\varnothing) = 0 \qquad \mathbb{P}(K) = p, \qquad \mathbb{P}(Z) = \mathbb{P}(K^c) = 1 - p \qquad \mathbb{P}(\{Z, K\}) = \mathbb{P}(\Omega) = 1.$$

Was müssen wir fordern, sodass es ein wohldefiniertes \mathbb{PP} auf $\mathcal{P}(\Omega)$ gibt?.

Beispiel. $\Omega=\{1,2,\ldots,10\}$ würde genügen, da dann $|\mathcal{P}(\Omega)|=2^{|\Omega|}=2^{10}=1024$ endlich (diskret) ist.

Lecture 3: Gleichverteilung, empirische Verteilung

Mo 19 Apr 2021 10:23

Wir stellen fest, dass es im letzten Beispiel auch genügt hätte, $\mathbb{P}(\{k\})$ für k = 1, ..., 10 anzugeben, das motiviert Folgendes:

Satz 1.7. (a) Sei $p(\omega) \in [0,1], \omega \in \Omega$, sodass

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

Dann ist \mathbb{P} definiert durch:

$$\mathbb{P}: \left| \begin{array}{ccc} \mathcal{P}(\Omega) & \longrightarrow & [0,1] \\ A & \longmapsto & \sum_{\omega \in A} p(\omega) \end{array} \right.$$

eine Wahrscheinlichkeitsverteilung auf $(\Omega, \mathcal{P}(\emptyset))$.

(b) Jede Wahrscheinlichkeitverteilung \mathbb{P} auf $(\Omega, \mathcal{P}(\Omega))$ hat obige Form, wobei $p(\omega) = \mathbb{P}(\{\omega\})$.

Bemerkung. $p: \emptyset \to [0,1]$ heißt Massenfunktion der Wahrscheinlichkeitverteilung \mathbb{P} .

Warnung. Der Satz gilt nicht für Ω überabzählbar.

Bemerkung. Sei A abzählbar und $p(\omega) \ge 0$ für $\omega \in A$. Dann definiert

$$\sum_{\omega \in A} p(\omega) := \sum_{k \geqslant 1} p(\omega_k).$$

mit einer beliebigen Abzählung $\omega_1, \omega_2, \dots, \omega_k$ von A eine wohldefinierte Summe der $p(\omega)$. Es ist wichtig, dass hier $p(\omega) \ge 0$, sonst ist obiges nicht wohldefiniert.

Lemma 1.8. (a) Sei $p(\omega) \in [0,1]$ für alle ω . Dann ist

$$\sum_{\omega \in A} p(\omega) \in [0, \infty].$$

wohldefiniert. Setzen wir

$$\mathbb{P}(A) := \sum_{\omega \in A} p(w).$$

so gilt

$$P(A) = \sup_{\substack{F \subseteq A \\ |F| < \infty}} P(F).$$

und $P(A) \leqslant P(B)$ für $A \subseteq B$.

(b) Ist $A = \bigsqcup_{k=1}^{\infty} A_k$ eine disjunkte Vereinigung, so ist

$$P(A) = \sum_{k=1}^{\infty} P(A_k).$$

Beweis. (a) Sei $\omega_1, \omega_2, \ldots$ eine beliebige Abzählung von A. Dann ist die Funktion

$$n \longmapsto \sum_{k=1}^{n} p(\omega_k).$$

monoton wachsend. Also ist

$$\sum_{k=1}^{\infty} p(\omega_k) := \lim_{n \to \infty} \sum_{k=1}^{n} p(\omega_k) = \sup_{n \in \mathbb{N}} \sum_{k=1}^{n} p(\omega_k) \in [0, \infty].$$

wohldefiniert.

Wir wollen nun noch zeigen, dass

$$P(A) := \sum_{k=1}^{\infty} p(\omega_k) \stackrel{!}{=} \sup_{\substack{F \subseteq A \\ |F| < \infty}} P(F).$$

Die Ungleichung '
 's folgt sofort, da wir mit $F_n:=\{\omega_1,\ldots,\omega_k\}$ feststellen, dass

$$\sum_{k=1}^{n} p(\omega_k) = \sum_{\omega \in F_n} p(\omega) = P(F_n) \leqslant \sup_{\substack{F \subseteq A \\ |F| < \infty}} P(F).$$

Also ergibt sich im Limes genau wie gewünscht

$$P(A) = \lim_{n \to \infty} \sum_{k=1}^{n} p(\omega_k) \leqslant \lim_{n \to \infty} \sup_{\substack{F \subseteq A \\ |F| < \infty}} P(F) = \sup_{\substack{F \subseteq A \\ |F| < \infty}} P(F).$$

Für ' \geqslant ' stellen wir fest, dass es für jedes $F \subseteq A$ endlich ein $n \in \mathbb{N}$ gibt, sodass $F \subseteq \{\omega_1, \ldots, \omega_n\}$, und somit ist

$$P(F) = \sum_{\omega \in F} P(\omega) \leqslant \sum_{k=1}^{n} p(\omega_k) \leqslant \sum_{k=1}^{\infty} p(\omega_k) = P(A).$$

und somit ist das Supremum der P(F) für $F\subseteq A, |F|<\infty$ durch P(A) beschränkt.

Für die letzte Behauptung sehen wir mit $A \subseteq B$ leicht, dass

$$P(A) = \sup_{\substack{F \subseteq A \\ |F| < \infty}} P(F) \leqslant \sup_{F \subseteq B|F| < \infty} = P(B).$$

- (b) (σ-Additivität) Wir unterscheiden zwei Fälle:
 - 1) Falls $|A| < \infty$, so ist $A = \bigsqcup_{k=1}^n A_k$ für ein n, und somit ist

$$P(A) = \sum_{l=1}^{|A|} p(\omega_l) = \sum_{l=1}^{|A|} \sum_{k=1}^{n} p(\omega_l) \mathbb{1}_{A_k}(\omega_l)$$

$$= \sum_{k=1}^{n} \sum_{l=1}^{|A|} p(\omega_l) \mathbb{1}_{A_k}(\omega_l) = \sum_{k=1}^{n} P(A_k)$$
(8)

2) Sei nun $|A|=\infty.$ Wir zeigen zunächst '<
'. Für ein endliches $F\subseteq A$ ist

$$F = \bigcup_{k=1}^{\infty} (F \cap A_k).$$

eine disjunkte Vereinigung mit endlich vielen Termen, also ist

$$P(F) = \sum_{k=1}^{\infty} P(F \cap A_k) \leqslant \sum_{k=1}^{\infty} P(A_k).$$

und somit liefert das Supremum über beide Seiten, dass

$$P(A) = \sup_{\substack{F \subseteq A \\ |F| < \infty}} P(F) \leqslant \sum_{k=1}^{\infty} P(A_k).$$

Wir zeigen nun ' \geqslant '.

Idee. Wir können $P(A_k) = \sup_{\substack{|F_k \subseteq A_k \\ |F_k|] \infty}} P(F_k)$ schreiben und 'optimieren' nun jedes einzelne F_k .

Seien also $F_k\subseteq A_k$ jeweils endlich. Dann ist $F_k\cap F_l\subseteq A_k\cap A_l=\emptyset$, also sind auch die F_k paarweise disjunkt, und wir lernen

$$\sum_{k=1}^{n} P(A_k) = \sum_{k=1}^{n} \sup_{\substack{F_k \subseteq A_k \\ |F_k| < \infty}} P(F_k) = \sup_{\substack{F_1 \subseteq A_1 \\ abs F_1 < \infty}} \dots \sup_{\substack{F_k \subseteq A_k \\ |F_k| < \infty}} \sum_{k=1}^{n} P(F_k) \quad (9)$$

Also ist

$$\sum_{k=1}^{n} P(F_k) = P\left(\bigcup_{k=1}^{n} F_k\right) \leqslant P\left(\bigcup_{k=1}^{\infty} F_k\right) \leqslant P\left(\bigcup_{k=1}^{\infty} A_k\right) \stackrel{\text{def}}{=} P(A).$$

setzen wir dies nun in die rechte Seite von (1) ein, so ergibt sich

$$\sum_{k=1}^{n} P(A_k) \leqslant P(A) \qquad \Rightarrow \qquad \sum_{k=1}^{\infty} P(A_k) \leqslant P(A).$$

Beweis von Satz 1.7. (a) Es gilt

$$\sum_{\omega \in \Omega} p(\omega) = P(\Omega) = 1.$$

nach Voraussetzung. Die σ -Additivität folgt nun aus Lemma 1.8. Deswegen ist P(A) eine Wahrscheinlichkeitsverteilung.

(b) Da P σ -additiv ist, ist $\forall A \subseteq \Omega$:

$$PA) = P\left(\bigcup_{\omega \in A} \{\omega\}\right) = \sum_{\omega \in A} P(\{\omega\}).$$

und dies hat genau die angegebene Form mit $p(\omega) := P(\{\omega\})$

1.4 Die Gleichverteilung

Sei Ω endlich $(\neq \emptyset)$ und betrachte σ -Algebra $\mathcal{F} = \mathcal{P}(\Omega)$.

Die **Gleichverteilung** ist die Wahrscheinlichkeitverteilung, die ein unifromes "Gewicht" (Massenfunktion) auf die Elementarereignisse verteilt:

$$\forall \omega \in \Omega : p(w) = \mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|}.$$

Aus Satz 7 folgt dann bereits, dass $\forall A \subseteq \Omega$:

$$\mathbb{P}(A) = \sum_{A} p(\omega) = \frac{|A|}{|\Omega|}.$$

1 DISKRETE STOCHASTIK

Beispiel. (a) Betrachte n Würfe eines fairen Würfels. In diesem Fall ist $\Omega = \{1, 2, 3, 4, 5, 6\}^n = \{\omega = (\omega_1, \dots, \omega_n) \mid \omega_k \in \{1, \dots, 6\}\}$ und somit $|\Omega| = 6^n$ und die Gleichverteilung ist gegeben durch

$$\mathbb{P}(\omega) = \frac{1}{6^n}.$$

- (b) (Zufällige Permutationen).
 - Eine Permutation $\sigma \in \mathfrak{S}_n$ von $\{1, \ldots, n\}$ ist eine Abbildung von $\{1, \ldots, n\}$ nach $\{1, \ldots, n\}$, die bijektiv ist. Oft schreiben wir

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}.$$

und meinen damit $\sigma(1)=4,\ \sigma(2)=3,\ \sigma(3)=1,\ \sigma(4)=2.$ Manschmal schreiben wir dann auch

$$\sigma = (4, 3, 1, 2) = (\sigma_1, \sigma_2, \sigma_3, \sigma_4).$$

• Sei $\Omega = \mathfrak{S}_n$ die Menge aller Permutation von $\{1, \ldots, n\}$. Dann ergibt sich

$$|\mathfrak{S}_n| = n!$$
.

Also ergibt sich für die Gleichverteilung eine Wahrschenlichkeit von

$$\mathbb{P}(\sigma) = \frac{1}{n!} \quad \forall \sigma \in \mathfrak{S}_n.$$

Aufgabe 1. Sei N die Anzahl von Karten eines Kartenspiels, die gut gemischt sind, d.h. jede Reihenfolge ist gleich wahrscheinlich.

(1) Was ist die Wahrscheinlichkeit, dass die k-te Karte auf der l. Stelle ist? D.h, was ist:

$$\mathbb{P}(\{\omega \in \mathfrak{S}_n \mid \omega(k) = l\}).$$

Es ergibt sich

$$\mathbb{P}(\{\omega \in \mathfrak{S}_n \mid \omega(k) = l\}) = \frac{|\{\omega \in \mathfrak{S}_n \mid \omega(k) = l\}|}{|\Omega|} = \frac{(n-1)!}{n!} = \frac{1}{n}.$$

(2) Was ist die Wahrscheinlichkeit, dass eine Karte 'auf ihrer Stelle' ist, dh.

$$\mathbb{P}(\{\omega \mid \exists k \colon \omega(k) = k\}).$$

Definiere die Ereignisse $A_k := \{\omega(k) = k\}$. Diese sind nicht disjunkt für

verschiedene k. Es ergibt sich:

$$\mathbb{P}(\exists k : \omega(k) = k) = \mathbb{P}\left(\bigcup_{k=1}^{n} A_{k}\right) \\
= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \underbrace{\mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}})}_{= \frac{(n-k)!}{n!}} \\
= \sum_{k=1}^{n} (-1)^{k-1} \frac{(n-k)!}{n!} \underbrace{\sum_{1 \leq i_{1} < \dots < i_{k} \leq n} 1}_{=\binom{n}{k}} \\
= \sum_{k=1}^{n} (-1)^{k-1} \frac{(n-k)!}{n!} \cdot \frac{n!}{(n-k)!k!} \\
= -\sum_{k=1}^{n} \frac{(-1)^{k}}{k!} \\
= 1 - \frac{1}{e} + \sum_{k=n+1}^{\infty} \frac{(-1)^{k}}{k!}$$
(10)

Für $n \to \infty$ geht das gegen $1 - \frac{1}{e} \in (0, 1)$.

1.5 Die empirische Verteilung

Diese wird aus den Beobachtungen definiert. Seien $x_1, x_2, \dots, x_n \in \Omega$ n Beobachtungen. Setze

$$N(A) := |\{k \in \{1, \dots, n\} \mid x_k \in A\}|.$$

Dazu setzen wir

$$\mathbb{P}(A) = \frac{N(A)}{n}.$$

, die empirische Häufigkeit von A. $\mathbb P$ ist die empirische Verteilung.

$$p(\omega) = \frac{N(\{\omega\})}{n}.$$

ist die **relative Häufigkeit** von $\omega \in \Omega$.

Beispiel. Die empirische Verteilung von n Zufallswürfeln eines Würfels wird gegeben durch $x_1, \ldots, x_n \in \{1, \ldots, 6\}$. Die Plots für $p_k := \frac{N(k)}{n}$ für verschieden n sehen wie folgt aus:

Lecture 4 Mi 21 Apr 2021 10:15

1.6 Zufallsvariablen

Wir werden Funktionen der Ergenisse betrachten:

Definition 1.9. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Eine **diskrete Zufallsvariable** ist eine <u>messbare</u> Abbildung

$$X:\Omega\longrightarrow\mathcal{S}.$$

mit S abzählbar (denke: 'diskret'). Messbar bedeutet hierbei, dass

$$\forall s \in \mathcal{S} \colon X^{-1}(s) = \{ \omega \in \Omega \mid X(\omega) = s \} \in \mathcal{F}.$$

Notation. Wir schreiben auch kurz:

$$X^{-1}(s) = \{X(\omega) = s\} = \{X = s\}.$$

Abbildung 1: Diskrete Zufallsvariable

Definition 1.10. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. und $X : \Omega \to \mathcal{S}$ eine diskrete Zufallsvariable.

Die **Verteilung von** X ist die Wahrscheinlichkeitverteilung μ_X auf $\mathcal{S}, \mathcal{P}(\mathcal{S}) = \tilde{F}$, s.d. $\forall B \in \tilde{F} : \mu_X(B) := \mathbb{P}(X^{-1}(B))$. μ_X hat eine **Massenfunktion**

$$p_X(s) := \mathbb{P}.$$

Beispiel (Werfen von n Münzen). Betrachte folgende Situation:

• Sei $\Omega = \{\omega = (\omega_1, \dots, \omega_n \mid \omega_i \in \{0, 1\} \text{ für } 1 \leq i \leq n\}$ wobei

$$\omega_k = \begin{cases} 0 & \text{falls } k\text{-ter Wurf ist Zahl} \\ 1 & \text{falls } k\text{-ter Wurf ist kopf} \end{cases}.$$

- $\mathcal{F} = \mathcal{P}(\Omega)$ und \mathbb{P} die Gleichverteilung
- (1) Setze

$$X_k: \left| \begin{array}{ccc} \Omega & \longrightarrow & \mathcal{S} = \{0, 1\} \\ \omega & \longmapsto & \omega_k \end{array} \right|$$

für $k=1,\dots,n.$ Dies ist eine diskrete Zufallsvariable mit Verteilung μ_{X_k} mit

$$p_{X_k}(s) = \mathbb{P}(X_k = s) = \frac{2^{n-1}}{2^n} = \frac{1}{2}.$$

Wir sehen also, dass X_k gleichverteilt ist.

(2) Definiere

$$Y: \left| \begin{array}{ccc} \Omega & \longrightarrow & \mathcal{S} := \{0, 1, \dots, n\} \\ \omega & \longmapsto & \omega_1 + \dots + \omega_n \end{array} \right|$$

d.h.

$$Y(\omega) = \# \{\text{geworfene K\"opfe}\}.$$

Es hat nun μ_Y die Massenfunktion:

$$p_Y(k) = \frac{1}{2^n} |\{\omega \mid w_1 + \ldots + \omega_n = k\}| = \frac{\binom{n}{k}}{2^n}.$$

Diese Verteilung sieht wie folgt aus:

TODO: Binomialverteilung

Diese sind Sonderfälle der Bernoulliverteilung und der Binomialverteilung

1.6.1 Die Bernoulli-Verteilung

Definition 1.11. Sei $p \in [0,1]$ gegeben. Die Wahrscheinlichkeitverteilung auf $\{0,1\}$ mit Massenfunktion

$$p(k) = \begin{cases} p & k = 1\\ 1 - p & k = 0 \end{cases}.$$

heißt Bernoulli-Verteilung mit Parameter p.

Notation. Wir notieren auch $\mathrm{Ber}(p)$ für die Bernoulli-Verteilung mit Parameter p.

Beispiel. (a) Eine Münze, die mit Wahrscheinlichkeit p Kopf zeigt. Hier ist

$$\Omega = \{ \text{Zahl}, \text{Kopf} \}$$
 $\mathbb{P}(\text{Kopf}) = p = 1 - \mathbb{P}(\text{Zahl}).$

Sei

$$X(\omega) = \begin{cases} 1 & \omega = \text{Kopf} \\ 0 & \omega = \text{Zahl} \end{cases}.$$

Dann ist $\mathbb{P}(X = 1) = p \text{ und } X \sim \text{Ber}(p)$

Notation. Wir schreiben $X \sim \mathrm{Ber}(p)$, wenn X die Verteilung $\mathrm{Ber}(p)$ hat.

(b) In einer Urne befinden sich n blaue Kugeln und m rote Kugeln. Wir ziehen eine Kugel aus der Urne (Annahme: Gleichverteilung). Dann ist

$$\Omega = \{ \omega = (\omega_1, \dots, \omega_{n+m}) \mid \omega_i \in \{ \text{blau}, \text{rot} \} \text{ mit } n \text{ mal blau} \}.$$

Setze $\mathcal{F} = \mathcal{P}(\Omega)$ und wähle \mathbb{P} als die Gleichverteilung. Betrachte

$$X(\omega) = \begin{cases} 1 & \text{falls } \omega_i \text{ ist blau} \\ 0 & \text{sonst} \end{cases}.$$

Diese hat also die Verteilung

$$\mathbb{P}(X=1) = \frac{\binom{m+n-1}{n-1}}{\binom{m+n}{n}} = \frac{(m+n-1)!}{(n-1)!m!} \frac{n!m!}{(m+n)!} = \frac{n}{m+n}.$$

Also ist
$$X \sim \operatorname{Ber}\left(\frac{n}{n+m}\right)$$

1.6.2 Die Binomial-Verteilung

Definition 1.12. Seien $n \in \mathbb{N}$ und $p \in [0, 1]$ gegeben. Die Wahrscheinlichkeitverteilung auf $\{0, 1, \dots, n\}$ mit Massenfunktion

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

für k = 0, ..., n heißt Binomialverteilung mit Parametern n und p.

Notation. Wir notieren Bin(n, p) für die Binomialverteilung mit Parametern n und p.

Beispiel (Ziehen mit Zurücklegen). • Seien m kugeln in einer Urne,

davon $p \cdot m \in \mathbb{N}$ weiße Kugeln und (1-p)m schwarze Kugeln.

- Wir ziehen eine Kugel, notieren uns die Farbe und legen sie wieder zurück.
- Wir mischen die übrigen Kugeln wideer gut
- $\bullet\,$ Wir wiederholne die vorherigen Schritte, bis wir n Ziehungen durchgeführt haben.
- Dies modellieren wir durch

$$\Omega = \{0, 1\}^n$$
.

wobei $\omega = (\omega_1, \dots, \omega_n) \in \Omega$ gegeben ist durch

$$\omega_i = \begin{cases} 1 & \text{falls Farbe der } i\text{-ten Kugeln weiß ist} \\ 0 & \text{sonst} \end{cases}.$$

• Sei nun $X(\omega) = \sum_{k=1}^{n} \omega_k = \# \{ \text{weiße Kugeln} \}$

Dann behaputen wir, dass $X \sim \text{Bin}(n, p)$. In der Tat:

$$\frac{|\omega \in \Omega \mid X(\omega) = l|}{|\Omega|} = \frac{\binom{n}{l} \cdot (pm)^l \left((1-p)m \right)^{n-l}}{m^n} \\
= \frac{\binom{n}{l} p^l (1-p)^{n-l} \cdot m^n}{m^n} = \binom{n}{l} p^l (1-p)^{n-l}$$
(11)

Bemerkung. Wir haben hier den Begriff der Unabhängigkeit genutzt, den wir nun genauer kennenlernen wollen.

Definition 1.13 (Unabhängige Ereignisse). Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Die Ereignisse E_1, E_2, \dots, E_n heißen **unabhängig**, falls

$$\mathbb{P}(E_{i_1} \cap E_{i_2} \cap \ldots \cap E_{i_k}) = \prod_{l=1}^k \mathbb{P}(E_{i_l}).$$

für alle $2 \le k \le n$ und $1 \le i_1 < i_2 < \ldots < i_k \le n$.

Beispiel. • Betrachte zwei Würfelwürfe, d.h. $\Omega=\{1,\ldots,6\}^2$ und notiere $\omega=(\omega_1,\omega_2).$ Dann können wir

$$E_1 = \{\omega_1 = 3\}$$
 $E_2 = \{\omega_2 \ge 4\}$.

betrachten. Wir rechnen nach, dass

$$\mathbb{P}(\omega_1 = 3 \cap \omega_2 \geqslant 4) = \frac{3}{36} = \frac{1}{6} \cdot \frac{3}{6} = \mathbb{P}(\omega_1 = 3) \cdot \mathbb{P}(\omega_2 \geqslant 4).$$

also sind die beiden Ereignisse unabhängig voneinander. Das macht auch semantisch Sinn, weil wir durch das Ergebnis des einen Würfelwurfs keine Informationen über das Ergebnis des zweiten Würfelwurfs erhalten.

• Falls E_1, E_2, \dots, E_n unabhängige Ereignisse sind, mit $\mathbb{P}(E_i) = p$ für $1 \leq i \leq n$, dann ist

$$\mathbb{P}(\text{genau }k \text{ der Ereignisse treten ein}) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Dies rechnen wir nach. Setze hierzu

$$A_{(i_1,\ldots,i_k)} = \{\omega \in \Omega \mid E_{i_1},\ldots,E_{i_k} \text{ treten ein, die anderen nicht}\}$$

Dann ist

$$\tilde{A} = \bigsqcup_{1 \leqslant i_1 < \ldots < i_k \leqslant n} A_{i_1, \ldots, i_k}.$$

eine disjunkte Vereinigung, also erhalten wir

$$\mathbb{P}(\tilde{A}) = \sum_{1 \leq i_1 < \dots < i_k \leq n} \mathbb{P}(A_{(i_1,\dots,i_k)})$$

$$\stackrel{\text{unabhängig}}{=} \sum_{1 \leq i_1 < \dots < i_k \leq n} \prod_{j \in \{i_1,\dots,i_k\}} \mathbb{P}(E_j) \cdot \prod_{l \notin \{i_1,\dots,i_k\}} \mathbb{P}(E_l^c)$$

$$= \sum_{1 \leq i_1 < \dots < i_k \leq n} p^k (1-p)^{n-k}$$

$$= \binom{n}{k} p^k (1-p)^{n-k}$$
(12)

Bemerkung. Strenggenommen haben wir in der letzten Rechnung verwendet, dass mit E_1, \ldots, E_n unabhängig auch F_1, \ldots, F_n für $F_i = E_i$ oder $F_i = E_i^c$ unabhängig voneinander sind. Dies müssten wir noch einmal nachrechnen, dazu für den Fall n = 2 ist z.B:

$$\mathbb{P}(E_1 \cap E_2^c) + \mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_1 \cap (E_2 \cup E_2^c)) = \mathbb{P}(E_1).$$

Also ergibt sich

$$\mathbb{P}(E_1 \cap E_2^c) = \mathbb{P}(E_1) - \mathbb{P}(E_1)\mathbb{P}(E_2) = \mathbb{P}(E_1)(1 - \mathbb{P}(E_2)) = \mathbb{P}(E_1)\mathbb{P}(E_2^c).$$

wie zu zeigen war.

1.6.3 Die Poisson-Verteilung

Betrachte Ereignisse E_1, \ldots, E_n , die unabhängig sind und jeweils Wahrscheinlichkeit p haben, einzutreten.

Frage. Was passiert wenn $n \gg 1$.

Typischerweise haben wir dann $\mathcal{O}(pn)$ Erfolge in E_1, \ldots, E_n .

- Sei p = p(n) sodass $\lim_{n \to \infty} pn = \lambda \in (0, \infty)$
- Wähle Zeiteinheit $\delta = \frac{1}{n}$

Wir fragen uns nun: Was ist

$$\lim_{n\to\infty} \mathbb{P}(\exists k \text{ Erfolge } inA).$$

für ein Intervall $A \subseteq [0,1]$

Satz 1.14. Sei $\lambda \in (0, \infty)$. Dann ist

$$\lim_{n \to \infty} \operatorname{Bin}(n, \frac{\lambda}{n})(k) = \frac{e^{-\lambda} \lambda^k}{k!}.$$

für k = 0, 1, 2, ...

Beweis. Sei k fest. Dann ist

$$\operatorname{Bin}\left(n,\frac{\lambda}{n}\right)(k) = \frac{n!}{(n-k)^k!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k} = \frac{n(n-1)\cdot\ldots(n-k+1)}{n^k} \frac{\lambda^k}{k!} \left(1-\frac{\lambda}{n}\right)^n \left(1-\frac{\lambda}{n}\right)^{-k}.$$

Definition 1.15. Sei $\lambda \in (0, \infty)$ fest. Die Wahrscheinlichkeitsverteilung auf $\{0, 1, 2, \ldots\}$ mit Massenfunktion

$$p(k) = \frac{e^{-\lambda \lambda^k}}{k!}.$$

heißt Poisson-Verteilung mit Parameteter λ .

Notation. Wir schreiben auch $\operatorname{Poi}(\lambda)$ für die Poisson-Verteilung zum Parameter λ .

Lecture 5 Mo 26 Apr 2021 10:17

1.6.4 Die geometrische Verteilung

• Seien E_1, E_2, \ldots unabhängige Ereignisse mit

1 DISKRETE STOCHASTIK

1.7 Simulation von Gleichverteilung

Typischerweise benutzen wir folgende Situation:

Input Zahl(en), z.B. Redinerzeit

Output 'Zufällige Zahl' in $\{0, \ldots, n\}$

1.7.1 Lineare Kongruenzgeneratoren (LCG)

Startwert $x_0 \in \mathbb{N}$ gegeben.

Parameter $a, c, m \in \mathbb{N}$

Schritt Setze $x_{n+1} := (a \cdot x_n + c) \mod m$.

Dieses Vorgehen produziert eine scheinbar zufällige Folge.

Beispiel.

Beispiel (Eine schlechte Wahl). Wenn wir a=4, c=1, m=31 wählen sowie $x_0=3$, so erreichen wir Periode 9, und somit werden nicht alle Zahlen erreichen / generieren.

Lemma 1.16 (Knuth). Die Periode eines LCG ist gleich m, genau dann, wenn

- $\stackrel{\textstyle ext{(a)}}{}$ c und m haben keine gemeinsamen Primfaktoren
- ${\bf (b)}$ Jeder Primfaktor von mist ein Teiler von a-1
- (c) Falls $4 \mid m$, dann $4 \mid a 1$.

Beispiel.

1.7.2 Zufallsvariablen aus [0,1)

• Sei $(x_n)_{n\geqslant 1}$ eine Folge von (Pseudo)zufallszahlen aus $\{0,1,\ldots,m-1\}$. Dann ist

$$u_n := \left(\frac{x_n}{m}\right)_{n \geqslant 1}.$$

eine Folge von Pseudozahlen in [0,1). Gut ist aber nur der Fall, wenn $m\approx 10^N,$ wobei N= Rechnergenauigkeit, d.h. #Ziffern.

1.7.3 Zufallspermutationen

Wie erzugt man eine gleichverteilte Permutation von $\{1, \ldots, N\}$?

Algorithmus 1 : Zufallspermutationen

Eingabe : Möglichkeit, aus endlicher Menge gleichverteilt zufällige Zahlen zu ziehen

Ausgabe : Eine zufällige Permutation von $\{1, \ldots, N\}$

Setze
$$\sigma_0 := \{1, \dots, N\}$$

for $i = 1$ to $n - 1$ do
| wähle $k \in \{i, \dots, N\}$ gleichverteilt
Setze $\sigma_k := \sigma_{k-1} \circ \tau_{i,k}$

 $\bf Lemma~1.17.~$ Der Algorithmus erzeugt eine zufällige gleichverteilte Permutation.

Beweis. Der Algorithmus benutzt eine Gleichverteilung auf

$$\Omega_n := \{1, \dots, N\} \times \{2, \dots, n\} \times \{n - 1, n\}.$$

Für $\omega = (w_1, \dots, w_{N-1}) \in \Omega_N$ ist

$$\sigma(\omega) = \tau_{N-1,\omega_{N-1}} \circ \ldots \circ \tau_{1,w} \circ \underbrace{(1,\ldots,N)}_{\sigma_0}.$$

Es genügt also zu zeigen, dass $\sigma:\Omega_N\to\mathcal{S}_N$ eine Bijektion ist. Wir sehen:

- $\widehat{(a)} |\Omega_N| = |\mathcal{S}_N| = N!$
- (b) Sei $w \neq \tilde{\omega}$ und setze $k = \min\{j \mid \omega_j \neq \tilde{\omega}_j\}$. Dann ist $\sigma(\omega)_k \neq \sigma(\tilde{\omega})_k$ und somit ist die Funktion injektiv

Damit ist die Abbildung sogar bijektiv und wir sind fertig.

1.7.4 Geometrische Verteilung

• Sei $X \sim \text{Geo}(q)$, d.h.

$$\mathbb{P}(X=k) = (1-q)q^k.$$

Wie simuliert man nun X?

- (a) Erzeuge $n \sim U[0,1)$ als Gleichverteilte Zufallsvarable auf [0,1).
- (b) Sei $T_k := \mathbb{P}(X < k)$. Falls $n \in [T_k, T_{k+1})$, dann setze X = k.

1.8 Erwartungswert und Varianz

• Sei X eine reellwertige diskrete Zufallsverteilung. Sei

$$X:\Omega\to\mathcal{S}\subseteq\mathbb{R}$$
.

eine diskrete Zufallsvariable, d.h. \mathcal{S} abzählbar.

Definition 1.18. Seien $x_1, \ldots, x_n \in \mathcal{S}$ n Beobachtungen einer Zufallsvariable X. Der **empirische Mittelwert** ist durch

$$\frac{1}{n}\sum_{i=1}^n x_i.$$

definiert.

- Wir wollen eine Sorte von Mittelwert definieren, der nur von X abhängig ist, und nicht von den Beobachtungen.
- Folgende Forderungen ergeben sich an solch einen Mittelwert:
 - Falls $X(\omega) = x$ für jedes ω , dann muss der <u>Mittelwert</u> von X gleich x sein.
 - Jeder Wert $x \in \mathcal{S}$ muss bezüglich der Massenfunktion $p_X(x)$ gewichtet sein.

Definition 1.19. Der **Erwartungswert** von X bzgl. \mathbb{P} ist durch

$$\mathbb{E}(X) = \sum_{s \in \mathcal{S}} s \cdot \mathbb{P}(X = s) = \sum_{s \in \mathcal{S}} s \cdot p_X(s).$$

definiert. Dies ist wohldefiniert, falls die Reiche absolut gegen einen Wert $<\infty$ konvergiert.

Bemerkung. Nicht alle Wahrscheinlichkeitsverteilungen besitzen einen endlichen Mittelwert, das zeigt folgendes

Beispiel. Sei X auf $\{1,2,\ldots\}$ verteilt mit

$$\mathbb{P}_X(s) = \frac{6}{\pi^{2r}}.$$

dann ergibt sich für den Erwartungswert:

$$\mathbb{E}(X) = \sum_{s \ge 1} s \cdot \frac{6}{\pi^2 s^2} = \frac{6}{\pi^2} \cdot \sum_{s \ge 1} \frac{1}{s} \to \infty.$$