Completeness
Recall TT: A -> B is closed if the image of every closed sub of A is a closed subset of B.
Non ex: $/X X$ Not closed
Consider $V(xy-1) \subset \mathbb{A}^2$ closed.
Def: A variety X is complete if for all Y, the projection
is closed.

.

.

. . . .

. . . .

. .

. .

. . .

.

.

.

. . . .

. . .

. . .

. .

۰

.

. . .

. .

. .

. . .

۰

. .

. .

.

. . .

. .

. .

(Complete ~ Compact) analogous Consequences Prop. f: X-1 X complete X separated. then f(X) c Y is closed. Look at Tf C XXY $\begin{cases} (\alpha, f(x)) \end{cases}$ $\times \times \times \xrightarrow{(f,id)} \times \times$ U closed U closed × ~ (closed $TT(T_f) = f(X)$ is clusted T because TT is clused.

Thm: All projective varieties are complete f: X -> Y separated) projective -MX) is dosed Vd = Homog poly of degal in PVI >T = poly with a triple clused. PVIXPVJ-3-PVJ L, FHIL3.F

Course !! X proj & connected. Then the only reg fun on X are constants. PF: FEREX] $f: X \to A$ T: X-71P' ~ misses 00 [1:0] proj. =) I(X) C P closed. Por finite sets X connected -) F(X) connected $f(x) = \{\cdot\}$ =) fis constant

Cunseg Vd = Homog. poly of deg d in Xo, X, X2 « "Plane curves" Z[F] | JPEP s.t. $\frac{\partial F}{\partial x_i}(p) = 0 \quad i = 0,1,2$ closed closed. C PV_d × P² Why? (F, P) $\left\{ (F,P) \mid \frac{\partial F}{\partial X}(P) = 0 \quad i = 0,1,2 \right\}$ G poly eg in coeff of F 65 courd of P. TT: PVa XIPZ PVa TT Closed complete

Roughly S = 3 3 P Chosed conditions! FPEX complete. is closed. dim PV -1 Homework: dim = Codim I $\Delta = V(One equation)$

F= > QIX homog in X_0, X_1, X_2 Then 3 QI'S polynomial in the whose vanishing F being singular Ex. a X + b Y + c Z + d XY + e Y Z +fXZ = 0Singular if

Jeg 3 & has 6 terms.

ax + by + cZ + dxy +...

() singular?

Ly Turns out has deg 12

() 1040 terms

Proof: that proj. var are complete. XXX ->Y is dosed OXCP" is closed, so PXY is dosed =) XXY -> Y is closed 3 X x Y -> Y is clusted can be checked on an open cover

XXV; _ Vi closed +i XXY-) Y is clusted. Every Y has an affine cover. So suffices to treat Y affine. Y C / Clusted. (3) Yaffine, XxY -> Y closed. XXA - A closed $\mathbb{P}^{\times}/\mathbb{A}^{m} \to \mathbb{A}^{m}$ is closed

Z C Px x dosed $[x_0:-:x_n]$ $(t_1,-,t_m)$ T $Z = \begin{cases} F_i(X_0, -1, X_n, t_{1,-1}, t_m) \end{cases}$ Homog in X-Variables. $TT(Z) = \begin{cases} t \in A^m \mid F_i(X,t) = 0 \\ has a \\ non-zero Sol \end{cases}$

Let's show the complement is open.

 $t \notin \pi(Z)$ t= (a1,-,am) has NO Non-Zero sol, No sol, ie $F_i(x,a) = 0$ -(a,,-,am) Nullstell: $Ck[X_0,-,X_n]$ $V\langle F;(X,a)\rangle$ $(X_{0}, X_{0}, X_{0},$ $\langle F_i(X,a) \rangle$ $(\chi_0, -, \chi_n)$ mean ?

X = deg N $F_{i}(X,\alpha)$ 2 Gi homos des di homog of M-di Hunt for Gis / = Homos poly of des d $X_{0},-X_{0}$ Look at the map for tEA WN-d, + VN-d2 P .-- + W-dr

 (G_1,G_2,\ldots,G_r) Mt $G_{1}(x) \cdot F_{1}(x,t) + \cdots$ $+ G_{1}(x)F_{1}(x,t)$ Mt is a R-linear map bet two k-v. spaces depend on t but entries are poly in t.

then HEU the system F(X,t)=0hasmo NON-Zero Solutions () NO so/3

Merkinom,				• •
Me Kriooo	SUY	20h	Ve : 1 :	
$C = dim V_N$				
7 non-zen	C×(minor	
		M		• •
Let 0 c /	× .	pc .	the se	1
where this	CXC	• • • • • • • • • • • • • • • • • • •	NUY IS	
N0N-56N°				• •
15 open	Э	a =		
& HEU,	M _t	15	SUM	

. .

.

. .

. .

. . .

.

. . .

. . .

. . .

. . .

.

.

.

. . .

.

.

. .

.

. . . .

. .

. . .

. . .

. . .

.

.

۰