Bayesian optimization with Salmon

Univ.Tokyo Kakeru Sasaki Kakeru Sasaki

Motivation

To calculate optical response of material

To know most efficient energy absorption

Calculation of optical response is expensive

Want to explore efficiently

Works

1. Pick up same parameters randomly

2. Calculate optical response with Salmon (tddft)

3. Use Bayesian optimization to determine next param

Iteration

Method

Material: C₂H₂ molecule

Light prams

 $\hbar\omega_1$: 1.55 eV

 $\hbar\omega_2$: 3.1 eV

 T_{pulse} : 40 fs

 I_1 : 0.0~2.0×10¹⁶ W/cm²

 $I_1 + 2I_2 = const.$

Calculate Prams

Grids: $4 \times 4 \times 4$

Functional: LDA

Bayesian optimization params

Combo

Search range : 80 ($I_1 = 0.0 \sim 2.0$)

Max explore : 25

Explore randomly: 5

Param tuning : every 5 iteration

Result

