Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №10 "ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБЪЕКТА УПРАВЛЕНИЯ"

Вариант - 11

Выполнил			(подпись)
		(фамилия, и.о.)	,
Проверил			(подпись)
Проверни		(фамилия, и.о.)	(подпись)
"" 20	Γ.	Санкт-Петербург,	20Γ.
Работа выполнена с	оценкой		
Дата защиты ""	20	TI.	
дата защиты		_1.	

Задание

Цель работы - изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

Необходимо по известной модели электромеханического объекта (ЭМО) построить схему и провести математическое моделирование при различных параметрах системы. Функциональная схема исследумого объекта представлена на рисунке 1.

Рисунок 1 – Функциональная схема ЭМО

Усилительно-преобразовательное устройство (УПУ) описывается следующим уравнением:

$$T_y \dot{U}_y + U_y = K_y U \tag{1}$$

УПУ подключается к электродвигателю (ЭД) - двигетлю постоянного тока (ДПТ), к которому пеодключен исполнительный механизм (ИМ) через редуктор (Р) с целью снизить момент на роторе двигателя. Описанную систему можно описать следующими уравнениями.

$$T_{\rm M}\dot{I} + I = K_{\rm M}(U_y + K_e\omega_M i_p)$$
 $K_{\rm M} - \frac{M_{\rm CM}}{i_p} = J_{\Sigma}\dot{\omega}_M i$ $J_{\Sigma} = J_{\rm M} + J_p + \frac{J_M}{i_p^2}$ (2)

Изменяя параметры $M_{\rm CM},\,i_p,\,J_M,\,T_{\rm s}$ и T_y необходимо получить графики переходных процессов и сравнить их.

В таблице 1 представлены исходные данные для моделирования ДПТ.

Таблица 1 – Исходные данные.

U_{H}	n_0	$I_{ m H}$	$M_{ m H}$	R	T_{H}	$J_{ m f J}$	$T_{ m y}$	$i_{ m p}$	$J_{ m M}$
В	об/мин	A	Н∙м	Ом	MC	КΓ•M ²	мс		кг•м ²
27	1975	1.23	0.16	4.2	5	$7\cdot 10^{-5}$	8	25	0.15

1 Рассчет параметров моделирования

По исходным данным можно рассчитать некоторые параметры моделирования.

$$K_y = \frac{U_{\rm H}}{U_m} = \frac{27}{10} = 2.7 \qquad w_0 = n_0 \frac{\pi}{30} = 206.8$$

$$K_e = \frac{U_{\rm H}}{w_0} = 0.13 \qquad K_{\rm A} = \frac{1}{R} = 0.24$$

$$K_{\rm M} = \frac{M_{\rm H}}{I_{\rm H}} = 0.13 \qquad J_{\Sigma} = 1.2J_{\rm A} + \frac{J_{\rm M}}{i_p^2} = 3.24 \cdot 10^{-4}$$

Коэффициенты передачи измерительных устройств можно найти предварительно промоделировав систему и выбрав максимальное время моделирования. В итоге получим следующие значения коэффициентов:

$$K_{U} = \frac{\hat{U}_{ymax}}{U_{H}} = \frac{10}{27} = 0.37$$

$$K_{I} = \frac{\hat{I}_{max}}{I_{max}} = \frac{10}{2.564} = 3.9$$

$$K_{\omega} = \frac{\hat{\omega}_{0}}{\omega_{max}} = \frac{10}{103.8} = 0.096$$

$$K_{\alpha} = \frac{\hat{\alpha}_{max}}{\alpha_{max}} = \frac{10}{2.125} = 4.7$$

2 Вывод моделей ВСВ

2.1 Модель ВСВ полной модели ЭМО

Для начала запишем все уравнения, описывающие работу ЭМО. Их возьмем из теории.

$$\begin{cases}
k_{\mathrm{M}}I - M_{c} = J_{\Sigma}\dot{\omega} \\
T_{\mathrm{g}}\dot{I} + I = k_{\mathrm{g}}U_{y} - k_{\mathrm{g}}k_{e}\omega \\
T_{y}\dot{U}_{y} + U_{y} = k_{y}U
\end{cases}
\Leftrightarrow
\begin{cases}
\dot{\omega} = \frac{k_{\mathrm{M}}}{J_{\Sigma}}I - \frac{1}{J_{\Sigma}}M_{c} \\
\dot{I} = -\frac{k_{\mathrm{g}}k_{e}}{T_{\mathrm{g}}}\omega - \frac{1}{T_{\mathrm{g}}}I + \frac{k_{\mathrm{g}}}{T_{\mathrm{g}}}U_{y} \\
\dot{U}_{y} = -\frac{1}{T_{y}}U_{y} + \frac{k_{y}}{T_{y}}U
\end{cases}$$
(3)

Теперь, приняв за вектор состояния $X = \begin{bmatrix} \alpha & \omega & I & U_y \end{bmatrix}^T$ и $\dot{\alpha} = \omega$, получим следующую модель вход состояние выход (BCB).

$$\begin{bmatrix} \dot{\alpha} \\ \dot{\omega} \\ \dot{I} \\ \dot{U}_{y} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{k_{M}}{J_{\Sigma}} & 0 \\ 0 & -\frac{k_{R}k_{e}}{T_{R}} & -\frac{1}{T_{R}} & \frac{k_{R}}{T_{R}} \\ 0 & 0 & 0 & -\frac{1}{T_{U}} \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \\ I \\ U_{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & -\frac{1}{J_{\Sigma}} \\ 0 & 0 \\ \frac{k_{y}}{T_{y}} & 0 \end{bmatrix} \begin{bmatrix} U(t) \\ M_{c}(t) \end{bmatrix}$$
(4)

$$\alpha = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \\ I \\ U_y \end{bmatrix}$$
 (5)

2.2 Модель ВСВ упрощенной модели ЭМО

Приравнивая в выражениях (3) $T_{\rm s}$ и $T_{\rm y}$ к 0. Получим следующие выражения:

$$\begin{cases} \dot{\alpha} = \omega \\ \dot{\omega} = -\frac{k_{\rm M}k_{\rm A}k_e}{J_{\Sigma}}\omega + \frac{k_{\rm M}k_{\rm A}k_y}{J_{\Sigma}}U - \frac{1}{J_{\Sigma}}M_c \end{cases}$$
 (6)

И соответственно модель ВСВ:

$$\begin{bmatrix} \dot{\alpha} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{k_{\rm M}k_{\rm R}k_e}{J_{\Sigma}} \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{k_{\rm M}k_{\rm R}k_y}{J_{\Sigma}} & -\frac{1}{J_{\Sigma}} \end{bmatrix} \begin{bmatrix} U(t) \\ M_c(t) \end{bmatrix}$$
(7)

$$\alpha = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \end{bmatrix} \tag{8}$$

3 Моделирование полной модели ЭМО

На рисунке 2 представлна полная модель ДПТ.

Рисунок 2 – Полная модель ЭМО

После построения модели и определения параметров моделирования можно получить графики и подсчитать соответственно время переходного процесса $t_{\rm n}$, установившиеся угловую скорость ω_y и ток I_y .

Ниже предсавлены графки переходных процессов двигателя при $T_y=8\cdot 10^{-3}$ с и $T_{\rm H}=5\cdot 10^{-3}$ с.

Рисунок 3 – Переходные процессы ЭМО

4 Исследование влияния момента сопротивленя $M_{\rm CM}$

На рисунке 5 представлены переходные процессы ДПТ при различных значениях нагрузочного момента $M_{\rm CM}$.

Рисунок 4 — Графики прехеходных процессов при различных $M_{\rm CM}$

В ходе эксперимента, изменяя нагрузочный момент, мы получили различные значения времени переходного процесса и установившиеся значения тока и угловой скорости, которые представлены в таблице ниже.

Таблица 2 — Данные о перехоных процессах

$M_{ m CM}$	ω_y	$t_{\scriptscriptstyle \Pi}$	I_y	$t_{\pi}, .10^{-2}$
0	9.97	0.45	$5 \cdot 10^{-3}$	0.47
1	9.02	0.46	1.21	0.49
2	8.07	0.47	2.4	0.5
4	6.18	0.48	4.8	0.51

5 Исследование влеяния момента инерции нагрузки $J_{ m M}$

На рисунке 5 представлены графики переходных процессов при различных значениях момента инерции нагрузки $J_{\rm M}$.

Рисунок 5 – Графики прехеходных процессов при различных $J_{
m M}$

В ходе эксперимента, изменяя момент инерции нагрузки, мы получили различные значения времени переходного процесса и установившиеся значения тока и угловой скорости, которые представлены в таблице ниже.

Таблица 3 — Данные о перехоных процессах

$J_{ m M}$	ω_y	$t_{\scriptscriptstyle \Pi}$	I_y	$t_{\pi}, .10^{-2}$
$7.5 \cdot 10^{-2}$	6.18	0.35	4.78	0.4
0.1	6.15	0.36	4.79	0.44
0.13	6.1	0.38	4.8	0.45
0.15	6.01	0.4	4.81	0.46
0.23	5.89	0.42	4.83	0.46

6 Исследование влияния передаточного отношения i_p редукотора

На рисунке 6 представлены графики преходных процессов при различных значениях передаточного отношения и нулевом моменте нагрузки $M_{\rm CM}=0$.

Рисунок 6 – Графики прехеходных процессов при различных i_p и $M_{\rm CM}=0$

В ходе эксперимента, изменяя момент передаточное отношение редукторы, мы получили различные значения времени переходного процесса и установившиеся значения тока и угловой скорости, которые представлены в таблице ниже.

Таблица 4 – Данные о перехоных процессах

i_p	ω_y	$t_{\scriptscriptstyle \Pi}$	I_y	$t_{\pi}, .10^{-2}$
19	9.9	0.36	$9.14 \cdot 10^{-2}$	0.56
25	9.97	0.35	$5.21 \cdot 10^{-3}$	0.55
32	9.97	0.34	$1.54 \cdot 10^{-4}$	0.52
44	9.97	0.33	$4.94 \cdot 10^{-7}$	0.5

На рисунке 7 представлены графики преходных процессов при различных значениях передаточного отношения и не нулевом моменте нагрузки $M_{\rm CM}=M_{\rm H}i_p/2$, при $i_p=25$.

Рисунок 7 – Графики прехеходных процессов при различных i_p и $M_{\rm CM}=M_{\rm H}i_p/2$

В ходе эксперимента, изменяя момент передаточное отношение редукторы, мы получили различные значения времени переходного процесса и установившиеся значения тока и угловой скорости, которые представлены в таблице ниже.

Таблица 5 – Данные о перехоных процессах

i_p	ω_y	$t_{\scriptscriptstyle \rm II}$	I_y	$t_{\rm m}, .10^{-2}$
19	8.02	0.45	2.48	0.47
25	8.07	0.44	2.46	0.45
32	8.08	0.43	2.45	0.43
44	8.08	0.42	2.44	0.41

7 Сравнение плоной и упрощенной модели ЭМО

Моделируемая система изображена на рисунке ниже.

Рисунок 8 – Упрощенная модель ЭМО

$$K = \frac{K_y}{k_e i_p} = \frac{(2.7)}{0.13.25} = 0.83 \tag{9}$$

$$K_f = \frac{R}{k_M k_e i_p^2} = 0.4 (10)$$

$$T_M = \frac{RJ}{k_M k_e} = 0.081 \tag{11}$$

7.1 Сравнение моделей при при $T_{\rm s} = 5 \cdot 10^{-3}$ и $T_{\rm y} = 8 \cdot 10^{-3}$

Ниже указаны характеристики переходного процесса упрощенной модели ЭМО. А также представлен график, в котором сравниваются полная и упрощенная модель.

Рисунок 9 — Сравенение переходных процессов угловой скорости ω упрощенной и полной модели ЭМО.

Рисунок 10 — Сравенение переходных процессов угла поворта упрощенной и полной модели Θ ЭМО.

Отклонение упрощенной моедли от полной состалвяет:

$$\Delta_{\omega 1} = 0.05 \tag{12}$$

7.2 Сравнение моделей при $T_{\rm s} = 5 \cdot 10^{-4}$ и $T_{\rm y} = 8 \cdot 10^{-4}$

Ниже представлен график, в котором сравниваются полная и упрощенная модель.

Рисунок 11 — Сравенение переходных процессов угловой скорости ω упрощенной и полной модели ЭМО.

Рисунок 12 — Сравенение переходных процессов угла поворота упрощенной и полной модели ЭМО.

Отклонение упрощенной моедли от полной состалвяет:

$$\Delta_{\omega 1} = 0.001 \tag{13}$$

Выводы

В данной работе мы исследовали модель электромеханического объекта управления. При увеличении момента нагрузки $M_{\rm CM}$: уменьшается установившаяся угловая скорость двигателя и время переходного процесса, при этом увеличивается установившийся ток. При увеличении момента инерции нагрйзки: увеличивается время переходного процесса и максимальный ток.

При увеличении передаточного числа редуктора увеличивается установившаяся угловая скорость (уменьшается ошибка) двигателя и уменьшается на выходе редуктора. Также уменьшается установившийся ток.

При сравнении графиков полной и упрощенной модели ЭМО, как видно из рисунков 10 и 11, при уменьшении $T_{\rm s}$ и $T_{\rm y}$ уменьшается ошибка и график перехоная характеристика полной модели стремится к упрощенной.

Также мы получили модели ВСВ полной и упрощенной модели ЭМО. при уменьшении $T_{\rm s}$ и $T_{\rm y}$ уменьшается ошибка и график перехоная характеристика полной модели стремится к упрощенной.