Maß 2, Übung 11

January 8, 2020

Aufgabe 1

Lemma 1. Wenn $\forall n \in \mathbb{N} : f_n : \mathbb{R} \to \mathbb{R}$ stetig und beschränkt sind, $f : \mathbb{R} \to \mathbb{R}$ stetig ist, $\forall n \in \mathbb{N} : P_n$ sowie P Wahrscheinlichkeitsmaße auf $(\mathbb{R}, \mathfrak{B})$ sind und $f_n \to f$ gleichmäßig und $P_n \to P$ schwach, dann gilt

$$\lim_{n \to \infty} \int f_n dP_n = \int f dP.$$

Beweis. Wir schreiben ganz einfach mit der Dreiecksungleichung

$$\left| \int f_n dP_n - \int f dP \right| \le \left| \int (f_n - f) dP_n \right| + \left| \int f dP_n - \int f dP \right|$$

Für hinreichend gorße $n \in \mathbb{N}$ wird der erste Summand wegen $f_n \to f$ gleichmäßig und der zweite Summand wegen $P_n \to P$ schwach klein.

Aufgabe 2

Definition 1. Eine Folge von Wahrscheinlichkeitsmaßen P_n auf dem Messraum (Ω, \mathfrak{S}) heißt stark konvergent gegen P, wenn für alle $A \in \mathfrak{S}$

$$\lim_{n \to \infty} P_n(A) = P(A) \tag{1}$$

gilt.

Lemma 2. Wenn $\forall n \in \mathbb{N} : P_n$ sowie P Wahrscheinlichkeitsmaße auf dem Messraum (Ω, \mathfrak{S}) sind und $P_n \to P$ stark, dann gilt für jede beschränkte und messbare Funktion $f:(\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B})$

$$\lim_{n \to \infty} \int f dP_n = \int f dP.$$

Beweis. Wir wählen eine beliebige beschränkte und messbare Funktion $f:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B})$ und ein beliebiges $\epsilon>0$. Zuerst spalten wir die Funktion in einen Positivteil und einen Negativteil auf.

$$\left| \int f dP_n - \int f dP \right| \le \left| \int f^+ dP_n - \int f^+ dP \right| + \left| \int f^- dP_n - \int f^- dP \right|$$

Gemäß gibt es eine monoton steigende Folge von nichtnegativen Treppenfunktionen $(t_k)_{k\in\mathbb{N}}$ so, dass $t_k\to f^+$ gleichmäßig, wobei $t_k=\sum_{i=1}^{l_k}x_i\mathbbm{1}_{[t_k=x_i]}$ ist. Jetzt verwenden wir abermals die Dreiecksungleichung und erhalten

$$\left| \int f^{+} dP_{n} - \int f^{+} dP \right|$$

$$\leq \left| \int (f^{+} - t_{k}) dP_{n} \right| + \left| \int (f^{+} - t_{k}) dP \right| + \left| \int t_{k} dP_{n} - \int t_{k} dP \right|$$

Wegen der gleichmäßigen Konvergenz $t_k \to f^+$ können wir ein $K \in \mathbb{N}$ finden so, dass für alle $k \geq K$:

$$\forall n \in \mathbb{N} : \left| \int (f^+ - t_k) dP_n \right| < \frac{\epsilon}{6} \wedge \left| \int (f^+ - t_k) dP \right| < \frac{\epsilon}{6}$$

Jetzt können wir $P_n \to P$ stark nützen, was es uns erlaubt ein $N^+ \in \mathbb{N}$ zu finden so, dass für alle $n \geq N^+$:

$$\left| \int t_k dP_n - \int t_k dP \right| = \left| \sum_{i=1}^{l_k} x_i P_n(t_k = x_i) - \sum_{i=1}^{l_k} x_i P(t_k = x_i) \right|$$
$$= \left| \sum_{i=1}^{l_k} x_i \left(P_n(t_k = x_i) - P(t_k = x_i) \right) \right| < \frac{\epsilon}{6}$$

gilt. Da man das Integral des Negativteils analog abschätzen kann gilt also insgesamt, dass $\exists N \in \mathbb{N}: \forall n \geq N:$

$$\left| \int f \mathrm{d}P_n - \int f \mathrm{d}P \right| < \epsilon$$

und damit ist die Behauptung bewiesen.

Aufgabe 3

Lemma 3. Sei $(\mathbb{R}, \mathfrak{B}, \mu)$ ein sigmaendlicher Maßraum und und seien $P_n, n \in \mathbb{N}$ und P bezüglich μ absolutstetige Wahrscheinlichkeitsmaße auf $(\mathbb{R}, \mathfrak{B})$ mit den Dichten f_n und f und gelte weiters $f_n \to f$ punktweise. Dann gelten folgende Aussagen:

- (a) $P_n \to P$ schwach
- (b) $P_n \to P \ stark$

Beweis. Der Satz von Radon Nikodym garantiert die Existenz der Dichten und deren Nichtnegativität sowie die Tatsache, dass μ -fast überall $\forall n \in \mathbb{N} : f_n$ und f reellwertig sind.

Wir erhalten zuerst

$$\lim_{n \to \infty} ||f_n||_1 = \lim_{n \to \infty} \int f_n d\mu = \lim_{n \to \infty} 1 = 1 = \int f d\mu = ||f||_1.$$

Nach gilt demnach $\lim_{n\to\infty}\int |f_n-f|\mathrm{d}\mu=0$. Nun können wir für ein beliebiges $A\in\mathfrak{B}$

$$|P_n(A) - P(A)| = \left| \int_A f_n d\mu - \int_A f d\mu \right| = \left| \int_A (f_n - f) d\mu \right|$$

$$\leq \int_A |f_n - f| d\mu \leq \int |f_n - f| d\mu$$

Der letzte Term wird für hinreichend große n beliebig klein, weshalb $\lim_{n\to\infty} P_n(A) = P(A)$, also $P_n\to P$ stark und damit (b) folgt. Aus Aufgabe 2 wissen wir nun, dass unmittelbar auch $P_n\to P$ schwach, also (a) gilt.

Aufgabe 4

Lemma 4. Wenn $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen auf dem Maßraum $(\Omega,\mathfrak{S},\mathbb{P})$ mit $\forall n\in\mathbb{N}:X_n:\Omega\to\mathbb{Z}$ ist dann konvergiert X_n in Verteilung genau dann, wenn für alle $k\in\mathbb{Z}$ der Grenzwert $p_k:=\lim_{n\to\infty}\mathbb{P}(X_n=k)$ existiert und $\sum_{k\in\mathbb{Z}}p_k=1$ gilt.

Beweis. Wir zeigen zuerst die Hinrichtung, also " \Rightarrow ". In einem ersten Schritt wollen wir zeigen, dass F auf ganz $\mathbb{R}\setminus\mathbb{Z}$ stetig ist. Dafür wählen wir ein beliebiges $x\in\mathbb{R}\setminus\mathbb{Z}$ und ein $\epsilon>0$ so, dass $U_{\epsilon}(x)\cap\mathbb{Z}=\emptyset$ gilt. Da die X_n nur Werte in \mathbb{Z} annehmen muss für alle $n\in\mathbb{N}$ gelten, dass $F_n|_{U_{\epsilon}(x)}$ konstant ist. Aus der Charakterisierung der Stetigkeit durch die Levy-Metrik wissen wir, dass es für alle $\delta>0$ ein $n_0\in\mathbb{N}$ so gibt, das für alle $n\geq n_0:F_n(x-\delta)-\delta\leq F(x)\leq F_n(x+\delta)+\delta$ gilt. Daraus erhält man unmittelbar $F_n(x)\to F(x)$ und da die $F_n|_{U_{\epsilon}(x)}$ konstant ist muss auch der Grenzwert für alle Punkte der gleiche sein, also $F|_{U_{\epsilon}(x)}$ konstant und damit F auf $\mathbb{R}\setminus\mathbb{Z}$ stetig. Die Werte von F in \mathbb{Z} ergeben sich nun schon automatisch durch die Rechtsstetigkeit von F. Betrachte dazu

$$\lim_{n \to \infty} P(X_n = k) = \lim_{n \to \infty} \left(\sum_{j = -\infty}^k P(X_n = j) - \sum_{j = -\infty}^{k - 1} P(X_n = j) \right)$$

$$= \lim_{n \to \infty} \left(F_n(k) - F_n(k - 1) \right)$$

$$= \lim_{n \to \infty} \left(F_n\left(k + \frac{1}{2}\right) - F_n\left(k - \frac{1}{2}\right) \right)$$

$$= F\left(k + \frac{1}{2}\right) - F\left(k - \frac{1}{2}\right)$$

$$= F(k) - F(k - 1) = P(X = k) =: p_k$$

DaPein Wahrscheinlichkeitsmaß ist und Xnach unseren obigen Überlegungen nur Werte in $\mathbb Z$ annehmen kann gilt $\sum_{k\in\mathbb Z}p_k=1$

Um die andere Richtung zu beweisen definieren wir eine Verteilungsfunktion

$$F: \mathbb{R} \to \mathbb{R}: x \mapsto \sum_{k=-\infty}^{\lfloor x \rfloor} p_k$$

Wir wählen zusätzlich $k_n \in \mathbb{Z}$, sodass: $\lim_{n\to\infty} F(k_n) = 0$. Es gilt für alle $x \in \mathbb{R}$

$$\lim_{n \to \infty} |F_n(x) - F(x)| = |\lim_{n \to \infty} \sum_{k = -\infty}^{k_n} P(X_n = k) - p_k + \sum_{k = k_n + 1}^{\lfloor x \rfloor} P(X_n = k) + p_k|$$

$$= \sum_{k = k_n + 1}^{\lfloor x \rfloor} \lim_{n \to \infty} P(X_n = k) - p_k = \sum_{k = k_n + 1}^{\lfloor x \rfloor} 0$$

Da weiters $F(-\infty) = 0$ und $F(\infty) = 1$ ist F eine Verteilungsfunktion im engeren Sinn und $F_n \to F$ in allen Stetigkeitspunkten von F. Also gilt für $X \sim F$, dass $X_n \to X$ in Verteilung.

Aufgabe 5

Lemma 5. Zeigen Sie: Wenn F eine stetige Verteilungsfunktion ist, dann konvergiert die Folge $(F_n)_{n\in\mathbb{N}}$ genau dann schwach gegen F, wenn sie gleichmäßig konvergiert.

 $Beweis.\;$ Laut Satz 12.5 des Vorlesungsskript ist die schwache Konvergenz äquivalent zu

$$\forall x \in \mathcal{C}(F): \lim_{n \to \infty} F_n(x) = F(x) \tag{i}$$

$$\lim_{n \to \infty} d(F_n, F) := \inf\{\epsilon \ge 0 : \forall x : F_n(x - \epsilon) - \epsilon \le F(x) \le F_n(x + \epsilon) + \epsilon\} = 0,$$
(ii)

wobei $\mathcal{C}(F)$ die Menge aller Stetigkeitspunkte von F bezeichnet. Aus ii erhalten wir:

$$\forall \delta > 0 \ \exists n_0 \in \mathbb{N} : \forall n > n_0 : d(F_n, F) < \delta$$

$$\iff \forall \delta > 0 \ \exists n_0 \in \mathbb{N} : \exists \epsilon_0 < \delta : \forall \epsilon > \epsilon_0 : \forall x : F_n(x - \epsilon) - \epsilon \le F(x) \le F_n(x + \epsilon)$$

$$\iff \forall \delta > 0 \ \exists n_0 \in \mathbb{N} : \exists \epsilon_0 < \delta : \forall \epsilon > \epsilon_0 : \forall x : F(x - \epsilon) - \epsilon \le F_n(x) \le F(x + \epsilon)$$

Also reicht es aus zu zeigen, dass aus der punktweisen Konvergenz der $(F_n)_{n\in\mathbb{N}}$ die gleichmäßige Konvergenz jener Folge folgt. Sei $\epsilon > 0$ beliebig.

Zu zeigen: $\exists n_0 \in \mathbb{N} : \forall n > n_0, \forall x : |F_n(x) - F(x)| < \epsilon$

Wähle $n_0: \forall x: F(x-\epsilon) - \epsilon \leq F_n(x) \leq F(x+\epsilon)$ und vice versa. Mit der Dreiecksungleichung erhalten wir:

$$\forall x : |F(x) - F_n(x)| < |F(x) - F(x + \delta)| + |F(x + \delta) - F_n(x)|$$

Wir wissen aus der Analysis, dass stetige, monotone, beschränkte Funktionen sogar gleichmäßig stetig sind. Da F eine solche Funktion ist können wir den ersten Term gleichmäßig klein machen, wenn wir δ hinreichend klein wählen.

Betrachten wir nun den zweiten Term. Mit einigen Umformungen erhalten wir aus der Konvergenz der Lèvy-Prohorov-Metrik:

$$\forall x : F(x) - F_n(x+\delta) \le \delta$$
 (iii)

$$\forall x : F_n(x+\delta) - \delta \le F(x+2\delta) \Leftrightarrow F_n(x+\delta) \le F(x+2\delta) + \delta \qquad (iv)$$

Nun gilt wegen (iv) auch

$$\forall x : F_n(x+\delta) - F(x) \le F(x+2\delta) + \delta - F(x)$$

Wegen der gleichmäßigen Setigkeit von F können wir nun auch diesen Ausdruck für hinreichend kleines δ gleichmäßig klein machen, also erhalten wir gemeinsam mit (iii)

$$\forall x : |F(x+\delta) - F_n(x)| < \frac{\epsilon}{2}$$

Damit haben wir auch den zweiten Term gleichmäßig abgeschätzt und erhalten insgesamt die gleichmäßige Konvergenz. \Box

Aufgabe 6

Lemma 6. Es gelten folgende Aussagen:

- (a) Seien (X_n) und (Y_n) Folgen von Zufallsvariablen sowie X eine Zufallsvariable auf dem Maßraum $(\Omega, \mathfrak{S}, P)$. Es gelte $X_n \to X$ in Verteilung und $Y_n \to 0$ in Wahrscheinlichkeit. Dann gilt $X_n + Y_n \to X$ in Verteilung.
- (b) Konvergiert eine Folge X_n auf dem Maßraum $(\Omega, \mathfrak{S}, P)$ in Wahrscheinlichkeit gegen X, so gilt auch $X_n \to X$ in Verteilung.
- (c) Eine Folge X_n auf dem Maßraum $(\Omega, \mathfrak{S}, P)$ konvergiert in Verteilung gegen 0 genau dann, wenn X_n in Verteilung gegen 0 konvergiert.

Beweis. (a):

Durch Einsetzen in die Definition, sowie Satz 12.5 erhalten wir:

$$\forall \epsilon > 0: \lim_{n \to \infty} \mathbb{P}(|Y_n| > \epsilon) = 0$$

$$\lim_{n \to \infty} d(X_n, X) := \inf\{\epsilon \ge 0: \forall x: X_n(x - \epsilon) - \epsilon \le X(x) \le X_n(x + \epsilon) + \epsilon\} = 0$$

$$\lim_{n \to \infty} d(X_n, X) := \inf\{\epsilon \ge 0 : \forall x : X_n(x - \epsilon) - \epsilon \le X(x) \le X_n(x + \epsilon) + \epsilon\} = 0$$
(ii)

Wir zeigen:

$$\forall x \in \mathcal{C}(F_X) : \lim_{n \to \infty} F_{X_n}(x) + F_{Y_n}(x) = F_X(x)$$
$$|F_{X_n}(x) + F_{Y_n}(x) - F_X(x)| = |\mathbb{P}(X_n + Y_n \le x) - \mathbb{P}(X \le x)| \le$$
$$|\mathbb{P}(X_n + Y_n \le x) - \mathbb{P}(X_n \le x)| + |\mathbb{P}(X_n \le x) - \mathbb{P}(X \le x)|$$

Der zweite Term lässt sich dabei aufgrund der schwachen Konvergenz von X_n gegen X zu Null diskutieren.

$$\begin{split} |\mathbb{P}(X_n + Y_n \leq x) - \mathbb{P}(X_n \leq x)| &\leq \\ |\mathbb{P}([X_n + Y_n \leq x] \cap [|Y_n| < \epsilon]) - \mathbb{P}([X_n \leq x] \cap [|Y_n| \geq \epsilon])| &\leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([X_n \leq x + \epsilon] \setminus ([X_n + Y_n \leq x] \cap [|Y_n| < \epsilon]))| + |\mathbb{P}([X_n \leq x]) - \mathbb{P}([X_n \leq x + \epsilon])| &\leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([X_n \leq x + \epsilon])| &\leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([X_n \leq x + \epsilon])| &\leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| &\leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| &\leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| &\leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| &\leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| &\leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| &\leq \\ |$$

Jetzt wird der Ausdruck schon wieder ziemlich lang, Zeit Ballast abzuwerfen: Der erste Ausdruck konvergiert aufgrund i gegen 0 und der letzte wegen der Rechtsstetigkeit von Verteilungsfunktionen.

Und munter weiter:

$$|\mathbb{P}([X_n \le x + \epsilon] \setminus ([X_n + Y_n \le x] \cap [|Y_n| \le \epsilon]))| \le |\mathbb{P}([X_n \le x + \epsilon] \cap [X_n + Y_n > x]) + \mathbb{P}([X_n \le x + \epsilon] \cap [|Y_n| > \epsilon])|$$

Mal wieder lassen wir den zweiten Ausdruck verschwinden.

$$|\mathbb{P}([X_n \leq x + \epsilon] \cap [X_n + Y_n > x])| \leq |\mathbb{P}([x - Y_n < X_n \leq x + \epsilon] \cap [|Y_n| \leq \epsilon]) + \mathbb{P}([x - Y_n < X_n \leq x + \epsilon] \cap [|Y_n| > \epsilon])|$$

Selber Trick wie immer.

$$|\mathbb{P}([x - Y_n < X_n \le x + \epsilon] \cap [|Y_n| \le \epsilon])| \le |\mathbb{P}([x - \epsilon \le X_n \le x + \epsilon])| = |F_{X_n}(x + \epsilon) - F_{X_n}(x - \epsilon)|$$

Um diese letzte Hürde noch zu bezwingen müssen wir wieder die Lèvy-Prohorov-Metrik zurate ziehen:

$$|F_{X_n}(x+\epsilon) - F_{X_n}(x-\epsilon)| \le |2\epsilon + F_X(x+2\epsilon) - F_X(x-2\epsilon)|$$

Und dieser Ausdruck verschwindet schließlich, da wir x als Stetigkeitspunkt von F_X vorausgesetzt haben.

(b):

Folgt direkt aus (a), wenn man für die Folge X_n die konstante Nullfolge wählt. (c):

Aus (b) erhalten wir die Rückrichtung der Aussage, Satz 17.5. Kusolitsch liefert uns die Hinrichtung:

Satz. 17.5.

Sind X_n Zufallsvariablen auf beliebigen Wahrscheinlichkeitsräumen $(\Omega_n, \Sigma_n, \mathbb{P}_n)$, dann folgt aus $X_n \implies a, a \in \mathbb{R}$ auch

$$\forall \epsilon > 0 : \lim_{n \to \infty} \mathbb{P}_n(|X_n - a| > \epsilon) = 0$$

Aufgabe 7

Lemma 7. Die Levy-Prokhorov-Metrik ist eine Metrik auf der Menge $M := \{F : \mathbb{R} \to \mathbb{R} \mid F \text{ ist eine Verteilungsfunktion}\}.$

$$d(F,G) := \inf\{\epsilon > 0 \mid \forall x \in \mathbb{R} : F(x - \epsilon) - \epsilon \le G(x) \le F(x + \epsilon) + \epsilon\}.$$

Beweis. Es sind drei Eigenschaften nachzuweisen.

(M1)
$$d(F,G) = 0 \Leftrightarrow F = G$$
.

Aus d(F,G)=0 folgt definitionsgemäß $F(x-\epsilon)-\epsilon \leq G(x) \leq F(x+\epsilon)+\epsilon$ für beliebig kleine $\epsilon>0$. Da F monoton nichtfallend ist, existieren der links- und rechtsseitige Grenzwert bei x und mit $\epsilon\to 0$ erhält man $F(x-)\leq G(x)\leq F(x+)$. F und G stimmen also an allen Stetigkeitspunkten von F überein. F und G haben als Verteilungsfunktionen nur abzählbar viele Unstetigkeitsstellen. Für jedes $x\in\mathbb{R}$ gibt es eine Folge $x_k\searrow x$, die nur aus Stetigkeitsstellen von F und G besteht. Daher gilt $F(x)=\lim_k F(x_k)=\lim_k G(x_k)=G(x)$.

Die andere Richtung ist klar.

(M2)
$$d(F,G) = d(G,F)$$
.

$$\begin{split} E_{FG} &:= \{\epsilon > 0 \mid \forall x \in \mathbb{R} : F(x - \epsilon) - \epsilon \leq G(x) \leq F(x + \epsilon) + \epsilon\}, \\ E_{GF} &:= \{\epsilon > 0 \mid \forall x \in \mathbb{R} : G(x - \epsilon) - \epsilon \leq F(x) \leq G(x + \epsilon) + \epsilon\}. \end{split}$$

Für alle $x \in \mathbb{R}$ gilt $G(x - \epsilon) - \epsilon \le F(x) \Leftrightarrow G(x) \le F(x + \epsilon) + \epsilon$; das erhält man sofort durch Einsetzen von $x + \epsilon$ und Addition von ϵ .

Analog zeigt man $F(x-\epsilon)-\epsilon \leq G(x) \Leftrightarrow F(x) \leq G(x+\epsilon)+\epsilon$. Daher gilt $E_{FG}=E_{GF}$ und folglich

$$d(F,G) = \inf(E_{FG}) = \inf(E_{GF}) = d(G,F).$$

(M3)
$$d(F, H) + d(H, G) \ge d(F, G)$$
.

Sei $d(F, H) \leq \epsilon_1, d(H, G) \leq \epsilon_2$. Dann gilt

$$F(x - \epsilon_1 - \epsilon_2) - \epsilon_1 - \epsilon_2 \le H(x - \epsilon_2) + \epsilon_2 \le G(x) \le H(x + \epsilon_2) + \epsilon_2 \le F(x + \epsilon_1 + \epsilon_2) + \epsilon_1 + \epsilon_2$$
, also $\epsilon_1 + \epsilon_2 \in E_{FG}$ und somit $\epsilon_1 + \epsilon_2 \ge d(F, G)$.

Nun gilt $d(F,H) + d(H,G) = \inf_{\epsilon_1 \in E_{FH}} \epsilon_1 + \inf_{\epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_1 + \epsilon_2$. Infima erhalten Ungleichungen und wir die gewünschte Aussage.