

MongoDB - Cluster

ReplicaSet & Sharding

Travaux Pratiques

ESILV

nicolas.travers (at) devinci.fr

Chapitre

Table des matières

1	Inst	ructions pour la gestion d'un cluster MongoDB	3			
	1.1	Lancement d'un serveur avec fichier de configuration	3			
	1.2	Éditeur de texte en ligne de commande : vim				
	1.3	Édition du fichier de configuration	3			
	1.4	Éteindre MongoDB dans une console MongoDB	4			
	1.5	Lancement automatique	4			
2	Tolérance aux pannes					
	2.1	Installation d'un replicaSet	5			
	2.2	Test de réplication	5			
	2.3	Configuration rapide	5			
3	Créa	ation d'un cluster	7			
	3.1	Installation du cluster	7			
	3.2	Initialisation du sharding	7			
	3.3	Inspecter la configuration	8			
	3.4	Requêtes	8			

Chapitre 1

tructions pour la gestion d'un cluster MongoDB

Pour l'ensemble des travaux pratiques sur le cluster, il faudra utiliser les VMs à disposition sur : https://stargate.exaduo.fr/.

- Lancer les deux machines virtuelles sur compte que nous appelerons ici : VM1 et VM2;
- Ouvrir deux consoles en SSH sur les VMs que nous appelerons : C1 et C2
- Console mongo avec nom du serveur : mongo --host XXXX

1.1 Lancement d'un serveur avec fichier de configuration

Pour que le lancement de l'instruction mongod soit plus simple à chaque serveur, vous allez pouvez utiliser un fichier de configuration comme suit :

- Le répertoire "conf" contient les fichiers de configurations :
 - conf/mongo_RS1.conf \rightarrow config avec ReplicaSet RS1
 - conf/mongo_RS2.conf → config avec ReplicaSet RS2
 - conf/mongo_configSvr.conf → config pour le lancement d'un configServer
 - conf/mongos.conf \rightarrow config pour le routeur 'mongos'
- Pour lancer le serveur avec le fichier de configuration dans une console SSH (C1 ou C2):

```
mongod -f conf/mongo_RS1.conf
```

- Vous gardez la main dans la console (option 'fork' du fichier de config)
- Pour vérifier que le processus est en cours :

```
ps -aux | grep mongo
```

— Vous pouvez consulter le contenu du fichier de configuration avec *vim* (sous-section suivante).

1.2 Éditeur de texte en ligne de commande : vim

Pour éditer vos fichiers, vous pouvez utiliser vim. Prenons l'exemple du fichier de configuration :

```
vim conf/mongo_RS1.conf
```

Voici quelques commandes à connaître :

- i \rightarrow mode édition (insert)
- escape \rightarrow quitter le mode en cours
- $-: \mathbf{w} \to \text{enregistrer (write)}$
- $-: q \rightarrow quitter (quit)$

Autres instructions: http://www.yolinux.com/TUTORIALS/LinuxTutorialAdvanced_vi.html

1.3 Édition du fichier de configuration

Voici la signification des différentes lignes du fichier de configuration :

Chapitre 1. Instructions pour la gestion d'un cluster MongoDB 1.4. Éteindre MongoDB dans une console MongoDB

bind_ip=mongodbXXX	Nom du serveur. À utiliser dans la partie replicaSet et sharding		
port=27017	Port utilisé pour la connexion		
logpath=	Localisation du fichier de log		
fork=true	Ce qui permet de récupérer la main après lancement		
dbpath=	Localisation des fichiers de la base de données		
replSet=RS1	Nom du ReplicaSet. À changer si le nom doit être différent		
shardsvr=true	Est-ce que le serveur est ouvert au sharding		

1.4 Éteindre MongoDB dans une console MongoDB

- Lancer la console **SSH**;
- Éteindre le serveur :

```
mongod -f conf/mongo_RS1.conf -shutdown
```

— C'est fait. Vous pouvez quitter la console mongo.

1.5 Lancement automatique

Si vous voulez aller plus loin, vous pouvez faire démarrer le serveur automatiquement avec le fichier de configuration. Pour cela, il faudra créer un service init.d.

https://github.com/mongodb/mongo/blob/master/rpm/init.d-mongod

Il faudra changer quelques valeurs pour l'adapter à votre VM. Si vous y arrivez, envoyez-moi votre fichier de config et instructions pour lancement pour que je puisse valider.

Cela pourra éventuellement donner des points bonus. Qui sait ? À croire que mettre une telle instruction à la fin d'un chapitre que personne ne va lire est fait exprès...

Tolérance aux pannes

Nous voulons ici tester le système de tolérance aux pannes de MongoDB. Pour cela, nous allons lancer des serveurs avec des ReplicaSets.

2.1 Installation d'un replicaSet

Nous allons lancer un replicatSet avec 3 ou 4 serveurs. Pour les instructions de base, se référer au chapitre 1. Par groupe de 3 ou 4 élèves :

- 2.1.1 Chaque élève lance un serveur avec le fichier de configuration mongo_RS1.conf dans la console C1
- 2.1.2 Le master va lancer le replicaSet dans la console mongo:

```
rs.initiate ();
```

- 2.1.3 Il récupère le **nom de serveur** de chaque membre de son groupe (nom sur stargate.edunao.fr ou dans le fichier de configuration à la ligne 'bind_ip').
- 2.1.4 Insertion d'un serveur au replicat Set (remplacer XXXX par le nom du serveur) :

```
rs.add('XXXXXXXX:27017')
```

2.1.5 Chaque élève peut vérifier le statut du replicaSet (s'il est PRIMARY ou SECONDARY) :

```
rs.status();
```

2.1.6 Vous pouvez également rajouter un arbitre :

```
rs.addArb("XXXXX:27017");
```

2.2 Test de réplication

- 2.2.1 Se connecter au replicat Set (Studio3t, Robo3t, mongo, etc.) en précisant la connexion au replica Set RS1 (sur votre VM).
- 2.2.2 Lancer la requête suivante sur la collection tourPedia.paris

```
db.paris.count();
```

- 2.2.3 Éteindre le serveur PRIMARY (section 1.4)
- 2.2.4 Vérifier qui devient le PRIMARY
- 2.2.5 Relancer la requête
- 2.2.6 Relancer le serveur éteint. Que se passe t-il?
- 2.2.7 Tester l'insertion d'un document et vérifier son existence (après extinction du serveur)

2.3 Configuration rapide

Il est possible de rajouter une liste de serveur lors de l'initialisation :

Chapitre 2. Tolérance aux pannes

2.3. Configuration rapide

Création d'un cluster

Nous voulons ici tester le système de distribution avec le sharding de MongoDB.

3.1 Installation du cluster

Nous allons lancer un cluster avec 3 shards. Pour les instructions de base, se référer au chapitre 1.

Se mettre par groupe de 3 ou 4 élèves

- 3.1.1 Définition de l'architecture. Par groupe, définir parmi toutes les VM disponibles celles qui vont jouer les rôles suivants :
 - CS1 ConfigServer : Un replicaSet pour gérer l'ensemble du cluster (1 serveur minimum, normalement 3)
 - MS mongos : Un routeur qui va recevoir les requêtes.

Normalement 3 routeurs. On peut en mettre 1 par élève pour faciliter les connexions extérieures)

Sx shards: Le reste peut être utilisé comme shards (replicatSet de 1 serveur)

- 3.1.2 Pour **CS1**:
 - (a) Lancer CS1. Utiliser le fichier de config "mongo_configSvr.conf"
 - (b) Lancer le replicatSet

```
mongo --host XXXX --port 27018
rs.initiate()
```

- 3.1.3 Pour les shards \mathbf{Sx} :
 - (a) 1 shard = 1 replicaSet

△ changer le nom du RSx dans le fichier de configuration RS1/RS2 (ou générer un nouveau)

- (b) Lancer Sx. Utiliser le fichier de config "mongo_RSx.conf" (remplacer le x par le numéro du replicaSet)
- (c) La première fois, initialiser le replicaSet (section 2.1)
- 3.1.4 Pour le routeur MS:
 - (a) Changer le fichier de config "mongos.conf" pour cibler CS1 : configdb=configSvr/XXXXXX:27018
 - (b) Lancer le **MS** avec le fichier de config
 - (c) Se connecter via console SSH au routeur et lancer la console mongo :

```
mongo --host XXXXX --port 30000
```

(d) Ajouter les shards:

```
sh.addShard("RS1/XXX:27017")
sh.addShard("RS2/YYY:27017")
sh.addShard("RS3/ZZZ:27017")
```

3.2 Initialisation du sharding

 $\it 3.2.1$ Dans la console mongo sur MS :

```
use test;
sh.enableSharding("test");
db.createCollection('testSharding');
sh.shardCollection('test.testSharding', {"_id": 1});
```

Chapitre 3. Création d'un cluster 3.3. Inspecter la configuration

3.2.2 Importer une collection en utilisant les paramètres suivants :

Serveur	Port	Database	Collection
MS	30000	test	testSharding
(nom de votre configServer)			

3.2.3 Dans la console mongo de MS, vérifier le statut du cluster :

sh.status();

Vous pourrez constater la prise en contact des shards (et leur replicaSet), des configServer, et de l'emplacement des chunks de votre collection.

3.3 Inspecter la configuration

- Connectez-vous à MS (Studio3t, Robo3t, mongo, etc.)
- Compter le nombre de documents présents dans test.testSharding
- Connectez-vous à **Sx** et faites de même. Pourquoi le résultat peut être différent?
- Tester deux requêtes différentes:
 - Recherche de la clé {_id:1}
 - Recherche d'une clé {XXX:YYY}

Avec la fonction '.explain()', constater l'utilisation du sharding.

— Reprendre le processus de la section 3.2, mais en faisant un sharding sur la clé XXX dans une nouvelle collection.

3.4 Requêtes

Vous avez déjà fini? Vous pouvez testé les requêtes mapReduce ou aggregate sur la collection tourPedia.paris