The Soft-Thresholding Operator: Derivations & Proofs

Paul F. Roysdon, Ph.D.

I. Introduction

Our work in outlier detection and exclusion, or accommodation, is motivated by recent advances in computer vision where sparse representation of candidate tracking sets [3] is applied to face recognition [4]. While it is common in the robotics community to solve state estimation problems by a formulation of the Maximum Likelihood Estimate (MLE), e.g. the Kalman filter, the MLE is sensitive to measurements which deviate from their stochastic noise model. The authors of [3] demonstrate that l_1 -regularization can exploit the sparseness of outliers in a candidate dataset. However, success of the regularization depends on measurement redundancy.

II. LINEAR PROBLEM FORMULATION

Consider the simple linear model

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\eta},\tag{1}$$

where $\mathbf{y} \in \mathbb{R}^m$, $\mathbf{H} \in \mathbb{R}^{m \times n}$ for m > n, state vector $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{\eta} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}\mathbf{\sigma}^2)$ is the measurement noise. The maximum likelihood estimate for \mathbf{x} is found by

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{arg\,min} \left\{ -\frac{1}{2} \|\mathbf{y} - \mathbf{H}\boldsymbol{x}\|_{2}^{2} \right\}. \tag{2}$$

Given a dataset without outliers, the residual $\mathbf{r} \triangleq \mathbf{y} - \mathbf{H} \boldsymbol{x}$ will be dense with variance $\mathbf{I} \boldsymbol{\sigma}^2$. However, in the presence of outliers, \mathbf{r} will contain both dense values from nominal measurements, and sparse values resulting from outliers. We can exploit the sparseness of the outliers by solving the problem in (1) as an l_1 -regularized least squares problem, which is known to yield sparse solutions [3]. The Least Soft-thresholded Squares (LSS) [5] estimate for \boldsymbol{x} is found by

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{arg \min} \left\{ -\frac{1}{2} \|\mathbf{y} - \mathbf{H}\boldsymbol{x} - \mathbf{s}\|_{2}^{2} + \lambda \|\mathbf{s}\|_{1} \right\}, \quad (3)$$

where $\mathbf{s} \in \mathbb{R}^m$, and the regularizing or *soft-thresholding* parameter [6] is $\lambda \in \mathbb{R}$. The $\|.\|_1$ and $\|.\|_2$ denote the l_1 and l_2 norms respectively.

A. Example 1: Necessity of Measurement Redundancy

Consider a simple 2D line-fit problem, $\mathbf{y} = \mathbf{H}\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^2$, $\mathbf{y} \in \mathbb{R}^m$, and $\mathbf{H} \in \mathbb{R}^{m \times 2}$. The vertical shift along the y-axis is $\mathbf{x}(1)$, and slope is $\mathbf{x}(2)$. Suppose the true values are $\mathbf{x} = [0, 0]$, then true line lies on the x-axis of the x-y plane.

Assume m=2. Given two measurements, $\tilde{\mathbf{y}}=[5,0]$, the Least-Square (LS) estimate of the two unknowns is $\hat{\mathbf{x}}=(\mathbf{H}^{\mathsf{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathsf{T}}\tilde{\mathbf{y}}=[5,-5]$, i.e. the estimated line is shifted up by 5 and has a slope of -5. Clearly, without measurement

redundancy, it is impossible to reject, or accommodate, the bad measurement $\mathbf{y}(1) = 5$.

For the overdetermined problem where $m \geq 3$, there are (m-2) degrees-of-freedom with which to make a decision given any pair measurements. If a measurement is bad, an algorithm can be employed to remove or accommodate for the bad measurement, and the simple 2D line-fit problem can still be solved. While this is a trivial example, it motivates the necessity of measurement redundancy.

B. Example 2: Sparsity of L-1 Regularization

Here we extend the 2D line-fit problem of Section II-A, such that m=200. Applying eqn. (3), Fig. 1 illustrates the residuals for two cases, with and without outliers. It is clear that the top plot of Fig. 1 (the case without outliers) contains residuals which are dense with zero mean. However, the bottom plot of Fig. 1 (the case *with* outliers) clearly shows that outliers are generally sparse, substantiating the claim of [3].

Applying equations (2) and (3) to the 2D line-fit problem, it is trivial to demonstrate the LS sensitivity to outliers. In this example, the LS residuals have a mean $\mu=7.39$ and standard deviation $\sigma=2.75$, whereas the LSS residuals have $\mu=0.05$ and $\sigma=0.99$.

The resulting model fit is shown in Fig. 2, where the true line lies on the x-axis, the LS fit is shifted up along the y-axis, and the LSS result nearly overlaps the true line. 1

Fig. 1. Top: Clean dataset residuals without outliers. Bottom: Corrupted dataset residuals with 5% outliers.

¹PFR: I think this paragraph and the Fig. 2 are unnecessary.

Fig. 2. 2D line fit with a corrupted dataset containing 5% outliers.

III. SOFT-THRESHOLDING OPERATOR PROOF

This section solves the optimization problem

$$f(r) = \mathop{\arg\min}_{s} \left\{ \frac{1}{2} \left(r - \frac{s}{\sigma} \right)^2 + \frac{1}{\nu} |s| \right\} = \mathop{\arg\min}_{s} g_r(s),$$

where $r, s \in \mathbb{R}$, $\sigma > 0$ and $\nu > 0$ are the parameters of the Normal and Laplacian distributions, and

$$g_r(s) \triangleq \frac{1}{2} \left(r - \frac{s}{\sigma} \right)^2 + \frac{1}{\nu} |s|. \tag{4}$$

Note first that $g_r(s)\Big|_{s=0} = \frac{1}{2}r^2$.

Because $g_r(s)$ is not differentiable in s, three cases can be considered (s < 0, s = 0, and s > 0), with the final answer f(r) being the value of s over the three cases that gives the lowest cost. For $s \neq 0$:

$$\frac{\partial}{\partial s}g_r(s) = -\frac{r}{\sigma} + \frac{s}{\sigma^2} + \frac{1}{\nu} \operatorname{sgn}(s).$$

For s>0, $\frac{\partial}{\partial s}g_r(s)=0$ yields the critical value $s_+^*=\sigma(r-\mu)$, where $\mu\triangleq\frac{\sigma}{\nu}$. Because, in this case $s_+^*>0$, it must be that $r>\mu$. The cost at s_+^* is:

$$g_r(s)\Big|_{s=s_+^*} = g_r(\sigma(r-\mu)) = \mu r - \frac{1}{2}\mu^2.$$

Note that:

$$\frac{1}{2}(r-\mu)^2 \ge 0 \quad \forall \ r, \mu;$$

therefore,

$$\frac{1}{2}r^2 \ge r\mu - \frac{1}{2}\mu^2 \quad \forall \ r, \mu.$$

This ensures that in this case (i.e., s > 0), for any value of r, it is true that $g_r(s_+^*) \leq g_r(0)$.

For s<0, $\frac{\partial}{\partial s}g_r(s)=0$ yields the critical value $s_-^*=\sigma(r+\mu)$. Because, in this case $s_-^*<0$, it must be that $r<-\mu$. The cost at s_-^* is:

$$g_r(s)\Big|_{s=s_-^*} = g_r(\sigma(r+\mu)) = -\mu r - \frac{1}{2}\mu^2.$$

Note that:

$$\frac{1}{2}(r+\mu)^2 \geq 0 \ \forall \ r,\mu;$$

therefore.

$$\frac{1}{2}r^2 \ge -r\mu - \frac{1}{2}\mu^2 \quad \forall \ r, \mu.$$

This ensures that in this case (i.e., s < 0), for any value of r, it is true that $g_r(s_+^*) \le g_r(0)$.

When $|r| < \mu$, it is straightforward to show that any non-zero value of s will increase the second term of $g_r(s)$ more than it decreases the first term; therefore, in this case $s^* = 0$.

Given the analysis above, the unique optimal solution for s as a function of r and $\mu > 0$ is:

$$s = \begin{cases} \sigma(r+\mu), & \text{if } r < -\mu, \\ \sigma(r-\mu), & \text{if } r > \mu, \\ 0, & \text{otherwise.} \end{cases}$$
 (5)

Eqn. (5) can be more compactly stated as

$$S_{\sigma,\nu}(r) = \sigma \, \operatorname{sgn}(r) \, \, \max\left(|r| - \frac{\sigma}{\nu}, 0\right).$$

REFERENCES

- P. F. Roysdon and J. A. Farrell, "GPS-INS Outlier Detection and Elimination using a Sliding Window Filter," *American Control Conference*, In Presc., 2017.
- [2] —, "Robust GPS-INS Outlier Accommodation using a Sliding Window Filter," 22th IFAC World Congress, 2017.
- [3] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, "Robust Face Recognition via Sparse Representation," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 31, no. 2, 2009.
- [4] X. Mei and H. Ling, "Robust Visual Tracking using L-1 Minimization," 2009 IEEE 12th International Conference on Computer Vision (ICCV), 2009.
- [5] D. Wang, H. Lu, and M. Yang, "Robust Visual Tracking via Least Soft-threshold Squares," *IEEE Transactions on Circuits and Systems* for Video Technology, 2015.
- [6] P. Huber, Robust Statistics. New York: John Wiley and Sons Inc., 1986