# Kernel methods for machine learning Homework 2

#### Med Chiheb Yaakoubi

### Exercice 1: Sobolev Spaces

Let's suppose that  $\mathcal{H}$  is an RKHS and its reproducing kernel being K We know that the functions :  $t \mapsto \mathbf{1}_{[x,1]}(t)$  are in  $\mathcal{H}$  hence:

$$\mathbf{1}_{[x,1]}(t) = \langle K_t, \mathbf{1}_{[x,1]}(.) \rangle_{\mathcal{H}} = \int_x^1 K(t,u) du + \int_0^1 \delta_x \partial_u K_t(u) du$$
$$= \int_x^1 K(t,u) du + \partial_u K_t(x)$$

We can now differentiate by x and we get:

$$-\delta(x-t) = -K(t,x) + \partial_u^2 K(t,x)$$

We can then solve this equation and find the reproducing kernels. Having the expression of the kernels we finally check that they verify the reproducing kernel properties and we get that  $\mathcal{H}$  is an r.k

## Exercice 2: Gaussian RKHS

(Q1) K is positive definite

We know that K writes:

$$K(x,t) = Const \times exp(-const \times (||x||^2)exp(-const \times (||y||^2)exp(const \times x^Ty))$$

The first two exponentials constitute a p.d kernel since they are independant. The second term is of the form  $e^K$  where K is a p.d kernel. Since the multiplication of two p.d Kernels gives out a p.d Kernel we get the result.

(Q2) 
$$H_{\tau} \subset H_{\sigma} \subset L_2(\mathbb{R}^d)$$

We have  $H_{\sigma} \subset L_2(\mathbb{R}^d)$  because the  $(t \mapsto K_{\sigma}(x,t))_x \subset L_2(\mathbb{R}^d)$  and that  $\mathcal{H}_{\sigma}$  is closure of the span of these functions. we can also notice that for any  $f \in \mathcal{H}_{\sigma}$ , since it's in  $L_2(\mathbb{R}^d)$ :

$$\langle f, K_x \rangle_{\mathcal{H}} = f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(t)e^{itx}dt$$
 (1)

We can also see that:

$$\widehat{K_{\sigma}(x,.)} = e^{-ixt}e^{-\sigma^2\frac{||t||^2}{2}}$$

From this we can see that:

$$< f, K_x>_{\mathcal{H}_{\sigma}} = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(t) \overline{\hat{K}_x(t)} e^{\sigma^2 \frac{||t||^2}{2}} dt$$

Since we got the expression of the dot product for the r.k functions (take  $f = K_y$ ) we can generalize to the whole space and get:

$$< f, g>_{\mathcal{H}_{\sigma}} = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(t) \overline{\widehat{g}(t)} e^{\sigma^2 \frac{||t||^2}{2}} dt$$

Meaning that:

$$||f||_{\mathcal{H}_{\sigma}} = \int_{\mathbb{R}^d} \hat{f}(t)^2 e^{\sigma^2 ||t||^2/2} dt$$

for a function  $f \in \mathcal{H}_{\tau}$  i.e  $\hat{f}(t)^2 e^{\tau^2 ||t||^2/2}$  is integrable, hence  $hat f(t)^2 e^{\sigma^2 ||t||^2/2}$  is also integrable by  $\tau > \sigma$  which means f is in  $\mathcal{H}_{\sigma}$ 

(Q3) from the above characterization, we can directly deduce the first inequality. for the second inequality we have to see  $||f||_{L_2(\mathbb{R}^d)}$  using the parseval equality which leads us to:

$$||f||_{\mathcal{H}_{\sigma}} - ||f||_{L_2(\mathbb{R}^d)} = \int_{\mathbb{R}^d} \hat{f}(t)^2 (e^{\sigma^2||t||^2/2} - 1) dt$$

But since a simple differentiation can help us conclude that:

$$e^{\sigma^2||t||^2/2} - 1 \le \frac{\sigma^2}{\tau^2} (e^{\tau^2||t||^2/2} - 1)$$

We get the second inequality

(Q4)for  $\tau > 0$  let  $f \in \mathcal{H}_{\tau}$ , let also  $\sigma$  such that  $\sigma < \tau$  if we use the previous inequality we get the result needed.

### Exercice 3: Support Vector Classifier

 $(\mathbf{Q1}\setminus\mathbf{a})$  The lagrangian can be written as:

$$\mathcal{L}(x,\alpha,\mu) = \frac{1}{2}||f||^2 + C\sum_{i=1}^N \xi_i + \sum_{i=1}^N \alpha_i (1 - \xi_i - y_i(f(x_i) + b)) - \sum_{i=1}^N \mu_i \xi_i$$
$$= \frac{1}{2}||f||^2 + \sum_{i=1}^N (C - \alpha_i - \mu_i)\xi_i + \sum_{i=1}^N \alpha_i (1 - y_i(f(x_i) + b))$$

where  $x = (f, b, (\xi_i))$ (Q1\b) The dual problem is:

$$\max_{\alpha_i} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j k(x_i, x_j)$$
s.t. 
$$\sum_{i=1}^{n} \alpha_i y_i = 0,$$

$$0 \le \alpha_i \le C \quad \text{for } i = 1, 2, \dots, n.$$

and

$$f = \sum_{i=1}^{N} \alpha_i y_i k(x_i, .)$$

(Q1\c) Using the complentary slackness conditions we get that the support vector points are the points  $x_i$  s.t.  $\alpha_i > 0$  (Q2\a)

```
class RBF:

def __init__(self, sigma=1.):
    self.sigma = sigma ## the variance of the kernel

def kernel(self,X,Y):
    # We use here vectorized operations instead of loops for optimization
    # Compute pairwise squared Euclidean distances
    X_norm = np.sum(X**2, axis=1)[:, np.newaxis] # Shape (N, 1)
    Y_norm = np.sum(Y**2, axis=1)[np.newaxis, :] # Shape (1, M)
    distances = X_norm + Y_norm - 2 * np.dot(X, Y.T) # Shape (N, M)

# Compute the RBF kernel
    G = np.exp(-distances / (2 * self.sigma**2))
    return G

class Linear:
    def kernel(self,X,Y):
    G = np.dot(X,Y.T)
    return G

✓ 0.0s
```

 $(Q2\b)$ 

```
def fit(self, X, y):
  #### You might define here any variable needed for the rest of the code
   N = len(y)
   K = self.kernel(X,X) # the gram matrix
   self.X = X
   self.y = y
   # Lagrange dual problem
   def loss(alpha):
       s 1 = np.sum(alpha)
       weighted labels = v*alpha
       s 2=np.dot(weighted labels.T,np.dot(K,weighted labels))
       return s 1-(1/2)*s 2
   # Partial derivate of Ld on alpha
   def grad loss(alpha):
       weighted labels = y*alpha
       return 1 - y * np.dot(K,weighted labels)
   # Constraints on alpha of the shape :
   \# - d - C*alpha = 0
   # - b - A*alpha >= 0
   fun eq = lambda alpha: np.dot(y,alpha) # '''-----function de
   jac eq = lambda alpha: y #'''----jacobian wrt alpha of th
   fun_ineq = lambda alpha: np.hstack([self.C-alpha,alpha]) # '''------
    jac ineq = lambda alpha: np.vstack([-np.eye(N),np.eye(N)]) # '''-----
```

 $(Q2 \ c)$ 

```
### Implementation of the separting function $f$
def separating_function(self,x):
    # Input : matrix x of shape N data points times d dimension
    # Output: vector of size N
    K_pred = self.kernel(self.X,x).T
    return np.dot(K_pred,self.alpha*self.y)
```

 $(Q2\d)$ 

```
def plotClassification(X, y, model=None, label='', separatorLabel='Separator',
           ax=None, bound=[[-1., 1.], [-1., 1.]]):
    """ Plot the SVM separation, and margin """
   colors = ['blue','red']
   labels = [1,-1]
   cmap = pltcolors.ListedColormap(colors)
   if ax is None:
       fig, ax = plt.subplots(1, figsize=(11, 7))
    for k, label in enumerate(labels):
       im = ax.scatter(X[y==label,0], X[y==label,1], alpha=0.5,label='class '+str(label))
    if model is not None:
       plotHyperSurface(ax, bound[0], model, model.b, separatorLabel)
       if model.support is not None:
           ax.scatter(model.support[:,0], model.support[:,1], label='Support', s=80, facecolors='n
           print("Number of support vectors = %d" % (len(model.support)))
        # Plot the margins
        supp pred = model.predict(model.support)
        supp neg = model.support[supp pred==-1]
       supp pos = model.support[supp pred==1]
       intercept neg = -np.max(model.separating function(supp neg))
                                                                       ### compute the intercept
       intercept pos = -np.min(model.separating function(supp pos)) ### compute the intercept for
       xx = np.array(bound[0])
       plotHyperSurface(ax, xx, model, intercept_neg , 'Margin -', linestyle='-.', alpha=0.8)
       plotHyperSurface(ax, xx, model, intercept_pos , 'Margin +', linestyle='--', alpha=0.8)
       # Plot points on the wrong side of the margin
       y pred = model.predict(X)
       wrong_side_points = X[y_pred!=y]# find wrong points
       ax.scatter(wrong side points[:,0], wrong side points[:,1], label='Beyond the margin', s=80,
               edgecolors='grey', color='grey')
   ax.legend(loc='upper left')
   ax.grid()
   ax.set xlim(bound[0])
   ax.set ylim(bound[1])
```

Here are the plots we get from our code in their respective order:











