ZkHack. On the importance of denting the SRS

Nethermind Research

Notation. We use bracket notation to denote group elements. Namely, for an element $g_1^a \in \mathbb{G}_1$ we write $[a]_1$. Similarly for elements of \mathbb{G}_2 , \mathbb{G}_T . We use additive notation, that is we write $[a]_1 + [b]_1$ to denote element $g_1^a \cdot g_1^b$. We use \bullet to denote a bilinear pairing between elements $[a]_1$ and $[b]_2$, i.e. we write $[a]_1 \bullet [b]_2 = [ab]_T$.

High level overview of the algorithm. The commitment key of the (broken) argument equals $ck = \{ [1, \tau, \dots, \tau^{2dim-1}]_1, [1, \dots, \tau^{dim}]_2 \}.$

Commit(ck, v): To commit to a vector $v = (v_0, \ldots, v_{dim-1})$ of length dim. We define polynomial $a(X) = v_0 X + v_1 X^2 + \ldots + v_{dim-1} X^{dim}$. The committer computes and outputs the KZG commitment to a(X), i.e. $[a(\tau)]_1$.

Open(ck, $[a(\tau)]_1$, w): We will denote by $\tilde{\boldsymbol{w}} = (\tilde{w}_0, \dots, \tilde{w}_{dim-1})$ a vector of length dim such that $\tilde{w}_i = w_{dim-1-i}$, i.e. $\tilde{\boldsymbol{w}}$ is \boldsymbol{w} read from right to left. Given the public vector \boldsymbol{w} , the committer computes:

- polynomial $b(X) = (0||\tilde{\boldsymbol{w}})^{\top} \cdot (1, X, X^2, \dots, X^{dim}),$
- polynomial $c(X) = a(X) \cdot b(X)$. We note that polynomial's c(X) coefficient to X^{dim+1} equals $v_0 w_0 + \ldots + v_{dim-1} w_{dim-1}$, i.e. the inner product of \boldsymbol{v} and \boldsymbol{w} . We denote the inner product by ip. We define a polynomial $d(X) = c(X) ip \cdot X^{dim+1}$.

Eventually, the committer outputs the KZG commitment to d(X), i.e. $[d(\tau)]_1$.

 $\begin{aligned} & \text{Verify(ck,} \left[a(\tau)\right]_1, \left[d(\tau)\right]_1, ip, \boldsymbol{w}) \colon ip \text{ is the claimed inner product of vectors } \boldsymbol{v} \text{ and } \boldsymbol{w}. \text{ The verifier computes } b(X) = (0||\tilde{\boldsymbol{w}})^\top \cdot (1, X, X^2, \dots, X^{dim}) \text{ and accepts if } \left[a(\tau)\right]_1 \bullet \left[b(\tau)\right]_2 = ip \cdot \left[\tau^{dim}\right]_1 \bullet \left[\tau\right]_2 + \left[d(\tau)\right]_1 \bullet \left[1\right]_2. \end{aligned}$

Why it doesn't work? To build an intuition about the attack, we recall the following security assumption (which holds in the algebraic group model): If KZG polynomial commitment's key does not contain element $[\tau^q]_1$, then no adversary $\mathcal A$ can commit to a polynomial that has non-zero coefficient to X^q . More precisely, in the AGM, if $\mathcal A$ outputs a commitment to a polynomial f(X) that has a non-zero coefficient to X^q , then $\mathcal A$ can be used to break a (variant of) discrete logarithm assumption and reveal the trapdoor τ .

We show that a malicious prover can convince the verifier on a false inner product value ip'. We note that polynomial d(X), when computed correctly, has 0 as a coefficient to X^{dim+1} . Moreover, given the assumption above, it is impossible for an adversary to commit to a polynomial that has non-zero coefficient to X^{dim+1} if $\left[\tau^{dim+1}\right]_1$ is not in the SRS. However, that's not the case. Since the argument's SRS contains $\left[\tau^{dim+1}\right]_1$ the adversary can commit to polynomial d(X) with non-zero coefficient to X^{dim+1} . This allows a malicious prover to coin an attack. A malicious prover follows the protocol, except it uses ip' whenever an honest prover would use ip. More precisely, it computes $d(\tau) \leftarrow c(\tau) - ip' \cdot \tau^{dim+1}$. Since the verification equation checks $a(\tau) \cdot b(\tau) = ip' \cdot \tau^{dim+1} + d(\tau)$, what is exactly the case, the verifier accepts the proof.