Geometría II. Grado en matemáticas Examen final. Curso 2013-2014

Toda la asignatura

1. Sea f el endomorfismo de \mathbb{R}^3 que respecto de la base usual tiene matriz asociada

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ \alpha & 3 & \alpha \\ 1 & 1 & 2 \end{array}\right).$$

- (a) Probar que $\lambda = 1$ es un valor propio de f y estudiar para qué valores de $\alpha \in \mathbb{R}$ es diagonalizable.
- (b) Cuando f no sea un automorfismo encontrar una base de vectores propios de f.
- (c) Para algún valor de α , encontrar una base ortogonal de \mathbb{R}^3 con su métrica usual formada por vectores propios de f.
- 2. Sea g_{β} la métrica en \mathbb{R}^3 cuya forma cuadrática está dada por:

$$\Phi_{\beta}(x,y,z) = y^2 + \beta z^2 + 2xy + 2\beta xz.$$

- (a) Clasificar las métricas g_{β} según los valores de $\beta \in \mathbb{R}$.
- (b) Calcular el radical o núcleo de cada g_{β} .
- (c) Resolver la ecuación $\Phi_0(x, y, z) = 0$.
- 3. Se considera el endomorfismo de \mathbb{R}^3 dado por:

$$f(x,y,z) = \frac{1}{2} (x - \sqrt{2}y - z, \sqrt{2}x + \sqrt{2}z, -x - \sqrt{2}y + z).$$

Demostrar que es una isometría en (\mathbb{R}^3, g_u) , clasificarla y describir sus elementos geométricos.

- 4. Resolver de forma razonada las siguientes cuestiones:
 - (a) Sea $A \in M_2(\mathbb{R})$ con $p_A(\lambda) = (1 \lambda)^2$. ¿Es A semejante a una matriz diagonal? Si la respuesta es negativa, mostrar un contraejemplo.
 - (b) Probar que si $f: V \to V$ es una isometría de un espacio vectorial euclídeo (V, g) y det(f) = -1, entonces $\lambda = -1$ es valor propio de f.
 - (c) ¿Es cierto que en (\mathbb{R}^3, g_u) ninguna simetría ortogonal respecto a un plano es composición de simetrías ortogonales respecto a rectas?

Duración: 3 horas

Granada, 10 de julio de 2014

Geometría II. Grado en matemáticas Examen final. Curso 2013-2014

Solo segunda parte

- 1. Se considera el espacio vectorial euclídeo $(M_2(\mathbb{R}), g)$, donde $M_2(\mathbb{R})$ es el espacio de las matrices cuadradas de orden 2 con coeficientes reales y g es la métrica definida como $g(A, C) = tr(AC^t)$. Se pide lo siguiente:
 - (a) Calcular el complemento ortogonal en $(M_2(\mathbb{R}), g)$ del subespacio $A_2(\mathbb{R})$ formado por las matrices antisimétricas.
 - (b) Obtener dos matrices $A, C \in S_2(\mathbb{R})$ que sean linealmente independientes, unitarias en $(M_2(\mathbb{R}), g)$, y que formen ángulo $\pi/4$ con la matriz identidad I_2 .
- 2. Se considera el endomorfismo de \mathbb{R}^3 dado por:

$$f(x,y,z) = \frac{1}{2} (x - \sqrt{2}y - z, \sqrt{2}x + \sqrt{2}z, -x - \sqrt{2}y + z).$$

Demostrar que es una isometría en (\mathbb{R}^3, g_u) , clasificarla y describir sus elementos geométricos.

- 3. Resolver de forma razonada las siguientes cuestiones:
 - (a) Probar que si $f: V \to V$ es una isometría de un espacio vectorial euclídeo (V, g) y det(f) = -1, entonces $\lambda = -1$ es valor propio de f.
 - (b) Probar que si $f: V \to V$ es un endomorfismo diagonalizable, entonces existe una métrica euclídea g en V tal que f es autoadjunto en (V, g).
 - (c) ¿Es cierto que en (\mathbb{R}^3, g_u) ninguna simetría ortogonal respecto a un plano es composición de simetrías ortogonales respecto a rectas?

Duración: 2 horas y media

Granada, 10 de julio de 2014