Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет Информационных технологий и программирования

Типовой расчёт по математической статистике «Оценивание, проверка статистических гипотез» Вариант 4.

Выполнил: Васильков Дмитрий Алексеевич М3215

Проверил: Тертычный Владимир Юрьевич

Санкт-Петербург 2024 г.

Составление статистического ряда, гистограммы и нахождение точечных оценок математического ожидания и дисперсии

Исходные данные:

-0,993	-0,270	-0,194	2,646	-0,456	-0,703	0,660	0,134	-2,058	-0,180
1,188	0,502	0,985	-0,053	0,193	-0,744	1,124	2,408	-2,332	-0,035
2,388	-0,119	0,468	0,472	0,889	0,371	0,979	0,901	-0,370	1,934
2,265	-0,001	-1,364	-2,080	-1,591	1,437	-1,316	0,076	1,285	1,305
-0,355	-2,735	1,194	-1,038	0,586	-0,213	1,143	0,454	0,097	-0,016
-0,327	-0,535	0,743	0,628	1,525	0,492	0,979	-1,417	-0,226	0,449
0,083	2,209	-0,121	0,867	2,143	-0,323	0,492	-0,919	-0,317	-0,522
0,433	-0,605	-0,031	2,071	-0,746	0,822	1,257	-1,448	0,634	-1,055
-1,435	-1,003	-0,594	-1,531	-1,414	0,594	-1,481	0,039	-0,047	1,152
-0,499	1,683	2,247	1,444	-0,418	-2,977	-0,968	-0,308	-1,816	-0,446
1,627	1,555	0,310	-0,074	1,414	1,007	0,555	0,003	-2,789	0,005
-0,239	-1,050	1,991	-0,362	-0,884	0,884	0,759	-1,406	0,262	-0,206
-0,961	0,096	-0,119	-0,777	0,166	-0,405	-0,572	1,624	0,119	0,049
-0,152	0,251	-0,272	-0,250	-0,048	-2,619	1,158	0,139	0,332	0,926
0,350	0,033	0,478	0,637	-0,033	-0,319	0,570	-0,837	-0,413	-1,640
-0,795	-0,015	1,774	-1,568	0,302	-1,120	-0,917	-0,091	1,118	0,277
-0,622	-0,554	-0,470	0,700	-0,656	1,460	1,701	0,630	-0,700	-0,674
1,429	-1,163	-0,925	0,973	-0,052	0,409	-0,024	0,384	-0,350	0,203
-2,084	0,100	0,001	-0,070	0,773	1,132	-0,769	-0,609	1,816	1,307

Составим статистический ряд с 12-ю интервалами. Наименьший элемент выборки a=-2,977, наибольший b=2,646. Частное $\frac{b-a}{12}=0,4686$.

Округляя, получаем h = 0.5

Удобно взять $\tilde{a}=-3$ и $\tilde{b}=3$

Номер интервала (x_{i-1}, x_i)	1	2	3	4	5	6	7	8	9	10	11	12
Границы интервалов	(-3; -2,5)	(-2,5; -2,0)	(-2,0; -1,5)	(-1,5; -1,0)	(-1,0; -0,5)	(-0,5; 0)	(0; 0,5)	(0,5; 1,0)	(1,0; 1,5)	(1,5; 2,0)	(2,0; 2,5)	(2,5; 3,0)
x_i^*	-2,75	-2,25	-1,75	-1,25	-0,75	-0,25	0,25	0,75	1,25	1,75	2,25	2,75
n_i	4	4	5	14	27	46	38	25	18	10	8	1
p_i^*	0,02	0,02	0,025	0,07	0,135	0,23	0,19	0,125	0,09	0,05	0,04	0,005

Примечания: $\sum_{i=1}^{12} n_i = 200$; $\sum_{i=1}^{12} p_i^* = 1$

Эмпирическая функция распределения

Границы	(-∞; -2,75]	(-2,75;	(-2,25;	(-1,75;	(-1,25;	(-0,75;	(-0,25;	(0,25;	(0,75;	(1,25;	(1,75;	(2,25;	(2,75;
интервалов		-2,25]	-1,75]	-1,25]	-0,75]	-0,25]	0,25]	0,75]	1,25]	1,75]	2,25]	2,75]	∞)
n_x	2	5	9	21	39	75	117	151	172	187	195	200	200
X													
F(x)	0,01	0,025	0,045	0,105	0,195	0,375	0,585	0,755	0,86	0,935	0,975	1	1
	0,01	0,020	0,010	0,100	0,100	0,070	0,000	0,700	0,00	0,000	0,070	•	·

Математическое ожидание и дисперсия

Найдем точечные оценки математического ожидания и дисперсии. В качестве таких оценок выбирают среднее

выборочное значение $\bar{X} = \sum_{i=1}^{12} x_i^* p_i^*$ и выборочную дисперсию $S^2 = \sum_{i=1}^{12} (x_i^* - \bar{X})^2 p_i^* = \sum_{i=1}^{12} x_i^{*2} p_i^* - \bar{X}^2 = m_2 - \bar{X}^2$, где $m_2 = \sum_{i=1}^{12} x_i^{*2} p_i^*$

Номера													Некоторые
интервалов $(x_{i-1}; x_i)$	1	2	3	4	5	6	7	8	9	10	11	12	результаты
x_i^*	-2,75	-2,25	-1,75	-1,25	-0,75	-0,25	0,25	0,75	1,25	1,75	2,25	2,75	
p_i^*	0,020	0,020	0,025	0,070	0,135	0,230	0,190	0,125	0,090	0,050	0,040	0,005	
$x_i^*p_i^*$	-0,055	-0,045	-0,044	-0,088	-0,101	-0,058	0,048	0,094	0,113	0,088	0,090	0,014	$\overline{X} = 0.055$
$\overline{x_i^{*2}p_i^*}$	0,151	0,101	0,077	0,109	0,076	0,014	0,012	0,070	0,141	0,153	0,203	0,038	$m_2 = 1,145$

Среднее выборочное значение $\bar{X} = \sum_{i=1}^{12} x_i^* p i^* = 0,055$

Выборочная дисперсия $S^2 = \sum_{i=1}^{12} (x_i^*)^2 p i^* - \overline{X^2} = m_2 - \overline{X^2} = 1,142$

Доверительный интервал

При $\gamma = 0.95$ и $\Phi(t) = 0.975$ получаем t = 1.95 и доверительный интервал

$$\overline{X} - t \frac{s}{\sqrt{n}} = -0.0924 \approx -0.09 \text{ M } \overline{X} + t \frac{s}{\sqrt{n}} = 0.2023999 \approx 0.20$$

Таким образом, доверительный интервал для математического ожидания имеет вид (-0.09; 0.20) т. е. -0.09 < m < 0.20

Проверка статистических гипотез

Границы интервало в	(-∞; -2,5)	(-2,5; - 2,0)	(-2,0; - 1,5)	(-1,5; - 1,0)	(-1,0; - 0,5)	(-0,5; 0)	(0; 0,5)	(0,5; 1,0)	(1,0; 1,5)	(1,5; 2,0)	(2,0; 2,5)	(2,5; +∞)	Примечания
z_I^*	-2,237	-1,799	-1,362	-0,924	-0,486	-0,048	0,390	0,827	1,265	1,703	2,141	2,579	
$\Phi(z_i)$	0,0129	0,0367	0,0869	0,1788	0,3156	0,4841	0,6517	0,7939	0,8962	0,9554	0,9838	1,0000	
p_i	0,0129	0,0239	0,0502	0,0919	0,1368	0,1684	0,1677	0,1422	0,1023	0,0593	0,0284	0,0162	$\sum_{k=1}^{12}$
	0,0367										0,0446		$\sum_{i=1} p_i^* = 1$
n_i	4	4	5	14	27	46	38	25	18	10	8	1	$\sum_{n=0}^{12}$
	8										9	ı	$\sum_{i=1} n_i = 200$
n_i^2	6	4	25	196	729	2116	1444	625	324	100	8	1	
np_i	7,3	346	10,038	18,374	27,364	33,688	33,536	28,432	20,456	11,852	8,9	14	
n_i^2													$\sum = 209,726$
np_i	8,7	'12	2,491	10,667	26,641	62,812	43,058	21,982	15,839	8,437	9,0	87	

$$p_i = \frac{1}{\sigma\sqrt{2\pi}} \sum_{x_{i-1}}^{x_i} \exp\left(\frac{-(x-m)^2}{2\sigma^2}\right) dx = \Phi\left(\frac{x_i - m}{\sigma}\right) - \Phi\left(\frac{x_{i-1} - m}{\sigma}\right) = \Phi(z_i) - \Phi(z_{i-1})$$

Где вместо m берем \overline{X} , а вместо $\sigma^2 = S^2$, т. е. $z_i = (x_i - \overline{X})/S$

$$\chi^2 = 209,726 - 200 = 9,726$$

По таблице χ^2 -распределения находим: $\chi_p^2=14,07$ (для k=10; r=10-3=7; p=0,05).

Так как полученное нами значение $\chi^2 = 9,726 < 14,07$, то гипотеза о нормальном распределении генеральной совокупности **не отвергается.**