Arquitecturas de Tecnologias de Informação Modelos de Arquitecturas

Disciplina: Administração e Segurança de Sistemas de Computadores

Curso: Licenciatura em Engenharia Informática

Docentes: Doutor Eng. Lourino Chemane, engra. Ivone Cipriano e eng.Délcio Chadreca

DEEL, Faculdade de Engenharia, UEM

Agenda

- 1. A empresa em rede
- 2. Empresas Virtuais
- 3. Modelos de Arquitecturas de SI/TI
- 4. Utilidade, Benefícios e Características das Arquitecturas de SI/TI
- 5. Conclusão

A Organização em Rede

- A expressão Empresa em Rede refere-se às estruturas organizacionais que se parecem com redes de computadores e são apoiadas pelos sistemas de informação
- A abordagem da administração hierárquica e em rede apresentam obviamente vantagens e contrastes importantes e cada uma tem os seus defeitos e pontos positivos.
- As empresas hoje estão a afastar-se do modelo hierárquico de administração adoptando o modelo de administração em rede.
- Esta tendência é causada pela evolução de uma economia baseada na industria para uma economia baseada na informação e no conhecimento
- Hoje em muitas partes do mundo a maior parte das pessoas fazem trabalho de conhecimento, no qual o conteúdo intelectual do trabalho cresce até um ponto em que o subordinado muitas vezes possui mais conhecimento especializado que o superior hierárquico.
- A organização com base em conhecimento é muitas vezes encarada como uma rede com a arquitectura Cliente/Servidor.

A Organização em Rede

Empresa Clássica/Hierárquica		Empresa em Rede
Formal		Informal
Altamente Estruturada	→	Menos estruturada
Administrar		Delegar
Controlar		Propriedade/participação
Dirigir		Distribuição de poder
Funcionários são custo		Funcionário são activo
Administradores de posse de informação		Partilha de informação
Estrutura Organizacional Hierárquica		Estrutura organizacional mais achatada/flexível
Evitar Riscos		Gestão de Risco
Contribuições individuais	>	Contribuições em equipe

A Organização em Rede

^{*} Existem múltiplas redes dentro das empresas

A Empresa Virtual

- A empresa virtual é composta por diversos parceiros de negócio partilhando custos e recursos com o propósito de produzir um bem ou serviço.
- A empresa virtual pode ser permanente ou temporária.
- A empreas virtuais são montadas para:
 - Criar ou montar recursos produtivos rapidamente;
 - Criar ou montar recursos produtivos de forma frequente e continuamente;
 - Criar ou montar uma ampla gama de recursos produtivos.
- O conceito de empresa virtual não é novo, mas recentes desenvolvimentos na área de TI permitem novas implementações que exploram as suas possibilidades;
- A empresa virtual moderna pode ser vista como uma rede de pessoas, ideias, e recursos criativos conectados por meio de serviços online e/ou pela Internet, que se unem para desenvolver produtos e serviços.

A Empresa Virtual

- Os principais atributos de empresas virtuais são:
 - Excelência: cada parceiro traz sua experiencia principal, criando assim uma equipa de especialistas.
 - Utilização: os recursos dos parceiros de negócio são em geral mal utilizados ou são utilizados de forma meramente satisfatória. Na empresa virtual, os recursos podem ser usados de forma mais lucrativa, proporcionando vantagens competitivas
 - Oportunismo. A parceria é oprtunista. Uma empresa virtual é criada para atender a um oportunidade de negócio.
 - Inexistencia de limites: é difícil identificar os limites de uma empresa virtual, ela redefine os limites tradicionais.
 - Confiança: os parceiros de negócio em uma empresa virtual dependem muito mais uns dos outros e isso requer um maior grau de confiança. Eles partilham um sentimento de destino.
 - Adaptabilidade à mudança: a empresa virtual pode adaptar-se rapidamente às mudanças no ambiente, pois a sua estrutura é relativamente simples e flexível.
 - Tecnologia: A tecnologia da informação torna a empresa virtual viável. Um sistema de Informação em rede é imprescindível.

A Empresa Virtual e Os Sistemas de Informação Interorganizacionais

Como A TI Apoia As Empresas Virtuais

- Existem muitas maneiras de a TI apoiar as empresas virtuais
- As mais óbvias são as que permitem a comunicação e a colaboração entre os parceiros de negócio distantes entre si.
- É comum estas empresas usarem e-mail, videoconferencia, partilha de tela e outras tecnologias de Groupware
- A Internet é a infra-estrutura para estas e outras tecnologias.
- As modernas técnicas de bases de dados permitem que os parceiros acessem as bases de dados uns dos outros.
- O Lotus Notes e outras ferramentas integradas de Groupware permitem a colaboração interorganizacional diversificada.
- O Software ERP é amplamente usado para apoiar transacçõespadrão entre os parceiros do negócio.
- De uma maneira geral a maioria das empresas virtuais não podem sobreviver hoje sem usarem as TI.

Modelos de Arquitecturas de SI/TI

- Surgimento de diferentes abordagens para a definição e a construção das arquitecturas dos Sistemas de Informação (SI)
- Estas abordagens são designadas de "Enquadramentos" ou "Frameworks".
- Os primeiros enquadramentos incidiam somente nos aspectos tecnologicos de SI/TI limitando-se muitas vezes a fazer um mapeamento do hardware utilizado nas organizações
- Estes modelos visavam auxiliar as organizações na aquisição e na utilização dos equipamentos de computação e de redes necessários, pelo que os conceitos utilizados também referiam-se quase que esclusivamente às TI, nomeadamente a processadores e a protocolos de redes de computadores;
- Os novos modelos para a construção de sistemas de informação abordam não só os aspectos tecnológicos como também os aspectos relacionados com a gestão dos recursos SI/TI na organização.

Modelos de Arquitecturas de SI/TI

- A seguir são apresentados quatro enquadramentos com a finalidade de os analisar e comparar. Estes quatro trabalhos são:
 - Arquitectura de Computadores ou Computer Architecture de Richard Nolan (1983);
 - Arquitectura de Informação ou Information Architecture da IBM/BSP (1984);
 - Enquadramento de Zachman ou Framework for Information Systems Architecture de John Zachman (1987 e 1992)
 - Arquitectura dos Sistemas de Informação ou Information Systems Architecture de Kim e Everest (1994).
- Com a excepção do BSP, que resulta do modelo de uma metodologia de planificação de sistemas de informação, os restantes três são modelos de referencia para a construção de arquitecturas dos Sistemas de Informação.

Arquitectura de Computadores ou Computer Architecture de Richard Nolan

Arquitectura de Informação ou Information Architecture da IBM/BSP

IIIIOIIIIati		<i>/ 11 G</i>		LUI	<u> Gaan</u>	-7 1 V 1/ L	 	
PROCESSOS	CLASSES DE DADOS	Objectivos e Estratégias Políticas e procedimentos Plano de actividades	Plano de pessoal Empregados Legislação	Contabilidade Orçamentos	Clientes Encomendas de clientes Vendedores Vendas	Plano de equipamento Equipamentos	Plano de produção Ordens de produção Fornecedores Compras a fornecedores	Mercados Produtos Matérias-primas
Definição de objectivos e estratégias Planificação de actividades		ADM	<					
Gestão de contas Gestão de tesouraria		$\bigcap \bigcap \bigcap$		FIN	<			
Planeamento da produção Alocação e controlo da produção Gestão de matérias-primas						>	PRODUÇÃO	
Planeamento de RH Recrutamanto de RH Gestão de RH			RH	<				
Definição de necessidades de equipam Aquisição de equipamentos Manutenção de equipamento	entos					IMOB		
Estudos de mercados Especialização de produtos Promoção de produtos							<u> </u>	MKT
Gestão de encomendas Facturação de vendas				>	VENDAS	<		

Enquadramento de Zachman ou Framework for Information Systems Architecture de Zachman

ENTERPRISE ARCHITECTURE: A FRAMEWORK™

PHONE (810) 231-0531 FAX: (810) 231-8631

www.zifa.com

10895 Lakepointe Drive Pinckney, MI 48169

AFRANC	for Framework Adv	for Framework Advancement Pinckney, MI 48169					
_	WHAT HOW WHERE WHO WHEN					WHY	_
	DATA	FUNCTION	NETWORK	PEOPLE	TIME	MOTIVATION	
SCOPE	List of Things Important to the	List of Processes the Business Performs	List of Locations in Which the Business Operates	List of Organizations Important to the Business	List of Events/Cycles Significant to the Business	Lists of Business Goals/Strategies	SCOP
{contextual}	Business	Business Performs	Sall in	64	0	7	{contextua
	.it.		85 mg.	N4			
Planner	Entity = Class of Business Thing	Process = Class of Business Process	Node = Major Business Lecation	People = Major Organizational Unit	Time = Major Business Event/Cycle	Ends/Means = Major Business Goal/Strategy	Planne
							Fidilik
BUSINESS MODEL	e.g., Semantic Model	e.g., Business Process Model	e.g., Business Logistics System	e.g., Work Flow Model	e.g., Master Schedule	e.g., Business Plan	BUSINESS MODE
{conceptual}			مم	-		000	{conceptu
	Entity = Business Entity	Process = Business Process	Node = Business Location	ofi⊼a	<i>b</i> ∼	000000	
Owner	Relationship = Business Relationship	I/O = Business Resources	Link = Business Linkage	People = Organization Unit Work = Work Product	Time = Business Event Cycle = Business Cycle	End = Business Objective Means = Business Strategy	Own
SYSTEM MODEL	e.g., Logical Data Model	e.g., Application Architecture	e.g., Distributed System Architecture	e.g., Human Interface Architecture	e.g., Processing Structure	e.g., Business Rule Model	SYSTEM MODE
(logical)		, i	U _{ZI}	4			{logic
	Entity = Data Entity	Process =	Node = I/S Function (Processor, Storage, etc.)	otio	├ ~		
Designer	Relationship = Data Relationship	I/O = User Views	Link = Line Characteristics	People = Role Work = Deliverable	Time = System Event Cycle = Processing Cycle	End = Structural Assertion Means = Action Assertion	Design
							750 ING 20V MOD
TECHNOLOGY MODEL {physical}	e.g., Physical Data Model	e.g., System Design	e.g., Technology Architecture	e.g., Presentation Architecture	e.g., Control Structure	e.g., Rule Design	TECHNOLOGY MODE
•	i i	4	<u> </u>	Ã.		<u>, , , , , , , , , , , , , , , , , , , </u>	4.0
	Entity = Segment/Table/etc.	Process = Computer Function	Node = How System Software	People = User	Time = Execute	End = Condition	
Builder	Relationship = Pointer/Key/etc.	I/O = Data Elements/Sets	Node = Hdw/System Software Link = Line Specifications	Work = Screen Formats	Cycle = Component Cycle	Means = Action	Build
DETAILED REPRESENTATIONS	21.220						DETAILED REPRESENTATION
{out-of-context}	e.g., Data Definition	e.g., Program	e.g., Network Architecture	e.g., Security Architecture	e.g., Timing Definition	e.g., Rule Specification	(out-of-conte
	Entity = Field Relationship = Address	Process = Language Statement L/O = Control Block	Node = Address Link = Protocol	People = Identity Work = Job	Time = Interrupt Cycle = Machine Cycle	End = Sub-condition Means = Step	
Subcontractor	Kelationship = Address	I/O = Control Block	Link = Protocol	Work = 100	Cycle = Muchine Cycle	means — Step	Subcontract
FUNCTIONING ENTERPRISE	e.g.: DATA	e.g.: FUNCTION	e.g.: NETWORK	e.g.: ORGANIZATION	e.g.: SCHEDULE	e.g.: STRATEGY	FUNCTIONING ENTERPRIS

Enquadramento de Zachman ou Framework for Information Systems Architecture de Zachman

ENTERPRISE ARCHITECTURE - A FRAMEWORK ™

	DATA Waz	FUNCTION #2014	NETWORK Where	PEOPLE ₩9≥	TIME When	MOTIVATION μγ _{έν}	
SCOPE (CONTEXTUAL)	List of Tiblings Important to the Birshess	Listor Processes the Basiness Pentoms	List of Locations in which the Brisiness Operates	List of Organizations Important to the Business	Listof Buents Sign Ytant to the Business	ListofBusiless Goals/Strat	SCOPE (CONTEXTUAL)
Planer	ENTITY = Class of Basiness Thing	Function - Class of Business Process	Node – Major Bushless Location	People – Major Organ kations	Time - Major Basiness Eyent	Ends/Means=Major8ns.Goal/ Critical Success Factor	Planer
ENTERPRISE MODEL (CONCEPTUAL)	e.g. Seman to Model	e.g. 8 tshess Process Model	e.g. Bushess Logistics System	e.g. Work Flow Model	e.g. Marter Schedule	e.g. 8 ts hess Plan	ENTERPRISE MODEL (CONCEPTUAL)
Owner	Ent-Business Entby Rein-Business Relationship	Pipo. – Basiness Pipoess I/O – Basiness Resources	Node - Business Location Link - Business Linkage	People - Organization Unit Work - Work Product	Time - Basiness Buent Cycle - Basiness Cycle	End - Business Objective We ans - Business Strategy	Owner
SYSTEM MODEL (LOGICAL)	e g. Logical Cata Mode I	e.g. Application Architecture	e.g. Distributed System A roll the other	e.g. Human Interface Auchitectri le	e.g. Processing Stracture	e.g., 8 Ishess Rile Model	SYSTEM MODEL (LOGICAL)
Designer	Ent - Cata Entity Rein - Data Relationship	Proc - Application Function NO - User Views	Node = US Function (Processor Storage etc) Link = Line Characteristics	People = Role Work = Deliuerable	Time - System Buent Cycle - Processing Cycle	Fad = Structural Asserting Means = Action Assertion	De signer
TECHNOLOGY MODEL (PHYSICAL)	e.g. Physical Data Wodel	e.g. System Design	e.g. Technology Arch Recture	e.g. Pasen tation Architecture	e.g.Control Structure	e.g. Rik Design	TECHNOLOGY MODEL (PHYSICAL)
Builder	Ent = Segme n#Table&to. Rein = Pointer/Vey&to.	Proc Computer Function NO - Data Elements/Sets	Node = Harrimare/System Software Link = Line Specifications	People – User Work – Screen Format	Time - Execute Cycle - Component Cycle	End - Condition Means - Action	Builder
DETAILED REPRESEN- TATIONS (OUT-OF- CONTEXT)	e.g. Data Deflittoi	e.g. Program	e.g. Network Arci Hechille	e.g. Security Architecture	e.g. Timing Definition	e g. Rule Specification	DETAILED REPRESEN- TATIONS (OUT-OF CONTEXT)
Contractor	Ent - Field Rein - Address	Proc.= Language Strict VO = Control Block	Node - Addresses Link - Protocols	People – Identily Work – Job	Time = Interrupt Cycle = Mackine Cycle	Means - Step	Cantractar
FUNCTIONING ENTERPRISE	e.g. DATA	e.g. FUNCTION	eg.NETWORK	e.g. ORGANIZATION	e.g.SCHEDULE	e.g.STRATEGY	FUNCTIONING ENTERPRISE

John A. Zachman, Zachman International (810) 231-0531

Arquitectura dos Sistemas de Informação ou Information Systems Architecture de Kim e Everest

Perspectivas nos Modelos de Arquitecturas

Modelo	Perspectivas
Arquitectura de Computadores	aplicações dados
	comunicações
	dados
Arquitectura da Informação	aplicações
	geográfica
	dados
	processos
Enquadramento do Zackman	redes
Enquadramento do Edekman	pessoas
	tempo
	motivação
	processos
Arquitectura dos Sistemas de Informação	dados
Ai quitoctura dos disternas de informação	tecnologia
	controlo

Grupos de Perspectivas nos Modelos de Arquitecturas

MODELOS	PERSPECTIVAS	Dados	Aplicações ou Funções ou Processos	Tecnológica ou Comunicações Geográfica ou Redes	Controlo ou Tempo	Pessoas	Motivação
		.,	.,	no ;			
Arquitectura de Computadores		X	X	Х			
Arquitectura da Informação		X	X	X			
Enquadramento de Zackman		Χ	X	X	X	X	Х
Arquitectura dos Sistemas de Informação		Х	Х	X	Х		

Participantes nos Modelos de Arquitecturas

Modelo	Cliente	Arquitecto
Arquitectura de Computadores		
Arquitectura da Informação	patrocinador	equipa BSP
Enquadramento de Zackman	dono	responsável pelo SI
Arquitectura dos Sistemas de Informação		

Caracterização das Perspectivas

Ī	Perspectivas	Interesses	Linguagens, Técnicas e Métodos
	Dados	 Identificação das necessidades de dados/informação Descrição das entidades/classes de dados e seus relacionamentos 	- Modelação de Dados Diagrama Entidades- Relacionamentos Diagrama de Estrutura dos Dados
	Aplicações ou Funções ou Processos	 Identificação dos principais processos e funções da organização Definição das aplicações necessárias 	 Modelação de Processos Diagrama de Fluxos de Dados Diagrama de Estrutura Matriz Processos Vs Classes de Dados
	Tecnológica ou Comunicações ou Geográfica ou Redes	 Localização e interligação dos dados, aplicações e sistemas Identificação e descrição das plataformas tecnológicas 	- Modelação de Plataformas - Matriz Processos Vs Organização
	Controlo e Tempo	 Perspectiva temporal de SI Identificação e caracterização dos eventos e seus efeitos 	- Modelação de Dados Diagrama Entidades- Relacionamentos
	Pessoas	 Identificação das principais unidades organizacionais Determinação dos níveis de autoridade e de responsabilidade 	- Calendarização de eventos - Diagrama de Transição de Estados
	Motivação	 Clarificação da missão, objectivo e estratégias de negócio da organização Identificação das principais regras que restringem o SI 	- Matriz AplicaçõesVs Regras

Utilidade, Beneficios e Caracteristicas das Arquitecturas de SI/TI

- O benefício mais significativo é o fornecimento de uma visão integrada e perspectiva global dos recursos informacionais partilhada entre todos os participantes na Gestão de Sistemas de Informação;
- As arquitecturas de SI/TI são ferramentas efectivas na gestão dos SI/TI constituindo-se frequentemente como:
 - Um meio eficaz de controlo dos gastos em SI/TI;
 - Uma plataforma flexível para a integração das aplicações individuais;
 - Um enquadramento para orientar, gerir e controlar o desenvolvimento de futuras aplicações dos SI/TI;
 - Uma base de verificação e de validação dos sistemas existentes em função das políticas e das necessidades actuais e de longo prazo;
 - Um meio de identificação de necessidades redundantes e de partilha de informação, reduzindo os riscos de erros e de excessos no armazenamento.
- As arquitecturas dão a possibilidade de as organizações introduzirem mudanças de atitude no processo de desenvolvimento de sistemas de informação.

Utilidade, Beneficios e Caracteristicas das Arquitecturas de SI/TI

- Para que estes benefícios sejam alcançados as arquitecturas devem ter as seguintes caracteríticas:
 - Orientada para o negócio: A arquitecura deve basear-se nos objectivos estratégicos da organização e nas necessidades de informação relevante para o negócio.
 - Realista: é irrealista criar (ou até mesmo sugerir) uma arquitectura que seja praticamente impossível de concretizar. Uma das primeiras considerações de uma arquitectura deve ser o relacionamento com o seu ambiente, pelo que deve ter em conta todos os recursos disponíveis devendo para isso traduzir a realidade da organização
 - Simples e compreensível: Deve ser construida numa linguagem que seja facilmente compreendida por todos.

Utilidade, Beneficios e Caracteristicas das Arquitecturas de SI/TI

- Funcional: Deve satisfazer os principais requisitos da organização e ao mesmo tempo deve permitir um alto rendimento fornecendo a funcionalidade desejada durante o príodo para o qual foi criada.
- Flexível: Deve permitir adaptações à nova realidade sem obrigar a grandes alterações de fundo na arquitectura.
- Compatível: Deve estabelecer um conjunto de padrões e encorajar a utilização dos mesmos por forma a garantir a compatibilidade entre todos os componentes e as tecnologias a utilizar

End

Lourino Chemane

Contact: chemane@infopol.gov.mz