	T	Tipo de Prova Exame Teórico — Época Especial	Ano letivo 2022/2023	Data 01-09-2023
P.PORTO SUP	COLA PERIOR TECNOLOGIA	^{Curso} Licenciatura em Engenharia Informática		Hora 10:00
100		Unidade Curricular Inteligência Artificial		Duração 2:30 horas

Observações:

- Pode trocar a ordem das questões, desde que as identifique convenientemente.
- Qualquer tentativa de fraude implica a anulação do exame.
- A Parte 1 deste exame é constituída por questões de escolha múltipla. As mesmas devem ser respondidas na folha de resposta. Cada resposta errada desconta 0.25 valores da Parte 1.
- O enunciado deve ser entregue juntamente com a folha de resposta.

Número:	Nome:					
	PARTE I – Escolha Múltipla (10V)					
1. (1V)	Relativamente às árvores de decisão, assinale a afirmação correta:					
	 A. A mesma previsão pode constar em mais que uma folha B. Para um mesmo input, é possível chegar a mais que uma C. Uma árvore de decisão tem sempre menos folhas que uma D. Uma árvore de decisão tem sempre mais folhas que uma 	na Random Forest				
2. (1V)	Durante o processo de treino de um modelo de Machine Learning em que é utilizado um dataset de validação, é possível gerar as chamadas "curvas de aprendizagem", que permitem perceber como evolui a qualidade do modelo ao longo do processo de treino. Relativamente às curvas de aprendizagem, assinale a afirmação correta:					
	 A. Apenas são geradas em problemas de regressão B. Apenas são geradas em problemas de classificação C. À distância final entre a curva de treino e a de validação Gap D. Nenhuma das anteriores 	chama-se <i>Generalization</i>				
3. (1V)	Considere a base de conhecimento Prolog que se apresenta à direita, bem como a questão colocada imediatamente abaixo. Assinale a afirmação correta: x(a). x(b). x(c).					
	 A. A questão falha pelo princípio do mundo fechado B. A questão tem sucesso com L = [a, b, c] C. A questão tem sucesso com L = [] D. Nenhuma das anteriores 	?- findall(X, x(x), L).				
4. (1V)	Admita que treinou uma Random Forest na qual se verificou, após análise das curvas de					

- aprendizagem, a existência de overfitting. Assinale a opção que permite atacar este problema:
 - A. Aumentando a profundidade das árvores de decisão do Ensemble
 - B. Aumentando o número de árvores de decisão do Ensemble
 - C. Alterando a função de ativação
 - D. Nenhuma das anteriores
- 5. (1V) Relativamente aos Algoritmos Genéticos, assinale a opção correta:
 - A. São uma das formas de aprendizagem supervisionada
 - B. São uma das formas de aprendizagem não supervisionada

ESTG-PR05-Mod013V2 Página 1 de4

		Tipo de Prova	Ano letivo	Data
		Exame Teórico – Época Especial 2022/2023		01-09-2023
P.PORTO SUPER	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática		Hora 10:00
	E GESTÃO	Unidade Curricular		Duração
		Inteligência Artificial		2:30 horas

- C. Dependem da existência de um conjunto de dados sobre o problema a resolver
- D. Não dependem da existência de um conjunto de dados sobre o problema a resolver
- 6. (1V) Relativamente à afirmação: "Numa rede neuronal, a duração do processo de aprendizagem depende de forma significativa do...", assinale a afirmação incorreta:
 - A. Número de épocas
 - B. Número de neurónios
 - C. Valor da seed utilizada
 - D. Tamanho do dataset
- 7. (1V) Considere que no processo de criação de um modelo de Machine Learning, decidiu usar 5-fold cross validation bem como validação por datasets de treino, teste e validação.

 Assinale a afirmação correta:
 - A. Não é possível usar, simultaneamente, cross validation e validação por datasets de treino, teste e validação
 - B. Serão treinados, no total, 7 modelos
 - C. Serão treinados, no total, 8 modelos
 - D. Serão treinados, no total, 9 modelos
- 8. (1V) Uma das principais diferenças quando se comparam os algoritmos de Deep Learning com algoritmos de Redes Neuronais tradicionais é:
 - A. Em Deep Learning são utilizadas funções de ativação, em Redes Neuronais não
 - B. Em Deep Learning o processo de feature extraction é automatizado pela própria rede, em Redes Neuronais não
 - C. Deep Learning pode ser utilizado para problemas de classificação e regressão, Redes Neuronais apenas são utilizadas para problemas de regressão
 - D. Deep Learning apenas pode ser utilizado para problemas de classificação de imagem, Redes Neuronais podem ser utilizadas em qualquer tipo de problema
- 9. (1V) Nas aulas foram estudados os modelos denominados Ensembles, que são constituídos por um conjunto de modelos base. Relativamente a estes modelos, assinale a afirmação correta:
 - A. Um modelo base de um Ensemble é, tipicamente, mais simples que um modelo tradicional
 - B. Um modelo base de um Ensemble é, tipicamente, mais complexo que um modelo tradicional
 - C. Num Ensemble, a previsão é sempre dada pela média das previsões de cada modelo base
 - D. Num Ensemble, a previsão é sempre dada pela moda (valor mais frequente) das previsões de cada modelo base
- Considere que lhe era pedido que desenvolvesse um modelo para prever o preço de uma
 (1V) casa (em euros) dadas algumas das suas características. Para avaliar este modelo, a métrica mais adequada seria:
 - A. Precision
 - B. Recall

		Tipo de Prova Exame Teórico — Época Especial	Ano letivo 2022/2023	Data 01-09-2023
P.PORTO SUPE	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática		Hora 10:00
	E GESTÃO	Unidade Curricular Inteligência Artificial		Duração 2:30 horas

C. AccuracyD. RMSE

PARTE II – Prolog (5V)

11. Considere que lhe foi pedido que implementasse, em Prolog, um ERP para uma empresa de comercialização de produtos informáticos, com algumas funcionalidades muito básicas. A Base de Conhecimento da empresa é representada da seguinte forma:

```
produto(1, 'rato logitech', 67, 3).
produto(2, 'teclado razer' , 120, 5).
produto(3, 'processador intel core i7', 450, 2).
```

Em que, para cada produto, se regista respetivamente: o seu código, a sua descrição, o seu preço e o número de unidades atualmente em stock.

Considerando a estrutura do conhecimento representado, resolva as seguintes questões.

- 11.1 Implemente em Prolog o predicado subtotal/3, que tem como objetivo calcular o subtotal de uma fatura, que diz respeito apenas a um artigo específico e uma quantidade. Assim, dado o código de um artigo e a sua quantidade, o predicado deve calcular o seu subtotal, para depois constar como uma linha da fatura. Nesta empresa, sempre que o subtotal é superior a 100 euros é aplicado, a essa linha, um desconto de 5%.
- Implemente em Prolog o predicado pesquisa_stock/3. Este predicado deve permitir pesquisar por código ou por descrição (mas nunca pelos dois simultaneamente), e devolver o número de unidades desse artigo em stock. Assim, se o utilizador, na pesquisa, fornecer o código e a descrição, o predicado deve falhar. Se o utilizador fornecer apenas o código ou a descrição, o predicado deve devolver o valor em stock correspondente, ou falhar caso o artigo não exista. Para resolver esta questão relembre a existência dos seguintes predicados em Prolog:
 - var/1 tem sucesso caso o argumento seja uma variável livre (não instanciada)
 - fail/0 predicado que falha sempre
- 11.3 Implemente em Prolog o predicado total_stock/1. O predicado deve devolver o total de unidades em stock de todos os artigos. Para resolver esta questão, relembre a existência do predicado sum list/2 que, dada uma lista de números, calcula o seu somatório.

		Tipo de Prova	Ano letivo	Data
	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Exame Teórico – Época Especial	2022/2023	01-09-2023
P.PORTO		Curso Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:30 horas

PARTE III - Desenvolvimento (5V)

- 12. Considere o problema de detetar/prever se uma pessoa tem ou não uma infeção pelo vírus COVID-19. Neste tipo de problema (classificação binomial), existem 2 tipos diferentes de erro, sendo que podem ter um custo diferente, podendo preferir-se minimizar um ou o outro. Admita que lhe pediam para desenvolver um modelo de Machine Learning para fazer este tipo de previsão. Para este cenário indique:
 - Como procederia para montar um processo de Machine Learning completo, admitindo que tem acesso a um conjunto de dados considerados mais que suficientes
 - 2. Como avaliaria a qualidade do modelo
 - 3. Que tipo de erro pretenderia minimizar (se aplicável)
- 13. A tabela seguinte apresenta um conjunto de algoritmos e de conceitos abordados durante as aulas de Inteligência Artificial. Faça a correspondência entre cada conceito e o algoritmo que lhe está associado. Note que pode acontecer que um conceito esteja associado a mais que um algoritmo. Nesse caso é suficiente que faça a correspondência com uma das opções corretas. Pode ainda acontecer que não exista correspondência para alguns conceitos/algoritmos. Nesse caso, não é necessário fazer qualquer correspondência.

Conceito		Algoritmo		
Α	Backpropagation	1	Neural Networks	
В	Kernel Trick	2	Genetic Algorithms	
С	Gradient Descent	3	Deep Learning	
D	Fitness Function	4	Support Vector Machines	
Е	Feature Extraction	5	Decision Trees	
F	Activation Function	6	Random Forest	
G	Learning rate	7	K-Means	
I	Epochs	8	K-NN	
J	One-hot Encoding			
K	Pooling			
L	Kernel Function			
М	Distance/Similarity Metrics			

Página 4 de4

ESTG-PR05-Mod013V2