# Lecture 2 **Data Preprocessing and Model Evaluation**

**CS 180 – Intelligent Systems** 

Dr. Victor Chen

Spring 2021

# Data Preprocessing

#### **Attributes**

Data include objects and their attributes

An object means an entity in the world

- Examples: person, transaction, image
- Object is also known as record, point, sample, or instance

An attribute is a property of an object

- Examples: name, date of birth, height, occupation are attributes of person.
- Attribute is also known as field, or feature

|   | /   |        |                   |                | 1     |
|---|-----|--------|-------------------|----------------|-------|
| _ | Tid | Refund | Marital<br>Status | Taxable Income | Cheat |
|   | 1   | Yes    | Single            | 125K           | No    |
|   | 2   | No     | Married           | 100K           | No    |
|   | 3   | No     | Single            | 70K            | No    |
|   | 4   | Yes    | Married           | 120K           | No    |
|   | 5   | No     | Divorced          | 95K            | Yes   |
|   | 6   | No     | Married           | 60K            | No    |
|   | 7   | Yes    | Divorced          | 220K           | No    |
|   | 8   | No     | Single            | 85K            | Yes   |
|   | 9   | No     | Married           | 75K            | No    |
| _ | 10  | No     | Single            | 90K            | Yes   |

Objects

# Numeric and Categorical Data

#### Attributes can be:

- Numeric
  - Examples: dates, temperature, time, length
  - Discrete vs Continuous
- Categorical
  - Examples: eye color, rankings (e.g, good, fair, bad), height in {tall, medium, short}
  - Nominal (no order) vs
     Ordinal (ordered but not comparable)



If an attribute is categorical....

# Data Encoding

If an attribute is categorical, we **must** convert it from categorical to numeric.

| ID<br>Number | Zip<br>Code | Age | Marital<br>Status | Income | Income<br>Bracket | Refund |
|--------------|-------------|-----|-------------------|--------|-------------------|--------|
| 1129842      | 45221       | 55  | Single            | 250000 | High              | No     |
| 2342345      | 45223       | 25  | Married           | 30000  | Low               | Yes    |
| 1234542      | 45221       | 45  | Divorced          | 200000 | High              | No     |
| 1243535      | 45224       | 43  | Single            | 150000 | Medium            | No     |

# Label Encoding

# Label Encoding: Assign one unique number to each distinct value

#### original dataset

| X <sub>1</sub> | X <sub>2</sub> | у       |
|----------------|----------------|---------|
| 5              | 8              | calabar |
| 9              | 3              | uyo     |
| 8              | 6              | owerri  |
| 0              | 5              | uyo     |
| 2              | 3              | calabar |
| 0              | 8              | calabar |
| 1              | 8              | owerri  |

#### LabelEncoder



#### dataset with encoded labels

| X <sub>1</sub> | X <sub>2</sub> | у |
|----------------|----------------|---|
| 5              | 8              | 0 |
| 9              | 3              | 2 |
| 8              | 6              | 1 |
| 0              | 5              | 2 |
| 2              | 3              | 0 |
| 0              | 8              | 0 |
| 1              | 8              | 1 |

#### Never use label encoding on input features



# Data Encoding

How to convert the feature "Zip Code" from categorical to numeric?

| ID<br>Number | Zip<br>Code | Age | Marital<br>Status | Income | Income<br>Bracket | Refund |
|--------------|-------------|-----|-------------------|--------|-------------------|--------|
| 1129842      | 45221       | 55  | Single            | 250000 | High              | No     |
| 2342345      | 45223       | 25  | Married           | 30000  | Low               | Yes    |
| 1234542      | 45221       | 45  | Divorced          | 200000 | High              | No     |
| 1243535      | 45224       | 43  | Single            | 150000 | Medium            | No     |

#### Data Encoding

One hot Encoding: For each distinct value, we create a new binary feature

| ID      | Zip<br>45221 | Zip<br>45223 | Zip<br>45224 | Age | Single | Married | Divorced | Income | Refund |
|---------|--------------|--------------|--------------|-----|--------|---------|----------|--------|--------|
| 1129842 | 1            | 0            | 0            | 55  | 1      | 0       | 0        | 250000 | 0      |
| 2342345 | 0            | 1            | 0            | 25  | 0      | 1       | 0        | 30000  | 1      |
| 1234542 | 1            | 0            | 0            | 45  | 0      | 0       | 1        | 200000 | 0      |
| 1243535 | 0            | 0            | 1            | 43  | 1      | 0       | 0        | 150000 | 0      |

Thinking of records as vectors is very useful, which allows us to use linear algebra to process data.

Another example: One hot encoding

| Sample | Category | Numerical |
|--------|----------|-----------|
| 1      | Human    | 1         |
| 2      | Human    | 1         |
| 3      | Penguin  | 2         |
| 4      | Octopus  | 3         |
| 5      | Alien    | 4         |
| 6      | Octopus  | 3         |
| 7      | Alien    | 4         |



| Sample | Human | Penguin | Octopus | Alien |
|--------|-------|---------|---------|-------|
| 1      | 1     | 0       | 0       | 0     |
| 2      | 1     | 0       | 0       | 0     |
| 3      | 0     | 1       | 0       | 0     |
| 4      | 0     | 0       | 1       | 0     |
| 5      | 0     | 0       | 0       | 1     |
| 6      | 0     | 0       | 1       | 0     |
| 7      | 0     | 0       | 0       | 1     |

If an attribute is numeric....

#### Data normalization

If an attribute is numeric, we must normalize that attribute rather than using raw values



#### Normalization on numeric data

Different attributes take very different range of values. We need to make them comparable

| Temperature | Humidity | Pressure |
|-------------|----------|----------|
| 30          | 0.8      | 90       |
| 32          | 0.5      | 80       |
| 24          | 0.3      | 95       |

### Normalization – option 1

# Divide raw values by the maximum value Brings everything in the [0,1] range

| Temperature | Humidity | Pressure |
|-------------|----------|----------|
| 0.9375      | 1        | 0.9473   |
| 1           | 0.625    | 0.8421   |
| 0.75        | 0.375    | 1        |

#### new value = old value / max value in the column

| Temperature | Humidity | Pressure |
|-------------|----------|----------|
| 30          | 0.8      | 90       |
| 32          | 0.5      | 80       |
| 24          | 0.3      | 95       |

#### Normalization --- option 2

Subtract the minimum value and divide by the difference of maximum value and minimum value

Brings everything in the [0,1] range

| Temperature | Humidity | Pressure |
|-------------|----------|----------|
| 0.75        | 1        | 0.33     |
| 1           | 0.6      | 0        |
| 0           | 0        | 1        |

new value = (raw value - min column value) / (max col. value -min col. value)

| Temperature | Humidity | Pressure |
|-------------|----------|----------|
| 30          | 0.8      | 90       |
| 32          | 0.5      | 80       |
| 24          | 0.3      | 95       |

#### Normalization --- option 3

The standard score, z, of a raw value x is

$$z = \frac{x - \mu}{\sigma}$$

where:

μ is the mean.

 $\sigma$  is the standard deviation.

Standard scores are also called z-scores

z score is negative when the raw value is below the mean, positive when above

# Natural Language Processing





### Overview

- Bag-of-words (BoW) model
- TF-IDF model



### Document data

| Doc Id | Words                        |
|--------|------------------------------|
| 1      | the, dog, followed, the, cat |
| 2      | the, cat, chased, the, cat   |
| 3      | the, man, walked, the, dog   |

# Bag-of-words (BoW) model

#### Create a feature for each unique word

- Each vector is defined over all possible words (vocabulary)
- The values are counts (number of times a word appears in the document, i.e., occurrence frequency)

| Doc Id | Words                       |
|--------|-----------------------------|
| 1      | the, dog, follows, the, cat |
| 2      | the, cat, chases, the, cat  |
| 3      | the, man, walks, the, dog   |

| Doc<br>Id | the | gop | follows | cat | chases | man | walks |
|-----------|-----|-----|---------|-----|--------|-----|-------|
| 1         | 2   | 1   | 1       | 1   | 0      | 0   | 0     |
| 2         | 2   | 0   | 0       | 2   | 1      | 0   | 0     |
| 3         | 1   | 1   | 0       | 0   | 0      | 1   | 1     |

Sparsity: Most entries are zero. Most documents contain few of the words



#### TF-IDF model

Suppose we want to mine the business reviews of people on <u>Yelp</u>.



#### Yelp screenshots





★ ★ ★ ★ 202 reviews

\$\$ - Pizza, American (Traditional), Tapas/Small Plates Edit



Add Photo

Share

Save

#### **Review Highlights**



"I ordered the Ringer burger with sweet potato fries and my sister ordered the Kickin' Chicken pizza." in 6 reviews



"First time here, got a burger with **garlic fries** and the wife got a black bean burger." in 13 reviews



"Friendly service and well trained staff, fresh ingredients and a **clean environment**. Really tasty beers on draft as well." in 5 reviews



Glenda C. Newcastle, CA

223 friends36 reviews

40 photos



7 photos

Scott took me on a date to Rock-N-Fire.

The pizzas were the... BOMB!!!

Trey & Mike made us our very own custom pizzas.

The salad & pizza were beautifully created

The owner, Mike was delightful & the atmosphere is very inviting & fun!

Be sure to visit & have a delightful experience. We'll definitely be back!!!







1 photo









Matt I. Granite Bay, CA

0 friends

0 10 photos

5/23/2019

Customer Service: 3.5/5 Food: 2.5/5

Atmosphere: 3/5 Cleanliness: 3.5/5

Why I gave the food a 2.5/5? We ordered burgers that sounded better than they tasted, and additionally had to purchase fries to an \$8 burger. Not that there's a problem with this concept, but a single fast-food burger and fries came out to \$12, two for \$25. The sweet potato fries we received were also burnt. In my book a 2.5 is still average.

#### Data collection

#### Collect all reviews for restaurants in NY in Yelp

- Yelp API gives you each review in JSON format
- https://www.yelp.com/developers

```
{"votes": {"funny": 0, "useful": 2, "cool": 1},
   "user_id": "Xqd0DzHaiyRqVH3WRG7hzg",
   "review_id": "15SdjuK7DmYqUAj6rjGowg",
   "stars": 5, "date": "2007-05-17",
   "text": "I heard so many good things about this place so I was pretty juiced to
   try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I
   gotta say, Shake Shake wins hands down. Surprisingly, the line was short and
   we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a
   black/white shake. So yummerz. I love the location too! It's in the middle of
   the city and the view is breathtaking. Definitely one of my favorite places to
   eat in NYC.",
   "type": "review",
   "business_id": "vcNAWiLM4dR7D2nwwJ7nCA"}
```

I heard so many good things about this place so I was pretty juiced to try it.

I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta say, Shake Shake wins hands down. Surprisingly, the line was short and we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white shake. So yummerz. I love the location too! It's in the middle of the city and the view is breathtaking. Definitely one of my favorite places to eat in NYC.

I'm from California and I must say, Shake Shack is better than IN-N-OUT, all day, err'day.

Would I pay \$15+ for a burger here? No. But for the price point they are asking for, this is a definite bang for your buck (though for some, the opportunity cost of waiting in line might outweigh the cost savings) Thankfully, I came in before the lunch swarm descended and I ordered a shake shack (the special burger with the patty + fried cheese & amp; portabella topping) and a coffee milk shake. The beef patty was very juicy and snugly packed within a soft potato roll. On the downside, I could do without the fried portabella-thingy, as the crispy taste conflicted with the juicy, tender burger. How does shake shack compare with in-and-out or 5-quys? I say a very close tie, and I think it comes down to personal affliations. On the shake side, true to its name, the shake was well churned and very thick and luscious. The coffee flavor added a tangy taste and complemented the vanilla shake well. Situated in an open space in NYC, the open air sitting allows you to munch on your burger while watching people zoom by around the city. It's an oddly calming experience, or perhaps it was the food coma I was slowly falling into. Great place with food at a great price.

#### First cut

Remove punctuation, make into lower case, clear white spaces, For each business, break into words, keep the most popular words

| the 27514  | the 16710    | the 16010                | the 14241     |  |
|------------|--------------|--------------------------|---------------|--|
| and 14508  | and 9139     | and 9504                 | and 8237      |  |
| i 13088    | a 8583       | i 7966                   | a 8182        |  |
| a 12152    | i 8415       | to 6524                  | i 7001        |  |
| to 10672   | to 7003      | a 6370                   | to 6727       |  |
| of 8702    | in 5363      | it 5169                  | of 4874       |  |
| ramen 8518 | it 4606      | of 5159                  | you 4515      |  |
| was 8274   | of 4365      | is 4519                  | it 4308       |  |
| is 6835    | is 4340      | sauce 4020               | is 4016       |  |
| it 6802    | burger 432   | in 3951                  | was 3791      |  |
| in 6402    | was 4070     | this 3519                | pastrami 3748 |  |
| for 6145   | for 3441     | was 3453                 | in 3508       |  |
| but 5254   | but 3284     | for 3327                 | for 3424      |  |
| that 4540  | shack 3278   | you 3220                 | sandwich 2928 |  |
| you 4366   | shake 3172   | that 2769                | that 2728     |  |
| with 4181  | that 3005    | but 2590                 | but 2715      |  |
| pork 4115  | you 2985     | food 2497                | on 2247       |  |
| my 3841    | my 2514      | on 2350                  | this 2099     |  |
| this 3487  | line 2389    |                          | b m O         |  |
| wait 3184  | this 2242 VV | <mark>hat can you</mark> | observe?      |  |
| not 3016   | fries 2240   | chicken 2220             | not 1655      |  |
| we 2984    | on 2204      | with 2195                | your 1622     |  |
| at 2980    | are 2142     | rice 2049                | so 1610       |  |
| on 2922    | with 2095    | so 1825                  | have 1585     |  |

#### First cut

- Remove punctuation, make into lower case, clear white spaces,
- For each business, break into words, keep the most popular words

| t] | he 27514  | the 16710      | the 16010                  | the 14241     |       |
|----|-----------|----------------|----------------------------|---------------|-------|
| aı | nd 14508  | and 9139       | and 9504                   | and 8237      |       |
| i  | 13088     | a 8583         | i 7966                     | a 8182        |       |
| a  | 12152     | i 8415         | to 6524                    | i 7001        |       |
| to | o 10672   | to 7003        | a 6370                     | to 6727       |       |
| 0: | f 8702    | in 5363        | it 5169                    | of 4874       |       |
| ra | amen 8518 | it 4606        | of 5159                    | you 4515      |       |
| W  | as 8274   | of 4365        | is 4519                    | it 4308       |       |
| i  | s 6835    | is 4340        | sauce 4020                 | is 4016       |       |
| i  | t 6802    | burger 432     | in 3951                    | was 3791      |       |
| i  | n 6402    | was 4070       | this 3519                  | pastrami 3748 |       |
| f  | or 6145   | for 3441       | was 3453                   | in 3508       |       |
| bı | ut 5254   | but 3284       | for 3327                   | for 3424      |       |
| tl | hat 4540  | shack 3278     | you 3220                   | sandwich 2928 |       |
| λo | ou 4366   | shake 3172     | that 2769                  | that 2728     |       |
| W  | ith 4181  | that 3005      | but 2590                   | but 2715      |       |
| p  | ork 4115  | you 2985       | food 2497                  | on 2247       |       |
| m  | y 3841    | my 2514        | on 2350                    | this 2099     |       |
| t] | his 3487  | line 2389      |                            |               |       |
| W  | ait 3184  | this 2242 Most | f <mark>requent wor</mark> | ds are stor   | words |
| n  | ot 3016   |                | CHICKEH 2220               |               |       |
|    | e 2984    | on 2204        | with 2195                  | your 1622     |       |
|    | t 2980    | are 2142       | rice 2049                  | so 1610       |       |
| 01 | n 2922    | with 2095      | so 1825                    | have 1585     |       |
|    |           |                |                            |               |       |

#### Second cut

#### After removing stop words...

| ramen 8572   |
|--------------|
| pork 4152    |
| wait 3195    |
| good 2867    |
| place 2361   |
| noodles 2279 |
| ippudo 2261  |
| buns 2251    |
| broth 2041   |
| like 1902    |
| just 1896    |
| get 1641     |
| time 1613    |
| one 1460     |
| really 1437  |
| go 1366      |
| food 1296    |
| bowl 1272    |
| can 1256     |
|              |
| great 1172   |
| best 1167    |

burger 4340 shack 3291 shake 3221 line 2397 fries 2260 good 1920 burgers 1643 wait 1508 just 1412 cheese 1307 like 1204 food 1175 get 1162 place 1159 one 1118 long 1013 go 995 time 951 park 887 can 860 best 849

sauce 4023 food 2507 cart 2239 chicken 2238 rice 2052 hot 1835 white 1782 line 1755 good 1629 lamb 1422 halal 1343 just 1338 get 1332 one 1222 like 1096 place 1052 go 965

pastrami 3782 sandwich 2934 place 1480 good 1341 get 1251 katz's 1223 just 1214 like 1207 meat 1168 one 1071 deli 984 best 965 go 961 ticket 955 food 896 sandwiches 813 can 812

#### What can you observe?

long 792 people 790 time 662

#### Second cut

#### After removing stop words...

| ramen 8572       |
|------------------|
| pork 4152        |
| wait 3195        |
| good 2867        |
| place 2361       |
| noodles 2279     |
| ippudo 2261      |
| buns 2251        |
| broth 2041       |
| <b>like</b> 1902 |
| just 1896        |
| <b>get</b> 1641  |
| time 1613        |
| one 1460         |
| really 1437      |
| go 1366          |
| food 1296        |
| bowl 1272        |
| can 1256         |
| great 1172       |

best 1167

burger 4340 shack 3291 shake 3221 line 2397 fries 2260 good 1920 burgers 1643 wait 1508 just 1412 cheese 1307 like 1204 food 1175 **get** 1162 place 1159 one 1118 long 1013 go 995 time 951

sauce 4023 food 2507 cart 2239 chicken 2238 rice 2052 hot. 1835 white 1782 line 1755 good 1629 lamb 1422 halal 1343 just 1338 **get** 1332 one 1222 like 1096 place 1052 ao 965 can 878

pastrami 3782 sandwich 2934 place 1480 good 1341 **get** 1251 katz's 1223 just 1214 like 1207 meat 1168 one 1071 deli 984 best 965 go 961 ticket 955 food 896 sandwiches 813 can 812

Commonly used words in reviews, not so interesting

best 849 long 792 people 790

time 662

#### Importance measure: Term Frequency (TF)

#### TF(w,d): term frequency of word w in document d

- A measure of importance of a word w for a document d
- TF(w,d): = (Number of times w appears in d) / (Total number of terms in d).

#### Uniqueness measure: Inverse Document Frequency (IDF)

Document Frequency of a word, : fraction of documents that contain word.

: num of docs that contain word

: total number of documents in dataset

Inverse Document Frequency of a word:

#### TF-IDF

For document analysis, we are more interested in the words that are not only important for the document, but also unique to the document.

TF(w,d): term frequency of word w in document d

A measure of importance of the word w for the document d

IDF(w): inverse document frequency

A measure of the uniqueness of the word w

$$\mathsf{TF}\mathsf{-}\mathsf{IDF}(\mathsf{w},\mathsf{d}) = \mathsf{TF}(\mathsf{w},\mathsf{d}) \times \mathsf{IDF}(\mathsf{w})$$

# TF-IDF: put everything together

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$



Term x within document y

 $tf_{x,y}$  = frequency of x in y  $df_x$  = number of documents containing x N = total number of documents

### TF-IDF: An Example

#### Document contains 100 words

- Word "apple" appears 10 times in
- Word "orange" appears 20 times in

#### We have documents in total

- Word "apple" only appears in document
- Word "orange" appears in all 20 documents

$$tf - idf("apple", d_1) = \frac{10}{100} \times \log_2 \frac{20}{1} = 0.432$$
  
 $tf - idf("orange", d_1) = \frac{20}{100} \times \log_2 \frac{20}{20} = 0$ 

#### Third cut

#### Order all the words by TF-IDF per document



## Done!

Now, we get the TF-IDF vector for each document (restaurant), which are ready to be sent to models as input

## Modeling and evaluation



## Machine learning

A study on getting a computer to finish a task without explicitly programming it



## Learning types



Unsupervised (data has no labels) Supervised (all data are labeled)

## Machine Learning in a nutshell

|                      | Supervised Learning                                                                                       | Unsupervised Learning                                      |
|----------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Continuous<br>Output | Regression (linear regression, neural networks,)                                                          | Dimensionality reduction                                   |
| Discrete<br>Output   | Classification<br>(KNN, SVM, decision tree,<br>Bayes classifier, logistic<br>regression, neural networks) | Clustering (k-means, hierarchical clustering, DBSCAN, GMM) |

## Classification

# Learn a model from labeled data and make prediction on labels.

Predict the species of Iris flower (setosa, virginica and versicolor)



#### Classification



## Steps in classification

#### Define the problem

What you are trying to predict?

#### Identify input features

Find the features that help to discriminate between the classes

#### Identify output labels

Decide on which model to train

What is the right model for your problem?

Train the model on training data

Test the model on test data

## Any model



## Collecting data for computer vision



apple

pear

tomato

cow

dog

horse

## Machine learning pipeline



## Regression



**Age estimation** 



When was that made?





#### Model evaluation

#### Split data into two separate parts

- Learn parameters on the training set
- Evaluate performance on the test set
- ~70% of records used for training, ~30% for testing



#### ML model evaluation

The ultimate goal of evaluation should be:

MAXIMIZE the ability of the model to predict new (out-of-sample) data.

## **Underfitting and Overfitting**



Underfitting: when model is too simple, both training and test errors are large Overfitting: when model is too complex it models the details of the training set and fails to generalize well on the test set

## **Underfitting and Overfitting**



# How to avoid underfitting and overfitting?

Train model *parameters* on *training set*Test model *performance* on *test set* 

Stop training once the test error goes up!

What metrics should be used to measure test error?

#### Metric used to evaluate model on test data

#### Classification

- Precision
- Recall
- F1-score
- ROC curve

## Regression

- RMSE (Root Mean Squared Error)
- R2 score

#### Precision, Recall, F1-score

**Precision**: Out of records labeled as positive, how many are actually positive?

**Recall:** How many positive records are labeled correctly?

**F-measure (F1-score)**: It combines precision and recall and can be used as a single summary number for model quality

F - measure (F) = 
$$\frac{2rp}{r+p}$$

## Confusion matrix (binary problem)

|                 | PREDICTED CLASS |           |           |
|-----------------|-----------------|-----------|-----------|
| ACTUAL<br>CLASS |                 | Class=No  | Class=Yes |
|                 | Class=No        | a<br>(TN) | b<br>(FP) |
|                 | Class=Yes       | c<br>(FN) | d<br>(TP) |

Precision (p) = 
$$\frac{a}{a+c} = \frac{TP}{TP+FP}$$
  
Recall (r) =  $\frac{a}{a+b} = \frac{TP}{TP+FN}$   
F - measure (F) =  $\frac{2rp}{r+p} = \frac{2a}{2a+b+c} = \frac{2TP}{2TP+FP+FN}$ 

precision: TP/cancer diagnoses



## Confusion matrix

Confusion matrix about a model used to predict whether a tumor is malignant (NO) or benign (YES)

| n=165          | Predicted:<br>NO | Predicted:<br>YES |     |
|----------------|------------------|-------------------|-----|
| Actual:<br>NO  | TN = 50          | FP = 10           | 60  |
| Actual:<br>YES | FN = 5           | TP = 100          | 105 |
|                | 55               | 110               |     |

## ROC curve plots TPR (true positive rate) (on the y-axis) against FPR (false positive rate) (on the x-axis)

$$TPR = \frac{TP}{TP + FN}$$

| FPR = 0 | FP                   |
|---------|----------------------|
| IIK     | $\overline{FP + TN}$ |

|                 | PREDICTED CLASS |           |           |
|-----------------|-----------------|-----------|-----------|
| ACTUAL<br>CLASS |                 | Class=No  | Class=Yes |
|                 | Class=No        | a<br>(TN) | b<br>(FP) |
| OLAGO           | Class=Yes       | c<br>(FN) | d<br>(TP) |



## Using ROC for Model Comparison



- Area Under Curve
   (AUC) determines which
   models preforms best
  - Ideal: Area = 1
  - Random guess ( = Diagonal line ) :
    - Area = 0.5