ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ КОШИ

Теоретический материал к данной теме содержится в [1, глава 14].

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче: 1) постановка задачи; 2) необходимый теоретический материал; 3) решение поставленной задачи; 4) анализ полученных результатов; 5) графический материал (если необходимо); 6) тексты программ.

Варианты заданий к задачам 7.1-7.7 даны в ПРИЛОЖЕНИИ 7.А.

Фрагменты решения задач 7.1 и 7.2 в пакете Mathcad даны в *ПРИЛОЖЕНИИ 7.В.*

Задача 7.1. Найти приближенное решение задачи Коши для обыкновенного дифференциального уравнения (ОДУ) 1 порядка

$$y'(t) = f(t, y(t)), \quad t \in [t_0, T],$$
 (1)
 $y(t_0) = y_0$

и оценить погрешность решения задачи.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Задать исходные данные: функцию f правой части, начальное значение y_0 .
- 2. Написать функцию **eyler**, реализующую метод Эйлера, и с помощью этой функции найти приближенное решение задачи Коши с шагом h=0.1 по явному методу Эйлера.
- 3. Написать функцию **rkfixed**, реализующую метод Рунге-Кутты, и с ее помощью найти приближенное решение задачи Коши с шагом h=0.1 по методу Рунге-Кутты 4 порядка точности.
- 4. Найти решение задачи Коши аналитически.
- 5. Построить таблицы значений приближенных и точного решений. На одном чертеже построить графики приближенных и точного решений.
- 6. Оценить погрешность приближенных решений двумя способами:
- а) по формуле $\mathcal{E} = \max_{0 \leq i \leq N} |y(t_i) y_i|$; здесь $y(t_i)$ и y_i значения точного и приближенного решений в

узлах сетки t_i , i=1,...N;

- b) по правилу Рунге (по правилу двойного пересчета) (см. *ПРИЛОЖЕНИЕ 7.С*).
- 7. Выяснить, при каком значении шага $h=h^*$ решение, полученное по методу Эйлера, будет иметь такую же погрешность (см. п. 6а), как решение, полученное с помощью метода Рунге-Кутты с шагом h=0.1. УКАЗАНИЕ. В п. 7 рекомендуется провести серию вычислений решения по методу Эйлера, дробя шаг h

Задача 7.2. Задача Коши для ОДУ 2 порядка

$$mx'' + Hx' + kx = f(t), t \in [0,T],$$

 $x(0) = x_0$
 $x'(0) = v_0$

описывает движение груза массы m, подвешенного к концу пружины. Здесь x(t) — смещение груза от положения равновесия, H — константа, характеризующая силу сопротивления среды, k —коэффициент упругости пружины, f(t) — внешняя сила. Начальные условия: \mathcal{X}_0 — смещение груза в начальный момент

времени t=0, V_0 – скорость груза в начальный момент времени. Промоделировать движение груза на временном отрезке [0,T] при заданных в индивидуальном варианте трех наборах (I, II, III) значений параметров задачи. Для каждого набора по найденной таблице (или графику) решения задачи определить максимальное и минимальное значения

функции x(t) и моменты времени, в которые эти значения достигаются. Предложить свой вариант задания параметров, при которых характер колебаний груза существенно отличается от рассмотренного ранее.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

1. Заменить исходную задачу эквивалентной задачей Коши для системы ОДУ 1 порядка:

$$x'_{1} = x_{2}$$

$$x'_{2} = \frac{f(t) - Hx_{2} - kx_{1}}{m}$$

$$x_{1}(0) = x_{0}$$

$$x_{2}(0) = v_{0}$$
(2)

- 2. Для каждого варианта выбора параметров решить задачу (2) с помощью метода Рунге-Кутты 4 порядка точности с шагом h=0.1.
- 3. Для каждого варианта выбора параметров построить график найденного решения. Сравнить характер движения груза и дать интерпретацию полученного движения.
- 4. Для каждого варианта выбора параметров определить требуемые в задаче характеристики.

УКАЗАНИЕ. В п. 2 использовать функцию **rkfixed**, написанную для задачи 7.1.

Задача 7.3. Решить приближенно задачу Коши для ОДУ 1 порядка вида (1), используя метод Рунге-Кутты 4 порядка точности и метод, указанный в варианте, с шагами h и h/2. Для каждого метода оценить погрешность по правилу Рунге и вычислить угочненное решение (см. ПРИЛОЖЕНИЕ 7.C). Построить на одном чертеже графики приближенных решений (с шагом h/2) и графики уточненных решений.

УКАЗАНИЕ. Для нахождения начальных значений, необходимых для начала вычислений многошаговых методов, использовать функцию **rkfixed**, написанную для задачи 7.1.

Задача 7.4. Решить приближенно задачу Коши для ОДУ 3 порядка

$$a_0 y''' + a_1 y'' + a_2 y' + a_3 y = f(t)$$

 $y(A) = b_1, y'(A) = b_2, y''(A) = b_3$

на отрезке [A, B], используя метод Рунге-Кутты 4 с шагами h=0.1 и h=0.05 для систем ОДУ 1 порядка. Оценить погрешность по правилу Рунге. Построить график решения, найденного с шагом h=0.05. УКАЗАНИЕ. Эквивалентная задача Коши для системы ОДУ 1 порядка приведена в Π РИЛОЖЕНИИ 7.C.

Задача 7.5. Дана жесткая задача Коши вида (1). Найти решение задачи с

заданной точностью $\varepsilon = 10^{-3}$.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Используя функцию **eyler**, написанную для задачи 7.1, найти приближенное решение задачи Коши явным методом Эйлера с шагом h=0.15.
- 2. Найти решение задачи методом Рунге-Кутты 4 порядка точности с помощью функции **rkfixed**, написанной для задачи 7.1, с шагом h=0.15.
- 3. Построить графики приближенных и точного решений задачи.
- 4. Уменьшая шаг, найти решение задачи с заданной точностью ε каждым из методов. Сравнить значения шагов интегрирования, при которых достигается точность ε .
- 5. Объяснить полученные результаты.

Задача 7.6. Даны две задачи Коши для систем ОДУ 1 порядка с постоянными коэффициентами на отрезке [0, 1]

$$Y'(t) = AY(t), Y(0) = Y_0,$$

 $Z'(t) = BZ(t), Z(0) = Z_0,$

где A и B – заданные матрицы, Y_0, Z_0 - заданные векторы. Выяснить, какая из задач является жесткой. ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить программу-функцию нахождения решения системы ОДУ 1 порядка с постоянными коэффициентами по явному методу Эйлера. Используя составленную программу, решить обе задачи с шагом h=0.01. Определить, для какой из задач явный метод неустойчив при данном шаге h.
- 2. Используя встроенную функцию для нахождения собственных чисел матриц A и B, найти коэффициенты жесткости обеих систем. Какая из задач является жесткой?
- 3. Для жесткой задачи теоретически оценить шаг h^* , при котором явный метод Эйлера будет устойчив (см. ПРИЛОЖЕНИЕ 7.C).
- 4. Составить программу-функцию нахождения решения системы ОДУ 1 порядка с постоянными коэффициентами по неявному методу Эйлера. Используя составленную программу, найти решение жесткой задачи с шагом h=0.01. Построить графики компонент полученного решения.
- 5. Для жесткой задачи экспериментально подобрать шаг h, при котором графики компонент решения, полученного по явному методу Эйлера, визуально совпадают с графиками компонент решения, полученного по неявному методу с шагом h=0.01. Сравнить найденное значение шага

с шагом h^* . Объяснить различие поведения явного и неявного методов Эйлера при решении жесткой задачи.

Задача 7.7.** Решить приближенно задачу Коши для ОДУ 1 порядка вида (1) с помощью метода, указанного в индивидуальном варианте, с точностью $\varepsilon = 10^{-4}$. При нахождении решения использовать алгоритм автоматического выбора шага.

УКАЗАНИЕ. В результате работы программы должен создаваться файл, содержащий вектор значений приближенного решения, а также значение шага h, при котором достигается заданная точность ε . Программа по запросу должна выдавать на экран таблицу значений найденного решения в фиксированной 21 точке отрезка $[t_0, T]$ или график найденного решения.

ПРИЛОЖЕНИЕ 7.А. Схема вариантов к лабораторной работе 7

N	Выполняемые задачи	N	Выполняемые задачи	N	Выполняемые задачи
1	7.1.1, 7.2.1, 7.5.1	11	7.1.11, 7.2.4, 7.6.4	21	7.1.21, 7.2.8, 7.6.2
2	7.1.2, 7.3.1, 7.6.1	12	7.1.12, 7.2.5, 7.7.4	22	7.1.22, 7.3.8, 7.7.2
3	7.1.3, 7.4.1, 7.7.1	13	7.1.13, 7.3.5, 7.5.5	23	7.1.23, 7.4.8, 7.5.3
4	7.1.4, 7.2.2, 7.6.2	14	7.1.14, 7.4.5, 7.6.5	24	7.1.24, 7.2.9, 7.6.3
5	7.1.5, 7.3.2, 7.5.2	15	7.1.15, 7.2.6, 7.6.6	25	7.1.25, 7.3.9 7.7.3
6	7.1.6, 7.4.2, 7.7.2	16	7.1.16, 7.3.6, 7.7.6	26	7.1.26, 7.4.9, 7.6.4
7	7.1.7, 7.2.3, 7.5.3	17	7.1.17, 7.4.6, 7.5.1	27	7.1.27, 7.2.10, 7.5.4
8	7.1.8, 7.4.3, 7.6.3	18	7.1.18, 7.2.7, 7.6.1	28	7.1.28, 7.4.4, 7.7.4
9	7.1.9, 7.3.3, 7.7.3	19	7.1.19, 7.3.7, 7.7.1	29	7.1.29, 7.3.10, 7.5.5
10	7.1.10, 7.3.4, 7.5.4	20	7.1.20, 7.4.7, 7.5.2	30	7.1.30, 7.4.10, 7.6.5

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 7

Таблица к задаче 7.1

N	f(t,y)	t0	T	y0	N	f(t,y)	t0	T	y0
7.1.1	$y/t+t^2$	1	2	0	7.1.16	-y/t+3t	1	2	1
7.1.2	$yctgt + 2t\sin t$	$\frac{\pi}{2}$	$\frac{\pi}{2}$ +1	0	7.1.17	$\frac{2ty}{1+t^2} + 1 + t^2$	1	2	3
7.1.3	$-y\cos t + \frac{\sin(2t)}{2}$	0	1	0	7.1.18	$\frac{2t-1}{t^2}y+1$	1	2	1
7.1.4	$-ytgt + \cos^2 t$	$\frac{\pi}{4}$	$\frac{\pi}{4}$ +1	0.5	7.1.19	$-\frac{3y}{t} + \frac{2}{t^3}$	1	2	1
7.1.5	$\frac{y}{t+2} + t^2 + 2t$	-1	0	1.5	7.1.20	$-2ty-2t^3$	1	2	e^{-1}
7.1.6	$\frac{y}{t+1} + e^t(t+1)$	0	1	1	7.1.21	$y/t-2/t^2$	1	1	1
7.1.7	$y/t + t \sin t$	$\frac{\pi}{2}$	$\frac{\pi}{2}$ +1	1	7.1.22	$-ty-t^3$	0	1	3
7.1.8	$-y/t + \sin t$	π	π+1	$\frac{1}{\pi}$	7.1.23	$\frac{2}{t+1}y + e^t(t+1)^2$	0	1	1
7.1.9	$-\frac{y}{2t}+t^2$	1	2	1	7.1.24	$-2ty + te^{-t^2}\sin t$	0	1	1

^{*} Задача 7.7 выполняется на АЛГОРИТМИЧЕСКОМ ЯЗЫКЕ.

7.1.10	$-\frac{2t}{1+t^2}y + \frac{2t^2}{1+t^2}$	0	1	$\frac{2}{3}$	7.1.25	$\frac{2y}{t+1} + (t+1)^3$	0	1	0.5
7.1.11	$\frac{2t-5}{t^2}y+5$	2	3	4	7.1.26	$y\cos t - \sin 2t$	0	1	3
7.1.12	$-y/t + \frac{t+1}{t}e^t$	1	2	e	7.1.27	$4ty - 4t^3$	0	1	-0.5
7.1.13	$y/t - 2\ln t/t$	1	2	1	7.1.28	$y/t - \ln t/t$	1	2	1
7.1.14	$y/t - 12/t^3$	1	2	4	7.1.29	$3t^2y + t^2(1+t^3)/3$	0	1	0
7.1.15	$-2y/t+t^3$	1	2	$-\frac{5}{6}$	7.1.30	$y\cos t + \sin 2t$	0	1	-1

Таблица к задаче 7.2

N.T.		7.7	1			олица к задач		T
N	-	Н	k	m	f(t)	x0	v0	T
7.2.1	I	0.5	1	1	0_	10	0	20
	II	_"-	_"-	_"-	\sqrt{t}	0	_"_	_"_
	III	_"-	-"-	_"-	\sqrt{t}	-10	_"-	_"-
7.2.2	I	1	1	0.5	tsin(t)	0	0	20
	II	-"-	-"-	-"-	0	-"-	-10	-"-
	III	_"-	-"-	-"-	tsin(t)	-"-	-50	_"-
7.2.3	I	1	5	0.75	0	-10	0	5
	II	_"-	-"-	-"-	_"_	0	10	_"-
	III	-"-	-"-	-"-	_"_	-10	10	_"-
7.2.4	I	1	1	1	cos(t)	0	0	20
	II	_"-	_"-	3	_"-	_"-	_"_	_"_
	III	-"-	-"-	6	_"_		_"-	_"-
7.2.5	I	0.5	5	1	0	20	0	15
	II	_"-	50	_"-	_"-	_"-	_"_	_"-
	III	-"-	0.5	-"-	_"_		_"-	_"-
7.2.6	I	1	5	1	0	0	1	15
	II	-"-	0.5	_"-	_"-	_"-	_"_	_"-
	III	_"-	50	_"-	_"-	_"-	_"_	_"_
7.2.7	I	1	1	5	-t	15	0	40
	II	0.1	_"-	_"-	_"-	_"-	_"_	_"_
	III	10	_"-	_"-	_"-	_"-	_"_	_"_
7.2.8	I	1	1	0.5	sin(t)	0	0	20
	II	_"-	_"-	5	_"_	_"-	_"-	_"-
	III	_"-	_"-	50	_"-	_"-	_"_	_"_
7.2.9	I	1	1	2	-cos(0.5t)	0	0	20
	II	_"-	_"-	_"-	-cos(2t)	_"-	_"_	_"_
	III	-"-	_"-	-"-	2	_"-	_"_	_"-
7.2.10	I	0.5	1	0.5	$-\sqrt{t}$	0	-10	15
	,,,			44	_"-		10	66
	II	-"-	_"_	_"_	\sqrt{t}	0	10	_"_
	III	-"-	-"-	-"-	\sqrt{l}	0	10	_"-

Таблица к задаче 7.3

N	f(t,y)	t0	T	y0	Метод*
7.3.1	$-ty + (1+t)e^{-t}y^2$	0	1	1	Метод Рунге-Кутты 3 порядка I
7.3.2	$-4t^3y + 4(t^3 + 1)e^{-4t}y^2$	0	1	1	Экстраполяционный метод Адамса 2 порядка

^{*} Расчетные формулы методов даны в *ПРИЛОЖЕНИИ 7.С.*

7.3.3	$-4t^3y + 4(1-t^3)e^{4t}y^2$	0	1	-1	Модифицир. метод Эйлера 2 порядка
7.3.4	$y + 2ty^2$	0	0.8	0.5	Экстраполяционный метод Адамса 3 порядка
7.3.5	$-2ty + 2t^3y^3$	0	1	$\sqrt{2}$	Метод Рунге-Кугты 3 порядка II
7.3.6	$-ty + (t-1)e^t y^2$	0	1	1	Экстраполяционный метод Адамса 3 порядка
7.3.7	$y + ty^2$	0	0.8	1	Экстраполяционный метод Адамса 4 порядка
7.3.8	$-y+ty^2$	0	1	1	Метод разложения по формуле Тейлора 2 порядка
7.3.9	$-ty + 0.5(t-1)e^t y^2$	0	1	2	Экстраполяционный метод Адамса 3 порядка
7.3.10	$ytgt - (2/3)y^4 \sin t$	0	1	1	Метод Рунге-Кутты 3 порядка III

Таблица к задаче 7.4

N	A	В	b_1	b_2	b_3	a_0	a_1	a_2	a_3	f(t)
7.4.1	0	1.5	1	2.5	6	1	-2	0.25	45.75	$e^{-2t} + 3t + 1$
7.4.2	0	1.5	1	2.0	4	1	-1.8	0.36	44.28	$e^{-2t} - 1.5t + 1$
7.4.3	0	1.5	1	2.5	6	1	-1.4	0.64	41.52	$\cos(2t) + 3t + 1$
7.4.4	0	2.0	1	1.5	2	1	-1.4	1.88	45.24	$\sin(2t) + 2t - 1$
7.4.5	0	1.5	1	3.0	10	1	-2.4	0.09	48.87	$\sin(t) - 7t + 2$
7.4.6	0	1.0	1	3.5	9	1	-1	8.8	29.00	$\cos(t) + 5t + 3$
7.4.7	0	1.5	1	2.8	5	1	-1.5	-1.25	53.375	$e^{-t} + \cos(2t)$
7.4.8	0	1.5	1.5	4.0	10	1	-4.6	3.94	34.28	$e^{-1.5t} + 2\sin(3t)$
7.4.9	0	1.5	0	2.5	8	1	-4.1	0.64	42.85	$e^{-2t} + 3\sin(2.5t)$
7.4.10	0	1.5	0	3.1	9	1	-3.9	9.43	26.295	$\sin(2t) + 2\cos(3t)$

Таблица к задаче 7.5

			таолица	і к заді	u 10 7.5
N	f(t,y)	t0	T	y0	точное решение
7.5.1	-20y + 2t - 19.9	0	1.5	0	$-1 + 0.1t + e^{-20t}$
7.5.2	$-30y + 30\cos(\pi t) - \pi\sin(\pi t)$	0	1.5	0	$\cos(\pi t) - e^{-30t}$
7.5.3	-25y + 1.25t - 49.95	0	1.5	0	$-2 + 0.05t + 2e^{-25t}$
7.5.4	$-20y + 20 - 19e^{-t}$	0	1.5	1	$1 - e^{-t} + e^{-20t}$
7.5.5	$-30y + \sin(2t) + 30\sin^2(t)$	0	1.5	1	$\sin^2(t) + e^{-30t}$
7.5.6	$-25y - \sin(2t) + 25\cos^2(t)$	0	1.5	0	$\cos^2(t) - e^{-25t}$

Таблица к задаче 7.6

N		A	Y_0		В	Z_0
7.6.1	-1.999	-0.019	0	-10.850	9.787	1
	-0.063	-1.051	1	32.515	-499.55	0
7.6.2	-13.237	15.299	2	-6.905	0.03	1
	33.885	522.183	0	-0.145	-6.095	5
7.6.3	-0.717	-23.827	1	-1.905	-0.015	1

	114.483 -640.393	2	-0.13 -2.295	0
7.6.4	-17.359 -0.573	2	-64.712 -85.344	1
	5.366 -21.351	1	-128.964 -170.918	0
7.6.5	-229.934 301.266	1	-2.018 -0.818	1
	227.624 -303.576	1	-0.082 -1.282	1

Таблица к задаче 7.7

N	f(t,y)	t0	T	y0	Метод*
7.7.1	$-\frac{2}{3}ty^2 + \frac{1}{3}y(\cos(\frac{t}{2}))^2$	0	5	3.4	Метод разложения по формуле Тейлора 2 порядка
7.7.2	$\frac{3}{2}e^{\frac{t}{2}}\sin(y) - \frac{1}{4}t^2$	-2	4	1.4	Модифицированный метод Эйлера 2 порядка
7.7.3	$-\frac{1}{3}y\sqrt{t} + \frac{2}{3}y^2\sin(t)$	2	10	2.2	Метод Рунге-Кугты 3 порядка I
7.7.4	$\frac{1}{2}t^2\cos(y) - \frac{1}{2}ye^{-\frac{t}{6}}$	0	6	1.1	Метод Рунге-Кутты 3 порядка II
7.7.5	$\frac{1}{3}t^3\sin(2y) - y^2e^{-\frac{t}{2}}$	-1	6	1.1	Метод Рунге-Кутты 3 порядка III
7.7.6	$-\frac{1}{3}y\sqrt{t} + \frac{2}{3}y^2\sin(t)$	2	10	2.2	Модифицированный метод Эйлера 2 порядка

ПРИЛОЖЕНИЕ 7.В.

Фрагмент решения задачи 7.1.0

Задача Коши: y'(t)=2ty, t0=0, T=1, y(0)=1.

Исходные данные:

Правая часть:

$$f(t,y) := 2 \cdot t \cdot y$$

Начальное значение:

$$y_0 := 1$$

Концы отрезка:

Шаг сетки:

h := 0.2

Число узлов сетки:

$$N = \frac{T - t0}{h}$$
 $N = 5$

Функция, реализующая явный метод Эйлера; возвращает вектор решения:

^{*} Расчетные формулы методов даны в ПРИЛОЖЕНИИ 7.С.

Входные параметры:

f - функция правой части;

у0 - начальное значение;

t0 - начальная точка отрезка;

h - шаг сетки;

N - число узлов сетки.

Вычисление решения по методу Эйлера:

$$yE := eyler(f, y_0, t0, h, N)$$

Вычисление решения по методу Рунге-Кутты 4 порядка точности:

$$yRK4 := rkfixed(y, t0, T, N, f)$$

входные параметры:

у - вектор начальных значений;

t0- начальная точка отрезка;

T - конечная точка отрезка;

N - число узлов сетки;

f - функция правой части. Функция **rkfixed** возвращает матрицу, первый столбец которой содержит узлы сетки, а второй - приближенное решение в этих узлах.

Точное решение:

$$Y(t) := e^{t^2}$$

Точное решение в узлах сетки:

$$i = 0.. N$$
 $t_i = t0 + i \cdot h$ $yt_i = Y(t_i)$

Решение по методу Эйлера Решение по методу Рунге-Кутты Точное решение

$$yE = \begin{bmatrix} 1\\1\\1.08\\1.253\\1.553\\2.051 \end{bmatrix} \qquad yRK4 = \begin{bmatrix} 0&1\\0.2&1.041\\0.4&1.174\\0.6&1.433\\0.8&1.896\\1&2.718 \end{bmatrix} \qquad yt = \begin{bmatrix} 1\\1.040811\\1.173511\\1.433329\\1.896481\\2.718282 \end{bmatrix}$$

Графики приближенных и точного решений

Вычисление погрешности по правилу Рунге:

Вычисление приближенных решений с шагом h/2:

$$h2 = \frac{h}{2}$$
 $N2 := \frac{T - t0}{h2}$ $N2 = 10$

$$yEh2 \stackrel{?}{-} eyler(f, y_0, t0, h2, N2) \qquad \qquad yRK4h2 := rkfixed(y, t0, T, N2, f)$$

Вычисление погрешностей:

$$zE_{i}^{-} | yE_{i} - yEh2_{2 \cdot i} |$$

$$zRK4_{i} := \frac{| (yRK4^{<1>})_{i} - (yRK4h2^{<1>})_{2 \cdot i} |}{15}$$

Значение погрешностей:

$$max(zE) = 0.284$$
 $max(zRK4) = 1.088 \cdot 10^{-5}$

Фрагмент решения задачи 7.2.0

Исходные данные:

$$H(\overline{t}) = 0$$
 K :- 1 m :- 1 $f(t) := 0$ X0 :- 10 V0 :- 0 $t0 := 0$ T :- 5

Шаг сетки:

h := 0.5

Число узлов сетки:

$$N = \frac{T - t0}{h}$$
 $N = 10$

Формирование вектора правой части системы ОДУ и вектора начальных условий для применения встроенной функции **rkfixed**:

$$f1(t,x1,x2) \ \overline{:-} \ x2 \qquad \qquad f2(t,x1,x2) :- \ \frac{f(t) - H(t) \cdot x2 - K \cdot x1}{m}$$

$$x = \begin{bmatrix} x_0 \\ v_0 \end{bmatrix}$$

$$D(t,x) := \begin{bmatrix} f1\left(t,x_0,x_1\right) \\ f2\left(t,x_0,x_1\right) \end{bmatrix}$$

$$Z := rkfixed(x,t0,T,N,D)$$

График решения

$$Z = \begin{bmatrix} 0 & 10 & 0 \\ 0.5 & 8.776 & -4.792 \\ 1 & 5.406 & -8.41 \\ 1.5 & 0.714 & -9.971 \\ 2 & -4.151 & -9.093 \\ 2.5 & -8 & -5.991 \\ 3 & -9.892 & -1.424 \\ 3.5 & -9.363 & 3.49 \\ 4 & -6.545 & 7.549 \\ 4.5 & -2.127 & 9.762 \\ 5 & 2.811 & 9.586 \end{bmatrix}$$

Правило Рунге практической оценки погрешности (правило двойного пересчета):

$$y(t_i)-y_i^{\;h/2}pprox {arepsilon_i}^h$$
 , где $\;{arepsilon_i}^h=rac{y_i^{h/2}-y_i^h}{2^p-1}$, i =1, \dots , N , $\;p$ — порядок метода, а вычисления ведутся в

узлах сетки t_i .

Уточненное решение вычисляется по формуле: $y_{i,yточн.} = y_i^{h/2} + \varepsilon_i^h$, i=1,..., N.

Расчетные формулы методов решения задачи Коши для ОДУ 1 порядка:

Метод разложения по формуле Тейлора 2 порядка:

$$y_{i+1} = y_i + h(f(t_i, y_i) + \frac{h}{2} \left[\frac{\partial f(t_i, y_i)}{\partial t} + \frac{\partial f(t_i, y_i)}{\partial y} \right])$$

Модифицированный метод Эйлера 2 порядка:

$$\overline{y}_{i+1} = y_i + hf(t_i, y_i), \quad y_{i+1} = y_i + \frac{h}{2}(f(t_i, y_i) + f(t_{i+1}, \overline{y}_{i+1}))$$

Метод Рунге-Кутты 3 порядка I:

$$k1 = hf(t_i, y_i),$$

$$k2 = hf(t_i + \frac{h}{2}, y_i + \frac{k1}{2}), \quad k3 = hf(t_i + h, y_i - k1 + 2k2),$$

$$y_{i+1} = y_i + \frac{1}{6}(k1 + 4k2 + k3)$$

Метод Рунге-Кутты 3 порядка II:

$$k1 = hf(t_i, y_i),$$

$$k2 = hf(t_i + \frac{h}{3}, y_i + \frac{k1}{3}),$$
 $k3 = hf(t_i + \frac{2}{3}h, y_i + \frac{2}{3}k2),$

$$y_{i+1} = y_i + \frac{1}{4}(k1 + 3k3)$$

Метод Рунге-Кутты 3 порядка III:

$$k1 = hf(t_i, y_i),$$

$$k2 = hf(t_i + \frac{h}{2}, y_i + \frac{k1}{2}), \quad k3 = hf(t_i + \frac{3}{4}h, y_i + \frac{3}{4}k2),$$

$$y_{i+1} = y_i + \frac{1}{9}(2k1 + 3k2 + 4k3)$$

Экстраполяционный метод Адамса 2 порядка:

$$y_{i+1} = y_i + \frac{h}{2}(3f(t_i, y_i) - f(t_{i-1}, y_{i-1}))$$

Экстраполяционный метод Адамса 3 порядка:

$$y_{i+1} = y_i + \frac{h}{12} (23f(t_i, y_i) - 16f(t_{i-1}, y_{i-1}) + 5f(t_{i-2}, y_{i-2}))$$

Экстраполяционный метод Адамса 4 порядка:

$$y_{i+1} = y_i + \frac{h}{24} [55f(t_i, y_i) - 59f(t_{i-1}, y_{i-1}) + 37f(t_{i-2}, y_{i-2}) -$$

$$-9f(t_{i-3}, y_{i-3})$$

Сведение ОДУ 3 порядка к системе ОДУ 1 порядка (для задачи 7.4):

$$y'_{1} = y_{2}$$

$$y'_{2} = y_{3}$$

$$y'_{3} = \frac{f(t) - a_{1}y_{3} - a_{2}y_{2} - a_{3}y_{1}}{a_{0}}$$

$$y_{1}(A) = b_{1}, \quad y_{2}(A) = b_{2}, \ y_{3}(A) = b_{3}.$$

Условие устойчивости явного метода Эйлера для системы ОДУ 1 порядка с постоянными коэффициентами $Y'(t) = MY(t), \ Y(t_0) = Y_0$:

$$h \leq 2/\max_i \mid \operatorname{Re} \lambda_i \mid$$
 , где λ_i , i =1, ..., n , — собственные числа матрицы M порядка n .

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.