Explainable AI & Leverage Score Sampling

R. Teal Witter

New York University

Shapley Values & Leverage Score Sampling

Joint work with

Christopher Musco New York University

Al Predictions

Example: 50

Explaining Predictions

Attribute the prediction to features relative to a baseline

"Since the traffic is 8 instead of 3, the ride is 1.7 less enjoyable."

Attribution value!

Explaining Predictions

Attribute the prediction to features relative to a baseline

"Since the traffic is 8 instead of 3, the ride is 1.7 less enjoyable."

Temperature	73°	89°	🌡 🗳 🌧 Ѣ 🚗	$f(\mathbf{x})$
Wind speed	11mph	1mph	89° 11mph 30% 5 3	5/10
Chance of rain	30%	0%	89° 11mph 30% 5 8	4/10
Helicopters	2	5	73° 1mph 0% 5 3	6/10
Traffic	8	3		,
	L i J		73° 1mph 0% 5 8	8/10
Explicand Ba		Baseline		

Desirable Properties

Dummy: If a feature never changes the prediction, then its attribution value is 0

Symmetry: If two features always induce the same change, then their attribution values are the same

Linearity: For two predictive functions, the attribution value of a feature in the combined function is the sum of the attribution values for each function

Efficiency: The attribution values sum to the difference between the predictions on the explicand and baseline

⇔ Shapley values!

Lloyd Shapley received the Nobel Prize in Economics for formulating Shapley values.

Shapley Values for Feature Attribution

Let $S \in [n]$ and define $v(S) = f(x^S)$ where

The SHAP paper (one of the first to use Shapley values in explainable AI) has 25k+ citations.

Shapley Values for Feature Attribution

Let $S \in [n]$ and define $v(S) = f(x^S)$ where

$$S$$
 § \Rightarrow \Rightarrow \Rightarrow $f(x^S)$ {2,3} 89° 11mph 30% 5 3 5/10 {2,3,5} 89° 11mph 30% 5 8 4/10

For a set function $v: 2^{[n]} \to \mathbb{R}$, the *i*th Shapley value is

$$\phi_i = \frac{1}{n} \sum_{S \in [n] \setminus \{i\}} \frac{v(S \cup \{i\}) - v(S)}{\binom{n-1}{|S|}}$$

Estimating Shapley values

Monte Carlo Sampling: Sample $S, S \cup \{i\}$ to use $v(S \cup \{i\}) - v(S)$... but samples only used for one Shapley value

Maximum Reuse Sampling: Sample S to either add/subtract v(S) for all i ... but magnitude of v(S) is much larger than magnitude of $v(S \cup \{i\}) - v(S)$

Permutation Sampling: Sample $S_1 \subset S_2 \subset \cdots \subset S_n$ to use $v(S_{\ell+1}) - v(S_{\ell})$... but only 2x reuse

Regression Formulation

Constraint to satisfy efficiency property.

$$\phi = \arg \min_{\boldsymbol{\beta}: \langle \beta, 1 \rangle = v([n]) - v(\emptyset)} ||\boldsymbol{Z}\boldsymbol{\beta} - \boldsymbol{y}||_2$$

Connection known since 80's [CGKR 1988]

Each row/entry corresponds to binary vector

$$\mathbf{z} \in \{0,1\}^n : 0 < ||\mathbf{z}||_1 < n$$

Weighted by
$$w(||z||_1) = \frac{1}{\binom{n}{||z||_1}(n-||z||_1)||z||_1}$$

Kernel SHAP

Kernel SHAP

Constrained to Unconstrained Regression

$$\phi = \arg \min_{\boldsymbol{\beta}: \langle \beta, 1 \rangle = v([n]) - v(\emptyset)} ||\boldsymbol{Z}\boldsymbol{\beta} - \boldsymbol{y}||_{2}$$
$$= \arg \min_{\boldsymbol{\beta}} ||\boldsymbol{A}\boldsymbol{\beta} - \boldsymbol{b}||_{2} + 1 \frac{v([n]) - v(\emptyset)}{n}$$

- By constraint, we know the component in the 1 direction
- Only optimize to residual target in space orthogonal to 1

Formulate as unconstrained problem so we can apply our favorite tools!

Leverage Scores 🔀

Row
$$\mathbf{z}$$
 has "leverage":
$$\ell_{\mathbf{z}} = A_{\mathbf{z}} (A_{\mathbf{z}}^{\mathsf{T}} A_{\mathbf{z}})^{+} A_{\mathbf{z}}^{\mathsf{T}}$$

Leverage Scores and Shapley values

Row
$$\mathbf{z}$$
 has "leverage":
$$\ell_{\mathbf{z}} = A_{\mathbf{z}} (A_{\mathbf{z}}^{\mathsf{T}} A_{\mathbf{z}})^{+} A_{\mathbf{z}}^{\mathsf{T}}$$

$$\ell_{\mathbf{z}} = \binom{n}{||\mathbf{z}||}^{-1}$$

Very similar to weighting in Shapley value definition!

Leverage SHAP

$$\widetilde{\boldsymbol{\phi}} = \arg\min_{\boldsymbol{\beta}} ||\widetilde{\boldsymbol{A}}\boldsymbol{\beta} - \widetilde{\boldsymbol{b}}||_2 + 1 \frac{v([n]) - v(\emptyset)}{n}$$

Leverage SHAP selects row **z** with probability proportional to leverage score!

- + Paired Sampling
- + Bernoulli Sampling

Leverage SHAP vs Kernel SHAP Probabilities

Accuracy by Sample Size

Accuracy by Noise

Robustness is useful, e.g., $v(S) = \mathbb{E}_{x^S}[f(x^S)]$

Theoretical Guarantee

As long as $m = \tilde{O}\left(\frac{n}{\epsilon}\right)$, the Leverage SHAP solution $\widetilde{\boldsymbol{\phi}}$ satisfies

$$||A\tilde{\phi} - b||_2^2 \le (1 + \epsilon)||A\phi - b||_2^2$$

with high probability

Guarantee similar to standard leverage analysis but proof requires

- Modifications for paired sampling
- Modifications for sampling without replacement

Interpretable Corollary

As long as $m = \tilde{O}\left(\frac{n}{\epsilon}\right)$, the Leverage SHAP solution $\widetilde{\boldsymbol{\phi}}$ satisfies

$$||\widetilde{\boldsymbol{\phi}} - \boldsymbol{\phi}||_2^2 \le \epsilon \gamma ||\boldsymbol{\phi}||_2^2$$

with high probability where $\gamma = \frac{||A \phi - b||_2^2}{||A \phi||_2^2} \in [0, \infty)$

Intuition: We can find $\widetilde{m{\phi}}$ close to the optimal in objective value but, when optimal solution is bad, $\widetilde{m{\phi}}$ will be far from $m{\phi}$

γ in Practice^{*}

Takeaway: γ is a parameter of regression (not artifact of analysis)

*Computing γ requires exponential time so experiments are small

Banzhaf Values & Leverage Score Sampling

Joint work with

Yurong Liu NYU

Flip Korn Google

Google

Tarfah Alrashed Dimitris Paparas Google

Juliana Freire NYU

Desirable Properties

Dummy: If a feature never changes the prediction, then its attribution value is 0

Symmetry: If two features always induce the same change, then their attribution values are the same

Linearity: For two predictive functions, the attribution value of a feature in the combined function is the sum of the attribution values for each function

2-Efficiency: If two features are combined, their combined attribution values is the sum of their separate attribution values

Banzhaf Values

For a set function $v: 2^{[n]} \to \mathbb{R}$, the *i*th Banzhaf value is

$$\phi_i = \frac{1}{2^{n-1}} \sum_{S \in [n] \setminus \{i\}} v(S \cup \{i\}) - v(S)$$

Banzhaf values are

- Simpler
- Empirically easier to approximate

Estimating Banzhaf values

Monte Carlo (MC): Sample $S, S \cup \{i\}$ to use $v(S \cup \{i\}) - v(S)$

... but samples only used for one Shapley value

Maximum Sampling Reuse (MSR): Sample S to either add/subtract v(S) for all i

... but magnitude of v(S) is much larger than magnitude of $v(S \cup \{i\}) - v(S)$

Regression Formulation

$$\phi = \arg\min_{\beta} ||A\beta - b||_2$$

Special case known since 90's [HH 1992]

Each row/entry corresponds to binary vector

$$\mathbf{z} \in \left\{-\frac{1}{2}, \frac{1}{2}\right\}^n$$

Leverage Scores and Banzhaf values

Row
$$\mathbf{z}$$
 has "leverage":
$$\ell_z = A_{\mathbf{z}} (A_{\mathbf{z}}^{\mathsf{T}} A_{\mathbf{z}})^+ A_{\mathbf{z}}^{\mathsf{T}}$$

$$\ell_z = \frac{n}{2^n}$$

Very similar to weighting in Banzhaf value definition!

Kernel Banzhaf

$$\widetilde{\boldsymbol{\phi}} = \arg\min_{\boldsymbol{\beta}} ||\widetilde{\boldsymbol{A}}\boldsymbol{\beta} - \widetilde{\boldsymbol{b}}||_2$$

Kernel SHAP selects row **z** with probability proportional to leverage score!

+ Paired Sampling

(But not Bernoulli Sampling)

Accuracy by Number of Samples

Accuracy by Noise

Theoretical Guarantees

As long as $m = \tilde{O}\left(\frac{n}{\epsilon}\right)$, the Kernel Banzhaf solution $\widetilde{m{\phi}}$ satisfies

$$||A\tilde{\phi} - b||_2^2 \le (1 + \epsilon)||A\phi - b||_2^2$$

with high probability

Guarantee similar to standard leverage analysis but proof requires modifications for paired sampling

Shapley vs Banzhaf Estimators

Why do Leverage SHAP and Kernel Banzhaf perform differently?

Condition Number of $\widetilde{\boldsymbol{A}}$

Subsampled Banzhaf problem is more well-conditioned.

Since the full problem is well-conditioned, a subsampled problem with large condition number means weights won't generalize.

Thank you!

Any questions or comments?

Let me know! I'm submitting both papers tonight!

Any ideas for future work?

At 7am ET tomorrow, I'll start looking for new projects ©

Any feedback on presentation?

I plan to present this as my job talk