Reinforcement Learning: An Introduction

Richard S. Sutton and Andrew G. Barto

© 1998 Richard S. Sutton and Andrew G. Barto

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was set in Times Roman by Windfall Software using ZzTEX and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Sutton, Richard S.

Reinforcement learning: an introduction / Richard S. Sutton and

Andrew G. Barto.

p. cm. — (Adaptive computation and machine learning)

"A Bradford book."

Includes bibliographical references and index.

ISBN 0-262-19398-1 (alk. paper)

1. Reinforcement learning (Machine learning) I. Barto, Andrew G.

II. Title. III. Series.

Q325.6.S88 1998

006.3'1—dc21

97-26416 CIP

Page numbers in italics are recommended to be consulted first.

```
Absorbing state, 60
                                              AI. See Artificial intelligence
Access-control queuing example, 154–155,
                                              Andreae, John, 19, 84, 109
  157, 160
                                              Animal learning psychology. See Psychology
Accumulating traces or Accumulate-trace
                                                 and reinforcement learning
  methods, 173, 176. See also Eligibility
                                              Approximation, 80-81
                                              Artificial intelligence (AI), 3, 5
 vs. replacing traces, 186–189, 221(fig.)
                                                and DP, 109
Acrobot: case study, 270-274
                                              and reinforcement learning, 15, 18-23, 83
Action nodes, 68
                                              Associative learning, 18
Action preferences, 152, 185
                                              Associative memory network, 225
 in the n-armed bandit problem, 41–42, 43,
                                              Associative reinforcement learning, 49
                                              Associative reward-penalty algorithm, 226
Action-value functions, 69, 84, 257
                                              Associative search, 45-46, 49
 and function approximation, 210-211
                                              Asynchronous dynamic programming,
 and Monte Carlo methods, 116-118
                                                 103-104, 107-108, 110, 254
 optimal, 75, 78, 84
                                              Average-reward case. See Undiscounted
 and TD learning, 145-146, 148, 152, 154
                                                 continuing tasks
Action-value methods, 27–30
                                              Averagers, 219
Action values, 69, 72-74, 116
 in the n-armed bandit problem, 26, 27–28,
                                              Backgammon: program for. See TD-
  48
                                                 Gammon
Actions, 51-52
                                              Backup diagrams, 71, 191
 in the n-armed bandit problem, 26
                                                complex, 169
Actor-critic methods, 22, 41, 151-153,
                                                for DP, 70-71, 76-77
  159-160
                                                for half-backups,74
 and Dyna, 237(fig.)
                                                for Monte Carlo methods, 115, 117
 eligibility traces for, 185-186, 192
                                                for n-step TD methods, 165
Afterstates, 156-157
                                                for one-step methods, 243
Agent, 5, 51–55
                                                for one-step Q-learning, 150
```

Backup diagrams (cont.) for $Q(\lambda)$, 183, 185 for Samuel's checker player, 269	Blocking maze: example, 236–237 Boltzmann distribution, 30 Bootstrapping, 109
for $Sarsa(\lambda)$, 180	assessment of, 139–142, 220–223, 224
for TD(0), 135	and DP, 109
for TD(λ), 170 Backups, 12, 7 <i>I</i>	and eligibility traces, 220–221 and function approximation, 195, 199, 201,
distribution of, 195–196, 201, 216–218,	216–222, 222–223
246–249, 251, 252, 254	and Monte Carlo methods, 115
in dynamic programming, 91	and TD learning, 134, 138
full vs. sample, 242–246	BOXES, 19, 131, 223
function approximation and, 194–195, 196,	Branching factor, 245
201	Breakfast: example, 6–7, 23
in heuristic search, 251–253	Bucket brigade, 159
<i>n</i> -step, 164–165, 166, 169–173	
prioritized sweeping and, 239-240	Car rental: example, 98–100, 157
trajectory sampling and, 248–250	Cellular telephones: dynamic channel
in Samuel's checker player, 268–269	allocation in, 279–283
Backward view of eligibility traces, 163, 175(fig.), 191, 192	Certainty-equivalence estimate, <i>144</i> –145, 159
equivalence with forward view, 176-179	Checkers, 56, 62, 251–252, 267–270
with function approximation, 199, 211 in $Q(\lambda)$, 182	Checkers player: Samuel's, 109, 225, 261, 267–270
in TD(λ), 173–178	Chess, 6-7, 21, 56, 80, 84, 156, 226
Baird's counterexample, 216–218, 220, 224	Classical conditioning models, 22
Bandit problems, 48, 128. See also N-armed	Classifier systems, 20, 22, 225
bandit problem	Cliff walking: example, 149, 150(fig.)
Batch updating or Batch training, 141–144,	CMAC. See Tile coding
159	Coarse coding, 202–205, 208
Bellman, Richard, 16, 21, 48, 49, 85, 109	Complete knowledge, 17, 82
Bellman equations, 16, 85, 90	Complex backups, 169
for V^{π} , 70	Contingency space, 34(fig.), 49
for Q^{π} , 72	Continuing tasks, 58, 60–61, 83
for V*, 76	Continuous action, 89, 153, 193, 211, 226
for Q^* , 76 and backups, 108	Continuous state, 63, 85, 89, 109, 193, 202, 205, 215
and DP, 101, 108	Continuous time, 52, 85, 275, 276–277
solving the, 77–80	Credit assignment, 18, 163, 192
Bellman error, 219–220, 224	Critic, 20, 151–152, 159
Binary bandit tasks, <i>33</i> –36, 46, 49	Curse of dimensionality, 16, 107, 207
Binary features, 202, 205	
vs. radial basis functions, 208	Decision-tree methods, 197, 226
Bioreactor: example, 54, 83	Delayed reward, 4, 87, 191
Blackjack: examples, 112–114, 121, 131	

Direct reinforcement learning (Direct RL), 230–234, 254 Dirichlet problem, 131 Discount-rate parameter, 58, 277 Discounting, 58–59, 61, 257 Distribution models, 227–228, 244 DP. See Dynamic programming Draw poker: example, 64–65 Driving: example, 55 Driving home: example, 135–138 Dual control, 48 Dyna agents, 230–238, 254, 258	Environment, 3, 51 and agent, 51–44 Markov property and, 63 models of, 227 Episodes, episodic tasks, 58–61, 83 Error reduction property, 166 Estimator algorithms, 48 Evaluation vs. instruction, 25, 31–36 Evaluative feedback, 25–49 Evolution, 9, 18 Evolutionary methods, 9, 11, 13, 20, 225, 228
architecture, 232	Experience, 111, 228
Dyna-AC, 237, 244	Experience replay, 287
Dyna-Q, 230–237 Dyna-Q+, 237, 238	Exploration–exploitation dilemma, <i>4</i> – <i>5</i> , 130, 145, 236–238
vs. prioritized sweeping, 240–241 Dyna maze, 233–235, 241	in the <i>n</i> -armed bandit problem, 26–27, 30, 46–48, 49
Dynamic channel allocation: in cellular	Exploratory moves or actions, 11, 12(fig.),
telephone systems, 279–283	15, 182–184
Dynamic programming (DP), <i>16–17</i> , 49, 89–110	Exploring starts, 117, 120, 122, 130
and artificial intelligence, 109	Farley and Clark, 18, 224
backup diagrams for, 70–71, 76–77	Features, 200–213, 225
efficiency of, 107-108	Forward view of eligibility traces, 163,
function approximation and, 194, 216–219,	171(fig.), 191
222, 224, 225 incremental, 109	equivalence with backward view, 176–179, 192
vs. Monte Carlo methods, 111–119,	with function approximation, 198–199
129–131, 133, 256	in $Q(\lambda)$, 182–185
reinforcement learning and, 9, 16–17, 23,	in TD(λ), 169–173
89, 109	with variable λ, 190
temporal-difference learning and, 133–135,	Full backups, 91, 108, 242–246, 255–256
138, 159, 256	Function approximation, 193–225, 259 control with, 210–215
Elevator dispatching: case study, 274–279	counterexamples to, with off-policy
Eligibility traces, 163-192. See also	bootstrapping, 216–220
Accumulating traces, Replacing traces	gradient-descent methods for, 197-200
for actor–critic methods, 185–186, 192	linear methods for, 200–210
performance with, 221(fig.)	Camblan's maklam 101 102
and Q-learning, 182–185, 192	Gambler's problem, 101–103
and Sarsa, $179-181$, 192 with variable λ , $189-190$, 192	Gauss–Seidel-style algorithm, 110
WILL VALIABLE A. 109-190. 197.	
Will validate 30, 100 100, 102	Gazelle calf: example, 6–7 Generalization, 193–225

Generalized policy iteration (GPI), 105–107, 108, 210, 211, 255 and Monte Carlo methods, 118, 122, 126, and TD learning, 145, 154, 157–158 Generalized reinforcement, 22 Genetic algorithms, 8, 11, 20, 48, 225 Gibbs distribution, 30–31 Gittins indices, 48, 49 Global optimum, 196 Goal state, 239 Goals, 4, 6, 56-57 Golf: example, 72–73, 75–76, 80 GPI. See Generalized policy iteration Gradient-descent methods, 197-201, 210-213, 222, 223-225 Greedy or ϵ -greedy action selection methods, 28-30, 48 Greedy actions, 26 Greedy policies, 77, 96, 119 ϵ -greedy policies, 122 Grid tasks or Gridworld examples cliff walking, 149 and DP, 92-94 and eligibility traces, 190-181 and value functions, 71-72, 78-79 windy, 146-148

Hamilton, William, 16, 84
Hamiton-Jacobi-Bellman equation, 85
Hamming distance, 210
Hashing, 207, 224
Heuristic dynamic programming, 109
Heuristic search, 250–253, 256
as expanding Bellman equations, 79
as sequence of backups, 252–253(fig.) in TD-Gammon, 266
Hierarchy and modularity, 259
History of reinforcement learning, 16–23
Holland, John, 20, 22, 48, 158–159, 225

In-place algorithms, *91*, 110 Incomplete knowledge, 82

Indirect reinforcement learning, 230–231, 254
Information state, 47, 49
Instruction vs. evaluation, 25, 31–36
Interaction, 6
agent–environment, 52
learning from, 3
Interval estimation methods, 47, 49

Jack's car rental: example, 98–100, 157 Job-shop scheduling: case study, 283–290

Kanerva coding, 209–210, 224 Klopf, Harry, 20–22, 158, 192

 λ -return, 170–173, 189–190, 191, 198 λ-return algorithm, 171–172, 176–180 Law of Effect, 17-18, 49 Learning. See also by type from examples. See Supervised learning from interaction, 3, 9, 13 and planning, 9, 227–254, 259–260 Learning automata, 20, 34-35, 48, 49 Least-mean-square (LMS) algorithm, 20, 223 Linear methods, function approximation using, 200-210 bound on prediction error, 201 convergence of, 201, 223-224 LMS. See Least-mean-square algorithm Local optimum, 196, 198–199, 201 Lookup tables. See tabular methods

Machine learning, 3, 4, 23 special journal issues on reinforcement learning, 23

Markov decision processes (MDPs), 16, 17, 23, 66–67, 82, 83–84. *See also* Partially observable MDPs, Semi-Markov decision process

Markov property, *61–65*, 82, 130, 258–259 Maximum-likelihood estimate, 144 Maze examples, 233–235, 236, 238, 240 319

MC methods. See also Monte Carlo methods Monte Carlo methods and, 128 constant-α, 134, 136, 139–142, 144, 171 nonstationary environments and, 38-39 every-visit, 112, 117, 131, 188 pursuit methods for, 43–45 first-visit, 112-113, 117, 131, 188 reinforcement comparison methods for. MDPs. See Markov decision processes 41 - 43Mean-squared error (MSE), 195–196, 201 N-step backups, 164–166, 191 MENACE (Matchbox Educable Naughts and N-step returns, 165-166, 191 Crosses Engine), 19, 84 N-step TD methods, 164–168 and Monte Carlo methods, 164-166, Michie, Donald, 19–20, 83, 84, 131, 223 Minimax, 10, 268-269 170-171, 172 Minsky, Marvin, 18, 21, 22, 109 problems with, 167 Modelfree methods. See Direct RL and TD(λ), 169–172, 191 Model-learning, 230–238, 254 Naive $O(\lambda)$, 184 Models (of the environment), 9, 82, 227–228 Neural networks, 21, 22, 23, 225, 263-266 incorrect, 235-238 Neuroscience, 22, 192 Non-Markov problems, 63, 64, 153, and planning, 9, 227–235 types of, 227–228 190-191, 258-259 Modified policy iteration, 110 Nonassociative problems and methods, 20, Modified O-learning, 159 25, 45, 284 Monte Carlo methods, 111–131. See also Nonbootstrapping methods, 220–222 MC methods Nonstationarity, 30, 38–39, 128, 195 advantages of, 129-131 Off-line updating, 166 backup diagrams for, 115, 117 and control, 118-121 Off-policy methods, 126-127, 211 convergence of, 112, 120-121, 124 DP as, 216 and DP methods, 111-112, 129-131 Monte Carlo, 124-128 problems with bootstrapping in, 216-220, eligibility traces and, 163, 172, 188, 190-191, 192 222 O-learning as, 182 incremental implementation of, 128–129 n-step backups and, 164–166, 170–171, On-line updating, 166, 175, 192 172 On-policy distribution, 196, 201, 216–217 off-policy control by, 126-128 vs. uniform distribution, 247-249 on-policy control by, 122-124 On-policy methods, 122, 130 and TD learning, 133–145, 169, 175 Monte Carlo, 122-124 Monte Carlo with Exploring Starts (Monte vs. off-policy methods, 130, 148-150 Carlo ES), 120–121 Sarsa as, 145-148, 179-181 Mountain-car task, 214-215 One-step methods, 164 MSE. See Mean-squared error backups diagrams for, 243 Optimal control, 16-17, 83-84 N-armed bandit problem, 20, 26–27, 48 Optimality, action-value methods and, 27-31 and approximation, 80-81 associative search and, 45-46 of TD(0), 141-145 initial action-value estimates and, 39-41 and value functions, 75-80 evaluation vs. instruction in, 31–36 Optimistic initial values, 39–41, 215

320

Partially observable MDPs (POMDPs), 17, 49, 258–259	Policy iteration, 97–100. See also Generalized policy iteration
Pattern recognition, 4, 18	by Monte Carlo methods, 118–119
Peng's $Q(\lambda)$, 182, 183–185(fig.), 192	POMDPs. See Partially observable MDPs
Petroleum refinery: example, 6–7	Prediction problem, 90
Planning, 9, 227–254, 259–260	Prior knowledge, using, 14, 56, 260
deliberation vs. reaction in, 9, 231	Prioritized sweeping, 239–240, 241(fig.),
and DP, 229	253, 254
in Dyna, 230–238	Prototype states, 210
and heuristic search, 250–252	Psychology and reinforcement learning, 16,
incremental, 230, 253	48, 254. See also Classical conditioning
integrated with action and learning,	models, Law of Effect, Secondary
230–238	reinforcers
and learning, 9, 227–254	and shaping, 260
partial-order, 228	and stimulus-response associations, 7
by Q-learning, 229–230	and stimulus traces, 192
and reinforcement learning, 5, 9	Pursuit methods, 43–45
state-space vs. plan-space, 228	
and trajectory sampling, 246–250	Q-functions, 84. See also Action-value
Pleasure and pain, 7–8, 57	functions
Pole-balancing, 59, 64, 83, 202, 221(fig.).	Q-learning, 23, 148–151, 159, 224, 277
See also BOXES	convergence of, 148, 159, 192, 216, 218
Policy, 52	and eligibility traces, 182–185, 192
behavior, 126	and planning, 229–230
deterministic, 92, 291	Q-planning, 229–230, 231–232
equiprobable random, 93	$Q(\lambda)$, 182–185, 192
estimation, 126	Quasi-Newton methods, 223
greedy, 77, 96, 119	Queuing example, access-control, 154–155,
ϵ -greedy, 122	157
optimal, 75	
soft, ϵ -soft, 100, 122	R-learning, 153–155, 160
stochastic, 52	Racetrack: example, 127–128, 131
Policy evaluation, 90–93, 94(fig.)	Radial basis functions (RBFs), 208, 224
for action values, 116-117, 145-146	Random walk: examples,
by DP, 90–93	batch updating on, 142
iterative, 91–92	five state, 139–142, 166–167
by Monte Carlo methods, 112–117,	λ-return algorithm on, 172
of one policy while following another,	with n -step methods on, 166–168
124–126	19-state, 167–168, 172, 178–179
by TD methods, 133–146	TD vs. MC methods on, 139–142
termination of, 92	$TD(\lambda)$ on, 178–179
Policy improvement, 93–98	values learned by TD(0) on, 140(fig.)
and Monte Carlo methods, 118-119	Random-sample one-step tabular Q-
theorem of, 95–97	planning, 229–230

RBFs. See Radial basis functions Search control, 232 Reactive decision-making, 231 Secondary reinforcers, 21 Selectional learning, 18, 19, 20 Real-time DP, 254 Selective bootstrap adaptation, 20, 225-226 Real-time heuristic search, 254 Recursive-least-square methods, 223 Self-play, 14, 266, 268 Recycling robot: examples, 6-7, 55, 56, Semi-Markov decision process, 276–277, 66–68, 78, 83 280-281 Reference reward, 41-42 Sequential design of experiments, 48, 83 REINFORCE algorithms, 226 Shannon, Claude, 21, 84, 267–268 Reinforcement comparison methods, 41–43, Shortcut maze: example, 236–238 Signature tables, 225–270 49, 152 Reinforcement learning problem, 4, 51–85 Simulated experience, 111 Replacing traces or Replace-trace methods, SNARCs (Stochastic Neural-Analog 186–189, 221(fig.). See also Eligibility Reinforcement Calculators), 18 Soap bubble: example, 116, 131 Softmax method, 30-31, 49 Residual-gradient methods, 224 Return, 57-60, 81, 257 Space shuttle payload processing (SSPP): *n*-step, or corrected *n*-step truncated, 165 case study, 284-286 Sparse distributed memory, 224 unified notation for, 60-61 State(s), 52-55, 61-65, 81, 83. See also State and value functions, 68–69, 75 Rewards, 7-8, 51-52, 53, 54, 81 representations and goals, 56–57 State-action eligibility traces, 179–180, 188 in the *n*-armed bandit problem, 26 State aggregation, 199-200, 202, 223, 224, reference, 41 225, 259 RMS error. See Root mean-squared error State nodes, 68 Robot examples, 52, 53, 56, 57, 59, 202, 270 State representations, 61–62 pick and place, 54 augmenting, 258-259 recycling, 55, 56, 66-68, 78, 83 exploiting structure in, 260 trash collecting, 6–7 State values or State value functions, 68–73, Rod maneuvering: example, 240–242 75-77, 84 Root mean-squared error, 141(fig.) STeLLA system, 19 Rosenblatt, Frank, 19 Step-size parameters, 12–13, 37, 38–39 "Steps Toward Artificial Intelligence" paper Rubik's cube: example, 53 (Minsky), 18, 21, 22 Sample-average methods, 28 Stochastic approximation convergence Sample backups, 135, 242, 246, 255 conditions, 39 Sample models, 129, 227-228 Stochastic approximation methods, 33 Samuel, Arthur, 21, 22, 109, 225. See also Supervised algorithm, 33 Checkers player: Supervised learning, 4, 19, 32, 193, 195 Samuel's Sweeps, 91, 246. See also Prioritized Sarsa, 145–148, 159, 210 sweeping Sarsa(λ), 179–181, 192 Symmetries: in Tic-tac-toe, 14–15 linear, gradient-descent, 211-213, 224 Synchronous algorithms, 110 and $TD(\lambda)$, 179–180

n-step, 164-168

System identification, 254. See also Model one-step, 148, 158, 159, 164, 179 learning off-policy control and, 148-151 on-policy control and, 145–148 Tabular methods, 80-81 roots of, 21-23, 158-159 Target or Target function, 37, 134, 164–165, Tic-tac-toe example, 12–13 194-195 Terminal state, 58 TD error, 152, 174–165, 178, 180 Testbed, 10-armed, 28 TD-Gammon, 14, 261–267 Thorndike, Edward, 17-18 and heuristic search, 251 Tic-tac-toe: example, 10–15. See also and Samuel's checker player, 268 **MENACE** TD learning. See Temporal-difference Tile coding, 204–208, 215, 224, 272–273 learning Time-delay neural network (TDNN), TD(0), 23, 134, 135(figs.), 159 287-289 vs. constant- α MC, 139–142 Time steps, 52 convergence of, 138, 159 Trace-decay parameter, 173, 189-190 Trajectory sampling, 246-250, 253, 254 function approximation and, 194, 223 λ -return algorithm and, 171 Transient DP, 254 optimality under batch updating of, Transition graphs, 67–68 141-145 Transition probabilities, 66 and Sarsa, 145 Trial-and-error learning, 16, 17–21 and $TD(\lambda)$, 175 Tsitsiklis and Van Roy's counterexample, TD(1), 175, 188, 216 219-220 $TD(\lambda)$, 22, 169–175, 191–192 backward view of, 173-175 Undiscounted continuing tasks, 61, 153–155, convergence of, 191-192, 201 160, 224 forward view of, 169-173 function approximation and, 198-200, 201, Value(s), 8, 69, 84 223-224 in the *n*-armed bandit problem, 26 relative, 154 and Sarsa(λ), 179–180 TDNN. See Time-delay neural network Value functions, 8–9, 68–80, 82, 229, 286 Temperature, 31, 42, 49, 278, 285 and DP, 89-90 Temporal-difference error. See TD error function approximation and, 193 Temporal-difference learning (TD learning), optimal, 75–80 133-160, 256 policy evaluation and, 90-93 actor-critic methods and, 151-153 roots of, 16, 84 advantages of, 138-145 Value iteration, 100-103 bootstrapping and, 138 Vision system: example, 65 convergence of, 138 DP and, 134, 138 Watkins's $Q(\lambda)$, 182–184, 192, 211, 213, 224 eligibility traces and, 163, 190-191 Werbos, Paul, 23, 84, 109, 159, 223 and GPI, 157-158 Widrow, Bernard, 19, 20, 49, 131, 223, 225 Monte Carlo methods and, 133–145, 175, 188