Math 334 Take Home Quiz

Alexandre Lipson

October 29, 2024

Problem (1). Let $S = \{(x,y) \mid x > 0, y = \sin(\frac{1}{x})\} \cup \{(0,y) \mid y \in [-1,1]\}$ be the topologists' sine curve. Prove S not path connected.

Proof. We will show that part of S, for $x \in (0, \pi/2)$, is not path connected, so all of S is not path connected.

Let

$$f: [0,1] \longrightarrow S$$

$$f(0) \longmapsto (\pi/2,1)$$

$$f(1) \longmapsto (0,1)$$

be continuous.

Since [0,1] is a closed interval in \mathbb{R} , it is compact and connected by 1.21 and 1.25 respectively.

Since f is continuous, then the image of $f([0,1]) \subset S$ is also compact and connected by 1.22 and 1.26 respectively.

Since the image of f is connected, then the first coordinate of f achieves all values $x \in (0, \pi/2)$ while $t \in [0, 1]$.

Since $\forall k \in \mathbb{Z}^+$, $\sin 2\pi k = 0$, then, for $x = \frac{1}{2\pi k}$, $y = \sin\left(\frac{1}{x}\right) = 0$. Thus, for all such k, $\exists t_k \in [0,1]$ such that $f(t_k) = \left(\frac{1}{2\pi k}, 0\right)$. Since [0,1] compact, there is a convergent subsequence of t_k which converges to some $t_0 = \lim_{k \to \infty} t_k$.

Then, note that, for t_{k+1} , $f(t_{k+1}) = \left(\frac{1}{2\pi(k+1)}, 0\right)$. Since [0,1] connected and t_{k+1} moves the sine function one more time through the period 2π , from 0 to 0, then there exists intermediary $t \in (t_k, t_{k+1})$ for which the sine function achieves values between -1 and 1. So, the second coordinate of f achieves all values $y \in (-1, 1)$ for such intermediary t.

But, by assumption, $f(t_0) = \lim_{k \to \infty} \left(\frac{1}{2\pi k}, 0\right) = (0, 0)$, yet the second coordinate of f never settles as it ranges between -1 and 1 as t increases. So, by contradiction, S is not path connected. \square

Problem (2).

Alexandre Lipson October 29, 2024

(a) Define

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Determine whether f is continuous.

(b) Define

$$g: B_{\frac{1}{4}}(0) \longrightarrow \mathbb{R}$$

$$g(x,y) = \begin{cases} \frac{4xy}{(4x^2 + y^2)\log(x^2 + 4y^2)}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Determine whether g is continuous.

Proposition (a). f is not continuous at the origin (0,0)

Proof of a. We will approach on the linear path y = ax.

So, given that $x \neq 0$,

$$f(x, ax) = \frac{ax^2}{x^2 + ax^2} = \frac{a}{1+a}.$$

But then,

$$\lim_{(x,y)\to(0,0)} \frac{a}{1+a} = \frac{a}{1+a}$$

depends solely on the chosen a. For example, if $a \neq 0$, then $\frac{a}{1+a} \neq 0$. So, f is not continuous at the origin, and the limit at the origin does not exist, so f is not everywhere continuous.

Proposition (b). g continuous.

Proof of b. We must ensure that the limit as $(x,y) \to (0,0)$ matches the function value of zero.

First, note that

$$(x+y)^{2} \ge 0$$

$$x^{2} + 2xy + y^{2} \ge 0$$

$$|x^{2} + y^{2}| \ge |2xy|$$

$$2(x^{2} + y^{2}) \ge |4xy|$$

$$2(4x^{2} + y^{2}) > |4xy|.$$

Thus, g is bounded above and below,

$$\frac{-2(4x^2+y^2)}{(4x^2+y^2)\log(x^2+4y^2)} < \frac{4xy}{(4x^2+y^2)\log(x^2+4y^2)} < \frac{2(4x^2+y^2)}{(4x^2+y^2)\log(x^2+4y^2)}.$$

With $(x,y) \neq (0,0)$, we see that g is bounded by two opposite terms,

$$\frac{-2}{\log(x^2+4y^2)} < g < \frac{2}{\log(x^2+4y^2)},$$

the denominator of which becomes large as $(x,y) \to (0,0)$, so the bounds go to zero. So, g must also go to zero by being bounded above and below by these two functions which go to zero. \Box

Alexandre Lipson October 29, 2024

Problem (3). The *limit superior* of a sequence $\{x_n\} \subset \mathbb{R}$ is defined by

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{m \ge n} x_m.$$

Assume $\{x_n\}$ is bounded.

- (a) Show that $\{s_n\}$ defined by $s_n := \sup_{m \ge n} x_m$ converges.
- (b) (i) Show $x_{n_i} \to L$ convergent subsequence $\Longrightarrow \forall n, \sup_{m \ge n} x_m \ge L$.
 - (ii) Given $\limsup_{n\to\infty} x_n=M,$ find a subsequence $\{x_{n_i}\}$ such that $\lim_{i\to\infty} x_{n_i}=M.$
 - (iii) Show that the limit superior is the superior of all subsequential limits

$$\limsup_{n\to\infty} x_n = \sup \left\{ \lim_{i\to\infty} x_{n_i} \mid \{x_{n_i}\} \text{ is a convergent subsequence} \right\}.$$

Proof of a. Since the supremum is concerned only with with the x_m with $m \ge n$, then s_n cannot be an increasing sequence. If x_n was the supremum of $\{x_m\}$, then all other $x_i \in \{x_m\}$ must have been $x_i \le x_n$. So, for s_{n+1} , the supremum could only stay the same or decrease, so s_n is decreasing.

Since $\{x_n\} \subset \mathbb{R}$ is bounded, then $\{s_\ell\}$, which contains all suprema of x_n , must also be bounded.

Since s_n is decreasing and bounded, then s_n must converge by 1.16.

Proof of b. (i) Since s_n takes the supremum of a subset of $\{x_n\}$ starting with x_n , then,

$$\forall n, s_n \geq x_n.$$

So, $\lim_{n\to\infty} s_n \ge \lim_{n\to\infty} x_n$.

But, if we choose a convergent subsequence $\{x_{n_i}\}$, then $\lim_{n\to\infty} s_n \geq \lim_{i\to\infty} x_{n_i}$ will still hold. Then, recalling that s_n is decreasing, $\forall n, s_n \geq \lim_{n\to\infty} s_n$, and that $x_{n_i} \to L$, we see that $s_n \geq L$.

- (ii) We can construct a subsequence which converges to M by taking $x_{n_{i+1}}$ if $M x_{n_i} \le M x_{n_{i+1}}$. Notice that this will ensure that we approach the limit superior from below, since $\lim_{n\to\infty} s_n \ge L$ for all subsequences x_{n_i} which converge to L.
- (iii) Since $\limsup_{n\to\infty} x_n = M \ge \lim_{i\to\infty} x_{n_i} = L$, then take x_{n_i} with the largest L, obtained in (ii), where L = M. Thus,

$$\limsup_{n \to \infty} x_n = \sup \left\{ \lim_{i \to \infty} x_{n_i} \right\},$$

for all such convergent subsequences x_{n_i} .

Alexandre Lipson October 29, 2024

Problem (4). Let $S \subset \mathbb{R}^n$ be compact. Suppose $C_i \subset S$ are nonempty and closed, and are nested, $C_1 \supset C_2 \supset \cdots$. Prove

$$\bigcap_{i=1}^{\infty} C_i \neq \emptyset.$$

Proof. Let $U_i = C_i^c$, so each U_i is open.

Suppose, for a contradiction, that $\bigcap_{i=1}^{\infty} C_i = \emptyset$, then $\bigcup_{i=1}^{\infty} U_i = \mathbb{R}^n$.

So $\{U_i\}$ is an open cover of S, which has a finite subcover by compactness.

Thus, $\exists N$ such that $S \subset \bigcup_{i=1}^N U_i$, which implies $\bigcap_{i=1}^N C_i = \emptyset$.

But C_i nested, so $C_n = \bigcap_{i=1}^N C_i = \emptyset$, which is a contradiction.