Table of Contents

Calculating Group Statistics with grpstats()	2
Plotting Group Statistics with bar() and plot()	
Calculating Group Statistics on Transformed Data	
Putting Error Bars on Plots.	
Extra Demonstration: Exporting a Figure	
Extra Domonotration: Exporting a rigaro	

Download Dataset

This data has been pre-processed from Steinmetz et al. (2019), and is hosted on Sciebo here: https://unibonn.sciebo.de/s/wjsBtZzUVjKaB3J. The code below downloads the data into a directory named data

```
userpath(fullfile(fileparts(matlab.desktop.editor.getActiveFilename), "src"))
download_from_sciebo('https://uni-bonn.sciebo.de/s/wjsBtZzUVjKaB3J', 'data/
steinmetz_all.csv')

Downloading file to data/steinmetz_all.csv
Done!

addpath(fullfile(fileparts(matlab.desktop.editor.getActiveFilename), "data"))
```

Analyzing Behavioral Task Performance: Psychometric Analysis on Ordered Categorical Data

In the experiment reported on by Steinmetz et al, 2019 in Nature, mice were tasked with turning a wheel to the left or right based on the relative contrast levels of two simultaneously-presented gradient stimuli:

When the left stimuli is brightest, in order to earn a reward, the mouse must turn the wheel to the right. Accordingly when the right stimili is brightest, the mouse must turn the wheel to the right. When both stimili have equal contrasts (including the case where no stimili are shown), the correct response is not to turn the wheel.

Analysis Goal: The response_type data encodes which way the mouse turned the wheel: -1 corresponds to a left turn, 1 to a right turn and 0 means that the wheel was not turned at all. In this notebook, we'll examine the response_time and response_type of each trial across all sessions, to determine whether the mice successfully performed the task, and whether the difference in contrast levels between the two stimuli affected their performance.

Calculating Group Statistics with grpstats()

How do the statistics on response_time and response_type change when the data is broken down into various groups? In this section, we'll practice using the grpstats() function to do this with tables.

grpstats() is a rich function that makes it possible to do a wide variety of analyses on a single line. It needs four pieces of information:

- 1. The **Table** it should do the calculation on.
- 2. The Grouping Variable(s) in the table that it should reference to know how break down the dataset.
- 3. The **Statistic(s)** that is should apply to each group.
- 4. The **Data Variables(s)** in the table that the statistics should be applied to.

Ways to use the grpstats() Function	Description
<pre>grpstats(data, "group", "mean", "DataVars", "var")</pre>	calculate the mean of var for each level of group
<pre>grpstats(data, "group", ["mean", "median"], "DataVars", "var")</pre>	calculate both the mean and median of var for each level of group
<pre>grpstats(data, ["group1", "group2"], "mean", "DataVars", "var")</pre>	calculate the mean of var for each level of both group1 and group2
<pre>grpstats(data, "group", "mean", "DataVars", ["var1", "var2"])</pre>	calculate the mean of both var1 and var2 for each level of group

Exercises

We'll use the tableread function to load in data from a CSV file called steinmetz_all.csv.

Name the table data

```
data = readtable("data/steinmetz_all.csv")
```

 $data = 14420 \times 16 table$

. . .

	Var1	trial	active_trials	contrast_left	contrast_right
1	0	1	'True'	100	0
2	1	2	'True'	0	50
3	2	3	'True'	100	50
4	3	4	'True'	0	0
5	4	5	'True'	50	100
6	5	6	'True'	0	0
7	6	7	'True'	0	0
8	7	8	'True'	0	0
9	8	9	'True'	0	0
10	9	10	'True'	100	50
11	10	11	'True'	50	0
12	11	12	'True'	0	0
13	12	13	'True'	50	25
14	13	14	'True'	100	0

Example: Make a table showing the median response time for each contrast_left level.

grpstats(data, "contrast_left", "median", "DataVars", "response_time")

ans = 4×3 table

	contrast_left	GroupCount	median_response_time
1 0	0	7200	1.8906
2 25	25	1680	1.0516
3 50	50	1696	0.9825
4 100	100	3844	1.0205

Make a table showing the median response time for each contrast_left level.

```
grpstats(data, "contrast_right", "median", "DataVars", "response_time")
```

ans = 4×3 table

	contrast_right	GroupCount	median_response_time
1 0	0	5103	1.9046
2 25	25	2528	1.0682
3 50	50	2418	1.0152
4 100	100	4371	0.9802

Make a table showing the number of trials that each mouse performed.

```
grpstats(data, "mouse", "numel", "DataVars", "trial"); % shorter version:
groupsummary(data, "mouse")
```

Make a table showing the median response_time for each combination of contrast_left and contrast_right levels.

```
grpstats(data, ["contrast_left", "contrast_right"], "median",
"DataVars", "response_time")
```

ans = 16×4 table

	contrast_left	contrast_right	GroupCount	median_response_time
1 0_0	0	0	2649	2.0940
2 0_25	0	25	738	1.0911
3 0_50	0	50	1078	1.0372
4 0_100	0	100	2735	1.0686
5 25_0	25	0	353	1.2178
6 25_25	25	25	255	1.2346
7 25_50	25	50	372	0.9908
8 25_100	25	100	700	0.9383
9 50_0	50	0	767	0.9989
10 50_25	50	25	348	0.9891
11 50_50	50	50	256	1.0538
12 50_100	50	100	325	0.9060
13 100_0	100	0	1334	1.0340
14 100_25	100	25	1187	1.0518

÷

Make a table showing the number of trials that each mouse saw each combination of contrast_left and contrast_right levels

```
grpstats(data, ["mouse", "contrast_left", "contrast_right"], "numel",
"DataVars", "trial")
```

ans = 158×5 table

	mouse	contrast_left	contrast_right	GroupCount	numel_trial
1 Cori_0_0	'Cori'	0	0	188	188
2 Cori_0_25	'Cori'	0	25	53	53
3 Cori_0_50	'Cori'	0	50	89	89
4 Cori_0_100	'Cori'	0	100	127	127
5 Cori_25_0	'Cori'	25	0	41	41
6 Cori_25_25	'Cori'	25	25	49	49
7 Cori_25_50	'Cori'	25	50	45	45
8 Cori_25_100	'Cori'	25	100	87	87
9 Cori_50_0	'Cori'	50	0	89	89
10 Cori_50_25	'Cori'	50	25	43	43
11 Cori_50_50	'Cori'	50	50	48	48
12 Cori_50_100	'Cori'	50	100	43	43
13 Cori_100_0	'Cori'	100	0	82	82
14 Cori_100_25	'Cori'	100	25	67	67

:

Let's make a mega statistics table. Calculate the median, mean, and std, and meanci (95% confidence intervals of the mean) for both the response time and response type, for every combination of contrast_left and contrast_right levels, for each session_id.

```
grpstats(data, ["session_id", "contrast_left", "contrast_right"], ["median",
"mean", "meanci"], "DataVars", ["response_type", "response_time"])
```

ans = 620×10 table

. . .

	session_id	contrast_left	contrast_right	GroupCount
1 5dd41e_0_0	'5dd41e'	0	0	46
2 5dd41e_0_25	'5dd41e'	0	25	17
3 5dd41e_0_50	'5dd41e'	0	50	33
4 5dd41e_0_100	'5dd41e'	0	100	31
5 5dd41e_25_0	'5dd41e'	25	0	14

	session_id	contrast_left	contrast_right	GroupCount
6 5dd41e_25_25	'5dd41e'	25	25	13
7 5dd41e_25_50	'5dd41e'	25	50	16
8 5dd41e_25_100	'5dd41e'	25	100	43
9 5dd41e_50_0	'5dd41e'	50	0	28
10 5dd41e_50_25	'5dd41e'	50	25	17
11 5dd41e_50_50	'5dd41e'	50	50	16
12 5dd41e_50_100	'5dd41e'	50	100	15
13 5dd41e_100_0	'5dd41e'	100	0	28
14 5dd41e_100_25	'5dd41e'	100	25	18

Plotting Group Statistics with bar() and plot()

As the saying goes, "A picture is worth a thousand words." In this section, we'll combine the grouping statistics calculation to make a summary table, which is then passed into a plotting function.

Code	<u>Description</u>
bar(x_data, y_data)	make a bar plot
bar(x_data, y_data, "red")	make a bar plot with red bars
barh(x_data, y_data)	make a horizontal bar plot
<pre>plot(x_data, y_data, 'o')</pre>	make a point plot.
<pre>xlabel("an x label")</pre>	set the x label of a plot
ylabel("a y label")	set the y label of a plot

Exercises

Example: Make a bar plot showing the mean response type for each contrast_right level

```
summ = grpstats(data, "contrast_right", "mean", "DataVars", "response_type");
bar(categorical(summ.contrast_right), summ.mean_response_type)
xlabel("contrast right")
ylabel("mean response type")
```


Make a bar plot showing the mean response type for each contrast_left level

```
summ = grpstats(data, "contrast_left", "mean", "DataVars", "response_type");
bar(categorical(summ.contrast_left), summ.mean_response_type)
xlabel("contrast left")
ylabel("mean response type")
```


Make a bar plot showing the mean reaction type for each mouse.

```
summ = grpstats(data, "mouse", "mean", "DataVars", "reaction_type");
bar(summ.mouse, summ.mean_reaction_type)
xlabel("Mouse")
ylabel("Mean Reaction Type")
```


Make a bar plot showing the median reaction time for each mouse.

```
summ = grpstats(data, "mouse", "median", "DataVars", "reaction_time");
barh(summ.mouse, summ.median_reaction_time)
xlabel("Mouse")
ylabel("Median Reaction Time")
```


Calculating Group Statistics on Transformed Data

Making new columns in MATLAB tables

Code	<u>Description</u>
data.column1	access column 1 of table named data

<pre>data.new_column = data.column2 - 4</pre>	create a column called new_column where every row is column2 minus 4
<pre>data.new_column = data.column1 + data.column2</pre>	create a new column that is the row-wise sum of values in colum1 and column2
<pre>data.new_column = data.column1 ~= 22</pre>	create a new column called new_column, which is 1 where column1 is not equal to 22
<pre>data.new_column = abs(data.column2)</pre>	make a new column that is the absolute value of values in column2

In the exercises below, let's practice making new columns in our table, and use them in new grouped statistics calculations.

Exercises

Example: Make a new column called contrast_total that is the sum of the two stimuli's contrast levels. Make a plot showing how median response time changes with contrast_total.

```
% Calculate New Value
data.contrast_total = data.contrast_left + data.contrast_right
```

data = 14420×17 table

. . .

	Var1	trial	active_trials	contrast_left	contrast_right
1	0	1	'True'	100	0
2	1	2	'True'	0	50
3	2	3	'True'	100	50
4	3	4	'True'	0	0
5	4	5	'True'	50	100
6	5	6	'True'	0	0
7	6	7	'True'	0	0
8	7	8	'True'	0	0
9	8	9	'True'	0	0
10	9	10	'True'	100	50
11	10	11	'True'	50	0
12	11	12	'True'	0	0
13	12	13	'True'	50	25
14	13	14	'True'	100	0

:

```
% Calculate Group Statistics
summ = grpstats(data, "contrast_total", "median", "DataVars",
   "response_time");

% Make Plot
bar(categorical(summ.contrast_total), summ.median_response_time)
xlabel('Total Contrast')
ylabel('Response Time')
```


The mice had to make a decision of whether to move the wheel left or right based on the *difference* in contrast between the left and right stimulus, not on the actual levels of the data.

Make a new column called <code>contrast_diff</code> that contains the contrast difference between the left and right stimuli. Make a plot showing how mean <code>response_type</code> changes with <code>contrast_diff</code>.

```
% Calculate New Value
data.contrast_diff = data.contrast_left - data.contrast_right;

% Calculate Group Statistics
summ = grpstats(data, "contrast_diff", "mean", "DataVars", "response_type");

% Make Plot
plot(categorical(summ.contrast_diff), summ.mean_response_type, 'o-')
xlabel('Contrast Difference')
ylabel('Response Type')
```


The mice were not allowed to respond immediately after the stimuli appeared; instead, they had to wait for the "go cue" to appear, which was at a randomized time point after the stimuli.

Let's calculate the a new response_time_corrected column, which subtracts the gocue_time from the response_time. Make a plot showing how median response_time_corrected changes with contrast_diff

```
% Calculate New Value
data.response_time_corrected = data.response_time - data.gocue_time;

% Calculate Group Statistics
summ = grpstats(data, "contrast_diff", "median", "DataVars",
"response_time_corrected");

% Make Plot
plot(categorical(summ.contrast_diff), summ.median_response_time_corrected,
'o-')
xlabel('Contrast Difference')
ylabel('Response Time')
```


Instead of calculating the contrast_diff, let's calculate the contrast_diff_absolute, where the absolute value of the contrast difference is used, so it is always positive. This more-closely shows the decision that the mice had to make, and allows us to use twice as many values for each point estimation.

```
% Calculate New Value
data.contrast_diff_absolute = abs(data.contrast_diff);

% Calculate Group Statistics
summ = grpstats(data, "contrast_diff_absolute", "median", "DataVars",
    "response_time_corrected");

% Make Plot
plot(categorical(summ.contrast_diff_absolute),
summ.median_response_time_corrected, 'o-')
xlabel('Contrast Difference')
ylabel('Response Time')
```


Putting Error Bars on Plots

When we calculate these group statistics in experimental science, it's good to represent them as *estimates* of a value you're trying to find. To do this, we need to calculate and plot errorbars on our plots.

Code	Description		
<pre>er = errorbar(x_data, y_data, errbar)</pre>	make error bars that are symmetrical (good for std and sem errorbars)		
<pre>er = errorbar(x_data, y_data, errbar_neg, errbar_pos)</pre>	make error bars that are asymmetrical (good for meanci errorbars)		
er.Color = [0 0 0]	make the color of the errorbars black (RGB values)		
er.LineStyle = 'none'	hide the connecting line that the errorbar() function generates		
hold on	Make it so the next plot is drawn on top of the previous figure		
hold off	Make it so the next plot is drawn on a new figure.		
categorical()	Change numeric data into category data. Helps with controlling spacing in plots.		

Example: Make a point plot showing the mean reaction_type for each mouse. Include 95% CI error bars.

```
summ = grpstats(data, "mouse", ["mean", "meanci"], "DataVars",
    "reaction_type");

% Make an errobar plot with *just* the errorbars (no line connecting them)
    er = errorbar(categorical(summ.mouse), summ.mean_reaction_type,
    summ.meanci_reaction_type(:, 1), summ.meanci_reaction_type(:, 2));
    er.Color = [0 0 0];
```

```
er.LineStyle = 'none';

% Add another plot to the same figure
hold on
plot(categorical(summ.mouse), summ.mean_reaction_type, '.k');
hold off
```


Make a point plot showing the mean reaction_type for each contrast_left level. Include 95% CI error bars.

```
summ = grpstats(data, "contrast_left", ["mean", "meanci"], "DataVars",
    "reaction_type");

% Make an errobar plot with *just* the errorbars (no line connecting them)
    er = errorbar(categorical(summ.contrast_left), summ.mean_reaction_type,
    summ.meanci_reaction_type(:, 1), summ.meanci_reaction_type(:, 2));
    er.Color = [0 0 0];
    er.LineStyle = 'none';

% Add another plot to the same figure
    hold on
    plot(categorical(summ.contrast_left), summ.mean_reaction_type, '.k');
    hold off
```


Make a bar plot showing the mean reaction_type for each contrast_left level. Include 95% CI error bars. (Note: make sure the bars don't hide the error bars.)

```
summ = grpstats(data, "contrast_left", ["mean", "meanci"], "DataVars",
    "reaction_type");

bar(categorical(summ.contrast_left), summ.mean_reaction_type);

hold on
    er = errorbar(categorical(summ.contrast_left), summ.mean_reaction_type,
    summ.meanci_reaction_type(:, 1), summ.meanci_reaction_type(:, 2));
    er.Color = [0 0 0];
    er.LineStyle = 'none';
    hold off
```


Make a bar plot showing the mean reaction_type for each contrast_right level. Use the standard deviation (std) to make the error bars.

```
summ = grpstats(data, "contrast_left", ["mean", "std"], "DataVars",
    "reaction_type");

bar(categorical(summ.contrast_left), summ.mean_reaction_type);

hold on
    er = errorbar(categorical(summ.contrast_left), summ.mean_reaction_type,
    summ.std_reaction_type);
    er.Color = [0 0 0];
    er.LineStyle = 'none';
    hold off
```


Make a point plot showing the mean reaction_type for each contrast_right level. Use the standard error of the mean (sem) to make the error bars.

```
summ = grpstats(data, "contrast_left", ["mean", "sem"], "DataVars",
    "reaction_type");

plot(categorical(summ.contrast_left), summ.mean_reaction_type, '.');

hold on
    er = errorbar(categorical(summ.contrast_left), summ.mean_reaction_type,
    summ.sem_reaction_type);
    er.Color = [0 0 0];
    er.LineStyle = 'none';
    hold off
```


Extra Demonstration: Exporting a Figure

Example: How multiple lines can be plotted on the same figure.

The code below makes a plot the mean, median and standard deviation of response type, grouped by contrast difference and save it to a .pdf file.

```
% generate statistics
summ = grpstats(data, "contrast_diff", ["mean", "median", "std"], "DataVars",
"response_type");
% Make the Plot
clf % clear the figure
hold on % freeze the figure for multiple lines
plot(summ.contrast_diff, summ.mean_response_type, "DisplayName", "mean")
plot(summ.contrast_diff, summ.median_response_type, "DisplayName", "median")
plot(summ.contrast_diff, summ.std_response_type, "DisplayName", "std")
hold off % unfreeze
legend ("Location", "southeast") % show legend and set position
xlabel('contrast difference')
ylabel('response type statistic')
% Save the figure
fig_width = 12;
fig_height = 8;
set(gcf, 'PaperPosition', [0 0 fig_width fig_height]); %Position plot at
left hand corner with width 5 and height 5.
set(gcf, 'PaperSize', [fig_width fig_height]);
saveas(gcf, 'my_figure.pdf')
```

