

Learning Self-Expression Metrics for Scalable and Inductive Subspace Clustering

Introduction

- Subspace Clustering
 - Points are sampled from a union of subspaces
 - ► Goal: Assign points to subspace clusters
- Self-Expressiveness
 - ► Point = Linear combination of other points from same subspace
 - Directly learn coefficients
 - Coefficients can be used to derive quadratic subspace affinity matrix
 - Use spectral clustering to derive cluster labels
- Non-linearity
 - ► Add autoencoder to learn latent space for clustering [1]
- Challenges
 - Quadratic overhead by coefficient matrix
 - Models are transductive, cannot cluster-out-of-sample data

$$\min_{C \in \mathbb{R}^{N \times N}} \frac{1}{2} \|C\|_F^2 + \frac{\lambda}{2} \|X - XC\|_F^2$$

- Contributions
 - ightharpoonup Use siamese network to learn affinity function ightharpoonup constant memory
 - ightharpoonup Combine with classifier ightharpoonup model is inductive
 - ightharpoonup Provable subspace recovery ightharpoonup no loss in expressive power

Siamese Subspace Clustering Networks

- ightharpoonup Dot products of embeddings $H={
 m self-expression}$ coefficients
 - ► Independent clusters in this space are orthogonal
 - ightharpoonup Independent: Sum of subspace dimensions \leq dimension of their span
- Rotate clusters into axis-aligned subspaces
 - \blacktriangleright Multiply with orthonormal matrix R, optimized on Stiefel manifold [2]
- Cluster assignment based on orthogonal projection distance
- Multi-step training
 - 1. Train with self-expressive and autoencoder loss
 - 2. Get pseudo-labels with spectral clustering
 - 3. Train classifier with cross-entropy loss
- ► Future work: No SC, triplet loss, joint training

Experiments

- Preliminary results on MNIST
 - Transductive clustering of 10,000 test images
 - Out-of-sample clustering of 60,000 training images
- ► Competitive performance at dramatic parameter/GPU-memory reduction due to siamese network and mini-batch training
- \triangleright Reliable clustering of OoS-data without memory overhead, DSC-Net would require >39GB (not inductive)
- ► Code is available [3]

	ACC	ARI	NMI	#Parameters	GPU-Memory (GB)
DSC-Net [1]	63.54 ± 0.00	57.42 ± 0.00	$\textbf{72.34} \pm \textbf{0.00}$	100, 014, 991	2.71
SSCN	67.98 ± 3.40	58.53 ± 3.34	69.48 ± 2.38	$66,291\ (\mathbf{-99.93}\%)$	$0.19\; (\mathbf{-92.96}\%)$
SSCN-OoS	67.39 ± 3.38	57.10 ± 3.27	67.16 ± 2.34	66, 291	0.19

- Pan Ji et al. "Deep subspace clustering networks". In: *NeurIPS* (2017).
- [2] Jun Li, Li Fuxin, and Sinisa Todorovic. "Efficient Riemannian optimization on the Stiefel manifold via the Cayley transform". In: ICLR (2020).
- [3] https://github.com/buschju/sscn.

