

The Integration Of Analysis And Test For Full Vehicle Structural Durability

NDIA SBA Conference, May 15-17, 2001

James E. Croscheck, PE, PhD
croscheckjamese@johndeere.com
John Deere Technical Center
Deere & Company

Report Documentation Page		
Report Date 15052001	Report Type N/A	Dates Covered (from... to) - -
Title and Subtitle The Integration Of Analysis And Test For Full Vehicle Structural Durability		Contract Number
		Grant Number
		Program Element Number
Author(s) Croscheck, James E.		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) John Deere Technical Center Deere & Company		Performing Organization Report Number
Sponsoring/Monitoring Agency Name(s) and Address(es) NDIA (National Defense Industrial Association 2111 Wilson Blvd., Ste. 400 Arlington, VA 22201-3061		Sponsor/Monitor's Acronym(s)
		Sponsor/Monitor's Report Number(s)
Distribution/Availability Statement Approved for public release, distribution unlimited		
Supplementary Notes Proceedings from 3rd Simulation Based Acquisition conference, 15-17 May 2001, sponsored by NDIA, The original document contains color images.		
Abstract		
Subject Terms		
Report Classification unclassified		Classification of this page unclassified
Classification of Abstract unclassified		Limitation of Abstract UU
Number of Pages 18		

Who & What is Deere?

- **De-Centralized Company** evolving to global manufacturing of products.
- **Mid-sized company** - \$13B.
- **Improved communication & time compression** forcing change in processes. Collaboration not an option - rather a requirement.
- **Most of products are specialized vehicles** operated in a range of off-road conditions at high-power levels for long periods of time.
- **Mature products with customer expectations of high durability and availability**

The Challenge - Global Sharing of Technology & Techniques

- Design Anywhere - Manufacture Anywhere
- About 40 Engineering Locations - Depending on Definition of Product Engineering
- Diverse Products - Tractors, Combines, Forage Harvesters, Log Skidders, Dozers, Backhoes, Road Graders, Balers, Lawn & Garden Tractors, Mowers, Chain Saws, Etc.
- Increased Competition
- Faster Pace => More simulation & analysis.₃

Structural Durability Development Through Integration Of Analysis And Full Vehicle Test

What & Why:

- Correlate Fatigue/Finite Element/Dynamic Analysis to the Lab (Field) Test
- “Field Test” the Structural Design in the Computer Before Building the Hardware
- Establish Confidence in Fatigue Predictions By Comparing to Actual Test Fatigue Lives
- Define Subsystem Load Information from the Dynamic Model/Lab Test Load Histories
- Obtain Fatigue Life Contours for Multiple Load Inputs for the Composite Duty Cycle

Optimal Computer Analysis/Test Path to a Structurally Durable Product

Dynamic Model of Telehandler and Correlation with the Lab Test

Dynamic Model Left Rear Engine Vertical Acceleration Correlation
Rough Transport Empty between Dynamic Model and Lab test

Finite Element Model of Telehandler Chassis and Correlation with Strain Gage Measurement from a Lab Test

Strain Contour of the Finite Element Model

Strain Correlation between
Finite Element/Fatigue Model and Lab test

Finite Element Model of Telehandler Chassis and Multiple Load Inputs

Time Histories Associated with the Multiple Load Inputs

Fatigue Life Contours of Chassis for Truck Load Lime Operation

Lab Rig Operations - Need Percentages of Test Time

- Normal Transport Loaded xx%
- Figure 8's Empty xx%
- Push Up Silage and Compact xx%
- Truck Load Lime xx%
- Muck Out Pit xx%
- Truck Load Gravel xx%
- ... xx%
- ... xx%
- ... xx%

Fatigue Life Contours of Chassis for Complete Duty Cycle

Structural Design Iteration Process

Fatigue Life of Second Re-Designed Chassis for Complete Duty Cycle

From Competitor Evaluation to Final Build

- **Competitor Evaluation**
 - Field Data Acquisition
 - Lab Test
 - Dynamic Model - Validate
 - Finite Element & Fatigue Analysis - Validate
- **Current Production**
 - Field Data acquisition
 - Lab Test
 - Dynamic Model - Validate
 - Finite Element & Fatigue Analysis - Validate
- **Initial Design**
 - Dynamic Model
 - Finite Element & Fatigue Analysis
 - Prototype Build (for durability evaluation)
- **Design Iterations**
 - Finite Element & Fatigue Analysis
- **Final Design**
 - Lab Test (validation - 3rd production vehicle)

Analysis Highlights

- **Confidence in the Process**

Excellent correlation between measured (Lab Test) and predicted (Dynamic-FEA-Fatigue) strains.

- **Analysis before Prototype Build**

Fatigue analysis of initial Deere design highlighted problem areas, enabling re-design before first prototype build.

- **Development of Analysis Process**

- Dynamic Model - DADS
- Finite Element Model - Hypermesh
- Finite Element Analysis - Abaqus (unit load cases)
- Fatigue Analysis - MSC/Fatigue

- **Enhancement of Analysis Process**

- Frame : 3 major designs iterations in 6 months
- Inner Boom : 6 major design iterations in 2 months
- Outer Boom : 2 major design iterations in 1 month

Primary Re-Design Focus Area

Lessons Learned

- It's not easy!
- Requires experienced personnel.
- Both test and analysis have equal weight and value in the design iteration effort.
- Acceptance is comparable to any new technology - requires proof and then becomes part of the routine process.

Conclusions

- Full Vehicle Structural Durability Behavior Is Predictable
- Prediction of Full Vehicle Structural Durability Behavior Is Fast Enough to Be Practical
- Prediction of Full Vehicle Structural Durability Behavior Is Cost-Effective
- The Durability of a Structure Can Be Optimized Using Computer Models Before Production