## Support Vector Machines

Rucha Joshi

#### Overview

- Introduction to SVM
- Using SMO algorithm for optimization
- Using kernels to 'transform' data

#### Support Vector Machines

- Pros
  - Low generalization error
  - Computationally inexpensive
  - Easy to interpret results

- Cons
  - Sensitive to tuning parameters and kernel choices
  - Natively handles binary classifications only

Can handle numeric and nominal data

#### Data separability



#### Terminology

- Separating hyperplane decision boundary
  - e.g. for data of 1024 dimensions hyperplane of 1023 dimensions
- Support Vectors points closest to separating hyperplane
- Margin Support vectors should be as far as possible
  - Goal: greatest margin
- How to optimize?

## Finding maximum margin

- Separating hyperplane:  $w^Tx + b$
- Distance from point A is given by  $\frac{|w'x + b|}{||w||}$
- Labels: +1 and -1
- Maximize the margin while finding points with smallest margin

$$\arg\max_{w,b} \left\{ \min_{n} (label.(w^{T}x + b)). \frac{1}{\|w\|} \right\}$$



## Finding maximum margin

- Set  $(label.(w^Tx + b))$  to be 1 for support vectors
  - Minimize  $||w||^{-1}$
- Using Lagrange multipliers,

$$\max_{\alpha} \left[ \sum_{i=1}^{m} \alpha - \frac{1}{2} \sum_{i,j=1}^{m} label^{(i)} \cdot label^{(j)} \cdot \alpha_{i} \cdot \alpha_{j} \langle x^{(i)} \cdot x^{(j)} \rangle \right], \text{ subject to }$$
 
$$\alpha \geq 0, \text{ and } \sum_{i=1}^{m} \alpha_{j} \cdot label^{(i)} = 0$$

• Assumption: 100% linearly separable data

## Finding maximum margin

- Assumption: 100% linearly separable data
- Introduce slack variables: allow examples to be on wrong side of decision boundary

• 
$$c \ge \alpha \ge 0$$
, and  $\sum_{i=1}^{m} \alpha_i$ .  $label^{(i)} = 0$ 

- c: parameter for optimization
- Solve for  $\alpha$  to get separating hyperplane

#### Sequential Minimal Optimization

- SMO, instead of quadratic solver (QS optimizes functions subject to linear constraints on the variables)
- Platt's SMO algorithm, 1996
  - Large optimization problem, broken into small ones
  - Solved sequentially
  - Same answer, reduced time

#### Sequential Minimal Optimization

- Create an alphas vector filled with 0s
- While the number of iterations < maxIterations:</li>
  - For every data vector in dataset:
    - If data vector can be optimized:
      - Select another data vector at random
      - Optimize the two vectors together
      - If the vectors cannot be optimized, then break
    - If no vectors were optimized, then increment the iteration count

#### Kernels

- Using kernels for mapping from one feature space to another feature space
- Kernel trick/substation
- In SVM, we need inner products replaced by kernel functions



#### Kernels

- Radial bias function: takes a vector and gives a scalar based on the vector's distance, either from 0,0 or other vector
- Gaussian version:

$$k(x,y) = exp\left(\frac{-\|x-y\|^2}{2\sigma^2}\right), \text{ where } \sigma \text{ is a parameter that determines how quickly this falls to 0}$$

•  $k(x, y) = (x \cdot y + 1)^n$ 

# Thank you!