Examples of IBCM Programming

Writing even very small programs for IBCM is tedious and error prone. Finding bugs in an IBCM program is even more tedious, however, so a careful systematic approach and careful hand checking at each step can save you a great deal of time and frustration in the long run.

Always start with a statement of the task and write careful pseudo code to describe the solution. Then write a carefully commented "symbolic" version of the IBCM implementation of the pseudocode. Check this version very carefully by code walkthroughs (getting a friend to help is a winner). Only then translate to the hexadecimal form, type it in (leaving the symbolic form to comment the hex form) and try to execute it. Be careful here — it's easy to forget and count

"...891011..."

Remember "A" comes after 9 in hexadecimal.

Below are two examples.

Each of these examples is in the "final form" after the process described above is complete. We'll walk through the process in class.

Example 1

The problem: compute the sum of the integers 1 -through- N, where N is to be read from the keyboard and the resulting sum is to be printed to the screen. Halt after printing the sum.

Pseudocode:

```
read N; i = 1; s = 0; while (i \le N) \{ s = i; i = 1; \} print s;
```

The IBCM Code:

<u>mem</u>	<u>locn</u>	<u>label</u>	<u>op</u>	<u>addr</u>	comments
COOA	00		jmp	start	skip around the variables
0000	01	i	dw	0	int i
0000	02	S	dw	0	int s
0000	03	N	dw	0	int N
0001	04	one	dw	1	
0000	05	zero	dw	0	
0000	06				leave space for changes
0000	07				
0000	80				
0000	09		•		
1000	0A	start	readH		read N
4003	0B		store		
3004	0C		load	one	i = 1
4001	0D		store		_
3005	0E		load	zero	s = 0
4002	0F	_	store		
3003	10	loop	load	N	if $(i > N)$ goto xit
6001	11		sub	i	
E01A	12		jmpl		
3002	13		load	. S	s += i
5001	14		add	i	
4002	15		store		
3001	16		load	i	i += 1
5004	17		add	one	
4001	18		store	i	
C010	19		jmp	loop	goto loop
3002	1A	xit	load	S	print s
1800	1B		print	H	
0000	1C		halt		halt

Example 2

The Problem: Compute the sum of the elements of an array and print this sum on the screen (then halt). The address of the first element of the array and the size of the array are to be read from the keyboard.

Pseudocode:

```
read A; read N; s = 0; i = 0; while (i < N) \{ s += a[i]; i += 1; \} print s;
```

The IBCM Code:

C00A 00 jmp start skip around the variables 0000 01 i dw 0 int i 0000 02 s dw 0 int s	
0000 02 s dw 0 ints	
0000 03 a dw 0 int a[]	
0000 04 n dw 0	
0000 05 zero dw 0	
0001 06 one dw 1	
5000 07 adit dw 5000	
0000 08 leave space for changes	
0000 09	
1000 OA start readH read array address	
4003 OB store a	
1000 OC readH read array size	
4004 OD store n	
3005 0E load zero $i = 0$; $s = 0$;	
4001 OF store i	
4002 10 store s	
3004 11 loop load n if $(i \ge N)$ goto xit	
6001 12 sub i	
E020 13 jmpl xit	
D020 14 jmpe xit	
3007 15 load adit form the instruction to add a[i]	
5003 16 add a	
5001 17 add i	
401A 18 store doit plant the instruction into the prog	gram
3002 19 load s s += a[i]	
0000 1A doit dw 0	
4002 1B store s	
3001 1C load i i += 1	
5006 1D add one	
4001 1E store i	
C011 1F jmp loop goto loop	
3002 20 xit load s print s	
1800 21 printH	
0000 22 halt	