CG1111: Engineering Principles and Practice I

Fundamentals of Electricity

What We'll Learn

 Basic electrical quantities **Electric Electric** current charge Power **Electrical** Voltage resistance 2

What is Electric Charge?

- Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field
- Smallest charge that exists:
 - -Charge carried by an electron: $q_e = -1.602 \times 10^{-19} C$
 - -The SI derived unit of electric charge is coulomb (C)

Voltage: The Pressure of Electricity

There is something about the battery that pushes the electricity...

Voltage: The Pressure of Electricity

- Voltage: the amount of electrical pressure
- Unit of voltage: Volt (V)
- Also called electromotive force (EMF)

Voltage: A More Formal Definition

- It is a measure of the energy transferred per unit charge when the charge is moved from one point to another point
 - –Unit: Volt (V), equivalent to Joules/Coulomb (J/C)
 - Voltage is always measured across two ends of an element with labeled polarities
 - -The '+' terminal is at a higher energy level than the '-' terminal

Active Element (Source)

- If positive charge enters the negative polarity & exits the positive polarity of an element
 - The charge gains energy from the element
 - The element is a "source" (active element)

Passive Element (Load)

- If positive charge enters the positive polarity & exits the negative polarity of an element
 - The charge loses energy in the element
 - The element is a "load" (passive element)

Electric Current

- Electric current = time rate of flow of electrical charges through an element
- Unit: Ampere (A)
- 1 Ampere = 1 Coulomb / second

iPhone's charging current: ~1A

Electric Current Has Direction

- Direction of positive current = direction of flow of positive charges
 - Regardless of whether the free charges in the conductor are positive, negative, or both
- For the case of negative moving charges (e.g., electrons in metals), the current is defined to be positive in the opposite direction

Electric Power

- Recall that
 - –Voltage = Energy transferred per unit charge
 - -Current = Charge per unit time
- Voltage x Current = Rate of energy transfer= Power
- Examining their units, we have

$$V \times A = (J/C) \times (C/s) = J/s = W \text{ (Watts)}$$

$$P = V \times I$$

Resistance & Ohm's Law

- When electric current flows through a wire or other circuit elements, it encounters some opposition
- Ohm's Law states that the voltage across an ideal resistor is proportional to the current through it
- The constant of proportionality is called "Resistance" (unit: Ohm)

Ohm's Law:

 $V = I \times R$

Point to Note About Ohm's Law

- Ohm's Law is an empirical relationship,
 i.e., observed through experiments
- It is only an approximation
 - -It does not hold at very high voltage & current values, as well as very low voltage & current values

Resistance

 Resistance depends on the material as well as the geometry of the element

Material	Resistivity $ ho$ (Ω m)
Silver	1.629 x 10 ⁻⁸
Copper	1.725 x 10 ⁻⁸
Gold	2.271 x 10 ⁻⁸
Aluminium	2.733 x 10 ⁻⁸
Iron	9.98 x 10 ⁻⁸

Practical Resistors

 Useful in electrical circuits because you can use them to control the behaviour in other parts of the circuit

- For example, a resistor can be used to limit the current flowing through an LED:
 - To control the desired brightness
 - -To prevent it from burning out

What Happens When Current Flows Through Resistance?

- Charge particles lose energy to the element → voltage drop
- Besides voltage drop, the energy loss also heats up the element
- Power loss $P_1 = V \times I = (I \times R) \times I = I^2 \times R$
- Commonly used resistors in the lab
 - \rightarrow rated at 0.25 W

Practical Voltage Source

- In practice, voltage sources like batteries have internal resistance
 - There will be a voltage drop across this internal resistance (in series) when current is drawn
 - The higher the load current,the higher the voltage drop,& the higher the power loss

$$V_{AB} = V_{oc} - I_L R_{in}$$

Wires Must Have Sufficient Cross-Sectional Area!

- Recall that $R = \frac{\rho L}{A}$
- If $A \uparrow$, $R \downarrow$, and hence $P_{L} \downarrow$ for the same I
- Hence, the appropriate A for wires depend on the max current expected
 - Notice that jumper cables used for jump-starting cars are thick because of the high current
 - -Otherwise wires start to melt!

THANK YOU