CMPE 411 Computer Architecture

Lecture 9

Floating Point Operations

September 28, 2017

www.csee.umbc.edu/~younis/CMPE411/CMPE411.htm

Lecture's Overview

Previous Lecture:

- Algorithms for dividing unsigned numbers (Evolution of optimization, complexity)
- Handling of sign while performing a division (Remainder sign matches the dividend's)
- Hardware design for integer division (Same hardware as Multiply)

This Lecture:

- Representation of floating point numbers
- Floating point arithmetic
- Floating point hardware

Introduction

☐ What can be represented in N bits?

→ Unsigned 0 to 2^N

 \rightarrow 2s Complement -2^{N-1} to $2^{N-1}-1$

 \rightarrow 1s Complement $-2^{N-1}+1$ to $2^{N-1}-1$

 \rightarrow Excess M (E = e + M) -M to 2^N - M - 1

→ BCD 0 to $10^{N/4} - 1$

☐ But, what about?

→ very large numbers? 9,349,398,989,787,762,244,859,087,678

→ very small number? 0.0000000000000000000000045691

→ rational numbers 2/3

 \rightarrow irrational numbers $\sqrt{2}$

 \rightarrow transcendental numbers e, Π

Binary Coded Decimal (BCD)

☐ Each binary coded decimal digit is composed of 4 bits.

(a)
$$0000 \ (3)_{10}$$
 $0011 \ (0)_{10}$ $0000 \ (1)_{10}$ $0001 \ (+301)_{10}$ Nine's and ten's complement

(c)
$$\underbrace{1\ 0\ 0\ 1}_{(9)_{10}}$$
 $\underbrace{0\ 1\ 1\ 0}_{(6)_{10}}$ $\underbrace{1\ 0\ 0\ 1}_{(9)_{10}}$ $\underbrace{1\ 0\ 0\ 1}_{(9)_{10}}$ (-301)₁₀ Ten's complement

- □ Example: Represent +079₁₀ in BCD: 0000 0111 1001
- □ Example: Represent -079₁₀ in BCD: 1001 0010 0001
 - 1. Subtract each digit of -079 from 9 to obtain the nine's complement, so 999 079 = 920.
 - 2. Adding 1 produces the ten's complement: 920 + 1 = 921.
 - 3. Converting each base 10 digit of 921 to BCD produces 1001 0010 0001

Excess (Biased)

- \Box The leftmost bit is the sign (usually 1 = positive, 0 = negative).
- □ Representations of a number are obtained by adding a bias to the two's complement representation. This goes both ways, converting between positive and negative numbers.
- ☐ The effect is that numerically smaller numbers have smaller bit patterns, simplifying comparisons for floating point exponents.
- □ Example (excess 128 "adds" 128 to the two's complement version, ignoring any carry out of the most significant bit):

$$+12_{10} = 10001100_2$$
 , $-12_{10} = 01110100_2$

☐ Only one representations for zero:

$$+0 = 10000000_2$$
, $-0 = 10000000_2$

- \square Range for an 8-bit representation is [+127₁₀, -128₁₀]
- \square Range for an N-bit representation is $[+(2^{N-1}-1)_{10}, -(2^{N-1})_{10}]$

3-Bit Signed Integer Representations

Decimal	<u>Unsigned</u>	Sign-Mag.	1's Comp.	2's Comp.	Excess 4
7	111	_	_	_	_
6	110	-	-	_	-
5	101	_	_	_	_
4	100	_	_	_	_
3	011	011	011	011	111
2	010	010	010	010	110
1	001	001	001	001	101
+0	000	000	000	000	100
-0	-	100	111	000	100
-1	_	101	110	111	011
-2	-	110	101	110	010
-3	_	111	100	101	001
-4	_	_	_	100	000

* Slide is courtesy of M. Murdocca and V. Heuring

Introduction

☐ What can be represented in N bits?

→ Unsigned 0 to 2^N

 \rightarrow 2s Complement -2^{N-1} to $2^{N-1}-1$

 \rightarrow 1s Complement $-2^{N-1}+1$ to $2^{N-1}-1$

 \rightarrow Excess M (E = e + M) -M to 2^N - M - 1

→ BCD 0 to $10^{N/4} - 1$

☐ But, what about?

→ very large numbers? 9,349,398,989,787,762,244,859,087,678

→ very small number? 0.0000000000000000000000045691

→ rational numbers 2/3

 \rightarrow irrational numbers $\sqrt{2}$

 \rightarrow transcendental numbers e, Π

Floating Point Numbers

Sign, magnitude

IEEE F.P. ± 1.M x 2 e - 127

- → Arithmetic (+, -, *, /)
- → Representation, Normal form (no leading zeros)
- → Range and Precision
- → Rounding
- → Exceptions (e.g., divide by zero, overflow, underflow)
- → Errors
- \rightarrow Properties (negation, inversion, if A \geq B then A B \geq 0)

Normalization

☐ The base 10 number 254 can be represented in floating point form as $254 \times 10^{\circ}$, or equivalently as:

$$25.4 \times 10^{1}$$
, or

$$2.54 \times 10^{2}$$
, or

$$.254 \times 10^{3}$$
, or

$$.0254 \times 10^4$$
, or

infinitely many other ways, which creates problems when making comparisons

- ☐ Floating point numbers are usually normalized, with the radix point located in <u>only</u> one possible position for a given number
- □ Usually, but not always, the normalized representation places the radix point immediately to the left of the leftmost, nonzero digit in the fraction, as in: $.254 \times 10^3$

Floating-Point Representation

- ☐ The size of the exponent determines the range of represented numbers
- Precision of the representation depends on the size of the significand
- ☐ The fixed word size requires a trade-off between accuracy and range
- ☐ Too large number cannot be represented causing an "overflow" while a too small number causes an "underflow"
- □ Negative and positive mantissas are designated by a sign bit using a sign and magnitude representation
- ☐ Exponents are usually represented using "excess M" representation to facilitate comparison between floating point numbers
- ☐ Double precision uses multiple words to expand the range of both the exponent and mantissa and limits overflow and underflow conditions

Single precision

Double precision

IEEE 754 Standard Representation

☐ Virtually has been used in every computer since after 1980

Single precision

1 8 23 sign S E M

Actual exponent is e = E - 127

exponent: excess 127 binary integer

mantissa: sign + magnitude, normalized binary significand w/ hidden integer bit: 1.M

$$0 < E < 255$$
 $N = (-1)^{S} 2^{E-127} (1.M)$
 $0 = 0 000000000 0 \dots 0$
 $-1.5 = 1 01111111 10 \dots 0$

☐ Magnitude of numbers that can be represented is in the range:

$$2^{-126}$$
 (1.0) to 2^{127} (2 - 2^{-23})

which is approximately:

$$1.8 \times 10^{-38}$$
 to 3.40×10^{-38}

CSE

Integer comparison is valid on IEEE Floating Point numbers of same sign

IEEE-754 Floating Point Formats

Example: show -12.625₁₀ in single precision IEEE-754 format.

Step #1: Convert to target base. $-12.625_{10} = -1100.101_2$

Step #2: Normalize. -1100.101₂ = -1.100101₂ \times 2³

Step #3: Fill in bit fields. Sign is negative, so sign bit is 1.

Exponent is in excess 127 (not excess 128!), so exponent is represented as the unsigned integer 3 + 127 = 130. Leading 1 of significand is hidden, so final bit pattern is:

An Example

Show the IEEE 754 binary representation of -0.75 in single & double precision

Sign Exponent

$$(-0.75)_{10} = (-3/4)_{10} = (-3/2^{2})_{10} = (-11 \times 2^{-2})_{2} = (-0.11)_{2} = (-1.1 \times 2^{-1})_{2}$$

Single precision representation is: $(-1)^s \times (1+Significand) \times 2^{(Exponent - 127)}$

$$(-0.75)_{10}$$
 is represented as $(-1)^{1} \times (1+.1000\ 0000\ 0000\ 0000\ 0000\ 000) \times 2^{(126)}$

Sign Exponent

Last 32-bit of Significand

Double precision representation is:
$$(-1)^s \times (1+Significand) \times 2^{(Exponent - 1023)}$$

$$(-0.75)_{10}$$
 is represented as $(-1)^{1} \times (1+.1000\ 0000\\ 0000\ 0000) \times 2^{(1022)}$

Floating Point Arithmetic

- ➤ Floating point arithmetic differs from integer arithmetic in that exponents must be handled as well as the magnitudes of the operands.
- ➤ The exponents of the operands must be made equal for addition and subtraction. The fractions are then added or subtracted as appropriate, and the result is normalized.

Example: Perform the following addition: $(.101 \times 2^3 + .111 \times 2^4)_2$

- > Start by adjusting the smaller exponent to be equal to the larger exponent, and adjust the fraction accordingly. Thus we have $.101 \times 2^3 = .010 \times 2^4$, losing $.001 \times 2^3$ of precision in the process.
- The resulting sum is $(.010 + .111) \times 2^4 = 1.001 \times 2^4 = .1001 \times 2^5$ and rounding to three significant digits, $.100 \times 2^5$, and we have lost another 0.001×2^4 in the rounding process.

Floating Point Addition

For addition (or subtraction) this translates into the following steps:

- (1) Compute Ye Xe (getting ready to align)
- (2) Right shift Xm to form Xm 2 (Xe -Ye)
- (3) Compute Xm 2^(Xe -Ye) + Ym

If representation demands normalization, then the following step:

- (4) Left shift result, decrement result exponent Right shift result, increment result Continue until MSB of data is (Hidden bit)
- (5) If result is 0 mantissa, may need to set exponent to zero by special step

Floating Addition Hardware

Floating Point Multiplication/Division

- ☐ Floating point multiplication/division are performed in a manner similar to floating point addition/subtraction, except that the sign, exponent, and fraction of the result can be computed separately.
- ☐ Like/unlike signs produce positive/negative results, respectively
- □ Exponent of result is obtained by adding/subtracting exponents for multiplication/division. Fractions are multiplied or divided according to the operation, and then normalized.

Example: Perform : $(+.110 \times 2^5) / (+.100 \times 2^4)_2$

- The source operand signs are the same, which means that the result will have a positive sign. We subtract exponents for division, and so the exponent of the result is 5 4 = 1.
- \triangleright We divide fractions, producing the result: 110/100 = 1.10.
- Putting it all together, the result of dividing (+.110 \times 2⁵) by (+.100 \times 2⁴) produces (+1.10 \times 2¹). After normalization, the final result is (+.110 \times 2²).

* Slide is courtesy of M. Murdocca and V. Heuring

Floating Point Multiplication

For addition (or subtraction) this translates into the following steps:

- (1) Compute Ye + Xe (adding exponents)
- (2) doubly biased exponent must be corrected:

$$Xe = 7$$
 $Xe = 1111$ $= 15$ $= 7 + 8$
 $Ye = -3$ $Ye = 0101$ $= 5$ $= -3 + 8$
 $= 10100$ $= 20$ $= -3 + 8$

- (3) Multiply the signficands
- (4) Perform normalization
- (4) Round the number to the specified size
- (5) Calculate the sign of the product

Denormalized Numbers

☐ The smallest single precision normalized number is $1.0000\ 0000\ 0000\ 0000\ 001 \times 2^{-126}$

while the smallest single precision denormalized number is 0.0000 0000 0000 0000 0000 001 \times 2⁻¹²⁶ or 1.0 \times 2⁻¹⁴⁹

- ☐ The IEEE 754 standard allows some floating point number to be denormalized in order to narrow the gap between 0 and the smallest normalized number
- □ Demorlaized numbers are allowed to degrade in significance until it becomes 0 (gradual underflow)
- ☐ The potential of occasional denormalized operands complicates the design of the floating point unit
- □ PDP-11, VAX cannot represent denormalized numbers and underflow to zero instead

Encoding of IEEE 754 Numbers

+/- infinity S 1 . . . 1 0 . . . 0

- ☐ result of operation *overflows*, i.e., is larger than the largest number that can be represented
- overflow is not the same as divide by zero (raises a different exception)

NaN

S 1 . . . 1 non-zero

HW decides what goes here

- Not a number, but not infinity (e.q. sqrt(-4))
- ☐ Generates invalid operation exception (unless operation is comparison)
- NaNs propagate: f(NaN) = NaN

Single Precision		Double Precision		Object represented	
Exponent	Significand	Exponent	Significand		
0	0	0	0	0	
0	Nonzero	0	Nonzero	± de-normalized number	
1-254	Anything	1-2046	Anything	± floating-point number	
255	0	2047	0	± infinity	
255	Nonzero	2047	Nonzero	NaN (Not a Number)	

Conclusion

- □ <u>Summary</u>
 - → Representation of floating point numbers
 (Sign, exponent, mantissa, single & double precision, IEEE 754)
 - → Floating point arithmetic (Addition and Multiplication)
 - → Normalizing Floating point numbers

(Rounding, zero floating point number, special interpretation)

→ Next Lecture

- → Processor datapath and control
- → Simple hardwired implementation
- → Design of a control unit

Read section 3.5 in 5th Ed., or section 3.5 in 4th Ed. of the textbook