Computergestützte Datenanalyse: DATA-Übung mit R

Tag 3 – 24.07.2025

UNSER PLAN

Tag 1

- Einführung in R und RStudio
- "Basics":
- Coding Konventionen
- Objekte, Datenimport & Co

• Tag 2

- Skalenniveau
- Troubleshooting
- Datenaufbereitung
- Datenvisualisierung
- Deskriptive Statistik

• Tag 3

Bivariate Analyse

Tag 4

- Inferenzstatistik
- Abschluss

Genereller Ablauf

- Vier Tage geblockt
- Mischung aus Input- und Übungssessions
- Anwesenheitsabfrage alle 90 Minuten

Heute

- Zwei 15 Minuten Pause
- Eine Mittagspause

REFRESHER

- Was sind Funktionen?
- Was sind die vier Skalenniveaus?
- Welche Datentypen/-klassen gibt es?
- Was tun, wenn Error Meldungen auftauchen?
- Was ist der Unterschied zwischen Subsetting und Rekodieren?
 Welche Packages, Funktionen?
- Warum visualisieren wir Daten? Welches Package hilft dabei?

Welche Datenanalysemethoden sind Ihnen bekannt?

Welche Datenanalyse würden Sie gerne mit R durchführen, wenn Ihren Daten und Programmierkenntnissen keine Grenzen gesetzt sind?

5 Minuten untereinander diskutieren, kurz im Plenum vorstellen

R Markdown

- Kombination aus Code und Text
- Gut zum...
 - Teilen
 - Veranschaulichen

Getting started

- 1. Rmarkdown file erstellen und einstellen
- 2. Packages installieren und/ oder aktivieren: rio und tidyverse
- 3. Import der ALLBUS 2018 Daten
- 4. In einem **neuem** Dataframe werden die Variablen pt01 bis pt20 gespeichert. Nutzt dafür den Befehl select() und recherchiert, wie das funktioniert
- 5. Um welche Variablen handelt es sich? (s. im Variablen Report nach und kommentiert euer Rmd)
- 6. Berechnet Mittelwert und Standardabweichung für die Variablen pt01, pt02 und pt03, in Textform reporten! Beispiel: pt01 hat einen M=X und SD=Y.
- 7. Untersucht die Verteilungen, ergo absolute und relative Häufigkeiten für pt01, pt02, pt03, in Textform reporten!
- 8. Erstellt einen barplot für pt01 mit Beschriftung

Exkurs: Boxplot erstellen

Was ist ein Boxplot?

```
ggplot(data = ?, aes(y = pt01)) +
geom_boxplot() +
labs(title = "?",
    y = "?")
```

Bivariate Analysen

Kreuztabellen und Zusammenhangsmaße

 Typische Frage: Gibt es Unterschiede in der Verteilung zwischen zwei Variablen?

 Anzahl der Ausprägungen beachten -> siehe Kapitel zur Häufigkeitsauszählung

```
Aufgabe:
```

tabelle <- table(df\$pt01, df\$pt02)

Was ist zu sehen?

Bivariate Analyse mittels Kreuztabelle: Test auf statistische Unabhängigkeit

- Untersucht den statistischen Zusammenhang zwischen zwei Variablen
 - Gibt es einen überzufälligen Zusammenhang?
 - Falls ein überzufälliger Zusammenhang besteht: Wie stark ist der Zusammenhang?
 - Wie können wir den Zusammenhang interpretieren?
- Gängiges Werkzeug zur Analyse von Daten auf nominalem oder ordinalem Messniveau
 - Zum Beispiel: Chi-Quadrat, Cramer's V oder Phi (bei 2x2-Tabellen sind letztere identisch)

Zusammenhangsmaß

- Gibt an, wie stark der Zusammenhang zwischen zwei Variablen ist
- Das Zusammenhangsmaß ist abhängig vom Skalenniveau:
 - Zwei dichotome Variablen: phi (φ)
 - Eine dichotome und eine nominale Variable, zwei nominale Variablen, eine ordinale und eine dichotome oder nominale Variable: Cramer's V
 - Zwei mindestens ordinalskalierte Variablen oder eine ordinale und eine mindestens intervallskalierte Variable: Spearman's rho (ρ) oder Kendall's tau-b (τ -b) oder tau-c(τ -c)
 - Zwei mindestens intervallskalierte Variablen: Pearson's r
- Zusammenhangsmaße liegen zwischen 0 und 1 beziehungsweise zwischen -1 und +1
 - > 0.2 interpretierbarer Zusammenhang
 - > 0.5 starker Zusammenhang
 - 1 perfekter Zusammenhang

Chi-Quadrat (χ^2)

- Test auf statistische Unabhängigkeit
- Je größer χ^2 , desto stärker der Zusammenhang von zwei Variablen (0=kein Zusammenhang)

Aufgabe

Kreuztabelle erstellen:

tabelle <- table(df\$variable, df\$variable)</pre>

Chi²-Test durchführen mithilfe der Kreuztabelle chisq.test(tabelle)

Und was sagt uns das Ergebnis?

Chi-Quadrat (χ²)

- Test auf statistische Unabhängigkeit
- Je größer χ^2 , desto stärker der Zusammenhang von zwei Variablen (0=kein Zusammenhang)
- Problem bei der Interpretation:
 - Kann sehr große Werte annehmen
 - Zusammenhang hängt von Tabellenformat und Fallzahl ab

Lösung: Normierung

Cramers V

- Normiert einen χ^2 -Wert von 0 bis 1
 - Unempfindlich gegenüber Tabellenformat und Fallzahl
- 0 bedeutet kein Zusammenhang
- 1 bedeutet perfekter Zusammenhang

Aufgabe

chisq.test(tabelle)

install.packages("vcd")
library(vcd)

assocstats(tabelle)

Schreibt eine kurze Interpretation

Zur Erinnerung:

0 bedeutet kein Zusammenhang1 bedeutet perfekter Zusammenhang