Math 5111 – Real Analysis II– Sprint 2025 w/Professor Perera

 $\begin{array}{c} {\rm Paul~Carmody} \\ {\rm Extra~Credit~\#2-~April~11,~2025} \end{array}$

Let (X, \mathcal{M}, μ) be a measure space. Show that if $f: X \to [0, \infty]$ is a measurable function. Calculate, justify all of the steps, the limit

$$\lim_{n\to\infty} \int_X |\sin(f(x))|^n d\mu.$$

Show that, in general, this result is false if $\mu(X) = \infty$.

Let g(x) = 1 and $h_n(x) = |\sin(f(x))|^n$. Clearly, $h_n(x) \le g(x)$ for all $x \in X$ and measurable, i.e., composition of a continuous function with a measurable function is measurable.

Let
$$N = \inf_{k \in \mathbb{N}} \{ k\pi/2 > |f(x)|, \forall x \in X \} \}$$

and $E = \{ x \in X : |f(x)| = \frac{k\pi}{2}, \text{ for all } k = 1, 2, \dots, N \}$

$$\lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} |\sin(f(x))|^n = \begin{cases} 0 & \text{if } x \notin E \\ 1 & \text{if } x \in E \end{cases}$$
Let $h(x) = \begin{cases} 0 & \text{if } x \notin E \\ 1 & \text{if } x \in E \end{cases} = \chi_E$

By Lebesque Dominated Convergence Theorem, $h \in L^1(X)$ and

$$\lim_{n \to \infty} \int_X |\sin(f(x))|^n d\mu = \int_X h(x) d\mu = \int_X \chi_E d\mu = \mu(E)$$

Notice first that $E \subset X$ therefore $\mu(E) < \mu(X) < \infty$. Thus,

$$E = \bigcup_{k=1}^{N} \left\{ x : |f(x)| = \frac{(2k-1)\pi}{2} \right\}$$

$$\mu(E) = \mu \left(\bigcup_{k=1}^{N} \left\{ x : |f(x)| = \frac{(2k-1)\pi}{2} \right\} \right)$$

$$= \sum_{k=1}^{N} \mu \left(\left\{ x : |f(x)| = \frac{(2k-1)\pi}{2} \right\} \right)$$

$$= \sum_{k=1}^{N} 0$$

$$= 0$$

For $\mu(X) = \infty$ no such N exists. However, we can still test for convergence.

$$S_n = \int_X |\sin(f(x))|^n d\mu$$
$$S_n = \infty, \forall n = 1, 2, \dots$$

using the Ratio Test to determine convergence we have

$$S_{n+1}/S_n = \frac{\int_X |\sin(f(x))|^{n+1} d\mu}{\int_X |\sin(f(x))|^n d\mu}$$
$$= \int_X \frac{|\sin(f(x))|^{n+1}}{|\sin(f(x))|^n} d\mu$$
$$= \int_X |\sin(f(x))| d\mu$$
$$\to \infty$$