Question Number	Answer	Mark	S
10 (a)	$ar + ar^2 = 7.5$	M1	
	$S = \frac{a}{1 - r} = 20$	A1	
	$\frac{7.5}{r+r^2} = 20(1-r)$	M1dep	
	$3 = 8(1-r)(r+r^{2}) = 8(r-r^{3})$ $8r^{3} - 8r + 3 = 0$	A1	(4)
(b)	$8 \times \frac{1}{8} - 8 \times \frac{1}{2} + 3 = 0$	B1	(1)
(c)	$(2r-1)(4r^2+2r-3) = 0 \text{(or by division)}$	M1	
	$\left(r = \frac{1}{2}\right) r = \frac{-2 \pm \sqrt{4 - 4 \times 4 \times (-3)}}{8} = \frac{-2 \pm \sqrt{52}}{8}, = 0.651.15$	M1,A1	
	r = 0.65 too big $r = -1.15$ not convergent		
	\therefore only possible value for r is $\frac{1}{2}$	A1	(4)
(d)	$\frac{a}{1 - \frac{1}{2}} = 20 \qquad \text{or } a = \frac{7.5}{\frac{1}{2} \times \frac{3}{2}}$	M1	
	a = 10	A1	(2)
(e)	99% of 20 or 0.99×20 or 19.8 seen	B1	
	$\left \frac{10(1-0.5^n)}{1-0.5} > 19.8 \right $	M1A1	
	$1 - 0.5^n > \frac{19.8}{20} \ (= 0.99)$		
	$0.01 > 0.5^{n}$ Solve by logs to obtain $n > 6.6$ (or by trial and error)	M1 M1 dep	
	n = 7	A1	(6) [17]

(e)	Alt:	
	$S_n = \frac{10\left(1 - \left(\frac{1}{2}\right)^n\right)}{\frac{1}{2}}$	
	$=20-20\left(\frac{1}{2}\right)^{n}>0.99\times20$	M1A1 B1 (0.99x20)
	$20\left(\frac{1}{2}\right)^n < 0.01 \times 20$	
	$\left(\frac{1}{2}\right)^n < \frac{1}{100}$	M1
	$2^n > 100$	
	$\Rightarrow n = 7$ is least value (Award M1 A0 if $n = 6.6$ seen)	M1depA1(6)

Notes

(a)

M1 for forming an equation using the given information - award for either equation. Formulae used must be correct

A1 for forming a second equation and both equations fully correct

M1dep for eliminating *a* between the two equations. The two equations do not need to be correct but the first M mark must have been gained.

A1cso for
$$8r^3 - 8r + 3 = 0$$

(b)

B1 for substituting $r = \frac{1}{2}$ in the **given** equation and showing that this gives lhs = 0

There are longer methods. Provided the work shows that $r = \frac{1}{2}$ is a root of the equation, award B1.

(c)

M1 for using the factor (2r-1) to factorise the equation either by inspection or division. This work may have been done in (b). If seen in (b) award this mark.

- M1 for solving the quadratic by the formula or completing the square (see general principles for further information)
- A1 for **both** values of r from the quadratic. One sf or surd form is sufficient here
- A1ft for deducing that $r = \frac{1}{2}$ is the only possible value. Award this mark even if the values obtained from the quadratic are incorrect, providing they are **both** outside the range -1 < r < 0.6. If the range is stated to be 0 < r < 0.6 award A0.

(d)

M1 for using either of the equations formed in (a) with $r = \frac{1}{2}$ to obtain a value for a

A1cao for a = 10

(e)

B1 for 99% of 20 (or 0.99×20 or 19.8 seen)

- M1 for using the formula for the sum of the first n terms (formula must be correct) and setting up an inequality or equation with $r = \frac{1}{2}$, their a and their evaluated 99% of 20
- A1 for a completely correct inequality or equation
- M1 for solving to a 2 term inequality or equation with $\left(\frac{1}{2}\right)^n$ oe included
- M1dep for solving *their* inequality or equation, logs can be used or trial and error. If logs used, with a correct inequality, expect to see n > 6.6 oe; if trial and error used expect to see indication that 6 is too small and 7 works (or too large if solving an equation). Dependent on **both** previous M marks.

A1cso for n = 7. (Some candidates make two sign errors in their working. Such work can gain the M marks but scores A0 here as their solution is incorrect.)