METHODOLOGICA

REVUE DES TECHNIQUES, MÉTHODES ET INSTRUMENTS DE RECHERCHE EN SCIENCES HUMAINES

Número Especial

Dominique LADIRAY, Benoît QUENNEVILLE

DESESTACIONALIZAR CON EL MÉTODO X-11

Prefacio de Allan YOUNG

Traducción al castellano: Eduardo CRIVISQUI

2000 - 2001 - N°8 - 9

Laboratoire de Méthodologie du Traitement des Données UNIVERSITE LIBRE DE BRUXELLES Bruxelles - Belgique

METHODOLOGICA^a

Comite de redacción - Comité de rédaction

Enrica AMATURO Eugène HORBER Ramón Ardanuy Albajar Jorge Raúl JORRAT Monique BÉCUE Dominique LADIRAY Atilio Borón Claude LANGRAND Pierre BOURDIEU Natale LAURO Fernando CALDERÓN Jorge PADUA Philippe CIBOIS Hebe de ROITER Fernando CORTÉS Rose-Mary SALAZAR

Frank Critchley Juan Javier Sánchez Carrión

Jean-Jacques Droesbeke Horacio Torres
Yves Escoufier Manuel VILARES
Jeanne Fine Hugo Zemelman

Editor Responsable - Éditeur Responsable

Eduardo CRIVISQUI Laboratoire de Méthodologie du Traitement des Données UNIVERSITÉ LIBRE DE BRUXELLES Av. Jeanne (CPI 124) - B-1050 Bruxelles - Belgique Tel.: +32 2 650.32.74

^a — ISSN 0778-7553 —

Prefacio

Los autores, Dominique Ladiray y Benoît Quenneville, nos proponen en este trabajo un estudio único y completo del método de desestacionalización X-11. Examinan detalladamente la versión original del método X-11, producido por el us Bureau of Census a mediados de los años '60. La base del método X-11-Arima fue desarrollada por Statistique Canada en los años 1970 y el módulo X-11 del método X-12-Arima fue distribuido recientemente por el us Bureau of Census. Este trabajo será muy útil para aquellas personas que trabajan en el campo de la desestacionalización y que desean comprender el método X-11, es decir que buscan comprender como se ubica este método en el campo general de los métodos de ajuste de estacionalidad.

Lo que los autores llaman «Método X-11» fue designado originalmente «X-11 Variant of the Census Method II Seasonal Adjustment Program». Ese era el resultado del trabajo de investigación desarrollado por Julius SHISKIN en los años 1950, en el US Bureau of Census. El programa de desestacionalización «Census Method I» fue presentado por SHISKIN en 1954, rápidamente seguido del «Method II» presentado en 1957.

En el Método I, los coeficientes estacionales eran estimados por medio de las medias móviles aplicadas a los valores de la componente estacional irregular de cada mes. Esa componente era calculada con el cociente entre la serie original y el resultado del alisado de la serie original con una media móvil centrada sobre 12 términos, alisado que debía representar la componente tendencia-ciclo. Se calculaba una segunda serie ajustada, reemplazando esta estimación de la tendencia-ciclo con el alisado de la primera estimación de la serie corregida de variaciones estacionales, mediante una media móvil simple de orden 5.

Las mejorías más importantes incluidas en el Método II eran las siguientes:

- 1. Las medias móviles simétricas fueron completadas, en los extremos de la serie, por un conjunto de medias móviles asimétricas.
- 2. En la segunda etapa del Método I, la media móvil simple de orden 5 utilizada fue reemplazada por una media móvil ponderada sobre 15 términos, lo cual conducía a una estimación de la tendencia-ciclo más lisa y más flexible. En el Método I, los coeficientes estacionales obtenidos durante la segunda etapa eran considerados como alternativas que podían revelarse útiles en el caso de algunas series. Con el Método II, no cabía ya ninguna duda: los coeficientes estacionales obtenidos en la segunda etapa eran mejores.

3. Los valores aberrantes de la componente estacional irregular eran identificados y corregidos, para cada mes, antes del cálculo de los coeficientes estacionales.

El Método II fue uno de los primeros usos en gran escala de las computadoras en el tratamiento de datos económicos. El programa funcionaba en las dos computadoras UNIVAC recientemente instalados en el US Bureau of Census. El tratamiento de una serie mensual de 8 a 10 años requería alrededor de siete minutos. Para desarrollar el Método II, SHISKIN se inspiró en el método gráfico de ajuste estacional, ideado en la US Federal Reserve, antes de la Segunda Guerra mundial. Este método comenzaba por alisar los datos originales con una media móvil de orden 12 modificando, si era necesario, la curva lisa para traducir mejor la componente tendencia-ciclo. Luego, para estimar los coeficientes estacionales, se dibujaba a mano una curva, a través de los valores de la componente estacional irregular de cada mes. Dibujando esa curva, el analista corregía el efecto de los valores considerados aberrantes en función del garbo de los datos y de sus conocimientos del sector económico. El Método II puede ser considerado como una tentativa de hacer replicar con la computadora un procedimiento que, hasta entonces, era utilizado por profesionales de mucha experiencia.

En una oportunidad, cuando aún no se disponía de computadoras, pregunté a un antiguo funcionario de la División del Presupuesto Nacional, de la Oficina de Análisis Económico de los Estados Unidos, como lograba ese servicio actualizar y revisar cada año los coeficientes estacionales de los datos del PNB. Me respondió lo siguiente: «hacemos trabajar los empleados de estadística toda la noche». Y eso que los «trabajadores de la noche» no intervenían más que al fin de un período de dos o tres meses, durante el cual se trabajaba de noche y los fines de semana. Las revisiones anuales de las cuentas nacionales por parte de la Oficina de Análisis Económico son siempre ejercicios muy importantes, pero ¡ya no es más necesario de hacer trabajar durante las noches al conjunto del personal! Hoy en día, las revisiones se calculan en algunos segundos, con las computadoras de la Oficina, que funcionan muy raramente fuera de las horas normales de trabajo. El éxito del Método II se debió, en parte, al hecho que ese paquete informático era de un uso simple. Incluía las salidas gráficas para las diferentes componentes de la serie original, lo cual ayudaba a que los utilizadores comprendieran el procedimiento y pudieran juzgar la calidad de los resultados. El método era suficientemente robusto y su empleo no exigía una elevada formación en estadística matemática. Existen dos justificaciones importantes de la desestacionalización. La primera es estimar la componente estacional, por ejemplo con el objetivo de planificar mejor la producción o facilitar la gestión de stocks. La segunda es estimar esa componente estacional para eliminarla de la serie bruta, de esta forma se puede poner mejor en evidencia las otras causas de variaciones de la serie, en particular aquellas que resultan del ciclo de negocios.

SHISKIN quería satisfacer la demanda de los responsables de la política económica del gobierno, que solicitaban obtener dos cosas lo más rápidamente posible. En primer lugar, querían disponer de elementos descriptivos cifrados de la situación económica actual. Por otra parte, querían disponer de previsiones a corto plazo. Con esos objetivos, era bastante natural separar la componente estacional de la componente cíclica, al menos en la medida en que éstas parecieran independientes entre ellas. El Método II daba una previsión de los coeficientes estacionales para el año siguiente, de modo tal que era muy simple estimar y extraer la parte debida a la variación estacional en todo nuevo dato mensual. Habrá que esperar muchos años para que sea práctica-

mente posible re-estimar la componente estacional para cada nuevo dato disponible y para demostrar que esta nueva estrategia es mejor que aquella que se apoyaba en las previsiones anuales de los coeficientes. Sin embargo, se pudo percibir rápidamente que las revisiones de los coeficientes estacionales, hechas cuando estaban disponibles los nuevos datos completos de un año, eran a menudo muy importantes y difíciles a manejar.

En 1958 comencé a trabajar con SHISKIN en el US Bureau of Census y en 1959 se incorporó John MUSGRAVE. A partir de entonces, dedicamos muchos años a mejorar el Método II y colaborábamos con SHISKIN en el perfeccionamiento de indicadores del ciclo de negocios. Hubo una sucesión de nuevas versiones experimentales de ese paquete informático, las cuales fueron designadas X-1, X-2, hasta X-11. Para designar esos paquetes con el nombre genérico «X» nos inspiramos en los ensayos de aviones propulsados con motores de cohetes. En 1947, Chuck YEAGER sobrepasó el muro del sonido con un avión X-1 que fue el primer modelo de una serie de prototipos. A mediados de los años 60, el X-15, el último de esos aviones a reacción, volaba a una velocidad varias veces superior a la velocidad del sonido. Dos de esas versiones experimentales, la X-3 y la X-9, reemplazaron sucesivamente el Método II, en tanto que versiones oficiales del US Bureau of Census y en varias otras agencias del Gobierno. Contenían nuevas medias móviles asimétricas para la estimación de los coeficientes estacionales y conducían a revisiones sensiblemente menores.

La versión X-10 fue desarrollada en colaboración con Stephen MARRIS, de la Organización para la Cooperación y el Desarrollo Económico (OCDE), durante la pasantía que realizó en el US Bureau of Census. El paquete X-10 contenía un conjunto de medias móviles y el programa elegía entre ellas la más apropiada para cada mes. Este enfoque permitió reducir una vez más las revisiones de los coeficientes de un gran número de series. X-10 se convirtió en el método oficial de la OCDE. Esta estrategia no fue retomada por defecto en la versión X-11, pero figuraba como opción. Un enfoque similar fue definido para la estimación por defecto de la componente tendencia-ciclo.

Otras dos personas merecen ser citadas. Luego de la presentación del Método II hecha por SHISKIN, Duane EVANS desarrolló un método de desestacionalización, basado en medias móviles, para el US Bureau of Labor Statistics. Una de las innovaciones de este nuevo paquete puede ser considerada como el elemento precursor del procedimiento de detección y de corrección de puntos aberrantes que fue luego introducido en la versión X-11. Además, poco tiempo después del advenimiento del Método II, el US Bureau of Census, bajo la dirección de Harry M. ROSENBLATT, se lanzó en el desarrollo de un método paramétrico de ajuste estacional. Pero, ninguno de esos enfoques constituyeron una alternativa seria de X-11, en parte porque las revisiones de los coeficientes estacionales estimadas por esos métodos resultaban mayores.

Ciertamente, no esperábamos en 1965, que X-11 jugaría todavía —35 años más tarde— un papel tan importante en desestacionalización. Nos parecía, en cambio, deseable que se propusiera una forma de medir la precisión de las estimaciones de los coeficientes.

Los autores de este estudio, completo y muy actualizado, del método X-11, deben ser felicitados. Es posible que este trabajo sirva no solamente para prolongar la vida de X-11, sino también que contribuya al desarrollo y a la popularización de nuevos métodos, que tendrán pocas semejanzas con los métodos del pasado.

Allan H. YOUNG Abril 2000 Heathsville, Virginia

Introducción

En materia de desestacionalización, el método estadístico más utilizado es —sin duda—el método empleado en el paquete Census-X-11. Desarrollado en los años '50-'60 por el US Bureau of Census, ese programa recibió numerosas modificaciones y mejorías. Es el caso en particular del paquete X-11-ARIMA, en los años 1975 y 1988 (DAGUM [19, 20]), y del paquete X-12-ARIMA, cuya primera versión de test fue difundida en 1998 (FINDLEY *e alii*. [22]). A pesar de que esos paquetes incorporan —a diversos niveles—métodos de análisis paramétrico y particularmente los modelos ARIMA, popularizados por BOX y JENKINS [8], en realidad se aproximan bastante del método inicial X-11 y es a ese «núcleo» que nos interesamos a continuación.

Los detractores de X-11 han subrayado el aspecto «caja negra» del paquete. Ciertamente, la ausencia de modelo explícito ha contribuido mucho a esa apreciación, tanto como la multiplicidad de sus opciones y de las tablas producidas. Census-X-11 es sin embargo una herramienta estadística moderna: es un método no paramétrico que se basa en estimaciones iterativas y se trata de uno de los primeros usos intensivos de la computadora. Su principio de base es simple y bastante fácil de explicar. No obstante, es verdad que aún para un utilizador muy experimentado, era difícil (por no decir imposible) reconstruir y explicar cada tabla producida por Census-X-11. La presencia de errores menores de programación y de imprecisiones en la documentación, hacían imposible esa tarea. La mayoría de esos errores de programación han desaparecido de las nuevas versiones del paquete y hemos decidido realizar un trabajo que nunca se había llevado a cabo hasta ahora: tratar a fondo un ejemplo de desestacionalización por el método X-11.

Para ello, hemos programado el método X-11 en Mathematica $^{\odot}$ y en lenguaje SAS $^{\odot}$, verificando así cada etapa de la desestacionalización y validando paso a paso los resultados de X-11-ARIMA y de X-12-ARIMA. Después de algunas correcciones de errores detectadas en cada uno de los paquetes, todos esos programas convergen 1 .

Este trabajo aporta una documentación sobre la técnica de desestacionalización que es utilizada en los paquetes que se basan en el método X-11. Puede servir de documento de referencia en los Institutos de Estadística, para los macro-economistas o para todos los analistas de datos económicos temporales. Todos los profesionales que trabajan en el campo del ajuste estacional deberían entonces sacar provecho de este trabajo. Luego de una breve reseña histórica de la desestacionalización, el lector encontrará una presentación general del método X-11. El capítulo siguiente será dedicado al estudio de la medias móviles, haciendo énfasis en las medias móviles utilizadas en el método X-11. A continuación se presentará un ejemplo completo de

 $^{^1\}mathrm{X}\text{-}11\text{-}\mathrm{Arima}$ version 2000 y X-12-Arima version 0.2.7.

desestacionalización y el lector podrá seguir, con todo detalle, el conjunto de los cálculos realizados. Se estudian en ese ejemplo los modelos de regresión lineal utilizados para los efectos de días laborables y el procedimiento de detección y corrección de valores atípicos. La estimación del efecto de Pascua es el objeto de un capítulo separado, puesto que los modelos utilizados a tal efecto en X-11-ARIMA y en X-12-ARIMA son sensiblemente diferentes.

Nos concentramos aquí en la parte X-11 de los paquetes actuales, es decir sin hacer referencia a una modelización ARIMA *a priori* de la serie a desestacionalizar. Llegado el caso, serán señaladas las pequeñas diferencias que existen entre X-11-ARIMA y X-12-ARIMA, en lo que hace al funcionamiento de ese «núcleo central».

Cuando a continuación hagamos referencia a X-11, nos referiremos al método de desestacionalización y no al paquete Census-X-11.

Agradecimientos

La mayor parte de este trabajo fue realizada durante la pasantía de Dominique LADIRAY en Statistique Canada, en el «Centre de recherche et d'analyse des séries temporelles», de enero de 1998 a setiembre de 1999, en el marco del programa de intercambios entre Statistique Canada y el Institut National de la Statistique et des Études Économiques (INSEE). Agradecemos a ambas instituciones el habernos facilitado la oportunidad y los recursos necesarios para trabajar en este proyecto.

Para realizar este trabajo, fue necesario penetrar en el código Fortran de X-11. Agradecemos a Paul Wong, de Statistique Canada y a Brian Monsell, del us Bureau of Census, el haber respondido a nuestras numerosas preguntas y el haber corregido algunos errores de programación que hemos identificado.

Agradecemos también a Ketty ATTAL, del INSEE, por su contribución en la redacción de los Capítulos I y III.

Varias personas nos han ayudado, comentando las primeras versiones de este trabajo. Agradecemos a Guy Huot, Bernard Lefrançois y Manchi Luc de Statistique Canada por su meticulosa lectura de la versión original en francés. Nuestro agradecimiento va también al traductor anónimo de Statistique Canada que tomó en cargo la versión en inglés. Hacemos llegar nuestro agradecimiento a Marietta Morry, Norma Chab, Helen Fung y John Higginson por sus comentarios a propósito de la versión preliminar en inglés.

Agradecemos también a David FINDLEY y Brian MONSELL, del US Bureau of Census, a Michael BAXTER del UK Central Statistical Office y a Andrew SUTCLIFFE del Australian Bureau of Statistics, por las discusiones apasionantes y por la lectura detallada de le versión en inglés.

Agradecemos sinceramente a Allan YOUNG el haber aceptado de redactar el prefacio de este trabajo. Le expresamos aquí nuestra profunda admiración por el conjunto de sus trabajos científicos. Por último, agradecemos a John KIMMEL de Springer-Verlag New York Inc. el haber aceptado la idea de publicar la versión en inglés de este trabajo², así como a Bernard Lefrançois de Statistique Canada, Marius Ooms de la Vrij Universiteit van Amsterdam y a Stuart Scott del us Bureau of Labor Statistics por haber releído y comentado el manuscrito presentado a Springer-Verlag.

Las opiniones expresadas en este trabajo son de sus autores y no necesariamente de Statistique Canada y del INSEE. Los autores son responsables de todo error que haya escapado al trabajo de revisión y corrección.

D. Ladiray³
B. Quenneville⁴
Julio 2000

Paris, Francia Ottawa, Canadá

Nota de la Redacción:

Agradecemos a los autores el habernos autorizado a traducir al castellano este importante trabajo, que será difundido en América Latina mediante este Número Especial de la revista METHODOLOGICA.

²LADIRAY, D. and QUENNEVILLE, B. (2001) "Seasonal Adjustement with the X-11 Method", *in*: **Lecture Notes in Statistics**, (158):220 pp., Springer-Verlag New York Inc., New York, USA.

³Dominique Ladiray es Administrador del INSEE (France), actualmente fue afectado en los servicios de EUROSTAT, Bâtiment Jean Monnet, Rue Alcide de Gasperi, L-2920 Luxembourg. Tel.: +352-4301-33339, e-mail: dladiray@hotmail.com.

⁴Benoît QUENNEVILLE es Metodólogo en el Centre de recherche et d'analyse des séries temporelles, 3G-RHC-BSMD, Statistique Canada, Ottawa, Ontario, Canada, K1A 0T6. Tel.: +1-613-951-1605, Fax: +1-613-951-5711, e-mail: quenne@statcan.ca.

Capítulo 1

Breve historia de la desestacionalización

Hoy en día es usual descomponer una serie X_t observada, en varias componentes no observadas, siguiendo un modelo de tipo:

$$X_t = T_t + C_t + S_t + I_t,$$

en donde T_t, C_t, S_t y I_t designan, respectivamente, la **tendencia**, el **ciclo**, la **estacionalidad** y lo **irregular**. Esta idea es antigua y el origen de la misma debe ser buscado, sin duda, en la astronomía¹.

En el siglo XVII, una mayor precisión en las mediciones de los movimientos planetarios llevaba a pensar que se contradecían las leyes de Kepler y se aceptó, poco a poco, la idea que dichas leyes daban una aproximación de la posición del planeta, más bien que su posición exacta (NERLOVE, GRETHER y CARVALHO [57]). La posición observada fue entonces considerada como la suma de la posición «teórica» y de una fluctuación irregular. Más tarde, se observó que las órbitas de los planetas se modifican insensiblemente y se hizo la distinción entre movimientos seculares y periódicos. Nace así el modelo con componentes inobservables. A fines del siglo XVIII e inicio del siglo XIX, muchos matemáticos se interesaron en la explicación de esos movimientos periódicos o irregulares, es el caso —entre otros— de EULER, de LAGRANGE o de LAPLACE.

Los economistas incorporáron en sus trabajos esta idea sobre la manera de descomponer una serie temporal. Algunos no dudáron en reconocer que esa idea provenía directamente de la astronomía² o de la meteorología³. Paralelamente, el desarrollo de los conocimientos matemáticos dará a los investigadores los recursos necesarios para ir más allá de la simple visualización gráfica en el análisis de las series temporales. Entre los aportes más importantes hechos en esa área, se debe citar, evidentemente, los trabajos de Jean-Baptiste Joseph FOURIER [24] sobre la descomposición de una

¹Esta sección se inspira en los trabajos de: ARMATTE[2], BELL y HILLMER[6], HYLLEBERG[37], NERLOVE, GRETHER y CARVALHO[57].

²NERLOVE, GRETHER, CARVALHO [57] citan varios ejemplos, entre otros, de COURNOT [17] y JEVONS [38]. En 1801, el astrónomo británico William HERSCHEL [32] publicó un estudio en el cual establece la relación entre la periodicidad observada de las manchas solares y la del precio del trigo.

³Es difícil dejar de citar los trabajos del meteorólogo BUYS-BALLOT[10] quien, en 1847, estudiaba las variaciones periódicas de la temperatura, modelizando la «tendencia» con un polinomio, la estacionalidad con variables indicadoras, y hacía implícitamente uso de técnicas de regresión lineal para estimar los parámetros.

serie en una suma de funciones trigonométricas. Esos trabajos permitieron el advenimiento del análisis armónico y luego facilitaron la definición del análisis espectral, cuando se formuló la noción de proceso estocástico. La razón es que, en esa época, tanto en la economía como en las otras ciencias, la visión dominante es determinista, caracterizándose por la búsqueda de leyes exactas que expliquen todos los fenómenos físicos, económicos, demográficos, biológicos, etc.

En numerosos estudios de esa época, se trata de evidenciar «ciclos» que pudieran ser explicados a través del estudio y el análisis, pero también se trata de prever las crisis económicas (ARMATTE [2]). En esas condiciones, las componentes periódicas de corto plazo presentan poco interés y parece conveniente eliminarlas:

«Toda fluctuación periódica, ya sea diaria, semanal, trimestral o anual, debe ser detectada y evidenciada, no solamente para estudiarla, sino también porque esas variaciones periódicas deben ser evaluadas y eliminadas para hacer resaltar aquellas que, irregulares o no periódicas, son probablemente más importantes e interesantes» (JEVONS [38])⁴.

A fines del siglo XIX y a inicio del siglo XX, abundan las publicaciones sobre la descomposición de series económicas, así como sobre las técnicas de estimación de componentes o sobre los elementos de definición de las mismas⁵. No cabe duda que W. M. PERSONS [59] tuvo el mérito de haber propuesto en 1919, en un mismo trabajo, un método «completo» de descomposición, incluyendo una tentativa de «definición» y de formalización de las componentes inobservables, un esquema de composición y un método de estimación.

Según W. M. PERSONS, una serie temporal se descompone en cuatro tipos de fluctuaciones, las cuales hoy en día nos son familiares:

- a) Una tendencia a largo plazo, o tendencia secular. Para una gran cantidad de series, tales como los «bank clearings» o la producción de bienes, la tendencia secular puede ser considerada como el elemento de crecimiento;
- b) Un movimiento ondulatorio o cíclico que se sobrepone a la tendencia secular. Esas curvas parecen alcanzar sus picos durante los períodos de prosperidad industrial y presentan huecos durante los períodos de depresión. Sus altas y bajas constituyen el ciclo de negocios;
- c) Un movimiento estacional infra-anual, que presenta un garbo característico para cada serie;
- d) Una variación residual, debida a acontecimientos que afectan una serie particular, o bien a hechos excepcionales, tales como guerras o catástrofes natu-

⁴«Every kind of periodic fluctuations, whether daily, weekly, quarterly, or yearly, must be detected and exhibited not only as a subject of study in itself, but because we must ascertain and eliminate such periodic variations before we can correctly exhibit those which are irregular or non-periodic and probably of more interest and importance».

⁵Por ejemplo, en 1905, Lucien MARCH [52] distingue «los cambios anuales, de los cambios polianuales (por ejemplo decenales), o de los cambios seculares, sin hablar de los períodos más cortos que un año» (citado por YULE [68], BELL y HILLMER [6]). Se puede citar también el trabajo precursor de las hermanas Colette y Berthe MABALLÉE [50], que tratáron de aislar los puntos de inversión de una serie con ayuda del correlograma.

rales, que afectan simultáneamente un gran número de series (PERSONS [59])⁶.

Esas componentes son luego combinadas siguiendo los esquemas de composición aditivos o multiplicativos que son conocidos:

Esquema aditivo: $X_t = T_t + C_t + S_t + I_t$, Esquema multiplicativo: $X_t = T_t \times C_t \times S_t \times I_t$,

o bien : $X_t = T_t \times (1 + C_t) \times (1 + S_t) \times (1 + I_t)$.

La mayoría de las publicaciones de esa época aceptan esos modelos y «definiciones» sin mucha discusión. Hacen énfasis más bien en las técnicas propiamente dichas de ajuste estacional o de extracción del ciclo. De la misma manera, fueron aceptados otros conceptos: la idea que la estacionalidad varía con el tiempo; la necesidad de tomar en cuenta simultáneamente todas las componentes cuando se estima la parte estacional; la imposibilidad de describir las tendencias y los ciclos con fórmulas matemáticas simples y explícitas; la necesidad de tratar los puntos atípicos...Todas esas ideas engendraban métodos de estimación diferentes (MENDERHAUSEN [53]).

Sin embargo, los trabajos de ese entonces se inspiraban principalmente en dos grandes métodos, de los cuales se hará una breve descripción en el caso específico de un modelo multiplicativo (ARMATTE [2]).

- En 1910, el método de los «vínculos relativos» (relative links), elaborado por Persons [59], tiene la preferencia de los economistas estadísticos. Su principio consiste en: calcular para cada valor mensual de la serie, la relación X_t/X_{t-1} entre dicho valor y el valor del mes precedente; producir la tabla de valores de esas relaciones para los 12 meses; determinar luego las medianas $\{M_i,\ i=1,\ldots,12\}$, de esas doce series. Seguidamente, esas medianas eran encadenadas por multiplicación, tomando una base 100 para enero: $S_1=100, S_i=M_iS_{i-1}$. Luego, esos coeficientes estacionales eran corregidos con un factor $\left(S_{13}/S_1\right)^{1/12}$ para que $S_1=S_{13}=100$.
- La segunda manera de determinar los coeficientes estacionales es el método de las medias móviles⁷, utilizado a partir de 1922 por la US Federal Reserve⁸ y que es popularizado más tarde por MACAULAY [51]. El método se basa en el cálculo de una media móvil centrada de orden 12, para obtener una estimación de la tendencia. La relación entre los datos originales y esta estimación produce una primera estimación de la componente estacional. Para eliminar lo irregular, se calculan seguidamente las medianas (o las medias) de la componente de cada

⁶ «(a) A long-time tendency or secular trend; in many series such as bank clearings or production commodities, this may be termed the growth element;

⁽b) A wavelike or cyclical movement superimposed upon the secular trend; these curves appear to reach their crests during the periods of industrial prosperity and their troughs during periods of industrial depression, their rise and fall constituting the business cycle;

⁽c) A seasonal movement within the year with a characteristic shape for each series;

⁽d) A residual variation due to developments which affect individual series, or to momentous occurrences such as wars or national catastrophes, which affect a number of series simultaneously».

⁷En el Capítulo III se hace una presentación completa de las medias móviles.

⁸A menudo se atribuye al físico inglés J. H. POYNTING[60] la primera utilización, en 1884, de una media móvil para eliminar la tendencia y aislar las fluctuaciones de una serie, que puede entonces ser tratada con el análisis armónico.

mes. Luego se ajustan esos nuevos índices de manera tal que la suma de los mismos sea igual a 1 y que se puedan obtener así los coeficientes estacionales definitivos.

A pesar de que esos métodos eran muy populares, fueron objeto de numerosas críticas a nivel teórico. Por ejemplo, SLUTSKY [64] y YULE [69] mostraron que el empleo de medias móviles podía introducir ciclos artificiales en los datos. FISHER [23] deploraba que se apliquen métodos «empíricos» *ad hoc* cuando existían herramientas matemáticas adecuadas. En esos tiempos, el acontecimiento más importante es, seguramente, la aparición a fines de los años 20, de los modelos auto-regresivos (YULE [69]) y de las medias móviles (SLUTSKY [64]) para el análisis de las series temporales. Es decir, en otros términos, la propuesta de una vía para que los economistas estadísticos pudieran salir del marco determinista tradicional, utilizando los primeros procesos estocásticos. Pero habrá que esperar varios años todavía para que esos métodos alcancen un cierto éxito en el campo de la desestacionalización.

En los años '30, los métodos de desestacionalización basados en las técnicas de regresión fueron acogidos con algunas reservas. Generalmente, esos métodos se fundaban en: una descomposición aditiva de la serie inicial, o una transformación simple de esa serie; una modelización de la serie inicial y de cada una de sus componentes por medio de funciones paramétricas simples; y en una estimación de los parámetros mediante métodos del tipo de «mínimos cuadrados» habituales. El rechazo momentáneo de esos métodos se explica, sin duda, por la dificultad de encontrar una buena especificación del modelo y en particular por la necesidad de adoptar hipótesis fuertes para las componentes inobservables (BELL y HILLMER [6]).

Después de la Segunda Guerra mundial, el desarrollo de la informática contribuyó grandemente a la difusión y al mejoramiento de los métodos de desestacionalización. En 1954, Julius SHISKIN elabora el *Census Method* I, en el US Bureau of Census. Este método de desestacionalización será seguido, en 1957, por el *Census Method* II y por once versiones eXperimentales (X-1, X-2, etc.), hasta que en 1965 se produjo el paquete de desestacionalización X-11 (*X-11 Variant of the Census Method II Seasonal Adjustment Program*, SHISKIN, YOUNG y MUSGRAVE [63]). Esas diversas versiones se inspiraban directamente en los alisados por medias móviles y en los trabajos de MACAULAY [51], constituyendo los primeros métodos automáticos de ajuste estacional. *Census X-11* se convirtió rápidamente en un estandar utilizado en todo el mundo. Las nuevas posibilidades de cálculo facilitaron el empleo de técnicas paramétricas de regresión para la estimación y la corrección de los efectos de calendario (días hábiles, días de asueto, vacaciones, etc.). Además se integró en el paquete Census X-11 el tratamiento automático de esos efectos, basado en los trabajos de YOUNG [67].

Paralelamente, la modelización paramétrica de las series temporales y el análisis espectral hicieron grandes progresos debidos, esencialmente, al desarrollo de la teoría de los procesos estocásticos. Las herramientas de desestacionalización se beneficiaron poco a poco con esos avances.

El análisis armónico fue utilizado, desde muy temprano, para resolver los problemas de descomposición de series en un marco decididamente determinista. Se lo utilizaba para poner en evidencia la periodicidad exacta, siendo que se sabía que los ciclos podían no ser rigurosamente periódicos o que las estacionalidades podían modificarse. Aún así, hubo que esperar el advenimiento de las computadoras, en los años '60, para poder aprovechar los progresos cumplidos por la teoría y poder utilizar

mejor el análisis espectral. Sólo entonces se pudo mejorar las estimaciones de la densidad espectral (BARTLETT [3], TUKEY [66]); estudiar los procesos no estacionales (PRIESTLEY [61]); ejecutar rápidamente las transformaciones de Fourier (COOLEY y TUKEY [16]); etc.

La popularización, en 1970, de los modelos ARIMA por BOX y JENKINS permitió que las herramientas de desestacionalización progresaran en dos rumbos. Por un lado, esos modelos constituyeron un aporte importante al desarrollo de Census X-11, el cual evolucionó en 1975 hacia X-11-ARIMA (DAGUM [18, 19]). En esta nueva versión, los modelos ARIMA son empleados para prolongar la serie inicial antes de desestacionalizarla con el método X-11, lo cual permite limitar las revisiones de las estimaciones del fin de la serie cuando se dispone de un punto suplementario. Por otra parte, la modelización ARIMA fue también introducida en los métodos de desestacionalización basados en la teoría de extracción del señal. Existen numerosos ejemplos de trabajos que utilizan la modelización ARIMA y el análisis espectral para desestacionalizar (consultar por ejemplo: BELL y HILLMER [6]). Todos esos avances técnicos y teóricos hacen al desarrollo y a la popularidad alcanzados hoy en día por los métodos de descomposición basados en modelos.

Actualmente, las dos grandes tendencias de la desestacionalización, el *enfoque empírico* y el *enfoque por modelización*, inspiran diversos métodos de los cuales algunos mezclan esas dos doctrinas. Es difícil evitar las principales críticas que se pueden hacer a cada uno de esos enfoques. Por ejemplo, se reprocha a los métodos empíricos que no sean óptimos y que no se apoyen en modelos explícitos, lo cual hace particularmente difícil, sino imposible, el conocimiento de las propiedades estadísticas de los estimadores utilizados. Los métodos basados en modelos son satisfactorios en ese aspecto, pero subsisten interrogantes en lo que hace a la pertinencia de la modelización, sobretodo cuando los modelos univariados son empleados para series económicas que dependen, esencialmente, de numerosos factores externos. Existen dudas también que esos métodos de estimación no sean suficientemente robustos en el caso de series fuertemente perturbadas. Se invoca además la dificultad de modelizar *a priori* algunas componentes de las cuales se sabe poca cosa, pero también la insuficiencia relativa de la teoría estadística de series no estacionales.

Por todo ello, las recientes mejorías introducidas no conciernen a los principios mismos de los métodos existentes, sino que tratan más bien de corregir algunos de sus defectos. Los principales aportes conciernen, por un lado, a los problemas relativos a la estimación de las componentes al principio y al fin de la serie. Por otra parte, se orientan hacia la eliminación de varias perturbaciones que influyen en los resultados de la desestacionalización (puntos atípicos, cambios de régimen, efectos de calendario, etc.).

Como se resume esquemáticamente en la Figura 1.1, los métodos de desestacionalización pueden ser clasificados en dos grandes categorías: los métodos *no paramétricos* y los métodos *paramétricos*.

Los métodos no paramétricos, llamados empíricos, permiten descomponer la serie en componentes inobservables mediante un procedimiento, a menudo *iterativo*, basado en alisados sucesivos. Se puede agrupar el conjunto de alisadores utilizados en esos métodos bajo la denominación: *regresiones locales*. Las regresiones locales consisten en ajustar polinomios, en general por mínimos cuadrados (ponderados o no), con in-

tervalos deslizantes que se desfasan de un punto cada vez. En el centro del intervalo, el dato alisado es el valor en esa fecha del polinomio ajustado (el dato alisado a la fecha siguiente se obtiene mediante el ajuste de un polinomio en el intervalo siguiente). Se puede demostrar que las regresiones locales son equivalentes a la aplicación de medias móviles particulares cuando las observaciones están espaciadas regularmente. Los métodos se distinguen esencialmente por su grado de robustez: en un primer grupo, figuran *STL* (CLEVELAND *e alii*. [15]), un método que se fundamenta en el método «*LOWESS*» (CLEVELAND [14]), es decir en una técnica de alisado robusta por regresiones locales y *SABL* (en el cual la robustez se obtiene mediante el empleo de las medias móviles); en el segundo grupo figuran, el famoso método de desestacionalización *X-11* (US Bureau of the Census), *X-11*-ARIMA (Statistics Canada, DAGUM [20]) y *X-12*-ARIMA (US Bureau of the Census, FINDLEY *e alii*. [22])⁹.

Figura 1.1: Métodos y paquetes de desestacionalización.

Los métodos paramétricos pueden también ser divididos en dos grandes conjuntos: los métodos basados en la regresión y los métodos que se apoyan en modelos estocásticos.

Los métodos basados en la regresión, sugeridos por BUYS-BALLOT [10], definen una función determinista del tiempo para cada componente, excepto para lo irregular. Entre los métodos de este tipo se pueden citar *BV4* (Technische Universität Berlin, Deutsche Institut für Wirtschaftsforschüng) y *DAINTIES*. Este último fue utilizado en los años '80 en la Comisión Europea (HYLLEBERG [36]).

Los métodos basados en modelos estocásticos (no deterministas) utilizan modelos ARIMA para modelizar las componentes inobservables. Entre los métodos de ese tipo

⁹Existen otras variantes del método Census X-11. Por ejemplo, el método utilizado en la Oficina Australiana de Estadística, la versión empleada en el Banco Central Alemán o bien la variante utilizada por el Instituto Británico de Estadística.

se distinguen dos grupos: los métodos más recientes que estiman los modelos de las componentes a partir del modelo ARIMA de la serie inicial (BURMAN [9], HILLMER y TIAO [34]), el más reciente de ellos es *SEATS* (GOMEZ y MARAVALL [26]); los métodos que modelizan y estiman directamente las componentes (AKAIKE [1], KITAGAWA y GERSCH [40]), como por ejemplo *STAMP* (KOOPMAN *e alii*. [41]), *BAYSEA* y *DECOMP* (Institute of Statistical Mathematics, Japan).

En la Tabla siguiente figuran las direcciones electrónicas de la mayoría de los métodos citados 10.

Paquete	URL
BAYSEA	http://www.ism.ac.jp/software/products-e.html
BV4	http://www.statistik-bund.de/mve/e/bv4.htm
Web DECOMP	http://ssnt.ism.ac.jp/inets2/title.html
STL y SABL en S-PLUS	http://www.splus.mathsoft.com/splus/splsprod/default.htm
STAMP	http://stamp-software.com
TRAMO/SEATS	http://www.bde.es/servicio/software/softwaree.htm
X-11-ARIMA	http://www.statcan.ca/english/IPS/Data/10F0003XDE.htm
X-12-ARIMA	http://ftp.census.gov/pub/ts/x12a/final/pc/

Tabla 1.1: Direcciones electrónicas de los principales paquetes de desestacionalización.

 $^{^{10}{\}rm Esos}$ vínculos pueden ser actualizados consultando el sitio «The Econometric Journal online»: http: www.econometriclinks.com.

Capítulo 2

Principios del método X-11

El método X-11, que permite analizar las series mensuales y trimestrales, se apoya en un principio de estimación iterativa de las diferentes componentes. Esa estimación se hace en cada etapa mediante las medias móviles adecuadas.

2.1 Componentes y esquemas de composición

Las componentes siguientes pueden aparecer en algún momento de la descomposición:

- 1. La tendencia que representa la evolución de la serie a largo tiempo ;
- 2. El *ciclo*, movimiento liso, casi periódico, en torno de la tendencia, que pone en evidencia una sucesión de etapas de crecimiento y de recesión.
 - X-11 no separa esas dos componentes. Las series estudiadas son generalmente muy cortas para permitir que se haga fácilmente la estimación de esas dos componentes. De modo que, a continuación, nos referimos a la componente tendencia-ciclo, designada C_t para conservar la notación usual de X-11.
- 3. La componente *estacional*, designada S_t , que representa las fluctuaciones infra anuales (mensuales o trimestrales) que se repiten de año en año de manera más o menos regular;
- 4. Una componente llamada de *días hábiles*, designada D_t , que mide el impacto sobre la serie de la composición diaria del mes o del trimestre;
- 5. Una componente que mide el efecto de la *Fiesta de Pascua*, designada E_t ;
- 6. Por último, la componente irregular, designada I_t , que agrupa todas las otras fluctuaciones más o menos erráticas que no son tomadas en cuenta en las componentes precedentes.

Debemos señalar que esas definiciones son, de hecho, cualitativas y poco precisas. Por otra parte, continúan siendo objeto de controversias e interpretaciones diversas. Presentamos a continuación, a título de ejemplo, dos citaciones de eminentes estadísticos que, evidentemente, no adoptan el mismo objetivo ni la misma definición.

- Sir Kendall [39, p. 29]: «La característica esencial de una tendencia es de ser lisa»¹.
- Andrew HARVEY [29, p. 284]: «No existe, sin embargo, ninguna razón fundamental que haga que una tendencia sea lisa»².

En realidad, en el método X-11 las componentes son definidas de manera implícita por las herramientas que sirven para estimarlas.

El método X-11 considera dos modelos de descomposición³:

- El modelo aditivo: $X_t = C_t + S_t + D_t + E_t + I_t$;
- El modelo multiplicativo: $X_t = C_t \times S_t \times D_t \times E_t \times I_t$;

Además, X-11-ARIMA propone:

- El modelo log-aditivo: $log X_t = \log C_t + \log S_t + \log D_t + \log E_t + \log I_t$; X-12-ARIMA agrega a esos tres modelos:
 - El modelo pseudo-aditivo: $X_t = C_t \times (S_t + D_t + E_t + I_t 1)$.

2.2 Medias móviles

Las medias móviles constituyen la herramienta de base del método de desestacionalización X-11. Se las emplea para estimar las principales componentes de la serie: tendencia y estacionalidad. Son principalmente herramientas de *alisado*, concebidas para eliminar una componente de la serie que no es deseada. Consideremos el ejemplo simple de una serie constituida con una tendencia y una componente irregular: si la tendencia es lisa, los valores de la serie alrededor de la fecha t deben aportar una información sobre el valor de esa tendencia en el instante t y debe ser posible utilizar una media de esos valores para obtener una estimación.

La *media móvil* de coeficientes $\{\theta_i\}$ es definida de la siguiente manera⁴:

$$M(X_t) = \hat{C}_t = \sum_{i=-p}^{+f} \theta_i X_{t+i}$$

El problema consiste entonces en encontrar un «buen» conjunto de coeficientes $\{\theta_i\}$. A fines del siglo XIX, las limitadas capacidades de cálculo disponibles hicieron que los estadísticos buscáran los coeficientes de ponderación independientes de la serie mediante los métodos que son estudiados detalladamente en el Capítulo 3.

¹«The essential idea of trend is that it shall be smooth».

²«There is no fundamental reason, though, why a trend should be smooth».

³El paquete Census X-11 no permite estimar el efecto de Pascua.

 $^{^4}$ El valor de la serie bruta en el instante t es reemplazado por la media ponderada de p valores «pasados» de la serie, del valor actual y de f valores «futuros» de la serie. Se dice entonces que las medias móviles son filtros lineales, filtros que permiten eliminar o atenuar las oscilaciones asociadas a algunas frecuencias. Sobre ese tema, referirse al Capítulo III.

2.3 Un algoritmo simple de desestacionalización

Sea una serie bruta mensual X_t , admitimos que esa serie puede ser descompuesta en una tendencia-ciclo, una estacionalidad y una parte irregular, siguiendo un esquema aditivo: $X_t = C_t + S_t + I_t$.

Se puede imaginar un algoritmo simple de desestacionalización en cuatro etapas:

1. Estimación de la tendencia-ciclo por media móvil:

$$C_t^{(1)} = M_0(X_t).$$

La media móvil que será utilizada en esta etapa tendrá que reproducir lo mejor posible la componente tendencia-ciclo. Al mismo tiempo, tendrá que eliminar la componente estacional y reducir al máximo la componente irregular.

2. Estimación de la componente estacional-irregular:

$$(S_t + I_t)^{(1)} = X_t - C_t^{(1)}.$$

3. Estimación de la componente estacional por media móvil sobre cada mes:

$$S_t^{(1)} = M_1 \left[(S_t + I_t)^{(1)} \right]$$

y en consecuencia,

$$I_t^{(1)} = (S_t + I_t)^{(1)} - S_t^{(1)}.$$

En esta etapa se trata entonces de alisar los valores de la componente estacionalirregular de cada mes para extraer la evolución del coeficiente estacional del mes concernido. La media móvil empleada en esta etapa tendrá que reproducir lo mejor posible la componente estacional de cada mes, reduciendo al máximo la componente irregular.

Se puede imponer aquí una restricción de normalización de los coeficientes, imponiendo por ejemplo que la suma de los mismos sea nula.

4. Estimación de la serie corregida de variaciones estacionales:

$$A_t^{(1)} = (C_t + I_t)^{(1)} = X_t - S_t^{(1)}.$$

La única dificultad reside entonces en la selección de las medias móviles utilizadas en las etapas 1 y 3.

2.4 El algoritmo de base del método X-11

El método X-11 no hace más que llevar a cabo ese algoritmo simple, utilizando medias móviles cuidadosamente elegidas y afinando, poco a poco, las estimaciones de las componentes a través de las iteraciones del algoritmo.

Es posible entonces definir el algoritmo de base del método X-11 diciendo que éste corresponde al doble uso consecutivo del algoritmo descripto precedentemente, cambiando cada vez las medias móviles utilizadas.

1. Estimación de la tendencia-ciclo con una media móvil 2×12 :

$$C_t^{(1)} = M_{2 \times 12}(X_t).$$

La media móvil utilizada en esta etapa es una media móvil de 13 términos, llamada 2×12 , de coeficientes $\frac{1}{24}\{1,2,2,2,2,2,2,2,2,2,2,2,1\}$, que conserva las tendencias lineales, elimina las estacionalidades constantes de orden 12 y minimiza la varianza de la parte irregular.

2. Estimación de la componente estacional-irregular:

$$(S_t + I_t)^{(1)} = X_t - C_t^{(1)}.$$

3. Estimación de la componente estacional con una media móvil 3 × 3 sobre cada mes:

$$S_t^{(1)} = M_{3\times3} \left[(S_t + I_t)^{(1)} \right].$$

La media móvil utilizada en esta etapa es una media móvil de 5 términos, llamada 3×3 , de coeficientes $\frac{1}{9}\{1,2,3,2,1\}$. Los coeficientes son luego normalizados de manera tal que la suma de los mismos, para todo período de 12 meses, sea aproximadamente nula.

$$\tilde{S}_t^{(1)} = S_t^{(1)} - M_{2 \times 12} \left(S_t^{(1)} \right).$$

4. Estimación de la serie corregida de variaciones estacionales:

$$A_t^{(1)} = (C_t + I_t)^{(1)} = X_t - \tilde{S}_t^{(1)}.$$

Por construcción, esta primera estimación de la serie corregida de variaciones estacionales debe contener menos estacionalidad. El método X-11 ejecuta una vez más este algoritmo simple, cambiando las medias móviles para tener en cuenta esta propiedad.

5. Estimación de la tendencia-ciclo con la media móvil de Henderson de 13 términos:

$$C_t^{(2)} = H_{13} \left(A_t^{(1)} \right)$$
 .

Las medias móviles de Henderson no tienen propiedades particulares en términos de eliminación de la estacionalidad (la cual es ya inexistente o muy reducida en este estadio). Sin embargo, tienen un buen poder de alisado y conservan las tendencias localmente polinomiales de segundo grado⁵.

6. Estimación de la componente estacional-irregular:

$$(S_t + I_t)^{(2)} = X_t - C_t^{(2)}.$$

⁵Puesto que la media móvil de Henderson es simétrica, conserva también las tendencias localmente polinomiales de tercer grado (*cf.* Capítulo 3).

7. Estimación de la componente estacional con una media móvil 3×5 sobre cada mes:

 $S_t^{(2)} = M_{3 \times 5} \left[\left(S_t + I_t \right)^{(2)} \right].$

La media móvil utilizada en esta etapa es una media móvil de 7 términos, llamada 3×5 , de coeficientes $\frac{1}{15}\{1,2,3,3,3,2,1\}$, que conserva las tendencias lineales. Los coeficientes son luego normalizados de manera tal que la suma de los mismos, para todo período de 12 meses, sea aproximadamente nula.

$$\tilde{S}_t^{(2)} = S_t^{(2)} - M_{2 \times 12} \left(S_t^{(2)} \right).$$

8. Estimación de la serie corregida de variaciones estacionales:

$$A_t^{(2)} = (C_t + I_t)^{(2)} = X_t - \tilde{S}_t^{(2)}.$$

Este algoritmo de base es resumido en la Tabla 2.2 de la página siguiente.

2.5 Puntos atípicos y efectos de calendario

Como todo operador lineal, las medias móviles reaccionan mal ante la presencia de valores atípicos. Por ello, el método X-11 incorpora una *herramienta de detección y de corrección de los puntos atípicos* que es empleada para «limpiar» la serie antes de proceder a la desestacionalización.

Por otra parte, además de la estacionalidad, existen otros efectos que pueden explicar las variaciones constantes de una serie. Los más comunes son los efectos ligados al calendario: efecto de los días hábiles; efecto de Pascua; etc. Esas componentes son estimadas con la componente irregular⁶, mediante modelos de regresión lineal.

Como lo muestra la Tabla 2.2, el algoritmo de base de X-11 nos permite obtener tres estimaciones diferentes de la componente irregular:

 En la Etapa 3, retirando la estimación de la componente estacional de la estimación de la componente estacional-irregular obtenida en la Etapa 2, se obtiene:

$$I_t^{(1)} = (S_t + I_t)^{(1)} - \tilde{S}_t^{(1)}.$$

X-11 utilizará esta estimación para detectar y corregir los puntos atípicos, afín de obtener una mejor estimación de la componente estacional.

 En la Etapa 7, retirando la estimación de la componente estacional de la estimación de la componente estacional-irregular obtenida en la etapa 6, se obtiene:

$$I_t^{(2)} = (S_t + I_t)^{(2)} - \tilde{S}_t^{(2)}.$$

X-11 utilizará nuevamente esta estimación para detectar y corregir los puntos atípicos, afín de obtener una estimación más fiable de la componente estacional.

⁶X-12-ARIMA dispone de un módulo llamado «*Reg*-ARIMA» que permite estimar esos efectos directamente sobre la serie bruta, antes de proceder a la desestacionalización. Ese módulo no es estudiado en este trabajo.

Serie bruta mensual: $X_t = C_t + S_t + I_t$

Estimación de la tendencia-ciclo con una media móvil 2×12 :

$$C_t^{(1)} = M_{2 \times 12}(X_t)$$

Estimación de la componente estacional-irregular:

$$(S_t + I_t)^{(1)} = X_t - C_t^{(1)}$$

Estimación de la componente estacional con una media 3×3 sobre cada mes:

$$S_t^{(1)} = M_{3\times3} \left[(S_t + I_t)^{(1)} \right]$$

$$S_t^{(1)} = M_{3\times3} \left[\left(S_t + I_t \right)^{(1)} \right]$$
 y normalización
$$\tilde{S}_t^{(1)} = S_t^{(1)} - M_{2\times12} \left(S_t^{(1)} \right)$$

Estimación de la serie corregida de variaciones estacionales: $A_t^{(1)}=(C_t+I_t)^{(1)}=X_t-\tilde{S}_t^{(1)}$

$$A_t^{(1)} = (C_t + I_t)^{(1)} = X_t - \tilde{S}_t^{(1)}$$

Estimación de la tendencia-ciclo con una media móvil de Henderson de 13 términos:

$$C_t^{(2)} = H_{13} \left(A_t^{(1)} \right)$$

Estimación de la componente estacional-irregular:

$$(S_t + I_t)^{(2)} = X_t - C_t^{(2)}$$

Estimación de la componente estacional con una media móvil 3×5 sobre cada mes:

$$S_t^{(2)} = M_{3 \times 5} \left[(S_t + I_t)^{(2)} \right]$$

y normalización
$$\tilde{S}_t^{(2)} = S_t^{(2)} - M_{2\times 12}\left(S_t^{(2)}\right)$$

Estimación de la serie corregida de variaciones estacionales: $A_t^{(2)}=(C_t+I_t)^{(2)}=X_t-\tilde{S}_t^{(2)}$

$$A_t^{(2)} = (C_t + I_t)^{(2)} = X_t - \tilde{S}_t^{(2)}$$

Tabla 2.2: El algoritmo de base de X-11.

En la Etapa 8, retirando a la estimación de la serie corregida de variaciones estacionales, la estimación de la componente tendencia-ciclo obtenida en la Etapa 5, se obtiene:

$$I_t^{(3)} = A_t^{(2)} - C_t^{(2)}.$$

X-11 utilizará esta estimación para evaluar la componente de días hábiles, empleando la regresión lineal, detectando y corrigiendo además los puntos atípicos⁷.

2.6 El principio iterativo de X-11

X-11 procede de manera iterativa a la evaluación de las diferentes componentes de la serie, tomando en cuenta la presencia eventual de puntos atípicos, de la siguiente manera: estima las componentes; busca los efectos molestos en la componente irregular; estima las componentes sobre una serie corregida; busca los efectos molestos en la componente irregular; etc.

El paquete Census X-11 presenta cuatro Etapas de Tratamiento, designadas A, B, C, y D, seguidas de otras tres Etapas E, F, y G que presentan las estadísticas y los gráficos y que no forman parte de la descomposición propiamente dicha.

2.6.1 ETAPA A: Ajustes previos

Esta etapa no es obligatoria. Permite que el utilizador pueda realizar una corrección *a priori* de la serie, introduciendo los coeficientes de ajuste. El utilizador puede, entonces:

- introducir los coeficientes de ajuste mensuales (o trimestrales) que le permitirán corregir el efecto de ciertos días feriados, o modificar el nivel de la serie (por ejemplo, efecto de una huelga), etc.;
- únicamente en el caso mensual, introducir 7 coeficientes de ponderación, es decir uno por día, para tomar en cuenta las variaciones de la serie que pueden ser referidas a la composición de los meses en días hábiles.

El programa calcula con esos datos los coeficientes de corrección que serán aplicados a la serie bruta. La serie así corregida (Tabla B1 de las salidas impresas) pasa entonces a la Etapa B.

2.6.2 ETAPA B: Primera corrección automática de la serie

Esta etapa consiste fundamentalmente en una primera estimación y corrección de los puntos atípicos y —si se hizo la opción— de los efectos ligados a los días hábiles. Esta estimación se hace aplicando el algoritmo de base expuesto detalladamente en la Sección §2.4.

Esos tratamientos llevan a producir las Tablas B19 (evaluación de los efectos de días hábiles) y B20 (valores de corrección de los puntos considerados atípicos), que sirven para corregir la serie bruta y que conducen a la serie de la Tabla C1.

⁷Esos diferentes métodos serán presentados en el Capítulo 4.

2.6.3 ETAPA C: Segunda corrección automática de la serie

Aplicando siempre el mismo algoritmo de base, esta etapa produce una estimación más precisa de los efectos de los días hábiles (Tabla C19) y de los valores de corrección de los puntos atípicos (Tabla C20).

La serie, por fin «limpia», figura en la Tabla D1 de las salidas impresas.

2.6.4 ETAPA D: Desestacionalización

En esta etapa se aplica por última vez el algoritmo de base. Se trata de la etapa de desestacionalización propiamente dicha, que permite producir las estimaciones finales siguientes:

- La componente estacional (Tabla D10);
- La serie corregida de las variaciones estacionales (Tabla D11);
- La componente tendencia-ciclo (Tabla D12);
- La componente irregular (Tabla D13).

2.6.5 ETAPAS E, F y G: estadísticas y gráficos

Las Etapas E y F presentan las estadísticas que permiten juzgar la calidad de la desestacionalización.

La Etapa G produce los gráficos en formato texto. Esta etapa puede ser dejada de lado puesto que, actualmente, es mucho más conveniente utilizar a esos fines los paquetes gráficos usuales.

La Tabla 2.3 de la página siguiente, presenta el resumen de las diferentes etapas del método X-11.

2.7 De Census X-11 a X-11-ARIMA **y X-12-**ARIMA

Como veremos en el Capítulo 3, el uso de medias móviles presenta algunos problemas en el tratamiento del inicio y del fin de las series, sobretodo en lo que hace a la estabilidad de las estimaciones. Por ello, cuando se dispone de un punto suplementario y se desestacionaliza nuevamente una serie con el paquete Census-X-11, no es raro que se constaten variaciones sensibles de las estimaciones en las fechas más recientes.

En 1975, Estela B. DAGUM [18] propuso que se remediara gran parte de esos problemas utilizando los modelos ARIMA popularizados unos años antes por los trabajos de BOX y JENKINS [8]. Demostró también que se disminuía considerablemente las revisiones ajustando un modelo ARIMA a la serie, previendo los valores futuros de la misma mediante ese modelo y aplicando a la serie prolongada de esa forma el procedimiento de desestacionalización X-11.

ETAPA A: Ajustes previos

- Para efectos conocidos e importantes;
- Para días hábiles.

ETAPA B: Primera corrección automática de la serie

- Estimación de la componente irregular;
- Detección y corrección automática de los puntos atípicos;
- Corrección de los efectos de días hábiles.

ETAPA C: Segunda corrección automática de la serie

- Estimación de la componente irregular;
- Detección y corrección automática de los puntos atípicos;
- Corrección de los efectos de días hábiles.

ETAPA D: Desestacionalización

- Cálculo de la serie desestacionalizada provisoria (Tablas D1 a D6);
- Alisado de la serie desestacionalizada con una media móvil de Henderson y nueva estimación de los coeficientes estacionales (Tablas D7 a D10);
- Cálculo de la serie desestacionalizada definitiva (Tabla D11), extracción de la componente tendencia-ciclo (Tabla D12) y de la componente irregular (Tabla D13);

ETAPA E: Componentes corregidas de los valores muy atípicos

ETAPA F: Evaluaciones de la calidad de la desestacionalización

ETAPA G: Gráficos

Tabla 2.3: Esquema simplificado del funcionamiento de X-11

El paquete X-11-ARIMA se funda en esa idea (DAGUM [20]⁸.

Desgraciadamente, la estimación de modelos ARIMA es más delicada en presencia de puntos atípicos, de rupturas de nivel, de efectos de calendario, etc. Por ello, X-11 sigue el esquema siguiente:

- 1. *Primera desestacionalización con el método X-11:* Esta etapa permite, como hemos visto, estimar los valores atípicos y los efectos de días hábiles, pero también el efecto de Pascua, utilizando la estimación de la componente irregular de la Tabla D13.
- 2. Modelización ARIMA y previsión de la serie corregida de todos sus efectos.
- 3. Desestacionalización de la serie prolongada con el método X-11.

X-12-ARIMA se basa en el mismo principio, pero propone además un módulo muy completo (llamado *Reg*-ARIMA) que permite corregir la serie inicial de todo tipo de efectos indeseables. La estimación de esos efectos se hace empleando modelos ARIMA de regresión de errores (FINDLEY *e* alii. [22]).

Debemos reconocer a Estela B. DAGUM el mérito de haber operacionalizado e impuesto esta idea.

⁸Esta idea había sido ya, implícitamente, formulada por Frederick MACAULAY [51] en 1931:

[«]However, graduation of the ends of almost any series is necessarily extremely hypothetical unless facts outside the range covered by the graduation are used in obtaining the graduation Though mathematically inelegant, the most desirable procedure in a majority of the cases of graduation is to graduate not only the actual data, but extrapolated data which sometimes may be extremely crude estimates.»

[«]Sin embargo, el alisado de los últimos puntos de casi todas las series es necesariamente muy hipotético, salvo si se utilizan las informaciones sobre el período que no es cubierto por la serie. A pesar de ser matemáticamente poco elegante, el procedimiento más adecuado en la mayoría de los casos, consiste en predecir los valores futuros de la serie y alisar la serie así extrapolada, aún cuando esas predicciones sean hechas toscamente.» [Traduction].

Capítulo 3

Medias móviles

El método de desestacionalización X-11 emplea las medias móviles para estimar las principales componentes de una serie: la tendencia-ciclo y la estacionalidad. Esas herramientas no implican la utilización *a priori* de conceptos o de modelos sofisticados. Se basan en un principio muy simple y se revelan de uso muy flexible. Se puede siempre construir una media móvil que posea buenas propiedades en términos de conservación de la tendencia, de eliminación de la estacionalidad, de reducción del ruido, etc.

En este capítulo estudiaremos las propiedades y los principios que han guiado la construcción de las medias móviles utilizadas en X-11.

3.1 Algunas definiciones y un poco de teoría

Una serie temporal puede ser considerada del punto de vista del tiempo o del punto de vista de las frecuencias.

- En el dominio del tiempo, se considera la serie $\{X_t\}$ como una sucesión de T valores observados en los instantes $t,\ t$ variando de 1 a T. Es de esta manera que se aborda generalmente una serie temporal y es fácil hacer la representación gráfica de su evolución en el transcurso del tiempo, como por ejemplo en la Figura 3.1 (cf. pág. 30). Nótese que esa serie se caracteriza por una fuerte estacionalidad que traduce la caída de la actividad industrial durante el mes de agosto.
 - Es particularmente fácil formalizar las modelizaciones de una serie, poniendo en relación el valor al instante t y los valores de los instantes pasados. Es el caso, por ejemplo, de la modelización de la serie con un modelo ARIMA estacional; o de la expresión de una tendencia lineal, exponencial o aún localmente polinomial; o bien es el caso de la modelización de la componente irregular con un ruido blanco.
- En cambio, en el dominio de las frecuencias, se expresa la serie $\{X_t\}$ como una suma de funciones sinusoidales¹. Se evalúa entonces, para cada frecuencia, la

¹En la *Teoría Analítica del Calor*, presentada el 21 de diciembre de 1807 y publicada en 1822, Jean-Baptiste Joseph FOURIER [24] demostró que toda función matemática podía ser descompuesta en una suma de funciones senos y cosenos. Ese teorema engendró primero el análisis armónico, luego cuando éste fue generalizado, permitió generar el análisis espectral.

Figura 3.1: Índice mensual de la producción industrial en Francia, desde octubre de 1985 hasta marzo de 1995.

importancia de la misma en la composición de la serie. El gráfico que asocia a cada frecuencia su importancia en la serie es llamado «espectro» de la serie. Por ejemplo, el espectro del índice de la producción industrial francesa está representado en la Figura 3.2 (cf. pág. 31).

Se puede ver que ese espectro pone en evidencia una fuerte contribución (llamada un «pico espectral») de la frecuencia $\pi/6=30^\circ$, y de sus múltiplos $2\pi/6=60^\circ, 3\pi/6=90^\circ, \ldots, 6\pi/6=180^\circ$. El período asociado a esa frecuencia es $\omega=2\pi/f=2\pi/\left(\pi/6\right)=12$, con lo cual encontramos nuevamente la estacionalidad mensual observada en el gráfico precedente.

Las bajas frecuencias corresponden esencialmente a las componentes que evolucionan lentamente, como la tendencia y el ciclo por ejemplo. Las altas frecuencias corresponden en cambio a las componentes que evolucionan más rápidamente, como por ejemplo la componente irregular.

Esos dos enfoques son a menudo complementarios. Por ello, a continuación utilizaremos el uno o el otro para mostrar las calidades y los defectos de los filtros medias móviles.

3.1.1 Definiciones y ejemplo

Se llama media móvil de coeficientes $\{\theta_k\}$ al operador designado con $M\{\theta_k\}$, o simplemente M, que es definido así:

$$M(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

El valor al instante t de la serie bruta es reemplazado por una media ponderada de: los p valores «pasados» de la serie; el valor actual y los f valores «futuros» de la

Figura 3.2: Espectro del índice de la producción industrial francesa.

serie.

- El orden de la media móvil está dado por la cantidad p + f + 1.
- Cuando p es igual a f, es decir cuando se emplean tantos puntos «pasados» como «futuros», se dice que la media móvil es centrada.
- Además, si $\theta_{-k} = \theta_k$ para todo k, se dice que la media móvil M es *simétrica*. En ese caso, para señalar la lista de los coeficientes de la media móvil, es suficiente indicar el orden de la media móvil y los k+1 primeros coeficientes (KENDALL [39]). Por ejemplo, la media:

$$\frac{1}{24}\{1,2,2,2,2,2,2,2,2,2,2,2,1\}$$

se puede escribir simplemente así:

$$[13]; \frac{1}{24} \{1, 2, 2, 2, 2, 2, 2\}.$$

Generalmente, con una media móvil de orden p+f+1, calculada en un instante t, con p puntos «pasados» y f puntos «futuros», es imposible alisar los p primeros valores y los f últimos valores de una serie.

En el método X-11, las medias móviles simétricas desempeñan un gran papel. Pero, para evitar la pérdida de información en los extremos de la serie, se hace un uso complementario de las medias móviles asimétricas *ad hoc*.

3.1.2 Función de ganancia y desfasaje

Consideremos la serie $X_t = \sin{(\pi t/3)}$ y transformémos la con la media móvil asimétrica definida así: $M(X_t) = (X_{t-2} + X_{t-1} + X_t)/3$, que reemplaza el valor al instante

t con la media simple del valor del instante presente y de los dos valores de los instantes precedentes.

El resultado del alisado está representado en la Figura 3.3, en donde se observan también dos fenómenos:

- En primer lugar se observa una reducción de la amplitud de la serie, lo cual corresponde perfectamente a nuestro objetivo de alisado;
- Pero se observa también un desfase en el tiempo, es decir un desfasaje: las dos series no presentan los puntos de inversión en las mismas fechas.

Figura 3.3: Alisado de la serie $X_t = \sin(\pi t/3)$, utilizando la media móvil definida así: $(X_{t-2} + X_{t-1} + X_t)/3$. (Serie bruta en trazo grueso, serie alisada en trazo punteado).

Ese fenómeno de desfasaje es desagradable puesto que transforma las evoluciones mismas de la serie. Sin embargo, se puede demostrar que las medias móviles simétricas no producen desfasaje (cf. KOOPMANS [42]).

Para generalizar esas conclusiones, consideremos una serie $X_t = R \sin{(\omega t + \phi)}$ de frecuencia ω (o de período $2\pi/\omega$), de amplitud R y de fase ϕ . La transformada de $\{X_t\}$ con una media móvil cualquiera, será también una sinusoide de amplitud modificada y que presentará un desfasaje con respecto a la serie original:

$$M(X_t) = M[R\sin(\omega t + \phi)] = G(\omega)R\sin[\omega t + \phi + \Gamma(\omega)].$$

- La función $|G(\omega)|$ es llamada función de ganancia de la media móvil.
- La función $\Gamma(\omega)$ es llamada función de desfasaje de la media móvil. A veces se representa $\Gamma(\omega)/\omega$, lo cual permite medir el desfasaje en número de períodos.

En el caso de la media móvil asimétrica sobre 3 términos (cf. supra) se obtiene:

$$M(X_t) = \frac{1}{3}(X_{t-2} + X_{t-1} + X_t)$$

$$= \frac{1}{3}R\{\sin[\omega(t-2) + \phi] + \sin[\omega(t-1) + \phi] + \sin(\omega t + \phi)\}$$

$$= \frac{1}{3}R(1 + 2\cos\omega)\sin(\omega t + \phi - \omega)$$

y entonces:

$$\begin{split} G(\omega) &=& \frac{1+2\cos\omega}{3}, \\ \Gamma(\omega) &=& -\omega \quad \text{sea} \quad \Gamma(\omega)/\omega = -1. \end{split}$$

La función de ganancia representada en la Figura 3.4 muestra que la media móvil anula las frecuencias $120^\circ = 2\pi/3 = 4 \times 2\pi/12$. Esa media móvil sería apropiada en el caso de encuestas repetidas cada 4 meses (o sea de período 3), puesto que eliminaría la estacionalidad, conservando las evoluciones de fondo que corresponden a bajas frecuencias. En cambio, esa media introduce un desfasaje sistemático de un período, lo cual podría hacer que se tome conciencia tardíamente de eventuales inversiones de tendencia.

Figura 3.4: Función de ganancia de la media móvil $(X_{t-2} + X_{t-1} + X_t)/3$.

De modo entonces que la función de ganancia permite, esencialmente, ver las frecuencias que son eliminadas y las que son conservadas con una media móvil.

La función de desfasaje muestra los desfasajes introducidos por el empleo de medias móviles asimétricas. Puesto que el método X-11 hace hincapié en el empleo de medias móviles simétricas, dejamos de lado en este trabajo el estudio de esas funciones asimétricas.

En materia de alisado, el filtro «ideal» sería aquel que deje sin cambiar las bajas frecuencias, es decir las funciones periódicas de período superior al año (tendencia y ciclo) por ejemplo; y que, en cambio, elimine todas las altas frecuencias que corresponden a una periodicidad inferior o igual al año (estacionalidad e irregular). La

función de ganancia «ideal» de ese filtro, llamado de *paso-bajo*, tendría entonces la forma siguiente:

$$G(\omega) = \begin{cases} 1 & \text{for } \omega \le \omega_0, \\ 0 & \text{for } \omega > \omega_0. \end{cases}$$

3.1.3 Conservación de la tendencia

Se puede ver el desfasaje que produce la media móvil $(X_{t-2} + X_{t-1} + X_t)/3$, aplicando esa media asimétrica a una recta simple $X_t = at + b$. En efecto, se obtiene:

$$M(X_t) = \frac{1}{3}(X_{t-2} + X_{t-1} + X_t)$$

$$= \frac{1}{3}[a(t-2) + b + a(t-1) + b + at + b]$$

$$= a(t-1) + b$$

$$= X_{t-1}.$$

No obstante, sería de esperar que una media móvil respete ciertas tendencias simples, en particular aquellas que son polinomiales.

– Ahora bien, para que una media móvil respete las series constantes $X_t = a$, es necesario que:

$$M(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k} = \sum_{k=-p}^{+f} \theta_k a = a \sum_{k=-p}^{+f} \theta_k = a,$$

en consecuencia, es también necesario que la suma de los coeficientes de la media móvil $\sum_{k=-p}^{+f} \theta_k$ sea igual a 1.

 $-\,$ para que una media móvil conserve las rectas, es necesario que para todo t:

$$M(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k} = \sum_{k=-p}^{+f} \theta_k [a(t+k) + b]$$

$$= at \sum_{k=-p}^{+f} \theta_k + a \sum_{k=-p}^{+f} k \theta_k + b \sum_{k=-p}^{+f} \theta_k = at + b,$$

lo que hace que: $\sum_{k=-p}^{+f} \theta_k = 1$ y $\sum_{k=-p}^{+f} k \theta_k = 0$.

 Generalizando, se puede incluso demostrar que, para que una media móvil conserve un polinomio de grado d, es necesario y suficiente que sus coeficientes verifiquen la relación siguiente:

$$\sum_{k=-n}^{+f} \theta_k = 1$$

y que:

$$\sum_{k=-p}^{+f} k^{j} \theta_{k} = 0, \ j = 1, \dots, d.$$

En el caso de la media móvil asimétrica sobre 3 términos, definida precedentemente, se obtiene:

$$\sum_{k=-2}^{0} \theta_k = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

У

$$\sum_{k=-2}^{0} k\theta_k = -2 \times \frac{1}{3} - 1 \times \frac{1}{3} + 0 \times \frac{1}{3} = -1$$

esta media conserva las constantes, a pesar que no conserva las rectas.

En cambio es fácil verificar que las siguientes medias móviles simétricas conservan las rectas:

$$M_{1}(X_{t}) = \frac{1}{3}(X_{t-1} + X_{t} + X_{t+1})$$

$$M_{2}(X_{t}) = \frac{1}{8}(X_{t-2} + 2X_{t-1} + 2X_{t} + 2X_{t+1} + X_{t+2}).$$

3.1.4 Eliminación de la estacionalidad

Como vimos en la Sección §3.1.2, a propósito de la definición de la función de ganancia, las medias móviles pueden eliminar ciertas frecuencias y en consecuencia ciertas componentes estacionales. Por otra parte, la función de ganancia es la herramienta que permite identificar muy fácilmente las frecuencias que son eliminadas por una media móvil.

Generalizando, se puede afirmar que una media móvil simple de orden k (cuyos coeficientes son todos iguales a 1/k) elimina las estacionalidades fijas de período k, con lo cual su función de ganancia se anula para la frecuencia $2\pi/k$.

Por otra parte, es posible tratar el caso de estacionalidades que varían linealmente con el tiempo, o aún aquellas que siguen una variación polinomial en el tiempo (GRUN-REHOMME y LADIRAY [28]). Una vez más, la eliminación de esas estacionalidades implica que se adopten restricciones lineales sobre los coeficientes.

3.1.5 Reducción de la componente irregular

Luego de la tendencia y de la estacionalidad, nos queda por ver el efecto de una media móvil sobre la componente irregular. En la descomposición de una serie bruta, el residuo es a menudo modelizado bajo la forma de un *ruido blanco*, sucesión de variables aleatorias ϵ_t , de esperanza nula, no correlacionadas y de misma varianza σ^2 . La media móvil transforma ese ruido blanco en una sucesión de variables aleatorias ϵ_t^* , de misma varianza igual a: $\sigma^2 \sum_{k=-p}^{+f} \theta_k^2$. Entonces, para disminuir la componente irregular y —en consecuencia, para disminuir su varianza— es necesario disminuir la cantidad: $\sum_{k=-p}^{+f} \theta_k^2$.

3.1.6 Un ejemplo de construcción de una media móvil

Busquemos por ejemplo una media móvil centrada sobre tres términos, de coeficientes $\{\theta_{-1}, \theta_0, \theta_1\}$, que reduzca al máximo la componente irregular y que conserve las rectas. Por lo desarrollado anteriormente, esa cuestión conduce a resolver el siguiente problema:

Minimizar $\sum_{k=-1}^{+1} \theta_k^2$, con las restricciones $\sum_{k=-1}^{+1} \theta_k = 1$ y $\sum_{k=-1}^{+1} k\theta_k = 0$. La segunda restricción hace que $\theta_{-1} = \theta_1$. Reemplazando en la primera, se obtiene $\theta_0 = 1 - 2\theta_1$, y el problema de minimización se convierte en:

$$\min_{\theta_1} \left[2\theta_1^2 + (1 - 2\theta_1)^2 \right].$$

La derivada, con respecto a θ_1 , de la función a minimizar es $12\theta_1 - 4$ y este valor se anula para $\theta_1 = 1/3$. Encontramos así la media móvil simple, sobre 3 términos, con todos los coeficientes iguales a 1/3. Esa media, como ya lo hemos visto, elimina las estacionalidades de orden 3.

3.2 Las medias móviles simétricas utilizadas en X-11

3.2.1 Las medias móviles simples compuestas

Se obtiene una media móvil, designada $P \times Q$, componiendo: una media móvil simple de orden P, con coeficientes iguales a 1/P; y una media móvil simple de orden Q, con coeficientes iguales a 1/Q. Prácticamente, eso significa aplicar sucesivamente a la serie las dos medias móviles.

La media móvil 3×3 , que resulta de la doble aplicación de la media móvil aritmética simple sobre 3 términos, es una media móvil cuyos coeficientes son: $\{1,2,3,2,1\}/9$. Generalizando, una media móvil $P\times Q$ es una media móvil simétrica, de orden 2 P+Q-1.

Cuando Q es, por ejemplo igual a 2q, existe una pequeña ambigüedad en la definición, puesto que se puede elegir tanto los q puntos pasados y los q-1 puntos futuros, como los q-1 puntos pasados y los q puntos futuros. A menudo se resuelve ese problema utilizando una media compuesta simétrica $2\times Q$, lo cual corresponde a la media de las dos medias móviles candidatas.

Estimación de la tendencia-ciclo: medias 2×4 y 2×12

Cuando X-11 hace una primera estimación de la tendencia-ciclo (Tablas B2, C2 y D2), emplea las medias móviles siguientes: 2×4 en el caso trimestral; 2×12 en el caso mensual. En este estadio, la serie que debe ser alisada está compuesta con una tendencia-ciclo, una estacionalidad y una componente irregular. En el caso de un esquema de composición aditiva, la serie puede escribirse así: $X_t = C_t + S_t + I_t$.

La media 2×4

Se trata de una media móvil de orden 5, de coeficientes $\{1, 2, 2, 2, 1\}/8$. La curva de los coeficientes y la función de ganancia que se presentan en la Figura 3.5 (*cf.* pág. 37) permiten mostrar las propiedades de esta media móvil:

– Elimina la frecuencia $90^\circ=2\pi/4=\pi/2$ que corresponde al período 4. Es por eso que conviene utilizar esa media móvil para series trimestrales con estacionalidad constante.

²Las medias móviles simples compuestas son en realidad medias móviles ponderadas. Antes del advenimiento de las computadoras, era más fácil calcular las medias móviles simples compuestas que las medias comparadas, sin que las primeras dejen de presentar buenas propiedades.

- La suma de sus coeficientes es igual a 1 y es simétrica. En consecuencia, esa media móvil conserva las tendencias lineales.
- La suma del cuadrado de sus coeficientes es igual a 0.250, es decir que esa media móvil reduce de 75% la varianza de un ruido blanco.

Utilizar esta media móvil implica admitir que: la tendencia-ciclo de la serie es lineal, o lineal por trozos; la estacionalidad es constante o varía poco en el tiempo; y que la componente irregular no posee ninguna estructura y es de débil amplitud.

En ese caso, se tendrá que:

$$M_{2\times4} (X_t) = M_{2\times4} (C_t + S_t + I_t)$$

$$= M_{2\times4} (C_t) + M_{2\times4} (S_t) + M_{2\times4} (I_t)$$

$$\approx C_t + 0 + \epsilon_t$$

$$\approx C_t$$

En cambio, esta media móvil restituye bastante mal las bajas frecuencias asociadas a los períodos superiores al año. De modo que las funciones periódicas de 3 años — que corresponden en el caso trimestral a las frecuencias de $30^\circ=2\pi/12=\pi/6$ — sólo son restituidas en un 80%.

Figura 3.5: Curvas de los coeficientes (izquierda) y funciones de ganancia (derecha) de las medias móviles compuestas utilizadas en X-11 para la estimación de la tendencia-ciclo. (La media móvil 2×4 esta representada en la parte superior del gráfico y la media móvil 2×12 en la parte inferior).

La media 2×12

Esta media se apoya en las mismas ideas que fueron expuestas en el caso de la media 2×4 y es utilizada para las series mensuales. Sus coeficientes son los siguientes:

$$\{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1\}/24.$$

Esta media es llamada también media móvil centrada sobre 12 términos. Conserva las rectas y —como lo muestra su función de ganancia— elimina las estacionalidades mensuales (que corresponden a una frecuencia $30^\circ = 2\pi/12 = \pi/6$). Además, puesto que la suma del cuadrado de sus coeficientes es igual a 23/288, esta media reduce en más del 90% la varianza de un ruido blanco.

Pero, esta media tampoco restituye bien todas las series periódicas de período inferior al año. De modo que una función periódica de período 3 años, lo cual corresponde en este caso a una frecuencia $10^\circ = 2\pi/36 = \pi/18$, sólo será restituida en un 80%.

Comentarios

- Las medias móviles 2 x 4 y 2 x 12 son utilizadas también en el método X-11 para normalizar los coeficientes estacionales.
- X-11-ARIMA y X-12-ARIMA proponen además, en opción, las medias móviles centradas sobre 8 y 24 términos, que fueron formuladas por Pierre CHOLETTE [12].
 Estas medias fueron construidas con criterios bastante diferentes y más complejos que los que fueron presentados aquí. Esas medias móviles no se estudian en este trabajo.

Estimación de la estacionalidad: medias 3×3 , 3×5 y 3×9

Esas medias³ son utilizadas por X-11 para extraer la componente estacional a partir de una estimación de la componente estacional-irregular. Intervienen entonces en la construcción de las Tablas B4, B5, B9, B10, C5, C10, D5 y D10.

En este estadio, la serie que debe ser alisada esta compuesta con una estacionalidad y una componente irregular. En el caso de un esquema de composición aditiva, la serie puede escribirse así: $SI_t = S_t + I_t$. Contrariamente a lo visto en el caso precedente, estamos ahora en presencia de un estricto problema de alisado.

Los coeficientes de las medias 3×3 , 3×5 y 3×9 son los siguientes:

 $\begin{array}{lll} M_{3\times3} & : & \{1,2,3,2,1\}/9 \\ M_{3\times5} & : & \{1,2,3,3,3,2,1\}/15 \\ M_{3\times9} & : & \{1,2,3,3,3,3,3,3,3,2,1\}/27. \end{array}$

Se puede verificar simplemente que cada una de esas medias móviles simétricas conserva las rectas. Pero, las funciones de ganancia presentadas en la Figura 3.6 (*cf.* pág. 40) son bastante diferentes de la forma ideal asociada a un filtro de paso-bajo. Aquí, eso no molesta, puesto que la componente estacional-irregular no debería presentar una componente cíclica con periodicidad del orden de 3 a 6 años.

En realidad, el hecho de aplicar el filtro 3×3 , por ejemplo, a cada mes de una estimación de la componente estacional-irregular, es equivalente a aplicar a esta misma

 $^{^3}$ X-11-ARIMA permite también emplear una media móvil simple sobre 3 términos (una 3×1). X-12-ARIMA ajusta una media móvil 3×15 .

componente una media móvil sobre 49 términos, cuyos coeficientes son los siguientes:

Lo mismo ocurre con los filtros 3×5 y 3×9 , a los cuales se les asocia, respectivamente, las medias móviles sobre 73 y ¡sobre 121 términos!.

i	2×4	2×12	3×3	3×5	3×9
-6		1/24			
-5		1/12			1/27
-4		1/12			2/27
-3		1/12		1/15	3/27
-2	1/8	1/12	1/9	2/15	3/27
-1	1/4	1/12	2/9	3/15	3/27
0	1/4	1/12	3/9	3/15	3/27
1	1/4	1/12	2/9	3/15	3/27
2	1/8	1/12	1/9	2/15	3/27
3		1/12		1/15	3/27
4		1/12			2/27
5		1/12			1/27
6		1/24			
$\sum \theta_i^2$	0.2188	0.0799	0.2346	0.1644	0.1001
$\sum (\nabla^3 \theta_i)^2$	0.1250	0.0139	0.1481	0.0356	0.0110

Tabla 3.4: Coeficientes de las medias móviles compuestas utilizadas en X-11, poder de reducción de la varianza, $\sum \theta_i^2$, y criterio de Henderson, $\sum (\nabla^3 \theta_i)^2$.

En la Figura 3.7 (cf. pág. 41) se representan las funciones de ganancia de esas nuevas medias móviles. Se puede constatar que éstas conservan la estacionalidad mensual, puesto que restituyen exactamente las frecuencias múltiplos de $30^{\circ} = 2\pi/12 = \pi/6$.

3.2.2 Medias móviles de Henderson

Las medias móviles de Henderson son empleadas en X-11 para extraer la tendencia de una estimación de la serie corregida de variaciones estacionales (Tablas B7, C7, D7, D12). En el caso aditivo, se tiene entonces un modelo de tipo: $A_t = C_t + I_t$.

¿Qué criterio debemos construir para asegurar que se pueda obtener una estimación lisa de la tendencia-ciclo?

Consideremos la serie que presentamos a continuación:

$$X_t = \begin{cases} 1 & \text{si} \quad t = 0 \\ 0 & \text{si} \quad t \neq 0. \end{cases}$$

Figura 3.6: Curvas de los coeficientes (izquierda) y de las funciones de ganancia (derecha) de las medias móviles compuestas utilizadas en X-11 para la estimación de los coeficientes estacionales. (La media móvil 3×3 esta representada en la parte superior del gráfico, la media móvil 3×5 en el medio y la media móvil 3×9 en la parte inferior del mismo).

Figura 3.7: Funciones de ganancia de las medias móviles 3×3 , 3×5 y 3×9 . (La media móvil 3×3 está representada en la parte superior del gráfico, la media móvil 3×5 en la parte central y la media móvil 3×9 en la parte inferior del mismo. Las funciones de ganancia del filtro aplicado a cada mes figuran a la izquierda, las de los filtros aplicados a toda la serie figuran a la derecha).

La transformada de esa serie con una media móvil M centrada, de orden 2p+1 y de coeficientes $\{\theta_i\}$, está dada por:

$$M(X_t) = \begin{cases} 0 & \text{si} \quad t < -p. \\ \theta_i & \text{si} \quad -p \le t \le p \\ 0 & \text{si} \quad t > p. \end{cases}$$

Esta transformada será entonces lisa si la curva de los coeficientes de la media móvil es lisa. Como se puede constatar en la Figura 3.5 (cf. pág. 37) y en la Figura 3.6 (cf. pág. 40), las curvas de los coeficientes de las medias móviles simples compuestas no son «lisas». Es por ello que HENDERSON [30, 31] propuso que se utilice la cantidad $H = \sum \left(\nabla^3 \theta_i \right)^2$ —en donde ∇ representa el operador diferencia primera⁴— para evaluar la «suavidad» de la curva de los coeficientes. Esta cantidad es nula cuando los coeficientes $\{\theta_i\}$ se ubican sobre una parábola y, en el caso general, esa cantidad mide el desvío entre la forma parabólica y la forma de la curva de los coeficientes. HENDERSON buscó entonces las medias centradas, de orden 2p + 1, que conserven los polinomios de orden 2 y que minimicen la cantidad H.

Con las notaciones la Sección §3.1.6, la media móvil de Henderson de orden 2p+1será la solución del siguiente programa de minimización:

Minimizar, en función de los θ_i , $\sum_{i=-p}^{p} (\nabla^3 \theta_i)^2$, con las restricciones:

$$\sum_{i=-p}^{p} \theta_i = 1, \sum_{i=-p}^{p} i\theta_i = 0, \sum_{i=-p}^{p} i^2 \theta_i = 0.$$

Los coeficientes de esas medias móviles pueden ser calculados explícitamente y se obtiene, para una media de orden 2p + 1, imponiendo que n = p + 2:

$$\theta_i = \frac{315 \left[(n-1)^2 - i^2 \right] \left[n^2 - i^2 \right] \left[(n+1)^2 - i^2 \right] \left[3n^2 - 16 - 11i^2 \right]}{8n(n^2 - 1)(4n^2 - 1)(4n^2 - 9)(4n^2 - 25)}.$$

Esa formula es la expresión racional de los coeficientes de las medias móviles de Henderson utilizadas en X-11, que son presentados en la Tabla 3.5 (cf. pág. 43).

En razón de la simetría de los mismos, se presentan únicamente los coeficientes necesarios.

 $[5]; \frac{1}{286} \{-21, 84, 160\},$ 5 términos :

 $[7]; \frac{1}{715}\{-42, 42, 210, 295\},$ 7 términos :

 $[9]; \frac{1}{2431}\{-99, -24, 288, 648, 805\},$ 9 términos :

 $[13]; \frac{1}{16796} \{-325, -468, 0, 1100, 2475, 3600, 4032\},\$ 13 términos:

 $[23]; \frac{1}{4032015} \{-17250, -44022, -63250, -58575, -19950, -63250, -58575, -19950, -63250,$ 23 términos:

54150, 156978, 275400, 392700, 491700, 557700, 580853}.

 $^{^4\}nabla X_t = X_t - X_{t-1}$

La Tabla 3.5 presenta los coeficientes, en decimales, de las medias móviles de Henderson empleadas en X-11⁵ y los valores de los criterios de reducción de la varianza y de alisado, asociados a los mismos. Las curvas de los coeficientes —representadas en la Figura 3.8 (*cf.* pág. 44)— son lisas y las funciones de ganancia de esas medias se acercan más a la forma «ideal» de paso-bajo que en el caso de las medias móviles compuestas expuestas precedentemente.

i	5 términos	7 términos	9 términos	13 términos	23 términos
-11					-0.00428
-10					-0.01092
-9					-0.01569
-8					-0.01453
-7					-0.00495
-6				-0.01935	0.01343
-5				-0.02786	0.03893
-4			-0.04072	0.00000	0.06830
-3		-0.05874	-0.00987	0.06549	0.09740
-2	-0.07343	0.05874	0.11847	0.14736	0.12195
-1	0.29371	0.29371	0.26656	0.21434	0.13832
0	0.55944	0.41259	0.33114	0.24006	0.14406
1	0.29371	0.29371	0.26656	0.21434	0.13832
2	-0.07343	0.05874	0.11847	0.14736	0.12195
3		-0.05874	-0.00987	0.06549	0.09740
4		ē	-0.04072	0.00000	0.06830
5				-0.02786	0.03893
6				-0.01935	0.01343
7		ē			-0.00495
8		ē			-0.01453
9		•			-0.01569
10	•		•		-0.01092
11					-0.00428
$\sum \theta_i^2$	0.4963	0.3566	0.2833	0.2038	0.1217
$\sum \left(\nabla^3 \widehat{\theta}_i\right)^{\frac{1}{2}}$	1.4965	0.2629	0.0675	0.0083	0.0003

Tabla 3.5: Coeficientes de las medias móviles de Henderson utilizadas en X-11, poder de reducción de la varianza, $\sum \theta_i^2$, y criterio de Henderson, $\sum (\nabla^3 \theta_i)^2$.

3.3 Las medias móviles asimétricas de Musgrave

Por construcción, la aplicación de una media móvil centrada de orden 2p+1 no permite calcular las estimaciones de la serie alisada en los p primeros y los p últimos instantes de la misma. Lo cual es, por lo menos, molesto. Es por ello que, en la práctica, para hacer esas estimaciones se emplean las medias móviles no centradas. MUSGRAVE [55, 56] estudió ese problema en el marco del método X-11 y propuso un conjunto de medias asimétricas que completan las medias móviles de Henderson.

Supongamos que la serie que debe ser alisada se termina en julio de 1999. Si utilizamos una media móvil simétrica de orden 13, el último punto alisado con esa media será el punto correspondiente a enero de 1999. Los seis últimos meses deben ser estimados con medias móviles asimétricas. Seis meses más tarde, es decir en enero del 2000, se podrá finalmente calcular el valor alisado de julio de 1999 con la media

⁵X-12-ARIMA permite utilizar cualquier media móvil de Henderson de orden impar inferior a 101.

Figura 3.8: Curvas de los coeficientes y funciones de ganancia de las medias móviles simétricas de Henderson sobre 5, 7, 9, 13 y 23 términos empleadas en X-11 (Las medias móviles están ordenadas de arriba hacia abajo del gráfico. Las curvas de los coeficientes a la izquierda del mismo y las funciones de ganancia a la derecha).

móvil simétrica de orden 13. Tendremos entonces siete estimaciones diferentes del valor del mes de julio de 1999. Cada una de ellas habrá sido calculada con una media móvil diferente y sería de esperar que las mismas no difieran demasiado del valor final obtenido con la media móvil simétrica.

La idea de MUSGRAVE fue, precisamente, de construir esas medias móviles asimétricas que minimicen las revisiones de las estimaciones. Para ello, formuló las siguientes hipótesis:

- La serie a alisar puede ser modelizada linealmente bajo la forma: $X_t = a + bt + \epsilon_t$, en donde a et b son las constantes, y los ϵ_t son variables aleatorias no correlacionadas, de media nula y de varianza σ^2 .
- Se dispone de una serie de puntos $\{w_1, \ldots, w_N\}$, de suma igual a 1 (por ejemplo, es una media móvil centrada de Henderson) y se busca una serie de pesos $\{v_1, \ldots, v_M\}$, con M < N, también de suma igual a 1.
- Esta nueva media móvil debe, además, minimizar las revisiones de las estimaciones.
 Es decir que, por ejemplo, debe minimizar el criterio siguiente:

$$\mathbb{E}\left(\sum_{i=1}^{M} v_i X_i - \sum_{i=1}^{N} w_i X_i\right)^2.$$

Admitiendo esas hipótesis, se puede demostrar (DOHERTY [21], FINDLEY *e alii*. [22]) que los pesos pueden ser calculados explícitamente en función de la relación $D = b^2/\sigma^2$:

$$v_{j} = w_{j} + \frac{1}{M} \sum_{i=M+1}^{N} w_{i} + \frac{\left(j - \frac{M+1}{2}\right)D}{1 + \frac{M(M-1)(M+1)}{12}D} \sum_{i=M+1}^{N} \left(i - \frac{M+1}{2}\right) w_{i}. \quad (3.1)$$

3.3.1 Medias móviles asimétricas de Musgrave asociadas a las medias simétricas de Henderson

En la ecuación (3.1) el valor de D es desconocido. Pero, MUSGRAVE señala que en X-11, la elección del orden de las medias móviles de Henderson se hace con el valor de la razón $R=\bar{I}/\bar{C}$, en donde: \bar{I} designa la media de las variaciones absolutas mensuales en la parte irregular de la serie; y \bar{C} designa la media de las variaciones absolutas mensuales de la tendencia de la serie⁶. Suponiendo la normalidad de los ϵ_t , se demuestra que $D=4/\left(\pi R^2\right)$, lo cual permite calcular numéricamente las medias móviles asimétricas.

En las Tablas 3.8 hasta 3.12 ($\it cf. pp. 48-50$) se presentan los coeficientes de esas medias móviles, calculados en función de los valores del cociente $R=\bar{I}/\bar{C}$ que figuran en la Tabla 3.6 ($\it cf. pág. 47$). Esas son las medias móviles asimétricas que utiliza X-12-ARIMA. El paquete X-11-ARIMA emplea las mismas medias móviles asimétricas, salvo en lo que hace a la media de Henderson sobre 5 términos. Los coeficientes de la media móvil utilizadas figuran en la Tabla 3.7 ($\it cf. pág. 48$). Para calcular esos coeficientes, las observaciones son previstas con la media de las dos últimas. De modo que la media móvil simétrica de Henderson de 5 términos es aplicada sobre la serie prolongada.

⁶Para mayores detalles, referirse a la explicación de la Tabla B7, Sección §4.1.7, pág. 76.

3.3.2 Comentarios sobre las medias móviles de Musgrave

Aún cuando se suponga que la serie a alisar sigue un modelo lineal en fin de período, las medias móviles de Musgrave no conservan las rectas. Sólo conservan las constantes. En efecto, para ello hubiera sido necesario imponer a los coeficientes una restricción suplementaria: $\sum_{i=-p}^{+f} iv_i = 0$.

Como se muestra en la Figura 3.9, las medias asimétricas de Musgrave aportan estimaciones «prudentes» de la serie alisada, atenuando la evolución observada en los primeros o en los últimos puntos de la serie.

Figura 3.9: Alisado de una recta con una media móvile de Henderson sobre 13 términos, completada con las medias móviles asimétricas de Musgrave (La línea recta está representada con triángulos vacíos; la serie alisada está representada con triángulos ligados con una línea).

3.3.3 Medias móviles asimétricas asociadas a las medias móviles compuestas

El primer trabajo de MUSGRAVE trataba el tema de la generación de filtros asimétricos asociados a las medias móviles compuestas que sirven para estimar los coeficientes estacionales. Es curioso, sin embargo, que esas recomendaciones no hayan sido aplicadas en el método X-11.

Los filtros asimétricos asociados a las medias $3 \times 3, 3 \times 5$ y 3×9 figuran en las Tablas 3.13 hasta 3.15 (*cf.* pp. 50-51). No sabemos como han sido calculados esos filtros asimétricos y no conocemos ninguna publicación científica que explique claramente el modo de elección de esos coeficientes. Los filtros 2×4 y 2×12 no se completan con medias asimétricas.

3.4 El filtro media móvil de X-11

Si se deja de lado el procedimiento de detección y corrección de puntos atípicos y el procedimiento de estimación de los efectos de calendario, el método X-11 puede ser visto como una aplicación sucesiva de varias medias móviles.

Media de Henderson sobre 5 términos	R = .001
Media de Henderson sobre 7 términos	R = 4.5
Media de Henderson sobre 9 términos	R = 1
Media de Henderson sobre 13 términos	R = 3.5
Media de Henderson sobre 23 términos	R = 4.5

Tabla 3.6: Valores por defecto del cociente $R=\bar{I}/\bar{C}$ utilizado en X-12-ARIMA para el cálculo de las medias móviles asimétricas de Musgrave.

El operador que permite pasar de la serie bruta a la serie corregida de variaciones estacionales es también una media móvil.

Por ejemplo, en el caso de una serie mensual, el algoritmo de base presentado en la Tabla 2.2 (cf. pág. 24) puede ser resumido a través de la aplicación de una sola media móvil, la cual puede ser calculada matricialmente (GOURIÉROUX y MONFORT [27]).

1. Estimación de la tendencia-ciclo con la media móvil 2×12 :

$$C^{(1)} = M_{2\times 12} X \text{ con } M_{2\times 12} : [13]; \frac{1}{24} \{1, 2, 2, 2, 2, 2, 2, 2\}.$$

2. Estimación de la componente estacional-irregular:

$$(S+I)^{(1)} = X - C^{(1)} = [I_d - M_{2 \times 12}] X$$

en donde I_d designa el operador de identidad que transforma la serie en ella misma. Aquí, I_d sería la media móvil [13]; $\{0, 0, 0, 0, 0, 0, 1\}$.

3. Estimación de la componente estacional con una media móvil 3×3 sobre cada mes:

Aplicar la media móvil 3×3 a los valores de un mes dado, equivale a aplicar a la serie de los coeficientes estacionales la media M_3 , sobre 49 meses, definida así:

En consecuencia,

$$S^{(1)} = M_{3\times3} (S+I)^{(1)}$$

= $M_3 [I_d - M_{2\times12}] X$.

Después se normalizan los coeficientes de manera tal que la suma de los mismos para todo período de 12 meses consecutivos sea aproximadamente nula:

$$\begin{split} \tilde{S}^{(1)} &= S^{(1)} - M_{2 \times 12} S^{(1)} \\ &= \left[I_d - M_{2 \times 12} \right] M_3 \left[I_d - M_{2 \times 12} \right] X \\ &= M_3 \left[I_d - M_{2 \times 12} \right]^2 X. \end{split}$$

i	$H2_2$	$H2_1$	$H2_0$
-2	-0.07343	-0.073	-0.073
-1	0.29371	0.294	0.403
0	0.55944	0.522	0.670
1	0.29371	0.257	0
2	-0.07343	0	0

Tabla 3.7: Coeficientes de las medias móviles asimétricas asociados en X-11-ARIMA a la media de Henderson sobre 5 términos. (La notación Hp_f significa que la media móvil es de orden p+f+1, con p puntos pasados y f puntos futuros).

i	$H2_2$	$H2_1$	$H2_0$
-2	-0.07343	-0.03671	-0.18357
-1	0.29371	0.29371	0.36713
0	0.55944	0.52273	0.81643
1	0.29371	0.22028	0
2	-0.07343	0	0

Tabla 3.8: Coeficientes de las medias móviles asimétricas de Musgrave asociados en X-12-ARIMA a la media de Henderson sobre 5 términos, R=0.001 (La notación Hp_f significa que la media móvil es de orden p+f+1, con p puntos pasados y f puntos futuros).

i	$H3_3$	$H3_2$	$H3_1$	$H3_0$
-3	-0.05874	-0.05314	-0.05421	-0.03379
-2	0.05874	0.05818	0.06101	0.11601
-1	0.29371	0.28699	0.29371	0.38329
0	0.41259	0.39972	0.41032	0.53449
1	0.29371	0.27468	0.28917	0
2	0.05874	0.03356	0	0
3	-0.05874	0	0	0

Tabla 3.9: Coeficientes de las medias móviles asimétricas de Musgrave asociados en X-12-ARIMA a la media de Henderson sobre 7 términos, R=4.5 (La notación Hp_f significa que la media móvil es de orden p+f+1, con p puntos pasados y f puntos futuros).

i	$H4_4$	$H4_3$	$H4_2$	$H4_1$	$H4_0$
-4	-0.04072	-0.03082	-0.02262	-0.04941	-0.15554
-3	-0.00987	-0.00426	-0.00021	-0.01056	-0.03384
-2	0.11847	0.11980	0.11969	0.12578	0.18536
-1	0.26656	0.26361	0.25933	0.28187	0.42429
0	0.33114	0.32391	0.31547	0.35445	0.57972
1	0.26656	0.25504	0.24244	0.29786	0
2	0.11847	0.10267	0.08590	0	0
3	-0.00987	-0.02995	0	0	0
4	-0.04072	0	0	0	0

Tabla 3.10: Coeficientes de las medias móviles asimétricas de Musgrave asociados en X-12-ARIMA a la media de Henderson sobre 9 términos, R=1 (La notación Hp_f significa que la media móvil es de orden p+f+1, con p puntos en el pasado y f puntos en el futuro).

i	$H6_6$	$H6_5$	$H6_4$	$H6_3$	$H6_2$	$H6_1$	$H6_0$
-6	-0.01935	-0.01643	-0.01099	-0.00813	-0.01603	-0.04271	-0.09186
-5	-0.02786	-0.02577	-0.02204	-0.02019	-0.02487	-0.03863	-0.05811
-4	0	0.00127	0.00330	0.00413	0.00267	0.00182	0.01202
-3	0.06549	0.06594	0.06626	0.06608	0.06784	0.07990	0.11977
-2	0.14736	0.14698	0.14559	0.14441	0.14939	0.17436	0.24390
-1	0.21434	0.21314	0.21004	0.20784	0.21605	0.25392	0.35315
0	0.24006	0.23803	0.23324	0.23002	0.24144	0.29223	0.42113
1	0.21434	0.21149	0.20498	0.20076	0.21540	0.27910	0
2	0.14736	0.14368	0.13547	0.13024	0.14810	0	0
3	0.06549	0.06099	0.05108	0.04483	0	0	0
4	0	-0.00532	-0.01694	0	0	0	0
5	-0.02786	-0.03401	0	0	0	0	0
6	-0.01935	0	0	0	0	0	0

Tabla 3.11: Coeficientes de las medias móviles asimétricas de Musgrave asociados en X-12-ARIMA a la media de Henderson sobre 13 términos, R=3.5 (La notación Hp_f significa que la media móvil es de orden p+f+1, con p puntos en el pasado y f puntos en el futuro).

i	H11_11	H11_10	H11_9	H11_8	H11_7	H11_6	H11_5	H11_4	H11_3	H11_2	H11_1	H11_0
-11	-0.00428	-0.00390	-0.00282	-0.00103	0.00108	0.00268	0.00258	-0.00065	-0.00861	-0.02293	-0.04520	-0.07689
-10	-0.01092	-0.01059	-0.00968	-0.00817	-0.00642	-0.00511	-0.00519	-0.00776	-0.01396	-0.02486	-0.04130	-0.06385
-9	-0.01569	-0.01542	-0.01467	-0.01344	-0.01205	-0.01103	-0.01109	-0.01300	-0.01744	-0.02491	-0.03554	-0.04893
-8	-0.01453	-0.01431	-0.01372	-0.01279	-0.01175	-0.01101	-0.01106	-0.01230	-0.01500	-0.01904	-0.02385	-0.02808
-7	-0.00495	-0.00479	-0.00436	-0.00372	-0.00303	-0.00258	-0.00261	-0.00319	-0.00413	-0.00475	-0.00373	0.00119
-6	0.01343	0.01354	0.01380	0.01416	0.01448	0.01465	0.01464	0.01472	0.01554	0.01834	0.02518	0.03925
-5	0.03893	0.03898	0.03908	0.03916	0.03913	0.03900	0.03902	0.03976	0.04233	0.04856	0.06121	0.08444
-4			0.06823									
-3			0.09711									
-2			0.12144									
-1			0.13759									
0			0.14312									
1			0.13716									0.20001
2			0.12057								0.22360	0
3			0.09580							0.10430	0	0
4			0.06649						0.11111	-	0	0
5	0.0000	0.00.00	0.03690				0.0000=0	0.00493	0	0	0	0
6	0.0000		0.03090				0.02773	0	0	0	0	0
7			-0.00742					0		-	0	0
,						0	0		0	0		0
8			-0.01721		0	0	0	0	0	0	0	0
9			-0.01859	0	0	0	0	0	0	0	0	0
	-0.01092			0	0	0	0	0	0	0	0	0
11	-0.00428	0	0	0	0	0	0	0	0	0	0	0

Tabla 3.12: Coeficientes de las medias móviles asimétricas de Musgrave asociados en X-12-ARIMA a la media de Henderson sobre 23 términos, R=4.5 (La notación Hp_f significa que la media móvil es de orden p+f+1, con p puntos pasados y f puntos futuros).

i	$S2_2$	$S2_1$	$S2_0$
-2	1/9	3/27	5/27
-1	2/9	7/27	11/27
0	3/9	10/27	11/27
1	2/9	7/27	0
2	1/9	0	0

Tabla 3.13: Coeficientes de las medias móviles asimétricas asociados a la media móvil simétrica 3×3 (La notación Sp_f significa que la media móvil es de orden p+f+1, con p puntos pasados y f puntos futuros).

i	$S3_3$	$S3_2$	S3_1	S3_0
-3	1/15	4/60	4/60	9/60
-2	2/15	8/60	11/60	17/60
-1	3/15	13/60	15/60	17/60
0	3/15	13/60	15/60	17/60
1	3/15	13/60	15/60	0
2	2/15	9/60	0	0
3	1/15	0	0	0

Tabla 3.14: Coeficientes de las medias móviles asimétricas asociados a la media móvil simétrica 3×5 (La notación Sp_f significa que la media móvil es de orden p+f+1, con p puntos pasados y f puntos futuros).

i	$S5_5$	$S5_4$	$S5_3$	$S5_2$	$S5_1$	$S5_0$
-5	1/27	35/1026	35/1026	33/1026	29/1026	52/1026
-4	2/27	75/1026	77/1026	81/1026	94/1026	115/1026
-3	3/27	114/1026	116/1026	136/1026	148/1026	177/1026
-2	3/27	116/1026	120/1026	136/1026	164/1026	202/1026
-1	3/27	117/1026	126/1026	147/1026	181/1026	227/1026
0	3/27	119/1026	131/1026	158/1026	197/1026	252/1026
1	3/27	120/1026	135/1026	167/1026	213/1026	0
2	3/27	121/1026	141/1026	177/1026	0	0
3	3/27	123/1026	145/1026	0	0	0
4	2/27	86/1026	0	0	0	0
5	1/27	0	0	0	0	0

Tabla 3.15: Coeficientes de las medias móviles asimétricas asociados a la media móvil simétrica 3×9 (La notación Sp_f significa que la media móvil es de orden p+f+1, con p puntos pasados y f puntos futuros. Tanto en X-11-ARIMA como en X-12-ARIMA, se presentan en forma decimal las medias móviles asimétricas ligadas a la 3×9 , con sólo 3 dígitos después de la coma. En esta tabla presentamos las fracciones más cercanas a la expresión decimal. Se puede obtener una buena aproximación de esas medias aplicando la fórmula de Musgrave, con D=9.8)

4. Estimación de la serie corregida de variaciones estacionales:

$$A^{(1)} = X - \tilde{S}^{(1)}$$

= $X - M_3 [I_d - M_{2 \times 12}]^2 X$
= $(I_d - M_3 [I_d - M_{2 \times 12}]^2) X$.

5. Estimación de la tendencia-ciclo con una media móvil de Henderson sobre 13 términos:

$$C^{(2)} = H_{13}A^{(1)}$$

= $H_{13} \left(I_d - M_3 \left[I_d - M_{2 \times 12} \right]^2 \right) X.$

6. Estimación de la componente estacional-irregular:

$$(S+I)^{(2)} = X - C^{(2)}$$

= $\left[I_d - H_{13} \left(I_d - M_3 \left[I_d - M_{2\times 12}\right]^2\right)\right] X.$

7. Estimación de la componente estacional con una media móvil 3×5 sobre cada mes:

Aplicar la media móvil 3×5 sobre los valores de un mes dado, equivale a aplicar la media M_5 a la serie de los coeficientes estacionales, sobre 73 meses, la cual es definida así:

En consecuencia.

$$S^{(2)} = M_5 (S+I)^{(2)}$$

= $M_5 \left[I_d - H_{13} \left(I_d - M_3 \left[I_d - M_{2 \times 12} \right]^2 \right) \right] X.$

Después se normalizan los coeficientes de manera tal que la suma de los mismos, para todo período de 12 meses, sea aproximadamente nula.

$$\tilde{S}^{(2)} = S^{(2)} - M_{2 \times 12} S^{(2)}
= (I_d - M_{2 \times 12}) M_5 \left[I_d - H_{13} \left(I_d - M_3 \left[I_d - M_{2 \times 12} \right]^2 \right) \right] X.$$

8. Estimación de la serie corregida de variaciones estacionales:

$$A = X - \tilde{S}^{(2)}$$

$$= \{I_d - (I_d - M_{2 \times 12}) M_5 [I_d - H_{13} (I_d - M_3 [I_d - M_{2 \times 12}]^2)]\} X.$$

Se puede calcular el orden de esta media por aproximaciones sucesivas:

$$\begin{aligned} & \text{Orden } \left[I_d - M_{2 \times 12}\right]^2 = 2 \times \text{Orden } \left[I_d - M_{2 \times 12}\right] - 1 = 2 \times 13 - 1 = 25, \\ & \text{Orden } \left(I_d - M_3\left[I_d - M_{2 \times 12}\right]^2\right) = \text{Orden } M_3 + 25 - 1 = 49 + 25 - 1 = 73, \\ & \text{Orden } H_{13} \left(I_d - M_3\left[I_d - M_{2 \times 12}\right]^2\right) = \text{Orden } H_{13} + 73 - 1 = 13 + 73 - 1 = 85, \\ & \text{Orden } M_5 \left[I_d - H_{13} \left(I_d - M_3\left[I_d - M_{2 \times 12}\right]^2\right)\right] = \text{Orden } M_5 + 85 - 1 \\ & = 73 + 85 - 1 = 157, \\ & \text{Orden } \left\{I_d - \left(I_d - M_{2 \times 12}\right) M_5 \left[I_d - H_{13} \left(I_d - M_3\left[I_d - M_{2 \times 12}\right]^2\right)\right]\right\} \\ & = \text{Orden } \left(I_d - M_{2 \times 12}\right) + 157 - 1 = 169. \end{aligned}$$

En la Figura 3.10 (*cf.* pág. sig.) se presentan los coeficientes y la función de ganancia de una media móvil de orden 169. Para poder emplear ese filtro es estrictamente necesario disponer de 84 observaciones, es decir 7 años, de un lado y del otro de cada punto. Es por eso que se lo completa con 84 medias asimétricas.

En la Figura 3.11(*cf.* pág. sig.) se presentan los coeficientes y la función de ganancia del filtro central de X-11 empleado en el caso trimestral. Ese filtro es de orden 57, el empleo del mismo requiere también 7 años de un lado y del otro de cada punto.

Comentario

Se pueden obtener las medias móviles centrales de X-11 desestacionalizando las variables indicadoras *ad hoc* con los paquetes X-11-ARIMA o X-12-ARIMA. En el caso mensual en el que el filtro central de X-11 es una media móvil de orden 169 (cuando se emplea una media de Henderson sobre 13 términos, una 3×3 y una 3×5), se puede

Figura 3.10: Curva de los coeficientes y función de ganancia del filtro mensual simétrico de X-11 (La curva de los coeficientes se ubica a la izquierda del gráfico y la función de ganancia a la derecha).

Figura 3.11: Curva de los coeficientes y función de ganancia del filtro trimestral simétrico de X-11 (La curva de los coeficientes se ubica a la izquierda del gráfico y la función de ganancia a la derecha).

utilizar una serie de 193 (= 169 + 24) observaciones, en la cual todas ellas son nulas, excepto la del medio (la $97^{\rm \acute{e}sima}$) que es igual a 1. Se desestacionaliza la serie con un modelo de descomposición aditiva, especificando las medias móviles que deben ser utilizadas para la tendencia (por ejemplo una Henderson sobre 13 términos) y para la componente estacional (una 3×3 y una 3×5) y desactivando el procedimiento de corrección automática de los puntos atípicos (se puede fijar el valor de los dos límites utilizados, seleccionando el valor: 9.9). La serie desestacionalizada de la Tabla D11 es entonces la serie de los coeficientes que corresponden al filtro central de X-11. Los 12 ceros agregados al inicio y al fin de la serie son necesarios para tomar en cuenta la manera en que X-11 aplica la media 2×12 en diferentes tablas.

Se debe emplear otro algoritmo para obtener el conjunto de coeficientes de los filtros simétricos y asimétricos utilizados por X-11 para ajustar una serie de T observaciones. Considerando nuevamente el ejemplo precedente, es necesario ante todo desestacionalizar cada columna de la matriz idéntica de orden 169, con las opciones de ajuste apropiadas. Se reemplaza entonces cada columna de la matriz identidad con la serie desestacionalizada correspondiente. Las líneas de la matriz resultante contienen las 169 medias móviles buscadas. La media móvil simétrica central figura en la $85^{\rm ésima}$ línea.

Los párrafos siguientes detallan ese algoritmo.

Sea: $X=(x_1,\ldots,x_T)$ la serie bruta a desestacionalizar; $A=(a_1,\ldots,a_T)$ la serie corregida de variaciones estacionales ; y W la matriz de pesos tal que A=WX. El objetivo es calcular W.

En la fecha t, el valor de la serie desestacionalizada es $a_t = \sum_{j=1}^T w_{t,j} x_j$. En consecuencia, si se desestacionaliza la serie $X = (1,0,\ldots,0)$, entonces $a_t = w_{t,1}$ y $(w_{1,1},w_{2,1},\ldots,w_{T,1})$ es la primera columna de W. Igualmente, si se utiliza la serie $X = (0,1,0,\ldots,0)$, entonces $a_t = w_{t,2}$ y $(w_{1,2},w_{2,2},\ldots,w_{T,2})$ es la segunda columna de W... y así siguiendo, hasta que el empleo de $X = (0,0,\ldots,0,1)$ conduzca a $a_t = w_{t,T}$ y a la última columna de W, $(w_{1,T},w_{2,T},\ldots,w_{T,T})$.

Capítulo 4

Las diferentes tablas

En este capítulo se presenta detalladamente un ejemplo completo de desestacionalización con el método X-11. La serie que será descompuesta es una serie mensual. Las opciones de tratamiento propuestas por los paquetes disponibles, para ese tipo de series, son numerosas y muy complejas.

La serie tratada X_t es la evolución del índice mensual de producción industrial en Francia, desde octubre de 1985 hasta marzo de 1995 1 .

Las Figuras siguientes representan la serie y sus diferentes componentes tales como serán obtenidas al fin del tratamiento:

- En la Figura 4.1 (cf. pág. 56) están representadas la serie bruta X_t y la serie corregida de variaciones estacionales A_t (cf. Tabla D11, pág. 157).
- En la Figura 4.2 (cf. pág. 56) se muestra una vez más la serie desestacionalizada y la tendencia C_t (cf. Tabla D12, pág. 167).
- La Figura 4.3 (cf. pág. 57) representa los coeficientes estacionales S_t (cf. Tabla D10, pág. 154).
- La Figura 4.4 (cf. pág. 57) representa los efectos de días hábiles D_t (cf. Tabla C18, pág. 130).
- La componente irregular I_t (cf. Tabla D13, pág. 169) está representada en la Figura 4.5 2 (cf. pág. 57).

En este ejemplo, el esquema de descomposición utilizado es multiplicativo y se lo puede formular de la siguiente manera:

$$X_t = C_t \times S_t \times D_t \times I_t,$$

 $A_t = C_t \times I_t.$

 $^{^1\}mathrm{Los}$ datos figuran en la Tabla B1 (cf. Tabla 4.16, pág. 61)

Figura 4.1: Índice mensual de la producción industrial francesa: **Serie bruta** (trazo punteado); **Serie desestacionalizada** (trazo grueso).

Figura 4.2: Índice mensual de la producción industrial francesa: **Serie desestacionalizada** (trazo punteado); **Tendencia-ciclo (trazo grueso).**

Figura 4.3: Índice mensual de la producción industrial francesa: Componente estacional.

Figura 4.4: Índice mensual de la producción industrial francesa: Efectos de días hábiles.

Figura 4.5: Índice mensual de la producción industrial francesa: Irregular.

Advertencias previas

- 1. En lo que sigue, nos concentramos en la parte X-11 de los paquetes actuales. Es decir que no haremos referencia a la modelización ARIMA *a priori* de la serie a desestacionalizar³.
- 2. A continuación, para describir el contenido de las tablas, nos referimos casi exclusivamente al esquema de descomposición multiplicativa.

Sin embargo, en la traducción en fórmulas matemáticas de esas explicaciones, utilizaremos un lenguaje simbólico que permite el tratamiento de los dos esquemas. Para ello, se utilizarán las correspondencias que detallamos en la tabla siguiente.

Símbolo	Modelo Aditivo	Modelo Multiplicativo	Significado
op	_	/	
in vop	+	×	Estas dos primeras líneas traducen las
			operaciones de base de ambos esque-
			mas.
xbar	0	1	Para algunos estimadores —por ejem-
			plo, los coeficientes estacionales- se
			supone que son de media nula en el caso
			aditivo y de media igual a 1 en el caso
			multiplicativo. Esos valores medios in-
			tervienen en muchos lugares del algorit-
			mo de cálculo del método X-11.
mult		$100 \times$	En algunas tablas y únicamente en el ca-
			so multiplicativo, las estimaciones son
			multiplicadas por 100 y son interpre-
			tadas en porcentajes.

- 3. Se admite que la serie X tiene n observaciones. Según el caso, una observación podrá ser designada con:
 - $-X_t$, en donde t varía de 1 a n;
 - $-X_{ij}$, en donde $i=1,\ldots,n_j$ y $j=1,\ldots,k$. El índice i representa el año y varía de 1 a n_j , número de observaciones del mes (o del trimestre) j. El índice j se refiere al período (mes o trimestre) y varía entre 1 y k. El número de períodos es k=4, en el caso trimestral, o k=12 en el caso mensual. El número total de observaciones es entonces $n=\sum_{j=1}^k n_j$. En el caso en el que se tienen únicamente observaciones de años completos, N designa el número de años. En ese caso, N es también el número

³En el caso en que la serie es modelizada *a priori*, el funcionamiento de los paquetes es ligeramente diferente (*cf.* Sección§2.7) y la mayoría de los cálculos que vamos a detallar se efectúan sobre una serie completada con previsiones y —a veces— con retropolaciones.

común de observaciones de cada mes (o de cada trimestre) y $n_j=N, j=1,\ldots,k$.

- 4. Este capítulo presenta las Etapas B, C, D, E y F de la versión actual del método X-11. La Etapa G (gráficos) es ventajosamente reemplazada por los programas gráficos actuales ⁴. La Etapa A (ajustes previos de la serie) es sensiblemente diferente en X-11-ARIMA y en X-12-ARIMA.
- 5. En el método X-11 se repiten algunos tratamientos relativamente complejos. Los mismos son presentados detalladamente en la primera tabla en la cual son utilizados. Principalmente, se trata de:

Tratamiento	Tablas
Localización y corrección de los valores atípicos Regresión para corregir los efectos de días hábiles	B4, B9, B17, C17 B15, C15
Extracción de la tendencia-ciclo	B7, C7, D7, D12

6. Las salidas comentadas en este trabajo pueden obtenerse ejecutando las siguientes instrucciones en los paquetes X-11-ARIMA y X-12-ARIMA ⁵.

En X-12-ARIMA:

```
series{data=(115.7 109.8 ... 130.2)
       start= 1985.10
       period= 12
       print=none
       decimals=3}
X11{mode=mult
    print=(all)}
X11regression{variables=td
              print=(all) }
En X-11-ARIMA:
            12 85 10 ;
DATA ipi
.... (los datos) ....
TITLE ipi;
RANGE 12 85 10 95 3 ;
SA (ipi, 0 ,1) TDR 2 00 00 CHART 1 PRTDEC 3 PRINT 5;
```

⁴El programa X-12-Graph, que utiliza *SAS/GRAPH*© (SAS Institute [62]), permite producir los gráficos a partir de los resultados de X-12-ARIMA. Se puede obtener ese programa gratuitamente, con el paquete X-12-ARIMA (Hood [35]).

⁵X-11-ARIMA versión 2000 y X-12-ARIMA versión 0.2.7.

Sin embargo, los dos programas no producen estrictamente el mismo diagnóstico. Las diferencias son explicadas en cada etapa en las que se presentan. Los datos son los que figuran en la Tabla B1 (cf. Tabla 4.16, pág. 61).

4.1 ETAPA B: Estimación preliminar de los puntos atípicos y de los efectos de calendario

4.1.1 Tabla B1: Serie bruta o serie bruta ajustada a priori

Descripción y modalidades de cálculo

Esta tabla presenta la serie bruta, o la serie que fue ajustada *a priori* con los elementos de la Etapa A. Esos coeficientes de corrección, suministrados por el utilizador, son los coeficientes de ajustes permanentes o temporarios ⁶ y las ponderaciones asociadas a cada día de la semana.

Comentarios

• Según el paquete empleado, los coeficientes de ajuste *a priori* de la Etapa A figuran en tablas diferentes.

Factores de ajuste	X-11-ARIMA	X-12-Arima
Ajustes mensuales permanentes Ajustes mensuales temporarios	Tabla A2 Tabla A4	Tabla A2p Tabla A2t
Efectos mensuales debidos a los pesos	Tabla A6	Tabla A4
diarios suministrados por el utilizador		

• Después de la Tabla B1, X-11-ARIMA y X-12-ARIMA proponen un test estadístico de existencia de una estacionalidad. Ese test puede ser calculado únicamente a partir de la primera estimación de la componente estacional-irregular de la Tabla B3 (cf. Sección §4.1.3).

Ejemplo

La serie bruta figura en la Tabla B1 (*cf.* Tabla 4.16, pág. 61) y el test de estacionalidad estable figura en la Tabla 4.17 (*cf.* pág. 61).

⁶Con el método X-11 y con un ajuste temporario, la serie es primero modificada y luego descompuesta. Las modificaciones son reintroducidas después en la serie desestacionalizada y ajustada de los días hábiles y/o del efecto de Pascua. En el caso de un ajuste permanente, la serie bruta es definitivamente modificada antes de ser desestacionalizada.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										115.700	109.800	100.600
1986	106.600	98.700	103.900	109.500	97.700	103.700	99.700	65.700	105.200	117.100	108.300	104.400
1987	100.500	103.200	112.900	107.100	100.000	108.300	101.800	68.700	108.700	116.900	114.700	110.000
1988	107.700	110.200	118.700	108.100	107.400	114.700	101.200	76.000	114.600	117.900	121.300	114.700
1989	117.900	112.200	120.200	114.700	110.500	120.300	105.600	79.400	114.200	126.700	126.800	112.700
1990	121.100	112.500	123.600	116.100	115.600	116.800	111.800	83.300	114.600	132.000	127.100	110.800
1991	123.300	112.800	119.300	119.400	113.300	116.700	115.300	81.600	116.400	132.400	124.800	115.800
1992	123.500	116.900	124.000	120.000	109.800	118.700	112.100	80.000	119.300	129.000	122.100	113.800
1993	113.700	113.100	122.700	114.200	107.900	117.100	108.100	79.700	114.800	121.000	121.700	114.800
1994	116.300	111.500	124.000	115.400	114.000	121.000	109.500	85.400	120.600	126.400	127.700	120.000
1995	124.100	116.300	130.200									

Tabla 4.16: B1: Serie bruta.

	Suma de Cuadrados	g.d.l.	Media de Cuadrados	F	PROB>F
Entre los meses	10897.091	11	990.645	183.698	0.000
Residuo	485.351	90	5.393		
Total	11382.442	101			

Tabla 4.17: Test de presencia de una estacionalidad estable.

4.1.2 Tabla B2: Estimación preliminar de la tendencia-ciclo

Descripción y modalidades de cálculo

La primera estimación de la componente tendencia-ciclo se obtiene aplicando a los datos de la Tabla B1 una media móvil centrada simple de orden 12. Por construcción, en un modelo de composición aditiva, esa media móvil elimina las estacionalidades mensuales constantes. Se la compone con una media móvil simple sobre 12 términos (es decir de coeficientes 1/12) y con una media móvil simple sobre 2 términos, la cual permite «recentrar» el resultado. La media móvil que se emplea es entonces una 2×12 , sobre 13 términos y de coeficientes $\{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1\}/24$.

Comentarios

- X-11-ARIMA y X-12-ARIMA proponen también una media móvil centrada sobre 24 términos elaborada por CHOLETTE [12].
- En este estadio del cálculo, no se han imputado los 6 primeros y los 6 últimos puntos de la serie, para los cuales no se puede obtener una estimación de la tendencia-ciclo en razón de la simetría de la media móvil.

Ejemplo

El valor de la tendencia-ciclo de abril de 1986 —el primero que puede ser calculado—se obtiene con los valores de la Tabla B1, desde octubre de 1985 hasta octubre de 1986.

Es decir, seis meses antes y seis meses después:

$$ABR86 = \frac{115.7}{24} + \frac{109.8 + 100.6 + 106.6 + 98.7 + 103.9 + 109.5}{12} + \frac{97.7 + 103.7 + 99.7 + 65.7 + 105.2}{12} + \frac{117.1}{24}$$

$$= 101.458.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				101.458	101.454	101.550	101.454	101.388	101.950	102.225	102.221	102.508
1987	102.788	103.000	103.271	103.408	103.667	104.167	104.700	105.292	105.825	106.108	106.458	107.033
1988	107.275	107.554	108.104	108.392	108.708	109.179	109.800	110.308	110.454	110.792	111.196	111.558
1989	111.975	112.300	112.425	112.775	113.371	113.517	113.567	113.713	113.867	114.067	114.338	114.404
1990	114.517	114.938	115.117	115.354	115.588	115.521	115.533	115.638	115.471	115.429	115.471	115.371
1991	115.513	115.588	115.592	115.683	115.604	115.717	115.933	116.113	116.479	116.700	116.579	116.517
1992	116.467	116.267	116.321	116.300	116.046	115.850	115.358	114.792	114.579	114.283	113.963	113.817
1993	113.583	113.404	113.204	112.683	112.333	112.358	112.508	112.550	112.538	112.642	112.946	113.363
	113.583	113.879	114.358	114.825	115.300	115.767	116.308	116.833	117.292			
1995												<u>.</u>

Tabla 4.18: **B2**: Tendencia-ciclo, media móvil centrada sobre 12 términos.

4.1.3 Tabla B3: Estimación preliminar de la componente estacional-irregular sin modificaciones

Descripción y modalidades de cálculo

Según el esquema de composición adoptado, la componente tendencia-ciclo es retirada —por substracción o por división— de la serie analizada, para obtener una primera estimación de la componente estacional-irregular (SI).

Se obtiene así: B3 = B1 op B2.

El test de estacionalidad estable que es editado después de la Tabla B1, se funda en la Tabla B2. Se trata de un test de análisis de la varianza con un factor. Se dispone de k muestras (las estimaciones estacionales-irregulares de cada uno de los k=12 meses o de los k=4 trimestres), cuyos tamaños son, respectivamente: n_1, n_2, \ldots, n_k . Cada una de esas muestras corresponde a un nivel diferente del factor 7 A que es aquí la estacionalidad. Se supone que ese factor influye únicamente sobre la media de las distribuciones y no sobre la varianza de las mismas. Se trata entonces de un test de «comparación» de las k medias $\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_k$. Si se considera que cada muestra es extraída de una variable aleatoria X_j , que sigue una Ley de media m_j y de desviación estándar σ , el problema es entonces probar las hipótesis:

$$H_0$$
 : $m_1=m_2=\ldots=m_k$
 H_1 : $m_p\neq m_q$ al menos para un par (p,q) .

La ecuación —llamada ecuación del análisis de la varianza— se formula así:

$$\frac{1}{n} \sum_{i=1}^{n_j} \sum_{j=1}^k (x_{ij} - \bar{x})^2 = \frac{1}{n} \sum_{j=1}^k n_j (\bar{x}_{.j} - \bar{x}_{..})^2 + \frac{1}{n} \sum_{i=1}^{n_j} \sum_{j=1}^k (x_{ij} - \bar{x}_{.j})^2$$

⁷Cuidado: las letras «X» y «A» han sido ya utilizadas para designar la serie bruta y la serie desestacionalizada. ¡No confunda la notación!

o sea que:

$$S^2 = S_A^2 + S_B^2$$

La varianza total se descompone en: la varianza de las medias; la varianza debida al factor estacionalidad; y en una varianza residual. Admitiendo la hipótesis H_0 , se puede demostrar que la cantidad:

$$F_S = \frac{S_A^2/(k-1)}{S_R^2/(n-k)}$$

sigue la Ley de Fisher F(k-1;n-k), con k-1 y n-k grados de libertad. Lo cual permite formular el siguiente test: si la cantidad F_S —calculada con los datos de la Tabla B3 (cf. Tabla 4.19, pág. 64)— es mayor que el valor crítico de la Ley de Fisher, se concluye que existe una influencia significativa del factor estacionalidad (i.e.: las medias mensuales o trimestrales no son todas iguales).

Comentarios

- Una vez más, no se hace la estimación de los 6 valores de inicio y de los 6 valores finales de la serie.
- Indudablemente, no se respetan algunas hipótesis del modelo de análisis de la varianza que se emplea para someter a prueba la existencia de una estacionalidad. Por ejemplo, a este nivel del análisis, la componente irregular puede ser autocorrelacionada. Es por ello que, usualmente, se eligen valores críticos elevados y sólo se rechaza la hipótesis nula cuando la probabilidad asociada al valor de la estadística F_S es menor que 1/1000 = 0.001.
- El rechazo de la hipótesis nula lleva a probar la existencia de estacionalidad. Sin embargo, aceptar la hipótesis nula no significa que no haya estacionalidad. Por ejemplo, una fuerte evolución de los coeficientes estacionales produciría una varianza tal que sería imposible distinguir estadísticamente las medias.
- En X-12-ARIMA ese test es propuesto en opción.

Ejemplo

El valor de abril de 1986 de la Tabla B3 se obtiene entonces simplemente:

$$ABR86 = 100 \times 109.500/101.458 = 107.926.$$

En la Tabla 4.17 (cf. pág. 61), el valor de la estadística F_S es muy elevado. Por ello, se rechaza la hipótesis de igualdad de la media de los coeficientes estacionales. Como lo muestra la Figura 4.6 (cf. pág. 64), eso se debe esencialmente al mes de agosto, que presenta un coeficiente estacional muy diferente de los coeficientes estacionales de los otros meses.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				107.926	96.300	102.117	98.271	64.801	103.188	114.551	105.947	101.845
1987	97.775	100.194	109.324	103.570	96.463	103.968	97.230	65.247	102.717	110.170	107.742	102.772
1988	100.396	102.460	109.802	99.731	98.796	105.057	92.168	68.898	103.753	106.416	109.087	102.816
1989	105.291	99.911	106.916	101.707	97.468	105.976	92.985	69.825	100.293	111.075	110.900	98.510
1990	105.749	97.879	107.369	100.647	100.011	101.107	96.769	72.035	99.246	114.356	110.071	96.038
1991	106.742	97.588	103.208	103.213	98.007	100.850	99.454	70.277	99.932	113.453	107.052	99.385
1992	106.039	100.545	106.602	103.181	94.618	102.460	97.175	69.691	104.120	112.877	107.141	99.985
1993	100.103	99.732	108.388	101.346	96.053	104.220	96.082	70.813	102.010	107.420	107.751	101.268
1994	102.392	97.911	108.431	100.501	98.873	104.521	94.146	73.096	102.821			
1995												

Tabla 4.19: **B3**: Relaciones estacional-irregulares sin modificaciones.

Figura 4.6: Componentes estacional-irregulares (SI) de cada mes. (En este gráfico se representan las 12 columnas de la Tabla B3: la primera curva muestra la componente estacional-irregular del mes de enero, para los años 1987 hasta 1994; la recta representa el valor medio de esos 8 valores; las otras curvas corresponden a los otros meses).

4.1.4 Tabla B4: Valores de remplazo para los puntos atípicos de la componente estacional-irregular

Descripción y modalidades de cálculo

Esta tabla presenta los resultados del procedimiento automático del método X-11, para la detección y corrección de los puntos «atípicos» de la componente estacional-irregular. Figuran en ella los valores de remplazo propuestos para los puntos atípicos que fueron detectados. Pero también figuran, en margen de la tabla, las desviaciones estándar móviles que sirvieron para determinar los valores de remplazo. No cabe duda que esa tabla es la que presenta las modalidades de cálculo más difíciles a «desmontar». En efecto, el cálculo resulta de un algoritmo bastante complejo que comporta las seis etapas que presentamos a continuación.

Etapa 1: Estimación de la componente estacional

Esta componente estacional es estimada mediante el alisado de la componente estacional-irregular, pero interesándose en los valores de cada mes. Se alisan los valores correspondientes al mes de enero, luego los valores del mes de febrero,... y así

siguiendo, con una media 3×3 de coeficientes $\{1, 2, 3, 2, 1\}/9$. Esta media móvil, simétrica, se apoya en 5 términos y por ello no permite estimar los valores de los coeficientes estacionales de los 2 primeros y de los 2 últimos años. Estas estimaciones se calculan entonces mediante las medias móviles asimétricas *ad hoc* (*cf.* Tabla 3.13, pág. 50). Se obtiene así una serie de coeficientes provisorios: *fspro*.

Etapa 2: Normalización de los coeficientes estacionales

Los coeficientes estacionales provisorios son normalizados de manera tal que, para las observaciones de un año, la media sea aproximadamente igual a 0 (en el caso de un esquema aditivo) o a 1 (en el caso esquema multiplicativo). Para ello, se calcula una media móvil centrada sobre 12 términos: $M_{2\times12}(fspro)$. Los seis valores qui faltan al inicio (al fin) de esta serie son tomados iguales al primer (al último) valor calculado con esta media móvil. La serie fsnorm de los coeficientes normalizados es entonces definida de la siguiente manera: fsnorm = fspro op $M_{2\times12}(fspro)$.

Etapa 3: Estimación de la componente irregular

Se retira de la componente estacional-irregular la estimación inicial de los coeficientes estacionales, para obtener una estimación de la componente irregular:

Irreg = SI op fsnorm.

Etapa 4: Cálculo de una desviación estándar móvil

Se calcula una desviación estándar móvil de la componente irregular sobre intervalos de cinco años. Cada desviación estándar es asociada al año central con referencia al cual fue calculada. Los valores de este año central que se alejan en más de 2.5 veces esa desviación estándar (en valor absoluto de su desvío a la media xbar), son considerados atípicos y se les afecta un peso nulo. La desviación estándar móvil es calculada nuevamente sin tener en cuenta esos valores, lo cual permite una estimación más robusta de esa desviación estándar. Para los dos primeros años, se emplea en las comparaciones la desviación estándar asociada al tercer año. De manera similar, para los dos últimos años, se considera la desviación estándar asociada al antepenúltimo año.

Etapa 5: Detección de los valores atípicos y ponderación de lo irregular

A cada valor de la componente irregular se le afecta un peso, en función de la desviación estándar asociada a esos valores, el cual es calculado de la siguiente manera (cf. Figura 4.7):

- A los valores que son mayores que 2.5σ , en valor absoluto de sus desvíos a la media xbar, se les afecta un peso nulo.
- A los valores que son menores que 1.5σ , en valor absoluto de sus desvíos a la media xbar, se les afecta un peso igual a 1.
- Los valores que, en valor absoluto de sus desvíos a la media xbar, están comprendidos entre 1.5σ y 2.5σ reciben un peso que varía linealmente entre 0 y 1, en función de sus posiciones.

Figura 4.7: Función de pesos de X-11 para el remplazo de los valores atípicos.

Etapa 6: Corrección de los valores atípicos de la componente estacional-irregular

Se corrige y se reemplaza todo valor de la componente estacional-irregular cuyo irregular no recibió una ponderación íntegra y que, en consecuencia, fue considerado atípico.

La corrección y el remplazo se hace con una media ponderada de los cinco valores siguientes:

- el valor mismo, afectándole su peso;
- los dos valores precedentes para el mismo mes, que tengan una ponderación íntegra;
- y los dos valores siguientes para el mismo mes, que tengan una ponderación íntegra.

Para los dos primeros y los dos últimos años, los valores de remplazo son calculados con la media ponderada de: el valor considerado; y los cuatro valores más próximos ⁸, del mismo mes, que hayan recibido la ponderación 1.

Comentarios

A propósito de las medias móviles:

- El utilizador puede seleccionar la media móvil que desea emplear. En ese caso, X-11-ARIMA permite elegir entre una media móvil simple sobre 3 términos, una 3 × 3, una 3 × 5, una 3 × 9 y una estacionalidad estable (una media simple). X-12-ARIMA propone, además, una 3 × 15.
- Para completar la media móvil utilizada, X-11-ARIMA y X-12-ARIMA emplean medias móviles asimétricas algo diferentes, en razón de problemas de redondeo. En el Capítulo 3 se presentan los coeficientes de esa medias móviles.

⁸Para corregir un punto atípico al inicio y al fin de la serie —es decir en los dos primeros y los dos últimos años— Census X-11 utiliza los 3 valores más próximos con ponderación íntegra (y no los 4 valores más próximos como lo hacen X-11-ARIMA o X-12-ARIMA). Además, el paquete Census X-11 presenta en esto errores de cálculo.

A propósito del cálculo de los pesos y de la corrección de los valores atípicos:

- Se determina el carácter atípico de un valor I_t de lo irregular comparando el valor de |I_t xbar| a los límites λ_L × σ_t y λ^U × σ_t, en donde σ_t es la desviación estándar del año de la observación I_t, λ_L y λ^U son los parámetros seleccionados por el utilizador (por defecto: 1.5 y 2.5).
- Si no existen cuatro puntos del mismo peso que hayan recibido una ponderación íntegra, el valor atípico es reemplazado con la media de los valores del mes.

A propósito del cálculo de las desviaciones estándar móviles:

• Se calcula la desviación estándar⁹ suponiendo conocida la media de lo irregular xbar, es decir 0 para un esquema aditivo y 1 para un esquema multiplicativo. En ese caso, un estimador sin sesgo de la varianza está dado por: $\sigma^2 = \sum_{t=1}^n \left(I_t - xbar\right)^2/n$, en donde n es el número de observaciones utilizadas (cf. infra).

No olvidemos que el propósito es localizar los valores atípicos. Utilizando aquí una estimación de la media, se correría el riesgo que los valores atípicos influencien fuertemente esa estimación.

- Cuando se calcula la segunda desviación estándar correspondiente a un año, se excluyen los valores I_t de lo irregular del año que verifica la condición: $|I_t xbar| > \lambda^U \times \sigma_t$, en donde σ_t es la primera estimación de la desviación estándar del año de la observación I_t .
- En principio, la desviación estándar es calculada sobre las observaciones de 5 años completos. Se hace una pequeña excepción al inicio y al fin de la serie, en particular a causa de los valores ausentes generados por el uso de medias móviles simétricas.

De modo entonces que, si la serie bruta comienza en enero de 1970, la primera estimación de la componente estacional-irregular de la Tabla B3 comenzará en julio de 1970. Con X-11-ARIMA y con X-12-ARIMA, la desviación estándar de 1972 será calculada con las observaciones de 1970 y de los cinco primeros años completos (de 1971 a 1975), o sea sobre 66 observaciones. Esta es la desviación estándar que será atribuida a los años 1970 y 1971. La desviación estándar de 1973 será calculada sobre menos observaciones, las 60 que corresponden a los años 1971 hasta 1975 ¹⁰.

Ejemplo

La Tabla B4 (cf. pág. 68) presenta el resultado de los cálculos. Para facilitar la comprensión de los mismos, exponemos a continuación las etapas de cálculo que se hacen sobre tablas que, desgraciadamente, no pueden ser recuperadas en las versiones usuales

⁹La desviación estándar es calculada a partir de los valores de lo irregular incluyendo los valores atípicos. En la versión antigua del paquete Census X-11, la desviación estándar móvil era calculada, para los años precedentes, después de la corrección de los valores atípicos.

¹⁰Nótese que, en el paquete Census X-11, la primera desviación estándar sobre cinco años que puede ser calculada es la de 1973 y su valor será también afectado a los años 1970, 1971 y 1972. Las seis primeras observaciones no serán incorporadas en ese cálculo.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	DE
1985													1.427
1986				102.584						112.451			1.427
1987	103.375												1.427
1988				101.798			95.684			112.038			1.427
1989						103.387							1.371
1990								70.119				99.580	1.396
1991			106.783				96.339						1.294
1992					97.354				101.594				1.285
1993	104.841									112.788			1.285
1994					98.075			70.649					1.285
1995													1.285

de los programas de la familia X-11 (se trata de las Tablas que designamos aquí: B4a hasta B4f).

Tabla 4.20: **B4** : Valores de remplazo para los puntos atípicos de la componente estacional-irregular.

Etapa 1: Estimación de la componente estacional

Los datos de la Tabla B3 son alisados columna por columna (mes por mes), con una media móvil 3×3 de coeficientes $\{1,2,3,2,1\}/9$, para componer la Tabla B4a (*cf.* pág. 70). Los valores disponibles de la componente estacional-irregular para los meses de abril (de 1986 hasta 1994) son los siguientes (*cf.* Tabla B3, pág. 64):

$$107.926, 103.570, 99.731, 101.707, 100.647, 103.213, 103.181, 101.346, 100.501.$$

El factor estacional del mes de abril de 1988 será entonces estimado con:

$$ABR88 = \frac{107.926 + 2 \times 103.570 + 3 \times 99.731 + 2 \times 101.707 + 100.647}{9}$$

= 102.035.

Esta media móvil simétrica puede ser aplicada para estimar los valores de los coeficientes estacionales de los años 1988 hasta 1992. Para el inicio (años 1986 y 1987) y el fin (años 1993 y 1994) de la serie, se utilizan las medias asimétricas definidas precedentemente (cf. Tabla 3.13, pág. 50):

$$ABR86 = \frac{107.926 \times 11 + 103.570 \times 11 + 99.731 \times 5}{27} = 104.634$$

(el punto actual y dos puntos futuros)

$$ABR87 = \frac{107.926 \times 7 + 103.570 \times 10 + 99.731 \times 7 + 101.707 \times 3}{27} = 103.497$$

(un punto pasado, el punto actual y dos puntos futuros)

$$ABR93 = \frac{100.501 \times 7 + 101.346 \times 10 + 103.181 \times 7 + 103.213 \times 3}{27} = 101.810$$

(un punto futuro, el punto actual y dos puntos pasados)

$$ABR94 = \frac{100.501 \times 11 + 101.346 \times 11 + 103.181 \times 5}{27} = 101.342$$

(el punto actual y dos puntos pasados).

Etapa 2: Normalización de los coeficientes estacionales

Para obtener la Tabla B4b (*cf.* pág. 70) se aplica a la Tabla B4a una media móvil centrada sobre 12 meses. El primer término que se puede calcular es entonces el del mes de octubre de 1986 y el último es el del mes de marzo de 1994.

De modo que, por ejemplo:

$$OCT86 = \frac{104.634}{24} + \frac{96.829 + 103.416 + 96.717 + 65.741 + 103.101}{12} + \frac{111.260 + 107.260 + 102.403 + 100.235 + 101.065 + 109.073}{12} + \frac{103.497}{24} = 100.097.$$

Los seis primeros valores (de abril a setiembre de 1986), que no pueden ser calculados con esta media móvil simétrica, serán considerados iguales al primer valor calculable: octubre de 1986. Se procede de la misma manera con el fin de la serie. El valor calculado para marzo de 1994 (99.987) es repetido en los meses siguientes.

Se obtienen entonces los coeficientes estacionales normalizados dividiendo la Tabla B4a con la Tabla B4b, para lograr la Tabla B4c (*cf.* pág. 70) .

Con lo cual: $ABR86 = 100 \times 104.634/100.097 = 104.532$.

Etapa 3: Estimación de la componente irregular

Para obtener la Tabla B4d (*cf.* pág. 70) es suficiente dividir la componente irregular de la Tabla B3 con los coeficientes estacionales normalizados de la Tabla B4c.

Por ejemplo: $ABR86 = 100 \times 107.926/104.532 = 103.246$.

Etapa 4: Cálculo de una desviación estándar móvil

La desviación estándar que corresponde al año 1989 será calculada con los datos de los años 1987 hasta 1991 (dos años antes y dos años después), según la fórmula siguiente¹¹:

$$\sigma_{89} = \left[\frac{1}{60} \sum_{t=Ene87}^{Dic91} (I_t - 100)^2\right]^{1/2} = 1.3705.$$

Las desviaciones estándar de los años 1990 y 1991 serán calculadas siguiendo el mismo principio.

Con X-11-ARIMA y X-12-ARIMA, la desviación estándar de 1988 es calculada con todas las informaciones disponibles desde 1986 hasta 1991, es decir 69 observaciones. Esta es la desviación estándar que será asociada a los años 1986 y 1987. De manera similar, la desviación estándar de 1992 emplea todos los datos, desde 1989 hasta 1994 y será asociada a los años 1993 y 1994. Esas primeras estimaciones de las desviaciones estándar son presentadas en la columna «Desviación estándar 1» de la Tabla B4e.

Ese primer cálculo sirve para localizar la presencia eventual de puntos atípicos. Para un año dado, un valor será considerado atípico si se aleja, en valor absoluto de su desvío a la media teórica (que es aquí igual a 1), en más de 2.5 veces la desviación

¹¹La media teórica es considerada aquí igual a 100, para tomar en cuenta el hecho que los valores de lo irregular han sido ya multiplicados por 100.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				104.634	96.829	103.416	96.717	65.741	103.101	111.260	107.260	102.403
1987	100.235	101.065	109.073	103.497	97.137	103.993	95.716	66.587	102.838	110.433	107.976	102.070
1988	101.580	100.703	108.659	102.035	97.840	104.254	94.664	68.186	102.190	110.072	108.951	100.988
1989	103.631	99.799	107.513	101.407	98.276	103.897	94.835	69.652	101.058	110.933	109.534	99.488
1990	105.305	99.071	106.529	101.632	98.266	102.721	96.058	70.544	100.673	112.380	109.149	98.523
1991	105.466	98.806	105.874	102.261	97.422	102.209	97.257	70.547	100.981	112.591	108.248	98.887
1992	104.438	99.118	106.533	102.201	96.762	102.572	97.057	70.709	102.035	111.776	107.601	99.724
1993	102.973	99.232	107.361	101.810	96.629	103.467	96.238	71.054	102.537	110.761	107.373	100.397
1994	102.135	99.140	108.075	101.342	96.936	104.017	95.496	71.535	102.731			
1995												<u> </u>

Tabla 4.21: B4a: Factores estacionales provisorios (media móvil 3 x 3).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				100.097	100.097	100.097	100.097	100.097	100.097	100.097	100.062	100.099
1987	100.082	100.075	100.099	100.054	100.050	100.066	100.108	100.149	100.116	100.038	100.007	100.047
1988	100.014	100.037	100.076	100.034	100.060	100.055	100.096	100.144	100.058	99.984	99.976	99.979
1989	99.972	100.040	100.054	100.043	100.103	100.064	100.072	100.111	100.040	100.008	100.017	99.968
1990	99.970	100.058	100.079	100.123	100.168	100.111	100.078	100.073	100.035	100.034	100.025	99.969
1991	99.997	100.047	100.060	100.082	100.053	100.031	100.003	99.973	100.014	100.039	100.009	99.996
1992	100.003	100.001	100.052	100.062	100.001	100.009	99.983	99.927	99.966	99.984	99.962	99.994
1993	99.997	99.977	100.013	99.991	99.939	99.958	99.951	99.912	99.938	99.948	99.942	99.977
1994	99.969	99.958	99.987	99.987	99.987	99.987	99.987	99.987	99.987			
1995												

Tabla 4.22: **B4b**: Media móvil centrada sobre 12 meses.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				104.532	96.735	103.315	96.623	65.678	103.001	111.152	107.193	102.301
1987	100.153	100.989	108.964	103.441	97.089	103.925	95.613	66.488	102.719	110.391	107.969	102.022
1988	101.566	100.666	108.577	102.001	97.782	104.196	94.573	68.088	102.131	110.089	108.977	101.009
1989	103.660	99.759	107.456	101.363	98.176	103.830	94.767	69.574	101.018	110.924	109.515	99.521
1990	105.337	99.014	106.445	101.507	98.102	102.607	95.984	70.493	100.638	112.342	109.122	98.554
1991	105.469	98.760	105.811	102.177	97.370	102.178	97.254	70.566	100.967	112.548	108.238	98.890
1992	104.435	99.117	106.478	102.138	96.761	102.563	97.074	70.761	102.070	111.794	107.642	99.730
1993	102.976	99.255	107.347	101.819	96.688	103.511	96.285	71.117	102.600	110.818	107.435	100.419
1994	102.166	99.182	108.089	101.355	96.949	104.031	95.509	71.545	102.745			
1995												

Tabla 4.23: $\mathbf{B4c}$: Factores estacionales normalizados.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				103.246	99.550	98.840	101.705	98.665	100.182	103.058	98.838	99.555
1987	97.625	99.213	100.330	100.125	99.355	100.041	101.692	98.134	99.998	99.800	99.790	100.735
1988	98.848	101.782	101.128	97.775	101.038	100.826	97.456	101.189	101.589	96.663	100.101	101.789
1989	101.573	100.152	99.498	100.339	99.279	102.066	98.120	100.360	99.282	100.137	101.264	98.985
1990	100.391	98.854	100.869	99.152	101.946	98.539	100.818	102.189	98.617	101.793	100.870	97.447
1991	101.207	98.814	97.540	101.014	100.654	98.701	102.261	99.590	98.974	100.804	98.904	100.500
1992	101.535	101.441	100.116	101.022	97.785	99.900	100.105	98.488	102.009	100.969	99.534	100.256
1993	97.210	100.481	100.970	99.535	99.344	100.685	99.789	99.573	99.425	96.934	100.294	100.845
1994	100.221	98.719	100.316	99.157	101.984	100.471	98.574	102.168	100.074			
1995												<u>.</u>

Tabla 4.24: **B4d** : Componente Irregular provisoria.

estándar correspondiente a ese año. La Figura 4.8 (*cf.* pág. 72) representa el desvío de lo irregular a su media teórica y los dos «límites de confianza». Se puede constatar que ningún valor es considerado realmente atípico. En el caso contrario, esos valores serían eliminados y se haría nuevamente el cálculo de la desviación estándar (por ejemplo, ver el caso de la Tabla B17, Sección §4.1.17). Ese nuevo cálculo produce la columna «Desviación estándar 2» de la Tabla B4e, idéntica a la columna 1.

Año	Desviación estándar 1	Desviación estándar 2				
1985						
1986	1.4265	1.4265				
1987	1.4265	1.4265				
1988	1.4265	1.4265				
1989	1.3705	1.3705				
1990	1.3958	1.3958				
1991	1.2941	1.2941				
1992	1.2847	1.2847				
1993	1.2847	1.2847				
1994	1.2847	1.2847				
1995						

Tabla 4.25: **B4e**: Desviaciones estándar móviles sobre 5 años.

Etapa 5: Detección de los valores atípicos y ponderación de lo irregular

La Figura 4.8 (*cf.* pág.72) permite ubicar los valores de lo irregular con respecto a los límites de confianza, superiores e inferiores, que son calculados con las desviaciones estándar estimadas anteriormente. Ningún valor es considerado realmente excepcional, pero todos los valores que se sitúan entre los dos límites son considerados atípicos y serán corregidos. En la Tabla B4f están indicados los pesos asociados a esos valores (multiplicados por 100).

Por ejemplo, para enero de 1987, se obtiene: |Ene87-100|=|97.625-100|=2.375, y $1.5\times\sigma_{87}=1.5\times1.4265=2.13975<2.375<2.5\times\sigma_{87}=2.5\times1.4265=3.5663$.

Este valor es juzgado moderadamente atípico y se le atribuye un peso proporcional al desvío a la media constante que es:

$$peso(Ene 87) = \frac{3.5663 - 2.375}{3.5663 - 2.1398} = 0.835.$$

Del mismo modo, para el valor de junio de 1989, que se ubica un poco más allá del «límite de confianza» inferior, se obtiene: |Jun89-100|=|102.066-100|=2.066, y $1.5\times\sigma_{89}=1.5\times1.3705=2.056<2.066<2.5\times\sigma_{87}=2.5\times1.3705=3.426$. En consecuencia:

$$peso(Jun89) = \frac{3.426 - 2.066}{3.426 - 2.056} = 0.992.$$

Etapa 6: Corrección de los valores atípicos de la componente estacional-irregular

En fin, la corrección de la componente estacional-irregular (Tabla B3) se hace con esos pesos. Por ejemplo, el valor de junio de 1989 será reemplazado con la media de: ese valor afectado de su peso; y de dos valores anteriores y posteriores del mismo mes

Figura 4.8: **B4d** : Desvío de lo irregular a su media teórica y «límites de confianza» asociados a $\pm 1.5\sigma$ y $\pm 2.5\sigma$.

que hayan recibido una ponderación íntegra, es decir que no hayan sido considerados atípicos.

Como lo muestra la Tabla B4f, se trata de los valores de los meses de junio de 1987, de 1988, de 1990 y de 1991. Lo que lleva a:

$$SI(Jun89) = \frac{103.968 + 105.057 + 105.976 \times 0.992 + 101.107 + 100.850}{4 + 0.992}$$

= 103.387.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				22.419	100.000	100.000	100.000	100.000	100.000	35.633	100.000	100.000
1987	83.535	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	94.011	100.000	100.000	71.692	100.000	100.000	16.096	100.000	100.000
1989	100.000	100.000	100.000	100.000	100.000	99.217	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	93.192	100.000	100.000	100.000	67.113
1991	100.000	100.000	59.928	100.000	100.000	100.000	75.258	100.000	100.000	100.000	100.000	100.000
1992	100.000	100.000	100.000	100.000	77.601	100.000	100.000	100.000	93.624	100.000	100.000	100.000
1993	32.820	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	11.350	100.000	100.000
1994	100.000	100.000	100.000	100.000	95.570	100.000	100.000	81.282	100.000			
1995												

Tabla 4.26: **B4f**: Pesos asociados a los valores de lo irregular.

El valor de enero de 1987 también fue considerado atípico. Pero, tratándose del valor de inicio de la serie, fue corregido de manera algo diferente. Se lo reemplazó con la media de: ese valor afectado de su peso; y de los cuatro valores más próximos del mismo mes que hayan recibido una ponderación íntegra. En este caso se trata de los valores de los meses de enero de 1988, de 1989, de 1990 y de 1991 (cf. Tabla B4f). Con algún error de redondeo, se obtiene entonces:

$$SI(Ene87) = \frac{97.775 \times 0.835 + 100.396 + 105.291 + 105.749 + 106.742}{4 + 0.835}$$

= 103.375.

Esos valores de remplazo se editan en la Tabla B4 que fue presentada al principio de este ejemplo (*cf.* pág. 68).

4.1.5 Tabla B5: Estimación de la componente estacional

Descripción y modalidades de cálculo

Esta estimación se obtiene con los valores de la componente estacional-irregular de la Tabla B3, corregidos con los valores de la Tabla B4.

Se procede en tres etapas que son detalladas a continuación, de las cuales las dos primeras son idénticas a las dos primeras etapas de cálculo de la Tabla B4.

- Etapa 1: Estimación de la componente estacional con una 3×3 .
- Etapa 2: Normalización de los coeficientes estacionales con una 2×12 .
- Etapa 3: Estimación de los coeficientes estacionales faltantes.

Habiéndose empleado en la Tabla B2 una media móvil centrada sobre 12 términos, no se estimaron los coeficientes estacionales de los seis valores situados en cada extremo de la serie. Se estiman los coeficientes estacionales de los 12 valores faltantes, duplicando el valor más próximo calculado para el mes considerado.

Comentario

El utilizador puede seleccionar la media móvil que será utilizada.

En ese caso, X-11-ARIMA permite elegir entre: una media móvil simple sobre 3 términos; una 3×3 ; una 3×5 ; una 3×9 ; o una estacionalidad estable (una media simple). X-12-ARIMA propone, además, una 3×15 .

Ejemplo

Esa estimación se hace con la componente estacional-irregular corregida que figura en la Tabla B4g.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				102.584	96.300	102.117	98.271	64.801	103.188	112.451	105.947	101.845
1987	103.375	100.194	109.324	103.570	96.463	103.968	97.230	65.247	102.717	110.170	107.742	102.772
1988	100.396	102.460	109.802	101.798	98.796	105.057	95.684	68.898	103.753	112.038	109.087	102.816
1989	105.291	99.911	106.916	101.707	97.468	103.387	92.985	69.825	100.293	111.075	110.900	98.510
1990	105.749	97.879	107.369	100.647	100.011	101.107	96.769	70.119	99.246	114.356	110.071	99.580
1991	106.742	97.588	106.783	103.213	98.007	100.850	96.339	70.277	99.932	113.453	107.052	99.385
1992	106.039	100.545	106.602	103.181	97.354	102.460	97.175	69.691	101.594	112.877	107.141	99.985
1993	104.841	99.732	108.388	101.346	96.053	104.220	96.082	70.813	102.010	112.788	107.751	101.268
1994	102.392	97.911	108.431	100.501	98.075	104.521	94.146	70.649	102.821			
1995												

Tabla 4.27: **B4g**: Componente estacional-irregular corregida.

Etapa 1: Estimación de la componente estacional

Los datos de la tabla precedente son alisados, columna por columna (mes por mes), con una media móvil 3×3 de coeficientes $\{1, 2, 3, 2, 1\}/9$, para obtener la Tabla B5a.

El factor estacional del mes de abril de 1988 es estimado así:

$$ABR88 = \frac{102.584 + 2 \times 103.570 + 3 \times 101.798 + 2 \times 101.707 + 100.647}{9}$$
= 102.131.

Se puede aplicar esta media móvil simétrica para estimar los valores de los coeficientes estacionales de los años 1988 hasta 1992.

Para el inicio de la serie (años 1986 y 1987) y para el fin de la serie (años 1993 y 1994), se emplean medias móviles predefinidas (*cf.* Tabla 3.13,pág. 50):

$$ABR86 = \frac{102.584 \times 11 + 103.570 \times 11 + 101.798 \times 5}{27} = 102.840$$

(el punto actual y dos puntos futuros)

$$ABR87 = \frac{102.584 \times 7 + 103.570 \times 10 + 101.798 \times 7 + 101.707 \times 3}{27} = 102.648$$

(un punto pasado, el punto actual y dos puntos futuros)

$$ABR93 = \frac{100.501 \times 7 + 101.346 \times 10 + 103.181 \times 7 + 103.213 \times 3}{27} = 101.810$$

(un punto futuro, el punto actual y dos puntos pasados)

$$ABR94 = \frac{100.501 \times 11 + 101.346 \times 11 + 103.181 \times 5}{27} = 101.342$$

(el punto actual y dos puntos pasados).

Etapa 2: Normalización de los coeficientes estacionales

Se aplica a la Tabla B5a (*cf.* pág. 75), una media móvil centrada sobre 12 meses, lo cual produce la Tabla B5b (*cf.* pág. 75). El primer término que se puede calcular es el del mes de octubre de 1986 y el último es el del mes de marzo de 1994. Se obtiene así:

$$OCT86 = \frac{102.840}{24} + \frac{96.829 + 103.416 + 97.368 + 65.741 + 103.101}{12} + \frac{111.445 + 107.260 + 102.403 + 102.516 + 101.065 + 109.073}{12} + \frac{102.648}{24} - 100.247$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				102.840	96.829	103.416	97.368	65.741	103.101	111.445	107.260	102.403
1987	102.516	101.065	109.073	102.648	97.137	103.706	96.627	66.587	102.838	111.346	107.976	102.070
1988	103.032	100.703	108.659	102.131	97.840	103.678	95.836	67.973	102.190	111.712	108.951	101.382
1989	104.253	99.799	107.911	101.866	98.276	103.034	95.270	69.226	101.058	112.182	109.534	100.276
1990	105.305	99.071	107.323	101.862	98.570	102.146	95.757	69.906	100.393	113.004	109.149	99.704
1991	105.993	98.806	107.066	102.261	98.030	101.921	96.219	70.121	100.420	113.188	108.248	99.674
1992	105.492	99.118	107.328	102.201	97.585	102.572	96.365	70.225	101.192	113.168	107.601	100.117
1993	104.728	99.232	107.758	101.810	97.132	103.467	95.892	70.420	101.881	112.948	107.373	100.397
1994	104.065	99.140	108.075	101.342	97.118	104.017	95.496	70.538	102.263			
1995												

Tabla 4.28: **B5a** : Factores estacionales provisorios (media móvil 3×3).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				100.247	100.247	100.247	100.247	100.247	100.247	100.247	100.251	100.276
1987	100.258	100.262	100.286	100.271	100.297	100.313	100.321	100.327	100.295	100.256	100.264	100.292
1988	100.258	100.282	100.313	100.301	100.357	100.369	100.392	100.405	100.336	100.294	100.301	100.292
1989	100.242	100.270	100.275	100.248	100.292	100.270	100.268	100.281	100.226	100.202	100.214	100.189
1990	100.172	100.221	100.221	100.228	100.246	100.206	100.211	100.229	100.207	100.213	100.207	100.175
1991	100.185	100.213	100.223	100.232	100.202	100.163	100.141	100.133	100.157	100.166	100.145	100.153
1992	100.186	100.197	100.233	100.265	100.237	100.229	100.215	100.188	100.211	100.212	100.177	100.196
1993	100.213	100.202	100.239	100.258	100.239	100.242	100.226	100.194	100.203	100.197	100.177	100.199
1994	100.206	100.194	100.215	100.215	100.215	100.215	100.215	100.215	100.215			
1995												

Tabla 4.29: **B5b** : Media móvil centrada sobre 12 términos.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.171	106.991	102.120
1986	102.253	100.801	108.761	102.587	96.590	103.161	97.128	65.580	102.847	111.171	106.991	102.120
1987	102.253	100.801	108.761	102.370	96.850	103.382	96.319	66.370	102.536	111.062	107.692	101.773
1988	102.767	100.419	108.320	101.824	97.492	103.297	95.462	67.699	101.848	111.385	108.624	101.087
1989	104.002	99.530	107.614	101.614	97.991	102.757	95.016	69.032	100.830	111.956	109.301	100.086
1990	105.124	98.853	107.086	101.630	98.328	101.936	95.555	69.746	100.185	112.764	108.924	99.529
1991	105.797	98.596	106.828	102.024	97.832	101.755	96.083	70.028	100.262	113.000	108.091	99.521
1992	105.295	98.924	107.078	101.931	97.355	102.338	96.158	70.093	100.980	112.928	107.411	99.922
1993	104.505	99.033	107.501	101.548	96.900	103.218	95.676	70.284	101.675	112.725	107.183	100.197
1994	103.852	98.948	107.843	101.124	96.910	103.793	95.291	70.387	102.044	112.725	107.183	100.197
1995	103.852	98.948	107.843									

Tabla 4.30: **B5**: Coeficientes estacionales.

Los seis primeros valores, de abril hasta setiembre de 1986, que no pueden ser calculados con esa media móvil simétrica serán tomados iguales al primer valor calculable: el valor del mes de octubre de 1986. Se procede de la misma manera para el fin de la serie: el valor calculado para marzo de 1994 (100.215) es repetido en los seis meses siguientes.

Los coeficientes estacionales normalizados se obtienen dividiendo la Tabla B5a con la Tabla B5b (cf. Tabla B5, pág. 75).

Por ejemplo: $ABR86 = 100 \times 102.840/100.247 = 102.587$.

Etapa 3: Estimación de los coeficientes estacionales faltantes

Los valores faltantes —desde octubre de 1985 hasta marzo de 1986— en razón del empleo de la media móvil centrada de orden 12, se obtienen duplicando el primer valor calculado para el mes considerado. De la misma manera, para los valores faltantes desde octubre de 1994 hasta marzo de 1995, se duplica el último valor calculado para el mes considerado.

4.1.6 Tabla B6: Estimación de la serie corregida de variaciones estacionales

Descripción y modalidades de cálculo

Esta estimación se obtiene simplemente (cf. Tabla B6), retirando a la serie inicial de la Tabla B1, la estimación de la componente estacional de la Tabla B5 y se obtiene: B6 = B1 op B5.

Ejemplo

Por ejemplo, $ABR86 = 100 \times 109.500/102.587 = 106.739$.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										104.074	102.626	98.511
1986	104.251	97.916	95.530	106.739	101.149	100.522	102.648	100.183	102.288	105.333	101.224	102.232
1987	98.286	102.380	103.805	104.620	103.253	104.757	105.691	103.511	106.011	105.257	106.507	108.084
1988	104.800	109.740	109.583	106.164	110.163	111.039	106.011	112.261	112.520	105.849	111.669	113.467
1989	113.363	112.730	111.695	112.878	112.766	117.072	111.140	115.019	113.260	113.169	116.010	112.603
1990	115.197	113.805	115.421	114.238	117.566	114.582	117.000	119.433	114.388	117.058	116.687	111.324
1991	116.544	114.406	111.675	117.031	115.810	114.687	120.000	116.525	116.096	117.168	115.458	116.357
1992	117.289	118.172	115.804	117.727	112.784	115.988	116.579	114.134	118.143	114.232	113.676	113.889
1993	108.799	114.205	114.138	112.459	111.352	113.449	112.985	113.398	112.909	107.340	113.544	114.574
1994	111.987	112.685	114.982	114.117	117.635	116.578	114.911	121.329	118.184	112.131	119.142	119.764
1995	119.498	117.536	120.731									

Tabla 4.31: **B6**: Serie corregida de variaciones estacionales.

4.1.7 Tabla B7: Estimación de la componente tendencia-ciclo

Descripción y modalidades de cálculo

En esa tabla se presenta una estimación de la componente tendencia-ciclo que fue realizada con la serie desestacionalizada de la tabla precedente. Se trata de un problema de alisado y para resolverlo, el programa emplea una media móvil de Henderson.

Etapa 1: Elección de la media móvil, cálculo del ratio \bar{I}/\bar{C}

En esta etapa X-11 emplea, según el caso y para una serie mensual, una media móvil de Henderson sobre 9 o sobre 13 términos. Salvo cuando el utilizador interviene, la elección del orden de la media móvil es automática y se funda en el valor de un indicador llamado: $\mathbf{razón}\ \bar{I}/\bar{C}$. Se puede decir que este indicador evalúa la importancia de la componente irregular en la serie. Cuanto más grande es su importancia, mayor es el orden de la media móvil que será elegida.

Para calcular esa razón, se hace una primera descomposición de la serie corregida de variaciones estacionales (SA) mediante una media móvil de Henderson sobre 13 términos, sin ocuparse —por el momento— de los 6 puntos «perdidos» al inicio y al fin de la serie. Se obtiene entonces: la tendencia-ciclo: $C = H_{13}(SA)$; y lo irregular: I = SA op C. Se calcula, para cada serie C e I, la media del valor absoluto de las tasas de crecimiento mensuales (en el esquema multiplicativo) o de los crecimientos mensuales (en el esquema aditivo), designadas \bar{C} y \bar{I} .

Se obtiene entonces:

$$\bar{C} = \frac{1}{n-1} \sum_{t=2}^{n} |C_t \text{ op } C_{t-1} - xbar|$$

$$\bar{I} = \frac{1}{n-1} \sum_{t=2}^{n} |I_t \text{ op } I_{t-1} - xbar|.$$

Se calcula luego la razón \bar{I}/\bar{C} y además:

- Si esa razón es menor que 1, se elige una media móvil de Henderson sobre 9 términos.
- En el caso contrario se elige una media móvil de Henderson sobre 13 términos.

Etapa 2: Alisado de la serie desestacionalizada con una media móvil de Henderson

La serie desestacionalizada SA de la Tabla B6 es alisada con la media móvil de Henderson que fue elegida. En este estadio, se estiman los puntos que no pueden ser calculados con la media simétrica al inicio y al fin de la serie (4 o 6 puntos según el caso), mediante las medias móviles asimétricas $ad\ hoc$.

Comentarios

- Nótese que el cálculo de la razón es hecho sin preocuparse de los 6 primeros y de los 6 últimos meses, para los cuales la media móvil de Henderson sobre 13 términos no permite obtener una estimación de la tendencia-ciclo.
- En este estadio, el programa elige únicamente entre una media sobre 9 términos y una media sobre 13 términos.
- El utilizador puede especificar la longitud de la media móvil de Henderson que desea utilizar. En ese caso, X-11-ARIMA permite seleccionar una media móvil sobre 9, 13 o 23 términos. X-12-ARIMA permite elegir cualquier media de Henderson de orden impar inferior a 101.

- Los coeficientes de las medias móviles utilizadas (simétricas o no) son —con una diferencia de redondeo—los mismos en X-11-ARIMA y en X-12-ARIMA. Los coeficientes de las medias móviles simétricas se calculan con la fórmula exacta de Henderson. Para los filtros asimétricos, X-11-ARIMA utiliza valores con 7 decimales derivados de una fórmula que fue establecida por LANIEL [46], mientras que X-12-ARIMA utiliza directamente la fórmula que fue propuesta por DOHERTY [21], la cual se funda en los trabajos de MUSGRAVE [55, 56]. Esos diferentes filtros fueron presentados en las Secciones §3.2.2 y §3.3.1 12.
- Por último, nótese que el cálculo de esta tendencia-ciclo se hace sin excluir los puntos de la serie desestacionalizada que fueron considerados atípicos. X-11-ARIMA propone una opción de corrección de la tendencia-ciclo por «huelgas». En ese caso, el programa busca y corrige esos valores atípicos de la misma manera que en la Tabla B4: estimación de la componente irregular retirando la tendencia-ciclo de la serie desestacionalizada; cálculo de una desviación estándar móvil sobre 5 años; etc. X-12-ARIMA no propone esta opción.

Ejemplo

Etapa 1: Elección de la media móvil, cálculo de la razón \bar{I}/\bar{C}

En primer lugar se alisa la Tabla B6 con una media móvil de Henderson sobre 13 términos, cuyos coeficientes figuran en la columna $H6_6$ de la Tabla 3.11 (cf. pág. 49).

El primer término que se puede calcular con el filtro simétrico de Henderson es el de abril de 1986 y se obtiene:

```
ABR86 = 104.074 \times (-0.0193) + 102.626 \times (-0.0279) + 98.511 \times (0.0000) + 104.251 \times (0.0655) + 97.916 \times (0.1474) + 95.530 \times (0.2143) + 106.739 \times (0.2401) + 101.149 \times (0.2143) + 100.522 \times (0.1474) + 102.648 \times (0.0655) + 100.183 \times (0.0000) + 102.288 \times (-0.0279) + 105.333 \times (-0.0193)
= 100.809.
```

En esta etapa del cálculo, el programa no se ocupa en estimar los 6 puntos que no pueden ser calculados con el filtro simétrico al inicio y al fin de la serie. Se deduce una estimación de la tendencia-ciclo (*cf.* Tabla B7a, pág. 80) y mediante la división con la Tabla B6, se deduce la componente irregular (*cf.* Tabla B7b, pág. 80). De modo que, el valor de lo irregular para el mes de abril de 1986 es el siguiente:

$$ABR86 = 100 \times 106.739/100.809 = 105.882.$$

¹²En Census X-11, los coeficientes de las medias móviles simétricas y asimétricas son redondeados al tercer decimal. No se sabe como se calculan los filtros asimétricos.

Puesto que el esquema es multiplicativo, se calcula:

$$\bar{C} = \frac{1}{n-1} \sum_{t=2}^{n} |C_t/C_{t-1} - 1|$$

$$\bar{I} = \frac{1}{n-1} \sum_{t=2}^{n} |I_t/I_{t-1} - 1|.$$

Utilizando los totales en línea de la Tabla B7c (pág. 81) y de la Tabla B7d (pág. 81), se obtiene:

$$\bar{C} = \frac{2.033 + 5.008 + 4.589 + 2.060 + 4.207}{101} + \frac{3.379 + 3.496 + 2.285 + 4.410}{101}$$

$$= 0.312,$$

y también,

$$\bar{I} = \frac{21.302 + 19.307 + 38.591 + 23.096 + 26.519}{101} + \frac{27.805 + 22.334 + 26.435 + 19.415}{101} = 2.226.$$

de modo que: $\bar{I}/\bar{C} = 2.226/0.312 = 7.14$.

Etapa 2: Alisado de la serie desestacionalizada con una media móvil de Henderson

Como la razón es mayor que 1, se elige una media móvil de Henderson sobre 13 términos cuyos coeficientes, así como los coeficientes de las medias móviles asimétricas asociadas, figuran en la Tabla 3.11 (cf. pág. 49). La estimación de la tendencia para octubre de 1985 se hace con la serie corregida de variaciones estacionales de la Tabla B6, utilizando el punto actual y seis puntos futuros, a los cuales se les aplica los coeficientes de la media móvil $H6_0$ (cf. Tabla 3.11).

Por ejemplo:

$$OCT85 = 104.074 \times (0.42113) + 102.626 \times (0.35315) + 98.511 \times (0.24390) + 104.251 \times (0.11977) + 97.916 \times (0.01202) + 95.530 \times (-0.05811) + 106.739 \times (-0.09186)$$

$$= 102.405.$$

Lo cual conduce a la Tabla B7 (cf. pág. 80).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										102.405	101.784	101.095
1986	100.543	100.309	100.463	100.809	101.258	101.649	102.031	102.287	102.241	102.092	101.939	101.700
1987	101.671	102.029	102.691	103.528	104.218	104.567	104.799	104.992	105.302	105.774	106.319	106.848
1988	107.460	107.972	108.320	108.737	109.126	109.403	109.568	109.760	110.159	110.671	111.282	111.855
1989	112.343	112.722	113.066	113.268	113.389	113.645	113.835	113.913	113.901	113.920	113.989	114.155
1990	114.366	114.521	114.877	115.348	115.889	116.472	116.816	116.862	116.614	116.065	115.337	114.704
1991	114.232	114.160	114.487	115.084	115.871	116.538	116.921	117.008	116.831	116.619	116.632	116.735
1992	116.829	116.824	116.503	116.091	115.767	115.602	115.688	115.709	115.381	114.694	113.877	113.108
										111.941		
1994	112.954	113.648	114.346	115.193	116.069	116.819	117.188	117.307	117.362	117.495	117.801	118.258
1995	118.787	119.246	119.901									

Tabla 4.32: **B7** : Tendencia-ciclo (La razón I/C es igual a 7.14, se seleccionó una media móvil de Henderson sobre 13 términos).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				100.809	101.258	101.649	102.031	102.287	102.241	102.092	101.939	101.700
1987	101.671	102.029	102.691	103.528	104.218	104.567	104.799	104.992	105.302	105.774	106.319	106.848
1988	107.460	107.972	108.320	108.737	109.126	109.403	109.568	109.760	110.159	110.671	111.282	111.855
1989	112.343	112.722	113.066	113.268	113.389	113.645	113.835	113.913	113.901	113.920	113.989	114.155
1990	114.366	114.521	114.877	115.348	115.889	116.472	116.816	116.862	116.614	116.065	115.337	114.704
1991	114.232	114.160	114.487	115.084	115.871	116.538	116.921	117.008	116.831	116.619	116.632	116.735
1992	116.829	116.824	116.503	116.091	115.767	115.602	115.688	115.709	115.381	114.694	113.877	113.108
1993	112.640	112.448	112.498	112.798	112.965	112.853	112.539	112.212	112.024	111.941	111.996	112.314
1994	112.954	113.648	114.346	115.193	116.069	116.819	117.188	117.307	117.362			
1995												

Tabla 4.33: **B7a** : Tendencia-ciclo (Media móvil de Henderson sobre 13 términos).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				105.882	99.893	98.891	100.605	97.944	100.046	103.174	99.298	100.524
1987	96.670	100.344	101.085	101.055	99.074	100.182	100.851	98.590	100.674	99.510	100.178	101.157
1988	97.525	101.638	101.166	97.634	100.951	101.495	96.753	102.279	102.143	95.643	100.348	101.441
1989	100.908	100.007	98.787	99.656	99.451	103.016	97.632	100.971	99.437	99.341	101.773	98.640
1990	100.727	99.375	100.473	99.037	101.447	98.378	100.158	102.200	98.091	100.856	101.171	97.053
1991	102.024	100.216	97.544	101.692	99.947	98.412	102.634	99.587	99.371	100.471	98.994	99.676
1992	100.394	101.154	99.400	101.409	97.423	100.334	100.770	98.639	102.393	99.598	99.823	100.691
1993	96.590	101.563	101.458	99.700	98.573	100.528	100.396	101.057	100.790	95.890	101.382	102.012
1994	99.144	99.152	100.556	99.066	101.350	99.793	98.057	103.428	100.701			
1995												

Tabla 4.34: $\mathbf{B7b}$: Componente irregular.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
1985													
1986					0.445								
1987	0.028	0.352	0.649	0.814	0.667	0.335	0.222	0.184	0.295	0.449	0.514	0.498	5.008
1988	0.573	0.477	0.322	0.385	0.358	0.255	0.151	0.175	0.364	0.465	0.552	0.514	4.589
1989	0.437	0.337	0.305	0.178	0.106	0.226	0.168	0.069	0.011	0.017	0.061	0.146	2.060
1990	0.184	0.136	0.311	0.410	0.469	0.503	0.295	0.040	0.212	0.471	0.627	0.549	4.207
1991	0.412	0.063	0.286	0.522	0.684	0.575	0.329	0.075	0.151	0.182	0.011	0.089	3.379
1992	0.081	0.005	0.274	0.354	0.279	0.143	0.075	0.018	0.284	0.596	0.712	0.675	3.496
1993	0.414	0.170	0.045	0.266	0.148	0.099	0.278	0.291	0.167	0.074	0.049	0.284	2.285
1994	0.570	0.615	0.614	0.741	0.760	0.647	0.316	0.102	0.047				4.410
1995													

Tabla 4.35: **B7c**: Tasa de crecimiento de la tendencia-ciclo (en % y en valor absoluto).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
1985													
1986													21.302
1987	3.833												19.307
													38.591
													23.096
													26.519
							, .						27.805 22.334
													26.435
													19.415
1995					2.505								

Tabla 4.36: $\mathbf{B7d}$: Tasa de crecimiento de lo irregular (en % y en valor absoluto).

4.1.8 Tabla B8: Componente estacional-irregular sin modificaciones

Descripción y modalidades de cálculo

Esta tabla es similar a la Tabla B3 (cf. pág. 64): la componente tendencia-ciclo es retirada de la serie analizada (por substracción o por división, según el esquema de composición adoptado) para obtener una estimación de la componente estacional-irregular. Se obtiene así: B8 = B1 op B7.

Comentario

Contrariamente a lo indicado a propósito de la Tabla B3, en esta tabla los puntos del inicio y del fin de la serie han sido estimados con las medias móviles asimétricas de Henderson para la tendencia-ciclo. Por ello se dispone de una estimación completa de la componente estacional-irregular.

Ejemplo

El valor del mes de abril de 1986 se obtiene entonces simplemente:

$$ABR86 = 100 \times 109.500/100.809 = 108.622.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										112.983	107.876	99.511
1986	106.024	98.396	103.421							114.700	106.240	102.655
1987	98.848	101.148	109.941	103.451	95.953	103.570	97.138	65.434	103.227	110.518	107.883	102.950
1988	100.224	102.064	109.583	99.414	98.419	104.841	92.362	69.242	104.031	106.532	109.002	102.544
1989	104.946	99.537	106.309	101.264	97.453	105.856	92.766	69.702	100.263	111.218	111.239	98.725
1990	105.888	98.235	107.593	100.652	99.751	100.282	95.706	71.281	98.273	113.729	110.199	96.596
1991	107.938	98.809	104.204	103.750	97.781	100.139	98.614	69.739	99.631	113.533	107.003	99.199
1992	105.710	100.065	106.435	103.367	94.846	102.680	96.898	69.139	103.396	112.474	107.221	100.612
1993	100.941	100.580	109.069	101.243	95.517	103.763	96.055	71.026	102.478	108.092	108.664	102.213
1994	102.962	98.110	108.443	100.180	98.218	103.579	93.439	72.800	102.759	107.579	108.403	101.473
1995	104.473	97.530	108.590									

Tabla 4.37: **B8**: Componente estacional-irregular sin modificaciones.

4.1.9 Tabla B9 : Valores de remplazo para los valores atípicos de la componente estacional-irregular

Descripción y modalidades de cálculo

Por la segunda vez en esta Etapa B, el programa detecta y corrige automáticamente los valores atípicos de la componente estacional-irregular. La estrategia utilizada es similar a la empleada para la Tabla B4 (cf. Sección §4.1.4). La detección se hace con los datos de la Tabla B8 y —contrariamente a lo hecho para la Tabla B4— para la primera estimación de la componente estacional se emplea una media móvil 3×5 , de coeficientes $\{1,2,3,3,3,2,1\}/15$.

Comentarios

• La media móvil simétrica 3×5 , sobre 7 términos, no permite estimar los coeficientes estacionales de los 3 primeros y de los 3 últimos años. Se utilizan para ello las medias móviles asimétricas *ad hoc* (cf. Tabla 3.14, pág. 50).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	DE
	Line	100	11144	1101	11141	U CALL		1150	Бер		1101		
1985													2.077
1986	104.457		107.611	101.329				68.245					2.077
	103.337												2.077
1988										111.877			2.104
1989													1.885
1990									101.123			99.679	1.808
1991	105.353		106.753				95.836						1.609
1992													1.625
1993	104.314												1.603
1994							95.015	70.697					1.603
1995													1.603

Tabla 4.38: **B9** : Valores de remplazo para los puntos atípicos de la componente estacional-irregular.

- La aplicación de esas medias móviles asimétricas presenta un problema cuando no hay bastantes años de observación. Supongamos que, para un mes dado, sólo disponemos de observaciones sobre 5 años. No se puede estimar el punto central, puesto que no se dispone de 3 puntos futuros, ni de 3 puntos pasados, lo cual sería necesario para poder utilizar una media móvil asimétrica. En ese caso, habría que estimar ese valor con la media simple de las 5 observaciones disponibles.
- Los otros comentarios que se pueden hacer en este estadio son los mismos que los que fueron hechos a propósito de la Tabla B4 (*cf.* Sección §4.1.4).

Ejemplo

La tabla editada por X-11 es la Tabla B9. Para facilitar la comprensión de la misma, vamos a detallar a continuación las etapas de cálculo que se realizan a partir de tablas que —desgraciadamente— no pueden ser recuperadas en las versiones actuales de los programas de la familia X-11 (se trata de las tablas que fueron designadas aquí desde B9a hasta B9f).

Etapa 1: Estimación de la componente estacional

Los datos de la tabla B8 son alisados, columna por columna (mes por mes), con una media móvil 3×5 , cuyos coeficientes y los coeficientes de las medias asimétricas asociadas figuran en la Tabla 3.14 (*cf.* pág. 50). De modo que los valores de la componente estacional-irregular de los meses de abril de 1986 hasta 1994 son los siguientes:

108.622, 103.451, 99.414, 101.264, 100.652, 103.750, 103.367, 101.243, 100.180.

El factor estacional del mes de abril de 1989 será entonces estimado así:

$$ABR89 = \frac{108.622 + 103.451 \times 2 + 99.414 \times 3 + 101.264 \times 3}{15} + \frac{100.652 \times 3 + 103.750 \times 2 + 103.367}{15}$$
$$= 102.025.$$

Se puede aplicar esta media móvil simétrica para estimar los valores de los coeficientes estacionales de los años 1989 hasta 1991. Para el inicio de la serie (años 1986

hasta 1988) y para el fin de la serie (años 1992 hasta 1994), se emplean las medias asimétricas definidas anteriormente (*cf.* Tabla B9a, pág. 85). Por ejemplo, el valor del coeficiente estacional para el mes de abril de 1987 (con un punto pasado, el punto actual y tres puntos futuros) es el siguiente:

$$ABR87 = \frac{108.622 \times 15 + 103.451 \times 15 + 99.414 \times 15}{60} + \frac{101.264 \times 11 + 100.652 \times 4}{60}$$
$$= 103.147$$

Etapa 2: Normalización de los coeficientes estacionales

Se aplica a la Tabla B9a una media móvil centrada sobre 12 meses para obtener la Tabla B9b (*cf.* pág. 85). El primer término que se puede calcular es entonces el del mes de abril de 1986 y el último es el del mes de setiembre de 1994. De modo que:

$$\begin{array}{rcl} ABR86 & = & \dfrac{111.803}{24} + \\ & & \dfrac{107.583 + 101.831 + 102.186 + 100.386 + 107.447}{12} + \\ & & \dfrac{103.444 + 97.028 + 103.833 + 95.293 + 66.812 + 102.916}{12} + \\ & & \dfrac{111.496}{24} \\ & = & 100.034. \end{array}$$

Los seis primeros valores (desde octubre de 1985 hasta marzo de 1986) que no pueden ser calculados con esta media móvil simétrica, son tomados iguales al primer valor calculable, el del mes de abril de 1986. Se procede de la misma manera para el fin de la serie: el valor calculado para setiembre de 1994 (99.976) es repetido para los seis meses siguientes.

Los coeficientes estacionales normalizados se calculan dividiendo la Tabla B9a con la Tabla B9b, para obtener la Tabla B9c (*cf.* pág. 85).

Por ejemplo: $ABR86 = 100 \times 103.444/100.034 = 103.409$.

Etapa 3: Estimación de la componente irregular

Para obtener la Tabla B9d (*cf.* pág. 85) es suficiente dividir la componente estacional-irregular de la Tabla B8 con los coeficientes estacionales normalizados de la Tabla B9c.

Se obtiene así: $ABR86 = 100 \times 108.622/103.409 = 105.041$.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.803	107.583	101.831
1986	102.186	100.386	107.447	103.444	97.028	103.833	95.293	66.812	102.916	111.496	107.899	101.660
1987	102.573	100.199	107.399	103.147	97.231	103.700	95.192	67.258	102.471	111.238	108.370	101.295
1988	103.089	100.040	107.403	102.525	97.520	103.441	95.150	68.070	101.809	111.212	108.809	100.658
1989	103.899	99.859	107.240	102.025	97.711	103.004	95.241	68.959	101.314	111.314	108.970	100.077
1990	104.532	99.715	107.024	101.817	97.530	102.747	95.532	69.692	101.004	111.471	108.955	99.669
1991	104.905	99.449	106.899	101.861	97.314	102.464	95.807	70.265	101.078	111.463	108.699	99.674
1992	104.726	99.208	107.073	102.010	96.961	102.391	96.134	70.550	101.394	111.103	108.329	100.121
1993	104.205	99.083	107.544	101.929	96.722	102.550	96.058	70.779	101.975	110.432	108.036	100.701
1994	103.670	98.987	107.985	101.920	96.432	102.861	95.937	70.801	102.391	110.004	107.932	101.098
1995	103.230	98.939	108.361									

Tabla 4.39: $\mathbf{B9a}$: Factores estacionales provisorios (media móvil 3 \times 5).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.034	100.034	100.034
1986	100.034	100.034	100.034	100.034	100.034	100.041	100.050	100.058	100.048	100.034	100.030	100.033
1987	100.023	100.037	100.037	100.008	100.017	100.021	100.028	100.042	100.036	100.010	99.996	99.998
1988	99.985	100.017	100.023	99.995	100.012	100.004	100.011	100.037	100.023	99.995	99.982	99.972
1989	99.958	99.998	100.015	99.999	100.010	99.992	99.994	100.015	100.000	99.982	99.966	99.948
1990	99.949	99.992	100.009	100.003	100.009	99.991	99.990	99.994	99.978	99.974	99.967	99.946
1991	99.946	99.981	100.008	100.011	100.000	99.990	99.982	99.965	99.962	99.975	99.967	99.949
1992	99.960	99.985	100.010	100.009	99.978	99.981	99.978	99.951	99.966	99.982	99.969	99.965
1993	99.969	99.975	100.009	100.005	99.965	99.977	99.979	99.953	99.967	99.985	99.973	99.973
1994	99.981	99.977	99.995	99.995	99.973	99.985	99.983	99.963	99.976	99.976	99.976	99.976
1995	99.976	99.976	99.976									

Tabla 4.40: **B9b**: Media móvil centrada sobre 12 meses.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.765	107.547	101.796
1986	102.151	100.352	107.411	103.409	96.994	103.791	95.246	66.774	102.866	111.458	107.867	101.627
1987	102.550	100.162	107.359	103.139	97.215	103.678	95.165	67.229	102.434	111.226	108.374	101.298
1988	103.104	100.023	107.378	102.530	97.509	103.437	95.140	68.045	101.786	111.217	108.828	100.686
1989	103.943	99.860	107.224	102.027	97.702	103.012	95.247	68.949	101.314	111.334	109.008	100.130
1990	104.585	99.724	107.014	101.814	97.522	102.756	95.542	69.697	101.027	111.499	108.990	99.723
1991	104.961	99.468	106.890	101.850	97.314	102.475	95.824	70.290	101.117	111.490	108.735	99.725
1992	104.768	99.223	107.062	102.001	96.982	102.410	96.155	70.584	101.429	111.123	108.363	100.155
1993	104.237	99.108	107.534	101.923	96.756	102.574	96.078	70.812	102.009	110.449	108.066	100.728
1994	103.689	99.010	107.990	101.925	96.458	102.876	95.953	70.827	102.415	110.030	107.958	101.122
1995	103.254	98.962	108.386									

Tabla 4.41: **B9c**: Factores estacionales normalizados.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.090	100.306	97.755
1986	103.792	98.051	96.285	105.041	99.477	98.291	102.593	96.192	100.027	102.909	98.491	101.011
1987	96.390	100.984	102.405	100.303	98.702	99.896	102.073	97.330	100.774	99.363	99.547	101.631
1988	97.206	102.040	102.054	96.961	100.933	101.358	97.081	101.760	102.206	95.787	100.160	101.845
1989	100.965	99.676	99.147	99.252	99.745	102.761	97.395	101.092	98.962	99.896	102.047	98.597
1990	101.246	98.507	100.541	98.859	102.286	97.592	100.173	102.273	97.275	102.000	101.109	96.865
1991	102.836	99.338	97.488	101.865	100.480	97.721	102.912	99.216	98.531	101.832	98.408	99.472
1992	100.899	100.849	99.414	101.340	97.798	100.264	100.773	97.952	101.940	101.215	98.946	100.456
1993	96.838	101.485	101.427	99.333	98.720	101.160	99.976	100.302	100.459	97.866	100.554	101.475
1994	99.299	99.091	100.419	98.288	101.824	100.683	97.380	102.785	100.336	97.772	100.413	100.347
1995	101.180	98.553	100.188									

Tabla 4.42: **B9d**: Componente irregular provisoria.

Etapa 4: Cálculo de una desviación estándar móvil

La desviación estándar que corresponde al año 1989 será calculada con los datos de los años 1987 hasta 1991 (dos años antes y dos años después) conforme a la siguiente fórmula ¹³:

$$\sigma_{89} = \left[\frac{1}{60} \sum_{t=Ene87}^{Dic91} (I_t - 100)^2 \right]^{1/2} = 1.8846.$$

Las desviaciones estándar de los años 1988, 1990, 1991 y 1992 son calculadas con el mismo principio.

En X-11-ARIMA, como en X-12-ARIMA, la desviación estándar de 1987 se calcula con el conjunto de observaciones disponibles desde 1985 hasta 1990, o sea 63 observaciones. Esas primeras estimaciones de las desviaciones estándar móviles son presentadas en la Tabla B9e (cf. pág. 87), en la columna «Desviación estándar 1».

Ese primer cálculo sirve para localizar, eventualmente, los puntos atípicos. El valor de un año dado será considerado atípico si se aleja, en valor absoluto de su desvío a la media teórica, en más de 2.5 veces la desviación estándar que corresponde a ese año. Como se puede ver en la Figura 4.9, en el caso de nuestro ejemplo, ningún valor es considerado atípico.

Figura 4.9: $\bf B9d$: Desvío de lo irregular a su media teórica y «límites de confianza» asociados a $\pm 1.5\sigma$ y $\pm 2.5\sigma$.

El cálculo de la desviación estándar conduce a los mismos resultados (columna «Desviación estándar 2» de la Tabla B9e, cf. pág. 87).

Etapa 5: Detección de los valores atípicos y ponderación de lo irregular

Los valores de lo irregular son ubicados con respecto a los «límites de confianza» superiores e inferiores que fueron calculados anteriormente con las desviaciones estándar estimadas. Todos los valores situados más allá de los «límites de confianza» inferiores serán considerados atípicos. Esos valores son corregidos diferentemente. Los pesos asociados a los mismos (multiplicados por 100) figuran en la Tabla B9f.

¹³ Aquí la media teórica es considerada igual a 100 para tener en cuenta que los valores de lo irregular ya han sido multiplicados por 100.

Año	Desviación estándar 1	Desviación estándar 2
1985	2.0774	2.0774
1986	2.0774	2.0774
1987	2.0774	2.0774
1988	2.1038	2.1038
1989	1.8846	1.8846
1990	1.8082	1.8082
1991	1.6093	1.6093
1992	1.6246	1.6246
1993	1.6030	1.6030
1994	1.6030	1.6030
1995	1.6030	1.6030

Tabla 4.43: **B9e**: Desviaciones estándar móviles sobre 5 años.

Por ejemplo, para el mes de octubre de 1988, se obtiene:

$$|OCT88 - 100| = |95.787 - 100| = 4.213,$$

y
$$1.5 \times \sigma_{88} = 1.5 \times 2.1038 = 3.1557 < 4.213 < 2.5 \times \sigma_{88} = 2.5 \times 2.1038 = 5.2595.$$

A este valor, que se considera atípico, se le atribuye un peso proporcional a su desvío a la media constante siguiente:

$$peso(OCT88) = \frac{5.2595 - 4.213}{5.2595 - 3.1557} = 0.497.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.000	100.000	100.000
1986	67.475	100.000	71.178	7.340	100.000	100.000	100.000	66.711	100.000	100.000	100.000	100.000
1987	76.235	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	49.731	100.000	100.000
1989	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	99.273	100.000	100.000	76.630
1991	73.758	100.000	93.885	100.000	100.000	100.000	69.057	100.000	100.000	100.000	100.000	100.000
1992	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1993			100.000									
			100.000	100.000	100.000	100.000	86.573	76.236	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

Tabla 4.44: **B9f**: Pesos asociados a los valores de lo irregular.

Etapa 6: Corrección de los valores atípicos de la componente estacional-irregular

Por último, la corrección de la componente estacional-irregular (Tabla B8) se hace con esos pesos. Por ejemplo, el valor del mes de octubre de 1988 será reemplazado con la media: de este valor afectada de su peso; y de los dos valores anteriores y siguientes del mismo mes que hayan recibido una ponderación íntegra, es decir que no hayan sido considerados atípicos.

Como lo muestra la Tabla B9f, se trata de los valores de los meses de octubre de 1986, 1987, 1990 y 1991. Lo que lleva a resultado siguiente:

$$SI(OCT88) = \frac{114.700 + 110.518 + 106.532 \times 0.497 + 111.218 + 113.729}{4 + 0.497}$$

= 111.877.

El valor del mes de enero de 1986 también fue considerado atípico. Pero, como está ubicado al inicio de la serie, se lo corrige de otra manera: ese valor es reemplazado

con la media: del valor afectado con su peso; y de los cuatro valores más próximos, del mismo mes, que hayan recibido una ponderación íntegra. En este caso, se trata —como lo muestra la Tabla B9f— de los valores del mes de enero de 1988, 1989, 1990 y 1992.

Lo que lleva a resultado siguiente (cf. Tabla B9g):

$$SI(ENE86) = \frac{106.024 \times 0.675 + 100.224 + 104.946 + 105.888 + 105.710}{4 + 0.675}$$

= 104.457.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										112.983	107.876	99.511
1986	104.457	98.396	107.611	101.329	96.487	102.017	97.716	68.245	102.894	114.700	106.240	102.655
1987	103.337	101.148	109.941	103.451	95.953	103.570	97.138	65.434	103.227	110.518	107.883	102.950
1988	100.224	102.064	109.583	99.414	98.419	104.841	92.362	69.242	104.031	111.877	109.002	102.544
1989	104.946	99.537	106.309	101.264	97.453	105.856	92.766	69.702	100.263	111.218	111.239	98.725
1990	105.888								101.123			99.679
1991	105.353	98.809	106.753	103.750	97.781	100.139	95.836	69.739	99.631	113.533	107.003	99.199
1992	105.710	100.065	106.435	103.367	94.846	102.680	96.898	69.139	103.396	112.474	107.221	100.612
1993	104.314	100.580	109.069	101.243	95.517	103.763	96.055	71.026	102.478	108.092	108.664	102.213
1994	102.962	98.110	108.443	100.180	98.218	103.579	95.015	70.697	102.759	107.579	108.403	101.473
1995	104.473	97.530	108.590									

Tabla 4.45: **B9g**: Componente estacional-irregular corregida.

Todos esos cálculos llevan a producir la Tabla B9 que fue presentada al comenzar este ejemplo (*cf.* pág. 83).

4.1.10 Tabla B10: Estimación de la componente estacional

Descripción y modalidades de cálculo

Esta estimación se obtiene de la misma manera que la Tabla B5 (*cf.* Sección §4.1.5), es decir con los valores de la componente estacional-irregular de la Tabla B8, corregidos con los valores de la Tabla B9. Para ello, se procede en dos etapas: estimación de la componente estacional y luego normalización de los coeficientes estacionales.

Como en el caso de la Tabla B9, pero contrariamente a lo hecho en el caso de la Tabla B5 ($\it cf.$ pág. 75), la estimación de la componente estacional se hace aquí con una media móvil 3×5 .

Comentario

El utilizador puede seleccionar la media móvil que será utilizada. En ese caso, X-11-ARIMA permite elegir entre una media móvil simple sobre 3 términos, una 3×3 , una 3×5 , una 3×9 y una estacionalidad estable. X-12-ARIMA propone, además, una media móvil 3×15 .

Ejemplo

La estimación se hace con la componente estacional-irregular corregida que figura en la Tabla B9g.

Etapa 1: Estimación de la componente estacional

Los datos de la Tabla B9g son alisados, columna por columna (mes por mes), con una media móvil 3×5 (cf. Tabla 3.14, pág. 50), para producir la Tabla B10a (cf. pág. 90). El factor estacional del mes de abril de 1989 es estimado así:

$$ABR89 = \frac{101.329 + 103.451 \times 2 + 99.414 \times 3 + 101.264 \times 3}{15} + \frac{100.652 \times 3 + 103.750 \times 2 + 103.367}{15}$$

$$= 101.539.$$

Para el inicio de la serie (años 1986 hasta 1988) y para el fin de la misma (años 1992 hasta 1994), se emplean las medias asimétricas definidas anteriormente. Por ejemplo:

$$ABR87 = \frac{101.329 \times 15 + 103.451 \times 15 + 99.414 \times 15}{60} +$$

$$= \frac{101.264 \times 11 + 100.652 \times 4}{60}$$

$$= 101.324$$

(un punto en el pasado, el punto actual y tres puntos en el futuro).

Etapa 2: normalización de los coeficientes estacionales

En la Tabla B10a se aplica una media móvil centrada sobre 12 meses para obtener la Tabla B10b (*cf.* pág. 90). El primer término que se puede calcular es entonces el del mes de abril de 1986 y el último es el del mes de setiembre 1994.

De modo que:

$$ABR86 = \frac{112.605}{24} + \frac{107.583 + 101.831 + 103.013 + 100.386 + 108.635}{12} + \frac{101.378 + 97.028 + 103.833 + 95.293 + 67.950 + 102.916}{12} + \frac{112.476}{24} = 100.199$$

Los seis primeros valores, desde octubre de 1985 hasta marzo de 1986, que no pueden ser calculados con esa media móvil simétrica, serán tomados iguales al primer valor calculable, el del mes de abril de 1986. Se procede del mismo modo para el fin de la serie: el valor calculado para setiembre de 1994 (100.016) es repetido para los seis meses siguientes. Los coeficientes estacionales normalizados se obtienen dividiendo la Tabla B10a con la Tabla B10b, lo que lleva a producir la Tabla B10 (cf. pág. 89).

Obtenemos por ejemplo:

$$ABR86 = 100 \times 101.378/100.199 = 101.177.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										112.605	107.583	101.831
1986	103.013	100.386	108.635	101.378	97.028	103.833	95.293	67.950	102.916	112.476	107.899	101.660
1987	103.304	100.199	108.447	101.324	97.231	103.700	95.192	68.261	102.661	112.396	108.370	101.501
1988	103.654	100.040	108.201	101.431	97.520	103.441	94.965	68.672	102.189	112.281	108.809	101.069
1989	104.048	99.859	107.859	101.539	97.711	103.004	94.871	69.227	101.884	112.383	108.970	100.694
1990	104.539	99.715	107.534	101.817	97.530	102.747	94.976	69.692	101.574	112.184	108.955	100.286
1991	104.837	99.449	107.408	101.861	97.314	102.464	95.356	70.125	101.648	111.819	108.699	100.291
1992	104.883	99.208	107.583	102.010	96.961	102.391	95.769	70.235	101.774	111.103	108.329	100.532
1993	104.591	99.083	107.883	101.929	96.722	102.550	95.943	70.253	102.165	110.432	108.036	100.906
1994	104.341	98.987	108.155	101.920	96.432	102.861	95.967	70.205	102.391	110.004	107.932	101.098
1995	104.185	98.939	108.361									

Tabla 4.46: B10a : Componente estacional preliminar (media móvil 3 \times 5).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.199	100.199	100.199
1986	100.199	100.199	100.199	100.199	100.207	100.213	100.218	100.222	100.206	100.196	100.202	100.205
1987	100.196	100.204	100.207	100.193	100.209	100.222	100.230	100.238	100.221	100.215	100.232	100.233
1988	100.213	100.221	100.218	100.194	100.207	100.207	100.206	100.215	100.193	100.183	100.196	100.185
1989	100.163	100.182	100.193	100.184	100.195	100.186	100.191	100.206	100.186	100.184	100.188	100.170
					100.164							
1991	100.099	100.133	100.154	100.142	100.116	100.106	100.108	100.100	100.097	100.110	100.102	100.084
					100.060							
					100.022							
1994	100.037	100.036	100.043	100.035	100.013	100.016	100.018	100.009	100.016	100.016	100.016	100.016
1995	100.016	100.016	100.016									

Tabla 4.47: **B10b** : Media móvil centrada sobre 12 términos.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										112.382	107.370	101.629
1986	102.809	100.187	108.419	101.177	96.828	103.613	95.086	67.799	102.704	112.255	107.681	101.452
1987	103.102	99.995	108.223	101.129	97.028	103.470	94.973	68.099	102.435	112.154	108.120	101.265
1988	103.433	99.820	107.966	101.235	97.319	103.227	94.770	68.525	101.992	112.076	108.596	100.882
1989	103.879	99.677	107.652	101.352	97.521	102.812	94.690	69.085	101.694	112.177	108.766	100.523
1990	104.368	99.529	107.326	101.641	97.371	102.597	94.842	69.593	101.446	112.046	108.828	100.190
1991	104.734	99.317	107.243	101.717	97.201	102.356	95.253	70.055	101.550	111.696	108.588	100.207
1992	104.780	99.089	107.443	101.902	96.902	102.335	95.718	70.210	101.731	111.046	108.287	100.497
1993	104.540	99.027	107.804	101.865	96.700	102.524	95.913	70.242	102.141	110.394	108.012	100.883
1994	104.302	98.952	108.108	101.884	96.419	102.844	95.950	70.199	102.374	109.987	107.915	101.082
1995	104.169	98.923	108.343									

Tabla 4.48: ${\bf B10}$: Componente estacional.

4.1.11 Tabla B11: Estimación de la serie corregida de variaciones estacionales Descripción y modalidades de cálculo

Esta estimación se obtiene simplemente (cf. Tabla B11, pág. sig.), retirando a la serie inicial de la Tabla B1 (cf. pág. 61), la estimación estacional de la Tabla B10. Se obtiene: B11 = B1 op B10.

Ejemplo

Por ejemplo, el valor del mes de abril de 1986 es el siguiente:

$$ABR86 = 100 \times 109.500/101.177 = 108.226.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										102.953	102.263	98.988
1986	103.687	98.516	95.832	108.226	100.901	100.084	104.853	96.904	102.430	104.316	100.575	102.906
1987	97.476	103.205	104.322	105.905	103.063	104.668	107.188	100.882	106.117	104.231	106.086	108.626
1988	104.125	110.399	109.942	106.781	110.359	111.115	106.785	110.908	112.362	105.197	111.698	113.697
1989	113.498	112.563	111.656	113.169	113.309	117.010	111.522	114.931	112.297	112.947	116.581	112.114
	116.032											
1991	117.727	113.576	111.243	117.385	116.563	114.014	121.046	116.480	114.624	118.536	114.930	115.561
1992	117.866	117.975	115.410	117.760	113.310	115.991	117.114	113.944	117.270	116.168	112.755	113.238
	108.762											
1994	111.503	112.681	114.700	113.266	118.234	117.654	114.123	121.655	117.803	114.923	118.334	118.716
1995	119.134	117.566	120.173									

Tabla 4.49: **B11**: Serie corregida de variaciones estacionales.

4.1.12 Tabla B13: Estimación de la componente irregular

Descripción y modalidades de cálculo

Esta estimación (cf. Tabla B13, pág. 92) se obtiene simplemente, retirando a la serie corregida de variaciones estacionales de la Tabla B11, la estimación de la componente tendencia-ciclo de la Tabla B7 (cf. pág. 80): B13 = B11 op B7.

Ejemplo

Por ejemplo, el valor del mes de abril de 1986 es el siguiente:

$$ABR86 = 100 \times 108.226/100.809 = 107.358.$$

4.1.13 Estimación del efecto debido a la composición diaria del mes (Trading-Day)

Algunas series económicas —por ejemplo el índice mensual de volumen de negocios de una firma minorista— pueden estar fuertemente influenciadas por la composición diaria del mes: un sábado de más o de menos en un mes, puede hacer variar de manera no despreciable el índice mensual del volumen de negocios. Esos **efectos de los días hábiles**, así como la estacionalidad, pueden hacer delicadas las comparaciones de los valores de la serie entre un mes y otro de un mismo año, o las comparaciones de los valores de un mismo mes entre un año dado y otro. Es por ello que, generalmente,

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.535	100.471	97.916
1986	103.127	98.213		107.358						102.178	98.661	101.186
1987	95.874	101.153	101.588	102.296	98.892	100.097	102.280	96.086	100.774	98.541	99.781	101.664
1988	96.897	102.248	101.498	98.202	101.130	101.564	97.460	101.047	101.999	95.053	100.374	101.647
1989	101.028	99.859	98.753	99.913	99.930	102.961	97.968	100.893	98.592	99.146	102.274	98.212
1990	101.457	98.700	100.249	99.026	102.444	97.743	100.912	102.425	96.873	101.503	101.259	96.413
1991	103.060	99.489	97.167	101.999	100.597	97.834	103.528	99.549	98.111	101.645	98.541	98.994
1992	100.887	100.985	99.061	101.438	97.878	100.337	101.233	98.474	101.637	101.286	99.015	100.115
1993	96.558	101.568	101.173	99.389	98.776	101.209	100.148	101.117	100.329	97.915	100.604	101.319
1994	98.715	99.149	100.309	98.327	101.865	100.715	97.384	103.706	100.376	97.811	100.452	100.387
1995	100.292	98.592	100.227									

Tabla 4.50: **B13**: Componente irregular.

cuando se considera que esos efectos son estadísticamente significativos, se los retira de la serie durante el proceso de desestacionalización.

Por ejemplo, la componente irregular de la Tabla B13 no contiene, por construcción, ni tendencia, ni estacionalidad. En consecuencia, si existen efectos ligados a los días hábiles, no es en esta componente que se los podrá encontrar ¹⁴. De modo que es bastante natural que se utilice un estimador de la componente irregular para identificar la presencia eventual de efectos de días hábiles, por ejemplo empleando un modelo de regresión lineal.

El utilizador puede, si lo demanda, hacer una estimación y corrección automática de esos efectos. Es lo que se hace en las Tablas B14, B15, B16, B18 y B19 de la Etapa B y en las tablas equivalentes de la Etapa C.

Algunas particularidades de nuestro calendario

Nuestro calendario se funda en el ritmo solar. La Tierra efectúa un giro completo alrededor del Sol en 365 días y unas 6 horas. Para tomar en cuenta esas 6 horas suplementarias, el calendario admite 365 días para 3 de cada 4 años. Para el cuarto año (llamado **año bisiesto**) el calendario agrega un día más: el 29 de febrero . La regla que se respeta es que el año bisiesto debe corresponder a todo año cuya expresión numérica es múltiple de 4. Sin embargo, esta corrección es muy fuerte. Por eso es que los años seculares no son bisiestos, salvo cuando son divisibles por 400 (1600, 2000, 2400, ...). Aún así subsiste un pequeño error que es estimado a un día cada 4000 años... Nuestro calendario, expresado en meses, es entonces periódico —de período 4— al menos entre 1901 y 2099.

Para una fecha dada, el día que le corresponde sufre un desfase temporal: si el primero de enero de un año no bisiesto es un sábado, el año siguiente será un domingo; y si el año de referencia es bisiesto, el año siguiente será un lunes. Hay que esperar 28 años (4×7) para encontrar la misma estructura anual en términos de fechas y de días.

Los efectos de días hábiles

Retomando la notación de FINDLEY *e alii*. [22], admitiremos a continuación que el j-ésimo días de la semana tiene un efecto α_j , en donde j=1 designa el lunes, j=2

¹⁴En efecto, las características espectrales de los efectos de los días hábiles son tales, que éstos pueden ser eliminados con las medias móviles de Henderson (es por ello que no pueden subsistir en la componente tendencia-ciclo) y con las medias móviles aplicadas sobre cada mes para extraer los coeficientes estacionales (es por ello que no pueden subsistir en la componente estacional).

el martes, ... y j=7 el domingo. Cada α_j representa, por ejemplo, el promedio de ventas del día j. Si D_{jt} representa el número de días j en el mes t, la longitud del mes será $N_t = \sum_{j=1}^7 D_{jt}$ y el efecto acumulado para ese mes (las ventas totales del mes) será $\sum_{j=1}^7 \alpha_j D_{jt}$. Por otra parte, nótese que $\bar{\alpha} = \sum_{j=1}^7 \alpha_j / 7$ es el efecto promedio diario, es decir el promedio de ventas de un día. Como por construcción $\sum_{j=1}^{7} (\alpha_j - \bar{\alpha}) = 0$, podemos escribir:

$$\sum_{j=1}^{7} \alpha_{j} D_{jt} = \bar{\alpha} N_{t} + \sum_{j=1}^{7} (\alpha_{j} - \bar{\alpha}) D_{jt}$$

$$= \bar{\alpha} N_{t} + \sum_{j=1}^{6} (\alpha_{j} - \bar{\alpha}) (D_{jt} - D_{7t}). \tag{4.1}$$

El efecto acumulado del mes se descompone en un efecto directamente ligado a la longitud del mes y en un efecto neto de cada día de la semana.

Se puede señalar que, en realidad, la suma $\sum_{i=1}^{7} (\alpha_j - \bar{\alpha}) D_{jt}$ hace intervenir únicamente los días de la semana que aparecen 5 veces en el mes.

Todo mes contiene: 4 semanas completas para las cuales —por definición— se anula el efecto ligado a los días; más 0, 1, 2 o 3 días que participan al efecto de días hábiles del mes.

El modelo de regresión

La ecuación (4.1) debe ser corregida de esos efectos para ser homogénea con la variable a explicar, la componente irregular de la Tabla B13, la cual no contiene ni estacionalidad ni tendencia.

- El término $\bar{\alpha}N_t$ de esa ecuación contiene potencialmente tales componentes, puesto que los meses tienen diferente longitud y que -como vimos precedentemente— la variable N_t es periódica, de período 48 meses (4 años). Se puede resumir esos efectos para la cantidad $\bar{\alpha}N_t^*$, en donde N_t^* representa la media, sobre 4 años, de la longitud del mes t. En otros términos, N_t^* es igual a: 30 o a 31, si el mes considerado no es un mes de febrero; y es igual a 28.25 en el caso contrario. Se obtiene entonces: $\bar{\alpha}N_t = \bar{\alpha}N_t^* + \bar{\alpha}(N_t - N_t^*)$. En esta expresión el segundo término se anula, salvo para el mes de febrero.
- El segundo término de la ecuación (4.1) hace intervenir los D_{jt} , número de veces que el día j está presente en el mes t. Esas variables son periódicas, de período 336 meses (28 años) y de medias iguales para un mes dado 15. En ese término de la ecuación interviene la diferencia $D_{jt} - D_{7t}$ y como esas variables tienen todas el mismo comportamiento, en esa diferencia no hay ni estacionalidad ni tendencia.

La manera de corregir la ecuación (4.1) de esos efectos depende del esquema de composición que fue adoptado.

 $^{^{15}}$ Para un mes de 31 días, esta media es igual a 4.428574; para un mes de 30 días es igual a 4.285714 y para el mes de febrero es igual a 4.035714.

– En un **esquema multiplicativo**, se eliminan los efectos estacionales y tendenciales dividiendo la ecuación (4.1) con $\bar{\alpha}N_t^*$. Suponiendo que $\beta_j=\alpha_j/\bar{\alpha}-1$, se obtiene:

$$\frac{1}{N_t^*} \sum_{j=1}^{7} (\beta_j + 1) D_{jt} = \frac{N_t}{N_t^*} + \sum_{j=1}^{6} \beta_j \left(\frac{D_{jt} - D_{7t}}{N_t^*} \right)$$
(4.2)

Si I_t es una estimación de la componente irregular, Census-X11 y los programas directamente derivados de él, estiman los coeficientes $\beta=(\beta_1,\ldots,\beta_6)$ (y $\beta_7=-\sum_{j=1}^6\beta_j$) ajustando el siguiente modelo con los mínimos cuadrados habituales:

$$N_t^* I_t - N_t = \sum_{j=1}^6 \beta_j \left(D_{jt} - D_{7t} \right) + e_t.$$
 (4.3)

Lo cual corresponde al modelo propuesto por YOUNG [67].

– En un **esquema aditivo** se debe, lógicamente, substraer $\bar{\alpha}N_t^*$ a la ecuación (4.1). Lo que conduce a:

$$I_{t} = \beta_{0} \left(N_{t} - N_{t}^{*} \right) + \sum_{j=1}^{6} \beta_{j} \left(D_{jt} - D_{7t} \right) + e_{t}$$
 (4.4)

en donde $\beta_0 = \bar{\alpha}$ y $\beta_j = \alpha_j - \bar{\alpha}$ para $j = 1, \dots, 6$.

En Census X-11 y en X-11-ARIMA, se omite el primer regresor $N_t-N_t^*$ y sólo se estiman 6 parámetros.

Estimación de los parámetros

En el caso del esquema aditivo como en el caso del esquema multiplicativo, en Census X-11 y en X-11-ARIMA, se puede escribir el modelo de la siguiente manera:

$$Y_{t} = \sum_{j=1}^{6} \beta_{j} (D_{jt} - D_{7t}) + e_{t}$$
$$= \sum_{j=1}^{6} \beta_{j} Z_{jt} + e_{t},$$

En esa expresión: $Y_t=N_t^*I_t-N_t$ en el esquema multiplicativo; y en el esquema aditivo, $Y_t=I_t$.

Designando $\hat{\sigma}^2 = \hat{e}'\hat{e}/(n-6)$, siendo los \hat{e} los residuos de la regresión, la resolución con los mínimos cuadrados habituales ¹⁶ conduce a los siguientes resultados:

Parámetros	Varianza
$\hat{\beta} = (Z'Z)^{-1} Z'Y$ $\hat{\beta}_7 = -\sum_{j=1}^6 \hat{\beta}_j$	$\hat{s}^{2} \left(\hat{\beta}_{j} \right) = \hat{\sigma}^{2} \left(Z'Z \right)_{jj}^{-1}$ $\hat{s}^{2} \left(\hat{\beta}_{7} \right) = \hat{\sigma}^{2} \sum_{i=1}^{6} \sum_{j=1}^{6} \left(Z'Z \right)_{ij}^{-1}$

¹⁶El empleo de los CM y de los tests asociados se apoya en una hipótesis suplementaria: la componente irregular que se trata de explicar, no presenta ninguna (o una baja) autocorrelación.

Se dispone de los tests de Student (test T), para someter a prueba la nulidad de un coeficiente y del test de Fisher (test F), para someter a prueba la existencia de un efecto global debido a los días hábiles:

Hipótesis	Estadística	Test y Ley seguida
$\beta_j = k$	$t_j = rac{eta_j - k}{\hat{s}^2 \left(\hat{eta}_j ight)}$	test T, Ley de Student con $n-6$ grados de libertad.
$\beta_j=0, j=1,\ldots,6$	$F = \frac{\hat{\beta}' Z' Z \hat{\beta}}{6 \hat{\sigma}^2}$	test F, Ley de Fisher con 6 y $n-6$ grados de libertad.

4.1.14 Tabla B14: Valores de la componente irregular excluidos de la regresión para días hábiles

Descripción y modalidades de cálculo

A la demanda del utilizador, el programa puede estimar en la serie un efecto debido a la composición diaria del mes. Este efecto de calendario será buscado en la componente irregular y será evaluado por regresión lineal. Antes de eso, X-11 localiza los valores atípicos de la componente irregular y los excluye de los cálculos, haciendo así más robustos los resultados de la regresión.

La localización de los valores atípicos se hace en tres fases:

Etapa 1: Cálculo de la media de lo irregular por tipo de mes

Se distinguen aquí 15 tipos de meses diferentes:

- Los meses de 31 días que comienzan en un lunes, en un martes, en un miércoles, etc., o sea 7 categorías;
- Los meses de 30 días que comienzan en un lunes, en un martes, en un miércoles, etc., o sea otras 7 categorías;
- Los meses de febrero de 28 días (no se toman en cuenta los meses de febrero de 29 días).

Se agrupan en esas 15 clases los valores de la componente irregular y se calculan las medias m_i de cada clase. Se obtiene entonces n^* datos que se reparten en 15 grupos, cuyos efectivos son n_i , $(i=1,\ldots,15)$, siendo: $n^*=\sum_{i=1}^{15}n_i$ y $m_i=\sum_{j=1}^{n_i}I_{ij}/n_i$.

Etapa 2: Primer cálculo de una desviación estándar global y localización de los valores atípicos

Se calculan en cada clase los cuadrados de las desvíos a la media de la clase. La media de cada clase aporta una estimación de la desviación estándar global:

$$\sigma^{2} = \sum_{i=1}^{15} \sum_{j=1}^{n_{i}} (I_{ij} - m_{i})^{2} / n^{*}.$$

Se considera que un valor de lo irregular es atípica si se aleja demasiado de la media m_i de la clase a la cual pertenece. En otros términos, ese valor es atípico si verifica que: $|I_{ij}-m_i|\geq \lambda\times\sigma$, en donde σ es la desviación estándar global calculada anteriormente; y λ es un parámetro que puede ser modificado por el utilizador (por defecto, $\lambda=2.5$).

Etapa 3: Cálculo final de la desviación estándar global y localización de los valores atípicos

Se recomienzan las dos etapas precedentes, excluyendo los valores atípicos que hayan sido localizados en la primera iteración: cálculo de las medias de las clases; y estimación de la desviación estándar. En la Tabla B14 (cf. pág. 100) figuran los valores atípicos que fueron localizados de esta manera y que fueron excluidos de la regresión para días hábiles.

Comentarios

- n^* , el número de observaciones que intervienen en el cálculo de la desviación estándar es menor que n, que es el número total de observaciones de la serie, puesto que aquí no se toman en cuenta los años bisiestos.
- Teóricamente, nos situamos aquí en el marco de un modelo de análisis de la varianza con un factor y se busca evaluar el efecto de los días hábiles de cada uno de los 15 tipos de meses que fueron establecidos. Se admite entonces que, en cada clase i, lo irregular de la Tabla B13 sigue una Ley Normal de media variable m_i y de desviación estándar constante. En ese caso, la estimación hecha en la etapa 2 es una estimación sesgada de la desviación estándar σ desconocida, pero constante. Para obtener un estimador sin sesgo sería necesario dividir la primera estimación por n^*-15 .
- Para los meses de febrero de los años bisiestos no se calcula la media de la clase. Esta media es tomada igual a *xbar* (0 en un esquema aditivo, 1 en un esquema multiplicativo).
- En la etapa 3, se compara a la media teórica *xbar* los valores que fueron identificados atípicos durante la etapa 2.
- Excepción hecha de los valores identificados atípicos, se utilizan todas las observaciones para la regresión.

Ejemplo

Etapa 1: Cálculo de la media de lo irregular por tipo de mes

En primer lugar, se clasifican los meses según el número de días y el día que corresponde al primero de cada mes. Se distinguen así 15 clases de meses, lo cual conduce a la Tabla B14a.

Se calcula para cada grupo la media de los valores de lo irregular B13. Esas medias figuran en la última columna de la Tabla B14a.

Por ejemplo, para los meses de febrero de 28 días, se obtiene:

$$\begin{array}{ll} m_{Feb} & = & \frac{98.213 + 101.153 + 99.859 + 98.700 + 99.489}{8} \\ & + \frac{101.568 + 99.149 + 98.592}{8} = 99.590. \end{array}$$

Longitud	1^o del mes	Mes de referencia	Media
28		FEB86 FEB87 FEB89 FEB90 FEB91 FEB93 FEB94 FEB95	99.590
30	Domingo Lunes Martes Miércoles Jueves Viernes Sábado	JUN86 NOV87 ABR90 SEP91 NOV92 SEP86 JUN87 ABR91 JUN92 NOV93 ABR86 SEP87 NOV88 SEP92 JUN93 NOV94 ABR87 JUN88 NOV89 ABR92 SEP93 JUN94 SEP88 JUN89 NOV90 ABR93 SEP94 NOV85 ABR88 SEP89 JUN90 NOV91 ABR94 NOV86 ABR89 SEP90 JUN91	98.879 100.644 101.967 101.436 101.197 98.646 98.320
31	Domingo Lunes Martes Miércoles Jueves Viernes Sábado	DIC85 MAR87 MAY88 ENE89 OCT89 JUL90 DIC91 MAR92 AGO93 MAY94 ENE95 DIC86 AGO88 MAY89 ENE90 OCT90 JUL91 MAR93 AGO94 OCT85 JUL86 DIC87 MAR88 AGO89 MAY90 ENE91 OCT91 DIC92 MAR94 ENE86 OCT86 JUL87 MAR89 AGO90 MAY91 ENE92 JUL92 DIC93 MAR95 MAY86 ENE87 OCT87 DIC88 MAR90 AGO91 OCT92 JUL93 DICC94 AGO86 MAY87 ENE88 JUL88 DIC89 MAR91 MAY92 ENE93 OCT93 JUL94 MAR86 AGO87 OCT88 JUL89 DIC90 AGO92 MAY93 ENE94	100.277 101.691 101.493 101.303 99.703 97.310 97.188
	Viernes	DICC94 AGO86 MAY87 ENE88 JUL88 DIC89 MAR91 MAY92 ENE93 OCT93 JUL94	

Tabla 4.51: **B14a**: Repartición de los meses por tipo.

Etapa 2: Primer cálculo de una desviación estándar global y localización de los valores atípicos

Se calcula luego el valor absoluto del desvío de cada valor de lo irregular a la media de la clase a la cual pertenece (cf. Tabla B14b, pág. 99). Se obtiene, por ejemplo: JUN86 = |98.460 - 98.879| = 0.419 y FEB88 = |102.248 - 100| = 2.248.

La media del cuadrado de esos valores, excepto aquellos que corresponden a los meses de febrero de años bisiestos (cf. Tabla B14c, pág. 99), aporta la primera estimación de la desviación estándar:

$$\sigma = \left(\frac{1}{n^*} \sum_{i=1}^{15} \sum_{j=1}^{n_i} (I_{ij} - m_i)^2\right)^{1/2} = 1.2499$$

en donde $n^* = 114 - 2 = 112$. Esta desviación estándar servirá para determinar el límite con el cual un punto de lo irregular será considerado atípico. Por defecto, este límite est igual a 2.5 veces el valor de la desviación estándar, o sea 3.125.

Los dos únicos puntos que se alejan de más —en valor absoluto— de 3.125 (o sea 2.5σ) son los valores de abril de 1986 (mes de 30 días que comienza un martes) y de enero de 1987 (mes de 31 días que comienza un jueves). Se excluyen esos dos puntos y se rehacen los cálculos de las dos primeras etapas.

Etapa 3: Cálculo final de la desviación estándar global y localización de los valores atípicos

Se afectan únicamente las medias de los tipos de meses concernidos por los valores excluidos (cf. Tabla B14d, pág. 99). El cálculo del cuadrado de los desvíos a la media

conduce a una nueva estimación de la desviación estándar:

$$\sigma = \left(\frac{1}{n^* - 2} \sum_{i=1}^{15} \sum_{j=1}^{n_i} (I_{ij} - m_i)^2\right)^{1/2} = 1.0600.$$

La nueva media de los meses de 30 días que comienzan un martes es ahora de 100.889, en lugar de 101.967. El cuadrado del desvío a esta nueva media, para setiembre de 1987, será de $(100.774-100.889)^2=(0.115)^2=0.01323$, en lugar de $(100.774-101.967)^2=(-1.193)^2=1.423$.

En fin, nótese que en la Tabla B14e (cf. pág. 100), los puntos considerados atípicos en la etapa precedente, son comparados a la media teórica (que es aquí 100, para tener en cuenta el hecho que lo irregular fue multiplicado por 100). Por ejemplo, el desvío absoluto para enero de 1987 es: |95.874 - 100| = 4.126.

El nuevo límite que permite juzgar el carácter atípico de un punto es entonces el siguiente: $2.5 \times 1.06 = 2.65$. Los únicos valores de lo irregular que se alejan suficientemente de sus medias son los valores de abril de 1986 y de enero de 1987. Esos valores figuran en la Tabla B14 (cf pág. 100).

4.1.15 Tabla B15: Regresión previa para días hábiles

Descripción y modalidades de cálculo

Se estiman ahora los pesos diarios mediante una regresión por los mínimos cuadrados habituales, sobre los datos que no fueron considerados atípicos de la Tabla B13, siguiendo la metodología expuesta en la Sección §4.1.13.

Formulación del modelo de regresión

Según el esquema adoptado y con la notación definida en la Sección §4.1.13, se obtienen los modelos siguientes.

- Para un esquema multiplicativo: $N_t^*I_t - N_t = \sum_{j=1}^6 \beta_j \left(D_{jt} - D_{7t}\right) + e_t$ - Para un esquema aditivo: $I_t = \sum_{j=1}^6 \beta_j \left(D_{jt} - D_{7t}\right) + e_t$.

Deducción de los pesos diarios

En el caso aditivo, se emplean los β_j calculados con el modelo anterior para los pesos que serán utilizados en la desestacionalización.

En el caso multiplicativo, se agrega 1 a las estimaciones precedentes, o bien se emplean los pesos diarios *a priori* si fueron indicados en la Etapa A.

Comentarios

• En el caso aditivo, el paquete X-12-ARIMA introduce una variable explicativa suplementaria. Sin embargo, el principio de estimación sigue siendo el mismo.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										0.958	1.825	2.361
1986	1.825	1.378	1.798	5.391	0.055	0.419	1.273	2.572	0.459	0.875	0.341	0.505
1987	3.829	1.563	1.310	0.860	1.582	0.547	0.977	1.101	1.194	1.162	0.903	0.171
1988	0.413	2.248	0.005	0.444	0.853	0.128	0.150	0.645	0.802	2.134	1.594	1.944
1989	0.751	0.269	2.550	1.593	1.761	1.764	0.781	0.599	0.054	1.131	0.838	0.902
1990	0.234	0.890	0.546	0.148	0.951	0.903	0.634	1.123	1.448	0.188	0.063	0.774
1991	1.567	0.102	0.143	1.355	0.706	0.486	1.837	0.154	0.768	0.152	0.105	1.283
1992	0.416	0.985	1.216	0.002	0.568	0.307	0.070	1.287	0.330	1.582	0.137	1.378
1993	0.752	1.978	0.518	1.808	1.589	0.759	0.445	0.840	1.107	0.605	0.041	0.016
					1.588			2.015	0.821	0.623	1.515	0.684
1995	0.015	0.999	1.075									

Tabla 4.52: **B14b**: Desvíos a la media en valor absoluto.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										0.917	3.332	5.576
1986	3.330			29.061								
1987	14.661	2.442	1.717	0.740	2.504	0.300	0.955	1.212	1.425	1.350	0.815	0.029
1988	0.171	5.052	0.000	0.197	0.727	0.016	0.022	0.415	0.644	4.555	2.540	3.779
1989	0.564	0.072	6.501	2.536	3.101	3.112	0.609	0.359	0.003	1.280	0.702	0.813
1990	0.055	0.792	0.298	0.022	0.905	0.815	0.403	1.260	2.095	0.035	0.004	0.600
1991	2.456	0.010	0.021	1.835	0.498	0.236	3.374	0.024	0.590	0.023	0.011	1.646
1992	0.173	0.971	1.478	0.000	0.323	0.094	0.005	1.656	0.109	2.504	0.019	1.899
1993	0.565	3.912	0.268	3.267	2.524	0.575	0.198	0.706	1.225	0.366	0.002	0.000
1994	2.334	0.195	1.401	0.102	2.522	0.520	0.005	4.060	0.675	0.389	2.296	0.468
1995	0.000	0.998	1.156									

Tabla 4.53: **B14c** : Cuadrado de los desvíos a la media.

Longitud	1^o del mes	Mes de referencia	Media
28		FEB86 FEB87 FEB89 FEB90 FEB91 FEB93 FEB94 FEB95	99.590
30	Domingo Lunes Martes Miércoles Jueves Viernes Sábado	JUN86 NOV87 ABR90 SEP91 NOV92 SEP86 JUN87 ABR91 JUN92 NOV93 SEP87 NOV88 SEP92 JUN93 NOV94 ABR87 JUN88 NOV89 ABR92 SEP93 JUN94 SEP88 JUN89 NOV90 ABR93 SEP94 NOV85 ABR88 SEP89 JUN90 NOV91 ABR94 NOV86 ABR89 SEP90 JUN91	98.879 100.644 100.889 101.436 101.197 98.646 98.320
31	Lunes Martes	DIC85 MAR87 MAY88 ENE89 OCT89 JUL90 DIC91 MAR92 AGO93 MAY94 ENE95 DIC86 AGO88 MAY89 ENE90 OCT90 JUL91 MAR93 AGO94 OCT85 JUL86 DIC87 MAR88 AGO89 MAY90 ENE91 OCT91 DIC92 MAR94 ENE86 OCT86 JUL87 MAR89 AGO90 MAY91 ENE92 JUL92 DIC93 MAR95 MAY86 OCT87 DIC88 MAR90 AGO91 OCT92 JUL93 DIC94 AGO86 MAY87 ENE88 JUL88 DIC89 MAR91 MAY92 ENE93 OCT93 JUL94 MAR86 AGO87 OCT88 JUL89 DIC90 AGO92 MAY93 ENE94 OCT94	101.691 101.493 101.303 100.182 97.310

Tabla 4.54: B14d: Repartición de los meses que corresponden a valores de lo irregular que no fueron excluidos, por tipo de mes.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										0.958	1.825	2.361
1986											0.341	
1987	4.126	1.563	1.310	0.860	1.582	0.547	0.977	1.101	0.115	1.641	0.903	0.171
1988	0.413	2.248	0.005	0.444	0.853	0.128	0.150	0.645	0.802	2.134	0.515	1.465
1989	0.751	0.269	2.550	1.593	1.761	1.764	0.781	0.599	0.054	1.131	0.838	0.902
1990	0.234	0.890	0.067	0.148	0.951	0.903	0.634	1.123	1.448	0.188	0.063	0.774
1991	1.567	0.102	0.143	1.355	0.706	0.486	1.837	0.633	0.768	0.152	0.105	1.283
1992	0.416	0.985	1.216	0.002	0.568	0.307	0.070	1.287	0.748	1.104	0.137	1.378
1993	0.752	1.978	0.518	1.808	1.589	0.320	0.033	0.840	1.107	0.605	0.041	0.016
											0.437	
1995	0.015	0.999	1.075									

Tabla 4.55: **B14e** : Desvíos a la media en valor absoluto.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										0.917	3.332	5.576
1986	3.330	1.898	3.231	54.144	0.285	0.175	1.620	6.617	0.211	0.766	0.116	0.255
1987	17.022	2.442	1.717	0.740	2.504	0.300	0.955	1.212	0.013	2.692	0.815	0.029
1988	0.171	5.052	0.000	0.197	0.727	0.016	0.022	0.415	0.644	4.555	0.266	2.147
1989	0.564	0.072	6.501	2.536	3.101	3.112	0.609	0.359	0.003	1.280	0.702	0.813
1990	0.055	0.792	0.004	0.022	0.905	0.815	0.403	1.260	2.095	0.035	0.004	0.600
1991	2.456	0.010	0.021	1.835	0.498	0.236	3.374	0.401	0.590	0.023	0.011	1.646
1992	0.173	0.971	1.478	0.000	0.323	0.094	0.005	1.656	0.560	1.218	0.019	1.899
1993	0.565	3.912	0.268	3.267	2.524	0.102	0.001	0.706	1.225	0.366	0.002	0.000
1994	2.334	0.195	1.401	0.102	2.522	0.520	0.005	4.060	0.675	0.389	0.191	0.042
1995	0.000	0.998	1.156									

Tabla 4.56: $\mathbf{B14f}$: Cuadrado de los desvíos a la media.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				107.358								
1987	95.874											
1988												
1989					-							
1990				•		•						
1991		•		•	•	•	•		•	•		•
1992 1993	•	•	•	•	•	•	•	•	•	•	•	•
1993	•	•	•	•	•	•	•	•	•	•	•	•
1995			:		:			:	:	:	:	

Tabla 4.57: $\mathbf{B14}$: Valores de la componente irregular que fueron excluidos de la regresión para días hábiles.

El modelo estimado es entonces el siguiente:

$$I_t = \beta_0 (N_t - N_t^*) + \sum_{j=1}^6 \beta_j (D_{jt} - D_{7t}) + e_t.$$

- En el caso multiplicativo, si se hace un ajuste diario a priori, N_t y N_t^* son iguales a la suma mensual de los pesos diarios a priori.
- X-12-ARIMA permite introducir en la regresión otras variables predefinidas, o definidas por el utilizador. Ejemplos de variables predefinidas: el efecto de Pascua (cf. Capítulo 5); las variables indicadoras que modelizan los puntos atípicos; las variables que estiman los efectos de algunos asuetos festivos (Fiesta de Pentecostés, Día del Trabajo); etc.

Ejemplo

No haremos aquí la presentación —bastante fastidiosa— del conjunto de cálculos intermedios de la regresión que conducen a la Tabla B15 (cf. pág. 102). Se utilizan los métodos conocidos de regresión por mínimos cuadrados. Fijando un riesgo de primera especie, por ejemplo de 1%, los test se interpretan de la siguiente manera:

- El test F (de Fisher) rechaza la hipótesis nula de igualdad de los coeficientes diarios: se puede admitir entonces la existencia de un efecto debido a la composición diaria del mes. Efectivamente, la probabilidad de obtener un valor de la estadística de Fisher mayor que el valor calculado (31.257), es casi nula e inferior —en consecuencia— al riesgo de primera especie que ha sido fijado. En ese caso, se está en la región crítica del test, lo que no permite aceptar la hipótesis nula de igualdad de los coeficientes diarios.
- Los tests T (de Student) se interpretan de la misma manera, pero tomando en cuenta que la Ley de Student es simétrica. Es necesario comparar el valor Prob (T > |t|) a la mitad del riesgo de primera especie, o sea 0.005. Todos los tests que conduzcan a un valor inferior a 0.005 no permiten aceptar la hipótesis nula de igualdad de los coeficientes diarios. En nuestro caso, los coeficientes del martes, jueves, sábado y domingo son juzgados significativamente diferentes de cero.

Tabla B16: Coeficientes de ajuste para días hábiles extraídos de la regresión

Descripción y modalidades de cálculo

Los coeficientes mensuales M_t de ajuste para días hábiles se deducen directamente de las estimaciones de la regresión, utilizando las ecuaciones (4.2) y (4.4) de la Sección §4.1.13:

– Para un esquema multiplicativo: $M_t = \frac{1}{N_t^*} \sum_{j=1}^7 (\beta_j + 1) D_{jt}$ – Para un esquema aditivo: $M_t = \sum_{j=1}^7 \beta_j D_{jt}$

	Pesos Combinados	Pesos a priori	Coeficientes de la regresión	Desviación estándar	Т	Prob > t
Lunes	1.081	1.000	0.081	0.093	0.872	0.192
Martes	1.273	1.000	0.273	0.091	2.990	0.002
Miércoles	1.047	1.000	0.047	0.095	0.494	0.311
Jueves	1.319	1.000	0.319	0.095	3.362	0.001
Viernes	1.066	1.000	0.066	0.092	0.717	0.237
Sábado	0.565	1.000	-0.435	0.091	-4.772	0.000
Domingo	0.649	1.000	-0.351	0.093	-3.760	0.000

	Suma de cuadrados	g.d.l.	Media de cuadrados	F	Prob > F
Regresión	23.436	6	3.906	31.257	0.000
Error	13.246	106	0.125		
Total	36.682	112			

Tabla 4.58: **B15**: Regresión previa para días hábiles.

En donde N_t^* es igual al número de días del mes, si fueron dados los coeficientes de ajuste *a priori*. En el caso contrario, N_t^* es igual a 31, 30 o 28.25, según que el mes tenga, respectivamente, 31 o 30 días, o bien que se trate de un mes de febrero.

La componente irregular de la Tabla B13 es entonces corregida de esos efectos de calendario, lo que lleva a una Tabla B16bis (cf. pág. 103): $B16bis = B13 \ op \ B16$. Desgraciadamente, los programas disponibles no permiten editar esta tabla.

EjemploConsideremos, por ejemplo, el mes de abril de 1986.

	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo	N° de días
Pesos	1.0809	1.2732	1.0469	1.3187	1.0663	0.5653	0.6487	
Número de días	4	5	5	4	4	4	4	30

Se obtiene:

$$\begin{array}{lll} ABR86 & = & 100 \times \frac{4 \times 1.08089 + 5 \times 1.27322 + 5 \times 1.04691}{30} + \\ & & 100 \times \frac{4 \times 1.31870 + 4 \times 1.06625 + 4 \times 0.56534 + 4 \times 0.64868}{30} \\ & = & 101.067. \end{array}$$

O bien, como los días Martes y Miércoles figuran 5 veces:

$$ABR86 = 100 \times \frac{28 + 1.27322 + 1.04691}{30} = 101.067.$$

Se obtiene luego un valor corregido de la componente irregular (Tabla B16bis):

$$ABR86 = 100 \times 107.358/101.067 = 106.225.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										102.061	98,772	100.009
1986	101.393	99.115	97.726		99.840			97.678	101.180	101.393	97.380	101.294
1987	99.840	99.115	100.009	101.219	97.678	101.180	101.393	97.726	101.067	99.840	99.099	102.061
1988	97.678	102.941	102.061	98.772	100.009	101.219	97.678	101.294	101.283	97.726	101.067	99.840
1989	100.009	99.115	101.393	97.380	101.294	101.283	97.726	102.061	98.772	100.009	101.219	97.678
1990	101.294	99.115	99.840	99.099	102.061	98.772	100.009	101.393	97.380	101.294	101.283	97.726
1991	102.061	99.115	97.678	101.180	101.393	97.380	101.294	99.840	99.099	102.061	98.772	100.009
1992	101.393	101.116	100.009	101.219	97.678	101.180	101.393	97.726	101.067	99.840	99.099	102.061
1993	97.678	99.115	101.294	101.283	97.726	101.067	99.840	100.009	101.219	97.678	101.180	101.393
1994	97.726	99.115	102.061	98.772	100.009	101.219	97.678	101.294	101.283	97.726	101.067	99.840
1995	100.009	99.115	101.393									

Tabla 4.59: B16: Coeficientes de ajuste para días hábiles extraídos de la regresión.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										98.505	101.721	97.907
1986	101.710	99.090	97.610	106.225	99.808	99.356	100.691	96.989	99.016	100.774	101.316	99.894
1987	96.028	102.056	101.578	101.064	101.243	98.929	100.874	98.323	99.710	98.699	100.689	99.612
1988	99.200	99.326	99.448	99.423	101.121	100.341	99.776	99.756	100.707	97.265	99.314	101.810
1989	101.019	100.751	97.396	102.601	98.654	101.657	100.248	98.856	99.818	99.137	101.042	100.546
1990	100.161	99.582	100.410	99.927	100.376	98.958	100.902	101.018	99.479	100.207	99.977	98.657
1991	100.979	100.377	99.476	100.809	99.215	100.467	102.206	99.709	99.003	99.592	99.766	98.985
1992	99.501	99.870	99.053	100.216	100.204	99.167	99.842	100.766	100.564	101.448	99.916	98.093
1993	98.853	102.475	99.881	,				101.108	,,,	100.242	99.430	99.926
1994	101.013	100.034	98.284	99.550	101.856	99.502	99.699	102.382	99.104	100.087	99.392	100.548
1995	100.283	99.472	98.850									

Tabla 4.60: **B16bis** : Componente irregular corregida de los efectos de días hábiles, extraídos de la regresión.

4.1.17 Tabla B17: Pesos preliminares para la corrección de lo irregular

Descripción y modalidades de cálculo

Con la estimación de la componente irregular de la Tabla B16bis, o con la estimación de la Tabla B13 (si no se seleccionó ninguna corrección específica para días hábiles) se busca ahora identificar y corregir los puntos atípicos. Para ello, se emplean los algoritmos de detección de los puntos atípicos y de cálculo de pesos correctivos que fueron presentados detalladamente con las Tablas B4 y B9 (*cf.* Secciones §4.1.4 y §4.1.9, respectivamente). Puesto que se dispone ya de una estimación de lo irregular, sólo se aplican las etapas 4 y 5.

Comentarios

Son válidos aquí los comentarios hechos a propósito de la Tabla B4 (cf. pág. 67) y de la Tabla B9 (cf. pág. 83), relativos al cálculo de las desviaciones estándar móviles y a los pesos correctivos.

Ejemplo

Cálculo de una desviación estándar móvil

La desviación estándar que corresponde al año 1989 es calculada con los datos de los años 1987 hasta 1991 ¹⁷ (dos años antes y dos años después), según la fórmula

 $^{^{17}}$ La media teórica es considerada aquí igual 100 para tomar en cuenta el hecho que los valores de lo irregular ya han sido multiplicados por 100.

siguiente:

$$\sigma_{89} = \left[\frac{1}{60} \sum_{t=Ene87}^{Dic91} (I_t - 100)^2 \right]^{1/2} = 1.198.$$

Las desviaciones estándar de los años 1988, 1990, 1991 y 1992 son calculadas según el mismo principio.

Para X-11-ARIMA y X-12-ARIMA, la desviación estándar de 1987 es calculada con el conjunto de las observaciones disponibles desde 1985 hasta 1990, o sea 63 valores. Los resultados del cálculo figuran en la Tabla B17a, en la columna «Desviación estándar 1».

Año	Desviación estándar 1	Desviación estándar 2
1985	1.5282	1.2322
1986	1.5282	1.2322
1987	1.5282	1.2322
1988	1.5142	1.1965
1989	1.1979	1.0918
1990	1.0200	1.0200
1991	1.0173	0.9740
1992	0.9484	0.8527
1993	0.9399	0.8479
1994	0.9399	0.8479
1995	0.9399	0.8479

Tabla 4.61: B17a: Desviaciones estándar móviles sobre 5 años.

Este primer cálculo sirve para localizar los eventuales puntos atípicos. Como lo muestra la Figura 4.10 (cf. pág. 105), los valores de los meses de abril de 1986, enero de 1987, febrero de 1993 y agosto de 1994, son considerados muy atípicos. Efectivamente, se obtiene por ejemplo: $|ABR86-100|=|106.225-100|=6.225>2.5\times\sigma_{86}=2.5\times1.5282=3.8205$, y $|AGO94-100|=|102.382-100|=2.382>2.5\times\sigma_{94}=2.5\times0.94=2.35$. En consecuencia, esos puntos son eliminados del segundo cálculo de la desviación estándar móvil. Lo que lleva a los resultados de la columna «Desviación estándar 2» de la Tabla B17a.

Detección y corrección de los valores atípicos

Los valores de lo irregular son situados con respecto a los «límites de confianza», superiores e inferiores, que fueron calculados con las nuevas estimaciones de las desviaciones estándar. Todos los valores que se sitúan más allá de los «límites de confianza inferiores» (cf. Figura 4.11, pág. 105) son considerados atípicos y —en consecuencia— serán corregidos diferentemente.

Los pesos, multiplicados por 100, asociados a cada uno de esos valores figuran en la Tabla B17.

Los valores que fueron considerados atípicos precedentemente, siguen siéndolo y se les afecta un peso nulo. Por ejemplo $|ABR86-100|=|106.225-100|=6.225>2.5\times\sigma_{86}=2.5\times1.2322=3.0805.$ El mes de octubre de 1988 está ubicado entre los dos «límites de confianza», por eso se considera que es moderadamente atípico y se obtiene |OCT88-100|=|97.265-100|=2.735, y $1.5\times\sigma_{88}=1.5\times1.1965=1.79475<2.735<2.5\times\sigma_{88}=2.5\times1.1965=2.99125.$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.000	100.000	80.138
1986	100.000	100.000	56.025	0.000	100.000	100.000	100.000	5.658	100.000	100.000	100.000	100.000
1987	0.000	83.133	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	21.455	100.000	98.701
1989	100.000	100.000	11.498	11.770	100.000	98.258	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
	100.000											
1992	100.000	100.000	100.000									
1,,,,	100.000	0.000	100.000						100.000			
	100.000			100.000	31.094	100.000	100.000	0.000	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

Tabla 4.62: **B17** : Pesos preliminares para la corrección de lo irregular (Los límites adoptados son: desde 1.5σ hasta 2.5σ .)

Figura 4.10: **B17**: Desvío a la media de lo irregular y «límites superiores de confianza» $\pm 2.5\sigma$. Primera estimación.

Figura 4.11: **B17**: Desvío a la media de lo irregular y «límites de confianza» $(\pm 1.5\sigma \text{ y} \pm 2.5\sigma)$. Segunda estimación.

Puesto que este valor es considerado moderadamente atípico, se le atribuye un peso proporcional a su desvío a la media constante, es decir que:

$$peso(OCT88) = \frac{2.99125 - 2.735}{2.99125 - 1.79475} = 0.214.$$

4.1.18 Tabla B18: Coeficientes para días hábiles combinados (procedentes del ajuste *a priori* y de la regresión para días hábiles)

Descripción y modalidades de cálculo

Si se seleccionó una opción de coeficientes diarios de corrección *a priori* de los efectos de días hábiles (únicamente en un esquema multiplicativo) con la opción de una regresión para días hábiles, la Tabla B18 (*cf.* pág. sig.) presenta el resultado combinado de esas dos correcciones, por simple adición de ambos efectos. Esos pesos diarios combinados permiten estimar los coeficientes de corrección para cada mes, de la misma manera que en la Tabla B16.

En el caso de un **esquema aditivo**, no se edita esa tabla puesto que no se puede emplear en ese caso la corrección *a priori*.

En el caso de un **esquema multiplicativo**, se calcula $M_t = \sum_{j=1}^7 \alpha_j D_{jt}/N_t^*$, en donde: D_{jt} es el número de días j (lunes, martes, miércoles, . . ., domingo) contenidos en el mes; $t, (\alpha_1, \dots, \alpha_7)$ son los pesos combinados de cada día (columna «pesos combinados» de la Tabla B15, cf. pág. 102); y N_t^* es igual al número de días del mes si los coeficientes de ajuste a priori fueron dados o —en el caso contrario— es igual a 31, 30 o 28.25, según que el mes tenga respectivamente 31 o 30 días o que se trate del mes de febrero.

Comentario

En X-12-ARIMA, pueden ser estimados otros efectos en el momento de hacer la regresión sobre la componente irregular (Pascua, Día del Trabajo, Fiesta de Pentecostés, etc.). En ese caso, la Tabla B18 toma en cuenta el conjunto de esos efectos.

EjemploEn nuestro caso, la Tabla B18 es idéntica a la Tabla B16 (*cf.* pág. 103).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										102.061	98.772	100.009
1986	101.393	99.115	97.726	101.067	99.840	99.099	102.061	97.678	101.180	101.393	97.380	101.294
1987	99.840	99.115	100.009	101.219	97.678	101.180	101.393	97.726	101.067	99.840	99.099	102.061
1988	97.678	102.941	102.061	98.772	100.009	101.219	97.678	101.294	101.283	97.726	101.067	99.840
1989	100.009	99.115	101.393	97.380	101.294	101.283	97.726	102.061	98.772	100.009	101.219	97.678
1990	101.294	99.115	99.840	99.099	102.061	98.772	100.009	101.393	97.380	101.294	101.283	97.726
1991	102.061	99.115	97.678	101.180	101.393	97.380	101.294	99.840	99.099	102.061	98.772	100.009
1992	101.393	101.116	100.009	101.219	97.678	101.180	101.393	97.726	101.067	99.840	99.099	102.061
1993	97.678	99.115	101.294	101.283	97.726	101.067	99.840	100.009	101.219	97.678	101.180	101.393
1994	97.726				100.009	101.219	97.678	101.294	101.283	97.726	101.067	99.840
1995	100.009	99.115	101.393									

Tabla 4.63: **B18**: Coeficientes para días hábiles combinados.

4.1.19 Tabla B19: Serie bruta corregida de los efectos de días hábiles

Descripción y modalidades de cálculo

La serie de la Tabla B1 (cf. pág. 61) —o la serie de la Tabla A1 si no se pidió ningún ajuste previo— es corregida con los efectos de días hábiles estimados precedentemente (Tabla B18). Se obtiene así: B19 = B1 op B18.

Ejemplo

Se obtiene por ejemplo: $ABR86 = 100 \times 109.500/1.011 = 108.344$.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										113.364	111.165	100.591
1986	105.135	99.581	106.318	108.344	97.857	104.643	97.687	67.262	103.973	115.491	111.214	103.067
1987	100.661	104.121	112.890	105.810	102.377	107.037	100.401	70.299	107.552	117.088	115.743	107.779
1988	110.260	107.051	116.303	109.444	107.390	113.319	103.605	75.029	113.148	120.644	120.019	114.884
1989	117.889	113.202	118.548	117.786	109.089	118.776	108.058	77.797	115.620	126.689	125.273	115.379
1990	119.553	113.504	123.799	117.156	113.266	118.252	111.790	82.155	117.683	130.314	125.490	113.379
			122.136									
			123.989									
			121.133									
			121.496	116.835	113.990	119.543	112.103	84.309	119.072	129.342	126.352	120.193
1995	124.089	117.338	128.411									

Tabla 4.64: **B19**: Serie bruta corregida de los efectos de días hábiles.

4.1.20 Tabla B20: Valores de corrección de los puntos atípicos de lo irregular

Descripción y modalidades de cálculo

Se calcula el peso corrector de los valores de la componente irregular B16bis (o de B13 si no se pidió una regresión para días hábiles) que fueron considerados atípicos durante el cálculo de la Tabla B17. Esos valores son corregidos de la siguiente manera:

```
– Esquema aditivo: B20 = B16bis \times (1-B17)

– Esquema multiplicativo: B20 = B16bis/[1+B17 \times (B16bis-1)]. o bien, con la notación simbólica:
```

$$B20 = B16bis\ op\ [xbar + B17 \times (B16bis - xbar)].$$

Comentario

Se trata de los valores que servirán para corregir la serie inicial. Un punto considerado atípico recibe un peso 0 y un valor de corrección igual al valor de lo irregular. Dicho de otra manera, en ese caso se retira lo irregular de la serie inicial para esa fecha (*cf.* Tabla C1, Sección §4.2.1).

Ejemplo

Puesto que empleamos aquí un esquema multiplicativo, el valor del mes de octubre de 1988 (que fue considerado atípico y al cual se le afectó un peso igual a 0.21455) será corregido de la siguiente manera:

$$OCT88 = 100 \times \frac{0.97265}{1 + 0.21455 \times (0.97265 - 1)} = 97.839.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.000	100.000	99.577
1986	100.000	100.000	98.935	106.225	100.000	100.000	100.000	97.155	100.000	100.000	100.000	100.000
1987	96.028	100.341	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	97.839	100.000	100.023
1989	100.000	100.000	97.689	102.288	100.000	100.028	100.000	100.000	100.000	100.000	100.000	100.000
											100.000	
											100.000	
1992	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.284	100.000	98.589
1,,,,	100.000	102	100.000								100.000	
1994	100.000	100.000	99.093	100.000	101.272	100.000	100.000	102.382	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

Tabla 4.65: **B20**: Valores de corrección de los puntos atípicos.

4.2 ETAPA C: Estimación final de los puntos atípicos y de los efectos de calendario

4.2.1 Tabla C1: Serie bruta ajustada para tener en cuenta los ajustes *a priori*, los ajustes ligados a las correcciones para días hábiles y los ajustes ligados a los puntos atípicos detectados

Descripción y modalidades de cálculo

Esta tabla presenta la serie bruta, corregida de los diversos efectos que fueron evidenciados durante la Etapa B (puntos considerados atípicos y efectos ligados a los días hábiles) y ajustada *a priori* con los elementos de la Etapa A.

De modo que la Tabla C1 (cf. Tabla 4.66, pág. 109) es calculada sobre la base de: la Tabla B19 —que toma en cuenta los efectos debidos a los días hábiles— o de la Tabla B1, si no se seleccionó la regresión por días hábiles; y de la Tabla B20, la cual aporta las correcciones que deben ser introducidas para los puntos considerados atípicos. Se obtiene así: C1 = B19 op B20.

Ejemplo

El valor del mes de abril de 1986 —por ejemplo— que es considerado atípico, es transformado así:

$$ABR86 = 100 \times 108.344/106.225 = 101.995.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										113.364	111.165	101.018
1986	105.135	99.581	107.463	101.995	97.857	104.643	97.687	69.231	103.973	115.491	111.214	103.067
1987	104.825	103.768	112.890	105.810	102.377	107.037	100.401	70.299	107.552	117.088	115.743	107.779
1988	110.260	107.051	116.303	109.444	107.390	113.319	103.605	75.029	113.148	123.308	120.019	114.858
1989	117.889	113.202	121.354	115.151	109.089	118.742	108.058	77.797	115.620	126.689	125.273	115.379
1990	119.553	113.504	123.799	117.156	113.266	118.252	111.790	82.155	117.683	130.314	125.490	113.379
1991	120.810	113.807	122.136	118.007	111.743	119.840	111.949	81.731	117.459	129.727	126.352	115.790
1992	121.803	115.610	123.989	118.555	112.410	117.315	110.560	81.862	118.040	128.841	123.211	113.098
1993	116.403	111.354	121.133	114.269	110.411	115.864	108.274	79.693	113.418	123.876	120.280	113.223
1994	119.007	112.496	122.608	116.835	112.558	119.543	112.103	82.348	119.072	129.342	126.352	120.193
1995	124.089	117.338	128.411									

Tabla 4.66: C1: Serie bruta ajustada para tener en cuenta los ajustes *a priori*, así como los ajustes ligados a las correcciones para días hábiles y de los puntos atípicos detectados.

4.2.2 Tabla C2: Estimación previa de la tendencia-ciclo

Descripción y modalidades de cálculo

Se obtiene una nueva estimación de la componente tendencia-ciclo (Tabla C2, *cf.* Tabla 4.67, pág. 110) aplicando a los datos de la Tabla C1 una media móvil centrada simple de orden 12, como para la Tabla B2 (*cf.* Sección §4.1.2).

Comentarios

- X-11-ARIMA y X-12-ARIMA proponen además una media móvil centrada sobre 24 términos propuesta por CHOLETTE [12].
- En este estadio del cálculo, no se imputan los 6 primeros y los 6 últimos puntos de la serie.

Ejemplo

Por ejemplo, el valor del mes de abril de 1986 se obtiene con los valores de la Tabla C1, desde octubre de 1985 hasta octubre de 1986 (6 meses antes y 6 meses después):

$$ABR86 = \frac{113.364}{24} + \frac{111.165 + 101.018 + 105.135 + 99.581 + 107.463 + 101.995}{12} + \frac{97.857 + 104.643 + 97.687 + 69.231 + 103.973}{12} + \frac{115.491}{24} = 101.181.$$

4.2.3 Tabla C4: Estimación preliminar de la componente estacional-irregular modificada

Descripción y modalidades de cálculo

La componente tendencia-ciclo es retirada de la serie analizada para obtener una estimación de la componente estacional-irregular (Tabla C4).

Se obtiene así: C4 = C1 op C2.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				101.181	101.272	101.359			101.994	102.379	102.726	103.014
1987	103.227	103.385	103.578	103.794	104.049	104.434	104.857	105.220	105.500	105.793	106.153	106.624
1988	107.019	107.350	107.780	108.273	108.710	109.183	109.796	110.370	110.837	111.285	111.594	111.890
1989	112.302	112.603	112.821	113.065	113.425	113.665	113.756	113.838	113.953	114.138	114.396	114.549
1990	114.684	115.021	115.289	115.526	115.686	115.612	115.581	115.646	115.589	115.555	115.527	115.530
1991	115.603	115.592	115.565	115.531	115.542	115.679	115.821	115.937	116.089	116.189	116.240	116.163
1992	115.999	115.947	115.977	115.964	115.796	115.553	115.216	114.814	114.517	114.220	113.958	113.814
1993	113.658	113.473	113.190	112.790	112.461	112.344	112.458	112.614	112.723	112.892	113.088	113.331
	113.644	113.914	114.260	114.723	115.204	115.748	116.250	116.663	117.107			
1995												

Tabla 4.67: C2: Tendencia-ciclo, media móvil centrada sobre 12 términos.

Comentarios

- Una vez más, no se estiman los 6 valores del inicio y los 6 valores del fin de la serie.
- Esa tabla es equivalente a la Tabla B4g (*cf.* Sección §4.1.4). Aquí no se hace el cálculo de los valores de remplazo de los puntos atípicos de la componente estacional-irregular, puesto que esos valores ya han sido ponderados con los pesos de la Tabla B20.

Ejemplo

El valor del mes de abril de 1986, por ejemplo, se obtiene simplemente así:

$$ABR86 = 100 \times 101.995/101.181 = 100.804.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986											108.262	
1987	101.548	100.370	108.990	101.943	98.393	102.492	95.751	66.811	101.946	110.676	109.034	101.083
1988	103.028	99.722	107.908	101.082	98.786	103.788	94.362	67.980	102.085	110.804	107.550	102.652
1989	104.976	100.532	107.563	101.846	96.177	104.467	94.991	68.340	101.463	110.996	109.509	100.724
1990	104.246	98.681	107.381	101.411	97.908	102.284	96.720	71.041	101.812	112.772	108.623	98.138
1991	104.505	98.456	105.686	102.143	96.712	103.597	96.657	70.496	101.180	111.651	108.699	99.679
1992	105.003	99.709	106.908	102.234	97.075	101.525	95.959	71.300	103.076	112.801	108.119	99.370
1993	102.414	98.132	107.018	101.311	98.177	103.132	96.279	70.766	100.616	109.730	106.360	99.905
1994	104.719	98.755	107.306	101.840	97.703	103.279	96.433	70.586	101.678			
1995												

Tabla 4.68: C4: Componente estacional-irregular modificada.

4.2.4 Tabla C5: Estimación de la componente estacional

Descripción y modalidades de cálculo

Esta estimación se obtiene con los valores de la componente estacional-irregular de la Tabla C4. Se procede en tres etapas que son similares a las etapas que se cumplen para el cálculo de la Tabla B5 (*cf.* Sección §4.1.5):

- Etapa 1: Estimación de la componente estacional con una media móvil 3×3 .
- Etapa 2: Normalización de los coeficientes estacionales con una media móvil centrada sobre 12 términos.
- Etapa 3: Estimación de los coeficientes estacionales faltantes.

Comentario

El utilizador puede seleccionar la media móvil que será empleada.

En ese caso, X-11-ARIMA permite elegir entre una media móvil simple sobre 3 términos, una 3×3 , una 3×5 , una 3×9 y una estacionalidad constante (media simple). X-12-ARIMA propone además una 3×15 .

Ejemplo

Se hace la estimación con la componente estacional-irregular modificada que figura en la Tabla C4.

Etapa 1: Estimación de la componente estacional

Se alisan los datos de la tabla precedente, columna por columna (mes por mes), con una media móvil 3×3 , de coeficientes $\{1, 2, 3, 2, 1\}/9$, para obtener la Tabla C5a (cf. Tabla 4.70, pág. 113).

El coeficiente estacional del mes de abril de 1988 será estimado de la siguiente manera:

$$ABR88 = \frac{100.804 + 2 \times 101.943 + 3 \times 101.082 + 2 \times 101.846 + 101.411}{9}$$
$$= 101.449.$$

Se puede aplicar esta media móvil para estimar los coeficientes estacionales de los años 1988 hasta 1992. Para el inicio de la serie (años 1986 y 1987) y para el fin de la serie (años 1993 y 1994), se emplean las medias asimétricas predefinidas (*cf.* Tabla 3.13, pág. 50).

Por ejemplo, para abril de 1987, se emplea un punto pasado, el punto actual y dos puntos futuros:

$$ABR87 = \frac{100.804 \times 7 + 101.943 \times 10 + 101.082 \times 7 + 101.846 \times 3}{27}$$
= 101.414.

Etapa 2: Normalización de los coeficientes estacionales

Para obtener la Tabla C5b (*cf.* Tabla 4.71, pág. 113) se aplica a la Tabla C5a una media móvil centrada sobre 12 meses. El primer término que se puede calcular es el del mes de octubre de 1986 y el último es el del mes de marzo de 1994.

De modo que:

$$ABR90 = \frac{111.385}{24} + \frac{108.734 + 100.502 + 104.414 + 99.272 + 107.051 + 101.725}{12} + \frac{97.263 + 103.144 + 95.975 + 70.008 + 101.765}{12} + \frac{111.913}{24} = 100.125.$$

Los seis primeros valores, desde abril hasta setiembre de 1986, que no pueden ser calculados con esta media móvil simétrica, serán tomados iguales al primer valor calculable, el del mes de octubre de 1986 (99.965). Se procede de manera similar para el fin de la serie: el valor calculado para marzo de 1994 (99.926) es repetido en los seis meses siguientes.

Se obtienen los coeficientes estacionales normalizados dividiendo la Tabla C5a con la Tabla C5b, para obtener la tabla C5. De modo que, por ejemplo:

$$ABR86 = 100 \times 101.319/99.965 = 101.355.$$

Etapa 3: Estimación de los coeficientes estacionales faltantes

Se estiman los valores faltantes —en razón del uso de la media móvil centrada sobre 12 meses— entre octubre de 1985 y marzo de 1986, duplicando el primer valor calculado para cada uno de esos meses. Igualmente, para los valores de octubre de 1994 hasta marzo de 1995, se duplica el último valor calculado para cada uno de esos meses.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.607	108.476	100.972
1986	102.808	100.166	108.317	101.355	97.780	103.072	95.754	67.595	102.005	111.607	108.476	100.972
1987	102.808	100.166	108.317	101.457	97.841	103.282	95.459	67.626	101.938	111.319	108.522	101.194
1988	103.296	99.980	108.014	101.428	97.763	103.407	95.251	68.122	101.847	111.250	108.512	101.093
1989	103.943	99.646	107.473	101.553	97.366	103.444	95.444	68.885	101.673	111.373	108.726	100.517
1990	104.426	99.220	106.943	101.598	97.123	103.033	95.906	69.967	101.733	111.888	108.635	99.684
1991	104.365	98.930	106.615	101.807	97.110	102.858	96.278	70.587	101.714	111.870	108.373	99.401
1992	104.203	98.848	106.726	101.846	97.403	102.643	96.352	70.929	101.860	111.752	107.912	99.475
1993	103.933	98.760	106.952	101.839	97.692	102.904	96.365	70.896	101.685	111.433	107.599	99.716
1994	103.903	98.746	107.194	101.773	97.853	102.971	96.354	70.844	101.580	111.433	107.599	99.716
1995	103.903	98.746	107.194									

Tabla 4.69: C5: Coeficientes estacionales.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				101.319	97.746	103.037				111.568		100.953
1987	102.786	100.136	108.285	101.414	97.791	103.241	95.451	67.630	101.927	111.297	108.502	101.182
1988	103.284	99.984	108.040	101.449	97.782	103.423	95.288	68.159	101.870	111.260	108.514	101.084
1989	103.947	99.692	107.549	101.623	97.447	103.515	95.505	68.930	101.701	111.385	108.734	100.502
1990	104.414	99.272	107.051	101.725	97.263	103.144	95.975	70.008	101.765	111.913	108.662	99.694
1991	104.378	98.979	106.691	101.875	97.162	102.890	96.289	70.586	101.710	111.870	108.383	99.409
1992	104.201									111.704		99.452
1993	103.915	98.739	106.916	101.780	97.606	102.805	96.278	70.828	101.592	111.337	107.510	99.645
	103.833	98.678	107.115	101.698	97.780	102.895	96.282	70.792	101.504			
1995												

Tabla 4.70: **C5a** : Coeficientes estacionales provisorios (media móvil 3×3).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				99.965	99.965	99.965	99.965	99.965	99.965	99.965	99.971	99.981
1987	99.979	99.970	99.971	99.958	99.949	99.961	99.991	100.005	99.989	99.980	99.981	99.988
1988	99.989	100.004	100.024	100.020	100.019	100.015	100.039	100.054	100.022	100.009	100.002	99.992
1989	100.005	100.046	100.071	100.069	100.084	100.068	100.064	100.066	100.027	100.011	100.007	99.984
1990	99.988	100.053	100.100	100.125	100.144	100.107	100.072	100.059	100.031	100.023	100.025	100.010
1991	100.012	100.049	100.071	100.067	100.054	100.030	100.011	99.999	99.997	99.999	100.009	100.008
1992	99.998	100.013	100.030	100.027	99.999	99.979	99.969	99.952	99.953	99.956	99.961	99.977
1993	99.983	99.978	99.966	99.942	99.911	99.905	99.909	99.903	99.909	99.914	99.918	99.929
1994	99.932	99.931	99.926	99.926	99.926	99.926	99.926	99.926	99.926			
1995												

Tabla 4.71: **C5b** : Media móvil centrada sobre 12 términos.

4.2.5 Tabla C6: Estimación de la serie corregida de variaciones estacionales Descripción y modalidades de cálculo

Esta estimación se obtiene simplemente, retirando a la serie inicial de la Tabla C1 la estimación de la componente estacional de la Tabla C5: C6 = C1 cf. C5.

Ejemplo

De modo que: $ABR86 = 100 \times 101.995/101.355 = 100.632$.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.574	102.479	100.046
1986	102.264	99.416	99.212	100.632	100.078	101.524	102.019	102.421	101.929	103.480	102.524	102.075
1987	101.962	103.595	104.222	104.291	104.636	103.635	105.177	103.952	105.507	105.182	106.654	106.507
1988	106.742	107.073	107.674	107.903	109.848	109.586	108.771	110.140	111.096	110.839	110.605	113.616
1989	113.418	113.603	112.915	113.391	112.040	114.789	113.216	112.938	113.717	113.751	115.219	114.785
1990	114.486	114.397	115.761	115.313	116.621	114.771	116.562	117.420	115.679	116.469	115.515	113.738
1991	115.757	115.038	114.558	115.913	115.069	116.509	116.277	115.788	115.480	115.962	116.589	116.487
1992	116.890	116.957	116.175	116.406	115.407	114.294	114.745	115.415	115.885	115.292	114.177	113.695
1993	111.997	112.752	113.259	112.205	113.019	112.594	112.357	112.407	111.539	111.166	111.786	113.545
1994	114.536	113.924	114.379	114.800	115.029	116.094	116.345	116.238	117.220	116.071	117.429	120.535
1995	119.428	118.829	119.793									

Tabla 4.72: C6: Serie corregida de variaciones estacionales provisoria.

4.2.6 Tabla C7: Estimación de la componente tendencia-ciclo

Descripción y modalidades de cálculo

Esta tabla presenta una estimación de la componente tendencia-ciclo que es calculada con la serie desestacionalizada de la Tabla C6. Como para la Tabla B7 (cf. Sección $\S4.1.7$), el programa utiliza una media móvil de Henderson cuyo orden depende del valor de la razón \bar{I}/\bar{C} .

Etapa 1: elección de la media móvil, cálculo de la razón \bar{I}/\bar{C}

- Si la razón es menor que 1, se elige una media móvil de Henderson con 9 términos.
- Si la razón es mayor que 3.5, se elige una media móvil de Henderson con 23 términos.
- En los otros casos, se elige una media móvil de Henderson con 13 términos.

Etapa 2: Alisado de la serie corregida de variaciones estacionales con una media móvil de Henderson

Comentarios

• En esta etapa, contrariamente a lo hecho en la Etapa B, el programa elige entre: una media con 9 términos; una media con 13 términos; y una media con 23 términos.

- El utilizador puede especificar la longitud de la media móvil de Henderson que será utilizada. En ese caso, X-11-ARIMA permite elegir entre una media móvil sobre 9, 13 o 23 términos. X-12-ARIMA permite seleccionar cualquier media de Henderson de orden impar inferior a 101.
- La serie de la Tabla C1 corresponde a una serie corregida —al menos parcialmente— de efectos indeseables, en particular de los efectos de puntos atípicos.
 Evidentemente, eso se refleja en el numerador de la razón Ī/C̄. Éste, en principio, será menor que el que fue calculado en la Etapa B.

Ejemplo

Etapa 1: Elección de la de la media móvil, cálculo de la razón \bar{I}/\bar{C}

En primer lugar se alisa la Tabla C6 con una media móvil de Henderson sobre 13 términos, cuyos coeficientes figuran en la Tabla 3.11 (*cf.* pág. 49).

El primer término que se puede calcular es el del mes de abril de 1986 y se obtiene:

$$ABR86 = 101.574 \times (-0.01935) + 102.479 \times (-0.02786) + 100.046 \times (0.00000) + 102.264 \times (0.06549) + 99.416 \times (0.14736) + 99.212 \times (0.21434) + 100.632 \times (0.24006) + 100.078 \times (0.21434) + 101.524 \times (0.14736) + 102.019 \times (0.06549) + 102.421 \times (0.00000) + 101.929 \times (-0.02786) + 103.480 \times (-0.01935)$$

$$= 100.198.$$

En este estadio del cálculo, no importa que no se puedan estimar los 6 puntos del inicio y del fin de la serie que no pueden ser calculados. Se deduce una estimación de la tendencia-ciclo (Tabla C7a, *cf.* Tabla 4.73, pág. 116) y de la componente irregular (Tabla C7b, *cf.* Tabla 4.74, pág. 116), en relación con la Tabla C6. Siendo un esquema multiplicativo, se calculan las tasas de crecimiento (*cf.* Sección §4.1.7).

Utilizando los totales en línea de la Tabla C7c (cf. Tabla 4.75, pág. 116) y de la Tabla C7d (cf. Tabla 4.76, pág. 116), se obtiene:

$$\bar{C} = \frac{2.394 + 3.650 + 5.598 + 2.012 + 2.576}{101} + \frac{1.620 + 2.845 + 2.679 + 3.372}{101}$$

$$= 0.2648,$$

(en B7 esta cantidad era igual a 0.312)

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				100.198	100.587	101.166	101.772	102.244	102.449	102.498	102.511	102.620
1987	102.881	103.274	103.699	104.070	104.311	104.422	104.534	104.765	105.141	105.593	106.028	106.428
1988	106.850	107.321	107.802	108.319	108.846	109.307	109.680	110.054	110.537	111.161	111.891	112.540
1989	112.988	113.249	113.355	113.338	113.257	113.240	113.358	113.564	113.811	114.073	114.323	114.591
1990	114.852	115.028	115.234	115.503	115.820	116.153	116.348	116.353	116.189	115.874	115.489	115.137
1991	114.922	114.947	115.150	115.426	115.680	115.834	115.909	115.959	116.015	116.137	116.345	116.579
1992	116.732	116.654	116.328	115.875	115.474	115.233	115.181	115.203	115.108	114.803	114.281	113.645
1993	113.087	112.747	112.638	112.664	112.668	112.524	112.229	111.935	111.829	111.980	112.387	112.970
1994	113.584	114.142	114.586	114.967	115.342	115.681	116.010	116.382	116.837			
1995												

Tabla 4.73: C7a : Tendencia-ciclo (media móvil de Henderson sobre 13 términos).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				100.433	99.494	100.354	100.243	100.173	99.493	100.958	100.013	99.469
1987	99.107	100.311	100.504	100.212	100.311	99.247	100.615	99.224	100.349	99.610	100.590	100.074
1988	99.899	99.768	99.881	99.616	100.921	100.255	99.170	100.079	100.505	99.710	98.851	100.956
1989	100.381	100.313	99.612	100.046	98.926	101.368	99.875	99.449	99.917	99.718	100.784	100.169
1990	99.681	99.451	100.458	99.836	100.692	98.810	100.184	100.917	99.561	100.513	100.023	98.785
1991	100.727	100.079	99.485	100.422	99.472	100.583	100.317	99.852	99.539	99.849	100.210	99.921
1992	100.135	100.260	99.869	100.458	99.942	99.185	99.621	100.184	100.675	100.426	99.909	100.044
1993	99.036	100.004	100.552	99.593	100.312	100.063	100.115	100.422	99.740	99.274	99.466	100.509
1994	100.839	99.809	99.819	99.855	99.729	100.357	100.289	99.876	100.329			
1995												

Tabla 4.74: **C7b** : Componente irregular.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
1985													
1986					0.389								
1987	0.255	0.382	0.411	0.358	0.232	0.106	0.108	0.221	0.358	0.431	0.412	0.377	3.650
1988	0.397	0.441	0.448	0.479	0.486	0.424	0.342	0.340	0.439	0.564	0.657	0.580	5.598
1989	0.398	0.231	0.094	0.015	0.072	0.015	0.104	0.182	0.218	0.230	0.219	0.235	2.012
1990	0.228	0.153	0.178	0.233	0.274	0.288	0.167	0.004	0.141	0.271	0.333	0.305	2.576
1991	0.187	0.022	0.177	0.239	0.221	0.133	0.064	0.044	0.048	0.106	0.179	0.201	1.620
1992	0.132	0.067	0.280	0.389	0.346	0.209	0.045	0.019	0.083	0.265	0.454	0.557	2.845
					0.004								2.679
1994	0.543	0.491	0.389	0.332	0.326	0.294	0.285	0.321	0.390				3.372
1995													

Tabla 4.75: C7c: Crecimiento de la tendencia-ciclo (en valor absoluto y en porcentaje).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
1985													
1986					0.935								5.614
1987	0.364	1.215	0.193	0.290	0.098	1.061	1.379	1.383	1.134	0.736	0.984	0.513	9.350
1988	0.176	0.130	0.113	0.265	1.309	0.660	1.082	0.916	0.426	0.791	0.862	2.130	8.859
1989	0.570	0.067	0.699	0.436	1.120	2.469	1.473	0.427	0.471	0.199	1.069	0.610	9.611
1990	0.487	0.230	1.012	0.619	0.858	1.869	1.391	0.732	1.344	0.956	0.488	1.237	11.223
1991	1.966	0.643	0.593	0.941	0.946	1.117	0.264	0.464	0.314	0.311	0.362	0.288	8.210
1992	0.214	0.124	0.390	0.591	0.515	0.757	0.440	0.564	0.491	0.248	0.514	0.135	4.983
1993	1.007	0.978	0.547	0.954	0.722	0.248	0.052	0.306	0.678	0.468	0.193	1.049	7.202
1994	0.328	1.021	0.010	0.035	0.126	0.630	0.068	0.411	0.453				3.083
1995													

Tabla 4.76: C7d : Crecimiento de lo irregular (en valor absoluto y en porcentaje).

y también:

$$\bar{I} = \frac{5.614 + 9.350 + 8.859 + 9.611 + 11.223}{101} + \frac{8.210 + 4.983 + 7.202 + 3.083}{101}$$

$$= 0.6746.$$

(en B7, esta cantidad era igual a 2.226).

en consecuencia, $\bar{I}/\bar{C} = 0.6746/0.2648 = 2.547$. (en B7 esta cantidad era igual a 7.14).

Etapa 2: Alisado de la serie corregida de variaciones estacionales con una media móvil de Henderson

Como la razón es mayor que 1 y menor que 3.5, se elige una media móvil de Henderson sobre 13 términos, cuyos coeficientes y los de las medias móviles asimétricas asociadas, figuran en la Tabla 3.11 (cf. pág. 49).

Por ejemplo, la estimación de la tendencia para el mes de octubre de 1985 se hace utilizando el punto actual y seis puntos futuros, a los cuales se les aplica los coeficientes de la media móvil $H6_0$ de la Tabla 3.11.

$$\begin{array}{ll} OCT85 & = & 101.574 \times (0.42113) + 102.479 \times (0.35315) + \\ & & 100.046 \times (0.24390) + 102.264 \times (0.11977) + \\ & & 99.416 \times (0.01202) + 99.212 \times (-0.05811) + \\ & & 100.632 \times (-0.09186) \\ & = & 101.801. \end{array}$$

Lo que lleva a la Tabla C7 siguiente.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.801	101.494	101.102
1986	100.683	100.300	100.105	100.198	100.587	101.166	101.772	102.244	102.449	102.498	102.511	102.620
1987	102.881	103.274	103.699	104.070	104.311	104.422	104.534	104.765	105.141	105.593	106.028	106.428
1988	106.850	107.321	107.802	108.319	108.846	109.307	109.680	110.054	110.537	111.161	111.891	112.540
1989	112.988	113.249	113.355	113.338	113.257	113.240	113.358	113.564	113.811	114.073	114.323	114.591
1990	114.852	115.028	115.234	115.503	115.820	116.153	116.348	116.353	116.189	115.874	115.489	115.137
1991	114.922	114.947	115.150	115.426	115.680	115.834	115.909	115.959	116.015	116.137	116.345	116.579
	116.732											
1993	113.087	112.747	112.638	112.664	112.668	112.524	112.229	111.935	111.829	111.980	112.387	112.970
	113.584			114.967	115.342	115.681	116.010	116.382	116.837	117.399	118.026	118.651
1995	119.188	119.603	119.876									

Tabla 4.77: C7: Tendencia-ciclo (la razón I/C es de 2.548, se eligió una media móvil de Henderson sobre 13 términos).

4.2.7 Tabla C9: Estimación de la componente estacional-irregular

Descripción y modalidades de cálculo

Esta tabla es similar a la Tabla C4: la componente tendencia-ciclo es retirada de la serie analizada —por substracción o por división— según el esquema de composición adoptado, para obtener una nueva estimación de la componente estacional-irregular. Se obtiene así: C9 = C1 op C7.

Comentario

Contrariamente a lo hecho para la Tabla C4, se dispone de una estimación completa de la componente estacional-irregular, puesto que los puntos del inicio y del fin de la serie —para la tendencia-ciclo— fueron estimados con las medias móviles de Henderson asimétricas.

Ejemplo

Por ejemplo, el valor del mes de abril de 1986 se obtiene simplemente así:

$$ABR86 = 100 \times 101.995/100.198 = 101.794.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.358	109.528	99.917
1986	104.422	99.284	107.350	101.794	97.285	103.438	95.986	67.712	101.487	112.676	108.490	100.436
1987	101.889	100.478	108.863	101.672	98.145	102.504	96.046	67.101	102.294	110.886	109.163	101.269
1988	103.191	99.748	107.886	101.039	98.663	103.670	94.461	68.175	102.362	110.928	107.264	102.059
1989	104.338	99.959	107.056	101.600	96.320	104.859	95.325	68.505	101.589	111.060	109.579	100.687
1990	104.093	98.675	107.433	101.432	97.795	101.807	96.083	70.609	101.286	112.462	108.660	98.473
1991	105.124	99.008	106.066	102.236	96.597	103.458	96.584	70.483	101.245	111.701	108.601	99.323
1992	104.344	99.104	106.586	102.313	97.346	101.807	95.988	71.059	102.548	112.228	107.814	99.518
1993	102.932	98.764	107.542	101.425	97.997	102.968	96.476	71.195	101.420	110.624	107.024	100.224
1994	104.774	98.558	107.001	101.625	97.587	103.338	96.632	70.757	101.913	110.173	107.055	101.300
1995	104.112	98.106	107.120									

Tabla 4.78: C9: Componente estacional-irregular modificada.

4.2.8 Tabla C10: Estimación de la componente estacional

Descripción y modalidades de cálculo

Esta estimación se obtiene de manera similar a lo hecho para la Tabla B10, con los valores de la componente estacional-irregular de la Tabla C9. Se procede en dos etapas: estimación de la componente estacional, mediante una media móvil 3×5 ; seguida de la normalización de los coeficientes estacionales.

Comentario

El utilizador puede elegir la media móvil que será empleada.

En ese caso, X-11-ARIMA permite elegir entre una media móvil simple sobre 3 términos, una 3×3 , una 3×5 , una 3×9 y una estacionalidad constante (media simple). X-12-ARIMA propone además una 3×15 .

Ejemplo

Etapa 1: estimación de la componente estacional

Se alisan los datos de la Tabla C9, columna por columna (mes por mes), con una media móvil 3×5 (cf. Tabla 3.14, pág. 50), lo que lleva a la Tabla C10a (cf. Tabla 4.80, pág. 120).

El factor estacional del mes de abril de 1989 es entonces estimado así:

$$ABR89 = \frac{101.794 + 101.672 \times 2 + 101.039 \times 3 + 101.600 \times 3}{15} + \frac{101.432 \times 3 + 102.236 \times 2 + 102.313}{15} = 101.609.$$

Se emplean las medias móviles asimétricas predefinidas para el inicio de la serie (años 1986 hasta 1988) y para el fin de la serie (años 1992 hasta 1994).

Por ejemplo:

$$ABR87 = \frac{101.794 \times 15 + 101.672 \times 15 + 101.039 \times 15}{60} + \frac{101.600 \times 11 + 101.432 \times 4}{60} = 101.515$$

(un punto pasado, el punto actual y tres puntos futuros).

Etapa 2: normalización de los coeficientes estacionales

Se obtiene la Tabla C10b (*cf.* Tabla 4.81, pág. 120) aplicando a la Tabla C10a una media móvil centrada sobre 12 meses. El primer término que se puede calcular es entonces el del mes de abril de 1986, el último es el del mes de setiembre de 1994.

De modo que:

$$\begin{array}{rcl} ABR86 & = & \dfrac{111.533}{24} + \\ & & \dfrac{108.791 + 100.768 + 103.343 + 99.855 + 107.886}{12} + \\ & & \dfrac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \\ & & \dfrac{111.471}{24} \\ & = & 100.011. \end{array}$$

Los seis primeros valores que no se pueden calcular con esta media móvil simétrica —desde octubre de 1985 hasta marzo de 1986— serán tomados iguales al primer valor calculable, el del mes de abril de 1986. Se procede de la misma manera con el fin de la serie: el valor calculado para setiembre de 1994 (99.982) es repetido en los seis meses siguientes.

Se obtienen los coeficientes estacionales normalizados dividiendo la Tabla C10a con la Tabla C10b, para obtener la Tabla C10. Por ejemplo:

$$ABR86 = 100 \times 101.516/100.011 = 101.505.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.521	108.779	100.758
1986	103.332	99.844	107.875	101.505	97.768	103.444	95.457	67.778	101.968	111.463	108.761	100.829
1987	103.444	99.772	107.796	101.500	97.691	103.408	95.495	68.004	101.910	111.485	108.689	100.806
1988	103.603	99.681	107.631	101.524	97.565	103.366	95.565	68.412	101.833	111.475	108.709	100.629
1989	103.870	99.497	107.364	101.578	97.468	103.200	95.649	69.048	101.799	111.580	108.576	100.348
1990	104.063	99.316	107.098	101.675	97.327	103.110	95.822	69.703	101.743	111.590	108.478	100.034
1991	104.240	99.066	106.921	101.744	97.319	102.924	96.050	70.329	101.727	111.603	108.206	99.832
1992	104.243	98.868	106.882	101.818	97.353	102.860	96.298	70.701	101.718	111.435	107.947	99.849
1993	104.198	98.722	106.939	101.839	97.474	102.801	96.399	70.896	101.806	111.252	107.645	100.048
1994	104.105	98.636	107.033	101.862	97.504	102.835	96.411	70.940	101.872	111.133	107.512	100.212
1995	104.019	98.588	107.145									

Tabla 4.79: C10: Coeficientes estacionales.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.533	108,791	100.768
1986									101.979			
1987	103.444	99.782	107.814	101.515	97.702	103.414	95.505	68.014	101.913	111.482	108.683	100.793
									101.831			
									101.788			
									101.726			
					, , , , ,				101.702			
									101.694			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		,							101.784			
				101.855	97.486	102.818	96.398	70.925	101.853	111.112	107.493	100.194
1995	104.000	98.570	107.126									

Tabla 4.80: C10a : Coeficientes estacionales provisorios (media móvil 3×5).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.011	100.011	100.011
1986	100.011	100.011	100.011	100.011	100.007	100.009	100.015	100.016	100.010	100.007	100.004	99.999
1987	99.999	100.010	100.017	100.014	100.011	100.006	100.011	100.013	100.003	99.998	99.994	99.987
1988	99.989	100.009	100.023	100.018	100.018	100.011	100.014	100.016	99.998	99.990	99.989	99.978
1989	99.974	100.004	100.029	100.031	100.029	100.011	100.007	100.008	99.990	99.983	99.981	99.971
1990	99.975	100.009	100.033	100.031	100.027	100.010	100.004	100.001	99.983	99.979	99.981	99.972
1991	99.973	100.008	100.033	100.032	100.021	100.001	99.994	99.986	99.976	99.976	99.979	99.977
1992	99.984	100.009	100.024	100.017	100.000	99.990	99.989	99.981	99.976	99.979	99.984	99.985
1993	99.987	99.999	100.011	100.007	99.987	99.983	99.987	99.979	99.979	99.982	99.984	99.986
1994	99.988	99.990	99.995	99.993	99.982	99.983	99.986	99.980	99.982	99.982	99.982	99.982
1995	99.982	99.982	99.982									<u>.</u>

Tabla 4.81: C10b : Media móvil centrada sobre 12 términos.

4.2.9 Tabla C11: Estimación de la serie corregida de variaciones estacionales Descripción y modalidades de cálculo

Esta estimación se obtiene simplemente, retirando a la serie inicial de la Tabla B1 (y no de la Tabla C1), la estimación de la componente estacional de la Tabla C10: $C11 = B1 \ cf. \ C10.$

Dado que se emplea la serie B1, esta serie corregida de variaciones estacionales trae consigo los valores atípicos localizados precedentemente.

Ejemplo

Por ejemplo, para el mes de abril de 1986, tenemos que:

$$ABR86 = 100 \times 109.500/101.505 = 107.876$$

٠_													
_	Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
	1985										103.747	100.938	99.844
	1986	103.163	98.854	96.315	107.876	99.931	100.248	104.445	96.934	103.169	105.058	99.576	103.541
	1987	97.154	103.436	104.735	105.517	102.364	104.731	106.603	101.023	106.663	104.858	105.530	109.121
	1988	103.955	110.553	110.284	106.477	110.080	110.965	105.897	111.092	112.537	105.763	111.582	113.983
	1989	113.507	112.768	111.956	112.919	113.370	116.569	110.404	114.992	112.182	113.550	116.784	112.309
	1990	116.371	113.275	115.408	114.187	118.775	113.277	116.674	119.507	112.636	118.290	117.167	110.762
	1991	118.284	113.863	111.578	117.353	116.421	113.385	120.042	116.026	114.424	118.635	115.336	115.995
	1992	118.474	118.238	116.015	117.857	112.786	115.400	116.410	113.152	117.285	115.762	113.111	113.972
	1993	109.120	114.564	114.739	112.138	110.696	113.910	112.138	112.418	112.764	108.762	113.057	114.745
	1994	111.714	113.042	115.852	113.290	116.919	117.665	113.576	120.384	118.384	113.738	118.777	119.746
_	1995	119.305	117.965	121.517									

Tabla 4.82: C11: Serie desestacionalizada provisoria.

4.2.10 Tabla C13: Estimación de la componente irregular

Descripción y modalidades de cálculo

Esta estimación se obtiene simplemente (cf. Tabla C13, pág. 122), retirando a la serie corregida de variaciones estacionales de la Tabla C11, la estimación de la componente tendencia-ciclo de la Tabla C7: $C13 = C11 \ cf$. C7.

Ejemplo

El valor del mes de abril de 1986 es entonces:

$$ABR86 = 100 \times 107.876/100.198 = 107.663.$$

4.2.11 Tabla C14: Valores de la componente irregular excluidos de la regresión para días hábiles.

Descripción y modalidades de cálculo

Las Tablas C14, C15 y C16 se refieren a la estimación final del efecto de la composición diaria del mes. X-11 localiza en la Tabla C14 los valores atípicos de la componente irregular y los excluye de los cálculos.

La búsqueda se hace en dos etapas:

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.911	99.452	98.755
1986	102.463	98.559	96.214	107.663	99.347	99.093	102.626	94.806	100.703	102.497	97.137	100.898
1987	94.433	100.157	100.999	101.390	98.133	100.296	101.979	96.428	101.448	99.303	99.531	102.530
1988	97.290	103.011	102.302	98.300	101.134	101.516	96.550	100.944	101.809	95.144	99.724	101.282
1989	100.459	99.576	98.765	99.630	100.100	102.940	97.394	101.258	98.569	99.542	102.153	98.008
1990	101.323	98,475	100.151	98.861	102.552	97.524	100.281	102.711	96,942	102.085	101.453	96.200
1991	102,926	99.057	96.898	101.670	100.640	97.885	103.566	100.058	98.629	102.151	99.133	99,499
1992	101.492	101.357	99.731	101.710	97.672	100.145	101.066	98.220	101.892	100.836	98,976	100.288
1993	96,492	101.612	101.865	99.533	98.250	101.232	99,920	100.431	100.835	97.127	100.597	101.571
1994	98.354	99.036	101.105	98.542	101.367	101.715	97.902	103,439	101.325	96.882	100.637	100.923
1995	100.098		101.369									

Tabla 4.83: C13: Componente irregular.

Etapa 1: Cálculo de una desviación estándar global y localización de los valores atípicos

La Etapa B aporta una primera estimación del efecto días hábiles, el cual está resumido en la Tabla B16 (o en la Tabla B18, si el utilizador pidió que se haga una corrección *a priori*), *cf.* Sección §4.1.16. La componente irregular de la Tabla C13 es entonces corregida de ese efecto, para obtener un residuo 18 : R = C13 - B16.

Se calcula luego una estimación de la varianza de ese residuo con la media de cuadrados de los mismos. Lo que significa admitir que los residuos son de media nula.

Se obtiene así:

$$\sigma^{2} = \frac{1}{n} \sum_{t=1}^{n} (C13_{t} - B16_{t})^{2}$$
$$= \frac{1}{n} \sum_{t=1}^{n} R_{t}^{2}.$$

Un valor I_t de lo irregular es considerado atípico, si el residuo asociado R_t es muy grande. Más precisamente, el valor es considerado atípico si: $|R_t| \geq \lambda \sigma$, en donde σ es la desviación estándar global calculada anteriormente; y λ es un parámetro que puede ser modificado por el utilizador (por defecto $\lambda = 2.5$).

Etapa 2: Cálculo final de la desviación estándar global y localización de los valores atípicos

Se rehacen los cálculos anteriores, excluyendo los valores atípicos que fueron localizados. Se obtiene así una nueva desviación estándar y nuevos valores atípicos que serán excluidos de la regresión para días hábiles. Esos valores figuran en la Tabla C14 (cf. pág. 124).

Comentarios

 El cálculo hecho aquí es sensiblemente diferente del cálculo hecho para la Tabla B14. Puesto que los coeficientes correctores fueron calculados con la estructura diaria del mes y no con 15 tipos únicamente (como es el caso en la Etapa B), el empleo de los coeficientes de la Tabla B16 permite distinguir todos los tipos de meses.

 $^{^{18}}$ Se trata aquí de una substracción, puesto que el modelo adoptado para el efecto días hábiles es un modelo de regresión lineal.

 Fuera de los valores considerados atípicos, se utilizan en la regresión todas las observaciones. En X-11-ARIMA, cuando se demanda una extrapolación ARIMA, los coeficientes diarios son estimados con el conjunto de los datos disponibles hasta el último mes de diciembre ¹⁹.

Ejemplo

Etapa 1: Primer cálculo de una desviación estándar global y localización de los valores atípicos

Para obtener los residuos en valor absoluto de la tabla C14a, se corrige la componente irregular de la Tabla C13 con los coeficientes para días hábiles de la Tabla B16.

Por ejemplo, para el mes de abril de 1986 se obtiene:

$$ABR86 = |107.663 - 101.067| = 6.596.$$

La media de cuadrados de los elementos de la Tabla C14a aporta una primera estimación de la desviación estándar:

$$\sigma = \left(\frac{1}{n} \sum_{t=1}^{n} R_t^2\right)^{1/2} = 1.2302.$$

Los dos únicos puntos que se alejan más, en valor absoluto, de 3.076 (o sea 2.5σ) son los valores de abril de 1986 y de enero de 1987. Se excluyen entonces esos dos puntos.

Etapa 2: Cálculo final de la desviación estándar global y localización de los valores atípicos

La nueva desviación estándar se calcula simplemente, retirando los residuos correspondientes. Se obtiene $\sigma=0.9439$.

Ese nuevo cálculo lleva a definir un límite igual a 2.360 (o sea 2.5σ), es decir que hace eliminar 6 puntos: ABR86, AGO86, ENE87, OCT88, MAR89 y FEB93 (*cf.* Tabla C14, pág. 124).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										0.149	0.680	1.254
1986										1.104	0.243	0.396
1987	5.407	1.042	0.990	0.171	0.455	0.884	0.586	1.298	0.381	0.536	0.432	0.469
1988	0.388	0.070	0.241	0.472	1.125	0.298	1.128	0.350	0.526	2.581	1.343	1.442
1989	0.450	0.460	2.628	2.250	1.193	1.657	0.331	0.803	0.203	0.467	0.935	0.330
1990	0.029	0.640	0.312	0.238	0.491	1.248	0.272	1.318	0.438	0.791	0.170	1.525
1991	0.865	0.058	0.781	0.489	0.753	0.505	2.272	0.218	0.469	0.090	0.361	0.510
1992	0.098	0.241	0.278	0.492	0.007	1.036	0.327	0.494	0.824	0.996	0.123	1.773
1993	1.187	2.497	0.572	1.750	0.524	0.165	0.080	0.422	0.383	0.552	0.584	0.178
1994	0.629	0.079	0.955	0.230	1.358	0.496	0.223	2.145	0.041	0.844	0.430	1.084
1995	0.089	0.485	0.024									

Tabla 4.84: C14a: Desvíos absolutos a la media.

¹⁹Salvo si se demanda también una corrección del efecto de Pascua. En ese caso se utilizan todos los puntos.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				107.663				94.806				
1987	94.433											
1988										95.144		
1989			98.765									
1990												
1991												
1992												
1993		101.612										
1994												
1995												

Tabla 4.85: C14 : Valores de la componente irregular excluidos de la regresión para días hábiles.

4.2.12 Tabla C15: Regresión final para días hábiles

Descripción y modalidades de cálculo

Siguiendo la misma metodología que la empleada para la Tabla B15 (*cf.* Sección §4.1.15), se estiman ahora los pesos diarios mediante una regresión por los mínimos cuadrados habituales (*cf.* Tabla C15, pág. 125), con los datos que no fueron considerados atípicos de la Tabla C13.

Ejemplo

Si se fija, por ejemplo, un riesgo de primera especie de 1%, los tests se interpretan de la siguiente manera:

- El test F de Fisher rechaza la hipótesis nula de igualdad de los coeficientes diarios: se puede entonces admitir la existencia de un efecto debido a la composición diarias del mes. Efectivamente, la probabilidad de obtener un valor de la estadística de Fisher que sea mayor que el valor calculado (68.245) es casi nula y en consecuencia es menor que el riesgo de primera especie que fue fijado. Se está entonces en la región crítica del test, lo que no permite aceptar la hipótesis nula de igualdad de los coeficientes diarios.
- Se interpreta de la misma manera el test T de Student, pero teniendo en cuenta que la Ley de Student es simétrica. De modo que es necesario comparar el valor Prob (T>|t|) a la mitad del riesgo de primera especie, o sea 0.005. Todos los tests que lleven a un valor menor que 0.005 no permiten aceptar la hipótesis de nulidad de un coeficiente diario. En nuestro caso, los coeficientes del martes, jueves, sábado y domingo son considerados significativamente diferentes de 0.

Por último, es de señalar que la corrección de los valores atípicos permitió aumentar la precisión de las estimaciones, con respecto a los resultados de la Tabla B15.

4.2.13 Tabla C16: Coeficientes de ajuste para días hábiles, extraídos de la regresión

Descripción y modalidades de cálculo

Con las estimaciones de la regresión se deduce la Tabla C16 —similar a la Tabla B16— de los coeficientes mensuales M_t de ajuste para días hábiles.

	Pesos Combinados	Pesos a priori	Coeficientes de la regresión	Desviación estándar	Т	Prob > t
Lunes	1.092	1.000	0.092	0.067	1.373	0.086
Martes	1.242	1.000	0.242	0.066	3.649	0.000
Miércoles	1.083	1.000	0.083	0.068	1.210	0.114
Jueves	1.356	1.000	0.356	0.068	5.215	0.000
Viernes	1.076	1.000	0.076	0.068	1.126	0.131
Sábado	0.518	1.000	-0.482	0.066	-7.281	0.000
Domingo	0.632	1.000	-0.368	0.067	-5.458	0.000

	Suma de cuadrados	g.d.l.	Media de cuadrados	F	Prob > F
Regresión Error Total	26.115 6.505 32.620	6 106 112	4.352 0.064	68.245	0.000

Tabla 4.86: C15: Regresión finale para días hábiles.

La componente irregular de la Tabla C13 es corregida de sus efectos de calendario, lo que lleva a la Tabla C16bis. Desgraciadamente, esta tabla no puede ser editada con los paquetes usuales: C16bis = C13 op C16.

Comentarios

- X-11-ARIMA presenta además una Tabla C16A en donde se repiten los coeficientes de cada día que son obtenidos con la regresión.
- X-12-ARIMA y X-11-ARIMA presentan también una Tabla C16C en la que se estiman los coeficientes de corrección de los doce meses siguientes.

Ejemplo

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										102.198	98.646	99.895
1986	101.662	99.115	97.557	101.084	99.839	99.083	102.198	97.504	101.116	101.662	97.167	101.347
1987	99.839	99.115	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1988	97.504	102.982	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1989	99.895	99.115	101.662	97.167	101.347	101.441	97.557	102.198	98.646	99.895	101.463	97.504
1990	101.347	99.115	99.839	99.083	102.198	98.646	99.895	101.662	97.167	101.347	101.441	97.557
1991	102.198	99.115	97.504	101.116	101.662	97.167	101.347	99.839	99.083	102.198	98.646	99.895
1992	101.662	100.947	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1993	97.504	99.115	101.347	101.441	97.557	101.084	99.839	99.895	101.463	97.504	101.116	101.662
1994	97.557	99.115	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1995	99.895	99.115	101.662									

Tabla 4.87: **C16** : Coeficientes de ajuste para días hábiles extraídos de la regresión. Consideremos, por ejemplo, los meses de abril de 1986 y de febrero de 1989.

	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo	N° de días
Pesos	1.092	1.242	1.083	1.356	1.076	0.518	0.632	
Número de días								
ABR86	4	5	5	4	4	4	4	30
FEB89	4	4	4	4	4	4	4	28

Los coeficientes de corrección para esos meses serán entonces:

$$\begin{array}{lll} AB\,R86 & = & 100\times\frac{4\times1.09246+5\times1.24237+5\times1.08276}{30} + \\ & & 100\times\frac{4\times1.35622+4\times1.07609+4\times0.51763+4\times0.63247}{30} \\ & = & 101.084 \end{array}$$

o bien, más simplemente, puesto que Martes y Miércoles son los únicos días que intervienen 5 veces en el mes:

$$ABR86 = 100 \times \frac{28 + 1.2424 + 1.0828}{30} = 101.084$$

y para el mes de febrero, de 28 días:

$$FEB89 = 100 \times \frac{28}{28.25} = 99.115.$$

Se obtiene luego un valor corregido de la componente irregular (Tabla C16bis), por ejemplo:

$$ABR86 = 100 \times 107.663/101.084 = 106.509$$

y

$$FEB89 = 100 \times 99.576/99.115 = 100.465.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										99.720	100.817	98.860
1986	100.788	99.439	98.624	106.509	99.508	100.010	100.419	97.234	99.592	100.822	99.969	99.557
1987	94.585	101.051	101.106	99.928	100.645	99.189	100.312	98.843	100.360	99.464	100.452	100.325
1988	99.781	100.028	100.102	99.649	101.241	100.052	99.022	99.602	100.363	97.527	98.655	101.446
1989	100.565	100.465	97.151	102.535	98.770	101.478	99.834	99.080	99.922	99.647	100.680	100.517
1990	99.976	99.355	100.313	99.776	100.346	98.863	100.387	101.033	99.769	100.728	100.012	98.610
1991	100.712	99.941	99.378	100.547	98.995	100.739	102.189	100.220	99.542	99.954	100.494	99.604
1992	99.833	100.406	99.837	100.244	100.172	99.039	99.415	100.680	100.799	100.999	99.892	98.131
1993	98.962	102.519	100.511	98.119	100.710	100.147	100.081	100.537	99.381	99.613	99.486	99.911
1994	100.818	99.920	98.931	99.895	101.474	100.248	100.408	102.064	99.885	99.308	99.558	101.086
1995	100.204	99.511	99.712									

Tabla 4.88: **C16bis** : Componente irregular corregida de los efectos de días hábiles extraídos de la regresión.

4.2.14 Tabla C17: Pesos finales para la corrección de la componente irregular Descripción y modalidades de cálculo

Se trata de localizar y corregir los puntos atípicos con la estimación de la componente irregular de la Tabla C16bis, o de la Tabla C13 si no se seleccionó ninguna corrección para días hábiles. Para ello, se emplea el algoritmo de detección de puntos atípicos y de cálculo de pesos de corrección que fue detallado para las Tablas B4 y B9 (*cf.* Sección §4.1.4 y Sección §4.1.9, respectivamente). Como se dispone ya de una estimación de lo irregular, se aplican únicamente las etapas 4 y 5.

Comentario

Son válidos aquí los comentarios hechos a propósito de las Tablas B4 y B9, relativos al cálculo de las desviaciones estándar y de los pesos de corrección.

Ejemplo

Cálculo de una desviación estándar móvil

La desviación estándar que corresponde al año 1989 será calculada con los datos de los años 1987 hasta 1991 (dos años antes y dos años después), según la fórmula siguiente ²⁰:

$$\sigma_{89} = \left[\frac{1}{60} \sum_{t=Ene87}^{Dic91} (I_t - 100)^2\right]^{1/2} = 1.4629.$$

Las desviaciones estándar de los años 1988, 1990, 1991 y 1992 son calculadas con el mismo principio. Para X-11-ARIMA y X-12-ARIMA, la desviación estándar de 1987 se calcula con el conjunto de las observaciones disponibles desde 1985 hasta, o sea 63 observaciones. Los resultados del cálculo de X-11-ARIMA y de X-12-ARIMA figuran en la Tabla C17a, en la columna «Desviación estándar 1».

Año	Desviación estándar 1	Desviación estándar 2
1985	1.4389	0.9815
1986	1.4389	0.9815
1987	1.4389	0.9815
1988	1.4629	0.9889
1989	1.1712	0.9476
1990	0.9538	0.9538
1991	0.9526	0.9030
1992	0.8592	0.8021
1993	0.8420	0.7861
1994	0.8420	0.7861
1995	0.8420	0.7861

Tabla 4.89: C17a: Desviaciones estándar móviles sobre 5 años.

Ese primer cálculo sirve para localizar los eventuales puntos atípicos. Como lo muestra la Figura 4.12 (*cf.* pág. 129), los valores de abril de 1986, enero de 1987 y febrero de 1993 son considerados muy atípicos.

Efectivamente, se obtiene: $|ABR86-100|=|106.509-100|=6.509>2.5\times\sigma_{86}=2.5\times1.4389=3.597, |ENE87-100|=|94.585-100|=5.415>2.5\times\sigma_{87}=2.5\times1.4389=3.597,$ y $|FEB93-100|=|102.519-100|=2.519>2.5\times\sigma_{93}=2.5\times0.8420=2.105.$

Esos puntos son eliminados del cálculo de la segunda desviación estándar. Lo que lleva a los resultados de la columna «Desviación estándar 2» de la Tabla C17a.

Detección y corrección de los valores atípicos

Se sitúan los valores de lo irregular con respecto a los «límites de confianza», superiores e inferiores, que han sido calculados con las nuevas estimaciones de las desviaciones estándar. Todos los valores situados más allá de los límites de confianza inferiores (*cf.* Figura 4.13, pág. 129) son considerados atípicos y serán corregidos, con diversos grados. Los pesos asociados, multiplicados por 100, de cada uno de esos valores figuran en la Tabla C17.

Los valores que fueron considerados muy atípicos precedentemente, siguen siéndolo y se les afecta un peso nulo. Por ejemplo, |ABR86 - 100| = |106.509 - 100| =

²⁰La media teórica es considerada aquí igual a 100, para tomar en cuenta el hecho que los valores de lo irregular ya fueron multiplicados por 100.

 $6.509>2.5\times\sigma_{86}=2.5\times0.9815=2.454.$ El mes de julio de 1991 se sitúa entre los dos «límites de confianza». Se lo considera moderadamente atípico y se obtiene: |JUL91-100|=|102.189-100|=2.189, y $1.5\times\sigma_{91}=1.5\times0.9030=1.3545<2.189<2.5\times\sigma_{91}=2.5\times0.9030=2.2575.$ Se atribuye a este valor, considerado moderadamente atípico, un peso proporcional al desvío a la media constante:

$$peso(JUL91) = \frac{2.2575 - 2.189}{2.2575 - 1.3545} = 0.075.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.000	100.000	100.000
1986	100.000	100.000	100.000	0.000	100.000	100.000	100.000	0.000	100.000	100.000	100.000	100.000
1987	0.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	0.000	100.000	100.000
1989	100.000	100.000	0.000	0.000	100.000	94.034	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1991	100.000	100.000	100.000	100.000	100.000	100.000	7.552	100.000	100.000	100.000	100.000	100.000
1992	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	16.963
1993	100.000	0.000	100.000	10.773	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1994	100.000	100.000	100.000	100.000	62.449	100.000	100.000	0.000	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

Tabla 4.90: C17 : Pesos finales para la componente irregular (Los límites utilizados son 1.5σ y 2.5σ).

4.2.15 Tabla C18: Coeficientes para días hábiles combinados (extraídos del ajuste *a priori* y de la regresión para días hábiles)

Descripción y modalidades de cálculo

Tal como fue hecho para la Tabla B18, si se seleccionaron previamente los coeficientes diarios de corrección *a priori* de los efectos de días hábiles (únicamente en un esquema multiplicativo) y si se solicitó también una regresión para días hábiles, la Tabla C18 presenta el resultado combinado de esas dos correcciones, por simple adición de los dos efectos. Los pesos combinados provienen de la Tabla C15.

Comentario

En X-12-ARIMA se pueden estimar otros efectos en el momento de hacer la regresión sobre la componente irregular (Pascua, Día del Trabajo, Fiesta de Pentecostés, etc.). En ese caso, la Tabla C18 toma en cuenta el conjunto de efectos.

Figura 4.12: C17: Desvío a la media de lo irregular y «límites superiores de confianza» $(\pm 2.5\sigma)$. Primera estimación.

Figura 4.13: C17: Desvío a la media de lo irregular y «límites superiores de confianza» $(\pm 1.5\sigma$ y $\pm 2.5\sigma$). Segunda estimación.

EjemploEn nuestro caso, la Tabla C18 es idéntica a la Tabla C16.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										102.198	98.646	99.895
1986	101.662	99.115	97.557	101.084	99.839	99.083	102.198	97.504	101.116	101.662	97.167	101.347
1987	99.839	99.115	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1988	97.504	102.982	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1989	99.895	99.115	101.662	97.167	101.347	101.441	97.557	102.198	98.646	99.895	101.463	97.504
1990	101.347	99.115	99.839	99.083	102.198	98.646	99.895	101.662	97.167	101.347	101.441	97.557
1991	102.198	99.115	97.504	101.116	101.662	97.167	101.347	99.839	99.083	102.198	98.646	99.895
1992	101.662	100.947	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1993	97.504	99.115	101.347	101.441	97.557	101.084	99,839	99.895	101.463	97.504	101.116	101.662
1994	97.557	99.115	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1995	99 895	99 115	101 662									

Tabla 4.91: C18: Coeficientes de corrección combinados para días hábiles.

4.2.16 Tabla C19: Serie bruta corregida de los efectos de días hábiles

Descripción y modalidades de cálculo

La serie de la Tabla B1 (o de la Tabla A1 si no se solicitó ningún ajuste preliminar) es corregida con los efectos de días hábiles estimados precedentemente (Tabla C18).

Se obtiene así (cf. Tabla C19, pág. 131): C19 = B1 op C18.

Ejemplo

Por ejemplo: $ABR86 = 100 \times 109.500/101.084 = 108.326$.

4.2.17 Tabla C20: Valores de corrección de los puntos atípicos de lo irregular Descripción y modalidades de cálculo

Los valores de la componente irregular de la Tabla C16bis (o de la tabla C13, si no se solicitó la regresión para días hábiles) que fueron considerados atípicos durante el cálculo de la Tabla C17 —para los cuales se calculó un peso— son corregidos de la siguiente manera, tal como para la Tabla B20:

$$C20 = C16bis\ op\ [xbar + C17 \times (C16bis - xbar)].$$

Ejemplo

Puesto que estamos aquí en un esquema multiplicativo, el valor del mes de mayo de 1994 —que fue considerado atípico y al cual se le afectó un peso igual a 0.62449—será corregido así (cf. Tabla C20, pág. 131):

$$MAY94 = 100 \times \frac{1.01474}{1 + 0.62449 \times (1.01474 - 1)} = 100.549.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										113.212	111.307	100.706
1986	104.858	99.581	106.502	108.326	97.858	104.660	97.556	67.382	104.039	115.186	111.458	103.012
1987	100.663	104.121	113.019	105.555	102.560	107.105	100.136	70.421	107.535	117.089	115.761	107.634
	110.457											
1989	118.024	113.202	118.236	118.044	109.031	118.591	108.245	77.692	115.768	126.834	124.971	115.585
1990	119.490	113.504	123.800	117.174	113.114	118.404	111.918	81.939	117.941	130.246	125.294	113.575
1991	120.648	113.807	122.354	118.082	111.448	120.103	113.767	81.732	117.477	129.553	126.513	115.922
1992	121.482	115.803	124.131	118.269	112.611	117.390	110.268	82.004	118.021	129.209	123.230	111.353
1993	116.611	114.110	121.069	112.578	110.602	115.845	108.275	79.784	113.144	124.098	120.357	112.924
1994	119.213	112.496	121.333	116.984	114.120	119.255	112.303	84.265	118.887	129.566	126.331	120.194
1995	124.231	117.338	128.072									

Tabla 4.92: C19 : Serie original corregida de los efectos de días hábiles.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.000	100.000	100,000
1986	100.000	100.000	100.000	106.509	100.000	100.000	100.000	97.234	100.000	100.000	100.000	100.000
1987	94.585	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	97.527	100.000	100.000
1989	100.000	100.000	97.151	102.535	100.000	100.087	100.000	100.000	100.000	100.000	100.000	100.000
				100.000								
				100.000								
				100.000								
				98.319								
				100.000	100.549	100.000	100.000	102.064	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

Tabla 4.93: C20: Valores de corrección de los puntos atípicos de lo irregular.

4.3 ETAPA D: Estimación final de las diferentes componentes

4.3.1 Tabla D1: Serie bruta ajustada para tener en cuenta el ajuste a priori, los ajustes ligados a la corrección de días hábiles y de los puntos atípicos que fueron detectados

Descripción y modalidades de cálculo

Esta tabla presenta la serie bruta corregida de los diversos efectos evidenciados en la Etapa C: puntos considerados atípicos; efectos liados a los días hábiles; y ajuste *a priori* de los elementos de la Etapa A. Se calcula esta tabla con: la Tabla C19, la cual toma en cuenta los efectos debidos a los días hábiles; o bien con la Tabla B1 si no se solicitó la regresión para días hábiles; y con la Tabla C20 que contiene las correcciones que deben ser afectadas a los puntos considerados atípicos.

Se obtiene así: D1 = C19 op C20.

Ejemplo

Por ejemplo, el valor del mes de abril de 1986, considerado atípico, se corrige así:

$$ABR86 = 100 \times 108.326/106.509 = 101.706.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										113.212	111.307	100.706
1986	104.858	99.581	106.502	101.706	97.858	104.660	97.556	69.299	104.039	115.186	111.458	103.012
1987	106.425	104.121	113.019	105.555	102.560	107.105	100.136	70.421	107.535	117.089	115.761	107.634
1988	110.457	107.009	116.147	109.584	107.513	113.046	103.791	74.990	112.972	123.917	119.999	114.886
1989	118.024	113.202	121.703	115.126	109.031	118.488	108.245	77.692	115.768	126.834	124.971	115.585
1990	119.490	113.504	123.800	117.174	113.114	118.404	111.918	81.939	117.941	130.246	125.294	113.575
1991	120.648	113.807	122.354	118.082	111.448	120.103	111.514	81.732	117.477	129.553	126.513	115.922
1992	121.482	115.803	124.131	118.269	112.611	117.390	110.268	82.004	118.021	129.209	123.230	113.114
1993	116.611	111.306	121.069	114.503	110.602	115.845	108.275	79.784	113.144	124.098	120.357	112.924
1994	119.213	112.496	121.333	116.984	113.498	119.255	112.303	82.561	118.887	129.566	126.331	120.194
1995	124.231	117.338	128.072									

Tabla 4.94: **D1**: Serie original ajustada.

4.3.2 Tabla D2: Estimación preliminar de la tendencia-ciclo

Descripción y modalidades de cálculo

Tal como en B2 y en C2, se obtiene una nueva estimación de la componente tendenciaciclo aplicando a los datos de la Tabla D1 una media móvil centrada simple de orden 12.

Comentarios

- X-11-ARIMA y X-12-ARIMA permiten también elegir una media móvil centrada sobre 24 términos, propuesta por CHOLETTE [12].
- En este estadio del cálculo, no se imputan los 6 primeros y los 6 últimos puntos de la serie.

Ejemplo

De modo que el valor del mes de abril de 1986, por ejemplo, se obtiene con los valores de la Tabla D1, desde octubre de 1985 hasta octubre de 1986 (6 meses antes y 6 meses después):

$$\begin{array}{rcl} ABR86 & = & \dfrac{113.212}{24} + \\ & & \dfrac{111.307 + 100.706 + 104.858 + 99.581 + 106.502 + 101.706}{12} + \\ & & \dfrac{97.858 + 104.660 + 97.556 + 69.299 + 104.039}{12} + \\ & & \dfrac{115.186}{24} \\ & = & 101.023. \end{array}$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				101.023	101.111	101.213	101.375		102.090		102.878	103.176
1987	103.385	103.540	103.732	103.957	104.216	104.588	104.948	105.236	105.487	105.785	106.160	106.614
1988	107.013	107.356	107.773	108.284	108.745	109.224	109.841	110.415	110.904	111.366	111.661	111.951
1989	112.363	112.661	112.890	113.128	113.457	113.693	113.784	113.857	113.957	114.130	114.385	114.552
1990	114.702	115.032	115.299	115.532	115.687	115.617	115.582	115.642	115.595	115.572	115.541	115.542
1991	115.596	115.571	115.543	115.495	115.516	115.665	115.798	115.915	116.073	116.154	116.211	116.146
1992	115.981	115.941	115.975	115.983	115.832	115.578	115.258	114.868	114.553	114.268	114.028	113.879
1993	113.732	113.557	113.261	112.845	112.512	112.384	112.485	112.643	112.703	112.818	113.042	113.305
	113.615	113.898	114.253	114.720	115.197	115.749	116.261	116.672	117.154			
1995												

Tabla 4.95: **D2**: Tendencia-ciclo (media móvil centrada sobre 12 términos).

4.3.3 Tabla D4: Estimación preliminar de la componente estacional-irregular modificada

Descripción y modalidades de cálculo

Se retira de la serie analizada la componente tendencia-ciclo, para obtener una estimación de la componente estacional-irregular. Se obtiene entonces: D4 = D1 op D2.

Comentario

Una vez más, no se hace la estimación de los 6 valores del inicio y del fin de la serie.

Ejemplo

El valor del mes de abril de 1986, por ejemplo, se obtiene entonces simplemente (*cf.* Tabla D4, pág. 134):

$$ABR86 = 100 \times 101.706/101.023 = 100.677.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				100.677	96.783	103.405			101.909	112.353	108.339	99.841
1987	102.940	100.562	108.953	101.538	98.411	102.407	95.415	66.917	101.941	110.686	109.045	100.957
1988	103.218	99.677	107.770	101.201	98.867	103.499	94.492	67.917	101.865	111.269	107.468	102.622
1989	105.039	100.480	107.806	101.766	96.099	104.217	95.132	68.237	101.589	111.131	109.255	100.902
1990	104.175	98.672	107.373	101.422	97.776	102.410	96.830	70.855	102.030	112.696	108.442	98.297
1991	104.371	98.474	105.895	102.240	96.478	103.836	96.301	70.510	101.210	111.535	108.865	99.807
1992	104.743	99.881	107.033	101.971	97.219	101.568	95.671	71.390	103.028	113.075	108.070	99.328
1993	102.531									109.998	106.471	99.664
	104.927	98.769	106.197	101.974	98.525	103.029	96.596	70.764	101.479			
1995												

Tabla 4.96: **D4**: Componente estacional-irregular modificada.

4.3.4 Tabla D5: Estimación de la componente estacional

Descripción y modalidades de cálculo

Esta estimación se obtiene con los valores de la componente estacional irregular de la Tabla D4. Una vez más se procede en tres etapas, tal como se hizo para las Tablas B5 y C5:

- Etapa 1: estimación de la componente estacional con una media 3×3 .
- Etapa 2: normalización de los coeficientes estacionales con una media móvil centrada sobre 12 términos.
- Etapa 3: estimación de los coeficientes estacionales faltantes.

Comentario

El utilizador puede seleccionar la media móvil que será empleada.

En ese caso, X-11-ARIMA permite elegir entre: una media móvil simple sobre 3 términos; una 3×3 ; una 3×5 ; una 3×9 ; y una estacionalidad constante (media simple). X-12-ARIMA propone además una 3×15 .

Ejemplo

La estimación se hace con la componente estacional-irregular modificada que figura en la Tabla D4.

Etapa 1: estimación de la componente estacional.

Se alisan los datos de la tabla precedente, columna por columna (mes por mes), con una media móvil 3×3 , para obtener la tabla D5a (*cf.* pág. 136).

El coeficiente estacional del mes de abril de 1988 es estimado así:

$$ABR88 = \frac{100.677 + 2 \times 101.538 + 3 \times 101.201 + 2 \times 101.766 + 101.422}{9}$$

= 101.367.

Se puede aplicar esta media móvil simétrica para estimar los valores de los coeficientes estacionales anuales, desde 1988 hasta 1992. Para el inicio de la serie (años 1986 y 1987) y para el fin de la serie (años 1993 y 1994), se emplean las medias

móviles asimétricas predefinidas (*cf.* Tabla 3.13, pág. 50). Por ejemplo, para abril de 1987, se utiliza un punto pasado, el punto actual y dos puntos futuros:

$$\begin{array}{lll} ABR87 & = & \frac{100.677 \times 7 + 101.538 \times 10 + 101.201 \times 7 + 101.766 \times 3}{27} \\ & = & 101.252. \end{array}$$

Etapa 2: normalización de los coeficientes estacionales.

Se aplica a la Tabla D5a una media móvil centrada sobre 12 meses para obtener la Tabla B5b (cf. pág. 136). El primer término que se puede calcular es entonces el de octubre de 1986 y el último es el de marzo de 1994. De modo que:

$$ABR90 = \frac{111.505}{24} + \frac{108.610 + 100.590 + 104.367 + 99.276 + 107.147 + 101.717}{12} + \frac{97.174 + 103.156 + 95.947 + 69.929 + 101.842}{12} + \frac{111.974}{24}$$

$$= 100.125.$$

Los seis primeros valores que no pueden ser calculados con esta media móvil simétrica, desde abril hasta setiembre de 1986, son tomados iguales al primer valor calculable, el del mes de octubre de 1986 (99.982). Se procede de la misma manera para el fin de la serie: el valor calculado para marzo de 1994 (99.933) es repetido en los seis meses siguientes. Se obtienen los coeficientes estacionales normalizados dividiendo la Tabla D5a con la Tabla D5b, lo que lleva a la Tabla D5 (cf. pág. 136).

Por ejemplo:

$$ABR86 = 100 \times 101.124/99.982 = 101.143.$$

Etapa 3: estimación de los coeficientes estacionales faltantes.

En razón de la aplicación a la Tabla D2 de una media móvil centrada sobre 12 términos (desde octubre de 1985 hasta marzo de 1986), los valores faltantes se obtienen duplicando el primer valor calculado para cada uno de esos meses. Igualmente, para los valores de octubre de 1994 hasta marzo de 1995, se duplica el último valor calculado para cada uno de esos meses.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				101.124	97.832	103.016	95.577	67.620	101.914	111.473	108.465	100.811
1987	103.442	100.186	108.259	101.252	97.850	103.150	95.356	67.652	101.874	111.319	108.476	101.093
1988	103.724	100.003	108.042	101.367	97.798	103.284	95.292	68.122	101.844	111.388	108.420	101.080
1989	104.135	99.686	107.617	101.591	97.386	103.413	95.529	68.853	101.745	111.505	108.610	100.590
1990	104.367	99.276	107.147	101.717	97.174	103.156	95.947	69.929	101.842	111.974	108.567	99.807
1991	104.280	99.003	106.800	101.860	97.092	102.973	96.144	70.565	101.747	111.920	108.372	99.471
1992	104.126	98.897	106.694	101.859	97.502	102.664	96.173	70.941	101.755	111.836	107.903	99.425
1993	103.930	98.746	106.638	101.816	97.877	102.758	96.198	70.922	101.448	111.536	107.566	99.553
1994	103.917	98.669	106.636	101.768	98.193	102.779	96.287	70.906	101.323			
1995												

Tabla 4.97: **D5a**: Coeficientes estacionales provisorios (media móvil 3×3).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986	:			99.982	99.982	99.982	99.982	99.982	99.982	99.982	99.988	99.994
1987	99.991	99.983	99.983	99.974	99.968	99.981	100.004	100.008	99.992	99.987	99.990	99.994
1988	99.996	100.013	100.032	100.033	100.034	100.031	100.048	100.051	100.021	100.012	100.004	99.993
1989	100.008	100.048	100.074	100.075	100.088	100.075	100.065	100.057	100.021	100.006	100.003	99.983
1990	99.990	100.052	100.101	100.125	100.142	100.108	100.072	100.057	100.031	100.022	100.025	100.014
1991	100.014	100.049	100.072	100.065	100.055	100.033	100.012	100.002	99.993	99.988	100.005	100.010
1992	99.998	100.015	100.031	100.028	100.005	99.983	99.973	99.959	99.950	99.946	99.960	99.979
1993	99.984	99.984	99.971	99.946	99.919	99.910	99.915	99.911	99.908	99.906	99.917	99.931
1994	99.936	99.939	99.933	99.933	99.933	99.933	99.933	99.933	99.933			
1995												

Tabla 4.98: **D5b**: Media móvil centrada sobre 12 términos.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.493	108.478	100.817
1986	103.452		108.278									
1987	103.452	100.203	108.278	101.278	97.881	103.170	95.352	67.646	101.882	111.333	108.487	101.100
1988	103.728	99.989	108.008	101.334	97.765	103.252	95.247	68.087	101.823	111.374	108.416	101.088
1989	104.127	99.638	107.537	101.515	97.300	103.335	95.467	68.814	101.724	111.498	108.608	100.607
1990	104.378	99.224	107.039	101.590	97.036	103.045	95.878	69.890	101.811	111.949	108.540	99.793
1991	104.265	98.955	106.723	101.794	97.038	102.940	96.132	70.564	101.755	111.933	108.366	99.461
1992	104.128	98.882	106.661	101.831	97.498	102.681	96.199	70.970	101.806	111.896	107.947	99.445
1993	103.947	98.762	106.669	101.871	97.956	102.851	96.279	70.985	101.541	111.641	107.655	99.622
1994	103.984	98.729	106.707	101.836	98.259	102.848	96.351	70.954	101.391	111.641	107.655	99.622
1995	103.984	98.729	106.707									

Tabla 4.99: **D5**: Coeficientes estacionales.

4.3.5 Tabla D6: Estimación de la serie corregida de variaciones estacionales

Descripción y modalidades de cálculo

Esta estimación se obtiene simplemente (cf. Tabla D6), retirando a la serie de la Tabla D1 la estimación de la componente estacional de la Tabla D5: D6 = D1 op D5.

Ejemplo

Por ejemplo: $ABR86 = 100 \times 101.706/101.143 = 100.557$.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.542	102.608	99.890
1986	101.359	99.379	98.360	100.557	100.008	101.577	102.052	102.465	102.067	103.312	102.746	102.178
1987	102.874	103.910	104.379	104.223	104.780	103.814	105.017	104.101	105.548	105.171	106.705	106.463
1988	106.487	107.020	107.536	108.142	109.971	109.485	108.970	110.138	110.950	111.262	110.685	113.649
1989	113.347	113.613	113.173	113.408	112.056	114.664	113.385	112.902	113.806	113.754	115.067	114.888
1990	114.479	114.392	115.659	115.340	116.569	114.905	116.730	117.240	115.843	116.344	115.436	113.811
	115.714											
1992	116.665	117.112	116.379	116.143	115.501	114.325	114.625	115.547	115.927	115.472	114.158	113.745
1993	112.183	112.702	113.499	112.400	112.910	112.634	112.459	112.396	111.427	111.158	111.798	113.352
1994	114.646	113.943	113.707	114.875	115.509	115.953	116.556	116.359	117.256	116.055	117.348	120.650
1995	119.472	118.848	120.022									

Tabla 4.100: **D6**: Serie corregida de variaciones estacionales.

4.3.6 Tabla D7: Estimación de la componente tendencia-ciclo

Descripción y modalidades de cálculo

Esa tabla presenta la estimación de la componente tendencia-ciclo que fue calculada con la serie desestacionalizada de la tabla precedente (*cf.* Tabla D7, pág. 139). La metodología seguida es la misma que la empleada para construir la Tabla C7 (*cf.* Sección §4.2.6).

Comentario

El utilizador puede especificar la longitud de la media móvil de Henderson que será utilizada. En ese caso, X-11-ARIMA permite elegir entre una media móvil sobre 9, 13 o 23 términos.

X-12-ARIMA permite elegir cualquier media de Henderson de orden impar inferior a 101.

Ejemplo

Etapa 1: elección de la media móvil, cálculo de la razón \bar{I}/\bar{C} .

En primer lugar se alisa la Tabla D6 con una media móvil d Henderson sobre 13 términos, cuyos coeficientes figuran en la Tabla 3.11 (*cf.* pág. 49).

Para el mes de abril de 1990 se obtiene así:

```
ABR90 = 113.754 \times (-0.01935) + 115.067 \times (-0.02786) + 
114.888 \times (0.00000) + 114.479 \times (0.06549) + 
114.392 \times (0.14736) + 115.659 \times (0.21434) + 
115.340 \times (0.24006) + 116.569 \times (0.21434) + 
114.905 \times (0.14736) + 116.730 \times (0.06549) + 
117.240 \times (0.00000) + 115.843 \times (-0.02786) + 
116.344 \times (-0.01935) = 115.507.
```

En esta etapa del cálculo, no se estiman los 6 puntos que no pueden ser calculados al inicio y al fin de la serie. Se deduce una estimación de la tendencia-ciclo (*cf.* Tabla D7a, pág. 139) y de la componente irregular (*cf.* Tabla D7b, pág. 139) en relación con la Tabla D6.

Puesto que el esquema es multiplicativo, se calculan las tasas de crecimiento medias (*cf.* Sección §4.1.7).

Con los totales en línea de las Tablas D7c y D7d, se calcula:

$$\bar{C} = \frac{2.961 + 3.291 + 5.735 + 1.948 + 2.664}{101} + \\ \frac{1.606 + 2.835 + 2.697 + 3.494}{101} = \\ 0.2696, \\ \bar{I} = \frac{5.308 + 8.518 + 7.884 + 8.817 + 9.916}{101} + \\ \frac{8.965 + 4.527 + 6.637 + 4.295}{101} = \\ 0.64224, \\ \bar{I}/\bar{C} = \frac{0.64224}{0.2696} = 2.3822.$$

Etapa 2: alisado de la serie corregida de variaciones estacionales con una media móvil de Henderson.

Como la razón es mayor que 1 y menor que 3.5, se elige una media móvil de Henderson sobre 13 términos, cuyos coeficientes —y los coeficientes de las medias móviles asimétricas asociadas— figuran en la Tabla 3.11~(cf.~pág.~49). La estimación de la tendencia para el mes de octubre de 1985 se hace con la serie desestacionalizada de la Tabla D6, utilizando el punto actual y seis puntos futuros, a los cuales se les aplica los coeficientes de la media móvil $H6_0$ de la Tabla 3.11.

$$OCT85 = 101.542 \times (0.42113) + 102.608 \times (0.35315) +$$

 $99.890 \times (0.24390) + 101.359 \times (0.11977) +$
 $99.379 \times (0.01202) + 98.360 \times (-0.05811) +$
 $100.557 \times (-0.09186) = 101.743.$

Lo que lleva a la Tabla D7 (cf. Tabla 4.101, pág. 139).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.743	101.327	100.829
1986	100.322	99.896	99.730	99.924	100.448	101.139	101.793	102.277	102.510	102.619	102.727	102.919
1987	103.227	103.605	103.961	104.237	104.392	104.458	104.568	104.811	105.176	105.595	105.986	106.358
1988	106.769	107.255	107.783	108.342	108.897	109.373	109.753	110.132	110.620	111.245	111.976	112.620
1989	113.055	113.305	113.399	113.377	113.299	113.273	113.379	113.577	113.823	114.082	114.322	114.577
1990	114.827	115.007	115.221	115.507	115.844	116.190	116.387	116.378	116.190	115.852	115.462	115.118
1991	114.922	114.960	115.161	115.427	115.657	115.784	115.845	115.893	115.954	116.098	116.330	116.583
1992	116.752	116.675	116.343	115.875	115.469	115.236	115.197	115.241	115.170	114.874	114.359	113.735
1993	113.185	112.848	112.740	112.756	112.737	112.564	112.240	111.920	111.807	111.956	112.336	112.886
1994	113.478	114.036	114.508	114.946	115.391	115.783	116.130	116.484	116.891	117.414	118.042	118.680
1995	119.243	119.691	120.001									

Tabla 4.101: **D7**: Tendencia-ciclo (la razón I/C es igual a 2.382, se eligió una media móvil de Henderson sobre 13 términos).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				99.924	100.448	101.139	101.793	102.277	102.510	102.619	102.727	102.919
1987	103.227	103.605	103.961	104.237	104.392	104.458	104.568	104.811	105.176	105.595	105.986	106.358
1988	106.769	107.255	107.783	108.342	108.897	109.373	109.753	110.132	110.620	111.245	111.976	112.620
1989	113.055	113.305	113.399	113.377	113.299	113.273	113.379	113.577	113.823	114.082	114.322	114.577
1990	114.827	115.007	115.221	115.507	115.844	116.190	116.387	116.378	116.190	115.852	115.462	115.118
1991	114.922	114.960	115.161	115.427	115.657	115.784	115.845	115.893	115.954	116.098	116.330	116.583
1992	116.752	116.675	116.343	115.875	115.469	115.236	115.197	115.241	115.170	114.874	114.359	113.735
1993	113.185	112.848	112.740	112.756	112.737	112.564	112.240	111.920	111.807	111.956	112.336	112.886
1994	113.478	114.036	114.508	114.946	115.391	115.783	116.130	116.484	116.891			
1995												

Tabla 4.102: **D7a**: Tendencia-ciclo (media móvil de Henderson sobre 13 términos).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				100.633	99.562	100.433	100.254	100.183	99.568	100.676	100.018	99.280
1987	99.659	100.295	100.402	99.987	100.372	99.383	100.430	99.323	100.354	99.598	100.678	100.099
1988	99.737	99.781	99.771	99.816	100.986	100.102	99.286	100.005	100.298	100.015	98.847	100.914
1989	100.258	100.272	99.800	100.027	98.903	101.228	100.005	99.406	99.985	99.713	100.652	100.271
1990	99.697	99.466	100.380				100.294			100.425	99.978	98.865
1991	100.689	100.043	99.553	100.497	99.301	100.767	100.135	99.943	99.567	99.693	100.358	99.972
1992	99.926	100.375	100.031	100.231	100.028	99.209	99.503	100.265	100.658	100.520	99.825	100.008
1993	99.115	99.871	100.673	99.684	100.153	100.062	100.195	100.426	99.660	99.286	99.521	100.413
1994	101.029	99.919	99.300	99.939	100.102	100.147	100.367	99.893	100.313			
1995												

Tabla 4.103: **D7b**: Componente irregular.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
1985													
1986					0.524								
1987	0.299	0.367	0.343	0.265	0.149	0.064	0.105	0.232	0.348	0.399	0.370	0.350	3.291
1988	0.386	0.456	0.492	0.518	0.513	0.437	0.347	0.345	0.443	0.566	0.657	0.575	5.735
1989	0.387	0.221	0.083	0.019	0.069	0.023	0.093	0.175	0.217	0.227	0.210	0.224	1.948
1990	0.218	0.156	0.186	0.249	0.291	0.299	0.169	0.008	0.161	0.291	0.337	0.298	2.664
1991	0.170	0.033	0.175	0.231	0.199	0.110	0.053	0.041	0.053	0.124	0.199	0.217	1.606
1992	0.146	0.066	0.285	0.401	0.351	0.201	0.034	0.038	0.062	0.257	0.449	0.545	2.835
					0.017								2.697
1994	0.525	0.491	0.414	0.382	0.388	0.340	0.299	0.305	0.350				3.494
1995													

Tabla 4.104: D7c: Tasas de crecimiento de la tendencia-ciclo (en valor absoluto y en %).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
1985													
1986					1.065								
1987	0.382	0.638	0.107	0.414	0.385	0.985	1.053	1.102	1.038	0.754	1.085	0.575	8.518
1988	0.362	0.044	0.010	0.045	1.173	0.876	0.815	0.724	0.293	0.283	1.168	2.092	7.884
1989	0.650	0.014	0.471	0.227	1.124	2.351	1.208	0.599	0.582	0.272	0.942	0.378	8.817
1990	0.573	0.232	0.920	0.523	0.772	1.721	1.416	0.445	1.031	0.725	0.445	1.113	9.916
1991	1.845	0.641	0.490	0.948	1.190	1.476	0.628	0.191	0.377	0.127	0.668	0.385	8.965
1992	0.047	0.450	0.343	0.200	0.203	0.819	0.297	0.766	0.392	0.137	0.692	0.184	4.527
1993	0.893	0.762	0.804	0.983	0.471	0.091	0.133	0.230	0.762	0.375	0.236	0.896	6.637
1994	0.613	1.099	0.619	0.643	0.164	0.044	0.220	0.473	0.420				4.295
1995													

Tabla 4.105: **D7d**: Tasas de crecimiento de lo irregular (en valor absoluto y en %).

4.3.7 Tabla D8: Estimación de la componente estacional-irregular sin modificaciones

Descripción y modalidades de cálculo

La componente tendencia-ciclo es retirada de la serie analizada de la tabla C19 — o de la Tabla B1 si no se eligió la opción de corrección para días hábiles— para obtener una estimación de la componente estacional irregular. Se obtienen los valores atípicos presentes en esta serie, mediante: $D8 = C19 \ op \ D7$.

Se editan varios tests, paramétricos y no paramétricos, para evaluar la presencia de estacionalidad. Los resultados de esos tests figuran también en la Tabla F2I (*cf.* Tabla 4.161, pág. 185).

1. Para decidir entre las dos hipótesis siguientes, se proponen dos tests, uno paramétrico y el otro no paramétrico:

 H_0 : $m_1 = m_2 = \dots = m_k$ H_1 : $m_p \neq m_q$ para al menos un par (p,q)

en donde m_1, \ldots, m_k son los coeficientes estacionales estables para los 12 meses, o los 4 trimestres.

- El primero, llamado test de estacionalidad estable, es un test paramétrico que se funda en un modelo de análisis de la varianza con un factor, el cual es estrictamente igual al que es editado después de la Tabla B1 (cf. Sección §4.1.3).
- El segundo es un test no paramétrico de Kruskal-Wallis: se admite que los datos de la Tabla D8 provienen de k muestras independientes A_1,A_2,\ldots,A_k (k=4 si la serie es trimestral o k=12 si la serie es mensual) de tamaño n_1,n_2,\ldots,n_k respectivamente.

El test se apoya en la estadística siguiente:

$$W = \frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{S_j^2}{n_j} - 3(n+1)$$

en donde S_j es la suma de los rangos de las observaciones de la muestra A_j , en la serie de las $n=\sum_{j=1}^k n_j$ observaciones. Si se admite la hipótesis nula, esta cantidad sigue una Ley del Chi-cuadrado, con k-1 grados de libertad.

2. Se hace luego un **test de estacionalidad evolutiva** que se funda en un modelo de análisis de la varianza con dos factores (el mes o el trimestre y el año). Este test fue propuesto por HIGGINSON [33].

El test se apoya en la modelización de los valores de la componente irregular de la Tabla D8 (*cf.* Tabla 4.106, pág. 142), únicamente para los **años completos**:

$$|SI_{ij} - xbar| = X_{ij} = b_i + m_j + e_{ij}$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.272	109.850	99.878
1986	104.521	99.685	106.791	108.408	97.421	103.481	95.838	65.882	101.491	112.247	108.498	100.090
1987	97.516	100.498	108.713	101.265	98.245	102.534	95.762	67.188	102.243	110.885	109.223	101.200
1988	103.455	99.770	107.760	101.147	98.729	103.358	94.567	68.091	102.126	108.636	107.165	102.012
1989	104.396	99.909	104.265	104.116	96.233	104.695	95.472	68.405	101.709	111.178	109.316	100.880
1990	104.061	98.694	107.446	101.443	97.643	101.905	96.160	70.407	101.507	112.424	108.516	98.660
1991	104.983	98.997	106.246	102.300	96.361	103.730	98.207	70.524	101.314	111.589	108.754	99.434
1992	104.051	99.253	106.694	102.066	97.525	101.869	95.721	71.158	102.476	112.478	107.757	97.905
1993	103.027	101.119	107.388	99.842	98.106	102.914	96.468	71.287	101.196	110.845	107.140	100.034
1994	105.054	98.649	105.960	101.774	98.899	102.998	96.705	72.340	101.708	110.349	107.022	101.276
1995	104.183	98.034	106.726									

Tabla 4.106: **D8**: Valores finales de la componente estacional-irregular sin modificaciones.

siendo:

- m_i designa el efecto del mes o del trimestre j (j = 1, ..., k);
- b_i designa el efecto del año i $(i=1,\ldots,N)$, siendo N el número de años completos;
- $-e_{ij}$ representa el efecto residual, realización de leyes independientes, de media nula y de distribuciones idénticas.

El test se funda en la descomposición $S^2 = S_A^2 + S_B^2 + S_R^2$, siendo:

- S^2 es la suma total de cuadrados: $S^2 = \sum_{j=1}^k \sum_{i=1}^N (X_{ij} \bar{X}_{..})^2$ con $\bar{X}_{..} = \sum_{j=1}^k \sum_{i=1}^N X_{ij}/(kN)$;
- S_A^2 es la suma de cuadrados «inter-meses»: $S_A^2 = N \sum_{j=1}^k \left(\bar{X}_{.j} \bar{X}_{..} \right)^2$ con $\bar{X}_{.j} = \sum_{i=1}^N X_{ij}/N$;
- S_B^2 es la suma de cuadrados «inter-años»: $S_B^2 = k \sum_{i=1}^N \left(\bar{X}_{i.} \bar{X}_{..}\right)^2$ con $\bar{X}_{i.} = \sum_{j=1}^k X_{ij}/k$;
- S_R^2 es la suma «residual» de cuadrados: $S_R^2 = \sum_{i=1}^N \sum_{j=1}^k \left(X_{ij} \bar{X}_{i.} \bar{X}_{.j} + \bar{X}_{..} \right)^2.$

Con la siguiente estadística se puede someter a prueba la hipótesis nula H_0^* : $b_1=b_2=\ldots=b_N$, es decir la hipótesis que la estacionalidad evoluciona en el transcurso de los años:

$$F_M = \frac{S_B^2/(N-1)}{S_B^2/(N-1)(k-1)}$$

la cual —admitiendo H_0^* — sigue una Ley de Fisher con (N-1) y (k-1)(N-1) grados de libertad.

3. Por último, se completa esa batería con el test llamado de **presencia de estacionalidad identificable**, que se construye con los valores de la estadística de Fisher del test paramétrico de *estacionalidad estable* (estadística F_S) y del test de *estacionalidad evolutiva* (estadística F_M) presentado en el párrafo anterior. Ese test fue elaborado por LOTHIAN y MORRY [48], a partir de consideraciones teóricas y prácticas.

El valor de la estadística de prueba T es el siguiente:

$$T=\left(rac{T_1+T_2}{2}
ight)^{1/2}$$
 ; siendo $T_1=rac{7}{F_S}$ y $T_2=rac{3F_M}{F_S}$

No se hace aquí la presentación detallada de los cálculos complejos que llevan a los valores de las diferentes estadísticas de prueba. En cambio, se explícita el test combinado:

- 1. La estadística F_S (cf. Tabla 4.107, pág. 144) es lo suficientemente grande como para que se rechace la hipótesis de igualdad de los coeficientes estacionales.
- 2. La estadística F_M (cf. Tabla 4.108, pág. 144) muestra que la serie no comporta ninguna componente estacional evolutiva. El test acepta la hipótesis H_0^* .
- 3. Se obtiene: $T_1 = 7/F_S = 7/498.194 = 0.014$; y $T_2 = 3F_M/F_S = 3 \times 1.724/498.194 = 0.010$, es decir que las dos estadísticas son menores que 1.
- 4. El test no paramétrico de Kruskal-Wallis (cf. Tabla 4.109, pág. 144) confirma la existencia de una estacionalidad.

El test combinado resuelve entonces la cuestión de la presencia de una estacionalidad identificable.

La versión final del test combinado se interpreta tal como está indicado en el diagrama de la Figura 4.14 (*cf.* pág. 145).

Ejemplo

El valor del mes de abril de 1986 se obtiene simplemente:

$$ABR86 = 100 \times 108.326/99.924 = 108.408.$$

En la Figura 4.16 de la Sección §4.3.10 (cf. pág. 156), se presentan con triángulos llenos los valores de la componente estacional irregular sin modificaciones.

4.3.8 Tabla D9: Valores de remplazo para los puntos atípicos de la componente estacional-irregular.

Descripción y modalidades de cálculo

La Tabla D8 contiene una estimación de la componente estacional-irregular sin modificaciones, que incluye los valores atípicos, puesto que es extraída de la serie de la Tabla C19 corregida de los efectos de días hábiles (o bien de la serie de la T B1 si no se solicitó ninguna corrección), de la cual se retiró la componente tendencia-ciclo de la Tabla D7.

La serie D1 —que es la serie bruta D1 corregida de los valores atípicos y de los efectos de días hábiles— puede aportar otra estimación de la componente estacional irregular, siempre por extracción de la componente tendencia-ciclo de la Tabla D7. La comparación de esas dos estimaciones de la componente estacional irregular (corregida o no de los valores atípicos) nos permite localizar los valores de remplazo que serán utilizados para los puntos considerados atípicos. Esos valores son editados en la Tabla D9 (cf. Tabla 4.110, pág. 144).

Se comparan entonces la series: C19 op D7 y D1 op D7.

	Suma de Cuadrados	g.d.l.	Media de Cuadrados	F	PROB>F
Entre los meses Residuo	11264.919 209.670	11 102	1024.084 2.056	498.194	0.000
Total	11474.589	113			

Tabla 4.107: Test de la presencia de una estacionalidad estable.

	Suma de Cuadrados	g.d.l.	Media de Cuadrados	F	PROB>F
Entre los años Residuo	20.628 131.614	8 88	2.578 1.496	1.724	0.104

Tabla 4.108: Test de la presencia de una estacionalidad evolutiva.

Estadística W de Kruskal-Wallis	g.d.l.	PROB>W
104.780	11	0.000

Tabla 4.109: Test no paramétrico de la presencia de una estacionalidad estable.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				101.783				67.756				
1987	103.098											
1988										111.390		
1989			107.322	101.542		104.604						
1990												
1991							96.261					
1992												99.453
1993		98.634		101.549								
1994					98.359			70.878				
1995												

Tabla 4.110: **D9**: Valores finales de remplazo de los valores atípicos de la componente estacional-irregular.

Figura 4.14: Test para la presencia de estacionalidad identificable

Se extrae de la serie D1 la estimación de la tendencia de la Tabla D7, para obtener la Tabla D9bis.

Por ejemplo: $ABR86 = 100 \times 101.706/99.924 = 101.783$.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.272	109.850	99.878
1986	104.521	99.685	106.791	101.783	97.421	103.481	95.838	67.756	101.491	112.247	108.498	100.090
1987	103.098	100.498	108.713	101.265	98.245	102.534	95.762	67.188	102.243	110.885	109.223	101.200
1988	103.455	99.770	107.760	101.147	98.729	103.358	94.567	68.091	102.126	111.390	107.165	102.012
1989	104.396	99.909	107.322	101.542	96.233	104.604	95.472	68.405	101.709	111.178	109.316	100.880
1990	104.061	98.694	107.446	101.443	97.643	101.905	96.160	70.407	101.507	112.424	108.516	98.660
1991	104.983	98.997	106.246	102.300	96.361	103.730	96.261	70.524	101.314	111.589	108.754	99.434
1992	104.051	99.253	106.694	102.066	97.525	101.869	95.721	71.158	102.476	112.478	107.757	99.453
1993	103.027	98.634	107.388	101.549	98.106	102.914	96.468	71.287	101.196	110.845	107.140	100.034
1994	105.054	98.649	105.960	101.774	98.359	102.998	96.705	70.878	101.708	110.349	107.022	101.276
1995	104.183	98.034	106.726									

Tabla 4.111: **D9bis**: Componente estacional-irregular modificada final.

Esta tabla es comparada a la Tabla D8. Los valores que no coinciden corresponden a los valores de remplazo de los puntos considerados atípicos. Esos valores son editados en la Tabla D9. En la Figura 4.16 de la Sección §4.3.10 (cf. pág. 156), se representan esos valores de remplazo con triángulos vacíos.

4.3.9 Tabla D9A: Cálculo de las «razones de estacionalidad móvil» (RSM)

Descripción y modalidades de cálculo

Con la Tabla D9bis precedente —que no es editada en las versiones actuales de los paquetes— se tratará de evaluar, para cada mes, la importancia de la componente irregular con respecto a la componente estacional. Tendremos que alisar esa componente para estimar la componente estacional, según la importancia de lo irregular en la componente estacional irregular, mediante medias móviles más o menos largas. Encontramos ya esta idea a propósito de la extracción de la tendencia-ciclo, en donde la razón \bar{I}/\bar{C} servía para elegir la longitud de la media móvil de Henderson.

La estimación de las razones de estacionalidad móvil (RSM) se hace en dos etapas.

Etapa 1: estimación de la componente irregular y de la componente estacional.

Se obtiene una estimación de la componente estacional alisando la Tabla D9bis, mes por mes (o sea columna por columna), con una media móvil simple sobre 7 términos, es decir de coeficientes $\{1,1,1,1,1,1,1,1\}/7$. Para no perder 3 puntos al inicio y al fin de cada columna, se completa de manera ficticia esos valores. Supongamos que la columna que corresponde a un mes dado esté compuesta de N valores $\{x_1,\ldots,x_N\}$.

Esa columna será transformada en una serie:

```
\{x_{-2},x_{-1},x_0,x_1,\ldots,x_N,x_{N+1},x_{N+2},x_{N+3}\}; siendo x_{-2}=x_{-1}=x_0=(x_1+x_2+x_3)/3 y x_{N+1}=x_{N+2}=x_{N+3}=(x_N+x_{N-1}+x_{N-2})/3.
```

Se obtienen así las estimaciones deseadas: $S=M_7(D9bis)$ y I=D9bis op S.

Etapa 2: Cálculo de las razones de estacionalidad móvil.

Para cada mes j, nos interesamos a las medias de las evoluciones anuales de cada

componente, calculando:

$$\bar{S}_j = \frac{1}{n_j - 1} \sum_{i=2}^{n_j} |S_{i,j} \ op \ S_{i-1,j} - xbar|,$$
 (4.5)

$$\bar{I}_j = \frac{1}{n_j - 1} \sum_{i=2}^{n_j} |I_{i,j} \ op \ I_{i-1,j} - xbar|,$$
 (4.6)

en donde n_j designa el número de datos en el mes j. La razón de estacionalidad móvil del mes j es definido con $MSR_j=\bar{I}_j/\bar{S}_j$. Esas razones son editados en la Tabla D9A

nbans	CS	FIS
4	3	$\frac{90}{2\sqrt{842} + 21\sqrt{2}}$
5	$\frac{3\sqrt{2}}{1+\sqrt{3}}$	$\frac{60}{\sqrt{894} + 2\sqrt{211}}$
6	$\frac{5\sqrt{6}}{8+\sqrt{2}}$	$\frac{25\sqrt{3}}{2\sqrt{298}+\sqrt{67}}$
7+	$\frac{\sqrt{3} \times nbans}{6\sqrt{2} + (nbans - 6)\sqrt{3}}$	$\tfrac{5\sqrt{6}\times nbans}{6\sqrt{149}+5\sqrt{6}(nbans-6)}$

Tabla 4.112: Valores de las constantes CS_i y FSI_i .

Comentarios

- Esas razones sirven para evaluar la parte de «ruido«» contenido en la componente estacional-irregular. La idea es disponer de un indicador para cada mes, que permita elegir la media móvil apropiada para extraer el ruido y obtener una buena estimación del coeficiente estacional. Cuanto más elevada sea la razón, más caótica será la serie y mayor tendrá que ser el orden de la media móvil que habrá que emplear. El programa elige, por defecto, la misma media móvil para alisar cada serie mensual. Pero se dispone de la posibilidad de seleccionar una media móvil para cada mes.
- El cálculo de los RSM no es tan simple. Se incluye una corrección para cada mes en el cálculo de los \bar{S}_j y \bar{I}_j . Esas cantidades son multiplicadas, respectivamente, por los parámetros CS_j y FIS_j , cuyos valores dependen del número de años disponibles para cada mes. El cálculo teórico y la justificación de estas constantes son presentados en LOTHIAN [47]. En la Tabla 4.112 se presentan los valores de esas constantes, en función del número de años nyear disponibles en cada columna $(nbans = n_j)$ para la columna j).

Ejemplo

Se puede detallar, por ejemplo, el cálculo para el mes de abril con la Tabla D9bis. La componente estacional-irregular para ese mes figura en la Columna 1 de la Tabla 4.113. La media de los 3 primeros años es (101.783+101.265+101.147)/3=101.398. La media de los 3 últimos años es (102.066+101.549+101.774)/3=101.796.

Año	Columna 1	Columna 2	MM7
		101.398	
		101.398	
1985		101.398	
1986	101.783	101.783	101.419
1987	101.265	101.265	101.425
1988	101.147	101.147	101.554
1989	101.542	101.542	101.650
1990	101.443	101.443	101.616
1991	102.300	102.300	101.689
1992	102.066	102.066	101.782
1993	101.549	101.549	101.818
1994	101.774	101.774	101.868
1995		101.796	
		101.796	
		101.796	

Tabla 4.113: **RSM**: Componente estacional-irregular y coeficientes estacionales del mes de abril.

La serie a tratar es la serie de la Columna 2 de la Tabla 4.113. Alisándola con una media móvil de orden 7, se obtiene para el mes de abril del año 1986:

$$ABR86 = (101.398 + 101.398 + 101.398 + 101.783 + 101.265 + 101.147 + 101.542)/7$$

= 101.419.

Esos cálculos llevan a la estimación de los coeficientes estacionales de la Tabla D9A1.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.457	108.901	100.621
1986	103.792	99.974	107.693	101.419	97.861	103.335	95.401	67.782	101.919	111.415	108.919	100.691
1987	103.845	99.789	107.649	101.425	97.791	103.161	95.511	68.172	101.855	111.552	108.823	100.444
1988	104.029	99.648	107.433	101.554	97.538	103.248	95.636	68.579	101.763	111.569	108.760	100.308
1989	104.081	99.544	107.282	101.650	97.451	103.068	95.683	69.076	101.838	111.742	108.461	100.247
1990	103.867	99.394	107.367	101.616	97.549	102.988	95.773	69.580	101.796	111.541	108.267	100.239
1991	104.147	99.130	106.974	101.689	97.565	103.054	95.908	70.107	101.719	111.465	107.953	100.250
1992	104.251	98.882	106.826	101.782	97.461	102.945	96.155	70.538	101.672	111.441	107.973	99.999
1993	104.207	98.672	106.736	101.818	97.713	102.658	96.273	70.924	101.684	111.448	107.686	99.909
1994	104.210	98.635	106.628	101.868	97.763	102.756	96.293	71.024	101.724	111.276	107.513	100.137
1995	104.083	98.555	106.692									

Tabla 4.114: **D9A1**: Coeficientes estacionales.

Retirando de la Tabla D9bis la estimación de la Tabla D9A1, se obtiene la estimación de la componente irregular de la Tabla D9A2 (cf. Tabla 4.115, pág. 149). Por ejemplo:

$$ABR86 = 100 \times 101.783/101.419 = 100.359.$$

Luego se calculan, columna por columna, las variaciones anuales medias de lo irregular y de la componente estacional, según las fórmulas (4.5) y (4.6) que corresponden al esquema multiplicativo. Los crecimientos absolutos anuales (en porcentajes) de las componentes estacional e irregular figuran en la Tabla D9A3 (cf. Tabla 4.116, pág. 149) y en la Tabla D9A4 (cf. Tabla 4.117, pág. 150), respectivamente.

Por ejemplo, en la Tabla D9A3, el valor para el mes de abril de 1988 es el siguiente:

$$ABR88 = 100 \times |101.554 - 101.425| /101.425 = 0.127,$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										99.834	100.871	99.261
1986	100.703	99.711		100.359					99.581	100.746	99.614	99.403
1987	99.281	100.711	100.989	99.842	100.465	99.391	100.263	98.557	100.381	99.402	100.368	100.753
1988	99.448	100.122	100.304	99.599	101.221	100.106	98.883	99.289	100.357	99.840	98.534	101.699
1989	100.303	100.367	100.038	99.895	98.750	101.490	99.779	99.029	99.873	99.496	100.788	100.631
1990	100.187	99.296	100.073	99.830	100.097	98.949	100.404	101.189	99.717	100.792	100.230	98.425
1991	100.803	99.867	99.320	100.601	98.765	100.656	100.369	100.594	99.601	100.111	100.742	99.186
1992	99.808	100.375	99.877	100.279	100.066	98.955	99.549	100.879	100.791	100.931	99.800	99.455
1993	98.868	99.962	100.611	99.736	100.403	100.250	100.202	100.511	99.520	99.459	99.493	100.125
1994	100.809	100.014	99.374	99.907	100.610	100.236	100.428	99.794	99.983	99.167	99.543	101.137
1995	100.097	99.471	100.032									

Tabla 4.115: D9A2: Irregular.

En la Tabla D9A4, el valor para el mes de abril de 1988 es el siguiente:

$$ABR88 = 100 \times |99.599 - 99.842| /99.842 = 0.243.$$

Para calcular la razón de estacionalidad móvil del mes de abril, por ejemplo, con 8 años de observaciones, se obtiene:

$$CS_{ABR} = rac{8 \times 1.732051}{8.485281 + (8 - 6) \times 1.732051} = 1.1596$$

 $FSI_{ABR} = rac{8 \times 12.247449}{73.239334 + (8 - 6) \times 12.247449} = 1.0025$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986										0.0371	0.0165	0.0696
1987	0.0509	0.1844	0.0410	0.0063	0.0713	0.1685	0.1155	0.5752	0.0625	0.1226	0.0884	0.2454
1988	0.1776	0.1413	0.2002	0.1270	0.2588	0.0839	0.1305	0.5963	0.0898	0.0155	0.0572	0.1360
-, -,								0.7249				
				0.00-				0.7302				
								0.7575				
								0.6148				
								0.5473				
				0.0495	0.0517	0.0959	0.0204	0.1411	0.0401	0.1538	0.1605	0.2280
1995	0.1226	0.0809	0.0596									

Tabla 4.116: **D9A3**: Tasas de crecimientos absolutos anuales de los coeficientes estacionales (en porcentaje).

$$\bar{I}_{ABR} = \left(\frac{0.5154 + 0.2434 + 0.2969 + 0.0648}{8} + \frac{0.7724 + 0.3196 + 0.5417 + 0.1714}{8}\right) \times FSI_{ABR}$$

$$= 0.3657 \times 1.0025 = 0.3666$$

$$\bar{S}_{ABR} = \left(\frac{0.0063 + 0.1270 + 0.0939 + 0.0329}{8} + \frac{0.0715 + 0.0912 + 0.0356 + 0.0495}{8}\right) \times CS_{ABR}$$

$$= 0.0635 \times 1.1596 = 0.0736$$

Año	Eno	Feb	Mar	A 1	Morr	Tun	T ₁₁ 1	1 ~~	Com	Oat	Nov	Dic
Allo	Ene	гев	IVIAI	Abr	May	Jun	Jul	Ago	Sep	Oct	INOV	Dic
1985												
1986										0.9131	1.2463	0.1430
1987	1.4115	1.0026	1.8419	0.5154	0.9177	0.7482	0.1942	1.4050	0.8034	1.3343	0.7568	1.3578
1988	0.1679	0.5841	0.6776	0.2434	0.7531	0.7193	1.3761	0.7425	0.0241	0.4405	1.8274	0.9392
1989	0.8598	0.2446	0.2659	0.2969	2.4415	1.3817	0.9062	0.2614	0.4821	0.3446	2.2876	1.0502
1990	0.1157	1.0674	0.0357	0.0648	1.3638	2.5036	0.6266	2.1809	0.1564	1.3025	0.5536	2.1928
1991	0.6148	0.5749	0.7530	0.7724	1.3301	1.7250	0.0354	0.5876	0.1158	0.6751	0.5114	0.7735
1992	0.9865	0.5093	0.5606	0.3196	1.3171	1.6898	0.8170	0.2832	1.1944	0.8188	0.9352	0.2711
1993	0.9421	0.4118	0.7348	0.5417	0.3364	1.3088	0.6563	0.3646	1.2607	1.4584	0.3080	0.6735
1994	1.9633	0.0523	1.2294	0.1714	0.2061	0.0140	0.2256	0.7141	0.4654	0.2936	0.0508	1.0115
1995	0.7066	0.5430	0.6625									

Tabla 4.117: **D9A4**: Tasas de crecimientos absolutos anuales de lo irregular (en %). con lo cual se obtiene, por último:

$$RSM_{ABR} = 0.3666/0.0736 = 4.98.$$

Los resultados de esos cálculos figuran en la Tabla D9A.

	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
I	0.865	0.556	0.753	0.367	1.086	1.264	0.606	0.819	0.564	0.844	0.944	0.937
S	0.129	0.181	0.153	0.074	0.138	0.152	0.135	0.679	0.064	0.096	0.171	0.139
RSM	6.697	3.075	4.911	4.979	7.858	8.310	4.491	1.206	8.826	8.790	5.518	6.739

Tabla 4.118: **D9A**: Variaciones anuales de la componente irregular y de la componente estacional y relaciones de estacionalidad móvil.

4.3.10 Tabla D10: Estimación finale de los coeficientes estacionales.

Descripción y modalidades de cálculo

Esta estimación final se hace en cuatro etapas.

Etapa 1: Cálculo de la razón de estacionalidad móvil global.

Para calcular una razón de estacionalidad móvil global, el programa emplea el conjunto de datos disponibles, hasta el último año completo, evitando así de tener que cambiar de filtro en el transcurso de un año dado. Calcula, para cada mes, los valores medios de las evoluciones de las componentes estacional e irregular, siguiendo el método expuesto precedentemente en la Tabla D9A. La razón global es deducida ponderando esas cantidades con el número de meses de cada tipo:

$$RSM = \frac{\sum_{j} n_{j} \bar{I}_{j}}{\sum_{j} n_{j} \bar{S}_{j}}.$$

Etapa 2: elección de una media móvil y estimación de la componente estacional.

El programa selecciona automáticamente, según el valor de la razón, la media móvil que será aplicada —-columna por columna (mes por mes)— a la componente estacional-irregular de la Tabla D8, modificada para los puntos atípicos con los valores de la Tabla D9.

En X-11-ARIMA, la elección de la media móvil se apoya en la siguiente estrategia (cf. Figura 4.15, pág. 151):

- Si la razón de estacionalidad móvil global se ubica en la zona A (RSM < 2.5), se utiliza una media móvil 3×3 ; si la razón se sitúa en la zona C (3.5 < RSM < 5.5), se utiliza una media móvil 3×5 ; si se ubica en la zona E (RSM > 6.5), se emplea una media móvil 3×9 .
- Si la razón RSM se sitúa en la zona B o en D, se retira un año de observaciones y se calcula nuevamente el RSM. Si vuelve a situarse en las zonas B o D, se rehace el procedimiento. Se prosigue de esa manera hasta retirar como máximo 5 años de observaciones. Si no se obtiene lo deseado, es decir que la razón se sitúa aún en las zonas B o D, se elige una media móvil 3×5 .

Según el caso, la media móvil simétrica que es elegida es de $5 (3 \times 3)$, $7 (3 \times 5)$ o $11 (3 \times 9)$ términos y no permite estimar los valores de los coeficientes estacionales de los 2 (o de los 3; o de los 5) primeros años y de los 2 (o de los 3; o de los 5) últimos años. Estos valores son calculados con medias móviles asimétricas $ad\ hoc$. Se obtiene entonces una serie de coeficientes provisorios fspro.

Figura 4.15: Criterios de selección de la media móvil estacional.

Etapa 3: normalización de los coeficientes estacionales.

Se normalizan esos coeficientes estacionales provisorios con una media móvil centrada sobre 12 términos.

Etapa 4: Previsión de los coeficientes estacionales.

Se calcula una previsión, sobre un año, de los coeficientes estacionales mediante la simple proyección lineal de los dos últimos coeficientes estacionales de un mes dado. Si n_j es el último año disponible, para un mes j dado, se obtiene:

$$S_{n_j+1,j} = S_{n_j,j} + (S_{n_j,j} - S_{n_j-1,j})/2$$

= $(3S_{n_j,j} - S_{n_j-1,j})/2$.

Esas previsiones se editan en la tabla D10A (cf. Tabla 4.122, pág. 154).

Comentarios

Cuando no se dispone de bastantes años de observaciones se presenta un problema en la aplicación de esas medias móviles asimétricas. Supongamos que, para un mes dado, se tienen sólo 5 años de observaciones para una media móvil 3 × 5.
 El punto central no puede ser estimado puesto que no se dispone de 3 puntos

futuros ni de 3 puntos pasados, lo cual sería necesario para poder emplear una media móvil asimétrica. En ese caso, el punto será estimado con la media móvil simple de las 5 observaciones disponibles. Cada vez que se encuentra un problema de estimación de ese tipo —por ejemplo con una 3×9 y menos de 11 años de observaciones— los valores de los puntos centrales se estiman con la media simple de las observaciones disponibles.

El procedimiento descrito en el párrafo anterior es utilizado por defecto. Pero el utilizador puede seleccionar la media móvil que será empleada para cada mes.
 En ese caso, X-11-ARIMA permite elegir entre una media móvil simple sobre 3 términos, una 3 × 3, una 3 × 5, una 3 × 9 y una estacionalidad estable (una media simple). X-12-ARIMA propone, además, una 3 × 15.

Ejemplo

La Tabla D10msr es análoga a la Tabla D9A que fue calculada con los datos disponibles hasta diciembre de 1994 (último año completo disponible).

		Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
]	_				0.367 0.074								
]	RSM	6.894	3.248	4.549	4.979	7.858	8.310	4.491	1.206	8.826	8.790	5.518	6.739

Tabla 4.119: **D10msr**: Variaciones anuales de la componente irregular y de la componente estacional, relaciones de estacionalidad móvil.

Se puede constatar que sólo fueron modificados los valores de los 3 primeros meses, es decir aquellos cuyos valores fueron excluidos. Se deduce fácilmente la razón global:

$$\begin{split} \sum_{j} n_{j} \bar{I}_{j} &=& 8(0.883 + 0.544 + 0.765 + 0.367 + 1.086 + 1.264) + \\ & 8(0.606 + 0.819 + 0.564) + 9(0.844 + 0.944 + 0.937) \\ &=& 79.709, \\ \sum_{j} n_{j} \bar{S}_{i} &=& 8(0.128 + 0.168 + 0.168 + 0.074 + 0.138 + 0.152) + \\ & 8(0.135 + 0.679 + 0.064) + 9(0.096 + 0.171 + 0.139) \\ &=& 17.302, \\ RSM &=& \frac{\sum_{j} n_{j} \bar{I}_{j}}{\sum_{j} n_{j} \bar{S}_{j}} = \frac{79.709}{17.302} = 4.607. \end{split}$$

La razón de estacionalidad móvil global calculado es igual a 4.607. Se ubica en la zona C por lo que se elige una media móvil 3×5 (*cf.* Tabla 3.14, pág. 50) para alisar la componente estacional-irregular corregida de la Tabla D9bis (*cf.* Sección §4.3.8) y obtener así la Tabla D10bis (*cf.* Tabla 4.120, pág. 153).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.456	108.887	100.633
1986	103.797	99.973	107.690			103.346	95.401	67.787	101.917	111.434	108.827	100.720
1987	103.845	99.885	107.655	101.428	97.751	103.314	95.456	67.994	101.879	111.489	108.679	100.725
1988	103.924	99.750	107.584	101.470	97.585	103.299	95.538	68.384	101.829	111.504	108.650	100.606
1989	104.031	99.537	107.399	101.558	97.465	103.165	95.614	69.003	101.807	111.643	108.480	100.364
1990	104.097	99.332	107.204	101.673	97.305	103.108	95.766	69.666	101.749	111.669	108.398	100.072
1991	104.176	99.089	106.953	101.769	97.357	102.927	95.972	70.308	101.702	111.684	108.145	99.850
1992	104.199	98.886	106.790	101.843	97.453	102.855	96.189	70.723	101.651	111.518	107.934	99.838
										111.371		99.998
				101.872	97.751	102.764	96.292	71.020	101.721	111.279	107.524	100.131
1995	104.082	98.561	106.692									

Tabla 4.120: **D10bis**: Coeficientes estacionales provisorios.

El factor estacional del mes de abril de 1989 será estimado así:

$$ABR89 = \frac{101.783 + 101.265 \times 2 + 101.147 \times 3 + 101.542 \times 3}{15} + \frac{101.443 \times 3 + 102.300 \times 2 + 102.066}{15} = 101.558.$$

Para el inicio de la serie (años 1986 hasta 1988) y para el fin de la serie (años 1992 hasta 1994), se emplean las medias asimétricas predefinidas. Por ejemplo:

$$ABR87 = \frac{101.783 \times 15 + 101.265 \times 15 + 101.147 \times 15}{60} + \frac{101.542 \times 11 + 101.443 \times 4}{60} = 101.428$$

(un punto pasado, el punto actual y tres puntos futuros).

Esos coeficientes son ahora normalizados, aplicando una media móvil centrada de orden 12, lo que lleva a la Tabla D10ter (*cf.* Tabla 4.121, pág. 154).

Se obtiene, por ejemplo:

$$ABR86 = \frac{111.456}{24} + \frac{108.887 + 100.633 + 103.797 + 99.973 + 107.690}{12} + \frac{101.420 + 97.847 + 103.346 + 95.401 + 67.787 + 101.917}{12} + \frac{111.434}{24} = 100.012.$$

Se debe corregir la Tabla D10bis con la Tabla D10ter, para obtener la estimación final de los coeficientes estacionales de la Tabla D10 (*cf.* Tabla 4.122, pág. 154).

Por ejemplo: $ABR86 = 100 \times 101.420/100.012 = 101.408$.

Los coeficientes estacionales finales de cada mes están representados en la Figura 4.16 (*cf.* pág. 156) con un trazo continuo pasando por el medio de los valores mensuales de la componente estacional-irregular. En esa figura, los valores atípicos de la componente estacional-irregular están representados con triángulos vacíos. La componente estacional final está representada en la Figura 4.3 (*cf.* pág. 57).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.012	100.012	100.012
1986	100.012	100.012	100.012	100.012	100.009	100.010	100.015	100.014	100.009	100.007	100.004	99.998
1987	99.999	100.010	100.017	100.018	100.014	100.008	100.012	100.009	100.001	100.000	99.994	99.987
1988	99.990	100.009	100.023	100.022	100.021	100.015	100.015	100.010	99.994	99.990	99.988	99.978
1989	99.975	100.004	100.029	100.034	100.033	100.016	100.008	100.003	99.986	99.983	99.981	99.972
1990	99.976	100.009	100.035	100.033	100.031	100.015	100.006	100.000	99.979	99.973	99.979	99.973
1991	99.974	100.010	100.035	100.033	100.023	100.004	99.995	99.988	99.973	99.969	99.976	99.977
1992	99.983	100.009	100.025	100.016	100.000	99.991	99.990	99.983	99.972	99.968	99.979	99.984
1993	99.983	99.997	100.008	100.003	99.985	99.980	99.985	99.978	99.973	99.972	99.976	99.980
1994	99.980	99.984	99.988	99.985	99.976	99.976	99.979	99.974	99.973	99.973	99.973	99.973
1995	99.973	99.973	99.973									

Tabla 4.121: **D10ter**: Media móvil centrada sobre 12 términos.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1995				101.899	97.818	102.795	96.320	71.073	101.766	111.262	107.490	100.229
1996	104.085	98.561	106.743									

Tabla 4.122: **D10A**: Previsión de los coeficientes estacionales sobre 12 meses.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										111.443	108.874	100.621
1986	103.785	99.961	107.677	101.408	97.839	103.336	95.387	67.778	101.908	111.426	108.823	100.721
1987	103.846	99.874	107.636	101.410	97.738	103.306	95.445	67.987	101.878	111.490	108.686	100.739
1988	103.935	99.741	107.558	101.448	97.564	103.283	95.524	68.377	101.836	111.516	108.662	100.628
1989	104.057	99.532	107.368	101.524	97.433	103.149	95.606	69.001	101.821	111.663	108.501	100.393
1990	104.122	99.323	107.167	101.639	97.275	103.092	95.760	69.666	101.770	111.700	108.421	100.099
1991	104.202	99.080	106.916	101.735	97.334	102.923	95.976	70.317	101.730	111.719	108.171	99.873
1992	104.217	98.876	106.764	101.827	97.454	102.865	96.199	70.735	101.679	111.554	107.957	99.854
1993	104.208	98.737	106.672	101.862	97.688	102.776	96.297	70.969	101.714	111.402	107.678	100.018
1994	104.161	98.642	106.675	101.887	97.775	102.789	96.312	71.038	101.749	111.309	107.553	100.158
1995	104.111	98.588	106.721									

Tabla 4.123: **D10**: Coeficientes estacionales finales (Se eligió una media móvil 3×5 , la razón I/S es igual a 4.949).

Por último, se puede prever —por ejemplo— el factor estacional del mes de abril de 1995 de la siguiente manera:

$$ABR95 = ABR94 + \frac{ABR94 - ABR93}{2}$$

= $\frac{3 \times 101.887 - 101.862}{2} = 101.899.$

Lo que conduce a la tabla D10A (cf. Tabla 4.122, pág. 154).

4.3.11 Tabla D11: Serie final corregida de variaciones estacionales y de los efectos de días hábiles

Descripción y modalidades de cálculo

Se corrige la serie original (o bien la serie de la Tabla C19, si se seleccionó la opción de corrección de días hábiles) de los coeficientes estacionales de la Tabla D10, para obtener la serie desestacionalizada final (Tabla D11, cf. Tabla 4.124, pág. 157): $D11 = C19 \ op\ D10$.

Se hace un test F de Fisher, idéntico a los utilizados para las Tablas B3 y D8, para verificar que no exista una estacionalidad residual en la serie D11. Para ello, en primer lugar se extrae la tendencia por diferenciación: para una serie trimestral se emplean las diferencias primeras (X_t-X_{t-1}) ; para una serie mensual se utilizan las diferencias terceras (X_t-X_{t-3}) . El test se hace sobre la serie diferenciada completa, pero también sobre los tres últimos años, o sea sobre las 36 últimas observaciones de una serie mensual y sobre las 12 últimas observaciones de una serie trimestral.

Se edita únicamente las estadísticas de Fisher y el resultado del test para los niveles de 1% y de 5%. Un mensaje previene aquí de la dificultad que existe para interpretar ese test cuando la serie evoluciona fuertemente en los últimos años observados.

Ejemplo

El valor para el mes de abril de 1986 es el siguiente:

$$ABR86 = 100 \times 108.326/101.408 = 106.822.$$

La serie desestacionalizada final está representada en la Figura 4.2 (cf. pág. 56) y la serie original en la Figura 4.1 (cf. pág. 56).

La serie es entonces diferenciada sobre 3 meses, para extraer la tendencia antes de efectuar el test de estacionalidad residual. Se obtiene así:

$$ABR86 = 106.822 - 101.034 = 5.788.$$

La serie así diferenciada figura en la Tabla D11dif (*cf.* Tabla 4.125, pág. 157). Se editan entonces los resultados de los tests de Fisher (*cf.* Tabla 4.126, pág. 157).

Figura 4.16: Gráficos mensuales de la componente estacional-irregular sin modificaciones de la Tabla D8 (triángulos llenos), de los valores de remplazo de la Tabla D9 (triángulos vacíos) y de la componente estacional final de la Tabla (trazo continuo), desde enero (arriba, a la izquierda) hasta diciembre (abajo, a la derecha). Nótese que la ordenada de los gráficos tienen escalas diferentes.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.587	102.236	100.085
1986	101.034	99.620	98.909	106.822	100.020	101.281	102.274	99.415	102.091	103.374	102.421	102.275
1987	96.935	104.252	105.001	104.088	104.934	103.677	104.916	103.579	105.552	105.022	106.510	106.845
1988	106.275	107.287	107.985	108.020	110.198	109.453	108.654	109.671	110.936	108.373	110.433	114.168
1989	113.423	113.734	110.122	116.272	111.904	114.971	113.220	112.595	113.697	113.586	115.180	115.133
1990	114.759	114.279	115.521	115.285	116.283	114.852	116.874	117.617	115.890	116.603	115.563	113.463
1991	115.783	114.864	114.439	116.068	114.501	116.692	118.537	116.234	115.479	115.963	116.956	116.069
1992	116.566	117.119	116.267	116.147	115.553	114.120	114.624	115.931	116.072	115.827	114.147	111.515
1993	111.902	115.569	113.496	110.520	113.221	112.715	112.439	112.420	111.238	111.397	111.774	112.903
1994	114.450	114.044	113.741	114.818	116.718	116.020	116.603	118.619	116.844	116.402	117.460	120.004
1995	119.326	119.019	120.007									

Tabla 4.124: **D11**: Serie final corregida de variaciones estacionales (y eventualmente de los efectos de Pascua y de días hábiles).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
											3.005	
1987	-6.440	1.832	2.726	7.154	0.682	-1.324	0.827	-1.355	1.875	0.107	2.931	1.293
1988	1.253	0.776	1.140	1.745	2.911	1.467	0.634	-0.527	1.483	-0.281	0.763	3.233
											2.585	
1990	1.173	-0.901	0.388	0.525	2.004	-0.669	1.589	1.334	1.038	-0.271	-2.053	-2.427
											0.722	
											-1.784	
											-0.646	
										-0.201	-1.159	3.160
1995	2.924	1.559	0.003									

Tabla 4.125: Serie desestacionalizada diferenciada (sobre 3 meses).

NO HAY ESTACIONALIDAD RESIDUAL DETECTADA EN LA SERIE $\,$ F=0.52 COMPLETA, CON UN UMBRAL DE 1%

NO HAY ESTACIONALIDAD RESIDUAL DETECTADA EN LOS 3 ÚLTI- $\,$ F=0.38 MOS AÑOS, CON UN UMBRAL DE1%

NO HAY ESTACIONALIDAD RESIDUAL DETECTADA EN LOS 3 ÚLTIMOS AÑOS, CON UN UMBRAL DE $5\,\%$

NOTA: LOS RESULTADOS DE ESE TEST SOBRE LOS 3 ÚLTIMOS AÑOS PUEDEN NO SER VÁLIDOS SI LA SERIE PRESENTA UNA FUERTE EVOLUCIÓN.

Tabla 4.126: Test de la presencia de estacionalidad residual.

4.3.12 Tabla D11A: Serie desestacionalizada final con totales anuales revisados

Descripción y modalidades de cálculo

El utilizador puede demandar el ajuste de la serie desestacionalizada de la Tabla D11, de manera tal que los totales anuales de la serie bruta (eventualmente ajustada *a priori*) sean iguales a los totales anuales de la série ajustada D11A. En ese caso, las diferencias anuales observadas entre D11 y A1 se las reparte sobre los valores de la serie desestacionalizada, de manera que —en las series D11 y D11A— las evoluciones mensuales (o trimestrales) sean lo más semejantes posible.

Los detalles teóricos del ajuste son tratados en CHOLETTE [11] o en CHOLETTE y DAGUM [13].

Para simplificar, supongamos que nuestra serie original x_t , la serie desestacionalizada a_t y la serie ajustada sobre las sumas anuales \tilde{a}_t , contienen n=Nk puntos repartidos sobre N años completos de k períodos (k=12 meses o k=4 trimestres). La serie desconocida \tilde{a}_t debe evolucionar lo más paralelamente posible de la serie conocida a_t , bajo la restricción que sus sumas anuales sean iguales a las de la serie x_t .

Si ∇ designa el operador diferencia primera²¹, el problema es minimizar la cantidad $\sum_{t=2}^{n} \left[\nabla(\tilde{a}_t - a_t)\right]^2$, con respecto a \tilde{a} , respetando las restricciones: $\sum_{j=1}^{k} \tilde{a}_{ij} = x_i$, $i=1,\ldots N$, siendo $\tilde{a}_{i1},\ldots,\tilde{a}_{ik}$ los k valores desconocidos ajustados en el año i y siendo x_i , el total de las observaciones originales para el año i.

Se definen las siguientes matrices:

$$\Delta_{(n-1)\times n} \ = \ \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix},$$

$$\Upsilon_{n\times k} \ = \ \begin{bmatrix} 1_k & 0 & \dots & 0 & 0 \\ 0 & 1_k & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1_k & 0 \\ 0 & 0 & \dots & 0 & 1_k \end{bmatrix},$$

en donde 1_k es un vector 1, de tamaño $k \times 1$.

El problema es entonces minimizar la cantidad $(\tilde{A}-A)'\Delta'\Delta(\tilde{A}-A)=(\tilde{A}-A)'\Gamma(\tilde{A}-A)$, con respecto a \tilde{A} , respetando las siguientes restricciones: $X-\Upsilon'\tilde{A}=0$. Haciendo intervenir un vector Λ de N multiplicadores de Lagrange, la solución se escribe así:

$$\left[\begin{array}{c} \tilde{A} \\ \Lambda \end{array}\right] \quad = \quad \left[\begin{array}{cc} \Gamma & \Upsilon \\ \Upsilon' & 0 \end{array}\right]^{-1} \left[\begin{array}{cc} \Gamma & 0 \\ \Upsilon' & I_N \end{array}\right] \left[\begin{array}{c} A \\ X - \Upsilon'A \end{array}\right]$$

 $^{^{21}\}nabla x_t = x_t - x_{t-1}$

$$= W \begin{bmatrix} A \\ X - \Upsilon' A \end{bmatrix}$$
$$= W \begin{bmatrix} A \\ R \end{bmatrix}$$

en donde I_N designa la matriz identidad de orden N.

Como podemos ver, la matriz W, de tamaño $(n + N) \times (n + N)$, no depende de los datos X y A, y se puede demostrar que la misma tiene siempre la forma:

$$W = \left[\begin{array}{cc} I_n & W_{\tilde{A}} \\ 0 & W_{\Lambda} \end{array} \right]$$

en donde $W_{\tilde{A}}$ es una matriz de tamaño $n \times N$.

Finalmente se obtiene:

$$\tilde{a}_t = a_t + \sum_{i=1}^{N} w_{\tilde{A}_{(t,i)}} r_i, (t = 1, \dots, n).$$

En otros términos, el coeficiente corrector aportado a la serie a_t (es decir la serie D11) es una media ponderada de las diferencias entre los totales anuales de la serie x_t (es decir la serie A1) y de la serie a_t , sobre los N años.

Comentarios

- El cálculo anterior se hace algo complejo por el hecho que la inversa de la matriz
 Γ = Δ'Δ es indefinida. Se puede consultar en CHOLETTE y DAGUM [13] y
 en BOURNAY y LAROQUE [7], una solución, fundada en una regresión por los
 mínimos cuadrados generalizados.
- Como los coeficientes correctores dependen de todas las diferencias de totales anuales observados, eso hace que cada nuevo año de datos completos produzca una revisión de toda la serie D11A. Lo que no es deseable. Por eso los programas X-11-ARIMA y X-12-ARIMA crean una matriz de pesos $W_{\tilde{A}}$ que es calculada para el caso de 5 años de observaciones. Esa matriz es de tamaño 60×5 , en el caso mensual y de tamaño 20×5 , en el caso trimestral. Esta es la matriz que se utiliza, cualquiera sea la longitud de la serie, para calcular la serie ajustada D11A. En ese caso (cf. Tabla 4.127,pág. 160), el primer año completo de datos es asociado a las 12 (para el caso mensual) primeras líneas de la matriz $W_{\tilde{A}}$; el segundo año es asociado a las 12 líneas siguientes. De la misma manera, los dos últimos años son asociados a las 24 últimas líneas de la matriz. El resto de los años, desde el tercero hasta el antepenúltimo, son asociados a las 12 líneas centrales de la matriz $W_{\tilde{A}}$.
- Si el último año está incompleto, las estimaciones de la tabla D11A para los meses disponibles se hacen aplicándoles el último factor correctivo calculado (es decir el factor correctivo del mes de diciembre del último año completo).

	1	2	3	4	5
Ene	0.10539496	-0.02790048	0.00737759	-0.00191944	0.00038069
Feb	0.10446930	-0.02672983	0.00706804	-0.00183890	0.00036472
Mar	0.10261797	-0.02438853	0.00644894	-0.00167783	0.00033277
Abr	0.09984099	-0.02087658	0.00552030	-0.00143622	0.00028485
May	0.09613833	-0.01619398	0.00428210	-0.00111408	0.00022096
Jun	0.09151002	-0.01034074	0.00273435	-0.00071140	0.00014110
Jul Ago	0.08595605 0.07947641	-0.00331684 0.00487771	0.00087706 -0.00128979	-0.00022818 0.00033557	0.00004526 -0.00006655
Sep	0.07207110	0.00487771	-0.00128979	0.00033337	-0.00000033
Oct	0.06374014	0.02477874	-0.00655213	0.00170467	-0.00033810
Nov	0.05448351	0.03648524	-0.00964762	0.00251003	-0.00049783
Dic	0.04430122	0.04936238	-0.01305266	0.00339593	-0.00067353
Ene	0.03319327	0.06341017	-0.01676725	0.00436236	-0.00086521
Feb	0.02325596	0.07505210	-0.01892111	0.00492273	-0.00097635
Mar Abr	0.01448931 0.00689330	0.08428817 0.09111838	-0.01951423 -0.01854662	0.00507704 0.00482530	-0.00100696 -0.00095703
May	0.00046795	0.09111638	-0.01601827	0.00482330	-0.00093703
Jun	-0.00478676	0.09756121	-0.01192919	0.00310363	-0.00062556
Jul	-0.00887082	0.09717384	-0.00627938	0.00163371	-0.00032402
Ago	-0.01178422	0.09438060	0.00093117	-0.00024226	0.00004805
Sep	-0.01352698	0.08918150	0.00970246	-0.00252430	0.00050066
Oct	-0.01409909	0.08157654	0.02003448	-0.00521239	0.00103380
Nov	-0.01350055	0.07156572	0.03192723	-0.00830655	0.00164748
Dic	-0.01173136	0.05914904	0.04538072	-0.01180676	0.00234170
Ene	-0.00879152	0.04432649	0.06039494	-0.01571303	0.00311645
Feb	-0.00616123	0.03106468	0.07290679	-0.01805856	0.00358166
Mar	-0.00384049	0.01936360	0.08291627	-0.01884336	0.00373731
Abr May	-0.00182930 -0.00012766	0.00922326 0.00064366	0.09042338 0.09542812	-0.01806743 -0.01573076	0.00358341 0.00311997
Jun	0.0012700	-0.00637522	0.09342812	-0.01373070	0.00311997
Jul	0.00120443	-0.01183335	0.09793049	-0.00637522	0.00234030
Ago	0.00311997	-0.01573076	0.09542812	0.00064366	-0.00012766
Sep	0.00358341	-0.01806743	0.09042338	0.00922326	-0.00182930
Oct	0.00373731	-0.01884336	0.08291627	0.01936361	-0.00384049
Nov	0.00358166	-0.01805856	0.07290679	0.03106468	-0.00616123
Dic	0.00311645	-0.01571303	0.06039494	0.04432649	-0.00879152
Ene	0.00234170	-0.01180676	0.04538072	0.05914904	-0.01173136
Feb	0.00164748	-0.00830655	0.03192723	0.07156572	-0.01350055
Mar Abr	0.00103380 0.00050066	-0.00521239 -0.00252430	0.02003448 0.00970246	0.08157654 0.08918150	-0.01409909 -0.01352698
May	0.00030000	-0.00232430	0.00970240	0.08918130	-0.01332098
Jun	-0.00032402	0.00163371	-0.00627938	0.09717384	-0.00887082
Jul	-0.00061556	0.00310363	-0.01192919	0.09756121	-0.00478676
Ago	-0.00082656	0.00416749	-0.01601827	0.09554273	0.00046795
Sep	-0.00095703	0.00482530	-0.01854662	0.09111838	0.00689330
Oct	-0.00100696	0.00507704	-0.01951423	0.08428817	0.01448931
Nov	-0.00097635	0.00492273	-0.01892111	0.07505210	0.02325596
Dic	-0.00086521	0.00436236	-0.01676725	0.06341017	0.03319327
Ene	-0.00067353	0.00339593	-0.01305266	0.04936238	0.04430122
Feb	-0.00049783	0.00251003	-0.00964762	0.03648524	0.05448351
Mar	-0.00033810	0.00170467	-0.00655213	0.02477874	0.06374014
Abr May	-0.00019434 -0.00006655	0.00097985 0.00033557	-0.00376618 -0.00128979	0.01424290 0.00487771	0.07207110 0.07947641
Jun	0.00004526	-0.00033337	0.000128979	-0.00331684	0.08595605
Jul	0.00014110	-0.00022818	0.00273435	-0.01034074	0.09353003
Ago	0.00022096	-0.00111408	0.00428210	-0.01619398	0.09613833
Sep	0.00028485	-0.00143622	0.00552030	-0.02087658	0.09984099
Oct	0.00033277	-0.00167783	0.00644894	-0.02438853	0.10261797
Nov	0.00036472	-0.00183890	0.00706804	-0.02672983	0.10446930
Dic	0.00038069	-0.00191944	0.00737759	-0.02790048	0.10539496

 $Tabla\ 4.127{:}\ Matriz\ de\ pesos\ utilizada\ por\ X-11-Arima\ y\ X-12-Arima\ para\ la\ Tabla\ D11A,\ caso\ mensual.$

	1	2	3	4	5
0.1	0.21010142	0.05454566	0.01700021	0.00424000	0.00070.002
Q1	0.31010142	-0.07454766	0.01790831	-0.00424890	0.00078683
Q2	0.28606085	-0.04472860	0.01074499	-0.00254934	0.00047210
Q3	0.23797972	0.01490953	-0.00358166	0.00084978	-0.00015737
Q4	0.16585801	0.10436673	-0.02507163	0.00594845	-0.00110156
Q1	0.06969574	0.22364300	-0.05372493	0.01274669	-0.00236050
Q2	0.00335254	0.28189630	-0.04369627	0.01036731	-0.00191987
Q3	-0.03317160	0.27912665	0.00501433	-0.00118969	0.00022031
Q4	-0.03987667	0.21533404	0.09240688	-0.02192430	0.00406006
Q1	-0.01676268	0.09051848	0.21848137	-0.05183653	0.00959936
Q2	-0.00081201	0.00438486	0.28151862	-0.04306681	0.00797533
Q3	0.00797533	-0.04306681	0.28151862	0.00438486	-0.00081201
Q4	0.00959936	-0.05183653	0.21848137	0.09051848	-0.01676268
-					
Q1	0.00406006	-0.02192430	0.09240688	0.21533404	-0.03987667
Q2	0.00022031	-0.00118969	0.00501433	0.27912665	-0.03317160
Q3	-0.00191987	0.01036731	-0.04369627	0.28189630	0.00335254
Q4	-0.00236050	0.01274669	-0.05372493	0.22364300	0.06969574
Q1	-0.00110156	0.00594845	-0.02507163	0.10436673	0.16585801
Q2	-0.00015737	0.00084978	-0.00358166	0.01490953	0.23797972
Q3	0.00047210	-0.00254934	0.01074499	-0.04472860	0.28606085
Q4	0.00078683	-0.00424890	0.01790831	-0.07454766	0.31010142
_					

Tabla 4.128: Matriz de pesos utilizada por X-11-ARIMA y X-12-ARIMA para la tabla D11A, caso trimestral.

- X-12-ARIMA y X-11-ARIMA consideran únicamente el caso de un ajuste aditivo, lo cual no es necesariamente compatible con un esquema multiplicativo. De modo que, para este esquema, no es imposible que la Tabla D11A presente algunos valores negativos. CHOLETTE y DAGUM [13] han propuesto la solución que debe ser aplicada en el caso multiplicativo, pero esa solución aún no está disponible en las versiones actuales de los paquetes.
- X-12-ARIMA permite ajustar los datos de la Tabla D11 sobre todo período de 12 meses, por ejemplo desde abril hasta marzo (año fiscal).
- Los pesos para el caso trimestral figuran en la Tabla 4.128 (cf. pág. 161).

Debemos reconciliar las series D11 y B1. Los valores de los totales anuales de ambas series y de sus diferencias (residuos R) figuran en la Tabla 4.129 siguiente. Como se puede ver en esa tabla, las diferencias de los totales anuales son bastante reducidas. Eso resulta del hecho que, regularmente, en el proceso de desestacionalización se han normalizado²² las estimaciones de los coeficientes estacionales.

Année	B1	D11	R
1986	1220.5	1219.53575	0.96425
1987	1252.8	1251.31218	1.48782
1988	1312.5	1311.45328	1.04672
1989	1361.2	1363.83663	-2.63663
1990	1385.3	1386.98833	-1.68833
1991	1391.1	1391.58606	-0.48606
1992	1389.2	1383.88885	5.31115
1993	1348.8	1349.59492	-0.79492
1994	1391.8	1395.72244	-3.92244

Tabla 4.129: **B1** y **D11**: totales anuales.

Para los datos del primer año de datos completos (1986), las matrices de peso y de residuos utilizadas figuran en la Tabla 4.130 (*cf.* pág. 164).

Las correcciones introducidas se calculan con el producto de esas dos matrices. Así por ejemplo, para el mes de febrero de 1986 se obtiene:

```
FEB86 = (0.10446930 \times 0.96425) + (-0.02672983 \times 1.48782) + (0.00706804 \times 1.04672) + (-0.00183890 \times -2.63663) + (0.00036472 \times -1.68833) = 0.0726.
```

Lo que conduce al valor ajustado siguiente:

$$D11A(FEB86) = D11(FEB86) + 0.0726$$

= $99.620 + 0.0726 = 99.693$.

Para el cuarto año de datos completos (1989), las matrices de pesos y de residuos utilizadas figuran en la Tabla 4.131 (cf. pág. 164).

²²Es decir que se hizo de tal manera que la suma de las mismas —para todo período de un año— sea más o menos igual a 0 o a 12, según el esquema.

Por ejemplo, para agosto de 1989 se obtiene:

```
AGO89 = (0.00311997 \times 1.48782) + (-0.01573076 \times 1.04672) + (0.09542812 \times -2.63663) + (0.00064366 \times -1.68833) + (-0.00012766 \times -0.48606) = -0.2645.
```

Lo que lleva al siguiente valor ajustado:

$$D11A(AGO89) = D11(AGO89) - 0.2645$$

= $112.595 - 0.2645 = 112.331$.

Para el último año de datos completos (1994), las matrices de pesos y de residuos utilizadas figuran en la Tabla 4.132 (*cf.* pág. 164).

Por ejemplo, para el mes de diciembre de 1994 se obtiene:

```
DIC94 = (0.00038069 \times -1.68833) + (-0.00191944 \times -0.48606) + (0.00737759 \times 5.31115) + (-0.02790048 \times -0.79492) + (0.10539496 \times -3.92244) = -0.3518.
```

Lo que lleva al siguiente valor ajustado:

$$D11A(DIC94) = D11(DIC94) - 0.3518$$

= $120.004 - 0.3518 = 119.652$.

Este último valor corrector servirá para estimar los valores del último año de datos incompletos: 1995. Se obtiene así:

$$D11A(ENE95) = D11(ENE95) - 0.3518$$

= $119.326 - 0.3518 = 118.974$.

De esta forma se obtiene la Tabla final D11A.

4.3.13 Tabla D12: Estimación final de la componente tendencia-ciclo

Descripción y modalidades de cálculo

Se retiraron ya los puntos atípicos y los efectos de días hábiles de la serie D1. Ahora, la serie es corregida con los coeficientes estacionales de la Tabla D10 para obtener una serie desestacionalizada modificada (Tabla D11bis). Esta serie es alisada con una media móvil de Henderson, para obtener una estimación final de la tendencia-ciclo. La metodología seguida es la misma que la empleada para construir la Tabla C7 (cf. Sección §4.2.6). Se obtiene así: D11bis = D1 op D10.

- Etapa 1: Elección de la media móvil, cálculo de la razón \bar{I}/\bar{C} .
- Etapa 2: Alisado de la serie corregida de variaciones estacionales con una media móvil de Henderson.

			Pesos				
Mes	1	2	3	4	5	Residuos	Ajustes
Ene	0.10539496	-0.02790048	0.00737759	-0.00191944	0.00038069		0.0723
Feb	0.10446930	-0.02672983	0.00706804	-0.00183890	0.00036472	0.96425	0.0726
Mar	0.10261797	-0.02438853	0.00644894	-0.00167783	0.00033277	1.48782	0.0733
Abr	0.09984099	-0.02087658	0.00552030	-0.00143622	0.00028485	1.04672	0.0743
May	0.09613833	-0.01619398	0.00428210	-0.00111408	0.00022096	-2.63663	0.0757
Jun	0.09151002	-0.01034074	0.00273435	-0.00071140	0.00014110	-1.68833	0.0774
Jul	0.08595605	-0.00331684	0.00087706	-0.00022818	0.00004526		0.0794
Ago	0.07947641	0.00487771	-0.00128979	0.00033557	-0.00006655		0.0818
Sep	0.07207110	0.01424290	-0.00376618	0.00097985	-0.00019434		0.0845
Oct	0.06374014	0.02477874	-0.00655213	0.00170467	-0.00033810		0.0875
Nov	0.05448351	0.03648524	-0.00964762	0.00251003	-0.00049783		0.0909
Dic	0.04430122	0.04936238	-0.01305266	0.00339593	-0.00067353		0.0947

Tabla 4.130: Pesos para el primer año, residuos y ajustes.

		2	pesos	4	_	D 11	
Mes	I	2	3	4	5	Residuos	Ajustes
Ene	-0.00879152	0.04432649	0.06039494	-0.01571303	0.00311645		-0.1009
Feb	-0.00616123	0.03106468	0.07290679	-0.01805856	0.00358166		-0.1401
Mar	-0.00384049	0.01936360	0.08291627	-0.01884336	0.00373731	1.48782	-0.1741
Abr	-0.00182930	0.00922326	0.09042338	-0.01806743	0.00358341	1.04672	-0.2027
May	-0.00012766	0.00064366	0.09542812	-0.01573076	0.00311997	-2.63663	-0.2261
Jun	0.00126443	-0.00637522	0.09793049	-0.01183335	0.00234698	-1.68833	-0.2442
Jul	0.00234698	-0.01183335	0.09793049	-0.00637522	0.00126443	-0.48606	-0.2570
Ago	0.00311997	-0.01573076	0.09542812	0.00064366	-0.00012766		-0.2645
Sep	0.00358341	-0.01806743	0.09042338	0.00922326	-0.00182930		-0.2667
Oct	0.00373731	-0.01884336	0.08291627	0.01936361	-0.00384049		-0.2636
Nov	0.00358166	-0.01805856	0.07290679	0.03106468	-0.00616123		-0.2553
Dic	0.00311645	-0.01571303	0.06039494	0.04432649	-0.00879152		-0.2416

Tabla 4.131: Pesos para el cuarto año, residuos y ajustes.

Mes	1	2	pesos 3	4	5	Residuos	Ajustes
Ene	-0.00067353	0.00339593	-0.01305266	0.04936238	0.04430122		-0.2828
Feb	-0.00049783	0.00251003	-0.00964762	0.03648524	0.05448351		-0.2943
Mar	-0.00033810	0.00170467	-0.00655213	0.02477874	0.06374014	-1.68833	-0.3048
Abr	-0.00019434	0.00097985	-0.00376618	0.01424290	0.07207110	-0.48606	-0.3142
May	-0.00006655	0.00033557	-0.00128979	0.00487771	0.07947641	5.31115	-0.3225
Jun	0.00004526	-0.00022818	0.00087706	-0.00331684	0.08595605	-0.79492	-0.3298
Jul	0.00014110	-0.00071140	0.00273435	-0.01034074	0.09151002	-3.92244	-0.3361
Ago	0.00022096	-0.00111408	0.00428210	-0.01619398	0.09613833		-0.3413
Sep	0.00028485	-0.00143622	0.00552030	-0.02087658	0.09984099		-0.3455
Oct	0.00033277	-0.00167783	0.00644894	-0.02438853	0.10261797		-0.3486
Nov	0.00036472	-0.00183890	0.00706804	-0.02672983	0.10446930		-0.3507
Dic	0.00038069	-0.00191944	0.00737759	-0.02790048	0.10539496		-0.3518

Tabla 4.132: Pesos para el último año, residuos y ajustes.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986	101.106	99.693	98.982	106.896	100.095	101.358	102.353	99.497	102.175	103.462	102.512	102.369
1987	97.033	104.355	105.108	104.200	105.050	103.798	105.041	103.710	105.688	105.163	106.656	106.996
1988	106.432	107.445	108.141	108.168	110.335	109.574	108.756	109.749	110.986	108.391	110.415	114.109
1989	113.322	113.594	109.948	116.070	111.678	114.727	112.963	112.331	113.430	113.323	114.925	114.891
1990	114.556	114.095	115.355	115.133	116.144	114.723	116.752	117.499	115.774	116.487	115.444	113.337
1991	115.616	114.694	114.273	115.915	114.368	116.587	118.468	116.210	115.507	116.051	117.112	116.301
1992	116.880	117.502	116.705	116.626	116.060	114.642	115.146	116.440	116.554	116.270	114.536	111.838
1993	112.143	115.736	113.594	110.554	113.197	112.639	112.316	112.257	111.040	111.168	111.522	112.633
1994	114.167	113.750	113.436	114.504	116.395	115.690	116.267	118.278	116.498	116.053	117.109	119.652
1995	118.974	118.667	119.655									

Tabla 4.133: D11A: Serie desestacionalizada final ajustada sobre los totales anuales.

Comentario

El utilizador puede especificar la longitud de la media móvil de Henderson que será empleada. En ese caso, X-11-ARIMA permite elegir entre una media móvil sobre 9, 13 o 23 términos. X-12-ARIMA permite elegir cualquier media móvil de Henderson de orden impar inferior a 101.

Ejemplo

Primero se calcula una serie desestacionalizada modificada, que se presenta en la Tabla D11bis. Por ejemplo:

 $ABR86 = 100 \times 101.706/101.408 = 100.294.$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.587	102.236	100.085
1986	101.034	99.620	98.909	100.294	100.020	101.281	102.274	102.244	102.091	103.374	102.421	102.275
1987	102.484	104.252	105.001	104.088	104.934	103.677	104.916	103.579	105.552	105.022	106.510	106.845
1988	106.275	107.287	107.985	108.020	110.198	109.453	108.654	109.671	110.936	111.120	110.433	114.168
1989	113.423	113.734	113.351	113.398	111.904	114.871	113.220	112.595	113.697	113.586	115.180	115.133
1990	114.759	114.279	115.521	115.285	116.283	114.852	116.874	117.617	115.890	116.603	115.563	113.463
1991	115.783	114.864	114.439	116.068	114.501	116.692	116.189	116.234	115.479	115.963	116.956	116.069
1992	116.566	117.119	116.267	116.147	115.553	114.120	114.624	115.931	116.072	115.827	114.147	113.279
1993	111.902	112.730	113.496	112.410	113.221	112.715	112.439	112.420	111.238	111.397	111.774	112.903
1994	114.450	114.044	113.741	114.818	116.081	116.020	116.603	116.220	116.844	116.402	117.460	120.004
1995	119.326	119.019	120.007									

Tabla 4.134: D11bis: Serie desestacionalizada modificada.

Etapa 1: Elección de la media móvil, cálculo de la razón \bar{I}/\bar{C}

Primero se alisa la Tabla D11bis con una media móvil de Henderson sobre 13 términos, cuyos coeficientes figuran en la Tabla 3.11 (*cf.* pág. 49). El primer término que se puede calcular es entonces el del mes de abril de 1986, se obtiene:

```
\begin{array}{lll} ABR86 & = & 101.587 \times (-0.01935) + 102.236 \times (-0.02786) + \\ & & 100.085 \times (0.00000) + 101.034 \times (0.06549) + \\ & & 99.620 \times (0.14736) + 98.909 \times (0.21434) + \\ & & 100.294 \times (0.24006) + 100.020 \times (0.21434) + \\ & & 101.281 \times (0.14736) + 102.274 \times (0.06549) + \\ & & 102.244 \times (0.00000) + 102.091 \times (-0.02786) + \\ & & 103.374 \times (-0.01935) \\ & = & 99.974. \end{array}
```

En esta etapa del calculo, no se estiman los 6 puntos que no se pueden calcular al inicio y al fin de la serie. Se deduce una estimación de la tendencia (Tabla D12a, cf. Tabla 4.136, pág. 168) y —con respecto a la Tabla D11bis— se deduce una estimación de la componente irregular (Tabla D12b, cf. Tabla 4.137, pág. 168).

Como el esquema es multiplicativo, se calculan las tasas de crecimiento (*cf.* Sección §4.1.7).

Etapa 2: Alisado de la serie desestacionalizada con una media móvil de Henderson.

Puesto que la razón es mayor que 1 y menor que 3.5, se elige una media móvil de Henderson sobre 13 términos cuyos coeficientes —y los coeficientes de las medias móviles asimétricas asociadas— figuran en la Tabla 3.11 (cf. pág. 49).

Para estimar la tendencia-ciclo para el mes de octubre de 1985, con los datos de la Tabla D11bis, se emplea: el punto actual; y los seis puntos futuros, a los cuales se les aplica los coeficientes de la media móvil $H6_0$ de la Tabla 3.11.

```
OCT85 = 101.587 \times (0.42113) + 102.236 \times (0.35315) +
100.085 \times (0.24390) + 101.034 \times (0.11977) +
99.620 \times (0.01202) + 98.909 \times (-0.05811) +
100.294 \times (-0.09186)
= 101.634.
```

Lo que conduce a la Tabla D12, cuyos valores están representados en la Figura 4.2 (*cf.* pág. 56), con los valores de la serie desestacionalizada de la Tabla D11.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.634	101.254	100.809
1986	100.356	99.967	99.809	99.974	100.452	101.097	101.732	102.206	102.428	102.530	102.646	102.889
1987	103.273	103.736	104.129	104.379	104.447	104.388	104.399	104.597	104.981	105.466	105.942	106.409
1988	106.900	107.438	107.964	108.469	108.927	109.284	109.565	109.900	110.422	111.138	111.983	112.724
1989	113.206	113.457	113.517	113.439	113.287	113.193	113.251	113.435	113.720	114.050	114.367	114.672
1990	114.915	115.024	115.159	115.400	115.752	116.179	116.475	116.536	116.363	115.983	115.517	115.089
1991	114.825	114.818	115.012	115.309	115.604	115.821	115.971	116.074	116.128	116.209	116.346	116.516
1992	116.647	116.562	116.246	115.807	115.447	115.279	115.308	115.399	115.318	114.956	114.338	113.620
1993	113.033	112.734	112.717	112.815	112.839	112.665	112.313	111.950	111.784	111.883	112.219	112.753
1994	113.367	113.993	114.565	115.078	115.541	115.902	116.190	116.476	116.818	117.300	117.921	118.567
1995	119.144	119.619	119.961									

Tabla 4.135: **D12**: Tendencia-ciclo final (la razón I/C es igual a 2.7420, se eligió una media móvil de Henderson sobre 13 términos).

4.3.14 Tableau D13: Estimación final de la componente irregular

Descripción y modalidades de cálculo

Esta estimación final de la componente irregular se obtiene retirando la componente tendencial (Tabla D12) de la estimación de la serie desestacionalizada de la Tabla D11, es decir que: D13 = D11 op D12.

Ejemplo

Por ejemplo, para el valor del mes de abril de 1986, se obtiene:

$$ABR86 = 100 \times 106.822/99.974 = 106.850.$$

Los valores de la componente irregular final están representados en la Figura 4.5 (*cf.* pág. 57).

4.3.15 Tabla D16: Estimación de los diferentes efectos estacionales y de calendario

Descripción y modalidades de cálculo

Esta estimación final de la componente estacional y de los efectos de calendario (Tabla D16, cf. Tabla 4.141, pág. 169) se obtiene retirando la serie desestacionalizada (Tabla D11) de los datos brutos (Tabla A1, o Tabla A3 si se solicitaron ajustes permanentes): D16 = A1 op D11.

Ejemplo

El valor del mes de abril de 1986 es entonces el siguiente:

$$ABR86 = 100 \times 109.500/106.822 = 102.507.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				99.974	100.452	101.097	101.732	102.206	102.428	102.530	102.646	102.889
1987	103.273	103.736	104.129	104.379	104.447	104.388	104.399	104.597	104.981	105.466	105.942	106.409
1988	106.900	107.438	107.964	108.469	108.927	109.284	109.565	109.900	110.422	111.138	111.983	112.724
1989	113.206	113.457	113.517	113.439	113.287	113.193	113.251	113.435	113.720	114.050	114.367	114.672
1990	114.915	115.024	115.159	115.400	115.752	116.179	116.475	116.536	116.363	115.983	115.517	115.089
1991	114.825	114.818	115.012	115.309	115.604	115.821	115.971	116.074	116.128	116.209	116.346	116.516
1992	116.647	116.562	116.246	115.807	115.447	115.279	115.308	115.399	115.318	114.956	114.338	113.620
1993	113.033	112.734	112.717	112.815	112.839	112.665	112.313	111.950	111.784	111.883	112.219	112.753
1994	113.367	113.993	114.565	115.078	115.541	115.902	116.190	116.476	116.818			
1995												

Tabla 4.136: D12a: Tendencia-ciclo (media móvil de Henderson sobre 13 términos).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985												
1986				100.320	99.569	100.182	100.533	100.037	99.670	100.824	99.781	99.403
1987	99.235	100.497	100.837	99.721	100.466	99.319	100.495	99.027	100.544	99.579	100.536	100.410
1988	99.416	99.859	100.020	99.587	101.167	100.154	99.169	99.792	100.465	99.984	98.616	101.281
1989	100.192	100.244	99.854	99.964	98.779	101.483	99.973	99.260	99.980	99.593	100.711	100.402
1990	99.865	99.352	100.315	99.900	100.459	98.858	100.342	100.927	99.593	100.535	100.040	98.587
1991	100.834	100.041	99.502	100.659	99.046	100.752	100.188	100.138	99.441	99.789	100.525	99.617
1992	99.931	100.478	100.018	100.294	100.092	98.995	99.407	100.461	100.653	100.758	99.833	99.700
1993	98.999	99.996	100.691	99.641	100.338	100.045	100.112	100.420	99.512	99.565	99.603	100.134
1994	100.955	100.045	99.280	99.774	100.467	100.102	100.356	99.781	100.022			
1995												

Tabla 4.137: **D12b**: Componente irregular.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
1985													
1986					0.479								
1987	0.374	0.448	0.379	0.240	0.065	0.057	0.010	0.190	0.367	0.462	0.452	0.440	3.484
1988	0.461	0.504	0.489	0.467	0.423	0.327	0.257	0.306	0.475	0.648	0.760	0.662	5.780
1989	0.428	0.221	0.053	0.069	0.133	0.084	0.051	0.163	0.251	0.290	0.278	0.267	2.288
1990	0.211	0.095	0.117	0.210	0.304	0.369	0.255	0.052	0.148	0.327	0.401	0.371	2.862
			0.169										
			0.										
1993	0.517	0.264	0.015	0.087	0.021	0.154	0.312	0.323	0.148	0.088	0.301	0.475	2.706
1994	0.545	0.552	0.502	0.447	0.403	0.312	0.249	0.246	0.294				3.550
1995													

Tabla 4.138: D12c: Tasas de crecimiento de la tendencia-ciclo (en % y en valor absoluto).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
1985													
1986					0.749	0.615	0.350	0.493	0.366	1.157	1.035	0.378	5.144
1987	0.169	1.272	0.338	1.107	0.747	1.142	1.184	1.461	1.532	0.959	0.961	0.126	10.998
1988	0.990	0.446	0.161	0.433	1.587	1.001	0.984	0.628	0.675	0.478	1.368	2.702	11.453
1989	1.076	0.053	0.389	0.110	1.186	2.738	1.488	0.713	0.725	0.386	1.122	0.307	10.293
1990	0.535	0.514	0.969	0.414	0.560	1.594	1.502	0.583	1.322	0.945	0.492	1.452	10.882
1991	2.279	0.786	0.538	1.162	1.602	1.722	0.560	0.050	0.695	0.349	0.738	0.903	11.385
1992	0.315	0.547	0.458	0.276	0.201	1.096	0.416	1.060	0.192	0.104	0.918	0.134	5.716
1993	0.703	1.007	0.695	1.043	0.700	0.293	0.068	0.308	0.905	0.054	0.038	0.532	6.345
1994	0.821	0.902	0.764	0.498	0.694	0.364	0.254	0.573	0.241				5.110
1995													

Tabla 4.139: **D12d**: Tasas de crecimiento de lo irregular (en % y en valor absoluto).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										99.954	100.970	99.281
1986	100.676	99.653	99.099	106.850	99.569	100.182	100.533	97.269	99.670	100.824	99.781	99.403
1987	93.862	100.497	100.837	99.721	100.466	99.319	100.495	99.027	100.544	99.579	100.536	100.410
1988	99.416	99.859	100.020	99.587	101.167	100.154	99.169	99.792	100.465	97.512	98.616	101.281
1989	100.192	100.244	97.009	102.498	98.779	101.571	99.973	99.260	99.980	99.593	100.711	100.402
1990	99.865	99.352	100.315	99.900	100.459	98.858	100.342	100.927	99.593	100.535	100.040	98.587
1991	100.834	100.041	99.502	100.659	99.046	100.752	102.212	100.138	99.441	99.789	100.525	99.617
1992	99.931	100.478	100.018	100.294	100.092	98.995	99.407	100.461	100.653	100.758	99.833	98.148
1993	98.999	102.515	100.691	97.966	100.338	100.045	100.112	100.420	99.512	99.565	99.603	100.134
1994	100.955	100.045	99.280	99.774	101.018	100.102	100.356	101.840	100.022	99.235	99.609	101.212
1995	100.153	99.499	100.038									<u>.</u>

Tabla 4.140: **D13**: Componente irregular final.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										113.892	107.399	100.515
1986	105.509	99.077	105.046	102.507	97.681	102.388	97.483	66.086	103.046	113.278	105.740	102.078
1987	103.678	98.991	107.523	102.894	95.298	104.459	97.030	66.326	102.982	111.310	107.689	102.953
1988	101.341	102.715	109.922	100.074	97.461	104.794	93.140	69.298	103.303	108.791	109.840	100.466
1989	103.947	98.651	109.152	98.648	98.746	104.635	93.270	70.518	100.443	111.545	110.089	97.887
1990	105.525	98.444	106.993	100.707	99.413	101.696	95.659	70.823	98.887	113.205	109.983	97.653
1991	106.493	98.203	104.248	102.870	98.951	100.007	97.269	70.203	100.797	114.174	106.706	99.768
1992	105.949	99.813	106.651	103.317	95.021	104.013	97.798	69.007	102.781	111.373	106.968	102.049
1993	101.607	97.863	108.109	103.330	95.301	103.890	96.141	70.895	103.202	108.621	108.880	101.680
1994	101.616	97.769	109.020	100.507	97.672	104.293	93.908	71.995	103.215	108.589	108.718	99.997
1995	104.001	97.715	108.494									

Tabla 4.141: **D16**: Efectos estacionales y de calendario combinados.

4.3.16 Tabla D18: Efectos de calendario combinados

Descripción y modalidades de cálculo

La Tabla D18 es editada únicamente en las salidas de X-12-ARIMA. Este paquete propone un tratamiento de los efectos de calendario que es mucho más sofisticado que el tratamiento propuesto en X-11-ARIMA. Esos efectos pueden ser estimados mediante: una estimación de la componente irregular (instrucción: *X11regression*); o bien con la estimación de la serie bruta antes de todo procedimiento de desestacionalización (instrucción: *Regression*).

La Tabla D18 presenta los efectos de calendario combinados: efectos de días hábiles y efectos ligados a los días feriados; estimados con las instrucciones *X11 regression* o bien *Regression*.

Ejemplo

En nuestro ejemplo, esa tabla sería igual a la Tabla C18 (*cf.* Sección §4.2.15). Los valores finales de los efectos de días hábiles están representados en la Figura 4.4 (*cf.* pág. 57).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										102.198	98.646	99.895
1986	101.662	99.115	97.557	101.084	99.839	99.083	102.198	97.504	101.116	101.662	97.167	101.347
1987	99.839	99.115	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1988	97.504	102.982	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1989	99.895	99.115	101.662	97.167	101.347	101.441	97.557	102.198	98.646	99.895	101.463	97.504
1990	101.347	99.115	99.839	99.083	102.198	98.646	99.895	101.662	97.167	101.347	101.441	97.557
1991	102.198	99.115	97.504	101.116	101.662	97.167	101.347	99.839	99.083	102.198	98.646	99.895
1992	101.662	100.947	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1993	97.504	99.115	101.347	101.441	97.557	101.084	99.839	99.895	101.463	97.504	101.116	101.662
1994	97.557	99.115	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1995	99.895	99.115	101.662									

Tabla 4.142: **D18**: Efectos de calendario combinados.

4.4 ETAPA E: Componentes corregidas de los puntos más atípicos

4.4.1 Tabla E1: Componentes corregidas de los puntos más atípicos

Descripción y método de cálculo

Esta tabla presenta la serie bruta corregida de los puntos atípicos que han recibido un peso nulo en la etapa C17. Para una fecha dada, cuando un punto fue considerado muy atípico, el valor de la serie bruta es reemplazado con el valor compuesto con: la componente tendencial (Tabla D12); la estacionalidad (Tabla D10); y —cuando es necesario— con los ajustes *a priori* y las correcciones de los efectos de calendario. Se obtiene entonces: E1 = D12 invop D10 invop C16.

Ejemplo

Por ejemplo, para el mes de abril de 1986 que es considerado muy atípico, se obtiene así:

$$ABR86 = 99.974 \times 1.014 \times 1.011 = 102.480.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										115.700	109.800	100.600
1986	106.600	98.700	103.900	102.480	97.700	103.700	99.700	67.544	105.200	117.100	108.300	104.400
1987	107.072	103.200	112.900	107.100	100.000	108.300	101.800	68.700	108.700	116.900	114.700	110.000
1988	107.700	110.200	118.700	108.100	107.400	114.700	101.200	76.000	114.600	120.908	121.300	114.700
1989	117.900	112.200	123.906	111.905	110.500	120.300	105.600	79.400	114.200	126.700	126.800	112.700
1990	121.100	112.500	123.600	116.100	115.600	116.800	111.800	83.300	114.600	132.000	127.100	110.800
1991	123.300	112.800	119.300	119.400	113.300	116.700	115.300	81.600	116.400	132.400	124.800	115.800
1992	123.500	116.900	124.000	120.000	109.800	118.700	112.100	80.000	119.300	129.000	122.100	113.800
1993	113.700	110.326	122.700	114.200	107.900	117.100	108.100	79.700	114.800	121.000	121.700	114.800
1994	116.300	111.500	124.000	115.400	114.000	121.000	109.500	83.857	120.600	126.400	127.700	120.000
1995	124.100	116.300	130.200									

Tabla 4.143: **E1**: Serie bruta corregida de los puntos más atípicos.

4.4.2 Tabla E2: Serie desestacionalizada corregida de los puntos más atípicos Descripción y método de cálculo

Esta tabla presenta la serie desestacionalizada de la Tabla D11 (*cf.* pág. 157), corregida de los puntos atípicos que han recibido un peso nulo en la Etapa C17 (*cf.* pág. 128). Para una fecha dada, cuando un punto fue considerado muy atípico, el valor de la serie desestacionalizada es reemplazado con el valor de la componente tendencial (Tabla D12, *cf.* pág. 167).

En abril de 1986 se detectó un punto atípico. El valor de la Tabla D11 para esta fecha (106.822) es reemplazado con el valor correspondiente de la Tabla D12 (99.974).

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.587	102.236	100.085
1986	101.034	99.620	98.909	99.974	100.020	101.281	102.274	102.206	102.091	103.374	102.421	102.275
1987	103.273	104.252	105.001	104.088	104.934	103.677	104.916	103.579	105.552	105.022	106.510	106.845
1988	106.275	107.287	107.985	108.020	110.198	109.453	108.654	109.671	110.936	111.138	110.433	114.168
1989	113.423	113.734	113.517	113.439	111.904	114.971	113.220	112.595	113.697	113.586	115.180	115.133
1990	114.759	114.279	115.521	115.285	116.283	114.852	116.874	117.617	115.890	116.603	115.563	113.463
1991	115.783	114.864	114.439	116.068	114.501	116.692	118.537	116.234	115.479	115.963	116.956	116.069
1992	116.566	117.119	116.267	116.147	115.553	114.120	114.624	115.931	116.072	115.827	114.147	111.515
1993	111.902	112.734	113.496	110.520	113.221	112.715	112.439	112.420	111.238	111.397	111.774	112.903
1994	114.450	114.044	113.741	114.818	116.718	116.020	116.603	116.476	116.844	116.402	117.460	120.004
1995	119.326	119.019	120.007									

Tabla 4.144: E2: Serie desestacionalizada final corregida de los puntos más atípicos.

4.4.3 Tabla E3: Componente irregular final corregida de los puntos más atípi-

Descripción y método de cálculo

Esta tabla (Tabla E3, *cf.* Tabla 4.145, pág. 173) presenta la componente irregular de la Tabla D13, corregida de los puntos atípicos que han recibido un peso nulo en la Etapa C17. Para una fecha dada, cuando un punto fue considerado muy atípico, el valor de la componente irregular es reemplazado con la media teórica (1 o 0, según el esquema).

Ejemplo

Por ejemplo, para el mes de abril de 1986 que es considerado muy atípico, se obtiene así:

$$ABR86 = 100.000$$
 (i.e. 100×1.0).

4.4.4 Tabla E4: Comparación de los totales anuales de la serie bruta y de la serie desestacionalizada

Descripción y método de cálculo

Esta tabla (Tabla E4, cf. Tabla 4.146, pág. 173) compara los totales anuales de la serie bruta y de la serie desestacionalizada con dos pares de series: por un lado, con la serie bruta A1 y la serie desestacionalizada final D11; por otro lado con las series correspondientes corregidas de los puntos atípicos (E1 y E2). Para cada uno de esos pares y para cada año i, se calcula: $A1_i$ op $D11_i$, en donde $A1_i$ representa el total de la serie A1 para el año i.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										99.954	100.970	99.281
1986	100.676	99.653	99.099	100.000	99.569	100.182	100.533	100.000	99.670	100.824	99.781	99.403
1987	100.000	100.497	100.837	99.721	100.466	99.319	100.495	99.027	100.544	99.579	100.536	100.410
1988	99.416	99.859	100.020	99.587	101.167	100.154	99.169	99.792	100.465	100.000	98.616	101.281
1989	100.192	100.244	100.000	100.000	98.779	101.571	99.973	99.260	99.980	99.593	100.711	100.402
1990	99.865	99.352	100.315	99.900	100.459	98.858	100.342	100.927	99.593	100.535	100.040	98.587
1991	100.834	100.041	99.502	100.659	99.046	100.752	102.212	100.138	99.441	99.789	100.525	99.617
1992	99.931	100.478	100.018	100.294	100.092	98.995	99.407	100.461	100.653	100.758	99.833	98.148
1993	98.999	100.000	100.691	97.966	100.338	100.045	100.112	100.420	99.512	99.565	99.603	100.134
1994	100.955	100.045	99.280	99.774	101.018	100.102	100.356	100.000	100.022	99.235	99.609	101.212
1995	100.153	99.499	100.038									

Tabla 4.145: E3: Componente irregular final corregida de los puntos más atípicos.

Por ejemplo, para el año 1987, se obtiene: $A1_{1987}=1252.8,\ D11_{1987}=1251.312,\ E1_{1987}=1259.372,\ E2_{1987}=1257.651,$ y entonces:

$$\frac{A1_{1987}}{D11_{1987}} = 100 \times \frac{1252.8}{1251.312} = 100.119,$$

$$\frac{E1_{1987}}{E2_{1987}} = 100 \times \frac{1259.378}{1257.651} = 100.137.$$

Año	A1 y D11	E1 y E2
1986	100.079	99.987
1987	100.119	100.137
1988	100.080	100.098
1989	99.807	99.832
1990	99.878	99.878
1991	99.965	99.965
1992	100.384	100.384
1993	99.941	99.945
1994	99.719	99.762

Tabla 4.146: **E4**: Relación entre los totales anuales de la serie original y de la serie desestacionalizada.

4.4.5 Tableau E5: Evoluciones de la serie bruta

Descripción y método de cálculo

Esta tabla (Tabla E5, cf. Tabla 4.147, pág. 174) presenta la evolución de la serie bruta. De modo que, para una serie mensual, la tabla aporta los coeficientes mensuales cuando el esquema de composición es aditivo, o la tasa de crecimiento mensual en el caso de un esquema multiplicativo. Para una fecha dada, se obtiene así: $E5_t = A1_t \ op \ A1_{t-1} - xbar$.

Por ejemplo, la tasa de crecimiento desde el mes de marzo hasta el mes de abril de 1986 es la siguiente:

$$ABR86 = 100 \times (109.5/103.9 - 1) = 5.390.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985											-5.099	-8.379
1986	5.964	-7.411	5.268	5.390	-10.776	6.141	-3.857	-34.102	60.122	11.312	-7.515	-3.601
1987	-3.736	2.687	9.399	-5.137	-6.629	8.300	-6.002	-32.515	58.224	7.544	-1.882	-4.098
1988	-2.091	2.321	7.713	-8.930	-0.648	6.797	-11.770	-24.901	50.789	2.880	2.884	-5.441
1989	2.790	-4.835	7.130	-4.576	-3.662	8.869	-12.219	-24.811	43.829	10.946	0.079	-11.120
1990	7.453	-7.102	9.867	-6.068	-0.431	1.038	-4.281	-25.492	37.575	15.183	-3.712	-12.825
1991	11.282	-8.516	5.762	0.084	-5.109	3.001	-1.200	-29.228	42.647	13.746	-5.740	-7.212
1992	6.649	-5.344	6.074	-3.226	-8.500	8.106	-5.560	-28.635	49.125	8.131	-5.349	-6.798
1993	-0.088	-0.528	8.488	-6.927	-5.517	8.526	-7.686	-26.272	44.040	5.401	0.579	-5.670
1994	1.307	-4.127	11.211	-6.935	-1.213	6.140	-9.504	-22.009	41.218	4.809	1.028	-6.030
1995	3.417	-6.285	11.952									

Tabla 4.147: **E5**: Evoluciones mensuales de la serie bruta.

4.4.6 Tabla E6: Evoluciones de la serie desestacionalizada final

Descripción y método de cálculo

Esta tabla (Tabla E6, cf. Tabla 4.148, pág. 176) presenta la evolución de la serie desestacionalizada final (Tabla D11), calculada de la misma manera que anteriormente. Para una fecha t dada, se obtiene: $E6_t = D11_t$ op $D11_{t-1} - xbar$.

Ejemplo

La tasa de crecimiento desde el mes de marzo hasta abril de 1986 es entonces la siguiente:

$$ABR86 = 100 \times (106.822/98.909 - 1) = 8.000.$$

4.4.7 Tabla E7: Evoluciones de la tendencia-ciclo final

Descripción y método de cálculo

Esta tabla (Tabla E7, *cf.* Tabla 4.149, pág. 176) presenta la evolución de la componente tendencia-ciclo final (Tabla D12, *cf.* pág. 167), calculada de la misma manera que precedentemente.

Para una fecha t dada, se obtiene: $E7_t = D12_t$ op $D12_{t-1} - xbar$.

Comentario

Tabla E7 es editada únicamente por el paquete X-12-ARIMA.

Ejemplo

Por ejemplo, la tasa de crecimiento del mes de marzo hasta abril de 1986 es la siguiente:

$$ABR86 = 100 \times (99.974/99.809 - 1) = 0.166.$$

4.4.8 Tabla E11: Estimación robusta de la serie desestacionalizada final

Descripción y método de cálculo

Esta tabla presenta una estimación robusta de la serie desestacionalizada final (Tabla E11, cf. Tabla 4.150, pág. 176). Es equivalente a la Tabla E2, salvo en lo que hace a los puntos considerados atípicos, es decir los puntos que han recibido un peso nulo en la Tabla C17. El valor de E2, en las fechas correspondientes, fue reemplazado por: D12 + (A1 - E1).

Comentarios

- La Tabla E11 es editada únicamente por el paquete X-12-ARIMA.
- En el caso de un esquema de composición aditiva, la Tabla E11 es siempre igual a la Tabla D11.

Ejemplo

Para el mes de abril de 1986, por ejemplo, se obtiene así:

$$ABR86 = 99.974 + (109.500 - 102.480) = 106.994.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985											0.638	-2.104
1986	0.948	-1.400										
1987	-5.221	7.549	0.718	-0.869	0.813	-1.198	1.194	-1.274	1.905	-0.502	1.417	0.314
1988	-0.533	0.952	0.651	0.032	2.016	-0.677	-0.729	0.936	1.153	-2.310	1.901	3.382
1989	-0.653	0.274	-3.176	5.585	-3.757	2.741	-1.523	-0.552	0.978	-0.097	1.403	-0.041
1990	-0.324	-0.419	1.087	-0.205	0.866	-1.230	1.760	0.635	-1.468	0.615	-0.892	-1.818
1991	2.045	-0.793	-0.370	1.424	-1.351	1.913	1.581	-1.943	-0.649	0.419	0.857	-0.759
1992	0.428	0.474	-0.727	-0.103	-0.511	-1.240	0.442	1.140	0.122	-0.211	-1.450	-2.305
1993	0.346	3.278	-1.794	-2.622	2.443	-0.446	-0.245	-0.016	-1.052	0.142	0.339	1.010
1994	1.370	-0.355	-0.266	0.947	1.655	-0.598	0.503	1.728	-1.497	-0.378	0.909	2.166
1995	-0.565	-0.257	0.830									

Tabla 4.148: **E6**: Evoluciones mensuales de la serie desestacionalizada final.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985											-0.375	-0.439
1986	-0.450	-0.388	-0.158	0.166	0.479	0.642	0.628	0.466	0.217	0.099	0.113	0.236
1987	0.374	0.448	0.379	0.240	0.065	-0.057	0.010	0.190	0.367	0.462	0.452	0.440
1988	0.461	0.504	0.489	0.467	0.423	0.327	0.257	0.306	0.475	0.648	0.760	0.662
1989	0.428	0.221	0.053	-0.069	-0.133	-0.084	0.051	0.163	0.251	0.290	0.278	0.267
1990	0.211	0.095	0.117	0.210	0.304	0.369	0.255	0.052	-0.148	-0.327	-0.401	-0.371
1991	-0.229	-0.007	0.169	0.259	0.255	0.188	0.130	0.089	0.046	0.070	0.118	0.146
1992	0.112	-0.073	-0.271	-0.378	-0.311	-0.146	0.025	0.079	-0.070	-0.315	-0.538	-0.627
1993	-0.517	-0.264	-0.015	0.087	0.021	-0.154	-0.312	-0.323	-0.148	0.088	0.301	0.475
1994	0.545	0.552	0.502	0.447	0.403	0.312	0.249	0.246	0.294	0.412	0.529	0.548
1995	0.487	0.398	0.286									

Tabla 4.149: E7: Evoluciones mensuales de la tendencia-ciclo final.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										101.587	102.236	100.085
1986	101.034	99.620	98.909	106.994	100.020	101.281	102.274	100.362	102.091	103.374	102.421	102.275
1987	96.701	104.252	105.001	104.088	104.934	103.677	104.916	103.579	105.552	105.022	106.510	106.845
1988	106.275	107.287	107.985	108.020	110.198	109.453	108.654	109.671	110.936	108.130	110.433	114.168
1989	113.423	113.734	109.811	116.234	111.904	114.971	113.220	112.595	113.697	113.586	115.180	115.133
1990	114.759	114.279	115.521	115.285	116.283	114.852	116.874	117.617	115.890	116.603	115.563	113.463
1991	115.783	114.864	114.439	116.068	114.501	116.692	118.537	116.234	115.479	115.963	116.956	116.069
1992	116.566	117.119	116.267	116.147	115.553	114.120	114.624	115.931	116.072	115.827	114.147	111.515
1993	111.902	115.509	113.496	110.520	113.221	112.715	112.439	112.420	111.238	111.397	111.774	112.903
1994	114.450	114.044	113.741	114.818	116.718	116.020	116.603	118.019	116.844	116.402	117.460	120.004
1995	119.326	119.019	120.007									

Tabla 4.150: **E11**: Estimación robusta de la serie desestacionalizada final.

4.5 ETAPA F: Evaluaciones de la calidad de la desestacionalización

4.5.1 Tabla F1: Alisado de la serie desestacionalizada con una media móvil MCD

Descripción y método de cálculo

Esta tabla (Tabla F1, *cf.* Tabla 4.151, pág. 177) presenta un alisado de la serie desestacionalizada final (Tabla D11, *cf.* pág. 157) con una media móvil simple. En la Tabla F2E se explica el cálculo del orden de esta serie móvil, el cual es llamado «MCD»: *Month for Cyclical Dominance*.

Comentarios

- Cuando el parámetro MCD calculado es par, se emplea una media móvil simple centrada, es decir una 2 x MCD.
- Cualquiera sea el orden de la media móvil, no se hace la estimación de los extremos de la serie.
- En realidad, si el parámetro MCD calculado en la Tabla F2E es mayor que 6, el valor del parámetro MCD es llevado a 6. En consecuencia, el orden de la media móvil utilizada no puede ser superior a 7.

Ejemplo

En este caso, el parámetro «MCD» es igual a 5 (*cf.* Tabla F2E, pág. 182). La Tabla F1 se obtiene simplemente con la Tabla D11, mediante una media móvil simple de orden 5.

El primer término que se puede calcular es, entonces, el del mes de diciembre de 1985.

Se obtiene:

$$DIC85 = \frac{101.587 + 102.236 + 100.085 + 101.034 + 99.620}{5}$$
$$= 100.912.$$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										100.912	100.912	100.912
1986	100.377	101.294	101.281	101.330	101.861	101.962	101.016	101.687	101.915	101.915	101.419	101.851
1987	102.177	102.510	103.042	104.391	104.523	104.239	104.532	104.549	105.116	105.502	106.041	106.388
1988	106.981	107.283	107.953	108.589	108.862	109.199	109.782	109.417	109.613	110.716	111.467	112.026
1989	112.376	113.544	113.091	113.401	113.298	113.792	113.277	113.614	113.656	114.038	114.471	114.587
1990	114.974	114.995	115.225	115.244	115.763	116.182	116.303	116.367	116.509	115.827	115.460	115.255
1991	114.822	114.924	115.131	115.313	116.047	116.406	116.289	116.581	116.634	116.140	116.207	116.535
1992	116.596	116.434	116.331	115.841	115.343	115.275	115.260	115.315	115.320	114.698	113.892	113.792
1993	113.326	112.601	112.942	113.104	112.478	112.263	112.407	112.042	111.854	111.947	112.353	112.914
1994	113.383	113.991	114.754	115.068	115.580	116.556	116.961	116.898	117.186	117.866	118.007	118.442
1995	119.163	119.163	119.163									

Tabla 4.151: **F1**: Alisado de la serie desestacionalizada con una media móvil MCD (MCD = 5).

4.5.2 Tabla F2A: Evoluciones en valor absoluto de las principales componentes

Descripción y método de cálculo

Esta tabla (Tabla F2A, *cf.* Tabla 4.152, pág. 178) presenta las evoluciones medias de algunas series, sobre varios períodos: de 1 a 12 meses, para una serie mensual; de 1 a 4 trimestres, para una serie trimestral.

Consideremos por ejemplo la serie bruta de la Tabla A1. Para un plazo d dado (de 1 a 12 meses, por ejemplo), se calcula:

$$\bar{O}_d = \frac{1}{n-d} \sum_{t=d+1}^{n} |A1_t \ op \ A1_{t-d} - xbar|,$$

es decir que, en el caso de un esquema multiplicativo, se calcula la media de las tasas de crecimiento absoluto sobre d meses.

Se hace ese cálculo para cada plazo d y para cada una de las 10 series que se detallan a continuación.

Tabla	Símbolo	Series
A1 or B1	\bar{O}_d	La serie original.
D11	\overline{A}_d	La serie desestacionalizada final.
D13	$ar{I}_d$	La componente irregular final.
D12	$ar{C}_d$	La tendencia-ciclo final.
D10	${ar S}_d$	Los coeficientes estacionales finales.
A2	$ar{P}_d$	Los coeficientes de ajustes preliminares.
C18	\overline{D}_d	Los coeficientes finales para días hábiles.
F1	\overline{MCD}_d	La serie desestacionalizada final alisada
		con una media móvil MCD.
E1	\bar{O}_d^M	La serie original corregida de los valores atípicos.
E2	$\overline{A}_d^{\widetilde{M}}$	La serie desestacionalizada final corregida de los valores atípicos.
E3	$ar{I}_d^{M}$	La componente irregular final corregida de los valores atípicos.

Ejemplo

Time Lag	A1 <i>O</i>	D11 A	D13 <i>I</i>	D12 C	D10 S	A2 P	C18 D	F1 MCD	$_{O^{M}}^{\mathrm{E1}}$	$_{A^{M}}^{\mathrm{E2}}$	E3 <i>I</i> ^M
1	11.03	1.34	1.29	0.29	10.73	0.00	2.46	0.34	11.02	0.90	0.86
2	11.84	1.43	1.26	0.57	11.25	0.00	2.16	0.58	11.76	1.06	0.83
3	11.54	1.55	1.21	0.83	11.47	0.00	1.26	0.78	11.46	1.23	0.79
4	11.95	1.70	1.19	1.07	11.37	0.00	2.45	1.00	11.99	1.43	0.78
5	11.22	1.72	1.08	1.30	10.69	0.00	1.93	1.23	11.37	1.57	0.74
6	12.04	1.91	1.14	1.50	12.03	0.00	1.51	1.44	12.34	1.71	0.66
7	11.74	2.07	1.12	1.70	10.91	0.00	2.35	1.64	11.93	1.90	0.75
8	12.05	2.21	1.22	1.89	11.39	0.00	1.86	1.85	12.00	2.06	0.82
9	11.85	2.44	1.17	2.07	10.68	0.00	1.17	2.03	11.81	2.22	0.74
10	12.09	2.52	1.14	2.26	10.92	0.00	2.53	2.22	12.08	2.40	0.75
11	11.04	2.65	1.10	2.44	10.32	0.00	1.84	2.40	11.24	2.60	0.75
12	3.35	2.96	1.25	2.60	0.14	0.00	1.50	2.58	3.23	2.85	0.88

Tabla 4.152: **F2A**: Evoluciones absolutas medias (en %) de las componentes según el plazo. Puesto que el esquema utilizado aquí es multiplicativo, se emplean las tasa de crecimiento para cada plazo. Se puede encontrar el valor 11.03 obtenido para la media

de las tasas de crecimiento mensuales absolutos de la serie original, tomando la media de los valores absolutos de los datos de la Tabla E5 (*cf.* pág. 174).

4.5.3 Tabla F2B: Contribuciones relativas de las componentes a las evoluciones de la serie bruta

Descripción y método de cálculo

Esta tabla (Tabla F2B, cf. Tabla 4.153, pág. 180) presenta la contribución relativa de cada componente a la evolución de la serie bruta, para un plazo d dado. Como las componentes son independientes, se debe verificar (al menos aproximadamente) que:

$$\bar{O}_d^2 \approx \bar{C}_d^2 + \bar{S}_d^2 + \bar{P}_d^2 + \overline{D}_d^2 + \bar{I}_d^2$$

Los dos miembros de esta ecuación no son estrictamente iguales, en realidad se calcula:

$$\overline{O'}_{d}^{2} = \overline{C}_{d}^{2} + \overline{S}_{d}^{2} + \overline{P}_{d}^{2} + \overline{D}_{d}^{2} + \overline{I}_{d}^{2}.$$

Se calculan luego las relaciones $100 \times \bar{C}_d^2/\overline{O'}_d^2, \dots, 100 \times \overline{I}_d^2/\overline{O'}_d^2$, para obtener la contribución relativa de cada componente.

Por último, se calcula la relación $100\times\overline{O'}_d^2/\bar{O}_d^2$, para evaluar la calidad de la aproximación.

Comentarios

- Para ese cálculo, X-12-ARIMA utiliza la serie E3 —en lugar de la serie D13—en tanto que estimación de la componente irregular.
- X-12-ARIMA calcula la cantidad $\overline{O'}_d^2$ con la serie E1 y no con la serie original A1, como lo hace X-11-ARIMA.

Ejemplo

De modo que, para el plazo 1, se obtiene:

$$\overline{O'}_d^2 = \overline{C}_d^2 + \overline{S}_d^2 + \overline{P}_d^2 + \overline{D}_d^2 + \overline{I}_d^2$$

$$= (0.29)^2 + (10.73)^2 + (0.00)^2 + (2.46)^2 + (1.29)^2$$

$$= 122.933.$$

en consecuencia,

$$100 \times \frac{\overline{O'}_d^2}{\overline{O}_d^2} = 100 \times \frac{122.933}{(11.03)^2}$$
$$= 101.17$$

y la contribución de la componente estacional, por ejemplo, es igual a:

$$100 \times (10.73)^2 / 122.933 = 93.65$$

.

Plazo	D13 <i>I</i>	D12 <i>C</i>	D10 S	A2 P	C18 <i>D</i>	Total	Razón ×100
1	1.36	0.07	93.65	0.00	4.92	100.00	101.17
2	1.20	0.24	95.04	0.00	3.52	100.00	94.97
3	1.08	0.51	97.23	0.00	1.17	100.00	101.72
4	1.02	0.83	93.81	0.00	4.34	100.00	96.57
5	0.97	1.39	94.56	0.00	3.08	100.00	96.01
6	0.86	1.50	96.13	0.00	1.51	100.00	103.85
7	0.97	2.23	92.49	0.00	4.30	100.00	93.30
8	1.07	2.58	93.84	0.00	2.51	100.00	95.20
9	1.12	3.54	94.20	0.00	1.14	100.00	86.32
10	0.99	3.86	90.30	0.00	4.86	100.00	90.30
11	1.03	5.08	91.00	0.00	2.89	100.00	95.97
12	14.74	63.79	0.18	0.00	21.28	100.00	94.63

Tabla 4.153: **F2B**: Contribuciones relativas de las componentes a las evoluciones de la serie bruta.

4.5.4 Tabla F2C: Medias y desviaciones estándar de las evoluciones en función del plazo

Descripción y método de cálculo

Se calcula, para cada plazo, la media y la desviación estándar de las evoluciones, teniendo en cuenta ahora el signo de la serie bruta y de sus componentes, pero también de la serie media MCD de la Tabla F1.

EjemploPor ejemplo, la media de las tasa de crecimiento mensuales de la serie bruta (1.38), corresponde a la media de la Tabla E5 (*cf.* pág. 174).

Plazo	A1 <i>O</i>		D1 <i>I</i>		D (_	S	D11 <i>A</i>		F <i>M</i> (_
	Med	ED	Med	ED	Med	ED	Med	ED	Med	ED	Med	ED
1	1.38	16.84	0.02	1.90	0.15	0.31	1.15	16.20	0.17	1.92	0.15	0.40
2	1.96	20.42	0.01	1.90	0.30	0.60	1.61	20.04	0.30	2.00	0.31	0.62
3	1.94	19.26	0.01	1.77	0.45	0.86	1.45	18.95	0.47	1.96	0.46	0.82
4	1.95	17.71	0.02	1.85	0.61	1.09	1.25	16.95	0.63	2.14	0.61	1.04
5	2.31	18.40	0.01	1.59	0.77	1.28	1.52	18.23	0.79	1.99	0.75	1.25
6	2.27	17.14	0.02	1.79	0.93	1.45	1.28	16.60	0.95	2.22	0.90	1.42
7	2.75	19.93	-0.05	1.66	1.09	1.62	1.61	18.99	1.04	2.28	1.04	1.60
8	2.35	17.87	-0.02	1.73	1.25	1.78	1.04	17.07	1.22	2.46	1.20	1.79
9	2.45	17.28	-0.02	1.86	1.40	1.95	1.02	16.52	1.37	2.69	1.34	1.97
10	2.96	19.42	-0.03	1.64	1.54	2.13	1.32	18.20	1.51	2.69	1.48	2.15
11	2.88	15.66	0.01	1.60	1.68	2.31	1.12	14.89	1.69	2.81	1.62	2.32
12	1.86	3.62	0.01	1.71	1.82	2.49	0.02	0.22	1.82	3.03	1.76	2.49

Tabla 4.154: F2C: Medias y desviaciones estándar de las evoluciones en función del plazo.

4.5.5 Tabla F2D: Duraciones medias de las fases de crecimiento y de decrecimiento

Descripción y método de cálculo

Para algunas series se calcula la duración media de las fases de crecimiento y de decrecimiento. Para ello, se considera la serie de las evoluciones de las tasa de crecimiento —si el esquema es multiplicativo— o las evoluciones de los crecimientos, si el esquema es aditivo. La duración de una fase de crecimiento (decrecimiento) es el número de términos positivos (negativos) sucesivos. Si un término es nulo, se lo cuenta en la fase en curso.

Se calculan las duraciones medias para las siguientes series:

Tabla	Símbolo	Serie
D11	A	La serie desestacionalizada final.
D13	I	La componente irregular final.
D12	C	La tendencia-ciclo final.
F1	MCD	La serie desestacionalizada final alisada con una media móvil MCD.

Ejemplo

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985											-0.375	-0.439
1986	-0.450	-0.388	-0.158	0.166	0.479	0.642	0.628	0.466	0.217	0.099	0.113	0.236
1987	0.374	0.448	0.379	0.240	0.065	-0.057	0.010	0.190	0.367	0.462	0.452	0.440
1988	0.461	0.504	0.489	0.467	0.423	0.327	0.257	0.306	0.475	0.648	0.760	0.662
1989	0.428	0.221	0.053	-0.069	-0.133	-0.084	0.051	0.163	0.251	0.290	0.278	0.267
1990	0.211	0.095	0.117	0.210	0.304	0.369	0.255	0.052	-0.148	-0.327	-0.401	-0.371
1991	-0.229	-0.007	0.169	0.259	0.255	0.188	0.130	0.089	0.046	0.070	0.118	0.146
1992	0.112	-0.073	-0.271	-0.378	-0.311	-0.146	0.025	0.079	-0.070	-0.315	-0.538	-0.627
1993	-0.517	-0.264	-0.015	0.087	0.021	-0.154	-0.312	-0.323	-0.148	0.088	0.301	0.475
1994	0.545	0.552	0.502	0.447	0.403	0.312	0.249	0.246	0.294	0.412	0.529	0.548
1995	0.487	0.398	0.286									

Tabla 4.155: F2D1: Tasas de crecimiento mensuales de la tendencia-ciclo (Tabla D12).

Consideremos —por ejemplo— la tendencia-ciclo de la Tabla D12 (cf. pág. 167). La serie de las tasas de crecimiento mensuales figuran en la Tabla F2D1. La serie de las duraciones de las fases de crecimiento o de decrecimiento es:

o sea una duración media de 113/14 = 8.071 meses. Se obtiene así la Tabla F2D (cf. Tabla 4.156, pág. 182).

4.5.6 Tabla F2E: Cálculo de la razón MCD («Months for Cyclical Dominance»).

Descripción y método de cálculo

Con los datos de la tabla F2A se calculan las relaciones \bar{I}_d/\bar{C}_d para cada valor del plazo d. El valor MCD, utilizado en particular para la Tabla F1, es el valor del primer plazo d a partir del cual todas las razones —incluso la del plazo d— son menores que 1 (i.e. $\bar{I}_k/\bar{C}_k < 1$, para todo $k \geq d$).

D11 (A)	D13 (I)	D12 (C)	F1 (<i>MCD</i>)
1.6377	1.5067	8.071	3.2059

Tabla 4.156: **F2D**: Duraciones medias de las fases de crecimiento y de decrecimiento.

Ejemplo

Los diferentes valores de la razón se calculan fácilmente con las columnas D13 y D12 de la Tabla F2A. Por ejemplo, para el plazo 1, se obtiene: $\bar{I}_1/\bar{C}_1=1.29/0.29=4.46$. Resulta así la Tabla F2E (cf. Tabla 4.157, pág. 182) y el valor del MCD es entonces: 5.

Comentario

En nuestro ejemplo, si el valor para el plazo 6 fuera superior a 1, el valor del MCD sería 7.

1	2	3	4	5	6	7	8	9	10	11	12
4.46	2.22	1.45	1.11	0.84	0.76	0.66	0.65	0.56	0.51	0.45	0.48

Tabla 4.157: **F2E**: Ratios I/C y MCD.

4.5.7 Tabla F2F: Contribución relativa de las componentes a la varianza de la parte estacional de la serie original.

Descripción y método de cálculo

Para desestacionalizar la serie original se extrae una tendencia lineal si el esquema es aditivo, o bien una tendencia exponencial si el esquema es multiplicativo. No se estima esa tendencia sobre la serie bruta (Tabla A1) sino sobre la componente tendenciaciclo de la Tabla D12. Además, esta serie es también desestacionalizada mediante la extracción de la misma tendencia. Por último, se evalúa la contribución relativa de cada: componente-irregular D13; tendencia-ciclo desestacionalizada; estacionalidad D10; coeficientes de ajuste *a priori*; y de cada coeficiente para días hábiles C18.

Comentarios

- Para el cálculo de las varianzas de esas componentes se utilizan las medias teóricas (xbar) de: la componente estacional; la componente irregular; los coeficientes para días hábiles; las medias empíricas para la serie bruta; la componente tendencia-ciclo; y de los coeficientes de ajuste a priori.
- X-12-ARIMA utiliza la Tabla E3 en tanto que estimación de la componente irregular, mientras que X-11-ARIMA emplea con ese fin la Tabla D13.

Ejemplo

Sería fastidioso describir cada etapa de ese cálculo que es bastante largo. Nos limitámos a resumir esas etapas. Como el esquema es aquí multiplicativo, nos situamos en el caso en el que el método de cálculo es el más complejo.

- Se ajusta la recta ols —con los mínimos cuadrados habituales— al logaritmo de la componente tendencia-ciclo de la Tabla D12, lo cual es equivalente a ajustar una tendencia exponencial a la serie D12.
- Se desestacionaliza la serie original A1 y la serie tendencia-ciclo D12 mediante la extracción de esta tendencia exponencial: A1bis = A1 $op \exp(ols)$ y D12bis = D12 $op \exp(ols)$.
- Se dispone así de una serie A1bis descompuesta aquí con 4 componentes independientes: D12bis, D13, D10 y C18. Se hace la transformación logarítmica de esas variables para reducirse a una suma de variables aleatorias independientes, lo que permite utilizar la siguiente igualdad aproximativa:

$$\operatorname{Var}\left[\log(A1bis)\right] \approx \operatorname{Var}\left[\log(D12bis)\right] + \operatorname{Var}\left[\log(D13)\right] + \operatorname{Var}\left[\log(D10)\right] + \operatorname{Var}\left[\log(C18)\right].$$

- Cada una de esas varianzas es calculada ahora utilizando las medias empíricas para $\log(A1bis)$ y $\log(D12bis)$, y la media teórica (que es ahora 0 en razón de la transformación logarítmica) para $\log(D10)$, $\log(C18)$ y $\log(D13)$.
- Por último, se editan en la Tabla F2F las contribuciones de la varianza de cada componente a la varianza de la série original.

Tabla 4.158: **F2F**: Contribución relativa de las componentes a la varianza de la parte estacional de la serie original.

4.5.8 Tabla F2G: Correlograma de la componente irregular

Descripción y método de cálculo

Esta tabla presenta las autocorrelaciones de la componente irregular D13, calculadas para retardos que van desde 1 hasta el número de períodos +2 (o sea 14 para una serie mensual, y 6 para una serie trimestral). Se calculan las varianzas y las autocorrelaciones con la media teórica xbar. Con n observaciones en la serie I se obtiene:

$$Corr_{k}(I) = \frac{\sum_{t=k+1}^{n} (I_{t} - xbar) (I_{t-k} - xbar)}{\sum_{t=1}^{n} (I_{t} - xbar)^{2}}$$

Ejemplo

La media teórica es aquí igual a 1. El cálculo de las autocorrelaciones hasta el orden 14 lleva a la Tabla F2G (*cf.* Tabla 4.159, pág. 184).

1	2	3	4	5	6	7	8	9	10	11	12	13	14
-0.15	-0.15	0.00	-0.10	0.21	0.00	0.00	-0.07	-0.26	0.05	0.08	-0.05	0.02	-0.08

Tabla 4.159: F2G: Autocorrelaciones de la componente irregular.

4.5.9 Tabla F2H: Razones \bar{I}/\bar{C} y \bar{I}/\bar{S}

Descripción y método de cálculo

En esta tabla figuran los valores de las razones \bar{I}/\bar{C} y \bar{I}/\bar{S} que fueron calculados en las Tablas D12 y D10, respectivamente.

Razón
$$\bar{I}/\bar{C}$$
 final para D12 2.74 Razón \bar{I}/\bar{S} final para D10 4.60

Tabla 4.160: **F2H**: Razones finales \bar{I}/\bar{C} y \bar{I}/\bar{S} .

4.5.10 Tabla F2I: Tests de existencia de estacionalidad

Descripción y método de cálculo

En esta tabla (Tabla F2I, *cf.* Tabla 4.161, pág. 185) figuran los valores de los test de existencia de estacionalidad que fueron realizados en: la Tabla B1 (*cf.* pág. 61), test F de Fisher de estacionalidad estable; y en la Tabla D8 (*cf.* pág. 142), test F de Fisher de estacionalidad, test de estacionalidad de Kruskal-Wallis, test F de Fisher de estacionalidad evolutiva.

Comentario

X-11-ARIMA edita también el resultado del test de existencia de un efecto ligado a los días hábiles (Tabla C15, *cf.* pág. 125).

4.5.11 Tabla F3: Estadísticas de calidad del ajuste

Descripción y método de cálculo

Esta tabla presenta once estadísticas que permiten evaluar la calidad del ajuste estacional. El cálculo y la justificación de las mismas están detallados en LOTHIAN y MORRY [49]. Esas estadísticas varian entre 0 y 3, pero se aceptan sólo los valores inferiores a 1. Se construye un indicador sintético de la calidad de la desestacionalización por combinación lineal de esas 11 estadísticas²³.

Estadística M1: Es difícil identificar y extraer una componente estacional si es muy fuerte la influencia de la componente irregular en la evolución de la serie. La estadística M1 evalúa la contribución de lo irregular a la varianza total con los resultados de la tabla F2B. LOTHIAN y MORRY [49]) han demostrado que, para una serie mensual, el retardo 3 es el que permite la mejor comparación de las contribuciones respectivas

²³Se puede consultar algunos consejos de uso de esas estadísticas en BAXTER [5].

	Estadística	PROB > Estad. (%)
Test F de estacionalidad estable (B1)	183.698	0.000
Test F del efecto para días hábiles (C15)	68.245	0.000
Test F de estacionalidad estable (D8)	498.194	0.000
Test de Kruskal-Wallis de estacionalidad estable (D8)	104.780	0.000
Test F de estacionalidad evolutiva (D8)	1.724	10.386

Tabla 4.161: F2I: Tests de existencia de estacionalidad.

de las componentes irregular y estacional. Retomando las notaciones de la Tabla F2B (*cf.* pág. 180), la estadística M1 se define así:

$$M1 = 10 \times \frac{\bar{I}_3^2/\bar{O'}_3^2}{1 - \bar{P}_3^2/\bar{O'}_3^2}.$$

Esta estadística, que está asociada a la celdilla (3,1) de la Tabla F2B, es considerada acceptable si no es superior al 10%. M1 es «normalizada» con un factor 10 (o dividiendo por 10 el porcentaje de la Tabla F2B).

Estadística M2: Se calcula esta estadística, similar a la M1, con la contribución de la componente irregular a la varianza de la serie bruta previamente desestacionalizada. Esta contribución, en porcentaje, figura en la primera columna de la Tabla F2F. La estadística M2 se define así:

$$M2 = 10 \times \frac{\mathrm{Contribución}(I)}{1 - \mathrm{Contribución}(P)}.$$

Se considera que esa estadística es aceptable si no es superior al 10%. M2 es «normalizada» con un factor 10 (o dividiendo por 10 el porcentaje de la Tabla F2F).

Estadística M3: X-11 estima sucesivamente cada una de las componentes para obtener una desestacionalización correcta. En particular, es de desear que —en el momento de la extracción de la componente tendencia-ciclo—ño sea muy importante la contribución de lo irregular a la evolución de la estimación provisoria de la serie desestacionalizada. En el caso contrario, será difícil separar esas dos componentes. La estadística M3 evalúa esa contribución con la razón \bar{I}/\bar{C} de la Tabla D12, retomado en la Tabla F2H. Se obtiene así:

$$M3 = \frac{1}{2} \times \left(\frac{\bar{I}}{\bar{C}} - 1\right).$$

Estadística M4: Una de las hipótesis de base que condiciona la validez de los test de Fisher que se hacen en el transcurso del tratamiento X-11, es que la componente irregular sea aleatoria. La estadística M4 prueba la presencia de autocorrelación con la duración media de las secuencias (ADR, «Average Duration of Runs») de lo irregular, que figuran en la Tabla F2D, según la siguiente fórmula:

$$M4 = \frac{\left| \frac{n-1}{ADR} - \frac{2(n-1)}{3} \right|}{2.577 \times \sqrt{\frac{16n-29}{90}}}$$

en donde n es el número total de observaciones de la serie.

Estadística M5: El valor MCD que fue calculado en la Tabla F2E, evalúa el número de meses que son necesarios para que las variaciones absolutas de la componente tendencia-ciclo tengan mayor importancia que las de la componente irregular. Esta estadística —como la M3— permite entonces comparar la importancia de las componentes tendencial e irregular.

El MCD es el número de meses k tal que: $\bar{I}_j/\bar{C}_j \leq 1$, para todo $j \geq k$. El valor que se emplea aquí utiliza la siguiente interpolación lineal:

$$MCD' = (k-1) + \frac{\frac{\bar{I}_{k-1}}{\bar{C}_{k-1}} - 1}{\frac{\bar{I}_{k-1}}{\bar{C}_{k-1}} - \frac{\bar{I}_{k}}{\bar{C}_{k}}}.$$

Generalmente, se admite que para una serie mensual, este valor no debe ser mayor que 6, lo que permite definir la estadística M5 de la siguiente manera:

$$M5 = \frac{MCD' - 0.5}{5}.$$

Estadística M6: X-11 alisa una estimación de la componente estacional-irregular para extraer la componente estacional. Por ejemplo, mediante una media móvil 3×5 . La práctica mostró que, si las evoluciones anuales de la componente irregular son débiles con respecto a las evoluciones anuales de la componente estacional (la razón I/S es baja), la media 3×5 no es lo bastante flexible como para seguir el movimiento estacional. LOTHIAN [47] demostró que esta media 3×5 funciona bien para los valores de la razón I/S comprendidas entre 1.5 y 6.5. La estadística M6 es deducida de esos valores y de la razón I/S de la Tabla D10, que son retomados en la Tabla F2H. Se obtiene así:

$$M6 = \frac{1}{2.5} \times \left| \frac{\bar{I}}{\bar{S}} - 4 \right|.$$

Estadística M7: M7 es el test combinado para la presencia de una estacionalidad identificable que fue presentado en la sección §4.3.7. Este test compara —con los tests F de Fisher de la Tabla D8— la contribución relativa de la estacionalidad estable (Estadística F_S) y de la estacionalidad evolutiva (Estadística F_M). La estadística M2 permite ver si X-11 puede, o no, identificar la estacionalidad. Se obtiene:

$$M7 = \sqrt{\frac{1}{2} \left(\frac{7}{F_S} + \frac{3F_M}{F_S} \right)}.$$

Estadísticas M8 hasta M11: Los filtros estacionales empleados por X-11 funcionan óptimamente para las estacionalidades constantes. Pero, si el movimiento estacional evoluciona en el transcurso de los años, las estimaciones de los coeficientes estacionales pueden ser más o menos erróneas. Se consideran dos tipos de movimientos: aquel que resulta de variaciones casi aleatorias de corto plazo; y el movimiento

debido a evoluciones de más largo plazo. La importancia del primer tipo de movimiento puede ser evaluada con la media de las evoluciones absolutas anuales (estadísticas M8 y M10). En cambio, la media simple de las evoluciones anuales da una idea de la importancia de un movimiento (lineal) sistemático (estadísticas M9 y M11).

Estas cuatro últimas estadísticas se calculan con los coeficientes estacionales normalizados. Se aplica a la componente estacional de la Tabla D10, la transformación: $S_t = (S_t - \bar{S})/\sigma(S)$, en donde se utiliza la media teórica xbar.

Empleando una notación similar a la de la ecuación (4.5) de la sección §4.3.9, el coeficiente estacional normalizado para la $i^{\rm ésima}$ observación del período j se escribe: $S_{i,j}, i=1,\ldots,n_j, j=1,\ldots,k$, en donde el número de períodos es k=4 en el caso trimestral y k=12 en el caso mensual.

 Estadística M8: La amplitud de las variaciones de la componente estacional se evalúa con la variación absoluta media:

$$|\overline{\Delta S}| = \frac{1}{\sum_{j=1}^{k} (n_j - 1)} \sum_{j=1}^{k} \sum_{i=2}^{n_j} |S_{i,j} - S_{i-1,j}|.$$

Si el límite de tolerancia es de 10%, se obtiene así:

$$M8 = 100 \times \left| \overline{\Delta S} \right| \times \frac{1}{10}.$$

- Estadística M9: Si el límite de tolerancia es de 10%, se obtiene:

$$M9 = \frac{10}{\sum_{j=1}^{k} (n_j - 1)} \sum_{j=1}^{k} |S_{n_j,j} - S_{1,j}|.$$

 Estadística M10: Es equivalente a la estadística M8, medida sobre los años recientes:

$$|\overline{\Delta S}|_R = \frac{1}{3k} \sum_{j=1}^k \sum_{i=n_j-4}^{n_j-2} |S_{i,j} - S_{i-1,j}|.$$

y

$$M10 = 100 \times \left| \overline{\Delta S} \right|_R \times \frac{1}{10}.$$

 Estadística M11: Es equivalente a la estadística M9, medida sobre los años recientes:

$$M11 = \frac{10}{3k} \sum_{j=1}^{k} |S_{n_j-2,j} - S_{n_j-5,j}|.$$

Estadística Q: Por último, se calcula una estadística global de calidad que es una combinación lineal de las estadísticas M1 hasta M11. Se obtiene así:

$$Q = \frac{10 \times M1 + 11 \times M2 + 10 \times M3 + 8 \times M4 + 11 \times M5 + 10 \times M6}{100} + \frac{18 \times M7 + 7 \times M8 + 7 \times M9 + 4 \times M10 + 4 \times M11}{100}.$$

Comentarios

- En el cálculo de las estadísticas M1 y M2, X12-ARIMA utiliza la serie de la Tabla E3 en tanto que estimación de la componente irregular, en cambio X-11-ARIMA emplea la serie de la Tabla D13.
- La estadística M6 sólo tiene sentido cuando se utilizó una media móvil 3 × 5. En el caso contrario, el peso de la misma en la estadística Q es nulo.
- No se utilizan los valores de los dos últimos años en el cálculo de las estadísticas M10 et M11.
- Las estadísticas M8 hasta M11 se calculan únicamente si la serie es, al menos, de 6 años. En el caso contrario, el vector de pesos que permite calcular la estadística Q es el siguiente: (14, 15, 10, 8, 11, 10, 32, 0, 0, 0, 0).
- X-12-ARIMA calcula también una estadística global Q2, la cual se calcula de la misma manera que la estadística Q, pero sin tomar en cuenta la M2.
- El valor de alguna de esas estadísticas M puede ser mayor que 3. En ese caso, el programa las toma iguales a 3 para evitar que tengan un impacto demasiado grande sobre la estadística global Q.

Ejemplo

Las estadísticas de calidad de nuestro ejemplo se presentan en la Tabla 4.162, que es la versión adaptada de la Tabla F3 producida por los paquetes estudiados.

Estadística	Valor
M1	0.108
M2	0.109
M3	0.871
M4	0.029
M5	0.779
M6	0.241
M7	0.111
M8	0.126
M9	0.099
M10	0.163
M11	0.151
Q	0.270

Tabla 4.162: F3: Estadísticas de calidad.

Para nuestro ejemplo, se obtiene:

$$M1 = \frac{1.08}{10} = 0.108,$$

$$M2 = \frac{1.09}{10} = 0.109,$$

$$M3 = \frac{1}{2}(2.742 - 1) = 0.871,$$

$$M4 = \frac{\left|\frac{114 - 1}{1.5067} - \frac{2(114 - 1)}{3}\right|}{2.577 \times \sqrt{\frac{16 \times 114 - 29}{90}}} = \frac{0.3350}{11.509} = 0.029,$$

$$M5 = \frac{1}{5}\left[4 + \frac{1.14 - 1}{1.14 - 0.81} - 0.5\right] = 0.779,$$

$$M6 = \frac{1}{2.5} \times |4.602 - 4| = 0.241,$$

$$M7 = \sqrt{\frac{1}{2}\left(\frac{7 + 3 \times 1.724}{498.194}\right)} = 0.111.$$

El cálculo de las otras estadísticas necesita una estandarización de los coeficientes estacionales de la Tabla D10 (*cf.* pág. 154). Con la fórmula siguiente se calcula la desviación estándar de esa tabla:

$$\sigma(S) = \left(\frac{1}{n} \sum_{t=1}^{n} (S_t - 1)^2\right)^{1/2} = 0.1001.$$

Luego se estandariza la Tabla D10 con la fórmula: $S_t = (S_t - 1)/\sigma(S)$. Por ejemplo, el valor del mes de abril de 1986 es:

$$ABR86 = (1.01408 - 1)/0.1001 = 0.1407.$$

El resultado es la Tabla 4.163 siguiente que contiene los coeficientes estacionales estandarizados.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985										1.143	0.887	0.062
1986								-3.219		1.142	0.882	0.072
1987	0.384	-0.012	0.763	0.141	-0.226	0.330	-0.455	-3.198	0.188	1.148	0.868	0.074
1988	0.393	-0.026	0.755	0.145	-0.243	0.328	-0.447	-3.160	0.183	1.151	0.866	0.063
1989	0.405	-0.047	0.736	0.152	-0.256	0.315	-0.439	-3.097	0.182	1.165	0.849	0.039
1990	0.412	-0.068	0.716	0.164	-0.272	0.309	-0.424	-3.031	0.177	1.169	0.841	0.010
1991	0.420	-0.092	0.691	0.173	-0.266	0.292	-0.402	-2.966	0.173	1.171	0.816	-0.013
1992	0.421	-0.112	0.676	0.182	-0.254	0.286	-0.380	-2.924	0.168	1.154	0.795	-0.015
1993	0.420	-0.126	0.667	0.186	-0.231	0.277	-0.370	-2.901	0.171	1.139	0.767	0.002
1994	0.416	-0.136	0.667	0.188	-0.222	0.279	-0.368	-2.894	0.175	1.130	0.755	0.016
1995	0.411	-0.141	0.671									

Tabla 4.163: Coeficientes estacionales estandarizados.

Se deducen de allí las evoluciones anuales, retirando en la Tabla 4.163, la línea t-1 hasta la línea t. Así, la evolución de la estacionalidad entre los meses de abril de 1986 y abril de 1987 es próxima de 0. De esta manera se obtiene la Tabla 4.164 de las variaciones anuales de los coeficientes estacionales estandarizados (en porcentaje).

La estadística M8 se deduce de la media de los valores absolutos de la Tabla 4.164 (cf. pág. 190), en realidad esta estadística es 10 veces esa media, o sea 0.126.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1986										-0.168	-0.501	1.003
1987									-0.299			
1988	0.890	-1.333	-0.779	0.380	-1.736	-0.227	0.794	3.897	-0.425	0.259	-0.232	-1.103
1989	1.218	-2.085	-1.902	0.761	-1.306	-1.341	0.815	6.237	-0.141	1.470	-1.611	-2.350
1990	0.655	-2.095	-2.013	1.153	-1.582	-0.568	1.539	6.638	-0.514	0.370	-0.803	-2.938
1991	0.799	-2.429	-2.500	0.955	0.594	-1.687	2.166	6.503	-0.400	0.188	-2.491	-2.254
1992	0.145	-2.031	-1.527	0.922	1.193	-0.581	2.228	4.180	-0.506	-1.651	-2.138	-0.194
1993	-0.085	-1.391	-0.912	0.347	2.338	-0.884	0.971	2.342	0.341	-1.518	-2.789	1.640
1994	-0.471	-0.951	0.030	0.249	0.870	0.121	0.155	0.688	0.350	-0.926	-1.255	1.402
1995	-0.506	-0.538	0.453									

Tabla 4.164: Variaciones anuales (en %) de los coeficientes estacionales estandarizados.

Igualmente, la estadística M10 se deduce de la media de los valores absolutos de los datos de esa tabla, desde abril de 1990 hasta marzo de 1993. M10 es igual a 10 veces esta media, o sea 0.163.

Para calcular M9, se puede —por ejemplo— hacer la media, multiplicada por 10, de los valores absolutos de las medias mensuales de esa tabla.

Así entonces, la media de la columna del mes de abril es:

$$Abril = \frac{0.00018 + 0.00380 + 0.00761 + 0.01153}{8} + \frac{+0.00955 + 0.00922 + 0.00347 + 0.00249}{8}$$
$$= 0.00598.$$

Igualmente, se obtiene para los otros meses, en porcentaje:

Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
0.362	-1.525	-1.062	0.598	-0.080	-0.688	1.156	4.072	-0.199	-0.149	-1.466	-0.513

M9 es igual a 10 veces la media de los valores absolutos de esos datos:

$$M9 = 10 (0.00362 + 0.01525 + 0.01062 + 0.00598 + 0.00080 + 0.00688) + 10 (0.01156 + 0.04072 + 0.00199 + 0.00149 + 0.01466 + 0.00513) = 0.099.$$

Para M11, se hace lo mismo, pero sobre los datos de abril de 1990 hasta marzo de 1993. Lo que lleva al valor 0.151.

Por último, se deduce el valor final de la estadística Q:

$$Q = \frac{1.08 + 1.199 + 8.71 + 0.233 + 8.569 + 2.45}{100} + \frac{1.998 + 0.882 + 0.693 + 0.652 + 0.604}{100} = 0.270.$$

Capítulo 5

Modelización del efecto de Pascua

Los paquetes X-11-ARIMA y X-12-ARIMA proponen diferentes modelos de corrección del efecto de Pascua que se apoyan en una **estimación de la componente irregular**. Ambos programas proponen modelos y metodologías bastante diferentes. Esa es la razón por la cual no se integró el estudio de esa estimación en el capítulo anterior.

5.1 La Fiesta de Pascua

5.1.1 Un poco de historia

Según los Evangelios, la resurrección de Cristo se produjo durante la *Pascua judía*. Esta fiesta de la tradición hebraica es celebrada después del primer plenilunio de primavera, en el transcurso del cual — a través del sacrificio de un cordero — se conmemora el éxodo de Egipto. La tradición cristiana quiso conservar los lazos simbólicos entre ese sacrificio y el sacrificio de Jesús. Esa es la razón por la cual, en el Concilio de Nicé en 325 de nuestra era, se decidió que la Fiesta cristiana de Pascua sería celebrada el primer domingo siguiente al solsticio de primavera. Desgraciadamente, el calendario Juliano se fundaba en un año un poco más largo que en el calendario actual. Con lo cual, el solsticio de primavera se fue «acercando», de año en año, a los

¹N. de R.: Los autores se refieren aquí al siguiente pasaje del Antiguo Testamento:

[«]Habló Jehová a Moisés y a Aarón en la tierra de Egipto, diciendo: Este mes os será principio de los meses; para vosotros será éste el primero en los meses del año. Habla d a toda la congregación de Israel, diciendo: En el diez de este mes tómese cada uno un cordero según las familias de los padres, un cordero por familia. Mas si la familia fuere tan pequeña que no baste para comer el cordero, entonces él y su vecino inmediato a su casa tomarán uno según el número de las personas: conforme al comer de cada hombre, haréis la cuenta sobre el cordero. El animal será sin defecto, macho de un año; lo tomaréis de las ovejas o de las cabras. Y lo guardaréis hasta el día catorce de este mes, y lo inmolará toda la congregación del pueblo de Israel entre las dos tardes. Y tomarán de la sangre, y la pondrán en los dos postes y en el dintel de las casas en que lo han de comer. Y aquella noche comerán la carne asada al fuego, y panes sin levadura; con hierbas amargas lo comerán. Ninguna cosa comeréis de él cruda, ni cocida en agua, sino asada al fuego; su cabeza con sus pies y sus entrañas. Ninguna cosa dejaréis de él hasta la mañana; y lo que quedaré hasta la mañana, lo quemaréis en el fuego. Y lo comeréis así: ceñidos vuestros lomos, vuestro calzado en vuestros pies, y vuestro bordón en vuestra mano; y lo comeréis apresuradamente; es la Pascua de Jehová. Pues yo pasaré aquella noche por la tierra de Egipto, y heriré a todo primogénito en la tierra de Egipto, así de los hombres como de las bestias; y ejecutaré mis juicios en todos los dioses de Egipto. Yo Jehová. Y la sangre os será por señal en las casas donde vosotros estéis; y veré la sangre y pasaré de vosotros, y no habrá en vosotros plaga de mortandad cuando hiera la tierra de Egipto.(...)» (Éxodo, 12 La Pascua. [43])

meses de invierno. Es así que, en 1582, cuando el Papa Gregorio XIII introdujo el calendario en vigor actual, el solsticio de primavera se cumplía prácticamente en el mes de febrero. ¡Es muy probable que, uno de los principales objetivos de la instauración del calendario gregoriano, haya sido el de hacer coincidir la Fiesta de Pascua con la primavera!

5.1.2 El cálculo de las fechas de Pascua

La fijación con anterioridad de las fechas de Pascua fue objeto de estudio de célebres matemáticos. Incluso el mismo GAUSS propuso con este fin algoritmos interesantes, pero lastimosamente muy complejos. GARDNER [25] menciona un algoritmo simple, propuesto por Thomas H. O'BEIRNE [58], que es válido desde 1900 hasta 2099 incluido:

- Sea Y el año. Substraer 1900 de Y; sea N el resultado de la resta.
- Dividir N por 19; sea A el resto de esta división.
- Dividir (7A + 1) por 19; sea B el resultado de la división, del cual se ignora el resto
- Dividir (11A + 4 B) por 29; sea M el resto de esta división.
- Dividir N por 4; sea Q le resultado de la división, del cual se ignora el resto.
- Dividir (N+Q+31-M) por 7; sea W el resto de esta división.
- La fecha de Pascua es entonces 25-M-W. Si el resultado es positivo, se trata del mes de abril, en el caso contrario, se trata del mes de marzo (se interpreta 0 como el 31 de marzo, -1 como el 30 de marzo y así siguiendo hasta -9 que es interpretado como el 22 de marzo).

En la Tabla 5.165 siguiente se presentan las fechas de Pascua de los años 1985 hasta 1995. Para 1989, por ejemplo, el algoritmo da el siguiente resultado:

$$\begin{array}{rcl} Y & = & 1989 \\ N & = & 1989 - 1900 = 89 \\ N/19 & = & 89/19 = 19 \times 4 + 13 \text{ y entonces } A = 13 \\ (7A+1)/19 & = & 92/19 = 19 \times 4 + 16 \text{ y entonces } B = 4 \\ (11A+4-B)/29 & = & 143/29 = 29 \times 4 + 27 \text{ y entonces } M = 27 \\ N/4 & = & 89/4 = 22 \times 4 + 1 \text{ y entonces } Q = 22 \\ (N+Q+31-M)/7 & = & 115/7 = 16 \times 7 + 3 \text{ y entonces } W = 3 \\ 25-M-W & = & -5 \end{array}$$

Puesto que el resultado es negativo, en 1989 Pascua acaeció en el mes de marzo, el día 26 (31 - 5).

Existen otros algoritmos de cálculo de las fechas de Pascua, algunos son incluso más generales. Se puede consultar esos algoritmos en las obras de MONTES [54] y de

Año	Fechas de Pascua
1985	7 abril
1986	30 marzo
1987	19 abril
1988	3 abril
1989	26 marzo
1990	15 marzo
1991	31 marzo
1992	19 abril
1993	11 abril
1994	3 abril
1995	16 abril

Tabla 5.165: Fechas de Pascua para los años 1985 hasta 1995.

TØNDERING [65]. En el calendario gregoriano, la sucesión de las fechas de Pascua se repite, cada 5700000 años. En la Figura 5.1 (cf. pág. 193), se representa la distribución de esas fechas en un ciclo completo. Nótese que el Domingo Pascual acaece mucho más a menudo en el mes de abril (76.7%) que en el mes de marzo (23.3%).

Figura 5.1: Distribución de las fechas de Pascua, entre el 22 de marzo y el 25 de abril, en un ciclo completo de 5.700.000 años.

5.1.3 Pascua y la desestacionalización

¿Porqué nos tenemos que interesar en la Fiesta de Pascua en el marco del análisis de series temporales y de la desestacionalización?

Simplemente porque Pascua produce un cambio de nivel de actividad en numerosos sectores: el Viernes Santo y el Lunes de Pascua son asuetos; se modifican los hábitos alimenticios (chocolate, carne de cordero,...); etc. Además, el Domingo Pascual puede acaecer tanto en el primer trimestre como en el segundo. Lo más temprano que puede

acaecer el Domingo de Pascua es el 22 de marzo (la última vez que esto ocurrió fue en 1818 y la próxima vez será en 2285) y lo más tarde es el 25 de abril (la última vez que esto ocurrió fue en 1943 y la próxima vez será en 2038). De modo que, los efectos potenciales de esta fiesta, no están completamente tomados en cuenta en la estacionalidad de una serie.

Los modelos que fueron elaborados para tomar en cuenta el efecto de Pascua dependen de la naturaleza de la serie.

- En 1997 el Domingo de Pascua acaeció en el mes de marzo (el 30). Es el último año en que esto acontece desde 1991, en el que Pascua se festejó el 31 de marzo. En el caso de las ventas anuales de automóviles, por ejemplo, la variación observada entre marzo y abril de 1997, no es comparable a las variaciones observadas entre los mismos meses de los años precedentes. O bien, se observa que se registró, relativamente, un mayor número de casamientos en marzo de 1997. Para esas series, el impacto de Pascua —positivo o negativo— es inmediato, es decir que el mismo se concentra sobre el mes en el cual acaece Pascua.
- Para otras series, las variaciones ligadas a Pascua pueden hacerse sentir durante el feriado pascual, pero también durante los días o las semanas precedentes. Ese efecto es llamado gradual. Se lo observa por ejemplo en las ventas de chocolate, de flores, etc. En este caso, el efecto constante depende no solamente del hecho que Pascua sea en marzo o en abril, sino también de la fecha en la cual acaece en el mes de abril. Las cifras del mes de marzo serán tanto más afectadas si la Pascua se festeja en los primeros días del mes de abril.

Por último, se pueden estimar los efectos de Pascua sobre los datos brutos mediante los modelos de regresión con errores ARIMA, o bien sobre una estimación preliminar de la componente irregular obtenida después de haber eliminado los otros efectos presentes en la serie (tendencia, estacionalidad, efectos de días hábiles, etc.). El primer enfoque no es propuesto más que en X-12-ARIMA, mediante su módulo Reg-ARIMA (FINDLEY *e alii*. [22]). El segundo enfoque es disponible en ambos paquetes X-11-ARIMA y X-12-ARIMA. Presentamos a continuación los modelos que se utilizan en este segundo enfoque.

Podemos distinguir los seis modelos siguientes:

- Los 3 modelos propuestos por X-11-ARIMA, que estiman el efecto de Pascua con la componente irregular de la Tabla D13: el modelo a efecto puntual; el modelo a efecto puntual corregido; y el modelo a efecto gradual.
- Los 3 modelos propuestos por X-12-ARIMA: el modelo de Bateman-Mayes, que estima el efecto de Pascua con la Tabla D13; y los dos modelos a efecto gradual, («Sceaster» y «Easter»), los cuales estiman el efecto de Pascua con las estimaciones de lo irregular de las Tablas B13 y C13 (cuando es debido, esa estimación se hace al mismo tiempo que los efectos de días hábiles).

Las componentes irregulares de la Tabla B13 (*cf.* Tabla 4.50, Sección §4.1.12) y de la Tabla D13 (*cf.* Tabla 4.140, Sección §4.3.14) nos permitirán ilustrar esos diferentes modelos.

5.2 Los modelos utilizados en X-11-ARIMA

Hemos visto anteriormente que es más frecuente que Pascua se festeje en el mes de abril. En los modelos que veremos a continuación, este acaecer es considerado «normal»: si se detecta un «efecto de Pascua», sólo serán corregidos los datos de los años en los cuales Pascua afecta el mes de marzo. Esta corrección afectará los meses de marzo y abril de los años concernidos. Además, como es de desear que el nivel de la serie no se modifique, la corrección se hará de manera tal que la suma de los coeficientes correctores sea igual a 0 (en el caso de un esquema aditivo) o a 2 (en el caso de un esquema multiplicativo).

Por último, nótese que cuando se trabaja con las estimaciones de la componente irregular de la Tabla D13, se estima un efecto de Pascua *residual*.

5.2.1 El modelo a efecto puntual

El modelo a *efecto puntual* que presentamos a continuación es una versión simplificada de los modelos que están disponibles en los programas actuales.

Modelo y estimación de los efectos

- Sea $I_{i,j}$ el valor de la componente irregular de la Tabla D13 que corresponde al mes j del año i.
- $-I_{i,4}$ y $I_{i,3}$, $(i=1,\ldots,N)$ son los valores de la componente irregular de los meses de abril y de marzo, para los N años disponibles. Designamos² $Y_i=I_{i,4}-I_{i,3}$ sus diferencias.
- Sea Z_i el número de días entre el Domingo de Pascua del año i y el 22 de marzo (la fecha más precoz de esta fiesta) y sea $X_i = f(Z_i)$ la función definida así:

$$X_i = f(Z_i) = \left\{ \begin{array}{lll} 1 & \text{si} & Z_i el9 & \text{ (Pascua acaece en marzo)} \\ 0 & \text{si} & Z_i > 9 & \text{ (Pascua acaece en abril)} \end{array} \right.$$

A pesar de que la variable Z_i y la función $X_i = f(Z_i)$ no intervienen siempre explícitamente en los cálculos relativos al modelo a efecto puntual, ambas permiten uniformizar la presentación de los diferentes modelos, lo cual facilita la comparación de los mismos.

El efecto de Pascua se puede obtener explicando los valores de lo irregular con la variable X_i , es decir evaluando el impacto sobre lo irregular del hecho que Pascua acontezca en el mes de marzo. Se obtiene entonces los siguientes modelos:

$$I_{i,3} = a_M + b_M X_i + \eta_i$$

$$I_{i,4} = a_A + b_A X_i + \xi_i$$

en donde: b_M y b_A evalúan el impacto de Pascua sobre los valores de los meses de marzo y abril; η_i y ξ_i son los términos de los errores de las regresiones. Para preservar el nivel de la serie, b_A y b_m deben verificar que $b_A = -b_M = b/2$.

²Empleamos en este capítulo la notación habitual de la regresión lineal.

De modo que, haciendo la diferencia entre esos modelos, se obtiene:

$$Y_i = I_{i,4} - I_{i,3} = a + bX_i + \epsilon_i.$$

- Se considera que el parámetro a expresa un efecto medio de la Fiesta de Pascua sobre la diferencia entre los irregulares. Es decir que ese parámetro expresa la diferencia estructural entre los meses de marzo y de abril (o entre el primer y el segundo trimestre). En principio, los datos de la Tabla D13 no presentan ni tendencia ni estacionalidad. Teóricamente, el parámetro a debe ser nulo y su estimación debe ser próxima de cero.
- El parámetro b es el efecto suplementario debido al hecho que Pascua acaece en marzo. De modo que es esta cantidad la que evalúa el efecto específico a la Fiesta de Pascua.

Sea \hat{b} el estimador del parámetro b; bajo la hipótesis de conservación del nivel de la serie, los coeficientes correctores que se aplican son los siguientes:

	Esquema aditivo	Esquema multiplicativo
Mes de marzo	$-\hat{b} \times X_i/2$ $\hat{b} \times X_i/2$	$ \begin{array}{c} 1 - \hat{b} \times X_i/2 \\ 1 + \hat{b} \times X_i/2 \end{array} $
Mes de abril	$b \times X_i/2$	$1 + b \times X_i/2$

Sólo serán corregidos los datos de los años en los cuales Pascua acaece en marzo y para los cuales $X_i = f(Z_i)$ no será nulo.

Se puede calcular explícitamente el estimador \hat{b} de b, que se obtiene con los mínimos cuadrados habituales 3 .

- Sean N_M y N_A el número de años en los cuales Pascua acaece, respectivamente, en el mes de marzo y en el mes de abril. Claro está, tenemos que $N=N_M+N_A$.
- Sean YM y YA las sumas de los valores Y_i de los años en los cuales Pascua acaece, respectivamente, en el mes de marzo y en el mes de abril.

Se verifica fácilmente que:

$$\hat{b} = \frac{YM}{N_M} - \frac{YA}{N_A} = \bar{Y}_M - \bar{Y}_A$$

У

$$\hat{a} = \frac{YA}{N_A} = \bar{Y}_A.$$

Es evidente que \hat{a} debería ser próximo de cero. Efectivamente, el caso en el que Pascua acaece en abril corresponde a la situación «normal» en la cual el efecto de Pascua de esos años está comprendido en la estacionalidad, sin afectar los valores de lo irregular de los meses de marzo y abril de esos mismos años. Teóricamente, estos valores tienen media 0 o 1 (según el esquema de composición adoptado), con lo cual la diferencia entre los mismos es nula. En consecuencia, se obtiene:

$$\hat{b} = \bar{Y}_M - \bar{Y}_A \approx \bar{Y}_M.$$

 $^{^3\}mathrm{Con}$ las fórmulas conocidas de mínimos cuadrados habituales: $\hat{b} = \mathrm{Cov}(X,Y)/\mathrm{Var}(X); \ \hat{a} = \bar{Y} - \hat{b}\bar{X}; \\ \mathrm{siendo:} \ \mathrm{Var}(X) = \frac{1}{n} \sum_i \sum_j X_{i,j}^2 - \bar{X}^2; \mathrm{Cov}(X,Y) = \frac{1}{n} \sum_i \sum_j X_{i,j} Y_{i,j} - \bar{X}\bar{Y}.$

Por último, con un test F de Fisher se puede someter a prueba la presencia de un efecto de Pascua en una serie.

Ejemplo

Año	Fecha de Pascua	Z_i	$X_i = f(Z_i)$	$I_{i,3}$	$I_{i,4}$	Y_i
1986	30 marzo	8	1	0.99099	1.06850	0.07751
1987	19 abril	28	0	1.00837	0.99721	-0.01116
1988	3 abril	12	0	1.00020	0.99587	-0.00433
1989	26 marzo	4	1	0.97009	1.02498	0.05489
1990	15 abril	24	0	1.00315	0.99900	-0.00415
1991	31 marzo	9	1	0.99502	1.00659	0.01156
1992	19 abril	28	0	1.00018	1.00294	0.00276
1993	11 abril	20	0	1.00691	0.97966	-0.02726
1994	3 abril	12	0	0.99280	0.99774	0.00494

Tabla 5.166: Efecto de Pascua, datos del modelo a efecto puntual.

Únicamente los datos de 1986 hasta 1994 permiten calcular la diferencia entre los irregulares de marzo y abril (*cf.* Tabla 5.166, pág. 197). Se deduce de esos datos:

$$\hat{b} = \frac{0.07751 + 0.05489 + 0.01156}{3} - \frac{-0.01116 - 0.00433 - 0.00415 + 0.00276 - 0.02726 + 0.00494}{6}$$

$$= 0.04799 + 0.00653$$

$$= 0.05452,$$

$$\hat{a} = -0.00653.$$

En la Tabla 5.167 (cf. pág. 198) se presentan los resultados del análisis de la varianza y del test F asociados a esta regresión. Se considera que el efecto de Pascua es significativo, al nivel de confianza de 1%.

Los coeficientes correctores serán nulos para los años en los que Pascua acaece en el mes de abril. Como el modelo es multiplicativo, para los años en los que Pascua acaece en el mes de marzo, los coeficientes correctores son los siguientes:

$$1 + 0.05452/2 = 1.02726$$
 para los datos del mes de abril;
$$1 - 0.05452/2 = 0.97274$$
 para los datos del mes de marzo.

Lo que conduce a los coeficientes de la Tabla A11.

5.2.2 El modelo a efecto puntual corregido

X-11-ARIMA incluye un modelo a *efecto puntual corregido*, elaborado en la Oficina Australiana de Estadística (LAKER [44, 45]). Este modelo es algo diferente del precedente. Toma en cuenta el caso específico en el que el fin de semana pascual acaece en marzo y en abril. Es decir que el Domingo de Pascua es el 31 de marzo, el 1° o el 2 de abril. En ese caso, se admite que ambos meses están afectados por la fiesta pascual y se considera entonces que el efecto de Pascua representa la mitad del efecto observado cuando el fin de semana pascual acaece plenamente durante el mes de marzo.

	Suma de Cuadrados	g.d.l.	Media de Cuadrados	F	PROB>F
Efecto de Pascua	0.0059	1	0.0059	14.2262	0.0070
Error	0.0029	7	0.0004		
Total	0.0089				

Tabla 5.167: Efecto de Pascua, Test F del modelo a efecto puntual.

Año	Marzo	Abril
1985		
1986	97.274	102.726
1987	100.000	100.000
1988	100.000	100.000
1989	97.274	102.726
1990	100.000	100.000
1991	97.274	102.726
1992	100.000	100.000
1993	100.000	100.000
1994	100.000	100.000
1995	100.000	

Tabla 5.168: **A11**: Efecto de Pascua, modelo a *efecto puntual*, valores para los meses de marzo y abril (para los otros meses: 100).

Modelo

Se formula el modelo de la siguiente manera: $Y_i = a + bX_i + \epsilon_i$, en donde:

- $-I_{i,j}$ $(i=1,\ldots,N)$, el valor de la componente irregular de la Tabla D13 que corresponde al mes j del año i, $I_{i,4}$ y $I_{i,3}$ son los valores de la componente irregular de los meses de abril y marzo, de los N años disponibles, y $Y_i=I_{i,4}-I_{i,3}$ son sus diferencias.
- Sea Z_i el número de días entre el Domingo de Pascua del año i y el 22 de marzo (que es la fecha más precoz para esta fiesta) y sea $X_i = f(Z_i)$ la variable definida con:

$$X_i = f(Z_i) = \left\{ \begin{array}{ll} 1 & \text{si} \quad Z_i \leq 8 \\ 0.5 & \text{si} \quad 9 \leq Z_i \leq 11 \\ 0 & \text{si} \quad Z_i \geq 12 \end{array} \right. \quad \text{(Pascua en el mes de marzo)} \quad \text{(Pascua a horcajada entre marzo-abril)}$$

Se puede calcular explícitamente el valor de \hat{b} .

- Sean: N_M , N_{MA} y N_A , el número de años en los cuales Pascua acaece, respectivamente, en el mes de marzo, a horcajadas entre marzo-abril y en el mes de abril. Claro está, se obtiene: $N=N_M+N_{MA}+N_A$.
- Sean: YM, YMA y YA, las sumas de los valores Y_i para los años en los cuales Pascua acaece, respectivamente en el mes de marzo, a horcajadas entre marzoabril y en el mes de abril ; y sea YT = YM + YMA + YA.

Se obtiene entonces:

$$\hat{b} = 2 \times \frac{YM + 0.5 \times YMA - r \times YT}{2 \times N \times r \times (1 - r) - 0.5 \times N_{MA}}$$

siendo.

$$r = \frac{N_M + 0.5 \times N_{MA}}{N}$$

Tal como lo hace el programa X-11-ARIMA, aquí también se puede someter a prueba la presencia de un efecto de Pascua con un test F de Fisher.

Estimación de los efectos para un esquema aditivo

Para un esquema aditivo, la estimación de las correcciones es, naturalmente, la misma que la precedente:

	Esquema aditivo
Mes de marzo	$-\hat{b} \times X_i/2$
Mes de abril	$\hat{b} \times X_i/2$

De modo que, para un año en el cual Pascua acaece a horcajadas entre marzo-abril, la corrección será la mitad más débil que la corrección que es introducida en el caso de un año en el cual Pascua se festeja en el mes de marzo.

Estimación de los efectos para un esquema multiplicativo

En el caso de un esquema de composición multiplicativa, el programa impone una corrección suplementaria.

Para los años en los que Pascua acaece en el mes de abril —y sólo para esos años— designamos con AIA la media de los irregulares de abril $(I_{i,4})$ y con AIM la media de los irregulares de marzo $(I_{i,3})$.

Entonces, los efectos correctores aplicados están definidos así:

	Esquema multiplicativo
Mes de marzo	$1 - \hat{b} \times X_i / (2 \times AIM)$
Mes de abril	$1 + \hat{b} \times X_i / (2 \times AIA)$

En la presentación teórica del modelo hecha por LAKER [44, 45], se estima el efecto de Pascua con una estimación de la componente estacional-irregular. En consecuencia, tal como lo hemos visto anteriormente, LAKER admite que:

$$SI_{i,3} = \overline{SI}_{.3} - bX_i + \eta_i$$

 $SI_{i,4} = \overline{SI}_{.4} + bX_i + \xi_i$

o sea, haciendo la diferencia,

$$(SI_{i,4} - SI_{i,3}) = (\overline{SI}_{.4} - \overline{SI}_{.3}) + 2bX_i + \epsilon_i$$

en donde:

- $-SI_{i,3}$ y $SI_{i,4}$ designan los valores de la componente estacional-irregular para los meses de marzo y abril,
- − b es el efecto de Pascua,
- $-\overline{SI}_{.3}$ es la media teórica de la componente estacional-irregular para un mes de marzo «normal», es decir que no es afectado por un efecto de Pascua,
- et $\overline{SI}_{.4}$ es la media teórica de la componente estacional-irregular para un mes de abril «normal», es decir que no es afectado por un efecto de Pascua.

En esas condiciones, si $2\hat{b}$ es la estimación de las diferencias extraída del modelo, para el mes de marzo por ejemplo, tendremos (en el caso de un esquema multiplicativo):

$$SI_{i,3} \approx \overline{SI}_{.3} - \hat{b}X_i = \overline{SI}_{.3} \left(1 - \frac{\hat{b}X_i}{\overline{SI}_{.3}}\right)$$

o sea:

$$\overline{SI}_{.3} = \frac{SI_{i,3}}{\left(1 - \frac{\hat{b}X_i}{\overline{SI}_{.3}}\right)}$$

y entonces, la razón siguiente:

$$\left(1 - \frac{\hat{b}X_i}{\overline{SI}_{.3}}\right)$$

permite pasar de un valor de la componente estacional-irregular afectado por el efecto de Pascua, hacia un valor corregido de dicho efecto. Desgraciadamente, la cantidad $\overline{SI}_{.3}$ es desconocida. Laker propuso estimar esa cantidad con la media de los valores de la componente estacional-irregular de los meses de marzo de los años en los cuales Pascua acaece en abril (es decir, de los meses de marzo «normales»).

Se propuso seguir la misma idea para corregir los valores de la componente estacional-irregular de los meses de abril.

En nuestro caso, la estimación del efecto de Pascua se hace con las estimaciones de la componente estacional-irregular. Por eso, siguiendo la propuesta de LAKER, adoptamos el mismo principio de corrección, lo que nos lleva a las fórmulas del párrafo precedente.

En realidad, esta corrección puede —en nuestro ejemplo— ser considerada superflua. Efectivamente, es inútil estimarla puesto que se conoce la media teórica de lo irregular que, en nuestro caso, es igual a 1.

Ejemplo

Se pueden obtener los resultados de este ejemplo ejecutando las instrucciones siguientes en X-11-ARIMA:

```
DATA ipi 12 85 10;
.... (los datos) ....
```

Año	Fecha de Pascua	Z_i	$f(Z_i)$	$I_{i,3}$	$I_{i,4}$	Y_i
1986	30 marzo	8	1	0.99099	1.06850	0.07751
1987	19 abril	28	0	1.00837	0.99721	-0.01116
1988	3 abril	12	0	1.00020	0.99587	-0.00433
1989	26 marzo	4	1	0.97009	1.02498	0.05489
1990	15 abril	24	0	1.00315	0.99900	-0.00415
1991	31 marzo	9	0.5	0.99502	1.00659	0.01156
1992	19 abril	28	0	1.00018	1.00294	0.00276
1993	11 abril	20	0	1.00691	0.97966	-0.02726
1994	3 abril	12	0	0.99280	0.99774	0.00494

Tabla 5.169: Efecto de Pascua, datos del modelo a efecto puntual corregido.

```
TITLE ipi;
RANGE 12 85 10 95 3;
SA (ipi, 0 ,1) TDR 2 EASTER 1 CHART 1 PRTDEC 3 PRINT 5;
END;
```

Los datos son los mismos que los del ejemplo presentado en la Sección §5.2.1. Sólo cambia la función $f(Z_i)$ para el año 1991, en el cual el Domingo de Pascua fue el 31 de marzo, o sea que ese año el fin de semana pascual se produjo a horcajadas entre marzo y abril (cf. Tabla 5.169).

Se obtiene así:

$$r = \frac{N_M + 0.5 \times N_{MA}}{N}$$

$$= \frac{2 + 0.5 \times 1}{9}$$

$$= 0.27778$$

$$\hat{b} = 2 \times \frac{YM + 0.5 \times YMA - r \times YT}{2 \times N \times r \times (1 - r) - 0.5 \times N_{MA}}$$

$$= 2 \times \frac{0.13240 + 0.5 \times 0.01156 - 0.27778 \times 0.104762}{2 \times 9 \times 0.27778 \times (1 - 0.27778) - 0.5 \times 1}$$

$$= 0.07012$$

En la Tabla 5.170 se presentan los resultados del análisis de la varianza y del test de Fisher asociados a esta regresión. En consecuencia, se considera que el efecto de Pascua es significativo.

	Suma de Cuadrados	g.d.l.	Media de Cuadrados	F	PROB>F
Efecto de Pascua	0.0076	1	0.0076	43.8393	0.0003
Error	0.0012	7	0.0002		
Total	0.0089				

Tabla 5.170: Efecto de Pascua, Test F para el modelo a efecto puntual corregido.

Puesto que en nuestro ejemplo adoptamos un esquema multiplicativo, para calcular los coeficientes correctores se necesita conocer las medias de los irregulares de los años para los cuales Pascua acaece en el mes de abril.

Se obtiene:

$$AIM = \frac{1.00837 + 1.00020 + 1.00315 + 1.00018 + 1.00691 + 0.99280}{6}$$

$$= 1.001935,$$

$$AIA = \frac{0.99721 + 0.99587 + 0.99900 + 1.00294 + 0.97966 + 0.99774}{6}$$

$$= 0.995403.$$

Los efectos correctores que se aplican son los siguientes:

	Pascua en el mes de marzo
Mes de marzo	$1 - \hat{b}/(2 \times AIM) = 0.9650$
Mes de abril	$1 + \hat{b}/(2 \times AIA) = 1.0352$

	Pascua a horcajadas en marzo-abril
Mes de marzo	$1 - 0.5 \times \hat{b}/(2 \times AIM) = 0.9825$
Mes de abril	$1 - 0.5 \times \hat{b}/(2 \times AIA) = 1.0176$

Lo que, con el programa X-11-ARIMA, conduce a la Tabla A11 (cf. Tabla 5.171).

Año	Marzo	Abril
1985		
1986	96.501	103.522
1987	100.000	100.000
1988	100.000	100.000
1989	96.501	103.522
1990	100.000	100.000
1991	98.250	101.761
1992	100.000	100.000
1993	100.000	100.000
1994	100.000	100.000
1995	100.000	

Tabla 5.171: **A11**: Efecto de Pascua, modelo a *efecto puntual corregido* de X-11-ARIMA, valores para los meses de marzo y abril (para los otros meses: 100).

5.2.3 El modelo a efecto gradual

La fiesta pascual puede también tener un cierto efecto sobre los días que preceden la celebración de Pascua. Por ejemplo, como es habitual que en ese período se ofrezca y se consuma chocolate, o se ofrezcan flores, esos sectores económicos adaptan la producción para poder responder a la demanda que se produzca a medida que se acerca la fecha de Pascua.

Modelo y estimación de los efectos

En el modelo a *efecto gradual*, se admite que el efecto varía linealmente durante los *k* días (*k* puede tomar el valor 1 hasta 9) que preceden el Domingo de Pascua.

- Sean $I_{i,3}$ y $I_{i,4}$, $(i=1,\ldots,N)$, los valores de la componente irregular de los meses de marzo y abril de la Tabla D13 (*cf.* pág. 169) para los N años disponibles, y sean $Y_i = I_{i,4} I_{i,3}$ sus diferencias.
- Sea Z_i el número de días entre el Domingo de Pascua del año i y el 22 de marzo (que es la fecha más precoz para esta fiesta) y sea $X_i = f(Z_i)$ la función definida de la siguiente manera:

$$X_i = f(Z_i) = \left\{ \begin{array}{ll} 1 & \text{si} \quad Z_i \leq 9 \\ \frac{k+9-Z_i}{k} & \text{si} \quad 9 < Z_i < k+9 \\ 0 & \text{si} \quad Z_i \geq 9+k \end{array} \right. \quad \text{(Pascua en marzo)}$$
 (Pascua en abril, antes del día k) (Pascua en abril, el día k o después)

El efecto de Pascua es estimado así, con los mínimos cuadrados habituales, mediante el siguiente modelo: $Y_i = a + bX_i + \epsilon_i$. No se utilizan en ese modelo los datos de los años en los cuales Pascua acaece entre el 1° y el k del mes de abril.

Se puede calcular explícitamente el valor \hat{b} , utilizando los resultados del modelo a *efecto puntual* estimado sobre los años para los cuales $X_i = f(Z_i) = 0$ (o bien $X_i = f(Z_i) = 1$). Ese modelo se formula así:

- $-N_M$ y N_{LA} el número de años en los cuales Pascua acaece, respectivamente, en el mes de marzo y al «fin» del mes de abril,
- -YM e YLA la suma de los valores Y_i para los años en los cuales Pascua acaece, respectivamente, en el mes de marzo y al «fin» del mes de abril,

se obtiene entonces de inmediato que:

$$\hat{b} = \frac{YM}{N_M} - \frac{YLA}{N_{LA}} = \bar{Y}_M - \bar{Y}_{LA},$$

y

$$\hat{a} = \bar{Y}_{LA}$$
.

Se aplican ahora los siguientes coeficientes correctores:

	Esquema aditivo	Esquema multiplicativo
Mes de marzo	$-\hat{b} \times X_i/2$	$1 - \hat{b} \times X_i/2$
Mes de abril	$+\hat{b} \times X_i/2$	$1 + \hat{b} \times X_i/2$

Comentarios

Con el paquete X-11-ARIMA, el utilizador puede pedir que se elija automáticamente el valor «óptimo» de k, seleccionado entre los valores posibles, desde 1 hasta 9. En ese caso, el algoritmo selecciona el valor k que conduzca al más pequeño error cuadrático medio.

- El utilizador puede pedir que el programa excluya los valores atípicos antes de estimar el modelo. Esta opción concierne únicamente los valores de los años en los cuales Pascua acaece en el mes de abril. Generalmente, son muy pocos los años en los cuales Pascua se festeja en el mes de marzo, de modo que no se pueden identificar correctamente los valores atípicos para esos años.
 - 1. Se calcula la desviación estándar de los valores Y_i para los años en los cuales Pascua acaece el k de abril o después:

$$\sigma_{LA} = \left(\frac{1}{N_{LA} - 1} \sum_{i \in LA} (Y_i - \bar{Y}_{LA})^2\right)^{1/2}$$
 (5.1)

- 2. Y se excluyen los valores de esos años tales que: $|Y_i \bar{Y}_{LA}| > 2\sigma_{LA}$
- Ese modelo es muy similar al modelo Sceaster (cf. Sección §5.3.2) utilizado en X-12-ARIMA, con una pequeña diferencia: aquí la estimación se hace de otra manera.

Ejemplo

Supongamos por ejemplo que k=5. Los datos figuran a continuación, en la Tabla 5.172 (cf. pág. 204).

Se pueden obtener los resultados de este ejemplo ejecutando las instrucciones siguientes:

```
DATA ipi 12 85 10 ;
.... (los datos) ....
;
TITLE ipi;
RANGE 12 85 10 95 3 ;
SA (ipi, 0 ,1) TDR 2 EASTER 4 BUILDUP 5 EASTXM 0 CHART 1 PRTDEC 3 PRINT 5;
END;
```

Año	Fecha de Pascua	Z_i	$f(Z_i)$	$I_{i,3}$	$I_{i,4}$	Y_i
1986	30 marzo	8	1	0.99099	1.06850	0.07751
1987	19 abril	28	0	1.00837	0.99721	-0.01116
1988	3 abril	12	0.4	1.00020	0.99587	-0.00433
1989	26 marzo	4	1	0.97009	1.02498	0.05489
1990	15 abril	24	0	1.00315	0.99900	-0.00415
1991	31 marzo	9	1	0.99502	1.00659	0.01156
1992	19 abril	28	0	1.00018	1.00294	0.00276
1993	11 abril	20	0	1.00691	0.97966	-0.02726
1994	3 abril	12	0.4	0.99280	0.99774	0.00494

Tabla 5.172: Efecto de Pascua, datos del modelo a *efecto gradual* (k = 5).

Los años en los que Pascua acaece el 1°, el 2, el 3 o el 4 de abril están afectados con un peso diferente: 0 o 1. Es el caso de los años 1988 y 1994, en los cuales Pascua

fue el 3 de abril ($Z_i = 12$). Para esos años, el valor de X_i es:

$$X_i = f(Z_i) = \frac{k+9-Z_i}{k} = \frac{5+9-12}{5} = \frac{2}{5} = 0.4.$$

La regresión se hace sobre los datos para los cuales $X_i = f(Z_i) = 1$ (Pascua en el mes de marzo) o bien $X_i = f(Z_i) = 0$ (Pascua después del 4 de abril), o sea 7 años. Se obtiene:

$$\hat{b} = \frac{0.07751 + 0.05489 + 0.01156}{3} - \frac{-0.01116 - 0.00415 + 0.00276 - 0.02726}{4}$$
$$= 0.05794,$$

Además \hat{a} es igual a la media de las diferencias para los años en los cuales Pascua acaece después del 4 de abril. De modo que:

$$\hat{a} = \frac{-0.01116 - 0.00415 + 0.00276 - 0.02726}{4}$$
$$= -0.009953.$$

En la Tabla 5.173 se presentan los resultados del análisis de la varianza y del test F de Fischer asociados a esta regresión. En consecuencia, el efecto de Pascua es considerado significativo.

	Suma de Cuadrados	g.d.l.	Media de Cuadrados	F	PROB>F
Efecto de Pascua	0.0058	1	0.0058	10.4940	0.0230
Error	0.0027	5	0.0005		
Total	0.0085				

Tabla 5.173: Efecto de Pascua, Test F para el modelo a efecto gradual (k = 5).

Puesto que en nuestro ejemplo adoptamos un esquema multiplicativo, los coeficientes correctores correspondientes figuran en la tabla siguiente.

Pascua en el mes de marzo (86, 89, 91)

	1 ascua cii ci ilics de maizo (60, 67, 71)
Mes de marzo	$1 - \hat{b}/2 = 0.9710$
Mes de abril	$1 + \hat{b}/2 = 1.0289$
	Pascua el 3 de abril (88, 94)
Mes de marzo	$1 - 0.4 \times \hat{b}/2 = 0.9884$
Mes de abril	$1 + 0.4 \times \hat{b}/2 = 1.0116$

Para un valor de k igual a 5, se obtiene así la Tabla A11 (cf. Tabla 5.174, pág. 206). Los valores estimados para las diferencias \hat{Y}_i son ahora los datos de $\hat{Y}_i = \hat{a} + \hat{b} \times X_i$. Se puede así evaluar los errores de previsión para los años en los cuales Pascua

Año	Marzo	Abril
1985		
1986	97.103	102.897
1987	100.000	100.000
1988	98.841	101.159
1989	97.103	102.897
1990	100.000	100.000
1991	97.103	102.897
1992	100.000	100.000
1993	100.000	100.000
1994	98.841	101.159
1995	100.000	

Tabla 5.174: A11: Efecto de Pascua, modelo a *efecto gradual* de X-11-ARIMA, k=5, valores para los meses de marzo o abril (para los otros meses: 100).

acaece en el mes de abril. En la Tabla 5.175 se presentan estos errores. Para k=5, la media de los cuadrados de esos errores es igual a 0.0001455.

Año	Y_i	$X_i = f(Z_i)$	$\hat{b}X_i$	$\hat{Y}_i = \hat{a} + \hat{b}X_i$	$Y_i - \hat{Y}_i$
1987	-0.01116	0	0	-0.00995	-0.001206
1988	-0.00433	0.4	0.02318	0.01322	-0.017553
1990	-0.00415	0	0	-0.00995	0.005800
1992	0.00276	0	0	-0.00995	0.012709
1993	-0.02726	0	0	-0.00995	-0.017303
1994	0.00494	0.4	0.02318	0.01322	-0.008284

Tabla 5.175: Efecto de Pascua, modelo a efecto gradual, k = 5, errores de previsión.

Selección óptima de la duración k

Si se solicita que el programa elija el valor k óptimo, éste adopta el criterio del error cuadrático y selecciona el valor de k que minimice esa cantidad.

En nuestro ejemplo, serían elegidos los valores que figuran en la Tabla 5.176 (cf. pág. 207). Para k=4 se obtiene el valor mínimo.

Para k igual a 1, 2 o 3, las funciones $X_i = f(Z_i)$, para los años que nos interesan (1986 hasta 1994), serán iguales y los resultados de las regresiones serán idénticos. Es por eso que los 3 primeros errores cuadráticos son idénticos.

Se toma en cuenta los valores atípicos

Como vimos precedentemente, $\hat{a}=\bar{Y}_{LA}=-0.009953$ y la desviación estándar de los valores $\left|Y_i-\bar{Y}_{LA}\right|$ de la Tabla 5.177 (cf. pág. 207) se calculan, para los años en los que Pascua acaece el 5 de abril o después (i.e. k=5), utilizando la fórmula (5.1) (cf. pág. 204):

$$\sigma_{LA} = \left(\frac{1}{4-1} \left[0.0008922 - 4 \times (-0.009953)^2\right]\right)^{1/2}$$

$$= 0.01286$$

De modo que ningún valor Y_i se aleja de la media, en valor absoluto, en más de

k	1	2	3	4	5	6	7	8	9
Error	0.01132	0.01132	0.01132	0.00958	0.01455	0.02065	0.02639	0.03144	0.03581

Tabla 5.176: Efecto de Pascua, modelo a *efecto gradual*, errores cuadráticos para diversos valores de k ($\times 100$).

Y_i	$f(Z_i)$	Y_i^2	$ Y_i - \bar{Y}_{LA} $
-0.011159	0	0.0001245	0.0012063
-0.004152	0	0.0000172	0.0058004
0.002757	0	0.0000076	0.0127093
-0.027256	0	0.0007429	0.0173034
$\bar{Y}_{LA} = -0.00995$	3	$\sum Y_i^2 = 0.000892$	22

Tabla 5.177: Efecto de Pascua, modelo a *efecto gradual*, detección de los valores atípicos.

2 desviaciones estándar (o sea $0.0257)\ y$ entonces no se excluye ningún punto de la regresión.

5.3 Los modelos de X-12-ARIMA

X-12-ARIMA propone algunos modelos de corrección del efecto de Pascua que son diferentes de los que están incluidos en X-11-ARIMA. Los modelos *Sceaster* y *Easter* evalúan el efecto de Pascua con las estimaciones de la componente irregular de las Tablas B13 y C13. Sólo el modelo de *Bateman-Mayes* [4] emplea los datos de la Tabla D13.

El modelo *Sceaster* es muy parecido al modelo a *efecto gradual* que es disponible en X-11-ARIMA y que fue discutido anteriormente (*cf.* Sección §5.2.3). El modelo *Sceaster* —como los modelos de X-11-ARIMA— considera normal la situación en la cual Pascua acaece en el mes de abril y sólo corrige los datos de los años en los que Pascua afecta el mes de marzo. No es lo que hace el modelo *Easter* ni el modelo de *Bateman-Mayes*, los cuales —como lo veremos a continuación— corrigen los datos de los meses de marzo, de abril y de febrero (eventualmente).

5.3.1 El modelo de Bateman-Mayes

El modelo de *Bateman-Mayes* se utiliza únicamente en el caso de un esquema de composición multiplicativa.

Modelo y estimación

El efecto de Pascua se estima en las siguientes etapas, con los valores de la componente irregular de la Tabla D13 (cf. pág. 169), para los meses de marzo y abril:

– Sean $I_{i,3}$ y $I_{i,4}$, $(i=1,\ldots,N)$, los valores de la componente irregular de la Tabla D13 para los N años disponibles. Se transforman los valores de los meses de abril utilizando las variables $2-I_{i,4}$ y $I_{i,3}$.

- Sea k el número de días que separa el Domingo de Pascua del 22 de marzo, para un año dado.
- Los años se reparten en 4 grupos definidos en función de k:

 $G_1: 0 \le k \le 10$ desde el 22 de marzo hasta el 1º de abril.

 $G_2: 11 \leq k \leq 17 \;\;$ desde el 2 de abril hasta el 8 de abril.

 $G_3: 18 \le k \le 24$ desde el 9 de abril hasta el 15 de abril.

 $G_4: 25 < k < 34$ desde el 16 de abril hasta el 25 de abril.

En cada grupo, se calculan ahora las medias «truncadas» del conjunto de valores $2-I_{i.4}$ y $I_{i.3}$:

- La media «truncada» m_1 es la media de los valores del grupo G_1 ; Es calculada eliminando los valores que se alejan de la media simple del grupo en más de dos desviaciones estándar. La media «truncada» m_4 , para el grupo G_4 , es calculada de la misma manera.
- Las medias «truncadas» m_2 y m_3 se calculan en varias etapas:
 - 1. Sean: \bar{m}_2 y \bar{m}_3 , las medias simples de los grupos G_2 y G_3 .
 - Los coeficientes preliminares $E_t(k)$ de corrección del efecto de Pascua para el mes de marzo, que corresponden a cada observación t, son calculados así:

$$E_t(k) = \begin{cases} m_1 + \frac{(\bar{m}_2 - m_1)(k - 10)}{4} & \text{si } 11 \le k \le 14\\ \bar{m}_2 + \frac{(\bar{m}_3 - \bar{m}_2)(k - 14)}{7} & \text{si } 15 \le k \le 20\\ \bar{m}_3 + \frac{(m_4 - \bar{m}_3)(k - 21)}{4} & \text{si } 21 \le k \le 24. \end{cases}$$

- El factor preliminar de corrección para el mes de abril (observación t+1) es deducido de allí con $E_{t+1}(k) = 2 E_t(k)$.
- 2. Se calculan los errores cuadráticos medios de los coeficientes correctores preliminares para 11 < k < 17 y para 18 < k < 24.
- Las medias «truncadas» m_2 y m_3 son las medias de los valores de los grupos G_2 y G_3 que no se alejan más de dos desviaciones estándar de los valores de los factores preliminares que les fueron afectados.
- De modo que el efecto de Pascua para un mes de marzo se calcula así:

$$E_t(k) = \begin{cases} m_1 & \text{si } 0 \le k \le 10\\ m_1 + \frac{(m_2 - m_1)(k - 10)}{4} & \text{si } 11 \le k \le 14\\ m_2 + \frac{(m_3 - m_2)(k - 14)}{7} & \text{si } 15 \le k \le 20\\ m_3 + \frac{(m_4 - m_3)(k - 21)}{4} & \text{si } 21 \le k \le 24\\ m_4 & \text{si } 25 \le k \le 34 \end{cases}$$

Para el mes de abril t+1, tendremos $E_{t+1}(k)=2-E_t(k)$, y para los otros meses, el coeficiente corrector será igual a 1.

La función que asocia k al efecto de Pascua para un mes de marzo es, entonces, una función lineal por intervalos.

 Esos coeficientes correctores deben luego ser ajustados, para tener en cuenta la estacionalidad de Pascua, puesto que algunas fechas son más frecuentes que otras (cf. Figura 5.1, pág. 193). Para eso, se calcula la cantidad:

$$\bar{E} = \sum_{k=0}^{34} w(k) E_t(k),$$

en donde w(k) es la proporción de años en los cuales Pascua acaece el $k^{\rm ésimo}$ día después del 22 de marzo. A continuación, en la Tabla 5.178 se presentan los valores de w(k), calculados sobre el período 1583-1982, que son utilizados por X-12-ARIMA.

k	0	1	2	3	4	5	6
w(k)	0.0100	0.0150	0.0050	0.0175	0.0300	0.0325	0.0250
k	7	8	9	10	11	12	13
w(k)	0.0300	0.0300	0.0400	0.0375	0.0350	0.0250	0.0275
k	14	15	16	17	18	19	20
w(k)	0.0425	0.0425	0.0275	0.0300	0.0225	0.0400	0.0425
k	21	22	23	24	25	26	27
w(k)	0.0325	0.0300	0.0350	0.0300	0.0425	0.0375	0.0350
k	28	29	30	31	32	33	34
w(k)	0.0300	0.0250	0.0350	0.0300	0.0100	0.0100	0.0100

Tabla 5.178: Efecto de Pascua, proporción de años en los cuales Pascua acaece el $k^{\rm \acute{e}simo}$ día después del 22 de marzo; calculados sobre el período 1583-1982.

Las estimaciones finales de los coeficientes correctores del efecto de Pascua son entonces las siguientes:

$$\tilde{E}_t(k) = \left\{ \begin{array}{ll} E_t(k)/\bar{E} & \text{si t es un mes de marzo} \\ E_t(k)/(2-\bar{E}) & \text{si t es un mes de abril} \\ 1 & \text{en el caso contrario.} \end{array} \right.$$

Ejemplo

Se pueden obtener los resultados de este ejemplo, ejecutando las siguientes instrucciones:

Los datos brutos (Tabla D13) y los datos transformados, figuran en la Tabla 5.179. Por ejemplo, el dato transformado para el mes de abril de 1987 es calculado así:

ABR87	= 2 -	-0.99721	= 1	.00279

	Datos bru	tos	Dato	s transforn	nados
Año	Marzo	Abril	k	Marzo	Abril
1986	99.099	106.850	8 (G1)	0.99099	0.93150
1987	100.837	99.721	28 (G4)	1.00837	1.00279
1988	100.020	99.587	12 (G2)	1.00020	1.00413
1989	97.009	102.498	4 (G1)	0.97009	0.97502
1990	100.315	99.900	24 (G3)	1.00315	1.00100
1991	99.502	100.659	9 (G1)	0.99502	0.99341
1992	100.018	100.294	28 (G4)	1.00018	0.99706
1993	100.691	97.966	20 (G3)	1.00691	1.02034
1994	99.280	99.774	12 (G2)	0.99280	1.00226
1995	100.038		25 (G4)	1.00038	

Tabla 5.179: Efecto de Pascua, datos para el modelo de *Bateman-Mayes*. Se deducen los subconjuntos G_1, G_2, G_3 y G_4 de los valores k:

$$\begin{array}{rcl} G_1 &=& \{1986,1989,1991\}, \\ G_2 &=& \{1988,1994\}, \\ G_3 &=& \{1990,1993\}, \\ G_4 &=& \{1987,1992,1995\}. \end{array}$$

Esos grupos también están señalados en la Tabla 5.179.

Cálculo de m_1 .

Los datos de G_1 son los siguientes:

k	marzo	abril
8	0.99099	0.93150
4	0.97009	0.97502
9	0.99502	0.99341

La media \bar{m}_1 y la desviación estándar σ_1 de esos seis valores son: $\bar{m}_1 = 0.97601$ y $\sigma_1 = 0.02201$. La matriz de diferencias absolutas a \bar{m}_1 es:

marzo	abril
0.01498	0.04451
0.00591	0.00098
0.01902	0.01741

Sólo el primer valor de abril (0.93150) se aleja en más de dos desviaciones estándar de la media \bar{m}_1 (desvío de 0.04451). En consecuencia, debe ser eliminada del

cálculo final. Se obtiene así:

$$m_1 = \frac{0.99099 + 0.97009 + 0.97502 + 0.99502 + 0.99341}{5}$$

= 0.98491.

Cálculo de m_4 .

Los datos para G_4 son los siguientes:

k	marzo	abril
28	1.00837	1.00279
28	1.00018	0.99706
25	1.00038	•

La media \bar{m}_4 y la desviación estándar σ_4 de esos cinco valores son: $\bar{m}_4=1.00176$ y $\sigma_4=0.003774$. La matriz de diferencias absolutas a \bar{m}_4 es la siguiente:

_		
	marzo	abril
	0.00661	0.00103
	0.00158	0.00469
	0.00136	

Como aquí ningún punto fue considerado atípico, el valor de m_4 es 1.00176.

Cálculo de m_2 y de m_3 .

Los datos para G_2 y para G_3 son los siguientes:

G_2			G_3		
k	marzo	2-abril	k	marzo	2-abril
12	1.00020	1.00413	24	1.00315	1.00100
12	0.99280	1.00226	20	1.00691	1.02034

Las medias simples de esos dos grupos de 4 valores son $\bar{m}_2=0.99985$ y $\bar{m}_3=1.00785$. Las estimaciones preliminares de los efectos para los meses de marzo y de abril son las siguientes:

G_2			G_3			
	k	marzo	abril	k	marzo	abril
	12	0.99238	1.00762	24	1.00328	0.99672
	12	0.99238	1.00762	20	1.00671	0.99329

De modo que, para k = 12 (datos de G_2),

$$E_t(12) = m_1 + \frac{(\bar{m}_2 - m_1)(k - 10)}{4}$$

$$= 0.98491 + \frac{(0.99985 - 0.98491)(12 - 10)}{4}$$

$$= 0.99238$$

$$E_{t+1}(12) = 2 - 0.99238$$

$$= 1.00762.$$

Del mismo modo, para los datos de G3, tenemos:

$$E_t(20) = \bar{m}_2 + \frac{(\bar{m}_3 - \bar{m}_2)(k - 14)}{7}$$

$$= 0.99985 + \frac{(1.00785 - 0.99985)(20 - 14)}{7}$$

$$= 1.00671$$

$$E_{t+1}(20) = 2 - 1.00671$$

$$= 0.99329$$

У

$$E_t(24) = \bar{m}_3 + \frac{(m_4 - \bar{m}_3)(k - 21)}{4}$$

$$= 1.00785 + \frac{(1.00176 - 1.00785)(24 - 21)}{4}$$

$$= 1.00328$$

$$E_{t+1}(24) = 2 - 1.00328$$

$$= 0.99672.$$

Las matrices de los desvíos absolutos a las estimaciones preliminares de los efectos son las siguientes:

	G_2			G_3		
	k	marzo	abril	k	marzo	abril
1	12	0.00782	0.00349	24	0.00013	0.00428
_1	12	0.00043	0.00537	20	0.00020	0.02705

Se deducen de allí los errores cuadráticos medios. Para I_2 (11 $\leq k \leq$ 17):

$$EQM_2 = \left(\frac{1}{4} \left[(0.00782)^2 + (0.00349)^2 + (0.00043)^2 + (0.00537)^2 \right] \right)^{1/2}$$

= 0.00506.

Para I_3 (18 $\leq k \leq$ 24):

$$EQM_3 = \left(\frac{1}{4} \left[(0.00013)^2 + (0.00428)^2 + (0.00020)^2 + (0.02705)^2 \right] \right)^{1/2}$$

= 0.01369.

Como ningún punto es considerado atípico, las medias de cada grupo son las medias simples: $m_2=0.99985$ y $m_3=1.00785$.

Cálculo de los efectos de Pascua.

Esos efectos se calculan de la siguiente manera:

- Para los datos de G_1 , los efectos de marzo son iguales a m_1 (0.98491) y los de abril son iguales a $2-m_1$.
- Para los datos de G_4 , los efectos de marzo son iguales a m_4 (1.00176) y los de abril son iguales a $2-m_4$.
- Para los datos de G₂ y de G₃, los efectos son iguales a los afectos preliminares que fueron calculados precedentemente, puesto que no se detectó ningún valor atípico.

Se puede calcular los efectos de Pascua para todo valor de k, con las medias m_1, m_2, m_3 y m_4 . En la Figura 5.2 se presenta la curva de esos efectos.

Figura 5.2: Efecto de Pascua de *Bateman-Mayes* según la fecha de Pascua (desde el 22 de marzo hasta el 25 de abril).

Se puede entonces calcular el coeficiente de ajuste ligado a la distribución de las fechas de Pascua:

$$\bar{E} = \sum_{k=0}^{34} w(k) E_t(k) = 0.99717,$$

y los efectos corregidos que figuran en la tabla siguiente. Por ejemplo:

$$MAR86 = 98.491/0.99717 = 98.770$$

$$ABR86 = 101.5091/(2 - 0.99717) = 101.223.$$

Efecto de Pascua			Efecto de Pa	scua ajustado
Año	marzo	abril	marzo	abril
1986	98.491	101.509	98.770	101.223
1987	100.176	99.824	100.460	99.543
1988	99.238	100.762	99.519	100.478
1989	98.491	101.509	98.770	101.223
1990	100.328	99.672	100.613	99.391
1991	98.491	101.509	98.770	101.223
1992	100.176	99.824	100.460	99.543
1993	100.671	99.329	100.957	99.049
1994	99.238	100.762	99.519	100.478
1995	100.176	99.824	100.460	99.543

Lo que conduce al resultado final que se presenta en la Tabla H1 (*cf.* Tabla 5.180, pág. 214).

Año	Marzo	Abril
1985		
1986	98.770	101.223
1987	100.460	99.543
1988	99.519	100.478
1989	98.770	101.223
1990	100.613	99.391
1991	98.770	101.223
1992	100.460	99.543
1993	100.957	99.049
1994	99.519	100.478
1995	100.460	

Tabla 5.180: **H1**: Efecto de Pascua, modelo de *Bateman-Mayes* de X-12-ARIMA, valores de los meses de marzo y abril (para los otros meses: 100).

5.3.2 El modelo Sceaster

El modelo *Sceaster* forma parte del marco más general de la estimación de los efectos de calendario, que es propuesta por el método X-11 al fin de las Etapas B y C. Más precisamente, con las estimaciones de la componente irregular de las Tablas B13 y C13.

Modelo y estimación

Tal como en el modelo a *efecto gradual* de X-11-ARIMA (*cf.* Sección §5.2.3) se admite que la Fiesta de Pascua tiene un impacto sobre los w días $(1 \le w \le 24)$ que preceden el Domingo Pascual y se define el siguiente modelo:

$$I_{i,j} = a + bX_{i,j}(w) + \epsilon_{i,j},$$

siendo:

 $-I_{i,j}$ es el valor de lo irregular (de la Tabla B13 o de la Tabla C13) que corresponde al año i y al período (mes o trimestre) j.

- Para un año i dado, sea w_i el número de días —entre los w días antes de Pascua, incluyendo Pascua— que caen en el mes de marzo (o en el primer trimestre).

De modo que:

$$X_{i,j}(w) = \begin{cases} w_i/w & \text{para un mes de marzo o un } 1^{\text{er}} \text{ trimestre } (j=3 \text{ o } j=1) \\ -w_i/w & \text{para un mes de abril o un } 2^{\text{do}} \text{ trimestre } (j=4 \text{ o } j=2) \\ 0 & \text{en el caso contrario.} \end{cases}$$

Las restricciones impuestas a w $(1 \le w \le 24)$ hacen que no se anulen únicamente los valores de la regresión para marzo y abril (o las del primer y segundo trimestre)⁴. Se estiman los valores de a y de b con los mínimos cuadrados habituales.

Se pueden hacer varios comentarios en este estadio del cálculo.

- En primer lugar, si Pascua acaece en el mes de marzo, el valor asociado $X_{i,3}(w)$ es igual a 1. Igualmente, si Pascua acaece después del w de abril, el valor $X_{i,3}(w)$ es igual a 0. Generalizando, si se consideran los valores de la variable X para los meses de marzo, se obtiene $X_{i,3}(w) = f(Z_i)$, retomando la notación asociada a los modelos de X-11-ARIMA.
- Considerando que la variable explicativa tiene una forma simple, se puede dar una forma más explícita al estimador \hat{b} .

Los únicos valores no nulos de la variable X son los de los meses de marzo y abril, los cuales —además— son opuestos. Si admitimos que la serie de los valores $X_{i,j}$ no comienza en un mes de abril o que no se termina en marzo, a todo mes de marzo le corresponde un mes de abril y la suma de dos valores de la variable X de esos meses será nula. La media \bar{X} es también nula en ese caso y —en el caso general— será próxima de 0.

Si la serie estudiada tiene n observaciones, se puede escribir:

$$\hat{b} = \operatorname{Cov}(X, I) / \operatorname{Var}(X)$$

siendo:

$$Var(X) = \frac{1}{n} \sum_{i} \sum_{j} X_{i,j}^{2} - \bar{X}^{2} = \frac{1}{n} \sum_{i} \sum_{j} X_{i,j}^{2} = \frac{2}{n} \sum_{i} \left(\frac{w_{i}}{w}\right)^{2}$$

y

$$Cov(X, I) = \frac{1}{n} \sum_{i} \sum_{j} X_{i,j} I_{i,j} - \bar{X}\bar{I} = \frac{1}{n} \sum_{i} \frac{w_i}{w} (I_{i,3} - I_{i,4})$$

Vemos así que aparecen los valores de las diferencias, para cada año, de los irregulares de marzo y de abril.

– Por último, puesto que $\hat{a} = \bar{I} - \hat{b}\bar{X}$ y que la media \bar{X} es próxima de 0, \hat{a} es muy similar a \bar{I} , que es la media de la componente irregular (o sea próxima de la media teórica que es igual a 0 en un esquema aditivo, y a 1 en un esquema multiplicativo).

 $^{^4}$ En realidad, esto no es totalmente cierto puesto que en 2008 —por ejemplo— Pascua acaecerá el 23 de marzo y si w=24, se tendrá entonces un día en febrero.

Con $\hat{E}_{i,j} = a + \hat{b}X_{i,j}(w)$ se deduce el efecto de Pascua. Lo que permite asegurar que Pascua no tiene impacto fuera de los meses de marzo y abril.

El modelo que propone X-12-ARIMA se parece mucho al modelo a *efecto gradual* de X-11-ARIMA 5 y al modelo a *efecto puntual* para w=1. Pero aquí se hace la estimación del modelo de regresión utilizando todos los años disponibles y no solamente los años en los cuales Pascua acaece en marzo o después del w de abril. Por otra parte, en X-12-ARIMA, la estimación se hace la primera vez con los datos de la Tabla B13 y la segunda vez con los datos de la Tabla C13.

Por último, debemos recordar que —en esta etapa del tratamiento— X-12-ARIMA permite también buscar otros efectos de calendario en la componente irregular.

Ejemplo

Si se emplea ese modelo en X-12-ARIMA, la estimación se hace la primera vez con los datos de la Tabla B13 y la segunda vez con los datos de la Tabla C13.

Se pueden obtener los resultados de este ejemplo, ejecutando las siguientes instrucciones:

Los valores de la variable explicada *I* son aquí los 114 valores de la Tabla B13 (divididos por 100). Se emplean los datos de la Tabla 4.50 (*cf.* pág. 92).

Si admitimos por ejemplo que w=5, se obtienen los valores de la variable X (siempre nulos, salvo para los meses de marzo y de abril) que se presentan en la Tabla 5.181 (cf. pág. 217).

De modo que, para 1988, 2 días de los 5 anteriores a Pascua (incluyendo el día de Pascua), eran días del mes de marzo (el 30 y el 31). En consecuencia, la variable explicativa X es igual a: 2/5 = 0.4, en marzo de 1988; -2/5 = -0.4, en abril de 1988; y es igual a 0 para los otros meses de 1988.

Se obtiene $\bar{Y}=0.9999$ y $\bar{X}=0$, lo que hace que $\hat{a}=\bar{Y}-\hat{b}\bar{X}=0.9999$. Además:

$$Var(X) = \frac{2}{n} \sum_{i} \left(\frac{w_i}{w}\right)^2$$

$$= \frac{2}{114} \left(1 + 0.4^2 + 1 + 1 + 0.4^2\right)$$

$$= 2 \times 3.32/114,$$

⁵Es por eso que en X-12-ARIMA se hace referencia a esta modelización con la expresión Sceaster, en la cual las letras SC significan «Statistique Canada».

Año	Pascua	5 días antes	Número de días en marzo (w_i)	$X_{i,3}$	$X_{i,4}$
1985	7 de abril	3 de abril	0	0	0
1986	30 de marzo	26 de marzo	5	1	-1
1987	19 de abril	15 de abril	0	0	0
1988	3 de abril	30 de marzo	2	0.4	-0.4
1989	26 de marzo	22 de marzo	5	1	-1
1990	15 de abril	11 de abril	0	0	0
1991	31 de marzo	27 de marzo	5	1	-1
1992	19 de abril	15 de abril	0	0	0
1993	11 de abril	7 de abril	0	0	0
1994	3 de abril	30 de marzo	2	0.4	-0.4
1995	16 de abril	12 de abril	0	0	0

Tabla 5.181: Efecto de Pascua, datos del modelo *Sceaster*. $X_{i,j}=0$ si $j\neq 3$ o 4. y también:

$$Cov(X, I) = \frac{1}{n} \sum_{i} \frac{w_{i}}{w} (I_{i,3} - I_{i,4})$$

$$= \frac{1}{114} \frac{1}{100} [(95.390 - 107.358) + 0.4 \times (101.498 - 98.202)] + \frac{1}{114} \frac{1}{100} [(98.753 - 99.913) + (97.167 - 101.999)] + \frac{1}{114} \frac{1}{100} [0.4 \times (100.309 - 98.327)]$$

$$= \frac{-0.15849}{114},$$

y entonces $\hat{b} = -0.15849/6.64 = -0.02387$.

El efecto de Pascua es estimado así: $\hat{E}_{i,j}=1+\hat{b}X_{i,j}(w)=1-0.02387\times X_{i,j}(w)$, lo que conduce a la Tabla B16H (cf. Tabla 5.183, pág. 218). Siendo, por ejemplo, para el mes de marzo de 1988:

$$\hat{E}_{1988.3} = 1 - 0.02387 \times 0.4 = 0.99045.$$

Los resultados del análisis de la varianza y del test F de Fisher asociados a esta regresión son parcialmente editados por X-12-ARIMA, y se los presenta en la Tabla 5.182. El efecto de Pascua es considerado significativo al nivel del 1%.

5.3.3 El modelo Easter

Como el modelo precedente, el modelo *easter* forma parte también del marco más general de la estimación de los efectos de calendario que es propuesta por el método X-11, al fin de las Etapas B y C. Más precisamente, con las estimaciones de la componente irregular de las Tablas B13 y C13.

	Coeficiente	Desviación estándar	T	Prob > t
Constante	0.99989	0.00183	547.89	0.000
Sceaster[5]	-0.02387	0.00756	-3.16	0.001

	Suma de Cuadrados	g.d.l.	Media de Cuadrados	F	Prob > F
Efecto de Pascua	0.0038	1	0.0038	9.9642	0.0021
Error	0.0425	112	0.0004		
Total	0.0463	113			

Tabla 5.182: Efecto de Pascua (resultados de la regresión para el modelo Sceaster (k = 5)).

Año	Marzo	Abril
1985		
1986	97.613	102.387
1987	100.000	100.000
1988	99.045	100.955
1989	97.613	102.387
1990	100.000	100.000
1991	97.613	102.387
1992	100.000	100.000
1993	100.000	100.000
1994	99.045	100.955
1995	100.000	

Tabla 5.183: **B16H**: Estimaciones provisorias del efecto de Pascua con el modelo *Sceaster* de X-12-ARIMA. (Valores de los meses de marzo y de abril, para los otros meses: 100).

Modelo y estimación

Se admite aquí que la Fiesta de Pascua tiene todavía un impacto sobre los w días $(1 \le w \le 25)$ anteriores al Domingo Pascual y se formula el siguiente modelo:

$$I_{i,j} = a + bX_{i,j}(w) + \epsilon_{i,j}$$

en el cual:

- $-I_{i,j}$ es el valor de lo irregular (de la Tabla B13 o de la Tabla C13), que corresponde al año i y al período (mes o trimestre) j.
- Para un año dado, sea $w_{i,j}$ el número de días, entre los w días antes de Pascua (incluyendo el Domingo de Pascua), que acaecen en el mes j (o en el trimestre). Se define en primer lugar, la variable $Z_{i,j}(w) = w_{i,j}/w$. Considerando las restricciones definidas sobre w, esa variable es nula, salvo para los meses de febrero, de marzo y de abril. En cambio, esa variable posee una cierta estacionalidad: los valores que conciernen el mes de febrero, por ejemplo, serán estructuralmente más bajos. La variable $X_{i,j}(w)$ se obtiene retirando a $Z_{i,j}(w)$ la media $\bar{Z}_{i,j}(w)$ que corresponde al mes j y que es calculada sobre los años disponibles. Se obtiene así: $X_{i,j}(w) = w_{i,j}/w \bar{Z}_{i,j}(w)$. De esta manera se puede conservar el nivel de la serie, anulando el efecto de Pascua sobre los meses concernidos. En consecuencia, la variable explicativa es de media nula y sin estacionalidad.

En lugar de $\bar{Z}_{.,j}(w)$ se puede utilizar una media a largo plazo, calculada sobre el período 1583-1982 (cf. Sección §5.3.1).

Las restricciones definidas sobre el valor de w $(1 \le w \le 25)$ hacen que sólo puedan ser corregidos los meses de febrero, de marzo y de abril. Tal como fue hecho precedentemente, los valores de a y b son estimados con los mínimos cuadrados habituales y el efecto de Pascua se deduce con: $\hat{E}_{i,j} = a + \hat{b}X_{i,j}(w)$.

Ejemplo

Si se emplea ese modelo en X-12-ARIMA, la estimación se hace la primera vez con los datos de la Tabla B13 y luego, la segunda vez, con los datos de la Tabla C13.

Se pueden obtener los resultados de este ejemplo, ejecutando las siguientes instrucciones:

Los valores de la variable explicada *I* son aquí los 114 valores de la Tabla B13 (divididos por 100). Se emplean los datos que figuran en la Tabla 4.50 (*cf.* pág. 92).

Si admitimos, por ejemplo, que w=5, se obtienen los valores de la variable Z (que es aquí siempre nula, salvo para los meses de marzo y de abril) que figuran en la Tabla 5.184 siguiente.

Año	Pascua	5 días antes	# de los días en marzo $(w_{i,3})$	# de los días en abril $(w_{i,4})$	$Z_{i,3}$	$Z_{i,4}$	$X_{i,3}$	$X_{i,4}$
1985	7 de abril	2 de abril	0	5	0	1		
1986	30 de marzo	25 de marzo	5	0	1	0	0.6182	-0.6182
1987	19 de abril	14 de abril	0	5	0	1	-0.3818	0.3818
1988	3 de abril	29 marzo	3	2	0.6	0.4	0.2182	-0.2182
1989	26 de marzo	21 de marzo	5	0	1	0	0.6182	-0.6182
1990	15 de abril	10 de abril	0	5	0	1	-0.3818	0.3818
1991	31 de marzo	26 de marzo	5	0	1	0	0.6182	-0.6182
1992	19 de abril	14 de abril	0	5	0	1	-0.3818	0.3818
1993	11 de abril	6 de abril	0	5	0	1	-0.3818	0.3818
1994	3 de abril	29 de marzo	3	2	0.6	0.4	0.2182	-0.2182
1995	16 de abril	11 de abril	0	0	0	1	-0.3818	

Tabla 5.184: Efecto de Pascua (datos del modelo *Easter*. $Z_{i,j}$ y $X_{i,j}$ son nulos si $j \neq 3$ o 4).

De modo que, en 1988, en el período de 5 días antes de Pascua, había 3 días en marzo (el 29, 30 y 31) y 2 días en abril (el 1 y el 2).

Las medias de $Z_{i,3}$ y $Z_{i,4}$ son las siguientes:

$$\bar{Z}_{.,3} = (1 + 0.6 + 1 + 1 + 0.6)/11 = 0.38182$$

 $\bar{Z}_{.,4} = (1 + 1 + 0.4 + 1 + 1 + 1 + 0.4 + 1)/11 = 0.61818.$

Corrigiendo la variable Z de esas medias mensuales, se obtiene la variable explicativa X (cf. Tabla 5.184).

En el caso más general, los valores de regresión para los meses de febrero, marzo y abril pueden no ser nulos y el cálculo de la estimación de b puede hacerse relativamente complejo. Como en el caso precedente, se puede percibir aquí que ese cálculo hace intervenir únicamente las diferencias entre los valores de lo irregular de los meses de marzo y abril. Utilizando los MCO (mínimos cuadrados habituales), se obtiene $\hat{a}=0.99980$ y $\hat{b}=-0.02639$.

El efecto de Pascua es estimado así con $\hat{E}_{i,j}=1-0.02639\times X_{i,j}(w)$, lo que conduce a la Tabla B16H (cf. Tabla 5.186, pág. 221). Por ejemplo, para el mes de marzo de 1988 se obtiene:

$$\hat{E}_{1988,3} = 1 - 0.02639 \times 0.2182 = 0.99424.$$

Los resultados del análisis de la varianza y del test F de Fisher, asociados a esta regresión son parcialmente editados por X-12-ARIMA. Esos resultados figuran en la Tabla 5.185 (cf. Tabla 5.185, pág. 221). En consecuencia, el efecto de Pascua es considerado significativo al nivel del 1%.

	Coeficientes	Desviación estándar	T	Prob > t
Constante	0.99980	0.00185	540.55	0.000
easter[5]	-0.02639	0.01014	-2.60	0.005

	Suma de Cuadrados	g.d.l.	Media de Cuadrados	F	Prob > F
Efecto de Pascua	0.0026	1	0.0026	6.7772	0.0105
Error	0.0437	112	0.0004		
Total	0.0463	113			

Tabla 5.185: Efecto de Pascua (resultados de la regresión para el modelo Easter(k=5)).

Año	Marzo	Abril
1985		
1986	98.369	101.631
1987	101.008	98.992
1988	99.424	100.576
1989	98.369	101.631
1990	101.008	98.992
1991	98.369	101.631
1992	101.008	98.992
1993	101.008	98.992
1994	99.424	100.576
1995	101.008	•

Tabla 5.186: **B16H**: Estimaciones provisorias del efecto de Pascua con el modelo *Easter* de X-12-ARIMA. (Valores de los meses de marzo y abril, para los otros meses: 100).

222

Bibliografía

- [1] AKAIKE, H. (1980), Seasonal Adjustment by a Bayesian Modeling, *Journal of Time Series Analysis*, 1, 1-13.
- [2] ARMATTE, M. (1992), Conjonctions, conjoncture et conjecture. Les baromètres économiques (1885-1930), *Histoire et Mesure*, 7, 99-149.
- [3] BARTLETT, M. S. (1950), Periodogram Analysis and Continuous Spectra, *Biometrika*, 35, 1-16.
- [4] BATEMAN, D.V. y MAYES, F. (1970), Holiday Adjustment of Retail Sales, Unpublished memorandum, *US Bureau of the Census*, US Department of Commerce.
- [5] BAXTER, M. A. (1994), A Guide to Interpreting X-11-ARIMA/88 Diagnostics, Unpublished Memorandum, *Central Statistical Office*, United Kingdom.
- [6] Bell, W.R. y Hillmer, S.C. (1984), Issues Involved With the Seasonal Adjustment of Economic Time Series, *Journal of Business and Economic Statistics*, 2, 291-394.
- [7] BOURNAY, J. y LAROQUE, G. (1979), Réflexions sur la méthode d'élaboration des comptes trimestriels, *Annales de lÍNSEE*, *36*.
- [8] BOX, G. E. P. y JENKINS, G. M. (1970), *Time Series Analysis: Forecasting and Control*, San Francisco: Holden Day.
- [9] BURMAN, J. P. (1980), Seasonal Adjustment by Signal Extraction, *Journal of the Royal Statistical Society, Series A*, 143, 321-337.
- [10] BUYS-BALLOT, C. (1847), Les changements périodiques de température, Utrecht: Kemink et Fils.
- [11] CHOLETTE, P. A. (1981), A Comparison and Assessment of Various Adjustment Methods of Sub-Annual Series to Yearly Benchmarks, Working paper, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [12] CHOLETTE, P. A. (1981), A Comparison of Various tendance-cycle Estimators, *Time Series Analysis, O.D. Anderson & M.R. Perryman Editors*, Amsterdam: North-Holland.

[13] CHOLETTE, P. A. y DAGUM, E. B. (1994), Benchmarking Time Series with Autocorrelated Survey Errors, *International Statistical Review*, 62, 365-377.

- [14] CLEVELAND, W. S. (1979), Robust Locally Weighted Regression and Smoothing Scatterplots, *Journal of The American Statistical Association*, 74, 829-836.
- [15] CLEVELAND, R. B., CLEVELAND, W. S., MCRAE J.E. y TERPENNING, I. (1990), STL a Seasonal-tendance Decomposition Procedure Based on Loess, *Journal of Official Statistics*, 6, 3-73.
- [16] COOLEY, J.W. y TUKEY, J.W. (1965), An Algorithm for the Machine Calculation of Complex Fourier Series, *Mathematics of Computation*, 19, 297-301.
- [17] COURNOT, (1838), Recherches sur les principes mathématiques de la théorie des richesses, Librairie philosophique J. Vrin, ed. de 1980, Paris.
- [18] DAGUM, E. B. (1975), Seasonal Factor Forecasts from ARIMA Models, *Proceedings of the International Institute of Statistics*, 40th Session, Contributed Papers, 3, Warsaw, 206-219.
- [19] DAGUM, E. B. (1980), The X-11-ARIMA Seasonal Adjustment Method, *Statistique Canada*, Catalogue 12-564E.
- [20] DAGUM, E. B. (1988), The X-11-ARIMA/88 Seasonal Adjustment Method, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [21] DOHERTY, M. (1992), The Surrogate Henderson Filters in X-11, Technical Report, *Department of Statistics*, Wellington, New Zealand.
- [22] FINDLEY, D. F., MONSELL, B. C., BELL, W. R., OTTO, M. C. y CHEN, B. (1998), New Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program, *Journal of Business and Economic Statistics*, 16, 127-177.
- [23] FISHER, A. (1937), A Brief Note on Seasonal Variation, *Journal of Accountancy*, 64, 54-59.
- [24] FOURIER, J.B. (1822), *Théorie analytique de la chaleur*, Ed. Jacques Gabay, ed. de 1988, Paris.
- [25] GARDNER, M. (1981) Mathematical Games, Scientific American, February 1981, 17-20.
- [26] GOMEZ, V. y MARAVALL, A. (1996), Programs TRAMO and SEATS, *Banco de España*, Documento de Trabajo 9628.
- [27] GOURIÉROUX, C. y MONFORT, A. (1997), Séries Temporelles et Modèles Dynamiques, Ed. Economica, Paris.
- [28] GRUN-REHOMME, M. y LADIRAY, D. (1994), Moyennes mobiles centrées et non centrées : construction et comparaison, *Revue de Statistique Appliquée*, *XLII*, 33-61.

[29] HARVEY, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press.

- [30] HENDERSON, R. (1916), Note on Graduation by Adjusted Average, *Transactions of the Actuarial Society of America*, 17, 43-48.
- [31] HENDERSON, R. (1924), A New Method of Graduation, *Transactions of the Actuarial Society of America*, 25, 29-40.
- [32] HERSCHEL, W. (1801), Observations Tending to Investigate the Nature of the Sun in Ordre to Find the Causes or Symptoms of its Variable Emission of Light and Heat with Remarks on the Use that May be Possibly be Drawn from Solar Observation, *Philosophical Transactions of the Royal Society of London*, 91, 265-318.
- [33] HIGGINSON J. (1975), An F-test for the Presence of Moving Seasonality when Using Census Method II-X-11 Variant, Working Paper, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [34] HILLMER, S. C. y TIAO, G. C. (1982), An ARIMA Model Based Approach to Seasonal Adjustment, *Journal of the American Statistical Association*, 77, 63-70.
- [35] HOOD, C. C. (1998), X-12-Graph: A SAS/GRAPH Program for X-12-ARIMA Output, *US Bureau of the Census*, Washington, D.C.
- [36] HYLLEBERG, S. (1986), Seasonality in Regression, Orlando: Academic Press.
- [37] HYLLEBERG, S. (1992), The Historical Perspective, in *Modelling Seasonality*, London: Oxford University Press, 15-25.
- [38] JEVONS, W.S. (1862), On the Study of Periodic Commercial Fluctuations, *Investigations in currency and finance*, London: Macmillan, 1884.
- [39] KENDALL, M. (1973), Time Series, London: Charles Griffin & Co.
- [40] KITAGAWA, G. y GERSCH, W. (1984), A Smoothness Priors State Space Modelling of Time Series with Trend and Seasonality, *Journal of the American Statistical Association*, 79, 378-389.
- [41] KOOPMAN, S. J., HARVEY, A. C., DOORNIK, J. A. y SHEPARD, N. G. (2000), STAMP, Structural Time Series Analyser, Modeller and Predictor, London: Timberlake Consultants Press.
- [42] KOOPMANS, L. H. (1974), *The Spectral Analysis of Time Series*, New York: Academic Press.
- [43] LA BIBLIA, Antiguo Testamento, Exodo [12] La Pascua, La Biblia Latinoamericana CD-ROM, Editorial San Pablo, 1995, Argentina.
- [44] LAKER, L.G. (1976a), Mathematical Note on Easter Correction, Working Paper, *Australian Bureau of Statistics*.

[45] LAKER, L.G. (1976b), Slightly Less Mathematical Note on the Mathematical Note on Easter Correction, Working Paper, *Australian Bureau of Statistics*.

- [46] LANIEL, N. (1985), Design Criteria for the 13-term Henderson End-Weights, Working Paper, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [47] LOTHIAN, J. (1978), The Identification and Treatment of Moving Seasonality in the X-11 Seasonal Adjustment Method, Working paper 78-10-004, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [48] LOTHIAN, J. y MORRY, M. (1978a), A Test for the Presence of Identifiable Seasonality when Using the X-11 Program, Working Paper, Time Series Research and Analysis Division, *Statistics Canada*, Ottawa ON, Canada.
- [49] LOTHIAN, J. y MORRY, M. (1978b), A Set of Quality Control Statistics for the X-11-ARIMA Seasonal Adjustment Method, Working Paper 78-10-005, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [50] MABALLÉE, Colette et Berthe (1906), Peaks and Peaks and Correlograms, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 3, 139-167.
- [51] MACAULAY, F.R. (1931), The Smoothing of Time Series, *National Bureau of Economic Research*.
- [52] MARCH, L. (1905), Comparaison numérique de courbes statistiques, *Journal de la Société Statistique de Paris*, 255-277.
- [53] MENDERHAUSEN, H. (1937), Annual Survey of Statistical Technique: Methods of Computing and Eliminating Changing Seasonal Fluctuations, *Econometrica*, 5, 234-262.
- [54] MONTES, M.J. (1998-02-02), Calculation of the Ecclesiastical Calendar, Internet: http://www.smart.net/~mmontes/ec-cal.html.
- [55] MUSGRAVE, J. (1964a), A Set of End Weights to End all End Weights, Working paper, *US Bureau of the Census*, Washington.
- [56] MUSGRAVE, J. (1964b), Alternative Sets of Weights for Proposed X-11 Seasonal Factor Curve Moving Averages, Working paper, *US Bureau of the Census*, Washington.
- [57] NERLOVE, M., GRETHER, D.M. y CARVALHO, J.L. (1979), *Analysis of Economic Time Series : a Synthesis*, New York: Academic Press.
- [58] O'BEIRNE, T. (1966), The Regularity of Easter, Bulletin of the Institute of Mathematics and Its applications, 2, 46-49.
- [59] PERSONS, W. M. (1919), Indices of Business Conditions, *Review of Economic Statistics*, 1, 5-107.
- [60] POYNTING, J.H. (1884), A Comparison of the Fluctuations in the Price of Wheat and in the Cotton and Silk Imports into Great Britain, *Journal of the Royal Statistical Society*, 47, 34-64.

[61] PRIESTLEY, M.B. (1965), Evolutionary Spectra and Nonstationary Processes, *Journal of the Royal Statistical Society, Series B*, 27, 204-237.

- [62] SAS Institute Inc. (1990), SAS/GRAPH Software Reference, version 6, First Edition, Volume 1, Carry, NC: SAS Institute.
- [63] SHISKIN, J., YOUNG, A. y MUSGRAVE, J. C. (1967), The X-11 Variant of the Census Method II Seasonal Adjustment Program, Washington DC, Technical Paper no 15, *Bureau of the Census*, US Department of Commerce.
- [64] SLUTSKY, E. (1927), The Summation of Random Causes as the Source of Cyclical Processes, *Econometrica*, 84, 105-146 (1937), translation of a Russian paper (Conjoncture Institute, Moscow).
- [65] TØNDERING, C. (2000), Frequently Asked Questions About Calendars, Internet: http://www.tondering.dk/claus/calendar.html.
- [66] TUKEY, J. W. (1950), The Sampling Theory of Power Spectrum Estimates, *Proceedings of the Symposium on Applications of Autocorrelation Analysis to Physical Problems*, Washington DC, Department of the Navy, Office of Naval Research.
- [67] YOUNG, A.H. (1965), Estimating Trading-Day Variations in Monthly Economic Series, Washington DC, Technical Paper no 12, *Bureau of Census*, US Department of Commerce.
- [68] YULE, G.U. (1921), On the Time Correlation Problem, With Especial Reference to the Variate-Difference Correlation Method, *Journal of The Royal Statistical Society*, 84, 497-526.
- [69] YULE, G.U. (1927), On a Method of Investigating Periodicities in Disturbed Series with Special Reference to Wolfer's Sunspot Numbers, *Philosophical Transactions of The Royal Society, Series A*, 226, 267-298.

Índice de Materias

ciclo de negocios, 12 Cleveland, R. B., 16, 226 Cleveland, W.S., 16, 226 coeficientes estacionales, 55, 65, 73, 88, 111, 118, 134, 150, 187 en el método de «relative links»,
13
en el método de las medias móviles, 13
previsión, 151
componente estacional, 19, 21, 22, 26,
35, 38, 64, 73, 88, 111, 118,
134, 150, 167, 185, 186
en el método de las medias móviles,
14
Cooley, J.W., 15, 226
Cournot, 11, 226
días hábiles, 8, 14, 19, 23, 25, 26, 28,
55, 59, 91, 93, 95, 107, 121,
128, 130, 155, 170
coeficientes de ajuste, 101, 124
regresión, 98, 124
test F, 95, 184
test T, 95
Dagum, E.B., 7, 15, 16, 26, 28, 158,
159, 162, 226
DAINTIES, 16
DECOMP, 17
desfasaje, 32
desviación estandar
móvil, 65
Doherty, M., 45, 78, 226
Doornik, J.A., 227
efecto de Pascua, 8
efectos de calendario, 14, 15, 23, 28,
46, 60, 95, 108, 167, 170, 171,

217, 218	Harvey, A.C., 20, 227
espectro, 30	Henderson, R., 39, 42, 45, 76, 78, 227
•	
esquema de composición, 12, 19	Herschel, W., 11, 227
aditivo, 13, 20	Higginson, J., 141, 227
log-aditivo, 20	Hillmer, S.C., 11, 12, 14, 15, 17, 225,
multiplicativo, 13, 20	227
pseudo-aditivo, 20	Hood, C.C., 59, 227
tabla D11A, 162	Hylleberg, S., 11, 16, 227
estacional-irregular, 21, 22, 38, 62, 64,	(. Ī / Ō . 45 . 7. (. 114 . 127 . 162 . 192
82, 110, 118, 133, 141, 143,	razón \bar{I}/\bar{C} , 45, 76, 114, 137, 163, 182,
186	184, 186
estacionalidad, 11, 30, 35, 146, 171	irregular, 11, 19, 23, 26, 35, 45, 55, 65,
F-test, 62	84, 91, 95, 103, 107, 121, 126,
test de estacionalidad estable, 141	130, 146, 167, 172, 184–186
test de estacionalidad evolutiva, 141	en el método de las medias móviles,
test de Kruskal-Wallis, 141	14
test de la presencia de una esta-	y función de ganancia, 30
cionalidad identificable, 187	
test de presencia de una estacional-	Jenkins, G.M., 7, 15, 26, 225
idad identificable, 142	Jevons, W.S., 11, 12, 227
test F de Fisher, 155	Y 1 11 14 00 04 007
tests, 141, 184	Kendall, M., 20, 31, 227
y días hábiles, 91	Kitagawa,G., 17, 227
	Koopman, S.J., 17, 227
Findley, D.F., 7, 16, 28, 45, 93, 196,	Koopmans, L., 32, 227
226	I I' D 0 25 226
Fisher, A., 14, 101, 226	Ladiray, D., 9, 35, 226
Fourier, J.B., 12, 29, 226	Laker, L.G., 200, 202, 227, 228
función de ganancia, 31, 32	Laniel, N., 78, 228
filtro de paso-bajo, 34	Laroque, G., 159, 225
filtro mensual de X-11, 52	Lothian, J., 142, 147, 185, 187, 228
filtro trimestral de X-11, 52	LOWESS, 16
media móvil de Henderson, 42	N/ 1 11/ G 1 D 1 42 22
y estacionalidad, 35	Maballée, Colette et Berthe, 12, 228
$2 \times 12,38$	Macaulay, F.R., 13, 14, 28, 228
$2 \times 4,36$	Maravall, A., 17, 226
$3 \times 3,39$	March, L., 12, 228
$3 \times 5,39$	Mayes, F., 225
$3 \times 9,39$	MCD («months for cyclical dominance»),
función de pesos de X11, 65	177, 182, 186
	McRae, J.R., 226
Gardner, M., 194, 226	media móvil, 20, 29, 30, 35
Gauss, 194	asimétrica, 31, 33, 45, 46
Gersch, W., 17, 227	centrada, 31
Gomez, V., 17, 226	centrada sobre 12 términos, 13, 38,
Gouriéroux, C., 47, 226	61
Grether, D.M., 11, 228	centrada sobre 24 términos, 61
Grun-Rehomme, M., 35, 226	centrada sobre 3 términos, 35

compuesta, 36, 46	Monfort, A., 47, 226
conservación de la tendencia, 34	Monsell, B.C., 226
conservación de polinomios, 34	Montes, M.J., 195, 228
construcción, 35	Morry, M., 142, 185, 228
filtro mensual de X-11, 46	Musgrave, J., 14, 43, 45, 46, 78, 228,
asimétrica, 52	229
asimétrico, 53	N. 1 M. 11 220
filtro trimestral de X-11, 52	Nerlove, M., 11, 228
Henderson, 39, 42, 45, 76	O.D.: T. 104 220
sobre 7 términos, 42	O'Beirne, T., 194, 228
formula de los coeficientes, 42	Otto, M.C., 226
sobre 13 términos, 42, 77	
sobre 23 términos, 42, 77	para días hábiles, 106
sobre 5 términos, 42, 77	Pascua
	efecto, 19, 20, 23, 28, 101, 106,
sobre 9 términos, 42, 77	123, 128, 193
idéntico, 47	en X-11-ARIMA, 197
Musgrave, 43, 45, 46	en X-12-ARIMA, 209
formula de los coeficientes, 45	efecto gradual, 196
no centrada, 43	efecto gradual, 195
notación de Kendall, 31	efecto residual, 197
orden, 31	
ponderada, 36	fechas, 194
simétrica, 31–33, 36	fiesta, 193
simple, 36	modelo de Bateman-Mayes, 210
simple de orden k , 35	modelo de regresión, 196
-	a efecto gradual, 204, 209, 217,
simple sobre 3 términos, 36, 38,	218
66	a efecto puntual, 197, 218
simple sobre 7 términos, 146	a efecto puntual corregido, 200
simple sobre MCD términos, 177	Easter, 209, 220
y puntos atípicos, 23	Sceaster, 209, 217
$2 \times 12, 36, 38, 46, 61$	y la desestacionalización, 195
$2 \times 4, 36, 46$	Persons, 13
$3 \times 15, 38, 66$	
$3 \times 3, 36, 38, 64, 66, 150$	Persons, W.M., 12, 13, 228
asimétrica, 46, 64	pico espectral, 30
$3 \times 5, 38, 66, 82, 150, 186$	Poynting, J. H., 13, 228
asimétrica, 46, 82	Priestley, M.B., 15, 229
	punto atípico, 23, 25, 26, 28, 46, 59,
3 × 9, 38, 66, 150	60, 64, 65, 82, 86, 95, 103,
asimétrica, 46	104, 107, 108, 110, 121, 126,
$p \times q, 36$	130, 132, 141, 143, 163, 171,
medias móviles, 13	172
y ciclo artificial, 14	
y regresiones locales, 16	Quenneville, B., 9
Menderhausen, H., 13, 228	
modelo ARIMA, 26	razón de estacionalidad móvil, 146, 150,
modelos ARIMA, 14, 15, 17, 28, 29,	184
58	ruido blanco, 35
	- ·· · · · · · · · · · · · · ·

```
SABL, 16
SAS, 59, 229
SEATS, 17
Shepard, N.G., 227
Shiskin, J., 14, 229
Slutsky, E., 14, 229
STAMP, 17
STL, 16
tendencia, 11, 12, 19, 21, 34
    en el método de las medias móviles,
    y función de ganancia, 30
tendencia-ciclo, 19, 21, 26, 36, 45, 55,
         59, 61, 76, 109, 114, 132, 137,
         163, 171, 174, 186
Terpenning, I., 226
Tiao, G.C., 17, 227
Tukey, J.W., 15, 226, 229
Tøndering, C., 195, 229
X-1, 14
X-11, 7, 14, 16, 19, 21, 25, 26, 36, 46,
         55, 66, 67
     Etapa A, 25, 59, 60, 108, 132
     Etapa B, 25, 31, 33, 59, 60, 108,
         122, 217, 220
     Etapa C, 26, 59, 108, 132, 217,
         220
     Etapa D, 26, 59, 132
     Etapa E, 26, 59, 171
     Etapa F, 26, 59, 177
     Etapa G, 26, 59
X-11 tablas, 55
X-11-ARIMA, 7, 15, 16, 26
X-12-ARIMA, 7, 16, 26
X-2, 14
Young, A., 14, 94, 229
Yule, G.U., 12, 14, 229
```

Índice General

Pr	efacio	0		3	
In	trodu	cción		7	
1	1 Breve historia de la desestacionalización				
2	Prin	cipios o	del método X-11	19	
	2.1	Comp	onentes y esquemas de composición	19	
	2.2	Media	s móviles	20	
	2.3	Un alg	goritmo simple de desestacionalización	21	
	2.4	El alg	oritmo de base del método X-11	21	
	2.5	Puntos	s atípicos y efectos de calendario	23	
	2.6	El prii	ncipio iterativo de X-11	25	
		2.6.1	ETAPA A: Ajustes previos	25	
		2.6.2	ETAPA B: Primera corrección automática de la serie	25	
		2.6.3	ETAPA C: Segunda corrección automática de la serie	26	
		2.6.4	ETAPA D: Desestacionalización	26	
		2.6.5	ETAPAS E, F y G: estadísticas y gráficos	26	
	2.7	De Ce	nsus X-11 a X-11-Arima y X-12-Arima	26	
3	Med	lias mó	viles	29	
	3.1	Algun	as definiciones y un poco de teoría	29	
		3.1.1	Definiciones y ejemplo	30	
		3.1.2	Función de ganancia y desfasaje	31	
		3.1.3	Conservación de la tendencia	34	
		3.1.4	Eliminación de la estacionalidad	35	
		3.1.5	Reducción de la componente irregular	35	
		3.1.6	Un ejemplo de construcción de una media móvil	35	
	3.2	Las m	edias móviles simétricas utilizadas en X-11	36	
		3.2.1	Las medias móviles simples compuestas	36	
		3.2.2	Medias móviles de Henderson	39	
	3.3	Las m	edias móviles asimétricas de Musgrave	43	
		3.3.1	Medias móviles asimétricas de Musgrave asociadas a las me-		
			dias simétricas de Henderson	45	
		3.3.2	Comentarios sobre las medias móviles de Musgrave	46	

		3.3.3	Medias móviles asimétricas asociadas a las medias móviles	
			compuestas	46
	3.4	El filtro	o media móvil de X-11	46
4	Las	diferent	tes tablas	55
•	4.1		mación preliminar: puntos atípicos y efectos de calendario	
	7.1	4.1.1	B1: Serie bruta o serie bruta ajustada <i>a priori</i>	60
		4.1.2	B2: Tendencia-ciclo	
		4.1.3	B3: Componente estacional-irregular sin modificaciones	
		4.1.3		02
		4.1.4	B4: Valores de remplazo para los puntos atípicos de la com-	64
		415	ponente estacional-irregular	
		4.1.5	B5: componente estacional	
		4.1.6	B6 : Serie desestacionalizada	
		4.1.7	B7: Tendencia-ciclo	
		4.1.8	B8: Componente estacional-irregular	82
		4.1.9	B9: Valores de remplazo para los valores atípicos de la com-	
			ponente SI	
			B10: componente estacional	88
			B11: Serie corregida de variaciones estacionales	
			B13: Componente irregular	
		4.1.13	Componente para los días hábiles	91
		4.1.14	B14: Valores de la componente irregular excluidos de la re-	
			gresión para días hábiles	95
		4.1.15	B15: Regresión previa para días hábiles	98
		4.1.16	B16: Coeficientes de ajuste para días hábiles extraídos de la	
			regresión	101
		4.1.17	B17: Pesos preliminares para la corrección de lo irregular	103
			B18: Coeficientes para días hábiles combinados	
			B19: Serie bruta corregida de los efectos de días hábiles	
			B20: Valores de corrección de los puntos atípicos de lo irregula	
	4.2		mación final de los puntos atípicos y de los efectos de calendario	
		4.2.1	C1: Serie bruta ajustada	
		4.2.2	C2: Tendencia-ciclo	
		4.2.3	C4: Componente estacional-irregular modificada	
		4.2.4	C5: Componente estacional	
		4.2.5	C6: Serie corregida de variaciones estacionales	
		4.2.6	C7: Tendencia-ciclo	
		4.2.7	C9: Componente estacional-irregular	
		4.2.8	C10: Componente estacional	
		4.2.9	C11: Serie corregida de variaciones estacionales	
		4.2.10	C13: Componente irregular	
		4.2.11	C14: Irregulares excluidos de la regresión para días hábiles	
		4.2.12	C15: Regresión final para días hábiles	124
		4.2.13	C16: Coeficientes de ajuste para días hábiles, extraídos de la	
			regresión	
			C17: Pesos finales para lo irregular	
		4.2.15	C18: Coeficientes para días hábiles combinados	128

	4.2.16	C19: Serie bruta corregida de los efectos de días hábiles	130
	4.2.17	C20: Valores de corrección de los puntos atípicos de lo irregular	130
4.3		mación final de las diferentes componentes	
	4.3.1	D1: Serie bruta ajustada	132
	4.3.2	D2: tendencia-ciclo	132
	4.3.3		133
	4.3.4	D5: Componente estacional	134
	4.3.5	D6: Serie corregida de variaciones estacionales	137
	4.3.6	D7: Tendencia-ciclo	137
	4.3.7	D8: Componente estacional-irregular sin modificaciones	141
	4.3.8	D9: Valores de remplazo para los puntos atípicos de la com-	
		ponente estacional-irregular	143
	4.3.9	D9A: Razones de estacionalidad móvil	146
	4.3.10	D10: Estimación finale de los coeficientes estacionales	150
	4.3.11	D11: Serie corregida de variaciones estacionales	155
	4.3.12	D11A: Serie desestacionalizada final con totales anuales re-	
		visados	158
	4.3.13	D12: Estimación final de la tendencia-ciclo	163
	4.3.14	D13: Componente irregular final	167
	4.3.15	D16: Efectos estacionales y de calendario	167
	4.3.16	D18: Efectos de calendario combinados	170
4.4	E: Com		171
	4.4.1		171
	4.4.2	E2: Serie desestacionalizada corregida de los puntos más atípi-	
			171
	4.4.3	E3: Componente irregular final corregida de los puntos más	
		1	172
	4.4.4	E4: Comparación de los totales anuales de la serie bruta y de	
			172
	4.4.5		173
	4.4.6		174
	4.4.7		174
	4.4.8		175
4.5			177
	4.5.1	F1: Alisado de la serie desestacionalizada con una media móvil	177
	4.5.0		177
	4.5.2	F2A: Evoluciones en valor absoluto de las principales compo-	170
	152		178
	4.5.3	F2B: Contribuciones relativas de las componentes a las evolu-	170
	151		179
	4.5.4	F2C: Medias y desviaciones estándar de las evoluciones en	180
	4.5.5	función del plazo	100
	4.3.3	· · · · · · · · · · · · · · · · · · ·	181
	4.5.6		181
	4.5.7	F2F: Contribución relativa de las componentes a la varianza	101
	4.5.7		182
		ue la parte estacional de la serie original	102

		4.5.8	F2G: Correlograma de la componente irregular	183
		4.5.9	F2H: Razones \bar{I}/\bar{C} y \bar{I}/\bar{S}	184
			- F2I: Tests de existencia de estacionalidad	
		4.5.11	F3: Estadísticas de calidad del ajuste	184
5	Mod	lelizació	on del efecto de Pascua	191
	5.1	La Fies	sta de Pascua	191
		5.1.1	Un poco de historia	191
		5.1.2	El cálculo de las fechas de Pascua	192
		5.1.3	Pascua y la desestacionalización	193
	5.2	Los mo	odelos utilizados en X-11-ARIMA	195
		5.2.1	El modelo a efecto puntual	195
		5.2.2	El modelo a efecto puntual corregido	197
		5.2.3	El modelo a efecto gradual	202
	5.3	Los mo	odelos de X-12-Arima	207
		5.3.1	El modelo de Bateman-Mayes	207
		5.3.2	El modelo Sceaster	214
		5.3.3	El modelo Easter	217

METHODOLOGICA Laboratoire de Méthodologie du Traitement des Données UNIVERSITÉ LIBRE DE BRUXELLES

Av. Jeanne, 44 (CPI 124) B - 1050 Bruxelles - Belgique Tél.: +32 2 650 32 74

Fax: +32 2 650 34 66