

2E102 - Source d'énergie électrique et capteurs

ER2 du 16 novembre 2017, 1 heure. Sans document ni calculatrice.

Notation sur 50 points : deux points pour une réponse juste, moins un demi-point pour une réponse fausse, zéro point en l'absence de réponse. Une réponse au plus autorisée par question (sinon moins un demi-point à la question).

S.I.: unités de base du Système International.

N° étudiant :	
Prénom :	
Nom :	
	-

Énergie (20 points)

- Q1. Dans le domaine de l'énergie, TEP signifie Tonne Equivalent...
- □ Plutonium
- □ Pétrole
- □ Personne
- □ Pollution
- Q2. La puissance instantanée consommée ou fournie par un dipôle dont la tension à ses bornes est $u(t) = U\sqrt{2}\sin(\omega t)$ et le courant le parcourant $i(t) = I\sqrt{2}\sin(\omega t - \varphi)$ est
- □ u(t)i(t)
- □ Ulcosφ
- □ 2UI

Q3. La valeur efficace d'un signal s(t) de période T se calcule ainsi (analyse dimensionnelle possible...) :

$$\Box \sqrt{\frac{1}{T} \int_0^T s^2(t) dt}$$

$$\Box \sqrt{\int_0^T s^2(t)dt} \qquad \Box \frac{1}{T} \int_0^T s^2(t)dt$$

$$\Box \frac{1}{T} \int_0^T s^2(t) dt$$

$$\Box \frac{1}{T} \sqrt{\int_0^T s^2(t) dt}$$

- Q4. Soit une puissance à acheminer donnée (par exemple d'une centrale électrique à un transformateur). Pour minimiser les pertes en ligne il faut
- □ la tension la plus élevée possible et le facteur de puissance le plus proche de 1 possible
- □ la tension la plus basse possible et le facteur de puissance le plus proche de 0 possible
- □ la tension la plus élevée possible et la puissance réactive la plus élevée possible
- □ la tension la plus basse possible et la puissance réactive la plus proche de 1 possible
- Q5. Dans le cadre du cours n°5 de 2E102 (par Marc Hélier), « Smart grids » peut se traduire en français par
- □ gestion intelligente de l'énergie
- □ grille élégante
- □ maîtrise de l'énergie nucléaire
- □ utilisation de petites voitures électriques

Q6 à Q10. Les alternateurs présents dans les génératrices éoliennes peuvent être composés d'enroulements réalisés avec du fil de cuivre. Ils sont alors représentés par une résistance montée en série avec une inductance.

 $i(t) = I\sqrt{2}sin(2\pi ft)$

f = 50 Hz

U = 250 V

 $R = 40 \Omega$

 $L = 3/(10\pi) H$

Q6. L'allure du diagramme de Fresnel relatif à ce circuit est (le courant est pris comme référence ici) :

	Q7. Le module de l'impédance complexe de ce circuit vaut						
	\square 50 Ω	\Box 40 Ω	\square 100 Ω	\square 300 Ω			
	Q8. L'intensite □ 2,5 A	é efficace vaut □ 5 A	□ 2300 A	□ 10 kA			
	Q9. La tensior □ 200 V	n efficace aux borr □ 230 V	nes de la rési 150 V	stance vaut			
	Q10. Le facteu □ 1,98	ur de puissance va □ 0,8	ut □ 0,53	1			
Capteur : généralités (8	points)						
Q11. Qu'est-ce que l'erre Le manque d'épaisseu Le manque de sensibil Q12. Soit deux capteurs permettant de détermin tension mesurée U. L capteurs en faisant passe le mesurande de 0 S.I. à deux capteurs (figure 1). est plus rapide que le grande que le B est plus rapide que le petite que le B est plus lent que le E grande que le B est plus lent que le E grande que le B est plus lent que le E petite que le B	r du capteur ité du capteur du même type er le mesurande Jn expériment er de manière q 3 S.I. et mesure II en déduit que B et a une banc B et a une banc et a une et a un	(capteurs A et B) e mà partir d'une ateur teste ces uasi-instantanée la tension U des e le capteur A de-passante plus de-passante plus de-passante plus	□ L'influ	ence du capteur su ence du mesurand			
			capteur	esurande m (en S. A (UA) et du capt du temps (Q12).			
Q13. Soit un capteur rés divisé par l'unité du mes ce même capteur usage utilisateur mesure à l'oh courbe d'étalonnage d'od'étalonnage, de (exprin 0,5	surande en S.I. (é (par exemple mmètre une rés origine (état neu	unité omise par la après 1 an d'util sistance de 10 Ω n ıf, A = 10). Il fait d	suite). Pour isation) A v nais en dédu onc une err	le capteur à l'éta aut 5. Avec le ca it la valeur du mes eur absolue sur le	t neuf A vaut 10 pteur <i>usagé</i> (A surande m en u	0 et pour (= 5), un tilisant la	
Q14. Le capteur de la qu dans le temps (A reste co moins bonne fidélité d	onstant et vaut	5). Cette erreur d'	étalonnage	(décrite en Q13) e	ntraîne une	-	
Capteurs de températui	re (8 points)						
Q15. Soit la sonde Pt100 électrique mesurée est s \Box 0,35 Ω /°C		_		pteur ?	5.10 ⁻³ °C ⁻¹ . Si la ¿ □ ≈3°C	grandeur	

Q16. Une sonde Pt100 est utilisée pour déterminer une température connaissant sa courbe d'étalonnage (rappelée à la question 15). Pour mesurer la résistance de la sonde Pt100 et éviter le phénomène d'emballement thermique, quel circuit préconisez-vous ? (Vous supposerez que les appareils de mesure sont parfaits.)

- ☐ Générateur de tension, ampèremètre et sonde Pt100 : les 3 en série
- ☐ Générateur de tension, ampèremètre et sonde Pt100 : les 3 en parallèle
- ☐ Générateur de courant, voltmètre et sonde Pt100 : les 3 en série
- ☐ Générateur de courant, voltmètre et sonde Pt100 : les 3 en parallèle

Q17. Soit une CTN dont la résistance a comme expression $R(T) = R_0 \exp[\beta(1/T - 1/T_0)]$ avec $R_0 = 5 \text{ k}\Omega$, $T_0 = 300 \text{ K}$ et $\beta = 1000 \text{ K}$. Quelle est l'incertitude sur la température mesurée pour une température vraie de 27°C si la température est directement déduite de la mesure de R(T) avec un ohmmètre dont l'incertitude sur la résistance vaut $\pm 0.5\%$? (Vous pourrez par exemple calculer dans un 1er temps le TCR.)

□ ≈ ±0,45°C

□ ≈ ± 1 K

□ ≈ ±0,15°C

□ ≈ ±2 K

Fig.2. Coefficient Seebeck pour différents thermocouples (Q18).

Fig.3. Courbe d'étalonnage d'un capteur de champ magnétique (Q19).

Q18. Soit un thermocouple composé d'un matériau A et d'un matériau B. Vous savez que son type est E, J, K, R, S ou T et cherchez à le déterminer. Pour cela vous placez la jonction A-B à une température de 0°C et les deux extrémités du thermocouple à une température de 20°C. Vous mesurez au voltmètre une tension de 0,75 mV. Vous répétez l'opération avec cette fois la jonction A-B à 250°C et les deux extrémités du thermocouple à 270°C. Vous mesurez alors au voltmètre une tension de 1,05 mV. Quel est le type de ce thermocouple ? (Vous pourrez vous servir de la figure 2.)

 $\Box J$

Capteurs de champ magnétique (8 points)

пΤ

Q19. Soit un capteur de champ magnétique dont la courbe d'étalonnage est donnée sur la figure 3. Que vaut B si la tension mesurée est de 3 V ±0,1 V (c'est-à-dire avec une incertitude de mesure) ?

□ 175 ± 20 gauss

 \Box E

□ 200 ± 40 gauss

□ 225 ± 10 gauss

□ 250 ± 30 gauss

 $\Box K$

Q20. Soit un capteur à effet Hall donnant la valeur du champ magnétique B à partir de la mesure de la tension V_{mes} . Rappelons que V_{mes} = $R_H IB/z$ où R_H est la constante de Hall, I le courant injecté par un générateur de courant dans le matériau et z l'épaisseur du matériau. L'utilisateur souhaite améliorer la sensibilité d'un facteur 4 en modifiant I (R_H et z inchangés : on suppose que les variations de température due à la variation de la puissance

	e sont pas influentes). Que l être augmentée d'un fac		r la puissance dissipée par effet Joule		
			Hall V _{mes} = R _H IB/z soit homogène en		
□ m³/C	□ Vm/A	□ Vm/T	□ AT/Vm		
Q22. La GMR (MagnétoR □ effacer	ésistance Géante) est utili □ lire	isée dans les disques durs	pour ☐ lire, écrire et effacer		
Capteurs d'éclairement (6 points)				
quadrant (I _D et V _D négatif (HF) est respectivement □ BF : générateur de cou □ BF : résistance, HF : circ Q24. Soit la photodiode c	s) quand la fréquence de l' rant, HF : circuit-ouvert cuit-ouvert dont la caractéristique est	éclairement tend vers zé ☐ BF : générate ☐ BF : résistane donnée sur la figure 4. Po	actéristique : figure 4) dans le 3 ^{ème} ro (BF) et quand elle tend vers l'infini eur de courant, HF : court-circuit ce, HF : court-circuit ur un éclairement ϕ continu constant et ϕ dans le 3 ^{ème} quadrant (I _D et V _D mW/cm ²)/200		
□ φ(mW/cm²) indépenda	nt de I _D		$\Box I_D(mA) \approx -\phi(mW/cm^2)/20$		
sur la figure 4. Que vaut		V ? (Vous pouvez tracer	de dont la caractéristique est donnée la droite de charge sur la figure 4 ou □ ≈ 1,7 mW/cm²		
V _D			'une photodiode ts éclairements		

Fig.5. Circuit avec photodiode (Q25).