A PARALLEL SPH IMPLEMENTATION ON MULTI-CORE CPUs

(2010)

Ihmsen, M., Nadir, A., Becker, N., Teschner, M.

presented by Steffen Haug

A PARALLEL SPH IMPLEMENTATION ON MULTI-CORE CPUs

Applies to particle simulations in general!

(And raytracing, rigid body collision, ...)

(Briefly)

$$A(x) = \int_{\Omega} A(V)\delta(x - V) dV$$

Start with the convolution definition of δ .

$$A(x) = \int_{\Omega} A(V) W(x - V) dV$$

Replace δ -function with smoothing kernel that "works like" δ .

$$A(x) = \int_{\Omega} A(V) W(x - V) dV$$

Key points:
$$W$$
 has $compact\ support$ of radius h
$$\int_{\Omega}W=1\ ({\rm Normalization})$$

$$W\longrightarrow \delta\ {\rm as}\ h\longrightarrow 0$$

$$A(x) = \int_{\Omega} A(V) W(x - V) dV$$

TLDR: W is a "bell-like" curve.

(Convolution by bell curve "smoothes" signal, hence the name SPH)

$$A(x_i) = \sum_{i} A(x_i) W(x_i - x_j) V_j$$

Replace integral over Ω with sum over samples at N "particles".

$$i, j \in \{1 \dots N\}$$

$$A(x_i) = \sum_{j} A(x_j) W(x_i - x_j) V_j$$

Volume element dV is now the volume V_j of particle j.

$$A_i = \sum_j A_j W_{ij} V_j$$

Standard compact notation.

$$A_i = \sum_j A_j W_{ij} V_j$$

From this you can derive discretizations for ∇A , $\nabla^2 A$, $\nabla \cdot A$, and so on...

$$A_i = \sum_j A_j W_{ij} V_j$$
Zero outside the ball $\frac{B_h(x_i)}{T}$!

(Compact support of W)

We need to discard the vast majority of particles.

Fast access to particles in $B_h(x_i)$ is a major optimization!

"FIXED-RADIUS NEAR NEIGHBORS" (Classic computational geometry problem)

The authors present two strategies

INDEX SORTING and SPATIAL HASHING

I will present some criticism, especially in the context of GPU.

Both methods use a tiling of size h

 $B_h(x_i)$ is completely contained in 3×3 tile region.

Trivially constructed by rounding the coordinates:

$$i = \left\lfloor \frac{x}{h} \right\rfloor, \quad j = \left\lfloor \frac{y}{h} \right\rfloor$$

1. Create a finite regular grid

\circ^F	\circ^B		
$\circ^A \circ^E$		\circ^C	\circ^D
		${\displaystyle \mathop{\circ}_{O}^{I}}_{H}$	\circ^J_G

- 1. Create a finite regular grid
- 2. Calculate the strided grid cell index for each particle

- 1. Create a finite regular grid
- 2. Calculate the strided grid cell index for each particle
- 3. Sort particles by grid index

2	2	3	3	4	4	6	7	8	9
LI	T	7	C	4	E.	C	D	E.	D

Index sorting

- 1. Create a finite regular grid
- 2. Calculate the strided grid cell index for each particle
- 3. Sort particles by grid index
- 4. Identify where the edges of each grid cell is in the particle buffer

- 1. Create a finite regular grid
- 2. Calculate the strided grid cell index for each particle
- 3. Sort particles by grid index
- 4. Identify where the edges of each grid cell is in the particle buffer

Domain must be finite: Unique index maps to finite set of buckets.

Index sorting

- 1. Create a finite regular grid
- 2. Calculate the strided grid cell index for each particle
- 3. Sort particles by grid index
- 4. Identify where the edges of each grid cell is in the particle buffer

Possible optimization: Order grid cells by space filling curve.

Criticism

- 1. Finite domain is an annoying restriction
- 2. High number of vacant grid cells
- 3. Full sort can be very expensive

Criticism

- 1. Finite domain is an annoying restriction
- 2. High number of vacant grid cells
- 3. Full sort can be very expensive

Advantages

- 1. No dynamic memory allocation required
- 2. Minimal synchronization between threads required

Verdict: Reasonably well-suited for GPU

(COMPACT) SPATIAL HASHING

1. Create a (possibly infinite) regular tiling

\circ^F	o ^B		
o ^A o ^E		o ^C	o ^D
		${}^{I}_{o}$	\circ^J_G

- 1. Create a (possibly infinite) regular tiling
- 2. Hash the grid cell index for each particle (Muliple grid cells can hash to the same bucket!)

- Create a (possibly infinite) regular tiling
- Hash the grid cell index for each particle (Muliple grid cells can hash to the same bucket!)
- 3. For each populated bucket, allocate a particle buffer in a secondary structure

(Initial capacity k, grow with amortized constant time)

- 1. Create a (possibly infinite) regular tiling
- Hash the grid cell index for each particle (Muliple grid cells can hash to the same bucket!)
- For each populated bucket, allocate a particle buffer in a secondary structure
 (Initial capacity k, grow with amortized constant time)
- 4. Copy each particle into its respective particle buffer

Criticism

- 1. Uses dynamic memory allocation in multiple places
- 2. Forced reallocation of vectors in multple critical places
- 3. Contention between threads on particle buffers (Imagine 10K threads mutating the same vectors...)
- 4. Hash collisions cause performance degradation
- 5. Particle buffers live in separate (non-coherent) heap allocations (The bane of dynamic vectors is that it fragments the heap)

Criticism

- 1. Uses dynamic memory allocation in multiple places
- 2. Forced reallocation of vectors in multple critical places
- Contention between threads on particle buffers (Imagine 10K threads mutating the same vectors...)
- 4. Hash collisions cause performance degradation
- 5. Particle buffers live in separate (non-coherent) heap allocations (The bane of dynamic vectors is that it fragments the heap)

ADVANTAGES

- 1. No restriction on domain size
- 2. Avoids complete sort
- 3. Can more easily be incrementally updated

Verdict: Absolutely useless on GPU

Results

method	construction	query	total
basic uniform grid	25.7 (27.5)	38.1 (105.6)	63.8 (133.1)
index sort [Gre08]	35.8 (38.2)	29.1 (29.9)	64.9 (77.3)
Z-index sort	16.5 (20.5)	26.6 (29.7)	43.1 (50.2)
spatial hashing	41.9 (44.1)	86.0 (89.9)	127.9 (134.0)
compact hashing	8.2 (9.4)	32.1 (55.2)	40.3 (64.6)

Table 2: Performance analysis of different spatial acceleration methods with and without (in brackets) reordering of particles. Timings are given in milliseconds for CBD 130K and include storing of pairs.