Department of Industrial Engineering & Operations Research

IEOR 162 Linear Programming and Network Flows (Spring 2022)

Dijkstra's algorithm (1956)

Requirements

All arcs have non-negative cost. Cycles are allowed.

Key concepts

- At each iteration, the shortest path label d(i) for node $i \in V$ represent the distance from the source s to node i with only permanent nodes as intermediate nodes.
- Once a node becomes permanent, its label d(i) is the shortest path distance from s.

Input

- Graph G = (V, A) with arc cost c_{ij} .
- Source node s.

Output

- d(i): Distance from s to i for all $i \in V$.
- pred(i): Predecessor of node i for all $\in V$.

Steps

- 1. The set of temporary nodes is initialized as the set of all nodes; $T = \{1, \ldots, n\}$.
- 2. The set of permanent nodes is initialized as the empty set; $P = \emptyset$.
- 3. Set d(s) = 0 and $d(i) = \infty$ for $i \in V \{s\}$.
- 4. Select the temporary node with the smallest label:

$$i^* = \underset{i \in T}{\arg\min} \{ d(i) \}.$$

5. Mark node i^* as permanent:

$$P \leftarrow P \cup \{i^*\}, T \leftarrow T - \{i^*\}.$$

6. Update the distance (and predecessor) for each temporary out-neighbor of i^* :

$$d(j) \leftarrow \min\{d(j), d(i^*) + c_{i^*j}\}$$
 for each $(i^*, j) \in A, j \in T$.

7. Repeat steps 4 to 6 until all nodes are permanent.

Example

We want to find the shortest paths from 1 to all other nodes.

Initialization: Iteration 0

$$P = \emptyset$$

$$T = \{1, 2, 3, 4\}$$

Node	1	2	3	4
Iter 0	0(-)	∞ (-)	∞ (-)	∞ (-)

Iteration 1

Node 1 has the smallest label and becomes permanent (denoted by *).

$$P = \{1\}$$

$$T = \{2, 3, 4\}$$

Neighbor update:

Node 2: $d(2) \leftarrow \min\{\infty, 0+4\} = 4$, pred(2) = 1.

Node 3: $d(3) \leftarrow \min\{\infty, 0+5\} = 5$, pred(3) = 1.

Node	1	2	3	4
Iter 0	0(-)	$\infty(-)$	$\infty(-)$	$\infty(-)$
Iter 1	$0^*(-)$	4(1)	5(1)	$\infty(-)$

Iteration 2

Node 2 has the smallest label and becomes permanent.

$$P = \{1, 2\}$$

$$T = \{3, 4\}$$

Neighbor update:

Node 4: $d(2) \leftarrow \min\{\infty, 4+3\} = 7$, pred(4) = 2.

Node	1	2	3	4
Iter 0	0(-)	$\infty(-)$	$\infty(-)$	$\infty(-)$
Iter 1	$0^*(-)$	4(1)	5(1)	$\infty(-)$
Iter 2		$4^*(1)$	5(1)	7(2)

Iteration 3

Node 3 has the smallest label and becomes permanent.

$$P=\{1,2,3\}$$

$$T = \{4\}$$

Neighbor update:

Node 4: $d(4) \leftarrow \min\{7, 5+1\} = 6$, pred(4) = 3.

The distance for node 2 isn't updated since it is a permanent node.

Node	1	2	3	4
Iter 0	0(-)	$\infty(-)$	$\infty(-)$	$\infty(-)$
Iter 1	$0^*(-)$	4(1)	5(1)	$\infty(-)$
Iter 2		$4^*(1)$	5(1)	7(2)
Iter 3			$5^*(1)$	6(3)

Iteration 4

Node 4 has the smallest label and becomes permanent.

$$P = \{1,2,3,4\}$$

$$T = 0$$

Neighbor update:

There are no out-neighbors

Node	1	2	3	4
Iter 0	0(-)	$\infty(-)$	$\infty(-)$	$\infty(-)$
Iter 1	$0^*(-)$	4(1)	5(1)	$\infty(-)$
Iter 2		4*(1)	5(1)	7(2)
Iter 3			$5^*(1)$	6(3)
Iter 4				$6^*(3)$