# Basic Electricity and Electrical Circuits Classtest-01

Made by Md. Mehedi Hasan Rafy

# 1. What is alternating current? What are the advantages of alternating current? Solution:

The electricity produced by generators like Dynamo constantly alternates(switches direction) and is therefore known ad alternating current(AC).

Advantages of alternating current(AC):

- Easy to be transformed (step up or step down using a transformer).
- Easier to convert from AC to DC than from DC to AC.
- Easier to generate.
- It can be transmitted at high voltage and low current over long distances with less energy lost.
- High frequency used in AC makes it suitable for motors.

## 2. Determine the average value of the waveforms in the figure given below:



#### **Solution:**

Average value, 
$$G = \frac{14 \text{ V. } 1 \text{ ms} + (-6 \text{ V}). 1 \text{ ms}}{2 \text{ ms}} = \frac{14 \text{ V} - 6 \text{ V}}{2} = \frac{8 \text{ V}}{2} = 4 \text{ V} [\text{ ans}]$$

# 3. Show that for a capacitor, $i_C$ leads $V_C$ by 90° or $V_C$ lags $i_C$ by 90°. Solution:

For a capacitor,  $V_C = V_m \sin \omega t$  and  $i_C = C \frac{dV_C}{dt}$ 

Applying differentiation,  $\frac{dV_C}{dt} = \omega V_m cos\omega t$ 

Now,  $i_C = C \frac{dV_C}{dt} = C(\omega V_m cos\omega t) = \omega CV_m cos\omega t = \omega CV_m sin(\omega t + 90^\circ)$ 

again,  $i_C = i_m \sin \omega t$ 

therefore,  $i_m = \omega CV_m$ 

From the equation above, we can see that the phase angle between  $\ V_{C}\$  and  $\ i_{C}\$  ,

$$\varphi = (90^{\circ} - 0^{\circ}) = 90^{\circ}$$

So, we can say that, For a capacitor,  $i_C$  leads  $V_C$  by 90°, or  $V_C$  lags  $i_C$  by 90°.

### Figure:



FIG. 14.12

The current of a purely capacitive element leads the voltage across the element by 90°.

# 4. The current through a 0.1H coil is given. Find the sinusoidal expression of the voltage across the coil. Sketch the v and I curves.

$$i=7\sin(377t-70^{\circ})$$

#### **Solution:**

Given data,

Inductance, L=0.1H  $i=7\sin(377t-70^{\circ})$  comparing it with,  $i_C=i_m\sin(\omega t+\theta)$   $i_m=7A$  $\omega=377 \, rads^{-1}$ 

For a inductor circuit,  $V_m = i_m X_L = i_m \omega L = 7 A \times 377 \, rads^{-1} \times 0.1 \, H = 263.9 \, V$  and  $V_L$  leads  $i_L$  by 90° in inductor circuits. So,

$$V_L = V_m \sin(\omega t + 90^\circ) = 263.9 \sin(377 t - 70^\circ + 90^\circ) = 263.9 \sin(377 t + 20^\circ)$$

# Figure:



# 5. Find the average power dissipation in a network whose input current and voltage are the following:

$$i=5\sin(\omega t+40^\circ)$$
  
 $v=10\sin(\omega t+40^\circ)$ 

## **Solution:**

Given data,

$$i=5\sin(\omega t + 40^{\circ})$$

$$v=10\sin(\omega t + 40^{\circ})$$

$$i_m=5 A$$

$$V_m=10 V$$

Since V and I are in phase, the circuit appears to be purely resistive at the input terminals. Therefore,

$$P = \frac{I_m V_m}{2} = \frac{10 V 5 A}{2} = 25 W$$

# Classtest-02

### 1. What are the steps of Norton's theorem.

#### **Solution:**

**Step-01:** Determine the two terminal points on the circuit for which we are calculating Norton's equivalent circuit.

*Step-02:* Remove the rest of the circuit.

*Step-03:* Turn off all the sources on the network (open circuit the current sources and short circuit the voltage sources). Then find the equivalent resistance  $R_{eq} = R_N$ 

*Step-04:* Return all the sources on the circuit.

*Step-05:* Short the circuit on the two terminals and calculate the value of I\_N.

### Figure:





FIG. 9.65

Substituting the Norton equivalent circuit for the network external to the resistor  $R_L$  in Fig. 9.61.

# 2. Find out the value of current through $R_L$ using Norton's theorem. Consider $R_L=4\Omega$



#### **Solution:**

(I) Finding  $R_N$  at a,b terminal: Turning off all the sources (Voltage source to short circuit and current sources to open circuit) and Removing  $R_L$ 



FIG. 9.62

Identifying the terminals of particular interest for the network in Fig. 9.61.



FIG. 9.64

Determining I<sub>N</sub> for the network in Fig. 9.62.

$$R_1$$

 $R_1$ ,  $R_2$  resistance are in parallel. So,

$$R_N = R_1 \parallel R_2 = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{3 \times 6}{3 + 6} = 2\Omega$$

# (II) Finding $I_N$ at a,b terminal:

- 1. Short circuit the path at two terminals
- 2. Returning back all the sources and removing  $R_L$

After shorting, the current will not pass through R\_2 resistance. Thus from the circuit fig 9.64 we get,  $I_N = \frac{E_N}{R_1} = \frac{9}{3} = 3 A$ 

# Norton's equivalent circuit:



FIG. 9.65

Substituting the Norton equivalent circuit for the network external to the resistor  $R_L$  in Fig. 9.61.

Now, current through 
$$R_L$$
,  $I_{R_L} = \frac{R_N}{R_N + R_L} \times I_N = \frac{2}{2+4} \times 3 = 1 A$ 

### 3. State KVL.

#### **Solution:**

KVL(Kirchoff's Voltage Law) states that, the algebraic sum of the total potential rises and drops around a closed path or closed loop is zero. Mathematically,  $\sum E = 0$ 



FIG. 5.26 Applying Kirchhoff's voltage law to a series dc circuit.

In the figure, From KVL,

$$\sum E=0$$

$$\sum_{i=0}^{\infty} E = 0$$

$$\Rightarrow V_1 + V_2 - E = 0$$

$$\rightarrow E = V_1 + V_2$$

4. Find the Thevenin equivalent circuit for the network in the shaded area of the following network. Then find the current through  $R_L$  for values of  $10\Omega$  and  $100\Omega$ .



### **Solution:**

(I) Finding  $R_{Th}$  at a,b terminal: Turning off all the sources (Voltage source to short circuit and current sources to open circuit) and Removing  $R_L$ 

$$R_1 \qquad a \qquad a \qquad a \qquad A_{Th}$$

$$R_2 \lessapprox 6 \Omega \qquad R_{Th}$$

 $R_1$ ,  $R_2$  resistance are in parallel. So,

$$R_{Th} = R_1 \| R_2 = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{3 \times 6}{3 + 6} = 2 \Omega$$

(II) Finding  $V_{Th}$  or  $E_{Th}$  at a,b terminal:

- 1. Short circuit the path at two terminals
- 2. Returning back all the sources and removing  $R_L$



FIG. 9.29

Determining E<sub>Th</sub> for the network in Fig. 9.27.

$$E_{Th} = \frac{R_2 E_1}{R_2 + R_1} = \frac{6\Omega \times 9V}{6\Omega + 3\Omega} = 6V$$

## Thevenin's Equivalent Circuits:



FIG. 9.31

Substituting the Thévenin equivalent circuit for the network external to  $R_L$  in Fig. 9.26.

For 
$$R_L = 10 \Omega$$
  
 $I_{Th} = \frac{E_{Th}}{R_{eq}} = \frac{6}{10 + 2} = \frac{1}{2} \Omega$ 

For 
$$R_L = 100 \Omega$$
  
 $I_{Th} = \frac{E_{Th}}{R_{eq}} = \frac{6}{100 + 2} = \frac{1}{17} \Omega$ 

# **BKP** poraiche:

**Electrostatics:** Electric dipole, Electric field due to dipole, dipole on external electric field, Gauss's Law and its application.

Capacitors: Parallel plate capacitors with dielectrics, dielectric and Gauss's Law

Electromagnetic Induction: Faraday's experiment, Faraday's law, Lenz's law

**Network analysis:** Kirchoff's law, Superposition theorem, Thevenin's theorem, Norton Theorem, Maximum power transfer theorem, Mesh and node circuit analysis.

**DC** and AC circuits: DC circuits with LR, RC, LCR in series, AC circuits LR, RC, LCR in series.