# Mesh Parameterization

#### Motivation

- Corresponds to finding a mapping from discrete surface patch to an isomorphic planar mesh.
- Each mesh node in surface will be assigned to coordinates (u,v) in planar region.
- This allows for mesh processing like texture mapping, remeshing etc. in the flat parametric space.



**Figure 1:** A piecewise linear mapping between a 3D mesh M and an isomorphic flat mesh U, where a triangle on the mesh is mapped to a triangle in the parameterization.

# Conformal mapping



**Figure 4:** A 3D 1-ring, and its associated flattened version.

- We look for "smooth parameterizations" that minimize distortion
- Let energy E(M, U) be distortion measure, then simple criterion for energy to be minimum over M ~ U is  $\frac{\partial E}{\partial \mathbf{u}_i} = 0$ 
  - Discrete conformal mapping is angle preserving  $\frac{\partial E_A}{\partial \mathbf{u}_i} = \sum_{i \in N(i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{u}_i \mathbf{u}_j) = 0$
- Solve sparse linear system as  $\mathsf{M}^\mathsf{A}\mathsf{U} = 0$   $\mathsf{M}^{\mathcal{A}}_{ij} = \left\{ \begin{array}{ll} \cot(\alpha_{ij}) + \cot(\beta_{ij}) & \text{if } j \in \mathcal{N} \ (i) \\ -\sum_{k \in \mathcal{N} \ (i)} \mathsf{M}^{\mathcal{A}}_{ik} & \text{if } i = j \\ 0 & \text{otherwise,} \end{array} \right.$  with boundary conditions  $\mathsf{U}^\mathsf{boundary} = \mathsf{X}^\mathsf{boundary}$

### Methodology

- Get boundary loop of the triangulated patch
- 2. Fix U<sup>boundary</sup> in the planar region while preserving length between boundary points
- 3. Solve sparse system MU = 0 to find U<sup>internal</sup>
- 4. Visualize the flattened mesh using normals of the original 3d mesh



3d mesh of hemisphere



Boundary loops of the mesh



UV coordinates after flattening

#### Some more results









#### Texture mapping

- We generate a texture board pattern in flattened mesh thus coloring triangles
- The corresponding faces in the original mesh are visualized using same colors
- Thus, mapping textures onto surface patches is simplified.
- This helps to evaluate the parameterization





# Some more texture maps









#### Implementation problems

- Problem Internal vertices values going outside the boundary
- Remedy Laplacian matrix was incorrect, row sum need to zero

# Implementation problems



 Parameterization not good for some meshes as many triangles are farther away from boundary





#### Thanks!

Submitted By

Navami Kairanda (2577665) Harish Gouda (2577731)

