efn0_malaria_binary

January 30, 2021

1 Deep Learning for Automated Medical Diagnosis of Malaria

Gonçalo Marques, Antonio Ferreras, Isabel de la Torre

Department of Signal Theory and Communications, and Telematics Engineering University of Valladolid, Paseo de Belén, 15, 47011, Valladolid, Spain

1.1 Environment

1.1.1 Install required libraries

- twine: Utility for publishing Python packages on PyPI.
- scikit-learn: e Various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means
- ImageDataAugmentor: Custom image data generator for Keras supporting the use of modern augmentation modules
- efficientnet: Convolutional Neural Network model

```
[]: !pip install -q twine
!pip install -U -q scikit-learn
!pip install -q git+https://github.com/mjkvaak/ImageDataAugmentor
!pip install -q efficientnet
```

Building wheel for ImageDataAugmentor (setup.py) ... done

1.1.2 Parameters

Set of parameters to carry out different simmulations, with different models and different sizes of image sets

```
FILENAME = 'cell-images-for-detecting-malaria.zip'
if COLAB:
   DIRNAME = '/content/drive/My Drive/Colab Notebooks/MALARIA/'
   DIRNAME = './'
# Where to decompress the content of the ZIP file
ORIDIR = "cell images/"
# Local Directory for classified images (train / test / validate)
DESTRIE "data/"
# Aleatory parameter to reproduce the experiments
SEED = 1234
if QUICK_AND_DIRTY:
   PERC = 5 # Percentage of images to deal with (5, 25, 50 ...)
   PATIENCE = 3 # Parameter for ReduceLROnPlateau()
else:
   PERC = 0 # Complete set 22,046 images
   KFOLD = 10 # 10-kfold method
   EPOCHS = 33 # long run
   VERBOSE = 0  # Plea, be quiet!
   PATIENCE = 6 # Parameter for ReduceLROnPlateau()
BATCH_SIZE = 16
SAVE_RESULTS = True # Only if there is only one simulation per model
FILERES = 'results.p' # Filename to store results
# Need to load the different models to get the funciotn name available
import efficientnet.tfkeras as efn
import tensorflow.keras.applications as app
## Diffferent configuration parameters to run different models simmultaneously
# modelos: Array with the parameters to perform a specific simmulation with a
\rightarrowmodel
# [name, function, preprocessing, learningSet, width, hight, freezeModel, ____
\hookrightarrow process]
# name: name of the model of the Keras application
   function: function of the Keras Application
   preprocessing: Keras function for preprocessing images
```

```
learningset: 'noisy-student' or'imagenet'
     width: Input width (in pixels) of the images required by the model
     height: Input height (in pixels) of the images required by the model
     freezeModel: TRUE. The base model is frozen and its parameters are not_{\sqcup}
\rightarrow trained
     precess: True if we want to process this line
modelos = [
    ['EfficientNetBO', efn.EfficientNetBO, None, 'noisy-student', 224, 224, 11
→False, True],
    ['EfficientNetB0', efn.EfficientNetB0, None, 'noisy-student', 224, 224, L
→True, False],
    ['EfficientNetB1', efn.EfficientNetB1, None, 'noisy-student', 240, 240, 11
→False, False],
    ['EfficientNetB2', efn.EfficientNetB2, None, 'noisy-student', 260, 260, L
→False, False],
    ['EfficientNetB3', efn.EfficientNetB3, None, 'noisy-student', 300, 300, [
→False, False],
    ['EfficientNetB4', efn.EfficientNetB4, None, 'noisy-student', 380, 380, __
→False, False],
    ['EfficientNetB5', efn.EfficientNetB5, None, 'noisy-student', 456, 456, u
→False, False],
    ['EfficientNetB6', efn.EfficientNetB6, None, 'noisy-student', 528, 528,
→False, False],
    ['EfficientNetB7', efn.EfficientNetB7, None, 'noisy-student', 600, 600, |
→False, False],
    ['Xception', app. Xception, app. xception.preprocess_input, 'imagenet', 229, ___
 \rightarrow229, False, False],
    ['VGG16', app.VGG16, app.vgg16.preprocess_input, 'imagenet', 224, 224, __
→False, False],
    ['VGG19', app.VGG19, app.vgg19.preprocess_input, 'imagenet', 224, 224, __
→False, False],
    ['ResNet50', app.ResNet50, app.resnet.preprocess_input, 'imagenet', 224,_
\rightarrow224, False, False],
    ['ResNet101521', app.ResNet101, app.resnet.preprocess_input, 'imagenet', __
\rightarrow224, 224, False, False],
    ['ResNet152', app.ResNet152, app.resnet.preprocess input, 'imagenet', 224,
\rightarrow224, False, False],
    ['ResNet50V2', app.ResNet50, app.resnet_v2.preprocess_input, 'imagenet',u
\rightarrow224, 224, False, False],
    ['ResNet101V2', app.ResNet101V2, app.resnet_v2.preprocess_input,_
→'imagenet', 224, 224, False, False],
    ['ResNet152V2', app.ResNet152V2, app.resnet_v2.preprocess_input,_
['MobileNet', app.MobileNet, app.mobilenet.preprocess_input, 'imagenet', __
 \rightarrow224, 224, False, False],
```

```
['InceptionV3', app.InceptionV3, app.inception_v3.preprocess_input,_
 →'imagenet', 229, 229, False, False],
    ['InceptionResNetV2', app.InceptionResNetV2, app.inception_resnet_v2.
 →preprocess_input, 'imagenet', 229, 229, False, False],
     ['DenseNet121', app.DenseNet121, app.densenet.preprocess_input, 'imagenet', __
 \rightarrow224, 224, False, False],
    ['DenseNet169', app.DenseNet169, app.densenet.preprocess_input, 'imagenet', __
 \rightarrow224, 224, False, False],
    ['DenseNet201', app.DenseNet201, app.densenet.preprocess_input, 'imagenet', |
 \rightarrow224, 224, False, False],
    ['NASNetLarge', app.NASNetLarge, app.nasnet.preprocess_input, 'imagenet', ___
 \rightarrow224, 224, False, False],
    ['NASNetMobile', app.NASNetMobile, app.nasnet.preprocess_input, 'imagenet', ___
 \rightarrow224, 224, False, False]
    1
print('Ready!!')
```

Ready!!

1.1.3 GPU / TPU excution mode selection

Select GPU/TPU environment TPU must be selected in the Google Colab environment

From Kaggle: Triple Stratified KFold with TFRecords (Chris Deotte)

(TPU: Not working at the moment / can't be used)

```
[]: import tensorflow as tf
     if DEVICE == "TPU":
         print('connecting to TPU...')
         try:
             tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
             print('Running on TPU', tpu.master())
         except ValueError:
             print('Could not connect to TPU')
             tpu = None
         if tpu:
             try:
                 print('Initializing TPU...')
                 tf.config.experimental_connect_to_cluster(tpu)
                 tf.tpu.experimental.initialize_tpu_system(tpu)
                 strategy = tf.distribute.TPUStrategy(tpu)
                 print('TPU initialized')
             except _:
                 print('Failed to initialize TPU!!')
```

```
else:
    DEVICE = "GPU"

if DEVICE != 'TPU':
    print("Using default strategy for CPU and single GPU")
    strategy = tf.distribute.get_strategy()

if DEVICE == 'GPU':
    print("Num Available GPUs:",
        len(tf.config.experimental.list_physical_devices('GPU')))

AUTO = tf.data.experimental.AUTOTUNE
print(f'AUTO: {AUTO}')
REPLICAS = strategy.num_replicas_in_sync
print(f'REPLICAS: {REPLICAS}')

print("\ntf.__version__ is", tf.__version__)
print("tf.keras.__version__ is:", tf.keras.__version__)
Using default strategy for CPU and single GPU
```

Num Available GPUs: 1
AUTO: -1
REPLICAS: 1

tf.__version__ is 2.3.0
tf.keras.__version__ is: 2.4.0

1.2 Input

Mounting Local Drive and download the images (only if needed: Colab environment)

In Local environment, the zip file is already present and previously extracted

```
[]: if COLAB:
    # Mount drive
    from google.colab import drive
    import shutil
    import os
    from zipfile import ZipFile

    drive.mount("/content/drive")
    shutil.copy(DIRNAME+FILENAME, FILENAME)
    ZipFile(FILENAME, 'r').extractall()
    os.remove(FILENAME)
    print(ORIDIR+': {} files'.format(len(os.listdir(ORIDIR))))

TIPOS = os.listdir(ORIDIR)  # Automatic List of classes extracted from directoies
```

```
print('Types: {}'.format(TIPOS))
```

Types: ['Parasitized', 'Uninfected']

1.3 Configuration

- 1. Import the images
- 2. Create two directories of the images with their labels according to classes
- 3. Configure training, testing and validate the model using stratified 10-fold cross validation.

Create DataFrames

```
[]: import pandas as pd
     import sklearn.model_selection
     import random
     import shutil
     import os
     ficheros = [] # The list of image file names
     if os.path.isdir(DESTDIR): # remove dir if exists (to avoid errors)
         shutil.rmtree(DESTDIR)
     os.mkdir(DESTDIR)
                                 # create destinate directory
     df total = pd.DataFrame()
                               # dataframe for filenames + class
     for tipo in TIPOS:
         ficheros = os.listdir(ORIDIR+tipo)
         df_total = pd.concat([df_total,
                               pd.DataFrame(list(zip(ficheros,
                                                      [tipo]*(len(ficheros)))),
                                            columns=['file','label'])])
                                    # cleaning files from stange types
         for fichero in ficheros:
             if fichero.lower().endswith(('.png', '.jpg', '.jpeg',
                                          '.tiff', '.bmp', '.gif')):
                 shutil.copy(ORIDIR+tipo+'/'+fichero, DESTDIR)
             else:
                 os.remove(ORIDIR+tipo+'/'+fichero)
                 print(f'Invalid file {fichero}')
                 df_total = df_total.drop(df_total[df_total['file']==fichero].index)
                       # Keep only a fraction of images to speed up the simmulation
     if PERC != 0:
         df_total = df_total.sample(n=round(len(df_total)*PERC/100.))
     # Ramdonly split the images: 0.80 for learning / 0.20 for validatind
     df_learn, df_val = sklearn.model_selection.train_test_split(df_total,
                                                                 test_size=0.2)
     df_learn = pd.concat([df_learn, pd.get_dummies(df_learn['label'])], axis=1)
```

```
df_val = pd.concat([df_val, pd.get_dummies(df_val['label'])], axis=1)
print("DataFrame Learn : {} files".format(len(df_learn)))
print("DataFrame Learn : {} files".format(len(df_val)))
```

DataFrame Learn : 22046 files DataFrame Learn : 5512 files

1.4 Display random images

For testing purposes

```
[]: import random
     import matplotlib.pyplot as plt
     N = 9 # Number of images of each class to display
     for tipo in TIPOS:
         ficheros = list(df_total['file'][df_total['label']==tipo])
         images = random.sample(ficheros, N)
         print("\nImage Type: {}".format(tipo))
         plt.figure(figsize=(8,8))
         for i in range(N):
             plt.subplot(3, int(N/3),i+1)
             img = plt.imread(DESTDIR+images[i])
             plt.imshow(img)
             plt.axis('off')
         plt.tight_layout()
         plt.show()
     del [ficheros, df_total]
```

Image Type: Parasitized

Image Type: Uninfected

2 MODEL

2.1 Auxiliary functions for plotting

```
[]: from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import roc_curve, auc from itertools import cycle

# Plot confussion matrix # y_true: real values # y_pred: predicted values
```

```
# tipos: list with the names of the classes
def plot_confussion_matrix(y_true, y_pred, tipos):
    cm = confusion_matrix(y_true.values.argmax(axis = 1), y_pred.argmax(axis = u
\hookrightarrow 1))
    plt.figure(figsize=(6.5, 5))
    sns.heatmap(cm, annot=True, fmt="d")
    plt.title('\nAccuracy:{0:.4f}'.format(accuracy_score(y_true, y_pred)))
    plt.ylabel('True Class')
    plt.xlabel('Predicted Class')
    plt.xticks(np.arange(len(tipos))+0.5, tipos)
    plt.yticks(np.arange(len(tipos))+0.25, tipos)
    plt.show()
# Plot ROC (Area under the curve)
# y true: real values
# y_pred: predicted values
# tipos: list with the names of the classes
def plot_roc_curve(y_true, y_pred, tipos):
    plt.style.use('ggplot')
    plt.figure(figsize=(6.5, 5))
    fpr = dict()
    tpr = dict()
    roc_auc = dict()
    n_classes=len(tipos)
    for i in range(n_classes):
        fpr[i], tpr[i], _ = roc_curve(y_true.values[:, i], y_pred[:, i])
        roc_auc[i] = auc(fpr[i], tpr[i])
    # Max. 6 classes
    colors = cycle(['blue', 'red', 'green', 'black', 'violet', 'brown'])
    for i, color in zip(range(n_classes), colors):
        plt.plot(fpr[i], tpr[i], color=color, lw=1.5, \
                 label='ROC curve - {0} (area = {1:0.6f})'\
                 .format(TIPOS[i], roc_auc[i]))
    plt.plot([0, 1], [0, 1], linestyle='--', color = 'grey', lw=1)
    plt.xlim([-0.05, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    if n_classes == 2:
        plt.title('Receiver Operating Curve (binary-class)')
    else:
        plt.title('Receiver operating Curve (multi-class)')
    plt.legend(loc="lower right")
    plt.show()
```

```
# Plot history of the training
# hist: data to plot
# model: nName of the model
# fold: number of the fold of the k-fold algorithm
def plot_history(hist, model, fold):
   plt.figure(figsize=(8,5))
   plt.plot(hist['accuracy'],'-o',label='Train ACC',color='#ff7f0e')
   plt.plot(hist['val_accuracy'],'-o',label='Val ACC',color='#1f77b4')
   x = np.argmax(hist['val_accuracy']); y = np.max( hist['val_accuracy'])
   xdist = plt.xlim()[1] - plt.xlim()[0]; ydist = plt.ylim()[1] - plt.ylim()[0]
   plt.scatter(x,y,s=200,color='#1f77b4');
   plt.text(x-0.03*xdist,y-0.13*ydist,'max acc\n\%.4f'\%y,size=14)
   plt.ylabel('Accurary', size=14);
   plt.xlabel('Epoch',size=14)
   plt.legend(loc=2)
   plt2 = plt.gca().twinx()
   plt2.plot(hist['loss'],'-o',label='Train Loss',color='#2ca02c')
   plt2.plot(hist['val_loss'],'-o',label='Val Loss',color='#d62728')
   x = np.argmin(hist['val_loss'] ); y = np.min(hist['val_loss'] )
   ydist = plt.ylim()[1] - plt.ylim()[0]
   plt.scatter(x,y,s=200,color='#d62728');
   plt.text(x-0.03*xdist,y+0.05*ydist,'min loss\n\%.4f'\%y, size=11)
   plt.ylabel('Loss',size=14)
   plt.title('%s - FOLD : %i'%(model, fold), size=18)
   plt.legend(loc=3)
   plt.show()
print('Functions created!')
```

Functions created!

2.2 Auxiliary Functios for modeling

```
[]: from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dropout, Dense, GlobalAveragePooling2D
from tensorflow.keras.callbacks import ModelCheckpoint,ReduceLROnPlateau
import tensorflow as tf

# Create Keras model
# fnctn : function application of the base model
# wghs: pretrained weights to us in the model
# wdth: input width of the model
# hght: input heigh of the model
# frz: (Boolen) ¿train base model parameters?

def create_model(fnctn, wghs, wdth, hght, frz):
```

```
model = fnctn(weights = wghs, include_top=False,
                  input_shape = (wdth, hght,3))
    if frz:
        model.trainable = False # FIXING model
   x = model.output
   x = GlobalAveragePooling2D()(x)
   x = Dense(128, activation="relu")(x)
   x = Dropout(0.3)(x)
   x = Dense(64, activation="relu")(x)
   x = Dropout(0.3)(x)
   x = Dense(32, activation="relu")(x)
   x = Dropout(0.3)(x)
   predictions = Dense(len(TIPOS), activation="softmax")(x)
   model = Model(inputs=model.input, outputs=predictions)
   return model
# Callbacks for the model
# ReduceLROnPlateau: reduce the learning rate when learning dismishes
# ModelCheckPoint: to store models for future use
def create callbacks(fold):
   return [ReduceLROnPlateau(monitor = 'val_loss', factor = 0.5,
                              patience = PATIENCE, min lr = 0.000001),
            ModelCheckpoint('model_{}.hdf5'.format(fold), save_best_only = True,
                            monitor = 'val_loss', mode = 'min', u
→save_freq='epoch')]
# Create custom_loss with smoothing parameter
def custom_loss(y_true, y_pred):
 return tf.keras.losses.categorical_crossentropy(y_true, y_pred,
                                                  label smoothing=0.1)
# Convert y pred to 0 or 1, selecting the maximum value of softmax
def binary_decission(y_pred, tipos):
   decission = np.zeros((len(y_pred), len(tipos)), dtype=int)
   for i in range(len(y_pred)):
        decission[i, int(np.where(y_pred[i] == np.amax(y_pred[i]))[0])] = 1
   return decission
print('Functions created!')
```

Functions created!

2.3 Augmentation

Use **albumentations** for image augmentation. The purpose of image augmentation is to create new training samples from the existing data. We use the following transformation in our model:

- Flip: Flip the input either horizontally, vertically or both horizontally and vertically.
- Transpose: Transpose the input by swapping rows and columns.
- IAAAdditiveGaussianNoise: Add gaussian noise to the input image.
- GaussNoise: Apply gaussian noise to the input image.
- MotionBlur: Apply motion blur to the input image using a random-sized kernel.
- MedianBlur: Blur the input image using a median filter with a random aperture linear size.
- Blur: Blur the input image using a random-sized kernel.
- ShiftScaleRotate: Randomly apply affine transforms: translate, scale and rotate the input.
- OpticalDistortion: Apply an optical distortion to the full image.
- GridDistortion: Apply a grid distortion with padding.
- IAAPiecewiseAffine: Place a regular grid of points on the input and randomly move the neighbourhood of these point around via affine transformations.
- CLAHE: Apply Contrast Limited Adaptive Histogram Equalization to the input image.
- IAASharpen: Sharpen the input image and overlays the result with the original image. This augmentation is deprecated. Please use Sharpen instead.
- IAAEmboss: Emboss the input image and overlays the result with the original image.
- RandomContrast: Randomly change contrast of the input image.
- RandomBrightness: Randomly change brightness and contrast of the input image.

```
[]: from albumentations import *
     aug=Compose([RandomRotate90(),
                  Flip(),
                  Transpose(),
                  OneOf([IAAAdditiveGaussianNoise(),
                         GaussNoise(),], p=0.2),
                  OneOf([MotionBlur(p=.2),
                         MedianBlur(blur_limit=3, p=.1),
                         Blur(blur_limit=3, p=.1),], p=0.3),
                  ShiftScaleRotate(shift_limit=0.0625,
                                    scale_limit=0.2,
                                    rotate_limit=45, p=.2),
                  OneOf([OpticalDistortion(p=0.3),
                         GridDistortion(p=.1),
                         IAAPiecewiseAffine(p=0.3),], p=0.3),
                  OneOf([CLAHE(clip_limit=2),
                         IAASharpen(),
                         IAAEmboss(),
                         RandomContrast(),
                         RandomBrightness(),], p=0.3),
                  ], p=1)
     print('Ready!')
```

Ready!

2.4 Training

For each model:

- Define augmentation pipeline using Compose function of albumentation library.
- Create the data generator as an object of the ImageDataAugmentator library and configure the augmentation pipeline obtained previously. Do this for train / test / vlaidation dataset.
- Create the model using the appropriate function and dense layers with relu activation function and an output layer with a softmax activation function.
- Compile the model using the ADAM optimizer and Categorical_Crossentropy function for loss calculation.
- Model fitting using 33 epochs and ReduceLRonPlateau function to reduce the learning rate when the metrics stops improving.
- Save the model to be used for validation testing and ensemble model.
- Configure testing dataset.
- Generate performance score values for each fold.
 - 1. Model loss graph.
 - 2. Model Accuracy graph.
 - 3. Test Classification Report.
 - 4. Validate Model.
 - 5. AUC-ROC curve.
 - 6. Confusion Matrix.
 - 7. Validation Classification Report.
- Generate performance score values dor ensembled model
 - 1. Ensembled Classification Report.
 - 2. AUC-ROC curve.
 - 3. Confusion Matrix.

```
for (nombre, funcion, preproc, pesos, ancho, alto, freeze, procesar) in modelos:
    # Skip model if required
    if not procesar:
        continue
    else: # Presentation for starting simmulation
        print('#'*50); print('### ', nombre); print('#'*50);
        if freeze:
            print('Model frozen....')
    # Start point for Time measurement
    start_model = datetime.now()
    # List of result values initialization
    test_true = {}; test_pred = {}; val_true = {}; val_pred = {}
    # Define custom image data generator with support for albumentations
    data_gen = ImageDataAugmentor(rescale=1/255, augment = aug,
                                 preprocess_input = preproc)
    # Stratified K-Folds cross-validator. Provides train/test indices to split⊔
\hookrightarrow data
    # in train/test sets. KFOLD: number of folds; defined in PARAMETER section
    kf = StratifiedKFold(KFOLD, shuffle = True, random_state = 50)
    # Loop for K interations (from k-fold)
    for fold, (train_index, test_index) in enumerate(kf.split(df_learn,
                                                           df_learn['label'])):
        # fine grain measurement for each fold
        start_fold = datetime.now()
        # presentation
        print('*'*50);print('** Model: {} fold: {} '.format(nombre, fold))
        print('Training...')
        # Create sets of train and test images
        df_train = df_learn.iloc[train_index,:]
        df_test = df_learn.iloc[test_index,:]
        # Create data generator for train, test and validation
        # use de ImageDataAugmentor object previously defined
        train_generator = data_gen.flow_from_dataframe(
            df_train, directory= 'data',
            target_size=(ancho, alto), x_col = "file", y_col = TIPOS,
            class_mode = 'raw', shuffle = True, batch_size = BATCH_SIZE)
        test_generator = data_gen.flow_from_dataframe(
```

```
df_test, directory='data',
    target_size=(ancho, alto), x_col = "file", y_col = TIPOS,
    class_mode = 'raw', shuffle = False, batch_size = BATCH_SIZE)
val_generator = data_gen.flow_from_dataframe(
    df_val, directory='data',
    target_size = (ancho, alto), x_col = "file", y_col = TIPOS,
    class_mode ='raw', shuffle = False, batch_size = BATCH_SIZE)
# Create the model
model = create model(funcion, pesos, ancho, alto, freeze)
# Compile the model
model.compile(optimizer=Adam(0.0001), loss=custom_loss,
              metrics=['accuracy'])
# Train
results = model.fit(train_generator, epochs = EPOCHS,
                    steps_per_epoch = train_generator.n/BATCH_SIZE,
                    validation_data = test_generator,
                    validation_steps = test_generator.n/BATCH_SIZE,
                    callbacks = create_callbacks(fold),
                    verbose = VERBOSE)
# Plot history
plot_history(results.history, nombre, fold)
# Get best model of the training phase for this fold
model.load_weights('model_{}.hdf5'.format(fold))
# Predict class for test images
print('Predicting...')
test_generator.reset()
test_true[f'fold{fold}'] = df_test.iloc[:,2::]
test_pred[f'fold{fold}'] = model.predict(test_generator,
                             steps=test_generator.n/BATCH_SIZE,
                             verbose=VERBOSE)
# Get and print/plot results for testing
decission = binary_decission(test_pred[f'fold{fold}'], TIPOS)
print('Accuracy {:.6f}'.format(accuracy_score(test_true[f"fold{fold}"],
                                              decission)))
print(classification_report(test_true[f"fold{fold}"], decission,
                            target_names = TIPOS, digits = 6))
# Validate results with the appropriate set of samples
print('Validating...')
```

```
val_generator.reset()
       val_true[f'fold{fold}'] = df_val.iloc[:,2::]
       val_pred[f'fold{fold}'] = model.predict(val_generator,
                                               steps=val_generator.n/
→BATCH_SIZE,
                                               verbose=1)
       # Get and print/plot results for validation
       plot_roc_curve(val_true[f'fold{fold}'], val_pred[f'fold{fold}'],TIPOS)
       decission = binary_decission(val_pred[f'fold{fold}'], TIPOS)
       plot_confussion_matrix(val_true[f'fold{fold}'], decission, TIPOS)
       print(classification_report(val_true[f"fold{fold}"], decission,
                                   target_names = TIPOS, digits = 6))
       # Timmings for each k-fold iteration
       print('End of Fold {} - Elapsed Time: {}'.format(fold, datetime.now() -
→start fold))
   # End of K-FOLD process. Clean environment
   del model, data_gen, train_generator
   tf.keras.backend.clear_session()
   gc.collect()
   # Calculate ensembled results from the K models
   print('\n Validate emsembled results...')
   val_ensemble = np.array([[0.,0.]]*len(df_val))
   for fold in range(KFOLD):
       val_ensemble = val_pred[f'fold{fold}'] + val_ensemble
   val_ensemble = np.divide(val_ensemble, np.array([KFOLD,KFOLD]))
   # Print / Plot results
   val true = df val.iloc[:,2::]
   plot_roc_curve(val_true, val_ensemble,TIPOS)
   decission = binary decission(val ensemble, TIPOS)
   print('Accuracy {:.6f}'.format(accuracy_score(val_true, decission)))
   plot_confussion_matrix(val_true, decission, TIPOS)
   f1 = f1_score(val_true, decission, average="macro")
   print('f1 score: {:.6f}'.format(f1))
   print(classification_report(val_true, decission,
                               target_names = TIPOS, digits = 6))
   # Total time spent
   time_taken = datetime.now() - start_model;
   print('\n END Model {} - Elapsed Time: {}'.format(nombre,
                                              datetime.now() - start_model))
   # Saving results
```

Using TensorFlow backend.

EfficientNetB0

** Model: EfficientNetBO fold: 0

Training...

Found 19841 validated image filenames.

Found 2205 validated image filenames.

Found 5512 validated image filenames.

WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.1006s vs `on_train_batch_end` time: 0.2411s). Check your callbacks.

Predicting...
Accuracy 0.974603

	precision	recall	f1-score	support
Parasitized	0.977231	0.971920	0.974569	1104
Uninfected	0.971996	0.977293	0.974638	1101
micro avg	0.974603	0.974603	0.974603	2205
macro avg	0.974614	0.974607	0.974603	2205
weighted avg	0.974617	0.974603	0.974603	2205
samples avg	0.974603	0.974603	0.974603	2205

Validating...

	precision	recall	f1-score	support
Parasitized	0.978086	0.975948	0.977016	2744
Uninfected	0.976208	0.978324	0.977265	2768
micro avg	0.977141	0.977141	0.977141	5512
macro avg	0.977147	0.977136	0.977140	5512
weighted avg samples avg	0.977143	0.977141	0.977141	5512
	0.977141	0.977141	0.977141	5512

** Model: EfficientNetBO fold: 1

Training...

Found 19841 validated image filenames.

Found 2205 validated image filenames.

Found 5512 validated image filenames.

batch time (batch time: $0.1017s\ vs\ `on_train_batch_end`\ time: <math>0.2404s$). Check your callbacks.

Predicting... Accuracy 0.977324

·	precision	recall	f1-score	support
Parasitized	0.978221	0.976449	0.977335	1104
Uninfected	0.976428	0.978202	0.977314	1101
micro avg	0.977324	0.977324	0.977324	2205
macro avg	0.977325	0.977325	0.977324	2205
weighted avg	0.977326	0.977324	0.977324	2205
samples avg	0.977324	0.977324	0.977324	2205

Validating...

	precision	recall	f1-score	support
Parasitized	0.982372	0.974854	0.978599	2744
Uninfected	0.975260	0.982659	0.978945	2768
micro avg	0.978774	0.978774	0.978774	5512 5512
weighted avg samples avg	0.978801	0.978774	0.978773	5512
	0.978774	0.978774	0.978774	5512

** Model: EfficientNetBO fold: 2

Training...

Found 19841 validated image filenames.

Found 2205 validated image filenames.

Found 5512 validated image filenames.

batch time (batch time: $0.1007s\ vs\ `on_train_batch_end`\ time: <math>0.2453s$). Check your callbacks.

Predicting... Accuracy 0.976871

·	precision	recall	f1-score	support
Parasitized	0.981702	0.971920	0.976787	1104
Uninfected	0.972122	0.981835	0.976954	1101
micro avg	0.976871	0.976871	0.976871	2205
macro avg	0.976912	0.976877	0.976870	2205
weighted avg	0.976919	0.976871	0.976870	2205
samples avg	0.976871	0.976871	0.976871	2205

Validating...

	precision	recall	f1-score	support
Parasitized	0.988355	0.958819	0.973363	2744
Uninfected	0.960351	0.988801	0.974368	2768
micro avg	0.973875	0.973875	0.973875	5512
	0.974353	0.973810	0.973866	5512
weighted avg samples avg	0.974292	0.973875	0.973868	5512
	0.973875	0.973875	0.973875	5512

** Model: EfficientNetBO fold: 3

Training...

Found 19841 validated image filenames.

Found 2205 validated image filenames.

Found 5512 validated image filenames.

batch time (batch time: $0.1017s\ vs\ `on_train_batch_end`\ time: <math>0.2464s$). Check your callbacks.

Predicting... Accuracy 0.974603

·	precision	recall	f1-score	support
Parasitized	0.978102	0.971014	0.974545	1104
Uninfected	0.971145	0.978202	0.974661	1101
micro avg	0.974603	0.974603	0.974603	2205
macro avg	0.974624	0.974608	0.974603	2205
weighted avg	0.974628	0.974603	0.974603	2205
samples avg	0.974603	0.974603	0.974603	2205

Validating...

	precision	recall	f1-score	support
Parasitized	0.983063	0.973032	0.978022	2744
Uninfected	0.973534	0.983382	0.978433	2768
micro avg	0.978229	0.978229 0.978207	0.978229	5512 5512
weighted avg samples avg	0.978278	0.978229	0.978228	5512
	0.978229	0.978229	0.978229	5512

** Model: EfficientNetBO fold: 4

Training...

Found 19841 validated image filenames.

Found 2205 validated image filenames.

Found 5512 validated image filenames.

batch time (batch time: $0.1007s\ vs\ `on_train_batch_end`\ time: <math>0.2443s$). Check your callbacks.

Predicting... Accuracy 0.973243

·	precision	recall	f1-score	support
Parasitized	0.978042	0.968297	0.973145	1104
Uninfected	0.968525	0.978202	0.973339	1101
micro avg	0.973243	0.973243	0.973243	2205
macro avg	0.973284	0.973249	0.973242	2205
weighted avg	0.973290	0.973243	0.973242	2205
samples avg	0.973243	0.973243	0.973243	2205

Validating...

	precision	recall	f1-score	support
Parasitized	0.987403	0.971210	0.979239	2744
Uninfected	0.971916	0.987717	0.979753	2768
micro avg	0.979499	0.979499	0.979499	5512
	0.979659	0.979463	0.979496	5512
weighted avg samples avg	0.979626 0.979499	0.979499	0.979497 0.979499	5512 5512

** Model: EfficientNetBO fold: 5

Training...

Found 19841 validated image filenames.

Found 2205 validated image filenames.

Found 5512 validated image filenames.

batch time (batch time: $0.1466s\ vs\ `on_train_batch_end`\ time: 0.2433s)$. Check your callbacks.

Predicting... Accuracy 0.974150

•	precision	recall	f1-score	support
Parasitized	0.984259	0.963735	0.973889	1103
Uninfected	0.964444	0.984574	0.974405	1102
micro avg	0.974150	0.974150	0.974150	2205
	0.974352	0.974154	0.974147	2205
weighted avg samples avg	0.974356	0.974150	0.974147	2205
	0.974150	0.974150	0.974150	2205

Validating...

345/344 [=========] - 81s 236ms/step

	precision	recall	f1-score	support
Parasitized	0.982176	0.963921	0.972963	2744
Uninfected	0.964881	0.982659	0.973689	2768
micro avg	0.973331	0.973331	0.973331	5512 5512
weighted avg samples avg	0.973491	0.973331	0.973328	5512
	0.973331	0.973331	0.973331	5512

** Model: EfficientNetBO fold: 6

Training...

Found 19842 validated image filenames.

Found 2204 validated image filenames.

Found 5512 validated image filenames.

batch time (batch time: $0.0988s\ vs\ `on_train_batch_end`\ time: 0.2463s)$. Check your callbacks.

Predicting... Accuracy 0.976407

·	precision	recall	f1-score	support
Parasitized	0.979909	0.972801	0.976342	1103
Uninfected	0.972949	0.980018	0.976471	1101
micro avg	0.976407	0.976407	0.976407	2204
macro avg	0.976429	0.976410	0.976406	2204
weighted avg	0.976432	0.976407	0.976406	2204
samples avg	0.976407	0.976407	0.976407	2204

Validating...

345/344 [========] - 79s 230ms/step

	precision	recall	f1-score	support
Parasitized	0.983051	0.972303	0.977647	2744
Uninfected	0.972838	0.983382	0.978081	2768
micro avg	0.977866	0.977866	0.977866	5512
	0.977944	0.977842	0.977864	5512
macro avg weighted avg samples avg	0.977922	0.977866 0.977866	0.977865 0.977866	5512 5512 5512

** Model: EfficientNetBO fold: 7

Training...

Found 19842 validated image filenames.

Found 2204 validated image filenames.

Found 5512 validated image filenames.

 ${\tt WARNING:tensorflow:Callbacks\ method\ `on_train_batch_end`\ is\ slow\ compared\ to\ the}$

batch time (batch time: $0.1037s\ vs\ `on_train_batch_end`\ time: 0.2443s)$. Check your callbacks.

Predicting... Accuracy 0.983666

·	precision	recall	f1-score	support
Parasitized	0.985441	0.981868	0.983651	1103
Uninfected	0.981900	0.985468	0.983681	1101
micro avg	0.983666	0.983666	0.983666	2204
	0.983671	0.983668	0.983666	2204
weighted avg samples avg	0.983672	0.983666	0.983666	2204
	0.983666	0.983666	0.983666	2204

Validating...

	precision	recall	f1-score	support
Parasitized	0.984490	0.971574	0.977990	2744
Uninfected	0.972183	0.984827	0.978464	2768
micro avg	0.978229	0.978229	0.978229	5512
	0.978336	0.978200	0.978227	5512
weighted avg samples avg	0.978310 0.978229	0.978229	0.978228	5512 5512

** Model: EfficientNetBO fold: 8

Training...

Found 19842 validated image filenames.

Found 2204 validated image filenames.

Found 5512 validated image filenames.

 ${\tt WARNING:tensorflow:Callbacks\ method\ `on_train_batch_end`\ is\ slow\ compared\ to\ the}$

batch time (batch time: $0.0998s\ vs\ `on_train_batch_end`\ time: 0.2533s)$. Check your callbacks.

Predicting... Accuracy 0.970508

v	precision	recall	f1-score	support
Parasitized	0.978782	0.961922	0.970279	1103
Uninfected	0.962500	0.979110	0.970734	1101
micro avg	0.970508	0.970508	0.970508	2204
macro avg	0.970641	0.970516	0.970506	2204
weighted avg	0.970649	0.970508	0.970506	2204
samples avg	0.970508	0.970508	0.970508	2204

Validating...

	precision	recall	f1-score	support
Parasitized	0.985513	0.966837	0.976085	2744
Uninfected	0.967730	0.985910	0.976736	2768
micro avg	0.976415	0.976415	0.976415	5512
	0.976622	0.976374	0.976411	5512
weighted avg samples avg	0.976583	0.976415	0.976412	5512
	0.976415	0.976415	0.976415	5512

** Model: EfficientNetBO fold: 9

Training...

Found 19842 validated image filenames.

Found 2204 validated image filenames.

Found 5512 validated image filenames.

EfficientNetB0 - FOLD: 9 Train ACC Val ACC 0.34 0.98 0.32 0.97 Accurary - 0.30 0.96 0.28 0.95 - 0.26 0.94 min loss 0.2428 Train Loss 0.93 -0.24 Val Loss 5 10 15 20 25 30 Epoch

Predicting... Accuracy 0.975045

·	precision	recall	f1-score	support
Parasitized Uninfected	0.985185 0.965302	0.964642 0.985468	0.974805 0.975281	1103 1101
micro avg	0.975045 0.975244	0.975045 0.975055	0.975045 0.975043	2204 2204
weighted avg	0.975253	0.975045	0.975043	2204
samples avg	0.975045	0.975045	0.975045	2204

Validating...

	precision	recall	f1-score	support
Parasitized Uninfected	0.986572 0.965030	0.963921 0.986994	0.975115 0.975889	2744 2768
micro avg	0.975508	0.975508	0.975508	5512
macro avg	0.975801	0.975458	0.975502	5512
weighted avg	0.975754	0.975508	0.975504	5512
samples avg	0.975508	0.975508	0.975508	5512

End of Fold 9 - Elapsed Time: 4:58:10.694449

Validate emsembled results...

Accuracy 0.982946

f1 score: 0.982945

	precision	recall	f1-score	support
Parasitized	0.988209	0.977405	0.982778	2744
Uninfected	0.977841	0.988439	0.983112	2768
micro avg	0.982946	0.982946	0.982946	5512
	0.983025	0.982922	0.982945	5512
weighted avg samples avg	0.983003	0.982946	0.982945	5512
	0.982946	0.982946	0.982946	5512

END Model EfficientNetB0 - Elapsed Time: 1 day, 23:38:44.175101

2.5 Examine / Summarize Errors

Plot a sample of failed prediction. Both types:

• Real: Parasitized -> Predicted: Uninfected

• Real: Uninfected -> Predicted: Parasitized

```
[]: import random
    import matplotlib.pyplot as plt
    M = 3
                        # Minimum number of images to see of each error type
    N = len(TIPOS)
                                    # i: class number for y_true
    for i in range(N):
        for j in range(N):
                                 # j: class number for y_pred
            if i==j: # Only errors
                continue
            indices = (val_true.values[:,i]==1) & (decission[:,j]==1)
            errores = sum(indices)
            if (errores < M):</pre>
                continue
            images = random.sample(list(df_val['file'][indices]), M)
            print('Real: {0} -> Predicted: {1} NUM. ERRORS: {2}' \
                   .format(TIPOS[i], TIPOS[j], errores))
            plt.figure(figsize=(10,10))
            for k in range(M):
                plt.subplot(1, M, k+1)
                img = plt.imread(DESTDIR+images[k])
                plt.imshow(img)
                plt.axis('off')
            plt.tight_layout()
            plt.show()
```

Real: Parasitized -> Predicted: Uninfected NUM. ERRORS: 62

Real: Uninfected -> Predicted: Parasitized NUM. ERRORS: 32

