

July 1999 Revised February 2005

74VCX08

Low Voltage Quad 2-Input AND Gate with 3.6V Tolerant Inputs and Outputs

General Description

The VCX08 contains four 2-input AND gates. This product is designed for low voltage (1.2V to 3.6V) $\rm V_{CC}$ applications with I/O compatibility up to 3.6V

The VCX08 is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- \blacksquare 1.2V to 3.6V $\rm V_{CC}$ supply operation
- 3.6V tolerant inputs and outputs
- t_{PD}

2.8 ns max for 3.0V to 3.6V $V_{\rm CC}$

- Power-off high impedance inputs and outputs
- Static Drive (I_{OH}/I_{OL}) ±24 mA @ 3.0V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Latchup performance exceeds 300 mA
- ESD performance:

Human body model > 2000V Machine model > 250V

■ Leadless Pb-Free DQFN package

Ordering Code:

Order Number	Package Number	Package Description
74VCX08M (Note 1)	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VCX08BQX (Note 2)	MLP014A	Pb-Free 14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.0mm
74VCX08MTC (Note 1)	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VCX08MTCX_NL (Note 3)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Pb-Free package per JEDEC J-STD-020B.

Note 1: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Note 2: DQFN package available in Tape and Reel only.

Note 3: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

Quiet Series™ is a trademark of Fairchild Semiconductor Corporation.

Logic Symbol

Pin Descriptions

Pin Names	Description
A_n, B_n	Inputs
O _n	Outputs

Connection Diagrams

Pin Assignments for SOIC and TSSOP

Pad Assignments for DQFN

Absolute Maximum Ratings(Note 4)

Recommended Operating Conditions (Note 6)

-0.5V to +4.6V Supply Voltage (V_{CC}) -0.5V to +4.6V

DC Input Voltage (V_I) Output Voltage (V_O)

HIGH or LOW State (Note 5) -0.5V to V_{CC} +0.5V

 $V_{CC} = 0V$ -0.5V to +4.6V

DC Input Diode Current (I_{IK})

 $V_{I} < 0V$

DC Output Diode Current (I_{OK}) $V_O < 0V$

 $V_O > V_{CC} \\$ +50 mA DC Output Source/Sink Current (I_{OH}/I_{OL}) +50 mA DC V_{CC} or Ground Current per ±100 mA

Supply Pin (I_{CC} or Ground)

Storage Temperature Range (T_{stq})

Power Supply

1.2V to 3.6V Operating Input Voltage -0.3V to 3.6V

Output Voltage (V_O)

-50 mA

-50 mA

HIGH or LOW State 0V to V_{CC}

Output Current in I_{OH}/I_{OL}

 $V_{CC} = 3.0V \text{ to } 3.6V$ ±24 mA

 $V_{CC} = 2.3V \text{ to } 2.7V$ $\pm 18~mA$ $V_{CC} = 1.65V \text{ to } 2.3V$ $\pm 6~\text{mA}$

 $V_{CC} = 1.4V \text{ to } 1.6V$ ±2 mA ±100 μA $V_{CC} = 1.2V$

-40°C to +85°C

Free Air Operating Temperature (T_A) -65° C to $+150^{\circ}$ C Minimum Input Edge Rate ($\Delta t/\Delta V$)

 $V_{in} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ 10 ns/V

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: In Absolute Maximum Rating must be observed.

Note 6: Floating or unused inputs must be held HIGH or LOW

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	Min	Max	Units
1/	LUQUI aval lagget Valence		(V)	0.0		
V_{IH}	HIGH Level Input Voltage		2.7 to 3.6	2.0		
			2.3 to 2.7	1.6		
			1.65 to 2.3	0.65 x V _{CC}		V
			1.4 to 1.6	0.65 x V _{CC}		
			1.2	0.65 x V _{CC}		
V_{IL}	LOW Level Input Voltage		2.7 to 3.6		0.8	
			2.3 to 2.7		0.7	
			1.65 to 2.3		0.35 x V _{CC}	V
			1.4 to 1.6		0.35 x V _{CC}	
			1.2		0.05 x V _{CC}	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
		$I_{OH} = -100 \mu A$	2.3 to 2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		I _{OH} = -12 mA	2.3	1.8		V
		$I_{OH} = -18 \text{ mA}$	2.3	1.7		
		$I_{OH} = -100 \mu A$	1.65 to 2.3	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		
		$I_{OH} = -100 \mu A$	1.4 to 1.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.4	1.05		
		$I_{OH} = -100 \mu A$	1.2	V _{CC} - 0.2		

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7 to 3.6		0.2	
02	, ,	I _{OL} = 12 mA	2.7		0.4	
		I _{OL} = 18 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
		I _{OL} = 100 μA	2.3 to 2.7		0.2	
		I _{OL} = 12 mA	2.3		0.4	V
		I _{OL} = 18 mA	2.3		0.6	V
		I _{OL} = 100 μA	1.65 to 2.3		0.2	
		I _{OL} = 6 mA	1.65		0.2	
		I _{OL} = 100 μA	1.4 to 1.6		0.2	
		I _{OL} = 2 mA	1.4		0.35	
		I _{OL} = 100 μA	1.2		0.05	
I	Input Leakage Current	$0 \le V_1 \le 3.6V$	1.2 to 3.6		±5.0	μА
I _{OFF}	Power Off Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μА
Icc	Quiescent Supply Current	V _I = V _{CC} or GND	1.2 to 3.6		20	μА
		$V_{CC} \le V_I \le 3.6V$	1.2 to 3.6		±20	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 to 3.6		750	μА

AC Electrical Characteristics (Note 7)

Symbol	Parameter	Conditions	V _{CC}	T _A = -40°	C to +85°C	Units	Figure
Cyllibol			(V)	Min	Max		Number
t _{PHL}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.6	2.8		<u></u>
t _{PLH}			2.5 ± 0.2	0.8	3.7		Figures 1, 2
			1.8 ± 0.15	1.0	7.4	ns	-,-
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	14.8		Figures
			1.2	1.5	37.0		3, 4
t _{OSHL}	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3		0.5		
t _{OSLH}	(Note 8)		2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75	ns	
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1		1.5		
			1.2		1.5		

Note 7: For C_L = pF, add approximately 300 ps to the AC maximum specification.

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C	Units
Oyiliboi	T didiliotoi	Conditions	(V)	Typical	Jinto
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units
٠,٥٠.	. Gramoro	3 3	Typical	
C _{IN}	Input Capacitance	V _I = 0V or V _{CC} , V _{CC} = 1.8V, 2.5V or 3.3V	6.0	pF
C _{OUT}	Output Capacitance	V _I = 0V or V _{CC} , V _{CC} = 1.8V, 2.5V or 3.3V	7.0	pF
C _{PD}	Power Dissipation Capacitance	$V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	20.0	pF

AC Loading and Waveforms (V $_{CC}$ 3.3V \pm 0.3V to 1.8V \pm 0.15V)

FIGURE 1. AC Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open

FIGURE 2. Waveform for Inverting and Non-inverting Functions

Symbol	V _{CC}				
Cymbo.	3.3V ± 0.3V	2.5V ± 0.2V	1.8V ± 0.15V		
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2		
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2		

AC Loading and Waveforms (V $_{CC}$ 1.5 \pm 0.1V to 1.2V)

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V_{CC} x 2 at V_{CC} = 1.5V ± 0.1V
t _{PZH} , t _{PHZ}	GND

FIGURE 3. AC Test Circuit

FIGURE 4. Waveform for Inverting and Non-Inverting Functions

Symbol	v _{cc}
- Cymbol	1.5V ± 0.1V
V _{mi}	V _{CC} /2
V _{mo}	V _{CC} /2

Tape and Reel Specification

Tape Format for DQFN

Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
BQX	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)

FSC MLP/DQFN CARRIER TAPE SPECIFICATIONS

REEL DIMENSIONS inches (millimeters)

Tape Size	Α	В	С	D	N	W1	W2
12 mm	13.0	0.059	0.512	0.795	2.165	0.488	0.724
	(330.0)	(1.50)	(13.00)	(20.20)	(55.00)	(12.4)	(18.4)

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

RECOMMENDED LAND PATTERN

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AA
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP014ArevA

Pb-Free 14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.0mm Package Number MLP014A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

ALL LEAD TIPS 1.2 MAX $0.90^{+0.15}_{-0.10}$ -C-0.10±0.05

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ABREF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH,
- AND TIE BAR EXTRUSIONS

 D. DIMENSIONING AND TOLERANCES PER ANSI
 Y14.5M, 1982

MTC14revD

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com