# Introduction aux algorithmes MapReduce

Mathieu Dumoulin (GRAAL), 14 Février 2014

#### Plan

- Introduction de la problématique
- Tutoriel MapReduce
- Design d'algorithmesMapReduce
  - Tri, somme et calcul de moyenne
- PageRank en MapReduce
- Conclusion



#### « Big Data »

Big data is **high volume**, **high velocity**, and/or **high variety** information assets that **require new forms of processing** to enable enhanced decision making, insight discovery and process optimization

- Gartner, updated definition of big data (2012)

Building **new analytic** applications based on **new types of data**, in order to better serve your customers and **drive a better competitive advantage** 

- David McJannet, Hortonworks



# Un outil spécialisé

#### Problèmes où Hadoop est envisageable:

- Trop de données (GB,TB,PB)
- Améliorer des résultats existants
- Obtenir de nouveaux résultats
- Combiner des données hétérogènes
- Croissance rapide (et constante) des données
- ▶ Temps de traitement lent (minutes, heures)
- Budgets limités
- Plusieurs ordinateurs déjà disponibles



#### Hadoop au cœur du big data



#### MapReduce au cœur de Hadoop

Hadoop MapReduce is a software framework for easily writing applications which process vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner.

- Hadoop Tutorial, <a href="hadoop.apache.org">hadoop.apache.org</a>







# Gain d'utiliser Hadoop?



- Tout le travail de distribution, balancement de charge, synchronisation et de gestion d'erreur est géré automatiquement
- Il suffit de programmer Map et Reduce (Java, C++, Python, bash, etc.)
- Une grappe Hadoop peut évoluer facilement en ajoutant des nœuds en tout temps
- Hadoop offre un rapport performance-prix très compétitif (Amazon EMS, réutilisation de PC existants, aucun coûts de licences ni de matériel spécialisé HPC)

#### L'exemple WordCount

On veut trouver les k mots les plus fréquents dans une collection de textes.

```
def word_count(text, k):
    counts = defaultdict(int)
    for word in text.split():
        counts[word.lower()] += 1
    return sorted(counts, key=counts.get, reverse=True)[:k]
```

Mais cette solution est-elle la bonne si le texte est très grand?

Et s'il est très, très, ..., très grand?



#### La taille en soit peut être un problème

| <u>Taille</u>  | <u>Problème</u>                                                  | Solution                                                                              |
|----------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| • 100M mots    | <ul> <li>Pas de problèmes</li> </ul>                             | <ul> <li>Naïve avec I seul<br/>ordinateur</li> </ul>                                  |
| • 1000M mots   | Mémoire insuffisante                                             | <ul> <li>Utiliser le disque,</li> <li>Fenêtre glissante</li> </ul>                    |
| • 100MM mots   | Processeur insuffisant                                           | <ul> <li>Multithreading,</li> <li>éliminer &lt; N</li> </ul>                          |
| • 1000MM mots  | • I ordinateur insuffisant                                       | • Distribuer le calcul                                                                |
| • Plus encore! | <ul> <li>Réseau insuffisant,<br/>contrôleur surchargé</li> </ul> | <ul> <li>MapReduce (ou<br/>solution du même<br/>ordre comme MPI,<br/>etc.)</li> </ul> |



# Tutoriel MapReduce



Map



Reduce

#### Map et Reduce: la paire Clef-Valeur

#### Mapper:



#### MapReduce en action: WordCount illustré



# Map et Reduce: Shuffle and Sort



Source: Data Intensive Text Processing with MapReduce, Jimmy Lin and Chris Dyer, 2010

# Map et Reduce (moins simplifié)

- Les vrai opérateurs:
  - Mapper
  - Combiner
  - Partitioner
  - Reducer



#### Design d'algorithmes pour MapReduce

I - II faut reformuler les algorithmes en fonctionnel:



2- La bande passante du réseau est une ressource limitée à optimiser:



#### Exemples choisis

- Exemples simples:
  - Tri
  - Somme
  - Moyenne

- Un exemple complet: PageRank
- Bonus:K-Means (Lloyd's algorithm)



Dilbert by Scott Adams From the ClariNet electronic newspaper Redistribution prohibited info@clarinet.com

#### Trier en MapReduce

 Propriété du réducteur: les paires sont traitée dans l'ordre (selon la clef), les réducteurs sont aussi dans l'ordre

#### Mapper:

Émettre l'élément à trier comme nouvelle clef

#### Reducer:

Aucun (i.e. fonction identité)



# Calcul d'une somme (WordCount)

```
1: class Mapper
       method Map(docid a, doc d)
2:
           for all term t \in \text{doc } d \text{ do}
3:
               Emit(term t, count 1)
4:
1: class Reducer
       method Reduce(term t, counts [c_1, c_2, \ldots])
2:
           sum \leftarrow 0
3:
           for all count c \in \text{counts } [c_1, c_2, \ldots] do
4:
5:
               sum \leftarrow sum + c
           Emit(term t, count sum)
6:
```

#### Amélioration: le combiner

1: **class** Mapper



```
method Map(docid a, doc d)
           for all term t \in \text{doc } d \text{ do}
3:
               Emit(term t, count 1)
4:
1: class Reducer
       method Reduce(term t, counts [c_1, c_2, \ldots])
           sum \leftarrow 0
           for all count c \in \text{counts } [c_1, c_2, \ldots] do
               sum \leftarrow sum + c
                                      Combiner = Reducer!
```

Emit(term t, count sum)

#### Calcul de moyenne



```
1: class Mapper
       method Map(string t, integer r)
            Emit(string t, integer r)
3:
1: class Reducer
       method Reduce(string t, integers [r_1, r_2, \ldots])
2:
           sum \leftarrow 0
           cnt \leftarrow 0
4:
           for all integer r \in \text{integers } [r_1, r_2, \ldots] do
5:
                sum \leftarrow sum + r
6:
                cnt \leftarrow cnt + 1
           r_{ava} \leftarrow sum/cnt
8:
            Emit(string t, integer r_{ava})
9:
```

Utiliser un combiner est il approprié?

Si on reprend le reducer comme combiner,





#### Comment améliorer ce calcul?

```
1: class Combiner

2: method Combine(string t, integers [r_1, r_2, ...])

3: sum \leftarrow 0

4: cnt \leftarrow 0

5: for all integer r \in \text{integers } [r_1, r_2, ...] do

6: sum \leftarrow sum + r

7: cnt \leftarrow cnt + 1

8: Emit(string t, pair (sum, cnt))
```



# Design d'une solution MapReduce pour l'algorithme PageRank



# Qu'est-ce que PageRank?

Distribution de **probabilité** sur les pages web qui représente la chance qu'un utilisateur naviguant **au hasard** arrive à une page web particulière.

#### Notes:

- Le web est un graphe orienté, une page est un nœud et les hyperliens sont des arcs.
- L'algorithme recalcule la probabilité de toutes les pages **itérativement** jusqu'à convergence



# Comment calculer PageRank (simplifié)

$$PR(p_i) = \sum_{p_i \in M(p_i)} \frac{PR(p_j)}{L(p_j)}$$

- p<sub>1</sub>,p<sub>2</sub>,...,p<sub>N</sub> sont les pages web (les nœuds du graphe)
- M(p<sub>i</sub>) est l'ensemble des pages ayant un lien vers p<sub>i</sub>
- L(p<sub>j</sub>) est le nombre de liens sortant de la page p<sub>j</sub>
- N est le nombre total de pages web

Note: Pour simplifier, on élimine le facteur d'atténuation, paramétrisé par la probabilité que l'utilisateur arrête de naviguer.

Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd, Terry (1999) <u>The PageRank Citation Ranking: Bringing Order to the Web.</u> Technical Report. Stanford InfoLab.



# PageRank par un exemple

Le web a trois pages web: A, B et C

*Initialisation:* PR(A) = PR(B) = PR(C) = 0.33

Jusqu'à convergence:

$$PR(A) = \frac{PR(B)}{2}$$

$$PR(B) = \frac{PR(A)}{2}$$

$$PR(C) = \frac{PR(A)}{2} + \frac{PR(B)}{2}$$



#### PageRank en MapReduce

Donnés de départ:

collection de pages web (URL, [URL<sub>lien</sub>])

- 1. Bâtir et initialiser le graphe
- Jusqu'à convergence, recalculer PageRank pour chaque page web
- 3. Retourner les K premières valeurs de PageRank (pas présenté)



# Étape 1: Bâtir le graphe

```
Mapper:
Entrée: une page web
Pour chaque lien de la page, émettre:
     clef: URL<sub>page</sub>
     valeur: URL<sub>lien</sub>
Reducer:
Entrée:
     clef: URL page
     valeurs: [URL<sub>lien....</sub>]
Sortie:
     clef: URL<sub>page</sub>
     valeur: «PR; [URL<sub>lien</sub>]»
```

# Étape 2: calculer PageRank - Map

```
Mapper:
Entrée:
         clef: URL page
         valeur: «PR; [URL<sub>lien...</sub>]»
Sortie:
Pour chaque URL<sub>lien</sub>, émettre:
         clef: URL<sub>lien</sub>
         valeur: «URL<sub>page</sub>; PR, nb_url<sub>lien</sub>»
```

Où: nb\_url<sub>lien</sub> est le compte de URL<sub>lien</sub>

# Étape 2: calculer PageRank - Reduce

#### Reducer:

```
Entrée:
     clef: URL<sub>page</sub>
     valeurs: [«URL<sub>inverse</sub>; PR, nb_url<sub>page inverse</sub>», ...]
Traitement: calculer le PR
Sortie:
     clef: URL<sub>page</sub>
     valeurs: « PR; [URL<sub>lien</sub>]»
```

#### PageRank en MapReduce: Résultats

| Data set | No. of nodes | No. of edges | Avg No. of edges/node | Size    |
|----------|--------------|--------------|-----------------------|---------|
| Cornell  | 626422       | 4477835      | 7                     | 126 MB  |
| edu      | 4527014      | 39874684     | 9                     | 1.02 GB |
| Amazon   | 122047146    | 1378360637   | 11                    | 45 GB   |

Table 1: Details of the datasets used to test the page rank algorithm.

| Data Set | Formatter   | PageRank (50 iterations) | GetPageRank |
|----------|-------------|--------------------------|-------------|
| Cornell  | 7 sec       | 22 min 10 sec            | 26 sec      |
| edu      | 20 sec      | 47 min 44 sec            | 30 sec      |
| Amazon   | 9 min 8 sec |                          |             |

Table 2: Execution time taken by each of the three modules for 3 datasets.

#### Notes:

Source: PageRank Calculation using Map Reduce - The Cornell Web Lab (2008)

Résultats obtenus sur une grappe Hadoop de 50 nœuds (Intel Xeon 2.66GHz 16GB ram)

Mon implémentation: <a href="https://bitbucket.org/mathieu\_dumoulin/pagerank-mr">https://bitbucket.org/mathieu\_dumoulin/pagerank-mr</a>



#### MapReduce PageRank: Résultats



#### MapReduce PageRank: Résultats



Graph 4: Effect of data size on MapReduce

# Conclusion (malheureuse)



- MapReduce est une solution puissante au problème de programmation distribuée
- La plate-forme fait toute la distribution et la gestion des erreurs
- Le travail de programmation commence par la formulation d'un algorithme MapReduce
  - Ce n'est pas toujours facile
  - Trouver et formuler un algorithme performant est relativement difficile
  - Le travail réel de programmation demande une maîtrise (très) avancée de Java

#### Conclusion



#### Conclusion

On n'est pas prisonnier de MapReduce pour utiliser une grappe Hadoop!

Apache Pig: optimiser les tâches de ETL





Apache Hive: analyser ses données façon SQL

<u>Cascading</u> et <u>Apache Crunch</u>: librairies Java qui simplifient les opérations difficiles en MapReduce

Apache Mahout: librarie de machine learning qui peut utiliser une grappe Hadoop « automatiquement »



#### Questions et commentaires

Hadoop est de plus en plus une composante d'infrastructure « standard » pour le traitement de donnée à grande échelle et est promis à un bel avenir!



#### Partie Bonus

- MapReduce et Machine Learning
  - Exemple
  - Algorithme K-Means

# Map et Reduce et le machine learning?

#### Problématique exemple: recherche de paramètres optimaux



Yasser Ganjisaffar, Thomas Debeauvais, Sara Javanmardi, Rich Caruana, and Cristina Videira Lopes. 2011. Distributed tuning of machine learning algorithms using MapReduce Clusters. In *Proceedings of the Third Workshop on Large Scale Data Mining: Theory and Applications* (LDMTA '11). ACM, New York, NY, USA, , Article 2, 8 pages. DOI=10.1145/2002945.2002947 http://doi.acm.org/10.1145/2002945.2002947

#### Bonus:

#### Algorithme *K-means clustering*

▶ Problème: regrouper des données en K groupes



# Algorithme K-means (*Lloyd's Algorithm*)

Initialiser les K centroïdes (d'une certaine façon) Pour chacune de plusieurs d'itérations:

Pour chaque point:

Assigner au centroïde le plus proche

Selon une mesure de distance (ex: distance Euclidienne)

Pour chaque centroïde:

Recalculer sa position en faisant la moyenne des membres de son groupe



#### K-means en MapReduce

- Driver: lancer les itérations
- Combien d'étapes map-reduce?

Une seule!

#### K-means MapReduce

- Driver: le "main" qui lance les tâches (Job) MapReduce et qui itère jusqu'à convergence
- Mapper: Assigner chaque point au cluster le plus proche (en parallèle!)
  - Entrée: Key: Null value: vecteur
  - Sortie: Key: index du centroïde le plus proche, value: vecteur
- Reducer: Calculer la moyenne des points membre du cluster (en parallèle!)
  - Key:
- Information partagée: les vecteurs des centroïdes

# K-Means et MapReduce: État de l'art

Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Scalable k-means++. *Proc.VLDB Endow.* 5, 7 (March 2012), 622-633.

http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf

Implémenté dans la librairie Apache Mahout

