## MA1521: Cheat Sheet

### Functions & Maximal Domains

#### • Common Domains:

| Terms             | Conditions    |
|-------------------|---------------|
| $\sqrt{g(x)}$     | $g(x) \ge 0$  |
| $\ln(g(x))$       | g(x) > 0      |
| $\frac{1}{g(x)}$  | $g(x) \neq 0$ |
| $\sin^{-1}(g(x))$ | [-1,1]        |

- Composite:  $(f \circ q)(x) = f(q(x))$ (Note:  $R_a \subseteq D_f$ )
- One-one:

**No**  $x_1, x_2 \in D_f$  where  $f(x_1) = f(x_2)$ Prove using **Horizontal Line Test** 

• Inverse: Only if one-one! Reflect along y = x incl. asymptotes! (i.e.  $(a,b) \to (b,a)$ ). To find  $f^{-1}(x)$ , let  $y = f^{-1}(x)$  solve for x = f(y)

## Limits and Continuity

Let 
$$f(x) = \begin{cases} g(x) & x < c \\ \alpha & x = c \\ h(x) & x > c \end{cases}$$

- Left lim:  $\lim_{x \to c_{-}} f(x) = \lim_{x \to c_{-}} g(x)$
- Right lim:  $\lim_{x \to c^{\perp}} f(x) = \lim_{x \to c^{\perp}} g(x)$
- Common Limit:  $\lim f(x)$ if  $\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L \in \mathbb{R}$
- f is continuous at x = c if: Common Limit L at x = c and f(c) = L
- If f & g continuous at x = c, these are also continuous: f + g, cf,  $f \times g$ , f/g

#### Laws of Limits

- $\lim_{x \to c} (f(x) \pm g(x)) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$
- $\lim_{x \to c} (\alpha f(x)) = \alpha \lim_{x \to c} f(x), \alpha$  is constant
- $\lim_{x \to c} (f(x) \cdot g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$
- $\bullet \lim_{x \to c} \left[ \frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \lim_{x \to c} g(x) \neq 0$
- For |x|, check value close to x=c
- g continuous at x = c and  $\lim_{x \to c} f(x) = c$ , then  $\lim_{x \to c} g(f(x)) = g(c) = g(\lim_{x \to c} f(x))$

## Limits at Infinity: $x \to \infty$

- $\lim_{x \to +\infty} f(x) = c$  or  $\lim_{x \to -\infty} f(x) = c$  implies y = c is horizontal asymptote  $\lim_{x \to c} \frac{\sin g(x)}{g(x)} = \lim_{x \to c} \frac{g(x)}{\sin g(x)} = 1$
- $\lim_{x \to \infty} \frac{1}{x^k} = 0$  for  $k \in \mathbb{R}^+$
- $\oint \lim_{x \to \infty} e^{-x} = 0 \& \lim_{x \to -\infty} e^{x} = 0$

$$\lim_{x \to \infty} \frac{P(x)}{Q(x)} = \lim_{x \to \infty} \frac{Ax^{\alpha} + \dots}{Bx^{\beta} + \dots}$$

$$= \begin{cases} 0 & \alpha < \beta \\ \frac{A}{B} & \alpha = \beta \\ \frac{\infty/-\infty}{depends \text{ on qn}} & \alpha > \beta \end{cases}$$
where  $\alpha, \beta$  is the **highest power**

$$\frac{Ax^{\alpha} + \dots}{Bx^{\beta} + \dots}$$
• L'Hôpital Rule:
$$-\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

$$- \text{For } 0 \cdot \infty, \infty - \infty, \text{ express to } \frac{0}{0}, \frac{\infty}{\infty}$$

where  $\alpha, \beta$  is the **highest power** (**NOTE:** only for  $\infty$  limit!) [add lg vs

### **Indeterminate Forms**

- Indeterminate forms are of type:  $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, 0^0, 1^{\infty} \& \infty^0$
- ullet For  $x \not o \infty$  limit of  $\displaystyle \frac{0}{0}$  or  $\displaystyle \frac{\infty}{\infty}$  type, do one of the following:
  - Factorise the terms and cancel out:

$$\frac{x^2 + 3x + 2}{1 - x^2} = \frac{(x+1)(x+2)}{(1-x)(x+1)}$$

- Use for  $\sqrt{x} \pm \sqrt{x}$  type:

$$\sqrt{a} \pm \sqrt{b} = \frac{a \pm b}{\sqrt{a} \mp \sqrt{b}}$$

• If  $\lim_{x\to c} g(x) = 0$  then:

$$-\lim_{x\to c} \frac{\sin g(x)}{g(x)} = \lim_{x\to c} \frac{g(x)}{\sin g(x)} = 1$$

$$-\lim_{x \to c} \frac{\tan g(x)}{g(x)} = \lim_{x \to c} \frac{g(x)}{\tan g(x)} = 1$$

- For  $0^0, 1^\infty, \infty^0$  use formula:  $\lim_{x \to c} (f(x))^{g(x)} = \exp(\lim_{x \to c} (g(x) \cdot \ln f(x)))$
- L'Hôpital Rule:

$$-\lim_{x\to c}\frac{f(x)}{g(x)} = \lim_{x\to c}\frac{f'(x)}{g'(x)}$$

- Not for cot, cosec type (i.e. complex f(x)) or requiring repeated application

### Squeeze Theorem

- Thm I For  $f(x) \le g(x) \le h(x)$ if  $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$  $\implies \lim_{x \to c} g(x) = L$
- Thm II For  $\lim_{x \to c} f(x) = 0$  and g(x) is bounded  $\Longrightarrow \lim_{x \to c} f(x)g(x) = 0$

**Note!** If g(x) unbounded (g(x)) can  $=\pm\infty$ ),  $\lim f(x)g(x)=0\cdot\infty$ , which is indeterminate!

- Example g(x):  $|\sin a(x)| \leq 1$ ,  $|\cos a(x)| < 1$ ,  $|\sin a(x) \cdot \cos a(x)| < 1$ 

### Intermediate Value Theorem

For f continuous on [a, b]

- $f(a) < k < f(b), f(c) = k, c \in [a, b]$
- $f(a) \times f(b) < 0$ , f(x) has at least one real root
- Repeated IVT will allow us to approximate root by certain degree of accuracy (Bisection Method)



## Differentiability

• f differentiable at  $x = x_0$  if  $\lim exists$ 

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

• if f differentiable at  $x = x_0$ , means f continuous at  $x = x_0$ 

# Implicit Differentiation

• Method I:

$$\frac{d}{dx}g(y) = g'(y) \cdot \frac{dy}{dx}$$

• Method II:

Let  $f_x(x,y)$  be partial derivative of f(x,y) w.r.t. x, treating y as constant.

Let  $f_{y}(x,y)$  be partial derivative of f(x,y) w.r.t. y, treating x as constant.

Then, find: 
$$\frac{dy}{dx} = -\frac{f_x}{f_y}$$

## **Derivative of Inverse Functions**

- Only if f is one-one and is differentiable on an interval I
- At point  $(a, f^{-1}(a))$ , where  $a \in R_f$ :

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

provided  $f'(f^{-1}(a)) \neq 0$ 

## Parametric Equations

• 
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
, where  $\frac{dx}{dt} \neq 0$ 

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right)\frac{dt}{dx}$$

 $=\frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{dx}$ 

## Differentiating Special Forms

• For  $(f(x))^{g(x)}$  form:

$$\frac{d}{dx}(f(x))^{g(x)} - \text{relative/local minimum at } c \text{ in interval } J \subseteq I \text{ s.t. } f(c) \le f(x), \forall x \in J$$

$$= (f(x))^{g(x)} \times \left[ g'(x) \ln f(x) + \frac{f'(x)}{f(x)} g(x) \right] - \text{relative/local minimum at } c \text{ in interval } J \subseteq I \text{ s.t. } f(c) \le f(x), \forall x \in J$$
• Extreme Value Thm: If  $f$  is continuous and  $f$  is the relative point  $f$  is a function of  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  in the relative point  $f$  is a function of  $f$  in the relative point  $f$  i

• For  $\log_{q(x)} f(x)$  form, change base:

$$\log_{g(x)} f(x) = \frac{\ln f(x)}{\ln g(x)}$$

only when  $f(x), g(x) > 0 \& g(x) \neq 1$ 

# **Applications of Derivatives**

• Tangents & Normals

Tangent:  $y-y_0=m(x-x_0)$ 

Normal:  $y - y_0 = \frac{-1}{x}(x - x_0)$ 

• Increasing & Decreasing f(x)Let f be continuous on [a, b] & differentiable on (a, b)

Increasing on [a, b]: f' > 0

Decreasing on [a, b]: f' < 0

 $\forall x \in (a,b)$ 

• Concavity of f(x)

Let f be twice differentiable on (a, b)

Concave Up on (a, b): f'' > 0

Concave Down on (a,b): f'' < 0

 $\forall x \in (a,b)$ 

### Maximum & Minimum

- A function f defined over an interval I
  - absolute/global maximum at c if  $f(c) > f(x), \forall x \in I$
  - absolute/global maximum at c if  $f(c) < f(x), \forall x \in I$
  - relative/local maximum at c in interval  $J \subseteq I$  s.t.  $f(c) \ge f(x), \forall x \in J$
  - relative/local minimum at c in interval  $J \subseteq I$  s.t.  $f(c) < f(x), \forall x \in J$
- ous on [a, b], there's pts  $c, d \in [a, b]$  s.t. f attains abs max at c and abs min at d
- Critical Pt: f over I has critical pt at  $c \in I$  (ex. endpts), if f'(c) = 0 or d.n.e.

## Absolute/Relative Extrema

- Finding Absolute Extrema:
  - 1. Record f(x) at critical & end pts
  - 2. Pick largest and smallest f(x)amongst values found in 1.
- 3. If largest or smallest value,  $c \notin D_f$ , then f(x) has no abs max/min (depending on the value)
- Finding Relative Extrema:
  - 1. Find all critical pts over interval I
  - 2. Use First Derivative Test: if f'(x) changes from + to - $\implies$  local max

if f'(x) changes from – to +  $\implies$  local min

if f'(x) no sign change  $\implies$  inflexion pt (**NOT** local extrema)

### Geometric Sequences/Series

- $\sum_{k=0}^{\infty} r^k = \sum_{k=1}^{\infty} r^{k-1} = \frac{1}{1-r}$  iff |r| < 1
- $\bullet \ \sum_{k=0}^{\infty} r^k = r^m \sum_{k=0}^{\infty} r^k (= r^m + r^{m+1} + r^{m+2} + \ldots)$

### Telescoping Series

- $\sum_{k=0}^{\infty} (u_k u_{k-1})$  or  $\sum_{k=0}^{\infty} (u_{k-1} u_k)$
- $\bullet \sum_{k=0}^{\infty} (u_k u_{k-1}) = \lim_{N \to \infty} \sum_{k=0}^{N} (u_k u_{k-1})$

### Useful for Convergence Tests

- $(n+1)! = (n+1) \cdot n!$
- $\lim_{n\to\infty} n^{1/n} = 1 \& \lim_{n\to\infty} \left(1 + \frac{y}{n}\right)^n = e^y$

### Power Series

- $\sum c_n(x-a)^n$  is a power series centered at x = a. When x = a, series  $= c_0$
- Radius of convergence:

R s.t. series conv. when |x-a| < R &div. when > R.

• Finding R:

$$L = \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right|$$
, where  $u_n = c_n (x-a)^n$ 

| L Conclusion    |                          | R        |
|-----------------|--------------------------|----------|
| 0               | Conv. $\forall x$        | $\infty$ |
| $\infty$        | Conv. only for $x = a$   | 0        |
| $>0,\neq\infty$ | Conv. when $ x - a  < R$ | L < 1    |

### Taylor & Maclaurin Series

- $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$  is the Taylor series at x = a (Maclaurin series: a = 0)
- $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = \sum_{n=0}^{\infty} c_n (x-a)^n$ then:  $c_n = \frac{f^{(n)}(a)}{a!} \to f^{(n)}(a) = n! \cdot c_n$

### Maximal Domain of 3-variables

#### Partial Derivatives

- $\frac{\partial z}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) f(x,y)}{h}$

#### **Higher Order Partial Derivatives**

- $f_{xx} = (f_x)_x = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$
- $f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$
- $f_{yx} = (f_y)_x = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$
- $f_{yy} = (f_y)_y = \frac{\partial}{\partial u} \left( \frac{\partial f}{\partial u} \right) = \frac{\partial^2 f}{\partial u^2}$

## Tangents and Plane of z = f(x, y)

#### Tangents of Surface Intersections

• Tangent of plane y = b intersection of surface, creating an x-curve z = f(x, b)

$$\mathbf{r} = \begin{pmatrix} a \\ b \\ f(a,b) \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ f_x(a,b) \end{pmatrix}$$

$$\frac{\partial F}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$$

• Tangent of plane x = a intersection of surface, creating an y-curve z = f(a, y)

$$\mathbf{r} = egin{pmatrix} a \ b \ f(a,b) \end{pmatrix} + \lambda egin{pmatrix} 0 \ 1 \ f_y(a,b) \end{pmatrix}$$

### Plane of Surfaces at point P

 $\bullet$  Normal vector  $\Pi$ 

$$\mathbf{n} = \begin{pmatrix} 0 \\ 1 \\ f_y(a, b) \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ f_x(a, b) \end{pmatrix} = \begin{pmatrix} f_x(a, b) \\ f_y(a, b) \\ -1 \end{pmatrix}$$

• Vector equation of  $\Pi$ 

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} = f_x(x, y) = f_1(x, y) 
= D_z f(x, y) = D_1 f(x, y)$$

$$\mathbf{r} \cdot \begin{pmatrix} f_x(a, b) \\ f_y(a, b) \\ -1 \end{pmatrix} = \begin{pmatrix} a \\ b \\ f(a, b) \end{pmatrix} \cdot \begin{pmatrix} f_x(a, b) \\ f_y(a, b) \\ -1 \end{pmatrix}$$
Consider  $\mathbf{u} = \begin{pmatrix} \widehat{f}_x(a, b) \\ \widehat{f}_y(a, b) \end{pmatrix}$ 

- Cartesian equation of  $\Pi$  $z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$
- Linear approximation of point on plane  $f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$

### Chain Rule

One Ind. & Two Dep. Variables Let F = f(x, y) and x = x(t), y = y(t). Then.

$$\frac{dF}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

Two Ind. & Two Dep. Variables Let F = f(x, y) and x = x(s, t), y = y(s, t). Then,

$$\frac{\partial F}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$$

$$\frac{\partial F}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$$

### **Directional Derivatives**

$$D_u f(a, b) = f_x(a, b) u_1 + f_y(a, b) u_2$$
$$= \nabla f(a, b) \cdot \mathbf{u}$$
$$= \begin{pmatrix} f_x(a, b) \\ f_y(a, b) \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

in direction of unit vector  $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ 

Finding u when  $D_u f(x, y)$  is 0 Consider  $D_u f = 0$  and  $u_1^2 + u_2^2 = 1$ 

Finding u when  $D_u f(x,y)$  is max

Consider 
$$\mathbf{u} = \begin{pmatrix} \widehat{f_x(a,b)} \\ f_y(a,b) \end{pmatrix}$$

# Optimisation

#### Critical Points

Point (a,b) is critical of f if  $f_x(a,b) =$  $f_y(a,b) = 0$  or either  $f_x$  and  $f_y$  d.n.e

## Second Derivative Test

$$D = f_{xx}(a,b) \cdot f_{yy}(a,b) - (f_{xy}(a,b))^{2}$$

| D   | $f_{xx}$ | Type         |
|-----|----------|--------------|
| > 0 | < 0      | Local Max    |
| > 0 | > 0      | Local Min    |
| < 0 | any      | Saddle       |
| =0  | any      | Inconclusive |

## Lagrange Multiplier

Extrema of  $f(x_1, x_2, \ldots, x_n)$  subject to constraint  $g(x_1, x_2, \ldots, x_n) = c$ . We solve a system of (n+1) equations:

$$\frac{\partial f}{\partial x_1} = \lambda \frac{\partial g}{\partial x_1}$$

$$\frac{\partial f}{\partial x_2} = \lambda \frac{\partial g}{\partial x_2}$$

$$\vdots$$

$$\frac{\partial f}{\partial x_n} = \lambda \frac{\partial g}{\partial x_n}$$

#### Fundamental Theorem of Calculus

FTC1 Definite Integral

FTC2

$$\frac{d}{dx} \int_{v(x)}^{u(x)} f(t)dt$$

$$= f(u(x)) \cdot u'(x) - f(v(x)) \cdot v'(x)$$

#### L'Hôpital Rule using FTC

$$\lim_{x \to \infty} \left( \frac{\int_a^b (f(t))dt}{\int_c^d (g(t))dt} \right)$$

$$= \lim_{x \to \infty} \left( \frac{\frac{d}{dx} \int_a^b (f(t))dt}{\frac{d}{dx} \int_c^d (g(t))dt} \right)$$

#### Area Between Curves

Area bounded by curves y = f(x) and y = q(x) and lines x = a, x = b is

$$\int_{a}^{b} |f(x) - g(x)| dx$$

### Volume of Solids of Revolution

**Disc Method** Volume of solid generated by rotating the area bounded by y = f(x), y = k and x = a, x = b along x-axis is

$$V = \pi \int_{a}^{b} (y - k)^{2} dx$$

Volume of solid generated by rotating the area bounded between y = f(x), y = g(x), where  $f(x) \ge g(x)$ , and x = a, x = b along x-axis is

$$V = \pi \int_{a}^{b} ((f(x))^{2} - (g(x))^{2}) dx$$

**Shell Method** Volume of solid generated by rotating the area bounded by y = f(x), y = k and x = a, x = b along y-axis is

$$V = 2\pi \int_{a}^{b} x|f(x) - k|dx$$

Volume of solid generated by rotating the area bounded between y = f(x), y = g(x), where  $f(x) \ge g(x)$ , and x = a, x = b along y-axis is

$$V = 2\pi \int_{a}^{b} x |f(x) - g(x)| dx$$

#### Reduction Formulae

Let  $I_n$  be an integral. Question will ask to show  $I_n = const - nI_{n-1}$ 

## First Order Ordinary D.E.

#### Separable ODE

In the form:  $\frac{dy}{dx} = f(y)g(x)$ 

Solve for: 
$$\int \frac{1}{f(y)} dy = \int g(x) dx$$

#### Linear First Order ODE

In the form:  $\frac{dy}{dx} + P(x)y = Q(x)$ 

Let  $I(x) = e^{\int P(x)dx}$  (integrating factor).

$$\frac{d}{dx}(y \cdot I(x)) = I(x)Q(x)$$
$$y \cdot I(x) = \int I(x)Q(x)dx$$

#### Bernoulli DE

In the form:  $\frac{dy}{dx} + P(x)y = Q(x)y^n, n \neq 1$ 

Substitute  $z = y^{1-n}$ , reducing DE to

$$\frac{dz}{dx} + (1-n)P(x)z = (1-n)Q(x)$$

and solve using Linear First Order ODE method (integrating factor)

## Second Order Ordinary D.E.

$$a(x)\frac{d^2y}{dx^2} + b(x)\frac{dy}{dx} + c(x)y = d(x)$$

#### Homogeneous

Condition: d(x) = 0

Let  $\alpha, \beta$  be roots of the following auxilliary equation

$$am^2 + bm + c = 0$$

| Case             | General Solution                   |  |
|------------------|------------------------------------|--|
| $\alpha, \beta$  | $y = Ae^{\alpha x} + Be^{\beta x}$ |  |
| distinct         | y = Ac + Dc                        |  |
| $\alpha = \beta$ | $y = (Ax + B)e^{\alpha x}$         |  |
| $\alpha, \beta$  | $y = e^{px}(A\cos qx + B\sin qx)$  |  |
| imag             | $\alpha,\beta=p\pm iq$             |  |

#### Non-Homogeneous

Condition:  $d(x) \neq 0$ 

Solve corresponding homogeneous DE, general solution is

$$y(x) = Ay_1(x) + By_2(x) \tag{H}$$

Find **particular solution** of equation in form:

$$y(x) = u_1(x) \cdot y_1(x) + u_2(x) \cdot y_2(x)$$
 (NH)

 $u_1(x)$  and  $u_2(x)$  are as follows:

$$u_1(x) = \frac{1}{a} \int \frac{-y_2(x) \cdot d(x)}{W(y_1, y_2)} dx$$
$$u_2(x) = \frac{1}{a} \int \frac{y_1(x) \cdot d(x)}{W(y_1, y_2)} dx$$

where  $W(y_1, y_2) = y_1(x) \cdot y_2'(x) - y_2(x) \cdot y_1'(x)$ 

Hence, general solution of D.E. is:

$$y = \underbrace{Ay_1(x) + By_2(x)}_{\text{GS of H}} + \underbrace{u_1(x) \cdot y_1(x) + u_2(x) \cdot y_2(x)}_{\text{PS of NH}}$$

## **Newton-Raphson Iteration**

- Find init. estimate  $\alpha_0$  using IVT (in between the two values determined)
- For n = 0,1,2,...

$$\alpha_{n+1} = \alpha_n - \frac{f(\alpha_n)}{f'(\alpha_n)}$$

## Trapezoidal Rule

$$J = \int_{a}^{b} f(x)dx \approx \frac{h}{2} [f_0 + 2(f_1 + \dots + f_{n-1}) + f_n]$$

where  $h = \frac{b-a}{n}$ , n is no. of trapezia (n-1) ordinates