

QIB: Data Science

Antimicrobial resistance genes' profilers for metagenome

25th Feb 2025

Sumeet Tiwari

Thanks to Core-Binfie Team

Introduction:

https://asm.org/Articles/2024/October/Antimicrobial-Resistance-Pandemic-Breaking-Silence

Type of drug resistance: Intrinsic and acquired

hAMRoaster: a tool for comparing performance of AMR gene detection software

Emily F. Wissel^A, Brooke M. Talbot^B, Noriko A. B. Toyosato^C, Robert A Petit III^D, Vicki Hertzberg^A, Anne Dunlop^E, Timothy D. Read^{D,F}

Data Descriptor | Open access | Published: 15 June 2022

Datasets for benchmarking antimicrobial resistance genes in bacterial metagenomic and whole genome sequencing

Amogelang R. Raphenya, James Robertson, Casper Jamin, Leonardo de Oliveira Martins, Finlay

Maguire, Andrew G. McArthur & John P. Hays

✓

Scientific Data 9, Article number: 341 (2022) | Cite this article

9415 Accesses | 14 Altmetric | Metrics

Selection of tools:

Tools:

- Ariba
- ARGprofiler
- AMR++
- DeepARG
- Groot
- KMA
- KARGA
- Kmerresistance
- MetaCerberus
- RGI
- SRST2
- Shortbred

Criteria:

- FASTQ file as input
- Custom AMR gene database not protein.
- Executable via command line
- Only-local assembly is allowed.
- Open-source

Final-tools:

- Ariba
- ARGprofiler
- Groot
 - SRST2
 - KARGA

ARIBA

Research Article | Open Access

ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads $\ref{eq:continuous}$

Martin Hunt¹, Alison E Mather^{1,2}, Leonor Sánchez-Busó¹, Andrew J Page¹, Julian Parkhill¹, Jacqueline A Keane¹ and Simon R Harris¹

View Affiliations

SRST2

Groot

JOURNAL ARTICLE

Indexed variation graphs for efficient and accurate resistome profiling 3

Will P M Rowe ™, Martyn D Winn

Bioinformatics, Volume 34, Issue 21, November 2018, Pages 3601–3608,

https://doi.org/10.1093/bioinformatics/bty387

Published: 14 May 2018 Article history ▼

ARGprofiler

JOURNAL ARTICLE

ARGprofiler—a pipeline for large-scale analysis of antimicrobial resistance genes and their flanking regions in metagenomic datasets 6

Hannah-Marie Martiny 丞, Nikiforos Pyrounakis, Thomas N Petersen, Oksana Lukjančenko, Frank M Aarestrup, Philip T L C Clausen, Patrick Munk

Bioinformatics, Volume 40, Issue 3, March 2024, btae086, https://doi.org/10.1093/bioinformatics/btae086

Published: 20 February 2024 Article history ▼

AMR databases:

AMRFinderPlus (v3.12) ARG-ANNOT (v6, July 2019) BacMet (v1.1) CARD (v3.3.0) MegaRes (v3.0) ResFinderFG (v2.0) ResFinder

Remove genes required SNP confirmation

Remove genes without start and stop codons

De-replication and clustering of genes (at 90% identity and coverage)

panARG

Database Gene Sharing (Percentages)

https://github.com/sanger-pathogens/ariba/wiki/Task:-prepareref#task-prepareref

Preparation of Mock-Community:

Research | Open access | Published: 31 July 2021

HumGut: a comprehensive human gut prokaryotic genomes collection filtered by metagenome data

Pranvera Hiseni [™], Knut Rudi, Robert C. Wilson, Finn Terje Hegge & Lars Snipen

Microbiome 9, Article number: 165 (2021) Cite this article

14k Accesses | 51 Altmetric | Metrics

381,779 genomes clustered at 97.5% identity resulted in 30, 691 genomes.

hAMRoaster: a tool for comparing performance of AMR gene detection software

© Emily F.Wissel, Brooke M.Talbot, © Noriko A. B.Toyosato, © Robert A Petit III, Vicki Hertzberg, Anne Dunlop, © Timothy D. Read

doi: https://doi.org/10.1101/2022.01.13.476279

Few high resistance and clinically relevant bacterial genomes.

Simulation of reads:

https://github.com/quadram-institute-bioscience/ARG-Sniper/tree/main/datasets/raw-reads

Preliminary results:

Total AMR genes predicted by ABRICATE: 28

Thing to be done:

- Back-mapping of simulated-reads to reference.
- Test AMR prediction at 50x or 100x coverage.
- Run ARG-profiler separately.
- Test the effect of complexity on AMR prediction.
- Test the prediction on clinically relevant and phenotypical tested high resistance community of species.
- Characterizing the drug class for AMR-genes.

