10 Cuestiones de TEORIA (6 puntos). Puntuación: BIEN:+0.6 puntos. MAL: -0.15 puntos, N.C: 0

- 1. En el circuito de la figura y suponiendo V = 2V y $V\gamma = 0.7V$ para el diodo. Se puede AFIRMAR que:
 - [A] Si la tensión de entrada (Vi) es positiva, el diodo conduce y la tensión de salida (Vo) es 2V
 - [B] Si la tensión de entrada (Vi) es menor que +2.7V, la salida Vo es igual a Vi, pues no hay caída de potencial en R.
 - [C] Si la tensión de entrada (Vi) es negativa, el diodo no conduce y la tensión de salida (Vo) es 0V
 - [D] Cuando la tensión de entrada (Vi) es positiva y mayor que +2.7V, el diodo conduce y la salida Vo es igual a Vi. Mientras la tensión de entrada (Vi) no supere la tensión (V + Vγ) = 2.7V, el diodo no conduce y, por tanto, no hay corriente por el

- 2. Dado el circuito de la figura con diodos LED, indique cuál de las siguientes afirmaciones es **CORRECTA**, teniendo en cuenta que para los LED, V_{LED}=1.5V e I_{LED}=15mA, y para la puerta NAND, V_{OL}=0.15V y V_{OH}=4.5V (V_{CC} = 5V).
 - [A] En el nivel lógico alto de salida, los LED brillarán adecuadamente con una resistencia R mayor de 100Ω .
 - [B] En el nivel lógico bajo de salida, los LED brillarán adecuadamente con una resistencia R menor de 200Ω .
 - [C] En el nivel lógico alto de salida, los LED brillarán adecuadamente con una resistencia R de 100Ω.
 - [D] Los LED no llegarán a brillar para ninguno de los niveles lógicos de salida de la puerta NAND.

El circuito esta diseñado para que los leds se iluminen con una salida a nivel alto de la puerta NAND.

$$R = (V_{OH} - V_{LED}) / 2*I_{LED}$$

circuito.

R = (4.5V-1.5V) / 30mA = 0.1k Ω = 100 Ω (No debe ser mayor, pues

entonces la corriente sería menor que la requerida).

- 3. Para el circuito con diodos de la figura y suponiendo que A = "0" (0V) y B = "1" (5V) señale la afirmación **CORRECTA**, considerando $V\gamma = 0.7V$ para ambos diodos:
 - [A] $V_{AK} = -4.3V$ para el diodo cuya entrada es B.
 - [B] La tensión de la salida S es de 5V.
 - [C] Se trata de una puerta OR de dos entradas.
 - [D] La corriente que circula por la resistencia se reparte por los diodos.

El diodo cuya entrada es A **conduce**, por lo que la tensión de su ánodo es:

$$V_S = 0V + 0.7V$$

El diodo cuya entrada es B está **cortado**, por lo que las tensiones de sus terminales son: $V_A = 0.7V$ (ánodo) y $V_K = 5V$ (cátodo).

Por tanto: $V_{AK} = V_A - V_K = 0.7 \text{V} - 5 \text{V} = -4.3 \text{V}$

- 4. Acerca de las características del transistor MOSFET, señale la afirmación FALSA.
- [A] Permiten una alta densidad de integración, adecuada para los circuitos VLSI.
- [B] Presentan un alto consumo.
- [C] Presentan una alta impedancia de entrada.
- [D] Son unipolares y simétricos.

Los transistores MOSFET presentan un bajo consumo.

5. En el circuito con transistor de la figura, y para los datos que se indican, indique la afirmación **FALSA**.

Datos:
$$\beta = 100$$
, $V_{BE(ON)} = 0.7V$, $V_{CE(SAT)} = 0.2V$

- [A] Para una $V_i = 2.7$, la $V_{CE} = 6V$
- [B] En saturación la lc es de 9.8mA
- [C] El transistor comienza a conducir para Vi > 0.7V
- [D] En saturación, si aumenta la V_i, aumenta la I_C

En saturación la I_C permanece constante, independientemente de V_i y se calcula para $V_{CE(SAT)}$ = 0.2V

6. Para el circuito de la figura se han representado las curvas características del transistor y la recta de carga del circuito. Indique cuál de las siguientes afirmaciones es **FALSA**: (Datos: $R_B = 100k\Omega$; $V_{BE(ON)} = 0.7V$; $V_{CE(SAT)} = 0.2V$)

- [A] $R_C = 0.5k\Omega$
- [B] $\beta = 200$
- [C] Con I_B = 40 μ A, si aumentamos Vcc de 4V a 8V el transistor pasaría de estar en saturación a estar en activa.
- [D] Para una V_{BB} de 3.7 V, estamos en zona de saturación.

Para V_{BB} = 3.7V I_{B} = (V_{BB} - $V_{BE(ON)}$) / R_{B}

 $I_B = (3.7V - 0.7V) / 100k\Omega = 0.03mA = 30\mu A$

Según se ve en la curva caracteristica de I_B=30µA, la recta de carga corta en la zona activa (1V)

- 7. En el circuito inversor con BJT de la figura, ¿Para qué valor de Vi está en el límite entre activa y saturación?
 - $V_i = 0.7V$ [A]
 - [B] $V_i = 2.7V$
 - [C] $V_i = 1.92V$
 - $V_i = 2.62V$

 $5V - I_{C}*0.5k - V_{CE(SAT)} = 0V$

 $I_C = (5V - 0.2V) / 0.5k = 9.6mA$

 $I_B = I_C/\beta = 9.6 \text{mA} / 50 = 0.192 \text{mA}$

 $V_i = V_{BE(ON)} + I_B*Rb$

 $V_i = 0.7V + 1.92V = 2.62V$

- Señale la afirmación FALSA acerca del transistor MOSFET de canal N. 8.
- [A] En la zona de saturación, la corriente I_{DS} es constante al variar V_{DS}.
- [B] En la zona óhmica, la Ron equivalente es mayor cuanto mayor es V_{GS}.
- [C] El límite entre la zona óhmica y la de saturación se encuentra cuando $V_{DS} = V_{GS}-V_{T}$.
- [D] La saturación se da cuando V_{DS} ≥ V_{GS}-V_T.

 $R_{ON} = 1 / 2K(V_{GS}-V_T)$

Según la fórmula simplificada de la zona óhmica, cuanto mayor es V_{GS} menor es R_{ON}

Dado el circuito de polarización con MOSFET de la figura, señale la afirmación CORRECTA:

$$I_{DS (SAT)} = K (V_{GS_-}V_T)^2; I_{DS (OHM)} = K [2(V_{GS} - V_T)V_{DS} - V_{DS}^2]$$

- [A] El MOSFET está en la zona óhmica.
- [B] El MOSFET está en el límite entre las zonas óhmica y de saturación.
- [C] El MOSFET está saturado.
- [D] El MOSFET está en corte.

Como la corriente de puerta I_G = 0, en la entrada se tiene un divisor resistivo:

 $V_{GS} = 30k * (5V / (20k+30k)) = 3V$

 $V_{GS} > V_{T}$, 3V > 2V entonces el MOSFET conduce.

Hipótesis: consideramos saturación

 $I_{DS} = K^*(V_{GS} - V_T)^2 = (1mA/V^2)^* (3V - 2V)^2 = 1mA$

 $V_{DS} = V_{DD} - I_{DS} R_D = 5V - 1mA 1k = 4V$

V_{DS} > V_{GS} - V_T, 4V > 1V entonces se comprueba

que está saturado.

10. Indique los niveles mínimo y máximo de la tensión de salida Vo en el inversor lógico de la figura, si Vi es una onda cuadrada con valores mínimo y máximo de 0V y 5V. Suponga que en la zona óhmica se puede utilizar la siguiente expresión aproximada de la corriente:

$$I_{DS\;(ON)}\approx 2K \big(V_{GS}\text{-}V_T\big)\;V_{DS}$$

- [A] 0V y 4.7V
- [B] 0.05V y 5V
- [C] 0.08V y 4.5V
- [D] 0.03V y 5V

Cuando Vi = 0V (< V_T) el transistor está

cortado, por lo que Vo = 5V

Cuando Vi = 5V el transistor está en zona

òhmica, por tanto se puede calcular:

 $R_{ON} = 1 / (2K^*(V_{GS} - V_T))$

 $R_{ON} = 1 / (2*0.5*(5V-3V)) = 0.5k$

Por la fórmula del divisor resistivo:

Vo = 0.5K * (5V / (0.5k + 80k)) = 0.03V

PROBLEMA 1 (4 PTOS)

El circuito de la figura es una puerta lógica NMOS. Se pide:

Nota: En zona óhmica utilice la expresión aproximada $I_{DS} \approx 2K(V_{GS} - V_T) V_{DS}$, y en saturación $I_{DS} = K(V_{GS} - V_T)^2$

Nota: Las curvas representadas son para incrementos de 1V de V_{GS}.

[A] (20%) Obtenga a partir de la gráfica el valor de la tensión umbral V_T y de la transconductancia K del transistor MOSFET. Justifique la respuesta.

En la curva correspondiente a $V_{GS}=5V$, se observa que el límite entre la zona de saturación y la zona óhmica corresponde a $V_{DS}=3V$, por lo que $V_{T}=V_{GS}-V_{DS}=5V-3V=2V$

Para calcular K, tomemos la curva de , por ejemplo V_{GS} =5V. En saturación tendremos a partir de la gráfica, que: I_{DS} =9mA=K(5-2)², de donde obtendremos K: K= 9mA/9V² = 1mA/V²

V _T = 2 (V)	K =	1	(mA/V²)
------------------------	-----	---	---------

[B] (20%) Calcule el punto de trabajo Q (V_{GS} , V_{DS} , I_{DS}) y el valor lógico de salida V_o con una entrada a "1" (V_i =5V). Justifique la respuesta. (Sugerencia: calcule el valor de la resistencia equivalente R_{ON})

El circuito es un inversor lógico, por lo que, si la entrada es un "1" lógico, el transistor estará en zona óhmica y la salida será un "0" lógico.

Para calcular la tensión de salida, el MOSFET lo representaremos por su resistencia equivalente Ron que calculamos mediante la fórmula:

 R_{ON} = 1/ (2*K*(V_{GS}-V_T)) = 1 / (2*1*(5-2))= 1/6 =0.1666 kOhm

Y la tensión de salida será:

 V_{DS} =Vo = 5V * (0.1666 / (2.5 + 0.1666)) = 0.3125 V, (Valor lógico: "0", como era de esperar)

Y la $I_{DS} = 5V / (2.5 + 0.1666) = 1.875 \text{ mA}$

Vo= "0"	V _{GS} = 5 (V)	$V_{DS} = 0.3125 (V)$	$I_{DS} = 1.875$ (mA)	R _{ON} =0.1666(KOhm)
VO- V	VGS - 3 (V)	VDS - 0.5125 (V)	105 - 1.075 (11174)	100N-0.1000(1001111)

[C] (10%) Dibuje sobre las curvas características, la recta de carga y el punto de trabajo del apartado anterior. Justifique la respuesta.

La recta de carga cortara el eje de abscisas en V_{DS} =5V y en el de ordenadas en I_{DS} =5V/2.5k=2mA Y el punto de trabajo será la intersección de esta recta con la curva de V_{GS} =5V

[D] (15%) Si **Vi = 3V**, ¿en qué zona de funcionamiento se encontrará el transistor? Se recomienda el uso de la gráfica. Justifique la respuesta.

A la vista de la recta de carga y la curva de VGS = 3V, se observa que intersectan claramente en la zona correspondiente a la saturación, por lo que el MOSFET estará en SATURACION.

Zona de funcionamiento: SATURACION

[E] (15%) Partiendo del diseño base del inversor, dibuje el circuito de una puerta **NOR NMOS** de 2 entradas, y rellene la tabla de verdad adjunta.

Va	Vb	M1 (OFF/ON)	M2 (OFF/ON)	Salida (Valor lógico)
0	0	OFF	OFF	1
0	1	OFF	ON	0
1	0	ON	OFF	0
1	1	ON	ON	0

[F] (20%) Calcule la tensión de salida de la puerta **NOR** de 2 entradas del apartado anterior cuando las entradas son V_a =5V y V_b =5V. Nota: se recomienda el uso de la resistencia equivalente del MOSFET calculada en el apartado B, y tómese la resistencia de drenador R_D = 2k5

Cuando las dos entradas están a nivel alto, cada MOSFET es equivalente a una resistencia de valor R_{ON} , por lo que la resistencia conjunta será el paralelo de las dos, es decir, $R_{ON}/2 = 0.1666/2 = 0.0833$ kOhm, por lo que la salida será la de un divisor resistivo con una R_D = 2k5 y una resistencia equivalente de los dos MOSFET de 0.0833kOhm:

V_{SALIDA}= 5V * (0.08333 / 2.58333)= **0.1613** V

 $V_{SALIDA} = 0.1613$ (V)