

Can We Trust a Neural Network Prediction?

Methods and Pitfalls for Explaining Black Boxes

Niklas Koenen¹² & Marvin N. Wright¹²³

'Leibniz Institute for Prevention Research & Epidemiology – BIPS 'Faculty of Mathematics and Computer Science, University of Bremen 'Department of Public Health, University of Copenhagen

December 9th, 2024

32nd International Biometric Conference - Atlanta

eXplainable AI (XAI)

Global Methods

"... explain the model's overall behavior across the entire dataset."

Accumulated Local Effects (ALE)

— Apley & Zhu (2020)

Partial Dependence Plots (**PDP**)

— Friedmann (2001)

Permutation Feature Importance (**PFI**)

— Fisher et al. (2019)

SAGE

— Covert et al. (2020)

Functional ANOVA

— Hooker (2004)

Local Methods

"... explain specific predictions or outcomes for individuals."

Counterfactual Expl.

— Wachter et al. (2017)

ICE — Goldstein et al. (2015)

eXplainable AI (XAI)

Global Methods

" ... explain the model's overall behavior across the entire dataset."

> Accumulated Local Effects (ALE) - Apley & Zhu (2020)

> > Partial Dependence Plots (PDP) - Friedmann (2001)

Permutation Feature Importance (PFI) - Fisher et al. (2019)

SAGE

- Covert et al. (2020)

Functional ANOVA - Hooker (2004)

Local Methods

" ... explain specific predictions or outcomes for individuals."

Local Surrogate (LIME) - Ribeiro et al. (2016)

Counterfactual Expl. - Wachter et al. (2017)

ICE - Goldstein et al. (2015)

Feature Attribution

SHAP

Shapley Neural Networks

From local to global (?)

Feature Attribution

What is feature attribution?

Feature Attribution

What is feature attribution?

Feature Attribution

What is feature attribution?

- Assigns an attribution value of a selected output to each input variable
 - → also known as contribution or relevance
 - → can be positive (in red) or negative (blue)
- Utilizes the
 - → layer-wise architecture of a neural network
 - → automatic differentiation engine of the training
- Extremely efficient and fast
 - → thanks to deep learning libraries like PyTorch, Keras/TensorFlow etc.
 - → generally only one forward and one backward pass is needed (no optimization or estimation)

Which Method Should I Use?

Which Method Should I Use?

Published in Transactions on Machine Learning Research (06/2024)

The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective

Satyapriya Krishna^{1,*}, Tessa Han^{1,*}, Alex Gu², Steven Wu³, Shahin Jabbari⁴, Himabindu Lakkaraju¹

- ¹ Harvard University
- ²Massachusetts Institute of Technology
- ³Carnegie Mellon University
- ⁴Drexel University
- * These authors contributed equally to this work.

Reviewed on OpenReview: https://openreview.net/forum?id=jESY2WTZCe

Which Method Should I Use? - It depends...

Simulation

Features (real):

BMI, Age, Gender and HbA1c

Outcome (binary)

Diabetes (synth.)

Prediction-Sensitive Methods

"How sensitive is the prediction w.r.t. this feature?"

 $\mathbf{Gradient^1:} \ \frac{\partial f(x)}{\partial x_i} \quad \mathbf{SmoothGrad^2:} \sum_{k=1}^K \frac{\partial f(x+\varepsilon^{(k)})}{\partial x_i+\varepsilon^{(k)}_i} \ \left(\varepsilon^{(k)} \sim \mathcal{N}(0,I\sigma)\right)$

6

Interpretation:

 Increasing patient's age increases model's prediction for diabetes

¹Simonyan et al. (2014) • ²Smilkov et al. (2017)

Prediction-Sensitive Methods

"How sensitive is the prediction wrt this feature?"

 $\textbf{Gradient}^1 : \frac{\partial f(x)}{\partial x_i} \quad \textbf{SmoothGrad}^2 : \sum_{k=1}^K \frac{\partial f(x + \boldsymbol{\varepsilon}^{(k)})}{\partial x_i + \boldsymbol{\varepsilon}^{(k)}_i} \left(\boldsymbol{\varepsilon}^{(k)} \sim \mathcal{N}(0, I\sigma) \right)$

6

Interpretation:

 Increasing patient's age increases model's prediction for diabetes

Pitfalls:

- Show output sensitivity, not attributions!
- Depend on feature scaling
 - → complicating comparisons for tabular data
- Provide point-specific insights
- **SmoothGrad**
 - Reduces noise ("area-gradient") but depends on smoothing parameters
 - Is Gaussian noise always the best choice?

¹ Simonyan et al. (2014) • ² Smilkov et al. (2017)

(Fixed-)Reference Methods

"What are the features' contributions for predicting f(x) instead of $f(\tilde{x})$?"

*Grad×Input³:
$$\frac{\partial f(x)}{\partial x_i} \cdot x_i$$
 IntGrad⁵: $(x_i - \tilde{x}_i) \int_{\alpha=0}^1 \frac{\partial f(\tilde{x} + \alpha(x - \tilde{x}))}{\partial x_i} d\alpha$
*LRP⁴ DeepLIFT³

*Approximation and fixed reference ($\tilde{x}=0$)

Interpretation:

- Decomposition of $f(x) f(\tilde{x})$ in feature-wise effects
- Did this feature change (from x to x
) argue against or for an increase?

Zero Baseline

Reference Patient

³Shrikumar et al. (2017) ● ⁴Montavon et al. (2019) ● ⁵Sundararajan et al. (2017) ● ⁶Koenen & Wright (2024)

(Fixed-)Reference Methods

"What are the features' contributions for predicting f(x) instead of $f(\tilde{x})$?"

*Grad×Input³:
$$\frac{\partial f(x)}{\partial x_i} \cdot x_i$$
 IntGrad⁵: $(x_i - \tilde{x}_i) \int_{\alpha=0}^1 \frac{\partial f(\tilde{x} + \alpha(x - \tilde{x}))}{\partial x_i} d\alpha$
*LRP⁴ DeepLIFT³

7

Interpretation:

- Decomposition of $f(x) f(\tilde{x})$ in feature-wise effects

Pitfalls:

- Explanations are highly sensitive to the choice of reference
- Other reference means other question
- Grad×Input and LRP struggle with non-linearity⁶
- Typical references (e.g., 0) often fall outside data distribution

Zero Baseline

*Approximation and fixed reference ($\tilde{x} = 0$)

Shapley-based Methods

"What are the features' contributions for predicting f(x) compared to $\mathbb{E}_X\left[f(X)\right]$?"

DeepSHAP8 (rescale or reveal-cancel)

5 PS

8

Interpretation:

- Decomposition of $f(x) \mathbb{E}\left[f(X)\right]$ in feature-wise effects
- What is the marginal contribution of this feature?
 - → answers a more natural question
 - → axiomatic and theoretical foundation

⁷Erion et al. (2021) • ⁸Lundberg & Lee (2017)

Shapley-based Methods

"What are the features' contributions for predicting f(x) compared to $\mathbb{E}_X\left[f(X)\right]$?"

 $\mathbf{GradSHAP^7} \colon \mathbb{E}_{\substack{\tilde{x} \sim X \\ \alpha \sim \mathcal{U}[0,1]}} \left[(x_i - \tilde{x}_i) \frac{\partial f(\tilde{x} + \alpha(x - \tilde{x}))}{\partial x_i} \right]$

DeepSHAP8 (rescale or reveal-cancel)

8

Interpretation:

- \bullet Decomposition of $f(x) \mathbb{E}\left[f(X)\right]$ in feature-wise effects
- What is the marginal contribution of this feature?
 - → answers a more natural question
 - → axiomatic and theoretical foundation

Pitfalls:

- Still marginal (no conditional Shapley values)
- Higher computational costs
- Requires suitable (reference) dataset

⁷Erion et al. (2021) • ⁸Lundberg & Lee (2017)

Interaction-based Methods

"Is there a combined effect of features on f(x)?"

Hessian: $\frac{\partial^2 f(x)}{\partial x_i \partial x_i}$

ExpectedHessian9

IntHessian⁹:
$$(x_i - \bar{x}_i) (x_j - \bar{x}_j) \int_0^1 \int_0^1 \alpha \beta \frac{\partial^2 f(\bar{x} + \alpha \beta (x - \bar{x}))}{\partial x_i \partial x_j} d\alpha d\beta$$

9

Interpretation:

- Decomposition of $f(x) f(\tilde{x}) / f(x) \mathbb{E}_X [f(X)]$ in feature-wise main (diagonal) and two-way interaction effects (IntHessian/ ExpHessian)
- Reveals local interaction effects and strength (Hessian)

f(x) = 0.039 vs. f(x') = 0.569

⁹ Janizek et al. (2021)

Interaction-based Methods

"Is there a combined effect of features on f(x)?"

Hessian: $\frac{\partial^2 f(x)}{\partial x_i \partial x_i}$

G

ExpectedHessian9

IntHessian⁹:
$$(x_i - \tilde{x}_i)(x_j - \tilde{x}_j) \int_0^1 \int_0^1 \alpha \beta \frac{\partial^2 f(\tilde{x} + \alpha \beta(x - \tilde{x}))}{\partial x_i \partial x_j} d\alpha d\beta$$

9

Interpretation:

- Decomposition of $f(x) f(\tilde{x}) / f(x) \mathbb{E}_X [f(X)]$ in feature-wise main (diagonal) and two-way interaction effects (IntHessian/ ExpHessian)
- Reveals local interaction effects and strength (Hessian)

f(x) = 0.039 vs. f(x') = 0.569

ender	0.353	-0.088	-0.069	-0.013
вмі		-0.505	0.152	0.036

Pitfalls:

- Higher computational costs
- Not possible for ReLU networks
 - → vanishing 2nd derivative

• (similar to the other three groups)

Age

HhA1c

-0.334

0.051

-0.183

Gender

BMI

Aae

HbA1c

^{9.} Janizek et al. (2021)

From Local to Global Explanations

- So far: Only explanations of individuals
- Aggregating local explanations for global insights (Lundberg et al. (2020))
- Gives relative importance among features
- Can we do so for other feature attribution methods?
 - Prediction-sensitive: Global feature's sensitivity (but depends on scaling)
 - Reference-based: Global effect against single reference
 - Shapley-based: Marginal global effect

⇒ Only explaining the model's prediction (not necessarily aligning with data-based or loss-based importance measures)

Key Takeaways & Future Work

11

Key Takeaways:

- Feature Attribution Method \neq feature attribution \rightarrow answer different questions!
- · Choice of method depends on the question: sensitivity, (baseline/marginal) attribution, or interaction
- Each reference value answers another question
- No recommendation for vague approximations (like LRP, Grad×Input)
- Can be aggregated to global importance measures → feature selection
- ullet Prediction-based! o "What does the model see for the prediction" not true to the data

Future Work:

- $\bullet \ \ \text{Adopting methods for loss-based insights} \rightarrow \text{performance attribution}$
- Extending methods for conditional (not marginal) values

Thank you for your attention!

Slides, references and reproduction material

R Package innsight

Contact

Niklas Koenen

Leibniz Institute for Prevention Research and Epidemiology – BIPS

Achterstraße 30

D-28359 Bremen

koenen@leibniz-bips.de

I have no current or past relationships with commercial entities.