(11) **EP 1 103 234 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 30.05.2001 Bulletin 2001/22

(51) Int CI.7: **A61F 2/06**, A61N 5/10, A61K 51/12, A61L 31/16

(21) Application number: 99830721.9

(22) Date of filing: 23.11.1999

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(71) Applicant: SORIN BIOMEDICA CARDIO S.p.A. 13040 Saluggia (Vercelli) (IT)

(72) Inventors:

 Vallana, Franco 10123 Torino (IT) Chinaglia, Benito
 10131 Torino (IT)

Curcio, Maria
 13040 Saluggia, Verceili (IT)

 Rolando, Giovanni 10034 Chivasso, Torino (IT)

(74) Representative: Bosotti, Luciano et al Buzzi, Notaro & Antonielli d'Ouix Corso Fiume 6 10133 Torino (IT)

(54) A device for conveying radioactive agents on angioplasty stents, respective method and kit

(57) A device (1) for conveying radioactive agents onto an angioplasty stent (S) comprising an envelope which can be associated with the stent (S), preferably pulled over the stent (S) before implantation. The envelope of device (1) is capable of expanding, thus following

the deployment movement of the stent, and carries an associated material which is capable of exerting an effective radioactive effect at the site at which the stent (1) is implanted. Preferred application in the development of an action to counter restenosis.

[0001] This invention relates to stents for angioplasty. [0002] This name is intended to indicate in general devices which are intended for endoluminal application (e. g. within a blood vessel), normally fitted via catheterization, with subsequent deployment in situ so as to provide a local supporting effect for the lumen.

[0003] For a general review of vascular stents reference may usefully be made to the work "Textbook of Interventional Cardiology" by Eric J. Topol, W.B. Saunders Company, 1994, and in particular section IV of Volume II entitled "Coronary stenting".

[0004] A large number of patent documents have also been devoted to the subject, as evidenced by, e.g. EP-A-0 806 190, EP-A-0 850 604, EP-A-0 847 766, EP-A-0 857 470, EP-A-0 875 215, EP-A-0 895 759 and EP-A-0 895 760.

[0005] Clinical use of such devices, which has developed appreciably in the course of the last few years, has to meet the need to ensure an effective action to counter the phenomenon currently known as restenosis. This is the phenomenon, associated with physiological mechanisms which are not yet wholly clear, as a result of which the site of the stenosis which is reopened through the effect of the stent implant tends gradually to close again, generally through the effect of gradual tissue growth.

[0006] Various arrangements which essentially provide for developing an effect at local level which counters the phenomena giving rise to restenosis have been proposed in order to deal with this problem. In particular various arrangements which provide for the local release of drugs or the local use of radioactive sources have been investigated.

[0007] Arrangements based on local controlled release of drugs must as a primary requirement overcome the problem of effectively ensuring location at the site of the stent implant.

[0008] Arrangements which provide for the use of radioactive sources on the other hand face a variety of difficulties.

[0009] The main problems associated with the use of radioactive materials to counter restenosis are associated with distribution of the dose in the tissue and its decay over time.

[0010] There are in fact no radioisotopes which at the same time have:

- an energy and a type of radiation such as to provide a uniform and effective dose in the first few millimetres of the wall but negligible at greater depths,
- a sufficiently long half-life to enable the radioisotope to be held in store for a reasonable period of time (weeks), but which is sufficiently short not to permanently damage the vessel into which it is implanted,

- very high specific activity, and
- optimum biocompatibility.

[0011] There are however partial solutions to the above problems.

[0012] For example, phosphorus 32 has good characteristics in terms of half-life, it can be obtained with high specific activities and can be implanted on the surface of the stent, but has low penetration (14 days, 1.7 MeV beta radiation).

[0013] Palladium 103 has good half-life and penetration properties (17 days, 20 keV X-rays), but its specific activity is very low. Nevertheless the use of enriched palladium obtained by irradiation in a reactor or through cyclotron irradiation starting from rhodium and performing a chemical separation have been suggested. The main disadvantage of this arrangement is in the relatively high cost of the material so obtained.

[0014] Yttrium 90 has good penetration properties, but decays very quickly (64 hours, 2.2 MeV beta radiation). It has therefore been suggested that yttrium should be deposited on the stent a few hours before implantation, but this arrangement has appreciable problems and the possible effects in terms of biocompatibility have not yet been entirely clarified.

[0015] Ruthenium 106 has excellent properties in terms of penetration, but lasts too long (1 year, 3.5 MeV beta radiation).

[0016] Other radioisotopes, such as silver 105, have properties similar to palladium 103, and the same prob-

[0017] It can however be said that the materials which are likely to have valuable properties with regard to having an effect which counters restenosis are poorly suitable, or not at all suitable, for producing the stent or parts thereof.

[0018] In every case the fact that the stent is rendered radioactive produces difficulties of a logistical type (implantation of the stent and the corresponding preparatory work are in fact of the nature of nuclear medicine activities), or unsatisfactory performance from the point of view of radioactive behaviour.

[0019] The abovementioned difficulties may perhaps explain why this research and investigation work has not yet resulted in effectively wide use of the corresponding methods. This irrespective of the fact that there is quite a large number of patent documents relating to the application of materials, in particular radioactive materials having an action which counters restenosis onto stents, or techniques substantially similar thereto.

[0020] Among these documents, in addition to documents such as United States patents 5 059 166, 5 176 617 and 5 213 561 relating to the construction of radioactive stents, mention may be made of United States patents 5 722 984, 5 840 009 and 5 605 530 which refer to the application of substances such as phosphorylcholine labelled with phosphorus 32 to a stent, or means for

overcoming the weakening of the dose at the ends of the stent through adding phosphorus 32 to the ends thereof, or again providing a screen to avoid the adverse effects of irradiation at the time when the stent is implanted.

[0021] Other documents such as WO-A-98/43694, WO-A-99/02195 or WO-A-99/09912 relate to coating a stent (or other means) with an antigen with a view to subsequent injection of a radioactive antibody, the application of a layer of radio-opaque material designed to receive the ionic implantation of radioactive material, or again a method of local treatment actuated by a device similar to a stent coated with a substance which is capable of reacting with another substance administered orally to generate in the locality a third substance which has a therapeutic effect.

[0022] United States patent 5 779 732 illustrates how a sheet of plastic containing a releasable substance can be located around a stent, while EP-A-0 873 732 discloses a stent coated with a substance which attracts heparin to form a layer of heparin.

[0023] Covering the wall of a vessel with an adhesive substance which is also radioactive is known from United States patent 5 873 811, while United States patents 5 871 436 and 5 843 163 describe how a radioactive substance can be fixed by means of a specific chelating agent or the use of a wire of radioactive material to keep an apertured stent extended.

[0024] WO-A-98/48851 teaches how a radioisotope can be applied to a metal stent: a very great number of isotopes are considered and the stents are of steel or Nitinol. Methods of application are electrochemical, of the electrodeless type, using peptides, fats or thiols.

[0025] Yet other documents refer to brachytherapy techniques using radioactive sources temporarily located within the vessel: for example United States patents 5 865 720 and 5 840 008 teach how a type of radioactive sheath or sleeve can be placed around a balloon. Furthermore, United States patent 5 707 332 examines in detail all possible radioisotopes which could be used for brachytherapy, but finds none to be ideal. A source (liquid or gas) which is to be placed in the balloon, or a wire source which is moved forward and backwards in order to provide treatment as desired, is described.

[0026] The purpose of this invention is to provide an arrangement which is improved in comparison with the arrangements based on the local use of radioactive sources experimented with hitherto. This in particular as regards the function of countering restenosis.

[0027] In accordance with this invention, this object can be achieved through a device which can be associated with a stent having the features claimed in the claims below. The invention also relates to a corresponding method of use and a corresponding implantation kit.

[0028] The arrangement according to the invention offers a variety of advantages.

[0029] In the first place, the device according to the

invention can be applied to virtually any kind of stent, independently of e.g. the shape, type, technology of construction and method of expansion (balloon catheter, shape-memory, etc.) of the stent itself.

[0030] The device according to the invention can be constructed using a variety of techniques depending upon the radioactive agent delivered and/or the performance required: both the material or the constituent materials and the dimensions, and in particular the length, of the device are wholly independent - and may therefore also be markedly different - from the corresponding characteristics of the stent. To cite an example, the envelope comprising the device may be made to be shorter (or longer) than the stent, if this corresponds to an application requirement.

[0031] The arrangement according to the invention therefore comprises making both the choice and the method of dosing the radioactive agent wholly independent of the characteristics of the stent. In particular the choice of radioactive agent can be optimized and/or different doses of radioactive agent can be used in different parts of the stent. With the arrangement according to the invention it is even possible to deliver several different radioactive agents to one stent, for example to achieve different radiation characteristics in different areas of the stent and/or at different times following implantation of the stent.

[0032] A basic feature is provided by the fact that the arrangement according to the invention makes it possible to activate only the radioactive agent which has been delivered (at most together with the means delivering it), thus avoiding it being necessary to activate the stent itself, even in part.

[0033] The latter advantage is valuable from at least two different points of view.

[0034] A first point of view is associated with the fact that the invention makes it possible to avoid activating the material comprising the stent. Usually activation of the stent as a whole gives rise to radiation phenomena which are difficult to control in relation to both dosage and the properties of the activated isotopes, and again in that it gives rise to mixed radiation resulting from various isotopes contained in the material forming the stent. [0035] A second point of view is of a logistical nature: the device according to the invention is in fact capable of being associated with the stent only at the time of implantation and before such time may therefore follow a cycle of production, activation (usually by irradiation) and storage before and after activation which is wholly independent of the cycle for the production, distribution and storage of the stent. In particular, the latter should not at any time be subjected to constraints imposed by the handling of radioactive material. All this with the further important advantage conferred by the fact that when a period of time has lapsed after activation of the device such that it can be considered that it has lost the desired level of radioactivity, only the device, and not, as is the case with traditional arrangements, the stent

55

as well, and, furthermore, the introduction kit (balloon catheter, etc.) associated with it, need to be subjected to disposal.

[0036] Above all, the arrangement according to the invention is also suitable for possible treatment to reactivate the device when this has lost its desired radioactive properties.

[0037] The invention will now be described purely by way of a non-restrictive example with reference to the appended drawings in which:

- Figures 1 to 7 illustrate different embodiments of a device according to the invention respectively,
- Figures 8 and 9 illustrate by way of example how the arrangement in Figure 1 can be further modified to achieve particular application purposes,
- Figure 10 shows how a similar result can be achieved with reference to the embodiment in Figure 5, and
- Figures 11 and 12 represent two further possible variants through which the invention may be implemented.

[0038] In all the figures in the appended drawings, reference number 1 indicates a device according to the invention which is intended to be associated with an angioplasty stent in order to confer radioactive properties upon it. For the reasons illustrated in the introductory part of this description, this objective is pursued so as to associate an action countering restenosis with the stent. At least in principle the possible applications of the invention will not however be regarded as being restricted exclusively to this purpose.

[0039] The profile of the stent with which the device 1 according to the invention is associated is indicated diagrammatically by reference S. In all the figures, which are largely viewed from the side (Figures 1 to 3, 5-6 and 8 to 10), or seen in approximately lateral perspective view (Figures 4, 7, 11 and 12), the stent is illustrated in the radially contracted condition and is shown essentially as a small tube of cylindrical shape.

[0040] This approach, which is deliberately diagrammatical, has been adopted to point out the fact that the device according to the invention can be used in practice with any type of stent, independently of its shape, structural, construction and expansion characteristics.

[0041] These characteristics can therefore correspond to those which can be encountered in the great variety of stents known in the art, which makes it unnecessary to mention these characteristics, even merely by way of example.

[0042] This of course also applies to the means, methods and criteria used to achieve deployment of the stent in its site of implantation (dilation by means of a balloon catheter, construction of self-expanding stents, e.g.

through the use of materials having shape memory, etc.).

[0043] All the figures in the appended drawings relate to arrangements in which stent S is a small tube having a diameter which is slightly less than and a length which is slightly greater than that of means 1.

[0044] This representation is however purely by way of example, given that the length of device 1 may be both less than, the same as or even greater than that of stent S. It is not necessary that the shape of device 1 should precisely copy the shape of the stent: notwith-standing, of course, the requirement for physical compatibility between the shapes, both stent S and device 1 may have e.g. cross sections which vary along their longitudinal length, and therefore narrow portions, wide portions, parts having a cross section other than a circular cross section, etc.

[0045] The arrangements to which Figures 1 to 12 refer provide that device 1 should be fitted on, that is located, outside stent S. This arrangement, which at the present time is regarded as being preferred (both because of the possibility that deployment and anchorage of device 1 at the site can be achieved automatically through the effect of the deployment of stent S, and because it is generally desired to encourage the radiation to act towards the walls of the vessel in which stent S is implanted), is not however mandatory. The invention therefore also relates to embodiments in which device 1 is intended to be fitted within stent S, with suitable forms of radial anchorage being provided for this purpose.

[0046] The arrangement illustrated in the figures, in which device 1 is fitted on the outside of stent S, has proved to be particularly advantageous from the point of view of use in that it makes it possible to associate device 1 with stent S immediately before the operation of implantation.

[0047] Device 1 can therefore be taken from the corresponding protective container by the same person who is performing the implant, to be fitted over and "crimped" onto the stent immediately before the implanting operation.

[0048] This arrangement is not however essential: the device 1 according to the invention is in fact suitable for the preparation of implant kits comprising the stent S with associated device 1 (normally already activated), with the possibility of stent S being placed on the corresponding implantation catheter (of a known type).

[0049] Examination of Figures 1 to 12 will show how the device according to the invention is designed to convey a material capable of exerting an effective radioactive effect at the site of the stent implant: this by being realised wholly or in part using such material or by delivering bodies comprising such material.

[0050] The words "material capable of exerting an effective radioactive effect at the site at which the stent is implanted", as also used in the following claims, are designed to shed light on some significant aspects of the

arrangement according to the invention, namely:

- although a different arrangement should not be ruled out (at least in principle), the aforesaid material does not yet have any radioactive effect at the time when it is used to manufacture the device or is associated as a constituent part of device 1 itself: normally the radioactivity properties are imparted subsequently, e.g. by irradiation from a source of radiation (typically in a nuclear reactor),
- the level of activity aimed at is that appropriate for the context of the application in question, above all for the purposes of achieving an effective action to counter restenosis.

[0051] By way of example reference may be made to the various energy levels and types of radiation to which reference is made in the introductory part of the description.

[0052] The radiation may be, e.g., X-rays having an energy of the order of 18-25 keV, which are not substantially attenuated in the first few millimetres of penetration.

[0053] Another advantageous choice is a high energy beta ray emitter such as yttrium 90. In this case it would be conceivable to use a SR90/Y90 generator to produce a device 1 which is intended to be delivered to hospital within 1-2 days for use if appropriate in association with a corresponding stent in an implant kit.

[0054] In any event the arrangement according to the invention is ideally suited to the possibility of coordinating the structure and construction technology of device 1 with the choice of radioactive material (it will be remembered that this material can in reality also comprise several radioactive isotopes), e.g. construction in the form of a wire or plate for use in combination with radioactive materials having ductility or malleability properties, or incorporation in a matrix in the presence of e.g. radioactive materials available in powder form. The arrangement according to the invention is also suitable for use in combination with a binding agent-ligand association, where one of the components in the association is initially applied to the device 1, while the other component of the association comprises the radioactive material which is to be introduced (typically injected) into the patient to bind on the device 1 implanted together with the corresponding stent.

[0055] Figures 1, 8 and 9 illustrate a possible embodiment of device 1 according to the invention in the form of a tubular body (which on the whole can be likened to a stent in its structure) constructed from a wire-like material 10 itself comprising a material which is capable of being rendered radioactive. Also bearing in mind the quantity of material (10-20 mg) which is likely to be used to construct device 1, this may also be e.g. palladium, so that sufficient total activity can be provided without resorting to enriched palladium.

[0056] The wire-shaped material in question (which is capable of adopting the appearance of a plate, at least locally) is wound into a shape to give rise to a set of sections 11 of generally cylindrical shape in the form of a coil, connected together by lengths of wire 12 which extend in the direction of the generatrices of the cylindrical linear surface over which device 1 extends. The corresponding manufacturing technology should be regarded as being well known, particularly in the field of stents: in this respect reference may be made to e.g. European patent application EP-A-0 806 190.

[0057] As has already been mentioned, however, in a possible embodiment the device 1 may only be partly constructed of material which is capable of being made radioactive; for example, with reference to the embodiment in Figure 1, in the form of wires of material which can be made radioactive woven or at least braided into a basic structure which is similar or related to that illustrated in Figure 1.

[0058] With respect to the basic arrangement illustrated in Figure 1, the variants in Figures 8 and 9 show that by acting on the structural features of device 1 it is possible to obtain a change in the density of the constituent material along the longitudinal length of the device, with a consequent possible variation in the radioactivity properties which can be achieved through the device 1.

[0059] For example, Figure 8 relates to an embodiment in which, while retaining the coil arrangement, the end sections 11' of device 1 are constructed having a sinusoidal shape with a smaller period (that is, figuratively speaking, a higher "frequency") in comparison with sections 11 which are located at the centre of device 1. All this has the effect that more material which is capable of being made radioactive is present in these end sections 11'.

[0060] In this way, when the material is activated and rendered radioactive, it is possible to achieve an effect varying the level of local radiation with respect to adjacent zones in these end zones. This arrangement can also be adopted asymmetrically, so that e.g. a single section 11' in which the wire is present in a condensed form is present at one end of device 1, with a different number of similar sections (e.g. two sections 11') at the other end.

5 [0061] Of course this density effect (or rarefaction effect, achieved by increasing the pitch of the winding of the wire coil) can be achieved selectively in any portion of the longitudinal extent of device 1.

[0062] The action of varying/modulating radioactive activity may also be achieved by different means, e.g. using different radio isotopes and/or different radioactivity properties in different portions of the stent.

[0063] The abovementioned variation/modulation effect may be made use of for different purposes.

[0064] For example, the fact of increasing the level of local radioactivity at the ends of device 1 can be utilized for at least two purposes:

- ensuring a uniform level of radioactivity along the entire longitudinal length of device 1 (for the same linear density of radioactive material the intensity of the radiation determined along the principal longitudinal axis of device 1 has a maximum value at the centre and a minimum value at the ends), and/or
- achieving maximum radioactivity values at the ends of device 1, therefore corresponding to the ends of stent S over which it is fitted.

[0065] This latter arrangement is advantageous when it is desired to counter the phenomena of restenosis which sometimes occur at the ends of the site where the stent is implanted, where the walls of the vessel are no longer supported and held apart by the stent itself.

[0066] Figure 9 on the other hand shows a variant in which the two end sections, indicated by 11", are made of wire of different diameter (e.g. greater diameter) and/or different cross section (e.g. using a flattened transverse profile). In this case too a symmetrical or asymmetrical arrangement is possible at the two ends of device 1 or, in general, in any region along the longitudinal extent of the means.

[0067] Figures 2 and 4 relate to arrangements which provide for producing device 1 in the form of a tubular body 13, e.g. of metal. This may then take the form of both a body which is already of a tubular shape (Figure 2) or a flat sheet which is curved and closed to form a tube using a longitudinal weld 13a (Figure 3), or again a sheet which is merely wound on itself in accordance with a generally spiral arrangement (Figure 4).

[0068] With reference to the latter embodiment, the sheet may be capable of maintaining the closed configuration either through intrinsic plasticity properties (possibly associated with shape-memory properties) or because it is constrained by retaining members - not illustrated, but of a known type - whose action is reduced at the time when the stent on which the means are mounted is dilated.

[0069] These embodiments are obviously suitable for use with particular advantage in combination with materials which can be rendered radioactive and which have good malleability properties.

[0070] In the examples in Figures 2 and 3, the open structure which is necessary to ensure that device 1 follows the expansion movement of stent S is achieved by forming openings in the form of e.g. slots 14.

[0071] This apertured structure has also been shown, as it is preferred, in connection with the embodiment in Figure 4. At least in principle sheet 13 illustrated therein is capable of being wound on itself to follow the expansion movement of the stent. The open structure deriving from the presence of slots 14 is however such as to render sheet 13 deformable, and therefore extendable. [0072] Manufacturing techniques (laser cutting or EDM or chemical etching, etc.) which can be applied to the construction of the devices in Figures 2 to 4 are in

general known in the technology of stent manufacture and do not need to be illustrated specifically here.

[0073] Also with reference to what will be said below, emphasis is again placed on the fact that the material which can be made radioactive may be a single well-defined isotope, a mixture of two or more isotopes intended to provide different radiation properties, or an alloy material containing one or more materials which are capable of being made radioactive among its components. As already mentioned, the variation in the type or types of the radioactive materials used makes it possible to achieve an effect modulating/varying the radiation characteristics in various sections or portions of the device, and therefore of the stent with which it is associated.

[0074] The embodiments in Figures 5 to 7 and 10 are suitable for being implemented in a particularly advantageous form when the material which is capable of being rendered radioactive (again in this case a single isotope, a mixture of two or more isotopes, or a material which incorporates such an isotope or isotopes) is present in the form of particles, e.g. in the form of powder or micropowder. This is typically the situation for a material such as ruthenium.

[0075] In this case device 1 may comprise a matrix 15 which is e.g. a small tube of extendable synthetic material (e.g. silicone) within which radioactive material 16 is dispersed.

[0076] Matrix material 15 may possibly have erodability/consumability properties such that it gives rise to slow release of material 16 (with consequent distancing from the site of implantation).

[0077] In this case too the dispersion of material 16 in the matrix may be uniform, as shown in Figure 5, or have the features of a differential density along the length of device 1, as shown in Figure 10.

[0078] In particular, the latter figure shows an arrangement which in many respects is similar to those shown in Figures 8 and 9, that is an arrangement in which the density of the distribution of radioactive material 16 in particle form is differentiated in such a way as to obtain a more marked local radioactive effect at the ends of device 1. As already mentioned, this result could also be achieved by acting on the type and the nature of material 16.

[0079] In the arrangement in Figure 6, matrix 15 has a structure which is no longer compact, but apertured, for example of a reticular nature. This result may be obtained by starting from a compact tubular body, which is apertured for example by forming openings or notches (the rhomboidal shape of the mesh illustrated in Figure 6 is purely by way of example), or by weaving wires or fibres (e.g. of synthetic material such a silicone) in a general mesh structure.

[0080] The fibres in question may be fibres of the type described in patent application for an industrial invention TO 99A000693, bearing associated nanoparticles of materials which can be rendered radioactive, possibly

15

30

with the properties of erodability.

[0081] Figure 7 shows a further possible variant which combines, so to speak, features from the arrangement in Figure 5 (use of a matrix 15 in which material 16 which can be made radioactive is dispersed) with features of the arrangement in Figure 4, in which device 1 is produced from a sheet wound into a coil. For the reasons already mentioned in connection with the embodiment in Figure 5, in the case of the embodiment in Figure 7 it is not strictly required that the sheet forming matrix 15 should have extendibility properties.

[0082] The same also applies in substance to the reticular embodiment in Figure 6, where the properties of radial expandability can be provided through the effect of the geometry of the mesh, even if the members of such meshes (e.g. the fibres forming the braiding for device 1) do not in themselves have the property of being able to extend longitudinally.

[0083] The other variants illustrated in Figures 11 and 12 can be regarded as deriving from the combination of teachings in Figures 5, 7 and 10 with the teachings in Figures 1 and 9.

[0084] In the case of Figures 11 and 12, material 16 dispersed in matrix 15 takes the form of wires, which may have different structural geometrical and/or com- 25 position properties in the various regions of means 1; in the example in Figure 12 the difference is illustrated by showing ends of wires indicated by 16' which have a different diameter/shape from the remainder of the wires.

[0085] From the foregoing illustrations it is clear that the various principles of construction illustrated with reference to Figures 1 to 12 can also be used in combinations other than those illustrated, in particular as regards the possibility of using different radioactive materials in the same means 1.

[0086] For example, the embodiment in Figure 6 may be obtained by using metal wires which are even only partly coated with polymers or elastomers within which a material which can be made radioactive is dispersed. [0087] Of course, without changing the principle of the invention, the details of construction and embodiments can be varied extensively from what has been described and illustrated without thereby going beyond the scope of this invention as defined by the following claims.

Claims

1. A device for conveying radioactive agents onto an angioplasty stent (S), characterized in that it comprises an envelope (1) adapted to be associated with the stent (S) and to be selectively expanded through the effect of deploying the stent, the said envelope being configured to convey a material which is capable of exerting an effective radioactive effect at the site at which the stent (S) is implanted.

- 2. Device according to Claim 1, characterized in that the said material is distributed non-uniformly (11', 11", 16') within the ambit of the said envelope (1).
- Device according to Claim 1 or Claim 2, characterized in that the said envelope (1) is of a generally tubular shape.
- Device according to Claim 1, characterized in that the said envelope (1) has a wire structure (11, 12).
- Device according to Claim 2 and Claim 4, characterized in that the said wire has non-uniform properties within the ambit of the said envelope (1).
- 6. Device according to Claim 5, characterized in that the said wire has different winding characteristics (11') in different regions of the said envelope (1).
- Device according to Claim 5, characterized in that the said wire has diameter and/or shape properties (11") which differ within the ambit of the said envelope (1).
- Device according to Claim 3, characterized in that the said envelope (1) has a tubular structure (13; 15).
 - Device according to Claim 3, characterized in that the said envelope has a tubular structure comprising a flat body (13) closed into a tubular shape by means of a line of welding (13a).
- Device according to claim 3, characterized in that the said envelope comprises a sheet-like body (13; 15) wound into a spiral.
 - 11. Device according to any one of the foregoing claims, characterized in that the said winding has a generally apertured structure (14; 16).
 - 12. Device according to Claim 11, characterized in that the said envelope (1) has an overall reticular structure (16).
 - 13. Device according to either of Claims 11 and 12, characterized in that the said envelope (1) comprises a substantially inextensible material.
- 14. Device according to any one of the foregoing claims, characterized in that the said envelope (1) is adopted to be fitted over the outside of the said stent (S).
- 15. Device according to any one of the foregoing claims, characterized in that the said material comprises a single component which is capable of exerting a radioactive effect.

10

15

16. Device according to any one of Claims 1 to 14, characterized in that the said material comprises a plurality of components which are capable of exerting corresponding radioactive effects.

17. Device according to any one of the foregoing claims, characterized in that the said envelope (1) is comprised (11, 12, 13) of the said material capable of exerting a radioactive effect.

18. Device according to any one of Claims 1 to 16, characterized in that the said envelope is only partly (16) comprised of the said material capable of exerting a radioactive effect.

19. Device according to Claim 16, characterized in that the said envelope (1) includes a matrix (15) in which the said material capable of exerting a radioactive effect is conveyed in a particulate and/or wire form (16).

20. Device according to Claim 2 and Claim 19, characterized in that the said material capable of having a radioactive effect (16) is conveyed non-uniformly within the said matrix (15).

Device according to Claim 19 or 20, characterized in that the said matrix is in the form of fibres.

22. Device according to any one of Claims 18 to 21, characterized in that the said material capable of exerting a radioactive effect is present at least partly in the form of nanoparticles.

23. Device according to any one of the foregoing Claims 19 to 22, characterized in that the said matrix (15) has erodability/consumability properties such as to permit gradual release of the said material (16).

24. A process for rendering an angioplasty stent radioactively effective at the site at which the stent (S) is implanted, characterized in that it comprises the operations of:

 providing a device according to any one of the foregoing Claims 1 to 23,

 associating the said device with the said stent (S) with a view to implanting the stent (S) and rendering the said material radioactively effective.

25. Process according to Claim 24 characterized in that the said material is made radioactively effective before associating the said device (1) with the said 55 stent (S).

26. An angioplasty stent implantation kit comprising a

device according to any one of Claims 1 to 23 associated with a corresponding angioplasty stent (S).

8

40

EUROPEAN SEARCH REPORT

Application Number EP 99 83 0721

Category	Citation of document with it	ndication, where appropriate,	Rel	evant	CLASSIFICATIO	N OF THE	
Jalagury	of relevant past		to c	teim	APPLICATION	(Int.CL7)	
X	EP 0 797 963 A (COR 1 October 1997 (199		1,3, 11,1 15,1 24,2	4, 7,	A61F2/06 A61N5/10 A61K51/12 A61L31/16		
	* page 3, line 42 - figures *	page 4, line 3;					
X	WO 99 02194 A (INNE 21 January 1999 (19		1,3, 14-1				
	* page 6, line 19 - figures *			. ,,			
A	* page 9, line 5 - * page 18, line 1 -	line 10 *	25				
X	US 5 575 818 A (PINCHUK LEONARD) 19 November 1996 (1996-11-19)			8, 7, 26			
	* column 8, line 19 figures *	- line 23; claims		.0	TECHNICAL FI SEARCHED	ELDS (Int.Ci.7)	
X	US 5 840 009 A (FISCHELL ROBERT E ET AL) 24 November 1998 (1998-11-24) * column 2, line 14 - column 3, line 19; figures *			,26	A61F A61N A61K A61L		
A	WO 97 21399 A (HASSAN ALI ;GLOGAR HELMUT DIETMAR (AT)) 19 June 1997 (1997-06-19)			4-8, 20, 26			
:	* page 4, line 36 - page 5, line 7; claims; figures * 						
	The present search report has	been drawn up for all claims					
	Place of search	Date of completion of the e	erch		Examiner		
	THE HAGUE	19 April 200	0	Neu	mann, E		
X : peri Y : peri	ATEGORY OF CITED DOCUMENTS doubtry relevant if taken alone doubtry relevant if taken alone unant of the same category	E : earlier p after the ther D : docume	principle underly start document, fling date at cited in the ap	but publi: plication			
A : tech	ument of the same casegory nnological background i-written disclosure rmediate document	& : member	L : document cited for other reasons & : member of the same patent family, corresponding document				

D FORM 1508 09.82 (PC

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 83 0721

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-04-2000

Patent document cited in search report			Publication date	Patent family member(s)		Publication date	
EP	0797963	Α	01-10-1997	AU	1650797 A	02-10-199	
				CA	2199890 A	26-09-199	
				JP	10005345 A	13-01-199	
				NO	971385 A	29-09-199	
				US	5968091 A	19-10-199	
WO	9902194	A	21-01-1999	AU	8399998 A	08-02-199	
US	5575818	A	19-11-1996	EP	0812164 A	17-12-199	
				MO	9625124 A	22-08-199	
US	5840009	Α	24-11-1998	EP	0972498 A	19-01-200	
WO	9721399	A	19-06-1997	AT	404557 B	28-12-199	
				AT	801896 A	15-05-199	
				AU	1131697 A	03-07-199	
				EP	0871413 A	21-10-199	

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82