Ejercicios evaluación parámetros físicos

Ej. 1 — Dado el circuito de la figura, determinar si podría funcionar con una frecuencia de reloj de 1 GHz. Supóngase clock skew de 110 ps y clock jitter de 20 ps. **Nota**: este análisis debe hacerse para el caso worst-case slow. Así mismo determinar si habría violaciones de hold. **Nota**: En este caso el análisis habrá que hacerlo para el caso wort-case fast.

Table 2.2 Recommended Operating Conditions

Paramet	ter	Minimum	Typical	Maximum
V _{DD}	Supply Voltage	1.08V	1.2V	1.32V
Тл	Junction Temperature	-40°C	25°C	+125°C

Pin Description

Cell Name	Pin Cap.(pf)		Max Cap.(pf)	
Cen Ivanie	A1	A2	Z	
AN2D0	0.0007336	0.000779	0.02955	

Propagation Delay(unit:ns)

(Characterization Condition:Process=Fast-Fast,Voltage=1.32v,Temp=-40degreeC)

, , , , , , , , , , , , , , , , , , , ,						
Cell Name	Path Paramete		Group1	Group2	Group3	
Cell Ivallie	raun	r arameter	(<0.00099)pf	(0.00099-0.01481)pf	(>0.01481)pf	
	A1 to Z	tPLH	0.0272+6.5217*Cload	0.0288+5.4376*Cload	0.0299+5.2985*Cload	
A N2D0		t_{PHL}	0.0236+4.8696*Cload	0.0251+3.8354*Cload	0.0258+3.7313*Cload	
A N2D0	A2 to Z	tPLH	0.0289+6.5435*Cload	0.0305+5.4358*Cload	0.0316+5.2985*Cload	

Pin Description

Cell Name	Pin Cap.(pf)	Max Cap.(pf)
Cell Name	I	ZN
INVD0	0.0007637	0.02955

Propagation Delay(unit:ns)

 $(Characterization\ Condition: Process=Fast-Fast, Voltage=1.32v, Temp=-40 degree C)$

	(
	Cell Name Path		Parameter	Group1	Group2	Group3	
Cen Name Path	rarameter	(<0.00099)pf	(0.00099-0.01481)pf	(>0.01481)pf			
	INV D0	I to ZN	t_{PLH}	0.0106+5.4783*Cload	0.0106+5.4611*Cload	0.0115+5.3704*Cload	
	INVIDU		tPHL	0.0084+4.3696*Cload	0.009+3.868*Cload	0.0094+3.827*Cload	

Pin Description							
Cell Name	Pin Ca	ap.(pf)	Max Cap.(pf)				
	A1	A2	Z				
OR2D0	0.000686	0.0007661	0.02955				

Propagation Delay(unit:ns)

(Characterization Condition:Process=Fast-Fast,Voltage=1.32v,Temp=-40degreeC)

Cell Name	Path	Parameter	Group1	Group2	Group3
Cell Ivallie	Cen Name Fam Faran	1 arameter	(<0.00099)pf	(0.00099-0.01481)pf	(>0.01481)pf
	A1 to Z	t_{PLH}	0.0208+5.8478*Cload	0.0215+5.3363*Cload	0.0225+5.2442*Cload
OR2D0		t_{PHL}	0.0317+5.9565*Cload	0.0345+4.17*Cload	0.0374+3.7931*Cload
OR2D0	A2 to Z	tPLH	0.0225+5.8478*Cload	0.0232+5.3436*Cload	0.0239+5.2578*Cload
		tPHL	0.0352+5.9565*Cload	0.038+4.1682*Cload	0.0413+3.7748*Cload

Pin Dese	Pin Description						
Cell Name	Pin Ca	ap.(pf)	Max C	ap.(pf)			
Cell Ivallie	CD	D.	0	ON			

0.000778 0.0009582 0.0591 0.0591

Propagation Delay(unit:ns)

(Characterization Condition:Process=Fast-Fast,Voltage=1.32v,Temp=-40degreeC)

Cell Name	Path	Parameter	Group1	Group2	Group3
Cen Name Fam	rarameter	(<0.0017)pf	(0.0017-0.02947)pf	(>0.02947)pf	
	CP to Q	t_{PLH}	0.0695+3.4946*Cload	0.0706+3.0432*Cload	0.0717+2.9835*Cload
DFD1		tPHL	0.0814+2.9892*Cload	0.0835+2.1773*Cload	0.0852+2.0688*Cload
DFD1	CP to QN	tPLH	0.0999+3.2258*Cload	0.1005+2.9793*Cload	0.1006+2.9733*Cload
		t_{PHL}	0.0874+2.9892*Cload	0.0896+2.162*Cload	0.0911+2.0688*Cload

Timing Constraint(unit:ns)

DFD1

(Characterization Condition:Process=Fast-Fast,Voltage=1.32v,Temp=-40degreeC)

(Characterization Conditional Toccis—Last, Voltage—1.02V, Temp—Todegree C)						
Cell Name	Path	Timing Parameter	Constraint			
	CP	$t_{min_pulse_width}^{H}$	0.03906			
	CP	$t_{min_pulse_width}^{L}$	0.04883			
DFD1	CP to D	$t_{setup_rising}^{\ \ LH}$	0.008944			
DFD1		t _{hold_rising} LH	0.00118			
		$t_{setup_rising}^{HL}$	-0.002623			
		t _{hold_rising} HL	0.01714			

Ej. 2 — En el circuito de la figura los valores que aparecen dentro de cada nube son el retardo mínimo y máximo de la lógica contenida en la nube. Los valores en las líneas de reloj son el retardo de propagación desde la fuente de reloj. El retardo de propagación clk a Q de los registros es $t_{ck-q} = 0.40$ ns, $t_{setup} = 0.25$ ns y $t_{hold} = 0.1$ ns. Por último, la frecuencia de reloj es 100 MHz. Con todos estos valores, ¿habrá violaciones de setup en el circuito? ¿Cuál es el margen (positivo o negativo) del que se dispone en el registro de destino?

Idear una solución para que el circuito pueda funcionar a una frecuencia de trabajo 200 MHz. NOTA: La biblioteca de componentes que se utiliza en el diseño consta de un CLKBUF (buffer de reloj) con un retardo de 0.45 ns.

Ej. 3 — En el circuito de la figura los valores que aparecen dentro de cada nube son el retardo mínimo y máximo de la lógica contenida en ellas. Los valores en las líneas de reloj son el retardo

de propagación desde la fuente de reloj. El retardo de propagación cl
k a Q de los registros es, $t_{clk-q}=0.12$ ns, $t_{setup}=0.1$ ns y $t_{hold}=0.05$ ns.

- 1.Calcular los márgenes de setup en los registros de destino si la frecuencia de reloj fuese 250 MHz. ¿habrá violaciones de setup en el circuito?
- 2.¿Cuál sería la frecuencia de reloj máxima a la que podría trabajar este circuito?
- 3.Si la frecuencia de reloj fuese 500 MHz, y con su estructura actual, el circuito tendría violaciones de setup. Modificar el diseño para que sea capaz de trabajar a 500 MHz y calcular los margen de setup para el nuevo diseño. Nota: No se conoce la estructura lógica de las nubes y por tanto la solución no puede ser proponer modificar su estructura.

Ej. 4 — En el circuito de la figura los valores que aparecen dentro de cada nube son el retardo máximo de la lógica contenida en ellas. Los valores en las líneas de reloj son el retardo de propagación desde la fuente de reloj. Los parámetros de los registros son: $t_{clk-q}=0,12$ ns, $t_{setup}=0,1$ ns y $t_{hold}=0,05$ ns. (1) Calcular los márgenes de setup en los registros de destino si la frecuencia de reloj fuese 250 MHz. ¿habrá violaciones de setup? ¿Cuál sería la frecuencia de reloj máxima a la que podría trabajar este circuito? (2) Si la frecuencia de reloj fuese 500 MHz, y con su estructura actual, el circuito tendría violaciones de setup. Para que el circuito pudiese trabajar a 500 MHz es necesario segmentarlo. Indicar dónde se deberían introducir los registros de segmentación y calcular los nuevos margen de setup para el camino o los caminos que presentaban violaciones de setup. Supóngase que el retardo de reloj para los nuevos FF es de 0,22 ns.

