



Predicting customer churn enables businesses to implement proactive measures to retain customers and enhance customer satisfaction.



### Objective

- Develop and evaluate predictive models to accurately identify customers at risk of churn.
- Create a comparative analysis to understand each algorithm's strengths, limitations, and suitability.
- Provide valuable insights for businesses seeking to optimize customer retention strategies and improve overall performance.



# Summary

This project uses the Telco Customer Churn dataset to predict churn and helps identify the most suitable algorithm through comparative analysis.

- Dataset includes customer demographics, services, and churn status
- Analysis includes data exploration, preprocessing, model training, and evaluation



Machine Learning Algorithms

- Logistic Regression
- Decision Trees
- Gradient Boosting
- Random Forests
- Neural Networks



### Metrics

- Accuracy: This metric represents the ratio of correctly predicted instances (both true positives and true negatives) to the total number of instances.
- Precision: It measures how many predicted positive instances are positive.
- Recall: It measures how many of the actual positive instances are correctly predicted by the model.
- F1-score: It balances precision and recall, considering false positives and false negatives.
- ROC-AUC: It measures the area under the ROC curve, which plots the true positive rate against the false positive rate at various threshold settings.



## Insights

- Logistic Regression was the most reliable choice, balancing accuracy and interpretability. It was the best at predicting customer churn, offering high accuracy, precision, and F1-score. It is straightforward to understand, making it useful for businesses.
- Decision Trees, Random Forests, and Neural Networks did well in specific aspects like recall and ROC-AUC.
- Each algorithm has its strengths and weaknesses, highlighting the importance of considering trade-offs in model selection.



### Insights into Customer Churn

The implemented algorithms effectively addressed the task of predicting customer churn. The rigorous evaluation of multiple algorithms provided a comprehensive understanding of their performance and implications for businesses.



#### What Works

- The Telco Customer Churn dataset offered valuable insights into customer demographics, service subscriptions, and churn behavior.
- Using multiple machine learning algorithms enabled a thorough analysis of churn prediction performance.
- Comparing algorithms pinpointed the most effective churn prediction method.
- The project revealed factors impacting customer churn and the success of predictive modeling methods.



#### What Does Not Work

- Some models might overfit due to dataset complexity or insufficient regularization techniques
- The dataset might lack certain predictive features, limiting the models' effectiveness in churn prediction.
- Imbalanced churned and non-churned customer distributions could have biased predictions in some models.



#### Lessons Learned

- Effective preprocessing, like handling missing values, encoding categorical variables, and scaling features, is vital for model performance.
- Not all algorithms excel in every task. Experimenting with various ones and assessing their performance is crucial for selecting the best approach.
- Understanding various evaluation metrics is crucial for accurately interpreting model performance.
- Simple models like logistic regression may outperform complex ones like neural networks, especially when interpretability is crucial.
- The project highlighted the importance of continuous learning and staying updated with the latest developments in machine learning techniques and methodologies.



### References

Here is the Demo link which has a well-rounded view of all the implementations which you can test yourself given you download the csv file associated with the dataset and then do a read.csv on that file:

Dataset Link: <a href="https://www.kaggle.com/datasets/blastchar/telco-customer-churn">https://www.kaggle.com/datasets/blastchar/telco-customer-churn</a>

Demo Link:

https://colab.research.google.com/drive/1Gydkt6TmZpgmebmoilieYNDGA1vv6ZUn?usp=sharing

