Code No: 131AC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, May/June - 2017 **ENGINEERING PHYSICS**

(Common to CE, ME, MCT, MMT, MIE, CEE, MSNT)

Max. Marks: 75 Time: 3 hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A (25 Marks)

1.a)	What are the conditions to get the interference of light?	[2]
b)	What is a plane diffraction grating? Explain.	[3]
c)	State and explain Brewster's law.	[2]
d)	Distinguish between spontaneous and stimulated emissions.	[3]
e)	Distinguish between the single mode and multimode optical fiber.	[2]
f)	Find the numerical aperture of an optical fiber having a core refractive index of 1.6 and	
	cladding refractive index of 1.50.	[3]
g)	Define unit cell and lattice parameters.	[2]
h)	What are Miller indices? Explain	[3]
i)	What are Laue spots? Explain.	[2]
j)	What are grain boundaries? Explain.	[3]
	Part-B (50 Marks)	

- 2.a) Discuss the formation of interference fringes in a thin wedge-shaped film.
 - Explain what will happen when the air in the inter space is replaced by a transparent b) liquid in Newton's rings experiment.
 - Find the thickness of a wedge-shaped air film at a point where fourth bright fringe is c) situated. Wavelength of light is 589.3 nm. [3+4+3]

- Describe how would you employ a plane diffraction grating to determine the wavelength 3.a) of light.
 - How many orders will be visible if the wavelength of incident light is 500 nm and the b) number of lines on the grating is 2620 in one inch? [5+5]
- State and explain Malus's law. 4.a)
 - Explain how a quarter wave plate and a half wave plate could be constructed. Describe b) their properties.
 - Calculate the thickness of a mica sheet required for making a quarter wave plate for c) 546 nm wavelength. The indices of refraction for the ordinary and extraordinary rays in mica are 1.586 and 1.592 respectively. [2+5+3]

OR

- 5.a) What are Einstein's coefficients?
 - b) Obtain a relationship between them.
 - Explain the role of optical resonator in a laser. c)

[3+4+3]

- 6.a) Using ray theory derive the condition for transmission of light within an optical fiber.
 - b) What are the characteristics of an optical fiber?
 - c) An optical fiber has a numerical aperture of 0.20 and a cladding refractive index of 1.59. Find the acceptance angle for the fiber in water which has a refractive index of 1.33.

[3+4+3]

OR

- 7.a) Discuss the advantages of optical communication system over the conventional coaxial communication system.
 - b) Give the block diagram of Optical fiber communication system explaining the functions of different blocks.
 - c) Explain the principle of any two fiber optic sensors.

[3+4+3]

- 8.a) What is meant by atomic packing factor?
 - b) Calculate the atomic packing factor for SC and BCC structures.
 - c) Sodium crystallizes in a cubic lattice. The edge of the unit cell is 4.3Å. The density of sodium is 963 Kg/m³ and its atomic weight is 23. What type of unit cell does sodium form?

OR

- 9.a) Derive an expression for inter planar spacing in a cubic crystal.
 - b) In a crystal a lattice plane cuts intercepts of 1a, 2b and 3c along the three axes where a, b and c are primitive vectors of the unit cell. Determine the Miller indices of the given plane.

 [6+4]
- 10.a) Describe with suitable diagram the powder method for determination of crystal structure.
 - b) X-rays of wavelength 0.36 Å diffracted in a Braggs spectrometer at an angle of $4^{0}48'$. Find the effective value of atomic spacing. [7+3]

OR

- 11.a) Explain edge and screw dislocations with neat diagrams.
 - b) Draw Burger's circuit for an edge dislocation and screw dislocation.
 - c) What is the significance of Burger's vector?

[4+3+3]

---00O00---