BAYESIAN ANALYSIS OF VARS, STATE-SPACE MODELS AND DSGES PART I: THE BAYESICS

Mattias Villani

Division of Statistics and Machine Learning
Department of Computer and Information Science
Linköping University

LECTURE OVERVIEW

- ► The Bayesics: Prior, Likelihood and Posterior
- ► Bernoulli model Beta prior
- ► Normal model Normal prior
- Bayesian analysis of linear regression
- ► Bayesian analysis of autoregressive processes

THE LIKELIHOOD FUNCTION - BERNOULLI TRIALS

► Bernoulli trials (coin flips):

$$x_1, ..., x_n | \theta \stackrel{\text{iid}}{\sim} Bern(\theta).$$

▶ Likelihood from $s = \sum_{i=1}^{n} x_i$ successes and f = n - s failures.

$$p(x_1,...,x_n|\theta) = p(x_1|\theta)\cdots p(x_n|\theta) = \theta^s(1-\theta)^f$$

- ▶ Maximum likelihood estimator $\hat{\theta} = s/n$ maximizes $p(x_1, ..., x_n | \theta)$.
- ▶ Given the data $x_1, ..., x_n$, we can plot $p(x_1, ..., x_n | \theta)$ as a function of θ .

UNCERTAINTY AND SUBJECTIVE PROBABILITY

- ▶ Statements like $Pr(\theta < 0.6 | data)$ only make sense if θ is random.
- ▶ But what if θ is a fixed constant? Marginal propensity to consume.
- **Bayesian:** doesn't matter if θ is fixed or random.
- ▶ Do You know the value of θ or not?
- \triangleright $p(\theta)$ reflects Your knowledge/uncertainty about θ .
- ► Subjective probability.
- ▶ Pr(last quarter's GDP growth < 0) = 0.34.
- ▶ Pr(Inflation in 2016 > 3%) = 0.05.

BAYESIAN LEARNING

- **Bayesian learning** about a model parameter θ from data:
 - state your **prior** knowledge as a **prior** probability distribution $p(\theta)$.
 - **collect data x** and form the **likelihood** function $p(\mathbf{x}|\theta)$.
 - **combine** your prior knowledge $p(\theta)$ with the data information $p(\mathbf{x}|\theta)$ to a **posterior distribution** $p(\theta|\mathbf{x})$.
- Prior comes from: previous data, other data, experience etc.
 Subjective.
- ► How to combine the two sources of information? Bayes' theorem. Objective!

LEARNING FROM DATA - BAYES' THEOREM

- ▶ How do we **update** from the **prior** $p(\theta)$ to the **posterior** $p(\theta|Data)$?
- ▶ Bayes' theorem for events A and B

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}.$$

 \blacktriangleright Bayes' Theorem for a model parameter θ

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}.$$

- ▶ It is the prior that turns the likelihood function $p(Data|\theta)$ into a posterior **probability density** $p(\theta|Data)$.
- ightharpoonup A probability distribution for θ is extremely useful. **Decision making**.

THE NORMALIZING CONSTANT IS NOT IMPORTANT

► Bayes theorem

$$p(\theta|\textit{Data}) = \frac{p(\textit{Data}|\theta)p(\theta)}{p(\textit{Data})} = \frac{p(\textit{Data}|\theta)p(\theta)}{\int_{\theta} p(\textit{Data}|\theta)p(\theta)d\theta}.$$

- ▶ The integral $p(Data) = \int_{\theta} p(Data|\theta)p(\theta)d\theta$ can make you cry.
- ▶ p(Data) is just a constant that makes $p(\theta|Data)$ integrate to one.
- ▶ Example: $x \sim N(\mu, \sigma^2)$

$$p(x) = (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right].$$

▶ We may write

$$p(x) \propto \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right].$$

GREAT THEOREMS MAKE GREAT TATTOOS

► All you need to know:

$$p(\theta|Data) \propto p(Data|\theta)p(\theta)$$

or

Posterior ∝ Likelihood · Prior

BERNOULLI TRIALS - BETA PRIOR

Model

$$x_1, ..., x_n | \theta \stackrel{iid}{\sim} Bern(\theta)$$

Prior

$$\theta \sim Beta(\alpha, \beta)$$

$$\rho(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \text{ for } 0 \le \theta \le 1.$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta)p(\theta)$$

$$\propto \theta^s(1-\theta)^f\theta^{\alpha-1}(1-\theta)^{\beta-1}$$

$$= \theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}.$$

- ▶ This is proportional to the $Beta(\alpha + s, \beta + f)$ density.
- ► The prior-to-posterior mapping reads

$$\theta \sim Beta(\alpha, \beta) \stackrel{x_1, \dots, x_n}{\Longrightarrow} \theta | x_1, \dots, x_n \sim Beta(\alpha + s, \beta + f).$$

BETA DISTRIBUTION

▶ $X \sim Beta(\alpha, \beta)$

$$E(X) = \frac{\alpha}{\beta}$$
, $Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$

▶ Variance increases as α , $\beta \rightarrow 0$.

NORMAL DATA, KNOWN VARIANCE - NORMAL PRIOR

Model:

$$x_1, ..., x_n | \theta \sim N(\theta, \sigma^2), \quad \sigma^2 \text{ known}$$

► Prior

$$\theta \sim N(\mu_0, \tau_0^2)$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta,\sigma^2)p(\theta)$$

$$\propto N(\theta|\mu_n,\tau_n^2),$$

where

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2},$$

$$u_n = w\bar{x} + (1 - w)u_0,$$

and

$$w = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_2^2}}.$$

NORMAL DATA, KNOWN VARIANCE - NORMAL PRIOR

$$\theta \sim N(\mu_0, \tau_0^2) \stackrel{\mathsf{x}_1, \dots, \mathsf{x}_n}{\Longrightarrow} \theta | \mathbf{x} \sim N(\mu_n, \tau_n^2).$$

Posterior precision = Data precision + Prior precision

Posterior mean =

 $\frac{\text{Data precision}}{\text{Posterior precision}} \big(\text{Data mean} \big) \, + \, \frac{\text{Prior precision}}{\text{Posterior precision}} \big(\text{Prior mean} \big)$

NORMAL DATA, KNOWN MEAN - INV χ^2 PRIOR

► Model:

$$x_1,...,x_n| heta\sim N\left(heta,\sigma^2
ight)$$
, $heta$ known

▶ Prior: Scaled Inverse χ^2 prior $\sigma^2 \sim Inv - \chi^2 \left(\nu_0, \tau_0^2\right)$

$$p(x) \propto \frac{\exp\left(\frac{-\nu\tau^2}{2x}\right)}{x^{\nu/2+1}}.$$

► Note that

$$Inv - \chi^2\left(\nu_0, au_0^2\right) = Inv Gamma\left(rac{
u_0}{2}, rac{
u_0 au_0^2}{2}\right).$$

Posterior is also scaled inverse χ^2 :

$$\sigma^2 \sim \mathit{Inv} - \chi^2 \left(\nu_0, \tau_0^2\right) \overset{x_1, \ldots, x_n}{\Longrightarrow} \sigma^2 |\mathbf{x} \sim \mathit{Inv} - \chi^2 \left(\nu_0 + \mathit{n}, \frac{\nu_0 \tau_0^2 + \mathit{ns}^2}{\nu_0 + \mathit{n}}\right).$$

 \triangleright $\nu_0 \rightarrow 0$ makes the prior less informative.

SCALED INV χ^2 DISTRIBUTION

▶ Mean (for $\nu > 2$) and mode for $X \sim Inv - \chi^2(\nu, \tau^2)$

$$E(X) = \frac{v}{v - 2}\tau^2$$
, $Mode(X) = \frac{v}{v + 2}\tau^2$

LINEAR REGRESSION

► The linear regression model in matrix form

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}_{(\mathbf{n} \times \mathbf{1})} + \boldsymbol{\varepsilon}_{(\mathbf{n} \times \mathbf{1})}$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ \beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}, \ \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}'_1 \\ \vdots \\ \mathbf{x}'_n \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nk} \end{pmatrix}$$

- Usually $x_{i1} = 1$, for all i. β_1 is the intercept.
- ► Likelihood for the full sample

$$\mathbf{y}|\beta, \sigma^2, \mathbf{X} \sim N(\mathbf{X}\beta, \sigma^2 I_n)$$

LINEAR REGRESSION - UNIFORM PRIOR

▶ Standard **non-informative prior**: uniform on $(\beta, \log \sigma^2)$

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

▶ **Joint posterior** of β and σ^2 [recall p(X, Y) = p(X|Y)p(Y)]:

$$\begin{array}{ccc} \beta | \sigma^2, \mathbf{y} & \sim & N \left[\hat{\beta}, \sigma^2 (\mathbf{X}' \mathbf{X})^{-1} \right] \\ \sigma^2 | \mathbf{y} & \sim & \mathit{Inv-}\chi^2 (n-k, s^2) \end{array}$$

where
$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
 and $s^2 = \frac{1}{n-k}(\mathbf{y} - \mathbf{X}\hat{\beta})'(\mathbf{y} - \mathbf{X}\hat{\beta})$.

- ► Simulate from the joint posterior by iteratively simulating from
 - $p(\sigma^2|y)$
 - $\triangleright p(\beta|\sigma^2,y)$
- ▶ Marginal posterior of β :

$$\beta | y \sim t_{n-k} \left[\hat{\beta}, s^2 (X'X)^{-1} \right]$$

LINEAR REGRESSION - CONJUGATE PRIOR

▶ Joint **prior** for β and σ^2

$$\begin{split} \beta | \sigma^2 &\sim \textit{N}\left(\mu_0, \sigma^2 \Omega_0^{-1}\right) \\ \sigma^2 &\sim \textit{Inv} - \chi^2\left(\nu_0, \sigma_0^2\right) \end{split}$$

Posterior

$$eta | \sigma^2, \mathbf{y}, \mathbf{X} \sim N\left[\mu_n, \sigma^2 \Omega_n^{-1}\right]$$
 $\sigma^2 | \mathbf{y}, \mathbf{X} \sim \mathit{Inv} - \chi^2\left(\nu_n, \sigma_n^2\right)$

$$\mu_n = (\mathbf{X}'\mathbf{X} + \Omega_0)^{-1} \mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} + (\mathbf{X}'\mathbf{X} + \Omega_0)^{-1} \Omega_0 \mu_0$$

$$\Omega_n = \mathbf{X}'\mathbf{X} + \Omega_0$$

AR PROCESS

► AR process

$$y_t = c + \phi_1 y_{t-1} + ... + \phi_p y_{t-p} + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

- ► Can be estimated as a regression with
 - $\mathbf{X} = (1_n, \mathbf{y}_{-1}, ..., \mathbf{y}_{-p})$
 - $\beta = (c, \phi_1, ..., \phi_k)'$.
- Multivariate normal prior

$$\beta | \sigma^2 \sim N \left(\mu_0, \sigma^2 \Omega_0^{-1} \right)$$
.

- ▶ The **prior mean** is usually set to $\mu_0 = (0, r, 0, ..., 0)'$.
- ▶ Most probable model a priori: : $y_t = r \cdot y_{t-1} + \varepsilon_t$.
- ▶ The prior covariance is often set to

$$\Omega_{\mathbf{0}}^{-\mathbf{1}} = \left(\begin{array}{ccccc} \tau_c^2 & 0 & 0 & \cdots & 0 \\ 0 & \tau_{\phi}^2 & 0 & \cdots & 0 \\ 0 & 0 & \frac{\tau_{\phi}^2}{2^{\gamma}} & 0 & 0 \\ & & & \ddots & & \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \frac{\tau_{\phi}^2}{k^{\gamma}} \end{array} \right)$$

AR PROCESS

► AR process

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

► The prior covariance

$$\Omega_{\mathbf{0}}^{-\mathbf{1}} = \begin{pmatrix} \tau_{c}^{2} & 0 & 0 & \cdots & 0 \\ 0 & \tau_{\phi}^{2} & 0 & \cdots & 0 \\ 0 & 0 & \frac{\tau_{\phi}^{2}}{2^{\gamma}} & 0 & 0 \\ & & & & \ddots & \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \frac{\tau_{\phi}^{2}}{k^{\gamma}} \end{pmatrix}$$

- User needs to set:
 - r, prior mean of ϕ_1 (r=0 for GDP growth, r=0.8 for interest rate)
 - $ightharpoonup au_c$, the prior standard deviation of the intercept (e.g. $au_c=100$)
 - ightharpoonup au_{ϕ} , the prior standard deviation of ϕ_1 (e.g. $au_{\phi}=1$)
 - $ightharpoonup \gamma$, the lag decay (e.g. $\gamma=1$). How fast the prior variance shrinks to zero for longer lags.
- Stationarity can be imposed by truncating the prior to the stationarity region (and use simulation).

AR(2) Joint Prior

AR(2) joint prior with $au_\phi=$ 0.5

AR(2) Joint Prior with $au_\phi=1$

AR(2) joint prior with $au_\phi=$ 0.2

AR(2) joint prior with $au_\phi=$ 0.5

AR(2) Posterior - Stationarity Prior ($au_\phi=0.5$)

AR(2) JOINT POSTERIOR - ZOOMED

Univariate AR(4) posterior Foreign interest rate 1980Q2-2005Q4

Univariate AR predictions $au_\phi=0.05$ and $au_\phi=0.2$

Univariate AR predictions $au_\phi=0.5$ and $au_\phi=1$

