Module - 3: Practice Problems

2	y	1 5	スツー	W.		_
-	1.2	1.44	0	0	V' /	
0	1.2	7 00	15.68	4		
2	2.8	7.84				
4	3.7	13.69	54-76	16	r	2
4		1	121.5	36		
6	4.5	20.25		- 20		
0	5.1	26.01	208.08	64		
8		32-49	324.9	100		
10	5.7			111	10	
	1	101.72	725.92	220		

= 1.45
Regression model is,
$$y^{\gamma} = 1.45 + 3.17$$

© Gimen,
$$\chi = 9$$

 $y^{*} = 1.5 \pm 3 \times 9$
 $y^{*} = 28.5$
 $y = 5.33 / 5.3$

2>	x	y	107(4)	x log y) x V	1000	11
	0.1	15.8	1-19	0.119	0-01		3.1
	0-2	25.1	1.39	0.278	0.04		21
	0.3	39.8	1.59	0-477	0.09	2	1
			1.8	0.72	0.16		
	0-9	63-1		1	0.25		
	0.5	100	2		0-55		
2	1.5		7.97	2.59	0-33 1		

(a) fitted regression (Ine-

b)
$$m \le n \log(y) - s \le s \le \log(y)$$
 $n \le n^{-1} - (s n)^{-1}$
 $5 \times 2.59 - (s n)^{-1}$
 $5 \times 0.55 - (s n)^{-1}$
 $- 0.995 = 1.99$
 $0.95 = 1.99$
 $0.9 = 1.99$
 $0.9 = 1.99 \times 1.5 = 0.99$
 $0.99 + 1.99 \times 1.5 = 0.99$

(b) model is, $\log(9) = 0.99 + 1.99 \times 1.99$

3)
$$x$$
 y x^{2} x^{3} x^{4} x^{4} x^{4} x^{5} x

9=

$$\frac{1}{100} = \frac{1000}{100} = \frac{1000}{100}$$

$$\frac{1}{100} = \frac{1000}{100}$$

6 Given,
$$y = -2$$
, $n^{\infty} = 4$
 $y = 3.1 - (1.15 \times 4)$
 $y = 3.1 - (1.15 \times 4)$

$$0) \quad y = 2 a + bx^{2}$$

$$b = \frac{n \leq x^{2}y - \leq x^{2}\leq y}{n \leq x^{2} - (\leq x)^{2}} \quad a = \frac{\leq y - b \leq x^{2}}{n}$$

$$= \frac{5 \times 2013 - 55 \times 115}{5 \times 979 - (55)^{2}} = 1$$

$$= 2$$

.

b) we got,
$$b=2$$
 $a=1$
 \therefore regression line equation is,
 $y=1+2\pi^{2}$

© Griven,
$$x = 6$$
, $x^2 = 36$
 $y = 1 + 2 \times 36$
 $y = 73$

$$b = \frac{n \times xy^{-} \times x \times y^{-}}{n \times x^{-} \times x^{-} \times x^{-}}$$

$$= \frac{6 \times 724.92 - 36 \times 101.72}{6 \times 220 - 900}$$

$$a = \frac{5y^{v} - b \le x}{m}$$

$$= \frac{101.72 - 3.1 \times 30}{6}$$

	9		20 00	12	
6>	Diameter (m)	Number of people (4)	2ª		24
/	0.5	1	0.25	0.45	0.0625
	0.7	2	0-49	0.71	0.5189
	0.85	3	0-72	2.16 A	1
	1	4	4-21	6.05	1.4641
_	1.1	5	3.67	-	
		15	12,0		

@ Number at people = stope + intercept + slope & 21

$$= 2.1$$

 $= 1.458$
 $= 1.46$
 $= 1.46$

: Regression line equation: Number of people = 1.46 + 2.1x (Diameter)~

Number of people = 1.46 + 2.1 x(1.3) 2 Number of people = 5.009 \$ 5 3000

7)	x	y	109(20)	10g(x)y	(1097)	fw. cs
	10	15	100	15	1	7 0
	44	11-8	1-64	19.35	2.68	
	132	9.4	2.12	19.92	4.5	4,
	436	6.8	2.63	17-88	6.91	
	981	,5	2.99	14.95	8.04	
-		48	10-38	86.8	24.03	

I decreases as a increases, the relationship. is negative and non-linear.

(b)
$$y = a + b \log(n)$$

 $b = \frac{3 \times 86 \cdot 8 - (0.38 \times 48)}{5 \times 24 \cdot 03 - (10.38)^2}$ $a = \frac{48 + 5 \cdot 17 \times 19}{5}$
 $= \frac{20 \cdot 33}{2 \cdot 17}$

(a) Given,
$$n = 1000$$

$$y = 20.33 - 5.17 \times 3$$

$$= 20.33 - 15.5$$

$$= 4.82$$

8)
$$\frac{1}{1}$$
 $\frac{1}{2}$ \frac

y is decreasing on increasing x, so the relationship is negative & non-linear.

$$b = \frac{5 \times 55.09 - 15 \times 15.03}{5 \times 55 - (13)^{15}}$$

$$= 2.5$$

$$= 2.5$$

$$\therefore 0.4 = 15.03 - 2.5 \times 15 = -4.5$$

(a) Given,
$$x = 0.25$$

 $\frac{1}{y} = -4.5 + 2.5 \times 0.25$
 $\frac{1}{y} = -3.875$
 $\frac{1}{y} = -0.25$