Application Number: 10/809,396

Our Ref: Q80702 Art Unit: 2861

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. - 10. (CANCELED).

11. (CURRENTLY AMENDED) A laser printer that performs a printing operation by

controlling a laser beam emitted by a printer engine on the basis of serial video data specifying

width of the laser beam with respect to a scanning direction corresponding to tones of dots, said

laser printer comprising:

a first parallel-to-serial converting unit capable of being triggered for operation by the

leading edge or the trailing edge of a predetermined clock signal to convert first parallel data into

an initial serial data pulse of a resolution lower than a resolution needed by the serial video data

and having pulse width that changes in a unit length corresponding to a period of the clock

signal;

a second parallel-to-serial converting unit capable of being triggered for operation by the

trailing edge of the clock signal if the first parallel-to-serial converting unit is triggered by the

leading edge of the clock signal or by the leading edge of the clock signal if the first parallel-to-

serial converting unit is triggered by the trailing edge of the clock signal to convert second

parallel data into a pulse width adjusting serial data pulse having pulse width that changes in a

unit length corresponding to the period of the clock signal;

2

Application Number: 10/809,396

Our Ref: Q80702 Art Unit: 2861

a pulse width adjusting unit for adjusting width of the initial serial data pulse between at least one of the edges of the initial serial data pulse and an edge of the pulse width adjusting serial data pulse;

a serial data output unit that provides a one of the serial data pulse having a pulse width adjusted by the pulse width adjusting unit or the initial serial data pulse as a provided serial data pulse of a pulse width adjusted by the pulse width adjusting unit or the initial serial data pulse as a serial data pulse;

an n-stage clock signal delaying unit (n is a natural number) including a plurality of signal delay devices placed in a predetermined clock signal line to obtain delayed pulses at a plurality of delayed times by delaying a leading and a trailing edge of a-the clock signal;

an n-stage delayed pulse gate (n is a natural number) that passes a delayed pulse of time specified by a timing signal specifying the time of the delayed pulse;

a delayed pulse input unit for applying the delayed pulse passed the nth delayed pulse gate to a clock signal line of an (n+1)th clock signal delaying unit;

a delayed clock selecting unit for selecting a delayed pulse according to a delayed clock selection signal specifying one of the n-stages of delayed pulse gates to increase pulse width of the <u>provided</u> serial data pulse in a unit corresponding to 1/N (N = n + 1) of half the period of the clock signal; and

a high-resolution serial data pulse signal output unit for providing a high-resolution serial data pulse formed by adjusting the pulse width of the <u>provided</u> serial data pulse between at least one of the edges of a-the <u>provided</u> serial data pulse provided by the serial data output unit and the edge of the delayed pulse selected by the delay clock selecting unit.

Application Number: 10/809,396 Art Unit: 2861

Our Ref: 080702

12. (CANCELED).

13. (CANCELED).

14. (CURRENTLY AMENDED) A pulse shaping method comprising the steps of:

converting first parallel data into an initial serial data pulse by a first circuit capable of being triggered for operation by a leading edge or a trailing edge of a predetermined clock signal;

converting second parallel data into a pulse width adjusting serial data pulse by a second circuit capable of being triggered for operation by the trailing edge of the clock signal if the first circuit is triggered by the leading edge of the clock signal or by the leading edge of the clock signal if the first circuit is triggered by the trailing edge of the clock signal;

adjusting width of the initial serial data pulse between at least one of the edges of the initial serial data pulse and an edge of the pulse width adjusting serial data pulse to provide the pulse of the adjusted width as a serial data pulse;

selectively providing a delayed pulse according to a delayed clock selecting signal specifying one of n delayed pulse gates by repeating n times the steps of generating delayed pulses at a plurality of delayed times by delaying leading and trailing edges of a-the clock signal by a clock signal delaying unit including a plurality of signal delay devices, giving a timing signal specifying one of delayed pulses to a predetermined delayed pulse gate to pass the specified delayed pulse and giving the delayed pulse to a following delayed pulse gate; and

4

Application Number: 10/809,396

Our Ref: Q80702 Art Unit: 2861

providing a serial data pulse of a pulse width adjusted between at least one of edges of the serial data pulse and an edge of the selected delayed pulse as a high-resolution serial data pulse.

15. (CURRENTLY AMENDED) A serial video data generating method to be carried out by a laser printer that performs a printing operation by controlling a laser beam emitted by a printer engine on the basis of serial video data specifying width of the laser beam with respect to a scanning direction corresponding to tones of dots, said serial video data generating method comprising the steps of:

converting first parallel data into an initial serial data pulse of a resolution lower than a resolution needed by the serial video data and having pulse width that changes in a unit length corresponding to a period of the clock signal by a first circuit capable of being triggered for operation by a leading edge or a trailing edge of a predetermined clock signal;

converting second parallel data into a pulse width adjusting serial data pulse having pulse width that changes in a unit length corresponding to the period of the clock signal by a second circuit capable of being triggered for operation by the trailing edge of the clock signal if the first circuit is triggered by the leading edge of the clock signal or by the leading edge of the clock signal if the first circuit is triggered by the trailing edge of the clock signal;

adjusting width of the initial serial data pulse between at least one of edges of the initial serial data pulse and an edge of the pulse width adjusting serial data pulse;

Application Number: 10/809,396

providing a one of the serial data pulse having a pulse width adjusted by the pulse width adjusting unit or the initial serial data pulse as a provided serial data pulse pulse of a pulse width adjusted by pulse width adjustment or the initial serial data pulse as a serial data pulse;

Our Ref: Q80702

Art Unit: 2861

selectively providing a delayed pulse according to a delayed clock selecting signal specifying one of n delayed pulse gates by repeating n times (n is a natural number) the steps of generating delayed pulses at a plurality of delayed times by delaying leading and trailing edges of $\frac{1}{2}$ -the clock signal by a clock signal delaying unit including a plurality of signal delay devices, giving a timing signal specifying one of delayed pulses to a predetermined delayed pulse gate to pass the specified delayed pulse and giving the delayed pulse to a following delayed pulse gate, and selectively providing a delayed pulse according to a delayed clock selection signal specifying one of the n-stages of delayed pulse gates to increase pulse width of the provided serial data pulse in a unit corresponding to 1/N (N = n + 1) of half the period of the clock signal; and

adjusting width of the <u>provided</u> serial data pulse between at least one of edges of the <u>provided</u> serial data pulse and an edge of the selectively provided delayed pulse to give the <u>provided</u> serial data pulse having the adjusted pulse width as a high-resolution serial video data to the printer engine.

6