Formulario di Optoelettronica

Lorenzo Rossi - lorenzo
14.rossi@mail.polimi.it ${\rm AA}\ 2019/2020$

Email: lorenzo 14. rossi@mail.polimi.it

 $GitHub: \ https://github.com/lorossi$

Quest'opera è distribuita con Licenza Creative Commons Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet}$ Versione aggiornata al 30/04/2021

Indice

1	Riguardo al formulario	1
2	Onde elettromagnetiche e pacchetti d'onda 2.1 Leggi di Snell	1 2 2 2
3	Bragg Reflector - DBR	3
4	Cavità di Fabry-Perot	3
5	Guida d'onda	4
6	Fibra ottica 6.1 Fibra step index	5

1 Riguardo al formulario

Quest'opera è distribu
ita con Licenza Creative Commons - Attribuzione Non commerciale 4.0
 Internazionale $\textcircled{\bullet}(\textbf{i})$

Questo formulario verrà espanso (ed, eventualmente, corretto) periodicamente fino a fine corso (o finché non verrà ritenuto completo).

Link repository di GitHub: https://github.com/lorossi/formulario-optoelettronica L'ultima versione può essere scaricata direttamente cliccando su questo link.

In questo formulario ho cercato prima di tutto di mettere le formule importanti per la risoluzione degli esercizi, preferendole a quelle utili alla comprensione della materia.

1

2 Onde elettromagnetiche e pacchetti d'onda

- Velocità di gruppo $v = \frac{\partial \omega}{\partial k} = \frac{c}{N_g}$
- Velocità di fase $v_f = \frac{\omega}{k} = \frac{c}{n}$
- Indice di gruppo $N_g = n \lambda_0 \frac{\partial n}{\partial \lambda_0}$

2.1 Leggi di Snell

- Angoli (rispetto alla normale della superficie):
 - Fascio incidente θ_i
 - Fascio riflesso θ_r
 - Fascio trasmesso θ_t
- Prima legge $\theta_i = \theta_r$
- Seconda legge $n_1 \sin(\theta_i) = n_2 \sin(\theta_t)$
- Total internal reflection $\theta_c = \arcsin \frac{n_2}{n_1}$

2.2 Riflessione e trasmissione

- Coefficiente di riflessione $R = \left(\frac{n_2 n_1}{n_2 + n_1}\right)^2$
- Coefficiente di trasmissione $T = \left(\frac{2n_2}{n_2 + n_1}\right)^2$
- Strato antiriflesso:
 - Spessore $d = \frac{\lambda_0}{4n_2} = \frac{\lambda}{4}$
 - Indice di riflessione $n_2 = \sqrt{n_1 n_3}$
 - Riflettività $\left(\frac{n_0n_1-n_2}{n_0n_1+n_2}\right)^2$

2.3 Tunneling ottico

• Campo evanescente $\vec{E} \propto \exp\{-\alpha_2 z\} \exp\{i\omega t\}$

• Coefficiente di attenuazione $\alpha = \frac{2\pi n}{\lambda} \sqrt{\left(\frac{n_1}{n_2}\right)^2 \sin(\theta_i) - 1}$

• Penetrazione $\delta = \frac{1}{\alpha}$

2.4 Sfasamento

• Dovuto alla riflessione interna $\phi = 0$

• Dovuto alla riflessione esterna $\phi=\pi$

• Dovuto all'attraversamento di un mezzo $\partial \phi = \partial \frac{2\pi n}{\lambda_0}$

• Della componente riflessa all'interfaccia:

– Coefficiente perpendicolare $r_{\perp} = \frac{\cos(\theta_i) - \sqrt{(n_2/n_1)^2 - \sin^2(\theta_i)}}{\cos(\theta_i) + \sqrt{(n_2/n_1)^2 - \sin^2(\theta_i)}}$

- Sfasamento perpendicolare $\Phi_{\perp} = 2 \arctan \left[\frac{\sqrt{\sin^2(\theta_i) - (n_2/n_1)^2}}{\cos(\theta_i)} \right]$

– Relazione degli sfasamenti $\tan\left(\frac{1}{2}\Phi_{\perp}+\frac{\pi}{2}\right)=\frac{1}{n^2}\tan\left(\frac{1}{2}\Phi_{\perp}\right)$

2.5 Coerenza

• Spaziale $l_c = c \cdot \Delta \nu$

• Temporale $t_c = \frac{1}{\Delta \nu}$

2.6 Interferenza

• Fasci individuali $\vec{E}_1 = \vec{E}_{10} \exp j(kr_1 - \omega t + \phi_1), \ \vec{E}_2 = \vec{E}_{20} \exp j(kr_2 - \omega t + \phi_2)$

2

• Campo totale $\vec{E} = \vec{E}_1 + \vec{E}_2$

• Modulo quadro $|\vec{E}|^2 = |\vec{E}_1|^2 + |\vec{E}_2|^2 + 2\vec{E}_1 \times \vec{E}_2$

• Intensità $I=I_1+I_2+2\sqrt{I_1I_2}\cos(\delta)$ con $\delta=k(r_2-r_1)+\phi_2-\phi_1$

• Interferenza costruttiva $\delta=2m\pi,\ I=4I_1=4I_2$ in fase

• Interferenza distruttiva $\delta = 2(m+1)\pi$, I=0 in quadratura

• Interferomero di Young:

– Picchi di interferenza costruttiva $y = \frac{L}{S} \lambda m$

– Intensità dei picchi $I = I_0(1 + \cos\left(k\frac{S}{L}y\right)$

- Figure di interferenza:

* Massimi
$$k = \frac{S}{L}y = 2m\pi$$

* Minimi $k = \frac{S}{L}y = 2(m+1)\pi$

3 Bragg Reflector - DBR

• Riflettanza di un riflettore a N strati
$$R = \left(\frac{n_1^{2N} - n_0/n_3}{n_1^{2N} + n_0/n_3} \frac{n_2^{2N}}{n_2^{2N}}\right)^2$$

• FWHM
$$\frac{\Delta \lambda}{\lambda_0} = \frac{4}{\pi} \arcsin\left(\frac{n_1 - n_2}{n_1 + n_2}\right)$$

4 Cavità di Fabry-Perot

• Interferenza costruttiva per
$$\nu=m\frac{c}{2L},\, L=m\frac{\lambda}{2}$$

• Spettro massimo per
$$L=m\frac{\lambda}{2}$$

• Campo elettrico totale
$$\vec{E} = \frac{A_0}{1 - R \cdot e^{j2kl}}$$

• Intensità totale
$$I=|E|^2=\frac{A_0^2}{(1-R)^2+4R\sin(kL)^2}$$

• Massima ampiezza
$$I_{max} = \frac{I_0}{(1-R)^2}$$

• Mezza larghezza a metà altezza
$$\frac{I_{max}}{2} = \frac{I_0}{(1-R)^2 + 4R\sin(kL)^2} \Rightarrow \sin(kL) = \frac{1-R}{2\sqrt{R}}$$

3

• Finezza spettrale
$$F = \frac{\pi\sqrt{R}}{1-R}$$

• Assumento
$$R \approx 1$$
 si ottiene $kL \approx \frac{1-R}{2\sqrt{R}} = \frac{2L}{c}\pi\nu \Rightarrow \nu = \frac{1}{2}\frac{\frac{c}{2L}}{\frac{\pi\sqrt{R}}{1-R}}$

• Full width half maximum (FWHM)
$$\Delta \nu = \frac{\frac{C}{2L}}{\frac{\pi \sqrt{R}}{1-r}}$$

•
$$\Delta \nu_{\rm FWHM} = \frac{C}{2n_s L}$$

• Fattore qualità
$$Q = \frac{\nu_m}{\Delta \nu} = mF$$

5 Guida d'onda

- Angolo caratteristico del modo $\theta_m = \sqrt{1 \left(\frac{n_2}{n_1}\right)^2}$
- Condizione di guida d'onda $\frac{2\pi n_1(2a)}{\lambda}\cos(\theta_m) \Phi_m = m\pi$
- Componenti del modo
 - Componente viaggiante $\beta_m = k_1 \sin(\theta_m)$
 - Componente stazionaria $\kappa_m = k_1 \cos(\theta_m)$
- Numero di modi
 - V-number $V = \frac{2\pi a n_1}{\lambda} \sqrt{1 \left(\frac{n_2}{n_1}\right)^2}$
 - Numero di modi $m < \frac{2V \Phi_m}{\pi}$
 - Numero totale di modi $int\left(\frac{2V}{\pi}\right)+1$
 - Propagazione monomodale $V < \frac{\pi}{2}$
 - Lunghezza di cut-off $\lambda > \lambda_c = 4a\sqrt{n_1^2 n_2^2}$
- Dispersione
 - Intermodale
 - * Stima della dispersione intermodale $\Delta \tau = \frac{Ln_1}{c} \frac{Ln_2}{c}$
 - * Dispersione per unità di lunghezza $\frac{\Delta \tau}{L} = \frac{n_1 n_2}{c}$
 - Intramodale
 - * In presenza di un solo modo ($\omega < \omega_{cutoff}$) il pacchetto di distribuisce su un range di frequenze angolari
 - $* \Delta\omega = \frac{2\pi}{\Delta\tau}$
 - Di materiale
 - $\ast\,$ Prescinde dalla propagazione in guida e discende dalla dipendenza di n dalla lunghezza d'onda
 - $* D_m = \frac{\Delta t}{L\Delta\lambda} \left| -\frac{\lambda}{c} \frac{\partial^2}{\partial\lambda^2} \right|$

6 Fibra ottica

6.1 Fibra step index

- Differenza di indice relativa $\Delta = \frac{n_1 n_2}{n_1}$
- V-number $V = \frac{2\pi a n_1}{\lambda} \sqrt{1 \left(\frac{n_2}{n_1}\right)^2}$ con $n = \frac{n_1 + n_2}{2}$. Per V < 2.405 ho fibra monomodale.
- Numero di modi $M \approx \frac{V^2}{2}$
- Attenuazione in fibra $\alpha = -\frac{1}{P}\frac{dP}{dx} \to P = P_0 e^{-\alpha L}, E = E_0 e^{-\alpha L/2}$
- Dispersione

– Intermodale
$$\frac{\Delta \tau}{L} \approx \frac{n_1 - n_2}{c} = \frac{n_1 \Delta}{c}$$

– Di materiale
$$\frac{\Delta \tau}{L} = |D_m| \Delta \lambda$$
 con $D_m = -\frac{\lambda}{c} \frac{d^2 n}{d\lambda^2}$

– Di guida/cromatica
$$\frac{\Delta \tau}{L} = |D_w| \Delta \lambda$$

– Sommando
$$D_m$$
 e D_w si ottiene la dispersione cromatica $\frac{\Delta \tau}{L} = |D_m + D_w| \Delta \lambda = |D_{Cr}| \Delta \lambda$

• Apertura numerica (NA)

$$- NA = \sqrt{n_1^2 - n_2^2}$$

– Angolo di accettanza massimo
$$\alpha = \arcsin\left(\frac{\text{NA}}{n_0}\right)$$

- V-Number
$$V = \frac{2\pi a}{\lambda} NA$$