Software Clusterings with Vector Semantics and the Call Graph

Marios Papachristou

papachristoumarios@gmail.com

Business Analytics Lab (BALab), Athens University of Economics and Business

National Technical University of Athens

Advisor: Prof. Diomidis Spinellis

1.GOAL

Combine vector semantics and the call graph in order to produce module-level clusterings for software architecture recovery.

We will study the Linux Codebase and compare it against baselines and state-of-the-art.

Source Code Preprocessing

misc.c

- 1. Remove stopwords
- 2. Split identifiers

zone_seqlock_init
inprogress

3. Lemmatize

literal

io.h

Dataset

3.EVALUATION

References

https://github.com/papachristoumarios/sade

Paper

Choosing Linux for Evaluation

1. Large and complex system with more than 27 years of continuous development

SourceCode

- 2. HUGE(!) project consisting of 20.3 million lines of source code
- 3. Easy to establish ground truth, due to clear directory structure

Linux codebase size. Source: Reddit
The clusters we have used are the first-level
directories. The embeddings are generated at
the one-top directories. That means e.g. that
the file drivers/net/ieee802154/mcr20a.c is
groupped under drivers/net/ieee8021154 and
belongs to the cluster drivers

4.RESULTS

Results							
Algorithm	Dim.	n_c	Range	$ar{x}$	σ	Median	MoJo
ACDC	_	9055	1 - 4245	5	46	2	33694
Average Linkage	300	21	1–3406	163	725	1	2092
Complete Linkage	300	21	1–1529	163	412	19	1710
LIMBO ¹	12317	21	50–1810	163	375	50	1482
Ward Linkage ²	300	21	21–948	163	223	70	1138
SADE	300	$10 \ (\pm \ 2)$	$2 (\pm 0) -132 (\pm 13)$	64 (± 4)	40 (± 4)	$65 (\pm 10)$	243 (± 1)
SADE (Directed)	300	5 (± 2)	$1 (\pm 1) - 614 (\pm 1)$	141 (± 39)	$253 (\pm 25)$	$2 (\pm 0.3)$	237 (± 2)
Ground Truth	_	21	1–1348	163	341	11.0	_

Clusters

MoJo Distance

Minimum number of operations to convert one clustering to another, where the only valid operations are:

- 1. **Move** a component between two clusters or create
- a new cluster.2. **Join** two componentstogether to a bigger cluster

Analysis of Results

Extremity

Generate reasonable cluster sizes (not too large and not too small) **Authoritativeness**

Show great improvement in terms of MoJo clustering distance. Our approach also found a number of clusters near the ground truth without prior knowledge of the number of clusters

Conclusions

- 1. Suggest further usage of vector semantics in software clustering methods
- 2. Show significant improvement in terms of closeness to the ground truth, overperforming the other methods.
- 3. Production of balanced clusters