image transformation

1. Translation 2. Rotation 3. Resizing 4. flipping 5. cropping

Translation

Image transformation

translation

- Translation is the shifting of an image along the x and y axis.
- Using translation, we can shift an image up, down, left, or right,

cv2.warpAffine(img,M,dsize)

translation matrix M

$$M = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{pmatrix}$$

 t_x : number of pixels will shift the image to right(+ve values) or left (-ve values)

 $t_{
m v}$: number of pixels will shift the image to down (+ve values) or up (-ve values)

example

$$M = \begin{pmatrix} 1 & 0 & 100 \\ 0 & 1 & 150 \end{pmatrix}$$

 t_x : image will shift 100 pixels right side

 t_{ν} : image will shift 150 pixels to down

example

$$M = \begin{pmatrix} 1 & 0 & -100 \\ 0 & 1 & -150 \end{pmatrix}$$

 t_x : image will shift 100 pixels left side

 $t_{
m v}$: image will shift 150 pixels to upwards

Rotation

Image transformation

rotation

- We rotate an image for a given specific point.
- Use this we can rotate the image at any degree.

cv2.warpAffine(img,M,dsize)

rotation

ww.datascienceanywhere.com

translation matrix M

$$M = \begin{pmatrix} \alpha & \beta & (1-\alpha) * c_{x} - \beta * c_{y} \\ -\beta & \alpha & \beta * c_{x} + (1-\alpha) * c_{y} \end{pmatrix}$$

$$\alpha = scale * cos(\theta)$$

$$\beta = scale * sin(\theta)$$

 c_x, c_y is centre of image

cv2.getRotationMatrix2D()

Resizing

Image transformation

resize

cv2.resize(img,dsize)

flipping

cv2.flip(img,flipCode)

next

convert color in opencv python