Gamma function: Improper integral $\int_0^\infty e^{-x} x^{n-1} dx$ is called gamma function or second eularian. It is denoted by \sqrt{n}

So,
$$\sqrt{n} = \int_0^\infty e^{-x} x^{n-1} dx$$

Prove that $\sqrt{n+1} = n \sqrt{n}$

Proof: we know $\sqrt{n} = \int_0^\infty e^{-x} x^{n-1} dx$ (1)

Replacing n by n+1 we get,

$$\int n+1 = \int_0^\infty e^{-x} x^n dx = \left[x^n e^{-x} \right]_0^\infty + n \int_0^\infty e^{-x} x^{n-1} dx = 0 + n \int_0^\infty n dx = 0$$

So,
$$\sqrt{n+1} = n \sqrt{n}$$
 (proved)

Prove that $\sqrt{n+1} = n!$

Proof: we know $\sqrt{n+1} = n \sqrt{n}$

Replacing n by $(n-1),(n-2),(n-3),\ldots,3,2,1$ respectively in (1) we get

$$\sqrt{n} = (n-1)\sqrt{(n-1)}$$

$$)(n-1) = (n-2))(n-2)$$

$$\sqrt{(n-2)} = (n-3)\sqrt{(n-3)}$$

......

.......

$$\sqrt{3} = 2\sqrt{2}$$

$$\sqrt{2} = 1/1$$

Using these values in (1) we get

Beta Function: : Integral $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ is called betaa function or first eularian. It is denoted by $\beta(m,n)$

So,
$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$

Prove that $\beta(m,n) = \beta(n,m)$

Proof: we know $\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$(1)

Let,

$$y = 1 - x$$

$$\Rightarrow dy = -dx$$

$$\therefore dx = -dy$$

If $x \to 0$ then $y \to 1$

And If $x \to 1$ then $y \to 0$

So, from (1)

$$\beta(m,n) = \int_{1}^{0} (1-y)^{m-1} y^{n-1} (-dy)$$
$$= \int_{0}^{1} y^{n-1} (1-y)^{m-1} dy$$
$$= \beta(n,m)$$

So, $\beta(m,n) = \beta(n,m)$ (proved)

Prove the relation between Betta and Gamma function, i.e, $\beta(m,n) = \frac{\sqrt{m} \sqrt{n}}{\sqrt{m+n}}$

Proof: We know
$$\int m = \int_0^\infty e^{-x} x^{m-1} dx$$
(1)

Let
$$x = \lambda y$$
 : $dx = \lambda dy$

If
$$x \to 0$$
 then $y \to 0$

And If
$$x \to \infty$$
 then $y \to \infty$

Now, from (1)

$$\int \overline{m} = \int_0^\infty e^{-\lambda y} (\lambda y)^{m-1} \lambda dy$$

$$= \int_0^\infty e^{-\lambda y} \lambda^m y^{m-1} \lambda dy$$

$$\int \overline{m} = \int_0^\infty e^{-\lambda y} \lambda^m y^{m-1} \lambda dy \dots (2)$$

Again we know,
$$\sqrt{n} = \int_0^\infty e^{-\lambda} \lambda^{n-1} d\lambda$$
(3)

Multiplying)2) and (3) we get,

$$\overline{ym} = \int_0^\infty \int_0^\infty e^{-\lambda(1+y)} \lambda^{m+n-1} y^{m-1} d\lambda dy$$

$$= \int_0^\infty \left[\int_0^\infty e^{-\lambda(1+y)} \lambda^{m+n-1} d\lambda \right] y^{m-1} dy$$

$$= \int_0^\infty \frac{\overline{ym+n}}{(1+y)^{m+n}} y^{m-1} dy$$

$$= \int_0^\infty \frac{\sqrt{m+n}}{(1+y)^{m+n}} y^{m-1} dy$$
$$= \sqrt{m+n} \int_0^\infty \frac{1}{(1+y)^{m+n}} y^{m-1} dy$$
$$= \sqrt{m+n} \beta(m,n)$$

So,
$$\sqrt{m} n = m + n \beta(m, n)$$

$$\therefore \beta(m,n) = \frac{\overline{)m}\overline{)n}}{\overline{)m+n}} \text{ (proved)}$$

prove that
$$\int_0^{\frac{\pi}{2}} \sin^p \theta \cos^q \theta d\theta = \frac{\sqrt{\frac{p+1}{2} \sqrt{\frac{q+1}{2}}}}{2\sqrt{\frac{p+q+2}{2}}}$$

Proof: We know $\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$

Let $x = \sin^2 \theta$ so, $dx = 2\sin \theta \cos \theta d\theta$

If $x \to 0$ then $\theta \to 0$

And If
$$x \to 1$$
 then $\theta \to \frac{\pi}{2}$

$$\therefore \beta(m,n) = \int_0^{\frac{\pi}{2}} \sin^{2m-2}\theta \cos^{2n-2}\theta \cdot 2\sin\theta \cos\theta d\theta$$

$$\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta . d\theta$$
 (1)

Let 2m-1=p and 2n-1=q

So,
$$m = \frac{p+1}{2}$$
 and $n = \frac{q+1}{2}$

From (1)

$$\therefore \beta(\frac{p+1}{2}, \frac{q+1}{2}) = 2\int_0^{\frac{\pi}{2}} \sin^p \theta \cos^q \theta d\theta$$

$$\Rightarrow \int_0^{\frac{\pi}{2}} \sin^p \theta \cos^q \theta . d\theta = \frac{1}{2} \beta(\frac{p+1}{2}, \frac{q+1}{2})$$

We also know that
$$\beta(m,n) = \frac{\sqrt{m} / n}{\sqrt{m+n}}$$

$$\therefore \beta(\frac{p+1}{2}, \frac{q+1}{2}) = \frac{\sqrt{\frac{p+1}{2}} \sqrt{\frac{q+1}{2}}}{\sqrt{\frac{p+q+2}{2}}}$$

So,
$$\int_0^{\frac{\pi}{2}} \sin^p \theta \cos^q \theta d\theta = \frac{\left| \frac{p+1}{2} \sqrt{\frac{q+1}{2}} \right|}{2 \sqrt{\frac{p+q+2}{2}}}$$
 (proved)