代数 IV 习题课讲义 (无解答)

中法数学英才班

授课教师: 许金兴

汇编整理: 王政 林斌

中国科学技术大学数学系 2023年4月18日

我的长诗题为《宗教大法官》,作品很荒唐,可是我想让你知道。

——《卡拉马佐夫兄弟》

前言

这份讲义的主体来自许金兴¹老师在 2022 年春季学期开设的代数 IV 习题课。前半学期的主题为交换代数,对应的正课教授为 David Alexandre RENARD²;后半学期的主题为 Galois 理论,对应的正课教授为 Christophe Marie Jean MARGERIN³。限于正课时长,这两个主题都没有机会在正课上深入,但这一遗憾在习题课中得到了一定程度上的弥补:许金兴老师补充了更多深入理论,如环(模)的局部化、Dedekind 整环、群上同调、伴随素理想、Galois 下降法等内容。于习题课的习题之外,我们还整理了三次口试(同样由许金兴老师负责)和期中、期末两次考试中出现的题目(两次考试题目的原文为法语,我们尽可能准确地翻译为了中文)以供参考,以时间顺序穿插在了习题课讲义中(2022-04-27的讲义放在 2022-04-29 期中考试前是为了保持内容上的连贯性)。

本讲义的部分解答来自我的课堂笔记。必须指出的是,习题课的时长并不支持许老师在课堂上给出所有习题的解答(比如老师提供的六份阅读材料只能供同学课后参考),因此有相当多习题(这其中包括大多数较难的习题)的答案是在整理过程中给出的,这也是整理工作从2022年7月一直进行到2023年4月的一个原因。事实上最早只有我一人负责整理,但实在力所未逮,至2022年9月只完成了这份讲义的前80页,彼时的整理工作已接近停滞。所幸林斌同学在后来加入,他给出了相当多难题的证明(如代数不变量理论的所有六个习题、第三轮口试题目的习题1.2等等),扫平了许许多多的障碍。没有林斌同学的帮助,这份讲义不可能如期完成。

其实直到今年寒假,我都不太确定能否在这学期内完成这份讲义。彼时我在准备所申院校的招生考试,林斌同学在做大创的论文,这份讲义又被搁置了许久。好在此后没有懈怠,努力在期中考试前结束了整理、编排工作。整项工作历时近十月,工作量大,繁琐劳神。事实上,我从一开始就没有采用一般的编排格式,导致讲义中的所有超链接都只能逐个手动添加。我本人也是第一次用 latex 编排正式稿件,此前的笔记或作业都是手写。尽管林斌同学已经纠正了我的大量格式错误,仍难免留下没有发现的问题,还望同学们见谅。

尽管欣喜难抑,也不宜再冗言。最后,衷心希望这份讲义能够帮助同学们更好地理解代数 IV 课程。祝同学们学习顺利!

¹http://staff.ustc.edu.cn/ xujx02/

 $^{^2 \}rm https://perso.pages.math.cnrs.fr/users/david.renard/$

 $^{^3\}mathrm{CMLS},$ École Polytechnique, F-91128 Palaiseau, France

编排格式 这份讲义按照讲义/习题/小问的格式编排,行距与排版尽可能与许金兴老师提供的习题文件保持一致。解答中引用同一题中的小问时我们会省略习题的编号,引用同一天讲义中的另一个习题时我们会省略讲义的日期,此外我们均会给出所引结论的具体位置。所有引用都提供了超链接。

关于记号 尽管整本讲义都是用中文编写,其中的一些记号还是遵从了法文习惯,如最大公约数的记号 pgcd(plus grand commun diviseur),域特征的记号 Car (Caractéristique),环 A 的可逆元集的记号 A^{\times} 等。希望这不会造成太多的阅读障碍。

王政 2023 年 4 月 15 日

序

这份讲义是在 2021 年和 2022 年春季两次代数 IV 习题课教学过程中写成的。其主要目的是为两位法国老师(David Alexandre RENARD, Christophe Marie Jean MARGERIN) 所教的正课提供更多的具体例子,补充更多的背景知识,以及介绍诸如局部化之类的常用技术。题目来源主要是两位法国老师提供的习题,历年丘赛试题,以及一些定理的证明过程所做的拆分。

贯穿整个讲义的一个例子是分圆整数环 $\mathbb{Z}[\zeta_N]$ 以及相应的分圆扩张 $\mathbb{Q}(\zeta_N)/\mathbb{Q}$. 在前半部分环与模中,通过考虑整扩张 $\mathbb{Z} \to \mathbb{Z}[\zeta_p]$,证明了 $\mathbb{Z}[\zeta_p]$ 在每个非零素理想处的局部化为离散赋值环 (DVR),进而利用整闭性质的局部性得到 $\mathbb{Z}[\zeta_p]$ 为整闭整环 (2022-03-16习题 5),其中判断和处理不分歧扩张和 Eisenstein 型完全分歧扩张的手法是经常用到的,值得通过这个具体例子反复体会。在后半部分,通过在 $\mathbb{Z}[\zeta_N]$ 的局部化这样的 DVR 上应用 Eisenstein 判别法,得到分圆多项式 $\Phi_N(x)$ 的不可约性,从而求出 $\mathbb{Q}(\zeta_N)/\mathbb{Q}$ 的 Galois 群。从中我们能看到证明 $\Phi_N(x)$ 不可约,求出扩张次数 $[\mathbb{Q}(\zeta_N):\mathbb{Q}]$ 的下界,与尽可能多地找到 Galois 群 $\mathrm{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$ 中的元素三者之间的等价性。而这三个问题又都有自己独特的处理思路 (Eisenstein 判别法,扩张次数的乘积性,Frobenius 元素的提升),对这些联系的玩味也非常值得正在学习或刚学完这门课的同学去做。

讲义中的绝大部分内容都是标准的例子或命题,只有少数几个地方的处理可能有一些新意。2022-06-01 习题 6给出了域扩张下范数的乘积性的一个纯线性代数证明,其中的想法也曾编为 2022 年科大九章杯数学竞赛的一个题目。??中,通过基变换到代数闭域的方法,对 Galoi 扩张中的一些重要命题用统一的想法给出了证明,其本质是利用域的平展覆盖处理一阶平展上同调相关的问题。这样处理的好处是思路较为直接,并且同样的思路可以应用到类似的问题中。

授课时,讲义中的相当一部分题目并没有给出答案,并且有一些我也不会做,但是不少同学给出了自己独到的解法。比如 2022-04-11 习题 4, 法国老师给的参考答案证明比较内蕴,较难理解背后的想法,这个纯矩阵的证明思路是在习题课课堂上跟同学们一起讨论得到的,其中的第二问当场并没有得到证明,课后林斌同学在 QQ 群中给出了第一问的表述和证明,从而整个题目解答形成了现在的形式。又比如期末考试的问题13.3,刘祎名同学给出的证明是他在暑假发给我的。相比于具体知识的学习,这种钻研问题的精神和热情更为宝贵。在习题课上,我深切体会到了教学相长的含义。不少同学在学习过程中展现了极大的热情,其中的很多材料 (如单形的同调群) 是为了更详细回应同学的课后问题所写的。所以这份讲义更应该看作是代数 IV 正课、习题课授课老师和 19 级、20 级两届同学们共同完成的。

感谢王政、林斌两位同学的整理以及对所有题目进行的详细解答和注记。希望这份讲义能对同学们学习代数 IV 有所帮助。

许金兴 2023 年 4 月 18 日

目录

目录	6
2022-02-28 环的单位与素理想,幂零多项式	8
2022-03-02,03-07 环的整性,素元与不可约元	11
2022-03-09 环的局部化	14
* 阅读材料: 环的局部化几何意义与函数芽环	16
2022-03-14 环的整扩张与 Hilbert 零点定理	19
2022-03-16 离散赋值环与 Dedekind 整环	22
* 阅读材料: Dedekind 整环的理想类群	23
2022-03-19,03-20 第一轮口试题目-交换环	27
2022-03-21 代数不变量理论	31
2022-03-23 Eisenstein 判别法, 结式与判别式	33
2022-03-28 伴随方阵技巧, 模的正合列	38
2022-04-02 复形与上同调, 单形的同调群	41
* 阅读材料: 从单形构造一般的上同调	43
2022-04-11 自由模, 模同态的行列式	46
* 阅读材料: 向量丛	46
2022-04-16,04-17 第二轮口试题目	49
2022-04-18 Noether 性质	54
* 阅读材料· 模的伴随麦理想	54

2022-04-29	期中考试	56
2022-04-27	域扩张的次数 (1)	60
2022-05-09	域扩张的次数 (2)	61
2022-05-14	,05-15 第三轮口试题目-域扩张	64
2022-05-16	代数扩张与代数闭包	66
2022-05-18	可分扩张	69
* 阅读材料:	Krasner 引理	70
2022-05-23	域扩张的超越次数, 对称多项式基本定理	72
2022-05-25	正规扩张	7 5
2022-05-30	Galois 理论基本定理	77
2022-06-01	迹与范数, 纯不可分扩张	81
2022-06-06	Galois 群的计算	85
2022-06-08	Galois 下降法应用	87
2022-06-23	期末老试	92

2022-02-28 环的单位与素理想, 幂零多项式

- 例 1. 设 $R = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$
 - 1. 存在环同构 φ : $\mathbb{Z}[X]/(X^2-2)$ $\tilde{\to}R$, 使得 $\varphi(X)=\sqrt{2}$.
- 2. 利用商环的万有性质和多项式环的万有性质,证明对任意交换环 A, 有以下集合之间的双射:

$$\text{Hom}(R, A) \simeq \{ a \in A \mid a^2 - 2 = 0 \}.$$

并且在这个对应下, 如果 $a \in A$, $a^2 = 2$, 则其对应的同态将 $\sqrt{2}$ 映到 a.

- 3. $Aut(R) = \{id, \sigma\}.$ 其中 $\sigma(a + b\sqrt{2}) = a b\sqrt{2}$.
- 4. 以下映射保持乘法

$$N: R \to \mathbb{Z}$$

$$a + b\sqrt{2} \mapsto (a + b\sqrt{2}) \cdot \sigma(a + b\sqrt{2}) = a^2 - 2b^2.$$

- 5. 设 $x \in R$, 则 $x \in R^* \Leftrightarrow N(x) = \pm 1$.
- 6. 设 $x \in R^*$, 则 $\pm x$, x^{-1} 均在 R^* 中.
- 7. $1 + \sqrt{2} \in R^*$.
- 8. 设 $x \in R^*$ 且 $1 \le x < 1 + \sqrt{2}$, 则 x = 1.
- $9.R^* = \{(1+\sqrt{2})^n \mid n \in \mathbb{Z}\}.$
- 例 2. 设 $R = \mathbb{Z}[i\sqrt{5}] = \{a + bi\sqrt{5} \mid a, b \in \mathbb{Z}\}.$ 设 $p \in \mathbb{Z}$ 为素数.
 - 1. 存在环同构 φ : $\mathbb{Z}[X]/(X^2+5) \stackrel{\sim}{\to} R$,使得 $\varphi(X) = i\sqrt{5}$.

2. 有以下环同构:

$$R/(p) \simeq \mathbb{Z}[X]/(X^2 + 5, p) \simeq \mathbb{F}_q[X]/(X^2 + 5).$$

- 3. 如果 $X^2 + 5 = 0$ 在 \mathbb{F}_p 上无解, 则 (p) 为 R 中极大理想.
- 4. 如果 $X^2+5=0$ 在 \mathbb{F}_p 上有两个互异根,则 R 恰有两个包含 p 的素理想 $\mathfrak{P}_1,\mathfrak{P}_2$. 并且对于 i=1,2,有 $R/\mathfrak{P}_i\simeq\mathbb{F}_p$. 特别地, β_i 为 R 中极大理想.
- 5. 如果 $X^2+5=0$ 在 \mathbb{F}_p 上有一个二重根,则 R 恰有一个包含 p 的素理想 \mathfrak{P} ,并且 $(p) \subsetneq \mathfrak{P}$. 特别地, \mathfrak{P} 为 R 中极大理想.
 - 6.3 不是 R 中素元, 即 (3) 不是 R 中素理想.
 - 7. 以下映射保持乘法

$$N \colon R \to \mathbb{Z}$$

$$a + bi\sqrt{5} \mapsto a^2 + 5b^2$$

- 8. 对于 $x \in R, x \in R^* \Leftrightarrow N(x) = 1$.
- 9.3 是 R 中不可约元.
- 10. 对任意 R 中的素理想 $\mathfrak{P},\mathfrak{P}\cap\mathbb{Z}\neq(0)$,从而存在素数 $p\in\mathbb{Z}$, 使得 $\mathfrak{P}\cap\mathbb{Z}=(p)$. 特别的, \mathfrak{P} 为 R 中极大理想.(利用3.4.5)
- 注: 以上两例中, 将 R 表示为 $\mathbb{Z}[X]/(f(X))$ 的形式, 确定 R 的自同态 (自同构) 的方法, N 的构造及用来确定 R^* , 以及利用 \mathfrak{P} 包含素数 p 在商环中进行分析的方法, 都是具有典型意义的, 需要熟练掌握并自如应用.
- 例 3. 设 A 为交换环, $f(X) = a_0 + a_1 X + \dots + a_n X^n \in A[X]$, 其中 $a_i \in A$.
 - 1. 如果 $a_0 \in A^*, a_1, \dots, a_n$ 均为幂零元, 则 $f(X) \in A[X]^*$.

- 2. 如果 A 为整环且 $f(X) \in A[X]^*$, 则 $a_0 \in A^*$.
- 3. 如果 $f(X) \in A[X]^*$, 则 $a_0 \in A^*$, 且对任意 A 中素理想 $\mathfrak{P}, a_1, \dots, a_n$ 均在 \mathfrak{P} 中.
- 4. 利用事实:A 中所有素理想的交等于 A 中所有幂零元形成的集合,证明: 如果 $f(X) \in A[X]^*$,则 $a_0 \in A^*$,且 a_1, \dots, a_n 均为幂零元.

2022-03-02,03-07 环的整性, 素元与不可约元

例1. 设 p 为奇素数.

- $1. \mathbb{F}_p^*$ 为 p-1 阶循环群.
- 2. 存在唯一的非平凡群同态 $\mathbb{F}_p^* \to \{\pm 1\} \subset \mathbb{C}$. 将该同态记为: $a \mapsto (\frac{a}{n})$.
- $3. \mathbb{F}_p^* \to \{\pm 1\} \subset \mathbb{F}_p^*, a \mapsto a^{\frac{p-1}{2}}$ 为非平凡群同态.
- 4. $\forall a \in \mathbb{F}_p^*$,有 $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$.

例 2. 考虑 Gauss 整数环 $\mathbb{Z}[i]$.

- 1. $\mathbb{Z}[i]$ 为 Euclide 整环.
- 2. $\mathbb{Z}[i]^* = \{\pm 1, \pm i\}.$
- 3. 对于素数 $p \in \mathbb{Z}$,
- 当 p=2 时, 存在唯一的素理想 $\mathfrak{P} \in \operatorname{Spec} \mathbb{Z}[i]$, 使得 $\mathfrak{P} \cap \mathbb{Z} = (p)(称为 \mathfrak{P}$ 位于 (p) 上方), 并且 $\mathfrak{P} = (1+i) \neq (p)$. $2 = (-i)(1+i)^2$ 为其唯一因子分解.
 - 当 $p \equiv 3 \mod 4$, 时, (p) 为 $\mathbb{Z}[i]$ 中素理想. 此时 p 为 $\mathbb{Z}[i]$ 中不可约元.
- 当 $p \equiv 1 \mod 4$, 时, 恰有两个 $\mathbb{Z}[i]$ 中的素理想 $\mathfrak{P}_1, \mathfrak{P}_2$ 位于 (p) 的上方. 此时存在非零的 $a,b \in \mathbb{Z}$ 使得 $p = a^2 + b^2$, 而 p = (a+ib)(a-ib) 为 p 在 $\mathbb{Z}[i]$ 中的唯一因子分解, 并且 $\{(a+ib), (a-ib)\} = \{\mathfrak{P}_1, \mathfrak{P}_2\}$.

4. 设 n 为正整数,则存在整数 a,b 使得 $n=a^2+b^2$ 当且仅当 n 的唯一因子分解中模 4 余 3 的素因子个数是偶数.

注: 本例事实上给出了 \mathbb{Z} 中理想 (p) 在 $\mathbb{Z}[i]$ 上的分歧情况.

例 3. 考虑环 $\mathbb{Z}[\sqrt{2}]$.

- $1.\mathbb{Z}[\sqrt{2}]$ 为 Euclide 整环.
- $2. i\sqrt{2}$ 为 $\mathbb{Z}[i\sqrt{2}]$ 中不可约元.
- 3. 设 $x, y \in \mathbb{Z}$ 且 $y^2 + 2 = x^3$, 则
 - $\bullet (y + i\sqrt{2}, y i\sqrt{2}) = 1;$
 - 存在 $z \in \mathbb{Z}[i\sqrt{2}]$, 使得有理想的等式 $(y+i\sqrt{2})=(z)^3$;
 - $\bullet(x,y) = (3, \pm 5).$

注:本例是利用代数数论解简单不定方程的典范. 此处因为所考虑的环是 PID, 所以处理起来很容易. 一般情况下要利用 Dedekind 整环中理想的唯一分解, 来得到理想的关系, 并根据类数给出一些结果.

- 习题 1. 令 $j = \frac{-1 + i\sqrt{3}}{2}$,考虑 Eisenstein 环 $\mathbb{Z}[j]$.
 - $1. \mathbb{Z}[j]$ 为 Euclide 整环. 确定该环中所有单位及不可约元.
 - 2. 对于素数 p, 分析 $\mathbb{Z}[j]$ 中位于 (p) 上方的素理想个数.
 - 3. 证明环同构: $\mathbb{Z}[j]/(j-1) \simeq \mathbb{F}_3$, $\mathbb{Z}[j]/(2+3j) \simeq \mathbb{F}_7$.
- 习题 2. 设 p 为素数, $\zeta_p = e^{\frac{2\pi i}{p}} \in \mathbb{C}^*$ 为一个 p 次本原单位根.
- $1. \diamondsuit \Phi_p(X) := X^{p-1} + X^{p-2} + \dots + X + 1$ 为 \mathbb{Z} 系数多项式. 证明 $\Phi_p(X)$ 在 $\mathbb{Z}[X]$ 中不可约.
 - 2. $\mathbb{Z}[\zeta_p] \simeq \mathbb{Z}[X]/(\Phi_p(X))$.
 - 3. 对于素数 q,(q) 为 $\mathbb{Z}[\zeta_p]$ 中素理想当且仅当 p,q 满足什么条件?
- 习题 3. 设 $x,y \in \mathbb{Z}$ 且 $y^2 + 4 = x^3$,则 $(x,y) = (\pm 11,5)$ 或 $(\pm 2,2)$.

习题 4. (2021 丘赛试题) 求方程 $x^2+13=y^3$ 的所有整数解. (提示: 可以利用 $\mathbb{Q}(\sqrt{-13})$ 的类数 (class number) 为 2 这个事实).

2022-03-09 环的局部化

以下环均指交换环.

定义 1. 设 A 为环, A 中的子集 S 称为一个乘法子集, 如果 $1 \in S$, 并且 $\forall s_1, s_2 \in S$, $s_1s_2 \in S$.

设 A 为环, S 为 A 中的一个乘法子集. 定义 $A \times S$ 中的关系如下:

$$(a, s_1) \backsim (b, s_2) \Leftrightarrow \exists s \in S, s(as_2 - bs_1) = 0.$$

习题 1. 验证这是一个等价关系.

习题 2. (局部化的万有性质)

i 满足 $i(S)\subset A_S^*$, 且对任意环 B, 以及任意环同态 $\varphi\colon A\to B$, 如果 $\varphi(S)\subset B^*$, 那么存在唯一的环同态 $\bar{\varphi}\colon A_S\to B$, 使得 $\varphi=\bar{\varphi}\circ i$. 用交换图表表示如下:

习题 3. 如果乘法子集 S 满足 $S \subset A^*$, 那么同态 $i: A \to A_S$ 为同构.

例 1. 常用的局部化有以下三类:

• 设 $f \in A$, 取乘法子集 $S = \{f^n \mid n \geq 0\}$, 则局部化 A_S 也记为 A_f . 我们有

$$A_f = \{ \frac{a}{f^n} \mid a \in A, n \ge 0 \}.$$

- 设 $\mathfrak{P} \in \operatorname{Spec} A$, 取乘法子集 $S = A \backslash \mathfrak{P}$, 则局部化 A_S 也记为 $A_{\mathfrak{P}}$. 我们有 $A_{\mathfrak{P}} = \{\frac{a}{s} \mid s \notin \mathfrak{P}\}$
- 设 $\varphi: A \to B$ 为环同态, $\mathfrak{P} \in \operatorname{Spec} A$, 取 B 的乘法子集 $S = \varphi(A \setminus \mathfrak{P})$, 则局部化 B_S 也记为 $B_{\mathfrak{P}}$. 我们有 $B_{\mathfrak{P}} = \{ \frac{b}{\varphi(s)} \mid s \notin \mathfrak{P} \}$.

对于环同态 $\varphi\colon A\to B$, 对于 A 中的理想 I, 记 IB 为 B 中由 $\varphi(I)$ 生成的理想. 对于 B 中的理想 J, $\varphi^{-1}(J)$ 为 A 中的理想, 有时也将 $\varphi^{-1}(J)$ 记为 $J\cap A($ 虽然 φ 不一定是单同态.

习题 4. 设 $A \rightarrow B$ 为环同态. 设 I 为 A 中的理想, J 为 B 中的理想.

 $1.I \subset IB \cap A$

 $2.(J \cap A)B \subset J$

3. 如果 $B=A_S$ 为局部化, 并且同态 $A\to B$ 为自然同态 $i\colon A\to A_S$, 则 $(J\cap A)A_S=J$. 特别地, A_S 中的理想 J 均具有形式 IA_S , 其中 I 为 A 中理想.

4. 如果 A 为 Noether 环, 则局部化 A_S 也为 Noether 环.

习题 5. 设 A_S 为 A 的局部化.

- 1. 对于素理想 $\mathfrak{P} \in \operatorname{Spec} A$, 如果 $\mathfrak{P} \cap S = \emptyset$, 则 $\mathfrak{P} A_S$ 为 A_S 中的素理想.
- 2. 映射 $\mathfrak{P} \mapsto \mathfrak{P} A_S$ 和 $\mathfrak{Q} \mapsto \mathfrak{Q} \cap A$ 定义了以下两个集合之间的双射:

 $\{\mathfrak{P} \in \operatorname{Spec} A \mid \mathfrak{P} \cap S = \emptyset\} \leftrightarrow \operatorname{Spec} A_S.$

习题 6. 设 A 为环. $f \in \bigcap_{\mathfrak{P} \in \operatorname{Spec} A} \mathfrak{P}$.

- 1. $\operatorname{Spec} A_f = \emptyset$
- 2. Af 为零环.
- 3. f 为幂零元.
- 4. ∩ $\mathfrak{p} \in \operatorname{Spec} A \mathfrak{P} = \{ f \in A \mid f \ 为幂零元 \}$

利用局部化的万有性质,证明如下局部化与商的交换性:

习题 7. 设 S 为环 A 的乘法子集, 设 I 为 A 的理想. 记 $\bar{S} \in A/I$ 为 S 在商映射 $A \to A/I$ 下的像.

- $1. \bar{S}$ 为 A/I 中的乘法子集.
- 2. 有环同构 $A_S/IA_S \simeq (A/I)_{\bar{S}}$.

特别地, 对于素理想 $\mathfrak{P} \in \operatorname{Spec} A$, 有域同构 $A_{\mathfrak{P}}/\mathfrak{P} A_{\mathfrak{P}} \simeq \operatorname{Frac}(A/\mathfrak{P})$ (在习题 7中取 $I = \mathfrak{P}, S = \operatorname{Spec} A\backslash \mathfrak{P}$). 将这个域记为 $\kappa(\mathfrak{P})$, 称为 A 在素理想 \mathfrak{P} 处的剩余类域.

阅读材料:环的局部化几何意义与函数芽环

对于环 A, 我们将 $f \in A$ 看作空间 $\operatorname{Spec} A$ 上的"函数", 其在点 $\mathfrak{P} \in \operatorname{Spec} A$ 处的"取值"定义为 f 在剩余类域 $\kappa(\mathfrak{P})$ 中的像,即 $f(\mathfrak{P}) := \overline{f} \in \kappa(\mathfrak{P})$. 对于 A 中的理想 I, 其中元素的"公共零点"集合为 $V(I) := \{\mathfrak{P} \in \operatorname{Spec} A | f(\mathfrak{P}) = 0, \forall f \in I\} = \{\mathfrak{P} \in \operatorname{Spec} A | I \subset \mathfrak{P}\}$. 我们定义 $\operatorname{Spec} A$ 中的闭集为形如 V(I) 的集合,容易验证这样定义了 $\operatorname{Spec} A$ 上的一个拓扑,称为 $\operatorname{Zariski}$ 拓扑. 对于 $f \in A$,定义 $\operatorname{D}(f) := \{\mathfrak{P} \in \operatorname{Spec} A | f(\mathfrak{P}) \neq 0\} = \{\mathfrak{P} \in \operatorname{Spec} A | f \notin \mathfrak{P}\}$.

习题 8. $\{D(f)|f\in A\}$ 为 Spec A 中的一组开集基 (basis), 即 Spec A 中任意开集均为一些 D(f) 的并集.

习题 9. 对于 $f \in A$, 有集合的一一对应: $D(f) \leftrightarrow \operatorname{Spec} A_f$. 通过这个一一对应, 可以将 A_f 看作 D(f) 上的函数环, 对于 $\frac{a}{f^n} \in A_f$, 对于 $\mathfrak{P} \in D(f)$, 取值为 $\frac{a}{f^n}(\mathfrak{P}) := a(\mathfrak{P})/f(\mathfrak{P})^n$. 此为 A_f 的几何解释, 即看作开子集 D(f) 上的函数环.

为了解释在一个素理想处的局部化 A_{p} , 我们先看一般的拓扑空间在一个点处的函数芽环. 设 X 为拓扑空间, $x \in X$. 定义集合

$$\{(f,U)|U \rightarrow x \in X$$
中的一个开邻域, $f \rightarrow U$ 上的一个实值连续函数 $\}$

上的一个关系如下: $(f,U) \sim (g,V) \Leftrightarrow$ 存在 x 的开邻域 W 满足 $W \subset U \cap V$,并且 $f|_W = g|_W$. 容易验证这是一个等价关系. 我们将商集记作 $\mathcal{C}_{X,x}$,并将其中的一个元素 [(f,U)] 记作 f_x ,称作 x 处的一个连续函数芽. 定义 $\mathcal{C}_{X,x}$ 上的加法和乘法运算如下:

$$\mathcal{C}_{X,x} \times \mathcal{C}_{X,x} \to \mathcal{C}_{X,x}$$

$$([(f,U)],[(g,V)]) \mapsto [(f,U)] + [(g,V)] := [(f|_{U \cap V} + g|_{U \cap V}, U \cap V)]$$

$$\mathcal{C}_{X,x} \times \mathcal{C}_{X,x} \to \mathcal{C}_{X,x}$$

$$([(f,U)],[(g,V)]) \mapsto [(f,U)] \cdot [(g,V)] := [(f|_{U \cap V} \cdot g|_{U \cap V}, U \cap V)]$$

容易验证上述定义是良好的, 并且在这些运算下 $C_{X,x}$ 成为交换环.

习题 **10** $C_{X,x}^* = \{[(f,U)|f(x) \neq 0\}.C_{X,x}$ 中的唯一极大理想是 $\{[(f,U)|f(x) = 0\}.$ 注: 具有唯一极大理想的环称为局部环.

习题 11. 在 $C_{X,x}$ 的定义中, 将开集 U,V,W 均换为一个固定的开集基中的元素, 得到的还是函数芽环 $C_{X,x}$.

注: 我们关心的只是函数在 x 附近的行为, 函数芽环研究的是一种局部性质.

下面将拓扑空间取成 SpecA, 点取作 \mathfrak{P} , 开集基取作 $\{D(f)|f\in A\}$, 将 D(f) 上的函数取为 A_f 中的元,则出现的函数芽环就是 $A_{\mathfrak{P}}$. 具体而言,考虑集合 $\{(a,D(f))|\mathfrak{P}\in D(f), a\in A_f\}$. 定义该集合上的等价关系: $(a,D(f))\sim (b,D(g))\Leftrightarrow \exists D(h)$,使得 $\mathfrak{P}\in D(h)\subset D(f)\cap D(g)$,且 $a|_{D(h)}=b|_{D(h)}$,这里 $a|_{D(h)}$ 是指 a 在自然同态 $A_f\to A_h$ 下的像, $b_{D(h)}$ 的意思相同. 在这个等价关系下,商集合同样在自然定义的加法和乘法下成为环. 不难验证,这个环同构于局部化 $A_{\mathfrak{P}}$. 此为 $A_{\mathfrak{P}}$ 的几何解释.

2022-03-14 环的整扩张与 Hilbert 零点定理

以下环均指交换环.

定义 1 设 φ : $A \to B$ 是环同态. 称 $b \in B$ 在 A 上整 (integral), 如果 $\exists n \geq 1$ 和 $a_0, \dots, a_{n-1} \in A$, 使得

$$b^{n} + \varphi(a_{n-1})b^{n-1} + \dots + \varphi(a_{1})b + \varphi(a_{0}) = 0.$$

如果 $\forall b \in B, b$ 均在 A 上整, 就称 B 在 A 上整, 也称 $\varphi: A \to B$ 为环的整扩张 (注意 φ 不一定是单同态).

习题 1. 设 $\varphi: A \to B$ 为环的整扩张.

1. 设 $J \subset B$ 为 B 的理想, 则 $A/J \cap A \to B/J$ 为整扩张.(注意记号 $J \cap A := \varphi^{-1}(J)$)

2. 设 $S \subset A$ 为乘法子集, 则 $A_S \to B_S$ 为整扩张.(注意记号 B_S 为 B 在 $\varphi(S)$ 处的局部化.)

习题 2. 1. 设 φ : $A \hookrightarrow B$ 为整环之间的单同态,同时也是整扩张.则 A 为域 $\Leftrightarrow B$ 为域.

2. 设 $A \to B$ 为环的整扩张. 设 $J \subset B$ 为 B 的理想, 则 J 为 B 的极大理想 $\Leftrightarrow J \cap A$ 为 A 的极大理想.

3.设 $A \hookrightarrow B$ 为整环之间的单同态,同时也是整扩张. 设 \mathfrak{P} 为 B 的素理想,并且 $\mathfrak{P} \neq (0)$,则 $\mathfrak{P} \cap A \neq (0)$.

- 习题 3. (Hilbert 零点定理的弱形式) 设 m 为 $\mathbb{C}[x,y]$ 的极大理想 (从而非零), 并且设 m 包含一个不可约多项式 f, 使得 f 看作 y 的多项式为首一且次数大于 0, 即 f 形如 $y^n+c_{n-1}(x)y^{n-1}+\cdots+c_0(x)$.
 - 1. $\mathbb{C}[x]$ → $\mathbb{C}[x,y]/(f)$ 为整环之间的单同态, 且为整扩张.
 - $2. \mathfrak{m}/(f) \cap \mathbb{C}[x]$ 为 $\mathbb{C}[x]$ 中极大理想, 从而存在 $a \in \mathbb{C}$, 使得 $\mathfrak{m}/(f) \cap \mathbb{C}[x] = (x-a)$.
- 3. $\mathfrak{m}/(f,x-a)$ 为 $\mathbb{C}[x,y]/(f,x-a)$ 中的极大理想, 并且 $\mathbb{C}[x,y]/(f,x-a)\simeq$ $\mathbb{C}[y]/(f(a,y)).$
 - 4. 存在 $a, b \in \mathbb{C}$, 使得 $\mathfrak{m} = (x a, y b)$.
- 5. 设 $g(x,y) \in \mathbb{C}[x,y]$ 为非零多项式,则存在正整数 k 和非零复数 $\lambda \in \mathbb{C}^*$,使得作如下变量代换后, $\tilde{g}(x',y') = g(x,y)$,且 $\lambda \tilde{g}(x',y')$ 为关于 y' 的首一且次数大于零的多项式:

$$\begin{cases} x = x' + y'^k \\ y = y' \end{cases}$$

- 6. 设 $g(x,y) \in \mathbb{C}[x,y]$ 为非零多项式,且为关于 y 的首一且次数大于零的多项式.设 $h(x,y) \in \mathbb{C}[x,y]$ 为 g(x,y) 的一个不可约因子,则 h(x,y) 也为关于 y 的首一且次数大于零的多项式.
 - $7. \mathbb{C}[x,y]$ 的任意极大理想均形如 (x-a,y-b), 其中 $a,b \in \mathbb{C}$.
- 8.(Hilbert 零点定理, 弱形式) $\mathbb{C}[x_1,\cdots,x_n]$ 的任意极大理想均形如 (x_1-a_1,\cdots,x_n-a_n) , 其中 $a_1,\cdots,a_n\in\mathbb{C}$.
- 习题 4. (选做,Hilbert 零点定理的强形式)一个 \mathbb{C} -代数 A 称为有限生成 \mathbb{C} -代数,如果存在 n 以及理想 $I\subset \mathbb{C}[x_1,\cdots,x_n]$,使得 $A\simeq \mathbb{C}[x_1,\cdots,x_n]/I$,即 A 同构于多项式环的商.

- 1. 设 A 为有限生成 \mathbb{C} -代数, $f\in A$,则有 \mathbb{C} -代数同构: $A[x]/(1-fx)\simeq A_f$. 特别地, A_f 也为有限生成 \mathbb{C} -代数.
- 2. 设 A 为有限生成 \mathbb{C} -代数, $f\in A$, 则 A_f 中的极大理想——对应到 A 中不包含 f 的极大理想.
- 3. 设 A 为有限生成 \mathbb{C} -代数, $f \in A$. 如果对任意 A 中的极大理想 \mathfrak{m} , 均有 $f \in \mathfrak{m}$, 则 A_f 为零环, 从而 f 为 A 中幂零元, 即 A 的全体极大理想之交为幂零根.
- 4.(Hilbert 零点定理, 强形式) 设 I 为多项式环 $\mathbb{C}[x_1,\cdots,x_n]$ 中的理想, 设 $f\in\mathbb{C}[x_1,\cdots,x_n]$. 如果对任意 $a\in V(I):=\{x\in\mathbb{C}^n\mid g(x)=0, \forall g\in I\}$, 均有 f(a)=0, 则 $f\in\sqrt{I}:=\{h\in\mathbb{C}[x_1,\cdots,x_n]\mid \exists m\geq 1, h^m\in I\}$.

2022-03-16 离散赋值环与 Dedekind 整环

以下环均指交换环.

定义 1. 设 (A, m) 为局部环 (即环 A 只有唯一的一个极大理想 m) 并且 A 为 Noether 整环, m 为非 0 主理想, 则称 A 为离散赋值环 (discrete valuation ring, 简称 DVR).

习题 1. 设 (A, m) 为离散赋值环, $m = (\pi)$, 则:

- 1. $A^* = A \backslash m$.
- $2. \forall 0 \neq a \in A$, 存在 $k \geq 0$ 为非负整数, 以及 $u \in A^*$, 使得 $a = \pi \cdot \pi^k$.
- 3. A 为主理想整环 (PID) 从而为 (UFD).
- 4. Spec $A = \{(0), m\}$

离散赋值环的例子: \mathbb{Z}_p , $\mathbb{C}[[x]]$, 以及 $\mathbb{Z}_{(p)}:=\{\frac{a}{b}\mid a\in\mathbb{Z},p\nmid b\}(\mathbb{Z}_{(p)})$ 为 \mathbb{Z} 在素理想 (p) 处的局部化).

定义 2. 一个环 A 称为 Dedekind 整环, 如果 A 为 Noether 整环, 并且对任意一个非零素理想 $\mathfrak{P} \in \operatorname{Spec} A$, 局部化 $A_{\mathfrak{P}}$ 均为离散赋值环.

习题 2. 设 A 为 Dedekind 整环,则 A 的每个非零素理想均为极大理想.

下面的习题给出了判断局部化 An 为离散赋值环的一个方法.

- 习题 3. 设 $A = L_1 \times \cdots \times L_n$ 为 n 个域的乘积. 证明:
 - 1. A 中恰好有 n 个素理想 P_1, \dots, P_n , 并且 $P_i = \{(x_1, \dots, x_n) \in A \mid x_i = 0\}$.
 - 2. $A_{P_i} \simeq L_i, \forall i = 1, \ldots, n.$

3. $P_i A_{P_i} = (0), \forall i = 1, \dots, n.$

4. 设 $f(x) \in \mathbb{Z}[x]$ 为首一的不可约多项式,记 $B = \frac{\mathbb{Z}[x]}{(f(x))}$.设 $(0) \neq P \in \operatorname{Spec} B$ 且 $P \cap \mathbb{Z} = (p), p \in \mathbb{Z}$ 为素数,以及 $\overline{f(x)} \in \mathbb{F}_p[x]$ 为 \mathbb{F}_p 上无重根的多项式 $(\mathbb{P} \ \overline{f'(x)} \ \mathsf{F}_p[x]$ 在 $\mathbb{F}_p[x]$ 上互素).证明:B/(p) 为有限个域的乘积,并且在 B_P 中 $PB_P = (p)$ 为主理想.

注: 此处 $(p)B_P$ 指 B 中理想 (p) 在局部化中的像生成的理想, 命题最后结论的 (p) 指 p 在局部环 B_P 中生成的主理想. 此处二者是相等的.

习题 4. $\mathbb{Z}, \mathbb{Z}[i], \mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt[3]{2}]$ 均为 Dedekind 整环.

习题 5. 设 p 为素数, $\zeta_{p^n} := e^{\frac{2\pi i}{p^n}} \in \mathbb{C}^*$ 为一个 p^n 次本原单位根.

1.
$$\Phi_p(x) := \frac{x^p - 1}{x - 1} = 1 + x + \dots + x^{p-1}$$
 为 $\mathbb{Z}[x]$ 中不可约多项式.

- 2. $\mathbb{Z}[\zeta_p] \simeq \mathbb{Z}[x]/(\Phi_p(x))$.
- $3. \mathbb{Z}[\zeta_p]$ 为 Dedekind 整环.
- 4. $\mathbb{Z}[\zeta_{p^n}]$ 为 Dedekind 整环.

习题 **6.** 如果 $f(X,Y) \in \mathbb{C}[X,Y]$ 为不可约多项式,并且不存在 $(a,b) \in \mathbb{C}^2$,使得 $f(a,b) = \frac{\partial f}{\partial X}(a,b) = 0$,或不存在 $(a,b) \in \mathbb{C}^2$,使得 $f(a,b) = \frac{\partial f}{\partial Y}(a,b) = 0$,则 $\frac{\mathbb{C}[X,Y]}{f(X,Y)}$ 为 Dedekind 整环.

阅读材料: Dedekind 整环的理想类群

以下设 A 为 Dedekind 整环. 记 $\operatorname{Spec}_m A$ 为 A 的所有非零素理想形成的集合, 其中的元素称为 A 的一个素点. 对于 $P \in \operatorname{Spec}_m A$, 设 π_P 为 $\operatorname{DVR} A_P$ 的唯一极大理想

 PA_P 的生成元. 对任意非零的 $f \in Frac(A) = Frac(A_P)$, 存在唯一的 $u \in A_P^*$, 以及 $n \in \mathbb{Z}$, 使得 $f = u\pi_P^n$. 我们记 $v_P(f) = n$, 称为 f 在素点 P 处的赋值 (因而是所谓的离散赋值).

下面的习题说明 f 在所有素点 P 处的赋值在相差一个 $u \in A^*$ 的意义上确定了 f.

习题 7. 设 $f \in Frac(A)^* = Frac(A) \setminus \{0\}$.

1. 设 $g \in Frac(A)^*, P \in Spec_m A$,则 $v_P(fg) = v_P(f) + v_P(g)$,以及 $v_P(f+g) \ge min\{v_P(f), v_P(g)\}$.

- $2. \forall P \in \operatorname{Spec}_m A$, 有 $v_P(f) = 0 \Leftrightarrow f \in A_P^*$, 以及 $v_P(f) \geq 0 \Leftrightarrow f \in A_P$
- $3. A = \bigcap_{P \in \text{Spec}_{m}A} A_{P}$, 其中将 A_{P} 均看作 Frac(A) 的子环再取交集.

4. $(\forall P \in \operatorname{Spec}_m A, v_P(f) \geq 0) \Leftrightarrow f \in A, 以及 (\forall P \in \operatorname{Spec}_m A, v_P(f) = 0) \Leftrightarrow f \in A^*.$

习题 8. 1. 设 $f \in A$ 且 $f \neq 0$, 则 $\{P \in \operatorname{Spec}_m A \mid f \in P\}$ 为有限集.

2. 设 $f \in Frac(A)^*$, 则 $\{P \in \operatorname{Spec}_m A \mid v_P(f) \neq 0\}$ 为有限集.

记 Div(A) 为以集合 $Spec_mA$ 中元素为基生成的自由 Abel 群,该群称为 A 的除子群,其中的每个元素均形如 $\sum_{P\in Spec_mA}n_PP$,其中 $n_P\in\mathbb{Z}$ 且只有有限个 P 使得 $n_P\neq 0$. 上面的习题说明以下群同态是良好定义的:

$$\varphi \colon Frac(A)^* \to Div(A)$$

$$f \mapsto (f) := \sum_{P \in \operatorname{Spec}_m A} v_P(f) P$$

形如 $(f) = \sum_{P \in \text{Spec}_m A} v_P(f) P$ 的除子称为主除子 (principle divisor).

习题 9. $\ker \varphi = A^*$, 从而有 Abel 群的正合列:

$$1 \to A^* \to Frac(A)^* \xrightarrow{\varphi} Div(A)$$

定义 3. A 的除子类群 Cl(A) 定义为商群 $\operatorname{coker} \varphi = Div(A)/\operatorname{Im}(\varphi)$.

除子类群 Cl(A) 也称为 A 的理想类群, 其大小刻画了 A 偏离主理想整环的程度. 以下为代数数论中的基本定理之一:

定理 设 \mathcal{O}_K 为代数数域 K 的代数整数环 (ring of algebraic integers), 则 $Cl(\mathcal{O}_K)$ 为有限 Abel 群.(可以参考 [?] 第一章 $\S 2$)

下面解释 Cl(A) 与 A 中理想的关系. 对于理想 $I \subset A$, 对于素点 $P \in \operatorname{Spec}_m A$, IA_P 为 DVR A_P 中的理想,从而存在非负整数 $n_P \geq 0$,使得 $IA_P = (\pi_P)^{n_P} = (PA_P)^{n_P}$. 注意到 $n_P = 0 \Leftrightarrow IA_P = A_P \Leftrightarrow I \nsubseteq P$. 由上面的习题,若 $I \neq (0)$,则只有有限个 P 包含 I(考虑商环 A/I),从而只有有限个 P 使得 $n_P \neq 0$,这样得到一个除子 $div(I) := \sum_{P \in \operatorname{Spec}_m A} n_P P$. 显然对于 $P \in \operatorname{Spec}_m A$, 有 div(P) = P.

习题 10. 设 I, J 均为 A 的非零理想, 则 div(IJ) = div(I) + div(J).

习题 11. 本题的目标是给出 Dedekind 整环中理想的唯一分解, 并从理想类群的角度给出一个判断 Dedekind 整环 A 是否是主理想整环的充要条件.

1. 设 B 为环, $f \in B$, 并且对 B 的任意极大理想 m, 在局部化 B_m 中均有 f = 0, 则在 B 中有 f = 0.

2. 设 B 为环, $f \in B$, J 为 B 的理想, 并且对 B 的任意极大理想 m, 在局部化 B_m

中均有 $f \in JB_m$, 则在 B 中有 $f \in J$.

- 注: 也可以考虑商环 B/J, 利用商与局部化交换, 将问题转化为1.
- 3. 设 A 为 Dedekind 整环, I, J 为 A 的非零理想, 并且 div(I) = div(J), 则 I = J.
- 4. (Dedekind 整环中理想的唯一分解) 设 I 为 A 的非零理想, 并且 $div(I) = n_1 P_1 + \cdots + n_k P_k$, 则 $I = P_1^{n_1} \cdots P_k^{n_k}$.=
- 5. 设 I 为 A 的非零理想, 并且存在 $f \in Frac(A)^*$, 使得 div(I) = (f) 为主除子, 则 $f \in A$, 并且 I = (f) 为主理想.
 - 6. Cl(A) = 0 即 Cl(A) 为平凡 Abel 群 ⇔ A 为主理想整环.

对于一个 Abel 半群 S, 我们记 $\langle S \rangle$ 为 S 生成的 Abel 群 (用万有性质刻画就是: 对于 Abel 半群 S 到群 G 的半群同态 ψ , 存在唯一的群同态 $\bar{\psi}$: $\langle S \rangle \to G$, 使得 $\bar{\psi}|_S = \psi$). 对于 Dedekind 整环 A, 令 I 为 A 中所有非零理想在理想乘积下形成的 Abel 半群, P 为 A 的所有非零主理想在理想乘积下形成的子半群, 则上面的讨论说明 $\langle I \rangle$ 同构于除 子群 Div(A), $\langle P \rangle$ 同构于所有主除子形成的 Div(A) 的子群, 从而商群 $\langle I \rangle / \langle P \rangle$ 同构于除子类群 (理想类群)Cl(A).

将 Frac(A) 看作 A-模,则 Frac(A) 的一个非零的有限生成 A-子模称为 A 的一个分式理想,可以证明 $\langle T \rangle$ 与 A 的所有分式理想在自然定义的乘积下形成的 Abel 群同构. 而对于 $f \in Frac(A)^*$,f 生成 Frac(A) 的一个 (自由) 子模 Af,这样得到的分式理想称为主分式理想,可以验证 $\langle P \rangle$ 同构于主分式理想形成的 Abel 群. 这样我们得到 Cl(A) 同构于分式理想所形成的群商去主分式理想所形成的子群. 这是 Cl(A) 的另一种看法 (可以参考第二轮口试题目的选题 2: 模的局部化).

2022-03-19,03-20 第一轮口试题目-交换环

习题 1. 设 R 为交换环. A 称为 R-代数, 如果 A 为 R-模, 且 A 为环, 满足: 对任意 $r \in R, a, b \in A,$ 有

$$r(a \cdot b) = (ra) \cdot b = a \cdot (rb)$$

习题 2. 设 A 为有限交换环, 且 A 为整环, 证明 A 为域.

习题 3. 设 A 为交换 k-代数, k 为域, 且 $dim_k A < +\infty$.

- 1. 如果 A 为整环, 证明 A 为域.
- 2.A 中素理想均为极大理想.
- 3.A 中只有有限个素理想, 记为 P_1, \dots, P_n .
- 4. 存在 $m \ge 1$, 使得 $(\bigcap_{i=1}^{n} P_i)^m = (0)$.
- $5. A \simeq \prod_{i=1}^{n} A/P_i^m$, 并且 A/P_i^m 为局部环.
- 6. $A \simeq \prod_{i=1}^{n} A_{P_i}$.
- 7. 如果 A 为既约环, 即 A 中没有非零的幂零元, 则 A 同构于有限个域的乘积.

习题 4. 分析环 $\mathbb{Z}[\sqrt{3}]$ 中的素理想: 对于素数 p, 其上方的素理想个数, 生成元等.

习题 5. 设 S 为交换环 A 的乘法集,则典范同态 $i: A \to A_S$ 诱导下面两个集合的双射:

$$\operatorname{Spec} A_S \xrightarrow{\sim} \{P \in \operatorname{Spec} A \mid P \cap S = \varnothing\}$$

$$q \mapsto i^{-1}(q)$$

习题 **6.** 设 A 为交换环, S 为 A 的乘法子集, 并设 A 为 Noether 环, 记 A_S 为 A 在 S 处的局部化, $\varphi: A \to A_S$ 为自然同态.

- 1. 证明: A_S 为 Noether 环.
- 2. 设 J 为 A_S 的理想, 且存在 $0 \neq y \in A_S$, 使得

$$J = Ann(y) := \{ \alpha \in A_S \mid \alpha \cdot y = 0 \}$$

证明: 存在 $0 \neq x \in A$, 使

$$\varphi^{-1}(J) = Ann(x) := \{ \alpha \in A \mid \alpha \cdot x = 0 \}$$

习题 7. 设 $A \xrightarrow{\varphi} B$ 为单同态且 A, B 均为整环, 以及 φ 为整扩张, 则 A 为域 $\Leftrightarrow B$ 为域.

习题 8. 设m为 $\mathbb{Z}[x]$ 的一个极大理想.证明:

- 1. 存在次数大于零的不可约多项式 $f(x) \in m$.
- 2. 记 $n \neq 0$ 为 f(x) 的首项系数,记 \mathbb{Z}_n 为 \mathbb{Z} 在 $\{n^k|k\geq 0\}$ 处的局部化.则 $\mathbb{Z}_n\to\mathbb{Z}_n[x]/(f(x))$ 为整环之间的单同态,且为整扩张.

$$3.m \cap \mathbb{Z} \neq (0)$$
. 从而存在素数 p , 使得 $m \cap \mathbb{Z}=(p)$.

4. 存在 $g(x) \in \mathbb{Z}[x]$, 使得 $\overline{g(x)}$ 在 $\mathbb{F}_p[x]$ 中为不可约多项式, 而且 m = (p, g(x)).

习题 9. 举出一个 UFD 但不是 PID 的例子.

以下为整闭整环的定义.

定义 1. 设 A 为整环, K 为 A 的分式域, 如果 A 在 K 中的整闭包等于 A(或者说 A 在 K 中整闭), 则称 A 为整闭整环 (integrally closed domain normal domain).

习题 10. 证明 UFD 为整闭整环.

以下为一个关于整闭整环的判断方法.

- 习题 11. 设 A 为整环, K 为 A 的分式域.
 - $1. A = \bigcap_{P \in \text{Spec} A} A_P$. 这里将 A 和 A_P 均看作 K 的子环.
 - 2. 如果 $\forall P \in \text{Spec} A$, A_P 为整闭整环, 则 A 为整闭整环.

习题 12. 设 p 为素数

- 1. 证明: $\Phi_p(x) := \frac{x^p 1}{x 1} \, \, \mathcal{Q}[x] \, \,$ 中不可约多项式.
- 2. 设 p^m 为素数幂次, 证明: $\Phi_{p^m}(x) := \frac{x^{p^m}-1}{x^{p^{m-1}}-1}$ 为 $\mathbb{Q}[x]$ 中不可约多项式.

习题 **13.** 证明 $f := x^n + x_{n-1}x^{n-1} = \cdots + x_1x + x_0$ 为 n+1 元多项式环 $\mathbb{Z}[x_0, \cdots, x_{n-1}, x]$ 中的不可约多项式.

定义 2. 设 (A, m) 为局部环, 并且 A 为 Noether 整环, m 为非 0 主理想, 则称 A 为 离散赋值环 (DVR).

习题 14. 证明 \mathbb{Z}_p , $\mathbb{C}[[x]]$, 以及 $\mathbb{Z}_{(p)} := \{\frac{a}{b} \mid a \in \mathbb{Z}, p \nmid b\}$ (即 $\mathbb{Z}_{(p)}$ 为 \mathbb{Z} 在素理想 (p) 处的局部化) 均为离散赋值环.

习题 **15.** 设 (A, m) 为离散赋值环, $m = (\pi)$, 则:

- 1. $A^* = A \backslash m$.
- $2. \ \forall 0 \neq a \in A$, 存在 $k \geq 0$ 为非负整数, 以及 $u \in A^*$, 使得 $a = u \cdot \pi^k$.
- 3. A为 PID 从而为 UFD, 为整闭整环.

2022-03-21 代数不变量理论

设 G 为群, ρ : $G \to GL(V)$ 为 G 的有限维复表示. 记 $\mathbb{C}[V]$ 为 V 上的复值多项式 函数形成的环, G 作用于 $\mathbb{C}[V]$: $\forall g \in G, \forall f \in \mathbb{C}[V], (g \cdot f)(v) = f(g^{-1}v)$, 对于 $v \in V$, 记 $\mathbb{C}[V]^G = \{f \in V | gf = f, \forall g \in G\}$ 为 G-不变多项式函数构成的子环. 代数不变量理论研究 \mathbb{C} -代数 $\mathbb{C}[V]^G$ 的结构.

习题 1. 设 G 为有限群, V 为有限维复线性空间, $\rho: G \to GL(V)$ 为 G 在 V 上的表示. 通过以下步骤证明 $\mathbb{C}[V]^G$ 为有限生成 \mathbb{C} -代数.

1. 取对偶空间 V^* 的一组基,则有 $\mathbb{C}[V]\simeq\mathbb{C}[x_1,\ldots,x_n]$,从而 G 作用于 $\mathbb{C}[x_1,\ldots,x_n]$,并且该作用保持次数.

2. 记 I 为 $\mathbb{C}[x_1, \ldots, x_n]^G$ 中的正次数齐次多项式在 $\mathbb{C}[x_1, \ldots, x_n]$ 中生成的理想. 证明: 存在正次数齐次多项式 $f_1, \ldots, f_k \in \mathbb{C}[x_1, \ldots, x_n]^G$, 使得 $I = (f_1, \ldots, f_k)$.

3. 证明: 任取正次数齐次多项式 $f \in \mathbb{C}[x_1,\ldots,x_n]^G$, 存在齐次多项式 $g_1,\ldots,g_k \in \mathbb{C}[x_1,\ldots,x_n]$, 使得: $f=g_1f_1+\cdots+g_kf_k$.

4. 证明: 任取正次数齐次多项式 $f \in \mathbb{C}[x_1,\ldots,x_n]^G$, 存在齐次多项式 $g_1,\ldots,g_k \in \mathbb{C}[x_1,\ldots,x_n]^G$, 使得: $f=g_1f_1+\cdots+g_kf_k$.

5. 证明: $\mathbb{C}[x_1,\ldots,x_n]^G$ 为有限生成 \mathbb{C} -代数, 从而 $\mathbb{C}[V]^G$ 为有限生成 \mathbb{C} -代数.

习题 2. 设 $V = \mathbb{C}e_1 \oplus \cdots \oplus \mathbb{C}e_n$ 为 n 维线性空间, 置换群 \mathfrak{S}_n 作用于 $V : \forall \sigma \in \mathfrak{S}_n$, $\forall i, \ \sigma e_i = e_{\sigma(i)}$. 证明: $\mathbb{C}[V]^{\mathfrak{S}_n} \simeq \mathbb{C}[\sigma_1, \ldots, \sigma_n] \subset \mathbb{C}[x_1, \ldots, x_n]$, 其中 σ_i 为 x_1, \ldots, x_n 的 i 次初等对称多项式.

习题 3. $GL_n(\mathbb{C})$ 通过相似作用于 n 阶方阵形成的线性空间 $M_n(\mathbb{C}): \forall g \in GL_n(\mathbb{C}), \forall A \in M_n(\mathbb{C}), g \cdot A := gAg^{-1}$. 证明: $\mathbb{C}[M_n(\mathbb{C})]^{GL_n(\mathbb{C})} = \mathbb{C}[\sigma_1, \dots, \sigma_n], \ \$ 其中对于 $A \in M_n(\mathbb{C}),$ 有 $\det(\lambda I_n - A) = \lambda^n - \sigma_1(A)\lambda^{n-1} + \dots + (-1)^n\sigma_n(A).$

习题 4. $SL_n(\mathbb{C})$ 通过矩阵的左乘作用于 $M_n(\mathbb{C})$. 证明: $\mathbb{C}[M_n(\mathbb{C})]^{SL_n(\mathbb{C})} = \mathbb{C}[\det]$, 其中 $\det \, \mathcal{H}_n(\mathbb{C})$ 上的行列式函数.

习题 5. $SL_2(\mathbb{C})$ 通过矩阵的左乘作用于 2×4 阶复矩阵空间 $M_{2\times 4}(\mathbb{C})$, 确定该作用下的不变量 $\mathbb{C}[M_{2\times 4}(\mathbb{C})]^{SL_2(\mathbb{C})}$.

习题 6. 记 $Pol_{2,2} = \{ax_1^2 + bx_1x_2 + cx_2^2 | a, b, c \in \mathbb{C}\}$ 为两个变元的二次齐次复系数 多项式形成的线性空间. $SL_2(\mathbb{C})$ 通过换元作用于 $Pol_{2,2}: \forall A \in SL_2(\mathbb{C}), \forall f(x_1, x_2) \in Pol_{2,2}, (A \cdot f)(x_1, x_2) := f(y_1, y_2), 其中 <math>(y_1, y_2) = (x_1, x_2)A$. 证明: $\mathbb{C}[Pol_{2,2}]^{SL_2(\mathbb{C})} = \mathbb{C}[\Delta],$ 其中 Δ 为判别式函数: $\forall f(x_1, x_2) = ax_1^2 + bx_1x_2 + cx_2^2, \Delta(f) = b^2 - 4ac.$

2022-03-23 Eisenstein 判别法, 结式与判别式

• Eisenstein 判别法.

习题 1. 设 p 为素数, $\zeta_{p^n}:=e^{\frac{2\pi i}{p^n}}\in\mathbb{C}$ 为一个 p^n 次本原单位根.

$$1.\Phi_p(x) := \frac{x^p-1}{x-1} = 1 + x + \dots + x^{p-1}$$
 为 $\mathbb{Z}[x]$ 中不可约多项式.

$$2.\Phi_{p^n}(x) := \frac{x^{p^n} - 1}{x^{p^{n-1}} - 1}$$
 为 $\mathbb{Z}[x]$ 中不可约多项式.

事实: 对于正整数 N, 分圆多项式 (cyclotomic polynomial) $\Phi_N(x):=\prod_{\substack{1\leq i\leq N\\(i,N)=1}}(x-\zeta_N^i)$ 为不可约的整系数多项式.

习题 2. 证明一个多项式的不可约性.

1. 证明 $f := x^n + tx^{n-1} + \cdots + tx + t$ 为二元多项式环 $\mathbb{Z}[t,x]$ 中的不可约元.

2. 证明 $f := x^n + x_{n-1}x^{n-1} + \cdots + x_1x + x_0$ 为 n+1 元多项式环 $\mathbb{Z}[x_0, \cdots, x_{n-1}, x]$ 中的不可约元.

• 结式与判别式

设 A 为 UFD, $f(x) = a_n x^n + \dots + a_0, g(x) = b_m x^m + \dots + b_0 \in A[x]$, 且 $a_m b_m \neq 0$.

习题 **3.** f,g 在 A[x] 中存在次数大于零的公因子 \Leftrightarrow 存在 $f_1,g_1 \in A[x]$, 满足: $\deg f_1 \leq n-1, \deg g_1 \leq m-1$, 并且 $fg_1 = gf_1$.

设 $f_1(x) = a'_{n-1}x^{n-1} + \dots + a_0, \ g_1(x) = b'_{m-1}x^{m-1} + \dots + b'_0 \in A[x],$ 则有

$$f(x)g_{1}(x) - g(x)f_{1}(x) = (1, x, \dots, x^{m+n-1})M \begin{pmatrix} b'_{0} \\ b'_{1} \\ \vdots \\ b'_{m-1} \\ -a'_{0} \\ -a'_{1} \\ \vdots \\ a'_{m-1} \end{pmatrix}$$

其中 $M = M(a_0, \ldots, a_n, b_0, \ldots, b_m)$ 为如下 m + n 阶方阵:

$$M = \begin{pmatrix} a_0 & b_0 & \\ & \ddots & \vdots & \ddots & \\ \vdots & a_0 & b_0 & \\ a_n & b_m & \\ & \ddots & & \ddots & \\ & & a_n & b_m \end{pmatrix}$$

定义 f 和 g 的结式 (resultant) 为 Res(f,g) := det M.

习题 4. f,g 在 A[x] 中存在次数大于零的公因子 \Leftrightarrow Res(f,g) = 0.

习题 5. 1. 设 R 为交换环, $Q \in M_n(R)$, 则存在 $x_1, \ldots, x_n \in R$, 使得

$$Q \cdot (x_1, \cdots, x_n)^t = (\det Q, 0 \cdots, 0)^t$$

2. 存在 $f_1, g_1 \in A[x]$, 满足: $\deg f_1 \ge n - 1, \deg g_1 \ge m - 1$, 并且 $fg_1 - gf_1 = \operatorname{Res}(f, g)$.

习题 6. 设 R 为整环, $a_0(t), \ldots, a_n(t), b_0(t), \ldots, b_m(t) \in R[t]$, 且有 $\deg a_i(t) \leq n - i$, $\deg b_i(t) \leq m - j, \forall 0 \leq i \leq n, 0 \leq j \leq m$. 证明:

$$\deg \det M(a_0(t),\ldots,a_n(t),b_0(t),\cdots,b_m(t)) \leq mn.$$

也即

$$M = \begin{pmatrix} a_0 & & b_0 & \\ & \ddots & & \vdots & \ddots & \\ \vdots & & a_0 & & b_0 \\ a_n & & b_m & & \\ & \ddots & & \ddots & \\ & & a_n & & b_m \end{pmatrix}$$

习题 7. 令 $B = \mathbb{Z}[a_n, b_m, x_1, \dots, x_n, y_1, \dots, y_m]$ 为 m+n+2 个变元的多项式环. $f(x) = a_n \prod_{i=1}^n (x-x_i), g(x) = b_m \prod_{i=1}^m (x-y_i) \in B[x].$

1. 存在 $h \in \mathbb{Z}[x_1,\ldots,x_n,y_1,\ldots,y_m]$, 以及 $m_{ij} \geq 1$ 使得

Res
$$(f,g) = ha_n^m b_m^n \prod_{i=1}^n \prod_{j=1}^m (y_j - x_i)^{m_{ij}}$$

2. 在 B[t] 中令 $f_t(x) = a_n \prod_{i=1}^n (x - tx_i), g_t(x) = b_m \prod_{j=1}^m (x - ty_j) \in B[t][x]$. 证明 $\operatorname{Res}(f_t, g_t)$ 作为 t 的多项式的次数 $\operatorname{deg} \operatorname{Res}(f_t, g_t) \leq mn$.

3. 在 1 中, $h \in \mathbb{Z}$, $m_{ij} = 1, \forall i, j$.

4. 在 1 中, $h = \pm 1$.

$$5.\text{Res}(f,g) = a_n^m b_m^n \prod_{i=1}^n \prod_{j=1}^m (y_j - x_i).$$

5. Res
$$(f,g) = a_n^m b_m^n \prod_{i=1}^n \prod_{j=1}^m (y_j - x_i).$$

6. Res $(f,f') = (-1)^{\frac{n(n-1)}{2}} a_n^{2n-1} \prod_{1 \le i < j \le n} (x_i - x_j)^2$

7. 设
$$f(x) = a_n \prod_{i=1}^n (x - x_i) = a_n x^n + \ldots + a_0$$
,定义 f 的判别式 (discriminant) 为 $\Delta(f) := a_n^{2n-2} \prod_{1 \leq i < j \leq n} (x_i - x_j)^2$. 证明:Res $(f, f') = (-1)^{\frac{n(n-1)}{2}} a_n \Delta(f)$,并由此证明 $\Delta(f)$ 为变量 a_0, \ldots, a_n 的 $2n-2$ 次齐次多项式.

8. 误 $f(x) = a_2 x^2 + a_1 x + a_0$, 验证 $\Delta(f) = a_1^2 - 4a_0 a_2$. 误 $f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$, 求 $\Delta(f)$.

注: 可以证明, 对于 $f(x) = a_n x^n + \ldots + a_0, g(x) = b_m x^m + \ldots + b_0, \text{Res}(f, g)$ 作为 a_i, b_i 的多项式为不可约多项式, $\Delta(f)$ 作为 a_i 的多项式为不可约多项式.

• 一些应用

习题 8. 设 $f(x,y), g(x,y) \in \mathbb{C}[x,y]$ 为互素的非零多项式, 记 $V(f,g) := \{(a,b) \in \mathbb{C}^2 \mid (a,b) \in \mathbb{$ f(a,b) = g(a,b) = 0 为 f 和 g 的公共零点. 证明:

1.V(f,g) 为有限集.

 $2.|V(f,g)| \le \deg f \cdot \deg g.$

习题 9. 应用结式证明整性.

1. 令 $R = \mathbb{Z}[a_0, \ldots, a_{n-1}, b_0, \ldots, b_{m-1}, \alpha, \beta]$ 为 n + m + 2 个变元的多项式环. 令 $f(x) = x^n + a_{n-1}x^{n-1} = \ldots + a_0, \ g(x) = x^m + b_{m-1}x^{m-1} + \ldots + b_0 \in R[x] \not\ni \alpha \not\ni \beta$ 的零化不可约多项式. 记 $\gamma = \alpha + \beta \in R$. 证明: 存在系数在 $\mathbb{Z}[a_0, \ldots, a_{n-1}, b_0, \ldots, b_{m-1}]$ 中的首一多项式 h(x), 使得:

$$\operatorname{Res}(f(\gamma - x), g(x)) = h(\gamma)$$

- 2. 设 $\varphi: A \to B$ 为环同态, 设 $\alpha, \beta \in B$ 均在 A 上整, 证明: $\alpha + \beta$ 在 A 上整.
- 3. 设 $\varphi: A \to B$ 为环同态, 设 $\alpha, \beta \in B$ 均在 A 上整, 证明: $\alpha\beta$ 在 A 上整.

注: 事实上有如下等价命题:

- (1) $b \in B$ 在 A 上整;
- (2) A[b] 为有限生成 A-模;
- (3) 存在 B 的子环 C, 且 $\varphi(A) \subset C$, 使得 C 作为 A-模是有限生成的, 且 $b \in C$.

2022-03-28 伴随方阵技巧, 模的正合列

为方便理解,以下环均值交换环.

• 伴随方阵技巧.

习题 1. (Cayley-Hamilton) 设 M 为有限生成 A-模, $\varphi \in End_A(M)$, 证明: 存在首一 多项式 $f(x) \in A[x]$, 使得 $f(\varphi) = 0 \in End_A(M)$.

习题 2. 设 $A \rightarrow B$ 为环同态.

1. 设 $a \in B$, 则 a 在 B 上整 $\Leftrightarrow A[a]$ 为有限生成 A-模.

2. 设 $a \in B$, 则 a 在 B 上整 \Leftrightarrow 存在 B 的子环 C, 使得 $a \in C$, 并且 C 为 B 的有限生成 A-子模.

3. 设 $a,b \in B$ 均在 A 上整, 则 a+b,ab 也在 A 上整.

习题 3. 设 M 为有限生成 A-模, $\varphi \in End_A(M)$, 并设 φ 为满同态. 证明: φ 为单同态, 从而为同构.

● 正合列.

习题 4. 研究 $\operatorname{Hom}_A(N,-)$ 函子的正合性.

1. 设 $0 \to M' \xrightarrow{u} M \xrightarrow{v} M''$ 为 A-模正合列. 设 N 为 A-模,证明以下为 A-模正合列:

$$0 \to \operatorname{Hom}_A(N, M') \xrightarrow{u \circ} \operatorname{Hom}_A(N, M) \xrightarrow{v \circ} \operatorname{Hom}_A(N, M'')$$

2. 设 $0 \to M' \stackrel{u}{\to} M \stackrel{v}{\to} M''$ 为 A-模复形 (即 $v \circ u = 0$), 并设对任意 A-模 N, 以下

为 A-模正合列:

$$0 \to \operatorname{Hom}_A(N, M') \xrightarrow{u \circ} \operatorname{Hom}_A(N, M) \xrightarrow{v \circ} \operatorname{Hom}_A(N, M'')$$

证明: 为 A-模正合列.

习题 5. 研究 $\operatorname{Hom}_A(-,N)$ 函子和 $-\otimes_A N$ 函子的正合性.

1. 设 $M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$ 为 A-模正合列, 设 N 为 A-模, 证明: 以下为 A-模正合列:

$$0 \to \operatorname{Hom}_A(M'', N) \xrightarrow{\circ v} \operatorname{Hom}_A(M, N) \xrightarrow{\circ u} \operatorname{Hom}_A(M', N)$$

2. 设 $M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$ 为 A-模复形 (即 $v \circ u = 0$), 并设对任意 A-模 N, 以下为正合列:

$$0 \to \operatorname{Hom}_A(M'', N) \xrightarrow{\circ v} \operatorname{Hom}_A(M, N) \xrightarrow{\circ u} \operatorname{Hom}_A(M', N)$$

证明: $M' \stackrel{u}{\rightarrow} M \stackrel{v}{\rightarrow} M'' \rightarrow 0$ 为 A-模正合列.

3. 设 $M_1 \stackrel{\varphi}{\to} M_2 \stackrel{\psi}{\to} M_3 \to 0$ 为 A-模复形. 则其为正合列 \Leftrightarrow 对任意 A-模 N,

$$M_1 \otimes_A N \xrightarrow{\varphi \otimes id} M_2 \otimes_A N \xrightarrow{\psi \otimes id} M_3 \otimes_A N \to 0$$

为正合列.

习题 6. (蛇引理) 设以下为 A-模的交换图表, 并且上下两行均为 (短) 正合列:

$$0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$$

$$\downarrow^f \qquad \downarrow^g \qquad \downarrow^h$$

$$0 \longrightarrow L' \longrightarrow M' \longrightarrow N' \longrightarrow 0$$

证明: 有以下 A-模的 (长) 正合列:

 $0 \to \ker f \to \ker g \to \ker h \to \operatorname{coker} f \to \operatorname{coker} g \to \operatorname{coker} h \to 0.$

也即:

注: 特别地, f,g,h 中任意两个为同构蕴含第三个也为同构 (短五引理).

2022-04-02 复形与上同调, 单形的同调群

• 复形与上同调

设 A 为交换环.

定义 1. 一个 A-模复形 (complex)(C^{\bullet} , d^{\bullet}) 是指对每个 $i \in \mathbb{Z}$, 给定一个 A-模 C^{i} , 以及一个 A-模同态 $d^{i}: C^{i} \to C^{i+1}$, 并且满足 $\forall i \in \mathbb{Z}, d^{i+1} \circ d^{i} = 0$. 称 $H^{i}(C^{\bullet}) := \ker d^{i}/\operatorname{Im} d^{i-1}$ 为复形 (C^{\bullet} , d^{\bullet}) 的第 i 阶上同调群 (cohomology group).

 $\mathbf{\dot{E}}$ 1. 复形 $(C^{\bullet}, d^{\bullet})$ 为正合列当且仅当 $H^{i}(C^{\bullet}) = 0, \forall i \in \mathbb{Z}$.

定义 2. A-模复形 $(C^{\bullet}, d^{\bullet}), (C'^{\bullet}, d'^{\bullet})$ 之间的一个同态 φ^{\bullet} 是指对任意 $i \in \mathbb{Z}$, 给定一个 A-模同态 $\varphi^{i}: C^{i} \to C'^{i}$, 并且满足 $\forall i \in \mathbb{Z}, \varphi^{i+1} \circ d^{i} = d'^{i} \circ \varphi^{i}$. 即有以下交换图表:

习题 1. $(C'^{\bullet}, d'^{\bullet}) \xrightarrow{\varphi^{\bullet}} (C^{\bullet}, d^{\bullet})$ 为 A-模复形同态,则对任意 $i \in \mathbb{Z}$, φ^{\bullet} 自然诱导了上同调群之间的一个 A-模同态 $H^{i}(\varphi^{\bullet}): H^{i}(C'^{\bullet}) \to H^{i}(C^{\bullet})$.

定义 3. 称 $0 \to (C'^{\bullet}, d'^{\bullet}) \xrightarrow{\varphi^{\bullet}} (C^{\bullet}, d^{\bullet}) \xrightarrow{\psi^{\bullet}} (C''^{\bullet}, d''^{\bullet}) \to 0$ 为 A-模复形的一个短正 合列,如果 $\varphi^{\bullet}, \psi^{\bullet}$ 为复形同态,并且对任意 $i \in \mathbb{Z}, 0 \to C'^{i} \xrightarrow{\varphi^{i}} C^{i} \xrightarrow{\psi^{i}} C''^{i} \to 0$ 为 A-模的短正合列.

习题 2. (复形的短正合列诱导上同调的长正合列) 设 $0 \to (C'^{\bullet}, d'^{\bullet}) \xrightarrow{\varphi^{\bullet}} (C^{\bullet}, d^{\bullet}) \xrightarrow{\psi^{\bullet}} (C''^{\bullet}, d''^{\bullet}) \to 0$ 为 A-模复形的一个短正合列,则有上同调群的长正合列:

$$\to H^i(C'^\bullet) \xrightarrow{H^i(\varphi^\bullet)} H^i(C^\bullet) \xrightarrow{H^i(\psi^\bullet)} H^i(C''^\bullet) \xrightarrow{\delta^i} H^{i+1}(C'^\bullet) \xrightarrow{H^{i+1}(\varphi^\bullet)}$$

• 单形的同调群

设 n 为正整数. 对 $0 \le m \le n$, 定义 $C_m(\Delta_n)$ 为符号集合 $\{\langle e_{i_0}e_{i_1}\cdots e_{i_m}\rangle\mid 0 \le i_0 \le i_1 \le \ldots \le i_m \le n\}$ 中的元素作为基生成的自由 \mathbb{Z} -模. 对于 $1 \le m \le n$, 定义同态 $\partial_m \colon C_m(\Delta_n) \to C_{m-1}(\Delta_n)$ 在基上的作用为:

$$\partial_m(\langle e_{i_0}e_{i_1}\cdots e_{i_m}\rangle) = \sum_{j=0}^m (-1)^j \langle e_{i_0}\cdots \hat{e}_{i_j}\cdots e_{i_m}\rangle.$$

其中 $\langle e_{i_0}\cdots \hat{e}_{i_j}\cdots e_{i_m}\rangle$ 表示删去 e_{i_j} , 即 $\langle e_{i_0}\cdots \hat{e}_{i_j}\cdots e_{i_m}\rangle := \langle e_{i_0}\cdots e_{i_{j-1}}e_{i_{j+1}}\cdots e_{i_m}\rangle$.

习题 3. 证明: $\forall 1 \leq i \leq n-1, \partial_i \circ \partial_{i+1} = 0.$

记 $(C_{\bullet}(\Delta_n), \partial_n)$ 为如下复形:

$$\cdots \xrightarrow{\partial_{n+2}} 0 \xrightarrow{\partial_{n+1}} C_n(\Delta_n) \xrightarrow{\partial_n} C_{n-1}(\Delta_n) \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} C_1(\Delta_n) \xrightarrow{\partial_1} C_0(\Delta_n) \xrightarrow{\partial_0} 0 \xrightarrow{\partial_{-1}} \cdots$$

记 $H_i(\Delta_n) := \ker \partial_i / \operatorname{Im} \partial_{i+1}$, 称为 n-单形 Δ_n 的第 i 阶同调群 (Homology group).

习题 4. 证明:

$$H_i(\Delta_n) = \begin{cases} \mathbb{Z}, i = 0; \\ 0, i \neq 0. \end{cases}$$

一般地,对于一个集合 S,指定其上的一个全序"<",定义 $C_m(\langle S \rangle)$ 为 $\{\langle e_0 \cdots e_m \rangle \mid e_j \in S, e_0 < e_1 < \cdots < e_m \}$ 为基生成的自由 \mathbb{Z} -模,定义边缘同态 $\partial_m \colon C_m(\langle S \rangle) \to C_{m-1}(\langle S \rangle)$ 为

$$\partial_m(\langle e_0 \cdots e_m \rangle) = \sum_{j=0}^m (-1)^j \langle e_0 \cdots \hat{e}_j \cdots e_m \rangle$$

这样得到复形 $(C_{\bullet}(\langle S \rangle), \partial_{\bullet}, \partial_{\bullet})$, 同样的方法可以验证:

$$H_i(C_{\bullet}(\langle S \rangle)) = \begin{cases} \mathbb{Z}, i = 0; \\ 0, i \neq 0. \end{cases}$$

为方便计算或其它应用,我们还经常使用复形 $(C'_{\bullet}(\langle S \rangle), \partial'_{\bullet})$ 和 $(C''_{\bullet}(\langle S \rangle), \partial''_{\bullet})$. 其定义为: $C'_{m}(\langle S \rangle)$ 为 $\{\langle e_{0} \cdots e_{m} \rangle \mid e_{j} \in S, \forall 0 \leq j \leq m\}$ 为基生成的自由 \mathbb{Z} -模, $C''_{m}(\langle S \rangle)$ 为 $C'_{m}(\langle S \rangle)$ 商去 $\{\langle e_{0} \cdots e_{m} \rangle + (-1)^{\epsilon(\sigma)} \langle e_{\sigma(0)} \cdots e_{\sigma}(m) \rangle \mid e_{0}, \ldots, e_{m} \in S, \sigma \in \mathfrak{S}\}$ 生成的 \mathbb{Z} -子模得到的商模. ∂'_{\bullet} 和 ∂''_{\bullet} 的定义与前面类似. 可以验证,对任意 $i \in \mathbb{Z}$,有 $H_{i}(C_{\bullet}(\langle S \rangle)) \simeq H_{i}(C'_{\bullet}(\langle S \rangle)) \simeq H_{i}(C'_{\bullet}(\langle S \rangle))$.

阅读材料: 从单形构造一般的上同调

• 群的上同调

设 G 为群, V 为 $\mathbb{Z}[G]$ -模. 注意到对于复形 $(C'_{\bullet}(\langle G \rangle), \partial'_{\bullet})$, $C'_{m}(\langle G \rangle)$ 为 $\mathbb{Z}[G]$ -模: $g \cdot \langle g_{0}g_{1} \cdots g_{m} \rangle = \langle (gg_{0})(gg_{1}) \cdots (gg_{m}) \rangle$, 并且 ∂'_{m} 为 $\mathbb{Z}[G]$ -模同态. 将函子 $\operatorname{Hom}_{\mathbb{Z}[G]}(-,V)$ 作用到 $\mathbb{Z}[G]$ -模复形 $(C'_{\bullet}(\langle G \rangle), \partial'_{\bullet})$ 上,即得到复形 $(C^{\bullet}(G,V), d^{\bullet})$. 即对于 $m \geq 0$,定义 $C^{m}(G,V)$:= $\operatorname{Hom}_{\mathbb{Z}[G]}(C'_{m}(\langle G \rangle),V)$, 而对于 $f \in C^{m}(G,V)$, $d^{m}(f) := f \circ \partial'_{m+1} \in C^{m+1}(G,V)$. 上同调群 $H^{m}(G,V)$ 定义为 $H^{m}(C^{\bullet}(G,V))$.

我们将按此方式定义的复形与课上定义的群上同调的复形进行比较:

设 G 为群, V 为 $\mathbb{Z}[G]$ -模, 对 $n \geq 1$, 记 $C^n(G,V) := \{f : G^n \to V\}$. 定义 $d \colon C^n(G,V) \to C^{n+1}(G,V)$, 使得对于 $f \in C^n(G,V)$,

$$df(g_1,\ldots,g_{n+1}) = g_1 f(g_1^{-1}g_2,\ldots,g_1^{-1}g_{n+1}) + \sum_{i=1}^{n+1} (-1)^i f(g_1,\ldots,g_{i-1},\hat{g}_i,g_{i+1},\ldots,g_{n+1}).$$

事实上, 两处定义的 $C^n(G,v)$ 可自然对应起来, 即 $C'_n(\langle G \rangle)$ 到 V 的 $\mathbb{Z}[G]$ -模同态和 G^n 到 V 的映射是一回事, 这是因为 $C'_n(\langle G \rangle)$ 为自由 $\mathbb{Z}[G]$ -模, 且其定义给出的一组 \mathbb{Z} -基恰对应到 G^{n+1} , 由上面乘法的定义, 我们取其中 $g_0=1$ 的元素将给出 $\mathbb{Z}[G]$ -模的生成元, 且可验证成为一组基.

但此时给出的微分 d 与课上给的并不一致, 事实上二者相差一个自同构:

对任意 $n \ge 1$, 定义双射 $\alpha_n : G^n \to G^n \to \alpha_n(x_1, x_2, \dots, x_n) = (g_1, \dots, g_n)$, 其中

$$\begin{cases} g_1 = x_1 \\ g_2 = x_1 x_2 \\ \vdots \\ g_n = x_1 \cdots x_n \end{cases}$$

 α_n 诱导双射 β_n : $C^n(G,V) \to C^n(G,V)$, 使得对 $f \in C^n(G,V)$, $\beta_n(f) = \alpha_n \circ f$. 验证有如下交换图表:

$$C^{n}(G, V) \stackrel{d}{\to} C^{n+1}(G, V)$$

$$\downarrow^{\beta_{n}} \qquad \qquad \downarrow^{\beta_{n+1}}$$

$$C^{n}(G, V) \stackrel{\tilde{d}}{\to} C^{n+1}(G, V)$$

其中同态 $\tilde{d}: C^n(G,V) \to C^{n+1}(G,V)$ 满足对于 $f \in C^n(G,V)$, $\tilde{d}f(g_1,\ldots,g_{n+1}) =$

$$g_1 f(g_2, \dots, g_{n+1}) + \sum_{i=1}^n (-1)^i f(g_1, \dots, g_{i-1}, g_i g_{i+1}, g_{i+2}, \dots, g_{n+1}) + (-1)^{n+1} f(g_1, \dots, g_n).$$

可以验证 β 诱导了上同调之间的同构,于是采取两种定义的结果一致.

Čech 上同调

设 X 为拓扑空间, $U=U_i|i\in I$ 为 X 中的一蔟开集,其中 I 为指标集(固定其上的一个全序"<"). 设 $X=\cup_{i\in I}U_i$ (我们称 U 为 X 的一个开覆盖). 对于 $i_0,\ldots,i_m\in I$,记 $U_{i_0\cdots i_m}:=U_{i_0}\cap\cdots\cap U_{i_m}$. 对于 X 的一个非空开集 U,称函数 $f\colon U\to \mathbb{Z}$ 为局部常值的,如果 f 在 U 的每个连通分支上都是常值映射. 记 $\mathbb{Z}(U)$ 为所有局部常值函数 $f\colon U\to \mathbb{Z}$ 在函数的加法下形成的 Abel 群. 约定 $\mathbb{Z}(\varnothing)=0$ 为零 Abel 群. 不严格地看,将"函子" $\mathbb{Z}(U_\bullet)$ 作用到复形 $(C_\bullet(< I>>), \partial_\bullet)$ 上,即得到 Čech 复形 $((U,X), \delta^\bullet)$. 严格而言,对于 $m\geq 0$

$$\check{C}^m(\mathcal{U}, X) := \prod_{i_0 < i_1 < \dots < i_m, i_j \in I} \mathbb{Z}(U_{i_0 \dots i_m})$$

对于 $f = (f_{i_0 \cdots i_m}) \in \check{C}^m(\mathcal{U}, X)$, 以及 $i_0 < \cdots < i_{m+1}$,

$$\delta^m(f)_{i_0\cdots i_{m+1}} := \sum_{j=0}^{m+1} (-1)^j f_{i_0\cdots \hat{i}_j\cdots i_{m+1}}.$$

开覆盖 U 下的第 i 阶 Čech 上同调群定义为 $\check{H}^i(U,X) := H^i(\check{C}^{\bullet}(U,X))$. 可以证明当 X 为比较好的拓扑空间 (如微分流形), U 充分细时, $\check{H}^i(U,X)$ 不依赖 U, 从而我们将 $\check{H}^i(U,X)$ 记为 $\check{H}^i(U)$, 称为 X 的第 i 阶 Čech 上同调群.

2022-04-11 自由模, 模同态的行列式

设 A 为交换环.

- 习题 1. 设 $P,Q \in M_n(A)$, 则 $\det(PQ) = \det P \cdot \det Q$.
- 习题 2. 设 $P \in M_{m \times n}(A), Q \in M_{n \times m}(A),$ 且 m > n, 则 $\det(PQ) = 0$.
- 习题 3. 设 $\varphi: A^n \to A^m$ 为 A-模之间的满同态,则 $n \ge m$.
- 习题 4. 本题考虑习题 3 的对偶命题.
 - 1. 设 $P \in M_n(A)$ 且 $\det P = 0$, 则存在非零列向量 $x \in A^n$, 使得 Px = 0.
 - 2. 设 $P \in M_{n \times m}(A)$ 且 $m \ge n$. 则存在非零列向量 $x \in A^m$, 使得 Px = 0.
 - 3. 设 $\varphi: A^n \to A^m$ 为 A-模之间的单同态, 则 $n \le m$.
- 习题 5. 设 f_1, \ldots, f_m 为自由模 A^n 的一组生成元,则
 - 1. $m \ge n$.
 - 2. 如果 A 为局部环,则存在 f_1, \ldots, f_m 中的 n 个元素成为 A^n 的一组基.

阅读材料: 向量丛

向量丛是非常重要的对象, 其截面 (section) 是模的例子的重要来源.

定义 1. 设 n 为正整数, 设 π : $E \to X$ 为拓扑空间 (微分流形, 复流形, 代数簇,…) 之间的连续 (光滑, 全纯, 正则,…) 映射, 并且对任意 $x \in X$, 纤维 $E_x := \pi^{-1}(x)$ 为一个 n 维 \mathbb{C} -线性空间. 如果对任意 $x \in X$, 存在 x 的开邻域 U_x , 以及同胚 (微分同胚, 全纯 同构, 代数簇同构,…) $\varphi_x : \pi^{-1}(U_x) \xrightarrow{\sim} U_x \times \mathbb{C}^n$), 满足:

- $\pi|_{\pi^{-1}(U_x)} = p_1 \circ \varphi_x$, 其中 $p_1: U_x \times \mathbb{C}^n \to U_x$ 为到第一个因子的投影映射.
- $\forall y \in U_x$, φ 限制在 E_y 上为 \mathbb{C} -线性空间同构 $E_y \xrightarrow{\sim} y \times \mathbb{C}^n$.

则我们称 E 为 X 上的一个秩为 n 的复向量丛 (vector bundle). 如果上面将 \mathbb{C} 全换为 \mathbb{R} , 就得到实向量丛的概念. 秩为 1 的向量丛也被称为线丛 (line bundle).

例 1. $E = X \times \mathbb{C}^n$, π 为到 X 的投影. 这样得到的向量丛 E 称为平凡向量丛.

例 2. (无限长 Möbius 带) 令 $\tilde{E} = [0,1] \times \mathbb{R}$. 将 \tilde{E} 中的点 (0,y) 与 (1,-y) 粘合 $(\forall y \in \mathbb{R})$ 得到商空间 E. 令 π^{-1} : $E \to S^1$, $[(x,y)] \mapsto e^{2\pi i x}$, 则得到 S^1 上的实线丛.

例 3. (射影空间上的 tautological bundle) 回忆复射影空间 $\mathbb{CP}^n=\mathbb{C}^{n+1}\setminus 0/\sim$ 中的每个点 [L] 代表了 \mathbb{C}^{n+1} 中的一条过原点的直线 L. 考虑乘积空间 $\mathbb{CP}^n\times\mathbb{C}^{n+1}$ 中如下定义的子空间

$$\mathcal{O}(-1) := \{([L], x) \in \mathbb{CP}^n \times C^{n+1} \mid x \in L\}$$

令 $\pi: \mathcal{O}(-1) \to \mathbb{CP}^n$ 为到第一个因子的投影映射. 则 $\mathcal{O}(-1)$ 为 \mathbb{CP}^n 上的复线丛.

同样的构造可以得到实射影空间 \mathbb{RP}^n 上的实线丛, 并且这样得到的 $\mathbb{RP}^1 \simeq S^1$ 上的实线丛同构于上面例子的无限长 Möbius 带.

例 4. 设 M 为微分流形, $TM(T^*M)$ 为其所有点处的切空间 (余切空间) 形成的微分流形, 则带上到 M 的自然映射后, $TM(T^*M)$ 为 M 上的向量丛, 称为 M 的切丛 (余切丛).

设 $\pi: E \to X$ 为拓扑空间(微分流形,复流形,代数簇,…)上的复向量丛,一个连续

 $(光滑, 全纯, 正则, \cdots)$ 映射 $s: X \to E$ 称为 E 的一个截面 (section), 如果 $\pi \circ s = id$. 记 E 的所有截面形成的集合为 $\Gamma(X, E)$. 设 R 为 X 上的所有复值连续 (...) 全纯, 正则,...) 函数形成的交换环,则 $\Gamma(X, E)$ 为 R-模: $\forall f \in R, s \in \Gamma(X, E), (f \cdot s)(x) := f(x) \cdot s(x)$ 其中 $f(x) \cdot s(x)$ 为线性空间 E_x 中的数乘.(加法类似定义)

习题 6. 如果 E 为秩 n 的平凡向量丛, 则 $\Gamma(X,E)$ 为秩 n 的自由 R-模.

2022-04-16,04-17 第二轮口试题目

注: 本轮口试为学生自主准备内容, 提前两周准备, 讲授 40 分钟. 许金兴老师提供了四个选题, 我们将其整理如下. 当然, 我们鼓励同学们自主准备其他选题.

选题 1. PID 上有限生成模的结构

叙述并证明主理想整环 (PID) 上有限生成模的结构定理,并利用该定理来看方阵的 Jordan 标准形与线性变换的循环子空间分解.

选题 2. 模的局部化

设 A 为交换环, M 为 A-模. 设 $S \subset A$ 为一个乘法子集 $(1 \in S, \mathbb{1} \forall s_1, s_2 \in S, s_1s_2 \in S)$. 定义 $M \times S$ 上的一个关系 \sim 如下:

$$(m_1, s_1) \sim (m_2, s_2) \Leftrightarrow \exists s \in S, s(s_2 m_1 - s_1 m_2) = 0$$

验证这是一个等价关系. 将等价类 [(m,s)] 记作 $\frac{m}{s}$. 将等价类集合 $M\times S/\sim$ 记作 M_S 或 $S^{-1}M$. 与环的局部化类似, 如果 S 为 A 的素理想 P 的补集, 则通常将 M_S 记作 M_P , 称为 M 在素理想 P 处的局部化.

定义 M_S 上的加法运算为 $\frac{m_1}{s_1} + \frac{m_2}{s_2} := \frac{s_2 m_1 + s_1 m_2}{s_1 s_2}$, 数乘作用为: $\frac{a}{s_1} \frac{m}{s_2} := \frac{am}{s_1 s_2}$. 验证这两个定义都是良好的, 并且 M_S 由此成为一个 A_S -模.

命题 1. 有如下的 A_S -模同构:

$$\varphi \colon M \otimes_A A_S \xrightarrow{\sim} M_S$$
$$m \otimes \frac{a}{s} \mapsto \frac{am}{s}$$

命题 2. $-\otimes_A A_S: M \mapsto M_S$ 为一正合函子, 即对任意 A-模的短正合列 $0 \to M_1 \to M_2 \to M_3 \to 0$, 有 A_S -模的短正合列 $0 \to M_{1S} \to M_{2S} \to M_{3S} \to 0$.

命题 3. 设 $m \in M$, 且对任意极大理想 $P \subset A$, m 在自然同态 $M \to M_P$ 下的像为 0,则在 M 中 m=0.

下面讨论 Dedekind 整环上的分式理想与理想类群的关系. 可以先阅读 2022-03-16 习题课讲义的阅读材料: Dedekind 整环的理想类群. 设 A 为 Dedekind 整环, K 为 其分式域, 从而也为 A-模. 我们称 K 的一个非零的有限生成 A-子模为 A 的分式理想. 设 M 为 A 的一个分式理想. 由定义, $M \subset K$.

命题 4. 设 M 为 A 的一个分式理想.

1. 对 A 的每个非零素理想 P, M_p 为 K 的 A_P -子模, 并且存在 $n_P \in \mathbb{Z}$, 使得 $M_P = A_P \cdot \pi_P^{n_P}$. 其中 π_P 为 DVR A_P 的极大理想的生成元.

2. 只有有限个非零素理想 P 使得 $n_P \neq 0$. 从而

$$Div(M) := \sum_{P \in SpecA, P \neq (0)} n_P \cdot P \in Div(A)$$

为良好定义的一个除子.

3. 设 N 为 A 的一个分式理想. 则有:

$$Div(M) = Div(N) \Rightarrow M = N$$

对 A 的两个分式理想 M, N, 定义 MN 为 $\{mn \mid m \in M, n \in N\}$ 生成的 K 的 A-子模. 容易验证, 在这个运算下, 所有 A 的分式理想形成一个 Abel 群. 对于 $f \in K^*$, Af 为分式理想, 称为一个主分式理想. 显然主分式理想形成一个子群. 上面的命题实际上证明了 A 的除子类群 (理想类群)Cl(A) 同构于 A 的分式理想形成的群商去主分式理想形成的子群.

选题 3. Nakayama 引理

命题 5. (Nakayama 引理, 第一形式) 设 (A,m) 为局部环, M 为有限生成 A-模. 如果 M=mM, 则 M=0.

命题 **6.** (Nakayama 引理, 第二形式) 设 (A, m) 为局部环, M 为有限生成 A-模, N 为 M 的子模. 如果 M = N + mM, 则 M = N.

命题 7. (Nakayama 引理, 第三形式) 设 (A, m) 局部环, M 有限生成 A-模, $x_1, \ldots, x_n \in M$. 设 $\bar{x}_1, \ldots, \bar{x}_n$ 为 A/m-线性空间 M/mM 的生成元, 则 x_1, \ldots, x_n 为 M 作为 A-模的一组生成元.

推论 1. 1. 设 (A, m) 为 Noether 局部环, 并且存在 $k \geq 1$, 使得 $m^k = m^{k+1}$, 则 $m^k = (0)$.

2. 设 A 为 Noether 整环, P 为 A 的非零素理想, 则理想 $P^k, k > 1$ 互不相同.

- 推论 2. 设 (A, m) 为局部环, M 为有限生成 A-模. 设 M 为投射 (projective) A-模.
 - 1. 存在满同态 $A^n \stackrel{\varphi}{\to} M$, 使得 $\bar{\varphi}$: $A^n \otimes_A A/m \to M \otimes_A A/m$ 为同构.
 - 2. M 为自由 A-模.

选题 4.Artin-Rees 引理

命题 8. (Artin-Rees 引理) 设 A 为 Noether 环, I 为 A 的理想. M 为有限生成 A-模. N 为 M 的子模, 则存在整数 c>0,使得对任意 $n\geq c$,都有 $I^nM\cap N=I^{n-c}(I^cM\cap N)$.

习题 **1.** 设 M 的一组生成元为 x_1,\ldots,x_m . 设 y_1,\ldots,y_k 为理想 I 的一组生成元. 通过以下步骤证明 Artin-Rees 引理.

1. 记 $R = A[T_1, \ldots, T_k]$ 为多项式环. 对 $n \geq 1$, 定义 $S_n := \{(f_1, \ldots, f_m) \in R^m \mid 每个 f_i$ 均为 n 次齐次多项式, 且 $\sum_{i=1}^m f_i(y_1, \ldots, y_k) x_i \in N\}$. 证明: $I^n M \cap N = \{\sum_{i=1}^m f_i(y_1, \ldots, y_k) x_i \mid (f_1, \cdots, f_m) \in S_n\}$.

 $2. \diamondsuit L 为 \bigcup_{n=1}^{\infty} S_n$ 生成的 R^m 子 R-模. 证明: 存在有限子集 $S \subset \bigcup_{n=1}^{\infty} S_n$, 使得 S 为 R-模 L 的生成元.

3. 证明 Artin-Rees 引理.

推论 3. 1. 设 A 为 Noether 环, I 为 A 的理想, 令 $J = \bigcap_{n=1}^{\infty} I^n$, 则 IJ = J.

- 2. 设 (A, m) 为 Noether 局部环, 则 $\bigcap_{n=1}^{\infty} m^n = (0)$.
- 3. 设 A 为 Noether 整环, P 为 A 的素理想, 则 $\bigcap_{n=1}^{\infty} P^n = (0)$.

以下设 A 为 Noether 环, I 为 A 的一个理想. 对于一个 A-模 M, 对 $n \geq 1$, 有 自然的 A-模同态 $\pi_n: M/I^{n+1}M \to M/I^nM$, 使得对于 $x \in M, \pi_n(x \bmod I^{n+1}M) =$

 $x \mod I^n M$. 令 \hat{M} 为如下的 $\prod_{n=1}^{\infty} M/I^n M$ 的子模:

$$\hat{M} := \{(x_n) \in \prod_{n=1}^{\infty} M/I^n M \mid \forall n \ge 1, \ \pi_n(x_{n+1}) = x_n \}$$

我们称 \hat{M} 为 M 的 I-adic 完备化.

推论 4. 对于 Noether 环上的有限生成模, I-adic 完备化函子是正合的. 即设 A 为 Noether 环, I 为 A 的一个理想, 设

$$0 \to M_1 \to M \to M_2 \to 0$$

为有限生成 A-模的一个短正合列,则

$$0 \to \hat{M}_1 \to \hat{M} \to \hat{M}_2 \to 0$$

也为短正合列.

2022-04-18 Noether 性质

以下环均指交换环.

例 1. 设 G 为有限群, |G|=m, 设 $\rho\colon G\to GL(V)$ 为 G 的复线性表示. 记 $\mathbb{C}[V]$ 为 V 上 \mathbb{C} -值多项式函数形成的环. ρ 诱导了 G 在 $\mathbb{C}[V]$ 上的作用: $(g\cdot f)(v)=f(g^{-1}\cdot v)$, $\forall g\in G, f\in \mathbb{C}[V], v\in V$. 通过以下步骤证明 G-不变多项式函数环 $\mathbb{C}[V]^G$ 为有限生成 \mathbb{C} -代数.

- 1. 设 $V \simeq \mathbb{C}^n$, 则 $\mathbb{C}[V]^G \simeq \mathbb{C}[x_1, \dots, x_n]^G$.
- 2. 对 $i=1,\ldots,n,$ 令 $f_i(x)=\prod_{g\in G}(x-gx_i)=x^m+c_{m-1}^{(i)}x^{m-1}+\ldots+c_0^{(i)}\in \mathbb{C}[x_1,\ldots,x_n,x].$ 则关于 x 的多项式 $f_i(x)$ 的各个系数 $c_j^{(i)}\in\mathbb{C}[x_1,\ldots,x_n]^G.$
- 3. 令 $A=\mathbb{C}[c_j^{(i)}|1\leq i\leq n,0\leq j\leq m-1]$ 为 $\mathbb{C}[x_1,\ldots,x_n]^G$ 的子环,则 A 为 Noether 环,并且通过自然嵌入 $A\to\mathbb{C}[x_1,\ldots,x_n],\mathbb{C}[x_1,\ldots,x_n]$ 为有限生成 A-模,从 而为 Noether A-模.
 - $4. \mathbb{C}[x_1,\ldots,x_n]^G$ 为有限生成 A-模.
 - $5. \mathbb{C}[x_1,\ldots,x_n]^G$ 为有限生成 \mathbb{C} -代数.

习题 1. 设 A 为 Noether 环,则 A 的极小素理想个数有限.

阅读材料: 模的伴随素理想

以下设 A 为 Noether 环. 设 M 为 A-模. 对 $x \in M$, 令 $Ann(x) := \{a \in A | ax = 0\}$ 为 A 的理想, 称为 x 的零化理想. 称 A 的一个素理想 P 为 M 的伴随素理想 (associate prime ideal), 如果存在 $x \in M$, $x \neq 0$, 使得 P = Ann(x). 记 M 的伴随素理

想全体为 Ass(M).

习题 2. 1. 设 I 为 A 的理想. 则存在 $x \in M$, 使得 $I = Ann(x) \Leftrightarrow$ 存在模的单同态 $A/I \hookrightarrow M$.

2. 设 I 为集合 $\{Ann(x)|x\in M, x\neq 0\}$ 的极大元 (存在性由 A 是 Noether 环保证), 则 I 为 A 的素理想, 从而 $I\in Ass(M)$.

3. 设 M 为非零 A-模, 则 $Ass(M) \neq \emptyset$.

习题 3. 设 S 为 A 的乘法子集, M 为有限生成 A-模. 则 $Ass(M_S)$ 与 $\{P \in Ass(M)|P \cap S = \emptyset\}$ 一一对应. 这里局部化 M_S 为 A_S -模, 从而 $Ass(M_S)$ 为 $Spec(A_S)$ 的子集, 而 $Spec(A_S)$ 可以等同于 A 中与 S 不相交的素理想全体.

习题 4. A 的极小素理想均为伴随素理想.

习题 5. 1. 设 $0 \to M_1 \xrightarrow{i} M \xrightarrow{x} M_2 \to 0$ 为 A-模的短正合,则

$$Ass(M) \subset Ass(M_1) \cup Ass(M_2).$$

2. 设 M 为有限生成 A-模, 则 Ass(M) 为有限集. 作为推论, Noether 环 A 的极小素理想个数有限.

2022-04-29 期中考试

- 1 设 $A = \mathbb{Z}[i\sqrt{3}]$, 并记 K 为它的分式域.
 - 1.1 证明 $P = X^2 X + 1$ 是 A[X] 中的不可约多项式.
 - 1.2 证明 P 视作 K[x] 中的多项式时是可约的.
 - 1.3 得出结论: A 不是唯一分解整环.
- 2 设 A 为一个环. 我们称 A-模 I 为内射的, 如果 A 满足以下两个等价条件之一:
- (i) 若有 A-模同态 $f: M' \to I$ 和 A-模单同态 $g: M' \to M$, 则存在 A-模同态 $h: M \to I$, 使得以下图表交换:

(ii) 形如

$$0 \longrightarrow I \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

的 A-模正合列均可裂.

以下假设 I 和 I' 为内射 A-模, 且有如下两个正合列:

$$0 \longrightarrow M \stackrel{i}{\longrightarrow} I \stackrel{p}{\longrightarrow} Q \longrightarrow 0$$

$$0 \longrightarrow M \stackrel{i'}{\longrightarrow} I' \stackrel{p'}{\longrightarrow} Q' \longrightarrow 0$$

2.1 证明: 存在 A-模同态 $h: I \rightarrow I', k: Q \rightarrow Q'$, 使得以下图表交换:

$$0 \longrightarrow M \xrightarrow{i} I \xrightarrow{p} Q \longrightarrow 0$$

$$\downarrow^{Id_{M}} \qquad \downarrow^{h} \qquad \downarrow^{k}$$

$$0 \longrightarrow M \xrightarrow{i'} I' \xrightarrow{p'} Q' \longrightarrow 0$$

2.2 定义态射 $r\colon I\to Q\oplus I',\ x\mapsto (p(x),h(x)),\ s\colon Q\oplus I'\to Q',\ (q,x')\mapsto k(q)-p'(x').$ 证明有以下短正合列:

$$0 \longrightarrow I \stackrel{r}{\longrightarrow} Q \oplus I' \stackrel{s}{\longrightarrow} Q' \longrightarrow 0$$

2.3 证明 $Q \oplus I$ 与 $Q' \oplus I'$ 作为 A-模同构.

3 设 A 为交换环, I_1, \ldots, I_r 为 A 中理想. 乘积理想 $I_1I_2 \cdots I_r$ 定义为由形如 $x_1x_2 \cdots x_r$ 的元素生成的理想, 其中 $x_i \in I_i$.

3.1 设 \mathfrak{M}_1 , \mathfrak{M}_2 ..., \mathfrak{M}_s 为 A 中互异的极大理想, 其中 $s \geq 2$. 证明: 对 $i=1,\ldots,s-1$, 存在 $a_i \in \mathfrak{M}_i \backslash \mathfrak{M}_s$, 使得

$$\prod_{i=1}^{s_1} a_i \in \mathfrak{M}_1 \mathfrak{M}_2 \cdots \mathfrak{M}_{s-1} \backslash \mathfrak{M}_1 \mathfrak{M}_2 \cdots \mathfrak{M}_s$$

3.2 若 A 作为 A-模是 Artin 的, 那么 A 中只有有限多个极大理想.

下面我们总假设 A 作为 A-模是 Artin 的. 记 $\mathfrak{M}_1,\ldots,\mathfrak{M}_t$ 为 A 中所有极大素理想,并令 $\mathfrak{r}=\cap_{i=1}^t\mathfrak{M}_i$.

3.3 证明存在正整数 N, 使得对任意不小于 N 的正整数 n, 都有 $\mathbf{r}^n = \mathbf{r}^N$.

记 $\mathfrak{a}=\mathfrak{r}^N$. 以下我们用反证法证明 $\mathfrak{a}=\{0\}$. 假设 $\mathfrak{a}\neq 0$, 并记 $\mathfrak{b}=\{b\in A\mid b\mathfrak{a}=0\}$.

3.4 验证 b 为 A 的一个理想. 假设 $b \neq A$. 证明 B = A/b 有一个形如 \mathfrak{c}/b 的非零的

极小 A-子模 (在包含关系下), 其中 $\mathfrak c$ 为 A 的一个理想, 并证明这个子模为单模. 进一步地, 证明这个单模的零化子是 A 的一个极大理想, 并得出结论: $\mathfrak c \subset \mathfrak b$, 进而有 $\mathfrak c \subset \mathfrak b$, 得到 $\mathfrak b = A$ 且 $\mathfrak a = \{0\}$.

4 设 A 为有限维含幺 \mathbb{C} -代数, 乘法单位元记为 1_A , 并记 A^{\times} 为 A 中所有可逆元的集合. 对 $a \in A$, 定义

$$Spec(a) = \{ \lambda \in \mathbb{C} \mid a - \lambda 1_A \notin A^{\times} \}$$

为 a 的谱. 任取 $a \in A$. 本题前四小问的目标是证明对 $\forall a \in A$, $Spec(a) \neq \emptyset$. 由于 a = 0 时显然有 $Spec(0) = \{0\}$, 我们假设 $a \neq 0$.

4.1 假设存在无穷多个 $\lambda \in C$, 使得 $a - \lambda 1_A$ 可逆, 证明存在 $r \geq 2$ 和互异的复数 $\lambda_1, \ldots, \lambda_r$, 及非零的复数 μ_1, \ldots, μ_r , 使得对 $i = 1, \ldots, r$, 总有 $a - \lambda_i 1_A$ 可逆, 且

$$\sum_{i=1}^{r} \mu_i (a - \lambda_i 1_A)^{-1} = 0$$

4.2 证明存在正次数的多项式 $P \in \mathbb{C}[X]$, 使得 P(a) = 0.

4.3 证明 P 的零点集与 Spec(a) 的交非空.

4.4 证明 $Spec(a) \neq \emptyset$.(注意这里我们不再保留 4.1 中关于 a 的假设)

4.5 若 A 为可除 C-代数 (即 $A \setminus 0 = A^{\times}$), 则 $A = \mathbb{C}$.

4.6 假设 a 为 A 中一幂零元 (即存在 $N \in \mathbb{N}$ 使得 $a^N = 0$), 证明 $Spec(a) = \{0\}$

 $4.7 Hinspace Spec(a) = \{0\}$, 证明 a 为幂零的.

4.8 该问的目标是证明: 在有限维代数中, 左逆、右逆、双边逆总相同.(这只需证明

左逆总是双边逆. 假设 $a \in A$ 有左逆, 也即是说存在 $b \in A$, 使得 $ba = 1_A$, 通过考虑线性映射 $R_a \colon A \to A$, $c \mapsto ac$, 证明 $ab = 1_A$.)

4.9 设 $a\in A$ 不为幂零元. 由前可知 Spec(a) 中包含一个非零元 λ . 以下两问的目标是证明存在 A-单模 S 使得 $a\cdot S\neq 0$.

4.10 证明 A-模 $N = A/A \cdot (a - \lambda 1_A)$ 为非零的有限生成 A-模.

4.11 我们在课堂上证明了: 所有有限生成模都有单的商模. 以此证明存在 A-单模 S, 使得 $a \cdot S \neq 0$.

2022-04-27 域扩张的次数 (1)

习题 1. 设 L/K, K/k 均为域的有限扩张,则 [L:k] = [L:K][K:k].

- 习题 **2.** 1. 证明: $[\mathbb{Q}(\sqrt[5]{2}):\mathbb{Q}]=5$.
 - 2. 证明: $[\mathbb{Q}(\sqrt[5]{2},\sqrt{5}):\mathbb{Q}]=10.$
 - 3. 证明: $[\mathbb{Q}(\sqrt[4]{2}, \sqrt{5}) : \mathbb{Q}] = 8.$
- 习题 3. 设 K 为域, K(x) 为有理函数域 (即 K[x] 的分式域).
 - $1. \ \forall \ 0 \neq h \in K(x), \forall \ 0 \neq f(x) \in K[x], \ \ 均有 \ f(h) \neq 0.$ 从而 $K(h) \simeq K(x).$
 - 2. $\forall 0 \neq f(x) \in K[x]$, 且 $\deg f > 0$, 有 $[K(x) : K(f(x))] = \deg f$
- 3. 设 $0 \neq h(x) = \frac{f(x)}{g(x)} \in K(x)$, 其中 $f(x), g(x) \in K[x]$ 为正次数互素多项式,则 $[K(x):K(h(x))] = \max\{\deg f, \deg g\}.$

2022-05-09 域扩张的次数 (2)

习题 1. 设 L/K, K/k 均为域的有限扩张,则 [L:k] = [L:K][K:k].

例 1. 证明: $[\mathbb{Q}(\sqrt[5]{2}, \sqrt{5}) : \mathbb{Q}] = 10.$

习题 2. 设 E/F 为域的有限扩张, 且 $E=F(\alpha)$. 如果 $f(x) \in F[x]$ 为非零不可约多项式且 $f(\alpha)=0$, 则 $[E:F]=\deg f$.

方法点 1. 由以上习题,为了求出域扩张次数 $[F(\alpha):F]$,只需找到一个不可约多项式 $f(x) \in F[x]$,使得 $f(\alpha) = 0$. 在实际例子中我们通常可以先写出一个次数尽可能小的 f(x) 使得 $f(\alpha) = 0$,然后想办法证明 f 不可约. 为此,可以构造一个 F 的子环 A,使 得 A 为 UFD, $f(x) \in A[x]$ 且 A 的分式域为 F. 如果可以证明 f(x) 在 A[x] 中不可约,由 Gauss 引理就可以知道 f(x)(差一个 A 中因子的意义下)在 F[x] 中不可约.为了证明 f(x) 在 A[x] 中不可约,我们可以想办法利用 Eisenstein 判别法,为此就需要找到 A 中合适的素元 p.

习题 3. 设 K 为域, K(x) 为有理函数域 (即 K[x] 的分式域).

 $1.\ \forall\ 0 \neq h \in K(x), \forall\ 0 \neq f(x) \in K[x], \deg f > 0,\$ 均有 $f(h) \neq 0.$ 从而 $K(h) \simeq K(x).$

- 2. $\forall 0 \neq f(x) \in K[x], \deg f > 0, [K(x) : K(f(x))] = \deg f.$
- 3. 设 $0 \neq h(x) = \frac{f(x)}{g(x)} \in K(x)$, 其中 $f(x), g(x) \in K[x]$ 为正次数互素多项式,则 $[K(x):K(h(x))] = max\{\deg f, \deg g\}.$

下面的习题经常用来构造离散赋值环 (DVR). 回忆 DVR 是 UFD.

习题 4. 我们给出一种 DVR 的构造方法.

1. 设 $R = K_1 \times \cdots \times K_n$ 为 n 个域的乘积,则 R 中恰有 n 个素理想 P_1, \ldots, P_n ,其中 $P_i = \{(x_1, \cdots, x_n) \in R | x_i = 0\}$. 并且有 $R_{P_i} \simeq K_i$, $P_i R_{P_i} = 0$, $\forall i = 1, \ldots, n$.

2. 设 F 为域, $f(x) \in F[x]$ 且 (f(x), f'(x)) = 1(即 f 无重根), 则 F[x]/(f(x)) 同构于有限个域的乘积.

3. 设 $A \to B$ 为环同态, 主理想 (p) 为 A 中极大理想, 并且 $B/pB \simeq K_1 \times \cdots \times K_n$ 同构于 n 个域的乘积,则 B 中素理想 P_1,\ldots,P_n 位于 (p) 上方 (p) 上方 (p) 几个 (p) 几个 (p) 是 (

例 2. 设 p 为素数, $\zeta_p = e^{\frac{2\pi i}{p}}$ 为本原 p 次单位根. 考虑环同态 $\mathbb{Z} \to \mathbb{Z}[\zeta_p]$. 如果 $q \in \mathbb{Z}$ 为素数, 且 $q \neq p$, 则 $\mathbb{Z}[\zeta_p]/(q)$ 为一些域的乘积. 这是因为: 令 $B = \mathbb{Z}[x]/(x^p-1)$, 则商 环 $\mathbb{Z}[\zeta_p]/(q)$ 自然为 B/(q) 的商环, 而 $B/(q) \simeq \mathbb{F}_q[x]/(\bar{x}^p-1)$ 为有限个域的乘积 (无重根), 从而其商环 $\mathbb{Z}[\zeta_p]/(q)$ 也为有限个域的乘积. 任取 $\mathbb{Z}[\zeta_p]$ 中位于 q 上方的素理想 P, 则 $\mathbb{Z}[\zeta_p]_P$ 为 DVR, 且 q 为其素元.

对于正整数 N, 符号 $\zeta_N=e^{\frac{2\pi i}{N}}\in\mathbb{C}^*$ 代表一个本原 N 次单位根. $\varphi(N)=|(\mathbb{Z}/N\mathbb{Z})^*|$ 为 Euler 函数.

习题 5. 设 p,q 为不同的素数, 记 $K=\mathbb{Q}(\zeta_{pq}), F=\mathbb{Q}(\zeta_p)$. 证明:

1.
$$K = F(\zeta_q)$$
.

2.
$$[K : F] = \varphi(q) = q - 1$$
.

3.
$$[K : \mathbb{Q}] = \varphi(pq) = (p-1)(q-1)$$
.

习题 6. 设 N 为正整数, $N=p^mN_1$, 其中 p 为素数, $(p,N_1)=1$. 证明:

1.
$$[\mathbb{Q}(\zeta_{p^m}):\mathbb{Q}] = \varphi(p^m) = p^m - p^{m-1}$$
.

$$2$$
. it $K = \mathbb{Q}(\zeta_{N_1})$, $\mathbb{N}[K(\zeta_{p^m}) : K] = \varphi(p^m) = p^m - p^{m-1}$.

3.
$$\mathbb{Q}(\zeta_N) = \mathbb{Q}(\zeta_{N_1})(\zeta_{p^m}).$$

4.
$$[\mathbb{Q}(\zeta_N):\mathbb{Q}]=\varphi(N)$$
.

习题 7. 证明:
$$[\mathbb{Q}(\sqrt[4]{2},\sqrt{5}):\mathbb{Q}]=8.$$

习题 8.
$$[\mathbb{Q}(\sqrt{2+\sqrt{2}}):\mathbb{Q}]=4.$$

习题 9.
$$[\mathbb{Q}(\sqrt[3]{2+\sqrt{3}}):\mathbb{Q}]=6.$$

2022-05-14,05-15 第三轮口试题目-域扩张

习题 **1.1** 设 K/\mathbb{Q} 为二次扩张 (K 称为二次域). 记 $\mathcal{O}_K = \{\alpha \in K \mid \text{ 存在非零的首一多 项式 } f(x) \in \mathbb{Z}[x], 使得 f(\alpha) = 0\}$ 为 K 的代数整数环.

1. 证明: 存在无平方因子整数 n, 使得 $K \simeq \mathbb{Q}(\sqrt{n})$.

$$\mathcal{Z}$$
. 证明: $\mathcal{O}_K = \begin{cases} \mathbb{Z}\left[\frac{1+\sqrt{n}}{2}\right], & n \equiv 1 \mod 4; \\ \mathbb{Z}[\sqrt{n}], & n \equiv 2, 3 \mod 4. \end{cases}$

3. 对于素数 p, 分析 \mathcal{O}_K 中位于 (p) 上方的素理想个数, 并证明 \mathcal{O}_K 为 Dedeking 整环.

习题 **1.2** 设 N 为正整数, 证明有环同构 $\mathbb{Z}[\zeta_N] \simeq \mathbb{Z}[x]/(\Phi_N(x))$, 并且 $\mathbb{Z}[\zeta_N]$ 为 Dedekind 整环.

习题 **1.3** 设 A 为整环, K 为其分式域. 称 A 为整闭整环, 如果 A 在 K 中的整闭包 $\{a \in K \mid a$ 在A上整 $\} = A$. 证明:

- 1. UFD 为整闭整环.
- 2. 如果对 A 中任意极大理想 m, 局部化 A_m 均为整闭整环, 则 A 为整闭整环.
- 注 1.1 由以上练习,对于二次域或分圆域 K,其代数整数环 \mathcal{O}_K 为整闭整环.

对于域扩张 $K \stackrel{i}{\to} L$, 我们记 $\mathrm{Gal}(L/K) := \{\sigma \mid \sigma \colon L \stackrel{\sim}{\to} L$ 为域同构, 且 $\sigma \circ i = i\}$, 称为域扩张 L/K 的 Galois 群.

习题 1.4 计算下面域扩张的 Galois 群:

注: 我们本题会用到如下结论: 若 L/K 为代数扩张, 而 $a \in L$ 且在 K 上的极小

多项式为 f, 则 $\forall \sigma \in \operatorname{Gal}(L/K)$, $\sigma(a)$ 也为 f 的根; 若任给一个 f 在 K(a) 中的根 b, $a \mapsto b$ 会唯一决定一个 $\tau \in \operatorname{Gal}(K(a)/K)$. 证明直接考虑 $\sigma(f(a)) = f(\sigma(a))$, 以及 K(a) 和 K(b) 有包含关系且均与 K[x]/(f(x)) 同构, 即可.

- 1. $\mathbb{Q}(\sqrt[n]{2})/\mathbb{Q}$.
- $2. \mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}$, 其中 $\omega=e^{\frac{2\pi i}{3}}$ 为一个三次本原单位根.
- 3. $\mathbb{Q}(\sqrt{2+\sqrt{2}})/\mathbb{Q}$.
- 4. $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.
- $5. K/\mathbb{F}_p(t)$, 其中 $K = \mathbb{F}_p(t)[x]/(x^p t)$, p 为素数.
- 6. $K/\mathbb{F}_p(t)$, 其中 $K = \mathbb{F}_p(t)[x]/(x^p x 1)$, p 为素数.
- 7. $\mathbb{C}(t^{\frac{1}{n}})/\mathbb{C}(t)$.
- 8. K(t)/K, 其中 K 为域.

2022-05-16 代数扩张与代数闭包

定义 1. 称域扩张 E/F 为代数扩张, 如果这是环的整扩张, 即 $\forall \alpha \in E$, 存在非零的 $f(x) \in F[x]$, 使得 $f(\alpha) = 0$. 如果 f(x) 为首一的次数最小的零化 α 的 F[x] 中的多项式, 则称 $f(\alpha)$ 为 α 在 F 上的极小多项式.

习题 1. 设域扩张 E/F 为代数扩张, $\alpha \in E$, 其在 F 上的极小多项式为 f(x). 如果 $g(x) \in F[x]$ 且 $g(\alpha) = 0$, 则 f(x)|g(x).

习题 2.

- 1. 域的有限扩张为代数扩张.
- 2. 设 E/F, K/E 均为代数扩张, 则 K/F 为代数扩张.

设 $F \stackrel{i_1}{\to} E_1$, $F \stackrel{i_2}{\to} E_2$ 为代数扩张, 记 $\operatorname{Hom}_F(E_1, E_2) = \{ \varphi \mid \varphi \colon E_1 \to E_2 \text{ 为域同态}$ (嵌入), 且 $i_2 = \varphi \circ i_1 \}$.

Galois 理论中的主要问题: 研究 $\operatorname{Hom}_F(E_1, E_2)$!

定理 1. 设 $F(\alpha)/F$ 为单代数扩张, 设 $f(x) \in F[x]$ 为 α 在 F 上的极小多项式, 设 E/F 为域扩张, 则

$$|\operatorname{Hom}_F(F(\alpha), E)| \le [F(\alpha) : F] = \deg f$$

并且等号成立当且仅当 f 在 E 上恰有 $\deg f$ 个互不相同的根.

定理 2. 设 E_1/F 为有限扩张, E_2/F 为域扩张, 则

$$|\text{Hom}_F(E_1, E_2)| \le [E_1 : F],$$

并且等号成立

 \Leftrightarrow 对任意 $\alpha \in E_1$, α 在 F 上的极小多项式 $f(x) \in F[x]$ 在 E_2 上恰有 $\deg f$ 个互不相同的根

 $\Leftrightarrow E_1 = F(\alpha_1, \dots, \alpha_n)$,并且对每个 $i = 1, \dots, n$, α_i 在 F 上的极小多项式 $f_i(x) \in F[x]$ 在 E_2 上恰有 $\deg f_i$ 个互不相同的根.

(提示: 将 E_1/F 分解为有限个单扩张的复合)

定义 2. 称域 F 为代数封闭域, 如果对任意 $f(x) \in F[x]$, 均存在 $\alpha \in F$, 使得 $f(\alpha) = 0$. 注: 此时容易归纳得到 f(x) 的所有根都在 F 中.

习题 3. 设 F 为代数封闭域, 如果 E/F 为代数扩张,则 $E=F(\mathbb{P}$ 格而言,为同构).

事实: 设F为域,则存在域扩张E/F,使得E为代数封闭域.

定义 3. 设 \bar{F}/F 为域扩张, 称 \bar{F} 为 F 的一个代数闭包, 如果 \bar{F}/F 为代数扩张, 且 \bar{F} 为代数封闭域.

习题 4(代数闭包存在). 设 F 为域, 取域扩张 E/F, 使得 E 为代数封闭域. 定义 \bar{F} := $\{\alpha \in E \mid \alpha \in F \perp E\}$, 则 \bar{F} 为 E 的子域, 且为 F 的代数闭包.

习题 5(代数闭包的唯一性).

1. 设 E_2/F 为域扩张, 且 E_2 为代数封闭域, 设 E_1/F 为代数扩张, 则 $\operatorname{Hom}_F(E_1, E_2) \neq \emptyset$.

2. 设 \bar{F}_1/F , \bar{F}_2/F 均为 F 的代数闭包, 则存在 F-同构 $\bar{F}_1 \simeq \bar{F}_2$.

习题 6. 设 E/F 为代数扩张,设 \bar{E}/E 为 E 的代数闭包,则 \bar{E}/F 为 F 的代数闭包.

习题 7. 设 E/F 为代数扩张, \bar{F} 为 F 的一个代数闭包. 那么所有的域同态 σ : $F \hookrightarrow \bar{F}$ 都可以延拓到 E 上, 即 $\tilde{\sigma}$: $E \hookrightarrow \bar{F}$, $\tilde{\sigma}|_F = \sigma$.

2022-05-18 可分扩张

- 习题 1. 设 E/F 为域的有限扩张, \overline{F} 为 F 的代数闭包, 则以下三条互相等价:
 - 1. $|\text{Hom}_F(E, \bar{F})| = [E : F].$
 - $2. \forall \alpha \in E, \alpha$ 在 F 上的极小多项式 f(x) 无重根, 即 (f(x), f'(x)) = 1.
- $3. E = F(\alpha_1, \dots, \alpha_n)$,并且对任意 $1 \le i \le n$, α_i 在 F 上的极小多项式 $f_i(x)$ 无重根,即 $(f_i(x), f_i'(x))$.
- 定义 1. 设 E/F 为有限扩张,如果其满足上面习题中的三个等价条件之一,则称其为 (有限) 可分扩张.
- 习题 2. 设 E/F, K/E 均为有限扩张.
 - 1. 若 E/F, K/E 均为可分扩张, 则 K/F 为可分扩张.
 - 2. 若 K/F 为可分扩张,则 E/F, K/E 均为可分扩张.
 - 注: 对于有限扩张 K/E, E/F, 我们总有以下的等式成立:

$$|\operatorname{Hom}_F(K,\bar{F})| = |\operatorname{Hom}_E(K,\bar{F})| \cdot |\operatorname{Hom}_F(E,\bar{F})|$$

这不依赖于扩张的可分性.

- 习题 3. 设 f(x) 为域 F 上的首一不可约多项式,则 f 有重根 \Leftrightarrow 域 F 的特征为素数 p, 并且存在 $g(x) \in F[x]$, 使得 $f(x) = g(x^p)$.
- 习题 4. 设域 F 的特征为 0,则任意有限扩张 E/F 均为可分扩张.

- 习题 5. 有限域 \mathbb{F}_p 的任意有限扩张均为可分扩张.
 - 问题: 设 E/F 为有限扩张, 设 $\alpha \in E$, 如何判断 $E \stackrel{?}{=} F(\alpha)$?
- 例 1. 设 a_1, \dots, a_n 为无平方因子的正整数,则 $\mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_n}) = \mathbb{Q}(\sqrt{a_1} + \dots + \sqrt{a_n})$. 记 $K = \mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_n})$,记自然的包含映射 $K \subset \mathbb{C}$ 为 i. 记 $\alpha = \sqrt{a_1} + \dots + \sqrt{a_n}$.
- 1. 如果 $[K:\mathbb{Q}(\alpha)]=m, \ \mathbb{N} \ |\mathrm{Hom}_{\mathbb{Q}(\alpha)}(K,\mathbb{C})|=m, \ 特別地, \ orall \varphi\in \mathrm{Hom}_{\mathbb{Q}(\alpha)}(K,\mathbb{C}),$ $\varphi(\alpha)=\alpha.$
 - 2. m=1, 进而 $K=\mathbb{Q}(\alpha)$.

这个例子启发我们可以提出以下引理:

引理 1. 设 $F \subset E \subset \bar{F}$ 为域扩张, 并且 E/F 为有限可分扩张, \bar{F} 为 F 的代数闭包. 对于 $\alpha \in E$, 有 $E = F(\alpha) \Leftrightarrow \varphi \in \operatorname{Hom}_F(E, \bar{F})$, 只要 φ 不等于包含同态 i, 就有 $\varphi(\alpha) \neq \alpha$.

定理 1. (单扩张定理) 设 E/F 为有限可分扩张,则存在 $\alpha \in E$, 使得 $E = F(\alpha)$.

阅读材料: Krasner 引理

设 E 为域, 称一个函数 $|\cdot|: E \to \mathbb{R}_{>0}$ 为域范数, 如果其满足:

- $x \in E$, $|x| = 0 \Leftrightarrow x = 0$;
- 对任意 $x, y \in E, |x + y| \le |x| + |y| (三角不等式);$
- 对任意 $x, y \in E, |x \cdot y| = |x| \cdot |y|.$

习题 6. 设 $|\cdot|$ 为 E 上的域范数, 证明: |1| = |-1| = 1.

习题 7. \mathbb{Q}_p 上的 p-进范数 $|\cdot|_p$ 为完备的域范数. 其中完备是指在该范数下的 Cauchy 列均在 \mathbb{Q}_p 上有极限.

 \mathbb{Q}_p 上的 p-进范数 $|\cdot|_p$ 还满足如下强三角不等式:

$$|x+y|_p \le \max\{|x|_p, |y|_p\}, \quad \forall x, y \in \mathbb{Q}_p.$$

事实: 存在代数闭包 \mathbb{Q}_p 上唯一的域范数 $|\cdot|$, 使得 $\forall x \in \mathbb{Q}_p$, 有 $|x| = |x|_p$. 而且 $|\cdot|$ 也满足强三角不等式.

习题 8. 设 $x, y \in \bar{\mathbb{Q}}_p$ 且 |x| < |y|, 则 |x + y| = |y|.

定理 2. 设 V 为 \mathbb{Q}_p 上的有限维线性空间, 并且 V 上的两个范数 $|\cdot|_1$ 和 $|\cdot|_2$ 均使 V 成为赋范 \mathbb{Q}_p -线性空间 (即 $|\cdot|:V\to\mathbb{R}_+$ 正定, 有三角不等式, 与 \mathbb{Q}_p -数乘相容), 则这两个范数等价, 即存在正实数 C_1, C_2 , 使得对任意 $x\in V$, 均有 $C_1|x|_2\leq |x|_1\leq C_2|x|_2$.

习题 9. 设 $|\cdot|_1, |\cdot|_2$ 均为域 E 上的域范数, 并且这两个范数等价, 即存在正实数 C_1, C_2 , 使得对任意 $x \in E$, 均有 $C_1|x|_2 \le |x|_1 \le C_2|x|_2$, 那么 $|\cdot|_1 = |\cdot|_2$

习题 10. 设 E/\mathbb{Q}_p 为有限扩张,记 $|\cdot|$ 为 \mathbb{Q}_p 上范数 $|\cdot|$ 在 E 上的限制.则对任意 $\sigma \in \operatorname{Hom}_{\mathbb{Q}_p}(E,\mathbb{Q}_p)$,对任意 $x \in E$,有 $|\sigma(x)| = |x|$.

习题 11. (Krasner 引理) 设 $\alpha \in \overline{\mathbb{Q}}_p$, 设 $f(x) \in \mathbb{Q}_p[x]$ 为 α 在 \mathbb{Q}_p 上的极小多项式, 并设 f(x) 在 \mathbb{Q}_p 上的所有根 (两两互异) 为 $\{\alpha_1 = \alpha, \alpha_2, \cdots, \alpha_n\}$. 设 $\beta \in \overline{\mathbb{Q}}_p$ 满足 $|\alpha - \beta| < |\alpha_i - \beta|, \forall i = 2, \cdots, n$. 证明: $\mathbb{Q}_p(\alpha) \subset \mathbb{Q}_p(\beta)$.

2022-05-23 域扩张的超越次数,对称多项式基本定理

• 域扩张的超越次数

回忆: 域之间代数扩张的复合还是代数扩张.

习题 1. 设 K 为域, $f_1, f_2 \in K(x)$. 证明: 存在非零的二元多项式 $F(x,y) \in K[x,y]$, 使 得 $F(f_1, f_2) = 0$.

习题 2. 设 K 为域, $E/K(x_1, \dots, x_n)$ 为代数扩张, $f_1, \dots, f_{n+1} \in E$. 证明: 存在非零的 n+1 元多项式 $F(x_1, \dots, x_{n+1}) \in K[x_1, \dots, x_{n+1}]$, 使得 $F(f_1, \dots, f_{n+1}) = 0$.

定义 1. 设 E/K 为域扩张, 称其为有限生成扩张, 如果存在有限个元 $a_1, \dots, a_n \in E$, 使得 $E=K(a_1, \dots, a_n)$.

定义 2. 设 E/K 为域扩张, $a_1, \cdots, a_n \in E$, 若有非零的 $F(x_1, \cdots, x_n) \in K[x_1, \cdots, x_n]$, 使得 $F(a_1, \cdots, a_n) = 0$, 则称 a_1, \cdots, a_n 在 K 上代数相关, 否则称为在 K 上代数无关. 对于集合 $S \subset E$, 如果存在有限个 $a_1, \ldots, a_n \in S$ 在 K 上代数相关, 则称 S 中的元素 在 K 上代数相关, 否则称 S 中的元素 在 K 上代数无关.

习题 3. 设 E/K 为域的有限生成扩张.

1. 存在有限个元 $a_1, \dots, a_n \in E$ 为 K 上的极大代数无关组 (即 $a_1, \dots, a_n \in E$ 在 K 上代数无关, 并且 $\forall a \in E, a, a_1, \dots, a_n$ 在 K 上代数相关).

2. 设 $a_1, \dots, a_n \in E$ 和 $b_1, \dots, b_m \in E$ 均为 E 在 K 上的极大代数无关组,则有 n=m.

定义 3. 设 E/K 为域的有限生成扩张. 设 $a_1, \cdots, a_n \in E$ 为 E 在 K 上的极大代数 无关组. 我们称 n 为 E 在 K 上的超越次数,记作 $\operatorname{tr.deg} E/K$. 由上面的习题,超越次 数不依赖于极大代数无关组的选取. 如果 E/K 为代数扩张,则极大代数无关组为空集,此时我们约定超越次数 $\operatorname{tr.deg} E/K = 0$.

习题 4. 设 E/F, F/K 均为域的有限生成扩张,则有

$$\operatorname{tr.deg} E/K = \operatorname{tr.deg} E/F + \operatorname{tr.deg} F/K.$$

• 一个应用:对称多项式基本定理

设 $K \stackrel{i}{\to} E$ 为域扩张, 我们记 $\operatorname{Gal}(E/K) := \{ \sigma \mid \sigma \colon E \stackrel{\sim}{\to} E$ 为域同构, 且 $\sigma \circ i = i \}$. 这是 E 的自同构群的子群, 称为 E/K 的 Galois 群.

习题 5. 设 E/K 为域的有限扩张,则 $|Gal(E/K)| \leq [E:K]$.

置换群 \mathfrak{S}_n 通过置换角标作用于多项式环 $\mathbb{Q}[x_1,\cdots,x_n]$: 对 $\sigma\in\mathfrak{S}_n,\ 1\leq i\leq n,\ \sigma x_i=x_{\sigma^{-1}(i)}$. 记 $\mathbb{Z}[x_1,\cdots,x_n]^{\mathfrak{S}_n}=\{f\in\mathbb{Z}[x_1,\cdots,x_n]\mid \sigma f=f,\ \forall \sigma\in\mathfrak{S}_n\}$ 为对称多项式形成的子环. 记 $\mathbb{Q}(x_1,\cdots,x_n)^{\mathfrak{S}_n}=\{f\in\mathbb{Q}(x_1,\cdots,x_n)\mid \sigma f=f,\forall \sigma\in\mathfrak{S}_n\},$ 这是 $\mathbb{Q}(x_1,\cdots,x_n)$ 的子域. 对 $1\leq m\leq n$, 定义初等对称多项式

$$\sigma_m := \sum_{1 \le i_1 < i_2 < \dots < i_m \le n} x_{i_1} x_{i_2} \cdots x_{i_m}.$$

习题 **6.** 按以下步骤证明对称多项式基本定理: $\mathbb{Z}[x_1, \cdots, x_n]^{\mathfrak{S}_n} = \mathbb{Z}[\sigma_1, \cdots, \sigma_n]$, 并且 $\sigma_1, \cdots, \sigma_n$ 在 \mathbb{Q} 上代数无关.

1. 记 $K=\mathbb{Q}(\sigma_1,\cdots,\sigma_n),\;F=\mathbb{Q}(x_1,\cdots,x_n)^{\mathfrak{S}_n},\;E=\mathbb{Q}(x_1,\cdots,x_n).$ 则 $K\subset F\subset E,$ 并且 $[E:K]\leq n!,$ 从而为代数扩张.

- 2. tr. $\deg E/\mathbb{Q} = n$.
- $3. \sigma_1, \cdots, \sigma_n$ 在 Q 上代数无关.

 $4. \mathbb{Z}[\sigma_1, \cdots, \sigma_n] \hookrightarrow \mathbb{Z}[x_1, \cdots, x_n]$ 为环的整扩张, 故 $\mathbb{Z}[\sigma_1, \cdots, \sigma_n] \subseteq \mathbb{Z}[x_1, \cdots, x_n]^{\mathfrak{S}_n}$ 为环的整扩张.

- $5. \ \mathbb{Z}[\sigma_1,\cdots,\sigma_n]$ 的分式域为 $K, \ \mathbb{Z}[x_1,\cdots,x_n]^{\mathfrak{S}_n}$ 的分式域为 F.
- $6. \mathfrak{S}_n \subseteq \operatorname{Gal}(E/F),$ 从而 $[E:F] \geq n!$.
- 7. $F = K, [E : K] = n!, \text{ L. } Gal(E/K) = \mathfrak{S}_n.$
- $8.\ R:=\mathbb{Z}[\sigma_1,\cdots,\sigma_n]$ 为整闭整环, 即对任意 $x\in Frac(R)$, 如果 x 在 R 上整, 则 $x\in R$.
 - 9. $\mathbb{Z}[x_1, \cdots, x_n]^{\mathfrak{S}_n} = \mathbb{Z}[\sigma_1, \cdots, \sigma_n].$

习题 7. 设 R 为交换环,则 $R[x_1,\cdots,x_n]^{\mathfrak{S}_n}=R[\sigma_1,\cdots,\sigma_n].$

2022-05-25 正规扩张

设 E/F 为域的有限扩张. 取定一个代数闭包 \bar{F} , 并设 $F \subset E \subset \bar{F}$, 记自然包含映射为 i.

定义 1. 称 E/F 为正规扩张 (normal extension), 如果对任意 $\sigma \in \operatorname{Hom}_F(E, \bar{F})$, 均有 $\sigma(E) \subseteq E$.

- 习题 1. 设 $F \subset E \subset \overline{F}$ 同上, 证明以下几条等价:
 - 1. E/F 为正规扩张.
 - 2. $Gal(E/F) \to Hom_F(E, \bar{F}), \ \sigma \mapsto i \circ \sigma \$ 为双射.
 - 3. 对任意 $\alpha \in E$, α 在 F 上的极小多项式 f(x) 的所有根均在 E 中.
- 4. 对任意 $\alpha \in E$, α 在 F 上的极小多项式 f(x) 在 E[x] 中分解为一些一次多项式的乘积.
- $5. \ E = F(\alpha_1, \cdots, \alpha_n)$, 并且 $\forall 1 \leq j \leq n, \ \alpha_j$ 在 F 上的极小多项式 $f_j(x)$ 的所有根均在 E 中.
- $6. \ E = F(\alpha_1, \cdots, \alpha_n)$,并且 $\forall 1 \leq j \leq n, \ \alpha_j$ 在 F 上的极小多项式 $f_j(x)$ 在 E[x]中分解为一些一次多项式的乘积.
 - 注 1. 由上面习题, 可以看到 E/F 是否为正规扩张不依赖于 \bar{F} 的选取.
- 习题 2. 判断以下域扩张是否为正规扩张:
 - 1. $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$
 - 2. $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$
 - $3. \mathbb{Q}(\zeta_N)/\mathbb{Q}$, 其中 ζ_N 为一个本原 N 次单位根.

4. E/F, $\not = \mathbb{F}_p(t)$, $E = F(t^{\frac{1}{p}}) = F[x]/(x^p - t)$.

习题 3. 设 E/F, K/E 为域的有限扩张.

1. 设 K/F 为正规扩张,则 K/E 为正规扩张,并举例说明此时 E/F 不一定为正规扩张.

2. 举例说明如果 E/F, K/E 均为正规扩张, 那么 K/F 也不一定为正规扩张.

设 $E = F(\alpha_1, \ldots, \alpha_n)$ 为域 F 的有限扩张. 取一个代数闭包 $E \subset \bar{F}$. 记 $f_j(x) \in F[x]$ 为 α_j 在 F 上的极小多项式. 设 $f_j(x)$ 在 \bar{F} 中的所有根为 $\alpha_{j1}, \ldots, \alpha_{jk_j}$. 令 $\tilde{E} := F(\alpha_{ji}, 1 \leq j \leq n, 1 \leq i \leq k_j)$. 则 $E \subset \tilde{E}$, 并且 \tilde{E}/F 为正规扩张. 我们称 \tilde{E} 为 E/F 的正规闭包 (normal closure). 容易验证, \tilde{E} 为最小的既在 F 上正规又包含 E 的域.

如果 E = F[x]/(f(x)) 为 F 上的单扩张, 则称 \tilde{E} 为多项式 $f(x) \in F[x]$ 在 F 上的分裂域. 具体而言, \tilde{E} 为 F 添加 f(x) 的所有根得到.

习题 4. 设 $f(x) \in F[x]$ 为没有重根的首一不可约多项式,设 E 为 f 在 F 上的分裂域.证明 E/F 为正规且可分的扩张.

2022-05-30 Galois 理论基本定理

- Galois 扩张
- 习题 1. 设 E/F 为有限扩张.
 - 1. $|Gal(E/F)| \le |Hom_F(E, \bar{F})|$, 并且等号成立 ⇔ E/F 为正规扩张.
 - 2. $|\text{Hom}_F(E,\bar{F})| < [E:F]$, 并且等号成立 ⇔ E/F 为可分扩张.
 - 3. |Gal(E/F)| ≤ [E:F], 并且等号成立 ⇔ E/F 为既正规又可分的扩张.
- 定义 1. 设 E/F 为有限扩张. 称其为 Galois 扩张, 如果 |Gal(E/F)| = [E:F].
- 习题 2. 设 E/F 为有限扩张,则以下几条互相等价:
 - 1. E/F 为 Galois 扩张.
 - 2. E/F 为既正规又可分的扩张.
 - 3. E 为一个无重根的不可约多项式 $f(x) \in F[x]$ 在 F 上的分裂域.
- 习题 3. (Artin 引理) 设 E 为域, $G \subset Aut(E)$ 为 E 的自同构群的有限子群. 令 $F = E^G := \{x \in E \mid gx = x, \forall g \in G\}$. 令 n = |G|. 依次证明如下命题:
 - $1. \forall \alpha \in E$, 存在 $f(x) \in F[x]$, 使得 $f(\alpha) = 0$, $\deg f \leq n$, 并且 f 无重根.
- 2.~E/F 为代数扩张, 并且对任意中间域 $F \subset E_1 \subset E$, 如果 $[E_1:F] < +\infty$, 则 E_1/F 为可分扩张, 并且 $[E_1:F] \le n$.
 - 3. E/F 为有限扩张, 且 $[E:F] \leq n$.
 - 4. E/F 为 Galois 扩张, 且 Gal(E/F) = G.
- 习题 4. 设 E/F 为有限扩张,则以下几条互相等价:

- 1. E/F 为 Galois 扩张.
- 2. 记 $G = \operatorname{Gal}(E/F)$, 则 $E^G = F$.
- 3. 存在有限子群 $G \leq Aut(E)$, 使得 $F = E^G$.
- Galois 扩张的重要例子

以下为需要熟悉的 Galois 扩张的几个典型例子.

例 1. (有限域的扩张) 设 p 为素数, q 为 p 的正整数次幂. 设 F 为 q 元有限域, E 为 q^n 元有限域. 则 E/F 为 Galois 扩张, 其 Galois 群为循环群 $\mathrm{Gal}(E/F) = \langle Fr \rangle \simeq \mathbb{Z}/n\mathbb{Z}$. 其中 $Fr \colon E \to E$, $x \mapsto x^q$ 为 Frobenius 自同态.

例 2. (一般系数的 n 次首一多项式) 记 $F = \mathbb{Q}(t_1, \dots, t_n)$ 为 \mathbb{Q} 上的 n 元有理函数域. 令 $f(x) = x^n + t_1 x^{n-1} + t_2 x^{n-2} + \dots + t_n \in F[x]$. 设 E 为 f 在 F 上的分裂域. 则 E/F 为 Galois 扩张, 且 $Gal(E/F) \simeq \mathfrak{S}_n$.

例 3. (分圆扩张) 设 $\zeta_N \in \mathbb{C}$ 为一个 N 次本原单位根, 则 $\mathbb{Q}(\zeta_N)/\mathbb{Q}$ 为 Galois 扩张. 并且

$$\operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) = \{ \sigma \mid \sigma(\zeta_N) = \zeta_N^i, \ 1 \le i \le N, \ (i, N) = 1 \} \simeq (\mathbb{Z}/N\mathbb{Z})^*.$$

例 4. (循环扩张) 设 F 为域, n 为正整数, $\operatorname{char} F = 0$ 或 $\operatorname{char} F = p$ 且 (n,p) = 1. 设 $x^n - 1 = 0$ 的所有根 ζ_n^i $(1 \le i \le n)$ 均在 F 中. 设 $a \in F$ 使得 $f(x) = x^n - a$ 为 F 上的不可约多项式. 记 $E = F(\sqrt[n]{a})$ 为 f 在 F 上的分裂域. 则 E/F 为 Galois 扩张, 并且

$$\operatorname{Gal}(E/F) = \{ \sigma \mid \sigma(\sqrt[n]{a}) = \sqrt[n]{a}\zeta_n^i, \ 1 \le i \le n \} \simeq \mathbb{Z}/n\mathbb{Z}.$$

例 5. (Artin-Schreier 扩张) 设 F 为特征 p 的域, 设 $a \in F$, 使得 $f(x) = x^p - x - a$ 在 F 上没有根. 作为练习可以证明 f 在 F 上不可约. 令 E 为 f 在 F 上的分裂域. 取 $\alpha \in E$ 为 f 的一个根. 则 $E = F(\alpha)$, 并且 E/F 为 Galois 扩张. 其 Galois 群为:

$$\operatorname{Gal}(E/F) = \{ \sigma \mid \sigma(\alpha) = \alpha + \beta, \ \beta \in \mathbb{F}_p \} \simeq \mathbb{Z}/p\mathbb{Z}.$$

• Galois 基本定理

设 E/F 为有限扩张, 且为 Galois 扩张. 记 $G = \operatorname{Gal}(E/F)$. 定义 G 的所有子群集合与 E/F 的所有中间域的集合:

$$S := \{H \mid H \rightarrow G$$
的子群\}.

$$M := \{K \mid K \rightarrow E$$
的包含 F 的子域 $\}$.

定义映射:

$$\varphi \colon S \to M$$

$$H \mapsto E^H$$

以及

$$\psi \colon M \to S$$

$$K \mapsto \operatorname{Gal}(E/K)$$

习题 5. (Galois 理论基本定理)

- 1. 上述 φ, ψ 为互逆映射.
- 2. 若 $H_1, H_2 \in S$, 则 $H_1 \subseteq H_2 \Leftrightarrow E^{H_2} \subset E^{H_1}$.

3. 对于 $H \in S$, 其对应的中间域 E^H 为 F 的 Galois 扩张 $\Leftrightarrow H$ 为 G 的正规子群,并且此时以下为群的正合列:

$$1 \to H \to G \to \operatorname{Gal}(E^H/F) \to 1.$$

其中 $G \to \operatorname{Gal}(E^H/F)$ 为限制映射: $\sigma \mapsto \sigma|_{E^H}$.

2022-06-01 迹与范数, 纯不可分扩张

设 E/F 为域的有限扩张. 对于 $\alpha \in E$, 考虑 F-线性映射 $\varphi_{\alpha} \colon E \to E$, $x \mapsto \alpha x$. 定义 α 的迹 (trace) 为 $Tr_{E/F}(\alpha) := \operatorname{tr}\varphi_{\alpha}$, 定义 α 的范数 (norm) 为 $N_{E/F}(\alpha) := \det \varphi_{\alpha}$. 这样我们得到映射 $Tr_{E/F} \colon E \to F$ 和 $N_{E/F} \colon E \to F$. 我们主要从线性代数的观点来考察这两个映射的性质.

习题 1. 设 E/F 为域的有限扩张.

1. $Tr_{E/F}$: $E \to F$ 为加法群同态, $N_{E/F}$: $E^* \to F^*$ 为乘法群同态.

2. $\forall \alpha \in F, \ Tr_{E/F}(\alpha) = [E:F]\alpha, \ N_{E/F}(\alpha) = \alpha^{[E:F]}$.

习题 2. 设 E/F 为域的有限扩张, 且 $E = F(\alpha)$ 为单扩张. 设 $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 \in F[x]$ 为 α 在 F 上的极小多项式. 证明: F-线性变换 φ_α : $E \to E$ 的特征多项式和极小多项式均等于 f(x).

习题 3. 设 E/F 为域的有限扩张, $\alpha \in E$. 设 $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \in F[x]$ 为 α 在 F 上的极小多项式. 证明: $Tr_{E/F}(\alpha) = -[E:F(\alpha)]a_{n-1}, N_{E/F}(\alpha) = ((-1)^n a_0)^{[E:F(\alpha)]}$.

习题 4. 设 E/F 为域的有限可分扩张, $x \in E$. 设 $\operatorname{Hom}_F(E, \bar{F}) = \{\sigma_1, \dots, \sigma_n\}$. 证明: $Tr_{E/F}(x) = \sum_{i=1}^n \sigma_i(x), \ N_{E/F}(x) = \prod_{i=1}^n \sigma_i(x).$

习题 **5.** 设 p 为素数, q 为 p 的正整数次幂. 设 F 为 q 元有限域, E 为 q^n 元有限域. 证明: 对于 $\alpha \in E$, $Tr_{E/F}(\alpha) = \sum_{i=0}^{n-1} \alpha^{q^i}$, $N_{E/F}(\alpha) = \alpha^{\sum_{i=0}^{n-1} q^i}$.

习题 6. (迹与范数的复合)设 E/F, K/E 均为域的有限扩张. 本题的目标是证明 $N_{E/F}$ $N_{K/E} = N_{K/F}$ 和 $Tr_{E/F}$ $OTr_{K/E} = Tr_{K/F}$. 对于 K 上的一个 E-线性变换 $\psi \in End_E(K)$, 将其看作 K 上的 F-线性变换时记作 $\psi_F \in End_F(K)$.

1. 对于 $\psi_1, \psi_2 \in End_E(K)$, 有

$$N_{E/F}(\det(\psi_1 \circ \psi_2)) = N_{E/F}(\det \psi_1) \cdot N_{E/F}(\det \psi_2).$$

- 2. 设 $\psi \in End_E(K)$ 为可对角化的, 证明: $N_{E/F}(\det \psi) = \det \psi_F$.
- 3. 设 $\psi \in End_E(K)$ 为可上三角化的, 证明: $N_{E/F}(\det \psi) = \det \psi_F$.
- 4. 对任意 $\psi \in End_E(K)$, 证明: $N_{E/F}(\det \psi) = \det \psi_F$.
- 5. 证明: $N_{E/F} \circ N_{K/E} = N_{K/F}$.
- 6. 利用同样的思路, 证明对任意 $\psi \in End_E(K)$, $Tr_{E/F}(tr\psi) = tr\psi_F$. 并由此证明 $Tr_{E/F} \circ Tr_{K/E} = Tr_{K/F}$.

下面讨论迹与域扩张的可分性之间的关系. 设 F 为特征 p 的域, 我们称域扩张 E/F 为纯不可分扩张 (purely inseparable), 如果对任意 $a \in E$, 均存在正整数 n, 使得 $a^{p^n} \in F$. 下面的这个扩张是纯不可分扩张的最典型的例子.

习题 7. $F = \mathbb{F}_p(t), E = F[t^{\frac{1}{p}}] = F[x]/(x^p - t).$ 则 E/F 为纯不可分扩张.

习题 8. 设 E/F 为纯不可分有限扩张, char F = p, 则

- 1. $|\text{Hom}_F(E, \bar{F})| = 1$.
- 2.[E:F] 为 p 的幂次.
- 3. $\forall a \in E, \ Tr_{E/F}(a) = 0.$

- 习题 9. (有限扩张分解为可分扩张和纯不可分扩张的复合) 设 E/F 为有限扩张, 令 $E_s := \{a \in E \mid a \text{ 在 } F \text{ 上的极小多项式无重根 } (\text{即 } a \text{ 在 } F \text{ 上可分})\}. 证明:$
 - $1. E_s$ 为 E 的子域, 称为 F 在 E 中的可分闭包.
 - $2. E_s/F$ 为可分扩张, E/E_s 为纯不可分扩张.
 - 3. 如果 E/F 不是可分扩张, 则 $Tr_{E/F}$: $E \to F$ 为零映射.
 - 注: 关于纯不可分扩张的内容可以参考 [?] 的 V.6 节.
 - 设 E/F 为有限扩张, 定义 E 上的对称 F-双线性型如下:

$$\varphi \colon E \times E \to F$$

$$(x,y) \mapsto Tr_{E/F}(xy)$$

如果 E/F 为可分扩张,设 $E=F(\alpha)$, $\operatorname{Hom}_F(E,\bar{F})=\{\sigma_1,\ldots,\sigma_n\}$.则 $1,\alpha,\alpha^2,\ldots,\alpha^{n-1}$ 为 E 的一组 F-线性基. φ 在这组基下对应得方阵记为 M,则 $M(i,j)=Tr_{E/F}(\alpha^{i+j-2})=\sum_{k=1}^n\sigma_k(\alpha^{i+j-2})$.

习题 **10.** 证明: $\det M = \prod_{1 \le i < j \le n} (\sigma_i(\alpha) - \sigma_j(\alpha))^2$. 从而对于可分扩张 E/F, 二次型 φ 为非退化的.

习题 11. 设 K 为代数数域 (即 K/\mathbb{Q} 为有限扩张), 记 \mathcal{O}_K 为相应的代数整数环 (即 \mathcal{O}_K 为 K 中在 \mathbb{Z} 上整的所有元素形成的子环). 本题的目标是证明 \mathcal{O}_K 为 Noether 环. 依次证明:

1. 存在 $e_1, \ldots, e_n \in \mathcal{O}_K$ 为 K 的一组 \mathbb{Q} -线性基.

- 2. $Tr_{K/\mathbb{Q}}(\mathcal{O}_K) \subset \mathbb{Z}$.
- 3. 二次型 φ 对应的方阵 $M = (Tr_{K/\mathbb{Q}}(e_i e_i))$ 为整系数方阵, 并且其行列式非零.
- 4. $\det M \cdot \mathcal{O}_K \subset \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n$.
- 5. \mathcal{O}_K 为有限生成 \mathbb{Z} -模, 从而为 Noether 环.
- 习题 12. (习题 10. 的另一种证法) 设 E/F 为有限可分扩张, 双线性型 φ 同上.
 - 1. 证明有 F-代数同构 $E \otimes_F \bar{F} \simeq \prod_{i=1}^n \bar{F}$.
 - 2. 证明系数扩张到 \bar{F} 后, φ 为 $E \otimes_F \bar{F}$ 上的非退化对称 \bar{F} -双线性型.
 - $3. \varphi$ 为 E 上的非退化对称 F-双线性型.
- 习题 13. (选做) 设 F 为域, A 为有限维交换 F-代数. 对 $a \in A$, 记 $Tr(a) \in F$ 为 A 上 F-线性变换 $x \mapsto ax$ 的迹. 令 $\varphi \colon A \times A \to F$, $(x,y) \mapsto Tr(xy)$ 为 A 上的对称 F-双线性型. 证明以下命题等价:
 - 1. 对任意 F 的扩域 K, $A \otimes_F K$ 没有非平凡幂零元 (即只有 0 为幂零元).
 - $2.A \otimes_F \overline{F}$ 没有非平凡幂零元.
 - 3. 存在 \bar{F} -代数同构 $A \otimes_F \bar{F} \simeq \prod_{i=1}^n \bar{F}$.
 - $4. \varphi$ 为非退化双线性型.

2022-06-06 Galois 群的计算

设 E/F 为有限 Galois 扩张, $G = \operatorname{Gal}(E/F)$. 为了计算 G, 一方面可以通过计算 [E:F] 得到 |G|, 另一方面可以找到尽可能少的容易计算的共轭根的生成元, 使得 $E = F(\alpha_1, \ldots, \alpha_m)$, 这样每个 $\sigma \in G$ 均置换 α_i 的共轭根, 从而得到 |G| 的上界. 如果该上界恰好等于 |G|, 则 G 就是所有上面形式的置换.

例 1. 设 K 为 $x^8 - 5$ 在 \mathbb{Q} 上的分裂域, 求 $Gal(K/\mathbb{Q})$.

习题 1. 设 K 为 x^4-2 在 $\mathbb Q$ 上的分裂域,证明 $\mathrm{Gal}(K/\mathbb Q)$ 同构于正四边形对应的二面体群 D_4 .

习题 2. 设 K 为 $x^4 - x^2 - 1$ 在 \mathbb{Q} 上的分裂域, 求 $Gal(K/\mathbb{Q})$.

习题 3. 设 $K = \mathbb{Q}(\sqrt{2+\sqrt{2}})$. 证明 K/\mathbb{Q} 为 Galois 扩张, 并求 $\mathrm{Gal}(K/\mathbb{Q})$.

习题 4. 设 p 为素数, $K = \mathbb{F}_p(T)$. 考虑如下 K[x] 中的多项式:

$$f(x) = x^p - Tx - T, \ g(x) = x^{p-1} - T.$$

- 1. 证明 f,g 均为 K[x] 中不可约多项式, 并且均没有重根.
- 2. 令 M 为 g 在 K 上的分裂域, 证明 $Gal(M/K) \simeq \mathbb{F}_p^*$.
- $3. \diamondsuit L 为 f$ 在 K 上的分裂域, 证明 g 在 L[x] 中分裂为一次多项式的乘积, 并且 $Gal(L/\mathbb{Q}) \simeq \mathbb{F}_p \rtimes \mathbb{F}_p^*$, 其中 \mathbb{F}_p^* 通过数乘作用到加法群 \mathbb{F}_p 上.

为了得到 Galois 群中的一些非平凡元素, 下面的性质经常用到.

习题 5. 设 F 为域, $f(x) \in F[x]$ 为首一的无重根多项式. 设 f(x) 在 \overline{F} 中的所有根为 $\{\alpha_1,\ldots,\alpha_n\}$. 令 $K=F(\alpha_1,\cdots,\alpha_n)$ 为 f 在 F 上的分裂域. 令 $G=\operatorname{Gal}(K/F)$. 证明: f 在 F 上不可约 $\Leftrightarrow G$ 在 $\{\alpha_1,\ldots,\alpha_n\}$ 上的置换作用是传递的. 特别地, 当 f 在 F 上不可约时, |G| 为 n 的倍数.

习题 **6.** 设 $f(x) \in \mathbb{Q}[x]$ 为首一不可约多项式, 并且 $\deg f = p$ 为素数. 设 f 恰有 p-2 个实根. 令 K 为 f 在 \mathbb{Q} 上的分裂域, $G = \operatorname{Gal}(K/\mathbb{Q})$. 证明:

- 1. 通过 G 在 f 的 p 个根上的置换作用, G 可以看作 \mathfrak{S}_p 的子群.
- 2. G 包含一个对换.(提示: 考虑 ℂ 上的共轭)
- 3. G 包含一个长度为 p 的圈 (循环).(提示: G 中包含 p 阶元).
- 4. $G = \mathfrak{S}_p$

习题 7. 设 $f(x) = x^5 - 6x + 3$. 令 $K \to f$ 在 \mathbb{Q} 上的分裂域. 证明 $Gal(K/\mathbb{Q}) \simeq \mathfrak{S}_5$.

习题 8. 设 $f(x) = x^3 - 3x + 1$, $K \to f$ 在 \mathbb{Q} 上的分裂域.

- 1. 设 f 的判别式为 $\Delta(f) \in \mathbb{Q}$. 证明 $\sqrt{\Delta(f)} \notin \mathbb{Q}$. 进而证明 $2|[K:\mathbb{Q}]$.
- 2. 证明 $Gal(K/\mathbb{Q}) \simeq \mathfrak{S}_3.$

2022-06-08 Galois 下降法应用

设 $K \subset \bar{K}$, \bar{K} 为域 K 的一个代数闭包. 设 $K \subset L \subset \bar{K}$, L/K 为有限 Galois 扩张, 记 L 到 \bar{K} 的包含同态为 i.

- 习题 1. 1. 映射 $\mathrm{Gal}(L/K) \to \mathrm{Hom}_K(L,\bar{K}), \ \sigma \mapsto i \circ \sigma \$ 为双射. 通过该双射, 对 $\sigma \in \mathrm{Gal}(L/K),$ 我们将 K-嵌入 $i \circ \sigma \colon L \to \bar{K},$ 直接记为 $\sigma \colon L \to \bar{K}.$
- $2. \ \forall \sigma \in \operatorname{Gal}(L/K)$, 映射 $\varphi_{\sigma} \colon \bar{K} \otimes_{K} L \to \bar{K}, \ x \otimes y \mapsto x \cdot \sigma(y)$ 为 K-线性映射 (实际为 \bar{K} -代数同态).
- 3. 乘积映射 $\prod_{\sigma \in \operatorname{Gal}(L/K)} \varphi_{\sigma} \colon \bar{K} \otimes_{K} L \to \prod_{\sigma \in \operatorname{Gal}(L/K)} \bar{K} \, \mathcal{A} \, \bar{K}$ -线性同构 (实际上为 \bar{K} -代数同构).
- $4. \ \forall \sigma \in \operatorname{Gal}(L/K), \ i \ e_{\sigma} \ \lambda \prod_{\sigma \in \operatorname{Gal}(L/K)} \bar{K} \ \text{中} \ \sigma \ \Delta \equiv \lambda \ 1, \ \text{其它分量为} \ 0 \ \text{的元素}, \ \mathbb{N}$ $\{e_{\sigma} \mid \sigma \in \operatorname{Gal}(L/K)\} \ \lambda \prod_{\sigma \in \operatorname{Gal}(L/K)} \bar{K} \ \text{的一组} \ \bar{K}$ 的一组 \bar{K} -线性空间基.
 - 5. 对 $\tau \in \operatorname{Gal}(L/K)$, 记 $1 \otimes \tau$ 为如下 \overline{K} -线性映射:

$$\bar{K} \otimes_K L \to \bar{K} \otimes_K L$$

 $x \otimes y \mapsto x \otimes \tau(y)$

记 $\tilde{\tau}$ 为 $\prod_{\sigma \in \operatorname{Gal}(L/K)} \bar{K}$ 上满足 $\tilde{\tau}(e_{\sigma}) = e_{\sigma \cdot \tau^{-1}} (\forall \sigma \in \operatorname{Gal}(L/K))$ 的 \bar{K} -线性变换. 证明: 有如下交换图表:

6. 记 $G = \operatorname{Gal}(L/K)$, 记 $\overline{K}[G]$ 为群代数, 则映射

$$\prod_{\sigma \in \operatorname{Gal}(L/K)} \bar{K} \xrightarrow{\widetilde{\hookrightarrow}} \bar{K}[G]$$

$$e_{\sigma} \mapsto \sigma^{-1}$$

为 \bar{K} -线性空间同构, 且通过该同构, $\tilde{\tau}$ 等同于 $\bar{K}[G]$ 上左乘 τ 的 \bar{K} -线性变换.

7. 总结上面的讨论, $\forall \tau \in G = \operatorname{Gal}(L/K)$, 我们得到如下 \overline{K} -线性映射的交换图表:

$$\bar{K} \otimes_K L \xrightarrow{\sim} \bar{K}[G]$$

$$\downarrow^{1 \otimes \tau} \qquad \qquad \downarrow^{\tau}.$$

$$\bar{K} \otimes_K L \xrightarrow{\sim} \bar{K}[G]$$

注意在上面的 \bar{K} -线性同构 $\bar{K}\otimes_K L\simeq \bar{K}[G]$ 下, 1 对应到 $\sum_{\tau\in G} \tau$.

下面几个定理均有相似的证明思路: 基于上面的交换图表, 将跟 Gal(L/K) 中元素有关的线性代数问题系数扩张到 \bar{K} 上, 进而利用群代数 $\bar{K}[G]$ 将问题转化为几乎显然的线性代数问题.

应用一: Artin 引理

定理一 (Artin 引理) 设 L/K 为有限 Galois 扩张, $Gal(L/K) = \{\sigma_1, \ldots, \sigma_n\}$. 那么 $\sigma_1, \ldots, \sigma_n$ 作为 L 上的 L-值函数, 是 L-线性无关的, 即若 $\lambda_1, \ldots, \lambda_n \in L$, 使得 $\lambda_1 \sigma_1(x)$ +

 $\ldots + \lambda_n \sigma_n(x) = 0, \ \forall x \in L, \ \mathbb{N} \ \lambda_1 = \lambda_2 = \ldots = \lambda_n = 0.$

应用二: Kummer 扩张

定理 2 (Kummer 扩张) 设 L/K 为有限 Galois 扩张, $G = \operatorname{Gal}(L/K) \simeq \mathbb{Z}/n\mathbb{Z}$ 为 n 阶循环群. 设 $\operatorname{char} K = 0$, 或者 $\operatorname{char} K = p$ 及 $p \nmid n$, 并设 $\zeta_n \in K$, 其中 ζ_n 为本原 n 次单位根, 则存在 $a \in K$, 使得 $L = K(\sqrt[n]{a})$.

应用三: Artin-Schreier 扩张

定理 3 (Artin-Schreier 扩张) 设 p 为素数, L/K 为有限 Galois 扩张, $char\ K=p$, 且 [L:K]=p(等价地, $Gal(L/K)\simeq \mathbb{Z}/p\mathbb{Z})$, 则存在 $\alpha\in L$, $a\in K$, 使得 $L=K(\alpha)$, 且 α 为 K 上多项式 $f(x)=x^p-x-a$ 的根.

应用四: 正规基定理

设 L/K 为有限 Galois 扩张, 则存在 $\alpha \in L$, 使得 $\{\sigma(\alpha) \mid \sigma \in \operatorname{Gal}(L/K)\}$ 为 L 的一组 K-线性空间基.

应用五: Hilbert 90

习题 2. 设 L/K 为有限 Galois 扩张, $G = \operatorname{Gal}(L/K)$. 对 $\alpha \in L$, $\diamondsuit \varphi_{\alpha} \colon L \to L$, $x \mapsto \alpha \cdot x$ 为 $L \in A$ 的 K-线性变换. 验证在习题 1.7 的同构下, 有如下交换图表:

$$\bar{K} \otimes_K L \xrightarrow{\sim} \bar{K}[G]$$
 σ

$$\downarrow_{1 \otimes \varphi_{\alpha}} \qquad \qquad \downarrow$$

$$\bar{K} \otimes_K L \xrightarrow{\sim} \bar{K}[G] \qquad \sigma^{-1}(\alpha) \cdot \sigma$$

定理 5 (Hilbert 90, 循环群乘法情形) 设 L/K 为有限 Galois 扩张, $G = \operatorname{Gal}(L/K) = \langle \sigma \rangle$ 为循环群, $\beta \in L^*$. 则 $N_{L/K}(\beta) = 1 \Leftrightarrow \exists \alpha \in L^*$, s.t. $\beta = \frac{\sigma \alpha}{\alpha}$.

定理 6 (Hilbert 90, 循环群加法情形) 设 L/K 为有限 Galois 扩张, $G = \operatorname{Gal}(L/K)$, $\langle \sigma \rangle$ 为循环群, $\beta \in L$. 则 $Tr_{L/K}(\beta) = 0 \Leftrightarrow \exists \alpha \in L, \ s.t. \ \beta = \sigma(\alpha) - \alpha$.

更一般地,设 L/K 为有限 Galois 扩张, G = Gal(L/K), $f: G \to L^*$ 为映射.

习题 3. 对 $\sigma \in G$, 考虑如下 \overline{K} -线性映射:

$$\varphi_{\sigma} \colon \bar{K}[G] \to \bar{K}[G]$$

$$\tau \mapsto \tau^{-1}(f(\sigma)) \cdot \tau$$

设 $a = \sum_{h \in G} c_h \cdot h \in \bar{K}[G] \setminus \{0\}$, 其中 $c_h \in \bar{K}$.

证明: 以下两条等价:

1. $\forall \sigma \in G$, $\varphi_{\sigma}(a) = \sigma \cdot a$, 等式右边为群代数中乘法.

2.
$$c_h = c_1 \cdot f(h^{-1}), \ \forall h \in G, \ \mathring{\mathcal{H}} \perp f(\sigma_1 \sigma_2) = f(\sigma_1) \cdot \sigma_1(f(\sigma_2)), \ \forall \sigma_1, \sigma_2 \in G.$$

定理 7 (Hilbert 90, 乘法情形) 设 L/K 为有限 Galois 扩张, $G = \operatorname{Gal}(L/K)$, $f : G \to L^*$ 为映射, 则 $f(\sigma_1\sigma_2) = f(\sigma_1) \cdot \sigma_1(f(\sigma_2))$, $\forall \sigma_1, \sigma_2 \in G \Leftrightarrow \exists a \in L^*, s.t. f(\sigma) = \frac{\sigma(a)}{a}, \forall \sigma \in G$. 这等价于说 $H^1(G, L^*) = \{1\}$.

利用同样的思路, 可以得到下面定理的证明.

定理 8 (Hilbert 90, 加法情形) 设 L/K 为有限 Galois 扩张, $G = \operatorname{Gal}(L/K)$, $f : G \to L$ 为映射, 则 $f(\sigma_1 \sigma_2) = f(\sigma_1) + \sigma_1(f(\sigma_2))$, $\forall \sigma_1, \sigma_2 \in G \Leftrightarrow \exists a \in L, s.t. f(\sigma) = \sigma(a) - \sigma(a)$

 $a, \, \forall \sigma \in G$. 这等价于说 $H^1(G,L) = \{0\}$.

2022-06-23 期末考试

- 1 设 $\iota: K \hookrightarrow L$ 为域扩张, x 和 y 为 L 的两个元素; 假定 x 在 K 上代数, 且 K(x) = K(y). 证明 y 在 K 上也是代数的, 并比较 x 和 y 各自的极小多项式的次数.
- **2** 域的二次扩张 (即 ι : $K \hookrightarrow L$, [L:K] = 2) 一定是正规扩张吗?
- 3 设 ι : $K \hookrightarrow L$ 为域扩张, $\Lambda \subset L$ 为 L 的子集, 其中的元素均在 K 上代数; 考虑 $K[\Lambda]$ 为 Λ 在 K 上生成的 L 的子环, 它是否一定等于 Λ 在 K 上生成的子域 $K(\Lambda)$?
- 4 令 $n \in \mathbb{N}^*$, 且 K 为 \mathbb{R} 的子域, 令 $K = K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_n$ 为一列二次扩张 塔 (即每个 K_i/K_{i-1} 都是二次扩张). 刻画 \mathbb{R} 的所有子域 K, 满足 K_n 在 K 上是可建造的.

(回忆: 我们称一个 \mathbb{R}^2 的子集 $\tilde{\Sigma}$ 在另一个子集 $\tilde{\Sigma}_0$ 上是可建造的 (constructible),是指存在正整数 N 和一列递增子集 $\tilde{\Sigma}_0 \subset \tilde{\Sigma}_1 \subset \cdots \subset \tilde{\Sigma}_N = \tilde{\Sigma}$,使得 $\tilde{\Sigma}_i \backslash \tilde{\Sigma}_{i-1}$ 为一个点,这个点要么是 $\tilde{\Sigma}_{i-1}$ 上可定义的两条直线的交点,要么是 $\tilde{\Sigma}_{i-1}$ 上一个可定义的圆和一条可定义直线的其中一个交点,要么是两个可定义圆的其中一个交点。这里称一个 \mathbb{R} 的子集 Σ 是在 K 上可建造的是指存在一个 \mathbb{R}^2 的在 $K \times \{0\}$ 上可建造的子集 $\tilde{\Sigma}$,使得 $\tilde{\Sigma}$ 向第一个分量的正交投影正好是 Σ .)

- 5 设 K 为域, P 和 Q 是 K 上两个互素的多项式. 仅使用课上所学的东西, 且不允许引入 P 和 Q 的根, 证明结式 $Res(P,Q) \neq 0$. 该结论的逆命题是否成立?
- 6 设 K 为域, K(X) 为 K 上的有理分式域. 证明 [K(X):K] 是可数的, 当且仅当 K 为有限域或可数域.

7 所有 Liouville 数构成 ℝ 的一个子集, 它是否稠密? 回忆:Liouville 数是指以下集合

$$\mathcal{L} := \left\{ x \in \mathbb{R} \mid \forall n \in \mathbb{N}, \ \left| \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\} \colon 0 < |x - \frac{a}{b}| < \frac{1}{b^n} \} \right| = \infty \right\}$$

8 设 $p \in \mathcal{P}$ 为素数, 我们介绍计数函数: $f: \mathbb{N} \to \mathbb{N}, n \mapsto f(n)$, 其中

$$f(n) = |\{P \in \mathbb{F}_p[X] \mid P \neq n$$
次首一不可约的多项式 $\}|$

8.1 在 T 为变量的形式幂级数环 $\mathbb{Z}[[T]]$ 中证明如下恒等式

$$\sum_{n\in\mathbb{N}} p^n T^n \prod_{n\in\mathbb{N}^*} (1-T^n)^{f(n)} = 1;$$

- 8.2 由此导出 nf(n) 的一个表达式: $\sum_{k\in F}\varepsilon(k)p^k$, 其中 F 为 $\mathbb N$ 的有限子集, $\varepsilon(k)\in\{\pm 1\}$ 为可显式写出的符号函数.
 - 8.3 由上一题给的 f 的表达式推出, 对任意 $n \in \mathbb{N}^*$, 存在 p^n 元域.
 - 8.4 引入 $X^{p^n} X$ 在 \mathbb{F}_p 上的分裂域重新证明上一题的结论.
- 9 设 $n \in \mathbb{N}^*$ 为正整数, $P_n = X^n 1 \in \mathbb{Q}[X]$ 为多项式.
- 9.1 证明对所有的 n, 存在一个 P_n 的根生成 P_n 在 \mathbb{Q} 上的分裂域, 记为 K_n ; 记 ζ_n 为这个根, 即需要给出 $K_n = \mathbb{Q}(\zeta_n)$.
 - 9.2 当 n 为素数的时候, 求 $[\mathbb{Q}(\zeta_n):\mathbb{Q}]$.
 - 9.3 回忆对扩张 K/\mathbb{Q} , 我们记 $\mu_n(K)$ 为 P_n 在 K 中的根的集合, 而 $\tilde{\mu}_n(K)$ 为 K

中 n 次本原单位根的集合. 定义 $\phi_n(X) = \prod_{\zeta \in \tilde{\mu}_n(K_n)} (X - \zeta);$

9.4 证明对所有正整数 $n\in\mathbb{N}^*$ 有恒等式 $P_n(X)=\prod_{d\mid n}\phi_d$,并由此证明等式 $n=\prod_{d\mid n}\varphi(d)$,其中 φ 为欧拉函数.

- 9.5 对 $n \in \mathbb{N}^*$, 证明 ϕ_n 为整系数多项式, 即 $\phi_n \in \mathbb{Z}[X]$,
- 9.6 在什么条件下我们有 $X^n 1 \in K[X]$ 是可分的?
- 9.7 设 $p \in \mathcal{P}$ 为素数,且 $p \nmid n$, $\zeta \in \tilde{\mu}_n(K_n)$ 为一个 n 次本原单位根, $Q \in \mathbb{Z}[X]$ 为 ϕ_n 的一个不可约因子.证明若 $\zeta \in Q$ 的根,那么 ζ^p 也是.
 - 9.8 由此导出 ϕ_n 在 $\mathbb{Q}[X]$ 中是不可约的.
 - 9.9 对正整数 $n \in \mathbb{N}^*$, $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ 的扩张次数是多少?
 - 9.10 设 L/\mathbb{Q} 为一个有限扩张, 集合

$$\bigcup_{n\in\mathbb{N}^*} \mu_n(L) := \{l \in L \mid \exists n \in \mathbb{N}^*, \ l^n = 1\}$$

是否总是有限的?

- 9.11 设 n 和 m 为两个互素的正整数, p 为奇素数, L/\mathbb{Q} 为有限域扩张, 且扩张次数 $[L:\mathbb{Q}]=p^n$. 此时对上一问的集合可以给出什么结论?
 - 9.12 在 p=2 的情形结论是否是不同的?
 - 9.13 设 n 为奇数, 且 $n \ge 3$. ϕ_n 和 ϕ_{2n} 有什么关系?
- 10 (前面习题给出的结论可以使用)
 - 10.1 设 P 为非常值的整系数多项式, 证明集合

$$\{p \in \mathcal{P} \mid \exists n \in N^*, \ p|P(n)\}$$

为无限集.

10.2 设 n 为正整数, p 为奇素数且不整除 n, α 为一个整数, 且满足 $p|\phi_n(\alpha)$, 其中 ϕ_n 为前一题中定义的多项式 (即分圆多项式). 证明 $p \nmid \alpha$, 且 α 模 p 的剩余在 $(\mathbb{Z}/p\mathbb{Z})^*$ 中的阶恰好是 n.

10.3 利用前面的结论, 证明存在无穷多个模 n 余 1 的素数 p.

10.4 这个结论让你想到了什么?

11 设m 和n 为两个互素的正整数,p 为素数. 多项式 $X^{p^m} - X$ 在 \mathbb{F}_{p^n} 里有多少个根?证明你的结论.

12 设 p 为素数, $\bar{\mathbb{F}}_p$ 为 \mathbb{F}_p 一个取定的代数闭包. 令 $G = \operatorname{Gal}(\bar{F}_p/\mathbb{F}_p)$ 为 Galois 群.

12.1 a- 证明 Frobenius 自同态 Fr 为 $\overline{\mathbb{F}}_p$ 的一个自同构

b- 设 n 为正整数. 证明扩张 $\mathbb{F}_{p^n}/\mathbb{F}_p$ 的 Galois 群是循环群, 且生成元恰为 Fr.

c- 多项式 $X^{p^n} - X$ 在 \mathbb{F}_p 中的因子是什么? 它们的重数分别是多少?

12.2 设 H 是 G 由 Fr 生成的子群, 将 \mathbb{F}_p 的子域 \mathbb{F}_p^G 和 \mathbb{F}_p^G 与 \mathbb{F}_p 作比较.

12.3 a- 证明对所有的正整数 $n, \bar{\mathbb{F}}_p$ 有唯一的阶为 p^n 的子域.

b- 将它记作 \mathbb{F}_{pn} , 证明它与以前的记号是一致的.

c- 刻画 $\bar{\mathbb{F}}_p \setminus \bigcup_{n \in \mathbb{N}^*} \mathbb{F}_{p^n}$.

12.4 a- 设 p_1 和 p_2 为两个素数, m_1 和 m_2 是两个正整数描述所有的四元对 $(p_1, p_2, m_1, m_2) \in \mathcal{P}^2 \times \mathbb{N}^{*2}$ 使得 $\mathbb{F}_{p_1^{m_1}}$ 是 $\mathbb{F}_{p_2^{m_2}}$ 的子域.

b- 证明

$$K = \bigcup_{n \in \mathbb{N}^*} \mathbb{F}_{p^{2^n}}$$

是 $\bar{\mathbb{F}}_p$ 的真子域.

12.5 由上述结论导出,不存在 \mathbb{F}_p 的子域 L 使得相应的 Galois 群 $\mathrm{Gal}(\mathbb{F}_p/L)=H$. 也就是说,有限 Galois 对应的结论不能直接推广到任意的 Galois 扩张,无限 Galois 扩张中存在 Galois 群的子群无法对应到中间扩张.

13 设 L 为域, L_1 和 L_2 为 L 的两个子域, K 是 L_1 和 L_2 的公共子域. 假定 L/L_1 和 L/L_2 均为代数扩张.

13.1 证明如果 L_1/K 或 L_2/K 为代数扩张,则 $L/L_1 \cap L_2$ 也是代数扩张.

13.2 若上一问没有前面的假设, 结论是否还正确?

13.3 假定 $L/L_1 \cap L_2$ 是代数扩张, L/L_1 和 L/L_2 为正规扩张, 证明 $L/L_1 \cap L_2$ 也是正规扩张.

14 设有域 K_1, K_2, L_1, L_2 , 其中 $L_1 \subseteq L_2$ 为子域, $\iota_1 : K_1 \hookrightarrow L_1$ 和 $\iota_2 : K_2 \hookrightarrow L_2$ 为 两个域扩张, 有域同态 $\sigma : K_1 \hookrightarrow K_2$ 以及它的一个关于 ι_1, ι_2 的延拓 $\tilde{\sigma} : L_1 \to L_2$ (即 $\tilde{\sigma} \circ \iota_1 = \iota_2 \circ \sigma$). 我们假定 σ 和 $\tilde{\sigma}$ 均为同构.

14.1 我们再假定有 $\iota_2 \circ \sigma(x) = \iota_1(x) \ \forall x \in K_1$,且 ι_1 给出有限扩张. 证明此时有 $L_1 = L_2$.

14.2 在上一问中去掉 4 为有限扩张的条件, 此时结论是否仍正确?

14.3 与前一问相反, 我们保留 ι_1 有限的条件, 但去掉 $\iota_2 \circ \sigma = \iota_1$, 此时结论是否仍正确?