

GRADES-NDA 2019

Evaluation of the Context-Free Path Querying Algorithm Based on Matrix Multiplication

Nikita Mishin, Iaroslav Sokolov, Egor Spirin, Vladimir Kutuev, Egor Nemchinov, Sergey Gorbatyuk, **Semyon Grigorev**

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

June 30, 2019

Context-Free Path Querying

Navigation through a graph

- Are nodes A and B on the same level of hierarchy?
- Is there a path of form Upⁿ Downⁿ?
- Find all paths of form
 Upⁿ Downⁿ which start from the node A

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$
- G = (V, E, L) directed graph
 - $v \stackrel{1}{\rightarrow} u \in E$
 - L ⊆ Σ

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$
- G = (V, E, L) directed graph
 - $v \xrightarrow{l} u \in E$
 - $L \subset \Sigma$
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma$
 - $L(\mathbb{G}, A) = \{\omega \mid A \Rightarrow^* \omega\}$
- G = (V, E, L) directed graph
 - $v \stackrel{l}{\rightarrow} u \in E$
 - $L \subset \Sigma$
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $R_A = \{(n, m) \mid \exists n \pi m, \text{ such that } \omega(\pi) \in L(\mathbb{G}, A)\}$

Matrix-Based Algorithm

Algorithm Context-Free Path Querying by Matrix Multiplication

- 1: function CONTEXTFREEPATHQUERYING(D, G)
- 2: $n \leftarrow$ the number of nodes in D
- 3: $E \leftarrow$ the directed edge-relation from D
- 4: $P \leftarrow$ the set of production rules in G
- 5: $T \leftarrow$ the matrix $n \times n$ in which each element is \emptyset
- 6: **for all** $(i, x, j) \in E$ **do** \triangleright Matrix initialization
- 7: $T_{i,i} \leftarrow T_{i,i} \cup \{A \mid (A \rightarrow x) \in P\}$
- 8: **while** matrix T is changing **do**
- o: Write matrix / is changing do
- 9: $T \leftarrow T \cup (T \times T)$ \triangleright Transitive closure T^{cf} calculation
- 10: **return** *T*

Matrix-Based Algorithm: Technical Details

- The matrix T can be represented as set of Boolean matrices: one matrix per nonterminal
- The algorithm can be implemented in terms of Boolean matrices multiplication
- All matrices can be statically allocated in memory

 Does GPGPUs utilization for CFPQ improve performance in comparison with the CPU version?

- Does GPGPUs utilization for CFPQ improve performance in comparison with the CPU version?
- Is it possible to achieve higher performance by using existing libraries for operations over matrices or do we need to create our own specialized solution?

- Does GPGPUs utilization for CFPQ improve performance in comparison with the CPU version?
- Is it possible to achieve higher performance by using existing libraries for operations over matrices or do we need to create our own specialized solution?
- Can we achieve high performance with high-level languages?

- Does GPGPUs utilization for CFPQ improve performance in comparison with the CPU version?
- Is it possible to achieve higher performance by using existing libraries for operations over matrices or do we need to create our own specialized solution?
- Can we achieve high performance with high-level languages?
- Can we improve performance with sparse matrix representation?

CPU-Based Implementations

[Scipy] Sparse matrices multiplication by using Scipy in Python

CPU-Based Implementations

[Scipy] Sparse matrices multiplication by using Scipy in Python[M4RI] Dense matrices multiplication by using m4ri library which implements the Method of Four Russians in C

GPGPU-Based Implementations

[GPU4R] Our own implementation of the Method of Four Russians in CUDA C

GPGPU-Based Implementations

- [GPU4R] Our own implementation of the Method of Four Russians in CUDA C
- [GPU_N] Our own implementation of the naïve boolean matrix multiplication in CUDA C

GPGPU-Based Implementations

- [GPU4R] Our own implementation of the Method of Four Russians in CUDA C
- [GPU_N] Our own implementation of the naïve boolean matrix multiplication in CUDA C
- [GPU_Py] Our own implementation of naïve boolean matrix multiplication in Python by using numba compiler

Reference Implementations

[CuSprs]

- Rustam Azimov, 2018, "Context-free Path Querying by Matrix Multiplication"
- Implementation is based on NVIDIA cuSPARSE library (CUDA C, GPGPU)

Reference Implementations

[CuSprs]

- Rustam Azimov, 2018, "Context-free Path Querying by Matrix Multiplication"
- Implementation is based on NVIDIA cuSPARSE library (CUDA C, GPGPU)

[CYK]

- ► X. Zhang et al, 2016, "Context-free path queries on RDF graphs"
- CYK-based algorithm implemented in Java (CPU)

[RDF]

- ► The set of the real-world RDF files (ontologies)
- Queries:

```
G_4: s \rightarrow SCOR \ s \ SCO \ | \ TR \ s \ T \ | \ SCOR \ SCO \ | \ TR \ T 
G_5: s \rightarrow SCOR \ s \ SCO \ | \ SCO
```

[RDF]

- ► The set of the real-world RDF files (ontologies)
- Queries:

$$G_4: s \rightarrow SCOR \ s \ SCO \ | \ TR \ s \ T \ | \ SCOR \ SCO \ | \ TR \ T \ G_5: s \rightarrow SCOR \ s \ SCO \ | \ SCO$$

[Worst]

 The input graph is two cycles of coprime lengths with one shared vertex

• Query: $G_1: s \rightarrow A \ s \ B \mid A \ B$

[Full]

- ▶ The input graph is sparse, but the result is a full graph
- Queries:

 $G_2: s \rightarrow s \ s \mid A$

 $G_3: s \rightarrow s \ s \ s \mid A$

[Full]

- ▶ The input graph is sparse, but the result is a full graph
 - Queries:

 $G_2: s \rightarrow s \ s \mid A$ $G_3: s \rightarrow s \ s \mid A$

[Sparse]

- Sparse graphs are generated by GTgraph
- ▶ Query: $G_1: s \rightarrow A \ s \ B \mid A \ B$

Evaluation

OS: Ubuntu 18.04

• CPU: Intel core i7 8700k 3,7GHz

RAM: DDR4 32 Gb

• GPGPU: NVIDIA GeForce 1080Ti (11Gb RAM)

Evaluation: [RDF]²

RI		Query G ₄							
Name	#V	#E	Scipy	Scipy M4RI GPU4R GPU_N GPU_Py CuSprs C					
atm-prim	291	685	3	2	2	1	5	269	515285
biomed	341	711	3	5	2	1	5	283	420604
foaf	256	815	2	9	2	< 1	5	270	5027
funding	778	1480	4	7	4	1	5	279	499
generations	129	351	3	3	2	< 1	5	273	6091
people pets	337	834	3	3	3	1	7	284	82081
pizza	671	2604	6	8	3	1	6	292	3233587
skos	144	323	2	4	2	< 1	5	273	1044
travel	131	397	3	5	2	< 1	6	268	13971
unv-bnch	179	413	2	4	2	< 1	5	266	20981
wine	733	2450	7	6	4	1	7	294	4075319

¹Results from X. Zhang et al, 2016, "Context-Free Path Queries on RDF Graphs"

²Time in milliseconds

Evaluation: [Worst]³

#V	Scipy	M4RI	GPU4R	GPU_N	GPU_Py	CuSprs
16	0.032	< 0.001	0.008	0.002	0.027	0.309
32	0.118	0.001	0.034	0.008	0.136	0.441
64	0.476	0.041	0.133	0.032	0.524	0.988
128	2.194	0.226	0.562	0.129	2.751	3.470
256	15.299	1.994	3.088	0.544	11.883	15.317
512	121.287	23.204	13.685	2.499	43.563	102.269
1024	1593.284	528.521	88.064	19.357	217.326	1122.055
2048	-	-	-	325.174	-	-

³Time in seconds

Evaluation: [Worst]³

#V	Scipy	M4RI	GPU4R	GPU_N	GPU_Py	CuSprs
16	0.032	< 0.001	0.008	0.002	0.027	0.309
32	0.118	0.001	0.034	0.008	0.136	0.441
64	0.476	0.041	0.133	0.032	0.524	0.988
128	2.194	0.226	0.562	0.129	2.751	3.470
256	15.299	1.994	3.088	0.544	11.883	15.317
512	121.287	23.204	13.685	2.499	43.563	102.269
1024	1593.284	528.521	88.064	19.357	217.326	1122.055
2048	-	-	-	325.174	-	-

³Time in seconds

Evaluation: [Sparse]⁴

Graph	Scipy	M4RI	GPU4R	GPU_N	GPU_Py	CuSprs
G5k-0.001	10.352	0.647	0.113	0.041	0.216	5.729
G10k-0.001	37.286	2.395	0.435	0.215	1.331	35.937
G10k-0.01	97.607	1.455	0.273	0.138	0.763	47.525
G10k-0.1	601.182	1.050	0.223	0.114	0.859	395.393
G20k-0.001	150.774	11.025	1.842	1.274	6.180	-
G40k-0.001	-	97.841	11.663	8.393	37.821	-
G80k-0.001	-	1142.959	88.366	65.886	-	-

⁴Time in seconds

Evaluation: [Sparse]⁴

Graph	Scipy	M4RI	GPU4R	GPU_N	GPU_Py	CuSprs
G5k-0.001	10.352	0.647	0.113	0.041	0.216	5.729
G10k-0.001	37.286	2.395	0.435	0.215	1.331	35.937
G10k-0.01	97.607	1.455	0.273	0.138	0.763	47.525
G10k-0.1	601.182	1.050	0.223	0.114	0.859	395.393
G20k-0.001	150.774	11.025	1.842	1.274	6.180	-
G40k-0.001	-	97.841	11.663	8.393	37.821	-
G80k-0.001	-	1142.959	88.366	65.886	-	-

⁴Time in seconds

Evaluation: [Sparse]⁴

Graph	Scipy	M4RI	GPU4R	GPU_N	GPU_Py	CuSprs
G5k-0.001	10.352	0.647	0.113	0.041	0.216	5.729
G10k-0.001	37.286	2.395	0.435	0.215	1.331	35.937
G10k-0.01	97.607	1.455	0.273	0.138	0.763	47.525
G10k-0.1	601.182	1.050	0.223	0.114	0.859	395.393
G20k-0.001	150.774	11.025	1.842	1.274	6.180	-
G40k-0.001	-	97.841	11.663	8.393	37.821	-
G80k-0.001	-	1142.959	88.366	65.886	-	-

⁴Time in seconds

Evaluation: [Full]⁵

#V	Query G_2									
# V	Scipy	M4RI	GPU4R	GPU_N	GPU_Py	CuSprs				
100	0.007	0.002	0.002	< 0.001	0.003	0.278				
200	0.040	0.003	0.002	0.001	0.004	0.279				
500	0.480	0.003	0.003	0.001	0.004	0.329				
1000	3.741	0.007	0.005	0.001	0.006	0.571				
2000	40.309	0.063	0.019	0.003	0.017	1.949				
5000	651.343	0.366	0.125	0.038	0.150	99.651				
10000	-	1.932	0.552	0.315	0.840	1029.042				
25000	-	33.236	7.252	5.314	15.521	-				
50000	-	360.035	58.751	44.611	129.641	-				
80000	-	1292.817	256.579	190.343	641.260	-				

⁵Time in seconds

• GPGPUs utilization significantly increases the performance of CFPQ

- GPGPUs utilization significantly increases the performance of CFPQ
- High performance libraries utilization is a good idea
 - ▶ But not always: M4RI (CPU) is better then cuSPARSE (GPGPU)

- GPGPUs utilization significantly increases the performance of CFPQ
- High performance libraries utilization is a good idea
 - ▶ But not always: M4RI (CPU) is better then cuSPARSE (GPGPU)
- Automatic translation from a high-level language to GPGPU language provides a good balance between performance and implementation complexity

- GPGPUs utilization significantly increases the performance of CFPQ
- High performance libraries utilization is a good idea
 - ▶ But not always: M4RI (CPU) is better then cuSPARSE (GPGPU)
- Automatic translation from a high-level language to GPGPU language provides a good balance between performance and implementation complexity
- Sparse matrix representation is important for performance

- GPGPUs utilization significantly increases the performance of CFPQ
- High performance libraries utilization is a good idea
 - ▶ But not always: M4RI (CPU) is better then cuSPARSE (GPGPU)
- Automatic translation from a high-level language to GPGPU language provides a good balance between performance and implementation complexity
- Sparse matrix representation is important for performance
- Dataset is published: both graphs and queries
- Implementations are available on GitHub
- Link: https://github.com/SokolovYaroslav/CFPQ-on-GPGPU

Future Research

- Investigate implemented algorithms to explain nontrivial behaviors
- Create open extensible platform for CFPQ algorithms comparison
- Evaluate other CFPQ algorithms
 - Sparse matrices
 - Destributed matrix multiplication
 - ► LL- and LR-based algorithms
- Add new data and queries to the dataset
 - Bigger RDFs
 - Static code analysis

Contact Information

- Semyon Grigorev:
 - s.v.grigoriev@spbu.ru
 - Semen.Grigorev@jetbrains.com
- Nikita Mishin: mishinnikitam@gmail.com
- Iaroslav Sokolov: sokolov.yas@gmail.com
- Egor Spirin: egor@spirin.tech
- Vladimir Kutuev: vladimir.kutuev@gmail.com
- Egor Nemchinov: nemchegor@gmail.com
- Sergey Gorbatyuk: sergeygorbatyuk171@gmail.com
- Dataset and algorithm implementations: https://github.com/SokolovYaroslav/CFPQ-on-GPGPU

Thanks!