Projet d'analyse numérique 3

MMADI YOUSSOUF Baraka

Problème de Cauchy 1

On considère le problème de Dirichlet homogène, avec terme source , suivant : $\phi(x) = \begin{cases} \frac{x - x_{i-1}}{h} & \text{si } x \in K_{i-1} \\ \frac{x_{i+1} - x}{h} & \text{si } x \in K_i \\ 0 & \text{sinon} \end{cases}$

 $u:[0,1]\to\mathbf{R}$ du problème (E) suivant :

$$-\epsilon u''(x) + \lambda u'(x) = f(x)$$
$$u(0) = u(1) = 0$$

Avec λ la vitesse du fluide, ϵ le paramètre modélisant la diffusivité de l'espèce chimique, et λ/ϵ mesure l'importance des phénomènes de convection par rapport aux phénomènes de diffusion.

Écrivons la formulation variationnelle du problème

soit
$$v \in H_0^1([0,1]) = \{v \in H^1([0,1]) \text{ tel que } v(0) = v(1) = 0\}$$

Alors:

$$\int_0^1 (-\epsilon u''(x) + \lambda u'(x))v(x)dx = \int_0^1 f(x)v(x)dx$$

$$\Rightarrow -\epsilon \int_0^1 u''(x)v(x)dx + \lambda \int_0^1 u'(x)v(x)dx = \int_0^1 f(x)v(x)dx$$

En faisant une intégration par partie on a alors :

$$-\epsilon [u'(x)v(x)]_0^1 + \epsilon \int_0^1 u'(x)v'(x)\mathrm{d}x + \lambda \int_0^1 u'(x)v(x)\mathrm{d}x = \int_0^1 f(x)v(x)\mathrm{d}x$$
$$\Rightarrow \epsilon \int_0^1 u'(x)v'(x)\mathrm{d}x + \lambda \int_0^1 u'(x)v(x)\mathrm{d}x = \int_0^1 f(x)v(x)\mathrm{d}x$$

car $\mathbf{v} \in H_0^1([0,1])$. On pose donc:

- $\mathbf{a}(u,v) = \epsilon \int_0^1 u'(x)v'(x)\mathrm{d}x + \lambda \int_0^1 u'(x)v(x)\mathrm{d}x$ bilinéaire. $l(v) = \int_0^1 f(x)v(x)\mathrm{d}x$ linéaire.

1.2 Calculons la solution exacte du problème lorsque f est constante non nulle.

Le problème (E) est une équation différentielle linéaire du 2ème ordre à coefficients constants. A cette équation nous associons l'équation sans second membre (E_0) $-\epsilon r^2 + \lambda r = 0$.

La solution générale de (E) est la somme de la solution générale u_H de (E_0) et d'une solution particulière u_p de (E).

Calculons le discriminant.

 $\Delta = \lambda^2 > 0$ il existe alors deux racines r_1 et r_2 telles que $r_1 = \lambda/\epsilon$ et $r_2 = 0$.

On a donc la solution : $u_H = K_1 e^{\frac{\lambda}{\epsilon}x} + K_2$ avec $(K_1, K_2) \in \mathbf{R}^2$.

Cherchons u_p sous la forme $u_p(x) = kx$ avec $k \in \mathbf{R}$.

On a alors $u_p'(x) = k$ et $u_p''(x) = 0$, d'ou $k = \frac{f}{\lambda}$ alors $u_p(x) = \frac{f}{\lambda}x$ avec f une constante.

Donc la solution générale u de l'équation (E) sera :

$$u(x)=u_H(x)+u_p(x)$$

$$=K_1e^{\frac{\lambda}{\epsilon}x}+K_2+\frac{f}{\lambda}x.\quad \text{avec }f\quad \text{une constante, et }(K_1,K_2)\in\mathbf{R^2}$$

Déterminons K_1 et K_2 . On a alors grâce aux conditions aux bords :

$$u(0) = 0 \Rightarrow K_1 + K_2 = 0$$

 $u(1) = 0 \Rightarrow K_1 e^{\frac{\lambda}{\epsilon}} + K_2 + \frac{f}{\lambda} = 0$

En résolvant ce système on a donc $K_1=-\frac{f}{\lambda(e^{\frac{\lambda}{\epsilon}}-1)}$ et $K_2=\frac{f}{\lambda(e^{\frac{\lambda}{\epsilon}}-1)}$.

D'où la solution générale de (E) est :

$$u(x) = \frac{f}{\lambda} \left(x - \frac{1 - e^{\frac{\lambda}{\epsilon}x}}{1 - e^{\frac{\lambda}{\epsilon}}} \right).$$

2 Partie 1 : Avec des éléments finis P₁

On pause $A_h = \epsilon B_h + \lambda C_h$.

2.1 Donnons les expressions générales des coefficients pour B_h et C_h .

On discrétise à l'aide des éléments finis P_1 en prenant n+1 noeuds. soit V_h l'espace discret du problème approché : $u_h\in V_h$ tel que :

$$a(u_h, v_h) = l(v_h) \quad \forall v_h \in V_h$$

Avec $V_h = \{v_h \in C^0(\overline{\Omega}), \forall i \in \{0 \dots N\}, v_h \mid K_i \in P_1, v_h(0) = v_h(1) = 0\}$ avec $K_i \in [x_i, x_{1+1}]$ On définit les N(nombres de noeuds-2) fonctions chapeaux $\{\phi_1 \dots \phi_N\}$.

On a $\phi_i \in V_h$ et $\phi_i(x_j) = \delta_{ij}, \forall i, j \in \{1 \dots N\}$

On donne aussi l'expression des fonctions de base :

$$\phi_i(x) = \begin{cases} \frac{x - x_{i-1}}{h} & \text{si } x \in K_{i-1} \\ \frac{x_{i+1} - x}{h} & \text{si } x \in K_i \text{ et } \phi_i'(x) = \begin{cases} \frac{1}{h} & \text{si } x \in K_{i-1} \\ -\frac{1}{h} & \text{si } x \in K_i \\ 0 & \text{sinon} \end{cases}$$

 $\{\phi_1 \dots \phi_N\}$ est une base de V_h et de dimension n-1.

On a alors:

$$(A_h)_{ij} = a(\phi_i, \phi_j) = \epsilon \int_{\Omega} \phi_i'(x)\phi_j'(x) dx + \lambda \int_{\Omega} \phi_i'(x)\phi_j(x) dx$$

On pose:

$$(B_h)_{ij} = \int_{\Omega} \phi_i'(x)\phi_j'(x) dx$$

$$(C_h)_{ij} = \int_{\Omega} \phi_i'(x)\phi_j(x) dx$$

Calculons les coefficients de ces matrices. On a $\forall i = j$

$$(B_h)_{ij} = b(\phi_i, \phi_j)$$

$$= \int_{\Omega} \phi'_i(x)\phi'_j(x)\mathbf{d}x$$

$$= \int_{x_{i-1}}^{x_i} \phi'_i(x)\phi'_j(x)\mathbf{d}x + \int_{x_i}^{x_{i+1}} \phi'_i(x)\phi'_j(x)\mathbf{d}x$$

$$= \frac{1}{h^2} \int_{x_{i-1}}^{x_i} \mathbf{d}x + \frac{1}{h^2} \int_{x_i}^{x_{i+1}} \mathbf{d}x$$

$$(B_{h})_{ij} = \frac{2}{h} \quad \forall i = j$$

$$(C_{h})_{ij} = c(\phi_{i}, \phi_{j})$$

$$= \int_{\Omega} \phi'_{i}(x)\phi_{j}(x)dx$$

$$= \int_{x_{i-1}}^{x_{i}} \phi'_{i}(x)\phi_{j}(x)dx + \int_{x_{i}}^{x_{i+1}} \phi'_{i}(x)\phi_{j}(x)dx$$

$$= \frac{1}{h^{2}} \int_{x_{i-1}}^{x_{i}} (x - x_{i-1})dx - \frac{1}{h^{2}} \int_{x_{i}}^{x_{i+1}} (x_{i+1} - x)dx$$

$$= \frac{1}{h^{2}} \int_{0}^{h} ydy + \frac{1}{h^{2}} \int_{h}^{0} zdz \quad \text{avec } y = x - x_{i-1} \quad \text{et } z = x_{i+1} - x$$

$$(C_{h})_{ij} = 0 \quad \forall i = j$$

Pour j = i + 1 on a :

$$(B_h)_{i,i+1} = b(\phi_i, \phi_{i+1})$$

$$= \int_{\Omega} \phi'_i(x) \phi'_{i+1}(x) dx$$

$$= \int_{x_{i-1}}^{x_i} \phi'_i(x) \phi'_{i+1}(x) dx + \int_{x_i}^{x_{i+1}} \phi'_i(x) \phi'_{i+1}(x) dx$$

$$= -\frac{1}{h^2} \int_{x_i}^{x_{i+1}} dx$$

$$= -\frac{1}{h}$$

Ici on remarque que $(B_h)_{i,i+1} = b(\phi_i,\phi_{i+1}) = b(\phi_{i+1},\phi_i)$ donc $(B_h)_{i,i+1} = (B_h)_{i+1,i} = -\frac{1}{h}$

$$(C_h)_{i,i+1} = c(\phi_i, \phi_{i+1})$$

$$= \int_{\Omega} \phi'_i(x)\phi_{i+1}(x) dx$$

$$= \int_{x_{i-1}}^{x_i} \phi'_i(x)\phi_{i+1}(x) dx + \int_{x_i}^{x_{i+1}} \phi'_i(x)\phi_{i+1}(x) dx$$

$$= \int_{x_i}^{x_{i+1}} \phi'_i(x)\phi_{i+1}(x) dx$$

$$= -\frac{1}{h^2} \int_0^h y dy \quad \text{avec } y = x - x_i$$

$$= -\frac{1}{2}$$

$$(C_h)_{i,i+1} = -\frac{1}{2} \quad \forall j = i+1$$

$$(C_h)_{i+1,i} = c(\phi_{i+1}, \phi_i)$$

$$= \int_{\Omega} \phi'_{i+1}(x)\phi_i(x) dx$$

$$= \int_{x_{i-1}}^{x_i} \phi'_{i+1}(x)\phi_i(x) dx + \int_{x_i}^{x_{i+1}} \phi'_{i+1}(x)\phi_i(x) dx$$

$$= \int_{x_i}^{x_{i+1}} \phi'_{i+1}(x)\phi_i(x) dx$$

$$= \frac{1}{h^2} \int_0^h y dy \quad \text{avec } y = x_{i+1} - x$$

$$= \frac{1}{2}$$

$$(C_h)_{i+1,i} = \frac{1}{2} \quad \forall j = i+1$$

Et en fin pour |i-j| > 1, on a alors $b(\phi_i, \phi_j) = c(\phi_i, \phi_j) = 0$ Au final on a les deux matrices :

$$B_{h} = \frac{1}{h} \begin{pmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \cdots & 0 \\ \vdots & \ddots & \ddots & -1 & 2 & -1 \\ 0 & \ddots & \ddots & 0 & -1 & 2 \end{pmatrix} \text{ et } C_{h} = \frac{1}{2} \begin{pmatrix} 0 & -1 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & -1 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \cdots & 0 \end{pmatrix}$$

2.2 Montrons que B_h est définie positive

Dans cette question il s'agit de Montrer :

$$\bullet \forall x \in \mathbf{R}^n \quad \langle B_h x, x \rangle \ge 0$$

En effet,
$$\forall x \in \mathbf{R}^n \quad \langle B_h x, x \rangle = \sum_{i=1}^n (B_h x)_i x_i$$

$$= \sum_{i=1}^n \sum_{j=1}^n (B_h)_{ij} x_j x_i$$

$$= \sum_{i=1}^n x_i \sum_{j=1}^n x_j \int_0^1 \phi_i'(x) \phi_j'(x) \mathbf{d}x \quad \text{nulle si } |i-j| > 1$$

$$= \sum_{i=1}^n x_i^2 \int_0^1 \phi_i'(x)^2 \mathbf{d}x$$

$$= \int_0^1 \sum_{i=1}^n (\phi_i'(x) x_i)^2 \mathbf{d}x \ge 0$$

On a donc $\forall x \in \mathbf{R}^n \quad \langle B_h x, x \rangle \geq 0$

 $\bullet \forall x \in \mathbf{R}^n \quad \langle B_h x, x \rangle = 0 \Leftrightarrow x = 0$

$$\langle B_h x, x \rangle = 0 \Leftrightarrow \int_0^1 \sum_{i=1}^n (\phi_i'(x)x_i)^2 \mathbf{d}x = 0$$
$$\Leftrightarrow \sum_{i=1}^n (\phi_i'(x)x_i)^2 = 0$$
$$\Leftrightarrow \phi_i'(x)x_i = 0$$
$$\Leftrightarrow x_i = 0$$

On a donc $\forall x \in \mathbf{R}^n \ \langle B_h x, x \rangle = 0 \Leftrightarrow x = 0$

De ce qui précède B_h est bien définie positive.

2.3 Montrons que C_h est antisymétrique

Nous avons:

$$(C_h)_{i,i+1} = c(\phi_i, \phi_{i+1})$$

$$= \int_{\Omega} \phi'_i(x)\phi_{i+1}(x) dx$$

$$= \int_{x_{i-1}}^{x_i} \phi'_i(x)\phi_{i+1}(x) dx + \int_{x_i}^{x_{i+1}} \phi'_i(x)\phi_{i+1}(x) dx$$

$$= \int_{x_i}^{x_{i+1}} \phi'_i(x)\phi_{i+1}(x) dx$$

$$= -\int_{x_i}^{x_{i+1}} \phi'_{i+1}(x)\phi_i(x) dx$$

$$= -c(\phi_{i+1}, \phi_i)$$

$$= -(C_h)_{i+1,i}$$

On rappelle ici que $(C_h)_{i,j}=0$ si i=j ou |i-j|>1

Ainsi $(C_h)_{i,j} = -(C_h)_{j,i}$; et donc C_h est antisymétrique.

2.4 Montrons que $A_h v.v = \epsilon B_h v.v$

Nous utilisons ici la notation : $A_h v.v = \langle A_h v, v \rangle$ Comme on a $A_h = \epsilon B_h + \lambda C_h$, alors :

$$\langle A_h v, v \rangle = \epsilon \langle B_h v, v \rangle + \lambda \langle C_h v, v \rangle$$

Montrons que $\langle C_h v, v \rangle = 0$:

$$\langle C_h v, v \rangle = \langle v, C_h v \rangle$$
 Car le produit scalaire est symétrique
 $= \langle v, (C_h)^t v \rangle$ Car $\forall X, Y \in \mathbf{R}^n, \langle X, Y \rangle = X^t Y$
 $= -\langle v, C_h v \rangle$ Car C_h est antisymétrique
 $= -\langle C_h v, v \rangle$ alors $\langle C_h v, v \rangle = 0$

D'où le résultat $A_h v.v = \epsilon B_h v.v$

De plus B_h est symétrique définie positive alors inversible, donc A_h inversible.

2.5 Pour $\epsilon=0.1, \lambda=1, f=1, \text{et } n \in \{10,20\}$ calculons la solution numérique.

FIGURE 1 – Solution numérique n=10

FIGURE 2 – Solution numérique n=20

FIGURE 3 – Solution numérique n=10

FIGURE 4 – Solution numérique n=20

Pour la représentation graphique des Figures 1 et 2, nous avons utilisé le logiciel "Gnuplot", car la sortie du graphique 1D en Freefem++ est assez sommaire.

Le commande : plot"resultat1.dat" w lp pt 15 et plot"resultat1.dat" w lp pt 15 ; sont utilisées pour tracer Figure 1et2.

2.6 Pour n de 10 à 100 calculons l'erreur et évaluons l'ordre de convergence.

Valeur	ErreurL2	ErreurH10
10	0.017431	0.621172
20	0.00498451	0.318819
30	0.00243705	0.213761
40	0.00148277	0.160682
50	0.00101511	0.128695
60	0.000747927	0.10732
70	0.000579315	0.0920305
80	0.00046523	0.0805524
90	0.000383955	0.0716191
100	0.000323713	0.0644688

On remarque que la valeur de l'erreur décroît dès qu'on raffine le maillage, ce qui nous garantie la stabilité et la convergence de la méthode. voir (erreur&convergence.edp)

3 Partie 2 : Avec des éléments finis P2

3.1 Pour $\epsilon = 0.1, \lambda = 1, f = 1, \text{et } n \in \{10, 20\} \text{ calculons la solution numérique.}$

FIGURE 5 – Solution numérique n=10

FIGURE 6 – Solution numérique n=20

FIGURE 7 – Solution numérique n=10

Figure 8 – Solution numérique n=10

FIGURE 9 – Solution numérique n=20

Remarque : la Figure1 (pour les éléments P1) est identique à la Figure5 (pour les éléments P2) et la Figure2 (pour les éléments P1) est identique à la Figure6 (pour les éléments P2).

3.2~ Pour n de 10 à 100 calculons l'erreur et évaluons l'ordre de convergence.

Valeur	ErreurL2	ErreurH10
10	0.00236703	0.0748683
20	0.000546583	0.0196543
30	0.000238457	0.00882753
40	0.000133213	0.00498589
50	8.49791e-05	0.00319763
60	5.89077e-05	0.00222332
70	4.32321e-05	0.00163477
80	3.30762e-05	0.00125233
90	2.61215e-05	0.000989899
100	2.1151e-05	0.000802069

On remarque que la valeur de l'erreur décroît dès qu'on raffine le maillage, ce qui nous garantie la stabilité et la convergence de la méthode.voir(erreur&convergencep2.edp)