Logistics: Assignment 3 and Project Milestone 1

- No class next Thursday, October 13
- Assignment 3: Due Oct 17 (Monday)
- Project milestone 1: Due Oct 14 (Fri)
 - Initial literature survey (know what other works are out there)
 - A plan on what you want to do for the remaining of the semester
 - Formalize your research question and approaches, e.g.,
 - Theory/simulation project: formalize your models
 - Data-analysis project: figure out where and how to get data and what you plan to do with it
 - Experiment/application project: have a prototype design and an evaluation plan
 - Include a timeline (weekly or biweekly) on what you plan to do
 - Nov 1: Midterm Project Pitch and Discussion
 - Nov 4: Milestone 2

Logistics: Peer Review Forms

• The link to the form is posted on the course website

- Please try to submit the form before 6pm
- It might make sense to keep it open and write comments as the presentation goes.

Lecture 12 Additional Discussion for Prediction Markets: Automated Market Maker

Instructor: Chien-Ju (CJ) Ho

How Stock Market Works?

- Common mechanism: Continuous double-auction
 - Buyers bid prices and quantities
 - Sellers ask prices and quantities
 - Keep bids/asks in order books
 - Decide price accordingly

- When the market is **thick** (i.e., there are many buyers/sellers), double auction is a mechanism with many good properties
- What if the market is thin?
 - Think about prediction market on events with less attention

Automated Market Maker

Thick vs thin markets

- Enable trade even without a counter-party to sell/buy.
 - How to determine the price?

Other Usage of Automated Market Maker

- The ability to deal with thin markets:
 - Well suited for distributed markets
- It has attracted attention in blockchain
 - No need to maintain a central order book
 - Al can execute the transactions with pre-defined formulas
 - Possible to formally ensure some nice properties

Proper Scoring Rules

Incentivizing Truthful Reports About Probabilities

- Example scenarios:
 - Ask a weather forecaster: will it rain tomorrow?
 - Ask a political researcher: will Trump be nominated for presidential election?
 - Ask a Microsoft employer: will the new version of Office be shipped on time?

- Want to obtain forecasts about future events
- How do we make sure we obtain truthful reports?

Incentivizing Truthful Reports

Setting

- Consider a rational agent with linear utility for cash
- Suppose there are n mutually exclusive and exhaustive states of the world $\Omega = \{w_1, w_2, ..., w_n\}$ (e.g., Sun, Rain, Snow)
- p_i is the subjective belief of the agent that state w_i will occur

Question

 How do we motivate this agent to tell us her beliefs about the likelihood of each state?

Scoring Rules

• A scoring rule rewards an agent $S(\vec{r}, w)$ when her reported distribution is \vec{r} and the realized outcome is w

Scoring Rules

• A scoring rule rewards an agent $S(\vec{r}, w)$ when her reported distribution is \vec{r} and the realized outcome is w

r̄: (rain: 20%, sun: 80%)
w: it rains

 A scoring rule is called proper if the agent maximizes her utility by providing truthful report

$$\vec{p} = \operatorname{argmax}_{\vec{r}} \sum_{i=1}^{n} p_i S(\vec{r}, w_i)$$

 A scoring rule is strictly proper if honestly reporting is the unique maximizer.

Example of Non-Proper Scoring Rule

- Consider a linear scoring rule $S(\vec{r}, w_i) = r_i$
 - Assume your report $\vec{r} = (\text{rain: } 70\%, \text{sun: } 30\%)$
 - If it rains, you get a reward of 0.7
 - If it is sunny, you get a reward of 0.3
- If you believes the probability for Rain and Sun $\vec{p}=(0.7,0.3)$

Expected payoff for truthful reporting, i.e., $\vec{r} = \vec{p}$

$$0.7 * 0.7 + 0.3 * 0.3 = 0.58$$

Expected payoff for non-truthful reporting, e.g., $\vec{r} = (\text{rain: 1, sun: 0})$

$$0.7 * 1 + 0.3 * 0 = 0.7$$

Examples of Strictly Proper Scoring Rules

• Quadratic scoring rule (Brier score):

$$S(\vec{r}, w_i) = r_i - \frac{1}{2} \sum_j r_j^2$$

• Logarithmic scoring rule:

$$S(\vec{r}, w_i) = \log r_i$$

- We can verify this by taking the gradient of the expected payoff
- Affine transformation of the proper scoring rule is still proper.

Back to Automated Market Maker

Goal:

Incentivize *multiple* agents to share their beliefs, and find a way to *aggregate* these beliefs into a unified prediction

- 1. Could use one scoring rule per agent, but not clear how to aggregate
- 2. Market itself is an aggregation mechanism (use final price as the prediction). However, standard stock-market-style trading might encounter issues for less popular predictions (market is too *thin*).

Market Scoring Rules [Hanson. 2007]

- Intuition: a "sequentially shared scoring rule"
 - Market maintains a vector of predictions $\vec{r}^{(t)}$
 - If a trader changes the vector from $\vec{r}^{(t)}$ to $\vec{r}^{(t+1)}$ and the outcome is w_i , the trader obtains reward

$$S(\vec{r}^{(t+1)}, w_i) - S(\vec{r}^{(t)}, w_i)$$

- Properties
 - Traders will truthfully report their beliefs as long as S is proper
 - Bounded loss from the market maker (assume w_i is realized)

•
$$\sum_{t=1}^{T} \left(S(\vec{r}^{(t+1)}, w_i) - S(\vec{r}^{(t)}, w_i) \right) = S(\vec{r}^{(T+1)}, w_i) - S(\vec{r}^{(1)}, w_i)$$

Cost-Function Based Market Maker

Consider a complete prediction market (covers all possible outcomes)

- Determines a price via a cost function C
 - Let q_i be the current number of purchased shares of the security for state i
 - The cost for purchasing a bundle $\vec{r} = (r_1, ...)$ of shares is

$$C(\vec{q} + \vec{r}) - C(\vec{q})$$

Prediction

• The price of security $p_i = \partial C/\partial q_i$

Cost-Function Based Market Maker

Another way to look at the connection between cost and price

- Price is the derivative of cost
- Cost is the integral of price
- There is an equivalency to market scoring rules

Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation. Hanson. Journal of Prediction Markets 2007.

Cost-Function Based Market Maker

• How to determine the cost function (or the price function)?

- Want the market maker to have "nice" properties:
 - Existence of instantaneous prices.
 C must be continuous and differentiable
 - Ciliust be continuous and differentiable
 - No arbitrage:

Can't buy a bundle r with a guaranteed positive profit regardless of outcome

- Expressiveness:
 - A trader must always be able to set the market prices to reflect his beliefs
- Information incorporation:
 - Purchase of a bundle should not decrease its price
- And others...

Connection to Convex Optimization

You can formulate the design of C as a design of convex functions

- It enables an interesting line of work
 - A New Understanding of Prediction Markets Via No-Regret Learning. Chen and Vaughan. EC 2010.
 - An Optimization-Based Framework for Automated Market-Making.
 Abernethy, Chen, and Vaughan. EC 2011.
 - and more (the papers by these authors)

Other Interesting Questions and Explorations

Combinatorial markets

Other Interesting Questions and Explorations

- Incentives/Manipulations in Prediction Markets
 - Information aggregation
 - Assume you have private information others don't know
 - Should you report as soon as possible or wait till later?
 - Bluffing:
 - People are influence by the market price
 - Can I bluff to mislead others for future gains?
 - Outside incentives and manipulation
 - Assume the price has impacts to the real outcome (e.g., election)
 - People might want to manipulate the market

Next 3 Lectures

Oct 13 No Class

Oct 18 Practical Issues: Complex Tasks

Workflow Design

Presenter: CJ

Oct 20 Practical Issues: Complex Tasks Expert Crowdsourcing and Teams

Presenter:

Danielle and Kaushik

Oct 25 Practical Issues:

Non-Independent Work and Argumentation

Presenter:

Cenhao, Ruiwei, and Yang