

Algoritmos e Lógica de Programação I

Unidade 01 Conceitos Iniciais

Prof. Rogério Napoleão Júnior

Há infinitas possibilidades de resolver um mesmo problema.

Autor Desconhecido

Introdução

- O que é um algoritmo?
 - Sequência finita de instruções para resolução de um problema.

- Na computação
 - Corresponde em transformar dados de entrada em um conjunto de dados de saída por meio de instruções computacionais.
- Exemplos de algoritmos
 - Receita para fazer um bolo
 - Cortar uma grama
 - Calcular a média entre dois valores
 - Calcular percentual de desconto de uma venda

A importância do algoritmo

- Independe de linguagem
 - Independente da linguagem o algoritmo mostrará os procedimentos necessários para resolução de uma tarefa lógica.

- Lógica das máquinas
 - A partir da linguagem de programação as máquinas executam os algoritmos.
- Algoritmo como conhecimento básico
 - Grandes gênios como Steve Jobs, Bill Gates aprenderam algoritmos.

Exemplo de Algoritmo

- Construir um algoritmo para uma pessoa cortar a grama de um jardim
- Por onde começar?
 - Qual a principal tarefa a ser cumprida?
 - O que é preciso para realizar a tarefa?
 - São necessários objetos e/ou ferramentas?
 - O ambiente é adequado?

- Estado Inicial
 - Entrada: grama longa, cortador de grama elétrico, ancinho
- Estado Final
 - Saída: grama curta

Exemplo de Algoritmo - Continuação

- Como fazer? Passo a passo
 - 1. Pegar o cortador de grama elétrico
 - 2. Ligar na tomada
 - 3. Ligar o cortador
 - 4. Passar na grama
 - 5. Desligar o cortador
 - 6. Desligar o cortador da tomada
 - 7. Pegar o ancinho
 - 8. Varrer a grama cortada com ancinho
 - 9. Dispensar a grama cortada
 - 10. Guardar as ferramentas
- Importante

Há infinitas possibilidades de resolver um mesmo problema!

Formas de representação de algoritmos

Descrição narrativa (não recomendado)

Fluxograma

• Linguagem de Programação

Pseudocódigo

Algoritmos – Descrição Narrativa

• Uso de linguagem natural para explicar o passo a passo

Dúvidas na interpretação

Ambiguidades

• Grandes chances de distorção na execução

Não recomendado

Algoritmos – Fluxograma

Utiliza-se de figurais visuais para descrever o passo a passo

Torna-se inviável para algoritmos grandes

Bom para pequenas instruções

Algoritmos – Linguagem de Programação

Linguagem utiliziada para que os desenvolvedores de software criem

programas

O próprio código fonte é um algoritmo

```
#include <stdio.h>
int main(void)
{
    float nota1, nota2, media;
    scanf("%f", &nota1);
    scanf("%f", &nota2);
    media = (nota1 + nota2)/2;
    printf("%f", media);
    return 0;
}
```

Serão executados por máquinas/computadores

Algoritmos - Pseudocódigo

Conhecido também por Portugol ou Português Estruturado

Fácil tradução para linguagem de máquina

Cria soluções computacionais independente de linguagem

```
Algoritmo soma

Var n1, n2, s: inteiro

Início

Leia(n1, n2)

s ← n1 + n2

Escreva(s)

Fim
```


Unidade 01 Variáveis

Prof. Rogério Napoleão Júnior

Variáveis

São valores que variam ao longo do tempo

Permite armazenar e acessar uma informação

Os valores ficam armazenados em memória

Auxiliam na execução do algoritmo

Toda variável possui: um TIPO e um IDENTIFICADOR (nome)

Variáveis

 Para melhor entendimento do algoritmo as variáveis têm nomes e tipos que estão ligados a sua função:

Variável: Idade

Valor: 20

Nomeando Variáveis

- Nunca começam com números;
- Geralmente começam com uma letra ou underline;
- Pode conter números, exceto no início;
- Não admite espaços;
- Não admite caracteres especiais;
- Não podem ser iguais a palavras reservadas (palavras utilizadas na linguagem)

Nomeando Variáveis

Exemplos:

IDENTIFICADORES VÁLIDOS	IDENTIFICADORES INVÁLIDOS
Α	2ª
a	b@
media	media idade
altura2	caso
media_idade	se
x36	x*y

Tipos de Variáveis

- Os tipos são definidos a partir do conteúdo que se deve armazenar
 - Para armazenar números inteiros, sem casas decimais, utiliza-se o tipo <u>inteiro</u>
 - Para armazenar números reais, com casas decimais, utilizase os tipos <u>real</u> ou <u>flutuante</u>
 - Para armazenar uma ou mais letras, utiliza-se o tipo caractere
 - Para armazenar um valor "verdadeiro" ou "falso" utiliza-se o tipo booleano ou lógico

Constantes

- São valores que nunca se alteram ao longo da execução do algoritmo.
- São descritas como variáveis, incluindo a palavra constante antes do tipo

- Exemplos:
 - A constante pi
 - Para realizar cálculos trigonométricos, admite-se que o valor de Pi seja 3,1416...
 - Valor percentual
 - Imagine uma aplicação que concede desconto de 5% para quem compra a vista
 - Pode-se criar uma constante chamada desocnto e atribuir o valor 5

Unidade 01 Expressões

Prof. Rogério Napoleão Júnior

Expressões

São fórmular matemáticas que efetuam cálculos.

- Podem ser de três tipos:
 - Expressões aritméticas
 - Exemplo: adição, substração, ...
 - Expressões relacionais
 - Exemplo: comparação de igualdade
 - Expressões lógicas
 - Exemplo: conjunção lógica

Expressões Aritméticas

Apresentam um resultado númerico como resultado

Forma de realizar cálculos com números inteiros e reais.

Manipular valores por meio de operadores matemáticos.

• Operações básicas: adição, subtração, multiplicação, divisão

Operadores utilizados: + - * /

Expressões Relacionais

Compreendem a comparação entre dois valores.

OPERAÇÃO	OPERADOR	SIGNIFICADO
Igual	=	A =1
Diferente	<>	A <> B
Maior	>	A > 5
Menor que	<	B < 12
Maior ou igual a	>=	A >= 6
Menor ou igual a	<=	B <=7

Quadro 10: Operadores relacionais

Fonte: adaptado de (ASCENCIO; CAMPOS, 2010)

Expressões Lógicas

Operações Lógicas:

• Negação: Inversão lógica (nao), símbolo ! ou ¬ ou "NÃO"

Conjunção: Operação e lógica, símbolo && ou ^ ou "E"

• Disjunção: Operação ou lógica, símbolo | | ou v ou "OU"

Operações Lógicas - Exemplo

- Negação
 - p = "O Brasil é hexacampeão"
 - !p = "O Brasil NÃO é hexacampeão"
- Conjução Operação lógica E
 - p = "Trouxe ovos"
 - q = "Trouxe leite"
 - p && q = "Trouxe ovos e leite"
- Disjunção Operação lógica OU
 - p = "Trouxe suco"
 - q = "Trouxe refrigerante"
 - p v q = "Trouxe suco ou trouxe refrigerante

Prioridade e procedência entre operações

- Operações Aritméticas
 - 1 Parênteses dentro para fora
 - 2 Potencialização e Radiciação
 - 3 Multiplicação e Divisão
 - 4 Soma e Subtração

- Operações Lógicas (booleanas)
 - 1 Parenteses dentro para for a
 - 2 Inversão
 - 3 Conjução
 - 4 Disjunção

Funções Intrínsecas

- Funcionalidades prontas, que se pode utilizar de maneira direta
 - Não é preciso entender o funcionamento (caixa preta)
 - Geralmente funções matemáticas
- Exemplos
 - SQRT ou RAIZQ
 - POW ou EXP
 - ABS
 - COS
 - SIN ou SEN

Unidade 01 Atribuição

Prof. Rogério Napoleão Júnior

Atribuição

Operação para armazenar ou alterar o conteúdo de uma variável

- Símbolo em pseudocódigo
 - <-
 - ←
- Outros símbolos
 - = (linguagem C)
 - := (linguagem Pascal)
- Sintaxe (Lê-se "variável recebe valor")
 - <variavel> ← <valor>

Atribuição - Exemplos

- peso ← 50.5
- num1 ← 10

• centimetros ← metros * 100

• area ← 3.14 * R²

• nome ← "Rogerio"

• flag ← falso

