Guía de Proyecto

Sistema de Valoración Inmobiliaria Geoespacial

Documento de Orientación y Recursos

Para: Jaime Riquelme, Felipe Baeza, Valentina Barria, Catalina López, Byron Caices

Profesor: Francisco Parra O.

Agosto 2025

OBJETIVO DEL DOCUMENTO

Este documento proporciona una guía detallada para desarrollar un Sistema de Valoración Inmobiliaria con componente geoespacial, incluyendo problemática específica, fuentes de datos, metodología sugerida y código de ejemplo.

Índice

1.	Defi	mición de la Problemática	3
	1.1.	Contexto del Problema	3
	1.2.	Problema Específico Propuesto	3
	1.3.	Alcance Sugerido	3
2.		ntes de Datos	4
	2.1.	Datos Primarios de Propiedades	4
	2.2.	Datos Geoespaciales	4
	2.3.	Datos Socioeconómicos	4
	2.4.	Código para Obtener Datos	4
		2.4.1. Web Scraping de Portal Inmobiliario	4
		2.4.2. Datos de OpenStreetMap	6
3.	Met	odología Propuesta	7
	3.1.	Pipeline de Procesamiento	7
	3.2.	Feature Engineering Detallado	7
	3.3.	Modelo de Machine Learning	9
4.	Imp	lementación del Sistema 1	.2
	4.1.	Arquitectura Propuesta	12
	4.2.	Dashboard Interactivo con Streamlit	12
	4.3.	API REST con FastAPI	15
5.	Aná	ilisis de Resultados Esperados 1	.8
	5.1.	Métricas de Evaluación	18
	5.2.	Análisis de Feature Importance	18
	5.3.	Visualizaciones Clave	18
6.	Cro	nograma Sugerido 1	.9
7.	Ent	regables Finales	.9
	7.1.	Código y Documentación	19
	7.2.	Aplicación Web	19
	7.3.	Presentación	20
8.	Refe	erencias y Recursos Adicionales	21
	8.1.	Papers Relevantes	21
	8.2.	Bibliotecas Python Especializadas	21
	8.3.	Datasets Públicos de Referencia	21
	8.4.	Herramientas Complementarias	21

1 Definición de la Problemática

1.1 Contexto del Problema

La valoración inmobiliaria en Chile presenta múltiples desafíos:

- Asimetría de información: Compradores y vendedores no tienen acceso a la misma información
- Valoración subjetiva: Los tasadores pueden tener sesgos o información incompleta
- Factores espaciales ignorados: Muchos modelos no consideran adecuadamente la ubicación
- Cambios temporales: El mercado inmobiliario es dinámico y los valores cambian constantemente
- Externalidades no capturadas: Contaminación, ruido, proyectos futuros no se reflejan en el precio

1.2 Problema Específico Propuesto

Problemática Central

¿Cómo desarrollar un modelo de valoración inmobiliaria que integre eficientemente factores espaciales, temporales y de entorno para predecir con precisión el valor de propiedades en el Gran Santiago?

 ${\bf Sub\text{-}problemas:}$

- 1. ¿Cuáles son los factores espaciales más relevantes para el precio?
- 2. ¿Cómo cuantificar el impacto de amenidades y des-amenidades urbanas?
- 3. ¿Cómo incorporar la autocorrelación espacial en el modelo?
- 4. ¿Cómo hacer el modelo interpretable para usuarios no técnicos?

1.3 Alcance Sugerido

Para hacer el proyecto manejable, sugiero enfocarse en:

- 1. **Área geográfica**: 3-4 comunas contiguas del Gran Santiago (ej: Providencia, Las Condes, Vitacura, Ñuñoa)
- 2. Tipo de propiedad: Departamentos (más homogéneos que casas)
- 3. **Período**: Últimos 2-3 años de datos
- 4. Producto final:
 - Modelo predictivo con R² ¿0.75
 - Dashboard interactivo con mapa
 - API REST para consultas
 - Reporte de factores más influyentes

2 Fuentes de Datos

2.1 Datos Primarios de Propiedades

Fuente	Tipo de Datos	Acceso
Portal Inmobiliario	Precios, características	Web scraping (legal)
Yapo.cl	Arriendos y ventas	API no oficial
TocToc.com	Proyectos nuevos	Web scraping
Conservador Bienes Raíces	Transacciones reales	Pago/presencial
SII (Avalúo fiscal)	Valores fiscales	Portal SII

2.2 Datos Geoespaciales

Dato	Fuente	Formato
Límites comunales	IDE Chile / INE	Shapefile/GeoJSON
Red de Metro	DTPM / Metro de Santiago	KML/Shapefile
Paraderos de bus	DTPM	CSV con coordenadas
Áreas verdes	MINVU / Municipalidades	Shapefile
Colegios	MINEDUC	CSV con direcciones
Centros de salud	MINSAL / DEIS	Shapefile/Excel
Centros comerciales	OpenStreetMap	GeoJSON vía Overpass
		API
Delitos	Subsecretaría Prevención	CSV por cuadrante
Ruido ambiental	MMA / Municipalidades	Raster/puntos

2.3 Datos Socioeconómicos

- Censo 2017: Datos demográficos por manzana censal
 - Fuente: https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda
 - Incluye: Población, educación, ocupación, vivienda
- Casen: Encuesta de caracterización socioeconómica
 - Fuente: http://observatorio.ministeriodesarrollosocial.gob.cl
 - Incluye: Ingresos, pobreza, educación por comuna
- IDE Observatorio de Ciudades UC:
 - Fuente: https://ideocuc-ocuc.hub.arcgis.com/
 - Incluye: Múltiples indicadores urbanos georreferenciados

2.4 Código para Obtener Datos

2.4.1. Web Scraping de Portal Inmobiliario

```
import requests
from bs4 import BeautifulSoup
import pandas as pd
import time
from selenium import webdriver
```

```
from selenium.webdriver.common.by import By
8
  def scrape_portal_inmobiliario(comuna, tipo='departamento'):
9
10
       Scraping responsable de Portal Inmobiliario
11
       IMPORTANTE: Respetar robots.txt y no sobrecargar el servidor
12
13
14
       # URL base
15
       base_url = f"https://www.portalinmobiliario.com/venta/departamento/{comuna}"
16
17
       # Configurar Selenium (necesario para sitios con JS)
       options = webdriver.ChromeOptions()
18
19
       options.add_argument('--headless')
20
       driver = webdriver.Chrome(options=options)
21
22
       propiedades = []
23
24
       try:
25
           driver.get(base_url)
26
           time.sleep(3) # Esperar carga de p gina
27
28
           # Obtener listado de propiedades
           listings = driver.find_elements(By.CLASS_NAME, "ui-search-result")
29
30
31
           for listing in listings[:10]: # Limitar para ejemplo
32
               try:
33
                   # Extraer informaci n
34
                   precio = listing.find_element(By.CLASS_NAME, "price-tag-fraction
      ").text
35
                   ubicacion = listing.find_element(By.CLASS_NAME, "ui-search-
      item__location").text
36
                   atributos = listing.find_elements(By.CLASS_NAME, "ui-search-card
      -attributes__attribute")
37
38
                   # Parsear atributos
39
                   attrs = {}
40
                   for attr in atributos:
41
                       texto = attr.text
                       if 'm ' in texto:
42
43
                            attrs['superficie'] = texto
                       elif 'dormitorio' in texto:
44
45
                            attrs['dormitorios'] = texto
                       elif 'ba o' in texto:
46
47
                            attrs['banos'] = texto
48
49
                   propiedades.append({
50
                        'precio': precio,
51
                        'ubicacion': ubicacion,
52
                        **attrs
                   })
53
54
55
               except Exception as e:
56
                   continue
57
58
       finally:
59
           driver.quit()
60
61
       return pd.DataFrame(propiedades)
62
63 # Uso
64 # df_props = scrape_portal_inmobiliario('providencia')
65 # print(df_props.head())
```

2.4.2. Datos de OpenStreetMap

```
import osmnx as ox
  import geopandas as gpd
3
4
  def obtener_amenidades_osm(comuna, tipo_amenidad):
5
6
      Obtener amenidades desde OpenStreetMap
7
8
      # Definir rea de b squeda
9
      place = f"{comuna}, Santiago, Chile"
10
11
      # Obtener amenidades
12
      amenidades = ox.geometries_from_place(
13
          place,
14
          tags={'amenity': tipo_amenidad}
15
16
      # Convertir a GeoDataFrame
17
      gdf = gpd.GeoDataFrame(amenidades)
18
19
20
      # Filtrar solo puntos (algunos pueden ser pol gonos)
21
      gdf_puntos = gdf[gdf.geometry.type == 'Point']
22
23
      return gdf_puntos[['name', 'amenity', 'geometry']]
24
25 # Obtener diferentes amenidades
26 restaurantes = obtener_amenidades_osm('Providencia', 'restaurant')
27 colegios = obtener_amenidades_osm('Providencia', 'school')
28 parques = obtener_amenidades_osm('Providencia', 'park')
29 hospitales = obtener_amenidades_osm('Providencia', 'hospital')
30
31 print(f"Restaurantes: {len(restaurantes)}")
32 print(f"Colegios: {len(colegios)}")
33 print(f"Parques: {len(parques)}")
34 print(f"Hospitales: {len(hospitales)}")
```

3 Metodología Propuesta

3.1 Pipeline de Procesamiento

1. Recolección de Datos

- Web scraping de portales inmobiliarios
- Descarga de datos geoespaciales oficiales
- Geocodificación de direcciones

2. Limpieza y Preparación

- Eliminar duplicados y outliers
- Imputación de valores faltantes
- Estandarización de formatos
- Validación de geometrías

3. Feature Engineering Espacial

- Distancias a puntos de interés
- Densidad de amenidades en buffers
- Índices de accesibilidad
- Variables de entorno (ruido, contaminación)
- Lag espacial de precios

4. Modelamiento

- Modelos base: Random Forest, XGBoost
- Modelos espaciales: GWR, Spatial Lag
- Ensemble de modelos
- Validación espacial (no aleatoria)

5. Visualización y Deployment

- Dashboard interactivo con Streamlit
- Mapa de calor de precios
- API REST con FastAPI
- Documentación completa

3.2 Feature Engineering Detallado

```
import geopandas as gpd
import numpy as np
from shapely.geometry import Point
from sklearn.neighbors import NearestNeighbors

class FeatureEngineerEspacial:
    """
    Clase para generar features espaciales para valoraci n inmobiliaria
    """

def __init__(self, propiedades_gdf, amenidades_dict):
    """
```

```
13
           propiedades_gdf: GeoDataFrame con propiedades
           amenidades_dict: Dict con GeoDataFrames de amenidades
14
15
16
           self.propiedades = propiedades_gdf
17
           self.amenidades = amenidades_dict
18
19
      def distancia_mas_cercana(self, tipo_amenidad):
           """Distancia a la amenidad m s cercana""
20
           amenidad_gdf = self.amenidades[tipo_amenidad]
21
22
23
           distancias = []
24
           for idx, prop in self.propiedades.iterrows():
               dist_min = amenidad_gdf.geometry.distance(prop.geometry).min()
25
26
               distancias.append(dist_min * 111000) # Convertir a metros
27
28
           return np.array(distancias)
29
30
      def densidad_en_radio(self, tipo_amenidad, radio_metros):
31
           """Cantidad de amenidades en un radio dado"""
32
           amenidad_gdf = self.amenidades[tipo_amenidad]
33
           radio_grados = radio_metros / 111000
34
35
           densidades = []
           for idx, prop in self.propiedades.iterrows():
36
               buffer = prop.geometry.buffer(radio_grados)
37
               dentro = amenidad_gdf[amenidad_gdf.geometry.within(buffer)]
38
39
               densidades.append(len(dentro))
40
41
           return np.array(densidades)
42
43
      def indice_accesibilidad(self, pesos=None):
44
           """ ndice compuesto de accesibilidad"""
45
           if pesos is None:
               pesos = {
46
47
                   'metro': 0.3,
48
                   'bus': 0.2,
49
                   'colegio': 0.2,
50
                   'hospital': 0.15,
51
                   'parque': 0.15
52
               }
53
54
           indice = np.zeros(len(self.propiedades))
55
56
           for amenidad, peso in pesos.items():
57
               if amenidad in self.amenidades:
58
                   # Normalizar distancia (inversa)
59
                   dist = self.distancia_mas_cercana(amenidad)
                   dist_norm = 1 / (1 + dist/1000) # Decaimiento con distancia
60
61
                   indice += peso * dist_norm
62
63
           return indice
64
65
      def lag_espacial_precio(self, k_vecinos=5):
66
           """Precio promedio de los k vecinos m s cercanos"""
67
           coords = np.array([[p.x, p.y] for p in self.propiedades.geometry])
68
69
           # KNN para encontrar vecinos
70
           nbrs = NearestNeighbors(n_neighbors=k_vecinos+1)
71
           nbrs.fit(coords)
72
           distances, indices = nbrs.kneighbors(coords)
73
74
           # Calcular lag (excluyendo la propiedad misma)
75
           lag_prices = []
```

```
for idx_list in indices:
76
77
                vecinos = idx_list[1:] # Excluir el primero (s
                precio_promedio = self.propiedades.iloc[vecinos]['precio'].mean()
78
79
                lag_prices.append(precio_promedio)
80
81
           return np.array(lag_prices)
82
83
       def crear_features(self):
            """Generar todas las features espaciales"""
84
           features = pd.DataFrame()
85
86
87
           # Distancias
           features['dist_metro'] = self.distancia_mas_cercana('metro')
88
89
           features['dist_colegio'] = self.distancia_mas_cercana('colegio')
90
           features['dist_hospital'] = self.distancia_mas_cercana('hospital')
91
           features['dist_parque'] = self.distancia_mas_cercana('parque')
92
93
           # Densidades
94
           features['restaurantes_500m'] = self.densidad_en_radio('restaurant',
       500)
95
           features['colegios_1km'] = self.densidad_en_radio('colegio', 1000)
96
           features['parques_1km'] = self.densidad_en_radio('parque', 1000)
97
98
              ndices
                     compuestos
           features['indice_accesibilidad'] = self.indice_accesibilidad()
99
100
           features['precio_lag'] = self.lag_espacial_precio()
101
102
           # Coordenadas (para capturar tendencias espaciales)
103
           features['lat'] = [p.y for p in self.propiedades.geometry]
104
           features['lon'] = [p.x for p in self.propiedades.geometry]
105
106
           return features
107
108 # Uso
109 | # fe = FeatureEngineerEspacial(propiedades_gdf, amenidades_dict)
110 # features_espaciales = fe.crear_features()
```

3.3 Modelo de Machine Learning

```
1 from sklearn.model_selection import KFold
2 from sklearn.ensemble import RandomForestRegressor
3 from xgboost import XGBRegressor
4 from sklearn.metrics import mean_absolute_error, r2_score
5 import numpy as np
6
7
  class ModeloValoracion:
8
9
       Modelo de valoraci n inmobiliaria con validaci n espacial
10
11
12
       def __init__(self):
           self.modelos = {
13
14
               'rf': RandomForestRegressor(
15
                   n_estimators=200,
16
                   max_depth=15,
17
                   min_samples_split=5,
18
                   random_state=42
19
20
               'xgb': XGBRegressor(
21
                   n_estimators=200,
22
                   max_depth=8,
23
                   learning_rate=0.05,
```

```
24
                   random_state=42
25
               )
26
27
           self.mejor_modelo = None
28
           self.features_importance = None
29
30
      def validacion_espacial(self, X, y, coords, n_splits=5):
31
           Validaci n por bloques espaciales, no aleatoria
32
33
34
           from sklearn.cluster import KMeans
35
36
           # Crear clusters espaciales
37
           kmeans = KMeans(n_clusters=n_splits, random_state=42)
38
           clusters = kmeans.fit_predict(coords)
39
40
           scores = {nombre: [] for nombre in self.modelos.keys()}
41
42
           for cluster_test in range(n_splits):
43
               # Split espacial
               mask_test = clusters == cluster_test
44
45
               mask_train = ~mask_test
46
47
               X_train, X_test = X[mask_train], X[mask_test]
               y_train, y_test = y[mask_train], y[mask_test]
48
49
50
               # Entrenar y evaluar cada modelo
51
               for nombre, modelo in self.modelos.items():
52
                   modelo.fit(X_train, y_train)
53
                   y_pred = modelo.predict(X_test)
                   score = r2_score(y_test, y_pred)
54
55
                   scores[nombre].append(score)
56
57
           # Promediar scores
58
           mean_scores = {nombre: np.mean(s) for nombre, s in scores.items()}
59
60
           # Seleccionar mejor modelo
61
           mejor_nombre = max(mean_scores, key=mean_scores.get)
62
           self.mejor_modelo = self.modelos[mejor_nombre]
63
64
           print("=== Resultados Validaci n Espacial ===")
           for nombre, score in mean_scores.items():
65
66
               print(f"{nombre}: R = {score:.3f}")
67
           print(f"\nMejor modelo: {mejor_nombre}")
68
69
           return mean_scores
70
71
      def entrenar_modelo_final(self, X, y):
72
           """Entrenar modelo final con todos los datos"""
           self.mejor_modelo.fit(X, y)
73
74
75
           # Feature importance
           if hasattr(self.mejor_modelo, 'feature_importances_'):
76
               self.features_importance = self.mejor_modelo.feature_importances_
77
78
79
           return self
80
81
      def predecir(self, X):
           """Hacer predicciones"""
82
83
           return self.mejor_modelo.predict(X)
84
85
      def explicar_prediccion(self, X_single, feature_names):
86
```

```
87
            Explicar una predicci n individual usando SHAP
88
89
            import shap
90
91
           # Crear explicador SHAP
           explainer = shap.TreeExplainer(self.mejor_modelo)
92
93
           shap_values = explainer.shap_values(X_single)
94
95
           # Crear dataframe con contribuciones
96
           contribuciones = pd.DataFrame({
97
                'feature': feature_names,
98
                'valor': X_single.flatten(),
99
                'impacto': shap_values.flatten()
100
           })
101
102
           contribuciones = contribuciones.sort_values('impacto',
103
                                                        key=abs,
104
                                                        ascending=False)
105
106
           return contribuciones
107
108 # Uso
109 # modelo = ModeloValoracion()
110 # scores = modelo.validacion_espacial(X, y, coords)
# modelo.entrenar_modelo_final(X, y)
112 # predicciones = modelo.predecir(X_test)
```

4 Implementación del Sistema

4.1 Arquitectura Propuesta

```
SISTEMA DE VALORACIÓN
               Process Layer Model Layer
Data Layer
                                          Present Layer
• Web Scraping • Limpieza
                             • RF/XGBoost • Dashboard
                                           • API REST
• APIs

    Geocoding

    GWR

Archivos
               Features
                             • Ensemble
                                           • Reportes

    PostgreSQL

               • Validación • SHAP
                                           • Mapas
```

4.2 Dashboard Interactivo con Streamlit

```
import streamlit as st
2 import pandas as pd
3 import geopandas as gpd
4 import folium
5 from streamlit_folium import folium_static
6 import plotly.express as px
8 # Configuraci n de la p gina
9 st.set_page_config(
10
      page_title="Valoraci n Inmobiliaria Santiago",
      page_icon="
11
12
      layout="wide"
13)
14
15 st.title("
                 Sistema de Valoraci n Inmobiliaria")
16 st.markdown("---")
17
18 # Sidebar para inputs
19 with st.sidebar:
      st.header("Par metros de B squeda")
20
21
      comuna = st.selectbox(
22
23
          "Comuna",
           ["Providencia", "Las Condes", "Vitacura", " uoa "]
24
25
26
27
      tipo_propiedad = st.selectbox(
28
           "Tipo de Propiedad",
29
           ["Departamento", "Casa", "Oficina"]
30
31
32
      superficie = st.slider(
33
          "Superficie (m )",
34
          min_value=20,
35
          max_value=500;
36
           value=(50, 150)
37
38
39
      dormitorios = st.slider(
40
          "Dormitorios",
41
          min_value=1,
42
          max_value=6,
43
          value=2
```

```
44
45
       banos = st.slider(
46
47
            "Ba os",
48
           min_value=1,
49
           max_value=4,
50
            value=1
51
52
53
       st.markdown("---")
       st.header("Factores de Entorno")
54
55
       cerca_metro = st.checkbox("Cerca de Metro (<500m)")</pre>
56
57
       cerca_parque = st.checkbox("Cerca de Parque (<300m)")</pre>
58
       cerca_colegio = st.checkbox("Cerca de Colegio (<1km)")</pre>
59
60 # Layout principal
61
   col1, col2 = st.columns([2, 1])
62
63
   with col1:
64
       st.subheader("Mapa de Valoraci n")
65
66
       # Crear mapa base
67
       m = folium.Map(
68
            location = [-33.45, -70.65],
69
            zoom_start=12,
70
            tiles='OpenStreetMap'
71
       )
72
73
       # Agregar capa de calor de precios
74
       # (aqu ir an los datos reales)
75
       from folium.plugins import HeatMap
76
       # Datos de ejemplo
77
78
       heat_data = [
79
            [-33.42, -70.61, 0.9], \# Las Condes alto
80
            [-33.43, -70.63, 0.7], # Providencia
81
            [-33.45, -70.65, 0.5], # Santiago Centro
82
            [-33.47, -70.67, 0.3], # Estaci n Central
83
       ]
84
       HeatMap(heat_data).add_to(m)
85
86
87
       # Agregar marcadores de propiedades
88
       # (datos de ejemplo)
       propiedades_ejemplo = [
89
            {"lat": -33.425, "lon": -70.615, "precio": 6500, "dir": "Av. Apoquindo
90
       3000"},
           {"lat": -33.435, "lon": -70.625, "precio": 4500, "dir": "Providencia
91
       1234"},
           {"lat": -33.445, "lon": -70.635, "precio": 3500, "dir": "Manuel Montt
92
       567"},
93
94
95
       for prop in propiedades_ejemplo:
96
           folium.Marker(
97
                [prop["lat"], prop["lon"]],
98
                popup=f"${prop['precio']} UF < br > {prop['dir']}",
99
                icon=folium.Icon(color='green', icon='home')
100
            ).add_to(m)
101
102
       # Mostrar mapa
103
       folium_static(m)
```

```
104
105
   with col2:
106
       st.subheader("Valoraci n Estimada")
107
108
       # C lculo de precio (simulado)
109
       precio_base = 3000 # UF
110
111
       # Ajustes por comuna
112
       ajuste_comuna = {
113
            "Las Condes": 1.3,
            "Vitacura": 1.4,
114
            "Providencia": 1.2,
115
116
              uoa ": 1.0
117
118
119
       precio_estimado = precio_base * ajuste_comuna[comuna]
120
121
       # Ajustes por caracter sticas
122
       if cerca_metro:
123
           precio_estimado *= 1.15
124
       if cerca_parque:
           precio_estimado *= 1.10
125
126
       if cerca_colegio:
127
           precio_estimado *= 1.05
128
129
       # Mostrar precio
130
       st.metric(
131
            label="Precio Estimado",
            value=f"{precio_estimado:.0f} UF",
132
133
            delta=f"{(precio_estimado/precio_base - 1)*100:.1f}% vs promedio"
134
       )
135
136
       st.markdown("---")
137
138
       # Factores que influyen
139
       st.subheader("Factores Principales")
140
141
       factores = pd.DataFrame({
            'Factor': ['Ubicaci n', 'Metro', 'Superficie', 'Parques', 'Colegios'],
142
143
            'Impacto': [35, 25, 20, 10, 10]
       })
144
145
146
       fig = px.bar(
147
            factores,
148
            x='Impacto',
149
            y='Factor',
150
            orientation='h',
151
            color='Impacto',
152
            color_continuous_scale='RdYlGn'
153
154
155
       st.plotly_chart(fig, use_container_width=True)
156
157 # Secci n de comparaci n
158 st.markdown("---")
159 st.subheader("Comparaci n con Propiedades Similares")
160
161 # Tabla de propiedades similares (datos de ejemplo)
162 similares = pd.DataFrame({
163
        'Direcci n': ['Av. Providencia 123', 'Los Leones 456', 'Tobalaba 789'],
        'Superficie': [85, 92, 78],
164
        'Dormitorios': [2, 2, 2],
165
166
       'Precio UF': [4200, 4500, 3900],
```

```
'Precio/m ': [49.4, 48.9, 50.0]
167
168 })
169
170 st.dataframe(similares, use_container_width=True)
171
172 # Gr fico de tendencia
173 st.markdown("---")
174 st.subheader("Tendencia de Precios ( ltimos 12 meses)")
175
176 # Datos de ejemplo
177 meses = pd.date_range('2024-01-01', periods=12, freq='M')
178 | precios\_promedio = [3000, 3050, 3100, 3150, 3200, 3180,
179
                        3250, 3300, 3350, 3400, 3420, 3450]
180
181 tendencia = pd.DataFrame({
        'Mes': meses,
182
183
        'Precio_UF': precios_promedio
184 })
185
186 fig_tendencia = px.line(
187
       tendencia,
       x = 'Mes',
188
189
       y='Precio_UF',
190
       title=f'Evoluci n Precio Promedio - {comuna}',
191
       markers=True
192
193
194 st.plotly_chart(fig_tendencia, use_container_width=True)
195
196 # Footer
197 st.markdown("---")
|198| st.caption("Sistema desarrollado por Grupo de Valoraci n Inmobiliaria -
       Geoinform tica 2025")
```

4.3 API REST con FastAPI

```
1 from fastapi import FastAPI, HTTPException
  from pydantic import BaseModel
3 from typing import Optional
  import pandas as pd
4
5 import joblib
6
7
  app = FastAPI(title="API Valoraci n Inmobiliaria")
8
9 # Cargar modelo entrenado
10 modelo = joblib.load('modelo_valoracion.pkl')
11 scaler = joblib.load('scaler.pkl')
12
13 class PropiedadInput(BaseModel):
      """Schema de entrada para valoraci n"""
14
15
      comuna: str
16
      superficie: float
17
      dormitorios: int
18
      banos: int
19
      estacionamientos: Optional[int] = 0
20
      piso: Optional[int] = 1
21
      orientacion: Optional[str] = "Norte"
22
      lat: float
23
      lon: float
24
25
  class ValoracionOutput(BaseModel):
      """Schema de salida con valoraci n"""
26
```

```
27
       precio_estimado_uf: float
28
       precio_estimado_clp: float
29
       rango_min_uf: float
30
       rango_max_uf: float
31
       confianza: float
32
       factores_principales: dict
33
  @app.get("/")
34
35 def read_root():
36
       return {
37
           "mensaje": "API de Valoraci n Inmobiliaria",
           "version": "1.0",
38
39
           "endpoints": ["/valorar", "/comparar", "/tendencia"]
40
41
42
  @app.post("/valorar", response_model=ValoracionOutput)
43
  async def valorar_propiedad(propiedad: PropiedadInput):
44
45
       Endpoint para valorar una propiedad
46
47
       try:
48
           # Preparar features
49
           features = prepare_features(propiedad)
50
           features_scaled = scaler.transform(features)
51
52
           # Predecir
           precio_uf = modelo.predict(features_scaled)[0]
53
54
55
           # Calcular intervalo de confianza
           if hasattr(modelo, 'predict_proba'):
56
               std = modelo.predict_std(features_scaled)[0]
57
58
               rango_min = precio_uf - 1.96 * std
               rango_max = precio_uf + 1.96 * std
59
               confianza = min(1.0, 1 / (1 + std/precio_uf))
60
61
62
               rango_min = precio_uf * 0.9
63
               rango_max = precio_uf * 1.1
64
               confianza = 0.85
65
66
           # Factores principales (simulado, idealmente con SHAP)
67
           factores = {
               "ubicacion": 0.35,
68
69
               "superficie": 0.25,
70
               "dormitorios": 0.15,
71
               "amenidades": 0.15,
72
               "otros": 0.10
73
           }
74
75
           return ValoracionOutput(
76
               precio_estimado_uf=round(precio_uf, 0),
               precio_estimado_clp=round(precio_uf * 40000, 0),
77
               rango_min_uf=round(rango_min, 0),
78
79
               rango_max_uf = round (rango_max, 0),
80
               confianza=round(confianza, 2),
81
               factores_principales=factores
82
           )
83
84
       except Exception as e:
85
           raise HTTPException(status_code=400, detail=str(e))
86
87 @app.get("/comparar/{comuna}")
88 async def comparar_comuna(comuna: str, superficie_min: int = 50):
89
```

```
90
        Comparar precios en una comuna
91
92
                 ir a la l gica real de comparaci n
        # Aqu
93
        return {
94
             "comuna": comuna,
             "precio_promedio_uf": 3500,
95
             "precio_min_uf": 2000,
96
             "precio_max_uf": 8000,
97
             "total_propiedades": 1234,
98
             "variacion_mensual": 2.3
99
100
        }
101
102 | Capp.get("/tendencia/{comuna}/{periodo}")
103 async def obtener_tendencia(comuna: str, periodo: str = "12m"):
104
105
        Obtener tendencia de precios
106
107
        # Datos de ejemplo
108
        return {
             "comuna": comuna,
109
             "periodo": periodo,
110
             "tendencia": [
111
                 {"mes": "2024-01", "precio_promedio": 3000},
{"mes": "2024-02", "precio_promedio": 3050},
{"mes": "2024-03", "precio_promedio": 3100},
112
113
114
115
             "proyeccion_3m": 3250,
116
             "crecimiento_anual": 8.5
117
        }
118
119
120
   def prepare_features(propiedad: PropiedadInput):
121
122
        Preparar features para el modelo
123
124
        # Aqu ir a la l gica real de preparaci n
125
        features = pd.DataFrame([{
126
             'superficie': propiedad.superficie,
127
             'dormitorios': propiedad.dormitorios,
128
             'banos': propiedad.banos,
129
             'lat': propiedad.lat,
130
             'lon': propiedad.lon,
             # ... m s features
131
132
        }])
133
        return features
134
135 # Para ejecutar:
136 # uvicorn main:app --reload
```

5 Análisis de Resultados Esperados

5.1 Métricas de Evaluación

Métrica	Objetivo	Interpretación
R ² Score	> 0.75	Varianza explicada por el modelo
MAE (UF)	< 200	Error absoluto promedio
MAPE $(\%)$	< 10 %	Error porcentual promedio
RMSE (UF)	< 300	Penaliza errores grandes

5.2 Visualizaciones Clave

- 1. Mapa de calor de precios: Identificar zonas premium y económicas
- 2. Scatter plot predicción vs real: Evaluar precisión del modelo
- 3. Gráfico SHAP: Explicar predicciones individuales
- 4. Serie temporal: Evolución de precios por zona
- 5. Boxplot por comuna: Distribución de precios

6 Cronograma Sugerido

Semana	Fase	Actividades
1-2	Recolección	Web scraping inicialDescarga datos geoespacialesConfiguración ambiente
3-4	Preparación	Limpieza de datosGeocodificaciónIntegración fuentes
5-6	Features	Cálculo distanciasÍndices de accesibilidadVariables de entorno
7-8	Modelado	Entrenamiento modelosValidación espacialOptimización hiperparámetros
9-10	Sistema	Desarrollo dashboardImplementación APITesting
11-12	Finalización	DocumentaciónPresentaciónDeployment

7 Entregables Finales

7.1 Código y Documentación

- Repositorio GitHub con:
 - README completo
 - Requirements.txt
 - Notebooks documentados
 - Scripts modulares
 - Tests unitarios

■ Documentación técnica:

- Descripción de features
- Metodología de modelado
- API documentation
- Manual de usuario

7.2 Aplicación Web

- Dashboard interactivo con:
 - Mapa de valoraciones
 - Calculadora de precio

- Comparador de propiedades
- Tendencias del mercado
- API REST con endpoints para:
 - Valoración individual
 - Comparación por zona
 - Tendencias históricas
 - Recomendaciones

7.3 Presentación

- Slides (15-20) cubriendo:
 - Problema y motivación
 - Datos y metodología
 - Resultados y métricas
 - Demo en vivo
 - Conclusiones y trabajo futuro
- Poster científico formato A1
- Video demo (3-5 minutos)

8 Referencias y Recursos Adicionales

8.1 Papers Relevantes

- 1. Bourassa, S. C., Cantoni, E., & Hoesli, M. (2007). Spatial dependence, housing submarkets, and house price prediction. The Journal of Real Estate Finance and Economics.
- 2. Yoo, S., Im, J., & Wagner, J. E. (2012). Variable selection for hedonic model using machine learning approaches. Landscape and Urban Planning.
- 3. Čeh, M., Kilibarda, M., Lisec, A., & Bajat, B. (2018). Estimating the performance of random forest versus multiple regression for predicting prices of the apartments. ISPRS International Journal of Geo-Information.

8.2 Bibliotecas Python Especializadas

PySAL: Análisis espacial avanzado

■ GeoPy: Geocodificación

• OSMnx: Datos de OpenStreetMap

• Folium: Mapas interactivos

• SHAP: Explicabilidad de modelos

■ **Prophet**: Series temporales

8.3 Datasets Públicos de Referencia

Boston Housing: Dataset clásico para practicar

• King County: Casas en Seattle con componente espacial

• Ames Housing: Dataset detallado de Iowa

8.4 Herramientas Complementarias

• QGIS: Para análisis espacial visual

■ PostgreSQL + PostGIS: Base de datos espacial

Apache Superset: Dashboards empresariales

■ MLflow: Tracking de experimentos

■ **DVC**: Versionado de datos

CONTACTO Y SOPORTE

Para dudas específicas sobre implementación, pueden contactar: francisco.parra.o@usach.cl

Horario de consulta: Jueves 14:00-16:00 Office Hours virtuales: Previa coordinación