Pasos Algoritmo Dijkstra

1.-PASO 0 (INICIACIÓN):

$$\begin{split} &D_s = 0 \\ &D_j = d_{s,j} \forall j <> s \\ &P = \{s\} \\ &T = \{resto \quad nodos\} \end{split}$$

2. PASO 1:

Encontramos $i \notin P|D_i = \min_{j \notin P} \{D_j\}$

Puede existir un empate, en tal caso se elige uno arbitrariamente o de acuerdo a un criterio marcado

$$P = P \cup \{i\}$$

Si P contiene a todos los nodos se para, si no continuamos con el paso 3.

3. PASO 2

(ACTUALIZACIÓN):
$$\forall j \notin P, D_j = min\{D_j, d_{i,j} + D_i\}$$

- Redes y Servicios de Comunicaciones -

Algoritmos de encaminamiento

EJEMPLO DIJKSTRA

$$P = \{1\} \qquad T = \{2,3,4,5,6\}$$

$$D_{1K} = \{0,1,-,4,-,-\}$$

$$T_{enc} = \{1,2,-,4,-,-\}$$

$$P = \{_,_\} \quad T = \{_,_,_\} \quad P = \{_,_,_\} \quad T = \{_,_,_\} \quad P = \{_,_,_,_\} \quad T = \{_,_\} \quad T = \{_,_,_\} \quad T = \{_,_,_\} \quad T = \{_,_,_\} \quad T = \{_,_,_,_\} \quad T = \{_,_,_,_,_\} \quad T = \{_,_,_,_,_\} \quad T = \{_,_,_,_,_\} \quad T = \{_,_,_,_,_,_\} \quad T = \{_,_,_,_,_,_,_\} \quad T = \{_,_,_,_,_,_\} \quad T = \{_,_,_,_,_,_,_\} \quad T = \{_,_,_,_,_,_,_,_\} \quad T = \{_,_,_,_,_,_,_,_\} \quad T = \{_,_,_,_,_,_,_,_ \} \quad T = \{_,_,_,_,_,_,_,_,_,_,_$$

$$P = \{_,_,_,_,_\} \quad T = \{_\}$$

$$D_{1K} = \{_,_,_,_,_,_\}$$

$$T_{enc} = \{_,_,_,_,_,_\}$$

$$P = \{_,_,_,_,_,_\}$$

$$D_{1K} = \{_,_,_,_,_,_\}$$

$$T_{enc} = \{_,_,_,_,_,_\}$$

İŦ

- Redes y Servicios de Comunicaciones -

Algoritmos de encaminamiento

EJEMPLO DIJKSTRA

$$P = \{1\} \qquad T = \{2,3,4,5,6\}$$

$$D_{1K} = \{0,1,-,4,-,-\}$$

$$T_{enc} = \{1,2,-,4,-,-\}$$

$$P = \{1,2\} \qquad T = \{3,4$$

$$D_{1K} = \{0,1,4,4,2,-\}$$

$$T_{enc} = \{1,2,2,4,2,-\}$$

$$P = \{1,2\} \quad T = \{3,4,5,6\} \qquad P = \{1,2,5\} \quad T = \{3,4,6\} \qquad P = \{1,2,5,4\} \quad T = \{3,6\}$$

$$D_{1K} = \{0,1,4,4,2,-\} \qquad D_{1K} = \{0,1,3,3,2,6\} \qquad D_{1K} = \{0,1,3,3,2,6\} \qquad D_{1K} = \{0,1,3,3,2,6\} \qquad D_{1K} = \{1,2,2,4,2,-\} \qquad T_{enc} = \{1,2,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,2,5\} \qquad D_{1K} = \{1,2,2,5,2,5,2,5,2,5\} \qquad D_{1K} = \{1,2,2,5,2,5,2,5,2,5\} \qquad D_{1K} = \{1,2,2,5,2,5,2,5,2,5\} \qquad D_{1K} = \{1,2,2,5,2,5,2,5\} \qquad D_{1K} = \{1,2,2,5,2,5\} $

$$P = \{1,2\} \quad T = \{3,4,5,6\} \qquad P = \{1,2,5\} \quad T = \{3,4,6\} \qquad P = \{1,2,5,4\} \quad T = \{3,6\} \qquad P = \{1,2,4,2,-\} \qquad D_{1K} = \{0,1,3,3,2,6\} \qquad D_{1K} = \{0,1,3,3,2,6\} \qquad D_{1K} = \{1,2,2,4,2,-\} \qquad T_{enc} = \{1,2,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5,2,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5,2,5\} \qquad T_{enc} = \{1,2,2,5,2,5\} \qquad T_{enc} = \{1,2,2,5\} $

$$P = \{1, 2, 3, 4, 3\} \quad T = \{0\}$$

$$D_{1K} = \{0, 1, 3, 3, 2, 5\}$$

$$T_{enc} = \{1, 2, 2, 5, 2, 5, 2, 2, 5, 3\}$$

- Redes y Servicios de Comunicaciones -

Pasos Algoritmo Floyd-Warshall

1. PASO 0 (INICIACIÓN):

$$D_{ij}^{(0)} = d_{ij}$$
$$\forall i, j, (i \neq j)$$

2.-PASO 1: (ITERACIÓN)

$$\forall n = 0, 1, ..., (N-1)$$

$$D_{ij}^{(n+1)} = min \Big[D_{ij}^{(n)}, D_{i(n+1)}^{(n)} + D_{(n+1)j}^{(n)} \Big] \forall (i \neq j)$$

Nota:

 $D_n^{(n)}$

Es el camino del nodo "i" al nodo "j" pasando por n nodos intermedios

Algoritmos de encaminamiento

EJEMPLO FLOYD-WARSHALL

2. Inter. 1 y 2
$$\equiv \text{Inter. 1,2 y 3} \begin{cases} 0 & 1 & (5)(3) & 2 \\ 1 & 0 & 4 & 2 & 3 \\ \hline 5 & 4 & 0 & 1 & 7 \\ \hline 3 & 2 & 1 & 0 & 1 \\ 2 & 3 & 7 & 1 & 0 \\ \end{cases}$$

2. Inter. 1 y 2
$$= \text{Inter. } 1,2 \text{ y } 3$$

$$= \text{Inter. } 1,2 \text{ y } 3$$

$$= \text{Inter. } 1,2 \text{ y } 3$$

$$= \text{Inter. } 1,2,3 \text{ y } 4$$

$$= \text{Inter. } 1,2,3,4 \text{ y } 5$$

$$=$$

- Redes y Servicios de Comunicaciones -

Pasos Algoritmo BellMan-Ford

1. PASO 0 (INICIACIÓN):

$$D_j^{(0)} = \infty, \forall j \neq i$$

 $D_i^{(0)} = 0$

2.-PASO 1: (ITERACIÓN)

$$D_{j}^{(n+1)} = \min_{j} \left[D_{j}^{(n)} + d_{i,j} \right], \forall j \neq i$$

"n" es el número de saltos Nota:

d_{i,i} es la distancia entre nodos contiguos

D_{i,j} es la distancia entre dos nodos no contiguos

Pasos Algoritmo BellMan-Ford Distribuido

1. PASO 0 (INICIACIÓN):

$$D(i, j) = \begin{cases} d_{i,j} & \text{si } j \text{ es vecino de i} \\ \infty & \text{para el resto} \end{cases}$$

$$n(i, j) = j \quad \text{(para i } y \text{ j vecinos)}$$

2.-PASO 1: (ACTUALIZACIÓN)

cada cierto tiempo, el nodo 'i' envía a sus vecinos D(i,j), recibiendo a su vez de todos sus vecinos 'j' los D(j,k). Entonces, el nodo 'i' calcula la distancia de 'i' a 'k' pasando por 'j':

$$D(i,k;j) = D(i,j) + D(j,k)$$

y realiza la siguiente actualización de su tabla de encaminamiento:

$$\begin{vmatrix} si & D(i,k;j) < D(i,k) \Rightarrow \begin{cases} D(i,k) = D(i,k;j) \\ n(i,k) = j \end{vmatrix}$$

Nota:
$$n(i,j) = k$$
 \longrightarrow es el siguiente salto para ir del nodo 'i' al 'j' $D(i,j)$ \longrightarrow es la distancia del nodo 'i' al 'j' (pasando por $n(i,j)$)

LSA (LINK STATE ADVERTISEMENT)

		de	
		RT7	
	N12		
а	N15		
	N5		
	RT5		

		ae	
		RT3	
	N3		
а	N4		
	RT6		

- Redes y Servicios de Comunicaciones -

11

Ejemplo de OSPF

LSA (LINK STATE ADVERTISEMENT)

		de	
		RT7	
а	N12	2	
	N15	9	
	N5	1	
	RT5	6	

	Ejemplo de OSPF				de						
			RT1	RT2	RT3	RT4	RT5	RT6	RT7	RT8	RT9
		RT1									
		RT2									
		RT3									
		RT4									
		RT5									
		RT6									
		RT7									
BASE	a	RT8		ļ							
		RT9		ļ							
\mathbf{DE}		N1									
DATOS		N2									
DATUS		N3									
		N4									
		N5		1							
		N6		ļ							
		N12		ļ						-	
				1	-			<u> </u>		<u> </u>	
		MID	J								
ΪŢ		N13 N14 N15					Redes	v Serv	vicios o	de Cor	nıı

TABLA DE ENCAMINAMIENTO DEL RT6

DESTINO	SIGUIENTE SALTO	DISTANCIA
N1		
N2		
N3		
N4		
N5		
N6		
N12		
N13		
N14		
N15		

TABLA DE ENCAMINAMIENTO DEL RT6

DESTINO	SIGUIENTE SALTO	DISTANCIA
N1	RT3	10
N2	RT3	10
N3	RT3	7
N4	RT3	8
N5	RT9	8
N6	RT9	12
N12	RT9	10
N13	RT5	14
N14	RT5	14
N15	RT9	17

- Redes y Servicios de Comunicaciones -

7

INFORMACIÓN ENVIADA AL BACKBONE

		d e		
		RT3	RT4	
	N1	4	4	
а	N2	4	4	
	N3	1	1	
	N4	2	3	

- Redes y Servicios de Comunicaciones -

19