5. Temporal Logic

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

This week

Next lecture

- is moved to the tutorial slot:
- Fri 10am (SportEx Lecture Theatre 1)

Office hour

- I am away on Thurs
- extra office hour today 4.30–5.30

Recap: Traces & properties

Paths

 $- \ \ infinite \ state \ sequence \ \pi = s_0 s_2 s_2 s_1 s_1 s_1 ...$

Traces

- infinite words over 2^{AP}
- trace(π) = {a} {b} {b} {a,b} {a,b} {a,b}...

Linear-time properties

- set of allowable ("good") traces/words $P \subseteq (2^{AP})^{\omega}$
- satisfaction: M ⊨ P if all traces of M are in P
- e.g. "a is always eventually followed by b"
- P = { $A_0A_1A_2...$ ∈ $(2^{AP})^ω$ | for all $i \ge 0$: $a ∈ A_i ⇒ b ∈ A_j$ for some $j \ge i$ }
- or: linear temporal logic: $\square(a \rightarrow \diamondsuit b)$ (see later)

Recap: Properties

- Key classes of property:
- Invariant: formula Φ is true in all (reachable) states
 - can be checked on each state individually
- Safety property: "nothing bad happens"
 - violating paths have a finite bad prefix
- Liveness: "something good happens in the long run"
 - any finite path can be extended to a satisfying one

Model checking

Next (today and next time)

- Propositional logic
- Temporal logic
- Linear temporal logic (LTL)
 - syntax, semantics, examples

• See [BK08] sections 5.1-5.1.4

Propositional logic

- Propositional logic formulas
 - for example: true, a, $\neg a$, $\neg (a \land b)$, $a \land (b \lor \neg c)$, $a \rightarrow c$
 - where a, b, c are atomic propositions
- Here: use for system observations (state properties)
 - green₁ \vee green₂, fail \wedge ¬alarm, ¬(critical₁ \wedge critical₂)

$$s_0 \models a$$

 $s_1 \models a$
 $s_0 \models \neg(a \land b)$
 $s_1 \not\models \neg(a \land b)$

Propositional logic: Syntax/semantics

- Syntax (which formulas are allowed)
- Formulas Φ in propositional logic are defined by the grammar:
 - $-\Phi ::= true \mid false \mid a \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \neg \Phi$
 - where $a \in AP$ is an atomic proposition
- Semantics (what formulas mean)

 $- A \models \neg \Phi$

- For a valuation $A \in 2^{AP}$ (a set of "true" propositions for a state), $A \models \Phi$ indicates A "satisfies" a propositional formula Φ :
 - $-A \vDash true \qquad always$ $-A \vDash false \qquad never$ $-A \vDash a \qquad \Leftrightarrow a \in A$ $-A \vDash \Phi_1 \land \Phi_2 \qquad \Leftrightarrow A \vDash \Phi_1 \text{ and } A \vDash \Phi_2$ $-A \vDash \Phi_1 \lor \Phi_2 \qquad \Leftrightarrow A \vDash \Phi_1 \text{ or } A \vDash \Phi_2$

 \Leftrightarrow A $\not\models$ Φ

Example:

$$\{a\} \models a \lor b$$

 $\{a,b\} \not\models \neg(a \land b)$

Logical equivalences

We usually give more minimal grammars, e.g.:

- $\Phi ::= true \mid a \mid \Phi \wedge \Phi \mid \neg \Phi$
- where $a \in AP$ is an atomic proposition

Standard logical equivalences

- false
$$\equiv \neg$$
true (false)

$$- \phi_1 \lor \phi_2 \equiv \neg(\neg \phi_1 \land \neg \phi_2)$$
 (disjunction)

$$- \ \phi_1 \rightarrow \phi_2 \equiv \neg \phi_1 \lor \phi_2$$
 (implication)

$$- \varphi_1 \leftrightarrow \varphi_2 \equiv (\varphi_1 \rightarrow \varphi_2) \land (\varphi_2 \rightarrow \varphi_1)$$
 (equivalence)

$$- \varphi_1 \oplus \varphi_2 \equiv (\varphi_1 \wedge \neg \varphi_2) \vee (\neg \varphi_1 \wedge \varphi_2)$$
 (exclusive or)

Temporal logic

Temporal logic

- extends propositional logic with modal/temporal operators
- which can refer to the (infinite) behaviour of a system
- "temporal" refers to relative ordering of events, not the precise times at which they happen (LTSs are time-abstract)

Various applications

- used, e.g. in philosophy, for many years
- introduced to formal verification by Pnueli in the 70s
- increased prominence thanks to model checking (early 80s)

Temporal logic

- Temporal logic for property specification in model checking
 - mathematically precise
 - intuitive (mostly!)
 - concise (usually!)
- LTL: Linear Temporal Logic
 - temporal logic for linear-time properties
 - there are alternatives: branching time (see CTL, later)
- Some key temporal operators
 - ♦ a "a is eventually true"
 - □ a "a is always true"

LTL – Syntax

• LTL formulas ψ are defined by the grammar:

```
- \psi ::= true | a | \psi \wedge \psi | \neg \psi | \bigcirc \psi | \psi \cup \psi
```

- where $a \in AP$ is an atomic proposition
- Temporal operators: "next" (()) and "until" (U)
 - $-\bigcirc \psi$ means " ψ is true in the next state"
 - $-\psi_1 \cup \psi_2$ means " ψ_2 is true eventually and ψ_1 is true until then"
- Equivalences (in addition to false, ∨, →, ↔, ⊕)
 - "eventually ψ ": $\diamondsuit \psi \equiv \text{true } U \psi$
 - "always ψ ": $\square \psi \equiv \neg \diamondsuit (\neg \psi)$

LTL

- Some simple examples:
- $\Box \neg (critical_1 \land critical_2)$
 - "the processes never enter the critical section simultaneously"
- ♦ end
 - "the program eventually terminates"
- ¬error U end
 - "the program terminates without any errors occurring"
- Alternative styles of syntax
 - $-\bigcirc a \equiv X a \quad ("next")$
 - $\diamondsuit a \equiv F a$ ("future", "finally")
 - $\square a \equiv G a$ ("globally")

LTL – Intuitive semantics

