# Introducción al Análisis Matemático Tema 1 Clase Práctica 3

Licenciatura en Matemática Curso 2022





#### Al estudiante:

Bienvenido a la Clase Práctica 3 del Tema 1 del curso *Introducción al Análisis Matemático*. Los siguientes ejercicios pueden ser abordados con los conocimientos adquiridos en la Conferencia 1.3 sobre series numéricas. ¡Esperamos que le vaya bien!

Colectivo de la asignatura

#### **EJERCICIOS**

#### Ejercicio 1.

Probar que para  $|r| \geq 1$ , la serie  $\sum_{n=0}^{\infty} r^n$  es divergente.

## Ejercicio 2.

Pruebe que:

- a) La serie  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$  es divergente.
- b) La serie  $\sum_{n=1}^{\infty} \frac{1}{n^4}$  es convergente.

## Ejercicio 3.

Empleando razonamientos similares a los expuestos para  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ , ¿podrías hallar el valor de la suma  $\sum_{n=1}^{\infty} \frac{1}{n^4}$ ?

# Ejercicio 4.

Un número fraccionario se puede escribir siempre en forma decimal, efectuando la división aritmética del numerador entre el denominador. Por ejemplo, si dividimos 3 entre 22, obtenemos  $\frac{3}{22} = 0.1\overline{36}$ .

a) Probar que el número así obtenido, o tiene una cantidad finita de cifras decimales, o tiene infinitas cifras decimales que se repiten periódicamente.

- b) Demuestra que también tiene lugar el recíproco: una fracción, en forma decimal que tiene un número finito de cifras o infinitas cifras periódicas, puede escribirse como el cociente de dos enteros.
- c) Comprueba que  $0.\overline{9} = 1$ .

## Ejercicio 5.

Calcula las sumas:

a) 
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

b) 
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$

c) 
$$\sum_{n=1}^{\infty} \frac{1+3+3^2+3^3+\ldots+3^n}{5^{n+2}}$$

#### Ejercicio 6.

Argumente cómo puede justificarse la divergencia de la serie armónica a partir de la siguiente idea concebida en el siglo XIV por el filósofo Oresme:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$$

#### Ejercicio 7.

De los dos desarrollos siguientes cuál consideras correcto y explica la razón:

$$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots$$

a) 
$$\left(1 - \frac{2}{3}\right) + \left(\frac{2}{3} - \frac{3}{5}\right) + \left(\frac{3}{5} - \frac{4}{7}\right) + \dots = 1$$

b) 
$$\frac{1-\frac{1}{3}}{2} + \frac{\frac{1}{3}-\frac{1}{5}}{2} + \frac{\frac{1}{5}-\frac{1}{7}}{2} + \dots = \frac{1}{2}$$

# Ejercicio 8.

Calcula la suma de las series:

a) 
$$\sum_{n=3}^{\infty} \frac{1}{\binom{n}{3}}$$

b) 
$$\sum_{n=2}^{\infty} \frac{(n+1)(n+2)}{n!}$$

c) 
$$\sum_{n=0}^{\infty} \arctan \frac{1}{n^2 + n + 1}$$

## Ejercicio 9.

Halle el término general  $a_n$  y la suma de la serie cuyas sumas parciales son

$$S_n = \frac{n+1}{n} \quad n \in \mathbb{N}.$$

# Ejercicio 10.

Encuentra una expresión en función de n para las sumas:

a) 
$$\sum_{k=1}^{n} \frac{1}{k+1} \binom{n}{k}$$

b) 
$$\sum_{k=1}^{n} (k+1) \binom{n}{k}$$

#### Ejercicio 11.

Calcule la suma de:

a) 
$$\sum_{n=1}^{\infty} \arctan\left(\frac{4n^3 + 6n^2 + 4n + 1}{1 + n^4(n+1)^4}\right)$$

b) 
$$\sum_{n=1}^{\infty} \frac{n^2 + 5n + 7}{(n+2)!}$$
.