1 best solution for $A \cdot x = b$: Least square method

One important point is that $A \cdot x = b$ are usually large systems with a large number of equations and relatively smaller number of unknowns. Thus, the equation is most probably not solvable.

1.1 what is "best" and why?

The term "best" refers to the following error vector $e = b - A \cdot \alpha$. where $\alpha = A \cdot (A^T \cdot A)^{-1} \cdot A^T$. The best solution x is the one minimizing the norm of the error: $|e|^2 = e^T \cdot e$. The solution uses calculus:

1.2
$$\frac{d}{dx}(x^T \cdot A \cdot x)$$

$$\frac{d}{dx}(x^T \cdot A \cdot x) = \begin{bmatrix} \frac{d}{dx_1}(x^T \cdot A \cdot x) \\ \frac{d}{dx_2}(x^T \cdot A \cdot x) \\ \vdots \\ \frac{d}{dx_n}(x^T \cdot A \cdot x) \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 define x

substitute x for its matrix form

$$x^{T} \cdot A \cdot x = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{n} \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{i=1}^{n} x_{i} \cdot a_{i1} & \sum_{i=1}^{n} x_{i} \cdot a_{i2} & \dots & \sum_{i=1}^{n} x_{i} \cdot a_{in} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix}$$

$$= x_{1} \cdot \sum_{i=1}^{n} x_{i} \cdot a_{i1} + x_{2} \cdot \sum_{i=1}^{n} x_{i} \cdot a_{i2} + \dots + x_{n} \cdot \sum_{i=1}^{n} x_{i} \cdot a_{in}$$

Let's now consider for simplicity $d=\frac{d}{dx_1}(x^T\cdot A\cdot x)$ as the parameters are symmetric. then

$$d = \frac{d}{dx_1} (x_1 \cdot \sum_{i=1}^n x_i \cdot a_{i1} + x_2 \cdot \sum_{i=1}^n x_i \cdot a_{i2} + \ldots + x_n \cdot \sum_{i=1}^n x_i \cdot a_{in})$$

$$= 2 \cdot x_{11} \cdot a_{11} + \sum_{i=2}^n x_i \cdot a_{i1} + x_2 \cdot a_{12} + \ldots + x_n \cdot a_{in}$$

$$\frac{d}{dx_1} (x^T \cdot A \cdot x) = \sum_{i=1}^n x_i \cdot a_{1i} + \sum_{i=1}^n x_i \cdot a_{i1}$$

$$\frac{d}{dx_j} (x^T \cdot A \cdot x) = \sum_{i=1}^n x_i \cdot a_{ji} + \sum_{i=1}^n x_i \cdot a_{ij}$$
more generally
$$\frac{d}{dx} (x^T \cdot A \cdot x) = (A^T + A) \cdot x$$
vectorized form

additionally let's consider the term

$$\frac{d}{dx}(x \cdot A^T) = A \tag{1}$$

where A is a column vector.

1.3 proof

Having all the components of the proof set, let's put the pieces together. we have:

$$e^T \cdot e = (b - A \cdot \alpha)^T \cdot (b - A \cdot \alpha) = x^T A^T A x - x^T A^T b - b^T A x + b^T b \qquad (2)$$

minimizing the error is equivalent to minimizing:

$$x^T A^T A x - x^T A^T b - b^T A x$$

using the proofs considered above:

$$\frac{d}{dx}e = 2 \cdot A^T A x - 2 \cdot A^T b \tag{3}$$

The vector x achieving the minimum error is

$$x = (A^T A)^{-1} \cdot A^T b \tag{4}$$

2 Orthogonal matrices

2.1 Properties

if we have vectors $x_1, x_2, ..., x_n$ non-zero vectors, such $x_i^T \cdot x_j = 0 \quad \forall i \neq j$ then they are independent. The proof is as follows

$$Q = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$$

$$Q^T \cdot Q = \begin{bmatrix} |x_1|^2 & 0 & 0 & \dots & 0 \\ 0 & |x_2|^2 & 0 & \dots & 0 \\ \dots & & & & & \\ 0 & 0 & 0 & \dots & |x_n|^2 \end{bmatrix}$$
 using $x_i^T \cdot x_j = 0$
$$Q^T \cdot Q \text{ is invertible } \implies N(Q^T \cdot Q) = Z.$$

$$\implies N(Q) = Z \quad \text{using } N(Q^T \cdot Q) = N(Q)$$

 $N(Q)=Z\Longrightarrow$ the columns are independent. Thus, the claim is proved. If Q is a square orthonormal matrix , then we have $Q^T\cdot Q=Q\cdot Q^T=I$.

2.2 Grim-schmidt Orthogonalization

The main goal of this process is to turn a matrix A with *independent columns* into a orthonormal matrix Q such that C(Q) = C(A). Assuming:

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \qquad \text{define } A$$

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix} \qquad \text{define } Q$$

$$q_1 = a_1$$

$$q_i = a_i - \sum_{j=1}^{i-1} \frac{q_j \cdot q_j^T}{q_j^T \cdot q_j} \cdot a_i \qquad \forall i > 1 \qquad \text{orthogonality}$$

$$q_i \leftarrow \frac{q_i}{|q_i|^2} \qquad \text{ensure a length of } 1$$

2.2.1 orthogonality

Let's prove that $q_i^T \cdot q_j = 0 \ \forall \ i \neq j$. Let's first prove it for n = 3. let a, b, c independent vectors, and A, B, C the orthonormal vectors, then:

$$A = a$$

$$B = b - \frac{A \cdot A^T}{A^T \cdot A} \cdot b$$

$$C = c - \frac{A \cdot A^T}{A^T \cdot A} \cdot c - \frac{B \cdot B^T}{B^T \cdot B} \cdot c$$

$$A^T \cdot B = A^T \cdot b - A^T \cdot \frac{A \cdot A^T}{A^T \cdot A} \cdot b$$

$$= A^T \cdot b - A^T \cdot b = 0 \qquad A \text{ and } B \text{ are orthogonal}$$

$$A^T \cdot C = A^T \left(c - \frac{A \cdot A^T}{A^T \cdot A} \cdot c - \frac{B \cdot B^T}{B^T \cdot B} \cdot c\right)$$

$$= A^T \cdot c - A \cdot \frac{A \cdot A^T}{A^T \cdot A} \cdot c - 0 \qquad \text{use } A \text{ and } B \text{ orthogonality}$$

$$= A^T \cdot b - A^T \cdot b = 0 \qquad A \text{ and } C \text{ orthogonal}$$

using the same argument, it is easy to see that B and C are orthogonal. The second step is to prove the following $P(n) \implies P(n+1)$ with P(n): result true for n.

Assuming $a_1, a_2, ... a_n$ and $q_1, q_2..., q_n$ satisfying our assumption. Let a_{n+1} a vector independent of the rest of the vectors and:

$$q_{n+1} = a_{n+1} - \sum_{j=1}^{n} \frac{q_j \cdot q_j^T}{q_j^T \cdot q_j} \cdot a_{n+1} \qquad \text{define } q_{n+1}$$

$$q_k^T \cdot a_{n+1} = q_k^T \cdot a_{n+1} - q_k^T \cdot \frac{q_k \cdot q_k^T}{q_k^T \cdot q_k} \cdot a_{n+1} - q_k^T \cdot \sum_{j=1, j \neq k}^{n} \frac{q_j \cdot q_j^T}{q_j^T \cdot q_j} \cdot a_{n+1} \qquad \text{substitution}$$

$$q_k^T \cdot \sum_{j=1, j \neq k}^{n} \frac{q_j \cdot q_j^T}{q_j^T \cdot q_j} \cdot a_{n+1} = \sum_{j=1, j \neq k}^{n} q_k^T \cdot \frac{q_j \cdot q_j^T}{q_j^T \cdot q_j} \cdot a_{n+1} = 0 \quad q_i^T \cdot q_j = 0 \ \forall \ i \neq j$$

$$q_k^T \cdot a_{n+1} = 0$$

Thus the claim is proved.

2.2.2 The same column space

Let's consider the following:

$$\begin{split} q_i &= a_i - \sum_{j=1}^{i-1} \frac{q_j \cdot q_j^T}{q_j^T \cdot q_j} \cdot a_i \quad \forall \ i > 1 \\ &= \sum_{j=1}^{i-1} q_j \cdot \frac{q_j^T \cdot a_i}{q_j^T \cdot q_j} \qquad \text{a slight reformulation} \\ q_j \cdot \frac{q_j^T \cdot a_i}{q_j^T \cdot q_j} &= q_j \cdot \alpha \qquad \qquad \text{with } \alpha \in \mathbf{R} \text{ as } q_j \text{ and } a_j \text{ are column vectors} \\ q_i &= a_i - \sum_{j=1}^{i-1} q_j \cdot \alpha_j \qquad \text{reformulate } q_i \end{split}$$

as $q_1 = a_1$, then it is easy to see that q_i is a linear combination of other vectors a_j . Then any linear combination of q_i belongs to C(A). and since q_i are independent (as they are one to one orthogonal), they span the whole C(A). thus C(A) = Q(A)