Mathematical Methods for Computer Science I

Fall 2017

Series 10 – Hand in before Monday, 04.12.2017 - 12.00

- 1. Construct a proof tree or a deduction tree that contains a counterexample for each of the following propositional formulas:
 - a) $p \to (q \to (p \land q))$
 - b) $(p \lor q) \to ((p \to q) \lor q)$
 - c) $(p \to q) \lor (\neg p \to \neg q)$
- 2. Construct expanded deduction trees and use them to find a conjunctive normal form for the following formulas:
 - a) $(p \to r) \to ((q \to s) \to ((p \lor q) \to r))$
 - b) $(p \to q) \to ((q \to \neg r) \to \neg p)$
- 3. Extend the set of connectives by \leftrightarrow and \oplus defined as

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p), \quad p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$$

Give Gentzen-like rules for these connectives. That is, find out what must be written above the line in the inference rules

$$\overline{\Gamma \vdash A \leftrightarrow B, \Delta}$$
 etc

- 4. Consider expanded deduction trees with the root $\vdash A$, where A is some propositional formula. Recall that there are different expanded deduction trees with the same root: when constructing a tree, at each vertex we have a choice from which formula to eliminate the top level logical connective.
 - a) In what order should one proceed so that to minimize the number of the vertices in the expanded deduction tree?
 - b) Assume that A contains m logical connectives. Show that the number of leaves in an expanded deduction tree is at most 2^m .
 - c) Give an example of a formula with 2k-1 connectives whose expanded tree has 2^k leaves. (Hint: there is an example that contains \wedge and \vee only.)
 - d)* Is it true that for every formula with m connectives the expanded tree has at most $2^{\lceil \frac{m}{2} \rceil}$ leaves? (Here $\lceil x \rceil$ is the smallest integer equal or greater x.)
 - e)* Is the number of leaves the same in all expanded deduction trees for a given formula?
- 5. Assume that a proof system of Hilbert type is given.

A set of formulas $\{A_1, \ldots, A_n\}$ is called *satisfiable* if these formulas have a common model. A set of formulas $\{A_1, \ldots, A_n\}$ is called *inconsistent* if

$$A_1, \ldots, A_n \vdash B \text{ and } A_1, \ldots, A_n \vdash \neg B$$

for some formula B.

- a) Assume that every satisfiable set of formulas is consistent. Show that then the proof system is sound.
- b)* Assume that every consistent set of formulas is satisfiable. Does this imply that the proof system is complete?