Controle intermédiaire Durée 2h

Documents et Calculatrice interdits.

Exercice 1 (3,5 points)

Soit
$$D = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1 \text{ et } |x| \le x^2 + y^2 \}.$$

1) Représenter le domaine D.

2) Calculer
$$\iint_{D} \frac{1}{(1+x^2+y^2)^2} dx dy$$
.

On rappelle que
$$\int \frac{1}{1 + (\cos t)^2} dt = \frac{1}{\sqrt{2}} Arctg \left(\frac{tg(t)}{\sqrt{2}} \right) + C.$$

Exercice 2 (3,5 points)

On pose
$$\Omega_1 = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 \le 1 \text{ et } 0 \le z \le 4 \}.$$

1) Calculer le volume de Ω_1 .

On pose
$$\Omega = \Omega_1 \cup \Omega_2$$
 où $\Omega_2 = \{(x,y,z) \in \mathbb{R}^3 / 4 \le z \le 8 - (x^2 + y^2)\}$.

- 2) Représenter Ω .
- 3) Calculer le volume de Ω .

Exercice 3 (4 points)

- 1) Etudier la nature de la série $\sum_{n\geq 0} \frac{n}{n + \left(\frac{2012}{2013}\right)^n}.$
- 2) Etudier la convergence absolue et la semie convergence de $\sum_{n\geq 1} n^{\frac{(-1)^n}{n}} 1$.

Exercice 4 (2,5 points)

Soit $(f_n)_{n\geq 0}$ une suite de fonctions telle que: $f_n(x) = \frac{1}{1+(n+x)^2}$.

- 1) Etudier la convergence simple de $(f_n)_n$ sur \mathbb{R} .
- 2) Etudier la convergence uniforme de $(f_n)_n$ sur \mathbb{R} .
- 3) Etudier la convergence uniforme de $(f_n)_n$ sur \mathbb{R}^+ .
- 4) Y'a-t-il convergence uniforme de $(f_n)_n$ sur [-A,0] pour A>0.