Searching and Sorting Algorithms Lecture 14

Introduction

- Using a search algorithm, you can:
 - Determine whether a particular item is in a list
 - If the data is specially organized (for example, sorted), find the location in the list where a new item can be inserted
 - Find the location of an item to be deleted

Search Algorithms

- Key of the item
 - Special member that uniquely identifies the item in the data set
- Key comparison: comparing the key of the search item with the key of an item in the list
 - Can count the number of key comparisons

Sequential Search

- Sequential search (linear search):
 - Same for both array-based and linked lists
 - Starts at first element and examines each element until a match is found
- Our implementation uses an iterative approach
 - Can also be implemented with recursion

Binary Search

- Binary search can be applied to sorted lists
- Uses the "divide and conquer" technique
 - Compare search item to middle element
 - If search item is less than middle element, restrict the search to the lower half of the list
 - Otherwise restrict the search to the upper half of the list

Binary Search (cont'd.)

FIGURE 18-1 List of length 12

FIGURE 18-2 Search list, list[0]...list[11]

Binary Search (cont'd.)

• Search for value of 75:

```
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10][11]

list 4 8 19 25 34 39 45 48 66 75 89 95
```

FIGURE 18-3 Search list, list[6]...list[11]

TABLE 18-4 Growth Rate of Various Functions

n	log ₂ n	nlog ₂ n	п²	2 ⁿ
1	0	0	1	2
2	1	2	2	4
4	2	8	16	16
8	3	24	64	256
16	4	64	256	65536
32	5	160	1024	4294967296

FIGURE 18-5 Growth rate of various functions

TABLE 18-6 Growth Rate of n^2 and $n^2 + 4n + 20$

п	$g(n)=n^2$	$f(n) = n^2 + 4n + 20$
10	100	160
50	2500	2720
100	10000	10420
1000	1000000	1004020
10000	10000000	100040020

 TABLE 18-7
 Some Big-O Functions That Appear in Algorithm Analysis

Function g(n)	Growth rate of $f(n)$
g(n) = 1	The growth rate is constant, so it does not depend on n , the size of the problem.
$g(n) = \log_2 n$	The growth rate is a function of log_2n . Because a logarithm function grows slowly, the growth rate of the function f is also slow.
g(n) = n	The growth rate is linear. The growth rate of f is directly proportional to the size of the problem.
$g(n) = n \log_2 n$	The growth rate is faster than the linear algorithm.
$g(n) = n^2$	The growth rate of such functions increases rapidly with the size of the problem. The growth rate is quadrupled when the problem size is doubled.
$g(n) = 2^n$	The growth rate is exponential. The growth rate is squared when the problem size is doubled.

• We can use Big-O notation to compare sequential and binary search algorithms:

TABLE 18-8 Number of Comparisons for a List of Length n

Algorithm	Successful Search	Unsuccessful Search			
Sequential search	$\frac{n+1}{2} = \frac{1}{2}n + \frac{1}{2} = O(n)$	n = O(n)			
Binary search	$2\log_2 n - 3 = O(\log_2 n)$	$2\log_2 n = O(\log_2 n)$			

Sorting Algorithms

- To compare the performance of commonly used sorting algorithms
 - Must provide some analysis of these algorithms
- These sorting algorithms can be applied to either array-based lists or linked lists

Sorting a List: Bubble Sort

- Suppose list[0]...list[n−1] is a list of *n* elements, indexed 0 to n−1
- Bubble sort algorithm:
 - In a series of n-1 iterations, compare successive elements, list[index] and list[index+1]
 - If list[index] is greater than list[index+1], then swap them

Sorting a List: Bubble Sort (cont'd.)

FIGURE 18-7 Elements of list during the first iteration

FIGURE 18-8 Elements of list during the second iteration

Sorting a List: Bubble Sort (cont'd.)

FIGURE 18-9 Elements of list during the third iteration

FIGURE 18-10 Elements of list during the fourth iteration

Analysis: Bubble Sort

- bubbleSort contains nested loops
 - Outer loop executes n-1 times
 - For each iteration of outer loop, inner loop executes a certain number of times
- Total number of comparisons:
- Number of assignments (worst case):

$$(n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n = O(n^2)$$

$$3\frac{n(n-1)}{2} = \frac{3}{2}n^2 - \frac{3}{2}n = O(n^2)$$

Selection Sort: Array-Based Lists

- <u>Selection sort algorithm</u>: rearrange list by selecting an element and moving it to its proper position
- Find the smallest (or largest) element and move it to the beginning (end) of the list
- Can also be applied to linked lists

Analysis: Selection Sort

- function swap: does three assignments; executed *n*−1 times
 - 3(n-1) = O(n)
- function minLocation:
 - For a list of length k, k-1 key comparisons
 - Executed *n*-1 times (by selectionSort)
 - Number of key comparisons:

$$(n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n = \frac{1}{2}n^2 + O(n) = O(n^2)$$

Insertion Sort: Array-Based Lists

• <u>Insertion sort algorithm</u>: sorts the list by moving each element to its proper place in the sorted portion of the list

FIGURE 18-11 list

FIGURE 18-12 Sorted and unsorted portion of list

FIGURE 18-13 Move list[4] into list[2]

FIGURE 18-14 Copy list[4] into temp

FIGURE 18-15 List before copying list[3] into list[4] and then list[2] into list[3]

FIGURE 18-16 List after copying list[3] into list[4] and then list[2] into list[3]

FIGURE 18-17 List after copying temp into list[2]

Analysis: Insertion Sort

- The for loop executes n-1 times
- Best case (list is already sorted):
 - Key comparisons: n 1 = O(n)
- Worst case: for each for iteration, if statement evaluates to true
 - Key comparisons: $1 + 2 + ... + (n 1) = n(n 1) / 2 = O(n^2)$
- Average number of key comparisons and of item assignments: $\sqrt[4]{n^2}$ + $O(n) = O(n^2)$

Analysis: Insertion Sort (cont'd.)

TABLE 18-9 Average Case Behavior of the Bubble Sort, Selection Sort, and Insertion Sort Algorithms for a List of Length n

Algorithm	Number of Comparisons	Number of Swaps
Bubble sort	$\frac{n(n-1)}{2} = O(n^2)$	$\frac{n(n-1)}{4} = O(n^2)$
Selection sort	$\frac{n(n-1)}{2} = O(n^2)$	3(n-1)=O(n)
Insertion sort	$\frac{1}{4}n^2 + O(n) = O(n^2)$	$\frac{1}{4}n^2 + O(n) = O(n^2)$

Quick Sort: Array-Based Lists

- Quick sort: uses the divide-and-conquer technique
 - The list is partitioned into two sublists
 - Each sublist is then sorted
 - Sorted sublists are combined into one list in such a way that the combined list is sorted
 - All of the sorting work occurs during the partitioning of the list

- pivot element is chosen to divide the list into: lowerSublist and upperSublist
 - The elements in lowerSublist are < pivot
 - The elements in upperSublist are ≥ pivot
- Pivot can be chosen in several ways
 - Ideally, the pivot divides the list into two sublists of nearly- equal size

FIGURE 18-19 list before the partition

FIGURE 18-20 list after the partition

- <u>Partition algorithm</u> (assumes that pivot is chosen as the middle element of the list):
 - 1. Determine pivot; swap it with the first element of the list
 - 2. For the remaining elements in the list:
 - If the current element is less than pivot, (1) increment smallIndex, and (2) swap current element with element pointed by smallIndex
 - Swap the first element (pivot), with the array element pointed to by smallIndex

- Step 1 determines the pivot and moves pivot to the first array position
- During Step 2, list elements are arranged

FIGURE 18-21 List during the execution of Step 2

													[13]
32	55	87	13	78	96	52	48	22	11	58	66	88	45

FIGURE 18-22 List before sorting

FIGURE 18-23 List after moving pivot to the first array position

FIGURE 18-24 List after a few iterations of Step 2

FIGURE 18-25 List after moving 11 into the lower sublist

FIGURE 18-26 List before moving 58 into a sublist

FIGURE 18-27 List after moving 58 into the upper sublist

FIGURE 18-28 List elements after arranging into the lower sublist and upper sublist

Merge Sort: Linked List-Based Lists

- Quick sort: $O(n\log_2 n)$ average case; $O(n^2)$ worst case
- Merge sort: always $O(n\log_2 n)$
 - Uses the divide-and-conquer technique
 - Partitions the list into two sublists
 - · Sorts the sublists
 - Combines the sublists into one sorted list
 - Differs from quick sort in how list is partitioned
 - Divides list into two sublists of nearly equal size

Merge Sort: Linked List-Based Lists (cont'd.)

Merge Sort: Linked List-Based Lists (cont'd.)

General algorithm:

```
if the list is of a size greater than 1
{
   a. Divide the list into two sublists.
   b. Merge sort the first sublist.
   c. Merge sort the second sublist.
   d. Merge the first sublist and the second sublist.
}
```

Uses recursion

Divide

FIGURE 18-31 Unsorted linked list

FIGURE 18-32 middle and current before traversing the list

Divide (cont'd.)

FIGURE 18-33 middle after traversing the list

FIGURE 18-34 List after dividing it into two lists

Merge

- Sorted sublists are merged into a sorted list
 - Compare elements of sublists
 - Adjust pointers of nodes with smaller info

FIGURE 18-35 Sublists before merging

Merge (cont'd.)

FIGURE 18-36 Sublists after setting newHead and lastMerged and advancing first1

Merge (cont'd.)

FIGURE 18-37 Merged list after putting the node with info 20 at the end of the merged list