# 2.1-3 soegning og sortering Noter CLRS 2

- Søgning
  - Linæer søgning
  - Binær søgning
- Sortering
  - Indsættelsessortering
  - Flettesortering

# Søgning og Sortering

- Søgning
  - Linæer søgning
  - Binær søgning
- Sortering
  - Indsættelsessortering
  - Flettesortering

#### Søgning

- Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x.
- Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0] ≤ A[1] ≤ ··· ≤ A[n-1] (ikkefaldende rækkefølge).

| 0 | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 4 | 7 | 12 | 16 | 18 | 25 | 28 | 31 | 33 | 36 | 42 | 45 | 47 | 50 |

#### Linæer søgning

- Lineær søgning. Undersøg for alle indgange i om A[i] = x.
- Tid. Θ(n)
- Udfordring. Kan vi udnytte at tabellen er sorteret til at gøre det bedre?

| 0 | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 4 | 7 | 12 | 16 | 18 | 25 | 28 | 31 | 33 | 36 | 42 | 45 | 47 | 50 |

#### Binær søgning

- Binær søgning (binary search). Kig på midterste indgang m i A.
  - hvis A[m] = x returner sand og stop.
  - hvis A[m] < x fortsæt rekursivt på højre halvdel.</li>
  - hvis A[m] > x fortsæt rekursivt på venstre halvdel.
- Stop hvis tabellen har størrelse ≤ 0 og returner falsk.

| <br>0 | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|-------|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| 1     | 4 | 7 | 12 | 16 | 18 | 25 | 28 | 31 | 33 | 36 | 42 | 45 | 47 | 50 |

#### Binær søgning

```
BINERSØGNING (A, i, j, x):
   If j < i: Return False
   m = floor((i+i)/2)
   If A[m] == x:
      Return True
   Elseif A[m] < x:
       Return BINÆRSØGNING (A, m+1, j, x)
   Else: Return BINERSØGNING (A, i, m-1, x) // A[m] > x
0
                                               11
                                                   12
                                           10
                                                        13
                                                            14
            12
                16
                     18
                         25
                             28
                                 31
                                      33
                                          36
                                              42
                                                   45
                                                       47
                                                            50
```

- Tid. Hvor hurtigt kører den?
- Analyse 1. Analog til analyse af rekursiv toppunktsalgoritme.
  - Et rekursivt kald tager konstant tid.
  - Hvert rekursivt kald halverer tabellen vi kigger på. Vi stopper når tabellen har størrelse ≤ 0.
  - ⇒ Køretiden er Θ(log n)

#### Binær søgning

- Analyse 2. Lad T(n) være køretiden for binær søgning.
  - Opskriv og udregn rekursionsligningen for T(n).

$$T(n) = \begin{cases} T(n/2) + c, & n > 1 \\ d, & n = 1 \end{cases}$$

**Bemærk:** c og d er ukendte konstanter. Det vigtige er relationen med T(n/2)!

Hvad giver denne ligning?

$$T(n) = T\left(\frac{n}{2}\right) + c$$

$$= T\left(\frac{n}{4}\right) + c + c$$

$$= T\left(\frac{n}{2^{\log_2 n}}\right) + c \cdot \log_2 n$$

$$= d + c \cdot \log_2 n$$

$$= \Theta(\log n)$$

## Søgning

- Vi kan søge i en sorteret tabel i
  - Θ(n) tid med lineær søgning.
  - Θ(log n) tid med binær søgning.

# Søgning og Sortering

- Søgning
  - Linæer søgning
  - Binær søgning
- Sortering
  - Indsættelsessortering
  - Flettesortering

#### Sortering

• Sortering. Givet en tabel A[1..n] returner en tabel B[1..n] med samme værdier som A men i sorteret orden.



#### Anvendelser

- Oplagte.
  - Sortere en liste af navne, organisere et MP3 bibliotek, vise Google PageRank resultater, vise Facebook feed i kronologisk rækkefølge.
- · Ikke oplagte.
  - Datakompression, computergrafik, bioinformatik, anbefalingssystemer (film på Netflix, bøger på Amazon, reklamer på Google,..).
- Nemme problemer for sorteret data.
  - Binær søgning, find median, identificer duplikater, find tætteste par, find statistiske perifere observationer (outliers).

#### Indsættelsessortering (insertion-sort)

- Indsættelsessortering. Start med en usorteret tabel A.
- Kig på indgangene fra venstre til højre i n runder.
- Ved runde i:
  - Deltabel A[0..i-1] er sorteret.
  - Indsæt A[i] i A[0..i-1] så A[0..i] er sorteret.
  - For at finde rette sted til A[i] sammenligner vi med indgangene fra højre til venstre.



#### Indsættelsessortering



- Tid. Hvad er køretiden T(n)?
  - Hvad er tiden for at indsætte A[i] i sorteret rækkefølge blandt A[0..i-1]?
    - c-i tid for en konstant c. (husk vi arbejder med worst-case)
  - ⇒ samlet tid:

$$T(n) = \sum_{i=1}^{n} ci = c \sum_{i=1}^{n} i = \frac{cn(n+1)}{2} = \Theta(n^{2})$$

Udfordring. Kan vi sortere hurtigere?

### Flettesortering (mergesort)

- Flettesortering. Hurtig sorteringsalgoritme.
- Ide. Rekursiv sortering vha. fletning af sorterede deltabeller.

#### Fletning (merge)

- Mål. Kombiner to sorterede tabeller til én sorteret tabel.
- Ide.
  - Gennemløb begge sorterede tabeller i stigende rækkefølge:
    - I hvert skridt indsæt det mindste af de to nuværende elementer fra tabellerne i en ny tabel.
    - Ryk frem i tabellen med det mindste element.
    - Gentag indtil alle elementer er indsat i ny tabel.



#### Fletning

- Tid. Hvor hurtigt kører fletning på to tabeller A<sub>1</sub> og A<sub>2</sub>?
  - Hvert skridt i algoritmen tager Θ(1) tid.
  - I hvert skridt flytter vi en indgang frem i en af tabellerne.
  - $\Rightarrow$   $\Theta(|A_1| + |A_2|)$  tid.



#### Flettesortering (*mergesort*)

- Flettesortering.
- Hvis  $|A| \le 1$ , returner A.
- Ellers:
  - Del A i to halvdele.
  - Sorter hver halvdel rekursivt.
  - Flet de to halvdele sammen.



#### Flettesortering (*mergesort*)

Hvordan virker rekursionen?



```
FLETTESORTERING(A,i,j)

if i < j

m = floor((i+j)/2)

FLETTESORTERING(A,i,m)

FLETTESORTERING(A,m+1,j)

FLET(A, i, m, j)</pre>
```

- Tid. Lad T(n) være køretiden af flettesortering på n tal..
- Hvordan kan vi udregne T(n)?
- Ide. Opstil rekursionstræ og udregn samlet tid for alle rekursive kald.

#### Flettesortering

#### Illustration af algoritmen:

#### Illustration af køretid:



$$T(n) = \sum_{i=0}^{\log_2 n} 2^i d + cn \log_2 n = (2n-1)d + cn \log_2 n = \Theta(n \log n)$$

## Sortering

- Vi kan sortere en tabel i
  - Θ(n²) tid med indsættelsessortering.
  - Θ(nlog n) tid med flettesortering.

#### Del og hersk (divide-and-conquer)

- Flettesortering er eksempel på en del-og-hersk algoritme.
- Del-og-hersk, algoritmisk designparadigme.
  - Del. Opdel problemet i et eller flere delproblemer
  - Hersk. Løs delproblemerne rekursivt
  - Kombiner. Sæt løsningerne til delproblemerne sammen til en samlet løsning for problemet.
- Flettesortering.
  - Del. Del A i to halvdele.
  - Hersk. Sorter hver halvdel rekursivt.
  - Kombiner. Flet de to halvdele sammen.

# Søgning og Sortering

- Søgning
  - Linæer søgning
  - Binær søgning
- Sortering
  - Indsættelsessortering
  - Flettesortering