Отчет о выполнении лабораторной работы 1.3.3 "Измерение вязкости воздуха по течению в тонких трубках"

Калашников Михаил, Б03-205

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются:

- система подачи воздуха (компрессор, поводящие трубки);
- газовый счетчик барабанного типа ($\sigma_V = 0,02$ л);
- спиртовой микроманометр с регулируемым наклоном ($\rho=0,8095\pm0.0005~\mathrm{r/cm^3},\,\sigma_h=1~\mathrm{mm}$);
- набор трубок различного диаметра с выходами для подсоединения микроманометра ($d_1=3,0\pm0,1$ мм, $d_2=3,95\pm0,05$ мм, $d_3=5,05\pm0,05$ мм);
- секундомер

1. Теоретическая часть

Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку:

$$\tau_z = -\eta \frac{\delta v_x}{\delta y}$$

Характер течения определяется безразмерным параметром задачи— числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta}$$

Течение Пуазейля. Из опыта известно, что при достаточно малых числах Рейнольдса течение в прямой трубе с гладкими стенками имеет ламинарный характер. В таком случае будет верна формула Пуазеля, которая позволяет найти вязкость газа по зависимости расхода от перепада давления в трубе и используется в качестве основной расчётной формулы в данной работе:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l}$$

Длина установления. Пусть на вход трубы поступает течение, распределение скоростей которого не является пуазейлевским. Профиль течения не может установиться сразу, а реализуется лишь на некотором расстоянии $l_{\rm уст}$ от начала трубы. Грубая оценка для этой величины, с учётом экспериментально установленного коэффициента, позволяющего добиться удовлетворительной точности:

$$l_{\rm ycr} \sim \frac{\rho u R^2}{\eta} \approx 0, 2R \cdot Re$$

Турбулентность. Ламинарная картина течения наблюдается при относительно малых числах Рейнольдса, когда вязкие силы достаточны для того, чтобы погасить любые случайно возникшие возмущения потока. При превышении некоторого критического числа Рейнольдса Re > Re.кр течение Пуазейля становится неустойчивым. В потоке начинают рождаться вихри, которые затем сносятся вниз по трубе (при докритических числах Рейнольдса такие вихри быстро затухают за счёт вязкости). С дальнейшим увеличением Re количество вихрей возрастает и, взаимодействуя между собой, они порождают вихри всё меньшего размера, создавая таким образом сложную многомасштабную картин течения. Эта картина радикально отличается от ламинарной: в ней отсутствуют непрерывные линии тока, а слои жидкости постоянно перемешиваются. Течение становится практически непредсказуемым, а скорость и давление испытывают значительные случайные флуктуации. В таком потоке расход можно оценить следующим образом:

$$Q \sim R^{\frac{5}{2}} \sqrt{\frac{\Delta P}{\rho l}}$$

2. Экспериментальная установка

Рис. 1: Экспериментальная установка

Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками. Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя.

3. Проведение эксперимента

1. Перед началом работы ознакомимся с характеристиком установки и измерительных приборов.

- 2. Подсоединим манометр к двум соседним выводам трубки среднего диаметра (l=50 см). Включим компрессор и создадим поток воздуха через трубку, следя за показаниями микроманометра. Убедимся в работоспособности установки.
- 3. Измерим параметры окружающей среды: $t_0=23,7^{\circ}C,~\rho_0=20,9\%,~P_0=97,59$ кПа. Из таблицы определим поправочный коэффициент к плотности спирта: k=0,9932. Зафиксируем диаметры трубок.
- 4. Рассчитаем критическое значение расхода.

$$Re=rac{
ho ua}{\eta}pproxrac{
ho Qa}{\pi R^2\eta}pproxrac{
ho Q}{\pi R\eta}=rac{\mu P_0Q}{R_{ ext{r}}T_0\pi R\eta}$$
 $Q_{ ext{kp}}=rac{R_{ ext{r}}T_0\pi R\eta Re_{ ext{kp}}}{\mu P_0}pprox 6,5\ \pi/ ext{muh}$

Далее выразим соответвующий данному расходу перепад давлений.

$$Q = \frac{\pi R^4 \Delta P}{8\eta l}$$

$$\Delta P_{\mathrm{\kappa p}} = \frac{8 \eta l Q_{\mathrm{\kappa p}}}{\pi R^4} \approx 180 \; \mathrm{\Pi a}$$

Переведя это в деления шкалы микроманометра, получим 114 мм.

Оценим длину, на которой течение можно считать установившимся.

$$l_{
m yct} = 0, 2 Re_{
m kp} R pprox 40$$
 см

Расстояние от начала трубки до ближайшего вывода, подключенного к микроманометру превышает 80 см, то есть течение можно с уверенностью считать установившимся.

- 5. Визуально определим границу перехода от ламинарного течения к турбулентному. Столбик микроманометра начинает заметно колебаться при превышении отметки в 80 мм. Данная величина немного ниже чем оценка, полученная в предыдущем пункте.
- 6. Найдем параметры расхода, при которых относительная погрешность не будет превышать 1%. Так как $\sigma_V=0,02$ л, то минимальный объём проходящего через счётчик газа нужно принять равным 2 литрам. Проведя простые измерения скорости реакции человека с помощью секундомера, мы определили, что она не превышает $\sigma_t=0,2$ с. Так как, мы фиксируем время начала и конца процесса измерения, абсолютная погрешность удваивается. То есть минимальное время измерения должно превышать 40 с.
- 7. Измерим зависимость перепада давления ΔP от расхода Q на выбраном участке. Проведем пять измерения в ламинарном режиме течения, пять в турбулентном и еще две в зоне, находящейся в промежуточной зоне. Результаты запишем в таблицу 1. Обработаем их, вычислив ΔP и Q по формулам:

$$\Delta P = \rho_{\rm c} kgh \sin \alpha, \quad Q = \frac{V}{t}$$

где $\rho_{\rm c}$ — плотность спирта, k — поправочный температурный коэффициент, g — ускорение свободного падения, $\sin\alpha=0,2$ на протяжении всей лабораторной работы. Обработанные результаты занесем в таблицу 2.

- 8. Проведем измерение распределения давления газа вдоль трубки. Подсоединим микроманометр ко всевозможным парам отверстий. Результаты занесем в таблицу 3.
- 9. Повторим предыдущие пять пунктов для трубки с наибольшим диаметром. Дополним таблицы 1-3.
- 10. Измерим зависимость расхода от радиуса трубы при заданном градиенте давления. Измерим расход всех труб, при градиенте, обеспечивающем ламинарное течение, и при градиенте, обеспечивающем турбулентное течение. Заполним получившимися данными таблицу 4.

4. Обработка данных

11. По данным таблицы 2 построим графики зависимости $Q(\Delta P)$. На графиках отчетливо видна граница перехода от ламинарного режима течения, к турбулентному. По угловым коэффициентам линейных зависимостей для ламинарных потоков определим вязкость воздуха.

$$Q = \frac{\pi R^4 \Delta P}{8\eta l} = k\Delta P,$$

$$k = \frac{\pi R^4}{8nl}, \quad \eta = \frac{\pi R^4}{8kl}$$

Также рассчитаем критическое число Рейнольдса по формуле из пункта 4:

$$Re_{\rm kp} = \frac{\mu P_0 Q_{\rm kp}}{R_{\scriptscriptstyle \Gamma} T_0 \pi R \eta}$$

$$Re_1 = 1010, \quad Re_2 = 1220$$

- 12. Построим график зависимости $\Delta P(x)$, используя данные из таблицы 3. За ноль примем давление на выходе из трубки. Оценим длину установления $l_{\rm уст}$ и отметим ее на графике. Действительно, после пересечения $l_{\rm уст}$ давление газа меняется линейным образом.
- 13. Теперь построим график зависимости $\ln Q(\ln R)$, основываясь на данных из таблицы 4. Угловой коэффициент данной прямой будет равен показателю степени β в зависимости $Q \propto R^{\beta}$. Как можно заметить из графика (рисунок 4) точка, соответствующая трубе наименьшего диаметра очень плохо ложится на прямую. Исключив ее, можно найти β по двум оставшимся точкам.

$$\beta_1 = 4, 6, \quad \beta_2 = 3, 2$$

5. Расчет погрешностей

Определим погрешность всех измеренных и вычисленных значений.

$$\varepsilon_{\Delta P} \approx \varepsilon_h = <\frac{\sigma_h}{h}> = 4,2\% \ (\varepsilon_{\rho_c} \ll \varepsilon_h)$$

$$\varepsilon_Q = \sqrt{\varepsilon_{\Delta P}^2 + \varepsilon_t^2} = 0,9\%$$

Найдем погрешность вязкости воздуха η .

$$\begin{split} \varepsilon_{\eta,\ \text{случ}} &= \varepsilon_k, \quad \varepsilon_{\eta,\ \text{инст}} = 4\varepsilon_R \\ \varepsilon_{\eta} &= \sqrt{\varepsilon_{\eta,\ \text{случ}}^2 + \varepsilon_{\eta,\ \text{инст}}^2} = \sqrt{\varepsilon_k^2 + 16\varepsilon_R^2} \\ \varepsilon_{\eta_1} &= 6,1\% \quad \varepsilon_{\eta_2} = 6,2\% \\ \eta_1 &= 17,0 \pm 1,0 \ \text{мк} \Pi \text{a} \cdot \text{c}, \quad \eta_2 = 14,9 \pm 0,9 \ \text{мк} \Pi \text{a} \cdot \text{c} \end{split}$$

6. Вывод

Полученные значения вязкости близки с табличным значением, равным $17.8 \text{ мк} \Pi a \cdot c$.

Показатели степени β_1 и β_2 полученные из теоритических зависимостей должны быть равны 4 и 2,5 соответственно. Значения, полученные из опыта довольно сильно отличаются.

7. Приложения

d=3,95 mm			d=5,05 мм			
h, мм	<i>V</i> , л	t, c	h, мм	<i>V</i> , л	t, c	
5	0,4	01:23,99	5	1,5	00:54,97	
10	0,5	00:39,48	11	2,5	00:49,47	
20	1,0	00:43,26	14	2,5	00:41,04	
25	1,5	00:51,02	22	4,0	00:42,88	
30	1,5	00:43,04	28	5,0	00:44,30	
35	2,0	00:45,70	31	5,0	00:41,10	
40	3,0	01:00,05	39	6,0	00:43,30	
45	3,0	00:54,62	53	6,5	00:45,58	
65	4,0	00:50:42	56	6,5	00:42,10	
80	4,5	00:48:87	61	7,0	00:42,60	
90	5,0	00:51,99	92	10,0	00:51,73	
120	4,5	00:42,45	102	10,0	00:48,35	
150	5,0	00:42,69				
165	5,5	00:45,25				
260	6,0	00:38,97				

Таблица 1: Измерения расхода воздуха в зависимости от перепада давления

d=3	, 95 мм	d = 5,05 mm		
ΔP , Πa	Q, л/мин	ΔP , Πa	Q, л/мин	
7,9	0,29	7,9	1,64	
15,9	0,76	17,3	3,03	
31,8	1,39	22,1	3,66	
39,7	1,76	34,7	5,60	
47,6	2,09	44,2	6,77	
55,6	$2,\!63$	48,9	7,30	
63,5	3,00	61,5	8,31	
71,4	3,30	83,6	8,56	
103,2	4,76	88,3	9,26	
127,0	$5,\!53$	96,2	9,86	
142,9	5,77	145,1	11,60	
190,5	6,36	160,8	12,41	
238,3	7,03			
262,0	7,29			
412,8	9,24			

Таблица 2: Зависимость расхода воздуха от перепада давления

$d=3,95 \mathrm{mm}$						
N	1	2	3	4		
1	-	73	122	180		
2	-	=	48	108		
3	-	=	=	60		
4	-	=	=	-		
r $c_{\rm M}$	11.5	41.5	81.5	131.5		

a = 5,05 MM						
N	1	2 3		4		
1	-	18	47	74		
2	_	-	29	55		
3	_	-	-	27		
4	_	-	-	-		
x, см	11,5	41,5	81,5	131,5		

Таблица 3: Измерение давления между всевозможными парами выводов, мм столбца микроманометра

	$\Delta h/\Delta l$	$0.5~\mathrm{mm/cm}$			3.6 MM/cM		
	d, mm	V , π	t, c	Q, л/мин	<i>V</i> , л	t, c	Q, л/мин
ĺ	3,0	1,2	00:45,20	1,593	6,0	00:36,51	5,930
	3,95	$1,\!5$	00:51,69	1,741	6,0	00:48,44	7,432
	5,05	4,0	00:44,15	5,436	10,0	01:00,71	16,389

Таблица 4: Измерение зависимости Q(R) при ламинарном и турбулентном режимах течения

Рис. 2: Зависимость расхода воздуха от перепада давления

Рис. 3: Распределение давления газа вдоль трубок

Рис. 4: Зависимость $\ln Q(\ln R)$