|                       | Step 1 : The implementation of the XGBoost algorithm sets $~\hat{y}_i^1=0.5$ for all $i$ . |              |          |                                |                     |
|-----------------------|--------------------------------------------------------------------------------------------|--------------|----------|--------------------------------|---------------------|
| $y(avg\_power\_comb)$ | intensity                                                                                  | $avg\_speed$ | type     | $\hat{\boldsymbol{y}}_{i}^{1}$ | $y_i - \hat{y}_i^1$ |
| 253                   | 0.7                                                                                        | 42           | mixed    | 0.5                            | 252.5               |
| 258                   | 0.83                                                                                       | 35.7         | sprinter | 0.5                            | 257.5               |
| 265                   | 0.84                                                                                       | 44.8         | sprinter | 0.5                            | 264.5               |
| 228                   | 0.62                                                                                       | 26.1         | climber  | 0.5                            | 227.5               |
| 242                   | 0.68                                                                                       | 33           | mixed    | 0.5                            | 241.5               |

Step 2 : Generate a tree with the prediction error of the initial prediction or the weights of the last tree. Calculate the weights (Note 1) and the new prediction.





Step 3 : Calculate the similarity scores  $Score_1$  for each node j



Step 4 : Calculate the Gain for each split

Step 5 : Prune the tree for all splits with a negative gain and calculate the new weights and predictions

