Моделирование как метод познания

Заполните таблицу:

Объект	Модель объекта	Свойство объекта
Автомобиль		
Человек		
Яблоко		
Планета Земля		
Медведь		
Здание		

Модель

— это такой материальный или мысленно представляемый объект, который в процессе изучения замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные черты этого оригинала.

Модель

— это упрощенное представление о реальном объекте, процессе или явлении.

Модель необходима, для того чтобы:

- понять, как устроен конкретный объект каковы его структура, основные свойства, законы развития и взаимодействия с окружающим миром;
- научиться управлять объектом или процессом и определять наилучшие способы управления при заданных целях и критериях (оптимизация);
- прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект.

Моделированием

называется как процесс построения модели, так и процесс изучения строения и свойств оригинала с помощью построенной модели.

Технология моделирования требует от исследователя:

- умения определять проблемы и ставить задачи,
- прогнозировать результаты исследования,
- проводить разумные оценки,
- выделять главные и второстепенные факторы для построения моделей,
- выбирать аналогии и математические формулировки,
- решать задачи с использованием компьютерных систем,
- проводить анализ компьютерных экспериментов.

Виды моделирования

Материальное (предметное, физическое) моделирование

Материальным (предметным, физическим) принято называть моделирование, при котором реальному объекту сопоставляется его увеличенная или уменьшенная копия, допускающая исследование (как правило, в лабораторных условиях) с помощью последующего перенесения свойств изучаемых процессов и явлений с модели на объект на основе теории подобия.

Идеальное моделирование

Идеальное моделирование основано не на материальной аналогии объекта и модели, а на идеальной, мыслительной.

Знаковое моделирование

Знаковое моделирование — моделирование, использующее в качестве моделей знаковые преобразования какого-либо вида: схемы, графики, чертежи, формулы, наборы символов.

1

Математическое моделирование

Это моделирование, при котором исследование объекта осуществляется посредством модели, описанной на языке математики.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_3 + a_{33}x_3 = b_3 \end{cases}$$

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \qquad \Delta_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_2 & a_{32} & a_{33} \end{vmatrix}, \Delta_2 = \begin{vmatrix} a_{12} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, \Delta_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}$$

4

Процесс моделирования

Основная задача процесса моделирования:

- выбор модели, наиболее адекватной оригиналу, и перенос результатов исследования на оригинал.

1. По области использования:

- учебные наглядные пособия, обучающие программы, различные тренажеры;
- *опытные* модель корабля (испытывается в бассейне для определения устойчивости судна при качке);
- научно-технические ускоритель электронов; прибор, имитирующий разряд молнии; стенд для проверки телевизора;
- игровые военные, экономические, спортивные, деловые и другие игры;
- имитационные эксперимент или многократно повторяется для изучения и оценки влияния каких-либо действий на реальную обстановку, или проводится одновременно со многими объектами, похожими, но поставленными в разные условия.

- По учету фактора времени:
 - статические дают «одномоментный срез» текущего состояния объекта;
 - динамические позволяют увидеть изменения объекта во времени.

- <u>По способу представления объекта:</u>
 - материальные;
 - информационные.

Материальные (предметные, физические) **модели** воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение.

Информационная модель — совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также его взаимосвязь с внешним миром.

Знаковая модель

 информационная модель,
 выраженная специальными
 знаками, т. е. средствами
 любого формального языка.

Компьютерная модель — модель, реализованная средствами программной среды.

■ Вербальная (от лат «verbalis» — устный) модель — информационная модель в мысленной или разговорной форме.

- 4. По отрасли знания:
 - биологические;
 - исторические;
 - социологические и др.

Результат заполнения таблицы

Объект	Модель объекта	Свойство объекта
Автомобиль	Игрушка-автомобиль	Форма
Человек	Манекен	Форма, размер
Яблоко	Муляж	Форма, размер
Планета Земля	Глобус	Форма, размер
Медведь	Игрушка-медвежонок	Форма
Здание	Макет	Форма