SETS 11

The power set of the set A, denoted by $\mathcal{P}(A)$, is the set of all subsets of A.

Example 2.0.6. Let $A = \{1, 2, 3\}$. Then

$$\mathcal{P}(A) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Since the empty set and the set A are subsets of A they are listed in $\mathcal{P}(A)$.

Problem 2.0.7. Write the power set for the set $\{\{1,2\},3,\{\}\}$.

Problem 2.0.8. How many elements are in the power set of a set containing exactly three elements?

To show that a set A is a subset of the set B is suffices to show that every element in A is in B. One way to do this is to pick an arbitrary element in A, say x, and show that $x \in B$. Since x is an arbitrary element in A it is the case that all elements of A are elements of B.

Theorem 2.0.9. For any set A, $A \subseteq A$ and $\{\}\subseteq A$.

Proof. Direct Proof

For every $x \in A$ it is the case that $x \in A$. Therefore, by definition of subsets, $A \subseteq A$.

Proof by Contradiction

Suppose $\{\} \not\subseteq A$. By definition, there exists $x \in \{\}$ such that $x \notin A$. However, this contradicts that the empty set has no elements. This shows that $\{\} \not\subseteq A$ is false which implies that $\{\} \subseteq A$ is true.

The set A and B are equal, denote by A = B, whenever every element of A is in B and every element of B is in A. A common technique to prove that two sets are equal is to show that they are subsets of each other.

Theorem 2.0.10. Let A and B be sets. Then A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Since Theorem 2.0.10 is a double implication it is necessary to prove two implications. While this can be done in a linear fashion (The proof only uses double implications.), it is not always easy to construct a proof which only uses double implications.

Proof. This proof breaks the double implication into two implications and prove them individually.

 (\Rightarrow) We want to show, if A = B then $A \subseteq B$ and $B \subseteq A$.

Direct Proof

Suppose A=B. Let $x\in A$. Then $x\in B$ since A=B. By definition $A\subseteq B$. Now let $x\in B$. Then $x\in A$ since A=B. Therefore $B\subseteq A$.

 (\Leftarrow) We want to show, if $A \subseteq B$ and $B \subseteq A$ then A = B.

<u>Direct Proof</u>

Suppose $A \subseteq B$ and $B \subseteq A$. Then every element in A is in B and every element in B is in A. By definition, A = B.

Problem 2.0.11. Let A, B, and C be sets such that $A \in B$. Prove that if $B \subseteq C$ then $A \in C$.