MATEMATIKA ANGOL NYELVEN MATHEMATICS

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA ADVANCED LEVEL WRITTEN EXAM

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ KEY AND GUIDE FOR EVALUATION

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM MINISTRY OF EDUCATION AND CULTURE

Important Information

Formal requirements:

- 1. The papers must be assessed in **pen and of different colour** than the one used by the candidates. Errors and flaws should be indicated according to ordinary teaching practice.
- 2. The first one among the shaded rectangles next to each question contains the maximal score for that question. The **score** given by the examiner should be entered into the other **rectangle**.
- 3. **In case of correct solutions**, it is enough to enter the maximal score into the corresponding rectangle.
- 4. In case of faulty or incomplete solutions, please indicate the corresponding **partial** scores within the body of the paper.

Substantial requirements:

- 1. In case of some problems there are more than one marking schemes given. However, if you happen to come across with some **solution different** from those outlined here, please check the parts equivalent to those in the solution provided here and do your marking accordingly.
- 2. The scores in this assessment **can be split further**. Remember, however, that the number of points given for any item can be an integer number only.
- 3. If the answer is correct and the argument is clearly valid then the maximal score can be given even if the actual solution is **less detailed** than that in this booklet.
- 4. If there is a **calculation error** or any other flaw in the solution, then the score should be deducted for the actual item only where the error has occured. If the candidate is going on working with the faulty intermediate result and the problem has not suffered substantial damage due to the error, the subsequent partial scores should still be given.
- 5. If there is a **fatal error** within an item (these are separated by double lines in this booklet), then even formally correct steps should not be given any points, whatsoever. However, if the wrong result obtained by the invalid argument is used correctly throughout the subsequent steps, the candidate should be given the maximal score for the remaing parts, unless the problem has been changed essentially due to the error.
- 6. If an **additional remark** or a **measuring unit** occurs in brackets in this booklet, the solution is complete even if the candidate does not mention it.
- 7. If there are more than one correct attempts to solve a problem, it is the **one indicated** by the candidate that can be marked.
- 8. You should **not give any bonus points** (points beyond the maximal score for a solution or for some part of a solution).
- 9. You **should not reduce** the score for erroneous calculations or steps unless its results are actually used by the candidate in the course of the solution.
- 10. There are only 4 questions to be marked out of the 5 ones in part II. of this exam paper. Hopefully, the candidate has entered the number of the question not to be marked in the square provided for this. Accordingly, this question should not be assessed even if there is some kind of solution contained in the paper. Should there be any ambiguity about the student's request with respect to the question not to be considered, it is the last one in this problem set, by default, that should not be marked.

I.

Γ.		
1.		
Rewriting the first equation by virtue of the laws of logarithms yields $2x + y$	2 points	
$\log_2 \frac{2x + y}{x - 1.5y} = \log_2 4.$	1	
By monotonicity one gets	1 point	
$\frac{2x+y}{x-1.5y} = 4$, and thus, after simplifying one gets 7y = 2x, that is $x = 3.5y$.	1 point	
Rewriting the first equation by virtue of the laws of logarithms yields $\log_3 (x - y)(x + y) = \log_3 45$.	2 points	
Using the corresponing identity and the monotonicity of the logarithm function yields $x^2 - y^2 = 45$.	1 point	
Substituting $x = 3.5y$ and simplifying: $y^2 = 4$,	1 point	
therefore $y = 2$ or $y = -2$.	1 point	This point cannot be given if the candidate finds $y = 2$ only.
If y is negative then so is the corresponding value of x and thus these numbers do not satisfy the equation.	1 point	
The only solution is the pair $x = 7$ and $y = 2$. These numbers satisfy both equations.	1 point	
Total:	11 points	

2. a)	
Correct diagram.	2 points
Total:	2 points
b)	
The vertices of the convex quadrilateral are <i>A</i> , <i>B</i> , <i>C</i> , <i>O</i> , where <i>B</i> is the intersection of the two straight lines: <i>B</i> (2, 3).	1 point
The area of the quadrilateral can be computed, for example, by subtracting the area of the triangle <i>ABD</i> from that of the triangle <i>DOC</i> . The area of the right triangle <i>DOC</i> is $\frac{OC \cdot OD}{2} = \frac{8 \cdot 4}{2} = 16$.	2 points
In the triangle ABD clearly $AD = 2$ and the length of the height dropped from B is equal to the abscissa (first coordinate) of B : since the latter is 2, the area of the triangle ABD is equal to 2.	2 points
The area of the convex quadrilateral <i>ABCO</i> is equal to $16 - 2 = 14$ (area units).	1 point

Total: 6 points

(c)		
The vertices of the concave quadrilateral are E , C , D , A . The lengts of the sides are $EC = 12$; $CD = \sqrt{80}$; $DA = 2$; $AE = \sqrt{20}$; $ED = 4\sqrt{2}$; $CA = \sqrt{68}$.	4 points	The length of each side is worth 1 point.
The perimeter is $k_1 = EC + CD + DA + AE =$ $= 12 + \sqrt{80} + 2 + \sqrt{20} = 14 + 6\sqrt{5} \ (\approx 27,42);$ $k_2 = ED + DC + AC + AE = 4\sqrt{2} + 6\sqrt{5} + 2\sqrt{17}$ $(\approx 27,32);$ $k_3 = ED + AD + AC + EC = 14 + 4\sqrt{2} + 2\sqrt{17}$ $(\approx 27,91).$	1 point	
Total:	5 points	The candidate receives 5 points if s/he has calculated correctly the perimeter of at least one of the three possible concave quadrangles.

3. a) There should be 6 vertices in the correct diagram, 1 point two of them are of degree five (A and B)1 point and four of them are of degree four (C, D, E, F). 2 points There are two edges missing from the complete 6-point graph. The subgraph formed by **Total:** 4 points these two edges in the complementary graph is not connected. b) Summing the degrees in this graph we get the double 1 point of the number of handshakes. The sum of the degrees is equal to 26. 1 point The travellers were greeting each other by 1 point exchanging 13 handshakes, altogether. These 3 marks may also be given if the candidate **Total:** 3 points counts the edges in the correct diagram.

Chose first a roommate for scientist A . There are five ways to do that. Having selected the roomate for A and chosing one—say C – from the remaining group of four there are three ways to select C 's roomate. Having already taken care of two rooms there is just one way for the remaining two scientist to move into the third room. Since the rooms are not distinguished, there are $5\cdot 3\cdot 1$ = 15 arrangements altogether. Total: Total: Total: C) 2nd solution There are $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$ ways to select two scientists. There are $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ ways two select another two from the remaining four scientists. Therefore, there are $\begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ ways to split them into three groups of two members each. There are 3! ways of assigning these groups to the three rooms and thus there are $\begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 15$ arrangements altogether in the rooms.	a) 1st solution		
ways to do that. Having selected the roomate for A and chosing one— say C – from the remaining group of four there are three ways to select C 's roomate. Having already taken care of two rooms there is just one way for the remaining two scientist to move into the third room. Since the rooms are not distinguished, there are $5 \cdot 3 \cdot 1$ = 15 arrangements altogether. Total: 6 points These 6 points are also due if the candidate compiles an organized list containing the 15 arrangements. If the list is deficient but still well organized, then no more than 4 points can be given. c) 2nd solution There are $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$ ways two select two scientists. 2 points 1 point There are $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ ways two select another two from the remaining four scientists. Therefore, there are $\begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ ways to split them into three groups of two members each. There are 31 ways of assigning these groups to the three rooms and thus there are $\begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ 2 points	c) 1st solution		
Having selected the roomate for A and chosing one—say C — from the remaining group of four there are three ways to select C 's roomate. Having already taken care of two rooms there is just one way for the remaining two scientist to move into the third room. Since the rooms are not distinguished, there are $5\cdot 3\cdot 1 = 15$ arrangements altogether. Total: Total: Total: Total: These 6 points are also due if the candidate compiles an organized list containing the 15 arrangements. If the list is deficient but still well organized, then no more than 4 points can be given. There are $\binom{6}{2}$ ways two select two scientists. There are $\binom{4}{2}$ ways two select another two from the remaining four scientists. Therefore, there are $\binom{6}{2}\cdot\binom{4}{2}$ ways to split them into three groups of two members each. There are $3!$ ways of assigning these groups to the three rooms and thus there are $\binom{6}{2}\cdot\binom{4}{2}$ and $\binom{6}{2}\cdot\binom{4}{2}$ points There are $\binom{6}{2}\cdot\binom{4}{2}$ and $\binom{6}{2}\cdot\binom{4}{2}$ ways to the three rooms and thus there are $\binom{6}{2}\cdot\binom{4}{2}$ and $\binom{6}{2}\cdot\binom{4}{2}$ and $\binom{6}{2}\cdot\binom{4}{2}$ arrangements altogether in the rooms.		1 point	
say C – from the remaining group of four there are three ways to select C 's roomate. Having already taken care of two rooms there is just one way for the remaining two scientist to move into the third room. Since the rooms are not distinguished, there are $5\cdot 3\cdot 1 = 15$ arrangements altogether. Total: Total: Total: Total: Total: These 6 points are also due if the candidate compiles an organized list containing the 15 arrangements. If the list is deficient but still well organized, then no more than 4 points can be given. There are $\binom{6}{2}$ ways two select two scientists. There are $\binom{4}{2}$ ways two select another two from the remaining four scientists. Therefore, there are $\binom{6}{2}\cdot\binom{4}{2}$ ways to split them into three groups of two members each. There are $3!$ ways of assigning these groups to the three rooms and thus there are $\binom{6}{2}\cdot\binom{4}{2}$ $3!$ = 15 arrangements altogether in the rooms.			
three ways to select C 's roomate. Having already taken care of two rooms there is just one way for the remaining two scientist to move into the third room. Since the rooms are not distinguished, there are $5\cdot 3\cdot 1 = 15$ arrangements altogether. Total: Total: These 6 points are also due if the candidate compiles an organized list containing the 15 arrangements. If the list is deficient but still well organized, then no more than 4 points can be given. There are $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$ ways to select two scientists. There are $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ ways two select another two from the remaining four scientists. Therefore, there are $\begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ ways to split them into three groups of two members each. There are 3! ways of assigning these groups to the three rooms and thus there are $\begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 15 \text{ arrangements altogether in the rooms.}$	I = =	2 points	
Having already taken care of two rooms there is just one way for the remaining two scientist to move into the third room. Since the rooms are not distinguished, there are 5·3·1 = 15 arrangements altogether. Total: Total: Total: C points These 6 points are also due if the candidate compiles an organized list containing the 15 arrangements. If the list is deficient but still well organized, then no more than 4 points can be given. C) 2nd solution There are $\binom{6}{2}$ ways to select two scientists. There are $\binom{4}{2}$ ways two select another two from the remaining four scientists. Therefore, there are $\binom{6}{2} \cdot \binom{4}{2}$ ways to split them into three groups of two members each. There are 3! ways of assigning these groups to the three rooms and thus there are $\binom{6}{2} \cdot \binom{4}{2}$ 3! = 15 arrangements altogether in the rooms.		2 points	
one way for the remaining two scientist to move into the third room. Since the rooms are not distinguished, there are 5·3·1 = 15 arrangements altogether. Total: Total: Total: Total: C) 2 points These 6 points are also due if the candidate compiles an organized list containing the 15 arrangements. If the list is deficient but still well organized, then no more than 4 points can be given. C) 2nd solution There are $\binom{6}{2}$ ways to select two scientists. There are $\binom{4}{2}$ ways two select another two from the remaining four scientists. Therefore, there are $\binom{6}{2} \cdot \binom{4}{2}$ ways to split them into three groups of two members each. There are 3! ways of assigning these groups to the three rooms and thus there are $\binom{6}{2} \cdot \binom{4}{2} = 15 \text{ arrangements altogether in the rooms.}$			
the third room. Since the rooms are not distinguished, there are $5\cdot 3\cdot 1$ = 15 arrangements altogether. Total: These 6 points are also due if the candidate compiles an organized list containing the 15 arrangements. If the list is deficient but still well organized, then no more than 4 points can be given. There are $\binom{6}{2}$ ways to select two scientists. There are $\binom{4}{2}$ ways two select another two from the remaining four scientists. Therefore, there are $\binom{6}{2}\cdot\binom{4}{2}$ ways to split them into three groups of two members each. There are 3! ways of assigning these groups to the three rooms and thus there are $\binom{6}{2}\cdot\binom{4}{2}$ $3!$ = 15 arrangements altogether in the rooms.	, ,	1 point	
Total: Total	1	1	
Total: Total	Since the rooms are not distinguished, there are 5·3·1	2	
Total: 6 points Total: 15 arrangements. If the list is deficient but still well organized, then no more than 4 points can be given. There are $\binom{6}{2}$ ways to select two scientists. 2 points There are $\binom{4}{2}$ ways two select another two from the remaining four scientists. Therefore, there are $\binom{6}{2} \cdot \binom{4}{2}$ ways to split them into three groups of two members each. There are 3! ways of assigning these groups to the three rooms and thus there are $\binom{6}{2} \cdot \binom{4}{2} = 15 \text{ arrangements altogether in the rooms.}$	_ =	2 points	
There are $\binom{6}{2}$ ways to select two scientists. There are $\binom{4}{2}$ ways two select another two from the remaining four scientists. Therefore, there are $\binom{6}{2} \cdot \binom{4}{2}$ ways to split them into three groups of two members each. There are 3! ways of assigning these groups to the three rooms and thus there are $\binom{6}{2} \cdot \binom{4}{2}$ $\frac{1}{3!} = 15 \text{ arrangements altogether in the}$ rooms.		6 points	due if the candidate compiles an organized list containing the 15 arrangements. If the list is deficient but still well organized, then no more than 4 points can
There are $\binom{2}{2}$ ways to select two scientists. 2 points There are $\binom{4}{2}$ ways two select another two from the remaining four scientists. Therefore, there are $\binom{6}{2} \cdot \binom{4}{2}$ ways to split them into three groups of two members each. There are $3!$ ways of assigning these groups to the three rooms and thus there are $\binom{6}{2} \cdot \binom{4}{2}$ points $\binom{6}{2} \cdot \binom{4}{2}$ = 15 arrangements altogether in the rooms.			
remaining four scientists. Therefore, there are $\binom{6}{2} \cdot \binom{4}{2}$ ways to split them into three groups of two members each. There are 3! ways of assigning these groups to the three rooms and thus there are $\binom{6}{2} \cdot \binom{4}{2}$ $\frac{4}{2} \cdot \binom{4}{2} = 15 \text{ arrangements altogether in the rooms.}$	There are $\binom{0}{2}$ ways to select two scientists.	2 points	
three groups of two members each. There are 3! ways of assigning these groups to the three rooms and thus there are $ \frac{\binom{6}{2} \cdot \binom{4}{2}}{3!} = 15 \text{ arrangements altogether in the} $ rooms.	(2)	1 point	
There are 3! ways of assigning these groups to the three rooms and thus there are $ \frac{\binom{6}{2} \cdot \binom{4}{2}}{3!} = 15 \text{ arrangements altogether in the rooms.} $ 2 points		1 point	
three rooms and thus there are $ \frac{\binom{6}{2} \cdot \binom{4}{2}}{3!} = 15 \text{ arrangements altogether in the} $ rooms.	three groups of two members each.		
$\frac{\binom{6}{2} \cdot \binom{4}{2}}{3!} = 15 \text{ arrangements altogether in the}$ rooms.			
$\frac{(2)(2)}{3!} = 15 \text{ arrangements altogether in the}$ rooms.	three rooms and thus there are		
	$\frac{\binom{6}{2} \cdot \binom{4}{2}}{3!} = 15 \text{ arrangements altogether in the}$	2 points	
	rooms.		
	Total:	6 points	

4. a) G F E The sum of the seven vectors is $\overrightarrow{AP} = (\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}) + (\overrightarrow{AC} + \overrightarrow{AF} + \overrightarrow{AH}) + \overrightarrow{AG}$. This point is due for any Expressing the vectors, respectively, on the r.h.s. in correct representation of 1 point terms of the edge vectors a, b and c the vector \overrightarrow{AP} . $\overrightarrow{AP} = (\mathbf{a} + \mathbf{b} + \mathbf{c}) + (\mathbf{a} + \mathbf{b}) + (\mathbf{a} + \mathbf{c}) + (\mathbf{b} + \mathbf{c})$ (a+b+c).Collecting the equal terms one gets 1 point $\overrightarrow{AP} = 4 (\mathbf{a} + \mathbf{b} + \mathbf{c}).$ **Total:** 2 points b) Since $\overrightarrow{AP} = 4 \overrightarrow{AG}$, the modulus of \overrightarrow{AP} is equal to 1 point four times the length of the space diagonal AG. By Pithagoras' theorem $AG^2 = AB^2 + BC^2 + CG^2 = 10^2 + 8^2 + 6^2 = 200$. 1 point $AG = \sqrt{200} = 10 \sqrt{2}$. $AP = 4AG = 40\sqrt{2} \ (\approx 56.57).$ 1 point **Total:** 3 points c) Since $\overrightarrow{AP} = 4 \overrightarrow{AG}$, the angle of the vectors \overrightarrow{AP} and \overrightarrow{AE} is equal to that of the vectors \overrightarrow{AG} and \overrightarrow{AE} . 1 point This is angle A in the right triangle AEG; denote it by α. Since AE = 6 and $AG = 10\sqrt{2}$, $\cos \alpha = \frac{AE}{AG} = \frac{6}{10\sqrt{2}} \approx 0.4243$, 1 point and hence $\alpha \approx 64.9^{\circ}$ 1 point **Total:** 3 points

d)		
The position vector \overrightarrow{AS} of the centroid S of the triangle HFC is equal to one third of the sum of the position vectors of the vertices.	2 points	
$\overrightarrow{AS} = \frac{\overrightarrow{AH} + \overrightarrow{AF} + \overrightarrow{AC}}{3} =$ $= \frac{(\mathbf{b} + \mathbf{c}) + (\mathbf{a} + \mathbf{c}) + (\mathbf{a} + \mathbf{b})}{3} =$ $= \frac{2}{3} (\mathbf{a} + \mathbf{b} + \mathbf{c}),$	1 point	
and thus $\overrightarrow{AS} = \frac{2}{3} \overrightarrow{AG}$.	1 point	
$\overrightarrow{AS} \cdot \overrightarrow{AP} = (\frac{2}{3} \overrightarrow{AG}) \cdot (4 \overrightarrow{AG}) =$ $= \frac{8}{3} AG^2 = \frac{8}{3} \cdot 200 = \frac{1600}{3} (\approx 533.3).$	2 points	
Total:	6 points	

II.

5.		
Factorising the denominators $\frac{x}{(x-2)(x+2)} + \frac{p}{x(x+2)} + \frac{1}{x(2-x)} = 0$	2 points	
Since the denominators cannot be equal to 0, the forbidden values for x are -2 ; 0; 2.	1 point	
Multiplying by the common denominator $(x-2)x(x+2)$ and rearranging according to the decreasing powers of x one gets the equation $x^2 + (p-1)x - 2(p+1) = 0$.	1 point	
By the quadratic formula $x_{1,2} = \frac{1 - p \pm \sqrt{p^2 + 6p + 9}}{2},$	1 point	
that is $x_{1;2} = \frac{1 - p \pm p + 3 }{2}.$	1 point	This point is due for recognizing the complete square.
$x_1 = 2$ and $x_2 = -(p+1)$.	2 points	
It is impossible for the given equation to have two distinct solutions since one of these roots, namely $x_1 = 2$ is a forbidden value for x . Therefore, there can be at most one solution, $x_2 = -(p+1)$.	2 points	
There is no solution if x_2 is equal to any one of the excluded values, -2 ; 0; 2.	2 points	
$x_2 = -2$, if $p = 1$; $x_2 = 0$, if $p = -1$; $x_2 = 2$, if $p = -3$.	3 points	
Therefore the equation has no real roots if p assumes one of the values -3 ; -1 or 1 .	1 point	
Total:	16 points	

6. a)		
By the geometric mean property we have $p^2 = 4c$.	1 point	If the candidate is
By the arithmetic mean property we have $2c = p + 40$.	1 point	familiar with the notions of arithmetic and
Substituting the value of $2c$ into the first equation and collecting the terms one gets $p^2 - 2p - 80 = 0$,	1 point	geometric progression and makes correct observations but
hence $p_1 = 10$ and $p_2 = -8$.	1 point	somewhere gets stuck
Since there is no solution for the negative root, Danny has counted 10 big red fish and 25 small striped fish altogether.	1 point	(most probably because it uses too many variables), at most 2 points may be given.
Total:	5 points	2 poinis may be given.

The growth rate of the fish is 20 % each month and thus their amount should be scaled up monthly by 1.2. If Danny sold x % of the fish every other month then their amount should be multiplied bimonthly by $\left(1-\frac{x}{100}\right)=q$. Therefore, the bimonthly scale factor is equal to $1.2^2 \cdot q = 1.44 \cdot q$. This yields the equation $100 \cdot (1,44q)^{12} = 252$. I point $1.2^2 \cdot q = 1.44 \cdot q$. This yields the equation one gets $q = 0.75$. Hence Danny was left with the 75 % of his fish and thus he sold 25 % of them every other month. Total: 7 points c) There are $\begin{pmatrix} 20\\8 \end{pmatrix}$ equally probable ways of selecting 8 fish out of 20. The number of the favourable outcomes is equal to $\begin{pmatrix} 5\\3 \end{pmatrix} \cdot \begin{pmatrix} 15\\5 \end{pmatrix}$. The probability in question is hence $\begin{pmatrix} 5\\3 \end{pmatrix} \cdot \begin{pmatrix} 15\\5 \end{pmatrix} = \frac{10 \cdot 3003}{125970} = 0.2384$. Total: 4 points	b)		
then their amount should be multiplied bimonthly by $\left(1-\frac{x}{100}\right)=q$. Therefore, the bimonthly scale factor is equal to $1.2^2 \cdot q = 1.44 \cdot q$. This yields the equation $100 \cdot (1,44q)^{12} = 252$. There Danny was left with the 75 % of his fish and thus he sold 25 % of them every other month. Total: 7 points c) There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 8 fish out of 20. The number of the favourable outcomes is equal to $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix}$. The probability in question is hence $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix} = \frac{10 \cdot 3003}{125970} = 0.2384$. Then their amount should be multiplied bimonthly by a point 1	thus their amount should be scaled up monthly by	1 point	
This yields the equation $100 \cdot (1,44q)^{12} = 252$. 1 point Solving this equation one gets $q = 0,75$. 2 points Hence Danny was left with the 75 % of his fish and thus he sold 25 % of them every other month. Total: 7 points c) There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 8 fish out of 20. The number of the favourable outcomes is equal to $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5$	then their amount should be multiplied bimonthly by $\left(1 - \frac{x}{100}\right) = q$.	1 point	
Solving this equation one gets $q = 0.75$. Hence Danny was left with the 75 % of his fish and thus he sold 25 % of them every other month. Total: 7 points Total: 7 points There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 8 fish out of 20. The number of the favourable outcomes is equal to $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix} \cdot \begin{pmatrix}$		1 point	
Hence Danny was left with the 75 % of his fish and thus he sold 25 % of them every other month. Total: 7 points C) There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 8 fish out of 20. The number of the favourable outcomes is equal to $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 15 \\$	This yields the equation $100 \cdot (1,44q)^{12} = 252$.	1 point	
Hence Danny was left with the 75 % of his fish and thus he sold 25 % of them every other month. Total: 7 points C) There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 8 fish out of 20. The number of the favourable outcomes is equal to $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 15 \\$	Solving this equation one gets $q = 0.75$.	2 points	
There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 8 fish out of 20. The number of the favourable outcomes is equal to $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix}$. The probability in question is hence $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix} = \frac{10 \cdot 3003}{125970} = 0.2384$. 2 points $\begin{pmatrix} 20 \\ 8 \end{pmatrix} = \frac{10 \cdot 3003}{125970} = 0.2384$.	Hence Danny was left with the 75 % of his fish and	1 point	
There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 8 fish out of 20. The number of the favourable outcomes is equal to $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix}$. The probability in question is hence $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix} = \frac{10 \cdot 3003}{125970} = 0.2384$. 2 points There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 1 point 2 binomial coefficients should be accepted even 2 if the candidate does not 3 indicate their actual 2 calculations. (Calculators 2 or a formula sheet might 2 have been of help). However, if the actual 2 value of the probability 2 is missing or it is wrong 3 then, instead of 2, there 2 can be at most 1 point 3 in the distribution 2 the probability 3 in question 1 point 3 in the distribution 3 in t	Total:	7 points	
There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 8 fish out of 20. The number of the favourable outcomes is equal to $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix}$. The probability in question is hence $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 15 \\ 5 \end{pmatrix} = \frac{10 \cdot 3003}{125970} = 0.2384$. 2 points There are $\begin{pmatrix} 20 \\ 8 \end{pmatrix}$ equally probable ways of selecting 1 point 2 binomial coefficients should be accepted even 2 if the candidate does not 3 indicate their actual 2 calculations. (Calculators 2 or a formula sheet might 2 have been of help). However, if the actual 2 value of the probability 2 is missing or it is wrong 3 then, instead of 2, there 2 can be at most 1 point 3 in the distribution 2 the probability 3 in question 1 point 3 in the distribution 3 in t	c)		
The number of the favourable outcomes is equal to	There are $\binom{20}{8}$ equally probable ways of selecting	1 point	binomial coefficients
$\frac{\binom{5}{3} \cdot \binom{15}{5}}{\binom{20}{8}} = \frac{10 \cdot 3003}{125970} = 0.2384.$ 2 points 2 points However, if the actual value of the probability is missing or it is wrong then, instead of 2, there can be at most 1 point	The number of the favourable outcomes is equal to	1 point	indicate their actual calculations.(Calculatiors
Total: 4 points given for the last item.	$\frac{\binom{5}{3} \cdot \binom{15}{5}}{\binom{20}{}} = \frac{10 \cdot 3003}{125970} = 0.2384.$	2 points	However, if the actual value of the probability is missing or it is wrong then, instead of 2, there can be at most 1 point
	Total:	4 points	given for the last item.

a)						
	wages (in thousand forints)	68	108	154	184	225
	no. of employees	25	65	70	44	16
	% of employees	11	30	32	20	7

For the correct chart (proper labelling of the axes is worth 1-1 points each, and the bars are also worth 1 point).

Remark:

The candidate may define the respective heights of the bars either as the number or as the percentage of the employees. There are 11 people corresponding to 5 %. The third row of the table above is not required for the 3 points.

Total: 3 points

(b)		
The mean of the August gross income is $ \frac{25 \cdot 68 + 65 \cdot 108 + 70 \cdot 154 + 44 \cdot 184 + 16 \cdot 225}{220} = \frac{31196}{220} = 141.8 \text{ thousand Ft.} $	3 points	If the mean is correct then detailed computations are not required for the 3 marks. The candidate might have used a calculator where the result is immediately displayed after having keyed in he data.

The standard deviation of the August gross income is 43.17 thousand Ft.	3 points	Any correct calculation of the standard deviation is worth 3 marks. The candidate may proceed from first principles or it can use the "mean of the squares – the square of the mean" formula or a statistical package. If, instead of the standard deviation the candidate announces its square as the answer, at most 2 points can be given.
Total:	6 points	In case of wrong mean/standard deviation there can be no points given unless it is clear from the paper that the candidate has an accurate knowledge of these notions.

c)		
The net income of every employee is 60.6% of its	1 point	While marking
gross income.	1 point	questions c) and d)
The payroll of each of the 220 employees is scaled up		full score should be
by 0.606 and thus is the mean. Hence the mean of the	2 points	given if the candi-
net income is $0.606 \cdot 141.8 \approx 85.93$ thousand Ft.	_	date finds the
Remark: 85.94 thousand Ft may also be accepted a	s a correct	correct answer by
result.		referring to general
Total:	3 points	results about the
	mean. If the candi-	
d)		date does not indi- cate the dimension
If the gross income of each of the 220 employee is		of the mean and/or
increased by 2 500 Ft then so is their average gross	1 point	standard deviation,
income.	-	(thousand forints, in
The difference of the new salary and the new mean is		this case) then its
the same in each of the 220 cases as that of the		total score on the
precedent values, because both quantities are increased	1 point	whole question
by the same amount, respectively.		should be reduced
by the same amount, respectively.		by 1 point

	1	
Accordingly, the mean of the squares of these		
differences is also invariant: it is equal to the	1 point	
corresponding mean for August.		
Therefore, the standard deviation of the gross income	1 point	
is not influenced by the promotion.	Тропп	
Total:	4 points	
8. a)		
The function cos <i>x</i> is odd and thus	2 points	
$f(x) = 2\cos x$	2 points	
The function f is bounded,	1 point	
because $-2 \le f(x) \le 2$.	1 point	
It is not true that both the minimum argument and the maximum value are irrational numbers,	1 point	
because the maximum value of f is 2 which is not irrational.	1 point	
Total:	6 points	

A correct sketch includes the marking of the units and also the significant intervals.	2 points		
The region in question is formed by three smaller regions whose area is denoted by T_1 , T_2 , T_3 , respectively. Since the function f is continuous, the respective areas can be found by integration: $T_1 = \int_0^{\frac{\pi}{2}} 2\cos x dx = 2 \left[\sin x\right]_0^{\frac{\pi}{2}} = 2.$	2 points	The respective areas T_1 and T_2 can also be found if one takes into account that the areas of the regions enclosed by the graphs of $2 \cos x$ (or that of $2 \sin x$) and the	
The function f is not positive on the interval $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$ and thus $T_2 = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} 2 \cos x dx = 2\left[-\sin x\right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = 4.$	2 points	$\begin{bmatrix} 0; \frac{\pi}{2} \end{bmatrix}$ interval of the x-axis are equal to 2, respectively. The correct results by themselves are worth 1 point each and also the	
$T_3 = \int_{\frac{3\pi}{2}}^5 2\cos x dx = 2\left[\sin x\right]_{\frac{3\pi}{2}}^5 = 2\sin 5 + 2.$	2 points	correct reference in each case.	
The area of the region is equal to $T = T_1 + T_2 + T_3 =$ = 2 + 4 + 2 sin 5 + 2 = 8 + 2 sin 5 \approx 6.082.	2 points		
Total:	10 points		

9.		<u>, </u>
First we find the four sets A , B , C and D elementwise that make the statements true, respectively. The elements are two digit numbers. The number N is divisible by 7 if it is a multiple of 7. $A = \{14; 21; 28; 35; 42; 49; 56; 63; 70; 77; 84; 91; 98 \}$	1 point	
N is a multiple of 29: $B = \{ 29, 58, 87 \}$	1 point	
$N + 11$ is a square number if $N = n^2 - 11$, where $22 < n^2 < 111$. Therefore, $C = \{14; 25; 38; 53; 70; 89 \}$	1 point	
$N-13$ is a square number if $N=k^2+13$, where $0 \le k^2 < 87$. Therefore, $D = \{13; 14; 17; 22; 29; 38; 49; 62; 77; 94\}$	1 point	
The numbers satisfying the conditions belong to the intersection of some two of the above four sets and, at the same time, they are not elements of the remaining two sets.	1 point	
There are six ways to chose two out of the four sets above. Consider the six intersections hence obtained.	1 point	The 2 marks for this unit are due even if the candidate does not write down a detailed explanation but the argument clearly shows that it is proceeding along these lines.
Both $A \cap B$ and $B \cap C$ are empty.	1 point	
$A \cap C = \{14, 70\};$	1 point	
14 does not belong to D and thus it is not a solution; 70, on the other hand is, in fact, a solution, because it does not belong to neither B , nor D .	1 point	
$A \cap D = \{14, 49, 77\};$	1 point	
14 belongs to <i>C</i> so it is not a solution; both 49 and 77 are solutions because neither of them belongs to any one of <i>C</i> and <i>B</i> .	1 point	
$B \cap D = \{ 29 \} ,$	1 point	
29 is a solution because it is not in A neither in C.	1 point	
$C \cap D = \{14, 38\},$	1 point	

14 has already been excluded (it is in <i>A</i> , anyway); 38 is a solution since it is neither in <i>A</i> , nor in <i>B</i> .	1 point	
Coming to the end, there are five numbers altogether satisfying the conditions of the problem: 29; 38; 49; 70; 77.	1 point	
Total:	16 points	

Remarks:

If the candidate simply writes down the numbers claimed to be the solutions without actually giving the explanation (not showing the two true statements and the two false ones in each case) then 1 or 2 correct numbers are worth 1 point, 3 correct numbers are worth 2 points, 4 correct numbers are worth 3 points, finally 5 correct numbers are worth 4 points. If the candidate proves that his numbers are indeed solutions but does not exclude any other number then at most 8 points can be given. (The double of the respective scores of the previous list.)