ARITHMETIC

Chapther 19 Session I

POTENCIACIÓN EN N

$$a^n = \underline{a.a.a.....}$$

POTENCIACIÓN

Sea

Donde:

P: potencia

k:base

n: exponente

∀ n ∈ Z⁺

Criterios de inclusión y exclusión

Según su ultima cifra

k	0	1	2	3	4	5	6	7	8	9
k ²	0	1	4	9	6	5	6	9	4	1
k ³	0	1	8	7	4	5	6	3	2	9

Por su descomposición canónica

Cuadrado perfecto k ²	Cubo perfecto k ³
14400 = 2 ⁶ .3 ² .5 ²	27000 = 2 ³ .3 ³ .5 ³
765625 = 5 ⁶ .7 ²	91125 = 3 ⁶ .5 ³

Por su terminación en cifra 0

Ejm

Cuadrado perfecto	Cubo perfecto
k ²	k ³
14400 = ₂ 6. ₃ 2. ₅ 2	27000 = 2 ³ .3 ³ .5 ³
14400	27000
n ² 2β ceros	n ³ 3β ceros

Por su terminación en cifra 5

Ejm

Cuadrado perfecto k²

$$15625 = 5^6$$

1. Calcule la suma de los 5 RESOLUCION primeros cuadrados perfectos positivos.

Sumar los 5 primeros cuadrados perfectos positivos

RPTA:

2. Calcule la suma de todos RESOLUCION los cubos perfectos de dos cifras.

$$10 \le k^3 < 100$$

$$k^3 = 3^3; 4^3$$

$$k^3 = 27;64$$

RPTA:

3. ¿Cuántos cuadrados perfectos hay entre 49 y 324?

RESOLUCION

$$49 < k^2 < 324$$

$$7^2 < k^2 < 18^2$$

$$k^2 = 8^2;$$

$$9^2;10^2;...;17^2$$

$$k = 8;$$

$$9;10;...;17$$
cuadrados
perfectos:

10

4. ¿Cuántos cubos perfectos hay desde 64 hasta 729?

RESOLUCION

$$64 \le k^3 \le 729$$

$$4^3 \le k^3 \le 9^3$$

5. Si a4 es un cuadrado RESOLUCION perfecto y 12b es un cubo perfecto, calcule a+b.

Del dato:

$$\overline{a4} = k^2$$

Como termina en 4, podemos decir:

$$k = 8 \rightarrow 8^2 = 64 = \overline{a^4} \rightarrow a = 6$$

Del dato:

$$\overline{12b} = n^3$$

Como empieza con 12, podemos decir:

$$n = 5 \longrightarrow 5^3 = 125 = \overline{12b} \longrightarrow b = 5$$

Nos piden:

6. Sea M=2×5². ¿Cuál es el menor número que se debe multiplicar a M para que el resultado sea un reducipor fecto?

Si:

$$\mathbf{A} = \alpha^a.\beta^b.\gamma \qquad \mathbf{CUBO}$$
PERFECTO

Entonces:

a, b y c deben ser múltiplos de 3

RESOLUCION

$$M = 2 \times 5 \stackrel{?}{\times} N$$

$$M = 2 \times 5 \stackrel{?}{\times} 2^2 \times 5$$

$$M = 2^3 \times 5^3 \quad \text{CUBO}$$
PERFECTO

$$" N = 2^2 \times 5 = 20$$

7. ¿Cuál es el menor número entero que multiplica a 2⁴×5² y lo convierte en un cubo perferba?

Si:

$$\mathbf{A} = \alpha^a.\beta^b.\gamma^c$$
PERFECTO

Entonces:

a, b y c deben ser múltiplos de 3

RESOLUCION

$$M = 2^4 \times 5 \stackrel{?}{\times} N$$
 $M = 2^4 \times 5 \stackrel{?}{\times} 2^2 \times 5$
 $M = 2^6 \times 5^3$
PERFECTO

$$N = 2^2 \times 5 = 20$$

তিয়

8. En un desfile por fiestas RESOLUCION **Patrias** los alumnos forman un batallón de tal manera que la cantidad de filas y columnas son iguales. Si la cantidad de alumnos está entre 110 y 130 ; ¿cuántos alumnos faltan para que haya una fila y una columna más en el batallón?

Para hallar cuantos alumnos están formados, → se debe cumplir: N° de alumnos formados

ADEMAS:

$$110 < a^2 < 130$$

El único cuadrado que cumple es:

$$a^2 = 11^2 = 121$$
 alumnos

Nosotros queremos aumentar 1 fila y 1 colo **entonces:** $(a+1)^2 = 12^2 = 144$ alumnos

23