

17.03.1993

(11)Publication number:

06-266474

(43) Date of publication of application: 22.09.1994

(51)Int.CI.

G06F 1/20

F28D 15/02

(21) Application number: **05-056804**

(71)Applicant: HITACHI LTD

(22)Date of filing:

(72)Inventor: OHASHI SHIGEO

HATADA TOSHIO TANAKA TAKEO

IWAI SUSUMU

(54) ELECTRONIC APPARATUS EQUIPMENT AND LAP TOP ELECTRONIC APPARATUS EQUIPMENT

(57) Abstract:

PURPOSE: To cool a heating member by efficiently transmitting the heat, which is generated by the heating member, to a radiating member installed in an arbitrary place independently of the arrangement state of members even in a device where the heating member is mounted in a narrow space together with other members.

CONSTITUTION: Semiconductor elements 1 mounted on printed boards 2 are provided with headers 5. Headers 5 are connected to a header 6, which is attached to a radiation fin 7 provided in the end part of the enclosure, by flexible tubes 9. Heat generated by respective semiconductor elements 1 is collectively radiated out of the enclosure from the part of the radiation fin 7 by transporting liquid between tubes. Though many semiconductor elements are arranged in a narrow space, semiconductor elements generating the heat much and the radiation fin are easily thermally connected independently of the mounted state of the device because flat headers and flexible tubes are used.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

Number of appeal against examiner's decision of

rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-266474

(43)公開日 平成6年(1994)9月22日

(51)Int.Cl. ⁵ G 0 6 F 1/20	識別記号 庁内朝	を理番号 FI	技術表示	簡所
F 2 8 D 15/02	101 L			
	7165-	-5B G 0 6 F	1/00 360 C	
	7165-	-5B	360 A	
		審査請求	未請求 請求項の数15 OL (全 8	頁)
(21)出願番号	特顧平5-56804	(71)出顧人	000005108	
			株式会社日立製作所	
(22)出顧日	平成5年(1993)3月17日		東京都千代田区神田駿河台四丁目 6番	地
		(72)発明者	大橋 繁男	
			茨城県土浦市神立町502番地 株式会≥ 立製作所機械研究所内	土日
		(72)発明者	畑田 敏夫	
			茨城県土浦市神立町502番地 株式会社 立製作所機械研究所内	土日
		(72)発明者		
		(14)70914	茨城県土浦市神立町502番地 株式会社	40
			立製作所機械研究所内	Τロ
		(74)代理人	弁理士 小川 勝男	
			最終頁に	続く

(54)【発明の名称】 電子機器装置及びラップトップ型電子機器装置

(57)【要約】

【目的】発熱部材が他の部材とともに狭い空間内に搭載された装置であっても、部材の配置状態に左右されず に、発熱部材で発生する熱を任意の場所に設置した放熱部材まで効率良く熱を輸送し発熱部材を冷却する。

【構成】配線基板2に搭載された半導体素子1にヘッダ5が設けられている。ヘッダ5はフレキシブルチューブ9によって、筐体端部に設けた放熱フィン7に取り付けたヘッダ6と接続される。それぞれの半導体素子1で発生した熱は、ヘッダ間で液を移送することによって一括して放熱フィン7部から筐体外へ放熱される。

【効果】多数の半導体素子が狭い空間内に配置されて も、扁平なヘッダとフレキシブルチューブを用いている ので、装置の実装状態に左右されることなく高発熱半導 体素子と放熱フィンとを容易に熱的に接続できる。 図 1

30

40

【特許請求の範囲】

【請求項1】複数の半導体素子を搭載した電子回路基板 と、その内部に冷媒液の流動可能な流路を形成し前記複 数の半導体素子の少なくとも1つの半導体素子に熱的に 接続された扁平形状のヘッダと、その内部に冷媒液の流 動可能な液流路を形成した熱交換放熱部材とを筐体内に 収納した電子機器装置において、

1

前記ヘッダと前記熱交換放熱部材とをフレキシブルチュ - ブで接続し、冷媒液を前記ヘッダと前記熱交換放熱部 材間で移送する液移送機構を前記熱交換放熱部材に設 け、前記熱交換放熱部材を前記ヘッダを接続した半導体 素子と隔離して配置したことを特徴とする電子機器装

【請求項2】前記液移送機構は前記ヘッダと前記熱交換 放熱部材との間で冷媒液を往復動させるものであること を特徴とする請求項1に記載の電子機器装置。

【請求項3】前記液移送機構は前記へッダと前記熱交換 放熱部材との間で冷媒液を循環させるものであることを 特徴とする請求項1に記載の電子機器装置。

【請求項4】前記熱交換放熱部材は液流路を構成するパ 20 イブに複数枚の金属プレートを積層して形成したもので あることを特徴とする請求項1に記載の電子機器装置。

【請求項5】前記液移送機構は前記熱交換放熱部材の液 流路の端部に複数のベローを配設したことを特徴とする 請求項2に記載の電子機器装置。

【請求項6】複数の半導体素子を搭載した電子回路基板 と、その内部に冷媒液の流動可能な流路を形成し前記複 数の半導体素子の少なくとも1つの半導体素子に熱的に 接続された扁平形状の第1のヘッダと、その内部に冷媒 液の流動可能な液流路を形成した熱交換放熱部材とを筐 体内に収納した電子機器装置において、

前記電子回路基板を複数枚前記筺体内に取付け、前記熱 交換放熱部材に第2のヘッダを接続し、前記複数の第1 のヘッダと前記第2のヘッダとをフレキシブルチューブ で接続し、冷媒液を前記第1のヘッダと前記第2のヘッ ダ間で移送する液移送機構を前記第2のヘッダに設け、 前記熱交換放熱部材を前記ヘッダを接続した半導体素子 と隔離して配置したことを特徴とする電子機器装置。

【請求項7】前記筺体に前記熱交換放熱部材を形成した ことを特徴とする請求項1 に記載の電子機器装置。

【請求項8】前記熱交換放熱部材を前記ヘッダより前記 筺体の壁面に近付けて配置したことを特徴とする請求項 1に記載の電子機器装置。

【請求項9】複数の半導体素子を搭載した電子回路基板 と、その内部に冷媒液の流動可能な流路を形成し前記複 数の半導体素子の少なくとも1つの半導体素子に熱的に 接続された扁平形状のヘッダと、その内部に冷媒液の流 動可能な液流路を形成した熱交換放熱部材とを筺体内に 収納した電子機器装置において、

前記へッダと前記熱交換放熱部材とをフレキシブルチュ 50 機器装置に関する。

-ブで接続し、前記熱交換放熱部材を前記ヘッダより前 記筺体の壁面に近付けて配置したことを特徴とする電子 機器装置。

【請求項10】複数の半導体素子を搭載した電子回路基 板とその内部に冷媒液の流動可能な流路を形成し前記複 数の半導体素子の少なくとも1つの半導体素子に熱的に 接続された扁平形状のヘッダとを収納した第1の筐体 と、該第1の筐体に回動自在に設けられた表示部を収納 した第2の筐体と、その内部に冷媒液の流動可能な液流 路を形成した熱交換放熱部材とを備えたラップトップ型 電子機器装置において、

前記熱交換放熱部材を前記第2の筐体に収納した表示部 の背面側に設け、前記ヘッダと前記熱交換放熱部材とを フレキシブルチューブで接続し、冷媒液を前記ヘッダと 前記熱交換放熱部材間で移送する液移送機構を前記熱交 換放熱部材に設けたことを特徴とするラップトップ型電 子機器装置。

【請求項11】複数の半導体素子を搭載した電子回路基 板とその内部に冷媒液の流動可能な流路を形成し前記複 数の半導体素子の少なくとも1つの半導体素子に熱的に 接続された扁平形状のヘッダとを収納した第1の筐体 と、該第1の筐体に回動自在に設けられた表示部を収納 した第2の筐体と、その内部に冷媒液の流動可能な液流 路を形成した熱交換放熱部材とを備えたラップトップ型 電子機器装置において、

前記熱交換放熱部材を前記第1の筐体の壁面近傍に配設 し、前記ヘッダと前記熱交換放熱部材とをフレキシブル チューブで接続し、冷媒液を前記ヘッダと前記熱交換放 熱部材間で移送する液移送機構を前記熱交換放熱部材に 設けたことを特徴とするラップトップ型電子機器装置。

【請求項12】前記第1の筐体に前記熱交換放熱部材に 送風する送風手段を収納したことを特徴とする請求項1 1 に記載のラップトップ型電子機器装置。

【請求項13】前記フレキシブルチューブはその内径が ほぼ2mm以下であることを特徴とする請求項1ないし 9のいずれか1項に記載の電子機器装置。

【請求項14】前記フレキシブルチューブはシリコンゴ ムまたは4フッ化エチレン樹脂からなることを特徴とす る請求項1ないし9のいずれか1項に記載の電子機器装 置。

【請求項15】前記熱交換放熱部材を前記筐体の壁面近 傍に配置し、該熱交換放熱部材に対応した位置の前記筺 体壁面に筺体外部と連通する送風口を設けたことを特徴 とする請求項1ないし9のいずれか1項に記載の電子機 器装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は電子機器装置に係り、特 に半導体素子を冷却し所定の温度に保つようにした電子

[0002]

【従来の技術】従来の電子機器装置は、特開平1-84699号公報、特開平2-244748号公報に記載のように、ヒートバイブを発熱部材に接触させ、発熱部材で発生する熱を放熱部材によって放熱していた。また、米国特許4,590,993号公報に記載のように、多数のダクトの両端にコンテナ部を設け、中に封入した液体を振動機構によって振動させコンテナ間の熱輸送を行っていた。

[0003]

【発明が解決しようとする課題】上記従来技術の特開平2-244748号の例では、ヒートバイブ自体に柔軟性が得られていない。そのため、発熱部材が他の部材とももに狭い空間内に搭載された装置において発熱部材と放熱部材とをヒートバイブで接続すると、それらの設置場所が他の部材の配置状態に大きく左右される。もしくは、発熱部材等の設置場所を変更する必要があった。また、米国特許4,590,993号の例においても、2つのコンテナ間の熱輸送形状がダクト構造であるため、装置内の部材の配置が著しく制限されている。◆一方、特開平1-84699号の例では柔軟性を得るため細管型のヒートバイブを用いているが、熱輸送量の動作限界が低い問題があった。このため、熱輸送量増大のために本数を増やすと、柔軟性が損なわれる問題があった。

【0004】本発明の目的は、発熱部材が他の部材とともに狭い空間内に搭載された装置において、部材の配置 状態に左右されずに発熱部材で発生する熱を任意の場所 に設置された放熱部材まで効率良く熱を輸送し発熱部材 を所定の温度に効率良く冷却する電子機器の冷却装置を 提供するととにある。

[0005]

【課題を解決するための手段】上記目的を達成するために、複数の半導体素子を搭載した電子回路基板と、その内部に冷媒液の流動可能な流路を形成し前記複数の半導体素子の少なくとも1つの半導体素子に熱的に接続された扁平形状のヘッダと、その内部に冷媒液の流動可能な液流路を形成した熱交換放熱部材とを筺体内に収納した電子機器装置において、前記ヘッダと前記熱交換放熱部材とをフレキシブルチューブで接続し、冷媒液を前記ヘッダと前記熱交換放熱部材間で移送する液移送機構を前記熱交換放熱部材に設け、前記熱交換放熱部材を前記ヘッダを接続した半導体素子と隔離して配置したものである。

【0006】また、複数の半導体素子を搭載した電子回路基板と、その内部に冷媒液の流動可能な流路を形成し前記複数の半導体素子の少なくとも1つの半導体素子に熱的に接続された扁平形状の第1のヘッダと、その内部に冷媒液の流動可能な液流路を形成した熱交換放熱部材とを筐体内に収納した電子機器装置において、前記電子回路基板を複数枚前記筐体内に取付け、前記熱交換放熱

部材に第2のヘッダを接続し、前記複数の第1のヘッダと前記第2のヘッダとをフレキシブルチューブで接続し、冷媒液を前記第1のヘッダと前記第2のヘッダ間で移送する液移送機構を前記第2のヘッダに設け、前記熱交換放熱部材を前記ヘッダを接続した半導体素子と隔離して配置したものである。

【0007】さらに、複数の半導体素子を搭載した電子回路基板と、その内部に冷媒液の流動可能な流路を形成し前記複数の半導体素子の少なくとも1つの半導体素子に熱的に接続された扁平形状のヘッダと、その内部に冷媒液の流動可能な液流路を形成した熱交換放熱部材とを筐体内に収納した電子機器装置において、前記ヘッダと前記熱交換放熱部材とをフレキシブルチューブで接続し、前記熱交換放熱部材を前記ヘッダより前記筐体の壁面に近付けて配置した物である。

【0008】また、複数の半導体素子を搭載した電子回路基板とその内部に冷媒液の流動可能な流路を形成し前記複数の半導体素子の少なくとも1つの半導体素子に熱的に接続された扁平形状のヘッダとを収納した第1の筐体に回動自在に設けられた表示部を収納した第2の筐体と、その内部に冷媒液の流動可能な液流路を形成した熱交換放熱部材とを備えたラップトップ型電子機器装置において、前記熱交換放熱部材を前記第2の筐体に収納した表示部の背面側に設け、前記ヘッダと前記熱交換放熱部材とをフレキシブルチューブで接続し、冷媒液を前記ヘッダと前記熱交換放熱部材間で移送する液移送機構を前記熱交換放熱部材に設けたものである。

【0009】さらに、複数の半導体素子を搭載した電子 回路基板とその内部に冷媒液の流動可能な流路を形成し 前記複数の半導体素子の少なくとも1つの半導体素子に 熱的に接続された扁平形状のヘッダとを収納した第1の 筺体と、該第1の筐体に回動自在に設けられた表示部を 収納した第2の筐体と、その内部に冷媒液の流動可能な 液流路を形成した熱交換放熱部材とを備えたラップトッ プ型電子機器装置において、前記熱交換放熱部材を前記 第1の筐体の壁面近傍に配設し、前記ヘッダと前記熱交 換放熱部材とをフレキシブルチューブで接続し、冷媒液 を前記ヘッダと前記熱交換放熱部材間で移送する液移送 40 機構を前記熱交換放熱部材に設けた物である。

[0010]

【作用】本発明の電子機器装置は、発熱部材に高熱伝導性材料を介して設けたヘッダと筺体内の空きスペースに設けられた放熱部材との接続に細径のフレキシブルチューブを用いている。これにより、実装密度を向上させ装置の小型化を図った電子装置においても、放熱部材の設置位置が限定されているにも拘らず、配線基板や記憶装置等の電子部品を避けてフレキシブルチューブにより放熱経路を確保でき筺体外への放熱が可能となる。そし

50 て、発熱部材と放熱部材とが熱的に直接接続されること

になる。また、ヘッダ内に設けたフィンによって効率良くヘッダ内の液に伝熱される。冷媒液はヘッダと放熱部材間で往復動あるいは循環しているので、発熱部材に接続されたヘッダから放熱部材に効率よく熱が輸送される。放熱部材は筐体の壁面近くに設置されているので、筐体に設けたスリット等を通して外部雰囲気への放熱が容易である。従って、発熱部材が他の部品とともに狭い空間内に収納された装置であっても、部品の配置状態に左右されずに発熱部材で発生する熱を放熱部材、結果的には筐体外へ効率良く輸送することができ、発熱部材の高性能な冷却が行える。

[0011]

【実施例】図1に本発明の一実施例を示す。電子機器1 00は、複数の半導体素子を搭載した配線基板2を棚状 に積層した演算部と、この演算部の側部に設けた複数の ディスク装置3からなる記憶部と、電源4と、これら演 算部、記憶部、電源等で発生した熱を効果的に電子機器 外に放熱する放熱器 7 やファン 8 を備えている。そし て、配線基板2に搭載された半導体素子のうち、発熱量 の特に大きい半導体素子1にはヘッダ5が取り付けられ 20 ている。半導体素子1とヘッダ5とを熱伝導性グリース に酸化亜鉛等を混入したサーマルコンパウンドあるいは 高熱伝導シリコンゴムなどを挟んで接触させ、半導体素 子1で発生する熱をヘッダ5に伝える。ヘッダ5は半導 体素子に準じた大きさで、高さが数mm前後の扁平形状で ある。さらに、半導体素子1に設けられたヘッダ5と筐 体端部の放熱フィン7に取り付けられたヘッダ6とは、 フレキシブルチューブ9によって連結されている。な お、放熱フィン7とヘッダ6とは一体構造であってもよ

【0012】ヘッダ5、6の内部には液体が封入されており、ヘッダ6の内部にあるいはヘッダとは別に設けた液駆動機構により、これら2種のヘッダ5、6間で冷媒液が駆動される。液体の駆動は、ヘッダ間の往復振動あるいは循環による。ヘッダ5は各々の半導体素子1に接続され、それぞれの半導体素子1で発生した熱はヘッダ5からフレキシブルチューブ9へ、そしてヘッダ6を経由して一括して放熱フィン7に輸送される。フレキシブルチューブ9は樹脂性で内径が2mm前後のを用いている。放熱フィン7は、設置スペースに比較的余裕のある場所、例えば筐体端部に設置されるので、冷却ファン8を用いて放熱フィンに空気を送ることができ、効率的に外部空気と熱交換が可能となる。

【0013】本実施例によれば、多数の半導体素子が狭い空間内に配置されていても、扁平なヘッダとフレキシブルチューブを用いているので他の部材を避けて任意にヘッダ間を接続でき、装置の実装状態に左右されることなく高発熱半導体素子と放熱フィン間を熱的に容易に接続できる。また、放熱フィン7の設置場所を高い放熱効率が得られる管体外壁面の近くに設けることができるの

a un Certe Arrie e

で、筐体内の限られたスペースに演算部や記憶部を優先的に配置することができ、電子装置の能力を低下させることなく効率的に半導体素子を冷却することができる。また、半導体素子の上部に必要とされるスペースがわずかですむため、配線基板群を密に配置することができ、装置の高性能化や小型化が可能となる。さらに、狭い空間内に高速の空気を強制的に流す必要がなく、冷却にかかる動力を小さくできるとともに騒音を低下できる。 【0014】図2に本発明の他の実施例を示す。この実施例において第1の実施例と同じものには同一の符号を

施例において第1の実施例と同じものには同一の符号を 付している。ここで、本実施例が第1の実施例と異なる のは比較的発熱量の小さい半導体素子を搭載した配線基 板群21、22も備えていることにある。そして、冷却 ファン8によって筐体底面から空気の流入を誘起し、配 線基板群21.22上に搭載された半導体素子及びディ スク装置3を冷却している。本実施例によれば、高発熱 素子に対しては狭い空間での稠密実装を、低発熱素子に 対しては比較的広い空間で冷却流路を確保した実装が可 能となり、電子装置を高効率に稼働させる異ができる。 また、放熱フィン7は、高い放熱効率が得られる場所に 設置されているので、筺体内の限られたスペースを利用 して設置して、効率的に半導体素子を冷却することがで きる。さらに、複雑な空気流路を形成することなく筐体 内に搭載された発熱部品を冷却できるので、冷却にかか る動力を小さくできるとともに騒音を押さえることがで きる。

【0015】図3に、本発明の他の実施例を示す。電子 機器はラップトップ型のパーソナルコンピュータやワー ドプロセッサであり、複数の半導体素子を搭載した配線 30 基板2、キーボード36、ディスク装置31、表示装置 35などからなる。配線基板2に搭載された半導体素子 のうち、発熱量の特に大きい半導体素子1には上記実施 例と同様にヘッダ5が接続されている。半導体索子1と ヘッダ5とはサーマルコンパウンドあるいは髙熱伝導シ リコンゴムなどを挟んで接触させており、さらに、半導 体素子1 に接続されたヘッダ5 はフレキシブルチューブ 9によって、十分な放熱スペースが確保できる筐体37 の端部に設置された熱交換放熱部材32に接続されてい る。ヘッダ5の内部には液体が封入されており、液駆動 機構34によりヘッダ5と熱交換放熱部材32との間で 液が移送される。また、筐体の端部に熱交換放熱部材3 2と貫流ファン33が組み合わされて設けられている。 ヘッダ5と熱交換放熱部材32間はフレキシブルチュー ブによって接続されているので、非常に狭い筐体内に多 数の部品が実装されるOA機器においても、高発熱半導 体素子と、高い放熱効率が得られ、設置スペースに余裕 のある位置に設置された熱交換部材とを容易に熱的に接 続できるので、電子機器の半導体素子を効率的に冷却す ることができる。

率が得られる筐体外壁面の近くに設けることができるの 50 【0016】図4から図6に、図1から図3に示した実

施例で用いられる冷却機構の詳細を示す。図4に、扁平 なヘッダ5と熱交換放熱部材32とが複数のフレキシブ ルチューブ9で接続され、内部に液体例えば水が封入さ れている例を示す。液体は、小型ポンプによってヘッダ 5と熱交換放熱部材32との間を循環する。ヘッダ5, 熱交換放熱部材32とフレキシブルチューブ9は、コネ クタ42を用いて着脱可能な構造になっている。 ヘッダ 5の内部にはフィンが設けられており、液流路を形成す るとともにヘッダ壁より内部の液体に効率よく熱を伝え る。ヘッダ5は、半導体素子などの発熱部材1の大きさ に応じて任意の大きさに設定でき、発熱部材1に直接接 触などの手段によって熱的に接続される。また、金属板 (銅、アルミなど)に金属パイプを溶接した構造であっ てもよい。熱交換放熱部材32は、たとえば、複数本の 銅などの金属パイプ43に多数の金属プレート44を接 合して形成される。熱交換放熱部材32は、十分な放熱 効率を得るのに必要な放熱スペースが確保できる場所に 設置される。ヘッダ5と熱交換放熱部材32とはフレキ シブルチューブ9によって接続されているので、発熱部 に接続できる。

【0017】図5に示した実施例では、扁平なヘッダ5 と熱交換放熱部材32とがコネクタ42を介し複数のフ レキシブルチューブ9a、9bで接続されている。熱交 換放熱部材32にはベロ-50,51が設けられてお り、一方のベロー50には駆動機構が取り付けられ、内 部に液体例えば水が封入されている。容積型のポンプ等 からなる駆動機構によってベロー50が伸縮し、その体 積変化によりベロー内部の液体が移動し、フレキシブル チューブ9a、ヘッダ5、さらに、フレキシブルチュー ブ9bを通して熱交換放熱部材32のベロ-61を伸縮 させる。結果的に、液体はヘッダ5と熱交換放熱部材3 2との間で往復振動する。

【0018】液駆動機構は、例えば、ベローに固定され た支持部54を中心軸からずらして回転軸55に取付け たもので、モータ52の動力をギアヘッド53を介して 回転軸55に伝え、回転軸55を回転させてベロー支持 部54を往復運動させるようにしたものである。また、 回転軸の代わりにカム部材を用いて、カム部材を回転さ せ直接ベローを伸縮してもよい。本実施例により、発熱 部材が他の部材とともに狭い空間内に搭載された装置で あって発熱部材、熱交換放熱部材の配置位置が限定され ていても、ヘッダと熱交換放熱部材との間での液体の往 復振動によって、発熱部材で発生する熱を熱交換放熱部 材まで効率良く輸送することができ発熱部材を効果的に 冷却できる。

【0019】図6に示した実施例は、図5の実施例では ヘッダ5を熱交換部材32を介してベロー50、51接 続していたのを、扁平なヘッダ60に接続した場合であ る。ヘッダ60は、液体封入部が2つの部屋に分けら

れ、それぞれにベロー61,62が設けられ、一方のベ ロー61には、駆動機構が取り付けられる。ベローに取 り付けたL字型部材64を支点65のまわりに回転可能 に支持し、ソレノイド63を用いてL字型部材64を吸 引、開放することによってベロー61を伸縮させ液体を 移送させている。なお、駆動機構は、ベローの代わりに 図4に示したように小型のポンプを用いてもよい。本実 施例では、一方のヘッダに発熱部材を接触させ、他方の ヘッダに放熱部材に取り付けている。両ヘッダ間で液体 を移送できるので発熱部材で発生する熱を放熱部材まで 効率良く輸送することができる。また、外形的に扁平な ヘッダとフレキシブルチューブだけで構成されているの で放熱部材の形状や配置の自由度が大きくなる。

【0020】以上述べた実施例においては、フレキシブ ルチューブの材料は例えばシリコンゴム、4フッ化エチ レン樹脂等の樹脂製で良く、さらに内径が2m以下と細 いものを用いることができるので非常に柔軟性に優れた 構造とすることができる。このフレキシブルチューブの 内径は細ければ細いほど熱の輸送効率が高いが、細い場 材と熱交換放熱部材との位置関係に拘らず効率よく熱的 20 合には輸送される熱の絶対量が少なくなるので多数本必 要となる。そして、とのフレキシブルチューブとしては カテーテルのようなものが良い。また、ヘッダ5と熱交 換部材との間の冷媒液の移送がそれぞれ循環、往復振動 による場合を示したが、1個あたり10♥前後の発熱量 の半導体素子を水を用いて冷却する場合は以下のように なる。すなわち、200~300mmの距離熱輸送すると きを考える。液を往復振動させる場合には、1cc前後の 水量を1~2Hzで振動させる。ところで、熱輸送量はチ ューブ径、液振動量、振動周波数に依存し、液振動量が 一定のときにはチューブ径が小さく、また振動数を大き くすることによって熱輸送量を増大させることができ る。一方、液循環型においては、0.22cc/s前後で水 を循環させる。この場合、熱輸送量はチューブ長に依ら ず、循環量に依存する。すなわち、液の往復振動方式で はモータ52の回転数を、液の循環方式ではポンプ41 のモータ回転数を制御することにより、熱輸送量の制御 が容易に行える。

> 【0021】図7に、本発明の他の実施例を示す。電子 機器はラップトップ型のOA機器で、図3に示した実施 例とは筐体内部に放熱フィンを搭載している点が相違し ている。筐体37内部にバッテリー70と、バッテリー に近接して放熱フィン74と、この放熱フィン74に送 風するファン71とが収納されており、発熱部品である 半導体素子1に取り付けられたヘッダ5と放熱フィンが 取り付けられたヘッダ73間をフレキシブルチューブ9 が連結しており、更に、液駆動機構72によりフレキシ ブルチューブ9内の液体が移送される。なお、液駆動機 構72は、図6で示したようにヘッダ73に内蔵させて もよい。また、放熱フィン74とヘッダ73は一体構造 50 であってもよい。

【0022】本実施例によれば、放熱フィン27を筐体 内の限られたスペースを利用して設置しても、ヘッダ5 と放熱フィン74部はフレキシブルチューブ9によって 接続されるので、非常に狭い筺体内に多数の部品が実装 された状態においても、高発熱半導体素子1と放熱フィ ン74とが容易に熱的に接続され、かつ、放熱フィン7 4と空気とは筐体端部のファン71によって効率よく熱 交換できる。従って、電子機器の実装構造に左右される ことなく効率的に半導体素子を冷却することができる。 【0023】図8は本発明の他の実施例であり、図7と 10 る。 同様な電子機器の場合である。配線基板2に搭載された 半導体素子のうち、発熱量の特に大きい半導体素子1に ヘッダ5が接続されている。また、半導体素子1に接続 されたヘッダ5はフレキシブルチューブ9によって、表 示装置35の背面の表示器83のわきのスペースを利用 して取り付けられた放熱フィン82に設けられたヘッダ 81に接続されている。ヘッダ5,81の内部には液体 が封入されており、ヘッダ81に内蔵された液駆動機構 により、両ヘッダ間で液が移送される。なお、放熱フィ ン82とヘッダ81は一体構造であってもよい。放熱フ ィン82は放熱面積を大きく確保すると同時に、表示装 置筐体壁84との間に空気の流通ダクトを形成してい る。放熱フィン82の上部及び下部に相当する表示装置 筐体壁には空気流通孔が開けられ、表示装置下部の流通

【0024】本実施例によれば、ヘッダ5と放熱フィン82部はフレキシブルチューブ9によって接続されているので、非常に狭い筐体内に多数の部品が実装された状 30態においても、高発熱半導体素子1と放熱フィン82とが容易に熱的に接続され、表示装置の垂直に近い設置状態を利用して放熱フィンが設置できるので、自然放熱によっても効果的な放熱が可能となる。

孔から流入した空気は放熱フィンを通過し、表示装置上

部の流通孔から放出される。従って、ダクト構造により

高い自然対流放熱効果が得られる。

【0025】また、半導体素子1の発熱量が比較的小さいときは、放熱フィン82を用いずにヘッダ81を表示装置背面の筐体壁に接触させて、表示装置背面を放熱面としてもよい。特に、筐体壁の材質を金属とした場合、広い面を利用して熱が拡散されるので非常に有効である。

【0026】図9に、本発明のさらに他の実施例を示す。電子機器は、図3、8に示した実施例とは金属製の表示装置の筐体92に液流路用の金属パイプ91を溶接している点が相違している。金属パイプ91の一方は、液駆動機構72に接続され、他方は、コネクタを介してフレキシブルチューブ9に接続され、さらに、ヘッダ5と液駆動機構72もフレキシブルチューブで接続されている。液駆動機構72は、内封されている液体をヘッダ5と金属パイプ91との間で往復振動あるいは循環させる。

【0027】本実施例によれば、狭い筐体内に多数の部品が実装された状態においても、発熱部と放熱部がフレキシブルチューブによって接続されるので、その実装構造に左右されることなく、発熱部で発生する熱を効率よく放熱部に輸送することができるととも、表示装置背面の広い面に熱が拡散されるので、効率的な半導体素子の冷却ができる。

[0028]

【発明の効果】本発明によれば、発熱部材が他の部材ともに狭い空間内に搭載された装置であっても、部材の配置状態に左右されずに放熱部材を高い放熱効率の得られる場所に設置できる。また、発熱部材で発生する熱を放熱部材まで効率良く輸送することができるとともに、冷却用の動力の低減と騒音の低減が可能となる。

[0029]

【図面の簡単な説明】

【図1】本発明の一実施例の斜視図。

【図2】本発明の他の実施例の斜視図。

【図3】本発明の他の実施例の斜視断面図。

【図4】本発明の他の実施例の構成説明図。

【図5】本発明の他の実施例の要素の斜視断面図。

【図6】本発明の他の実施例の要素の斜視断面図。

【図7】本発明の他の実施例の斜視断面図。

【図8】本発明の他の実施例の斜視断面図。

【図9】本発明の他の実施例の斜視断面図。

【符号の説明】

1:半導体素子、5,6:ヘッダ、9:フレキシブルチューブ、7:熱交換放熱部材、72:液駆動機構、5 0,51:ベローズ。

40

[図1]

图 4

【図2】

2 2

【図3】

3 3

【図4】

30 4

【図5】

⊠ 5

【図6】

図 6

【図7】

3 7

【図8】

⊠ 8

【図9】

图 9

フロントページの続き

(72)発明者 岩井 進

神奈川県海老名市下今泉810番地 株式会 社日立製作所オフィスシステム事業部内