Московский физико-технический институт

Лабораторная работа 2.2.3

Измерение теплопроводности воздуха при атмосферном давлении

выполнил студент группы Б03-302 Танов Константин

1 Цель работы:

Измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

2 Оборудование:

Цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр(цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; магазин сопротивлений.

3 Теоретические сведения:

Теплопроводность - это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии q - (количество теплоты, переносимое через единичную площадку в единицу времени) пропорциональна градиенту температуры ∇T :

$$q = -k \cdot \nabla T$$

где $k \left[\frac{BT}{M \cdot K} \right]$ — коэффициент теплопроводности.

В цилиндрически симметричной установке, в которой тепловой поток направлен к стенкам цилиндра от нити, полный поток тепла Q=qS через каждую цилиндрическую поверхность радиуса r должен в стационарном состоянии быть неизменен в пространстве и во времени. Тогда выходит, что $Q=-2\pi r L\kappa \frac{dT}{dr}=const$, откуда получаем

$$T_1 - T_2 = \frac{Q}{2\pi L\kappa} ln \frac{R}{r} \tag{1}$$

В нашем эксперименте необходимо найти

$$\kappa = \frac{Q}{T_1 - T_2} \frac{1}{2\pi L} ln \frac{r^2}{r^1} \tag{2}$$

4 Экспериментальная установка

Схема установки приведена на рис. 1. На оси полой цилиндрической трубки с внутренним к термостату диаметром $2r_0 \sim 7$ мм размещена платиновая нить диаметром $2r_1 \sim 0,05$ мм и длиной $L \sim 40$ см (материал нити и точные геометрические размеры указаны в техническом описании установки). Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура t_o от термостата поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально.

Рис. 1: Схема установки для определения теплопроводности газов

5 Проведение измерений:

- 1) При фиксированной температуре термостата измеряется зависимость сопротивления нити $R_{\rm H}=U/I$ от подаваемой на неё мощности ${\rm Q}={\rm UI}.$ Данная зависимость называется нагрузочная кривая $R_{\rm H}(Q)$.
- 2) Измерение нагрузочных кривых проводится для 5–7 температур термостата в диапазоне от комнатной до 70°С. Данные измерений по каждой из температур представлены в таблице 1.

$\mathrm{T1}=23\mathrm{^{\circ}C}$						
U, B	0.207	0.4	0.6	0.83	1.026	1.26
І, мА	10.16	19.627	29.5	40.53	49.8	60.88
R, Om	20.374	20.38	20.339	20.479	20.602	20.696
Q, B _T	0.0021	0.0079	0.0177	0.0336	0.0511	0.0767
$T2=30^{\circ}C$						
U, B	0.212	0.398	0.66	0.86	1.057	1.28
І, мА	10.15	19.08	31.56	40.73	50	60.47
R, Ом	20.887	20.86	20.913	21.115	21.14	21.168
Q, B _T	0.0021	0.0076	0.0208	0.035	0.0529	0.0774
T3= 40°C						
U, B	0.218	0.41	0.634	0.876	1.092	1.317
І, мА	10.14	19.04	29.33	40.345	50.08	60.04
R, Ом	21.5	21.534	21.616	21.713	21.805	21.935
Q, B _T	0.0022	0.0078	0.0186	0.0353	0.0547	0.0791
$\mathrm{T4}\mathrm{=}\ 50^{\circ}\mathrm{C}$						
U, B	0.225	0.487	0.699	0.894	1.138	1.365
І, мА	10.124	21.84	31.288	39.895	50.53	60.272
R, Ом	22.224	22.299	22.341	22.409	22.521	22.647
Q, Bt	0.0022	0.0106	0.0219	0.0357	0.0575	0.0823
$T5=60^{\circ}C$						
U, B	0.232	0.476	0.699	0.916	1.178	1.414
І, мА	10.107	20.726	29.048	39.637	50.703	60.512
R, Ом	22.954	22.966	23.03	23.11	23.23	23.367
Q, Bt	0.0023	0.0097	0.0194	0.0363	0.0597	0.0856
$T6=70^{\circ}C$						
U, B	0.232	0.476	0.699	0.916	1.178	1.414
І, мА	10.09	20.657	30.972	39.383	50.877	61.702
R, Ом	23.687	23.72	23.763	23.843	23.94	24.083
Q, Bt	0.0024	0.0101	0.0228	0.037	0.062	0.0917

Таблица 1: Результаты измерений

3) Для каждой температуры термостата был построен график, изображенный на рис. 2, зависимости сопротивления нити от мощности R(Q). Проведя аппроксимирующие прямые, можно убедится в линейности полученных зависимостей.

Рис. 2: График зависимости сопротивления от мощности

Проведя эти прямые, можно по пересечению с осью ординат определить R_0 – сопротивление при температуре термостата, так как при Q -> 0 температура нити совпадает с температурой термостата. А угловые коэффициенты наклона $\frac{dR}{dO}$ определяются по формуле:

$$\frac{dR}{dQ} = \frac{\langle QR \rangle - \langle Q \rangle \langle R \rangle}{\langle Q^2 \rangle - \langle Q \rangle^2} \tag{3}$$

где $\langle R \rangle$ и $\langle Q \rangle$ — средние значения сопротивления и мощности.

Проанализируем график. Мы видим, что с повышением температуры угол наклона прямой Q(R) увеличивается, но на температуре $50^{\circ}C$ зависимость нарушается: коэффициент угла наклона уменьшается. Это явление можно

объяснить проявлением конвекции при достижении воздухом в установке достаточно высокой температуры: часть тепловой энергии переносится от нити к стенке именно этим путём.

4) Оценим погрешности найденных значения. Для угла наклона и R_0 :

$$\sigma_{\text{yeal}} \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle R^2 \rangle - \langle R \rangle^2}{\langle Q^2 \rangle - \langle Q \rangle^2} - (\frac{dR}{dQ})^2}$$
 (4)

$$\sigma_{R_0} = \sigma_{\text{yph}} \sqrt{\langle Q^2 \rangle - \langle Q \rangle^2} \tag{5}$$

$$\begin{array}{ll} {\rm T=23^{\circ}C:} & dR/dQ=4.845\pm0.571~{\rm Om/Bt},~R_{0}=20.326\pm0.015~{\rm Om}\\ {\rm T=30^{\circ}C:} & dR/dQ=4.523\pm0.790~{\rm Om/Bt},~R_{0}=20.866\pm0.021~{\rm Om}\\ {\rm T=40^{\circ}C:} & dR/dQ=5.637\pm0.162~{\rm Om/Bt},~R_{0}=21.498\pm0.022~{\rm Om}\\ {\rm T=50^{\circ}C:} & dR/dQ=5.116\pm0.135~{\rm Om/Bt},~R_{0}=22.228\pm0.004~{\rm Om}\\ {\rm T=60^{\circ}C:} & dR/dQ=5.086\pm0.111~{\rm Om/Bt},~R_{0}=22.930\pm0.003~{\rm Om}\\ {\rm T=70^{\circ}C:} & dR/dQ=4.433\pm0.083~{\rm Om/Bt},~R_{0}=23.673\pm0.003~{\rm Om}\\ \end{array}$$

5)Пользуюясь значениями R_0 , построим график зависимости сопротивления нити от её температуры R(T).

Можно убедиться в линейности полученной зависимости. Определим наклон аппроксимирующей прямой $\frac{dR}{dT}$ по формуле:

$$\frac{dR}{dT} = \frac{\langle TR \rangle - \langle T \rangle \langle R \rangle}{\langle T^2 \rangle - \langle T \rangle^2} \tag{6}$$

А погрешность этой величины по формуле:

$$\sigma_{\text{yr}, 12} \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle R^2 \rangle - \langle R \rangle^2}{\langle T^2 \rangle - \langle T \rangle^2} - (\frac{dR}{dT})^2}$$
 (7)

Значит экспериментальное значение температурного коэффициента при 0°C равно:

$$\alpha_9 = \frac{1}{R_{273}} \frac{dR}{dT} = 3.53 \pm 0.61 \cdot 10^{-3} \frac{1}{^{\circ}\text{C}}$$

где $R_{273} \approx 20$ Ом - сопротивление нити при температуре 0°С.

Это значение совпадает с теоритическим значением равным $\alpha_{\rm T} = 3.9 \cdot 10^{-3} \ \frac{1}{^{\circ}{\rm C}}$ в пределах погрешности.

6)Используя угловой коэффициент температурной зависимости сопротивления и угловые коэффициенты нагрузочных прямых, вычислим наклон зависимости выделяющейся на нити мощности Q от ее перегрева ΔT относи-

Рис. 3: График зависимости сопротивления от температуры

тельно стенок:

$$\frac{dQ}{d(\Delta T)} = \frac{dR}{dT} / \frac{dR}{dQ} \tag{8}$$

Отсюда с учетом формулы (1) вычислим коэффициенты теплопроводности для каждой температуры термостата по формуле:

$$\kappa = \left(\frac{dR}{dT} / \frac{dR}{dQ}\right) \frac{1}{2\pi L} ln \frac{r_0}{r_1} \tag{9}$$

Оценим погрешность этой величины. Перед этим введем обозначения $a=\frac{dQ}{d(\Delta T)}; b=\frac{dR}{dT}; c=\frac{dR}{dQ}; d=L; e=r_0; f=r_1.$ Значит:

$$\sigma_a = \sqrt{\left(\frac{\partial f}{\partial b}\right)^2 \sigma_b^2 + \left(\frac{\partial f}{\partial c}\right)^2 \sigma_c^2 + \left(\frac{\partial f}{\partial d}\right)^2 \sigma_d^2 + \left(\frac{\partial f}{\partial e}\right)^2 \sigma_e^2 + \left(\frac{\partial f}{\partial f}\right)^2 \sigma_f^2}$$

$$\sigma_k = k \sqrt{\left(\frac{\sigma_b}{b}\right)^2 + \left(\frac{\sigma_c}{c}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_e}{e \cdot ln\frac{e}{f}}\right)^2 + \left(\frac{\sigma_f}{f \cdot ln\frac{e}{f}}\right)^2}$$

Выходит, что:

 $T = 23^{\circ}\text{C:} \qquad k = 0.0250 \pm 0.0034 \text{Bt/(M*c)}$ $T = 30^{\circ}\text{C:} \qquad k = 0.0311 \pm 0.0051 \text{Bt/(M*c)}$ $T = 40^{\circ}\text{C:} \qquad k = 0.026 \pm 0.001 \text{Bt/(M*c)}$ $T = 50^{\circ}\text{C:} \qquad k = 0.028 \pm 0.001 \text{Bt/(M*c)}$ $T = 60^{\circ}\text{C:} \qquad k = 0.0276 \pm 0.001 \text{Bt/(M*c)}$ $T = 70^{\circ}\text{C:} \qquad k = 0.031 \pm 0.001 \text{Bt/(M*c)}$

10) Построим график зависимости теплопроводности воздуха от температуры газа k(T) (рис. 4).

Рис. 4: График зависимости теплопроводности от температуры

Предполагая, что k степенным образом зависит от абсолютной температуры Т: построим график (рис. 5) в двойном логарифмическом масштабе, чтобы определить показатель степени β по углу наклона графика:

$$k \propto T^{\beta}$$

$$k = AT^{\beta}$$

Рис. 5: График зависимости ln(k) от ln(T)

Выходит, что $\beta_{\text{\tiny 9}}=0.093\pm0.077$, что совпадает с теоретическим $\beta_{\text{\tiny T}}=0.1142$ в пределах погрешности.

6 Вывод:

Таким образом, в ходе лабораторной работы были получены коэффициенты теплороводности при разных значениях температуры, которые совпадают с теоретическимим в пределах своих погрешностей.