BAN HỌC TẬP KHOA CÔNG NGHỆ PHẦN MỀM CHUỐI TRAINING CUỐI HỌC KÌ 1 NĂM HỌC 2021 - 2022

Ban học tập

Khoa Công Nghệ Phần Mềm Trường ĐH Công Nghệ Thông Tin ĐHQG Hồ Chí Minh

Email / Group

bht.cnpm.uit@gmail.com fb.com/groups/bht.cnpm.uit

Training

Giải tích

Thời gian training: 19h30 – 11/2/2022

Code phòng: 2TG33DU

Trainer: Nguyễn Phương Tùng – 21520524 – KHMT2021

Huỳnh Tiến Phát – 21520388 – MTIO2021

Nội dung Training

- 1. Cực trị tự do hàm hai biến
- 2. Chuỗi số
- 3. Tích phân bội 2
- 4. Tích phân bội 3
- 5. Tích phân đường
- 6. Vi phân

1. Cực trị tự do hàm hai biến

- 1.1 Nhắc lại cách đạo hàm hàm hai biến
- 1.2 Các bước tìm cực trị

1.1. Đạo hàm hàm hai biến

• Đạo hàm riêng theo biến \mathbf{x} tại (x_0, y_0)

$$f_{\mathbf{x}}'(x_0, y_0) = \lim_{\mathbf{x} \to \mathbf{x}_0} \frac{f(\mathbf{x}, y_0) - f(x_0, y_0)}{x - x_0}$$

• Đạo hàm riêng theo biến y tại (x_0, y_0)

$$f_{y}'(x_{0}, y_{0}) = \lim_{y \to y_{0}} \frac{f(x_{0}, y) - f(x_{0}, y_{0})}{y - y_{0}}$$

Đạo hàm biến nào thì biến còn lại ta coi như là một hằng số

1.1. Đạo hàm hàm hai biến

Ví dụ: Tính đạo hàm cấp 2 của các hàm sau:

1)
$$f(x, y) = x^4 - 3x^3y^2 + 2y^3$$

$$2) f(x, y) = \sin(xy^2)$$

•
$$f_x'(x,y) = 4x^3 - 9x^2y^2$$

•
$$f_x'(x,y) = y^2 \cos(xy^2)$$

•
$$f_{v}'(x,y) = -6x^{3}y + 6y^{2}$$

•
$$f_v'(x,y) = 2xy\cos(xy^2)$$

•
$$f_{x^2}^{\prime\prime}(x,y) = 12x^2 - 18xy^2$$

•
$$f_{x^2}''(x,y) = -y^4 \sin(xy^2)$$

•
$$f_{xy}^{"}(x,y) = -18x^2y$$

•
$$f_{xy}^{"}(x,y) = 2y\cos(xy^2) - 2xy^3\sin(xy^2)$$

•
$$f_{vx}^{"}(x,y) = -18x^2y$$

•
$$f_{yx}^{"}(x,y) = 2y\cos(xy^2) - 2xy^3\sin(xy^2)$$

•
$$f_{y^2}^{"}(x,y) = -6x^3 + 12y$$

•
$$f_{y^2}^{"}(x,y) = 2x\cos(xy^2) - 4xy^2\sin(xy^2)$$

Định nghĩa

Cho f(x, y) xác định trên D, $M_0 \in D$, M_0 được gọi là:

- Điểm cực đại trên D: $\forall M \in D, f(M) \leq f(M_0)$
- Điểm cực tiểu trên D: $\forall M \in D, f(M) \geq f(M_0)$

Các bước tìm cực trị

*Bước 1: Giải hệ phương trình $\begin{cases} f'_{\mathbf{x}}(x,y) = 0 \\ f'_{\mathbf{y}}(x,y) = 0 \end{cases}$ tìm các cặp nghiệm (x_0, y_0) .

*Bước 2: Với từng cặp (x_0, y_0) tìm được ta thế vào:

$$A = f_{x^2}^{"}(x, y)$$
 $B = f_{xy}^{"}(x, y)$ $C = f_{y^2}^{"}(x, y)$

*Bước 3: Ta tính $\Delta = AC - B^2$ và xét:

- Nếu $\begin{cases} \Delta > 0 \\ A > 0 \end{cases}$ thì f(x,y) đạt cực tiểu tại $M(x_0,y_0)$
- Nếu $\begin{cases} \Delta > 0 \\ A < 0 \end{cases}$ thì f(x,y) đạt cực đại tại $M(x_0,y_0)$
- Nếu $\Delta < 0$ thì f(x,y) không đạt cực trị tại $M(x_0,y_0)$
- Nếu $\Delta = 0$ thì ta không thể kết luận

Ví dụ 1: Tìm cực trị của hàm $z = x^3 + y^3 - 3xy - 2$

- A. Hàm số đạt cực đại tại N(1;1) C. Giá trị cực tiểu $z_{CT} = -3$

- B. Hàm số không có cực trị D. Hàm số đạt cực tiểu tại O(0;0)

Giải: Ta có:
$$\begin{cases} z_x' = 3x^2 - 3y = 0 \\ z_y' = 3y^2 - 3x = 0 \end{cases} \Rightarrow \mathsf{M}_1(0;0), \, \mathsf{M}_2(1;1)$$
*Bước 3: Ta tính $\Delta = AC - B^2$ và xét:

• Nếu $\begin{cases} \Delta > 0 \\ A > 0 \end{cases}$ thì $f(x,y)$ đạt cực tiểu tại $\mathsf{M}(x_0,y_0)$
• Nếu $\begin{cases} \Delta > 0 \\ A < 0 \end{cases}$ thì $f(x,y)$ đạt cực đại tại $\mathsf{M}(x_0,y_0)$

- Nếu $\Delta = 0$ thì ta không thể kết luận

• Nếu
$$\begin{cases} \Delta > 0 \\ A < 0 \end{cases}$$
 thì $f(x, y)$ đạt cực đại tại $M(x_0, y_0)$
• Nếu $\begin{cases} \Delta > 0 \\ A < 0 \end{cases}$ thì $f(x, y)$ đạt cực đại tại $M(x_0, y_0)$
• Nếu $\Delta < 0$ thì $f(x, y)$ không đạt cực trị tại $M(x_0, y_0)$

$$\mathbf{C} = \mathbf{z}_{\mathbf{y}^2}^{\prime\prime} = 6\mathbf{y}$$

- Tai $M_1(0;0)$: A = C = 0, $B = -3 \Rightarrow \Delta < 0 \Rightarrow M_1$ không là điểm cực trị.
- Tại $M_2(1;1)$: A = C = 6, $B = -3 \Rightarrow \Delta > 0 \Rightarrow M_2$ là điểm cực tiểu và $z_{CT} = -3 \Rightarrow$ Đáp án C

Ví dụ 2: Tìm cực trị của hàm $z = 2x^2 + 3y^2 - e^{-(x^2+y^2)}$

- A. Hàm số đạt cực đại tại Q(0;1)
- C. Hàm số không có cực trị
- B. Hàm số đạt cực đại tại O(0;0)
- D. Hàm số đạt cực tiểu tại O(0;0)

Giải: Ta có:
$$\begin{cases} z'_{x} = 4x + 2xe^{-(x^{2} + y^{2})} = 0 \\ z'_{y} = 6y - 2ye^{-(x^{2} + y^{2})} = 0 \end{cases} \Rightarrow M(0;0)$$

$$A = z''_{xx} = 4 + 2e^{-(x^{2} + y^{2})} - 4x^{2}e^{-(x^{2} + y^{2})}$$

$$C = z''_{yy} = 6 + 2e^{-(x^{2} + y^{2})} - 4y^{2}e^{-(x^{2} + y^{2})}$$

$$N(0;0)$$

$$V(0;0)$$

$$V(0;0$$

- Nếu $\Delta < 0$ thì f(x, y) không đạt cực trị tại $M(x_0, y_0)$
- Nếu $\Delta = 0$ thì ta không thể kết luận

$$\mathbf{B} = z''_{xy} = -4xye^{-(x^2+y^2)}$$

Tại M(0; 0): A = 6, B = 0, $C = 8 \Rightarrow \Delta > 0 \Rightarrow M$ là điểm cực tiểu => Đáp án D

Ví dụ 3: Tìm cực trị của hàm $z = x^3 + 3xy^2 - 30x - 18y$

A. Hàm số có 2 cực trị C. Giá trị cực tiểu $z_{CT} = 72$

B. Hàm số không có cực trị D. Hàm số đạt cực tiểu tại M(-1;-3)

Giải: Ta có:
$$\begin{cases} z'_x = 3x^2 + 3y^2 - 30 = 0 \\ z'_y = 6xy - 18 = 0 \end{cases}$$

$$\Rightarrow$$
 M₁(1; 3), M₂(3; 1), M₃(-1; -3), M₄(-3; -1) là 4 điểm dừng

$$A = z''_{x^2} = 6x$$
, $B = z''_{xy} = 6y$, $C = z''_{y^2} = 6x$

$$\mathbf{B} = \mathbf{z}_{xy}^{"} = 6\mathbf{y}$$

$$\mathbf{C} = \mathbf{z}_{\mathbf{y}^2}^{\prime\prime} = 6\mathbf{x}$$

Ví dụ 3: Tìm cực trị của hàm $z = x^3 + 3xy^2 - 30x - 18y$

A. Hàm số có 2 cực trị

C. Giá trị cực tiểu $z_{CT} = 72$

B. Hàm số không có cực trị

D. Hàm số đạt cực tiểu tại M(-1;-3)

Giải:

• Tại $M_1(0,0)$: A = C = 6, $B = 18 \Rightarrow \Delta < 0 \Rightarrow M_1$ không là điểm cực trị.

• Tại $M_2(3; 1)$: A = C = 18, $B = 6 \Rightarrow \Delta > 0 \Rightarrow M_2$ là điểm cực tiểu và $z_{CT} = -72$.

• Tại $M_3(-1; -3)$: A = C = -6, $B = -18 \Rightarrow \Delta < 0 \Rightarrow M_3$ không là điểm cực trị.

• Tại $M_4(-3;-1)$: A=C=-18, $B=-6\Rightarrow \Delta>0\Rightarrow M_4$ là điểm cực đại và $z_{CD}=72$.

=> Đáp án A

2. Chuỗi số

- 2.1. Khái niệm cơ bản
- 2.2. Chuỗi số dương
- 2.3. Chuỗi số đan dấu
- 2.4. Chuỗi lũy thừa
- 2.5 Bài tập cơ bản

2.1.1. Định nghĩa

Cho dãy số có vô hạn các số hạng $u_1, u_2, \dots, u_n, \dots$ Ta có:

$$S_n = u_1 + u_2 + \dots + u_n + \dots = \sum_{n=1}^{+\infty} u_n$$

2.1.2. Sự hội tụ

- Nếu $\lim_{n\to+\infty} S_n = S$ hữu hạn thì chuỗi số <u>hội tụ</u>. Ta ghi là $\sum_{n=1}^{\infty} u_n = S$
- Ngược lại thì phân kì.

Điều kiện cần nhưng chưa đủ

$$\sum_{n=1}^{+\infty} u_n \text{ hội tụ} \Rightarrow \lim_{n\to\infty} u_n = 0 => \text{Hệ quả: } \lim_{n\to\infty} u_n \neq 0 \iff \sum_{n=1}^{+\infty} u_n \text{ phân kì}$$

$$\lim_{n\to\infty} u_n \neq 0 \iff \sum_{n=1}^{+\infty} u_n \text{ phân k}$$

Ví dụ: Xét sự hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{n^4}{3n^4 + n + 2}$$

Giải: Ta có
$$u_n = \frac{n^4}{3n^4 + n + 2} \Rightarrow \lim u_n = \frac{1}{3} \neq 0 \Rightarrow \text{Chuỗi số phân kì}$$

2.1.3. Tính chất

- Nếu $\sum_{n=1}^{+\infty} u_n$, $\sum_{n=1}^{+\infty} v_n$ hội tụ thì: $\sum_{n=1}^{+\infty} u_n \pm \sum_{n=1}^{+\infty} v_n = \sum_{n=1}^{+\infty} (u_n \pm v_n)$ hội tụ
- Nếu $\sum_{n=1}^{+\infty} u_n \text{ hội tụ thì: } \sum_{n=1}^{+\infty} \alpha u_n = \alpha \sum_{n=1}^{+\infty} u_n \text{ hội tụ (với } \alpha \text{ là hằng số)}$
- Hai chuỗi số $\sum_{n=n_1}^{\infty} u_n$ và $\sum_{n=n_2}^{\infty} u_n$ có cùng bản chất, nghĩa là việc thêm hay bỏ

vài số hạng đầu của chuỗi sẽ không ảnh hưởng đến tính chất phân kỳ hay hội tụ của chuỗi.

Note: Cho chuỗi
$$S_n = \sum_{n=1}^{+\infty} aq^{n-1}$$

- Nếu q = 1: $S_n = na \rightarrow +\infty \Rightarrow$ chuỗi phân kì
- Nếu $q \neq 1$: $S_n = a \frac{u_1(1-q^n)}{1-q} = a \frac{1-q^n}{1-q}$
 - Với $|q| < 1 \Rightarrow S_n \rightarrow \frac{a}{1-q} \Rightarrow$ chuỗi hội tụ
 - Với $|q| > 1 \Rightarrow S_n \to +\infty \Rightarrow$ chuỗi phân kì

Ví dụ: Tính chuỗi sau:
$$\sum_{n=1}^{+\infty} \frac{(-3)^n (4n^2 - 1) + 5^n}{5^n (2n-1)(2n+1)}$$

A.
$$-\frac{3}{8}$$
 B. $\frac{1}{2}$ C. $\frac{1}{8}$ D. $-\frac{1}{6}$

B.
$$\frac{1}{2}$$

C.
$$\frac{1}{8}$$

D.
$$-\frac{1}{6}$$

$$S_n = \sum_{n=1}^{+\infty} \frac{(-3)^n (4n^2 - 1) + 5^n}{5^n (2n - 1)(2n + 1)} = \sum_{n=1}^{+\infty} \left(\frac{-3}{5}\right)^n + \sum_{n=1}^{+\infty} \frac{1}{(2n - 1)(2n + 1)}$$

• Ta có:
$$\sum_{n=0}^{+\infty} \left(\frac{-3}{5}\right)^n = \sum_{n=1}^{+\infty} \left(\frac{-3}{5}\right)^{n-1} = \frac{1}{1 - \left(\frac{-3}{5}\right)} = \left(\frac{-3}{5}\right)^0 + \sum_{n=1}^{+\infty} \left(\frac{-3}{5}\right)^n$$

$$\Rightarrow S_1 = \sum_{n=1}^{+\infty} \left(\frac{-3}{5}\right)^n = \frac{1}{1 - \left(\frac{-3}{5}\right)} - 1 = \frac{-3}{8} \Rightarrow S_1 \text{ hội tụ}$$

$$S_n = \sum_{n=1}^{+\infty} aq^{n-1}$$

$$|q| < 1 \Rightarrow S_n \rightarrow \frac{a}{1-q}$$

Ví dụ: Tính chuỗi sau:
$$\sum_{n=1}^{+\infty} \frac{(-3)^n (4n^2 - 1) + 5^n}{5^n (2n - 1)(2n + 1)}$$

A.
$$-\frac{3}{8}$$
 B. $\frac{1}{2}$ C. $\frac{1}{8}$ D. $-\frac{1}{6}$

B.
$$\frac{1}{2}$$

C.
$$\frac{1}{8}$$

D.
$$-\frac{1}{6}$$

• Ta có:
$$S_2 = \sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

Đặt:
$$\frac{1}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1} \Rightarrow A(2n+1) + B(2n-1) = 1$$

$$\Rightarrow (A+B)2n + (A-B) = 0 \times 2n + 1 \Rightarrow \begin{cases} A+B=0 \\ A-B=1 \end{cases} \Rightarrow A = \frac{1}{2}; B = \frac{-1}{2}$$

• Ta có:
$$S_2 = \sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

$$\Rightarrow S_2 = \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$$

• Mà:
$$\lim_{n\to+\infty} \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) = \frac{1}{2} \Rightarrow S_2 = \frac{1}{2} \Rightarrow S_2 \text{ hội tụ}$$

$$\Rightarrow S_n = \sum_{n=1}^{+\infty} \frac{(-3)^n (4n^2 - 1) + 5^n}{5^n (2n - 1)(2n + 1)} = S_1 + S_2 = \frac{-3}{8} + \frac{1}{2} = \frac{1}{8} \Rightarrow \text{ Đáp án C}$$

2.2.1. Định nghĩa

Chuỗi $\sum_{n=1}^{\infty} u_n$ được gọi là chuỗi số dương nếu $u_n \geq 0, \forall n \in [1; \infty)$

2.2.2. Tiêu chuẩn

2.2.2.1. Tiêu chuẩn so sánh

Định lý 1: Cho hai chuỗi số dương $\sum_{n=1}^{\infty} u_n$ và $\sum_{n=1}^{\infty} v_n$ thỏa: $0 \le u_n \le v_n, \forall n$

- Nếu $\sum_{n=1}^{+\infty} v_n$ hội tụ thì $\sum_{n=1}^{+\infty} u_n$ hội tụ.
- Nếu $\sum_{n=1}^{\infty} u_n$ phân kì thì $\sum_{n=1}^{\infty} v_n$ phân kì.

Ví dụ: Xét sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{\sin^2 \frac{\pi}{3^n}}{n \cdot 3^n}$

Ta có:
$$\frac{\sin^2 \frac{\pi}{3^n}}{n \cdot 3^n} < \frac{1}{n \cdot 3^n} < \frac{1}{3^n}$$

$$\sum_{n=1}^{n\to\infty} \left(\frac{1}{3}\right)^n \text{có dạng } \sum_{n=1}^{n\to\infty} q^n \text{ với } | q | = \frac{1}{3} < 1 \implies \text{hội tụ}$$

=> Chuỗi ban đầu hội tụ

$$0 \le u_n \le v_n, \forall n$$

Nếu
$$\sum_{n=1}^{+\infty} v_n$$
 hội tụ thì $\sum_{n=1}^{+\infty} u_n$ hội tụ

$$S_n = \sum_{n=1}^{+\infty} aq^n$$

Với $|q| < 1 \Rightarrow$ chuỗi hội tụ

Với $|q| > 1 \Rightarrow$ chuỗi phân kì

2.2.2.1. Tiêu chuẩn so sánh

Định lý 2: Cho hai chuỗi số dương $\sum_{n=1}^{\infty} u_n$ và $\sum_{n=1}^{\infty} v_n$ thỏa:

$$u_n > 0$$
 và $v_n > 0$ và $\lim_{n \to \infty} \frac{u_n}{v_n} = K$

- Nếu K = 0 thì $\sum_{n=1}^{+\infty} v_n$ hội tụ $\Rightarrow \sum_{n=1}^{+\infty} u_n$ hội tụ
- Nếu K = + ∞ thì $\sum_{n=1}^{+\infty} v_n$ phân kì $\Rightarrow \sum_{n=1}^{+\infty} u_n$ phân kì
- Nếu $0 < K < +\infty$ thì $\sum_{n=1}^{+\infty} u_n$ và $\sum_{n=1}^{+\infty} v_n$ cùng tính chất

2.2.2.1. Tiêu chuẩn so sánh

Định lý 2: Cho hai chuỗi số dương $\sum u_n$ và $\sum v_n$ thỏa:

• Nếu $0 < K < +\infty$ thì $\sum_{n=1}^{\infty} u_n$ và $\sum_{n=1}^{\infty} v_n$ cùng tính chất

Vậy
$$u_n \sim v_n$$
 khi $n \to +\infty$ thì: $\sum_{n=1}^{+\infty} u_n$ và $\sum_{n=1}^{+\infty} v_n$ cùng tính chất $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$

$$\operatorname{Vi}_{n \to +\infty} \frac{u_n}{v_n} = 1$$

Chuỗi Dirichlet

- ✓ Cho số thực α . Chuỗi $\sum \frac{1}{n^{\alpha}}$ được gọi là chuỗi Dirichlet (nếu $\alpha=1$ thì nó là chuỗi điều hòa).
- ✓ Chuỗi Dirichlet hội tụ khi $\alpha > 1$; phân kỳ khi $\alpha \le 1$.

Ví dụ: Xác định xem chuỗi hội tụ hay phân kỳ: $\sum_{n=\sqrt{2}}^{+\infty} \frac{1}{(x^9+1)\sqrt{x^2-1}}$

Khi
$$n \to +\infty$$
: $u_n = \frac{1}{\left(x^9 + 1\right)\sqrt{x^2 - 1}} \sim \frac{1}{x^9\sqrt{x^2}} \sim \frac{1}{x^{10}}$ (Ngắt bỏ VCL bậc thấp)

$$\sum_{n=1}^{n\to\infty} \frac{1}{x^{10}}$$
 là chuỗi Dirichlet với $\alpha = 10 > 1$

Tức là ngắt bỏ những biến có bậc thấp, chỉ giữ lại biến có bậc cao nhất.

=> Chuỗi ban đầu hội tụ

Chuỗi Dirichlet có dạng $\sum_{n=1}^{n\to\infty} \frac{1}{x^{\alpha}}$

Với $\alpha > 1$: hội tụ.

 $\alpha \leq 1$: phân kỳ

Chuỗi ban đầu

Ngắt bỏ VCL bậc thấp

Kết luận PK hay HT

TC chuỗi Dirichlet

Chuỗi mới có cùng tính chất

2.2.2.2. Tiêu chuẩn D'Alembert

Cho hai chuỗi số dương $\sum u_n$ và $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = D$

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \mathbf{D}$$

- Nếu D < 1 thì chuỗi hôi tu.
- Nếu D > 1 thì chuỗi phân kỳ.
- Nếu D = 1 thì chưa thể kết luận.

Các bài chứa **giai thừa** thì thường sử dụng **D'Alembert**

Ví dụ: Xét sự hội tụ của các chuỗi số sau: $\sum_{n=1}^{2^n} 2^n \sin\left(\frac{1}{n!}\right)$

$$X\acute{e}t: 2^n sin\left(\frac{1}{n!}\right) \ge 0 \quad v\acute{o}i \ n \ge 1$$

Ta có:
$$2^n \sin\left(\frac{1}{n!}\right) \sim 2^n \frac{1}{n!} v \acute{o} i n \to \infty$$

$$\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\mathbf{D}$$

- Nếu D < 1 thì chuỗi hội tụ.
- Nếu D > 1 thì chuỗi phân kỳ.
- Nếu D = 1 thì chưa thể kết luận.

Sử dụng D'Alembert:
$$\lim_{n\to\infty} \frac{2^{n+1}}{(n+1)!} \times \frac{n!}{2^n} = \lim_{n\to\infty} \frac{2}{n+1} = 0 < 1 \Rightarrow \sum_{n=1}^{\infty} 2^n \frac{1}{n!} \text{ hội tụ}$$

Mà:
$$\sum_{n=1}^{\infty} 2^n \sin\left(\frac{1}{n!}\right) \text{ và } \sum_{n=1}^{\infty} 2^n \frac{1}{n!} \text{ cùng tính chất} \Rightarrow \text{chuỗi đã cho hội tụ}$$

2.2.2.3. Tiêu chuẩn Cauchy

Cho hai chuỗi số dương $\sum_{n=1}^{\infty} u_n$ và $\lim_{n \to +\infty} \sqrt[n]{u_n} = \mathbf{C}$

- Nếu C < 1 thì chuỗi hội tụ.
- Nếu C > 1 thì chuỗi phân kỳ.
- Nếu C = 1 thì chưa thể kết luận.

Các bài chứa **mũ n** thì thường sử dụng **Cauchy**

Ví dụ: Xét sự hội tụ của các chuỗi số sau: $\sum_{n=1}^{\infty} \frac{1}{2^n} (1 + \frac{1}{n})^{n^2}$

Ta có chuỗi lớn hơn 0 với $n \ge 1$, sử dụng tiêu chuẩn Cauchy:

$$\lim_{n \to +\infty} \sqrt[n]{u_n} = \lim_{n \to +\infty} \sqrt[n]{\frac{1}{2^n}} (1 + \frac{1}{n})^{n^2} = \frac{1}{2} \lim_{n \to +\infty} (1 + \frac{1}{n})^n = \frac{e}{2} > 1$$

Vậy chuỗi đã cho phân kì.

$$\lim_{n\to+\infty} \sqrt[n]{u_n} = \mathbf{C}$$

- Nếu C < 1 thì chuỗi hội tụ.
- Nếu C > 1 thì chuỗi phân kỳ.
- Nếu C = 1 thì chưa thể kết luận.

Ví dụ: Xét sự hội tụ của các chuỗi số sau: $\sum_{n=1}^{+\infty} \frac{3^n (n!)^2}{(2n)!}$

Ta có $\frac{3^n(n!)^2}{(2n)!} > 0 (\forall n \ge 1)$. Sử dụng tiêu chuẩn D'Alembert:

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{3^{n+1}[(n+1)!]^2}{(2(n+1))!} \times \frac{(2n)!}{3^n(n!)^2} = \lim_{n \to \infty} \frac{3(n+1)^2}{(2n+2)(2n+1)} = \lim_{n \to \infty} \frac{3n^2}{4n^2} = \frac{3}{4} < 1$$

Vậy chuỗi đã cho hội tụ.

$$\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\mathbf{D}$$

- Nếu D < 1 thì chuỗi hội tụ.
- Nếu D > 1 thì chuỗi phân kỳ.
- Nếu D = 1 thì chưa thể kết luận.

2.2.2.4. Tiêu chuẩn Maclaurin – Cauchy (TC Tích Phân)

Cho hàm số f(x) **liên tục**, **không âm** và **giảm** trên nửa khoảng $[k; +\infty), k \in N$. Khi đó

$$\sum_{n=k}^{+\infty} f(n) \text{ hội tụ (=)} \int_{k}^{+\infty} f(x) dx \text{ hội tụ}$$

Thường dung với bài có ln(x)

Ví dụ: Xét sự hội tụ của chuỗi số sau: $\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^5}$

*
$$a_n = \frac{1}{n(\ln n)^5} \ge 0 \forall n \ge 2 \ (a_n \ kh \hat{o} ng \ \hat{a} m)$$

*Đặt
$$f(x) = \frac{1}{x(\ln x)^5} \Rightarrow \forall x_1, x_2, x_1 \le x_2$$
, ta có $\ln(x_1) \le \ln(x_2)$

$$\Rightarrow x_1 \left(\ln x_1 \right)^5 \le x_2 \ln \left(x_2 \right)^5 \Rightarrow f\left(x_1 \right) \ge f\left(x_2 \right) \Rightarrow f(x)$$
 là hàm giảm.

Vậy
$$\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^5}$$
 có cùng tính chất với $\int_2^{+\infty} \frac{dx}{x(\ln x)^p}$

Ta có:
$$\int_{2}^{+\infty} \frac{dx}{x(\ln x)^{5}} = \lim_{t \to +\infty} \int_{2}^{t} \frac{dx}{x(\ln x)^{5}}$$

$$\sum_{n=k}^{+\infty} f(n) \text{ hội tụ } (=) \int_{k}^{+\infty} f(x) dx \text{ hội tụ}$$

$$\sum_{n=k}^{+\infty} f(n) \, \text{hội tụ} \, (=) \int_{k}^{+\infty} f(x) dx \, h\text{ội tụ}$$

Đặt
$$u = \ln x \to du = \frac{1}{x} dx \Rightarrow \lim_{t \to +\infty} \int_2^t \frac{dx}{x(\ln x)^5} = \lim_{t \to +\infty} \int_{\ln 2}^{\ln t} \frac{du}{u^5}$$
 (hội tụ)

Vậy chuỗi số ban đầu hội tụ

$$\int_{k}^{+\infty} \frac{dx}{x^{\alpha}}$$

$$\alpha > 1 \text{ thì hội tụ}$$

$$\alpha \le 1 \text{ thì phân kỳ}$$

Tips:

- Các bài chứa giai thừa thì thường sử dụng D'Alembert
- Các bài chứa mũ n thì thường sử dụng Cauchy
- Các bài chứa lnx thì thường sử dụng Tiêu chuẩn tích phân
- Nếu vừa có mũ vừa có giai thừa thì ta ưu tiên sử dụng
 D'Alembert trước hoặc sử dụng tương đương để đưa về dạng
 đơn giản hơn.

2.3. Chuỗi đan dấu

2.3.1. Định nghĩa

Chuỗi
$$\sum_{n=1}^{+\infty} (-1)^n u_n; \sum_{n=1}^{+\infty} (-1)^{n-1} u_n \text{được gọi là chuỗi đan dấu}$$

2.3.2. Định lí Leibnitz

Nếu dãy $\{u_n\}_{n\in\mathbb{N}}$ giảm và $\lim_{n\to+\infty}u_n=0$ thì chuỗi đan dấu hội tụ.

2.3. Chuỗi đan dấu

Ví dụ: Xét sự hội tụ của chuỗi số sau: $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{n^2+1}{n^3+n^2+1}$

Ta có:
$$a_n = \frac{n^2 + 1}{n^3 + n^2 + 1} > 0 \forall n \ge 1$$
 (dãy dương) và là hàm giảm

$$\lim_{x \to +\infty} a_n = \lim_{x \to +\infty} \frac{n^2 + 1}{n^3 + n^2 + 1} = 0$$

Vậy chuỗi hội tụ theo tiêu chuẩn Leibniz

Nếu dãy giảm và $\lim_{n\to+\infty} u_n = 0$ thì chuỗi hội tụ.

2.4.1. Định nghĩa

Chuỗi lũy thừa là chuỗi có dạng $\sum_{n=1}^{\infty} a_n (x - x_0)^n$

$$\sum_{n=1}^{+\infty} a_n (x - x_0)^n$$

$$\text{Đặt } X = (x - x_0)$$

Đặt $X = (x - x_0)$ Ta đưa chuỗi về dạng $\sum_{n=1}^{+\infty} a_n X^n$

$$\sum_{n=1}^{+\infty} a_n X^n$$

2.4.2. Bán kính hội tụ

Với R (R > 0) là bán kính hội tụ, ta có:

- |X| < R : chuỗi hội tụ
- |X| > R: chuỗi phân kì

Khoảng (-R;R) (|X| < R) được gọi là **khoảng hội tụ** của chuỗi.

2.4.3. Cách tìm bán kính hội tụ

Định lí:
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$
 Định lí: $\lim_{n \to \infty} \sqrt[n]{a_n} = \rho$

$$R = \begin{cases} 0, & \rho = +\infty \\ \frac{1}{\rho}, & 0 < \rho < +\infty \\ +\infty, & \rho = 0 \end{cases}$$

2.4.3. Cách tìm bán kính hội tụ và miền hội tụ

- **Bước 1:** Ta đưa chuỗi về dạng $\sum_{n=1}^{\infty} a_n X^n$
- Bước 2: Ta dựa vào hai định lý trên để tìm bán kính hội tụ R.
- **Bước 3:** Khoảng hội tụ của chuỗi lũy thừa này là: -R < X < R.
- Bước 4: Xét sự hội tụ của chuỗi tại các đầu mút của khoảng hội tụ.

Từ đó ta sẽ kết luận miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{\infty} a_n x^n$

Ví dụ: Tìm miền hội tụ của chuỗi sau $\sum \frac{(x-2)^{3n}}{(n+1)^2 3^n}$ (*)

Đặt
$$X = \frac{(x-2)^3}{3}$$
, $(*) \Rightarrow \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} X^n$ (1)
$$\boxed{\text{Dịnh lí:} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho}$$

$$\text{Dinh li:} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$

Sử dụng định lí: $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty} \left|\frac{(n+1)^2}{(n+2)^2}\right| = 1 \Rightarrow R = 1 \Rightarrow$ khoảng hội tụ (-1;1)

•
$$X = -1 \Rightarrow \sum_{n=1}^{\infty} (-1)^n \frac{1}{(n+1)^2} \Rightarrow \text{hội tụ (Tiêu chuẩn Leibnitz)}$$

•
$$X = 1 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$

Ta có:
$$\frac{1}{(n+1)^2} \sim \frac{1}{n^2} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} \text{hội tụ} \leftrightarrow \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} \text{hội tụ}$$

$$R = \begin{cases} 0 & , & \rho = +\infty \\ \frac{1}{\rho}, & 0 < \rho < +\infty \\ +\infty, & \rho = 0 \end{cases}$$

⇒ Khoảng hội tụ:
$$[-1;1]$$
 ⇒ $-1 \le \frac{(x-2)^3}{3} \le 1 = 1$ (=) $\sqrt[3]{-3} + 2 \le x \le \sqrt[3]{3} + 2$

2.5. Bài tập cơ bán

Ví dụ: Chuỗi
$$\sum_{n=1}^{+\infty} \frac{pn^3 + 2n + 1}{n!}$$
 hội tụ khi:

$$A. p \in R$$

C.
$$-1$$

A.
$$p \in R$$
 B. $\nexists p$ C. $-1 D. $-1 > p \lor p > 1$$

*
$$p = 0 \Rightarrow u_n \sim \frac{2n}{n!} \Rightarrow \frac{u_{n+1}}{u_n} = \frac{1}{n} \to 0 < 1$$
 Hội tụ

$$*p \neq 0 \Rightarrow u_n \sim \frac{pn^3}{n!} \Rightarrow \left| \frac{u_{n+1}}{u_n} \right| = \frac{(n+1)^2}{n^3} \to 0 \text{ Hội tụ} \qquad \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = D$$

$$\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\mathbf{D}$$

- Nếu D < 1 thì chuỗi hội tụ.
- Nếu D > 1 thì chuỗi phân kỳ.
- Nếu D = 1 thì chưa thể kết luận.

2.5. Bài tập cơ bản

Ví dụ: Xét 2 chuỗi. Khẳng định đúng là:

$$S_1 \equiv \sum_{n=1}^{+\infty} \left(\frac{3n}{3n+1}\right)^n \quad S_2 \equiv \sum_{n=1}^{+\infty} \left(\frac{2n+1}{3n+1}\right)^{\frac{n}{2}}$$

- A. S₁, S₂ cùng hội tụ
- B. S₁, S₂ cùng phân kỳ
- $C.S_1$ phân kỳ, S_2 hội tụ
- D. S₁ hội tụ, S₂ phân kỳ

2.5. Bài tập cơ bản

Ví dụ: Xét 2 chuỗi. Khẳng định đúng là:

$$S_1 \equiv \sum_{n=1}^{+\infty} \left(\frac{3n}{3n+1}\right)^n \quad S_2 \equiv \sum_{n=1}^{+\infty} \left(\frac{2n+1}{3n+1}\right)^{\frac{n}{2}} \quad \text{N\'eu C < 1 thì chuỗi hội tụ.}$$
• Nếu C > 1 thì chuỗi phân kỳ.

$$\lim_{n\to+\infty} \sqrt[n]{u_n} = \mathbf{C}$$

- Nếu C = 1 thì chưa thể kết luận.

• Ta xét
$$S_2: \sqrt[n]{u_n} = \left(\frac{2n+1}{3n+1}\right)^{\frac{1}{2}} \to \sqrt{\frac{2}{3}} < 1$$
 (hội tụ)

• Ta xét
$$S_1: u_n = e^{\ln\left(\frac{3n}{3n+1}\right)^n} = e^{n\ln\left(1+\frac{-1}{3n+1}\right)} \sim e^{n\cdot\frac{-1}{3n+1}}$$

$$\lim_{n\to\infty} u_n \neq 0 \iff \sum_{n=1}^{\infty} u_n \operatorname{PK}$$

$$\lim_{n\to\infty} u_n \neq 0 \iff \sum_{n=1}^{\infty} u_n \, \text{PK}$$

$$\Rightarrow u_n \sim e^{n \cdot \frac{-1}{3n+1}} \rightarrow e^{-\frac{1}{3}} \neq 0 \Rightarrow \text{(phân kỳ)} \implies \text{Dáp án C}$$

Tóm tắt

✓ Chuỗi số dương

- ❖ Dạng 1. Xác định chuỗi hội tụ hoặc phân kỳ
- * Dạng 2. Tìm điều kiện để chuỗi hội tụ hoặc phân kỳ
 - Kết hợp các tiêu chuẩn: 1 So sánh 1 và so sánh 2
 - 2 Tich phân (Maclaurin Cauchy)
 - 3 D'Alembert
 - 4 Cauchy
 - · Các tính chất khác: 1. Tính chất của chuỗi Dirichlet
 - 2. Tính chất chuỗi số có dạng aq^n
 - 3. Điều kiện cần nhưng chưa đủ: $\lim_{n\to\infty}u_n\neq 0 \Leftrightarrow \sum_{n=1}^\infty u_n$ phân kì
- ❖ Dạng 3. Tính tổng S:
 - 1. Dùng công thức chuỗi có dạng aq^{n-1}
 - 2. Phân tích thành các tổng và rút gọn. Tính lim hàm vứa rút gọn

Tóm tắt

✓ Chuỗi số dương

- ❖ Dạng 3. Tính tổng S:
 - 2. Phân tích thành các tổng và rút gọn. Tính lim hàm vứa rút gọn.
 - * Ví dụ:

• Ta có:
$$S_2 = \sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

$$\Rightarrow S_2 = \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$$

• Mà:
$$\lim_{n \to +\infty} \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) = \frac{1}{2} \Rightarrow S_2 = \frac{1}{2} \Rightarrow S_2 \text{ hội tu}$$

Tóm tắt

- ✓ Chuỗi lũy thừa: Tìm miền hội tụ, bán kính hội tụ
 - **Bước 1:** Ta đưa chuỗi về dạng $\sum_{n=1}^{\infty} a_n X^n$
 - Bước 2: Ta dựa vào hai định lý trên để tìm bán kính hội tụ R.
 - **Bước 3:** Khoảng hội tụ của chuỗi lũy thừa này là: -R < X < R.
 - Bước 4: Xét sự hội tụ của chuỗi tại các đầu mút của khoảng hội tụ.

Từ đó ta sẽ kết luận miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{\infty} a_n x^n$

- 3.1 Định nghĩa + Tính chất
- 3.2 Đổi thứ tự lấy tích phân
- 3.3 Đổi biến để lấy tích phân
- 3.4 Tính diện tích
- 3.5 Tính thể tích
- 3.6 Xác định trọng tâm

3.1 Định nghĩa:

- Cho hàm số f(x,y) xác định trên miền D đóng và bị chặn trong mặt phẳng Oxy.
- Ta chia miền D (còn gọi là phân hoạch miền D) một cách tuỳ ý thành n phần không dẫm lên nhau: $D_1, D_2, ..., D_n$ có diện tích lần lượt là $S_{D1}, S_{D2}, ..., S_{Dn}$.
- Trong mỗi D_i ta chọn điểm tuỳ ý M_i (x_i,y_i) và gọi $I_n = \sum_{i=1}^n f(M_i)S_D$ là tổng tích phân của hàm số f(x,y) trên miền D ứng với phân hoạch miền D và cách chọn M_i như trên.

• Gọi d_i là đường kính của D_i và đặt $d = \max d_i$. Nếu khi $n \to \infty$ sao cho $\max d_i \to 0$ mà giới hạn $I = \lim_{d \to 0} \sum_{i=1}^n f(M_i) S_{D_i}$ tồn tại hữu hạn, không phụ thuộc vào cách chia miền D và cách chọn điểm Mi thì số thực I được gọi là tích phân hai lớp của hàm số f(x,y) trên miền D.

Kí hiệu:
$$I = \iint_D f(x,y) dS$$

✓ Chú ý:

- Xét phân hoạch miền D bởi các đường thẳng song song với Ox, Oy ta được: $\Delta S = \Delta x. \Delta y$

Khi
$$n \to \infty$$
 thì $\Delta S \to 0 \Rightarrow \begin{cases} \Delta x \to 0 \\ \Delta y \to 0 \end{cases} \Rightarrow dS = dx.dy$. Nên: $I = \iint_D f(x,y) dx dy$

- Nếu tồn tại tích phân $I = \iint_D f(x,y) dx dy$ thì ta nói hàm f(x,y) khả tích trên miền D.

✓ Trong mặt phẳng Oxy, xét đường cong C có PT tham số:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, t \in \Omega \subset \mathbb{R}$$

- Nếu x'(t),y'(t) liên tục và $[x'(t)]^2 + [y'(t)]^2 > 0$, $\forall t \in \Omega$ thì C là đường cong trơn.
- Nếu không tồn tại $x'(t_0),y'(t_0)$ hoặc $x'(t_0)=y'(t_0)=0$ thì ta nói $M(x(t_0),y(t_0))$ là điểm kỳ dị của đường cong C.

- Nếu đường cong C là hợp hữu hạn đoạn cong trơn thì ta nói C là

đường cong trơn từng khúc.

Đường cong trơn Đường cong trơn từng khúc

Định lý tồn tại tích phân hai lớp:

Nếu hàm số f(x,y) liên tục trên miền $D \subset \mathbb{R}^2$ đóng, bị chặn và có biên là đường cong trơn từng khúc thì f(x,y) khả tích trên D.

3.1 Tính chất:

- 1. $I = \iint_D \alpha f(x,y) dS = I = \alpha \iint_D f(x,y) dS$
- $2. \qquad \iint\limits_{D} [f(x,y) + g(x,y)] dxdy = \iint\limits_{D} f(x,y) dxdy + \iint\limits_{D} g(x,y) dxdy$
- **3.** Nếu D được chia thành 2 miền D_1 , D_2 không giẫm lên nhau thì

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D_1} f(x,y)dxdy + \iint\limits_{D_2} f(x,y)dxdy$$

4. Nếu $\forall (x,y) \in D, f(x,y) \leq g(x,y)$ thì $\iint\limits_D f(x,y) dx dy \leq \iint\limits_D g(x,y) dx dy$

3.1 Tính chất:

5. Giả sử M, m tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của f(x,y) trên D. Khi đó:

$$m.S_D \leq \iint\limits_D f(x,y) dx dy \leq M.S_D$$

6. Định lý về giá trị trung bình: Tồn tại điểm $M \in D$ sao cho

$$\iint\limits_D f(x,y)dxdy = f(M)S_D$$

Một số lưu ý khi tính tích phân hai lớp:

• Cận tích phân $a \le x \le b$ hoặc $c \le y \le d$ được gọi là cận cụ thể (cận độc lập).

- Cận $x_1(y) \le x \le x_2(y)$ hoặc $y_1(x) \le y \le y_2(x)$ được gọi là cận không cụ thể (cận phụ thuộc).
 - ✓ Tích phân có cận không cụ thể đặt ở giữa hoặc ở sau để ưu tiên tính trước, sau đó đến tích phân với cận cụ thể.

Ví dụ: Tính
$$I = \iint_D (x^2 + xy) dx dy$$
 với D giới hạn bởi y=x, y=2x, x=2.

- A. 8
- B. 9
- C. 10
- D. 11

Ví dụ: Tính $I = \iint_D (x^2 + xy) dx dy$ với D giới hạn bởi y=x, y=2x, x=2.

• B1: Vẽ hình

• B2: Xác định tập D:

$$\mathbf{D} = \begin{cases} 0 \le x \le 2 \\ x \le y \le 2x \end{cases}$$

• B3:
$$I = \int_0^2 dx \int_x^{2x} (x^2 + xy) dy$$

$$\Rightarrow I = \int_0^2 dx \cdot \left(x^2 y + x \frac{y^2}{2} \right) \Big|_x^{2x}$$

$$\Rightarrow I = \int_0^2 \frac{5}{2} x^3 dx$$

$$\Rightarrow I = 10 \Rightarrow \text{Dáp án C}$$

Ví dụ: Tính
$$I = \iint\limits_{D} \frac{xy}{x^2 + y^2} dxdy$$
 với D là tam giác có các đỉnh là

A.
$$\frac{9}{4} \ln 2$$
 B. $\frac{7}{4} \ln 7$

B.
$$\frac{7}{4} \ln 7$$

C.
$$\frac{8}{5} \ln 3$$
 D. $\frac{3}{4} \ln 5$

D.
$$\frac{3}{4} \ln 5$$

Ví dụ: Tính
$$I = \iint\limits_{D} \frac{xy}{x^2 + y^2} dxdy$$
 với D là tam giác có các đỉnh là

O(0,0), A(3,3), B(3,0).

• <u>Vẽ hình</u>:

• Miền xác định D là tam giác OAB:

Trong đó OA là đoạn thẳng, phương trình có dạng: y=ax+b

$$O(0,0) \implies 0 = a.0 + b$$

$$A(3,3) \implies 3 = a.3 + b$$

$$\Rightarrow \begin{cases} a=1 \\ b=0 \end{cases}$$

$$\Rightarrow OA: y = x$$

Tập xác định D:
$$\begin{cases} 0 \le x \le 3 \\ 0 \le y \le x \end{cases}$$

• Tập xác định D:
$$\begin{cases} 0 \le x \le 3 \\ 0 \le y \le x \end{cases}$$

$$I = \iint_{D} \frac{xy}{x^{2} + y^{2}} dxdy \Rightarrow I = \int_{0}^{3} dx \int_{0}^{x} \frac{xy}{x^{2} + y^{2}} dy = \int_{0}^{3} dx \cdot \frac{x \cdot \ln(x^{2} + y^{2})}{2} \Big|_{0}$$

$$= \int_0^3 dx \cdot \left(\frac{x \cdot \ln(2 \cdot x^2)}{2} - \frac{x \cdot \ln(x^2)}{2} \right) = \int_0^3 dx \cdot \frac{x}{2} \left[\ln(2 \cdot x^2) - \ln(x^2) \right] = \int_0^3 dx \cdot \frac{x}{2} \left[\frac{\ln(2 \cdot x^2)}{\ln(x^2)} \right]$$

$$= \int_0^3 \frac{x}{2} \cdot \ln 2 dx = \frac{9}{4} \ln 2 \implies \text{Đáp án A}$$

3.2. Đổi thứ tự lấy tích phân

Ví dụ: Đổi thứ tụ tích phân $\int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx$

A.
$$\int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy + \int_{0}^{1-x} dx \int_{0}^{1} f(x, y) dy$$

B.
$$\int_0^{\sqrt{1-x^2}} dx \int_{-1}^0 f(x,y) dy + \int_0^1 dx \int_0^{1-x} f(x,y) dy$$

C.
$$\int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dy + \int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy$$

D.
$$\int_{-1}^{0} dx \int_{0}^{1-x} f(x, y) dy + \int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$$

3.2. Đổi thứ tự lấy tích phân

Ví dụ: Đổi thứ tụ tích phân $\int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx$

• B1: Xác định tập D ban đầu: $\begin{cases} 0 \le y \le 1 \\ -\sqrt{1-y^2} \le x \le 1-y \end{cases}$

• B2: Vẽ hình:

3.2. Đổi thứ tự lấy tích phân

• Xác định các tập D₁ và D₂:

$$D_{1} = \begin{cases} -1 \le x \le 0 \\ 0 \le y \le \sqrt{1 - x^{2}} \end{cases}, \quad D_{2} = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 1 - x \end{cases}$$

• Đổi thứ tự tích phân:

$$\Rightarrow \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy + \int_{0}^{1} dx \int_{0}^{1-x} f(x, y) dy$$
$$=> \text{Đáp án C}$$

Phương pháp đổi biến - Công thức tổng quát:

Giả sử x=x(u,v), y=y(u,v) là hai hàm số có các đạo hàm riêng liên tục trên miền đóng bị chặn D_{uv} trong mặt phẳng Ouv. Gọi Dxy là miền xác định bởi: $D_{xy}=\{(x,y): x=x(u,v), y=y(u,v), (u,v) \in D_{uv}\}$

Nếu hàm f(x,y) khả tích trên Dxy và Jacobi: $J = \frac{\partial(x,y)}{\partial(x,y)} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} \neq 0$

Thù:
$$I = \iint_{D_{xy}} f(x, y) dx dy = \iint_{D_{uv}} f(x(u, v), y(u, v)). |J| du dv$$

Ví dụ: Tính $\iint_{-} dxdy$ với D giới hạn bởi y=1-x, y=2-x, y=2x-1, y=2x-3.

A.
$$\frac{1}{3}$$

A.
$$\frac{1}{3}$$
 B. $\frac{2}{3}$ D. $\frac{5}{3}$ C. $\frac{4}{3}$

D.
$$\frac{5}{3}$$

C.
$$\frac{4}{3}$$

Ví dụ: Tính $\iint_D dxdy$ với D giới hạn bởi y=1-x, y=2-x, y=2x-1, y=2x-3.

- Đặt: u = y + x; v = y 2x
- Tính: $J^{-1} = \begin{vmatrix} \mathbf{u'}_x & \mathbf{u'}_y \\ \mathbf{v'}_x & \mathbf{v'}_y \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} = 3 \Rightarrow J = \frac{1}{3}$
- Xác định tập D'= $\begin{cases} 1 \le u \le 2 \\ -3 \le v \le -1 \end{cases}$
- Tính: $I = \iint_{D_1} \frac{1}{3} du dv = \frac{1}{3} \int_{1}^{2} du \int_{-3}^{-1} dv = \frac{2}{3} => Dáp án B$

Ví dụ: Tính I=
$$\iint_D \sqrt{x^2+y^2} dxdy$$
 với miền D là $\begin{cases} x^2+y^2=a^2 \\ x^2+y^2=4a^2 \end{cases}$ (a>0)

A.
$$\frac{14}{5}\pi$$
 B. $\frac{17}{3}\pi$ C. $\frac{11}{3}\pi$ D. $\frac{14}{3}\pi$

B.
$$\frac{17}{3}\pi$$

C.
$$\frac{11}{3}\pi$$

D.
$$\frac{14}{3}\pi$$

- Đặt: $x = R \cos \varphi, y = R \sin \varphi, x^2 + y^2 = R^2$
- Nhận thấy D là hình vành khăn có bk trong là a và bk ngoài là 2a

$$\Rightarrow$$
 a $\leq R \leq 2a$, $0 \leq \varphi \leq 2\pi$

$$\Rightarrow I = \iint\limits_{D} \sqrt{x^2 + y^2} dxdy = \iint\limits_{D} R.R.dR.d\varphi = \int_0^{2\pi} d\varphi \int_a^{2\pi} R^2.dR = \frac{14}{3}\pi \implies \text{Dáp án D}$$

Các công thức

• Tính diện tích hình phẳng: $S_D = \iint dx dy$

$$S_D = \iint_D dx dy$$

• Tính diện tích mặt cong: Giả sử S là mặt cong có Phương trình z=f(x,y) và chiếu xuống mặt phẳng Oxy là miền D:

$$S = \iint_{D} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}} dxdy$$

• Tính thể tích vật thể: Giả sử vật thể hình trụ Ω có đáy D trong mặt phẳng Oxy, mặt xung quanh song song Oz và giới hạn bởi

$$z=f(x,y) (f(x,y) \ge 0, \forall (x,y) \in D).$$

$$z=f(x,y) \ (f(x,y)\geq 0, \forall \ (x,y)\in D). \ V_{\Omega}=\iint_{D}f(x,y)dxdy$$

Các công thức

• Tính khối lượng: p(x,y) là hàm mật độ của vật:

$$m_D = \iint_D p(x, y) dx dy$$

• Tính trọng tâm (x_T, y_T) :

$$x_{T} = \frac{1}{m_{D}} \iint_{D} x.p(x, y) dxdy$$
$$y_{T} = \frac{1}{m_{D}} \iint_{D} y.p(x, y) dxdy$$

3.4. Tính diện tích

Ví dụ: Tính diện tích hình phẳng được giới hạn bởi các đường y=x, $y=2-x^2$

A.
$$\frac{9}{2}$$

B.
$$\frac{5}{2}$$

C.
$$\frac{3}{2}$$

D.
$$\frac{7}{2}$$

Bài làm

- Hoành độ giao điểm của hai đường thẳng x = 2 -x² \iff $\begin{vmatrix} x=-2 \\ x=1 \end{vmatrix}$
- Do đó hình phẳng đã cho xác định bởi $-2 \le x \le 1, x \le y \le 2 x^2$

$$\Rightarrow S = \int_{-2}^{1} dx \int_{x}^{2-x^{2}} dy = \frac{9}{2} =$$
 Dáp án A

3.4. Tính diện tích

Ví dụ: Tính diện tích phần mặt paraboloit $z = x^2 + y^2$ nằm trong mặt trụ $x^2 + y^2 = 1$

A.
$$\frac{\pi}{6} (5\sqrt{5} - 1)$$

A.
$$\frac{\pi}{6}(5\sqrt{5}-1)$$
 B. $\frac{\pi}{5}(6\sqrt{5}-1)$ C. $\frac{\pi}{6}(\sqrt{5}-1)$ D. $\frac{\pi}{6}5\sqrt{5}$

C.
$$\frac{\pi}{6} (\sqrt{5} - 1)$$

D.
$$\frac{\pi}{6} 5\sqrt{5}$$

3.4. Tính diện tích

Ví dụ: Tính diện tích phần mặt paraboloit $z = x^2 + y^2$ nằm trong mặt trụ $x^2 + y^2 = 1$ **Bài làm**

- Gọi S là phần mặt cong cần tính diện tích.
- Hình chiếu của S xuống mặt phẳng $z = x^2 + y^2$
- Đặt: $x=rcos\varphi$ $y=rsin\varphi = > \text{ Ta có được tập xác định: } D = \begin{cases} 0 \le r \le 1 \\ 0 \le \varphi \le 2\pi \end{cases}$ $\Rightarrow dxdy = rdrd\varphi$

$$S = \iint_{D_0} \sqrt{1 + (z'_x)^2 + (z'_y)^2} \, dxdy = \iint_{D_0} \sqrt{1 + 4x^2 + 4y^2} dxdy = \iint_{D} \sqrt{1 + r^2} .r.dr.d\phi = \frac{\pi}{6} (5\sqrt{5} - 1)$$

$$= > \text{ Dáp án A}$$

3.5. Tính thể tích

Ví dụ: Tính thể tích vật thể giới hạn bởi các mặt: x=0, x=3, y=0, y=ln6, z=0, $3e^{2x+y}$

A.
$$\frac{17}{2}(e^6-1)$$
 B. $\frac{15}{2}(e^6-1)$ C. $\frac{15}{2}(e^5-1)$ D. $\frac{17}{2}(e^5-1)$

Bài làm

Thể tích của vật thể là:

$$V = \int_0^3 dx \int_0^{ln6} 3e^{2x+y} dy = 3 \int_0^3 e^{2x} dx \int_0^{ln6} e^y dy = \frac{15}{2} (e^6 - 1) \implies \text{Dáp án B}$$

3.6. Xác định trọng tâm

Ví dụ: Tìm khối lượng và tâm khối lượng của bản phẳng tam giác với các đỉnh (0,0), (1,0) và (0,2) nếu hàm mật độ là $\rho(x,y)=1+3x+y$.

- A. Khối lượng: $\frac{8}{3}$; tâm khối lượng: $\left(\frac{3}{8}, \frac{11}{16}\right)$
- B. Khối lượng: $\frac{7}{3}$; tâm khối lượng: $\left(\frac{3}{8}, \frac{11}{16}\right)$
- C. Khối lượng: $\frac{8}{3}$; tâm khối lượng: $\left(\frac{5}{8}, \frac{11}{16}\right)$
- D. Khối lượng: $\frac{4}{3}$; tâm khối lượng: $\left(\frac{5}{8}, \frac{11}{16}\right)$

3.6. Xác định trọng tâm

• Vẽ hình:

Ví dụ: Tìm khối lượng và tâm khối lượng của bản phẳng tam giác với các đỉnh (0,0), (1,0) và (0,2) nếu hàm mật độ là $\rho(x,y)=1+3x+y$.

Bài làm

Tập xác định:

$$D = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 2 - 2x \end{cases}$$

3.6. Xác định trọng tâm

• Tập xác định:
$$D = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 2 - 2x \end{cases}$$

• Khối lượng của bảng phẳng:
$$m_D = \iint_D p(x,y) dA = \int_0^1 \int_0^{2-2x} (1+3x+y) dy dx = \frac{8}{3}$$

$$x_{T} = \frac{1}{m_{D}} \iint_{D} xp(x,y) dA = \frac{3}{8} \int_{0}^{1} \int_{0}^{2-2x} (x+3x^{2}+xy) dy dx = \frac{3}{8}$$

$$y_{T} = \frac{1}{m_{D}} \iint_{D} yp(x,y) dA = \frac{3}{8} \int_{0}^{1} \int_{0}^{2-2x} (y+3xy+y^{2}) dy dx = \frac{11}{16}$$

• Vậy tâm khối lượng của bản tại điểm $\left(\frac{3}{8}, \frac{11}{16}\right)$ => Đáp án A

4. Tích phân bội 3

- 4.1 Định nghĩa + Tính chất
- 4.2 Tính tích phân bội 3
- 4.3 Đổi biến tổng quát
- 4.4 Đổi biến trong tọa độ trụ
- 4.5 Đổi biến trong tọa độ cầu

4. Tích phân bội 3

4.1 Định nghĩa:

Cho hàm f(x,y,z) xác định trên khối đóng và bị chặn có biên là mặt trơn từng mảnh Ω . Tính tích phân bội ba của hàm f(x,y,z) trên Ω là:

$$I = \iiint_{\Omega} f(x, y, z) dx dy dz$$

Trong đó:

- + f(x,y,z) là hàm dưới dấu tích phân
- $+ \Omega$ là miền lấy tích phân và x, y, z là các biến tích phân

4. Tích phân bội 3

4.1 Các tính chất nên nhớ:

- 1. Hàm liên tục trên một khối đóng và bị chặn và có biên trơn từng mảnh thì khả tích trên đó.
- 2. Thể tích khối Ω là: $V_{\Omega} = \iiint_{\Omega} 1. dx dy dz$
- 3. $\forall (x, y, z) \in \Omega, f \leq g \Rightarrow \iiint_{\Omega} f. dx dy dz \leq \iiint_{\Omega} g. dx dy dz$

4.2. Tính tích phân bội 3

Ví dụ: Tính
$$I = \iiint_D z dx dy dz$$
, với $D = \begin{cases} z = 2 - x^2 - y^2 \\ z = \sqrt{x^2 + y^2} \end{cases}$

A.
$$\frac{19\pi}{12}$$

B.
$$\frac{13\pi}{12}$$

$$C.\frac{11\pi}{12}$$

D.
$$\frac{21\pi}{12}$$

4.2. Tính tích phân bội 3

Ví dụ: Tính
$$I = \iiint_D z dx dy dz$$
, với $D = \begin{cases} z = 2 - x^2 - y^2 \\ z = \sqrt{x^2 + y^2} \end{cases}$

Bài làm

Đầu tiên, ta cần xác định giao tuyến: $2-x^2-y^2=\sqrt{x^2+y^2}$

$$\Leftrightarrow 2-t^2=t$$

$$\Rightarrow t = 1$$

Vậy giao tuyến của hai mặt cong là: $x^2 + y^2 = 1$

Chiếu Ω lên mặt phẳng Oxy là hình tròn: $D = \begin{cases} x^2 + y^2 \le 1 \\ z = 0 \end{cases}$

4.2. Tính tích phân bội 3

$$I = \iint_{D} dxdy \int_{\sqrt{x^{2}+y^{2}}}^{2-x^{2}-y^{2}} zdz = \frac{1}{2} \iint_{D} dxdy [(2-x^{2}-y^{2})^{2}-(x^{2}+y^{2})]$$

Đổi sang tọa độ cực
$$D_1$$
 : $\begin{cases} 0 \le r \le 1 \\ 0 \le \varphi \le 2\pi \end{cases}$

$$\Rightarrow I = \frac{1}{2} \iint_{D_1} d\varphi dr. r. [(2 - r^2)^2 - r^2] = \frac{11\pi}{12} = > \text{ Đáp án C}$$

4.3. Đổi biến tổng quát

Công thức:

Xét tích phân:
$$I = \iiint_{\Omega} f(x, y, z) dx dy dz$$

$$\text{Đặt:} \begin{cases} u = u(x, y, z) \\ v = v(x, y, z) \Rightarrow J = \begin{vmatrix} x'_u & x'_v & x'_w \\ y'_u & y'_v & y'_w \\ z'_u & z'_v & z'_w \end{vmatrix}$$

Khi đó:
$$I = \iiint_{\Omega_1} f(x(u, v, w), y(u, v, w), z(u, v, w)). |J| dudvdw$$

Đổi biến:
$$\begin{cases} x = r\cos\varphi = x(r, \varphi, z) \\ y = r\sin\varphi = y(r, \varphi, z) \end{cases} \text{ với } r \ge 0, \varphi \in [0; 2\pi] \text{ hoặc } \varphi \in \left[\frac{-\pi}{2}; \frac{3\pi}{2}\right]$$

Khi đó:
$$J = \begin{vmatrix} x'_r & x'_{\varphi} & x'_z \\ y'_r & x'_{\varphi} & y'_z \\ z'_r & z'_{\varphi} & z'_z \end{vmatrix} = r$$

Nếu:
$$\begin{cases} \varphi_1 \leq \varphi \leq \varphi_2 \\ r_1(\varphi) \leq r \leq r_2(\varphi) \\ z_1(r,\varphi) \leq z \leq z_2(r,\varphi) \end{cases}$$
 (Chiếu lên mặt phẳng Oxy)

Thì:
$$I = \int_{\varphi_1}^{\varphi_2} d\varphi \int_{r_1}^{r_2} dr \int_{z_1}^{z_2} f(rcos\varphi, rsin\varphi, z) r dz$$

Ví dụ: Tính
$$I = \iiint_{\Omega} (x + y) dx dy dz$$
, với: $\Omega = \begin{cases} x^2 + y^2 = 1 \\ z = x^2 + y^2 \\ z = (x^2 + y^2) \end{cases}$

- A. 3
- B. 2
- C.1
- D. 0

Ví dụ: Tính
$$I = \iiint_{\Omega} (x + y) dx dy dz$$
, với: $\Omega = \begin{cases} x^2 + y^2 = 1 \\ z = x^2 + y^2 \\ z = (x^2 + y^2) \end{cases}$

Bài làm

Đặt: $x = r \cos \varphi$, $y = r \sin \varphi$, z = z

$$prj_{Oxy}=x^2+y^2\leq 1$$
 nên $D:$
$$\begin{cases} 0\leq \varphi\leq 2\pi\\ 0\leq r\leq 1 \end{cases}$$
 và cận chạy của z là: $r^2\leq z\leq 2r^2$

Ví dụ: Tính
$$I = \iiint_{\Omega} (x+1) dx dy dz$$
, với Ω :
$$\begin{cases} x^2 + z^2 = 1 \\ x^2 + z^2 = 4 \end{cases}$$
$$y = 1$$
$$y = 1 + x^2 + z^2$$

A.
$$\frac{19\pi}{12}$$

B.
$$\frac{15\pi}{12}$$

$$C.\frac{11\pi}{12}$$

D.
$$\frac{27\pi}{12}$$

Ví dụ: Tính
$$I = \iiint_{\Omega} (x+1) dx dy dz$$
, với Ω :
$$\begin{cases} x + z - 1 \\ x^2 + z^2 = 4 \\ y = 1 \\ y = 1 + x^2 + z^2 \end{cases}$$

Bài làm

$$I = \int_{0}^{2\pi} d\varphi \int_{1}^{2} dr \int_{1}^{1+r^{2}} (r\cos\varphi + 1) \cdot r \cdot dy = \int_{0}^{2\pi} d\varphi \int_{1}^{2} r^{3} (r\cos\varphi + 1) dr = \frac{15\pi}{2}$$

$$= > \text{ θan B}$$

Trong đó:

- \bullet OM = r
- θ là góc giữa OM và chiều dương Oz.
- φ là góc giữa OM_1 và chiều dương Ox.

Đổi biến:
$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \text{ và nếu lệch tâm thì:} \begin{cases} x - x_0 = r \sin \theta \cos \varphi \\ y - y_0 = r \sin \theta \sin \varphi \end{cases}$$

$$z = r \cos \theta$$

Ta có:
$$J = \begin{vmatrix} x'_r & x'_{\varphi} & x'_{\theta} \\ y'_r & x'_{\varphi} & y'_{\theta} \\ z'_r & z'_{\varphi} & z'_{\theta} \end{vmatrix} = r^2 \sin \theta \text{ và } \Omega : \begin{cases} \theta_1 \le \theta \le \theta_2 \\ \varphi_1 \le \varphi \le \varphi_2 \\ r_1(\varphi, \theta) \le r \le r_2(\varphi, \theta) \end{cases}$$

Khi đó:
$$I = \int_{\theta_1}^{\theta_2} d\theta \int_{\varphi_1}^{\varphi_2} d\varphi \int_{r_1}^{r_2} f(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta). r^2 \sin \theta. dr$$

Ví dụ: Tính
$$I = \iiint_{\Omega} z dx dy dz$$
, với Ω :
$$\begin{cases} x^2 + y^2 + z^2 \le 1 \\ z \ge \sqrt{x^2 + y^2} \end{cases}$$

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{12}$$

$$C.\frac{\pi}{8}$$

D.
$$\frac{\pi}{6}$$

Ví dụ: Tính
$$I = \iiint_{\Omega} z dx dy dz$$
, với Ω :
$$\begin{cases} x^2 + y^2 + z^2 \le 1 \\ z \ge \sqrt{x^2 + y^2} \end{cases}$$

Bài làm

Đổi biến: $x = r \sin \theta \cos \varphi$; $y = r \sin \theta \sin \varphi$; $z = r \cos \theta$

Khi chiếu lên mặt phẳng Oxy(z=0): $\Rightarrow x^2 + y^2 + z^2 = r^2 \le 1 \Rightarrow 0 \le r \le 1$

Khi chiếu lên mặt phẳng Oxz $(y = 0):\Rightarrow x^2 + y^2 \le 1 \Rightarrow 0 \le \varphi \le 2\pi$ $\Rightarrow z \ge x \Rightarrow 0 \le \theta \le \frac{\pi}{4}$

Vậy:
$$0 \le \theta \le \frac{\pi}{4}$$
; $0 \le \varphi \le 2\pi$; $0 \le r \le 1$

$$\Rightarrow I = \int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{2\pi} d\varphi \int_{0}^{1} r \cdot \cos\theta \cdot r^{2} \sin\theta \cdot dr = \frac{\pi}{8}$$

$$= > \text{Đáp án C}$$

5. Tích phân đường

- 5.1 Tích phân đường loại 1
- 5.2 Tích phân đường loại 2

Phương pháp tính tích phân đường loại 1

• Tích phân đường loại 1 của hàm f(x,y) trên $AB \subset \mathbb{R}^2$ có dạng:

$$I = \int_{AB} f(x, y) dl$$

• Tích phân đường loại 1 của hàm f(x,y,z) trên $AB \subset R^3$ có dạng:

$$I = \int_{AB} f(x, y, z) dl$$

Dạng 1: Cung AB có phương trình tham số

• Nếu AB: x = x(t), y = y(t), $(a \le t \le b)$ thì

$$\int_{AB} f(x, y) dl = \int_{a}^{b} f(x(t), y(t)) . \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt$$

• Nếu AB: x = x(t), y = y(t), z = z(t), $(a \le t \le b)$ thì

$$\int_{AB} f(x, y, z) dl = \int_{a}^{b} f(x(t), y(t), z(t)) \cdot \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt$$

Ví dụ 1: Tính tích phân $I = \int (x - y) dl$ trong đó AB là đoạn thẳng nối điểm

A(0;2) và điểm B(-2;-3).

$$A. \frac{3\sqrt{27}}{2} \qquad B. \frac{-\sqrt{33}}{2} \qquad C. \frac{\sqrt{11}}{2} \qquad D. \frac{-\sqrt{29}}{2} \qquad \Rightarrow \begin{cases} B(x,y) \in d \Leftrightarrow \overrightarrow{AB} = t\overrightarrow{u} \Leftrightarrow \begin{cases} x - x_0 = at \\ y - y_0 = bt \end{cases} \\ \Leftrightarrow \begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}, a^2 + b^2 \neq 0, t \in \mathbb{R} \end{cases}$$

Giải. Ta có
$$\overrightarrow{AB} = (-2; -5) \Rightarrow pttsAB :$$

$$\begin{cases} x = -2t \\ y = 2 - 5t \end{cases}$$

$$\begin{cases} x = -2t \\ y = 2 - 5t \end{cases}$$

$$\begin{cases} f(x, y)dl = \int_{a}^{b} f(x(t), y(t)) \cdot \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt \end{cases}$$

Phương trình tham số của đường thẳng

- Phương trình tham số của đường thẳng đi qua điểm A(x $_0$; y $_0$) nhận $\overrightarrow{u}(a,b)$ làm vecto chỉ

$$egin{aligned} B\left(x,y
ight) \in d \Leftrightarrow \overrightarrow{AB} = t \overrightarrow{u} \Leftrightarrow egin{cases} x-x_0 = at \ y-y_0 = bt \end{cases} \ \Leftrightarrow egin{cases} x = x_0 + at \ y = y_0 + bt \end{cases}, a^2 + b^2
eq 0, t \in \mathbb{R} \end{aligned}$$

$$\int_{AB} f(x, y) dl = \int_{a}^{b} f(x(t), y(t)) . \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt$$

Xác định cận t:
$$\begin{cases} x_A = 0 \\ x_B = -2 \end{cases} \Rightarrow \begin{cases} -2t_A = 0 \\ -2t_B = -2 \end{cases} \Rightarrow \begin{cases} t_A = 0 \\ t_B = 1 \end{cases} \Rightarrow 0 \le t \le 1$$

$$V_{1}^{2}y = \int_{0}^{1} [-2t - (2-5t)] \cdot \sqrt{[(-2t)']^{2} + [(2-5t)']^{2}} dt = \sqrt{29} \int_{0}^{1} (3t-2) dt = -\frac{\sqrt{29}}{2} \implies D_{100}^{2} \text{ in } D$$

Ví dụ 2: Tính tích phân $I = \int xydl$ với C là đường cong có phương

trình:
$$x = \sin t$$
, $y = \cos t$, $z = 2t$, $0 \le t \le \frac{\pi}{3}$.

A.
$$\frac{3\sqrt{5}}{8}$$
 B. $\frac{3\sqrt{5}}{7}$ C. $\frac{5\sqrt{3}}{6}$ D. $\frac{21\sqrt{7}}{6}$

B.
$$\frac{3\sqrt{5}}{7}$$

C.
$$\frac{5\sqrt{3}}{6}$$

D.
$$\frac{21\sqrt{7}}{6}$$

Giải. Ta có vi phân cung:
$$\int_{AB} f(x, y, z) dl = \int_{a}^{b} f(x(t), y(t), z(t)) \cdot \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt$$

$$dl = \sqrt{[(\sin t)']^2 + [(\cos t)']^2 + [(2t)']^2} dt = \sqrt{5}dt$$

Vậy
$$I = \sqrt{5} \int_{0}^{\frac{\pi}{3}} \sin t \cos t dt = \frac{3\sqrt{5}}{8} =$$
 Đáp án A

Dạng 2: Cung AB có phương trình x=x(y) hoặc y=y(x)

• Nếu AB có phương trình y = y(x), $(a \le x \le b)$ thì

$$\int_{AB} f(x, y) dl = \int_{a}^{b} f(x, y(x)) . \sqrt{1 + [y'(x)]^{2}} dx$$

• Nếu AB có phương trình x = x(y), $(a \le y \le b)$ thì

$$\int_{AB} f(x, y) dl = \int_{a}^{b} f(x(y), y) . \sqrt{1 + [x'(y)]^{2}} dx$$

Ví dụ 1: Tính tích phân $I = \int_{AB} 2x dl$, trong đó AB có phương trình $y = x^2 - 2$ nối đỉnh từ A(0;-2) đến B(-2;2).

A.
$$\frac{1-17\sqrt{5}}{6}$$
 B. $\frac{1+17\sqrt{5}}{6}$ C. $\frac{1-17\sqrt{3}}{6}$ D. $\frac{1-17\sqrt{7}}{6}$

Giải. Ta có: $x_A = 0, x_B = -2 \Rightarrow -2 \leq x \leq 0$

$$\int_{AB} f(x, y) dl = \int_a^b f(x, y(x)) . \sqrt{1+[y'(x)]^2} dx$$

$$dl = \sqrt{1+(y')^2} dx = \sqrt{1+\left[\left(x^2-2\right)'\right]^2} dx = \sqrt{1+4x^2} dx$$

Vậy $I = \int_{-2}^{0} 2x\sqrt{1+4x^2} dx = \frac{1-17\sqrt{17}}{6} =$ => Đáp án D

Ví dụ 2: Tính tích phân $I = \int_{C} y dl$, trong đó C là $OA: x = y^2$ và đoạn

AB: y = x - 2 v'oi O(0;0), A(4;2) v'a B(2;0).

A.
$$\frac{5\sqrt{17}+12\sqrt{2}}{12}$$
 B. $\frac{17\sqrt{17}+24\sqrt{2}-1}{12}$ C. $\frac{17\sqrt{17}+24\sqrt{2}-3}{12}$ D. $\frac{17\sqrt{17}-24\sqrt{2}+1}{12}$

Giải. Ta có:
$$I = \int_{OA} y dl + \int_{AB} y dl$$

$$= \int_{0}^{2} y \sqrt{1 + 4y^{2}} dy + \sqrt{2} \int_{2}^{4} (x - 2) dx$$

$$= \frac{17\sqrt{17} + 24\sqrt{2} - 1}{12} \implies \text{Đáp án B}$$

Dạng 3: Cung AB có phương trình tọa độ cực

• Nếu AB: $r = r(\varphi), (\alpha \le \varphi \le \beta)$ thì

$$\int_{AB} f(x, y) dl = \int_{\alpha}^{\beta} f(r \cos \varphi, r \sin \varphi) \sqrt{[r(\varphi)]^2 + [r'(\varphi)]^2} d\varphi$$

✓ Chú ý: Phương trình tham số của AB là:

$$x = r(\varphi)\cos\varphi, y = r(\varphi)\sin\varphi(\alpha \le \varphi \le \beta)$$

Ví dụ: Tính tích phân $I = \int \sqrt{x^2 + y^2} dl$, với C là đường tròn có phương trình $x^2 + y^2 - 4y = 0$

A. 16 B. 32 C. 35

D. 42

Giải. Đổi biến trong tọa độ cực $x = r \cos \varphi$, $y = r \sin \varphi$ ta được

(C):
$$r = 4\sin\varphi(0 \le \varphi \le \pi)$$
 và $\sqrt{x^2 + y^2} = r = 4\sin\varphi$

Vậy
$$I = \int_{0}^{\pi} 4\sin\varphi \cdot \sqrt{(4\sin\varphi)^2 + [(4\sin\varphi)']^2} d\varphi = 32$$

=> Đáp án B

 $\left| \int_{AB} f(x, y) dl = \int_{\alpha}^{\beta} f(r \cos \varphi, r \sin \varphi) \sqrt{[r(\varphi)]^2 + [r'(\varphi)]^2} d\varphi \right|$

106

Ứng dụng của tích phân đường loại 1

Độ dài của AB, kí hiệu là *l*, được tính theo công thức

$$l = \int_{C} dl$$

alai cua AB, ki niệu là
$$l$$
, được tinh theo cong thực
$$1. \int_{AB} dl = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

$$2. \int_{AB} dl = \int_{a}^{b} \sqrt{1 + [y'(x)]^2} dx$$

$$\int_{AB} dl = \int_{a}^{b} \sqrt{1 + [x'(y)]^2} dx$$

$$3. \int_{AB} dl = \int_{\alpha}^{\beta} \sqrt{[r(\phi)]^2 + [r'(\phi)]^2} d\phi$$

Ứng dụng của tích phân đường loại 1

Độ dài của AB, kí hiệu là *l*, được tính theo công thức

$$l = \int_{C} dl$$

$$\int_{AB} dl = \int_{\alpha}^{\beta} \sqrt{[r(\varphi)]^{2} + [r'(\varphi)]^{2}} d\varphi$$

Ví dụ: Tính độ dài AB :
$$r = 1 + \cos \varphi (0 \le \varphi \le \pi)$$

Giải. Ta có
$$l = \int_{AB}^{\pi} dl = \int_{0}^{\pi} \sqrt{[r(\varphi)]^{2} + [r'(\varphi)]^{2}} d\varphi$$
$$= \int_{0}^{\pi} \sqrt{(1 + \cos \varphi)^{2} + \sin^{2} \varphi} d\varphi = 2 \int_{0}^{\pi} \cos \frac{\varphi}{2} d\varphi = 4$$

Ứng dụng của tích phân đường loại 1

Ví dụ: Tính độ dài cung tròn $x^2 + y^2 = 4$ thỏa điều kiện $y \ge x$

A. π

 $\mathrm{B.}~3\pi$

C. 4π

D. 2π

Giải. Đặt
$$x = r \cos \varphi$$
, $y = r \sin \varphi$

Ta có
$$\frac{\pi}{4} \le \varphi \le \frac{5\pi}{4}$$
 và $r = 2$

$$l = \int_{C} dl = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \sqrt{[r(\varphi)]^2 + [r'(\varphi)]^2} d\varphi$$

$$= \int_{\pi}^{\frac{5\pi}{4}} \sqrt{2^2} d\varphi = 2\pi \implies \text{Dáp án D}$$

Phương pháp tính tích phân đường loại 2

• Tích phân đường loại 2 của hàm $\vec{F}(x, y) = (P(x, y), Q(x, y))$ trên $AB \subset \mathbb{R}^2$ có dạng:

$$I = \int_{AB} P(x, y) dx + Q(x, y) dy$$

✓ Chú ý:
$$\int_{AB} P(x, y)dx + Q(x, y)dy = -\int_{BA} P(x, y)dx + Q(x, y)dy$$

Phương pháp tính tích phân đường loại 2

• Nếu ∂D là biên của miền phẳng D thì tích phân hàm $\overrightarrow{F}(x,y)$ trên ∂D lấy theo chiều dương được ký hiệu là

$$I = \iint_{\partial D} P(x, y) dx + Q(x, y) dy$$

Ví dụ 1: Tính tích phân
$$I = \int dx + x dy$$
, trong đó AB có phương trình

$$x = 2t^2$$
, $y = 2 - 3t$ nối điểm A(0;2) và B(2;5)
$$= \int_{0}^{t_B} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)]dt$$

A. 1 B. 2 C. 3

D. 4

Giải. Ta có
$$\begin{cases} y_A = 2 - 3t_A \Rightarrow \begin{cases} 2 - 3t_A = 2 \\ 2 - 3t_B = 5 \end{cases} \Rightarrow \begin{cases} t_A = 0 \\ t_B = -1 \end{cases}$$

Vậy
$$I = \int_{0}^{-1} [(2t^2)' + 2t^2.(2 - 3t)']dt = \int_{0}^{-1} (4t - 6t^2)dt = 4 =>$$
Đáp án D

Ví dụ 2: Tính tích phân $I = \int y^2 dx + xy dy$ trong đó AB có phương trình

$$y = x^3 - 3x$$
 với điểm A(1;-2) và B(2;2)
$$\int_{\widehat{AB}} P(x,y)dx + Q(x,y)dy = \int_{x_A}^{x_B} [P(x,y(x)) + Q(x,y(x))y'(x)]dx$$

A.
$$\frac{103}{35}$$

B.
$$\frac{105}{33}$$

C.
$$\frac{104}{35}$$

A.
$$\frac{103}{35}$$
 B. $\frac{105}{33}$ C. $\frac{104}{35}$ D. $\frac{113}{33}$

Giải. Ta có AB:
$$y = x^3 - 3x$$
, $x_A = 1$, $x_B = 2$.
$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int_{y_A}^{y_B} \left[P(x(y),y).x'(y) + Q(x(y),y) \right] dy$$

$$I = \int_{1}^{2} \left[\left(x^{3} - 3x \right)^{2} + x \left(x^{3} - 3x \right) \left(x^{3} - 3x \right)' \right] dx$$
$$= \int_{1}^{2} \left(4x^{6} - 18x^{4} + 18x^{2} \right) dx = \frac{104}{35} =$$
 Dáp án C

Ví dụ 3: Tính tích phân $I = \iint_{\mathbb{C}} (x - y)dx + (x + y)dy$, trong đó C

là elip
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

A. $2ab^2$ B. $2a^2b\pi$

C. $2ab\pi$

D. $ab\pi$

Giải. Ta có $x = a \cos t$, $y = b \sin t$, $0 \le t \le 2\pi$.

$$I = \int_0^{2\pi} \left[(a\cos t - b\sin t)(a\cos t)' + (a\cos t + b\sin t)(b\sin t)' \right] dt$$

$$= \int_0^{2\pi} \left[\left(b^2 - a^2 \right) \sin t \cos t + ab \right] dt = 2ab\pi \implies \text{Dáp án C}$$

Ví dụ 3: Cho đường cong kín C gồm đoạn thẳng OA và OA : $y = \sqrt{x}$,

với O(0;0) và A(4;2). Tính
$$I = \iint_C dx + 4xy dy$$

A.
$$\frac{16}{3}$$
 B. $\frac{20}{7}$

B.
$$\frac{20}{7}$$

C.
$$\frac{11}{6}$$

D.
$$\frac{19}{5}$$

Giải. Ta có $C = OA \cup AO$, trong đó:

$$OA: y = \frac{x}{2}, x_O = 0, x_A = 4$$

$$AO: y = \sqrt{x}, x_A = 4, x_O = 0$$

Ví dụ 3: Cho đường cong kín C gồm đoạn thẳng OA và OA : $y = \sqrt{x}$,

với O(0;0) và A(4;2). Tính
$$I = \iint_C dx + 4xy dy$$

$$OA: y = \frac{x}{2}, x_O = 0, x_A = 4$$

$$AO: y = \sqrt{x}, x_A = 4, x_O = 0$$

Vậy
$$I = \int_{OA} dx + 4xy dy + \int_{AO} dx + 4xy dy$$

$$= \int_{0}^{4} \left(1 + 4x \cdot \frac{x}{2} \cdot \frac{1}{2} \right) dx + \int_{4}^{0} \left(1 + 4x \sqrt{x} \cdot \frac{1}{2\sqrt{x}} \right) dx = \frac{16}{3} =$$
 Đáp án A

6. Vi phân

- 6.1 Phương trình vi phân cấp 1
- 6.2 Phương trình vi phân cấp 2 hệ số hằng

Định nghĩa: Phương trình vi phân cấp 1 có dạng tổng quát:

$$F(x, y, y') = 0$$
 (*)

- Nghiệm của (*) là hàm số y=y(x) thoả (*).
- Nghiệm y=y(x) của (*) có chứa hằng số C được gọi là nghiệm tổng quát.
- Khi thế điều kiện đầu $x=x_0$, $y=y_0$ vào nghiệm tổng quát ta được giá trị C_0 cụ thể và nghiệm của (*) lúc này gọi là **nghiệm riêng**.
- Nghiệm không nhận được từ nghiệm tổng quát gọi là nghiệm kỳ dị.

Các dạng:

Phương trình vi phân cấp 1 có biến phân ly:

$$f(x)dx + g(y)dy = 0$$

Phương pháp giải: lấy tích phân từng phần như sau:

$$\int f(x)dx + \int g(y)dy = C$$

$$\Leftrightarrow F(x) + G(y) = C$$

Ví dụ:
$$\frac{ydy}{1+y^2} + \frac{xdx}{1+x^2} = 0$$
. Tìm nghiệm tổng quát

A.
$$(1 + 2y)$$
. $(1 + 2x) = C$

B.
$$(1 + 2y) \cdot (1 + x^2) = C$$

C.
$$(1 + y^2)$$
. $(1 + 2x) = C$

D.
$$(1 + y^2) \cdot (1 + x^2) = C$$

Ví dụ:
$$\frac{ydy}{1+y^2} + \frac{xdx}{1+x^2} = 0$$
. Tìm nghiệm tổng quát

Bài làm

Lấy tích phân 2 vế:
$$\int \frac{ydy}{1+y^2} + \int \frac{xdx}{1+x^2} = C_1$$

$$\Leftrightarrow \frac{1}{2}\ln(1+y^2) + \frac{1}{2}\ln(1+x^2) = C_1$$

$$\Leftrightarrow \ln[(1+y^2).(1+x^2)] = 2.C_1$$

$$\Leftrightarrow (1+y^2).(1+x^2) = e^{2.C_1} = C \implies \text{Đáp án D}$$

Dạng: Phương trình vi phân tách biến dạng 1:

Phương trình vi phân tách biến có dạng:

$$f_1(x)g_1(y)dx + f_2(x)g_2(y)dy = 0$$
 (*)

Đưa về dạng 1 như sau:

- Nếu $g_1(y) = 0$ tại y = b thì y = b là nghiệm riêng của (*).
- Nếu $f_2(x) = 0$ tại x = a thì x = a là nghiệm riêng của (*).
- Nếu $g_1(y).f_2(x) \neq 0$ thì chia hai vế (*) cho $g_1(y).f_2(x)$ thì ta được:

$$\frac{f_1(x)}{f_2(x)}dx + \frac{g_2(y)}{g_1(y)}dy = 0$$

là phương trình vi phân tách biến.

Ví dụ: Giải phương trình $(x^2+1)y'+3x(y-1)=0$ (*)

A.
$$|y-1|$$
. $(x^2+1)^{\frac{-3}{2}} = C$

B.
$$|y| \cdot (x^2 + 1)^{\frac{1}{2}} = C$$

C.
$$|3xy - 1| \cdot (x^2 + 1)^{\frac{3}{2}} = C$$

D.
$$y = 1 \pm \frac{C}{(x^2 + 1)^{\frac{3}{2}}}$$

Ví dụ: Giải phương trình
$$(x^2+1)y'+3x(y-1)=0$$
 (*)

Bài làm

Nhận thấy: y = 1 là một nghiệm của phương trình.

• Phương trình (*)
$$\Leftrightarrow$$
 $(x^2 + 1) \cdot \frac{dy}{dx} + 3x(y - 1) = 0$
 \Leftrightarrow $(x^2 + 1) \cdot dy + 3x(y - 1) = 0$

Chia 2 vế cho
$$(x^2+1).(y-1)$$
 ta được: $\frac{dy}{y-1} + \frac{3x.dx}{x^2+1} = 0$

Lấy tích phân 2 vế, ta được:

$$\Leftrightarrow \int \frac{dy}{y-1} + \int \frac{3x \cdot dx}{x^2 + 1} = C \Leftrightarrow \ln|y - 1| + \frac{3}{2}\ln(x^2 + 1) = C_1$$

$$\Leftrightarrow \ln\left[|y-1|.(x^2+1)^{\frac{3}{2}}\right] = C_1 \Leftrightarrow |y-1|.(x^2+1)^{\frac{3}{2}} = e^{C_1} = C$$

$$\Leftrightarrow y = 1 \pm \frac{C}{(x^2+1)^{\frac{3}{2}}} \Longrightarrow \text{Đáp án D}$$

Dạng: Phương trình vi phân tách biến dạng 2:

Phương trình vi phân có dạng:

$$y' = f(ax + by + c), a \neq 0, b \neq 0$$

Cách giải: Đặt
$$u = ax + by + c \Rightarrow u' = a + by' \Rightarrow u' = a + b.f(u)$$

- Nếu a+b.f(u)=0, giải tìm u. Kiểm tra có phải nghiệm.
- Nếu $a+b.f(u) \neq 0$, chia hai vế cho a+b.f(u). Ta được phương trình tách biến: $\frac{du}{a+b.f(u)} = dx$

Ví dụ: Giải phương trình
$$y' = \frac{1-2x-3y}{4x+6y-5}$$

A.
$$2-3x-6y-9\ln|7-2x-3y| = C$$

B.
$$3x-y-5\ln|4x+6y-5| = C$$

C.
$$2+9\ln|2x-3y| = C$$

D.
$$1-2x-3\ln|2x+3y| = C$$

Ví dụ: Giải phương trình
$$y' = \frac{1-2x-3y}{4x+6y-5}$$

Bài làm

$$\Rightarrow \frac{2u+3}{u+6}du + dx = 0 \text{ là phương trình vi phân tách biến.}$$

Lấy tích phân 2 vế:

$$\int \frac{2u+3}{u+6} du + \int dx = C$$

$$\Leftrightarrow \int \frac{2u+12-9}{u+6} du + \int dx = C$$

$$\Leftrightarrow \int \left(2 - \frac{9}{u+6}\right) du + \int dx = C$$

$$\Leftrightarrow 2u - 9\ln|u+6| + x = C$$

$$\Leftrightarrow 2u - 9\ln|u+6| + x = C$$

$$\Leftrightarrow 2u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

$$\Leftrightarrow 2u - 3u - 6u - 9u + 6| + x = C$$

• Định nghĩa: Phương trình vi phân toàn phần có dạng:

$$du(x,y) = P(x,y)dx + Q(x,y)dy$$

Định lý:

Phương trình vi phân P(x,y)dx + Q(x,y)dy = 0 toàn phần $\Leftrightarrow Q_x' = P_y'$

Phương pháp giải Phương trình vi phân toàn phần:

Nếu P(x,y) và Q(x,y) liên tục tại $M_0(x_0, y_0)$ thì

$$u(x,y) = \int_{x_0}^{x} P(x,y_0) dx + \int_{y_0}^{y} Q(x,y)$$

Hoặc:
$$u(x,y) = \int_{x_0}^{x} P(x,y)dx + \int_{y_0}^{y} Q(x_0,y)$$

Ví dụ: Giải phương trình vi phân

$$(2x + y \cdot e^{xy})dx + (1 + x \cdot e^{xy})dy = 0 \quad (*)$$

A.
$$2x + y + e^{xy} = C$$

B.
$$x^2 + y + e^{xy} = C$$

C.
$$x^2 + y + e^{y^2} = C$$

D.
$$x^2 + y + e^{2xy} = C$$

Ví dụ: Giải phương trình vi phân

$$(2x + y.e^{xy})dx + (1 + x.e^{xy})dy = 0$$
 (*)

Bài làm

Xét (*) có phải phương trình vi phân toàn phần:

$$\begin{cases} P = 2x + y. e^{xy} \Rightarrow P_y' = e^{xy} + xy. e^{xy} \\ Q = 1 + x. e^{xy} \Rightarrow Q_x' = e^{xy} + xy. e^{xy} \end{cases} \Rightarrow P_y' = Q_x'$$

Vậy (*) là phương trình vi phân toàn phần.

Ta có:
$$u(x,y) = \int_0^x 2x dx + \int_0^y (1 + x \cdot e^{xy}) dy$$

= $x^2 |_0^x + (y + e^{xy})|_0^y$
= $x^2 + y + e^{xy} - 1$

Vậy nghiệm tổng quát của phương trình (*) có dạng:

$$x^2 + y + e^{xy} = C$$

=> Đáp án B

6.1.3 PTVP đẳng cấp

Dạng:
$$y' = f\left(\frac{y}{x}\right)$$
 (*)

Phương pháp giải:

Đặt:
$$u = \frac{y}{x} \Rightarrow y = xu \Rightarrow y' = u + x.u'$$

Biến đổi (*) ta được: $u + x \cdot u' = f(u) \Rightarrow x \cdot u' = f(u) - u$ (**)

- Nếu f(u) u = 0 thì giải phương trình này ta có các nghiệm riêng.
- Nếu $f(u) u \neq 0$ biến đổi (**) ta được phương trình vi phân tách biế

$$\frac{du}{f(u) - u} = \frac{dx}{x}$$

6.1.3 PTVP đẳng cấp

Ví dụ: Giải phương trình sau : $y' = \frac{y}{x} - \frac{y^2}{x^2}$ (*)

$$A. \ y = \frac{x}{\ln|x^2| + C}$$

$$B. \ \ y = \frac{x^2}{\ln|x| + C}$$

$$C. \ \ y = \frac{x}{\ln|x| + C}$$

D.
$$y = \frac{x}{\ln|x|}$$

6.1.3 PTVP đẳng cấp

Ví dụ: Giải phương trình sau : $y' = \frac{y}{x} - \frac{y^2}{x^2}$ (*)

Bài làm

Đặt:
$$u = \frac{y}{x} \Rightarrow y = xu \Rightarrow y' = u + x.u'$$
 (**)

Suy ra: (*) $y' = u - u^2$

Cho (*) = (**)
$$\Rightarrow u - u^2 = u + x \cdot u' \Leftrightarrow \frac{du}{-u^2} = \frac{dx}{x}$$

Lấy tích phân 2 vế:
$$\frac{1}{u} = \ln|x| + C \Leftrightarrow \frac{x}{y} = \ln|x| \Rightarrow y = \frac{x}{\ln|x| + C}$$

6.1.4 PTVP tuyến tính đẳng cấp 1

Định nghĩa:

Phương trình vi phân tuyến tính cấp 1 có dạng: y' + p(x)y = q(x) trong đó p(x), q(x) là các hàm liên tục.

Phương pháp giải:

• B1: Tìm biểu thức: $A(x) = e^{-\int p(x)dx}$

• B2: Tìm biểu thức:
$$B(x) = \int \frac{q(x)}{A(x)} dx$$

• B3: Nghiệm tổng quát là: y = A(x)[B(x) + C]

6.1.4 PTVP tuyến tính đẳng cấp 1

Ví dụ: Giải phương trình vi phân $x.y' + y = 3x^2$ thỏa y(1) = 1.

A.
$$y = 2x^3$$

B.
$$y = \frac{2}{3}x$$

C.
$$y = x^3$$

D.
$$y = x^2$$

6.1.4 PTVP tuyến tính đẳng cấp 1

Ví dụ: Giải phương trình vi phân x. $y' + y = 3x^2$ thỏa y(1) = 1.

Bài làm

Đưa phương trình trên về dạng phương trình vi phân tuyến tính cấp 1: Chia 2 vế cho x: $y' + \frac{y}{x} = 3x$

Ta có:
$$p(x) = \frac{1}{x} \Rightarrow A(x) = e^{-\int \frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x}$$

 $q(x) = 3x \Rightarrow B(x) = \int \frac{q(x)}{A(x)} dx \int 3x^2 = x^3$

Nghiệm tổng quát: $y = \frac{1}{x}[x^3 + C]$ có y(1) = 1 nên ta được C = 0 $\Rightarrow y = x^2 =$ Đáp án D

6.1.5 Phương trình Bernoulli

Dang:
$$y' + p(x). y = q(x). y^{\alpha}$$

Trong $\overline{do} \ \alpha \in \mathbb{R} \setminus \{0,1\}, \overline{p(x)}, \overline{q(x)}$ là các hàm liên tục.

Phương pháp giải:

- Với y=0 thoả mãn phương trình trên là nghiệm.
- Với $y \neq 0$, chia hai vế phương trình cho y°: $y' \cdot y^{-\alpha} + p(x) \cdot y^{1-\alpha} = q(x)$

Đặt
$$z = y^{1-\alpha} \Rightarrow z' = (1-\alpha).y^{-\alpha}.y'_1$$

Thay vào phương trình, ta được: $\frac{1}{1-\alpha}z'+p(x)$. z=q(x)

Hay
$$z' + (1 - \alpha) \cdot p(x) \cdot z = (1 - \alpha) \cdot q(x)$$

Là phương trình tuyến tính cấp 1 với x là biến độc lập, z là hàm phải tìm.

6.1.5 Phương trình Bernoulli

Ví dụ: Giải phương trình vi phân: $y' + \frac{1}{x}y = x \cdot y^2$

$$A. y = \frac{1}{C - x}$$

$$B. y = \frac{1}{x^2(C-x)}$$

C.
$$y = \frac{1}{xC + 2x^2}$$

$$D. y = \frac{1}{x(C-x)}$$

6.1.5 Phương trình Bernoulli

Ví dụ: Giải phương trình vi phân: $y' + \frac{1}{x}y = x \cdot y^2$ Bài làm

Nhận thấy y = 0 là nghiệm của phương trình.

Với $y \neq 0$, chia hai vế phương trình cho y² ta được: $y' \cdot y^{-2} + \frac{1}{x}y^{-1} = x$ Đặt $z_1 = y^{-1} \Rightarrow z' = \frac{1}{1}y^{-2} \cdot y'$ thay vào phương trình ta được:

$$-z' + \frac{1}{x}z = x \Rightarrow z' - \frac{1}{x}z = -x$$
là phương trình vi phân tuyến tính cấp 1.

$$A(x) = e^{-\int -\frac{1}{x} dx} = e^{\ln x} = x$$
; $B(x) = \int \frac{-x}{x} dx = -x$

$$\Rightarrow z = x(C - x) \Rightarrow y = \frac{1}{x(C - x)} = \frac{1}{xC - x^2} = \text{Dáp án D}$$

6.2.1 PTVPTT cấp 2 thuần nhất hệ số hằng

Định nghĩa:

Là phương trình có dạng: y'' + ay' + by = f(x)Phương trình thuần nhất liên kết: y'' + ay' + by = 0

Cách giải:

Gọi phương trình đặc trưng: $k^2 + ak + b = 0$ (*)

- **B1:** Giải phương trình (*).
- B2: Biện luận dựa vào nghiệm của phương trình đặc trưng

6.2.1 PTVPTT cấp 2 thuần nhất hệ số hằng

- B2: Biện luận dựa vào nghiệm của phương trình đặc trưng:
- + Nếu phương trình đặc trưng có hai nghiệm thực khác nhau k_1 , k_2 thì phương trình vi phân có nghiệm tổng quát là:

$$y(x) = C_1 e^{k_1 x} + C_2 e^{k_2 x}$$

+ Nếu phương trình đặc trưng có nghiệm thực kép là k_0 thì Phương trình vi phân có nghiệm tổng quát là:

$$y(x) = C_1 e^{k_0 x} + C_2 x e^{k_0 x}$$

+ Nếu phương trình đặc trưng có nghiệm phức là $\alpha \pm i\beta$, thì phương trình vi phân có nghiệm tổng quát là:

$$y(x) = e^{\alpha x} [C_1 \cos \beta x + C_2 \sin \beta x]$$

(với
$$C_1, C_2 \in R$$
)

Ví dụ: Giải bài toán giá trị đầu sau:
$$\begin{cases} y(0) = 1 \\ y'(0) = -\frac{1}{2} \\ y''(x) + y'(x) = 0 \end{cases}$$

A.
$$\frac{1}{2} + \frac{1}{2}e^x$$

B.
$$\frac{1}{2} - \frac{1}{2}e^{-x}$$

C.
$$\frac{1}{2} + \frac{1}{2}e^{-x}$$

D.
$$\frac{1}{2} - \frac{1}{2}e^x$$

Ví dụ: Giải bài toán giá trị đầu sau:
$$\begin{cases} y(0) = 1 \\ y'(0) = -\frac{1}{2} \\ y''(x) + y'(x) = 0 \end{cases}$$

Bài làm

- Phương trình đặc trưng: r² + r = 0
- \Rightarrow Có hai nghiệm thực phân biệt $r_1 = -1$, $r_2 = 0$.
- Nghiệm tổng quát là: $y(x) = C_1 + C_2 e^{-x}$

Có y(0) = 1, ta thu được
$$C_1 + C_2 = 1$$

Lấy đạo hàm của y:
$$y'(x) = -C_2e^{-x}$$

Lấy đạo hàm của y:
$$y'(x) = -C_2 e^{-x}$$

Có $y'(0) = -\frac{1}{2} = > C_2 = \frac{1}{2}$ và $C_1 = \frac{1}{2} \Rightarrow y(x) = \frac{1}{2} + \frac{1}{2}e^{-x} = >$ Đáp án C

Dang:
$$a.y''(x) + b.y'(x) + c.y(x) = f(x)$$

Cách giải:

• **B1:** Giải phương trình thuần nhất:

$$a.y''(x) + b.y'(x) + c.y(x) = 0$$

 B2: Tìm một nghiệm riêng y_r của phương trình không thuần nhất. Nếu

hàm f là một tổng, tức là $f = f_1 + \cdots + f_n$, thì ta tìm nghiệm riêng tương ứng $y_{r,1}, \ldots, y_{r,n}$ cho từng hàm thành phần f_1, \ldots, f_n , khi đó:

$$y_r = y_{r,1} + \cdots + y_{r,n}$$

- **B3:** Bây giờ nếu hàm f chỉ có một thành phần thì:
- (a) Nếu f là một đa thức bậc n thì y_r là một đa thức bậc n, có dạng $y_r(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, với các a_i là hằng số.
- (b) Nếu $f(x) = Ce^{kx}$ với C và k là hằng số, thì $y_r(x) = a.e^{kx}$, với a là hằng số.
- (c) Nếu $f(x) = C.sin\alpha x$ hoặc $f(x) = C.cos\alpha x$ với C là hằng số, thì $y_r(x) = a.sin\alpha x + b.cos\alpha x$, với a và b là hằng số.
- **B4:** So sánh y_r với y_0 . Nếu có thành phần trong y_r xuất hiện trong y_0 thì phải chỉnh y_r bằng cách nhân thêm x^2 hoặc x vào y_r để y_r và y_0 không còn thành phần chung.

• **B5:** Thế y_r vào phương trình không thuần nhất tương ứng để giải tìm các hệ số chưa biết.

• **B6:** Nghiệm tổng quát của phương trình không thuần nhất là:

$$y = y_0 + y_r$$

Ví dụ: Tìm nghiệm tổng quát của phương trình vi phân

$$y'' + y = e^{2x}$$

A.
$$C_1 \cos x + C_2 \sin x + \frac{1}{5}e^{2x}$$

B.
$$C_1 \sin x + C_2 \cos x + \frac{1}{4}e^{2x}$$

C.
$$C_1 \cos x + C_2 \sin x + \frac{1}{5}e^x$$

D.
$$C_1 \cos x + C_2 \sin x + e^{2x}$$

Ví dụ: Tìm nghiệm tổng quát của phương trình vi phân

$$y'' + y = e^{2x}$$

Bài làm

Giải Phương trình thuần nhất tương ứng: y "+ y = 0

Ta được nghiệm tổng quát là: $y_0(x) = C_1 \cos x + C_2 \sin x$

Vế phải của phương trình không thuần nhất là hàm e^{2x} , vậy nghiệm y_r có dạng: $y_r(x) = a.e^{2x}$ và ta thấy không có thành phần nào của y_r xuất hiện trong y_0 .

Ta có:
$$\begin{cases} y'(x) = 2a \cdot e^{2x} \\ y''(x) = 4a \cdot e^{2x} \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu ta được $5a.e^{2x}=e^{2x}$, do đó $a=\frac{1}{5}$, và $y_r(x)=\frac{1}{5}e^{2x}$

Vậy nghiệm tổng quát của phương trình không thuần nhất là:

$$y(x) = y_0(x) + y_r(x) = C_1 \cos x + C_2 \sin x + \frac{1}{5}e^{2x}$$

VD: Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y' - 12y = e^{4x}$$

A.
$$C_1 e^{4x} + C_2 e^{-3x} + \frac{1}{7} x. e^{4x}$$

B.
$$C_1 e^{4x} + C_2 e^{-3x} + \frac{1}{7} e^{4x}$$

C.
$$C_1 e^{4x} + C_2 e^{-3x} + \frac{1}{7} x. e^{3x}$$

D.
$$C_1 e^{4x} + C_2 e^{-3x} + \frac{e}{7}x$$

Ví dụ: Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y' - 12y = e^{4x}$$

Bài làm

Giải phương trình thuần nhất tương ứng: y'' - y' - 12y = 0

Ta có được nghiệm: $y_0(x) = C_1 e^{4x} + C_2 e^{-3x}$

Vế phải của phương trình không thuần nhất là hàm e^{4x} , vậy nghiệm y_r có dạng: $y_r(x) = a.e^{4x}$

Nhận thấy thành phần e^{4x} của y_r cũng xuất hiện trong y_0 , do đó theo phương pháp ta phải nhân thêm với y_r thừa số x, và nghiệm y_r thực ra có dạng: $y_r(x) = a.x.e^{4x}$

Bây giờ thì y_r không còn thành phần chung với y_0 .

Ta có:
$$\begin{cases} y'(x) = a.e^{4x} + 4.a.x.e^{4x} \\ y''(x) = 8.a.e^{4x} + 16.a.x.e^{4x} \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu, ta được:

8.
$$a \cdot e^{4x} + 16$$
. $a \cdot x \cdot e^{4x} - a \cdot e^{4x} - 4$. $a \cdot x \cdot e^{4x} - 12$. $a \cdot x \cdot e^{4x} = e^{4x}$

$$\Rightarrow a = \frac{1}{7} \Rightarrow y_r(x) = \frac{1}{7} x \cdot e^{4x}$$

Vậy nghiệm tổng quát của phương trình không thuần nhất là:

$$y(x) = y_0(x) + y_r(x) = C_1 e^{4x} + C_2 e^{-3x} + \frac{1}{7} x \cdot e^{4x}$$
 => Đáp án A

Tìm nghiệm riêng của phương trình không thuần nhất:

• **Trường hợp 1:** $f(x) = e^{\alpha x}.P_n(x),P_n(x)$ là đa thức bậc n, α là hằng số. Ta so sánh α với các nghiệm k_1 , k_2 của phương trình đặc trưng:

$$k^2 + p.k + q = 0$$

a <u>không là nghiệm</u> của phương trình đặc trung.

Nghiệm riêng y có dạng: $Y = e^{\alpha x}.Q_n(x)$

■ a là <u>nghiệm đơn</u> của phương trình đặc trưng.

Nghiệm riêng y có dạng: $Y = x.e^{\alpha x}.Q_n(x)$

■ a là <u>nghiệm kép</u> của phương trình đặc trưng.

Nghiệm riêng Y có dạng: $Y = x^2 e^{\alpha x} Q_n(x)$

 $Q_n(x)$ là đa thức cùng bậc với $P_n(x)$ có n+1 hệ số mà ta cần phải xác định bằng Phương pháp hệ số bất định.

Tìm nghiệm riêng của phương trình không thuần nhất

• Trường hợp 2: $f(x)=e^{\alpha x}[P_n(x)cos\beta x+Q_m(x)sin\beta x]$, α , $\beta \neq 0$ là hằng số.

Ta tìm nghiệm riêng Y của Phương trình không thuần nhất theo các trường hợp sau:

α±βi không là nghiệm phương trình đặc trưng.

Nghiệm riêng Y có dạng: $Y = e^{\alpha x} [U_r(x).cos\beta x + V_r(x).sin\beta x]$

α±βi là nghiệm phương trình đặc trưng.

Nghiệm riêng Y có dạng: $Y = x.e^{\alpha x}[U_r(x).cos\beta x + V_r(x).sin\beta x]$

Trong đó, $r = max\{m,n\}$, $U_r(x)$, $V_r(x)$ là các đa thức bậc r.

BAN HỌC TẬP KHOA CÔNG NGHỆ PHẦN MỀM CHUỐI TRAINING CUỐI HỌC KÌ 1 NĂM HỌC 2021 - 202

CẢM ƠN CÁC BẠN ĐÃ THEO DÕI. CHÚC CÁC BẠN CÓ KẾT QUẢ THI THẬT TỐT!

Ban học tập

Khoa Công Nghệ Phần Mềm Trường ĐH Công Nghệ Thông Tin ĐHQG Hồ Chí Minh

Email / Group

bht.cnpm.uit@gmail.com fb.com/groups/bht.cnpm.uit