COMPLETELY RANDOMIZED DESIGNS

Chapter 3

LEARNING OBJECTIVES

- **Explain** what complete randomization means
- ■Perform randomization in R (lab 7)
- State assumptions that make this design appropriate
- Define experimental and observational error
- Give hypothetical examples for sources of variation contributing to the two types of error

COMPLETELY RANDOMIZED DESIGNS (CRD)

- Every experimental design starts with a prerandomized design plan
- CRD plan is most basic:
 - 1. List out all possible treatment levels (could come from one or more treatment factors)
 - 2. Decide number of replicates per treatment level
- Given CRD plan, assignment of treatments to EUs is done completely at random
 - Randomization is valid if it preserves the desired replication

BREAD RISING EXAMPLE RANDOMIZATION

- **■Treatment factor: time to rise (3 levels)**
 - Assign levels 1, 2, and 3 to r_1 , r_2 , and r_3 EUs $(r_1+r_2+r_3=N)$
- **Example:** N=12 loaf pans with $r_1 = r_2 = r_3 = 4$

EU												
Trt	1	1	1	1	2	2	2	2	3	3	3	3
Trt												
Trt	2	2	2	3	1	2	3	1	1	3	1	3

- Randomization procedure is valid is every permutation of treatment labels is equally likely
- NOT THE SAME AS SAYING EVERY EU HAS SAME CHANCE TO BE ASSIGNED A GIVEN TREATMENT

INCORRECT RANDOMIZATION SCHEMES

- Examples of the wrong way to randomize:
 - 1. For each EU, randomly generate number from {1,2,3}
 - 2. Start with EU 1 and randomly generate number from {1,2,3}, continue to other EUs until desired replication is met
- Possible designs under (1) and (2)

Randomize Scheme	EU	1	2	3	4	5	6	7	8	9	10	11	12
1	Trt	1	2	2	1	1	3	3	3	2	2	1	1
1	Trt	1	1	1	1	1	1	1	1	1	1	1	1
2	Trt	1	2	3	3	2	1	1	2	3	3	2	1
2	Trt	1	1	1	1	2	2	2	2	3	3	3	3

INCORRECT RANDOMIZATION SCHEMES

Scheme 2 is invalid because the two assignments have different probabilities of occurring

Randomize Scheme	EU	1	2	3	4	5	6	7	8	9	10	11	12
2	Trt	1	2	3	3	2	1	1	2	3	3	2	1

Each have prob 1/3

Prob 1/2 Prob 1

$$\frac{1}{3}^{10} \times \frac{1}{2} \times 1 = \frac{1}{118098}$$

Randomize Scheme	EU	1	2	3	4	5	6	7	8	9	10	11	12
2	Trt	1	1	1	1	2	2	2	2	3	3	3	3

CORRECT RANDOMIZATION SCHEME

- Many ways to generate correct randomization
- Brute force: enumerate all possibilities and then randomly select one (impractical)
- Computer-generated randomization:
 - Create data set with EUs listed from 1 to N
 - 2. Generate random uniform number for each EU
 - 3. Sort EUs by random number
 - 4. Assign first r_1 to treatment 1, next r_2 to treatment 2, etc.
- Takeaway: random ordering of EUs is sufficient for valid randomization

COMMENTS ABOUT CRDS

- ■Treatments do not have to be equally replicated for a design to be called a CRD
- Called a CRD because of randomization procedure
- Recommended when EUs are fairly homogenous
- Nuisance factors are either
 - 1. Held constant
 - 2. Measured and adjusted for with analysis of covariance

EXPERIMENTAL ERROR

Experimental error: variation between responses subjected to the same treatment

- Sources of experimental error:
 - EU variability (present independently of treatment)
 - Treatment application error (inability to apply treatment exactly same)
 - EU state variability (changes in EU that occur during/after treatment separate from the treatment effect)
 - Environmental factors realized through state variability
- Does not have OU variability = observational error

OBSERVATIONAL ERROR

- ■Observational error: response variation between OUs within same EU
- Sources of observational error:
 - OU variability (present independently of treatment)
 - Measurement error (inability to accurately measure a constant)
 - Inconsistent within-EU treatment application (inability to apply a treatment uniformly across EU)
- Estimate experimental and observational variance separately only with multiple measurements per EU
- ■Won't consider these models right now, just average the multiple responses from same EU

VISUALIZING OU VS EU VARIABILITY

- $\blacksquare t = 3, r = 3, m = 2, m$ is # of measurements per EU
- Y_{ijk} = k-th measurement of j-th replicate of treatment i

i				Ĺ					2	2			3					
j	1 2		3		1	1		2		3		L	2		3			
k	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
				•		•						· · · · · · · · · · · · · · · · · · ·		•		•		

OU variability between measurements from same EU (variability for fixed values *i* and *j*)

VISUALIZING OU VS EU VARIABILITY

- $\blacksquare t = 3, r = 3, m = 2, m$ is # of measurements per EU
- Y_{ijk} = k-th measurement of j-th replicate of treatment i

i			 1					2	2			3					
j	1 2		3		1		2		3		1		2		3		
k	1 2 1 2		1	2	1	2	1	2	1	2	1	2	1	2	1	2	
			!														
				<u> </u>					·								

EU variability between average measurements across EU with same treatment (variability for fixed value *i*)

FERTILIZER AND TOMATO PLANTS

- ■Box et al (1978) describe experiment to determine whether a change in fertilizer mixture would change yield of tomato plants (# tomatoes from plant)
- ■11 tomato plants were planted in a single row, fertilizer A or B was randomly assigned to each plant

Container	1	2	3	4	5	6	7	8	9	10	11
Fertilizer	Α	Α	В	В	A	В	В	В	A	A	В

LEARNING OBJECTIVES

- Explain what complete randomization means
- ■Perform randomization in R (lab 7)
- State assumptions that make this design appropriate
- Define experimental and observational error
- Give hypothetical examples for sources of variation contributing to the two types of error