Лабораторна робота №9

Шифрувальна система на основі шифру простої заміни.

Mema:

Створити криптографічну систему на основі шифру простої заміни та дослідити її роботу.

Обладнання:

- персональний комп'ютер з встановленою операційною системою Windows
- будь-яка мова програмування.

Завдання:

- 1. Створити криптографічну систему на основі шифру простої заміни.
- 2. Перевірити її роботу.

Література:

- 1. М.Масленников. Практическая криптография. БХВ-Петербург,2003. 464с.
- 2. Б.Шнайер. Прикладная криптография. Протоколы, алгоритмы, исходные коды на языке С. 1996.
- 3. Галицкий А.В., Рябко С.Д., Шаньгин В.Ф. Защита информации в сети. М."ДМК", 2004. $-616~\rm c.$

Теоретичні відомості.

Під *криптографією* будемо розуміти область знань, що відноситься до методів і засобів перетворення повідомлень у незрозумілу для сторонніх осіб форму, а також перевірки істинності цих повідомлень.

Під *криптоаналітикою* будемо розуміти засоби і методи, спрямовані на подолання криптографічного захисту.

Сукупність криптографії та криптоаналітики називається криптологією.

Розшифровуванням будемо називати відновлення вихідного повідомлення при відомому ключі шифрування.

Дешифруванням будемо називати процес відновлення вихідного повідомлення при невідомому ключі шифрування.

Таким чином, ті, кому призначено шифроване повідомлення його *розшифровують*, а ті, хто перехоплює його, намагаються *дешифрувати*.

Розглянемо невеликий приклад. Припустимо, що відкрите повідомлення складається з символів алфавіту і пробілу. Нехай у нас ϵ таблиця 1, що зада ϵ відповідність між символами і числами від 0 до 32.

Таблиця 1. Таблиця заміни при шифруванні.

										1	1		1				
Α	Б	В	Γ	Д	Е	Ж	3	И	Й	К	Л	M	Н	O	Π	P	C
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17
T	У	Φ	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я				
18	19	20	21	22	23	24	25	26	27	28	29	30	31	32			

Шифрування методом простої заміни полягає у даному випадку в тому, що кожна літера повідомлення замінюється числом згідно з таблицею 1. Звичайно, найкращим є той варіант, коли набір чисел у таблиці генерується випадково і служить ключем для розшифровування повідомлення. У нашому простому прикладі повідомлення "МОЯ ПЕРВАЯ ШИФРОГРАММА" буде у зашифрованому на табл.1 вигляді мати вигляд: "12 14 31 32 15 05 16 02 00 31 32 24 08 20 16 14 03 16 00 12 12 00".

Для розшифровування повідомлення необхідно провести обернену заміну згідно з табл. 1. В цьому випадку другий рядок табл. 1 виступає в якості ключа, який використовується як для шифрування, так і для розшифровування повідомлення.

Системи шифрування, яка використовує один і той же ключ для шифрування і розшифровування повідомлень, називається *симетричною*. Якщо повідомлення шифрують за допомогою одного ключа, а розшифровують за допомогою іншого, така система носить назву *асиметричної*.

Дуже часто використовують кілька алгоритмів шифрування, наприклад, зсув на певну кількість знаків алфавіту, а потім застосування простої заміни за допомогою табл.1. Таке невелике ускладнення шифрування може призвести до значного ускладнення при його дешифровці, чого, в принципі, і прагнуть досягти при застосуванні криптографічних систем.

Практична частина.

- 1. Підгрупа розбивається на пари за бажанням.
- 2. Один з членів пари модифікує програму ЛР№1 так, щоби вона спочатку використовувала алгоритм Цезаря, так як у ЛР№1, а потім, при другому проході, виконувала просту заміну згідно з генерованою таблицею заміни типу табл. 1.
- 3. Система шифрування повинна задовольняти таким вимогам: а) читати відкритий текст повідомлення з текстового файлу; б) запитувати величину і напрям зсуву; в) генерувати таблицю простої заміни за допомогою генератора випадкових чисел; в) записувати зашифроване повідомлення, величину зсуву і таблицю заміни у текстовий файл для передачі.
- 4. Система розшифрування повинна задовольняти таким вимогам: а) читати з текстового файла зашифроване повідомлення разом з таблицею заміни і величиною зсуву; б) виводити розшифроване повідомлення у текстовий файл і на екран монітора.
- 5. Протокол дій та отримані результати включіть у звіт з лабораторної роботи.

Контрольні запитання.

- 1. Що називається криптографією? Для чого вона використовується?
- 2. Що називається криптоаналізом? Для чого він використовувається?
- 3. Що називається криптологією?
- 4. Яка різниця між розшифровкою і дешифровкою?
- 5. Охарактеризуйте шифр простої заміни. Які його переваги і недоліки?
- 6. Які Ви знаєте типи шифрів? Наведіть приклади.
- 7. Які системи шифрування називаються симетричними?
- 8. Які системи шифрування називаються асиметричними?
- 9. Як можна, на Вашу думку, модифікувати дану систему шифрування?