

Applied Matrix Theory - Math 551

Homework assignment 13

Created by Prof. Diego Maldonado and Prof. Virginia Naibo

Due date: Thursday, May 2nd at 5:00pm. Use the drop box adjacent to CW120. No late homework will be accepted.

Instructions: Unless indicated otherwise, you are strongly encouraged to use your calculator or Matlab to complete this assignment. Write legibly, use extra sheets of paper if needed, and **staple your work**. Also, try to do a two-sided printing of this assignment.

Honor pledge: "On my honor, as a student, I have neither given nor received unauthorized aid on this academic work."

Exercises. All answers must be justified by using matrix theory

1. A web of 6 sites is described by the adjacency matrix

B =

0	0	0	1	0	1
1	1	0	1	1	1
1	1	0	1	1	0
1	0	1	1	0	1
1	0	0	0	0	1
0	0	1	1	0	0

Use Google's PageRank algorithm to rate the importance of each site.

2. A web of 8 sites is described by the adjacency matrix $\frac{1}{2}$

B =

1	0	0	1	1	1	0	1
0	0	0	1	0	1	1	1
1	1	1	1	0	1	0	0
1	1	1	0	1	0	0	1
1	0	1	1	1	1	0	1
0	0	0	0	1	1	0	1
0	0	0	0	1	0	0	0
0	0	1	0	0	1	1	0

Use Google's PageRank algorithm to rate the importance of each site.

3. Find the singular value decomposition of the matrix ${\bf r}$

A =						
	2	2	1	2	3	2
	1	2	2	3	1	1
	0	2	1	2	0	3
	2	1	2	2	3	1

4. Consider the matrix

C =

3	1	1	3	1
2	0	3	3	4
2	2	1	2	1

and compare the singular values of C and the square roots of the eigenvalues of CC^T . What do you observe?

5. Consider the vectors

$$w_1 = \begin{bmatrix} 2 \\ -1 \\ -2 \\ 2 \\ 1 \end{bmatrix}$$
 and $w_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 2 \\ 4 \end{bmatrix}$.

Find an **orthonormal** basis for the subspace of all the vectors in \mathbb{R}^5 which are orthogonal to w_1 and w_2 .

6. Write a Matlab function that takes an $m \times n$ matrix A and determines whether the input matrix A is column stochastic or row stochastic. If it is column stochastic, the function outputs a message indicating so. Similarly for a row-stochastic input. If it is neither, the function must also display a message indicating so.

Note. Recall that a column-stochastic matrix is a *square matrix* with *all non-negative entries* and whose *columns add up to 1*. Similarly for row-stochastic matrices.

7.	True or	False -	Circle	the	right	one	(1)	point	each))
----	---------	---------	--------	-----	-------	-----	-----	-------	-------	---

T or **F**. The singular values of any given $m \times n$ matrix A, with $n \leq m$, are the square roots of the eigenvalues of A^TA .

T or **F**. If A and B are column-stochastic matrices, so is A + B.

T or **F**. If Q is a column-stochastic matrix, then $\lambda = 1$ is always an eigenvalue of Q.

T or **F**. Given any $n \times n$ matrix M, the matrices M and M^T share the same eigenvalues.

T or F. If P is a column-stochastic matrix, then P is orthogonal.

Points obtained in this assignment	(out of 16):
------------------------------------	--------------