2.1 Discrete Random Variables

Terms:

- Random Variable
- Support
- Discrete Random Variable
- Probability Mass Function
- Cumulative Distribution Function
- Expected Value (Expectation)

Random Variables

Definition 2.1-1

Given a random experiment with an outcome space S, a function X that assigns one and only one real number X(s) = x to each element s in S is called a **random variable**. The **space** of X is the set of real numbers $\{x : X(s) = x, s \in S\}$, where $s \in S$ means that the element s belongs to the set S.

A random variable associates a numerical value to each outcome of a random experiment.

Used to describe the elements of *S* numerically.

Random variables – Coin Example

A fair coin is flipped. The set of possible outcomes is Heads and Tails. $S = \{H, T\}$

Suppose we are interested in whether the outcome was Tails or not.

Let X be a real valued function defined on S such that X(H) = 0 and X(T) = 1.

- Domain of X: Outcome space, S
- Range of X: real numbers $\{x: x = 0, 1\}$

X is a random variable, and the space of X is the set of numbers {0,1}.

Types of Random Variables

- A random variable is discrete if it has a countable number of values. (can be countably infinite)
- A random variable is continuous if it is uncountable. (represents something on a continuous scale and can take any values in an interval)

Example: Defining a Random Variable

Consider the sample space for rolling two die: 34 可能

Say we are interested only in the **sum** of the number of spots.

We can define a random variable, X, by assigning a real number to each outcome in S. $X = \{2,3,4,...,12\}$

What is the space of X?

Example: Defining a Random Variable (continued)

The space of X is $\mathcal{X} = \{2,3,4,5,6,7,8,9,10,11,12\}$

For convenience, we don't need the original sample space anymore. We can use the space of X instead.

Discrete random variable

If a sample space, S, contains a **countable** number of points, we call S a **discrete sample space**.

Any random variable X (with space, \mathcal{X}) arising from a discrete sample space, S, is called a **discrete random variable**.

Discrete random variable (examples)

Number of "heads" in 3 flips of a coin

S = {HHH, HHT, ..., TTH, TTT}
$$\rightarrow \mathcal{X} = \{0,1,2,3\}$$

Number of diaper changes I need to make per night:
 S = {0,1,2,...}

Hulk start with 15mL saliva for Covid testing but accidentally spill random amount. Want to know exactly how much saliva have left in tube?!?!
 S = [0, 15)

"Hulk start with 15mL saliva... rounded to nearest mL?"
 S = {0,1,2,...14,15}

Probability Mass Function

For a random variable X, the probability that the random variable takes a value, x, is denoted P[X = x].

For a discrete random variable, this is also denoted by f(x).

f(x) is called the **probability mass function.**

Properties of a pmf

Definition 2.1-2

The pmf f(x) of a discrete random variable X is a function that satisfies the following properties:

(a)
$$f(x) > 0$$
, $x \in S$;

(b)
$$\sum_{x \in S} f(x) = 1;$$

(c)
$$P(X \in A) = \sum_{x \in A} f(x)$$
, where $A \subset S$.

If a pmf satisfies all 3 properties, then it is a valid discrete probability distribution.

Probability mass function

x	f(x)
x_1	$f(x_1)$
x_2	$f(x_2)$
x_3	$f(x_3)$
	•
	•
	•
<i>x</i>	$f(x_n)$

If the pmf is simple, it may be written as a table or list.

• Example: Flip a fair coin twice. let X be defined as the number of heads observed. What is the pmf of X?

Most of the time, it is written as a formula.

$$f(x) = \frac{(|x|+1)^2}{9}, \qquad x = -1, 0, 1.$$

$$f(x) = \frac{5-x}{10}, \qquad x = 1, 2, 3, 4.$$

$$f(x) = \begin{cases} 0.9, & x = 0, \\ \frac{c}{x}, & x = 1, 2, 3, 4, 5, 6, \end{cases}$$

Cumulative Distribution Function

The function defined by

$$F(x) = P(X \le x), -\infty < x < \infty$$

is called the **cumulative distribution function**.

You may also see the cdf referred to as the **distribution function** of a random variable, X.

CDF examples

1. Flip a fair coin twice. let X be defined as the number of heads observed. What is the cdf of X?

$$F(x) = P[X \in x]$$

$$F(3) = 1$$

$$F(1) = f(1)$$

 $F(2) = f(1) + f(2)$
 $F(3) = f(1) + f(2) + f(3)$

2.2 Expected Value

Expected Value of X

(or 'expectation' of X)

Let X be a discrete random variable with probability mass function f(x). The **expected value** of X can be denoted E[X], μ , or μ_x , and is given by:

$$E[X] = \mu = \mu_{x} = \sum_{\{all\ x\}} x \cdot f(x)$$

Expected Value of X

E[X] =

Expectation of a function of X

Definition 2.2-1

If f(x) is the pmf of the random variable X of the discrete type with space S, and if the summation

$$\sum_{x \in S} u(x)f(x), \quad \text{which is sometimes written} \qquad \sum_{S} u(x)f(x),$$

exists, then the sum is called the **mathematical expectation** or the **expected value** of u(X), and it is denoted by E[u(X)]. That is,

$$E[u(X)] = \sum_{x \in S} u(x)f(x).$$

Some properties of expectation

Theorem 2.2-1

When it exists, the mathematical expectation E satisfies the following properties:

- (a) If c is a constant, then E(c) = c.
- (b) If c is a constant and u is a function, then

$$E[c u(X)] = cE[u(X)].$$

(c) If c_1 and c_2 are constants and u_1 and u_2 are functions, then

$$E[c_1u_1(X) + c_2u_2(X)] = c_1E[u_1(X)] + c_2E[u_2(X)].$$

Examples:

(a)
$$E[5] = 5$$
, $E[2] = 2$

(b)
$$E[2X] = 2E[X]$$
, $E[7X^2] = 7E[X^2]$

c)
$$E[2X + 5Y] = 2E[X] + 5E[Y]$$
, $E[3X + 6X^2 - X^3] = 3E[X] + 6E[X^2] - E[X^3]$

Examples

1. Thanos has some flavored JUULs at home with the following proportion of flavors:

1/2 berry, 1/4 orange, 1/4 lemon.

If he picks up the following JUUL flavor, it will vaporize the following number of people:

Berry – 50, Orange – 30, Lemon - 40.
$$X = \{30, 40, 50\}$$

a) What is the pmf of X?

X	f&)
30	14.
40	4
50	-12

- b) Does the expected value need to be an element of the sample space?
- b) Let X be a random variable that represents the number of people vaporized if Thanos eats a random gummy. Find the expected value of X.

$$E[X] = (30)(\%) + (40)(\%) + (50)(\%)$$

c) If Thanos selects a random JUUL, find the expected value of the number of eyeballs vaporized. E[2x] = 2E[x]

e) Find $E[X^2]$.

Example 2

Suppose a discrete random variable X has the following probability distribution:

$$P(X=0) = 2 - \sqrt{e},$$
 $P(X=k) = \frac{1}{2^k \cdot k!}, k=1,2,3,...$

$$E(X) = \sum_{\text{all } x} x \cdot f(x) = 0 \cdot \left(2 - e^{1/2}\right) + \sum_{k=1}^{\infty} k \cdot \frac{1}{2^k \cdot k!} = \sum_{k=1}^{\infty} \frac{1}{2^k \cdot (k-1)!}$$
$$= \frac{1}{2} \cdot \sum_{k=1}^{\infty} \frac{1}{2^{k-1} \cdot (k-1)!} = \frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{1}{2^n \cdot n!} = \frac{e^{1/2}}{2}.$$

Example

Suppose a discrete random variable X has the following probability distribution:

$$P(X=0) = 2 - \sqrt{e},$$
 $P(X=k) = \frac{1}{2^k \cdot k!}, k=1,2,3,...$

b) Find E[X²]. =
$$\sum_{X=1}^{\infty} x^{2} + \sum_{X=1}^{\infty} x^{2} + \sum_{X=1}^{\infty} x^{2} + \sum_{X=1}^{\infty} \frac{(\frac{1}{2})^{X-1}}{(X-1)!} = \sum_{X=1}^{\infty} \left[\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{(\frac{1}{2})^{X-1}}{(X-2)!} + \frac{1}{2} \cdot \frac{(\frac{1}{2})^{X-1}}{(X-1)!} \right] = \frac{1}{4} \cdot e^{\frac{1}{2}} + \frac{1}{2} \cdot e^{\frac{1}{2}} = \frac{3}{4} \sqrt{e}$$

$$E(X(X-1)) = \sum_{k=2}^{\infty} k \cdot (k-1) \cdot \frac{1}{2^k \cdot k!} = \sum_{k=2}^{\infty} \frac{1}{2^k \cdot (k-2)!}$$
$$= \frac{1}{4} \cdot \sum_{k=2}^{\infty} \frac{1}{2^{k-2} \cdot (k-2)!} = \frac{1}{4} \cdot \sum_{n=0}^{\infty} \frac{1}{2^n \cdot n!} = \frac{e^{1/2}}{4}.$$