Own Calista's Copy

FEDERAL UNIVERSITY OYE-EKITI DEPARTMENT OF PHYSICS B.Sc. Second Semester Examination 2016/2017 Academic Session

B.Sc. S	Second Semester Exam	ination 2016/20	T/ Academic state ho	urs
PHY102:	General Physics 11 3	credit units	Time allowed: 1 1/2 ho	
Instruction	ne Tiels on the	answer sheet.	-	
1.Filte	ring out unwanted signals is o	ne of the application	n of	
Λ.	ring out unwanted signals is on Resistor B. Capacitor C.	Transistor D Inc	fuctor E. Historico	
2. The	higher the self-inductance of	a coil		
	The lesser it weber-turns			
	The lower the emf induced			
C.	The greater the flux produce	d by it	through it	
D.	The longer the delay in estab	dishing steady curre	III IIII OBBI	
E.	A and B		and ton the average	e) by a
(-* 3.The	stance of approximately 5.3 ×	drogen atom are so	magnitudes of the electric	e force.
di	stance of approximately 5.5 *	TO THE PART OF	11 4 V 10-0N E.3.3 X	10 1
^	. 5.3 × 10 N B.9.6 × 10 N	V C.O.2 ~ 20	Q v 10-31kg and	charge
- 4.Ca	culate the cyclotron frequence $6 \times 10^{-19} C$ circulating a pla	y of an electron of	a uniform magnetic fie	ld B of
1	.6 × 10 °C circulating a pla	the ar right and		
n	agnitude2.0 × 10 1.	D 1.82	< 10 ^{−34} Hz	1.24
	$1.3.2 \times 10^{-23} Hz$	E. 1.59 >	106Hz	
	3. 5.72 × 10 ⁻³⁰ Hz 2. 5.59 × 10 ⁶ Hz			
500		10-aC is placed if	a place where it exper	tences a
4 3.1	positive test charge of $3.0 \times \text{force} f = 6.0 \times 10^{-8} N$. Calcu	late the electric field	the charge experiences	
· ·	V 2 N/C B 18 N/C	C.9NC D.6	N/C E. 8 N/C	
6.77	ne total electric flux over any			
	D 92	10 D. 4	E. qeo	
	A. ℓ_0 B. $\frac{\zeta}{\ell_0}$ C.	9 40	$1 - 1 = 2r^2 - 1$	3v2 The
7.T	he electric potential at point	ts in an xy plane	is given by 7 (20m) res	pectively
	he electric potential at point magnitude and direction of the	ne electric field at p	soint (3.0 m, 2.0 m) res	3.20
	are:		D. 42 Vm ⁻¹ and 35"	
	A. 25 Vm ⁻¹ and 45°		E. 47 Vm ⁻¹ and 75°	
	B. 17 Vm ⁻¹ and 135°			
	C. 38 Vm-1 and 150°			
as the	da, the equation	agrountes a	differentials	12112
Charits,	th, the education	becomes do	Cc. da	- 6-1 13
X 51. 21	1 - 61	are sures .	-Dz. in	
TAILCE	ric flocis the ne	inher of e	decline field li	that
Passens II		-	,	
Lesses 4"	rough a gluen	Surface .		
_	(25)	'		
the total	electric flow u	rand a clos	ed Successo in	F-1-11-10-11
total nat	51-50-63	The state of the s	a soutetee a	edirall 10 t
tored net	charge (9), usid	e the surface	o divided by	1 41 0 200 . 345
		Det let	C courselle	Luce berritte
	electric flow to	1-9		En
V	Ø = 2	0 - 5		
	\$=2	1 60		
			Scanned with CamScanner	

- 8.Two identical conducting small spheres are placed with their centres 0.300 in apart. One is given a charge of 12.0 nC and the other a charge of -18.0 nC. Find the electric force exerted by one sphere on the other. A. $8.5 \times 10^6 N$ B. $6.5 \times 10^{-6} N$ C. $5.5 \times 10^{-7} N$ D. $7.1 \times 10^{-6} N$ E. $1.5 \times 10^{-1} N$ 19.An infinite nonconducting sheet has a surface charge density $\sigma = 0.10~\mu C/m^2$ on one side. How far apart are the equipotential surfaces whose potentials differ by
 - A. 76 mm B. 56 mm C. 88 mm D. 95 mm
 - 20.A 100 turn coil whose resistance is 6 Ω encloses an area of 60 cm². How rapidly E 68mm should a magnetic field to its axis change in order to induce a current of 1 mA in the
 - A. 0.0075 Ts-1 B. 75.0 Ts-1 C. 0.75 Ts-1 D. 0.0075 V E. 0.0085 Ts-1
 - 21.A capacitor of capacitance $3.0 \, \mu F$ is subjected to a 2000 V potential difference across its terminal. Calculate the energy stored in the capacitor
 - A. 18000/ B. 61 C. 6000 J
- 22. Object A has a charge of $+2\,\mu$ C and object B has a charge of $+6\,\mu$ C. Which statement is true about the forces on the objects?
 - A. $F_{AB} = -3F_{BA}$ B. $F_{AB} = -F_{BA}$ C. $3F_{AB} = -F_{BA}$ D. $F_{AB} = 3F_{BA}$ E. $F_{AB} = F_{BA}$
 - 23. Mutual inductance between two magnetically coupled coil depend on
 - A. Permeability of the coil
 - B. The number of turns
 - C. Cross-sectional area of their common core
 - All of the above
 - E. A and B.
 - 24. Two electric fields $E_1 = 3.00 \, N/C$ and $E_2 = 2.00 \, N/C$ at right angles in a plane Calculate the net electric field direction at a point P in the plane.
 - A. 3.61 N/C and 33.7°

D. 5 N/C and 42"

B. 3.61 N/C and 42°

E. 5.61 N/C and 22.7°

C. 5 N/C and 33,7°

- 25.A coil of 160 turns has a radius of 1.90 cm. What value of current result in magnetic dipole moment of 2.30 Am2?
 - A. 1.134 × 10-2 A B. 0.0805 A C. 12.78 A D. 1.3 A

26. Which of the following formula is incorrect?

B. $\sigma = \frac{e}{I}$ C. $E = \frac{v}{I}$ D. $R = \frac{eI}{A}$ E. $\sigma = \frac{eA}{I}$

- 27. For a given configuration of charges, a set of points where the electric potential V (r) has a given value which it takes no work to move a charged particle from one point to another is known as:
 - A. Inter parallel potential surface

C Equipotential surface

B. Interpolar potential surface

D. Semi potential surface

28. Two +2 μ C point charges are located on the x-axis. One is at x=1.00 m and the other is at x = -1.00 m. Determine the electric field on the y-axis at y = 0.500 m.

1ev= 1.6x1012

m21 = C2

D. 4.7 × 10 N/C C. 1.6 × 10⁴ N/C 29. Calculate the inductance of a solenoid containing 250 turns if the length of the solenoid is 20 fem and its solenoid area is 400 × 10⁻⁴ m² E. 6.2 × 10 N/C B. 15.7 mH C. 0.157 mH D. 0.157 H E. 18.7 mH A. 0.0157 mH B. 15.7 mH C. 0.157 mH D. 0.157 H E. 10.7 mH

30.Which of the following mathematical expression is a Lorentz equation for magnetic field. A $\hat{V}F = q\hat{V} \times \hat{B}$ B $F_B = q\hat{B} \times \hat{V}$ C.F = $q\hat{B} \times \hat{V}^2$ D.F = $q\hat{V} \times \hat{B}$ E.F_B = $q\hat{A}\hat{B} \times \hat{V}$. How much work is required to 31. How much work is required to carry an electron from the positive terminal of a 12-V battery to the negative terminal. V battery to the negative terminal? 32. Calculate the conductivity and resistance of a given uniform wire of length 2.0 m and resistance of a given uniform wire of length 2.0 m. and resistivity $5.4 \times 10^{-7} \Omega/m$ if the cross-sectional area of the wire is $9.5 \times 10^{-3} cm^2$ A. 1.85 × 10° Ω-1 m-1, 1.44 Ω E. 1.6 × 106 Ω-1 m-1, 3.14 Ω 10-3 cm2 B. 3.70 × 10° 9-1 m-1, 1.44 11 C. 3.70 × 106 n-1m-1,2.28 n 33. The equation $E = q(E + V \times B)$ is termed as D. Force Square Law 34.A coil of 10 turns and cross-sectional area 5 cm2 is at right angles to a flux density A. Magnetic Forces 2×10^{-2} T which is reduced to zero in 10 s. Find the induced emf. A. 1.0 × 10-5 V E 13 × 10-5 V 35.Two large, parallel conducting plates are 12 cm apart and have charges of equal magnitude and opposite sign on their facing surfaces. An electrostatic force of 3.9 × 10-2 N acts on an electron placed anywhere between the plates (Neglect fringing). The electric field at the position of the electron and the potential difference between plates respectively are: A. 2.4 × 10° Vm⁻¹ and 2.9 × 10° V B. 3.5 × 104 Vm-1 and 2.7 × 103 V C. 2.5 × 105 Vm-1 and 2.5 × 102 V D. 4.5 × 10³ Vm⁻¹ and 5.0 × 10³ V 36.An electric field with a magnitude of 160 N/C exists at a spot that is 15 cm away E. 6.4 × 104 Vm-1 and 5.9 × 103 V from a charge. At a place 26 cm away from this charge, calculate the electric field

strength.

B. 50 N/C C. 36 N/C D. 18 N/C E. 19 N/C

37. Which of the following circuit element stores charges energies in terms of magnetic

field.

A. Condenser

D. Resistance

38. Which of the following statements is not correct about the resistance of a wire?

A. The length of the increases as the resistance increases

B. The cross-sectional area increases as the resistance increases

C. Temperature increases as the resistance increases

D. The nature of material does not affect the resistance of a wire

39.If the electric field in the region between two deflecting plates of a cathode ray oscilloscope is 30,000 N/C. Calculate the force on an electron in the region.

A. $4.8 \times 10^{-19} N$

B. $2.8 \times 10^{-18} N$

E. $6.8 \times 10^{-18} N$

40. The electric potential difference between the ground and a cloud in a particular thunderstorm is 1.2×10^9 magnitude of the change in potential energy (in multiples of the electron-volt) of an electron that moves between the ground and the cloud is:

A. 4.8 GeV B. 1.2 GeV C. 2.4 GeV D. 3.6 GeV E. 6.2 GeV

41.One of the following types of waves propagates via a material medium

A. Sound wave

B. Both transverse and longitudinal waves

C. Traverse wave only

D. None of the above

42. Three point charges $q_1 = -4 \mu C$, $q_2 = +3 \mu C$ and $q_3 = -7 \mu C$. If the separation E. Atomic wave between q_1 and q_2 is 20 cm and the separation between q_2 and q_3 is 15 cm, calculate the net force on q_2 .

A. 8.4 N/C

B. 5.7 N/C

C. -2.7 N/C

D. 11.1 N/C

E. 7.4 N/C

43.A transformer connected to a 120 V AC power line has 200 turns in its primary winding and 50 turns secondary winding. The secondary is connected to a 100 Ω light bulb. How much current is drawn from the power line?

A. 0.075 Ω B. 0.075 A C. 0.0075 A D. 0.065 A E. 0.56 A

44.A test charge of $+3 \mu C$ is at a point P where an external electric field is directed to the right and has a magnitude of $4 \times 10^5 \ N/C$. If the test charge is replaced with another test charge of $-3 \mu C$, the external electric field at P is
A. Unaffected
B. Reverses direction
C. Changes away in way that cannot be determined
D. Goes up and down
E. Reversed in magnitude
45.A core coil has a length of 20 m. The inductance of the coil is 6 mH. If the core length is doubled and the other properties remain the same. What is the inductance of the coil?
A. 3 mH B. 12 mH C. 24 mH D. 43 mH E. A and B.
46. Five point charges are enclosed in a cylindrical surface S. If the values of the charges
are $q_1 = +3 nC$, $q_2 = -2 nC$, $q_3 = -2 nC$, $q_4 = +4 nC$, $q_5 = -1 nC$. Find the
total flux through S.
A. 200 Vm B. 226 Vm C. 260 Vm D. 700 Vm E. 760 Vm
47.A circular current wire 6.5 cm in diameter has 12 turns and carries a current of 2.7 A. The coil is in a region where the magnitude of the field is 0.56 T. What is the maximum torque on the flux? A. 0.0698Nm B. 0.6989Nm C. 0.27353Nm D. 0.19698 Nm E. 1.25Nm
48. The \(\int \) dA represents \(\text{ where } \int \) is the current density and A is the area. A. Resistance
B. Potential difference
C. Electric current
D. Resistivity
E. Field
49. The electric potential energy of two electrons separated by 20 nm situated in a free
space is
A. 1.15 × 10 ⁻¹⁶ /
B. 2.75 × 10 ⁻¹⁹ /
C. 1.725 × 10 ⁻¹⁹ J
D. $6.95 \times 10^{-19} J$
E. 4.75 × 10 ⁻¹⁹ J
50. An electron moves around a fixed proton at a distance of 5.29 × 10 ⁻¹¹ m. Calculate
the potential the proton creates at this distance.
A13.6 V B. +6.8 V C. +27.2 V D. +13.6 V E. +6.8 V

PHY 102: - Solution to past Questions 1. C 2. C 3. f= 1< 291 r=5.3 x10 m. 2, (electron) = - 1.602 x10-19 92(80 hm) = 1.602 X10 1c=8.99×109 1m2/c2 f = 8.99 x 10 x 1.602 x 10 /2-1.602 x 10 1 f = 8.99 x13 x 1.602 X10 x 1.602 X10 F = (8.99×1.602×1.602)×10 28.09 XIV-22 $f = 23.07197176 \times 10$ $28.09 \times 10^{-2.2}$ $f = 0.8214 \times 10^{-29-22} = 0.8214 \times 10^{-29}$ f= 0.8214 ×10 = 8.214 ×10 8 = 8.2 ×10 °C 4) m = 9x10 159 9= 1.6x10 19 B= 2.0x10 T $f = \frac{98}{2\pi m} = \frac{1.6 \times 10^{-19} \times 2.0 \times 10^{-4}}{2 \times 7 \times 9 \times 10^{-31}}$ $f = \frac{1.6 \times 2.0 \times 10^{-19-4}}{2 \times 4 \times 10^{-31}} = \frac{3.2 \times 10}{18 \times 10^{-31}} = \frac{3.2}{18 \times 10^{-31}} \times \frac{3.2}{18 \times 10^{-31}}$ $f = \frac{3.2 \times 10^{-23+31}}{18\pi} \times 10^{-23+31} = \frac{3.2 \times 10^{8}}{18\pi} \times 10^{8} = 0.0566 \times 10^{8}$ f = 5.66 × 10 Hz Smilar toanswer C s) q = 3.0 ×10°C f = 6.0 × 10°N €=? E= f = 6.0 × 10 = 2 × 10 = 2 N/C A B 9 5

7. $V = 2n^2 - 3y^2$ (3.0m, 2.0m) Cle (4-7 feld 6 = (44: +-443) E = 4n+- by at (3.0, 2.0) E = 4(3) + -6(2) = 12 + -12 $E = \sqrt{|12|^2 + |12|^2} = \sqrt{144 + 144} = \sqrt{288} = 16.97$ E= 17Vm-1 3 8) resistant across AB in Circuit Risparallel to R2, Rs is parallel to Ry $R_{12} = \frac{1 \times 1}{1+1} = \frac{1}{2}$ $R_{34} = \frac{1 \times 1}{1+1} = \frac{1}{2}$ Riz and Rigy are Connected in Series R1234 = Req = 1/2 = 1-1 A 10) magnete flum through the loup is the product of magnetic field and area Da = & BodA A magnetie y
flum magnetie field 9) B = anzi+byzj+cic V.B=O & d. Heren tial form of gauss' (i まれナラシャトとか)· (axzi+byzi+ck)=0 az+62=0 z (a+b) = 0 a+b=0 a=-5 C 11) L= 20 mH = 20 x103 H I= 0.2A € = ½ LI² = ½ × 20 × 10 3 × 0.22 E = 10 x 103 x 0. 04 = = 0.4 x 10 = 4x 1045 Ocaside P / British

13)
$$\phi = 6t^2 + 7$$
 malb $f = 2$ seconds $\phi = (6t^2 + 7) \times 10^{-3} \text{ Wb}$

$$\epsilon = \frac{\Delta g}{\Delta t} = 12(t) = 24 \times 10^{-3} = 0.024 v$$
 A

$$\sqrt{3}$$
 $\sqrt{1 = 12.0 \text{ nC}} = 12 \times 10^{9} \text{ c}$ $\sqrt{2} = -18.0 \text{ nC} = -18.0 \times 10^{-9}$

$$f = \frac{1690}{10^{3}} = \frac{9 \times 10^{9} \times 12 \times 10^{9} \times 18 \times 10^{9}}{0.3^{2}}$$

$$\frac{6 \times 12 \times 10^{10}}{0.09} = \frac{1944}{0.09} \times 10^{-9} = 21,600 \times 10^{-9}$$

19) 0=0.10MC/m² p.d=50v for infinite non londucting Sheet/Chat has Surface chargeo,

P.d =
$$\frac{\sigma_r}{260}$$
 : $\frac{P.d \times 260}{6} = r$

where $r = d.5 + c.6$
 $60 = 8.85 \times 10^{-12} f/m$

$$\Gamma = \frac{50 \times 2 \times 8.85 \times 10^{-12}}{0.10 \times 10^{-1}} = \frac{100 \times 8.85 \times 10^{-12}}{0.1 \times 10^{-6}}$$

$$r = \frac{885 \times 10^{-12}}{0.1 \times 10^{-6}} = \frac{885}{0.1} \times 10^{-12-6}$$

from the firmular for induced from

recalled that enf is = P.d Currentition

$$J R = ABA$$

$$T = 1 \times 10^{3}A \quad R = 6.0. \quad M = 100 \quad A = 60 \text{ G}^{3}$$

$$A = \frac{80}{10^{4}} \quad MA = \frac{1}{4} \quad \frac{1 \times 10^{-3} \times 6}{100 \times 80 \times 10^{-4}} = \frac{6 \times 10^{-3}}{8000 \times 10^{-4}}$$

$$\frac{1}{8} = 0.000075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} = 0.00075 \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-2} \times 10^{-3}$$

$$\frac{1}{8} = 0.00075 \times 10^{-3} \times 10^{-3}$$

$$\frac{1}$$

formular for mutual inductance betw-

een two Coils is

M=KoM,N,N2A

Where Mr=relative Permeab. 7.7 of iron are M = number of turns A = Cross Sechunal area in mutual inductance depends in all If the above. D 25) N=160 turns r=1.90 cm I:? r= 0.019m m = 2.3 Am A=Tr2 m= NIA A = 22 x 0.0192 m = I A = 0.001134m2 A ~ 0.00113m~ 1 huxu:10113 0:18

 $I = \frac{2 \cdot 3}{0.18} = 12.777 \approx 12.78 A$ 20) A and B

Correct formular I D = 1 where I = Current den sity E= electron feld O = Correct den s. 2

olajide? (British Work done in moving a Charge $W = -1.9224 \times 10^{-19} \text{ T}$ Over an equipotential Surface is Zero. 32) L = 2.0 m $C = 5.4 \times 10^{-3} \text{ A} = 9.5 \times 10^{-3} \text{ cm}^2 = 9.5 \times 10^{-3} \text{ e}^{-1.9} \text{ s}^{-1.9} \text{ s}^{-1.9}$

$$L = 31,500,000 \times 10^{-10}$$
 = 157,500,000 × 10

31)
$$W = 9.V$$
 $9 = cn \ dec \ fr \ on$
 $= -1.602 \times 10^{-19} \ C$
 $V = 12V$
 $W = -1.602 \times 10^{-19} \times 12 = -19.224 \times 10^{-19}$

$$|A| = -19.224 \times 10^{-19}$$

$$|A| = -19224 \times 10^{-19}$$

$$|A| = -19224 \times 10^{-19}$$

$$|A| = 9.5 \times 10^{-2}$$

$$|A| = 9.5 \times 10^{-3}$$

$$|A| = 1.85 \times 10^{-3}$$

$$|A| = 1.136 \times 10^{-3}$$

$$|A| = 1.136$$

35) d= 12cm = 0.12m f= 3.9x10-2 E=? Pid=? 9= electron F=9, E $E = \frac{f}{2} = \frac{3.9 \times 10^{-2}}{1.602 \times 10^{-19}} = 2.4 \times 10^{-17} \text{ A/c or V/m}$ P. d = 7 G = V = Ed. G=2-4x10 U/m d=0.12m $V = 2.4 \times 0.12 \times 10^{-17} = 0.288 \times 10^{-17}$ V= 2.88 XIO = 2.9XIO V 2.4x10" Vm and 2.9 X10"V A 36) E= 160 x/c at r= 15cm = 0.15m $C = \frac{kQ}{r^2} \qquad Q = \frac{Er^2}{15} = \frac{16x \times 0.15^2}{8.99 \times 10^5}$ $0 = \frac{160 \times 0.0225}{8.99 \times 10^{3}} = \frac{3.6}{8.99 \times 10^{5}} = 0.4 \times 10^{5} = \frac{3.6}{8.99 \times 10^{5}}$ E=? at r= 26cm = 0,26m 9,=0.4x10 C E = 100 = 8.99 x 109 x 0,4 x 109 $C = 3.596 \times 10^{9-9} = 3.596 \times 10^{9} = 3.596 \times 10^{9} = 3.000$

0.0676 0.0676

E = 53.3 N/C A

37) in ductor stores chergy in na magneti field. B 9=-1.602×10¹⁹C 38) resistance of a wire R R & C & L & _ Correct answer of B 39) E= 30,000 A/C f=? 9 = electron = 1.602 x10-19 C e = f + qef=1.602 x10 x 30,000 f= 48,060×10=4.8×10 A 410 A for Sound waves to travel, it reg. ures a material medium 42) -4mc +3mc -7mc F= KQ,Q2 f=2.7 N f=8.4 N Met force on Tr = 2.7+8.4 A = 11.1 N/C X (otaside) E = 3,596 = 3.6 = 53.25 = 53.3 (British

to a construction of the second secon

CalCulate Vs first

 $\frac{V_{P}}{V_{S}} = \frac{\Omega_{P}}{\Omega_{S}}; \quad \frac{12\omega}{V_{S}} = \frac{2\pi\sigma}{SU}$

Vs = 154 x 510 = 6 x 5 = 30 v

now V=IR

V=Vs=30V 1=? 12=1101

 $1s = \frac{V}{R} = \frac{30}{100} = 0.3A$

 $\frac{V_P}{V_S} = \frac{\Omega_P}{\Omega_S} = \frac{I_S}{I_P}$

 $\frac{\Omega_p}{\Omega_s} = \frac{l_s}{l_p}; \quad \frac{2\infty}{50} = \frac{0.3}{l_p}$

1p = 50 x 10.3 = 0.075A B

1P = U. 075A & Current drawn from Power line.

414) Reveses direction (due to -ve Sign) B

45) $l_1 = 20m$ $L_1 = 6mH$ $l_2 = 2x l_1$ $l_2 = ?$ $l_1 = 10mH$

 46) \$ + stal = \frac{9}{\xi_0}\$

9 = +3 - 2 - 2 + 4 - 1 AC = 7 - 5 nC = 2 nC $6 = 8.96 \times 10^{-12}$

 $\emptyset_{+Ad} = \frac{2 \times 10^{-9}}{8.9 \times 10^{-12}} = 0.224 \times 10^{-9--12}$

Ptotal = 0.224 x 10 = 224 = 200 Vm

L17) d = 6.5 Cm = 0.06 Sm M = 12 twosI = 2.7 B = 0.56 T

T= NIAB SIND

manimum turque occurs at 0=900

Sin 90=1 A= Tr2

d = 0.06s r = 0.06s = 0.0325 $A = \pi \times 0.0325^2$

A=0.0033196

 $T = 12 \times 2.7 \times 0.00 33196 \times 0.56$ = 0.06023 Nm

Majile ?

48] = [BP 49) le = Kq, q2 le= electrir potential energy 9,92 = electrons =1. 602 X10-19 Ue = 8.99 × 109 × 1.602×10 × 1.602×10 -19 Ue = (8.99 × 1.602 × 1.602) × 10 Ue = 23.07 × 10 = 1.1535 × 10 UE = 1.15 × 10 -20 I Similar to A 50) electriz potential due to Point Charge V = KO/r (=5.29X10 m 1 = 8.99 x 10 Nm/6 Q=1.602 x10-19 V=8.99X109X1.602X10 \$5.29X10" V=(8.99×1.602 = 5.29) × 19-19+11 Service Servic V= 14.40:5.29 x 10

 $V = 2.72 \times 10^{1}$ $V = 2.72 \times 10^{1}$ $V = 27.2 \times 10^{1}$

OlasiZe (3 British)