TP Option Info MP/MP*: Automates

1 Automates déterministes

Type automate

On définit le type automate par:

- n désigne le nombre d'états de l'automate, les états de l'automate sont numérotés de 0 à n-1.
- i est l'état initial.
- t est la liste des états terminaux/finaux.
- gamma est la liste des transitions, une transition (d, c, a) est à comprendre comme $d \stackrel{c}{\to} a$ d est l'origine de la transition, c et son étiquette et a son arrivée.

Nous supposerons que nos automates sont déterministes, c'est à dire que si $d \xrightarrow{c} a$ et $d \xrightarrow{c} a'$ sont deux transitions alors a = a'.

Construisons quelques exemples

Construire les automates

- 1. \mathcal{A}_1 reconnaissant les mots écrits avec des 0 et des 1 contenant un nombre pair de 0 et un nombre impair de 1.
- 2. A_2 reconnaissant le langage défini par l'expression rationnelle $a + b^*c$.
- 3. A_3 reconnaissant le langage défini par l'expression rationnelle $(aa + ab)^*ba^*$.

Calculons avec nos automates

Méthode 1

- 1. Écrire une fonction chercheTransition : int -> char -> (int*char*int)list ->int telle que si e est un état, c un caractère et t une liste de transitions, chercheTransition e c t indique l'arrivée de la transition d'origine e et d'étiquette c. Dans le cas où une telle transition n'existe pas, la fonction renverra -1.
- 2. Écrire une fonction calcul : automate -> string -> bool telle que calcul a m indique si le mot m est reconnu par l'automate a.

Méthode 2

<u>Numérotation des caractères</u>: Caml numérote les caractères de 0 à 255, On détermine le numéro d'un caractère avec la fonction int_of_char, la fonction réciproque étant :char_of_int.

1. Écrire une fonction table_de_transition : automate -> int array array telle que si a de type automate est la représentation en caml de \mathcal{A} , alors table_de_transition a est une matrice de taille a.n× 256 et que si $e \in Q$ et $c \in X$ alors

(table_de_transition a).(e).(int_of_char c) = $\tilde{\gamma}(e,c)$ si $\tilde{\gamma}(e,c)$ est définie et (-1) sinon.

Remarque: votre fonction ne devra lire qu'une seule fois la liste des transitions.

 Réécrire la fonction calcul : automate -> string -> bool en utilisant la fonction table_de_transition.

2 Automates non déterministes

Remarque Pour qu'un mot soit reconnu, il suffit qu'un calcul réussisse.

Figure 1: Exemple d'automate non déterministe.

2.1 Opérations ensemblistes

Dans cette partie N désigne un entier naturel, et on va s'intéresser aux opérations dans $\mathcal{P}(\llbracket 0, N-1 \rrbracket)$.

Si $E \subset [0, N-1]$ alors E représenté par un tableau de booléens de taille N suivant la règle: Si t représente E alors $\forall i \in [0, N-1]$: t. (i) $= i \in E$ (c'est un booléen).

- 1. Écrire une fonction appartient : int -> bool array -> bool qui teste l'appartenance.
- 2. Écrire une fonction vide : int -> bool array qui construit la partie vide pour un N donné.
- 3. Écrire les fonctions d'union et d'intersection correspondants à cette représentation des ensembles.
- 4. Une fonction ajoute : bool array -> bool array -> unit telle que si e1 et e2 représentent deux parties de [0, N-1] alors ajoute e1 e2 transforme e1 en « e1 \cup e2».
- 5. Écrire une fonction qui teste l'inclusion entre deux parties de [0, N-1]

2.2 Calcul avec un automate non déterministe

Soit X un alphabet , un automate \mathcal{A} est quadruplet (Q, I, T, Γ) où Q l'ensemble des états de \mathcal{A} est un ensemble fini, $I \subset Q$ est l'ensemble des états initiaux , $T \subset Q$ est l'ensemble des états terminaux et $\Gamma \subset Q \times X \times Q$ est l'ensemble des transitions.

On remarque qu'un automate non déterministe peut avoir plusieurs états initiaux.

Si $e \in Q$ et $x \in X$ alors on note $\gamma(e, x) = \{d \in Q | (e, x, d) \in \Gamma\}$

On étend γ par si $E \subset Q$ et $x \in X$ alors $\gamma(E, x) = \bigcup \gamma(e, x)$

 X^* désigne l'ensemble des mots que l'on peut écrire sur l'alphabet $X,\, \varepsilon$ désigne le mot vide. On étend alors γ par «fermeture transitive» à X^* par

- Si $E \subset Q$ alors $\gamma^*(E, \varepsilon) = E$
- Si $E \subset Q$, $m \in X^*$ et $x \in X$ alors $\gamma^*(E, m.x) = \gamma(\gamma^*(E, m), x)$

On définit le type automate par:

```
type automate_nd = { n_nd: int ; i_nd : bool array ;
   t_nd : bool array ; gamma_nd : (int*char*int) list};;
```

- 1. Écrire une fonction gamma : automate nd -> int -> char -> bool array qui réalise la fonction γ .
- 2. Écrire une fonction gamma_e : automate_nd -> array bool -> char -> array bool qui réalise l'extension de la fonction γ à $\mathcal{P}(Q)$.
- 3. Écrire une fonction gamma_etoile :automate_nd -> array bool -> string -> array bool qui réalise la fonction γ^* .
- 4. Écrire une fonction calcule: automate nd -> string -> bool qui teste si un mot est reconnu par un automate non déterministe.

3 Déterminisation

Le calcul direct sur un automate non déterministe étant fastidieuse, on préfère remplacer \mathcal{A} par un automate déterministe équivalent \mathcal{A}' .

```
\mathcal{A}' est défini ainsi
```

```
\mathcal{A}' = (\mathcal{P}(Q), I, \{E \subset Q | E \cap T \neq \emptyset\}, \{(E, x, \gamma(E, x) | E \subset Q \text{ et } x \in X\})
```

Pour cela il faut numéroter les parties de Q.

Si
$$E \subset [0, N-1]$$
 alors le numéro de E est $\sum_{i \in E} 2^i$

On remarque alors que la représentation de E sous forme de tableau de booléens est l'écriture en binaire de son numéro.

- 1. Écrire une fonction numerote :bool array -> int qui calcule le numéro d'un ensemble.
- 2. Écrire la fonction partie : int -> int -> bool array qui fait l'opération inverse, le premier paramètre est le nombre de cases que doit avoir le résultat.
- 3. Écrire une fonction determinise : automate_nd -> automate qui réalise le passage de $\mathcal{A} \stackrel{.}{a} \mathcal{A}'$.

Remarques

- Les opérations logiques bits à bits en Caml sont land, lor, lnot, ...
 - « Logical and, Logical or , ... »
- \bullet On peut rapidement calculer 2^i an Caml en utilisant les fonctions de décalages, pour cela on écrit 1 lsl i

Logical shift left