Modelagem 10010010 Bancos de Dados 110101010101 100 Luiz Celso Gomes-Jr 11101011001 gomesjr@dainf.ct.utfpr.edu.br

Modelagem

André Santanchè e Patrícia Cavoto Instituto de Computação – UNICAMP Agosto 2015

Universo de Discurso ou Mini-mundo

 "Um banco de dados representa algum aspecto do mundo real, às vezes chamado de mini-mundo ou de universo de discurso (UoD – Universe of Discourse)."
 (Elmasri & Navathe, 2011)

Universo de Discurso ou Mini-mundo

· Recorte do mundo real a ser representado

Dados

Fatos registrados – significado implícito

Banco de Dados

Coleção de dados relacionados

Abstração

Problema x Abstração

 "Para resolver um problema é necessário escolher uma abstração da realidade" (Almeida, 2010)

Abstração

- "processo mental que consiste em escolher ou isolar um aspecto determinado de um estado de coisas relativamente complexo, a fim de simplificar a sua avaliação, classificação ou para permitir a comunicação do mesmo" (Houaiss, 2006)
- Abstrações ajudam a gerenciar a complexidade do software (Shaw, 1984)

Abstrações do Dia a Dia

Modelo de Dados

- Modelo de dados em Banco de dados:
 - "descrição formal da estrutura de um banco de dados"

(Heuser, 2004)

Esquema de Banco de Dados

Visão Externa

- Guiada pelos requisitos dos usuários
- Usualmente representada em documentos textuais
- Visão recorte do esquema

Modelo/Esquema Conceitual

- Descreve estrutura do Banco de Dados
 - entidades, tipos de dados, relações, restrições etc.
- Independente de implementação em SGBD
 - oculta detalhes de armazenamento físico

Modelo/Esquema Lógico

- Dependente de um SGBD particular
- Associado a um "modelo de dados de implementação" (Elmasri, 2005)

Modelo/Esquema Físico

 Descreve a estrutura de armazenamento físico

Hoje

Como modelamos o mundo

Intuitivo Entidades / Objetos

Objetos

Montanha

Objetos

Montanha

O que é exatamente uma montanha? Onde começa e termina a montanha? A definição do que é um objeto pode variar dependendo do contexto.

Objetos

Montanha

Objetos - Ferroviária

O que é exatamente uma ferroviária? Trens e pessoas fazem parte? A definição do conteúdo de um objeto pode variar dependendo do contexto.

Noção de Objeto

- Psicologia do desenvolvimento:
 - Quando crianças representam objetos como entidades permanentes?
 - Que persistem:
 - Através do tempo e espaço
 - À oclusão

(Santos & Hood, 2009)

Noção de Objetos

- Objetos permanecem?
 - "Of course, the concept of object permanence itself is really a misnomer, as all objects comprise energy in continuous states of change." (Santos & Hood, 2009)

Formal Entidades / Objetos

ER: Tipo Entidade

Modelo Entidade-Relacionamento (ER)

O modelo ER é muito usado para modelagem de bancos de dados.

Por ser mais simples que o modelo Orientado a Objetos, o ER tende a ser mais didático para cursos de bancos de dados. Mas os dois modelos são bem parecidos e compartilham diversos conceitos.

Modelo Entidade-Relacionamento

- Padrão para modelagem conceitual
- Criada por Peter Chen em 1976

Entidade

Entidade

- Objeto do universo de discurso
- Identificável distintamente
- Existência independente

Departamento de uma Organização

> Categoria de um Livo

Modelo Orientado a Objetos (OO)

Modelo Orientado a Objetos

- SIMULA 67
 - Primeira Linguagem Orientada a Objetos
- Smalltalk
 - Projeto Dynabook
 - "Este 'Dynabook' foi baseado na visão de computadores pessoais baratos do tamanho de um caderno, tanto para adultos quanto crianças, com a capacidade de lidar com todas as suas respectivas necessidades de informação". [KRE98]

Objeto

Objeto

- Objeto do universo de discurso
- Identificável distintamente
- Existência independente

Departamento de uma Organização

> Categoria de um Livo

Objeto

Categoria de um Livo

Objetos são caracterizados por:

- identidade;
- atributos;
- comportamento.

Exemplo de Objeto

Esfera Vermelha

Objeto Esfera

Atributos (nome, valor)

(**peso**, 200 g)

(raio, 60 cm)

(elasticidade, alta)

(cor, vermelha)

Comportamento

aumentar, diminuir, se mover

Estereótipos / Classes

ER: Tipo Entidade

Tipo Entidade

- Tipo Entidade ou Conjunto de Entidades
 - conjunto n\u00e3o disjunto
 - entidades similares mesmos atributos

Tipo Entidade

Representação:

00: Classe

Occion

"Numa série ou num conjunto, grupo ou divisão que apresenta características ou atributos semelhantes." (Ferreira, 1989)

Classificação de Carl Linné

• O O Classe

- Quando realizamos uma classificação de objetos, identificamos o seu comportamento e as características que eles possuem em comum.
- Classes definem:
 - Atributos que irão descrever o objeto;
 - Métodos que definem o comportamento dos mesmos.

Objetos e Classes

 Os objetos são organizados/divididos em grupos chamados classes.

- Objetos da mesma classe têm:
 - o mesmo conjunto de atributos (os valores dos atributos podem ser diferentes);
 - o mesmo conjunto de métodos.

UML Unified Modeling Language

- http://www.uml.org/
- Desenvolvida entre 1994-96
- Criadores
 - Grady Booch, Ivar Jacobson and James Rumbaugh na Rational Software
- Padrão OMG em 1997
 - OMG Object Management Group
 - http://omg.org/

(Wikipedia, 2015)

UML Classe

Pessoa

Circulo

Rhacophytales

color: ColorType

height: int

Exemplo de Classe

Esfera

Atributos (nome, tipo)

(**peso**, real)

(raio, real)

(elasticidade, string)

(cor, color)

Comportamento

aumentar, diminuir, se mover

Exemplo de Objeto

Esfera Vermelha

Objeto Esfera

Atributos (nome, valor)

(**peso**, 200 g)

(raio, 60 cm)

(elasticidade, alta)

(cor, vermelha)

Comportamento

aumentar, diminuir, se mover

UML

Instância de Classe

Atributos

 Cada instância de entidade ou relacionamento tem atributos que a descrevem

Atributos

Representação Alternativa

Tipos de Atributo

Simples (atômico)

Multivalorado

Tamanho

Atributos-Chave

- Servem para distinguir ocorrências da entidade
- São únicos na relação

Atributos-Chave

Representação Alternativa

Atributo-chave Composto

(Heuser, 2004)

UML

Atributos (propriedades)

Pessoa

codigo: String nome: String telefone: int

Livro

isbn: String titulo: String autor: String

ano: int

categoria: String

Circulo

centroX: int centroY: int

raio: int

UML

Métodos (operações)

Circulo

centroX: int

centroY: int

raio: int

area(): double

setRaio(novo: int)

Exercício (parte 1)

Uma indústria farmacêutica quer desenvolver um banco de dados para registrar os medicamentos que ela produz, bem como os vírus tratados por estes medicamentos.

Elabore uma modelo conceitual para este banco de dados conforme o detalhamento a seguir:

- Devem ser armazenados os nomes científicos e populares dos vírus bem como os períodos de incubação.
- Para medicamentos, devem ser armazenados o nome de venda e o composto ativo.
- A princípio considere que não há relação entre vírus e medicamentos.

Relacionamento

ER: Relacionamento

ER: Relacionamento

- Associação entre entidades
- Atributo de uma entidade que se refere a outra

Conjunto de Relacionamentos

Conjunto de Relacionamentos

ER: Entidade

Exemplo Categoria

ER: Relacionamento

Exemplo Pertence

ER: Auto-Relacionamento

 Relacionamento entre ocorrências da mesma entidade

ER: Papéis

 Função que instância de entidade cumpre dentro de instância de relacionamento

ER: Papéis

00: Relacionamento

00: Relacionamento

- Associação entre objetos
- Atributo de um objeto que se refere a outro
 - Atributo definido na classe

UML: Relacionamento

UML: Relacionamento Direcionado

UML: Autorelacionamento

UML: Papéis

Pessoa			Livro
	escreve		
	+autor	+obra	
	0.0101	· Obia	

ER: Grau de Relacionamento

 Número de entidades que participam do relacionamento

Grau de Relacionamento Binário

Grau de Relacionamento Ternário

ER: Cardinalidade no Relacionamento

- Restrições que limitam a possibilidade de combinações de entidades em relacionamentos
- Cardinalidade:
 - Máxima
 - Mínima

Razão de Cardinalidade

Razão de Cardinalidade

- É expressa a razão (ou proporção) de participação em um relacionamento.
- Transcrição gráfica das proporções: 1:1, 1:N, N:1 e N:N

Relacionamento n:n

Relacionamento n:n

Relacionamento 1:n

Relacionamento 1:n

Notação de Cardinalidade

 A notação com apenas um valor de cada lado representa a razão (ou proporção) na participação. Abaixo, proporção 1:N.

Inspirado em (Heuser, 2004)

Relacionamento 1:n

Relacionamento 1:1

Cardinalidade em Relacionamento Ternário

Restrição de Participação na Relação (Cardinalidade)

Restrição de Participação na Relação

- Notação alternativa à razão de cardinalidade.
- Indica restrição mínima e máxima (min, max) de participação de cada entidade na relação.
- É indicado no lado correspondente à entidade (oposto do anterior).

Restrição de Participação na Relação

 É indicado no lado correspondente à entidade (oposto do anterior).

Restrição de Participação na Relação

Restrição de Participação na Relação

Restrições de Participação

- Relacionadas à cardinalidade mínima:
 - Participação Total (obrigatória) ⇒ mínima 1
 - Participação Parcial (opcional) ⇒ mínima 0

UML: Cardinalidade Máxima

UML: Cardinalidade Mínima

Exemplo Diagrama ER

Atributos no Relacionamento

Atributos no Relacionamento

Exercício

Uma indústria farmacêutica quer desenvolver um banco de dados para registrar os medicamentos que ela produz, bem como os vírus tratados por estes medicamentos.

Elabore uma modelo conceitual para este banco de dados conforme o detalhamento a seguir:

- Devem ser armazenados os nomes científicos e populares dos vírus bem como os períodos de incubação.
- Para medicamentos, devem ser armazenados o nome de venda e o composto ativo.

Exercício

parte 2

- a)Considere que um dado medicamento pode tratar vários vírus e um vírus pode ser tratado por vários medicamentos.
- b)Medicamentos são fabricados por empresas que possuem nome e CNPJ. Uma empresa pode fabricar vários medicamentos, mas um medicamento é fabricado por uma única empresa.

Entidade Fraca

Classe de Associação

EER – ER Estendido

- ER original não suporta generalização/especialização
- ER Estendido (EER) acrescenta estes recursos

EER: Especialização/Gener alização

Generalização / Especialização Compartilhada ou Superposta

Exclusiva ou Disjunta

Total

Parcial

Compartilhada e Total

Exclusiva e Parcial

	Total (t)	Parcial (p)
Exclusiva (x)	xt	хр
Compartilhada (c)	ct	ср

(Heuser, 2004)

00: Herança

UML: Herança

Pessoa

-código: String

-nome: String

-telefone: int

Funcionário

-admissão: Date

-função: String

Associado

-associação: Date

Especialização total x Classe abstrata

especialização total x classe abstrata

UML: Herança

Mídia

-código: String

-título: String

-ano: int

-categoria: String

Livro

-ISBN: String

-autor: String

DVD

-diretor: String

-produtor: String

Exercício

parte 3

 Vírus podem ser classificados em diversas categorias, mas considere apenas Vírus com DNA, Vírus com RNA e Retrovírus. Retrovírus são tratados com coquetéis de medicamentos. Um coquetel é composto por vários medicamentos, cada um em uma concentração específica. Um coquetel tem uma dosagem específica para o tratamento de um dado Retrovírus.

Caso dos Taxis

- Exemplo criado por prof. Geovane Cayres Magalhães
 - http://www.ic.unicamp.br/~geovane/mo410-091/caso.
 html

Referências

- Chen, Peter Pin-Shan (1976) The entityrelationship model - toward a unified view of data. ACM Trans. Database Systems, ACM, 1, 9-36.
- Elmasri, Ramez; Navathe, Shamkant B. (2005)
 Sistemas de Bancos de Dados. Addison-Wesley,
 4ª edição em português.
- Guimarães, Célio (2003) Fundamentos de Bancos de Dados: Modelagem, Projeto e Linguagem SQL. Editora UNICAMP, 1ª edição.
- Heuser, Carlos Alberto (2004) Projeto de Banco de Dados. Editora Sagra Luzzato, 5ª edição.

Referências

Ramakrishnan, Raghu; Gehrke, Johannes (2003)
 Database Management Systems. McGraw-Hill,
 3rd edition.

Referências Bibliográficas

- Almeida, Charles Ornelas, Guerra, Israel; Ziviani, Nivio (2010) **Projeto de Algoritmos** (transparências aula).
- Bloom, Paul (2007) Introduction to Psychology transcrição das aulas (aula 17). Yale University.
- Ferreira, Aurélio B. H. (1989) Minidicionário da Língua Portuguesa. Rio de Janeiro, Editora Nova Fronteira.
- Houaiss, Instituto Antônio. Dicionário Houaiss da língua portuguesa (2006) Editora Objetiva, Março.
- IBM International Business Machines Corporation. IBM Smalltalk Tutorial [Online] http://www.wi2.unierlangen.de/sw/smalltalk/
- Liskov, Barbara; Zilles, Stephen. Programming with abstract data types (1974) ACM SIGPLAN Notices, 9 (4) p. 50.

Referências Bibliográficas

- Meyer, Bertrand (1997) Object-Oriented Software
 Construction Second Edition. USA, Prentice-Hall, Inc.
- Miller, Robert (2004) 6.831 User Interface Design and Implementation (lecture notes). MIT OpenCourseware.
- Rocha, Heloisa Vieira da, Baranauskas, Maria Cecilia Calani (2003) Design e Avaliação de Interfaces Humano-Computador. NIED/UNICAMP.
- Santos, L. R., & Hood, B. M. (2009). Object representation as a central issue in cognitive science. The Origins of Object Knowledge: The Yale Symposium on the Origins of Object & Number Representation. Oxford: Oxford University Press.
- Shaw, M. Abstraction Techniques in Modern
 Programming Languages (1984) IEEE Software, 1, 4, 10-26.

Referências

- Bloom, Paul (2007) Introduction to Psychology transcrição das aulas (aula 17). Yale University.
- Chen, Peter Pin-Shan (1976) The entity-relationship model - toward a unified view of data. ACM Trans. Database Systems, ACM, 1, 9-36.
- Dijkstra, E. W. (1986) **On a cultural gap**. The Mathematical Intelligencer. vol. 8, no. 1, pp. 48-52.
- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4a. edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2011) Sistemas de Bancos de Dados. Pearson, 6a. edição em português.
- Guimarães, Célio (2003) Fundamentos de Bancos de Dados: Modelagem, Projeto e Linguagem SQL. Editora UNICAMP, 1a. edição.

Referências e Agradecimentos

- Diversos slides baseados no curso de BD do Prof. André Santanchè (UNICAMP)
 - Site: http://www.ic.unicamp.br/~santanche
 - Canal Youtube: https://www.youtube.com/santanche