Ecuaciones Diferenciales

Variables Separables

Prof. Arnoldo Del Toro Peña

11 de agosto de 2025

Método de Variables Separables

Definición

El **método de variables separables** es una técnica para resolver ecuaciones diferenciales ordinarias de primer orden donde es posible separar las variables dependiente e independiente en lados opuestos de la ecuación.

Forma General

Una ecuación diferencial es separable si puede escribirse en la forma:

$$\frac{dy}{dx} = f(x) \cdot g(y)$$

O equivalentemente:

$$M(x)dx + N(y)dy = 0$$

Donde M(x) depende solo de x y N(y) depende solo de y.

Procedimiento de Solución

Paso 1: Verificar que la ecuación es separable

La ecuación debe poder expresarse como producto de una función de x por una función de y.

Paso 2: Separar las variables

Reorganizar la ecuación para que todas las expresiones con y estén en un lado y todas las expresiones con x en el otro:

$$\frac{dy}{g(y)} = f(x)dx$$

Paso 3: Integrar ambos lados

$$\int \frac{dy}{g(y)} = \int f(x) dx + C$$

Paso 4: Resolver para y (si es posible)

Despejar y de la ecuación resultante para obtener la solución general.

Ejemplos Resueltos

Ejemplo 1: Ecuación Básica

Ecuación: $\frac{dy}{dx} = 3x^2y$

Paso 1: Verificar separabilidad $\frac{dy}{dx} = 3x^2 \cdot y$ (producto de función de x por función de y)

Paso 2: Separar variables

$$\frac{dy}{y} = 3x^2 dx$$

Paso 3: Integrar

$$\int \frac{dy}{y} = \int 3x^2 dx$$
$$\ln|y| = x^3 + C_1$$

Paso 4: Resolver para y

$$|y| = e^{x^3 + C_1} = e^{C_1} \cdot e^{x^3}$$

 $y = Ce^{x^3}$

 $(\text{donde } C = \pm e^{C_1})$

Solución general: $y = Ce^{x^3}$

Ejemplo 2: Con Condición Inicial

Ecuación: $\frac{dy}{dx} = \frac{2x}{y^2}$, con y(1) = 2

Paso 1: Separar variables

$$y^2 dy = 2x dx$$

Paso 2: Integrar

$$\int y^2 dy = \int 2x dx$$
$$\frac{y^3}{3} = x^2 + C$$

Paso 3: Aplicar condición inicial y(1) = 2

$$\frac{(2)^3}{3} = (1)^2 + C$$
$$\frac{8}{3} = 1 + C$$
$$C = \frac{8}{3} - 1 = \frac{5}{3}$$

Solución particular: $\frac{y^3}{3} = x^2 + \frac{5}{3}$

O despejando: $y^3 = 3x^2 + 5$, entonces $y = \sqrt[3]{3x^2 + 5}$

Ejemplo 3: Ecuación de Crecimiento Poblacional

Ecuación: $\frac{dP}{dt} = kP$ (donde k es una constante)

Separar variables:

$$\frac{dP}{P} = kdt$$

Integrar:

$$\int \frac{dP}{P} = \int kdt$$
$$\ln|P| = kt + C_1$$

Resolver para P:

$$P = Ce^{kt}$$

 $(donde C = e^{C_1})$

Con condición inicial $P(0) = P_0$:

$$P_0 = Ce^{k\cdot 0} = C$$

Solución particular: $P(t) = P_0 e^{kt}$

Ejemplo 4: Ecuación Logística

Ecuación:
$$\frac{dP}{dt} = rP(1 - \frac{P}{K})$$
 (crecimiento logístico)

Reescribir:

$$\frac{dP}{dt} = \frac{rP(K-P)}{K}$$

Separar variables:

$$\frac{K \, dP}{P(K-P)} = r \, dt$$

Usar fracciones parciales:

$$\frac{K}{P(K-P)} = \frac{1}{P} + \frac{1}{K-P}$$

Integrar:

$$\int \left(\frac{1}{P} + \frac{1}{K - P}\right) dP = \int r dt$$

$$\ln |P| - \ln |K - P| = rt + C_1$$

$$\ln \left|\frac{P}{K - P}\right| = rt + C_1$$

Resolver:

$$\frac{P}{K - P} = Ce^{rt}$$

Despejando P:

$$P = \frac{CKe^{rt}}{1 + Ce^{rt}}$$

Casos Especiales y Consideraciones

Caso 1: Cuando g(y) = 0

Si $g(y_0)=0$ para algún valor y_0 , entonces $y=y_0$ es una **solución singular** (equilibrio).

Ejemplo: En $\frac{dy}{dx} = y^2 - 4$, si $y^2 - 4 = 0$, entonces y = 2 y y = -2 son soluciones de equilibrio.

Caso 2: Pérdida de Soluciones

Al dividir por g(y), podemos perder soluciones donde g(y) = 0. Siempre verificar estos casos por separado.

Caso 3: Integración con Valor Absoluto

Cuando aparece $\ln |y|$, considerar tanto valores positivos como negativos de y en la solución general.

Aplicaciones en Ingeniería

1. Circuitos RC

Ecuación: $RC\frac{dV}{dt} + V = 0$ (descarga del capacitor)

Separar: $\frac{dV}{V} = -\frac{dt}{RC}$

Solución: $V(t) = V_0 e^{-t/RC}$

2. Ley de Enfriamiento de Newton

Ecuación: $\frac{dT}{dt} = -k(T - T_a)$ (donde T_a es temperatura ambiente)

Separar: $\frac{dT}{T-T_a} = -k dt$

Solución: $T(t) = T_a + (T_0 - T_a)e^{-kt}$

3. Decaimiento Radiactivo

Ecuación: $\frac{dN}{dt} = -\lambda N$

Solución: $N(t) = N_0 e^{-\lambda t}$

4. Vaciado de Tanques (Ley de Torricelli)

Ecuación: $\frac{dh}{dt} = -k\sqrt{h}$ (donde h es la altura del líquido)

Separar: $\frac{dh}{\sqrt{h}} = -k dt$

Integrar: $2\sqrt{h} = -kt + C$

Solución: $h(t) = \left(\frac{C - kt}{2}\right)^2$

Verificación de Soluciones

Siempre verificar la solución sustituyendo en la ecuación diferencial original:

Ejemplo: Si $y = Ce^{x^3}$ es solución de $\frac{dy}{dx} = 3x^2y$

$$\frac{dy}{dx} = \frac{d}{dx}(Ce^{x^3}) = C \cdot 3x^2e^{x^3} = 3x^2(Ce^{x^3}) = 3x^2y$$

Limitaciones del Método

- 1. No todas las EDO son separables: $\frac{dy}{dx} = x + y$ no es separable
- 2. Integración compleja: Algunas integrales pueden no tener forma cerrada
- 3. Soluciones implícitas: No siempre es posible despejar y explícitamente
- 4. **Pérdida de soluciones:** Al dividir por funciones que pueden ser cero

Ejemplos Adicionales Resueltos

Ejemplo 5: Ecuación con Funciones Trigonométricas

Ecuación: $\frac{dy}{dx} = y \cos x$

Solución:

- Separar variables: $\frac{dy}{y} = \cos x \, dx$
- Integrar: $\int \frac{dy}{y} = \int \cos x \, dx$ Resultado: $\ln |y| = \sin x + C_1$ Solución general: $y = Ce^{\sin x}$

Con condición inicial y(0)=3: $3=Ce^{\sin 0}=Ce^0=C$ Solución particular: $y=3e^{\sin x}$

Ejemplo 6: Ecuación con Raíces

Ecuación: $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{x}$, para x > 0

Solución:

- Separar variables: $\frac{dy}{\sqrt{1-y^2}} = \frac{dx}{x}$
- Integrar: $\int \frac{dy}{\sqrt{1-y^2}} = \int \frac{dx}{x}$
- Resultado: $\arcsin(y) = \ln|x| + C$
- Solución general: $y = \sin(\ln|x| + C)$

Ejemplo 7: Ecuación con Productos de Funciones

Ecuación: $\frac{dy}{dx} = xy(1+x^2)$

Solución:

• Separar variables: $\frac{dy}{y} = x(1+x^2)dx$

• Expandir: $\frac{dy}{y} = (x+x^3)dx$

• Integrar: $\int_{-u}^{\infty} \frac{dy}{y} = \int (x+x^3)dx$

• Resultado: $\ln|y| = \frac{x^2}{2} + \frac{x^4}{4} + C_1$

• Solución general: $y = Ce^{\frac{4}{x^2} + \frac{x^4}{4}}$

Ejemplo 8: Ecuación que Requiere Factorización

Ecuación: $\frac{dy}{dx} = \frac{y^2 - 4}{r^2}$

Solución:

• Factorizar: $\frac{dy}{dx} = \frac{(y-2)(y+2)}{x^2}$

• Separar variables: $\frac{dy}{(y-2)(y+2)} = \frac{dx}{x^2}$

• Fracciones parciales: $\frac{1}{(y-2)(y+2)} = \frac{A}{y-2} + \frac{B}{y+2}$

Resolviendo: 1 = A(y+2) + B(y-2)

• Si y = 2: $1 = 4A \Rightarrow A = \frac{1}{4}$

• Si y = -2: $1 = -4B \Rightarrow B = -\frac{1}{4}$

• Integrar: $\int \left(\frac{1/4}{y-2} - \frac{1/4}{y+2}\right) dy = \int \frac{dx}{x^2}$

■ Resultado: $\frac{1}{4} \ln \left| \frac{y-2}{y+2} \right| = -\frac{1}{x} + C_1$

• Solución implícita: $\ln \left| \frac{y-2}{u+2} \right| = -\frac{4}{r} + C$

Ejemplo 9: Problema de Mezclas

Situación: Un tanque contiene 100 L de agua pura. Se bombea salmuera con 2 kg/L de sal a razón de 3 L/min, y la mezcla sale a la misma velocidad.

Ecuación: $\frac{dS}{dt} = 6 - \frac{3S}{100}$ (donde S es la cantidad de sal en kg)

Solución:

■ Reescribir: $\frac{dS}{dt} = \frac{600 - 3S}{100}$ ■ Separar variables: $\frac{dS}{600 - 3S} = \frac{dt}{100}$

• Integrar:
$$\int \frac{dS}{600 - 3S} = \int \frac{dt}{100}$$

■ Resultado:
$$-\frac{1}{3} \ln |600 - 3S| = \frac{t}{100} + C_1$$

• Simplificar:
$$\ln|600 - 3S| = -\frac{3t}{100} + C$$

• Solución general:
$$600 - 3S = Ae^{-3t/100}$$

• Despejar S:
$$S = 200 - \frac{A}{3}e^{-3t/100}$$

Con condición inicial
$$S(0)=0$$
: $0=200-\frac{A}{3}\Rightarrow A=600$

Solución particular:
$$S(t) = 200(1 - e^{-3t/100})$$

Ejemplo 10: Ecuación de Bernoulli Reducible

Ecuación:
$$\frac{dy}{dx} + xy = xy^3$$

Transformación: Esta es una ecuación de Bernoulli. Dividiendo por
$$y^3$$
: $y^{-3}\frac{dy}{dx} + xy^{-2} = x$

Sustitución:
$$v = y^{-2}$$
, entonces $\frac{dv}{dx} = -2y^{-3}\frac{dy}{dx}$

Nueva ecuación:
$$-\frac{1}{2}\frac{dv}{dx} + xv = x$$

Multiplicar por -2:
$$\frac{dv}{dx} - 2xv = -2x$$

Esta es lineal en v, pero también separable:
$$\frac{dv}{dx} = 2xv - 2x = 2x(v-1)$$

Separar variables:
$$\frac{dv}{v-1} = 2x dx$$

Integrar:
$$\ln |v - 1| = x^2 + C_1$$

Solución para v:
$$v = 1 + Ce^{x^2}$$

Regresar a y:
$$y^{-2} = 1 + Ce^{x^2}$$

Solución final:
$$y = \pm \frac{1}{\sqrt{1 + Ce^{x^2}}}$$

Ejemplo 11: Trayectorias Ortogonales

Problema: Encontrar las trayectorias ortogonales a la familia de curvas $y = Cx^2$.

Solución:

• Familia dada:
$$y = Cx^2$$

• **Derivar:**
$$\frac{dy}{dx} = 2Cx = \frac{2y}{x}$$
 (eliminando C)

- \blacksquare Trayectorias ortogonales: $\frac{dy}{dx} = -\frac{x}{2y}$ (pendiente recíproca negativa)
- Separar variables: 2y dy = -x dx
- Integrar: $\int 2y \, dy = \int -x \, dx$
- Resultado: $y^2 = -\frac{x^2}{2} + C$
- Trayectorias ortogonales: $x^2 + 2y^2 = K$ (familia de elipses)

Ejemplo 12: Problema de Velocidad Terminal

Situación: Un objeto cae con resistencia del aire proporcional al cuadrado de la velocidad.

Ecuación:
$$m\frac{dv}{dt} = mg - kv^2$$
 (donde $k > 0$)

Solución:

- $\bullet \ \, \textbf{Reescribir:} \ \frac{dv}{dt} = g \frac{k}{m} v^2 = g \left(1 \frac{kv^2}{mg} \right)$
- **Definir:** $v_t = \sqrt{\frac{mg}{k}}$ (velocidad terminal)
- \bullet Ecuación: $\frac{dv}{dt}=g\left(1-\frac{v^2}{v_t^2}\right)=\frac{g}{v_t^2}(v_t^2-v^2)$
- Separar variables: $\frac{dv}{v_t^2 v^2} = \frac{g}{v_t^2} dt$
- $\quad \textbf{Fracciones parciales:} \ \frac{1}{v_t^2-v^2} = \frac{1}{(v_t-v)(v_t+v)} = \frac{1}{2v_t} \left(\frac{1}{v_t-v} + \frac{1}{v_t+v} \right)$
- Integrar: $\frac{1}{2v_t} \ln \left| \frac{v_t + v}{v_t v} \right| = \frac{g}{v_t^2} t + C$

Con condición inicial v(0) = 0: C = 0

Solución implícita: $\ln \left| \frac{v_t + v}{v_t - v} \right| = \frac{2gt}{v_t}$

Solución explícita: $v(t) = v_t \tanh\left(\frac{gt}{v_t}\right)$

Resumen del Proceso

- 1. Identificar si la ecuación es separable: $\frac{dy}{dx} = f(x)g(y)$
- 2. Separar las variables: $\frac{dy}{g(y)} = f(x)dx$
- 3. Integrar ambos lados: $\int \frac{dy}{g(y)} = \int f(x)dx + C$
- 4. Resolver para y (si es posible)
- 5. **Aplicar** condiciones iniciales si se proporcionan

- 6. Verificar la solución en la ecuación original $\,$
- 7. Considerar soluciones singulares donde g(y)=0