第七讲图像分类(5) Image Classification (from theory to practice)

王文中

安徽大学计算机学院

后肥人王发中一计算机规范 后肥人王发中一计算机规范 后肥人王发中一计算机规范

机器学习基本概念

后肥大主义

机器学习

		X		у	h	f1	f2	f3	f4	f5	f6	f7	f8
	0	0	0	0	0	0	0	0	0	0	0	0	0
观测	0	0	0	1	1	1	1	1	1	1	1	1	1
测 样	0	1	0	1	1	1	1	1	1	1	1	1	1
本	0	1	1	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0
测	1	0	1		?	0	0	0	0	1	1	1	1
试样	1	1	0		?	0	0	1	1	0	0	1	1
本	1	1	1		?	0	1	0	1	0	1	0	1

独立同分布假设(Independent Identical Distributed, I.I.D)

$$P(x,y) = P(y|x)P(x)$$
$$y = f(x)$$

训练/测试样本是从同一个概率分布独立采样的

Non-I.I.D

王文中: 高级计算机视觉

Non-I.I.D

试样本

王文中: 高级计算机视觉

Non-I.I.D

Non-I.I.D

医院B

独立同分布假设: 分布漂移

 $P_{\text{serve}}(x)$

	Training	Serving
Joint	$P_{ ext{train}}(y,x)$	$P_{ m serve}(y,x)$
Conditional	$P_{ ext{train}}(y x)$	$P_{ m serve}(y x)$
	want (o)	55175 (51

 $P_{\text{train}}(x)$

纸彩烧地

Dataset shift

 $P_{\text{train}}(y, x) \neq P_{\text{serve}}(y, x)$

Covariate shift

 $P_{\text{train}}(y|x) = P_{\text{serve}}(y|x)$

 $P_{\text{train}}(x) \neq P_{\text{serve}}(x)$

Concept shift

 $P_{\text{train}}(y|x) \neq P_{\text{serve}}(y|x)$

 $P_{\text{train}}(x) = P_{\text{serve}}(x)$

Marginal

The Virtuous Cycle of Al

The Virtuous Cycle of AI

Andrew Ng: AI Transformation Playbook

泛化性能(Generalization)

泛化性能(Generalization)

h*:升中最好的假设(真实误差最小的假设)

可能近似正确(Probably Approximately Correct,PAC)

$$\epsilon = O\left(\sqrt{\frac{d \times logm - log\delta}{m}}\right)$$

m: 训练样本的数量

d: 假设空间的复杂程度

模型越复杂(d很大),需要的训练样本越多(m很大)

假设空间

线性函数

学习机

算法A: 1)利用样本集D评价假设h;

算法A: 2)搜索预测损失最小的h,并输出;

https://www.cs.umd.edu/~tomg/projects/landscapes/

过拟合与欠拟合

算法输出的最好的假设h受制于训练样本D和假设空间H。

训练样本D可能不具有代表性

样本空间

训练样本D可能不具有代表性

训练样本D可能噪声太大

假设空间H可能太复杂

假设空间H可能太简单

$$h = \mathcal{A}(\mathcal{D}; \mathcal{H})$$

方差 (variance)

方差与偏差

$$f(x) = x^2$$

$$H_1 = \{h(x) = a_1 x + a_0\}$$

$$H_2 = \{h(x) = a_2 x^2 + a_1 x + a_0\}$$

$$H_2 = \{h(x) = a_2x^2 + a_1x + a_0\}$$
 $H_5 = \{h(x) = a_5x^5 + a_4x^4 + \dots + a_0\}$

什么情况下可以使用机器学习方法

• 1. 没有已知、高效的算法

• 2.有数据

• 3. 输入与输出之间有关联

• 从无人机航拍图像,识别农作物的种类: 玉米、烟草、高粱。

• 从十万张明星人脸照片,以及十万张猫脸照片,训练一个从明星人脸到猫脸的转换程序。

• 根据人脸判别该人是否是罪犯?

• 从监控视频图像中提取的行人图像, 判别他的性别? 种族?

ARLIX 中一计算机规范 各肥人工程能研究院规范 各肥人工程能研究院规范 各肥人工程能研究院规范

图像分类实践

Andrew Ng: Machine Learning Yearning

一般流程

The ML project lifecycle

Andrew Ng

快速迭代

一般流程

- 1. 确定项目任务和应用场景
 - 定义输入和输出
 - 确定其它约束
- 2. 收集样本
 - 1) 采集图像(网络爬虫、自己拍摄)
 - 2) 标注图像
 - 3)数据清洗(删除错误的图像,比如非花卉图像;删除低质量图像,比如分辨率非常低、成像非常模糊的图像;删除重复图像;修正标注错误)

一般流程

- 3. 确定并复现基准:
 - 样本比较少: 手工分类,得到Human Performance
 - SOTA(State-Of-The-Art),站在巨人的肩膀上
- 4. 诊断并改进模型
 - 错误分析(Error Analysis)

确定基准模型(BaseLine)

- 图像分类:
 - ImageNet图像识别竞赛的模型
 - ResNet, GoogLeNet...
 - 例外:
 - MNIST手写体识别,不适合用ResNet这类预训练模型,为什么?
 - 交通信号灯颜色(红、绿、黄)识别,不适合用ResNet?
- 本例中数据量非常少
 - 使用ResNet-50微调

保证模型正常训练

- 使用少量样本训练模型
 - 确保代码可以正常运行,快速排除代码bug。
 - 确定合适的优化算法、学习速率等超参数。
 - 合适的大模型在小样本上应该过拟合。

保证模型正常训练

- 损失函数不下降:
 - 调节学习率
 - 使用torch.optim.lr_scheduler
 - 更换优化器
 - 检查数据是否有问题

保证模型正常训练

- 损失函数出现NaN:
 - 可能发生了梯度爆炸。
 - 梯度裁剪:nn.utils.clip_grad_value, torch.nn.utils.clip_grad_norm。
 - 可能数据中包含了异常值

模型诊断

- 1. 诊断是否欠拟合:
 - 训练集精度(0.8)远低于期望值(Human Performance, 0.98)
 - 欠拟合解决对策:增加模型复杂度(比如减少正则化、增加网络层数)

模型诊断

- 2. 诊断是否过拟合:如果训练集精度比较高(0.95),但是验证集精度比较低(0.8),那么模型过拟合。
- 检查验证集数与训练集数据是否满足独立同分布假设
 - 如果不满足: 更新数据集。
 - 增加训练样本数量: 收集更多样本、样本增广
 - 减少模型复杂度: 增加正则化因子、减少可训练网络层数
 - 采用Bagging集成学习

错误分析

- 对分类结果进行分析
- 找出错误样本的规律
 - 模糊图像容易出错?
 - 低照度图像容易出错?
 - 目标较小的图像容易出错?
- 根据分析结果,确定下一步改进方向

错误分析

	12 Mily	ANT THE		12/19/14
Image	Dog	Great cat	Blurry	Comments
1	✓			Usual pitbull color
2			V	
3		✓	✓	Lion; picture taken at zoo on rainy day
4		✓		Panther behind tree
% of total	8%	43%	61%	

Andrew Ng

错误分析

ColtsFoot-> Buttercup: 17%

ColtsFoot-> ColtsFoot: 40%

真实label: ColtsFoot

改成暖色调

预测结果: Buttercup 😌

预测结果: ColtsFoot ☺

Dandelion->Cowslip

检查输入网络的图片,而不是原始图像


```
train_set = datasets.ImageFolder(
    train_dir,
    transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize,
]))
```

检查输入网络的图片,而不是原始图像

了解图像增广可能带来的问题

了解图像增广可能带来的问题

调整输入x

调整输入x

- Resnet50,Layer4微调
- 原始图像, RandomResizedCrop(224):
 - 97.94%, 93.82%
- 原始图像,RandomResizedCrop(224, scale=(0.9,1), ratio=(0.8, 1.2)):
 - 99%, 95%
- 裁剪图像,RandomResizedCrop(224, scale=(0.9,1), ratio=(0.8, 1.2):
 - 100%, 95.59%

调整输出y

Crocus

总结

- 1.机器学习的基本概念
 - 独立同分布假设
 - 过拟合与欠拟合的原因及其对策
 - 机器学习的适用范围
- 2.开发图像识别模型
 - 快速迭代, 从错误中找方向
 - 模型诊断
 - 错误分析