Introduction to (Mathematical) Optimization

AJ Friend, Nick Henderson (w/ material from Stephen Boyd and Steven Diamond)

June 28, 2015

Optimization

Optimization

Optimization introducing a change to a system to achieve a better (or best) outcome

Optimization

Optimization introducing a change to a system to achieve a better (or best) outcome

Optimized there does not exist a (known) change to a system to achieve a better outcome

Mathematical Optimization

Optimization introducing a change to a system to achieve a better (or best) outcome

Optimized there does not exist a (known) change to a system to achieve a better

outcome

Mathematical Optimization

Optimization introducing a change to a system to achieve a better (or best) outcome

Optimized there does not exist a (known) change to a system to achieve a better

outcome

- system: mathematical model
- change: change to input variables (parameters)
- outcome: a measure of performance of the model, objective function

The Raptor Problem

See other slides

$$\text{minimize} \quad f(x) \in C^2: \mathbf{R} \to \mathbf{R}$$

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

ightharpoonup x is a real variable

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ightharpoonup x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ightharpoonup x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number
- ▶ Local optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x near x^*

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ► x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number
- Local optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x near x^*
- ▶ Global optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x in domain of interest

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ► x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number
- Local optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x near x^*
- ▶ Global optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x in domain of interest
- When f(x) is twice continuously differentiable, then local optimization involves finding a point x^* such that $f'(x^*) = 0$ and $f''(x^*) > 0$

Optimization in one variable: definitions

Optimization in one variable: example objective function

Optimization in one variable: critical points, f'(x) = 0

Optimization in one variable: local optima

Optimization in one variable: local optima, f''(x) = ?

Optimization in one variable: unbounded below

Optimization in one variable: saddle point, f'(x) = 0 and f''(x) = 0

Optimization in one variable: convex objective

Key definitions

- domain: space for input variable x
- **range**: space for output of objective function f(x)
- critical point: f'(x) = 0
- ▶ local minimizer. f'(x) = 0 and f''(x) > 0
- ▶ local maximizer: f'(x) = 0 and f''(x) < 0
- ▶ saddle point: f'(x) = 0 and f''(x) = 0
- ▶ global minimizer: x^* such that $f(x^*) \leq f(x)$ for all x in domain

lacktriangle Start with an initial guess x_0

- ightharpoonup Start with an initial guess x_0
- ▶ Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \dots \to x^*$$

- ightharpoonup Start with an initial guess x_0
- ▶ Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \dots \rightarrow x^*$$

▶ Notation for sequence and convergence: $\{x_k\} \rightarrow x^*$

- ▶ Start with an initial guess x_0
- ► Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \dots \rightarrow x^*$$

- ▶ Notation for sequence and convergence: $\{x_k\} \rightarrow x^*$
- ▶ Key algorithm property: *descent condition*

$$f(x_{k+1}) < f(x_k)$$

- ▶ Start with an initial guess x_0
- ► Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \dots \rightarrow x^*$$

- ▶ Notation for sequence and convergence: $\{x_k\} \rightarrow x^*$
- ▶ Key algorithm property: *descent condition*

$$f(x_{k+1}) < f(x_k)$$

► Technical algorithm property: *convergence to solution*

$$|x_{k+1}-x_k| o 0$$
 if and only if $f'(x_k) o 0$ and $\lim_{k o \infty} f''(x_k) \ge 0$

minimize
$$f(x) \in C^2 : \mathbb{R}^2 \to \mathbb{R}$$

- x is a 2-dimensional vector of real variables
- f(x) is the objective function
 - First derivative or gradient of f is written $\nabla f(x)$
 - Second derivate or Hessian of f is written $\nabla^2 f(x)$
- ▶ We are looking for a point x^* such that $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$. Note that this is a *local* optimizer

The gradient $\nabla f(x)$

Vector of variables:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Gradient of f:

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix}$$

The Hessian $\nabla^2 f(x)$

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

Surface plots and contours

- ▶ show local minimizer/maximizer critical point
- ► show saddle point

Higher dimensions

- ► can't easily visualize
- need analysis

Algorithms

- ► Basic loop
- ▶ Descent condition
- ► Gradient descent
- ► Newton's method

Show example on rosenbrock function

▶ gradient descent vs. newton's method

Two very important optimization problems

- ► linear least squares
- ▶ non-linear least squares

Constraints

- ▶ basic idea of constraints
- work through example from multivariate calculus
- ▶ introduce idea of multipliers
- equality constraints
- ► inequality constraints
- ▶ linear constraints
- nonlinear constraints

Penalty and barrier methods

▶ introduce a penalty into the objective to penalize constraint violation

Linear programming

Discrete variables

- ► Mixed integer programming
- ► Scheduling problems

What's next

- ► Nonlinear programming
- ► Convex modelling
- ► Study of algorithms
- ► Modeling languages
- Automated differentiation

Test image 1

Test image 2

