Projeto: Movimento de um Pêndulo

Daniel Stulberg Huf – 1920468 Lívia Lutz dos Santos – 2211055 Pedro Gonçalves Mannarino – 2210617

Link para o projeto no Google Colab: compendulo.ipynb

Introdução

O tema do nosso projeto é simular o movimento de um pêndulo e usar o método Runge-Kutta de ordem 4, com e sem o passo adaptativo, para resolver a equação diferencial que rege seu movimento, $\theta'' + \frac{g}{l} sin(\theta) = 0$, onde l é o comprimento da haste sem peso e g é a aceleração da gravidade, e comparar os resultados com os obtidos através da simplificação de linearização da expressão.

Desenvolvimento

O projeto foi desenvolvido usando a ferramenta "Google Colab", na linguagem Python. Para fazer a simplificação de linearização da expressão original, podemos considerar que θ é pequeno, assim podemos aproximar $sin(\theta) \approx \theta$, e então ficamos com a equação diferencial: $\theta'' + \frac{g}{l}\theta = 0$, que tem solução analítica simples: $\theta(t) = \theta_0 cos(\sqrt{\frac{g}{l}t})$. Neste caso, o período (tempo necessário para o pêndulo completar um ciclo) é dado por: $T = 2\pi\sqrt{\frac{l}{g}}$.

Para nossos testes, fixamos o comprimento da haste em 1m e limitamos o erro local de cada passo do método em $\varepsilon=10^{-5}$, usando a estratégia de dobrar o passo. Para calcularmos numericamente o valor do período, monitoramos a mudança de sinal da velocidade, de modo que o período possa ser estimado por interpolação linear: $T=2[t_1+\frac{|v_1|}{|v_1|+|v_2|}(t_2-t_1)]$.

Começamos definindo a equação diferencial do pêndulo (edo_pendulo) e fizemos uma função para calcular um passo do método de Runge-Kutta de ordem 4 (passo_rk4). Em seguida, nas funções passo_adaptativo e solucao_adaptativa, usamos a estratégia de dobrar o passo do método a fim de calcular as soluções, além da função solucao_constante, que utiliza apenas um passo do método. Portanto, temos 3 tipos de solução diferentes: a solução adaptativa, a solução com um passo constante, e a solução analítica simplificada, que usa pequenos ângulos. Ressalta-se que, para a solução adaptativa, foi utilizado um passo inicial de h=0.01s, enquanto na solução com passo constante, este foi variado a cada teste.

Com isso, podemos calcular o período numérico usando a estratégia de mudança de sinal da velocidade na função calcular_periodo_numerico e também calculamos o período da solução analítica usando a fórmula original de período na função calcular periodo analítico.

Resultados e Análise

Em posse de todas as funções implementadas, realizamos uma análise comparativa utilizando diferentes ângulos iniciais e tipos de estratégias a fim de verificar as diferenças nos períodos e números de passos encontrados. O resultado pode ser visualizado na figura 1, que contém o ângulo inicial, a estratégia utilizada, o valor do período, o erro percentual em relação ao período analítico, o número de passos da estratégia e o tempo de execução de cada teste.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Â1 - (0)	Estantiais	Dania da (a)	E (07)	Nº Passos	T (a)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				` ′		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	Adaptativo	2.005340	0.036	29	0.003315
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	Analítica	2.006067	0.000	0	0.000001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		h = 0.01	2.015989	0.495	301	0.009380
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	h = 0.001	2.009959	0.194	3010	0.082310
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10		2.009893	0.191	30092	0.899724
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	Adaptativo	2.009813	0.187	31	0.004333
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	Analítica	2.006067	0.000	0	0.000001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	h = 0.01	2.020805	0.735	301	0.009190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	h = 0.001	2.014761	0.433	3010	0.085369
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	h = 0.0001	2.014694	0.430	30092	0.914577
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	Adaptativo	2.015294	0.460	32	0.003448
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	Analítica	2.006067	0.000	0	0.000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	h = 0.01	2.047181	2.050	301	0.010293
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	h = 0.001	2.041058	1.744	3010	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	h = 0.0001	2.040990	1.741	30092	0.876395
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	Adaptativo	2.041025	1.743	33	0.003447
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	Analítica	2.006067	0.000	0	0.000000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	h = 0.01	2.092584	4.313	301	0.010067
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	h = 0.001	2.086325	4.001	3010	0.089848
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	h = 0.0001	2.086256	3.997	30092	0.877621
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	Adaptativo	2.086282	3.999	34	0.004112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	Analítica	2.006067	0.000	0	0.000001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	h = 0.01	2.159405	7.644	301	0.009068
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	h = 0.001	2.152946	7.322	3010	0.083403
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	h = 0.0001	2.152875	7.318	30092	1.129421
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	Adaptativo	2.152977	7.323	35	0.009172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	Analítica	2.006067	0.000	0	0.000001
$\begin{array}{llllllllllllllllllllllllllllllllllll$		h = 0.01		18.392	301	
90 $h = 0.0001$ 2.367842 18.034 30092 1.773258		h = 0.001				
	90	h = 0.0001	2.367842	18.034		

Figura 1: Análise comparativa do pêndulo simples

Além da tabela, também foram gerados gráficos comparando as soluções analítica e numérica (com passo adaptativo) do movimento do pêndulo em um período completo considerando os ângulos iniciais de 5, 30, 60 e 90 graus radianos. Junto a cada gráfico de comparação, há também um gráfico que mostra o erro absoluto entre as duas soluções ao longo do tempo. Os gráficos estão mostrados abaixo na figura 2.

Figura 2: Comparação entre as soluções numérica e analítica do movimento do pêndulo em um período

A partir dos gráficos, é possível observar um período de aproximadamente 2s e confirmar que a solução simplificada da EDO é uma boa aproximação para pequenos ângulos (5 e 30 graus em nossos testes), mas começa a apresentar um erro maior para maiores ângulos (60 e 90 graus em nossos testes).

Para determinar o ângulo inicial θ_0 máximo para que a fórmula simplificada reporte um período menor que 0.001 (1%), foi definida a função encontrar_angulo_maximo_para_erro_menor_que_0_1. Para cada ângulo, indo de 1 a 90 graus radianos, essa função resolve a equação diferencial usando a solução adaptativa e gera um período numérico correspondente, que em seguida é comparado ao período analítico. A execução da função é interrompida quando é encontrada uma solução cujo período correspondente ultrapassa o limite do erro. A figura 3 abaixo mostra as iterações da função, encontrando o ângulo máximo de 7 graus abaixo do limite do erro.

Ângulo (°)	Período Num (s)	Erro (%)
1	2.004431	0.082
2	2.004545	0.076
3	2.004734	0.066
4	2.004999	0.053
5	2.005340	0.036
6	2.006656	0.029
7	2.007347	0.064
8	2.008102	0.101

Figura 3: Análise do ângulo máximo para erro < 0.1%

Para analisar o tempo de execução do método fazendo variar o número de períodos e ângulos iniciais, bem como verificar se o sistema é executado em tempo real, foi definida uma função analisar_tempo_de_execução. Essa função recebe como parâmetros o número de períodos e o ângulo inicial que se deseja executar a simulação, e calcula o tempo e número de passos necessários para a execução de cada estratégia de resolução. Além disso, a função verifica se o sistema é executado em tempo real comparando o tempo de execução de cada passo do método com o tamanho do passo. O resultado da análise pode ser visualizado na figura 4 abaixo, que mostra os resultados gerados para 10 períodos e quatro ângulos iniciais diferentes.

Ângulo (°)	Estratégia	Tempo (s)	Tempo/Passo (s)	Nº Passos	Tempo real?	Erro (%)
5	h = 0.01	0.062691	0.00003124	2007	Sim	0.051
5	h = 0.001	0.598461	0.00002983	20061	Sim	0.051
5	h = 0.0001	5.864030	0.00002921	200607	Sim	0.048
5	Adaptativo	0.040977	0.00033314	123	Sim	0.064
30	h = 0.01	0.102087	0.00005087	2007	Sim	1.744
30	h = 0.001	1.021343	0.00005091	20061	Sim	1.744
30	h = 0.0001	6.256367	0.00003119	200607	Sim	1.741
30	Adaptativo	0.017942	0.00011284	159	Sim	1.742
60	h = 0.01	0.056333	0.00002807	2007	Sim	7.322
60	h = 0.001	0.567241	0.00002828	20061	Sim	7.322
60	h = 0.0001	6.970550	0.00003475	200607	Sim	7.319
60	Adaptativo	0.020870	0.00012134	172	Sim	7.320
90	h = 0.01	0.057367	0.00002858	2007	Sim	18.038
90	h = 0.001	0.580337	0.00002893	20061	Sim	18.038
90	h = 0.0001	5.745332	0.00002864	200607	Sim	18.034
90	Adaptativo	0.025043	0.00013181	190	Sim	18.034

Figura 4: Análise do tempo de execução para 10 períodos

Nota-se, para todos os ângulos iniciais, que o tempo de execução e o número de passos para a convergência crescem de forma inversamente proporcional ao tamanho do passo utilizado na estratégia com passo constante. Quando o tamanho do passo diminui em uma ordem de grandeza, o tempo de execução e o número de passos aumentam em uma ordem de grandeza.

Além disso, nota-se que a estratégia com passo adaptativo resultou em tempos de execução e número de passos menores que as outras estratégias para todos os ângulos iniciais (embora o erro percentual tenha permanecido similar em todas as diferentes estratégias), e que o número de passos para a estratégia com passo constante é invariante com relação ao ângulo inicial. Por fim, observa-se que o sistema de fato executa em tempo real para todos os casos.

Conclusão

Neste trabalho, realizamos uma comparação dos resultados da solução analítica, numérica constante e numérica adaptativa da equação diferencial simplificada que rege o movimento de um pêndulo. Utilizamos o método Runge-Kutta de ordem 4 para encontrar as soluções numéricas do problema e geramos tabelas e visualizações com os principais resultados encontrados.

Descobrimos que o ângulo máximo para que o erro comparativo entre as soluções numérica e analítica seja menor que 0.001 é 7 graus radianos. Também observamos que todas as simulações executam em "tempo real" e que o erro do cálculo do período numérico é praticamente invariante em relação ao número de períodos em cada simulação.

Por fim, observamos através dos gráficos das simulações com diferentes ângulos iniciais que a solução simplificada da equação de movimento só é boa para ângulos pequenos, e que o período oscilação do pêndulo é invariante com relação ao ângulo inicial, o que já era esperado de acordo com sua fórmula analítica.