

MM54HC299/MM74HC299 8-Bit TRI-STATE® Universal Shift Register

General Description

This 8-bit TRI-STATE shift/storage register utilizes advanced silicon-gate CMOS technology. Along with the low power consumption and high noise immunity of standard CMOS integrated circuits, it has the ability to drive 15 LS-TTL loads. This circuit also features operating speeds comparable to the equivalent low power Schottky device.

The MM54HC299/MM74HC299 features multiplexed inputs/outputs to achieve full 8-bit data handling in a single 20-pin package. Due to the large output drive capability and TRI-STATE feature, this device is ideally suited for interfacing with bus lines in a bus oriented system.

Two function select inputs and two output control inputs are used to choose the mode of operation as listed in the function table. Synchronous parallel loading is accomplished by taking both function select lines S0 and S1 high. This places the TRI-STATE outputs in a high impedance state, which

permits data applied to the input/output lines to be clocked into the register. Reading out of the register can be done while the outputs are enabled in any mode. A direct overriding CLEAR input is provided to clear the register whether the outputs are enabled or disabled.

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical operating frequency 40 MHz
- Typical propagation delay: 20 ns
- Low guiescent current: 80 µA maximum (74HC)
- High output drive for bus applications
- Low quiescent current: 1 μA maximum

Connection Diagram

| SHIFT | SHIFT | SHIFT | RIGHT | VCC | S1 | SL | QH / H / QH | F / QF | D / QD | B / QB | CLOCK | SR | SR | QH | H / QH | F / QF | D / QD | B / QB | CLOCK | SR | SR | SR | QH | H / QH | F / QF | D / QD | B / QB | CK | SR | SR | G | G / QG | E / QE | C / QC | A / QA | QA / CLEAR | GND | GT | GT | GT | GND | GT | GT | GND | GND

TL/F/5207-1

TOP VIEW

Order Number MM54HC299 or MM74HC299

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (V_{IN}) $-\,1.5$ to $V_{\mbox{\footnotesize CC}}\,+\,1.5\mbox{\footnotesize V}$ DC Output Voltage (VOUT) -0.5 to $V_{CC} + 0.5V$ Clamp Diode Current (I_{CD}) \pm 20 mA DC Output Current, per pin (I_{OUT}) \pm 25 mA (Q_{A'}, Q_{H'}) \pm 35 mA (others) DC V_{CC} or GND Current, per pin (I_{CC}) \pm 70 mA

Storage Temperature Range (T_{STG}) Power Dissipation (PD)

600 mW (Note 3) S.O. Package only 500 mW Lead Temp. (T_L) (Soldering 10 seconds) 260°C

 -65°C to $+150^{\circ}\text{C}$

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times			
$(t_{\rm f}, t_{\rm f})$ $V_{\rm CC} = 2.0 V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Parameter Conditions $V_{CC} = T_A = 25^{\circ}C = T_A = -10^{\circ}$				74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units	
				Тур		Guaranteed	Limits	7	
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V	
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V	
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V	
	Q _{A'} & Q _{H'} Outputs	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V	
	A/Q _A thru H/Q _H Outputs	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6.0 \text{ mA}$ $ I_{OUT} \le 7.8 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V	
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V	
	Q _{A'} and Q _{H'} Outputs	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V V	
	A/Q _A thru H/Q _H Outputs	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6 \text{ mA}$ $ I_{OUT} \le 7.8 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V V	
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ	
loz	Maximum TRI-STATE Output Leakage Currrent	$V_{OUT} = V_{CC}$ or $\overline{G}ND$ $\overline{G} = V_{IH}$	6.0V		±0.5	±0.5	±1.0	μΑ	
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μА	

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V ±10% the worst-case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst-case leakage current (I_{IN} I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

** V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5V, T_A\!=\!25^{\circ}C, t_f\!=\!t_f\!=\!6$ ns, $C_L\!=\!45$ pF

Symbol	Paramete	r	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operatir Frequency	ng		40	25	MHz
t _{PHL} , t _{PLH}	Maximum Propaga Delay, Clock to Q			25	35	ns
t _{PHL}	Maximum Propaga Delay, Clear to Q _A			39	40	ns
t _{PHL} , t _{PLH}	Maximum Propaga Delay, Clock to Q _A		C _L =45 pF	25	35	ns
t _{PHL}	Maximum Propaga Delay, Clear to Q _A		$C_L = 45 pF$	28	40	ns
t _{PZL} , t _{PZH}	Maximum Enable ⁻	Гime	$C_L = 45 \text{ pF}$ $R_L = 1 \text{ k}\Omega$	10	35	ns
t _{PHZ} , t _{PLZ}	Maximum Disable	Time	$C_L = 5 pF$ $R_L = 1 k\Omega$	18	25	ns
t _S	Minimum Setup	Select			20	ns
	Time	Data			20	ns
t _H	Minimum Hold	Minimum Hold Select			0	ns
	Time Data				0	ns
t _W	Minimum Pulse Wi	dth		12	20	ns
t _{REM}	Clear Removal Tin	ne			10	ns

AC Electrical Characteristics $C_L = 50 \ pF, \ t_f = t_f = 6 \ ns$ unless otherwise specified

Symbol	Parameter	Parameter Conditions V				74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
f _{MAX}	Maximum Operating Frequency		2.0V		5	4	3.5	MHz
			4.5V 6.0V		25 29	20 23	18 20	MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	15	170	210	240	ns
	Delay, Clock to Q _{A'} or Q _{H'}		4.5V 6.0V	27 25	38 35	48 44	54 49	ns ns
t _{PHL}	Maximum Propagation		2.0V	70	200	250	280	ns
	Delay, Clear to Q _{A'} or Q _{H'}		4.5V 6.0V	30 26	44 38	55 46	62 52	ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock to Q _A -Q _H	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	65 100	170 206	210 260	240 295	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	27 34	38 46	48 57	54 66	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	25 31	35 39	44 49	49 55	ns ns
t _{PHL}	Maximum Propagation Delay, Clear to Q _A -Q _H	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	70 110	200 236	250 295	280 325	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	30 37	44 52	55 65	62 75	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	26 32	38 46	46 57	52 64	ns ns

AC Flectrical	Characteristic (Continued) C ₁ = 50 pF t ₂ = t ₄ = 6 ps unless otherwise specified
AC EIECHICAI	CHALACLE ISLIC (Continued) Cr = 50 pr T = 1; = 6 ps uniess otnerwise specified

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	1
t_{PZH},t_{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$						
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	70 90	160 220	200 275	225 310	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	22 30	32 44	40 55	45 62	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	19 24	28 47	34 47	38 51	ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0V 4.5V 6.0V	70 22 19	160 32 28	200 40 34	225 45 38	ns ns ns
t _S	Minimum Setup Time, Data Select S _L or S _R		2.0V 4.5V 6.0V		100 20 17	125 25 21	140 28 25	ns ns ns
t _H	Minimum Hold Time, Data Select S _L or S _R		2.0V 4.5V 6.0V		0 0 0	0 0 0	0 0 0	ns ns ns
t _{REM}	Minimum Clear Removal Time		2.0V 4.5V 6.0V		10 10 10	10 10 10	10 10 10	ns ns ns
t _W	Minimum Pulse Width, Clock and Clear		2.0V 4.5V 6.0V		100 20 17	125 25 21	140 28 25	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	100 500 400	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time, Clock		2.0V 4.5V 6.0V		60 12 10	75 15 13	90 18 15	ns ns ns
C _{PD}	Power Dissipation Capacitance	Outputs Enabled Outputs Disabled		240 110				pF pF
C _{IN}	Maximum Input Capacitance Capacitance			5	10	10	10	pF
C _{OUT}	Maximum TRI-STATE Output Capacitance			15	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$

Function Table

	Inputs									Inputs/Outputs								
Mode	Clear	Fund Sel			tput itrol	Clock	Se	rial	A/Q _A	B/Q _B	C/Q _C	D/Q _D	E/Q _E	F/Q _F	G/Q _G	H/Q _H	Q _A ,	Q _H ,
		S1	S0	G 1†	G 2†		SL	SR										
Clear	ГГ	X L	L X	L L	L L	X	X	X	L L	ГГ	L L	L						
Hold	ΗI	L X	L X	L L	L L	X L or H	X X	X	Q _{A0} Q _{A0}	Q _{B0} Q _{B0}	Q _{C0}	Q _{D0} Q _{D0}	Q _{E0} Q _{E0}	Q _{F0} Q _{F0}	Q _{G0} Q _{G0}	Q _{H0} Q _{H0}	Q _{A0}	Q _{H0} Q _{H0}
Shift Right	H H	L L	H H	L	L L	↑	X X	H	H L	Q _{An} Q _{An}	Q _{Bn} Q _{Bn}	Q _{Cn} Q _{Cn}	Q _{Dn} Q _{Dn}	Q _{En} Q _{En}	Q _{Fn} Q _{Fn}	Q_{Gn}	H	Q _{GN} Q _{GN}
Shift Left	тт	ΙI	L L	L L	L L	↑	H	X	Q _{Bn} Q _{Bn}	Q _{Cn} Q _{Cn}	Q _{Dn} Q _{Dn}	Q _{En} Q _{En}	Q _{Fn} Q _{Fn}	Q _{Gn} Q _{Gn}	Q _{Hn} Q _{Hn}	H	Q _{Bn} Q _{Bn}	H
Load	Н	Н	Н	Х	Х	1	Х	Χ	а	b	С	d	е	f	g	h	а	h

†When one or both controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408