МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Моралес К.Д.

3BIT

ОПЕРАЦІЙНІ ПІДСИЛЮВАЧІ З НЕГАТИВНИМ ЗВОРОТНИМ ЗВ'ЯЗКОМ

Київ. КНУ ім. Т. Шевченка, 2021

УДК 001.002 (008.21)

ББК 73Ц

I-72

Укладач: Моралес К.Д

I-72 Звіт. Операційні підсилювачі з негативним зворотним зв'язком./ укл. К.Д. Моралес

- K. : КНУ ім. Т. Шевченка, 2021. - c. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних схем у програмі NI Multisim TM .

Зміст

Вступ	4
Теоретичні відомості	5
Практична частина	7
I. Неінвертувальний підсилювач	7
II. Інвертувальний підсилювач	8
III. Диференціатор	9
IV. Інтегратор	10
Висновок	11

Вступ

Мета роботи – ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП.

Метод вимірювання — це метод співставлення: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

Теоретичні відомості

Операційний підсилювач — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі.

Створення зворотного зв'язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного сигналу (різниця фаз $\Phi = 180$ гр), то зворотний зв'язок називають негативним (Н33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi = 0$ гр), то такий зворотний зв'язок називають позитивним (П33).

Основною інтегральною мікросхемою для створення аналогових електронних пристроїв є операційний підсилювач (ОП). ОП являє собою 98 мікросхему, що за своїми розмірами і ціною практично не відрізняється від окремого транзистора, хоча вона й містить кілька десятків транзисторів, діодів і резисторів

Завдяки практично ідеальним характеристикам ОП реалізація на їх основі різних схем виявляєьться значно простішою і дешевшою, ніж на окремих транзисторах і резисторах.

Операційним підсилювачем називають багатокаскадний диференціальний підсилювач постійного струму, який має в діапазоні частот до кількох десятків кілогерц коефіцієнт підсилення більший за 104 і за своїми властивостями наближається до уявного «ідеального» підсилювача. Під «ідеальним» розуміють такий підсилювач, який має:

- нескінченний коефіцієнт підсилення за напругою диференціального вхідного сигналу $(K \rightarrow \infty)$;,
 - нескінченний вхідний імпеданс (Zвх $\rightarrow \infty$);
 - нульовий вихідний імпеданс (Zвих = 0);

- рівну нулеві напругу на виході (Uвих = 0) при рівності напруг на вході (Uвх1 = Uвх2);
 - 5) нескінченний діапазон робочих частот

Характеристики реального ОП не такі ідеальні, як хотілося б. Однак, для практичних цілей ці характеристики близькі до ідеальних: коефіцієнт підсилення для низьких частот (за постійним струмом) $K > 10^4$; вхідний опір Rвх $> 10^6$ Ом; вихідний опір Rвих $< 10^2$ Ом; коефіцієнт підсилення падає до 1 на частоті порядка 10^6 Гц (1 МГц); напруга зміщення Uзм (визначається як напруга, яку потрібно подати на вхід ОП, щоб вихідна напруга стала рівною нулеві) для більшості ОП не перевищує 10 мВ, а для прецизійних -10 мкВ.

Практична частина

І. Неінвертувальний підсилювач

рис. 1. Схема неінвертувального підсилювача

рис. 2. Напргуа на вході та на виході

II. Інвертувальний підсилювач

рис. 3. Схема інвертувального підсилювача

рис. 4. Напруга на вході та на виході

III. Диференціатор

рис. 5. Схема диференціатора

рис. 6. Напруга на вході і на виході

IV. Інтегратор

рис. 7. Схема інтегратора

рис. 8. Напруга на вході та на виході

Висновок

У цій роботі ми провели аналіз операційних підсилювачів з негативним зворотним зв'язком, використвоуючи метод співставлення, яке полягає в одночасному співставлені вхідного та вихідного сигналу. Під час дослідження ми розглянули чотири типи ОП, а саме: інвертувальний, неінвертувальний, диференціатор та інтегратор.