A Criterion for the Uniform Continuity of Univariate Functions

Haining Fan, Haiyan Wang

Abstract

The uniform continuity of univariate functions can usually be determined by quantitative relations, Cantor's theorem, Lipschitz criterion, etc., which are suitable for a narrow range and are weak in operability for complex problems. Based on the theorem of higher mathematics and aimed at univariate functions defined on real number intervals, this paper gives a criterion for the uniform continuity of univariate functions by judging the bounded rate of change of the function. Meanwhile, proofs are provided along with examples, offering a convenient approach for solving practical problems.

Keywords: function; uniform continuity; criterion

1 Introduction

Uniform continuity is one of the important concepts in functional analysis and higher mathematics, which is a generalization and extension of the continuity, reflecting the overall property of the function. Therefore, it is particularly important to judge whether a function is uniformly continuous on its domain. The commonly used methods are not very convenient for solving unbounded problems of some functions on their domains. Hence, this paper proposes a new criterion for functions defined on the real number interval $[a, +\infty)$.

2 Criterion for the Uniform Continuity

2.1 Review

To facilitate the reader's understanding, we introduce several definitions of uniform continuity and non-uniform continuity of univariate functions[2].

- 1. If a function is uniformly continuous on an interval I, then for every $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$, such that for any $x', x'' \in I$, if $|x' x''| < \delta$, then $|f(x') f(x'')| < \varepsilon$.
- 2. If a function is not uniformly continuous on an interval, then there exists $\varepsilon_0 > 0$, for any chosen δ (no matter how small), there always exist $x', x'' \in I$, such that $|x' x''| < \delta$, but $|f(x') f(x'')| \ge \varepsilon_0$.

2.2 Criterion for Determination

In particular, we consider the limit behavior on interval $[a, +\infty)$. If the function f(x) is defined on interval $[a, +\infty)$ and for all $n \in R$, the limit of f(x+n) - f(x) as x approaches $+\infty$ exists.

Then we have the following criterion for uniform continuity:

$$\lim_{x \to +\infty} f(x+n) - f(x) = \begin{cases} +\infty \\ A & (A \neq 0) \\ o(n) \\ 0 & \end{cases}$$

Further, we can deduce the following four circumstances for judgment:

- 1. If $\lim_{x\to+\infty} f(x+n) f(x) = +\infty$, then f(x) is not uniformly continuous.
- 2. If $\lim_{x\to+\infty} f(x+n) f(x) = A$, then f(x) is not uniformly continuous.
- 3. If $\lim_{x\to+\infty} f(x+n) f(x) = (n)$, then f(x) is uniformly continuous.
- 4. If $\lim_{x\to+\infty} f(x+n) f(x) = 0$, then f(x) is uniformly continuous.

However, if none of the above circumstances apply, we cannot determine uniform continuity.

Case 1: For any $\varepsilon > 0$, there exists $\delta > 0$, such that:

$$\lim_{x \to +\infty} f(x+n) - f(x) = +\infty,$$

it follows that there exists $G > \max(a, 0)$, such that for $x_1 > G$, $x_2 = x_1 + n$, and the distance $|x_2 - x_1| = n < \delta$, we have:

$$|f(x_2) - f(x_1)| > 1 = \varepsilon_0,$$

thus f(x) is not uniformly continuous.

Case 2: When A is not 0 and we assume A > 0, let $\varepsilon_0 = \frac{A}{2}$, for any $\delta > 0$, there exists $0 < n < \delta$, such that:

$$\lim_{x \to +\infty} f(x+n) - f(x) = A,$$

it follows that there exists $G > \max(a, 0)$, such that for $x_1 > G$, $x_2 = x_1 + n$, and the distance $|x_2 - x_1| = n < \delta$, we have:

$$|f(x_2) - f(x_1)| > \frac{A}{2} = \varepsilon_0,$$

thus f(x) is not uniformly continuous.

Case 3: For all $\varepsilon > 0$, there exists $\delta(\varepsilon) < \varepsilon$ such that:

$$\lim_{x \to +\infty} f(x+n) - f(x) = o(n),$$

and there exists $G > \max(a, 0)$, such that for x > G, and for all n, when $x_1, x_2 > G$ and $|x_2 - x_1| < \delta$, we have:

$$|f(x_2) - f(x_1)| < \varepsilon,$$

thus f(x) is uniformly continuous.

Case 4: For all $\varepsilon > 0$, the function is uniformly continuous:

$$\lim_{x \to +\infty} f(x+n) - f(x) = 0,$$

and there exists $G > \max(a, 0)$, such that for x > G, and for all n, when $x_1, x_2 > G$ and $|x_2 - x_1| < \delta$, we have:

$$|f(x_2) - f(x_1)| < \varepsilon,$$

thus f(x) is uniformly continuous.

3 Example

The uniform continuity of f(x) can be determined when f(x) is a monomial function where a>0 and $\alpha\neq 1$. According to the definition of the Lipschitz condition (see reference [3] page 78), the function $f(x)=ax^{\alpha}$ is uniformly continuous on the interval $[a,+\infty)$ since α is greater than 1, implying that the change rate is bounded within that interval. To verify the limit $\lim_{x\to+\infty} f(x+n)-f(x)$, we use the definition of the function and properties of limits. Consider the function:

$$f(x+n) - f(x) = (x+n)^{\alpha} - x^{\alpha} = x^{\alpha} \left[\left(1 + \frac{n}{x} \right)^{\alpha} - 1 \right].$$

We know that as x approaches infinity, the limit $x \cdot \left[\left(1 + \frac{n}{x}\right)^{\alpha} - 1\right]$ equals $n\alpha$. We can demonstrate this as follows:

Firstly, we have

$$\lim_{x \to +\infty} x \cdot \left[\left(1 + \frac{n}{x} \right)^{\alpha} - 1 \right] = \lim_{t \to 0} n \cdot \frac{(1+t)^{\alpha} - 1}{t}.$$

According to the limit

$$\lim_{t \to 0} \frac{\ln(1+t)}{t} = 1,$$

we get

$$\lim_{t \to 0} n \cdot \frac{(1+t)^{\alpha} - 1}{\ln(1+t)} = \lim_{t \to 0} n \cdot \frac{(1+t)^{\alpha} - 1}{t/\ln(1+t)}.$$

For $\lim_{t\to 0} n \cdot \frac{(1+t)^{\alpha}-1}{\ln(1+t)}$, since $(1+t)^{\alpha}-1$ approaches 0 and the derivative $\to 0$, we have

$$\frac{\ln(1+t)}{1/\alpha} = \ln(1+t) \cdot k$$

and when $k \to 0$, $\ln(1+t) \cdot k/\alpha$ approaches 0.

From equations (1) and (2), we have

$$\lim_{t\to 0} n \cdot \frac{(1+t)^{\alpha}-1}{\ln(1+t)} = \lim_{k\to 0} n \cdot \frac{k}{k/\alpha} = n\alpha.$$

Therefore, we have

$$\lim_{x\to +\infty} x\left[\left(1+\frac{n}{x}\right)^{\alpha}-1\right]=n\alpha.$$

Special Cases

For $f(x+n) - f(x) = (x+n)^{\alpha} - x^{\alpha} = x^{\alpha} \left[\left(1 + \frac{n}{x}\right)^{\alpha} - 1 \right]$, we have

$$\lim_{x \to +\infty} x^{\alpha - 1} = \begin{cases} 0, & 0 < \alpha < 1, \\ +\infty, & \alpha > 1 \end{cases}$$

Thus, we can deduce

$$\lim_{x \to +\infty} \left[(x+n)^{\alpha} - x^{\alpha} \right] = \begin{cases} 0, & 0 < \alpha < 1, \\ +\infty, & \alpha > 1 \end{cases}$$

The above results show that for $0 < \alpha \le 1$, f(x) is uniformly continuous; and for $\alpha > 1$, f(x) is not uniformly continuous.

4 Conclusion

For a monomial function defined on the positive real number interval, the function is uniformly continuous when $0 < \alpha \le 1$. For $\alpha > 1$, the function has unbounded variation and is not uniformly continuous.

The analysis of this article on the uniform continuity of a univariate function has been completed. The author has not found a similar research paper that studies the uniform continuity of univariate functions on the real number interval, especially the criteria for judging uniform continuity.

References:

- Zhang Caixia, Li Wenhe. The Criterion for the Uniform Continuity of a Univariate Function [J]. Journal of Mathematical Analysis, 2013, 29(4): 1-2.
- 2. Introduction to Mathematical Analysis [M]. 4th Edition. Beijing: Higher Education Press.
- 3. Advanced Mathematical Analysis [M]. Shanghai: Fudan University Press.
- 4. Jian Sun. Research on the Criterion for Uniform Continuity of a Univariate Function [D]. Shanghai University, 2014, 9: 1-2.