Introduction

Principe et définitions

Toute modélisation part d'une question de la forme :

Quel est l'impact de X sur Y étant donné Z?

dans laquelle:

- X définit l'ensemble des scénarios que l'on souhaite explorer
- Y l'ensemble des indicateurs que l'on souhaite observer comme réponse aux différents scénarios
- Z le contexte de la question

Concepts fondamentaux

• Système : Système structuré en entités et processus

Types d'attributs :

- parametres : dont la valeur ne varie pas au fil de la simulation
- variables_etat : dont la simulation fait varier la valeur au fil du temps

Portée des attributs :

- globaux : partagés par tout le système (nous avons choisi de les décrire dans l'entité « système »)
- locaux : partagés par entités de même type
- individuels : spécifiques à chaque entité

Relations questions-modèle

Formalisation:

$$X \subseteq A$$
, $Z \subseteq A$, $X \cap Z = \emptyset$, $X \cup Z = A$

X est un sous-ensemble des attributs (de A)

Z est un sous-ensemble des attributs disjoint de X

X union Z = A

Y est calculé à partir des attributs

Implication: Un choix différent de X et Z permet de répondre à d'autres questions avec le même modèle On peut donc imaginer l'ensemble des questions auxquelles un même modèle peut répondre.

Le modèle

La question retenue pour le modèle est :

Quel est l'impact des schémas de gestion et des facteurs exogènes sur la durabilité des ressources naturelles ?

Domaine : socio-écosystème agricole

Échelle: territoriale

Représentations graphiques

Figure 1 : Question de recherche schématisée

Sur la flèche diagonale, on représente qu'une combinaison (X) de schémas de gestion et de facteurs impacte les stocks. En bas à droite, les stocks sont des quantités de ressource pour différents usages (par les humains, les animaux, les plantes et autres processus biophysiques). Au milieu en bas, un porteur de ressource est composé de divers stocks et met en œuvre une dynamique qui utilise des stocks comme ressources et produits des stocks. A gauche, les schémas de gestion sont des ensembles de schémas de gestion, mis-en-oeuvre par un acteur (sujet). On distingue les schémas de gestion individuels des schémas de gestion collectif mis-en-oeuvre par les auteurs correspondant. Dans notre cas, les acteurs individuels sont des exploitations; les acteurs collectifs sont des villages. Au milieu en haut, les facteurs exogènes sont un ensemble de facteurs, un facteur pouvant être comme suit

Figure 2 : Facteurs exogènes

Les facteurs exogènes sont un ensemble de facteurs influençant le système sans être contrôlés par les acteurs.

Composants principaux

Porteurs_Ressources

Description : Composés de divers stocks et mettent en œuvre des dynamiques

Rôle: Utilisent des stocks comme ressources et produisent des stocks

Schemas_Gestion

Description : Ensembles de schémas de gestion mis en œuvre par des acteurs

Types:

• individuels : par exploitation

• collectifs : par village

Stocks

Description : Quantités de ressources pour différents usages

Usages:

- humains
- animaux
- plantes
- processus biophysiques

Acteurs du système

Individuels : exploitations agricolesCollectifs : villages, coopératives

Contextualisation

Domaine d'application : agroécologie, gestion des ressources naturelles

Pertinence scientifique : Modélisation des interactions complexes entre pratiques de gestion et dynamiques des ressources dans un contexte de changement global

Public cible:

- décideurs politiques
- chercheurs en socio-écosystèmes
- · acteurs territoriaux

Structure et dynamique

Entité: Actor

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité
id		string
type		string

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: IndividualActor

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Processus: manageResource

Documentation:

Description à compléter

Attributs

Le processus dépend des variables suivantes :

Variables d'état	Entité	Définition	Unité

Le processus agit sur les variables suivantes :

Variables d'état	Entité	Définition	Unité

et dépend des paramètres suivants :

Paramètres	Entité	Définition	Unité
•••		•••	

Comportement

Description détaillée du processus avec, éventuellement des sous-processus, des équations, des diagrammes d'état ou d'activité (UML), etc.

Équation : A compléter

Diagramme : A compléter

Code

Le code ou pseudo-code s'il existe pour ceux qui peuvent le comprendre.

A compléter

Entité: Resource

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité
•••		

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité	
id		string	
quantity		float	

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: FarmingActivity

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité
•••	•••	•••

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité
startDate		date
endDate		date

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: Livestock

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité	

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre Commentaire		Unité
herdSize		integer

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Processus: produceMeat

Documentation:

Description à compléter

Attributs

Le processus dépend des variables suivantes :

Variables d'état	Entité	Définition	Unité

Le processus agit sur les variables suivantes :

Variables d'état	Entité	Définition	Unité

Variables d'état Entité Définition Unité
...

et dépend des paramètres suivants :

Paramètres	Entité	Définition	Unité

Comportement

Description détaillée du processus avec, éventuellement des sous-processus, des équations, des diagrammes d'état ou d'activité (UML), etc.

Équation : A compléter

Diagramme : A compléter

Code

Le code ou pseudo-code s'il existe pour ceux qui peuvent le comprendre.

A compléter

Processus: produceMilk

Documentation:

Description à compléter

Attributs

Le processus dépend des variables suivantes :

Variables d'état	Entité	Définition	Unité

Le processus agit sur les variables suivantes :

Variables d'état	Entité	Définition	Unité
		•••	•••

et dépend des paramètres suivants :

Paramètres	Entité	Définition	Unité

Comportement

Description détaillée du processus avec, éventuellement des sous-processus, des équations, des diagrammes d'état ou d'activité (UML), etc.

Équation : A compléter

Diagramme : A compléter

Code

Le code ou pseudo-code s'il existe pour ceux qui peuvent le comprendre.

A compléter

Entité: Plant

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	ramètre Commentaire	

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	mètre Commentaire	

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité
species		string
biomass		float

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Processus: absorbNutrients

Documentation:

Description à compléter

Attributs

Le processus dépend des variables suivantes :

Variables d'état	Entité	Définition	Unité

Le processus agit sur les variables suivantes :

Variables d'état	Entité	Définition	Unité

et dépend des paramètres suivants :

Paramètres	Entité	Définition	Unité

Comportement

Description détaillée du processus avec, éventuellement des sous-processus, des équations, des diagrammes d'état ou d'activité (UML), etc.

Équation : A compléter

Diagramme : A compléter

Code

Le code ou pseudo-code s'il existe pour ceux qui peuvent le comprendre.

A compléter

Entité: Product

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité
quality		float

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: Meat

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

_	Paramètre	Commentaire	Unité
	cutType		string

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: Milk

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Para	mètre	Commentaire	Unité
•••		•••	•••

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité
fatContent		float

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: WaterSource

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité
capacity		float

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: SurfaceWater

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: Soil

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité
•••		

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité
fertility		float
compaction		float

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: Consumption

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité
•••		

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Paramètre	Commentaire	Unité	
date		date	
quantity		float	

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Entité: Growth

Documentation

Description à compléter

Attributs

Attributs partagés (fixes)

Les attributs dont la valeur est la même pour toutes les instances et fixe dans la simulation :

Paramètre	Commentaire	Unité

Variables partagées

Les variables dont la valeur est la même pour toutes les instances et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Attributs individuels

Les attributs dont la valeur est différente pour chaque instance et évolue au cours de la simulation :

Paramètre	Commentaire	Unité

Variables individuelles (fixes)

Les attributs dont la valeur est différente pour chaque instance et fixe dans la simulation :

Commentaire	Unité
	Commentaire

Paramètre	Commentaire	Unité
rate		float

Questions ouvertes

Liste des points à discuter.

Section vide : à compléter manuellement

Dynamiques

Section vide : à compléter manuellement

Indicateurs

Pastoralisme

Indicateur PA.01.01 : Charge animale instantanée (UBT/ha)

Description

Nombre d'unités de bétail (UBT) par hectare de pâturage disponible. Indicateur clé de pression sur les ressources fourragères.

Calcul

CA = (Nombre UBT) / (Surface pâturable)

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
nombre_ubt	Troupeau	Effectif converti en unité de bétail tropical	UBT
surface_paturage	Espace	Surface accessible au pâturage	ha

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
facteur_saison	Système	Coefficient saisonnier d'ajustement	coefficient

Indicateur PA.02.01 : Taux de rotation des pâturages (rotations/an)

Description

Fréquence de rotation des troupeaux entre parcelles. Critique pour la durabilité des parcours.

Calcul

TR = (Nombre rotations) / (Période analysée)

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
nombre_rotations	Troupeau	Nombre de déplacements entre parcelles	n
periode_analyse	Système	Période d'observation	jours

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
duree_min_sejour	Parcelle	Durée minimale entre deux rotations	jours

Indicateur PA.03.01 : Taux de charge soutenable (UBT/ha/an)

Description

Capacité de charge maximale sans dégradation à long terme. Basé sur la productivité fourragère.

Calcul

TCS = (Production fourragère annuelle) / (Consommation UBT)

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
production_fourrage	Parcelle	Biomasse fourragère produite annuellement	kg MS/ha
consommation_ubt	Troupeau	Besoin annuel moyen par UBT	kg MS/UBT

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
facteur_resilience	Ecosystème	Coefficient de résilience des parcours	coefficient

Indicateur PA.04.01: Dépendance aux aliments externes (%)

Description

Proportion des besoins alimentaires du bétail couverte par des achats externes. Indicateur de vulnérabilité économique.

Calcul

```
DAE = (Quantité aliments achetés) / (Besoins totaux) * 100
```

Attributs

L'indicateur dépend des variables suivantes :

variables Entité		Description	Unité
aliments_achetes	Troupeau	Quantité d'aliments complémentaires acquis	kg MS
besoins_totaux	Troupeau	Requête alimentaire annuelle du troupeau	kg MS

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
prix_moyen_aliment	Marché	Coût moyen des aliments achetés	€/kg MS

Indicateur PA.05.01 : Productivité laitière spécifique (L/femelle/an)

Description

Production laitière rapportée au nombre de femelles en lactation. Indicateur clé de performance zootechnique.

Calcul

```
PLS = (Production laitière annuelle) / (Nombre femelles)
```

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
production_laitiere	Troupeau	Volume total de lait produit sur l'année	L
nombre_femelles	Troupeau	Effectif moyen des femelles en lactation	têtes

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
duree_lactation	Troupeau	Période standard de lactation	jours

Indicateur PA.06.01 : Indice de mobilité pastorale (km/jour)

Description

Distance annuelle moyenne parcourue par le troupeau. Clé pour l'accès aux ressources.

Calcul

```
IMP = (Distance totale) / (Nombre jours)
```

Attributs

variables	Entité	Description	Unité	
distance_parcourue	Troupeau	Distance totale annuelle de transhumance	km	
jours_paturage	Troupeau	Nombre de jours de pâturage effectifs	jours	

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité	
facteur_saison	Climat	Coefficient d'ajustement saisonnier	sans dimension	

Indicateur PA.07.01 : Taux de renouvellement du troupeau (%/an)

Description

Proportion d'animaux remplacés annuellement. Indicateur de gestion démographique.

Calcul

```
TRT = (Nombre sorties) / (Effectif moyen) * 100
```

Attributs

L'indicateur dépend des variables suivantes :

variables Entité		Entité	Description	Unité
	nombre_sorties	Troupeau	Animaux vendus ou décédés	têtes
	effectif_moyen	Troupeau	Effectif moyen annuel du troupeau	têtes

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
taux_optimal	Troupeau	Valeur cible pour une gestion durable	%

Indicateur PA.08.01 : Pression pastorale équivalente (UBT/ha/indice)

Description

Charge animale ajustée par la productivité des parcours. Permet des comparaisons intersites.

Calcul

```
PPE = (UBT) / (Indice productivité)
```

Attributs

variables	Entité	Description	Unité

	variables	Entité	Description	Unité
•	unite_betail_total	Troupeau	Nombre d'unités de bétail tropical	UBT
	indice_productivite	Parcours	Productivité fourragère du parcours	kg MS/ha

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
capacite_charge	Parcours	Charge animale soutenable à long terme	UBT/ha

Agroécologie

Indicateur AE.01.01 : Indice de diversité culturale (n.d.)

Description

Mesure la diversité des cultures selon l'indice de Shannon. Corrélé à la résilience du système.

Calcul

$$IDC = -\Sigma(p_i * ln(p_i))$$

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
p_i	Parcelle	Proportion de la culture i dans la rotation	[0-1]

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
seuil diversite	Svstème	Valeur cible pour une diversité optimale	indice

Indicateur AE.02.01 : Taux de couverture végétale (%)

Description

Pourcentage de sol couvert par la végétation vivante ou morte. Réduit l'érosion et améliore l'infiltration.

Calcul

```
TCV = (Surface couverte) / (Surface totale) * 100
```

Attributs

variables Entité	Description	Unité
------------------	-------------	-------

variables	Entité	Description	Unité
surface_couverte	Parcelle	Surface sous couvert végétal	ha
surface_totale	Parcelle	Surface totale de l'unité d'observation	ha

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
seuil_optimal	Système	Couverture végétale cible	%

Indicateur AE.03.01 : Indice de connectivité biologique (ha.pts)

Description

Mesure la connectivité des habitats naturels dans la matrice agricole. Essentiel pour la biodiversité fonctionnelle.

Calcul

```
ICB = Σ(Superficie corridor_i * Pondération_i)
```

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
superficie_corridor	Paysage	Superficie du corridor écologique	ha
ponderation_ecologique	Paysage	Valeur de connectivité spécifique à l'habitat	points

Et dépend des paramètres suivants

Paramètres Entité		Description	Unité
seuil_connectivite	Paysage	Seuil minimum pour une connectivité fonctionnelle	sans dimension

Indicateur AE.04.01 : Taux de matière organique du sol (%)

Description

Concentration en matière organique dans les 20 premiers cm de sol. Proxy de la santé des sols.

Calcul

```
MOS = (Poids MO) / (Poids sol sec) * 100
```

Attributs

variables	Entité	Description	Unité

variables	Entité	Description	Unité
poids_matiere_organique	Sol	Poids sec de la matière organique	g
poids_sol_sec	Sol	Poids total du sol séché à l'étuve	g

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
profondeur_prelevement	Sol	Profondeur standard d'échantillonnage	cm

Indicateur AE.05.01 : Efficience d'utilisation de l'eau (kg/m³)

Description

Biomasse produite par unité d'eau consommée. Critique en zones arides.

Calcul

WUE = (Production biomasse) / (ETR)

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
production_biomasse	Culture	Biomasse aérienne sèche produite	kg/ha
evapotranspiration	Climat	Evapotranspiration réelle de la culture	mm

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
coefficient_culture	Culture	Coefficient spécifique à l'espèce cultivée	sans dimension

Indicateur AE.06.01: Indice d'autonomie en intrants (%)

Description

Part des intrants produits sur l'exploitation. Mesure la circularité du système.

Calcul

```
IAI = (Intrants internes) / (Intrants totaux) * 100
```

Attributs

_ v	ariables/	Entité	Description	Unité
ii	ntrants_internes	Système	Intrants produits sur l'exploitation	kg
iı	ntrants_totaux	Système	Consommation totale d'intrants	kg

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
seuil_autonomie	Système	Niveau minimal pour une exploitation durable	%

Indicateur AE.07.01 : Indice de spécialisation parcellaire (fonctions/parcelle)

Description

Nombre moyen de fonctions par parcelle (production, biodiversité...). Inverse de la spécialisation.

Calcul

ISP = Σ(Fonctions_i) / (Nombre parcelles)

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
nombre_fonctions	Parcelle	Fonctions identifiées par parcelle	nombre
nombre_parcelles	Système	Parcelles totales dans l'exploitation	nombre

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
poids_fonction	Système	Coefficient d'importance relative des fonctions	sans dimension

Indicateur AE.07.02 : Diversité culturale (espèces/parcelle)

Description

Nombre moyen d'espèces cultivées par parcelle

Calcul

Σ(espèces_i) / (surface_observée)

Attributs

variables Entité	Description	Unité
------------------	-------------	-------

variables	Entité	Description	Unité
especes_cultivees	Parcelle	Nombre d'espèces distinctes cultivées	nombre

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
surface_observée	Espace	Surface échantillonnée	ha

Indicateur AE.07.03 : Diversité culturale (espèces/parcelle)

Description

Nombre moyen d'espèces cultivées par parcelle

Calcul

```
Σ(espèces_i) / (nombre_parcelles)
```

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
especes_cultivees	Parcelle	Nombre d'espèces identifiées	nombre

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
poids_espece	Système	Coefficient de valeur écologique	sans dimension

Environnemental

Indicateur CA.01.01 : Tendance d'évolution de la pluviométrie (% de variation annuelle)

Description

Analyse l'évolution de la pluviométrie dans le territoire. Indicateur de caractérisation de la vulnérabilité climatique. Valeurs négatives = baisse, positives = hausse.

Calcul

```
CA.01.01 = a * CA.01.01 + (pluviométrie - pluviométrie-1)
```

Attributs

variables	Entité	Description		Unité
-----------	--------	-------------	--	-------

variables	Entité	Description	Unité
pluviométrie	Climat	La quantité de pluie annuelle cette année	mm/an
pluviométrie-1	Climat	La quantité de pluie annuelle l'année précédente (n-1)	mm/an

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
a	Climat	Facteur d'amortissement du passé	sans

Démographique

Indicateur CA.02.01: Taux de croissance annuelle de la population (%)

Description

Croissance démographique dans les terroirs sur 30 ans. Indicateur de pression anthropique (2,6% aux derniers calculs).

Calcul

Donnée directe (pas de calcul)

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
taux-croissance	ActeurIndividuel	Taux de croissance démographique du foyer	%

Économique

Indicateur EC.01.01 : Rentabilité moyenne des exploitations (€/ha/an)

Description

Marge brute moyenne par hectare cultivé

Calcul

(revenu_total - couts_production) / surface_totale

Attributs

variables	Entité	Description	Unité
revenu_total	Exploitation	Chiffre d'affaires annuel	€/an
couts_production	Exploitation	Coûts opérationnels annuels	€/an

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
surface_totale	Espace	Surface cultivée totale	ha

Social

Indicateur SO.01.01 : Taux d'emploi local (%)

Description

Part de la main d'œuvre issue du territoire

Calcul

emplois_locaux / emplois_totaux * 100

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
emplois_locaux	ActeurIndividuel	Nombre de travailleurs résidant dans le territoire	personnes
emplois_totaux	ActeurIndividuel	Nombre total de travailleurs	personnes

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité

Climat

Indicateur CL.03.01 : Bilan carbone (tCO2eq/ha/an)

Description

Émissions nettes de GES par hectare

Calcul

(émissions - séquestration) / surface

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
émissions	Exploitation	Émissions totales de GES	tCO2eq/an
séquestration	Sol	Carbone séquestré dans les sols	tCO2eq/an

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
surface	Espace	Surface agricole utile	ha

Indicateur CL.03.02 : Indice de résilience climatique (%)

Description

Capacité à maintenir la production sous stress climatique

Calcul

(production_reelle / production_potentielle) * 100

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité
production_reelle	Exploitation	Production effective en année stressante	t/ha
production_potentielle	Exploitation	Production théorique optimale	t/ha

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité

Biodiversité

Indicateur BD.04.01 : Indice de biodiversité fonctionnelle (points)

Description

Abondance relative d'espèces indicatrices

Calcul

```
Σ(abondance_espèce_i * poids_écologique_i)
```

Attributs

L'indicateur dépend des variables suivantes :

variables Entité		Description	Unité	
abondance_especes	Écosystème	Nombre d'individus par espèce	individus/ha	

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
poids_ecologique	Système	Valeur écologique de l'espèce	coefficient

Indicateur BD.04.02 : Indice de biodiversité (espèces/ha)

Description

Richesse spécifique normalisée

Calcul

nombre_espèces / surface_reference

Attributs

L'indicateur dépend des variables suivantes :

variables	Entité	Description	Unité	
nombre_espèces	Espace	Espèces identifiées	nombre	

Et dépend des paramètres suivants

Paramètres	Entité	Description	Unité
surface_reference	Système	Surface de référence	ha

Initialisation

Initialisation

Portée Temporelle

Configuration temporelle à compléter.

Configuration Spatiale

Configuration spatiale à compléter.

Données d'Entrée

Documentation

Description des différentes sources de données utilisées pour l'initialisation du modèle.

Cette section recense l'ensemble des données d'entrée nécessaires au fonctionnement du modèle, incluant les données spatiales, tabulaires et autres sources de données.

Données Spatiales

	Type	Format	Chemin	Description	Résolution	Qualité
	raster GeoTIFF data/land_use.tif		data/land_use.tif	CORINE Land Cover 2020	100m	low
vector GeoJSON data/parcels.geojson		Agricultural parcel boundaries	None	high		

Données Tabulaires

Туре	Format	Chemin	Description	Taille	Taux Réponse	Validation
CSV	CSV	data/household_survey.csv	Socio-economic survey 2020	1500	78%%	cross_validation

Entités

Documentation

Description des entités, agents et objets du modèle.

Cette section spécifie comment chaque entité est initialisée et quelles données sont utilisées pour leur création.

Liste des Entités

Nom	Туре	Effectif	Méthode d'Initialisation
HouseholdAgent	agent	1500	data_driven
ParcelEntity	environment	N/A	gis_import

Détails par Entité

Entité: HouseholdAgent

Type: agent

Effectif: 1500

Méthode d'initialisation : data_driven

Source de données : data/household_survey.csv

Stratégie d'échantillonnage : stratified_random

 $\textbf{Variables de stratification}: \texttt{income_class}, \texttt{location}$

Entité : ParcelEntity

Type: environment

Méthode d'initialisation : gis_import

Source de données : data/parcels.geojson

Mapping d'attributs :

• size_ha ← area (conversion: square_meters_to_hectares)

Paramètres

Documentation

Cette section présente l'ensemble des paramètres du modèle, divisés en deux catégories :

• Paramètres fixes (Z) : Valeurs constantes pour toutes les simulations

• Paramètres variables (X) : Valeurs à explorer dans les scénarios

Paramètres Fixes (Z)

Paramètres dont la valeur est constante pour toutes les simulations :

Paramètre	Entité	Définition	Unité	Valeur	Incertitude	Sensibilité
discount_rate	Household Agent	Temporal discount rate for decision- making	dimensionless	0.03	Dist: normal, σ: 0.005	high
soil_mineralization_rate	ParcelEntity	Rate of organic matter mineralization	kgN/kgOM/day	0.15	Non quantifié	None

Paramètres Variables (X)

Paramètres à explorer dans les scénarios :

Paramètre	Entité	Définition	Unité	Valeurs	Impact
climate_change_scenario	Global	IPCC climate scenarios		RCP2.6, RCP4.5, RCP8.5	high
policy_intervention	Global	Policy intervention scenarios		baseline, subsidy, tax,	None

Variables d'État Initiales

Documentation

Les variables d'état représentent l'état initial du système au début de la simulation.

Variables fixes: Valeurs initiales constantes pour toutes les simulations **Variables variables**: Plages de valeurs à explorer dans les scénarios

Variables d'État Fixes

Valeurs initiales constantes pour toutes les simulations :

Variable	Entité	Valeur	Unité	Distribution	Paramètres
initial_wealth	HouseholdAgent	50000	EUR	lognormal	mean=10.82, sigma=0.8

Variables d'État Variables

Plages de valeurs initiales à explorer dans les scénarios :

Variable	Entité	Valeurs	Unité	Distribution	Probabilités	

Variable	Entité	Valeurs	Unité	Distribution	Probabilités
land use type	ParcelEntity	forest, agriculture,, wetland		categorical	0.30, 0.40,, 0.10

Scénarios

Documentation

Description des scénarios que l'on veut explorer avec justifications et références éventuelles.

Un scénario est défini par l'attribution de valeurs à un sous-ensemble X des paramètres et variables énumérées dans la section Initialisation.

Détails par Scénario

 $Sc\'{e}nario: sustainability_transition$

Description: Pathway towards sustainable agroecology

Base: IPCC RCP2.6 + EU Green Deal

Statut de validation : plausible

Paramètres:

- climate change scenario = RCP2.6
- policy intervention = regulation

Variables d'état initiales :

• initial_investment = 20000

Scénario: business_as_usual

Description: Current trends continuation

Base: None

Statut de validation : calibrated

Paramètres :

- climate change scenario = RCP4.5
- policy_intervention = baseline

Variables d'état initiales :

• initial_investment = 10000

Règles d'Initialisation

Documentation

Description des règles et méthodes utilisées pour initialiser les entités du modèle.

Les règles d'initialisation définissent comment les valeurs initiales sont attribuées aux différentes entités et variables du modèle, incluant les distributions statistiques, les méthodes de calcul et les hypothèses sous-jacentes.

Liste des Règles d'Initialisation

Entité	Règle	Implémentation	Hypothèses
HouseholdAgent	wealth ~ lognormal(10.82, 0.8)	<pre>numpy.random.lognormal(10.82, 0.8, n_agents)</pre>	Wealth distribution follows national statistics
ParcelEntity	<pre>land_use = categorical([0.3, 0.4, 0.2, 0.1])</pre>	<pre>random.choice(['forest', 'agriculture', 'urban', 'wetland'], p=[0.3, 0.4, 0.2, 0.1])</pre>	None

Détails par Règle

Règle 1 : HouseholdAgent

Règle mathématique :

```
wealth ~ lognormal(10.82, 0.8)
```

Implémentation code :

```
numpy.random.lognormal(10.82, 0.8, n_agents)
```

Hypothèses et justifications : Wealth distribution follows national statistics

Règle 2 : ParcelEntity

Règle mathématique :

```
land_use = categorical([0.3, 0.4, 0.2, 0.1])
```

Implémentation code :

```
random.choice(['forest', 'agriculture', 'urban', 'wetland'], p=[0.3, 0.4, 0.2, 0.1])
```

Hypothèses : Aucune hypothèse spécifiée

Mode d'emploi

Lancement de la simulation

Configuration requise

Système d'exploitation	Windows 10/11, Linux Ubuntu 20.04+, macOS 12+
Mémoire RAM	16GB recommandés (8GB minimum)
Espace disque	2GB libre (données spatiales incluses)

1.9.1+, Java 17+, GDAL 3.4+ (pour données géospatiales), Python 3.10+ (pour

Dépendances	GAMA Platform 1.9.1+, Ja
	analyse post-simulation)

Fichiers nécessaires

Fichier	Description	Format	Exemple
main_model.gaml	Modèle principal GAMA contenant les espèces et expériences	GAML	<pre>models/pastoral_abm/main_model.gaml</pre>
config_parameters.xml	Fichier de paramétrage de la simulation	XML	N/A
land_cover.tiff	Carte d'occupation du sol (classification FAO LCCS)	GeoTIFF	N/A
herd_data.csv	Données initiales des troupeaux par ménage	CSV UTF-8	N/A

Procédure de lancement

Étape 1: Lancement en mode headless (sans interface)

gama-headless.exe main_model.gaml config_parameters.xml

Options disponibles:

- --experiment main_experiment : exécute l'expérience principale
- --output results/ : spécifie le dossier de sortie
- --params param1=value1 param2=value2 : paramètres en ligne de commande

Étape 2 : Lancement avec interface graphique GAMA

gama.exe main_model.gaml

Prérequis : Environnement graphique disponible

Étape 3 : Lancement batch de multiples scénarios

python run_batch.py --scenarios all --replicates 10

Prérequis : Script Python d'orchestration installé

Les entrées

Interface utilisateur

Туре	GAMA Modeling Environment
URL	https://gama-platform.org

Fonctionnalités

Exploration visuelle des scénarios climatiques (X), Modification interactive des paramètres (Z) : taux de reproduction, règles de mobilité, Visualisation temps réel de la dynamique pastorale, Inspection des agents (troupeaux, ménages, ressources)

Fichiers d'entrée

Туре	Description	Format	Détails
parametres_globaux	Paramètres globaux du modèle socio- écologique	XML	Champs obligatoires: simulation_duration: 3650 (10 ans), time_step: 1 (jour), climate_scenario: RCP4.5
donnees_spatiales	Information à compléter	GeoTIFF/Shapefile	Système: WGS84/UTM
donnees_socio_economiques	Données des ménages et troupeaux	CSV/JSON	Aucun
donnees_climatiques	Données climatiques historiques et projections	NetCDF	Aucun

Les sorties

Visualisation

Туре	Description	Format	Outils
cartes_dynamiques	Cartographie dynamique de la mobilité pastorale et état des ressources	HTML interactif	GAMA GIS + Leaflet.js
courbes_evolution	Graphiques temporels des indicateurs clés	SVG/PDF interactif	GAMA Charts + Plotly
reseaux_sociaux	Visualisation des réseaux d'entraide et partage de ressources	GEXF/JSON	Gephy/Cytoscape

Fichiers de sortie

Туре	Description	Format	Contenu
resultats_bruts	Données brutes pour analyse statistique	CSV	Colonnes: step: Pas de temps, household_id: Identifiant ménage, location_x, location_y: Coordonnées UTM, livestock_count: Effectif bétail (TLU), income: Revenu journalier, biomass_available: Biomasse disponible locale
metrics_agregees	Indicateurs agrégés par scénario	JSON	Données structurées
rapport_synthese	Rapport automatique avec graphiques et analyses	PDF/HTML	Sections: résumé_exécutif, performance_écologique, résilience_sociale, recommandations_gestions

Post-traitement

Outils recommandés :

- R Studio (analyse statistique)
- Jupyter Notebook (analyse exploratoire)
- QGIS (analyse spatiale)
- Gephi (analyse de réseaux)

Scripts d'exemple : scripts/analysis/