

THE UNIVERSITY OF TEXAS AT AUSTIN

EE381V LARGE SCALE OPTIMIZATION

Problem Set 7

Edited by \LaTeX

Department of Computer Science

STUDENT

Jimmy Lin

xl5224

COURSE COORDINATOR

Sujay Sanghavi

UNIQUE NUMBER

 $\overline{17350}$

RELEASE DATE

Nov 13, 2014

DUE DATE

Nov 20, 2014

TIME SPENT

15 hours

November 21, 2014

Table of Contents

	I Matlab and Computational Assignment	2
1	MaxCut 1.1 Formulation 1.2 Graphs 1.3 Implementation	2 2 2 2
	II Written Assignment	3
1	Network Congestion Control 1.1 Problem Formulation 1.2 Problem Decoupling	9
2	Problem 7.12	4
3	Problem 7.13	4
4	Problem 8.84.1 Find a point in the intersection4.2 Determine whether $P_1 \subset P_2$	£ .
5	Problem 8.8 Repeat5.1 Find a point in the intersection5.2 Determine whether $P_1 \subset P_2$	5 5
6	Problem 8.9	6
7	Problem 8.25 7.1 t^* and separability	7
8	Problem 8.24	8
9	Problem 8.25	8
	List of Figures	
	Three graphs for experimentation. (1) Peterson Graph (2) Simple Planar Graph I (3) Simple Planar Graph II	2

Part I

Matlab and Computational Assignment

1 MaxCut

1.1 Formulation

The original maxcut problem is

maximize
$$\frac{1}{2} \sum_{i < j} (1 - u_i u_j) w_{ij}$$
 subject to $u_i \in \{-1, 1\}, \forall i$ (1)

The relaxed SDP problem can be written as

minimize
$$Trace(X^TW)$$

subject to $X_{ii} = 1, \forall i$ (2)
 $X \succeq 0$

where $X_{ij} = u_i u_j$.

1.2 Graphs

Figure 1: Three graphs for experimentation. (1) Peterson Graph (2) Simple Planar Graph I (3) Simple Planar Graph II

Though solved X, we can recover the cut that separate the whole set of vertex.

1.3 Implementation

```
function maxcut(W)

n = size(W,1);
cvx_begin sdp
   variable X(n,n) symmetric
   minimize trace( X' * W )
   subject to
       diag(X) = ones(n, 1)
       X >= 0

cvx_end
end
```

Part II

Written Assignment

1 Network Congestion Control

1.1 Problem Formulation

The overall system problem – to maximize utility minus cost – can be formulated as a convex optimization problem:

maximize
$$\sum_{s \in S} U_s(x_s) - \sum_{j \in J} C_j(f_j)$$
 subject to
$$Hy = x, Ay \le f$$
 over
$$x, y \ge 0$$
 (3)

1.2 Problem Decoupling

Lagrangian:

$$L(x, y; \lambda, \mu) = \sum_{s \in S} U_s(x_s) - \sum_{j \in J} C_j(f_j) - \lambda^T(x - Hy) + \mu^T(f - Ay - z)$$
(4)

$$= \sum_{s \in S} (U_s(x_s) - \lambda_s x_s) - \sum_{r \in R} y_r (\lambda_{s(r)} - \sum_{j \in I} \mu_j) + \sum_{j \in J} \mu_j (f_j - z_j) - \sum_{j \in J} C_j (f_j)$$
 (5)

where λ and μ are lagrange multipliers.

According to optimality conditions

$$\frac{\partial L}{\partial x_s} = U_s'(x_s) - \lambda_s \tag{6}$$

$$\frac{\partial L}{\partial y_r} = \lambda_{s(r)} - \sum_{j \in r} \mu_j \tag{7}$$

$$\frac{\partial L}{\partial z_j} = -\mu_j \tag{8}$$

$$\lambda \ge U_s'(x_s), Hy = x, (\lambda - U'(x))^x = 0 \tag{9}$$

$$\mu \ge 0, Ax \le C, \mu^T (C - Ax) = 0$$
 (10)

$$\lambda^T H \le \mu^T A, y \ge 0, (\mu^T A - \lambda^T H)y = 0 \tag{11}$$

 $USER_s(U_s; \lambda_s)$

maximize
$$\sum_{s \in S} U_s(x_s) - \lambda_s x_s$$
 subject to $x_s \ge 0$ (12)

 $NETWORK(H, F; \lambda)$

maximize
$$\sum_{s \in S} \lambda_s x_s - \sum_{j \in J} C_j(f_j)$$
 subject to
$$Hy = x, Ay \le f$$
 over
$$x, y > 0$$
 (13)

Theorem 1. There exists a price vector $\lambda = (\lambda_s, s \in S)$ such that the vector $x = (x_s, s \in S)$, formed from the unique solution x_s to $USER_s(U_s; \lambda_s)$ for each $s \in S$, solves $NETWORK(H, A, C; \lambda)$. The vector x then also solves SYSTEM(U, H, A, f).

Proof. First note that $USER_s(U_s; \lambda_s)$ has unique solution for each s. Then we observe that the lagrangian form for $NETWORK(H, F; \lambda)$ is

$$L(x, y; \lambda, \mu) = \sum_{s \in S} U_s(x_s) - \sum_{j \in J} C_j(f_j) - p^T(x - Hy) + q^T(f - Ay - z)$$
(14)

$$= \sum_{s \in S} \left(U_s(x_s) - p_s x_s \right) - \sum_{r \in R} y_r \left(p_{s(r)} - \sum_{j \in I} q_j \right) + \sum_{j \in J} q_j (f_j - z_j) - \sum_{j \in J} C_j(f_j)$$
 (15)

Hence, any quadruple (λ, μ, x, y) , which satisfies optimality of 9-11 (solution of SYSTEM) identifies $p = \lambda$ and $q = \mu$, which establish that (x, y) solves $NETWORK(H, F; \lambda)$.

Conversely, for any solution x to $NETWORK(H, F; \lambda)$, then exists a p and q, where $x_s \geq 0$ then $p_s = \lambda_s$ and if $x_s = 0$, then $p_s \geq \lambda_s$. Thus if x_s solves $USER_s(U_s; \lambda_s)$, then it also solves $USER_s(U_s; p_s)$. Based on p and q, we can then construct a quadruple that satisfies optimality of 9-11. This quadruple gives x that solves SYSTEM(U, H, A, f).

2 Problem 7.12

It is obvious that the problem is separable by each pair of individual row of P and column of S.

$$\begin{array}{ll}
\text{maximize}_s & \min_{i} p_i^T s_i \\
\text{subject to} & \mathbf{1}^T s_i = 1, s_i > 0, \forall i
\end{array} \tag{16}$$

where p_i^T and s_i denote the *i*th row of P and column of S. Since it is known that

$$s_i = e_k \tag{17}$$

where k is the index of maxima among all probabilty values. Hence, we can do a maximum likelihood estimation.

$$S_{ji} = \begin{cases} 1, & \text{if } j = arg \max_{k} P_{ik} \\ 0, & \text{otherwise} \end{cases}$$
 (18)

which means that the overall problem can be separate as a set of problems. In each individual problem, we choose parameters s_i such that P_{ik} is optimized.

3 Problem 7.13

The dual problem can be written as follows

maximize
$$\sum_{j:\alpha_{j} \in S} p_{j} = \mathbf{prob}(X \in S)$$
subject to
$$\sum_{j=1}^{m} p_{j} = 1$$

$$\sum_{j=1}^{m} f_{i}(\alpha_{i})p_{j} = b_{i}, \forall i$$

$$p_{j} \geq 0, \forall j$$

$$(19)$$

Obviously, this dual problem has its optima as right upper bound on $\mathbf{prob}(X \in S)$ and there exists a distribution that achieves the bound, in that the dual problem satisfies all conditions for strong duality.

4 Problem 8.8

4.1 Find a point in the intersection

LP Formulation.

find
$$x$$
subject to $Ax \le b$

$$Fx \le g$$
(20)

Strong Alternative.

find
$$\lambda, \mu$$

subject to $\lambda, \mu \ge 0$
 $b^T \lambda + g^T \mu < 0,$
 $A^T \lambda + F^T \mu = 0$ (21)

Geometric interretation.

If the intersection is a empty set, then we can find a hyperplane separating P_1 and P_2 from the strong alternative problem. Otherwise, what we find from the alternative problem is a hyperplane that minimizes the "maximum margin" to two polyhedra.

4.2 Determine whether $P_1 \subset P_2$

LP Formulation.

Strong Alternative.

Geometric interretation.

5 Problem 8.8 Repeat

5.1 Find a point in the intersection

LP Formulation.

find
$$x, \lambda, \mu$$

subject to $x = \sum_{i=1}^{K} \lambda_i v_i, \sum_{i=1}^{K} \lambda_i = 1, \lambda_i \ge 0$

$$x = \sum_{j=1}^{L} \mu_j w_j, \sum_{j=1}^{L} \mu_j = 1, \mu_j \ge 0$$
(22)

Strong Alternative.

find
$$a, b$$

subject to $a^T v_i \leq b, \forall i$
 $a^T w_j > b, \forall j$ (23)

Geometric interretation.

The strong dual alternative problem finds a hyperplan that separate two sets of points, $\{v_1, ..., v_K\}$ and $\{w_1, ..., w_L\}$. That is, the hyperplane separates P_1 and P_2 .

5.2 Determine whether $P_1 \subset P_2$

6 Problem 8.9

The Closest Euclidean distance matrix problem can be formulated as

minimize
$$\sum_{i,j} (\sqrt{D_{ij}} - \hat{d}_{ij})^{2}$$
subject to
$$D_{ii} = 0, \forall i = 1, ..., n$$
$$D_{ij} \geq 0, \forall i, j = 1, ..., n$$
$$0 \succeq (I - \frac{1}{n} \mathbf{1} \mathbf{1}^{T}) D(I - \frac{1}{n} \mathbf{1} \mathbf{1}^{T})$$
 (24)

Since the D is symmetric, then the above optimization is a SDP problem.

The vector $x_1, ..., x_n$ can be recovered from eigenvalue decomposition of the corresponding Gram matrix (dependent on solved D^*).

$$G = -\frac{1}{2}(I - \frac{1}{n}\mathbf{1}\mathbf{1}^{T})D^{*}(I - \frac{1}{n}\mathbf{1}\mathbf{1}^{T})$$
(25)

$$= X^T \Lambda X \tag{26}$$

Once an eigenvalue is zero, the corresponding dimension can be removed and thus k is reduced by one and smaller than n.

7 Problem 8.25

7.1 t^* and separability

Lemma 1. Show that if $t^* > 0$, then two sets of points are separable.

Proof. If $t^* > 0$, then

$$a^{*T}x_i \ge b^* + t^* > b^*, i = 1, ..., N$$
 (27)

$$a^{*T}y_i \ge b^* - t^* < b^*, i = 1, ..., M$$
 (28)

(29)

where the (a^*, b^*) pair is the optimal solution of (8.23) that corresponds to t^* . Hence, it is obvious that $f(x) = a^{*T}x - b^*$ can separate two given set of points.

Lemma 2. Show that if two sets of points are separable, then $t^* > 0$.

Proof. Let the linear function $f(x) = a^T x - b$ be the linear separator, such that

$$a^T x_i > b, i = 1, ..., N$$
 (30)

$$a^{T}y_{i} < b, i = 1, ..., M (31)$$

Then we have arbitrary margin t satisfying

$$t = \min\{\inf_{i} \{ a^{T} x_{i} - b \}, \inf_{i} \{ b - a^{T} y_{i} \} \} > 0$$
(32)

Hence, the optimal margin t^* is guaranteed to be positive. That is, $t^* > 0$.

Lemma 3. The constraint $||a^*||_2 \le 1$ is tight, that is, $||a^*||_2 = 1$.

Proof. We prove the tighness by contradiction. Assume that $||a^*||_2 < 1$. Let (a^*, b^*, t^*) be a optimal solution of (8.23). Then

$$a^{*T}x_i - b^* \ge t^*, i = 1, ..., N \tag{33}$$

$$a^{*T}y_i - b \le t^*, i = 1, ..., M (34)$$

Then multiplies both side with $\frac{1}{||a^*||_2}$

$$\frac{a^{*T}}{||a^*||_2}x_i - \frac{b^*}{||a^*||_2} \ge \frac{t^*}{||a^*||_2}, i = 1, ..., N$$
(35)

$$\frac{a^{*T}}{||a^*||_2} y_i - \frac{b^*}{||a^*||_2} \le \frac{t^*}{||a^*||_2}, i = 1, ..., M$$
(36)

which indicates that $(\frac{a^{*T}}{||a^*||_2}, \frac{b^*}{||a^*||_2}, \frac{t^*}{||a^*||_2})$ are also a optimal solution. However, it yields contradiction to the pre-defined optimality (a^*, b^*, t^*) since $0 < ||a^*||_2 < 1$. Thus, we conclude that $||a^*||_2 = 1$.

7.2 QP equivalence

Due to the tightness of $||a||_2 \le 1$, then we can rewrite the problem (8.23) as follows

maximize
$$\frac{||a||_2}{||\tilde{a}||_2}$$
subject to
$$\tilde{a}^T x_i - \tilde{b} \ge 1, i = 1, ..., N$$
$$\tilde{a}^T y_i - \tilde{b} \le -1, i = 1, ..., M$$
$$||a||_2 = 1$$
(37)

Since $||a||_2$ is fixed, (the constraint $||a||_2 = 1$), then the above problem can be further re-written as

minimize
$$||\tilde{a}||_2$$

subject to $\tilde{a}^T x_i - \tilde{b} \ge 1, i = 1, ..., N$
 $\tilde{a}^T y_i - \tilde{b} \le -1, i = 1, ..., M$ (38)

which is a QP problem.

8 Problem 8.24

The original problem is as follows

minimize
$$\rho$$

subject to $(a+u)^T x_i \ge b, \forall u \in \{u : ||u||_2 \le \rho\}, \forall i = 1, ..., N$
 $(a+u)^T y_j \le b, \forall u \in \{u : ||u||_2 \le \rho\}, \forall i = 1, ..., M$
 $||a||_2 \le 1$ (39)

The constraints can be written as optimization problem for u

$$a^{T}x_{i} + \begin{pmatrix} \min_{u} u^{T}x_{i} \\ s.t.||u||_{2} \le \rho \end{pmatrix} \ge b, \forall i = 1, ..., N$$
 (40)

$$a^{T}y_{i} + \begin{pmatrix} \min_{u} u^{T}y_{i} \\ s.t.||u||_{2} \leq \rho \end{pmatrix} \leq b, \forall i = 1, ..., M$$

$$(41)$$

Solving the optimization problems gives

$$u_1^* = -\frac{\rho x_i}{||x_i||_2} \tag{42}$$

$$u_2^* = \frac{\rho y_i}{||y_i||_2} \tag{43}$$

Hence, the resulted linear program that find a and b to maximize the weight error margin is as follows

minimize
$$\rho$$

subject to $a^T x_i + \rho ||x_i||_2 \ge b, \forall i = 1, ..., N$
 $a^T y_i + \rho ||y_i||_2 \le b, \forall i = 1, ..., M$
 $||a||_2 \le 1$ (44)

9 Problem 8.25

Let ϕ be a separating ellipsoid, described by A > 0, b and c, such that

$$x_i^T A x_i + b^T x_i + c < 0, \forall i = 1, ..., N$$
(45)

$$y_i^T A y_i + b^T y_i + c > 0, \forall i = 1, ..., M$$
(46)

The condition number minimization problem can be solved by minimizing the maximum maximum eigenvalue with regard to a lower-bound on the minimum eigenvalues. Then the optimization problem can be written as a SDP problem

minimize
$$\beta$$

subject to $x_i^T A x_i + b^T x_i + c < 0, \forall i = 1, ..., N$
 $y_i^T A y_i + b^T y_i + c > 0, \forall i = 1, ..., M$
 $I \succeq A \succeq \beta I$ (47)