Tutorial Sheet-2

BMAT201L-Complex Variables and Linear Algebra

Module-5 Linear Transfromation

- 1. Let $B = \{v_1, v_2, v_3, v_4\}$ be a basis for a vector space V. Find the matrix with respect to B of the linear operator T on V defined by $T(v_1) = v_2$, $T(v_2) = v_4$, $T(v_3) = v_1$, $T(v_4) = v_3$.
- 2. Let $T: P_1 \to P_2$ be a linear transformation defined by T(p(x)) = (x+1)p(x). Find the matrix for T with respect to basis $\{1, x\}$.
- 3. Let $A = \begin{bmatrix} 3 & -2 & 1 & 0 \\ 1 & 6 & 2 & 1 \\ -3 & 0 & 7 & 1 \end{bmatrix}$ be a matrix for $T: R^4 \to R^3$ relative to the bases $B = \{v_1, v_2, v_3, v_4\}$ and $B' = \{w_1, w_2, w_3\}$, where

$$v_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 1 \\ -1 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 4 \\ -1 \\ 2 \end{bmatrix}, v_4 = \begin{bmatrix} 6 \\ 9 \\ 4 \\ 2 \end{bmatrix}, w_1 = \begin{bmatrix} 0 \\ 8 \\ 8 \end{bmatrix}, w_2 = \begin{bmatrix} -7 \\ 8 \\ 1 \end{bmatrix}, w_3 = \begin{bmatrix} -6 \\ 9 \\ 1 \end{bmatrix}$$

- (a) Find $[T(v_1)]_{B'}$, $[T(v_2)]_{B'}$, $[T(v_3)]_{B'}$ and $[T(v_4)]_{B'}$.
- (b) Find $T(v_1), T(v_2), T(v_3)$ and $T(v_4)$.
- (c) Find the formula for $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.
- (d) Use the formula obtained in (c) to compute $T\begin{pmatrix} 2\\0\\0 \end{pmatrix}$
- 4. Let $B = \{u_1, u_2, u_3\}$ be a basis for a vector space V, and let $T: V \to V$ be a linear operator for which

$$[T]_B = \begin{bmatrix} -3 & 4 & 7 \\ 1 & 0 & -2 \\ 0 & 1 & 0 \end{bmatrix}.$$

Find $[T]_{BI}$, where $B' = \{v_1, v_2, v_3\}$ is a basis for V defined by

$$v_1 = u_1$$
, $v_2 = u_1 + u_2$, $v_3 = u_1 + u_2 + u_3$.

5. Let $B = \{u_1, u_2, u_3\}$ and $B' = \{v_1, v_2, v_3\}$ are two bases of R^3 , where

$$u_1 = (1,0,0), u_2 = (1,2,4), u_3 = (2,5,7), v_1 = (2,4,5), v_2 = (0,5,1), v_3 = (4,2,1).$$

- (a) Find the change of basis matrix from B to B'.
- (b) Find the change of basis matrix from B' to B.

- 5. Let $B = \{u_1, u_2, u_3\}$ and $B' = \{v_1, v_2, v_3\}$ are two bases of R^3 , where $u_1 = (1,0,0), \ u_2 = (1,2,4), u_3 = (2,5,7), v_1 = (2,4,5), v_2 = (0,5,1), v_3 = (4,2,1).$
 - (a) Find the change of basis matrix from B to B'.
 - (b) Find the change of basis matrix from B' to B.
- 6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 x_2 \\ x_1 \end{bmatrix}$ and $B = \{u_1, u_2\}$ and $B' = \{v_1, v_2\}$, where

$$u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $v_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $v_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$.

Find the matrix for T relative to the basis B and use it to compute the matrix relative to B'.