

Curso 20/21 :: Prueba 2

Escuela Superior de Informática

2021/01/28 12:08:07	

Este examen consta de 19 preguntas con un total de 40 puntos. Tres preguntas incorrectas restan un punto. Sólo una opción es correcta a menos que se indique algo distinto. No está permitido el uso de calculadora. La duración máxima de este examen será de 50 minutos.

Apellido	S:	Nombre:	Grupo:
1 [1p	a] ¿Qué afirmación es falsa para la replicación?		
	a) Puede mejorar el tiempo de respuesta en el acces	o a los datos	
\Box	b) Mejora la tolerancia a fallos.	o a ros datos.	
\Box	c) Incrementa la disponibilidad del sistema distribu	do	
\Box	d) Simplifica la consistencia de datos.	uo.	
	u) Simplinea la consistencia de datos.		
2 [2p	Qué factores pueden afectar a la ventana de incons	istencia	
	a) Retardo en las comunicaciones, carga de los siste	mas y número de réplicas.	
	b) Retardo en las comunicaciones y carga de los sis	temas.	
	c) Retardo en las comunicaciones.		
	d) Carga de los sistemas.		
	b] En un conjunto de 7 réplicas, decide implementar u pos de lectura/escritura le vale?	n protocolo de consistencia Quorum ¿	qué asignación de número de réplicas
	a) Escritura 3, Lectura 3.	c) Escritura 1, Lectur	ra 6.
	b) Escritura 2, Lectura 5.	d) Escritura 4, Lectu	
	,	_ 3, ,	
	¿En qué modelo de log de replicación, una actuali ar problemas?	zación de la versión de la base de da	tos en solo una de las réplicas, puede
	a) Log basado en sentencias/declaraciones (Statemo	ent-based).	
	b) Log basado en lógica (Logical-base).		
	c) Log basado en adelanto de escritura (write-ahead).	
	d) En ningún caso hay problema mientras la base de		isma.
	, , , , , , , , , , , , , , , , , , , ,		
5 [2p	¿En qué modelo de log de replicación, una sentenc	a SQL con una referencia a un núme	ro aleatorio, puede causar problemas?
	a) Log basado en adelanto de escritura (Write-ahea	1).	
	b) Log basado en sentencias/declaraciones (Statemo	ent-based).	
	c) Log basado en lógica (Logical-base).		
	d) En ningún caso hay problema.		
	, , ,		
6 [2p	o] En qué modelo de replicación, una actualización d	e un dato X se tiene que ver instantár	eamente
	a) Secuencial		
	b) Estricta		
	c) Lineal		
	d) En sistemas asíncronos no se puede propagar de	forma instantánea (tiempo de los me	nsajes)

19 de enero de 2021 1/4

Curso 20/21 :: Prueba 2

Escuela Superior de Informática

E. [6p] Considere el siguiente conjunto de eventos que tienen lugar en los procesos p1, p2 y p3 de un sistema distribuido:

> 7	(1p) ¿Cuál es el valor del reloj lógico (RL) de los eventos e, j a) RL(e)=5; RL(j)=6; RL(n)=7 b) RL(e)=7; RL(j)=7; RL(n)=8	y n?: c) RL(e)=6; RL(j)=7; RL(n)=6 d) RL(e)=6; RL(j)=6; RL(n)=6
> 8	(2p) ¿Cuál es el valor del reloj vectorial de los eventos e, j y n a) RV(e)=[6,6,4]; RV(j)=[6,4,3]; RV(n)=[5,4,5] b) RV(e)=[5,3,2]; RV(j)=[5,5,2]; RV(n)=[1,4,4]	?:
	$\square \mathbf{c}) \ RV(e) = [5,4,3]; \ RV(j) = [6,5,3]; \ RV(n) = [5,4,3]$ $\square \mathbf{d}) \ RV(e) = [6,3,4]; \ RV(j) = [6,5,4]; \ RV(n) = [3,5,5]$	
> 9	 (1p) Si el valor del reloj vectorial de dos eventos a y b son RV □ a) a ->b □ b) b ->a 	(a)=[1,2,3] y RV(b)=[3,2,1], entonces: □ c) a y b son concurrentes □ d) RV(a) = RV(b)
> 10	(2p) Sea un corte C=[h1,h2,h3] donde h1, h2 y h3 son los pref h1=[a,b,c] y h3=[k,l,m,n], ¿cuál sería un prefijo de historia h2 a) h2 = [f,g] b) h2 = [f,g,h]	ijos de historia de p1, p2 y p3, respectivamente, definidos como válido para que C sea un corte consistente?

d) No es posible definir un prefijo de historia h2 tal que C sea consistente

2/4 19 de enero de 2021

Curso 20/21 :: Prueba 2

Escuela Superior de Informática

E. [3p] Considere el siguiente diagrama de estados globales:

> 11	☐ a) i	stado S21 es un es inconsistente. consistente e inalo	-		,	nsistente y alcanzable. consistente e inalcanza	ble.	
> 12	$P(S10)=T$ $P?$ \square a) T \square b) T	T, P(S11)=F,P(S21) True False Indefinido		=T, con F=False y	T=True	¿cuál sería el resultado	ltado: <i>P(S00)</i> =F, <i>P(S01)</i> o de evaluar <i>definitivam</i>	
13	 a) Cuald b) Si ha c) Cuald 	quier proceso que y un proceso utili quier proceso corr	d <i>liveness</i> en los algor solicite acceso al recur zando el recurso, ninguecto (vivo) tiene permi un grupo dado tienen p	rso lo obtendrá en ún otro proceso p iso para solicitar	n algún m uede obte acceso al	nomento.	po.	
14	 a) El alg b) El alg c) El de 	goritmo de elecció goritmo de exclus elección solo con	n requiere menos men ón mutua requiere me sume recursos cuando	nsajes. enos mensajes. un proceso lo dis	para, el de	e ex <mark>clusió</mark> n mutua los	consume constantemen	ite.
15	 a) Los r b) Si ex c) Todos 	iste una relación o s los mensajes rec	por un proceso llegara ausal entre dos mensa ibidos por un proceso	jes multicast, su i del grupo son co	recepción nfirmados	e fueron enviados. respeta ese mismo oro s individualmente al er ez a todos los procesos	misor.	
16	 a) Decid b) Al te c) Al ter 	dir qué proceso de rminar, todos los p rminar, todos los p		cto de la variable mo valor correcto valores propuestos	en la var por todo	iable d <mark>e d</mark> ecisi <mark>ón.</mark> es los procesos <mark>del gr</mark> uj	po. inada por el coordinado	or.

19 de enero de 2021 3/4

Curso 20/21 :: Prueba 2

Escuela Superior de Informática

[2p] ¿Qué es el «vector de decisión» en un problema de co	onsistencia interactiva?
a) Los datos de entrada del algoritmo.	
b) El reloj vectorial que acuerdan todos los miembros d	del grupo.
c) El conjunto de valores propuestos por cada proceso p	
d) La secuencia de todos los valores propuestos hasta ll	•
a) La secuciona de todos los valores propuestos nasta in	ogai in accordo.
18 [2p] ¿Qué opción es mas escalable, a priori, en el desarrol	llo de un sistema distribuido?
a) Comunicación indirecta	
b) RPC	
☐ c) RMI	
d) Todas tienen similares prestaciones en cuanto a esca	labilidad
19 [2p] ¿Qué módelos de invocación se podrían implementar	con RabbitMO?
a) Comunicación indirecta	
☐ b) RPC	
☐ c) RMI	
d) RabbitMQ puede implementar/emular los modelos d	le comunicación a), b) y c)
20 [1p] En una comunicación IP multicast, los participantes	
a) Están acoplados en espacio y tiempo.	
b) Están desacoplados en espacio y tiempo.	
c) Están desacoplados en espacio y acoplados en tiemp	
d) Están acoplados en espacio y desacoplados en tiemp	Ю.
21 [2p] El mecanismo que implementa el enrutado de mensa	ies a los consumidores en RabbitMO se denomina:
a) Es un mecanismo de las colas.	c) Se implementa en los consumidores.
□ b) Se implementa en los publicadores.	d) Exchanges.
22 [2p] Está implementando un sistema de comunicación indi	irecta con ZeroC Ice. ¿Quién es mas lógico que implemente la siguiente
interfaz?	
<pre>i interface in { void publish(string m);</pre>	
<pre>void setfilter(string m);</pre>	
<pre>void subscribe(string topic); } </pre>	
☐ a) El publicador	☐ c) El broker
☐ b) El consumidor	d) El broker y el consumidor
[2p] ¿Cuál es el modelo de comunicación más adecuado	para un sistema de estaciones meteorológicas que informan sobre tem-
peratura, viento y presión a un conjunto indeterminado y diná	
☐ a) Polling a una base de datos.	c) Un sistema de ficheros distribuido.
☐ b) Un sistema publicador-subscriptor.	☐ d) RPC o RMI.

19 de enero de 2021 4/4