

UNCLASSIFIED

AD NUMBER

ADB193522

NEW LIMITATION CHANGE

TO

**Approved for public release, distribution
unlimited**

FROM

**Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; AUG 1961.
Other requests shall be referred to
National Aeronautics and Space
Administration, Washington, DC.**

AUTHORITY

NASA TR Server website

THIS PAGE IS UNCLASSIFIED

NOV 24 1961

FORCED TRANSVERSE VIBRATIONS
OF A SOLID, ELASTIC CORE CASE-BONDED
TO AN INFINITELY-LONG, RIGID CYLINDER

COPY 1

by

J. H. Baltrukonis

Professor of Civil Engineering

AD-B193 522

DTIC
ELECTED
AUG 05 1994
S G D

Technical Report No. 1

National Aeronautics and Space Administration

Research Grant No. NsG-125-61

9
6
0
9
0
4
0
1

LIBRARY COPY

NOV 24 1961

94-24712

Department of Civil Engineering

The Catholic University of America

Washington 17, D.C.

94 8 04 02

RECEIVED
CATHOLIC UNIVERSITY LIBRARIES

91

1

**Forced Transverse Vibrations of a Solid, Elastic Core
Case-Bonded to an Infinitely-Long, Rigid Cylinder**

By

**J. H. Baltrukonis
Professor of Civil Engineering**

**Technical Report No. 1
To the**

**NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington 25, D. C.**

Under Research Grant No. NsG-125-61

August 1961

Accession For	
NTIS CRA&I	<input type="checkbox"/>
DTIC TAB	<input checked="" type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution /	
Availability Codes	
Dist	Avail and/or Special
12	

**Department of Civil Engineering
THE CATHOLIC UNIVERSITY OF AMERICA
Washington 17, D. C.**

Abstract

The problem is solved of the forced, transverse vibrations of a solid, compressible, elastic core case-bonded to an infinitely-long, rigid cylinder. It is shown that the ratio of the amplitude response of the core axis to the amplitude of the casing depends on both the frequency of the forced vibration and Poisson's ratio for the core material. By plotting amplitude ratio versus frequency curves for different values of Poisson's ratio it is demonstrated that the amplitude ratio versus frequency plot for an incompressible, elastic core is a simple line spectrum. On the basis of this result it is concluded that considerable care must be exercised when interpreting the results of solutions of problems wherein the assumption of incompressible material is involved.

Table of Contents

I.	Introduction	2
II.	Notation	5
III.	Statement and Solution of the Problem	7
IV.	Analysis of Results	13

I. INTRODUCTION

The problem of the free, transverse vibrations of a solid, compressible, elastic core case-bonded to an infinitely-long, rigid, circular-cylindrical tank has been previously treated,* and the following frequency equations among other things were derived.

$$J_{n-1}(\Omega)J_{n+1}(k\Omega) + J_{n+1}(\Omega)J_{n-1}(k\Omega) = 0, \quad (n = 1, 2, \dots) \quad (1)$$

These transcendental frequency equations define a doubly infinite set of natural circular frequency coefficients Ω_{nm} . The mode of vibration is identified by the subscript n while the subscript m identifies the frequency number within a given mode. In Eq. (1) k^2 denotes the ratio of the square of the shear wave velocity c_s to the square of the dilatational wave velocity c_c ; i. e.,

$$c_s^2 = \frac{G}{\rho} \quad (2a)$$

$$c_c^2 = \frac{2(1-\nu)}{1-2\nu} \left(\frac{G}{\rho} \right) \quad (2b)$$

$$k^2 = \frac{c_s^2}{c_c^2} = \frac{1-2\nu}{2(1-\nu)} \quad (2c)$$

Since k depends only on Poisson's ratio, it is clear that the natural frequencies of free vibrations, as defined by Eq. (1), also depend only on Poisson's ratio. Figure 1 has been reproduced from the previous paper* in order to demonstrate this dependency for the first-order ($n = 1$) natural frequency coefficients Ω_{1m} .

* Baltrukonis, J. H., "Free Transverse Vibrations of a Solid Elastic Mass in an Infinitely-Long, Rigid, Circular-Cylindrical Tank" J. Appl. Mechanics 27 663 (December 1960)

These curves exhibit very peculiar and interesting shapes but we wish to make the point here that as k tends to zero, the curves tend to finite real values of the natural frequency coefficients. The zero value for k corresponds to a value of $1/2$ for Poisson's ratio ν which value defines incompressible material. Thus, Fig. 1 demonstrates that natural frequencies do exist for incompressible material.

We recall the problem under consideration. In the previous paper the question was posed: "Can natural frequencies exist?" The answer was affirmative even for incompressible material. The question immediately arises: "How can natural frequencies exist for incompressible material when it occupies the entire internal volume of the tank?" The vibration under consideration is one of plane strain in which there can be no displacement out of the plane of a cross-section; it has been shown, however, that free vibrations can exist in the modes under discussion. In the present report we are concerned with the explanation of this apparent contradiction.

We shall consider the problem of transverse vibrations of the solid, compressible, elastic core when the infinitely-long, rigid casing is oscillated by some external means with simple harmonic motion. The response of the core at a generic point r will be calculated. This result will be specialized to obtain the amplitude response of the core axis. The ratio of the amplitude response of the core axis to the amplitude of the casing will then be plotted as a function of the forcing frequency for various values of Poisson's ratio tending to $1/2$. It will be seen that as Poisson's ratio tends to $1/2$, that is, as the core material tends to become incompressible, the amplitude ratio-forcing frequency plots tend to a simple line spectrum. Clearly,

this type of frequency response is physically impossible. That this should be the case is not surprising since incompressible material is an hypothetical material which cannot exist in nature. Nevertheless, the assumption of such a material is quite regularly used in practice. The present report presents one difficulty arising from the use of such an hypothetical material.

II. NOTATION

r, θ, z	radial, circumferential and axial coordinate variables of polar cylindrical coordinates
t	time
u_r, u_θ, u_z	radial, circumferential and axial components of displacement
ϕ, ψ, x	displacement of potentials
k	ratio of shear wave velocity to dilatational wave velocity
c_c	dilatational wave velocity
c_s	shear wave velocity
ν	Poisson's ratio
G	shear modulus
ρ	mass density
e	mean normal strain = $\frac{1}{3} \left(\frac{\partial u_r}{\partial r} + \frac{u_r}{r} + \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_z}{\partial z} \right)$
∇^2	Laplacian operator = $\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}$
ω	natural circular frequency
Ω	natural circular frequency coefficient
p	forcing circular frequency
λ	forcing circular frequency coefficient
b	radius of interface between elastic core and rigid tank
n	order number of vibration mode
m	frequency number within a given mode

J_n Bessel function of the first kind of order n

c_1, c_2 Constants

w Amplitude of vibration of the rigid casing

\bar{w} Amplitude response of the core axis

A prime over a quantity denotes the ordinary derivative
of the quantity with respect to its argument.

III. STATEMENT AND SOLUTION OF THE PROBLEM

It is not difficult to show that the field equations for the vibrations of compressible, elastic continua in polar, cylindrical coordinates may be reduced to the following three equations of motion:

$$\nabla^2 u_r - \frac{u_r}{r^2} - \frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta} + \frac{3}{1-2\nu} \frac{\partial e}{\partial r} = \frac{\rho}{G} \frac{\partial^2 u_r}{\partial t^2} \quad (3a)$$

$$\nabla^2 u_\theta - \frac{u_\theta}{r^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} + \frac{3}{1-2\nu} \frac{1}{r} \frac{\partial e}{\partial \theta} = \frac{\rho}{G} \frac{\partial^2 u_\theta}{\partial t^2} \quad (3b)$$

$$\nabla^2 u_z + \frac{3}{1-2\nu} \frac{\partial e}{\partial z} = \frac{\rho}{G} \frac{\partial^2 u_z}{\partial t^2} \quad (3c)$$

We seek solutions of these equations of motion in terms of three displacement potentials as follows:

$$u_r = \frac{\partial \phi}{\partial r} + \frac{\partial^2 \psi}{\partial r \partial z} + \frac{1}{r} \frac{\partial \chi}{\partial \theta} \quad (4a)$$

$$u_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} + \frac{1}{r} \frac{\partial^2 \psi}{\partial \theta \partial z} - \frac{\partial \chi}{\partial r} \quad (4b)$$

$$u_z = \frac{\partial \phi}{\partial z} - \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) \psi \quad (4c)$$

It may be verified by direct substitution that Eqs. (3) are identically satisfied by these displacement components provided we take the displacement potentials as solutions of the following differential equations:

$$\nabla^2 \phi = \frac{k_p^2}{G} \frac{\partial^2 \phi}{\partial t^2} \quad (5a)$$

$$\nabla^2(\psi, \chi) = \frac{\rho}{G} \frac{\partial^2}{\partial t^2} (\psi, \chi) \quad (5b)$$

We recognize these differential equations as wave equations, solutions of which are well-known.

We now apply this general theory to the problem under consideration for which the boundary conditions are:

$$u_r \Big|_{r=b} = W e^{ipt} \cos \theta \quad (6a)$$

$$u_\theta \Big|_{r=b} = -W e^{ipt} \sin \theta \quad (6b)$$

$$u_z \Big|_{r=b} = 0 \quad (6c)$$

It is readily apparent that these boundary conditions define a forced, sinusoidal oscillation of the rigid tank with arbitrary frequency p and with amplitude W in the $\theta=0$ direction.

We take a solution for the displacement potentials of the following form:

$$\phi = C_1 J_1 \left(k \lambda \frac{r}{b} \right) e^{ipt} \cos \theta \quad (7a)$$

$$\psi = 0 \quad (7b)$$

$$\chi = C_2 J_1 \left(\lambda \frac{r}{b} \right) e^{ipt} \sin \theta \quad (7c)$$

It may be verified by direct substitution that these potentials are solutions of Eqs. (5) provided we take

$$\lambda^2 = \frac{\rho p^2 b^2}{G}. \quad (7d)$$

Because of its relation to the forcing frequency p , λ will be referred to as the forcing frequency coefficient.

Substitution from Eqs. (7) into Eqs. (4) results in the following expressions for the displacements:

$$u_r = \left[C_1 \frac{k\lambda}{b} J_1' \left(k \lambda \frac{r}{b} \right) + \frac{C_2}{r} J_1 \left(\lambda \frac{r}{b} \right) \right] e^{ipt} \cos \theta \quad (8a)$$

$$u_\theta = - \left[\frac{C_1}{r} J_1 \left(k \lambda \frac{r}{b} \right) + C_2 \frac{\lambda}{b} J_1' \left(\lambda \frac{r}{b} \right) \right] e^{ipt} \sin \theta \quad (8b)$$

$$u_z = 0 \quad (8c)$$

We must now evaluate the constants involved in the solution given above. To this end we substitute from Eqs. (8) into the boundary conditions given by Eqs. (6) to obtain the following non-homogeneous system of two linear algebraic equations in the unknown constants:

$$\begin{vmatrix} (k\lambda) J_1' (k\lambda) & J_1 (\lambda) \\ J_1 (k\lambda) & \lambda J_1' (\lambda) \end{vmatrix} \begin{vmatrix} c_1 \\ c_2 \end{vmatrix} = \begin{vmatrix} w_b \\ w_b \end{vmatrix} \quad (9a)$$

Such a system can have a consistent solution only if the determinant of the coefficients of the unknowns does not vanish. On expansion of this determinant we obtain

$$\Delta(\lambda) = -\frac{1}{2} k \lambda^2 \left[J_0(\lambda) J_2(k\lambda) + J_2(\lambda) J_0(k\lambda) \right] \quad (9b)$$

On comparison of this result with Eq. (1) we find that Eq. (9b) has identically the same form as the frequency equation given by Eq. (1) except that the natural circular frequency coefficient Ω is replaced by the forcing frequency coefficient λ ; i. e.,

$$\Delta(\Omega_{1m}) = 0, \quad (m = 1, 2, 3, \dots) \quad (9c)$$

Thus, the determinant of the coefficients of the unknowns in Eq. (9a) will vanish whenever the forcing frequency coefficient λ is equal to the first-order natural circular frequency coefficient Ω_{1m} . As a result, we cannot expect to obtain a consistent solution of Eq. (9a) whenever $\lambda = \Omega_{1m}$. With this restriction in mind we proceed to obtain the following solution for the arbitrary constants:

$$c_1 = -Wb \Delta^{-1}(\lambda) J_2(\lambda) \quad (10a)$$

$\lambda \neq \Omega_{1m}$

$$c_2 = -Wb \Delta^{-1}(\lambda) (k\lambda) J_2(k\lambda) \quad (10b)$$

wherein we have made use of the recurrence relations for the Bessel functions.

Finally, in view of Eqs. (10), Eqs. (8) become

$$u_r = \frac{1}{2} Wk \lambda^2 \Delta^{-1}(\lambda) \left[J_2(\lambda) J_2(k\lambda \frac{r}{b}) - J_2(k\lambda) J_2(\lambda \frac{r}{b}) \right. \\ \left. - J_0(\lambda \frac{r}{b}) J_2(k\lambda) + J_2(\lambda) J_0(k\lambda \frac{r}{b}) \right] e^{ipt} \cos \theta \quad (11a)$$

$$u_\theta = \frac{1}{2} Wk \lambda^2 \Delta^{-1}(\lambda) \left[J_2(\lambda) J_2(k\lambda \frac{r}{b}) - J_2(k\lambda) J_2(\lambda \frac{r}{b}) \right. \\ \left. + J_0(\lambda \frac{r}{b}) J_2(k\lambda) + J_2(\lambda) J_0(k\lambda \frac{r}{b}) \right] e^{ipt} \sin \theta \quad (11b)$$

To obtain some insight into the physics of the problem let us investigate further the response of the axis. From Eqs. (11) it follows that

$$u_x \Big|_{\theta=0} = u_r \Big|_{\theta=0} = \frac{1}{2} Wk \lambda^2 \Delta^{-1}(\lambda) \left[J_2(\lambda) J_2(k\lambda \frac{r}{b}) - J_2(k\lambda) J_2(\lambda \frac{r}{b}) \right. \\ \left. - J_0(\lambda \frac{r}{b}) J_2(k\lambda) + J_2(\lambda) J_0(k\lambda \frac{r}{b}) \right] e^{ipt}$$

and so

$$u_x \Big|_{\substack{r=0 \\ \theta=0}} = - \frac{1}{2} Wk \lambda^2 \Delta^{-1}(\lambda) \left[J_2(k\lambda) + J_2(\lambda) \right] e^{ipt}$$

Finally, therefore, if we make use of Eq. (9b)

$$\frac{\bar{w}}{w} = \left[J_2(\lambda) + J_2(k\lambda) \right] \left[J_0(\lambda)J_2(k\lambda) + J_2(\lambda)J_0(k\lambda) \right]^{-1} \quad (12)$$

This result defines an amplification factor for the axis of the core. We observe that this amplification factor depends not only on the forcing frequency but also on Poisson's ratio, since k depends on Poisson's ratio only.

IV. ANALYSIS OF RESULTS AND CONCLUSIONS

Figure 1 shows the variation with the velocity ratio k of the first-order circular frequency coefficients for free, transverse vibrations of a solid, compressible elastic core case-bonded to an infinitely-long, rigid, circular cylindrical tank. These plots demonstrate that there exist natural modes of vibration even for an incompressible core when $k = 0$. This fact seems rather curious on closer consideration since the mode of vibration under investigation is one of plane strain and there does not appear to be any way in which an incompressible core can be deformed. In an attempt to provide at least a partial explanation of this apparent anomaly Figs. 2 have been plotted in order to demonstrate the variation with Poisson's ratio of the amplitude ratio-frequency characteristics of the core axis making use of Eq. (12). Since we are principally interested in the amplitude response in the neighborhood of the natural frequencies, the forcing frequency was normalized with the fundamental first-mode frequency in Fig. 2(a) and with the second first-mode frequency in Fig. 2(b). We observe that as Poisson's ratio approaches $1/2$, the resonance peaks tend to become sharper and sharper until, finally, for an incompressible material ($\nu = 1/2$) the frequency response is a simple impulse function and the entire characteristic curve is a discrete line spectrum as shown in Fig. 3.

It is clear that such a response characteristic is physically impossible for a real material. That this should be the case ought not to be surprising inasmuch as an incompressible material is an ideal material which, a priori, would not be expected to behave physically, exactly and entirely, as a real, nearly incompressible material. Although many physical characteristics of incompressible materials

have counterparts in compressible materials, other properties of incompressible materials as, e. g., the nature of the frequency response, are impossible of physical realization. This is an important observation since many analytical studies are being carried out on the basis of this assumption. In most cases assumption of an incompressible material simplifies analysis considerably but we must be aware of its limitations.

Another interesting and important observation concerning Figs. 2 is the tremendous sensitivity to Poisson's ratio exhibited by the response curves. Very small changes in Poisson's ratio in the neighborhood of 1/2 produce considerable changes in the shape of the curves. This is important since many materials are very nearly incompressible, notably many high polymers including solid propellant materials.

Summarizing, the foregoing points up the necessity for considerable care when analyses are performed on the assumption of an ideally incompressible material. In many respects such material exhibits the properties of real materials but it sometimes displays characteristics that cannot be reproduced in nature. Furthermore, when the material under study is nearly incompressible, the analysis must be performed with considerable care and precision since such materials are very sensitive to small changes in Poisson's ratio. It is clear that we must take great care in conducting experimental measurements of Poisson's ratio for these nearly incompressible materials.

Fig. 1 Variation of the first-order ($n = 1$) circular frequency coefficients as functions of Poisson's ratio for free, transverse vibrations of a solid elastic core case-bonded to an infinitely-long, rigid, circular-cylindrical tank.

Figure 2(a) Amplitude ratio-frequency plots in the neighborhood of the fundamental resonance of a solid, elastic core case-bonded to an infinitely-long, rigid cylinder

Figure 2(b) Amplitude ratio-frequency plots in the neighborhood of the second resonance for forced transverse vibrations of a solid, elastic core case-bonded to an infinitely long, rigid cylinder

Figure 3 Amplitude ratio-frequency plot for forced transverse vibrations of a solid, incompressible elastic core case-bonded to an infinitely-long rigid cylinder

DISTRIBUTION LIST

Part A - Government Activities

Office of Naval Research
Mechanics Branch
Department of the Navy
Washington 25, D. C.
Attn: Dr. H. Liebowitz (1)
Mr. J. M. Crowley (1)

Office of the Secretary of Defense
Research and Development Div.
The Pentagon
Washington 25, D. C.
Attn: Technical Library (1)

Army Office of Scientific Research
2127 Myrtle Drive
Duke Station
Durham, N. C.
Attn: Div. of Engineering Sciences (1)

Commander
U. S. Naval Ordnance Lab.
Whiteoak, Maryland
Attn: Technical Library (1)

Air Force Office of Scientific Research
Attn: Mechanics Division
Washington 25, D. C.
Attn: Mr. H. S. Wolko (1)

Commander
Air Force Research and Development Command
P. O. Box 1395
Baltimore 3, Maryland (1)

National Advisory Committee for Aeronautics
Office of Research Grants and Contracts
1520 H. Street, N. W.
Washington 25, D. C. (25)

Director
Naval Research Laboratory
Washington 25, D. C.
Attn: Tech. Info. Officer (1)

Office of the Secretary of the Army
The Pentagon
Washington 25, D. C.
Attn: Army Library (1)

Commanding General
Aberdeen Proving Ground
Aberdeen, Maryland
Attn: Mr. A. S. Elder (1)

Advanced Research Projects
Washington 25, D. C.
Attn: Dr. G. V. Mock (1)

Commanding General
U. S. Air Force
Washington 25, D. C.
Attn: Research and Development Division (1)

National Bureau of Standards
Conn. Ave. at Van Ness St. N. W.
Washington 25, D. C.
Attn: Dr. R. S. Marvin (1)

Commander
Wright-Patterson Air Force Base
Dayton, Ohio
Attn: Dynamics Branch (1)

National Science Foundation
1520 H. Street, N. W.
Washington 25, D. C.
Attn: Engineering Sciences Division (1)

Solid Propellant Information Agency
The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attn: Mr. M. T. Lyons (3)

Part B - Industrial Research Activities

Aerojet General Corporation
Sacramento, California
Attn: Dr. J. H. Wiegand (1)
Dr. Ralph Planck (1)

Hercules Powder Co.
Allegany Ballistics Laboratory
Cumberland, Maryland
Attn: Mr. J. H. Thacher (1)
Dr. Paul Drechsel (1)

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena 3, California
Attn: Dr. R. F. Landel (1)

Rohm and Haas Co.
Redstone Arsenal
Research Division
Huntsville, Alabama
Attn: Mr. C. H. Parr (1)

Thiokol Chemical Corporation
Redstone Division
Huntsville, Alabama
Attn: Mr. J. S. Wise (1)

Space Technology Laboratories
P. O. Box 95001
Los Angeles 45, California
Attn: Dr. W. G. Gottenberg (1)
Dr. M. V. Barton (1)

Southwest Research Institute
8500 Culebra Road
San Antonio, Texas
Attn: Dr. H. N. Abramson (1)

Aerojet General Corporation
Azusa, California
Attn: Mr. W. P. Cox (1)

Libra Scope Division
General Precision Inc.
Glendale, California
Attn: Mr. V. A. Karpenko (1)

Grand Central Rocket Co.
P. O. Box 111
Redlands, California
Attn: Mr. J. E. Fitzgerald (1)

Hercules Powder Co.
Bacchus Works
Magna, Utah
Attn: Dr. D. E. Boynton (1)
Mr. J. E. Farber (1)
Mr. D. E. Nicholson (1)

Rocketdyne
Solid Propulsion Operations
McGregor, Texas
Attn: Mr. B. L. Black (1)

Thiokol Chemical Corporation
Utah Division
Brigham City, Utah
Attn: Dr. L. H. Layton (1)
Dr. M. A. Brull (1)

Stanford Research Institute
Menlo Park, California
Attn: Dr. T. L. Smith (1)

Atlantic Research Corporation
Shirley Highway and Edsall Rd.
Alexandria, Virginia
Attn: Dr. M. G. DeFries (1)

United Technology Corporation
Sunnyvale, California
Attn: Dr. R. A. Chase (1)

Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio
Attn: Dr. J. H. Jackson (1)

Thiokol Chemical Corporation
Elkton, Maryland
Attn: Mr. F. Manolakos (1)

Lockheed Missiles and
Space Division
Sunnyvale California
Attn: Mr. L. A. Riedinger (1)
Dr. J. H. Klumpp (1)
Dr. William Nachbar (1)

Midwest Research Institute
4049 Pennsylvania Avenue
Kansas City 2, Missouri
Attn: Mr. Martin Goland (1)

Aerospace Corporation
Los Angeles 45, California
Attn: Dr. Paul Seide (1)
Dr. A. Norem (1)

J. G. Engineering Research
Associates
3709 Callaway Avenue
Baltimore 15, Maryland
Attn: Dr. J. E. Greenspon (1)

Dr. D. C. Gazis
Research Laboratories
General Motors Technical
Center
12 Mile and Mound Roads
Warren, Michigan (1)

Part C - University Research Activities

- | | | | |
|---|-----|---|-----|
| Prof. R. D. Mindlin
Dept. of Civil Eng. and
Eng. Mechanics
Columbia University
632 W. 125th. Street
New York 27, N. Y. | (1) | Prof. H. H. Bleich
Dept. of Civil Eng. and
Eng. Mechanics
Columbia University
632 W. 125th. Street
New York 27, N. Y. | (1) |
| Prof. B. A. Boley
Dept. of Civil Eng. and
Eng. Mechanics
Columbia University
632 W. 125th. Street
New York 27, N. Y. | (1) | Prof. A. M. Freudenthal
Dept. of Civil Eng. and
Eng. Mechanics
Columbia University
632 W. 125th. Street
New York 27, N. Y. | (1) |
| Prof. H. Becker
New York University
45 Fourth Street
New York 53, N. Y. | (1) | Prof. B. W. Shaffer
Dept. of Mechanical Eng.
New York University
45 Fourth Street
New York 53, N. Y. | (1) |
| Prof. P. J. Blatz
California Institute of
Technology
Pasadena, California | (1) | Prof. Y. C. Fung
California Institute of
Technology
Pasadena, California | (1) |
| Prof. M. L. Williams
California Institute of
Technology
Pasadena, California | (1) | Prof. G. Lianis
Purdue University
Lafayette, Indiana | (1) |
| Prof. A. C. Eringen
Dept. of Aeronautical
Engineering
Purdue University
Lafayette, Indiana | (1) | Prof. J. M. Klosner
Dept. of Aeronautical Eng.
and Applied Mechanics
Polytechnic Institute of
Brooklyn
99 Livingston Street
Brooklyn 2, N. Y. | (1) |
| Prof. F. Essenburg
Illinois Institute of
Technology
3300 Federal Street
Chicago 16, Ill. | (1) | Prof. P. M. Naghdi
University of California
Berkeley, California | (1) |
| Prof. N. J. Hoff
Dept. of Aeronautical
Engineering
Stanford University
Palo Alto, California | (1) | Prof. H. H. Hilton
Dept. of Aeronautical
Engineering
University of Illinois
Urbana, Ill. | (1) |

Prof. B. Budiansky Division of Eng. and Applied Physics Harvard University Cambridge, Massachusetts	(1)	Prof. George H. Lee Director of Research Rensselaer Polytechnic Institute Troy, New York	(1)
Prof. W. H. Hoppmann Rensselaer Polytechnic Institute Troy, New York	(1)	Prof. W. D. Jordan University of Alabama Tuscaloosa, Alabama	(1)
Prof. W. A. Nash University of Florida Gainesville, Florida	(1)	Prof. K. S. Pister University of California Berkeley, California	(1)
Prof. W. T. Thomson University of California Los Angeles, California	(1)	Prof. J. W. Miles University of California Los Angeles, California	(1)
Prof. Norman C. Dahl Dept. of Mechanical Engineering Massachusetts Institute of Technology Cambridge 39, Mass.	(1)	Prof. Eric Reissner Dept. of Mathematics Massachusetts Institute of Technology Cambridge 39, Mass.	(1)
Prof. E. H. Lee Brown University Providence 12, R. I.	(1)	Prof. J. Miklowitz California Institute of Technology Pasadena, California	(1)
Prof. W. Prager Brown University Providence 12, R. I.	(1)	Prof. D. C. Drucker Brown University Providence 12, R. I.	(1)
Rt. Rev. Msgr. W. J. McDonald Rector The Catholic University of America Washington 17, D. C.	(1)	Prof. E. Sternberg Brown University Providence 12, R. I.	(1)
Mr. Donald E. Marlowe Dean of Engineering The Catholic University of America Washington 17, D. C.	(1)	Dr. F. Joseph McGrane Coordinator of Research The Catholic University of America Washington 17, D. C.	(2)
Dr. A. J. Durelli The Catholic University of America Washington 17, D. C.	(1)	Prof. F. A. Biberstein The Catholic University of America Washington 17, D. C.	(1)