

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

Факультет: Информатика и системы управления

Кафедра: ИУ7

Планирование эксперимента

Студент группы ИУ7-83Б, Степанов Александр

Преподаватель:

Куров Андрей Владимирович

Содержание

Содержание

1	Определения	3
2	Лабораторные работы	6
	2.1 Лабораторная работа 1	6

§1 Определения

§1 Определения

Эксперимент – система наблюдений, воздействия, операций, направленных на получение информации об объекте при исследовательских испытаниях.

Опыт — это воспроизведение поведения исследуюемого явления в определенных условиях проведения эксперимента при возможности регистрации его результатов.

План эксперимента – это совокупность данных, определяющих число, условие и порядок проведения (реализации) опыта.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющее заданным требованиям.

Фактор – это переменная, которая по предположению влияет на результат эксперимента.

Уровень фактора – это фиксированное значение фактора относительно начало отсчета (безразмерная величина).

Основной уровень фактора – натуральное значение фактора, которое соответствует нулевому уровню безразмерной величины.

Нормализация фактора – преобразование натуральных величин в безразмерные величины.

Априорное ранжирование факторов – метод выбора наиболее важных факторов, основанных на предварительном знании (экспертной оценке).

Размах варьирования фактора – разность максимального и минимаьного значения факторов в натуральной величине.

$$\Delta I = I_{\rm max} - I_{\rm min}$$

Интервал варьирования фактора – половина размаха варьирования фактора.

$$\frac{\Delta I}{2} = \frac{I_{\text{max}} - I_{\text{min}}}{2}$$

Эффект взаимодействия факторов – показатель зависимости изменения

§1 Определения 4

эффекта одного фактора от уровня других факторов.

Факторное пространство – пространство, координатной оси которой совпадают с факторами

Область экспериментирования (планирования) – область факторного пространства, в которой выбираются точки, соответствующие условиям проведения эксперимента.

Пассивный эксперимент – человек при проведении пассивного эксперимента не задает уровни факторов, а лишь регистрирует их значения.

Активный эксперимент – человек при проведении активного эксперимента сам задает определенные значения факторов.

Последовательный эксперимент – эксперимент, реализуемый в виде серии опытов, причем условие проведения каждой последующей серии определяется результатом предыдущей.

Отклик – наблюдаемая случайная величина, по определению зависящая от фактора.

Функция отклика — зависимость математического ожидания отклика от фактора.

Оценка функции отклика – значение получаемое при подстановке в функцию отклика значения фактора.

Дисперсия оценки функции отклика – дисперсия оценки математического ожидания.

Поверхность функции отклика – геометрическое представление функции отклика.

Область оптиума – область факторнго пространства в окрестности точки, в которой функция отклика достигает экстремального значения.

Рандомизация плана – один из приемов планирования эксперимента, при котором влияние некоторой случайной величины сводят к случайной ошибке.

Параллельные опыты – рандомизированные опыты, в которых значение всех факторов остаются неизменными.

При планировании эксперимента исследователь должен:

§1 Определения 5

— помнить к какому классу систем относится рассматриваемая система

— определять режим работы системы

asd

§2 Лабораторные работы

2.1~ Лабораторная работа 1~

Одноканальная система обслуживания.

Генератор \rightarrow Буфер \rightarrow Обслуживающий аппарат \rightarrow

Задан закон распределения поступления заявок (λ) . Задан закон распределения времени обслуживания заявок $(\bar{t}_{\text{обсл}})$. Интервал прихода заявок.

$$t_{
m прихода} = rac{1}{\lambda}$$

Пользователя интересует

$$\overline{t}_{
m пребывания} = \overline{t}_{
m ожидания} + \overline{t}_{
m обслуживания}$$

 ρ — загрузка ρ = $\frac{\lambda}{\mu}$, λ — интенсивность поступления заявок, μ — интесивность обслуживания заявок.

$$F = 1 - e^{-\lambda t}$$

$$F = 1 - e^{-\mu t}$$

- 1. Пересчитать параметры заданого закона распределения таким образом, что-бы пользователь работал с интенсивностями.
- 2. Построить график зависимости ρ от среднего времени пребывания или ожидания.

$$\bar{t}_{\text{OXK}} = \frac{\rho}{(1-\rho)\lambda}$$