Tetrahedral (EG) to Trigonal pyramidal (MG)

Octahedral (EG) to Square Pyramidal (MG)

Square pyramidal

Square planar – tetrahedral - seesaw

Square planar

Identify the following shapes

Examples of AB(E) notation

Bond angles vary due to lone pairs of electrons (nonbonding)

Polarity of molecules based on VSEPR Theory

Textbook summary

TABLE 9.1 Electron-Domain Geometries as a Function of Number of Electron Domains

Number of Electron Domains*	Arrangement of Electron Domains	Electron Domain Geometry	Predicted Bond Angles	
2	180°	Linear	180°	
3	120°	Trigonal planar	120°	
4	109.5°	Tetrahedral	109.5°	
5	120°	Trigonal bipyramidal	120° 90°	
6	90°	Octahedral	90°	

^{*}The number of electron domains is sometimes called the *coordination number* of the atom.

TABLE 9.2 Electron-Domain and Molecular Geometries for Two, Three, and Four Electron Domains around a Central Atom

Number of Electron Domains	Electron-Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
2	Linear	2	0	Linear	Ö=C=Ö
3	Trigonal planar	3	0	Trigonal planar	;;;
		2	1	Bent	
4	Tetrahedral	4	0	Tetrahedral	HWILL H
		3	1	Trigonal pyramidal	H ^W H H
		2	2		н н

Bent

Textbook summary page 2

Textbook summary page 3

TABLE 9.3 Electron-Domain and Molecular Geometries for Five and Six Electron Domains around a Central Atom

Number of Electron Domains	Electron-Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
5	Trigonal bipyramidal	5	0	Trigonal bipyramidal	PCl ₅
		4	1	Seesaw	SF ₄
		3	2	T-shaped	CIF ₃
		2	3	Linear	XeF ₂
6 Octahedral	Octahedral	6	0	Octahedral	SF ₆
		5	1	Square pyramidal	BrF ₅
		4	2	Square planar	XeF ₄

ORGANIC MOLECULES

Electron-domain geometry tetrahedral, molecular geometry tetrahedral

Electron-domain geometry trigonal planar, molecular geometry trigonal planar

Electron-domain geometry tetrahedral, molecular geometry bent

POLARITY OF THE MOLECULE

Lecture Examples on Lewis structure & VSEPR:

Draw the best possible Lewis dot structures incorporating VSEPR model for each of the following compounds or ions shown below, and include resonance hybrids or isomers where appropriate:

E. C_6F_6

I. CIF₂

K. 10₃-

H. TeF₄

J. PF₅

L. Cl_2O

More examples in canvas