Logarithmengesetze

Es seien jeweils: $a, b \in R^+$; $k \in R$; $n \in N \setminus \{0,1\}$

Die Logarithmengesetze gelten für alle Grundzahlen / Basen.

In jeder Gleichung müssen jedoch alle Logarithmen dieselbe Basis besitzen.

Daher schreiben wir der Einfachheit halber statt log_b(a) nur log(a).

<u>Zur Erinnerung:</u> $x = log_b(a) \Leftrightarrow b^x = a$ x ist der <u>Logarithmus von</u> a <u>zur Basis</u> b.

Beispiel: $2^x = 32$ \Rightarrow $x := log_2(32) = 5$, denn: $2^5 = 32$

Erstes Logarithmengesetz:

Der Logarithmus eines Produkts ist gleich der Summe der Logarithmen seiner Faktoren.

Regel: $\log(a \cdot b) = \log(a) + \log(b)$

Beispiel: $log(12) = log(3 \cdot 4) = log(3) + log(4)$

Zweites Logarithmengesetz:

Der Logarithmus eines Quotienten ist gleich der Differenz der Logarithmen von Zähler und Nenner.

Regel: $\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$

<u>Beispiel:</u> $\log(15) - \log(3) = \log\left(\frac{15}{3}\right) = \log(5)$

Drittes Logarithmengesetz:

Der Logarithmus einer Potenz ist gleich dem Produkt aus der Hochzahl und dem Logarithmus der Grundzahl.

Regel: $\log(a^k) = k \cdot \log(a)$

Beispiel: $log(8) = log(2^3) = 3 \cdot log(2)$

Folgerungen:

Regel: $\log(\sqrt[n]{a}) = \log\left(a^{\frac{1}{n}}\right) = \frac{1}{n} \cdot \log(a)$

Beispiel: $\frac{1}{3} \cdot \log(8) = \log(8^{\frac{1}{3}}) = \log(\sqrt[3]{8}) = \log(2)$

Regeln: $\log\left(\frac{1}{a}\right) = -\log(a)$ $\log\left(\frac{a}{b}\right) = -\log\left(\frac{b}{a}\right)$

Beispiele: $\log\left(\frac{1}{3}\right) = -\log(3)$ $\log\left(\frac{7}{5}\right) = -\log\left(\frac{5}{7}\right)$

Außerdem gelten immer:

 $\log_a(a) = 1$

 $\log_a(a^n) = n$

 $\log_a(1) = 0$

 $\log_a\left(\frac{1}{a}\right) = -1$