Problem Set - 19 Jan 2024

PROBLEM 1 (2016 AMC 8 #2)

In rectangle ABCD, AB=6 and AD=8. Point M is the midpoint of \overline{AD} . What is the area of $\triangle AMC$?

(A) 12

(B) 15

(C) 18

(D) 20

(E) 24

PROBLEM 2 (2011 AMC 10B #6)

On Halloween Casper ate $\frac{1}{3}$ of his candies and then gave 2 candies to his brother. The next day he ate $\frac{1}{3}$ of his remaining candies and then gave 4 candies to his sister. On the third day he ate his final 8 candies. How many candies did Casper have at the beginning?

(A) 30

(B) 39

(C) 48

(D) 57

(E) 66

In $\triangle ABC$, AB=6, BC=7, and CA=8. Point D lies on \overline{BC} , and \overline{AD} bisects $\angle BAC$. Point E lies on \overline{AC} , and \overline{BE} bisects $\angle ABC$. The bisectors intersect at F. What is the ratio AF:FD?

- (A) 3:2
- **(B)** 5:3
- (C) 2:1
- **(D)** 7:3
- **(E)** 5:2

PROBLEM 4 (2018 AMC 10A #17)

Let S be a set of 6 integers taken from $\{1, 2, ..., 12\}$ with the property that if a and b are elements of S with a < b, then b is not a multiple of a. What is the least possible value of an element in S?

- **(A)** 2
- **(B)** 3
- (C) 4
- **(D)** 5
- **(E)** 7

PROBLEM 5 (2017 IMO #4)

Let R and S be different points on a circle Ω such that RS is not a diameter. Let ℓ be the tangent line to Ω at R. Point T is such that S is the midpoint of the line segment RT. Point J is chosen on the shorter arc RS of Ω so that the circumcircle Γ of triangle JST intersects ℓ at two distinct points. Let A be the common point of Γ and ℓ that is closer to R. Line AJ meets Ω again at K. Prove that the line KT is tangent to Γ .