## Estimating the Failure Probabilities

How do we evaluate the chance constraint  $\mathbb{P}_{\mathbf{x}_r}[f_i(\mathbf{x}_d, \mathbf{x}_r) > 1]$ ?

- Sample model at design point  $\mathbf{x}_d$  and randomly in  $\mathbf{x}_r$
- Build a linear model of  $f_i(\mathbf{x}_d, \mathbf{x}_r)$ :

$$f_i(\mathbf{x}_d, \mathbf{x}_r) \approx g(\mathbf{x}_r) := \alpha + \mathbf{a}^{\mathsf{T}} \mathbf{x}_r$$

• Estimate failure criteria with surrogate using Monte-Carlo

$$\mathbb{P}_{\mathbf{x}_r}[f_i(\mathbf{x}_d, \mathbf{x}_r) > 1] \approx \mathbb{P}_{\mathbf{x}_r}[g(\mathbf{x}_r) > 1] \approx \sum_{i=1}^{N} [\alpha + \mathbf{a}^{\top} \mathbf{x}_r^{(i)} > 1]$$

Mass  $\tau = 10^{-1}$ 

Linear Ridge Approximation

Ridge Direction Weights



Mass  $\tau = 10^{-6}$ 

Linear Ridge Approximation

Ridge Direction Weights



## Thrust $\tau = 10^{-1}$

20

ridge coordinate  $\mathbf{U}^{\top}\mathbf{x}_{i}$ 



ATM Pressure ATM Temperature Heat Transfer Coef to Env.

-0.5

weight [U];

0.5

## Thrust $\tau = 10^{-6}$



## Ridge Direction Weights

