HW 1

Evan Dragich

25 January 2022

1.5

a

$$A(4) = 1000 \times (1 - 0.06 \times 4)$$
$$= 1000 \times (1.24)$$
$$= $1240.00$$

b

$$A(4) = 1000 \times (1 - 0.06 \times 4)$$
$$= 1000 \times (0.76)$$
$$= $760.00$$

 \mathbf{c}

$$A(4) = 1000 \times (1 + 0.06)^4$$
$$= 1000 \times (1.262)$$
$$= $1262.48$$

 \mathbf{d}

$$r^{(4)} = 0.06i(t) = 1 + \frac{r^{(m)}}{m}^{m} - 1$$

$$= 1 + \frac{0.06^{4}}{4} - 1$$

$$= 1 + 0.015^{4} - 1$$

$$= 0.0614A(4) = 1000 \times (1 + 0.0614)^{4}$$

$$= 1000 \times (1.269)$$

$$= $1268.99$$

 \mathbf{e}

$$d^{(12)} = 0.06i(t) = 1 - \frac{d^{(m)}}{m}^{-m} - 1$$

$$= 1 - \frac{0.06}{12}^{-12} - 1$$

$$= 1 - 0.005^{-12} - 1$$

$$= 0.0620A(4) = 1000 \times (1.272)$$

$$= $1272.01$$

 \mathbf{f}

$$A(4) = 1000 \times e^{\delta t}$$

$$= 1000 \times e^{0.06 \times 4}$$

$$= 1000 \times e^{0.24}$$

$$= 1000 \times (1.271)$$

$$= $1271.25$$

1.9

Present Value

$$A(0) = \sum_{i=1}^{5} C_t \times (1+i)^{-t}$$

$$= \sum_{i=1}^{5} C_t \times (1.02)^{-t}$$

$$= 950 \times (1.02)^0 + 800 \times (1.02)^{-1} + 150 \times (1.02)^{-2} + 400 \times (1.02)^{-3} + 120 \times (1.02)^{-4}$$

$$= 950 \times 1 + 800 \times 0.9804 + 150 \times 0.9612 + 400 \times 0.9423 + 120 \times 0.9239$$

$$= 950 + 784.314 + 144.175 + 376.9289 + 110.8615$$

$$= $2366.28$$

A(5)

To calculate the value in 5 years, we could begin as above, and accumulate each cash flow individually to t = 5 rather that t = 0. However, it is equivalent to simply accumulate the sum as a whole.

$$A(5) = A(0) \times 1.02^5$$

$$= $2366.28 \times 1.10408$$

$$= $2612.56$$

1.36

To solve for the interest earned in the fifth year, we can subtract A(5) - A(4)

$$A(5) = A(0) \times \int_{0}^{5} \frac{1}{10(1+t)^{3}} dt$$

$$A(4) = A(0) \times \int_{0}^{4} \frac{1}{10(1+t)^{3}} dt$$

$$A(5) - A(4) = A(0) \times \int_{0}^{5} \frac{1}{10(1+t)^{3}} dt - A(0) \times \int_{0}^{4} \frac{1}{10(1+t)^{3}} dt$$

$$= A(0) \times \left(\int_{0}^{5} \frac{1}{10(1+t)^{3}} dt - \int_{0}^{4} \frac{1}{10(1+t)^{3}} dt\right)$$

$$= A(0) \times \left(\int_{4}^{5} \frac{1}{10(1+t)^{3}} dt\right)$$

$$= A(0) \times \left(\int_{4}^{5} \frac{1}{10(1+t)^{3}} dt\right)$$

$$= 100 \times \frac{1}{10} \times \int_{4}^{5} (1+t)^{-3} dt$$

$$= 10 \times \frac{-(1+t)^{-2}}{2} \Big|_{4}^{5}$$

$$= 10 \times \left(\frac{-(1+5)^{-2}}{2} - \frac{-(1+4)^{-2}}{2}\right)$$

$$= 5 \times \left((1+4)^{-2} - (1+5)^{-2}\right)$$

$$= 5 \times \left(0.0122\right)$$

$$= \$0.0611$$

1.42

$$a(t) = e^{\int_0^t \delta(s)ds}$$

To solve for $a_x(t) = a_y(t)$, we must equate:

$$e^{\int_0^t \delta_x(s)ds} = e^{\int_0^t \delta_y(s)ds}$$
$$\int_0^t \delta_x(s)ds = \int_0^t \delta_y(s)ds$$

From looking at the graph, $delta_x(s) = 0.1t$ and $delta_y(s) = 0.025t$ from $t \in (0, 2)$ and 0.05 when t > 2Thus, integrating both functions to solve for the t in which they are equal:

$$\Delta_x(t) = \int_0^t \delta_x(s) ds$$
$$= \int_0^t 0.01(s) ds$$
$$= 0.005t^2$$

$$\Delta_y(t) = \int_0^t \delta_y(s)ds$$

$$= \int_0^t 0.025(s)ds , 0 \le t \le 2$$

$$\int_0^2 0.025(s)ds + \int_2^t 0.05ds , 2 \le t \le 10$$

$$= 0.0125t^2 , 0 \le t \le 2$$

$$0.05 + 0.05t - 0.1 , 2 \le t \le 10$$

$$= 0.0125t^2 , 0 \le t \le 2$$

$$-0.05 + 0.05t , 2 \le t \le 10$$

$$= 0.0125t^2 , 0 \le t \le 2$$

$$-0.05 + 0.05t , 2 \le t \le 10$$

Thus, to solve for points where $0 \le t \le 2$, we must equate

$$0.005t^2 = 0.0125t^2$$
$$t = 0$$

To solve for points where $2 \le t \le 10$, we must equate

$$0.005t^{2} = -0.05 + 0.05t$$
$$0.005t^{2} - 0.05t + 0.05 = 0$$
$$0.005(t^{2} - 10 + 10) = 0$$
$$t = 5 \pm \sqrt{15}$$

Given the constraint of $2 \le t \le 10$, we find $t = 5 + \sqrt{15} = 8.873$