N=20,
$$y_N = 9$$
.

Assuming that the probability of heads is given by r , we observe y heads in N hosses, and r here α Beta prior with parameters α and β , the posterior dusing is a Beta prior with parameters $\delta = \alpha + y$ and $\gamma = \beta + N - y$. The nurginal liklihood is given by

$$P(y_N \mid \alpha, \beta) = (N) \Gamma(\alpha + \beta) \Gamma(\alpha + y_N) \Gamma(\beta + N - y_N)$$

$$P(y_N \mid \alpha, \beta) = (N) \Gamma(\alpha) \Gamma(\beta) \Gamma(\alpha + \beta + N)$$

Ep(rlyn) {P(/nm = ynm/r)} = (Nnew) $\Gamma(\delta+\gamma n \omega) \Gamma(\gamma + \lambda n \omega - \gamma n \omega)$ = (ynew) $\Gamma(\delta) \Gamma(\gamma)$ $\Gamma(\delta+\gamma + \lambda n \omega)$

Scenario 1: $\alpha = 1$, $\beta = 1$, => $\int = \alpha + y_N = 10$, $\gamma = 12$. $f(22) \times f(14) f(23)$ f(14) f(23) = f(10) f(12) + f(42)

$$\overline{(\beta)}$$