Caleb Andreano

calebandreano@gmail.com | linkedin.com/in/calebandreano | www.andreano.dev

B.S. Computer Engineering and M.S. Machine Learning student at MSOE with internship and numerous, diverse, hands-on and team-based project experiences. Skills in embedded systems programming, software design for critical systems, FPGA and hardware design, data science and ML engineering.

Education

Milwaukee School of Engineering Milwaukee, WI

Experiences

SpaceX Redmond, WA

Flight Software Engineer

Jun 2025 – Present

Milwaukee Tool Brookfield, WI

Firmware Engineering Intern: Battery Platform/NPD

Jun 2024 – Aug 2024

- Implemented Coulomb-count and open circuit voltage state of charge algorithm for next-generation battery pack firmware using c/c++ on TI and STM hardware, verifying with unit test suite and CSTAT static analysis.
- Developed data processing pipelines using pandas, numpy, scipy and matplotlib for interpretation and monitoring of circuit parameters, I²C traffic and pack MCU serial communications.
- Used golang, python, mutlithreaded programming, analog circuit design principles and digital filters to build automated test fixtures and control equipment.
- Explored extended Kalman filters for modeling dynamical state transitions using MatLab.
- Result: Project firmware and tests will be integrated into next-generation M18 platform.

Gama Space *Paris, France* (*Remote*)

Guidance, Navigation, Controls Intern

Feb 2023 – Oct 2023

- Used c and FreeRTOS to design asynchronous UART and CAN drivers for an STM microcontroller.
- Reverse-engineered and redesigned Cubesat Space Protocol (libcsp) into a cross-plaform, memory and thread safe Rust library, providing and documenting an ergonomic API for integration into existing flight software for currently in-flight low Earth orbit satellite platform.
- Provided network interface drivers for UDP, TCP/IP, CAN, UART, and loopback.

Leadership & Co-curricular involvement

Mozee Motorsports (SAE Formula Hybrid)

Hardware Project Owner

May 2024 – Present

- Directed hardware design project for throttle-by-wire control subsystem.
- Developed custom PCB for H-bridge PID motor controller.

Software Team Lead

May 2023 – *May* 2024

- Directed full system software rebuild for 2024 1st place world-champion hybrid vehicle.
- Implemented fully asychronous firmware using Rust and embassy for controlling multiple subsystems, including collecting and interpreting throttle input, controlling ICE throttle body (throttle-by-wire) and electric motor controller over CANFD, and validating safety system startup sequence, runtime monitoring, and fault detection.
- Attended 2024 Formula Hybrid + Electric competition in Loudon, NH, continuously developing and testing firmware during competition and passing all technical inspections.

Software Team Member Sep 2022 – May 2023

Raider Center for Academic Success

Lab Assistant: Embedded Systems	Jan 2024 – May 2025
Tutor: Embedded Systems, Computer Architecture, Data Structures, Embedded Systems	Jan 2024 – May 2025
MSOE Jazz Band	Feb 2022 – Present
Tau Beta Pi: WI-Delta	Aug 2023 – Present

Selected Projects

FPGA Touchscreen/Servo Control

- Designed custom PWM servo driver hardware component in VHDL and a c API for control.
- Integrated touchscreen driver component into digital hardware system using Intel Platform Designer.
- Created a graphics library in c for drawing and rendering 3D graphics on the touchscreen.
- Deployed RTL design on Altera MAX 10 FPGA.
- Implemented application code to draw a shape on the touchscreen using a stylus or finger and and automatically trace the shape with a servo-controlled robotic arm and laser.

ARMv4 CPU on FPGA

- Designed and implemented a 5-stage single-cycle RISC ARMv4 CPU on an Altera MAX 10 FPGA.
- Implemented instruction fetch (program counter/memory), decode, execute (ALU, register file, shifter), write-back, and memory stages using VHDL and Intel Quartus, enabling a subset of the ARM ISA to run on the CPU.
- Created custom assembler and disassembler in c++ to encode/decode from ARM to machine code.
- Verified design by implementing automated tests using ModelSim, validated by running programs on hardware interacting with memory-mapped peripherals and devices.

Network Interface Device

- Developed a CSMA/CD network device, implementing physical and data-link layers with a baremetal firmware design.
- Created Manchester Biphase II line encoder/decoder, interrupt driven, buffered, and variable length transmitter and receiver, CRC8 frame check sequence, asynchronous channel monitor and collision detection.
- Wrote repeatable test procedures, created design criteria and developed robust system requirements.
- Implemented common protocol standard enabling communication using unicast and broadcast addressing.

Tritone: Vector Calculator Expression Language/Interpreter

- Created context-free grammar and recursive descent expression parser in c.
- Developed abstract syntax tree data structure for expression evaluation and dj2-based dynamically-resizing linear probe hash table for variable assignment and retrieval.
- Implemented CLI interpreter for nested expression evaluation, implementing scalar and n-dimensional vector operations.

Coltrane: Round-Robin scheduler and synthesizer on STM32

- Developed a round-robin scheduling algorithm on an STM32 Arm platform using c and Arm Assembly.
- Implemented thread-level parallelism with custom synchronization primitives (mutex, semaphore).
- Enabled asynchronous user input through a serial console and UART driver, recording a song using an interrupt-driven keypad and song playback with multiple waveform types using a digital-to-analog converter and a piezo speaker.

Skills

Software: C/C++, Rust, Go, VHDL, Python, Java, HTML/CSS/JS, ARM Assembly, Nix, Bash

Hardware: PCB Design, Board Bringup, HIL/HITL testing, FPGA, RTL, Circuit Design, Digital Filters, Signal Processing

Technologies: Intel Quartus/ModelSim, NI MultiSim, Altium Designer/KiCad, TCP/IP