

DiSTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Risoluzione di sistemi lineari Lezione 2.7a

Fattorizzazioni di Cholesky e Thomas

Risoluzione di sistemi lineari (Fattorizz. di Cholesky e Thomas)

- Risoluzione numerica di sistemi di equazioni lineari
- Casi particolari di Fattorizzazione LU
 - ✓ Matrici Simmetriche Definite Positive (SDP)
 - ✓ Fattorizzazione di Cholescky
 - ✓ Matrici **Tridiagonali**
 - ✓ Fattorizzazione di Thomas

Risoluzione di sistemi lineari (Casi particolari di fattorizzazione)

- Due casi particolarmente rilevanti di fattorizzazione LU
 - Sistema con matrice <u>Simmetrica Definita Positiva(SDP)</u>
 - Sistema con matrice <u>Tridiagonale</u>

Risoluzione di sistemi lineari (Matrici SDP)

- ightharpoonup Sia $A \in \mathbb{R}^{n \times n}$ ed $\mathbf{x} \in \mathbb{R}^n$, la matrice A si dice SDP se
 - è simmetrica

$$A = A^T$$

vale la proprietà

$$\mathbf{x}^T A \mathbf{x} > 0 \quad \forall x \in \mathbb{R}^n, \mathbf{x} \neq 0$$

Risoluzione di sistemi lineari (Fattorizzazione di Cholesky)

 \blacktriangleright Se A è SDP allora esiste una matrice triangolare H inferiore t.c.

$$A = HH^T$$

> In questo caso

$$L=H \longrightarrow \text{Triangolare inferiore}$$

$$U=H^T \longrightarrow \text{Triangolare superiore}$$

Tale fattorizzazione prende il nome di

Fattorizzazione di Cholesky

> Costo per calcolare $H \ {\rm e} \ \frac{n^3}{12}$ operazioni (circa la metà del MEG)

Risoluzione di sistemi lineari (Fattorizzazione di Cholesky)

- ightharpoonup Vantaggio: si calcola solo una matrice H invece di due matrici $L,\,U$
- \blacktriangleright La matrice trasposta H^T non ha costi aggiuntivi

$$(h_{ij}) = (h_{ji})$$

Per risolvere

$$A\mathbf{x} = \mathbf{b}$$
 $A = HH^T$

$$HH^T\mathbf{x} = \mathbf{b} \longrightarrow egin{cases} H\mathbf{y} = \mathbf{b} & \textit{Sostituzioni in avanti} \ H^T\mathbf{x} = \mathbf{y} & \textit{Sostituzioni all'indietro} \end{cases}$$

$$\longrightarrow$$
 $2n^2$ operazioni