QR Code Authentication: First Print vs. Second Print

Kaustubh Bhalerao

March 22, 2025

Index

- 1. Introduction
- 2. Dataset and Preprocessing
- 3. SVM Model
- 4. Enhanced CNN Model
- 5. Conclusion
- 6. References

1 Introduction

QR codes are widely used for product authentication and verification. In this project, we develop a machine learning pipeline to distinguish between "First Print" (original) and "Second Print" (counterfeit) QR codes. We implemented both a traditional SVM model and an enhanced Convolutional Neural Network (CNN) model to achieve high classification accuracy.

The goal is to:

- Accurately classify QR codes as either First Print or Second Print.
- Compare performance between a traditional SVM and an enhanced CNN model.
- Optimize model performance with techniques like early stopping, regularization, and dropout.

Our results show that CNN significantly outperforms SVM due to better feature extraction and training improvements.

2 Dataset and Preprocessing

2.1 Dataset

We used two ZIP files containing images of QR codes:

- First Print: Original QR codes
- Second Print: Counterfeit versions generated by reprinting original QR codes

After unzipping, the files were loaded and resized to 128×128 grayscale images.

2.2 Preprocessing

The images were normalized to pixel values between [0, 1], and reshaped for CNN input:

Normalized Image =
$$\frac{\text{Pixel Value}}{255.0}$$

The dataset was split into 80% training and 20% testing.

3 SVM Model

We extracted edge-based features using Canny edge detection:

```
Feature = Mean(Canny Edges)
```

The features were passed to an SVM classifier with a linear kernel:

```
from sklearn.svm import SVC

svm_model = SVC(kernel='linear')
svm_model.fit(features_train.reshape(-1, 1), y_train)
svm_predictions = svm_model.predict(features_test.reshape(-1, 1))
```

SVM Result:

	precision	recall	f1-score	support
0	0.57	0.57	0.57	21
1	0.53	0.53	0.53	19
accuracy			0.55	40
macro avg	0.55	0.55	0.55	40
weighted avg	0.55	0.55	0.55	40

Confusion Matrix:

[[12 9] [9 10]]

The SVM model struggled to differentiate between First Print and Second Print images. The low performance suggests that handcrafted features (like Canny edges) may not be sufficient for this problem.

4 Enhanced CNN Model

We built a Convolutional Neural Network (CNN) with the following architecture:

- 3 Convolution Layers with ReLU activation and Max Pooling
- L2 Regularization ($\lambda = 0.01$) to prevent overfitting
- Dropout layers (30%, 40%, 50%, 60%) to improve generalization
- Sigmoid output layer for binary classification

4.1 Training Strategy

We added Early Stopping and a Learning Rate Scheduler for optimal training:

CNN Result:

Precision: 0.95
Recall: 0.95
F1-Score: 0.95
Confusion Matrix:
[[20 1]
 [1 18]]

5 Conclusion

The CNN outperformed the SVM model significantly due to better feature extraction, regularization, and improved training strategies.

Key takeaways:

- SVM achieved 55% accuracy with handcrafted features.
- CNN reached 95% accuracy with enhanced architecture and training.
- L2 regularization, dropout, early stopping, and learning rate scheduling improved generalization.

6 References

- TensorFlow documentation: https://www.tensorflow.org/
- OpenCV library: https://docs.opencv.org/
- Scikit-learn library: https://scikit-learn.org/