

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 JEE ADVANCED
 DATE : 08-11-15

 TIME : 02:00 AM TO 05: 00 PM
 2013_P2 MODEL
 MAX MARKS : 180

KEY & SOLUTIONS

PHYSICS

1	В	2	AB	3	BCD	4	ABC	5	ABC
6	ABD	7	ACD	8	BCD	9	В	10	A
11	В	12	В	13	С	14	В	15	A
16	D	17	D	18	В	19	C	20	A

CHEMISTRY

21	ABC	22	BCD	23	ABCD	24	BCD	25	ABCD
26	ABC	27	ABCD	28	ABCD	29	В	30	С
31	С	32	C	33	С	34	В	35	A
36	С	37	С	38	A	39	D	40	В

MATHEMATICS

41	AC	42	ABC	43	ABD	44	ВС	45	ABD
46	ABCD	47	ABCD	48	ABD	49	С	50	В
51	В	52	С	53	A	54	В	55	A
56	D	57	D	58	A	59	D	60	С

Sec: Sr.IPLCO Page 1

CHEMISTRY

- 21. In the formation of $Na_2[Fe(CN)_5 NO]$, Fe is in +3 oxidation state, but due to transfer of electron form NO to Fe^{3+} its oxidation state changes to Fe^{2+} . In the d^6 configuration of Fe^{2+} all the electrons are paired and the complex is diamagnetic. So its wt. decreases in applied magnetic field due to repulsion. It is also called sodium nitroprusside used in the detection of S^{2-} ion which give purple colour.
- 22. The common oxidation state is +2. Its stability increases from left to right in a series. In 3d series after Cr the atomic radius does not change much. Repulsion between paired electrons cancels the poor shielding effect of d-electrons. At the end the repulsions of electron pairs become more. So some size increases slightly transition metals like *Ni*, *Fe*, *Cr* may show zero oxidation state in some compounds like carbonyls
- 23. Due to poor shielding effect of d-electrons the atomic sizes of transition metals will become less than IA and IIA group elements. Due to lanthanide contraction the atomic and ionic sizes of 2nd and 3rd transition elements are almost same.
- 24. In the oxides of an element acidic nature increases while basic nature decreases with increase in oxidation number. When an oxide dissolve in non oxidising acid generally it exist as aqua complex with CN 6. Oxides like V_2O_5 , CrO_3 , Mn_2O_7 , etc $NaVO_3$, $Na_2Cr_2O_7$, $KMnO_4$, etc.

25.

III gives ppt with $AgNO_3$ in which CO_3 is acting as bidentate ligand. I and II do not give ppt with $AgNO_3$

Sec: Sr.IPLCO Page 5

Sri Chaitanya IIT Academy

27. $KMnO_4$ slowly decomposes in aqueous solution depositing brown MnO_2 $2MnO_4^- \rightarrow MnO_4^{2-} + MnO_2 + O_2$

In concentrated alkali permanganates give manganates.

$$4MnO_4^- + 4OH^- \to 4MnO_4^{2-} + 2H_2O + O_2$$

If a small quantity of $KMnO_4$ is added to $conc.H_2SO_4$, a green solution containing MnO_3^+ ions are formed

$$KMnO_4 + 3H_2SO_4 \rightarrow K^+ + MnO_3^+ + 3HSO_4^- + H_3O^+$$

With larger amounts of $KMnO_4$ an explosive oil Mn_2O_7 is formed.

$$2KMnO_4 + H_2SO_4 \rightarrow 2HMnO_4 + K_2SO_4$$

$$2HMnO_4 \xrightarrow{concH_2SO_4} Mn_2O_7$$

- 28. When CN^- is added to aq. Solution of Ni which contain $\left[Ni(H_2O)_6\right]^{2+}$; $\left[Ni(CN)_4\right]^{2-}$ is formed. $\left[Ni(H_2O)_6\right]^{2+}$ is outer orbital complex with two unpaired electrons have green colour. But $\left[Ni(CN)_4\right]^{2-}$ have all the electrons paired. So colourless B) With increase in strength of ligand Δ_o increases
 - C) N donor NO_2^- is stronger than o-donor NO_2^-
- 29. EAN of V(23) in $V(CO)_5$ is 35
- 30. As the instability constant of $\left\lceil Fe(CN)_6 \right\rceil^{3-}$ is least, it is most stable.

31,32.

The compound that can liberate I_2 form KI is $CuSO_4$. Converting into Cu_2I_2

- 33. Since i is 1-3 the overall stability constant is $\log \beta_3$
- 34. Due to increase in the number of ligands substituted by bidentate ligands the entropy increases
- 35. Since the isomer is suffering loss of weight with conc. H_2SO_4 , it should be hydrated isomer. Because it si giving yellow ppt with $AgNO_3$, I^- ions is in the ionization sphere. Then the complex will be $[Co(en)_2Cl_2]I.H_2O$. In this complex cobalt is in +3 oxidation state when CN^- ion replaces all the ligands, it will become inner orbital complex with all electrons paired. So magnetic moment will be zero. Since the CI^- ions are inside the coordination sphere they will not be precipitated as white $PbCl_3$.

Sec: Sr.IPLCO Page 6