Wine

Introduction:

This exercise is a adaptation from the UCI Wine dataset. The only pupose is to practice deleting data with pandas.

Step 1. Import the necessary libraries

```
import pandas as pd
import numpy as np
```

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called wine

wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data')
wine

→ *		1	14.23	1.71	2.43	15.6	127	2.8	3.06	.28	2.29	5.64	1.04	3.92	1065
	0	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
	1	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
	2	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
	3	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735
	4	1	14.20	1.76	2.45	15.2	112	3.27	3.39	0.34	1.97	6.75	1.05	2.85	1450
	172	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740
	173	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750
	174	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835
	175	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840
	176	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560
	177 rc	ws :	× 14 colu	ımns											

Step 4. Delete the first, fourth, seventh, nineth, eleventh, thirteenth and fourteenth columns

wine = wine.drop(wine.columns[[0,3,6,8,10,12,13]], axis = 1) wine

→		14.23	1.71	15.6	127	3.06	2.29	1.04
	0	13.20	1.78	11.2	100	2.76	1.28	1.05
	1	13.16	2.36	18.6	101	3.24	2.81	1.03
	2	14.37	1.95	16.8	113	3.49	2.18	0.86
	3	13.24	2.59	21.0	118	2.69	1.82	1.04
	4	14.20	1.76	15.2	112	3.39	1.97	1.05
	172	13.71	5.65	20.5	95	0.61	1.06	0.64
	173	13.40	3.91	23.0	102	0.75	1.41	0.70
	174	13.27	4.28	20.0	120	0.69	1.35	0.59
	175	13.17	2.59	20.0	120	0.68	1.46	0.60
	176	14.13	4.10	24.5	96	0.76	1.35	0.61

177 rows × 7 columns

→ Step 5. Assign the columns as below:

The attributes are (donated by Riccardo Leardi, riclea '@' anchem.unige.it):

- 1) alcohol
- 2) malic_acid
- 3) alcalinity_of_ash
- 4) magnesium
- 5) flavanoids
- 6) proanthocyanins
- 7) hue

wine.columns = ['alcohol', 'malic_acid', 'alcalinity_of_ash', 'magnesium', 'flavanoids', 'proanthocyanins', 'hue
wine

⋺₹		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue
	0	13.20	1.78	11.2	100	2.76	1.28	1.05
	1	13.16	2.36	18.6	101	3.24	2.81	1.03
	2	14.37	1.95	16.8	113	3.49	2.18	0.86
	3	13.24	2.59	21.0	118	2.69	1.82	1.04
	4	14.20	1.76	15.2	112	3.39	1.97	1.05
	172	13.71	5.65	20.5	95	0.61	1.06	0.64
	173	13.40	3.91	23.0	102	0.75	1.41	0.70
	174	13.27	4.28	20.0	120	0.69	1.35	0.59
	175	13.17	2.59	20.0	120	0.68	1.46	0.60
	176	14.13	4.10	24.5	96	0.76	1.35	0.61

177 rows × 7 columns

wine.iloc[0:3, 0] = np.nan wine

_ ₹		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue
	0	NaN	1.78	11.2	100	2.76	1.28	1.05
	1	NaN	2.36	18.6	101	3.24	2.81	1.03
	2	NaN	1.95	16.8	113	3.49	2.18	0.86
	3	13.24	2.59	21.0	118	2.69	1.82	1.04
	4	14.20	1.76	15.2	112	3.39	1.97	1.05
	172	13.71	5.65	20.5	95	0.61	1.06	0.64
	173	13.40	3.91	23.0	102	0.75	1.41	0.70
	174	13.27	4.28	20.0	120	0.69	1.35	0.59
	175	13.17	2.59	20.0	120	0.68	1.46	0.60
	176	14.13	4.10	24.5	96	0.76	1.35	0.61

177 rows × 7 columns

Step 7. Now set the value of the rows 3 and 4 of magnesium as NaN

wine.iloc[2:4, 3] = np.nan
wine

	alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue
0	NaN	1.78	11.2	100.0	2.76	1.28	1.05
1	NaN	2.36	18.6	101.0	3.24	2.81	1.03
2	NaN	1.95	16.8	NaN	3.49	2.18	0.86
3	13.24	2.59	21.0	NaN	2.69	1.82	1.04
4	14.20	1.76	15.2	112.0	3.39	1.97	1.05
172	13.71	5.65	20.5	95.0	0.61	1.06	0.64
173	13.40	3.91	23.0	102.0	0.75	1.41	0.70
174	13.27	4.28	20.0	120.0	0.69	1.35	0.59
175	13.17	2.59	20.0	120.0	0.68	1.46	0.60
176	14.13	4.10	24.5	96.0	0.76	1.35	0.61
	1 2 3 4 172 173 174 175	 NaN NaN NaN NaN 13.24 14.20 172 13.71 173 13.40 174 13.27 175 13.17 	0 NaN 1.78 1 NaN 2.36 2 NaN 1.95 3 13.24 2.59 4 14.20 1.76 172 13.71 5.65 173 13.40 3.91 174 13.27 4.28 175 13.17 2.59	0 NaN 1.78 11.2 1 NaN 2.36 18.6 2 NaN 1.95 16.8 3 13.24 2.59 21.0 4 14.20 1.76 15.2 172 13.71 5.65 20.5 173 13.40 3.91 23.0 174 13.27 4.28 20.0 175 13.17 2.59 20.0	0 NaN 1.78 11.2 100.0 1 NaN 2.36 18.6 101.0 2 NaN 1.95 16.8 NaN 3 13.24 2.59 21.0 NaN 4 14.20 1.76 15.2 112.0 172 13.71 5.65 20.5 95.0 173 13.40 3.91 23.0 102.0 174 13.27 4.28 20.0 120.0 175 13.17 2.59 20.0 120.0	0 NaN 1.78 11.2 100.0 2.76 1 NaN 2.36 18.6 101.0 3.24 2 NaN 1.95 16.8 NaN 3.49 3 13.24 2.59 21.0 NaN 2.69 4 14.20 1.76 15.2 112.0 3.39 172 13.71 5.65 20.5 95.0 0.61 173 13.40 3.91 23.0 102.0 0.75 174 13.27 4.28 20.0 120.0 0.69 175 13.17 2.59 20.0 120.0 0.68	0 NaN 1.78 11.2 100.0 2.76 1.28 1 NaN 2.36 18.6 101.0 3.24 2.81 2 NaN 1.95 16.8 NaN 3.49 2.18 3 13.24 2.59 21.0 NaN 2.69 1.82 4 14.20 1.76 15.2 112.0 3.39 1.97 172 13.71 5.65 20.5 95.0 0.61 1.06 173 13.40 3.91 23.0 102.0 0.75 1.41 174 13.27 4.28 20.0 120.0 0.69 1.35 175 13.17 2.59 20.0 120.0 0.68 1.46

177 rows × 7 columns

wine.loc[wine['alcohol'] == 10, 'alcohol'] = np.nan
wine.loc[wine['magnesium'] == 100, 'magnesium'] = np.nan
wine

₹		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue
	0	NaN	1.78	11.2	NaN	2.76	1.28	1.05
	1	NaN	2.36	18.6	101.0	3.24	2.81	1.03
	2	NaN	1.95	16.8	NaN	3.49	2.18	0.86
	3	13.24	2.59	21.0	NaN	2.69	1.82	1.04
	4	14.20	1.76	15.2	112.0	3.39	1.97	1.05
	172	13.71	5.65	20.5	95.0	0.61	1.06	0.64
	173	13.40	3.91	23.0	102.0	0.75	1.41	0.70
	174	13.27	4.28	20.0	120.0	0.69	1.35	0.59
	175	13.17	2.59	20.0	120.0	0.68	1.46	0.60
	176	14.13	4.10	24.5	96.0	0.76	1.35	0.61

177 rows × 7 columns

Step 9. Count the number of missing values

wine.isnull().sum()

Step 10. Create an array of 10 random numbers up until 10

```
arr = np.random.randint(10, size = 10)
arr

→ array([0, 4, 0, 2, 6, 0, 7, 3, 3, 2])
```

Step 11. Use random numbers you generated as an index and assign NaN value to each of cell.

```
wine.iloc[arr] = np.nan
wine
```

→ ▼		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue
	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	1	NaN	2.36	18.6	101.0	3.24	2.81	1.03
	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	4	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	172	13.71	5.65	20.5	95.0	0.61	1.06	0.64
	173	13.40	3.91	23.0	102.0	0.75	1.41	0.70
	174	13.27	4.28	20.0	120.0	0.69	1.35	0.59
	175	13.17	2.59	20.0	120.0	0.68	1.46	0.60
	176	14.13	4.10	24.5	96.0	0.76	1.35	0.61

177 rows × 7 columns

Step 12. How many missing values do we have?

```
sum = 0
for i in wine.columns:
    sum += wine[i].isnull().sum()
print(sum)
```

Step 13. Delete the rows that contain missing values

wine = wine.dropna(axis = 0, how = "any")
wine

→		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue
	5	14.39	1.87	14.6	96.0	2.52	1.98	1.02
	8	13.86	1.35	16.0	98.0	3.15	1.85	1.01
	9	14.10	2.16	18.0	105.0	3.32	2.38	1.25
	10	14.12	1.48	16.8	95.0	2.43	1.57	1.17
	11	13.75	1.73	16.0	89.0	2.76	1.81	1.15
	172	13.71	5.65	20.5	95.0	0.61	1.06	0.64
	173	13.40	3.91	23.0	102.0	0.75	1.41	0.70
	174	13.27	4.28	20.0	120.0	0.69	1.35	0.59
	175	13.17	2.59	20.0	120.0	0.68	1.46	0.60
	176	14.13	4.10	24.5	96.0	0.76	1.35	0.61

168 rows × 7 columns

wine['alcohol'].dropna()

_		
→ ▼		alcohol
	5	14.39
	8	13.86
	9	14.10
	10	14.12
	11	13.75
	172	13.71
	173	13.40
	174	13.27
	175	13.17
	176	14.13
	168 rc	ws × 1 column

dtype: float64

wine = wine.reset_index(drop = True)
wine

→		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue
	0	14.39	1.87	14.6	96.0	2.52	1.98	1.02
	1	13.86	1.35	16.0	98.0	3.15	1.85	1.01
	2	14.10	2.16	18.0	105.0	3.32	2.38	1.25
	3	14.12	1.48	16.8	95.0	2.43	1.57	1.17
	4	13.75	1.73	16.0	89.0	2.76	1.81	1.15
	163	13.71	5.65	20.5	95.0	0.61	1.06	0.64
	164	13.40	3.91	23.0	102.0	0.75	1.41	0.70
	165	13.27	4.28	20.0	120.0	0.69	1.35	0.59
	166	13.17	2.59	20.0	120.0	0.68	1.46	0.60
	167	14.13	4.10	24.5	96.0	0.76	1.35	0.61

168 rows × 7 columns