2022

(May)

COMPUTER APPLICATION

Foundation Course

(Mathematics-II)

Course Code: BCA-FC-T6-201

Credit: 6

Total Marks: 80

Time: 3 Hours

The figures in the margin indicate full marks for the questions

1. Answer the following:

 $1 \times 8 = 8$

- (a) Write the value of $\lim_{x\to 2^-} \frac{1}{(x-2)^3}$
- (b) Define homogeneous function of three variables.
- (c) What is critical number for a derivable function f(x)?
- (d) Write down the disk formula for volume.
- (e) What is the Laplace transform of cos3t.
- (f) Define partial derivative of a function f(x,y)w.r.t.x.
- (g) If $f'(x_0) = 0$ and $f''(x_0) > 0$, then f has a _____ at x_0 .

(Fill in the blank)

- (h) State the intermediate value theorem.
- 2. Answer the following:

 $2 \times 8 = 16$

- (a) State Rolle's theorem.
- (b) If $f(x,y) = x^3y + e^x$ find f_x and f_y .
- (c) Find $\int_0^{\pi/2} \cos^3 dx$
- (d) What are solid of revolution and axis of revolution?
- (e) Evaluate: $\lim_{x\to 0} \frac{x+\sin 2x}{x-\sin 2x}.$
- (f) Evaluate: $\int_{-1}^{1} |x| dx$
- (g) Write Walli's formula.
- (h) State the geometrical interpretation of the "Law of the Mean".
- 3. Answer any seven of the following:

- $5 \times 7 = 35$
- (a) Give an example of a continuous function at a point, but is not differentiable at that point. Justify your example.
- (b) State Taylor's theorem. Use it to expand $2x^3 + 7x^2 + x 6$ in powers of (x-2).
- (c) Find the extreme values of $x^3 + 2x^2 4x 8$
- (d) Obtain the reduction formula for $\int tan^n x dx$

- (e) Find the area bounded by the parabola $y^2 = 4x$ and the line y = 2x 4.
- (f) Evaluate: $L\left\{\left(5e^{2t}-3\right)^2\right\}$
- (g) If $U = log(x^3 + y^3 + z^3 3xyz)$, then show that $U_x + U_y + U_z = \frac{3}{x + y + z}$
- (h) If $v = \cot^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then show that $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} + \frac{1}{4}\sin 2v = 0$
- (i) Evaluate: $\lim_{x\to 0} (\cos x)^{1/x^2}$
- 4. Answer any three of the following:

 $7 \times 3 = 21$

(a) State Lagrange's MVT. Use it to show that -

$$\frac{v-u}{1+v^2} < tan^{-1}v - tan^{-1}u < \frac{v-u}{1+u^2}$$

for $0 \le u \le v$.

- (b) Investigate for the extreme values of $f(x,y) = x^3y^2(1-x-y)$.
- (c) Using calculus find volume and surface area of the solid of revolution formed by rotation of the circle $x^2 + y^2 = a^2$ about the x-axis.
- (d) Find the inverse Laplace transform of $\frac{3S+7}{S^2-2S-3}$.