

PVsyst - Simulation report

Grid-Connected System

Project: First Project

Variant: My_First_Simulation

Building system

System power: 9.00 kWp

Nagpur/Dhantoli - India

PVsyst TRIAL

PVsyst TRIAL

Author

PVsvst TRIAL

Variant: My_First_Simulation

PVsyst V8.0.7 VC0, Simulation date: 28/02/25 11:38 with V8.0.7

Project summary

Geographical Site

Nagpur/Dhantoli

India

Situation Latitude

Longitude

79.05 °E Altitude 313 m Time zone

UTC+6

Inverters

21.09 °N

Project settings

Albedo

0.20

Weather data Nagpur/Dhantoli

MeteoNorm 8.2 station - Synthetic

System summary

Grid-Connected System

Building system

Orientation #1

Fixed plane Tilt/Azimuth

25 / 90

Near Shadings

Linear shadings : Fast (table)

User's needs

Unlimited load (grid)

System information

PV Array

Nb. of modules Pnom total

30 units 9.00 kWp

Nb. of units Pnom total

3 units 9.00 kWac Pnom ratio 1.000

Results summary

Produced Energy 12002 kWh/year Specific production 1334 kWh/kWp/year Perf. Ratio PR 80.03 %

Table of contents Project and results summary 2 General parameters, PV Array Characteristics, System losses 3 Near shading definition - Iso-shadings diagram 4 Main results 5 Loss diagram 6 Predef. graphs 7 Single-line diagram 8

Variant: My_First_Simulation

PVsyst V8.0.7 VC0, Simulation date: 28/02/25 11:38 with V8.0.7

General parameters

Grid-Connected System

Building system

Orientation #1

Fixed plane

Sheds configuration

Tilt/Azimuth 25 / 90° Nb. of sheds 1 Unit

Single table

Shading limit angle

Sheds spacing Collector width

Sizes

0.00 m 0.00 m

Limit profile angle

Average GCR

Models used Transposition

Horizon Perez

Diffuse

separate

Circumsolar

Perez, Meteonorm

Free Horizon

Near Shadings

Linear shadings: Fast (table)

User's needs Unlimited load (grid)

PV Array Characteristics

PV module

Generic

Inverter

Generic

Manufacturer

Manufacturer

Mono 300 Wp 60 cells Model

Model (Original PVsyst database) 3 kWac inverter

(Original PVsyst database) Unit Nom. Power

300 Wp 30 units Unit Nom. Power

3.00 kWac

Number of PV modules Nominal (STC)

9.00 kWp

Number of inverters

3 units

3 string x 10 In series

Total power

9.0 kWac

Modules At operating cond. (50°C)

Operating voltage Pnom ratio (DC:AC) 125-440 V 1.00

Pmpp U mpp I mpp

8.10 kWp 284 V

28 A

Total inverter power

Total PV power

9 kWp

Total power

Nominal (STC) Total

30 modules

Number of inverters

9 kWac

3 units

Module area

48.8 m²

Pnom ratio

1.00

Cell area

42.7 m²

Array losses

Thermal Loss factor

DC wiring losses

Module Quality Loss

Loss Fraction

Module temperature according to irradiance

20.0 W/m²K

Global array res. Loss Fraction

 $168 \text{ m}\Omega$ 1.5 % at STC -0.8 %

Uc (const) Uv (wind)

0.0 W/m2K/m/s

Module mismatch losses

Loss Fraction

2.0 % at MPP

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.963	0.892	0.814	0.679	0.438	0.000

Variant: My_First_Simulation

PVsyst V8.0.7 VC0, Simulation date: 28/02/25 11:38 with V8.0.7

Variant: My_First_Simulation

PVsyst V8.0.7 VC0, Simulation date: 28/02/25 11:38 with V8.0.7

Main results

System Production Produced Energy

12002 kWh/year

Specific production Perf. Ratio PR 1334 kWh/kWp/year

80.03 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	134.5	54.10	22.30	129.3	124.6	985	952	0.818
February	139.5	60.40	25.20	135.3	131.3	1019	984	0.808
March	179.9	73.90	29.40	171.2	167.2	1254	1210	0.786
April	192.6	81.20	32.50	183.5	179.4	1320	1275	0.772
May	196.8	93.60	35.60	189.2	184.9	1347	1301	0.764
June	144.1	91.10	31.20	133.7	129.9	995	959	0.797
July	119.8	74.20	28.10	113.0	109.8	868	834	0.820
August	115.5	79.60	27.30	109.1	105.9	840	808	0.823
September	135.6	76.30	27.30	126.7	123.2	956	921	0.808
October	144.5	72.60	26.90	138.6	134.8	1048	1012	0.811
November	125.8	54.10	24.00	121.2	117.4	924	891	0.817
December	121.2	49.00	20.79	115.5	111.0	887	855	0.823
Year	1749.8	860.10	27.56	1666.4	1619.4	12445	12002	0.800

Legends

GlobHor Global horizontal irradiation

DiffHor Horizontal diffuse irradiation

T_Amb Ambient Temperature

Globlnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray E_Grid Effective energy at the output of the array

E_Grid

Energy injected into grid

Performance Ratio

Variant: My_First_Simulation

PVsyst V8.0.7 VC0, Simulation date: 28/02/25 11:38 with V8.0.7

Variant: My_First_Simulation

PVsyst V8.0.7 VC0, Simulation date: 28/02/25 11:38 with V8.0.7

