Modular Axithmetic & GCO

- Introduction
- Count pairs whose sum % m ==0
- GCD
- Proporties
- Delete one { if time permits }.

By monday
66.48 → 66.08 → 75%

personal takget $\approx 100\%$

Introduction

A % B = Remainder when A u divided by B Range of A % B =
$$[0, B-1]$$

why do we need % ?

Needed to limit the range of our ans

Rules

$$(a+b)$$
 % m = $(a \% m + b \% m)$ % m

Eg:
$$a = g$$
 $b = 8$ $m = 5$ owr dato type can hold at max 10 (9+8) 7.5 (9% 5 + 8% 5) 7.5 (17) % 5 = 2 (4+3) % 5 = 7% 5 = 2

$$(a * b) \% m = ((a \% m) * (b \% m)) \% m$$

$$(a+m)$$
 % $m = ((a \% m) + (m\% m)) \% m$
= $(a\% m) \% m$

4)
$$(a-b)\% m = (a\% m - b\% m + m)\% m$$

Eq : $a = 12$ $b = 9$ $m = 5$
 $(12-9)\% 5 = 3\% 5 = 3$
 $(12\% 5 - 9\% 5)\% 5$ $(2-45)\% 5 = 3$
 $(2-4)\% 5 = 3\% 5 = 3$
 $(2-4)\% 5 = (2+5)\% 5 = 3$
 $(2-1)\% 5 = (2+5)\% 5 = 3$
 $(2-1)\% 5 = (2-12)\% 5 = 2$
 $(2\% 5 - b\% 5 + 5)\% 7$
 $(2+5)\% 5 = 2$
 $(2+5)\% 5 = 2$
 $(2+5)\% 5 = 3$
 $(2+5)\% 7 = 2$
 $(2+5)\% 7 = 2$
 $(3\% 6 - b\% 5 + 5)\% 7$
 $(2-7)\% 7 = 3\% 7$
 $(2-7)\% 7 = 3\% 7$
 $(2-7)\% 7 = 3\% 7$

Eq $(37^{103} - 1)\% 12$
 $(37^{103} - 1)\% 12$
 $(37^{103} 7 \cdot 12 - 1\% 12 + 12)\% 12$
 $((37\% 12)^{103})\% 12 - 1 + 12)\% 12$
 $(1\% 12 - 1 + 12)\% 12$
 $(1\% 12 - 1 + 12)\% 12$

```
Count of pairs whose sum % m = = 0 ***
Given AII, find count of pairs (i, j) such that
            (A[i] + A[j]) \% m = 0
NOTE: i = j and (i,j) = = (j,i)
  N <= 105 0 < A[i] <= 109
  O I 2 3 4 5
A C  = 4 3 6 3 8 12
                                    \mathbf{w} = \mathbf{e}
                                        0,6,12,18,24....
        j (A[i] + A[j]) % 6 and = 3
                   3 + 3 = 6 \% 6 = 0
   0 \quad 4 \quad 4 \quad 8 = 127.6 = 0
                  6 + 12 = 187.6 = 0
Bruteforce \fi, i check (A[i] + A[j]) % m == 0
Optimized approach
            (A[i] + A[j]) % m
           (A[i] 1/2 m + A[j] 1/2 m) 1/2 m

\begin{bmatrix}
0, m-1
\end{bmatrix}
\begin{bmatrix}
0, m-1
\end{bmatrix}
\begin{bmatrix}
0, 2m-2
\end{bmatrix}

multiples of m in range of to 2m-2

0, m

    Step 1 \rightarrow mod each element.
```

m = 6

$$A[] = 2 3 4 8 6 15 5 12 17 7 18$$

 $A[i] \% 6 2 3 4 2 0 3 5 0 5 1 0$

max value of ATi] 7.6 + ATj] 7.6 = 10Check if sum of any pair is 0 or m. $\{0,6\}$

Count all paires with sum 0 or 6.

Create an away of 3 max (A) +1

freq [7] =
$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$$

for
$$i \longrightarrow 0$$
 to N-1 of frequential $+=1$

HW.

learn basics of hash map dictionary

$$A_i + A_j == 0 \text{ or } 6$$

$$A_i + A_j == 0$$

Both $A_i == A_j == 0$

$$A_i + A_j = 6$$

$$A_i = 6 - A_i$$

<i>lemainder</i>	Pair	count	freq,	
2	6-2=4	0	2:1	
3	6 - 3 = 3	0	2:1,3:1	
y	6 - 4 = 2	1	2:1,3:1,4:1	
2	6-2 = 4	2	2:2,3:1, U:1	
0	0	2	0:1,2:2,3:1,4:1	
3	6-3 = 3	3	O:1,2:2,3:2,U:1	
5	6-5= 1	3	0:1 2:2 3:2 4:1 5:1	
0	0	Y	0:2 2:2 3:2 4:1 5:1	
5	6-2= 1	Ų	0:2 2:2 3:2 4:1 5:2	
	6-1 = 5	6	0:2 2:2 3:2 4:1 5:2	
			L:L	
0	0	8	0:3 2:2 3:2 4:1 5:2	
			L:L	

Pseudocode

Break: 22:40

```
count = 0
                                                O(M)
      freq = create an away of size m wim all Os
      for i \longrightarrow 0 to N-1 o(N)
            val = A[i] % m
        if (val ==0) {
| pair = 0
| 3 else {
| pair = m-val
| 3
          count += feeq [pair]
freq[val] += 1
       print (count)
TC: O(N+M)
SC: O(M)
                        initialising frequi) = 0
                            for i --- o to M-1
```

GCD Basics Greatest Common Divisor HCF & Highest common Factor } gcd(15, 25) = 5 $1 \quad 5 \quad 25$ $1 \quad 3 \quad 5 \quad 15$ gcd (12,30) All positive no are factor for O $g(d(0,0) = \infty // undefined$ gcd = 1

$$\gcd = 1$$

$$\text{for } i \longrightarrow 2 \text{ to } \min(a,b) \{$$

$$\text{if } (a \% i = = 0 \& \& b\%, i = = 0) \{$$

$$\text{gcd} = i$$

$$\text{TC} : O(\min(a,b))$$

$$\text{print } (\text{gcd}).$$

```
Properties of GCD
```

gcd(0,5)

a > = x * b

```
gcd(31, 6) = gcd(31\%6, 6)

gcd(31-6, 6)

gcd(25-6, 6)

gcd(19-6, 6)

gcd(13-6, 6)

gcd(13-6, 6)

gcd(13-6, 6)

gcd(1,6) = 1
```

write a function to find gcd (a, b)

$$gcd(24,16) = gcd(247.16, 16)$$

$$= gcd(8,16)$$
 $gcd(87.16,16)$
 $gcd(87.16,16)$
 $gcd(8,16)$

$$gcd(24,16) = gcd(16, 24\% 16)$$

= $gcd(16, 8)$
= $gcd(8, 16\% 8)$
= $gcd(8,0) = 8$

Pseudo code a>0 b>0

int gcd (int a, int b) {

if (b==0) { xctwrn a } introduction in the implemented interaction in the implemented interaction
$$sc: O(1)$$

TC: $O(log(max(a,b))) \leftarrow (sc)$

$$gcd(8,24) \longrightarrow gcd(24,87,24)$$

 $\longrightarrow gcd(24,8)$

Given an away calculate gcd of entire away.

$$A = \begin{cases} 6 & 12 & 15 \end{cases}$$

$$6 & 15 \end{cases}$$

$$\frac{3}{4}$$

Given A[N], we have to delete one element such that gcd of the remaining elements become max

$$O$$
 1 2 3 4 ACT = 24 16 18 30 15

return max gcd after deleting one element.

gcd of rest.

Brute force

Vi ignore A[i] and calculate gcd for rest.

TC: O(N² log(max A))

you can implement gcd iteratively.

24	16	18	30	15_)
24	16	18	30	15
24	16	18	30	15
24	16	18	-30	15
24	16	18	30	15

$$prefix[i] = gcd(o-i)$$

for any i
$$gcd = gcd(prefix [i-1], suffix [i+1])$$

i $\longrightarrow 1$ to N-2

if
$$i == 0$$
 suffix $[i+1]$
if $i == N-1$ prefix $[i-1]$

TC: O(N*log max(A))

SC: O(N)

poubt session

```
subsets = <<>>> { list of list}
           subsets. sort ((a,b) \longrightarrow \{
                    la = a.size()
                    lb = b.sizel)
                    l = min(la, lb)
for i \longrightarrow 0 to l-1 {

if (aTi] < bTi]) {

netwin -1 // a comes first

if (bTi) < aTi]) {

netwin 1 // b comes first
```

Perision Strategy.

Which questions to revise?

which took you hints in the PSF

Each and every sunday re-solve difficult problems.

Q solved within keep it and try again next week.

remove from revision