

Project Bateman: Status Update

Daan Camps, Raf Vandebril, Gert Van den Eynde December 6, 2016

Bateman Problem

Solving the Bateman problem numerically

Problem specific numerics

RADAU IIA

Linear RADAU IIA

Implementation details

Numerical results

Conclusion

Bateman Problem

Quick recapitulation

Concentration of nuclides y_i obey a system of first-order linear differential equations¹:

$$\mathbf{y}' = A \mathbf{y} \longrightarrow \mathbf{y}(t) = e^{At} \mathbf{y}_0$$

Properties of the system

Transmutation matrix $A \in \mathbb{R}^{3771 \times 3771}$

Sparse matrix (\sim 0.5%), Numerical range: $10^{-40} \cdots 10^{22}$, Singular values: $10^{-22} \cdots 10^{22}$

[Stankovskiy, A. & Van den Eynde, G., 2012]

¹under certain assumptions: constant particle fluxes and spectra, both spatially and temporally

Solving the Bateman problem numerically

A bit more on problem specific numerics²

System is not of full rank:

²based on "Problem 2"

A bit more on problem specific numerics

System is not of full rank:

A bit more on problem specific numerics

The problem is very stiff:

$$\max(|\Re(\lambda_i)|) \gg \min(|\Re(\lambda_i)|)$$
$$3 \cdot 10^{22} \gg 0$$

RADAU IIA

- 3-stage Implicit Runge-Kutta scheme of order p = 5
- \bullet L-stable \to well-suited for stiff problems

RADAU IIA

- 3-stage Implicit Runge-Kutta scheme of order p = 5
- ullet L-stable o well-suited for stiff problems
- ... but expensive!

RADAU IIA

- 3-stage Implicit Runge-Kutta scheme of order p = 5
- ullet L-stable o well-suited for stiff problems
- ... but expensive!
- Our goal: make it as cheap and efficient as possible

[Hairer, E. & Wanner, G., 1996]

General setting for nonlinear problems

General s-stage implicit Runge-Kutta method for nonlinear $\mathbf{y}' = \mathbf{f}(t, \mathbf{y})$:

$$\begin{cases} \mathbf{g}_{i} &= \mathbf{y}_{0} + h \sum_{j=1}^{s} \tilde{a}_{ij} \mathbf{f}(t_{0} + \tilde{c}_{j}h, \mathbf{g}_{j}) & i = 1, \dots, s \\ \mathbf{y}_{1} &= \mathbf{y}_{0} + h \sum_{j=1}^{s} \tilde{b}_{j} \mathbf{f}(t_{0} + \tilde{c}_{j}h, \mathbf{g}_{j}) \end{cases}$$

9

General setting for linear problems

General s-stage implicit Runge-Kutta method for linear $\mathbf{y}' = A\mathbf{y}$:

$$\begin{cases} \mathbf{g}_{i} &= \mathbf{y}_{0} + h \sum_{j=1}^{s} \tilde{a}_{ij} A \mathbf{g}_{j} & i = 1, \dots, s \\ \mathbf{y}_{1} &= \mathbf{y}_{0} + h \sum_{j=1}^{s} \tilde{b}_{j} A \mathbf{g}_{j} \end{cases}$$
(1)

CHANGE OF VARIABLES

Reformulate (1) in terms of $\mathbf{z}_i = \mathbf{g}_i - \mathbf{y}_0$:

$$\mathbf{z}_{i} = h \sum_{j=1}^{3} \tilde{a}_{ij} A(\mathbf{y}_{0} + \mathbf{z}_{j}) \quad i = 1, \dots, 3$$
 (2)

CHANGE OF VARIABLES

Reformulate (1) in terms of $\mathbf{z}_i = \mathbf{g}_i - \mathbf{y}_0$:

$$\mathbf{z}_i = h \sum_{j=1}^3 \tilde{a}_{ij} A(\mathbf{y}_0 + \mathbf{z}_j) \quad i = 1, \dots, 3$$
 (2)

The step update formula from (1) becomes:

$$\mathbf{y}_1 = \mathbf{y}_0 + \sum_{i=1}^3 \tilde{d}_i \, \mathbf{z}_i \quad ext{with } \tilde{d} = \tilde{b} \tilde{A}^{-1} = (0,0,1)$$

MATRIX NOTATION

Equation (2) is in matrix notation:

$$\begin{bmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \\ \mathbf{z}_3 \end{bmatrix} = h\tilde{A} \begin{bmatrix} A(\mathbf{y}_0 + \mathbf{z}_1) \\ A(\mathbf{y}_0 + \mathbf{z}_2) \\ A(\mathbf{y}_0 + \mathbf{z}_3) \end{bmatrix}$$

Kronecker product notation

Which admits a compact notation with Kronecker product structure:

$$\mathbf{Z} = (h\tilde{A} \otimes A)(\mathbf{Y}_0 + \mathbf{Z})$$

with $\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \mathbf{z}_3]^T$, $\mathbf{Y}_0 = [\mathbf{y}_0 \ \mathbf{y}_0 \ \mathbf{y}_0]^T$ vectors of length 3N.

KRONECKER PRODUCT NOTATION

Which admits a compact notation with Kronecker product structure:

$$\mathbf{Z} = (h\tilde{A} \otimes A)(\mathbf{Y}_0 + \mathbf{Z})$$

with $\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \mathbf{z}_3]^T$, $\mathbf{Y}_0 = [\mathbf{y}_0 \ \mathbf{y}_0 \ \mathbf{y}_0]^T$ vectors of length 3N.

This can be rewritten as:

$$\left((I_3 \otimes A) - \left(\left(h \, \tilde{A} \right)^{-1} \otimes I_N \right) \right) \mathbf{Z} = - \left(I_3 \otimes A \right) \mathbf{Y}_0 \qquad (3)$$

A USEFUL SIMILARITY TRANSFORMATION

Next, make use of the similarity transformation:

$$T^{-1}\tilde{A}T = \Lambda$$
,

that brings the Butcher tableau to block diagonal form:

$$\Lambda = \begin{bmatrix} \times & & \\ & \times & \times \\ & \times & \times \end{bmatrix}.$$

 \tilde{A} has 1 real eigenvalue λ_1 and 1 pair of complex conjugate eigenvalues $\lambda_{2,3}=\alpha\pm i\beta$.

DECOUPLING THE SYSTEM

Introducing the similarity transformation in (3), decouples the linear system into an $N \times N$ and $2N \times 2N$ system:

$$\left(\textit{I}_{3}\otimes\textit{A}-\textit{h}^{-1}\Lambda\otimes\textit{I}_{\textit{N}}\right)\textbf{W}=-\left(\textit{I}_{3}\otimes\textit{A}\right)\left(\textit{T}^{-1}\otimes\textit{I}_{\textit{N}}\right)\textbf{Y}_{0},$$

where
$$\mathbf{W} = (T^{-1} \otimes I_N) \mathbf{Z}$$
.

 $N \times N$ SYSTEM

The $N \times N$ system is given by:

$$(A - h^{-1}\lambda_1 I_N) \mathbf{w}_1 = -t_{1x}^{inv} A\mathbf{y}_0, \tag{4}$$

with \mathbf{w}_1 the first N entries of \mathbf{W} and $t_{1\times}^{inv}$ the sum of the entries in the first row of \mathcal{T}^{-1} .

 $2N \times 2N$ System

The $2N \times 2N$ system is given by:

$$\begin{bmatrix} A - h^{-1} \alpha I_N & h^{-1} \beta I_N \\ -h^{-1} \beta I_N & A - h^{-1} \alpha I_N \end{bmatrix} \begin{bmatrix} \mathbf{w}_2 \\ \mathbf{w}_3 \end{bmatrix} = \begin{bmatrix} -t_{2x}^{inv} \ A\mathbf{y}_0 \\ -t_{3x}^{inv} \ A\mathbf{y}_0 \end{bmatrix},$$

which can be reduced to a complex system of size $N \times N$:

$$(A - h^{-1}(\alpha + i\beta)I_N)(\mathbf{w}_2 + i\mathbf{w}_3) = -(t_{2x}^{inv} + it_{3x}^{inv})A\mathbf{y}_0$$
 (5)

STEP UPDATE

The step update procedure becomes:

$$\mathbf{y}_1 = \mathbf{y}_0 + \mathbf{z}_3 \tag{6}$$

$$= \mathbf{y}_0 + t_{31} \, \mathbf{w}_1 + t_{32} \, \mathbf{w}_2 + t_{33} \, \mathbf{w}_3 \tag{7}$$

$$= \mathbf{y}_0 + t_{31}\mathbf{w}_1 + \mathbf{w}_2 \tag{8}$$

From this analysis we can identify some important aspects for the implementation:

• The original matrix A was singular, the matrices in Eqs. (4) and (5) are not (but still ill-conditioned)

- The original matrix A was singular, the matrices in Eqs. (4) and (5) are not (but still ill-conditioned)
- As long as the step is not changed, the LU factorization $(\mathcal{O}(n^3))$ can be reused $\Rightarrow \mathcal{O}(n^2)$ cost per step

- The original matrix A was singular, the matrices in Eqs. (4) and (5) are not (but still ill-conditioned)
- As long as the step is not changed, the LU factorization $(\mathcal{O}(n^3))$ can be reused $\Rightarrow \mathcal{O}(n^2)$ cost per step
- Option for high-level parallelism

- The original matrix A was singular, the matrices in Eqs. (4) and (5) are not (but still ill-conditioned)
- As long as the step is not changed, the LU factorization $(\mathcal{O}(n^3))$ can be reused $\Rightarrow \mathcal{O}(n^2)$ cost per step
- Option for high-level parallelism (but overhead is too big for given size of problems)

- The original matrix A was singular, the matrices in Eqs. (4) and (5) are not (but still ill-conditioned)
- As long as the step is not changed, the LU factorization $(\mathcal{O}(n^3))$ can be reused $\Rightarrow \mathcal{O}(n^2)$ cost per step
- Option for high-level parallelism (but overhead is too big for given size of problems)
- The same error estimator as for the original RADAU IIA can be used (cost: $\mathcal{O}(n^2)$)

Code overview

- matrixrw: I/O routines from file
- units: Specifies working precision kind (wp), parameters of RADAU IIA integration scheme and error estimation
- utilities: Some subroutines for printing status, warnings, errors

Code overview

- matrixrw: I/O routines from file
- units: Specifies working precision kind (wp), parameters of RADAU IIA integration scheme and error estimation
- utilities: Some subroutines for printing status, warnings, errors
- radau_common: Shared subroutines for constructing matrices and RHS from (4) and (5), also error estimation
- radau_fx_seq: Fixed step w/o error estimation. First version computes YFINAL, second also intermediate results.
- radau_sa_seq: Semi adaptive version computes the error HEVALS times on logspaced points.
- radau_ad_seq: Adaptive version computes error after each step

MUMPS SPECIFICS

The best performance with the MUMPS solver was obtained with:

 Solving the systems (4) and (5) one after the other in a single process (sequential MUMPS)

MUMPS SPECIFICS

The best performance with the MUMPS solver was obtained with:

 Solving the systems (4) and (5) one after the other in a single process (sequential MUMPS) ... if the problems would become significantly larger, a parallel implementation will become faster

21

MUMPS SPECIFICS

The best performance with the MUMPS solver was obtained with:

- Solving the systems (4) and (5) one after the other in a single process (sequential MUMPS) ... if the problems would become significantly larger, a parallel implementation will become faster
- The MUMPS internal parameter for amalgamation %KEEP(1) has a large influence on performance of fwd/bwd substitution step. Optimal settings (on my PC for problem 1) are always between 40 and 50.

Numerical results

Execution times

t_f	Problem 1 (s)			Problem 2 (s)		
	fx	sa	ad	fx	sa	ad
1h	0.47e0	0.11e1	0.25e1	0.16e1	0.27e1	0.41e1
24h	0.95e1	0.18e1	0.45e1	0.31e2	0.70e1	0.13e2
720h	0.27e3	0.21e1	0.52e1	?	?	?

t_f	Problem 3 (s)			Problem 4 (s)		
	fx	sa	ad	fx	sa	ad
1h	0.11e1	0.85e0	0.98e0	0.17e1	0.14e1	0.16e1
24h	0.22e2	0.14e1	0.74e1	0.36e2	0.24e1	0.31e1
720h	0.66e3	0.15e2	0.14e3	0.11e4	0.31e1	0.60e1

Parameters: $h_{fx} = 20s$, $h_{init} = 0.25s$, #h evaluations = 12

Conclusion

Conclusion

- Highlighted the problem specific numerical difficulties
- Custom version of IRK scheme for linear first-order systems
- Implemented in Fortran90 making use of a state-of-the-art solver MUMPS

Available on: https://github.com/campsd/linear-radau