

Energy-Accuracy Trade off in Hyperparameter Tuning

A study on how hyperparameter tuning affects the accuracy and energy consumption of machine learning models.

Abdulrahman Alshahrani, Abdallah Al-Sukhni

Department of Computer Science, The University of Texas at Austin

Agenda:

- 1. Energy consumption of Machine Learning
- 2. What is Hyperparameters Tuning?
- 3. The issue with Grid Search
- 4. Our Experiment
- 5. Our Results
- 6. Conclusion

Machine Learning Energy Consumption

- Al could consume 85-134 TWh by 2027 [1]
- Competes with Netherlands annual energy consumption. [1]
- Training GPT-3 emitted 502 metric tons of carbon, equivalent to driving 112 gasoline powered cars for a year. [2]

How does an ML Model Works

But What's a Hyperparameter?

• It specifies the **structure** of your ML model.

You set it before training your model.

But What's a Hyperparameter?

E.g. K-nearest neighbors What K value to use? k == 11

https://towardsdatascience.com/model-selection-tuning-and-evaluation-in-k-nearest-neighbor s-6d3024d78745

But What's a Hyperparameter?

E.g.

Neural Networks

How many nodes in each layer?

how many hidden layers?

How to choose the **optimal** Hyperparameters? (aka Hyperparameter Tuning)

• First... What is "optimal"?

Optimal = the highest accuracy for the model

How to choose the **optimal** Hyperparameters? (aka Hyperparameter Tuning)

Background experience (too hard, not reliable)

Or...

Let the machine try many values

What values to try?

- Testing all values
 - aka Grid Search

- Test Random values
 - aka Randomized Search

The issue with Grid Search

Exponential

Maybe inefficient?

Hyperparameter 1

The issue with Grid Search

• ~2000x increase in CO_{2 [1]}

Training one model (GPU)	CO ₂ e (lbs)
NLP pipeline (parsing, SRL)	39
w/ tuning & experimentation	78,468

 77% decrease in energy consumption vs. 1% decrease in accuracy [2]

So Who Cares?

What Others Did

- Brownlee, Adair, Haraldsson, Jabbo
- They investigated the energy and accuracy trade-offs of using grid search on multiple hyperparameter options across several datasets
- Findings revealed a clear opportunity to trade off small accuracy in exchange for a much higher reduction in energy consumption

What Others Did

- Energy savings of ~40%
 with minimal reductions in classification accuracy.
- They only focused on MultiLayer Perceptrons (MLP)

What We're Doing

- Can we get similar savings with other algorithms?
 - Multilayer Perceptrons (MLPs)
 - K Nearest Neighbors
 - Decision Trees
 - Random Forest

Our Setup

- The Algorithms
- The Datasets
- Hyperparameter Grids
- The Machines
- Measuring Energy Consumption

The Algorithms

- Grid Search
 - GridSearchCV()
- Classifiers
 - DecisionTreeClassifier()
 - KNeighborsClassifier()
 - MLPClassifier()
 - RandomForestClassifier()

The Datasets

- Olivetti Faces (from scikit-learn)
 - ~400 instances
- Census Income
 - ~50k instances
- CDC Diabetes Health Indicators
 - ~ 250k instances
- RT-IoT2022
 - ~120k instances

Hyperparameter Grids

For example, MLP's:

The Machines

Abdulrahman's Machine:

GPU: NVIDIA GeForce GTX 1660 Ti

Memory: 32 GB

Abdallah's Machine:

o **CPU:** Intel Core i5-9400, 6 cores, (Base: 2.90GHz, Max: 4.10 GHz)

GPU: NVIDIA GeForce GTX 1660 Ti

Memory: 16 GB

Measuring Energy Consumption

- CodeCarbon Python Library
 - Open Source
 - Lightweight
- Polling components for power consumption every some interval
 - We used every 5 seconds

Measuring Energy Consumption

- GPU Power
 - Using NVIDIA Management Library on pyNVML
- CPU Power
 - Using Intel Power Gadget

The Results - Decision Trees

The Results - KNN

KNeighbors - olivetti

KNeighbors - CDCHealthIndicator

The Results - MLPs

The Results - Random Forest

RandomForest - census

Findings

- Most algorithms showed minimal increase in accuracy
- Testing additional hyperparameters increased energy consumption dramatically.
- Average increase in energy per additional grid search is 309.64%
- Average increase in accuracy per additional grid search is 0.01%

Conclusion

- Can we say Grid Search is inefficient?
 - Mostly yes!
- There are clear points of diminishing/no returns
- Unless
 - any increase in accuracy vital to you, Or
 - you maybe don't care about energy

Experiment Code

- Code is available at our repository: github.com/abdomash/ml-energy-consumption
- You can run the experiment on your device

Setup guide in the README file

