HOCHSCHULE LUZERN

Informatik

FH Zentralschweiz

ML: Regularization - Exercises

Josef F. Bürgler

BA.I ML

Please write down to solution of the exercises in a consise but comprehensible way (including intermediate results). Numerical results should be accurate to 4 digits. Sketches should be correct qualitatively.

At least 75% of the exercises have to be solve satisfactorily. Due time is May 1st, 2018. The first exercise should be handed in via E-Mail to Josef.Buergler@hslu.ch.

Exercise 1: Simple Example from Lecture (1 Point)

Add a section to the Jupyter Notebook Ridge+LASSO_Regression.ipynb that finds the optimal regularization hyperparameter λ . In order to do so, we will use LASSO regression and proceed as follows:

- 1. For every value $\lambda_0 = 0$, $\lambda_1 = 0.01$ and from there always double λ until You have reached a point, where to cross validation error starts to grow again (due to overfitting). So $\lambda_{12} = 10.24$ is the 12th value of λ but it need not be the largest in this example.
 - a) Using the training set compute

$$\theta_k = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} (J_{\operatorname{train}}(\boldsymbol{\theta}) + \lambda \Omega(\boldsymbol{\theta}))$$
 where *k* is one of the numbers 1,2,3,...

Then compute the error in the cross validation set

$$(J_{cv}(\boldsymbol{\theta}_k) + \lambda \Omega(\boldsymbol{\theta}_k))$$

- b) Plot these errors for this value of λ .
- 2. Once You notice the growing tendency of the error in the cross validation set depending on the regularization parameter λ stop after the next larger value of λ
- 3. Find the value for λ which leads to the smallest cross validation error.
- 4. print the corresponding coefficients of the regression polynomial and draw it.

Exercise 4: Real Word Examples (1 Point)

Fill in the missing sections in the Real World Example of regularization_gaps.ipynb and make the Jupyter Notebook runnable. Hand it in via E-Mail to Tim vor der Brück (E-Mail-Address: tim.vorderbrueck@hslu.ch) no later than Tuesday, May 1st, 2018.

Happy Machine Learning!