

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
КАФЕДРА	Прикладная математика
Числен	Отчёт по лабораторной работе №5 иные решения интегральных уравнений
Студент:	ФН2-62Б А. И. Токарев (Группа) (Подпись, дата) (И. О. Фамилия) НО. А. Сафронов (И. О. Фамилия)

(Подпись, дата)

(И.О. Фамилия)

2

Оглавление

1. Контрольные вопросы

1. При выполнении каких условий интегральное уравнение Фредгольма 2 рода имеет решение? В каком случае решение является единственным? На вопросы существования решения этого уравнения отвечает классическая теория Фредгольма. Если K(t,s), f(t) — непрерывные функции на заданных отрезках, то $\forall \lambda \in \mathbb{R}$ интегральное уравнение. Рассмотрим интегральное уравнение

$$u(t) - \lambda \int_{a}^{b} K(t, s)u(s)ds = f(t),$$

где K(t,s) — ядро этого уравнения, являющееся функцией непрерывной на декартовом произведении отрезка [a,b] на себя, а $\lambda \neq 0$ — параметр данного уравнения. Представим уравнение в операторном виде:

$$(I - A)(u) = f,$$

где оператор A преобразует исходную функцию u(t) в

$$v(t) = \lambda \int_{a}^{b} K(t, s) u(s) ds,$$

то есть действует из $C[a,b] \to C[a,b]$. Используя свойства определенного интеграла для функции v = A(u) и любой точки $t \in [a,b]$ находим:

$$|v(t)| = |\lambda \int_a^b K(t,s)u(s)ds| \le |\lambda| \int_a^b |K(t,s)u(s)|ds \le |\lambda|(b-a) \max_{t,s \in [a,b]} |K(t,s)| \max_{t \in [a,b]} |u(t)|.$$

Пусть
$$q = |\lambda|(b-a) \max_{t,s \in [a,b]} |K(t,s)| < 1 \Rightarrow$$

$$||Au||_{C[a,b]} = \max_{t \in [a,b]} |v(t)| \le q \max_{t \in [a,b]} |u(t)| = q ||u||_{C[a,b]}.$$

Таким образом $||A|| \leq q < 1$. Значит, согласено теореме об обратном операторе $\exists S = (I - A)^{-1}$, то есть рассматриваемое интегральное уравнение имеет единственное решение $u^0 = S(f)$, причем

$$|u^{0}|_{C[a,b]} \le ||S|| ||f||_{C[a,b]} \le \frac{1}{1-q} ||f||_{C[a,b]}, \quad ||f||_{C[a,b]} = \max_{t \in [a,b]} |f(t)|.$$

Дополнение: если однородное уравнение f(x) = 0 имеет только тривиальное решение, то значение параметра λ называется правильным или регулярным. Тогда у неоднородного уравнения при любой правой части f(x) существует единственное решение.

2. Можно ли привести матрицу СЛАУ, получающуюся при использовании метода квадратур, к симметричному виду в случае, если ядро интегрального уравнения является симметричным, т. е. K(x,s) = K(s,x)?

- 3. Предложите способ контроля точности результата вычислений при использовании метода квадратур. Можно сравнивать с точным решением.
- 4. Оцените возможность и эффективность применения методов квадратур, простой итерации и замены ядра при решении интегральных уравнений Вольтерры 2 рода.
- 5. Что называют резольвентой ядра интегрального уравнения? Резольвентой интегрального уравнения Фредгольма 2 рода называется такая функция $R = R(s,t,\lambda)$, что решение этого уравнения представляется в виде:

$$u(s) = f(s) + \int_{a}^{b} R(s, t, \lambda) f(t) dt,$$

где λ не является собственным числом.

- 6. Почему замену ядра интегрального уравнения вырожденным предпочтительнее осуществлять путем разложения по многочленам Чебышева, а не по формуле Тейлора?
- 7. Какие вы можете предложить методы решения переопределенной системы (5.13), (5.17) помимо введения дополнительно переменной R?