Seminar 1

Problems

- 1. Find the number of binary operations on a set with n elements.
- 2. Describe explicitly all binary operations on a set with 2 elements and verify their properties.
- 3. Give definitions of S_n and A_n : the sets, the operations, and check the properties.
- 4. Explicitly describe elements of S_3 , A_3 , S_4 , A_4 .
- 5. Prove that
 - (a) S_n is commutative if and only if $n \leq 2$.
 - (b) A_n is commutative if and only if $n \leq 3$.
- 6. Check properties of the operations

$$\min: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \quad \max: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

- (a) Are they associative?
- (b) Do they have a neutral element?
- (c) If they do, describe the inverse elements.
- (d) Are they commutative?
- 7. Explicitly describe $(\mathbb{Z}_n, +)$ as a group. Here, the set $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ is the set of remainders modulo n and the operation is addition modulo n.
- 8. Solve equation ax = b in \mathbb{Z}_n for some given $a, b \in \mathbb{Z}_n$.
- 9. Explicitly describe (\mathbb{Z}_p^*,\cdot) in case of a prime number p. Prove that this is a group.
- 10. Find orders of all elements in the group (\mathbb{Z}_7^*,\cdot) .
- 11. Prove that $(GL_n(\mathbb{R}), \cdot)$ is a group.
- 12. Explain why $(M_n(\mathbb{R}), \cdot)$ is not a group.
- 13. Prove that $(M_n(\mathbb{R}), +)$ is a group.
- 14. Write down the multiplication table for the group \mathbb{Z}_3 .
- 15. Let G be a group and $g \in G$ be an element of order m. Find the order of g^k for any $k \in \mathbb{Z}$.
- 16. Find all subgroups in the group \mathbb{Z}_4 .
- 17. Find all subgroups in the groups S_3 and A_4 .
- 18. Give and examples of and element of order 13 in the group $GL_2(\mathbb{R})$.

Homework

- 1. Let $\circ: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be given by $(x,y) \mapsto x + y \frac{\sqrt{\pi}}{2}$. Check if (\mathbb{R}, \circ) is a group or not.
- 2. Find all subgroups in (\mathbb{Z}_7^*, \cdot) .
- 3. Solve the equation $\tau^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ in S_4 .
- 4. For each element of $(\mathbb{Z}_{13}^*,\cdot)$, find its order and the inverse element.