Assignment 1

Dynamic Load and Fault Analysis of INPS using DPL

Submitted By: Ashish Bhatta

Submitted To: Associate Prof. Dr. Samudra Gurung

December 2024

Objectives

Model	Section of the INPS system with at least five buses and two generators.	
Analyze	Bus voltage variations under hourly load changes.	
Examine	Effects of a self-clearing fault near the largest generator or critical line.	
Present	Results for bus voltage, frequency, rotor angle, and other variables of interest.	

Model and Simulation Setup

INPS Section	Eastern Region
No. of Buses	13
No. of Generators	6
Load Variation	Hourly Load Curve
Fault Type	3- Φ fault at bus connected to largest Generator (Godak)

1. Load Flow Analysis using DPL

Program Logic

Input: Load Curve

Output: Bus Voltage Profile

2. RMS Simulation

Fault in	Godak Bus
Fault Applied at	10 sec
Fault Cleared at	10.2 sec
Fault Type	3- Ф fault at bus connected to largest Generator (Godak)
Variables Monitored	Bus Frequency, Rotor Angle, Rotor Speed

Applying Fault

self-clearing fault near the largest generator

RMS Simulation using DPL

Output: Bus Frequency

Bus Frequency vs Time Plot

Output: Generator Speed

Output: Rotor Angle

Conclusions

 Dynamic Programming Language (DPL) is particularly useful for analyzing larger systems due to its flexibility and capability to handle complex power system simulations effectively.

