Model Al Assignment: An Introduction to k-Means Clustering

Todd W. Neller, Gettysburg College Laura E. Brown, Michigan Technological University

Why Clustering?

- In the Model Al assignment repository (http://modelai.gettysburg.edu), assignments available for:
 - search, genetic algorithms, constraint satisfaction, supervised learning, reinforcement learning, etc.
- Clustering is a major topic not included
- Informal EAAI-14 poll indicated greatest need for
 - unsupervised learning teaching support materials, and
 - k-Means Clustering was the best representative algorithm.
- Goal: Collect and collate resources on clustering from textbooks, general web resources, and coverage in MOOCs; develop assignments for experiential learning

Assignment Learning Objectives

- Define unsupervised learning and distinguish it from supervised learning
- Define and implement k-means clustering
- Understand the limitations of k-means clustering
 - what are the assumptions
 - when does the method fail
- Implementation considerations
 - how to initialize cluster centers
 - how to select k
- Allow for instructor extensions
 - use of other clustering methods (hierarchical, spectral, k-medoids), apply to real-world data, etc.

Clustering Problem

- Clustering is grouping a set of objects such that objects in the same group (i.e. cluster) are more similar to each other in some sense than to objects of different groups
- Our specific clustering problem:
 - O Given: a set of n observations $\{x_1, x_2, ..., x_n\}$, where each observation is a d-dimensional real vector
 - Given: a number of clusters k
 - Compute: a cluster assignment mapping $C(x_i) \subseteq \{1, ..., k\}$ that minimizes the within cluster sum of squares (WCSS)

k-Means Clustering Algorithm

- General algorithm:
 - \circ Randomly choose k cluster centroids $\mu_1, \mu_2, \dots \mu_k$ and arbitrarily initialize cluster assignment mapping C.
 - While remapping C from each \mathbf{x}_i to its closest centroid $\mathbf{\mu}_j$ causes a change in C:
 - Recompute $\mu_1, \mu_2, ..., \mu_k$ according to the new C
- In order to minimize the WCSS, we alternately:
 - \circ Recompute C to minimize the WCSS holding μ _j fixed.
 - \circ Recompute μ_{j} to minimize the WCSS holding C fixed.
- In minimizing the WCSS, we seek a clustering that minimizes Euclidean distance variance within clusters.

Assignment Details

Part 1

- Students will implement k-means clustering method
- Run the implementation repeatedly over a set of test cases
 - Objective 1: Define and implement k-means clustering
 - Objective 2: Understand the limitations of k-means clustering
 - what are the assumptions
 - when does the method fail

Assignment Details

Part 2

- Implement iterated k-means (10 runs, returns clustering with the lowest WCSS)
- Run the implementation repeatedly over a set of test cases
 - Objective 2: Understand the limitations of k-means clustering
 - what are the assumptions
 - when does the method fail
 - Objective 3: Implementation considerations

Assignment Details

Part 3

- Select best k value using simplified gap statistic (most significant logarithmic difference between uniform WCSS and observed WCSS)
- Run the implementation repeatedly over a set of test cases
 - Objective 2: Understand the limitations of k-means clustering
 - what are the assumptions
 - when does the method fail
 - Objective 3: Implementation considerations
 - how to select k

Easy Gaussian, k=2

Easy Gaussian, k=3

Bullseye

Stretched Distribution

Summary of Resources

- Slides introducing clustering
- Assignment
 - k-Means, iterated k-Means, iterated k-Means with Gap Statistic
 - data sets showing strengths and weaknesses
 - MATLAB/Octave visualization scripts
 - Learning objectives and mapping to ACM/IEEE CS2013 Curricula
- Index to excellent pre-existing resources online
 - Textbooks, websites, demos, software, videos, MOOCs
 - K-Means Clustering Notation Guide PDF to translate
- Weka tutorial with iris data demonstrating feature selection
- Real-world data sets