

Regression Multiple

- simple linear regression: On a étudié la relation entre une variable y à expliquer et une variable explicative,
- A présent, on essaye d'expliquer y par plusieurs variables exogènes explicatives indépendentes.

On se propose de voir par la suite la contribution si elle existe de chaque variables.

Multiple Regression

- **Example.** L'étude d'un coût de produit, Y, pour 67 individus, 4 independent variables ont été considérées:
 - X₁: Taille moyenne de l'encours de prêt durant l'année,
 - X_2 : Nombre moyen de prêts en cours,
 - X₃: Nombre total de nouvelles demandes de prêt traitées, and
 - X₄ : Indice d'échelle de salaire.
 - Le model sera alors:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 X_3 + \beta_4 x_4 + \varepsilon$$

Formal Statement of the Model

Modèle de régression General

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

- β_0 , β_1 , ..., β_k :paramètres
- · X₁, X₂, ...,X_k variables connues observées
- ε , the error terms are independent N(o, σ^2)

4

Estimating the parameters of the model

- La valeur des paramètres est inconnue, on les estime β_i .
- Comme dans la regression simple, on utilise MCO pour calculer fitted values (y ajustée ou estimée)

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

 Principe de la MCO: min la somme des carrés des résidus

Estimating the parameters of the model

Min:

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Estimation des parametères du modèle

- L'estimation des β_i indique la variation de y en cas de variation d'une unite de X_i le reste des variables est supposé constant
- Les paramètres β_i souvent appelés partial regression coefficients

4

Estimating the parameters of the model

■ La variance concernant fitted model est

$$S^{2} = \frac{1}{n-k-1} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

K: nombre des variables Xi

$$s = \sqrt{s^2}$$

Écart type: the regression standard error

Estimating the parameters of the model

- Dans le modèle σ^2 and σ mesure la variabilité des résponses.
- Il est naturel d'estimater σ^2 par s^2 and σ par s.

Analysis of Variance Table

- The basic idea of the regression ANOVA table are the same in simple and multiple regression.
- The sum of squares decomposition and the associated degrees of freedom are:

$$\sum (y_i - \overline{y})^2 = \sum (\hat{y}_i - \overline{y})^2 + \sum (y_i - \hat{y}_i)^2$$

$$SST = SSR + SSE$$

df:

$$n-1 = k + (n-k-1)$$

Table de l'Analyse de la Variance

Source	Sum of Squares	df	Mean Square	F-test
Regression	SSR (VE)	k	MSR= SSR/k	MSR/MSE
Error	SSE(VR ou SCR)	n-k-1	MSE= SSE/n-k-1	
Total	SST	n-1		

4

F-test (significativité globale) for the overall fit of the model

■ To test the statistical significance of the regression relation between the response variable y and the set of variables $x_1, ..., x_k$, (significativité globale):

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 $H_a: \text{not all } \beta_i (i = 1, \dots k) \text{ equal zero}$

On utilise le test de Fisher, on calculi F obs:

$$F ext{ (observée)} = F = \frac{MSR}{MSE}$$

4

F-test for the overall fit of the model

- The decision rule at significance level α is:
 - Reject H₀ if

$$F > F(\alpha; k, n-k-1)$$

- La valeur critique F(α, k, n-k-1) est déterminée par la table de Fisher
- L'existence d'une relation globale ne signifie pas qu'on pourrait passer à la prédiction.
- Noter lorsque k=1, thisce test est réduit à the F-test dans une simple linear regression

Interval estimation of β_i

■ For our regression model, we have:

$$\frac{b_i - \beta_i}{s(b_i)}$$
 has a t-distribution with n-k-1 degrees of freedom

• Therefore, an interval estimate for $β_i$ with 1- α confidence coefficient is:

$$b_i \pm t(\frac{\alpha}{2}; n-k-1)s(b_i)$$

Where

$$s(b_i) = \sqrt{\frac{MSE}{\sum (x - \bar{x})^2}}$$

Significance tests for β_i

To test:

$$H_0: \beta_i = 0$$

$$H_a: \beta_i \neq 0$$

On utilise le test de student :

$$t = \frac{b_i}{s(b_i)}$$

 \blacksquare Reject H_0 if

$$t > t(\frac{\alpha}{2}; n - k - 1) \quad or$$

$$t < -t(\frac{\alpha}{2}; n-k-1)$$

 Souvent on a plusieurs variables expliquatives, notre objectif est de les utilizer pour la prediction de y.

Multiple regression model Building

- Parfois l'effet d'une variable depend également de l'effet d'une autre non prévu dans le modèle.
- C'est l'effet de l'interaction.

Multiple regression model Building

- La manière la plus simple de les intégrer est de construire une variable égale au produit des deux,.
- Comment détecter un bon modèle?

Meilleure Regression equation.

Certaines variables peuvent être écartées:

- Ne sont pas fondamentales pour le problème
- Peuvent entrainer une augmentation d el'erreur
- Peuvent générer une autre variable indépendante au modèle.

Exemple

- Dans le modèle de régression on a suppose que les erreurs ε_i sont independants.
- En business, beaucoup d'applications utilisent les "time series data".
- L'hypothèse de l'absence d'autocorrelation des erruers peut être contestable.

- Si les erreurs sont autocorrélées, l'usage de la MCO peut avoir des conséquences
 - MCO va biaiser la variance des "error terms"
 - tests t and F distribution ne sont pas adéquats
 - La quantité ajustée ou fitted values pourrait être biaisée elle aussi d'où une très mauvaise prediction,

Corrélation de premier ordre

 Utilisons une regression simple pour bien illustrer le problème :

$$\varepsilon_t = \rho \, \varepsilon_{t-1} + v_t$$

$$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t$$

- ε_t = error at time t
- ρ = the parameter that measures correlation between adjacent error terms
- v_t normally distributed error terms with mean zero and variance σ^2 , (hypothèse habituelle)

Recall the first-order serial correlation model

$$y_{t} = \beta_{0} + \beta_{1}x_{t} + \varepsilon_{t}$$
$$\varepsilon_{t} = \rho \varepsilon_{t-1} + v_{t}$$

The hypothesis to be tested are:

$$H_0: \rho = 0$$
$$H_a: \rho > 0$$

The alternative hypothesis is $\rho > 0$ since in business and economic time series tend to show positive correlation.

The Durbin-Watson statistic is defined as

$$DW = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$

Where

 $e_t = y_t - \hat{y}_t$ = the residual for time period t

 $e_{t-1} = y_{t-1} - \hat{y}_{t-1}$ = the residual for time period t -1

• The auto correlation coefficient ρ can be estimated by the lag 1 residual autocorrelation $r_1(e)$

$$r_1(e) = \frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2}$$

And it can be shown that

$$DW = 2(1 - r_1(e))$$

- Since $-1 < r_1(e) < 1$ then 0 < DW < 4
- If $r_1(e) = 0$, then DW = 2 (there is no correlation.)
- If $r_1(e) > 0$, then DW < 2 (positive correlation)
- If $r_1(e) < 0$, Then DW > 2 (negative correlation)

- Decision rule:
 - If DW > U, Do not reject H_0 .
 - If DW < L, Reject H₀
 - If $L \le DW \le U$, the test is inconclusive.
- The critical Upper (U) an Lower (L) bound can be found in Durbin-Watson table of your text book.
- To use this table you need to know The significance level (α) The number of independent parameters in the model (k), and the sample size (n).

• The Blaisdell Company wished to predict its sales by using industry sales as a predictor variable. The following table gives seasonally adjusted quarterly data on company sales and industry sales for the period 1983-1987.

Year	Quarter	t	CompSale	InduSale	
1983	1	1	20.96	127.3	
	2	2	21.4	130	
	3	3	21.96	132.7	
	4	4	21.52	129.4	
1984	1	5	22.39	135	
	2	6	22.76	137.1	
	3	7	23.48	141.2	
	4	8	23.66	142.8	
1985	1	9	24.1	145.5	
	2	10	24.01	145.3	
	3	11	24.54	148.3	
	4	12	24.3	146.4	
1986	1	13	25	150.2	
	2	14	25.64	153.1	
	3	15	26.36	157.3	
	4	16	26.98	160.7	
1987	1	17	27.52	164.2	
	2	18	27.78	165.6	
	3	19	28.24	168.7	
	4	20	28.78	171.7	

- The scatter plot suggests that a linear regression model is appropriate.
- Least squares method was used to fit a regression line to the data.
- The residuals were plotted against the fitted values.
- The plot shows that the residuals are consistently above or below the fitted value for extended periods.

To confirm this graphic diagnosis we will use the Durbin-Watson test for:

$$H_0: \rho = 0$$

$$H_a: \rho > 0$$

The test statistic is:

$$DW = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$

Year	Quarter	t	Company sales(y)	Industry sales(x)	\mathbf{e}_{t}	e _t -e _{t-1}	(e _t -e _{t-1})^2	e _t ^2
1983	1	1	20.96	127.3	-0.02605			0.000679
	2	2	21.4	130	-0.06202	-0.03596	0.001293	0.003846
	3	3	21.96	132.7	0.022021	0.084036	0.007062	0.000485
	4	4	21.52	129.4	0.163754	0.141733	0.020088	0.026815
1984	1	5	22.39	135	0.04657	-0.11718	0.013732	0.002169
	2	6	22.76	137.1	0.046377	-0.00019	3.76E-08	0.002151
	3	7	23.48	141.2	0.043617	-0.00276	7.61E-06	0.001902
	4	8	23.66	142.8	-0.05844	-0.10205	0.010415	0.003415
1985	1	9	24.1	145.5	-0.0944	-0.03596	0.001293	0.008911
	2	10	24.01	145.3	-0.14914	-0.05474	0.002997	0.022243
	3	11	24.54	148.3	-0.14799	0.001152	1.33E-06	0.021901
	4	12	24.3	146.4	-0.05305	0.094937	0.009013	0.002815
1986	1	13	25	150.2	-0.02293	0.030125	0.000908	0.000526
	2	14	25.64	153.1	0.105852	0.12878	0.016584	0.011205
	3	15	26.36	157.3	0.085464	-0.02039	0.000416	0.007304
	4	16	26.98	160.7	0.106102	0.020638	0.000426	0.011258
1987	1	17	27.52	164.2	0.029112	-0.07699	0.005927	0.000848
	2	18	27.78	165.6	0.042316	0.013204	0.000174	0.001791
	3	19	28.24	168.7	-0.04416	-0.08648	0.007478	0.00195
	4	20	28.78	171.7	-0.03301	0.011152	0.000124	0.00109
							0.097941	0.133302

Example

$$DW = \frac{.09794}{.13330} = .735$$

- Using Durbin Watson table of your text book, for k = 1, and n=20, and using α = .01 we find U = 1.15, and L = .95
- Since DW = .735 falls below L = .95, we reject the null hypothesis, namely, that the error terms are positively autocorrelated.

Remedial Measures for Serial Correlation

- Addition of one or more independent variables to the regression model.
 - One major cause of autocorrelated error terms is the omission from the model of one or more key variables that have time-ordered effects on the dependent variable.
- Use transformed variables.
 - The regression model is specified in terms of changes rather than levels.

- In some situations, nonlinear terms may be needed as independent variables in a regression analysis.
 - Business or economic logic may suggest that nonlinearity is expected.
 - A graphic display of the data may be helpful in determining whether non-linearity is present.
- One common economic cause for non-linearity is diminishing returns.
 - Fore example, the effect of advertising on sales may diminish as increased advertising is used.

4

Extensions of the Multiple Regression Model

Some common forms of nonlinear functions are :

$$Y = \beta_0 + \beta_1(X) + \beta_2(X^2)$$

$$Y = \beta_0 + \beta_1(X) + \beta_2(X^2) + \beta_3(X^3)$$

$$Y = \beta_0 + \beta_1(1/X)$$

$$Y = e^{\beta_0} X^{\beta_1}$$

4

Extensions of the Multiple Regression Model

- To illustrate the use and interpretation of a non-linear term, we return to the problem of developing a forecasting model for private housing starts (PHS).
- So far we have looked at the following model

$$PHS = \beta_0 + \beta_1(MR) + \beta_2(Q2) + \beta_3(Q3) + \beta_4(Q4)$$

• Where MR is the mortgage rate and Q2, Q3, and Q4 are indicators variables for quarters 2, 3, and 4.

 First we add real disposable personal income per capita (DPI) as an independent variable. Our new model for this data set is:

$$PHS = \beta_0 + \beta_1(MR) + \beta_2(Q2) + \beta_3(Q3) + \beta_4(Q4) + \beta_5(DPI)$$

 Regression results for this model are shown in the next slide.

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.943791346					
R Square	0.890742104					
Adjusted R Square	0.874187878					
Standard Error	19.05542121					
Observations	39					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	5	97690.01942	19538	53.80753	6.51194E-15	
Residual	33	11982.59955	363.1091			
Total	38	109672.619				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-31.06403714	105.1938477	-0.2953	0.769613	-245.0826992	182.9546249
MR	-20.1992545	4.124906847	-4.8969	2.5E-05	-28.59144723	-11.80706176
Q2	97.03478074	8.900711541	10.90191	1.78E-12	78.9261326	115.1434289
Q3	75.40017073	8.827185877	8.541813	7.17E-10	57.44111179	93.35922967
Q4	20.35306822	8.83373887	2.304015	0.027657	2.380677107	38.32545934
DPI	0.022407799	0.004356973	5.142974	1.21E-05	0.013543464	0.031272134

4

Example: Private Housing Start

The prediction model is

```
PH\hat{S} = -31.06 - 20.19(MR) + 97.03(Q2) + 75.40(Q3) + 20.35(Q4) + 0.02(DPI)
```

- In comparison with the previous model, we see that the R-squared has improved. It has changed from 78% to 89%.
- The standard error of the estimate has decreased from 26.49 for the previous model to 19.05 for the new model.

- The value of the DW test has changed from 0.88 for the previous model to 0.78 for the new model.
- At 5% level the critical value for DW test, from Durbin-Watson table, for k = 5, and n = 39 is L = 1.22, and U = 1.79.
- Since The value of the DW test is smaller than L=1.22, we reject the null hypothesis H_0 : $\rho = 0$
- This implies that there is serial correlation in both models, the assumption of the independence of the error terms is not valid.

- The Plot of PHS against DPI shows a curve linear relation.
- Next we introduce a nonlinear term into the regression.
- The square of disposable personal income per capita (DPI²) is included in the regression model.

- We also add the dependent variable, lagged one quarter, as an independent variable in order to help reduce serial correlation.
- The third model that we fit to our data set is:

$$PHS = \beta_0 + \beta_1(MR) + \beta_2(Q2) + \beta_3(Q3) + \beta_4(Q4) + \beta_5(DPI) + \beta_6(DPI^2) + \beta_7(LPHS)$$

Regression results for this model are shown in the next slide.

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.97778626					
R Square	0.956065971					
Adjusted R Square	0.946145384					
Standard Error	12.46719572					
Observations	39					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	7	104854.2589	14979.17985	96.37191	3.07085E-19	
Residual	31	4818.360042	155.4309691			
Total	38	109672.619				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	716.5926532	1017.664989	0.704153784	0.486593	-1358.949934	2792.13524
MR	-13.65521724	3.093504134	-4.414158396	0.000114	-19.96446404	-7.345970448
Q2	106.9813297	6.069780998	17.62523718	1.04E-17	94.60192287	119.3607366
Q3	27.72122303	9.111432565	3.042465916	0.004748	9.138323433	46.30412262
Q4	-13.37855186	7.653050858	-1.748133144	0.09034	-28.98706069	2.22995698
DPI	-0.060399279	0.104412354	-0.578468704	0.567127	-0.273349798	0.15255124
DPI SQUARED	0.000335974	0.000536397	0.626354647	0.535668	-0.000758014	0.001429963
LPHS	0.655786939	0.097265424	6.742241114	1.51E-07	0.457412689	0.854161189

- The inclusion of DPI² and Lagged PHS has increased the R-squared to 96%
- The standard error of the estimate has decreased to 12.45
- The value of the DW test has increased to 2.32 which is greater than U = 1.79 which rule out positive serial correlation.
- You see that the third model worked best for this data set.
- The following slide gives the data set.

PERIOD	PHS	MR	LPHS	Q2	Q3	Q4	DPI	DPI SQUARED
30-Jun-90	271.3	10.3372	217	1	О	О	18063	1,631,359.85
30-Sep-90	233	10.1033	271.3	О	1	0	18031	1,625,584.81
31-Dec-90	173.6	9.9547	233	О	О	1	17856	1,594,183.68
31-Mar-91	146.7	9.5008	173.6	О	О	О	17748	1,574,957.52
30-Jun-91	254.1	9.5265	146.7	1	О	0	17861	1,595,076.61
30-Sep-91	239.8	9.2755	254.1	О	1	О	17816	1,587,049.28
31-Dec-91	199.8	8.6882	239.8	О	О	1	17811	1,586,158.61
31-Mar-92	218.5	8.7098	199.8	О	О	О	18000	1,620,000.00
30-Jun-92	296.4	8.6782	218.5	1	О	О	18085	1,635,336.13
30-Sep-92	276.4	8.0085	296.4	О	1	0	18036	1,626,486.48
31-Dec-92	238.8	8.2052	276.4	О	О	1	18330	1,679,944.50
31-Mar-93	213.2	7.7332	238.8	О	О	О	17975	1,615,503.13
30-Jun-93	323.7	7.4515	213.2	1	О	О	18247	1,664,765.05
30-Sep-93	309.3	7.0778	323.7	О	1	О	18246	1,664,582.58
31-Dec-93	279.4	7.0537	309.3	О	О	1	18413	1,695,192.85
31-Mar-94	252.6	7.2958	279.4	О	О	О	18154	1,647,838.58
30-Jun-94	354.2	8.4370	252.6	1	О	О	18409	1,694,456.41
30-Sep-94	325.7	8.5882	354.2	О	1	О	18493	1,709,955.25
31-Dec-94	265.9	9.0977	325.7	О	О	1	18667	1,742,284.45
31-Mar-95	214.2	8.8123	265.9	О	О	О	18834	1,773,597.78
30-Jun-95	296.7	7.9470	214.2	1	О	О	18798	1,766,824.02
30-Sep-95	308.2	7.7012	296.7	О	1	О	18871	1,780,573.21
31-Dec-95	257.2	7.3508	308.2	О	О	1	18942	1,793,996.82
31-Mar-96	240	7.2430	257.2	О	О	О	19071	1,818,515.21
30-Jun-96	344.5	8.1050	240	1	О	0	19081	1,820,422.81
30-Sep-96	324	8.1590	344.5	О	1	О	19161	1,835,719.61
31-Dec-96	252.4	7.7102	324	О	О	1	19152	1,833,995.52
31-Mar-97	237.8	7.7905	252.4	О	О	О	19331	1,868,437.81
30-Jun-97	324.5	7.9255	237.8	1	О	О	19315	1,865,346.13
30-Sep-97	314.6	7.4692	324.5	О	1	О	19385	1,878,891.13
31-Dec-97	256.8	7.1980	314.6	О	О	1	19478	1,896,962.42
31-Mar-98	258.4	7.0547	256.8	О	О	0	19632	1,927,077.12
30-Jun-98	360.4	7.0938	258.4	1	О	О	19719	1,944,194.81
30-Sep-98	348	6.8657	360.4	0	1	О	19905	1,980,963.41
31-Dec-98	304.6	6.7633	348	О	О	1	20194	2,038,980.00
31-Mar-99	294.1	6.8805	304.6	О	О	О	20377	2,076,010.87
30-Jun-99	377.1	7.2037	294.1	1	О	О	20472	2,095,440.74
30-Sep-99	355.6	7.7990	377.1	O	1	O	20756	2,153,982.23
31-Dec-99	308.1	7.8338	355.6	O	O	1	21124	2,231,020.37