ANA1
$$Z_{11}$$

1. Zbadaj istnienie granicy podwójnej $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$, jeśli:

(a)
$$f(x,y) = \frac{x^3y}{x^2 + 2y^2}$$
, $(x_0, y_0) = (0, 0)$,

(b)
$$f(x,y) = \frac{x+y-2}{x^2+y^2-2}$$
, $(x_0,y_0) = (1,1)$,

(c)
$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$
, $(x_0, y_0) = (0, 0)$,

(d)
$$f(x,y) = \frac{x - xy}{2x^2 + (y-1)^2}$$
, $(x_0, y_0) = (0, 1)$.

2. Oblicz, jeśli istnieją, pochodne cząstkowe $\frac{\partial f}{\partial x}(0,0)$ i $\frac{\partial f}{\partial y}(0,0)$, jeśli:

(a)
$$f(x,y) = \begin{cases} \frac{1 - \cos(3x^2 + y^2)}{x^3}, & \text{gdy } x \neq 0, \\ 0, & \text{gdy } x = 0, \end{cases}$$

(b)
$$f(x,y) = \sqrt[3]{x^3 - y^3}$$
,

(c)
$$f(x,y) = \begin{cases} \frac{x^3 + y}{x^2 + y^2}, & \text{gdy } (x,y) \neq (0,0), \\ 0, & \text{gdy } (x,y) = (0,0). \end{cases}$$

3. Zbadaj ciągłość funkcji f(x, y) w punkcie (x_0, y_0) oraz istnienie pochodnych cząstkowych w tym punkcie, jeśli:

(a)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{gdy } (x,y) \neq (0,0), \\ 0, & \text{gdy } (x,y) = (0,0), \end{cases}$$
 $(x_0, y_0) = (0,0),$

(b)
$$f(x,y) = \sqrt{x^4 + y^2}$$
, $(x_0, y_0) = (0, 0)$.

4. Zbadaj istnienie i ciągłość pochodnej cząstkowej $\frac{\partial f}{\partial y}$ w punkcie (0,0),jeśli

$$f(x,y) = \begin{cases} \frac{x^3 y^2}{(x^2 + y^2)^2}, & \text{gdy} \quad (x,y) \neq (0,0), \\ 0, & \text{gdy} \quad (x,y) = (0,0), \end{cases}$$

5. Wyznacz, o ile istnieją, ekstrema właściwe funkcji f(x,y), jeśli:

(a)
$$f(x,y) = \ln(2xy) - 2x^2 - y^2$$
,

(b)
$$f(x,y) = x + 8y + \frac{1}{xy}$$

(c)
$$f(x,y) = (2x + y^2)e^x$$

(d)
$$f(x,y) = 2x^2 - x^3y^2 - \ln x$$
,

6. Wyznacz ekstrema funkcji $f(x,y) = xy^2$.