ANNEXE

Vous pouvez considrer que les langages suivants sont \mathcal{NP} -complets, sauf si on vous demande de le prouver.

- 1. SAT est le problème suivant :
 - **DONNEE** : une formule booléenne ϕ
 - QUESTION : existe-t-il une valuation c des variables de ϕ telle que le résultat $\phi(c)$ est vrai γ
- 2. 3SAT est le problème suivant :
 - **DONNEE** : une formule booléenne ϕ en forme 3-fnc
 - QUESTION : existe-t-il une valuation c des variables de ϕ telle que le résultat $\phi(c)$ est vrai ?
- 3. VERTEX COVER est le problème suivant :
 - **DONNEE**: un graphe G = (V, E), un naturel k
 - QUESTION : existe-t-il $U\subseteq V,\ |U|=k,$ tel que toute arête de E aie au moins une extremité dans S ?
- 4. CLIQUE est le problème suivant :
 - **DONNEE**: un graphe G = (V, E), un naturel k
 - QUESTION : existe-t-il $S \subseteq V$, $|S| \ge k$, tel que $uv \in E$ pour tout $u, v \in S$, $u \ne v$?
- 5. STABLE est le problème suivant :
 - **DONNEE**: un graphe G = (V, E), un naturel k
 - QUESTION : existe-t-il $S \subseteq V$, $|S| \le k$, tel que $uv \notin E$ pour tout $u, v, \in S, u \ne v$?

Vous pouvez utiliser les informations suivantes, sauf si on vous demande de les prouver.

	$\mathcal{L}_{\mathcal{DEC}}$	$\mathcal{L}_{\mathcal{REC}}$	\mathbf{CO} - $\mathcal{L}_{\mathcal{REC}}$
$L_d = \{ \langle M \rangle : \langle M \rangle \notin L(M) \}$	non	non	oui
$L_u = \{ \langle M, w \rangle : w \in L(M) \}$	non	oui	non
$HALT = \{ \langle M, w \rangle : M \text{ arrête sur l'entrée } w \}$	non	oui	non
$L_{\emptyset} = \{ \langle M \rangle : L(M) = \emptyset \}$	non	non	oui
$L_{\Sigma^*} = \{ \langle M \rangle : L(M) = \Sigma^* \}$	non	non	non

Rappel: l'ensemble \mathbb{N} contient tous les entiers non-négatifs. Donc $0 \in \mathbb{N}$.