The Real Numbers

Jack Krebsbach

Sep 4

0.1 The Real Numbers

0.1.1 The irrationality of the square root of 2

0.1.2 Preliminaries

Notation

- → For all/each/every
- \exists \rightarrow There exists
- $\mathbb{R} \setminus \mathbb{Q} \to Irrationals$
- $\mathbb{R} \to \text{Real numbers}$
- $\mathbb{Z} \to \text{Integers}$
- $\mathbb{Q} \to \text{Rational numbers}$
- $\mathbb{N} \to \text{Natural numbers}$

- $BWOC \rightarrow By$ way of contradiction
- → → Contradiction
- ! → Unique/factorial
- ⊜ → End of proof (Quod Erat Demonstrandum)
- $\epsilon \rightarrow$ Epsilon, usually a small positive quantity
- $\ni \rightarrow$ Such that

Theorem 0.1.1

Two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$.

Proof: ⇒ If a = b then we have |a - b| = 0. No matter which $\epsilon > 0 \in \mathbb{R}$ is chosen we have that $|a - b| = 0 < \epsilon$. Thus, a = b

 \Leftarrow Suppose, by way of contradiction, that $a \neq b$. We know that $\forall \epsilon > 0$ and $|a - b| < \epsilon$. Let $\epsilon_0 = \frac{|a - b|}{2}$, then it is clear that $|a - b| < \frac{|a - b|}{2} = \epsilon_0$ is false. Thus, with this contradiction we overturn our assumption and conclude a must equal b.

0.1.3 The Axiom of Completeness

Definition 0.1.1: Bounded Above

A set $A \subseteq \mathbf{R}$ is bounded above if there exists a number $b \in \mathbf{R}$ such that $a \le b$ for all $a \in A$. The number b is called an upper bound for A. Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbf{R}$ satisfying $l \le a$ for every $a \in A$.

Definition 0.1.2: The Supremum of a Set

A real number *s* is the *Supremum* or the least upper bound for a set $A \subseteq \mathbf{R}$ if:

- (i) *s* is an upper bound for *A*;
- (ii) if *b* is any upper bound for *A*, then $s \le b$.

Theorem 0.1.2 Lemma 1.3.8

Assume $s \in \mathbf{R}$ is an upper bound for a set $A \subseteq \mathbf{R}$. Then, $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s - \epsilon < a$.

Proof: ⇒ Let $s = \sup A$ and arbitrarily choose any $\epsilon > 0$. Suppose, by way of contradiction, there does not exist $a \in A$ with $a > s - \epsilon$. So for all $a \in A$ we have that $a \le s - \epsilon < s$. This means that $s - \epsilon$ is an upper bound of A. However, s is the supremum of or the least upper bound of A, so this is a contradiction. Thus, there must exist an element $a \in A$ such that $s - \epsilon < a$.

 \Leftarrow Let $\epsilon > 0$ and suppose there exists $a \in A$ with $s - \epsilon < a$ and we know that s is an upper bound of A. To show that s is the least upper bound, by way of contradiction, suppose that b < s and b is another upper bound of A.

Consider $\epsilon_0 = s - b > 0$. By hypothesis there exists a with $s - \epsilon_0 < a \implies s - (s - b) < a \implies b < a$. As we know that b is an upper bound of A this is impossible. Therefore it must be that $b \ge s$. Hence, $s \le b$ and $s = \sup A$.