EECS16A DIS 4C
Topics for today [I] Charge canservation and when and where it applies], (Definition of floating nodes) (Definition of floating nodes) (Lauge shaving algorithm (algorithm for analyzing voltages in) (algorithm for analyzing colater olds) (algorithm for analyzing colater olds) (algorithm for analyzing colater olds)
In circuits we have positive charges (
Charge is only conserved where it can't leave a closed system which charge can't leave Is nodes from which charge can't leave the hodes from which charge can't leave there are no conductive paths from this node to elsewhere
this is , Floating node -> no mesistars, no torrest sources what is called a

CzVar Has 2 nodes Has 2 floating nodes IV CI POPO C1= C2=1 MF

Q: What is the charge on C1, C2

Q: What nodes do we have before of, closed? 3 nodes, they are floating nodes

(>) Positive top left change (E) (D)

Negative bottom left charge (EGGGG),

Q2= 1MF.2V = [ZMC] -> Positive top right (000)

(b) When &, Closed what is Vc1 and Vc2! Vc1=Vcz (Xtap = Q1+Q2 =3MC Qpottan = -(Qi+ Q2) = -3 MC

What does Q top } Qbottom tell w about Var, Vaz and Q, \(\beta \alpha_2 \) (on each cap when the switch is closed?)

Qtop = 3 MC , Qbot = -3 MC

 $Q_1 = C_1 V_{C_1} = C_1 V$ $Q_2 = C_2 V_{C_2} = C_2 V$ $Q_2 = C_2 V_{C_2} = C_2 V$

$$Q_{1}^{\phi_{1}} = C_{1} V_{C_{1}} = C_{1} V$$

$$Q_{2}^{\phi_{1}} = C_{2} V_{C_{2}} = C_{2} V$$

Qtop =
$$Q_1^{l_1} + Q_2^{l_1}$$

 $3\mu C = C_1V + C_2V \rightarrow$
 $3\mu C = (1\mu F + 1\mu F)V \Rightarrow V = \frac{3\mu C}{2\mu F} = 1-SV$

$$Q_{1}^{\Phi_{1}} = C_{1}V = |M^{F} \cdot 1.5V|^{2} |.SMC|$$

$$Q_{2}^{\Phi_{2}} = C_{2}V = |M^{F} \cdot 1.5V|^{2} |.SMC|$$

$$Q_{2}^{\Phi_{2}} = C_{2}V = |M^{F} \cdot 1.5V|^{2} |.SMC|$$

$$C_1 = J_1 = S$$
 $C_2 = 3\mu F$
 $V_{C_1}(t_1 \text{ open}) = OV$ (No charge on plates)

 $V_{C_1}(t_1 \text{ open}) = OV$ (No charge on plates)

 $V_{C_2}(t_1 \text{ open}) = OV$ (No charge on plates)

Q: Which are floating nodes? A: (also, 4 nodes)
(when ϕ_1 is open)

Q: How much chargé is on red hold? Ouc (charge is conserved here)

Q: Which are floating hodes? A: (when ϕ , is closed)

- 3 nodis 3MC-3MC J -> (flaating node Q: How much charge is on green node? OMC (charge is conserved here)

