

Algorithms 演算法

Foundations— 1.2 Growth of Functions —

Professor James Chien-Mo Li 李建模 Electrical Engineering Department National Taiwan University

Algorithms NTUEE 1

Outline

- Introduction
- Getting Started
- Growth of Functions
- Recurrence

(Big) O-notation

- f(n) = O(g(n))
 - there exist positive constants c and n_0 such that
 - $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
 - g(n) is asymptotic upper bound for f(n)
 - Examples:

 $= n^3 = O(2^n)$ $= 2^n = O(n!)$

how to prove the big - O relationship? $f(n) = O(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ $, \text{ for some } c \ge 0$

NTUEE

3

lacksquare (Big) Ω -notation

• $f(n) = \Omega(g(n))$

Algo

- there exist positive constants c and n_0 such that
- $0 \le cg(n) \le f(n)$ for all $n \ge n_0$
- g(n) is asymptotic lower bound for f (n)
- Examples:

$$\boxed{\boxed{} 100n^2 = \Omega(n^2)}$$

$$\sqrt{n} = \Omega(\log n)$$
 , with $c = 1$ and $n_{\theta} = 16$

how to prove the big - Omega relationship?

$$f(n) = \Omega(g(n))$$
 iff $\lim_{n \to \infty} \frac{g(n)}{f(n)} = c$

, for some $c \ge 0$

⊕ -notation

- $f(n) = \Theta(g(n))$
 - there exist positive constants c_1 , c_2 , and n_θ such that
 - $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
 - g(n) is asymptotically tight bound for f(n)
 - Examples:
 - $n^2/2 2n = \Theta(n^2)$, with $c_1 = 1/4$, $c_2 = 1/2$, and $n_0 = 8$
 - Theorem3.1) $f(n) = \Theta(g(n))$ if and only if f = O(g(n)) and $f = \Omega(g(n))$

How to prove the Θ relationship? $f(n) = \Theta(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c$, for some c > 0

NTUEE

5

(small) o-notation

f(n) = o(g(n))

A

- for all constants c > 0, there exists constant $n_{\theta} > 0$ such that
- $0 \le f(n) < cg(n)$ for all $n \ge n_0$
- f(n) is asymptotically smaller than g(n)
- Examples
 - $n^{1.9999} = o(n^2)$
 - $\bullet n^2 / \lg n = o(n^2)$

How to Prove the o - relationship?

$$f(n) = o(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

(small) ω -notation

- $f(n) = \omega(g(n))$
 - for all constants c > 0, there exists constant $n_0 > 0$ such that
 - $0 \le cg(n) < f(n)$ for all $n \ge n_0$
 - f(n) is asymptotically larger than g(n)
 - Examples
 - $n^{2.0001} = \omega(n^2)$
 - $n^2 \lg n = \omega(n^2)$
 - $n^2 \neq \omega(n^2)$

How to prove ω – relatinship?

$$f(n) = \omega(g(n))$$
 iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

7 **Algorithms** NTUEE

Analogy

- $f(n) = O(g(n)) \quad \approx \quad f \le g$
- $f(n) = \Omega(g(n)) \approx f \ge g$ $f(n) = \Theta(g(n)) \approx f = g$ $f(n) = o(g(n)) \approx f < g$

- $f(n) = \omega(g(n))$ f > g
- An algorithm has worst-case run time O(g(n)) means that
- \blacksquare exists constant c s.t. for every large n, every execution on an input of size n takes at most cg(n) time.
 - example: insertion sort worst-case running time is O(n²)
- An algorithm has best-case run time Ω (g(n)) means that
- ightharpoonup exists constant c s.t. for every large n, at least one execution on an input of size n takes at least cg(n) time.
 - example: insertion sort best-case running time is $\Omega(n)$

Properties

- Transitivity:
 - If $f(n) = \Pi[g(n)]$ and $g(n) = \Pi[h(n)]$, then $f(n) = \Pi[h(n)]$
 - where $\Pi = O$, o, Ω , ω , or Θ
- Rule of sums:
- F
- $f(n) + g(n) = \Pi[\max\{f(n), g(n)\}], \text{ where } \Pi = O, \Omega, \text{ or } \Theta$
- Rule of products:
 - If $f_1(n) = \Pi[g_1(n)]$ and $f_2(n) = \Pi[g_2(n)]$, then $f_1(n) f_2(n) = \Pi[g_1(n) g_2(n)]$, where $\Pi = O, o, \Omega, \omega, or \Theta$
- Transpose symmetry:
- $f(n) = O[g(n)] \text{ iff } g(n) = \Omega(f(n))$
- $f(n) = o[g(n)] \text{ iff } g(n) = \omega(f(n)).$
- **Period** Reflexivity: $f(n) = \Pi[f(n)]$, where $\Pi = O, \Omega$, or Θ

Algorithms NTUEE 9

Comparison of Running Time

- 1,000 Million Instruction Per Second (MIPS)
- Different asymptotic function makes a huge difference

	Order	Name	n = 10	n = 100	$n = 10^3$	$n = 10^6$
F	1	constant	$1 \times 10^{-9} \text{ sec}$	$1 \times 10^{-9} \text{ sec}$	1×10^{-9} sec	$1 \times 10^{-9} \text{ sec}$
F	$\lg n$	logarithmic	$3 \times 10^{-9} \text{ sec}$	$7 \times 10^{-9} \text{ sec}$	1×10^{-8} sec	$2 \times 10^{-8} \text{ sec}$
	\sqrt{n}	square root	$3 \times 10^{-9} \text{ sec}$	1×10^{-8} sec	$3 \times 10^{-8} \text{ sec}$	1×10^{-6} sec
	n	Linear	1×10^{-8} sec	1×10^{-7} sec	1×10^{-6} sec	0.001 sec
厚	$n \lg n$	linearithmic	$3 \times 10^{-8} \text{ sec}$	2×10^{-7} sec	3×10^{-6} sec	0.006 sec
	n^2	quadratic	1×10^{-7} sec	1×10^{-5} sec	0.001 sec	16.7 min
	n^3	cubic	1×10^{-6} sec	0.001 sec	1 sec	3×10^5 cent.
	2^n	exponential	1×10^{-6} sec	3×10^{17} cent.	∞	∞
	n!	factorial	0.003 sec	∞	8	∞

Food for Thoughts

- Q1: merge sort is $O(n \lg n)$, merge sort is also $\Theta(n \lg n)$
 - which one should I write in exam?
- Q2: Suppose $f=n^2$, $g=n^3$
 - f= $O(n^3)$ = g
 - f=g? What is wrong?