Lock 接口. (the sychronized 更有扩展性)

表5-1 Lock接口提供的synchronized关键字不具备的主要特性

特 性	描 述
尝试非阻塞地获取锁	当前线程尝试获取锁, 如果这一时刻锁没有被其他线程获取到, 则成功获取并持有锁
能被中断地获取锁	与 synchronized 不同,获取到锁的线程能够响应中断,当获取到锁的线程被中断时,
	中断异常将会被抛出,同时锁会被释放
超时获取锁	在指定的截止时间之前获取锁,如果截止时间到了仍旧无法获取锁,则返回

队列同步器 AQS

①定义 用来构建锁或其他同步组件的基础框架, 網 State表示同步状态。

采用FIFO队列完成资源、森取线程的排队工作

② 队列同步器.

表5-3 同步器可重写的方法

方法名称	描 述
protected boolean tryAcquire(int arg)	独占式获取同步状态,实现该方法需要查询当前状态并判断同步状态是否符合预期,然后再进行 CAS 设置同步状态
protected boolean tryRelease(int arg)	独占式释放同步状态,等待获取同步状态的线程将有机会获取同步状态
	(续)
方法名称	描述
方法名称 protected int tryAcquireShared(int arg)	描述 共享式获取同步状态,返回大于等于0的值,表示获取成功,反之, 获取失败
77.00.74.75	共享式获取同步状态,返回大于等于0的值,表示获取成功,反之,

模板方法①独步式、了局一时刻只能有一个线程就取到锁。 ③查询同步队列中的等待线程

分析了独占式同步状态获取和释放过程后,适当做个总结:在获取同步状态时,同步器维 护一个同步队列, 获取状态失败的线程都会被加入到队列中并在队列中进行自旋;移出队列 (或停止自旋)的条件是前驱节点为头节点且成功获取了同步状态。在释放同步状态时,同步 器调用tryRelease(int arg)方法释放同步状态, 然后唤醒头节点的后继节点。

重入锁.

定义: 支持一个线程对资源的重复加锁。

定义: 支持一个线程对资源的重复加锁.

支持公平、非公平钱

*默认.可以极大提高吞吐量

①实现重入. 《线程再次获取锁、 要解决 《锁的最终释放.

读写锁 提升读的书发程度

①读出状态设计. 一个整型变量维护多个读线程和一个写线程的状态. 按位切割使用

图5-8 读写锁状态的划分方式

②锁降级 (为)保证数据可以性)

线程A 蕨取写锁, 再获取读锁 再释放写敬

Lock Suppore工具.

提供线程图塞和唤醒功能、带排的的版本可以多好中图塞对象的信息。

Condition接2. 西台Lock接口、实现一个同步队列,多个等锋队列

表5-12 Object的监视器方法与Condition接口的对比

对比项	Object Monitor Methods	Condition
前置条件	获取对象的锁	调用 Lock.lock() 获取锁 调用 Lock.newCondition() 获取 Condition 对象
调用方式	直接调用 如: object.wait()	直接调用 如: condition.await()
等待队列个数	一个	多个
当前线程释放锁并进入等待状态	支持	支持
当前线程释放锁并进入等待状态,在 等待状态中不响应中断	不支持	支持
当前线程释放锁并进入超时等待状态	支持	支持
当前线程释放锁并进入等待状态到将 来的某个时间	不支持	支持
唤醒等待队列中的一个线程	支持	支持

二메双性杆从现开近八旭門守时休运	×14.	X14
当前线程释放锁并进入等待状态到将 来的某个时间	不支持	支持
唤醒等待队列中的一个线程	支持	支持
唤醒等待队列中的全部线程	支持	支持

Java中的锁 2021年12月23日 19:18