Natural Language Processing

Paper Code: CS-821/6 UG 8th Sem

Dr. Samit Biswas, Assistant Professor

Department of Computer Sc. and Technology

Indian Institute of Engineering Science and Technology, Shibpur

Email: samit@cs.iiests.ac.in

Plan for Today

Language Model Smoothing

Language Model Smoothing

Language Model Smoothing

- Since N-gram tables are too sparse, there will be a lot of entries with zero probability (or with very low probability).
- The reason for this, our corpus is finite and it is not big enough to get that much information.
- The task of re-evaluating some of zero-probability and low-probability N-Grams is called Smoothing.

Zero Probability

• Probability Function:

Training Set	Test Set
denied the allegations	denied the offer
denied the reports	denied the loan
denied the claims	
denied the request	

P("offer" | denied the) = 0

Smoothing Techniques

Smoothing Techniques

- Add one smoothing: add one to all counts
- Witten Bell Discounting: use the count of things you have seen once to help estimate the count of things you have never seen.
- Good-Turing Discounting a slightly more complex form of Witten-Bell Discounting.
- Backoff using lower level N-Gram probabilities when N-gram probability is zero.

Add-one Smoothing

Add-one Smoothing (Laplace Correction)

- Assume each bigram having zero occurrence has a count of 1.
- Increase the count of all non-zero occurrence words by one. This
 increases the total number of words N in the corpus by the
 vocabulary V.
- Probability of each word after add-one smoothing:

$$\circ$$
 Unigram: $P_L(w_i) = rac{C(w_i) + 1}{N + V} = rac{C_i + 1}{N + V}$

$$\circ$$
 Bigram $P_L(w_n|w_{n-1})=rac{C(w_{n-1}w_n)+1}{C(w_{n-1})+V}$

Example: Add-one Smoothing

Example: Add-one Smoothing

xya	100	100/300	101	101 / 326
xyb	0	0/300	1	1 / 326
хус	0	0/300	1	1 / 326
xyd	200	200/300	201	201 / 326
xye	0	0/300	1	1 / 326
:				
xyz	0	0/300	1	1 / 326
Total xy	300	300/300	326	326 / 326

Add-one Smoothing

Problem with Add-one Smoothing

- each individual unseen n-gram is given a low probability.
- but there is a huge number of unseen n-grams:
 - Adding a little of probability over a huge number of unseen events gives too much probability mass to all unseen events
- Instead of giving small portion of probability to unseen events, most of the probability space is given to unseen events.

Concept of "Discounting"

Concept of "Discounting"

- The concept is the central idea in all smoothing algorithms.
- To assign some probability mass to unseen event, we need to take away some probability mass from seen events.
- Discounting is the lowering each non-zero count c to c* according the smoothing algorithm.
- It is convenient to describe a smoothing algorithm as a corrective constant that affects the numerator by defining an adjusted count c* as follows:

$$P_L(w_i) = \frac{c_i + 1}{N + V} = \frac{c_i + 1}{N + V} \frac{N}{N} = (c_i + 1) \frac{N}{N + V} \frac{1}{N} = \frac{c_i^*}{N}$$

$$c_i^* = (c_i + 1) \frac{N}{N + V}$$

Discounting

Discounting

- A related way to view smoothing is as discounting (lowering) some non-zero counts in order to get the correct probability mass that will be assigned to the zero counts.
- Thus instead of referring to the discounted counts c, we might describe a smoothing algorithm in terms of a relative discount d_c, the ratio of the discounted counts to the original counts:

$$d_c = \frac{C^*}{C}$$

Witten-Bell Discounting

Witten-Bell Discounting

- Use the count of things that you've seen only once to estimate the count of things you have never seen.
- Total probability mass assigned to zero-frequency unigrams (T #observed types; N # word instances/tokens):

$$\sum_{i:c_i=0} p_i^* = \frac{T}{N+T}$$

So each zero N-gram gets the probability:

$$Z = \sum_{i:c_i=0} 1$$

$$p_i^* = \frac{T}{Z(N+T)}$$

Witten-Bell: why Discounting

 Now of course we have to take away something ('discount') from the probability of the events seen more than once:

If
$$c_i > 0 \mid p_i^* = \frac{c_i}{N+T}$$

Witten-Bell: for bigrams

We 'relativize' the types to the previous word:

$$\sum_{i:c(w_xw_i)=0} p^*(w_i|w_x) = \frac{T(w_x)}{N(w_x) + T(w_x)}$$

- this probability mass, must be distributed in equal parts over all unseen bigrams
 - \circ Z(w₁): number of unseen n-grams starting with w₁

for each unseen event
$$P(w_2|w_1) = \frac{1}{Z(w_1)} \frac{T(w_1)}{N(w_1) + T(w_1)}$$

Example: Witten-Bell discounting

	а	b	С	d	Total = $N(w_1)$ seen tokens	T(w ₁) seen types	z(w ₁) unseen types
а	10	10	10	0	30	3	1
b	0	0	30	0	30	1	3
С	0	0	300	0	300	1	3
d					8	2	
			-		<i>17</i>		

 all unseen bigrams starting with a will share a probability mass of

$$\frac{T(a)}{N(a) + T(a)} = \frac{3}{30 + 3} = 0.091 \tag{10}$$

 each unseen bigram starting with a will have an equal part of this

$$P(d|a) = \frac{1}{Z(a)} \frac{T(a)}{N(a) + T(a)} = \frac{1}{1} \frac{3}{30 + 3} = 0.091$$
 (11)

Example: Witten-Bell discounting

	а	b	С	d	Total = $N(w_1)$ seen tokens	T(w ₁) seen types	z(w ₁) unseen types
а	10	10	10	0	30	3	1
b	0	0	30	0	30	1	3
С	0	0	300	0	300	1	3
d			- C				

 all unseen bigrams starting with b will share a probability mass of

$$\frac{T(b)}{N(b) + T(b)} = \frac{1}{30 + 1} = 0.032 \tag{12}$$

 each unseen bigram starting with b will have an equal part of this

$$P(a|b) = P(b|b) = P(d|b) = \frac{1}{Z(b)} \frac{T(b)}{N(b) + T(b)} = \frac{1}{3} \times 0.032 = 0.011$$

Example: Witten-Bell discounting ...

1	а	b	С	d	Total = $N(w_1)$ seen tokens	T(w ₁) seen types	z(w ₁) unseen types
а	10	10	10	0	30	3	1
b	0	0	30	0	30	1	3
С	0	0	300	0	300	1	3
d					(i) c		
					(*)		

 all unseen bigrams starting with c will share a probability mass of

$$\frac{T(c)}{N(c) + T(c)} = \frac{1}{300 + 1} = 0.0033 \tag{14}$$

 each unseen bigram starting with c will have an equal part of this

$$P(a|c) = P(b|c) = P(d|c) = \frac{1}{Z(c)} \frac{T(c)}{N(c) + T(c)} = \frac{1}{3} \times 0.0033 = 0.0011$$

Back to counts: Witten-Bell discounting

• To get from probabilities back to the counts, we know that:

$$P(w_2|w_1) = \frac{C(w_2|w_1)}{N(w_1)}$$

• so, we get:

$$C(w_2|w_1) = P(w_2|w_1) \times N(w_1)$$

$$= \frac{1}{Z(w_1)} \frac{T(w_1)}{N(w_1) + T(w_1)} \times N(w_1)$$

$$= \frac{T(w_1)}{Z(w_1)} \times \frac{N(w_1)}{N(w_1) + T(w_1)}$$

References

References

- Daniel Jurafsky & James H. Martin, "Speech and Language Processing", Prentice Hall
- Diana Maynard, Kalina Bontcheva, Isabelle Augenstein, "Natural Language Processing for the Semantic Web", A Publication in the Morgan & Claypool Publishers series.
- Steven Bird, Ewan Klein and Edward Loper, "Natural Language Processing with Python", By O'Reilly.
- Christopher Manning and Hinrich Schtze, "Foundations of Statistical Natural Language Processing",
 The MIT Press.

Thank You

Contacts:

Dr. Samit Biswas
Department of CST,
IIEST, Shibpur

samit@cs.iiests.ac.in
https://www.iiests.ac.in/IJFST/Faculty/cs-sam

