CS2x1:Data Structures and Algorithms

Koteswararao Kondepu

k.kondepu@iitdh.ac.in

List of Topics [C201]

- Introduction:
 - Data structures
 - Abstract data types
 - Analysis of algorithms.
- Creation and manipulation of data structures:
 - Arrays; Stacks; Queues; Linked lists; Trees; Heaps; Hash tables; Balanced trees [AVL]; Graphs.
- Algorithms for sorting and searching, depth-first and breadth-first search, shortest paths and minimum spanning tree.

Classification of Data Structures

Definition: Graphs

Tree: One-to-Many

Graph: Many-to-Many

- ✓ A Graph is a non-linear data structure
- ✓ A graph G = (V;E) is defined by <u>a set of vertices V</u>, and <u>a set of edges E</u> consisting of <u>ordered or unordered pairs</u> <u>of vertices from V</u>
- ✓ Vertex is usually represented by a circle with a label
- ✓ Edge is usually represented by a line or arrow extending from one vertex to another ————
- ✓ A tree is also a type of graph
- ✓ Graphs also have many application in the real world: road network, rail network, airline network, water network, telecommunication network, etc.

Terminology: Graphs (1)

- ❖ <u>Undirected graph</u>: A graph G = (V;E); V → set of all vertices; E → set of all edges (<u>set of all unordered</u> <u>pairs</u> of elements from V
- **t** Example: V ={U1, U2, U3, U4}; E ={(U1, U2), (U2, U4), (U2, U4), (U3, U4)}

- ✓ <u>Vertices</u> → Users: U1, U2, U3 and U4
- ✓ <u>Edges</u> → Friendship (graph) among the users

- ✓ Undirected graph \rightarrow (U1, U2) is equal to (U2, U1)
- ✓ Undirected edge → unordered pair of vertices
- ✓ Undirected graph → termed as "graph"

- ❖ <u>Directed graph</u>: A graph G = (V;E); V → set of all vertices; E → set of all edges (<u>set of all ordered pairs</u> of elements from V
- Example: V ={U1, U2, U3, U4}; E ={(U1, U2), (U2, U4), (U4, U3)}
 - ✓ Directed graph \rightarrow (U1, U2) is not equal to (U2, U1)
 - ✓ U1 follows U2
 - ✓ Direct edge → ordered pair of vertices
 - ✓ Directed graph → termed as "digraph"

Terminology: Graphs (2)

Weighted graph: A graph (or digraph) terms as weighted graph, if all the edges in it are labelled with some weights

- Adjacent Vertices: A vertex v_i is adjacent to v_j , if there is an edge from v_i to v_j
- \diamond Self Loop: If there is an edge whose starting and ending vertices are same \rightarrow (v_i , v_i) is an edge \rightarrow Self loop
- **Parallel Edges**: If there is more than one edge between the same pair of vertices
- ❖ <u>Simple graph</u>: A graph if it does not have any self loop or parallel edges → *simple graph*
- \diamond Complete graph: If each vertex v_i is adjacent to every other vertex $v_i \rightarrow$ edges from every vertex to all other
- Acyclic graph: If there is a path containing <u>one or more edges</u> which starts from a vertex v_i and terminates into the same vertex then the path is know as a cycle. <u>If a graph (digraph) does not have cycle then it is called "Acyclic graph"</u>
- **!solated vertex:** A vertex is Isolated if there is no edge connected from any other vertex to the vertex
- \diamond Degree of vertex: The number of edges connected with vertex v_i

Terminology: Graphs (3)

 \bullet Degree of vertex: The number of edges connected with vertex v_i

- ✓ <u>Degree of vertex</u> \rightarrow degree (v_i)
- ✓ <u>Indegree (v_i) </u> → number of incoming edges towards v_i
- ✓ Outdegree (v_i) → number of outgoing edges from v_i

```
Indegree (V1) = 2; Outdegree (V1) = 1
Indegree (V2) = 1; Outdegree (V2) = 1
Indegree (V3) = 0; Outdegree (V3) = 2
Indegree (V4) = 2; Outdegree (V2) = 1
```

- Pendant vertex: A vertex v_i is pendant if its indegree $(v_i) = 1$ and outdegree $(v_i) = 0$
- **Connected graph**: In a graph (or digraph), two vertices v_i and v_j are said to be connected if there is a path in G from v_i to v_j
 - \checkmark A graph is said to be connected if for every pair of distinct vertices v_i and v_i there is a path
 - \checkmark A digraph is said to be <u>strongly connected</u> if for every pair of distinct vertices, there is a direct path from v_i to v_i and also from v_i to v_i

V1

Terminology: Graphs (4)

Path: A path in a graph is a sequence of edges connecting two vertices

- Simple Path: A simple path in a path with no repeated vertices
- ❖ <u>Directed acyclic graph</u> [DAG]: A direct graph with no cycles
- * <u>Bipartite graph:</u> A graph whose vertices are divided into two sets such that all the edges connect a vertex in <u>one set with a vertex in the other set</u>

Terminology: Graphs (6)

- ❖ Sparse graph: A graph with relatively few edge A (< |V| log |V|)
- Dense graph: A graph with relatively few of the possible edge are missing is called <u>dense graph</u>
- \diamond Six degree of separation: The notation of six degree of separation presumes the world social network is <u>a</u>

connected graph

Representation of Graphs

- ✓ Set representation (Adjacency Set)
- ✓ Linked representation (Adjacency List)
- ✓ Sequential (Matrix) representation (Adjacency Matrix)

Exercise: Graphs (1)

Answer the following questions by following Figure!

- 1. Which of the following graph type is presented?
 - a. Undirected only
 - b. Directed and weighted
 - c. Undirected and weighted
- 2. Total number of vertices and edges?
 - a. 4, 5
 - b. 5, 4
 - c. 4, 6
 - d. 6, 4
- 3. How many self-loop/s are presented? 1
- 4. Adjacent vertices of A, B, C, and D respectively
 - a. $\{B, D\}, \{C, D\}, \{B, D\}, \{A, C\}$
 - b. $\{B, D\}, \{A, C\}, \{B, D\}, \{A, C\}$

Representation: Set \rightarrow Graphs

 $V \rightarrow$ set of vertices; $E \rightarrow$ set of edges $\rightarrow V \times V$ (unordered); $E \rightarrow W \times V \times V$ for weighted graph

- **❖** V(G1) = {V1, V2, V3, V4, V5, V6, V7};
- **♦** E(G1) ={(V1, V2), (V1, V3), (V2, V4), (V2, V5), (V3, V6), (V3, V7)}
- **❖** V(G2) = {V1, V2, V3, V4, V5};
- **❖** E(G2) ={(V1, V2), (V1, V3), (V3, V2), (V4, V2), (V4, V3), (V4, V5), (V5, V2)}
- **❖** V(G3) = {V1, V2, V3, V4};
- **♦** E(G3) ={(5, V1, V2), (9, V1, V3), (6, V3, V2), (8, V4, V2), (7, V4, V3)}

Disadv. → if a graph is multigraph and undirected, this method does not allow to store the parallel edges → As <u>in sets</u> two identical elements cannot exist; Not useful for manipulation of graph concern

Adv. → more straightforward representation; most efficient in terms of memory

Representation: Linked > Graphs

V2

V2

V2

V2

6

8

V2

V2

V2

V1

V2

V3

V4

V5

V1

V2

V3

V4

❖ Linked representation is another space-saving way of graph representation

V3

V3

9

Adjacency List

V3

V3

Adjacency List

V5

Representation: Matrix -> Graphs

Exercise: Graphs (2)

There are 25 telephones in a land. Is it possible to connect them with wires so that each telephone is connected with exactly 7 others?

A. 100

B. 87

C. 70

D. Not possible

Exercise: Graphs (2)

Answer the following questions by following the Figure!

- 1. Which of the following graph type is presented?
 - a. Undirected and dis-connected
 - b. Directed and connected
 - c. Undirected and connected
- 2. Total number of vertices and edges?
 - a. 10, 8
 - b. 11, 8
 - c. 8, 10
 - d. 8, 11
- 3. Adjacent vertices of B, C, G, and F respectively
 - a. {B, A}, {B, D}, {B, C}, {C, A}, {C, E}, {C, F}, {G, F}, {G, H}, {F, E}
 - b. {B, A}, {B, D}, {B, C}, {C, A}, {C, G}, {C, F}, {G, E}, {G, H}, {F, E}
 - c. {B, A}, {B, D}, {B, C}, {C, A}, {C, G}, {C, F}, {G, F}, {G, H}, {F, H}
 - d. {B, A}, {B, D}, {B, C}, {C, A}, {C, G}, {C, F}, {G, F}, {G, H}, {F, E}

Exercise: Graphs (3)

Answer the following questions by following the Figure!

- 1. Which of the following graph type is presented?
 - a. Directed and connected
 - b. Directed and dis-connected
- Total number of vertices and edges?
 - a. 12, 8
 - b. 10, 8
 - c. 8, 12
 - d. 8, 10
- 3. Adjacent vertices of 4, and 6 respectively
 - a. {4, 2}, {4,7}, {4, 6}, {6, 5}, {6, 7}, {6, 2}
 - b. {4, 2}, {4,7}, {4, 6}, {6, 4}, {6, 5}, {6, 2}
 - c. {4, 2}, {4,7}, {4, 5}, {6, 4}, {6, 7}, {6, 2}
 - d. {4, 2}, {4,7}, {4, 6}, {6, 4}, {6, 7}, {6, 2}

Exercise: Graphs (4)

Answer the following questions by following the Figure!

1. What is representation of the given graph using Adjacency List?

Exercise: Graphs (5)

Answer the following questions by following the Figure!

What is representation of the given graph using Adjacency Matrix?

thank you!

email:

k.kondepu@iitdh.ac.in