NATURAL DISASTER INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

Project Report
submitted by
RAMESHKUMAR J
GAYATHRI M K
NEEMEMOLCHACKO
SHANTHINI A

TABLE OF CONTENTS

CHAPTER	TITLE
NO	
NO	
1.	INTRODUCTION
	PROJECT
	OVERVIEW
	PURPOSE
2.	LITERATURE
	SURVEYEXISTING
	PROBLEM
	REFERENCES

	PROBLEM STATEMENT DEFINITION
3.	IDEATION & PROPOSED SOLUTION
	EMPATHY MAP CANVAS
	IDEATION &
	BRAINSTORMING
	PROPOSED SOLUTION
	PROBLEM SOLUTION FIT
4.	REQUIREMENT ANALYSIS
	FUNCTIONAL REQUIREMENT
	NON-FUNCTIONAL REQUIREMENTS
5.	PROJECT DESIGN
	DATA FLOW DIAGRAMS
	SOLUTION & TECHNICAL
	ARCHITECTUREUSER STORIES
6.	PROJECT PLANNING &
	SCHEDULINGSPRINT PLANNING
	& ESTIMATION SPRINT
	DELIVERY SCHEDULE REPORTS
	FROM JIRA

	DELIVERY SCHEDULE REPORTS	
	FROM JIRA	
7.	CODING & SOLUTIONING	
	FEATURE 1	
	FEATURE 2	
8.	TESTING	
	TEST CASES	

	ACCEPTANCE
	TESTING
9.	RESULTS
	9.1 PERFORMANCE METRICS
10.	ADVANTAGES & DISADVANTAGES
11.	CONCLUSION
12.	FUTURE SCOPE
13.	APPENDIX
	13.1 SOURCE CODE

CHEPTER 1 INTRODUCTION

Project Overview

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. To tackle this problem, we developed a multilayered deep convolutional neural network model that classifies the natural disasterand tells the intensity of disaster of natural The model uses

an integrated webcam to capture the video frame and the video frame is compared with the Pre- trained model and the type of disaster is identified and showcased on the OpenCV window.

Purpose

The purpose of this project to detect the natural disaster and reduce, or avoid, the potential losses from hazards, assure prompt and appropriate assistance to victims of disaster, and achieve rapid and effective recovery.

CHAPTER 2

LITERATURE

TITLE: A Deep Learning Approach of Recognizing Natural Disasters on Images.

PROPOSED WORK

First, this work introduces to the research community a new dataset for the joint classification of natural disaster types and intensity. Moreover, this study primarily aims to explore natural disasters recognition using a convolutional neural network and transfer learning.

An open source tool is used for finding and removing the repeated images

for analysis. Wildfire, Earthquake, Flood and Volcanic eruption are taken.

In particular, this study attempts to build and train a lightweight

convolutional neural network that can jointly recognize natural disaster

types and intensity. Based on the intensity, it classifies as Severe,

Moderate, Insignificant Lastly, this study attempts to measure the model

performance using four performance measures; accuracy, precision, recall,

and F1-Score.

TOOLS USED/ALGORITHM

• • Image Processing

• • Slope NDVI

• • Location API

• • Cloud Architecture

• • Google Earth Engine

• • K-Means and Classification Algorithm

• • RGB Scale

TECHNOLOGY: Artificial Intelligence

TITLE: Disaster Intensity-Based Selection of Training Samples for Remote

SensingBuilding Damage Classification.

PROPOSED WORK

In this proposed work, two fully automatic procedures for the

detection of severely damaged buildings are introduced. The fundamental

assumption is that samples that are located in areas with low disaster

intensity mainly represent non-damaged buildings. Furthermore, areas

with moderate to strong disaster intensities likely contain damaged and

nondamaged buildings. Under this assumption, a procedure that is based on

the automatic selection of training samples for learning and calibrating the

standard support vector machine classifier is utilized. The second

procedure is based on the use oftwo regularization parameters to define the

support vectors. These frameworks avoid the collection of labeled building

samples via field surveys and/or visual inspection of optical images, which

requires a significant amount of time. The performance of the proposed

method is evaluated via application to three real cases. The resulted

accuracy ranges between 0.85 and 0.89, and thus, it shows that the result

can be used for the rapid allocation of affected buildings.

TOOLS USED/ALGORITHM

• • Automatic labelling

• • Building damage

• • Multi regularization parameters

• • Demand Parameter

• • Support Vector Machine (SVM)

TECHNOLOGY: Machine Learning

TITLE: Hurricane Damage Detection using Machine Learning and Deep

LearningTechniques

PROPOSED WORK

In this proposed work, Disaster detection can be done through

social media and satellites. Images obtained from satellites are widely

used since capturing and processing of these images can be done in a

shorter span of time. Satellite images help to recognize damage pattern

caused by the disasters. The images from social media are also useful

since they provide information on an immediate basis. Since manual

methods are error- prone, deep learning and machine learning are used

which used for detecting the damagecaused by disasters effectively.

TOOLS USED/ALGORITHM

• • Social-media

• • Satellite imagery

• • Deep learning techniques

• • CNN, VGG-16, ResNet

• • Machine learning techniques

• • Support Vector Machine, Decision trees, random forest.

TECHNOLOGY: Machine Learning, Deep Learning

Existing Problem

Earlier we focus on post disaster relief and rehabilitation measures. Now the focus is shifted. As per sec.2(e) of DM Act 2005, Disaster Management means a coordination and integrated process of planning, organizing, coordinating, and implementing measures which are necessary or expedient for-

- • Prevention of danger or threat of any disaster
- • Preparedness to deal with any disaster
- Prompt response to any threatening disaster situation or disaster
- Assessing the severity or magnitude of effects of any disaster
- • Evacuation, rescue, and relief
- Rehabilitation and reconstruction

References

- • Mignan, A.; Broccardo, M. Neural network applications in earthquake prediction (1994–2019): Meta-analytic and statistical insights on their limitations. Seism. Res. Lett. 2020, 91, 2330–2342. [CrossRef]
- • Tonini, M.; D'Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences 2020, 10,

105. [CrossRef]

- • Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2021, 12, 101075. [CrossRef]
- • Schlemper, J.; Caballero, J.; Hajnal, V.; Price, A.N.; Rueckert, D. Adeep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 2017, 37, 491–503. [CrossRef] [PubMed]
- • Tang, C.; Zhu, Q.; Wu, W.; Huang, W.; Hong, C.; Niu, X. PLANET:Improved convolutional neural networks with image enhancement for image classification. Math. Probl. Eng. 2020, 2020. [CrossRef]

Problem Statement Definition

People needs a way to classify and analyse the natural disaster so that they can prevent themselves from losses due to the disaster and millions of lives.

People and animals are facing so many issues like loss of life, property, resources and deterioration of the air quality due to the natural disaster. So we need to analyse and detect natural disaster and protect them from such disaster.

CHAPTER 3

IDEATION & PROPOSED SOLUTION

Empathy Map Canvas

Ideation & Brainstorming

Proposed solution

S. No.	Parameter	Description
S. No.	Parameter	Description

1.	Problem Statement (Problem to be solved)	The main purpose of this model is to detect and classify the type of disaster with a high accuracy rate
2.	Idea/Solution description	Emergency measures, Investments in riskreduction, Information sharing on newestresearch findings, Reforestation, Stablebuildings, EducationTechnology, Governance.
3.	Novelty/Uniqueness	A natural disaster is "the negative impact following an actual occurrence of natural hazardin the event that it significantly harms acommunity"
4.	Social impact/Customer Satisfaction	Increased mental health issues, alcohol misuse, domestic violence, chronic disease and shortterm unemployment have resulted fromextreme weather events such as bushfires, severe storms, cyclones, floods and earthquakes.
5.	Business Model (RevenueModel)	Be Aware of the Natural Disasters that CouldAffect Your Business, Create a DisasterResponse Plan, Implement CommunicationPlans, Backup Documents and Data, Protect thePower, Plan to Recover, Review Your Commercial Insurance Coverage.
6.	Scalability of the Solution	Scalability: Implementing disaster recoverymeasures involves identifying new and scalablesolutions, such as the cloud.

Problem Solution Fit

CHAPTER 4 REQUIREMENT ANALYSIS

Functional Requirement

FR	Functional	Sub Requirement (Story / Sub-Task)
No.	Requirement(Epic)	
FR-1	Request Permission	Access permission from web camera.
FR-2	Disaster Detection	Based on the webcam image, natural disaster is classified.
FR-3	Accuracy	Since the training and testing images are huge, The accuracy is higher.
FR-4	Speed	The generation of results from the input Images are faster.
FR-5	Resolution	The resolution of the integrated webcamera should be high enough to capturethe video frames.

FR-6	User Interface	Maximizing the interaction in Web
		Designing Service.

Non-Functional Requirement

NFR. No.	Non- Functional Requirement	Description	
NFR-1	Usability	User friendly and classify the disaster easily.	
NFR-2	Security	The model is secure due to the cloud deployment models and also there is nologin issue.	
NFR-3	Reliability	Accurate prediction of the natural disaster and the website can also be fault tolerant.	
NFR-4	Performance	It is shown that the model gives almost 95 Percent accuracy after continuous training.	
NFR-5	Availability	The website will be made available for 24 hours.	
NFR-6	Scalability	The website can run on web browsers like Googlechrome, Microsoft edge and also itcan be extended to the NDRFand customers.	

CHAPTER 5 PROJECT DESIGN

Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data to be enter and leaves the system, what changes the information, and where data is stored.

Flow Diagram

Solution & Technical

Architecture Solution

Architecture

Solution architecture is a complex process – with many subprocesses – that bridges the gap between business problems and technology solutions. Its goals areto:

- • Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior,
 and other aspects of thesoftware to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Solution Architecture Diagram

Technical Architecture

Block-II Convolutional Neural Network (B-II CNN)

Components & Technologies:

S.No	Component	Description	Technology
------	-----------	-------------	------------

1.	User Interface	User interacts with	HTML, CSS,
		application for the	JavaScript,
		detection	Django,
		of any Natural	Python.
		disaster's intensity and	
		classify which	
		happened justbefore.	
3.	Disaster	This function is used to detect,	Decision
	Detection	Outcomes from	trees, Regression,
		the new trained data to perform new	Convolutio
		tasks and solve new problems.	nal Neural
			networks.
4.	Evaluation	It monitors that how	Chi-Square,
	system	Algorithm performs on data as	Confusion
		well as during training.	Matrix, etc.
5.	Input data	To interact with our model and	Application
		give itproblems	programming
		to solve. Usually this	interface, etc.
		takes the formof an API,	
		auser interface, or a	
		command-	
		line interface.	

6.	Data	Data is only useful if it's	IBM Cloud,
	collection	accessible, soitneeds to be	SQLServer.
	unit	stored ideally in a consistent	
		structure and conveniently inone	
		place.	
7.	Database	An organized collection of data	MySQL,
	management	stored indatabase, so that it can	DynamoDB etc.
	system	be easily accessed and managed.	

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-	An open source framework	
	Source	is a template for software	Keras,
	Frameworks	developmentthat is	Tensorflow.
		designed by a social	
		networkof software	
		developers. These	
		frameworks are free for	
		public useand provide the	
		foundation for	
		building a software application.	

2.	Authentication	This keep sour models	Encryption
		secure andmakes sure	and
		only those who	Decryption
		havepermission can use them.	(OTP).

3.	Application	User uses mobile	Web
	interface	application andweb	Develop
		application to interact	ment
		with model	(HTML,C
			SS)
4.	Availability	Its include both online and	
	(both Online	offline work. As good	Caching, backend
	and Offline	internet connection is need	server.
	work)	for online work to explore	
		the software perfectly.	
		Offline work includes the	
		saved data to explore for	
		later time.	

5.	Regular	The truly excellent software	
	Updates	product needs a continuous	Waterfall
		process of improvements	Approach,
		and updates. Maintain your	Incremental
		server and make sure that	Approach,
		your content is always up-	Spiral
		to- date. Regularly update	Approach
		an app and enrich it with	
		new features.	
6.	Personalization	Software has features like	
		flexible fonts,	· · CSS
		backgrounds, settings,	
		colourthemes, etc. which	
		make a softwareinterface	
		looks good and functional.	

User Stories

Functional Requirement	User Story	User Story / Task Acceptance criteria
(Epic)	Number	
Collection of	USN-1	As a user, I can Enough data
dataset		collect the dataset for collected
		monitoring and for training Model.
		analyzing.

Home Page	USN-2	As a user, I want to	I can get the idea	
		knowto about the	about the Application.	
		basics of frequently		
		occurring		
		Disasters.		
Intro page	USN-3	As a user, I want to	I can get idea	
		aboutthe	about the	
		introduction of	disaster and	
		Disaster in	where it occurs.	
		particular		
		areas.		
Open webcam	USN-4	As a user, I adapt	I can capture a video	
		with thewebcam to	or image of particular	
		analyze and classify	disaster to analyze and	
		the Disaster from	classify.	
		video capturing		
Analysis of	USN-5	As a user, I can	Model should be	
required		regulate certain	easy to use &	
phenomenon		factors influencing	working fine from	
		the action and report	the web app.	
		on past event		
		analysis.		

Algorithm	USN-6	As a user, I can	Selection must
selection		choose therequired	give the
		algorithm for	better accuracy and
		specific analysis.	better
			output.
Training and	USN-7	As a user, I can	Training the
Testing		train andtest the	model
		model using the	intensity
		algorithm.	
Detection and	USN-8	As a user, I can	I can capture a video
analysis of data		detect and visualize	or image of particular
		the data effectively.	disasterto analyze and
			detect.
Model building	USN-9	As a user I can build	Model should be
		withthe web	predicting occurrence
		application.	of the disaster and
			intensity level of
			disaster.
Integrate the	USN-	As a user, I can use	Model should be easy
web app with	10	Flaskapp to use	to use and working
the AI Model		model easily through	fine from the web app.
		web app.	
Model	USN-	As an administrator,	Model's prediction
deployment	11	I candeploy the AI	shouldbe available for
		model in IBM Cloud.	users to make
			decision.

CHAPTER 6

PROJECT PLANNING & SCHEDULING

Sprint planning & Estimation

Sprint	Functional Requirement	User Story	User Story / Task	Story Points
	(Epic)	Number		
Sprint- 1	Collection of Dataset	USN-1	As a user, I can collect the dataset for monitoring and analysing.	5
Sprint-	Home page	USN-2	As a user, I want to know to about the basics of frequently occurring Disasters.	5
Sprint-	Intro page	USN-3	As a user, I want to about the introduction of Disaster in particular areas.	5

Sprint-	Open webcam	USN-4	As a user, I adapt with	5
1			the webcam to analyse	
			and classify the Disaster	
			from video capturing.	
Sprint-	Analysis of	USN-5	As a user, I can regulate	5
2	required		certain	
	phenomenon		factors influencing the	
			action andreport on past	
			event analysis.	

Sprint-2	Algorithm	USN-	As a user, I can	5
	selection	6	choose therequired	
			Algorithm for specific	
			analysis.	
Sprint-2	Training and	USN-	As a user, I can train and	10
	Testing	7	test themodel using the	
			algorithm.	
Sprint-3	Detection and	USN-	As a user, I can detect and	10
	analysis of	8	visualise the data	
	data		effectively.	
Sprint-3	Model	USN-	As a user, I can	10
	building	9	build with the web	
			application.	

Sprint-4	Integrate the	USN-	As a user, I can use Flask	10
	web app	11	app touse model easily	
	with the AI		through web app.	
	model			
Sprint-4	Model	USN-	As an administrator, I can	10
	deployment	12	deploythe AI model in	
			IBM Cloud.	

Sprint Delivery schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Story Points Completed (ason Planned End Date)	Sprint Release Date (Actual)
Sprint-	20	6 Days	24 Oct	20	29 Oct
1			2022		2022
Sprint-	20	6 Days	31 Oct	20	05 Nov
2			2022		2022
Sprint-	20	6 Days	07 Nov	20	12 Nov
3			2022		2022
Sprint-	20	6 Days	14 Nov	20	19 Nov
4			2022		2022

Reports from Jira

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20(points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Average velocity = Sprint duration / velocity = 20/6 = 3

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software HYPERLINK "https://www.visual-paradigm.com/scrum/what-is-agile-software-development/"_HYPERLINK "https://www.visual-paradigm.com/scrum/what-is-agile-software-development/"development/"development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-software-development/"thatps://www.visual-paradigm.com/scrum/what-is-agile-s

development/"_HYPERLINK "https://www.visual-paradigm.com/scrum/what-is-agile-software-development/"methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

CHAPTER 7 CODING & SOLUTIONING

Feature 1

The project focuses on the analysis of intensity of Disaster for giving precautionary measures for the people living in the Danger zone.

It focuses on classifying the type of Disaster which oftenly occurs in that particular zone.

Feature 2

The accuracy of the project is improved more better than the previously submitted models.

The accuracy is improved by training and testing more images in the dataset.

CHEPTER 8 TESTING

Test cases

Test	Component	Test Scenario	Expected Result	Actual	Status
Ca				Result	
se					
ID					
TC_001	Home Page	Verify user is	Home page	Working	Pass
		ableto see the	should	as	
		Home	Display	expected	
		page			
TC_002	Home Page	Verify the UI	Application	Working	Pass
		elements in Home	shouldshow	as	
		page	below UI	expected	
			elements:		
			Home page		
			button		
			Intro page button		
			Open webcam button		
TC_003	Home Page	Verify user is	Application	Working	Pass
	δ	ableto see the	should show	as	
		cards	the cards	expected	
		about Disaster	about	To a process	
			Disaster.		
TC_004	Home Page	Verify user is	Application	Working	Pass
	C	ableto navigate	should	as	
		to the required	navigate to	expected	
FG 007	T . D	page	the Intro page	_	D.
TC_005	Intro Page	Verify user is	Intro page	Working	Pass
		ableto see the	should	as	
		Intro	display	expected	

TC_006	Intro Page	page Verify the UI Elements in Intropage	Application shouldshow below UI elements: Home page Intro page Open webcam button	Working as expected	Pass
TC_007	Intro Page Intro Page	Verify the user is able to see the introduction of the Disaster Verify user is able to navigate to the required page	Application should show the sentences about the Disaster Application should navigate to the Open webcam page	Working as expected Working as expected	Pass
TC_009	Webcam page Webcam page	Verify user is able to see the webcam page Verify the Emergency pull button is visible while the webcam is not connected	Webcam page is displayed Application should show below UI elements: a. Emergency pullbutton	Working as expected Working as expected	Pass

TC_011	Webcam	Verify user is	Application should	Working	Pass
	page	able	detect the type of	as	
		to see	Disaster from the	expected	
		the	realtime video		
		output			
		window			

User Acceptance Testing

It is to briefly explain the test coverage and open issues of the natural disasters intensity analysis and classification using artificial intelligence project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	0	0	2	3
Duplicate	1	0	0	0	1
External	0	0	0	0	0
Fixed	1	0	0	2	3

Not	0	0	0	0	0
Reproduce					
Skipped	0	0	0	1	1
Won't Fix	0	0	0	0	0
Totals	3	0	0	5	8

Test Case Analysis:

This report shows the number of test cases that have passed, failed, anduntested.

Section	Test	Not	Fail	Pass	
	Cases	Tested			
Home Page	4	0	0	4	
Intro Page	4	0	0	4	
Open Webcam	3	0	0	3	

CHEPTER 9 RESULTS

Performance Metrics

The nature disaster intensity analysis and classification with test data and train data has been executed successfully. The model has been trained over 1000+ images and the model have an accuracy of nearly 99% and the model has been tested withthe data which is separate from the trained data and has predicted the data well.

Output of application

HOME PAGE

INTRODUCTION PAGE

China, India and the United States are among the countries of the world most affected by natural disasters.

Natural disasters have the potential to wreck and even end the lives of those people, who stand in their way. However, whether or not you are likely to be affected by a natural disaster greatly depends on where in the world you live, The objective of the project is to human build a web application to detect the type of disaster. The input is taken from the in built web cam, which in turn is given to the pre trained model.

The model predicts the type of disaster and displayed on UI.

WEB CAM

DETECTION OF NATURE DISASTER

CHAPTER 10

ADVANTAGES & DISADVANTAGES

ADVANTAGES

- The proposed model will be used as a real time natural disaster detection model and provide some upcoming predictions for future disasters.
- The model is to detect and classify the type of disaster and The modelhave a high accuracy rate (99.33).
- The model was used to prevent natural disasters in the future and model can be used to predict future disasters and take some action against heavyloss of human ecological systems and property.
- The proposed system helps to reduce the impact of hazards occur during natural disaster. This provides an efficient way to warn and educate peopleabout disaster prone areas.
- • It will help us be prepared in times of disaster

DISADVANTAGES

- The resultant model unable to validate the model performance underuncontrolled conditions.
- • The model cannot be used for various natural disaster

CHEPTER 11 CONCLUSION

It focused how image from given dataset (trained dataset) in field and past data set used predict the pattern of different nature disaster using CNN model. In the system had applied different type of CNN compared the accuracy. The natural disaster in Indonesia frequently happened, due to the geographical position of the country. Thus, natural disasters mostly occurred as an impact of the natural condition. However, the weather and climate condition has also influenced and triggered the disasters.

CHAPTER 12 FUTURE SCOPE

In the future, the research will be continued to obtain the data from all over the country, not only west java province, and with the use of more complete analysis, so that the government or related institution could make a better anticipation work as a mitigation effort.

CHAPTER 14 PEAD IX

Inserting necessary libraries

import numpy as np #used for numerical analysis

import tensorflow $\# open \ source \ used \ for \ both \ ML \ and \ DL \ for \ computation$

from tensorflow.keras.models import Sequential #it is a plain stack of layers

from tensorflow.keras import layers #A layer consists of a tensor-in tensor-outcomputation function

#Dense layer is the regular deeply connected neural network layer

from tensorflow.keras.layers import Dense,Flatten

#Faltten-used fot flattening the input or change the dimension

from tensorflow.keras.layers import Conv2D,MaxPooling2D #Convolutionallayer

#MaxPooling2D-for downsampling the image

from keras.preprocessing.image import

ImageDataGeneratortensorflow.__version

tensorflow.l	keras	version	
ichsorrio w.	KCI as	VCISIOII	

Image Data Augumentation

#setting parameter for Image Data agumentation to the training data

train_datagen =

ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_ra

nge=0.2,horizontal_ flip=True)

#Image Data agumentation to the testing data

test_datagen=ImageDataGenerator(rescale=1./255)

Loading our data and performing Data

Augumentation#performing data agumentation

to train data

 $x_train=train_datagen.flow_from_directory(r'C:\Users\vasanth$

\Desktop\IBM Project\dataset\train_set',target_size=(64,

64),batch_size=5,

color_mode='rgb',class_mode='categorical')

#performing data agumentation to test data

x_test=test_datagen.flow_from_directory(r'C:\Users\vasanth\
Desktop\IBM Project\dataset\test_set',target_size=(64,
64),batch_size=5,

color_mode='rgb',class_mode='cat

egorical') print(x_train.class_indices)#checking the number
of classes

print(x_test.class_indices)#checking the number of classes

from collections import

Counter as cc(x_train

.labels)

Creating the Model

Initializing the CNN

classifier = Sequential()

First convolution layer and poolingo

```
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3),
activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3),
activation='relu'))
# Second convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), activation='relu'))
# input_shape is going to be the pooled feature maps
from the previous convolution layer
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3),
activation='relu'))
# Flattening the layers
classifier.add(Flatten())
```

Adding a fully connected layer

```
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=4, activation='softmax')) #
softmax for more than 2
classifier.summary()
#summary of our model#
Compiling the Model
# Compiling the CNN
# categorical_crossentropy for more than 2
classifier.compile(optimizer='adam',
loss='categorical_crossentropy',metrics=['accuracy'])
# Fitting the Model
classifier.fit_generator(
    generator=x_train,steps_per_epoch
    = len(x_train),
        epochs=10, validation_data=x_test, validation_steps =
len(x_test))# No ofimages in test set
```

```
# Saving the Model
classifier.save('disaster.
h5') model_json =
classifier.to_json()
with open("model-bw.json", "w")
  as json_file:
  json_file.write(model_json)
# Predicting Results
from tensorflow.keras.models
import load_modelfrom
keras.preprocessing import
image
model = load_model("disaster.h5") #loading the model for testing
img=image.load_img(r"C:\Users\vasanth\Desktop\IBMProject\dataset\test_
set\Cyc lone\921.jpg",grayscale=False,target_size= (64,64)) #loading of the
image\n
x = image.img\_to\_array(img)#image to array\n'',
x = np.expand\_dims(x,axis = 0)#changing the shape\n'',
pred = model.predict_classes(x)#predicting the classes\n'',
```

```
pred
index=['Cyclone','Earthquake','F
lood','Wildfire']
```

result=str(index[pred[0]])

result

Links to find files, documents and result related to this

project, GitHub: https://github.com/IBM-

EPBL/IBM-Project-47709-1660801736