Example: Object tracking Vendon's Laws $\frac{V_{x}(t+\Delta t)}{V_{y}(t+\Delta t)} = \frac{V_{x}(t)}{V_{x}(t)} + \Delta t \cdot V_{x}(t)} (5)$ $\frac{V_{x}(t+\Delta t)}{V_{y}(t+\Delta t)} = \frac{V_{x}(t)}{V_{x}(t)} + \Delta t \cdot V_{y}(t)} (6)$ $\frac{\Delta t}{V_{x}(t+\Delta t)} = \frac{\Delta t}{V_{x}(t)} + \Delta t \cdot V_{y}(t) (8)$ $\frac{\Delta t}{V_{x}(t+\Delta t)} = \frac{\Delta t}{V_{x}(t)} + \Delta t \cdot V_{y}(t) (8)$ ~ = rxi +rgi; V = Vxi+y0 Mappel doscet. mother
eq. to linerar
dynamical system
formalism state $x_n = \begin{pmatrix} r_x(n\Delta t) \\ r_y(n\Delta t) \\ v_x(n\Delta t) \\ v_y(n\Delta t) \\ v_y(n\Delta t) \\ v_y(n\Delta t) \\ v_y(n\Delta t) \end{pmatrix} \in \mathbb{R}^2$, M = 2; $A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ forces $u_n = \begin{pmatrix} u_x(n\Delta t) \\ u_y(n\Delta t) \end{pmatrix} \in \mathbb{R}^2$, M = 2; $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ Xnt1 = A Xn + Bun + 2n ? hings process roise inclination 4x4 $Q = \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{cases} assume \\ uncorrelated \\ process \\ noise \end{cases}$ $\begin{cases} Y_1 = C \times N + W_1 \\ 0 & 0 & 0 & 0 \end{cases}$ observation $y_n = C \times_n + w_n$ measurement of location \mathbb{R}^2 GPS measurement of location \mathbb{R}^2 Kalman Filter $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ $W_{1} \sim N(0, R)$ $V_{2} \sim N(0, R)$ $V_{3} \sim N(0, R)$ $V_{3} \sim N(0, R)$ $V_{4} \sim N(0, R)$ $V_{4} \sim N(0, R)$ $V_{5} \sim N(0, R)$ $V_{6} \sim N(0, R)$ $V_{7} \sim N($ 2×4