NSR Search Results Page 1 of 11

Visit the <u>Isotope Explorer</u> home page!

70 reference(s) found:

Keynumber: 2000EGZZ

Reference: Program and Thesis, Proc.50th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, St.Petersburg,

p.150 (2000)

Authors: A.I.Egorov, Yu.E.Loginov

Title: Absolute Intensities of Some γ-Transitions from the 35 Cl(n,γ)Reaction with Thermal Neutrons **Keyword abstract:** NUCLEAR REACTIONS 35 Cl(n,γ),E=thermal; measured γ spectra; deduced I_{abs} .

HPGe detector, WWRM reactor.

Keynumber: 2000DE25

Reference: J.Res.Natl.Inst.Stand.Technol. 105, 11 (2000)

Authors: M.S.Dewey, E.G.Kessler, Jr.

Title: Precision Measurement of Fudamental Constants using GAMS4

Keyword abstract: NUCLEAR REACTIONS ¹H, ³⁵Cl(n,γ),E=reactor; measured Eγ,Iγ. ²H, ³⁶Cl

deduced binding energies. Crystal diffraction method.

Keynumber: 1996VE07

Reference: Bull.Rus.Acad.Sci.Phys. 60, 1793 (1996) **Authors:** V.A.Vesna, I.S.Okunev, E.V.Shulgina

Title: Integral P-Even Circular Polarization in (nγ) Reactions on ¹¹⁷Sn, ¹¹³Cd, ¹³⁹La, (nat)Br, ³⁵Cl

Nuclei and Density of Final Nuclear States as a Function of Their Angular Momenta

Keyword abstract: NUCLEAR REACTIONS 117 Sn, 113 Cd, 139 La,Br, 35 Cl(n, γ),E not given; analyzed γ P-even,P-odd integral CP. 118 Sn, 114 Cd, 140 La, 80 , 82 Br, 36 Cl; deduced level structure,density roles.

Keynumber: 1996CO16

Reference: Nucl.Instrum.Methods Phys.Res. A378, 511 (1996)

Authors: C.Coceva, A.Brusegan, C.van der Vorst

Title: Gamma Intensity Standard from Thermal Neutron Capture in ³⁵Cl

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured E γ ,I γ ,absolute γ emission

probabilities following capture.

Keynumber: 1994YE02

Reference: Chin.Phys.Lett. 11, 12 (1994)

Authors: Z.Ye, Y.Li, S.Ding, Z.Bao, X.Yang, C.Rong, X.Ding, J.Zheng **Title:** Modified Method for Efficiency Calibration of High Energy γ Detector

Keyword abstract: NUCLEAR REACTIONS ²³Na, ³⁵, ³⁷Cl(n, γ),E=thermal; ¹⁹F(p, $\alpha\gamma$),E not given; measured radiative capture γ spectra; deduced detector efficiency calibration. High energy Ge γ -

detector, Am-Be source also studied.

Keynumber: 1994KR20

Reference: Fiz.Elem.Chastits At.Yadra 25, 1444 (1994); Sov.J.Part.Nucl 25, 612 (1994)

Authors: P.A.Krupchitsky

Title: Parity Violation in Nuclear Reactions with Polarized Neutrons

Keyword abstract: NUCLEAR REACTIONS ², ¹H, ³⁵Cl, ⁵⁷Fe, ⁷⁹, ⁸¹Br, ¹¹¹, ¹¹³Cd, ¹¹⁷Sn, ¹³⁹La, ²⁰⁷Pb(polarized n, γ),E=thermal,resonance; compiled,reviewed parity violation data,analyses; deduced

NSR Search Results Page 2 of 11

dominant mechanism.

Keynumber: 1994KI27

Reference: Nucl.Instrum.Methods Phys.Res. A353, 285 (1994)

Authors: T.Kishikawa, K.Nishimura, S.Noguchi

Title: Gamma-Ray Spectrometry with a Ge Detector: An importance of instrument function on a new

energy calibration method

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 1 H(n,γ),E=thermal; analyzed γ-spectra analysis associated reference index; deduced methodological devation related features for peak position approach to detector energy calibration.

Keyword abstract: ATOMIC PHYSICS,Mesic-Atoms Ca,Ba,Sn,Tl,Pb,Ba,Ce(μ^- ,X),E at rest; analyzed X-ray spectra analysis associated reference index; deduced methodological devation related features for peak position approach to detector energy calibration.

Keynumber: 1994DE64

Reference: Nucl.Instrum.Methods Phys.Res. B92, 321 (1994)

Authors: L.Dep, D.Elmore, J.Fabryka-Martin, J.Masarik, R.C.Reedy

Title: Production Rate Systematics of In-Situ-Produced Cosmogenic Nuclides in Terrestrial Rocks:

Monte Carlo approach of investigating $^{35}Cl(n,\gamma)^{36}Cl$

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl(n, γ),E=thermal; calculated cosmogenic neutron

flux; deduced reaction rate.

Keynumber: 1992KU17

Reference: Nucl.Phys. A549, 59 (1992)

Authors: A.Kuronen, J.Keinonen, H.G.Borner, J.Jolie, S.Ulbig

Title: Molecular Dynamics Simulations Applied to the Determination of Nuclear Lifetimes from

Dopler-Broadened γ-Ray Line Shapes Produced in Thermal Neutron Capture Reactions

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁴⁸Ti, ⁵³Cr, ⁵⁶Fe, ⁶⁰, ⁵⁸Ni(n,γ),E=thermal; analyzed

Doppler broadened γ-ray line shapes. ³⁶Cl levels deduced T_{1/2},M1,E2 transition matrix

elements, branching ratio. 49 Ti, 54 Cr, 57 Fe, 61 , 59 Ni levels deduced T_{1/2}. Molecular dynamics simulations.

Keynumber: 1992IK02

Reference: Nucl.Instrum.Methods Phys.Res. A323, 697 (1992) **Authors:** T.Ikuta, A.Osa, A.Taniguchi, H.Yamamoto, K.Kawade

Title: Portable Neutron-Capture γ -Ray Source above 3.5 MeV with ^{252}Cf

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured capture E γ ,I γ ; deduced

portable ²⁵²Cf neutron source characteristics.

Keynumber: 1991UL02

Reference: Phys.Lett. 259B, 29 (1991)

Authors: S.Ulbig, J.Jolie, S.J.Robinson, K.P.Lieb, H.G.Borner, P.Schillebeeckx

Title: GRID Lifetime Study of the Reaction 35 Cl(n, γ) 36 Cl and the Slowing-Down Process of 0.5 keV Cl

Atoms in Chlorides

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured Doppler broadened γ lineshapes. 36 Cl levels deduced T_{1/2}. GRID technique,Cl atom slowing down in various chlorides.

NSR Search Results Page 3 of 11

Keynumber: 1987ZA05

Reference: Yad.Fiz. 45, 1302 (1987) **Authors:** D.F.Zaretsky, V.K.Sirotkin

Title: On Effects of Various Mechanisms in Violation of Space Parity in Neutron-Induced Reactions **Keyword abstract:** NUCLEAR REACTIONS ³⁵Cl, ⁸¹Br, ⁹³Nb, ¹¹¹Cd, ¹¹⁷, ¹²⁴Sn, ²⁰⁷Pb(polarized n,γ),E=cold; calculated forward-backward asymmetries, polarization vector rotations, helicity dependent asymmetries; deduced reaction mechanism dependences. Valence, compound nucleus mechanisms.

Keynumber: <u>1986KR16</u>

Reference: Phys.Rev. C34, 2103 (1986)

Authors: B.Krusche, K.P.Lieb

Title: Dipole Transition Strengths and Level Densities $A \le 80$ Odd-Odd Nuclei Obtained from Thermal

Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹, ⁴¹K, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu, ⁷¹Ga, ⁷⁵As, ⁷⁹Br(n,γ),E=thermal; analyzed data. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰, ⁴²K, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴, ⁶⁶Cu, ⁷²Ga, ⁷⁶As, ⁸⁰Br deduced primary E1,M1 transition strengths,level density parameters. Bethe, constant temperature Fermi gas models.

Keynumber: 1985ZE07

Reference: Chin.J.Nucl.Phys. 7, 273 (1985)

Authors: Zeng Xiantang, Shi Zongren Guo, Taichang Li Guohua

Title: Three Crystal Pair Spectrometer

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 24 Mg, 23 Na(n, γ),E not given; measured E γ ,I γ , $\gamma\gamma$ -coin; deduced double escape peak to background improvement factor. Three crystal pair spectrometer.

Keynumber: 1985VOZV

Reference: Proc.AIP Conf.Capture Gamma-Ray Spectroscopy and Related Topics, Knoxville, Tenn.,

(1984), S.Raman, Ed., AIP, New York, p.305 (1985)

Authors: T.von Egidy, P.Hungerford, H.H.Schmidt, H.J.Scheerer, A.N.Behkami, G.Hlawatsch,

B.Krusche, K.P.Lieb, H.G.Borner, S.A.Kerr, K.Schreckenbach

Title: Structural and Statistical Aspects of Extensive Level Schemes from (n,γ) and Transfer Reactions **Keyword abstract:** NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³⁵Cl, ³⁹, ⁴⁰, ⁴¹K, ¹¹³Cd, ¹³³Cs, ¹⁵⁴Sm, ¹⁵³Eu, ¹⁵⁴Gd, ¹⁶⁰, ¹⁶²Dy(n,γ), (n,e),E not given; measured not given. ²⁰F, ²⁴Na, ²⁸Al, ³⁶Cl, ⁴⁰, ⁴¹, ⁴²K, ¹¹⁴Cd, ¹³⁴Cs, ¹⁵⁵Sm, ¹⁵⁴Eu, ¹⁵⁵Gd, ¹⁶¹, ¹⁶³Dy deduced levels,γ-transition multipolarity,strength distribution.

Keynumber: <u>1985KE04</u>

Reference: Phys.Rev. C32, 374 (1985)

Authors: E.G.Kessler, Jr., G.L.Greene, R.D.Deslattes, H.G.Borner

Title: Gamma-Ray Energies from the Reaction $^{35}Cl(n,\gamma)$

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=reactor; measured E γ ; deduced transition

energy standards. ³⁶Cl deduced transition energies. Two-axis flat crystal spectrometer.

Keynumber: 1985FL03

Reference: Nucl.Phys. A435, 352 (1985) **Authors:** V.V.Flambaum, O.P.Sushkov

Title: Angular and Polarization Correlations in the (n, γ) Reaction

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁸¹Br, ¹¹³Cd, ¹¹⁷Sn, ¹³⁹La(polarized n, γ), E ≈

NSR Search Results Page 4 of 11

resonance; calculated odd-, even-parity correlation parameters.

Keynumber: 1985AV01

Reference: Nucl. Phys. A436, 83 (1985)

Authors: M.Avenier, G.Bagieu, H.Benkoula, J.F.Cavaignac, A.Idrissi, D.H.Koang, B.Vignon,

R.Wilson

Title: Parity Non-Conservation in the Radiative Capture of Polarized Neutrons by ³⁵Cl

Keyword abstract: NUCLEAR REACTIONS 35 Cl(polarized n,γ),E=cold; measured capture γ-asymmetry; deduced γ-polarization,parity nonconservation evidence. 36 Cl deduced $^{2+}$, $^{2-}$ level mixing matrix element.

Keynumber: 1984POZW

Reference: Proc.Conf.Neutron Physics, Kiev, Vol.4, p.341 (1984) **Authors:** Yu.P.Popov, A.M.Sukhovoy, V.A.Khitrov, Yu.S.Yazvitsky

Title:

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n,γ),E=thermal; measured γγ-coin,Eγ. 36 Cl deduced transitions. Ge(Li) detectors,amplitude summation method.

Keynumber: 1984MA25

Reference: Phys.Rev. C29, 1996 (1984)

Authors: R.L.Macklin

Title: Resonance Neutron Capture by ³⁵, ³⁷Cl

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n,γ),E=4-225 keV; 37 Cl(n,γ),E=8-151 keV; measured σ (E),yields vs E; deduced stellar environment capture σ . 36 , 38 Cl deduced resonances,J, π , (gΓηΓγ/Γ),Γγ,Γη. Breit-Wigner fitting procedure.

Keynumber: 1984AV04

Reference: J.Phys.(Paris), Colloq.C3, 99 (1984)

Authors: M.Avenier, G.Bagieu, J.F.Cavaignac, D.H.Koang, A.Idrissi, B.Vignon, R.Wilson

Title: Study of the Neutron-Proton Weak Interaction at the ILL Reactor

Keyword abstract: NUCLEAR REACTIONS ¹H, ¹¹⁷Sn, ³⁵Cl(polarized n, γ),E=low; measured γ-

asymmetry.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983IS05

Reference: Z.Phys. A311, 195 (1983)

Authors: M.A.Islam, T.J.Kennett, W.V.Prestwich

Title: A Probabilistic Model for Spectral Assignment in the (n, γ) Reaction

Page 5 of 11 NSR Search Results

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ³⁵Cl, ¹⁶², ¹⁶⁴Dy, ¹⁶⁵Ho(n,γ),E not given; analyzed capture data; deduced γ-transition spectral assignment. Probabilistic model.

Keynumber: 1982KR12

Reference: Nucl.Phys. A386, 245 (1982)

Authors: B.Krusche, K.P.Lieb, H.Daniel, T.von Egidy, G.Bareau, H.G.Borner, R.Brissot, C.Hofmeyer,

Title: Gamma Ray Energies and 36 Cl Level Scheme from the Reaction 35 Cl(n, γ)

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl(n, γ),E=thermal; measured Eγ,Iγ. ³⁶Cl deduced levels, neutron binding energy. Crystal, pair spectrometers.

Keynumber: 1981KE02

Reference: Can.J.Phys. 59, 93 (1981)

Authors: T.J.Kennett, M.A.Islam, W.V.Prestwich **Title:** An Investigation of the 35 Cl(n, γ) 36 Cl Reaction

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured E γ ,I γ ; deduced Q. 36 Cl

deduced levels, γ-branching.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko **Keyword abstract:** NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰ ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Eγ,Iγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al. ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced O.neutron binding energy.

Keynumber: 1979MC01

Reference: Phys.Rev. C19, 539 (1979)

Authors: C.M.McCullagh, M.J.Kenny, R.E.Chrien

Title: Spin of the 398 eV Resonance in ³⁵Cl

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=slow; measured n γ (θ),oriented nuclei. 36 Cl

resonances deduced J,π .

Keynumber: 1978ZA10

Reference: Yad.Fiz. 27, 1534 (1978); Sov.J.Nucl.Phys. 27, 808 (1978)

Authors: D.F.Zaretskii, V.K.Sirotkin

Title: Total Radiative Widths of Neutron Resonances

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁵⁵Mn, ⁶⁸Zn, ⁷⁸Se, ⁸⁸Sr, ⁹⁶Mo, ¹⁰⁷Ag, ¹¹⁶Sn, ¹²⁹I.

Page 6 of 11 NSR Search Results

 143 Nd, 149 Sm, 161 Dy, 169 Tm, 179 Hf, 191 Ir, 199 Hg, 203 Tl, 235 , 238 U, 243 Am(n, γ); calculated total $\Gamma\gamma$ assuming dipole transitions.

Keynumber: 1978PEZZ

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P714, Peker

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁵⁶Fe(n,γ),E=thermal,resonance; analyzed data.

³⁶Cl. ⁵⁷Fe resonances deduced M1 strengths.doorway characteristics.

Keynumber: 1978PEZI

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No60, Peker

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 56 Fe(n, γ); analyzed data on M1,E1 transitions.

 36 Cl, 57 Fe levels deduced L,J, π . Evidence for doorway mechanism.

Keynumber: 1977MCZM

Coden: JOUR BAPSA 22 995 AC13,McCullagh

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=398 eV; measured $\gamma \gamma(\theta)$. 36 Cl resonance

deduced $J.\pi$.

Keynumber: 1977CL03

Reference: Phys.Lett. 71B, 10 (1977)

Authors: C.F.Clement, A.M.Lane, J.Kopecky

Title: Correlations in M1 Neutron Capture as Evidence for a Semi-Direct Mechanism

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³¹P, ³⁵, ³⁷Cl, ³⁹K, ⁴³Ca

 (n,γ) , (d,p); analyzed correlations between reaction types.

Keynumber: 1977CHZU Coden: PC R E Chrien, 1/28/77

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl(n,γ),E=398 eV; measured Eγ,Iγ. ³⁶Cl deduced

transitions.

Keynumber: 1977CH20

Reference: Phys.Rev.Lett. 39, 911 (1977)

Authors: R.E.Chrien, J.Kopecky

Title: Implications for Radiative-Strength Functions from Neutron Capture in ³⁵Cl

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E $\approx 0.025,400$ eV; measured E γ ,I γ . 36 Cl

deduced transitions.

Keynumber: 1976SP06

Reference: Nucl. Phys. A264, 63 (1976)

Authors: A.M.J.Spits, J.Kopecky

Title: The Reaction 35 Cl(n, γ) 36 Cl Studied with Non-Polarized and Polarized Thermal Neutrons **Keyword abstract:** NUCLEAR REACTIONS 35 Cl(polarized n, γ), 35 Cl(n, γ), E=thermal; measured Eγ,Ιγ,γ-CP; deduced Q,polarization function R. 36 Cl levels deduced γ-branching,J,π,δ. Natural targets.

Keynumber: 1975KOZI

Coden: JOUR BAPSA 20 1195 EE3

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=epithermal; measured I γ .

NSR Search Results Page 7 of 11

Keynumber: 1974SI25

Reference: Phys.Rev. C10, 2138 (1974)

Authors: U.N.Singh, H.I.Liou, G.Hacken, M.Slagowitz, F.Rahn, J.Rainwater, W.Makofske, J.B.Garg

Title: Neutron Resonance Spectroscopy: Chlorine

Keyword abstract: NUCLEAR REACTIONS ³⁵, ³⁷Cl(n,n), (n, γ),E=20 eV-400 keV; measured total σ

(E). ³⁶, ³⁸Cl deduced resonances.J.L.S.n-width.

Keynumber: 1974ISZX

Coden: THESIS DABBB 34B 5613

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹K(n,γ),E=thermal; measured Ey,Iy. 20 F, 24 Na, 28 Al, 32 P, 36 Cl, 40 K deduced levels,Q, γ -multiplicity,level-width.

Keynumber: 1973SIYA

Coden: REPT COO-2176-20 P2

Keyword abstract: NUCLEAR REACTIONS ³⁵, ³⁷Cl(n,γ); analyzed data. ³⁶, ³⁸Cl deduced

resonances.

Keynumber: 1973KRYX Coden: REPT RCN-203 P20

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 113 Cd(polarized n, γ); measured I γ (θ).

Kevnumber: 1973BUZZ **Coden:** CONF Tbilisi,p343

Keyword abstract: RADIOACTIVITY ²²Na; measured $\gamma\gamma$ -anticoin, I γ ; deduced I(EC)/I β ⁺. Anticoin Ge

(Li)-NaI(Tl) spectrometer.

Keyword abstract: NUCLEAR REACTIONS 35 Cl(polarized n, γ), E=thermal; measured $\gamma\gamma(\theta)$. 36 Cl

7.79 MeV M1+E2 transition deduced reduced matrix elements phase difference.

Keynumber: 1973BU29

Reference: Yad.Fiz. 18, 12 (1973); Sov.J.Nucl.Phys. 18, 6 (1974)

Authors: M.I.Bulgakov, A.D.Gulko, G.V.Danilyan, I.L.Karpikhin, P.A.Krupchitskii, V.V.Novitskii,

Y.A.Oratovskii, V.S.Pavlov, E.I.Tarkovskii, S.S.Trostin **Title:** T-Invariance in Nuclear Electromagnetic Transitions

Keyword abstract: NUCLEAR REACTIONS 35 Cl(polarized n, γ),E=slow; measured $\gamma \gamma(\theta)$; deduced

non-time reversal invariance.

Keynumber: 1972LO26

Reference: Nucl.Instrum.Methods 105, 453 (1972)

Authors: G.D.Loper, G.E.Thomas

Title: Gamma-Ray Intensity Standards: the Reactions $^{14}N(n,\gamma)^{15}N$, $^{35}Cl(n,\gamma)^{36}Cl$ and $^{53}Cr(n,\gamma)^{54}Cr$ **Keyword abstract:** NUCLEAR REACTIONS ³⁵Cl, ⁵⁰, ⁵², ⁵³Cr, ¹⁴N, ²⁰⁷Pb(n,γ);E=thermal; ³⁶Cl, ⁵¹,

53. 54 Cr measured Ey.Iy.

Keynumber: 1972LAYL Coden: REPT NP-19337,P1

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl(n, γ); ³⁶Cl deduced levels.

Keynumber: 1972JAZL

NSR Search Results Page 8 of 11

Coden: REPT INDC(SEC)-28/L,P134,12/1/72,NDP

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E= thermal; measured E γ ,I γ ; deduced Q. 36 Cl

deduced transitions.

Keynumber: 1972IS14

Reference: Can.J.Phys. 50, 3090 (1972) **Authors:** A.F.M.Ishaq, T.J.Kennett

Title: A Study of Thermal Neutron Capture in Chlorine

Keyword abstract: NUCLEAR REACTIONS 35 , 37 Cl(n, γ),E=thermal; measured E γ ,I γ ; deduced Q. 36 ,

³⁸Cl deduced levels,γ-branching. Ge(Li) pair spectrometer.

Keynumber: 1972HOYJ

Coden: REPT UJV-2772-F,J Honzatko,1/3/73

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n,γ),E=thermal; measured γ-linear polarization.

³⁶Cl levels deduced J.γ-mixing.

Keynumber: 1972BU39

Reference: Phys.Lett. 42B, 351 (1972)

Authors: M.I.Bulgakov, G.V.Danilyan, A.D.Gulko, I.L.Karpikhin, P.A.Krupchitsky, V.V.Novitsky,

Y.A.Oratovsky, V.S.Pavlov, E.I.Tarkovsky, S.S.Trostin **Title:** Time Reversal Invariance in Slow Neutron Capture

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured $\gamma \gamma(\theta)$. 36 Cl transition

deduced t-invariance.

Keynumber: 1971HO30

Reference: Nucl.Phys. A174, 668 (1971) **Authors:** J.Honzatko, J.Kajfosz, Z.Kosina

Title: Measurement of the Linear Polarization of Low-Energy Capture γ -Rays from the 35 Cl(n, γ)

Reaction

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n,γ),E=thermal; measured γ-linear polarization;

³⁶Cl levels deduced J,γ-mixing. Natural target.

Keynumber: 1971FU06

Reference: Nuovo Cim. 2A, 109 (1971)

Authors: A.Fubini, M.Popa, D.Prosperi, F.Terrasi **Title:** Investigation of the Reaction 35 Cl(9 Cl)

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma$ -coin; deduced

O. ³⁶Cl deduced levels, γ -branching.

Keynumber: 1971BIZV

Coden: REPT ORNL-TM-3379, J R Bird,9/14/71

Keyword abstract: NUCLEAR REACTIONS F,Na,Mg,Al,S, ³⁵Cl,K,Ca, ⁴⁰, ⁴², ⁴⁴Ca,Ti,V,Fe, ⁵⁴,

 56 Fe,Ni, 58 , 60 Ni, 63 Cu,Zn(n, γ),E=10-100 keV; measured E γ ,I γ . 9 inx 12 in NaI detector.

Keynumber: 1970HU03

Reference: Can.J.Phys. 48, 1130 (1970) **Authors:** L.B.Hughes, T.J.Kennett

Title: Study of the Reaction 35 Cl(n, γ) 36 Cl

NSR Search Results Page 9 of 11

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n,γ), E=thermal measured Eγ, Iγ, γγ-coin; deduced Q. 36 Cl deduced transitions, level-width, γ-multipolarity.

Keynumber: 1970HO35

Reference: Czech.J.Phys. 20B, 1059 (1970) **Authors:** J.Honzatko, J.Kajfosz, K.Konecny

Title: Branching Ratios and Intensities of Some Transitions in 35 Cl(n, γ) 36 Cl Reaction

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E not given; measured E γ ,I γ . 36 Cl deduced γ -

branching. Ge(Li) detector.

Keynumber: 1970FUZX **Coden:** REPT RT/FI(70)47

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured E γ ,I γ . 36 Cl deduced

levels,L(n),J, π .

Keynumber: 1970EI03

Reference: Z.Phys. 233, 154 (1970) **Authors:** J.Eichler, F.Djadali

Title: Beitrag zur Kernspektroskopie an ³⁶Cl, ⁹⁰Y und ⁴⁰K durch Messung der Polarisation von γ-

Strahlung nach Neutroneneinfang

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ³⁹K, ⁸⁹Y(polarized n, γ), E=thermal; measured γ-

circular polarization. 36 Cl level deduced y-mixing. 40 K, 90 Y levels deduced J, π .

Keynumber: 1969SI19

Reference: J.Inorg.Nucl.Chem. 31, 3721 (1969)

Authors: G.H.E.Sims, D.G.Juhnke

Title: The Thermal Neutron Capture Cross Section and Resonance Capture Integral of ^{35}Cl for (n,γ) and

(n,p) Reactions

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ), (n,p), E = reactor spectrum; measured σ ;

deduced resonance integrals.

Keynumber: 1969KO05

Reference: Nucl. Phys. A127, 385 (1969)

Authors: J.Kopecky, E.Warming

Title: Circular Polarization Measurements with a Ge(Li) Detector

Keyword abstract: NUCLEAR REACTIONS ³²S, ³⁵Cl, ⁴⁸Ti, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶³Cu(polarized n, γ), E = thermal; measured γ circular polarization. ³³S, ³⁶Cl, ⁴⁹Ti, ⁵⁶Mn, ⁵⁷Fe, ⁶⁰Co, ⁶⁴Cu levels deduced J, γ-

mixing. Natural targets.

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n, γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal;

measured average γ multiplicity.

Keynumber: 1969JAZW

NSR Search Results Page 10 of 11

Reference: Proc.Arab Science Congress, 6th, Damascus, p.441 (1969)

Authors: J.D.Jafar, A.A.Abdulla, N.H.Al-Quraishi, M.S.Alwash, J.Kajfosz, M.A.Khalil, M.H.Al-

Kaissy, Z.Kosina

Title: Measurement of the Reaction 35 Cl(n, γ) 36 Cl Using a Three-Crystal Pair and Anti-Comption

Spectrometer

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured E γ ,I γ ; deduced Q. 36 Cl

deduced transitions.

Keynumber: 1969HOZY

Reference: Thesis, Technische Hogeschool, Delft (1969)

Authors: W.Hoekstra

Title: Gamma Rays from ²⁸Al, ¹⁸⁶, ¹⁸⁸Re, ²³³Th and ²³³Pa, Following Neutron Capture

Keyword abstract: RADIOACTIVITY ²³⁷Np; measured Eα, Eγ, Iγ, I(ce),αγ-,αce-coin. ²³³Pa deduced

levels.

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 27 Al, 185 , 187 Re, 232 Th(n,γ), E = thermal; measured Eγ, Iγ; 185 , 187 Re(n,γ) deduced Q. 36 Cl, 28 Al, 186 , 188 Re, 233 Th, deduced levels. 233 Th [from 232 Th(n,γ)]; measured T_{1/2}, Eγ,Iγ, γγ-coin. 233 Pa deduced levels. Ge(Li) detector.

Keynumber: 1969DE27

Reference: Phys.Letters 30B, 639 (1969) **Authors:** P.De Wit, C.van der Leun

Title: The ²⁶Al-m Problem

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 25 Mg(n, γ), E = thermal; measured E γ . 25 Mg(p, γ), E

= 435 keV; measured E γ . ^{26m}Al deduced E β , ft, vector coupling constant.

Keynumber: 1969AL11 **Reference:** Nucl.Phys. A135, 241 (1969)

Authors: R.N.Alves, J.M.Kuchly, J.Julien, C.Samour, J.Morgenstern

Title: Capture Radiative Partielle des Neutrons de Resonance dans le Chlore, le Manganese, le Fer, le

Cuivre, le Thulium et le Mercure

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ), E <500 eV; 55 Mn(n, γ), E <2500 eV; Fe(n, γ), E<1600 eV; Cu(n, γ), E<700 eV; 169 Tm(n, γ), E <160 eV; Hg(n, γ), E <300 eV; measured E γ , I γ . 36 Cl, 56 Mn, 64 , 66 Cu, 197 , 200 , 202 Hg deduced levels, J. Ge(Li) detector, natural target.

Keynumber: 1968EI01

Reference: Nucl.Phys. A120, 535 (1968); Erratum Nucl.Phys. A127, 693(1969)

Authors: J.Eichler

Title: An Experimental Study of Time-Reversal Invariance in Nuclear Gamma Decay

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal, polarized neutrons; measured γ

coin. ³⁶Cl deduced amplitude of time-reversal non-invariance for γ-decay. Natural target.

Keynumber: 1968AL24

Reference: Nucl.Instr.Methods 58, 77 (1968)

Authors: V.L.Alexeyev, V.A.Shaburov, D.M.Kaminker, O.I.Sumbaev, A.I.Smirnov

Title: A Double Crystal Diffraction Spectrometer for Studies of High Energy Gamma-Rays Resulting

from Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured E γ . 36 Cl deduced

NSR Search Results Page 11 of 11

transitions. Double crystal diffraction spectrometer.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal; measured Eγ; deduced Q. Natural targets.

Keynumber: 1967KOZY

Coden: REPT RISO 157,J Kopecky,4/17/72

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ),E=thermal; measured γ -CP. 36 Cl levels

deduced J,π .

Keynumber: 1967BE36

Reference: Phys.Rev. 158, 1049(1967)

Authors: I.Bergqvist, J.A.Biggerstaff, J.H.Gibbons, W.M.Good

Title: Gamma Rays from keV Resonance Neutron Capture in Some (2s-1d)-Shell Nuclei

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁴Mg, ²⁷Al, ³²S, ³⁵Cl(n, γ),E=20-120 keV;

measured Eγ,Iγ. ²⁰F, ²⁴Na, ²⁵Mg, ²⁸Al, ³³S, ³⁶Cl deduced resonances,level-width,J,π.

Keynumber: 1966VA05

Reference: Nucl.Phys. 77, 267(1966) **Authors:** G.Van Middelkoop, P.Spilling

Title: Gamma-Gamma Angular Correlation Measurements in the 35 Cl(n, γ) 36 Cl Reaction

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ), E=thermal; measured $\gamma\gamma$ -angular correlations.

³⁶Cl levels deduced J. Natural target.

Keynumber: 1966HU08

Reference: Nucl. Phys. 80, 131 (1966)

Authors: L.B.Hughes, T.J.Kennett, W.V.Prestwich **Title:** A Study of the 55 Mn(n, γ) 56 Mn Reaction

Keyword abstract: NUCLEAR REACTIONS 35 Cl(n, γ), E = thermal; measured E γ ; deduced Q. 55 Mn

 (n,γ) , E = thermal; measured E γ , I γ , $\gamma\gamma$ -coin; deduced Q. ⁵⁶Mn deduced levels. Natural targets.
