SBML Model Report

Model name: "Morrison1989_FolateCycle"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Nicolas Le Novre¹ and Tomas Radivoyevitch² at June 29th 2005 at 10:22 a. m. and last time modified at July fifth 2012 at 2:40 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	33
events	0	constraints	0
reactions	47	function definitions	0
global parameters	1	unit definitions	2
rules	2	initial assignments	0

Model Notes

This is a folate model that includes folate polyglutamation.

Morrison and Allegra, JBC:264,10552-10566 (1989)

Folate cycle kinetics in breast cancer cells

Note: two flow BCs were converted into two downstream concentration BCs, thus removing the GAR and dUMP state variables.

¹EMBL-EBI, lenov@ebi.ac.uk

²CASE western research university, txr24@po.cwru.edu

This dropped the number of ODEs from 21 to 19.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name micromole (new default)

Notes Default unit of substance redefined to micromole by comparison with the article. Nicolas Le Novere

Definition µmol

2.2 Unit time

Name heure (new default)

Notes Default unit of time redefined to hour by comparison with the article. Nicolas Le Novere

Definition 3600 s

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

			1		1		
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
ext			3	1	litre	Z	
cell			3	1	litre		ext

3.1 Compartment ext

This is a three dimensional compartment with a constant size of one litre.

3.2 Compartment cell

This is a three dimensional compartment with a constant size of one litre, which is surrounded by ext.

4 Species

This model contains 33 species. The boundary condition of 13 of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
FH2f	dihydrofolate free	cell	μ mol·l ⁻¹		
FH2b	dihydrofolate bound	cell	μ mol \cdot l $^{-1}$		\square
DHFRf	dihydrofolate reductase free	cell	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
DHFRtot	dihydrofolate reductase total	cell	μ mol \cdot l ⁻¹		
FH4	tetrahydrofolate	cell	μ mol \cdot l ⁻¹		
CH2FH4	5,10-methylene-tetrahydrofolate	cell	$\mu mol \cdot l^{-1}$		
CH3FH4	5-methyl-tetrahydrofolate	cell	$\mu mol \cdot l^{-1}$		
CHOFH4	10-formyl-tetrahydrofolate	cell	$\mu mol \cdot l^{-1}$		
FFH2	10-formyl-dihydrofolate	cell	μ mol \cdot l ⁻¹		
HCHO		cell	μ mol \cdot l ⁻¹		
FGAR		cell	μ mol \cdot l $^{-1}$		
AICAR		cell	μ mol \cdot l $^{-1}$		
MTX1		cell	$\mu mol \cdot l^{-1}$		
MTX2		cell	$\mu mol \cdot l^{-1}$		
MTX3		cell	$\mu mol \cdot l^{-1}$		
MTX4		cell	$\mu mol \cdot l^{-1}$		
MTX5		cell	$\mu mol \cdot l^{-1}$		
MTX1b		cell	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
MTX2b		cell	$\mu mol \cdot l^{-1}$		
MTX3b		cell	$\mu mol \cdot l^{-1}$		
MTX4b		cell	$\mu mol \cdot l^{-1}$		\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
MTX5b		cell	$\mu mol \cdot l^{-1}$		\Box
EMTX		ext	$\mu mol \cdot l^{-1}$		\square
dUMP		cell	$\mu mol \cdot l^{-1}$		\square
GAR		cell	$\mu mol \cdot l^{-1}$		
serine		cell	μ mol·l $^{-1}$		\square
formate		cell	μ mol·l ⁻¹		\square
ATP		cell	μ mol·l ⁻¹		
glutamine		cell	μ mol·l ⁻¹		
glycine		cell	μ mol·l ⁻¹		\square
NADP		cell	μ mol·l $^{-1}$		
NADPH		cell	μ mol·l $^{-1}$		\square
homocysteine		cell	$\mu mol \cdot l^{-1}$	\Box	\square

5 Parameter

This model contains one global parameter.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Keq		0.32	\overline{Z}

6 Rules

This is an overview of two rules.

6.1 Rule FH2b

Rule FH2b is an assignment rule for species FH2b:

$$FH2b = \frac{[FH2f] \cdot [DHFRf]}{Keq} \tag{1}$$

6.2 Rule DHFRtot

Rule DHFRtot is an assignment rule for species DHFRtot:

$$DHFRtot = [FH2b] + [DHFRf] + [MTX1b] + [MTX2b] + [MTX3b] + [MTX4b] + [MTX5b] \quad (2)$$

Derived unit $\mu mol \cdot l^{-1}$

7 Reactions

This model contains 47 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

			able 3. Overview of all feactions	
No	Id	Name	Reaction Equation	SBO
1	SHMT		$FH4 + serine \longrightarrow CH2FH4$	
2	SHMTr		CH2FH4 $\xrightarrow{\text{glycine}}$ FH4	
3	HCHOtoCH2FH4		$FH4 + HCHO \longrightarrow CH2FH4$	
4	CH2FH4toHCHO		$CH2FH4 \longrightarrow FH4 + HCHO$	
5	MTHFR		$CH2FH4+NADPH = \frac{FH2f, MTX1, MTX}{fH2f}$	2, MTX3, MTX4, MTX5 CH3FH4
6	MTR		$CH3FH4 + homocysteine \longrightarrow FH4$	
7	HCOOHtoCHOFH4		$FH4 + formate + ATP \longrightarrow CHOFH4$	
8	GARFT		$CHOFH4 + GAR \frac{FH2f, FFH2, MTX1, N}{2}$	$\underbrace{MTX2,MTX3,MTX4,MTX5}_{FGAR} + FGAR$
			FH4	
9	ATIC7		$CHOFH4 + AICAR \frac{FH2f, FFH2, MTX1}{CHOFH4 + AICAR}$	$ \begin{array}{c} \text{, MTX2, MTX3, MTX4, MTX5} \\ \text{FH4} \end{array} $
10	MTHFD		$CH2FH4 + NADP \longrightarrow CHOFH4$	
11	TYMS		$CH2FH4+dUMP = \frac{FH2f, FFH2, MTX1, I}{FH2f}$	$\underbrace{MTX2, MTX3, MTX4, MTX5}_{FH2f} FH2f$
12	DHFReductase		$FH2f \xrightarrow{FH2b} FH4$	
13	FFH2syn		$FH2f \longrightarrow FFH2$	
14	ATIC12		FFH2+AICAR FH2f, MTX1, MTX2, M	$1TX3, MTX4, MTX5 \rightarrow FH2f$
15	AICARsyn		$FGAR \xrightarrow{glutamine} AICAR$	
16	FPGS12		$MTX1 \longrightarrow MTX2$	
17	FPGS23		$MTX2 \longrightarrow MTX3$	
18	FPGS34		$MTX3 \longrightarrow MTX4$	

∞	N⁰	Id	Name	Reaction Equation	SBO
	19	FPGS45		$MTX4 \longrightarrow MTX5$	
	20	GGH21		$MTX2 \longrightarrow MTX1$	
	21	GGH32		$MTX3 \longrightarrow MTX2$	
	22	GGH43		$MTX4 \longrightarrow MTX3$	
	23	GGH54		$MTX5 \longrightarrow MTX4$	
	24	RFC		$EMTX \longrightarrow MTX1$	
	25	MTX1export		$MTX1 \longrightarrow \emptyset$	
	26	MTX2export		$MTX2 \longrightarrow \emptyset$	
	27	MTX3export		$MTX3 \longrightarrow \emptyset$	
_	28	MTX4export		$MTX4 \longrightarrow \emptyset$	
Produced by SBML214TEX	29	MTX5export		$MTX5 \longrightarrow \emptyset$	
duc	30	MTX1on		$MTX1 + DHFRf \longrightarrow MTX1b$	
ed	31	MTX2on		$MTX2 + DHFRf \longrightarrow MTX2b$	
by	32	MTX3on		$MTX3 + DHFRf \longrightarrow MTX3b$	
8	33	MTX4on		$MTX4 + DHFRf \longrightarrow MTX4b$	
<u>≤</u>	34	MTX5on		$MTX5 + DHFRf \longrightarrow MTX5b$	
Ä	35	MTX1off		$MTX1b \longrightarrow MTX1 + DHFRf$	
×	36	MTX2off		$MTX2b \longrightarrow MTX2 + DHFRf$	
	37	MTX3off		$MTX3b \longrightarrow MTX3 + DHFRf$	
	38	MTX4off		$MTX4b \longrightarrow MTX4 + DHFRf$	
	39	MTX5off		$MTX5b \longrightarrow MTX5 + DHFRf$	
	40	DHFRfsyn		$\emptyset \xrightarrow{\text{EMTX}} \text{DHFRf}$	
	41	DHFRdeg		$DHFRf \xrightarrow{FH2b} \emptyset$	
	42	FH2bdeg		$\emptyset \xrightarrow{\text{FH2b}} \text{FH2f}$	
	43	MTX1deg		$MTX1b \longrightarrow MTX1$	
	44	MTX2deg		$MTX2b \longrightarrow MTX2$	
	45	MTX3deg		$MTX3b \longrightarrow MTX3$	
	46	MTX4deg		$MTX4b \longrightarrow MTX4$	

Nº Id	Name	Reaction Equation	SBO
47 MTX5deg		$MTX5b \longrightarrow MTX5$	

7.1 Reaction SHMT

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$FH4 + serine \longrightarrow CH2FH4$$
 (3)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
FH4	tetrahydrofolate	
serine		

Product

Table 7: Properties of each product.

Id	Name	SBO
CH2FH4	5,10-methylene-tetrahydrofolate	

Kinetic Law

Derived unit contains undeclared units

$$v_{1} = \text{vol}\left(\text{cell}\right) \cdot \frac{\text{Vm} \cdot \frac{\frac{[\text{serine}]}{\text{Km2}}}{1 + \frac{[\text{serine}]}{\text{Km2}}} \cdot \frac{[\text{FH4}]}{\text{Km1}}}{1 + \frac{[\text{FH4}]}{\text{Km1}}}$$
(4)

Table 8: Properties of each parameter.

Name	SBO	Value	Unit	Constant
		18330.0		
		1.7		
		210.0		
	Name	Name SBO	18330.0 1.7	18330.0 1.7

7.2 Reaction SHMTr

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

CH2FH4
$$\xrightarrow{\text{glycine}}$$
 FH4 (5)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
CH2FH4	5,10-methylene-tetrahydrofolate	

Modifier

Table 10: Properties of each modifier.

Id	Name	SBO
glycine		

Product

Table 11: Properties of each product.

Id	Name	SBO
FH4	tetrahydrofolate	

Kinetic Law

$$v_{2} = \text{vol}(\text{cell}) \cdot \frac{Vm \cdot \frac{\frac{[\text{glycine}]}{Km2}}{1 + \frac{[\text{glycine}]}{Km2}} \cdot \frac{[\text{CH2FH4}]}{Km1}}{1 + \frac{[\text{CH2FH4}]}{Km1}}}$$
(6)

Table 12: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			$1.22\cdot 10^7$		Ø
Km1			3200.000		\mathbf{Z}
Km2			10000.000		

7.3 Reaction HCHOtoCH2FH4

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$FH4 + HCHO \longrightarrow CH2FH4$$
 (7)

Reactants

Table 13: Properties of each reactant.

Id	Name	SBO
FH4	tetrahydrofolate	
HCHO		

Product

Table 14: Properties of each product.

Id	Name	SBO
CH2FH4	5,10-methylene-tetrahydrofolate	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cell}) \cdot \text{hp} \cdot [\text{FH4}] \cdot [\text{HCHO}]$$
 (8)

Table 15: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
hp		23.2	Ø

7.4 Reaction CH2FH4toHCHO

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$CH2FH4 \longrightarrow FH4 + HCHO \tag{9}$$

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
CH2FH4	5,10-methylene-tetrahydrofolate	

Products

Table 17: Properties of each product.

Id	Name	SBO
FH4	tetrahydrofolate	
HCHO		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{cell}) \cdot \text{hl} \cdot [\text{CH2FH4}] \tag{10}$$

Table 18: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
hl		0.3	

7.5 Reaction MTHFR

This is an irreversible reaction of two reactants forming one product influenced by six modifiers.

Reaction equation

CH2FH4 + NADPH
$$\xrightarrow{\text{FH2f, MTX1, MTX2, MTX3, MTX4, MTX5}}$$
 CH3FH4 (11)

Reactants

Table 19: Properties of each reactant.

Id	Name	SBO
CH2FH4	5,10-methylene-tetrahydrofolate	

Id	Name	SBO
NADPH		

Modifiers

Table 20: Properties of each modifier.

Id	Name	SBO
FH2f	dihydrofolate free	
MTX1		
MTX2		
MTX3		
MTX4		
MTX5		

Product

Table 21: Properties of each product.

Id	Name	SBO
CH3FH4	5-methyl-tetrahydrofolate	

Kinetic Law

$$v_{5} = \text{vol (cell)}$$

$$\cdot \frac{\text{Vm} \cdot [\text{CH2FH4}] \cdot [\text{NADPH}]}{[\text{NADPH}] \cdot [\text{CH2FH4}] + [\text{CH2FH4}] \cdot \text{Km2} + ([\text{NADPH}] + \text{Km2}) \cdot \text{Km1} \cdot \left(1 + \frac{[\text{MTX1}]}{\text{Ki21}} + \frac{[\text{MTX2}]}{\text{Ki22}} + \frac{[\text{MTX3}]}{\text{Ki23}} + \frac{[\text{MTX3}]}{\text{Ki23}} + \frac{[\text{MTX3}]}{\text{Ki23}} + \frac{[\text{MTX3}]}{\text{Ki24}} + \frac{[\text{MTX3}]}{\text{Ki25}} + \frac{[\text{MTX3}]}{\text{Ki26}} + \frac{[\text{MTX3}]}{\text{Ki27}} + \frac{[\text{MTX3}]}{\text{Ki27}$$

Table 22: Properties of each parameter.

Id	Name	SBO Value Un	it Constant
Vm		224.80	Ø
Km1		50.00	$\overline{\mathscr{A}}$
Km2		50.00	\mathbf{Z}
Ki1		0.40	$\overline{\mathscr{A}}$
Ki21		59.00	$\overline{\mathscr{A}}$
Ki22		21.30	$\overline{\checkmark}$
Ki23		7.68	$\overline{\mathbf{Z}}$

Id	Name	SBO Value	Unit	Constant
Ki24		2.77	7	
Ki25		1.00)	\checkmark

7.6 Reaction MTR

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$CH3FH4 + homocysteine \longrightarrow FH4$$
 (13)

Reactants

Table 23: Properties of each reactant.

Id	Name	SBO
CH3FH4	5-methyl-tetrahydrofolate	
homocysteine		

Product

Table 24: Properties of each product.

Id	Name	SBO
FH4	tetrahydrofolate	

Kinetic Law

$$v_{6} = \text{vol}\left(\text{cell}\right) \cdot \frac{Vm \cdot \frac{\frac{[\text{homocysteine}]}{Km2}}{1 + \frac{[\text{homocysteine}]}{Km2}} \cdot \frac{[\text{CH3FH4}]}{Km1}}{1 + \frac{[\text{CH3FH4}]}{Km1}}$$

$$(14)$$

Table 25: Properties of each parameter.

		F	r		
Id	Name	SBO	Value	Unit	Constant
Vm			22600.0		\overline{Z}
Km1			125.0		
Km2			2900.0		\checkmark

7.7 Reaction HCOOHtoCHOFH4

This is an irreversible reaction of three reactants forming one product.

Reaction equation

$$FH4 + formate + ATP \longrightarrow CHOFH4$$
 (15)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
FH4 formate ATP	tetrahydrofolate	

Product

Table 27: Properties of each product.

	1 1	
Id	Name	SBO
CHOFH4	10-formyl-tetrahydrofolate	

Kinetic Law

$$v_{7} = \text{vol}\left(\text{cell}\right) \cdot \frac{\text{Vm}}{\left(1 + \frac{\text{Km1}}{[\text{FH4}]}\right) \cdot \left(1 + \frac{\text{Km2}}{[\text{ATP}]}\right) \cdot \left(1 + \frac{\text{Km3}}{[\text{formate}]}\right)}$$
(16)

Table 28: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			3600.0		
Km1			230.0		
Km2			56.0		
Km3			1600.0		Ø

7.8 Reaction GARFT

This is an irreversible reaction of two reactants forming two products influenced by seven modifiers.

Reaction equation

$$CHOFH4 + GAR \xrightarrow{FH2f, FFH2, MTX1, MTX2, MTX3, MTX4, MTX5} FGAR + FH4 \qquad (17)$$

Reactants

Table 29: Properties of each reactant.

Id	Name	SBO
CHOFH4 GAR	10-formyl-tetrahydrofolate	

Modifiers

Table 30: Properties of each modifier.

	rable 50. I roperties of each mounter.				
Id	Name	SBO			
FH2f	dihydrofolate free				
FFH2	10-formyl-dihydrofolate				
MTX1					
MTX2					
MTX3					
MTX4					
MTX5					

Products

Table 31: Properties of each product.

Id	Name	SBO
FGAR		
FH4	tetrahydrofolate	

Kinetic Law

$$\begin{aligned} \nu_8 &= \text{vol}\left(\text{cell}\right) \\ \cdot \frac{\text{Vm} \cdot \left[\text{CHOFH4}\right] \cdot \left[\text{GAR}\right]}{\left[\text{GAR}\right] \cdot \left[\text{CHOFH4}\right] + \left[\text{CHOFH4}\right] \cdot \text{Km2} + \left(\left[\text{GAR}\right] + \text{Km2}\right) \cdot \text{Km1} \cdot \left(1 + \frac{\left[\text{MTX1}\right]}{\text{Ki21}} + \frac{\left[\text{MTX2}\right]}{\text{Ki22}} + \frac{\left[\text{MTX3}\right]}{\text{Ki24}} + \frac{\left[\text{MTX4}\right]}{\text{Ki24}} + \frac{\left[\text{MTX4}\right]}{\text{Ki24}} + \frac{\left[\text{MTX4}\right]}{\text{Ki24}} + \frac{\left[\text{MTX4}\right]}{\text{Ki25}} + \frac{\left[\text{MTX4}\right]}{\text{Ki26}} + \frac{\left[\text{MTX4}\right]}{\text{Ki27}} + \frac{\left[\text{M$$

Table 32: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
Vm		4126.0		\overline{Z}
Km1		4.9		$\overline{\mathscr{L}}$
Km2		52.0		$ \overline{\checkmark} $
Ki1		5.0		$ \overline{\mathbf{Z}} $
Ki1f		1.0		
Ki21		84.0		
Ki22		60.0		\square
Ki23		43.0		\square
Ki24		31.0		\square
Ki25		22.0		

7.9 Reaction ATIC7

This is an irreversible reaction of two reactants forming one product influenced by seven modifiers.

Reaction equation

Reactants

Table 33: Properties of each reactant.

Id	Name	SBO
CHOFH4	10-formyl-tetrahydrofolate	
AICAR		

Modifiers

Table 34: Properties of each modifier.

Tuest of the persons of tuest into uniter-				
Id	Name	SBO		
FH2f	dihydrofolate free			
FFH2	10-formyl-dihydrofolate			
MTX1				
MTX2				
MTX3				
MTX4				
MTX5				

Product

Table 35: Properties of each product.

Id	Name	SBO
FH4	tetrahydrofolate	

Kinetic Law

$$\begin{array}{c} v_9 = vol \, (cell) \\ \cdot \\ \hline (AICAR] \cdot [CHOFH4] + [CHOFH4] \cdot Km2 + ([AICAR] + Km2) \cdot Km1 \cdot \left(1 + \frac{[MTX1]}{Ki21} + \frac{[MTX2]}{Ki22} + \frac{[MTX3]}{Ki23} +$$

Table 36: Properties of each parameter.

		•	•		
Id	Name	SBO	Value	Unit	Constant
Vm			31675.00		
Km1			5.50		\mathbf{Z}
Km2			24.00		\mathbf{Z}
Ki1			2.89		$\overline{\mathbf{Z}}$
Ki1f			5.30		$\overline{\mathbf{Z}}$
Ki21			40.00		$\overline{\mathbf{Z}}$
Ki22			31.50		$\overline{\mathbf{Z}}$
Ki23			2.33		$\overline{\mathbf{Z}}$
Ki24			3.61		$\overline{\mathbf{Z}}$
Ki25			5.89		$\overline{\checkmark}$

7.10 Reaction MTHFD

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$CH2FH4 + NADP \longrightarrow CHOFH4$$
 (21)

Reactants

Table 37: Properties of each reactant.

Id	Name	SBO
CH2FH4 NADP	5,10-methylene-tetrahydrofolate	

Product

Table 38: Properties of each product.

Id	Name	SBO
CHOFH4	10-formyl-tetrahydrofolate	

Kinetic Law

$$v_{10} = \text{vol}\left(\text{cell}\right) \cdot \text{Vm} \cdot \frac{\frac{\text{[CH2FH4]}}{\text{Km1}}}{1 + \frac{\text{[CH2FH4]}}{\text{Km1}}} \cdot \frac{\frac{\text{[NADP]}}{\text{Km2}}}{1 + \frac{\text{[NADP]}}{\text{Km2}}}$$
(22)

Table 39: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			68500.0		
Km1			3.0		\square
Km2			21.8		

7.11 Reaction TYMS

This is an irreversible reaction of two reactants forming one product influenced by seven modifiers.

Reaction equation

CH2FH4 + dUMP
$$\xrightarrow{\text{FH2f, FFH2, MTX1, MTX2, MTX3, MTX4, MTX5}}$$
 FH2f (23)

Reactants

Table 40: Properties of each reactant.

Id	Name	SBO
CH2FH4 dUMP	5,10-methylene-tetrahydrofolate	

Modifiers

Table 41: Properties of each modifier.

	Table 41. I Toperties of each modifier.			
Id	Name	SBO		
FH2f	dihydrofolate free			
FFH2	10-formyl-dihydrofolate			
MTX1				
MTX2				
EXTM				
MTX4				
MTX5				

Product

Table 42: Properties of each product.

Id	Name	SBO
FH2f	dihydrofolate free	

Kinetic Law

$$v_{11} = \text{vol}\left(\text{cell}\right) \tag{24}$$

$$\cdot \frac{}{[dUMP] \cdot [CH2FH4] \cdot \left(1 + \frac{[MTX1]}{Ki21} + \frac{[MTX2]}{Ki22} + \frac{[MTX3]}{Ki23} + \frac{[MTX4]}{Ki24} + \frac{[MTX5]}{Ki25} + \frac{[FH2f]}{Ki1}\right) + Km1 \cdot [dUMP] \cdot \left(\frac{[FFH2]}{Ki1f} + \frac{[MTX4]}{Ki21} + \frac{[MTX4]}{Ki23} + \frac{[MTX4]}{Ki24} + \frac{[MTX5]}{Ki25} + \frac{[MTX5]}{Ki1} + \frac{[MTX6]}{Ki1} + \frac{[MTX6]}{K$$

Table 43: Properties of each parameter.

		- I - I - I - I - I - I - I - I - I - I		
Id	Name	SBO Value	Unit	Constant
Vm		58.000		\overline{Z}
Km1		2.500		$\overline{\mathbf{Z}}$
Km2		1.800		$ \overline{\mathscr{L}} $
Ki1		3.000		
Ki1f		1.600		
Ki21		13.000		
Ki22		0.080		
Ki23		0.070		
Ki24		0.065		
Ki25		0.047		

7.12 Reaction DHFReductase

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$FH2f \xrightarrow{FH2b} FH4 \tag{25}$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
FH2f	dihydrofolate free	

Modifier

Table 45: Properties of each modifier.

Id	Name	SBO
FH2b	dihydrofolate bound	

Product

Table 46: Properties of each product.

Id	Name	SBO
FH4	tetrahydrofolate	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}(\text{cell}) \cdot \text{kter} \cdot [\text{FH2b}] \tag{26}$$

Table 47: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kter		2109.4	1	

7.13 Reaction FFH2syn

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$FH2f \longrightarrow FFH2 \tag{27}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
FH2f	dihydrofolate free	

Product

Table 49: Properties of each product.

	1 1	
Id	Name	SBO
FFH2	10-formyl-dihydrofolate	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{FH2f}] \tag{28}$$

Table 50: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		65.0	

7.14 Reaction ATIC12

This is an irreversible reaction of two reactants forming one product influenced by six modifiers.

Reaction equation

$$FFH2 + AICAR \xrightarrow{FH2f, MTX1, MTX2, MTX3, MTX4, MTX5} FH2f$$
 (29)

Reactants

Table 51: Properties of each reactant.

Id	Name	SBO
FFH2	10-formyl-dihydrofolate	
AICAR		

Modifiers

Table 52: Properties of each modifier.

Id	Name	SBO
FH2f	dihydrofolate free	
MTX1		
MTX2		
EXTM		
MTX4		
MTX5		

Product

Table 53: Properties of each product.

Id	Name	SBO
FH2f	dihydrofolate free	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol} (\text{cell})$$

$$\cdot \frac{\text{Vm} \cdot [\text{FFH2}] \cdot [\text{AICAR}]}{[\text{AICAR}] \cdot [\text{FFH2}] \cdot [\text{FFH2}] \cdot [\text{Km2} + ([\text{AICAR}] + \text{Km2}) \cdot \text{Km1} \cdot \left(1 + \frac{[\text{MTX1}]}{\text{Ki21}} + \frac{[\text{MTX2}]}{\text{Ki22}} + \frac{[\text{MTX3}]}{\text{Ki23}} + \frac{[\text{MTX4}]}{\text{Ki24}} + \frac{[\text{MTX4}]}{\text{Ki24}} + \frac{[\text{MTX4}]}{\text{Ki24}} + \frac{[\text{MTX4}]}{\text{Ki25}} + \frac{[\text{MTX4}]}{\text{Ki25}}$$

Table 54: Properties of each parameter.

	Tuble 2	reperties or	cach par	umeten.	
Id	Name	SBO	Value	Unit	Constant
Vm			9503.00		
Km1			5.30		$\overline{\mathbf{Z}}$
Km2			24.00		
Ki1			2.89		
Ki1f			5.50		
Ki21			40.00		
Ki22			31.50		
Ki23			2.33		
Ki24			3.61		$ \mathbf{Z} $
Ki25			5.89		$ \overline{\checkmark} $

7.15 Reaction AICARsyn

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$FGAR \xrightarrow{glutamine} AICAR$$
 (31)

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
FGAR		

Id	Name	SBO

Modifier

Table 56: Properties of each modifier.

Id	Name	SBO
glutamine		

Product

Table 57: Properties of each product.

Id	Name	SBO
AICAR		

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}\left(\text{cell}\right) \cdot \text{Vm} \cdot \frac{\frac{[\text{glutamine}]}{\text{Km1}}}{1 + \frac{[\text{glutamine}]}{\text{Km1}}} \cdot \frac{\frac{[\text{FGAR}]}{\text{Km2}}}{1 + \frac{[\text{FGAR}]}{\text{Km2}}}$$
(32)

Table 58: Properties of each parameter.

			· · · · I · ·		
Id	Name	SBO	Value	Unit	Constant
Vm			4656.0		
Km1			100.0		
Km2			100.0		

7.16 Reaction FPGS12

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX1 \longrightarrow MTX2$$
 (33)

Reactant

Table 59: Properties of each reactant.

Id	Name	SBO
MTX1		

Product

Table 60: Properties of each product.

Id	Name	SBO
MTX2		

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX1}] \tag{34}$$

Table 61: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.129	Ø

7.17 Reaction FPGS23

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX2 \longrightarrow MTX3$$
 (35)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
MTX2		

Product

Table 63: Properties of each product.

Id	Name	SBO
MTX3		

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX2}] \tag{36}$$

Table 64: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.369	

7.18 Reaction FPGS34

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX3 \longrightarrow MTX4$$
 (37)

Reactant

Table 65: Properties of each reactant.

Id	Name	SBO
MTX3		

Product

Table 66: Properties of each product.

Id	Name	SBO
MTX4		

Kinetic Law

$$v_{18} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX3}]$$
 (38)

Table 67: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.118	\overline{Z}

7.19 Reaction FPGS45

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX4 \longrightarrow MTX5$$
 (39)

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
MTX4		

Product

Table 69: Properties of each product.

Id	Name	SBO
MTX5		

Kinetic Law

$$v_{19} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX4}] \tag{40}$$

Table 70: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.185	

7.20 Reaction GGH21

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX2 \longrightarrow MTX1$$
 (41)

Reactant

Table 71: Properties of each reactant.

Id	Name	SBO
MTX2		

Product

Table 72: Properties of each product.

Id	Name	SBO
MTX1		

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX2}] \tag{42}$$

Table 73: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			0.195		\square

7.21 Reaction GGH32

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX3 \longrightarrow MTX2$$
 (43)

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
MTX3		

Product

Table 75: Properties of each product.

Id	Name	SBO
MTX2		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}\left(\text{cell}\right) \cdot \text{Vm} \cdot [\text{MTX3}] \tag{44}$$

Table 76: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.025	

7.22 Reaction GGH43

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX4 \longrightarrow MTX3$$
 (45)

Reactant

Table 77: Properties of each reactant.

Id	Name	SBO
MTX4		

Product

Table 78: Properties of each product.

Id	Name	SBO
MTX3		

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX4}] \tag{46}$$

Table 79: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.031	

7.23 Reaction GGH54

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX5 \longrightarrow MTX4 \tag{47}$$

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
MTX5		

Product

32

Table 81: Properties of each product.

Id	Name	SBO
MTX4		

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX5}] \tag{48}$$

Table 82: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.191	Ø

7.24 Reaction RFC

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$EMTX \longrightarrow MTX1 \tag{49}$$

Reactant

Table 83: Properties of each reactant.

Id	Name	SBO
EMTX		

Product

Table 84: Properties of each product.

Id	Name	SBO
MTX1		

Kinetic Law

$$v_{24} = \text{vol}(\text{ext}) \cdot \frac{\text{Vm} \cdot [\text{EMTX}]}{\text{Km} + [\text{EMTX}]}$$
 (50)

Table 85: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		82.2	$ \mathbf{Z} $
Km		8.2	$\overline{\mathbf{Z}}$

7.25 Reaction MTX1export

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$MTX1 \longrightarrow \emptyset \tag{51}$$

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
MTX1		

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX1}] \tag{52}$$

Table 87: Properties of each parameter.

		1	I	
Id	Name	SBO	Value Unit	Constant
Vm			4.65	\overline{Z}

7.26 Reaction MTX2export

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$MTX2 \longrightarrow \emptyset \tag{53}$$

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
MTX2		

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX2}] \tag{54}$$

Table 89: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.0	Ø

7.27 Reaction MTX3export

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$MTX3 \longrightarrow \emptyset \tag{55}$$

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
MTX3		

Kinetic Law

$$v_{27} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX3}] \tag{56}$$

Table 91: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.063	

7.28 Reaction MTX4export

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$MTX4 \longrightarrow \emptyset \tag{57}$$

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
MTX4		

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX4}] \tag{58}$$

Table 93: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.063	

7.29 Reaction MTX5export

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$MTX5 \longrightarrow \emptyset \tag{59}$$

Reactant

Table 94: Properties of each reactant.

Id	Name	SBO
MTX5		

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX5}]$$
 (60)

Table 95: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.063	

7.30 Reaction MTX1on

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MTX1 + DHFRf \longrightarrow MTX1b \tag{61}$$

Reactants

Table 96: Properties of each reactant.

Id	Name	SBO
MTX1		
DHFRf	dihydrofolate reductase free	

Product

Table 97: Properties of each product.

Id	Name	SBO
MTX1b		

Kinetic Law

$$v_{30} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{DHFRf}] \cdot [\text{MTX1}]$$
(62)

Table 98: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			23100.0		

7.31 Reaction MTX2on

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MTX2 + DHFRf \longrightarrow MTX2b$$
 (63)

Reactants

Table 99: Properties of each reactant.

Id	Name	SBO
MTX2		
DHFRf	dihydrofolate reductase free	

Product

Table 100: Properties of each product.

Id	Name	SBO
MTX2b		

Kinetic Law

$$v_{31} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{DHFRf}] \cdot [\text{MTX2}]$$
 (64)

Table 101: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			44300.0		

7.32 Reaction MTX3on

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MTX3 + DHFRf \longrightarrow MTX3b$$
 (65)

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
MTX3		
DHFRf	dihydrofolate reductase free	

Product

Table 103: Properties of each product.

Id	Name	SBO
MTX3b		

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{DHFRf}] \cdot [\text{MTX3}]$$
 (66)

Table 104: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			85100.0		✓

7.33 Reaction MTX4on

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MTX4 + DHFRf \longrightarrow MTX4b$$
 (67)

Reactants

Table 105: Properties of each reactant.

Id	Name	SBO
MTX4		
DHFRf	dihydrofolate reductase free	

Product

Table 106: Properties of each product.

Id	Name	SBO
MTX4b		

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{DHFRf}] \cdot [\text{MTX4}]$$
 (68)

Table 107: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			163000.0		

7.34 Reaction MTX5on

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MTX5 + DHFRf \longrightarrow MTX5b$$
 (69)

Reactants

Table 108: Properties of each reactant.

Id	Name	SBO	
MTX5			

Id	Name	SBO
DHFRf	dihydrofolate reductase free	

Product

Table 109: Properties of each product.

Id	Name	SBO
MTX5b		

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{DHFRf}] \cdot [\text{MTX5}]$$
 (70)

Table 110: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			314000.0		

7.35 Reaction MTX1off

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$MTX1b \longrightarrow MTX1 + DHFRf \tag{71}$$

Reactant

Table 111: Properties of each reactant.

Id	Name	SBO
MTX1b		

Products

Table 112: Properties of each product.

	1 1	
Id	Name	SBO
MTX1		
DHFRf	dihydrofolate reductase free	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX1b}] \tag{72}$$

Table 113: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.42	

7.36 Reaction MTX2off

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$MTX2b \longrightarrow MTX2 + DHFRf \tag{73}$$

Reactant

Table 114: Properties of each reactant.

Id	Name	SBO
MTX2b		

Products

Table 115: Properties of each product.

Id	Name	SBO
MTX2		
DHFRf	dihydrofolate reductase free	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX2b}] \tag{74}$$

Table 116: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.42	

7.37 Reaction MTX3off

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$MTX3b \longrightarrow MTX3 + DHFRf \tag{75}$$

Reactant

Table 117: Properties of each reactant.

Id	Name	SBO
MTX3b		

Products

Table 118: Properties of each product.

Id	Name	SBO
MTX3		
DHFRf	dihydrofolate reductase free	

Kinetic Law

$$v_{37} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX3b}] \tag{76}$$

Table 119: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			0.42		

7.38 Reaction MTX4off

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$MTX4b \longrightarrow MTX4 + DHFRf \tag{77}$$

Reactant

Table 120: Properties of each reactant.

Id	Name	SBO
MTX4b		

Products

Table 121: Properties of each product.

Id	Name	SBO
MTX4		
DHFRf	dihydrofolate reductase free	

Kinetic Law

$$v_{38} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX4b}] \tag{78}$$

Table 122: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.42	

7.39 Reaction MTX5off

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$MTX5b \longrightarrow MTX5 + DHFRf \tag{79}$$

Reactant

Table 123: Properties of each reactant.

Id	Name	SBO
MTX5b		

Products

Table 124: Properties of each product.

Id	Name	SBO
MTX5		
DHFRf	dihydrofolate reductase free	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX5b}] \tag{80}$$

Table 125: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.42	Ø

7.40 Reaction DHFRfsyn

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \xrightarrow{\text{EMTX}} \text{DHFRf}$$
 (81)

Modifier

Table 126: Properties of each modifier.

Id	Name	SBO
EMTX		

Product

Table 127: Properties of each product.

Id	Name	SBO
DHFRf	dihydrofolate reductase free	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{vol}(\text{cell}) \cdot (\text{k0} + \text{k1} \cdot [\text{EMTX}])$$
(82)

Table 128: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k0		0.019	
k1		0.044	\square

7.41 Reaction DHFRdeg

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$DHFRf \xrightarrow{FH2b} \emptyset \tag{83}$$

Reactant

Table 129: Properties of each reactant.

Id	Name	SBO
DHFRf	dihydrofolate reductase free	_

Modifier

Table 130: Properties of each modifier.

10010 1	o o i Troperines or each in	
Id	Name	SBO
FH2b	dihydrofolate bound	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = Vm \cdot vol(cell) \cdot ([DHFRf] + [FH2b])$$
(84)

Table 131: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.03	

7.42 Reaction FH2bdeg

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \xrightarrow{\text{FH2b}} \text{FH2f} \tag{85}$$

Modifier

Table 132: Properties of each modifier.

Id	Name	SBO
FH2b	dihydrofolate bound	

Product

Table 133: Properties of each product.

Id	Name	SBO
FH2f	dihydrofolate free	

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{FH2b}] \tag{86}$$

Table 134: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.03	Ø

7.43 Reaction MTX1deg

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX1b \longrightarrow MTX1 \tag{87}$$

Reactant

Table 135: Properties of each reactant.

Id	Name	SBO
MTX1b		

Product

Table 136: Properties of each product.

Id	Name	SBO
MTX1		

Kinetic Law

$$v_{43} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX1b}]$$
 (88)

Table 137: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			0.03		

7.44 Reaction MTX2deg

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX2b \longrightarrow MTX2$$
 (89)

Reactant

Table 138: Properties of each reactant.

Id	Name	SBO
MTX2b		

Product

Table 139: Properties of each product.

Id	Name	SBO
MTX2		

Kinetic Law

$$v_{44} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX2b}] \tag{90}$$

Table 140: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.03	

7.45 Reaction MTX3deg

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX3b \longrightarrow MTX3$$
 (91)

Reactant

Table 141: Properties of each reactant.

Id	Name	SBO
MTX3b		

Product

Table 142: Properties of each product.

Id	Name	SBO
MTX3		

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX3b}] \tag{92}$$

Table 143: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vm			0.03		

7.46 Reaction MTX4deg

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX4b \longrightarrow MTX4$$
 (93)

Reactant

Table 144: Properties of each reactant.

Id	Name	SBO
MTX4b		

Product

Table 145: Properties of each product.

Id	Name	SBO
MTX4		

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX4b}] \tag{94}$$

Table 146: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.03	

7.47 Reaction MTX5deg

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$MTX5b \longrightarrow MTX5 \tag{95}$$

Reactant

Table 147: Properties of each reactant.

Id	Name	SBO
MTX5b		

Product

Table 148: Properties of each product.

Id	Name	SBO
MTX5		

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = \text{vol}(\text{cell}) \cdot \text{Vm} \cdot [\text{MTX5b}] \tag{96}$$

Table 149: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vm		0.03	

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species FH2f

Name dihydrofolate free

Initial concentration $0.0012 \ \mu mol \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in DHFReductase, FFH2syn and as a product in TYMS, ATIC12, FH2bdeg and as a modifier in MTHFR, GARFT, ATIC7, TYMS, ATIC12).

$$\frac{d}{dt}FH2f = |v_{11}| + |v_{14}| + |v_{42}| - |v_{12}| - |v_{13}|$$
(97)

8.2 Species FH2b

Name dihydrofolate bound

Initial concentration $0.0024 \ \mu mol \cdot l^{-1}$

Involved in rule FH2b

This species takes part in three reactions (as a modifier in DHFReductase, DHFRdeg, FH2bdeg). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

8.3 Species DHFRf

Name dihydrofolate reductase free

Initial concentration $0.64 \ \mu mol \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in MTX1on, MTX2on, MTX3on, MTX4on, MTX5on, DHFRdeg and as a product in MTX1off, MTX2off, MTX3off, MTX4off, MTX5off, DHFRfsyn).

$$\frac{d}{dt}DHFRf = v_{35} + v_{36} + v_{37} + v_{38} + v_{39} + v_{40} - v_{30} - v_{31} - v_{32} - v_{33} - v_{34} - v_{41}$$
(98)

8.4 Species DHFRtot

Name dihydrofolate reductase total

Initial concentration $0.64 \ \mu mol \cdot l^{-1}$

Involved in rule DHFRtot

One rule determines the species' quantity.

8.5 Species FH4

Name tetrahydrofolate

Initial concentration $0.46 \ \mu mol \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in SHMT, HCHOtoCH2FH4, HCOOHtoCH0FH4 and as a product in SHMTr, CH2FH4toHCH0, MTR, GARFT, ATIC7, DHFReductase).

$$\frac{d}{dt}FH4 = v_2 + v_4 + v_6 + v_8 + v_9 + v_{12} - v_1 - v_3 - v_7 \tag{99}$$

8.6 Species CH2FH4

Name 5,10-methylene-tetrahydrofolate

Initial concentration $0.26 \, \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in SHMTr, CH2FH4toHCH0, MTHFR, MTHFD, TYMS and as a product in SHMT, HCH0toCH2FH4).

$$\frac{d}{dt}CH2FH4 = |v_1| + |v_3| - |v_2| - |v_4| - |v_5| - |v_{10}| - |v_{11}|$$
(100)

8.7 Species CH3FH4

Name 5-methyl-tetrahydrofolate

Initial concentration $1.63 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in MTR and as a product in MTHFR).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CH3FH4} = |v_5| - |v_6| \tag{101}$$

8.8 Species CHOFH4

Name 10-formyl-tetrahydrofolate

Initial concentration $1 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in GARFT, ATIC7 and as a product in HCOOHtoCHOFH4, MTHFD).

$$\frac{d}{dt}CHOFH4 = |v_7| + |v_{10}| - |v_8| - |v_9|$$
 (102)

8.9 Species FFH2

Name 10-formyl-dihydrofolate

Initial concentration $3.32 \cdot 10^{-4} \; \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in ATIC12 and as a product in FFH2syn and as a modifier in GARFT, ATIC7, TYMS).

$$\frac{d}{dt}FFH2 = |v_{13}| - |v_{14}| \tag{103}$$

8.10 Species HCHO

Initial concentration $0.0074 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in HCHOtoCH2FH4 and as a product in CH2FH4toHCHO).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HCHO} = |v_4| - |v_3| \tag{104}$$

8.11 Species FGAR

Initial concentration $16.49 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in AICARsyn and as a product in GARFT).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FGAR} = |v_8| - |v_{15}| \tag{105}$$

8.12 Species AICAR

Initial concentration $3.695 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in ATIC7, ATIC12 and as a product in AICARsyn).

$$\frac{d}{dt}AICAR = |v_{15}| - |v_{9}| - |v_{14}| \tag{106}$$

8.13 Species MTX1

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in FPGS12, MTX1export, MTX1on and as a product in GGH21, RFC, MTX1off, MTX1deg and as a modifier in MTHFR, GARFT, ATIC7, TYMS, ATIC12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MTX1} = |v_{20}| + |v_{24}| + |v_{35}| + |v_{43}| - |v_{16}| - |v_{25}| - |v_{30}| \tag{107}$$

8.14 Species MTX2

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in 13 reactions (as a reactant in FPGS23, GGH21, MTX2export, MTX2on and as a product in FPGS12, GGH32, MTX2off, MTX2deg and as a modifier in MTHFR, GARFT, ATIC7, TYMS, ATIC12).

$$\frac{d}{dt}MTX2 = v_{16} + v_{21} + v_{36} + v_{44} - v_{17} - v_{20} - v_{26} - v_{31}$$
(108)

8.15 Species MTX3

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in 13 reactions (as a reactant in FPGS34, GGH32, MTX3export, MTX3on and as a product in FPGS23, GGH43, MTX3off, MTX3deg and as a modifier in MTHFR, GARFT, ATIC7, TYMS, ATIC12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MTX3} = v_{17} + v_{22} + v_{37} + v_{45} - v_{18} - v_{21} - v_{27} - v_{32} \tag{109}$$

8.16 Species MTX4

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in 13 reactions (as a reactant in FPGS45, GGH43, MTX4export, MTX4on and as a product in FPGS34, GGH54, MTX4off, MTX4deg and as a modifier in MTHFR, GARFT, ATIC7, TYMS, ATIC12).

$$\frac{d}{dt}MTX4 = |v_{18}| + |v_{23}| + |v_{38}| + |v_{46}| - |v_{19}| - |v_{22}| - |v_{28}| - |v_{33}|$$
(110)

8.17 Species MTX5

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in eleven reactions (as a reactant in GGH54, MTX5export, MTX5on and as a product in FPGS45, MTX5off, MTX5deg and as a modifier in MTHFR, GARFT, ATIC7, TYMS, ATIC12).

$$\frac{d}{dt}MTX5 = v_{19} + v_{39} + v_{47} - v_{23} - v_{29} - v_{34}$$
(111)

8.18 Species MTX1b

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in MTX1off, MTX1deg and as a product in MTX1on).

$$\frac{d}{dt}MTX1b = |v_{30}| - |v_{35}| - |v_{43}|$$
 (112)

8.19 Species MTX2b

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in MTX2off, MTX2deg and as a product in MTX2on).

$$\frac{d}{dt}MTX2b = |v_{31}| - |v_{36}| - |v_{44}| \tag{113}$$

8.20 Species MTX3b

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in MTX3off, MTX3deg and as a product in MTX3on).

$$\frac{d}{dt}MTX3b = |v_{32}| - |v_{37}| - |v_{45}|$$
 (114)

8.21 Species MTX4b

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in MTX4off, MTX4deg and as a product in MTX4on).

$$\frac{d}{dt}MTX4b = |v_{33}| - |v_{38}| - |v_{46}|$$
 (115)

8.22 Species MTX5b

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in MTX5off, MTX5deg and as a product in MTX5on).

$$\frac{d}{dt}MTX5b = |v_{34}| - |v_{39}| - |v_{47}|$$
 (116)

8.23 Species EMTX

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in RFC and as a modifier in DHFRfsyn), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EMTX} = 0\tag{117}$$

8.24 Species dUMP

Initial concentration $20.76 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in TYMS), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{d}U\mathrm{MP} = 0\tag{118}$$

8.25 Species GAR

Initial concentration $689.6 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in GARFT), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GAR} = 0\tag{119}$$

8.26 Species serine

Initial concentration $123.3 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in SHMT), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{serine} = 0 \tag{120}$$

8.27 Species formate

Initial concentration $500 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in HCOOHtoCHOFH4), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\text{formate} = 0\tag{121}$$

8.28 Species ATP

Initial concentration $2980 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in HCOOHtoCHOFH4), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ATP} = 0\tag{122}$$

8.29 Species glutamine

Initial concentration $7170 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in AICARsyn), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{glutamine} = 0 \tag{123}$$

8.30 Species glycine

Initial concentration $1600 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in SHMTr), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{glycine} = 0\tag{124}$$

8.31 Species NADP

Initial concentration $6.73 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in MTHFD), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADP} = 0\tag{125}$$

8.32 Species NADPH

Initial concentration $294 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in MTHFR), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADPH} = 0\tag{126}$$

8.33 Species homocysteine

Initial concentration $10 \, \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in MTR), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\text{homocysteine} = 0 \tag{127}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany