Tutorial Sheet 4 Vector Space, Basis And Dimension

- 1. Consider $P_2(\mathbb{R})$, the vector space of all polynomials of degree less than or equal to 2 with coefficients from \mathbb{R} . The set $\{1-x, 1+x, x^2\}$ is a basis of $P_2(\mathbb{R})$.
- 2. Let $S = \{(1,0,0,2,3), (0,1,1,0,0), (1,1,1,2,3)\}$. Then find the basis of L(S) and extend it to the basis of \mathbb{R}^5 .
- 3. Recall the vector space $P_4(\mathbb{R})$. Is the set,

$$W = \{ p(x) \in P_4(\mathbb{R}) : p(-1) = p(1) = 0 \}$$

a subspace of $P_4(\mathbb{R})$? If yes, find its dimension.

- 4. Let $V = \{(x, y, z, w) \in \mathbb{R}^4 : x + y z + w = 0, x + y + z + w = 0\}$ and $W = \{(x, y, z, w) \in \mathbb{R}^4 : x y z + w = 0, x + 2y w = 0\}$ be two subspaces of \mathbb{R}^4 . Find bases and dimensions of $V, W, V \cap W$ and V + W.
- 5. Show that the set of $n \times n$ upper triangular real matrices is a subspace of $\mathbb{R}^{n \times n}$. Find a basis and its dimension.
- 6. Suppose U and W are subspaces of \mathbb{R}^8 such that $dimU=3,\ dimW=5,\ and$ $U+W=\mathbb{R}^8.$ Prove that $U\cap W=\{0\}.$