LoG-DoG (Difference of Gaussian)

LoG can be approximated by a difference of two Gaussians (DoG) at different scales

Scale Invariant Feature Transform

- Scale space peak selection
 - Potential locations for finding features
- Key point localization
 - Accurately locating the feature key points
- Orientation assignment
 - Assigning orientation to the key points
- Key point descriptor
 - Describing the key point as a high dimensional vector (128) (SIFT Descriptor)

Building the Scale Space

Peak Detection

Compare a pixel (**X**) with 26 pixels in current and adjacent scales (Green Circles)
Select a pixel (**X**) if larger/smaller than all 26 pixels

Assignment of the Orientation

For the rotation invariance, compute the gradient magnitude and direction at the scale of the keypoint.

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y),$$

Assignment of the Orientation

- An orientation histogram is formed from the gradient orientations of sample points within a region around the keypoint.
- The orientation histogram has 36 bins
- The samples added to the histogram is weighted by the gradient magnitude.
- The dominate direction is the peak in the histogram.

SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram (8 bin) for each cell (relative orientation and magnitude)
- 16 cells * 8 orientations = 128 dimensional descriptor

Properties of SIFT

Robust matching technique

- Can handle changes in viewpoint
- Can handle significant changes in illumination
- Fast and efficient—can run in real time
- Lots of code available

Summary

- Keypoint detection: repeatable and distinctive
 - Corners, blobs
 - Harris, LoG

- Descriptors: robust
 - spatial histograms of orientation
 - SIFT and variants are typically good for stitching and recognition

Which features match?

Feature matching

Given a feature in I₁, how to find the best match in I₂?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in I₂, find the one with min distance

Feature distance

How to define the difference between two features f_1 , f_2 ?

- Simple approach: L₂ distance, | |f₁ f₂ | | (aka SSD)
- can give good scores to ambiguous (incorrect) matches

Feature distance

How to define the difference between two features f_1 , f_2 ?

- Better approach: ratio distance = ||f₁ f₂ || / || f₁ f₂' ||
 - f₂ is best SSD match to f₁ in l₂
 - f₂' is 2nd best SSD match to f₁ in I₂
 - gives large values for ambiguous matches

Feature matching example

51 matches (thresholded by ratio score)

Feature matching example

58 matches (thresholded by ratio score)