MEE1003	ENGINEERING THERMODYNAMICS	L T P J C				
		2 2 0 0 3				
Pre-requisite	NIL	Syllabus version				
		v. 1.1				
Course Objectives:						
1. Familiarize with the concepts of 1 st and 2 nd Laws of Thermodynamics.						

- 2. Evaluate the properties of pure substances and mixtures.
- 3. Understand and analyze power and refrigeration cycles.

Expected Course Outcome:

Upon successful completion of the course the students will be able to

- 1. Identify thermodynamics systems, point functions and path functions.
- 2. Solve engineering problems using zeroth and first laws of thermodynamics.
- 3. Analyse the heat and work interactions by applying the concepts of entropy principles and exergy.
- 4. Analyse thermodynamic systems involving pure substances and mixtures.
- 5. Calculate thermodynamics properties based on thermodynamics relations.
- 6. Analyse basic thermodynamic cycles of various systems.

Student Learning Outcomes (SLO): SLO 2,5,9

Module:1 | Basic Concepts in Thermodynamics

3 hours

Basic concepts of Thermodynamics - Thermodynamics and Energy - Closed and open systems - Properties of a system - State and equilibrium - Processes and cycles - Forms of energy - Work and heat transfer - Temperature and Zeroth law of thermodynamics.

Module:2 | First law of thermodynamics

3 hours

Energy balance for closed systems - First law applied to steady - flow engineering devices

Module:3 | Second Law of Thermodynamics and Exergy

6 hours

Limitations of the first law of Thermodynamics - Kelvin-Planck and Clausius statements and its equivalence- Refrigerators, Heat Pump–COP - Perpetual Motion Machines - Reversible and Irreversible process Carnot's Theorem - Entropy - The Clausius inequality - Availability and irreversibility - Second law efficiency-Quality of Energy

Module:4 | Properties of Pure Substance and Mixtures

5 hours

Property diagram for water-phase change processes-refrigerants-real gases-Compressibility factor-Composition of gas mixtures - Mass and mole fractions - Dalton's law of additive pressures - Amagat's law of additive volumes - Evaluating properties of gas mixtures

Module:5 | Thermodynamic relations

2 hours

Gibbs and Helmholtz function-Maxwell's relations-Clapeyron equations-general relations of properties

Mo	dule:6	Gas power cycles				4 hours		
Air standard assumptions - Otto cycle - Diesel and Dual cycles - Brayton cycle								
Module:7		Vapor and Refrigeration Cycles				5 hours		
Rankine cycle-reheat-regeneration- Vapor compression refrigeration cycle								
Module:8		Contemporary issues:				2 hours		
			Tot	al Lecture	hours:	30 hours		
Text Book(s)								
1.	Yunus	s A. Cengel, Thermodynamics: An Engineering Approach, 8 th Edition, McGraw - Hill						
	Education, 2017.							
Reference Books								
1.								
2.	Michae	chael Moran and Howard Shapiro, Principles of Engineering Thermodynamics, 8 th Edition,						
Wiley, 2015.								
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Rec	Recommended by Board of Studies 17-08-2017							
Approved by Academic Council 47 Date 05-10-2017)17		