# Quantitative text analysis: Current topics

Friedrich Geiecke

MY 459: Quantitative Text Analysis

March 28, 2022

Course website: lse-my459.github.io

- 1. Overview and Fundamentals
- 2. Descriptive Statistical Methods for Text Analysis
- 3. Automated Dictionary Methods

Supervised Scaling Models for Texts

- 4. Machine Learning for Texts
- 6. Reading Week
- 7. Unsupervised Models for Scaling Texts
- 8. Similarity and Clustering Methods
- Topic models
- 10. Word embeddings
- 11. Current topics

# Today

- Beyond the bag of words
- ▶ The Twitter API and social media data
- Guided coding

- ► Beyond the bag of words
- ► The Twitter API and social media data
- ► Guided coding

#### Demo

► Let us begin with a demo of a very recent model to detect emotions in texts

#### How could this work?

- Recent developments in AI are often driven by machine learning
- When seeing impressive results like this, a first step is therefore to think about the broad categories which characterise machine learning:
  - ightharpoonup 1. Supervised learning: Learning the function between X and y
  - ▶ 2. Unsupervised learning: Learning patterns in X
  - ▶ 3. Reinforcement learning: Solving dynamic problems

#### How could this work?

- ► The setup suggests that this could be supervised learning model: A sentence (x) predicts an emotion label y
- ► The difficult function between *X* and *y* suggests it has has to be a very flexible model:
- "Had a great day" needs to result in an entirely different prediction than "Had a great day ... not"
- ► Furthermore, input words in such models might be represented as word embeddings obtained from unsupervised learning

#### **Answer**

- ► The model is from the DeepMoji project https://deepmoji.mit.edu/ by Felbo et al. (2017)
- A deep neural network was trained on around 1.2 billion tweets
- Each tweet contains one of 64 common emojis
- ► The emojis are separated from the text and the model simply predicts the emoji (y) from the tweet text (x), but does this very well
- Applied to a new text without emojis, the model predicts suitable emojis
- In the demo I grouped emojis into broad categories and only reported the categories

# Capturing dependencies in language

- ▶ In the course we focussed on bag of words models because they are the best choice for a wide range of datasets and tasks in text analysis in the social sciences
- Bag of word classifiers based on term frequencies can also classify tweets into emojis and achieve good performance
- Yet, when the interdependent nature of words becomes as important as in the case of detecting emotions, irony, etc. more advanced models can become helpful that capture the dependencies in language
- ► The following slides mention a few common types of models and provide links to further materials should you wish to study these topics more in the future

#### Recurrent neural networks

- ► Recurrent neural networks (RNNs) are one example of models that can capture dependencies between words in language
- They can process sequences of inputs and predict sequences of outputs (not restricted to words/language)
- RNNs are used in a range of tasks in natural language processing, e.g. classification, image captioning, or machine translation
- Most common types of RNNs such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) are based on cells which improve the model's ability to remember long term dependencies

#### Recurrent neural networks



Source: From Andrej Karpathy's blog; slightly edited

- Arrows are functions/transformations, rectangles are vectors, green rectangles hold states
- One to one: Standard feed forward neural network
- ▶ One to many: RNN that e.g. takes an image as input and then outputs a sentence describing it
- Many to one: RNN that e.g. inputs a sequence of words and outputs a sentiment label
- Many to many: RNN that e.g. inputs a sentence in one language and outputs it in another language

# Convolutional neural networks for language

- Also convolutional neural networks (CNNs), originally from computer vision, can take the order of words into account
- ► The following model e.g. achieves very good performance in the classification of short sentences
- Word embeddings of words in a sentence are arranged like an "image" and hence make it possible to use this model from computer vision for sentences



Source: Kim (2014)

#### **Transformers**

- Newer models are e.g. transformers which are very frequently used e.g. in machine translation today (Vaswani et al. 2017, https://arxiv.org/abs/1706.03762)
- ▶ Their architecture features an encoder and a decoder
- ► The encoder transforms a set of input words *simultaneously* into embeddings that represent their meaning in the original language
- ► The decoder then uses these embeddings to predict the associated words in the other language
- ➤ So call "attention" is a key feature of these models. Rather than sequentially, the models process a set of words all at once and then direct attention to words selectively
- ► Their architecture favours parallelisation, which decreases the time necessary to train them

#### **BERT**

- A very popular transformer based model in the last couple of years has been BERT (Devlin et al. 2018, https://arxiv.org/abs/1810.04805)
- This model stacks transformer encoders and is able to produce exceptionally good word embeddings when sets of words such as sentences are parsed into it
- The BERT model can be downloaded pre-trained and adapted to a range of tasks
- In sentiment classification, for example, mainly an added function between the embeddings and the sentiment labels is learned
- ▶ This much decreases the time necessary to train the model

# Further study: Deep learning and natural language processing

- Should you wish to study deep learning and natural language processing in the future, the following course is freely available online http://web.stanford.edu/class/cs224n/ (the last publicly available videos correspond to the course version from 2019 and can be found <a href="https://example.com/here">here</a>)
- ► The course uses Python which is the more common language for neural networks and deep learning
- ➤ To implement neural networks in R, see e.g. <u>these</u> Tensorflow/Keras tutorials. The following <u>repo</u> contains a range of baseline code examples for Keras neural network implementations in R

#### This lecture

- We will now continue with a discussion of the Twitter API and Twitter data as an application of social media data
- On the one hand tweets are an important example of social media data that is frequently studied by social scientists today
- On the other hand using the Twitter API will eventually allow us to connect all the dots in the coding session where we will try to develop a classifier which approximates whether a sentence agrees or disagrees

- ► Beyond the bag of words
- ► The Twitter API and social media data
- Guided coding

#### **APIs**

- ► API: Application Programming Interface
- In web APIs, a set of structured HTTP requests can return data in a lightweight format e.g. JSON or XML
- ► The API user sends a request to the API (e.g. with a software such as R) and the API returns data from the API provider's database
- We will use the 'rtweet' package to to access the Twitter API from R

# Why APIs?

#### Advantages

- Cleaner data collection: Avoid malformed HTML, no legal issues, clear data structures, more trust in data collection...
- Standardized data access procedures: Transparency, replicability
- Robustness: Benefits from "wisdom of the crowds"

#### Disadvantages

- Not always available
- Dependency on API providers
- Rate limits

#### Twitter APIs

#### Two different methods to collect Twitter data

#### REST API

- Queries for specific information about users and tweets
- Search recent tweets
- Examples: User profile, list of followers and friends, tweets generated by a given user ("timeline"), users lists, etc.

#### 2. Streaming API

- Connect to the "stream" of tweets as they are being published
- Three streaming APIs:
  - 2.1 Sample stream: 1% random sample of tweets
  - 2.2 Filter stream: tweets filtered by keywords (when volume reaches 1% of all tweets, it will also return a random sample)
  - 2.3 Geo stream: tweets filtered by location

#### Twitter APIs

- ▶ Tweets can only be downloaded in real time, historical data is generally much harder to obtain (exceptions: last seven days or user timelines, where  $\sim$  3,200 most recent tweets are available)
- Very recent special access for researchers allows to obtain more historical data

# Biases in sampling

Morstatter et al, 2013, *ICWSM*, "Is the Sample Good Enough? Comparing Data from Twitter's Streaming API with Twitter's Firehose":

- ightharpoonup 1% random sample from Streaming API is not truly random
- Less popular hashtags, users, topics... less likely to be sampled
- ▶ But for keyword-based samples, bias is not as important González-Bailón et al, 2014, *Social Networks*, "Assessing the bias in samples of large online networks":
  - Small samples collected by filtering with a subset of relevant hashtags can be biased
  - Central, most active users are more likely to be sampled
  - Data collected via search (REST) API more biased than those collected with Streaming API

# Biases in social media data more general

SOCIAL SCIENCES

# Social media for large studies of behavior

Large-scale studies of human behavior in social media need to be held to higher methodological standards

By Derek Ruths1\* and Jürgen Pfeffer2

n 3 November 1948, the day after Harry Truman won the United States presidential elections, the *Chicago Tribune* published one of the most famous erroneous headlines in newspaper history: "Dewey Defeats Truman" (1, 2). The headline was informed by telephone surveys, which had inadver-

different social media platforms (8). For instance, Instagram is "especially appealing to adults aged 18 to 29, African-American, Latinos, women, urban residents" (9) whereas Pinterest is dominated by females, aged 25 to 34, with an average annual household income of \$100,000 (10). These sampling biases are rarely corrected for (if even acknowledged).

Proprietary algorithms for public data. Platform-specific sampling problems, for example, the highest-volume source of pubThe rise of "embedded researc searchers who have special rela with providers that give them ele cess to platform-specific data, al and resources) is creating a dividence media research community. Such ers, for example, can see a platfor workings and make accommodal may not be able to reveal their cor the data used to generate their f

Ruths and Pfeffer, 2015, "Social media for large studies of behavior", Science

# Biases in social media data more general

Sources of bias (Ruths and Pfeffer, 2015; Lazer et al, 2017)

- Population bias
  - Sociodemographic characteristics are correlated with presence on social media
- ► Self-selection within samples
  - Partisans more likely to post about politics (Barberá & Rivero, 2014)
- Proprietary algorithms for public data
  - ► Twitter API does not always return 100% of publicly available tweets (Morstatter et al, 2014)
- Human behavior and online platform design
  - e.g. Google Flu (Lazer et al, 2014)

### Biases in social media data more general

development or design)

#### Reducing biases and flaws in social media data DATA COLLECTION 1. Quantifies platform-specific biases (platform design, user base, platform-specific behavior, platform storage policies) · 2. Quantifies biases of available data (access constraints, platform-side filtering) · 3. Quantifies proxy population biases/mismatches METHODS · 4. Applies filters/corrects for nonhuman accounts in data · 5. Accounts for platform and proxy population biases a. Corrects for platform-specific and proxy population biases b. Tests robustness of findings · 6. Accounts for platform-specific algorithms a. Shows results for more than one platform b. Shows results for time-separated data sets from the same platform · 7. For new methods: compares results to existing methods on the same data

Issues in evaluating data from social media. Large-scale social media studies of human behavior should i address issues listed and discussed herein (further discussion in supplementary materials).

 8. For new social phenomena or methods or classifiers: reports performance on two or more distinct data sets (one of which was not used during classifier

Ruths and Pfeffer, 2015, "Social media for large studies of behavior", Science

#### Addendum: Academic Research and the Twitter API

- Very recently, an "Academic Research product track" for the Twitter API was introduced
- Among other features, it can be used to access significant amounts of historical tweets for free if the application is approved
- Applications can be made via https://developer.twitter.com/en/products/ twitter-api/academic-research
- Non-commercial use only and requires a clearly defined research objective
- ► There also exists an R package specifically for this type of API academictwitteR

- ► Beyond the bag of words
- ► The Twitter API and social media data
- ► Guided coding

# Guided coding

- Today we are going to look at case study about building a machine learning classifier that tries to predict whether a sentence might contain approval or disapproval
- ► For this we will go through the process of building such a model step by step, from the data collection to training

# Guided coding

- ▶ 01-streaming-tweets.Rmd
- 02-pre-processing.Rmd
- 03-tf-classifiers.Rmd
- ▶ 04-avg-embedding-classifier.Rmd
- ▶ 05-deep-classifier.Rmd