THE UNIVERSITY OF CHICAGO

Department of Economics Econ 30200 Problem Set 1

P. Renv

Due: Friday January 11

- 1. Prove that if \succeq is a preference relation on \mathbb{R}^l_+ , then
 - (a) \sim and \succ are transitive
 - (b) $x \succ y$ and $y \sim z$ imply $x \succ z$
 - (c) for all $x, y \in \mathbb{R}^l_+$, exactly one of $x \succ y$, $x \sim y$, $x \prec y$ holds.
- 2. There are two commodities.
 - (a) Sketch some preferences which have a bliss point and which can be represented by a continuous utility function. (A bliss point is a point which is preferred or indifferent to any other point.)
 - (b) No matter what his income, Jones will demand fifteen units of commodity one provided he can afford it and provided the price of commodity 2 exceeds that of commodity one. Is this consistent with Axioms 1-5 and also Axioms 4' and 5'?
- 3. Let the utility function $U(\cdot)$ represent the preference relation \succeq on \mathbb{R}^l_+ , and let $\phi: \mathbb{R}^1 \to \mathbb{R}^1$ be strictly increasing. Prove that $\phi(U(\cdot))$ represents \succeq . Show that this is false if the word "strictly" is deleted.
- 4. Give an example of preferences on \mathbb{R}^l_+ for which there exists a utility function, but no continuous utility function.
- 5. Let $u(x,y) = \sqrt{xy}$. Show that u_x is strictly decreasing in x; i.e. that u exhibits strictly diminishing marginal utility for x. Exhibit a utility function representing the same preferences, but not satisfying strictly diminishing marginal utility for x.
- 6. Show that if X is any finite set, and \succeq satisfies Axioms 1 and 2 on X, then \succeq can be represented by a utility function. Provide an example showing what can go wrong if Axiom 1 is not satisfied.

- 7. Suppose that $\{x^n\}$ and $\{y^n\}$ are two sequences of consumption bundles in \mathbb{R}^l_+ converging to x and y respectively. Prove that if $x^n \sim y^n$ for all n and \succeq is complete, transitive, and continuous on \mathbb{R}^l_+ , then $x \sim y$.
- 8. Show that if \succeq satisfies Axiom 2 on \mathbb{R}^l_+ , then for every $x, y \in \mathbb{R}^l_+$, the sets $\sim (x)$ and $\sim (y)$ are either disjoint or equal. (i.e. Distinct indifference curves do not cross.)
- 9. Consider the preferences on \mathbb{R}^2_+ defined by the discontinuous utility function

$$u(x,y) = \begin{cases} 2 + xy, & \text{if } xy > 1\\ 1 + xy, & \text{if } xy = 1\\ xy, & \text{if } xy < 1 \end{cases}.$$

Are these preferences continuous? If not, why not? If so, display a continuous utility function representing them.

- 10. Consider two consumers' preferences over bundles in \mathbb{R}^2_+ . Consumer 1's preferences are represented by the Cobb-Douglas utility function u(x,y)=xy. Consumer 2's preferences are identical except for bundles lying along the ray x=y. Bundles on this ray are strictly preferred by consumer 2 to distinct bundles on the Cobb-Douglas indifference curve that passes through them, and are also strictly less desirable than all bundles above that indifference curve.
 - (a) Assuming that consumer 2's preferences are transitive, prove that they are complete and strictly monotonic.
 - (b) Assuming that consumer 2's preferences are complete and transitive, can they be represented by a continuous utility function?
- 11. Suppose that \succeq is a preference relation on \mathbb{R}^l_+ . Show that the continuity axiom implies that for all $x, y, z \in \mathbb{R}^l_+$ such that $x \succ y \succ z$, the line segment joining x and z must contain a point that is indifferent to y.