Otimização de Sistemas

Prof. Sandro Jerônimo de Almeida, PhD.

Programação Não Linear Otimização Irrestrita

Otimização Irrestrita

Maximize
$$f(x) = 24 - 2x - x^2$$
, subject to $x \ge 0$.

Otimização Irrestrita – Um método Simples

- 1)"chutar" 3 pontos (a,b,c).
- 2)Escolher um ponto x entre a e b ou entre b e c.

Supondo que escolhemos entre b e c:

- 3)Se $f(b) < f(x) \Rightarrow 3$ novos pontos são (a,b,x).
- 4)Senão ⇒ 3 novos pontos são (b,x,c).
- 5)Repetir processo até precisão desejada.

Otimização Irrestrita – Um método Simples

Problema do Método apresentado

- Extremamente dependente da inicialização (problema comum aos Métodos determinísticos).
- Função precisa ser avaliada em muitos pontos ⇒ alto custo computacional.
- Informação da derivada da função permite alcançar o extremo com menor número de avaliações da função ⇒ melhor eficiência computacional.

Otimização Irrestrita – Exemplo

De uma longa folha de metal de 30 cm de largura deve-se fazer uma calha dobrando as bordas perpendicularmente à folha. Quantos centímetros devem ser dobrados de cada lado de modo que a calha tenha capacidade máxima?

Otimização Irrestrita – Exemplo

De uma longa folha de metal de 30 cm de largura deve-se fazer uma calha dobrando as bordas perpendicularmente à folha. Quantos centímetros devem ser dobrados de cada lado de modo que a calha tenha capacidade máxima?

Quanto deve medir **x** para que a calha tenha capacidade máxima?

Otimização Irrestrita – Exemplo

- A capacidade de escoamento de água da calha é, formalmente, a vazão
- Q(A, v) = A.v
 Q(A,v) é a vazão (cm³/s);
 A é a área da seção (cm²); e
 v é a velocidade do fluído (cm/s).
- Supondo v constante, a vazão torna-se diretamente proporcional à área da seção.
 Portanto, maximizando A implica em maximizar Q(A,v).

Maximizar $f(x) = x.(30-2x) = 30x-2x^2$ Sujeito a: x>0

Otimização Irrestrita – Exemplo

Maximizar $f(x) = x.(30-2x) = 30x-2x^{2}$ Sujeito a: x>0

Derivada e Gradiente

- Problema com uma variável (1-D): derivada fornece a informação da taxa de variação da função: f'(x)
- Problema com N variáveis (N-D): o vetor gradiente fornece a direção da maior taxa de variação da função.

$$\nabla \mathbf{f} = \left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}_1}, \frac{\partial \mathbf{f}}{\partial \mathbf{x}_2}, \frac{\partial \mathbf{f}}{\partial \mathbf{x}_3}, \dots, \frac{\partial \mathbf{f}}{\partial \mathbf{x}_n} \right]$$

Vetor Gradiente - Definição

O gradiente de uma função f, denotado por ∇f ou **grad** f, é a função vetorial cujas componentes são as derivadas parciais, ou seja,

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right).$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x + y \\ 2y + x \end{bmatrix}$$
 2 elementos no vetor

Exercício – Vetor Gradiente

• Determine o vetor gradiente de $f(x, y) = x^3 + x^2y^3 - 2y^2$

Exercício – Vetor Gradiente

- Determine o vetor gradiente de $f(x, y) = x^3 + x^2y^3 2y^2$
- Derivadas parciais

Vetor gradiente

$$\frac{\partial f}{\partial x} = 3x^2 + 2xy^3$$

$$\frac{\partial f}{\partial y} = 3x^2y^2 - 4y$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 3x^2 + 2xy^3 \\ 3x^2y^2 - 4y \end{bmatrix}$$

Método do Gradiente (ou Cauchy ou método descendente)

- Método consiste em procurar o máximo (ou mínimo) na direção de maior taxa de crescimento (ou decrescimento) da Função Objetivo a partir de uma solução (ponto) inicial X₀
- Maximização: $X_{i+1} = X_i + t.\nabla f(X_i)$
- Minimização: $X_{i+1} = X_i t.\nabla f(X_i)$
- *t* é o "tamanho do passo" | *i* é o número da iteração
- $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$

Resolvendo o problema da calha com método gradiente (1D)

Maximizar $f(x) = x.(30-2x) = 30x-2x^2$ Sujeito a: x>0

Teremos:

$$\nabla f(x) = f'(x) = 30 - 4x$$

$$X_{i+1} = X_i + t.\nabla f(X_i)$$

$$Residuo = |X_{i+1} - X_i|$$

Assumindo: $t = 0.1 \mid Ponto inicial: x_0 = -3$ Condição de parada: Resíduo < = 0.0007

Resolvendo o problema da calha com método gradiente

Maximizar $f(x) = x.(30-2x) = 30x-2x^2$ Sujeito a: x>0 Assumindo: $t = 0.1 \mid Ponto inicial: x_0 = -3$ Condição de parada: Resíduo < = 0.0007

$$\nabla f(x) = f'(x) = 30 - 4x$$

$$X_{i+1} = X_i + t.\nabla f(X_i)$$

$$Residuo = |X_{i+1} - X_i|$$

1° Iteração $x_0 = -3$ $x_1 = -3 + 0.1(30 - 4(-3)) = 1.2$ Resíduo = 4.2	2° iteração x ₁ = 1.2 x ₂ =

Resolvendo o problema da calha com método gradiente

Maximizar $f(x) = x.(30-2x) = 30x-2x^2$ Sujeito a: x>0

Assumindo: $t = 0.1 \mid Ponto inicial: x_0 = -3$ Condição de parada: Resíduo < = 0.0007

$$\nabla f(x) = f'(x) = 30 - 4x$$

$$X_{i+1} = X_i + t \cdot \nabla f(X_i)$$

$$Residuo = |X_{i+1} - X_i|$$

1° Iteração	2° iteração
$x_0 = -3$	$x_1 = 1.2$
$x_1 = -3 + 0.1(30 - 4(-3)) = 1.2$	$x_2 = 1.2 + 0.1(30 - 4(1.2)) = 3.72$
Resíduo = 4.2	Resíduo = 2.52
3° iteração	
$x_2 = 3.72$	
x ₂ =	

Resolvendo o problema da calha com método gradiente

Maximizar $f(x) = x.(30-2x) = 30x-2x^2$ Sujeito a: x>0 Assumindo: $t = 0.1 \mid Ponto inicial: x_0 = -3$ Condição de parada: Resíduo < = 0.0007

$$\nabla f(x) = f'(x) = 30 - 4x$$

$$X_{i+1} = X_i + t \cdot \nabla f(X_i)$$

$$Residuo = |X_{i+1} - X_i|$$

1° Iteração	2° iteração		
$x_0 = -3$	$x_1 = 1.2$		
x ₁ = -3 + 0.1(30 - 4(-3)) = 1.2 Resíduo = 4.2	$x_2 = 1.2 + 0.1(30 - 4(1.2)) = 3.72$ Resíduo = 2.52		
3° iteração $x_2 = 3.72$	19° iteração		
$x_2 - 3.72$ $x_3 = 3.72 + 0.1(30 - 4(3.72))$ = 5.232	$x_{18} = 7.4982$ $x_{19} =$		
Resíduo = 1.512			

Resolvendo o problema da calha com método gradiente

Maximizar $f(x) = x.(30-2x) = 30x-2x^2$ Sujeito a: x>0

Assumindo: $t = 0.1 \mid Ponto inicial: x_0 = -3$ Condição de parada: Resíduo < = 0.0007

$$\nabla f(x) = f'(x) = 30 - 4x$$

$$X_{i+1} = X_i + t \cdot \nabla f(X_i)$$

$$Residuo = |X_{i+1} - X_i|$$

1° Iteração	2° iteração	
$x_0 = -3$	$x_1 = 1.2$	
$x_1 = -3 + 0.1(30 - 4(-3)) = 1.2$	$x_2 = 1.2 + 0.1(30 - 4(1.2)) = 3.72$	
Resíduo = 4.2	Resíduo = 2.52	
3° iteração	19° iteração	
$x_2 = 3.72$	x ₁₈ = 7.4982	
$x_3 = 3.72 + 0.1(30 - 4(3.72))$	x ₁₉ = 7.4982+0.1(30 – 4(7.4982))	
= 5.232	= 7.4989	
Resíduo = 1.512	Resíduo = 0.0007	

Resolvendo o problema da calha com método gradiente

O gráfico da esquerda mostra o "caminho de busca (trajetória)" da solução ótima realizada pelo algoritmo para t = 0.1 e o da direita para t = 0.4.

■ Faça a 1° iteração do método gradiente na busca da solução do seguinte problema: $Max f(x,y) = 5x^2 + 5y^2 + xy + 2y$. Assuma o ponto inicial (3,3) e t = 0,1

- Faça a 1° iteração do método gradiente na busca da solução do seguinte problema: $Max f(x,y) = 5x^2 + 5y^2 + xy + 2y$. Assuma o ponto inicial (3,3) e t = 0,1
- Vetor gradiente (formado pelas derivadas parciais de f)

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 10x + y \\ 10y + x + 2 \end{bmatrix}$$

• Aplicando: $X_{i+1} = X_i + t.\nabla f(X_i)$

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} + 0,1 \begin{bmatrix} 10x + y \\ 10y + x + 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} + 0,1 \begin{bmatrix} 33 \\ 35 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} + \begin{bmatrix} 3,3 \\ 3,5 \end{bmatrix} = \begin{bmatrix} 6,3 \\ 6,5 \end{bmatrix}$$

Resíduo: distância euclidiana entre (3,3) e (6.3, 6.5)

Método gradiente – Existe um tamanho de t ótimo?

- A solução ótima será alcançada mais rapidamente quanto menos a função objetivo for avaliada
- Artifício: aplicar o gradiente para achar o tamanho de t $Z(t) = x + t.\nabla f(x) = x + t.f'(X) substituindo Z(t) em f(x), teremos:$ g(t) = f(Z(t))
- Igualando a derivada de g(t) (em relação a t) a zero (g'(t)=0) e então resolvendo para t, encontra-se uma função que descreve os valores ótimos de t para cada solução x

Resolvendo o problema da calha com $m{t}$ ótimo

- $Z(t) = x + t.\nabla f(x) = x + t.f'(X)$ Z(t) = x + t (30-4x)
- Substituindo Z(t) em f, teremos:

$$g(t) = f(Z(t)) = 30x + 900t - 240xt - 2x^2 + 16x^2t + 480xt^2 - 1800t^2 - 32x^2t^2$$

 $g'(t) = 900 - 240x + 16x^2 + 960xt - 3600t - 64x^2t$

$$t = \frac{-16x^2 + 240x - 900}{960x - 3600 - 64x^2} = \begin{cases} 0.25 \forall x \in \Re \neq 7.5 \\ \notin t \text{ para } x = 7.5 \end{cases}$$

Neste caso específico, o valor de t será constante, ou seja, t=0.25 valerá para qualquer x diferente de 7.5

1° Iteração

$$x_0 = -3$$

 $x_1 = -3 + 0.25(30 - 4(-3))$
= 7.5

Exemplo 2D

Min
$$f(X) = x_1^2 + 3x_2^2$$

Vetor Gradiente / Derivadas parciais

$$\nabla f(X) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix}$$

$$\nabla f(X) = \begin{bmatrix} 2x_1 \\ 6x_2 \end{bmatrix}$$

Exemplo 2D – Busca a partir do ponto (-10, 10)

Min
$$f(X) = x_1^2 + 3x_2^2$$

$$\nabla f(X) = \begin{bmatrix} 2x_1 \\ 6x_2 \end{bmatrix}$$

função objetivo representada por curvas de nível + vetores gradientes

resíduo=
$$\sqrt{(x_1(i+1)-x_1(i))^2+(x_2(i+1)-x_2(i))^2}$$

Resolvendo o exemplo 2D com t ótimo

$$\begin{bmatrix} x_1(i+1) \\ x_2(i+1) \end{bmatrix} = \begin{bmatrix} x_1(i) \\ x_2(i) \end{bmatrix} - t \cdot \begin{bmatrix} 2x_1(i) \\ 6x_2(i) \end{bmatrix}$$

Fazendo

$$z(t) = \begin{bmatrix} x_1(i+1) \\ x_2(i+1) \end{bmatrix} \qquad e \qquad g(t) = f(z(t))$$

$$g(t) = f(z(t)) = (1 - 2t)^2 x_1^2 + 3(1 - 6t)^2 x_2^2$$

$$g'(t) = 2(1-2t)x_1^2(-2) + 6(1-6t)x_2^2(-6) = 0$$

Teremos: $t = \frac{x_1^2 + 9x_2^2}{2x_1^2 + 54x_2^2}$

Neste problema para cada valor de x e y poderemos ter um t.

X ₁	x ₂	tamanho passo	iteração
-10.0000	10.0000	-	0
-6.4286	-0.7143	0.1786	1
-1.0714	1.0714	0.4167	2
-0.6888	-0.0765	0.1786	3
-0.1148	0.1148	0.4167	4
-0.0738	-0.0082	0.1786	5
-0.0123	0.0123	0.4167	6
-0.0079	-0.0009	0.1786	7
-0.0013	0.0013	0.4167	8
-0.0008	-0.0001	0.1786	9
-0.0001	0.0001	0.4167	10

■ Faça a 1° iteração do método gradiente na busca da solução do seguinte problema: $Max f(x,y) = 5x^2 + 5y^2 - xy - 2y$. Assuma o ponto inicial (0,0) e determine o t ideal para essa iteração.

• 1° iteração do método gradiente na busca da solução do seguinte problema: $Max f(x,y) = 5x^2 + 5y^2 - xy - 2y$. Assumindo o ponto inicial (0,0) e *calculando o t ideal*

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 10x - y \\ 10y - x - 2 \end{bmatrix}$$

$$\nabla f(0,0) = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

$$Z(t) = \begin{bmatrix} 0 + t(0) \\ = +t(-2) \end{bmatrix} = \begin{bmatrix} 0 \\ -2t \end{bmatrix}$$

$$f(Z(t)) = f(0,-2t) = 20t^2 + 4t$$

Sendo g(t) = f(Z(t)) e derivando g(t)

$$g'(t) = 40t + 4 = 0$$
$$t = -\frac{1}{10}$$

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \frac{1}{10} \begin{bmatrix} 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0, \frac{1}{5} \end{bmatrix}$$

■ Faça a 2° iteração do método gradiente na busca da solução do seguinte problema: $Max f(x,y) = 5x^2 + 5y^2 - xy - 2y$. Assuma o ponto anterior $\left[0, \frac{1}{5}\right]$ e *determine o t* ideal. Verifique se o *t* se mantém o mesmo da iteração anterior

• 2° iteração do método gradiente na busca da solução do seguinte problema: $Max f(x,y) = 5x^2 + 5y^2 - xy - 2y$. Assumindo o ponto anterior $\left[0, \frac{1}{5}\right]$ e *calculando o t ideal*

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 10x - y \\ 10y - x - 2 \end{bmatrix}$$

$$\nabla f(0, \frac{1}{5}) = \left[-\frac{1}{5}, 0 \right]$$

$$Z(t) = \left[0 + t(-\frac{1}{5}), \frac{1}{5} + t(0) \right]$$

$$= \left[-\frac{t}{5}, \frac{1}{5} \right]$$

$$f(Z(t)) = f(-\frac{t}{5}, \frac{1}{5}) = \frac{1}{5}(t^2 + \frac{t}{5} - 1)$$

Sendo g(t) = f(Z(t)) e derivando g(t)

$$g'(t) = \frac{1}{5} \left(2t + \frac{1}{5} \right) = 0 \mid t = -\frac{1}{10}$$

$${x_{i+1} \brack y_{i+1}} = \left[0, \frac{1}{5}\right] - \frac{1}{10}\left[-\frac{1}{5}, 0\right] = \left[\frac{1}{50}, \frac{1}{5}\right]$$

Método de Newton (ou Newton-Raphson)

- Desenvolvido por Isaac Newton e Joseph Raphson
- Em Cálculo

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Encontra raízes de uma função diferenciável

Em Otimização:

(minimização)
$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$
Passo t

Encontra raízes de uma função derivada (f') usando a derivada 2° (f")

 Dependendendo da inicialização pode não chegar ao resultado (não há garantia de solução)

1642 - 1727

Método de Newton (ou Newton-Raphson)

- Exemplo: $f(x) = x^2 \mid Vamos assumir Ponto inicial x=2$ Derivada de f(x) = f'(x) = 2x
- Passo: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)} \rightarrow$
- Iterações

1642 - 1727

Método de Newton (ou Newton-Raphson)

- Exemplo: $f(x) = x^2 \mid Vamos assumir Ponto inicial x=2$ Derivada de f(x) = f'(x) = 2x
- Passo: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)} \to x_{k+1} = x_k \frac{x_k^2}{2x_k}$
- Iterações

$$x_1 = x_0 - \frac{x_0^2}{2x_0} = 2 - \frac{2^2}{2 \times 2} = 2 - 1 = 1$$
 $x_2 = ?$

1642 – 1727

Método de Newton (ou Newton-Raphson)

- Exemplo: $f(x) = x^2 \mid Vamos assumir Ponto inicial x=2$ Derivada de f(x) = f'(x) = 2x
- Passo: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)} \to x_{k+1} = x_k \frac{x_k^2}{2x_k}$
- Iterações

$$x_1 = x_0 - \frac{x_0^2}{2x_0} = 2 - \frac{2^2}{2 \times 2} = 2 - 1 = 1$$
 $x_3 = ?$
 $x_2 = x_1 - \frac{x_1^2}{2x_1} = 1 - \frac{1^2}{2 \times 1} = 1 - 0.5 = 0.5$ $x_4 = ?$
 $x_5 = ?$

1642 – 1727

Método de Newton (ou Newton-Raphson)

1642 - 1727

Exemplos interativo: https://www.intmath.com/applications-differentiation/newtons-method-interactive.php
Exemplos numéricos: https://www.math24.net/newtons-method/

Método de Newton (ou Newton-Raphson)

Exemplo Minimização: $f(x) = 4 + 8x^2 - x^4$ | Ponto inicial x=3

Derivada primeira
$$f'(x) = 0 + 8(2)x - 4x^3 = 16x - 4x^3$$

Derivada segunda $f''(x) = 16 - 4(3)x^2 = 16 - 12x^2$

Equação 1

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = x_k - \frac{4 + 8x_k^2 - x_k^3}{16x_k - 4x_k^3}$$

$$x_1 = 2,917 \dots \quad x_2 = 2,9107$$
MÁXIMO

Equação 2 (Usando derivada 2ª)

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

$$x_{k+1} = x_k - \frac{16x_k - 4x_k^3}{16 - 12x_k^2}$$

$$x_1 = 2,347 \dots \quad x_4 = 2$$
MÍNIMO

1642 - 1727

Método de Newton (ou Newton-Raphson)

N-Dimensões

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$
 Vetor gradiente $\nabla f(x_k)$ Matriz Hessiana $H[f(x_1, x_2, x_3, \dots, x_n)] =$

 $x_{k+1} = x_k - H^{-1} \nabla f(x_k)$

(n X n) das derivadas parciais de segunda ordem da função

iz Hessiana
$$H\left[f(x_1,x_2,x_3,\ldots,x_n)
ight]=$$
n) das derivadas parciais de segunda \vdots \vdots

$$\frac{\partial^2 f}{\partial x_n \, \partial x_1} \qquad \frac{\partial^2 f}{\partial x_n \, \partial x_2} \qquad \cdots \qquad \frac{\partial^2 f}{\partial x_n^2}$$

Método Gradiente (Cauchy) x Método de Newton

- Método de Cauchy: lento, cauteloso. Tem garantia de convergência para soluções ótimas em condições muito gerais.
- Método de Newton: rápido, arrojado. Se for iniciado perto de uma solução ótima, pode ser excelente, mas pode divergir se partir de pontos ruins.
- Métodos modernos: "intermediários" entre os dois procurando unir as vantagens de ambos.

