Introduction to Program Synthesis (WS 2024/25)

Chapter 2.2 - Foundations (Program Representation: Graph)

Dr. rer. nat. Roman Kalkreuth

Chair for Al Methodology (AIM), Department of Computer Science, RWTH Aachen University, Germany

- ► **Graph** → Highly versatile data structure that can be used to represent all types of algorithms
 - Numerous application options: Modelling of networks, logic &m quantum circuits, algorithms, molecules, ...
 - → Representation of cyclic structures
 - → Naturally more complex than trees
- lacktriangle Tree ightarrow special type of graph that is **connected** and **acyclic**
 - → Commonly used to represents hierarchical structures

Definition (Graph)

A graph G = (V, E) is a set of vertices and a set of edges E with $E \subset V \times V$.

- ▶ Vertices (Nodes) → Individual entities or points in the graph.
- ► Edges (Links) → Connections between the nodes

Types of Graphs

- ► Undirected graph (a) → Edges do not have a direction
 - → Connections between nodes are bidirectional.
- ▶ Directed graph (Digraph) (b) → Edges have a direction
 - ightsquigarrow Go from one node to another ightarrow represented as an arrow
- ► Weighted graph (c) → Each edge has an associated weight or cost
 - → Represents the strength or distance between nodes

- An edge (u, v) is a **loop** if u = v
- ▶ For $v_i \in V$ the set of edges $(v_0, v_1, v_2, ..., v_k)$ is a **path** if each pair $(v_i, v_{i+1}) \in E \ \forall i = 0, 1, ..., k-1$
 - \rightarrow A path $p = (v_0, v_1, v_2, ..., v_k)$ is called a circle if $v_0 = v_k$
 - \sim The **length** of a path is the number of its edges $\rightarrow |p|$

- ▶ The **degree** of a vertex $v \in V$ is the number of edges that are incident to v
 - → Loops count twice

$$\rightarrow$$
 deg(v) = $|\{(a, b) \in E : a = v \text{ or } b = v\}|$

$$\rightarrow$$
 The **max degree** of G is $\Delta(G) = \max\{\deg(v) : v \in V\}$

- \sim The **min degree** of G is $\delta(G) = \min\{\deg(v) : v \in V\}$
- \sim The **average degree** of G is denoted as d(G)

- ▶ *G* is **connected** if $\forall u, v \in V$ with $u \neq v$ builds a path
 - ~ Requires that every pair of vertices in the graph is connected
- ▶ **Distance** between of two nodes u, v is the length of the shortest path from u to v

Definition (Tree)

A graph T is a tree if it is connected and free of loops. T becomes disconnected if any edge is removed. A tree with n vertices has n-1 edges and a vertex with degree 1 is a leaf.

Representations of Graphs

- ▶ Adjacency matrix \rightarrow with $a_{ij} = \begin{cases} 1 & (v_i, v_j) \in E \\ 0 & \text{else} \end{cases}$
 - → Inefficient data structure
 - \sim If E is small the matrix has lots of zeros
- ▶ **Adjacency list** \rightarrow Each node v has a (neighborhood) list L(v) with $L(v) = \{u \in V : (v, u) \in E\}$
 - → Overhead for handling the list data structure

Representations of Graphs

Adjacency Matrix

Adjacency List

$$\begin{pmatrix} a & b & c & d & e \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} a & & L(a) = (b, c) \\ b & & L(b) = (a, d) \\ c & & L(c) = (a, d, e) \\ d & & L(d) = (b, c, e) \\ L(e) = (d, c)$$

Computer Programs: Representations Computational Graph

- ► Can be considered a **generalization** of **expression trees**
- Significantly better connectivity required for the representation of many programs and algorithms
- Representation of multiple outputs is feasible

Computational Graph

Definition (Computational Graph)

A computational graph C = (V, E, F) is a **directed acyclic graph** consisting of a set of functions F, set of vertices V with and set of edges with $E \subseteq V \times V$ where the nodes correspond to operation. Each **computational node** is an element of $V \times F$.

Computer Programs: Representations Computational Graph

- Computational graphs be used in many for many ML and PS applications:
 - \rightarrow Back-propagation \rightarrow automatic differentiation¹
 - \sim **Symbolic regression** \rightarrow Discovery of mathematical expressions
 - \sim **Logic synthesis** \rightarrow Design of logic circuits with multiple outputs
 - \sim Neural architecture search \rightarrow Synthesis of deep neural networks

11

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/ AIM: Introduction to Program Synthesis

Computer Programs: Representations Computational Graph

- ► Cartesian Genetic Programming [MT00] → Nature-inspired search heuristic for PS
 - Adapts genotype phenotype mapping to represent a computational graph
 - → Vector of integers is decoded to an acyclic directed graph
 - → Genetic programming will be addressed later in the lecture

Function Lookup Table

Index	Symbol	Function
0	7	Negation
1	&	Logical and
2	II	Logical or
3	Ф	Exclusive or

Computer Programs: Representations Graphs and tree trade off

► **Graphs** → More flexible and versatile than trees

- → More complex to handle due to the high degree connectivity
- → Use of graphs leads to more complex search spaces
- ► Trees → Natural hierarchical limitation by definition
 - → Ideal for spanning up less complex search spaces that represent hierarchical candidate programs

References

[MT00] Julian F. Miller and Peter Thomson. "Cartesian Genetic Programming". In: Genetic Programming, European Conference, Edinburgh, Scotland, UK, April 15-16, 2000, Proceedings. Ed. by Riccardo Poli et al. Vol. 1802. Lecture Notes in Computer Science. Springer, 2000, pp. 121–132. DOI: 10.1007/978-3-540-46239-2_9. URL: https://doi.org/10.1007/978-3-540-46239-2%5C_9.