287

(1)

PV = nRT より、 (理想気体の状態方程式) $P = 1013 \cdot 1.5 \times 10^2 Pa \text{ , } V = 2.49 \times 10^{-3} m^2$ $R = 8.3145 \text{ J/mol} \cdot K \text{ , } T = 304K$ を代入して、 $1013 \cdot 1.5 \times 10^2 \cdot 2.49 \times 10^{-3} = n \cdot 8.3145 \cdot 304$ $\therefore n = 0.15 mol$

(2)(3)

気体の内部エネルギーの増加量 ΔUは、

$$\Delta U = n\frac{3}{2}R\Delta T$$
 より、 $n=0.15mol$, $R=8.3145 J/mol \cdot K$, $\Delta T=14K$ を代入して、 $\Delta U=0.15\cdot\frac{3}{2}\cdot8.3145\cdot14$ $=26.2J$

また、外部から与えた熱量Qは、

$$Q=C_p$$
n ΔT より、 $C_p=4.5~cal/^{\circ}\mathrm{C}\cdot mol=18.9~J/^{\circ}\mathrm{C}\cdot mol$ を代入して、 $Q=18.9\cdot0.15\cdot14=39.7J$

気体が外部になした仕事△Wは、

$$\Delta U = Q - \Delta W \text{ LD},$$

 $26.2 = 39.7 - \Delta W$
 $\therefore \Delta W = 13.5J$