BACCALAURÉAT GÉNÉRAL

Épreuve pratique de l'enseignement de spécialité physique-chimie Évaluation des Compétences Expérimentales

Cette situation d'évaluation fait partie de la banque nationale.

ÉNONCÉ DESTINÉ AU CANDIDAT

NOM :	Prénom :	
Centre d'examen :	n° d'inscription :	

Cette situation d'évaluation comporte **quatre** pages sur lesquelles le candidat doit consigner ses réponses. Le candidat doit restituer ce document avant de sortir de la salle d'examen.

Le candidat doit agir en autonomie et faire preuve d'initiative tout au long de l'épreuve.

En cas de difficulté, le candidat peut solliciter l'examinateur afin de lui permettre de continuer la tâche.

L'examinateur peut intervenir à tout moment, s'il le juge utile.

L'usage de calculatrice avec mode examen actif est autorisé. L'usage de calculatrice sans mémoire « type collège » est autorisé.

CONTEXTE DE LA SITUATION D'ÉVALUATION

Certains engrais pour gazon, vendus en magasins spécialisés, contiennent du sulfate de fer, qui permet de détruire, par contact, les mousses qui étouffent la pelouse. Après quelques jours, celles-ci deviennent noires.

Le but de cette épreuve est de déterminer la valeur de la teneur en ions fer II (Fe²⁺) d'un engrais du commerce contenant du sulfate de fer II.

INFORMATIONS MISES A DISPOSITION DU CANDIDAT

Extrait de la fiche technique de l'engrais anti-mousse utilisé par le jardinier

Mention d'avertissement	Pictogramme	Classe de danger	Mentions de danger
ATTENTION		Toxicité aigüe orale	H303
		Irritation cutanée	H315
		Irritation oculaire	H319

Composition du mélange : oxyde de magnésium, azote, anhydride sulfurique, sulfate de fer II

Oxydation des ions Fe²⁺ en Fe³⁺ et formation d'une espèce chimique colorée

La concentration en masse du fer est déterminée grâce à un dosage par étalonnage à l'aide d'un spectrophotomètre.

Pour cela, on utilise une solution d'eau oxygénée en présence d'acide chlorhydrique pour oxyder la totalité des ions Fe²⁺ présents dans la solution d'engrais en ions Fe³⁺.

Les ions Fe³⁺ alors formés sont révélés par une solution de thiocyanate de potassium incolore, qui permet la formation d'une espèce chimique, appelée « complexe » et notée [Fe(SCN)]²⁺, de couleur rouge.

Absorbance et loi de Beer-Lambert

Un rayonnement qui traverse une cuve contenant une espèce chimique colorée en solution peut être absorbé en partie par la solution colorée : il s'agit du phénomène d'absorbance.

La loi de Beer-Lambert, $A = k \cdot C$, illustre que l'absorbance A d'une solution est proportionnelle à la concentration C de l'espèce colorée en solution. Le coefficient de proportionnalité k dépend de la nature de la solution et de la longueur d'onde du rayonnement utilisé pour les mesures.

Dosage par étalonnage

Le principe du dosage par étalonnage repose sur l'utilisation de solutions de concentrations connues appelées solutions étalons. Les concentrations des solutions étalons sont données dans le tableau ci-dessous :

Solution	1	2	3	4	5
Concentration en ions Fe ³⁺ en mg·L ⁻¹	2,0	4,0	6,0	8,0	10,0

Chaque solution étalon d'ions Fe³⁺ d'un volume de 10,0 mL est préparée à partir d'une solution mère d'ions Fe³⁺ de concentration en masse $C_{m,mère} = 20,0 \text{ mg} \cdot \text{L}^{-1}$.

Pour préparer l'échelle de teintes dans les mêmes conditions que l'échantillon de la solution d'engrais à doser, on a ajouté à 10,0 mL de solution étalon, 1,0 mL de solution d'acide chlorhydrique et 1,0 mL de solution de thiocyanate de potassium.

Titre massique

Dans un mélange, le titre massique w d'un constituant permet de connaître sa proportion dans le mélange. Pour le calculer, on utilise la relation : $w = \frac{\text{masse du constituant}}{\text{masse totale du mélange}} \times 100$

TRAVAIL À EFFECTUER

1.	Tracé de la co	urbe d'étalonnage (20 minutes conseillées)		
1.1	. Indiquer la long	gueur d'onde à régler sur le spectrophotomètre lors de ce dosage par étalonna	age. Justifier.	
		APPEL n°1		
	W	Appeler le professeur pour lui présenter votre réponse ou en cas de difficulté		
	courbe d'étalor	rophotomètre, puis mettre en œuvre la mesure de l'absorbance des solutions nnage à l'aide d'un tableau grapheur. dèle pertinent et modéliser la courbe obtenue.	étalons et tracer la	2
		APPEL n°2		
	W.	Appeler le professeur pour lui présenter les résultats expérimentaux ou en cas de difficulté		
2.	Détermination	de la concentration en ion fer II (Fe ²⁺) de la solution d'engrais (20 minute	es conseillées)	
	calution d'anara	is any an applicate utilizer and then appearing all facility dilumenting factors 20		
La	solution d engra	is qu'on souhaite utiliser est trop concentrée. Il faut la diluer d'un facteur 20.		
	_	tériel disponible, proposer un protocole pour effectuer cette dilution.		
	_			
	_			
	_			
	_			

APPEL n°3

Appeler le professeur pour lui présenter le protocole ou en cas de difficulté

2.2. Mettre en œuvre la dilution.

Dans u	ın bécher.	aiouter l	les	prélèvements	suivants	
Dans	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ajoutoi i		protovernomo	Juivanto	

- 10,0 mL de la solution d'engrais diluée 20 fois ;
- 1,0 mL de la solution d'acide chlorhydrique de concentration $C = 1,0 \text{ mol} \cdot \text{L}^{-1}$;
- 1,0 mL de la solution de thiocyanate de potassium de concentration $C_1 = 1,0 \text{ mol} \cdot \text{L}^{-1}$;

5 gouttes de solution d'éau oxygenée à 20 volumes.
2.3. Mesurer l'absorbance de cette solution diluée : $A_d = \dots$
2.4. En déduire la valeur de la concentration en masse C_d en ions fer II de la solution diluée : $C_d = \dots$
3. Vérification de la teneur en ions fer II (Fe²+) de l'engrais (20 minutes conseillées)
La solution d'engrais a été préparée en utilisant <u>m =</u> d'engrais pour 1,00 L de solution.
3.1 Déterminer, à partir de la valeur de C_d , la valeur de la masse m d'ions fer II présents dans un litre de la solutio d'engrais.
3.2 Calculer alors le titre massique w d'ions fer II présents dans l'engrais.

Défaire le montage et ranger la paillasse avant de quitter la salle.