DOCUMENT RESUMF

ED 104 969 95 TH 004 572

AUTHOR Stallings, Jane A.; Kaskowitz, David H.

TITLE Follow Through Classroom Observation Evaluation

1972-1973. SRI Project UPU-7370.

INSTITUTION Stanford Research Inst., Menlo Fark, Calif.

SPONS AGENCY Office of Education (DHPW), Washington, D.C. Office

of Planning, Budgeting, and Evaluation.

EZPCFT NO SEI-UPU-7370

PUB DATE Aug 74

CONTEACT 0EC-0-8522480-4633 (100)

FOTE 607p.; For related documents, see TM 004 573 and ED

085 100

PIES PPICE MP-S 1.08 HC-S31.10 PLUS POSTAGE

DESCRIPTORS Academic Achievement; Affective Behavior; Child

Pevelopment; *Classroom Observation Techniques; Classroom Research; Comparative Analysis; Data Analysis; Economic Disadvantagement; Educational Innovation; *Elementary Education; Evaluation; Pederal Programs; *Intervention; Locus of Control; Models; *Program Effectiveness; Teacher Education;

Test Feliability

IDENTIFIEDS Classroom Observation Instrument; Intellectual

Achievement Responsibility Scale; *Project Follow

Through

ABSTRACT

This fourth report of Pollow Through Classroom Observation data, collected in Spring 1973 from 37 sites representing seven sponsors who participated in the planned variation studies, focuses upon the question of whether sponsors can deliver their educational systems to diverse kinds of communities. It is a study of the effects of training classroom personnel to use specific procedures in the classroom. The procedural specifications of the sporsors include the physical arrangement of the classroom, stilization of prescribed curricula, and interactions with children. A secondary analysis examines the relationships between educational processes and child outcomes. Substantial data and detailed descriptions of the procedures implemented explain and support the results. Most first and third grade teachers conformed to instructional procedures as specified by the sponsors. Time spent in reading and math and a high rate of drill, practice, and praise contributed to higher reading and math scores. Lower absence rates, higher scores on a nonverbal problem-solving test of reasoning is attribated in part to more open and flexible instructional approaches. The seven Pollow Through models considered are seen as bringing different strengths to their pupils, and each is bringing advantages not asually found in traditional classrooms. (RC)

In our judgement, this document is also of interest to the clearing-houses noted to the right. Indexing should reflect their special points of view.

FOLLOW THROUGH CLASSROOM OBSERVATION EVALUATION 1972-1973

Prepared for

DIVISION OF ELEMENTARY AND SECONDARY PROGRAMS OFFICE OF PLANNING U.S. OFFICE OF EDUCATION DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE WASHINGTON, D.C.

લ્ય

70

CONTRACT OEC-O-8522480-4633(100)

US DEPARTMENT OF MEALTH
EDUCATION & WELFARE
NATIONAL INSTITUTE OF
EDUCATION
FOR THE TOWN OF EVERY SERVICE
THE TOWN OF EVERY SERVICE
THE TOWN OF EVERY SERVICE
THE TOWN OF T

STANFORD RESEARCH INSTITUTE Menlo Park, California 94025 · U.S.A.

FOLLOW THROUGH CLASSROOM OBSERVATION EVALUATION 1972-1973

By: JANE A. STALLINGS, DAVID H. KASKOWITZ

Contributors: DOROTHY BOOTH, JAY CROSS, KLARA EVANS, PHIL GIESEN, GEORGIA GILLIS, MARGARET NEEDLES, MAE STEPHEN and MARY A WILCOX

Prepared for:

DIVISION OF ELEMENTARY AND SECONDARY PROGRAMS OFFICE OF PLANNING U.S. OFFICE OF EDUCATION DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE WASHINGTON, D.C.

CONTRACT OEC-0-8522480-4633(100)

SRI Project URU-7370

The conclusions and recommendations in this report are those of the Contractor and do not necessarily reflect the views of the U.S. Department of Health, Education, and Welfare or any other agency of the government.

ACKNOWLEDGMENTS

This fourth report of the Follow Through Classroom Observation evaluation reflects the dedication, commitment, and effort of many people both within and outside Stanford Research Institute.

This evaluation was conducted within SRI's Urban and Social Systems Division, which is headed by Harvey L. Dixon, Executive Director, with Richard A. Marciano, Associate Director, Education Research Department as the director of SRI's Follow Through Evaluation project, and Dr. Jane Stallings as the manager of Follow Through classroom process studies.

We gratefully acknowledge the support and guidance of Richard Marciano, the project director. He has given generously of his time, asking questions and contributing ideas which lent a greater depth to the analysis and interpretation. His standards for quality of work have been a challenge to all of us.

The cooperation and support of the staff of the U.S. Office of Education deserves special recognition. We deeply appreciate the encouragement and guidance of Mr. Eugene Tucker, Chief of Research and Evaluation, Office of Planning, Budgeting, and Evaluation, and his staff who have supported and encouraged the observation effort to evaluate the implementation of Follow Through models, and Dr. Garry McDaniels, former Chief of Research and Evaluation for the Follow Through Program, who provided encouragement and guidance to the observation evaluation during his two years in Follow Through.

Special recognition is due to Dr. Lois-ellin Datta of the National Institute of Education for her efforts and contributions during the years of the study and her commitment to its success.

Over the years of the study, Dr. Eleanor Maccoby of Stanford University has been a consultant to the study. See has shared her wisdom regarding important child outcomes and their possible relation to class-room processes; to her we are most grateful.

Special recognition is due to Dr. Robert Linn of University of Illinois. He has assisted us in planning and executing our analysis. He has given unstintingly of his time, warning us of pitfalls and helping us select analytic techniques which could best utilize our particular set of data.

To our consultants, Dr. Richard M. Brandt, University of Virginia; Dr. Donald M. Medley, University of Virginia; Dr. Barak Rosenshine,

iii

University of Illinois at Urbana, and Dr. Richard Snow, Stanford University, who together with Dr. Maccoby have constituted the review panel for this report, we want to express our heartfelt appreciation for their incisive review of our analytic approaches and their valuable suggestions.

We thank the SRI observation training staff: Merril Lynn Beers, Dorothy Booth, Jay Cross, Phillip Giesen, Georgia Gillis, Margaret Needels, and Kathryn Preecs. Due to their carefully developed training procedures and their keen awareness of learning strategies, they have provided us with highly trained classroom observers in all parts of the nation.

Wilhelmina Calhoun is acknowledged for her dedication to the programming of these complex data. She gave willingly many extra hours to see that the analysis specifications were carried to completion.

We are grateful for the diligence of Klara Evans who coordinated the production of the report and the continuing effort of the typing staff. Rebecca Ciemewicz and Wanda Fedurek are also acknowledged.

To the sponsors and their staffs (the heroes of this Follow Through effort), whose counsel and assistance was invaluable, we express our deepest gratitude.

Finally, we offer our heartfelt thanks especially to the many peopleschool administrators, teachers, pupils, parents—who so graciously aided us in our pursuit of better understanding of classroom processes.

LIST OF TERMS

Abbreviations Used on Tables	Sponsor	Abbreviations Used in Text
FW .(02)	Far West Laboratory for Educational	
	Research and Development	Far West Lab
UA (03)	University of Arizona	U. Arizona
BC (05)	Bank Street College of Education	Bank Street
UO (07)	University of Oregon	U. Oregon
UK (08)	University of Kansas	U. Kansas
HS (09)	High/Scope Educational Research	
	Foundation	High/Scope
ED (11)	Education Development Center	EDC

The Annex consisting of the Means and Standard Deviations of each sponsor by site is bound separately and is available for consultation at SRI.

CONTENTS

ACKNO)WLED(GMENTS	iii
LIST	OF TE	ERMS	v
LIST	OF II	LLUSTRATIONS	х
LIST	OF TA	ABLES x	iii
I	INTRO	ODUCTION	1
11	DATA	COLLECTION	9
	Α.	The Sample	9
	В.	The Instrument	23
	С.	Selection and Training of Classroom Observers	32
	D.	Data Collection Procedure	36
	Ε.	Summary	39
111	DESC	RIPTION OF THE VARIABLES	41
	Α.	Classroom Observation Instrument (COI) Variables	41
	В.	Teacher and Teaching Aide Questionnaires	45
	С.	Tests	45
	D.	The Classroom RosterDemographic Information	47
	Ε.	Summary	48
IV	RELIA	ABILITY	49
	Α.	Uniformity of Data	50
	В.	Assessment of the Variability of the Classroom Processes	53
	С.	A Study of the Confusability of the Codes	59
	D.	Observer Reliability	77
	L.	Conclusions	92

Ι.	ASSL	SSMENT OF UMPLEMENTATION	95
	Λ.	Methods	96
	В.	Results	106
	с.	A Study of the Relationships Between Teacher Characteristics/Iraining and Implementation Scores	191
	D.	Summarv	195
VI	THE	NATURE OF DIFFERENCES AMONG SPONSORS	199
	Λ.	Methodology	199
	в.	Results	202
	('.	Summary	228
VII	INST	RUCTIONAL PROCESSES AS RELATED TO CHILD OUTCOMES	233
	Α.	Analysis Using Partial Correlations	233
	В.	Regressions	307
	С.	Surmary	325
IIIV	SUMM	ARY	. 27
	Α.	Classroom Implementation	329
	В.	Sponsor Differences	341
	С.	Teacher Reports	342
	D.	Classroom Instructional Processes and Child Outcomes .	342
	Ε.	Outcomes of Regression Analysis	344
	F.	Summary	345
APPE	NDICE	S	
Λ	roll	ON THROUGH PROGRAM SPONSORS AND SITES	
В		EFFECT OF CHILDREN'S CHARACTERISTICS ON CONTROL SYSTEMS ON THE DISPLAY OF EMOTIONS BY ADULTS	
С	CLAS	SROOM OBSERVATION INSTRUMENT	
D	OPER	ATIONAL DEFINITIONS OF THE FIVE-MINUTE OBSERVATION CODES	

- E WEEKLY POSTER LIST AND CLASSROOM OBSERVER DAILY LOG
- F LIST OF CLASSROOM OBSERVATION INSTRUMENT (CO1) VARIABLES FOR SPRING 1973
- G CLASSROOM OBSERVATION VARIABLE SPECIFICATIONS
- H ANALYSIS SPECIFICATIONS FOR THE TEACHER AND TEACHING AIDE QUESTIONNAIRES
- I SPECIFICATION FOR PROCESSING TEST DATE
- J CLASSROOM ROSTER--DEMOGRAPHIC INFORMATION FORM
- K UNIFORMITY OF THE CLASSROOM OBSERVATION DATA
- L INDIVIDUAL OBSERVER RELIABILITY RATINGS -- BY SPONSOR
- M SPONSOR IMPLEMENTATION VARIABLES AND CORRESPONDING QUINTILES
- N ASSESSMENT OF THE STABILITY OF THE IMPLEMENTATION SCORES
- O PEARSON CORRELATIONS
- P TEACHER RESPONSE TO TRAINING EMPHASIS, BY SPONSOR AND SITE
- Q SPONSORS' FIELD SERVICE ORGANIZATION
- R MEANS AND STANDARD DEVIATIONS ON VARIABLES USED IN DISCRIMINANT ANALYSIS
- S COOPERSMITH AND INTELLECTUAL ACHIEVEMENT RESPONSIBILITY SCALE (IAR)
- T CORRELATION OF TEACHER QUESTIONNAIRE ITEMS AND IMPLEMENTATION SCORES.

ILLUSTRATIONS

1	Classroom Check List	26
2	Preamble to the Five-Minute Observation	27
3	Coded FMO Frames Showing Coding of a Typical Interaction	29
4	Day 1 Against Day 2 on Var. 118, Overall Occurrence of Child without Any AdultAll Third Grade Classrooms	56
5	Day 1 Against Day 2 on Var. 360, Child Responses, AcademicAll Third Grade Classrooms	57
6	Day 1 Against Day 2 on Var. 66, Numbers, Math, ArithmeticAll Third Grade Classrooms	58
7	Total Number of What Codes Recorded in Each Cell by One Observer	63
8	Proportional Distribution of What Codes as Recorded by One Observer	65
9	Proportional Distribution of What Codes Showing How Criterion Examples Were Recorded by One Observer	66
10	Proportional Distribution of What Codes for One Observer for Both Recorded and Criterion Accuracy	67
11	Total of What Codes Recorded in Each Cell by 63 Observers.	69
12	Proportional Distribution of What Codes Recorded by 63 Observers	70
13	Proportional Distribution of What Codes Showing Criterion Lxamples Recorded by 63 Observers	71
14	Proportion of What Codes Recorded in Each Cell, Calculated Over 63 Observers	73
15	Proportion of <u>How</u> Codes Recorded in Each Cell, Calculated Over 63 Observers	76
16	Proportional Distribution of What Codes for Observer L for Both Recorded and Criterion Accuracy	88

1 /	for Both Recorded and Criterion Accuracy	89
18	Proportional Distribution of <u>How</u> Codes for Observer 1 for Both Recorded and Criterion Accuracy	90
19	Proportional Distribution of <u>How Codes for Observer 2</u> for Both Recorded and Criterion Accuracy	91
20	Histogram of First Grade Non-Follow Through Classrooms Showing Percent of Child Time Spent in Reading, Language (Var. 67)	101
21	Histogram of First Grade Non-Follow Through Classrooms Showing Percent of Teacher Time Spent with One Child (Var. 86)	102
22	Non-Follow Through First Grade ClassroomsGames, Toys, Play Equipment Present (Var. 25)	103
23	Non-Follow Through First Grade ClassroomsTeacher with Two Children (Var. 87)	104
24	Non-Follow Through First Grade ClassroomsSewing, Cooking, Pounding (Var. 70)	104
25	Histogram Showing Implementation Scores for Far West Laboratories	110
26	Histogram Showing Implementation Scores for University of Arizona	122
27	Histogram Showing Implementation Scores for Bank Street College	136
28	Histogram Showing Implementation Scores for University of Oregon	146
29	Histogram Showing Implementation Scores for University of Kansas	158
30	Histogram Showing Implementation Scores for High/Scope	170
31	Histogram Showing Implementation Scores for EDC	184
32	Classroom Description	193
33	Plot of First Discriminant Function Against the Second Discriminant FunctionPEI and CCL Variables First Grade .	209
34	Plot of First Discriminant Function Against the Second Discriminant FunctionPEI and CCL Variables Third Grade .	213

35	Plot of First Discriminant Function Against the Second Discriminant FunctionFMO Variables First Grade	216
36	Plot of First Discriminant Function Against the Second Discriminant FunctionFMO Variables Third Grade	219
37	Plot of First Discriminant Function Against the Second Discriminant FunctionFMO Variables First Grade (University of Oregon and University of Kansas Omitted)	223
38	Time Spent in Numbers, Math, and Arithmetic (Var. 58) Plotted Against MAT Math Outcomes, Third Grade Correlation .65, Standard Error 13.6	284
39	Time Spent in Numbers, Math, and Arithmetic (Var. 58) Plotted Against MAT Math Outcomes, Third Grade Correlation .58, Standard Error 7.55	285
40	Time Spent in Numbers, Math, and Arithmetic (Var. 58) Plotted Against MAT Math Outcomes, Third Grade Correlation .24, Standard Error 10.45	286
41	Diagram of the Cooley and Lohnes Model of Instructional Process	318
42	Total Criterion Variance	321
43	Games, Toys, Play Equipment Prese _ (Var. 25)First Grade .	328
Q-1	Far West	Q-3
Q-2	The Arizona System of Educational Services	Q-5
Q-3	Follow Through Organizational Chart	Q-7
Q-4	Home Shop Organization 1974-1975	Q-9
Q - 5	Table of Organization Behavior Analysis	Q-11
Q-6	Follow Through Organizational Chart	Q-16

xiii

- -

-

- - - ·

_ _

· •

· .

-	en en en en en en e <mark>sta de entre en total de en en en en e</mark>	-
	n de la companya del companya de la companya del companya de la co	
		- -
	en de la montre de la participación del participación de la participación de la participación del participación de la participación del participación del participación de la participació	
-	end no no el colon de la composition de la colon de	i
	and the second with the constitution of the second	
-	De la completa del completa del completa de la completa del la completa de la completa del la completa de la c	
		-
= ~	ంటేంద్ర సంగు ఎక్కువారి. కాలకు కాటి కాల్ నిష్ణుకోని కాట్లుకోవారి.	
	an na an na h-Air ag Laste Desegration (1924). Newson to the second of t	_
-	ాజనికి ఉందిన కేశులు కళ్ళులు కేంద్రి కింగా కాం టా 2001 లక్షి కూ ర్ల ్లా	134
	ు గా అంటే సమీదంలు కోరణుకు సంవేధ కేద కారి కోవ్యాక్స్మాన్ని కోర్యా లో ని ఉంది.	1
	The second of April Analysis Community Regions to	_ = .
	್ ರ್ವರ್ಷ್ ವರ್ಷಗಳ ಆಗಾಗಿ ಬರ್ಕಾರಿಕೆ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರಕ್ರೀಕ್ ಪ್ರಾರ್ಥಿಕ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ಕಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ಕಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ಕಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ರಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಕಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಟಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್ಷಿಸಿದ ಪ್ರತಿಕ್	-51
	ా కార్లు అన్న కార్లు కూడా కుండింది. కా ర్యం గాలుప్రాంధినక్కా కార్లు కూడా కార్లు కూడా కార	- # : a = #
-	గ్రామం ఉండినాగా కార్యం స్థితించారు. సౌకర్యం క్రిమ్మికి విశ్వారం చేస్తారు. విశ్వారం ఉంది.	
		- * *
	ు కారుకోడు నాయి. మీదు కారుకుకోడు. మార్డి సమాజులు స్వేహిళ్లు.	
	ార్ గాహ్మార్లు గ్రామం చేశాక్ష్మ్ గ్రామం చెప్పుకు చేసిపుకు చేసిపుకు చేసిపుకు చేసిపుకు చేసిపుకు ఉం ది. మండ్రిక్ క్రామం	_
		- "
	్రం కార్లోను కార్లో ఉంది. మార్లు అధ్యార్లో అంటే అత్స్తున్నాని ఉంది. ఈ సినిమానికి	=
-	en en la	- ,
	ు కార్కు ఎందు ఈ ఎంది స్వారం జ్ఞ్ ర్ల కేకృర్ణ ఉన్నట్ ఉంది.	. 1-
	ం గారం కార్లు కార్లు కార్లుక్రామ్ కింగ్ కార్లు	
-	en la lenga de la composition della composition	
	and the second of the second o	
		•

O.	Commands, Requests, or Direct Questions (Var. 412a) University of Kansas	163
62	All Adult Reinforcement with Tokens (Var. 469a) University of Kansas	16-
63	Guessing Games, Table Games, Puzzles (Var. 65) University of Kansas	16
6 ∔	Child Task Persistence (Var. 513c)University of Kansas .	163
65	Site and Demographic Data for High/Scope Sites	168
65	Total Implementation Scores for Classrooms by Site	17.
67	Child Selection of Seating and Work Groups (Var. 24) High/Scope	17
68	Wide Variety of Activities, Over One Day (Var. 83) High/Scope	17-
<u>5</u> 9	Guessing Games, Table Games, Puzzles (Var. 65) High/Scope	174
70	Sewing, Cooking, Pounding (Var. 70)High/Scope	175
71	Numbers, Math, Arithmetic (Var. 66)High/Scope	175
72	Teach with Small Group (Var. 88)High/Scope	17
7 3	Aide with Small Group (Var. 94)High/Scope	178
 	Adult Communication or Attention Focus, One Child (Var38a)High/Scope	178
75	Adult Open-Ended Questions to Children (Var. 452a) High/Scope	179
Ī. 63	Child Questions to Adult (Var. 350a)High/Scope	179
7	Site and Demographic Data for EDC Sites	18
78	Total Implementation Scores for Classrooms by SiteEDC .	183
ĵų.	Apolt Instructs an Individual Child (Var. 3754)EDC	187
50	Adult Communication or Attention Focus, One Child (Var. 438a)EDC	187

81	FDC	188
32	All Child Open-Ended Questions (Var. 450a)EDC	188
83	Adult Response to Child's Question with a Question (Var. 453a)EDC	189
84	Child Self-Instruction, Objects (Var. 510c)EDC	189
85	All Child Positive Affect (Var. 460a)EDC	190
86	Positive Behavior, Adults to Children (Var. 423a)EDC	190
87	Follow Through Teacher Ratings on the Classrooms' Structure/Flexibility Scale	194
88	Implementation Scores Compared by Size of the Follow Through Sites	196
89	Number of Classrooms Included in the Discriminant Analysis by Sponsor and Grade Level	202
90	Statistics to Test Whether Mean Vectors are Different A ong Sponsors	203
91	Eigenvalues and the Cumulative Percentage of Discriminating Power Associated with Each Discriminant Function for Fach Data Set	205
92	Standardized Coefficients for the Discriminant Analysis: First Grade, PEI and CCL Variables	207
93	Standardized Coefficients for the Discriminant Analysis: Third Grade, PEI and CCL Variables	211
94	Standardized Coefficients for the Discriminant Analysis: First Grade, FMO Variables	214
95	Standardized Coefficients for the Discriminant Analysis: Third Grade, FMO Variables	217
96	Standardized Coefficients for the Discriminant Analysis: First Grade, FMO Variables	221
97	Classification of Classrooms by Sponsor	224
98	Number of Misclassifications and Correct Classifications Summed Over the Four Data Sets	226
99	Analyses of PEI and CCL Variables	229

100	Analyses of FMO Variables	230
101	Number of Classrooms and Sites Included in the Regression Analyses by Sponsor and Grade Level	234
102	Partial-Correlation Analyses	235
103	Partial Correlations of Instructional Variables and Child Behaviors, First (N=102) and Third (N=55) Grades	238
104	Mean and Standard Deviations of Child Behavior Outcomes, First and Third Grades	240
105	Partial Correlation of Days Absent with Instructional Variables, 108 First Grades and 58 Third Grades	247
106	Means and Standard Deviations of Days Absent for Sponsors and Non-Follow Through	256
107	Partial Correlations of Instructional Variables with Raven's Test Scores (58 Third Grade Classrooms)	257
108	Means and Standard Deviations on the Raven's Coloured Progressive Matrices Test for Sponsors and Non-Follow Through	264
109	IAR-Success Scale	267
110	Sponsor and Non-Follow Through Means and Standard Deviations on the Intellectual Achievement Scale	269
111	IAR-Failure Scale	270
112	Partial Correlations of MAT Math Scores with Instructional Variables, First and Third Grades	276
113	Average Occurrence of Children Engaged in Math Activities per Observation (Var. 1)	287
114	Sponsor and Non-Follow Through Means and Standard Deviations for MAT Total Math Scores	290
115	Partial Correlations of MAT Reading Scores with Instructional Variables, First and Third Grades	292
116	Sponsor and Non-Follow Through Means and Standard Deviations for MAT Reading Scores	299
117	Intercorrelation of Outcome Scores, First and	202

118	Correlations of All Adult Praise with Outcome Scores	304
119	Classrooms with Low, Medium, High MeansPartial Correlations of "All Adult Praise" with Outcome Test Scores	305
120	Partial Correlations of One Child with Any Adult and All Outcome Scores	300
121	Correlations Among Selected Process Variables, Outcome Scores, and Baseline WRAT, First and Third Grades, MAT Reading and MAT Math	308
122	Summary Statistics for the Stepwise Regression Analyses .	311
123	Statistics from the Stepwise Regression of the Baseline WRAT and Selected COI Variables on the Outcome Scores	313
124	Classroom Observation Variables Included in Each Instructional ComponentCooley Model	319
125	Means and Standard Deviations of First Grade MAT Reading Scores	322
126	Coefficients of Determination for the Regression Analyses.	323
127	Components Analysis of First Grade Classrooms	323
128	Percent of Criterion Variance Uniquely Accounted for by Each Instructional Process Variable in the Cooley Model .	324
129	Recommended Variables for Use in Cooley's Regression Model	320
130	Wide Variety of Activities, Over One Day (Var. 83)	330
131	Total Site Implementation Scores for Far West Model	332
132	Total Site Implementation Scores for University of Arizona Model	333
133	Total Site Implementation Scores for Bank Street Model	335
134	Total Site Implementation Scores for University of Oregon Model	336
135	Total Site Implementation Scores for University of Kansas Model	337
136	Total Site Implementation Scores for High/Scope Model	339
137	Total Site Implementation Scores for EDC Model	340
	- 10 0 00	

Tables (Appendix)

B - 1	Correlations of Entering Characteristics of Children with Instructional VariablesFirst Grade
B-2	Analysis of Variance of Entering Characteristics of children with Instructional Variables
B-3	The Direction of Significant Relationships in the Analysis of Variance for First Grade Follow Through Classrooms (N=136)
B-4	Correlations of Sex Differences with Instructional Variables
B-5	Correlations of Baseline WRAT Scores with Instructional Variables
B-6	Analysis of Variance of Process Variables Significantly affected by children's EthnicityFirst Grade B-12
K-1	Number of COP's Completed Per DayBy Sponsor's Sites K-3
K-2	Average Number of Frames CompletedBy Sponsor's Sites . K-4
L-1	Accuracy Rates for the WHAT and HOW Codes by Far West Observers
L - 2	Accuracy Rates for WHAT and HOW Codes by University of Arizona Observers
L-3	Accuracy Rates for WHAT and HOW Codes by Bank Street Observers
L-4	Accuracy Rates for WHAT and HOW Codes by University of Oregon Observers L-6
L - 5	Accuracy Rates for WHAT and HOW Codes by University of Kansas Observers
L-6	Accuracy Rates for WHAT and HOW Codes by High/Scope Educational Research Foundation Observers L-8

1 /	Development Center Observers L-C
`!-1	Non-Follow Through Quintiles for Sponsor Implementation Variables
M-2	Frequency Distribution of Classrooms over Implementation ScoresFar West Laboratory
YI- 3	Frequency Distribution of Classrooms Over Implementation ScoresUniversity of Arizona
M-4	Frequency Distribution of Classrooms Over Implementation ScoresBank Street
M= 5	Frequency Distribution of Classrooms Over Implementation ScoresUniversity of Oregon
M-6	Frequency Distribution of Classrooms Over Implementation ScoresUniversity of Kansas
M-7	Frequency Distribution of Classrooms Over Implementation ScoresHigh/Scope
M-8	Frequency Distribution of Classrooms Over Implementation ScoresEducational Development Center M-25
N-1	95 Percent Confidence Intervals for the Quintile Estimates Expressed in Percentiles of the Classroom Distribution N-3
N-2	Probability Distribution of Implementation Scores for a Given Classroom Mean and Standard Error N-5
N-3	The values of l_0 and u_0 Expressed in Percentiles for Each Quintile of Non-Follow Through N-6
0-1	Pearson Correlation of Sponsor Critical Variables Used in Implementation ScoresFar West Labs 0-3
0-2	Pearson Correlation of Sponsor Critical Variables Used in Implementation ScoresUniversity of Arizona 0-4
0-3	Pearson Correlation of Sponsor Critical Variables Used in Implementation ScoresBank Street
0-4	Pearson Correlations of Sponsor Critical Variables Used in Implementation ScoresUniversity of Oregon 0-6
()-5	Pearson Correlation of Sponsor Critical Variables Used in Implementation ScoresUniversity of Kansas 0-7

0-6	rearson Correlation of Sponsor Critical Variables in Implementation Scores-High/Scope	0-8
0-7	Pearson Correlations of Sponsor Critical Variables Used in Implementation ScoresEDC	0-9
R-1	First Grade Sponsor Means and Standard Deviations on 45 PEI and CCL Variables	R-3
R-2	Third Grade Sponsor Means and Standard Deviations on 45 PEI and CCL Variables	R-4
R-3	First Grade Sponsor Means and Standard Deviations on 32 FMO Variables	R-5
R-4	Third Grade Sponsor Means and Standard Deviations on 32 FMO Variables	R-6
T-1	Correlations of Teacher-Reported Participation in Training Procedures with Classroom Implementation Scores by Sponsor	T-3
T-2	Correlations of Teachers' Years in Follow Through with Implementation Scores	T-4
T-3	Correlations of Teachers' Formal Education with Implementation Scores	T-5
T-4	Percent of Teachers Satisfied with the Model	T-6
T-5	Correlation of Teachers' Satisfaction with the Model with Implementation Scores	T-7

Chapter I

INTRODUCTION

The primary aim of this evaluation of Follow Through planned variation is to determine whether educational innovators have been able to implement their programs of compensatory education in several diverse sites. In the present study, we examine the results of efforts by seven Follow Through sponsors* to deliver their models to 36 projects. In this report, the degree of implementation is defined as the extent to which a sponsor has been able t influence teachers in different sites to follow model specifications in the classroom. Two criteria were used to judge implementation: (1) how similar are the classrooms to each other when compared on sponsor selected variables? and (2) how different are sponsor classrooms from Non-Follow Through classrooms? Implementation is evaluated by observing in the classrooms and coding observable events specified by the sponsors as critical to their model.

To make an educational theory come alive in the classroom requires great effort (see Lucas, 1973; Weikart and Banet, 1973). Follow Through sponsors had a very short time in which to gain the confidence of school officials, parents, and teachers. They had to develop training procedures for teachers and aides and they had to prepare or select and sequence curriculum materials. This report does not evaluate a sponsor's impact upon parents or the community: it does evaluate the observable effects of the sponsors' influence on the teachers and aides. A second objective of the study is to examine the relationship of implementation and classroom instructional processes to student performance.

The study of implementation has too often been neglected in the evaluation of large-scale social reforms. A problem in educational innovations is that, in too many cases, the programs have not been implemented. Evaluation therefore could not yield information about either effectiveness or ineffectiveness of the innovation. Charters and Jones (1973, p. 6) call the collection of test data an "abrogation of professional responsibility" unless evaluators also measure, or at least

Sponsors of educational models who were observed Spring 1973 were Far West Laboratory for Educational Research and Development, University of Arizona, Bank Street College of Education, University of Oregon, University of Kansas, High/Scope Educational Research Foundation, and Education Development Center.

describe differences between experimental and comparison programs (e.g., in the Follow Through program, to determine whether the behavior patterns of teachers and students are consistent with the planned innovation). The consequence of slighting the implementation factor is that "elaborately designed studies may end up as appraising non-events, with no one the wiser" (Charters and Jones, p. 5). Behind the Classroom Door (Goodlad et al., 1970) and "Planned Variation' From the Perspective of a Model Sponsor" (Weikart, 1973) provide information relevant to the implementation issue. Goodlad's study indicated that although teachers and principals of the sampled schools assumed that they had implemented educational innovations, findings from observations in the classroom revealed quite the reverse—that traditional education practices generally prevailed:

"One conclusion stands out clearly: many of the changes we have believed to be taking place in schooling have not been getting into classrooms...there seems to be considerable discrepancy between teachers' perceptions of their own innovative behavior and the perceptions of observers" (Goodlad et al., 1970, pp. 97 and 98).

Weikart (et al., 1973) stated that Follow Through sponsors learned the hard way that there was "apparently a vast gulf between the smiles and nods of workshop sessions and actual classroom implementation of a model" (Weikart, p. 12). Despite "the enthusiasm of the summer workshops," Weikart found little change in the classrooms a few months later. These findings add confirmation to Mason's (1973) assertion that evaluation studies frequently find that the innovation "was not actually implemented in the manner specified by the developer."

Although the effectiveness and utility of innovative programs for compensatary education have come under serious question of late (Jencks et al., 1972, and Mosteller and Moynihan, 1972), these studies only evaluated the effects of single components of educational systems such as library facilities on science laboratories on achievement scores. They did not evaluate the effects on achievement of total educational programs (such as those represented in Follow Through. As Wiley (1973) has so aptly stated:

"Educators have spent considerable space attempting to show that [Coleman's] influential study of the effects of schooling, the Equality of Educational Opportunity survey, from its original report to the most recent reanalyses of its data, has been so focussed on issues of the allocation, to schools, of resources—such as teacher training, textbooks, physics laboratories, and remedial instruction—that more general and basic sources of school effects, such as quantity of schooling, [and we might add Planned Programs based on Educational Theory] were neglected."

A. Background

Project Follow Through was established by the Congress in 1967 (the legislative authority was the Economic Opportunity Act of 1964, as amended) when it became apparent that a program was needed in the early grades of public school that was articulated with Project Head Start goals and approaches and therefore would provide a comparable educational program for economically disadvantaged children. A clearly stated purpose of the Follow Through program was the enhancement of the life chances of the economically deprived child. Deutsch (1967) hypothesized that

"because of prior deprivation...the 'disadvantaged' child comes to school with a deficit in his readiness to learn and to profit from the academic program, as measured by standardized intelligence and achievement tests; and as they continue in school, this gap between the disadvantaged and his white, middle-class compeers widens. In short, the deficit at entry becomes cumulatively greater with each successive year."

However, an evaluation by Wolff and Stein (1966) of the first summer program of Head Start in 1965 had indicated that the initial gains of the children had not been maintained in the public school. These early findings were believed to indicate that a more sustained program of longer duration might produce lasting gains. The result was the establishment of Follow Through (Although initially planned as a service program, the limited funds appropriated for the program led to the administrative decision by USOE and OEO to establish Follow Through as a social experiment.) as a longitudinal quasi-experimental program that would evaluate the ability of an intervention program to enhance the educational achievement of economically disadvantaged children. The program administration of Project Follow Through was delegated by OEO to OE, where it remains.

Project Follow Through was originally set up in a "planned variation" research design; that is, the goal was to examine the differential effectiveness of programs based on divergent educational and developmental theories. The program began when researchers and other educational stakeholders were invited by the government to submit plans for establishing their various programs in public schools in order to test whether their individual approaches could improve the educational achievement of economically disadvantaged children. From the group that came forward, 22 were selected to implement their programs as Follow Through program sponsors. Eleven of the 22 sponsors had developed and tried their educational concepts in university settings; eight were affiliated with private research institutes and three were community developed programs (see Appendix A).

The sponsors described their educational models to an audience that included representatives from school districts around the country at a conference in Kansas City, Kansas in 1968. Ultimately sponsor models

were implemented in 154 Follow Through projects within 136 urban and rural communities located in all regions of the nation. The Follow Through sponsors then faced the challenge of program implementation—including guiding the behavior of teachers toward specified sponsor goals.*

Upon being chosen by a community, the sponsor had to develop a cooperative relationship with the local school officials, the parents, and
the teachers. He also needed to specify the many aspects of the program,
including the activities that should occur, the materials to be used, the
use of classroom aides, and the approaches to be taken toward children.
Field staffs had to be developed who could train classroom teachers. Some
of the sponsor's training staff were from the local community and others
traveled to the site from the sponsor's home location. Most sponsors had
a two-week summer training session for teachers and aides, followed by
weekly, semi-monthly, or monthly inservice training and supervision of
the teachers.

It was recognized early in the Follow Through program that changing teacher behavior with a resultant change in children's behavior and test scores would take a long time. Thus, it was decided that the sponsors should have a five-year period in which to try to implement their models in the communities.

In earlier evaluations of Follow Through, the major emphasis was to determine child outcome in terms of child performance. Yet it was clear that if such an effect was found, and if the effects were different from one model to another, we would not know what caused the differences. Therefore, we needed to know what was actually happening in the class-rooms. In order to determine whether the sponsors were effective in getting teachers to practice their methods in the classroom, it was necessary to observe the classrooms systematically. We wanted to know whether a child's day in the classroom corresponded with the sponsor's educational prescriptions. It was evident that an observation instrument of process variables was needed because:

- Systematic observation is the only means to document some phenomena, particularly certain behavioral phenomena.
- Systematic observation is a way to obtain an objective description of treatments.
- Systematic observation is a basis for judging the extent to which the intended treatment is actually present.
- Observation can be used as an alternative to more traditional methods for assessing child growth and development.

 $^{^\}star$ Egbert (1973) provides a historical view of Follow Through.

- -

3. The control of the control of

One of the period of the property of the expension of the period of t

ing in the control of the control of

Description of the literac maintains as end, as described to the order of the agency of the control of the cont

Chapter II

DATA COLLECTION '

The plan for the Spring 1973 classroom observation data collection client was based on discussions among Follow Through sponsor representatives and staff members of USOE and SRI. The principal consideration that determined the design of the data collection effort was the necessity for providing information regarding the implementation of the Follow Through sponsored models (see Chapter I, p. 1, for definitions of implementation). In order to evaluate a sponsor's ability to implement his model in several diverse sites, approximately four first and four third prade classrooms in five sites per sponsor were selected for observation. The choice of this sampling scheme was based on an analysis implementation. The choice of this sampling scheme was based on an analysis implementation scores could be detected, with a relatively high degree of confidence, under this scheme.

A primary consideration in the selection of the sample was the occurrence of testing in the Spring of 1973, since investigation of the relationship between teathing procedures and child test outcomes required that there be test scores for the children in the sample.

The data used in this report include observations focused on teaching personnel and individual children, classroom roster data, student test results, and teather and teacher aide survey results (see Table 1).

This chapter contains a description of the selection process of the sample sites, thas rooms, and children, as well as information about the demographic and entering characteristics of the children. It also describes the Classroom Observation Instrument (COI) and the procedures used in collecting the study data. The COI and the procedures used in the 1971 Follow Through classroom observation study were slightly modified for the Spring 1973 study.

i Iy iyali

- 1. Selection of Sites, Classrooms, and Focus Adults and Children
 - a. Rationale for Selection of Sites

The primary considerations for selecting sites were:

Lable 1 THE SEMBLE - CALL SECOND SPRING 1973 IN CLASSROOM OBSERVATION ANALYSIS

		regnitive 'est 'ata First Grade Third Grade Seline* Baseline*			Teacher/Aid Rostered Ouestionnal			
****	Scools Site	F71	\$73	F69	170	\$73	172	\$73
west 1	a05							
52.11	Serkeles, Calif.	-	λ	3	_	Х	Y	х
6294		X	X	Х	_	Υ	X	X
0207	lebanon, N. 1.	-	X	Х	-	X	X	X
9299	•	X	`	-	-	3	Х	X
0213	Talona, washi	X	Y	١	-	Х	X	Х
niversity	of Arizona							
305	hes Moines, Iswa	.5	Á	-	_	Х	X	y
• 5:37	Fort Worth, Teras*	-	-	-	-	-	Х	-
يعوون ١٠	·	-	-	-	Х	-	x	-
23,14	· · · · · · · · · · · · · · · · · · ·	•	У	Υ	-	,	Х	X.
	bewark, h.J.	X	У	-	-	Х	Υ	X
9 .1 5	Lim oln, Nebraska	\	X	-	-	λ	Х	х
Bank Stree	et joilege				•			
9592	Brattlebors, Vermint	Х	λ	X	-	Х	x	x
	Fall River, Miss.	λ	*	-	-	Х	Х	y
	New York Little P.A. 243F	X	λ	Х	-	***	Х	X
	Philadelphia II, Pa.	A	λ	X	-	×	X	X
.5:.)	Tuskegee, Ala.**	-	Á	-	×	Х	Х	x
	of regan							
57.3	f. St. Iouis, Ill.**	-	х	-	Х	X	x	X
5757	New York City, P.S. 137F	1	Х	Х	-	***	Х	X
97.59	Racine, Wis	-	X.	Х	-	Х	X	Х
2711	Tupelo, Miss.**	<u>.</u>	У	-	Х	Х	X	X
3719	Providence, R.I.	Х	Х	-	-	X	Х	х
* Iniversity	of Fansas							
7ª):	hew York City, P.S. 77X	x	X	Х	-	**	٧.	X
3803	Philadelphia VI. Pa.	у	¥,	١.	-	X	Х	Х
್ರಿಕ್ಟಿಗಳ		X	X	Х	-	Х	X	X
26.76		<i>y</i>	Υ	Х	-	X	X	X
- <u>u</u> *	louisville, Fr.	Х	X	X	-	Y	Х	Х
1.48, 7.78								
	Greenwood, Miss.**	-	₹.	-	Y	Х	X	Х
595		v	λ	-	-	Х	¥	X
964		•	λ	Κ	-	***	X	X
196	reele. tolo.	A y	X	X	-	X	x	X
J977	penver, folo.	,	X	-	-	Х	x	x
žas ation	Development Genter							
.1		Ψ,	*	•	-	΄ Χ΄	X	Х
	Philadelphia II. Pa.	Y	•	•	-	Y.	X	X
.: 16		*	Κ.	-	-	Х	X	Х -
::27	Capabala Texas	2	*	-	<i>-</i>	X	X	Ϋ,
1104	Trittiels, 5.0.**	-	١,	-	Х	Х	х	у

^{**} The salts Beach. But site began Kindergarten in 1970-71 school year.

^{***} Thir, grave New York City late are not used in the analysis since a different form of the MAI was abstrictered.

- That they were among the sites where pupil testing was to occur in Spring 1973 as part of the Follow Through evaluation;
- That each sponsor would then have a more balanced geographic distribution of sites, which included urban-rural and north-south projects;
- That each sponsor would have at least two sites which he considered well implemented.

An attempt was made to select sites that previously had been observed so as to extend the longitudinal data base for possible future observation studies.

Seven sponsors were selected for the study because they each had at least five sites that met the criteria. Six sponsors had five sites included in the study sample and University of Arizona had six sites, making a total sample of 36 sites. Within each Follow Through site, a sample of up to four first grade and up to four third grade classrooms were selected for observation, making a total of 136 first grade and 135 (Table 2) third grade classrooms observed. In each classroom, four children as well as the adults were observed. Table 2 lists the selected sites by sponsor and the number of classrooms observed by grade level. In addition, one Non-Follow Through classroom each at the first and third grade levels in each of the 36 sites (a total of 72 classrooms) were scheduled to be observed as comparison classrooms.

Locating adequate comparison groups is always a problem for large scale field studies. With assistance from a panel of educational researchers* SRI staff made a decision to pool the scores of Non-Follow Through classrooms over all sites as the standard of comparison rather than having a separate onsite comparison for each site. Some panelists suggested that a set of comparison classes for each Follow Through site be provided so that similar site characteristics would be assured. However, this alternative presented several problems: (1) The total number of Non-Follow Through classrooms was not adequate if they were divided by region or by urban/rural characteristics, (2) the relative unavailability of baseline test data due to interschool dispersion of comparison group children subsequent to the kindergarten or entering-first grade year. and (3) if the comparison were drawn from a set of Non-Follow Through and Follow Through classrooms, there was the problem of overlap in implementation processes if Follow Through classes of other sponsors were included in the pool of potential matches based on demographic characteristics. A common Non-Follow Through group, on the other hand, has the

^{*}The panelists included: Eugene Tucker, Louise Eckerson, and David Iwamoto of OE; Robert Linn, University of Illinois; Andrew Porter of NIE; Jane David of Huron Institute; and Richard Brandt of University of Virginia.

Table 2
CLASSROOM OBSERVATION SAMPLE, SPRING 1973

			llow Through
ι	ponsor and Sites	Classes First Grade	
	portser and order		
Far West L R&D	aboratory for Educational		
0201	Berkelev, calif.*	4	4
0204	Duluth, Minn. * Lebanon, N.H.	4	4
0207	Lebanon, N.H.	4	4
0209	Salt Lake City, Utah	4	4
0213	Tacoma, Wash.	4	4
University	of Arizona		
0305	Des Moines, Iowa	4	4
0307	Fort Worth, Texas*	4	4
	LaFayette, Ga.	3	4
0309	Lakewood, N.J.	4	4
0311	Newark, N.J.	4	4
0316	Lincoln, Nebraska	4	4
Bank Stree	t College		
0502	Brattleboro, Vermont	3	3
	Fall River, Mass.	4	4
	New York City, P.S. 243K	4	4
0508	Philadelphia Il, Pa.*	4	4
0510		4	4
University	of Oregon		
0703	E. St. Louis, Ill.	4	4
0707		3	3
	Racine, Wisc.	4	4
0711	Tupelo, Miss.*	4	4
0719		4	4
University	of Kansas		
0801	New York City, P.S. 77X*	2	2
	Philadelphia VI, Pa.*	4	4
	Portageville, Mo.*	4	3
0806		4	4
0807		4	4
High Scope Foundation	Educational Research		
0901	Greenwood, Miss.*	4	4
0902	Ft. Walton Beach, Fla.*	4	4
0903		3	4
0906	•	3	3
0907	Denver, Colo.	4	4
Education	Development Center		
1101	Burlington, Vermont	4	4
1103	Philadelphia IV, Pa.*	4	4
1106		4	4
1107		3	3
1108	•	4	2
	Total	136	135

^{*} These sites have been observed previously. .

advantage of providing a constant measuring tool that doe not vary across sponsors or sites. On the basis of this discussion, the conclusion reached was that pooled Non-Follow Through classrooms would be used for purposes of comparison. $\tilde{}$

The pooled Non-Follow Through offers a reasonable match on demographic characteristics for many sites, but as shown later (Tables 3 and 4 on pages 14 and 15) this technique does not provide a good comparison for such siles as Fort Walton Beach (0902)** where the mean baseline WRAT score for first grade children is 13 points lower than the mean score for pooled Non-Follow Through children, or for Lebanon (0207) where the mean for the black population is zero compared to a mean of 48% for pooled Non-Follow Through. Given the deficiencies of the available comparisons, the pooling procedure seems the best of the two choices. Appendix B provides discussion of the effect of demographic characteristics on classroom control systems and the positive or negative affect displayed in the classrooms. This discussion indicates that the effect of entering child characteristics (baseline WRAT, race, sex, bi-lingual language, whether or not the child had preschool) on observed classroom processes is slight. For the purpose of this implementation report (since child demographic characteristics apparently do not affect process data), we conclude that pooled Non-Follow Through classrooms form an acceptable comparison group for Follow Through classrooms even though demographic characteristics are not matched.

The decision to conduct observations at two grade levels was based upon the rationale that one grade level alone would not permit a valid generalization about the degree of model implementation. It was felt that for developmental reasons implementation at the first grade would probably be different from implementation at the third grade. First grade curriculum often focuses upon developing basic skills while third grade curriculum focuses upon using basic skills. Reasons for choosing the first and third grades rather than kindergarten and second grade were:

- It was important to see how reading and math are taught in the first grade since, in so many cases, reading and math scores are used as the basis for judging school success. Thus, how these basic skills are taught at the lower level is of interest to the study.

Other evaluations of Head Start and Follow Through have also used a pooled Non-Follow Through comparison (Smith, 1973; Stearns, 1973; and Stallings, 1973).

^{**} See Appendix A for a listing of sites by sponsor and code.

STATISTICS OF DEBOMBAPHIC AND BASELINE TEST FOR FOLLOW THROUGH STEES AND FOOLED NON-FOLLOW, THROUGH Table !

Imp	ଉଦ୍ଦେଶ ଫ ଫ	0 K V V O V	nsasa	જ જ જ જ જ	~~~~	<i>ም</i> ነብ ነው ጥ ማ	00444
Fall '71 Percent Children		1 2 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 4 7 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	45 uh	75 77 8 8 7 7 8 8 8 7 7 8 8 8 8 9 7 7 8 8 8 8 9 7 8 8 8 8	58 03 61 55 41.57 43 36	63 83 52.48 55.14
Baseline WRATFall '71 Percent	2.11 2.86	3,55 2,38 2,33	5.14 1.17 2.96 8.83	13.30	3.50	1.55	2.69 1.36 3.61 8.75***
Basel	33.36 31.85 32.80	31,99 24,97 28,09 32,62	27.35 24.43 32.50 27.95	29.04	36,82 27,63 31,83 27,04 22,80	18.44 33.47 30.55 25.03	25.37 31.41 23.31
at 1st ot Eng S.D.	7.60 0.00 0.00 0.00 0.00	20.80 0.00 0.00 0.00 14.10 7.17	16.72 0.00 22.29 0.00 0.00	45 E 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11.77 0.00 0.00 0.00	10.49 1.79 2.63 0.00 14.97	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Percent Lang Not Mean	2,43	7.73 0.00 23.00 0.00 17.77 1.09	33.70	2.20	35.47 00.00 00.00 1.43 0.00	6.74 1.34 1.34 0.00 20.36	2.17 0.00 7.78 6.67 0.00 8.41
Black 1 S.D	24.15 13.78 4.35 0.00 17.26	38.48 23.74 40.34 15.75 10.83	47.98 0.00 0.00 0.00 1.92 25.42	18.24 3.70 3.98 20.53 12.31	30.19 3.35 1.30 8.57 7.74 1.85	39.70 29.41 12.68 0.00 0.00 17.13	37.13 2.51 10.88 7.03 3.42 14.77
Percent Black Mean S	21.53 53.16 2.17 0.00 15.65 36.64	47.65 52.75 73.96 25.35 76.30 7.61	59.02 0.00 0.00 99.04 81.33	33.92 98.15 97.70 67.73 81.54	78.27 44.37 99.31 33.87 97.84	58.72 82.58 78.01 100.00 0.00 28.65	55.79 20.74 90.74 90.47 27.93 60.74
ent thool S.D	22.14* N.A. 4.97 11.06 19.32 22.98	26.73 25.26 7.10 8.26 5.15 32.42	23.67 10.43 2.85 2.95 21.75	30.60 23.69 33.46 18.91 2.94	18.96 13.08 16.09 5.01 19.77	30.34 20.30 20.00 25.71 6.86	17.50 10.81 8.87 26.43 4.33
Preschool	46.02* N.A. 52.04 19.81 68.19	49 86 38.76 80.26 51.73 25.94 73.04	43.53 26.83 36.07 46.43 30.02	66.00 47.02 42.63 74.50 62.56	64.09 64.09 25.56 52.87 67.08	60.33 90.60 90.00 68.27 55.73	62.01 57.79 53.42 86.32 54.76 55.99
Months of F72	2.47 1.92 1.75 1.73	3.82 .52 .36 .21 .44	3.65 1.14 1.44 2.94 2.94	2.54 0.00 5.19 .30 .74	74 4 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.37 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	4.74 3.74 3.25 3.23 1.56
Average In FT as Mean	7.79 11.67 7.73 6.29 6.15	466 466 466 466 466 466 466 466 466 466	6.83 9.47 8.37 8.37	12.56 12.50 4.55 4.95 10.33	7.53 8.27 8.27 7.82 6.94	4.59 0.00 8.78 7.38 3.11	7.61 7.98 9.16 7.08
e Age hs) S.D.	1.89	1.92 1.38 1.45 1.03	1.48 .67 .70 .63	94 960 188 168 168	2.17 1.00 .33 .74 .65	1.85 .96 .95 1.07 1.02	6.21 6.65 6.93 6.93 1.42 2.28
Average Age (months)	81 43 78.76 82.53 83.53 80.61	80.42 87.16 82.45 80.87 78.53	78.96 78.51 80.19 77.67 77.64	79.19 78.93 79.72 79.69	79.05 77.19 77.09 82.10 80.23	79.68 78.41 78.65 78.00 81.90	79.84 82.40 76.99 78.54 79.38 81.80
Size S.D.	2.91 2.45 1.56 3.77	3.54 3.11 1.71 1.89 1.89	4.57 1.53 1.24 3.37	3.51 2.87 2.31 3.30 1.91	4.19 1.63 1.63 2.04 5.26	5.13 7.87 1.00 4.00 2.14	6.98 2.87 1.41 1.69 10.69 1.24
. lass	21 -6 24-60 22-00 27-25 26-75 16-53	23.52 18.53 23.75 25.75 27.00	24.63 17.67 21.25 29.25 28.00	24.31 27.75 27.67 27.67 24.25 22.50	30.05 30.50 34.00 25.75 32.75	24.33 25.25 19.00 25.00 30.00 24.00	28.52 21.75 33.00 25.00 37.33 27.75
Number ot First Grade (Tassex	FAR WEST LAM. Jornil 0201 Berkeley 0204 Duluth 0207 Lebanon 0209 Salt Lake City 4 0213 Tacoma	0.0 or ARIZONA Total 0.05 Des Motines 0.097 Fort Worth** a 0.180 Laksyette** 3 0.099 Lakewood 0.011 Newark a 0.016 Lincoln a	9ANK STREET Total 0502 Brattleboro 3 0504 Fall River 0506 NYC, P.S. 243K * 0508 Philadephia II * 0510 Tuskegee**	19 OF OPLION Total 0703 E. St. Louis 0707 NVC, P.S. 137K 3 0708 Racine 0711 Tupelo** 0719 Providence	U OF KAN545 Total 0801 NYL, P.S. 77% 2 0803 Philadelphia VI 4 0804 Portageville 4 0806 Kansas City 4	HIGH SCOPE Total 0901 Greenvood** 1 0902 Fr. Walton Beach 0903 NYC, P.S. 92M 3 0906 Greeley 3	1001 Burlington 1001
I	400000	\$ 00000	€ 00000 ®	5 0000	್ರಹಕಕಕೆ ೨	-00000 T	2011 110 110 110 110 110 110

^{*}Be.kelev was not included in this spunsor computation.
**
Sites which have children entering school at the first grade level rather than kindergarten

29 Non-follow Through classrooms had baseline text data.

lable 4

STATES TO COT DEMOCRAPH. AND SAVELINE TEST FOR PORTOR PHROUCH CLIVES AND PORFED NON-FOLLOR PHROCED. THERE GRADE.

	면	÷ 1, •	, J or or o∧ ▼		17 W 10 W 1*	VV V 1 4	เกเกรา	የ የ የ የ የ የ የ
			*	; ³	: :		*	*
99.		4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	38. 12.00 50.00 50.00 64.00	* * * * * * * * * * * * * * * * * * *	34.78 (0.51 79.25***
Basellin nRAIFi	٥	7 * 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 50 50 50 50 50 50 50 50 50 50 50 50 50 5	33.55 t 25.55 t 3.55 t 4.55 t 5.55 t	2 66 5 18 3 25	8 18 3 32 2,95 +
Base, 11	4r dr	42.83 42.90 42.53 35.26	36.34	39.64 30.54 30.54	47 20 33.43 33.48 24.55	40 49 28,69 43 29 34,37 31,92	28 62 -1 84 -13.74	25.40 25.40 33.36
t lst	2 .D.	00.00 00.00 00.00 00.00 00.00 00.00	6.57 0.00 15.22 1.56 3.57 3.57	21.98 0.00 23.46 1.85 3.95	22.22 2.00 2.00 0.00	07.4.000	00000	2.72 0.00 0.00 0.00
Percent 1st	Yean Sot ing	0.00 0.00 1.00 3.13	2.78 0.00 7.61 1.79 1.85	76.1 00.0 00.0 00.0	₩00 ₽000 70 ¶0000 70 ¶0000	3.64 2.00 2.00 2.00 2.00 2.00 2.00 2.00	000000000000000000000000000000000000000	800 A D T T T T T T T T T T T T T T T T T T
ent	2.21 12.12	24.72 8.18 0.00 0.00 9.16	36.05 20.55 47.21 21.04 3.70 9.70	28.70 00.00 00.00 00.00 00.00 00.00	18.66 0.00 1.99 15.78 13.18	31.18 10.05 10.05 10.00 10.00	23.32	114 A A E 4 A A A A A A A A A A A A A A A
Percent	Mean	22.20 59.83 0.00 0.00 13.45	46.15 59.18 20.00 42.75 98.15	62.02 0.00 0.00 94.07	82.80 100.00 94.59 56.27 82.23	80.25 43.38 98.77 77.59	987.04 96.48 96.85	57.42 6.27 96.40 96.53 55.09
rnt.	S.D.	11.93* N.A. 6.96 4.12 17.49	26.37 115.75 29.75 29.75	27.91 15.25 26.33 25.66 12.82	27.06 12.10 27.65 13.76 31.98	23 47 16.67 16.53 5.97 9.54	14:77 50.00 17.01 15.51	31,37 31,39 31,39 11,19 5,65
	Yean S.	39 76* N.A. 40.36 29.18 42.23	46.06 33.92 54.39 37.77 35.94 91.27	48 39 22 28 22 17 96 41 01	60.81 73.08 33.91 70.72	36.64 53.73 34.81 27.59 9.16 64.21	19.45 25.00 40.49 51.60	\$2.92 41.21 31.11 70.08 79.29
Months	Mean S.D.	4.70 3.99 2.11 1.35 1.82	8.03 11.01 11.01 10.17	24 8 8 6 0 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.48 3.06 2.06 2.06	1.15 1.75 1.15 1.78	20.00	200 - 1
Average	Kean A	17.83 24.39 18.91 15.05 13.76	16.19 10.77 13.75 16.83 14.52 23.33	21.20 21.53 21.53 15.42 24.58 27.07	22.01 24.28 9.49 29.47 10.82	20.63 20.50 16.06 24.18 18.66 22.60	16.33 20.11 24.63 7.88 12.43	24.40 25.43 22.91 29.84 27.93 17.02
, 48e	S.D.	2.21 70 1.38 1.52 1.69	2.12 2.10 1.33 2.09 2.09 1.47	2.21 2.25 2.25 2.62 1.07	3.19	2	1.45	11.22
Average Age	Mean S.	105.89 102.97 105.63 108.67 105.72	106.04 107.70 107.45 105.54 104.64 103.57	103 84 103.02 105.82 103.09 101.71	103.09 104.17 102.51 104.77 104.72	103.48 101.18 101.19 106.39 105.55	102.52 103.39 102.14 107.01	102.08 101.12 102.70 102.79 100.78
	S D.	3.71 2.08 2.08 2.75 1.29	3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		24-1-25-1-25-1-25-1-25-1-25-1-25-1-25-1-		2.08 1.29 1.15 3.30	20.00 20.00 20.00 20.00 20.00 20.00
	Wean	23 00 25.50 25.25 21.25 24.50	23.79 22.00 21.75 27.50 24.75 25.75	26.68 15.33 26.50 26.50 36.75	23.84 25.51 31.00 23.00 18.75	30.47 30.00 36.25 29.00 20.00 20.00	25,50 21,50 28,33 29,33	26.17 22.75 27.75 22.00 34.67 25.50
humb. r	of (lasses	****	*****	m + + + +	4m444	N4M44	* * * * * * * * * * * * * * * * * * *	_ ***m~ {
ž	•	d• Total v ke Cfty	A fotal ines** orch** ite**	Total eboro iver .S. 243K elphia II	OREGON Total E. St. Louis* NYC, P.S. 137K Racine Tupelo** Providence	S. 77K elphia VI eville City ille	Greenwood** Ft Walton Bea.* NYC, P.S. 92M Greeley Denver	Total Ston elphia on d**
	Third Grade	FAR WEST LAU. Total 0201 Berkelev 0204 buluth 0207 Lebanon 0209 Salt Lake City 0213 Tacoma	U 1F ARIZONA Total O105 Dea Moinea 0107 Fort Worth 0108 LaFayette 0109 Lakewood 0111 Newark 0106 Lincoln	NAME STREET TOTAL 0502 Brattleboro 0504 Hall River 0506 NrC, P.S. 243K 0508 Philadelphia III 0510 Tuskegee ^{AA}	-	0801 NYC, P.S. 77Y 0803 Philadelphia VI 0804 Portageville 0806 Kansas City 0807 Louisville	0901 Greenwood** 0902 Ft Walton Bea;* 0903 NYC, P.S. 92M 0906 Greeley	101 Burlington 1101 Burlington 1103 Philadelphia 1106 Paterson 1107 Rosebud** 1108 Smithfield**
	F	6.4R # 0201 0204 0207 0209 0213	0305 0307 0308 0309 0311	8ANK 0502 0504 0506 0508 0510	U OF 0703 0707 0708 0719 0719	0801 0803 0804 0804 0806 0807	0901 0903 0903 0906 0906	1101 H 1103 H 1106 H 1106 H 1106 H 1106 H 1106 H 1108 H 11

**. and Standard Deviation for F76 Baseline WRAI for those third grade Non-Follow Through children who entered school in Kindergarten. (N=18)
**Asan and Standard Deviation for F76 Baseline WRAI for those third grade Non-Follow Through children who entered school in first grade. (N-6)

- Since the third grade classes were terminating Follow Through and were being tested, and since the primary concern of the total Follow Through evaluation was to determine the program's effect on these children, clearly the third grade classes should be observed.

The decision to observe four children per classroom was made at a time when we were planning to relate classroom process to outcome scores, using the child as the unit of analysis and using child focus data. For such an analysis, the decision was made to use four children per classroom and obtain five Five-Minute Observations (FMO's) per child in an effort to obtain a more stable estimate of each child's behavior. This approach was subsequently dropped in favor of using the classroom as the unit of analysis.

The selected COI sample allowed for maximum overlap with the Spring 1973 pupil test sample. Such an overlap was essential in order to examine the relationship of classroom process and pupil outcome. Thus, students in 34 of the 36 observation sample sites were tested. The two exceptions were Fort Worth, Texas, and LaFayette, Georgia, both of which were University of Arizona sponsored sites. These two sites were chosen in order to provide continuity with observations conducted in earlier years; to provide better geographic balance in the observation sample; and to provide part of the statistical base for examining the question of exportability of the University of Arizona model.

b. Criteria for Identifying Classrooms and Children

The primary consideration in identifying the classrooms and the children to be observed was the availability of baseline data. The baseline data consisted of test and/or parent interview data collected on children in the fall at the entering grade level. In those cases where parent interview data were not available, test data alone were accepted as meeting the baseline data criteria.

Baseline test data were not, however, available in every project for children in both the first and third grade classrooms. As shown in Table 1, while there were baseline data for 25 first grades and 25 third grades, there was overlap in only 16 of the 36 projects. The percent of children at each site with baseline data appears in the second to last column on Tables 3 and 4. In projects where baseline WRAT data are available, the percentage of children for whom WRAT scores are available is an approximate indicator of the proportion of children within the observed classrooms who had been enrolled in Follow Through since their entry into school as kindergartners or entering-first graders. As may be seen by comparing Tables 3 and 4, the proportion of such children was generally greater in the first grade.

In those projects where baseline data were not available for a specific grade level, the Follow Through classrooms were nominated by the sponsor and the Non-Follow Through classrooms were selected by the SRI Field Operations staff. The children selected for individual child observations in those classrooms were chosen on a random basis from classroom roster lists by RI staff.

- 1) Classroom and Activity/Adult Selection—In the selection of classrooms, the ideal situation was one in which baseline data were available for all the children. However, as it has a way of doing, reality interfered: there were classrooms that met the ideal and some that fell short. In order to have a sufficient number of classrooms in the study sample for each site, some adjustments were necessary. For both Follow Through and Non-Follow Through classrooms in which there were baseline data on the children, selection was made as follows:
 - First priority was given to classrooms having the largest number of children for whom both parent interview and test data were available at entering grade level.
 - Second priority was given to classrooms having the largest number of children for whom test data were available.

For those Follow Through and Non-Follow Through class-rooms lacking baseline data, selection was made as follows:

- The Follow Through classes were chosen by the sponsors.
- The local Follow Through Director nominated comparison classrooms at each grade level consisting of children of comparable socio-economic background as Follow Through children. The most comparable classroom was selected by SRI's Field Operations staff for observation and another classroom served as an alternate.

The selection of a classroom automatically "selects" its teacher, aide, and/or volunteer to be observed while she is engaged in specified classroom activities during the two observation days.*

^{*}See page 37 for more detailed explanation of the adult/activity observation.

- 2) <u>Selection of Children</u>—In order to provide the necessary sample of four children to be observed, a sample of eight children per classroom was drawn at SRI. The larger sample ensured that four children would be present in the event that illness or other factors caused a child or children to be absent on the observation day. The criteria for selecting the eight children were as follows:
 - Priority 1 children were those for whom there was a complete baseline data history.*
 - Priority 2 children were those for whom there was a partial baseline data history.
 - Priority 3 children were those with no data history but who had been in Follow Through for the longest period of time.
 - Priority 4 children were randomly selected children who met none of the above criteria.

In classrooms where baseline data were available, within the Priority 1 category the eight children selected were assigned a position of 1 to 8 on a random basis—then the same procedure was used in Priority 2, 3, and 4 to complete the list of eight children. Of course Priorities 2, 3, or 4 were used only in those cases where there were not enough children in the preceding categories to complete the list of eight children.

In classrooms where baseline data were not available, the eight children were selected randomly from the classroom roster or class list** and listed in the order in which they were selected. The final ordering of children was made alternately by sex; i.e., if the first child selected was a girl, the next would be a boy, then a girl, until there were eight children on an "Individual Child List." However, children with the most complete data histories were the first priority, and a child would be chosen on the basis of the data history rather than sex. The child identification (I.D.) numbers, as listed on the Individual Child List, also are used to identify the children on the classroom rosters and in the data bank.

^{*}Tables 3 and 4 present the percent of children at each site who have baseline test data.

^{**}A class list consists of updated roster information collected in Fall 1972 on all Follow Through children. The classroom roster provides a demographic description of the classroom and serves as a control for subsequent testing and data processing activities. Classrooms which were not rostered in Fall 1972 were rostered in January 1973.

2. Demographic and Entering Characteristics

In order to evaluat? the effect of a classroom process or a program, it is necessary to examine the uniformity of classroom procedures* and also to take account of differences in the characteristics of the site and of the children in the sample. Inevitably there are gross differences in child and site characteristics since each sponsor has attempted to implement his educational model in several regions of the country and in diverse communities.

The Follow Through program is designed to meet the needs of children from low-income families. A principal objective of the program is to sustain and supplement in the early grades the gains made by children who have had a full year's experience in a Head Start or comparable preschool program.** These criteria generally determine which children participate in the Follow Through program in a particular site. Note, however, that within individual sites, and across sites nationally, the Follow Through child sample is not controlled. As a result inter-site differences exist in basic child characteristics such as entering ability, preschool experience and language spoken in the home. Such differences also exist between Follow Through sample groups and groups of Non-Follow Through comparison children.

In order to measure the extent and type of differences in entering characteristics, comparability assessments were made of (1) all Follow Through sites, and (2) pooled Non-Follow Through classrooms. Most of the selected demographic and entering characteristics are derived from data found on the Classroom Rosters which describe the 271 Follow Through classrooms and the 71 Non-Follow Through classrooms in the observation sample.*** The data were collected in Fall 1972, and represent classroom and child characteristics. Means and standard deviations based on data from the four classrooms for each grade were computed for each site. The classroom was the unit of analysis. Tables 3 and 4 present the summary statistics of first and third grades for the size of class, average age, months in Follow Through as of Fall 1972, percent with preschool experience, percent of black students, percent of students with

^{*}Uniformity of the data collected is studied in Chapter IV.

^{**}Follow Through Program Guidelines, dated February 24, 1969 (draft) require that at least half of the children in each Follow Through project must be graduates of a full-year Head Start or comparable preschool program.

^{***}The information for one Non-Follow Through classroom in the sample was lost in the mail.

····

-

The construct of the second construction of the test introduction of a construction of the construction of

Leafly there or great contented among site description of all ferromally confidences will be informable confidences to find a factor of the effective section of the factor of the effective of the effective section of the effective and the content and the effective are confidenced as a factor of appropriate the factor of an effective were computed for each sport of an end as applied Follow Through and pooled Fon-Follow Through. Estimates a factor of an end as applied Follow Through and pooled Fon-Follow Through. Estimates a factor of a facto

The Police of the control of the con

AND ALLESSAND CONTROLLED INSTANCES OF ACCUSED A PROVIDE A PROVIDE AND ACCUSED ACCUSED AND ACCUSED ACCUSED AND ACCUSED ACCU

- ne ne ne ne vivil i stat de la companya de la compa
 - = . - .

- The Classroom Observation Procedure (COP), which consists of three parts: the Classroom Check List (CCL), Five-Minute Observation Presamble (PRE), and Five-Minute Observation (FMO).

In a single observation day, the CSI and the PEI are completed once and the COP (which includes the CCL, the PRE and the FMO) is completed four times an hour.

1. Classroom Summary Information (CSI)

The Classroom Summary Information section is designed to allow for the coding of the number of children enrolled and the number present on the observation day; (2) the number of teachers and aides assigned to the classroom; and (3) the number of volunteers or visitors present on the observation day. Also recorded in this section is the length of the school day.

2. Physical Environment Information (PEI)

The Physical Environment Information section provides space for coding information about the classroom setting, which includes the presence and use of specific equipment, instructional materials, games, toys, and displays in the classroom. The observer also records whether the classroom has movable tables and chairs and/or stationary desks in rows, whether seating is assigned during part of the day and/or self-selected, and whether children are assigned to groups by the teacher or aide and/or select their own work groups.

3. Classroom Observation Procedure (COP)

The CUP consists of three sections of codes that describe the classroom structure and process:

- Classroom Check List (CCL)
- Five-Minute Observation Preamble (PRE)
- Five-Minute Observation (FMO)

The classroom observer completes the entire COP--the CCL, the PRE, and the PMH-approximately four times an nour or 16 to 20 complete COPs over 4-5 hour observation day.*

^{*}The number of observations cannot be fixed because some hours are interrupted by recesses or other out-of-classroom events.

a. <u>Classroom Check List (CCL)</u>

As noted above, the Classroom Check List (CCL) is completed approximately four times an hour. The CCL is referred to as a "snapshot" of the classroom because it allows for coding relatively stable "pictures," at a given point in time, of the activities engaged in and the distribution of the adults and children in the classroom. A record is made of activities occurring, of child and adult grouping patterns, of adult roles, of child involvement, and of the materials used in the academic activities (see Figure 1). For example, several activities may be taking place simultaneously in the classroom: a small group of children may be doing crafts under the guidance of a teacher aide, the teacher may be instructing a large group (over 8 children) in reading, three children may be working independently on a science project, and four children may be using trucks and blocks in independent play. In this case, all of these activities and the individuals involved in each would be recorded on the CCL.

b. The Five-Minute Observation Preamble (PRE)

The FMO preamble is designed to record information about the activity that the preselected focus person—whether child or adult—is actually engaged in (see Figure 2). This is done four times an hour. The observer focuses on the selected person just before the five consecutive minutes of observation begins and records: whether the focus person is an adult or child and his/her identification number; the CCL code number for the activity engaged in; the role of the adult—that is, whether the teacher, aide, or volunteer is observing, participating, or directing the activity, or not involved; the number of children involved; whether the activity in progress is a continuation of the previously observed activity (i.e., the preceding FMO); and the time the FMO was started. If, during the 5-minute observation period, there is a change in the activity in which the focus person is engaged, the observer records the activity actually taking place at the end of the time period in the designated space at the end of the FMO.

c. The Five-Minute Observation (FMO)

The last part of the COP, the Five-Minute Observation (FMO), is coded four times an hour immediately after the Preamble and is used to record interactions among people in the classroom. One person, the preselected focus adult or child, is followed throughout the 5-minute observation period and the activities and interactions of which he/she is a part, and only these, are recorded.

FIGURE 1 CLASSROOM CHECK LIST

PREAMBLE

00 - The original class teacher
Focus Person Codes: 1.76 - Child codes
77 - Volunteer
88 - Teacher other than designated class teacher
99 - Aide to teacher

FOR NCS USE ONLY	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	00000	00000	99999	99999	000000	0000	0000	ED	Minute		00000
ne						pox)		0000		IME STARTED	_		9 9 9
Focus Person's Name and Number						(Do not write outside this box)		Number of Children (1) (2) (3)		F	Hour	99999	99999
Focu						(Do not		Num		Not Involved	0	0	0
FOCUS PERSON	ì	5	nteer		CONTINUATION	OF PREVIOUS	FOCUS ACTIVITY			Observing	0	0	0
Focus	Child Child	Arde O	O Volunteer		CONTI	OF PR	FOCUS	O Yes	% O	Participating	0	0	0
Focus Person Code	@ (- @ (-	0 0 0 0	(e) (e)	<u> </u>	<u>ඉ</u>	(e) (e) (e) (e) (e) (e) (e) (e) (e) (e)	(O)	@ @	<u></u>	Directing	0	0	0
Activ	@ G @ G) (0 (2) (0)		9	<u>ඉ</u>	_ 	000	@ @	6	ADULT	Teacher	Aide	Volunteer

FIGURE 2 PREAMBLE TO THE FIVE-MINUTE OBSERVATION

(i) The Instrument—The FMO consists of 76 frames, with four sections in each frame, specifically for recording four types of categories: "Who does the action?" "To whom is it done?" "What is done?" and "How is it done?" These categories are coded in sequence to form a sentence (subject, verb, object), which represents an interaction. The subsequent frame is used to code a response (if any) or, in the case of a one—way communication (such as a teacher lecturing or a child manipulating materials), continues to describe the primary action. Since several of the educational models being evaluated encourage the mobility of children and adults, it was necessary to devise components in the instrument to record movement. Nonverbal behavior and child—to—child interaction are also considered important components to be observed.

The FMO observations are structured as a language, with the codes forming intelligible sentences. The \underline{Who} and \underline{To} whom codes are used to designate the participants in an interaction. These codes make it possible to designate the person or group of persons initiating or receiving an action. The letter \underline{T} is used to designate the teacher as the initiator (\underline{Who}) or receiver (\underline{To} whom), and \underline{M} refers to such machines as typewriters, tape recorders, and filmstrip viewers. The same applies to the use of \underline{C} for child, \underline{S} for small group, and so on.

The <u>What</u> codes are used to designate the kinds of interaction—such as questions or statements—that have occurred between the participants. The <u>How</u> column codes are modifiers. They supply additional information about the initiator in the <u>Who</u> column or the interaction that was coded in the <u>What</u> column; for example, they indicate positive or negative effect, subject content, control systems, and use of objects.

Examples of coded frames are shown in Figure 3. They demonstrate how the \underline{Who} , $\underline{To\ whom}$, \underline{What} , and \underline{How} codes can be strung together to form interaction sentences.

(ii) The Language--The significant features of the FMO language are that the categories are carefully defined to include elements of educationally significant events; the language of the categories has a predefined syntax; and the collection of data (code sentences) in sequence enables strings of sentences to be formed.

The Vocabulary—The vocabulary of the FMO language identifies events and participants in the classroom. The first two categories of the vocabulary designate the classroom roles of the people involved:*

^{*}Operational definitions may be found in Appendix D.

A complete interaction sequence will take two or more frames showing at least the initiation of an interaction and the response to that initial interaction. An example of an interaction sequence is shown below.

Teacher

"Johnny, what is two and two?"

The teacher (T in the Who column) is initiating an interaction with a child (C in the To whom column) by asking a simple question (1Q in the What and How columns). (A more detailed explanation of the codes appears in Appendix D.) This is coded in shorthand as TC1QA. It is coded in the frame as shown below.

12	Who	To Whom	What	How
ାତ		● ©②	60399	0000 0000 0000 6 00

Johnny

"It is four,"

Johnny (C in the Who column) responds (3A in the What and How column) to the teacher (T in the To whom column). This in shorthand is CT3A. It is coded in the frame as shown below.

13	Who	To Whom	What	How
(3)	● ② ②		10●06 60890 00 ©8	

Teacher

"That is correct, Johnny,"

The teacher (T in the Who column) tells Johnny (C in the To whom column) that she acknowledges (7A in the What and How column) his correct response. This in shorthand is TC7A. It is coded in the frame as shown below

14 v	/ho	To W	hom	W	/hat			Но	w	
© ● 6 ③ © 6 © © ©	0	(1) (1) (2) (3) (2)	②	00 60 00	89	0	<u> </u>	(P)	⊕ 	9 9

FIGURE 3 CODED FMO FRAMES SHOWING CODING OF A TYPICAL INTERACTION

Subject and Object (Who and To whom)	Code
Categories	Vocabulary
Teacher	т
	.
Aide	A
Volunteer	V
Child	C
Different child	D
Two children	2
Small group	S
Large group	L
Animal	An
Machine	M

The third category of the vocabulary names the events:

Verb	
(<u>What</u>)	Code
Category	Vocabulary
Command or Request	1
Direct Question	1Q (Q from <u>How</u> column)
Open-Ended Question	2
Response	3
Instruction, Explanation	4
General Comments/General Action	5
Task-Related Comment	6
Acknowledge	7
Praise	8
Corrective Feedback	9
No Response	10
Waiting	11
Observing, Listening	12
Nonverbal	NV
Movement	X

The fourth category of the vocabulary modifies the initiator or the action:

Modifier	
(<u>How</u>)	Code
Category	Vo ibulary
Нарру	H
Unhappy	U
Negative	N
Touch	T
Question	Q
Guide/Reason	G
Punish	P
Object	0
Worth	W
Dramatic Play/Pretend	DP
Academic	Α
Behavior	В

These categories of the vocabulary summarize the essence of an occurrence, rather than giving the content or the actual words used. For example, when praise occurs, the COI language simply identifies the occurrence of praise and may differentiate the subject matter by modifiers coded in the same frames. Thus, praise for a response related to academic (or to nonacademic) subject matter can be distinguished from praise for deportment (see Example 1 below).

	Actual Sentence	Coded Sentence
Praise for non- academic subject matter	"What a pretty painting you've done!"	тсз
Praise for deportment	"I'm really proud of you, class, for behaving so well while Mr. Jones was here."	TL8B
Praise for academic subject matter	"You read that section beautifully, Jim."	TC8A

There is also a word in the vocabulary (marked on the FMO frame to the left of the four sections) that specifically indicates that the code sentence is not a part of a sequence of events, but is to be considered as happening at the same time as the immediately preceding sentence: S (Simultaneous). This is used primarily to show inattention of children when the teacher or a machine is instructing.

In addition, there is a symbol to indicate that an entire sentence recurs in the sequence: R (Repeat). Another symbol indicates that a sentence is in error and should be eliminated from the data set: C (Cancel).

The Syntax--The rules for combining the elements of the vocabulary are quite complex. Several general rules are:

- A valid interaction sentence must contain words for Who, To whom, and What.
- The sentence may or may not include vocabulary elements as to <u>How</u> the interaction is performed.
- The sentence may be described as being the same as the preceding sentence using R (Repeat).

Thus a code sentence can be described as a sequence of three or four vocabulary elements coded within a frame. The difficulty lies in training the observer to accept the given operational definition—and only that definition—so that the code stands for a recognizable act. There also are a few code sentences with special instructions for use and with special meanings; e.g., TT5NVX followed by five cancel symbols, which indicates that the teacher (as the focus person) has left the classroom.

C. Selection and Training of Classroom Observers

Since the classroom observers provide the study data, the selection and training of the observers are of critical importance to its success. SRI's Field Operations staff selected the observers from the local communities and an effort was made to choose observers with cultural backgrounds similar to the study population.

1. <u>Selecting Classroom Observers</u>

Two observers for each site were hired by the Field Operations staff. One exception to this was PS 77X in New York City, where only one observer was hired because of the small number of Follow Through classes available for observation. The decision to use two observers per project rather than one was made because:

- The observations had to be completed in less time than was possible for one observer to accomplish alone.
- A second observer could provide backup in the event one observer was unable to complete all of his observations.

In selecting observers, the Field Operations staff sought the following qualities and qualifications:

- <u>Personal ability</u>--The ability to learn rapidly, retain information, and build concepts around given symbols.
- Education--A college degree was considered desirable but not essential. Applicants with training in specific educational approaches were considered, but with caution, because they might not accept a sponsor's approach. Exschool teachers were scrutinized with care, also because of possible bias.
- Attitude--Observers were expected to have a professional attitude towards the data collection effort, which included objectivity in dealing with the data and the ability to treat all data as confidential.
- Residence--Observers should be from the local Follow Through community and should speak the language of the community. However, applicants who were part of the school system, or related to Follow Through personnel were not eligible to be observers.
- Experience—The observers were required to have had experience in working with children.

2. Training Classroom Observers

An SRI training team consisting of one coordinator and six trainers trained all the observers in a total of three training sessions. Each session lasted seven days. The first two training sessions were held in Palo Alto, California, and the third one in Cambridge, Massachusetts. Trainees from each of the sites were assigned to one of the three training sessions by SRI on the basis of school closing dates and subsequent evaluation activity schedules.

During the planning stages of the data collection effort, several sponsors expressed interest in using the SRI observation instrument to observe classrooms not included in the sample. Some sponsors indicated a desire to modify the SRI instrument to gain information more specific to their model goals. At their request, SRI agreed to train interested representatives of the sponsors at one of the three scheduled training sessions. In addition, SRI offered to assist the sponsors in modifying the instrument for their own purposes.

The training locations, training dates, and project and sponsor participants at each training session were as follows:

- -

. _____

_ _ _

i de la composition della comp

1. Pullifle all Mills-Focused Observations

As treviously notes, eight children were selected and list line first for possible observation. Beginning at the top of the list, the first four engldren present in the classroom on the discretion have were observed. In order to obtain maximum variation in dutury to till, the four children were observed five times each on a mittion basis, juring the entire class day.*

. Aministrative Tasks

In milition to the actual classroom observations, observations are required to complete some administrative tasks on a daily and weekly cases. Administrative tasks consisted of completing the Weekly faster lists and the Classroom Observer Daily Log, editing the observation has been the said forms, and returning the material to SRI.

- 1. <u>Merkly Roster List</u>—The Weekly Roster List served two purposes: it provided the observers with a way of checking their work at the end of each week, and it provided SRI with a weekly inventory retard of each observer's work. The Weekly Roster List was returned to SRI at the end of each week, along with the observation booklets complete, that week usee Appendix E for detailed information collected in the fusion.
- li Classroom Observer Daily Log-The Classroom Observer Isila Log was designed to collect information about the materials used in the classroom during the observations. It also served as a daily log of satisfies in which the observer was involved; a record of events that caused Classroom in the observation procedure; and a record of the sample personnel who were involved in the observed classroom. The Classroom inserver Isila Log was returned to SRI following the completion of their observation one Appendix I for letails of the information obtained in the coal.
- in briting booklets and Return to SRI--At the end of each der, precivers were expected to edit their work and to make entries in the election to the sale with the materials were noticed to the collapsificated, original coxes. As the materials articled in Plates were edited a scorn time and prepared computer processing.

E. Summary

Data were collected from 36 sites representing seven sponsors. The sites range in location from rural areas to large metropolitan areas. geographical sections of the country are represented in the sample. The sites vary in ethnic composition from no black children in four Follow Through sites to 100% black children in four sites (see Table 3). Fifteen sites have children who speak English as a second language. The children enter school with differing ability: e.g., the highest baseline mean score in first grade was recorded for University of Kansas in New York (36.8), while the lowest first grade baseline mean score was for High/Scope in Ft. Walton Beach, Florida (18.2). The percent of children still enrolled one year after having the baseline test is also of interest. This number, which indicates the stability of the school populations, ranges from 81% still remaining in school in Newark first grades to only 29% remaining in Lakewood first grades. Clearly there are great differences among sites in demographic characteristics and these differences need to be considered when interpreting implementation data.

Two days of adult-focused and one day of child-focused observations were conducted in classrooms which ideally had baseline data for at least 20% of the children. In 28 first grades and 77 third grades, the 20% baseline criterion could not be adhered to. These classrooms were observed but were not included in analyses requiring test data.

The observation instrument used was developed specifically for use in Follow Through classrooms. It records classroom environments, activities, and interactions. Training procedures have been carefully developed to ensure observer reliability. These procedures include specifications for hiring observers as well as criteria for allowing a trainee to observe.

Chapter III

DESCRIPTION OF THE VARIABLES

The variables used in this classroom observation study were formulated not only from the Classroom Observation Instrument (COI), but also from the teacher/aide questionnaires, the test scores, and demographic data. Descriptions of the process by which the data from these sources were converted into variables are presented below under the relevant category headings.

A. Classroon Observation Instrument (COI) Variables

The COI is designed to record classroom arrangements and elements of events considered educationally significant by the sponsors. Since there are over 100,000 possible combinations of codes which could form variables, it was important to formulate only those variables considered to be of relevance to the study of sponsor implementation. This section will describe the processes used to transform codes from each portion of the classroom observation instrument into variables.

The classroom is the unit of analysis for most of the analyses in this study; therefore, each classroom was assigned a value on a given variable based on the sum of the frequency of occurrence of the variable for the observation days. The Physical Environment Information (PEI) and Classroom Check List (CCL) were summed over three days. The Five Minute Observation (FMO) variables differ from the PEI and CCL in that the data collected during adult-focused observation and summed across two days, whereas the child-focused variables are based on one day of individual child-focused observations in each classroom. Appendix F lists all of the COI variables created for this study. Many of the variables are not mutually exclusive. Appendix G provides the specifications for the observation variables used in the analysis. These specifications describe which variables are added to make new variables. The variables are numbered in a continuous series (from 1 through 602) rather than by section of the observation instrument.

1. Classroom summary Information (CSI)* Variable

Information recorded on (SI during the first day's observation was used to create the variables that identify a classroom by sponsor,

the Appendix & for the instrument.

site, teacher, grade, observer and the like (Variables 1-9). The variables that describe the numbers of adults and children present, Variables 10-14, were obtained by averaging the sums of the numbers recorded on the protocols during the three observation days. To obtain Variable 15 (Child/Teacher and Aide Ratio), the total number of children present on each observation day was divided by the total number of teachers and aides present. To obtain Variable 16 (Child/Adult Ratio), the total number of children present each day was divided by the total number of teachers, aides, and volunteers present. An average ratio over the three days was then computed for both of these variables. Variable 17 (Total class duration) was computed by averaging the number of class hours recorded for the three days of observations. (Appendix F contains a list of the CSI variables.)

2. Physical Environment Information (PEI)* Variables

The PEI section of the COI, completed once each observation day, collects two kinds of information: (1) seating and work group patterns, and (2) equipment and materials present and used in the classroom.

The definitions for the variables in the first category (Variables 18 to 24) are taken directly from the instrument; e.g., if the item "Movable tables and chairs for seating" is marked on the protocol, the value assigned to Variable 18 is 1; if the item is not marked on the protocol, the value for Variable 18 is 0.

Variables in the second category (Variables 25 to 43) are scored 1 if the protocol was marked "present," and zero if it was not marked. The variables are also scored 1 if the protocol was marked "used," and zero if not. Each variable is then assigned the value of the sum of its two scores. (Appendix G contains a detailed specification of how each PEI variable was computed.)

3. Classroom Check List (CCL)** Variables

This year, in addition to computing the CCL variables by frequency of occurrence as we have done in the past three years, a weighting scheme was devised that takes into account the number of children involved in various activities. In the past we reported only that children were involved in a reading activity during a particular percent of the observation period. Since we did not report how many children were involved in reading, one child reading was scored the same as a large group reading. By the weighting procedure, we now can determine approximately how frequently one child, two children, small groups, or large groups were engaged in reading or other specific activities.

^{*}See Appendix C for the instrument.

^{**}Illustrated on page 26.

The CCL variables have been broken down into Categories A through K, each of which defines a particular area of interest to this study (see Appendix F). Category A comprises the variables that describe the frequency of occurrence of specific activities (e.g., Group time, Math, Dramatic play); (ategory B comprises variables that denote the frequency of occurrence of the different groupings of adults and children found in each classroom for all activities (e.g., Aide with small group of children, one child without an adult); Categories C through I comprise variables that show the frequency of groupings within particular activities (e.g., Teacher with two children in math activity, Small group without adult in reading activity, Volunteer involved in classroom management); and Category J variables reflect the use of special materials or equipment (e.g., texts or workbooks, audiovisual equipment) within the activities of math, reading, social studies, and science. Category K variables which describe activities and groups are the same as those used in preceding years, and are computed as they were in the past in order to examine longitudinal trends.

The weighting scheme of the CCL variable is described in detail in Appendix G.

4. <u>Preamble (PRE)* Variables</u>

There are three categories of preamble variables, which include: (1) Focus of the FMO--comprised of variables that denote the focus person for the 5-minute observation period and the size of the group with which that person is interacting; (2) Adult Role--the variables that describe whether the teacher and aide are directing, observing, participating, or not involved in the activity in which the focus person is engaged at the beginning of the 5-minute interaction observation; and (3) Activity/ General--variables that indicate the activity in which the focus person is engaged at the beginning of the 5-minute observation period, and those FMOs that both begin and end with a math or a reading activity.

A score of 1 is attributed to each occurrence of a PRE variable recorded on the protocol and $\underline{\text{zero}}$ if none is recorded. The variables related to the focus on the FMO and the adult role are expressed as percents of FMOs. The PRF variables are listed in Appendix F and the detailed specifications are found in Appendix C.

5. Five-Minute Observation (FMO)** Variables

The FMO portion of the COI is used to record, in the form of coded sentences, interactions that occur in the classroom. Because the

^{*}Illustrated on page 27.

^{**}Illustrated on page 29.

possible permutations of the FMO codes total something over 100,000 sentences, it is necessary to limit the number of variables which are formed to those that seem most appropriate to the sponsors' models and to the analyses planned for this study. The 131 FMO variables selected on this basis are listed in Appendix F, and defined in Appendix G. The same set of FMO variables is used for adult-focused and for child-focused observations, but the variables are numbered differently for each focus (i.e., Variables 341a to 471a are for adult-focused and Variables 472c to 602c are for child-focused observations).

The FMC variables were selected and named to describe interactions relevant to sponsors' implementation. The variables are defined by appropriate code combinations or sentences. In some cases, the definition of the variable corresponds directly to one or two specific coded sentences (e.g., Variable 380a and 511c, "Child Self-Instruction, Academic, with Objects," is limited to a single child's specific activity and permits only two kinds of code combinations: CC4NVAO and DD4NVAO). Other definitions encompass many possible code combinations; e.g., Variable 341a and 472c (Child to Adult, Verbal) includes all interaction frames that show any child code (C,D,2,S,L) in the Who category; any adult (T,A,V) in the To whom category; any verbal code (1,2,3,4,5,6,7,8,9) in the What category; and any code in the How category (thus yielding a possible 135 different kinds of code combinations or sentences).

Generally, the FMO variables describe child and adult verbal interactions (i.e., questions, responses, instruction, comments, and feedback) and nonverbal interactions (i.e., nonverbal requests, responses, self-instruction, feedback, waiting, and observing/listening). In some cases, these FMO variables are further defined by the How category modifiers (such as academic, social behavior, happy, negative). A few variables are defined by the sequential ordering of certain interaction frames (e.g., "Adult question" followed by "Child response" followed by "Adult feedback"); while other variables are summing variables (e.g., Variable 457a and 588c, "All adult positive corrective feedback" includes or sums the variables that define adult positive corrective feedback for academic, other task-related, and behavioral responses).*

^{*}More specifically, co tive feedback given to a child when his action or response is not acc to ble is defined by modifiers from the How category. The What code (, 'Corrective Feedback") must be modified by "Question" or "Guide" from the How codes to form the variable "Positive Corrective Feedback," or by "Negative" or "Punish" from the How codes to form the variable "Negative Corrective Feedback." When the feedback to the child is that his response is correct or acceptable, "Positive Feedback" is used. "Positive Feedback" is a summing variable that includes both "Acknowledgment" (1) and "Praise" (8). The feedback is given for either academic performance, other tasks, or behavior. All of the feedback variables are subsets of a more global variable called "All feedback."

B. Teacher and Teaching Aide Questionnaires

The Teacher and Aide Questionnaires were developed to provide information about the teachers and aides, such as number of years in Follow Through, Follow Through training received, and their attitudes toward the Follow Through model. Responses to the teacher and teaching aide questionnaires were received from 328 teachers (260 from Follow Through and 60 from Non-Follow Through classrooms) and 384 teaching aides (355 from Follow Through and 29 from Non-Follow Through classrooms) in the observation sample. The specific questions relating to training, satisfaction, and background experience provided the data used in this study of implementation.

The teacher and aide reports of their training in the sponsor's model are of special interest because they provide some idea of how the sponsors have been able to change the behavior of in-service teachers: it is of interest to see whether certain training methods or teacher characteristics are related to high implementation scores.

In addition, several characteristics of classroom personnel were examined to see whether they were related to model implementation. Such factors as Teacher/Aide satisfaction with the educational model, previous education, and the number of years spent teaching in the Follow Through program were investigated to see how they were related to successful implementation (if at all). The items selected from the questionnaires and the related analysis specifications are reported in Appendix H.

C. Tests

Baseline data were available for 25 of the first grade sites and 25 of the third grade sites (see Table 1). The contents of the Follow Through test battery have changed over the years of the longitudinal study, and differ across grade levels for each year of administration. The changes in the battery reflect the effort to adopt instruments that appeared more reliable and more valid than those first used. The following tests were used in the present analysis:

Baseline (pupils entering school)

- Wide Range Achievement Test (WRAT).

Post Tests (pupils having had some school)

- Metropolitan Achievement Test (MAT)--first grade and third grade.
- Raven's Coloured Progressive Matrices (Raven's), third grade.

- Coopersmith Self-Esteem Inventory (Coopersmith), third grade.
- Intellectual Achievement Responsibility Scale (IAR), third grade.

(See Appendix I for a description of analysis specifications for these tests.)

1. <u>Baseline Test Data--The Wide Range Achievement Test (WRAT)</u>

The WRAT--highly correlated with the MAT--is the baseline test for the study because it is the only test that was administered consistently during the first three years of Follow Through. The WRAT was initially used in the Follow Through evaluation because it is a short, multi-level, single instrument achievement test that measures achievement in reading, spelling, and arithmetic. The 1965 version of the WRAT test (J. F. Jastak and . R. Jastak) is standardized and norms have been established, but the appropriateness of these norms* for the Follow Through sample has been questioned. For this reason, the MAT, which has been standardized on a larger population, and which examines achievement in greater depth at each grade level, was substituted for the WRAT as a measure of achievement in the Spring of 1972.

2. Post-Test Data (Spring 1973)

a. Metropolitan Achievement Tests (MAT) Form F

These tests (by Durost et al., 1970) were first included in the national Follow Through evaluation in Spring 1972. They were selected because they cover several areas of achievement, have norms based on a standardization sample that includes children of low-income families, and are reliable. The subscores from the MAT Primary I Test for word analysis, total reading, and math were computed for the first grade children. Subscores from the MAT Elementary Test for total reading, language, math computation, math concepts, math problem solving, and total math were computed for the third grade children.

b. Raven's Coloured Progressive Matrices (Raven's)

This test was originally designed by John C. Raven (1956, 1962) as a "culture-fair," nonverbal, intelligence test, but SRI uses the test as a measure of a child's problem-solving ability in visual

^{*}The norms were based on a sample for fewer than 2,000 pupils (5-8 years old) and, according to the technical manual "no attempt was made to obtain a representative national sample" (Jastak and Jastak, 1965, p. 9).

perceptual tasks. Each test item presents the child with a pattern from which a piece is missing and the child is asked to select the appropriate piece from several alternatives. SRI prepared and uses an abbreviated 27-item, group-administered version of the original Raven's. Instructions were adapted by SRI from the 1965 Matrices Guide. These instructions were reviewed and accepted by agents designated by the author.

c. Coopersmith Self-Esteem Inventory (Coopersmith)

The Coopersmith is a noncognitive instrument designed by Stanley Coopersmith (1967) to assess a child's feelings of self-esteem. The test measures a child's feelings about himself, the way he thinks other people feel about him, and his feelings about school. The test contains 58 items, each of which consists of a set of statements. The child is asked to select which of the statements is "like me" or "not like me." The SRI version of the Coopersmith test was group administered in Spring 1973 and contains the original 58 items of the inventory. However, since eight of these items are used merely as a validity check, the raw score for the Coopersmith is based on the 50 items designed to measure the child's self-esteem.

d. Intellectual Achievement Responsibility Scale (IAR)

The IAR (Crandall, Katkovsky, and Crandall, 1965) is a group-administered, noncognitive measure designed to assess the extent to which the child takes responsibility for himself or attributes his successes or failures to the operation of internal or external forces. Each test item describes a positive or negative achievement experience and two alternative explanations of the event, one of which denotes internal control while the other denotes external control. The child is asked to select a response that describes whether he would be responsible for a particular event or someone else would be responsible for the event, e.g., I read well--because I study hard or because the books are easy.

Because the original 34-item IAR was designed for older children, SRI rewrote the items in more simplistic terms to make it more appropriate for Follow Through third graders. Two subscores are derived: one for those items related to a child's feeling of success, and the other for the items related to a child's feelings of failure. The items are mutually exclusive and a child could score high on both scales. For both subscores, the higher the score, the greater the indication of a child's attributing his successes and failures to internal forces.

D. The Classroom Roster--Demographic Information

The classroom roster is valuable because it provides a straight-forward and relatively reliable source of information about the pupils. Specifically, the roster lists the classroom pupils by name, age, sex, etnnic group, language spoken at home, preschool experience, and the

amount of Follow Through services received, if any. Other items of information available from the roster are classroom identifiers (room number, principal, school, address, district), classroom staff (teachers, aides, volunteers), evaluation design information (cohort, grade stream, grade level), and whether the classroom is Follow Through or Non-Follow Through. Appendix J lists the information used in this analysis from the Classroom Roster Form.

E. Summary

The variables described in this chapter are used for descriptive purposes as well as for statistical analyses. Some observation variables are used in the study of implementation, while other variables are used in the study of classroom processes as related to child outcomes.

--

. ---

-

ਵਾ* - ·

=

_ _ .

The second of th

The control of control

The second second of the second secon

ప్రసంగా మార్లు ఉంది. మార్లు మార్లు మండు సంగారం ఉంది. సంగారం మండు అందిని మండు అందిని మెర్లు స్ట్రామ్ స్ట్రామ్ స రాజు కార్లు మార్లు మండు అందిని మండు మెర్లు స్ట్రామ్ స్ట్స్ స్ట్రామ్ స్ట్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ

e de la responsación de la respons La composição de la responsación d

table 5

OFFINE TITLE COLUMN TANK OFFICER AND THE VARIANTE BY CROSSOR, NON-POTTOR THROUGH, AND COPPLY

	¥_ Z	1	**	21	Introl altrol Arteona	Tage True	Kink Street	40 11-1	tnlvit- sitvit- oregen ph. [14]	178	tniver site of kansas jal jid	_ 5 4 2	HANNA THE PROPERTY OF THE PROP	-	£	a-	7 7	~. ~~
,	3.		o.	?.	::	<i>.</i> ;	z.	2	ĭ	?	<u>*</u>		<u> </u>	Z	2			¥
managharang a	2				5	7	3	•	Ē	2	3	ź	,	ř	3		ĵ.	3
The control of the co	. z				7	ž	3	ž £	3	=		-	ř	ī	· -	۽ ج
A to 118, while year forty of as fivility at a community	I.				÷.	*	9.	-	Ξ.	OH.	=	÷,		ź	ŝ,			x
See 196 Adult with one bill	õ.	ž.			ĸ.	٤	ž.	5	; :	ĩ.	ž.	ž.		x,	Ĩ.			T.
	7	₹.			ج	ż	ž.	*	x.	<i>3</i> .	9	ş	x.	<i>;</i>	3	Z	7 X	š
7	\$	Ξ	2	2,	7:	~.	×	2	<u></u>	5.	ž	:1	æ.	2	5	ma	-	ş
de Kartabilea																		
Var Beda Child responses, academic	Ť.					3	ó.	ž	x	6	99.	.89		3	, .			æ,
but the Adult instruction, academic		ž.	2	9.		Ĩ.	7	/κ·	₹.	6.	11:	6×.	2	ŝ.	ž	X	æ.	ž.
Car abla Adult praise, a ademic	-					<u>?</u>	7	~	÷,	ĩ.	×	ž,		٠ ع				ý,
Var allow Adult position arrective toodback,	7				*.	õ	â	â	*.	ő	3	3	ŝ	x	ã			, X
Val. (May Adult academic comments to children	ž,	£.	. ₹	ž,	. e.	: :: : ::	; 6 ;	, S.	. 2	ò	£	æ.	· 8	.		3		7

A or negative correlation was obtained.

variance in classroom variables. The remaining variability is assumed to arise from error of measurement. A primary factor contributing to error is the variability of the classroom processes from day to day. Another factor is absence variability from day to day, and differences between absences in this respect across classrooms. A high reliability coefficient, say above .70, indicate, that the classrooms maintain the same rank order on observed scores from day to day. This would indicate that error due to day to day variability within classrooms or absences is slight though it would not rule out the possibility of systematic error operating across absences.

The reliability coefficients are displayed for each sponsor, Non-Follow Through, and all classrooms in Table 5 for the selected CCL and FMO variables. The reliability coefficients were computed separately for the first and third grade.

Over all classrooms, the coefficients are high. Scattergrams in Figures 4 and 5 illustrate the variability between the two days of observation for two of the variables. The coefficients for the CCL variables are above .70 with the exception of Variable 66 (Numbers, Math, Arithmetic) for the third grade, where the coefficient was .68 (see Figure 6). For the adult/activity focus FMO variables, the coefficients were all above .85 with the exception of Variable 374a (Adult instruction, academic) for first grade where the coefficient was .74.

For the individual sponsors, approximately 84% of the 140 coefficients that were computed had a value of .70 or more. The reliability coefficient for Variable 66 (Numbers, math, arithmetic) was below .70 in six out of the fourteen cases. In particular, the coefficients were extremely low for both grade levels of University of Arizona, third grade of Bank Street and the University of Oregon. The negative coefficient for Bank Street's third grade is the result of one classroom where an extremely high proportion of the class time was spent in math on the first day and small proportion of time was spent in math on the second day. The extremely low reliability coefficients for the University of Oregon on Variable 66 in the third grade and Variable 67 in the first grade are notable since this sponsor's program is considered to be more structured than others.

The University of Kansas, also considered to be more structured, had the greatest number of variables with coefficients below 0.70. Out of the ten variables analyzed, in the first grade which were analyzed for University of Kansas three variables were below .70 reliability, and in the third grade two variables were below .70 reliability. The lowest of these was Variable 104 (Adult with one child). This variable is not a critical variable of the University of Kansas and, therefore, would not affect the interpretation of their implementation score. High/Scope classrooms showed the highest reliability. No first grade classrooms and only one third grade classroom had a reliability of lower than .70.

The other instances of low reliability coefficients do not exhibit any particular pattern, but rather are scattered among different combinations of variables, sponsors, and grade levels.

DAY I AGAINST DAY 2 ON VAR. 118, OVERALL OCCURRENCE OF CHILD ENGAGED IN ACTIVITY WITHOUT A.77 ADULT FIGURE 4

FIGURE 5 DAY 1 AGAINST DAY 2 ON VAR. 360, CHILD RESPONSES, ACADEMIC--ALL THIRD GRADE CLASSROOMS

FICURE 6 DAY 1 AGAINST DAY 2 ON VAR. 66, NUMBERS, MATH, ARITHMETIC--ALL THIRD GRADE CLASSROOMS

The reliability coefficients for the Non-Follow Through classrooms are all in the moderately high to high range. For the third grade, the reliability coefficients for both Variable 66 (Numbers, math, arithmetic) and Variable 67 (Reading, alphabet, language) are slightly less than .70. The one other variable with a reliability coefficient less than .70 is Variable 360a (Child responses, academic) for the first grade.

In summary, the examination of the reliability coefficients computed over all classrooms indicate that the reliability of instructional processes is surprisingly high. The differences among classrooms account for a substantial portion of the variability of the variables we have selected. The same conclusion holds with a few exceptions for the coefficients computed for each sponsor and grade level. The only variable for which the reliability was low for several sponsors was Variable 66 (Numbers, math, arithmetic).

C. A Study of the Confusability of the Codes

The present study examines the accuracy of observers coding a standard set of stimuli. In this procedure the observer's bias is examined, as well as the confidence that can be placed in the observation code itself. Through these procedures the exact nature of the confusion of codes can be identified.

In previous SRI reliability studies, the technique of pairing the observers with an SRI trainer has been used.* However, there are some problems in assessing inter-rater reliability. First, there is some variability in the coding skills of SRI trainers. Second, there is most certainly a variability in the incidents which occur in the class-rooms, in what is selected for observation, and in which codes are used in the observations. The optimum arrangement might be to have all observers and SRI trainers observe the same phenomena in the same class-room at the same time. But, as Soar (1973) says:

The critical problem (of paired observers) is the effect on the classroom of increasing the number of observers. One observer represents a threat to many teachers and a distraction to the children, at least initially, and as the number of observers increases, these difficulties increase, probably more like a geometric function than an arithmetic one.

In an effort to avoid the problems encountered with the paired observer method, SRI staff has attempted to assess the accuracy of observers through the use of controlled videotape examples. This procedure

^{*}Stallings (1973) reports inter-rater agreement of 80%+ for frequently used Who and What codes and 70° + for frequently used How codes.

allows each interaction (or frame) and sequences of frames to be analyzed for accuracy, whereas previously only simple marginal frequency counts of single codes could be computed.

Other investigators in observational r search also use videotapes to assess observer accuracy. Soar (1973) used tapes of actual classroom events, and Simmel (1973) cleverly used the last ten minutes of the Johnny Carson Show to check observer accuracy on a weekly basis. Although videotapes are useful, their limitations also should be recognized:

- Because of the difficulty in seeing and hearing, videotapes are more difficult to code than live conversations;
- It is more difficult to understand the gestalt of the situation from a tape than it is from a live situation in the classroom;
- Simulated skits are likely to be more clear-cut examples than those which actually occur in classrooms.

1. A Description of Procedures*

To check confusability of codes and observer reliability in a way different from that of either Soar or Simmel, SRI staff produced ten videotaped skits. Each simulation is approximately 20 interaction frames long. These skits attempt to present concise, clear examples of each code used in recording classroom interactions on the SRI observation instrument. Each skit begins with a still picture and the voice of a narrator who explains the situation and identifies the focus person. The skit is then shown at regular speed. After the skit is shown once, the still picture and narrator again identify the focus person. Each skit is then shown again, this time with a 2- to 3-second pause between each interaction. The observers are instructed to code this stop-action portion of the skit and to code one frame during each stop or pause.

These videotaped skits were administered to the observers by SRI field staff. The tape was administered to the observers when at least three-fourths of the observations were completed but not later than 10 days after the end of the observations. This procedure allowed whole frames and sequences of frames to be analyzed where previously we could only compute reliability on the basis of simple marginal frequency counts of single codes.

^{*}These procedures were developed at SRI by J. Philip Baker, Phillip Giesen, and Charles Norwood.

2. Procedural Problems

The reliability coding booklets were returned to SRI and compared with the criterion sequences. This revealed that some observers were coding more than one frame during a pause. Conversely, some observers, possibly while turning pages, omitted frames. The trainers reviewed the coding sequences and deleted extraneous frames or inserted spaces so as to align the observers' sequences with the criterion sequences. Three trainers performed this operation. Since judgment is involved, a check was made on the code sequences of 10 observers to see whether the trainers arranged the sequences in the same manner. The average agreement between trainers in arranging these sequences was 96.4%.

- Other procedural problems were also encountered due to the experimental nature of the techniques used. Comments received from the observers indicated that not all of the equipment utilized to administer the tapes was in good condition, and, as a result, the sound or pictures were of poor quality. Also, some examples on the criterion tape were technically less than well executed. The most serious problem, however, was that there were too few examples of several of the codes on the criterion tape. Five or fewer examples of a code limited the assurance that representative examples of the code were shown. Further, if an observer missed two out of four possible instances of a code, he had a score of only 50% of the criterion correct; however, if he missed two out of 30 possibilities, he had a score of 93% of the criterion correct. For this reason, the codes which have five or fewer examples will not be interpreted in this analysis. The number of examples of each code on the complete set of tapes ranges from zero to 40. (This problem is being remedied by the development of more skits.)

3. A Description of Confusability Matrices

Confusability of codes refers to codes which were confused with the correct codes by an observer (see Table 6 for a brief explanation of the SRI What and Yow codes). Confusability matrices were constructed by tallying the observer code sequences. For each frame, a tally mark was entered in the box or cell created by the juncture of the criterion code and the code marked by the observer. Figure 7 shows an example of a confusability matrix for the What codes. The principal diagonal contains the cells indicating correct coding; other cells contain incorrect coding. The column totals are the total number of criterion examples shown on the videotape for each code; the row totals are the total number of times an observer recorded each code, whether correctly or not. An examination of a particular cell reveals whether the code was recorded correctly or incorrectly and, if recorded incorrectly, shows exactly which codes were confused.

The total number of tallies in each cell can be used to calculate the rates of accuracy in two related but distinct ways. The first

Table 6 SRI What AND How Codes

		What Codes			How Codes
1	-	Command or Request	Н	-	Нарру
1Q	-	Direct Question	U	-	Unhappy
2	_	Open-ended Question	N	-	Negative
3	-	Response	T	-	Touch
4	-	Instruction, Explanation	Q		Question
5	-	Comments, Greetings;	G	-	Guide/Reason
		General Action	P	-	Punish
6	-	Task-related Statement	0	_	Object
7	-	Acknowledge	W	_	Worth
8	-	Praise	DP	_	Dramatic Play/
9	-	Corrective Feedback			Pretending
10	_	No Response	A	-	Academic
11	-	Waiting	В	-	Behavior
12	-	Observing, Listening			
ΝV	-	Noverbal			
Х	_	Movement			

ERIC Prolifect Product by BIC

																-	=
																-	
																-	
		-													-		_
	_							_							_		
															-	-200	-
														-	-	-	-
	_	-			-	_	=	-	_	_	_	=	_	_	_	-20	_
													-	-		-	
	_	-	_	_	-	-	_	-	-	-	-			-424	-46	#	_
												-					~
						-	-	-	_	-	=	-	_	-	=	45	-
											-					-	
							_	_	_	_	_	_		_		*	_=
			-									-			*	-	
	_	_	_								-	*				_	
									~	_	_	_	_		_	-	
							=	-	-	_						_	
=	_	_	_	_	_	_	_	_	_	_	_	-	_	**	-	5-9	
							_		-							-	-
	-	_	=	_	-	-	_		-	-	_	-	_		***	-	
							-	÷					ā			-	
- =																	
		_	_	_	-	_	_	-		-	_	_	_			**	
		=	_	=	_	<u>-</u>	-	=		=	=	=	=			₩ Ξ	
-	=	_	_	_	_	- - -	- - -	-	-==	=	=	_	=	_=	_		*
= =	=	_	_	_	=	- - -	=	-		=	=	=	=		=	***************************************	*
- =	=	_	_	_	-	- - -	-	÷	-=-	=	-	=	-		<u>-</u> -	-	*
= =	=	_	_		= = = = = = = = = = = = = = = = = = = =	- - - -	=	-	-	= =	-	=	= -	=		-	*
	=	_	-		= = = = = :	_ _ _ _	=	-	-	= =	-	=	=	=	- - - -	-	*
	=	=	-	-	= = = = = = = = = = = = = = = = = = = =	- - - -	=	<u>-</u>	-	= -	= -	=	= -	=	= = = = = = = = = = = = = = = = = = = =	**************************************	*
	=	_		-	= = = = = = = = = = = = = = = = = = = =	- - -	-	÷	-	= =		=	= 	=	- E	-	*
	=			-	= 	- - -	=	-	-	= -	-	= -	= -	=	-	-	•
	=		- - -	-	= = -	- - - -	-	-	-		-	= -	= -			-	•
	-		-	= - - - - -	= -	- - -	-	-		= = = = = = = = = = = = = = = = = = = =			= -	-		(株) 1 (k)	
	-			- - - - -		- - - -	-		-	= = = = = = = = = = = = = = = = = = = =	-	=	= -		- 1	(株) 1 (k)	*
																-	
																(株) 1 (k)	*
																(株) 1 (k)	
						-					-					(株) 1 (k)	*
																(株) 1 (k)	*
																(株) 1 (k)	*

-

The stortmere were saturable to a former, on wever, we easily resorred eight to stortmere were saturable to example on the visualization like its light to the resolution of the lawer entry in the cell, we see that the lawer of the time, as a for 9 of 10 of

Litausi a un dest utili Clues A stage Cumbining the besuits of an inservers

Analysis of these matrices were used in two ways. First, by entried the relation of all discretes, the extent of general confusunited the relations examined. Codes that reveal a high rate of mission among several cost twens suggest these possible causes: an deficiency of the entricial entries, for less-thanunited transfer of course. See no, the applicant individual obultion of a course with these matrices. For example, if on the entries were not refer at crute of Cube Bograiser, then codes using Confuse for the example, if an about the second of the codes as income the course were second or examined for animalises. The findings reported here there are no content at animalises. The findings reported here

-runthe integrates of our misertaped examples is shown in Figure 1. The companies the number of correct undings. The row projection of the companies of viscotage criterion examples the rounds of the integrates. The billion for bottom row can be mounted but the littlesponding will in the piagonal. For example, the other projects of times. The cited entries in the littles of the sources of chiusion.

the order time of times that the observers were correct in compare of the presented on figure 11. For example, the observers as a particle, or the forested of the time. It communities the light, we say that the forest medical conditions to the forest and the second observers the light of the fine time will be 1.88 should have been recorded.

The race of the following examples theoretically the following the following the following the following the following the following the file outside of the community of the co

The entropy of the second of the second contraction of the second of the

THE REAL PROPERTY OF THE PARTY OF THE PARTY

TROTHER TO LOCAL OF LHAL CODES RECORDED IN FACE OF 11 OF A COLOURS TO

		ij	÷.	-	**	£	<u>-</u>		سو	* : .	÷ 53		· <u>ź</u>		ş	7.	î ĈE	1.338
1	en en		· :	-	-	-			<u> </u>	pr	=	·		-	-n	-	- 190	25.2
•	<u>.</u>	÷	• •	_	• 5	•	• =	*	5	• .~	• = 3	• 5	• •	• =	~	1.5%	· ε.	3.
	2	÷	·	- -	- -	• -	• :	• :	* 	• •	•- - ~	•	• s	· -	• =	s	• ວ	э
	-		; -	-	· :	•		5 5	- -	2	Ž,	• 2	• •		• 	•	•	ç05
	3		: -	-		_	· :		~	٠.	s .	•	ő	_	5	- -	•	2
		<u>-</u>		-					~	·	- £	\$?:	~	=	s	.⇒	6 93
: .	٤		-	•—			-	- ^, 	ž	٠.	ş	_	7	<i>~.</i>	5	5	. =	188
As belowed Boards to a	ź	=	=	5	•			:	£	E	-	9	£	5	٥	s.	Ξ	£35
	<i>:</i>	-	,	- 		- - :		-	*-	٠,	<i>.</i>	=	=	٠,	==	c	~	3,0
-	<u>,</u>	\$		•	=		-	Ē	:	÷	=	÷	=	<u>-</u>	ε	•	7	~.
•	_	-		-			3		,	•	ξ.	``	-	-	_	5		ã
	Ş	-		_	-	2	-				-	_	7	=	=	٤	£	897
	<i>,</i>	<u>.</u> -	-	-	5	-	-		-	2	€	5	-	;	- -	_	ξ	5754
	**		<u>.</u>	<u>.</u>	••	7		-	-	Ī.	<i>*</i> ,	-	7	-	5	=	s	9.5
	 •	-	· •		-	ε		,e- 	·- ·	-	-	~	=		~	2	16	3
	-	-			<i>-</i>			•	5	- -		s	÷ ,	-	-	э .	ŗ	÷.
3	- -	-	-	-,	• -	<u> </u>	 						-	; - <u> </u>		- =	1.	Busystic (*) February (Ban)

	17.6%	1			Train district of the second	į.		Ö	iterion (Criterion Examples				•				
	Codes		10	ļ.,	٣	>N.	7	4NV	2	5NV	٩	,	8	6	10	-:	12	
	' -	0.77	900											900				
	D 1	70 O	080	0.20					_									
	~		0.48	0.48														And in the control of
	~7		0 07		091						0 02							distribution management of the contract of the
	>N.				800	0 79												
ای-عبر ۱	7				000		27.0										0 11	
ء را	>N;							0 88		90 0								
* ¥ P	ç				0.05			90.0	010	0 11	0 55			0 04				
ieł f. a TaTa	5NV							0 20		0.72								7
aby SP	2	003		0 03	60 0						89 0	0 04		£0 0				
\$4()°,	,				0 0 7							98 0						
5	æ											0 15	0 73					
	6			•							0 0£			980				
	01									_					0			
	=															0 95		
	12						0.04										0.83	
Total Namber of Examples on Criterion Tape	nher of on Taps	Ą	20	s	26	3	ಕ	8 F	-	7	16	=	2	6	-	3	23	

FIGURE 12 PROPORTIONAL DISTRIBUTION OF WHAT CODES RECORDED BY 63 OBSERVERS

*Only numerals in the diagonal report proportion correctly coded

							***************************************		The second secon	Market a statement							THE PERSON NAMED IN COLUMN 1		
		71				Addition for many and benchmarked from the following	<u> </u>	1 2										6.	
		<u> </u>			ļ	<u> </u>	<u> </u>	000	- 	-	2						-	0 89	23
1		=							! ! †		010					i i	0 7.1	91.0	rs
		5					ļ		-	ļ -	<u> </u>		_			000			-
ا		5	0.03	90.0				! !		; 		900			0 75	!			6
!		,					:	!	1	I 			0.05	88 0					2
-		7					† 	• !		· · · · · · · · · · · · · · · · · · ·		900	0.75				! ~	0.06	=
		ء ا								0 23		990							91
į	Criterion Examples	>N?							000	60 0	0 75					-			7
	er on 6	 ച								99 0		600							-
	Cut	> 24							0 77		0.15			-					:
		-						0.73				0 04						0 13	ω
		> NS					0 76	-				50 0			-				~ ~
		~				0.83						90.0							36
1	1	~		0 42	6+0							007			†				۶
!	į	2	ın	0 //	0.12	503						5							50
			0 .590	0 11 0	-							-				<u>.</u>			
			0								_	0			-			_	"
	—— WB₁at	Codes	-	10	~,	~	>\%;	4	4NV	S	5NV	ç	1	8	¢	01	=	~	ade ou
										sapog)								Total Number of Examples on Criterion Tape

*Only numerals in the diagonal report proportion correctly coded

FIGURE 13 PROPORTIONAL DISTRIBUTION OF WHAT CODES SHOWING CRITERION EXAMPLES RECORDED BY 63 OBSERVERS.

٠, ٠

columns were in the diagonal cell, the result would be 100% correct. The total number of possible examples on the videotape are listed on the bottom row. For example, Code 1Q was recorded correctly 77% of the time, whereas 16% of the time it was confused with Codes 1, 2, or 3.

Figure 14 is an overlay of Figures 12 and 13. This provides the data necessary to quickly assess the observers' accuracy (by looking at the topmost entry in a cell) and the percent of criterion codes which have been recorded (by looking at the lower entry in a cell).

a. Findings of What Code Confusions

Since a <u>What</u> code is required for each interaction, each recorded frame must include a recording of a <u>What</u> code. The observer has the option only of recording the correct (or criterion) code or recording the wrong code. The entire frame is considered void if no <u>What</u> code is recorded.

In Figure 14, four of the <u>What</u> codes have been separated into two categories: the <u>What</u> code alone and the <u>What</u> code with its <u>How</u> modifier. This was done because the meaning or definition of the <u>What</u> code is modified or sometimes changed by the addition of these specific <u>How</u> codes. An example of this is the Code 5. The definition of Code 5 is "general comment," but the definition of Code 5NV is "general action."

As mentioned earlier, the number of criterion examples for some codes is small which limits the conclusions that can be drawn regarding these low frequency codes. For this reason, codes with five or fewer examples on the videotapes will not be discussed.

Nine of the 16 What codes have six or more criterion examples of each code. These are the shaded diagonal cells in Figure 14. Of these nine (10, "direct question;" 3, "response;" 4, "instruction, explanation;" 4NV, "nonverbal instruction;" 5NV, 'nonverbal general action or play;" 6, "task-related statement;" 7, "acknowledge;" 9, "corrective feedback;" and 12, "observing, listening"), only Code 6 has an observer accuracy rate that is lower than .70.

Code 6, "task-related statement," was confused most often with Code 3, "response." It was also sometimes confused with examples which were actually Code 1 ("command or request"), Code 2 ("open-ended question"), and Code 9 ("corrective feedback"), as shown in Row 6. This suggests that the definitions and training procedures need to be more exact regarding when to code a task-related statement as Code 6. The numbers in the lower section of the cell (looking down the 6 column) indicate that 23% of the time the criterion examples of Code 6 were recorded as 5.

Criterion Examples (Lower Numbers in Cells)	1 1Q 2 3 3NV 4 4NV 5 5NV 6 7 8 9 10 11 12	72 006 65 001	0,80 C11 0,77 042	0.48 0.49	002 003 003		007 072 011	0.28 0.06 0.77 0.07	0.10	0.72	003 009 004 0.09 0.66	0007 0.05	0.15 073	0.05 0.86	0	0.95	004 083 013 006 016 089	20 5 26 3 8 11 1 7 16 11 2 9 1 3
	-		 	├ ─			0 0 0		0 02		—	1						
	101	0 72 0 06 0 65 0 91		0 48	0 02						003							4 20
To Alexander	Codes	-	ā	Now 2	Kq sile	NS 3NV	s s o d u	N 12	Uppe	S19V	9	Yd b	corde	o se ge	Sabo	; .	12	Total Number of Examples on

"Sources of error less than three percent are not included on this table.

FIGURE 14 PROPORTION OF WHAT CODES RECORDED IN EACH CELL, CALCULATED OVER* 63 OBSERVERS

The next lowest in reliability was Code 4, "instruction, explanation." Observers recorded what should have been Code 12, "observing, listening," as Code 4 11% of the time. Since 4 is verbal and 12 is nonverbal, the problem would not appear to be one of confusion of what is occurring but, rather, confusion of which person to focus upon. This conclusion is based on the fact that both of these codes generally occur simultaneously (that is, when a teacher is instructing, coded 4, the children are usually attending or listening, coded as 12). Apparently the observers were confused as to which person to record. As can be seen in Figure 14, in the Code 12 row, a true example of Code 4 was sometimes confused and recorded as Code 12, which is a further indication that the instructions regarding the focus of observation were not clearly understood by observers.

Code 4NV, "nonverbal instruction," describes a child instructing himself. Observers recorded this reliably 88% of the time. They sometimes confused 4NV with what was truly a 5NV, a code that describes "nonverbal general action or play." Looking down the 4NV column, it can be seen that 15% of the videotaped examples were recorded as 5NV. This confusion of 4NV and 5NV indicates an overlap of definitions (or a conceptual difficulty in distinguishing "work" from "play").

Criterion examples of Code 7, "acknowledge," were sometimes coded as 6 or 12. Code 7 is sometimes confused with Code 3, "response" (see Row 7 in Figure 14). It is easy to see how acknowledging a child can be confused with responding to a child. On the other hand, Code 3, "response," was one of the more reliable codes. It was not confused with Code 7 (see Figure 14). In fact, the observers recorded it correctly 91% of the time, and Column 3 indicates that 5% of the criterion examples were coded as 6.

Of the recorded instances of Code 1Q, "direct question," 11% should have been Code 2, "open-ended question." The confusion between Codes 1Q and 2 has long been recognized by the SRI researchers. Each year the variables have been defined more carefully; however, there still seems to be a gray area of unclarity between the two codes. Code 2, which has too few examples to analyze with confidence, was also confused with 1Q. The results of individual observers were examined, and apparently those observers who observed classroom models that do not often require the 2 code had a higher rate of error.

The observers recorded 9, "corrective feedback," correctly 86% of the time; 5% of the time, Code 6 was recorded as 9 (see Row 9, the upper value). The criterion examples, as illustrated in Column 9 (the lower value) were sometimes coded as 1, 1Q, and 6.

b. Findings for How Code Confusions

A $\underline{\text{How}}$ code is not always required. This rule leads to four distinct possibilities:

- A required <u>How</u> was left out of the frame (omission). (These are listed at the bottom of Figure 15.)
- A <u>How</u> code was recorded when not called for (intrusion). (These are listed in the last column of Figure 15.)
- The criterion <u>How</u> code was confused with another code. (These are entered in other than the diagonal cells.)
- The criterion <u>How</u> code was recorded accurately. (These are entered in the diagonal cells.)

Only six of the 14 How codes (including the What code modifiers, NV and X) were represented by six or more examples on the videotapes. These are NV, X, A, B, DP, and O (see Figure 15). (Codes with five or fewer examples will not be discussed.) As described earlier, the upper value in a cell reports the percent of observer accuracy. The lower value in the cell reports the percent of the videotaped examples which were correctly recorded.

The nonverbal code, NV, was recorded correctly 93% of the time by observers; and, overall, the observers omitted only 13% of the criterion examples. Code X, "movement," was also found to be reasonably reliable. The observer recorded it correctly 89% of the time, although 20% of the examples were omitted by observers.

Observers recorded the A code, "academic," correctly 81% of the time. Of the A codes recorded, 4% should have been Code B, and 15% of the A codes were actually intrusions. Also, 76% of the videotaped examples were recorded correctly, and 21% were omitted.

While 95% of the examples recorded as Code B by the observer were correct (see Row B), 43% of the B codes were omitted and 13% of the examples of Code B were incorrectly recorded as Code A. This leads to the conclusion that if a B code is recorded, it is likely to be correct, but the total number of B codes may be underestimated by over 50%. An examination of each observer's work is important in order to discover the source of the underestimation. It is possible that only a few observers are grossly underestimating the incidence of B codes, or it could be that many of the 63 observers are underestimating B codes to only a small degree.

The two remaining codes with six or more examples (DP, "dramatic play, pretending" and 0, "object") were recorded accurately over 80% of the time, but both codes were underestimated (43% and 33% of the time, respectively).

0
ERIC
Full Text Provided by ERIC

G 'erion Examples (Lower Numburs in Cells)	0 M C P G			0.04 0.13	0 95 0 43	0 84 0 55	0 79	0 66	00	013 013 013 033 016	 					043 043 039 033 0.0 066 010	13 9 2 8 0 1 2
n Cells										├-	 					\vdash	- 3
	-									و ع	5.	89 O 0 68				10 0 32	m
	z								_	0 20			0.40	0 03		0 33	ო ———
	D												0 03	0 70		0 56	4
	I												_	0 03	0 63 0 45	0 52	2
Proportion of	Intrusions	0.07	010	0 15	0.05	0 15	910	0 18	0.0	0.51	010	0.31	0 53	. 0 23	0 35		

FIGURE 15 PROPORTION OF HOW CODES RECORDED IN EACH CELL, CALCULATED OVER 63 OBSERVERS

5. Summary

The results of the confusability study identify the specific codes that appear to be reliable as well as those that are confused and need to be redefined. The findings suggest that some codes, such as 6, 4NV, and 5NV, should be more carefully defined because of overlapping definitions. There is some indication that there should be more careful training of observers on the focus of observation so that Code 4 and Code 12 will not be confused. The overall reliability for all observers on the What codes was 78% and 81% for the How codes.

D. Observer Reliability

1. Accuracy of Individual Observers

The value of this new method for measuring accuracy is that it contributes directly toward interpreting the data. Observer bias can be assessed by examining the overuse, underuse, or confusion of codes. In this study, each observer was responsible for observing one grade level at a single site. Therefore, the data collected by each observer are identifiable in the analysis.

In order to determine the accuracy rates for each observer separately, tables were constructed that graphically present, by sponsor, each observer's results (see Table 7). Thus, for example, if an observer in Grade 1 at Site X had difficulty with Code 7, "acknowledge," it is possible to compute the site mean of Code 7 and compare it with the first grade means of Code 7 at the four other sites of the sponsor. If the means of the four sites (not in question) are similar and the mean of the site in question differs from the other four, there are two possible explanations: (1) Site X may indeed differ from the other four sites, or (2) the observer at Site X may not be recording accurately. In any case, the data resulting from Code 7 at S. e X would be interpreted with caution. This procedure allows for each observer's data to be reviewed in order to estimate the accuracy of the individual on each code and to allow for the data to be interpreted accordingly.

As an example, Table 7 shows the observer accuracy rate (the first number) and the criterion accuracy rate (the second number) for each of the Far West observers for each code. In addition, an overall accuracy rate for each observer on all What and How codes has been computed and displayed on this table to provide a general idea of the

Fable 7

ACCURACY RATES* FOR THE MHAT AND HOW CODES BY OBSERVERS AT FAR WEST SITES

	,	•	;		1				, 6,60	24 24 24 24 24 24 24 24 24 24 24 24 24 2	T T	1	on Jestan	y.	Acuracy
10		odes with	4NV	SNV	6	11	6	12	1	2	33.0	5	80	11	Rate
.84/.80	96/.89	.62/.89 1.0/.38	.82/.90	1.0/.50	.93/1.0 1.0/.81	.90/.82	.0	.94/.81			.50/1.0	0.0/0.0	.67/1.0	1.0/1.0	. 83
.867.70	.96/.84	.86/.75	.83/.91	.80/.67	.63/.47	.86/.75	.71/.63	.92/ ,	.75/.75				.50/1.0	1.0/1.0	. 78
.92/.57	.81/1.0	.71/.83	1.0/.82	.75/.86	77./77.	.88/.70	.83/.83	.91/.96		.36/.80	.80/1 0	0.0/0 0	1.0/1 0.67/1.0	1.0/1.0	81 83
.80/.76	.92/.92 1.0/.89	. 83/.63	1.0/ 70	.44/.57	1.0/.29	.90/.82	.67/1.0	.75/.91				.10/1.0	.50/1.0	1.0/.33	. 81
.75/.79	.95/.80 .92/.73	.54/.78		.89/1.0 1.0/ 50	.79/.94	.73/.80	1.0/.89	.93/.93	.60/.75	.43/.60	0.0/0.0		1.0/1.0	0.0/0.0	79.
													Overail		
NV	es with S	ix or Mor	e Criterio	on Instan	o o	3	Codes with	h Five or	Fewer Cri	rerion Ir	U '	Ŧ	Accuracy		
1.0/.85	1.0/.80	.67/.90		1.0/.67	1.0/.67	.67/1.0			1.0/.50	.14/.50	1.0/.50	.50/1.0	.83/.78		
.93/.96	.67/1.0 .83/.63	.66/1.0		.88/1.0	.88/1.0	.50/.50	6.0/0.0	1.0/.50	.75/1.0	0.0/0.0	1.0/.25	. 50/.50	.74/.85		
1.0/.96	1.0/.67	69',68.	0.0/0.0	0.0/0.0	38,'88.	1.0/.50	0.0/0.0	1.0/1.0	1.0/.33	1.0/1.0	1.0/1.0	1.6/.50	92/ 64 .88/.76		
.84/.91 1.0/ 96	.80/.80	.82/.97	.33/.08	.75/1 0	.75/.43	.17/1.0	.25/1.0	0/1.0	.67/ 67	.38/1.0	.33/ 33	0.0/0.0	.71/.81		
	19 .84/.80 .81/.81 .86/.70 .92/.57 .94/.81 .80/.76 .75/.79 .95/.73 .95/.73 .95/.73 .95/.73 .95/.73 .96/.96 .91/.96 .96/.91 .96/.91	284/.80 .96/.89 .81/.81 1.0/.96 .861/.70 .96/.84 .67/.60 .79/.76 .92/.57 .81/1.0 .94/.81 .96/.81 .80/.76 .92/.92 .78/.70 .95/.80 .75/.79 .95/.80 .75/.79 .95/.80 .75/.79 .95/.80 .95/.73 .92/.73 .00des with Si .NV X .N	10 3 4 4 4 4 4 4 4 4 4	36/.86 1.0/.96 1.0/.96 1.0/.86 .95/.81 .92/.92 1.0/.80 .92/.73 X X X X 1.0/.80 .83/.83 1.0/.67 1.0/.67 1.0/.83	10 3 4 4NV 5NV 5NV	1.0/.50 93/1.0 1.0/.50 93/1.0 1.0/.50 93/1.0 1.0/.58 1.0/.81 1.0/.88 1.0/.29 1.0/.83 75/.56 1.0/.83 75/.56 1.0/.83 75/.56 1.0/.83 10/.29 1.0/.81 10/.29 1.0/.67 1.0/.67 1.0/.67 1.0/.67 1.0/.67 1.0/.67 1.0/.67 1.0/.67 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25 1.0/.78 1.0/.25	SNV 6 77 1.0/.50 .93/1.0 .90/.82 .50/.88 1.0/.81 .90/.82 .71/.71 .62/.47 .86/.75 .80/.67 .33/.29 .60/.67 .75/.86 .77/.77 .88/.70 .86/.75 .75/.69 1.0/.70 .86/.75 .75/.69 1.0/.70 .89/1.0 .79/.94 .86/.60 1.0/.83 .75/.56 .90/.90 .89/1.0 .79/.94 .86/.60 1.0/.83 .75/.56 .90/.90 .89/1.0 .79/.94 .86/.60 1.0/.81 .70/.57 .73/.80 .88/1.0 .88/1.0 .50/.50 0.0/0.0 0.00/0.0 .50/1.0 .75/1 0 .75/.43 .17/1.0 .75/1 0 .75/.43 .17/1.0	SNV 6 77 1.0/.50 .93/1.0 .90/.82 .50/.88 1.0/.81 .90/.82 .71/.71 .62/.47 .86/.75 .80/.67 .33/.29 .60/.67 .75/.86 .77/.77 .88/.70 .86/.75 .75/.69 1.0/.70 .86/.75 .75/.69 1.0/.70 .89/1.0 .79/.94 .86/.60 1.0/.83 .75/.56 .90/.90 .89/1.0 .79/.94 .86/.60 1.0/.83 .75/.56 .90/.90 .89/1.0 .79/.94 .86/.60 1.0/.81 .70/.57 .73/.80 .88/1.0 .88/1.0 .50/.50 0.0/0.0 0.00/0.0 .50/1.0 .75/1 0 .75/.43 .17/1.0 .75/1 0 .75/.43 .17/1.0	10/.50 93/1.0 90/.82 86/.75 94/.81 1.0/.50 93/1.0 90/.82 36/.75 94/.81 1.0/.50 93/1.0 90/.82 36/.75 94/.81 1.0/.50 93/1.0 90/.82 73/1.0 82/.96 1.0/.88 1.0/.77 88/.75 71/.63 94/.80 1.0/.85 77/.77 88/.70 86/.88 87/.91 1.0/.83 75/.56 90/.90 10/.63 75/.91 1.0/.83 75/.56 90/.90 1.0/.63 75/.90 1.0/.83 75/.56 90/.90 1.0/.63 75/.90 1.0/.83 75/.56 90/.90 1.0/.63 75/.90 1.0/.50 58/.82 77/.80 1.0/1.0 93/.93 1.0/.67 1.0/.67 67/1.0 0.0/0.0 1.0/.50 1.0/.78 1.0/.25 67/1.0 0.0/0.0 0.0/0.0 1.0/.78 1.0/.25 67/1.0 0.0/0.0 0.0/0.0 1.0/.71 88/.88 1.0/1.0 0.0/0.0 1.0/1.0 1.0/.71 88/.88 1.0/1.0 50/1.0 50/1.0 1.0/.71 58/.88 1.0/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 1.0/1.0 1.3/.88 1.0/1.0 50/1.0 1.0/1.0 1.3/.80 1.0/1.0 50/1.0 1.0/1.0 1.3/.80 1.0/1.0 50/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0 1.3/.80 1.0/1.0 1.0/1.0	10, 50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 73/1.0 82/.96 .05/.82 .05/.82 .73/1.0 82/.96 .05/.82 .73/1.0 .82/.93 .91/.96 .05/.86 .73/.77 .88/.70 .83/.83 .91/.96 1.0/.84 .75/.86 .77/.77 .88/.70 .83/.83 .91/.96 1.0/.82 .75/.86 .75/.90 .10/.63 .75/.91 .75/.91 .75/.90 .	10, 50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 73/1.0 82/.96 .05/.82 .05/.82 .73/1.0 82/.96 .05/.82 .73/1.0 .82/.93 .91/.96 .05/.86 .73/.77 .88/.70 .83/.83 .91/.96 1.0/.84 .75/.86 .77/.77 .88/.70 .83/.83 .91/.96 1.0/.82 .75/.86 .75/.90 .10/.63 .75/.91 .75/.91 .75/.90 .	10, 50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 73/1.0 82/.96 .05/.82 .05/.82 .73/1.0 82/.96 .05/.82 .73/1.0 .82/.93 .91/.96 .05/.86 .73/.77 .88/.70 .83/.83 .91/.96 1.0/.84 .75/.86 .77/.77 .88/.70 .83/.83 .91/.96 1.0/.82 .75/.86 .75/.90 .10/.63 .75/.91 .75/.91 .75/.90 .	10, 50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 94/.81 1.0/.50 93/1.0 90,82 86,75 73/1.0 82/.96 .05/.82 .05/.82 .73/1.0 82/.96 .05/.82 .73/1.0 .82/.93 .91/.96 .05/.86 .73/.77 .88/.70 .83/.83 .91/.96 1.0/.84 .75/.86 .77/.77 .88/.70 .83/.83 .91/.96 1.0/.82 .75/.86 .75/.90 .10/.63 .75/.91 .75/.91 .75/.90 .	Codes with Five or Fever Criterion Instances 1.0/.50 93/1.0 90/.82 86/.75 94/.81 1.0/1.0 577.80 50/1.0 0.0/0.0 67/1.0 50/.88 1.0/.81 90/.82 .7/1/.63 92/.96 .05/.25 .60/.60 .75/10 .50/10 67/1.0 .67/1.0 .80/.57 .31/.63 92/.96 .05/.25 .60/.60 .75/10 .50/10 .67/1.0 .80/.56 .33/.29 .60/.67 .71/.63 92/.96 .50/.50 .43/.60 .50/10 .50/10 .50/10 .50/10 .80/.50 .75/.86 .77/.77 .88/.70 .83/.83 .91/.96 1.0/.25 .36/.80 .80/10 0.0/00 0.0/10 .50/.10 .80/.10 .10/.10 .86/.88 .87/.91 1.0/.67 .50/.60 1.0/10 .14/10 .67/10 .50/10 .10/1	Codes with Five or Feber Criterion Instances Codes with Five or Feber Criterion Instances SSW 6 7 9 12 1 2 38N 5 11 10 10 10 10 10 10

.67/.67 .22/.25 | 1.0/1.0 | 0.0/0.0 | 1.0/.50 | 1.0/.67 | .50/.33 | 1.0/.50 | 1.0/.50 | 82/.67 | .82/1.0 | 1.0/.50 | 0.0/0.0 | 0.0/1.0 | 0.0/1.0 | .67/.67 | .50/.67 | 1.0/.33 | 1.0/.50 | .87/.59

1.0/.31

.90/.77

1.0/1.0

1.0/.85

0213 Tacoma First Grade Third Grade

Source: SRI

^{*}Accuracy rate (proportion correct of the total recorded) is given first and criterion accuracy rate (proportion of times the criterion instances
were recorded correctly) is given second.

observer's skill.* The results are grouped by grade level and site. Similar tables for the other six sponsors in the evaluation were prepared (see Appendix L). The complete confusability matrix of all observers is not included in this report but is available at SRI.

As indicated earlier, five or fewer criterion examples of a code minimize the confidence with which the actual results can be utilized. Therefore, only codes with six or more examples are considered in the analysis of specific grade levels within a site.

As an illustration of how Table 7 can be used, the results of the first observers listed are discussed. The observers are grouped according to the site or project they observed. Going from left to right, the What codes are first shown on the extreme left with the codes which are represented by six or more criterion instances. The next section includes the What codes that were represented by five or fewer instances. The How codes are shown next, with a similar division.

a. Findings from What Codes Occurring Six or More Times

The first observer listed, Observer for Grade 1 from Berkeley had an overall reliability rate of .84 on the What codes (see Table 7). Of the nine codes with six or more criterion instances, only two codes registered an observer accuracy or criterion accuracy rate of less than .75. Looking at Code 4, "instruction, explanation," we see an observer accuracy rate of .62 and a criterion accuracy rate of .89. This means that when Observer for Grade 1 recorded Code 4, it was correct 62% of the time. The observer actually recorded a Code 4 some 89% of the time; thus, she missed only 11% of the examples. However, 38% of the time when she recorded 4 codes she was incorrect. Therefore, variables using the 4 code in the first grade at Berkeley should be interpreted with caution.

The other code which the observer's results show to be considered less than adequate was the 5NV code, "nonverbal general action or play." The observer accuracy rate of 1.00 shows that when she recorded a 5NV it was always a 5NV--she did not confuse it. However, she failed to code 50% of the videotape examples of 5NV.

^{*}The overall accuracy rate is arrived at by computing the ratio of correct recordings (those that fall in the diagonal cells) of all codes to the total number of recorded codes and to the total number of criterion instances of the codes. For the What codes, the two ratios are the same since the total number of recorded codes is equal to the total number of criterion instances. Two ratios are required for the How codes since observers are not required to record a How code in each frame which leads to differences between the total numbers of criterion examples and total numbers of recorded codes.

The overall results for Observer for Grade 1 show that the observation data she gathered can be analyzed with a great deal of confidence. Only the results for the 4 and 5NV codes must be analyzed with special caution.

Three of the other first grade observers for this sponsor registered observer accuracy rates of over .70 on the 4 code. The first grade observer at Tacoma has an observer accuracy 1 · e of only 54. If the results of the data collection show that Grade 1 at Berkeley and Tacoma have means and standard deviations for Code 4 that differ widely from those at the other sites, it may be explained by the observers' confusion in the use of the 4 code.

A similar situation exists with the data for three of the four other first-grade observers on the videotape examples of the 5NV code. The underestimation of the code by Observer for Grade 1 at Berkeley is not common to all first grade observers. Therefore, this should be taken into consideration when the data are analyzed.

b. Findings from How Codes Occurring Six or More Times

Berkeley was 100% accurate when she recorded five of the more frequent How codes. The one coding exception is A, "academic." Only 67% of the time were her A codings correct; 33% of the time they should not have been coded as A. However, she recorded 90% of the occurrences of Code A on the videotape. The extra 33% that she recorded are considered intrusions,* and they overestimate the occurrence of this code. Observers at other sites had their own specific difficulties, and their data will have to be analyzed in the same way that the data of Observer for Grade 1 at Berkeley have been analyzed.

c. Summary

The usefulness of this method of measuring the accuracy of individual observers lies in its capacity to:

- Differentiate codes according to relatively high or low levels of confidence;
- Assess an individual's coding skill on a specific code and examine observer bias;
- Compare individual observer's scores with other observer's scores at the sponsor's same grade level.

^{*}See page 75 for an explanation of intrusion.

By thus identifying the various sources of error in the observation measures, we can more accurately determine whether specific problems lie in the code itself or with the individual observer and thus interpret the data according to observer bias.

2. A Study Comparing Accuracy Between Observers and Videotape Simulation Accuracy

The preceding section has examined the confusability of the observation codes and the ability of observers to code criterion videotapes. Videotaped simulation of classroom events are, admittedly, different from actual classroom events. In an effort to compare the accuracy of observer ratings on the simulations and accuracy between raters in classrooms, a small study was conducted in one location. This section compares the results obtained from both studies of accuracy for two observers.

a. Paired Observers

The first method, the paired observation, is the most commonly used method of assessing interaction analysis instruments. The procedure followed is to have the two observers (generally a trainer and qualified observer) situated in the same classroom, coding exactly the same situation simultaneously. The recorded codes are then evaluated in terms of percent agreement between the two observers. Since the speed of the two observers is not expected to be consistent, the ratio of the number of codes recorded by the observer is compared to the ratio of the number of codes recorded by the trainer.

It must be pointed out that this paired observation procedure has some serious limitations. First, two extra people in the classroom are more obtrusive than one. Second, it is almost impossible to assure that the two observers are focusing on exactly the same action. Due to limited space, the two observers may not have the same angle of observation; thus, what they see and hear may be somewhat different and yet each observer could be collecting a correct and adequate sample of the behavior that is occurring. A third problem is that even if the marginal frequency counts of a code by two observers are numerically similar, we cannot be certain that the two observers have recorded specific incidents exactly the same. Similar ratios could occur by chance. Finally, it happens that during the classroom observations certain interactions or codes do not occur, or occur at such a minimal rate that reliability cannot be computed. There is no way to be certain that all codes will be assessed within a given time period.

In this study, data from sixteen 5-minute observations were examined, using three \underline{Who} codes, twelve \underline{What} codes, and thirteen \underline{How} codes. (Codes Q and P were excluded because each occurred only once.) Two different observers (referred to as Observer 1 and Observer

2) were analyzed. To assess the coding accuracy of the two observers, the proportion of frames that contained a particular code was recorded for each trainer and observer. From the proportions, the following equation was computed for each code (z is for the trainer and y is for a given observer on a given code):

The percent agreement = 100 x
$$\frac{\min (y, z)*}{\max (y, z)}$$

Tables 8 and 9 show the overall percentage reliability of the codes separately, in terms of their ratio of frequency. It must be noted that accuracy for low-frequency variables is difficult to interpret because if the trainer records an event four times and the observer only two times and they observe an equal number of frames, the agreement is only 50%, even though the actual difference is only two occurrences. Higher-frequency variables can tolerate a difference of two occurrences and still show a high percentage of agreement. The data for each observer are presented separately in Tables 8 and 9. Since there are sixteen paired observations, it is possible to have as many as 1,216 frames of interaction. Therefore, we have separated the data into three categories: least frequent, moderately frequent, and most frequent. Table 10 is included to further clarify the results of the paired observations. It includes the frequency scores of the SRI trainer as well as the ratios of occurrence and percent agreement scores for both observers over all codes.

The results show that both of the observers were very reliable on the Who codes. The What codes were also recorded very reliably, with only two exceptions. Observer 1 recorded less than half as many 8 codes, "praise," as the trainer, and Observer 2 missed nearly 80% of the occurrences of Code 6, "task-related statement." Significantly, however, both of these codes occurred with low frequency.

The results on the <u>How</u> codes were much lower. Observer 1 was quite reliable on the NV, "nonverbal," G, "guide to alternative," A, "academic," and B, "behavior" codes. She was below the 50% agreement rate for the X, "movement," H, "happy," N, "negative," and O, "object" codes. The remaining codes occurred less than ten times according to the trainer's score and, therefore, no accuracy rate could be arrived at.

Observer 2's rate of accuracy was similar on the $\underline{\text{How}}$ codes. She was reliable on the NV, X, and A codes and below the 50% level on the Q, G, H, and B codes. Seven of the $\underline{\text{How}}$ codes occurred

^{*}When z = 0 and y = 0, the percent agreement is assigned a value of 100.

Table 8

PERCENT AGREEMENT BETWEEN TRAINER AND OBSERVER 1

A. Who Codes

Percent Agreement	Least Frequent (0-60)	Moderately Frequent (61-175)	Most Frequent (176-1,216)	Total No. of Codes
91-100 81-90 71-80 61-70 51-60 41-50	Machine		Adult, Child	2 1 0 - 0 0
			Total	3

B. What Codes

Percent Agreement	Least Frequent (0-60)	Moderately Frequent (61-175)	Most Frequent (176-1,216)	Total No.
91-100	10		4	2
81-90		1Q, 6	1, 3, 12	5
71-80	11	•	• •	1
61-70		5 , 9		2
51-60	7			1
41-50	8			1
			Total	$\overline{12}$

C. <u>How</u> Codes

Percent Agreement	Least Frequent (0-60)	Moderately Frequent (61-175)	Most Frequent (176-1,216)	Total No. of Codes
91-100	U, G, DP		A	4
81-90				0
71-80			NV	1
61-70		В		1
51-60				Ŋ
41-50	X			1
31-40	Τ			1
21-30				0
11-20	Q	Н		2
0-10	N, O, W			3
			Total	13

Table 9
PERCENT AGREEMENT BETWEEN TRAINER AND OBSERVER 2

A. Who Codes

Percent Agreement	Least Frequent (0-60)	Moderately Frequent (61-175)	Most Frequent (176-1,216)	Total No. of Codes
91-100			Adult, Child	2
81 - 90			•	0
71-80				0
√1−70				0
51-60				~ 0
41-50				0
			Total	- 2

B. What Codes

Percent Agreement	Least Frequent (0-60)	Moderately Frequent (61-175)	Most Frequent (176-1,216)	Total No. of Codes
91-100	8		5	2
81-90			3	1
71-80		4, 7	1Q	3
61-70	10		12	2
51-60		9	1	2
41-50				0
31-40			<i>:</i>	0
21-30			'	0
11-20	6			1_
			Total	11

C. <u>How</u> Codes

Percent Agreement	Least Frequent (0-60)	Moderately Frequent (61-175)	Most Frequent ('76-1,216)	Total No. of Codes
91-100	DP		A	2
81-90				0
71-80			NV	1
61-70				0
51-60	Х			1
41-50				0
31-40	T			1
21-30	H, U, Q, G			4
11-20	,	В		1
0-10	N, O, W			3
			Total	13

Table 16
RESULIS OF PAIRED OBSERVATIONS

		0bserve	r l		Observer 2						
	Percent	Observer	Trainer	Trainer	Percent	Observor	Trainer	Trainer			
	Agreement	Ratio	Ratio	Score	Agreement	Ratio	Ratio	Score			
Who Codes											
Adult	97/	.482	.467	502	947	.544	.579	638			
Child	96	.488	.506	544	98	.431	.423	467			
Machine	82	.023	.028	30 *		.026	.000	0*			
(Total fi	requency	1,160	1,076	1,076)		990	1,105	1,105			
What Codes											
1	88%	.171	.150	161	60/	.174	.104	115			
10	90	.103	.093	100	73	.106	.145	160			
2	*	.000	.001	1*	*	.001	.000	0*			
3	88	.212	. 242	260	89	.288	.257	283			
4	99	.150	.151	162	77	.091	.070	77			
5	65	.086	.056	60	92	.091	.099	109			
6	81,	.069	.056	60	17*	.006	.035	38 *			
7	56 ົ	.020	.036	38 <u>*</u>	75 *	.039	.052	57			
8	44*	.097	.016	17*	100*	.022	.022	24*			
9	65,	.042	.065	69,	55	.038	.069	76			
10	93"	.013	.014	15	65	.031	.020	22*			
11	75 *	.003	.004	4*	*	.020	.000	0*			
12	83	.121	.100	107	70	.087	.124	137			
٧V	73%	.239	.174	187	71%	.144	.203	224			
X	43	.053	.023	23*	51*	.021	.041	45*			
How Codes											
H	11	.006	.057	61	22*	.004	.018	20*			
IJ	100*	.000	.000	o *	25*	.016	.004	4*			
N	8*	.001	.012	13*	0*	.000	.009	10*			
T	33*	.003	.009	9*	33*	.003	.009	9*			
Q	11*	.001	.009	9*	23*	.005	.022	24*			
G	100*	.033	.033	35*	29*	.008	.028	31 *			
P		.000	.001	1*	^	.002	.000	Ω			
0	o*	.000	.016	17*	 *	.000	.001	1*			
W	0*	.000	.007	7*	*	.000	.002	2 *			
DP	100*	.000	.000	0*	100*	.000	.000	0*			
Α	94	.760	.713	767	93	.670	.622	687			
В	62*	.018	.029	31*	16*	.008	.051	56*			

Note: Ratio here means the occurrence of a specific code divided by the total number of frames recorded.

 $[\]star$ Fewer than 60 criterion instances.

only ten or fewer times, thus generalizations regarding these codes would be made with caution.*

b. Videotaped Skits (Simulations)

The second phase of the reliability study was based on the previously described videotaped skits. The same procedure was followed, having the two observers code interactions seen on the videotape and comparing that record with the predetermined criteria. The tape has steps or pauses between each interaction to ensure that each observer knows which interaction to code. The procedures are repeated here for purposes of clarification.

The results were compiled for both observers. They reveal both (1) which occurrences were not recorded, and (2) which codes were erroneously recorded. The procedure allowed us to identify the problem codes for each specific observer.

In the figures that follow, two values are shown in each cell. For those cells that fall on the main diagonal, the upper value shows the percent of times the total number of codes recorded was correct. The lower value shows the percent of times the code actually occurred and was recorded correctly by the observer.

For cells that do not fall on the diagonal, the two values indicate proportions of error rather than of accuracy. The upper value shows the percent of times a specific code (as shown by row indicator) was recorded instead of a specific criterion code (indicated by the column) to the total number of recordings of that code. The lower value indicates the percent of times that the specific code (indicated by the row) was recorded when a given criterion code was called for (shown by the column).

Figures 16-19 are matrices showing the percent of accuracy and the percent of the total codes recorded for the two observers. Computations are for the What and the How codes. The total number of criterion instances of each code is shown at the bottom of each column. The total number that the observer recorded is given at the end of each row.

Those codes that occurred five or fewer times are listed in the matrices but will not be discussed in the body of this text. A decision was made that, in these cases, the confidence level with which

^{*}This study of inter-rater reliability would be more useful if it had also examined the day-to-day variability of the classroom so that the error due to observers and the error due to varying classroom processes could have been computed.

we might make predictions as to the reliability of an observer would be so low as to render it unacceptable. Therefore, only the codes which were tested by six or more criterion examples will be considered in this analysis.

As shown in Figure 16, the <u>What</u> matrix for Observer 1 indicates that, of the nine codes that included six or more criterion instances, only the 4NV code, "nonverbal instruction," the 5NV code, "nonverbal general action or play," and the 6 code, "task-related statement" had a criterion accuracy lower than .70. In the 6 code, 80% of the recorded 6 codes were correct, but 69% of the criterion codes were missed. Moving up the 6 column we can see that 54% of the criterion 6 codes were incorrectly coded as 5. The problem with the 5NV code is somewhat different. In this case the problem is that both the criterion rate and the observer correctness were low. It appears that on the simulations Observer 1 had difficulty distinguishing the 5NV code from the 4NV, "nonverbal instruction" code, since she often coded the criterion 4NV instances as 5NV and also the 5NV criterion as 4NV.

Over all $\underline{\text{What}}$ codes, Observer 1 is reasonably accurate with a criterion rate of .76 which is average for all 63 observers examined by the videotapes on the What codes.*

Observer 2 had a reasonable overall criterion accuracy rate (.70) also, but she had coding problems with several codes (see Figure 17). She did not record the 4 code, "instruction, explanation" 56% of the time. The 4NV, 6, 7, and 9 codes were also coded less frequently than required. She used the 12 code, "observing, listening" eight more times than required, where she should have used codes 3, 4, and 7.

The <u>How</u> code accuracy for Observer 1 was also acceptable (see Figure 18). Her overall criterion accuracy rate was .78. This figure indicates that of the lll criterion <u>How</u> codes presented, she recorded 87 correctly (see lower right-hand corner of Figure 18). The only <u>How</u> code that Observer 1 recorded with less than 70% accuracy was the O code, "object;" 50% were missed and 64% were recorded when not indicated. The other codes that rell below a .70 rate of accuracy were codes that included five or fewer criterion instances.

Observer 2 had a more difficult time recording the $\underline{\mathrm{How}}$ codes from the tapes. In Figure 19 her overall accuracy rate is shown as only .56. On individual codes, the 0 was very reliable (1.00/.86), but the NV was not used 41% of the times when it should have been. The A, "academic" was coded when not called for sixteen times and omitted

^{*}This figure is computed by dividing the total number of correct entries by the exact number of videotaped criterion examples.

Total	Entries	2	18	0	23	4	7	2	0	, 7	4	6	2	6	2	23	112	(76% accuracy rate)
Total	Entries	3	25	0	24	ā	ω	9	8	1,1	တ	11	2	10	2	59	•	148
																		1
	12															0 79 1 00		23
	=														8 0.			2
	6		_											0.50 53				თ
	8												8 8					2
Cells)	7											0.82 0.90				003		0
pers in	9								0.88		0 80 0 31			010		003		13
er Num	5N <							0 67 0 33	 	0 58	-				├	003		12
ss (Low	S	00 33 00 .							00 00 00 00	-								-
Example	>N4	-						0.33	├	0 36								9
Criterion Examples (Lower Numbers in Cells)	4				0 0 0 0 0 0		0.88 0.70									007		0
ō	384			-		8 8												4
	8				96 O				0 03			0 18 0 08					-	26
	2		0 20	00 O		_	-											ro.
	ō		0.72				0.13		/ 		0 20					0 03		21
	-	067	0 08 0 50	!									-					4
1400.00	Codes	-	ā	~	3	386	4	4NV	2	SNV	9	,	8	6	=	12		nber of on Tapes
		Codes (Upper Numbers in Cells)									Total Number of Examples on Criterion Tapes							

FIGURE 16 PROPORTIONAL DISTRIBUTION OF WHAT CODES FOR OBSERVER 1 FOR BOTH RECORDED AND CRITERION ACCURACY

	Total	Correct Entries	2	=	2	23	2	4	4	C		6	8	9	0	9	3	20	100	(70° accuracy rate)
	Total	Entries	6	13	2	26	~	5	9	,		12	14	8	0	9	3	30		142
		 																i	- 	
ŀ		12											0 14 0 C	3				0.91		22
		=															0 0			٣
1		0	0 22	77,						0 14						1 00 1				6
i	Cetts	∞												0 25	000					2
1	ibers in	7		-									0007	0 75	-		! !	0 10		67
	er Nun	၁				0 08	2		0.20	0.29	G G		0.57				1	 -		13
	Criterion Example, it ower Numbers in Cellst	5NV									0.75	1 00					• — 		 	6
	Frampl	5	: 	de.						0000	3									0
	riterion	4NV	: :						080	043	0.25	030								10
	0	4						080										0 17		6
		384			+	0 04	1 00													3
		ຕ				0.89		0 20					0 14					007		28
		5	011	0 00	1 00								0 07							5
		10	0 44	0.85																15
		_	0 22	0.08						0 14	0.7.0									4
	What	Codes	-	10	~	3	320	4	4N V	5	7,10	ANG	9	7	8	6	11	12		r 0.
	Codes (Upper Numbers in Cells)										Total Number or Examples on Criterion Tapes									

FIGURE 17 PROPORTIONAL DISTRIBUTION OF WHAT CODES FOR OBSERVER 2 FOR BOTH RECORDED AND CRITICALDN ACCURACY

Total	Entries	24	4	34	6	9	1	4	0	1	-	1	0	ı	1	87	(78%	accuracy rate)
Total	Entries	25	5	36	10	7	2	11	1	7	2	1	1	1	1	110		
																		1111
	Propn of Intru	0 04	0 20	0.10	0 10 0 05	0.05	0 50	c 64 0 33	1 00 0 05	0.57	0 50 0 05		1 00			8 0 0		1
	Ι														1.00	0.05		2
	ם													1.00		0 14		4
1 €	z									0 14			000	1	!	0 35		2
s in Ce	-											100				0 67 0 67		п
Number	o									0 14	0.50							2
Criterion Examples (Lower Numbers in Cells)	U									0 14								,-
amples	<u>a</u>			-					8 8									0
rion Ex	0							0 36								0 50		80
Crite	3			-		-	050									0 05		2
	OP					086												9
	8				090											0 14		12
	4			0 94		_										0 14		37
	×		080													0.05		S
	2	96 0	+													0 14		27
	How	+-	×	d.	80	d0	3	°	۵	g	o	⊢	z	ם	r	Propn of		nber of on Tapes
		Codes (Upper Numbers in Cells)											Total Number of Examples on Criterion Tapes					

FIGURE 18 PROPORTIONAL DISTRIBUTION OF HOW CODES FOR OBSERVER 1 FOR BOTH RECORDED AND CRITERION ACCURACY

Total	Total Entries	17 16	9 5	43 27	0 0	0 0	0 0	9 9	0 01	2 0	-	2 2	0 0	2 2	1	09 68	(56%	accuracy rate)
	E T	_	-												_	-	· -	801
	Pro n of Intru	0 06		0 30		_			00	0 50		-				00.00		<u> </u>
	H F F	0 0		0 0					- 0	0 0					0 20	+	—	
			-	-					-	-		-		8 8	 	+	├—	-
	2					_				00.	-	-	8 8	1 00 0		0.50		4
	-			-	-	_	-		<u> </u>	0 -		0 0	8 8	_	_			
Cells)	-		_		_	_					0.0	0 0	-			2 0		2
ers in (0				<u> </u>	_	_		1		- 0 50 50					0 02		2
Numb	9						<u> </u>			88								°
(Lower	a				_				8 8		! 							0
amples	0							1 00 0 86								0 02		7
Criterion Examples (Lower Numbers in Cells)	₃						8 8 0 0									0 05 1 00		7
Crite	OP					00 0 00 0										0 16		7
	8			0 0 23	00 0 00 0											0.23		13
	۷	,		0 63 0 77												0 18 0 23		35
	×		1 00 0 83												_	0 02		9
	>	0 94 0 59														025		27
How	Codes	> 2	×	4	8	OP	3	0	۵	ပ	O	_	z	Э	π	Propn of Omissions		nber of on Tapes
						(S	Cells	1: 219:	amuN	ıədd	(U) 89	Cod						Total Number of Examples on Criterion Tapes

FIGURE 19 PROPORTIONAL DISTRIBUTION OF HOW CODES FOR OBSERVER 2 FOR BOTH RECORDED AND CRITERION ACCURACY

eight times when it should have been coded. Codes B, "behavior" and DP, "dramatic play, pretending" were ignored completely.

c. Summary

Two distinct procedures, the videotaped skits and the paired observations, were used to assess the accuracy of two observers. The results indicate average reliability for both observers on the $\underline{\text{What}}$ code category. For the $\underline{\text{How}}$ category, Observer 1 is above average, but Observer 2 is below the average of the other 62 observers.

Specifically, Observer 1 was acceptably accurate on the more frequently used individual codes. Many of her codes, such as 1Q, 3, 4, 7, 9, 12, NV, A, and B were shown to be very reliable on both procedures. Only Code 0, "objects" was shown to be unreliable on both procedures.

The results were equally good for Observer 2 on the What codes with only Code 6, "task-related statement" being shown to be unreliable on both procedures. The How Code B, "behavior" was also recorded poorly in both procedures. In the case of the videotape codings, Observer 2 missed the 13 examples of Code B and underestimated it in the paired observations. On Code A, "academic," Observer 2 was 93% accurate on the paired observations but had a .63/.77 reliability on the videotapes. Other How codes such as "movement" and "object" are acceptably accurate on the videotapes while "nonverbal" is acceptably accurate on the paired observations. "Guide" and "question," which were underestimated in the paired observer analysis, have too few examples on the videotape to be discussed in terms of reliability.

While simulated videotaped events are limited in their scope and differ from the classroom situation, they do offer a standard stimulus to examine each observer's ability to code specified events and to identify observer bias. There is still some confounding in the source of system error; however, the variation introduced by a second observer is eliminated. While the two systems of examining observer accuracy do yield some different information, it is not contradictory, and the videotape system is far easier to control and interpret.

E. Conclusions

The study indicates that the observation data collection was reasonably uniform. Unacceptable data (e.g., anomalous classroom events, or FMOs with too few interaction frames) were discarded.

Day-to-day classroom procedures appear to be stable enough to support the analysis used in this report. When all classrooms were combined and Day 1 was compared with Day 2, only one variable in the third grade fell below .70 reliability. This was the occurrence of

Variable 66. (Numbers, math, arithmetic). The stability of the means of all classrooms is important to the partial correlation and regression analysis presented in Chapter VII since all classrooms are used to investigate the relationship of instructional processes and child outcomes. Of the 140 coefficients that were computed for individual sponsors, approximately 84% had a value of .70 or more. High/Scope had the least variability of all sponsors while University of Kansas had reliability lower than .70 on more variables than other sponsors. Counter to common belief the more structured models were not more stable in classroom processes from Day 1 to Day 2. Each sponsor had some variables which are not stable and interpretation of such variables that are critical to implementation should be interpreted with consideration of the instability.

While there appears to be an overlap in the definition of some codes, the source of unreliability can be isolated to a particular observer. Hence, data has been interpreted with the observer's limitation in mind.* When coding the videotapes, the overall reliability for all observers was .78 on the What codes, and .81 on the How codes recorded.** However, as previously stated this method of assessing reliability is limited. A carefully designed study of observer reliability is needed where several pairs of observers code in classrooms on different days to examine what portion of the error is due to observer bias and what portion is due to day-to-day variability within classroom processes themselves. From such a study we might be able to learn how many observations are needed in a classroom to obtain a reliable description of the procedures.

^{*}Interpretation of each observer's effect upon the data collected is reported at the end of each sponsor's section in Chapter V.

^{**}Six of the 15 What codes and eight out of 14 How codes were not included in this analysis because there were too few examples on the videotaped simulations.

Chapter V

ASSESSMENT OF IMPLEMENTATION

The purpose of Chapter V is to assess the degree of implementation of seven sponsors. The study of implementation compares observed classroom processes with specific sponsor goals. No completely satisfactory way to approach this issue has presented itself, since the Follow Through programs were not originally operationalized in terms of variables defined on SRI's classroom observation schedule. This problem has been partially overcome by constant consultation with the program's sponsors during thé creation of the variables. Also, each sponsor selected his own set of variables which will reflect some of the critical components of his model. Implementation will be judged by two criteria: uniformity of sponsor classroom scores on selected implementation variables and (2) how the sponsor classrooms differ from Non-Follow Through classrooms on these variables. The rationale for the second criterion is that Follow Through is intended to be an intervention program that offers alternatives to the conventional classroom. The primary focus on evaluating program implementation, then, should be on those essential components of each sponsor's model that differentiate that sponsor from the conventional classroom.

Admittedly, important dimensions of classroom implementation have not been recorded. For example, it is a goal for Far West Laboratory to have their teachers establish environments where a child can search for solutions to his problems in his own way and can risk, guess and make discoveries without serious negative psychological consequences; however, we cannot record whether such environments have been established or whether children are solving problems. We can only record that children engage in activities independently, work with a variety of materials and ask questions. Nevertheless, past observation analysis of the Follow Through programs have been able to discriminate between programs and have indicated that the sponsors have been successful in training teachers and aides to observably perform as the sponsor desired (Stallings, Baker, Steinmetz, 1972; Stallings, 1973).

Successful implementation of a program is also affected by the community, school officials, parents, and teachers. If any of these participants have a reluctant or negative attitude toward Follow Through in general or a model in particular, the level of implementation is affected. Although an assessment of teacher attitudes toward the model is used in this analysis, systematic information regarding the other sources of implementation variance, such as the community attitude, is not available. This evaluation concerns only what happened in the classroom.

A. Methods

1. Preliminary Analysis--Relationship of Entering Characteristics and Process Variables

In this analysis, observational variables describing classroom control systems and adult display of affect were related to entering characteristics of children such as sex, ethnicity, and baseline test scores of children. Classroom means were compared to see how differently teachers may behave in classrooms where, for example, there are more boys than girls. The classroom was used as the unit of analysis and the analysis was carried out separately for each sponsor and for the pooled Non-Follow Through sample. Only first grade classrooms were examined. Correlation coefficients were computed between classroom processes and relatively continuous demographic variables; and analyses of variance were performed on classroom processes for groupings of classrooms partitioned on the basis of more discrete demographic variables. Scatter plots of classroom scores on selected variables were also obtained to detect "outlying" classrooms and assist in interpretation of results. The overall conclusion from this analysis is that teachers for the most part treat classrooms with dissimilar characteristics very much the same. Six variables representing negative, unhappy, or punishing behavior on the part of adults had only two significant correlations in the combined seven models. Out of the 42 possible correlations these two could have occurred by chance. Appendix B presents these findings.

2. Assessment of Implementation

The results for each sponsor are presented in a separate section. Each section includes the following:

a. Description of the Models

The first step towards assessing implementation was to describe in d tail each educational model. These model descriptions were approved by each sponsor. Components which can be assessed by the SRI observation instruments, such as environment, activities, and interaction, have been identified and are described for each model.*

b. Site Demographics

Each site for each sponsor is described demographically so the context of data collection is clear. Because the demographic

^{*}For other descriptions of the models see Maccoby & Zellner (1970) and Weber (1970).

tables are used only descriptively, statistical tests of differences are not computed. The tables are presented in each sponsor section.

c. <u>Designation of the Sponsor Implementation Variables</u>

From the several sections of the Classroom Observation Instrument, a list of variables intended to describe representative classroom elements was constructed by SRI staff for each sponsor's model. A Sponsor Variable Questionnaire was then compiled and sent to the individual sponsors for corrections, deletions, and additions.

What would be desirable for a closely controlled experiment would be an explicit statement by the sponsors of what proportion of the time critical variables would occur in an ideally implemented classroom. However, elements in a classroom are not like those in a test tube. We have not yet learned to predict the amount of individualized attention, or feedback that a group of children need to meet specific goals. Each classroom group is made up of individuals, and individuals are most likely to need different rates of feedback or individualized instruction for maximum growth. Thus, even the most specific models such as University of Oregon and University of Kansas will alter the rate of reinforcement depending upon the need of the child. In the spring of 1973, the author (J. Stallings) visited ideal first and third grade classrooms specified by each sponsor. Although each teacher was an excellent example of the model, no sponsor was willing ultimately to suggest that all other first and third grade teachers should perform exactly like the one selected as the criterion. For instance, in East St. Louis in a University of Oregon first grade, the class spent the opening session enthusiastically discussing the movie Sounder which the children had seen on the previous day. The teacher was asking such questions as "How did you feel when the dog was shot?" and "Which of the people in the movie did you like best? Do you know anyone like those people?" A whole series of open-ended questions (coded as 2 on our observation instrument) were asked. The children responded and extended their responses. While this kind of discussion may occur within the University of Oregon model, the process is not part of the model specifications. Thus, it would seem unfair to use this classroom as a criterion against which to judge all other University of Oregon classrooms, even though the adults were clearly competent in using the skills and techniques prescribed in the University of Oregon model when teaching reading and math. We simply could not come up with a recommendation that would specify the rate of questions or reinforcement to be expected from even the most structured models.

In lieu of the ideal of exact specifications for each model, an appropriate and realistic alternative was to ask each sponsor to rate the FMO variables as to (1) importance to the model and (2) expected frequency of occurrence relative to "conventional" classrooms, according to the following definitions:

(1) Importance to the Model--Rating Categories

<u>Critical</u>—This is an essential program component. Its absence in one of our classrooms would mean that the program was not implemented. It is emphasized in training the teaching staff.

Important—This program component is considered beneficial to children and the teaching staff is strongly encouraged to include this in the class-room; however, absence of this element would not indicate poor implementation.

Not Relevant—This is not a part of the curriculum we have developed. It is something with which we do not concern ourselves; the occurrence or lack of occurrence would not be important.

(2) Expected Frequency Relative to Conventional Class-rooms--Rating Categories

More--This should occur more frequently in our classrooms than in conventional classrooms.

Same—This should occur about as often in conventional classrooms as in our classrooms.

<u>Less</u>--This should occur less frequently in our classrooms than in conventional classrooms.

Only variables that were considered critical and that should occur more often in the sponsors' classrooms were used as implementation variables. Sponsors were also asked to rank-order variables on the CCL. The amount of time allotted to each activity over a week's time was ranked, as were the materials to be use . in the activities and the preferred groupings of children and adults. Finally the sponsors were asked to add observation variables which they thought might provide more explicit information regarding the implementation of their model. The variables that were finally selected for each model from the Sponsor Variable Questionnaire are used in the sections that follow to assess model implementation. As car be seen on Table 11, there is considerable overlap in the variables chosen by the sponsors. However, it is the unique mix of variables that makes the models different from one another. As previously stated, all variables critical to sponsors' implementation have not been recorded. The variables selected represent the best descriptors the evaluators and sponsors could construct which could be observed reliably in sponsor classrooms. The intercorrelations of each sponsor's critical variables are presented in Appendix O.

satle 11 The state of the design of the state of the

χ. .		r ir ne st I abs	in er- site i Arizina	Sair Street	l iver- sity i Oreger	losver- sits it Kansas	High Scope	FDC
2.	hild selection of heating and work prosps	Α.	<	¥			×	
• -	sames, toos, play equipment present	X	, i	(Ý	
,,	peneral equipment, materials present	¥				¥.		,
5	wheeling sames, table games, piez es		Y.				Α.	•
55	Numbers, math, arithmess		У		X	Ċ	λ	Υ*
6,	Reading, alphaber, language development	Y	Y	X	₹	Υ	Ÿ	x*
.0	24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5			,	Y.	
_1	Blucks, tracks						x	
**		7**		¥.				
83	wide variety of activities, net one fun	۲	¥	Y			X	Х
55	lea her with one hild	Α	у	Y.			λ	
87				Y				
88	and the second second second		Х	Y		х	Υ.	
92	Aide with one child	X		x				
9+	Aide with small group		Y		X	x	Х	
11)	Ine hild independent	X	٧	۲				λ
116								X
239	Small group of hildren independent	≺ .		۲				X
240	Math or science equipment/Academic Activities	``		λ			Х	X
					x	X		
3.04	thele to adult, a'll verbal except response. Individual child vertal interactions with the			٧				
	inityissai (hild verti) intera tions with lift. Chili questions to adults	λ	X	Х	λ	X	1	X
	4.43.4	×	X	х			Y	λ
372	child group response to adult a adem. The main's requests or direct questions child presenting information to a group				х			
375				λ			х	
	Afult instructs a group	λ						Х
	Adult task-related oments to hiliter				Х			
594	All adult acknowledgment to chaliren						, χ	Х
398		*	x	X	X	Y.	Υ.	
412	Adult feedback to child response to adult a adomic commands/requests, questions		*		X	X		
420	Adults attentive to a small group	, ,			X X	Х		
421	Adults attentive to individual children	x	х	x		v	X	
423	Positive behavior, adults to children	Ŷ	Ŷ.	×		Х	Y	
4 35	Total academic verbal interactions	`	`	`	X			
438	Adult communication or attention focus one hild	У		Υ	`	Y	х	х
440	Adult communication or ittention focus, small group	•		•	x	`	X	^
444	Adult movement	X			^		^	
450	All child open-ended questions	·						х
451	Adult academic commands/requests and direct questions to hildren				х	Α.		~
452	Adult Open-ended questions to children	X	λ	٧.			y	¥,
473	Adult response to child's question with a question						Ϋ́	Ϋ́
4 74	Child's extended response to questions		<	Х				
420	All child task-related comments	У	¥,				۲	
43/	All adult positive corrective teedback	Y			X	Y		
450	Al' shild positive affect	У	λ					Х
500	All adust reinforcement with tokens					¥,		
510	(hild self-instruction, icidenic				X*			
513	Child self-instruction, objects Child task persistence			У			Х	Х
516	Ten hildren regular to the control of the control o			Х		Х	X	
515	Iwo hildren working together, using oncrete objects				Ý		Х	
516	Social interaction among children			X			Х	
574	Child movement	X		Y				X
	Child self-instruction, nonacademic	Ϋ́	v					Х
		λ	Х				y	
	Total number of Critical Variables	28** 27*	21	27	16** 17*	17	29	20** 22*

^{*}Third grade only
**
First grade only.

d. Computing Implementation Scores

Two questions were addressed in this analysis:

- Are the classrooms of a given model similar to each other on selected variables?
- Are a sponsor's classrooms different from traditional classrooms on the implementation variables?

The first step in the assignment of implementation scores was to establish a standard of comparison for each implementation variable. Since Follow Through programs are intended to be innovative programs that offer alternatives to the conventional classroom, Non-Follow Through classrooms were used as the standard from which Follow Through classrooms should differ in specified ways. The standard was established separately for the first and third rades. Each Follow Through classroom was assigned an implementation score on each of the corresponding sponsor's implementation variables. The score is a number between 1 and 5 that represents the position of the Follow Through classroom mean or value relative to the distribution of Non-Follow Through classroom means or values. A nonparametric scaling technique was used rather than one that employs the mean and standard deviation of the Non-Follow Through classrooms because of the variety of distributions that were encountered for the Non-Foliow Through classrooms (see Appendix M, Table M-1). As an illustration, Figures 20-21 display histograms of first grade Non-Follow Through classrooms on two selected implementation variables as well as the mean and standard deviation. The distribution in Figure 20 has the familiar bell shape and the distribution in Figure 21 has a J In Figure 21, one measurement is an outlier. Any parametric approach that may be appropriate for one type of distribution may be inappropriate for another type. Also, the nonparametric procedure we have elected to use tends to be less sensitive to outliers than a more conventional parametric procedure.

Several plans for establishing a standard means for comparison were considered and discussed with a panel of educational researchers (see page 11). The previous SRI observation report (Stallings, 1973) had used quartile cutpoints in the distribution of Non-Follow Through classroom means to compute implementation scores for each Follow Through sponsors' classroom. More refined divisions of the Non-Follow Through distribution were considered such as using deciles; however, since there were only 35 Non-Follow Through first grade classrooms, only 3.5 Non-Follow Through classrooms would be represented in each decile. This suggestion was rejected on the basis that the precision of the estimation of the Non-Follow Through distribution did not warrant such a refined distinction in measuring implementation. As a reasonable compromise a quintile distribution of Non-Follow Through classroom means was selected to be the standard measurement.

FIGURE 20 HISTOGRAM OF FIRST GRADE NON-FOLLOW THROUGH CLASSROOMS SHOWING PERCENT OF CHILD TIME SPENT IN READING, LANGUAGE (VAR. 67)

HISTOGRAM OF FIRST CRADE NON-FOLLOW THROUGH CLASSROOMS SHOWING PERCENT OF TIME TLACHER SPENT WITH ONE CHILD (VAR. 86) FIGURE 21

Implementation scores for each sponsor were determined by rank ordering the Non-Follow Through classroom mean scores on each sponsor variable and dividing the distribution into five equal parts. There are 35 Non-Follow Through first grades. The seventh lowest score is the first quintile cutpoint; the fourteenth lowest score is the second quintile cutpoint; the twenty-first lowest score is the third quintile cutpoint; and the twenty-eighth lowest score is the fourth quintile cutpoint. Any Follow Through classrooms which have a score equal to or below the seventh score are in the first quintile. Any Follow Through classroom having a score above the twenty-eighth Non-Follow Through score is in the fifth quintile. Figure 22 shows the cutpoints for implementation scores for the variable "Games, toys, play equipment present" for the first grade Non-Follow Through classrooms. See Appendix N for a methodological discussion of the accuracy of quintile estimates.

Quintiles:	lst	2nd	3rd	4th	5th
	7 Classroom Scores	7 Classroom Scores	7 Classroom Scores	7 Classroom Scores	7 Classroom Scores
	3	5 /	2 5	1 6	3

FIGURE 22

NON-FOLLOW THROUGH FIRST GRADE CLASSROOMS--GAMES, TOYS, PLAY EQUIPMENT PRESENT (VAR. 25)

Cutpoint 1 Cutpoint 2 Cutpoint 3 Cutpoint 4

Each sponsor's classrooms were assigned an implementation score according to the placement of the sponsor classroom means among the quintile cutpoints. If the classroom mean was greater than the fourth quintile cutpoint, an implementation score of 5 was assigned to the classroom; if the mean was less than or equal to the fourth quintile cutpoint, but greater than the third quintile cutpoint, a score of 4 was assigned. The quintile scores of 3, 2, and 1 were assigned in the same way. An implementation score of 5 indicates that the mean of the variable for the Follow Through classroom exceeded that of at least 28 classrooms, or 80%, or the Non-Follow Through classrooms. If a sponsor's classroom received an implementation score of 4 or 5, we could say that the classroom was on the upper end of the Non-Follow Through distribution; a score of 3 indicates that the classroom is in the mid-range of the Non-Follow Through distribution; and a score of 1 or 2 indicates that the classroom is on the lower end of the Non-Follow Through distribution. The quintile cutpoints for each implementation variable are presented in Appendix M.

There are some exceptions to the above specification of the implementation scores when several quintile cutpoints have a value of zero. This occurs when 14~(40%) or more of the Non-Follow Through

classrooms have a mean of zero on a variable. (See Figure 23 for an example.) In such cases the rule was adopted that when the value for a Follow Through classroom was zero, the implementation score assigned to that classroom corresponds to the highest quintile cutpoint that was zero. For example, if the third quintile cutpoint was greater than zero and the second quintile cutpoint was equal to zero, then a Follow Through classroom with a value of zero would obtain an implementation score of 2 on that variable.

Quin	t	i	1	e	s	
------	---	---	---	---	---	--

lst	2nd	3rd	4th	5th
7	7	7	7	7
Classroom	Classroom	Classroom	Classroom	Classroom
Scores	Scores	Scores	Scores	Scores

0.0 0.0 1.61 3.70 Cutpoint 1 Cutpoint 2 Cutpoint 3 Cutpoint 4

FIGURE 23 NON-FOLLOW THROUGH FIRST GRADE CLASSROOMS--TEACHER WITH TWO CHILDREN (VAR. 87)

In several instances 28 (80%) or more of the Non-Follow Through classrooms, at a given grade level, had means of zero on seven implementation variables (Variable's 70, 74, 93, 450, 469, 514, 515, see Appendix M) so that all quintile cutpoints were equal to zero. (See Figure 24.) Decision rules assigned an implementation score of 4 for these variables to a Follow Through classroom unless the classroom mean

Quintiles:

lst	2nd	3rd	4th	5th
7	7	7	7	7
Classroom	Classroom	Classroum	Classroom	Classroom
Scores	Scores	Scores	Scores	Scores

0.0 0.0 0.0 0.0 Cutpoint 1 Cutpoint 2 Cutpoint 3 Cutpoint 4

FIGURE 24 NON-FOLLOW THROUGH FIRST GRADE CLASSROOMS--SEWING, COOKING, POUNDING (VAR. 70)

was above zero. Any classroom that had a mean above zero on these variables would receive an implementation score of 5. In any case the recorded implementation score of 4 could be misleading and scores should be interpreted with caution. It must be remembered that even though some

variables are infrequent, it is important to note whether they occur in sponsored classrooms and not in the Non-Follow Through classrooms. (See Table M-1 in Appendix M to identify those variables where two or more quintile cutpoints were the same.) In addition to those cases mentioned above there are a few cases when two quintiles in sequence had the same value. (This occurred for three physical environment variables; see Appendix M for Variables 24, 27, 37.)

A total implementation score for a classroom was computed by summing the implementation scores across the corresponding sponsor's implementation variables and then dividing by the highest possible sum. The resulting proportion was then multiplied by 100 so that the total implementation score is expressed in terms of a percentage of the total possible. For example, if a hypothetical sponsor's classroom were being rated on four variables, the highest possible sum of implementation scores for a classroom would be $4 \times 5 = 20$. If a classroom had implementation scores of 3, 4, and 5 on the individual implementation variables, then the total implementation score for the classroom would be (15/20)100 = 75%.* The reader needs to understand that there is no zero point when computing implementation scores. If all classrooms received the lowest implementation score of 1 on every single implementation variable, their overall implementation score would be 20%, not zero. If they received scores of 5, their overall implementation score would be 100%. Thus, the actual range is from 20 to 100 and the midpoint is a score of 60.

In order to compare the sponsor programs with Non-Follow Through classrooms, a total implementation score was also computed for each Non-Follow Through classroom on each sponsor's set of implementation variables. The mean and standard-deviation of the Non-Follow Through pooled classrooms are reported for each sponsor. These statistics serve three purposes:

- The Non-Follow Through mean serves as a reference point for an implementation score. If all the quintile cutpoints had been distinguishable, then the mean total implementation score for the Non-Follow Through classrooms would be 60 (an average score of 3 on each variable out of 5 possible on all variables). Since there are a number of variables where some or all Non-Follow Through quintiles are zero, it was necessary to compute a separate mean for each set of sponsor-implemented variables.
- The standard deviation was used as a scaling factor to compare a sponsor's total implementation score relative to the Non-Follow Through score. A t-test was used to test whether the roan total implementation score for Follow Through was significantly greater than the mean for Non-Follow Through.

^{*}The reliability of the estimates of the quintile cutpoints is examined in Appendix N.

An analysis of variance was run separately for each sponsor and grade level to test whether the sites differed on total implementation scores. This test indicates whether the variability in implementation scoles among sites is large relative to the within-site variability among classrooms at a site.

3. Teacher Questionnaire

In an effort to understand the relationship between the degree of model implementation and the sponsor's teacher training, several analyses were conducted. Sponsor-stated emphasis in training was compared with teachers' perceptions of emphasis in training. Reports of teacher training and selected teacher characteristics were correlated with the classroom total implementation scores, teacher descriptions of the structure of their classrooms were tabulated, and results for each sponsor's site were compared.

B. Results

The report of implementation findings is presented for each sponsor in a separate section. Model descriptions and site descriptions are presented first, followed by implementation findings.

1. Responsive Educational Model--Far West Laboratory

a. Description of the Model

The Responsive Educational Program model advocates structuring learning activities so that they are self-rewarding (autotelic), and providing an environment that is responsive to each child's needs. The child's culture and the child's interests are the cornerstones upon which the curriculum is built. According to the autotelic principle, a child learns best in an environment where he can try out things that interest him, and in which he can risk, guess, ask questions, and make discoveries, without serious negative psychological consequences. Autotelic activities include experiences and learning activities that are viewed as helping a child to develop a skill, learn a concept, acquire self direction and inner controls.

In a Far West Laboratory classroom, the child is free to explore and to choose activities within a carefully controlled environment that contains learning centers and a variety of games, activities, and experiences. The child can search for solutions to his problems in his own way, using a variety of resources. Rather than being directive, the adults pose questions and guide the child to the discovery of solutions which may fit together and lead in turn to still other discoveries. The child's intrinsic satisfaction and pleasure in the experience are considered to be his reward, rather than extrinsic rewards.

The assumption is that no single theory of learning can account for all the ways in which children learn. It is considered essential that a variety of educational alternatives be available to build on whatever background, cultural influence, or life style the child brings to school.

Either individual children or small groups of children can be found in a variety of learning centers. Teacher, aides or volunteers may work with a small group or with individual children. Concrete objects are often used for instructional purposes. In order to promote child inquiry, adults are most likely to ask leading open-ended questions or to respond to a child's question with another question.

b. Descriptions of the Sites

In order to provide the reader with an idea of the context within which the observational data were collected, demographic descriptions of each site have been prepared. Observations were conducted at five Far West Laboratory sites: Berkeley, California; Duluth, Minnesota; Lebanon, New Hampshire; Salt Lake City, Utah; and Tacoma, Washington.

Four geographic regions established by the U.S. Bureau of the Census are represented in the Far West sites (see Table 12). Four Far West cities were classified as medium sized cities. Only Lebanon is classified as a town.

The median family incomes are quite similar across the five sites. Correspondingly, the five sites show similarities in percentages of families below poverty level,* with a difference of less than 3% between the highest and lowest.

There are marked differences in nonwhite populations among the Far West sites. Berkeley has a 32.3% nonwhite population, while Lebanon's is only 0.6%. Note that Berkeley's nonwhite population is approximately one third more than the average for Follow Through. Appendix B presents an analysis of the effect of basic site characteristics. Apparently, Far West classroom processes are not affected by ethnic differences.

The percentage of the adult population over 25 years of age in the five Far West sites who have completed high school is high relative to the Follow Through average. Berkeley's 77% in this category is the highest for all observed sites for all sponsors; Tacoma's 55.5%, the lowest of the Far West sites, is still higher than the average for all Follow Through.

^{*}The U.S. Census Bureau uses the U.S. Office of Economic Opportunity poverty index guidelines to establish "Poverty level."

Table 12
SITE AND DEMOGRAPHIC DATA FOR FAR WEST LABORATORY SITES

A. Geographic Data

Site Code	Site Location	Region	Metropolitan Status	Population (1970 census)
0201	Berkeley, Calif.	Pacific	Medium city	116,716
0204	Duluth, Minn	West North	Medium city	100,578
		Central	JL.	
0207	Lebanon, N.H.	North East	Town*	9,725
0209	Salt Lake City, Utah	Mountain	Medium city	175,885
0213	Tacoma, Wash.	Pacific	Medium city	154,581

B. Demographic Data for Total Population

Site Name	Median Family Income	Percent of Families Below Poverty Level	Percent of Population Nonwhite	Percent of Adults Over 25 Who Finished High School
Berkeley Duluth Lebanon Salt Lake City Tacoma	\$9,987 9,313 9,125 8,817 9,537	10.0% 7.4 8.0 10.1 9.2	32.3% 1.7 0.6 3.2 9.2	77.0% 58.9 60.3 64.5 55.5
Average for all sites	\$8,531	13.9%	20.7%	49.7%

C. Characteristics of the Follow Through Evaluation Sample at the Site for First Grade**

Site Name	Average Percent with Preschool	Average Percent with Firs: Language Other than English	Average Baseline Score
Ber k eley	%	0%	
Duluth	52	0	33
Lebanon	20	0	
Salt Lake City	48	12	32
Tacoma	64	0	33

 $^{^{\}star}$ Not within Standard Metropolitan Statistical Area (SMSA).

Sources: U.S. Bureau of the Census, 1970; SRI

^{**} Taken from the Follow Through Roster; represents the Follow Through evaluation sample.

The baseline scores for the first grade children are very similar. This is true even for Salt Lake City where 12% of them do not use English as their first language.

c. Sponsor Implementation Variables

Tables of the variables selected to assess implementation of the Far West model can be found in Appendix M along with the implementation score for each variable for each classroom. As described in the methodology section of this chapter, the final selection of variables was made on the basis of sponsor ratings in the Sponsor Variable Questionnaire. How the implementation scores were computed is described in the methodology section on page 100. Since the aim of sponsors was to differ in specific ways from traditional classrooms, the traditional classroom has been used as the standard yardstick to measure each sponsor's implementation. Far West selected 27 variables on which they would expect their classrooms to deviate from the conventional classrooms. An implementation score of 3 would indicate the classroom was in the midrange of conventional classrooms; an implementation score of 5 would mean the model classrooms were in the uppermost range of conventional classrooms. As previously stated, the variables selected for the Far West model are limited descriptors of the program. Many processes and procedures important to the program are not assessed in this study of implementation.

d. <u>Implementation Findings</u>

Figure 25 and Table 13 present the total implementation scores for each classroom for each site and over all sites for first and third grade classrooms. These total scores were computed by adding each quintile score of Far West Laboratory's 27 implementation variables and dividing by the total possible score. The scores are presented as percentages. Total scores for Non-Follow Through classrooms were also computed for the Far West Laboratory implementation variables. Means and standard deviations are presented in Table 13 along with the results of one-tailed t-tests, comparing Non-Follow Through with Far West Laboratory. In addition, Table 13 presents the analysis of variance among sites.

All Far West's classroom scores are above the Non-Follow Through mean, and the histograms presented in Figure 25 indicate there is little overlap in the Far West and Non-Follow Through classroom scores. The analysis of variance suggests that there is no statistical difference in the among-site variance and the within-site variance. The greatest difference is seen in the third grade between Salt Lake City which has a mean of 83 and Duluth and Lebanon whose means are 71. The larg t standard deviation within a site is found in Duluth third grades. Although it might be more difficult for teachers to implement the model when children don't understand the language, the 12% of children who do not speak English as a first language does not seem to have affected the implementation of the model in Salt Lake City, since the implementation scores there

FIGURE 25 HISTOGRAM SHOWING IMPLEMENTATION SCORES FOR FAR WEST LABORATORIES

Table 13

TOTAL IMPLEMENTATION SCORES FOR CLASSROOMS BY SITE--FAR WEST LABS

				Grade				
		-	Classroo	m Scores		Site Scores		
Sites		1	2	3	4	X	S.D.	
Berkeley Duluth Lebanon Salt Lake City Tacoma Sponsor Score	(EK)	72.6% 76.3 81.5 80.7 78.5	79.3% 84.4 75.6 85.9 71.9	75.6% 80.7 84.4 75.6 78.5	71.9% 80.0 80.7 80.3 71.1	74.8% 80.4 80.6 80.6 75.0 78.3%	3.4 3.3 3.7 4.2 <u>4.1</u> 4.4	
NFT Scores (N	%=35):					60.3	6.3	
						t = 11.	28	
						p < .	091	
						f = 2.	65	
						p < NS		

				Third	<u>G</u> rade		
			Classroo	m Scores		Site S	cores
Sites		1	2	3	4	_X	S.D.
Berkeley	(EK)	82.2%	70.4%	79.3%	71.9%	75 .9 %	5.7
Duluth	(EK)	74.1	61.5	80.0	71.1	71.7	7.7
Lebanon	(EK)	69.6	77.8	74.1	64.4	71.5	5.8
Salt Lake City	(EK)	84.4	89.6	76.3	85.2	83.9	5,6
Tacoma	(EK)	79.2	84.4	80.7	72.6	79.2	5.0
Sponsor Score	es (N=2	:(0)				76.4%	7.2
NFT Scores (N=36):					59.0	9.4
						t = 7.1	.8
						p ∢ . 0	01
						f = 3.0	7
						D < .0	15

are particularly high. As the t-tests indicate, the overall Far West classroo classroom means at both first and third grades are significantly different from Non-Follow Through classrooms.

Scores for each critical implementation variable for each Far West Laboratory site and classroom are presented in Appendix M, Table M-3, in tabular form. The tables are prepared so that the number of classrooms receiving a particular implementation score is entered in a column. The numbers of classrooms from each site are entered in the rows. The total number of classrooms receiving a particular implementation score, as well as the percentage computed, is entered in the bottom rows. Only a few critical variables will be discussed in this text.

As presented in Table 14, four first grade classrooms in Salt Lake City have the highest implementation score (5) on the use of blocks and trucks (Var. 71). Overall, 65% of the Far West classrooms were at the upper end of the scale on this variable. Of the Non-Follow Through classrooms, 40% had a mean of zero which, as explained in the methodology section, suggests that Far West classrooms receiving a score of 3 could also have a mean of zero. However, as shown in the Annex,* all Far West first grade sites had some blocks and trucks present. (The lack of entries for the third grade on this variable is explained by the fact that, for developmental reasons, Far West did not select this variable as an essential component for third grade implementation.)

Table 14
BLOCKS, TRUCKS (Variable 71)--FAR WEST

First Grade Classrooms with Implementation

	Scores of							
Sites	1*	2*	3	4	5			
Berkeley, Calif.			3		1			
Duluth, Minn.			1	2	1			
Lebanon, N.H.			1		3			
Salt Lake City, Utah					4			
Tacoma, Wash.			_2_	1	_1_			
Total classrooms			7	3	10			
Percent of class- rooms			35%	15%	50%			

Of the Non-Follow Through classes, 40% (the two lowest quintiles) had a mean of zero on this measurement, but none of the Far West sites had a mean of zero (see text).

^{*}The Annex is available for consultation at SRI.

As indicated in Table 15 for Variable 83 (Wide variety of activities, over one day), most first grade teachers in four sites ranked in the fifth quintile. Seventeen of the twenty teachers in the third grade had classrooms with implementation scores of 4 or 5. This variable is important to the Far West Lab program, since a wide variety of activities provides the children an opportunity to work with materials independently.

Table 15
WIDE VARIETY OF ACTIVITIES, OVER ONE DAY 'Variable 83)--FAR WEST

	First Grade Classrooms with ImplementationScores of				Third Grade Classroom with Implementation Scores of					
Sites	1	_2_	3	4	5	1	2	3	4	5
Berkeley, Calif.					4				1	3
Duluth, Minn.				3	1				1	3
Lebanon, N.H.					4					4
Salt Lake City, Utah					4			1	1	2
Tacoma, Wash.					4_			_2_	1_	1_
Total Classrooms				3	17			3	4	13
Percent of class-				159	050			150	0.0%	. r a.
rooms				15%	85%			15%	20%	65%

Table 16 shows how Far West classrooms score on children working independently. As shown, Far West children are more often independent in activities than most Non-Follow Through children.

Table 17 indicates that Far West classrooms in third grade have more small groups of children working together than Non-Follow Through classrooms; they are at the upper end of the scale on Variable 116 at all five sites. Of the Far West first grade classrooms, 70% are in the fifth quintile for independent group work, and 90% of the third grades are in the fifth quintile.

In Table 18, scores for Variable 86 (Teacher with one child) indicate that Far West children are receiving more individual attention than comparison children. This is especially true in Salt Lake City and Tacoma where all four first grade classrooms scored in the fifth quintile. Over all classrooms, data show that children from Far West first and third grades are at the upper end of the scale in the receipt of individual attention from teachers.

Table 16

ONE CHILD INDEPENDENT (Variable 11.)--FAR WEST

	First Grade Classrooms with Implementation Scores of			Third Grade Classroo with Implementatio Scores of						
Sites	1	2	3	4_	_5	1	2	3	4	_5_
Berkeley, Calif. Duluth, Minn. Lebanon, N.H. Salt Lake City, Utah Tacoma, Wash. Total classrooms				3 1	1 3 4 4 4 4 16				1	4 4 3 4 4 19
Percent of class- rooms				20%	80%				5%	95%

Table 17

SMALL GROUP OF CHILDREN INDEPENDENT (Variable 116)--FAR WEST

		F rst Grade Classrooms with Implementation Scores of							itation	
Sites	1	2	3	4	_5	1	_2	3	_4	_5
Berkeley, Calif. Duluth, Minn. Lebanon, N.H. Salt Lake City, Utah Tacoma, Wash.		1	1	2 1	2 2 3 4 3				1	4 3 4 4 3
Total classrooms		1	2	3	14				2	18
Percent of class- rooms		5%	10%	15%	70%				10%	90%

Table 18

TEACHER WITH ONE CHILD (Variable 86)--FAR WEST

	First Grade Classrooms with Implementation Scores of				Third Grade Classroom with Implementation Scores of					
Sites	1_	2	3_	4	5	1	2	3	4	5
Berkeley, Calif. Duluth, Minn. Lebanon, N.H. Salt Lake City, Utah Tacoma, Wash.		1		4 1 1	2 3 4 4	1		1	1	2 3 3 3 4
Total Classrooms		1		6	13	1		2	2	15
Percent of class- rooms		5%		30%	65%	5%		10%	10%	75%

Another variable related to Variable 86 (Teacher with one child) is Variable 375a (Adult instructs an individual child). As can be seen in Table 19, all of Tacoma's first and third grade classrooms are in the fifth quintile on this variable. Individualized instruction is an important Far West Laboratory strategy, especially in the first grade, and all first grade classrooms in Table 19 show an implementation score of 4 or 5.

Table 19

ADULT INSTRUCTS AN INDIVIDUAL CHILD (Variable 375a)--FAR WEST

		First Grade Classrooms with Implementation Scores of			Third Grade Classroom with Implementation Scores of					
Sites	1	2	3	4	5	1	2	3	4	5
Berkeley, Calif. Duluth, Minn. Lebanon, N.H. Salt Lake City, Utah Tacoma, Wash.				3 4 3	1 4 1 4		1	2	2 1 1 1	2 1 2 3 4
Total classrooms				10	10		1	2	5	12
Percent of class-rooms				50%	50%		5%	10%	25%	60%

The variable "Adult open-ended questions to children" (Var. 452a) is considered to be an important method for encouraging child thinking. Approximately 50% of the Far West classrooms have an implementation score of 5. All of the Far West first grades in Lebanon and all of the Far West third grades in Salt Lake City were in the fifth quintile. Scores for the other classrooms are scattered over the other four quintiles (Table 20).

Table 20

ADULT OPEN-ENDED QUESTIONS TO CHILDREN (Variable 452a)---FAR WEST

	First Grade Classrooms with Implementation Scores of				Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4	_5	1	2.	3	4	5
Berkeley, Calif. Duluth, Minn. Lebanon, N.H.	1		2	1	1 3 4	1	1	1 1 2	1	2 2 4
Salt Lake City, Utah Tacoma, Wash.	3 1		1	_1_	1_		1	1_		2
Total classrooms	5		4	2	9	1	2	5	2	10
Percent of class- rooms	25%		20%	10%	45%	5%	10%	25%	10%	50%

When children receive individual attention and are asked open-ended questions, it may be that they find it easier to ask questions of adults. In both first and third grades, 60% of the Far West classrooms have an implementation score of 5 for "Child questions to adult" (Table 21). Salt Lake City has all its Far West classrooms in the fifth quintile. All of Duluth's Far West third grades also received an implementation score of 5. Overall, 88% of the classrooms have an implementation score of 4 or 5 which places them at the upper end of the scale.

e. Summary of Implementation

As was noted earlier, all of the Far West sites were similarly implemented when total scores are considered. There is little within-site or among-site difference in these scores. When using the comparison classrooms as a yardstick, the Far West Laboratory's classroom scores are high and are statistically different from Non-Follow Through scores.

Table 21

CHILD QUESTIONS TO ADULTS (Variable 350a)--FAR WEST

		First Grade Classrooms with Implementation Scores of				Third Grade Classroom with Implementation Scores of				
Sites	1	2	_3_	4	5	1	2	3	4	5
Berkeley, Calif. Duluth, Minn.			2	1 1	3 1			1	2	1 4
Lebanon, N.H. Salt Lake City, Utah				1	3 4			1	3	4
Tacoma, Wash.			1	2	_1_				1	_3_
Total classrooms			3	5	12			2	6	12
Percent of class- rooms			15%	25%	60%			10%	30%	60%

The results from the observer accuracy study indicate that the third grade observer in Berkeley coded less than 60% of the 4 code (instruction, explanation) accurately (see Appendix' L, Table L-1). However, the data reported on Table 20 which used the 4 code do not appear dissimilar from other sites on this variable. They all are on the upper end of the measuring stick when compared to Non-Follow Through. The observer in the first grade at Lebanon had an accuracy rate of less than 60% on 1Q codes, (direct question). However, on the variable "Child questioning an adult" which uses this code, the data from Lebanon first grade appear similar to the data of other first grade sites.

The reader is reminded that a sponsor's implementation is evaluated in two ways: (1) Do the sponsor's classrooms differ from the traditional classroom? and (2) Are a given sponsor's classrooms similar to each other in level of implementation? Using these criteria we conclude that the Far West Laboratory would be able to implement their model in other sites similar to the ones used in this analysis.

2. Tucson Early Education Model (TEEM) -- University of Arizona

a. <u>Description of the Model</u>

Using the child's characteristics when he begins school as a base, the TEEM model attempts to develop a foundation for his future learning. The goal is to increase the child's competence by improving his skills in four general curriculum areas: (1) development of language competence; (2) development of an intellectual base (ability

to attend, recall, organize, and evaluate); (3) development of a motivational base (attitudes of productive involvement such as a liking for school and for learning, task persistence, and expectation of success); and (4) development of societal arts and skills (reading and math skills, social skills of cooperation, ability to plan). These skills are to be developed in a functional setting where concepts are illustrated by the use of practical examples from the child's home and school environment. Thus, the use of the home, neighborhood, and community as instructional resources is central to the model.

The classroom is organized around a variety of behavioral settings and Learning centers. Children are allowed to make choices regarding their activities and seating arrangements. Small groups of children are able to learn from each other and are given individual attention from adults. Teachers are expected to be models of desired behavior. The sponsor or TEEM believes that the child's acquisition of language and other skills is affected by such modeling on the part of adults. Children are encouraged to ask questions and adults respond with liberal quantities of praise, support, attention, and affection. Every effort is made to ensure that the child will come to regard school as significant, desirable, and rewarding.

b. Description of the Sites

Project sites under the University of Arizona's sponsorsh_p are Des Moines, Iowa; ort Worth, Texas; LaFayette, Georgia; Lakewood, New Jersey; Lincoln, Nebraska; and Newark, New Jersey. They represent four geographic regions of the country. Demographics for the six sites are indicated on Table 22.

The sites range from large cities to a small town. The far ly income ranges about \$2,000, but the percent of families below poverty level ranges from 5.6 in Lincoln to 18.4 in Newark. Newark also has larges percent (56%) of non-white families and Lincoln the lowest (2%). The percentage of adults over 25 who have finished high school ranges from 12.8% in Lincoln to 30% in LaFayette (Newark is also in the low range with 33.2%). More of the first grade children in Newark have had preschool experience (73%) than in most other sites; only 30% of the children in Lincoln have had preschool.

In Fort Worth 23% and in Lakewood 18% of the Follow Through children do not speak English as their first language. The baseline test score is lower for Lakewood than for other sites. Whether or not this lower score is related to the children who do not speak English as a first language is not analyzed in this report. (Tests are given in English only and children entering school might be expected to score lower on tests.)

Table 22
SITE AND DEMOGRAPHIC INFORMATION FOR UNIVERSITY OF ARIZONA SITES

A. Geographic Data

Site	Cita Inastina	Doolon	Metropolitan	Population
Code	Site Location	Region	<u>Status</u>	<u>(1970 census)</u>
0305	Des Moines, lowa	West North Central	Big city	220,587
0307	Fort Worth, Texas	West South Central	Big city	393,476
0308	LaFayette, Georgia	South Atlantic	Town*	6,092
0309	Lakewood, N.J.	Middle Atlantic	Small city*	17,874
0311	Newark, N.J.	Middle Atlantic	Big city	382,417
0316	Lincoln, Nebraska	West North Central	Medium city	149,518

B. Demographic Data for Total Populat

Site Name	Median Family Income	Percent Families Below Poverty Level	Percent of Population Nonwhite	Percent of Adults Over 25 Who Finished High School
Des Moines	\$10,239	6.9%	6.2%	65.3%
Fort Worth	9,271	10.3	20.6	48.8
LaFayette	7,966	15.7	8.1	30.0
Lakewood	7,961	14.6	20.1	47.5
Newark	7,735	18.4	56.0	33.2
Lincoln	9,928	5.6	2.3	72.8
Average for				
all sites	\$ 8,631	13.9%	20.7%	49.7%

C. Characteristics of Follow Through Evaluation Sample at the Site for First Grade **

Site Name	Average Percent with Preschool	Average Percent with First Language Other than English	Average Baseline Score
Des Moines	39%	0%	32
Fort Worth	80	23	
LaFayette	52	0	
Lakewood	26	18	25
Newark	73	3	28
Lincoln	30	1	33

 $^{^{\}star}$ Not within Standard Metropolitan Statistical Area (SMSA).

Sources: U.S. Bureau of the Census, 1970; SRI

^{**}Taken from the Follow Through Roster; represents the Follow Through evaluation sample.

c. Sponsor Implementation Variables

The variables selected to assess implementation and exportability of the University of Arizona model can be found in Appendix M. The tables in Appendix M show the implementation scores for each variable for each classroom. As described in the methodology section of this chapter, the final selection of variables was made on the basis of sponsor ratings reported on the Sponsor Variable Questionnaire. variables selected for the University of Arizona model are of course limited descriptors of the program. Many processes and procedures important to the program are not assessed in this study of implementation. For instance, one of the model's goals is for small groups of children to learn from each other. Our variables record only that the children are working together. We cannot judge whether or not they are learning from each other. How the implementation scores were computed is described in the methodology section on page 100. Since the aim of the sponsors was to provide programs that differ in specific ways from traditional classrooms, the traditional classroom has been used as the standard yardstick to measure each sponsor's implementation. Twenty-one variables were selected by University of Arizona as critical to their model, and there is the expectation that their classrooms will differ from conventional classrooms on these variables. An implementation score of 3 would indicate the classroom was in the mid-range of conventional classrooms; an implementation score of 5 would mean the model classrooms were in the uppermost range of conventional classrooms.

A selection of variables indicated by the University of Arizona as being critical to their model are discussed in the text. Tables of all other critical variables are presented in Appendix M.

d. Implementation Findings

Figure 26 and Table 23 present the total implementation scores for each classroom by grade level. These total scores were computed by adding each quintile score of University of Arizona's 21 implementation variables and dividing by the total possible score. Thus, an average score on all variables was computed. The scores are presented as percentages. Total scores for Non-Follow Through classrooms were also computed for the University of Arizona implementation variables. Means and standard deviations are presented in Table 23 along with the results of one-tailed t-tests, comparing Non-Follow Through classrooms with classrooms using the University of Arizona model. Table 23 presents the analysis of variance among sites.

The F tests on Table 23 indicate that in both grade levels for the University of Arizona there is a statistical difference in the variance among sites from the variance within sites in implementation scores. The greatest difference is seen in the first grade between Lincoln with a mean of 83 and Newark with a mean of 55. The standard deviation within sites ranges from 1.5 in the Newark first grades to 10.9 in the Des Moines third grades.

As indicated by the t-tests there is a significant difference between the total implementation scores in both the first and third grade University of Arizona classrooms and the first and third Non-Follow Through classrooms. Histograms presented in Figure 26 indicate there is overlap in the University of Arizona and the Non-Follow Through classrooms. Much of the overlap is accounted for by the classrooms in Newark. It can be noted that the total score of implementation for Newark is lower than the Non-Follow Through implementation score in first grade and approximately the same in third grade. The previous section describing sites suggested that Newark differs from other sites in that they have more families below poverty level, they have a larger nonwhite population and have a lower percent of adults who have not finished high school. Unfortunately we are not able to examine in this analysis the €xtent to which community demographics impinge upon implementation. The characteristics of children in Newark are similar to those at other sites. In general they have had a few more months in Follow Through, a greater percent have had preschool and their baseline WRAT scores are in the upper ranges of site means (see Tables 3 and 4). The population is apparently less transient than at other sites, since 81% of the children who had been tested when entering kindergarten were found in first grade. The only difference apparent in the child characteristics is the higher percent of black students in the Newark classrooms. However, Appendix B (page B-14) indicates that the c'ild's ethnicity does not effect the classroom processes (i.e., control systems and affect shown) in the University of Arizona classrooms. An examination of observer accuracy at Newark leads to the conclusion that the data were properly collected (see Appendix L, Table L-2, for observer reliability). A study of observer accuracy for other University of Arizona sites indicates that the codes which form the variables in this section were acceptably reliable. A discussion with a representative at the University of Arizona suggested threa inssible explanations for the lower implementation scores in Newark: (1) The sponsor had difficulties in providing optimum classroom services during the first years of sponsorship. (2) Newark schools have all of the problems of large inner-city schools, including a high rate of families below the poverty level. segments of the school community preferred educational models that emphasized teaching the basic skills at an early age, so that considerable time had to be spent in developing, both in teachers and in parents, an understanding and an appreciation of an educational plan that integrated the basic skills into a total curriculum. Regardless of the low implementation score reported in this study, the sponsor is pleased with the progress Newark has made over the years toward implementation.

The large percent of children speaking English as a second language does not seem to have negatively affected the implementation of the model in Ft. Worth and Lakewood since their implementation scores in both grades are high.

Scores for each critical implementation variable for each University of Arizona site and classroom are presented in Appendix M, Table M-3 in tabular form. The tables are prepared so that the number of classrooms receiving a particular implementation score is entered in a column. The numbers of classrooms from each site are entered in the

FIGURE 26 HISTOGRAM SHOWING IMPLEMENTATION SCORES FOR UNIVERSITY OF ARIZONA

		First Grade								
			Classroo	m Scores		Site Scores				
Sites		1	2	3	4	<u> </u>	S.D.			
Des Moines	(EK)	79.0%	62,9%	69.5%	71.4%	70.7%	6.7			
Fort Worth	(E1)	85.7	78.1	70.5	75.2	77.4	6.4			
LaFayette	(E1)	79.0	71.4	87.6		79.4	8.1			
Lakewood	(EK)	78.1	74.3	76.2	79.0	76.9	2.1			
Newark	(EK)	57.1	54.0	56.2	54.3	55.4	1.5			
Lincoln	(EK)	89.5	88.6	74.3	81.0	83.3	7.1			
Sponsor	Scores	(N=23):				73.6%	10.7			
NFT Score	<u>es</u> (N=3	5):				61.8	7.0			
	t = 4.99									
	p < .001									
						f = 11.76 p < .001				

			Third Grade								
Sites			Classroo	Site Scores							
		1	2	3	4	<u>X</u>	S.D.				
Des Moines	(EK)	65.7%	52.4%	53.3%	75.2%	61.7%	10.9				
Fort Worth	(E1)	6ó.7	80.0	82.9	84.8	78.6	8.2				
LaFayette	(E1)	68.6	71.4	73.3	87.6	75.2	8.5				
Lakewood	(EK)	76.2	78.1	76.2	73.3	76.0	2.0				
Newark	(EK)	61.9	63.8	67.6	63.8	64.3	2.4				
Lincoln	(EK)	77.1	75.2	78.1	81.9	78.1	2.8				
Sponsor	Scores	(N=24):				72.3%	9.1				
NFT Score	<u>es</u> (N=3	6):				60.7	9.3				
			t = -				7				
			p <				01				
					f = 4.						
						p < .0	1				

rows. The total number of classrooms receiving a particular implementation score, as well as the percentage computed, is entered on the bottom rows. Only a few critical variables will be discussed in this text.

For example, Table 24 indicates that compared to Non-Follow Through, University of Arizona third grade children were more often allowed to choose their own seating and grouping (15 classrooms are in the fourth or fifth quintile). Games and other play equipment were present in more University of Arizona first grades than comparison classrooms (20 of their 23 classrooms are in the fourth or fifth quintile). Seventeen of the 24 third-grade classrooms were in the fourth or fifth quintile (Table 25).

Findings shown in Table 26 indicate how much more emphasis the traditional comparison classroom places on arithmetic. This variable assesses the frequency of occurrence and the number of children involved in arithmetic. Over 82% of the first and 88% of the third grade classrooms using the University of Arizona model scored in the first or second quintile on this variable. However, this is likely to be an underestimate of the time the children engage in reading or math, since the basic skills are used to cook, bake, and construct. For example, children reading recipes and measuring ingredients would be coded in cooking rather than in reading or math. Also, the reader is reminded that the day-to-day variability of this variable was quite large for both first and third grades, suggesting that the variable is not very stable (see p. 54).

The University of Arizona does not emphasize any single activity but rather encourages an interdisciplinary program where several activities can occur at one time and basic skills can be learned by participation in all of these. Results in Table 27 denote success in this effort. Nineteen of the 23 first grade classrooms have an implementation score of 4 or 5 and 21 third grade classrooms have a score of 4 or 5.

Results shown in Tables 28 and 29 indicate that at University of Arizona sites, teachers more often work with small groups (92% in third grade have an implementation score of 5) and children are independent more often than comparison children (over 70% in both first and third grades have implementation scores of 4 or 5).

The frequency of children asking questions ranges within sites and among sites (see Table 30). Lakewood has all of its first and third grades scoring either a 4 or 5 on implementation of this variable, and all of the Lincoln third grades have an implementation score of 5.

Having adults ask children open-ended questions is important to the model, since it describes an attempt to extend children's thinking. Table 31 reflects a wide range of implementation scores. All of the University of Arizona first grades at Des Moines received the highest implementation score. Three of the third grades received a high

Table 24

CHILD SELECTION OF SEATING AND WORK GROUPS (Variable 24) -- UNIVERSITY OF ARIZONA

	First Grade Classrooms with Implementation Scores of					Third Grade Glassrooms with Implementation Scores of				
Sites	1	2	3	4		1	2	3	4	5
Des Moines, Iowa		1	3					3	1	
Fort Worth, Texas			1		3				3	1
LaFayette, Georgia		3					1	1	2	
Lakewood, N.J.			1		3				3	1
Newark, N.J.		2	1		1		3	1		
Lincoln, Nebraska					4				1	_3_
Total classrooms		6	6		11		4	5	10	5
Percent of class-	-									
rooms		26%	26%		48%		17%	21%	42%	21%

Table 25

GAMES, TOYS, PLAY EQUIPMENT PRESENT (Variable 25)--UNIVERSITY

OF ARIZONA

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of				
Sites	_1	2	3	4	5_	1	2	3	4	5
Des Moines, Iowa					4				4	,
Fort Worth, Texas LaFayette, Georgia					3			2		2
Lakewood, N.J. Newark, N.J. Lincoln, Nebraska	1		1	1	1 2		2	1	1	2
Total class-	- Territoria de									<u>-</u>
rooms	1		2	2	18		3	4	5	12
Percent of classrooms	4%		97	9%	78%		13%	17%	21%	50%

Table 26

NUMBERS, MATH, ARITHMETIC (Variable 66)--UNIVERSITY OF ARIZONA

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	1	2	_3	4	5	1_	_2	3	4	5	
Des Moines, Iowa		2	1	1		1			2	1	
Fort Worth, Texas	1	3				2	2				
LaFayette, Georgia		2		1		3	1				
Lakewood, N.J.	2	2				3	1				
Newark, N.J.	1	3				2	2				
Lincoln, Nebraska		_3_			1_	4					
Total class- rooms	4	15	1	2	1	15	6		2	1	
Percent of classrooms	17%	65%	4%	9%	4%	63%	25%		8%	4%	

Table 27
WIDE VARIETY OF ACTIVITIES, OVER ONE DAY (Variable 83)--UNIVERSITY OF ARIZONA

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3_	4	5	1_	2	_3_	_4_	_5_	
Des Moines, Iowa Fort Worth, Texas LaFayette, Georgia Lakewood, N.J. Newark, N.J. Lincoln	1 2	1		2	2 4 2 4		2	1	1	2 4 4 3 2 4	
Total class-	3	1		3	16		2	1	2	19	
Percent of classrooms	13%	4%		13%	70%		8%	4%	8%	79%	

Table 28

TEACHER WITH SMALL GROUP (Variable 88)--UNIVERSITY OF ARIZONA

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	1	_2_	3_	4	5	1	_2_	_3_	4	5	
Des Moines, Iowa Fort Worth, Texas LaFayette, Georgia Lakewood, N.J. Newark, N.J. Lincoln, Nebraska	2	1	1	3 1	1 3 3 3			1	1	3 4 4 3 4	
Total class- rooms	2	1	1	5	14			1	1	22	
Percent of classrooms	9%	4%	4%	22%	61%			4%	4%	92%	

Table 29

ONE CHILD INDEPENDENT (Variable 114)--UNIVERSITY OF ARIZONA

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4	5	1	_2	3	_4_	5	
Des Moines, Iowa Fort Worth, Texas LaFayette, Georgia Lakewood, N.J. Newark, N.J. Lincoln, Nebraska	2	1	1	1 2 2	2 3 3 2		1	2	1 1 2 1 1	1 3 1 3	
Total class- rooms	2	2	2	5	12		2	4	6	12	
Percent of Classrooms	9%	9%	9%	22%	52%		8%	17%	25%	50%	

Table 30

CHILD QUESTIONS TO ADULTS (Variable 350a)--UNIVERSITY OF ARIZONA

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4	5	1	2	3	_4	_5	
Des Moines, Iowa	3	1				2		1	1		
Fort Worth, Texas				1	3			2		2	
LaFayette, Georgia				3				1	2	1	
Lakewood, N.J.				2	2				3	1	
Newark, N.J.		1	3					1	1	2	
Lincoln, Nebraska			1_		_3_					4	
Total class- rooms	3	2	4	6	8	2		5	/	10	
Percent of classrooms	13%	9%	17%	26%	35%	8%		21%	29%	42%	

Table 31

ADULT OPEN-ENDED QUESTIONS TO CHILDREN (Variable 452a)--UNIVERSITY OF ARIZONA

First Grade Classroo with Implementatio Scores of												
Sites	1	2	3	4	5	1	2	3	4	5		
Des Moines, Iowa Fort Worth, Texas	1	1		2	4		1	2	2	3		
LaFayette, Georgia Lakewood, N.J.	_			1	2 4			1	1 2	3 1		
Newark, N.J. Lincoln, Nebraska		3	1	1_	3		1	3	1	2		
Total class- rooms	1	4	1	-4	13		3	6	6	9		
Percent of classrooms	4%	15%	4%	17%	57%		13%	25%	25%	38%		

score, but one third grade scored only 2. Lakewood also had all University of Arizona first grades with an implementation score of 5. Overall, 74% of the first grades at University of Arizona sites received an implementation score of 4 or 5 on Var. 452a, and 63% of the third grades received an implementation score of 4 or 5.

When adults ask children questions, it is important to the University of Arizona model that children not only respond but that they also extend their response beyond a simple "yes" or "no." Table 32 presents data which indicates that children in University of Arizona first grades other than Newark, more often extend their answers when replying to questions than do comparison Non-Follow Through children. Des Moines, Ft. Worth. and LaFayette also have third grade classrooms in the fourth or fifth quintile.

Table 32

CHILD'S EXTENDED RESPONSE TO QUESTIONS (Variable 454a)--UNIVERSITY OF ARIZONA

Sites	First Grade Classrooms with Implementation Scores of 1 2 3 4 5				Third Grade Classrooms with Implementation Scores of 1 2 3 4 5					
bites			3	4						
Des Moines, Iowa					4		_	_	2	2
Fort Worth, Texas			_	1	3		1	1	_	2
LaFayette, Georgia			1		2			1	1	2
Lakewood, N.J.				4			2	2		
Newark, N.J.	4					3	1			
Lincoln, Nebraska			1	1_	2		1_		1_	
Total class-										
rooms	4		2	6	11	3	5	6	4	6
Percent of classrooms	17%		9%	26%	48%	13%	21%	25%	17%	25%

Discussion of a topic is an important learning method and process to the University of Arizona model; i.e., one learns through discussion of a subject, and learning to communicate ideas is an important skill. Table 33 presents data regarding the task-related comments of children. Overall, 61% of the first grades and 46% of the third grades have implementation scores of 4 or 5 on Var. 456a. Fort Worth has all first and third grades in the fifth quintile. Newark's first and third grades are in the first and second quintiles on this variable.

Table 33

ALL CHILD TASK-RELATED COMMENTS (Variable 456a) -- UNIVERSITY OF ARIZONA

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4	5	1_	2	3_	_4_	_5_	
Des Moines, Iowa Fort Worth, Texas LaFayette, Georgia Lakewood, N.J. Newark, N.J. Lincoln, Nebraska	1 4	3	1	3	1 4 2	3	1 2 1	1 1 1	2 1 3	4 1	
Total class- rooms	5	3	1	5	9	6	4	3	6	5	
Percent of classrooms	22%	13%	4%	22%	39%	25%	17%	13%	25%	21%	

e. Summary of Implementation

There is considerable deviation reported within sites and among sites for the University of Arizona model than for most other sponsors. LaFayette contributed more than other sites to this deviation at both first and third grades. Lakewood is well implemented at both grade levels. There is slight deviation between classrooms, and the total site implementation score is at the upper end of the scale. Other sites (Des Moines, Fort Worth, LaFayette, and Lincoln) have high implementation scores but more within site deviation among classroom scores. Newark has very little deviation between classrooms in either the first or third grades; however, their total implementation scores are very low when compared to the Non-Follow Through total implementation scores on the University of Arizona variables.

The reader is reminded that a sponsor's implementation is evaluated in two ways: (1) Do the sponsor's classrooms differ from the traditional classroom? and (2) Are a given sponsor's classrooms similar to each other in level of implementation?

Thus we conclude that Lakewood is implemented according to both criteria, while Des Moines, Fort Worth, LaFayette, and Lincoln are implemented according to the first criterion and Newark is implemented according to the second criterion.

3. Bank Street College of Education Approach

a. Description of the Model

The teacher in a Bank Street classroom creates a learning environment which is both challenging and supportive. There are opportunities for varied experiences and many options for learning: The teacher meets with the whole class to share experiences and to plan the day's activities. She works primarily with individual children or small groups. Even in a group activity she always has the individual children in mind. When she is not actively engaged in a group activity, the teacher moves about the room analyzing children's work at various learning centers, stopping to elicit ideas from individuals or groups of children, exchanging comments about the task, helping children extend and build upon their ideas, or acknowledging their progress in specific terms.

The assistant, who is a paraprofessional, is a cooperative member of the teaching team, and participates in various learning activities that have been planned jointly with the teacher. The role of the assistant is very similar to that of the teacher in that both work with children on a one-to-one basis or in small groups in order to stimulate and extend learning.

The child in a Bank Street classroom is expected to take an active role in his learning. He can choose learning activities and use of materials. He can also participate in large and small group experiences planned by or with adults, such as discussions, story telling, or use of Cuisenaire rods. However, most of the child's activities do not require adult direction but are enhanced by adult response, support, recognition, and extension. Independent activities may be engaged in by the child individually or cooperatively with one or more other chil-In general, academic experiences (reading, writing, computing) are integrated functionally into classroom activities such as cooking, experimenting with science equipment and making things (e.g., creative stories, woodwork). However, texts and workbooks are used occasionally. The child is encouraged to use language throughout the day. He questions and exchanges comments with his peers and the adult; in the classroom, which are viewed as revealing his ability to think, to reason, and to express himself with positive affect. The program emphasis is on having the child experience work at first hand.

b. Description of the Sites

The five Bank Street sites are Brattleboro, Vermont; Fall River, Massachusetts; New York City; Philadelphia; and Tuskegee, Alabama. Demographic and other information describing the communities in which the Follow Through projects are located, some taken from U.S. Census data and some from Follow Through sources, is presented for the five Bank Street sites in Table 34.

Table 34
SITE AND DEMOGRAPHIC DATA FOR BANK STREET COLLEGE SITES

A. Geographic Data

Site Code	Site Location	Region	Metropolitan Status	Population (1970 census)
0502	Brattleboro, Ver-	North East	Small city*	12,239
0504 0506	Fall Riv ", Mass. New York'	North East Middle Atlantic	Medium city Big city	96,898 7,894,798
0508	P.S. 243r. Philadelphia II, Pa.	Middle Atlantic	. g city	1,948,609
0510	Tuskegee, Ala.	East South Cen- tral	Small city*	11,028

B. Demographic Dat for fotal Population

Site Name	Median Family Income	Percent of Families Below Poverty Level	Percent of Population Nonwhite	Percent of Adults Over 25 Who Finished High School
Brattleboro	\$9,938	6.6%	0.6%	59.7%
Fall River	8,289	10.8	1.0	25.6
NYC P.S. 243K	9,682	11.5	23.4	46.9
Philadelphia II	9,366	11.2	34.4	39.9
Tuskegee	7,000	23.5	88.2	59.7
Ave:age for all sites	\$8,631	13.9%	20.7%	49./%

C. Characteristics of the Follow Through Evaluation Sample at the Site for First Grade**

Site Name	Average Percent with Preschool	Average Percent with First Language Other than English	Average Baseline Score
Brattleboro	27%	0%	27
Fall River	36	34	24
NYC P.S. 243K	47	0	33
Philadelphia II	30	0	28
Tuskegee	74	0	

^{*} Not within tandard Metropolitan Statistical Area (SMSA)

Sources: U.S. Bureau of the Census, 1970; SRI

^{**} Taken from the Follow Through Roster; represent the Follow Through evaluation sample.

Brattleboro and Tuskegee are both small cities; Brattleboro is in New England while Tuskegee is in the deep South. Both sites have a high percent (59.7%) of adults who have completed high school and neither site has children who speak English as a second language. However, the two sites are diverse in other respects. Brattleboro's \$9,938 median family income is higher than the average for Follow Through, while Tuskegee's median family income of \$7,000 is considerably below the Follow Through sample's average. Following naturally from their different median incomes, Brattleboro's 6.6% of families below poverty level* is among the lowest in the sample; while Tuskegee's 23.5% of poverty families is among the highest. The largest difference between the two sites occurs in their nonwhite populations: Brattleboro's nonwhite population is 0.6% (the lowest of the Bank Street sites), whereas Tuskegee's is 88.2% (the highest).

The demographic data for New York City and Philadelphia, both large Eastern cities, are quite similar. Their median family incomes differ by orly \$300 and are above the average for Follow Through; their percent of families below poverty level is almost identical and slightly lower than the Follow Through average. Although the nonwhite populations of the cities differ by 11%, both cities have approximately 98% black children in their Follow Through classrooms.

Fall River is a medium-sized New England industrial city. It has a large Portuguese-speaking population which is reflected in the fact that 34% of the children in the Follow Through sample do not speak English as a first language. The entering baseline tests are lower than other sites. This may be a result of not having English as a first language since the tests are all conducted in English.

c. Sponsor Implementation Variables

The variables selected to assess implementation of the Bank Street model can be found in Appendix M. The tables in Appendix M present the implementation score for each variable for each classroom. As described in the methodology section of this chapter, the final selection of variables was made on the basis of sponsor ratings reported on Sponsor Variable Questionnaire. How the implementation scores were computed is also described in the methodology section on page 100. Since the aim of sponsors was to provide programs that differ in specific ways from traditional classrooms, the traditional classroom has been used as the standard yardstick to measure each sponsor's implementation. Twenty-seven variables were selected by Bank Street as those on which they would expect their classrooms to differ from conventional classrooms. An implementation score of 3 would indicate that the classroom was in the midrange of conventional classrooms; an implementation score of 5 would mean that the model classrooms were in the uppermost range of conventional

^{*}The U.S. Census Bureau uses the U.S. Office of Economic Opportunity poverty index guidelines to establish poverty level.

classrooms. The variables selected for the Bank Street model are of course limited descriptors of the program. Many processes and procedures of the program are not assessed in this study of implementation. For example, the classroom adults are expected to elicit ideas from children and help them extend ideas. Our variables are a rough approximation of whether this is occurring. We have a variable which reports the frequency of adults asking open-ended questions and another which reports how often the children extend responses, and another which reports how often adults respond to children's questions with another question. All three of the variables may be indicators of the desired process, but by no means provide a complete assessment of the goal.

A selection of variable hat are considered by the sponsor to be critical to the implementat \dots of the Bank Street model are discussed in the text. Tables of all other critical variables are presented in Appendix M.

d. Implementation Findings

Figure 27 and Table 35 present the total implementation scores for each classroom by grade level. These total scores were computed by adding each quintile score of Bank Street's 27 implementation variables and dividing by the total maximum score. Thus, an average score on all variables was computed. The scores are presented as percentages. Total scores for Non-Follow Through classrooms were also computed for the Bank Street implementation variables. Means and standard deviations are presented in Table 35, along with the results of one-tailed t-tests, comparing Non-Follow Through with Bank Street classrooms. Table 35 presents an analysis of variance among sites.

As the t-tests indicate, the Bank Street classrooms overall implementation scores differ significantly from the Non-Follow Through classrooms. However, six of the nineteen third grade implementation scores are approximately the same as the Non-Follow Through third grade mean score and the third grade mean score in Philadelphia is only two points above the Non-Follow Through mean. Histograms presented in Figure 27 illustrate the overlap in Bank Street and Non-Follow Through scores. The analysis of variance indicates that the deviation in implementation scores among sites is not different from the deviation of implementation scores within sites. The deviation within sites is greatest in the Fall River first grades (7.5) and the Tuskegee third grades (8.1). The least deviation within a site is in the Tuskegee first grades (2.0) where the implementation score is also high.

Scores for each critical implementation variable for each Bank Street site and classroom are presented in Appendix M, Table M-4 in tabular form. The tables are prepared so that the number of classrooms receiving a particular implementation score is entered in a column. The classrooms from each site are shown across the rows. The total number of classrooms receiving a particular implementation score, as well as

the percentage computed, is entered on the bottom rows. Only a few selected variables will be discussed in this text.

In Table 36, all first grades have an implementation score of 4 or 5 on Var. 25 (Toys, games, play equipment present). Apparently, New York City third grade classrooms did not make as much use of this type of equipment as did third grades at other sites.

Table 36

GAMES, TOYS, PLAY EQUIPMENT PRESENT (Variable 25)--BANK STREET

		First Grade Classrooms with Implementation Scores of				Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4	_5	1	2	3_	4	5	
Brattleboro, Vermont Fall River, Mass. NYC P.S. 243K Philadelphia II, Pa. Tuskegee, Ala. Total classrooms				1 2 1	3 2 3 4 15		2	2	2 1 2 5	3 2 3 2 10	
Percent of class- rooms				21%	79%		11%	11%	26%	53%	

One goal of the Bank Street program is to provide a multidisciplinary program. Such a program is reflected in Variable 83 (Wide variety of activities, over one day). Table 37 indicates that 89% of the Bank Street first grades and 79% of the third grades have a score of 4 or 5 on this variable.

The findings presented in Table 38 indicate that the conventional classroom is more likely than a Bank Street classroom to have children engaged in formal math during the day. However, this variable does not include the more informal math which might be learned during such activities as cooking, sewing, or carpentry. Therefore, the number of Bank Street children engaged in some form of math may be underestimated.

Bank Street teachers appear to interact with children in small groups more often than teachers in conventional classrooms (see Table 39). On this variable, 89% of the first grades have an implementation score of 4 or 5 and 79% of the third grades have the highest possible score of 5.

FIGURE 27 HISTOGRAM SHOWING IMPLEMENTATION SCORES FOR BANK STREET COLLEGE

Table 35

TOTAL IMPLEMENTATION SCORES FOR CLASSROOMS BY SITE-BANK STREET

		First Grade							
			Classro	oom Score	s	Site S	cores		
Sites		1	2	3	4	<u> </u>	<u>S.D.</u>		
Brattleboro	(EK)	64.4%	74.1%	68.9%	%	69.1%	4.8		
Fall River	(EK)	80.7	75.6	71.1	63.0	72.6	7.5		
NYC P.S. 243K	(EK)	78.5	74.8	77.0	67.4	74.4	4.9		
Philadelphia II	(EK)	77.8	82.6	78.5	77.0	79.0	2.5		
Tuskegee	(E1)	80.0	78.5	75.6	76.3	77.6	2.0		
Sponsor Scores	<u>s</u> (N=19	9):				74.8%	5.5		
NFT Scores (N=	=35):					62.7	6.2		
						t = 7.2	12		
						p < .0	001		
						f = 2.3	37		
						p < NS			

				Thi	rd Grade		
			Classr	oom Score	2 S	Site	Scores
Sites		1	2	3	4	$\overline{\bar{x}}$	S.D.
Brattleboro	(EK)	75.6%	74.8%	71.1%	%	73.8%	2.4
Fall River	(EK)	61.5	68.9	68.9	71.1	67.6	4.2
NYC P.S. 243K	(EK)	62.2	68.9	77.8	69.6	69.6	6.4
Philadelphia II	(EK)	63.0	65.2	60.0	70.4	64.6	4.4
Tuskegee	(E1)	70.4	81.5	77.0	63.0	73.0	<u>8.1</u>
Sponsor Score	\underline{s} (N=1	9):				69.5%	6.0
NFT Scores (N	=36):					62.4	8.6
						t = 3.2	20
						p < .(001
						f = 1.7	1
						p < NS	

Table 37
WIDE VARIETY OF ACTIVITIES, OVER ONE DAY (Variable 83)--BANK STREET

	First Grade Classrooms with Implementation Scores of					th Im	ade Classrooms mplementation cores of			
Sites	1	2	3	4	_5	1	2	3	4_	5
Brattleboro, Vermont Fall River, Mass. NYC P.S 243K Philadelphia II, Pa. Tuskegee, Ala.			1	2	3 2 3 1		2	1	1 2	3 2 3 4
Total classrooms			2	5	12		3	1	3	12
Percent of class- rooms			11%	26%	63%		16%	5%	16%	63%

Table 38

NUMBERS, MATH, ARITHMETIC (Variable 66)--BANK STREET

	First Grade Classrooms with Implementation Scores of					with Implementation Scores of				
Sites	1	2	3	4	5	1	2	3	4	5
Brattleboro, Vermont Fall River, Mass.	1 4	1	1			1	2	3	1	
NYC P.S. 243K Philadelphia II, Pa.	2	1 1	1	1 2		2 1	2	1	1	1
Tuskegee, Ala.				1	_3_		2		1_	1_
Total classrooms	7	3	2	4	3	4	6	4	3	2
Percent of class- rooms	37%	16%	11%	21%	16%	21%	32%	21%	16%	11%

Table 39
TEACHER WITH SMALL GROUP (Variable 88)--BANK STREET

	First Grade Classrooms vith Implementation Scores of					hird Grade Classrooms with Implementation Scores of				
Sites	1	2	3	4	5	1	2	3	4	5
Brattleboro, Vermont Fall River, Mass. NYC P.S. 243K Philadelphia II, Pa. Tuskegee, Ala.	1		1	1 3 1 2 2	1 3 2 2		1 1	1	1	2 4 3 3 3
Total classrooms	1		1	9	8		2	1	1	15
Percent of class- rooms	5%		5%	47%	42%		11%	5%	5%	79%

Children in Bank Street first grades also receive considerably more individual attention from aides (Table 40) than do children in conventional classrooms. Overall, 90% of these classrooms are in the fourth or fifth quintile. While 40% of the Non-Follow Through classrooms have mean scores of zero, none of the Bank Street sites, whether at first or third grade, have mean scores of zero (see Appendix O for means).

Children in Bank Street classrooms often work independently in small groups. Findings presented in Table 41 indicate that 64% of the first and 79% of the third grades have an implementation score of 4 or 5. (See Appendix M, Table M-4 for other tables regarding child independence.)

Perhaps to encourage their inquiring, first grade children are asked open-ended questions by Jults more often in Bank Street class-rooms than in conventional ones (see Table 42). Fourteen out of 19 first grade classrooms scored 4 or 5 on this variable. Bank Street's third grades are more evenly distributed across the implementation scores.

It is also important to the Bank Street model that children ask questions. This is an important part of the learning process. Data presented on Table 43 indicate that 58% of the first grades have implementation scores of 4 or 5. Of the third grades, 37% are in the fourth quintile but none are in the fifth quintile. The children at Brattleboro were observed to be asking questions more often than children at other sites.

Table 40

AIDE WITH ONE CHILD (Variable 92)--BANK STREET

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of				
Sites	1*	2*	3	4	5	1*	2	3	4	5
Brattleboro, Vermont			1		2				3	
Fall River, Mass.			1	•	3		2		2	
NYC P.S. 243K				2	2		1		3	
Philadelphia II, Pa.				2	2		1		3	
Tuskegee, Ala.							_1_	_2_	1_	
Total classrooms			2	6	11		5	2	12	
Percent of class- rooms			11%	32%	58%		26%	11%	63%	

^{*}In first grade, 40% of the Non-Follow Through classrooms (the two lowest quintiles) had a mean of zero while in third grade 20% of the Non-Follow Through classrooms (the lowest quintile) had a mean of zero.

No Bank Street site had a mean of zero.

Table 41

SMALL GROUP OF CHILDREN INDEPENDENT (Variable 116)--BANK STREET

	First Grade Classrooms with Implementation Scores of					th Im	de Classrooms plementation ores of			
Sites	1	2	3	4	5	1	2	3_	4	5
Brattleboro, Vermont Fall River, Mass. NYC P.S. 243K Philadelphia II, Pa. Tuskegee, Ala. Total classrooms			1 2 4	1 2 1 1 5	1 4 2 2 1 1)	1 2		1 2	2 1 1 1 1 6	3 3 1 2 9
Percent of class- rooms			21%	26%	53%	11%		11%	32%	47%

Table 42

ADULT OPEN-ENDED QUESTIONS TO CHILDREN (Variable 452a)--BANK STREET

	First Grade Classrooms wich Implementation Scores of					hird Grade Classrooms with Implementation Scores of				
Sites	1	2	3	4	5	1	2	3	4	5
Brattleboro, Vermont				1	2		1	2		
Fall River, Mass.	1			3				2		
NYC P.S. 243K			1	1	2			1	1	2
Philadelphia II, Pa.	1			1	2		1	2	1	
luskegee, Ala.	_2_			2					1_	1
Total classrooms	4		1	8	6		4	7	3	5
Percent of class- rooms	21%		5%	42%	32%		21%	37%	16%	26 <i>%</i>

Table 43
CHILD QUESTIONS TO ADULT (Variable 350a)--BANK STREET

	First Grade Classrooms with Implementation Scores of				Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4	5	1	2	3	4	5
Brattleboro, Vermont				1	2				3	
Fall River, Mass.			1	2	1	4				
NYC P.S. 243K	3	1				3	1			
Philadelphia II, Pa.			2	1	1				4	
Tuskegee, Ala.			1	1_	_2_	1_	1	2	-	
Total classrooms	3	1	4	5	6	8	2	2	7	
Percent of class- rooms	16%	5%	217	26%	32%	42%	11%	11%	37%	

e. Summary of Implementation

For the most part, Bank Street sites do not differ very much from each other in the degree of implementation. The greatest difference is seen in the third grade where Tuskegee and Brattleboro have scores of 73 and Philadelphia has a score of 64. The variance among sites is not, however, greater than the variance within sites. The greatest within site variation is found in Fall River first grades and Tuskegee third grades. Overall the Bank Street classrooms do differ significantly from Non-Follow Through classrooms (with the excelling of Philadelphia third grades).

A study of observer accuracy for Bank Street indicates that in general the codes which form the variables used in this section were acceptably reliable (see Appendix L, Table L-3). There is one exception. The third grade observer from Fall River had difficulty coding direct questions from the videotape. This is reflected in the fact that all Fall River third grades are in the first quintile on a variable which uses this code (see Table 43).

The reader is reminded that a sponsor's implementation is evaluated in two ways: (1) Do sponsor's classrooms differ from the traditional classroom? and (2) Are a given sponsor's classrooms similar to each other in level of implementation? The classrooms differ 5 points from Non-Follow Through in 17 out of 19 first grades and 13 out of 19 third grades. Those instances of low classroom implementation scores are scattered over several sites. An analysis of variance indicated that the difference between sites is not greater than the difference within sites. Fall River first grades and Tuskegee third grades evidenced the most variance within sites.

4. Englemann-Becker Model for Direct Instruction, University of Oregon

a. <u>Description of the Model</u>

The Englemann-Becker model is a highly structured academic program based on the premise that with proper instruction and consistent reinforcement, any child can master the skills necessary to bring him up to the achievement level of national norms for his age group.

The model uses programmed reading, math, language, and science materials which they have developed. Highly specific methods are used to teach concepts and skills required for mastering sequenced tasks orienced toward an increasing level of competence. Desired behaviors are systematically reinforced by praise and enthusiastic acknowledgment. Teachers and students share the pleasure of each other's achievements. Unproductive or antisocial behavior is ignored or stopped by a short reprimand. Ignoring is intended to withdraw from the behavior the attention that often reinforces it. When this is true, ignoring will eventually extinguish the behavior.

The classroom is usually staffed with two or three adults (regular teacher and one or two full-time aides recruited from the Follow Through parent community) for every 25 to 30 children. Each adult has been carefully trained. In most cases the adults teach a single subject. Working very closely with a small or large group of children, each teacher and aide uses the programmed materials in combination with predefined teaching strategies. A task is presented by the teacher. A demonstration is usually given and performance of the task by the children is tested. When the children respond she provides immediate feedback. She proceeds only when each child is successful with a given instructional unit. When the children have completed their lessons with one adult, they proceed to their next subject with a different adult.

b. Description of the Sites

The University of Oregon project sites are East St. Louis, Illinois; New York City; Racine, Wisconsin; Tupelo, Mississippi; and Providence, Rhode Island. Demographic and other information describing the five communities in which the University of Oregon projects are located (taken from U.S. Census Bureau reports and Follow Through sources) is shown in Table 44.

Tupelo is the only one of the University of Oregon project sites in this study that is located outside of a metropolitan area; it is also the only University of Oregon site that has a higher percent of adults in the community who have completed high school than the Follow Through sample average.

Racine's \$10,526 median family income is higher than the other University of Oregon site and is, in fact, higher than any other site in the observation sample; its 6.6% of families below poverty level* is among the lowest over all sites.

The East St. Louis median family income of \$6,654 is among the lowest in the sample, and, similarly, the 28.5% of families below the poverty level is one of the highest percentages in the sample. The nonwhite population of East St. Louis is 69.3%, a considerably higher percentage than all but one of the project sites in the Follow Through sample.

New York City is the only large city in the University of Oregon sample. Its \$9,682 median family income is above the sample average and its 11.5% of below poverty level families is about average compared to the other sites. New York City's nonwhite population of 23.4% is slightly above the average for all Follow Through sites. It should be noted that this figure reflects all of New York City: The University of Oregon classrooms in New York are 95% black (see Tables 3 and 4).

^{*}The U.S. Census Bureau uses the U.S. Office of Economic Opportunity's poverty index guidelines to establish poverty level.

Table 44 SITE AND DEMOGRAPHIC DATA FOR UNIVERSITY OF OREGON SITES

Geographic Data

Site Code	Site Location	Region	Metropolitan Status	Population $(1^{c} \ 0 \ \text{census})$
0703	E. St. Louis, Ill.	West North Cen- tral	Medium city	69,996
0707	New York City, P.S. 137K	Middle Atlantic	Big city	7,894,798
0708	Racine, Wis.	East North Cen- tral		95,162
0711	Tupelo, Miss.	East South Cen- tral	Small city*	20,471
0719	Providence, R.I.	North East	Medium city	179,213

B. Demographic Data for Total Population

Demographic Da	ta for To	tal Population		Percent of
Site Name	Median Family Income	Percent of Families Below Poverty Level	Percent of Population Nonwhite	Adults Over 25 Who Finished High School
E. St. Louis	\$ 6,654	28.5%	69.3%	29.4%
N.C P.S. 137K	9,682	11.5	23.4	46.9
Racine	10,526	6.6	11.0	49.5
Tupelo	8,436	12.5	17.6	58.9
Providence	8,430	13.3	10.0	40.6
Average for all sites	\$ 8,631	13.9%	20.7%	49.7%

C. Characteristics of the Follow Through Evaluation Sample at the Site for First Grade**

Site Name	Average with Preschool	Average Percent with First Language Other than English	Average Baseline Score
E. St. Louis	47%	0%	
NYC P.S. 137K	43	2	29
Racine	75	9	
Tupelo	63	0	
Providence	97	0	26

^{*}Not within Standard Metropolitan Statistical Area (SMSA).

Sources: U.S. Bureau of the Census, 1970; SRI

^{**} Taken from the Follow Through Roster; represents the Follow Through evaluation sample.

Although Providence is a medium-sized city in a metropolitan setting, demographic data for Providence look surprisingly like those for Tupelo with respect to median family income and percent of families below poverty level. The nonwhite populations of the two sites differ by 7.6%, yet both are below the average for all project sites.

c. Sponsor Implementation Variables

Tables of all the critical variables selected to assess implementation of the University of Oregon model can be found in Appendix M. The tables in Appendix M describe the implementation score for each variable for each classroom. As described in the methodology section of this chapter, the final selection of variables was made on the basis of sponsor ratings reported in the Sponsor Variable Questionnaire. The variables selected for the University of Oregon model are of course limited descriptors of the program. Many processes and procedures important to the program are not assessed in this sudy of implementation.

How the implementation scores were computed is also described in the methodology section on page 100. Since the aim of the sponsors was to provide programs that differ in specific ways from traditional classrooms, the traditional classroom has been used as the standard yardstick to measure each sponsor's implementation. Sixteen critical variables were selected for first grade and 17 for third grade by University of Oregon as those on which they would expect their classrooms to be different from conventional classrooms. An implementation score of 3 would indicate the classroom was in the middle of the scale for the conventional classrooms; an implementation score of 5 would mean that the model classrooms were in the uppermost range of conventional classrooms. A selection of variables designated as critical by the sponsor are discussed in the text.

d. Implementation Findings

Figure 28 and Table 45 present the total implementation scores for each classroom by grade level. These total scores were computed by adding each quintile score of the University of Oregon's implementation variables and dividing by the total maximum score. Thus, an average score on all variables was computed. The scores are presented as percentages. Total scores for Non-Follow Through classrooms were also computed for the University of Oregon implementation variables. Means and standard deviations are presented in Table 45 along with the results of one-tailed t-tests, comparing Non-Follow Through classrooms with classrooms using the University of Oregon model. Table 45 presents the analysis of variance among sites.

As the t-test on Table 45 indicates overall the University of Oregon's classrooms are significantly different from the Non-Follow Through classrooms. The histograms on Figure 28 show that only

FIGURE 28 HISTOGRAM SHOWING IMPLEMENTATION SCORES FOR UNIVERSITY OF OREGON

Table 45

TOTAL IMPLEMENTATION SCORES FOR CLASSROOMS BY SITE--UNIVERSITY OF OREGON

				Fire	st Grade		
			Classro	oom Score	es	Site S	Scores
Sites		1	2	3	4	X	S.D.
E. St. Louis	(EK)	76.2%	62.5%	76.2%	75,0%	72.5%	6.7
NYC P.S. 137K	(EK)	88.7	90.0	91.2		90.0	1.3
Racine	(EK)	72.5	72.5	71.2	71.2	71.9	.7
Tupelo	(E1)	80.0	86.2	87.5	87.5	85.3	3.6
Providence	(EK)	72.5	77.5	72.5	73.7	74.1	2.4
Sponsor Sco	res (N	=19):				78.2%	8.1
NFT Scores	(N=35)	:				61.0	10.7
						t = 6	.11
						p <	.001
						f = 17	.61
						p <	.001

		Third Grade									
			Classro	om Score	es	Site S	Scores				
Sites		_1	2	3	4	_ <u>x</u>	S.D.				
E. St. Louis	(EK)	76.5%	62.4%	78.8%	87.1%	76.2%	10.3				
NYC P.S. 137K	(EK)	68.2	81.2	57.6		69.0	11.8				
Racine	(EK)	71.8	62.4	84.7	85.9	76.2	11.2				
Tupelo	(E1)	87.1	80.0	90.6	74.1	82.9	7.3				
Providence	(EK)	75.0	82.4	78.8	69.4	76.4	5.5				
Sponsor Scor	es (N	=19):				76.5%	9.3				
NFT Scores	(N=36)	:				60.4	10.5				
						t = 5.6	52				
						p < .(001				
						f = .9	91				
						p < NS					

one Oregon first grade has a score lower than 70 while 25 Non-Follow Through classrooms have scores lower than 70. In the third grade only one Oregon classroom scored below the mean of Non-Follow Through.

The analysis of variance indicates that the among-site variance is greater than the within-site variance in the first grade. In the third grade the variance is as great within sites as among sites. The difference in New York is particularly great where one third grade has a low score of 57.6 and another has a high score of 81.2. A possible explanation may be that children in University of Oregon's New York third grades have had fewer months in Follow Through and the attrition rate is greater (see Table 4, p. 15). The standard deviation for third grades in St. Louis and Racine is also high. The standard deviation for the first grades at these same sites is considerably less. This difference between the grades might be explained by the fact that in the spring of the year in third grade when observations are conducted teachers are beginning to prepare the children for the fourth grade Non-Follow Through classrooms and they might not be adhering so strictly to University of Oregon's stated program.

Scores for each critical implementation variable for each University of Oregon site and classroom are presented in Appendix M, Table M-5 in tabular form. The tables are prepared so that the number of teachers receiving a particular implementation score is entered in a column. The number of teachers from each site is entered in the rows. The total number of teachers receiving a particular implementation score, as well as the percentage computed, is entered on the bottom rows. Only a few critical variables will be discussed in this text.

The University of Oregon program emphasizes the development of basic skills in reading and computation. Findings presented in Table 46 indicate that 90% of the first grade classrooms in the University of Oregon program often engage in arithmetic activities and are on the upper end of the scale when compared with traditional classrooms. While three third grade classrooms in East St. Louis and four classrooms in Tupelo have the highest implementation score, all but one third grade classroom in other sites are scattered across scores 2, 3, and 4. It must be noted that Tupelo is a site where children entered school in the first grade while at all other sites the children entered school in kingarten. (The reader is reminded that the data for this variable in third grade was not very stable from day to day, see Table 5, p. 54.)

As shown in Table 47, 63% of University of Oregon's third grade classrooms received the highest implementation score of 5 in reading and language development. The first grade implementation scores are scattered, with 47% obtaining a score of 3. This indicates that while first grades differ more from the traditional classrooms in how often children engage in math, the third grades differ more from the traditional classrooms in how often the children engage in reading.

For instructional purposes, University of Oregon children are placed in small groups. Findings presented in Tables 48 and 49 indicate that both teachers and aides in University of Oregon first and

Table 46
NUMBERS, MATH, ARITHMETIC (Variable 66)--UNIVERSITY OF OREGON

	First Grade Classrooms with Implementation Scores of						Third Grade Classrooms with Implementation Scores of				
Sites	1	2	3	4	5	1	2	3	4	5	
E. St. Louis, Ill. NYC P.S. 137K Racine, Wis. Tupelo, Miss.		2		2	4 3 2 3		1	1 2 2	2	3	
Providence, R.I.		2					2	1		<u>l</u>	
Total class- rooms		2		3	14		3	6	2	8	
Percent of classrooms		11%		16%	74%		16%	32%	11%	42%	

Table 47

READING, ALPHABET, LANGUAGE DEVELOPMENT (Variable 67)--UNIVERSITY OF OREGON

		First Grade Classrooms with Implementation Scores of				Third Grade Classrooms with Implementation Scores of				
Sites	1_	2	_3_	_4	_5	1	_2	3	4	5
E. St. Louis, Ill. NYC P.S. 137K Racine, Wis.		1	1	2 1	2	1	1	1	1 2	1
Tupelo, Miss. Providence, R.I.		1	4	-	3	-			1	4 3 4
Total class- rooms		2	9	3	5	ì	1	1	4	12
Percent of classrooms		11%	47%	16%	26%	5%	5%	5%	21%	63%

Table 48

TEACHER WITH SMALL GROUP (Variable 88)--UNIVERSITY OF OREGON

		th Im		assro ntati of			h Imp		assro ntati of	
Sites	1	2	3_	4	5	1	2	3	4	5
E. St. Louis, Ill. NYC P.S. 137K Racine, Wis. Tupelo, Miss. Providence, R.I.	1			1	3 2 4 4 4	1 2	1	1	1	2 1 1 4 4
Total class- rooms	1			1	17	3	1	1	2	12
Percent of classrooms	5%			5%	89%	16%	5%	5%	11%	63%

Table 49

AIDE WITH SMALL GROUP (Variable 94)--UNIVERSITY OF OREGON

	First Grade Classrooms with Implementation Scores of					ı. Im	de Classrooms olementation ores of			
Sites	1*	2	3	4	5	1*	2*	3	4	5
E. St. Louis, Ill. NYC P.S. 137K Racine, Wis. Tupelo, Miss. Providence, R.I.			1	1 1	2 2 4 4 3			1	2 2 1	4 1 1 4 3
Total class- rooms			1	3	15			1	5	13
Percent of classrooms			5 <i>%</i>	16%	79 <i>;</i> "			5 <i>%</i>	26%	68%

 $^{^{\}star}$ Of the Non-Follow Through classrooms, 20% in the first grade (the lowest quintile) had a mean of zero and 40% in the third grade (the two lowest quintiles) had mean of zero. No University of Oregon site had a mean of zero.

third grade classrooms work more often with small groups of children than do teachers in comparison classrooms.

In general, in the University of Oregon program, after adults give instructions to the small group, they then ask a question regarding the information given. The children respond, and the adult provides immediate feedback. The findings for the variable representing this instructional pattern are dramatic in that 95% of the first grades and 100% of the third grades obtained the highest implementation score (see Table 50).

Table 50

CHILD GROUP RESPONSE TO ADUIT ACADEMIC COMMANDS/REQUESTS
OR DIRECT QUESTIONS* (Variable 363a)--UNIVERSITY OF OREGON

	First Grade Classrooms with Implementation Scores of					th Im	de Cl pleme ores	ntati		
Sites	1	2	3	4	_5	1	2	3	4	5
E. St. Louis, Ill. NYC P.S. 137K Racine, Wis. Tupelo, Miss. Providence, R.I.			1		4 3 3 4 4					4 3 4 4 4
Total class- rooms			1		18					18
Percent of classrooms			5%		95%					100%

 $^{^\}star$ The sponsor refers to this as "Direct $^\intercal$ nstruction."

Adult praise is used systematically when the child response is correct. The child always knows immediately if his answer is right or wrong. Table 51 indicates that first grades have 63% and third grades have 79% of their classrooms in the fourth and fifth quintile on this variable. All of Racine's classrooms are in the fifth quintile. Only the classrooms in East St. Louis appear atypical on this variable.

Children in University of Oregon classrooms use workbooks and textbooks designed or recommended by the sponsor. As shown in Table 52, 79% of the first grades have a high implementation score of 4 or $^{\circ}$. While 47% of the third grades also have implementation scores of 5, the

Table 51

ALL ADULT PRAISE TO CHILDREN (Variable 398a)--UNIVERSITY OF OREGON

	First Grade Classrooms with Implementation Scores of					d Grad th Imp Sco		ntati		
Sites	1	2	3	<u>/,</u>	5	1	2	3	4	5
E. St. Louis, Ill. NYC P.S. 137K Racine, Wis. Tupelo, Miss. Providence, R.I.	2	1 2	1	1	4 4 1		2	1	2 1 1 1	1 4 2 3
Total class- rooms	2	3	2	3	9		3	1	5	10
Percent of classrooms	11%	16%	11%	16%	47%		16%	5%	26%	53%

Table 52

TEXTS, WORKBOOKS/ACADEMIC ACTIVITIES (Variable 240)--UNIVERSITY OF OREGON

		First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of			
Sites	1	2	3	4	5	1	2	3	4	5
E. St. Louis, Ill. NYC P.S. 137K Racine, Wis. Tupelo, Miss. Providence, R.I.		1	1 2	2 1 2 2 1	2 2	3	1 1	1	1 2 1	1 1 4 3
Total class- rooms		1	3	8	7	3	2	1	4	9
Percent of classrooms		5%	16%	42%	37%	16%	11%	5%	21%	47%

other classrooms are scattered across all of the scores. Only Tupelo has all four third grade classrooms with implementation scores of 5.

e. Summary of Implementation

The reader is reminded that a sponsor's implementation is evaluated in two ways: (1) Do they differ from the traditional class-room? and (2) Are a given sponsor's classrooms similar to each other in level of implementation? Using the first criterion our findings indicate that University of Oregon classrooms are statistically different from Non-Follow Through classrooms.

By the second criterion the first grades are implemented. The greatest deviation between sites is found in New York City (90%) and Racine (71%). East St. Louis where one first grade has a score near to that of Non-Follow Through has the greatest within site variance. In third grade while all classrooms but one have scores higher than Non-Follow Through classrooms, there is great deviation within and among sites. One explanation offered is that the teachers have altered the program in preparation for the next year in Non-Follow Through fourth grades.

A study of observer accuracy for University of Oregon indicates that the codes which form the variables used in this section were acceptably reliable. (See Appendix L, Table L-4.)

5. <u>Behavior Analysis Approach--University of Kansas</u>

a. <u>Description of the Model</u>

The University of Kansas Behavior Analysis Approach aims at teaching children basic skills by means of systematic positive reinforcement of desired behavior. The model uses a token exchange system to provide an immediate reward to the child for successfully completing a learning task. Earned tokens can be exchanged later for special activities, such as participation in a spelling bee or a game of musical chairs, work on a puzzle, or play with blocks and trucks. Instruction (work time) and special activity (spend time) alternate throughout the day, with the amount of time spent on instruction increasing as the amount of reinforcement needed to sustain motivation decreases.

To encourage the child to move from external rewards to self-motivated behavior, more tokens are given during the initial stages of learning a task and progressively fewer are given as the child gains skills and takes pleasure in the skill. Similarly, fewer tokens are given as the child progresses through the grades.

The program emphasizes individualized instruction based on sequenced learning materials. The curriculum materials include a description of the behavior a child should be capable of at the end of a learning sequence, and clearly provide criteria for judging a correct response.

Small groups formed for reading instruction are directed by the teacher. A full-time trained aide provides math instruction. Spelling and handwriting are taught by another aide. Individual tutoring is provided by parent aides. Although children in this model are in small groups, they receive adult attention on a one-to-one basis.

The curriculum materials also provide for periodic testing and monitoring of achievement gains. A system of careful record keeping allows the teacher to keep a close watch on each child's progress and to tailor the curriculum to each child's needs.

b. Description of the Sites

The University of Kansas' five project sites are New York City; Philadelphia; Portageville, Missouri; Kansas City, Missouri; and Louisville.

Demographic and other information describing the communities in which the University of Kansas Follow Through projects are located is presented in Table 53. Four of the University of Kansas sites are classified by population and location as large cities in metropolitan settings; the fifth site, Portageville, is classified as outside of a metropolitan area (its population is only 3,000 and it is located in southeast Missouri).

While the four metropolitan sites show only slight differences in median family income and percentages of below poverty level* families, and cluster in both categories around the sample average, Portageville's median family income (\$5,913) and its 30.4% of families below poverty level distinguish it from the other sites and from the average of the Follow Through sample.

The data presented for the nonwhite population indicate that Philadelphia, with its 34.4% of population nonwhite, is considerably different from the other University of Kansas sites. However, all of the sites but one have a greater percent of nonwhites than the 20.7% Follow Through average. Four of the five sites have proportionately fewer adults over 25 who have completed high school than the 49.7% average for the Follow Through sites.

c. Sponsor Implementation Variables

Tables of all the critical variables selected to assess implementation of the University of Kansas model can be found in Appendix

^{*}The U.S. Census Bureau uses the U.S. Office of Economic Opportunity poverty index guidelines to establish poverty level.

Table 53
SITE AND DEMOGRAPHIC DATA FOR UNIVERSITY OF KANSAS SITES

A. Geographic Data

Site Code	Site Location	Region	Metropolitan Status	Population (1970 census)
0801	New York City, P.S. 77X	Middle Atlantic	Big city	7,894,798
0803	Philadelphia VI, Pa.	Middle Atlantic	Big city	1,948,609
0804	Portageville, Mo.	West North Cen- tral	Town*	3,117
0806	Kansas City, Mo.	West North Cen- tral	Big city	507,087
0807	Louisville, Ky.	East South Cen- tral	Big city	361,472

B. Demographic Data for Total Population

Site Name	Median Family Income	Percent of Families Below Poverty Level	Percent of Population Nonwhite	Percent of Adults Over 25 Who Finished High School
NYC P.S. 77X	\$9,682	11.5%	23.4%	46.9%
Philadelphia VI	9,366	11.2	34.4	39.9
Portageville	5,913	30.4	18.1	37.3
Kansas City	9,910	8.9	22.8	55.9
Louisville	8,564	13.0	24.1	40.9
Average for				
all sites	\$8,631	13.9%	20.7%	49.7%

C. Characteristics of the Follow Through Evaluation Sample at the Site for First Grade

Site Name	Average Percent with Preschool	Average Percent with First Language Other than English	Average Baseline Score
NYC P.S. 77X	64%	36%	37%
Philadelphia VI	26	0	28
Portageville	53	0	32
Kansas City	42	1	27
Louisville	56	0	23

^{*} Not within Standard Metropolitan Statistical Area (SMSA).

Sources: U.S. Bureau of the Census, 1970; SRI

^{**}Taken from the Follow Through Roster; represents the Follow Through evaluation sample.

The tables in Appendix M present the implementation scores for each variable for each classroom. As described in the methodology section of this chapter, the final selection of variables was made on the basis of sponsor ratings reported on the Sponsor Variable Questionnaire. The variables selected for the University of Kansas model are of course limited descriptors of the program. Many processes and procedures important to the program are not essessed in this study of implementation. How the implementation scores were computed is also described in the methodology section on page 100. Since the aim of sponsors was to provide programs that differ in specific ways from traditional classrooms, the traditional classroom has been used as the standard yardstick to measure each sponsor's implementation. Seventeen critical variables were selected by University of Kansas as those on which they would expect their classrooms to differ from conventional classrooms. An implementation score of 3 would indicate the classroom was in the mid-range of conventional classrooms; an implementation score of 5 would mean that the model classrooms were in the uppermost range of conventional classrooms.

d. Implementation Findings

Figure 29 and Table 54 present the total implementation scores for each classroom by grade level. These total scores were computed by adding each quintile score for the 17 University of Kansas implementation variables and dividing by the total maximum score. Thus, an average score on all variables was computed. The scores are presented as percentages. Total scores for Non-Follow Through classrooms were also computed for the University of Kansas implementation variables. Means and standard deviations are presented in Table 54 along with the results of one-tailed t-tests, comparing Non-Follow Through with classrooms using the University of Kansas model.

The t-test presented on Table 54 indicates that the University of Kansas classrooms are different from the Non-Follow Through clastrooms. Only one first grade Kansas City classroom's implementation score (64.7) is close to the Non-Follow Through score (62.4). All other University of Kansas classroom scores are in the 70s, 80s, or 90s. Histograms presented in Figure 29 illustrate how slight the overlap is between the scores of University of Kansas classrooms and Non-Follow Through classrooms. The analysis of variance indicates that in the first grade there is a greater difference among site implementation mean scores than there is within sites. Portageville has the highest mean score (92.) and Kansas City the lowest (76.). Kansas City also has the greatest within-site variance (8.7). The one classroom mentioned above seems to account for this variance. In the third grade the among-site and the within-site variance are very similar. The greatest variance is found between the two classrooms in New York. The least variation for third grades is found within Kansas City and Louisville. These sites also have high implementation scores.

All of the critical variable scores for each University of Kansas site and classroom are presented in Appendix M, Table M-6 in tabular form. The tables are propared so that the number of classrooms receiving a particular implementation score is entered in a column. The classroom cores from each site lie along the rows. The total number of classrooms receiving a particular implementation score, as well as the percentage computed, is entered on the bottom rows. Only a selection of the variables which were designated by the sponsor as critical will be discussed in the text.

University of Kansas emphasizes the development of basic skills in reading and arithmetic. The findings on children involved in arithmetic (as presented in Table 55) indicate that first grades using the University of Karsas model core higher in implementation (72% in the fourth and fifth percentile) than do third grades (which have only 41% in the fourth and fifth percentile).

Table 55

NUMBERS, MATH, ARITHMETIC (Variable 66)—UNIVERSITY OF KANSAS

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of				
Sites	1	. 2	_3	4	_5_	1	2	3	4	5
NYC P.S. 77X			1	1			2			
Philadelphia VI, Pa.			2	1	1		1	2		1
Portageville, Mo.				3	1				2	1
Kansas City, Mo.			2	1	1	2	2			
Louisville, Ky.				_2_	2_		1_		_3_	
Total classrooms			5	8	5	2	6	2	5	2
Percent of class-										
rooms			28%	44%	28%	12%	35%	12%	29%	12%

However, in reading activities, both first grade and third grades have high implementation scores when compared with Non-Follow Through classrooms (see Table 56). Louisville, in fact, has all of first and third grade classrooms in the topmost quintile.

The University of Kansas program assigns children to small groups which rotate from the teacher to the instructional aides for lessons in reading, arithmetic, spelling, and handwriting. As shown in

FIGURE 29 HISTOGRAM SHOWING IMPLEMENTATION SCORES FOR UNIVERSITY OF KANSAS

Table 54

TOTAL IMPLEMENTATION SCORES FOR CLASSROOMS BY SITE--UNIVERSITY OF KANSAS

		Tirst Grade								
			Classro	Site	Scores					
Sites		1	2	3	4	<u> </u>	S.D.			
NYC P.S. 77X	(EK)	75.0%	81.3%	%	%	78.1%	4.4			
Philadelphia VI	(EK)	78.8	90.6	82.4	88.2	85.0	5.4			
Portageville	(EK)	96.5	91.8	90.6	88.2	91.8	3.5			
Kansas City	(EK)	82.4	74.1	83.5	64.7	76.2	8.7			
Louisville	(EK)	85.9	90.6	92.9	85.9	88.8	3.5			
Sponsor Scores	s (N=18	3):				84.6%	7.9			
NFT Scores (Na	=35):					62.4	8.5			
						t = 9.3	22			
						p < .	001			
						f = 5.3	14			
						p < .(01			

		Third Grade									
			Classro	oom Scor	es	Site	Scores				
Sites		1	2	3	4	Site Score 4 \$\overline{x}\$ \$\overline{x}\$ \$\overline{x}\$ % 78.1% 9 84.7 79.7 4 80.8 7 84.7 86.5 2 85.9 88.2 2 83.3% 6	S.D.				
NYC P.S. 77X	(EK)	71.2%	85.0%	%	%	78.1%	9.7				
Philadelphia VI	(EK)	76.5	82.4	75.3	84.7	79.7	4.5				
Portageville	(EK)	89.4	74.1	78.8		80.8	7.8				
Kansas City	(EK)	88.2	88.2	84.7	84.7	86.5	2.0				
Louisville	(EK)	88.2	91.8	87.1	85.9	88.2	2.5				
Sponsor Scores	(N=17	'):				83.3%	6.0				
NFT Scores (N=	36):						9.3				
							89				
						p < .(001				
						f = 2.	53				
						p < NS					

ERIC

Table 56

READING, ALPHABET, LANGUAGE DEVELOPMENT (Variable 67)-
UNIVERSITY OF KANSAS

		ta Im	de Cl pleme ores	ntati		Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4	5	1	2	3	_4_	_5_	
NYC P.S. 77X Philadelphia VI, Pa. Portageville, Mo.	1	ī		1	1 2 4			1 1	1 1 2	1 2	
Kansas City, Mo. Louisville, Ky.		1	1	1	1 _4		1		1	2 _4_	
Total classrooms	1	2	1	2	12		1	2	5	9	
Percant of class- rooms	6%	11%	6%	11%	67%		6%	12%	29%	53%	

Table 57, all of the irst grade classrooms receired an implementation score of 4 or 5 on the variable "Teacher with small group" and 88% of the third grade classrooms had a score of 4 or 5 on this variable.

Table 57

TEACHER WITH SMALL GROUP (Variable 88)--UNIVERSITY OF KANSAS

		ch Im	de Cl pleme ores	ntati		Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3_	4	5	1	2	3	4	5	
NYC P.S. 77X Philadelphia VI Pa. Portageville, Mo. Kansas City, Mo. Louisville, Ky.				1 1	1 4 3 4		1	1	1	2 2 2 4 4	
Total classrooms				5	13		1	1	1	14	
Percent of class- rooms				23%	72%		6%	6%	6%	82%	

On Variable 94 (Aide with small group) all first and third grade classrooms scored 4 or 5 (see Table 58). In fact, all of New York City, Portageville, Kansas City, and Louisville's third grade classrooms have the highest possible implementation scores (5).

Table 58

AIDE WITH SMALL CROUP (Variable 94)- UNIT. ERSITY OF KANSAS

	with Implementation with						th Im	ade Classrooms mplementation cores of		
Sites	1*	2	3	4	5	1*	2*	_3	4	5
NYC P.S. 77X Philadelphia VI, Pa. Portageville, Mo. Kansas City, Mo. Louisville, Ky.			-	3	2 1 4 4 4				1	2 3 3 4 4
Total Classrooms				3	15				1	16
Percent of class- rooms				17%	83%				6%	94%

^{*}Of the Non-Follow Through classrooms, 20% of the first grade (the lowest quintile) had a mean of zero and 40% of the third grade classrooms (the two lowest quintiles) had a mean of zero. No University of Kansas site had a mean of zero.

Within the small group, the adults focus their attention upon one child at a time. As shown in Table 59, 89% of the first grades have an implementation score of 4 or 5 for Variable 438a. In the third grade, 88% of the classrooms have implementation scores of 5. Again, New York City, Portageville, Louisville, and Kansas City third grade classrooms all have an implementation score of 5. This is remarkable when one considers the diversity of the site characteristics (see Table 53).

In addition, the data presented in Table 60 support the finding that adults and children interact on a one-to-one basis. Note that 78% of the first grades and 65% of the third grades are in the fourth and fifth quintiles on Variable 344a, which describes the individual child's verbal interaction with adults. New York City has all of its classrooms in the fifth crintile.

Table 59

ADULT COMMUNICATION OR ATTENTION FOCUS, ONE CHILD (Variable 438a)--UNIVERSITY OF KANSAS

		rst Grade Classrooms Third Grade C with Implementation with Implem Scores of Scores						olemei	entation	
Sites	1	2	3	4	5	1	2	3_	4	5
NYC P.S. 77X				1	1					2
Philadelphia VI, Pa.				2	2		1		1	2
Portageville, Mo.					4					3
Kansas City, Mo.		2		1	1					4
Louisville, Ky.					4					4
Total classrooms		2		4	12		1		1	15
Percent of class- rooms		11%		22%	67%		6%		6%	88%

Table 60

INDIVIDUAL CHILD VERBAL INTERA^TIONS WITH ADULT
(Variable 344a)--UNIVERSITY OF KANSAS

	First Crade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of				
Sites	1	2	3	4	5	1	2	_3_	4	_5_
NYC P.S. 77X					2					2
Philadelphia VI, Pa.			2	1	1		1	2	1	2
Portageville, Mo.			_	_	4			1		2
Kansas City, Mo.			2	1	1			1	1	3
Louisville, Ky.					4					
Total classrooms			4	2	12		1	5	2	9
Percent of class- rooms			22%	11%	67%		6%	29%	12%	53%

The adult provides the group with a bit of information and then, on a one-to-one basis, the adult asks a child a question about the information. The child responds, and the adult provides the child with immediate feedback. The results for this interaction pattern are presented in Table 61. Seventeen of the 18 first grade classrooms attained an implementation score of 5. Twelve of the 17 third grade classrooms had implementation scores of 5. Again, Louisville and Kansas City have all of their classrooms attaining a high implementation score of 5.

Table 61

ADULT FEEDBACK TO CHILD RESPONSE TO ADULT ACADEMIC COMMANDS, REQUESTS, OR DIRECT QUESTIONS (Variable 412a)--UNIVERSITY OF KANSAS

	First Grade Classrooms with ImplementationScores of					Third Grade Classrooms with Implementation Scores of				
Sites	1	2	3	4	5	1	2	3_	4	_5
NYC P.S. 77X Philadelphia VI, Pa. Portageville, Mo Kansas City, Mo. Louisville, Ky.				1	2 3 4 4 4		1.	1	1 2	1 2 1 4 4
Total classrooms				1	17		1	1	3	12
Percent of class- rooms				6	94%		6%	6%	18%	71%

The reinforcement provided for correct responses and behavior during "work time" is in the form of tokens. These tokens can later be exchanged for some activity the child desires. Table 62 presents the findings for this variable. In the first grade, all 18 classrooms have implementation scores of 5. In the third grade, all classrooms have implementation scores of either 4 or 5. As mentioned in the methodology section, a classroom could be given a score of 4 even if the mean is zero. In this case, in the third grade the mean for New York City, Portageville, and Kansas City is zero, indicating that tokens are not used in the third grade at these sites. However, at Philadelphia and Louisville, tokens are used in third grade, and with the same frequency as in first grade (see Appendix O for means and standard deviation).

After the "earn time," University of Kansas classrooms have a "spend time," so that children car spend the tokens they have

Table 62

ALL ADULT REINFORCEMENT WITH TOKENS (Variable 469a)--UNIVERSITY

OF KANSAS

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	1*	2*	3*	4	5	1*	2*	_3*	4	5	
NYC P.S. 77Y Philadelphia VI, Pa. Portageville, Mo. Kansas City, Mo. Louisville, Ky.					2 4 4 4				2 3 4	4	
Total classrooms					18				10	7	
Percent of class- rooms	-				100%				59%	41%	

^{*}Of the Non-Follow Through classrooms, 60% (the three lowest quintiles) had a mean of zero in both first and third grades. No University of Kansas site had a mean of zero.

earned during academic instruction. As presented in Table 63, 88% of the first grade classrooms have implementation scores in the upper ranges of the use of games and puzzles, while 9% of the third grades are in the upper range on this variable.

The variable "Child task persistence" (Table 64) indicates that self-instruction is continuous over a period of time (as indicated by a sequence of FMO frames). Of the 15 third grade classrooms, 14 have high implementation scores of 4 or 5. The implementation scores of the first grades on this variable are not as consistent over all as those in the third grade.

e. Summary of Implementation

The results of other implementation variables selected for University of Kansas may be found in Appendix M, Table M-6. Overall, University of Kansas classrooms are, except for one classroom, at the upper end of the scale when compared to the Non-Follow Through classrooms. As previously mentioned, both grades are significantly different in total implementation scores from Non-Follow Through. In addition, there is little deviation in total implementation scores within sites or among sites except in Kansas City first grades and New York third grades. Day-to-day variability reported on Table 5, p. 54, did not seem to adversely affect the implementation scores of the University of Kansas.

Table 63

GUESSING GAMES, TABLE GAMES, PUZZLES (Variable 65)--UNIVERSITY OF KANSAS

	First Grade Classrooms with Implementation Scores					Third Grade Classrooms with Implementation Scores of				
Sites	1*	2*	3	4	5	1*	2	3	4	5
NYC P.S. 77X			2				1		1	
Philadelphia VI, Pa.					4			1		3
Portageville, Mo.				2	2		2		1	
Kansas City, Mo.					4				3	1
Louisville, Ky.			_2_	1	1_		_3_		_1_	
Total classrooms			4	3	11		6	1	6	4
Percent of class- rooms			22%	17%	61%		35%	6%	35%	24%

 $^{^{\}star}$ Some 40% of the Non-Follow Through first grade classrooms (the two lowest quintiles) and 20% of the third grade classrooms had a mean of zero. No University of Kansas site had a mean of zero.

Table 64

CHILD TASK PERSISTENCE (Variable 513c)--UNIVERSITY OF KANSAS

		th Im		assro ntati of		Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4	_5_	1	2	3	4	5	
NYC P.S. 77X											
Philadelphia VI, Pa.				1	3				3	1	
Portageville, Mo.		3	1						1	2	
Kansas City, Mo.		1	2	1				1	1	2	
Louisville, Ky.			1		3_				2	2_	
Total classrooms		4	4	2	6			1	7	7	
Percent of class- rooms		25%	25%	13%	38%			7%	47%	47%	

A study of observer accuracy for the University of Kansas indicates that in general the codes which form the variables used in this section were acceptably reliable (see Appendix L, Table L-5). Some observers did have difficulty coding f edback variables from the videotape (New York and Portageville first grade observers and Kansas City and Louisville third grade observers). However, data from all University of Kansas sites are consistent with each other regarding the feedback variables used in this section (see fables 61 and 62).

The reader is reminded that a sponsor's implementation is evaluated in two ways: (1) Do the classrooms differ from the traditional classroom? and (2) Are a given sponsor's classrooms similar to each other in level of implementation? Using these criteria, we conclude that University of Kansas would be able to implement their model in other sites similar to the ones used in this analysis.

6. Cognitively Oriented Curriculum Model--High/Scope

a. Description of the Model

Derived from the theories of Piaget and developed through eight years of research with disadvantaged children, the Cognitively Oriented Curriculum model provides teachers in the early elementary grades with a theoretical framework that embraces cognitive goals, a teaching strategy, and suggested materials.

Five cognitive areas are emphasized: classification, number, causality, time, and space. The curriculum contains a carefully sequenced set of goals that enable the teacher to focus on the development of specific thought processes perceived as essential to children's mental growth.

In the Cognitive Curriculum, the teaching of basic skills is incorporated into the daily routine and is an integral part of the "plan, work, and evaluate" instructional sequence. There are a variety of learning centers from which children can choose the activities that they wish to pursue. Each day, the children make a plan for their activities, follow their plan, represent or evaluate their activities, follow their plan, represent or evaluate their activity in some way, and discuss what they have done in a group setting. The development of a child's reading, writing, and computation skills are expected to be a natural outgrowth of experiencing events, recording the events he experiences, and transmitting these experiences to others.

More specifically, during the planning period, the child verbalizes and then describes in writing what he is going to do during work time. Sometimes he makes a list of the trangs he is going to use. The teacher helps to clarify and extend his thoughts with appropriate questions. During the work period, the child carries out his plan. He may involve himself directly with reading, writing, or math activities by reading in the quiet area or writing a story in the book-making area;

or he may involve himself indirectly in such things as games, construction, and dramatic play. Writing and drawing during "representation" time requires the child to think about what he has done and to record these thoughts in some way; thus, reading and writing skills are developed. Language skills are emphasized during evaluation time when the child verbalizes the thoughts he has recorded as part of his representation.

The cognitive approach is based on the sponsor's conviction that a child must initiate his own learning. In order to promote such child initiative, specific instructional processes are required of High/Scope teachers: (1) instruction should be conducted with individual children and small groups; (2) children should engage actively with learning materials; (3) teachers should be good listeners; (4) discussions should be designed to encourage speculation and evaluation; (5) self-direction should be encouraged; and (6) verbal interaction among children should be encouraged.

b. Description of the Sites

High/Scope's five project sites are Greenwood, Mississippi; Fort Walton Beach, Florida; New York City; Greeley, Colorado; and Denver, Colorado. Demographic and other information describing the five communities in which the High/Scope projects are located is shown in Table 65.

Three of the sites (Greenwood, Fort Walton Beach, and Greeley) are classified as small cities whereas Denver and New York City are classified as large cities. Although New York, Denver, Greeley, and Fort Walton Beach differ in size, other demographic data for the four sites show similarities: their median family incomes of over \$9,000 are higher than the Follow Through average, their percentages of below reverty level* families and nonwhite population (excepting New York) are lower than the average for Follow Through, and their percentages of adults over 25 who have completed high school are higher than the Follow Through sample average. New York City is also remarkably like them except that its 23.4% nonwhite population is higher than sample average.

Greenwood provides a clear contrast to the other four sites in all cithese areas: its median family income of \$6,458 and its 44.4% of adults over 25 who have completed high school are considerably lower than the other High/Scope projects, as well as being lower than the average over all Follow Through sites; its percentages of below poverty level families and nonwhite population are considerably higher than the other High/Scope sites, as well as being higher than the overall Follow Through average.

^{*}The U.S. Census Bureau uses U.S. Office of Economic Opportunity poverty index guidelines to establish poverty in el.

Table 65
SITE AND DEMOGRAPHIC DATA FOR HIGH/SCOPE SITES

A. Geographic Data

Site		Darina	Metropolitan	Population
Code	Site Location	Region	Status	(1970 census)
0901	Greenwood, Miss.	East South Cen- tral	Small city*	22,400
0902	Ft. Walton Beach, Fla.	South Atlantic	Small city*	19,994
0903	New York City,. P.S. 92M	Middle Atlantic	Big city	7,894,798
0906	Greeley, Colo.	Mountain	Small city [*]	38,902
0907	Denver, Colo.	Mountair.	Big city	514,678

B. Demographic Data for Total Population

				Percent of
	Median	Percent of	Percent of	Adults Over 25
Site Name	Family Income	Families Below Poverty Level	Population Nonwnite	Who Finished High School
Greenwood	\$6,458	26.3%	50.4%	44.4%
Ft. Walton Beach	9,950	9.9	9.4	76.8
NYC P.S. 92M	9,682	11.5	23.4	46.9
Greeley	9,091	9.6	1.6	65.6
Denver	9,964	9.4	11.0	61.5
Average for				
all sites	\$8,631	13.9%	20.7%	49.7%

C. Characteristics of the Follow Through Evaluation Sample

at the Site for F	Average Percent with Preschool	Average Percent with First Language Other than English	Average Baseline Score
Greenwood	39%	1%	
Ft. Walton Beach	90	1	18***
NYC P.S. 92M	48	0	33
Greeley	56	25	31
Denver	65	9	· 25

^{*}Not within Standard Metropolitan Statistical Area (5.3SA).

Sources: U.S. Bureau of the Census, 1970; SRI

^{**}Taken from the Follow Through Roster; represents the Follow Through evaluation sample.

A shorter form was presented in the entering year, thus there were fewer items and lower scores.

c. Sponsor Implementation Variables

Tables of all the critical variables selected to assess implementation and exportability of the High/Scope model can be found in Appendix M. The tables in Appendix M present the implementation score for each variable for each classroom. As described in the methodclogy section of this chapter, the final selection of variables was made on the basis of sponsor ratings reported on the Sponsor Variable Questionnaire. The variables selected for High Scope are, of course, limited descriptors of the program. Many processes and procedures important to the program are not assessed in this study of implementation. For example, we cannot observe whether in fact the children are learning to classify objects or whether they are developing concepts regarding time and space. We can only record that they are using objects, that they are engaged in activities without adults present, and that they ask questions. One has to make a considerable leap from these variables to the sponsor's stated goals. How the implementation scores were computed is also described in the methodology section on page 100. Since the aim of sponsors was to differ in specific ways from traditional classrooms, the traditional classroom has been used as the yardstick to measure each sponsor's implementation.

Twenty-nine variables were selected by High/Scope as those on which they would expect their classrooms to differ from conventional classrooms. An implementation score of 3 indicates that the classroom is in the mid-range of conventional classrooms; an implementation score of 5 means that the model classrooms are in the uppermost range of conventional classrooms. A selection of variables designated as critical are discussed in the text.

d. <u>Implementation</u> Findings

Figure 30 and Table 66 present the total implementation scores for each classroom by grade level. These total scores were computed by adding each quintile score of High/Scope's 29 implementation variables and dividing by the total maximum score. Thus, an average score on all variables was computed. The scores are presented as percentages. Totals for Non-Follow Through classrooms were also computed for the High/Scope implementation variables. Means and standard deviations are presented in Table 66 along with the results of one-tailed t-tcsts, comparing Non-Follow Through with High/Scope. Table 66 presents the analysis of variance among sites.

The t-test presented on Table 66 indicates that overall the High/Scope implementation mean score differs from Non-Follow Through mean score. Only the classrooms in the New York third grades have implementation scores similar to those in Non-Follow Through. No explanation of the low implemented score of New York third grades is readily apparent. The demographic information presented on Table 65 indicates that the primary difference in New York and the other High/Scope sites

FIGURE 30 HISTOGRAM SHOWING IMPLEMENTATION SCORES FOR HIGH SCOPE

Table 66

FOTAL IMPLEMENTATION SCORES FOR CLASSROOMS BY SITE--HIGH/SCOPE

				Firs	st Grade		
			Classr	oom Score	es	Site S	Scores
Sites		1	2	3	4	<u>X</u>	S.D.
Greenwood	(E1)	71.0%	67.6%	70.3%	76.6%	71.4%	3.8
Ft. Walton Bea	ch(El)	77.9	73.8	79.3	75.9	76.7	2.4
NYC P.S. 92M	(EK)	66.2	71.7	71.0		69.7	3.0
Greeley	(EK)	82.8	81.4	82.8		82.3	.8
Denver	(EK)	86.9	80.7	80.7	82.8	82.8	2.9
Sponsor Scor	es (N=1	8):				76.6%	6.0
NFT Scores (N=35):					63.7	5.8
						t = 7.	58
						p > .0	001
						f = 15.	59
						p > .(001

				Thi	rd Grade		
			Classr	oom Scor	es _	Site	Scores
Sites		1	2	33	4	<u>x</u>	S.D.
Greenwood	(E1)	70.3%	73.1%	75.2%	74.5%	73.3%	2.1
Ft. Walton Beach	(E1)	83.4	83.4	80.7	78.6	81.6	2.3
NYC P.S. 92M	(EK)	66.9	62.1	64.8	64.8	64.7	2.0
Greeley	(EK)	80.0	80.0	86.2		82.1	3.6
Denver	(EK)	7^ l	71.7	78.6	76.6	75.0	3.2
Sponsor Scores	(N=19):				75.0%	6.9
NFT Scores (N=	36):					63.5	6.8
						t = 5.9	93
						p > .(001
						f = 27.3	34
						p > .(001

is geographic in nature and Table 4 indicates that the children are similar to those of other sites. Another source of error might be in the observers, however, a study of observer accuracy in New York indicates that the codes which form the variables for High/Scope were acceptably reliable (see Appendix L., Table L-6). The histograms presented in Figure 30 show that approximately 50 percent of the Non-Follow Through first grades score between 60 and 65 while no first grades in High/Scope have such a score. The analysis of variance shows that although it is small, the variability among sites is statistically significant relative to the within site variance for both first and third grades. In no case is the within site variance greater than 3.8 (Greenwood first grades) and in Greeley the variance between first grades is only .8. This is remarkable since in Greeley 27 percent of the children speak English as a second language and the attrition rate is high. These figures reflect a migrant Spanish speaking population, and indicate that the teachers have been able to implement the model where the differing language could have presented problems in communication of the model. In spite of the site demographic differences described for Greenwood the implementation at that site appears to be acceptable.

Scores for each implementation variable for each High/Scope site and classroom are presented in Appendix M, Table M-7. The tables are prepared so that the number of teachers receiving a particular implementation score is entered in a column. The teachers of each site are entered in the rows. The total number of teachers receiving a particular implementation score, as well as the percentage computed, is entered on the bottom rows. Only a few critical variables will be discussed in this text.

The High/Scope model considers it important that children be allowed to select their own seating and group for part of the time. As presented in Table 67, 56% of the first grades and 53% of the third grades received a score of 5 on this variable. Fort Walton Beach had all of their classrooms in both grade levels scoring at the highest level. New York, however, had all of their first and third grades scoring in the second quintile.

The High/Scope model encourages teachers to provide a wide variety of activities and material so that children can plan their own learning schedule. Findings presented in Table 68 indicate that 89% of the first grades and 79% of the third grades have high implementation scores of 4 and 5 on Var. 83 (Wide variety of activities, over one day).

High/Scope classrooms also are high on the implementation scale for Var. 65 (Guessing games, table games, puzzles) and Var. 70 (Sewing, cooking, pounding), as shown in Tables 69 and 70.

As presented in Table 71, High/Scope classrooms are low on the number of children engaged in arithmetic when compared to Non-Follow Through children. Arithmet c in High/Scope classrooms is often pursued informally and it is possible that observers may have missed

Table 67

CHILD SELECTION OF SEATING AND WORK GROUPS
(Variable 24)--HIGH/SCOPE

	First Grade Classrooms with Implementation Scores of					with Implementation Scores of					
Sites	1*	2	3	4 * *	5	1*	2	3	4	5	
Greenwood, Miss. Ft. Walton Beach, Fla.		3	1		4					4 4	
NYC P.S. 92M		3					4				
Greeley, Colo.			,		3 3			2	1	2	
Denver, Colo.			1		_3_						
Total classrooms		6	2		10		4	2	3	10	
Percent of class-rooms		33%	11%		56%		21%	11%	16%	53%	

^{*}In Non-Follow Through, 20% of the classrooms (the lowest quintile) in both first and third grade had a mean of zero. One High/Scope site (NYC P/S. 92M) had a mean of zero in both first and third grade classrooms.

^{**}Because of tied scores in the Non-Follow Through first grade classroots, no High/Scope classroom could be given a score of 4.

Table 68
WIDE VARIETY OF ACTIVITIES, OVER ONE DAY (Variable 83)--HIGH/SCOPE

	First Grade Classrooms with Implementation Scores of				with Implementation Scores of					
Sites	1	_2	3	4	5	1	2	3	4	5
Greenwood, Miss. Ft. Walton Beach, Fla. NYC P.S. 92M Greeley, Colo. Denver, Colo.		2	1	1 1 2 1	2 3 2 1 3	1	1 ,	1	1	1 4 2 3 4
Total Classrooms		1	1	5	11	1	2	1	1	14
Percent of class-		6%	6%	28%	61%	5%	11%	5%	5%	74%

Table 69

GUESSING GAMES, TABLE GAMES, PUZZLES (Variable 65)--HIGH/SCOPE

		th Im	de Cl pleme ores	ntati		Third Grade Classrooms with Implementation Scores of					
Sites	1*	2*	_3_	4	5	1*	_2_	3_	4	_5_	
Greenwood, Miss.				1	3		2		1	1	
Ft. Walton Beach, Fla.				2	2				2	2	
NYC P.S. 92M				1	2		1		1	2	
Greeley, Colo.					3				2	1	
Denver, Colo.			2	1	1				2	2_	
Total classrooms			2	5	11		3		8	8	
Percent of class- rooms			11%	28%	61%		16%		42%	42%	

^{*}Some 40% of the first grade (the two lowest quintiles) and 20% of the third grade (lowest quintile) Non-Follow Through classrooms had a mean of zero. No High/Scope site had a mean of zero.

Table 70
SEWING, COOKING, POUNDING (Variable 70)--HIGH/SCOPE

	First Grade Classrooms with Implementation Scores of					with Implementation Scores of					
Sites	1*	2*	3*	4	5	1*	2*	3*	4	5	
Greenwood, Miss.				4					4		
Ft. Walton Beach, Fla.				3	1				3	1	
NYC P .S. 92M				1	2				2	2	
Greeley, Colo.				2	1					3	
Denver, Colo.					4				1	_3_	
Total classrooms				10	8				10	9	
Percent of class-				569	1. 1. 9/				E 2 9/	170	
rooms				56%	44%				53%	47%	

Approximately 60% of the Non-Follow Through classrooms in both first and third grade (the three lowest quintiles) had a mean of zero. Only the first and third grade classrooms at Greenwood had a mean of zero on this variable (see Appendix O).

Table 71

NUMBERS, MATH, ARITHMETIC (Variable 66)--HIGH/SCOPE

	irst Grade Classrooms with Implementation Scores of				Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	_4	5	1	2	3	4	5
Greenwood, Miss. Ft. Walton Beach, Fla. NYC P.S. 92M Greeley, Colo. Denver, Colo.	1 2	2 2	1	1	2 1 1	1 3 2 3	3	1	1	1
Total classrooms	3	5	2	3	_ <u></u>	2 2 11	3	1	1	3
Percent of class-	17%	28%	11%	17%	28%	58%	16%	5%	5%	16%

the fact that children were engaged in working out mathematical relationships and problems while cooking, sewing, or constructing. This may explain in part the low implementation scores on this variable.

Teachers and aides are most likely to interact with small groups of children as the children plan the day's activities or as they report their evaluation of the day's work. Except for one first grade classroom, the 37 High/Scope classrooms are in the fourth or fifth quintile on these variables related to teachers and aides working with small groups (see Tables 72 and 73).

Although High/Scope children often work in small groups, it is important that the adults interact with one child at a time. Table 74 presents data regarding the focus of the adult communication. Note that 77% of the first grades and 85% of the third grades are in the fourth or fifth quintile on this variable. Only three Greenwood first grades and one Fort Walton Beach first grade are in the lower quintiles on this variable.

Adults try to encourage children to think about problem solving and planning. One way to do this is to ask open-ended questions. Findings presented in Table 75 indicate that there is a wide range in implementation within site and among sites on this variable.

Similarly, children are encouraged to ask questions. As shown in Table 76, only Greeley has all of their classrooms attaining implementation scores of 5. Other sites have scattered classroom scores on this variable.

e. Summary of Implementation

Other implementation findings for High/Scope are presented in Appendix M, Table M-7. For the most part, High/Scope classrooms are well implemented. Excepting the New York third grades, they differ from the traditional classrooms and their total implementation scores place them on the upper end of the comparison measuring stick. There is little deviation in implementation scores of classrooms within a site. The greatest difference among site total implementation scores is found between New York (65) and Greeley (82) third grades. Even with a high percent of children who speak English as a second language, Greeley has been very successful in implementing the model.

Using the criteria stated for this evaluation we conclude that High/Scope would most likely be able to implement their model in other sites similar to the ones used in this analysis.

A study of observer accuracy for High/Scope indicates that the codes which form the variables used in this section were acceptably reliable (see Appendix L, Table L-6).

Table 72

TEACHER WITH SMALL GROUP (Variable 88)--HIGH/SCOPE

	First Grade Classrooms with Implementation Scores of					Third Grade Classroom with Implementation Scores of					
Sites	1	2	3	_4_	5	1_	2	3	4	5	
Greenwood, Miss.					4					4	
Ft. Walton Beach, Fla.			1	1	2				1	3	
NYC P.S. 92M				1	2					4	
Greeley, Colo.					3					3	
Denver, Colo.					4				1	3_	
Total classrooms			1	2	15				2	17	
Percent of class- rooms			6%	11%	83%				11%	89%	

Table 73

AIDE WITH SMALL GROUP (Variable 94)--HIGH/SCOPE

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	1*	2	3	4	5	1*	2*	3	4	5	
Greenwood, Miss.					4					4	
Ft. Walton Beach, Fla.				4					2	2	
NYC P.S. 92M				1	2					4	
Creeley, Colo.				1	2				1	2	
Denver, Colo.					_4_					4	
Total classrooms				6	12				3	16	
Percent of class- rooms				33%	67%				16%	84%	
200110				3370	0 7 70				4.070	U 1770	

^{*}In Non-Follow Through, some 40% of the third grade classrooms (the two lowest quintiles) and 20% of the first grade classrooms (the lowest quintile) had a mean of zero. No High/Scope site had a mean of zero.

Table 74

ADULT COMMUNICATION OR ATTENTION FOCUS, ONE CHILD (Variable 438a)--HIGH/SCOPE

		First Grade Classrooms with Implementation Scores of					th Im	de Cl pleme ores	ntati	
Sites	1	2	3_	4	_5	1	2	3_	4	5
Greenwood, Miss. Ft. Walton Beach, Fla. NYC P.S. 92M Greeley, Cclo.	3	1		2 2	1 1 1 3			1	1	3 3
Denver, Colo.		-		2	2_		1_	1_	1_	1_
Total classrooms	3	1		6	8		1	2	6	10
Percent of class- rooms	17%	6%		33%	44%		5%	11%	32%	53%

Table 75

ADULI OPEN-ENDED QUESTIONS TO CHILDREN (Variable 452a)--HIGH/SCOPE

•		First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	_1_	_2_	_3_	4	.5	1	2	3	_4_	5		
Greenwood, Miss.	1	2			1	1	1		1	1		
Ft. Walton Beach, Fla.		1	1	1	1			1		3		
NYC P.S. 92M			1	1	1		2		1	1		
Greeley, Colo.	2		1					2		1		
Denver, Colo.			1_		_3_		1_		1_	_2_		
Total classrooms	3	3	4	2	6	1	4	3	3	8		
Percent of class- rooms	17%	17%	22%	11%	33%	5%	21%	16%	16%	42%		

Table 76
CHILD QUESTIONS TO ADULT (Variable 350a)--HIGH/SCOPF

		First Grade Classrooms with Implementation Scores of					th Im		assro ntati of	
Sites	1	2	3_	4	5	1	2	3	4	_5_
Greenwood, Miss. Ft. Walton Beach, Fla.	1	1 1	2	3		1	1		1 4	1
NYC P.S. 92M Greeley, Colo.					3 3		1	1	1	1 3
Denver, Colo.		1_	1_	2		1_	1_	1_		1
Total classrooms	1	3	3	5	6	2	3	2	6	6
Percent of class- rooms	6%	17%	17%	28%	33%	11%	16%	11%	32%	32%

7. EDC Open Education Program

a. Description of the Model

The EDC Follow Through approach is a program designed to help communities generate their cwn resources to implement open education. EDC believes that learning is facilitated by a child's active participation in the learning process, that learning is optimized in a setting that provides a range of materials and problems to investigate. The program is based on the belief that children learn in many different ways and therefore they should be provided a variety of opportunities and experiences. Traditional academic skills are important, but they are more usefully and permanently learned when children have many opportunities to develop them in flexible, self-directed ways that allow learning to become a part of their life style outside as well as in the class-room.

Interweaving of subject matter is essential to the open classroom. Children are expected to be purposefully mobile and independent, choosing activities out of their own interests. Thus, classrooms are often divided into several interest areas for activities in construction, science, social studies, reading, math, art, and music. Any or all of these interest areas may be used simultaneously by children during the day. An interdisciplinary or curriculum core approach is often used to teach reading, writing, and computation through a project, such as setting up and operating a store. Essentially, the intent of this approach is to encourage the development of: (1) problemsolving skills; (2) the ability to express oneself both creatively and functionally; (3) the ability to respect one's cwn thoughts and feelings; and (4) the ability to take responsibility for one's own learning.

b. Description of the Sites

The five EDC sites at which observations were conducted are Burlington, Vermont; Philadelphia, Pennsylvania; Paterson, New Jersey; Rosebud, Texas; and Smithfield, North Carolina. They range in population classification from rural to big city.

As can be seen in Table 77, Rosebud differs from the other sites in that the \$4,522 median family income is the lowest in the sample and its percent of families below poverty level* is the highest. Smithfield, similar to Rosebud, has a low median family income and a high percent of families below poverty level. Rosebud and Faterson both show much lower percentages of adults over 25 who have completed high school than the average for Follow Through.

^{*}The U.S. Census Bureau uses U.S. Office of Economic Opportunity poverty index guidelines to establish poverty level.

Table 77
SITE AND DEMOGRAPHIC DATA FOR EDC SITES

A. Geographic Data

Site Code	Site Location	Region	Metropolitan Status	Population (1970 census)
1101	Burlington, Vermont	North East	Small city*	38,633
1103	Philadelphia IV, Pa.	Middle Atlantic	Big city	1,948,609
1106	Paterson, N.J.	Middle Atlantic	Medium city	144,824
1107	Rosebu Texas	West South Cen-	Rural	1,597
		tral		
1108	Smithfield, N.C.	South Atlantic	Town*	6,677

B. Demographic Data for Total Population

Site Name	Median Family Income	Percent of Families Below Poverty Level	Percent of Population Nonwhite	Percent of Adults Over 25 Who Finished High School
Burlington	\$9,908	7.7%	0.7%	61.8%
Philadelphia IV	9,366	11.2	34.4	39.9
Paterson	8,716	12.4	28.3	31.3
Rosebud	4,522	34.3	20.9	27.1
Smithfield	6,368	26.9	37.6	43.4
Average for				
all sites	\$8,631	13.9%	20.7%	49.7%

C. <u>Characteristics of the Follow Through Evaluation Sample at the Site for First Grade</u>**

Site Name	Average Percent with Preschool	nverage Percent with First Language Other than English	Average Baseline Score
Burlington	58%	0%	25
Philadelphia IV	53	1	3ι
Paterson	86	8	23
Rosebud	55	2	
Smithfield	56	0	

^{*} Not within Standard Metropolitan Statistical Area (SMSA).

Sources: U.S. Bureau of the Census, 1970; SRI

^{**}Taken from the Follow Through Roster; represents the Follow Through evaluation sample.

In contrast to the other EDC sites, in Burlington the percent is lower for families below poverty level as it is for the percent of nonwhites. Also the average percentage of adults over 25 who have completed high school is considerably higher than in the other EDC sites.

c. Sponsor Implementation Variables

Tables of the critical variables selected by the authors to assess implementation of the EDC model can be found in Appendix M. The tables in Appendix M describe the implementation score for each variable for each classroom. It must be noted that EDC does not expect classrooms to conform to model specifications or differ radically from traditional classrooms. EDC is an "approach" to education that recognizes, respects, and incorporates differences into its program. Ideas are offered about how to arrange classroom environments and how to prepare low-cost exploratory materials for children. But by their own example of not intruding or insisting upon conformity, they intend to encourage their teachers to respect the rights and opinions of children, to treat them as individuals, and to encourage cooperation rather than competition among members of the groups. The extent to which this occurs is not assessed in this evaluation. Workshops and guidance are offered by EDC and teacher attendance is voluntary rather than mandatory.

The sponsor did not select any variables as critical to the implementation of the model. They did not wish to place constraints upon the model. In lieu of a sponsor selection and in order to carry out the specified analysis the authors selected the variables presented in the report on the basis of discussion with sponsor representatives, experience in the classrooms, and reading available literature. A few of the variables selected as critical are presented in the text.

The variables selected for the EDC model are of course limited descriptors of the program. As previously stated, many processes and procedures important to the program are not assessed in this study of implementation. For example, adults are encouraged to provide a setting with a range of materials where children can investigate problems. Teachers are also encouraged to interweave subject matter. Our observation can only record the fact that a variety of materials are available and are used, that a wide variety of activities occur concurrently, and that children engage in activities independently. However, as great as the semantic gap is between the variable and the goal, EDC classrooms have been distinguished from Non-Follow Through and other educational models in past analysis.

How the implementation scores were computed is described in the methodology section on page 100. Since the aim of sponsors was to differ in specific ways from traditional classrooms, the traditional classroom has been used as the standard yardstick to measure each sponsor's implementation. Twenty variables were selected for first grade

and 22 for second grade for EDC as those on which one could expect their classrooms to be different from conventional classrooms. An implementation score of 3 would indicate the classroom was in the mid-range relative to conventional classrooms; an implementation score of 5 would mean that the model classrooms were in the uppermost range of conventional classrooms.

d. <u>Implementation</u> Findings

Figure 31 and Table 78 present the total implementation scores for each classroom by grade level. These total scores were computed by adding each quintile score of EDC's 35 implementation variables and dividing by the total maximum score. Thus, an average score on all variables was computed. The scores are presented as percentages. Total scores for Non-Follow Through classrooms were also computed for the EDC implementation variables. Means and standard deviations are presented in Table 78 along with the results of one-tailed t-tests, comparing Non-Follow Through with EDC. Table 78 presents the analysis of variance among sites.

The t-test presented on Table 78 indicates that the EDC classroom means are different statistically from the Non-Follow Through classrooms in both the first and third grades. Histograms in Figure 31 show that while the range for EDC and Non-Follow Through first grades is similar. The mean for EDC is 16 points higher. In the third grade the overlap of EDC classrooms scores with Non-Follow Through is not so great. Only one EDC third grade has a score lower than the Non-Follow Through mean score.

The analysis of variance shows that the variability among sites is statistically greater relative to the within site variance in both first and third grades. Philadelphia's low score seems to account for most of this variance for both first and third grades. Not only are their implementation scores lower than other sites, their within-site variation is greater. There are no obvious differences in the demographic nature or third characteristics between Philadelphia and the other EDC sites (see Tables 3, 4, and 77). The difference in implementation scores might be explained by two prolonged teacher strikes in Philadelphia. It is possible that when tension is high teachers may become more structured and adhere less to the theory of the model. Part of this variance might also be attributable to the first grade observer. She had difficulty in recording Code 4 reliably (Instruction, explanation) on the videotapes (see Appendix L, Table L-7). It must be noted that all other sites have high implementation scores and low within site variance.

For this analysis, most classrooms are expected to be at the upper range of the scale when compared to traditional classrooms; however, since EDC is an approach and not a model, the analysis for this program will be descriptive of what occurs in their classrooms as compared with traditional classrooms.

FIGURE 31 HISTOGRAM SHOWING IMPLEMENTATION SCORES FOR EDC

Table 78

TOTAL IMPLEMENTATION SCORES FOR CLASSROOMS BY SITE--EDC

			`	Firs	t Grade		
			Classro	om Score	s	Site S	cores
Sites		1	2	3	4	X	S.D.
Burlington	(EK)	91.0%	91.0%	86.0%	93.0%	90.2%	3.0
Philadelphia IV	(EK)	72.0	80.0	58.0	48.0	64.5	14.3
Paterson	(EK)	70.0	79.0	79.0	73.0	75.2	4.5
Rosebud	(EK)	72.0	68.0	71.0		70.3	2.1
Smithfield	(E1)	85.0	76.0	86.0	83.0	82.5	4.5
Sponsor Scores	<u>s</u> (N=19):				76.9%	11.5
NFT Scores (N=	=35):					61.2	9.6
						t = 5.3	35
						p > .0	001
						f = 7.2	6
						p > .0	1

				Thir	d Grade		
			Classro	om Score	2S	Site S	Scores
Sites		1	2	3	4	<u> </u>	S.D.
Burlington	(EK)	85.5%	81.8%	79.1%	75.5%	80.5%	6.2
Philadelphia I	V (EK)	75.5	64.5	73.6	59.1	68.2	7.7
Paterson	(EK)	67.3	69.1	77.3	73.6	71.8	4.5
Rosebud	(EK)	85.5	80.0	79.1		81.5	3.4
Smithfield	(E1)	76.4	79.1			77.7	1.9
Sponsor Scor	es (N=1	7):				.75.4%	7.1
NFT Scores (N=36):					60.7	10.6
						t = 5.2	L8
						p > .0	001
						f = 4.5	54
						p > .0	05

Scores for each critical implementation variable for each EDC site and classroom are presented in Appendix M, Table M-8 in tabular form. The tables are prepared so that the number of teachers receiving a particular implementation score is entered in a column. The teachers from each site are entered in the rows. The total number of teachers receiving a particular implementation score, as well as the percentage computed, is entered on the bottom rows. Only a few critical variables will be discussed in this text. For example, as shown in Table 79, in 63% of the first grade EDC classrooms and in 71% of the third grade classrooms, the children receive individual instruction more often. Therefore, they are at the upper end of the scale when compared to Non-Follow Through classrooms.

Findings in Table 80 emphasize the fact that the focus of adult communication is toward one chill at a time. Thus, 84% of the first grades and 71% of the third grades have implementation scores of 4 or 5 in this variable.

Communication between teachers and students in EDC class-rooms is usually more informal than in traditional classrooms. As shown in Table 81, task-related conversations take place between teacher and students. All of the Philadelphia classrooms have the highest implementation score (5) on this variable.

EDC children are encouraged to inquire and ask questions (Table 82). While the frequency of asking questions is low, it is important to note that children in Burlington in both first and third grades had implementation scores of 4 or 5. Philadelphia and Smithfield first grades also received these implementation scores. Paterson and Rosebud had a mean of zero in both first and third grades; therefore their implementation score of 4 is misleading. (See Appendix 0)

To encourage questioning, adults respond to questions with more questions. As indicated in Table 83, EDC adults are at the upper end of the scale for this variable.

The children engage in self instruction. As shown in Table 84, the third grade implementation scores are higher for this variable than are the first grade scores. This may reflect a developmental aspect of children in this program—they may be more capable or more desirous of working alone when they are older.

A limited assessment of children's pleasure is made by means of a variable based on records of smiles and laughter. These findings are presented in Table 85. Although the classrooms scatter across all of the scores, 53% of the EDC first grades and 48% of the EDC third grades are at the upper end of the scale for Var. 460a (All child positive affect).

Adults also express positive behavior toward children by smiles or laughter. Table 86 indicates that over 50% of the EDC class-rooms have implementation scores of 4 or 5 on this variable.

Table 79

ADULT INSTRUCTS AN INDIVIDUAL CHILD (Variable 375a)--EDC

		th Ir	ide Cl ipleme fores	ntati		Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4_	5	1	2	3	4	5	
Burlington, Vermont Philadelphia IV, Pa.	2	2	1	1	2	2	1	1	2)	
Paterson, M.J. Rosebud, Texas				2	2 3				1	3	
Smithfield, N.C.								1	<u>l</u>		
fotal classrooms	2	2	3	5	7	2	1	2	4	8	
Percent of class-	117	11	16	26	37	1.2	6.	12.	24		

Table 80

ADULI COMMUNICATION OR ATTENTION FOCUS, ONE CHILD (Variable 438a)--EDC

Sitoe		th-slm	ide Cl opleme ores	ntati	Third Grade Classrooms with Implementation Scores of					
Sites	1		}	==	5	1		3		5
Burlington, Vermont Philadelphia IV, Pa.	3			1	÷)	2		2	2
Paterson, N.I. Rosebud, Iexas	,			2	<u>2</u> 3	-	1			4 2
Smithfield, N.C.				<u>-</u>					2	-
Total classrooms	3			7	9	2	3			8
Percent of class- rooms	162			37 °	479	12%	18"		24°	47°

Table 81

ADULT TASK-RELATED COMMENTS TO CHILDREN (Variable 390a)--EDC

	First Grade Classrooms with Implementation Scores of						Third Grade Classrooms with Implementation Scores of				
Sites	1	2	3	_4_	_5	1	2	_3_	4	دَ	
Burlington, Vermont Philadelphia IV, Pa.				1	3 4	•	•		2	2 4	
Paterson, N.J. Rosebud, Texas Smithfield, N.C.		1	2 3 ——	1 _2	_2_	3		.1	2	2	
Total classrooms		1	5	4	9	3	1	1	4	8	
Percent of class-rooms		5%	26%	21%	47%	18%	6%	6%	24%	47%	

Table 82

ALL CH3LD OPEN-ENDED QUESTIONS (Variable 450a)--EDC

	First Grade Classrooms with Implementation Scores of					Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3*	4	5	1	2	3*	4		
Burlington, Vermont Philadelphia IV, Pa. Paterson, N.J. Rosebud, Texas Smithfield, N.C. Total classrooms	•			2 1 4 3 2 12	2 3 2 7				4 4 3 2 13	4	
Percent of class- rooms				63%	37%				76%	24%	

 $^{^{\}star}$ 60% of the Non-Follow Through classes had mean = zero.

. Table 83

ADULT RESPONSE TO CHILD'S QUESTION WITH A QUESTION (Variable 453a) -- EDC

	First Grade Classrooms with Implementation Scores of						Third Grade Classrooms with Implementation Scores of				
Sites	1*	2	3	-4	5	1*	_2	3	4	5	
Burlington, Vermont				1	3				1	3	
Philadelphia IV, Pa.		1	1	2			1	1	2		
Paterson, N.J.		3	1				1	2	1		
Rosebud, Texas			1		2				3		
Smithfield, N.C.			3	_1_			1_		1_		
Total classrooms		4	6	4	5		3	3	8	3	
Percent of class-rooms		21%	32%	21%	26%		18%	18%	47%	18%	

^{*} Some of the Non-Follow Through classes (the lowest quintile) had a mean of zero. No EDC site had a mean of zero.

Table 84

CHILD SELF-INSTRUCTION, OBJECTS (Variable 510c)--EDC

		First Grade Classrooms with Implementation Scores of					Third Grade Classro with Implementati Scores of				
Sites	1*	2	3	4	5	1*	2*	3	4	5	
Burlington, Vermont Philadelphia IV, Pa. Paterson, N.J. Rosebud, Texas Smithfield, N.C.		1 4 1 2	1	2	2 2 2			2 2 1 1	2 1 2	1 1 2 2	
Total classrooms		9	1	3	6			6	5	6	
Percent of class-rooms		47%	5%	16%	32%			35%	29%	35%	

^{*}Some 20% of the Non-Follow Through first grade classes (lowest quintile) had a mean of zero, and 40% of the third grade (two lowest quintiles) had a mean of zero. Only the Philadelphia IV first grade had a mean of zero on Variable 510c.

Table 85

ALL CHILD POSITIVE AFFECT (Variable 460a)--EDC

		th Im		assro ntati of		Third Grade Classrooms with Implementation Scores of					
Sites	1	?	3_	4	5_	1	2	_3_	4	5	
Burlington, Vermont			1	3						4	
Philadelphia IV, Pa.		1	3					2	2		
Paterson, N.J.			1	2	1	1	1	1	1		
Rosebud, Texas	3						1	2			
Smithfield, N.C.				_2_	_2_			1	1_		
Total classrooms	3	1	5	7	3	1	2	6	4	4	
Percent of class-	16%	5%	26%	37%	16%	6%	12%	35%	24%	24%	

Table 86

POSITIVE BEHAVIOR, ADULTS TO CHILDREN (Variable 423a)--EDC

		t Gra th Im Sc		ntati	Third Grade Classrooms with Implementation Scores of					
Sites	1	2	3	4	_5	1	_2_	_3_	_4_	_5_
Burlington, Vermont				1	3					4
Philadelphia IV, Pa.	1		1	2			1	1	1	1
Paterson, N.J.		2		1	1		1	2		
Rosebud, Texas	1		1		1		3			
Smithfield, N.C.		1		1_						_2_
Total classrooms	2	3	2	5	7		5	3	1	8
Percent of class- rooms	11%	16%	11%	26%	37%		29%	18%	6%	47%

e. Summary of Implementation

Other implementation findings for EDC are presented in Appendix M, Table M-8. What occurs in EDC classrooms has been described in part by these data, in comparison with Non-Follow Through classrooms. Much of what EDC believes in, such as an individualized approach to children, encouraging cooperation and inquiry on the part of children, and exhibiting positive regard on the part of all participants, seems to be reflected in the findings.

Excepting two Philadelphia first grades, the EDC class-rooms differ from the Non-Follow Through classrooms mean score. Also with the exception of Philadelphia (which had two serious teacher strikes during the school year) there is very slight within-site or among-site variance. These signs of implementation as judged by the criteria of this evaluation are fairly remarkable given that EDC does not make a great effort to have teachers conform to a set of specifications. Apparently part of the theory that they are trying to communicate is being communicated.

A check of observer reliability indicates that observers in Philadelphia first grades and Rosebud first and third grades had difficulty with Code 4 (instruction, explanation), on the videotaped simulations (see Appendix L, Table L-7). Nevertheless, data from Rosebud observers are consistent with those of other sites (see Table 78). However, data from Philadelphia first grade classrooms do differ from other EDC first grades.

C. A Study of the Relationship Between Teacher Characteristics/ Training and Implementation Scores

In the study of implementation it is important to try to understand what methods or strategies sponsors employed to bring about the changes in teacher behavior and what teacher characteristics are related to classroom implementation. The evaluation of teacher conformity to sponsor goal, which was described for each sponsor in the preceding section, leaves no doubt that implementation of the Follow Through models has taken place in different degrees in many diverse sites.

In an effort to understand elements in the sponsors' in-service teacher training program which were effective in the implementation process and teacher characteristics, items from the Teacher Question-naire regarding training, teacher experience, education and satisfaction with the sponsor's model were selected for analysis. Unfortunately the items on the questionnaires were inadequate to yield the information necessary to understand the sponsors' teacher training strategies. Partial correlations were computed between implementation scores and items from the teacher questionnaire. No significant correlations were found (see Appendix T. Information regarding the in-service training procedures of sponsors can be obtained from the individual sponsors.

Classroom Description

The only analysis of items from the Teacher Questionnaire to be used in this study are those where teachers describe their classrooms. The rating scale and the items are presented in Figure 32. A structure/flexibility scale was developed to assess these descriptions. Those items describing the most structured environments were given a score of 1. Those items describing the most flexible environments were given a score of 5.

The lowest possible score (if all 1's were checked) would be 11, indicating structure and the highest possible score (if all 5's were checked) would be 55, indicating flexibility. The results of this analysis are presented on Table 87. The coefficient α for the scale was equal to .76.

Far West Lab's five sites are diverse geographically, and yet the reports from the 37 responding Far West Lab teachers of their class-rooms are very similar (only 3.1 difference). In fact, their class-reports are so similar that we must conclude that this sponsor's training has shaped the behaviors of these teachers (see Table 87).

University of Arizona's 29 responding teachers differed by 6 points on the descriptions of their classrooms. The reader is reminded that in the description of implementation for University of Arizona, page 123, the classrooms had a relatively high variance in implementation scores. Theoretically, on a flexibility/structure scale they should fall between Far West and University of Kansas. However, given the diversity of sites, the teachers' reports are remarkably similar.

The uniformity of Bank Street's sites (Brattleboro, Fall River, New York City, and Tuskegee) is notable. The teachers' descriptions of their own classrooms in rural Alabama are only 2 points different from that of the teachers in New York City. The Bank Street sponsor's informal report to SRI of implementation in Philadelphia has been quite different from its reports of the other sites, and the 8.7 difference reflects such anomalies.

The educational theories of the sponsors previously described (Far West Lab, University of Arizona, and Bank Street) would place them higher on the scale of flexibility than the University of Oregon and University of Kansas models which, in terms of their theories, should be lower on this scale, or more structured. Table 87 indicates that not only are reports from the 32 responding University of Oregon teachers very similar to each other but that these teachers also feel that the program is the most structured of all. University of Kansas teachers report a level of structure below, and not overlapping with that of University of Oregon sites. Theoretically, University of Kansas is not as structured as University of Oregon since "spend time" is allowed (allowing child options), as well as a structured "work time."

Classrooms differ in many ways depending upon the philosophy and goals of the teaching staff, needs of children, etc. Each statement in Column A is matched with a contrasting statement in Column B. For each pair, place an X inside the parentheses which comes closest to describing your own classroom. 32.

											_
Column B	Children work under adult supervision	Children gather information on their own	Children initiate interactions with adults	Emphasis on subject matter	All the class is engaged in the same activity	Lesson plan is flexible	Work and play are not distinguished	Teaching staff determines activities and materials	Group needs dominant	Children do not interact freely with each other	Children have assigned seats
Almost Always Like B	(5)	(2)	(2)	(5)	(2)	(2)	(5)	(5)	(2)	(5)	(5)
	(7)	(7)	(7)	(7)	(7)	(4)	(7)	(4)	(4)	(7)	(7)
Somewhat Like A and Somewhat Like B	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)
	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)
Almost Always Like A	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
Column A	Chilaren work independently	Teacher imparts information and provides demonstrations	Adults initiate interactions with children	Emphasis on emotional needs	Various activities take place at the same time	Lesson plan is followed closely	Work and play are dis- tinguished	Children choose their own activities and materials	Individual needs dominant	Children interact freely with each other	Children change places freely
	ึง	þ .	٠.	д .	e ·	f.	8	ė	. .	دع.	퐈.

CLASSROOM DESCRIPTION FIGURE 32

Table 87

FOLLOW THROUGH TFACHER RATINGS ON THE CLASSROOMS' STRUCTURE/FLEXIBILITY SCALE*

Sponsors and Sites		Number of Teachers Responding to This Item	<u> </u>	<u>S.D.</u>
	aboratory for Educational	_		
Research a	nd Development	<u>37</u>	41.4	<u>4.9</u>
0201	Berkeley, Calif.	7	40.0	2.3
0204	Puluth, Minn.	7	43.1	3.7
	Lebanon, N.F. Salt Lake City, Utah	8 7	40.4 42.9	4.0 6.0
0213		8	40.6	7.1
University of Arizona		<u>29</u>	39.8	4.0
0305	Des Moines, Iowa	9	37.1	4.1
0309	Lakewood, N.J.	9	41.1	4.1
	Newark, N.J.	6	38.3	2.3
0316	Lincoln, Nebraska	7	43.1	2.2
Bank Street College		<u>32</u>	40.2	4.5
0502	Brattleboro, Vermont	5	41.6	4.8
0504	•	8 8	41.6 41.3	2.7
0506 0508	• • •	8 7	34.6	2.0 5.0
0510		4	43.3	1.3
University of Oregon		<u>32</u>	31.2	4.4
0703	E. St. Louis, Ill.	7	30.1	4.8
0707		5	31.6	5.1
0708		8	31.0	4.6
0711	,,	6	31.2	3.4
0719	Providence, R.I.	6	32.3	5.2
University	of Kansas	<u>32</u>	<u>33.6</u>	5.3
0801	New Jork City, P.S. 77%	4	35.5	5.2
0803		6	35.8	2.5
0804 0806	Portageville, Mo. Kansas City, Mo.	7 8	32.4 32.5	4.0 .7
0807	Louisville, Ky.	7	33.0	5.4
High/Scope Foundation	e Edu⁄ational Research	32	<u> </u>	5.7
0901		10	39.3	5.1
0902		5	46.2	5.2
1903		4	47.0	2.9
υ906	Greelev, Colo.	5	44.0	6.2
0407	Denver, Colo.	8	42.5	6.2
Education Development Center		<u>37</u>	4^.9	4.8
1101	Burlington, Vermont	8	43.1	6.0
1103	Philadelphia IV, Pa.	7	38.6	5.3
1106	Paterson, N.J.	7	41.9	3.8
1107 1108	Rosebud, Texas Smithfield, N.C.	9 6.	44.8 45.8	2.6 3.3
Non-Follow	Through	<u>60</u>	35.0	4.6

^{*} Coefficient α for this scale was equal to .76, which indicates that the reliability of the scale will be adequate for the purpose of this study.

The teachers of High/Scope and EDC vary somewhat in their descriptions of their classrooms. The High/Scope teachers in New York City report an average of 7.7 points more on the flexibility scale than do the teachers in the High/Scope classrooms in Greenwood, Miss. (see Table 87). EDC's teachers in Smithfield, N.C. are 7.2 points higher on the flexibility scale than are the Philadelphia teachers. Nevertheless, both models are on the upper end of the flexibility scale, which is to be expected in terms of their educational theory. In the case of EDC sites, it is especially interesting that 37 responding teachers report a fair amount of agreement as to what occurs in their classrooms. The EDC sponsor makes little or no overt effort to direct teacher behavior toward specific practices. The sponsor acts primarily as a model and presents alternatives to teachers, offering suggestions on how the room should be organized and which materials to prepare and use. However the sponsor's message is being delivered and received, since the EDC teachers describe their classrooms similarly, regardless of site.

Teachers' description of the extent of structure in their classrooms are quite distinct, suggesting that the teachers teach differently as a result of their training and experiences in the Follow Through program.

D. <u>Summary</u>

No simple statement, such as that all seven Follow Through sponsors have succeeded in implementing their model in the sites which were studied, can be made. Rather, conditional statements must be made. While all sponsor classroom mean scores for first and third grades are significantly different from the Non-Follow Through mean score, all sponsors except Far West Lab and University of Kansas and High/Scope have some classrooms which have scores below the Non-Follow Through mean. In both grades the University of Kansas implementation scores were higher than those of other sponsors.

The least amount of variance found among sites is in the Far West first grades (4.4). The most variance was found among the EDC first grade sites (11.5). Bank Street and High/Scope varied only moderately among sites in both grade levels.

Implementation of the models did not seem to be affected by the percent of children who did not use English as a first language; e.g., the scores in Salt Lake City, Fall River, Greeley, Denver, Fort Worth, and Lakewood were comparatively high.

Average low median family incomes did not seem to be related to successful implementation, e.g., Portageville, Rosebud, Greenwood, and Smithfield. All have low average incomes and high implementation scores.

The size of the city may have had some effect. Large cities accounted for seven of the eight implementation scores below 70 (see Table 88). The implementation scores for University of Oregon and High/Scope third grades

Table 88

IMPLEMENTATION SCORES COMPARED BY SIZE
OF THE FOLLOW THROUGH SITES

Implementation Score	Rural	Town	Small City	Medium City	Big City	Total
90		2			1	3
85			1		4	5
80	1	4	4	4	2	15
75		1	5	9	9	24
70	1	1	4	6	5	17
65				1	4	5
60					2	2
55					1	1
50						
Total	2	8	14	20	28	72 *

^{*}Includes scores of both first and third grades.

in New York City were comparatively low and the between-classroom variance in New York was high for University of Oregon, High/Scope and University of Kansas. In Philadelphia, EDC has low implementation scores for both first and third grades as well as high within-site variance and Bank Street had low scores for three of the third grades. University of Kansas, however, had high implementation scores and little variation between classrooms in both grade levels in Philadelphia. Perhaps the teacher strikes in Philadelphia made it difficult to implement the more open models represented by Bank Street and EDC since under stress there may be the tendency to become more structured. In Newark all of the first grades scored below the Non-Follow Through mean. The third grades scored close to, but not below, the Non-Follow Through mean. The variation between the classroom scores is very slight. The Newark site has all of the problems of the stereotypical inner-city school; the poverty rate is high, few adults over 25 have a high school education, the community varies in its opinion of the goals for the schools, and the sponsor reported difficulty in providing adequate classroom service during the first several years of sponsorship.

In general, small sites such as Smithfield, Greeley, Portageville, Tupelo, Tuskegee and Lebanon were implemented more consistently at both

grade levels and they had higher implementation scores in both grades. This seems to indicate that the educational change represented by the Follow Through sponsors may be instituted more successfully in the smaller cities and towns than in the large inner-city schools. There are exceptions, of course; University of Kansas was successful in both grade levels in Philadelphia. Table 88 indicates that no rural area, town or small city had implementation scores lower than 70 (see Table 88).

The conformity of the teachers' reports of their classroom practices are not likely to have happened by chance. The influence of the sponsors is apparent both in the implementation scores reflecting classroom practice and the teacher reports of their procedures.

Chapter VI

THE NATURE OF DIFFERENCES AMONG SPONSORS

The study of implementation and exportability in Chapter V included comparisons of each Follow Through prog am with Non-Follow Through. In Chapter VI, we examine the nature and degree of differences among Follow Through programs by comparing classroom processes among sponsors. That there are major differences among sponsors in terms of observational data has been documented in several prior evaluations of Follow Through classroom observation (Stallings, 1973; Stallings, Baker, and Steinmetz, 1972). Rather than replicating the extensive, detailed analyses performed in prior evaluations, we will address the following questions:

- What, if any, are the major dimensions that differentiate the classrooms of the several sponsors?
- What classroom observation variables contribute to these dimensions?
- How are sponsors differentiated on these dimensions?
- To what degree can classrooms be identified with their correct sponsor by using the classroom observation data?

A. Methodology

In past reports, differences among sponsors have been examined in two ways:

- (1) F-tests with Newman-Keuls multiple comparisons on each variable.
- (2) Factor analysis on a selected set of CO variables and comparisons of factor scores among sponsors.

With both techniques, differences among sponsors have been delineated. Neither technique is particularly well suited to answer the foregoing questions, however. The first technique suffers from the lack of data reduction; i.e., we come up with as many F-tests as there are variables. From the results of these tests we must piece together the major differences among sponsors. The first technique also suffers from the fact that the multiple F-tests are not independent. The F-tests for correlated variables yield results that are redundant to an

unknown degree and nominal significance levels do not take this redundancy into account. Factor analysis provides a way of reducing a large number of variables to a few factors, which account for most of the variability among classrooms. However, this procedure does not have a criterion of discrimination among sponsors; i.e., the factors that account for variability among classrooms may not necessarily account for variability among sponsors.

The analysis we perform here consists of two parts. In the first part, we perform a multiple discriminant analysis. (See Cooley and Lohnes, 1962, and Rac, 1965, for details concerning this technique.) From a set of classroom observation variables, new variables, called discriminant functions are generated, each of which is a linear combination of the original COI variables.* These discriminant functions have the property that they maximize the variability among sponsors relative to within-sponsor variability. The discriminant functions can be viewed as major dimensions on which sponsors or groups of sponsors are distinguished.

The second part of the analysis consists of a classification procedure. (See Anderson, 1958, for details concerning this technique.) The "best" (most effective) linear functions for classifying classrooms by sponsor, under multivariate normal theory, are derived based on selected COI variables. Then, based on these classification functions, each classroom is matched with the sponsor it was most likely to have come from; i.e., we act as if we do not know which sponsor the classroom is affiliated with and we identify the sponsor the classroom is most likely to have come from. This operation determines how reliably a classroom can be identified with the correct sponsor or, conversely, how often it is confused with the program of another sponsor. Obviously, if the sponsor of a classroom can be identified correctly in this way, then differences among sponsors are quite apparent, and systematic observation by means of the COI can reveal them.

Portions of the discriminant analysis and the classification analysis are based on assumptions of multivariate normality and homogeneous within-sponsor covariance matrices. As was discussed in Chapter V, many of the classroom observation variables have clearly nonnormal distributions. It is also doubtful that the within-sponsor covariance matrices are homogeneous. Hence, the optimal properties of these techniques are only roughly approximated, at best. In such circumstances, these analyses should be looked upon as heuristic exercises for trying to achieve a better understanding of the differences among sponsors.

^{*}Because of analytic constraints associated with this technique, the number of discriminant functions that can be generated is the minimum of the number of COI variables and one less than the number of groups. For the analyses we performed, the number of canonical variables generated was six (the number of sponsors minus one).

Separate analyses were run on four sets of date.

- (1) Selected PEI* and CCL* variables--first grade classrooms
- (2) Selected PEI and CCL variables—third grade classrooms
- (3) Selected FMO* variables--first grade classrooms
- (4) Selected FMO variables--third grade classrooms.

The analysis of the PEI and CCL variables allowed determination of the environmental components that distinguish the sponsors. These environmental variables describe the grouping patterns of adults and children, the relative amount of time spent in certain activities, and the physical equipment used. The analysis of the selected FMO variables permitted determination of the classroom interaction variables distinguishing the sponsors. Appendix R contains the list of environmental and FMO variables and the means and standard deviations for each sponsor by grade level. A total of 45 environmental variables and 32 FMO variables entered the respective analyses. The selection of variables to be entered into the analyses took into consideration the following:

- (1) Results from range tests of differences among sponsor means, performed for 1971-1972 analyses—To some extent evidence was already available on which variables differentiated sponsors. The discriminant analyses would add to this by providing information on the relative weights of these variables.
- (2) The implementation variables employed extensively in earlier sections of this report—Those variables which the sponsors are attempting to influence in the classroom may be very closely linked to the characteristics that differentiate sponsors.
- (3) The selection of four or five variables for each sponsor, for a total of between 30 and 35--Unless there were several variables advocated by each of the sponsors, some important differences were like by to be ignored.

The stepwise discriminant analysis program, BMD 07M, from the Biomedical Statistical Package of programs (BMD Biomedical Computer Program, 1973) was used. The classroom was the unit of analysis. In a preliminary phase, the program selects a subset of the variables for inclusion in each analysis. Variables are entered for inclusion

^{*}See Chapter III for a detailed description of the variables classified as PEI (Physical Environment Information), CCL (Classroom Check List), and FMO (Five-Minute Observation).

one at a time until none of the variables that remain differentiate among sponsors. The criterion for differentiation among sponsors was that the F value for testing differences among sponsors conditioned on the variables that had already entered was significant at the .05 level.

Table 89 shows the number of classrooms that entered the analyses. Classrooms that had no child focus observations were omitted from all the analyses. Since only differences among sponsors were of interest, Non-Follow Through classrooms were not included in the discriminant analysis phase.

Table 89

NUMBER OF CLASSROOMS INCLUDED IN THE DISCRIMINANT ANALYSIS
BY SPONSOR AND GRADE LEVEL

	First <u>Grade</u>	Third <u>Grade</u>
Far West Laboratory	20	19
University of Arizona	22	24
Bank Street College	18	18
University of Oregon	19	18
University of Kansas	16	15
High/Scope	18	19
EDC	19	17
Tot	al 132	130

B. Results

First to be tested was the preliminary question about whether there were overall differences among sponsors. (Appendix R contains the means and standard deviations for each sponsor by grade level.)

The approximate F-statistic and degrees of freedom to test whether the mean vectors of the variables included in the analysis were different among sponsors are presented in Table 90 for each analysis. Also included is the number of variables that entered each analysis.

These statistics support, not very surprisingly, the hypothesis that there are significant differences among the sponsor means on the selected variables.

1. The Discriminant Functions

The next question to be examined was the relative power of the discriminant functions (or major dimensions) to discriminate among

Table 90

STATISTICS TO TEST WHETHER MEAN VECTORS ARE DIFFERENT AMONG SPONSORS

		Data Set	Set	The state of the s
	PEI and CC	PEI and CCL Variables	FMO Va	FMO Variables
Statistic	First Grade	First Grade Third Grade	First Grade Third Grade	Third Grade
F-Statistic	6.52	4.68	11.29	8.30
df				
Numerator*	114	102	90	84
Denominator*	623	617	631	619
Critical level	<.001	<.001	<.001	<.001
Number of variables that entered the analysis	19	17	15	14

*The degrees of freedom for the numerator and denominator are r(g-1) and ms+1-r(g-1)/2 respectively, where r is the number of variables, g is the number of groups,

$$n = n - r + (g - 1) + 3$$
, $s = \sqrt{\frac{r^2(g - 1)^2 - 4}{r^2 + (g - 1)^2 - 5}}$

and n is the total number of cases.

sponsors. The eigenvalues for the six discriminant functions, the percentage of the total discriminating power* contained in each discriminant function, and the cumulative percentage of total discriminating power are presented for each of the four data sets in Table 91. It is the relative magnitude of the eigenvalues, as measured by the percentage of the total discriminating power, that indicates the relative strength of the associated discriminant functions to distinguish among sponsors.

The differences among sponsors on the first three discriminant functions account for over 80% of the total discriminating power that can be achieved with all six possible functions. Thus, the first three functions provide most of the discrimination that can be achieved and interpretations will not be attempted for functions beyond the first three. In fact, the major focus will be on the first two functions which account for at least 65% of the discriminating power in all data sets.

For both the environmental variables and the FMO variables, the eigenvalues corresponding to the first two discriminant functions for the first grade are larger than the corresponding values for the third grade. This is an indication that, as we shall see, differences among sponsors are more pronounced at the first grade than at the third grade. Since there are program differences between the two grade levels for several sponsors, the difference in discriminatory power is not surprising. The differences between first and third grades are examined further in the detailed analyses below.

Since a discriminant function is a linear function of the observed variables, it is necessary to consider the observed variables that receive large weights, in order to give any interpretive meaning to a function. This process is analogous to the interpretation of factors in a factor analysis in terms of the observed variables with large factor loadings. Typically, however, the discriminant functions will be more complex than factors that have been rotated to achieve simple structure. In other words, a discriminant function is apt to have more variables that receive substantial weights than would be the case in a factor analysis where good simple structure was achieved.

$$100 \left(\frac{\lambda i}{\sum_{j} \lambda j} \right)$$

where λi is the eigenvalue corresponding to the <u>i</u>th discriminant function.

^{*}The percentage of the tota! discriminating power ascribed to a particular discriminant function is defined as

ERIC

*Full Text Provided by ERIC

Table 91

EIGENVALUES AND THE CUMULATIVE PERCENTAGE OF DISCRIMINATING POWER ASSOCIATED WITH EACH DISCRIMINANT FUNCTION FOR EACH DATA SET

		- 1	Discriminant Function	Function		
		2	3	7	5	9
PEI and CCL						
First Grade Eigenvalue Percent of discriminating nower	3.93	1.68	1.14	. 59	.53	.32
Cumulative percent of discriminating power	787	%89 %83	82%	206	296	100%
Third Grade Eigenvalue	7.13	4.32	76.	.51	.30	.15
Percent of discriminating power	41%	26%	14%	10%	29	3%
Cumulative percent of discriminating power	41%	21.9	81%	91%	326	100%
Five-Minute Observation						
First Grade		•		Ţ	!	í
Eigenvalue	2.91	2.32	1.74	96.	.75	.51
rercent of discriminating power	55%	21.0	<i>ا</i> رہ	7 7 7	; ; ; ;	71
Cumulative percent of discriminating power	53%	84%	31%	95%	766	7001
Third Grade			-	C L		Ç
Eigenvalue	7.91	2, 32	1.09	. 5 8 8	.45	80.
Percent of discilminating power	39%	31%	15%	8%	, 6/	2
Cumulative percent of discriminating power	36%	70%	85%	93%	/66	100%

The weights that define a discriminant function in terms of the observed variables are normalized, i.e., they are scaled such that the sum of the squared weights for all observed variables on a single discriminant function is equal to unity. The normalized discriminant function weights are useful for computing the discriminant function scores for the classrooms. They are not the best weights, however, for purposes of interpretation, because they are influenced by the standard deviations of the observed variables. Since the standard deviations of the observed variables are dependent on arbitrary scale characteristics of those variables, they have no fundamental interpretive meaning. Hence, the weights that are used for purposes of interpretation are scaled by multiplying the normalized weights by the within-group standard deviation of the corresponding observed variable. In this way the weights used for interpretation are adjusted for differences in the standard deviations of the observed variables.

The scaled coefficients for the first three discriminant functions are displayed in Tables 92-95 for the four data sets. The first three discriminant functions evaluated at the sponsor means are displayed at the bottom of the tables appropriately for each data set. Only the first three discriminant functions were examined, since in all cases they accounted for at least 80% of the discriminating power. The means and standard deviations for each sponsor on each variable that intially entered the analysis are displayed in Appendix R.

a. The PEI and CCL Variables--First Grade

Nineteen variables entered this discriminant analysis (see Table 92). The first discriminant function relates to the configuration of adults and children in the classroom. The variables with high positive scaled coefficients* included Var. 118 (All children independent), Var. 164 (Personalized instruction in reading), and Var. 24I (Puzzles, games/Academic activities). Those with high negative scaled coefficients were Var. 111 (Small group with any adult) and Var. 127 (Large group with aide/Math). The scale appears to run from a less-structured configuration where children tend to work independently and work with adults on a personalized basis (one or two children at a time) to a structured classroom configuration where children tend to work with adults in small or large groups. An examination of the values of the discriminant function evaluated at the sponsor means indicates that University of Kansas and University of Oregon are at one extreme (-3.81 and -1.67, respectively) and Far West and EDC are at the other extreme (2.55 and 1.92, respectively). University of Kansas and University of Oregon have extreme low means on Var. 241 (Puzzles, games/Academic activities) and personalized instruction in reading, and extremely high means on Var. 127 (Large group with

^{*}A coefficient was considered high if its absolute value was greater than .4. This criterion was established in a preliminary examination of the coefficients.

Table 92

STANDARDIZED COEFFICIENTS FOR THE DISCRIMINANT ANALYSIS:
FIRST GRADE, PFI AND CCL VARIABLES

; Var.		Within Sponsor		erimina unction	
No.	Variable Name	S.D.	i	2	3
25	Games, toys, play equipment present	1.58	03	24	71
66	Numbers, math, arithmetic	7.70	13	.55	.05
69	Science, natural world	3.65	. 34	38	.12
83	Wide variety of activities, over one day	1.70	25	42	16
92	Aide with one child	11.55	07	.08	.52
94	Aide with small group	21.29	17	.94	11
111	Small group of children with any adult	16.10	53	-1.53	.42
118	All children independent	10.22	.56	.00	09
122	Small group with teacher/Math	16.80	.15	.05	24
127	Large group with aide/Math	13.07	 52	48	.22
145	Small group with teacher/Reading	11.27	.24	.44	26
146	Large group with teacher/Reading	15.16	.33	29	.20
149	Small group with aide/Reading	15.75	. 09	. 36	08
164	Personalized instruction in reading	4.65	.46	.03	.27
2 30	Aide involved/Classroom Management	12.53	25	.44	33
233	Among adults and children/Social Interaction	4.39	. 35	.05	.18
234	Among children/Social Interaction	4.10	.10	.04	.25
239	Math or science equipment/Academic Activities	22.62	05	75	.00
241	Puzzles, games/Academic Activities	15.71	.61	27	.22

DISCRIMINANT FUNCTIONS EVALUATED AT THE SPONSOR MEANS

	Discriminant Functions			
Sponsor	1	2	3	
Far West	2.55	42	1.75	
University of Arizona	.26	.32	-1.23	
Bank Street College	.33	22	93	
University of Oregon	-1.67	2.70	.73	
University of Kansas	-3.81	-1.93	.82	
High/Scope	36	44	78	
EDC	1.92	37	23	

aide/Math). Far West and EDC, on the other hand, have extremely low means on Var. 111 (Small group with any adult) and extremely high means on Var. 164 (Personalized instruction in reading).

The second discriminant function places the University of Oregon at the positive end of the continuum and the University of Kansas at the negative end. The University of Arizona has a small positive mean on the second function and the other four sponsors are tightly clustered with small negative values on this function. The variables with large positive scaled weights (greater than .4) in decreasing order of magnitude were Var. 94 (Aide with small group), Var. 66 (Numbers, math, arithmetic), Var. 145 (Small group with teacher/Reading), and Var. 230 (Aide involved/Classroom management). The variables with large negative weights were Var. 111 (Small group of children with any adult), Var. 239 (Math or science equipment/Academic activities), and Var. 83 (Wide variety of activities, over one day).

A problem in interpreting the meaning of this dimension may arise from an anomaly in the data. University of Kansas has an extremely high mean on Var. 239 (Math or science equipment/Academic activities). This appears to be due to an observer at one site who may mistakenly have coded the tokens used in the University of Kansas model as math equipment. Since Var. 239 does enter this analysis with a high negative weight, the distance between University of Oregon and University of Kansas on the second variable may be too large. (This one variable accounts for 1.3 units of the 4.6 units that separate the two sponsor means.)

Variable 239 (Math or science equipment/Academic activities) would still serve to separate the University of Oregon from all other sponsors even if the University of Kansas mean were not spuniously high. .. If it is assumed that the University of Kansas mean is too high on this variable; however, the second discriminant function would serve mainly to separate the University of Oregon from all other sponsors. From an inspection of the means of the variables with large weights on the second function, it appears that much of the uniqueness of the University of Oregon on this function is due to a relatively high mean on Var. 66 (Numbers, math, arithmetic) and a very low mean on Var. 239 (Math or science equipment/Academic activities).

Figure 33 is a plot of the first discriminant function along the horizontal axis against the second discriminant function along the vertical axis for first grade PEI and CCL variables. Each letter indicates the sponsorship of the corresponding classroom. Each asterisk represents sponsor means. The dollar sign represents overlap of classrooms. As can be seen in Figure 33, the first two functions together divide the seven sponsors into four relatively distinct clusters. University of Kansas and University of Oregon classrooms stand out in distinct clusters. Far West and EDC cluster together apart from the other sponsors and the remaining three sponsors form the fourth cluster.

The first two discriminant functions together account for 68% of the discriminating power of all six possible functions (see Table

PLOT OF FIRST DISCRIMINANT FUNCTION AGAINST THE SECOND DISCRIMINANT FUNCTION -- PEI AND CCL VARIABLES FIRST GRADE FIGURE 33

FIRST DISCRIMINANT, FUNCTION

-1.350

-4.350

.7.35n

4.650

1.650

91). While relatively less powerful, the third function accounts for an additional 14%. The third function has large positive scaled weights on Var. 92 (Aide with one child) and Var. 111 (Small group of children with any adult). Only Var. 25 (Games, toys, play equipment present) has a negative weight greater than .4 in absolute value on the third function. When the third discriminant function is evaluated at the sponsor means, the Far West Laboratory is found to lie at the positive end of the continuum and the University of Arizona at the negative end.

b. The PEI and CCL Variables-Third Grade

Seventeen variables entered this analysis for third grade PEI and CCL variables (see Table 93). The first discriminant function relates to the configuration of the classroom and the amount of arts and crafts. Variable 82 (Wide variety of activities, concurrent) was the only variable with a positive scaled weight greater than .4. Variable 126 (Small group with aide/Math) and Var. 127 (Large group with aide/Math) had positive weights of .39 and .36, respectively (see Table 98). The high negative weights were obtained on Var. 83 (Wide variety of activities, over one day), Var. 86 (Teacher with one child), Var. 118 (All children independent), and Var. 64 (Arts, crafts). The high weights of opposite sign for Var. 82 (Wide variety of activities, concurrent) and Var. 83 (Wide variety of activities, over one day) has the cumulative effect of giving high negative weights to classrooms that have many activities over the day, but a moderate number of activities occurring concurrently.* Far West, Bank Street, and EDC classrooms appear to have this activity pattern, with more arts and crafts and more independent children (see Appendix R).

The way sponsors were aligned along the first dimension was very similar to what was found for the first grade with a reversal in direction. University of Kansas and University of Oregon are at one extreme (with more small and large groups with aide in math) with means of 2.75 and 1.78 respectively, and Far West and EDC are at the other extreme (with more arts and crafts and a wide variety of activities over the day) with means of -1.19 and -1.27 respectively. As in the first grade, the first function seems to correspond to a dimension of the degree of classroom structure and activities.

The second function also relates to the configuration of the classrooms. Variable 83 (Wide variety of activities, over one day) and Var. 111 (Small group of children with any adult) have high positive scaled coefficients; Var. 66 (Numbers, math, arithmetic) and Var. 118 (All children independent) have high negative scaled coefficients. High/

^{*}Those classrooms where the number of concurrent activities occurring was low also tended to have a low number of activities occurring over the day (see Table R-2 in Appendix R).

Table 93

STANDARDIZED COEFFICIENTS FOR THE DISCRIMINANT ANALYSIS:
THIRD GRADL, PEI AND CCL VARIABLES

Var.		Within Sponsor		crimin unctio	
No.	Variable Name	S.D.	1	2	3
25	Games, toys, play equipment present	1.95	28	05	.31
63	Story, music, dancing	4.39	11	29	.57
64	Arts, crafts	4.53	40	.07	. 38
66	Numbers, math, arithmetic	7.38	03	51	.16
82	Wide variety of activities, concurrent	.47	.59	.20	54
83	Wide variety of activities, over one day	1.51	70	.44	.04
86	Teacher with one child	10.19	45	.18	.92
109	One child with any adult	1.06	.21	18	-1.33
111	Small group of children with any adult	16.55	17	.48	.17
114	One child independent	3.39	.20	.36	.75
118	All children independent	13.70	44	 73	.19
122	Small group with teacher/Math	15.52	13	.36	11
126	Small group with aide/Math	22.72	. 39	.09	. 30
127	Large group with aide/Math	13.27	. 36	.11	. 35
165	All children independent/Reading	17.09	19	.19	72
229	Teacher involved/Classroom Management	7.80	.28	19	.04
233	Among adults and children/Social Interaction	3.96	10	31	.40

DISCRIMINANT FUNCTIONS EVALUATED AT THE SPONSOR MEANS

	Discriminant Functions				
Sponsor	1	2	3•		
Far West	-1.19	44	77		
University of Arizona	55	1.15	50		
Bank Street College	97	03	1.09		
University of Oregon	1.78	-1.80	81		
University of Kansas	2.75	.81	1.01		
Hi gh/Scope	.08	1.22	48		
EDC	-1.27	-1.26	.92		

Scope, University of Arizona, and University of Kansas are on the positive end of the scale with University of Oregon and EDC on the negative end of this dimension.

Figure 34 displays the graph of the first discriminant function against the second discriminant function for third grade PEI and CCL variables. University of Oregon and University of Kansas classrooms form two separate clusters, although not as distinct as in Figure 33 for the first grade. EDC and Far West classrooms tend to cluster together in the lower left corner, University of Arizona and High/Scope classrooms cluster together in the upper left corner, and Bank Street classrooms are dispersed among these two clusters.

The third discriminant function has large positive weights on Var. 86 (Teacher with one child), Var. 114 (One child independent) and Var. 63 (Story, music, dancing), while large negative weights are obtained for Var. 109 (One child with any adult), Var. 165 (All children independent/Reading), and Var. 82 (Wide variety of activities, concurrent). The interpretation of this dimension is unclear and it does not seem to have a counterpart in any of the three dimensions at first grade level. This dimension would cluster Bank Street, the University of Kansas, and EDC at the positive end of the continuum and the other four sponsors at the negative end.

c. The FMO Variables--First Grade

Fifteen variables entered this analysis (see Table 94). On the first discriminant function, Var. 399a (Adult reinforcement with token, academic) has a very high positive scaled coefficient and Var. 363a (Child group response to adult academic command, request, or direct question) has a very high negative scaled coefficient. An examination of the first discriminant function evaluated at the sponsor means shows that University of Kansas is at the positive extreme with a value of 6.31 and University of Oregon is at the negative extreme with -3.50 (see Table 94). The mean for University of Kansas classrooms on Var. 399a (Adult reinforcement with token, academic) is 3.77 with the next highest value being .25 (see Appendix R). The mean for University of Oregon classrooms on Var. 363a (Child group responses to adult academic command, request, or direct question) is 6.56 with the next highest value being 1.68 (see Appendix R). Thus, the first discriminant function is differentiating University of Kansas classrooms from University of Oregon classrooms and differentiating these two sponsors from the others. This discrimination is accomplished primarily by two items (adult reinforcement with token, academic and child group response to adult academic command, request, or direct question).

The second discriminant function separates University of Kansas and University of Oregon classrooms from those of the other sponsors. University of Kansas and High/Scope have low means relative to other sponsors on the one variable with a high positive scaled coefficient Var. 441a (Adult communication or attention focus, large group).

212

ŷ

4.70C .

PLOT OF FIRST DISCRIMINANT FUNCTION AGAINST THE SECOND DISCRIMINANT FUNCTION--PEI AND CCL VARIABLES THIRD GRADE FIGURE 34

Table 94

STANDARDIZED COEFFICIENTS FOR THE DISCRIMINANT ANALYSIS: FIRST GRADE, FMO VARIABLES

Var.		Within Sponsor		scrimina unction	
No.	Variable Name	S.D.	1	2	3
350a	Child questions to adults	.86	.40	. 35	.04
360a	Child responses, academic	2.98	.28	.17	49
363a	Child group responses to adult academic command, request, or direct question	1.25	84	-1.02	.68
365a	Adult responses to child request or questions, nonacademic	.49	46	50	18
374a	Adult instruction, academic	3.16	16	.12	.29
398a	All adult praise to children	1.15	07	44	04
399a	Adult reinforcement with token, academic	.63	.95	19	.10
440a	Adult communication or attention focus, small group	4.96	09	.17	-1.14
441a	Adult communication or attention focus, large group	6.16	.36	.51	72
454a	Child's extended response to questions	.47	.33	.14	92
462a	All positive behavior	1.21	15	.28	.23
509c	Child self-instruction, academic	7.45	.29	19	. 28
510c	Child self-instruction, objects	4.29	.03	.17	.05
574c	Child movement	1.63	20	.21	09
587c	All child task-related comments	2.56	.09	.33	.17

DISCRIMINANT FUNCTIONS EVALUATED AT THE SPONSOR MEANS

	Discri	Discriminant Functions			
Sponsor	1		3		
Far West	27	1.33	.52		
University of Arizona	.02	1.45	-1.98		
Bank Street College	49	1.25	.53		
University of Oregon	-3.50	-3.99	20		
University of Kansas	6.31	-2.35	.08		
High/Scope	93	.30	.60		
EDC	21	1.42	.82		

Two of the variables with high negative-scaled coefficients are those where either University of Oregon or University of Kansas have high means relative to other sponsors: Var. 363a (Child group response to adult academic command, request, or direct question), or Var. 398a (All adult praise to childres).

The plot of the first discriminant function against the second discriminant function in Figure 35 clearly illustrates the discrimination that is being made for first grade FMO variables. University of Oregon classrooms are clustered in the lower left, University of Kansas classrooms are clustered in the lower right, and the classrooms of the other sponsors are massed in the middle. There was no tendency for the first two FMO discriminant functions to identify a Far West-EDC cluster as there was for the PEI and CCL variables. University of Kansas classrooms are distinguished primarily by the use of tokens for reinforcement. University of Oregon classrooms are distinguished by child group responses to adult commands, requests, and direct questions. Otherwise the results are similar for the two sets of variables in that the University of Kansas and the University of Oregon are most clearly separated as distinct clusters.

The third FMO discriminant function had a large positive weight on Var. 363a (Child group response to adult academic command, request. or direct question). Large negative weights (see Table 94) are obtained for Var. 440a (Adult communication or attention focus, small group), V.r. 44la (Adult communication or attention focus, large group), Var. 454a (Child's extended response to questions), and Var. 360a (Child response, academic). Four sponsors (Far West, Bank Street, High/ Scope, and EDC) are clustered at the positive end of this dimension while the University of Arizona stands alone at the negative end. University of Arizona classrooms appear to be distinguished from other classrooms by their relatively nigh means on Var. 454a (Child's extended response to questions), and relatively high means on both Var. 440a (Adult communication or attention focus, small group) and Var. 44la (Adult communication or attention focus, large group). Thus, the third FMO discriminant function is similar in effect to the third PEI-CCL function at the first grade in that it tends to distinguish the University of Arizona from the other sponsors.

d. The FMO Variables--Third Grade

Fourteen variables entered the analysis (see Table 95). The first discriminant function appears to differentiate sponsors on a dimension related to the degree of child interaction with adults and the children's role in the interactions. The variables with high positive scaled coefficients were Var. 363a (Child group responses to adult academic command, request, or direct question), Var. 405a (All adult corrective feedback to children), Var. 509c (Child self-instruction, academic), and Var. 546c (Child waiting). The one variable with a high negative scaled coefficient is Var. 350a (Child questions to adults).

B - Bank Street Classroom A - U. Arizona Classroom H - High Scope Classroom \$ - Overlap of Classrooms 0 ~ U. Oregon Classroom K - U. Kansas Classroom Ł F - Far West Classroom 9.000 E - EDC Classroom Sponsor Mean × ㅈ ㅈ ۷ ¥ ĸ X X 4.000 × FIRST DISCRIMINANT FUNCTION FR 888F##E95 FP VR 1847FH 537 F 2 1.3.5 FA 45555 H 4 H ANA H 4 H 4 5 F w L င ၁ د 00 -4.00r 0 0 ၁ ے ے د 090° 8--8.000 · 3.616. 2.006 1.006 - 000--1.000 -3.000 . 000.*--5.000 -6.000. - 0000-7--2.060

PLOT OF FIRST DISCRIMINANT FUNCTION AGAINST THE SECOND DISCRIMINANT FUNCTION—FMO VARIABLES FIRST GRADE FIGURE 35

1,1

4.066

SECOND DISCRIMINANT FUNCTION

Table 95
STANDARDIZED COEFFICIENTS FOR THE DISCRIMINANT ANALYSIS: THIRD CRADE, FMO VARIABLES

	Within Sponsor		scrimin. Function	
Variable Name	S.D.	1	2	3
Child questions to adults	1.11	44	.06	32
Child responses, academic	3.27	32	01	.76
Child group responses to adult academic command, request, or direct question	1.55	. 54	.66	91
Child presenting information to a group	. 59	15	.05	29
All adilt acknowledgment to children	1.39	. 36	26	.27
All adult praise to children	1.03	.33	. 39	.49
Adult reinfor ement with token, academic	.67	. 39	58	.14
All adult corrective feedback to chil-dren	2.02	. 50	31	. 36
Adult feedback to child response to adult academic command, request, or direct question	1.45	. 29	.19	-1.01
Adult communication or attention focus, one child	5.73	03	60	76
Adult communication or attention focus, small group	4.99	38	27	.76
Adult feedback to children for behavior	1.01	33	03	79
Child self-instruction, academic	8.88	. 50	.08	15
Child waiting	1.83	.55	36	.10

DISCRIMINANT FUNCTIONS EVALUATED AT THE SPONSOR MEANS

	Discri	minant Func	tions
Sponsor	1	2	3
Far West	56	.01	-1.02
University of Arizona	-2.04	00	1.43
Bank Street College	.56	-1.02	1.03
University of Oregon	1.43	3.43	.11
University of Kansas	3.47	-1.69	.27
High/ ^c ope	37	77	-1.01
EDC	-1.24	21	-1.20

University of Arizona and EDC are at the extreme negative end of the dimension with a mean of -2.04, -1.24 respectively. University of Kansas and University of Oregon are at the extreme positive end with means of 3.47 and 1.43, respectively. University of Arizona and EDC have relatively high means on Var. 350a (Child questions to adults) and relatively low means on Var. 509c (Child self-instruction, academic) and Var. 546c (Child waiting). On the other hand, University of Oregon has an extremely high mean on Var. 363a (Child group response to adult academic command, request, or direct question), as was found in first grade. University of Kansas has a relatively high mean on Var. 509c (Child self-instruction, academic). In addition, Var. 398a (All adult praise to children) and Var. 399a (Adult reinforcement with token, academic), for which University of Kansas displays extremely high means, have moderately high positive coefficients that tend to enhance the extremely high position of University of Kansas on the first dimension.

The second discriminant function appears to be differentiating the University of Oregon classrooms in the positive direction and the University of Kansas classrooms in the negative direction from the other classrooms. Variable 363a (Child group responses to adult academic command, request, or direct question) has a high positive scaled coefficient. Variable 438a (Adult communication or attention focus, one child) and Var. 399a (Adult reinforcement with token, academic) have high negative coefficients. The University of Oregon has a very high mean of 5.92 on Var. 363a (Child group responses to adult academic command, request of direct question), and a very low mean of 14.14 on Var. 438a (Adult communication or attention focus, one child), as shown in Appendix R. It appears that the high negative weight on Var. 399a (Adult reinforcement with token, academic) has the effect of depressing the values of the University of Kansas classrooms on the second discriminant function below that of the other sp nsors. Thus, the use of direct questions to groups and limited focus on one child by the University of Oregon and the use of tokens by the University of Kansas make these sponsors relatively unique on the second function.

The plot of the first discriminant function against the second discriminant function is given in Figure 36 for third grade FMO variables. As in the other plots, the classrooms of the University of Kansas model and the University of Oregon model tend to cluster apart from other classrooms.

The third FMO function at third grade level bears considerable similarity to the third FMO function at first grade level, except that the direction of the function is reversed (i.e., the signs of the weights are in opposite directions and the sponsor means have opposite signs). Variable 360a (Child responses, academic), Var. 440a (Adult communication or attention focus, small group), and Var. 398a (All adult praise to children) have large positive weights. Large negative weights are found for Var. 412a (Adult feedback to child response to adult academic command, request, or direct question), Var. 363a (Child group responses to adult academic command, request, or direct question),

7.350 .

PLOT OF FIRST DISCRIMINANT FUNCTION AGAINST THE SECOND DISCRIMINANT FUNCTION—FMO VARIABLES THIRD GRADE

Var. 438a (Adult communication or attention focus, one child), and Var. 465a (Adult feedback to children for behavior). The University of Arizona is at the positive extreme of the third function, with Bank Street fairly close to it. Far West, High/Scope and EDC are clustered at the negative end of the third function. Extensive use of questions and feedback by adults seems to be the most characteristic feature of the negative end of this dimension.

e. The FMO Variables--University of Oregon and University of Kansas Excluded--First Grade

In all the analyses carried out, the classrooms associated with the University of Kansas and the University of Oregon were clearly distinguished from each other and from the classrooms of the other sponsors. In order to examine the differences among the classrooms of the other five sponsors, we performed a discriminant analysis on the FMO variables for the first grade with the classrooms of University of Kansas and the University of Oregon omitted. The scaled coefficients for the first three discriminant functions are given in Table 96. The discriminant functions evaluated at the sponsor means are at the lower part of Table 96. Thirteen variables entered the analysis.

Although it appears that the Kansas and Oregon findings did obscure the subtler differences among the other programs, the third function with Kansas and Oregon present was similar in effect to the first function with those two sponsors deleted (Table 96). The first discriminant function differentiates University of Arizona classrooms from those of the other sponsors. Of the thirteen variables included, nine had high scaled coefficients in either the positive or negative direction. This makes it very difficult to interpret the dimension in simple terms. The variables that appear to differentiate University of Arizona classrooms from the other classrooms are: Var. 454a (Child's extended response to questions), where the University of Arizona classrooms had a mean that was about one standard deviation larger than the next largest mean, and Var. 440a (Adult communication or attention focus, small group). Both variables are considered critical to the implementation of the Arizona model.

The second discriminant function differentiates the High/Scope program from the others. The variables that have high positive scaled coefficients and relate to High/Scope's program are:

- Var. 342a (Adult to child, verbal).
- Var. 363a (Child group responses to adult academic command, request, or direct question).

Table 96

STAND ARDIZED COEFFIC. FNTS FOR THE DISCRIMINANT ANALYSIS:
FIRST GRADE, FMO VARIABLES
(University of Oregon and University of Kansas Omitted)

Var.		Within Sponsor		scriminar Functions	
<u>No.</u>	Variable Name	S.D.	1	2	3
342a	Adult to child, verbal	1.94	-1.20	1.51	.76
350a	Child questions to adults	.92	.54	-1.26	.29
360a	Child responses, academic	3.03	57	99	51
363a	Child group responses to adult academic command, request, or direct question	.87	.77	.59	.45
374a	Adult instruction, academic	3.15	.27	16	.77
388a	Child task-related comments to adults	1.00	1.16	66	54
398a	All adult praise to children	.57	21	06	.62
412a	Adult feedback to child response to adult academic command, request, or direct question	1.47	.16	.74	18
440a	Adult communication or attention focus, small group	4.78	-1.00	.23	11
441a	Adult communication or attention focus, large group	5.53	48	59	08
444a	Adult movement	1.67	40	.26	.02
454a	Child's extended response to questions	.43	-1.01	02	.10
510e	Child self-instruction, objects	4.77	.08	.46	.10

DISCRIMINANT FUNCTIONS EVALUATED AT THE SPONSOR MEANS

	Discri	minant Fun	ctions
Sponsor	1	2	3
Far West	.47	99	. 1.24
University of Arizona	-2.40	.03	14
Bank Street College	.79	08	66
High/Scope	.70	1.86	.37
EDC	.88	69	87

- Var. 412a (Adult feedback to child response to adult academic command, request, or direct question).
- Var. 510c (Child self-instruction, objects).

Large negative weights were obtained for Var. 350a (Child questions to adults), Var. 360a (Child responses, academic), Var. 388a (Child task-related comments to adults), and Var. 441a (Adult communication or attention focus, large group).

Figure 37 displays the plot of the first discriminant function against the second discriminant function for first grade FMO variables excluding Universities of Oregon and Kansas. Classrooms associated with the University of Arizona model cluster on the middle left side; most of the classrooms associated with the High/Scope model cluster in the upper portion of the plot. The other sponsors tend to cluster together in an undifferentiated mass.

2. Classification of Classrooms by Sponsor

Table 97 displays the results of the classification procedure for each of the four data sets. Each row entry in the table is the number of the sponsor's classrooms that were classified into the sponsor's program identified by the column label. The last row indicates how Non-Follow Through classrooms were classified among sponsors. Non-Follow Through classrooms were classified in this way so that we could examine the relative degree to which the processes in Non-Follow Through classrooms are different from the various Follow Through programs. For the Follow Through classrooms the numbers on the main diagonal represent classrooms that were correctly classified. The numbers off the main, diagonal represent classrooms that were misclassified; that is, classrooms that were not identified as belonging to the correct sponsor. Misclassification occurs when scores on the observed variables for a given classroom are more similar to the mean score for a sponsor other that the correct one. The Non-Follow Through classrooms cannot be included as correctly or incorrectly classified since there was no Non-Follow Through group included in the classification scheme. For Non-Follow Through, we are interested in the pattern of classification.

a. Classification of Sponsor's Classrooms

If the seven sponsors included in this study have distinct programs, as measured by the COI, then we would expect the preponderance of classrooms to lie along the main diagonal. This is what actually occurred.

Of the 132 first grade classrooms, 83% were correctly categorized on the basis of the nineteen CCL and PEI variables and 78% were correctly categorized on the basis of the fifteen FMO variables.

PLOT OF FIRST DISCRIMINANT FUNCTION AGAINST THE SECOND DISCRIMINANT FUNCTION—FMO VARIABLES FIRST GRADE (UO AND UK OMITTED) FIGURE 37

5.200

Table 97
CLASSIFICATION OF CLASSROOMS BY SPONSOR

PEI and CCL Variables, First Grade

		(Classrooms	Identified a	s Sponsor		
Sponsor	Far West	Univ. of Arizona	Bank Street	Univ. of Oregon	Univ. of Kansas	High/ Scope	EDC
Far West	18	2	0	0	0	0	0
University of Arizona	0	17	2	0	0	2	1
Bank Street College	1	2	13	0	0	1	1
University of Oregon	0	0	0	19	0	υ	0
University of Kansas	0	0	0	0	14	2	0
High/Scope	0	1	2	1	1	13	0
EDC	2	0	2	0	0	0	15
Non-Follow Through	6	6	5	5	0	2	10

PEI and CCL Variables, Third Grade

				Identified a			
Sponsor	Far <u>West</u>	Univ. of <u>Arizona</u>	Bank Street	Univ. of Oregon	Univ. of <u>Kansas</u>	High/ Scope	EDC
Far West	15	2	2	0	0	0	0
University of Arizona	0	17	2	0	0	5	0
Bank Street College	3	1	11	0	0	0	3
University of Oregon	0	0	0	17	1	0	0
University of Kansas	0	0	1	1	13	0	0
High/Scope	2	3	0	0	1	12	1
EDC	2	0	5	0	0	0	10
Non-Follow Through	10	0	7	16	0	0	3

FMO Variables, First Grade

		(Classrooms	Identified a	s Sponsor		
Sponsor	Far West	Univ. of Arizona	Bank Street	Uni ¹ of Oregon	Univ. of Kansas	High/ Scope	EDC
Far West	15	1	3	0	0	0	1
University of Arizona	0	19	2	0	0	0	1
Bank Street College	2	2	10	0	0	1	3
University of Oregon	0	0	0	19	0	0	0
University of Kansas	0	0	0	0	16	0	0
High/Scope	2	0	0	1	0	13	2
EDC	3	1	1	0	0	3	11
Non-Follow Through	9	5	8	0	0	6	6

FMO Variables, Third Grade

			Classrooms	Identified a	s Sponsor		
Sponsor	Far West	Univ. of Arizona	Bank Street	Univ. of Oregon	Univ. of Kansas	High/ Scope	EDC
Far West	13	3	0	0	0	3	0
University of Arizona	1	20	0	0	0	1	2
Bank Street College	0	1	15	0	0	1	1
University of Oregon	1	0	0	16	0	0	1
University of Kansas	0	0	1	0	14	0	0
High/Scope	0	3	1	1	0	9	5
EDC	0	0	0	0	0	1	16
Non-Fellow Through	6	1	7	4	1	10	7

Of the 130 third grade classrooms, 73% were correctly categorized on the basis of the seventeen CCL and PEI variables and 79% were correctly categorized on the basis of the fourteen FMO variables. The number of classrooms that were misclassified ranged from 23 to 34.

As might be expected from the results of Section B-1, University of Kansas and University of Oregon programs are most distinct. Their classrooms are rarely confused with the classrooms of other sponsors and other sponsors' classrooms are rarely identified with them. A high percentage of the classrooms of the University of Oregon and University of Kansas programs are correctly classified on every analysis performed. The rate of correct classification was at least 85% and reached 100% in three cases. Very few classrooms from other sponsors are misclassified as University of Oregon or University of Kansas classrooms.

To highlight this result, Table 98 was created, showing the number of classrooms misclassified, and the number of correct classifications summed over all four analyses. Note that each classroom was classified twice—once on the basis of the environmental variables, and a second time on the basis of the FMO variables. Each entry indicates the number of instances over the four analyses when a sponsor's classroom (row) was misclassified into another sponsor's program (column).

There were 114 instances of misclassification, or 22% of the 524 classifications made over the four analyses. The data for University of Oregon and University of Kansas were placed at the ends of the table to make it clearer that University of Oregon and University of Kansas classrooms were rarely misclassified and the classrooms of other programs were rarely classified in University of Oregon and University of Kansas programs. There are five instances of High/Scope misclassified as University or Oregon or University of Kansas (see High/Scope row of Table 98) but none of the other four sponsors are ever misclassified as University of Oregon or University of Kansas.

Table 98 reveals no other pattern of clusterings among the other sponsors. Far West classrooms were confused most often with the University of Arizona and Bank Street programs; while the University of Arizona classrooms were confused most often with Bank Street and High/Scope programs. Bank Street classrooms are most frequently confused with Far West, University of Arizona, and EDC programs. EDC is confused most frequently with Far West and Bank Street. Finally, High/Scope is the only sponsor that had instances of confusion with all other sponsors.

There are two factors to be considered in the distinctiveness of the University of Oregon and the University of Kansas—from one another and from other sponsors' classrooms. There is the fact that both of these programs specify behavior on the part of the teacher that is readily observable and quite atypical of generally practiced class—room teacher behavior. For example, in the first grade, University of Kansas teachers are instructed to give out plastic tokens to children

ERIC Full Text Provided by ERIC

Table 98

NUMBER OF MISCLASSIFICATIONS AND CORRECT CLASSIFICATIONS SUMMED OVER THE FOUR DATA SETS*

	2	Classrooms Identified with the Wrong Sponsor	Identif	ied wit	h the	Wrong Spo	nsor	Total	Total
Sponsor	West	Arizona	Street	Scope	EDC	Oregon	Kansas	Classified	Classified
Far West	×	8	'n	က	1	ı	ı	17	61
University of Arizona	1	×	9	œ	7	ı	ı	19	3
Bank Street College	9	9	×	က	∞	ı	ı	23	67
High/Scope	7	7	က	×	80	က	2	27.	47
EDC	7	1	œ	7	×	ı	ı	20	52
University of Oregon	1	I	1	ı	Н,	×	1	က	71
University of Kansas	ı	I	2	7	ı	1	×	5	57
Total								114	410

^{*} Each classroom was classified twice--once using the PEI-CCL variables and once using the FMO vari-ables--for a total of 524 classifications in first and third grades.

for certain desired behaviors. University of Oregon teachers are instructed to get responses from all children in the small instructional group when they pose a question. This, too, is atypical, since children in most first grade classes (including children in Kansas classes) are more often asked individually for answers. Bank Street, University of Arizona, High/Scope, Far West, and EDC teachers are performing differently from one another. The different emphases of the programs show up in the frequency patterns for different teacher behaviors. But these programs do not each have a unique behavior captured by a unique variable.

The second factor responsible for the special distinctiveness of these two sponsors is the nature of the COI and the variables created from it. The detailed level of the coded behaviors and the fineness of the variables defined in the instrument favors distinguishing behavioristic models one from another. A set of variables defined more grossly, including patterns of behavior or styles rather than single activities might distinguish Bank Street and Far West classrooms from one another as reliably as University of Kansas and University of Oregon classrooms are distinguished now by the present set of variables.

b. Classification of Non-Follow Through Classrooms

The classification functions developed for the Follow Through classrooms were used to classify the Non-Follow Through classrooms in order to examine the relative degree to which the processes in Non-Follow Through classrooms are similar to the various Follow Through programs. The results are displayed in the last row entry for each data set in Table 97.

The University of Kansas, again, stands out as distinct. No Non-Follow Through classrooms were categorized with the Kansas program with the exception of one classroom in the FMO variables, third grade data set. On the other hand, the physical environment, grouping arrangements, and activities in Non-Follow Through classrooms may be similar to the University of Oregon classrooms, relative to other sponsors, especially in the third grade. For the third grade, 16 out of the 36 Non-Follow Through classrooms were classified with the University of Oregon program. The reduced use of small groups in the third grade, and the continued emphasis on academic activities such as numbers, math, and arithmetic in the University of Oregon third grade program may explain the affinity of Non-Foliow Through classrooms to this sponsor.

Few Non-Follow Through classrooms were identified with the High/Scope program based on the PEI and CCL variables. Two classrooms were identified with High/Scope at the first grade level and none were identified with High/Scope at the third grade level.

C. Summary

At the beginning of this chapter, four questions were posed. The first was: What, if any, are the major dimensions that differentiate the classrooms of the several sponsors? With the possible exception of a "degree of structure" dimension, the discriminant functions on which the sponsors differed did not seem to represent abstract concepts, such as "individualization of instruction" or "child initiation" versus "responsiveness" but were dominated by one or two very specific classroom process variables, such as "Large group with aide/Math" or "Adult reinforcement with token, academic." One or two individual variables shared by one or two sponsors seem to be the best discriminators.

The next question was: What observation variables contribute to these dimensions? This must be answered separately for the PEI/CCL analyses and FMO analyses. For the PEI/CCL analysis, the first and third grade results are very similar. Table 99 shows the observation variables with high scaled coefficients on the first two dimensions.

The results for the FMO analyses (Table 100) differed between first and third grades. The fact that the University of Kansas classrooms phase out their use of material rewards (tokens) by the third grade may partially explain the differences. In first grade, the first canonical variable separates University of Kansas and University of Oregon from one another on the basis of tokens versus group responses. The second separates both sponsors from the others.

In the third grade, the first discriminant function does the same thing (University of Kansas and University of Oregon versus others) as the second discriminant function does in first grade. The "tokens" variable no longer distinguishes University of Kansas from University of Oregon, and another difference among sponsors dominates.

In this discussion of observation variables with high-valued coefficients, we have also partially answered our third question: How are sponsors differentiated on these dimensions? In all four analyses and in the classification procedure the classrooms associated with the University of Oregon and the University of Kansas models tended to cluster apart from each other and apart from other sponsors. In a separate analysis without these two sponsors' classrooms, the University of Arizona was distinguished from the remaining four sponsors on the basis of Var. 454a (Child's extended response to questions) and Var. 440a (Adult communication or attention focus, small group). High/Scope was differentiated from the other four on the basis of variables indicating a high level of verbal interaction between adults and children and, as would be expected from their Piagetian model, Var. 510c (Child self-instruction, objects). The third discriminant function distinguished Far West Lab from EDC and Bank Street on the basis of child questioning and all adult praise.

The last question was: To what degree can classrooms be identified with their correct sponsor by using the classroom observation data? The

Table 99

4

ANALYSES OF PEI AND CCL VARIABLES

A. First discriminant function

2:27

Table 100

'NALYSES OF FMO VARIABLES

A. First discriminant function

Large posit; 3 weight Large negative	First Grade Variables Adult reinforcement with token, academic Child group responses to adult	Third Grade Variables Child questions to adult Child group responses to adult
weight	academic command, request, or direct question	academic command, request, or direct question All adult corrective feedback to children
Second discriminant function	ant function First Grade Variables	Third Grade Variables
Large positive weight	Adult communication or attention focus, large broup	Adult communication or attention focus, one child
Large negative weight	Child group responses to adult academic commands, request or direct question	Child group responses to adult academic command, request, or direct question
	All adult praise to children	

answer is that they can be classified with a high degree of accuracy overall. Out of a total of 524 classifications, 410 were correct. University of Kansas and University of Oregon classrooms are rarely misclassified as belonging to another sponsor. The remaining five sponsors' classrooms are more confusable among themselves but only rarely with University of Oregon or University of Kansas. A few High/Scope classrooms were classified as belonging to University of Oregon (three instances) or University of Kansas (two instances). In the large majority of cases, however, classrooms affiliated with a particular sponsor were correctly identified with that sponsor.

The Non-Follow Through classrooms were most o n classified as Far West, University of Arizona, Bank Street, Univers' of Oregon, and EDC classrooms. On the third grade physical environm. c and checklist of classroom grouping and activities, the Non-Follow Through classrooms were classified as University of Oregon classrooms 16 out of 36 times. It is notable that the Non-Follow Through classrooms were rarely classified as either University of Kansas or High/Scope classrooms. The utility of this analysis is to provide a description of the Non-Follow Through classrooms. Such classifications will aide in understanding the partial correlations of instructional processes and child outcomes, which used all classrooms, and are presented in Chapter VII. For instance, if variables which describe the University of Oregon model are positively related to scores on the MAT reading, not only will the process variables of the University of Oregon load on that variable, so also will 11 of the Non-Follow Through classrooms which operate similarly to the University of Oregon.

Chapter VII

INSTRUCTIONAL PROCESSES AS RELATED TO CHILD OUTCOMES

All of the information presented on program implementation in Chapters V and VI would be of little value if we did not believe that these instructional models have an impact on child growth and development. Since it seems clear at this point that the sponsor's innovations were implemented in the classroom, we turn now to the investigation of the effects of sponsor-specified instructional processes upon the children. The data reported here were computed over all classrooms, separated only by grade level. This procedure was used in order to investigate instructional processes and their relationship to child outcomes regardless of where they occurred. Since many of the process variables which are correlated with child outcomes do describe components of the models—especially as related to the structure or flexibility of the model—we have also reported sponsor mean scores on the outcome variables. This allows comparisons to be made between the overall correlations and individual sponsor scores.

This study is reported in two sections: Section A gives an analysis using partial correlations and Section B reports regression analyses. Both techniques were used to investigate the relationships between instructional processes and child outcomes. Table 101 presents, for each sponsor and for Non-Follow Through, the number of sites and classrooms that were used in the analyses, the partial correlations, and the regression analysis. In order for a classroom to be included in these analyses, at least 20% of the children in the classroom had to have baseline test data.

A. Analysis Using Partial Correlations

1. Methodology

This section deals with correlational data that have been adjusted for the baseline entering Wide Range Achievement Test (WRAT) scores. Partial correlations were carried out using child behaviors and test scores as outcomes (see Table 102). In the first analysis, six observed child behavior variables were correlated with 28 instructional process variables for both first and third grades. First, instructional process data were collected on two days separate from the child observations. The child behavior data were then collected on one day by observing four children per classroom and observing each child five times (for a total of 20 observations per classroom). The 28 process variables were chosen by the authors on the basis of what processes might be expected according to previous analysis (Stallings, 1973) to relate to the child

Table 101

NUMBER OF CLASSROGMS AND SITES INCLUDED IN THE PARTIAL CORRELATIONS AND REGRESSION ANALYSES BY SPONSOR AND GRADE LEVEL*

	First Grade	Srade	Third	Third Grade
•		Number		Number
	Number of	of Sites	Number of	of Sites
Sponsor	Classrooms	Represented	Classrooms	Represented
Far West Labs	12	ю	14	7
University of Arizona	14	7	2	1
Bank Street College	11	7	7	2
University of Oregon	5	2	7	H
University of Kansas	17	5	12	7
High/S .e	13	7	0	0
EDC	12	٣	9	2
Non-Follow Through	24	ı	13	1
Total number of classrooms	108		58	

7.51

 $^{^{\}star}_{
m All}$ classrooms are in the entering kindergarten (EK) grade level.

Table 102
PARTIAL-CORRELATION ANALYSES

	Number of Process Variables	Number of Classrooms
Child Behaviors		
First Grade	28*	105
Third Grade	28	58
Days Absent		
First Grade	340	108
Third Grade	340	58
Raven'sThird Grade	340	58
CoopersmithThird Grade	340	58
IARThird Grade	340	58
MAT		
First Grade	340	108
Third Grade	340	58

^{*}The 28 variables are a subset of the 340 variables used in the other analysis.

behaviors. Other process variables might also correlate significantly with these behaviors but the selection of the 28 was an attempt to keep the analysis as simple as possible. As Table 102 indicates, all of the classrooms in the observation sample that were tested did not have individual children observed; e.g., individual children in one New York district were not observed due to parental requests, and one day of child observations were lost in the mail from Newark. Thus, the number of classrooms included in the analysis of child behaviors is limited to the number of classrooms having both individual child observations and baseline test data.

For a more complete analysis of the other outcome measures, 340 instructional variables were correlated with absence data and test scores for the first and third grades separately. For the first grade, the MAT reading and arithmetic test scores were used. For the third grade, in addition to the MAT reading and arithmetic, the Raven's Coloured Progressive Matrices, the Intellectual Achievement Responsibility Scale (IAR), and the Coopersmith Self-Esteem Inventory scores were used

in the analysis. Since there are 340 instructional process variables, to simplify reporting only significant correlations (p < .05) are reported for the test data.

The problems of interpreting correlational data need to be men-They concern such pitfalls as capitalizing on chance results and drawing invalid inferences from the correlations. The problem of capitalizing on chance is compounded by the large number of tests of significance that were computed. Of the 340 partial correlations computed with data on child absence and test scores, approximately 17 significant correlations would be expected to occur by Lhance if the variables were statistically independent. In the correlations on child absence, there were 56 first grade ε .d 65 third grade correlations that were found to be significant. The problem is that there is no way of estimating which correlations occurred by chance. Variables which correlate similarly at both first and third grades probably can be interpreted with more confidence. The strongest type of statement that can be made when interpreting these correlations takes the form: "in classrooms where teachers were observed to be more positive toward children, the absence rate of children was lower." In all the results to be reported, it must be understood that correlations are compared between class averages. Inferences about the meaning of correlations at the individual student level are unwarranted.

We cannot infer causal relationships based on correlational findings. We adjusted for the baseline WRAT scores hoping to eliminate some of the spurious relationships; e.g., classes that have, on the average, a larger proportion of bright children may tend to have a higher average of socioeconomic status, have fewer absences, and have higher test scores. Thus, the partial correlation was computed in an attempt to remove associations between process and outcome that might be due to the general level of children in a particular classroom. The results from these studies must be considered exploratory and useful primarily for generating hypotheses for other studies.

2. Relationships Between Selected Child Behaviors and Instructional Variables

Follow Through sponsors and educators in general feel that although the development of basic skills is important, it is also desirable for children to develop such attributes as task persistence, cooperation, and independence. While these attributes are elusive, we have been able to operationally define and systematically observe some components of these behaviors. The expansion of the SRI Classroom Observation Instrument (COI) procedure for this purpose was stimulated by several sponsors who, early in the evaluation, said, "If you want to know whether we are implemented, you must observe our children." For this reason, our system was modified to observe individual children. These child observations have been used not only to evaluate sponsor implementation, but also to measure behaviors such as child task persistence, cooperation, independence, and so on.

To investigate the utility of these behaviors as child outcome measures, partial correlations were computed. The study is based on 105 first grade and 58 third grade Follow Through and Non-Follow Through classrooms (see Table 102). Six child behaviors were selected as outcome variables: independence, task persistence, cooperation, question asking, verbal initiative, and self-esteem. The data were collected on one day and comprise 20 child-focused observations. As previously described, 28 instructional process variables were selected for use in the correlations (see Table 103). These data were collected on two days separate from the child-focused observations in activity- or in adult-focused observations.

Special caution is needed in interpreting the relations between the instructional variables and child behaviors discussed in this section. The two sets of data were obtained from classroom observations, but on separate days. However, some correlations may be due to the interdependence of the variables. For example, the child independence rate may be lower in situations where the instructional process requires frequent intervention by adults. Such program differences will most certainly affect the occurrence of the child behavior. The optimal procedure to obtain measures of these child behaviors would be in standardized situations where the children would have equal opportunities to demonstrate the abilities. However, given the importance of these child behaviors and the absence of standardized measures, it was decided that it would be better to use the measures that could be obtained from the classroom observation data than to ignore these variables. The results may be viewed as a source of hypotheses for future studies that focus on the child behaviors evaluated in this section.

a. Independent Children

1) First Grade Findings

The variable "independent children" in our study is defined as a child or a group of children engaged in any task without an adult. Table 104 provides the means and standardized deviations for each sponsor and Non-Follow Through. This type of independent behavior was more likely to be found in classrooms that allowed children to select their own seating and groups for part of the time (Var. 24); where a wide variety of activities were available (Var. 82, 83); where there were an assortment of audiovisual and exploratory materials available (Var. 237, 238); where adults provided individual attention (Var. 104), and were responsive to children (Var. 365a); and where adults made friendly comments to the children (Var. 389), as shown in Table 103. In those classrooms where textbooks and workbooks were used more frequently

^{*}Question asking, verbal initiative, and self-esteem were analyzed for first grade only since too few significant correlations were obtained in third grade.

PARTIAL CORRELATIONS OF INSTRUCTIONAL VARIABLES AND CHILD BEHAVIORS FIRST (N=105) AND THIRD (N=55) GRADES (Follow Through and Non-Follow Through)

Chf1d

Self-

		Inde	a viapuac		Lask	Lask Persistence		ပိ	perati	u c	-	oft fat f	ve	Es.	geeg	Questio	sus.
	Variables	1st trade	3rd Grade	ę	lst Grad	ţ	2	lst Grad	Grade 3rd	3rd Grade	1st Grade 3rd C	Je Jr	3rd Crade		lst Grade	lst Grade	3de
اِز		r p. r	-	á	1			4	ě	ď		-	٩		ଧ	-	4
9	Child/adult ratio (Number of children over tea hers,	;	;		;	•		;		(=			
	aides, and volunteers)					•			'		•	,	2 :	= :		2 6	
27,	Child selection of seating and work groups	.36	.33	<u>0</u>	- 22 .05	08		61.	ان ا	.35			.27	71.		5	
φ, φ,	Instructional materials used		'			Ť		60	•		·	5				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
38	Audio visual equipment used	٠13	17		25 .01		65	.15	•				ŏ			-17	
0,7	General equipment, materials used	27.	.03		08	02		69.	•	80	90.					.00	
5,7	Total number different resource categories coded															,	
	"used today" over three days				23		01		. 01.	.37 .01			36			6	
82	Wide variety of activities, concurrent	. 22													5	60.	
83	Wide variety of activities, over one day	.43 .001	. 37	.01	36 .001	01 41	ō.	. 32	<u>=</u>	. 39	.22	8	13	80		7.	
701	Adult with one child			.00									55	1		7.	
236	TV/Academic Activities		·					- 11	•		.03					- 03	
:37	Audio visual equipment/Academic Activities			6	Ī				•		90.					0.1	
238	Exploratory materials/A.ademic Activities	75			22 .05	526	2		<u>.</u>	10:	.05	٠	73 10		ō	-: -	
539	Math or science equipment/Academic Activities			5							80	i				Ξ.	
05.	Texts, workbooks/Academic Activities			<u>=</u>			00.			. 48	09	í	31 05			70	
741	Puzzles, games/Academic Activities							60.			70.	i	700	- 60		- 07	
3574	All adult questions to children	17 .10			03	27	S	•	.10	14	.50	i	16	77	9	70.	
364a	Adult responses to child requests or questions,																
	academic	.13	ε.	Si	15	75	5 i	70.	1	- 02	.10	•	- 15	2.		ξ.	اج
365a	Adult responses to child requests or questions,															:	
		.42	77.	8	- 33 0	00131	S)	77	ان ا	100. 67.	.31	<u>.</u>	.39	2			5 :
375a				6	•											, 22	9
389	-	22.										5					5
390%		.12	. 25	2	•	05	<u>ē</u>		[8	.30	60	•	25 .10				2
394a				8								•			5!	3.	
398a		60	٠.		·			21	اه			•	05	70		.02	;
438a	Adult communication or attention focus, one	01	.03					_		02	01	•	20	- 24	<u>5</u>	×.	9
439a	Adult communication or attention focus, two cl	67.						. 28	5	19	.05	·	9	.42		03	
£075					·	S)				60	70	ı	2	87	•	35	ē
451a	<																
		- 41	1 - 30	6	.07	- 35	51	. 28	ان ا	28 .05	70	•	- 37 .01	. 21	9	ē:	
455 4	Adult open-ended questions to children	.16	.29	8	12		_	.13	•		.10	•	8	- 07		-`0/	

Note: Underscored figures are significant.

⁵ chances in 100 that the relationship would occur by chance.
1 chance in 100 that the relationship would occur by chance.
1 chance in 1,000 that the relationship would occur by chance. <u>8</u>. 2. 8.

than in other observed classrooms (Var. 240), children were not as often found to be operating independently. Adults who asked more direct questions regarding the subject matter (Var. 451a) were not as likely to have independent children. In classrooms where adults praised children frequently (Var. 398a describes praise in general, not praise for specific tasks or achievement), the children on the average were independent less often. (The negative relationship, -.60, was substantial.)

2) Third Grade Findings

As in first grade, children in third grade were more independent in classrooms where they were allowed to select their own seating and groups part of the time (Var. 24), engaged in a wide variety of activities during the day (Var. 83), had the use of audiovisual equipment (Var. 237), and received individualized attention from the adults (Var. 104 and 375a) and where adults responded to their questions (Var. 364 and 365). Classrooms where adults asked thought-provoking questions which required children to express an idea (Var. 452a) also showed more independent child behavior. However, in classrooms where adults more often asked direct questions, and children were expected to respond with known answers, children displayed less independent behavior (Var. 451). This finding was true for both grade levels.

Although the correlation between praise and independence was negative at the third grade level, it was not as strong as in the first grade. There was, however, a strong negative relationship in the third grade between adults acknowledging children and child independence. Acknowledgment and praise are very similar variables and seem to have similar relationships in the two grade levels.

These findings appear to support John Holt's description in How Children Fail of the child who is dependent upon a teacher's praise. Holt says such a child is a "teacher watcher." He has his ear pitched to hear what the teacher wants rather than behaving independently in relation to his own thoughts or tasks. This suggests that if teachers want to help children become independent in working on tasks, they should use praise sparingly and specifically; i.e., they should help the child find re in the work itself rather than in their adult approval. Of e do not know whether the children in this study might be more course indepe if they were given the opportunity. It can be noted on chat University of Oregon and University of Kansas, which are more structured models and use a high rate of praise, were below the mean of other sponsors and of Non-Follow Through on this measure of independence. All of the other more open models except High/Scope in first grade are above the Non-Follow Through mean. Both Far West and EDC, when compared to Non-Follow Through, had especially high means in both first and third grades for independence.

ERIC

Full Text Provided by ERIC

Table 104
HEANS AND STANDARD DEVIATIONS OF CHILD BEHAVIOR OUTCOMES IRST AND THIRD GRADES*

NFT (N=23)		12.55 1.66 3.43 .61 .61 .52	NFT (N-13)		18.43 1.26 2.79 1.44 3.64
		2.90 2.90 3.18 7.5 6.35 4.5	N X		31.88 3.13 3.29 1.36 5.81
EDC (N=12)		11 84 .99 2.25 1.35 2.18 2.18 .59	(9 S.D.		25.25 1.48 1.70 .78 1.01
G ·K		38.68 2.29 4.28 2.00 3.68	TDC (N=6)		45.86 1.65 2.88 1.44 1.83
High/Scope (N=13)		12.52 1.16 2.88 1.34 2.14 .63	High/Scope (N=0) X S.D.		
High/		26.41 2.05 4.22 2.24 4.37 .89	H1gh/Scope (N=0)		
sity nsas 16) S.D.		3.82 1.51 1.51 3.56 1.55 1.55	sity usas (2) S.D.		11.39 1.16 1.99 .32 1.56
University of Kansas (N=16)		5.59 3.55 1.64 .97 5.17	University of Kansas (N-12)		10.69 4.46 1.56 .82 5.37
sity gon		7.91 1.40 .73 .44 5.42 .14	sfty gon S.D.		10.76 .31 1.08 .49 .16
University of Oregon (N=5)		24.40 1.93 1.15 59 16.69	University of Oregon (N=4)		30.53 2.71 1.85 1 36 8.20
reet 1.) S.D.	ស	5.28 1.31 3.75 .77 2.45		ធ្ម	11.42 .54 2.51 1.17 3.12
Bank Street (N-11)	FIRST CRADE	35.70 2.00 5.46 1.35 4.93	Bank Street (N=7)	THIRD CRADE	23.24 1.25 3.51 1.88 5.73
	FIR	11.44 2.17 3.69 1.11 4.72	sity zona () S.D.	THI	9.30 .54 .40 .24
University of Arizona (N-13)		30.79 3.09 3.82 1.72 10.66	University of Arizona (N-2)		35.84 1.07 1.98 2.24 9.38
S.D.		9.70 11.60 11.15 50 3.94	(4.) S.D.		7.76 1.70 3.28 1.63 4.56
Far West (N=12)		41 69 2.00 3 43 1.29 9.38	Far West (N=14)		38.55 3.43 4.65 1.52 5.97
S.D.		14.81 1.60 2.96 1.15 4.65	8) S.D.		17.83 1.64 2.67 1.18 3.42
ALL (N=105)		28.59 2.60 3.45 1.44 6.84 61	N ALL (N=58)		29.55 3.00 3.10 1.39 5.62
		Child independence Child task persistence Child coperation Child verbal initiative Child self-esteem Child questions to adults			Child independence c Child cask persistence c Child cooperation c Child werbal initiative c Child welf-estean c Child questions to adults
		Var. 118 573c 598c 174c 597c 597c			Var. 118 573c 598c 474c 597c 597c
		š			>

Adjusted scores.

b. Task Persistence

1) First Grade

The next dimension to be considered is task persistence. For this study "task persistence" is defined as a child engaged in self-instruction over a designated period of time (a matter of five interaction frames). If during the task, a child became engaged in a conversation with someone else, task persistence was no longer coded; instead, his conversation was coded. The highest positive relationships indicate that task persistence occurred most often when textbooks and workbooks were used in the classroom (Var. 240). Since working with textbooks and workbooks most often requires children to be silent and solitary, and since most assignments in textbooks and workbooks require a period of self-instruction, this finding dovetails with the definition of "task persistence" as stated above. When adults instructed one child at a time (Var. 375a), the children were also more likely to be task persistent. This may be because young children often have difficulty u derstanding group instructions or perhaps can't get the teacher's att ntion. Thus, when adults instruct on a one-to-one basis, children are more likely to have a question answered or directions clarified, and therefore have the information necessary to be persistent at their tasks.

2) Third Grade

Children were more task persistent in classrooms where textbooks were used (Var. 240), in third grade classrooms as well as in first. If teachers responded to a child's questions about subject matter, offered acknowledgment for a task, or made a task-related comment (Var. 364a, 394a, 390a), the children were more likely to be task persistent. Less task persistence occurred where there was more use of audiovisual equipment and exploratory materials, and where a wide variety of activities occurred (Var. 38, 238, 83). All of these activities were likely to encourage conversation, which would end the coding of task persistence, as it is defined for this study. Also, teachers who more often asked academic questions, and praised children or interacted with them on a one-to-one basis (Var. 451a, 398a, 104), were not likely to have children who show a high rate of task persistence.*

However, Table 104 indicates that these findings in third grade cannot be generalized to a model. The University of Kansas model uses a high rate of praise; their teachers are likely to interact with one child at a time, and their mean was higher than all other sponsors and Non-Follow Through for task persistence in both grade levels. The University of Kansas does prescribe the use of desk work where text and workbooks are used, and this variable was positively correlated with task persistence in both grade levels. The findings indicate that the variable is probably not independent; task persistence cannot be coded

^{*}Any conversation stops the coding of this nonverbal behavior.

at the same time a structured academic interaction is occurring. However, in the teacher-focused observations, University of Kansas teachers were observed to be highly interactive with children in structured academic activities; on child-focused observations, children were observed to be highly task persistent. Thus, it depends upon who was the focus of observation, as both phenomena probably occurred simultaneously.

c. Cooperation

1) First Grade

For the purposes of this study, "cooperation" is defined as two or more children working together on any joint task without an adult. Our findings indicate that this kind of cooperation was more likely to be found in situations where there were a wide variety of activities occurring throughout the day (Var. 83); where there were exploratory materials available (Var. 238); and where children were able to choose their own group (Var. 24). In classrooms where the adults interacted with two children (Var. 439a), making comments about the task (Var. 390a) and responding to their questions (Var. 365a), the children seemed more often to join each other in cooperative tasks. When textbooks and workbooks (which are solitary tasks) were used a great deal (Var. 240), the children were not likely to cooperate, as shown by a strong negative correlation of -.49. Also in classrooms where adults asked direct questions about subject matter (Var. 451c), a negative correlation with cooperation was indicated.

2) Third Grade

Classrooms in which children worked more often together cooperatively were those in which children selected their own seating and groups for part of the time (Var. 24); were offered a wide variety of accivities during the day (Var. 83); and had a variety of materials available for their use (Var. 38, 45, 238). These materials included exploratory materials and audiovisual equipment. Variables 24, 83, and 238 were also significantly correlated at the first grade level. Given the opportunity to select from a variety of both activities and materials, children apparently chose more often to work together at tasks than they did in classrooms where such a selection was not offered. While a variety of materials were correlated with cooperative behavior, texts and workbooks in academic subjects showed a high negative correlation with child cooperation. When children worked with workbooks (Var. 240), they were more likely to work alone and therefore to have less opportunity to work with other children on a common task. This finding was significant for both first and third grades.

The data indicated that a negative correlation exists between child cooperation and adult instruction variables which describe adults asking children direct questions about subject matter and then acknowledging their responses (Var. 394a, 451a). Variable 451a was significant for the first grade as well. On the other hand, adults who

more often interacted on a one-to-one basis with children, asked thought-provoking questions, and interacted with children by making task-related comments (Var. 104, 390a, 452a) were more likely to have children who cooperated. Importantly, Variable 390a (Adult task-related comments to children) also was positively correlated with child cooperation at the first grade level. A correlation was shown between children cooperating and adults responding to children in nonacademic situations (Var. 365a) at both first and third grade levels. Apparently children need adults to respond to their questions as they engage in cooperative tasks.

The variables that were positively correlated with cooperation are also those that describe the more open models which, in their stated goals, encourage child-initiated activities and cooperation among children. Data in Table 104 indicate that all of the five more open models had means higher than Non-Follow Through in the first grade. Only Far West and Bank Street had means higher than Non-Follow Through in the third grade. It must be further noted that those variables describing in part the more structured classrooms of University of Oregon and University of Kansas had negative correlations with the SRI-defined child behaviors of cooperation, and the means of these two sponsors were lower than those of all other sponsors and Non-Follow Through in both first and third grades. The implication here is that children are likely to work together more often on joint projects without adults in the open or flexible models than in the more structured models.

d. <u>Verbal Initiative</u>

1) First Grade

For the purposes of this report, verbal initiative was recorded whenever a child asked questions, instructed someone else, engaged in a task-related conversation, made general comments, or provided feedback to other children. Children demonstrated more verbal initiative in classrooms where a wide variety of activities occurred (Var. 82, 83). This kind or environment usually allows children to interact more freely--that is, to talk and work together. In classrooms where adults engaged in more general conversation and were responsive to children's questions (Var. 389a, 365a), children also showed more verbal initiative. The reader is reminded that these are two separate sets of data, and the findings are not as circular as they seem since the variables relating to children's questions and those of adult responses were collected on separate days. Understandably, in classrooms where instructional materials were used often (Var. 28), children were less likely to take verbal initiative; i.e., children would be engaged with materials rather than with each other. Another variable of interest which suggests a trend but does not reach significance by our standards is adults praising children (Var. 298a). The correlation was -.17 with p < .10. However, the possibility is raised that in classrooms where adults used a high rate of praise the children were less likely to show verbal initiative.

2) Third Grade

Classroom environments where children selected their own seating or work group part of the time and had a wide range of resource materials, particularly audiovisual equipment (Var. 24, 38, 237), had children who show more verbal initiative. This type of environment evidently permits more interaction, such as questioning or commenting. In classrooms where textbooks and workbooks were more frequently used, the children demonstrated less verbal initiative (Var. 240). Working with standard texts and workbooks is a more solitary and silent activity which is not as likely to give children the opportunity for verbal initiative.

Adults who offered individualized at ention (Var. 104, 375a), were responsive to children in a nonacademic situation (Var. 365a); and made general comments (Var. 389a) were more likely to have children who showed verbal initiative. Variable 365a, (Adult responses to child recests or questions, nonacademic) had a high correlation with child initiative both at the first and third grade levels. However, children were less likely to show verbal initiative in classrooms where adults asked a higher rate of direct questions about subject matter (Var. 451a). This kind of interaction makes the adult the "initiator" and the child the "responder."

The variables positively related to verbal initiative were those which described the more open classrooms. In both grade levels all the of the more open models had means higher than Non-Follow fhrough and the two more structured models.

e. Observed Self-Esteem

Child self-esteem, for the purpose of this study, is operationally define as existing where a child offers his opinion—he may praise or acknowledge the work of another child. This child also makes statements about his self-worth and extends his response when asked questions. These are all verbal expressions of self-esteem. The authors have hypothesized that a child might feel reasonably good about himself if he made such statements. (Even though this is a limited definition of self-esteem, the authors feel it is important to make an effort to develop such a variable, since paper and pencil tests and other assessments of self-esteem are also quite limited.)*

Our data suggested that more self-esteem was evident in classrooms where children took part in a wide variety of activities (Var.

^{*}Only first grade data are presented here since there were too few correlations of note in the third grade data to warrant interpretation in this report.

82) and used exploratory materials in academic subjects (Var. 238). Both of these variables described situations that allowed children to explore and possibly to make statements about being able to manage equipment themselves or to praise or acknowledge each other's accomplishments. Adults who asked children questions (Var. 451a) or addressed them in small groups (Var. 440a) were more likely to have children who expressed ser -esteem. Perhaps in these small groups the children had opportunities to extend their responses to questions and to express their self-worth. Iwo strange findings are that children were less likely to express self-esteem when adults spoke to one child at a time (Var. 438a) or when children were acknowledged (Var. 394a). Self-esteem, as the variable is defined here, required children to make specific statements which apparently were more likely to occur in a small group or with other children rather than on a one-to-one basis with an adult. Acknowledging children, telling them their behavior or products were acceptable (Var. 394a) which might be expected to enhance a child's attitude toward himself, was adversely related to a child's statement of self-esteem.

The variables which positively related to self-esteem described a mixture of the open and structured classrooms. And, in both first and third grades, the two highest means were those of University of Oregon, a structured model, and University of Arizona, a more open model.

f. Question Asking

Educators have long recognized the value of a child's asking questions as a primary means to gain information. Previous research indicates that question-asking is positively related to test scores.* In the present study we found that first grade children asked more questions where there was a one-to-one relationship of adults with children in classrooms (Var. 438a), where adults responded to children's questions (Var. 364a, 365a), and where adults made general conversational comments to children (Var. 389a). Children asked fewer questions where adults focused their communication toward a small group (Var. 440a).**

The largest correlation of a process variable and child question asking was with "Adult communication focus--one child." It should be remembered that in the University of Kansas, as well as several of the more open models, the adults focus their communication toward an

^{*}Previous SRI observational studies (Stallings, Baker, and Steinmetz, 1972, and Stallings, 1973) report a significant relationship between children asking questions and scores on achievement tests and attitudinal tests.

^{**}Third grade data are not interpreted here because there were too few significant correlations to warrant analysis.

individual child. The data on Table 104 indicate that University of Kansas was second only to High/Scope in child question-asking in the first grade. These models differ greatly in their theoretical approach in regard to use of materials, classroom activities, structure, and control systems. Thus, it seems that the question-asking behavior of children is more related to individualized communication patterns than it is to other components of the educational models.

3. Relationships Between Days Absent and Instructional Process Variables

Days absent is an important outcome variable for several reasons; i.e., many school budgets are determined by the average daily attendance. Also, days absent can be used as an indicator of attitude toward school. It is well known to parents and teachers that if a child enjoys school, he may attend even if he does not feel well. If he does not enjoy school, he may be more likely to be absent whenever he feels any discomfort. The data presented here represent only days absent without a control for the length of the school year.

Correlations were computed for classroom means of the number of days absent and 340 selected instructional variables, first adjusting for the baseline WRAT score. (As stated previously, approximately 17 significant correlations could have occurred by chance.) Table 100 shows the correlations that were significant (p < .05 to p < .001) for either the 108 first grade or the 58 third grade classrooms. A positive correlation between an instructional variable and days absent means that children were absent more often in classrooms where that instructional process occurred. A negative correlation between an instructional variable and days absent means that children were absent less often in classrooms where that process occurred. There is no way to determine whether these are causal relations, but they are suggestive for further investigation.

a. First Grade Classrooms

Materials used in the classroom were recorded on the PEI and CCL. Two very similar variables recording the use of audiovisual equipment (Var. 38 and 237) showed a negative correlation with absenteeism (see Table 105). Apparently, first grade classrooms in which audiovisual equipment is used as an instructional aid experience less absenteeism than those classrooms in which audiovisual equipment is less frequently used.

Activities of the classroom personnel and grouping arrangements of children were related to the rate of pupil absenteeism in the first grade. The variables indicating that the teacher or aide was engaged in a task without children (Var. 85, 103, 108, and 231) showed a positive correlation with days absent. Thus, in classrooms where the

Table 105

	Variables	Fir <u>G</u> ra		Thi Gra	
No.	Name	r	p<	r	p<
MATER	IALS				
38 237 241	Audio visual equipment used Audio visual equipment/Academic Activities Puzzles, games/Academic Activities	19 22 08	.05 .05	06 09 32	.05
ACTIV	TITIES				
70 245 252 256	Sewing, cooking, pounding Story, music, dancing/Longitudinal Sewing, cooking, pounding/Longitudinal Practical skills acquisition/Longitudinal	11 04 11 .16		32 28 28 26	.05 .05 .05
TIME	SPENT AND ACADEMIC INTERACTION				
140 163 228	Total weight in math groupings Total weight in reading groups Total weight in arts, crafts groupings	.11 .18 .04		.32 .32 .38	.05 .05 .01
GROUP	INGS				
<u>adult</u>	s in the Classroom				
108 262	Overall occurrences of adults without children Average number of adults in the classroom/	.22	.05	.08	
	Longitudinal	.26	.01	.09	
Adult	s Without Children				
85 103 229 231	Teacher without children Adult without children Teacher involved/Classroom Management Volunteer involved/Classroom Management	.25 .22 .03 .29	.01 .05	20 .08 27 .36	.05
Indiv	idualized Attention				
86 104 109	Teacher with one child Adult with one child One child with any adult		.01 .001 .001	19	

Table 105 (Continued)

	Variables	Fir Gra		Thi Gra	
No.	Name		p<	r	p<
Indiv	idualized Attention (Continued)				
124	One child with aide/Math	 23	.05	20	
132	One child with any adults/Math	22	.05	15	
143	One child with teacher/Reading	26	.01	22	
155	One child with any adults/Reading	34	.001		
164	Personalized instruction in reading	34	.001	24	
257	Teacher with one child, academic				
-	activities/Longitudinal	23	.05	12	
259	Volunteer with one child, academic	_			
-57	activities/Longitudinal	22	.05	10	
261	Any adult with one child, any activity/				
201	Longitudinal	31	.01	15	
421a	Adults attentive to individual children	26	.01	12	
4214	Marto accentive to marviagar eniraren				
<u>Adult</u>	s with Two Children				
121	Two children with teacher/Math	.00		29	.05
125	Two children with aide/Math	.01		.35	.01
144	Two children with teacher/Reading	19	.05	19	
156	Two children with any adults/Reading	20	.05	2	
Adu1t	s with Small Group				
122	Small group with teacher/Math	07		34	.01
Adult	s with Large Group				
89	Teacher with large group	.06		.33	.05
95	Aide with large group	.31	.01	.40	.01
112	Large group of children with any adult	.23	.05	.47	.001
123	Large group with teacher/Math	.11		.44	.001
127	Large group with aide/Math	.30	.01	.18	
135	Large group with any adults/Math	.29		.52	.001
146	Large group with teacher/Reading	. 12	.01	.33	.01
158	Large group with teacher/keading Large group with any cdults/Reading	. 25	.01	.44	.001
1.00	Large group with any duties/ heading	. 23	•01	•	
Indep	endent Children				
114	One child independent	27	.01	25	
115	Two children independent	23	.05	20	

Table 105 (Continued)

	Variables	Fir Gra		Thi Gra	
No.	Name -	r	p<	r	p<
Indep	endent Children (Continued)				
118 136 137 138 142 159 160 165 204	All children independent One child independent/Math Two children independent/Math Small group of children independent/Math All children independent/Math One child independent/Reading Two children independent/Reading All children independent/Reading Two children independent/Science	17 22 03 09 18 33 27 14	.05 .001 .01	36 29 26 41 48 27 21 31	.01 .05 .05 .01 .001 .05
INTER	ACTIONS				
<u>Child</u>	Questioning				
346a 347a	Child commands, requests, and direct questions, nonacademic Child commands, requests, and direct	26		03	
348a 350a 450a 478a	questions, academic Child open-ended questions, nonacademic Child questions to adults All child open-ended questions Child commands, requests, and direct	26 .17 32 .14	.01	12 31 15 32	.05
	questions, academic	05		32	.05
Adu1t	Questioning				
351a	Adult commands requests, and direct questions to group of children, non-academic	04		20	05
353a	Adult commands, requests, and direct questions to groups of children, academic	04	.05	.30	.05
355a	Adult open-ended questions to children, nonacademic	.00	-	28	.05
452a	Adult open-ended questions to children	05		36	.01

No. Name r p< r p< Child Responsiveness 363a Child group responses to adult academic,	<
363a Child group responses to adult academic,	
command, request, or direct questions .22 .05 .25	
368a Child responses to adult open-ended questions0436 .01	1
371a Child extended response to adult open-	
ended question1631 .05 585c Child's extended response to questions1734 .01	
585c Child's extended response to questions1734 .01	L
Adult Responsiveness	
364a Adult responses to child requests or	
questions, academic26 .0110 365a Adult responses to child requests or	
questions, nonacademic24 .0518	
367a Adult responds to child question with	
direct question22 .0501 453a Adult response to child's question with	
a question23 .0502	
495a Adult responses to child requests or questions, academic0726 .05	5
Adult Feedback	
400a Adult reinforcement with token, behavior .33 .00102	
403a Adult praise, behavior .32 .001 .02	
405a All adult corrective feedback to children .09 .48 .00	01
409a Adult negative corrective feedback,	1
behavior .04 .37 .01	T
410a Adult positive corrective feedback, other task-related .13 .40 .01	1
411a Adult negative corrective feedback, other	
task-related .07 .36 .01	
432a Adult punishment of children .13 .54 .00	ΟŢ
447a Adult neutral corrective feedback, task- related .02 .38 .01	1
448a Adult neutral corrective feedback, behavior .16 .41 .01	
458a All adult negative corrective feedback .05 .51 .00	
465a Adult feedback to children for behavior .21 .05 .34 .01	

Table 105 (Continued)

	Variables	Fir Gra		Thi Gra	
No.	Name	r	_p<	r	p<_
Adult	Feedback (Continued)				
470a 567c 578c	All adult neutral corrective feedback Total interactions, behavior control Adult neutral corrective feedback, task-	.09	.05	.38 .16	.01
579c 589c 596c 601c	related Adult neutral corrective feedback, behavior All adult negative corrective feedback Adult feedback to children for behavior All adult neutral corrective feedback	.21 .25 .14 .25	.05 .01 .01 .05	.41 .29 .32 .30	.01 .05 .01 .05
Instr	uction				
375a	Adult instructs an individual child	06		34	.01
Child	Attending				
416a 417a 464a	Children attentive to adults, academic	.06 .28 .14	.01	.35 .45 .29	.01 .001 .05
Conve	rsational Statements				
344a 388a 516c	Individual child verbal interactions with adult Child task-related comments to adults Social interaction among children	17 01 .03		29 28 .43	.05 .05 .001
Affec 460a 462a 463a		20 27 .02	.05	27 28 .48	.05 .05 .001
Child	Behavior				
573c	All child nonverbal	.21	.05	.07	

Table 105 (Concluded)

PARTIAL CORRELATION OF DAYS ABSENT WITH INSTRUCTIONAL VARIABLES 108 FIRST GRADES AND 58 THIRD GRADES (Follow Through and Non-Follow Through)

	Variables	Fir <u>Gra</u>		Thi Gra	
No.	Name	r	_p<	<u>r</u>	_p<_
Commu	nication Focus				
438a	Adult communication or attention focus, one child	25	.01	28	.05
	Adult communication or attention focus, large groups Adults attentive to large group	.15		.37	
Misce	ellaneous				
	Adult movement	. 30	.01	.14	

teacher or aide was frequently involved in activities that did not include children, such as grading papers, preparing assignment or cleaning up, the children were absent more often. Children were also absent more frequently from classrooms where adults worked with large groups of children (Var. 95, 112, 127, 135, 158, and 471a).

On the other hand, individualized attention (Var. 86, 104, 109, 124, 132, 143, 144, 155, 156, 160, 164, 421a, and 438a) appears to be an important factor in daily attendance. These thirteen variables relating to individualized attention and absenteeism can be found on Table 105. All of these variables indicating individualized attention showe a negative correlation with days absent from school. The four highest correlations were Var. 104 (Adult with one child), Var. 109 (One child with any adult); Var. 155 (One child with any adult in reading); and Var. 164 (Personalized instruction in reading).

Two variables which recorded the number of adults (Var. 108 and 262) in the classroom showed a positive correlation with number of days absent, which may indicate that a higher adult-student ratio is only one aspect to be considered when evaluating the effectiveness of classroom personnel. What the adult is doing may be more important than sheer number of adults. Adults who were less involved with the children or who worked only with large groups were likely to have a higher absence rate in their classrooms, while adults who interacted with children on a one-to-one basis had a lower absentee rate among their children.

When children were allowed to work on their own without adults (Var. 114, 115, 136, 159, and 160), the data indicated they attend school more frequently. These variables encompassed an overall independence rate of children involved in tasks. In particular, they described one or two children working independently in reading or math.

In a classroom atmosphere where children asked questions of the adults (Var. 350a), children tended to be absent less frequently. Three variables which describe child questioning (Var. 346a, 347a, and 350a) were negatively correlated with absenteeism. Also, in classrooms where adults responded to children's questions (Var. 364a and 365a), the children were absent less frequently. Two other variables which reflect specific types of adult responses to the questions of children also were related to children being present more often in school. They describe an adult responding to a child's question with another question (Var. 367a, 453a). All of the preceding variables describe situations where adults are responsive to children, which suggests that adults are encouraging the children to think by asking further questions, rather than just providing an answer.

The rate of absenteeism tended to increase in situations where children observed an adult in an academic activity (Var. 417a); i.e., the children were not actively engaged in their learning but, instead, were listening and observing. Also, classrooms that had small groups of children responding in chorus to adult questions during academic instruction (Var. 363a) showed a higher absentee rate. This variable suggests a lack of individualized attention, which was previously identified as being related to a lower absentee rate.

When there was a high rate of adult feedback for child behavior in a classroom, children were more likely to be absent. This occurred whether the feedback was praise or tokens given for acceptable behavior or whether the feedback was for unacceptable behavior, with correction or control exerted (Var. 400a, 403a, 465a, 567c, 579c, and 596c).

In those classrooms where more positive behavior (defined as smiling or laughing, Var. 460a and 462a) was evident, there was less child absence. This finding replicates previous findings (Stallings, Baker, Steinmetz, 1972).

b. Third Grade Classrooms

The kind of materials used in the classroom, which was related to the children's rate of absenteeism, changes from first to third grade. In third grade classrooms where puzzles and games (Var. 241) were used in academic activities, the children were absent less (see Table 105); whereas in first grade classrooms, lower child absenteeism was related to higher use of audiovisual equipment.

In the third grade, certain classroom activities seemed to be associated with the rate of absenteeism. In classrooms where children had activities that allowed for sewing, cooking, carpentry, stories, music, dancing, or practical skill acquisition (Var. 70, 245, 252, and 256), the children were absent less frequently. Children were absent more frequently when they were involved in reading and math (Var. 140 and 163) for a higher percentage of the time.

In direct opposition to the first grade findings regarding the teacher or aide without children, in classrooms where the third grade teacher was more often involved in classroom management tasks (Var. 229), the children were in school more often. Third grade children may have less need of the teacher's attention and may be more independent than first grade children; so that when the teacher engages in classroom management tasks, the absence rate is not adversely affected.

Note: As in the first grade, if the third grade children spent a large portion of the school day in large groups with adults, the absentee rate was high. Seven variables which represented children in large groups with adults (Var. 89, 95, 112, 123, 135, 146, and 158) showed a positive correlation with the absentee rate. These were not limited, but referred to large group activities in reading and math and all other activities. Two FMO interaction variables (Var. 441a and 471a) also indicated that when adults focused their attention on a large group, children were absent more frequently. Variable 471a was also significant for first grade children. Conversely, when children received individualized attention (Var. 121, 344a, 375a, and 438a), they tended to be absent from school less often. Frequency of adult attention to one child (Var. 438a) also was related to less absenteeism in first grade classrooms.

As in the first grade, in third grade classrooms where children were more independent the children tended to be absent less often. These correlations occurred in all instances of children operating independently in activities and they also occurred whether the child was working alone, with another child, or in a small group in math (Var. 118, 136, 137, 138, 142, 159, and 165).

Third grade classrooms where children asked questions (Var. 348a, 450a, and 478c) and where adults were responsive to the children (Var. 495c) showed a lower rate of absenteeism.

In classrooms where adults asked children open-ended questions (Var. 355a, 452c) children were absent less often. This finding is further emphasized by two variables which relate to child responses to open-ended questions: when children responded to an adult's open-ended question (Var. 368a) or gave an extended response to any type of question (Var. 371a, and 585c), the rate of absenteeism was lower. However, in classrooms where adults commanded or asked direct questions of groups of children in nonacademic activities (Var. 351a), children were absent more often.

In classrooms where children were more often not interacting but were listening to or observing adults (Var. 416a, 417a, 464a) absentee rates were higher. A high correlation (.45) with absence was

found for children attentive to or observing adults in an academic activity (Var. 417a). This was true for both first and third grade classrooms on Var. 417a where the children's outward behavior was passive, which indicates that they may not have been sufficiently involved in the academic activity.

Variables which reflect another dimension of an interactive environment indicated that when the conversation was task-related (Var. 388a), the children were absent less often. However, when the interaction was purely social (Var. 516c), the children were more likely to be absent. (Social interactions included all of the general comments children make among themselves, both positive and negative; these were mainly greetings, personal compliments or criticisms.)

Consistent with some of the first grade findings, many types of adult feedback were related to children's absence from school. Not surprisingly, adult punishment of children (Var. 432a) had the highest correlation of .54. This means that in classrooms where children were often punished, children also were absent more often. Another high correlation with absenteeism was all adult negative corrective feedback (Var. 458a) with a correlation of .51. There are a total of 15 feedback variables that showed a significant correlation with absenteeism. In the first grade, the feedback variables were correlated primarily with behavior. However, in the third grade, the feedback variables were related to nonacademic task activities and academic activities as well as to behavior. In any event, whether the feedback was negative, neutral, or positive, it had an adverse relationship with the third grade children's school attendance.

The correlations of the variables which describe feelings or affect were similar for third grade and first grade. Classrooms with more positive behavior (Var. 460a, 462a) showed a lower absence rate. In addition, in third grade classrooms where more negative behavior (Var. 463a) was observed, the children were absent more often.

c. Conclusions

These data suggest that in both first and third grade classrooms, children may be absent less frequently in classrooms where there is a higher rate of child independence, child questioning, adults responding, individualized instruction, and open-ended questioning. Also, in classrooms where children and adults show more positive affect (smiling or laughing) the children may be absent less often.

Children were absent more often in both first and third grade classrooms where they worked in large groups more often and where adults used direct questions in academic work and frequent corrective feedback more often.

Findings for the third grade indicate that in classrooms where children were punished more often, they also were absent more often.

In addition, classrooms with a higher rate of negative affect on the part of teachers and students showed a higher absence rate.

A report of sponsor absence rate by grade level indicates that at the first grade level, those sponsors who used more highly structured environments, materials, and interactions also had a higher absence rate (see Table 106). Two sponsors, Far West Labs and University of Arizona, who used a wide variety of activities and materials and have classrooms where children exhibited independent behavior, had the lowest absence rate of all sponsors at both the first and third grade levels. The data on Table 106 also indicate that the absence rate for all sponsors and Non-Foliow Through diminished from first grade to third grade. While the means and standard deviations of Follow Through and Non-Follow Through were very similar, Far West's and University of Arizona's absence rates were considerably lower than Non-Follow Through rates.

Although the data are correlational and causal effects cannot be attributed to the instructional processes, the correlations are high enough, and the sample large enough, to suggest some directions for further research in absenteeism.

Table 106

MEANS AND STANDARD DEVIATIONS OF DAYS ABSENT FOR SPONSORS AND NON-FOLLOW THROUGH

	Fir	st Grade*	Thi	rd Grade*
		Standard		Standard
	Mean	<u>Deviation</u>	Mean	<u>Deviation</u>
Far West Lab	9.81	1.80	7.99	1.40
University of Arizona	12.37	4.34	6.34	0.78
Bank Street College	14.90	6.41	9.64	6.42
University of Oregon	17.12	3.72	12.12	1.63
University of Kansas	15.34	16.70	10.28	2.77
High/Scope	13.36	3.25	-	
EDC	14.25	10.90	10.53	7.46
All Follow Through	14.15	6.33	9.50	4.30
Non-Follow Through	14.05	5.65	9.59	2.59

^{*}Adjusted scores.

4. Relationships Between Scores on the Raven's and Instructional Process Variables

Correlations (adjusted for the baseline WRAT scores) were computed using 340 instructional variables and 58 third grade issroom mean scores on the Raven's Coloured Progressive Matrices (1965). The Raven's can be described as a nonverbal perceptual problem-solving test in which children study a pattern from which a piece is missing, and then select from among several alternatives the piece that correctly completes the pattern. The test was administered in a group and some of the original items were deleted (see Appendix I for scoring procedures).

Third grade classrooms in which children scored high on the Raven's had a variety of activities occurring and a variety of materials available. Activities such as story telling, music, sewing, cooking, arts and crafts (Var. 63, 64, 70, 83, 245, 246, and 256) were among those that correlated positively with the Raven's test scores (see Table 107). Also in these classrooms, children were allowed to select their own seating and work groups while they engaged in those activities (Var. 24) and audiovisual equipment, games, toys, and exploratory materials (Var. 25, 37, 40, 44, 45, and 238) were available to them.

Table 107

PARTIAL CORRELATIONS OF INSTRUCTIONAL VARIABLES
WITH RAVEN'S TEST SCORES (58 THIRD GRADE CLASSROOMS)

	Variables			
No.	Name		<u>r</u>	_p<_
MATER	IALS			
25	Games, toys, play equipment present	٠	.34	.01
37	Audio visual equipment present		.28	.05
40	General equipment, materials used		. 26	.05
44	Total number different resource categories coded "present" over three days	•	.34	.01
45	Total number different resource categories coded "used today" over three days		. 33	.01
238	Exploratory materials/Academic activities		.28	.05
240	Texts, workbooks/Academic activities		37	.01

Table 107 (Continued)

PARTIAL CORRELATIONS OF INSTRUCTIONAL VARIABLES WITH RAVEN'S TEST SCORES (58 THIRD GRADE CLASSROOMS)

	Variables		
No.	Name	<u>r</u>	_p<
ACTIV	VITIES		
24	Child selection of seating and work groups	.48	.001
63	Story, music, dancing	.28	.05
64	Arts, crafts	.29	.05
67	Reading, alphabet, language development	44	.001
7 0	Sewing, cooking, pounding	.27	.05
83	Wide variety of activities, over one day	. 35	.01
84	Approximate number of children in the classroom in any activity	30	. 05
245	Story, music, dancing/Longitudinal	.33	.01
246	Arts, crafts/Longitudinal	.36	.01
248	Numbers, math, arith etic/Longitudinal	40	.01
249	Reading, alphabet, language development/Long.tudi al	46	.001
256	Practical skills acquisition/Longitudinal	.31	.05
TIME	SPENT AND ACADEMIC ANTERACTION		
242	Fercent CCLs in which an academic activity is occurring	31	.05
GROUE	PINGS		
Adult	s in the Classroom		
9 6	Overall aide occurrence	46	.001
108		30	.05
262	Average number of adults in the classroom/	.50	
	Longitudinal	- 38	.01
Adult	s Without Children		
91	Aide without children	.30	.05
103	Adult without children	.38	.01
103	Addit without children	• 50	.01
_ndiv	idualized Attention		
86	Teacher with one child	.34	.01
92	Aide with one child	.34	.01
104	Adult with one child	.35	.01
109	One child with any adult	.32	.05
120	One child with teacher/Math	.27	.05
124	One child with aide/Math	.29	.05

Table 107 (Continued)

PARTIAL CORRELATIONS OF INSTRUCTIONAL VARIABLES WITH RAVEN'S TEST SCORES (58 THIRD GRADE CLASSROOMS)

	Variables		
No.	Name	r	_p
Indiv	idualized Attention (Continued)		
143	One child with teacher/Reading	.37	.01
147	one child with aide/Reading	.27	.05
155	One child with any adult/Reading	. 34	.01
164	Personalized instruction in reading	. 34	.01
257	Teacher with one child, academic activities/		
	Iongitudinal	.31	.05
261	Any adult with one child, any activity/Longitudinal	.28	.05
Adult			
148	Two children with aide/Reading	. 31	.05
156	Two children with any adults/Reading	. 27	.05
221	Two children with any adults/Arts and Crafts	.28	.05
	iwo children with any addits/Aires and crares	• 20	• 0.5
<u>Adult</u>	s with Emall Group		
88	Teacher with small group	44	.001
94	Aide with small group	37	.01
106	Adult with small group	42	.01
111	Small group of children with any adult	44	.001
126	Small group with aide/Math	46	.001
134	Small group with any adults/Math	40	.01
145	Small group with teacher/Reading	42	.01
149	Small group with aide/Reading	45	.001
157	Small group with any adults/Reading	43	.001
420a	Adults attentive to a small group	35	.01
440a	Adults communication or attention focus, small group	32	.05
Adult	s with Large Group		
150	Large group with aide/Reading	32	.05
Indep	endent Children		
114	One child independent	. 35	.01
115	Two children independent	.37	.01
116	Small group of children independent	.28	.05
118	All children independent	.42	.01
1.39	Large group of children independent/Math	.27	.05
142	All children independent/Math	. 45	.001
159	One child independent/Reading	.39	.01
160	Two children independent/Reading	. 30	.05
185	Large group of children independent/Social Studies	.26	.05
260	Children independent, academic activities/		.
	Longitudinal	.28	.05

Table 107 (Continued)

PARTIAL CORRELATIONS OF INSTRUCTIONAL VARIABLES WITH RAVEN'S TEST SCORES (58 THIRD GRADE CLASSROOMS)

	Variables		
110.	Name	<u>r</u>	_ <u>p</u> -
Misce	llaneous		
113	Overall occurrence of children with any adult	42	. 01
INTER	ACTIONS		
Child	Questioning		
346a	Child commands, requests, and direct questions, nonacademic	.29	.05
348a	Child open-ended questions, nonacademic	.33	.01
350a	Child questions to adults	.36	.01
450a	All child open-ended questions	.34	.01
477c	Child commands, requests, and direct questions,		
	nonacademic	.29	.05
479c	Child open-ended questions, nonacademic	.33	.01
480c	Child open-ended questions, academic	. 29	.05
581c	All child open-ended questions	.31	.05
\dult	Questioning		
354a	Adult commands, requests, or direct questions to		
	children	47	.001
	All adult questions to children	39	.01
451a	Adult academic commands, requests, or direct questions to children	41	.01
483c	Adult commands, requests, or direct questions to	2.2	0.1
485c	individual children, nonacademic Adult commands, requests, or direct questions to	.33	.01
	individual children, academic	27	.05
Child	Responsiveness		
358a	All child response	38	.01
360a	Child responses, academic	42	.01
362a	One child responds to adult academic commands, re-		
	quests, or direct questions	49	.001
490c	Child responses, nonacademic	. 34	.01
493c	One child responds to adult academic commands, re-		
505	quests, or direct questions	36	
585c	Child's extended response to questions	. 33	.01
Adult	Responsiveness		
365a	Adult responses to child requests or questions, non-		
	academic	.43	.001

Table 107 (Concluded)

PARTIAL CORRELATIONS OF INSTRUCTIONAL VARIABLES WITH RAVEN'S TEST SCORES (58 THIRD GRADE CLASSROOMS)

	Variables		
No.	Name	r	<u> </u>
Adult	Feedback		
394a	All adult acknowledgment to children	45	.001
395a	Adult acknowledgment to children, academic	46	.001
398a	All adult praise to children	32	.05
399a	Adult reinforcement with token, academic	34	.01
400a	Adult reinforcement with token, behavior	 27	.05
401a	Adult reinforcement with token, other task-related	33	.01
402a	Adult praise, academic	34	.01
403a	Adult praise, behavior	27	.05
40oa	Adult positive corrective feedback, academic	42	.01
412a	Adult feedback to child responses to adult academic		
	commands, requests, or direct questions	51	.001
457a	All adult positive corrective feedback	41	.01
469a	All adult reinforcement with tokens	34	.01
5434	Adult feedback to child responses to adult academic		
	commands, requests, or direct questions	44	.001
600c	All adult reinforcement with tokens	35	.01
Instr	uction		
3762	Adult instructs a group	. 30	. 05
	All adult instruction	.29	.05
586a		.28	.05
Conve	rsational Statements		
34.3a	Child to adult, all verbal except response	.45	.001
387a	Child general comments to adults	.28	.05
388a	Child task-related comments to adults	.45	.001
390a	Adult task-related comments to children	.37	.01
474c	Child to adult, all verbal except response	.30	.05
476c	Verbal interactions among children	. 37	.01
519c	Child task-related comments to adults	.27	.05
524c	Child corrective feedback	.42	.01
15500	-		
<u>Affec</u>	<u>.</u>		
460a	All child positive affect	. 36	.01
462a	All positive behavior	.46	.001
59∡c	All child negative affect	.27	.05
593c	All positive behavior	.43	.001
Child	Behavior		
2.1.2.10	Table of the state		
546c	€ ild waiting	32	.05
598c	(ld cooperation	. 30	.05

261

While engaged in this variety of activities, children were most likely to be found working independently or receiving individualized attention. Variables which correlated with the Raven's test scores describe independent children in a variety of groupings. Child independence whether in large groups, small groups, or a two-child group or alone (Var. 114, 115, 116, 118, 139, 142, 159, 160, 165, 185, and 260) correlated positively with the Raven's test scores. When children are working without the assistance of an adult, they may have more opportunity to think independently and to experience the problem-solving type of learning--which may result in higher scores on such tests as the Raven's. The adults more often provided individualized attention (Var. 86, 92, 104, 109, 120, 124, 143, 147, 155, 164, 257, and 261) in classrooms where children scored high on the Raven's. Instances of adults working with two children (Var. 148, 156, and 221) also were positively correlated with the Raven's test scores.

Children in classrooms where the Raven's scores are higher seemed to ask questions more frequently, either direct open-ended questions, academic or nonacademic (Var. 346a, 348a, 350a, 450a, 477c, 479c, 480c, 581c). The important dimension is that children were asking questions of adults in the classroom. Questioning and inquiring seem to be important steps in the problem-solving process. The children asked their questions and the adults recognized them and responded (Var. 365a).

In addition to questioning, children and adults also experience other types of verbal interaction (Var. 343a, 387a, 388a, 390a, 474c, 519c) which were related to the high Raven's scores. The incidence of child task-related comments to adults (Var. 388a) had a high positive correlation (.45) and that of adult task-related comments to children also had a significant correlation. The children in these classrooms also interacted with each other (Var. 476c) as well as with the adults in the classroom. Some adult structional variables (Var. 376a, 455a, 586c) were also positively correlated.

Classrooms which showed high test scores on the Raven's also showed high occurrences of affective behavior, with children expressing both positive and negative types of behavior (Var. 460a, 452a, 592c, and 593c).

When children are working independently of adults, they sometimes cooperate and work with other children (Var. 598c) on a common task. By working together, children may learn to solve problems on their own:

A high occurrence of reading and math and the use of text and workbooks (Var. 67, 240, 242, 248, and 249) were negatively correlated with the Raven's test scores. Classrooms which emphasized reading and math skills in a structured academic format and used standardized text or workbooks may not have allowed enough time for the more flecible type of activities that relate to success on the Raven's test. At least it is clear that the instructional processes that correlated positively

with scores on the MAT test are different from the processes that correlated with the Raven's test scores.* Obviously, the two tests are assessing very different skills and the development of each skill requires different treatments.

When adults frequently worked with children in either small or large groups, the children scored lower on the Raven's. Of the 11 negatively correlated instructional variables which indicated adults with small groups, eight of them had a correlation of -.40 or greater.

In those classrooms that had a high occurrence of adults asking children direct academic questions, the children scored low on the Raven's (Var. 354a, 357a, 451a, 485c). Responses to direct questions require recall of previously learned information and this approach may not stimulate an inquiry method of thinking. Children responding to adult direct questions (Var. 358a, 360a, 362a, and 493c), also had a negative correlation with the Raven's. However, children giving extended responses to adult questions (Var. 585c) had a positive correlation with the Raven's test scores.

Low scores on the Raven's were found in classroom environments where adults praised and reinforced the children, either for academics or behavior (Var. 395a, 398a, 399a, 400a, 401a, 402a, 403a, 406a, 457a, and 469a). The high negative correlation (-.51) for the traditional question-response-feedback (Var. 412a) sequence is quite interesting. This instructional process appeared to have an adverse relationship with problem solving as measured by the Raven's. Tokens for academic and behavior (Var. 399a, 400a, and 401a) also showed a negative correlation. (However, the preceding variables were positively related to reading and math scores.**) When the children gave the corrective feedback (Var. 524c), however, the correlation became positive. In such a situation, the children are not the responders but the initiators.

When children spent a good portion of their school day waiting—either for an adult or to start a new activity—they may not have had the necessary exposure to the stimuli that would enhance their perceptual problem—solving ability. The variable "Waiting" (Var. 546c) was negatively correlated with the test scores. The variables which correlated positively were those that also described the more open models. Data on Table 108 indicate that the four open models included in this analysis (Far West, University of Arizona, Bank Street, and EDC) had mean raw scores higher than those of the more structured models (University of Kansas and University of Oregon). Residual gain scores adjusted for the baseline WRAT still showed that University of Arizona, Bank Street, and EDC were

^{*}See Section VIII page

**
See Saction VIII page

Table 108

MEANS AND STANDARD DEVIATIONS ON THE RAVEN'S COLOURED PROGRESSIVE MATRICES TEST FOR SPONSORS* AND NON-FOLLOW THROUGH

					Ŗe	lative
					Diffe	rence in
					Adjust	ed Raven's
	Var.	440/Fa11	Var. 4	48/Raven's	Scor	es Among *
	196	9 WRAT	Raw	Score	Sponso	rs and NFT
		Standard		Standard		Standard
Sponsor and Number	Mean	Deviation	Mean	Deviation	Mean	<u>Deviation</u>
Far West (N=14)	40.78	3.31	21.16	1.81	.42	1.69
University of Arizona	20.20	20	10.02	1 (5	1 (0	1 50
(N=2)	28.20	.28	19.83	1.65	1.69	1.59
Bank St set (N=7)	32.42	6.78	19.54	2.56	.63	1.65
University of Kansas						
(N=4)	33.50	6.37	18.39	2.92	84	1.95
University of Oregon						
(N=12)	35.16	5.82	17.59	2.37	-1.99	1.42
EDC (N=6)	26.38	6.95	19.02	1.09	1.25	1.71
Non-Follow Through						
(N=13)	38.75	8.71	20.74	2.12	.52	1.40

Too few High/Scope third grade classrooms were both tested and observed to permit including the High/Scope model in the analysis.

higher than Non-Follow Through.* Far West's baseline WRAT score was so much higher than other sponsors that an adjustment for baseline shows very little gain for them even though their raw score was higher than all other sponsors and Non-Follow Through. Conversely, the process variables which correlated negatively with the Raven's describe, for the most part, more structured models and both University of Oregon and University of Kansas scored lower on the Raven's than other sponsors.

The reader is reminded that only a few classrooms per sponsor are represented in this analysis; aevertheless, the findings in the

These adjusted scores indicate that relative to all classrooms in the sample these sponsors have gained when entering ability is parceled out. This is identified as a residual gain score. The mean of the total classrooms is zero; therefore, some sponsors will have a minus score relative to all others.

partial correlation analysis and the scores on the test for each sponsor support the notion that children are likely to do better in perceptual problem solving tests if they are in classrooms that use instructional processes similar to those in the more open models.

5. Relationships Between Scores on the Coopersmith and Instructional Process Variables

The Coopersmith test is an inventory of self-esteem. The instrument is designed to assess the child's feelings about himself and his school. It also assesses how he thinks others feel about him. An SRI-trained tester reads aloud a series of statements to the class (for example, "I'm a good worker"). The child is asked to decide whether the statement is "like me" or "not like me." The test is scored by totalling the responses indicating a positive sense of self-esteem. (See Appendix S for test items.) Correlations were computed using 340 instructional process variables and Coopersmith test scores (partialling out Wide Range Achievement Test scores). Only fourteen instructional variables were found to be significantly correlated. Since all of these could have occurred by chance, the results of this analysis will not be discussed. An analysis of variance examining sponsor means also showed no difference am ng sponsor or Non-Follow Through adjusted mean scores.

Relationships Between Scores on the Intellectual Achievement Responsibility Scale (IAR) and Instructional Process Variables

This test is designed to assess the extent to which the child accepts responsibility for his success and failures in intellectual or academic achievement situations.

a. Procedures

The tester describes a positive or negative achievement experience and two alternative explanations of the events. One response indicates internal control and the other indicates external control. The child is asked to mark he response that best describes the way he really feels. Appendix S lists the test items. Although a single score is usually computed for the IAR, two scores were computed for this analysis, for the IAR administered to 58 third grade classrooms. The investigators thought it would be interesting to see whether children differed in their view of responsibility toward their own success and their own failure. The first scale used items on the IAR that describe only why the child has succeeded. The second scale used items that describe only why the child has failed. The scales were independent, and a child could score hig; on both scales.

Correlations were computed between the instructional process variables and the two scores on the IAR--and the data were adjusted for the baseline Wide Range Achievement Test test score. These tests were administered in third grade only.

b. Findings

1) Responsibility for Success

On the 17 test items that related to the child's view of his success, the data indicate that children attributed their success to themselves more often in classrooms where children were allowed to engage in activities independently (see Table 109, Var. 117, 118, 136, 162, 184). Two related variables that described edults involved in classroom management type of activities that do not include children (Var. 85, 103) also support the notion that children accepted the responsibility for their own success when they were allowed to be independent in their work. This type of positive relationship was also found where children initiated requests and asked direct questions (Var. 477c). somewhat baffling positive relationship is that with transitiona. activities (Var. 79). This variable described those times when children were cleaning up the room, getting ready to leave the room, washing their hands, or changing to some other activity. It is a little difficult to say that in classrooms where transitional activities took place more often, the children took more responsibility for their success. Perhaps during these transitory times the children had a greater opportunity to fend for themselves and thus felt more responsible for their success. Certainly, the previously mentioned correlations suggested that the more opportunity the child has to behave in an independent manner, the more he takes responsibility for his success.

Conversely, on the average children scored lower on responsibility for their success when they were more often in a relationship with an adult (Var. 113). This finding is notable for any small group variable (Var. 88, 106, 145, 157). Children did not accept responsibility for their success (thus indicating they may have thought the adult was responsible for their success) when adults questioned them, (Var. 357a) or when they were part of a group responding to the adult's questions (Var. 494). In order to accept responsibility for success, the child may need to be the initiator and not the responder.

A variable created by the SRI staff called "self-esteem" is composed of four variables: child praise, child corrective feedback, statements of self worth, and extended responses (Var. 466a). In classrooms where children demonstrated this type of self-esteem, they did not take responsibility for their success as often. The SRI variable self-esteem is a composite that needs further refining. We cannot explain this strong negatime relationship between the SRI indicators of self-esteem and the child's accepting responsibility for success. Test

Table 109

IAR-SUCCESS SCALE (58 Third Grade Classrooms)

Variables No. Name <u>r</u> <u>p</u>< ACTIVITIES 79 Transitional activities .46 .001 TIME SPENT AND ACADEMIC INTERACTION Total class duration -.29.05GROUPINGS Adults Without Children 85 Teacher without children .31 .05 .27 .05 103 Adult without children Adults with Small Group -.29 .05 Teacher with small group -.27 .05 106 Adult with small group Small group with teacher/Reading 145 -.39 .001 157 -.30 .05 Small group with any adults/Reading Independent Children .44 .001 117 Large group of children independent .33 118 All children independent .01 136 One child independent/Math . 34 .01 162 Large group of children independent/Reading .34 .01 Small group of children independent/Social Studies .27 .05 184 Miscellaneous Overall occurrence of children with any adult -.33 .01 113 INTERACTIONS Child Questioning 477c Child commands, requests, and direct questions, non-

academic

.29 .05

Table 109 (Concluded)

IAR-SUCCESS SCALE (58 Third Grade Classrooms)

	Variables	•	
No.	Name	<u>r</u>	_p<_
<u> Adult</u>	Questioning		
357a	All adult questions to children	34	.01
Child	Responsiveness		
494c	Child group responds to adult academic command, request, or direct question	26	.05
Conve	rsational Statements		
466a	Child self-esteem	39	.001
	Add: 52 Child praise 53 Child corrective feedback 93 Cild statements of self-worth 114 Child's extended response to questions		

data on Table 110 indicate that Far West Lab and EDC, who had the highest residual gain scores on "Independence" in the child behavior outcomes, also showed the most gain in the Success scale of the IAR. The lowest residual gain score was that of University of Kansas and some of their process variables were the same as those which correlated negatively with the IAR Success scale. The findings indicate that less structured class-rooms which allowed children more choice and independence, as illustrated by Far West and EDC, were more likely to have children who took responsibility for their own success as measured on the TAR.

?) Responsibility for Failure

Classrooms where children took responsibility for their failure were classrooms where children were most often in large group instruction (Var. 107, 112, 127, 135, 146, 158, 162, 223, 441a, 471a), as shown in Table 111. They took responsibility for their failure in classrooms that had a higher child-to-adult ratio, that emphasized academic subjects (reading in particular), and that used a stimulus-response-feedback type of interaction during academic instruction (Var. 15, 16, 67, 163, 240, 242, 435a, 485c, 582c). It is curious that children in this type of more structured academically oriented environment

Table 110

SPONSOR AND NON-FOLLOW THROUGH MEANS AND STANDARD DEVIATIONS ON THE INTELLECTUAL ACHIEVEMENT SCALE

Relative Difference in Adjusted

							IAR	IAR Scores Among Sponsors and Non-Follow Through	g Spons w Throu	ors and gh
	Var.	440/Fall	IAR -	IAR - Success	IAR -	IAR - Failure	Su	Success	Fa	Failure
	196	1969 WRAT	(raw	(raw score)	(raw	(raw score)	(gai	(gain score)	(gai	(gain score)
		Standard		Standard		Standard		Standard		Standard
Sponsor and Number	Mean	Deviation	Mean	Deviation	Mean	Deviation	Mean	Deviation	Mean	Deviation
Far West (N=14)	40.78	3.31	13.54	1.08	9.23	.93	.13	1.03	80	.92
University of Arizona (N=2)	28.20	. 28	12.65	1.20	8.48	1.86	07	1.22	-1.08	1.85
Bank Street (N=7)	32.42	6.78	13.04	79.	9.26	1.21	.01	.52	.52	1.14
University of Kansas (N=4)	33.50	6.37	13.12	.82	10.07	1.31	10	09:	.30	1.12
University of Oregon (N=12)	35.16	5.82	12.82	.58	10.14	.54	38	97.	1.12	.31
High/Scope (N=0)	*	*	*	*	*	*	*	*	٩K	*
EDC (N=6)	26.38	6.95	13.14	1.17	9.61	1.17	.41	1.03	.11	66.
NFT (N=13)	38.25	11.8	13.53	1.02	10.82	1.12	.16	76.	. 88	1.13

entering ability is parceled out. This is identified as a residual gain score. The mean of the total classrooms is zero; theref ?, some sponsors will have a minus score relative to all others. These adjusted scores indicate that relative to all classrooms in the sample these sponsors have gained when

Table 111

IAR--FAILURE SCALE (58 Third Grade Classrooms)

	Variables		
No.	Name	<u>r</u>	_p<_
MATER	IALS		
26	Games, toys, play equipment used	30	.05
44	Total number different resource categories oded "present" over three days	.30	.05
237	Audio visual equipment/Academic activities	27	.05
238	Exploratory materials/Academic activities	26	. 25
239	Math or science equipment/Academic activities	29	.05
240	Texts, workbooks/Academic activities	.26	.05
241	Puzzles, games/Academic activities	35	.01
ACTIV	ITIES		
24	Child selection of seating and work groups	45	.001
62	Group time	46	.001
63	Story, music, dancing	30	.05
67	Reading, alphabet, language development	.31	.05
82	Wide variety of activities, concurrent	40	.01
83	Wide variety of activities, over one day	43	.001
244	Group time/Longitudinal	43	.001
245	Story, music, dancing/Longitudinal	29	.05
246	Arts, crafts/Longitudinal	36	.01
247	Guessing games, table games, puzzles/Longitudinal	28	.05
254	Dramatic play, dress-up/Longitudinal	35	.01
256	Practical skills acquisition/Longitudinal	28	.05
TIME	SPENT AND ACADEMIC INTERACTION		
163	Approximate number of children involved in reading,	.32	.01
27.2	all days observed Percent of CCLs on which an academic activity is	. 32	.01
242	occurring	.31	.05
435a	Total academic verbal interactions	.30	.05
GROUP	INGS		
Adult	s in the Classroom		
	01111/4		
15	Child/teacher and aide ratio (Number of children over the number of teachers and aides)	.36	.01

IAR--FAILURE SCALE (58 Third Grade Classrooms)

	Variables		
No.	Name	<u>r</u>	_p<_
Adul t	ts in the Classroom (Continued)		
16	Child/adult ratio (Number of children over the number of teachers, aides, and volunteers)	.34	.01
Adu1	ts Without Children		
231	Volunteer involved/Classroom management	. 29	.05
Indiv	vidualized Attention		
92 124 143	Aide with one child One child with aide/Math One child with teacher/Reading	28 29 20	.05 .05
164	Personalized instruction in reading	29	.05
258	Aide with one cnild, academic activities/Longi- tudinal	31	.05
Adult	ts with Two Children		
93 105 110 125 133 144 148 156	Aide with two children Adult with two children Two children with any adult Two children with aide/Math Two children with any adults Two children with teacher/Reading Two children with aide/Reading Two children with any adults/Reading	43 43 31 37 37 28 33 32	.001
Adul t	ts with Small Group		
201 222	Small group with any adults/Science Small group of children with any adults/Arts and Crafts	28 41	.05
Adu1t	ts with Large Group		
107 112 123 135	Adult with large group Large group of children with any adult Large group with teacher/Math Large group with any adults/Math	.37 .30 .41	.01 .05 .01

IAR--FAILURE SCALE (58 Third Grade Classrooms)

	Variables		
No.	Name	<u>r</u>	_p<_
Adults	with Large Group (Continued)		
146	Large group with teacher/Reading	.27	.05
158	Large group with any adults/Reading	.30	.05
223	Large group of children with any adults/Arts and Crafts	. 28	.05
Indepe	endent Children	•	
115	Two children independent	35	.01
116	Small group of children independent	54	.001
138	Small group of children independent/Math	54	.001
142	All children independent/Math	46 27	.001 .05
159	One child independent/Reading	48	.001
161	Small group independent/Reading	.33	.001
162	Large group of children independent/Reading Children independent, academic activities/Longi-		.01
260	tudinal	35	.01
	ACTIONS Questioning		
346a	Child commands, requests, and direct questions, non-		0.1
	academic	41	.01
348a	Child open-ended questions, nonacademic	28 36	.05 .01
350a	Child questions to adults	30	.05
450a	All child open-ended questions	.50	.05
<u>Adult</u>	Questioning		
352a	Adult commands, requests, and direct questions to individual children, nonacademic	27	.05
355a	Adult open-ended questions to children, nonacademic	39	.01
452a	Adult open-ended questions to children	32	.05
485c	Adult commands, requests, and direct questions to	2.5	0.1
	individual children, academic	.32	.01
582c	Adult academic commands, requests, and direct ques-	. 32	.05
	tions to children	. 32	.05

Table 111 (Concluded)

IAR--FAILURE SCALE (58 Third Grade Classrooms)

	Variables		
No.	Name	<u>r</u>	_p<
Child	Responsiveness		
359a 368a 369a 493c	Child responses, nonacademic Child responses to adult open-ended questions Child extended response, nonacademic Individual child responds to adult academic command,	28 26 44	.05 .05 .001
	request, or direct question	.26	.05
Adult	Responsiveness		
365a	Adult responses to child requests or questions, nonacademic	38	.01
366a	Adult responds to child questions with open-ended question	33	.01
Instr	uction		
373a	Adult instruction, nonacademic	29	.05
Conve	rsational Statements		
343a 388a 456a 476c 517c 587c	Child to adult, all verbal except response Child task-related comments to adults All child task-related comments Verbal interactions among children Child task-related comments to children All child task-related comments	41 32 36 41 46 45	.01 .05 .01 .01 .001
<u>Child</u>	Behavior		
514c	Two childre orking together, using concrete objects	31	.05
515c	Small group working together, using concrete objects	 31	.05
	Child waiting Child cooperation	.29 42	
Commu	nication Focus		
441a	Adult communication or attention focus, two children Adult communication or attention focus, large group Adults attentive to large group		
Misce	llaneous		
444a	Adult movement	.28	.05

did not accept responsibility for their own success, but did accept responsibility for their failures. These children seem to be saying: "If I do well, it is because of the teacher; but if I do poorly, it is because of my own failings."

There were 62 significant negative correlations between accepting responsibility for failure and an instructional variable. Children who did not accept responsibility for their own failure were from classrooms which allowed a child to select his own seating and groups and provided a wide variety of materials and activities (Var. 24, 26, 44, 62, 63, 82, 83). Children from classrooms that allowed children to be independent and provided personalized attention and instruction were more likely to view the cause of their failure as something outside of themselves (see Table 111).

In classrooms where children took verbal initiative, asked questions, engaged in task-related conversation, or responded to adults' open-ended questions, children were more likely to view their failures as someone else's fault (e.g., "Someone bothered me," or "The book is too hard"). The variables which in part described University of Oregon and University of Kansas were positively correlated with accepting responsibility for failure. These two models and Non-Follow Through had higher residual gain scores than all other models (see Table 110). If children are to take responsibility for their own failure as measured by the 1.AR, it would seem advisable to use some of the instructional processes of the University of Kansas and University of Oregon. In these structured models, the expectations of children are very clear and, we hypothesize if a child fails he is aware that he did no respond to the task properly. Excepting EDC, children in the classrooms of the more open models took less responsibility for their failure. Far West, University of Arizona, and Bank Street adjusted scores were relatively lower than the means for all classrooms.

c. Summary

Findings from this study seem to indicate that classrooms that allow more independence have children who accept responsibility for their success. However, classrooms that allow more child involvement in selecting their groups, that allow child independence in activities, that provide individualized instruction, and that have a wide
variety of activities and materials, do not as often have children who
accept responsibility for their own failure.

On the other hand, children who are in classrooms that are more teacher-directed--and who experience education more often in large groups--are more likely to attribute their success to the teacher or to easy work. The failure of children in the more structured, teacher-directed classrooms is accepted by the child as his own failure.

Interestingly, the Non-Follow Through classrooms had positive gain scores on both the success and failure scores (see Table 110).

In fact, children in Non-Follow Through classrooms took more responsibility for their failure than children in any of the sponsors' classrooms. Perhaps this is explained by the fact that within the Non-Follow Through sample, there was a wide range of classroom structures. It may be recalled from Chapter VI that in the third grade sample, there were 16 classrooms that were classified as University of Oregon classrooms on the PEI and CCL variables and whose children, according to the previous findings, would accept responsibility for failure. EDC had the highe . gain score for all sponsors on the Success scale and ten of the Non-Follow Through classrooms were classified as EDC; thus, in these classrooms the children would be more likely to take responsibility for their success. It is of note that EDC was the only sponsor to show positive gain on both scales. While all raw scores were similar for all of the sponsors, children in EDC classrooms entered school with lower baseline WRAT scores so that the adjustment of raw scores for entering ability was in EDC's favor. Nevertheless, upon adjustment of entering baseline scores, correlations indicated that children in EDC classrooms were more accepting than children in other classrooms of responsibility for both their own failure and success.

7. Relationship Between Scores on the MAT Math and Peading Subtests and Instructional Process Variables

It is of general interest to educators to understand how instructional processes affect a child's ability to show gains on standardized reading and math achievement tests. The MAT was given in Spring 1973. 108 first grades and 58 third grades were included in the sample. See Table 101 for the classroom and site breakdown by sponsor. From the data, correlations were computed between 340 instructional variables and classroom mean scores on reading and math tests for each grade (first adjusting for the baseline WRAT scores).

a. Math Correlations

This section presents the significant correlations between instructional variables and total math test scores for the first grade and three subscores on the math test for the third grade. Of the 340 correlations that were computed, approximately 17 significant correlations (p < .05) could have occurred by chance. Since there are so many variables and no way of identifying which may have occurred by chance, variables that correlated at both grade levels and those that correlated across all subscores can be interpreted with more confidence.

Two variables that represent the extent of opportunity to engage in math activities (Var. 17 and 66) were positively related to math scores in both the first and the third grades (see Table 112). In some cases, the lengths of time children spend in school varied by as much as 2 hours. When the school day is longer, children may have more opportunities to engage in math. The correlation of the average rate of occurrence of math and high test scores was strong in all of the

Table 112

PARTIAL CORRELATIONS OF MAT MATH SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES (Follow Through and Non-Follow Through)

		Fir	st	Third Gra							
		Gra	de	Ma	th			Ma	th		
		(N=1	08*)	Comp	uta-	Ma	th	Problem			
	Variables	Total	Math	ti	on	Conc	epts	Solv	ing	Total	Math
No.	Name	r	p<	r	p<	r	p<	r	p<	r	p<
											. —
MATE	RIALS										
25	Games, toys, play equipment present	15		46	.001	38	. 01	32	. 05	42	.01
26	Games, toys, play equipment used	04		36	.01	36	.01	26		35	.01
28	Instructional materials used	.21	.05	05	•	03		02		04	
37	Audio visual equipment present	.04		45	.001	37	.01	35	.01	42	.01
38	Audio visual equipment used	- 28	.01	39	.01	18		24		30	.05
44	lotal number different resource cate-										
	gories coded "present" over 3 days	04		41	.01	36	.01	33	. 01	39	.01
45	Total number different resource cate-	•••		• • •							
7.7	gories coded "used today" over 3 days	03		30	.05	18		14	.31	23	
237	Audio visual equipment/Academic	05			.03	10		-,14	• 51		
431		. 20	01	22		19		25	. 06	23	
220	activities	 30	.01	22		19		23	.00	23	
238	Exploratory materials/Academic								20	25	
	activities	04		30	.05	23		14	. 30	25	
239	Math or science equipment/Academic										
	activities	03		20		29	.05	26		26	.05
240	Texts, workbooks/Academic activities	. 09		.38	.01	.18		.17		. 27	. 05
241	Puzzles, games/Academic activities	15		30	.05	22		24		27	. 05
ACTI	VITIES										
24	Child selection of seating and work										
	groups	09		32	.05	31	.05	30	.05	33	.01
62	Group time	21	.05	43	.001	35	.01	25		38	.01
63	Story, music, dancing	03		52	.001	46	.001	37	.01	48	.001
64	Arts, crafts	23	.05	26		15		11		20	
66	Numbers, math, arithmetic	. 29	.01	.59	.001	.42	.01	.43	.01	.52	.001
67	Reading, alphabet, language development	.18		.40	.01	. 26		.19		.31	.05
68	Social studies, geography	.15		.13		. 28	. 05	.18		.21	
69	Science, natural world	06		27	.05	21		18		24	
71	Blocks, trucks	18		22		33	. 01	29	.05	29	.05
73	Active play	26	.01	29	.05	19		18		24	
76	Social interaction	.08		.18		. 25		.33	. 05	.26	. 05
77	Unoccupied child	12		.45	.001	.37	.01	.42	.01	.44	.001
80	Classroom management	33	.001	10	.001	09		.04		06	
82	Wide variety of activities, concurrent	07		14		33	.01	28	. 05	26	
83	Wide variety of activities, over one day	13		44	.001	42	.01	40	.01	45	.001
84	Approximate number of children in the	.13		.44	.001	. 72	. 01			• • • •	
07	classroom in any activity	. 29	.01	. 29	. 05	. 28	. 05	.17		.27	. 05
244		20	.05	32	.05	28	.05	,		28	.05
245	• •	05	.05	45	.001	43	.001	34	.01	44	.001
	Story, music, dancing/Longitudinal		01						.01	31	. 05
246	Arts, crafts/Longitudinal	28	.01	34	.01	27	. 05	25		31	. 03
247	Guessing games, table games, puzzles/ Longitudinal	12		26		22		25		26	.05
248	Numbers, math, arithmetic/Longitudinal	.31	.01	.24		02		.01		.09	
249	Reading, alphabet, language development/ Longitudinal	.09		.33	.01	.10		.09		.20	
251	Science, natural world/Longitudinal	04		37	.01	38	.01	28	.05	37	.01
253	Blocks, trucks/Longitudinal	12		19		29	. 05	27	.05	26	.05
255	Active play/Longitudinal	27	.01	23		23		25		25	
256	Practical skills acquisition/Longitudinal			30	.05	19		23		26	

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

PARTIAL CORRELATIONS OF MAT MAIH SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES

(Follow Through and Non-Follow Through)

		Fir				Thi	rd Gra	de (N=	58)	<i>&</i>	
		Gra			th				th		
	Variables	•	08*)	Comp			th	Prob		F b 1	11 1-
No.	Name	r	Math p<	r	on P<	r	epts p<	Solv	p<	r	Math p<
		<u> </u>	<u> </u>		P					<u></u>	
TIME	SPENT AND ACADEMIC INTERACTION										
17	Total class duration	. 25	.01	. 40	.01	.39	.01	.40	.01	.42	.01
140	Approximate number children involved in Mathall days observed	.35	.001	.60	.001	.46	. 001	.40	.01	.53	.001
163	Approximate number children involved in										
186	Readingall days observed Approximate number children involved in	.32	.001	.50	.001	.36	.01	.28	.05	.41	.01
	Social Studiesall days observed	. 15		.11		.27	.05	.15		.18	
242											
	activity is occurring	.21	.05	. 59	.001	.47	.001	.42	.01	.53	.001
	Total academic verbal interactions	.41	.001	. 50	.001	.31	.05	.35	.01	.42	.01
566c	Total academic verbal interactions	.42	.001	.50	.001	.30	. 05	.34	.01	. 42	.01
GROU	PINGS								,		
Adul	ts in the Classroom										
15	Child/teacher and aide ratio (number										
16	children over teachers and aides) Child/adult ratio (number children over	.09		.15		.30	.05	.25		.24	
10.	teachers, aides, and volunteers)	. 02		.17		.31	. 05	.23		.25	
108	Overall occurrences of adults	.28	.01	.07		04	.05	02		.01	
262		.20	.01	.07		04		02		.01	
202	classroom/Longitudinal	.23	.05	03		20		19		14	
Adu 1	ts Withou. Children										
231	Volunteer involved/Classroom management	.06		.24		.19		.27	.05	.25	
<u>Ind i</u>	vidualized Attention										•
86	Teacher with one child	29	.01	14		12		09		13	
104	Adult with one child	21	.05	14		12		08		12	
109	One child with any adult	20	. 05	15		16		08		14	
143		26	.01	27	.05	17		13		21	
155	One child with any adults/Reading	19	.05	25		18		12		20	
164	Personalized instruction in Reading	22	.05	34	.01	27	.05	18		29	. 05
257	Teacher with one child, academic										
	activities/Longitudinal	28	.01	18		13		11		15	
Adul	ts with Two Children										
87	Teacher with two children	26	.01	32	. 05	38	.01	32	.05	36	.01
105	Adult with two child 'n	19		29	.05	32	. 05	23		30	.05
110	Two children with any adult	16		24		26	.05	14		23	
121	Two children with teacher/Math	14		23		27	.05	26		27	. 05
133	Two children with any adults/Math	15		25		33	.01	23		29	. 05
144	Two children with teacher/Reading	23	.05	40	.01	33	.01	~. 28	.05	36	.01
148	Two children with aide/Reading	24	.01	27	.05	24		10		22	
156	Two children with any adults/Reading	16		38	.01	33	.01	22		33	.01
<u>Adul</u>	ts with Small Group										
88	Teacher with small group	.16		19		30	.05	24		25	
94	Aide with small group	00		17		27	.05	29	.05	25	
106	Adult with small group	. 09		17		29	. 05	27	.05	26	
										har	

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

PARTIAL CORRELATIONS OF MAT MATH SCORES WITH INSTRUCTIONAL VERIABLES FIRST AND THIRD GRADES (Follow Through and Non-Follow Through)

		Fir					Third Grade (N=58)					
	for follow	-	08*)	Comp			th	Prob		m 1	W -1	
No.	√ariables Name	r	Math p<	r	on	r	epts p<	Solv	p<	r	Math o<	
_					_P		<u> </u>		<u> </u>			
Adul	ts with Small Group (Continued)											
111	Small group of children wit. any adult	.14		14		26	. 05	23		22	01	
122 134	Small group with teacher/Math Small group with any adults/Math	12		41	.01	34	.01	24	0.5	36	.01	
145		10 .01		22 25		30 35	.05 .01	28 28	.05 .05	28 31	.05 .05	
157	Small group with any adults/Reading	.14		18		31	.05	28	.05	27	.05	
222								,				
	Arts and crafts	.00		23		31	.05	21		27	.05	
<u>Adul</u>	ts with Large Group											
89	Teacher with large group	.07		.39	.01	.47	.001	. 33	.01	.44	.001	
107	Adult with large group	.06		.33	.01	44	.001	. 38	.01	.40	.01	
112	0 0 .	. 10		.32	. 05	.42	.01	.32	.05	. 37	.01	
123		.10		. 39	.01	.52	.001	.41	.01	.47	.001	
135	Large group with any adults/Math	. 21	.03	.46	.001	. 54	.001	.46	.001	.52	.001	
146		.06		. 34	.01	.43	.001	.33	.01	. 39	.01	
158	Large group with any adults/Reading Large group of children with any adults/	.09		.40	.01	- 44	.001	.32	. 05	. 41	.01	
223	Arts and crafts											
Inde	pendent Children											
115	Two children independent	22	.05	36	.01	33	.01	23		33	.01	
116	Small group of children independent	36	.001	28	.05	33	.01	23		30	. 05	
118	All children independent	31	.01	20		16		03		16		
136	One child independent/Math	05		- 34	.01	35	.01	21		32	. 05	
137 138	Two children independent/Math Small group of children independent/	11		43	.001	~.40	.0:	31	. 05	41	.01	
130	Math	14		37	.01	46	.001	38	.01	43	.001	
142		13		39	.01	39	.01	29	.05	38	.01	
159		13		32	.05	31	.05	21	.05	30	.05	
160		19	. 05	39	.01	35	.01	32	.05	38	.01	
161	Small group of children independent/											
	Reading	26	. 01	23		20		11		20		
165	All children independent/Reading	23	.05	24		14		04		16		
205	Small group of children independent/ Science	11		29	.05	29	.05	21		28	.05	
Misc	ellaneous											
112	Oremail and an area of ability and the											
113	Overall occurrence of children with any adult	.31	.01	.20		.16		.08		.16		
INTE	RACTIONS											
Chil	d Questioning											
346a	Child commands, requests, and direct											
050	questions, nonacademic	20	.05	51	.001	40	. 01	43	.001	48	.001	
	Child questions to adults	13		32	.05	32	.05	29	.05	33	.01	
	All child open-ended questions Child commands, requests, and direct	09		9		28	. 95	20		24		
7//0	questions, nonacademic	35	.001	38	.01	26	.05	26		33	.01	
			.001	. 50		. 20	. 00	. 20			. 01	

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

PARTIAL CORRELATIONS OF MAT MATH SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES (Follow Through and Non-Follow Through)

	Fir	st			Third Grade (N=58)					
Variables		de .08*) . hath	Comp	th uta - on	Ma	th		th lem	Total	Math
No. Name	r	p<	r	P<	r	p<	r	p<	r	p<
Adult Questioning										
351a adult commands, requests, and direct										
questions to groups of children, non- academic	16		28	.05	17		22		24	
352a Adult commands, requests, and direct questions to individual children, non-										
academia 353a Adult commands, requests, and direct questions to groups of children,	31	.01	47	.001	31	.05	38	.01	42	.01
academic 354a Adult commands, requests, and direct questions to individual children,	. 10		. 53	.001	. 52	.001	.45	.001	. 54	.001
academic 355a Adult open-ended questions to children,	.23	.05	. 30	. 05	.09		.08		.18	
nonacademic	15		42	.01	36	.01	38	.01	42	.01
357a All adult questions to children 451a Adult academic commands, requests, and	.11		. 32	.05	.24		.12		. 25	
direct questions to children 452a Adult open-ended questions to children	. 25	.01	.51	.001	. 36	.01	.31	ځ٥.	.43	.001
485c Adult commands, requests, and direct questions to individual children,	03		35	.01	30	. 05	29	.05	34	.01
academic 488c All adult questions to children	. 29	.01 .05	.36	.01 .01	.24	. 001	.24	.05	.30 .39	.05 .01
582c Adult academic commands, requests, and direct questions to children	.32	.01	.57	.001	.51	.001	. 44	.001	.55	.001
Child Responsiveness										
358c All child responses	. 26	.01	. 44	.001	. 28	. 05	.20		. 34	.01
359a Child responses, nonacademic	26	.01	47	.001	30	.05	37	.01	- 41	.01
360a Chilc responses, academic	. 39	.001	.52	.001	.33	. 01	.30	.05	.42	01
362a One child responds to adult academic commands, requests, or direct ques-	20	••	2.2							
tions 363a Child group responds to adult academic commands, requests, or direct ques-	. 28	.01	. 30	.05	.09		.09		.18	
tions 36Sa Child responses to adult open-ended	.14		. 54	.001	.45	. 001	.47	.01	. 52	.001
questions	03	001	32	. 05	26	.05	24		30	.05
369a Child extended response, nonacademic 370a Child extended response, academic	.33	.001 .01	36 .35	.01 .01	19 .26	. 05	24 . 3	.01	29 .34	.05 .01
454a Child's extended response to question	. 35	.001	.19	.01	.18	.05	22	.01	.21	.01
490c Child responses, nonacademic	28	.01	29	. 05	16		÷.17		23	
491c Child responses, academic	. 34	.001	. 42	.01	. 29	. 05	. 30	.05	.37	.01
493c One child responds to adult academic commands, requests, or direct questions	. 25	.01	.18		.04		.03		.10	
544c Child not responding to adults 585c Child's extended response to questions	.08 .26	.01	. 34 20	.01	.45 12	. 001	.40 04	.01	.42 13	.01
Adult Responsiveness										
365a Adult responses to child requests or questions, nonacademic	29	.01	- .50	.001	38	. 01	38	.01	45	.001
366a Adult responds to child question with open-ended question	.03	. • 1	28	.05	13	. 01	14	.01	20	.001
*						_		_		

Child focus variables, which are identified by the cappearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

PARTIAL CORRELATIONS OF MAT MATH SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES (Follow Through and Non-Follow Through)

	Fir	st			Third Grade (N=58)						
	Gra		Ma	th			Ma				
		08*)	Comp			th	Prob		m . •	W1	
Variables		Math		on		epts	Solv		Total		
No. Name	<u>r</u>	_p<_	<u>r</u>	_p<	<u>r</u>	_p<	<u>r</u>	_p<	<u>r</u>	_p<	
Adult Responsiveness (Continued)											
496c Adult responses to child requests or											
questions, nonacademic	20	.05	•.30	.05	32	. 05	21		30	.05	
545c Adult not responding to child	.12		. 22		. 35	.01	. 34	.01	.32	.05	
Adult Feedback											
394a All adult acknowledgment to children	.20	.05	03		08		10		07		
395a Adult acknowledgment to children,											
academic	. 29	.01	.14		.03		.03		.08		
397a Adult acknowledgment, other task-											
related	13		42	.001	27	. 05	33	.01	37	.01	
398a All adult praise to children	.39	.001	. 25		.10		.18		. 19		
399a Adult reinforcement with token, academic	.38	.001	.15		. 02		.01		.07		
400a Adult reinforcement with token,	. 30	.001	.15		.02		.01		.07		
behavior	.37	.001	.12		.03		.00		.08		
401a Adult reinforcement with token, other											
task-related	30	.01	.11		.02		03		. 04		
402a Adult praise, academic	.37	.001	.36	.01	.17		. 31	. 05	. 30	.05	
403a Adult praise, behavior	.36	.001	.16		.11		.04		. 11		
404a Adult praise, other task-related	06		30	.05	21		34	.01	30	.05	
405a All adult corrective feedback to			• •				0.2				
children	.31	.01	.16		.12		.03		.12		
406a Adult positive corrective feedback, academic	.44	.001	.34	.0.	.12		.20	. 25			
407a Adult negative corrective feedback,	. 44	.001	. 54	.01	. 12		.20	. 2 3			
academic *	. 15		.34	.01	.38	.01	.18		. 32	.05	
408a Adult positive corrective feedback,											
behavior	04		27	.05	19		25		26		
412a Adult feedback to child response to											
adult academic commands, requests, or											
questions	.44	.001	. 20		.09		.08		.14		
432a Adult punishment of children	.13		. 29	.05	. 36	.01	. 24		.32	.05	
449a Adult netural corrective feedback,	22	0.5	27		2.		20	0.5	20	0.5	
academic	. 23	.05	.24		.24		.30	.05	. 28 . 08	.05	
457a All adult positive corrective feedback 469a All adult reinforcement with tokens	.38	.001	.15		.06		.02		.07		
543c Adult feedback to child response to	.41	.001	.13		.02		.01		.07		
adult academic commands, requests, or											
questions	.30	.01	.17		.07		.00		.09		
580c Adult neutral corrective feedback,											
academic	. 26	.01	.07		.02		.04		.05		
588c All adult positive corrective feedback	.31	.01	.06		.16		. 23		.15		
600c All adult reinforcement with tokens	.35	.001	.11		.02		05		.03		
Instruction											
372a Child presenting information to a group	.03		.13		.20		.26	.05	.21		
373a Adult instruction, nonacademic	07		39	.01	26	. 05	26		33	.01	
375a Adult instructs an individual child	12		26		35	.01	34	.01	33	.01	
380a Child self-instruction, academic, with											
objects	03		.33	.01	.32	.05	.22		.31	.05	
455a All adult instruction	09		28	.05	:6		17		22		
508c Child self-instruction	. 10		. 30	.05	.09		.10		.19		
*					_						

* Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

PARTIAL CORRELATIONS OF MAT MATH SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES

(Follow Through and Non-Follow Through)

	Fir Gra			th	Thi	rd Gra	de (N=	58) th		
Variables	(N=1	.08*) : Math	Comp	uta- on	Ma Conc	th	Prob Solv	1em	Total	Math
No. Name	r	p<	r	p<	r	p<	<u>r</u>	p<	r	p<
Instruction (Continued)										
509c Child self-instruction, academic 510c Child self-instruction, objects	.26 34	.01	. 37	.61	.14		.19		.26	
511c Child self-instruction, academic, with objects	34	.001	02		.04		06		0	
586c All adult instruction 599c Chiid self-instruction, nonacademic	.05 26	.01	-12 26		. 29 16		. 26 27	.05 .05	.23 24	
Child Attending										
464a Child attentive 547c Children attentive to adults, non-	03		29	.05	15		11		20	
academic	17		39	.02	21		26		31	.05
5950 Child attentive	07		36	.01	21		25		30	.05
Conversational Statements										
234 Among children/Social interaction 343a Child to a ult, all verbal except re-	05		. 27	.05	.35	.01	.41	.01	. 36	.01
sponse 344a Individual child verbal interactions	24	.01	45	.001	33	.01	36	.01	41	.01
with adult	.05		18		27	.03	33	.01	27	.05
387a Child general comments to adults	33	.001	29	.05	22		32	.01	30	.05
388a Child task-related comments to adults	16		39	.01	20		17		28	. 05
389a Adult general comments to children	32	.001	13		06		18		13	0.5
390a Adult task-related comments to children 456a All child task-related comments	.19		41	.01	25		20		32	.05
474c Child to adult, all verbal except response	.03	.05	37 26	.01	19 14		21 20		28 21	.05
476c Verbal interactions among children	18	.00	49	.001	36	.01	34	.01	43	.001
516c Social interaction among children	28	.01	24	.001	13	.01	18	.01	20	.001
517c Child task-related comments to children	.03		35	.01	30	.05	26		-,32	.01
518c Child general comments to adults	26	.01	35	.01	28	.05	38	.01	36	.01
520c Adult general comments to children	20	.05	15		11		20		16	
587c All child task-related comments	04		32	.05	26		21		28	.05
Affe										
46la All child negative affect	06		.14		.09		.26	.05	.17	
463a All negative behavior	.05		. 27	.05	.29	.05	.18		. 27	.05
594c All negative behavior	11	.14		.12			. 29	.05	.19	
Child Behavior										
467a Child cooperation	. 20	.05	15		01		00		06	
513c Child task persistence	.09		.32	.05	.12		.12		.21	
574c Child movement	12		30	.05	18		15		23	
598c Child cooperation	03		42	.01	33	.01	26	.05	37	.01
Communication Focus										
418a Adults attentive to children non-										
academic	22	.05	23	۸-	06		11		15	
419a Adults attentive to children, academic	. 27	.01	. 32	. 05	. 15		. 18		.24	

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

Table 112 (Concluded)

PARTIAL CORRELATIONS OF MAT MATH SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES (Follow Through and Non-Follow Through)

	Fir	st			Thi	rd Gr	rade (N=58)							
Variables	Gra (N=1 Total	08*)	Comp	th uta- on		th epts	Math Problem Solving		Total	Math				
No. Name	r	_p<	r	p<	r	p<	r	_p<	r	_p<				
Communication Focus (Continued)														
438a Adult communication or attention focus, one child	.19		11		30	.05	27	.(5	23					
441a Adult communication or attention focus, large group 471a Adults attentive to large group	.10 07		. 24		.39 .39	.01		.05	.32	.05				
Miscellaneous														
444a Adult movement	.04		.41	.01	. 39	.01	.43	. 001	.44	.001				

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

third grade subtests, as well as with the test totals for first and third grades. A variable that describes the number of children involved in math (Var. 140) on all of the observed days also had high positive correlations with all of the math test scores in both grade levels. "Total academic verbal interactions," which is a variable representing discussions of reading or math (Var. 435a and 566c) only, was positively related to math scores in both grades and these correlations occurred in both the adult-focused data and the child-focused data. Thus, opportunity and exposure to math seemeds to have an important effect upon test performance.

Since the average amount of time spent in arithmetic was highly correlated with achievement in math, scattergrams were generated to investigate whether classrooms that had a lower mean score on the baseline WRAT performed differently in relationship to this process variable and math achievement than those classrooms that had higher classroom mean scores on the WRAT. The classroom mean scores were rank ordered and divided into three equal groups of high, medium, and low. In first grade there were 36 in each group and in third grade there were 19 in the high and low groups and 10 in the medium group.

In both first and third grade, the classrooms where children entered with lower baseline scores achieved more when the amount of time spent in math increased than did the children in classrooms with higher baseline scores (see Table 113). This is particularly evident in third grade (see Figures 38, 39, and 40) where the correlation ranges from .65 for classrooms with low baseline WRAT mean scores to .26 for classrooms with high WRAT mean scores. This finding suggests that children who entered school with less ability need more time spent in developing basic skills.

In third grade classrooms where children were taught math in large groups by adults (Var. 135), children performed better on the math tests than children who were taught in other grouping arrangements. Because of the instructions given to classroom observers to record all groups of over eight children as "large groups," the interpretation of any variable which includes large groups is confused. It could be that three adults were instructing separate groups of ten children each, or it could be that one adult was instructing one group of 30 children, with two aides performing classroom management tasks. Since Var. 107 (Adults with large group), which includes teacher, aide, and volunteers and Var. 123 (Teacher with large group) both had positive correlations with the test scores in the third grade, it could be that several large groups of nine or more children were functioning at the same time in the classroom. All other grouping arrangements (Var. 122, 133, 134, 136, 137, and 138) showed either negative correlations with math scores or no significant relationship with test scores.

The occurrence of reading and the number of children involved in reading were related to math scores. This relationship suggests that programs that stress one of the basic skills also stress the other basic skills.

TIME SPENT IN NUMBERS, MATH, AND ARITHMETIC (VAR. 58) PLOTTED AGAINST MAT MAIH OURCOMES, THIRD GRADE CORRELATION .65, STANDARD ERROR 13.6, N=19 FIGURE 38

TIME SPENT IN NUMBERS, MATH, AND ARITHMETIC (VAR. 58) PLOTTED AGAINST MAT MATH OUTCOMES, THIRD GRADS CORRELATION .58, STANDARD ERROR 7.55, N=20 FIGURE 39

34.00 14.00 18.00 22.00 26.00 30.00 MAT Math Scores (High Entering Scores) 10.00 6.00 2.00 38.00 54.00 50.00 46.00 42.00 99.00 62.00 58.00 78.00 74.00 70.00 Average Time Spent

TIME SPENT IN NUMBERS, MATH, AND ARITHMETIC (VAR. 58) PLOTTED AGAINST MAT MATH OUTCOMES, THIRD GRADE CORRELATION .24, STANDARD ERROR 10.45, N=19 FIGURE 40

Table 113

AVERAGE OCCURRENCE OF CHILDREN ENGAGED IN MAT! ACTIVITIES PER OBSERVATION* (VAR. 1)

•	Low	Med	<u>High</u>
First Grade Number of Classrooms Correlations	36 .51	36 .05	36 .40
Third Grade Number of Classrooms Correlations	19 .65	20 •58	19 •25

^{*}Computed over three days and includes approximately 60 observations.

Many question-response-feedback variables had significant correlations with math scores in both grades. In this type of interaction, an adult asks the children a direct question that requires a specific response. The adult then gives immediate feedback to the response so that the child knows if he is right or wrong.

In the first grade, there was a positive correlation with adult questions to individual children in academic subjects (Var. 354a). This trend reversed in the third grade and the significant relationship was between adults questioning groups of children (Var. 353a) rather than an individual child. Children offering academic responses and extended responses (Var. 360a and 370a) were significantly correlated in both grades.

A change in the effect of adult feedback upon math test scores was evident in the correlations for the two grades. For academic activities in the first grade, acknowledgment, praise, tokens, positive corrective and neutral corrective feedback (Var. 395a, 399a, 402a, and 449a) were significantly related to math scores. In the third grade, praise, neutral corrective and negative corrective feedback (Var. 402a, 407a, and 449a) had significant relationship with the scores.

The positive correlation of test scores with negative corrective feedback in academic subjects was surprising. This feedback is usually in the form of demeaning statements, threats, withholding privileges, or punishment. It is difficult to understand how this would motivate the child to perform better in math. Most sponsors encouraged teachers to be supportive and to redirect incorrect responses in academic situations.

It is interesting to note that the use of tokens as reinforcement (Var. 399a, 400a, 469a, and 600c) was correlated with test scores in only the first grade. The University of Kansas model, the only model to use tokens, has modified its program in the third grade and recommends verbal reinforcement rather than tokens. This difference in procedure between first and third grade is reflected in the results.

A variable describing an adult moving around the class-room (Var. 444a) was positively correlated with all subscores on the third grade math tests. This movement most likely occurred as the teacher moved around the classroom assisting children in checking the work in the workbooks or textbooks and providing feedback. Textbooks and workbooks and child self-instruction (Var. 240 and 509c) were also positively correlated with math computation.

In the third grade, two strange positive correlations from the child-focused data were found between children or adults not responding (Var. 544c, 545c) and the math scores. This is likely to be an anomaly caused by our instructions to the observer. The observer was instructed to record an adult's question to the group, and if the child being observed did not respond either in chorus or individually, he would be recorded as not responding. On the other hand, if the observed focus child as requesting assistance and had his hand up, the teacher was coded as not responding until she gave that particular child some attention. Since this correlation occurred only in the child-focused data, we conclude that it is an anomaly, reflecting the way the data were collected.

In the first grade, there were 49 significant positive correlations and 35 negative correlations with components of the morestructured model more often positively related to the test scores. Variables relating to the more open classrooms, such as "Wide variety of activities" and child independence, were negatively correlated.

In general, the third grade subscores correlated very similarly: math computations had 114 significant correlations, math concepts 104, problem solving 77, and total math 108. Out of these, there were 52 variables on which they had ε 11 significant correlations.

Math computation had more significant correlations with all of the stimulus-response-feedback variables than did the other two subtests. Primarily, this subtest correlates positively with instructional variables which represent the structured model and negatively with variables representing the flexible models.

Only math concepts had significant positive relationships with a higher ratio of adults to children (Var. 15, 16). It also was the only subtest to have a positive relationship with the occurrence of social studies (Var. 68, 186). Some social studies projects require building models, and the like, which may aid in developing math concepts as measured by the MAT subtest, Math Concepts.

Problem solving was somewhat different in its correlations from the other subtests. Problem solving was not negatively affected by games or toys used or group time (Var. 26 and 62) as were the other subscores. Nor did the problem-solving subscore have as many negative correlations with variables associated with independence, small groups, personalized instruction, audiovisual equipment used, or exploratory materials as did the other two subscores. Also, fewer negative correlations were reported between problem solving and open-ended divergent-type questions or task-related comments, as they were for the two other subscores. The only positive correlation with children presenting information to a group (Var. 372a) was with the problem-solving subtest. Nevertheless problem solving was highly correlated with the other subtests and probably is measuring very similar dimensions of math ability.

Overall for third grade, there were a total of 403 correlations p > .05 when correlations of all tests were combined. Of these, 165 were positive correlations and 238 were negative correlations. Thus, we have learned as much regarding what instructional processes may not enhance achievement on these tests as we have learned about the processes that may be beneficial to student performance. Data presented on Table 114 indicate that in the first grade the University of Kansas classrooms had the highest raw score mean as well as the highest adjusted score relative to all other classrooms. Surprisingly EDC, a sponsor which does not emphasize developing basic skills in the first grade, had the second highest adjusted score. This score was even higher than the Non-Follow Through score.

In third grade, University of Oregon had a raw score and adjusted score in math which were significantly different from all other sponsors and Non-Follow Through (see Table 114). Compared to all classrooms, University of Kansas and Non-Follow Through were the only other groups to have positive adjusted math scores.

Excepting EDC, in the first grade, the sponsors who advocate the use of the process variables which are positively related to math scores are the sponsors which had higher raw scores as well as higher adjusted math scores. EDC's mean scores in first grade on the use of process variables that were positively related to the math scores were lower in relationship to the scores of University of Oregon, University of of Kansas, and Non-Follow Through on the process variables. In the case of EDC, variables other than those we have assessed in this report must account for EDC's residual gain score in math.

b. Reading Correlations

Correlations were computed for reading test scores and instructional variables (first adjusting for baseline WRAT scores). Some

Table 114

SPONSOR AND NON-FOLLOW THROUGH MEANS AND STANDARD DEVIATIONS FOR MAT TOTAL MATH SCORES

Course and Number	197	438/Fall 1 WRAT Standard Deviation	MA Raw	. 443/ T Math Score Standard Deviation	ence i MAT Ma Among	ve Differ- n adjusted th Scores Sponsors d NFT Standard Deviation
Sponsor and Number	Mean	Deviation	Mean	Deviacion	Healt	Deviacion
		FIRST GF	RADE			
Far West (N=12)	32.65	2.78	31.31	5.73	-2.56	6.01
University of Arizona (N=14)	30.92	5.09	31.08	7.26	-1.55	6.14
Bank Street (N=11)	26.86	5.72	29.54	5.22	22	4.50
University of Oregon (N=5)	29.32	7.50	31.14	7.25	37	3.10
University of Kansas (N=17)	28.11	4.68	36.76	7.50	6.10	7.36
High/Scope (N=13)	26.60	7.10	24.24	7.03	-5.34	5.66
EDC (N=12)	27.02	5.40	30.99	4.00	1.11	1.67
NFT (N=24)	32.67	9.05	34.27	9.99	.38	6.28
		THIRD G	RADE			
Far West (N=14)	40.78	3.31	49.62	9.71	-6.08	8.65
University of Arizona (N=2)	28.20	.28	33.72	7.24	-12.54	7.45
Bank Street (N=7)	32.42	6.78	47.42	12.49	-2.00	8.42
University of Oregon (N=4)	33.50	6.37	71.12	9.32	20.89	8.13
University of Kansas (N=12)	35.16	5.82	52.63	10.67	1.15	8.18
High/Scope (N=0)	*	*	*	*	*	*
EDC (N=6)	26.38	6.95	38.53	11.56	-6.36	7.20
NFT (N=13)	38.25	8.71	58.79	11.96	5.00	14.43

^{*} Insufficient classrooms were both tested and observed in the third grade for High/Scope for their model to be included in the analysis.

105 first grade and 58 third grade classrooms were included in the analysis (see Table 101 for the classroom and site breakdown by sponsor). Since 340 instructional variables were used, approximately 17 significant correlations p < .05 for each test could be expected to occur by chance. Those variables that showed significant correlation with both reading tests in a single grade level, or were significant in both grade levels, can be interpreted with greater confidence.

In the first grade, the "word analysis" test scores were significantly correlated with 113 of the instructional variables and 118 of the variables correlated with the score on the "total reading" task. (Word analysis is not a subset of the total reading score.) Out of these, 88 variables were significantly correlated with scores from both tests.

The MAT reading test administered to the third grade measured "language" and "total reading." Of the instructional variables, 91 were significantly correlated with the "language" test scores, and 63 variables were significantly correlated with "total reading." Of these, 46 variables were common to the two tests.

The amount of time spent in school (Var. 17) had a positive significant relationship with all scores in both grades (see Table 115). There was a difference among sites of 2 hours in the total class duration. Not only did the amount of time in school affect scores, but also the amount of time spent in reading. Two variables in the first grade were positively correlated with opportunity or exposure to reading (Var. 67, 163). The number of children involved in math or social studies (subjects requiring reading skills in the third grade) was positively related to reading scores in the third grade. Another variable, which described interactions taking place between adults and students involved with reading or math, was related to high reading scores in both grades (Var. 435a, 566c). These significant positive relationships occurred in both the child-focused and the adult-focused data. The results for the preceding variables combined suggest that more opportunities and exposures to reading will enhance reading scores.

The results also indicate differences in what appear to be optimal grouping arrangements for the first and the third grade. First grade scores were higher when adults worked with small groups (Var. 88, 149, 157). Third grade scores were higher when the adults worked with large groups (Var. 89, 107, 146, 158). Small groups have been defined as a group of 3 to 8 children. Thus, any group of 9 or more children was classified as a large group. The sponsors often have fewer aides assigned at third grade than first grade; thus, with fewer adults, the group size would naturally be larger and would probably be coded as a large group. Also Non-Follow Through classrooms are most likely to be taught in large groups since they do not often have classroom aides available. Two variables relating to the number of children per adult (Var. 15, 16) were positively related to third grade reading and language scores. Apparently when there were fewer adults per child, the scores were higher. Since large groups dominate in the third grade, these correlations are to be expected.

Table 115

PARTIAL CORRELATIONS OF MAT READING SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES

(Follow Through and Non-Follow Through)

			t Grad rd	le (N=1		Thi	rd Gra	ade (N=	
	Variables		ra ysis	Tot Read		lang	uage	Tot Read	
No.	Name	r	p<	r	p<	r	p<	r	p<_
									
MATER	TIALS								
25	Games, toys, play equipment present	23	.05	32	.001	29	.05	29	.05
26	Games, toys, play equipment used	08		20	.05	- 31	.05	32	.05
28	Instructional materials used	. 21	.05	.16		11		.11	
38	Audio visual equipment used	15		28	.01	10		06	
44	Total number different resource categories coded "present" over three days	0.0			05	2.2		10	
237	Audio visual equipment/Academic Activities	08 25	.01	19 29	.05 .01	23 15		18 12	
238	Exploratory materials/Academic Activities	09	.01	15	.01	26	.05	12 15	
239	Math or science equipment/Academic	.07		15		20	.03	13	
	Activities	04		07		31	.05	36	.01
240	Texts, workbooks/Academic Activities	.16		. 24	.01	.13	.05	.11	
241	Puzzles, games/Academic Activities	04		09		34	.01	17	
ACTIV	/ITIES								
22	Teacher assigns children to groups	20	.05						
24	Child selection of seating and work groups			26	.01	30	.05	23	
62	Group time	30		22	.05	23		20	
63	Story, music, dancing	16	.01	13		39	.01	20	
64	Arts, crafts	29	.01	26	.01	03		03	
65	Guessing games, table games, puzzles	12		10		27	.05	- .17	
66	Numbers, math, arithmetic	. 26	.01	.19	.05	.21		.33	.01
67	Reading, alphabet, language development	.38	.001	.40	.001	.23		. 08	
68	Social studies, geography	.20	. 05	. 29	.01	. 28	.05	.17	
69	Science, natural world	18		24	.01	1C		06	
71	Blocks, trucks	23	. 05	24	.05	30	.05	32	.05
73 76	Active play Social interaction	21	. 05	23	.05	10	٠.	01	
77	Unoccupied child	.01		08 11		.35	.01	. 19 . 26	
78	Discipline	19		20	.05	.30 00	.05	16	
80	Class:oom management	22	.05	23	.05	17		07	
82	Wide variety of activities, concurrent	16	.03	18	.05	40	.01	33	.05
83	Wide variety of activities, over one day	30	.01	30	.01	36	.01	20	.03
84	Approximate number of children in the								
	classroom in any activity	.24	.01	.23	.05	.27	.05	.15	
244	Group time/Longitudinal	28	.01	21	.05			12	
245	Story, music, dancing/Longitudinal	15		15		40	.01	22	
246	Arts, crafts/Longitudinal	32	.001	 35	.001	27	.05	18	
250	Social studies, geography/Longitudinal	.15		.23	.05			. 14	
252	Sewing, cooking, pounding/Longitudinal	11		08		33	.01	18	
253	Blocks, trucks/Longitudinal	18	0.5	18		. 27	.05	34	.01
255 265c	<pre>Prive play/Longitudinal itic play, pretending</pre>	20	.05 .05	~.15	05	- 13		07	
5050	acic play, precending	20	.05	20	.05	25		23	
TIME	SPENT AND ACADEMIC INTERACTION								
17	Total class duration	. 29	.01	30	.01	.35	. 21	.29	. 05
140	Approximate number of children involved in								
	Math, all days observed	.29	.01	.22	.05	.28	.05	.31	.05
163	Approximate number of children involved in								
	Reading, all days observed	.30	.001	.40	.001	.32	.05	.18	
186	Approximate number of children involved in								
207	Social Studies, all days observed	.20	.05	. 27	.01	.26		.10	
207	Approximate number of children involved in	_ 11		20	.05	06		04	
	Scienceall days observed	11		20	.05	00		04	

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

PARTIAL CORRELATIONS OF MAT READING SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES (Follow Through and Non-Follow Through)

				e (N=1		Th i	rd Gra	de (N=	
	Variables		rd ysis	Tot Read		Long		Tot Read	
No.	Name	r	p<	r	p<	r	guage p<	r	p<_
				 -			<u> </u>	 -	_£
TIME	SPENT AND ACADEMIC INTERACTION (Continued)								
228	Approximate number of children involved in Arts and Crafts, all days observed	22	0.5	20	25				
242	Percent CCLs in which an academic activity	22	.05	20	.05	.07		.02	
	is occurring	.35	.001	.26	.01	.42	.01	.25	
	Total academic verbal interactions	. 42	.001	.33	.001	. 29	.05	. 29	.05
566c	Total academic verbal interactions	. 55	.001	.50	.001	23		. 34	.01
GROUP	PINGS								
Adult	s in the Classroom								
15	Child/teacher and aide ratio (Number of								
	children over teachers and aldes)	.02		.11		.47	.001	.50	.001
16	Child/adult ratio (Number of children over								
96	teachers, aides, and volunteers) Overall aide occurrences	03		.04		.46		.44	.001
262	Average number of adults in the classroom/	.18		.11		20		28	.05
202	Longitudinal	.14		.11		.31	.05	29	.05
		• • • •		• • • •		. 51	.03	29	.05
Adult	s Without Children								
85	Teacher without children	24	.01	26	.01	14		.04	
229	Teacher involved/Classroom Management	15		25	.01	41		.02	
231	Volunteer involved/Classroom Management	.08		.00		.20		. 28	.05
Indiv	idualized Attention								
86	Teacher with one child	31	.01	34	.001	_ 12		- 12	
92	Aide with one child	06	.01	34 22	.05	12 08		12 15	
104	Adult with one child	23	.05	30	.01	15		13 14	
109	One child with any adult	26	.01	33	.001			14	
124	One child with aide/Math	16		22	.05	16		23	
141	Personalized instruction in Math	20	.05	25	. ø1	20		- 22	
143	One child with teacher/Reading	31	.01	31	.01	23		20	
155 164	One child with any adults/Reading	27	.01	32	.001	24		21	
257	Personalized instruction in reading Teacher with one child, academic	29	.01	34	.001	29	.05	24	
231	activities/Longitudinal	26	.01	28	.01	13		18	
261	Any adult with one child, any activity/	20	.01	20	.01	13		18	
	Longitudinal	24	.05	30	.01	08		06	
Adult	s with Two Children								
-									
87	Teacher with two children	30	.01	29	.01	36	.01	37	.01
93	Aide with two children	17		19	.05	14		10	
105	Adult with two children	18		17		27		27	.05
110 121	Two children with any adult Two children with teacher/Math	18	001	21	.05	21		16	
133	Two children with any adults/Math	31 22	.001	25 23	.01 .05	26 21		21 23	
144	Two children with teacher/Reading	29	.01	32	.001	30	.05	29	.05
156	Two children with any adults/Reading	19	.05	22	.05	28	.05	23	
	-								

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

PARTIAL CORRELATIONS OF MAT READING SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES

(Follow Through and Non-Follow Through)

			t Grad rd	le (N=1 Ma		Thi	rd Gra	de (N= Tot	
	Variables		ysis	Read		Lang	lage	Read	
No.	Name	r	p<	r	p<	r	p<	r	_p<
Adult	s with Small Group								
88	Teacher with small group	.22	.05	.23	.05	~.35	.01	39	.01
94	Aide with small group	.12	.05	.09	.05	34	.01	39	.01
106	Adult with small group	.12	.05	.19	.05	36	.01	42	.01
111	Small group of children with any adult	.19	.05	.15	.05	33	.01	41	.01
122	Small group with teacher/Math	10		05		31	.05	22	.01
126	Small group with aide/Math	02		04		24	.05	31	.05
134	Small group with any adults/Math	08		09		36	.01	40	.01
145	Small group with teacher/Reading	.06		.03		35	.01	.41	.01
149	Small group with aide/Reading	.26	.01	.22	.05	32	.05	39	.01
157	Small group with any adults/Reading	.21	.05	.17	.05	36	.01	42	.01
201	Small group with any adults/Science	03	.05	12		29	.05	28	.05
222	Small group of children with any adults/	03		12		2)	.03	20	. ,,,
222	Arts and Crafts	.07		.05		27	.05	21	
	Arts and crarts	.07		.05		27	.05	-,21	
Adul:	ts with Large Group					-			
89	Teacher with large group	.13		.15		.54	.001	.49	.00
107	Adult with large group	.06		.11		.53	.001	.46	.00
112	Large group of children with any adult	.04		.09		.48	.001	.43	.00
123	Large group with teacher/Math	.18		.11		. 57	.001	.50	.00
127	Large group with aide/Math	. 26	.01	.29	.01	.02		.04	
135	Large group with any adulis/Math	.31	.01	.27	.01	.55	.001	.51	.00
146	Large group with teacher/Reading	.05		.10		.50	.001	.44	.00
158	Large group with any adults/Reading	.01		.06		.46	.001	.40	.01
181	Large group with any adults/Social Studies	.20	05	. 31	.01	.21		. 24	
223	Large group of children with any adults/	.20	. 05	. 31	.01	. 21		. 24	
223	Arts and Crafts	.13		.17		.23		.26	.05
Inde	pendent Children								
				••				٠,,	
114	One child independent	13		20	.05	25		14	
115	Two children independent	20	.05	28	.01	32	.05	24	
116	Small group of children independent	31	.01	30	.01	33	.01	17	
118	All children independent	30	.01	29	.01	16		00	
136	One child independent/Math	12		14		32	.05	19	
137	Two children independent/Math	23	.05	18		38	. 01	24	
138	Small group of children independent/Math	22	. 05	18	0.5	41	.01	26	
142	All children independent/Math	25	.01	20	.05	34	.01	21	
159	One child independent/Reading	17		22	.05	34	. 01	21	
160 161	Two children independent/Reading Small group of children independent/	19		26	.01	32	. 01	20	
	Reading	. 20	.05	19	.05	23		10	
162	Large group of children independent/	02		.07		.26	.05	.28	.05
165	Reading	.02 22	Λ5	21	.05	10		.05	.03
	All children independent/Reading Large group of children independent/Social	22	.05	21	.00	10		.03	
185	Studies	25	.01	14		.01		.10	
203	One child independent/Science	 31	.01	17		25		16	
205	Small group of children independent/	31	.01	1/		23		10	
203	Science	16		21	.05	21		14	
Micc	ellaneous								
113	Overall occurrence of children with any								
113	•	. 30	.01	.29	.01	.16		.00	
	adult	. 50	.01	. 49	.01	. 10	•	.00	

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

PARTIAL CORRELATIONS OF MAT READING SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES (Follow Through and Non-Follow Through)

		Wo	rd	e (N=1	al			de (N=	al
No.	Variables Name		ysis	Read		Lang		Read	
	value	r	_h<_	<u>r</u>	_p<_		_p<_	<u>r</u>	<u> P</u>
INT ER	ACTIONS								
Chi 1d	Questioning								
346a	Child commands, requests, and direct	22	0.5	2.7		22	0.1	2.1	0.5
349a	questions, nonacademic	23 22	.05 .05	27 20	.01 .05	33 26	.01	31 24	.05
	Child open-ended questions, academic Child questions to adults	11	.05	23	.05	24		16	
	All child open-ended questions	25	.01	17	.05	29	.05	23	
	Child commands, requests, and direct	. 23	.01	,		,	.05		
4770	questions. nonacademic	3 3	.001	37	.001	3 3	.01	27	.05
479c	•	28	.01	 15		07		09	,,,,
	All child open-ended questions	29	.01	17		07		06	
Adult	Questioning								
352a	Adult commands, requests, and direct questions to individual children, non-								
	academic	25	.01	20	.05	37	.01	29	.05
353a	Adult commands, requests, and direct questions to groups of children,								
355a	academic Adult open-ended questions to children,	.29	.01	. 20	.05	.51	.001	. 32	.05
	nonacademic	-,20	.05	13		36	.01	24	
357a	All adult questions to children	. 25	.01	.19		.15		.06	
451a	Adult academic commands, requests, and								
	direct questions to children	. 35	.001	.26	.01	.30	.05	.18	
452a 485c		11		08		31	.05	13	
	academic	. 29	.01	.22	.05	.01		.10	
488c	All adult questions to children	.37	.001	.28	.01	.31	.05	.24	
582c	Adult academic commands, requests, and direct questions to children	.44	.001	. 35	.001	.35	.01	.30	.05
Ch.f.1d	Responsiveness								
358a	All child responses	.28	.01	. 28	.01	.17		.05	
	Child responses, nonacademic	19	.05	12		30	.05	28	.05
	Child responses, academic	. 38	.001	.33	.01	.25		.15	
362a		. 23	.05	.21	.05	.02		01	
363a	Child group responses to adult academic								
368a	commands, requests, or direct questions Child responses to adult open-ended	. ა2	.001	.22	.05	. 45	.001	. 34	.01
	questions	11		08	٥-	27	. 05	08	0.5
	Child extended response, academic	.17	25	. 21	.05	.08		. 27	.05
490c	• • • • • • • • • • • • • • • • • • • •	22	. 05	25	.01	14		05	
491c 493c	• • • • • • • • • • • • • • • • • • • •	.41	.001	. 35	.001	.17		. 20	
	One child responds to adult academic commands, requests, or direct questions Child not responding to adults	.24	.05	.17		17 .48	. 001	06 .24	
	respension to duties								

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

PARTIAL CORRELATIONS OF MAI READING SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES (Follow Through and Non-Follow Through)

				e (N=1		Thi	rd Gra	de (N=	
		Wo		Tot		_		Tot	
	Variables		ysis	Read			uage	Read	
No.	Name	r	_ <u>p<</u> _	<u>r</u>	_p<	<u>r</u>	_p<	<u>_r</u>	_ <u>p<</u> _
Adult	Responsiveness								
365a	Adult responses to child requests or questions, nonacademic	26	.01	33	.001	31		17	
496c	Adult responses to child requests or								
	questions, nonacademic	27	.01	28	.01	36	.01	26	05
545c	Adult not responding to child	01		09		.36	.01	. 28	. 05
Adult	Feedback								
394a	All adult acknowledgment to children	. 28	.01	.18		05		16	
395a	Adult acknowledgment to children, academic	.34	.001	.23	.95	. 04		05	
398a	All adult praise to children	.36	.001	.31	.01	.04		01	
399a	Adult reinforcement with token, academic	. 29	.01	. 28	.01	12		.06	
400a		. 26		.31	.01	.01		.08	
401a	Adult reinforcement with token, other							٠.	
	task-related	. 27	.01	.40	.001	11		.04	
	Adult praise, academic	.33	.001	.28	.01	.13		. 10	
403a	•	. 24	.01	. 27	.01	. 04		.10	Δ1
	Adult praise, other task-related	.12		.08		26		33	.01
406a	academic	. 20	.05	. 21	.05	. 08		.08	
407a	Adult negative corrective feedback,	.16		.05		.30	. 05	.15	
410a	academic Adult positive corrective feedback, other	.10		.05		. 50	.05	.13	
4104	task-related	20	. 05	07		.04		21	
412a	Adult feedback to child responses to adult								
,	academic commands, requests, and direct								
	questions	.46	.001	. 39	.001	.07		05	
432a	Adult punishment of children	.02		08		. 39	.01	.23	
448a	Adult neutral corrective feedback,								
	behavior	23	. 05	16		.19		.05	
449a	Adult neutral corrective feedback,								
	academic	.15		. 23	.05	.10		.07	
469a	All adult reinforcement with tokens	.31	.001	. 31	.001	11		.06	
543c									
	academic commands, requests, and direct								
	questions	. 39	.001	. 28	.01	09		04	
578c	Adult neutral corrective feedback, task-								
	related	34	.001	19		.02		22	
579¢	Adult neutral corrective feedback,	20	01	٠.	0.5			00	
	behavior	28 .29	.01	21 .28	.05	.11 14		.02	
600 c	All adult reinforcement with tokens	. 23	.01	. 20	.01	14		.05	
Insti	ruction								
374a	Adult instruction, academic	.16		.11		. 09		. 29	. 05
375a	Adult instructs an individual child	07		03		29	.01	24	
380a	Child self-instruction, academic, with								
	objects	09		02		. 29	.05	01	
455a	-	.05		. 21	.05	14		00	
468a		10		10		21		28	.05
506c		.03		.09		29	.05	22	
508c	Child self-instruction	. 29	.01	. 29	.01	.03		. 17	
509c	Child self-instruction, academic	.42	.001	.40	.001	.08		. 24	
510c		19	. 05	22	.05	04		08	

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

Table 115 (Concluded)

PARTIAL CORRELATIONS OF MAT READING SCORES WITH INSTRUCTIONAL VARIABLES FIRST AND THIRD GRADES (Follow Through and Non-Follow Through)

			t Grad	e (N=1		_ Thi	rd Gra	ide (N=	
	Vcriables		ysis	Read		Lang	uage	Read	
No.	Name	r	p<	r	p<	r	p<	r	
Instr	uction (Continued)							٥	
586c 599c	All adult instruction Child self-instruction, nonacademic	.06 21	.05	.12 18		.28 14		. 28 22	.05
Child	Attending								
577c	Child attentive to machine	22	.05	25	.01	10		28	.05
Conve	rsational Statements								
2 32	Among adults/Social Interaction	23	.05	06		.09	•	. 29	
234	Among children/Social Interaction	13		21	.05	.32	.01	. 22	
343a	Child to adult, all verbal except response	20	.05	24	.01	29	.05	21	
344a	Individual child verbal interactions with								
	adult	02		.01		34	.01	36	.01
387a	Child general comments to adults	29	.01	26	.01	27	.05	30	.05
474c	Child to adult, all verbal except response	18		18		14		26	.05
476c	Verbal interactions among children	22	.05	28	.01	26		25	
516c	Social interaction among childre.	30		33	.001	.01		22	
517c	Child task-related comments to children	02		06		27	.05	19	
518c	Child general comments to adults	26	.01	25	.01	27	.05	37	.01
522c	Child acknowledgment	.12		.01		21		- 28	.05
523c	Child praise	25	.01	17		07		09	
Affec	<u>t</u>								
591c	All child positive affect	20	.05	18		.04		.05	
592c	All child negative affect	14	.05	22	.05	.22		.06	
594c	All negative behavior	11		18	.05	.27		.27	.05
	Behavior	•••		.10		• • •		• /	.03
75	Observing (independent children only)	05		21	.05	03		01	
513c	Child task persistence	. 28		.30	.01	. 07		.19	
573c	All child nonverbal	.20	.05	.12		.14		.21	
574c	Child movement	12		24	.01	11		12	
598c	Child cooperation	03		12		26	.05	14	
Commu	nication Focus								
419a	Adults attentive to children, academic	27	0.1	21	٥٢	22		25	
438a	Adult communication or attention focus,	. 27	.01	. 21	.05	.23		. 25	
4 204	one child	06		06		~.39	۸ĩ	25	01
441a	Adult communication or attention focus,	.06		.06		~.39	.01	35	.01
7.7.44	large group	.09		.11		.52	.001	. 48	.001
471a	Adults attentive to large group	01		.02		.56	.001	.45	.001
	, and the group			.02		.50	.001	•	.001
Misce	l laneous								
444a	Adult movement	.04		.03		.51	.001	.43	.001

^{*}Child focus variables, which are identified by the c appearing as part of the variable code number, pertain to 105 rather than 108 classrooms.

Instructional patterns differ so ewhat for grades one and three. The variable "adults asking direct quacions about the subject matter" was positively related to all reading scores for both levels, as was the group response to such questions (Var. 353a, 363a). However, feedback of many varieties seemed to enhance the scores in first grade. Acknowledgment, praise, tokens, and positive corrective feedback (Var. 395a, 399a, 402a, and 406a) showed significant positive correlations with test scores. Reinforcement used for academic activities in third grade was a little less clear. Reading scores had a negative relationship (-.33) with praise (Var. 404a) given in other task-related activities. This is similar to a finding of Brophe (1974). He found that praise was negatively related to achievement gain in a 2-year study of teacher effectiveness. These data indicate that children in the first grade need more feedback to perform well than do children in the third grade. Only language scores were positively related to two feedback variables (Var. 407a and 432). Thise data suggest that if children in classrooms were given negative corrective feedback or were punished, they received high scores on the language tests (Var. 407a, 432a). (The incidence of punishment was very low for all sponsors, and thus the correlations may have reflected anomalies in the data.) However, Harris (1968) in a study of 48 elementary school teachers also found a positive correlation between criticism or negative motivations and reading achievement. It may be that some groups of children perform better when these firm and even negative control and feedback systems are used.

First grade children who were more often observed to be instructing themselves in academic subjects also scored higher on tests. This correlation did not occur in the third grade.

The third grade had higher reading scores when the adults instructed them more often and moved around the room (Var. 444a, 586c). The adults in the classroom might have been moving around their group of nine or more children, instructing and asking questions about the subject matter.

As we have seen in both first and third grades, in class-rooms where more time was devoted to academic subjects, and where the interactions were of an academic nature, the children's scores on MAT reading tests were higher. On the other hand, in classrooms where a large portion of children's interactions were social or nonacademic interactions, including general comments to adults (Var. 234, 352a, 387a, and 518c), the reading scores were lower.

When a wide variety of materials were available or when a wide variety of activities occurred over the day (Var. 25, 71, and 83), a negative correlation with reading scores was indicated for both grades. Perhaps the more frequent occurrences of none demic activities, such as arts and crafts, music, dance, active play or group time, which showed negative correlations, did not allow sufficient time to develop the necessary skills to score well on the reading test (Var. 63, 228, 244, 246).

Table 116

SPONSOR AND NON-FOLLOW THROUGH MEANS AND STANDARD DEVIATIONS FOR MAT READING SCORES

						ve Differ-			
			Var. 442/		MAT Reading				
		438/Fall		Reading		es Among			
	197	1 WRAT	Rav	Score	Sponso	rs and NFT			
Sponsor and Number	Mean	Standard Deviation	Mean	Standard Deviation	Mean	Standard Deviation			
	110011	DEVICETOR	Heati	DEVIACION	Mean	DEVIALION			
		FIRST GF	RADE						
Far West (N=12)	32.65	2.78	40.81	7.16	-5.30	7.30			
University of Arizona									
(N=14)	30.92	5.09	41.99	8.95	-1.55	5.48			
Bank Street (N=11)	26.86	5.72	36.29	7.18	-2.53	2.49			
University of Oregon									
(N=5)	29.32	7.50	48.61	9.94	6.93	3.19			
University of Kansas									
(N=17)	28.11	4.68	46.13	9.15	5.86	9.15			
High/Scope (N=13)	26.60	7.10	36.00	8.55	-2.52	6.24			
EDC (N=12)	27.02	5.40	34.42	6.60	-4.58	4.48			
NFT (N=24)	32.67	9.05	48.34	14.02	2.77	7.73			
		THIRD G	RADŁ.						
Far West (N=14)	40.78	3.31	47.20	8.40	-1. 78	6.87			
University of Arizona									
(N=2)	28.20	.28	32.95	2.05	-3.83	1.78			
Bank Street (N=7)	32.42	6.78	35.34	11.44	-5.53	5.50			
University of Oregon									
(N=4)	33.50	6.37	46.63	11.70	4.71	6.04			
University of Kansas (N=12)	35.16	5.82	42.21	9.99	-1.32	8.03			
High/Scope (N=0)	*	*	*	*	*	*			
EDC (N=6)	26.38	6.95	32.09	10.12	-2.93	7.03			
NFT (N=13)	38.25	8.71	53.15	5.3°	6.62	9.40			

^{*}Insufficient classrooms were both tested and observed in the third grade for High/Scope for their model to be included in the analysis.

Classrooms where adults focused their attention upon one or two children (Var. 155, 156, and 483c), rather than the small or large group, had children who performed less well on the reading tests. Small groups seemed the best configuration in first grades while large groups (9 or more children) were better for third grades.

Both University of Kansas and University of Oregon who use many of the processes that were positively related to the reading scores had higher adjusted residual gain scores in reading than did other sponsors and Non-Follow Through (see Table 116). Their raw scores in first grade were also higher than those of other sponsors.

Of the sponsors in third grade, Far West and University of Oregon had the highest raw scores. University of Oregon, however, was the only sponsor to have a positive adjusted score. Far West, as previously noted, had an exceptionally high entering baseline score and thus rarely showed a positive adjusted score even if the raw score was high. Non-Follow Through in third grade reading showed both a higher raw score and adjusted score. This is the only instance where the pooled Non-Follow Through group obtained a test score higher than all Follow Through sponsors.

c. Summary

Children who performed well on tests of reading and math seemed to be in classrooms where more time was spent in developing academic skills. Several variables related to time spent on reading and math: duration of the school day, average time each child spent in reading or math or related subjects, and the frequency of academic verbal interactions. These variables were positively related to reading and math scores in both first and third grades. The findings are 'n agreement with Wiley (1973) who concluded that "the quantity of schooling is an important determinant of achievement." The reader is reminded that the time a child spends in reading or arithmetic activities is computed over the entire day and includes all of those informal occasions where a child may be reading to himself or to another child as well as the formal instruction where an adult is conducting a lesson. Thus, it is the average amount of time a child spends during the day in reading or math or related activities—not just formal drill.

8. Summary of the Findings from Partial Correlations of Instructional Processes and Outcomes

a. Intercorrelations of Outcome Variables

The outcome scores varied differentially in their correlation with process variables. For the most part the MAT, absence, the child behaviors, the Raven's, the Coopersmith, and the IAR appear to be measuring different aspects of child growth and development.

An intercorrelation of all outcome raw scores (see Table 117), indicates that at both grade levels the highest correlations are found among the MAT reading and math tests. This finding, of course, is to be expected and the reader is reminded that reading scores were positively correlated to the amount of time children spent in studying math. The two skills are closely related.

The WRAT was more predictive of reading scores in the first grade (.71) than other outcomes. The next highest correlations of the WRAT were with reading and the Raven's in the third grade (.66, .64). There was more relationship between high scores on the WRAT and a child's accepting responsibility for his success (.44) than for accepting responsibility for his failure (.24). This suggests that classrooms in which children enter school with more ability (as measured by the WRAT) are more likely to have children who take responsibility for their success: they are not as likely to have children who take responsibility for their failure.

The highest correlation of Absence Rate with other outcome measures was with independence (-.37) in the third grade. This indicates that in classrooms where children were more independent (engaged in more activities without adults) they were likely to be absent less frequently. The next highest correlation of absence rate was with the IAR Success scale (-.29). Classrooms where children took more responsibility for their own success tend to have lower absence rates. The correlation with the Raven's was also -.29. Twelve classroom process variables were shared by the Raven's and absence rate. These processes describe the more open and flexible classrooms.

In general, the correlations between child behaviors and other outcome scores were quite low, suggesting that different abilities were being measured. Among the child behaviors in first grade, the highest positive correlation was between child question asking and verbal initiative (.37). This relationship could be expected since child questioning is a subset of verbal initiative and both were measuring related behaviors. Although the two variables are related to each other, they did correlate differently with other tests and contributed different information. Verbal initiative was negatively related to math and reading scores in both first and third grade, whereas question asking was not so related. Independence and task persistence are variables which are related in definition, so that each variable requires the child to be involved in a task without an adult. They differ in that independence was recorded on the CCL and included single children or groups of children engaged in any activity without an adult; i.e., they could be discussing a subject or just working together. Task persistence was taken from the FMO and required that the child be instructing himself or working alone at a task over a period of five recorded frames. Any verbal interaction discontinued the task persistence code. The two variables are related in that a child who was task persistent would be recorded on the CCL as independent, but so would many other children who were working and talking together without adults. In spite of the interdependence of the two

INTERCORRELATION OF OUTCOME SC. RES FIRS! AND THIRD GRADES

Ver-

Coop- era- tion		.00	
Self- Esteem		1.00	
Task Per- sis- tence		1.00))
Questions	FIRST GRADE	1.00 15 13	•
bal Ini- tia-	FII	1.00	
Inde- pen- dence		1.00	
Ab- sence		1.00 17 03 06 00	۱ •
MAT		1.00 . 02 23 17 . 06 14	•
MAT Read-		1.00	}
WRAT))
		WRAT MAT Reading MAT Math Absence Independence Verbal Initiative Questions Task Persistence Self-Esteem	

1.00

Cooper-smith Raven's MAT Total Math MAT Math Prob-lem Solv-ing MAT Math Con-MAT Math Com-pu-ta-Coop-era-tion Task Per-sis-tence Ver-bal Ini-tia-Inde-pen-dence Ab-sence MAT Lan-guage MAT Read-ing

IAR-Fail-ure

IAR-Suc-

THIRD GRADE

WRAT MAT Reading MAT Language Absence Independence Verbal Initiative Task Persistence Cooperation MAT Math Computation MAT MATH Computation MAT MATH COMPUTATION	1.00 .66 .36 .10 .10 .27 .27 .27 .33	1.00 .76 15 06 31 12 57	1.00 .20 11 20 .16 .16	1.00 37 23 11 21	1.00 .25 17 .25 17	1.00 36 25 25	1.00 25 .36	1.00	1.00	1.00	9					
rai math Problem Solving MAT Total Math Raven's Cooperamith IAR-Success IAR-Failure	245 245 245 245 245 245 245	. 76° . 53 . 10 . 41	.81 .82 .25 .09 .23			19 19 14 14	.30		. 92 . 92 . 03 . 09 . 39	.95 .27 .11 .27 .48		1.00 .19 .11 .24	1.60	1.00	1.00	1.00

variables, they correlated differently with test scores. In both grade levels, task persistence was positively related to MAT reading and math scores while independence was negatively related to those test scores.

The Raven's had its highest correlations with the WRAT and the MAT reading (.64 and .53). This is interesting for reading since in many instances the process variables that had significant positive correlations with the Raven's had significant negative correlations with the MAT reading. This counter-direction of significant correlations occurred 23 times. The child behaviors that correlated most highly with the Raven's were child independence and cooperation (.38 and .43). These same child behaviors had low correlations with the WRAT and with reading. The process variables which correlated positively with the Raven's were those associated with the more open and flexible models, while those which positively correlated with reading were associated with the more structured models.

The Coopersmith, which is a test of self-esteem, had only low correlations with all outcome tests, as it did with the process variables. The highest correlation was with the IAK Success scale (.36). There was a tendency for classrooms where children had higher scores on the self-esteem test to also take responsibility for their success.

The IAR Success scale was more closely related to the Raven's (.44), the WRAT (.44), and the MAT reading (.41) than other outcome scores. The IAR Success scale and the Raven's related similarly to 9 out of 18 process variables. It is more difficult to understand the correlation of the IAR Success scale and the MAT reading since they correlated differently on several process variables: e.g., total duration of day (MAT reading .29, IAR Success -.29), Child commands, requests, and asks direct questions in activities other than reading or math (MAT reading -.27; IAR Success .29). There was no instance where they were correlated in the same direction with the same process variables.

The IAR's Failure scale had its highest correlations with all of the MAT scores and the process variables correlated similarly for these test scores. In fact, the IAR Failure scale shared 46 out of its 85 significantly related process variables with MAT reading or math. The process variables positively related to the IAR Failure score were closely related to those process variables which described the structured models. Contrary to the IAR Success scale, there was no correlation between the IAR Failure scale and the Raven's.

Overall, excepting for the intercorrelations of the MAT, the correlations of outcome scores were low. Apparently different aspects of child growth and development were being measured.

b. Selected Process Variables Related to Outcomes

In order to investigate the effect of instructional process variables on the outcomes, two instructional process variables

which correlated significantly with several child outcomes were analyzed across all outcomes: These are "all adult praise" and "one child with any adult." The variable "all adult praise" correlated both positively and negatively with outcomes in both first and third grades. Table 118 presents these findings.

Table 118

CORRELATIONS OF ALL ADULT PRAISE
WITH OUTCOME SCORES

	<u>r</u>	_p<
First Grade: (N=108)		
Absence Rate	.14	.001
Inderendence	60	.001
MAT Marh	.39	.01
MAT Reading	.31	
Third Grade: (N=58)		
Absence Rate	.10	.05
Independence	23	.05
Ravens	32	.05
Coopersmith	31	.05
IAR Success	09	
IAR Failure	.07	
MAT Math	.19	.10
MAT Reading	01	

In both first and third grades, praise was negatively related to independence. The definition of "independence" is a child or children involved in a task without adults (data were collected from only child-focused observations). This independent behavior did not flourish in classrooms where there was a high rate of adult praise (data were collected on adult-focused days). It is interesting that out of all the interaction variables in first grade, only praise was so negatively related (-.60) to independence. It may be that children who are praised a great deal are in structured situations that do not allow for the type of independent activity coded on the SRI instrument. We do not know whether these children would be more independent if given the opportunity.

In the first grade, "All adult praise" was positively related to reading and math scores, but the effect of praise upon academic achievement was much less evident in the third grade. This suggests that

while first graders may need more positive feedback to perform well in reading or math, this type of feedback does not contribute to a great extent toward good performance in the third grade.

As in the findings for independence, the variable all adult praise showed a negative effect upon performance on the Raven's test and the Coopersmith Self-Esteem Inventory. Apparently, the more that adults in classrooms told third grade children that they were doing well the less likely the children were to score high on perceptual problem-solving tasks, respond positively about themselves, or take responsibility for success or failure.

Since all of the correlations presented were partialed on the baseline WRAT, an exploratory analysis was conducted to see whether classrooms in which the children entered school with differing abilities, as measured by the WRAT, would show different results in process and outcome relationships. Classrooms in both the first and the third grades were divided into three groups (high, medium, and low) based on the classroom mean baseline WRAT score. Columns one, two, and three of Table 119 present these findings. Children in first grade classrooms with low or medium entering ability scores seemed to be more affected by praise from adults; children in classrooms where entering ability was high were relatively less affected.

Table 119

CLASSROOMS WITH LOW, MEDIUM, HIGH MEANS--PARTIAL CORRELATIONS
OF "ALL ADULT PRAISE" WITH OUTCOME TEST SCORES

	WR Lo	AT w	WR <u>Medi</u>	AT um		AT gh
Outcomes	<u>r</u>	<u>p<</u>	r	p<	r	_p<
First Grade:	(N=	36)	(N=	36)	(N=	36)
Absence Rate Independence MAT Math MAT Reading	.25 58 .31 .39	.05 .001 .05 .001	05 73 .53 .43	.001 .001 .001	.07 37 .06 .02	.01
Third Grade:	(N=	19)	(N=	20)	(N=	19)
Absence Rate Independence Raven's Coopersmith IAR Success IAR Failure MAT Math MAT Reading	.00 27 50 42 07 .04 .21	.01 .05	15 32 53 09 04 13 18	.001	.15 28 .26 36 03 .23 .31	

In the third grade, all of the significant correlations were negative, and all of the correlations for the medium ability group were negative, including those for reading and math.

The reader is reminded that third grade math achievement and time spent were analyzed by ability level, and the findings suggest that children with lower ability were likely to achieve more if they spent more time in math activities.

Thus, we can hypothesize that low-ability first grade children will achieve more on the reading and math tests if they receive more praise, and low-ability children in the third grade will achieve more if they spend more time in math activities. A study examining more of the interaction between child abilities and treatment would be of great value in planning educational programs for children of differing abilities and differing age groups.

Another instructional variable that was examined across all outcomes was "One child with any adult." Table 120 presents these findings. Findings from this table indicate that when children had individualized attention in the first or third grade, they were absent less frequently and they were more often independent. First grade math and reading scores were adversely affected by individualized attention. This

Table 120

PARTIAL CORRELATIONS OF ONE CHILD WITH ANY ADULT
AND ALL OUTCOME SCORES

		<u>r</u>	_p<_
First Grade Overall:	(N=108)		
Absence Rate Independence MAT Math MAT Reading		35 .44 20 33	.001 .001 .05 .001
Third Grade: (N=58)			
Absence Rate Independence Ravens Coopersmith IAR Success IAR Failure		30 .39 .32 .04 .05	.01 .001 .05
MAT Math MAT Reading		13 12	

reverses a previous finding (Stallings, 1973) which indicated that individualized attention was positively related to academic achievement. Third grade scores in reading and math were not significantly affected by individualized attention. However, children from classrooms where adults were observed to be with one child at a time received higher scores on the Raven's test.

The Absence Rate in first grade classrooms with low- and medium-ability groups was apparently affected more positively by having adults provide individual attention than those classrooms with high-ability groups. The independence of the ability groups in first grade was about equally affected by individualized attention.

In the third grade, the absence rate, independence, and Raven's scores were more positively affected by individualized attention if the classrooms had a mean score in the medium— or high-ability groups. Only the high-ability-group scores on the Coopersmith and IAR Success scale were positively affected by having adults working with one child. The medium— and low-ability-group scores on the IAR Failure scale were negatively affected by the individualized attention—suggesting that the higher ability children take responsibility for their success if they are dealt with on a one-to-one basis, and the children with less entering ability take less responsibility for their success or failure if they receive individualized attention.

The MAT scores were negatively affected in all ability groupings in both grade levels by individualized attention. In the third grade, the correlations were low and the least effect was recorded in the third grade high-ability group. As was noted earlier, other configurations (such as small groups for first grade and large groups for third grade) were related to reading achievement.

B. Regressions

1. Stepwise Regressions

The purpose of this section is to examine the relationship of the process variables, as a group, to the outcome scores. In the previous part, we examined the relationship of classroom processes to outcome scores by looking at the partial correlations of each of a selected set of classroom observation variables with each outcome variable. Obviously, many of the classroom observation variables included in the partial correlation analysis are closely related, either because of the way they are defined or because certain processes occur together in the classroom. Table 121 presents the correlations among some of the process variables that were found to have high partial correlations with the designated outcome score. Also included are the correlations of the process variables with the outcome test score and the baseline WRAT score. An examination of this table reveals that, as expected, most of the correlations among the process variables are moderately high, between .30 and .50, with some as high as .80.

Table 121

CORRELATIONS AMONG SELECTED PROCESS VARIABLES, CUTCOME SCORES, AND BASELINE WRAT FIRST AND THIRD GRADES
MAT READING

No.	Variables Name	F71 WRAT	S73 MAT Read- ing	Var. 67	Var. 88	Var. 163	Var. 240		Var. 412a		Var. 509c	Var. 566c	Var. 582c
	FI	RST GR	ADE (N=	105)									
412a 469a 509c 566c	WRAT MAT Reading Reading, alphabet, language development Teacher with small group Approximate number of children involved in Reading, all days observed Texts, workbooks/Academic Activities Adult praise, academic Adult feedback to child responses to adult academic commands. requests, and questions All adult reinforcement with tokens Child self-instruction, academic Total academic verbal interactions Adult academic commands, requests, and direct questions to children	1.00	.71 1.00	.06 .32 1.00	- 11 .09 .32 1.00	.03 33 .85 .18	01 .15 .52 .21 .39 1.00	09 .13 .38 .42 .43 .30	09 .22 .53 .49 .59 .42 .69	10 .15 .37 .38 .41 .29 .93	07 .23 .55 .36 .48 .29 .37 .51 .37	.06 .39 .54 .43 .51 .26 .38 .59 .35 .77	06 .20 .38 .46 .35 .26 .43 .57 .35 .27 .64
No.	Variables Name	F69 WRAT	S73 MAT Read- ing	Var. 15	Var. 146	Var. 163	Var. 242	Var. 353a	Var. <u>363a</u>	Var. 441a	Ver. 444a	Var. 566c	
	TH	IIRD GR	ADE (N-	57)									
£69 573	WRAT MAT Reading Child/Teacher and Aide Ratio (number of children	1.00	.65 1.00	.19 .49	00 .36	02 .12	.08	- 11 - 16	13 .16	+.08 .34	.16 .42	.03 .29	
146 163	over teachers and aides) Large group with teacher/Reading Approximate number of children involved in			1.00	.59 1.00	02	.10	.13	.08	.59	.36	.16	
242	Reading, all days observed Percent CCLs in which an academic activity is occurring					1 00	.70 1.00	.41	. 45	.03	.29	.51	
	Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands,							1.00	.89	. 39	.39	. 54	
441a	requests, or direct questions								1.00	. 30	. 38	.66	

Table 121 (Concluded)

CORRELATIONS AMONG SELECTED PROCESS VARIABLES, OUTCOME SCORES, AND BASELINE WRAT FIRST AND THIRD GRADES MAT MATH

No.	Variables Name	F71 WRAT	S73 MAT Math	Var. 402a	Var. 412a	Var. 509c	Var. 17	Var . 66	Var. 140	Var. 360a	Var. <u>395a</u>		Var. 406a	Var. 435a
	FI	RST CF	ADE (N	- 105)										
F71	WRAT	1.00	. 59	09	09	07	.12	.15	.12	02	.03	09	. 04	.14
S73	MAT Math		1.00	.26	.31	.16	. 28	.33	. 36	.32	. 25	. 27	. 38	. 42
	Adult praise, academic			1.00	. 69	37	. 42	. 28	.35	. 56	.12	.95	.42	. 52
412 a	Adult feedback to child responses to adult													
Sng.	academic commands, requests, and questions Child self-instruction, academic				1.00	.51	.51	.40	.45	.77	.74	.61	.51	.70
17	Total class duration					1.00	.23 1.00	.16	.19	.53	.32	.35	38 . 28	.58
66	Numbers, math, arithmetic						1.00	1.00	.93	. 46	.32	. 24	.33	.46
140	Approximate number of children involved in Math,							1.50	.,,	.40	. 32	. 24		.40
	all days observed								1.00	.45	. 34	. 28	.35	.45
360a	Child responses, academic									1.00	.50		.58	.83
395a	Adult acknowledgment to children, academic										1.00	.03	.36	. 53
399a	Adult reinforcement with token, academic											1.00	. 36	.43
1004	Adult positive corrective feedback, academic Total academic verbal interactions												1.00	.52
4))4	total academic verbal interactions													1.00
	Word bloom	n (0	\$73						_					
No.	Variables Name	F69 WRAT	S73 MAT <u>Math</u>	Var. 353a	Var. 363a	Var. 444a	Va	Var. 66	Var. 123	Var. 140	Var. 240	Var. 4028	Var. 435a	Var. 582c
No.	Name		MAT Math	353a										Var. 582c
 F69	Name TI	WRAT	MAT Math	353a										
F69 873	Name TI WRAT MAT MATh	WRAT	MAT Math ADE (N	353a -57)	363a	<u>444a</u>	17	66	123	140	240	402a	435a	582c
F69 873	Name TH WRAT MAT Math Adult commands, requests, and direct questions to	WRAT	MAT Math ADE (N	353a -57) 11 .44	363a - 13 .42	.16 .46	02 .38	.03	10 .39	.03	.19	25 .16	.09 .41	582c
F69 S73 353a	Name THE WRAT WAT Math Adult commands, requests, and direct questions to groups of children. academic	WRAT	MAT Math ADE (N	353a -57) 11	363a - 13	.16	02	.03	10	.03	.19	402a	435a	582c
F69 S73 353a	WRAT WRAT WAT Math Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands,	WRAT	MAT Math ADE (N	353a -57) 11 .44	- 13 - 42 - 89	.16 .46	02 .38	.03 .48	10 .39	.03	.19 .31 .16	25 .16	.09 .41	20 .40
F69 873 353a 363a	Name THE WRAT WAT Math Adult commands, requests, and direct questions to groups of children. academic	WRAT	MAT Math ADE (N	353a -57) 11 .44	363a - 13 .42	.16 .46 .39	02 .38 .09	.03 .48 .35	10 .39 .44	.03 .49 .30	.19 .31 .16 .24	25 .16 .25	.09 .41 .60	20 .40
F69 873 353a 363a	WRAT WAT Math Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands, requests, or direct questions	WRAT	MAT Math ADE (N	353a -57) 11 .44	- 13 - 42 - 89	.16 .46	02 .38 .09	.03 .48 .35 .43 .50	10 .39 .44	.03 .49 .30	.19 .31 .16	25 .16 .25	.09 .41 .60	20 .40 .65
F69 873 353a 363a 444a 17 66	WRAT WRAT WAT Math Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands, requests, or direct questions Adult movement Total class duration Numbers, math, arithmetic	WRAT	MAT Math ADE (N	353a -57) 11 .44	- 13 - 42 - 89	.16 .46 .39	02 .38 .09	.03 .48 .35	10 .39 .44	.03 .49 .30	.19 .31 .16 .24	25 .16 .25	.09 .41 .60	20 .40 .65
F69 873 353a 363a 444a 17 66	Name THE WRAT WAT Math Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands, requests, or direct questions Adult movement Total class duration Numbers, math, arithmetic Large group with teacher/Math	WRAT	MAT Math ADE (N	353a -57) 11 .44	- 13 - 42 - 89	.16 .46 .39	02 .38 .09	.03 .48 .35	10 .39 .44 .44 .42 .27	.03 .49 .30 .37 .30 .33	.19 .31 .16 .24 .21	25 .16 .25	.09 .41 .60 .71 .32	20 .40 .65
F69 873 353a 363a 444a 17 66	WRAT WRAT WAT Math Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands, requests, or direct questions Adult movement Total class duration Numbers, math, arithmetic Large group with teacher/Math Approximate number of children involved '. Math,	WRAT	MAT Math ADE (N	353a -57) 11 .44	- 13 - 42 - 89	.16 .46 .39	02 .38 .09	.03 .48 .35	10 .39 .44 .42 .27 .24	.03 .49 .30 .37 .30 .33 .86	.19 .31 .16 .24 .21 .17 .34	25 .16 .25 .34 .13 .15 .34	.09 .41 .60 .71 .32 .10	20 .40 .65 .61 .19 .12
F69 873 353a 363a 444a 17 66	WRAT WAT Math Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands, requests, or direct questions Adult movement Total class duration Numbers, math, arithmetic Large group with teacher/Math Approximate number of children involved '. Math, all days observed	WRAT	MAT Math ADE (N	353a -57) 11 .44	- 13 - 42 - 89	.16 .46 .39	02 .38 .09	.03 .48 .35	10 .39 .44 .42 .27 .24	.03 .49 .30 .37 .30 .33 .86	.19 .31 .16 .24 .21 .17 .34 08	25 .16 .25 .34 .13 .15 .34 17	.09 .41 .60 .71 .32 .10 .49 .14	20 .40 .65 .61 .19 .12 .44
F69 S73 353a 363a 444a 17 66 123 140	WRAT WRAT WAT Math Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands, requests, or direct questions Adult movement Total class duration Numbers, math, arithmetic Large group with teacher/Math Approximate number of children involved '. Math,	WRAT	MAT Math ADE (N	353a -57) 11 .44	- 13 - 42 - 89	.16 .46 .39	02 .38 .09	.03 .48 .35	10 .39 .44 .42 .27 .24	.03 .49 .30 .37 .30 .33 .86	.19 .31 .16 .24 .21 .17 .34	25 .16 .25 .34 .13 .15 .34 17	.09 .41 .60 .71 .32 .10 .49 .14	20 .40 .65 .61 .19 .12 .44 .27
F69 S73 353a 363a 444a 17 66 123 140	WRAT "AT Math Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands, requests, or direct questions Adult movement Total class duration Numbers, math, arithmetic Large group with teacher/Math Approximate number of children involved '. Math, all days observed Texts, workbooks/Academic Activities Adult praise, academic Total academic verbal interactions	WRAT	MAT Math ADE (N	353a -57) 11 .44	- 13 - 42 - 89	.16 .46 .39	02 .38 .09	.03 .48 .35	10 .39 .44 .42 .27 .24	.03 .49 .30 .37 .30 .33 .86	.19 .31 .16 .24 .21 .17 .34 08	25 .16 .25 .34 .13 .15 .34 17	.09 .41 .60 .71 .32 .10 .49 .14	20 .40 .65 .61 .19 .12 .44 .27
F69 S73 353a 363a 444a 17 66 123 140 240 402a	WRAT WAT Math Adult commands, requests, and direct questions to groups of children, academic Child group response to adult academic commands, requests, or direct questions Adult movement Total class duration Numbers, math, arithmetic Large group with teacher/Math Approximate number of children involved '. Math, all days observed Texts, workbooks/Academic Activities Adult praise, academic Total academic verbal interactions	WRAT	MAT Math ADE (N	353a -57) 11 .44	- 13 - 42 - 89	.16 .46 .39	02 .38 .09	.03 .48 .35	10 .39 .44 .42 .27 .24	.03 .49 .30 .37 .30 .33 .86	.19 .31 .16 .24 .21 .17 .34 08	25 .16 .25 .34 .13 .15 .34 17	.09 .41 .60 .71 .32 .10 .49 .14	20 .40 .65 .61 .19 .12 .44 .27

Because of the relationships among the process variables, it was impossible to determine from the partial correlations the unique contribution each variable made of the prediction of the outcome scores. It is also impossible to piece together the total relationship between the classroom processes and the outcome scores. In this section the relationship between the classroom process as a whole and the outcome scores is examined. Multiple regression analysis was used to this end.

A set of process variables was chosen separately for ϵ .h cutcome score based on the partial correlations in the first part of the section. A stepwise multiple linear regression was run separately for each grade level with each outcome score as the dependent variable and the set of selected process variables and the baseline WRAT score as the independent variables. The baseline WRAT score was placed in the regression on the first step. The process variables were added one at a time until a total of 20 variables had been included. Of particular interest in examining the relationship of the set of process variables to the outcome variables is the degree to which the set of process variables "predicted" the outcome after the effect of the baseline WRAT had been accounted for. The coefficient of determination, R², was used to this end. Since the baseline WRAT entered the regression at the first step, the \mathbb{R}^2 on this step was a measure of the degree to which the baseline WRAT score accounted for the variance in outcome score. The difference between the value of \mathbb{R}^2 at any subsequent stage and the R^2 at the first step was a measure of the degree to which the process variables provided a prediction of the outcome scores beyond that available from the baseline WRAT alone. The significance of the contribution of any variable that is added to the regression is indicated by the "f-to-enter" statistic. This statistic corresponds to the test of whether the variable, when it entered the regression, had a partial regression coefficient significantly different from zero. Variables were added until no further significant increases in \mathbb{R}^2 occurred. It should be noted, however, that the obtained \mathbb{R}^2 was an overestimate, since to some extent the procedure capitolizes on chance in the build up of the total value.

For the behavioral outcome variables (the process variables such as child questions and cooperation) and days absent, the WRAT \mathbb{R}^2 values at the first step (where WRAT was entered) were zero or very small (see Table 122) indicating that the WRAT accounts for very little of the variance for the child behavior. For the test outcome variables, the WRAT \mathbb{R}^2 values at the first step were high for the MAT reading at both grade levels, for the MAT math at first grade and for the Raven's at third grade. The WRAT \mathbb{R}^2 values at the first step were modest for the MAT math and the IAR Success and Failure scales at third grade.

The contribution of the process variables to the R^2 value was substantial for all process variable outcome scores. For the behavioral outcome variables, the increment in R^2 from the first step ranged from .22 to .67 in first grade and from .38 to .61 in third grade. For days absent, the increment was an amazing .66 and .62 for first and third grade, respectively. For the test outcome variables, the increment ranged from .23 for MAT

Table 122

SUMMARY STATISTICS FOR THE STEPWISE RECRESSION ANALYSES

		Į.	FIRST GRADE (N=105)	(N=105)			T	THIRD GRADE (N=58)	(N=58)	
	Number of		R _{LIRAT}		Number of Process Variables	Number of		R _{URAT}		Number of Process Variables
Outcome Variable	Process	R _{WRAT}	Process Variables	Multiple	(included in regression)*	Process Variables	RWRAT	Process Variables	Multiple	(included in regression)*
Behavioral Outcome Variables										
Child Questions	27	00.	.78	.53	2	27	9.	67.	. 54	8
Self-Esteem	27	00.	87.	69.	S	27	.01	.42	.65	9
Child Independence	27	00.	.67	.82	\$	27	.01	.41	.64	ю
Task Persistence	27	00.	77.	99.	6	27	90.	.61	.78	9
Cooperation	7.7	00.	.32	.57	2	27	.10	.61	.78	S
Verbal Initiative	27	00.	.22	74.	٣	27	9.	. 38	:9:	2
Days Absent	38	.01	.67	.82	, 14	38	.07	69.	:83	9
Test Outcome Variables										
MAT Math	7.5	.32	.74	98.	10	75	.17	.81	٠6.	œ
MAT Reading	29	. 50	.73	.85	80	99	.42	. 79	68.	7
Ravens	ł	1	;	1	1	76	.41	98.	.93	6
IAR-Success	;	;	1	ł	;	18	.18	.57	.75	7
IAR-Failure	;	;	;	;	;	·;;	.04	.83	.91	1.1

^{*} This column contains the number of process variables that entered the stepwise regression with an "F-to-enter" that was significant at .05.

reading at the first grade to .79 for the IAR Failure scale at the third grade. All these increases are substantial. They are evidence that the classroom processes were definitely related to behavioral and test outcomes beyond the influence of initial ability. The results for the daysabsent variable are very striking. They indicate, at least indirectly, that there may be a very strong relationship between classroom processes and the rate of absence. More than two-thirds of the variability in this outcome was accounted for by the classroom process variables and the baseline WRAT. Note that an R² value in the range of .67 to .69 corresponds to a multiple correlation in the neighborhood of .82.

In the test cutcome domain, the contribution of the process variables were substantial across the board. For the MAT reading and math outcome scores, the results for first and third grade are very similar. The process variables added more than .40 to the R² value for MAT math and more than .25 to the R² value for MAT reading. For both grade levels the \mathbb{R}^2 at the last step corresponded to a multiple correlation between .85 and .90. For the Raven's, the COI variables incremented the R^2 value by more than the baseline WRAT. This indicates that the classroom processes may be as important a factor as initial ability in accounting for performance on the Raven's. The results on the MAR Failure scale are also amazing. The baseline WRAT accounted for only 4% of the variability, and when the COI variables were added, the coefficient of determination was .83. This corresponds to a multiple correlation coefficient of over .90. Though such values are clearly overestimates the result provides compelling evidence for a strong relationship 'etween the way children take responsibility for their failures and the classroom processes to which they are exposed.

The number of process variables included in the regressions before the "F-to-enter" dropped below the .05 level was a minimum of two, for Child Questions, and a maximum of 14, for days absent at the first grade level see Table 122). For the most part, the number of process variables that entered the regression was between 2 and 6 fc the behavioral outcomes and between 7 and 11 for the outcome test scores. The number of the variables that entered any particular regression relative to the number of process variables included is an indication of the high degree of dependency among the process variables.

Table 123 gives the detailed results for each dependent variable for the steps in the regression prior to the first encounter of an "F-to-enter" that was not significant at the .05 level. Included for each step are: the variable that entered; the multiple correlation coefficient R; the coefficient of determination R²; the change in R² from the previous step; and the "F-to-enter." The interested reader is referred back to the partial correlation discussions in the first part of this section for the detailed discussion.

Table 123

STATISTICS FROM THE STEPWISE REGRESSION OF THE BASELINE WRAT AND SELECTED COI VARIABLES ON THE OUTCOME SCORES

Step	Variable No.	Variable Name	Multiple R	_R ² _	RSQ <u>Change</u>	F-to- Enter		
		: Child Questions						
First	Grade (N≈1	05)						
1		_F71 WRAT	.025	.001	.001	.067		
2	438a	Adult communication or attention focus, child	. 385	.148	.147	17.641		
3	389a	Adult general comments to children	.528	. 279	.131	18.359		
Third	Grade (N=5	7)						
1		F69 WRAT	.056	.003	.003	.176		
2	389a	Adult general comments to children	. 366	.134	.131	8.169		
3	236	TV	.495	.250	.115	8.145		
4	398a	All adult praise to children	.540	.292	.042	3.103		
	nt Variable Grade (N=1	: Self-Esteem 05)						
1		F71 WRAT	. 045	.602	.002	.213		
2	440a	Adult communication or attention focus,						
-	4404	small group	.477	. 228	.226	29.815		
3	439a	Adult communication or attention focus,	• • • • •					
-	4374	two children	. 581	.337	.109	16.680		
4	394a	All adult acknowledgment to shildren	.627	. 393	.056	9.147		
5	451a	Adult academic commands, requests, and	1027					
	4314	direct questions to children	. 666	.443	.050	8.946		
6	104	Adult with one child	.696	.484	.041	7.816		
^T hird Grade (N≖57)								
1		F69 WRAT	.090	. 008	.008	.449		
2	390a	Adult task-related comments to children	.291	. 084		4.503		
3	389a	Adult general comments to children	.401	.161		4.848		
4	240	Texts, workbooks	.474	. 224		4.232		
5	83	Wide variety of activities over one day	. 536	-287		4.486		
ú	24	Child selection	.604	. 365		6.110		
7	394a	All adult acknowledgment to children	.646	.418	.053	4.462		
Depender	nt Variable	: Child_Independence						
First	(rade (N≖l	105)						
1		F71 WRAT	. 060	. 004	.004	.373		
2	398a	All adult praise to children	.598	.357	. 354	56.158		
3	104	Adult with one child	.732	.536		38.782		
4	16	Child/adult ratio	-779	. 606		17.862		
5	82	Wide variety of activities; concurrent	.805	.649	.043	12.001		
6	439a	Ad. t communication or attention focus,						
		two children	.817	.668	.019	5.626		
Third	Grade (N=5	57)						
1		F69 WRAT	. 094	.009	.009	.487		
2	394a	All adult aknowledgment to children	.482	. 232	.223	15.687		
3	104	Adult with one child	. 580	. 336	.104	8.302		
4	452a	Adult open-ended questions to children	.641	.411	.075	6.596		
		,						
	Grade (N=1	2: Task Persistence 105)						
1		F71 WRAT	.054	.003	.003	. 306		
2	83	Wide variety of activities over day	. 367	.135	.132	15.529		
3	375a	Adult instructs an individual child	.445	.198	.063	7.917		
4	237	Audio visual equipment	.487	. 237	.040	5.190		
5	240	Trsts, workbooks	. 524	. 275	.038	5.119		

Table 123 (Continued)

STATISTICS FROM THE STEPWISE REGRESSION OF THE BASELINE WRAT AND SELECTED COI VARIABLES ON THE OUTCOME SCORES

Step	Variable No.	Variable Name	Multiple R	<u>R</u> ²	RSQ Change	F-to- Enter
Depender	it Variable	: Task Persistence				
		50) (Continued)				
6	451a	Adult academic command, request, and direct				
		questions to children	. 556	. 309	. 034	4.877
7	440a	Adult communication or attention focus,	. 587	.344	025	5.161
8	16	small group Child/adult ratio	.609	.344	.035 .027	4.053
9	365a	Adult responses to child request or ques-	.009	. 3/1	.027	4.055
,	30 Ja	tion, nonacademic	.633	.401	.030	4.794
10	438a	Adult communication or attention focus, one				
		child	.661	.437	.036	6.054
Third	Grade (N=5	57)				
1		F69 WRAT	. 241	.058	. 058	3.377
2	240	Texts, workbooks	. 592	.350	. 292	24.280
3	364a	Adult responses to child requests or ques-	. 372	. 550		241200
,	3044	tions, academic	.658	.432	.082	7 584
4	83	Wide variety of activities over one day	.698	.488	.055	5.621
5	16	Child/adult ratio	.725	.526	.038	4.085
6	104	Adult with one child	.756	.572	.046	5.421
7	239	Math or science equipment	.781	.610	0.38	4.746
	nt Variable Grade (N	e: Cooperation =105)				
1		F71 WRAT	.004	.000	.001	.128
2	240	Texts, workbooks	.491	.241	.241	32.759
3	390a	Adult task-related comments to children	. 569	. 324	.082	12.421
Third	Grade (N=	57)				
1		F69 WRAT	.317	.100	.100	6.144
2	240	Texts, workbooks	.571	.326	.226	18.082
3	45	Total different resource categories coded				
		"used today" over three days	.646	.417	.091	8.271
4	40	General equipment, materials used	.723	.523	.106	11.535
5	82	Wide variety of activities, concurrent	.754	.569	.046	5.479
6	237	Audio visual equipment	.779	.606	.037	4.717
		e: Verbal Initiative				
First	Grade (N=	105)				
1		F71 WRAT	.020	.000	.000	.040
2	365a	Adult responses to child request or ques- tion, nonacademic	.312	.098	.098	10.980
3	28	Instructional materials used	.379	.144	.046	5.467
4	45	Total different resource categories coded			••••	
		"used today" over three days	.463	.215	.071	9.032
Third	Grade (N=	57)				
1		F69 WRAT	.002	.000	.000	.151
2	104	Adult with one child	.497	.247	.247	18.033
3	451a	Adult academic commands, requests, and				
-		direct questions to children	.618	. 382	.081	6.934

Table 123 (Continued)

STATISTICS FROM THE STEPWISE REGRESSION OF THE BASELINE WRAT . AND SELECTED COI VARIABLES ON THE OUTCOME SCORES

Step	Variable No.	Variable Name	Multiple R	_R ² _	RSQ Change	F-to- Enter
		: Days AbsentPositive and Negative				
First	Grade (N=1	.03)				
1		F71 WRAT	.118	.014	.014	1.456
2	104	Adult with one child	.379	.144	.130	15.470
3	2 31	Volunteer involved	.475	.226	.082	10.700
4	596c	Adult feedback to children for behavior	.539	. 290	.064	9.065
5	471a	Adults attentive to large group	.604	.365	.075	11.733
6	462a	All positive behavior	.638	.406	.041	6.786
7	85	Teacher without children	.667	.445	.039	6.765
8	256	Practical skills acquisition	.691	.478	.033	6.025
9	127	Large group with aide	.710	.504	026	4.965
10	417a	Children attentive to adults, academic	.727	.529	.025	5.024
11	453a	Adult responds to child's question with a				
	0.50	question	.754	. 568	.039	8.349
12	353a	Adult commands, requests, and directs ques-			•	
		tions to groups of children, academic	.770	. 593	.026	5.794
13	601c	All adult neutral corrective feedback	.788	.621	.027	6.543
14	585c	Child's extended response to question	.808	.653	.033	8.533
15	125	Two children with aide	.819	.670	.017	4.454
Third	Grade (N≖5	57)				
1		F69 WRAT	.272	.074	.074	4.485
2	463a	All negative behavior	.536	.288	214	16.500
3	125	Two children with aide	.624	.390	.102	9.012
4	114	One child without adults	.710	.504	.115	12.260
5	371a	Child extensive response to adult open-ended	****			
		question	.758	.575	.071	8.689
6	417a	Children attentive to adults, academic	.801	.642	.067	9.477
7	351a	Adult commands, requests, and directs ques-	.001		.00,	,,
,	551a	tions to groups of children, nonacademic	.829	.687	.045	7.274
Dependen	it Variable	: MAT Math				
	Grade (N=1					
1		F71 WRAT	. 594	. 323	.353	56.095
2	/12-		. 554	. 1/)	. 333	30.033
2	412a	Adult feedback to children responding to	607	.05	.133	26.319
3	369a	adult academic command or question	.697 .742	.485 .550	.065	14.570
4	408a	Child extended response, nonacademic		.594		
5		Adult positive corrective feedback, academic	.771	. 394	.044	10.790
,	441a	Adult communication or attention focus,	701		0.21	0 200
6	160-	group	.791	.625	.031	8.309
7	469a 370a	All adult reinforcement with tokens	.809	.654	.029	8.197
		Child extended responses, academic	.825	.681	.027	8.074
8	354a	Adult communication, request, and direct	0.27	701	020	(20(
0	77	question to individual child, academic	.837	.701	.020	6.386
9	76	Social interaction	.845	.714	.014	4.538
10	360a	Child responses, academic	.852	.727	.012	4.177
11	449a	Adult neutral corrective feedback, academic	.859	.739	.012	4.241
Third	Grade (N≃5	57)				
1		Classroom mean F69 WRAT	.410	.168	.168	11.096
2	582c	Adult academic command, request, and direct	64.2	/12	245	22.480
2	105	question to children	.642	.412	. 245	
3	135	Large group with any adults	.742	.551	.139	16.387
4	380a	Child self instructs, academic, with objects	.785	.616	.064	8.694
5	372a	Child presents information to a group	-818	.664	.053	8.199
6	66	Numbers, math, arithmetic	.848	.719	.050	8.871
7	24	Child selection	.872	.760	.042	8.484
8	76	Social interaction	.888	.788	.028	6.322
9	595c	Child's extended response to question	.898	.807	.019	4.620

Table 123 (Concluded)

STATISTICS FROM THE STEPWISE REGRESSION OF THE BASELINE WRAT AND SELECTED COI VARIABLES ON THE OUTCOME SCORES

Step	Variable	Variable Name	Multiple R	_R ² _	RSQ <u>Change</u>	F-to- Enter
Donondon	r Variabla	: MAT Reading				
	Grade: (N					
1		F70 WRAT	.708	.501	.501	103.404
2	566c	Total academic verbal interaction	. 791	.625	.124	23.888
3	163	Total weight in reading groups	.805	. 648	.023	t 47
4	493c	Individual child response to adult academic				
		command, request, or direct questions	.812	.660	.012	3.565
5	600c	All adult reinforcement with tokens	.825	.680	.020	6.131 5.012
6	370a	Child extended response, academic	.834 .842	.696 .709	.016	4.619
7	449a	Adult neutral corrective feedback, academic	.849	.720	.011	3.721
8 9	89 107	Teacher with large group Adult with large group	.856	.733	012	4.415
9	107	Addit with range group	.050	•55	,,,,,	
Third	Grade (N=	57)				
1		F70 WRAT	. 649	.421	.421	40.016
2	135	Large group with any adults	.763	. 582	.161	20.753
3	15	Child/teacher and aide ratio	. 787	.620	.038	5.245
4	566c	Total academic verbal interaction	.814	. 663	.043	6.681 6.479
5	17	Total class duration	.837	.701	.038	10.069
6	157	Small group with any adults	.866 .878	.772	.030	4.452
7	24	Child selection Large group with any adults	.889	.790	.018	4.076
8	158	Large group with any addits	1007	• • • • • • • • • • • • • • • • • • • •	****	
D	- n Vandahl	e: <u>Ravens</u> Third Grade (N=57)				
	nt variable		(20	100	.408	38.584
1		F69 WRAT	.639	.408	.400	30.304
2	412a	Adult feedback to child response to adult	.749	.561	.153	19.098
2	150	academic command or question	.797	.635	.075	11.100
3 4	150 593c	Large group with aide All positive behavior	.835	.697	.062	10.809
5	524c	Child corrective feedback	.858	.736	.039	7.584
6	357a	All adult questions to children	.873	.761	.026	5.467
7	111	Small group of children with any adult	.891	.793	.032	7.699
8	185	Large group without adults	.905	.819	.026	6.903
9	44	Total number different resource categories				0.100
		coded "present" over three days	.919	.845	.026	8.120
10	519c	Child task-related comments to adults	.927	.858	.014	4.485
Depende	nt Variabl	e: IAR - Success Third Grade (N=57)				
1		F69 WRAT	.429	.184	.184	12.416
2	79	Transitional activities	. 594	.353		14.117
3	184	Small group without adults	.657	.432		7.319
4	145	Small group with teacher	.713	.508		8.096
5	157	Small group with any adults	.7 55	.570	.062	7.317
Depende	nt Variabl	e: IAR - Failure Third Grade (N=57)				
1		F69 WRAI	.200	.040	.040	2.285
2	138	Small group of children without adults	. 599	. 358		26.818
3	517c	Child task-related comments to children	.698	. 488		13.385
4	15	Child/teacher and aide ratio	.745	.555	.067	7.792
5	515c	Smal' group working together using concrete			0/5	c 7%/
		objects	.775	.600	.045	5.774
6	366a	Adult responds to child question with open-	.805	. 648	.048	6.855
7	00	ended question	.828	.685		5.768
7	93	Aide with two children Percentage of CCLs on which an academic	.020	.003		
8	242	activity is occurring	.859	.738	.053	9.781
9	222	Small group of children with any adults	.878	.771		6.622
10	350a	Child questions to adults	.890	.793		4.895
11	135	Large group with any adults	.901	.812		4.702
12	159	One child without adults	.911	.830	.017	4.463
		316				

2. The Cooley-Lohnes Model

In addition to the partial correlations and the stepwise regressions, the relationship of classroom processes and test outcomes was further examined by using a regression model proposed by Cooley and Lohnes. They formulated a model of instructional process components (see Cooley and Lohnes) Evaluative Inquiry in Education, in press, described as "a conceptual scheme for guiding the development of the instructional events which take place in classrooms that are related to the kind and amount of classroom learning that will occur." The model synthesizes and extends the earlier work of Carroll (1963), Glaser and Resnick (1972), and Gagne (1973). It posits three factors as influencing criterion achievement: initial ability, time spent on relevant learning tasks, and instructional efficiency. The latter two factors are the instructional components found in the classroom. Each of these instructional components may be further subdivided.

Time spent on relevant learning tasks is a function of

- Opportunity--the time allotted to activities relevant to achievement.
- Motivation--the motivation of the child to use the time allotted.

Instructional efficiency is a function of

- The way learning tasks are structured and the way they are selected or assigned to pupils.
- The nature and frequency of the interactions of pupils with teachers, aides, other pupils, and instructional materials. These interactions are called instructional events.

A diagram of the Cooley and Lohnes model is presented in Figure 41. As indicated there, pupil ability is viewed as not only affecting outcome scores but also as influencing the instructional process; e.g., the efficiency of instructional events is dependent on the pupils' initial ability. Cooley and Lohnes do not specify the detailed functional relationships among initial ability, instructional processes, and existing ability. This model provided the conceptual scheme for generating variables for the regression analyses. The Cooley model was used with two separate sets of data collected by SRI. The first set was collected in Spring 1972 and the analysis was reported by Emrick (1974). (In this report we are discussing only the analysis for first grade.) The second set was collected in Spring 1973 and is analyzed in the present report. The instructional components for the Cooley model and the process variables recommended by Cooley which are included in each component are presented in Table 124. Cooley's selection of variables was conditioned primarily

FIGURE 41 DIAGRAM OF THE COOLEY AND LOHNES MODEL OF INSTRUCTIONAL PROCESS

Table 124 CLASSROOM OBSERVATION VARIABLES INCLUDED IN EACH INSTRUCTIONAL COMPONENT--COOLEY MODEL

Instructional Process Component	Variable <u>Number</u>	Variable Name
Opportunity	249	Reading, alphabet, larguage development/longitudinal
Motivation	398a 403a 82	All adult praise to children Adult praise, behavior Wide variety of activities, concurrent, negate
Structure and Placement	146 257	Large group with teacher/reading, negate* Teacher with one child, academic activities/ longitudinal
	258	Aide with one child, academic activities/longitudinal
	259	Volunteer with one child, academic activities/longitudinal
	240	Texts, workbooks/academic activities*
	239	Math or science equipment/academic activities*
	238	Exploratory materials/academic activities*
	260	Children independent, academic activities/longitudinal
Instructional	358a	All child responses
Events	360a	Child responses, academic
	406a	Adult positive corrective feedback, academic
	407a	Adult negative corrective feedback, academic
	449a	Adult neutral corrective feedback, academic
	412a	Adult feedback, to child responses to adult academic commands, requests, direct questions
	394a	All adult acknowledgment to children
	396a	Adult acknowledgment to children, behavior

^{*} These variables, although similar, are not identical to those used in the analysis of Spring 1972.

by the educational theory of the Pittsburgh Individualized Early Learning Program. These variables were chosen a priori without knowledge of the partial correlations or stepwise regressions. As seen in Table 124, four process variables have definitions in the present study that differ slightly from those used in the study that was conducted on the Spring 1972 data. The value of each component was found by summing the values of its process variables. Where indicated (see Table 117) the negative of the process variable was used.

A commonality analysis approach was used to assess both the shared and the unique predictive power of each independent variable and of each set of independent variables. In commonality analysis,* the variation of the dependent variable is divided into:

- (1) The unique variance that may be predicted uniquely by each independent variable respectively;
- (2) The shared variance that may be predicted by overlapping aspects of the independent variables; and
- (3) The error variance, which is not predictable by the regression.

For the Cooley model, the independent variables were partitioned into two groups:

- Initial ability -- the baseline test score
- The instructional process components.

Regressions were then run with: (1) the initial ability alone, (2) the instructional process variables alone, and (3) the initial ability and instructional process variables together.

Emrick (1974) diagrammed the relationships between the coefficients of determination (R^2) and the component of variance in the commanality analysis as shown in Figure 42 where R_A^2 , R_I^2 , and R_A^2 , represent the coefficients of determination for the three regression runs, respectively. That is, R_A^2 is the proportion of criterion variance accounted for by initial ability, R_I^2 is the proportion of the criterion variance accounted for by instructional components, and $R_{A,I}^2$ is the proportion of criterion variance accounted for by initial ability and the instructional components. Then,

$$R_{A,I}^2 - R_I^2 =$$
the proportion of criterion variance due uniquely to initial ability.

$$R_{A,I}^2 - R_A^2 =$$
 the proportion of criterion variance due uniquely to the instructional components.

$$R_A^2 + R_I^2 - R_{A,I}^2$$
 = the proportion of criterion variance shared by initial ability and instructional components.

1 -
$$R_{A,I}^2$$
 = the proportion of criterion variance unaccounted for (residual or error).

^{*}For more details concerning commonality analysis the reader is referred to Beaton (1973) and to Mayeske et al. (1969).

Total Ability Variance
Total Explained Variance

FIGURE 42 TOTAL CRITERION VARIANCE

The Emrick analysis carried out using the Spring 1972 classroom observation data was repeated as nearly as possible using the data collected in Spring 1973. First grade classrooms were the unit of analysis in both studies. The same posttest scores were used, and essentially the same classroom observation variables. The pretest score used in the Spring 1972 study was the sum of the Wide Range Achievement Test total score, the Peabody Picture Vocabulary Test score, and an item-sampled version of the Preschool Inventory (PSI) score. The test battery was changed and only the baseline WRAT score was available for use as a baseline for the present study. The sum of the MAT total Reading and Word Analysis scores was used to measure achievement ability. The first grade sample used in the 1972 study represented one site each for the following sponsors: Bank Street, University of Arizona, University of Georgia, University of Florida, and University of Oregon. All five of the sites included in the 1972 sample were from the southern and rural region of the United States and they did not have kindergartens. The first grade baseline data had been collected when the children entered school in Fall 1971 and, therefore, the pretest scores were separated from the posttest scores by only nine months. Thirty classrooms were included. The first graders in the present study represent 25 diverse geographical locations and entered school as kindergarteners; 112 classrooms were included. Their pretest and posttest data are separated by approximately 20 months. Thus the pretest of the second study might be expected to predict less criterion variance than the pretest of the first study.

The means and standard deviations of the predictor and criterion variables are summarized in Table 125 for the 30 entering first grades in the 1972 classroom sample and the 112 first grades (entered kindergarten) in the 1973 sample. The negative means for motivation and structure and placement variables for the 1973 sample resulted from the inclusion of some observation variables which were negatively weighted.

Table 125 MEANS AND SD'S OF FIRST GRADE MAT READING SCORES

Variables	1972 Fir Mean	st Grade SD	1973 Fire	st Grade SD
Predictor Variables				
Entering Ability on Tests Motivation Opportunity Structure and Placement Instructional Events	121.10 12.60 .62 5.31 26.40	14.87 1.16 .183 2.66 7.85	29.60 09 .67 -17.50 28.20	7.00 2.10 .14 18.40 9.30
Outcome Test Scores	55.80	18.10	67.18	16.00

These results indicate that the two samples are comparable only in terms of opportunity and instructional events. The baseline test dimensions are not comparable. Although the same criterion test was used, the 1973 sample of classrooms had higher scores than the 1972 sample.

The results of the egression analyses on the two samples are presented in Tables 126 and $1 \angle 7$.

 $\label{table 126}$ COEFFICIENTS OF DETERMINATION FOR THE REGRESSION ANALYSES

	1972 First Grade (N = 30)	1973 First Grade (N = 112)
R_{A}^{2} (ability)	.46	.53
$R_{\mathbf{I}}^{2}$ (instructional dimensions)	.16	.11
$R_{A,I}^2$ (total)	.72	.63

Table 127
COMPONENTS ANALYSIS OF FIRST GRADE CLASSROOMS

	Percent of Total Criterion Variance Due to Source				
Source of Variance	1972 (N=30)	1973 (N=112)			
Entering Ability (unique)	56	52			
Instructional process (unique) Shared (ability and process)	26 - 10	10 1			
Total accounted for	72	63			
Error		<u>37</u>			
Total	100	100			

For the first grade data collected in Spring 1972, Emrick (1974) reports

"Interpretation of the results of analyses on the first grade sample was difficult because of a negative covariance among process and performance variables. This result, which is relatively rare in educational data, tends to suppress the apparent univariate relationships of predictors to the criterion and hence has been labeled 'suppressor effect' (see, e.g., McNemar, 1969, pp. 210-211). Actually, what this effect indicates is a negative shared commonality....

Examination of the intercorrelation matrix indicates that although both ability and process variables were positively related to the criterion, they tended to be negatively related to each other. Apparently, classrooms in this first grade sample in which more effective instructional procedures were employed tended to be below average on the ability variable, thus yielding the observed interaction. Nevertheless, the important feature is the proportion of criterion variance due uniquely to process variables—nearly 26 percent."

In spite of the different baseline test battery used in the two studies and the difference in time between pretest and posttests, the variance accounted for by entering ability (unique) is similar for both studies (see Table 127). However, the instructional process (unique) accounts for more than twice as much of the variance in the 1972 study as in the 1973 study. Shared ability and process is a negative 10% for the 1972 study and accounts for only 1% of the variance in the 1973 study. The percentages of variance accounted for by the separate instructional component variables are presented in Table 128.

Table 128

PERCENT OF CRITERION VARIANCE UNIQUELY ACCOUNTED FOR
BY EACH INSTRUCTIONAL PROCESS VARIABLE IN THE COOLEY MODEL

Variables	1972 First Grade (N = 30)	1973 First Grade (N = 112)		
Motivation	0	2		
Opportunity	17	0		
Structure and placement	3	0		
Instructional events	1	2		

The instructional process variable "opportunity" uniquely accounts for 17% of the criterion variance in the 1972 study and for none of the variance in the 1973 study. Whereas the combined instructional process variables account for 10% of the criterion variance in the 1973 study (see Table 127), only 4% is accounted for (uniquely) by the single variables "Motivation" and "Instructional events" (see Table 128). This indicates that the effect of the combined interaction of the process variables in explaining the criterion test scores is greater than the addition of the percentages of the variances of the single process variables.

Although the percent of variance explained by the unique components for instructional process variables are not as large in the present study as those found in the Emrick study, the percent of variance explained is still larger than most other studies have reported. Much of the research reporting "no effect" (other than entering ability) has used such variables as teacher education, experience, or school facilities. These results suggest that more variance is explained when observational data are used.

If a secondary analysis were conducted to further capitalize on chance, a set of variables which were distinguished in the stepwise regressions as powerful predictors (see Table 129), could be used in the Cooley-Lohnes regression model and the amount of variance accounted for by the process variables would probably increase.

C. Summary

The results of the partial correlations, and regression analysis suggest that what teachers do in classrooms may well make a difference. At least it is clear that specific classroom processes can be identified as related to the Raven's, IAR, MAT, absence rate, and child behaviors. Inservice teacher training programs as well as schools of education might find these results useful in instructing students in teaching practices which might have an impact upon the growth and development of children. Essentially, it appears that in education we get what we pay for (or emphasize). In classrooms where reading and computation are emphasized, the scores on tests of reading and math are higher. In classrooms where a wide variety of activities and materials are emphasized, the scores on the Raven's perceptive problem-solving test are higher, and children are absent from school less often.

A speculation can be made that if math and reading were emphasized part of the day and a wide variety of other activities were offered for the other part of the day, several dimensions of growth and development might be enhanced.

In addition, an analysis of two process variables which were partitioned on the basis of entering ability scores as judged by the WRAI suggests that children in classrooms which have low entering ability

mean scores may profit more from a higher rate of praise and more time spent in math than children in classrooms with comparatively higher entering ability mean scores. This study suggests the value of examining process variables to see how they interact with entering abilities of children. Such information might maximize the learning program of individual children.

Secondary analyses, such as an extended interaction treatment study, a cross-validation study, a factor analysis of process variables, or a dimensionality study of process variables are likely to yield more information and perhaps a more parsimonious summary of the findings.

Table 129

RECOMMENDED VARIABLES FOR USE IN COOLEY'S REGRESSION MODEL

Opportunity

Var. 17	Duration of Day
Var. 163	Approximate number of children involved in reading
Var. 242	Percent of CCLs in which an academic activity is occurring

Motivation

Var. 402a	Adult praise, academic
Va r. 469a	All adult reinforcement with tokens

Structure and Placement

Var. 146	Large group with teacher
Var. 240	Text books and workbooks
Var. 444a	Adult movement

Instructional Events

Va <i>r</i> . 353a	Adult requests and direct questions, academic
Var. 493c	Individual child response to academic questions
Var. 412a	Adult feedback to child response to adult academic
	questions
Var. 441a	Adult communication focuslarge group
Var 509c	Child self-instruction
Var. 566c	Total academic verbal interactions
Var. 449a	Neutra' corrective feedback, academic

CHAPTER VIII SUMMARY

The primary purpose of this report has been to assess the classroom implementation of the seven Follow Through sponsors included in the study. An important question continually raised by government agencies and educators has been "Does the Follow Through Program of Planned Variations exist?" (i.e., are a variety of educational programs being successfully implemented and do these models differ significantly from each other?). The seven programs selected for study in this analysis represent a wide spectrum of innovative educational theories represented in Follow Through. The range includes two more behavioristic models (The University of Kansas and the University of Oregon), a model based upon the theory of Piaget (High/Scope), an open school model based upon English Infant School Theory (EDC), and three other models which each have their own particular combinations of theory and practice drawn from Piaget, Dewey and the English Infant Schools (Far West Laboratory, University of Arizona, and Bank Street).

To study sponsor implementation, two questions were asked: (1) are the individual models consistently implemented in accordance with the sponsor prestated philosophies and objectives? and (2) do meaningful differences as planned exist among the individual sponsor models; that is, have the planned variations actually been achieved? A third question was asked which is central to the primary objective of the Follow Through evaluation "How are children affected by the different approaches embodied within these planned educational programs?"

The answers to these questions are not only basic to the overall evaluation of Follow Through, but are also of importance to future planning of educational intervention programs. An affirmative answer to the first question would help establish that educational innovations have been introduced as planned and that the Follow Through program has met its goal of planned variation. An affirmative answer to the question of implementation would help establish that Follow Through models are exportable to other locations and that the sponsors have established meaningful delivery stems that enable them to implement their models consistently in diverse locations. Finally, information regarding how classroom instructional processes used in the various programs, impact upon the growth and development of children is of critical importance to all educators who plan school programs.

In January 1973, Stanford Research Institute was authorized by the U.S. Office of Education to extend its classroom observation activities in order to address these issues in depth. The results and findings of the study are summarized in this chapter. These results are based upon data collected in Spring 1973 in 36 project locations. The sample represents approximately 20 first grade and 20 third grade classrooms for

each of seven Follow Through sponsors at five or more sites per sponsor.*

Program implementation in the classroom is judged on the basis of two criteria: (1) the extent to which a sponsor's classrooms are found to be uniform on selected implementation variables, and (2) the extent to which a sponsor's classrooms differ from the traditional Non-Follow Through classrooms on the same variables.

A. Classroom Implementation

1. Methodology Used in the Study of Implementation

The first step in the assessment of lassroom implementation was to describe each educational model in det . The model descriptions were prepared by SRI and reviewed by the spor 3 and then revised according to the sponsor's specifications. The second step was to create variables from the codes used in the observation instrument which would describe representative elements of each sponsor's model. Each sponsor was sent the relevant variable list and asked to rate each variable according (1) its importance to this model; and (2) the frequency with which the variable was expected to occur relative to a conventional class. wm. Thus, a list of variables was selected for each of the seven models. These ranged in number from 31 for University of Oregon to 55 for Bank Street. Admittedly, the critical list of variables only in part describes a sponsor's model. Important subtle processes of some of the programs such as developing intrinsic motivation have not been assessed. Reducing a model to a list of variables will thus provide onl, a partial picture of implementation.

Since the Follow Through programs are intended to be innovative and to represent alternatives to the conventional classroom, a pool of Non-Follow Through classrooms was used as the standard from which Follow Through classrooms were expected to differ in specified ways. The standards were established separately for first and third grades.

A non-parametric scaling technique** was used in the implementation analysis. Implementation scores for each sponsor were determined by rank ordering the Non-Follow Through classroom mean scores on each sponsor variable and dividing the distribution into five equal parts. There are

^{*}These sponsors of educational models were observed in Spring 1973: Far West Laboratory for Educational Research and Development (5 sites), University of Arizona (6 sites), Bank Street College of Education (5 sites), University of Oregon (5 sites), University of Kansas (5 sites, High/Scope Educational Research Foundation (5 sites), and Education Development Center (5 sites). These sponsors were chosen for observation because they met the criterion of having five or more sites being implemented.

^{**}A nonparametric scaling technique was used rather than a technique that employs the means and standard deviations of the Non-Follow Through classrooms because of the variety of distributions that were encountered

35 Non-Follow through first grades. Beginning with lowest score, the seventh score from the bottom is the first quintile cutpoint; the four-teenth score is the second quintile cutpoint; the twenty-first score is the third quintile cutpoint; and the twenty-eighth score is the fourth quintile cutpoint. Each Follow Through cla-sroom falls within a quintile; e.g., a classroom with a score equal to or below the seventh Non-Follow cough classroom score is in the first quintile; while a classroom with a score above the twenty-eighth Non-Follow Through score is in the fifth quintile. In Figure 43 the cutpoints are shown for the implementation scores for the variable "Games, tcys, play equipment present" for first grade Non-Follow Through classrooms.

Qu	i	n	t	i	1	e	s	:	
----	---	---	---	---	---	---	---	---	--

1st	2nd	3rd	4th	5th
7 NFT	7 NFT	7 NFT	7	7
Classroom	Classroom	Classroom	Classroom	Classroom
Scores	Scores	Scores	Scores	Scores

3.5 4.2 5.1 6.3
Cutpoint 1 Cutpoint 2 Cutpoint 3 Cutpoint 4

FIGURE 43 GAMES, TOYS, PLAY EQUIPMENT PRESENT (Var. 25)-FIRST GRADE

A sponsor's implementation score on any variable will always be a score between 1 and 5. This represents the position of a Follow Through classroom mean relative to the distribution of Non-Follow Through means.

For each sponsor's classroom, an implementation score was computed for each of the sponsor's variables. These scores were displayed for each variable, in the manner illustrated in Table 130. A total implementation score for a classroom was also computed by dividing the sum of the variable implementation scores by the highest sum possible. The resulting proportion was then multiplied by 100 so that it could be expressed in percentage terms. To apply the method in an example, the highest possible sum (5) of implementation scores for a hypothetical

in the Non-Follow Through classrooms. The distributions ranged from the familiar bell shape to a j-shaped curve to distributions with extreme outliers. A parametric approach which may be appropriate to one distribution may be inappropriate to another. The nonparametric procedures selected for use tend to be less sensitive to these differences in distribution than are the more conventional parametric procedures.

Table 130
WIDE VARIETY OF ACTIVITIES, OVER ONE DAY (Variable 83)

		th Im		assro ntati of		Third Grade Classrooms with Implementation Scores of				
Sites	1	2	_3_	_4_	5	1	2	3	4	5
Berkeley, Calif.					4				1	3
Duluth, Minn.				3	1				1	3
Lebanon, N.H.					4					4
Salt Lake City, Utah					4			1	1	2
Tacoma, Wash.					4				1_	_1_
Total Classrooms				3	17			3	4	13
Percent of class-								#v	0.08	c = 0
rooms				15%	85%			15%	20%	65%

classroom being rated on four variables would be $5 \times 4 = 20$. If a classroom had implementation scores of 3, 3, 4, and 5 on the individual implementation variables, then the total implementation score for the classroom would be (15/20)100 = 75%.

In order to assess the magnitude of the total implementation scores for Follow Through classrooms, a total implementation score was also computed for each Non-Follow Through classroom on each sponsor's set of implementation variables. The mean and standard deviation of the Non-Follow Through pooled classrooms are reported for each sponsor separately for first and third grades. One-tailed t-tests were computed to test for the significance of the differences between each Follow Through sponsor's classrooms and the Non-Follow Through classrooms.

2. Results of the Classroom Implementation Study*

Total implementation scores for each classroom for each sponsor are presented in Tables 131 through 137. The means and standard deviations are presented by grade level, based on the scores for all of a sponsor's classrooms in each site and also for pooled Non-Follow Through classrooms.

The Far West classrooms in both first and third grades are remarkably similar within sites and between sites on total implementation scores, with the greatest within-site deviation found in the third grade in Duluth (see Table 131). Although 12% of the children in Salt Lake City did not speak English as a first language, both grade levels have high implementation scores. Overall, the Far West classrooms at both first and third grades are significantly different from the Non-Follow Through classrooms when compared on Far West implementation variables.

There is a significant difference between the total implementation scores in the first and third grade of University of Arizona classrooms and the Non-Follow Through comparison classrooms (see Table 132). The results of an analysis of variance indicate that there is a greater difference among University of Arizona sites than there is within the sites. The greatest difference in the first grade is found between Lincoln, with a mean of 83, and Newark, with a mean of 55. While the first grade at Newark shows little deviation within the classrooms at the site, the total implementation scores for first grade are lower than that of the Non-Follow Through classrooms. Newark third grades also had low implementation scores. It must be noted that Newark had more families below poverty level than other sites and the sponsor repreced some staffing problems. The other five University of Arizona sites (excepting Des Moines third grade) have implementation scores which are at least ten points higher than the Non-Follow Through scores.

Four dimensions of observational reliability were examined in this report; anomalies and completeness of data collection, day to day reliability, confusability of codes and observer reliability. On each dimension the data were found to be acceptably reliable.

Table 131

TOTAL SITE IMPLEMENTATION SCORES FOR FAR WEST MODEL

				First	Grade			
		-	Classroo	m Scores		Site Scores		
Sites		1	2	3	4	<u> </u>	S.D.	
Berkeley Duluth	(EK) (EK)	72.6% 76.3	7 9.3% 84.4	75.6% 80.7	71.9% 80.0	74.8% 80.4	3.4 3.3	
Lebanon Salt Lake City	(EK)	81.5 80.7	75.6 85.9	84.4 75.6	80.7 80.0	80.6 80.6	3.7 4.2	
Tacoma	(EK)	78.5	71.9	78.5	71.1	75.0	4.1	
Sponsor Score	<u>es</u> (N ≃	20):				78.3%	4.4	
NFT Scores (N=35):					60.3	6.3	
						t = 11.	28	
						p < .	001	
						F = 2.	65	
						p < NS		

		Third Grade							
			Classroo	m Scores		Site S	cores		
Sites		1	2	3	4	<u> </u>	S.D.		
Berkeley	(EK)	82.2%	70.4%	79.3%	71.9%	75.9%	5.7		
Duluth	(EK)	74.1	61.5	80.0	71.1	71.7	7.7		
Lebanon	(EK)	69.6	77.8	74.1	64.4	71.5	5.8		
Salt Lake City	(EK)	84.4	89.6	76.3	85.2	83.9	5.6		
Tacoma	(EK)	79.2	84.4	80.7	72.6	79.2	5.0		
Sponsor Score	<u>es</u> (N=2	0):				76.4%	7.2		
NFT Scores (1	N=36):					59.0	9.4		
						t = 7.1	8		
						p < .0	01		
						$F \approx 3.0$	7		
						p < .0	5		

Table 132

TOTAL SITF IMPLEMENTATION SCORES FOR UNIVERSITY OF ARIZONA MODEL

				First	Grade			
			Classroo	m Scores		Site Scores		
Sites		1	2	3	4	<u> </u>	S.D.	
Des Moines	(EK)	79.0%	62.9%	69.5%	71.4%	70.7%	6.7	
Fort Worth	(E1)	85.7	78.1	70.5	75.2	77.4	6.4	
LaFayette	(E1)	79.0	71.4	87.6		79.4	8.1	
Lakewood	(EK-)	78.1	74.3	76.2	79.0	76.9	2.1	
Newark	(EK)	57.1	54.0	56.2	54.3	55.4	1.5	
Lincoln	(EK)	89.5	88.6	74.3	81.0	83.3	7.1	
Sponsor	Scores	(N=23):				73.6%	10.7.	
NFT Scor	<u>es</u> (N=3	35):				61.8	7.0	
						t == 4.	99	
						p < .	001	
						F = 11.	76	
						p < .	001	

			Third Grade						
			Classroo	Site S	Site Scores				
Sites		1	2	3	4	X	S.D.		
Des Moines	•	65.7%	52.4%	53.3%	75.2%	61.7%	10.9		
Fort Worth	(E1)	66.7	80.0	82.9	84.8	78.6	8.2		
LaFayette	(E1)	68.6	71.4	73.3	87.6	75.2	8.5		
Lakewood	(EK)	76.2	78.1	76.2	73.3	76.0	2.0		
Newark	(EK)	61.9	63.8	67.6	63.8	64.3	2.4		
Lincoln	(EK)	77.1	75.2	78.1	81.9	78.1	2.8		
Sponsor	Scores	(N=24):				72.3%	9.1		
NFT Scor	<u>es</u> (N=3	6):				60.7	9.3		
						t = 4.7	7		
						p < .0	01		
						F = 4.7	5		
						p ∢ . 0	1		

The Bank Street first and third grade classrooms are similar in total implementation scores both within and among sites (see Table 133). The greatest deviation is found among third grade classrooms in Tuskegee (8.i) and among Fall River first grade classes (7.5). The classrooms in Tuskegee are scattered over a large county area and consistency among classroom processes may be hard to obtain; however, first grades limited to one school had less variation. In Fall River, which has a large Portuguese population, 34% of the children do not speak English as a first language; however, there is a large standard deviation between classroom means (23). Some of the classrooms may have many Portuguesespeaking children while other classrooms may have few such children, and such differences may affect implementation if the teacher has difficulty in understanding the children or making herself understood. As can be seen on Table 127, three out of the four first grade classrooms in Fall River have implementation scores considerably higher than Non-Follow Through. Whether or not the classroom with a low implementation score also has more children who do not use English as a first language has not been investigated. The mean of the Bank Street Implementation scores is significantly higher than the Non-Follow Through score. Only Philadelphia third grades have a mean score close to the Non-Follow Through mean score. 1972-1973 was a difficult year for sponsors to work in Philadelphia due to two major teacher strikes.

As the t test on Table 134 indicates, overall the University of Oregon's classrooms are significantly different from the Non-Follow Through classrooms. No first grade classrooms and only one third grade Oregon classroom score is below the mean of Non-Follow Through.

The analysis of variance F tests which are presented on Table 134 indicate that the among-site variance is greater than the within-site variance in the first grade. The greatest difference is seen between New York and Racine. In the third grade the variance is as great within the sites as among sites. The difference in New York is particularly great where one third grade classroom has a low score of 57.6 and another has a high score of 81.2. A possible explanation may be that children in University of Oregon's New York third grades have had fewer months in Follow Through and the attrition rate is greater than for other sites. The standard deviation for third grades in St. Louis and Racine is also high. The standard deviation for the first grades at these same sites is considerably less. One possible explanation for the difference among third grade classrooms might be that in the spring of the year when observations are conducted, teachers might be preparing the children for the fourth grade Non-Follow Through classrooms and they might not be adhering so strictly to University of Oregon's stated program. Note, this rationale could also apply to other sponsors, as well, since there is a slight trend toward lower implementation scores, and more deviation among them, in the third grade for several other sponsors.

The t test presented on Table 135 indicates that the University of Kansas classrooms differ from the Non-Follow Through classrooms. Only one first grade Kansas City classroom's implementation score (64.7) is

Table 133

TOTAL SITE IMPLEMENTATION SCORES FOR BANK STREET MODEL

				Firs	st Grade		
		-	Classro	Site Scores			
Sites		1	2	3	4	X	S.D.
Brattleboro	(EK)	64.4%	74.1%	68.9%	%	69.1%	4,8
Fall River	(EK)	80.7	75.6	71.1	63.0	72.6	7.5
NYC P.S. 243K	(EK)	78.5	74.8	77.0	67.4	74.4	4.9
Philadelphia II	(EK)	77.8	82.6	78.5	77.0	79.0	2.5
Tuskegee	(E1)	80.0	78.5	75.6	76.3	77.6	2.0
Sponsor Scores	<u>s</u> (N=19	9):				74.8%	5.5
NFT Scores (N=	≃ 35):					62.7	6.2
						t = 7.	12
						p < .	001
						F = 2.	37
						p < NS	

				Thi	rd Grade		
			Classr	om Scor	28	Site	Scores
Sites		1		3	4	_X	S.D.
Brattleboro	(EK)	75.6%	74.8%	71.1%	%	73.8%	2.4
Fall River	(EK)	61.5	68.9	68.9	71.1	67.6	4.2
NYC P.S. 243K	(EK)	62.2	68.9	77.8	69.6	69.6	6.4
Philadelphia II	(EK)	63.0	65.2	60.0	70.4	64.6	4.4
Tuskegee	(E1)	70.4	81.5	77.0	63.0	73.0	8.1
.sor Scores	s (N=1	9):				69.5%	6.0
Scores (N	- 36):					62.4	8.6
						t = 3.2	20
						p < .(001
						F = 1.	71
						p < NS	

Table 134

TOTAL SITE IMPLEMENTATION SCORES FOR UNIVERSITY OF OREGON MODEL

			First Grade							
			Classro	om Score	es	Site S	Scores			
Sites		1	2	3	4	X	S.D.			
E. St. Louis NYC P.S. 137K	(EK) (EK)	76.2% 88.7	62.5% 90.0	76.2% 91.2	75.0%	7_ .5% 90.0	6.7			
Racine	(EK)	72.5	72.5	71.2	71.2	71.9	1.3			
Tupelo Providence	(E1) (EK)	80.0 72.5	86.2 77.5	87.5 72.5	87.5 73.7	85.3 74.1	3.6 2.4			
Sponsor Scor	ces (N	=19):				78.2%	8.1			
NFT Scores	(N=35)	:				61.0	10.7			
						t = 6	.11			
						p < .	.001			
						F = 17	61			
						p < .	001			

		_		Thir	<u>rd Grade</u>		
			Classro	om Score	es	Site	Scores
Sites	tes 1 2 3 4 \$\frac{\bar{x}}{x}\$ ouis (EK) 76.5% 62.4% 78.8% 87.1% 76.2% 137K (EK) 68.2 81.2 57.6 69.0° (EK) 71.8 62.4 84.7 85.9 76.2 (E1) 87.1 80.0 90.6 74.1 82.9 ce (EK) 75.0 82.4 78.8 69.4 76.4 r Scores (N=19): 76.5% ores (N=36): 60.4	x	S.D.				
E. St. Louis NYC P.S. 137K Racine	(EK) (EK)	68.2 71.8	81.2 62.4	57.6 84.7	85.9	76.2	10.3 11.8 11.2
Tupelo Providence			-				7.3 5.5
Sponsor Scor	es (N	=19):				76.5%	9.3
NFT Scores	(N=36)	:				60.4	10.5
						t = 5.0	52
						p < .(061
						F = .9	91
						p < NS	

Table 135

TOTAL SITE IMPLEMENTATION SCORES FOR UNIVERSITY OF KANSAS MODEL

				Firs	st Grade_		
			Classro	om Score	es	Site S	cores
Sites		1	2	3	4	<u> </u>	S.D.
NYC P.S. 77X Philadelphia VI Portageville Kansas City	(EK) (EK) (EK) (EK)	75.0% 78.8 96.5 82.4	81.3% 90.6 91.8 74.1	% 82.4 90.6 83.5	% 88.2 88.2 64.7	78.1% 85.0 91.8 76.2	4.4 5.4 3.5 8.7
Louisville Sponsor Scores	(EK) s (N=18	85.9 3):	90.	92.9	85.9	88.8 84.6%	3.5 7.9
NFT Scores (N=	_	,				62.4 t = 9.2	8.5
							001
						p < .0	01

				Thi	d Grade		
			Classro	om Score	es	Site S	cores
Sites		1	2	3	4	X	S.D.
NYC P.S. 77X	(EK)	71.2%	85.0%	%	%	78.1%	9.7
Philadelphia VI	(EK)	76.5	82.4	75.3	84.7	79.7	4.5
Portageville	(EK)	89.4	74.1	78.8		80.8	7.8
Kansas City	(EK)	88.2	88.2	84.7	84.7	86.5	2.0
Louisville	(EK)	88.2	91.8	87.1	85.9	88.2	<u>2.5</u>
Sponsor Score	<u>s</u> (N=1	7):				83.3%	6.0
NFT Scores (N=	=36):					61.3	9.3
						t = 8.8	39
						p < .(001
						F = 2.	53
						p < NS	

close to the Non-Follow Through score (62.4). All other University of Kansas classroom scores are in the 70s, 80s, or 90s. The analysis of variance indicates that in the first grade there is a greater difference among site implementation mean scores than there is within sites. Portageville has the highest mean score (92) and Kansas City the lowest (76). Kansas City also has the greatest within-site variance (8.7). The one classroom mentioned above with the 62.4 score seems to account for this variance. In the third grade the greatest variance is found between the two classrooms in New York. The least variation and the highest im plementation scores for third grades are found within Kansas City and Louisville.

The t test presented on Table 136 indicates that overall the High/Scope implementation mean score differs from the Non-Follow Through mean score. Only the classrooms in the New York third grades have implementation scores similar to those in Non-Follow Through. New York also has the lowest first grade implementation scores. The primary difference between New York and the other High/Scope sites is geographic in nature; New York City is the only large eastern urban center included in the High/Scope sample projects. There is little variability within or among site mean scores. In no case is the within-si.e variance greater than 3.8 (Greenwood first grades) and in Greeley the variance among first grades is only .8. This is remarkable since in Greeley 27% of the children speak English as a second language and the attrition rate is high. These figures reflect a migrant, Spanish-speaking population, and indicate that the teachers have been able to implement the model in spite of the difficulties which might arise when children speak languages other than the language used in school. Greenwood, which had a considerably lower per capita income than other High/Scope sites, was also well implemented.

The t tests presented on Table 137 indicate that the EDC class-room means are different statistically from the Non-Follow Through class-rooms in both the first and third grades. In the third grade the overlap of EDC classroom scores with Non-Follow Through is not so great. In first grade, two classrooms have scores lower than the Non-Follow Through mean score, and in third grade only one EDC classroom has a score lower than the Non-Follow Through mean score.

The analysis of variance shows that the variability among sites is statistically significant relative to the within-site variance in both first and third grades. Burlington has a score of 90 in the first grade and Rosebud a score of 82 in the third grade. Philadelphia has the lowest scores, 65 and 68, and contributes most of the variance for both first and third grades. Not only are Philadelphia implementation scores lower than those of other sites, their within-site variation is greater. Here again, the low implementation scores and variability might be explained by two prolonged teacher strikes in Philadelphia. It is possible that when tension is high, teachers may become more structured and adhere less to the theory of the model. It must be noted that all other sites have high implementation scores and low within-site variance.

Table 136

TOTAL SITE IMPLEMENTATION SCORES FOR HIGH, SCOPE MODEL

				Fire	st Grade		
			Classr	om Score	es	Site	Scores
Sites		1	2	3	4	X	S.D.
Greenwood	(E1)	71.0%	67.6%	70.3%	76.6%	71.4%	3.8
Ft. Walton Bead	ch(E1)	77.9	73.8	79.3	75.9	76.7	2.4
NYC P.S. 92M	(EK)	66.2	71.7	71.0		69.7	3.0
Gree⊥ey	(EK)	82.8	81.4	82.8		82.3	.8
Denver	(EK)	86.9	80.7	80.7	82.8	82.8	2.9
Sponsor Score	es (N=18	8):				76.6%	6.0
NFT Scores (1	N=35):					63.7	5.8
						t = 7.5	58
						p > .	001
						F = 15.	59
						p > .(001

		Third Grade						
			Site	Scores				
Sites		1	2	3	4	X	S.D.	
Greenwood	(E1)	70.3%	73.1%	75.2%	74.5%	73.3%	2.1	
Ft. Walton Beach NYC P.S. 92M Greeley	(E1) (EK) (EK)	83.4 66.9 80.0	83.4 62.1 80.0	80.7 64.8 86.2	78.6 64.8	81.6 64.7 82.1	2.3 2.0 3.6	
Denver	(EK)	73.1	71.7	78.6	76.6	75.0	3.2	
Sponsor Scores	(N=19)):				75.0%	6.9	
NFT Scores (N=	36):					63.5	6.8	
						t = 5.9	93	
						p > .(001	
						F = 27.3	34	
						p > .(001	

Table 137

TOTAL SITE IMPLEMENTATION SCORES FOR EDC MODEL

				Firs	st Grade		
,			Classro	om Score	es	Site S	cores
Sites		1	2	3	4	x	S.D.
Burlington	(EK)	91.0%	91.0%	86.0%	93.0%	90.2%	3.0
Philadelphia IV	(EK)	72.0	80.0	58.0	48.0	64.5	14.3
Paterson	(EK)	70.0	79.0	79.0	73.0	75.2	4.5
Rosebud	(EK)	72.0	68.0	71.0		70.3	2.1
Smithfield	(E1)	85.0	76. 0	8 6 C	` 0،د3	82.5	4.5
Sponsor Scores	(N=19)):				76.9%	11,5
NFT Scores (N=	35):					61.2	9.6
						t = 5.3	35
						p > .(001
						F = 7.2	26
						p > .()1

				Thi	d Grade		
			Classro	om Score	es	Site S	Scores
Sites		1	2	3	4	X	S.D.
b' lingte:	(EK)	85.5%	81.8%	79.1%	75.5%	80.5%	4.2
Philadelphia IV	(ZK)	75.5	64.5	73.6	59.1	68.2	7.7
Paterson	(EK)	67.3	69.1	77.3	73.6	71.8	4.5
Rosebud	(EK)	85.5	80.0	79.1		81.5	3.4
Smithfield	(E1)	76.4	79.1			77.7	1.9
Sponsor Score	<u>s</u> (N=1	7):				75.4%	7.1
NFT Scores (N	=36):					60.7	10.6
						t = 5.3	L8
						p > .(001
						F = 4.5	54
						. > .()5

B. Sponsor Differences

Differences among sponsors were examined through discriminant function analysis. The discriminant functions on which sponsors differed were dominated by one or two very specific classroom process variables, e.g., "Large group with aide/Math" or "Adult reinforcement ith token, academic." Three groups of classrooms were usually found in these analyses. Those classrooms using the University of Kansa model formed a cluster, those using the University of Oregon model formed another cluster, and classrooms of the remaining five sponsors formed several different clusters.

In an effort to see more clearly how the five sponsors are distinguished from each other, a separate analysis was conducted without the data from University of Kansas and University of Oregon. In this analysis, the University of Arizona was distinguished from the remaining four sponsors on the basis of "Child's extended response to questions" and "Adult communication or attention focus, small group." High/Scope was differentiated from the other four on the basis of variables indicating a high level of verbal interaction between adults and children and, as would be expected from their Piagetian model, "Child self-instruction, objects." The third discriminant function distinguished Far West Lab from EDC and Bank Street, in that Far West had a higher mean score for "All adult praise to children," and less academic instruction than did the other two sponsors.

An analysis was also made to see if classrooms could be classified by sponsor. Based on Classroom Observation data, out of a total of 524 classifications using CCL variables and FMO variables, 410 were correct. University of Kansas and University of Oregon classrooms were rarely misclassified as belonging to another sponsor. The classrooms of the remaining five sponsors are occasionally confused with each other but only rarely with the University of Oregon or University of Kansas models. Three High/Scope classrooms were classified as belonging to University of Oregon and two were classified as University of Kansas classrooms. In the majority of cases, however, classroom affiliated with a particular sponsor were correctly identified with that sponsor and we conclude that for the most part, sponsors can be distinguished by the observation variables used in this analysis.

In order to learn more about the type of processes used in the Non-Follow Through classrooms, their scores on the critical variables were also assessed to see how they would be classified in the sponsors' groups. Few Non-Follow Through classrooms were classified as University of Kansas classrooms in either grade level. They were most often classified as EDC in the first grade and as University of Oregon in the third grade, on the grouping and activity variables. On the interaction variables, the Nor-Follow Through classrooms were distributed rather evenly across Far West, University of Arizona, Bank Street, University of Oregon, High/Scope, and EDC.

C. Teacher Reports

In the study of implementation it is important to try to understand what methods or strategies sponsors employed to bring about the changes in teacher behavior and which teacher characteristics are related to classroom implementation. The evaluation of classroom conformity to sponsor goals, described above, leaves no doubt that implementation of the Follow Through models has taken place in many diverse sites.

An effort was made to determine (1) which elements in the sponsor's inservice teacher training program were effective in the implementation process, and (2) which teacher characteristics might be related to successful implementation. Items from the Follow Through Teacher Questionnaire regarding the sponsor's teacher training program, teaching experience, education, satisfaction with the sponsor's model, and a report of classroom structure were analyzed. Unfortunately, the correlations from these analyses were very low and the findings do not warrant a discussion in this report.* Only an analysis of classroom structure reported by teachers on the questionnaire is analyzed in their report.

Structure of Classroom--Teachers' descriptions of the extent of structure in their classrooms were quite distinct. A low score on the scale indicated greater structure, while a high score indicated flexibility. For each sponsor, teacher reports of classroom practices conformed closely--to each other and to the requirements of the sponsor's model.

The influence of the sponsors is apparent because (1) there was little deviation among the teachers' reports, and (2) the more structured models (University of Oregon and University of Kansas) were lower on the scale and the more flexible models were higher on the scale. Non-Follow Through separates these two groups, but does not overlap with them.

D. Classroom Instructional Processes and Child Outcomes

Using 105 first grade and 58 third grade Follow Through and Non-Follow Through classrooms for whom baseline test data were available, partial correlations were computed using classroom means for instructional processes on the following: selected child behaviors, absence rate, and test scores.

In both first and third grades, the tendency is for higher reading and math scores to be associated with variables which describe the morestructured, teacher-initiated classrooms.

It is the opinion of the authors that a more useful study of teacher training would require specific information regarding training procedures used by the sponsors beyond that reported in the Teacher Questionnaire. The training procedures of sponsors may be obtained from the individual sponsors.

There is a significant relationship between high test scores and small group instruction for first grade, but large group instruction for third grade.

A significant correlation was found between test scores and stimulus-response-feedback interactions, where the teacher provides a bit of information and asks a question about the information. The child responds, and the teacher immediately lets the child know whether the response is right or wrong. If he is wrong, the child is guided to the correct answer (positive corrective feedback). If he is correct, he receives praise, a token, or some form of acknowledgment. This positive reinforcement is significantly related to the test scores.

Self-instruction and task persistence are correlated with reading and math achievement. Also, in classes where social studies are taught, there is a positive relationship with reading scores. Obviously, reading skills are used in social studies projects, but it is of interest to note that occurrence of the activity is related to reading scores. In addition, the use of instructional materials such as programmed material, Cuisenaire rods, or Montessori materials are positively correlated with math scores.

Variables describing the time per child spent in reading or math activity (either formal or informal) were highly correlated with math and reading achievement. A study of entering ability indicated that amount of time spent in math was more closely related to achievement in third grade classrooms where the entering ability had been lower than in classrooms where the entering ability had been higher. The study of the relationship of praise to achievement in math indicated similar findings. This type of interaction treatment study could be useful in planning educational programs to enhance the learning of children with differing abilities and different age levels. University of Oregon and University of Kansas, both structured models, have the highest scores of all sponsors in first grade reading, and University of Kansas has the highest score in first grade math. In third grade, the University of Oregon has the highest residual gain score of all sponsors in both reading and math.

In general, a low absence rate, high independence, and high scores on Raven's Coloured Progressive Matrices, a test of non-verbal perceptual problem-solving, tend to be associated with the more flexible classroom where a wide variety of materials are used, many different activities occur, and children are allowed to select their own groups and seating part of the time. In these more flexible classrooms, as alts interact with children on a one-to-one basis, more open-ended questions are asked, and children show more verbal initiative. Far West, University of Arizona, Bank Street, High/Scope, and Educational Development Committee, use these processes. For the most part, children in these classrooms have higher scores on the Raven's, lower absence rates, and show more independence than do children in either University of Kansas or University of Oregon, which are classified as structured models.

343

The Intellectual Achievement Responsibility Success Scale shows a positive correlation with variables describing the more open classrooms. Our results indicate that children from the more flexible classrooms take responsibility for their own success, but not for their failure. Children in classrooms using the more flexible models of University of Arizona and EDC had higher adjusted scores than children in classrooms of other sponsors. Children from the more highly structured classrooms take responsibility for their own failure, but attribute their success to their teacher's competence or other forces outside themselves. University of Kansas and University of Oregon sponsored the more structured models, and children in classrooms using those models have higher adjusted scores than children in other sponsors. EDC was the only sponsor to have positive residual gain scores on both scales.

E. Outcomes of Regression Analysis

Stepwise regressions were computed to assess the amount of variability for each outcome measurement that is explained by the independent variables.

The WRAT was employed as a measure of entering ability and in each case the regression equation was constructed by entering the WRAT scores first and then determining the amount of variance accounted for by process variables beyond that accounted for by the WRAT. The proportion of the variability among class averages of the child behavior variables; i.e., independence, task persistence, and absence rate that is explained by baseline WRAT score is essentially zero while the process variables explained from 28% to 67% of the variability for these measures. The WRAT explains from 17% to 50% of the variability of the MAT first and third grade math and reading scores. In our study the WRAT is more predictive or reading scores than of math scores. Interestingly, a set of ten process variables in the first grade and eight in the third g de offer better prediction of the math scores than does the WRAT. Process variables also account for a considerable amount of the variance in reading (23% in first grade and 37% in third grade). For the Raven's, approximately the same amount of variability is accounted for by the WRAT (.41) as by the process variables (.45). Very little of the IAR success and failure scale is predicted by the WRAT; however, four process variables accounted for 39% of the variability on the Success scale and 11 process variables accounted for 79% of the variability on the Failure scale. Collectively, these results provide compelling evidence that what occurs in classrooms does affect child outcome.

An attempt was made to replicate a regression model designed by William Cooley and based upon the educational theory of the University of Pittsburgh's IPPI. This analysis was carried out by John Emrick of SRI on the 1972 data. The first study was based upon 30 first grades representing five sponsors in five southern sites, while the second study had 112 first grade classes representing seven sponsors in 25 sites in many geographical locations.

344

In spite of the fact that a different baseline test battery was used in the two studies and in spite of the difference in time between pretest and posttests, the variance accounted for by entering ability was similar for both studies. However, the instructional process accounted for 2.6 times as much of the variance in outcome measures in the 1972 study as in the 1973 study. Shared or joint variance of entering ability and instructional processes was a negative 10% for the 1972 study and a positive 1% of the variance in the 1973 study. The instructional process variable "opportunity" uniquely accounted for 17% of the criterion variance in the 1972 study and for none of the variance in the 1973 study. The findings of the large percent of variance accounted for by the process variables specified by Cooley for the first study are not replicated in the second study. However, the methodology is useful and a set of variables selected on the basis of the findings from the stepwise regression might predict more of the outcome scores.

F. Summary

Two issues of educational importance have been addressed in this report: (1) Have a variety of innovational educational programs (Planned Variation) been implemented in diverse sites across the country? (2) If these educational models have been installed, how have they affected the growth and development of children?

The sections on sponsor implementation provide convincing evidence that the great majority of teachers in the first and third grade samples in approximately five different sites per sponsor are conforming to sponsor specifications. In addition, the sponsors have been distinguished from each other in important classroom practices. The Non-Follow Through pooled sample proved to be an equally good comparison for all sponsors. The average implementation score for Non-Follow Through, regardless of the set of critical sponsor variables used, varied only from 59 to 63. The implementation score of each sponsor differed statistically from Non-Follow Through.

The effect of classroom processes upon children was examined through partial correlations and stepwise regressions. Since the classroom processes predicted the outcome scores as well as or better than did the entering baseline test scores, we conclude that what teachers do does make a difference. In the more academically oriented classrooms which use a high rate of drill, practice, and praise and have the children more frequently engaged in reading or math activities, the residual gain scores on reading and math are higher. These children also take more responsibility for their failure as tested on the Intellectual Achievement Responsibility Scale. These findings are supported by the fact that the sponsors that use these processes in their classrooms (University of Oregon and University of Kansas) also have higher scores on these tests.*

^{*}With one exception, EDC, which is described as a more open model, had a positive adjusted score in first grade math and the third grade IAR Failure scale.

The more open interdisciplinary classrooms, which have a wide variety of activities occurring, provide a wide variety of materials, allow children to select their own groups part of the time, and allow children to engage in activities without adults, also have higher scores on the Raven's perceptual problem solving test; students are absent less often and take more responsibility for their success as measured on the Intellectual Achievement Responsibility Scale. The highest scores obtained on these tests were achieved by sponsors who specified these process variables as important to their programs.

The educational practices employed here seem to be resulting in predictable and desired outcomes for the children. On the basis of our findings, we conclude that the Follow Through program of planned variation is being implemented, and that the seven sponsored models considered in this report are each working to the advantage of children—not by chance but by careful design.

BIBLIOGRAPHY

- Anderson, T. W., An Introduction to Multivariate Statistical Analysis (Wiley and Sons, New York, 1958).
- Baker, J. Philip, Phillip Giesen, and Charles Norwood, (unpublished) SRI, Menlo Park, California.
- Beaton, A. E., <u>Commonality</u>, Mimeograph, Educational Testing Service (March 1973).
- Brophe, Jere, and Carolyn Evertson, "Process-Produce Correlation in the Texas Teacher Effectiveness Study," Research and Development Center in Teacher Education, University of Texas (June 1974).
- Carroll, J., "A Model of School Learning," <u>Teacher College Records</u>, <u>64</u>, 723-733 (1963).
- Charter, W. W., Jr. and John E. Jones, "On the Risk of Appraising Non-Events in Program Evaluation," <u>Educational Researcher</u>, Vol. 2, No. 11, pp. 5-7 (November 19/3).
- Cooley, W. W. and P. R. Lohnes, <u>Multivariate Procedures for the Behavioral</u> Sciences (John Wiley and Sons, New York, 1962).
- Cooley, W. W. and P. R. Lohnes, <u>Evaluate Inquiry in Education</u> (in press, 1974).
- Coopersmith, Stanley, "Coopersmith Self-Esteem Inventory" in The

 Antecedents of Self-Esteem (San Francisco: W. H. Freeman and Co.,
 1967).
- Crandall, Virginia C., Walter Katkovsky, and Vaughn J. Crandall, "Children's Beliefs in Their Own Control of Reinforcements in Intellectual-Academic Achievement Situations," Child Development, Vol. 36, pp. 91-106 (1965).
- Cronbach, Lee J. et al., <u>The Dependability of Behavioral Measurements</u>:

 <u>Theory of Generalizability for Scores and Profiles</u> (John Wiley and Sons, Inc., New York, 1972).

347

- Deutsch, M., The Disadvantaged Child, New York: Basic Books (1967).
- Dixon, W. J. (ed.), <u>BMD Biomedical Computer Programs</u> (University of California Press, Berkeley, 1973).
- Durost, W. N. et al., Metropolitan Achievement Tests (MAT) Form F (New York: Harcourt Brace Jovanovich, In., 1970).
- Egbert, Robert L., "Planned Variation in Follow Through," paper prepared for the Brookings Institution Conference on Social Experimentation, Washington, D.C. (April 1973).
- Emrick, John A., "Instructional Determinants of Classroom Learning," SRI, Menlo Park, CA (unpublished, January 1974).
- Gagne, R. and E. C. Smith, Jr., "A Study of the Effects of Verbalization on Problem Solving," <u>Journal of Experimental Psychology</u> (1962, 1963).
- Goodlad, John C., M. F. Klein, et al., <u>Behind the Classroom Door</u> (Charles A. Jones Publishing Co., Worthington, Ohio, 1970).
- Harris, A. J., Charles Morrison, B. L. Serwer, L. Gold, "A Continuation of the Kraft Project: Comparing Reading Approaches with Disadvantaged Urban Negro Children in the Primary Grades," City U. of N.Y., U.S. OE No. 5-0570-2-12-1, ERICED 010297 (1968).
- Holt, John, How Children Fail (Pitman Publishing Corp., New York, 1964).
- Jastak, J. R., and S. R. Jastak, <u>WRAT Manual</u> (Wilmington, Delaware: Guidance Associates, 1965).
- Jencks, C., <u>Inequality</u>, <u>A Reassessment of the Effect of Family and Schooling in America</u> (Basic Books, Inc., New York, 1972).
- Jensen, A. R., "How Much Can We Boost IQ and Scholastic Achievement."

 Harvard Educational Review 39: 1-123 (1969).
- Lucas, Carol, "Issues of Implementation in Head Start Planned Variation," paper prepared for a working conference sponsored by the Brookings Institution Panel on Social Experimentation, Washington, D.C., April 1973.
- Maccoby, Eleanor, and Miriam Zellner, Experiments in Primary Education Aspects of Project Follow Through, Harcourt Brace Jovanovich, Inc. (1970).
- Mason, W. S., "Problems of Measurement and the NIE Program," NIE, mimeo (August 29, 1973).
- Mayeske, G. W., et al., <u>A Study of Our Nation's Schools</u>, a working paper (U.S. Government Printing Office, Washington, D.C., 1969).

- McNemar, Q., <u>Psychological Statistics</u>, 4th ed. (John Wiley and Sons, New York, 1969).
- Medley, D. M., and H. E. Mitzel, "Measuring Classroom Behavior by Systematic Observation," <u>Handbook of Research on Teaching</u>, N. L. Gage, Ed. (Rand McNally and Company, Chicago, 1963).
- Mosteller, Frederick, and Daniel Moynihan (ed.), <u>On Equality of Educational</u>
 <u>Opportunity</u> (Vintage Books, New York, 1972).
- Psychology, Mussan & Rosensweig, Eds. (Annual Review, Inc., Palo Alto, California, 1972).
- Rao, C. R., <u>Linear Statistical Inference and Its Applications</u> (John Wiley and Sons, New York, 1965).
- Raven, J. C., "Guide to Using the Coloured Progressive Matrices," (H. K. Lewis & Co., Ltd., London, 1965).
- Raven, J. C., <u>Raven's Coloured Progressive Matrices</u> (New York: Psychological Corporation, 1956, 1962).
- Semmel, Melvyn (personal communication, 1973).
- Smith, M. S., "Some Short Term Effects of Project Head Start: A Preliminary Report on the Second Year of Planned Variation, 1970-71" (DRAFT), Huron Institute, Cambridge, Massachusetts (1973).
- Soar, Robert, <u>Follow Through Process Evaluation</u>, 1970-1971, Institute for Human Development, University of Florida, Gainesville, Florida (June 1973).
- Stallings, Jane, Follow Through Program Classroom Observation Evaluation, 1971-72, SRI Project URU-7370, Stanford Research Institute, Menlo Park, California (August 1973).
- Stallings, Jane, Philip Baker, Gerald Steinmetz, "What Happens in the Follow Through Program: Implications for Child Growth and Development," paper prepared for the American Psychological Association Convention, Honolulu, Hawaii (September 1972).
- Stearns, Marian S., Kathryn A. Preecs, and Gerald T. Steinmetz, "Classroom Observation Study of Implementation in Head Start Planned Variation, 1970-71," Stanford Research Institute, Menlo Park, California (1973).
- U.S. Department of Commerce, Bureau of the Census, <u>Census of Population</u>:

 1970 General Population Characteristics, Final Report PC (1)-Bl,
 U.S. Summary.

- Weber, Evelyn, Early Childhood Education: Perspectives on Change, Charles A. Jones Publishing Co., Worthington, Ohio (1970).
- Weikart, David P., and B. A. Banet, "Planned Variation: From the Perspective of a Model Sponsor," paper prepared for a working conference sponsored by the Brookings Institution Panel on Social Experimentation, Washington, D.C. (April 1973).
- Wiley, David E., Another Hour and the Day's Quantity of Schooling, A Potent Path for Policy (University of Chicago, 1973).
- Wolff, Max and Annie Stein, "Study I: Six Months Later, A Comparison of Children Who Had Head Start Summer 1965, with Their Classmates in Kindergarten (A Case Study of Kindergartens in Four Public Elementary Schools, New York City)," 1966.

Appendix A

FOLLOW THROUGH PROGRAM SPONSORS

erst terminate spensors sex street liege + found get a ATE SEELE COLLEGE IF THE ACTOR cli . i'ath 'treet ch t fr. ich tork 19025 wire the "lizabeth of elkeson re a for stallysis Approach is "t and excelorment tenter for Follow Lirough constraint it buran development thusis I versit 14te 2014, k. 115u - 66044 dure for the sushell, r. coltaril li governe Folios Through approach enter for laner (it Studies entte istern illinois iniversity braid officerd ing Illinois unit retry Smyl. Araez and Clara Holton rall de o rati legroing invariaments ivers to it illiformia, diversible 23th above South Riversiae, California (#2502 here the Manuel camprez III rloridi Firent ido ation Model corsit thereis s s veil Hill actendates florita 326 (1 rebr in rbor dies of the maj reasoning brights niversity of Pitt burgh Tearning Research and Development Center
Print toollow Phroagn iil Scien e Building Pastsburg , Pennsylvinia 1921, "e " r ... caren sesti" k and warren snepler Many again Visitore Program normal of Horgis vos own rings ology department triess, erraid 306 H are tir i i smilk the high given upon to relieve The ugh " liversity of North Pakota a ter for anything and feartang ited from North Taketa 58204 r tr it "err ne ranea apported Applications of the Seminara to ted Pres riptive less and Approach e rais state inservity countries the raise halfhood Edit acton ilmer street atlanta, engwa 3030 ours for walter L Holges - - v ar od. stion wedel and the or early Childhood bloomstion arat treet 1 150 treet

57 to 1 174000

1 5 1, 1717513 35719 Hir tir Tiseph M Hillerip Diersie of Oregon ingelminn Becker Model in the stin is we are agreement to note egitet agelmann

Regueral Liberatories or Private Institutes Cognitively Oriented Curriculum Model Fight Scope Educational Research Foundation 12) Worth Huron treet Mrsilinti, Michigan -48197 Director Pavid P. Weikart the Open Education Follow Through Program Education Development Center 55 (hapel Street Newton, Massachusetts 02160 Director, George F Hein Hampton Institute for-Graded Follow Through Model Hampton Institute Hampton, Virginia 23368 Director Mary T Christian Interdependent learning Model follow through 1700 Stewart Avenue S W. Atlanta, Georgia 30315 Director: Frances Cox Follow Through Public School 76M 220 " est 121st Street New York, sew York 10027 Dire to Altharinzo I Thompson . Language Development (Bilingual) Education Approach Southwest Educational Development Laborators (SEDI) Follow Through Model 800 Brazos Street Austin, Texas 78701 Director: Don H. Williams Responsive Idacitional Program Far west laboratory for Educational Pewearch and Development I Garden circle Hotel Claremont Berkeles, falifornia 94705 Director Denis thoms Role-Frade Model Jestern Behavioral Sciences Institute 1150 Silver ido la folla, California 92037 Director Stanley Crockett local Community Program Sponsors AFRAM Parent Implementation Approach Atram Associates, Inc. 68-72 F 131st Street Hariem, New York 10037 Afre for Preston Willion California Process Model california State Department of Education hivistor of Compensatory Education Bureau of Program Development

721 capitol Mall Sacramento, California 95814 Director James Jordan Hure-School Partnership A Motivational Approach Clark College 240 Chestnut Street, S.W. Atlanta, Ceorgia 30314 here for Edward F Johnson

		Number of Fo Classes	Observed
5	ponsor and Sites	First Grade	Third Gride
DED	aboratory for Flucational		
0201	Berkelev, Calif.	4	4
	Duluth, Minn.	4	4
	Lebanon, N.H.	4	4
0209	Salt Take City, Utah	4	4
	lacoma, Wash.	4	4
University	of Arizona		
0305	Des Moines, Iowa	4	; 4
	Fort Worth, Texas	4	4
0308	LaFavette, Ga.	3	4
0309	Lakewood, N.J.	4	4
0311	Newark, N.J.	4	4
0316	Imcoln, Nebraska	4	4
Bank Stree	t College		
0502	Brattleboro, Vermont	3	3
	Fall River, Mass.	4	4
	New York City, P.S. 243K	4	4
	Philadelphia II, Pa.	4	4
	Tuskegee, Ala.	4	4
University	of Oregon		
0703	E. St. Louis, III.	4	4
0707	New York City, P.S. 137K	3	3
	Racine, Wisc.	4	4
	Tupelo, Miss.	4	4
	Providence, R.I.	4	4
University	of Kansas		
	New York City, P.S. 77X	2	2
	Philadelphia VI, Pa.	4	4
	Portageville, Mo.	4	3
	Kansas City, Mo.	4	4
	Iouisville, Ky.	4	4
High/Scope Foundation	e fducational Research		
	The same of the sa	4	4
	Greenwood, Miss.		4
0902	It. Walton Beach, Fla.	4 3	4
0903		3	3
0906	Greelev, Colo.	4	• 4
0907	Denver, Colo.	•	•
I ducat ren	Development Center		
1101	Burlington, Vermont	'•	4
1103	Philadelphia IV, Pa.	;	4
1106		4	4
1107	Rosebud, Texas	}	3
1108		-4-	2
	Total	136	135

Symbols for Region and Metropolitan States

Within Standard Metropolitan Statistical Area:

1 Big City 200,000

2 Medium City 50,000-200,000

3 Small City 10,000-50,000

4 Town 2,500-10,000

No Within Standard Metropolitan Statistical Area:

5 Small City 10,000-50,000

6 Town 2,500-10,000

7 Rural 2,500

Regions

NE = New England

MA = Middle Atlantic

"NC = East North Central

WNC = West North Central

SA /= South Atlantic

ESC = East South Central

WSC = West South Central

Mt. = Mountain

Pac. = Pacific

Appendix B

THE EFFECT OF CHILDREN CHARACTERISTICS ON CONTROL SYSTEMS AND ON THE DISPLAY OF EMOTIONS BY ADULTS

2. Results for Pooled Follow Through and Pooled Non-Follow Through

a. Percent of Males in the Classrooms--Correlations

The results presented in Table B-l indicate that a preponderance of boys in a classroom has little effect upon the adult's classroom control or display of happiness or anger. Only one correlation out of 26 is significant (p < 0.5) for the pooled Follow Through classrooms (at this level, the correlation could have occurred by chance). Two of the 26 correlations reached significance in the Non-Follow Through classrooms. The first correlation indicates that in classrooms where there are more boys, the adults show less positive affect; in fact, they display less evidence of any type of emotion (Variables 423a, 430a) that can be recorded on the SRI observation instrument.

b. Percent of Children with Preschool Experience--Correlations

In this analysis, the classroom average in months of preschool experience was correlated with each of the adult process variables. Results are displayed in Table B-1. Whether or not a child has preschool experience does not appear to incluence the way in which Follow Through teachers treat the child. In Non-Follow Through classrooms, however, the teachers were more likely to give corrective feedback to children when there was a higher percentage of children with preschool experience (Variable 405a) and the feedback was likely to be for behavior (Variable 448a). In addition, Non-Follow Through teachers with a higher percentage of children with preschool experience were less likely to demonstrate either positive or negative feelings (Variables 423a, 430a).

c. Mean Scores on Baseline Wide Range Achievement Test (WRAT)--Correlations

In this analysis, the classroom average on the entering level WRAT was correlated with each of the adult process variables also. Results are displayed in Table B-1. Follow Through children in classrooms with higher average entering test scores receive more positive corrective feedback for behavior and more emotional response from teachers (Variables 408a, 430a). They receive less positive corrective feedback and neutral corrective feedback for tasks (Variables 410a, 447a). In contrast to what one might expect, no significant correlations were found between academic feedback and WRAT scores.

Children in Non-Follow Through classrooms having higher entering test scores received tokens less often than children who had lower entry test scores (Variables 399a, 40la). This result is undoubtedly a supious finding since tokens are rarely used in Non-Follow Through classrooms. As in Follow Through classrooms, children having higher entering test scores receive positive corrective feedback less often (Variable 410a). Evidently, teachers in general give those children

Table B-1

CORRELATIONS OF ENTERING CHARACTERISTICS OF CHILDREN WITH INSTRUCTIONAL VARIABLES--FIRST GRADES

No. Name		FT (N=109)	_	NFT (N=35)	FT (N=106)	NFT	(N=32)	1	(N=68)	NFT (N=23)	3
		r P	1 1		r P		řá		ř	4	id
394a All adult acknowledgment to children	lldren	00.	.27		.05	.25		.05		04	
395a Adult acknowledgment to children, academic	en, academic	.05	. 26		90.	. 24		.05		07	
Adult acknowledgment to children,		.05	.35		.05	.26		90.		03	
Adult acknowledgment, other task-r		90.	.11		* * 00	.10		.01		.05	
398a All adult praise to children		04	00		÷0	.02		07		06	
-	, academic	08	27		06	i8		04		41	.05
	, behavior	13		*	12	*	*	13		*	*
•		14	. 26		16	.22		.16		42	.05
-		04	03		04	.02		05		06	
		11	04		12	07		09		60.	
	pa	80.	90.		.01	. 62		.05		90.	
	co children	06	.32		07	.43	.05	90.		11	
-	oack, acadenic	15	.19		13	.13		02		.13	
407a Adult negative corrective feedback, acadenic		06	02		05	04		*00	*	03	
	•	. 17	.08		.10	.03		.26	.05	23	
-		.03	.05		.002	.05		.11		- .06	
Adult positive corrective feedback,	back, other task-nelated	60.	.04		.07	.04		31	.01	54	.01
Adult negative corrective feedback, other	oack, other task-related		.05 .13		.03	.04		- .01		39	
	þ	02	53	.001	- .08	47	.01	.22		11	
	\$3	, ug	03		.03	02		13		13	
428a Negative behavior, adults to children	nildren	03	.03		07	.02		.12		11	
		03	51	.01	10	43	.01	.25	.05	26	
432a AJult punishment ci children		.05	90.		.05	.01		.11		09	
		.14	.25		60.	.18		31	.01	02	
	_	03	.17		.01	94.	.01	.12		.01	
449a Adult neutral corrective feedback, academic	-	08	.08		08	. 23		80.		03	

Note: The probability is presented only where the correlation is significant.

* cannot be computed.

who enter school with more academic skills (as measured by the WRAT) less positive corrective feedback than they give children entering school with fewer academic skills.

d. Geographical Regions--Analysis of Variance

Regional effects were assessed by comparing classrooms located in the North Eastern, North Central, Southern, and Western United States on each process variable in an analysis of the variance. The results shown in Table B-2 indicate that in Non-Follow Through classrooms there is no relationship between geographical region, community size, or ethnicity, and classroom control or affect variables. However, some significant relationships were found in Follow Through classrooms, and the direction of the significant relationships is shown in Table B-3. (Note that "High" means the process occurred more frequently and "Low" means that it occurred less frequently.)

Based on our findings (as shown on Table B-3), it appears that Follow Through children in the North Eastern region are less likely to receive acknowledgment for behavior or academic achievement (Variables 395a, 396a) than children in the Southern region. However, they receive more corrective feedback for behavior and task-related subjects (Variables 408a, 447a, 448a) than children in other regions of the country. More praise and reinforcement for academic achievement (Variables 398a, 399a, 402a) is given to children in the North Central region than children elsewhere, but they receive less acknowledgment and neutral corrective feedback for behavior (Variables 396a, 448a). As we indicated earlier, children in the Southern region receive more acknowledgment for behavior and academic achievement (Varia 1es 395a, 396a). They also receive more positive corrective feedback f.: academic achievement (Variable 406a) than do children in other regions of the country. Praise and reinforcement are used less often for achievement in academic subjects (Variables 399a, 402a) in Western classrooms, but adults acknowledge acceptable behavior and offer praise for tasks (other than academic tasks) more often here than in other regions (Variables 396a, 404a). No clear pattern emerges, and the regional differences noted may be due to the different emphasis of the various educational models represented in these regions.

e. Community Size--Analysis of Variance

The effects of community size were measured by comparing classrooms in communities with populations of over 290,000 (big cities), between 50,000 and 200,000 (medium cities), between 10,000 and 50,000 (small cities), and less than 10,000 (towns and rural). Table B-2 presents the significant results over all communities for Follow Through and Non-Follow Through. The $\underline{\text{direction}}$ of significant results for Follow

Table B-2

ANALYSIS OF VARIAMCE OF TWIERING CHARACTERISTICS OF CHILDREN WITH INSTRUCTIONAL VARIABLES (Follow Through and Non-Follow Through-First Grades)

ity	VFT (N=35)	F PX	.08	90.	1.11	.19	.003	.97	*	2.35	.04	. 34	.21	.16	.87	.11	2.16	97.	1.93	.78	.001	.81	87.	.21	.79	.77	. 30	1.12
Ethnicity	(N=136)	>d			_	.01	.05	.05			.01			. 05			.,			_				.05		_	_	05
ļ	FT (N	ír.	.53	.87	1.57	6.14	3.64	3.98	2.75	1.06	2.00	1.28	2.07	3.23	1.88	.47	1.80	1.54	.93	. 52	2.80	1.77	1.48	4.39	97.	2.63	2.31	4.72
e Z	(N=35)	×d.							*																			
Community Size	NFT	12.	2.47	2.21	. 57	. 79	1.75	. 62	•	.77	1.76	. 97	1.25	1.30	. 20	.43	1.70	67.	9.	.23	2.09	.75	.27	3.02	9.	1.19	99.	. 33
Commun	(N=136)	»d				_		.01													.01			.01		.05		
	E	14	2.10	1.99	1.08	.13	. 59	4.91	2.09	.75	.74	1.42	1.41	.82	1.92	1.38	2.63	1.03	1.69	1.26	4.75	1.26	1.61	5.72	.10	3,36	.79	1.16
Geographical Regions	NFT (N=35)	F p<	. 30	1.88	4.78	. 34	1.53	1.03	*	1.08	2.35	1.63	.62	.24	.02	.10	97.	80.1	.74	.78	. 39	.64	1.26	22	27	67.	.32	.40
aphica	1	×	.01	٠.	.05		.0	.01			.0		.05		.05		.01	-•								.0	.01	
Geogr	FT (N=136)	ı	6.33	7.00	3.61	.02	4.47	99.7	98.	1.11	6.07	77.	2.76	.97	3.40	. 30	3.95	2.42	1.22	1.05	.77	1.89	2.25	. 65	.33	4.34	5.55	. 38
	Variables	Name	All adult acknowledgment to children	Adult acknowledgment to children, academic	Adult acknowledgment to children, behavior	Adult acknowledgment, other task-related	All adult praise to children	Adult reinforcement with token, academic	Adult reinforcement with token, behavior	Adult reinforcement with token, other task-related	Adult praise, academic	Adult praise, behavior	Adult praise, other task-related	All adult corrective feedback to children	Adult positive corrective feedback, academic			Adult negative corrective	Adult positive corrective feedback, other task-related			-		Total adult affect	Adult punishment of children	Adult neutral corrective feedback, task-related		Adult neutral corrective feedback, academic .
		No.	394a	395a	396a	397a	398a	399a	400a	401a	402a	403a	404a	405a	406a	407a	408a	408a	410a	411a	423a	426a	428a	430a	432a	447a	448a	8777

Note: The probability is presented only where the F test is significant.

* cannot be computed.

Table B-3

THE DIRECTION OF SIGNIFICANT RELATIONSHIPS IN THE ANALYSIS OF VARIANCE FOR FIRST GRADE (OLLOW THROUGH CLASSROOMS (N=136)

		Ge	ogr _« phica	1 Regio	ns
Var.		North	No cth-		
No.	Variable Name	east	central	South	West
349a	All adult acknowledgment to children	Low		High	
395a	All adult acknowledgment to children, academic	Low		High	
396a	All adult acknowledgment to children, behavior	Low	Low	High	High
398a	All adult praise to children		High		Low
399a	· •		High		Low
402a			High		Low
402a	•		0	Low	High
	the state of the s	Low		High	
406a		High		Low	
408a		High	Low	Low	
447a		High	low	1.0 *	
448a	Adult neutral corrective feedback, behavior	nrgn	1 C W		
Vor. No. 3994 423a 430a 447a	Positive behavior, adults to children	Big City High Low Low	Small City Low	Big Fown Low	Town and Rural Low High High High
Var.			room Ethr		
No.	Variable Name	White	Mixed	Black	
397a	All adult acknowledgment to children, other task related	High		Low	
398a		Low		High	
399a	•	Low		High	
402a		Low		High	
405a		Low	High	-	
430a		High	Ü	Low	
430a 449a	Adult neutral corrective feedback, academic	Low		High	
44/4	Until medical correction respect to management			•	

^{* =} White classrooms are those with <20% black children; fixed classrooms have 20% to 80% black children; and Black classrooms are those with <80% black children.

Through by community size is shown in Table B-3. Follow Through children in large cities receive more tokens for academic achievement,* but children in towns and rural areas receive more neutral corrective feedback that is related to tasks (see Variables 399a and 447a in Table B-3). Children in towns and rural classroom environments experience more adult expression of feeling, especially positive affect by laughing and smiling more often in the classrooms (Variables 423a, 430a).

f. Ethnicity--Analysis of Variance

In this analysis, the effects of three groups of this variable were compared in an analysis of variance. (See Table B-2 for the overall significant relationships for Follow Through and Non-Follow Through.) Table B-3 presents the "treatment" groups that were compared in Follow Through. These groups were classrooms with less than 20% black children, classrooms with 20-80% black children and classrooms with more than 80% black children. The classrooms were labeled as predominantly white, mixed, and predominantly black.

Adults in Follow Through classrooms with more than 80% black children offer more praise, reinforcement, and neutral corrective feedback for academic achievement than do adults in classrooms with different racial compositions (Variables 399a, 402a, 449a). Children in classrooms with less than 20% black children are more frequently acknowledged for tasks other than academic ones and the adults show more positive and negative feelings (Variables 397a, 430a). When the racial mix of a classroom is more even, the children receive more corrective feedback (Variable 405a).

3. Results Within Sponsored Programs

In the analysis of individual sponsors entering demographic characteristics it is apparent that demographic characteristics and site effects are confounded. In the cases of regionality and community population, this confounding is so gross that, for example, often within a given sponsor one site will be isolated in each analysis as the sole representative of both southern region and rural population. Such cases render interpretation impossible, and the effects of region and community size are omitted from the following presentation. Percent of preschool experience is also omitted, since the previous analysis indicated no big difference.

B-9

^{*}The University of Kansas, which uses tokens in its model, has one site in a small town and four large-city sites in this evaluation sample.

a. <u>Sex Differences--Correlations</u>

In this analysis, a relatively continuous child characteristic (percent of male children in classroom) was correlated with each of the adult process variables. The results are displayed in Table B-4.

Differences in this analysis are extremely slight. At the .05 alpha level, four sponsors had no significant correlations. In the Far West model, less positive and neutral feedback occurred in classrooms where there were more boys enrolled than girls. However, although only these two variables (Variables 410a and 447a) reach a significant level, it is interesting to note the negative direction of the relation ship. In general, it appears that less affect, feedback, and control are occurring in the classrooms where there are more boys than girls. This observation contrasts distinctly with that of the Bank Street model, where the sole variable (Variable 403a) correlated at significant levels indicated that classrooms with more boys showed more occurrences of praise from adults. The only other significant relationship occurs in High/Scope, where classrooms in which more boys than girls were enrolled showed more occurrences of punishment (Variable 432a). Here a strong caution must be made regarding correlational data; punishment was observed rarely throughout the Follow Through program, including the High. Scope classrooms.

b. Mean WRAT Score--Correlations

In this analysis, the classroom average on the entering WRAT test was correlated with each of the adult process variables. The results are displayed in Table B-5.

As with the other entering characteristics, relatively few significant results were obtained. No control or affect variables in the Bank Street and University of Oregon classrooms were found to be related to baseline WRAL scores. In the Far West model, only one correlation reached a significant level. It indicated that children with higher WRAT scores received more neutral corrective feedback for academic achievement (Variable 449a).

In the Arizona model, high WRAT scores correlated negatively with neutral corrective feedback for behavior. Thus if children enter with higher test scores they receive less neutral feedback (see Table B-5, Variable 448a).

In the Kansas model children who entered with high WRAT scores received more acknowledgment and tokens for other task-related activities (Variables 397a, 401a). They also received more neutral and positive corrective feedback for behavior (Variables 40&a, 448a). However, children with the higher entering scores also received less positive corrective feedback for other task-related activities (variable 410a). Perhaps more was expected from children who entered with higher test scores, because there is no evidence that they received more praise or tokens for academic achievement.

B-10

Table B-4

CORRELATIONS OF SEX DIFFERENCES WITH INSTRUCTIONAL VARIABLES (Percent of Males in Classrooms--First Grade)

	Variables	Far West (N=20)	~	J. Arizona (N=23)	Bank St (N=19)	U. Oregon (N=19)	U. Kansa> (N=18)	High Scope (N=18)	ι	EDC (N=19)	
ş	Nanc	r F	, ,	}	Val	V d	Yd -	d	ivi	r P	ivi
394a		.17	•	0.1	16	37	.0.	.24	ľ	21	
395a	Adult acknowledgement to children, academic	.27	•	- 05	18	.32	80	7-7	,	21	
3963		37	٠	-,01	.12	Ξ.	60`	.32	,	28	
397a	Adult acknowledgement, other task related	1.(1	٠	.01	60'	54	- 13	22		10	
398a	All adult praise to children	છ.		80.	F1.	.28	.05	.26	•	03	
399a	Adult reinforcement with token, academic	- 38		60.	•	.15	13	27		•	
400a	Adult reinforcement with token, behavier	*		*	•	.17	18	•		•	
401A	Adult reinforcement with token, other ask-related	- 16	,	13	•	90:	21	+	•	•	
402a	Adult praise, academic	.0.		.01	06	.28	.14	56	•	10	
403a	Adult praise, behavior	13		.41	.46 .05	.18	61	.20	•	33	
404a	Adult praise, other task-related	- .11		.17	.43	.13	02	90.		24	
405a	All adult corrective feedback to children	24		.23	.21	90.	11	37	•	17	
40ea	Adult positive corrective feedback, academic	20		.08	14	.02	.01	09	•	30	
407a		20	•	05	27	.0	.19	.16	•	12	
408a	Adult positive corrective feedback, behavior	.25		.19	.14	.13	.17	.28		.29	
409a	Adult negative corrective feedback, behavior	04		.18	.37	60	19	.11		.24	
410a	Adult positive corrective feedback, other task-related	٠	05	16	07	.04	02	.15	•	26	
4112	Adult negative corrective feedback, other task-related	80		.30	.35		.12	. 20	•	- 05	
423a	Positive behavior, adults to children	- 13	1	17	- 16	.15	.16	60.		.18	
426a	Adult expressions of unhappiness	04	•	24	.33	.13	.37	.16	,	18	
428¢	Negative behavior, adulis to children	05		.16	43	37	- 03	13		.19	
430a	Total adult affect	-,15	•	.15	07	80.	61.	.07		.22	
432a	Adul: punishment of children	.04		.25	.20	ş	31	-	90	60.	
447a	-	0. 44	05	.22	.24	.19	.01	90.	٠	04	
448a		14		.16	.03	.07	.002	- 34		16	
449a	Adult neutral corrective feedback, academic	60.		.11	.32	03	- 21	- 29	•	.07	

Note: The probability is presented only where the correlation is significant.

Table B-5

CORRELATIONS OF BASELINE WRAT SCORES WITH INSTRUCTIONAL VARIABLES (Classroom Average on Entering WRAT--First Grade)

			University	ity		Univ	niversity	University	sitt				
		Far West	of Arizona	cora	Bank Street		of Oregon	ot Kansas	SPSU	High S	adon	EDC	
	Variables	(N=12)	(%=12)	2)	(N=14)	ı	(N-6)	(N=18)	(8)	(Na.14)		(N=12)	
No.	Name	r P.	1-1	P.	r D	-	Ā	L	ă	Le	ě		ار
30%	all adult a throughdoment to children	.07	78.		57.	4.5		18		11		90.	
395	ademic	10	. 52		.26	77.		37		*.08		06	
3968	behavior	24	24		.33	.31		.12		ē.		*	*
3973	related	01	25		.01	67.		. 50	.05	07		04	
398a		. 22	19		. 20	32		04		01.		81.	
399a	Adult reinforcement with token, academic	.29	*	*	*	*	*	. 14		Ξ.		*	*
400a	Adult reinforcement with token, behavior	*	*	*	*	*	*	26		*	*	*	*
401a	Adult reinforcement with token, other task-related	*	*	*	*	*	*	87.	.05	*	*	*	*
402a		.26	- 04		. 28	26		.02		.12		.10	
403a		.29	.42		18	97		23		60.		5	
404a	sk-related	37	34		11	38		.21		.0		.15	
405a	children	.15	29		.00	.55		.12		.07		ος) -7	
406a	, academic	8	.36		22	20		26		.38		.51	
407a	, academic	36	*	*	.17	.17		- 14		Ξ.		7.	
408a	, behavior	.32	40		04	65.		14	.001	.39		- 68	.05
439a		.22	04		09	08		.12		.27		05	
410a	Adult positive corrective feedback, other task-related	.17	14		47	16		68	.01	71	.0	02.	٥.
4113		.28	.53		12		*	.00		35		87.	
423a		.36	.41		.41	30		91		. 56	.05	40	
426a		67.	*	*	31		*	21		٤.		. 58	.05
428a		.23	.03		11	.18		.05		.22		02	
430a	Total adult affect	.02	.38		. 39	04		.05		.54	.05	- 22	
432a		.26	37		.39	12		.17		18		.23	
447a	Adult neutral corrective feedback, task-related	52	56		16		*	. 22		77	.001	. 55	
448a	-	60.	64	.05	23	.51		. 68	0.	. 50		.39	
449a	Adult neutral corrective feedback,	65 .05	51		.23	79.		Ξ		19		42	

B-12

Note: The probability is presented only where the correlation is significant.

* cannot be computed.

Children in the High/Scope classrooms where higher WRAT scores had been found tended to receive less neutral and positive corrective teedback for tasks than children in other classrooms (Variables 410a, 447a). More feelings are shown in classrooms where the entry scores are higher, and teachers show more positive affect toward children (Variables 423a, 430a).

Children in EDC classrooms where higher WRAT scores were found tended to receive more positive corrective feedback for nonacademic tasks and less positive corrective feedback for behavior (Variables 408a, 410a). Adults expressed more unhappiness (Variable 426a) in EDC classrooms where the entering test scores were higher.

c. Children's Ethnicity--Analysis of Variance

As described in the analysis of pooled Follow Through and pooled Non-Follow Through, the ethnicity variable was divided into three groups of classrooms and its effects were compared in an analysis of variance. The classrooms were labeled as predominantly white, mixed, and predominantly black. Table B-6 lists those process variables significantly affected (p<.05) within each sponsor, and shows the nature of the difference among the three groupings. The direction of the significant relationships is indicated by "High" (positive relationship), "Med", and "Low" (negative relationship).

In this analysis, three sponsors (Far West, University of Arizona, and EDC) showed significant ethnicity effects on only one or two process variables. Since 19 process variables are examined here, this result is approximately what would be expected by chance, and it can be inferred that classroom control and adult affect are not influenced by children's ethnicity in these programs. However, in the case of Far West the data indicate that children in classrooms with a higher percentage of white students receive more acknowledgment from adults (Variable 394a).

Among the other programs, Bank Street and High/Scope showed an effect on only four variables each. The pattern in each case is mixed, but in general Bank Street provided more acknowledgment and feedback (Variables 394a, 395a, 406a) in classi oms classified as mixed or predominantly black than in classrooms classified as predominantly white. In High/Scope classrooms, adults more often expressed unhappiness (Variable 426a) in predominantly white classrooms, and neutral corrective feedback for academic activities (Variable 449a) was more often observed in classrooms classified as mixed.

Most of the differences in this analysis occurred within the two more structured "reinforcement" models, University of Kansas and University of Oregon. Unfortunately, since neither sponsor had class-rooms classified as predominantly white, the emergent pattern is incomplete, but it appears that adults in University of Oregon classrooms

B-13

I ible B-6

AVADANIS OF VARIANCE OF PROCESS VARIABLES STORIFFCIALLY AFFICIED BY CHILDREN'S FENDENDALLYPY FRALE (N - 136)

Mile			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 (4) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	, -:		yed Bha	<u>ب</u> د	(Z V)	Black (N 10)	Shite Vi	ted Blac	7	V1xcd	114ck	* 5) C	S Cr	£ 5		J. Elac
March Marc		- · · · · · · · · · · · · · · · · · · ·		<u> </u>	ii.			-											1	2
				3	¥			1	ved-	-p-m					~					
Addit prize transcription to the first wide and the				3	, N				High	High										
Part		•		• ल	ž			Ş	Wed-	€ed.					_					
Mail total project of the control		•		3	ğ				High	High										
1		ited if to repent atth rective telated rective feed- propertive corrective corrective corrective corrective						z							- *07			1404	3	1411
High bolls (1) by (1) by (2) by (3) by (4) b		rent ath rent ath rent ath rent ath rent ath rent take reture feed- enter a													ded					
data free free free free free free free fre		rent aith fent aith sk related scadenic scadenic scadenic corrective correct									۸ec									
Adult printed result with the printed results with the printed results with the printed results of the printed results with the p		rent ath each ath sk related scadesic state task- ective feed- en corrective corrective									Hig									
Quench control to the read track Quench control to the r		ment atth 2sk related kodemic sthar task- relate feed- re- corrective corrective corrective corrective corrective									ģ									
100- 100-		sacut atth codenic state task- state task- en corrective corrective corrective									2									
1 1 1 1 1 1 1 1 1 1		isk related teadesic sther task- serive feed- for corrective corrective corrective corrective corrective corrective																		
Adult praise, other task————————————————————————————————————		sther task- stite fact- enrective enrective corrective corrective									New Y									
Adult prizes, other tash— Adult neutral corrective feedback, acadeance Adult neutral corrective feedback, acadeance feedback, acadea		sther task- generalise feed- encertive									<u> </u>									
Adult prise, other tash— Adult prise, other tash— Dark to children Adult corrective feedback Adult corrective feedback Adult positive corrective Adult positive dealer Adult positive corrective Adult positive dealer Adult positive corrective Adult positive corrective Adult positive corrective Adult positive dealer Adult positive corrective Adult positive corrective Adult positive corrective Adult positive dealer Adult positive dealer Adult positive corrective Adult positive dealer Adult positive dea		sther task- retive feed- rence corrective rence corrective									ڊ ڏڏڙ									
Fig. 10.0 High Wed- Back to children Back to children Back to children Adult positive corrective Adult required For tityle behavior For tityle For tityle Adult required Adult required Adult required Adult neutral corrective Adult neutral corrective		corrective feed-						i i		7	10.1									
High Med-		enice feed- corrective enice corrective						2												
Mark to children		orrective corrective corrective corrective									Í				Mand-					
High Wed- High Wed- High Wed- High Wed- High Wed- High Wed- High Loa- Loa- High Loa-		corrective corrective corrective corrective													100					
Adult negative corrective		corrective corrective corrective corrective													HKD					
High Lox Lox Feedback, academic		corr. ctive						į	High	- Ged										
Seedback, standard		corr. ctive								High										
High Low-		ente our potate									9									
High Low- High Low- Adult positive corrective High Low- Adult positive corrective High Low- High		21110									Med									
Ved base of feedback, behavior														HIR	- 407					
Adult positive corrective Low- Low- Vied feedback, other task- related Low- Los- Los- Los- Los- Los- Los- Los- Los		101													We de					
Vied Vied Feedback, other task- Lou- Lou- <td></td> <td>corrective</td> <td></td> <td>, , 3</td> <td></td> <td></td> <td></td> <td></td> <td></td>		corrective													, , 3					
Teelated		T task-													P +3					
Peritive behavior, adults Peritive behavior, adults Peritive behavior, adults Peritive behavior Peritive behavior Peritive behavior Peritive behavior Peritive																				
to children Med Ved Ion Adult repressions of un- happiness Lou- Lou- Lou- Lou- Lou- Lou- Lou- Lou-		tor, adults									ģ									
Adult expressions of un- Adult expressions of un- Adult metral corrective Low- Low Adult metral corrective Low Adult me											Med									
happiness Lost - Lost Lost - Lost - Lost Lost - Lost		ons of un-													-					
Total adult affect Lov- Lov Ved Lov- Lov Geedback, task-related Lov- Lov Lov Geedback, behavior Ved Lov- Lov Geedback, behavior Ved Lov- Lov Geedback, academic Lov- Lov Lov Lov Geedback, academic Lov Lov Lov Lov Geedback, academic Lov Lov Lov Lov Geedback, academic Lov G	happiness																			
Ved		fect									Ś									
Adult neutral corrective											ACA									
feedback, task-related Adult meutral corrective Medack, behavior Adult neutral corrective Med High		corrective									,01									
Adult neutral corrective Low- low feedback, behavior Vied Adult neutral corrective Low- low low Vied- feedback, academic Vied Vied High		related									Ve d									
feedback, behavior Adult neutral corrective Low- Low Low Wed- feedback, academic High		corrective													*(2)					
Adult neutral corrective Low Low Ved- feedback, academic Hed High	feedback, behav	/tor																		
Wed High		Sorrective																		
Day	foodback acade																			
	***************************************													2		=	1,51			

^{*} Ahito classrooms are those with < 20% black children, Mixed classrooms have 20% to 80% black children, and Black classrooms are those with > 80° black children.

display less affect and within both models adults use less corrective feedback of any kind in classrooms classified as predominantly black. Caution should be used in interpreting this set of data, however. An analysis of variance will show significance between two levels that differ only very slightly if there is little or no variance within one of them. That is the case here, for while the indicated process variables were at low levels in the classrooms classified as mixed, they were at zero levels in nearly all of the classrooms classified as predominantly black. Because there is no variance at the zero level, the significance of the slight difference is exaggerated.

In this analysis, possibly the most salient (and pleasant) observation is that within the seven programs only two instances of significant differences between groups were found for variables representing negative or unhappy behavior on the part of adults (the Variables were 407a, 426a). In both cases, the difference may be statistically exaggerated by appearing between low frequency of occurrence and zero occurrence. While some control and affect differences may occur within sponsors, as far as we can tell, no ethnic group is being more harshly or negatively treated than another in the Follow Through program.

D. Summary

In all of these analyses, it is apparent that the demographic characteristics of children had slight effect on their teachers' behavior (and we might infer attitude) toward them. This observation is gratifying from two aspects. Although the demographic characteristics were neither controlled nor randomized, the sample does not appear to invalidate or significantly affect the analysis. More important from the standpoint of all parties interested in the Follow Through program, not the least of whom are the children, if bias exists, it is so subtle as to be unidentifiable using even a sophisticated observation procedure like that reported here.

B-15

Appendix C
CLASSROOM OBSERVATION INSTRUMENT

CLASSROOM OBSERVATION INSTRUMENT Classroom Summary Information

Γ	٦	FOR NCS USE ONLY 00000 0000 0000 2222 3333
L	J	@@@@@ @@@@@
boxes provided in places whe	ir observation of physical enviro	Second Summary Seco
		Classroom Summary Information (Cont.)
Teacher		A B
School		
City 5		A. Number of OOO children enrolled OOO
Observer		
		(a) (a) (a) present today
01.4000.004.004		
	MARY INFORMATION	
01234 Number of tea	chers that regularly work room.	<u> </u>
	es that regularly work in	
@ 1 @ 3 @ Number of volu	unteers/visitors present today.	Total Class Duration
	•	O 2½ hours
•		O 3 hours O 3½ hours
		Q 4 hoursQ 4½ hours
		O 5 hours
		O 5½ hours O 6 hours
		6'4 hours 7 or more hours
	8 9 8	NCS Trans-Optic S387A 321

Physical Environment Information (Mark all that apply.)

For each of the items below, mark all that apply: ① Present ② Used today	OMovable tables and chairs for seating purposes OStationary desks in rows OAssigned seating for at least part of the day OChildren select their own seating locations OTeacher assigns children to groups OChildren select their own work groups.
GAMES, TOYS, PLAY EQUIPMENT ① ② small toys (trucks, cars, dolls and accessories ① ② puzzles, games ① ② wheel toys ① ② small play equipment (jumpropes, balls) ① ② large play equipment (swings, jungle gym) ① ② children's storybooks ① ② animals, other nature objects ① ② sandbox, water table ① ② carpentry materials, large blocks ① ② cooking and sewing supplies	
INSTRUCTIONAL MATERIALS ① ② Montessori, other educational toys ① ② children's texts, workbooks ① ② math/science equipment, concrete objects ① ② instructional charts	
AUDIO, VISUAI. EQUIPMENT ① ② television ① ② record or tape player ① ② audio-visual equipment	
GENERAL EQUIPMENT, MATERIALS ① @ children's own products on display ① @ displays reflecting children's ethnicity ① @ other displays especially for children ② magazines ① @ achievement charts ① @ child-size sink ① @ child-size table and chairs ① @ child-size shelves ① @ arts and crafts materials ① @ blackboard, feltboard ① @ child's own storage space	
① ② photographs of the children on display	MAKE NO
OTHER ① ② please specify	STRAY MARKS
	IN BLANK AREAS

187

C-4

CLASSROOM OBSERVATION PROCEDURE

SUCCINI CHECK FIST (D)	e sure to code EVERYONE in the class)	OIVE	TWO	SMALL	LAR
	1	CHILD	CHILDREN	GROUPS	GROU
		т 🛈 🖸 🗿	т 000	т 🛈 🖸 🛈 🛈	т 🛈
1. Snack, lunch		A ① ② ③	A (1) (2) (3)	A (1)(3)(4)	A (1)
		v (@ @	v ①②③	v 00000	v ①
		<u>, 000</u>	<u>, 000</u>	<u> </u>	<u>, Ö</u>
		т ① ② ③	т 000	т 🛈 🖸 🛈 🖸	τ ⊙
2. Group time		A (1) (2) (3)	a (1) (2) (3)	a (1)(2)(3)(4)	A ①
•	į	v ()()()()	v ()(2)(3)	v (1003)	v 🛈
		<u> 1 0 0 0 0 </u>	<u>· 000</u>	<u>, 0000</u>	<u>, 0</u>
Story		т ①②③	000	т (1) (2) (3) (4)	ा ⊕
3 Music		A (1) (2) (3)	A (1) (2) (3)	A (1)(2)(3)(4)	A ①
Dancing		v (1) (2) (3)	v () (2) (3)	v (1)(2)(3)(4)	v 🕥
		<u>, () (2 (3)</u>	<u> </u>	<u> </u>	<u> </u>
		т 🛈 ② ③	т () (2) (3)	τ ①②③④	7 🛈
4. Arts, Crafts		a ①②③	a <u>(1)</u> (2) (3)	a (1) (2) (3) (4)	A 🛈
,		v ①②③	v ①②③	v ①②③④	v ①
		<u>, 000</u>	<u>, 009</u>	<u>, 0030</u>	<u>' 0</u>
Guessing Games		т 🛈 ② ③	т 🛈 🙋 🗿	т 0000	т 🛈
5. Table Games		A (1) (2) (3)	a (1) (2) (3)	a (1) (2) (3) (4)	A 🛈
Puzzles		v (1) (2) (3)	\vee \bigcirc \bigcirc \bigcirc	v (1)(2)(3)(4)	v ①
		<u>.003</u>	<u> , ()(2)(3)</u>	<u> </u>	<u> </u>
	Nu mbers	т 🛈 😢 🕄 🧻	т ①②③	т (1) (2) (3) (4)	т 🛈
	6. Mr.th	a (1) (2) (3)	a (1) (2) (3)	a (1)(2)(3)(4)	Α①
	Arithmetic	v ①②③	v ⊙@③	v (1)(0)(3)(4)	νO
\bigcirc TV	Artimietic	. 003	. 003	. (1)(2)(3)(4)	. ①
○ Audio-Visual	Reading	т ① ② ③	т 🖰 🖸 🕄	т ①②③④	T 🕦
Materials	7. Alphabet	a (1)(2)(3)	a (†) (2) (3)	a (1) (2) (3) (4)	ΑŪ
	1 · ·	v (1) (2) (3)	v 🖰 ② ③	v (1)(2)(3)(4)	v ①
Materials	Lang Development	.003	. 003	1 1 2 3 4	. ①
Math and Science		т 🛈 🖸 🗿	т 🖰 🙆 🗿	т 🛈 🖸 🗿 🐠	т 🛈
Equipment	Social Studies	A (1) (2) (3)	a (1) (2) (3)	a (1)(2)(3)(4)	A (1)
OTexts, Workbooks	⁶ Geography	v ①②③	v (1) (2) (3)	v ①②③④	ν①
O Puzzles, Games		· (1)(2)(3)	. (1)(2)(3)	. 0030	· ①
		т 🛈 🙆 🗿	т ①@③	т 🛈 ② ③ ④	т 🛈
	Science 9.	a (1) (2) (3)	a (1) (2) (3)	a (1) (2) (3) (4)	A (1)
	Natural World	v () (2) (3)	v ①②③	v (1) (2) (3) (4)	v 🛈
		. 000	· (1)(2)(3)	1 (1) (2) (3) (4)	· ①
Sewing		т 🛡 ② ③	т 🛈 ② ③	т ①②③④	т 🛈
Cooking		A (1) (2) (3)	a (1) (2) (3)	a (1) (2) (3) (4)	A ①
10. Pounding		v ①②③	v 🖰 ② ③	v (1)(2)(3)(4)	v ①
Sawing		1000	<u> </u>	<u>, (1)(2)(3)(4)</u>	1 (1)
		т 🖰 🛭 🕄	т 🛈 ② ③	т ①②③④	т 🕦
11. Blocks		a (1) (2) (3)	a (1) (2) (3)	a 10230	A ①
Trucks		v (1) (2) (3)	v (1) (2) (3)	v ①②③④	v ①
		<u>, (1) (2) (3)</u>	1023	10000	• ①
		т 🛈 @ ③	т ①②③	т 10000	т 🕦
12. Dramatic Play	1	A (1) (2) (3)	A ①②③	а ①②③④	A ①
Dress-Up		v ①②③	v ①②③	v ①②③④	v 🛈
		. 003	<u>.</u> 003	10000	. 0
-		т (1) (2) (3)	т ①②③	т ①②③④	т 🛈
12 Aatus Dla		A ①②③	а Û@3	A ①②③④	A ①
13. Active Play		v ①②③	v 0000	v 00000	v 🛈
		. 000	000	0239	ı ()
				<u> </u>	
14 DELLABILITY CHEET					
14. RELIABILITY SHEET	() 1				

C-5

1				ONE	TWO	SMALL	LARGE
				СHILD т ①②③	CHILDREN T (1) (2) (3)	GROUPS т (1) (2) (3) (GROUPS ④ T①②
45 D 1 Cl H- A				A 0 2 3		A (1) (2) (3)	
15. Practical Skills Ac	quisition			v 0@3		v 0@3(
				023		10230	
				т 🛈 2 3		т (1) (2) (3) (
16. Observing	•			A (1)(2)(3)		A (1) (2) (3) (
				v 0 2 3		v () (2) ()	
			<u> </u>	1000		<u> </u>	
	_	ь [©]	① (A)	T (1 (2 (3) A (1 (2 (3)		T 0000	
17 Social Interaction	·	" [S]	0	v 000		а () (2) () v () (2) ()	
			•	000		,000	
				T 000		T 0000	
18. Unoccupied Child				A 10 2 3		A (1) (2) (3)	
10. Onoccupied cinia				v 0@3		v (1) (2) (3) (
				1 000		<u> </u>	
				т 000		т 0 0 0 0	
19. Discipline				A 000		A (1) (2) (3) (4)	
				v 003 - 023	v (1) (2) (3) ı (1) (2) (3)	v ①②③(· ①②③(
			(f)	T 000		т 000 0	
			Á	A (1) (2) (3)		A (1) (2) (3)	
20. Transitional Activi	ities		Ŏ	v 0 2 3		v (1) (2) (3)	
				000		0000	
			7	т 000	т ①②③	т 0000	
21. Classroom Manag	ement		(A (1) (2) (3)	a (1) (2) (3)	a 1) 2 3 (
211 Oldon Com Manag			Ø	v 0 @ @	v () (2) (3)	v 00000	
		<u> </u>		1 0000	<u> </u>	<u> </u>	
			0	T 0000	т () (2 (3)	T (1) (2) (3) (4)	
22. Out of Room			(A)	A 0 2 3 V 0 2 3	a (1) (2) (3) v (1) (2) (3)	а (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
			w w	000	· 023	1000	
NUMBER OF ADULT	S IN CLASS	. ООМ	0 0	② ③ ————————————————————————————————————	4 9 6	⑦ ® @	9
			PREAM	ABLE			
	00 - Th	e original class	teacher				
Focus Person Cod	es: 1.76 - Ch 77 - Vo	ild codes					
			an designated cl	lass teacher			
		de to teacher			<u> </u>		
Activ	Focus Person	FOCUS	PERSON	Foo	cus Person's N	ame	FOR NCS
ıty	Code			-	and Number	ľ	USE ONLY
00	00	O Child	_				
@@	00 @@	O Teach	er				00000
00	33	O Volur	vtoor.				@@@@@ @@@@@
$[\check{\mathfrak{g}}\check{\mathfrak{g}}]$	@@	O Voidi					0000
99	<u></u>	CONTI	NUATION				00000
66	66	1	EVIOUS	(Do no	t write outside th	nis box)	66666
00	[D]		ACTIVITY		,		00000
88	@ @	O Yes	1	Nur	mber of Children	0090	8888
99	99	O No					99999
ADIU T	Disastes	Daneicanne!	Observe =	Not lawater 1		YIME OTAGE	<u></u>
ADULT Teacher	Directing	Participating	Observing	Not Involved	Hour	YIME STARTE	ED Ainute
Aide	Ö	$\tilde{0}$	0	0	00000	11	00230
Volunteer	ŏ	\tilde{c}	\tilde{c}	\tilde{c}	0000		S 6 7 8 9
	_	\sim	_	$\overline{}$	0000		

1 Who To Whom What How	11 Who To Whom What
Who is whom what How	Who is whom what How
	10000 000 000000000000000000000
2 7	
Who To Whom What How	Who To Whom What How
OOO	
3	
Who To Whom What How	13 Who To Whom What How
OOO0 OOO OOOO OOOO OOOO OOOOO OOOOO OOOOO OOOOO OOOOOO	
4 Who To Whom What How	14 Who To Whom What How
	<u> </u> <u> </u> <u> </u>
OOO0 OOO OOO00 OOO00 OOO00 OOO00 OOO00 OOO000 OOO0000 OOO00000 OOO00000 OOO00000 OOO00000 OOO00000 OOO00000 OOO00000 OOO00000 OOO00000 OOO000000 OOO000000 OOO000000 OOO000000 OOO000000 OOO0000000 OOO00000000	
5 Who To Whom What How	15 Who To Whom What How
6 Who To Whom What How	16 Who To Whom What How
O() O O O O O O O O O O O O O O O O O O	
7 Who To Whom What How	17 Who To Whom What How
8 W 10 To Whom What How	18 Who To Whom What How
9 Wiro To Whom What How	19 Who To Whom What How
10 Who To Whom What How	20 Who To Whom What How

21					1 6		7	,	·	
	Who	To Whom	What	How	31	Who	To Whom	What	How	
			00000			000	000	00000)
		000		000 000 00 0		000		<u>ၜၟၜ</u> ၜ		<u> </u>
<u> </u>	<u> </u>	<u> </u>		000 00		<u> </u>	0000	$\square \square \square \square \square \square$	<u> </u>	Θ
22	Who	To Whom	What	How	32	Who	To Whom	What	How	
			00000			000	0 00	02309)
			$\Theta \Theta \Theta \Theta \Theta$			000	000	@@@		e e
		<u> </u>		000		OOO	$\bigcirc\bigcirc\bigcirc$		<u> </u>	Θ
23	Who	To Whom	What	Hew	33	Who	To Whom	What	How	
	<u> </u>		00000			000	000	00000	®®®⊕	,
		000 0000				000		@@@ @@@	@@@	1 25 25
		<u>୦୦⊌</u>		$\bigcirc \Theta \bigcirc \bigcirc$		<u> </u>	0000		⊚ ⊛⊚	Θ
24	Who	To Whom	What	How	34	Who	To Whom	What	How	
		<u> </u>	00000			000	000	00000	$\Theta \Theta \Theta \Theta$)
		©@@		000 200		000	000	<u>ၜၟၯၟၜၜၟႍၜ</u>		_
\Box	<u> </u>	୦୦୭୭	<u> </u>	<u> </u>		OOO	<u> </u>	<u>@@</u>	<u>ଡ</u> ଜ୍ଜ	Θ
25	Who	To Whom	What	How	35	Who	To Whom	What	How	
			00000		®	0 <u>0</u> 0	0@O	02309	$\Theta \odot \Theta \odot$)
						000	000	@@@ <u>@</u>		
O	OOO	<u> </u>	<u> </u>	0 00 $\overline{0}$ 0		OOOO	$\bigcirc\bigcirc\bigcirc\bigcirc$	$\Theta \Theta \Theta \Theta$	<u>୍ଚ୍ଚଳ୍</u>	Θ
26	Who	To Whom	What	How	36	Who	To Whom	What	How	
			00000			000		02006	ଉ ଓ ଉ)
		©©@	$ \begin{array}{c} 600 \\ 900 \end{array} $			000	000	<u>ၜၟၜၟၜ</u>	<u></u>	
9	0000	0000		000 00		<u> </u>	<u> </u>		<u>୭</u> ୭୭	<u>0</u>
27	Who	To Whom	What	How	37	Who	To Whom	What	How	
			000000					00000)
	000		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				000	@@@@		(A)
		$\bigcirc\bigcirc\bigcirc$		$\bigcirc \bigcirc $		0000	<u> </u>		@@ <i>©</i>	<u>(</u>
28	Who	To Whom	What	How	38	Who	To Whom	What	How	
			00000			@@Q		02349		
19		O00					000	99999		, a
Ш	\bigcirc	$\bigcirc\bigcirc\bigcirc$	<u> </u>	②ΘΟ ΘΘ		<u> </u>	$\bigcirc\bigcirc\bigcirc$	<u> </u>	<u> </u>	<u>@</u>
29	Who	To Whom	What	How	39	Who	10 Whom	What	How	
			00000					00000		
			<u>ၜၜႍၜ</u>			000	© @@	9999	<u>@</u> @@	لـــــــا
M	$\cup \cup \cup \otimes$	OOOO	<u> </u>	000 00		$\bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc\bigcirc\boxdot$	<u> </u>	<u> </u>	Θ
30	Who	To Whom	What	How	40	Who	To Whom	What	How	
اما		000	00000	ଡଡ୍ଡ୍		①@O	⊕@⊙	02349	BO0	
160		~ ~ ~ l	امممما	~ ~ ~ -				あるるるる	~~~~	
(3)	Q@@	QQQ	<u>ၜႍၜၟၜ</u>	ଡ଼ିତ୍ତ		000	Q@@	<u> </u>		اا
(3)		0000	60666 00 60	000 000 <u>00</u>			0000	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$		<u>0</u>

41	10/5 -	T- 1411] [5	 	r			
	Wild	To Whom	What	How		Who	To Whom	What	/ How	
	000	000	00000	$\Theta \Theta \Theta \Theta$			000	02396	0000	
lŏ	0000		<u>@@@</u> <u>@@</u> @@	000 <u>0</u> 0) ©@@) ©©@@	©@@ 0@@	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		56
					عا ا رو	7000	₽₽₽₽	<u> </u>		90
42	Who	To Whom	What	How	5:	Who	To Whom	What	How	
	000	000	00000	ଚ୍ଚତ୍ର ପ	@	9 00	O@O	00006	9000 19000	
		000 000@	608 <u>9</u> 6				000	60890	QOO _	
	0000	10006		<u>000</u> 00		<u> </u>		<u> 00</u> <u>00</u>	<u>000</u> [6	00
43	VYNO	To Whom	What	How	53	Who	To Whom	What	How	
	000	000	00000	$\Theta \bigcirc \Theta \bigcirc$		100	⊕&©	00000	$\Theta \Theta \Theta G$	
10		000 000	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$				000	60890	0 00 _	
		10000		<u> </u>		<u> SOO@</u>	(O (C) (O (M)	<u> 00</u>	<u> </u>) <u>(</u>
44	Who	To Whom	What	How	54	Who	To Whom	What	How	
	000	000	00000		@	O@	000	00000		İ
100		OO0 OO00	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$				©@0	60890	@ @@	
		<u> </u>		<u></u>		<u> </u>	\bigcirc	<u> </u>	<u> </u>	(⊕
45	Who	To Whom	What	How	55	Who	To Whom	What	How	
	$\Theta \Theta \Theta$	000	00000	<u>ଡ</u> ଼୍ଭର		⊕@⊚	⊕@©	00000	9 000	
	000 000@	000 0000	60890 600	୭୦୭ ୨୦୦ ବ େ		000	000	<u>@@@</u>	@@@ <u></u>	
						<u> </u>	<u> </u>		<u> </u>	(0)
46	Who	To Whom	What	How	50	Who	To Whom	What	How	
	000	000	00000	୭୭୭୭			⊕@⊘	02346	$\Theta \odot \odot \odot$	
	000 000@	000 0000	<u>මල මල</u> ම	୭ଡ଼ ୭ଡ଼େ <u>କ</u> ି				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
\equiv		0000	00 00			<u> ୭୦୭୭</u>			<u> </u>	Θ
47	Who	To Whom	What	How	57	Who	To Whom	What	How	
		000	000000	<u>0000</u>	(B)	⊕ @⊘	⊕@⊚	00000	€ @@Ŧ	
	000 0000	000 0000	60660 600	୬୯୭ ୬ଉଡ ଡ ି	4 ©	000 0000	© @ 2	60390	@ID	=
				300 06		<u> </u>	<u> </u>		900 P	ⅎ
48	Who	To Whom	What	How	58	Who	To Whom	What	How	\Box
		000	000000	<u> </u>			Ĵ@♥	00006	$\Theta \Theta \Theta \Theta$	
		000 0000	000 <u>00</u> 0	999 900 (8 6			900	9999	300 300	
						<u> </u>	<u> </u>		<u> </u>	<u> </u>
49	Who	To Whom	What	How	59	Who	To Whom	What	How	
							900 k	D2349k	Θ	
			90000000000000000000000000000000000000	900 900 <u>(06</u>				<u>୭</u> ୭୭		
						<u> </u>	<u>JOGON</u>	<u> </u>	900 (00	9
50	Who	To Whom	What	How	60	Who	To Whom	What	How	
	200		00000	0000			900 (D0000k	9000	
			900000 90 000)()()() ()()()()()()()()()()()()()()()(900 (60890k	900	
				000 00		<u> </u>		90 <u> </u> 00	<u> </u>	<u></u>

TIME STOPPED

Hour Minute @ 9 9 9 9 9 0 0 2 0 0 2 3 4 1 2 3 4 5 0 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

Appendix D

OPERATIONAL DEFINITIONS OF THE FIVE-MINUTE OBSERVATION CODES

OPERATIONAL DEFINITIONS OF THE FIVE-MINUTE OBSERVATION CODES

1. Summary of Five-Minute Observation

The Who and To Whom codes are used to indicate the participants in an interaction. These codes make it possible to designate the person or group of persons initiating or receiving an action. The letter M refers to such items as typewriters, tape recorders, films, and the like.

The $12~{\rm What}$ codes refer to the action categories that have survived several years of use and review. They preserve the distinctions that seem to be important in describing varying classroom processes.

The $\underline{\text{How}}$ categories are used in conjunction with the $\underline{\text{What}}$ codes to specify emotional or descriptive aspects of an interaction and to define strategies used to control behavior.

Operational definitions of the co.'es used in the classroom observation instrument are given in the following subsections.

2. Operational Definitions

a. The Who Column

The $\underline{\text{Who}}$ column indicates who is doing the talking or the action:

Code	Code Usage				
T - Teacher	The one person who is ultimately responsible for the everyday conduct of the classroom.				
A - Aide	Classroom adults who are regular in their attendance and are paid by Follow Through or the school district.				
V - Volumteer	Any other adult who works in the classroom, such as a parent.				
C - Child	When the focus of an observation is on a specific child, that child is "C" (all other children ar "D" - Different Child). When the focus is on an adult, C refers to any individual child with whom the adult is interacting.				

Code	Code Usage
D - Different Child	A second child in an interaction when the focus child, C, is being observed.
2 - Two Children	
S - Small Group	Three to 8 children.
L - Large Group	More than 8 children.
An - Animal	Any live animal in the classroom (including birds and fish).
M - Machine	Record player, tape recorder, TV, and so on.

b. The To Whom Column

The $\underline{\text{lo Whom}}$ column indicates the person, group, or machine that is being talked to or interacted with:

Code	Code Usage
Т	
A	
v	
С	
D	
2	These codes are all the same as the codes for
S	the <u>Who</u> column.
I.	•
An	
М	

c. The What Column

It is assumed that all interactions coded in the <u>What</u> column are verbal unless marked NV (nonverbal). (NOTE: NV and certain codes from the <u>How</u> column are used in the examples below. See the <u>How</u> column definitions on ρ . D-11.)

Code	Code Usage	
l - Command or Request	Code l asks for a response free of argument oulation. There is one expected, acceptable r that is carried out, verbally or nonverbally:	esponse
	- "Open the door, please."	TS1

Code	Code Usage	
	- "Read this sentence." - "Draw a line."	TC1A TC1
	- "Zip me up."	CT1
	- "Gimme that book."	CD1
1Q - Direct Question	lQ questions ask for direct recall of material already learned or anticipate a specific or automatic response or a yes/no answer. lQ questions elicit the following responses: statements of preference ments of fact, itemizing; classifying, a tions.	
	- "In the story did you like Mr. Brown?"	TC1Q
	- "What is 1/2 and 1/2?"	CD1QA
	 "What was on the list of mountain climbing equipment we made yesterday?" 	TL1Q
	"If you had 2 pears and 3 apples, what would you have 5 of?"	TSlQ
	- "Is this dog a Great Dane or a St. Bernard?"	CDlQ
	- "What does this word mean?"	TC1QA
2 - Open-Ended Question	Code 2 questions are those that allow a free expression of ideas or feelings and invite opinions. Code 2 questions encourage responses that require: interpretation of ideas, relationships of cause and effect, making of comparisons, reasoning, application of previously learned material to a new situation, and describing a process.	ı ıd
	Code 2 may be phrased as a statement as well as a question.	
	- "What do you think of the Eskimo way of life?"	TC2
	- "Why did you like Mr. Brown in the story?"	CD2
	- "State the problem in your own words."	TC2
	- "Tell me now an electric train works."	CD2
	"In what ways are the things in this picture alike?"	TC2
	"Use these sticks to see if you can find all the different groupings that add up to 10."	TC2A

3 - Response

Code 3 is a response to a command (Code 1), a question (C. e 1Q, 2), or corrective (Code 9).

When the response is concerned with basic academic skills, Code 3 is used with A in the <u>How</u> column (see definition for A on p. 14); Code 3 is used with B in the <u>How</u> column when it follows acknowledgment, praise, or a corrective for behavior (see definition for B on p. 14).

-	"Read the next sentence, Jimmy." "The dog chased the ball."	TC1A CT3A
-	"Will you add 2 and 2?" "2 and 2 makes 4."	TC1QA CT3A
-	"Guess what I've brought for you." "Flowersor an apple."	CT2 CT3
-	"Please shut the door." The child shuts the door (nonverbal).	TC1 CT3NV
-	"Did you save my painting?" "Yes, it's hanging up."	CT1Q TC3
-	"We can't hear when you do that, Alice." Alice is quiet.	TC9GB CT3NVB

4 - Instruction, Explanation

Code 4 is used when a teacher or child is:

- (1) Verbally giving new information to others, reviewing lessons, or explaining rules of behavior.
- (2) Nonverbally engaged in demonstrating or in an activity that is productive, organized, or exploratory (including game playing, blocks, dolls, and water play).

When the interaction is concerned with the basic skills of reading, writing, spelling, and computation, Code 4 is used with A in the <u>How</u> column. If an object is being used in self-instruction, Code 4 is used with 0 in the <u>How</u> column.

- "Flowers grow everywhere. There are many different kinds of flowers and they grow in many shapes and colors."
- "Here is a game called 'Community
 People.' You play by matching the
 pictures on your card with those on
 the large card."

TS4

CL4

	- "This is how I'd like you to do these exercises: First, fold your paper in half like this. Then in half again like this. Then put the first problem in this square and the second here."	TS4
	 "I made my puppet out of an old sock and I made his eyes from pieces of a crayon (holding puppet)." 	CS4
	 "You have to add 3 to 7 here and carry the I over to this column; then add those." 	CD4A
	 Child learning the shape of a letter by running his finger over a sand- paper letter on a card. (NOTE: When the action involves only one person, the Who and To Whom columns are coded with the same letter.) 	CC4NVOA
	 Child reading aloud to a small group of children. 	CS4A
	- A child building a block tower.	CC4NVO
	 Child reading to himself. 	CC4NVA
5 - General Comments/ General	Greetings, personal compliments, social or nontask-related comments and remarks. Irrelevant remarks an also coded 5.	re
Action	- "Hello." "Good morning."	TC5
	- "That's a pretty dress."	CT5
	- "I can't stand you today."	CD5N
	Classroom management activities, general movement about the room, mild horseplay, eating, napping, are coded 5NV. (5NV is coded only if there is no talking along with the general action; otherwise, the observer codes the kind of remark that is accompanying the general action.)	ng
	 Child setting the table for lunch or snack. 	CC5NV
	- Two children jostling in a line.	224NV
	- Teacher walking around the room.	TT5NVX

6 - Task-Related Command Code 6 is used for a statement about the activity or problem at hand in which children and/or adults are involved.

	w with the state of the state o	
	- Two children making clay animals:	
	C: "This clay makes my hands sticky." D: "The horn won't stay on my cow." C: "Mine doesn't have a horn."	CD6 DC6 CD6
	 Teacher is conducting a Show and Tell period: 	
	1: "What did you do over the weekend?"C: "I went to the zoo with my daddy."D: "The tigers are really big."C: "The elephants are bigger."	TL1Q CT3 DT6 CD6
	 Three children are working with metal washers and a balance: 	
	C: "I think 3 big washers will balance 4 small ones." D: "I'll try it." D: "I sure like your cowboy boots." C: "It balanced!"	C26A CD6A DC5 C26A
7 - Acknowledge	An indication that a response, product or behavior recognized or agreed with is coded 7. Another form of acknowledgment is to repeat someone else's state ment imm. diately.	
	Code 7 with A in the <u>How</u> column is used to indicate acknowledgment of a response having to do with acad subject matter (see definition of Academic on p. 14 Code 7 is used with B in the <u>How</u> column to indicate acknowledgment of a response having to do with behavior (see definition of Behavior on p. 14).	emic);
	 Nodding (nonverbal) to indicate the painting is acceptable. 	TC7NV
	 "Yes, that's the right way to knead clay." 	TC7
	- "That mach problem is correct."	TC7A
	 "Thank you for sitting down when I asked you." 	тс7в
	"What do you think is in this bag, Peter?""I think it's a carrot.""You think it's a carrot."	TC2 CT3 TC7
8 - Praise	Code 8 is used for praise of a response, product or behavior. Praise in academic areas is coded 8 with in the <u>How</u> column (see definition of Academic on p. 14); praise for behavior is coded 8 with B in the <u>How</u> column (see definition for Behavior on p. 14).	

Code	(ode Esage	. • • • • • •
•	- "What a pretty picture vou've made!"	TC8
	- "I like the story you wrote about your trip, Jim."	TC8A
	"You've done a fine job on your math workbook."	TC8A
	- "I'm really proud of you, class, for behaving so well while Mr. Jones was here."	TL8B
9 - Corrective Feedback	Corrective Feedback is the attempt to change or modia response, product, or behavior. Code 9 is used whethe subject of the observation tries to change another's behavior or corrects his answers or work.	fy en
	Codes G, Q, N, and P from the $\underline{\text{How}}$ column can be code with 9 to show the method used to effect behavior mo fication (see the descriptions of codes in the $\underline{\text{How}}$ column, pp.11,12).	d d i-
	Code 9 is used with A in the <u>How</u> column to indicate corrective feedback in academic areas and with B in <u>How</u> column to indicate corrective feedback having to with classroom behavior.	the do
er-g. Tandi	 "Don't throw your ball against the wall; come and play on the swing." 	TC9GB
	"You'll have to stay in at recess if you continue to talk."	TC9NB
	- "Are you sure Sacramento is the capital of New Mexico?"	TC9Q
	- "The answer to that math problem is wrong."	TC9A
	- "No, that word is spelled b-u-i-l-d."	TC9GA
	"You have not mixed that paint cor- rectly."	TC9
10 - No Response	Code lû is used for no response when a response is called for an none is forthcoming to complete the interaction. (NV is not coded with 10, because 10 is by definition nonverbal.)	3
	- "Teacher, may I be next?" Teacher does not reply because she is	CT1Q
	talking to another child. - "Jimmy, let me play with you." Jimmy does not look up or answer	CD1 DC10

Code	Code Usage	·
ll - Waiting	Code II is used to code the subject of the observat waiting in line or for materials, attention, use of equipment, and activity change. It is also used who the subject is not attending or not involved with an one or anything. (NV is not coded with II because is nonverbal by definition.)	en ny-
	 Child waiting at the teacher's desk while the teacher works with another child. 	CC11
	 Child has finished his work and is sit- ting at his desk staring off into space. 	CC11
12 - Observing, Listening	Code 12 is used when the subject of the observation is listening to or watching other people, other actities, TV, slides, films, and the like. (NV is not coded with 12.)	iv-
	 A child sitting on his chair is watching a small group on the rug play with blocks. 	CS12
	 Child listens to another child give a report. 	CD12
	 Teacher stands watching the children and the activities in the room. 	11.12
NV - Nonverbal	When the action being coded is not accompanied by words, NV is coded in the $\underline{\text{What}}$ column, along with thother relevant codes.	ne
	- Child laughing.	CC5NVH
	 leacher passes out material silently to a small group. 	TS5NV
	 Child taps the teacher's arm without speaking, requesting her attention. 	CTINVI
	 Child sits down in response to a request from the teacher. 	CT3NV
X - Movement	Code X is used when the subject of the observation moves and for movement of a person with whom the subject is interacting. X can be used with any What colf the movement is nonverbal and no What code is applicable, code X with 5 (general action).	od

- Teacher moves about the room while lecturing to the class.
- TL4X
- Child asks, "Miss Smith, will you help me?" while moving to the teacher.

Criox

Code	('ode l'sage	
	 Child walks over to close the door in response to a request from the teacher. 	CT 3NVX
	- Child runs to the door when recess is announced.	CC5NVX

d. The How Column

Categories in the $\underline{\text{How}}$ column are used in conjunction with the $\underline{\text{What}}$ codes.

Code	Code Usage	
Н - Нарру	Obvious behavioral expressions of happiness or pos affect (such as laughing, smiling, giggling, when appear to indicate pleasure rather than fear).	itive they
	 A child jumping up and down, clapping hands and grinning over a new puppet. 	CC5NVH
	- A child laughing at a joke.	CC5NVH
	Teacher smiles as she says, "What are you doing?"	тс1QН
	 Child smiles in reply to the teacher's praise. 	стзичн
	 Two girls giggling and talking in the corner. 	225H
U - Unhappy	Obvious behavioral expressions of sadness or unhapness, such as crying or welling tears.	pi-
	 Child with tear-filled eyes waiting in a line. 	CC11NVU
	- Child crying.	CC5NVU'
N - Negative	Expressions of annoyance or anger, negative content (e.g., sarcasm, insults, threats), scolding, reject destructive behavior.	t tion,
	- "You're stupid!"	CD5N
	 Teacher, red-faced and tight-lipped with anger, glares at class. 	71.12N
	 "Johnny, if you can't leave Alice alone, I will ask you to sit in the corner." 	TC9NB
	- Child throws jar of paint on the floor in anger.	CC5NVN

Code	Code Usage	
T - Touch	Whenever one person touches another person, T is coded—with H to denote a positive touch, with N t denote a negative touch (hit, slap, pinch), and wi P to denote a punishing touch from an adult to a child.	o th
	- Girl pinches another girl's arm.	CD5NVNT
	 Teacher puts her arm around a child and smiles as she says, "Jenny, will you help Margaret with ner puzzle?" 	тс1онт
	 Teacher moves around the class and touches a child on the head momentarily as she passes. 	TC5NVXT
	- Teacher holds child's hand.	TC5NVT
	- Teacher spanks child.	TC9NVPTB
Q - Question	Coded with 1 for a direct question and with 9 when corrective feedback is in question form.	
	- "Are you sure that 8 is the correct answer?"	TC9QA
	- "What color should I use?"	CT1Q
	- "Didn't I tell you not to bother Jimmy?"	TC9QB
	- "You weren't paying attention when I ex- plained it, were you?"	TC9QB
G - Guide/ Reason	G is coded with 9 when corrective feedback is posi and guides to an alternative activity, approach to problem, and the like, or when the corrective incl a reason or explanation.	а
	 "It might work better if you turned it around." 	TC9G
	- "Sit down so the others can see, Gerald."	TC9GB
	 "If you knock that over it will make Jim angry, so please build your own tower." 	TC9GB
P - Punish	Punish covers a range of adult disciplinary or behavior-modifying techniques, including withholding of privileges, isolation of a child, physical puniment (coded with T). P is coded only with 9.	ng sh-

"Angela, go over to the corner and sit there alone until we're through!"

- "Okay, Fred, no recess for you!"

тс9РВ

TC9PB

Code	Code Usage				
	 leacher spanks child for disruptive behavior. 	TC9NVPT			
O - Object	Concrete, inanimate objects that are used in nonverbal self-instruction.				
	 Child working on math using Cuisenaire rods. 	CC4NVOA			
	- Child building a block tower.	CC4NVO			
	- Child fitting together pieces of a puzzle.	CC4NVO			
	 Small group using pennies in working out math problems. 	SS4NVOA			
	 Child examining several kinds of pine cones. 	CC4NVO			
	[NOTE: When an object (token, candy, and the like) is given as a reward for a correct response or good behavior, 0 is coded with 8.]				
W - Worth	Child statements of self-worth, self-praise, or sel esteem; exclamations of accomplishment; positive remarks about one's self; bragging.	f - -			
	- "I did it!"	CT6W			
	- "I can do three cartwheels in a row!"	CT6W CD6W			
	- "Isn't my dress pretty?"	CTlow			
DP - Dramatic Play/ Pretend	Describes play acting, puppet shows, and other dramatic presentations, talking to toys or dolls, pretending or making believe, role playing.	2724.			
	 Boy walking on all fours, howling like a wolf. 	CC5NVDP			
	 Two children giving a pupper show to the rest of the class: "Oh, here comes the prince!" 	CL6DP			
	 Child talking to her doll: "Now, Mary Pat, you know I've told you not to do that." 	CC9BDP			
	(NOTE: Because there is no code in the Who and To Whom columns to symbolize a toy, doll, or other object of that kind, the example above must be coded as if the child is talking to herself.)				

to herself.)

(()	ı.	Ŀ

Code Usage

A - Academic

Interactions that have to do with the development of basic skills as measured on achievement tests: reading (letter and word recognition, vocabulary, pronounciation, grammar), writing, and computation (number recognition, counting, adding, subtracting).

- "What is 2 plus 2?"

 "Two and 2 is 5."

 "No, it's 4."

 TC10A

 CT3A

 1C96A
- "You read beautifully today, Aaron." TC8A
- "Will you show me how to do this problem, Robert?" CD1QA
- "I figured out that word all by myself!" CT6WA

B - Behavior

Describes interactions concerned with classroom behavior (deportment, conduct). B is used only with the feedback codes (7, 8, 9) and with the responses thereto.

- "Sit down--now!" TC9B
 Child sits down. CT3NVB
- "You were very quiet in group time today,
 Ralph, and we all appreciated it. Good for
 you!"
 TC8B
 Ralph smiles.
 CT3NVHB
- "Betty, please go over and work on your collage instead of bothering Gina. TC9GB Betty replies, "O.K."

(NOTE: If neither A nor B is coded, it is assumed that the frame concerns other task-related content.)

e. The (R), (S), and (C) Codes

attending.

(R) - REPEAT, (S) - SIMULTANEOUS, and (C) - CANCEL are located in the left margin of each interaction frame.

Code	Code Usage
(R) - Repeat	If the interaction being observed continues without change or interruption, code (R) is used in subsequent frames approximately every 5 seconds until the action is interrupted by another interaction, or stops. (R) repeats the interaction from the frame above.
(§ - Simulta- neous	The simultaneous code is used to record inattention by a child or children while an adult-led activity is going on. It allows the observer to record what the child or children are doing, as well as the activity to which they should be

In child-focused observations, the simultaneous code is used to record the activity that the child is ignoring.

A child is listening to a math lesson:

Γ		Who	To Whom	Wha	t	ŀ	low	
10) (2)	വൈ	● @○ ○○○ ○○○	രെവ	വരി	$\bigcirc \bigcirc \emptyset$	`	9 0

CT12A

He continues to listen for 10 seconds:

(R)

R

The child starts to pull the hair of the girl sitting next to her:

CD5NVNT

If the teacher continues with the math lesson while the child is pulling her neighbor's hair, the teacher's actions are coded and the (S) is recorded with it to show the activity that the child is ignoring.

5	Who	To Whom	What	How
G	(C) (C) (C)	1000 1	000 @ 0 60000	രെര
[C	$\bigcirc \bigcirc \bigcirc \bigcirc$	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	<u>ૻઌૼઌ</u>	000 60

(S) TL4A

In the case of activity/adult-focused observations, the Simultaneous code is used to show inattention on the part of a Small or large Group. It is not used to show inattention on the part of only one or two children within the larger group.

The teacher is giving a math lesson to a Large Group of children:

111	Who	To Whom	What	How
000	●@0	0@0	OOO⊕O	⊕000
	00@	000	●0●9	000
	00@®	0●00	●0 OO	000 ● ®

TL4A

She continues with her uninterrupted lecture (R) is coded every five seconds as she continues):

Ti	2	Who	To Whom	Wha	t		How	
		00	000 000 0000	000 609 00	00 00 00	\odot	⊙⊙ ⊙ ⊙	<u>കെ</u>

(R)

1:	Who	To Whom	What	How
	ର୍ଗ୍ରମ	000 000 0000	00000 60896 00 66	0000 000 000 <u>00</u>

(R)

When a small group starts giggling while the teacher continues lecturing, Code (S) is used in the left margin of the next interaction block; then the new interaction (small group giggling) is coded in the same block to show the children's inattention:

(S) SS5NVH

If the dual activity of "teacher lecturing-children giggling" continues for more than five seconds, (ode R) is used in the next interaction block(s) to show the continuation of the dual activities:

R

If a different interruption occurs (e.g., small group of children arguing) during the same lecture, the first coding (TL4A) is returned to before the new interruption is coded:

16	Who	To Whom	What	How
Ō		(OO)	000●6 600 <u>90</u>	0000 000 000 5 0

TL4A

17	Who	To Whom	What	How
⊕		000	0000 6000 00 60	900

(S) SS5N

◯- Cancel

When a mistake is made in coding an interaction, Code (C) is used in the left margin of the miscoded frame and the next frame is coded correctly.

Teacher is lecturing to a large group. Observer mistakenly codes TL5. Code (C) is used in that frame to show the error and Code TL4 is marked in the following frame:

7	Who	To Whom	What	How
10	000	0@0 000 0®0@	0000● 60000 00 00	9090 909 990 8 9

8	Who	To Whom	What	How
(3)		000	000 0 0 0000 00 00	

Observer is coding an interaction. She forgets a code, is momentarily blank. She records Code \bigcirc and begins again, for example:

9	Who	To Whom	What	How
		● Ø Ø	00300 6●890 00 00	000

10	Who	To Whom	What	How
ାଉ		● @②	00000 000 <u>00</u> 0 00	

3. Examples of Coding the Five-Minute Observation

After the person to be observed has been identified and the adult participation, the activity, and the time started have been recorded in the Preamble, the observer should begin immediately to record the interactions in which the focus person is taking part. These interactions are recorded in the frames numbered 1 through 76, using the codes as defined on p. D-3. One frame is used for each interaction recorded. For example:

Teacher: "Please sit down, class."

TL1

Class sits down as requested.

LT3NV

Teacher: "Open your books to page 43."

Class does as requested (opens books).

4	Who	To Whom	What	How
١ŏ	000	● Ø O O O O O O O O	00●00 60890 00 ●0	0000 ୦୦୭ ୦୦୦ ଡି ୭

LT3NV

Teacher: "John, will you please read that page for us?"

TC1QA

John reads as requested.

CT3A

John continues to read to the class.

CL4A

An average of 5 seconds is expected for coding each interaction frame. Some observers ray go somewhat faster or slower, but an effort should be made to enter 60 interactions during each FMO. The observer will develop his own pace.

It is important to remember to code complete interactions.

4. Time Stopped

At the end of exactly 5 minutes, the observer must stop coding and write the time in the box marked "Time Stopped" on the last page of the observation sheet. For example, if coding is stopped at 9:17, the Time Stopped box would be filled in like this:

If coding is stopped at 10:10, the Time Stopped box would be filled in like this:

Although it is important that the observacion be exactly 5 minutes, it is more important to be accurate in showing the actual times started and stopped.

5. Activity Change

The Activity Change box is filled in at the end of the FmO form only if the activity recorded in the Preamble has changed during the course of the FMO. Numbers in the Activity Change box refer to the numbers in the CCL. For example:

Activity in the Preamble was CCL Item 6 (Arithmetic, Numbers, Math) shown in example A below. During the course of the FMO coding, the teacher changed the activity of the group to CCL Item 9 (Science, Natural World). The observer must code this change at the end of the observation, as shown in example B below.

Appendix E

WEEKLY ROSTER LIST AND CLASSROOM OBSERVER DAILY LOG

APPENDIX F

WEEKLY ROSTER LIST AND CLASSROOM OBSERVER DATLY LOG

1. Weekly Roster List

All classroom observers were required to fill out a Weekly Roster List that recorded the following information:

Date-- The date an observation was conducted.

School Name--The name of the school in which the observation was conducted on the date designated.

<u>leacher Name</u>—The name of the teacher whose class was being observed on that day.

<u>leacher Number</u>—The number issigned to the teacher and found on the label in the <u>left-hand</u> corner on the top front page of each observation booklet.

<u>Crade</u>—The grade level of the class being observed which appeared on the label of each booklet. If the grade level of the class differed from that on the label, it was noted on the booklets <u>and</u> on the Weekly Roster List.

FT-NFT--Indicated whether the class being observed was a Follow Through (FI) or a Non-Follow Through (NFI) class. This designation also appeared on the label in the upper left-hand corner of each observation booklet.

Observation--Referred to whether the observation day was activity/adult focus or individual child focus.

Booklet 1.D. Number--The four-digit number found in the top right-hand corner of each red header booklet.

Number of FMOs Used--The number of 5-minute observations conducted each day.

Reliability Check - Date--The date the reliability check was done and the booklet 1.D. number sed.

Comments—When anything unusual occurred during an observation day, the observer was instructed to note it in the "Comments" section of the Weekly Roster. These comments, along with entries from the Classroom Observer Daily Log, served to reveal anomalies that might invalidate observation or justify its omission.

Number of Booklets Returned in this Box--This (in the upper right-hand corner) was filled out as soon as all observations for the week had been completed and the box made ready for shipment to SRI.

E-3

2. Classroom Observer Daily Log

Observers were each given a Classroom Observer Daily Log in which to record various kinds of information pertinent to their observations. The Log was divided into two main parts consisting of Section I, "Directory, Daily Log," and Section II, "Record of Materials and Activities."

Instructions for Section I was. "Please consider this booklet a daily journal. Carry it with you at all times so that you can have necessary phone numbers available and can make a complete race u of contact with school and Follow Through personnel." (SRI staff names and phone numbers were listed in the Log as an aid to observers.) In this section, therefore, the observer recorded names of school personnel worked or talked with, their positions, their school affiliations, and their telephone numbers. The observer also cataloged meetings attended and topics discussed.

Section II was designed so that observers could record for each observed classroom all texts (with jublisher name), materials used, and field trips or other activities done in conjunction with reading, math, social studies, and science. Lexts and so on used in other subjects (such as arts and crafts or music) were described in a category called "Other." Observers also cataloged activities observed (as required on Activity/actil focus days) in the order they occurred during the day, designating the particular activity by code as defined on the Classroom Check list. Some observers also noted the teacher's entire schedule for the day, as well as listing the activities specifically observed.

The last part of Section II was designed so that observers could answer particular questions pertaining to why certain classes had not been observed on a scheduled day, why the required number of observations had not been coded, or why requested activities had not been observed. A sample page, as printed in the Log, is shown below:

a.	field trips
b.	
ι.	teacher ill
d.	I was ili
е.	
t.	other (SRI contacted)specify
	the assigned number of FMOs were not observed today, tell why
lf a.	the assigned number of FMOs were not observed today, tell why
If a. b.	the assigned number of FMOs were not observed today, tell why field trips
If a. b.	the assigned number of FMOs were not observed today, tell why

3.	If the assigned number of Child Focus FMOs were not observed today, tell why.
	a. field trips
	b. teacherill
	c. children ill
	d. snort day
	e. interruptionsspecify
	f. other (SRI contacted)specify
4.	If requested activities were not observed, tell why.
	a. didn't occur
	b. occurred simultaneously with other activities
	c. other

Finally, blank pages were inserted at the end of the Log so that observers could record any other comments, problems or suggestions that occurred to them.

The reader must keep in mind that these reports are, for the most part, subjective. Time, noise level, and rejections by a teacher would be experienced differently by observers.

Appendix F

CLASSROOM OBSERVATION VARIABLE LIST FOR SPRING 1973

Appendix F

CLASSROOM OBSERVATION VARIABLE LIST FOR SPRING 1973*

Classroom Summary Paformation (CSI)

<u>Variable No.</u>	Description
1	Sponsor
2	Site
3	Center
4	Teacher
5	Pupil code
6	Reliability/regular observation
7	Grade
8	Observer Code
9	Date
10	Number of children enrolled
11	Number of children present
12	Number of teachers
13	Number of aides
14	Number of volunteers present
15	Child/teacher and aide ratio (Number of childen over the
	number of teachers and aides)
16	Child/Adult Ratio (Number of children ove: the number of
	teachers, aides, and volunteers.)
17	Total class duration

Physical Environment Information (PEI)

18	Movable tables and chairs for seating
19	Stationary desks in rows
20	Assigned seating for at least part of the day
21	Children select their own seating locations
??	Teacher assigns children to groups
23	Children select their own work groups
24	Child selection of seating and work groups
25	Games, toys, play equipment present
26	Games, toys, play equipment used
27	Instructional materials present
28	Instructional materials used
29	Montessori, other educational toys present
30	Montessori, other educational toys used

7..3

^{*}See Appendix G for details concerning variable specifications.

PEI (continued)

31	Children's texts, workbooks present
32	Children's texts, workbooks used
33	Math/Science equipment, concrete objects present
34	Math/Science equipment, concrete objects used
35	Instructional charts present
36	Instructional charts used
37	Audio visual equipment present
38	Audio visual equipment used
39	General equipment, materials present
40	General equipment, materials used
41	Children's own products on display
42	Displays reflecting children's ethnicity
43	Photographs of the children present
44	Total number different resource categories co.
	"present" over three days
45	Total number different resource categories coded
	"used today" over three days
46	Number of COP's, adult focus
47	Number of COP's, child focus
48	Achievement charts present
49	Achievement charts used
50	Cooking and sewing supplies present
51	Cooking and sewing supplies used
52	Carpentry materials, large blocks preser
53	Carpentry materials, large blocks used
54	Sandbox, water table present
55	Sandbox, water table used
56	Magazines present
57	Magazines used
58	Children's story books present
59	Children's story books used
60	Total number of CCL's

Classroom Check List (CCL)

A. Classroom Activities: Over three days, how is the children's time ditributed?*

Variable No.	Distribution
61	Lunch, snack
62	Group time
63	Story, music, dancing
64	Arts, crafts
65	Cuessing games, table games, puzzles

^{*} These CCL Variables will be weighted proportions. See page F-11 for Weighting Scheme.

CCL (continued)

66	Numbers, math, arithmetic
67	Reading, alphabet, language development
68	Social studies, geography
69	Science, natural world
70	Sewing, cooking, pounding
71	Blocks, trucks
72	Dramatic play, dress-up
73	Active play
74	Practical skills acquisition
75	Observing (independent children only)
76	Social interaction
77	Unoccupied child
78	Discipline
79	Transitional activities
80	Classroom management
81	Out of room
82	Wide variety of activities, concurrent
83	Wide variety of activities, over one day
84	Approximate number of children in the classroom in any activity

B. Classroom Groupings: Overall activities, what percent of the time* is an adult in each of these situations?

Variable No.	
85	Teacher without children
86	Teacher with one child
87	Teacher with two children
88	Teacher with small group
89	Teacher with large group
90	Overall teacher occurrences
91	Aide without children
92	Aide with one child
93	Aide with two children
94	Aide with small group
95	Aide with large group
96	Overall aide occurrences
97	Volunteer without children
98	Volunteer with one child
99	Volunteer with two children
100	Volunteer with small group
101	Volunteer with large group
102	Overall volunteer occurrences
103	Adult without children
104	Adult with one child
105	Adult with two children

^{*}See Weighting Scheme on page F-11.

CCL (continued)

106	Adult with small group
107	Adult with large group
108	Overall occurrences of adults ,
109	One child with any adult
110	Two children with any adult
111	Small group of children with any adult
112	Large group of children with any adult
113	Overall occurrence of children with any adult
114	One child independent
115	Two children independent
116	Small group of children independent
117	Large group of children independent
118	All children independent
119	Number of children in the classroom times the number of CCL's

C. Math Groupings: When math occurs, which percent of the time* is a child in each of these groupings?

Variable No.	Description
120	One child with teacher/Math
121	Two children with teacher/Math
122	Small group with teacher/Math
123	Large group with teacher/Math
124	One child with aide/Math
125	Two children with aide/Math
126	Small group with aide/Math
127	Large group with aide/Math
128	One child with volunteer/Math
129	Two children with volunteer/Math
130	Small group with volunteer/Math
131	Large group with volunteer/Math
132	One child with any adults/Math
133	Two children with any adults/Math
134	Small group with any adults/Math
135	Large group with any adults/Math
136	One child independent/Math
137	Two children independent/Math
138	Small group of children independent/Math
139	Large group of children independent/Math
140	Approximate number of children involved in Math for all
	days observed
141	Personalized instruction in Math (Var. 132 + 133)
142	All children independent/Math (Add Var. 136 through Var. 139)

^{*}See Weighting Scheme for CCL Variables.

D. Reading Groupings: When reading occurs, what percent of the time* is a child in each of these groupings?

Variable No.	Description			
1.4.3	One child with teacher/Reading			
144	Two children with teacher/Reading			
145	Small group with teacher/Reading			
146	Large group with teacher/Reading			
147	One child with aide/Reading			
148	Two children with aide/Reading			
149	Small group with aide/Reading			
150	Large group with aide/Reading			
151	One child with volunteer/Reading			
152	Two children with volunteer/Reading			
153	Small group with volunteer/Reading			
154	Large group with volunteer/Reading			
155	One child with any adults/Reading			
156	Two children with any adults/Reading			
157	Small group with any adults/Reading			
158	Large group with any adults/Reading			
159	One child independent/Reading			
160	Two children independent/Reading			
161	Small group of children independent/Reading			
162	Large group of children independent/Reading			
163	Approximate number of children involved in Reading for all days observed			
164	Personalized instruction in reading (Var. 155 + 156)			
165	All children independent/Reading (Add Var. 159 through Var. 162)			

E. Social Studies Groupings: When social studies occurs, what percent of the time* is a child in each of these groupings?

Variable No.	
166	One child with teacher/Social Studies
167	Two children with teacher/Social Studies
168	Small group with teacher/Social Studies
169	Large group with teacher/Social Studies
170	One child with aide/Social Studies
171	Two children with aide/Social Studies
172	Small group with aide/Social Studies
173	Large group with aide/Social Studies
174	One child with volunteer/Social Studies
175	Two children with volunteer/Social Studies

^{*}See Weighting Scheme for CCL Variables.

CCL (continued)

176	Small group with volunteer/Social Studies
177	Large group with volunteer/Social Studies
178	One child with any adults/Social Studies
179	Two children with any adults/Social Studies
180	Small group with any adults/Social Studies
181	Large group with any adults/Social Studi
182	One child independent/Social Studies
183	Two children independent/Social Studies
184	Small group of children independent/Social Studies
185	Large group of children independent/Social Studies
186	Approximate number of children involved in Social
	Studies for all days observed

F. Science, natural world groupings: When science, natural world occurs, what percent of the time* is a child in each of these groupings?

Variable No.	Description
4.0 m	
187	One child with teacher/Science
188	Two children with teacher/Science
189	Small group with teacher/Science
190	Large group with teacher/Science
191	One child with aide/Science
192	Two children with aide/Science
193	Small group with aide/Science
194	Large group with aide/Science
195	One child with volunteer/Science
196	Two children with volunteer/Science
197	Small group with volunteer/Science
198	Large group with volunteer/Science
199	One child with any adults/Science
200	Two children with any adults/Science
201	Small group with any adults/Science
202	Large group with any adults/Science
203	One child independent/Science
204	Two children independent/Science
205	Small group of children independent/Science
206	Large group of children independent/Science
207	Approximate number of children involved in Science for all days observed

^{*}See Weighting Scheme for CCL Variables.

G. Arts, crafts groupings: When arts, crafts occurs, what percent of the time* is a child in each of these groupings?

Variable No.	Description
208	One child with teacher/Arts and Crafts
209	Two children with teacher/Arts and Crafts
210	Small group of children with teacher/Arts and Crafts
211	Large group of children with teacher/Arts and Crafts
212	One child with aide/Arts and Crafts
213	Two children with aide/Arts and Crafts
214	Small group of children with aide/Arts and Crafts
215	Large group of children with aide/Arts and Crafts
216	One child with volunteer/Arts and Crafts
217	Two children with volunteer/Arts and Crafts
218	Small group with volunteer/Arts and Crafts
219	Large group with volunteer/Arts and Crafts
220	One child with any adults/Arts and Crafts
221	Two children with any adults/Arts and Crafts
222	Small group of children with any adults/Arts and Crafts
223	Large group of children with any adults/Arts and Crafts
224	One child independent/Arts and Crafts
225	Two children independent/Arts and Crafts
226	Small group of children independent/Arts and Crafts
227	Large group of children independent/Arts and Crafts
228	Approxima e number of children involved in Arts and Crafts for all days observed
	orares for all days observed

H. Classroom Management: In what percent of CCL's do each of these occur?

Variable No.	Description
229	Teacher involved/Classroom Management
230	Aide involved/Classroom Management
231	Volunteer involved/Classroom Management

I. Social Interaction: In what percent of CCL's do each of these occur?

Variable No.	Description
232	Among adults/Social Interaction
233	Among adults and children/Social Interaction
234	Among children/Social Interaction
235	Between observer and children/Social Interaction

^{*}See Weighting Scheme for CCL Variables.

J. Use of Materials in Academic Activities: In what percent of CCL's where an academic activity is occurring are each of these also coded?

<u>Variable No.</u>	Description
236	TV/Academic Activities
?37	Audio visual equipment/Academic Activities
8د 2	Exploratory materials/Academic Activities
239	Math or science equipment/Academic Activities
240	Texts, workbooks/Academic Activities
241	Puzzles, games/Academic Activities
242	Percent of CCL's in which an academic activity is occurring/Academic Activities

K. Longitudinal Variables (Proportion of CCL's in which activity occurred)

<u>Variable No.</u>	Description
243	Lunch, snack/Longitudinal
244	Group time/Longitudinal
245	Story, music, dancing/Longitudinal
246	Arts, crafts/Longitudinal
247	Guessing games, table games, puzzles/Longitudinal
248	Numbers, math, arithmetic/Longitudinal
249	Reading, alphabet, language development/Longitudinal
250	Social studies, geography/Longitudinal
251	Science, natural world/Longitudinal
252	Sewing, cooking, pounding/Longitudinal
253	Blocks, trucks/Longitudinal
254	Dramatic play, dress-up/Longitudinal
253	Active play/Longitudinal
25 ₀	Practical skills acquisition/Longitudinal
257	Teacher with one child, academic acti ities/Longitudinal
258	Aide with one child, academic activities/Longitudinal
259	Volunteer with one child, academic activities/Longitudinal
260	Children independent, academic activities/Longitudinal
261	Any adult with one child, any activity/Longitudinal
262	Average number of adults in the classroom/Longitudinal

WEIGHTING SCHEME FOR CCL VARIABLES

PROCEDURE FOR ESTABLISHING THE WEIGHTING FOR EACH CCL.

Let W = Number of one child occurrences;

Let X = Number of two children occurrences;

Let Y = Number of small group occurrences;

Let Z = Number of large group occurrences.

Let N = Number of children present on given day.

Allocate a weight of 1 to any occurrence of "one child"

Allocate a weight of 2 co any o. ence of "two children"

Let k = N - W - 2X. If Z = 0 and Y = 0, = 0 and $W_L = 0$.

Where Ws is the weight for any occurrence of "small group" and WL is the weight for any occurrence of "large group."

Weighting: If $Y \neq 0$ and Z = 0, set $W_S = \frac{k}{Y}$

If Y = 0 and $Z \neq 0$, set $W_L = \frac{k}{Z}$

Otherwise (if $Y \neq 0$ and $Z \neq 0$):

If $\frac{k-5Y}{Z} \ge 9$, set $W_S = 5$ and $W_L = \frac{k-5Y}{Z}$ Else if $\frac{k-4Y}{Z} \ge 9$, set $W_S = 4$ and $W_L = \frac{k-4Y}{Z}$

Otherwise, set $W_S = 3$ and $W_L = \max (0, \frac{k - 3Y}{Z})$

PREAMBLE (PRE)

Variable No. Adult* Child*		
Focus		Description
A.	Focus of FMO	
263a	302c	Teacher focus
264a	303c	Aide focus
265a	304c	Child focus
266a	305 c	Croup size: one or two children
267a	306c	Group size: small group
268a	307c	Group size: large group
В.	Adult role	
269a	308c	Teacher directing
270a	309c	Teacher participating
271a	310c	Teacher observing
272a	311c	Teacher not involved
273a	312c	Aide directing
274a	313c	Aide participating
275a	314c	Aide observing
276a	315c	Aide not involved
c.	Activity/Gener	al
277a	316c	Average number of frames per FMO
278a	317c \	Number of FMO's with lunch or snack as beginning
	32701	activity
279a	318c	Number of FMO's with group time as beginning activity
280a	319c	Number of FMO's with story, music or dancing as beginning activity
281a	320c	Number of FMO's with arts or crafts as beginning
282a	321c	activity Number of FM)'s with guessing games, table games or puzzles as beginning activity
283a	322c	Number of FNO's with numbers, math or arithmetic as beginning activity
284a	323c	Number of FMO's with reading, alphabet or language development as beginning activity
285a	324 c	Number of FMO's with social studies or geography as beginning activity

^{*&}quot;a" indicates adult focus variable, "c" indicates child focus variable.

PRE (con	tinued)	
286a	325c	Number of FMO's with science or natural world as beginning activity
287a	326c	Number of FMO's with sewing, cooking or pounding as beginning activity
288a	327c	Number of FMO's with blocks or trucks as beginning activity
289 a	328c	Number of FMO's with dramatic play or dress-up as beginning activity
290a	329c	Number of FMO's with active play as beginning activity
291a	330c	Number of FMO's with practical skills acquisition as beginning activity
292a	331c	Number of FMO's with observing (independent children
293a	332c	only) as beginning activity Number of FMO's with social interaction as beginning activity
294a	333c	Number of FMO's with unoccupied child as beginning activity
295a	334c	Number of FMO's with discipline as beginning activity
296a	335c	Number of FMO's with transitional activities as beginning activity
297a	336c	Number of FMO's with classroom management as beginning activity
298a	337c	Number of FMO's with out of room as beginning
299a	338c	activity Number of FMO's with unknown beginning activity
300a 301a	339c 340c	Number of FMO's which begin and end in math Number of FMO's which begin and end in reading

Five-Minute Observation (FMO)

Variabl		
Adult*	Child*	
Focus	Focus	Description
341a	472c	Child to adult, verbal
342a	473c	Adult to child, verbal
343a	474c	Child to adult, all verbal except response
344a	475c	Individual child verbal interactions with ad. It
345a	476c	Verbal interactions among children
346a	477c	Child commands, requests, and direct questions, non-academic
347a	478c	Child commands, requests, and direct questions, academic
348a	479c	Child open-ended questions, non-academic
349a	480c	Child open-ended questions, academic
350a	481c	Child questions to adults
351a	482c	Adult commands, requests, and direct questions to groups of children, non-academic
352a	483c	Adult commands, requests, and direct questions to individual children, non-academic
353a	484c	Adult commands, requests, and direct questions to groups of children, academic
354a	485c	Adult commands, requests, and direct questions to individual children, academic
355a	486c	Adult open-ended questions to children, non-academic
356a	487c	Adult open-ended questions to children, academic
357a	488c	All adult questions to children
358a	489c	All children responses
359a	490c	Child responses, non-academic
360a	491c	Child responses, academic
361a	492c	Child responses to behavioral correction or reinforcement
362a	493c	Individual child responds to adult academic command, request, or direct questions
363a	494c	Child group responds to adult academic request or direct question
364a	495c	Adult responses to child requests or questions, academic
365a	496c	Adult responses to child requests or questions, non-academic
366a	497c	Adult responds to child question with open-ended question
367a	498c	Adult responds to child question with direct question
368a	409c	Child responses to adult open-ended questions

^{*&}quot;a" indicates adult focus variable, "c" indicates child focus variable.

FMO (continued)				
369a	500c	Child extended response, non-academic		
370a	501c	Child extended response, academic		
371a	502ა	Child extended response to adult open-ended question		
372a	503e	Child presenting information to a group		
373a	504c	Adult instruction, ron-academic		
374a	505c	Adult instruction, academic		
375a	506c	Adult instructs an individual child		
376a	507c	Adult instructs a group		
377a	508c	Child self-instruction		
378a	509c	Child self-instruction, academic		
379a	510c	Child welf-instruction, objects		
380a	511c	Child self-instruction, academic, with objects		
381a	512c	Child instructing another child		
382a	513c	Child task persistence		
383a	514c	Two children working together, using concrete		
0.04		objects		
384a	515c	Small group working together, using concrete		
2.5		objects		
385a	516c	Social interaction among children		
386a	517c	Child task-related comments to children		
387a	518c	Child general comments to adults		
388a	519c	Child task-related comments to adults		
389a	520c	Adult general comments to children		
390a	521c	Adult task-related comments to children		
391a	522c	Child acknowledgment		
392a	523c	Child praise		
393a	524c	Child corrective feedback		
394a	525c	All adult acknowledgment to children		
395a	526c	Adult acknowledgment to children, academic		
396a	527c	Adult acknowledgment to children, behavior		
397a	528c	Adult acknowledgment, other task-related		
398a	529c	All adult praise to children		
399a	530c	Adult reinforcement with token, academic		
400a	531c	Adult reinforcement with token, behavior		
401a	532c	Adult reinforcement with token, other task-related		
402a	533c	Adult praise, academic		
403a	534c	Adult praise, behavior		
404a	535c	Adult praise, other task-related		
405a	536c	All adult corrective feedback to children		
406a	537c	Adult positive corrective feedback, academic		
407a	538c	Adult negative corrective feedback, academic		
408a	539c	Adult positive corrective feedback, behavior		
409a	540c	Adult negative corrective feedback, behavior		
410a	541c	Adult positive corrective feedback, other task-		
		related		

FMO	(continued)	
411a	542e	Adult negative corrective feedback, other task-related
412a	543c	Adult feedback to child response to adult academic command or question
413a	544c	Child not responding to adults
414a		Adult not responding to child
415a		Child waiting
416a	3,00	Children attentive to adults, non-academic
417a		Children attentive to adults, non-academic
418a		Adults attentive to children, non-academic
419a		Adults attentive to children, non-academic
420a	551c	Adults attentive to a small group
421a	552c	Adults attentive to a small group Adults attentive to individual children
422a		Positive behavior among children
423a		Positive behavior, adults to children
424a		Positive behavior, children to adults
425a	556c	Child expressions of unhappiness
426a	557c	Adult expressions of unhappiness
427a		Negative behavior among children
428a	559c	Negative behavior, adults to children
429a	560c	Negative behavior, children to adults
430a	561c	Total adult affect
431a	562c	Total child affect
432a	563c	Adult punishment of children
433a	564c	Child statements of self-worth
434a	565c	Dramatic play, pretending
435a	566c	Total academic verbal interactions
436a	567c	Total interactions, behavior control
437a	568c	Children engaged in mutual activity
438a	569c	Adult communication or attention focus, one child
439a	300c	Adult communication or attention focus, two children
440a	571c	Adult communication or attention focus, small group
441a	572c	Adult communication or attention focus, large group
442a	573c	All child nonverbal
443a	574c	Child movement
444a	575c	Adult movement
445a	576c	Adult leaving the room
446a	577c	Child attentive to machine
447a	578c	Adult neutral corrective feedback, task-related
448a	579c	Adult neutral corrective feedback, behavior
449a	580c	Adult neutral corrective feedback, academic
450a	581c	All child open-ended questions (Var. 348a + 349a
		and/or Var. 479c + 480c)
451a	582 c	Adult academic commands, requests, and direct questions to children (Var. 353a + 354a and/or Var. 484c + 485c)
4° 2a	583c	Adult open-ended questions to children (Var. 355a + 356a and/or Var. 486c + 487c)
453a	584c	Adult response to child's question with a question (Var. 366a + 367a and/or Var. 497c + 498c)
454a	585c	Child's extended response to questions (Var. 369a + 370a + 371a and/or Var. 500c + 501c + 502c)

10 (cc	ontinued)	
455a	586 c	All adult instruction (Var. 373a + 374a and/or Var. 504c + 505c)
456a	587c	All child task-related comments (Var. 386a + 388a and/or Var. 517c + 519c)
457a	588c	All adult positive corrective feedback (Add Vars. 406a, 408a, 410a and/or 53/c, 539c, 541c)
458a	589c -	All adult negative corrective feedback (Add Vars. 407a, 409a, 411a and/or 538c, 540c, 542c)
459a	590c	All adult praise for academic responses (Var. 399a + 402a and/or Var. 530c + 533c)
460a	591c	All child positive affect (Var. 422a + 424a and/or Var. 553c + 555c)
461a	592c	All child negative affect (Var. 427a + 429a and/or Var. 558c + 560c)
462a	593c	All positive behavior (Add Vars. 422a, 423a, 424a and/or Vars. 553c, 554c, 555c)
463a	594c	All negative behavior (Add Vars. 427a, 428a, 429a and/or Vars. 558c, 559c, 560c)
464a	595c	Child attentive (Add Vars. 416a, 417a, 446a and/or Vars. 547c, 548c, 577c)
465a	596c	Adult feedback to children for behavior (Add Vars. 396a, 403a, 408a, 409a, 448a and/or Vars. 527c, 534c, 539c, 540c, 579c)
466a	597c	Child self-esteem (Add Vars. 392a, 393a, 433a, 454a and/or 523c, 524c, 564c, 585c)
467a	598c	Child cooperation (Add Vars. 381a, 386a, 437a and/or Vars. 512c, 517c, 568c)
468a	599c	Child self-instruction, non-academic (Var. 377a - 378a and/or Var. 508c - 509c)
469a	600c	All adult reinforcement with tokens (Add Vars. 399a, 400a, 401a and/or Vars. 530c, 531c, 532c)
470a	601c	All adult neutral corrective feedback (Add Vars. 447a, 448a, 449a and/or 578c, 579c, 580c)
471a	602c	Adults attentive to large group (Subtract sum of Vars. 420a and 421a from sum of Vars. 418a and 419a and/or subtract sum of Vars. 551c and 552c from sum of Vars. 549c and 550c)

Appendix G

CLASSROOM OBSERVATION VARIABLE SPECIFICATIONS

Appendix G

CLASSROOM OBSERVATION VARIABLE SPECIFICATIONS

There are five categories of classroom observation variables:

I-Classroom Summary Information (CSI)
II-Physical Environment Information (PEI)
III-Classroom Check List (CCL)
IV-Preamble (PRE)
V-Five Minute Observation (FMO).

The computations of the variables in each category are based, for the most part, on information obtained from the corresponding section of the Classroom Observation Instrument. The variables are numbered consecutively through the list. In the text the variable number will usually be accompanied by one of the abbreviations given above to indicate the category that the variable came from. The variable specifications given here are how the variable was computed at the classroom level, the level of the unit of the analysis for most of the current evaluation.

1. Classroom Summary Information (CSI)

One CSI is completed per day of observation.

Variable No.	De	escription
1	Sponsor code)
2	Site code	Classroom identification data
3	Center code	obtained from the first day of observation.
4	Teacher code	
5		ĺ
6		Not used in the analysis.
7	Grade Either 1 or 3	Obtained from the first day of
8	Observer code	observation.
9		Not used in the analysis.
10	Number of children enrolled	
11	Number of children present	
12	Mumber of teachers	Averaged over days of observa-
13	Number of aides	tion.
1	Number of volunteers present	ı J

G-3

"ariable No.	Des	cri	ption			
15	Child/teacher and aide ratio (Number of children divided by number of teachers and aides)					and then
16	Child/adult ratio (Number of children divided by number of teachers, aides, and volunteers)		averaged	over	days of	observation.
17	Total class duracion		Averaged	over	days of	observa-

2. Physical Environment Information (PEI)

One PEI is completed per day of observation.

Variable No.	Desc	ription
18	Movable tables and chairs for seating	
19	Statiorary desks ⁱ in rows	
20	Assigned seating for at least part of the day	l if marked l on any day (indicating "yes" or "present");
21	Children select their own seating locations	0 otherwise.
22	Teacher assigns children to groups	
23	Children select their own work groups	
24	Child selection of seating and work groups	(1-V20) + V21 + (1-V22) + V23 Range: 0-4.

Unless otherwise stated below, each of the remaining PEI variables was coded as follows:

If "present" is in the variable name, the variable had a value of 1 if the corresponding item on the PEI had been marked "present" or "used" on any day of observation; otherwise, the variable had a value of 0.

If "used" is in the variable name, the variable had a value of 1 if the corresponding item on the PEI had been marked "used today" on any day of observation; otherwise, the variable had a value of 0.

G-4

Variable No	Description
25	Games, toys, play equipment present Each item under this heading for
26	the PEI* was scored as specified above and the scores were summed across items. Range: 0-10.
27	Instructional materials present See specification of variables 25, 26. Range: 0-4.
28	Instructional materials used
29	Montessori, other educational toys present
30 .	Montessori, other educational toys used
31	Children's texts, workbooks present
32	Children's texts, workbooks used
33	Math/Science equipment, con- crete objects present
34	Latr/Science equipment, con- crete objects used
35	Instructional charts present
36	Instructional charts used
37	Audio visual equipment present \(\) See specification of variables
38	Audio visual equipment used $\int 25$, 26. Range: 0-3.
39	General equipment, materials present See specification of variables
40	General equipment, materials $\begin{cases} 25, 26. \text{ Range: } 0-12. \end{cases}$
41	Children's own products on Coded as "present" variable. display
42	Displays reflecting children's ethnicity
43	Photographs of the children present Coded as "present" variable.

 $[\]overset{*}{\text{See}}$ Appendix C. The Classroom Observation Instrument.

Variable N	Descr	iption
44	Total number of different resource categories coded "present" over 3 days	V25 + V27 + V37 + V39.
45	Total number of different resource categories coded "used today" over 3 days	V26 + V28 + V38 + V40.
46	Number of COPsadult focus	The number of COPs used in the computations of the FMO variables on adult/activity focus.*
47	Number of COPschild focus	The number of COPs used in the computations of the FMO variables on child focus.*
48	Achievement charts present	
49	Achievement charts used	
50	Cooking and sewing supplies present	
51	Cooking and sewing supplies used	
52	Carpentry materials, large blocks present	
53	Carpentry materials, large blocks used	
54	Sandbox, water table present	
55	Sandbox, water table used	
56	Magazines present	
57	Magazines used	
58	Children's story books present	
59	Children's story books used	
60	Total number of CCLs	The number of CCLs used in the computation of the CCL variables.

 $^{^{\}rm S}$. These do not appear in the PEI, but were calculated in the process of creating the classroom-level data tape.

3. Classroom Check List (CCL)

Approximately 20 CCLs are completed per day of observation. The data from the CCL consists of the number of configurations of adults and children that were engaged in a particular activity at the time the CCL was completed. A configuration is defined by the number of children (either one child, two children, small group, or large group) and the adults involved, if any (either teacher, aide, volunteer, or independent, with independent indicating that no adults are involved). Since the number of children involved in any given activity can only be determined up to a small group or large group designation, a weighting scheme was devised to obtain, for each CCL separately, the approximate size of small and large groups when they occurred.

The procedure for establishing the approximate size of the groups for a \mbox{CCL} was as follows:

The number of configurations or groups observed was tallied for each group size across all activities.

Let W = Number of one-child configurations

X = Number of two-children configurations

Y > Number of small group configurations

Z = Number of large group configurations

Let N = Number of children present for the day (Taken from the Class-room Summary Information item "Number of children present today.")

A weight of 1 was allocated to any occurrence of "one child."

A weight of 2 was allocated to any occurrence of "two children."

Let k = N-W-2X This represents the number of children who were in either a small or large group.

If Y 0 and Z = 0 (i.e., there were no large groups), then a weight of k/Y was allocated to each small group.

If Y = 0 and $7 \cdot 0$ (i.e., there were no small groups), then a weight of k/Z was allocated to each small group.

When Y \cdot 0 and Z \geq 0 (i.e., there were both large and small groups): if $(k-5Y)/Z \geq 9$, then a weight of 5 was allocated to each small group and (k-5Y)/Z was allocated to each large group;

if (k-4Y)/Z = 9, then a weight of 4 was allocated to each small group and (k-4Y)/Z was allocated to each large group:

otherwise, a weight of 3 was allocated to each small group, and (k-3Y)/Z was allocated to each large group.

In this last case if, because of an error in observation or coding, $K \sim 3Y$, a weight of zero was allocated to large groups.

This algorithm assigns 5 children per small group unless this will be inconsistent with the assignment of number of children in large groups, which must be at least 9. If there is an inconsistency, the assignment to small groups is dropped to 4 and the number of children assigned to large groups is checked again. If the inconsistency still remains, a value of 3 is assigned to the number of children in a small group.

Classroom Activities

The approximate number of children engaged in a given activity on a particular CCI will be

$$n_1 + 2n_2 + V_s \cdot n_s + V_I \cdot n_L$$

where W_S and W_L are the approximate sizes of small and large groups, respectively, and $n_1,\ n_2,\ n_3$, and n_L are the number of one-child, two-children, small group, and large group configurations that are engaged in the particular activity. Variables 61 through 81 are defined as:

much of these variables represents the percent of "child time" that is spent in a given activity. The sum of variables 61 through 81 will be 100.

Variable No.	Description
61	Lunch, snack
62	Group time
63	Storv, music, dancing
64	Arts, crafts
65	Guessing games, table games, puzzles
66	Numbers, math, arithmetic
67	Reading, alphabet, language development
68	Social studies, geography
69	Science, natural world
70	Sewing, cooking, pounding
71	Blocks, trucks
7.2	Dramatic play, dress-up
73	Active play
74	Practical skills acquisition
75	('serving (independent children only)
76	Social interaction

Variable No.	Description	
77	Unoccupied child	
78	Discipline	
79	Transitional acitivities	
80	Classroom management	
81	Out of room	

Variables 82 and 83 are measures of the number of different activities that occur. Only the first fourceen activities as listed on the CCL are included.

82 Wide Variety of activities, concurrent.

For each CCL, each activity gets a score of 1 if any child was engaged in the activity; otherwise a score of zero is assigned. The scores for the activities are summed for each CCL and then the average per CCL is obtained. Range 0-14.

83 Wide variety of activities, over one day.

For each day, each activity gets a score of 1 if any child is observed to engage in the activity; otherwise a score of zero is assigned. The scores for the activities are summed for each day and then the average per day is obtained. Range: 0-14.

84 Approximate number of children in the classroom in any activity.

The total weight allocated for each day is defined as the number of children present multiplied by the number of CCLs completed for the day. Variable 84 is defined as the sum of the total weight across days divided by the total number of CCLs observed (Var. 60). It should correspond chosely to the average number of children present.

b. Classroom Groupings

This section contains variables that describe the percent of "time" spent by adults and children in particular grouping patterns. Variables 85 through 108 relate to the amount of time adults spend in particular groupings. Variables 109 through 118 relate to the amount of time children are found in part ular groupings.

The set of variables dealing with adults consists of four subsets dealing with the teacher, the aide, the volunteer, and all adults, respectively. Each subset consists of six variables. The specifications for each subset are as follows:

The number of occurences of the specified adult (or adults) in each specified grouping pattern (without children, one child, two children, small group, and large group) is tallied across all CCLs. The tallies are summed across grouping patterns to yield the overall occurrences (Variables 90, 96, 102, or 108). The tally for

each specified grouping pattern is then divided by the overall occurrences and then multiplied by 100 to yield the percent of overall occurrences in each particular grouping pattern. If the number of overall occurrences equals zero, then the percent of occurrences for each particular grouping pattern is set to zero.

Variable No.	Description
85	Teacher without children
86	Teacher with one child
87	Teacher with two children
88	Teacher with small group
89	leacher with large group
90	Overall teacher occurrences
91	Aide without chilaren
92	Aide with one child
93	Aide with two children
94	Aide with small group
95	Aide with large group
96	Overall aide occurrences
97	Volunteer without children
98	Volunteer with one child
99	Volunteer with two children
100	Volunteer with small group
101	Volunteer with large group
102	Overall volunteer occurrences
103	Adult without children
104	Adult with one child
105	Adult with two children
106	Adult with small group
107	Adult with large group
108	Overall occurrences of adults

The set of variables dealing with children employs the weighting scheme described at the beginning of the CCI section on p. G-5. The specifications for Variables 109 through 116 are as follows:

The approximate numbers of children who are observed in the given grouping pattern are summed across all CCIs. This sum is then divided by the total weight and multiplied by 100 to yield the percent of "child time" spent in a given grouping pattern. The total weight is defined as the sum across CCLs of the number of children present. The total weight is given in Variable 119.

Variable No.	Description
109	One child with any adult
110	Two children with any adult
111	Small group of children with any adult
112	Large group of children with any adulc
113	Overall occurrence of children with any adult
114	One child independent
115	Two children independent
116	Small group of children independent
117	Large group of children independent
118	All children independent Variables 114 + 115 + 116 + 117
119	Number of children in the classroom times the number of CCLs

The specifications of the variables for Math groupings, Reading groupings, Social Studies groupings, Science and Natural World groupings, and Arts, Crafts groupings are similar to those for Classroom groupings. The weighting scheme described on p. G-5 is used. The specifications for the first 21 variables in each of these sections are as follows:

The approximate number of children who are observed in the given grouping pattern in the given activity are summed across all CCLs. This sum is then divided by the total weight for the given activity and multiplied by 100 to yield the percent of "child time" spent in a given grouping pattern when the given activity is occurring.

The total weight for the given activity is computed by summing across CCIs the approximate number of children engaged in the activity. The variable "Approximate number of children involved in given activity for all days observed" is this total weight (Variables 140, 163, 186, 207, and 228).

Note that the variables in Sections C through G indicate how much of a grouping pattern is used when a given activity is occurring.

They do not reflect the amount of the activity that is observed to occur. The percent of "child time" spent in each activity was given in Part 3-a.

c. Math Groupings

Variable No.	Description
120	One child with teacher/Math
121	Iwo children with teacher/Math
122	Small group with teacher/Math
123	Large group with teacher/Math
124	One child with aide/Math
125	Two children with aide/Math
126	Small group with aide/Math
127	Large group with aide/Math
128	One child with volunteer/Math
129	Two children with volunteer/Math
130	Small group with volunteer/Math See text in Part 3-a.
131	Large group with volunteer/Math
132	One chila with any adults/Math
133	Two children with any adults/Math
134	Small group with any adults/Math
135	Large group with any adults/Math
136	One child independent/Math
137	Two children independent/Math
138	Small group of chil .en independent/Math
139	Large group of children independent/Math
140	Approximate numb f children involved in Mathall days observed
141	Personalized instruction in Math Var. 132 + 133
142	All children independent/Math

d. Reading Groupings

Variable No.	Description
143	One child with teacher/Reading
144	Two children with teacher/Reading
145	Small group with teacher/Reading
146	Large group with teacher/Reading
147	One child with aide/Reading
148	Two children with aide/Reading
149	Small group with aide/Reading
150	Large group with aide/Reading
151	One child with volunteer/Reading
152	Two children with volunteer/Reading
153	Small group with volunteer/Reading
154	Large group with volunteer/Reading See text in Part 3-a.
155	One child with any adults/Reading
156	Two children with any adults/Reading
157	Small group with any adu_ts/Reading
158	Large group with any adults/Reading
159	One child independent/Reading
160	Two children independent/Reading
161	Small group of children independent/ Reading
162	Large group of children independent/ Reading
163	Approximate number of children involved in Readingall days observed
164	Personalized instruction in Reading Var. 155 + 156
165	All children independent/Reading Var. 159 + 160 + 161 + 162

e. Social Studies Groupings

Variable No.	Description	· • • • • • • • • • • • • • • • • • • •
166	One child with teacher/Social Studies	
167	Two children with teacher/Social Studies	
168	Small group with teacher/Social Studies	
169	Large group with teacher/Social Studies	
170	One child with aide/Social Studies	
171	Iwo children with aide/Social Studies	
172	Small group with aide/Social Studies	
173	Large group with aide/Social Studies	
174	One child with volunteer/Social Studies	
175	Two children with volunteer/Social Studies	
176	Small group with volunteer/Social Studies	o trut in Dont
177		ee text in Part -a.
178	One child with any adults/Social Studies	
179	Two children with any adults/Social Studies	
180	Small group with any adults/Social Studies	
181	Large group with any adults/Social Studies	
182	One child independent/Social Studies	
183	Two children independent/Social Studies	
184	Small group of children independent/Social . Studies	
185	Large group of children independent/Social Studies	
186	Approximate number of children involved in Social Studiesall days observed	

2. 5

f. Science, Natural World Groupings

Varia e No.	Description	
187	One child with teacher/Science	
188	Two children with teacher/Science	
189	Small group with teacher/Science	
190	Large group with teacher/Science	
191	One child with aide/Science	
192	Two children with aide/Science	
193	Small group with aide/Science	
194	Large group with aide/Science	
195	One child with volunteer/Science	
196	Two children with volunteer/Science	
197	Small group with volunteer/Science	
198	Large group with volunteer/Science	See text in Part 3-a.
199	One child with any adults/Science	
200	Two children with any adults/Science	
201	Small group with any adults/Science	
202	Large group with any adults/Science	
203	One child independent/Science	
204	Two children independent/Science	
205	Small group of children independent/ Science	
206	Large group of children independent/ Science	
207	Approximate number of children in- volved in Scienceall days observed	

g. Arts, Cratts Cromoings

Variable No.	Description
208	One could with teacher Arts and Crafts
209	Two children with teacher/Arts and Crafts
210	Small group of children with teacher/Arts and Crifts
211	large group of children with teacher, Arts and rifts
.12	One child with aide/Arts and Crafts
213	Two children with inde/Arts and Crafts
214	Small group of children with aide/Arts and Crafts
215	Large group of children with aide/Arts and Crafts
216	One child with volunteer/Arts and Crafts
217	Two children with volunteer/Arts and Crafts
218	Small group of children with volunteer/Arts and (rifts
219	rarge group of hildren with volunteer/Arts and Crafts
220	One child with any adults/Arts and Crofts
221	Iwo children with any adults/Arts and Crafts
222	Small group with any adults Arts and Crafts
223	Targe group of children with any adults/Arts and Crafts
3 2 4	One child independent/Arts and Crafts
225	two children independent/Arts and Crafts
22h	Small group of children independent/Arts and Crifts
227	Targe group of children independent Arts and Crifts
278	improximate number of children involved in Arts/Craftsall days observed

> See text in Part 3-a.

h. Classroom Management

Variable to.	Description			
229	Teacher involved Classroom Management)		Number of CCLs
230	Aide involved/Classroom Management			where given adult is engaged in
231	Volunteer involved/Classroom Management		100 /	classroom management Total number of CCLs
		ノ		

i. Social Interaction

Variable No.	Description		
232	Among adults/Social Interaction)	
233	Among adults and children/Social Interaction		Number of CCLs where given sub- jects are engaged
234	Among children/Social Interaction	100	in social inter- action
235	Between observer and ch. dren/Social Interaction		Total number of CCLs

j. Use of Materials in Academic Activities

Variable No.	Description	
236	TV/Academic activities)
237	Audio visual equipment/Academic activities	
238	Exploratory materials/Academic activities	Number of CCLs where given mate-
239	Math or science equipment/Aca- demic activities	Number of CCLs where at least one child was en-
240	Texts, workbooks/Academic activities	gaged in an aca- demic activity*
241	Puzzles, games/Academic activities	J
242	Percent CCLs in which an academic activity is occurring	Number of CCLS where at least one child was engaged in an academic 100 activity
*		Number of CMS

Academic activities include activity categories 6 through 9 on the CCL: Numbers, math, arithmetic: Reading, alphabet, language development; Social Studies, geography; Science, natural world.

G-17

L. longitudinal Viribles

These variables had the same definitions as identically named variables in the Collow Through Program Classroom Observation Evaluation 1971-72. They are included for the sake of a utimate with past studies and for the sake of comparison with variables newly define: in the current report.

ir. inle So.	Description		
2+3	runct, smack tengitudinal)	
2.,	roup time longitudinal		
2-5	Store, auso. danking/longitulinal		
246	Arts, crafts'long'tudinal		
- 7 - 7	Guessing games, table games, puzzles/ longitudinal		
248	Murbers, math, arithmetic/Longitudinal	}	Number of CCIs
2-+9	Reading, alphabet, language development/ Longitudinal		where at least one child is en- gaged in activi-
25 /	Social studies, geography/Longitudinal		ties Total number of
251	Science, natural world/Longitudinal		COS
252	Sering, cooking, pounding/longitudinal		
253	Slocks, trucks Congitudinal		
<u> </u>	Drimatic play, dress-up/longitudinal		
255	A tive play Hongitudinal		
236	Pri theil skills acquisition/longitudinal		
)	

turnables 257 torongh 261 indicate the average frequency per CCI of the mixed grouping:

ariable la.	Description
- >	leacher fith one child, academic activities ^A I mgitudinal
. •	The with one office and election activities "Hongitudinal
<u>,</u> ,	obunteer with one of the, headerne activities/longitudinal
<u>.</u>	Collaren Independent, acade ic activítie */Longitudinal
	rities include activity categories 6 through 9 on the CCL: Numbero to a distribute, language de elepment; Social Studies, decess, actual corla.

For Variable 260, the following weighting scheme was used:

Each "one child" occurrence is weighted by 1; Each "two children" occurrence is weighted by 2; Each "small group" occurrence is weighted by 5; Each "large group" occurrence is weighted by 10.

Variable No.	Description		
261	Any adult with one child, any activity/ Longitudinal]	Averaged over
262	Average number of adults in the class-room/Longitudinal	}	Averaged over CCLs.

In Sections 4 and 5, each PRE and FMO variable name corresponds to two variables: one based on the adult-focused data and the other based on the child-focused data. The specification of one of these variables is the same for both sets of data, but the focus of observation may make the interpretation of the meaning of the variable quite different. See Appendix D, "Operational Definitions of the Five-Minute Observation Codes," for changes in the operational definitions between the two types of observations.

4. Preamble (PRE)

a. Focus of FMO

<u>Variabl</u>	e No.		
Adult*	Child*		
Focus	Focus	Descript	tion
263a	302c	Teacher focus	
264a	303c	Aide focus	Percent of FMOs with the given person as focus of observation.
265a	304c	Child focus	observation.
266a	305c	Group size: one or two children	Percent of FMOs where the
267a	306c	Group size: small group	focus person is in a group- ing of the given size.
2 68a	307 c	Group size: large group	J mg of the given size.

^{*&}quot;a" indicates that the value of the variable is based on adult-focus observations.
"c" indicates that the value of the variable is based on child-focus observations.

b. Adult Role

Variab				
Adult* Focus	Child* Focus		Description	
269.1	308c	leacher directing)	
270a	309€	leacher participating		
271a	310c	Teacher observing		Percent of FMOs where
272a	311e	Teacher not involved	}	the given adult is in
273a	312e	Aide directing		the given role at the time of observation.
27+a	313c	Aide participating		
275a	314e	Aide observing		
276a	315e	Aide not involved)	

c. Activit /General

The specifications of the following variables should be clear from the variable name.

Variab Adult*		
Focus	Focus	Description
277a	316c	Average number of frames per FMO
278a	317e	Number of FMOs with lunch or snack as beginning activity
279a	3180	Number of FMOs with group time as beginning activity
280 ;	319c	Number of FMOs with story, music or dancing as beginning activity
281a	320e	Number of FMOs with arts or crafts as beginning activity
282a	321c	Number of FMOs with guessing and table games or puzzles as beginning activity
2431	3220	Number of FMOs with numbers, math or arithmetic as beginning activity
284a	323.	Number of IMOs with reading, alphabet or language develop- ment as beginning activity

 $^{^{}k}$ "a" indicaces that the value of the variable is based on adult-focus observations. "(" indicates that the value of the variable is based on child-focus observations.

Variab		
Adult* Focus	Child* Focus	Description
285a	324.	Number of FMOs with social studies or geography beginning activity
286a	325c	Number of FMOs with science or natural world as beginning activity
287a	326e	Number of FMOs with sewing, cooking or pounding as beginning activity
288a	327e	Number of FMOs with blocks or trucks as beginning activity
289a	328c	Number of FMOs with dramatic play or dress-up as beginning activity
290a	329c	Number of FMOs with active play as beginning activity
291a	330c	Number of FMOs with practical skills acquisition as beginning activity
292a	331e	Number of FMOs with observation as beginning activity (independent children only)
. 93a	332c	Number of FMOs with social interaction as beginning activity
294a	333c	Number of FMOs with unoccupied child as beginning activity
295a	334e	Number of FMOs with discipline as beginning activity
296a	335c	Number of FMOs with transitional activities as beginning activity
297a	336c	Number of FMOs with classroom management as beginning activity
298a	337c	Number of FMOs with out of room as beginning activity
299a	338c	Nomber of FMOs with unknown beginning activity
300a	339c	Number of FMOs which begin and end in math
301a	340c	Number of FMOs which begin and end in reading

 $^{^*}$ "a" indicates that the value of the variable is based on adult-focus observations. "c" indicates that the value of the variable is based on child-focus observations.

5. Five Minute Observation (FMO)

Tach FMO variable is defined by a specified set of frames or sequence of frames said to be acceptable. The value of an FMO variable for a given COP is the number of acceptable frames, or frame sequences, that were observed. The value of an FMO variable at the classroom level is the average across all COPs with the indicated focus of observation. The variable specifications that follow list each FMO variable along with a description of the frames that are acceptable. The acceptable frames are described by lists of acceptable, not acceptable, and necessary codes for each segment of the frame. A dash under any segment indicates that any code is acceptable.

For the Repeit, Simultaneous segment the codes listed are those that are acceptable. Unless stated otherwise, a blank (i.e., no code) is also acceptable.

For the Who, To Whom and What segments, the codes that are listed are chose that are acceptable. A black (i.e., no code) is not acceptable in any of these segments.

For the Nonverbal and Motion and How segments, the codes listed either must be present or must not be present. An asterisk following a code indicates that it must be present. A "not" preceding a list of codes indicates that none of the codes listed may be present. Other codes not listed are acceptable. A blank is acceptable unless a code is listed with an asterisk.

The abbreviations for the codes used in the specifications are as follows:

(1) Repeat, Simultaneous

R = Repeat

S = Simultaneous

(2) Who

1 = Teacher

A = Aide

V = Volunteer

C = Child

) = Different child

2 = fvo childrer

S = Small group

I, = large group

 $\Delta S = Animal$

M = Machine

3) To Whom

Same as Who

G = 2.2

^{*}See Chapter II for a description of how the FMO is filled out and Appendix D .or the operational definitions of the codes that make up a frame.

(4) Chat

1 = Command or request

2 = Open-ended question

3 = Response

4 = Instruction, explanation

5 = General comments, general action

6 = lask related comments

7 = Acknowledge

8 = Praise

9 = Corrective feedback

10 = No response

11 = Waiting

12 = Observing, listening

(5) Nonverbal and Motion

NV = Nonverbal

X = Motion

(6) How

H = Happy

U = Unhappy

N = Negative

I = Touch

Q = Question

G = Guide/reason

P = Punish

0 = Object

W = Worth

D = Dramatic play/pretend

A = Academic

B = Behavior

Var.

No. Variable Description

	R,S	Uho	T hom	What	NV,X	How			
341a 472c	Child to ad	Child to adult, all verbal							
		C,D,2,8,L	T,A,V	1,2,3, 4,5,6, 7,8,9	not NV	not P nor O			
342a 473c	Adult to child, all verbal								
		r,A,V	C,D,2,S,L	1,2,3, 4,5,6, 7,8,9	not NV	not O			
343a	Child to ad	ult, a ll ver	bal except re	esponse					
4740		C,D,2,S,I	T, A, V	1,2,4, 5,6,7, 8,9	not NV	not P nor O			

Var. 50. Variable Lescription How B.S. Who to Phom What XV,X3442 Individual child verbal with adult 475c $C_{\bullet}D$ 1.A.V1,2,3, not NV not () 4,5,6, 7,8,9 OR: Γ, Λ, V C,D1,2,3, not NV Not 0 4,5,6, 7,8,9 345a Verbal interactions among children 476c 1,2,3, not NV C,D,2,S,L C,D,2,S,Lnot 0 (neither C to C nor D 4,5,6, 7,8,9 346a Child commands, requests, and direct questions, nonacademic 477c C,D,2,S,LV, A, T1 not G,P,O,A nor B C,D,2,S,L 347a Child commands, requests, and direct questions, academic 478c C,D,2,S,L V, A, Tnot G,P,O nor B C,D,2,S,LChild open-ended questions, nonacademic 348a 479c V,A,Tnot NV C, D, 2, S, Lnot G,P,O,A nor B C,D,2,S,L349a Child open-ended questions, academic 480€ A* C,D,2,S,LΥ, Λ, Υ 2 not NV not G,P,O nor B C, D, 2, S, I350a thild questions to adults 481c not G,P,O nor B C,D,2,S,I T,A,V 1,2 351a Adult commands, requests, and direct questions to groups of children, nonacademic 482 2,8,1 1 T,A,Vnot G,P,O,A nor B 352a Yoult commands, requests, and direct questions to individual children, nonacademic 483c T,A,VC,D 1 not G,P,O,A nor B

^{2 (}ode is necessary for the trame to be acceptable.

Var. No.	Variable De	scription								
	R,S	Pho	Ic !.hom	Vhat	XV,X	How				
353a 484c	Adult comma children, a	unds, request cademic	s, and direct	questio	ns to gro	ups of				
	R	1,A,V	2,8,1	1		A* not G,P,O nor B				
354a 485c	Adult comma	inds, request icademic	s, and direct	questio	ns to ind	ıvidual				
	R	Γ,Α,Υ	C,D	1		A* not G,P,O nor B				
355a	\dult open-	Adult open-ended questions to children, nonacademic								
486c	R			2	not NV	not G,P,O,A nor B				
356a	Adult open-	ended questi	ons to childr	en, acad	emic					
487c	R	T,A,V	C,D,2,S,L	2	not NV	A* not G,P,O nor B				
357a 488c	All adult questions to children									
	R	1,A,V	C,D,2,S,L	1,2		not G,P,O nor B				
358a	All child responses									
489૯		C,D,2,S,L	T,A,V,M C,D,2,S,L	3	• =	not P nor ()				
359a	Child responses, nonacademic									
490c	-th-siteser	C,D,2,S,L	T,A,V,M C D,2,S,L	3		not P,0,A nor B				
360a	Child respo	nses, academ.	ic							
491c		(,D,2,S,L	T,A,V,M C,D,2,S,I	3	-	A* not P,0 nor B				
361a	Child respo	nses to behav	vioral correc	tion or	reinforce	me n t				
492¢	R	C,D,2,S,L	T,A,V C,D,2,S,1	3		B* not P,0 nor A				
362a 493c	Individual or direct q	child respond uestion	ls to adult a	cademic o	command,	request,				
	R	1,A,V	С, D	1		A* not G,P,O,W nor B				
			FOLLOWED B	Υ:						
	not ^b nor S	C,D	Т,А,Г	3	***	A* not 0,G,P,0 nor B				

⁽cde is necessar) for the frame to be acceptable.

Var.	Variable De	scription							
		Kho	To Whom	What	NV , X	How			
363a 494c	Child group or direct q	responds to uestion	adult acader	nic comman	nd, reques	st,			
	R	1,A,V	2,S,L	1		A* not G,P,O,W nor B			
			FOLLOWED B	3Y:					
	not R nor S	2,8.L	1,A,V	3		A* not P,0 nor B			
364a	Adult respo	nses to calle	requests of	r question	ns, a cader	nic			
495c	R	T,A,V	C,D,2,S,1	3	Ma adi A lan yy	A* not P,O, nor B			
365a	Adult respo	nses to child	l requests o	r question	ns, nonaca	ademic			
496c	R	T,A,V	C,D,2,S,L	3	-	not P,O,A nor B			
366 a	Adult responds to child question with open-ended question								
497c	R	C,D,2,S,L	T,A,V FOLLOWED	1,2 BY:		not G,P,O nor B			
	not R nor S	T,A,V	C,D,2,S,L	2	not NV	not G,P,O,W nor B			
367a	Adult responds to child question with direct question								
498c	R		T,A,V FOLLOWED	1,2		not G,P,O,W nor B			
	not R nor	T, A, V			not NV	not G,P,O,W nor B			
368a	Child respo	nds to adult	open-ended	question					
499ر	R	1,A,V	C,D,2,S,L	2	not NV	not P,O,W nor B			
			FOLLOWED	вү:					
	not R nor S	C,D,2,S,L	T,A,V	3		not 0,G,P,O nor B			
369.1	Child exten	ded response	, nonacademi	c					
500.	not R nor S	(,D,2,S,L	T,A,V C,D,2,S,L	3	not NV	not P,O,A nor B			
			FOLLOWED	BY:					
	R	6,0,2,8,L	T,A,V C,D,2,S,L	4,6	not NV	not Q,G,P,O,A nor B			

 $[\]overset{\star}{\text{*}}_{\text{Code}}$ is necessary for the frame to be acceptable.

Var. No.	Variable De	scription							
		ktho	.o thor	What	W.,.\	How			
370a	Child exten	ded response	, academic						
501c	not R nor S	C,D,2,S,I	1,A,V (,D,2,S,L	3	not NV	A* not 0,G,P,0 nor B			
			FOLLOWED	BY:					
	R	C,D,2,S,L	1,A,V C,D,2,S,L	4,6	not NV	A* not 0,G,P,O nor B			
371a	Child exten	ded response	to adult op	en-ended o	question				
502(R	T,A,V	(,),2,S,L	2	not NV	not 0,G,P,O,W			
			FOLLOWED	BY:					
	not R nor S	C,D,2,S,I	T,A,V	3	not NV	not 0,G,P,O nor B			
			FOLLOWED	BY:					
	R	C,D,2,S,L	T,A,V	4,6	not NV	not 0,6,P,0 nor B			
372a	Child prese	Child presenting information to a group							
303c	R	C,D	2,8,1	4		not 0,G,P nor B			
373a	Adult Instruction, nonacademic								
504c	- .	V, L, T	C,D,2,S,L	4		not O,G,P,A nor B			
374a	Adult instr	uction, acade	emic						
505€		Т,А, V	C,D,2,S,L	4		A* not O,G,P nor B			
375a	Adult instr	ucts individu	ial child						
506τ		T,A,V	C'D	4		not O,G,P nor B			
376a	Adult instr	ucts a group							
507c		T,A,V	2,8,1	4		not 0,G,P nor B			
377a	child self-	instruction							
508c	R	either		4	77.×	not T,O,G,P,V,D			
		C or	C			nor B			
		D	D						
378a 509c		instruction,	academic		ş.				
- / ·	R	either C	C	4	NV*	A* not T,O,G,P,W,D			
		or D	D			nor B			

fode is helessary for the frame to be acceptable.

Var.	Variable De	scription								
	R,8	Tho	To Whom	What	NV,X	How				
379a	Child Self-	Child self-instruction, objects								
5100	R	either C or D	(,	4	NV*	o* not T,C,G,P,U,D nor B				
380a	Child self-instruction, academic, with objects									
511¢	R	either C or D	C D	4	NV*	0*,A* not T,O,G,P,W,D nor B				
381a	(hild instr	ucting other	children							
5120	R	C	D,2,S,L	4		not O,G,P nor B				
			OR:							
	R	D	C,2,S,L	4		not Q,G,P nor B				
382a	Child task persistence									
513c	not R nor S	С	С	4	NV*	not T,O,G,P,W,D nor B				
		Repeat in m will be give								
383a	fwo childre	n using conc	rete objects	together						
314c	R	2	2	4	NV*	or not Q,G,P nor b				
384a	Small group using concrete objects together									
515c	R	S	S	4	NV*	0* not 0,G,P nor B				
385a	Social interaction among children									
516,		C,D,2,S,L (neither C D to D)	C,D,2,S,L to C nor	5		not Q,G,P,O,A nor B				
386a	Child task-	related comme	ents to chil	dren						
517c		C,D,2,S,L	C,D,2,S,L	6	not NV	not Q,G,P,O nor B				
387a	Child gener	al comments	to adults							
518.	## *** ********************************	C,D,2,S,L	7,A,V	5	not NV	not Q,G,P,O,A nor B				
388a	Chila task-	related comme	ents to adul	t s						
519c		C,D,2,5,L	1,A,V	6	not NV	not Q,G,P,O nor B				

^{*} Code is necessary for the frame to be acceptable.

Var. No.	Variable Des	scription							
	_ P.S	130	a Chom	Muit	<u>_X, </u>	Hov			
389a	Adult gener	al comments t	to children						
520c		f,A,V	(,D,2,8,L	5	not W	not 0,G,P,0,A nor Β			
390a	Adult task-	related comme	ents to child	iren					
5210		1,A,V	C, D, 2, S, L	6	not NV	not 0,G,P,O nor B			
391a	Child acknow	wledgment							
5220		C,D,2,S,I	T,A,Y C,D,2,S,T	7		not 2,0,6,P nor 0			
392 1	Child praise	હ							
5230		C,D,2,S,L	T,A,V C,D,2,S,L	8		not U,N,O,G,P,(nor W			
393a	Child corrective feedback								
524c	•	C,D,2,S,L	T,A,V C,D,2,S,L	9		not P,O nor W			
394a	All adult acknowledgment to children								
525c	?	T,A,"	C,D,2 S,L	7		not N,O,G,P nor O			
395a	Adult acknowledgment to children, academic								
526_	R	Т,А,Ч	C,D,2 >,L	,		A* not N,O,G,P,O,W,D nor B			
396a	Adult acknow	wledgment to	children, be	havior					
527e	R	T,A,V	C,D,2,S,L	7		B* not N,Q,G,P,O,W,D nor A			
397a	Adult acknowledgment to children, other task-related								
528c	R	T,A,V	C,D,2,S,L	7		not N,O,G,P,O,W,A nor B			
398a	All adult n	taise to chil	ldran						
5290	R	I,A,V		7	errollinga e	not N,Q,G,P nor W			
399 ±	Adult reinfo	rcement with	ı token, acad	lem1c					
530c	R	Τ,Α,V	C,D,2,S,L	8	and the same of th	0*,A* not U,N,O,G,P,W,D nor B			

 $[\]frac{k}{2}$ (do is necessary for the frame to be acceptable.

...)

Var. No.	Variable De	escription				
		1 10	to them	Mat	\dot{x},\dot{x}	Hor
→ 30 i	Alult reinf	orcement wit	l token, beh	avior		
531.	ĸ	1,4,7	C,D,2,S,I	8		0*, B* not U, N, 0, G, P, W, b nor A
401a	Adult rein:	ordement wit	h token, oth	er task-re	lated	
532c	₹	1,A,V	C,D,2,S,I	8		0* not U,N,0,G,P,W,A nor B
4021	Adult prais	se, academic				
5330	R	I,A,V	C,D,2,S,I	8	- -	A* not U,N,0,G,P,W,D nor B
4034	Adult prais	e, behavior				
5340	ĸ	1,4,1	C,D,2,S,L	8		B* not U,N,O,C,P,W,D nor A
404a	Adult prais	se, other tas	k-related			
535c	R	Γ,Α,Υ	C,D,2,S,L	8	and the same	not U,N,O,G,P,W,A nor B
⊶05a		orrective fe	edback to ch	ildren		
536c	Ŗ	T,A, T	C,D,2,S,L	9		not 0 nor W
406a 537.	Adult posit	live correcti	ve feedback,	academic		
<i>)</i>) //	Я	V, A, I	C,D,2,S,L	9		(G or Q)*,A* not U,N,P,Q,U,D nor B
407a	Adult negat	ive correcti	ve feedback,	academic		
534	र	1,2,7	C,D,2,S,L	g g		(N or P)*,A* not H,O,G,O,U,D nor B
4984	idult posit	.ive correcti	ve feedback,	behavior		
5 ¹ 9a	Þ	1,4,7	(,D,2,S,L	9		(G or Q)*,B* not U,N,P,O,& nor A
+994	Adult negat	ive correcti	ve feedback,	behavior		
1.4')	R	I,A,V	C,D,2,S,I	9	magnet (Triberty)	(N or P)*,B* not H,O,G,O,U,D nor A

^{*} Gode is necessary for the trame to be acceptable.

Nar. No.	Variable De	scription							
	<u>R</u> , 9	73.0	To Whom	Mat	X, X	How			
410a	Adult posit	ive correcti	ve feedback,	other ta	sk-relate	d			
541c	R	Γ,Α,Υ	C,D,2,S,1	9		(G or 0)* not U,N,P,0,U,A nor B			
411a	Adult negative corrective feedback, other task-related								
5420	R	1,A,V	C,D,2,S,L	9		(N or P)* not H,O,G,O,W,D,A nor B			
412a 543c	Adult feedb request, or	ack for child	d response to	o adult a	cademic co	ommand,			
	R	T,A,V	C,D,2,S,L	1		A* not G,P,O nor B			
			FOLLOWED 1	BY:					
	net K her S	6,b,2,8,1	1,A,V	3		A* not 0,G,P,O nor B			
			FOLLOWED 1	BY:					
	not R nor S	T,A,V	C,D,2,S,L	7,8,9		A* not W nor B			
413a	Child not responding to adults								
544(₽	C,D,2,S,L	T,A,V	10		*******			
414a 5450	Adult not re	esponding to	child						
J4 J.	3	I,A,V	C,D,2,S,I	10					
415:	All children	n waiting							
5460	R	C or or 2	C D 2	11	 -				
		5	S						
		L	L						
4153	C. ildren att	tentive to ad	ults, nonaca	demic					
5.		C,D,2,S,L	т,А,V	12		not Q,G,P,O,w,D,A nor B			
417a	Guldren att	te nt ive to ad	lults, academ	í					
5.8.		C,D,2,S,L	T,A,V	12		A* not O,G,P,O,W,D nor B			
•									

 $[\]frac{z_{i}}{z_{i}}$ in is the essant for the frame to be acceptable.

G-31

Var.	Variable De	escription						
	4,8	:The	to them	"hat	$\Sigma V, X$	How		
4184	Adults attentive to children, nonacademic							
5491	•	I,A,V	(,D,2,5,I	12		not 0,G,P,O,W,D,A nor B		
419A	Adults atte	entive to chi	ldren, academ	nic				
530c		1,A,V	(,0,2,8,1	12	F 146 10.	A* not 0,G,P,0,W,D nor B		
421)1	Adults attentive to small group							
5)!(1,A,V	S	12		not 0,G,P,O,W,D nor B		
421a	Adults atte	entive to ind	ividual child	i				
552c		T,A,V	C,D	12		not $0,G,P,\theta,W,D$ nor B		
422a	Positive behavior among children							
553.		C,D,2,S,L	C,D,2,S,L			H* not U,N nor P		
423a	Positive behavioradults to children							
554c		I,A,V	C,D,2,S,L			H* not U,N, nor P		
4240	Tositive behavior, children to adults							
555c		(,D,2,S,L	Τ,Α,Υ			H* not U,N, nor P		
425 t	Child expressions of unhappiness							
55 <i>t</i> ,		C,D,2,S,I	~ •	• •		U [*] not H,P, nor W		
426a	Adult expre	essions of unl	nappiness					
537.		T,A,V				u ^k not H nor V		
•271	egitime be	elavier among	children					
554,		(,D,2,S,L	C,D,2,S,I	• •		not H,O,G nor W		
-284	legitive be	wavier, adult	s to childre	en				
55 9 (I,A,V	C,D,2,S,L			X* not H,O,G,O nor U		
• • •		-						

Code is necessary for the frame to be acceptable.

Var. No. Variable Description R,S Tho Io William What W., X How 429a Negative behavior, children to adults 5600 C,D,2,S,L T,A,Vnot H,O,G,O nor W 430a Total adult affect 561. (H,U or N)* Γ, Λ, V . . not () 431a fotal child affect 562€ C, 0, 2, 8, L (H, U or N)* 432a Adult punishment of children 563. T,A,V C,D,2,S,Lnot H,Q,G,O,W nor D 433a Child statements of self-worth 564c W^{*} C,D,2,S,L V.A.I 1,2,3, not NV 4,5.6, C,D,2,S,L not U.N.P nor O 7,8,9 434a Dramatic play, pretending 5650 D* T,A,V T.A.V 1,2,3, C,D,2,S,L C,D,2,S,L4,5,6, 7,8,9, 10,12 435a Total a ademic verbal interactions 366c $A^{\frac{1}{12}}$ T, ', V T,A,V C,D,2,S, C,D,2,S, not B L,M L,M 436a lotal interactions, behavior control 567. B^* T,A,V T A, V 3,7,8 C,D,2,S,L C,D,2,S,Lnot 0,W nor A 437a Children engaged in mutual activity 568c either 4,5,6 not O,G,P,W nor B ,, 2 or S S 438a Adult communication/attention focus: one child 5690 T,A,VC,D 1,2,3, not () 4,5,6, 7,8,9, 11,12

⁽ode is necessary for the frame to be acceptable.

<u>R,S</u>	Tho	To Mon	Mat	$X_{\Lambda}^{*}X^{-}$	How		
Adult comm	nunication/att	ention focus	: two chi	ldren			
R	1,A,V	2	1,2,3 4,5,6, 7,8,9 11,12		not O		
Adult communication/attention focus: small group							
R	7, A, T	\$	1,2,3, 4,5,6. 7,8,9, 11,12	-10-10-1	not ()		
Adult comm	nunication/att	ention focus	: large g	roup			
R	T,A,V	L	1,2,3, 4,5,6, 7,8,9, 11,12		not O		
All child	nonverbal						
	C,D,2,S,L		1,2,3, 4,5,6 7,8,9	NV*	not W		
		OR:					
	C,D,2,S,L		10,11 12		not 0,G,P,0,W,I nor B		
Child move	errent						
	C,D,2,S,I.	-vell-ration	1,2,3, 4,5,6, 7,8,9, 12	X*			
Adult move	ment						
-	Γ,Α,Υ		1,2,3, 4,5.6, 7,8,9, 12	X _*			
\dult lear	ing room						
	either T or A or	T A V	5	XV*,X*	not T,0,6,P,0,W D,A nor B		

fode is necessary for the frame to be acceptable.

Var.

χō.	variable Description							
	F.8	i,ħo	to khom	Majt	X,X	How		
	Child attentive to machine							
577e		C,D,2,5,1	М	1,2,3, 4,5,6, 7,8,9,		not T,G,P,O,W nor B		
			OR:					
	engengen.	М	C,D,2,S,L	1,2,3, 4,5,6 7,8,9,		not T,G,P,O,W nor B		
447a	Adult neut	ral corrective	feedback,	other tas!	k-related			
578.	R	Τ,Α,Υ	C,D,2,S,L	9		not $N, 0, G, P, O, R, \Lambda$ nor B		
448a	Adult neut	ral corrective	feedback,	behavior				
579c	ĸ	т,А,У	C,D,2,S,L	9		B* not N,0,0,0,0,0,0 nor A		
449a	Adult neut	ral corrective	feedback,	academic				
580e	R	, T,A,V	C,D,2,5,L	9		A^{\Re} not N,O,G,P,O,U nor B		

The following variables are sums of previously specified FMO variables. The numbers in picentheses refer to the variable as numbered for adult focus observations.

Var.

No. Variable Description

	R,S	Who	Io Whom	What	NV', X	How	
450a 581.	All child open-ended questions (348a + 349a)						
		C,D,2,S,L	T,A,V C,D,2,S,L	2	not NV	not G,P,O nor B	
451a 582c	Adult academic commands/requests and direct questions to children (353a \pm 354a)						
	R	Γ, Λ, ∇	6,D,2,S,L	1	~ **	$\Lambda^{\frac{1}{N}}$ not G.P.O nor B	

 $[\]overset{*}{\sim} \text{Code}$ is necessary for the frame to be acceptable.

Not R nor	,0 nor B a) ,0,W nor B ,0,W nor B						
R 1,A,V C,D,2,S,L 2 not NV not G,P, 453a Mult response to child's question with a question (366a + 367a R C,D,2,S,L 1,A,V 1,2 not G,P, FOLLOWED BY: Not R nor 1,A,V C,D,2,S,1 1,2 not NV not G,P, S 454. Child's extended response (369a + 370a + 371a) R C,D,2,S,I F,A,V 3 not NV not P,O C,D,2,S,L FOLLOWED BY: R C,D,2,S,L T,A,V 4,6 not NV not 0,G, C,D,2,S,L 455a All adult instruction (373a + 374a) 586c T.A,V C,D,2,S,L 4 not O,G, 456a Ail c'ill task-related comments (386a + 388a) C,D,2,S,L T,A,V 6 not NV not 0,G, C,D,2,S,L 457a All adult positive corrective feedback (406a + 408a + 410a) R T,A,V C,D,2,S,L 9 (C or O) not U,N	a) ,0,W nor B ,0,W nor B						
### 1,4,7	a) ,0,W nor B ,0,W nor B						
FOLLOWED BY: Not R nor	,0,W nor B						
Not R nor	,0,W nor B						
Solution of the section of the secti							
FOLLOWED BY: R C,D,2,S,L FOLLOWED BY: R C,D,2,S,L T,A,V C,D,2,S,L All adult instruction (373a + 374a) 6c T.A,V C,D,2,S,L And c'ill task-related comments (386a + 388a) C,D,2,S,L T,A,V C,D,2,S,L T,A,V C,D,2,S,L All adult positive corrective feedback (406a + 408a + 410a) R T,A,V C,D,2,S,L T,A,V C,D,2,S,L T,A,V C,D,2,S,L T,A,V C,D,2,S,L T,A,V C,D,2,S,L T,A,V C,D,2,S,L C,D,2,S,L T,A,V C,D,2,S,L	nor B						
R C,D,2,S,L FOLLOWED BY: R C,D,2,S,L T,A,V 4,6 not NV not 0,G,C,D,2,S,L Sa All adult instruction (373a + 374a) T.A,V C,D,2,S,L 4 not 0,G,C,D,2,S,L 4 All c'ill task-related comments (386a + 388a) C,D,2,S,L T,A,V 6 not NV not 0,G,C,D,2,S,L All adult positive corrective feedback (406a + 408a + 410a) R T,A,V C,D,2,S,L 9 (C or 0) not U,N	nor B						
R C,D,2,S,L T,A,V 4,6 not NV not 0,G,C,D,2,S,L a All adult instruction (373a + 374a) T.A,V C,D,2,S,L 4 not 0,G,C,D,2,S,L 4 not 0,G,C,D,2,S,L T,A,V 6 not NV not 0,G,C,D,2,S,L All adult positive corrective feedback (406a + 408a + 410a) R T,A,V C,D,2,S,L 9 (C or 0) not U,N							
C,D,2,S,L All adult instruction (373a + 374a) T.A,V C,D,2,S,L 4 not 0,G All c'ill task-related comments (386a + 388a) C,D,2,S,L T,A,V 6 not NV not 0,G C,D,2,S,I All adult positive corrective feedback (406a + 408a + 410a) R T,A,V C,D,2,S,L 9 (G or 0) not U,N							
T.A,V C.D.2,S,L 4 not 0,G All c'ill task-related comments (386a + 388a) C.D.2,S,L T.A,V 6 not NV not 0,G C.D.2,S,I All adult positive corrective feedback (406a + 408a + 410a) R T.A,V C.D.2,S,L 9 (G or 0) not U,N	,P,O nor B						
All adult positive corrective feedback (406a + 408a + 410a) R T,A,V C,D,2,S,L T,A,V C,D,2,S,L G,D,2,S,L	All adult instruction (373a + 374a)						
C,D,2,S,L T,A,V 6 not NV not 0,G C,D,2,S,i a All adult positive corrective feedback (406a + 408a + 410a) R T,A,V C,D,2,S,L 9 (G or 0) not U,N	,P nor B						
C,D,2,S,L 1,A,V 6 not NV not 0,G,C,D,2,S,i All adult positive corrective feedback (406a + 408a + 410a) R T,A,V C,D,2,S,L 9 (C or 0) not U,N	Ail c'ill task-related comments (386a + 388a)						
R T,A,V C,D,2,S,L 9 (C or 0) not U,N	,P,O nor B						
not U, N,							
)* ,P,O nor W						
R $\Gamma, A, V = C, D, 2, S, 1 = 9$ (N or P) not U, N)* ,P,O nor W						
a - VII adult praise for academic responses							
(Duplicate of Var. 402a/534c)							
a All child positive affect (422a + 424a)							
C,D,2,S,L T,A,V H* not U,N	nor P						
All child negative affect (427a + 429a)							
C,b,2,s,L T,A,V N^{*} net H,O,							

^{*}Code is necessary for the frame to be acceptable.

Var. λo. Variable Description Though thom What P, SW,X Pow 462a All positive behavior (422a + 423a + 424a)5930 V, L, Iн, V, L, Γ (,0,2,8,1),D,2,S,I not 1, N nor P 463a All negative behavior (427a + 428a + 429a)5940 I, L, 11.4 V, L, IC,D,2,S,I 0.0, 2.5, 1not H,O,G nor W 40 +.. child attentive to adults or machine (416a + 417a + 446a) 5476 C,P,2,S,L V, A, T1.2 not 0.6.P.O.W.D nor B OR: C.D.2,S.L 1,2,3, not T,G,P,O,V not NV 4,5,6, nor B 7,8,9, 12 OR: 1 C,D,:,S,L 1,2,3, not NV not T,G,P,O,W 4,5,6, nor B 7,8,9, 12 465a Adult feedback to children for behavior (396a + 403a + 408a + 409a) 3960 R Γ, A, V C,D,2,S,L 7,8,9 **→**56.1 Child self-esteem (392a + 393a + 433a + 454a)397€ a) C,D,2,S,L V,A,T 8,9 not P,O nor W C,D,2,S,L OR: b) C,D,2,S,L V, A, T1,2,3 not NV C,D,2,S,L 4.5,6, not U.N.P nor O 7,8,9 OR: () Ų C,D,2,S,IV, A, V3 not NV not P,O nor B (,D,2,S,L FO OWED BY: Þ (,D,2,S,I)V,A,T 4,6 not NV not 0,C,P,O nor B C,D,2,S,t

code is necessary for the frame to be acceptable.

.ar. No. Variable Description mat max 4671 (111d coperation (381a + 386a + 437a) 598. 1) 0.2.8.1 not 0,6,P nor B OR: 0,2,3,1 not O,G,P nor B OR: b) 0,0,2,8,1 not W (,b,2,8,1)not 0,6,P,0 ner B ()⊰: either 4,5,6 not 0,G,P,W nor B or 4631 child self instruction, nonacademic (377a - 378a) 599. 7 NA WA either not 1.0.G.P.V.D.A (nor B or D All adult reinforcement ith tokens (399a + 400a + 401a) ,69a n()() - Γ, Λ, V C.D.2.S.I 8 not 3, N, O, C, P nor " 470a 'll adult hentril corrective reedback (447a + 448a + 449a) bUlc 1.4.V 0.0.2.8.L 9 not 1,0,6,P,0 .. - . nor V 471a Adults attentive to large group (418a + 419a - 420a - 421a) 602. Γ.Λ.V 1.2** 12 not 0,6,7,0,1,0

nor B

Code is necessary for the frame to be acceptable.

[&]quot;Ito children" is included here because the variable was added after the corputer run was completel; however, it is felt that the frequency of adults attentive to two children will be minimal and will not at attentive to the intended variable.

Appendix H

ANALYSIS SPECIFICATIONS FOR THE TEACHER AND TEACHING AIDE QUESTIONNAIRES

Appendix H

WAIYSIS SPECIFICATIONS FOR THE FEACHER AND ILACHING AIDE QUESTIONNAIRES

1. Teacher Questionnaire

The computations were performed for each site and for each sponsor. The unit of analysis was the teacher. Non-Follow Through teachers were omitted from the computations of site and sponsor statistics. The means and standard deviations for Non-follow Through teachers were computed separately.

Also recorded were the number of teachers included in each computation (i.e., for Follow Through, the number of Follow Through teachers at each site and over sites within sponsor; for Non-Follow Through the total number of Non-Follow Through teachers) and the number of teachers for whom the Questionnaire is not available.

a. Teacher Satisfaction

Reverse order of value for questions 11, 12, 13, 34, 71. Add the values of questions 11, 12, 13, 34, 71. Report the mean and standard deviation.

Ques

stions	
(11)	If you had your choice, would vou teach in Follow Through next year? (ChECK ONE)
	1) Definitely yes 2) Probably yes 3) Undecided 4) Probably no 5) Definitely no 6) I am not familiar with Follow Through () Skip to Question 14
(12)	Recognizing that the parent must make the final decision, if a parent asked your opinion would vou advise her to enroll her child in a Pollow Through class?
	1) Definitely ves () 2) Probably ves () 3) Indecided () 4) Probably no () 5) Definitely no ()
(13)	If a friend asked your opinion, would you advise her to teach in a Follow Through class?
	1) Definitely ves () 2) Probably ves () 3) Undecided () 4) Probably no () 5) Definitely no ()
	n~)

(34)	Ininking of tall growth the				•			over-
	H Very sat.	stied	())				
	2) Satisfied	1	())				
	3) Mixed fee	elings	())				
	→) Dissatisi	ned	()	1				

(71) It won had your choice of a way to teach, would you:

i)	Continue to use the sponsor's approach you are using to the same extent you do now	()
2)	Alter your ceaching some, but continue to use the approach	()
3)	Use some of this approach in your teaching but change most of it	()

→) Not use this approach at all ()

b. Frequency and Kind of Laining

5) Very dissatisfied

Do not sum. Report separately for each item a-h (omit i) on question 24:

- (1) A tally of the "never" (value of 1) responses
- (2) Mean and standard deviation for those responses other than never, rescaled as follows:

Response	Rescale to
2	2
3	5
4	9
5	22
6	36

Question

(24) Below are several types of pre- or in-service training you may have received from our teaching assignment this school year. Indicate below how often this year you received each of the following types of training. Ise this scale:

1 = Never

2 = About once or twice a year

3 = About every other month

4 - About once a month

5 = About 2 to 3 times a month

6 = About once a week or dore

	d.	Materials ailed to your for our own use.										
	b.	Visits or demonstrations in your own classroom.										
	•	ensiting and observing work of other teachers in their classrooms.										
	1.	Lorkshops during vacation periods.										
	٠.	workshops on Saturdays or after schol.										
	1.	Consultations with specialists or trainers, not in your own classroom.										
	ኤ •	Videotipes of rodel reaching episodes.										
	h.	Videotapes of yourself in teaching episodes.										
	1.	Other (SPECIFY)										
cue stian	Ite	ning Emphasis a through pDo not sum. Report the tallies for each parately.	item in									
	Belo trai	ow are several areas in whill you may have received pre- ining for your teaching assignment this school year. Inc	licate how									
	much emphasis was placed on each of the topics listed. Use the following scale:											
		1 = A great deal 2 = Some 3 = None										
	d.	He'ping the child feel important as a person.										
	ь.	Developing entousiasm for learning.										
		Developing basic skills such as reading, writing and math.										
	٠٠.	Developing problem solving and critical thinking.										
	٠.	Developing the child's ability to work and play cooperatively with other children.										
	f.	Helping the child to make choices and become an independent learner.										
	٤.	Involving parents in their child's learning activities.										
	٠.	Involving parents in the operations of the school.										
	i .	Dragnosing individual learning needs.										
	i.	to their needs.										
	k .	comperating effectively with other adult. In the lassroom,										
	1.	working with shall groups of children.										
	۳.	Arranging the classroom environment for instruction										

ι1.	Ma staining discipline and control in the classroom.	
·· •	Using rewards to influence pupil behavior.	
p.	Developing and or selecting materials to suit curriculum objectives.	

d. Classroom Description--Hexible/Structured

Question 32 (omit items e and 1). Reverse order of value for question 32, items a, d, f, i, j, k, m. (Do not reverse b, c, g, or h.) Report the mean and standard deviation of the sum of the responses.

(32) Classrooms differ in many ways depending upon the philosophy and goals of the teaching staff, needs of children, etc. Each statement in Column A is matched with a contrasting statement in Column B. For each pair, place an X inside the parenthesis which comes closest to describing your own classroom.

	Column A	ais	nost wavs we A			Somewhat like A and somewhat like B	i 🕳		- alı	moet Ways ke B	Column B
d.	Children work independently	(1)	(2)	(3)		4)	(5)	Children work under adult supervision
۲.	leacher im- parts infor- mation and provides deminstra- tions	(1,	(2)	(3)		4)		5)	Children gather in- formation on their own
	Adults ini- trate inter- actions with children	(1)	(2)	(3)	(4)	(5)	Children initiate interactions with adults
d.	Amphasis on emotional needs	(1)	(2)	(3)	(4)	(5)	Emphasis on subject
е.	Undestred behavior is cor- rected	(1)	(2)	(3)	(4)	(5)	Undesired behavior is ignored
ſ.	various activities tire place at tir sa e tire	,	1)	(2)	(3)		4)	(5)	All the class is engaged in the same activity
ķ.	tessen olim to toll wed lose.	1	1,	(.')	(3)	(4)	(5)	Lessor plan is flex- ible
· •	Work and law are listing respect	í	1)	(2,	(3)	(4)	(5)	Work and play are not distinguished

	C. 11 7 A	ilw	1~ ~/&! £ ;	- 		507 e	3 and	-			ost avs e B	Column B
ì ,	choose their while and raterials	(1)		-')	(∢)	(~)	(5)	leaching starf de- termines activities and materials
i.	Individe needs iminant	(1)	(2)	(₹)	(4)	(5)	Group needs dori- nant
۸,	Children interact treely with earn other	(1)	(7)	(3)	(,	(5)	Children do not in- teract freely with each other
1.	Prinse and approval given for specific accomplishments	· ·	1 1		2)	(5)	(•)	(5)	Praise and approval given without re- gard to specific accomplishments
۴.	Children clange places freely	(1)	(<u>-'</u>)	(3)	(4)	(5)	Children bave as- Signed seats

c. Ithnicity of Jeacher, Question 58

Talls the number of each ethnic background. Use the total number for a site on item .-8.

Olestijn

(58) Are:	merican Indian		()
	Segro black		()
	Oriental		()
	Shanish surname:	Mexican American	()
		Puerto Rican	()
		Other Spanish Speaking	()
	(aucisian/white		(}
	Other (SPICIFY)		()

1. leading Stiff's Enowledge of Child's Home Linguage

For question 20, report the mean and standard deviation. For question 21, report the tallies. Combine the tallies for response values 1 and 2.

O

Questions	
(20)	Do you have any children in this class from homes in which another language is used more often than raglish?
	1) Yes () How many 1 1 2 2) No ()—Skip to Question 22 3) Don't know ()—Skip to Question 22
(21)	who of the teaching staff speaks the home language of these children?
	 I do, and so does at least one other staff member () in this class.
	2) I do, but no other staff member in this class does. ()
	3) I do not, but at least one other staff member in this class does.
) No member of the teaching staff speaks this language. ()
g.	Report the tallies for question 63.
Quest ion	
(53)	What is the nighest level of education you will have completed by the end of this school year (June, 1973)? (CHECK ONE ONLY)
	1) A high school diploma () 2) A 2-year (Associates) degree () 3) Bachelor's degree () 4) Work toward a Masters degree () 5) Master's degree or above ()
h.	Elember of Years Teaching in Follow Through
	Report the tallies for question 69 using categories 0; 1; 2+.
Question	
(69)	By June 1973, how many school years will you have taught in the Follow Ihrough approach? (INCLUDE YEARS IN OTHER SCHOOLS.) If less than one school year, enter [0][0]
	Number of years []

i. Iffect of Follow Through on leaching

Report the tallies for question 70.

Question

(,))	How	u, h	11.15	Follow	Through	changed	your	approach	ŧο	teaching'	(CHECK
	10 Sept 1										

- 1) Very aun ()
- 2) March ()
- 3) Some ()
- 4) Not at all (

leaning Aide Questi mnaire

The computations were performed for each site and for each sponsor. The unit of analysis was the teaching aide. Non-Follow Through teaching aides were omitted from the computations of site and sponsor statistics. The means and standard deviations for Non-Follow Through teaching aides were computed separately.

Also needed are the number of teaching aides included in each computation (i.e., for follow through, the number of follow through teaching aides at each site and over sites within sponsor; for Non-Follow through, the total number of Non-Follow through teaching aides) and the number of teaching aides for whom the Questionnaire is not available.

Aide Satisfaction

Reverse the order of value for questions II, 12, 13, 38. Add the values of cuestions II, 12, 13. 38. Report the mean and standard deviation.

Questions

(11)	Ιt	VOU	had	vour	choice,	would	Villa	work	in	Follow	fhrough	next	vear*
	(()	H (K	ONE))							_		

1)	Definitely ves	()
2)	Probably ves	()
3)	[†] ndecided	()
4)	Probably no	()
5)	Definitely no	()
6)	I im not fimiliar with Follow Through	()Skip to Question 14

(12) Recognizing that the parent must make the final decision, if a parent asked your opinion would you advise her to enroll her child in a Follow Through class?

1)	Definitely ves	()
2)	Probably ves	()
3)	Unde ided	()
,)	Probably no	()
))	Definitely no	()

	(13)	If a friend asked your opinion, would you advise her to work in follow Through? (CHICK $0\mathrm{M}$)
		1) Definitely ve- () 2) Probably ves () 3) Undecided () 4) Probably no () 5) Definitely no ()
	(38)	In general, how satisfied are you with the way your time is being used as a teaching assistant' (CHECK ONL)
		1) Very satisfied () 2) Satisfied () 3) Have mixed feelings () 4) Dissatisfied () 5) Very dissatisfied ()
	ь.	Frequency and Kind of Training
tion	16:	Do not sum. Report separately for each item a-h (omit 1) on ques-
		(1) A tally of the "never" (value of 1) responses
		(2) Mean and standard deviation for those responses other than never rescaled as follows:
		Response Rescale to
		2 2 3 5
		4 9
		5 22
		6 36
Quest	Lion	
	(16)	Below are several types of pre- or in-service training you may have received for your proent assignment. Indicate below how often this year you received each of the following types of training. Use this scale:
		<pre>1 = Never 2 = About once or twice a vear 3 = About every other month 4 = About once a month 5 = About 2 to 3 times a month 6 = About once a week or more</pre>
		a. Materials mailed to you for your own use.
		p. Visits or demonstrations in your own classroom.
		c. Visiting and observing work of other teachers in their classrooms.

	d.	workstops during vacation periods.	
	e, •	Workshops on Saturdays or after school.	
	f.	Consultations with specialists or trainers, not in your own classroom.	
	g.	Videotapes of model teaching episodes.	
	h.	Videotapes of vourself in teaching episodes.	
	i.	Othe. (SPECIFY)	
٠.	lra	naing Emphasis	
question	Iter 17 s	ms a through pDo not sum. Report the tallies for each ite eparately.	em in
Question			
(17)	tra	ow are several areas in which you may have received pre- or ining for your teaching assignment this school year. Indica h emphasis was placed on each of the topics listed. Use the le:	ate how
		<pre>1 = A great deal 2 = Some 3 = None</pre>	
	٦.	Helping the child feel important as a person.	
	Ъ.	Developing enthusiasm for learning.	
	(,	Developing basic skills such as reading, writing, and math.	
	₫.	Developing problem solving and critical thinking.	
	е,	Developing the child's ability to work and play cooperatively with other children.	
	t.	Helping the child to make choices and become an independent learner.	
	۶.	Involving parents in their child's learning activities.	
	h.	Involving parents in the operation of the school.	
	1.	Diagnosing individual learning needs.	
	j.	Guiding children in learning activities appropriate to their needs.	
	ř.	cooperating effectively with other adults in the classroom.	
	l.	Working with small groups of children.	
	m.	Arranging the classroom environment for instruction (placement of furniture, materials, equipment, etc.).	
	n.	Maintaining discipline and control in the classroom.	

- o. Using rewards to influence pupil behavior.
- p. Developing and/or selecting materials to suit curriculum objectives.

d. Classroom Description--Flexible/Structured

Omit items e and 1. Reverse order of value for question 20, items a, d, f, i, j, k, m. (Do not reverse b, c, g, or h.) Report the mean and standard deviation of the sum of the responses.

Question

(20) Classrooms differ in many ways depending upon the philosophy and goals of the teaching staff, needs of children, etc. Each statement in Column A is matched with a contrasting statement in Column B. For each pair, place an X inside the parentheses which comes closest to describing your own classroom.

	Column A	1	ost ays e A	←		Somewhat like A and somewhat like B				ost ays e B	Column B
d.	Children work independently	(1)	(2)	(3)	(4)	(5)	Children work under adult supervision
ь.	leacher im- parts infor- mation and provides demonstra- tions	(1)	(2)	(3)	(4)	(5)	Children gather in- formation on their own
с.	Adults ini- trate inter- actions with children	(1)	(2)	(3)	(4)	(5)	Children initiate interactions with adults
d.	Emphasis on emotional needs	(1)	(2)	(3)	(4)	(5)	Emphasis on subject matter
€.	Undesired benavior is cor- rected	(1)	(2)	(3)	(4)	(5)	Undesired behavior is ignored
f.	Various activities take place at the same time	(1)		2)	(3)		4)	(5)	All the class is engaged in the same activity
ಜ .	Lesson plan is followed closely	(1)	(')	(})	(4)	(5)	Lesson plan is thex- ible

	Column A	alw	ost avs e A	-43	-	like some	what A and what e B	₩		Alm alw lik	avs	Column B
η.	Work and play are distinguished	(1)	(2)	(3)	(4)	(5)	Work and play are not distinguished
1.	Children choose their own activi- ties and materials	(1)	(2)	(3)	(4)	(5)	Teaching staft de- termines activities and materials
j.	Individual needs dominant	(1)	(2)	(3)	(4)	(5)	Group needs domi- nant
k.	Children interact freely with each other	(1)	(2)	(3)	(4)	(5)	Children do not in- teract freely with each other
1.	Praise and ap oval given for specific accomplish- ments	(1)	(2)	(3)	(4)	(5)	Praise and approval given without re- gard to specific accomplishments
m.	Children change places freely	(1)	(2)	(3)	(4)	(5)	Children have as- signed seats

e. Ethnicity, Question 28

 $\,$ Tally the number of each ethnic background. Use the total number for a site on item 1-8.

Question

(28) Are you:	American Indian		()
	Negro/black		()
	Oriental		()
	Spanish surname:	Mexican Arerican	()
		Puerto Rican	()
		Other Spanish speaking	()
	Caucasian/white		()
	Other (SPECIFY)		(١

İ	. k	nowledge of Child's Home Language, Questions 14, 15
tion l		or duestion 1., report the mean and standard deviation. For questiont the tillies. Combine the tallies for response values 1 and 2.
Quest i	onz	
(o you have any children in this class from homes in which another inguage is used more often than English?
	7) Yes () How many? \[\begin{array}{c} \) So () Skip to Question 16 \\ \) Don't know () Skip to Question 16
(15) W	bo of the teaching staff speaks the home language of these children?
	1) I do, and so does at least one other staff member () in this class.
) I do, but no other staff member in this class does. ()
	3) I do not, but at least one other staff member in () this class does.
	-4) No member of the teaching staff speaks this language. ()
g	\	ide's Classroom ActivityQuestion 21
five c		eport a tally for each item separately. Categorize responses into s: 1; 2; 3; 4, 5.
Questi	on	
(or each of the items in the following list, please indicate how often on yourself take part in this activity. Use the following scale:
		<pre>1 = Verv often 2 = Sometimes 3 = Rarely or newer because it is carried out by others 4 = Rarely o</pre>
	ı.	. Lork with small groups in reading, writing, math, etc.
	b	
	(. Work with the whole class in reading, writing, math, etc.
	d	
	وا	
	t	. Work with individual children in art, music, drama, etc.
	£	. Help children get along with one another.
	1:	. Help children feel more sure of themselves.

1.	Prepare materials for bulletin boards, seat work, etc.	
1.	Keep attendance records, collect milk money, call the roll, set out materials, etc.	
k.	Supervise children during lunch, on the playground, on field trips, etc.	
1.	Serve or help serve food or snacks, clean up after lunch, etc.	
m.	Help develop and plan learning activities.	
1.	Keep order in class.	
ο.	Visit or meet with parents at school or in their homes.	

 $\label{eq:Appendix I} \mbox{Specification for processing test Data}$

Appendix I

SPECIFICATION FOR PROCESSING TEST DATA

As the first step in creating the classroom level file of test scores, a record of test scores for each child in each observer classroom was produced. What follows is a list of the test scores obtained for each grade level/entering grade and details of how the test scores were computed.

 Spring 1973 - Metropolitan Achievement Test (MAT) - Primary I -Form F. For entering and non-entering first grade.

Subtest	Form No.	Card Column	Maximum Score
Word Analysis	865	33-72	40
Total Reading	864 866	33-67 33-74	$\binom{35}{42}$ 77
Math	867 868	33-67 33-59	$\frac{35}{27}$ 62

Scoring procedure: score 1 point for each item coded "1." If a child took the test and obtains a score of zero (none correct), he is given a score of "."

Criteria for presence or absence of test:

- Word analysis if cc. 33-72 of form 865 are all zero, the test is absent.
- 2) Total reading this test is a combination of subtest word knowledge Form 864 and Reading Form 866. Since these 2 tests were administered on 3 different days, the child must have been present on all 3 days to have a total reading score. The tests were administered as follows:

Test	Form No.	Card Column	No. of Items	Sitting Day
Word Knowledge	864	33-67	35	1
Reading	866	$\begin{cases} 33-45 \\ 46-74 \end{cases}$	13 29	2 3

If a child has any set of these items all zero, the child is considered absent for total reading.

- Form 867 cc. 33-67 was administered on day 4 and form 868 cc. 33-59 was administered on day >, if either of these forms are all zero for the columns specified, the child was absent for the Math test.
- 11. Spring 1973 Metropolitan Achievement lest (MAI) Elementary Form F. For third grade.

Subtest	Form No.	Card Column	Maximum Score
lotal Reading	876 877 878	33-54 33-60 33-77	
Language	879 880	33-61 33-53	$\frac{29}{21}$ } 50
Math Computation	882	33-72	40
Math Concepts	883	33-72	40
Math Problem Solving	884	33-67	35
lotal Math	882-884		115

Scoring procedure: Score I point for each item coded "1." If a child took a test and obtains a score of zero (none correct) he is given a score of "0."

Criteria for presence or absence of a test: A child must have <u>all</u> forms present for a particular test to <u>have</u> taken the test. A form is considered absent if all items are <u>zero</u>. The subsets which constitute Total Reading were administered on the first day; therefore, if the child was absent on day 1, he will not have a Total Reading score. The subtests for Total Math were auministered on days 4 and 5; therefore, if the child was absent on either one or both of these days, no Total Math score was computed.

III. Spring 1973 - Third Grade.

A. Intellectural Achievement Responsibility Scale (1AR) - Form 887 - cc. 33-66, Score 1 point for each item coded "1." There were 34 items on the IAR. The items were scored by success and failure items (17 items for each). Items #1, 2, 5, 6, 9, 12, 13, 16, 17, 20, 21, 24, 25, 26, 29, 31, 32 were used for success, and the remainder of the items were used for failure. Test is not taken if form is absent. The success raw score represents the number of responses attributing success to internal force; conversely, the raw score for failure represents the number of responses attributing failure to internal force.

B. Coopersmith Self-Isteem Inventory (Coopersmith)

Form No.	Card Column	No. or Items
888 889	}}-69 }}-5}	$\frac{37}{21}$ 38

Score point for each item coded "1." Eight items were used as a validity test; therefore, the score range was 0-50. The test was not taken if either or both forms are absent. The total number of responses indicating self-esteem constitutes the raw score.

- C. Raven's Coloured Progressive Matrices (Ravens) Form 890 cc. 33-59, score 1 point for each item coded "1." Score range 0-27. Test is not taken if form is absent.
- D. <u>Wide Range Achievement Test (WRAT)</u> Form 951 Booklet 10A Fall 1969 For kindergarten.

Subtest	Item Description	Maximum Score*
Reading	2 letters in a name	2
	Naming 13 letters	13
	Recognizing 19 letters	10
	Word reading aloud	10
	Reading subscore	35
Spelling	Name spelling	2
	Copying marks (1-9)	9
	Copying marks (10-18)	9
	Spelling from dictation	_5
	Spelling subscore	25
Math	Counting 15 dots aloud	8**
	Oral numoers	5
	Showing fingers	2
	Which is more	2
	Solving problems	3
	Written computation	4
	Math subscore	24
	Total WRAT score	84

In most instances, the maximum score represents the sum of the correct entries in the fields specified.

1-5

^{**} The formula for scoring this item is $\frac{N}{2} + 1$. Since an integer dividing procedure is used, the quotient is rounded off to the lowest whole number. Therefore, even if a child counts 15 dots, the maximum score is still 8.

i. <u>Wide Range Achievement Test (WRAT)</u> - Booklet K-4 - Fall 1970 For kindergarten.

Subtest	Form No.	Item Description	Maximum Score ^A
Reading	55%	Recognizing 2 letters in a name Matching 10 letters Naming 13 letters	2** 10 13
	353	Word reading aloud	10
		Reading subscore	35
Spelling	»54	Copving marks Name spelling Spelling from dictation	18 2** 5
		Spelling subscore	25
Math	555	Counting 15 dots aloud Oral numbers Showing fingers Which is more Solving problems Written computation	8*** 5 2 2 3 4
	٥	Math subscore	24
	·	Total WRAT score	84

F. <u>Wide Range Achievement Test (WRAT)</u> - Booklet K-4 - Fall 1971 - For kindergarten.

Subtest	Form	Item Description	Maximum Score*
Reading		ecognizing 2 latters in a name ecognizing 10 letters and namin; 13 letters ord reading aloud	2** 23 14
		Reading subscore	39
Spelling		opying marks ame spelling pelling words from dictation	18 2** 8
		Spelling subscore	28
Math	758 { C	ounting 15 dots aloud eading numbers, oral and written arithmetic	8*** 16
		Math subscore	24
		Total WRAT score	91

 $^{^{\}star}$ In most instances, the maximum score represents the sum of the correct entries in the fields specified.

^{**}In either letter recognizing or name spelling the number of letters recognized correctly is coded as follows: 1 = One, 2 = At least 2.

^{***} The formula for scoring this item is $\frac{N}{2}+1$. Since an integer dividing procedure is used, the quotient is rounded off to the lowest whole number. Therefore, even if a child counts 15 dots, the maximum score is still 8.

Appendix J

CLASSROOM ROSTER---DEMOGRAPHIC INFORMATION FORM

Appendix 4

CLASSROOM ROSTER--DEMOGRAPHIC INFORMATION FORM

For each classroom that was observed on at least one day, the following information was recorded from the Classroom Roster Form, Spring 1973.

Variables

- 1. Number of children in the classroom listed on the roster.
- Number of children who left the class before 2/1/73.
- Sunber of children who entered other than at the beginning of the school year.
- 4. Number of children who left the class during the school year.
- 5. Number of no response on age in year.
- 6. Of non-blank entries, average age in months as of January 1, 1973.
- 7. Standard deviation of age in months.
- 8. Number of no response on sex.
- 9. Number of males.
- 10. Number of no response or don't know for ethnicity.
- 11. Number of blacks.
- 12. Number of Caucasian or White.
- 13. Number of none (9), don't knew (0) or no response (blank) on first language.
- 14. Number of children with other than English as a first language.
- 15. Mabber of not available (77), don't know (88), or no response (99) on both months Hea! Start and months equivalent.
- 16. Number of children with Head Start experience or equivalent (01-48 on either entry).
- 17. None (00).
- 18. 1 to 10.
- 10 11 to 20
- 20. 21 to 30.
- 21. Above 30.
- 32. Other (77, 85, 99).
- Mean number of months Fi emperience (exclude those students in the "other" category).
- 2.. Sucher of children with no response on number of days absence
- 25. Mean number of days absent for those who had a response.

J-3

Appendix K
UNIFORMITY OF THE CLASSROOM OBSERVATION DATA

N'MBER OF COP'S COMPLETED PER DAY-BY SPONSOR'S SITES (Adjusted to Include Oply FMO's with 50 or More Frames)

Table K−I

	_		Number of Davs
Sponsor and Site	, <u>X</u> ,	S.D.	Observed
For all sponsors	18.88	2.17	1,101
Far West Lab Berkeley, Calif.' Duluth, Minn. Lebanon, N.H. Salt Lake City, Utah Tacoma, Wash.	19.43 19.00 18.83 19.90 19.14	1.14 1.60 1.56 .40 1.81	30 30 30 30 29
University of Arizona Des Moines, Iowa Fort Worth, Fexas LaFayette, Ga. Iakewood, N.J. Newark, N.J. Lincoln, Nebraska	14.93 19.73 19.33 19.29 19.92	5 79 .69 1.18 1.54 .28	30 30 27 28 25 30
Bank Street Brattleboro, vermont Fall River, Mass. New York, P.S. 243K Philadelphia II, Pa. Tuskegee, Ala.	17.88 18.37 19.17 19.04 19.93	1.51 1.25 2.09 1.20	24 30 30 28 29
University of Oregon E. St. Louis, Ill. New York, P.S. 137K Racine, Wisc. Tupelo, Miss. Providence, R.I.	17.07 19.50 19.73 18.83 17.96	4.67 .78 .52 2.05 2.06	29 24 30 30 28
University of Kansas New York, P.S. 77X Philadelphia VI, Pa. Portageville, Mo. Kansas City, Mo. Louisville, Ky.	16.86 19.50 19.81 19.63 19.40	2.18 .82 .48 .93	14* 30 27 30 30
High/Scope Educational Research Foundation Greenwood, Miss. Ft. Walton Beach, Fla. New York, P.S. 92M Greeley, Colo. Denver, Colo. Education Development Center	17.30 19.53 15.70 19.92 19.40	3.05 .90 1.07 .28 1.+0	30 30 27 24 30
Burlington, Vermont Philadelphia IV, Pa. Paterson, N.J. Rosebud, Texas Smithfield, N.C.	18.13 19.67 19.30 17.50 19.71	1.87 .55 1.32 2.34 .75	30 30 30 24 24

^{*} Restrictions placed on observing children reduced the total number of observation days by ten. $\nu_{=2}$

Table K-2

AVERACE NUMBER OF FRAMES COMPLETED-BY SPONSOR'S SITES (Includes Only Those COP's with 50 or More Frames)

Sponsor and Site	, X	S.D.	Number of Davs Observed
For all sponsors	67.27	5.97	1,011
rar West Lab			
Berkeley, Calif.	69.36	4.22	30
Duluth, Minn.	71.72	3.41	30
Lebanon, N.H.	65.16	7.44	30
Salt Take City, Utah	69.42	3.77	30
lacoma, Wash.	66.90	7.70	29
University of Arizona			
Des Moines, Iowa	59.68	10.14	30
fort Worth, Texas	73.34	1.84	30
LaFavette, Ga.	74.10	1.57	27
Lakewood, V.J.	65.08	4.88 2.06	28 25
Newark, N.J.	68.98 72.33	2.00	30
Lincoln, Nebraska	12.33	2.57	,0
Bank Street			27
Brattleboro, Vermont	60.57	4.06	24
Fall River, Mass.	67.89	4.55	30
New York, P.S. 243K	67.86	2.47 5.61	30 28
Philadelphia II, Pa.	66.68 70.82	4.84	26 29
Tuskegee, Ala.	70.62	4.04	• /
University of Oregon		7 70	20
E. St. Louis, Ill.	64.66	4.48	29 24
New York, P.S. 137K	66.14	2.73 2.79	30
Racine, Wisc.	63.36 71.49	2.04	30
Tupelo, Miss. Providence, R.I.	64.89	5.22	28
	04.05	3,22	
University of Kansas	62.59	3.33	14
New York, P.S. 77X	69.77	6.27	30
Philadelphia VI, Pa. Portageville, Mo.	67.83	4.62	27
Kansas City, Mo.	67.36	3.38	30
Louisville, Ky.	61.64	7.42	30
High/Scope Educational Re- search Foundation			
Greenwood, Miss.	65.31	4.38	30
Ft. Walton Beach, Fla.	67.09	3.81	30
New York, P.S. 92M	74.09	1.06	27
Greeley, Colo.	68.57	2.97	24
Denver, Colo.	64.81	3.70	30
Education Development Center			
Burlington, Vermont	59.93	2.44	30
Philadelphia IV, Pa.	67.83	5.87	30
Paterson, N.J.	71.98	2.97	30
Rosebud, Texas	61.06	3.63	24
Smithfield, N.C.	67.78	5.16	24

Appendix L

INDIVIDUAL OBSERVER RELIABILITY RATINGS--BY SPONSOR

 $\label{eq:constraint} \textbf{Table L-1}$ $\textbf{ACCURACY RATES}^{\textbf{A}} \text{ FOR THE WHAT AND HOW CODES BY FAR WEST OBSERVERS}$

Selection Sele								odenc	riterio	n Insta	nces					
Service Serv		$1e^{-}$	-,							12					- 8	11
Control Section Sect	Berkeley			•	•								****			
Second S		44/	46	62.1	821	1.07	93/	9.17	867	. 9/	1.07	.57	50.1	0.07	637	1.0/
Dulath Signature Signatur		.80														
Frade	orade 3															
Grade 3 6 7	Duluth															
February Figure	Grade)															
Crade	Grade 3										-					
Take 1	Lebanch															
Take 1	Grade 1															
Crade	rade i														.67/	1 0/
Trade 3	Salt Take (its															
Tabel 1 10 10 67/10 10 88/ 88/ 10/ 10/ 67/ 10/ 67/ 88/ 88/ 50/ 0.0/ 10/ 10/ 50/ 50/ 10/ 10/ 50/ 50/ 10/ 50/ 50/ 50/ 50/ 50/ 50/ 50/ 50/ 50/ 5	Grade 1															
Oracle	Stade 3								1.0	.79/	1.0/	.38/	1 0/	13/	.67/	1.07
Trade	Tal oma															
Crade 15	orade l															
Site and prade Level	trade 1													.25/	1 0/	
Serkelev		-			ew.c	How	Code	riteri	on Inst.	īvcea						uracy
rade 1 1 0 1 0 5 7 1 9 1 0 1 0 6 7 1 9 7 1 0 7 1 1 0 7																
R5		N.	X			DP _	Ù.	W	(,	-9.				Н		
Duluth orede 1	Serkelev			<u>, A</u>	<u> </u>	- *		7			ŗ	N.	.!	Н		
orade 1	Serkelev rade l	1 07	1 0 89	5 ⁷ /90	1 9 ' 70	1 07	1 07	.67/	0 0/	1.0/	1 0/ .50	14/ .50	1 07 .50	.50/	WHAT	HOW 74/
1 0 1 0 89 0 0 0 0 0 0 1.0 0 0	Serkelev rade l	1 0/ 85 ,99/	1 U 89 837	5 ⁷ / 90 82/	1 0' 70 887	1 0' ,67 1 0/	1 0/ .6? 1.0/	.67/ 1.0	0 0/	1.0/ .50 1.0/	1 0/ .50 1.0/	14/ .56 .50/	1 07 .50 50/	.50/ 1 0 1.0/	.84	74/ 78 .83/
Frade 1 1.0 1.0 82 86 1.0 1.0 43 1.0	Serwelev rade l (rade 3	1 0/ 85 ,99/	1 U 89 837	5 ⁷ / 90 82/	1 0' 70 887	1 0' ,67 1 0/	1 0/ .6? 1.0/	.67/ 1.0	0 0/	1.0/ .50 1.0/	1 0/ .50 1.0/	14/ .56 .50/	1 07 .50 50/	.50/ 1 0 1.0/	.84	74/ 78 .83/
orade 1 1 0 10 .89 / .67 .89 / 0 0 / 0 0 0 .88 / .50 0 0 1.0 .33 1.0 1.0 .50 .50 .64 Grade 3 .9h 1.0 / 93 83 67 69 71 88 10 0.0 1.0 .50 .50 .50 .50 .67 .75 50 .76 Salt Lake City Grade 3 .84 / .80 / 97 .46 10 .43 10 1.0 .50 .43 10 1.0 .50 .67 10 33 00 .74 .71 / .81 .74 .71 .71 .72 .72 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73	Serkelev rade 1 crade 3	1 07 85 .997 96	1 U 89 83/ 83	67/ 90 82/ 78	1 0' 70 88' 54	1 0' ,67 1 0' 78	1 0/ .67 1.0/ .25	.67/ 1.0 .67/ 1.0	0 0' 0 0 25' 1.0	1.0/ .50 1.0/ 50	1 0/ .50 1.0/ 67	14/ .50 .50/ 50	1 0/ .50 50/ 25	.50/ 1 0 1.0/ .67	.84 83	74/ 78 .83/ 73
Grade 3 .9h 1.0/ 89 92/ 10/ .88/ 1.0/ 0.0/ 10/ .50/ .33/ 1.0/ 1.0/ 1.0/ .83 .88/ .76 Salt Lake City Grade 1 .84/ .80/ 82/ 86/ .75/ .75/ .17/ 25/ 1.0/ .67/ .38/ 33/ 00 .74 .71/ .81 Grade 3 1.0/ 1.0/ .70/ .33/ .78/ 1.0/ .50/ .50/ .33 .33 .50 .81 Tai ma Crade 1 1.0/ 1.0/ .90/ 1.0/ .67/ .22/ 1.0/ 0.0/ 1.0/ .50/ .33 .33 .50 .50 Tai ma Crade 1 1.0/ 1.0/ .90/ 1.0/ .67/ .22/ 1.0/ 0.0/ 1.0/ .50/ .33 .50 .50/ .67 Urade 3 1.0/ 1.0/ .83/ 1.0/ .82/ .25/ 1.0/ 0.0/ 1.0/ .50/ .33 .50/ .50/ .67 Urade 3 1.0/ 1.0/ .83/ 1.0/ .82/ .25/ 1.0/ 0.0/ .50/ .50/ .50/ .50/ 1.0/ .79/ .82/ .85/ .81	Serkelev rade 1 Grade 3 Duluth Grade 1	1 07 85 .997 96 .937 .96	1 0 89 83/ 83/ 83/ 1.0 83/	67/ 90 82/ 78	1 0' 70 88' 54 1 0' 50	1 0' ,67 1 0' 78 88/ 1.0	1 0' .67 1.0/ .25 88/ 1.0 9.0/	.67/ 1.0 .67/ 1.0	0 0/ 0 0 25/ 1.0	1.0/ .50 1.0/ 50 1 0/ 50	1 0/ .50 1.0/ 67 75/ 1.0	14/ .50 .50/ 50 0.0/ 0.0	1 07 .50 507 25 1.07 .25	.50/ 1 0 1.0/ .67 .50/ .50	.84 83	74/ 78 .83/ 73
93 83 6' 69 71 88 10 0.0 1.0 .50 .67 .75 50 .76 Salt Lake City Grade 1 .84/ .80/ 82/ 86/ .75/ .75/ .17/ .25/ 1.0/ .67/ .38/ .33/ 0.0 .74 .71/ 91 80 97 .46 10 43 10 1.0 1.0 .67 .38/ .33/ 0.0 .74 .71/ 96 1.0 97 08 88 1.0 1.0 1.0 .67 .33 .33 .50 .81 Taide 3 .10/ 1.0/ .90/ .33/ .78/ 1.0/ .50/ .50/ 1.0/ .67/ .33 .33 .50 .81 Taide 4 .10/ .80/ 97 .31 .67 .22/ 1.0/ 0.0/ 1.0/ 1.0/ .50 1.0/ 1.0/ .79 .82/ .85 1.0 .77 .31 .67 .25 1.0 0.0 .50 .67 .33 .50 .50 .67 urade 3 1.0/ 1.0/ 83/ 1.0/ .82/ 1.0/ 0.0/ 67/ 1.0/ .67/ .50/ 1.0/ 1.0/ 1.0/ .79 .87	Serkelev rade 1 Grade 3 Duluth Grade 1 Grade 3	1 07 85 .997 96 .937 .96	1 0 89 83/ 83/ 83/ 1.0 83/	67/ 90 82/ 78	1 0' 70 88' 54 1 0' 50	1 0' ,67 1 0' 78 88/ 1.0	1 0' .67 1.0/ .25 88/ 1.0 9.0/	.67/ 1.0 .67/ 1.0	0 0/ 0 0 25/ 1.0	1.0/ .50 1.0/ 50 1 0/ 50	1 0/ .50 1.0/ 67 75/ 1.0	14/ .50 .50/ 50 0.0/ 0.0	1 07 .50 507 25 1.07 .25	.50/ 1 0 1.0/ .67 .50/ .50	.84 83	74/ 78 .83/ 73
Grade 1 .84/ .80/ 82/ 86/ .75/ .75/ .17/ 25/ 1.0/ .67/ .38/ 33/ 0 0 .74 .71/ 91 80 97 .46 1 0 43 1 0 1.0 1.0 .67 1 0 33 0 0 .81 .81 .75/ 96 1.0 97 08 88 1.0 1.0 1.0 1.0 .67 33/ 33/ 25/ .25/ .81 .75/ 96 1.0 97 08 88 1.0 1.0 1.0 1.0 .67 33/ 33/ 33 .50 81 .75/ 36 1.0 .77 .31 .67 .22/ 1.0/ 0.0/ 1 0/ 1 0/ .50 1.0/ 1.0/ 1.0/ .79 .82/ .85 1 0 .77 .31 .67 .25 1 0 0 0 .50 .67 .33 .50 .50 .67 .67 .67 .67 .67 .67 .67 .67 .67 .67	Serkelev rade 1 Grade 3 Duluth Grade 1 Grade 3 Lebanon	1 0, 85 .94, 96 .93, .96 .83, 64	1 0 89 83/ 83 67/ 1.0 83/ 63	67/ 90 82/ 78 .66/ 10 66/ 84	1 9' 70 88' 54 1 0' 50 1.0' 50	1 0' .67 1 0/ 78 88/ 1.0 0.0/ 0 0	1 0/ .67 1.0/ .25 88/ 1.0 0.0/ 0.0	.67/ 1.0 .67/ 1.0 .50/ .50 50/ 1.0	0 0/ 0 0 25/ 1.0 0.0/ 0.0 0 0/ 0.0	1.0/ .50 1.0/ 50 1.0/ 50 0.0/ 0.0	1 0/ .50 1.0/ 67 75/ 1.0 1 0/ 67	N 14/.50 .50/.50	1 0/ .50 50/ 25 1.0/ .25 0.0/ 0.0	.50/ 1 0 1.0/ .67 .50/ .50 20/ .50	.84 83 .78	74/ 78 .83/ 73 .44/ .83 .67/ 56
Grade 3 1.0/ 1 0/ 90/ 1 0/ 67/ .22/ 1.0/ 0.0/ 1 0/ 1 0/ .50 1.0/ 1.0/ .50 1.0/ .79 .82/ .85 1 0 77 .31 .67 .25 1 0 0 0 .50 .67 1.0/ .67/ .50/ 1.0/ .50 .67 .33 .50 .50 .67 .67 .33 .50 .50 .67 .67 .33 .50 .50 .67 .67 .33 .50 .50 .67 .67 .33 .50 .50 .67 .67 .67 .67 .67 .67 .67 .67 .67 .67	Serkelev rade 1 Grade 3 Duluth orade 1 Grade 3 Iebanon urade 3	1 07 85 .947 96 .937 .96 .83 .64	1 0 89 83/ 43 57/ 1.0 83/ 63	67/90 82/78 .66/84 .89/69	1 0' 70 88' 54 1 0' 50 1.0' 50 0 0' 0 92'	1 0' .67 1 0/ .78 88/ 1.0 0.0/ 0 0	1 07 .67 1.07 .25 88/1.0 0.0/ 0.0 88/88 .88/	.67/ 1.0 .67/ 1.0 .50/ .50 50/ 1.0	0.07 0.07 0.07 0.07 0.00 0.07 0.07 0.07	1.0/ .50 1.0/ 50 1 0/ 50 0.0/ 0 0	1 0/ .50 1.0/ .67 75/ 1.0 1 0/ .67	N 14/ .50 .50/ 50 .00/ 0.0/ 0.0 .25/ .33 1 0/ 1.0 33/	1 0/ .50 50/ 25 1.0/ .25 0.0/ 0.0	.50/ 1 0 1.0/ .67 .50/ .50 20/ .50	.84 83 .78 .64	74/ 78 .83/ 73 .67/ 56
96 1.0 97 08 88 1.0 1.0 1.0 67 .33 33 .50 81 Tatoma Crade 1 10' 10' 99/ 10' 67/ .22/ 1.0' 0.0' 10' 10' .50 1.0' 1.0' .79 .82/ .85 10 77 .31 .67 .25 10 00 .50 .67 .33 .50 .50 .67 Orade 3 1.0' 10' 83/ 10' .82' 10' 90/ 67/ 1.0' .67/ .50/ 10' 10' 79 .87	Serkelev rade 1 Grade 3 Duluth orade 1 Grade 3 Iebanon orade 1 Grade 3	1 07 85 .947 96 .937 .96 .83 .64	1 0 89 83/ 43 57/ 1.0 83/ 63	67/90 82/78 .66/84 .89/69	1 0' 70 88' 54 1 0' 50 1.0' 50 0 0' 0 92'	1 0' .67 1 0/ .78 88/ 1.0 0.0/ 0 0	1 07 .67 1.07 .25 88/1.0 0.0/ 0.0 88/88 .88/	.67/ 1.0 .67/ 1.0 .50/ .50 50/ 1.0	0.07 0.07 0.07 0.07 0.00 0.07 0.07 0.07	1.0/ .50 1.0/ 50 1 0/ 50 0.0/ 0 0	1 0/ .50 1.0/ .67 75/ 1.0 1 0/ .67	N 14/ .50 .50/ 50 .00/ 0.0/ 0.0 .25/ .33 1 0/ 1.0 33/	1 0/ .50 50/ 25 1.0/ .25 0.0/ 0.0	.50/ 1 0 1.0/ .67 .50/ .50 20/ .50	.84 83 .78 .64	74/ 78 .83/ 73 .67/ 56
trade 1 1 0' 1 0' 90' 1 0' 67' .22' 1.0' 0.0' 1 0' 10' .50 1.0' 1.0' .79 .82' .85 1 0 77 .31 .67 .25 1 0 0 0 .50 .67 .33 .50 .50 .67 .67 .67 .67 .67 .67 .67 .67 .67 .67	Serkelev rade 1 Orade 3 Duluth orade 1 Orade 3 Iebanon orade 3 Salt Lake City	1 0, 85 .94, 96 .96 .93 .96 .97 .96 .98	1 U 89 83/43 67/1.0 83/63 1.0 .67 1.0/ 83	57/90 82/78 .66/ 10 66/84	1 0' 70 88' 54 1 0' 50 1.0' 50 0 0' 0 92' 69	1 0', 67 1 0', 78 1 0', 78 88/ 1.0 0.0/ 0 0 1 0, 6 1 0, 71	1 0' .67 1.0/ .25 88/ 1.0 0.0/ 0.0 88/ 88 .88/ 88	.67/ 1.0 .67/ 1.0 .50/ .50 50/ 1.0/ .50	0.07 0.00 257 1.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00	1.0/ .50 1.0/ 50 1.0/ 50 0.0/ 0.0 1.0/ 1.0	1 0/ .50 1.0/ 67 75/ 1.0 1 0/ 67	14/ .50 .50/ 50 0.0/ 0.0 25/ .33 1.0/ 1.0 .33/ .67	1 0/ .50 50/ 25 1.0/ .25 0.0/ 0.0	.50/ 1 0 1.0/ .67 .50/ .50 20/ .50 1.0/ .50	.84 83 .78 .64	74/ 78 .83/ 73 .67/ .66 .92/ .64 .88/ .76
.85 1 0 77 .31 .67 .25 1 0 0 0 .50 .67 .33 .50 .50 .67 .67 .67 .67 .67 .67 .67 .67 .67 .67	Berkelev Tade 1 Grade 3 Duluth Grade 3 Lebanon Grade 3 Salt Lake City Grade 1	1 0' 85 .99' 96 .93' .96 .43 64 1 0 .96 .93 .94' 91	1 0 89 83/ 43 67/ 1.0 83/ 63 1 0 .57 1.0/ 83	.66/ 90 82/ 78 .66/ 10 .66/ 84 .89/ .69 .89 .67	1 0' 70 88' 54 1 0' 50 1.0' 50 0 0' 0 92' 69 86' .46 .33'	1 0', h7 1 0/, 78 88/ 1.0 0.0/ 0.0 0 0/ 0.0 1 0, 71 1 0 78/	1 0' .67 1.0/ .25 88/ 1.0 0.0/ 0.0 88/ 88 .88/ 88	.67/ 1.0 .67/ 1.0 .50/ .50 1.0/ .50 1.0/ 1.0/	0.07 0.00 257 1.00 0.07 0.00 0.07 0.00 0.07 0.07 0.0	1.0/ .50 1.0/ 50 0.0/ 0.0 1.0/ 1.0/ 1.0/ 1.0/	1 0/ .50 1.0/ 67 1.0 1 0/ 67 1.0/ .50 .50/ .67/	N 14/.56 .50/.50 0.0/.00 25/.33 1.0/.67 .38/.67	1 0/ .50 50/ 25 1.0/ .25 0.0/ 0.0 1.0/ .75	.50/ 1 0 1.0/ .67 .50/ .50 20/ .50 1.0/ .50	.84 83 .78 .64 .81	74/ 78 .83/ 73 .67/ .83 .67/ .56
orade 3 1.9/ 1.0/ 83/ 1.0/ .82/ 1.0/ 0.0/ 67/ 1.0/ .67/ .50/ 1.0/ 1.0/ 79 .87	Berkelev rade 1 Grade 3 Duluth Grade 3 Lebanon Grade 3 Salt Lake City Grade 1 Grade 3	1 0' 85 .99' 96 .93' .96 .43 64 1 0 .96 .93 .94' 91	1 0 89 83/ 43 67/ 1.0 83/ 63 1 0 .57 1.0/ 83	.66/ 90 82/ 78 .66/ 10 .66/ 84 .89/ .69 .89 .67	1 0' 70 88' 54 1 0' 50 1.0' 50 0 0' 0 92' 69 86' .46 .33'	1 0', h7 1 0/, 78 88/ 1.0 0.0/ 0.0 0 0/ 0.0 1 0, 71 1 0 78/	1 0' .67 1.0/ .25 88/ 1.0 0.0/ 0.0 88/ 88 .88/ 88	.67/ 1.0 .67/ 1.0 .50/ .50 1.0/ .50 1.0/ 1.0/	0.07 0.00 257 1.00 0.07 0.00 0.07 0.00 0.07 0.07 0.0	1.0/ .50 1.0/ 50 0.0/ 0.0 1.0/ 1.0/ 1.0/ 1.0/	1 0/ .50 1.0/ 67 1.0 1 0/ 67 1.0/ .50 .50/ .67/	N 14/.56 .50/.50 0.0/.00 25/.33 1.0/.67 .38/.67 .38/.67	1 0/ .50 50/ 25 1.0/ .25 0.0/ 0.0 1.0/ .75	.50/ 1 0 1.0/ .67 .50/ .50 20/ .50 1.0/ .50	.84 83 .78 .64 .81	74/ 78 .83/ 73 .67/ .83 .67/ .56
	Berkelev rade 1 Grade 3 Duluth Grade 3 Lebanon Grade 3 Salt Lake City Grade 1 Grade 3	1 0' 85 .99' 96 .93' .96 .43 64 1 0 .96 .93 .94' 91 1 0' 96	1 0 89 83/ 43 67/ 1.0 83/ 63 1 0 .57 1.0/ 83 .89/ 80 1.0/	67/90 82/78 10 66/84 .89/69 89 67 82/97 70/97	1 0/ 70 88/ 54 1 0/ 50 1.0/ 50 0 0/ 0 92/ 69 86/ .46 .33/ 08	1 0', h7 1 0/, 78 88/ 1.0 0.0/ 0.0 1 0, 71 1 0 .78/ 88 67/	1 0' .67 1.0/ .25 88/ 1.0 0.0/ 0.0 88/ 88 .88/ 43 1 0/ 1.0	.67/ 1.0 .67/ 1.0 .50/ .50 50/ 1.0/ .50 1.0/ 1 0	0.07 0.00 257 1.00 0.07 0.00 0.07 0.07 0.07 1.00	1.0/ .50 1.0/ 50 0.0/ 0 0 1.0/ 1.0 1.0/ 1.0	1 0/ .50 1.0/ 67 1.0 1 0/ 67 1.0/ .50 .50/ .67/ .67	14/ .50 .50/ 50 0.0/ 0.0 25/ .33 1 0/ 1.0 .33/ .67	1 0/ .50 50/ 25 1.0/ .25 0.0/ 0.0 1.0/ .75	.50/ 1 0 1.0/ .67 .50/ .50 20/ .50 1.0/ .50 0 0 0 0 .25/ .50	.84 .83 .78 .64 .81 .83	74/ 78 .83/ 73 .67/ 56 .92/ 64 .88/ .76/ .71/ .81

 $^{^{\}star}$ The Accuracy Rate is given first and the Criterion Accuracy Rate is given second.

Ac uracy Rate
Criterion Accuracy Rate

Accuracy Rate Proportion correct of the total reco ded Criterion Accuracy Rate Proportion of times the Criterion Instances were recorded correctly

Table 1-2

A STANDARD OF ARTICAL OBSERVERS

A STANDARD OF ARTICAL OBSERVERS

						н	ode s	(riteri	o Inst	inces.					
†* + 1 *1 € - € € †				, ,	(t %/1 /%		,	4)	١,	ţ	- + 1 v	T 165	• ``	_ 4	* 1
es M la -															
* 4.31					1	1.	э, ,чэ	74	* 1	•()	1)	• ×0	(1-1)	1 1	1 1
1				a,	, = 1	* 1	- + , +	31.	42 42	,	20	-	1 1	1	3 4
r* + tt															
tade 1	۲.	•	•	41	37	19	73	.7× .8	? 91	5())(6° 40	357 35	25/ 1 0	is to	4,0
rile 3	4.	**	٠,	4	11	ν. 1κ	1 0 '	, ×9 44	4.2 86	1.0'	+3 / 60	1 0	1.0	# ~ } . n) i
in incree															
r <u>s</u> i e	* 1	* *	51		1	, 4.1	71	1.0	44 ' 94	577 1-0	1.02	1.0		10	D O _Z
rade	#1 %_	* 1	• •	**	1 11	5 ° 40	ਖ਼ਖ਼ <i>•</i> * ।	1 07	827 1 0	807 1 5	57 ′ 80	75/	1.0	1 07 1 0	15' 10
cane will															
t gire 1	43	4 1	**	2.	.	10	5') 1 n'	.73 1 0	44 45	80/ 1 0	.507	1.07	1.0 1.0	1 0 1 0	1 0 1 0
r + f+ +	, 4	, 1 65	, . 43	*3 / 44	88 ′ ,88	75'	757 67	71'	73/ 43	1 0/	407	1.0/	207	61/ 1 0	1. 4
New SEK	•				****	100	.,,	• • •	• • •	,,	.,,	1.0	1	1 17	
(rides)	* *1	ı '	** (1)	407	1 u 63	65 / 69	0 ' 82	46 '	45.1 H5.1	.80/ 1 0	.607 60	1.01	0.07	1 6	1.0
tine in															
ride 1	*11 *6	×n	7,	36	417 46	817 81	79 / 64	50 24	94/ 7*	57/ 1 0	50/ 75	1.07	17/ 1 0	33/ 50	/ n_n
Fade 3	, n	42	h }	74.7 703	.50 ′	.91/ 65	1 0/	.80,′ 50	,827 90	,627 1 0	.337 20	.60/ 1.9	13'	67 ' ± 0	, (1 '1)
					u.> (s de mane	rteart	()						Over	
nite ant grade level	Ŋ			r Mo <u>re</u> B	how (oa fast		ve or 1				Aceu	rac v
grade level	Δ		- 218 (r Mo <u>re</u> R		od. 4	riteri W		an is <u>U</u>	ve or 1				Aceu Ra	rac v
	.90	1 U							<u> </u>		***			Aceu Ra	rac v
grade level	. 90		, K1	8 <u> </u>))P	1.0/	- <u>w</u> -	.17/	<u>1</u> ,	1 0/	20/	<u>'</u> '	/	Aceu <u>Ra</u> WHAT	HOW 73'
grade leyel Des Moines rade l	.90	5 ' 40	, 41 .2 .4	8 _ 60/ 21	, 0.0	1.0/	, 0,0	.17/ 1 0	50 1.0 67/	1 0/ 1 0 1 0/	20/ 33 ,67/	/ 0 0	/ 0 0 1 0/	Aceu Ra WHAT	73'
prade level Pes Moines rade l praie 3	.90	5 ' 40	, 41 .2 .4	8 _ 60/ 21	, 0.0	1.0/	, 0,0	.17/ 1 0	50 1.0 67/	1 0/ 1 0 1 0/	20/ 33 ,67/	/ 0 0	/ 0 0 1 0/	Aceu Ra WHAT	73'
made level Nes Moines rade l orade d Fort worth	.90 74 4 1	ક ! સા ક સા	.41	80/ 21 1 07 20	0 0 0,0	1.0/ 50 1.0/ .2.	0.0 0.0	.17/ 1 0 / e,o	50 1.0 67/ 1.0	1 0/ 1 0 1 0/ 67	20/ 33 .67/ .67	/ 0 0 / 0 0	/ 0 0 1 0/ 1.0	Accu Ru WHAT 66	73' .55 .47
rade level Pes Moines rade l orade d Fort worth brade l	1 17 56	5 1 40 5 40 5	.41 *2 .4 1	80/ 21 1 07 20 80/ 62	0 0 0 0 0 0 1 0/ 88 88	1.0/ 50 1.0/ .2:	0.6 0.0 1 0/ 50	.17/ 1 0 / e.0	50 1.0 67/ 1.0 .22/ 1.0	1 0/ I 0 1 0/ 67 .60/ 1.0	20/ 33 ,67/ .67	/ 0 0 / 0 0 1.0/ .50	/ 0.0 1.0/ 1.0 50/ .50	Accu Ra WHAT 66 .67	73/ .55 .47
rade level Pes Moines rade l orade d Fort worth brade l rade d	1 17 56	5 : 40 5 80 80 83	.41 *2 .4 1	80/ 20 80/ 62 10/ 20	0 0 0 0,0 1 07 88 88/88	1.0/ 50 1.0/ .2. .42/ 1.0 .86/ .86	0.6 0.0 1 0/ 50 1.0	9.17/ 1.0 / e.0	50 1.0 67/ 1.0 .22/ 1.0	1 0/ 1 0/ 1 0/ 67 ,60/ 1.0 ,75/ 1 0	20/ 33 ,67/ ,67 25/ ,33 14/ 50	/ 0 0 / 0 0 1.0/ .50	, 0 0 1 0/ 1.0 50/ .50 1.0/ 50	Accu Ra WHAT 66 .67	73' .55 .47 .47 .82 .85'
made level Pes Moines rade 1 made 3 Fort worth brade 1 rade 3	1 17 10 1	5 : 40 : 5 : 40 : 5 : 41 : 41	41 - 41 - 41	80/ 20 80/ 62 70 88/ 88/	0 0 0 0,0 1 07 88 88 88 1 07	1.0/ 50 1.0/ .2: .42/ 1.0 .86/ .86	0.6 0.0 1 0/ 50 1.0	9.17/ 1.0 / e.0 9.0/ 0.0	50 1.0 67/ 1.0 .22/ 1.0 .00/ 0.0	1 0/ 1 0/ 1 0/ 67 ,60/ 1.0 ,75/ 1 0	20/ 33 ,67/ ,67 25/ ,33 14/ 50	7 6 0 7 6 0 1.07 .50 1.07	, 0 0 1 0/ 1.0 50/ .50 1.0/ 50	Accu RI WHAT 66 .67	73' .55 .47 .66/ 73 .32'
rade level Pes Moines rade 1 oraic 3 Fort worth brade 1 rade 3 Lafa-orte raic 1 raic 3	.90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	41 44 44 44 44	80/ 20 80/ 50 80/ 62 70 88 88 10	0 0 0 0 0,0 1 07 88 88/88	1.0/ 50 1.0/ .2: .42/ 1.0 .86/ .86	0.0 0.0 1 0/ 50 1.0 50	9 0 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 1.0 67/ 1 0 .22/ 1 0 0 0 1 0/ 50 1.0/	1 0/ 1 0/ 1 0/ 67 .60/ 1.0 .75/ 1 0	20/ 33 .67/ .67 25/ .33 14/ 50	1.0/ .50 1.0/ .33	, 0 0 1 0/ 1.0 50/ .50 1.0/ 50	Accuracy Acc	73/ .55 .47 .47 .82
rade level Pes Moines rade 1 oraic 3 Fort worth brade 1 rade 3 Lafacte raic 1	1 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 40 40 40 40	41 44 44 44 44	80/ 21 07 20 80/ 62 11 07 52 11 07 53 11 0 54	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.07 50 1.07 .25 .427 1.0 .867 .86	0.6 0.0 1.0 50 1.0 50	9.17/1 0 / e.0 9 0 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 1.0 67/ 1.0 .22/ 1.0 .00/ 50 1.0/ 1.0/	1 0/ 1 0/ 1 0/ 67 .60/ 1.9 .75/ 1 0	20/ 33/ 37/ .67/ .67/ .25/ .33/ 14/ 50/ 0.0/ 50/	1.0/ .50 1.0/ .33 1.0/ 25 1.0/	50/ 1.0 50/ 50 1.0/ 50 1.0/ 50	Accuracy Acc	73' .55' .47 .66/ .73' .82 .85' .72' .80' .88
rade level Pes Moines rade 1 oraic 3 Fort worth brade 1 rade 3 Lafa-orte raic 1 raic 3	1 1/2 1 1/2 1 1 1/2 1 1 1 1/2 1 1 1 1/2 1 1 1 1	5 1	41 44 44 44 44 44 44 44 44 44 44 44 44 4	80/ 21 07 20 80/ 62 1 0 88 1 0	0 0 0 0,0 1 07 88 88/88 1 07 11 7	1.07 50 1.07 .25 .427 1.0 867 86 1.07 1.07	0.6 0.0 1.0 50 1.0 50	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 50 1.0 67/ 1.0 .22/ 1.0 0.0 1.0/ 1.0/ 1.0/ 1.0	1 0/ 1 0/ 1 0/ 67 .60/ 1.6 .75/ 1 0 .50/ 67 .50/ 67	20/ 33 .67, .67 25/ .33 14/ 50 0 0/ 0 0 1.0/ 50	1.0/ .50 1.0/ .33 1.0/ .25 1.0/ 1.0 46 .50/	50/ 1.0 50/ .50 1.0/ 50 67/ 1.0/ 50	Accuracy WHAT 66 .67 77 77 80	73' .55 .47 .66/.73 .37 .82 .85' .72' .82 .85' .72' .83/
Pas Moines rade 1 orate 3 Fort worth brade 1 rade 3 Lafavette rade 1 rade 3 caseword rade 3 caseword rade 3	.90 1 1 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 40 6 43 45 46 46 46 46 46 46 46 46 46 46 46 46 46	41 22 34 1 1 40 41	80/ 21 07 20 80/ 62 11 07 52 11 07 53 11 0 54	0 0 0 0,0 0,0 1 07 88 887 88 1 07 11 7	1.07 50 1.07 .25 .427 1.0 .867 .86 1.07 8.1.07 1.0	0.0 1.0 50 1.0 50 0.0	9 0 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 1.0 67/10 .22/10 .00/69 1.0/10 1.0/10	1 0/ 1 0/ 1 0/ 67 .60/ 1.0 .75/ 1 0 .50/ 67	20/ 33 .67' .67 .33 14/ 50 0 0' 0 0 1.0/ 50	1.0/ .50 1.0/ .33 1.0/ 25 1.0/ 1.0	50/ 1.0 50/ .50 1.0/ 50 1.0/ 50	Accumentation	73' .55' .47 .66/ .73' .82 .85' .72' .80' .88
Pas Moines rade 1 orate 3 Fort worth brade 1 rade 3 Lafavette rade 1 rade 3	1 1/2 1 1/2 1 1 1/2 1 1 1 1/2 1 1 1 1/2 1 1 1 1	\$ 10	41 42 44 1 49 49 40 40	80/ 21 07 20 80/ 62 1 0 88 1 0	1 07 88 887 1107 110 1 07 57	1.07 50 1.07 .25 .427 1.0 867 86 1.07 1.07	0.0 1.0 50 1.0 50 0.0 1.0 50	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 50 1.0 67/ 1.0 .22/ 1.0 0.0 1.0/ 1.0/ 1.0/ 1.0	1 0/ 1 0/ 1 0/ 67 .60/ 1.6 .75/ 1 0 .50/ 67 .50/ 67	20/ 33 .67, .67 25/ .33 14/ 50 0 0/ 0 0 1.0/ 50	1.0/ .50 1.0/ .33 1.0/ 25 1.0/ 10 .67/ 40 .50/ 50	50/ 1.0 50/ .50 1.0/ 50 67/ 1.0/ 50	Accumentation	73/ .55 .55 .47 .66/ .73 .32/ .82 .85/ .72/ .70 .83/
rade level Pes Moines rade l orade d Fort worth brade l rade d Lafavette rade d rade d American d rade d Seman d rade d Seman rade d	90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1 40 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	41 22 34 1 42 42 42 42 42 42 42 42 42 42 42 42 42	80/ 21 0/ 20 80/ 82 1 0 83 4 1 0	1 0/ 88 88/ 88 1 0/ 11 7	1.07 50 1.07 .25 .427 1.0 .867 .86 1.07 .87 1.07 .88 1.07 .88	0.0 1.0 50 1.0 50 0.0 1.0 50	9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 67 / 1 0 .22 / 1 0 .0 0 0 1 .0 / 1 .0 1 .0 1 .0 1 .0	1 0/ 1 0/ 1 0/ 67 .60/ 1.0 .75/ 1 0 .75/ 1 0 .75/ 1.0 .75/ .75/ .75/ .75/ .75/ .75/ .75/ .75/	20/ 33 .67/ .67 25/ .33 14/ 50 0 0/ 0 0 1.0/ 50	1.0/ .50 1.0/ .33 1.0/ .25 1.0/ 1.0 40	50/ 1.0 50/ 50 1.0/ 50 1.0/ 50 1.0/ 50 1.0/ 50	Aceu Ra WHAT 666 .67 77 77 80 .81 79 .72	73' .55' .47 .66/ .73' .82 .85' .72' .80' .84
rade level Pas Moines rade 1 orade 3 Fort worth firade 1 rade 3 Lafatette rade 3 came of rade 3 Venare rade 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	41 22 34 1 42 42 42 42 42 42 42 42 42 42 42 42 42	80/ 21 0/ 20 80/ 82 1 0 83 4 1 0	1 0/ 88 88/ 88 1 0/ 11 7	1.07 50 1.07 .25 .427 1.0 .867 .86 1.07 .87 1.07 .88 1.07 .88	0.0 1.0/ 50 1.0/ 50 0.0 1.0/ 50	9 0 / 17 / 1 0 / e.0 / e	10 50 1.0 67/ 1.0 .22/ 1.0 0.0 1.0/ 50 1.0/ 1.0 1.0 1.0 1.0	1 0/ 1 0/ 1 0/ 67 .60/ 1.0 .75/ 1 0 .75/ 1 0 .75/ 1.0 .75/ 50	20/ 33 .67/ .67 25/ .33 14/ 50 0.0/ 0.0 1.0/ 0.0 0.0/ 0.0	1.0/ .50 1.0/ .33 1.0/ .25 1.0/ 1.0 .50/ .50	50/ 1.0 50/ 50 1.0/ 50 1.0/ 50 1.0/ 50 1.0/ 50	Aceu Ra WHAT 666 .67 77 77 80 .81 79 .72	73/ .55 .47 .66/ .73 .32 .82 .85/ .72 .80/ .83/ .83/ .83/ .83/ .83/ .83/ .83/ .83
rade level Pes Moines rade 1 orade 3 Fort worth brade 1 rade 3 Lafavette rade 3 cases d rade 3 cases d rade 3 Assure rade 4	90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	41 42 44 44 44 44 44 44 44 44 44 44 44 44	80/ 21 1 0/ 20 80/ 62 7 0 83 1 0 7	1 07 88 887 1107 1107 1 07 1 07 1 07	1.07 50 1.07 .25 .427 1.0 .867 .86 1.07 .87 1.0 .64 .88	0.0 1.0 50 1.0 50 1.0 50 1.0 50	9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 67/10 10 10/10	1 0/ 1 0/ 1 0/ 67 1.6 .60/ 1.6 .75/ 1 0 50/ 50 1.6/ 67	20/ 33 .67/ .67 25/ .33 14/ 50 0 0/ 0 0 1.0/ 0.0 0.0/ 0.0	1.0/ .50 1.0/ .33 1.0/ .25 1.0/ 1.0 .50/ .50	50/ 1.0 50/ 50 1.0/ 50 1.0/ 50 1.0/ 50 1.0/ 50	Accumentation Accumentation	73/ .55 .47 .66/ .73 .73/ .82 .85/ .72 .80/ .83/ .63

^{* ...} I'm to the regiment est and the criterion Accuracy Rate is given second!

Nouracy Rite - Proportion correct of the total recorded Friterion Actural engage - Proportion of times the Citerion Instances were recorded correctly

Table 1-3

ACC RACY RATES* FOR WHAT AND HOW CODES BY BANK STREET OBSERVERS

		_				WHAT	rodes	Criteri	on Inst	an_es					_
raje levil	T_{ξ}	3 _		4NV	× -18 Mc	re	7	- - - -	72	1	2	Five o	r tos	8	111
Prattleboro					•	•					*				
∂rade 1	42 18	.84 .44	38 /	737 73	83, . 1	*87 154	1.07	.787 .88	.697 1 0	1.07	-40/ -40	.33/	0 0/	1.0/	/ 0 0
Craie 3	.*1	.46 I 0	887 1.0	1 07	.88, 1,0	1.0,	1.07	89/ 1.0	94 ·	80/ 1 0	.297 67	1.0/	50/ 1.0	1 0/	1.0
Pall River															
Grade 1	۲٦ 68ء	877 57	78 88	1 o .88	837 1 0	.477 62	.86/ 75	.88/ 88	62/ .91	1 0/	1.0/	.67/ 1 0		1 0/	50/ .50
orade 3	79 15	1 0	.60 1 0	89, 73	43' 60	41/ 44	.56/ 50	1.0/ 38	.587 92	.29/ .50	.33/	50/ 50	0.07	.507 50	0.0
New York P - 243K															
rades 1 and 4	4°	14/	51'	.67 (.5f	43/ 86	787 54	88/ .78	1.0/	.77/ 85	57/ 1.0	-43/ 75	1.0/	0 0/	1.0/	1.07
Philadelphi+ II															
orate 1	88' .88	1 0'	.75 ⁷	787 1.9	787 1 7	.92/ 79	1.0/	1 0/ 86	.90/ .81	.80/ 1 0	.67/ 80	1.0/	50/ 1.0	40/ 1.0	
rade i	67.	837 '9	56/ 63	917 91	1 07 38	56 33	70 .88	707 88	.867 86	1 0/ 25	.50/ 60	.67/ 1.0	0.0/ 0 0	1.07	1 0 1 0
luskeget															
rade :	-80 95	.927 .89	.647 88	49 73	60 ′ 86	77′ .71	1.0/ 83	1 0/ 75	75/ 63	67 ′ 1, 0	1.07	50/ 1 0	1.177	1 0 1 0	1.0
erade 3	••	.92/ .85	.86 75	*9	78 88	.62/ 57	90/ .82	1 0	.82 .88	1 m/ 67	.25 25	1 0/ 67	13/ 1.0	67/ 1 0	1.07
														Over	
Site and			\$1 x 3	· Vore				on Inst		eve or	less			_ Accu Ra	ra v
_ orade Level		· - 	Six 3	r More	Hōw :	Codes	Lriceri W	on Inst	ance 4	ve or	iess N	1.	P	Accu	ra v
orade Level Brattleboro	-		A	- 3	DP	.0_	W	<u> </u>	- <u>1</u>	_ <u>1</u> .	77			Accu Ra WHAT	ra. v te How
_ orade Level	 .v. 	1 0, 1.0	\$1x 3 A ,897 80	1 J/						*ve or T		75/ 1.0	H 1.0/ 50	_ Accu Ra	ra v te Pow
orade Level Brattleboro	86	1 0,	, A	13/	DP 1 0	70/	. 33'	.20/	1-0/	_ <u>I</u> .	/	75/	1.0/	Accu Ra WHAT	ra. v te How
orade_Level Brattleboro crade 1	80 36	1.0,	,89 ¹ 80 87	1 3/	DP 1 0 .25 1 0	70/ 1.0 1.0/	.33' 1 0 50/	.20/ .25 .33/	1-0/ 50 67/	75/ .60	0.0	75/ 1.0 1.0/	1.0/ 50	ACCU Ra WHAT	.81/ .75
brattleboro vrade 1 rade 3 Sall River rade 1	80 36	1.0,	,89 ¹ 80 87	1 3/	DP 1 0 .25 1 0	70/ 1.0 1.0/	.33' 1 0 50/	.20/ .25 .33/	1-0/ 50 67/	75/ .60	0.0	75/ 1.0 1.0/	1.0/ 50	ACCU Ra WHAT	.81/ .75
brattleboro krade 1 krade 3 fall River	86 36 94 98	1 0, 1.0 1 9 80	,89' 80 87 .94	1 3/ 60 1 0 67	DP 1 0 .25 1 0 .70	70/ 1.0 1.0/ 33	.33' 1 0 50' 50	.20/ .25 .33/ 1.0	1.0/ 50 67/ 1.0	75/ .60 1.0/ 1.0/	0.0	75/ 1.0 1.0/ .50	1.0/ 50 1.0/ .50	74	.81/ .75 .88/ .80
brattleboro vrade 1 rade 3 Sall River rade 1	86 36 94 90 947	1 0, 1,0 1 9 80 1 9 1,0	,89° 80 87 .94	1 0/ 60 1 0 67	DP 1 0 .25 1 0 .70 1 0/1 0	70/ 1.0 1.0/ 33 1.0/ 1.0	.33' 1 0	.20/ .25 .33/ 1.0	1.0/ 50 67/ 1.0 / 0.0 1.0/	75/ .60 1.0/ 1.0 1.0/ 50	0.0 0.0 0.0 0.0/ 0.0	75/ 1.0 1.0/ .50 1.0/ .25	1.0/ 50 1.0/ .50 1.0/ 50 1.0/	74 .91	.81/ .75 .88/ .80
Brattleboro Arade 1 Arage 3 Sall River Arade 1 Arade 3	86 36 94 90 947	1 0, 1,0 1 9 80 1 9 1,0	,89° 80 87 .94	1 0/ 60 1 0 67	DP 1 0 .25 1 0 .70 1 0/1 0	70/ 1.0 1 0/ 33 1 0/ 1.0 1.0/ 25	.33' 1 0	.20/ .25 .33/ 1.0	1.0/ 50 67/ 1.0 / 0.0 1.0/	75/ .60 1.0/ 1.0 1.0/ 50	0.0 0.0 0.0 0.0/ 0.0	75/ 1.0 1.0/ .50 1.0/ .25	1.0/ 50 1.0/ .50 1.0/ 50 1.0/	74 .91	.81/ .75 .88/ .80
brattleboro crade 1 rrade 3 Sall River rride 1 rrade 3 New York P S 243k rades 1	86 36 94 94 40 94'	1 0, 1.0 1 9 80 1 9 1.0 	,897 80 87 .94 1.07 81 91 62	1 07 60 1 0 67 1 0 7 80 3 3 09	1 0 .25 1 0 .70 1 0 0	70/ 1.0 1 0/ 33 1 0/ 1.0 25	33/ 1 0 50/ 50 1.0/ 50 1 0/ 50	.20/ .25 .33/ 1.0	1.0/ 50 67/ 1.0 / 0.0 1.0/ 1.0	75/.60 1.0/ 1 0/ 50 .33/ 33	0.0 0.0 0.0 0.0 0.0 0.0 .25/	75/ 1.0 1 0/ .50 1.0/ .25 1.0/ .25	1.e/ 50 1.0/ .50 1.0/ 50 1.0/ 33	74 .91 .75	.81/ .75 .88/ .80 .91/ .80 .80/ .47
Brattleboro Arade 1 Arade 3 Sall River Arade 3 Sew York P S (243)k Arades 1 And 3 Philadelphia II Arade 1	86 36 94 94 10 9 1,39	1 0, 1.0 1 9 80 1 0 1.0	A	1 07 60 1 0 67 80 33 09 1 07 44	1 0 .25 1 0 .70 1 0 0	70/ 1.0 1 0/ 33 1 0/ 1.0 25	33/ 1 0 50/ 50 1.0/ 50 1 0/ 50	.20/ .25 .33/ 1.0	1.0/ 50 67/ 1.0 / 0.0 1.0/ 1.0	75/.60 1.0/ 1 0/ 50 .33/ 33	0.0 0.0 0.0 0.0 0.0 0.0 .25/	75/ 1.0 1 0/ .50 1.0/ .25 1.0/ .25	1.e/ 50 1.0/ .50 1.0/ 50 1.0/ 33	74 .91 .75	.81/ .75 .88/ .80 .91/ .80 .80/ .47
brattleboro crade 1 rade 3 Sall River rade 3 Sew York P S 243k rades 1 and 3 Philadelpoia II rade 3	86 36 94 94 10 94' 10 89	1 0, 1,0 1 9 80 1 0 1,0 1,0 1 1,0 1 1,9	,89°,80°,87°,94°,94°,94°,94°,71°,71°,71°,71°,71°,71°,71°,71°,71°,71	1 07 60 1 0 67 80 33 09 1 07 44	1 0 .25 1 0 .70 1 0/0 0 0	70/ 1.0 1.0/ 33 1.0/ 1.0 25 (.71 63	33' 10' 50' 1.0' 50 1 0' 50 1 0' 1 0' 1 0'	.20/ .25 .33/ 1.0 0.0' 0.0' 0.0'	1.0/ 50 67/ 1.0 / 0.0 1.0/ 0.0	75/.60 1.0/10 1 0/50 .33/.33	0.0 / 0.0 / 0.0 0.0/ 0.0 .25/ .50	75/ 1.0 1 0/ .50 1.0/ .25 1.0/ .25	1.0/ 50 1.0/ .50 1.0/ 50 1.0/ 33	Accu Ra WHAT 74 .91 75 59	.81/ .75 .88/ .80 .91/ .80 .47
Brattleboro Arade 1 Arade 3 Sall River Arade 3 Sew York P S (243)k Arades 1 And 3 Philadelphia II Arade 1	86 36 94 4 9 4 4 9 4 9 4 9 4 9 4 9 4 9 9 9 9	1 0, 1.0 1 9 80 1.0	A	1 07 60 1 0 67 1 07 80 33 69 1 07 44	1 0 .25 1 0 .70 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70/ 1.0 1.0/ 33 1.0/ 1.0 1.0/ 25 	33' 10' 50' 1.0/ 50 1 0/ 50 1 0/ 50 1 0/ 1 0 1 0/ 50 1 0, 1 0	.20/ .25 .33/ 1.0 0 0' 0 0' 0 0'	1.0/ 50 67/ 1.0 1.0/ 1.0 1.0 1.0 1.0 1.0/	75/.60 1.0/ 1.0/ 50 .33/ 33 .67 1.0 1.0/ .33 1.0/ .50	0.0 / 0.0 0.0 / 0.0 0.0 0.0 0.0 0.0 0.0	75/ 1.0 1 0/ .50 1.0/ .25 1.0/ .25 1.0/ .25 1.0/ .25 1.0/ .25	1.0/ 50 1.0/ .50 1.0/ 50 1.0/ 33 1.0/ .50 / 0.0 .50/ 1.0	74 .91 .75 .59 .69	.81/ .75 .88/ .80 .91/ .80 .80/ .47 .84/ .63
stade Level Brattleboro crade 1 arade 3 Sall River aride 1 arade 3 New York P S 243k rades 1 and 3 Philadelpoia II arade 3 Takegee	86 36 36 37 40 40 40 40 40 41 41 41 41 41 41	1.0, 1.0 1.0 80 1.0	A	1 07 60 1 0 67 1 07 80 33 09 1 07 44	1 0 .25 1 0 .70 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70/ 1.0 1.0/ 33 1.0/ 1.0 25 '.71 63 .86/ 1.0/ 88	33' 10	.20/ .25 .33/ 1.0 0 0' 0 0' 0 0'	1.0/ 50 67/ 1.0 / 0.0 1.0/ 1.0	75/.60 1.07 1.07 1.07 1.07 337 33 .67 1.07 .33 1.07 .50	0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	75/ 1.0 1 0/ .50 1.0/ .25 1.0/ .25 1.0/ .25	1.0/ 50 1.0/ .50 1.0/ 50 1.0/ 33 1.0/ .50	74 .91 .75 .59 .69 .86 .70	.81/ .75 .88/ .80 .91/ .80 .80/ .47 .84/ .63

 $^{\rm A}$. The Accuracy Rate is given first and the criterion Accuracy Rate is given second:

Accuracy Rate - Proportion correct of the total recorded.

Criterion Accuracy Rate - Proportion of times the Criterion

Instances were recorded correctly

THE SALE STATES OF MAY AND HOW CODES BY CNIVERSITY OF ORECOMORSERVERS

Fi'c cyc						WHA!	codes	Criteri	on Inst	in Ca					
				4N	1,7	re Lbj.		٠- پ	12	1		3M	د اوني. 5	×.	1,
that at 1 in	,			,	-				•	-	•		- '		
crade 4	* *	**	n '	**	54. '	.86/ .75	47/ 78	86/ 75	. 79 [/] .88	1.07	/ (1,1)	1 0/	0,07	a' a	1 07
* 13: 3	h '	427 85	677 57	64/ 36	6 / 29	50 , 29	7a7 1 9	1 0,	.66 ' 91	33/ 75	.67/ .50	1 0,	257 1,0	.50	1.07
'd'ine															
∍rade 1	• • • • • • • • • • • • • • • • • • •	4.2 4.2)(1 11	57 31	397 . 11	0.07	1 0/	1 0'	86/ ,50	63 167	50 ° 20	1 6/ 1 9	.06/ 1 0	507 1-0	1.0,
orate v	47. An	1 +	^{보유}	#1 #1	1 1 '	,93	30/ .80	67/ 1.0	1.07	.67/ .50	51/ .80	1 U/ 1 U	33/ 1 0	1.07	1.07 1.0
rupel															
rate l	75 84	967 192	4×7	90	1 0	.92/ 86	1 0/ 1 0	.88 .88	95/ 90	1.0/	.50/ .60	757 1 0		1 07	1.0/
rsis 3	9)	×.	7 i	1 1	**	** **	84 ' 30	1 07	61, ⊀1	, 7° ′	0.0	.75/ 1 0	1 0/	1 0,' 1,0	, (1-1)
PE STEP 6															
7 g (+	72.1 .86	44 44	58 20	33	6 + ′ 58	.807 31	82/ 90	90/ 1 0	.797 1.0	.67/ 50	9,0	1 0/ 1 0	0 0/ 0.0	1.0/	1.0/
rade 3	* · · · · · · · · · · · · · · · · · · ·	89 82	41.1	807 •• ⁽³	1.	57/ 62	75/ .60	1 0/ 67	.67/ 91	.227	1.0/	1.0/ 67	0.0/	/ 0 0	1.0
New York P. S.	13%														
Tack	Xª Nu	4.	63'	67/ 3h	43/ 8h	.78/ 54	.857 78	1.0' 50	.77 / 85	.57/ 1.0	.437	1.0/	0 0/	1.07	1.07
rade }	9.	46 '	ر. 1 ن	90 ' 90 '	86 75	.33/	75′ ,61)	1 0 '	827 .78	.50/ .20	.50/ .75	1 0/	.06/ 1 0	59/ 1 0	1.0/
					Hı\a	(miles = ==	(riteri	on Inst	ani es					Over	ill tack
Site and Fade Leve		··	51x 01	Vore.	- 4	<u>_</u>			F1	ve or L	<u> </u>				tı
Fast of Icua	. 45														
Grade 1	41 / 45	1.07	4 1 / 15	83 ′ 83	0,0	0.0	1 0/	0.07	/ 0 0	25/ 1.0	0.0	0 0	/ 0 0	,73	58 ′ ,60
raie 3	417 •99	1 n	511 °	.53/ 22	r n	0.07	00	/ 0 •)	1.0/	.75/ 1.0	0.0/	0 0/	33/ .50	71	.59/
Rai Ine															
rs4-1	4n / 4n	1 5	79.1 4.3	1 1/ 55	1 +/ 79	43/ 6:	1 07	33/	1.0/	1.0/	.67/ 1.0	1.0/	,50/ 50	.6.	88 ' 66
.rade '	43 35 ,	15 86)	1 0	67/ 85	83. .63	50/ 1)	.25/ 1 0	1.0/	.59/ .67	.33/ 67	, 0 0	0 0/ 0 0	.86	75' 83
Lipel															
rade 1	₽n ' 92	1 :	90 11	1 +	1 1	-88/ 1.0	67 ' 1 0	0.07	.677 1 0	.507 50	0.07	1 0/ 25	1.07	30	.967 84
rad+ 3	1 J 96	1.07	77	1.02 80		1 fr' 88		33/ 50	1.07	1 0/	0,0	1 0/	1.07	.80	98/ 61
Providen e	46,	Q1,	9.4 42	a(),	1 4	36/ .57	507 .50	147	.507 50	1.67	0.07	1.0/	1.07	76	79.7
Providen e Frade i	+ +	9.3													
	श्र । प्रक १०	10	63	0 0	,)	1 1) 1 HE	a d	0.07	1 07	1.07	/ (1,0	1 07	1.07	70	67/ 14
rade i	44 19	1 0	63	9 0	i 1		9-0	0.07						70	
√rade i	44 19	1 0	63	9 o	,) , , o		1 07 1.0	00.						70 69	

 $[\]overset{\bullet}{T} \leftarrow V$ or $c \neq Ra \leftarrow 1$, given first and the viritorian A_{CC} and . Rate is given second

Acura v Rate

Accuracy Rate - Proportion correct of the total recorded riterion Accuracy Rate - Proportion of times the Criterion Instances were recorded correctly,

Table 1-3

A TRACK RATES AND HALLAND HOW CODES BY INTERSTITY OF KANSAS OBSERVERS.

						IAHW	Codes	Criteri	on Inst	ances					
Site and made Level	, 1	\$		iv.	v ⊃r vijoi ⊃NN	ře 6			12	1		Five s	r Less	8	'n
New Y YR P Y					-	•					•				
rades (1	***	1	0e, 0e	8h 75	33 ′ 29	75 •01	1 07	.827 35	,50,′ 20	50 ′ 75	1.0/	06 1.0	50, 1.0	1.0/
Philadelphia oI															
rade l	,83 91	40	1 0	92. 1.0	1 0/	71 .94	80 ′ .7 s	887 78	.88/ 91	1.0/	1.0/	1.0/	/ U, O	1 0	1.0/
rade 1	**	41	.40 75	84 23	*5,/ *5	60 60	787 78	1.07	94 / 68	60/ 75	.38/ 60	1 0/	.25/ 1 0	.33/ 1.0	1 0
1 rtagevil.e															
rate	,,	44 41	7 s 86	1-27	.897 1-0	.46/ 35	.86′ .55	80/ 57	96/ 1.0	1.0/ 67	.60	1 0/ 1.0	.09/ 1.0	1.0/	1.0/
rade :	• 5	¥.	··'	1 0	64/ 1-0	547 41	757 82	1 0/	4.	1 0/ 20	40/ 50	0 0	.08/ 1 0	1 0/	1.07
Kasas ti															
urade .	41 1 1	3,0	ዓ)'	1 or 90	75, .86	63/ .75	1 07 .88	.75/ 86	1.0/ 96	1.07 .50	1 0/ 50	.75/ 1.0	0.0/ 0.0	.50/ 1.0	1.0'
(rade)	65 1	93	40 /	3 3	.887 57	75/ 40	897 80	80/ .89	95/ 1 0	1 0/	1.0,	75/ 73	.08/ .50	.50/ 1,0	75/ 1 0
. Sasville															
rite	ų * /	a Hi	537 71	46 1 75	1 0	627 94	1 0/ 67	1.0' 88	.43/ 74	1 0/ 50	1 0/	1 0/ 50	0 0/	1 0/ 1.0	0 0
orade)	я <u>ь</u> 63	.41 8h	43	91/ 1.0	.70/ '8	.38	1.0/ 1.0	1 07 38	1 0 / 85	.40/ 50	.13/	1.0/	.06/ 1 0	1.0/	0.0
ofte and			\$ 6. 1.5v	- W. ra	HOW O	Codes-	Criteri	on Irat		o or te			-	Overa	racy
site and rade [evel	W _	· _v	્ર્યું છું!	Mcre 3	нож (Codes-	Criteri	on Inst		e or le			H		racy
	W _	,	\[\(\tilde{\ti}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Mcre 3	100				Fiv		99			Accur Rat	racy te
rade [evel	77 74 76	<u>v</u>	`	Mcre 3	100				Fiv		99			Accur Rat	racy te
rade level New York Por TN rades 1	×÷		••′	<u>3</u>	δP	<u></u>		<u> </u>	9 1.0/	1.0/	.67/	1 0/	H 1.0/	Accur Rai WHAT	te HOW 70/
rade level New tork P = 100 rades 1 and 0 P Padelphia I rade 1	* 1 16 1 4	1	42	1 ' 3	5P 827 1.0 88	1.0'	, , , , , , , , , , ,	0.0, 0.0 0.0 0.0	1.0/ 50	1.0/ 1.0 1.0/ 67	.67/ 67 0.0/ 0.0	1 0/	H 1.0/	Accur Rai WHAT	te HOW 70/
New fork Post No. rades 1 and 3 P. Padelphia I	* * **	•	44'	1 : 3	82/ 1 0	1.0	, , , 0	0.0, 0.0	1.0/ 50	1.0/ 1.0	.67/ .67 .67	1 0/ 75	1.0/ .50	Accur Ras WHAT	70/ .69
rade level New tork P = The rades 1 and 4 P Platelphia 1 rale rade 5 Fortageville	84 46 48 42	1	44' 49' 42' 7' 84'	1 ' '3 1.J' '56	5P 827 1.0 88 887	1.0/ 1.0/ 25 1.0/	1.0/10	0.0, 0.0 0.0 1.0 0.0	1.0/ 50 1 0/ 1 0/ 1 0/	1.0/ 1.0/ 1.0/ 67 1.0/	.67/ .67/ .67 .0.0/ .0.0/	1 0/ 75 53/ 75 1.9/	H 1.0/ .50 / 0.0 1.0/	Accur Rai WHAT 70	70/ .69
rade love! New tork P = "No rades 1 and 3 P Platelphia I rade 1 rade 1 Fortageville rade 1	46 46	1	1 2 2 1 2 1 2 2 3 8 1 2 3 8 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	1.37 .56 1.77 .56	1.0 88 88/88	1.0/ 1.0/ 25 1.0/	1.0/ 1 0 1 0 1 0 50	0.0, 0.0 1.0 0.0' 0.0'	1.0/ 50 1 0/ 1 0/ 1 0/	1.0/ 1 0/ 67 1 0/ 50	.67/ .67/ .67 .0.0/ .0.0/	1 0/ 75 53/ 75 1.9/	H 1.0/ .50 / 0.0 1.0/	Accur Rai WHAT 70	70/ .69
rade loval New tork P = TV rades 1 and 4 P Patelphia i rale i rale i Fortageville	45 45	**************************************	1 2 2 1 2 1 2 2 3 8 1 2 3 8 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	1 · · · · · · · · · · · · · · · · · · ·	827 1 0 1.0 88 88 887	1.0/ 25 1.0/ 63	1.0/ 1 0 1 0 50	50/ 1.0 0.0' 0.0' 0.0'	1.0/ 50 1.0/ 50 1.0/ 1.0 1.0/ .50	1.0/ 1.0/ 67 1.0/ 50	.67/ 67 0.0/ 0.0 1.0/ 50	1 0/ 75 53/ 75 1.0/ .50	H 1.0/ .50 / 0.0 1.0/ 50	70 .88	70/ .69 89/ .75 .89/ .75
rade love! New tork P = "No rades 1 and 3 P Platelphia I rade 1 rade 1 Fortageville rade 1	45 46 46	1	44 46 46	1.37 .56 1.7 .56 1.7 .23	1.0 88 88 88/ 88 88/ 1.0	1.0' 1.0' 25 1.0' 63 1.0'	1.0/ 1.0/ 1.0 1.0 50	0.0, 0.0 0.0 1.0 0.0 0.0	1.0/ 50 1.0/ 1.0/ 1.0/ 1.50 .50/ 50	1.0/ 1 0/ 67 1 0/ 50	.67/ 67 0.0/ 0.0 1.0/ 50	1 0/ 75 53/ 75 1.0/ .50	1.0/ .50 / 0.0 1.0/ 50	Rat WHAT 70 .888 .72	70/ .69 89/ .75 .89/ .75
rade loval New tork P = Th rades 1 and 4 P Pradelphia I rade : rade : Fortageville rade : Kansas : its rade :	45 46 46	1	44 46 46	1.37 .56 1.7 .56 1.7 .23	1.0 88 88 88/ 88 10 10 10 17,78	1.0' 1.0' 25 1.0' 63 1.0'	1.0/ 1.0/ 1.0 1.0 50	0.0, 0.0 0.0 1.0 0.0 0.0	1.0/ 50 1.0/ 1.0/ 1.0/ 1.50 .50/ 50	1.0/ 1 0/ 67 1 0/ 50	.67/ 67 0.0/ 0.0 1.0/ 50	1 0/ 75 53/ 75 1.9/ .50	1.0/ .50 / 0.0 1.0/ 50	Rat WHAT 70 .888 .72	70/ .69 89/ .75 .89/ .75
rade love! New tork P = "No rades 1 and 4 P Platelphia I rade 1 rade 1 Fortageville rade 1 orate 5 Kansas (its	48 46 45 46 46 46 47	1 0 1	42 7 42 7 64 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	1.07 .56 1.07 .23	1.0 88 88 88/ 88 1.0 1.0 1.0 78	1.9/ 25 1.0/ 63 1.0/ 57	1.0/ 1.0/ 1.0 1.0 50	0.0, 0.0, 0.0 1.0 0.0' 0.0' 0.0'	1.0/ 50 1.0/ 1.0/ 1.0/ 1.0/ 50 1.0/ 50	1.0/ 1.0/ 67 1.0/ 50 1.0/ 1.0	.67/ 67 0.0/ 0.0 1.0/ 50 50/ 1.0 50/ 1.0	1 0/ 75 53/ 75 1.0/ .50 .33/ .25 .50/ .30	H 1.0/ .50 / 0.0 1.0/ 50 / 0 0 1.0/ 50	.88 .72 .7570	70/ .69 89/ .75 .89/ .75 .66 .89/
rade loval New tork P = Th rades 1 and 4 P Pradelphia I rade : rade : Fortageville rade : Kansas : its rade :	46 46 46 46 46 46 46 46 46 46 46 46 46 4	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	927 927 927 946 PARC 9	1	1.0 88 88/ 88/ 88/ 1.0 1.0 1.0 78	1.0/ 25 1.0/ 63 1.0/ 63 1.0/ 57	1.0/ 1.0/ 1.0 1.0 1.0/ 1.0/ 1.0/ 1.0/	0.0/ 0.0/ 0.0 1.0 0.0/ 0.0 0.0/ 0.0 0.0/ 0.0	1.0/ 50 1.0/ 1.0 1.0/ .50 .50/ .50 1.0/ 50 1.0/ 1.0/	1.0/ 1.0/ 67 1.0/ 50 1.0/ 1.0/ 1.0/ 67	.67/ 67 0.0/ 0.0 1.0/ 50 50/ 1.0 1.0	1 0/ 75 53/ 75 1.0/ .50 .33/ .25 .50/ .50	1.0/ .50 / 0.0 1.0/ 50 / 0.0 1.0/ 50	.88 .72 .70	89/ .69 89/ .75 .89/ .75 .86/ .66 .89/ 65
rade love! New tork P = 100 rades 1 and 4 P Pladelphia I rade 1 rade 1 rade 5 Fortageville rade 5 Kanvas (it) (rade 1 irade 1	46 46 46 46 46 46 46 46 46 46 46 46 46 4	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	927 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	1.0 88 88/ 88/ 88/ 1.0 1.0 1.0 78	1.0/ 25 1.0/ 63 1.0/ 63 1.0/ 57	1.0/ 1.0/ 1.0 1.0 1.0/ 1.0/ 1.0/ 1.0/	0.0/ 0.0/ 0.0 1.0 0.0/ 0.0 0.0/ 0.0 0.0/ 0.0	1.0/ 50 1.0/ 1.0 1.0/ .50 .50/ .50 1.0/ 50 1.0/ 1.0/	1.0/ 1.0/ 67 1.0/ 50 1.0/ 1.0/ 1.0/ 67	.67/ 67 0.0/ 0.0 1.0/ 50 50/ 1.0 1.0	1 0/ 75 53/ 75 1.0/ .50 .33/ .25 .50/ .50	1.0/ .50 / 0.0 1.0/ 50 / 0.0 1.0/ 50	.88 .72 .70	89/ .69 89/ .75 .89/ .75 .86/ .66 .89/ 65

^{*}The Accors . Sath is given first and the Criterion Accorded Pate is given second

As uracy Rate - Proportion correct of the total recorded.

(riterion Accuracy Rate - Proportion of times the Criterion Instances were recorded correctly.

Table 1-6

A 1 300 SALLS 10 SARS AND HOW OURS BY HIGH/SOPE EDICATIONAL SESTABLE ICLNIATION OBSERVERS

						WHA I	Coles-	-triter	ton In-	tances					••••
hite and tade level	11	3 -	4	+N ⁻²	7.7 - 2.47 1.7 - 3. 47	AT.			12	_1		HIVE	or Tes	`	11
Greenwood															
rade 1	,69 , k	86 14	}× }8	, 44 , 44	.717 .63	677 .3	h"	86 67	827 82	1)'	0.07	757 1.0	07.	/ 5g	1 07
-rade 3	*	,)	1 0 86	(1, i) (1 ()	707 88	n() / 40	85 ' ,75	86 · 75	777 1 0	1 0/	507 40	1.0/	,06 1 6	1 07	1.0
rt. Walton Beach															
-rade 1	1 U	.94./ 80	807 1 0	91, ,91	#6/ 1-0	62 ′ . 94	1.0/	.887 88	.90/ 86	50,	1 07	1 0/	.67/ 1 0	1.0	1.07
vrade 3	1 . 81	96 ' , 43	?1/ 83	1 0/ 82	887 1 0	43/ 75	1 0/	, 787 88	. 12/	1.0/	.56/ 1 0	1 0/ 1 0	.17/	1.07	1 1/
TIPECALY															
states 1 and 3	.77 <i>'</i> .81	967 90	1 07 1 U	1 9,	, 18 ' 88	.93/ .81	1.0/	.867	96/	0.0	.43/ .60	1.0/	13 1.9	1.0	1.07
Denver															
orade l	.867 90	1 0/	1 0/	1.07	55/ 1 0	>5' 75	1.07	.98/ 88	.917	33,	.50/	1 0/	.50,	1.0	
Grade 3	.82	អ3' សម	>6/ 11	.8c 50	.88	79/ 485	1 0/	1 0/	.85/ 92	.50,	, 507 40	.67		1.0/	.75/ 1 0
New York P. S. 929	4														
Grades 1 and 3	,687 77	91′	60/	83/ ,50	.55/ 86	.38 ′ 23	1.07	1.0/	.80/ .80	0.07	75/ 50	1 0/ 1 0	0.0/	0.07	1 0'
Site and	**		Six o	r vore	HO's Co	odes(riterio	n_Insti	inces Ffu	e or le		_ ****		Overal Accura	ic ¥
Site and Orade Level	_W		Six o	r Yore	BON CO	ode5(riterio		F 1 v	or le	N T				ic V
	_NV		Six o						F 1 v	or le	N.		н	Accura Rate	ic V
<u>orade</u> Level		1 0/	S1x o					0.0/	F 1 v	.60/	.67/ .67		H 1 0/	Accura Rate WHAT H	ic V
Greenwood	•9	1 0/	A	B 1 0'	DP 1 0/	86/	1 0/	0.0/	1.0/	.60/	.67/ .67	.50/	1 0/	Accura Rate WHAT H	10w 81/
Grade Level Grade 1	*9 ,83 84	1 0/ 1 0/ 1 0/	A	B . 1 0' 44 1.0/	DP 1 0/	86/ 1.0 ,50/	1 0/ 1.0 1 0/	0.0/	1.0/ 1 0/	.60/ 10 1 0/	.67/ .67	.50/ .33	1 0/ .50 1.0	Accura Rate WHAT H	70W
Grade Level Greenwood Grade 1 Grade 3	*9 ,83 84	1 0/ 1 0 1 0/ 1 0 1 0/ 1 0	A	B . 1 0' 44 1.0/	DP 1 0/	86/ 1.0 ,50/	1 0/ 1.0 1 0/	0.0/ 0.0 / 0.0	1.0/ 1 0 1 0/ 1 0/	.60/ 10 1 0/	.67/ .67 1 0/ 1.0	.50/ .33	1 0/ .50 1.0	Accura Rate WHAT H 68 . 71	70W - 81 / 74 -
Grade Level Greenwood Grade 1 Grade 3 ft Walton Beaus	*9 .83 89 96	1 0/ 1 0 1 0/ 1 0	.87/ 79 .89/ 65	1 0' 44 1.0/ 20	DP 1 0/ 44 .80/ 44	86/ 1.0 .50' .29	1 0/ 1.0 1 0/ .50	0.0/ 0.0 / 0.0 0.0 0.0	1.0/ 1 0 1 0/ 1.0 1 0/ 50 .67/	.60/ 10 1 0/ 67	.67/ .67 1 0/ 1.0	.50/ .33 .33/ 1 0	1 0/ .50 1.0 33	Accura Rate WHAT H 68 . 71 .	81 / 74 86 / 65
Grade Level Greenwood Grade 1 Grade 3 ft Walton Beach Grade 1	19 .83 89 96 10' 19	1 0/ 1 0 1 0/ 1 0 1 0/ 1 0	.87/ 79 .89/ 65	1 0' 44 1.0/ 20 1 0' 55 1.0/	DP 1 0/ 44 .80/ 44 1 0/ 44 1 0/	86/ 1.0 .50/ .29	1 0/ 1.0 1 0/ .50	0.0/ 0.0 / 0.0 0.0 0.0	1.0/ 1 0 1 0/ 1.0 1 0/ 50 .67/	.60/ 10 1 0/ 67	.67/ .67 1 0/ 1.0/ .33 .67/	.50/ .33 .33/ 1 0	1 0/ .50 1.0 33	Accura Rate WHAT H 68 . 71 .	81/ 74 86/ 65
Grade Level Greenwood Grade 1 Grade 3 ft Walton Beach Grade 1 Grade 3	19 .83 89 96 10' 19	1 0/ 1 0 1 0/ 1 0 1 0/ 1 0	.87/ 79 .89/ 65	1 0' 44 1.0/ 20 1 0' 55 1.0/	DP 1 0/ 44 .80/ 44 1 0/ 44 1 0/	86/ 1.0 .50/ .29	1 0/ 1.0 1 0/ .50	0.0/ 0.0 / 0.0 0.0/ 0.0 0.0/	1.0/ 1 0 1 0/ 1.0 1 0/ 50 .67/	.60/ 10 1 0/ 67	.67/ .67 1 0/ 1.0/ .33 .67/	.50/ .33 .33/ 1 0	1 0/ .50 1.0 33	Accura Rate WAT H	81/ 74 86/ 65
Grade Level Greenwood Grade 1 orade 3 ft Walton Beaus Grade 3 Grade 3	19,83 84 46 19,49 93,49	1 07 1 0 1 07 1 0 71 677 .86	.97/ 79 .89/ 65 .83 .76 .97/ 80	1.0/ 20 1.0/ 55 1.0/ 55	DP 1 0/ 44 .80/ 44 1 0/ 63	86/ 1.0 .50' .29 1.0/ .86 .78/ .88	1 0/ 1.0 1 0/ .50 1.0/ .50 67/ 1.0	0.0/ 0.0 / 0.0 0.0/ 0.0 0.0/	1.0/ 1 0/ 1 0/ 1.0 1 0/ 50 .67/ 1.0	.60/ 10 1 0/ 67 , 0 0 1 0/ 1 0	.67/ .67 1 0/ 1.0/ .33 .67/ 1 0	.50/ .33 .33/ 1 0	1 0/ .50 1.0 33 1.0/ .50 1 0/ 1 0	Accura Rate WAT H	81/ 74 86' 65 39/ 69 87/ 81
Grade Level Greenwood Grade 1 orade 3 ft Walton Beach Grade 3 orade 3 orecles Tajes 1 and 3	19,83 84 46 19,49 93,49	1 07 1 0 1 07 1 0 71 677 .86	.97/ 79 .89/ 65 .83 .76 .97/ 80	1.0/ 20 1.0/ 55 1.0/ 55	DP 1 0/ 44 .80/ 44 1 0/ 63	86/ 1.0 .50' .29 1.0/ .86 .78/ .88	1 0/ 1.0 1 0/ .50 1.0/ .50 67/ 1.0	0.0/ 0.0 / 0.0 0.0 0.0 0.0 0.0 0.0	1.0/ 1 0/ 1 0/ 1 0/ 1 0/ 50 .67/ 1.0	.60/ 10 1 0/ 67 / 0 0 1 0/ 1 0	.67/ .67 1 0/ 1.0 1.0/ .33 .67/ 1 0	.50/ .33 .33/ 1 0 1.0/ .50 1.0/ .50	1 0/ .50 1.0 33 1.0/ .50 1 0/ 1 0	Accura Rate WHAT H	81/ 74 86/ 65 39/ 69 87/ 81
Grade Level Greenwood Grade 1 orade 3 ft Walton Beach Grade 3 orade 3 orecles fraies 1 and 3 ocurrer	1 0' 49 45 46 46 46	1.07 1.9 1.07 1.07 71 677 .86	.97/ 79 .89/ 65 83 76 97/ 80	1 0/ 44 1.0/ 20 1 0/ 55 1.0/ 55	DP 1 0/ 44 80/ 44 1 0/ 63	86/ 1.0 .50' .29 1.0/ .86 .78/ .88	1 0/ 1.0 1 0/ .50 1.0/ .50 67/ 1.0	0.0/ 0.0/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.0/ 1.0/ 1.0 1.0/ 1.0 1.0/ 1.0/ 1.0/ 1.	.60/ 10 1 0/ 67 / 0 0 1 0/ 1 0	.67/ .67 1 0/ 1.0/ .33 .67/ 1 0	.50/ .33 .33/ 1 0 1.0/ .50 1.0/ .50	1 0/ .50 1.0 .33 1.0/ .50 1 0/ 1 0	Accura Rate WHAT H 68 . 71 . .86 89 .	81/ 74 86/ 65 39/ 69 87/ 81
Grade Level Greenwood Grade 1 Grade 3 ft Walton Beaus Grade 3 Grade 3 Grade 3 Grade 4 Grade 3 Grade 6 Grade 7 Grade 1 Grade 7 Grade 1 Grade 1 Grade 1 Grade 1 Grade 1 Grade 1 Grade 1 Grade 1 Grade 1 Grade 1 Grade 1 Grade 1	1 /1/ 19 /19 /19 /19 /19 /19 /19 /19 /19 /19 /	1 0/ 1 0/ 1 0/ 1 0/ 1 0/ 71 67/ .86	87/ 79 -89/ 65 80 76 97/ 80 94/ 83	1 0/ 20 1 3/ 55 1 0/ 55 1 0/ 55	DP	86/ 1.0 .50' .29 1.0/ .86 .78/ .88	1 0/ 1.0 1 0/ .50 1.0/ .50 67/ 1.0 1.0/ .50	0.0/ 0.0/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.0/ 1.0/ 1.0 1.0/ 1.0 1.0/ 1.0/ 1.0/ 1.	.60/ 10 1 0/ 67 / 0 0 1 0/ 1 0 33/ 50	.67/ .67 1 0/ 1.0/ .33 .67/ 1 0	.50/ .33 .33/ 1 0 1.0/ .50 1.0/ .50	1 0/ .50 1.0 33 1.0/ .50 1 0/ 1 0	Accura Rate WHAT H 68 . 71 . .86 89 .	81/ 74 86/ 65 39/ 69 87/ 81 93/ 65
Grade Level Greenwood Grade 1 Grade 3 Ft Walton Beach Grade 3 Grade 3 Grade 3 Grade 3 Grade 1 Grade 3 Grade 3	1 /1/ 19 /19 /19 /19 /19 /19 /19 /19 /19 /19 /	1 0/ 1 0/ 1 0/ 1 0/ 1 0/ 71 67/ .86	87/ 79 -89/ 65 80 76 97/ 80 94/ 83	1 0/ 20 1 3/ 55 1 0/ 55 1 0/ 55	DP	86/ 1.0 .50' .29 1.0/ .86 .78/ .88	1 0/ 1.0 1 0/ .50 1.0/ .50 67/ 1.0 1.0/ .50	0.0/ 0.0/ 0.0 0.0/ 0.0 0.0/ 0.0/ 0.0/ 0	1.0/ 1.0/ 1.0/ 1.0/ 1.0/ 1.0/ 1.0/ 1.0/ 1.0/ 1.0/ 1.0/ 1.0/ 1.0/ 1.0/	.60/ 10 1 0/ 67 / 0 0 1 0/ 1 0 33/ 50	.67/ .67 1 0/ 1.0/ .33 .67/ 1 0	.50/ .33 .33/ 1 0 1.0/ .50 1.0/ .50 38/ .75	1 0/ .50 1.0 33 1.0/ .50 1 0/ 1 0	Accura Rate WIAT H	81/ 74 86/ 65 39/ 69 87/ 81 93/ 65

The Λ -uracle Rate 1 -given first and the Criterion Aururacy Rate is given second:

Accuracy Rate | Proportion correct of the total recorded, Criterion A curacy Rate | Proportion | f times the Criterion | Instances serv recorded correctly,

as le 1-1.

A - SACE RALES & S-AFXE AND HER CODES BY EDUCATION DESERGEMENT CONTER OBSERVERS

						WHAT	10 304- -	(riterio	on Inst	ances					
olte and rade (evel	1.		•	• V	x x Mo	re	,,,,	9	12_	_1		Five o	r Less 5		- 11
fur'ingt r															
crade i	,	41 44	"4 . 1	₹1	7 :	7() / 7()	1.0/	83/	887 96	1 07	677 -80	50/ 1 0	11/ 1 0	1 07	1.07
crade i	<i>}</i> Ч•	* , * +	1 1	44	1 F 1 B	7 ′ 81	75.1 90	88 / 88	96 95	1 n'	577 80	67/ 1.0	50 1,0	1.07	1 0
Pulade,phia I															
yrade 1	42 51	הי ו מי	611 14	8 11	`5 Kh	64, 54	`d	887 88	77/ 1 0	· 15/	4 0′	1 0/	0.07	67 '	1.07
Σą ⁴ e t	**	-3 -6	hil ",	1.0	361 15	51 24	63 50	75 ·	71 / 63	10	33' 1 0	67 ' 50	0.01	33' 1 0	,507
4 se .;															
rade i	33 1	45 45	1 7' 30	명6, 6년	837	707 94	1 0/	75/ 75	77/ 1 0	1.0/	1 0/	.75/ 1.0	0.0	1.0/	1 0/
orade 3	93 6*	44 86.	8u .)'	,83 41	757 43	88 · 8	80 / .89	89 ′ .89	.77/ 87	1.0	.40/ 80	.50/ .67	0 0/ 0.0	1 0 ′ 1 0	1.0'
Smitr*ield															
orade l	34 .44	47	1 0	1 0	6* } ()	887 1)	.88,′ .78	86/ ,50	,96/ 96	75/ 75	67 <i>)</i> 50	67/ 1.0	0 0	67/ 1 0	I 0/
Craje +	9) 11	937 82	44	94 / 73	•)' 55	1.0	.837 71	1 0/ 67	907 85	75/ 1.0	33/ ,50	.75/ 1.0	0.0/		
Sita of			· TV:	er graan	H)w(H	odes-	(riteri	on Insta							racv
Site and <u>made Level</u>	<i>M</i>		<u> </u>	r More	H) w 1	odes-	(riteri	on Insta	F ₁	ve or L		-	<u> </u>	Accu	rac v
	<i>A</i>		<u>≥1∢ 3</u>	r More		odes-			F ₁		ess N	1	1	Accu Ra	rac v
<u>raje</u> "e.el	W	71.	51() n 94'	r More 82 75		0des- 			F ₁	ve or Lo T .50/ 1.0		1 0/	1 0/	Accu Ra	rac v
raie Level	35	,,,	- <u>n</u>	82	<u>11P</u> 657	1.9/	.67/	50/	1 0 '	.50/	.60/		1 0/	Accu Ra WHAT	HOW 84/
raje_uevel Kirlington rade	95 95 95	'1 83	- <u>15</u> 94 ' , 94 74	82 75 1 9/	PP	1.0/	.67/ 1 U	50/ 1 0 0 n/	1 0 ' 1.0 ' 1.0 '	.50/ 1.0 33/	.60/ 1 0 67/	50 80/	1 0/ 50	ACCU Ra WHAT	How 84/ 83
rate cerel strlington rate :	95 95 95	'1 83	- <u>15</u> 94 ' , 94 74	82 75 1 9/	PP	1.0/	.67/ 1 U	50/ 1 0 0 n/	1 0 ' 1.0 ' 1.0 '	.50/ 1.0 33/ 1.0	.60/ 1 0 67/	50 80/	1 0/ 50	ACCU Ra WHAT	How 84/ 83
rade (recel surface) rade (recel rade)	95 82 95 85	*11. 83 5 : 9	94' .94' .74 H1	82 75 1 07 .46	65/ 21 57' 62	1.9/ 63 .62/ 25	.67/ 1 U 0 C	50/ 1 0 0 n/ 0 0	1 0 ' 1.0 ' 67 / 1.0 ' 67 /	.50/ 1.0 33/ 1.0	.60/ 1 0 67/ .67	50 80/ 1.0	1 0/ 50 33/ 50	WHAT 80	84/ 83 72, 72
rate great surlington rade t zrade t Position is I rate	95 45 45 46 96	11 83 5 1 0 1	947 947 74 81 96 88,	82 75 1 97 .46	65/ 21 57' 62 1 0' 1 0'	1.0/ 63 .62/ 25	.67/ 1 U 0 C	50/ 1 0 0 n/ 0 0	10'1.0 67'1.0 67'1.0 /	.50/ 1.0 33/ 1.0 1.0/ 50	.60/ 1 0 67/ .67	30 80/ 1.0 .75/ 75 .67/	1 0/ 50 33/ 50	80 .87	84/ 83 72/ 72 41/ 97
rate uncel diffingtion rade i zrade : Position is I rate rade t	95 45 45 46 96	11 83 5 1 0 1	947 947 74 81 96 88,	82 75 1 97 .46	65/ 21 57' 62 1 0' 1 0'	1.0/ 63 .62/ 25	.67/ 1 U 0 C	50/ 1 0 0 n/ 0 0	10'1.0 67'1.0 67'1.0 /	.50/ 1.0 33/ 1.0 1.0/ 50	.60/ 1 0 67/ .67	30 80/ 1.0 .75/ 75 .67/	1 0/ 50 33/ 50	80 .87	84/ 83 72/ 72 41/ 97
rate uncel derlington rade i zrade : Provide pola I rote rade (docebud	95 45 46 95 46	11.7	941 941 74 81 98 88,	82 75 1 97 .46 1 9 50 1 97 80	57' 62' 1 0' 1 0' 1 0' 1 0' 1 0' 1 0' 1 0' 1	1.0/ 63 .62/ 25	.67/1 U O C	50/ 1 0 0 n/ 0 0 0 0 0 0 0 0 0 0 0 0	10'1.0'67'1.0'1.0'1.0'1.0'1.0'1.0'1.0'1.0'1.0'1.0	.50/ 1.0 33/ 1.0 50 50/ 50	.60/ 1 0 67/ .67 0.0/ 0.0 0.0	.75/ .75/ .67/ 1.0	1 0/ 50 33/ 50 1 0/ 1 0	80 .87	84/ 83 72, 72 91/ 97 80
rate usual diffingtion rade to crade to rate trade rate diffination (a I rate rate rate rate rate rate rate	96 82 95 46 96 97	11 83 5 1 9 1 2 2 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1	947 947 74 81 96 88, 75	82 75 1 97 .46 1 97 89	57/ 21/ 57/ 67/ 1/0/ 1/0/ 1/0/ 1/0/	1.0/ 63 .67' 25 1.0/ 1.0 1.0/ 1.0/ .50	.67/1 U O C 1 O' 1.0	50/10 0 n/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0	10' 1.0 67/ 1.0 67/ 1.0 67/ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.50/ 1.0 33/ 1.0 1.0' 50 50/ 50	.60/ 1 0 67/ .67 0.0/ 0.0 0.0	50 80/ 1.0 .75/ .75 .67/ 1.0	1 0/ 50 33/ 50 1 0/ 1 0 0 0	80 .87 .62	84/ 83 72, 72 91/ 97 87 80
Figure 1 Figure 1 Figure 2 Figure 2 Figure 3 Figure 3 Figure 3	96 82 95 46 96 97	11 83 5 1 9 1 2 2 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1	947 947 74 81 96 88, 75	82 75 1 97 .46 1 97 89	57/ 21/ 57/ 67/ 1/0/ 1/0/ 1/0/ 1/0/	1.0/ 63 .67' 25 1.0/ 1.0 1.0/ 1.0/ .50	.67/1 U O C 1 O' 1.0	50/10 0 n/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0	10' 1.0 67/ 1.0 67/ 1.0 67/ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.50/ 1.0 33/ 1.0 1.0' 50 50/ 50	.60/ 1 0 67/ .67 0.0/ 0.0 0.0	50 80/ 1.0 .75/ .75 .67/ 1.0	1 0/ 50 33/ 50 1 0/ 1 0 0 0	80 .87 .62	84/ 83 72, 72 91/ 97 87 80

. For V is a V-Rate is given first and the interior A , in a V-Pate is given second

Accuracy Pate - Proportion correct of the total recorded.

Triterion Accuracy Rate - Proportion of times the Criterion Instances were recorded correctly.

Appendix M

SPONSOR IMPLEMENTATION VARIABLES AND CORRESPONDING QUINTILES

1 & 119PI

MON-FOLLOW THROUGH RETAILES FOR SPONSOR THE EMPTATION VARIABLES

Variative Number (Nied seine Nieder von (Nied seinet II of seating and work group unmer, tors, play squipment present ucesting playing manufactuals present ucesting parts, tables games, jazzles sumbters, parts, artificetti.	17.4												:		4				
	ř –	efty of	of Sank		- t _c -	Univer- sity of Aansas	Mtgh/ Scope	iš	- 111. N	: ~ ;	First trade 2nd srd	ale Srd	Max I Full	# # # B 2 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		i i	4 to 1	j.,	***************************************
	× 4470		~				~	<i>></i>				2	**		3	-		ð	
	×	٠	~				×	,		5	5	2	~		· ·	-	-	7	,
	<i>-</i>					×.	,	•	5	>	0		= '	·• ·				? -;	
	×		•	•	>	- >	× ,	 ×		~	7	-	- 	. ,			X	-	, . , ,
					*	· ×	· ×	· ·	ږ	ìã	· ·		4	` :				,	
Sentug. 10kt g. p 10nding		~					~	0			φ	!	_	53	0	د	د ب		
blacks, trains							_	0					_		ڊ	ב	כ	٠,	×,
Fracti al sk lis alguisition	,	3	> 3					، ر _د :	;					o -					
A reacher with ore child	· ·		~ >				٠,	· -	2	3	ا د	- 	~ ;	~ :	, , ,	, -	5		· >
			· ~					2			ĉ	<u>.</u>	20 02		د د			,	
" feather with small group		~		•	>	~	~	, ,		3	2	· ~	32		د د	,	`.	,	
			-					. ~					70 84		ي ،		2	*	
		-		-	~	,	×	0				Ď	, e 3,				Ų		
The Child independent	× ×	>	~					: ~		-	3	٠.	÷.		•	· .	5		
in two contained independent	,		,					× :		٠	<u>.</u> .	ę,	* :			ا الحد	٩	.*	•
			<					•		-	:	ć.	10		·	•			
	~		<				×	3			~		;			٥	ŧ		2
				×	~	у-		2	7, 21	33	69 73	68 85	1 86 5	2,5	0,0	2	œ.	; G	
-	- use		×					9		2	85		-					3	
been individual child werbal interaction with	ž																		
View adult	· ;	· ;	. ح	~	~	~	,	 *	0,	 \$	2 .	ج ت	77. 58		83 20 70	£7 £7 €	e R	:	, X,
	-	•	-				~			200			_	o -•	S			7	,
	, to			-				0		~ X	6		•	3			•		,
٠			,				,	- φ	0			,	•	•	•	ی .		2 :	:
3 Sa Adult instructs an individual child	× ×							· ·		20		`.	ء ٠			>	- د	. ;	2 %
				•	~			0	v1	55 7	55 8	77 10	77 75		37 74			2.5	
							~	ت ×				_	7				-		5
but All so it acknowledgment to children	×		-	> :	> :	~	~			~		~	٠.	æ.	?· · · · · ·	-	٠,	<u>``</u>	*5.
	11.	-		~	~	~			60	5,		-	•		.,				,
	lons			`	>	>		C				-	,			-	30	;	:
Da Adult attentive to a small group	· ·			< ₩	,,	<	>	0		. 50		^ -	^ <			٦.	÷ :	2 3	* ;
	×	~	×			~	· >	•	63	~ %		•			~	~	; ç; ,	~	` .
	* *	~	-					0 ;	;				~	Ó			. 33		ž
1994 Sotal academic Verbal interactions				-	~			25	္က ႏ			œ,	\$;	ŭ	7.07		66.3
*** Adult focus, small group	•		~	•	>	*	× ×	·	2 2			7,	# <u>*</u>	~ 0		2	7		, 4,
	×			•	,		,		S S	**	30 C 35	٠,٠	7 2 30	25	; ~	7 4	/ 7	y ,	× :
								°				0	•	0	. 0	• =	٠. ر		: :
file Adult attacests compands, requests, and				3				^	2	-		•	:						
Adult open-ended onestions to believe	•	•	,	-		<		,		9 9	•	0 :	6, 2, 3,	77	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- -	2	; •	×
			<				-	•		2		67		o ^	ô		ς,	ř	-
							~	0 ×	0	Э	٠,	35	١.		0	o	-	,	
		~	•					0		9	:			0 7	ô			3	' , '
	× :	~					×	0		-	- •	~	2		6,	-1			
4.4 All addit positive corrective regobers		>		~	~	٠,		:	× ×	H	· 2:	ή.	4 .		<u>.</u>				, ,
	٠					,) c			2	⊸ 0	1		Š	•			
				>	>	-		0	.	2 2	2	2	7.		o -	٠ :			
			×	•	,		×	ه ه	0	;	91	٠ ۲ ۲	2 2 2 2	0 0	3.0	¢, c	ž (
			~			>	. ~	0		`	5,0	, ;	•		 	,) ~		
Iwo children working together, using																			
Concrete objects							,	0	0	~	0	0	0	0	0	э	0	Ş	5
			>					c	-	-		5							
The Social Interaction abong children	×		· >									> :	י כ		Ş	: c	O		
(4,13	,							· ×	} ~;	, ,	٠.		28	۰ c	? \$	•	. >	, ,	٠
199c Child seit-instruction, nonacadente	×	~					,	0	٥			•	0.7		ξ.	7 7	٠,		
The state of the s											•		•		,	4			

[&]quot;Sporate variables for first and third grades are shown for Far kest lab and iniversity of tray n Miniatup and maximum represents the lowest and bighest scores for Non-Follow Through An X indicates a variable selected by a sponsor

table M-2

FREQUENCY DISTRIBUTION OF CLASSACOMS OVER IMPLEMENTATION SCORFS

FAR MEST LABORATORY 1

FAGE 2- 1

PF] 39 GFNEMAL FOULTH-11. - FIRST - THILL - T	2 1 2 1 2 1 2 2 1 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 7 6 2 7 13 35 35 30 30 35 35 55	CCL-A R3 VARIETY DF ACTIVITIES, - F19ST - THEO - T	91 4
GAMES, TOYS, PLAY FORIPMENT PRESENT T		1 2 3 4 10 5 10 15 20 50	READING. ALPHABET. LANGUAGE DEVELOPMENT S 1 2 3 4 5 5 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 22
Pf1 25 GAMES. FORTPWE	3 2 2 2 3 4 5 1	3 2 5 10 15 10 25 50	CCL-A 57 READING. - FIRST - 1 3	91.2
CHILD SELECTION OF SEATING AND WORK GROUPS T THIRD	2 1 1 9 5 1 1 4 7 11 8	2 1 6 1) 10 5 30 55	ARITHMETIC	1 2 2 15
PEI 24 CMILD SELECTI AND WORK GROU FIRST 1 1 2 3 4 5 1	4444	20 100	CCL-A 66 NUMBE - FIRST FIRST 2 2 2 2 2 3 4 5 5 2 6 5 2	1 6 13
VAKIAHLE: GRADE: GUINTILE:	5116 261 204 207 205 213	TOTAL *PERCENT	VARIABLE: GRADE: GRADE: SITE 204 204 207 209 213 TOTAL *PERCENT GRADE: GRADE: GRADE: SITE 201 201 201 201 201	TOT A!

[.] PEPCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

Table M-2 (Continued)

FAR WEST	FAR WEST LABORATORY ,	FREQUENCY D	FREQUENCY DISTRIBUTION OF CLASSROOMS OVER IMPLEMENTATION SCORES	TATION SCORES PAGE 2- 2	
VARIABLE: GRADE:	B 116 SMALL GRO INDEPENDE	Q F	J 239 M FIRST .	44 INDIVIUAL CHILD VER INTEPACTION/ ADULT ST THIRD -	PA .
GUINTILE: SITE 201	1 2 3 4 5 1	2 4 2	12345 12345	12345 12345	v
204 207 209	N.E. →	m + +	1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1	4
213	•		3 2 1 1		
TOTAL *PERCENT	1 2 3 14 5 10 15 70	2 18 10 90	3 4 13 7 4 9 15 20 65 35 2n 45	1 1 3 3 12	nc c
VARIABLES	FMO-A 357 CHILD QUESTIONS TO ADULT	STIONS TO	FMO-A 375 ADULT INSTRUCTS ONE CHILD	FMO-A 394 ALL ADULT ACKN. TO CHIOREN	
GRADE: Quintile: Site	1 2 3 4 5 1	- THIRD	FIRST THIRD	FIRST TAIRD 1 2 3 4 5	1 50
201 204 207 209 213			3 4 1 2 2 2 4 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	3 1 4 1 2 1 3 1 4 1 2 1 2 1 1 1 2 1 3 1 1 1 2 1	
TOTAL *PERCENT	3 5 12 15 25 60	2 6 12 10 30 60	10 10 1 2 5 12 50 50 5 10 25 60	5 8 3 4 1 2 6 9 2 25 40 15 20 5 10 30 45 10	~ 0
VARIABLE: GRADE: GUINTILE: SITE	FMO-A 427 ADULT ATTE GROUP FIRST 1 2 3 4 5 1 3	EN. TO SMALL - THIRD 2 3 4 5	FMO-A 421 ADULT ATTEN, TO ONE CHILD FIRST THIRD 1 2 3 4 5	FMO-A 423 POSITIVE BEHAVIOR. ADULTS TO CHILDREN THIRD - THIRD	110
201 204 207 213	1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2	111 1 11 2 2 - 1 4	1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 4 1 3 1 3 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1	e ~ 4 ↔
TOTAL	5 6 4 5 2 25 30 20 25 1n 1	3 3 2 10 15 15 10 5 <i>0</i>	1 2 3 6 6 2 2 3 6 5 5 10 15 40 30 10 10 15 40 25	i 3 9 7 6 1 3 1 n 5 15 45 35 31 5 15 5 n	c c

* PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

M-5

INN SCORES
I MPLEMENTATION
CLASSROOMS OVER IMPLEMENTA
BUTION OF
FREQUENCY DISTRIE
FAR WEST LABORATORY :

PAGE 2- 3

VARIABLEI	FMO-A 438 ADULT FOCUS	T FOCUS - ONE CHILD	FMO-A 444 ADULT MOVEMENT	FWO-A 452 ADULT OPEN FWDED OUFS.
GRADE:	FIRST	THIRD - +	FIRST THIRD 1 2 3 4 5	1 2 3 4 5 1 2 3 4 E
SITE	ı			
201	1 - 2	2 2 2	2 1 2 4 4	, 3 1 1 2
207		2	2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 - ~
213	1 1 2	1 1 2	3 1 2 1 1	1 1 1 1 2
TOTAL	3 5 12	80 **	4 5 7 2 2 2 4 11 2 1	4 2 9 1 2 5 2
*PERCENT	15 25 60	20 20 20 40	2n 25 35 10 10 10 20 55 1n 5	25 20 10 +5 5 10 25 10 50
VARIABLE	FM0-A 456 ALL COMP	ALL CHILD TASK-RELATED COMMENTS	FMO-A 457 ALL ADULT POSITIVE CORRECTIVE FD4K.	FMO-A 46C ALL CHILD POSITIVE AFFFCT
GRADE 1	FIRST	•	- FIRST -	T FIRST THIND
GUINTILET	1 2 3 4 5	12345	12345 12345	2345 1234
201	2 2	, ,	1 1 2 3 1	3 1 1 1 2
204		1 1 2		1 3
207	5		2 2 2	2 2 1 1 2
6 (1)	2 1	n -	n -•	7 7 7
213	e -	F. 3	3 1 2 1 1	
TOTAL	5 3 5 7	1 3 4 8 4	2 3 2 6 7 2 6 6 6	6 3 - 5
*PERCENT	25 15 25 35	5 15 20 40 20	15 10 30 35 1	15 40 30 15 5 45 31 20
VARIABLE	FM0-C 516 SOCI	SOCIAL INTERACTION	FMO-C 574 CHILD MOVEMENT	FMO-C 599 CHILD SELF INSTRUCTION.
GRADE	- FIRST	THIRD	FIRST THIRD	FIRST - + THIRD + +
GUINTILE 1	1 2 3 4 5	1 2 3 4 5	4 5 1 2	12345 12345
SITE	•			
102	.		2 1 1 2 2	
204		~ ~ ~		1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
503	. 4			
213	4			3 1 1
TOTAL	1 1 7	5 4 3	7 2 9 1 1 3	7 3 7 8 4 2 3 7 3
E NC L	10 5 35 45	12 91 12 92 91	10 45	15 31 11 13 0+ c5 61

* PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADF IN A GIVEN QUINTILE

FAR WEST	FAR WEST LABORATORY			TOTAL	IMPLEMENT	TOTAL IMPLEMENTATION SCORFS FOR CLASSROOMS. SITE. AND SPONSORS	FOR CLASSR	OUMS.	SITE. A	ND SPONS	JRS	PAGE	- - -
	,	•	FIR	FIRST GRADE	•	•	•	•	•	THIRD GRADE	GRADE -	1	,
SITE	•	<u>.</u>	- CLASSROOM -	:	MEAN	S.D.	.•	1	- CLAS	- CLASSROCM +	•	SE P. N	٠q٠,
Berkeley, Calif.	72.6						88	~.	70.4	79.3	71.9	75.9	5.7
Duluth, Minn. 76.3	76.3	84.4	4 80.7	80.0		3.3	72	1.1	61.5	80.0	71.1	73.7	7.7
Lebanon, N.H.	61.5						9	9.6	77.8	74.1	4.49	71.5	8.8
Salt Lake City,	Utah 80.7						80	4.	3.68	76.3	85.2	83.9	5.6
Tacoma, Wash.	78.5				75.0		52	2.67	94.4	80.7	72.6	2.67	5.0
Sponsor	Sponsor Scores (N=20):	:(78.3	**	Sp	onsor	Sponser Scores (N#20)	≈20) g		76.4	7.2
NFT Scor	NFT Scores (M=35):				60.3	£*9	χ.	T Score	NFT Scores (N=36):			9.65	9.1
					₩ Ω.	t = 11,28						t = 7.18	æ <u>c</u>

M-7

507

ERIC

Table M-3

VARIABLE	PFT 24		CHILD SELECTION OF SEATING	G PEI 25 GAMES, TOYS, PLAY	CCL-A 65 GUES	GUESSING GAMFS, TABIF
		,		FOLITPMENT PRESENT	• Tool	GAMES, PUZZIFS
GUINTILE	1 . 2	3 4 5	1 2 3 4 5			1 2 3 4 4
SITE 305	-	۳	 	4	1 1 2	1 2
307		1 3	3 1	*	1 1 2	e (
308	m		1 1 2	α	~ ·	~ -
306	(e .	 FD .			- 67
316 316	V	- 4	 	1 1 2 1 1 2		
TOTAL	٠	9	4 5 10 5		5 4 14	5 1 3 15
*PERCEN'			4.2.2	13 17 21	22 17 61	21 4 13 63
VARIABLE:	CCL-A	66 NU A	NUMBERS, MATH, ARITHMETIC	CCL-A 67 READING, ALPHABET, LANGUAGE DEVELÜPMENT	CCL_A 70 SEWING.	SEMINS, COOKING, POUNDING
. 50 4 05	u	1	14100		FIRST	- INTRO
CUINTILE 1	٠ ~	- 4		3 4 5 1 2 3 4	C)	1 2 3 4 5
ı						ŕ
305	N (-		2 2 2 3	•	- ~
200	າ ຕ	-	v -			
300	5	-			.e	•
311		•	ح ح		, •	~ ∩
316	77	-	•	1 1 2 1 5	n -	
TOTAL *PERCENT	4 15 17 65	~ 4 0.0 ~ 4	15 6 2 1 63 25 8 4	13 2 4 4 13 4 2 2 3 57 9 17 17 54 17 8 8 13	12 11 52 48	9 15 3A 63
VARIABLE:	CC1A	83 VAS	VARIETY OF ACTIVITIES. GVER ONE DAY	• CCL-B AA TEACHEP WITH ONE CHILD	œ	TEACHER WITH SMALL GROUP
GRADE #	1	FIRST	THIRD	+ FIRST + + THIRD + +	FIRST	THIRD
GUINTILE	N	3 4 5		12345 12345	1 2 3 4 5	12346
302		2	2	2 2 2 1 1	. u	€
30.7		4 (•		- -	***
800	-	> •	• "		_	-
300	-	•	- - -		·	- -
.16				2 2 2 1 2 1		4
TOTAL	3	3 16	2 1 2	3 1 8 9 5 2 2 9 9	2 1 1 5 14	1 1 22
*PERCENT	13 4	13 70		9 13 4 35 39 21 8 A 38 25	9 4 4 22 61	70 7

* PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRAJE IN A GIVEN QUINTILE

UNIVERSITY OF ARIZONA :

3- 2

PAGE

2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 3 4 5 5 1 2 1 1 3 3 4 5 5 5 0 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1		CCL-8 114 - FIRST 2 1 2 3 4 1 1 1 1 2 2 2 5 5 9 9 9 22 9 9 9 22 FHO-A 399 - FIRST 1 2 1 1 1 2 1 1 2 3 4 26 22 17 13 FMO-A 452 - FIRST 1 2 3 4 1 2 1 1 1 1 1 1 2 3 4 1 2 1 1 1 1 1 1 2 3 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CCL.—3 14 3
---	--	--	------------------

PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

lable M-3 (Com Juded)

6 - F 954 B S NO SCI ME S	FEO.C 699 (MIIN SE, F 'STRUCTION. FOR ACTORY! FIRST 1 1 2 3 4 5 1 2 3 4 6		1 1 2 7 16 5 4 2 4 7 5 4 5 5 4 7 3 7 1 4 7 2 1 4
FREQUENCY DISTRIBUTION OF CLASSACOMS OVER IMPLEMENTATION SCORES	FMO-A 46 ALL CHILD POSITIVE - FIRST THIRD 1 2 3 4 5 1 2 3 4 5	2 1 1 2 2 1 2 1 2 1 3 1 2 2 1 2 1 2 1 2	5 5 7 4 6 4 6 4 7 7 7 25 25 30 17 9 17 8 17 29 29
INTVENCITY OF ANIZONA; FREQUENCY	VARIAMLE: FMO-A "5h ALL CHILJ TASK-HELATEU GRADE: FIRSI THIRU GUINTILE: 1 2 3 4 5	315 305 307 307 308 310 311 316 2 2 1 1 316 2 2 1 1	#FERCE(1 22 13 4 22 39 25 17 13 25 21

* FERCENT OF CLASSHOOMS FOR A SPONSOR IN A CLUEN GRADE IN A GIVEN GUINTHE

UNIVERSITY OF ARIZONA	NOZIHY :	 a		TCTAL	IMBLEHEN]	ATION	TOTAL IMPLEMENTATION SCORFS FOR CLASSPCOMS, SITE, AND SPONSORS	ASSPCOMS,	5116.	AND SPONS	0RS	PAGE	
•	•	•	FIRST	FIRST GRADE	•	•	•	1	r *	- THIRD GRAPE	GRAFIE -	i 1	ı •
. SITE	•	- CLASSE	* #004S	•	- MEAN	4 S.D.	•	•	- CL 4	- CLASSPOOM -	•	MARA	• g • ,
Des Moines, lowa 79.0 Fort Worth, Texas 85.7 LaFayette, Geo. 79.0 Lakewood, N.J. 78.1 Newark, K.J. 57.1 Lincoln, Nebr. 89.5 Sponsor Soores (N#23)	79.(85.7 79.0 78.1 57.1 89.5	62.9 718.1 71.4 74.3 54.0 89.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	71.4 75.2 79.0 79.0	7.00.7 7.00.7 7.00.9 7.00.9 7.00.9 8.00.9 7.00.9 7.00.9 7.00.9	-	**************************************	65.7 66.7 68.6 76.2 61.9 77.1	66.7 60.0 86 68.6 71.4 77.6 71.4 77.6.2 78.1 76.2 76.1 75.2 76.1 7	53.3 82.9 73.3 76.2 67.6 78.1	75.2 84.8 87.6 73.3 63.8 81.9	71.7 75.6 75.0 75.0 74.3 77.3	C 1 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NFT Scores (N=35)	N=35)				61.8		7.0	NFT Scor	NFT Scores (N=36)	33		60.7	6.3

t = 4.77 p > .004

t = 1.99 p > .001

M-10

FREQUENCY DISTRIBUTION OF CLASSROOMS OVER IMPLEMENTATION SCORES

BANK STREET :

Š

39 ¥ d

VARIETY OF ACTIVITIES. 12 63 15 21 16 11 ı TEACHER WITH SMALL 9 THIRD - TH1RD THIE NUMBERS, MATH. ARITHMETIC OVER ONE DAY 32 () 9 9 ~ 21 GROUP 3 16 S • 12 63 1 10 • • 2 4 99 CCL-A 83 FIRST - FIPST 88 8-700 FIRST ო 2 11 CCL-A 7 3 37 16 ~ 10 53 1 50 1 10 ß 26 32 . 56 4 4 PEI 25 GAMES, TOYS, PLAY
EQUIPMENT PRESENT
-- FIRST -- -- THIRD
1 2 3 4 5 1 2 3 4 PRACTICAL SKILLS - THIRD TEACHER WITH TWO 2 2 2 ACOUISITION CHILDREN 4 15 ľ 10 - FIRST 32 6 7 87 - FIRST CCL .A 8*100 N 3 CHILD SELECTION OF SEATING AND WORK GROUPS TEACHER WITH ONE CHILD READING, ALPHABET,
LANGUAGE CEVELOFFENT
- THIRD - -• 10 2 • - THIRD . 1 13 5 68 42 - THIRD S 2 ŧΩ **⊶** ທ 1: 2 = 1 10 12 63 1 5 32 i 5 5 2 26 26 11 56 FIRST FIRST 96 CCL-A 67 FIRST 6 **-** v . 16 PE 1 24 8-133 3 Ŋ Ð , 37 GRADE! QUINTILE! SITE 502 504 GRADE! GUINTILE! VARIABLE VARIABLES QUINTILE VARIABLES *PERCENT TOTAL *PERCENT *PERCENT 502 504 506 508 510 SITE 506 GRADE : 504 TOTAL TOTAL

* PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

M - 11

RANK STREET 1

VARIAHLEI	CCL-8 92 AIDE MITH ONE CHILD	CCL-8 114 ONE CHILD INDEPENDENT	CCL-H 116 SMALL GROUP OF CALLUMEN INDEPENDENT
GRADE:	FIRST THIRD	FIRST THIRD	FIRST -
GUINTILE	12345 12345	12345 2345	t 5 1 2 3 4
502	. 2	9	2 1 1 1 1 2
504	3 2 2	٨	en :
506		1 1 2 1 1 2	2.2
508	.2 2 1 3	~	
516		-	2 1 1 1 2
TOTAL	2 6 11 5 2 12	2 4 13 1 2 7 9	2 2
*PERCENT	11 32 58 26 11 63	11 21 68 5 11 37 47	21 24 53 11 11 32 47
VARIABLET	CCL-J 239 MATH OR SCIENCE FOUTPMENT ACA, ACT.	FMO=A 343 CHILD TO ADULT=ALL VERBAL EXCEPT RESP.	FMO.A 344 INDIVIUAL CMILD VEMBAL INTEMACTION/ ADU! I
GOADE +	I I COLUMN I I I I I I I I I I I I I I I I I I I		- F1851 TH180
GUINTILE	2 3 4 5 1 2 3	5	~
100		C -	. 2
u 4		2 2 1 2 2	1 2 1 2 1
506		3 1 5	1 3 2 1
508	1 3	3 1 1 2 1	+ 121
510	1 3 2 2	1 2 1 3 1	4 1 2 1
TOTAL	6 1 6 1 6 1 6	3 1 5 7 3 5 4 5 3 2	122113 25877
*PERCENT	32 32 37 47 5 47	16 5 26 37 16 26 21 24 16 11	5 11 11 5 68 11 26 42 11 11
VARIABLEI	FMO-A 35] CHILD QUESTIONS TO ADULT	FMO-A 372 CHILD PRESENTING INFOR- MATION TO GROUP	FMO-A 394 ALL ADULT ACKN, TO CHILDREN
GRADE 1	FIRST THIRD -	ST THIRD -	FIRST = TH
GUINTILE: SITE	12345 12345	12345 12345	2 3 4 5 1 2 3 4 5 2 1 4 5 5 1 4 5 5 1 4 5 5 5 1 4 5 5 5 1 4 5 5 5 5
205	ν.	- V	-
00 to	2 1 4		
900			1 2 1 3 1
510	1 2 1 1 2	1 1 2	4 1 1 2
TOTAL	1 4 5 6 8 2 2	2 3 11 1	4 4 1 8 5 1 4 2
*PERCERT	16 5 21 24 32 42 11 11 37	7, 11 14 52 6 42	לד וו וכ לי של יכי ביו וכ וכ וו

* PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN CUINTHE

M-12

FREQUENCY DISTRIBUTION OF CLASSROOMS OVER IMPLEMENTATION SCORES

BANK STREET 1

PAGE 5- 3

VARIABLEI	ű.	TO ONE	FMO-A 423 POSIT	POSITIVE BEHAVIUR. ADULTS TO CHILDREN	FM0-A 438		DULT FO	ADULT FOCUS - ONE CHILD	ři R
GRADE: QUINTILE:	FIRST T 1 2 3 4 5 1 2	- THIRD	= FIAST = = 1 2 3 4 5	_ THIRD _ = 1 2 3 4 5	- F	FIRST =	5	2 3	1 4
50 S	2 1 2	3	2 1 1	1 2 1	-	1 2	==	~ -	- 2
506 508 510	1 2 2 2 4 1 3 1 2 2 2 4 1 2 2 2 2 1 4 1 1 2 1 2 2 2 1 4 1 1 1 1	1 2	1 1 2 1	2 2 1 2 1 3 1	-	.,,		- -	2 1
TOTAL *PERCENT	1 2 6 2 8 8 1 5 11 32 11 42 42 5	4 1 5 21 5 26	1 2 2 8 6 5 11 11 42 32	1 2 7 3 6 5 11 37 16 32	- s	1 3 13 5 16 68	3 4	5 21 2	4 6 21 32
VARIABLEI	FMO-A 452 ADULT OPEN ENDED QUES TO CHILDREN	NOED QUES.	FMO-A 454 CHILD TO QU	CHILD EXTENDED RESP. To ques.	FM0-C 510		HILD SEI BJECTS	CHILD SELF-INSTRUCTION. OBJECTS	UCTI
GRADE:	- FIRST T	THIRD = = 5	- FIRST 1 2 3 4 5	THIRD 1 2 3 4 5	1 2	FIRST = :	I ~	- THIRD	1 V
205 \$05 \$05	1 2 1	00	- 6		-	·- ^	ν -	^	2 -
500 508 808	1 1 2	2 1 2 1 2	2 2 2	. e - e	•	-		-	. n.
510	∾ •	- 1	e .		- (•	
*PERCENT	21 5 42 32 21	37 16 26	11 37 26 11 16	11 21 42 5 21	"	33 56	a s	17.5	5, 33
VARÍABLEI	FMO-C 513 CHILD TASK PERSISTENCE	ERSISTENCE	FMO-C 515 SMALL 6	SMALL GROUP USING OBJECTS	FM0=C 516		SOCIAL I	SOCIAL INTERACTION AMONG CHILDREN	Z O
GRADE! QUINTILE!	1 2 3 4 5 1 2 3	HIRD	- FIRST	- THIRD	- F	FIRST =	2 5	- THIRD	1 4 1 N
502 502 503 403	1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	2	m dr	m∢	3 3	-	4	~	,
ນ ເບ ອຸຊຸດ ອຸຊຸດ	12 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	2 1	e m e	∢ ◆ M	n -	- N - N		٦ -	
TOTAL	4 7 4 2 1 7 3	400	8	æ ,	8	2 5 1	1 5		4

* PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

Table M-4 (Concluded)

PAGS 5- 1	MFAN C.D.		62.1 8.6
GOADE - 1 THIRD GRADE -	1 1	71.1 69.6 70.4 63.0	
THIRD GRADE	- MOORS	71.1 68.9 77.8 60.0 77.0	N=19)
1	- CLASSROOM -	74.8 68.9 68.9 65.2 81.5	Sponsor Scores (Nm19) NFT Scores (N=36)
1	1	2	Sponsor NFT Sco
1	S.D.	* ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	v ∾
,	HEAN	69.1 72.6 74.4 79.0	74.8
FIRST GPADE -	1 1	63.0 67.4 77.0 76.3	
- FIRST	- CLASSROOM -	68.9 71.1 77.0 78.5 75.6	
1	- CLA	74.1 75.6 74.8 82.6 78.5	
1	1 1	. 80.7 78.5 77.8 80.0	res (N=19) (N=35)
	SITE	Brattleboro, Vt. 64.4 Fall River, Mass. 80.7 New York City 78.5 Philadelphia 77.8 Tuskegee, Ala. 80.c	Sponsor Scores (N=19) NFT Scores (N=35)

t = 7.12 p > .001

t = 3,20 p > .001

M-14

E: 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VARIABLES	CC	PS, MATH, FTIC	CCL-A 67 READING, ALPHABET, Language development	CCL-B BA TEACHER WITH SMALL GROUP
EI CCL-8 94 AIDE WITH SMALL GROUP EI CCL-8 94 AIDE WITH SMALL GROUP EI T 2 3 4 5 1 1 1 4 12 1 1 5 3 4 5 1 1 1 4 12 1 1 1 1 2 3 4 5 1 1 1 1 2 1 3 4 5 1 1 1 1 2 1 3 4 5 1 1 1 1 2 1 3 4 5 1 1 1 1 2 1 3 4 5 1 1 1 1 2 1 3 4 5 1 1 1 1 2 1 3 4 5 1 1 1 1 2 1 3 4 5 1 1 1 1 2 1 3 4 5 1 1 1 1 2 1 3 4 5 1 1 1 1 2 1 3 4 5 1 1 2 1 4 7 7 79 21 1 1 1 2 1 3 4 5 1 1 2 1 4 7 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 79 21 1 2 1 4 7 79 21 1 2 1 4 7 79 21 1 2 1 4 7 7 79 21 1 2 1 4 7 79 21 1 2 1 1 2 1 4 7 79 21 1 2 1 1 2 1 4 7 79 21 1 2 1 1 2 1 2 1 4 7 79 21 1 2 1 1 2 1 4 7 79 21 1 2 1 1 2 1 4 7 79 21 1 2 1 2 1 4 7 79 21 1 2 1 1 2 1 4 7 79 21 1 2 1 1 2 1 4 7 79 21 1 2 1 2 1 4 7 79 21 1 2 1 1 2 1 4 7 79 21 1 2 1 1 2 1 4 7 79 21 1 2 1 1 2	GRADE 1 GUINTILE 1 STIF	- FIRST -	THIRD -	FIRST	1
EI CCL-8 94 AINE WITH SHALL GROUP CCL-J 245 TEXTS, WOOKHOOKS, EI 1 2 3 4 5 1 2 3 5 1 1 1 1 4 12 EI 1 2 3 4 5 1 3 2 1 3 3 5 2 1 3 3 5 1 3 5	703	∢ M	1 3		1 3 1 2
EI CCL-8 94 AINE WITH SHALL GROUP CCL-J 245 TEXTS, WOOKROOKS/ EI CCL-8 94 AINE WITH SHALL GROUP CCL-J 245 TEXTS, WOOKROOKS/ EI 1 2 3 4 5 1 3 3 1 3 4 5 1 3 2 1 4 9 1 5 4 4 4 4 4 4 1 3 4 1 3 3 1 3 8 7 3 2 1 4 9 1 5 4 4 4 4 4 4 4 5 1 2 3	708			4.	
EI CCL-8 94 AIDE WITH SHALL GROUP CCL-J 24	719	•	2 1 1	n •• -	14
E: CCL-8 94 AINE WITH SHALL GROUP CCL-J 245 TEXTS, WOOKBOOKS/ E: 1 2 3 4 5	TOTAL PERCENT	16	6 2 32 11 4	9 3 5 1 1 1 4 47 16 26 5 5 5 21	1 17 3 1 5 89 16 5
E: 1 2 3 4 5 1 3 3 1 3 3 4 5 1 3 3 3 4 5 1 3 3 3 4 5 1 3	VARIABLEI	CCL-8 94 AINE	ITH SMALL GROUP		
E: 1 2 3 4 5 1 3 3 5 1 4 7 7 79 21 7	GRADE	- FIRST -	THIRO -	ACADEMIC ACTIVITY	INTERACTION/ ADULT - FIRST THIRD -
E: FMO-A 363 GROUP RESP. TO ADULT E: 1 2 3 4 5 1 6 79 E: 1 2 3 4 5 1 6 79 E: 1 2 3 4 5 1 6 79 E: 1 2 3 4 5 1 7 3 2 1 4 9 FMO-A 363 GROUP RESP. TO ADULT FMO-A 364 GROUP RESP. TO ADULT FMO-A 365 GROUP RESP. TO ADULT FMO-A 365 GROUP RESP. TO ADULT FMO-A 366 GROUP FMO-A 367 GROUP RESP. TO ADULT FMO-A 376 ADULT INSTRUCTS GROUP FMO-A 394 FMO-A 367 GROUP FMO-A 367 GROUP FMO-A 394 FMO-A 376 ADULT INSTRUCTS GROUP FMO-A 394 FMO-A 365 GROUP FMO-A 394 FMO-A 394 FMO-A 394 FMO-A 394 FMO-A 396 FMO-A 394 FMO-A 365 FMO-A 394 FMO-A 396 FMO-A 394 GUINTILE	1 2 3 4	4	1 5 1 2 3 4	23451	
E1 FMO-A 363 GROUP RESP. TO ADULT FMO-A 363 GROUP RESP. TO ADULT FMO-A 363 GROUP RESP. TO ADULT FMO-A 364 GROUP FMO-A 365 GROUP RESP. TO ADULT FMO-A 376 ADULT INSTRUCTS GROUP FMO-A 394 FMO-A 365 GROUP RESP. TO ADULT FMO-A 376 ADULT INSTRUCTS GROUP FMO-A 394 FMO-A 365 GROUP RESP. TO ADULT FMO-A 376 ADULT INSTRUCTS GROUP FMO-A 394 FMO-A 396 FMO-A 394 FMO-A 394 FMO-A 396 FMO-A 394 FMO-A 394 FMO-A 396 FMO-A 394 FMO-A 394 FMO-A 394 FMO-A 394 FMO-A 394 FMO-A 396 FMO-A 394 FMO-A 39	703	1 1 2	4		•
E1 FMO-A 363 GROUP RESP. TO ADULT FMO-A 363 GROUP RESP. TO ADULT FMO-A 363 GROUP RESP. TO ADULT FMO-A 363 GROUP RESP. TO ADULT FMO-A 363 GROUP RESP. TO ADULT FMO-A 364 GROUP FMO-A 364 GROUP FMO-A 376 ADULT INSTRUCTS GROUP FMO-A 394 F	708				3 1 1 2
E! FMO-A 363 GROUP RESP. TO ADULT E! FMO-A 363 GROUP RESP. TO ADULT ACA, REW. OR DIR. GUES. - FIRST THIRD - THIRD THIRD THIRD THIRD THIRD THIRD THIRD THIRD THIRD THIRD THIRD THIRD THIRD - THIRD - THIRD THIRD THIRD THIRD - THI	719	.	₹ €		 m m
E: FMO-A 363 GROUP RESP. TO ADUL! FMO-A 363 GROUP RESP. TO ADUL! FMO-A 376 ADULT INSTRUCTS GROUP FMO-A 394 FMO-A 376 ADULT INSTRUCTS GROUP FMO-A 394 FMO-A 396 FMO-A 396 FMO-A 396 FMO-A 394 FMO-A 396	TOTAL	1 3 15		8 7 3	*
E: FMO-A 363 GROUP RESP. TO ADULT ACA, REU. OR DIR. GUES. - FIRST THIRD FIRST THIRD FIRST FIRST THIRD FIRST FIRST THIRD FIRST FIRST THIRD FIRST FIRS	PERCENT	16	56	16 42 37 16 11 5	21 63 5
E: 1 2 3 4 5 1 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	VAR I ABLE 1	FM0-A 363	RESP. TO ADULT		
Et 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3 1 3 1	GRADE :	- FIRST	- 04 DIR. GUES.		CHILDREN
1 3 4 4 3 3 3 4 4 3 3 3 1 1 2 2 2 3 3 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CUINTILE:	1 2 3 4	. 4 . m	4 5 1 2 3 4	4 5 1 2 3 4
1 3 4 4 3 3 1 1 2 2 3 3 1 4 4 4 4 4 2 2 2 1 1 2 2 2 3 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1	763	•	•	•	2
	707	- -	m ∢		2 · · · · · · · · · · · · · · · · · · ·
1 18 19 6 8 2 3 1 8 1 2 7 2 6 4 2 7 6 1	711		• • •	- v =	2 - 1 - 1 - 2
	TOTAL	6	0.		P 6
	PERCENT	5 6	001	6 6 3 1 42 11 16 54	21 21 12 22

Table M-5

PAGE 7- 1

FREQUENCY DISTRIBUTION OF CLASSRODMS DVER IMPLEMENTATION SCORES

UNIVERSITY OF ORFGON 1

. PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

Table N-5 (Concluded)

PAGE 7- 1	•	S.D.	10.3	11.8	11.2	7.3	ຣີເ	9.3	10.5
PAGE	•	MEAN	76.2	69.0	76.2	82.9	16.4	76.5	60.4
ORS	GRADE -	i i	87.1		65.9	74.1	1.69		
ND SPONS	THIRD GRADE	- CLASSROOM -	78.8	57.6	84.7	9006	78.8	(<i>b1-</i> 1	
SITE. A	•	- CLAS	\$5.4	81.2	62.4	80.0	82.4	Sponsor Scores (N=19)	NFT Scores (Nm36)
LASSROOMS•	•	•	76.5	68.2	71.8	87.1	75.0	Sponsor	NFT S
TOTAL IMPLEMENTATION SCORFS FOR CLASSROOMS. SITE, AND SPONSORS		S.D.	6.7	1,3	٠.	3.6	2.4	8.1	10.7
PLEMENTATIO	•	ME A N	72.5	0.06	71.9	85.3	74.1	78.2	61.0
TOTAL IM	FIRST GRADE -	•	75.0	;	71.2	87.5	73.7		
	- FIRST	- CLASSROOM -	76.2	91.2	71.2	87.5	72.5		
- 7	•	- CLAS	65.5	606	7.55	86.2	77.5		
0F ORF 60'	:	1	. 76.2	88.7	۲۰۶/	80.0	72.5	res (N=19)	(N=35)
UNIVERSITY OF ORFGON		SITE	£ast St. Louis, Ill. 76.2	New York City	Adcine, wisc.	inpelo, Miss.	Providence, R.I.	Sponsor Scores (N=19)	NFT Scores (N=35)

M-17

t = 5.62 p > .001

t = 6.11 p > .001

PAGE
REQUENCY DISTRIBUTION OF CLASSRODMS OVER IMPLEMENTATION SCORES
UNIVERSITY OF KANSAS 1

PAGE A- 1

VARIABLEI	PEI 39 GENERAL EQUIPMENT, MATERIALS PRESENT	ENT.	CCL-A 65 GUESSI GAMES+	GUESSING GAMES, TABLE GAMES, PUZZLES	CCL-A 66 NUMBE	NUMBFRS, MATH, ARITHMETIC
GRADEI	- FIRST	THIRD = =	- FIRST 1 2 3 4 5	THIRD	- FIRST - + 1 2 3 4 5	1 2 3 4 5
81 18 801 803	4	1 3	~		2 1 1	2 1 2
804 806	2 2 1 2 1	2 1 1	ν α•	2 1 3 1	3 1 2 1 1	2 2 2
807	2 1 1	1 3	2 1 1	3 1	2 2	e -
TOTAL *PERCENT	3 2 5 2 6 2 1 17 11 28 11 33 12 6	4 6 4 24 35 24	4 3 11 22 17 61	6 1 6 4 35 6 35 24	5 A 5 28 44 28	2 6 2 5 7 12 35 12 29 12
VARIABLE:	CCL-A 67 READING, ALF LANGUAGE DEV	ALPHABET, DEVELOPMENT	CCL-8 88 TEACHE	TEACHER WITH SMALL GROUP	CCL-9 94 AIDE	JIH SMALL GROUP
GRADE 1	FIRST	THIRD	FIRST	- I THIRD	ı	THIRD
GUINTILE : SITE	2 3 4 5 7 1	ທ 4	4 E 2			4 5
801			1 1	~	8	
803		1 1 2	т «	. 1 1 2	с	m m
908		~ -	• m	-	• •	
807	• •	ı -	•	•	4	4
TOTAL	1 2 1 2 1? 1		5 13	1 1 1 14	3 15	1 16
*PERCENT	6 11 6 11 67 6	12 29 53	28 72	28 9 9 9	17, 83	46 4
VARIABLEI	CCL-J 247 TEXTS, WOOKBOOKS/ ACADEMIC ACTIVITY	KBOOKS/ CTIvITY	FMO-A 344 INDIVI	INDIVIUAL CHILO VERBAL Interaction/ Adult	FMO-A 394 ALL ADUL CHILDREN	-
GRADE 1	- FIRST		- FIRST -	I I THIRD I	- FIRST " -	- THIRD -
GUINTILE:	2 3 4 5 1	S *	4	4 6	+ m	12345
801		1 1	2	2	~	~
803 804	~ 1 - 1	2 m	2 1 2	1 2 1	3	2 1 -
806		e 	2 1 1	1 1 3 3	-	. E.
TOTAL	1 2 5 10 6 11 28 56	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 11 67	1 5 2 9	1 9 4 1 3	4 6

. PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN GUINTILE

518

SCORES
R IMPLEMENTATION
OVER
4 OF CLASSROOMS
ö
NOISTRIBUTION
FREQUENCY

UNIVERSITY OF KANSAS !

PAGE R- 2

E 1 - FIRST THIRD FIRST THIRD FIRST THIRD FIRST THIRD FIRST THIRD FIRST THIRD FIRST THIRD FIRST THIRD FIRST THIRD FIRST	VARIABLEI	FMO-A 398 ALL ADULT CHILDREN	9	FMO-A 412 ADULT RESP. TO ADULT A	ADULT FOBK, TO CHILD DULT ACA, COMM., QUES.		AT	
FNO-A 438 ADULT FOCUS - ONE CHILD FNO-A 438 ADULT FOCUS - ONE CHILD FNO-A 438 ADULT FOCUS - ONE CHILD FNO-A 438 ADULT FOCUS - ONE CHILD FNO-A 438 ADULT FOCUS - ONE CHILD FNO-A 438 ADULT FOCUS - ONE CHILD FNO-A 438 ADULT FOCUS - ONE CHILD FNO-A 458 ADULT	GRADE: QUINTILE:	- FIRST THIRD		- FIRST	THIRD	FIRST 3 +	1 2 3 4	1 50
EI FNO-A 438 ADULT FOCUS - ONE CHILD FIND-A 458 ADULT FOCUS - ONE	801	۷.	2	0) 6				
EI FWO-A 438 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 438 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 438 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 438 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REQ. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, REG. FRO-A 458 ADULT FOR ACA, COHM, REG. FRO-A 458 ADULT FDCUS - ONE CHILD FWO-A 451 ADULT ACA, COHM, RE	90 9	***	*	শ →	,	- 5	· ~	
EI FMO-A 438 ADULT FDCUS - ONE CHILO FMO-A 451 ADULT ACA, COMM, REQ, FWO-A 657 1 6 6 6 8 1 1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	806	•	•	•	: 4	-	2	2
EI FWO-A 438 ADULT FOCUS - ONE CHILD FHO_A 451 ADULT ACA, COHH, REG, FHO_A 457 EI 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 1 1 1 2 2 6 7 6 6 86 EI 1 2 3 4 5 1 2 3 4 5 1 2 3 4 11 2 2 4 2 9 7 3 11 17 2 EI 1 2 3 4 5 1 2 3 4 5 1 2 3 4 11 2 4 2 6 1 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	807	₫	•	•	•	. 2		
EI FHO-4 438 ADULT FOCUS - ONE CHILD FNO.4 451 ADULT ACA., COMM., REQ. FHO-4 457 EI 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOTAL Percent	9 9	15 88		3	5 5 2 2 2 8 2 1 1	2 2 6 12 12 35	* 14
E1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 3 4 1 3 3 4 1 4 1	VARIABLEI	FM0-A 438	CHILD	ADULT	ACA. COMM., TO CHILOREN	FM0-A 457 ALL	ADULT POSITIVE PECTIVE FORK.	
E1 FMO-A 469 ALL ADUL! REINFORCEMENT FMO-C 513 CHILD TASK PEHSISTENCE F1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 1 2 1 2 2 1 1 1 2 2 1 2 1 1 1 2 1 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRADE! GUINTILE!	1 0 1		_ •	- THIRD -	١.	THIRD -	l N
E1 FHO-A 469 ALL ADUL! REINFORCEMENT FMO.C 513 CHILD TASK PEHSISTENCE - FIRST FIRST THIRD THI	1 0 0 0 1 0 0 0 1 0 0 0	2 2 1 1 1	<i>~~~</i>		2 2 1 1	1 2 1	2 1	- F
E1 FNO-A 469 ALL ADUL! REINFORCEMENT FMO-C 513 CHILD TASK PEHSISTENCE - FIRST THIRD THI	806	2 1 1) 4 4	ı	≉ €			4 (1
E: FMO-A 469 ALL ADUL! REINFORCEMENT FMO-C 513 FIRST	TOTAL PERCENT	4 12 1 1 22 67 6 6	15 88	4 52	24 2	3 4 17 22	2	10 59
E1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	VARIABLE1	ALL ABUL!	EHENT		TASK PEHSISTENCE			
2 2 4 3 1 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	GRADE: QUINTILE:	l de	; FU	١.	- THIRD			
4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	801 803	2 *	•	1 3	3 1			
18 10 7 4 4 2 100 59 41 25 25 13	6 6 6 4 0 0 4 0 0 4 0 0	ጠ ፈ ⊶	•	3 1 1 2 1 1 3				
	TOTAL Percent		41	4 2 25 13	1 7 7 7 7 7 47 47			

* PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

M-19

_	OTAL IMPLEMENTATION	TOTAL IMPLEMENTATION SCORFS FOR CLASSRODMS. SITE. AND SPONSORS	SITE. AND SPONSORS	0 ¥ € € € € € € € € € € € € € € € € € €	- I
_	FIRST GRADE	:	THING CHADE) -	,
•	SSROOM MEAN S.D.	•	CLASSROOM	- HEAN	\$.0.
		.4 71.2		78.1	9.7
•	85.0	5,4 76.5	62.4 75.3 84.7		4
_	91.8		78°9		-
w					2
æ	8.8		87.1		v. 5
	14.6	7.9 Sponsor	Sponsor Scores (N=17)	A3.3	6.0
	62.4	8.5 NFT Scor	WT Scores (Mm36)	61,3	9,3

t = 9.22 p > .001

t = 8.89 p > .001

M-20

540

* PERCENT OF CLASSROOMS FOR A SPONSC? IN A GIVEN GRADE IN A GIVEN QUINTILE

4.4

⊸ ທ

11 2

•

37

56

37

1 13

TOTAL *PERCENT

902 903 906 906 901

26 21

56

2 4

ø

BE TEACHER WITH ONE CHILD 0 HI m ı ıs - FIRST 8-100

VARIETY OF ACTIVITIES,

CCL-A 83

- THIRD

•

- FIRST

- THIRD

- FIRST -

۳.

~

GRADE: GUINTILE: SITE

BLOCKS. TRUCKS

CCL-A 71

VARIABLE

~

OVER ONE DAY

1°

32

26 26 11

2 3

Φ

1 5 16

OPERCENT

TOTAL

ıv

POUNDING FIRST

. .

. THIRD .

CCL-A 70 SEWING, COOKING,

READING, ALPHABET. LANGUAGE DEVELOPMENT

CCL-A 67

- THIRD -

1 W

"

- FIRST

- THIRD

NUMBERS. MATH.

99 V-700

- FIRST

N

ARITHHETIC

9

æ γ

S

9 !

21 16

13 72

~ 6 11

- 9

11 16

2

S S

33

10TAL *PERCENT

ø

GUESSING GAMES, TABLE GAMFS, PUZZLES - - THIRD -I in - FIRST . 4 CCL-A 65

1 0

•

- - THIRD

- FIRST - -

1 10

. - THIRD

- - FIRST -

۳.

~

QUINTILE: SITE

BRADE :

m

902 903 906 906

PEI 25 GAMES, TOYS, PLAY EQUIPMENT PRESENT

PEI 24 CHILD SELECTION OF SEATING AND WORK GROUPS

VAK148LE!

. .

Ļ PAGE

FREQUENCY DISTRIBUTION OF CLASSROOMS OVER IMPLEMENTATION SCORES

HIGH / SCOPE #

ERIC

Table M-7

VARIABLES

M - 21

GRADE 1 QUINTILE 1 SITE 901 902 903 906

FREQUENCY JISTRIBUTION OF CLASSROOMS OVER IMPLEMENTATION SCORES

HIGH / SCOPE 1

PAGE 9- 2

GRADE 1	VARIABLE: CCL-8 88	TEACHER	ITH SMALL	CCL-B 94 AIDE WITH SMALL GROUP	ROUP		MATH OR SCIENCE EQUIPMENT/ ACA. ACT.
CHINITIE	- FIRST		•	- FIRST THIRD .		FIRST -	THIRD -
	3		N 4 N	12345 1234	'n		7 3 4 E
SITE						4	,
901		•	4	<	4	* (n -
905	_	~	1 3	~	~	- -	
903		~	4	1 2	•	-	-
906		٣	m	1 2	~		^ (
406		•	1 3	◀	•		
TOTAL	2 -	15	2 17	6 12 3	16	2 2 14	~
*PERCENT	6 11	·œ		1 1	∳	11 11 78	11 11 79
VARIABLES	FM0-A 344	INDIVIUAL CHI	L CHILD VERBAL	FMO-A 35Å CHILD QUESTIONS TO	0	FH0-A 372 CHILD	CHILD PRESENTING INFOR-
		INTERACT					MATION TO GROUP
GD A DF 2	FIRST		THIBD	- FIRST THIRD		FIRST	THIRD -
GUINTILE					2	12345	1 2 3 4 5
SITE					-	~	- -
901	- -	٠			-		
206	-	- '		7	_		1 1 • 4
\$0.A		ሳ (• (. (*	, ~	- 2
906	•	.	> - 6		n -	າ ∢	٠ ۸
404	-	Ν.	 		-	•	
TOTAL	3 2 2 2	6 2	1 7 11	13356 2326	9	8	
*PERCENT	17 11 11 11	1 50	5 37 58	6 17 17 28 33 11 16 11 32	32	67 11 22	63 26 1;
VARIÁBLEI	FM0-A 390	ADULT TASK-REL	ADULT TASK-RELATED COMMENTS TO CHILDREN	FMO.A 394 ALL ADULT ACKW. TO CHILDREN	0		ADULT ATTEN. TO SMALL Group
. 50 4 0 5			COLIT	THIRD THIRD		•	THIRD -
GUINTILE: SITE	1 2 3	ıvı	2 3 4	4 5 1	v.	1 2 3 4 5	12345
901	. 2 .		2 2	2 1 1 2	2	*	m ·
905		6		1 1 2 1 2		2 2	د د
£06	e	2	2	*		m	
906		 	- N		•	- -	- 4 -
10101			4 4	* · · · · · · · · · · · · · · · · · · ·	o	3 1 2 1 11	1 2 5 11
			:		4.4	17 6 11 6 63	S 11 26 58

M-22

52

. PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILF

M-23

HIGH / SCOPE :

6

PAGE

FM0-A 440 ADULT FOCUS - SMALL GROUP - FIRST - THIRD -	1 9 8 4 7 8 6 50 44 21 37 42 FMO-A 456 ALL CHILD TASK-PELATED	ı	1 6 2 9 5 2 4 7 1 6 33 11 50 26 11 21 37 5 FMO-C 514 TWO CHILOREN USING FIRST THIRD 1 2 3 4 5 1 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	4
FMO-A 43A ADULT FOCUS - ONE CHILD FIRSTTHIRD 1 2 3 4 5 1 2 3 4 5 3 1 2 1 1 3 1 2 1 1 3 2 2 1 4 3 2 2 1 1 1 1	1 2 6 16 5 11 32 53 T RESP, TO CHILD		# 5 7 2 4 1 10 4 22 28 39 11 21 5 53 21 FMO-C 513 CHILO TASK PERSISTENCE - FIRST THIRD 1 2 3 4 5 1 2 3 4 5 2 2 2 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	∢
FM0-A 438 ADUL FIRST	3 1 6 2 17 6 33 44 FMO-A 451 ADULT	•	4 5 7 2 22 28 39 11 FMO-C 513 CHILL FIRST 1 2 3 4 5 2 2 3 1 1 1 1	1 2 1
CHILD - THIRD 5 1 2 3 4 5 5 2 1 1 2 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	7 4 4 3 5 3 39 21 21 16 26 16 ADULT OPEN ENDED QUES.		5 2 1 1 ELF+IN	
FMO-A 42: 4DULT - FIRST - CHILO 1 2 3 4 5 2 2 2 3 1 2 1 2 1 2 1	2 6 3 7 11 33 17 39 FMO-A 452 ADULT	TO CH		2 2
VARIABLE: GRADE: GUINTILE: 901 902 903 904 905	TOTAL *PERCENT VARIABLE:	GRADE: QUINTILE: SITE 901 902 903 906	TOTAL PERCENT VARIABLE: GRADE: GRADE: SITE 903 903	104

. PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

1 8 95

1 6 20

TOTAL *PERCENT

Table M-7 (Concluded)

PAGE 9- .

		TREGOENCY	(0.1001×10.10	5	2000		•	
ر 51	15 SHALL	VARIABLE: FMO-C 515 SWALL GROUP USING	FMO=C 59	Ξ	FMO-C 599 CHILD SELF INSTRUCTION.	LF INST	RUCT	• NO
FIR	08JEC S T	TS THIRD	. FIRS	<u> </u>	NUN-ACAD	THIRD		
2	4 5	12345 12345	12345	4	r.	2	ະກ -≄	
	3	4	-	~	1 1 2	_	2	
	•	*	-	-	~	-	~	
	٣	*	m		-	m		
	٣	m	-		~	-	-	
	•	*	_		2	-	~	

. PERCENT OF CLASSRUOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

19

17 1

TOTAL *PERCENT

if. 9- 1	1 1	\$.0 .	2.1	2.3	5. 0	3.6	3.2	6.9	8.8
PAGE	1	7 8 8	73.3	9.18	54.7	A2.1	75.0	75.0	63,5
SPONSORS	THIRD GRADE -	1 1 1 NOO	75.2 74.5				78.6 76.6	2	
SITE, AUD	1	- CL ASSROOM	73.1					Sponsor Scores (Nx19)	NFT Scores (N=36)
ASSROOMS,	•	1	70.3	A3.4	6.99	90.0	73.1	Sponsor	NPT Scor
TOTAL IMPLEMENTATION SCORFS FOR CLASSROOMS, SITE, A::D SPONSORS	1 1 1 1	MEAN S.D.				82.3		76.6 6.0	63,7 5,8
TOTAL I	FIRST GRADE	; ;	76.	75.9	•		82.8		
	FIRST	. CLASSROOM -				81.4 82.8			
:0PE 1	•	;	Ť			_	-	Sponsor Scores (M±18)	NFT Scores (N-35)
HIGH / SCOPE		SITE	Greenwood, Miss.	Ft. Walton Beach,	Mew fork City	Greeley, Colo. 82.8	Denver, Colo.	Sponsor	NFT Scor

t = 5.93 p > .001

t = 7.58 p > .001

M-24

. 4

VARIABLE: CCL-8 114 ONE CHILD INDEPENDENT	ដ	æ	114	CNE	HILD	Z	DEPENDI	ENT		J	CCL-8 115 TWO CMILDREN	Ξ	ะก	1,0	E	LORI	Z	
GRADE	;	آد ه	IRST .	٠	·	Ę,	1 22 1			•	I - FIRST	SOF	·	INGE .	PEX	2 1	DENT	2
QUINTILE: 1 2 3 4 5	-	2	→	N)	-	~	1 2 3 4 5	ĸ٥		F :	3 2 3 4 5	6	•	ı,		_	1 2 3	, -
1101				4				4						•				
1103	-	_	- 0	٦ ،		~		F						~ 1			r	
1107			.	n 0 4			•	n #1 &				-	~	า ⊶ ∢				
TOTAL	-	-	•	, 13		~	2 13	13			-	2	~	·			8	
PERCENT	ស	τυ.	21	21 68	- •	12	15	16			tn	=	:	5 11 11 74			12	
. PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE	ENT	9	CLAS!	SROOMS	FOR	<	SPONSO	Z Z	◀	GIVEN	GRAD	H	z	V 61V	Z E	60.1	ITILE	

VARIABLES	PEI 24 CHIL	CHILD SELECTION OF SEATING AND MOPK GROUPS	PEI 25 GAMES, TOYS, PLAY	PET 39 GENERAL EQUIPMENT, MATERIAL C DESCENT
GRADE: QUINTILE: CITE	- FIRST -	THIRD	- FIRST THIRD + - 1 2 3 4 5 1 2 3 4 5	1 2 3 4 5 1 2 3 4 5
1101	٨		0 4 F	
1106	N	2 C		
1108		m	N .	2 - 6
TOTAL *PERCENT	2 2 1	15 6 3 3 5 79 35 18 18 29	1 1 17 1 2 3 11 5 5 69 6 12 18 65	3 3 16 3 4 1 3 6 3 16 16 53 16 24 6 18 35 18
VAR:ABLE:	CCL-A 66 N	NUMBERS, MATH.		CCL-A 83 VARIETY OF ACTIVITIES.
GRADE: GUINTILE:	- FIRST -	THIRD 5	LANGUAGE DEVELUPMENT FIRST - THIRD - 1 2 3 4 5 1 2 3 4 5	OVER ONE DAY FIRST THIRD 1 2 3 4 5 1 2 3 4 5
1101 1103		1 3 1 2 1	**************************************	5 5 1 1 3
1106 1107 1108		3 1 1 3 3		· · · · · · · · · · · · · · · · · · ·
TOTAL PPERCENT		1 5 3 3 5 6 24 18 18 29	8 3 5 1 47 18 29 6	2 17 2 1 5 9 11 69 12 6 2953
VARIABLES	CCL-8 114 C	ONE CHILD INDEPENDENT	CCL-8 11S TWO CMILDREN	CCL-B 116 SWALL GROUP OF CHILDREN
GRADE: QUINTILE: ATTE	- FIRST - 1 2 3 4	THIMD	- FIRST THIRD 1 2 3 4 5 1 2 3 4 5	- FIRST THIRD
, 1101 1103 1104 1104 1004		4	1 1 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 2 3 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 1 1
TOTAL ************************************	5 5 216	13 2 2 13 68 12 12 76	1 2 2 14 2 15 5 11 11 74 12 88	1 3 2 13 2 2 13 5 16 11 66 12 12 76

Table M-8

PREQUENCY DISTRIBUTION OF CLASSROOMS OVER IMPLEMENTATION SCORES

EDUCATION DEVELOPMENT CENTER #

PAGE 11- 1

FREQUENCY DISTRIBUTION OF CLASSROOMS OVER IMPLEMENTATION SCORES

FOUCATION DEVELOPMENT CENTER :

. PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

Table M-8 (Continued)

TON SCORES
IMPLEMENT
FREQUENCY DISTRIBUTION OF CLASSROOMS OVER
EDUCATION DEVELOPMENT CENTER :

PAGE 11- 3

FMO-C 516 SDCIAL INTERACTION AMONG CHILDREN	FIRST = THIRD	6 3 7 3 3 1 1 2 10 32 16 37 16 18 6 6 12 59
FM'-C 51A CHILD SELF-INSTRUCTION. OBJECTS	1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 1 3 6 6 5 6 47 5 16 32 35 29 35
VARIABLE: FMO-A 461 ALL CMILO POSITIVE AFFECT	GRADE!FIRSTTHIRD GUINTILE: 1 2 3 4 5 1 2 3 4 5 SITE 1101 1 3 2 2 1106 1 2 1 1 1 1 1107 3 2 2 1 1 1 1108 2 2 1 1	TOTAL 3 1 5 7 3 1 2 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

VARIABLE: FMO+C 574 CHILD MOVEMENT

•	Ŋ		~	N		_	_	•	35
	4		-	~		~	-	φ	35
THIRD	m		_					_	•
Ĩ.	N				-			-	9
•	-				٣			e	18
1	S		٣	~	٣		_	•	47
	4		_						S
FIRST	e			~	_		~	S	56
اب. 1	~					-		-	ις.
1	-					~	-	m	16
GRADE1	GUINTILE	SITE	1101	1103	1106	1107	1108	TOTAL	*PERCENT

. PERCENT OF CLASSROOMS FOR A SPONSOR IN A GIVEN GRADE IN A GIVEN QUINTILE

PAGF 11- 1	•	. O. O.	5.4.2					7.1	7 10,6
ā.	•	Na u.	R .			. [8	. 77	75.4	60.7
)~SDRS	TRD GRADE	; ;	75.5						
P AND SP(- THIRD GRADE	- CLASSROOM -	19.1				_	s (N=17)	-36)
MS. SITE	1	5 1	5 81.8					Sponsor Scores	NFT Scores (N=36)
TOTAL IMPLEMENTATION SCORES FOR CLASSRODMS. SITE. AND SPONSORS	•	•	85.5	75.	67.	85.	76.	Spods	NFT
ATION SCO	•	S.D.	3.0					11.5	9.6
IMPLEMENT	1	MEAN	90.2	64.5	75.2	70.3	85.5	76.9	61.2
TOTAL	FIRST GRADE		93.0	48.0	73.0		83°0		
 	- FIRS	- CLASSROO! .	86.0	58.0	79.0	71.0	86.0		
MENT CENI	1	70	91.0			-		(N=19)	
. 0EVELOP	•		t. 91.c	Pa. 72.	70.0	s 72.0	.c. 85.0	Sponsor Scores (NFT Scores (Am35)
EDUCATION DEVELOPMENT CENTER		SITE	Burlington, Vt. 91.C	Philadelphia,	Paterson, N.J	Rosebud, Texa	Smithfield, N	Sponsor	NFT Scor

t = 5.35 p > .001

t 5,18 p > ,001

--

Appendix N

ASSESSMENT OF THE STABILITY OF THE IMPLEMENTATION SCORES

ئ, د.

5

Appendix N

ASSESSMENT OF THE STABILITY OF THE IMPLEMENTATION SCORES

The accuracy and stability of the implementation score assigned to a particular Follow Through classroom for a particular variable depends on the accuracy of the quintile estimates and the accuracy of the estimate of the Follow Through classroom value. Error in estimating the quintiles comes from "sampling" Non-Follow Through classrooms and from "sampling" classdays for each classroom. The former is related to the number of classrooms observed and the procedure of sampling classrooms; the latter is related to the day-to-day variability of Non-Follow Through classrooms. The stability of the quintile estimates is examined in Section 1.

The accuracy of the estimate of the Follow Through classroom value depends on the location of the classroom value in relation to the quintile cutpoints and on the magnitude of the day-to-day variability of the variable under consideration.* If the classroom value is much larger than the fourth quintile cutpoint, then the implementation score will be correct with a high degree of certainty even if the day to day variability is quite large. On the other hand, if the classroom value is near a quintile cutpoint, the day to day variability may need to be quite low for the implementation score to be reliable. This issue is examined in Section 2.

1. The Stability of the Quintile Cutpoints

There are two factors that relate to the stability and accuracy of the quintile cutpoints:**

- Sampling of classdays for each Non-Follow Through classroom.
- Sampling of Non-Follow Through classrooms.

The former is related to the day to day variability found in Non-Follow Through classrooms; the latter is related to the number of classrooms

N-3

^{*}Related issues of the reliability and validity of the classroom observation data are pursued in Chapter IV.

^{**}The assumption throughout this section is that there is a hypothetical population of Non-Follow Through classrooms and that the quintile cutpoints that are based on the Classroom Observation data are estimates of the population quintile cutpoints.

observed and the procedure of sampling classrooms. These factors are relevant when an implementation score is interpreted as an estimate of a Follow Through classroom's location relative to the total population of classrooms that may be considered Non-Follow Through comparisons. Even if we consider the procedure of obtaining implementation scores as a way of scaling the scores of Follow Through classrooms, the stability of such a scale is certainly of interest. Throughout this section we will assume that the Non-Follow Through classrooms are a random sample. This assumption is obviously violated, but it is necessary for the sake of obtaining any notion of the stability of the quintile estimates.

For the sake of simplicity, we will assume that the COI variable under consideration is continuous. The quintile cutpoints are based on 35 or 36 Non-Follow Through classrooms. Each classroom value is, in turn, based on two or three days of observation. If we make the assumptions that the errors from day to day are independent and normally distributed with mean zero and standard deviation σ_{ϵ} and if we assume that the distribution of the Non-Follow Through classroom values that are being estimated is normal with standard deviation σ_{ϵ} then the distribution of the estimated Non-Follow Through classroom values will be normal with standard deviation

$$\sqrt{\sigma^2 + \frac{{\sigma_{\epsilon}}^2}{n}}$$

where n is the number of days observation. Thus, the variance of the estimated Non-Follow Through classroom values will be greater than the variance of the actual classroom values. The effect of the day to day variability is to make the first and second quintile estimates derived from the estimated classroom values to be lower and the third and fourth quintile estimates to be higher than those in the distribution of the actual classroom values. The magnitude of these discrepancies, under the assumptions made here, will depend on the ratio

$$\frac{\sigma_{\epsilon}^2}{\sigma^2}$$

where n is the number of days of observation. The lower this ratio, the less difference there will be between the two distributions. For the variables we have selected for examination, the estimate of this ratio is less than .5.

To assess the precision of the quintile estimates, 95 percent confidence intervals for the quintiles of the estimated classroom distribution were calculated.* These were then transformed to represent intervals for the actual classroom values, assuming that

$$\frac{\sigma_{\epsilon}^2}{\sigma^2}$$

is equal to .5. The endpoints of these intervals are displayed in Table N-1 for each quintile. These computations were based on a sample size of 35 and 36, which corresponds to the number of Non-Follow Through classrooms at each grade level. Where the sample size might be reduced because of missing data, the intervals would be slightly longer.

Table N-1

95 PERCENT CONFIDENCE INTERVALS FOR THE QUINTILE ESTIMATES EXPRESSED IN PERCENTILES OF THE CLASSROOM DISTRIBUTION

Quintile Cutpoint	Corresponding Percentile	Confidence Interval
1	20	6 - 31
2	40	22 - 61
3	60	39 - 78
4	80	69 - 94

Consider the first quintile cutpoint as an example of how to interpret the confidence interval. If the experiment of sampling 36 classrooms over two or three days were replicated many times, then in 95 percent of the replications the first cutpoint, that is supposed to represent the 20th percentile, will be somewhere between the 6th and the 31st percentile of the Non-Follow Through classroom distribution.

These confidence intervals are rather wide, especially for the second and third quintiles. In terms of the implementation scores, these results indicate that for a given Follow Through classroom, the true implementation score may be plus or minus one unit from the observed score with a high degree of confidence when we ignore the day to day variability of the Follow Through classroom value. That is, if a classroom received

^{*}See the technical note at the end of this appendix for a description of the details of the computations.

a score of four, there is a good chance that the "true" score might be anywhere between three and five because of the variability of the quintile estimates. The variability of the Follow Through classroom value would add to the width of this interval, as we will see in Section 2.

The effect of the day to day variability of the Non-Follow Through classrooms on the quintile estimates may be examined by comparing the confidence intervals in Table N-1 with those in Table N-3 in the technical note at the end of this section. The intervals in Table N-3 are expressed in terms of percentiles of the observed Non-Follow Through classroom distribution; the intervals in Table N-1 are expressed in terms of percentiles of the actual Non-Follow Through distribution, under the assumptions of normality described earlier in this section. As might be expected, the intervals for the first two quintiles, generally, shift downward from Table N-3 to Table N-1. However, the shift is only slight. We conclude that the day to day variability has only a marginal effect on the quintile estimates in comparison to the number of classrooms sampled

2. The Effect of the Day-to-Day Variability

As was stated at the beginning of this appendix the effect of the day-to-day variability of the Follow-Through Classroom values on the implementation scores will depend on the location of the classroom value as well as the magnitude of the day-to-day variability. To assess the stability of the implementation scores, probability distributions of the score were computed for selected values of classroom means and standard errors on selected variables. Each probability represents the chance that a classroom with a given classroom value and with classroom day-to-day standard deviation will be assigned a given implementation score. The computations were based on two assumptions:

- The deviations from day-to-day are independent and normally distributed; and
- The quintiles are given fixed numbers.

It is second assumption has the effect of making the probabilities conditional on the quintile estimates that were derived in the current analysis. The assumption that the estimated classroom value and the quintile estimates are both random is more realistic, but the computations become unwieldy.

Table N-2 contains the results of these computations for selected sponsors. The sponsors were selected to provide a range of values for

PRO SILITY DISTRIBUTION OF IMPLEMENTATION SCORES
FOR A GIVEN CLASSROOM MEAN AND STANDARD ERROR
(First Grade)

	Variables Name	Sponsor	Class- room <u>Valu</u> e	SE_	"True Score"	Proba Imple	bility mentat 2	of Obton Sc	tainin ore of	g an :**** _5
66 *	Numbers, math, arithmetic	UK	21.3	2.0	4	.00	.02	.14	.68	.16
	arithmetic	BC	15.7	5.5	2	.21	.38	.15	.17	.08
		нѕ	19.8	7.7	4	.13	.23	.11	.21	.32
67**	Reading, alphabet, language develop- ment	UA UO	41.8 54.6	6.8	2	.33	.42	.22	.02	.01
151 a **	Adult academic comm., req. & direct questions to children	BC UK	7.7 9.8	.93	3	.06	.11	.37	.38	.08

^{*} The estimated quintiles for variable 66 are 11.2, 17.0, 19.3, and 23.3.

^{**} The estimated quintiles for variable 67 are 38.8, 46.4, 54.3, and 58.6.

^{***} The estimated quintiles for variable 451a are 5.2, 6.8, 7.8, and 9.0.

^{****} These probabilities represent the chance that a classroom with a given classroom mean and standard error will get any given implementation score. The reliability of the implementation scores may be assessed by examining the chances of attaining the "true score."

Table N-3

THE VALUE OF L_0 AND d_0 EXPRESSED IN PERCENTILES FOR EACH QUINTILE OF NON-FOLLOW THROUGH (N = 36)

Quintile	Corresponding	Confid	lenc	e Level
Cutpcint	<u>Percentile</u>	lo x 10	00	u _O x 100
1	20		_	34
2	40		-	59
3	60	41	-	74
4	80	66	-	90

the classroom value. The within-classroom can ard deviation* for the selected set of CCL and FMO variables were first computed. The estimates for the CCL variables were based. If three days of observation per class; the estimates for the FMO variables were based on the two days of adult-focus observations. The unit of analysis was the day of observation. The estimates were computed separately for each sponsor. Note that the estimates of day-co-day variability are based on three consecutive days of observation in each classroom. The standard error is defined as the standard deviation divided by the square root of the number of days of observation. The estimated quirtile cutpoints were taken from Table M-1 in Appendix M for the first grade.

$$S = \sqrt{\frac{\sum_{ij} \left(y_{ij} - \overline{y_i}\right)^2}{n - B}}$$

where y_i is e mean for classroom i n is the total number of class days B is the total number of classrooms

The definition of y_{ij} is the same as that used for the classroom, except that only COPs for the given day are used in the computations.

^{*}If y_{ij} is the value of a given COI variable on day j in class i, then the within-class standard deviation is estimated by:

The figures in Table N-2 indicate that, generally, the implementation scores will be within one point of their true value with a high degree of chance. The exceptions will occur, as we anticipated, in those cases when the day-to-day variability is large relative to the range of estimated quintile values and the classroom value is centrally located in the Non-Follow Through distribution. For the three variables we examined, this appears to be the exception.

3. Summary

The results from Section 1 indicate that the day-to-day variability for the Non-Follow Through classrooms has only a marginal effect on the quintile estimates in comparison with the number of classrooms included in the Non-Follow Through sample. From the computations carried out in Section 2, it appears that for fixed quintile values and an estimated classroom value, the estimated implementation score will be within one of the true score. The condition under which the implementation scores are computed is that both the Non-Follow Through quintile scores and the Follow Through classroom values are estimated. Under such conditions the reliability of the implementation scores will be decreased from both hypothetical sicuations. The compound effect of estimating the Follow Through classroom value and estimating the Non-Follow Through quintiles is that the estimated implementation score assigned a particular Follow Through classroom may be different from the true score by as much as two points. In the worst situation, a classroom that has a true implementation score of 3 appears to have a substantial chance of getting an observed score on an individual variable of from 1 to 5.

It will be necessary in the assessment of site implementation and sponsor exportability to take into account the low reliability of individual classroom scores. The observation of approximately four classrooms per site and 20 classrooms per sponsor in each grade level does mitigate the low reliability of individual classroom scores since we are examining patterns of scores among classrooms. Also, the overall

lement lion score for each classroom, defined as the sum of the scores across implementation variables, will be much more reliable than the scores for each individual variable.

N-9

TECHNICAL NOTE

This note outlines the derivation of the confidence interval for the quintile estimates in terms of percentiles.

Assume X_1 , X_2 , ..., X_n are independent, identically distributed continuous random variables with a cumulative distribution function $\Gamma(x)$ that is strictly increasing.

Let $X_{(1)}$, $X_{(2)}$, ... $X_{(n)}$ be the corresponding order statistics i.e.

 $\mathbf{X}_{(1)}$ is the smallest of $\mathbf{X}_1,\;\ldots,\;\mathbf{X}_n$

 $X_{(2)}$ is the next smallest, etc.

Let $Y_{(i)} = F(X_i)$ for i = 1, ..., n and

Let $Y_{(i)}$ be the ith order statistic of Y_1, \ldots, Y_n

It is well known that:

- (1) Y_1, \ldots, Y_n are independent, identically distributed random variables with a uniform distribution.
- (2) $Y_{(k)}$ has a beta distribution with parameters k and n-k+l for each value of k.*

By referring to the beta distribution, we can find constants \boldsymbol{l}_{o} and \boldsymbol{u}_{o} such that

$$P[Y_{(k)} < 1_{o}] = \alpha/2 \quad \text{and} \quad P[Y_{(k)} < u_{o}] = \alpha/2 \text{ so that}$$

$$P[I_{o} \le Y_{(k)} \le u_{o}] = 1 - \alpha$$

But $Y_{(k)} = F[X_{(k)}]$.

^{*}See problem 10.5, Rao, 1965.

Thus

$$P\left(1_{o} \leq F\left[X_{(k)}\right] \leq u_{o}\right) = 1 - \alpha$$

Since F is strictly increasing, this may be expressed.

$$(3) \quad P\left[F^{-1}, u_0\right) \leq X_{(k)} \leq F^{-1}(u_0) = 1 - \alpha$$

But F (y) for o < y < 1 corresponds to the 100(y)th percentile of the distribution of X_i . Therefore, we may interpret (3) above as stating that with probability $1 - \alpha$, the kth order statistic will fall between the $100(l_0)$ -th and $100(u_0)$ -th percentile of the distribution of X_i .

For our purpose the X_i represents the value on a classroom observation variable for the ith Non-Follow Through classroom. The parameter k is chosen so that $X_{(k)}$ is the estimate of a quintile cutpoint. Then 1_0 and u_0 may be found for $1-\alpha=.95$ using a table of the beta or the distribution. For n=36 the values of k for the four quintile cutpoints were 8, 15, 22, and 29 respectively. Table N-3 contains the values of 1_0 and 1_0 for each quintile.

To derive the figures in Table N-1 from those on Table N-3 the percentiles of the distribution of estimated classroom values are transformed to the percentiles of the distribution of the actual classroom values. The assumptions are that the actual classroom values have a normal distribution with standard deviation σ , that n days of observation are made, and that the day-to-day deviations from a given classroom's value are independently normally distributed with a standard deviation of σ_{ℓ} .

Let X_{α} = the α th percentile on the estimated distribution

 Z_{α} = the α th percentile on the standardized normal distribution (mean = 0, standard deviation = 1)

Then

$$x_{\alpha} = \sigma^2 + \frac{\sigma_{\epsilon}^2}{n}$$
 $z_{\alpha} + \mu$

Standardizing $\mathbf{X}_{\pmb{\alpha}}$ in terms of the distribution of the actual class-room values we have:

$$W = \frac{X_{\alpha} - \mu}{\sigma} = \sqrt{1 + \frac{\sigma_{\epsilon}^{2}}{n \sigma^{2}}} \qquad Z_{\alpha}$$

For any α on the estimated classroom distribution, we can find \mathbf{Z}_α in tables of the cumulative normal probability distribution, apply the transformation for a given value of

$$\frac{\sigma_{\epsilon}^2/n}{\sigma^2}$$

and then consult the cumulative normal tables again to find the percentile in the distribution of the actual classroom values.

Appendix O
PEARSON CORRELATIONS

1 ź 417.794 ŝ -3,441 , 0.1 *** ć

A STATE OF THE STA	. **.* * . *	• •											
	· :. ·				•						,	,	
	·. •			-									
2000 12 12 12 12 12 12 12 12 12 12 12 12 12	,		•										
					•		7						
**	٠.			1			-						
	,		•				•				•		
12. 12. 12. 12. 12. 12. 12. 12. 12. 12.			٠				·						,
11.72 71.72 72.77	•				•								
11.					,								
A 7 .			2	*	٠						•		
7 7 7			;					٠					
7	Ē		Ξ	-	:								,
	-		-	,		-	•		,	;			•
	-		٠		-			:					,
	-		-	,	•								•
*	-		_		7		-				,		
	′.		'.		,								. ,
- · ·	-		-		,		٦,	3					•
	,		-	7	Ē						•		
1 9 1			-	,									•
							. •						;
- 1	á		- 2	: -	, ±		<u>.</u>				,		•
7, 51 - 7	2		•	,	: :			٠			•		•
	3		, -					,			٠		
11 8 40 *-	5		:	4	_		,	-				•	
	, *		,	, 7			· -				•		ý.

0-3

100

The state of the s

4431-11-5-47-5-58-42-41-11-11

7.4.,254945 774824774884 81 - 457588415446.00036575754 11 1 1 .815 .137 ,282 48451141--1 45407.454.3455 (337.65-1 5-5-174-54-5 2-57/45-3 1-<u>55</u> 845524751,528281847,76555

ランコンドロミチスト・(オネガギタオブアロドリー)

- 45 - 53778 - 1877 No. 57755 3.

5 1

44,00018 0-2

A COURSELL OF PRASINGENTER OF THE WINDS AND MINISTER OF CHARLES OF THE COURSELL OF THE COURSEL

PIRV. RAV			· 2	V PRV		٥	ž.	ř,	, r	, 5		7	255.7	4	į	-	•		:
	2	,	ž		ī,		-	Ę.	3	Ţ,	r.	,	•		•		*	٠	•
		=	ł,		<i>-</i> :		,	5	~	,	Ţ	7,	•	≠	-	ž		۲,	
7					٦,	4	x	į	-,	ó	•	:	. 30	, Э	۲,	•	ſ		
	<u>:</u>		. 1	1 191	41)	-	Ē,	ĭ	5	-	:	-	7.	ž.	•		7.	•	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Ωſ	Ţ	ź		-	-	•	- ,	:	ō	y ,			,	,
					;	20° -1	į	X.	,	-	۔ ت			-			*	,	,
					ĸ	΄;	00.1	٠.		• • ر	.*		•	_		,	1		
					:	£	-,	?: -	-	٤	ö		 -	٤		•		:	
					7	÷	-	-	36 -	-	,	4	7,	Ţ	÷	Ð	•		
- 1 T - 2 T - 1 T - 7 T - 4 KI	Ċ				.)(.	1	7	*	,	₽ċ -•	1	11	ŝ	٠.	-	-	:	1	
יי וי וי אונאי חד אקטיער און יי יי						20	۶	3	7	- 1	ეე - 1	ċ,	J.	<u>,</u>	÷,	~	-	٠.	
Tight " . T T TH DIT. The bit They the a .					۲,	,	?	١	,	-	3	ું •	x,	Ξ	5	~	•	:	
1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					:	:	÷	3	3,	,	ς.	٠.	<u>ت</u>	ž	ت	Ţ	,		
**94 11] shilt , raise t . 111 10					-;	-	1	Ē,	~		3.3	9	ž	1 0%	<u>+</u>	•	,	-	٠.
4 + 1 41					7,	,-4	- 13	7	ં	,	4	5	- 10	-	Ξ.	-	•	<u>.</u>	
and the second of the second					~	;	Ξ,	Š	Φ.	-	7	*	Þ	,	-	5	-		
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					,	2.	Ŧ,	<u>.</u> .	-	-7	r-4	7	э́г,	9		5			
1 A' 1					,,	÷	7	J.	Š	~	×	7	~	- 03	<u>*</u>	٠	,	=,	
					3	60 -	ζ.	-7,	- 4	*	5	۶	3	x,	ć	;		-	-
11. · · · · · · · · · · · · · · · · · ·					ç	7	~ -	ž	č	Š	-	7	×	Ś	د	,,		7	,

		20.0	. 50%	×.0%		7901				0×0	1106	74.7								; ,
THIRD AALIE	ئر		اه	٤.	- 1	o .	× 2.	186	£:	7	7117	1.534	0001	- ×5(-)	3	<u></u>	:	:	;	3
		7				Ç														1
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7,	30.1				Ţ														,
IST. A STAND KATEN CIPLS NO STANDS	-	- 13	00.,	- 33	7.	ž	٤,	60.	- 60	- 23	7.	~	7	· · ·	5. 1	5	70 -	<u>ب</u> •	ر	5
TOTAL STATES THE MENT	X.	80				ا ٽ														7
J Beadly, . instant	ç	÷				;; +														_*
Pr. 1 To Seasons . 117, pour 17 of	í	7				00 1														11 -
Und. 188 wild surretty that ities, in to	ì	ę,				7														١,
578, 48r. Leacher with the little	<i>x</i> :	0				65														
0×0, 188 Teacher with small at 11,	ď	=				7.7														_
386, 194 Affe stri 52 11 K	ψ. ι	1				1,														~
lie, blis me child without chile	3.	Ξ.				10														٠.
Care, 1854 thick fitters or a with a filt, a chan	۲,	80				80														·
228, 1350 thild questions of the	?	۰. Jœ				7														-
256, 1348 4: I adult grane to handre	ì	à				<u>o</u>														Ĭ,
-4., ball Adults artentive to hald	£	30				-:														Ī.
137, 1452 Adult open to children	,0°	01				.17														1
309, 1454 (hill exterior response to questions	ź.	۲.				- 11														,
11, 1416 All Mill task comments	7	٠. بې				-7														ب
but haby Air ibeld of sithing office	ť	æ.				ş														-
and the same and same and a same	æ,	517-				- 10														

MPI POWINT , 421-111 ×, 47 EVE 44

ž

ź

25,2 33 5.2 ** 5 42 ** 5 4 5 5 6 5 7 5 7 - 5 15\$ 1227 Had 8312 , \$375422383 42 * * 71 343 21 747 16 A Mail a strength to the transfer of the transfer of the transfer of transfer 1.483.48682-534435543333444

ş ·

0-0 1, 3 ÷ ′: , , . -. ! - • , , <u>;</u> . ; ; ; 3 \$ CHIRD

475 214512 1 5 ... \$\$\$\$415988 723 2,23-8383288888 ~ 2 1 52_27773528788787 775.,,E7_2737757,58628885 -587775032408E44048488888 - 66 \$ 1 65 1 6 1 6 _12847747554888888888888 **9** 1 131 19,1. - 19,588,89722888889898 12575-1-12422222222222222 255,447-444488884456666668888888 \$ 1 Mildrer euo: ŕ A carding a card

Appendix 0-4

ARSON - SECOLOGIS OF SPONSOR (RITHOR) VARIABLES USID IN IMPLEMENTATION SCORES - LAIVERSLIY OF CREGON

- •	* * * * * * * * * * * * * * * * * * * *	
90 x	3089988	7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
11.7	~ . 4 : x : 4 4 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5	
9.57	134481544242445	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7298 7448	48103847837478388	24.77 1.4 2.7
4.294 1.4.55	100000000000000000000000000000000000000	25 20 20 20 20 20 20 20 20 20 20 20 20 20
071	3244445843484244	2292 VZ20 VZ20 1.2.1 1.2.1 1.2.1 1.3.2 1.3.3 1.3
V 28.2 V 4.1.2	99.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	V282 V412 .25 .26 .20 .20 .41 .10 .07 .07 .01 .00 .10 .10 .20 .20 .20 .20 .01 .01 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03
V268 V398		V268 V398
1.26. 7.39.	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	V264 V394 V394 V394 V394 V394 V394 V394 V39
43.54 V 37.6	001	V254 V376
V241 V363	13. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	V241 V363 V363 V363 V364 V364 V364 V364 V364
V222	2.5 2.5 2.5 2.5 2.6 3.7 2.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	(V322 (V344
V196 V240	50.00000000000000000000000000000000000	V196 V2/0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V086 194	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	7086 7086 7096 7096 7096 7096 7096 7096 7096 709
V 180 V88	200 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	V080 V888 V888 V888 V89 V80 V90 V90 V90 V90 V90 V90 V90 V90 V90 V9
V0.54	2001 2001 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	V6074 V67 V67 V67 V67 V68 V68 V69 V69 V69 V69 V69 V69 V69 V69 V69 V69
V058 V66	82.87888688888	7.7.7 7.7.7
ŁIn.f. skadé	*** *** *** *** *** *** *** *** *** **	WARCE, Ven Numbers, hatt (559, Ven Numbers, hatt (559, Ve) Reading, language (080, Ve) Reader with small group (180, Ve) Ande with small group (180, Ve) Ande with small group (180, Ve) Hild interaction with adult, verball (21), Ve) Hild interaction with adult, verball (24), Ve) And Hild interaction with adult, verball (24), Ve) And Hild stroup to adult academic (254, Ve) And adult acknowledgment to children (264, Ve) And adult acknowledgment to children (264, Ve) Adults attentive to small group (294, Ve) Adult academic verbal response (296, Ve) Adult academic to children (207, Ve) Adult academic to children (207, Ve) All child positive affect (207, Ve) All child self instruction, academic

()-()

, . <u>}</u>

ERIC Full Text Provided by ERIC

App. ndtx 0-5

FOR SOME CANDIAGE OF SPORSOR CRITICAL VARIABLES USED IN INFORMATION SCORES. SINCE IN OF FANSE

FTRST "RADE	707	203	10,14	607	1680	,	\$? !!	33		2 4:	x - 1		3.7.7	1.406	÷	- ** - ~ .	* * * * * * * * * * * * * * * * * * * *
05, to detail of there is es, for its 105, to	37777775	20.75.75.4 20.75.75.75.4	7.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11	1.00 1.00 1.00 5.7 5.7 5.7 5.7	77.7. 08.7.	7 7 6 2 L 1 8 X 8		25, 7, 2, 2, 5, 5, 5		7 7 7 7 2 5 7 7	x = 1 = 5 ; 1; 5	្ត្រី និង្សិស្ត្រ ខ្លែង និង្សិស្ត្រ			* * * * * * * * * * * * * * * * * *	
265, V998 All dull praise to children 285, V912 Adolt receback to class questions 291, V421 Adolt receptor to child 296, V438 Adolt focks, one shild 306, V451 Adolt reademic to children 312, V45 Adolt pertive orrective tecktack 312, V45 Adolt pertive orrective tecktack 312, V45 Adolt reaforce with tokens 345, V464 Adolt reaforce with tokens	81.28401.40		9.5 7.4 4.7 5. 1.4 4.7 5.	25. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2.13 69 69 52 50 50 51 51							000000000000000000000000000000000000000		x		7 7 7 7 7 7 9 9	

	1014	105,	1058	1059	0807	1.086	1.196	21	ن د د مز	1.68	7871	1.61	1.246	1 306	. 312	- 25 -	1.164
THIRD GRADF	66.7	165	766	7.67	188	76.	2424	1 344	17.15	5	71.3	77	14 48	17.51	1.5	7	181
14034, 139 Ceneral (quipment piessing	1.00	35.	S	.15	60.	7) 1			, v	56	5	0.	÷		;	Ė
057, v65 buessing games, tible games, puzzles	×.	.00	~!	53	87	87	7	?	1	2.	27	01		08	0.	X.	y,
USB, 165 Numbers, math	.0	7.7.	1 00	15	03	7.		£ 7.7.	ķ	5	08	80	- 20	7	0	-	,
054, to Reading, language	.15	53	15	00:	. 20	. 3.	*	0	8	.16	6.9	5	90.	Ĩ,	7		20
080, V88 leacher with small group	60.	87.	- 01	07.	00.1	9	î	~ <u>`</u>	Š	ا د د	67.	3	28	38	13	,	61.
USO, V9. Aide with small group		- 38	1.23	. 33	٥/.	1.00	၁	,	· 9·	21	. ,	- 50	7	ů.	.0.	ì	00
de, tido lents, workbooks		77.1	.55	.	~	:03	€ 1.	· 0		3.	. 38	97.1	= -	7	- 08	- 1 - 1	3.6
V54. Child interaction with adult, verbal		23	23	- 01	€,	.52	5	00 1	;	2,	\$.	1	65.	9.	7		5,1
264, 1344 A adult acknowledgment to children		V 7.	9.	20	. 58	• 9 •	7	-,	1.00	7,	٤٠.	0,1	٠.	٤.	£.	20	66.
268, 7398 A 1 adult praise to children		97.	01	97.	57.2	77	ž	2		3	. 32	., 38	1.	.35	60	œ.	٠,
181, V+12 Ad It teedback to academic questions		1 23	- 08	.67	67.	.65	ž	رب از .	. ; }	7	1.00	-,63	1.2	.75	Ξ	. 30	-
191, 141 Adults attentive to child	25	03	08	<u>-</u>	31	o	φ, 1.	1	07.1	ž.	1.45	1.00	7	X,T	09	- 50	7 }
295, 1438 Adult fords, on child	.0.	9: -	07 -	90.	38	÷		65.	ť.	-1.1	1	?:	 00	.31	- 1	0; -	1
305, Vabl Adult academic to childre	., t	08	7	÷;	38	20	, ,	79.	<u>~</u>	2	57.	œ,		00.1	5	-	0,7
312, 145, Adult positive corrective teedback	7.		0	. 1	17	6	\$5.	·	~	1		60.	-	2	00.1	0,	-
123, 1469 Adult remiones with tokens	·	. 18	.1.	.25	~ ; ; ~	^; H		-	9.	Ľ,	õ	30	0	16	04	1.00	
os, volo Chill than persection	10.1	γ.	' ;	07:	-	ا ا	:	3	50	; 1	<u>;</u>	:	ı	Û	<u>1</u>	÷.	1.00

SAKIABLES IN THE EMPIRE PLANS IN LUPRILATE IN IT SPEC

13 115541-- 1.1 #31151-5336418538 77.0 8.1 - 998484 8.551847887 5 105-35-305-415 0471 858, #51 - * t. . . * . % - * . 5 . 2 * t . 7 # 4 \$ \$ \$ R \$ 1 # 7 # \$\frac{1}{2}\$\\ \text{\$ 57 08248220112243418842824888488 \$30 8020238242.52488784788288242803 . 822218321212823222222222 \$ \frac{1}{2} \cdot \frac{1}{2} \frac^2 \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \f 559158914225232225556547427 \$2124088 47484676724738282324 Part 888784538511 171888908415839: The state of the s

83824588282828222332338182838 Child selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

County of the selection

Coun

387 - 387 -

ن () س

Appendix 0-7

PEARNOV CORRETATIONS - ESPONSOR CALLICAL VARIABLES PSED IN PHERMINICAL SCORES -- FOR

PIRST GRADE) 101 101	07 07 07 07 07 07 07 07 07 07 07 07 07 0	8501 F67	58 1059 5 167	59 VO75	\$ 1105 1114	/01A 4	V108	3 1.195	× 5	82.1	30	1.263 1.299	9677	00° A	, .	35.7	1.00	1 361	1,56°	57.
nt	1 00 1	7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	01 - 04	11 01	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 9 7 4 7	70	28	-; ;	ž 6	9.5	- 65	207 - 17	7 70	2.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	45	Σ 7	3,	2.7	ç	9 -
present																	3	*			,
																	ř	-:			
ti. 1t 1es. 1t 3.00																	÷.	7			`.
adult																	ç.	د			- - -
int adult																	7	ثي ا			,
																	5	-0			ŧ
																	10	, i			4
																	٦.	:			;
																	×				ž
																	•	1			, ,
																					7
																	*	1			,
																	_				
as: fon																	2	į .			<u>.</u>
																		` ;			!
																	ر <u>.</u>	-			· ; ;
																	; ;				, 1
																	2 . ;	• ~			'3

V408	_ 758778451 +371998850X1249
-	
1 1 16	. ,,,,,,
V 561 V 510	
1.16	
1,508	44 44 44 44 44 44 44 44 44 44 44 44 44
V 507	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
V305	11. 13. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.
46.7 ** **	1.00 1.00
6971	2. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
1254	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
1 035	20. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
7.7	25.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
2 667	60 78 78 78 78 78 78 79 70 70 70 70 70 70 70 70 70 70 70 70 70
7116	28.00 44.1. 20.00 44.1. 20.00 50.0
V107 V115 V2	5.55 5.55
V106 V114 V114 V115 V116 V116 V116 V116 V116 V116 V116	
	7
9 V075	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6603	21.000.000.000.000.000.000.000.000.000.0
1,058	26. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1.39	7. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
V25	1.000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
607	0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	t who h
	o with
	s, our
	to the control of the
	day cent py cent py cake the cont py con any con the contact the conta
	dath dath dath dath dath dath dath dath
	WR * 12. (this silvetto. 7. v. 5. (den.) tov.; flav (quippout 4. vb valety. The control of the
	Con Miles Adult of Ad
THIRE URADE	4.1.4.4.4.9.9.1.4.4.4.4.4.4.4.4.4.4.4.4.
THIRD	* 10000 - 1217, 113,002 = 82°, -

Appendix P

TEACHER RESPONSE TO TRAINING EMPHASIS, BY SPONSOR AND SITE

Appendix P

HEACHER RESPONSE TO TRAINING EMPHASES, BY SPONSOR AND SITE

This appendix records findings on 16 items in Ouestion 25 of the leacher Questionnaire. The question said: "How much emphasis was placed upon each of these items during pre- or in-service training for your teaching assignment this school year?" The emphasis on each item was rated by teachers and their sponsors as 1 = A great deal, 2 = Some, or 3 = None. The findings presented on the following pages show the percent of teachers agreeing with their sponsors. Only EDC did not rate the items, and is omitted here for that reason. The number of te-chers responding for the other sponsor models is as follows: Far West 39, University of Arizona 33, Bank Street College 37, University of Oregon 36, University of Kansas 34, and High/Scope 40.

The .tems are as follows:

Item a--Helping the shild feel important as a person

Item b--Developing enthusiasm for learning

Item c--Developing basic skills such as reading, writing, mathematics

Item d--Developing problem solving and critical thinking

.tem e--Developing the child's ability to work and play cooperatively with other children

ftem f--Helping the child to make choices and become an independent learner

Item g--Involving parents in their child's learning activities

Item h--1 volving ents in the operations of the school

Item i--Diagnosing individual learning needs

Item j--Guiding children in activities appropriate to their needs

Item k--Cooperating effectively with other adults in the class-

Item 1--Working with small groups of children

Item m--Arranging the classroom environment for instruction (placement of furniture, materials, equipment, and the like)

Item n--Maintaining discipline and control in the classroom

Item o--Using rewards to influence pupil behavior

Item ρ --Developing or selecting materials to suit curriculum objectives

P-3

Item a--Helping the Child Feel Important as a Person

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating <u>Means</u>
Far West Berkeley	1	37.5%	2.00
Duluth		100.0	1.00
Lebanon		75.0	1.25
Salt Lake City		62.5	1.50
Lacoma		75.0	1.25
All sites		70.0	1.40
University of Arizona	1		
Des Moines		55.6%	1.44
Lakewood		55.6	1.56
Newark		71.4	1.29
Lincoln		75.7	1.50
All sites		64.4	1.45
Bank Street	1		
Brattleboro		83.3%	1,33
Fall River		75.0	1.25
New York City		57.1	1.57
Philadelphia		62.5	1.38
Tuskegee		62.5	1.50
All sites		68.1	1.41
University of Oregon	3		
East St. Louis		0 χ	1.33
New York City		50.0	2.33
Racine		14.3	1.86
Tupelo		0	1.13
Providence		16.7	1.83
All sites		16.2	1.64
University of Kansas	2		
New York City		50.0%	1.50
Philadelphia		50.0	1.75
Portageville, Mo.		42.9	1.43
Kansas City, Mo.		37.5	1.63
Louisville		57.1	1.86
All sites		47.5	1.65
High/Scope	2	, a contract	
Greenwood, Miss.		15.4%	1.15
Ft. Walton Beach		25.0	1.25
New York City		40.0	2.20
Greeley		33.3	1.33
Denv r		37.5	1.63
All sites	_ ,	30.2	1.43

Item b--Developing Enthusiasm for Learning

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West	2		
Berkeley	-	28.67) 16
buluth		50.0	2.14
Lebanon		25.0	1.50
Salt Lake City		37.5	1.25
lacoma		37.5	1.63 1.38
All sites		35.7	1.56
University of Arizona	1		
Des Moines	*	77.8%	t))
Lakewood		77.8	1.22
Newark		57.1	1.33 1.57
Lincoln		50.0	1.63
All sites		65.6	1.65
		V 2 • 0	1.4-
Bank Street	1		
Brattleboro		83.3/	1.33
Fall River		. 62.5	1.38
New York City		57.1	1.57
Philadelphia		50.0	1.50
Tuskegee		87.5	1.13
All sites		68.1	1.38
University of Oregon	2		
East St. Louis		33.3%	1.33
New York City		33.3	2.33
Racine		42.9	1.43
Tupe lo		25.0	1.25
Providence		33.3	1.33
All sites		33.6	1.50
University of Kansas	,		
New York City	2	25 0%	1 35
Philadelphia		25.0%	1.25
Portageville, Mo.		12.5	1.88
Kansas City, Mo.		42.9	1.43
Louisville		50.0	1.75
All sites		5 7. 1 37.5	1.57 1.62
Ut als /c		-	
High/Scope	2		
Greenwood, Miss.		7.7%	1.08
Ft. Walton Beach		12.5	1.13
New York City		80.0	1.80
Greeley Denver		66.7	1.67
All sites		50.0	1.50
1111 21 Ch.2		43.4	1.35

Item c--Developing Basic Skills Such as Reading, Writing, Mathematics

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West	2		
Berkelev		0 %	1.00
Duluth		37.5	1.38
Lebanon		87 5	1.88
Salt Lake City		37.,	1.38
Facoma		37.5	1.38
All sites		40.0	1.41
University of Arizona	1		
Des Moines		77.8%	1.22
Lakewood		22.2	1.78
Newark		71.4	1.29
Lincoln		75.0	1.38
All sites		61.6	1.42
Bank Street	1		
Brattleboro		50.0%	1.50
Fall River		75.0	1.38
New York City		57.1	1.57
Philadelphia		50.0	1.50
Tuskegee		75.0	1.25
All sites		61.4	1.43
University of Oregon	1		
East St. Louis		88.9%	1.22
New York City		83.3	1.17
Racine		85.7	1.14
Tupelo		87.5	1.13
Providence		100.0	1.00
All sites		89.1	1.14
University of Kansas	1		
New York City		75.0%	1.25
Philadelphia		57.1	1.63
Portageville, Mo.		85.7	1.14
Kansas City, Mo.		25.0	1.75
Louisville		85.7	1.14
All sites		65.8	1.41
High/Scope	2		
Greenwood, Miss.		30.87	1.46
Ft. Walton Beach		62.5	1.63
New Yor. City		60.0	1.60
Greeley		83.3	2.17
Denver		62.5	1.63
All sites		59.8	1.65

Item d--Developing Problem Solving and Critical Thinking

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West Berkelev Duluth Lebanon Salt Lake City Tacoma	1	50.1% 50.1 37.5 75.0 62.5	1.50 1.50 1.63 1.25 1.50
All sites University of Arizona Des Moines Lakewood Newark Lincoln All sites	1	55.0 44.4% 22.2 0 75.0 35.4	1.48 1.67 1.78 2.00 1.25 1.67
Bank Street Brattlebore Fall River New York Citv Philadelphia Tuskegee All sites	1	50.07 37.5 42.9 50.0 25.0 41.1	1.50 1.75 1.80 1.50 1.75 1.68
University of Oregon East St. Louis New York Ciry Racine Tupelo Providence All sites	2	44.4 50.0 57.1 75.0 33.3 52.0	1.44 2.17 1.57 2.00 1.67 1.75
University of Kansas New York City Philadelphia Portageville, Mo. Kansas City, Mo. Louisville All sites	2	100.0% 37.5 28.6 12.5 57.1 47.1	2.00 1.88 1.29 2.13 1.86 1.82
High/Scope Greenwood, Miss. Ft. Walten Beach New York City Greeley Denver A'l sites	1	69.2% 62.5 40.0 83.3 87.5 68.6	1.31 1.38 1.60 1.17 1.13 1.30

Item e--Developing the Child's Ability to Work and Play Cooperatively (ith Other Children

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
far West	2		
Berkeley	2	28.6%	2.43
Duluth		75.0	2.00
Leban		75.0	2.00
Salt Take Cify		50.0	2.00
Tacoma		71.4	1.71
All sites		60.0	2.03
University of Arizona	1		
Des Moines	•	55.6%	1.67
Lakevood		33.3	1.89
Newark		28.6	1.86
Lincoln		62.5	1.50
All sites		45.0	1.73
All Sites		49.0	1.//
Bank Street	1		
Brattleboro		66.7%	1.67
Fall River		50.0	1.63
New York City		42.9	1.71
Philadelphia		50.0	1.50
Tuskegee		25.0	2.00
All sites		46.9	1.70
University of Oregon	3		
East St. Louis		11.1%	1.67
New York City		66.7	2.67
Racine		57.1	2.29
Tupelo		0	1.50
Providence		33.3	2.17
All sites		33.6	2.00
University of Kansas	1		
New York City	•	50.07	1.50
Philadelphia		37.5	1.88
Portageville, Mo.		14.3	1.86
Kansas City, Mo.		25.0	2.00
Louisville		42.9	1.71
All sites		33.9	1.82
High/Scope	1		
Greenwood, Miss.	•	76.97	1.23
Ft. Walton Beach		62.5	1.38
New York City		20.0	2.25
Greelev		16.7	1.83
Denver		37.5	1."5
All sites		42.7	1.56
*** * **** **		·⊤ ← ↓ /	1 • /.,

Item f--Helping the Child to Make Choices and Become an Independent Learner

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West	1		
Berkeley	•	14.3%	2.29
Duluth		62.5	1.38
Lebanon		62.5	1.38
Salt Lake City		62.5	
Tacoma		50.0	1.38
All sites			1.63
Wir Sires		50.3	1.59
University of Arizona	1		
Des Moines		77.8%	1.22
Lakewood		33.3	2.00
Newark		57.1	1.43
Lincoln		50.0	1.63
All sites		54.6	1.58
		34,0	1.50
Bank Street	1		
Brattleboro		33.37	2.00
Fall River		62.5	1.50
New York City		42.9	1.57
Philadelphia		62.5	1.50
Tuskegee		62.5	1.38
All sites		52.7	7د.1
University of Oregon	2		
Last St. Louis	<u> </u>	55.6%	1 70
New York City		16.7	1.78
Racine			2.50
Tupelo		71.4	2.00
Providence		75.0	1.75
All sites		16.7	1.83
MII SILES		47.1	1.94
University of Kansas	2		
New York City		50.0%	2.00
Philadelphia		50.0	1.75
Portageville, Mo.		14.3	1.43
Kansas City, Mo.		50.0	2.00
Louisville		14.3	1.43
All sites		35.7	1.71
High/Scope	1		
Greenwood, Miss.		100.0%	1.00
Ft. Walton Beach		75.0	1.25
New York City		60.0	1.40
Greelev		66.7	1.33
Denver		87.5	1.25
All sites	n O	77.8	1.20
	P-9		

ERIC*

Iver g--Involving Parents in Their Child's Learning Activities

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West	2		
Berkeley		42.97	1.71
Duluth		62.5	1.63
Lebanon		50.0	2.00
Salt Lake City		50.0	1.50
Tacoma		50.0	1.50
All sites		51.1	1.67
University of Arizona	1		
Des Moines		22.2%	1.78
Lakewood		11.1	2.11
Newark		71.4	1.43
Lincoln		25.0	1.88
All sites		32.4	1.82
Bank Street	2		
Brattleboro		50.0%	2.50
Fall River		12.5	1.63
New York City		57.1	2.14
Philadelphia		62.5	2.13
Tuskegee		3'.5	1.88
All sites		43.9	2.03
University of Oregon	2		
East St. Louis		33.3%	1.78
New York City		50.0	2.17
Racine		71.4	2.00
Tupelo		37.5	1.63
Providence		83.3	2.17
All sites		55.1	1.92
University of Kansas	1		
New York City		75.0%	1.25
Philadelphia		37.5	1.75
Portageville, Mo.		85.7	1.14
Kansas City, Mo.		12.5	2.13
Louisville		42.9	1.86
All sites		50.7	1.68
High/Scope	2	17. 27.	, , , ,
Greenwood, Miss.		46.27	1.46
Ft. Walton Beach		50.0	1.50
New York City		40.0	2.60
Greelev		50.0	1.50
16 AVET		25.0	1.75
All sites		42.2	1.68

Item h--Involving Parents in the Operations of the School

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West	2		
Berkeley	-	28.6"	2.14
Duluth		57.1	1.57
Lebanon		62.5	2.38
Salt Lake City		87.5	2.13
Tacoma		50.0	1.50
All sites		57.1	1.95
University of Arizona	1		
Des Moines		22.2%	1.89
Lakewood		22.2	2.17
Newark		42.9	1.57
Lincoln		37.5	1.75
'l sites		54.2	1.85
Bank ctreet	• 2		
Brattleboro		66.7%	2.33
Fall River		37.5	1.88
New York City		57.1	2.14
Philadelphia		3 7. 5	2.38
Tuskegee		50.0	2.00
All sites		49.8	2.14
University of Oregon	2		
East St. Iouis		44.47	1.89
New York City		33.3	2.00
Racine		71.4	2.00
Tupelo		12.5	1.38
Providence		66.7	2.00
All sites		45.7	1.83
University of Kansas	2		
New York City		25.0%	1.75
Philadephia		50.0	1.75
Portageville, Mo.		28.6	1.29
Kansas City, Mo. Louisville		50.0	1.75
		42.9	1.43
All sites	•	39.3	1.59
High/Scope	3	•	
Greenwood, Miss.		7.7%	1.69
Ft. Walton Beach New York City		0	1.75
		60.0	2.60
Greeley Denver		0	1.67
All sites		25.0	1.88
«ነልል ማል <u>ዲ</u> ቄ" ማ		18.5	1.85

Item i--Diagnosing Individual Learning Needs

	Sponsor Kating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West	1		
Berkeley		57.1%	1.57
Duluth		37.5	1.63
Lebanon		25.0	1.75
Salt Lake City		25.0	1.88
Гасопа		37.5	1.75
All sites		36.4	1.72
University of Arizona	1		
Des Moines		55.6%	1.56
Lakewood		44.4	1.78
Newark		42.9	1.71
Lincoln		37.5	2.00
All sites		45.1	1.76
Bank Street	1		
Brattleboro	•	66.7%	1.33
Fall River		75.0	1.38
New York City		42.9	1.71
Philadelphia		50.0	1.63
Tuskegee		50.0	1.50
All sites		56.9	1.51
University of Oregon	2		
East St. Louis		22.2%	1.44
New York City		33.3	2.67
Racine		28.6	1.86
Tupelo		37.5	1.38
Providence		33.3	1.67
All sites		31.0	1.75
University of Kansas	2		
New York City	-	25.0%	1.25
Philadelphia		37.5	2.13
Portageville, Mo.		14.3	1.43
Kansas City, Mo.		50.0	2.25
Louisville		42.9	1.43
All sites		33.9	1.76
High/Scope	2		
Creenwood, Miss.	~	23.17	1.23
Ft. Walton Beach		50.0	1.50
New York City		75.0	2.25
Greelev		83.3	2.17
Denver		50.0	1.75
All sites		56.3	1.64

4

Item j--Guiding Children in Activities Appropriate to Their Needs

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating <u>Means</u>
Far West	1		
Berkeley		42.9%	1.71
Duluth		37.5	1.63
Lebanon		37.5	1.63
Salt Lake City		37.5	1.88
Tacoma		62.5	1.50
All sites		43.0	1.67
University of Arizona	Ι		
Des Moines	1	5.5.7	
Lakewood		55.6%	1,56
Newark		33.3	1.89
Lincoln		42.9	1.57
		25.0	2.00
All sites		39.2	1.76
Bank Street	2		
Brattleboro		50.0 <i>%</i>	1.50
Fall River		12.5	1.38
New York City		42.9	1.71
Philadelphia		50.0	1.50
Tuskegee		37.5	1.38
All sites		38.6	1.49
University of Oregon	2		
East St. Louis	-	22.2%	1 //
New York City		33.3	1.44
Racine			2.33
Tupelo		28.6	1,57
Providence		42.9	1.43
All sites		16.7	1.50
ATT SICES		28.7	1.63
University of Fansas	1		
New York City		50.0%	1.50
Philadelphia		25.0	2.00
Portageville, Mo.		85.7	1.14
Kansas City, Mo.		25.0	2.00
Louisville		71.4	1.29
All sites		51,4	1.62
High/Scope	1		
Greenwood, Miss.	A.	84.6%	1 15
Ft. Walton Beach			1.15
New York City		62.5 25.0	1.38
Greeley			2,00
Denver		33.3	1.67
All sites		62.5	1,50
WIT SICES		53.6	1,44

Item k--Cooperating Effectively with Other Adults in the Classroom

Far West 2		Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Berkeley	Far West	2		
Duluth	Berkeley		50.07	2.29
Lebanon	Duluth			
Satt Lake City 62.5 2.13 Tacoma 75.0 1.75 All sites 50.0 2.05 University of Arizona 1 Des Moines 55.67 1.44 Lakewood 11.1 2.44 Newark 57.1 1.57 Lincoln 0 2.38 All sites 31.0 1.97 Bank Street 2 2 Brattleboro 16.7% 2.50 Fall River 25.0 2.25 New York City 28.6 2.14 Philadelphia 37.5 1.63 Tuskegee 25.0 1.50 All sites 0 2.11 New York City 50.0% 2.17 Racine 28.6 1.86 Iupelo 25.0 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 <td< td=""><td>Lebanon</td><td></td><td></td><td></td></td<>	Lebanon			
Tacoma	Sait Lake City			
Care Care	Tacoma			
Des Moines	All sites			
Lakewood 11.1 2.44 Newark 57.1 1.57 Lincoln 0 2.38 All sites 31.0 1.97 Bank Street 2 Brattleboro 16.7% 2.50 Fall River 25.0 2.25 New York City 28.6 2.14 Philadelphia 37.5 1.63 Tuskegee 25.0 1.50 All sites 26.6 1.97 University of Oregon 2 East St. Louis 0 2.11 New York City 50.0% 2.17 Racine 28.6 1.86 Tupelo 25.0 1.25 Providence 16.7 2.17 All sites 26.6 1.89 University of Kansas 1 New York City 24.1 1.89 University of Sansas 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	University of Arizona	l		
Lakewood Newark Newark Lincoln All sites All sites Brattleboro Fall River Search City Philadelphia Cupelo Facine Fupelo Providence Fupelo Providence Cupelo	Des Moines		55.6%	1.44
Newark	Lakewood			
Lincoln All sites 31.0 2.38 All sites 31.0 1.97 Bank Street 2 Brattleboro 16.7% 2.50 5.1 River 25.0 2.25 New York City 28.6 2.14 Philadelphia 37.5 1.63 Tuskegee 25.0 1.50 All sites 26.6 1.97 University of Oregon 2 East St. Louis 0 2.11 New York City 50.0% 2.17 Racine 28.6 1.86 1.86 1.99 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 37.5 2.00 Louisville 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	Newark			
All sites 31.0 1.97 Bank Street 2	Lincoln			
Brattleboro 16.7% 2.50 Fall River 25.0 2.25 New York City 28.6 2.14 Philadelphia 37.5 1.63 Tuskegee 25.0 1.50 A:1 sites 26.6 1.97 University of Oregon 2 2 East St. Louis 0 2.11 New York City 50.0% 2.17 Racine 28.6 1.86 Iupelo 25.0 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City <t< td=""><td>All sites</td><td></td><td></td><td></td></t<>	All sites			
Fall River New York City New York City Philadelphia Tuskegee 25.0 All sites 25.0 All sites 26.6 All sites 26.6 All sites 26.6 All sites 27.0 All sites 28.6 All sites 28.6 All sites 28.6 All sites	Bank Street	2		
Fall River New York City Philadelphia Tuskegee All sites Canada Tuskegee All sites Canada Tuskegee All sites Canada Tuskegee All sites Canada Tuskegee All sites Canada Tuskegee All sites Canada Canada Tuskegee All sites Canada Cana	Brattleboro		16.7%	2.50
New York City 28.6 2.14 Philadelphia 37.5 1.63 Tuskegee 25.0 1.50 All sites 26.6 1.97 University of Oregon 2 2 East St. Louis 0 2.11 New York City 50.0% 2.17 Racine 28.6 1.86 Tupelo 25.0 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	Fall River			
Philadelphia 37.5 1.63 Tuskegee 25.0 1.50 All sites 26.6 1.97 University of Oregon 2 East St. Louis 0 2.11 New York City 50.0% 2.17 Racine 28.6 1.86 Iupelo 25.0 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	New York City			
Tuskegee All sites 25.0 1.50 All sites 26.6 1.97 University of Oregon 2 East St. Louis 0 2.11 New York City 50.0% 2.17 Racine 28.6 1.86 Tupelo 25.0 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.40 Greeley 0 2.25	Philadelphia		37.5	
University of Oregon 2 East St. Louis 0 2.11 New York City 50.0% 2.17 Racine 28.6 1.86 Tupelo 25.0 1.25 Providence 16.7 2.17 All sites 1 University of Kansas 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 25.00 2.40 Greeley 0 2.40 Greeley 0 2.25	Tuskegee			
East St. Louis New York City Racine Racine Racine Rupelo Royal Roy	All sites		26.6	
New York City 50.0% 2.17 Racine 28.6 1.86 Tupelo 25.0 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	University of Oregon	2		
Racine 28.6 1.86 Tupelo 25.0 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 25.0% 1.75 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	East St. Louis		0	2.11
Tupelo 25.0 1.25 Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	New York City		50.0%	2.17
Providence 16.7 2.17 All sites 24.1 1.89 University of Kansas 1	Racine		28.6	1.86
University of Kansas 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	Tupelo		25.0	1.25
University of Kansas 1 New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25			16.7	2.17
New York City 25.0% 1.75 Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	All sites		24.1	1.89
Philadelphia 62.5 1.50 Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	University of Kansas	1		
Portageville, Mo. 71.4 1.29 Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	New York City		25.0%	1.75
Kansas City, Mo. 37.5 2.00 Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	Philadelphia		62.5	1.50
Louisville 71.4 1.29 All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	Portageville, Mo.		71.4	1.29
All sites 53.6 1.56 High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25			37.5	2.00
High/Scope 1 Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25			71.4	1.29
Greenwood, Miss. 92.3% 1.15 Ft. Walton Beach 12.5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	All sites		53.6	1.56
Ft. Walton Beach 12,5 2.00 New York City 0 2.40 Greeley 0 2.17 Denver 25,0 2.25	**	1		
New York City 0 2.40 Greeley 0 2.17 Denver 25.0 2.25	•		92.3%	1.15
Greeley 0 2.17 Denver 25.0 2.25			12.5	2.00
Denver 25.0 2.25	· ·		0	2.40
	•			
All sites 26.0 1.85				
	All sites		26.0	1.85

· ,)

Item 1--Working w.th Small Groups of Children

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West	l		
berkeley	•	28.6%	2.00
Duluth		25.0	2.00
Lebanon		50.0	1.63
Salt Like City		50.0	1.50
Tacoma		25.0	1.88
All sites		35.7	1.79
University of Arizona	1		
Des Moines		66.7%	1,33
Lakewood		85.7	1.56
Newark		83.3	1.43
Lincoln		83.3	1.63
All sites		79.8	1.48
Bank Street	2		
Brattleboro		16.7	1.83
Fall River		12.5	1.38
New York City		57.1	1.57
Philadelphia		25.0	1.50
Tuskegee		0	1.00
All sites		22.3	1.43
University of Oregon	1		
East St. Louis		66.7%	1.33
New York City		66.7	1.33
Racine		71.4	1.71
Tupelo		75.0	1.25
Providence		100.0	1.00
All sites		76.0	1,33
Universit; of Kansas	1		
New York City		100.0%	1.00
Philadelphia		50.0	1.63
Portageville, Mo.		85.7	1.14
Kansas City, Mo.		25.0	1.75
Louisville		71.4	1.29
All sites		66.4	1.41
High/Scope	1	100 0"	
Greenwood, Miss.		100.0%	1.00
Ft. Walton Beach		75.0	1.25
New York City Greeley		40.0 33.3	1.60
Denver		75.0	1.67 1.38
All sites		64.7	1.30
1121 0100		· · · · ·	£ • /1/

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West Berkeley Duluth Lebanon Salt Lake City Tacoma All sites	1	14.3 ^y 12.5 62.5 75.0 25.0 37.9	2.29 2.00 1.38 1.38 1.88 1.77
University of Arimona Des Moines Lakewood Newark Lincoln All sites	1	55.6% 33.3 71.4 25.0 46.3	1.56 2.00 1.29 2.00 1.73
Bank Street Brattleboro Fall River New York City Philadelphia Tuskegee All sites	2	0 25.0 42.9 37.5 12.5 23.6	2.33 1.50 1.71 1.63 1.13
University of Oregon Fast St. Louis New York City Racine Tupelo Providence All sites	1	11.1% 0 14.3 50.0 16.7 18.4	2.33 2.17 2.29 1.88 2.50 2.22
University of Kansas New York City Philadelphia Portageville, Mo. Kansas City, Mo. Louisville All sites	2	50.0% 12.5 0 50.0 • 57.1 33.9	1.50 1.63 1.86 2.00 1.57
High/Scope Greenwood, Miss. Ft. Walton Beach New York City Greeley Denver All sites	1	100.0% 87.5 80.0 33.3 75.0 75.2	1.00 1.13 1.20 2.17 1.25 1.28

Item n--Maintaining Discipline and Control in the Classroom

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West	2		
Berkeley		28.6%	2.43
Duluth		62.5	1.63
Lebanon		62.5	2.38
Salt Lake City		87.5	2.13
Tacoma		50.0	1.75
/ll sites		58.2	2.05
University of Acizona	2		
Des Moines		55.6%	2.00
Lakewood		11.1	2.44
Newark		57.1	2.43
Lincoln		50.0	2.25
All sites		43.5	2.27
Bank Street	3		
Brattlesoro	J	66.7%	2.67
Fall River		25.0	1.88
New York City		57.1	2.57
Philadelphia		25.0	2.00
Tuskegee		25.0	1.75
All sites		39.8	2.14
		39.0	֥14
University of Oregon	1		
East St. Louis		44.4%	1.56
New York City		33.3	1.83
Racine		57.1	1.71
Tupelo		50.0	1.50
Providence		83.3	1.17
All sites		53.6	1.56
University of Kansis	2		
New York City	2	75.0%	1 75
Philadelphia			1.75
Portageville, Mo.		50.0	1.75
· ·		28.6	1.57
Kansas City, Mo. Loui 'ille		75.0	1.75
All sites		57. ₁	1.57
All Sites		57.1	1.68
High/Scope	3		
Greenwood, Miss.		23.1%	1.62
Ft. Walton Beach .		12.5	1.88
New York City		60.0	2 - 60
Greeley		50 0	2.50
Denver		37.5	2.13
All sites		36.6	2.03

Item o--Using Rewards to Influence Pupil Behavior

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Kating <u>Means</u>
Far West	3		
Berkeley		71.4/	2.71
Dulath		0	2.00
Lebanon		37.5	2.38
Salt Lake City		62.5	2.6)
Tacoma		75.0	2.75
All sites		49.3	2.49
University of Arizona	2		
Des Moines		44,4%	1.67
Lakewood		44.4	2.56
Newark		71 4	2.29
Lincoln		50.0	2.50 2.24
All sites		52.6	2.24
Bank Street	3		
Brattleboro		100.0%	3.00
Fall River		37.5	2.25
New York City		100.0	3.00
Philadelphia		50.0	2.38 2.50
Tuskegee		50.0	2.59
All sites		67.5	2.37
University of Oregon	1		
East St. Louis		88.9%	1.11
New York City	•	83.3	1.17
Racine		85.7	1.57 1.00
Tupelo		100.0 83.3	1.17
Providence ^11 sites		88.2	1.19
"il sites		30.2	1.17
University of Kansas	1		. 05
New York C.ty		75.0%	1.25
Philadelphia		37.5	1.88
Portageville, Mo.		85.7	1.14
Kansas City, Mo.		62.5	1.38 1.14
Louisville		85.7	1.14
All sites		69.3	1.50
Hign/Scope	3		1 20
Greenwood, Miss.		15.4%	1.38
Ft. Walton Beach		37.5	2.25 2.80
New York City		80.0 66.7	2.50
Greeley		50.7	2.38
Denver All sites		49 9	2.10
.,		10	
	P-1		

Item p--Developing or Selecting Materials to Suit Curriculum Objectives

	Sponsor Rating	Percent of Teachers Choosing Same Rating as Sponsor	Rating Means
Far West	2		
Berkeley		42.9/	1.71
Daluth		87.5	2.13
Lebanon		75.0	1.75
Salt Lake City		62.5	1.63
lacoma		50.0	1.75
All sites		63.6	1.79
University of Arizona	1		
Des Moines		50.0%	1.63
Lakewood		33.3	2.00
Newark		28.6	1.86
Lincoln		0	2.25
All sites		28.0	1.94
Bank Street	1		
Brattleboro		33.3 %	1.67
Fall River		62.5	1.38
New York City		57.1	1.71
Philadelphia		25.0	1.75
Tuske gee		62.5	1.50
All sites		48.0	1.59
University of Oregon	2		
East St. Louis		11.1%	1.56
New York City		33.3	2.33
Racine		71.4	1.71
Tupelo		50.0	1.75
Providence		50.0	1.50
All sites		43.2	1.75
University of Kansas	2		
New York City		25.0%	2.25
Philadelphia		50.0	1.75
Portageville, Mo.		14 3	1.43
Kansas City, Mo.		50.0	1.75
Louisville		42.9	1.43
All sites		36.4	1.68
iligh/Scope	2	00 #C	, ,,
Greenwood, Miss.		38.5%	1.54
Ft. Walton Beach		25.0	1.25
New York City		25.0	1.75
Greeley Denver		50.0 37.5	1.50 1.63
All sites		37.5 35.2	1.65 1.51
WII SICES	YS 1.4		1.51
	P-19	ל	

Appendix Q
SPONSORS' FIELD SERVICE ORGANIZATION*

^{*}Information was r vailable on EDC.

Appendix 0

SPONSORS' FIFID SERVICE OPGANIZATION'

Management Plan for Far West Lab

!ponsor Personnel--Project Site Relationship

The relationship between sponder personnel and project site personnel can best be illustrated by the following diagram. The sponsor staff works with or trains the Project Directors and Advisors who are then responsible for implementing the program in the classrooms.

Programmatic relationships are determined by sponsor perceived needs. Program Staff best suited to meet the expressed needs are assigned to work with a project. Thus, there is a possibility that any of the staff members may relate to any of the projects.

FIGURE Q-1 FAR WEST

Q-3

^{*} Información vas not available on EDC.

1. Community-level Staff

- Classroom instructional staff--teaching assistants, teachers, and program assistant.
- Parent Liaison personnel--work to organize, develop, and implement significant parent activity in the model.
- School psychologists and their aides--serve as consultants to instructional personnel and parents concerning learning and adjustment in children.

2. Instructional, Psychological Services, and Parent Involvement Field Representatives

- Together with their community counterparts (program assistants, parent coordinators and psychologists), provide the vehicle for information transmission among system components and the means for implementing the multiplier effect.
- Travel in the field to offer support and guidance to training implementation personnel.
- Communicate to their community counterparts the pertinent research findings that have been tested and demonstrated on a limited scale within program classrooms at Ochoa Elementary School.
- Communicate back to the Center questions from the field that generate testable hypotheses for research or that indicate a need for further development and explication of the model.

Management Plan for Bank Street College

The Bank Street tield organization may vary at each site in order to meet the needs of the community. However, in each site there is a Field Representative who is the conveyor of the Bank Street model to the community. The responsibilities of the Field Representative are to plan with the Director of the Follow Ihrough program, coordinate with the Staff Developers and communicate with the community, the school department personnel, the principal, and the parents. The Field Representative might be a local person or a person from Bank Street.

There also are Staff Developers who are locally based, but trained at Bank Street. The responsibility of the Staff Developer is to conduct on-site training. The number of Staff Developers at a site depends upon the number of classrooms there are to supervise. There is a ratio of ten classrooms to one Staff Developer.

In some sites there are resource people who may specialize in reading math, art, science, or social studies. Their expertise is called for by either teachers or the staff developer as they are needed.

FIGURE Q+3 FOLLOW THROUGH ORGANIZATIONAL CHARL

Management Plan of University of Oregon

1. Manager Coordinator

- ** Minitain Transon between the project managers, consultants, project directors, and Director for Administration and Research and Director for Program and Training.
- Schedule training meetings, prescribe and receive and edit bimonthly manager reports.
- Review data from sites and take corrective action where needed or communicate problems to Director for A & R, handle telephone and written communication with their sites, trouble shoot problems or refer them to either Director as needed.
- keep Directors informed of the status of the field operation.

2. Project Managers and Consultarts

- Responsible for the effective and coordinated functioning of their projects.
- Help design classroom routines, training sessions (pre- and inservice), and staff utilization.
- Receive copies of all local data reports prior to computer analysis and are responsible for regrouping children, changing classroom procedures or instituting special workshops.
- Work closely with field supervisors or local teacher supervisors and monitor their activities.
- Review directly half of the videotapes being sent from the sites.
- Conduct on-site evaluations of problems and prepare solutions, and send in monthly reports of process of their sites.
- Participate in program review sessions with Director for A & R and assist in training workshops for local teacher supervisors and for teachers and aides.

3. Videotape Shop

- Review videotapes from sites as prescribed.
- Prepare feelback reports on site problems to manager oordinators.

4. Secretary

- Management reports, site correspondence, manuscripts.

University of Oregon

Ŋ

FIGURE 0-4 HOMI SHOP ORGANIZATION 1974-1975

Management Plan for University of Kansas

1. District Advisor

sponsor representative to local community in charge of training and trouble shooting.

2. District Advisor Liaison

- People at other universities (near sites) who have worked with the model.

3. Program Director/Staff Trainer/Parent Trainer

- Training and demonstration in classrooms, one at each class level, practicum work for all teachers, teacher aides, and parents.

Q = 10

University of Kansas

FIGURE 0-5 TABLE OF ORGANIZATION BEHAVIOR ANALYSIS

Management Plan for High/Scope

1. Project Director

- Coordinate the long-range research and development work of Ecllow Through staff.
- Monitor the development of reports and proposals.
- Assist with the theoretical development of the Cognitively Oriented Curriculum.

Field Services Coordinators for Denver and Ypsilanti Offices

- Deliver administrative service to local sites (one week per project--Fast and West).
- coordinate work on administrator's guide and Parent Program.
- Coordinate the work of support personnel in other departments with Early Elementary Department.
- (coordinate the delivery of field services by field consultants.
- Coordinate the production of year-end and progress reports.
- Answer Foundation correspondence related to Follow Through.
- Coordinate development of evaluation documents.

3. Research Director

- Coordinates and directs research and evaluation activities of research associate, research assistants and research support staff
- Coordinates the development, analysis and interpretation of Productive Language, Mathematics and Classroom Observation Instruments.
- Responsible for research reports included in all reports to local sites and Mational office.
- Responsible for overall evaluation design and analysis plans for Follow Through.

4. Fraining and Development Coordinator

- Provide overall coordination of in-house training for Foundation staff and training at sponsor site of local project staff.
- Coordinate the production of curriculum training materials and the development of the training system.
- Coordinate evaluation of training at the sponsor's site.
- Assist in the revision and interpretation of language, math, and observation instruments.

5. Field Staff (Field Consultants and Program Consultants)

- Revision of training materials, procedures, and evaluation in the field and at the sponsor's site are primary responsibilities of the field staff. This involves developing training objectives, strategies and materials and procedures for assessment of teacher and CA competencies.
- Provide training for local site staff during October, February, and May workshops at the sponsor's site.
- Responsible for supervising the on-site application of training procedures.
- Provide four weeks of field service for each of two projects under their direct supervision.
- Provide written field service reports which document services and serve as a working guide to further program implementation.
- Train project personnel according to specific needs identified by the project and the Foundation.

6. Research Associate

- Analyze cata from Follow Through centers.
- Proposes and conducts pilot projects.
- Participates in planning with Follow Through service staff.
- Writes research reports.

7. Research Assistant

- Serve as liaison between Follow Through research and service components.
- Participate in Follow Through planning.
- Make arrangements for data collection and coding.
- Propose and conduct pilot projects.
- Participate in report writing.

8. <u>Data Processor</u>

- Coordinate and record incoming data.
- Score and keypunch data.
- Set up and type coding manuals.
- Maintain data files.

9. Media Specialist

- Provide responsive, effective, and reliable med a services for the design, development, and production of educational media for projects and operations.
- Purchases, controls, and maintains media materials, equipment, and products.

10. Graphic Artist

- Designs and produces graphic materials (titles, drawings, charts, graphs, posters, etc.) for videotaping, 33mm still photography, 8mm and 16mm motion picture photography, overhead transparency production and displays for workshops, practicums, etc.
- Assists in layout of graphic production for print media (reports, brochures, training manuals, books, etc.).

11. Training Specialists

- Develop and execute training procedures to be tested and implemented at TDC training workshops.
- Provide field service to establish demonstration classrooms on site.
- Work with training assistants to plan and execute training workshops at the TDC.
- Work closely with consultants in the evaluation and revision of training materials.

12. Producer/Director

- Assists field staff in the formulation and design of teacher, CA, training material.
- Responsible for production and dissemination of audiovisual training materials.
- Assists in design of training activities in which audiovisual materials are used.

13. Training Assistants

- Work with training specialists in the development and implementation of training procedures.
- Provide feedback on teacher and CA training materials during training workshops.
- Implement experimental curriculum ideas with children in TDC.

14. Head Secretary

- C nates activities of director, coordinators and field s . within the group and with other departments of the Foundation.
- Coordinates written production for training workshops.
- Assists in preparing reports to centers, SRI, and the federal government.
- Processes all requests for materials, supplies, media, and office equipment through proper channels to attain desired results.
- Conducts debriefing meetings with staff who have returned from field visits and transmit relevant information to them.
- Trains and supervises clerk-typist in department operations.

Q = 14

15. Secretaries/Clerk-Typist

- Type, duplicate, and distribute all written materials.
- Record and prepare minutes of departmental meetings.
- Maintains files, records, supplies, and resource library.

FIGURE Q-6 FOLLOW THROUGH ORGANIZATIONAL CHART

Appendix R

MEANS AND STANDARD DEVIATIONS ON VARIABLES USED IN DISCRIMINANT ANALYSIS

Table R-1 FIRST GRADE SPONSOR MEANS AND STANDARD DEVIATIONS ON 45 PF1 AND CCI VARIABLES

								Spor	nser						
	variables	1.20	hest		ersity	9		Unive	ersity		ers:sv				
vurber	Vatie	Yean	S.D	Mean	rizona S.D.	Bar : Mear	Street SD.	Yean	regon S.D.	of Ka Mean	S.D.	Mean	/Scope	Yean 1	
25		•						2-12		7627	0,000		7.0	acan.	s.b.
.,	Games, tivs, play equipment present	5.1.		_											
h}	Store, music, sancing	5.79	2.13	7 46 8 76	7.79	7.94	1.39	4.11	1.73	5.69	1.30	7.39		7.26	
64	Arts, crafts	8.87	5.05	8.67	5.52	*	8.26 4.87	1.81 2.76	2.22 3.65	4.16	3.51	6 02		8.14	
65	Guessing games, cable gards.	••••	,,,,	0.07	3.36	7.07	4.67	2.70	3.63	2.80	2.67	7.20	5 11	8.86	69
	puzzies	1.54	2.22	2 09	2 65	1.44	2.06	.17	.45	1.44	1.05	2.28	3 28	1.54	2.08
66	Sumpers, math, arithmetic	133	5 73	13.61	4 80	15.57	9.73		8.53	21.90	3.13	19.66	12.11	13.56	
<u> </u>	Reading ipmanet; tanguage	*** - **** **** ****	·												
68	Social studies, geography	39-37 2-59	13 91 2.99	39.53 2.51	15:10		11.03		6.69	59.33	8.94	39 96	13.73	28.78	
69	Science, natural world	4 74	4.16	2.62	→ 96 3.60		1.76		4.52	1.94	2.69	1.30	3.21	1.44	
72	Dramatic play, dress-up	88	1.53	.76	1.72	.71	1 -8	. 47	.51 1.47	2.53	3.43	2,27	3.16 .67	4.85 2.28	
82	Variety of activities, con-							• • •	,	•		.,,	.07	4.20	2.90
83	current	2 09	.43	2 37	62	1.94	.62	1.69	.28	1.99	. 27	2.17	.61	2.40	.87
9,	variety of activities, over	7 1 2		~ 10											
85	Teacher without children	7.33	9.66	7.30	2 11 7.64	7.05	1.63	4.48	1 57	5.65	1.50	7 07	1.63	8.37	1.91
86	Teacher with one child	17.80		14 99	16.41	12.83	9.70 16.71		6.26	9.43	17.00	8.97	10 43		8.73
87	Teacher with two children	6.93	6.17	4.38	4 08	4.44	3.01	2.47	5.19 2.69	2.73	6.97 .89	9 72 3.84	8.92 4.56	16 44 5.32	
88	leacher with small group	25.63	15.84	39.79	16.82		12.05		16.44	64.06	23.52	56.27	18.52	26.93	
89 91	Teacher with large group		10.85	28.19	13 24		13.12	33.71	20.45	23.48	21.99	21.20	.2154	33.18	
9.	Aide without children Aide with one child	28.76		33.64	14.23		25.89	26.53	14.40	14.86	11.70	24.78	18.09	48.89	
94	Afte with small group	29.13		6.20 50 57	4.59 14.85	7.33	6.94	4.20	4.68	1.56	2.38	7.00	7.40	13.56	
94	Aide with large group	9.66	9.15	5.98	6 00		27.44 12.82	56.02	19.80	69.98	24.98	53.17	22.12	18.05	
104	One child with any adult	3 39	1.91	: 38	1.04	1.31	1.12	12.42	12.32	13.03	15.57	9.36	9.87	13 44	10 55
111	Small group of children with				• • • •		****	• • • • •	• 30	./3	1.02	1.3/	1.23	1.07	1.51
114	any adult	16.18	10 93	28.02	10.14	26.18	15.22	37.84	15.55	62.55	26.59	45. 7	22 20	14.48	6.37
114	One hild independent All hildren independent	7 31	3 66	4.02	3 36	5.30	2.56	2.41	3.75	.73	.79	4.10	3.63	7.01	5.05
122	Small group with ceacher'	39,04	11 62	34.92	12.84	33.80	7.51	22.20	8.22	5.59	3.82	23.11	12 45	42 13	10.58
	Math	6.10	5 05	11.95	18.64	10.14	10.36	10.12		2.00					
123	Large group with teacher		, 0,	11.4)	10.04	10.14	10.30	10.12	17.45	7.89	24.37	32.42	23.11	13.28	11.09
	Math	19.08	17.20	5 06	10.07	17.77	18 85	18.46	18.84	2.87	6.77	7.93	16.02	15.43	24.64
126	Small group with aide/											, ,	10.01	.,.,,	24.04
127	Large group with aide/Math	20.52	26.15	38 58	30 07	21.83	24.72	40.05	28.88	63.52	34.03	30.29	25.67	6.1.	7.7'
1-1	Personalized instruction in	2.01	5.37	.19	90	7.37	9.83	11.26	14.10	22.73	29.53	3.61	7.89	2.03	8.83
	Math	6.97	5.23	2 6.	3.26	4.31	5.40	.47		7.0					
142	All hildren independent/		,	• ••	3.20	4.,,	3.40	.4/	.52	.79	.95	3.15	4.29	6.31	7.05
	Math	42 93	27.88	35.10	24 63	37.37	27.59	19.66	12.93	1.47	2.99	18.52	19.04	51.77	25.60
145	Small group with teacher' Reading										•••		.,	J	• > • • •
146	Large group with teacher/	9.95	7.60	19.77	11.62	15 16	7.11	19.02	12.86	24.09	8.52	26 87	16 32	13 09	11.84
	Reading	22.25	13.04	12 28	14.91	16.87									
149	Small group with side/		(3.04	14 10	14.71	10.0	12.73	22.10	16.72	14.73	18.37	17.61	16 32	16.60	13.90
	Peading	5.64	5.55	13.56	10 33	20.56	17.43	25.13	17.23	47.22	28.10	22.46	17.47	4.40	5.98
150	Large group with aide'								17,123		40.10		17.47	4.40	2.70
164	Reading	3 14	5.09	3.50	7.15	1.89	3.45	9.12	8.91	4 83	7.98	5.82	7.28	6.39	9.38
	Personalized instruction in Reading	9.67	6.59	4.11	2 99	2 . 1									
165	All children independent/	,,	0.,,	4.,1	. 77	3.61	3.58	69	.67	1.25	1.25	3.84	3.38	7.94	8.34
	Reading	45.36	12.12	40.41	17 47	40.74	16.09	22.98	13.70	3 26	3 53	18.04	13.41	45.26	15 20
229	Teacher involved/Classroom								17.70	7 40	, ,,	10.04	13.41	42.20	15.28
230	Management	10 50	9.02	8.76	7 34	6.81	4.61	5.57	6.17	3.57	3 51	0.24	5 88	13.55	8.14
- 10	Aide involved/classroom Management	11			_										
231	Volunteer involved/(lissroom	13.46	9.42	20.82	10.48	15 52	15.38	17.94	9.95	7.87	6.40	17.57	17.31	27.47	15.18
	Management	2.85	6 03	5.19	8,93	1 90	5.62	.19	.57	, 72					
232	Among adults/Social Inter-			,,,,	,,,,	. ,0	3.02	.17	• >/	4.73	5 45	5.99	10.93	10 49	1*
	action	70	1 20	46	1.58	1 05	2.35	.35	1.53	.94	2.58	1.49	4.10	1.16	1.61
233	Among adults and c 'adren'														
234	Social Interaction Among children/Social Inter-	3, 39	6.48	61	1,32	1 50	3.30	63	1.64	.63	1.48	3.09	7.60	2.98	4.29
- /-	action	4,97	7.23	1.44	3 (2	.67	1 0 1	**							
239	Math or science equipment	7,77	, ,	1.44	7 4 2	10.	2.03	79	1.91	.10	.42	. 37	.91	7.83	6.32
	Academic Activities	12.7	15 27	24 44	22 9:	18.95	21 26	1.40	2.44	40 56	37 36	26.63	21.97	23,49	25.40
24	Texts, workhooks academs							•••	2.44	-0 30	,, ,,	2-7-07	41.7/	e 3/47	4 7. 17
241	Activities Puzzles games Actions	73 17	11 79	550	33.98	55 69	30.51	81.24	11.48	86.11	14.38	57.70	27.43	56,59	22.21
	Puzzles, games/Academac A tivaties	28 90	17 7.	1. 93	14 61	11.0)	11 00								
		7-1	* / / *	*4.43	10 01	11 83	16.00	1.82	3 0.4	1.67	3.91	18.79	24.19	17.38	15.61

TUB # R-2

OHR, PRACE SPENSOR MEANS AND STANDARD DESTAILIONS ON 45 RELIAND CUL ARIANZES.

							•		sor						
	erisoles	٠٢	acst		rsitv Izola	Bank S	trest	inive		of Ka	rsity	High/	Score	• p	
V Jan er	Fear et		5.D.		5.0.	Wean	S.D.	Yean			S.D.	Mean		Moin	5.0
2)	Games, tive, play equipment														
	present		1	5.58	1.74	5.78	1.80	3.05	1.86	· . 20	1.15	4.45	3,61	6.4.	1.9.
A 3	iter. has a denting	5 75	• 58	5 21	5 57	× .09	5.78	1 3.4	2.35	2 36	4.17	2 48	3,415	5 38	3.68
* * * 5	Arts, crafts	• >2	4,24	6.53	4.66	7.58	6.39	.8.	2.42	1.55	2.50	4.48	4.53	6.80	5 35
.,	 uessing games, table games, puzzles 	1 64	2.63	2 89	3.10	1 23	1 21	.53	.97	1.16	1 63	1.50	1.43	1.43	1.70
55	Numbers, mat , aritimetic	17.55	8.42	16.01	7.15	19.56	5 31	27.40	7.62	21.92	4.63	16.17	8,38	24,22	٨.٥٠
• •	Reading, alphabet, language														
	development	- 0.56	12.72	41.69	12.19	37.58	1. 85	57.60	11.24	58.79	10.04	45.77	10.79	37.05	11.36
68 69	Social studies, prograph. Social studies, prograph.	2.15	3 20	2.86	4.94	6.+3	8 92	2.80	5.58	4.79	4.40	2 23	4.16	1.48	2.89
72	Dramatic play, dress-up	ક કડ •"•	1.15	5.48 .28	6.43	3.87 .03	5.24 10	2.59	5.07	1.45	2.30	4.67 36	6.17	3.60 ,29	5 07 .61
82	Variety of activities, con-	• •	•• //	•••	• • • •	•••			•00		•••	,,	• ′ •	, . ,	
	current	1.83	58	2.21	39	1.52	.26	1.49	.23	1.83	.27	1.93	56	1 85	.56
* 3	viriety of activities, over	1.0		7 (1)											
35	Tea 'er without children	16 1	1.51	7.01	1.56 9.03	6.37 9.90	1.35 6.51	3 57 15 19	1.16	4.67 6.16	1.62 6.89	6.56 10.37	1.59	6.55	1 72 15.39
86	feather with one hild	17.98	11,89	8,42	8.75	9.13	8.75	4.95	7.11	2.05	3.25	8.56	11.78		15.14
87	Teacher with two children	7.09	- 78	3 70	4.92	4.87	6.08	2.95	4.24	.65	1.18	2.83	3.55	3.89	
88	esther with small group	22 75	1000	44.31	15.90	36.23	17.55	28 60		49.51	32 22	50 87		32.15	13 76
31 39	leacher with large group	16 03	13.07	29 98	11 87	39.87	17 59	48 31		41.63	36.24		17.82		18.04
92	Aide without hildren Aide with one child	39)4 12.71	20.58 10.65	21.28 5 67	16.95 5.61	30.50 6.82	14.63 8 98	33.04 5.39	6.06	13.31	11.53	24.29 9.85	16.15	40.45 8.36	18.70 8.11
4.	Aide with weall group	27.11	16.13	56.56	17.37	42.71	19.54	35.01	20.45		29.93	48.79	19.74		13.06
95	Aide with large group	11.87	11.50	5 41	5.52	13 86	12.31	23.15	21.29	22.59	24.90	12.59	13.54	16.41	22.60
1.79	One child with any adult	2.2-	1.42	.93	.92	1.07	1.20	.66	.62	. 36	.44	1.30	1.35	1 30	1.02
111	Small group of children with any adult	11.0			11 06		16.60	10.00	11.20	01	22.10	22.7/	10.77		. 71
11-	Ore child independent	12,84	6.86 3.65	3,33	11.95	3.60	15.50	19.90	1 40	45.81	2.20	37.74	18. 4	5,34	6.71 3.37
118	All Caldren independent	-1.46	9.45		13.32	26.96	12.18	3) 95	13.64		10.89		12.51		21.40
122	Small group with tea her/														
123	Math	9.12	5.99	23.7	5 25.68	12 75	9.32	4.40	7.51	1.19	1.87	20.06	21.72	12.50	11.33
123	Large group with teacher, Matr	22 34	221	11 41	15.59	30.51	27.95	31.16	15 02	14.15	26 53	15.27	18.46	26.40	38 OK
2.26	Small group with hite	/-	*****	11.41	17.77	,0.,1	27.77	71.10	33.02	14.17	20.77	17	10.40	20.40	
	Yath	12.34	16 77	26.88	27.41	9.34	10.89	23 39	24.79	54.14	40.08	18.12	17,58	7.90	6.34
127	Large group with side/ Math	. 17	6.00	1 01	2 42	10.1/		10.03		60	27 00		11 414		44. 36
1-1	Personalized instruction in	3.77	9 00	1.91	2.82	10.34	13.18	10.87	11.00	19.59	27 80	5.56	11.86	5.	19.25
	Math	3.24	2.48	2.27	2.91	2.86	3 50	1.69	1.85	1.11	2 02	3.60	5.13	1.91	1.48
1+2	All children independents														
i5	Math Small group with teacher/	44 10	15 61	27.41	16.54	33 81	22.55	27.99	20 72	8.12	11.82	29 83	23.99	43.30	27 32
**/	Resding	7.67	5 41)	15.01	10 50	13.66	9.20	11.20	8.88	18.05	13.42	18.15	12.32	11 13	8.25
• 46	rarge group with teacher/		-			•					. ,		/-	,	0.00
	Reading	22.19	12.78	19.1.	14.87	24.85	20 40	36.08	23.34	20.31	18.41	18.85	13.80	22.6%	16.13
1.4	Small group with aide Reading	. 14		14 .	1. 10	16 07	1) 04	* 00	0.10	24 30	25 (0	21 ()		10.53	
155	large group with side/	6.16	4.46	16 54	13 *0	10.07	12 06	7.08	8.10	34.28	25.68	21.43	16.48	10.57	6 86
	Reading	4,32	8 S2	3 12	4.68	7.25	9.71	10.85	15.43	13.79	17.57	8.42	10.12	6.46	6,97
15.	rersonalized instruction in														
. •	Reading All hildren independents	J.→5	1 10	2.66	4.26	3.01	4 74	1.24	1.25	.51	.79	2.45	2.58	3.62	3.83
	Residing	52.33	18 61	37.62	19.23	30.02	16 46	32.89	17.17	6.63	11 56	24.48	13.90	41.00	10.77
223	Teacher involved diassroom		•	,-			• • • •	, <u> </u>	****	,	,,		*****	40.00	• • • • • • • • • • • • • • • • • • • •
	Management	7.48	6.95	5.50	6.97	6.06	5 26	10 42	14. 1	4.22	4.62	7.95	6.20	13.06	11.62
- 113	Aide involved/ lassr x m Management						14.00	10		10.06					4.4.
41	columnter involve lastrom	19-13	16, 1	l) 16	12.41	16.34	10.98	19 32	19 59	10.89	11.81	17.68	16 89	36 31	8,99
	Management	41.	.33	2.57	3.84	3 45	5 62	1 51	3.12	1.56	3.75	1 77	. 36	2.46	6.67
232	Among adul's/So (al Inter														
233	4 *1on	3,	92	. 35	19	.49	1.00	9 00	0.00	.78	1.77	.72	1.96	. 4(1	94
. 11	Among adults and hildren' Social Interaction	٠	, , , -	6+	1 90	97	1.60	1.11	3.24	2.23	4.21	1.91	3.08	2.81	6,07
.3.	Among mildrenes isl Inter-			', '		,,	* · · · · · ·	41 1	, ·	,	1	1.71	3.00	* * 0.1	0.07
	as tion	51	4 60	1 27	2 45	95	1 -43	6.4	12.21	2.11	4.25	.8,	2,65	4.19	7 07
. ' '	Math of wien e equipment' Activities			,	,	A 0:	11.	,					** **		
• 1	Action: Activities	4 (4	14.30	25.97	252	9.08	11.91	1 49	2,43	19.84	31 86	19.14	16 23	16.24	31.90
	thatten	,	. 16	£2.28	2.,/3	52.78	26.71	76.59	24 71	88.50	10 82	56 20	28, 37	53 54	26.90
۱.	Puzzies, games A afora														
	A fi ities	{ * · · ·	.1 ,	9 49	14 27	11.22	13.15	19	56	8.01	21.90	10.55	8, 35	7.03	9 96

Table R-3
FIRST GRADE SPONSOR MEANS AND STANDARD DEVIATIONS ON 32 PMO VARIABLES

									nsor						
	Variables			inive					rsity	Unive					
Number		Har W	S.D.	Of Ar			treet		regon		ansas		Scope	-	D(
*****	***************************************	ean	2.17.	-ean	S.D.	ean	S.D.	Mean	S.D.	Yean	S.D.	Mean	S.D	Mean	S.D.
3+2a	Adult to child, verbal	31.40	5.43	31.39	4.11	33.50	6 66	31.47	4.13	30.37	2 //	20.00			
3+3a	"hild to adult, all verbal ex-	71.40	,. . ,	31.77	4	77.30	0.00	31.4/	4.1)	30.37	2.44	28.85	5.73	28.18	5.21
	Cept response	4.57	1.60	3.60	1.82	2.76	1.71	.91	.86	2 33	1.38		2 07		
350.	Child questions to adults	2.49		1.42		1.31	.85	.51		1.23	. 84	4.46	2.87	3.02	
360a	Child responses, academic	6.49		6.80		8.94	4.14	12 38		12.32		1.47	. 75	1.44	
363a	Child group responses to adult			0.07	2.,0	V. 74	4.14	12 30	3.10	12.32	2.45	7.52	2.45	6 68	2.78
	academic commands, requests,														
	or direct questions	86	.74	.84	.61	1.42	.94	6.56	2 46	1.08	1.02	1.68	1 26	90	.,
365a	Adult responses to child re-						• • • •	0.50	. 40	1.00	1.02	1.00	1 25	.80	77
	quests or questions, non-														
	academic	.97	.72	.69	.46	. 54	43	.27	. 36	.24	.21	.70	. 49	.58	.59
3`2a	(hild presenting information					.,,			. 30			• / 0	.47	. 36	. 29
	to a group	19	48	.48	1.05	. 21	.83	06	.15	15	. 31	. 17	. 37	.04	.11
373a	Adult instruction, non-							•	•••	• -		••,	• 37	. (/4	
	deademic	3.00	3.24	5 79	5 80	3.98	3.11	2.25	1.84	2 29	2.05	2.05	2.21	3.88	4.24
3744	Adult instruction, academic	6.81	3 05	5 11	3.07	6.31	3.73	4.98	3.37	5.77	2.96	6.12	3.60	4.4)	2.16
388a	Child task-related comments to											v	,	4147	2.10
390a	adults	1 42	.86	1.30	.97	1.15	1.02	.27	.27	.93	. 59	1.87	1.41	1.35	63
37Vd	Adult task-related erments to children													••••	
394a		1.77	1.68	2.21	2.51	1.60	1.31	. 37	.32	.92	.53	99	.90	2.72	2.96
7744	All ad_'t acknowledgment to children														
398a		2.51	1.77	2 11	1.30	3.97	2.42	3.49	2.04	2 70	1.17	3.11	1.81	2.45	1 18
399a	All adult praise to children Adult reinforcement with	1.23	72	.95	. 56	.83	.43	2.60	2.23	5.57	1.77	.95	.69	.73	. 38
,, ·u	token, academic	0.1													
405a	All adult corrective feedback	.01	.92	.00	.01	.00	.00	.25	. 54	3.77	1.74	. 02	.08	.00	.00
	to children	. 01	1.67	3.43		2.01									
-12a	Adult feedback to child re-	4.01	1.07	3.43	2.21	3.94	1.51	3.55	1.74	4.95	2.72	3.0	1.09	4.34	1.34
	sponses to adult academic														
	commands, requests, or														
	questions	1.70	1.28	1.44	.73	3.34) (6	4 75	2 67						
438a	Adult communication or at-		****		.,,	7. 54	٠.)	4 /)	2.57	4.89	1.28	2.36	1.44	1.84	1.05
	tention focus, one child	25.56	3.19	23.08	5 46	26.99	5.77	13.51	4.49	20.77		33 60			
. 593	Adult communication or at-		J	27.00	, ,,	.0. ,,	7.77	13.71	4.49	28.46	0.06	23.60	5.80	23.91	6.60
	tention focus, two children	.70	.60	. 92	1.36	.47	.52	. 37	.91	.19	. 31	.41	71		.,
++0a	Adult communication or at-						.,,,	.,,	. 71	.17	. 71	.41	. 71	.67	-64
	tention focus, small group	4 31	3 62	9.97	5.88	6.59	3.58	16.36	6.13	7.23	4.49	9, 28	5.72	3.80	2.19
→4la	Adult communication or at-								7.17	,	4.4/	7.20	7. 12	2.09	2.17
	tention focus, large group	19.73	4.53	10.69	6.30	10.90	4.32	11.28	8.93	6.99	5.74	5 83	4.86	10.03	7.02
4448	Adult movement	2.31	1.45	2.75	1 69	1.67	.92	2.73	2.09	2.72	2.56	2.22	2.55	2.20	1.37
402a	idult open-ended questions														•••
4344	to children	.52	.48	63	.52	.42	43	.12	. 14	.17	.16	. 32	. 28	. 37	.41
4) 4 4	Child's extended response to questions													• ,.	• •
46.2a		39	.27	.94	.71	. 30	. 32	. 39	.44	.61	.74	. 34	.31	. 34	. 32
463a	All positive behavior All negative behavior	1.44	90	.87	.94	1.93	1.89	.95	1.41	.85	.45	1.06	. 94	1.5	1 44
465a	Afult feedback to children for	.24	.63	.14	15	.07	. 11	.10	.21	.07	.07	.15	.15	.32	. 28
	benavior	1 51	70												
5(19.	Child self-instruction, aca-	1);	79	1.19	1.93	.89	.51	1.12	.62	. 98	.86	1.09	. 69	1.59	.80
	denie	10.67	9.74		• ••										
510	Child self-instruction, ob-	10.07	9.74	11 30	7.90	14.16	5.77	130	8.00	24.47	6.98	14.04	6.88	11.53	5.72
	jects	4.06	4.75	4.44	5.16	4.60	* *								
516.	Social interaction among	4.00	4.77	4.44	2.10	4.00	3.99	.5/	1.33	1 20	3.42	8.76	5.94	2.46	3.64
	<pre>children</pre>	4.18	2.98	2.83	2 39	1 69	1.51	2.19	1.77	1 //	. 20	2	4 6.		
546c	Child waiting	1 24		35	.73		1 36		1.05	1 46	1.28	3.34	2.84	2.39	
57-44	Child Tovement		1.21	2.79	1.86		1.70	1.88	1.60		1.03	2.39 1.84	2.77	1.34	
587-	All chili task-related com-	-				2.07	,		4.0.	. 40	4 102	4.04	1.71	2.79	1.98
	ments	3.83	2 04	3 7 3	2.77	4.34	3.33	1, 8	2.05	1.71	1 41	3.96	2 87	4.73	2 86
												3. 7.	,	•• / 3	

Table R-4
THIRD GRADE SPONSOR MEANS AND STANDARD DEVIATIONS ON 32 FMO VARIABLES

	Variables	- Far W		Univer		Bank S		Spon	sitv	Univer		us ab /c			
vumber	Vane	Mean	S D.	ot Ari		Mean		of Or hean		of Ka Mean	S.D	High/S Mean	S.D.	Mean 10	
3+2a 5+3a	Adult to child, verbal child to adult, all verbal ex-	29.18	3.82	29.98	7.24	30.34	4.07	32.38	7.02	26.84	4.59	31.95	3 29	28.53	5.16
7.73	cept response	5.04	2.09	5 01	2.74	2.31	1.80	1.50	1.06	1.73	. 76	3.79	2.33	5.42	4.12
350a	child cuestions to adults	2.60	84	2.47	1 62	. 92	.87	64	.78	1.19	.49	1.90	1.24	2.41	1.25
360.4	(hild .esponses, academic	6.12		6.32	3.37	+.98	2.94	12.46	4.67	10.79	3.19	7 63	2 39	7.35	3.04
36 3a	chil' group responses to adult academic commands, requests,			****		.,,,	•.,.						- //		<i>,</i>
	or direct questions	.90	1.05	. 44	.44	59	.54	5.92	3.63	.83	.82	.99	.88	.96	1 17
365a	Adult responses to child requests or questions, non-														
	academic	90	- 41	1 14	98	.44	.41	.22	.29	.40	. 34	.76	-62	95	.68
372a	Chili presenting information to a group	45	1,25	08	.18	42	.82	03	.07	.08	.27	.09	.24	.09	.26
373a	Adult instruction, non-														
	a, ademi,	4 25	3 54	4 71	4 83	6.08	3.30	1.23	1.49	1.,4	1.43	2.67	1.65	2.3/	3, 30
374a 348a	Adult instruction, academic child task-related comments to	5.88	3.14	5.69	5.66	5.51	4.20	9.19	7.50	4.27	1.95	6 40	2.32	5 43	3.40
340a	adults Abolt task-related corrents to	1.51	86	1.73	1.63	1.28	1.05	.66	.50	.35	. 35	1.22	189	1 29	1 17
	children	1.11	. 57	2.04	3.23	1.45	1.05	.94	۰°6	.49	.43	1.00	.83	2.03	1.67
394a	All adult acknowledgment to hildren	2.46	. 59	1.94	.80	2.92	1.84	2 80	1.53	3 93	2.02	3.00	1.62	1.35	1 (15
398a	All adult praise to hildren	1 00	.69	80	66	.62	. 34	1.96	1.69	2 95	1.66	.80	.91	7.	.73
3443	Adult reinforcement with														
4J5a	tikon, academic All idult corrective feedback	.01	93	-10	02	00	.00	.04	14	1.54	1.99	.01	.01	.00	.01
	to children	3 50	1 54	2.79	1 69	5.20	3 41	2.72	1.80	5.09	1.54	4.57	1.78	4 38	1.75
4124	Adult feedback to child re- sponses to adult academic														
	ommands, requests, or										2 40				
438a	questions Adult (comunication or at-	1 32	. 52	1.07	61	1.49	1 19	3.59	1.54	4.57	2 80	2.52	1.65	1.34	.98
439a	tention focus, one child Adult communication or at-	25.68	5 10	20.92	5.57	22.49	4.88	14.14	6 28	29.53	4.01	28.42	5.24	26.03	7.36
4374	tention focus, two children	.80	. 77	.41	.53	. 56	.68	.94	1.31	.49	.94	. 50	.40	.51	.69
4473	Adult communication or at-	3 30	2 40	9.38		7.50	, ot								
441a	tention focus, small group Adult communication or at-		2.89		5.90	7 50	4.85	10.89	7 67	4.12	3 49	5.51	4.74	3.75	3.00
	rentian focus, large group		4.17	9.90	6.11	12.94	5.39	16.15	9.15	7 89	6.24	6 40	4.34	9.91	6.63
4448	Adult movement	3 15	1 18	2 34	1.52	2.37	1.30	3 01	3.07	4.02	2.33	2.0.	1.76	2.13	1.94
452a	Adult open-ended questions to children	60	37	.60	69	45	29	15	. 17	.27	. 27	.59	.47	.24	.33
. 143	(hild's extended response to														
462a	questions	0.4	33	55	.52	46	.51	34	35	.43	. 49	. 23	. 27	.59	.78
462a	All positive behavio	1.41	1 04	1.34	2 26	1.13	95	.62	.62	.40	.27	.95	.83	1 41	1.36
46.7a	All negative heravior Adult feedback to hildren for	.15	, 16	.13	. 17	. 28	.33	. 37	40	20	43	.40	36	44	.47
5u4	hehavior (hild self-instruction, aca-	1 95	5.4	85	59	.96	.73	, 96	.90	.48	1.54	1.56	1.1.	2.01	1.45
	deri	21 21	9 16	10.44	8.39	14 44	13 -6	17.07	6.23	24.65	9.48	13.75	6.02	15.37	7 62
2.3	Chill self-instruction, ob- fects	3 64	6.89	1.93	3.59	3.58	3 86	2 75	6 44	1.62	27,	5.65	6.92	5.10	6,61
516	Social interaction among children														
5.46	(nid waiting	2.70	1.56 98	3.62	2 31	3.55	3.40	1 69	1 80	1 82	1 11	4 90	3 47	>.11	3.35
7.4	Child movement	3 24		2.40	.51	2 53	3 15 1 81	. 49	.95	2.91	3.33	.49	1.29	70	1 14
5870	All child task-related a m-	> 24	2.11	2.40	1.61	2.10	1 01	1 11	96	95	. 94	2.89	2 26	2 66	1.90
	rents	¥ 25	2 62	3 09	٠.91	4.07	3,32	2.63	1 88	1.41	2 92	3.37	2 57	2.54	2.30

Appendix S

COOPERSMITH AND INTELLECTUAL ACHIEVEMENT RESPONSIBILITY SCALE (IAR)

COOPERSMITH
SELF ESTEEM INVENTORY

BOOKLET T8

Group Test

THIS BOOKLET BELONGS TO:

SRI Adaptation of the COOPERSMITH SELF ESTEEM INVENTORY

Time: 15-20 minutes

MATERIALS:

Coopersmith booklet, scoring pencil, and card for each child

PROCEDURE:

Say each item once and repeat if necessary

PRACTICE ITEMS:

Begin practice items by saying,

- OPEN YOUR BOOK TO THE FIRST PAGE. IN THIS BOOKLET THERE ARE SENTENCES THAT DESCRIBE HOW SOMEONE MIGHT FEEL. AFTER EACH SENTENCE THERE ARE TWO ANSWERS. THE ANSWER ON THE LEFT SAYS "LIKE ME". THE ANSWER ON THE RIGHT SAYS "NOT LIKE ME".
- I AM GOING TO READ EACH SENTENCE ALOUD, THEN YOU DECIDE IF THAT SENTENCE SAYS SOMETHING THAT IS LIKE YOU OR SOMETHING THAT IS NOT LIKE YOU. IF THE SENTENCE SAYS SOMETHING THAT IS LIKE YOU, MAKE AN X IN THE SPACE AFTER "LIKE ME". IF THE SENTENCE SAYS SOMETHING THAT IS NOT LIKE YOU, MAKE AN X AFTER "NOT LIKE ME".
- HERE IS AN EXAMPLE. LOOK AT THE FIRST SENTENCE, SENTENCE A, IN YOUR BOOKLET AND PL, CE YOUR CARD UNDER IT. I WILL READ IT TO YOU. "I LIKE TO WATCH T.V." IF THAT SENTENCE DESCRIBES HOW YOU USUALLY FEEL, MAKE AN X AFTER "LIKE ME" (point to the space after "Like Me"). IF THAT SENTENCE DOES NOT DESCRIBE HOW YOU USUALLY FEEL, MAKE AN X AFTER "NOT LIKE ME" (point to the space after "Not Like Me").
- LET'S TRY ANOTHER ONE. MOVE YOUR CARD DOWN TO SENTENCE B IN YOUR BOOKLET. I WILL READ IT TO YOU. "I'M A GOOD WORKER". DECIDE IF THAT SENTENCE IS LIKE YOU OR NOT LIKE YOU AND PUT AN X AFTER YOUR ANSWER.
- ARE THERE ANY QUESTIONS ABOUT WHAT YOU ARE TO DO? (Answer any questions)
- I WILL READ EACH STATEMENT TO YOU, THEN YOU MAKE AN X AFTER THE ANSWER THAT YOU CHOOSE. USE YOUR CARD TO FOLLOW ALONG WITH EACH STATEMENT THAT I READ TO YOU.
- LET'S START. REMEMBER, THERE ARE NO RIGHT OR WRONG ANSWERS.

BEGIN TEST:

Throughout the test each item should be said once but, any item may be repeated if it becomes necessary. Always say the item number. The children may also be reminded to mark their choice of "Like Me" or "Not Like Me".

- NUMBER 1 "I SPEND A LOT OF TIME DAYDREAMING."
- NUMBER 2 "I'M PRETTY SURE OF MYSELF."
- NUMBER 3 "LOFTEN WISH LWERE SOMEONE ELSE."
- NUMBER 4 "I'M EASY TO LIKE."
- NUMBER 5 "MY PARENTS AND I HAVE A LOT OF FUN TOGETHER."
- NUMBER 6 "I NEVER WORRY ABOUT ANYTHING,"
- NUMBER 7 "I FIND IT VERY HARD TO TALK IN FRONT OF THE CLASS."
- NUMBER 8 "I WISH I WERE YOUNGER."
- NUMBER 9 "THERE ARE LOTS OF THINGS ABOUT MYSELF I'D CHANGE IF I COULD."
- NUMBER 10 "I CAN MAKE UP MY MIND WITHOUT TOO MUCH TROUBLE."
- NUMBER 11 "I'M A LOT OF FUN TO BE WITH."
- NUMBER 12 "I GET UPSET EASILY AT HOME."
- NUMBER 13 "I ALWAYS DO THE RIGHT THING."
- NUMBER 14 "I'M PROUD OF MY SCHOOL WORK."
- NUMBER 15 "SOMEONE ALWAYS HAS TO TELL ME WHAT TO DO."
- NUMBER 16 "IT TAKES ME A LONG TIME TO GET USED TO ANYTHING NEW."
- NUMBER 17 "I'M OFTEN SORRY FOR THE THINGS I DO."
- NUMBER 18 "I'M POPULAR WITH KIDS MY OWN AGE."
- NUMBER 19 "MY PARENTS USUALLY CONSIDER MY FEELINGS."
- NUMBER 20 "I'M NEVER UNHAPPY."
- NUMBER 21 "I'M DOING THE BEST WORK THAT I CAN."
- NUMBER 22 "I GIVE IN VERY EASILY."
- NUMBER 23 "I CAN USUALLY TAKE CARE OF MYSELF."
- NUMBER 24 "I'M PRETTY HAPPY."
- NUMBER 25 "I WOULD RATHER PLAY WITH CHILDREN YOUNGER THAN ME."
- NUMBER 26 "MY PARENTS EXPECT TOO MUCH OF ME."
- NUMBER 27 "I LIKE EVERYONE I KNOW."
- NUMBER 28 "I LIKE TO BE CALLED ON IN CLASS."
- NUMBER 29 "I UNDERSTAND MYSELF."

T8-3

- NUMBER 30 "IT'S PRETTY TOUGH TO BE ME."
- NUMBER 31 "THINGS ARE ALL MIXED UP IN MY LIFE."
- NUMBER 32 "KIDS USUALLY FOLLOW MY IDEAS."
- NUMBER 33 "NO ONE PAYS MUCH ATTENTION TO ME AT HOME."
- NUMBER 34 "I NEVER GET SCOLDED."
- NUMBER 35 "I'M NOT DOING AS WELL IN SCHOOL AS I'D LIKE TO."
- NUMBER 36 "I CAN MAKE UP MY MIND AND STICK TO IT."
- NUMBER 37 FIRST I WILL READ THIS STATEMENT FOR THE GIRLS

 —LISTEN GIRLS. "I REALLY DON'T LIKE BEING A GIRL."

 NOW BOYS I WILL READ THIS STATEMENT FOR THE BOYS
 —LISTEN BOYS. "I REALLY DON'T LIKE BEING A BOY."
- TUBN THE PAGE.
- NUMBER 38 "I HAVE A LOW OPINION OF MYSELF."
- NUMBER 39 "I DON'T LIKE TO BE WITH OTHER PEOPLE."
- NUMBER 40 "THERE ARE MANY TIMES WHEN I'D LIKE TO LEAVE HOME."
- NUMBER 41 "I'M NEVER SHY."
- NUMBER 42 "I OFTEN FEEL UPSET IN SCHOOL."
- NUMBER 43 "I OFTEN FEEL ASHAMED OF MYSELF."
- NUMBER 44 "I'M NOT AS NICE LOOKING AS MOST PEOPLE."
- NUMBER 45 "IF I HAVE SOMETHING TO SAY, I USUALLY SAY IT."
- NUMBER 46 "KINS PICK ON ME VERY OFTEN."
- NUMBER 47 "MY PARENTS UNDERSTAND ME."
- NUMBER 48 "I ALWAYS TELL THE TRUTH."
- NUMBER 49 "MY TEACHER MAKES ME FEEL THAT I'M NOT GOOD ENOUGH."
- NUMBER 50 "I DON'T CARE WHAT HAPPENS TO ME."
- NUMBER 51 "I'M A FAILURE."
- NUMBER 52 "I GET UPSET EASILY WHEN I'M SCOLDED."
- NUMBER 53 "MOST PEOPLE ARE BETTER LIKED THAN I AM."
- NUMBER 54 "I USUALLY FEEL AS IF MY PARENTS ARE PUSHING ME."
- NUMBER 55 "I ALWAYS KNOW WHAT TO SAY TO PEOPLE."
- NUMBER 56 "I OFTEN GET DISCOURAGED IN SCHOOL."
- NUMBER 57 "THINGS USUALLY DON'T BOTHER ME."
- NUMBER 58 "I CAN'T BE DEPENDED ON."

BOOKLET T7

Group Test

THIS	BOOKLET	BELONGS	TO:		
		,			
		,		 	

EXAMINER'S COPY

SRI Adaptation of the INTELLECTUAL ACHIEVEMENT RESPONSIBILITY SCALE

INSTRUCTIONS AND PROCEDURE

MATERIALS: IAR Booklet and scoring pencil for each child

PROCEDURE: Each item should be said twice

BEGIN TEST: Introduce the test by saying:

• YOU SHOULD EACH HAVE A BOOKLET.

- ◆ THIS BOOKLET HAS SENTENCES WHICH TELL ABOUT LOTS OF THINGS THAT HAPPEN TO MANY OF YOU EVERY DAY. NOW, OPEN YOUR BOOKLET, BUT DO NOT MARK ANYTHING UNTIL I TELL YOU. I WILL READ THE FIRST PART OF THE SENTENCE. THEN I WILL READ TWO DIFFERENT ENDINGS FOR THE SENTENCE. IN YOUR BOOKLET THESE ENDINGS ARE MARKED "A" AND "B". (Demonstrate) CHOOSE THE ONE ENDING THAT TELLS HOW YOU USUALLY THINK OR FEEL. PUT AN X ON THE LETTER "A" IF THAT ENDING FITS YOU BEST. PUT AN X ON THE LETTER "B" IF THAT ENDING FITS YOU BEST. THERE ARE NO RIGHT OR WRONG ANSWERS; JUST ANSWER EACH QUESTION THE WAY YOU REALLY FEEL.
- I WILL READ THE FIRST PART OF THE SENTENCE AND EACH OF THE ENDINGS TWO TIMES. LISTEN CAREFULLY AND PUT AN X ON "A" OR "B" TO SHOW HOW YOU USUALLY FEEL. DO NOT MARK ANYTHING UNTIL I TELL YOU.
- THE FIRST SENTENCE IS "IF A TEACHER PASSES YOU TO THE NEXT GRADE, IT IS BECAUSE
 - A SHE LIKED YOU."
 - B YOU DID GOOD WORK."
- I'LL READ IT ONCE MORE. "IF A TEACHER PASSES YOU TO THE NEXT GRADE, IT IS BECAUSE
 - A SHE LIKED YOU."
 - B YOU DID GOOD WORK."
- NOW, PLEASE PUT AN X ON "A" OR "B"
- EVERYONE WILL DO HIS OWN WORK. PLEASE DO NOT TALK.

 NOW LOOK AT NUMBER 2. THE SENTENCE IS, "WHEN YOU DO WELL ON A SCHOOL TEST, IT IS BECAUSE

¢

- A YOU WORK HARD."
- B THE TEST IS VERY EASY."
- I'LL READ IT ONCE MORE. "WHEN YOU DO WELL ON A SCHOOL TEST, IT IS BECAUSE
 - A YOU WORK HARD."
 - B THE TEST IS VERY EASY."
- NOW, PLEASE PUT AN X ON "A" OR "B"

Continue 4th the test and remember to say each item twice

- NUMBER 3. THE SENTENCE IS, "WHEN YOUR SCHOOL WORK IS VERY HARD TO UNDERSTAND, IT IS BECAUSE
 - A THE TEACHER ISN'T GIVING YOU ENOUGH HELP."
 - B YOU AREN'T LISTENING TO WHAT SHE SAYS."

Repeat the item. Throughout the test check to be certain that the children are marking either an "A" or "B". If at anytime they are not marking correctly, repeat the instruction.

● PLACE AN X ON "A" OR "B"

Fause

- NUMBER 4. THE SENTENCE IS, "WHEN YOU CAN'T REMEMBER MUCH OF A STORY YOU READ, IT IS BECAUSE
 - A THE STORY 'SN'T ANY GOOD."
 - B THE STORY ISN'T ABOUT SOMETHING YOU LIKE."

Repeat the item.

•	NUMBER 5. THE SENTENCE IS, "IF YOUR MOTHER SAYS YOU ARE DOING WELL IN SCHOOL, IT IS BECAUSE
	A YOUR SCHOOL WORK IS GOOD."
	B YOUR MOTHER IS FEELING WELL."
	Repeat the item.
	Pause
•	NUMBER 6. THE SENTENCE IS, "IF YOU DO BETTER THAN USUAL IN SOMETHING

- NUMBER 6. THE SENTENCE IS, "IF YOU DO BETTER THAN USUAL IN SOMETHING AT SCHOOL, IT IS BECAUSE
 - A YOU WORK HARDER."
 - B SOMEONE HELPS YOU."

Pause

- NUMBER 7. THE SENTENCE IS, "WHEN YOU LOSE AT A GAME OF CARDS OR CHECKERS, IT IS BECAUSE
 - A THE OTHER PLAYER IS GOOD AT THE GAME."
 - B YOU DON'T PLAY WELL."

Repeat the item.

Pause

- NUMBER 8. THE SENTENCE IS, "SUPPOSE A PERSON DOESN'T THINK YOU DO GOOD WORK.
 - A YOU CAN MAKE HIM CHANGE HIS MIND IF YOU TRY TO."
 - B SOME PEOPLE WILL THINK YOU DON'T DO GOOD WORK NO MATTER WHAT YOU DO."

Repeat the item.

•	NUME BECA	BER 9. THE SENTENCE IS, "IF YOU FINISH A PUZZLE REAL FAST, IT IS USE
	A	THE PUZZLE ISN'T VERY HARD."
	B	YOU WORK CAREFULLY ON THE PUZZLE."
	Rep	eat the item.

Pause

- NUMBER 10. THE SENTENCE IS, "IF SOMEONE TELLS YOU THAT YOU ARE DUMB, IT IS BECAUSE
 - A HE IS MAD AT YOU."
 - B WHAT YOU DID REALLY WASN'T VERY BRIGHT."

Repeat the item.

Pause

- NUMBER 11. THE SENTENCE IS, "IF YOU WANTED TO BECOME A TEACHER, SCIENTIST, OR DOCTOR AND DIDN'T MAKE IT, IT WOULD BE BECAUSE
 - A YOU DIDN'T WORK HARD ENOUGH."
 - B OTHER PEOPLE SHOULD HAVE HELPED YOU MORE."

Repeat the item.

Pause

- NUMBER 12. THE SENTENCE IS, "IF SOMETHING IS EASY TO LEARN AT SCHOOL, IT IS BECAUSE
 - A YOU PAY ATTENTION."
 - B THE TEACHER GIVES YOU LOTS OF HELP."

Repeat the item.

- NUMBER 13. THE SENTENCE IS, "IF A TEACHER SAYS TO YOU, 'YOUR WORK IS FINE', IT IS BECAUSE
 - [A] TEACHERS USUALLY SAY THAT TO ENCOURAGE PUPILS."
 - B YOU DID A GOOD JOB."

Pause

- **TURN THE PAGE**
- NUMBER 14. THE SENTENCE IS, "WHEN ARITHMETIC OR NUMBER PROBLEMS ARE HARD TO WORK AT SCHOOL, IT IS BECAUSE
 - A YOU DON'T DO ENOUGH WORK ON THE PROBLEMS."
 - B THE PROBLEMS ARE TOO HARD."

Repeat the item

Pause

- NUMBER 15. THE SENTENCE IS, "IF YOU FORGET SOMETHING THE TEACHER SAYS IN CLASS, IT IS BECAUSE
 - A THE TEACHER DOESN'T SAY IT VERY WELL."
 - B YOU DON'T TRY VERY HARD TO REMEMBER."

Repeat the item

Pause

- NUMBER 16. THE SENTENCE IS, "IF YOU WEREN'T SURE ABOUT THE ANSWER
 TO A QUESTION THAT YOUR TEACHER ASKED YOU, BUT YOUR ANSWER TURNED
 OUT TO BE RIGHT, IT WOULD HAPPEN BECAUSE
 - A THE TEACHER WASN'T AS PARTICULAR AS USUAL."
 - R YOU GAVE THE BEST ANSWER YOU COULD THINK OF."

Repeat the item

•		ER 17. THE SENTENCE IS, "IF YOU REMEMBER MOST OF A STORY YOU READ,
		BECAUSE
	A	THE STORY IS ABOUT SOMETHING YOU LIKE."
	В	THE STORY IS GOOD."
	Rep	eat the item

- NUMBER 18. THE SENTENCE IS, "IF YOUR MOTHER SAYS YOU'RE ACTING SILLY,
 - A IT IS BECAUSE OF SOMETHING YOU DID."
 - B IT IS BECAUSE SHE IS NOT FEELING GOOD."

Pause

Pause

- NUMBER 19. THE SENTENCE IS, "WHEN YOU DO NOT DO WELL ON A SCHOOL TEST, IT IS BECAUSE
 - A THE TEST IS VERY HARD."
 - B YOU DON'T DO YOU WORK."

Repeat the item

Pause

- NUMBER 20. THE SENTENCE IS, "WHEN YOU WIN AT A GAME OF CARDS OR CHECKERS, IT IS BECAUSE
 - A YOU PLAY REAL WELL."
 - B THE OTHER PERSON DOESN'T PLAY WELL."

Repeat the item

9	NUMB BECA	ER 21. THE SENTENCE IS, "IF PEOPLE THINK YOU DO GOOD WORK, IT IS USE
	A	THEY LIKE YOU."
	B	YOU DO THINGS WELL."
	Rep	eat the item
	Paus	Se Control of the Con

- NUMBER 22. THE SENTENCE IS, "IF THE TEACHER DIDN'T PASS YOU TO THE NEXT GRADE, IT WOULD HAPPEN BECAUSE
 - A SHE HAD IT IN FOR YOU."
 - B YOUR SCHOOL WORK WASN'T GOOD ENOUGH."

Pause

- NUMBER 23. THE SENTENCE IS, "IF YOU DON'T DO AS WELL AS USUAL IN SOMETHING AT SCHOOL, IT WOULD HAPPEN BECAUSE
 - A YOU DON'T DO YOUR WORK."
 - B SOMEONE BOTHERS YOU."

Repeat the item

Pause

- NUMBER 24. THE SENTENCE IS, "IF A BOY OR GIRL SAYS THAT YOU DO GOOD WORK, IT IS BECAUSE
 - A YOU DO THINGS WELL."
 - B THEY LIKE YOU."

Repeat the item

- NUMBER 25. THE SENTENCE IS, "IF YOU BECAME A FAMOUS TEACHER, SCIENTIST OR DOCTOR, IT WOULD HAPPEN BECAUSE
 - A OTHER PEOPLE HELPED YOU WHEN YOU NEEDED IT."
 - B YOU WORKED VERY HARD."

Pause

- NUMBER 26. THE SENTENCE IS, "IF YOUR MOTHER SAYS YOU'RE NOT DOING WELL IN YOUR SCHOOL WORK, IT IS BECAUSE
 - A YOUR SCHOOL WORK ISN'T GOOD."
 - B, YOUR MOTHER ISN'T FEELING WELL."

Repeat the item

Pause

- TURN THE PAGE.
- NUMBER 27. THE SENTENCE IS, "IF YOU ARE SHOWING A FRIEND HOW TO PLAY A GAME AND HE HAS TROUBLE WITH IT, THAT WOULD HAPPEN BECAUSE
 - A HE WASN'T ABLE TO UNDERSTAND HOW TO PLAY."
 - B YOU COULDN'T EXPLAIN IT WELL."

Repeat the item

Pause

- NUMBER 28. THE SENTENCE IS, "WHEN ARITHMETIC OR NUMBER PROBLEMS ARE EASY TO WORK AT SCHOOL, IT IS BECAUSE
 - A THE PROBLEMS ARE EASY."
 - B YOU WORK HARD ON THE PROBLEMS."

Repeat the item

- NUMBER 29. THE SENTENCE IS, "WHEN YOU REMEMBER SOMETHING THE TEACHER SAYS IN CLASS, IT IS BECAUSE
 - A YOU TRY HARD TO REMEMBER."
 - B THE TEACHER SAYS IT WELL."

Pause

- NUMBER 30. THE SENTENCE IS, "IF YOU CAN'T WORK A PUZZLE, IT IS BECAUSE
 - A YOU ARE NOT GOOD AT WORKING PUZZLES."
 - B THE INSTRUCTIONS WEREN'T WRITTEN CLEARLY ENOUGH."

Repeat the item

Pause

- NUMBER 31. THE SENTENCE IS, "IF YOUR MOTHER TELLS YOU THAT YOU ARE BRIGHT AND CLEVER,
 - A IT IS BECAUSE SHE IS FEELING GOOD."
 - B !T IS BECAUSE OF SOMETHING YOU DID."

Repeat the item

Pause

- NUMBER 32. THE SENTENCE IS, "IF YOU ARE EXPLAINING HOW TO PLAY A GAME TO A FRIEND AND HE LEARNS QUICKLY, IT WOULD HAPPEN BECAUSE
 - A YOU EXPLAINED IT WELL.'
 - B HE WAS ABLE TO UNDERSTAND IT."

Repeat the item

- NUMBER 33. THE SENTENCE IS, "IF YOU'RE NOT SURE ABOUT THE ANSWER TO A QUESTION YOUR TEACHER ASKS YOU AND THE ANSWER YOU GIVE TURNS OUT TO BE WRONG, IT WOULD HAPPEN BECAUSE
 - A THE TEACHER WAS MORE PARTICULAR THAN USUAL."
 - B YOU ANSWERED TOO QUICKLY."

- NUMBER 34. THE SENTENCE IS, "IF A TEACHER SAYS TO YOU, 'TRY TO DO BETTER,' IT IS BECAUSE
 - A SHE WANTS YOU TO TRY HARDER."
 - B YOUR WORK ISN'T AS GOOD AS USUAL."
- CLOSE YOUR BOOK.

Appendix T

CORRELATION OF TEACHER QUESTIONNAIRE ITEMS AND IMPLEMENTATION SCCRE?

Table T-1

CORREIATIONS OF TEACHER-KEPORTED PARTICIPATION IN TRAINING PROCEDURES WITH CLASSROOM IMPLEMENTATION SCORES BY SPONSOR

				sity			Univer	sity	University	sity				
	Far W	est		zona	Bank S	treet	of Oregon	uoga.	of Kansas	nsas		Scope	EDC	
	7=N)	6		3)	(N=3	8)	(N=3	(7)	,N=3	4)		(0)	(N=3)	€
Training Procedure	r p.	P.	r p<	Þ	r p<	P<	ы	r p<	r p<	ă	r p<	P<	r P	ď
Materials mailed to you for your own use	20*	. 22 3	20* .223 .21 .23206 .70642* .01 .16* .37032 .03901	.232	06	907.	42*	.01	.16*	.370	32	.039	01	946.
Visits or demonstrations in your own classroom	02	.923	02 .9207 .699 .18 .270 .08 .638 .22 .21816 .339 .12*	669.	. 18	.270	.08	.638	.22	. 218	16	.339		.472
Visiting or observing work of other teachers in their classrooms	22	.166	32	690.	04	.813	17	.326	02	.914	20	.223	- 4	.177
Workshops during vacation periods	.04	.800	.04 .800 .21* .252 .13 .278 .04 .82414* .44902	.252	.13	.278	.04	.824	14*	677.	02		*/0	. 668
Workshops on Saturday or after school	22	.158	44	.010	02	.902	.11	.536	10*	. 596	09		25	.123
Consultation with specialists or trainers, not in your own classroom	. 11	. 504	07	669.	.05	992.	10	.550	*80.	.673	21	.183		.460
Videotapes of model teacher episodes	10	. 54 2	10 .54211 .556 .20 .233 .05 752 .09 .604 .29 .066 .11*	.556	. 20	.233	.05	752	60.	.604	. 29	990.		Ε.
Videotapes of yourself in teaching episodes	09	.560	09 .560 .06 .75201* .957 .32 .057 .17 .335 .10 .537 .24*	.752	01*	.957	.32	.057	.17	. 335	.10	.537		.153

 $[\]star$ One teacher failed to respond to this item.

T-3

^{**} Two teachers failed to respond to this item.

Table T-2

CORRELATIONS OF TEACHERS' YEARS IN FOLLOW THROUGH WITH IMPLEMENTATION SCORES (First and Third Grades Combined)

EDC (N=37)	2.24 1.23 .004	7 55 0 2
High/Scope (N=40)	. 2.68 1.19 .01 .928	0 9 10 31 40 37
University of Kansas (N=34)	2.21 0.95 .14	0 9 34
University of Oregon (N=37)	2.62 1.30 .16	0 9 28 37
Bank Street (N=37)	2.38 1.14 .43	1 10 26 37
University of Arizona (N=31)	2.55 1.34 33	0 7 24 31
Far West (N=39)	2.41 1.14 .27	0 30 39
	Correlations and Significance Levels: Mean S.D. r	Teachers' Years of Follow Through Experience (in the classroom): Not a complete year One complete year Two o more years Total responding

4

ERIC Full Text Provided by ERIC

Table T-3

CORRELATIONS OF TEACHERS' FORMAL EDUCATION WITH IMPLEMENTATION SCORES (First and Third Grade: Combined)

High/Scope EDC (N=40)	3.70 3.37 2.68 .75 0212 .919 .468	
University of Kansas (N=34)	4.26 .75 23	0 6 13 15
University of Oregon (N=36)	4.000 .53 .12	26 50
Bank Street (N=37)	4.14 .82 .26 .116	0 10 15 15
University of Arizona (N=33)	3.76 .75 .14	0 14 13 6
Far West (N=40)	3.60 .63 10	0 19 18 3
	Correlations and Significance Levels: Mean S.D. r	Teachers' Levels of Education: Less than Bachelor's Bachelor's More than Bachelor's Master's and above

ERIC

Table T-4

PERCENT OF TEACHERS SATISFIED WITH THE MODFE.

٠. .

BC LO	st Third First Third de Grade Grade Grade	(N=19) (N=19) (N=20) (N=17)	206 262 2001	(N=19) (N=19) (N=17)	25 % % % % % % % % % % % % % % % % % % %	0 16 10	5 47 53	95 37 32 12 100% 100% 100% 100%
UA	irst Third First rade Grade Grade	=16) (N=17)	682 822 100	=16) (N=15)	0 % %	9 2 9	63 60	25 33 95 100% 100% 100%
FW	First Third Fi Grade Grade Gr	(N=20) (N=20) (N	20% 75%	(N=20) (N=20) (N	20 %0	10 5	45 55	1002 1002
	Questionnaire Items C	Would continue to	Through	Would change the model:	Not use approach	Change most of it	Continue out alter some	Continue unchanged

Table T-5

CORRELATION OF TEACHERS' SATISFACTION WITH THE MODEL WITH IMPLEMENTATION SCORES (First and Third Grades Combined)

	Questionnaire Items			
Site	Would Continue to Teach in Follow Through	Would Change the Model		
Far West (N=40)				
Mean	4.23	3.35		
S.D.	1.19	.62		
r	.04	17		
p<	.810	.285		
University of Arizona (N=33)				
Mean	4.12	3.16		
S.D.	1.34	.69		
r	14	18 *		
p<	.427	.323		
Bank Street (N=38)				
Mean	4.58	3.58		
S.D.	.76	.64		
r	.17	.24		
p<	.301	.151		
University of Oregon (N=37)				
Hean	4.41	3.00		
S.D.	.90	.72		
r	13	30 **		
p<	.437	.072		
University of Kansas (N=34)				
Mean	4.22	3.03		
S.D.	1.08	.67		
r	20 *	09		
p<	.268	.622		
High/Scope (N=40)				
Mean	4.68	3.40		
S.D.	.66	.55		
r	22	.01		
p<	.175	.972		
EDC (N=38)				
Mean	4.63	3.59		
S.D.	.79	.69		
r	17	.10 **		
p<	.305	.546		

 $[\]mbox{\ensuremath{^{\star}}}$ Two teachers failed to respond to this item.

 $[\]ensuremath{^{\star\star}}$ One teacher failed to respond to this item.

