Поверхні другого порядку

Поверхнею другого порядку називається множина всіх точок M(x, y, z) простору \mathbf{R}^3 , координати яких задовольняють рівняння

$$f(x, y, z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2b_1x + 2b_2y + 2b_3z + c = 0,$$

причому хоча б один з коефіцієнтів a_{ii} відмінний від нуля.

Теорема. Для довільної поверхні другого порядку існує прямокутна система координат, в якій рівняння цієї поверхні має один з таких виглядів:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 -$$
еліпсоїд;

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$
 – уявний еліпсоїд;

3.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$
 – точка;

4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 — однопорожнинний гіперболоїд;

5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
 – двопорожнинний гіперболоїд;

6.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
 – еліптичний конус;

7.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz$$
 – еліптичний параболоїд;

8.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$$
 – гіперболічний параболоїд;

9.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 – еліптичний циліндр;

10.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$
 – уявний циліндр;

11.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 – гіперболічний циліндр;

12.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 – Bich Oz ;

13.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 — пара площин $\frac{y}{b} = \pm \frac{x}{a}$, які перетинаються;

14.
$$x^2 = 2py$$
 — параболічний циліндр;

15.
$$x^2 = a^2 -$$
пара паралельних площин;

16.
$$x^2 = -a^2 -$$
пара уявних площин;

17.
$$x^2 = 0$$
 — пара площин, які збігаються.

Еліпсоїд

Означення. *Еліпсоїдом* називається поверхня (рис. 1), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Координатні площини ϵ площинами симетрії елепсоїда, еліпсоїд симетричний стосовно осей кооодинат і стосовно початку координат.

Еліпсоїд має шість вершин: $A_1(a;0;0)$, $A_2(-a;0;0)$, $B_1(0;b;0)$, $B_2(0;-b;0)$, $C_1(0;0;c)$, $C_2(0;0;-c)$. Відрізки $A_1A_2=2a$, $B_1B_2=2b$, $C_1C_2=2c$ називаються осями елепсоїда, а числа a, b та c – його півосями.

Якщо еліпсоїд перетнути площиною $xO\ y$, тобто площиною з рівнянням z=0, то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. Аналогічно перетином еліпсоїда і площин x=0 та y=0 є еліпси $\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ та $\frac{x^2}{a^2}+\frac{z^2}{c^2}=1$, відповідно.

Якщо a=b, то еліпсоїд задається рівнянням $\frac{x^2+y^2}{a^2}+ +\frac{z^2}{c^2}=1$ і називається еліпсоїдом обертання навколо осі Oz. Аналогічно можна одержати еліпсоїди обертання навколо осей Ox та Oy.

Якщо a = b = c, то еліпсоїд є сферою $x^2 + y^2 + z^2 = a^2$.

Рис. 1

Однопорожнинний гіперболоїд

Означення. Однопорожнинним гіперболоїдом називається поверхня (рис.2), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

Координатні площини є площинами симетрії однопорожнинного гіперболоїда $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$, а початок координат – його центром симетрії (рис. 2).

Однопорожнинний гіперболоїд має чотири вершини: $A_1(a;0;0)$, $A_2(-a;0;0)$, $B_1(0;b;0)$, $B_2(0;-b;0)$. Відрізки $A_1A_2=2a$, $B_1B_2=2b$ називаються осями однопорожнинного гіперболоїда, а числа a, b та c – його півосями.

Якщо однопорожнинний гіперболоїд перетнути площиною xO y , тобто площиною з рівнянням z=0 , то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. Перетином однопорожнинного гіперболоїда і площин x=0 та y=0 ϵ гіперболи $\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$ та $\frac{x^2}{a^2}-\frac{z^2}{c^2}=1$, відповідно. Якщо однопорожнинний гіперболоїд перетнути площиною z=h , де $h\in \mathbf{R}$, то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1+\frac{h^2}{c^2}$.

Двопорожнинний гіперболоїд

Означення. Двопорожнинним гіперболоїдом називається поверхня (рис. 3), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1.$$

Координатні площини є площинами симетрії двопорожнинного гіперболоїда $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$, а початок координат – його центром симетрії (рис. 3).

Двопорожнинний гіперболоїд має дві вершини: $C_1(0;0;c)$, $C_2(0;0;-c)$. Відрізок $C_1C_2=2c$ є віссю симетрії, а числа a, b та c — півосями двопорожнинного гіперболоїда.

Перетином двопорожнинного гіперболоїда і площин x=0 та y=0 є гіперболи $\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$ та $\frac{x^2}{a^2}-\frac{z^2}{c^2}=-1$. Якщо двопорожнинний гіперболоїд перетнути площиною z=h, де $h\in {\bf R}$, |h|>c, то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{h^2}{c^2}-1$.

Конус

Означення. *Еліптичним конусом* називається поверхня (рис. 4), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

Конус утворюється прямими, які проходять через початок координат. Справді, треба довести, що пряма, яка з'єднує початок координат та довільну точку $M_0(x_0;y_0;z_0)$ конуса, повністю лежить на конусі. Очевидно, що $\frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2} - \frac{{z_0}^2}{c^2} = 0$. Якщо деяка точка M(x;y;z) належить прямій, то її координати $M(tx_0;ty_0;tz_0)$, де t — деяке число. Підставимо координати цієї точки в рівняння конуса, одержимо рівність $\frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2} - \frac{{z_0}^2}{c^2} = 0$.

Перетином конуса та площини z=h, де $h\in \mathbf{R}$, ϵ крива $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{h^2}{c^2}$, тобто еліпс $\frac{x^2}{a^2h^2}+\frac{y^2}{b^2h^2}=1$.

Еліптичний параболоїд

Означення. *Еліптичним параболоїдом* називається поверхня (рис. 5), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz.$$

Координатні площини xOz та yOz ϵ площинами симетрії еліптичного параболоїда $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2\,pz\,,$ вісь Oz – його віссю симетрії, а початок координат – його вершиною (рис. 5).

Рис. 5

Перетином еліптичного параболоїда та площин x=0 та y=0 є, відповідно, параболи $y^2=2b^2\,pz$ та $x^2=2a^2\,pz$. Якщо еліптичний параболоїд перетнути площиною z=h, де $h\in {\bf R}$, |h|>0, то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=2\,ph$.

Гіперболічний параболоїд

Означення. *Гіперболічним параболоїдом* називається поверхня (рис. 6), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz.$$

Координатні площини xOz та yOz є площинами симетрії гіперболічного параболоїда, вісь Oz — його віссю симетрії, а початок координат — його вершиною (рис. 6).

Рис. 6

Перетином гіперболічного параболоїда та площин x=0 і y=0 є, відповідно, параболи $y^2=-2b^2pz$ та $x^2=2a^2pz$. Якщо гіперболічний параболоїд перетнути площиною z=h, де $h\in {\bf R}$, $h\neq 0$, то утвориться гіпербола $\frac{x^2}{a^2}-\frac{y^2}{b^2}=2ph$. Перетином гіперболічного параболоїда та площини z=0 є пара прямих

$$\frac{x}{a} - \frac{y}{b} = 0$$
 ta $\frac{x}{a} + \frac{y}{b} = 0$.

Циліндри

Означення. *Циліндром* називається поверхня, яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

– еліптичний циліндр (рис. 7), або

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

– гіперболічний циліндр (рис. 8), або

$$x^2 = 2py$$

– параболічний циліндр (рис. 9).

Циліндри утворені прямими лініями, паралельними осі Oz, на це вказує відсутність координати z в рівняннях.

Рис. 7

Рис. 8

Рис. 9