Math 54 Worksheet

In this last section of the course we're going to use our linearly algebra knowledge to solve systems of differential equations. There are basically 2 things you'll need to know for this: (1) How to convert a scalar ODE into a linear system (in normal form):

$$\mathbf{x}'(t) = A\mathbf{x}(t),$$

where A's a matrix and x, x' are vectors. And (2) How to solve a solve differential equation system in normal form. This last step is easier if A is diagonalizable, so that's the case we'll stick to today. (When A is not diagonalizable we have to use matrix exponentials, which will be covered in lecture on Wednesday).

1 Turning Scalar Equations into Linear Systems

We can turn a (scalar) differential equation of arbitrary degree into a degree one equation by replacing the derivatives of y with new variables. For example, given:

 $y^{(4)} + 3y'' - \sin(t)y' + 8y = t^2$

we would introduce the new variabales x_1, x_2, x_3, x_4 and let $x_1 = y, x_2 = y', x_3 = y''$ and $x_4 = y'''$. We're looking for a system of the form $\mathbf{x}'(t) = A\mathbf{x}(t)$, where $\mathbf{x}(t) = (x_1, x_2, x_3, x_4)$, so we need to be able to write the derivatives of the x_i in terms of the other (non-differentiated x_i). Note that $x_1' = x_2, x_2' = x_3, x_3' = x_4$.

What is x_4^{\prime} ? (hint: it's more complicated, use the differential equation).

$$X_4' = y^{(4)} = -3y'' + \sin(t)y' = 8y + t^2 = -3X_3 + \sin(t)X_2 - 8x_1 + t^2$$

Given these formula for the x'_i , what is the matrix A?

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 blc then
$$\begin{pmatrix} X_1' \\ X_2' \\ X_3' \\ X_4' \end{pmatrix} = A \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4' \end{pmatrix}$$

Rewrite the following scalar equations as linear systems in normal form.

1.
$$x''(t) + x(t) = t^2$$
.

$$\begin{bmatrix} X_1' \\ X_{2'} \end{bmatrix} = \begin{bmatrix} O & 1 \\ -1 & O \end{bmatrix} \begin{bmatrix} X_1 \\ Y_2 \end{bmatrix} + \begin{bmatrix} O \\ t^2 \end{bmatrix}$$

$$2. \ \frac{d^3y}{dt^3} - \frac{dy}{dt} + y = \cos t.$$

$$\begin{bmatrix} X_1' \\ X_2' \\ X_3' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_5 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ cost \end{bmatrix}$$

3. $y^{(n)}(t) + p_{n-1}(t)y^{(n-1)}(t) + ... + p_0(t)y(t) = g(t)$. (Note: in case you haven't seen it yet, $y^{(n)}$ means the n^{th} derivative of y).

$$\begin{bmatrix} X_1' \\ X_2' \\ \vdots \\ X_n' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 1 \\ -P_0 & -P_1 & \dots & -P_{n-1} \end{bmatrix} \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$

4. What does question 3 tell you about the kinds of problems you can solve with linear systems of ODEs vs scalar ODEs?

The Wronskian

Just like with scalar ODEs we want to write down the general solution to a linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$. But what does the general solution look like? It turns out, just like the scalar case, it's a linear combination of linearly independent solutions (we're *not* going to prove this). How many solutions? If A is an $n \times n$ matrix then there should be n. So our solutions look like:

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + ... + c_n \mathbf{x}_n(t).$$

As in the scalar case, the c_1 are unknown coefficients which would be determined by an initial condition. The $\mathbf{x}_1, ..., \mathbf{x}_n$ form the set of fundamental solutions. And if you put them in a matrix together, $[x_1,...,x_n]$, we call that the fundamental matrix.

As before we can use the Wronskian to check if a proposed set of solutions are actually linearly independent. Let

$$W(t) = \det[\mathbf{x}_1(t), ..., \mathbf{x}_n(t)].$$

Then W will be a function of t, and the rule is: it'll be zero if the functions are dependent, and never zero (for any value of if the functions are independent.

Compute the Wronskian of the following sets of solutions.

1.
$$\mathbf{x}_1 = \begin{bmatrix} te^{-t} \\ e^{-t} \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} e^{-t} \\ e^{-t} \end{bmatrix}$

$$\begin{vmatrix} te^{-t} & e^{-t} \\ e^{-t} & e^{-t} \end{vmatrix} = te^{-2t} - e^{-2t} = (t-1)e^{-2t} \quad \text{independent.}$$

$$2. \mathbf{x}_1 = \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} \sin(2t) \\ \cos(2t) \end{bmatrix}$$

$$\begin{vmatrix} \sin t \\ \cos t \end{vmatrix}, \mathbf{x}_2 = \begin{bmatrix} \sin(2t) \\ \cos(2t) \end{bmatrix} \quad \text{double angle formulas}$$

$$\begin{vmatrix} \sin t \\ \cos t \end{vmatrix} = \sin(2t) = \sin(2t) = \sin(2t) - \cos(2\sin(2t)) \quad \text{ondependent}$$

$$= -\sin^3 t - \sin(2t) + \sin(2t) = \sin(2t) = \cos(2t) \quad \text{independent}$$

4. Suppose the following \mathbf{x}_i are solutions to the equation $\mathbf{x}'(t) = A\mathbf{x}(t)$. Determine if they form a fundamental solution

4. Suppose the following
$$x_i$$
 are solutions to the equation $x'(t) = Ax(t)$. Determine if they form a fundamental solution set, and if so write down the fundamental matrix and a general solution.

$$x_1 = \begin{bmatrix} e^t \\ e^t \\ e^t \end{bmatrix}, x_2 = \begin{bmatrix} \sin t \\ \cos t \\ -\sin t \end{bmatrix}, x_3 = \begin{bmatrix} -\cos t \\ \sin t \\ \cos t \end{bmatrix}$$
Check II: $C_1 \begin{bmatrix} e^t \\ e^t \end{bmatrix} + C_2 \begin{bmatrix} \cos t \\ \cos t \end{bmatrix} + C_3 \begin{bmatrix} -\cos t \\ \cos t \end{bmatrix} = \begin{bmatrix} \cos t \\ \cos t \end{bmatrix}$
and matrix is
$$C_1 = C_3, C_1 = -C_2, C_1 = -C_3 \text{ is a } C_1 = C_3 = 0$$
So $C_2 = 0$ too.

3 Homogeneous Linear Systems with Constant Coefficients

Now we're going to solve equations of the form $\mathbf{x}'(t) = A\mathbf{x}(t)$. The underlying idea is the same as in the scalar case: guess a solution made out of ce^{rt} 's, because we're looking for functions $x_i(t)$ which are equal to their derivative (or at least, linearly combine to form their derivative).

It turns out guessing solutions of the form $x_i(t) = ce^{rt}$ plugging them into $\mathbf{x}'(t) = A\mathbf{x}(t)$ and solving for c and r amounts to finding the eigenvalues and eigenvectors of A. Specifically if A has n linearly independent eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_n$ with associated eigenvalues $r_1, ..., r_n$ (not all necessarily distinct), then a set of fundamental solutions is:

$$\mathbf{x}_1(t) = e^{r_1 t} \mathbf{v}_1, \dots, \mathbf{x}_n(t) = e^{r_n t} \mathbf{v}_n.$$

Let's try an example:

$$\mathbf{x}' = A\mathbf{x}$$
, where $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.

First we find the eigenvalues and eigenvectors of A (do this).

$$\lambda = -1, 4$$

$$\begin{pmatrix} -1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Then we write down the fundamental set of solutions as described above. For example if one of the eigenvalues was -1, and it had eigenvector $(-1,1)^t$, one of our fundamental solutions would be $e^{-t}(-1,1)^t$. Find both and write down the general solution.

$$\bar{x}(t) = c_1 e^{-t} {\binom{-1}{1}} + c_2 e^{4t} {\binom{2}{3}}$$

Finally, we could be asked to solve an initial value problem. What if we were told $\mathbf{x}(0) = (0, -4)^t$? Can you solve for the coefficients in your general solution found above? What is the final solution?

$$C_1(\frac{1}{1}) + C_2(\frac{2}{3}) = \begin{pmatrix} 0 \\ +4 \end{pmatrix} \rightarrow C_1 = \frac{-8}{5}, C_2 = -\frac{4}{5}$$

Would this method work if A was not a constant matrix? (e.g. if it had functions like t^2 in it?). Does this method depend on A being diagonalizable?

We find
$$\lambda_{1}=10$$
 $V_{1}=\begin{pmatrix} 2\\0\\0\\0\\0\end{pmatrix}$ So gen soln:
$$\lambda_{2}=5$$

$$V_{3}=\begin{pmatrix} 2\\0\\0\\0\end{pmatrix}$$

$$\lambda_{3}=5$$

$$V_{3}=\begin{pmatrix} 2\\0\\0\\0\end{pmatrix}$$

$$\lambda_{4}=10$$

$$\lambda_{5}=10$$

$$\lambda_{5}=10$$

$$\lambda_{6}=10$$

$$\lambda_{7}=10$$

2. Find a fundamental matrix for the system $\mathbf{x}' = A\mathbf{x}$ for $A = \begin{bmatrix} 3 & 3 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end{bmatrix}$. $\lambda_1 = 2 \quad \forall_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \lambda_3 = 1 \quad \forall_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \lambda_3 = 1 \quad \forall_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \lambda_4 = 2 \quad \forall_4 = 2 \quad \forall_5 = 2 \quad \forall_5 = 2 \quad \forall_6 = 2$

3. Solve the initial value problem
$$\mathbf{x}' = \begin{bmatrix} 6 & -3 \\ 2 & 1 \end{bmatrix} \mathbf{x}, \mathbf{x}(0) = \begin{bmatrix} -10 \\ -6 \end{bmatrix}.$$

$$\lambda_1 = 3 , \ V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{gen soln} \quad \widehat{\mathbf{X}(t)} = \mathbf{Ge}^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mathbf{G}_2 e^{4t} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$\lambda_2 = 4 , \ V_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \quad \text{IU}_{\mathbf{x}}' : \begin{pmatrix} -10 \\ -6 \end{pmatrix} = \mathbf{C}_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mathbf{C}_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

4. Solve the initial value problem
$$\mathbf{x}' = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \mathbf{x}, \mathbf{x}(0) = \begin{bmatrix} -1 \\ 4 \\ 0 \end{bmatrix}.$$

$$\lambda_1 = 2 \quad V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{gen sdn}: \quad \bar{\mathbf{x}}(+) = C_1 e^{2+} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{-+} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_3 e^{-+} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\lambda_2 = -1 \quad V_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \quad \text{apply IVs and get} \quad C_1 = 1, C_2 = 3, C_3 = -1$$

One final case we'll handle are systems with complex eigenvalues. In this case, as always, we'll want to replace any expressions of the form $e^{\alpha+i\beta}$ with sines and cosines. The rule is as follows:

If A has complex conjugate eigenvalues $\alpha \pm i\beta$ with corresponding eigenvectors $\mathbf{a} \pm i\mathbf{b}$, then the corresponding two linearly independent solutions to $\mathbf{x}'(t) = A\mathbf{x}(t)$ are

$$\mathbf{x}_1(t) = e^{\alpha t} \cos(\beta t) \mathbf{a} - e^{\alpha t} \sin(\beta t) \mathbf{b},$$

$$\mathbf{x}_2(t) = e^{\alpha t} \sin(\beta t) \mathbf{a} + e^{\alpha t} \cos(\beta t) \mathbf{b}.$$

Let's do an example. Consider the system $\mathbf{x}'(t) = \begin{bmatrix} 3 & 9 \\ -4 & -3 \end{bmatrix} \mathbf{x}(t)$. It has eigenvalues $\pm 3\sqrt{3}i$, so $\alpha = 0$ and $\beta = 3\sqrt{3}$. The corresponding eigenvectors are $\begin{bmatrix} 3 \\ -1 \pm \sqrt{3}i \end{bmatrix}$, so $\mathbf{a} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 0 \\ \sqrt{3} \end{bmatrix}$. Thus our two solutions are:

$$\mathbf{x}_1(t) = \begin{bmatrix} 3\cos(3\sqrt{3}t) \\ -\cos(3\sqrt{3}t) - \sqrt{3}\sin(3\sqrt{3}t) \end{bmatrix}$$

$$\mathbf{x}_2(t) = \begin{bmatrix} 3\sin(3\sqrt{3}t) \\ -\sin(3\sqrt{3}t) + \sqrt{3}\cos(3\sqrt{3}t) \end{bmatrix}.$$

1. Find a general of the system
$$\mathbf{x}' = \begin{bmatrix} -2 & -5 \\ 1 & 2 \end{bmatrix} \mathbf{x}$$
.

$$\lambda_1 = \mathbf{i} \quad \forall_1 = (-2 + \mathbf{i}/1)$$

$$\lambda_2 = \mathbf{i} \quad \forall_1 = (-2 + \mathbf{i}/1)$$

$$\lambda_3 = \mathbf{i} \quad \forall_1 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_2 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_3 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = \mathbf{i} \quad \forall_4 = (-2 + \mathbf{i}/1)$$

$$\lambda_4 = (-2 + \mathbf{i}/1$$

2. Find a general of the system
$$\mathbf{x}' = \begin{bmatrix} 5 & -5 & -5 \\ -1 & 4 & 2 \\ 3 & -5 & -3 \end{bmatrix} \mathbf{x}$$
. (various answers possible depending on choice of \mathbf{v}_1)

$$= \begin{pmatrix} -2\sin t + \cos t \\ \sin t \end{pmatrix}$$

$$= \cos t + \cos t$$

$$= \begin{pmatrix} -2\sin t + \cos t \\ \sin t \end{pmatrix}$$

$$= \cos t + \cos t$$

$$= \begin{pmatrix} -2\sin t + \cos t \\ \sin t \end{pmatrix}$$

$$= \cos t + \cos t$$

$$= \begin{pmatrix} -2\sin t + \cos t \\ \cos t + \cos t \end{pmatrix}$$

$$= \cos t + \cos t$$

$$= \begin{pmatrix} -2\sin t + \cos t \\ \cos t + \cos t \end{pmatrix}$$

$$= \cos t + \cos t$$

$$= \cos t + \cos t + \cos t$$

$$= \cos t + \cos t + \cos t$$

$$= \cos t + \cos t + \cos t$$

$$= \cos t + \cos t + \cos t + \cos t$$

$$= \cos t + \cos t$$

$$= \cos t + \cos t$$

3. Find a fundamental matrix for the system
$$\mathbf{x}' = A\mathbf{x}$$
, where $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ +1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -130 \end{bmatrix}$ room for the whole $X_1 = e^{\pm t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} X_2 = e^{\pm t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} X_3 = \begin{pmatrix} 0 & 0 & e^{2t} \cos 3t - e^{2t} \cos 3t - 3\sin 3t \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ +1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -130 \end{pmatrix}$ the solutions are $X_1 = e^{\pm t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = e^{\pm t} \begin{pmatrix}$