Number Theory: II

李昂生

Discrete Mathematics U CAS 17th April, 2018

Outline

- 1. Background
- 2. Relatively prime (互素)
- 3. Solving congruences (解同余式)
- 4. Euler's function (欧拉函数)
- 5. Algebraic fundamental theorem (代数基本定理)
- 6. Primitive roots (原根)
- 7. Exercises

General views

- Further understanding of the concept of numbers
- From number theory to advanced mathematics, the base of mathematics
- From mathematics to research projects in computer science

Greatest Common Divisor

Definition 1

Given integers a, b, the *greatest common divisor* (GCD, for short) of a and b is the largest natural number d such that both $d \mid a$ and $d \mid b$ hold.

We use (a, b) to denote the greatest common divisor of a and b.

Definition 2

Given integers a and b, we say that a, b are relatively prime, if

$$(a, b) = 1.$$

Least Common Multiple

Definition 3

Given a, b, we define the *least common multiple* (LCM, for short) of a and b to be the least natural number x such that both a|x and b|x hold.

We use [a, b] to denote the least common multiple of a and b.

Understanding

Suppose

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_l^{\alpha_l}, \ \alpha_j \geq 0$$

$$b = p_1^{\beta_1} p_2^{\beta_2} \cdots p_l^{\beta_l}, \ \beta_j \ge 0$$

For each *j*,

$$\gamma_j = \min\{\alpha_j, \beta_j\}$$

$$\delta_j = \max\{\alpha_j, \beta_j\}$$

Then:

$$(a,b) = p_1^{\gamma_1} p_2^{\gamma_2} \cdots p_l^{\gamma_l} \tag{1}$$

$$[a,b] = \rho_1^{\delta_1} \rho_2^{\delta_2} \cdots \rho_I^{\delta_I}$$
 (2)

Theorem

For
$$\alpha, \beta \ge 0$$
, $\gamma = \min\{\alpha, \beta\}$, $\delta = \max\{\alpha, \beta\}$, then

$$\alpha + \beta = \gamma + \delta$$
.

Therefore,

Theorem 4

Let a, b be natural numbers. Then,

$$ab = (a, b) \cdot [a, b].$$

The Euclidean Algorithm

Lemma 5

Given natural numbers a and b, suppose that

$$a = qb + r$$
, $0 \le r < b$.

Then:

$$x|a \& x|b \iff x|b \& x|r, \tag{3}$$

giving

$$(a,b) = (b,r).$$
 (4)

The Algorithm \mathcal{E}

 $r_0 = q_0 r_1 + r_2, 0 < r_2 < r_1$

Let $a \ge b$ be natural numbers. Let $r_0 = a$, $r_1 = b$. Suppose that

$$r_{1} = q_{1}r_{2} + r_{3}, 0 < r_{3} < r_{2}$$
...
$$r_{k-2} = q_{k-2}r_{k-1} + r_{k}, 0 < r_{k} < r_{k-1}$$

$$r_{k-1} = q_{k-1}r_{k} + r_{k+1}, r_{k+1} = 0.$$
(5)

Therefore,

$$(a,b) = (r_0,r_1) = (r_1,r_2) = \cdots = (r_k,r_{k+1}) = (r_k,0) = r_k.$$
 (6)

The time complexity

For $a \ge b$, if a = qb + r with $0 \le r < b$, then $a \ge b + r > 2r$. Therefore, for each $j \ge 1$,

$$r_{j+2}<\frac{1}{2}\cdot r_j.$$

The number k in the Euclidean algorithm \mathcal{E} is at most $2 \log b$. The complexity for each division is $O(\log^2 b)$. The total time complexity of \mathcal{E} is

$$O(\log^3 b)$$
.

The space complexity

In each division, we will need to restore the current r_j and r_{j+1} , for which the space complexity is

 $O(\log_2 a)$.

Bézout Theorem

Theorem 6

For natural numbers a and b, there exist integers s and t satisfying the following Bézout identity

$$(a,b) = sa + tb, \tag{7}$$

in which s and t are called the Bézout coefficients.

Proof.

$$(a,b)=r_k,$$

 $r_k = r_{k-2} - q_{k-2}r_{k-1}$, and each r_j can be expressed by a linear combination of r_{i-1} and r_{i-2} . This leads to

$$(a,b)=r_k=sa+tb$$

for some integers s and t.

Relatively prime and multiplication inverse

For natural numbers a, m, if a and m are relatively prime, then there exist s and t such that

$$sa + tm = 1.$$

Therefore

$$sa \equiv 1 \mod m$$
.

This means that $s \mod m$ is the multiplication inverse of a modulo m, written

$$a^{-1} = s \mod m$$
.

Understanding

- · Primality is hard
- Relative primality is easy Why? The idea of relativity
- The Key:

$$Relatively prime = Inverse$$
 (8)

The role of relatively prime

Theorem 7

Let a, b, c, m be natural numbers.

- (1) If (a, b) = 1 and a|bc, then a|c.
- (2) If $ac \equiv bc \pmod{m}$ and (c, m) = 1, then $a \equiv b \pmod{m}$.

Proof.

For (1). (a, b) = 1 means that a and b do not share any prime factor, so that if a|bc, then every factor of a is a factor of c, giving rise to a|c.

For (2). Since (c, m) = 1, c^{-1} modulo m exists. Using $ac \equiv bc$, we have $acc^{-1} \equiv bcc^{-1}$, implying $a \equiv b \mod m$.

Linear congruence

For natural number m, a linear congruence is an equation of the following form:

$$ax \equiv b \pmod{m}$$
. (9)

Remark:

If $a^{-1} \mod m$ exists and equals s, that is, $a^{-1} = s \mod m$, then the linear congruence has a solution

$$x = a^{-1}b \equiv sb \bmod m. \tag{10}$$

Equivalence

More importantly, this becomes the only case that a linear congruence has a solution.

Theorem 8

Let a, m be integers and m > 1. Then:

$$a^{-1} \mod mis \ defined \iff (a, m) = 1,$$
 (11)

where a^{-1} is for modulo m.

Proof.

If $a^{-1} \mod m$ exists and equal s, then $a \cdot s \equiv 1 \mod m$, so there is a t such that

$$a \cdot s - 1 = t \cdot m$$
.

So
$$a \cdot s - t \cdot m = 1$$
, $(a, m) = 1$ follows.

Special attention

The theorem provides the **KEY** for us to solve

- linear congruence
- systems of linear congruences

Question is, however, what happens for non-linear congruence?

Chinese Remainder Theorem

Theorem 9

Let m_1, m_2, \dots, m_k be natural numbers greater than 1 that are pairwise relatively prime.

Then for every k-tuple (a_1, a_2, \dots, a_k) , the system of linear congruences of the following form

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \dots \\ x \equiv a_k \pmod{m_k} \end{cases}$$
 (12)

has a unique solution modulo $m = \prod_{i=1}^{k} m_i$.

Uniqueness

Assume $0 \le x, y < m$. Suppose that

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ \dots \\ x \equiv a_k \pmod{m_k} \end{cases}$$
 (13)

$$\begin{cases} y \equiv a_1 \pmod{m_1} \\ \dots \\ y \equiv a_k \pmod{m_k} \end{cases}$$
 (14)

Uniqueness - continued

Then, there exist t_1, t_2, \dots, t_k such that

$$\begin{cases}
m_1 t_1 = x - y \\
\dots \\
m_k t_k = x - y
\end{cases}$$
(15)

which implies that

$$m|(x-y)$$

giving x = y.

Existence

For $j \in [k] = \{1, 2, \dots, k\}$, define

$$M_j=\frac{m}{m_j}.$$

Then $(M_j, m_j) = 1$. Let s_i be such that

$$s_j M_j \equiv 1 \pmod{m_j}, j = 1, 2, \cdots, k.$$
 (16)

Let

$$x = a_1 s_1 M_1 + a_2 s_2 M_2 + \cdots + a_k s_k M_k.$$

Then for each j,

$$x \equiv a_i \pmod{m_i}$$
.

Theorem

(1) For prime p,

$$\phi(p) = p - 1. \tag{17}$$

(2) For natural number n,

$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}), \tag{18}$$

where the production is over all prime factors p of n.

(3) If (m, n) = 1, then

$$\phi(mn) = \phi(m)\phi(n). \tag{19}$$

Theorem - continued

(4) If p is prime,

$$\phi(p^k) = p^k - p^{k-1}. (20)$$

(5) If p_1, p_2, \dots, p_k are distinct primes, and $n = p_1 p_2 \dots p_k$, then

$$\phi(n) = \prod_{i=1}^{k} (p_i - 1). \tag{21}$$

(6) If $n = m_1 m_2 \cdots m_k$ for distinct numbers that are relatively prime, then for each k-tuple $(r_1, \cdots, r_k) \in \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$, there is a unique $r \in (n)$ such that for each i, $r \equiv r_i \mod m_i$. (Chinese Remainder Theorem revisit)

Theorem - continued

 $\sum_{m|n} \phi(m) = n. \tag{22}$

(8) (Fermat's Theorem) For prime p, for each a, with $1 \le a < p$,

$$a^{p-1} \equiv 1 \bmod p. \tag{23}$$

(Using this, it is easy to compute $a^n \mod p$.)

(9) For each natural number n and each $a \in (n)$,

$$a^{\phi(n)} \equiv 1 \pmod{n}. \tag{24}$$

Prof of (1)

Let p be prime. Clearly, for each x, if $1 \le x < p$, then (x, p) = 1. This gives $\phi(p) = p - 1$.

Proof of (2)

Given n, suppose that p_1, \dots, p_k are all the distinct prime factors of *n*. Let $L_0 = \{1, 2 \cdots, n\}$. In L_0 , the numbers of the form ip_1 for i from 1 to some number n_1 that are not relatively prime to n are deleted from L_0 . This cancels $\frac{1}{n}$ fraction of the numbers in L_0 . Let L_1 be the set of the remaining elements of L_0 after the cancellation of the form ip_1 . Then the size of L_1 is $n(1-\frac{1}{p_1})$. In L_1 , there are numbers of the form ip_2 , which are not relatively prime to n. We cancel these numbers, giving a remaining set L_2 . Then the size of L_2 is $n(1-\frac{1}{D_1})(1-\frac{1}{D_2})$. Repeating the procedure, we get a set L_k such that

• In L_k , there is no number x of the form mp_i for any $i \in \{1, 2, \dots, k\}$ and any m. Therefore, every $x \in L_k$ is relatively prime to n.

•
$$|L_k| = n \prod_{i=1}^k (1 - \frac{1}{p_i}).$$

(2) follows.

Proof of (2) - again

We will give another proof of the result by inclusion/exclusion principle in combinatorics.

Proof of (3)

(3) If
$$(m, n) = 1$$
, then $\phi(mn) = \phi(m) \cdot \phi(n)$.

Proof.

By (2),

$$\phi(mn) = m \cdot n \prod_{p|mn} (1 - \frac{1}{p})$$

$$= (m \prod_{p|m} (1 - \frac{1}{p})) \cdot (n \prod_{p|n} (1 - \frac{1}{p})), \qquad (25)$$

where p is a prime and the second equation is due to the fact that m and n share no common prime factor.

Proof of (4)

Proof. By A(2),

$$\phi(p^k) = p^k (1 - \frac{1}{p})$$
$$= p^k - p^{k-1}$$

Proof of (5)

Combining (1) and (3),

$$\phi(n) = \prod_{i=1}^{k} \phi(p_i)$$
$$= \prod_{i=1}^{k} (p_i - 1).$$

Proof of (6)

Proof. Clearly,

$$|\mathbb{Z}_n| = |\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}|. \tag{26}$$

There is a one-to-one map between \mathbb{Z}_n and $\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$. This means that a large number in \mathbb{Z}_n can be encoded by a k-tuple in $\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$ in which each coordinate is small. Clearly, the function defined below is such a map:

$$\mathbb{Z}_n \rightarrow \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$$
 $r \in \mathbb{Z}_n \mapsto (r \mod m_1, \cdots, r \mod m_k) \in \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}.$

The proof of the one-to-oneness of the map uses the assumption that m_1, \dots, m_k are pairwise relatively prime.

Proof of (7)

Proof.

Let $n = p_1^{k_1} p_2^{k_2} \cdots p_l^{k_l}$ be the prime factoring of n. Set $\phi(1) = 1$. By (4),

$$\phi(1) + \phi(p^1) + \phi(p^2) + \dots + \phi(p^k) = p^k.$$
 (27)

By (3),

$$n = p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{l}^{k_{l}}$$

$$= \prod_{i=1}^{k} (\phi(1) + \phi(p_{i}) + \cdots + \phi(p_{i}^{k_{i}}) \cdot$$

$$= \sum_{0 \alpha_{i} \ k_{i}, i=1,2,\cdots,l} \phi(p_{1}^{\alpha_{1}}) \phi(p_{2}^{\alpha_{2}}) \cdots \phi(p_{l}^{\alpha_{l}})$$

$$= \sum_{p \in P} \phi(m).$$
(28)

Proof of (8)

Proof.

By (1),
$$(p) = \{1, 2, \dots, p-1\}.$$

For $a \in (p)$, define the set

$$a \cdot (p) = \{a \cdot 1, a \cdot 2, \cdots, a \cdot (p-1)\}.$$

Since (a, p) = 1,

$$a \cdot (p) = (p).$$

By multiplying the elements in the two sets,

$$a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$$
.

Since ((p-1)!, p) = 1, we have

$$a^{p-1} \equiv 1 \pmod{p}$$
.

By the proof of (8). That is: For every $a \in (n)$,

$$a \cdot (n) = (n)$$

and

$$a^{\phi(n)} \cdot \prod_{x \Phi(n)} x = \prod_{x \Phi(n)} x \pmod{n}$$

giving

$$a^{\phi(n)} = 1 \pmod{n}$$

due to the fact that $(\prod_{x \in \Phi(n)} x)$ is relatively prime to n.

Group revisit

A set *G* with an operation *, satisfying:

- Closure
- Identity and inverse
- Associativity

Finite groups

- 1. $(\mathbb{Z}_n, +)$
- 2. $(\mathbb{Z}_2, +)$: here + is XOR
- 3. S_n : the set of permutations on $[n] = \{1, 2, \dots, n\}$, * is function composition.
- 4. $(\mathbb{Z}_2)^n$: *n*-bit strings with * being bitwise XOR
- 5. $\mathbb{Z}_n = \{k \mid 1 \le k < n, (k, n) = 1\}$. Inverse is found by Euclidean algorithm. We know: $\phi(p) = p - 1$, and $|\mathbb{Z}_n| = \phi(n)$.

Finite Group Fundamental Theorem

Theorem 11

If G is a finite group, and H is a subgroup of G, then

$$|H| \mid |G|. \tag{29}$$

Proof.

For $a \in G$, define $aH = \{ax \mid x \in G\}$.

- 1. |aH| = |H|
- 2. For $a, b \in G$, either aH = bH or $aH \cap bH = \emptyset$.
- 3. the union of aH for all a's is G.

Therefore, G is partitioned into several parts each of which has size |H|. |H| divides |G|.

Fermat's Little Theorem - Revisit

Consider $G = \langle \mathbb{Z}_n, \cdot \rangle$. Recall $\mathbb{Z}_n = (n)$, and that G is a group. For $x \in (n)$, set

$$H = \{x^I \mid I \in \mathbb{Z}\}.$$

Then

- 1) H is a subgroup of G,
- 2) |H| is the least k > 0 such that $x^k = 1 \pmod{n}$. Therefore,
 - $x^{|H|} = 1 \pmod{n}$, by definition, and
 - $|H| |\phi(n)$, implying $x^{\phi(n)} \equiv 1 \pmod{n}$. (by finite group fundamental theorem)

Order

Definition 12

Let $\langle G, \cdot \rangle$ be a finite group. For every $x \in G$, we define the **order** of x in G to be the least natural number k such that $x^k = 1$.

Therefore, for a finite group $\langle G, \cdot \rangle$,

- 1) Every $x \in G$ has an order, and
- 2) For every $x \in G$, the order of x in G divides the size |G| of G.

Cyclic group and generator

Definition 13

Let $\langle G, \cdot \rangle$ be a group (finite or infinite). If there is an element $g \in G$ such that

$$G = \{ g^l \mid l \ge 0 \}, \tag{30}$$

then $\langle G, \cdot \rangle$ is called a **cyclic group**. In this case, we call g a **generator** of $\langle G, \cdot \rangle$ (or simply G).

Fields

Definition 14

A *field* is a set \mathbb{F} (finite or infinite) with two operations, namely, addition + and multiplication ·, written (\mathbb{F} , +, ·), such that the following properties are satisfied:

- Associativity, commutativity, and distributive laws all hold to both + and .
- 2) Identity and inverse hold for both + and ..

Examples:

- 0: Rational numbers with + and ×
- ℝ: Real numbers with + and ×
- \mathbb{C} : Complex numbers with + and \times .

Finite Fields

Prime fields

$$\mathbb{Z}_p$$
, or written as $GF(p)$,

for each prime p. In Particular, we have GF(2), for which + is XOR and multiplication \cdot is AND

Non-prime fields

$$GF(p^k)$$
,

which is

$$GF(p) \times \cdots \times GF(p)$$
,

for k times.

- elements are of the form (a_1, a_2, \dots, a_k) with operation + to be the coordinate plus mod p,
- the multiplication \times is unusual, which we don't usually use in Computer Science

In CS, sometimes we use the finite $GF(2^k)$.

Algebraic Fundamental Theorem

Theorem 15

For a prime p, in the field \mathbb{Z}_p , for any polynomial P(x) of degree k, if $P(x) \not\equiv 0$, then P(x) has at most k roots in \mathbb{Z}_p .

By induction on k. k = 0 is the trivial case.

For k > 0. Suppose by induction that the theorem holds for all k < k.

Suppose to the contrary that

$$\pi(x) = a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0 \text{ for } a_k \neq 0 \pmod{p} \text{ has } k + 1 \text{ distinct roots } x_1, x_2, \cdots, x_{k+1} \in \mathbb{Z}_p.$$

Proof

Set

$$\pi(x) = \pi(x) - a_k(x - x_1) \cdots (x - x_k).$$

Then,

- π (x) has degree < k-1
- $\pi(x_{k+1}) = -a_k(x_{k+1} x_1) \cdots (x_{k+1} x_k) \not\equiv 0 \pmod{p}$
- However, π (x) has k roots x_1, x_2, \dots, x_k . A contradiction.

General field

The algebraic fundamental theorem holds for the polynomials over all fields.

Algebraic Fundamental Theorem-continued

The Theorem holds for all fields.

Significance is many-fold.

In particular, it leads to new mathematics of the following form: According to the Algebraic Fundamental Theorem, we have: For any finite field \mathbb{F} of size p, \mathbb{Z}_p for prime p say. Let P(x) be a polynomial of degree d, that is implicitly given. Here d << p.

The tester \mathcal{T}

We test whether or not P(x) is identically zero as follows. Tester T:

- (1) Randomly and uniformly picks an element $a \in \mathbb{F}$, written $a \in_{\mathbb{R}} \mathbb{F}$, in which R stands for Randomly.
- (2) If P(a) = 0, then accepts, and rejects otherwise.

Key The tester \mathcal{T} queries only one value of P at her randomly picked point a.

The tester \mathcal{T} - Proofs

Completeness If $P \equiv 0$, then

 \mathcal{T} accepts with probability 1.

Soundness Otherwise.

Then, the probability that T accepts is at most

$$\frac{k}{p}$$

which is small.

Remark:

- (i) $\frac{k}{p}$ could be arbitrarily small, since k is much less than p
- (ii) \mathcal{T} can principally decide whether or not $P \equiv 0$ by simply reading one value of P.
- (iii) This leads to a research project in the current state of the art, which could be called local algorithms.

Definition

Definition 16

Given a natural number n, and an element $a \in \mathbb{Z}_n = (n)$, we say that a is a *primitive root module* n, if:

$$\mathbb{Z}_n = \{ a^l \mid l \ge 0 \}. \tag{31}$$

Remark: A primitive root module n is an element in the finite group \mathbb{Z}_n having order $\phi(n)$, and is a generator of the group \mathbb{Z}_n .

Primitive Root Theorem

Theorem 17

For every prime p, there is a primitive root r modulo p, that is, r generates the finite group \mathbb{Z}_p , or equivalently,

$$\mathbb{Z}_p = \{r^l \mid l \geq 0\}.$$

Proof of the Primitive Root Theorem - I

Fix a prime p. We consider $\mathbb{Z}_p = (p)$.

For $m \in (p)$, we define the order of m in \mathbb{Z}_p to be the least k > 0 such that $m^k \equiv 1 \pmod{p}$. We use order (m) to denote the order of m.

By the Finite Group Theorem, we have that for every $m \in (p)$,

$$\operatorname{order}(m)|(p-1). \tag{32}$$

Given k with $1 \le k \le p-1$, define R(k) to be the set of all the elements $m \in (p)$ having order k. Let

$$r(k) = |R(k)|.$$

Clearly, if $k \not| (p-1)$, then $R(k) = \emptyset$ and r(k) = 0.

Proof of the Primitive Root Theorem - II

For $m \in R(k)$, meaning m has order k, we have

$$m^k \equiv 1 \pmod{p}$$
.

so that *m* is a root of the degree *k* polynomial:

$$P(x) \equiv x^k - 1.$$

According to the Algebraic Fundamental Theorem, for every k|(p-1), there are at most k residues r in \mathbb{Z}_p that are the roots of P(x), i.e., $r^k \equiv 1 \pmod{p}$.

Proof of the Primitive Root Theorem - III

(1) Given $s \in R(k)$, that is, s has order k, then the elements in

$$\{1, s, \cdots, s^{k-1}\}$$

are all distinct, and all are roots of the polynomial P(x).

- If $0 \le i < j \le k-1$, then $s^i \ne s^j$ in \mathbb{Z}_p .
- For $0 \le i \le k 1$,

$$(s^i)^k = (s^k)^i = 1^i = 1,$$

in \mathbb{Z}_p .

Therefore, $\{1, s, \dots, s^{k-1}\}$ are all the roots of $x^k - 1$ in \mathbb{Z}_p .

Proof of the Primitive Root Theorem - IV

(2) If $s \in \mathbb{Z}_p$ has order k, then

$$x^{k} - 1$$

has roots

$$\{1, s, \cdots, s^{k-1}\}$$

in \mathbb{Z}_p .

Let s be fixed as above.

For
$$0 < l < k - 1$$
, if $l \notin (k)$, then $(l, k) = d > 1$,

$$(s^l)^{\frac{k}{d}} = (s^k)^{\frac{l}{d}} \equiv 1 \pmod{p},$$

implying that s^l has order $\leq \frac{k}{d} < k$.

(3) If s^{l} has order k, then $l \in (k)$, so that

$$r(k) \leq \phi(k)$$
.

(4)
$$\sum_{k|(p-1)} r(k) = p - 1.$$

(5)
$$\sum_{k|(p-1)} \phi(k) = p - 1.$$

- (6) For every k|(p-1), $r(k) < \phi(k)$.
- (4) + (5) + (6): For every k|(p-1), $r(k) = \phi(k)$ (otherwise, $\sum r(k) < \sum \phi(k) = p-1$) so k|(p-1) k|(p-1)

$$r(p-1) = \phi(p-1) > 0.$$

There exists a primitive root for \mathbb{Z}_p .

Discrete Logarithm

Given prime p, and a primitive root r module p, and a, e with $1 \le a \le p-1$ and $0 \le e \le p-1$, if:

$$r^e \equiv a \pmod{p}$$
,

then we call *e* the *discrete logarithm of a modulo p to the base r*, written

$$e \equiv \log_r a \pmod{p}$$
.

- Computing discrete logarithm is hard, but useful in cryptography
- Quantum computer computes the discrete logarithm in polynomial time

Exercises

- 1. Show that if *a* and *m* are relatively prime positive integers, then the inverse of *a* modulo *m* is unique modulo *m*.
- 2. Find all solutions, if any, to the system of congruences $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, and $x \equiv 8 \pmod{15}$.
- 3. Find all solutions, if any, to the system of congruences $x \equiv 7 \pmod{9}$, $x \equiv 4 \pmod{12}$, and $x \equiv 16 \pmod{21}$.
- 4. Let m_1, m_2, \dots, m_k be pairwise relatively prime integers greater than 1. Show that for any integers a and b, if $a \equiv b \pmod{m_i}$ holds for all i with $1 \le i \le k$, then $a \equiv b \pmod{m}$, for $m = \prod_{i=1}^k m_i$.
- 5. Show that for appropriately large n, $\phi(n) = (\frac{n}{\log n})$
- 6. Review all the proofs in this lecture

谢谢!