Connectivity

- Read section 5.3, pages 115-120 (top)
 - What do we call a **vertex-cut** in a graph *G*?
 - * Does every graph have a vertex cut?
 - * Find vertex cuts in the Petersen graph.
 - What is a **minimum vertex-cut**?
 - * Determine minimum vertex-cuts for the graphs in Figure 5.1.
 - * Find minimum vertex cuts in the Petersen graph.
 - * Can the cardinality of a minimum vertex-cut be 0? When?
 - * Can the cardinality of a minimum vertex-cut be 1? When?
 - * What are the minimum vertex-cuts in a path graph?
 - * What are the minimum vertex-cuts in a cycle graph?
 - * What are the minimum vertex-cuts in a complete graph?
 - * What are the minimum vertex-cuts in a complete bipartite graph?
 - True or False: Every non-complete graph has a vertex-cut
 - True or False: Every graph with a vertex-cut is non-complete
 - In the Petersen graph, find a vertex-cut that is not a minimum vertex-cut, but such that no proper subset of it is a vertex-cut. (This would be called a *minimal* vertex-cut).
 - Understand the following statement: If U is a minimum vertex-cut, and G_1, \ldots, G_k are the connected components of G-U, then each vertex of U is connected to at least one vertex of each component.
 - How is the **vertex-connectivity** $\kappa(G)$ of a graph defined?
 - When is $\kappa(G) = 0$? When is it equal to 1?
 - Is there a relation between $\kappa(G)$ and $\delta(G)$?
 - When do we say that a graph is *k*-connected?
 - What do we call an edge-cut? What about a minimal edge-cut?
 - * Why is it the case that if we consider the graph with a minimal edge-cut removed, then the remaining graph has *exactly* 2 components?
 - * Give examples of minimal edge-cuts for path graphs.
 - * Give examples of minimal edge-cuts for cycle graphs.
 - * Give examples of minimal edge-cuts for complete graphs.
 - What do we call a minimum edge-cut?
 - * Understand the difference between minimum and minimal edge cuts by looking at Figure 5.7.
 - How is the **edge-connectivity** $\lambda(G)$ of a graph defined?
 - When is $\lambda(G) = 0$? When is it equal to 1?
 - When do we call a graph k-edge-connected?
 - Theorem 5.10: For every n, $\lambda(K_n) = n 1$.
 - * Idea: count the edges joining the two components of G-X.
 - Theorem 5.11: For each graph, $\kappa(G) \le \lambda(G) \le \delta(G)$.
 - Theorem 5.12: If G is a cubic graph (3-regular graph), then $\kappa(G)=\lambda(G)$.
 - Theorem 5.13: If G is a graph of order n and size $m \ge n-1$, then $\kappa(G) \le \lfloor \frac{2m}{n} \rfloor$.