南京理工大学课程考试试卷(学生考试用)

课程名称: ____线性代数____ 学分: ____2.5__ 教学大纲编号: ___11031201__

试卷编号: _____A _____ 考试方式: <u>闭卷</u> 满分分值: __80 考试时间: <u>120</u>分钟

组卷日期: <u>2020 年 12 月 9 日</u> 组卷教师(签字): <u>命题组</u> 审定人(签字): ______

所有解答必须写在答题纸上,写在试卷上无效

一. 是非题: (每小题 3 分, 共 15 分)(下列命题正确的打 √, 错误的打×)

1. 设 A 为可逆矩阵,互换 A 中第 i 行与第 j 行的元素得到矩阵 B ,则 B = AI(i, j) 。

2. 若对任意一组不全为零的数 k_1,k_2,\cdots,k_s ,都有 $k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s\neq 0$,则 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关。

3. 设
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
,则 $A^3 = 0$ 。 ()

- 4. 若二阶矩阵 A 的行列式 |A| < 0 ,则 A 可对角化。 (
- 5. 若 n 阶矩阵 A 与 B 合同,则 A , B 均为对称矩阵。
- 二. 填空题: (每小题 3 分, 共 15 分)
- 2. 设 A 是 3 阶矩阵,且 $|A| = -\frac{1}{2}$,则行列式 $|(3A)^{-1} + 2A^*| = _____$
- 3. 向量组 $\alpha_1 = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -5 \\ -4 \end{pmatrix}$ 的秩和一个极大无关组为______。
- 4. 设 $A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$, 则下列向量中是 A 的特征向量的是()。
- (A) $(1,1,1)^T$ (B) $(1,0,1)^T$ (C) $(1,1,0)^T$ (D) $(0,1,1)^T$
- 5. 二次型 $f(x_1, x_2, x_3) = -x_1^2 + 2x_2^2 x_3^2 + 4x_1x_2$ 的规范形为_______

四. (8分)设
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
,矩阵 X 满足 $A^*X = 2A^{-1} + 2X$,求矩阵 X 。

五.
$$(8 分)$$
 设 R^3 中线性变换 σ 为 σ $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_2 \\ x_2 + x_3 \\ x_1 \end{pmatrix}$, 求线性变换 σ 在基底 $\eta_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$$\eta_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \eta_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
下的矩阵。

六. (10 分) 已知线性方程组
$$\begin{cases} x_1 + x_2 - 2x_3 + 3x_4 = 0 \\ 2x_1 + x_2 - 6x_3 + 4x_4 = -1 \\ 3x_1 + 2x_2 + (p-5)x_3 + 7x_4 = -1 \end{cases}$$
, 试问 p, t 取何值时,方程组
$$\begin{cases} x_1 + x_2 - 2x_3 + 3x_4 = 0 \\ 2x_1 + x_2 - 6x_3 + 4x_4 = -1 \\ x_1 - x_2 - 6x_3 - x_4 = t \end{cases}$$

有解、无解? 并对 $r_A < 3$ 时,求其通解。

七. (12 分)设矩阵 A 为 3 阶实对称矩阵,且满足 $A^2 = -6A$, trA = -12,向量 $\alpha = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 为齐次

线性方程组 AX=0 的解向量,试求 1、A 的全部特征值;2、正交变换 X=TY,化二次型 $f(X)=X^TAX$ 为标准形(要写出所用的正交变换和此标准形); 3、矩阵 A 。

八.(6 分)设齐次线性方程组 AX=0 的系数矩阵 $A=(a_{ij})_{n\times n}$ 的秩为 n-1,证明:在行列式 |A| 中至少有一行元素,由它们的代数余子式组成的向量 $\xi\in R^n$ 是此方程组解空间的基底。