Assignment - 1

Prepared By: Krishna Tank

NetID: zy7886

You are given the accuracies of three classifiers above on each of the 10 folds.

	Accuracies					
Fold	NB	DecTree	NearestNeighbor			
1	0.6809	0.7524	0.7164			
2	0.7017	0.8694	0.8883			
3	0.7012	0.6803	0.841			
4	0.6913	0.9102	0.6825			
5	0.6333	0.7758	0.7599			
6	0.6415	0.8154	0.8479			
7	0.7216	0.6224	0.7012			
8	0.7214	0.7585	0.4959			
9	0.6578	0.938	0.9279			
10	0.7865	0.7524	0.7455			

Q1: Use ANOVA to determine if the three classifiers have equal error rates.

• Here, One way anova in Spss software.

Now,

- Accuracies are dependent variables.
- Classifiers (NB, DecTree, NearestNeighbor) is an Independent variable.

Data Interpretation:

- Classifiers as nominal measure.
 - o 1 = NB
 - 2 = DecTree
 - 3 = NearestNeighbour
- Accuracies as scale measure.

Descriptives Error Rates (Accuracies)									
	N	Mean	Std. Deviatio	Std. Error	95% Confidence Interval for Mean		Minimu m	Maximum	
			n		Lower Bound	Upper Bound			
NB	10	0.6937 20	0.0448 568	0.0141 850	0.661 631	0.725 809	0.633	0.7865	
DecTree	10	0.7874 80	0.0985 356	0.0311 597	0.716 992	0.857 968	0.622 4	0.9380	
NearestNe ighbour	10	0.7606 50	0.1248 369	0.0394 769	0.671 347	0.849 953	0.495 9	0.9279	
Total	30	0.7472 83	0.1004 104	0.0183 324	0.709 789	0.784 777	0.495 9	0.9380	

Now, let's make an Anova table.

ANOVA										
	Error Rates									
Sum of df Mean Square F p-value squares										
Between Groups	0.047	2	0.023	2.562	0.096					
Within Groups	0.246	27	0.009							
Total	0.292	29								

- From the anova table mentioned earlier,
 - F value = $2.562 \neq 2.51061$ (From F-Table for alpha = 0.1)
- So here, we can say that we reject the null hypothesis and conclude that there is a significant difference between the three classifiers.
- All three classifiers have not equal error rates.

Que 2: Q2a) Use Cross-Validated Paired t-test to determine if NB and DecTree have equal Errors.

Paired Samples Statistics									
		Mean N		Std. Deviation	Std. Error Mean				
Pair 1	NB	0.693720	10	0.0448568	0.0141850				
Pair1	DecTree	0.787480	10	0.0985356	0.0311597				

Now, paired test:

Paired Samples Test									
			Paire	ed Differe	d Differences				
		Mean	Std. Deviati on	Std. Error Mean	95% Confidence Interval of the Difference		t	df	p-value (2-tailed)
					Lower	Upper			
Pair 1	NB - DecTr ee	-0.093 7600	0.1225 287	0.0387 470	-0.181 4118	-0.006 1082	-2.420	9	0.039

From the above paired t-test:

- T-value = $-2.420 \neq 2.262$ (for alpha = 0.025)
- T-value = $-2.420 \neq 2.821$ (for alpha = 0.01)
- So we can reject the null hypothesis and conclude that there is a difference between error rates of NB and DecTree.
- NB and Dectree have different error rates.

Q2b) Use Cross-Validated Paired t-test to determine if DecTree and Knearest Neighbors have equal errors.

Paired Samples Statistics									
		Mean N		Std. Deviation	Std. Error Mean				
	DecTree	0.787480	10	0.0985356	0.0311597				
Pair 1	NearestNeig hbour	0.760650	10	0.1248369	0.0394769				

Now, paired test:

Paired Samples Test									
		Paired Differences							
		Mean	Std. Std. Mean Deviati Error on Mean		95% Confidence Interval of the Difference		t	df	P-value (2-tailed)
					Lower	Upper			
Pair 1	DecTr ee - Neare stNeig hbour	0.0268 300	0.1285 619	0.0406 548	-0.065 1376	0.1187 976	0.660	9	0.526

From the above paired t-test

- t-value = $0.660 \neq 2.262$ (for alpha = 0.025)
- t-value = $0.660 \neq 2.821$ (for alpha = 0.01)
- So we reject the null hypothesis and say that there is a difference between error rates of DecTree and NearestNeighbour.
- DecTree and NearestNeighbour have not the same error rates.

Q3): For each classifier (Naive Bayes, Decision Tree, Knearest Neighbor), determine if the error of the classifier less than p0 (=0.1, 0.2, 0.3) with level of significance (alpha) (=0.01 or 0.025)

(i) Naive Bayes Classifier:

- Here we are given the error rate of fold i, pi for i from 1 through 10.
- With m and s as average and standard deviation,
 - o Hypothetical mean: 1.000000
 - o Actual mean: 0.693720
 - Difference between Hypothetical mean and actual mean: m = 0.30628
 - Standard Deviation: s = 0.044857
 - 95% confidence interval of this difference:
 - From -0.338369 to -0.274191

Now, for p0 = 0.1, 0.2, 0.3 we will calculate the t-value.

- For p0 = 0.1
 - o $t = (\sqrt{k} (m p0))/s$
 - o So,
 - t = 14.541
 - Now, by taking value of alpha = 0.01,
 - From t-table, the value of t = 2.821
 - Now, t here has less value than t we calculated.
 - So, error of the classifier is not less than p0 = 0.1
 - Now, by taking value of alpha = 0.025,
 - From t-table, the value of t = 2.262
 - Now, t here has less value than t we calculated.
 - So, error of the classifier is not less than p0 = 0.1
- For p0 = 0.2

•
$$t = (\sqrt{k} (m - p0))/s$$

- o So.
 - t = 7.492406
- Now, by taking value of alpha = 0.01,
 - From t-table, the value of t = 2.821
 - Now. t here has less value than t we calculated.
 - \circ So, error of the classifier is not less than p0 = 0.2
- Now, by taking value of alpha = 0.025,

- From t-table, the value of t = 2.262
- Now, t here has less value than t we calculated.
- So, error of the classifier is not less than p0 = 0.2
- For p0 = 0.3
 - o $t = (\sqrt{k} (m p0))/s$
 - o So,
 - t = 0.442720
 - Now, by taking value of alpha = 0.01,
 - From t-table, the value of t = 2.821
 - Now, t here has more value than t we calculated.
 - So, error of the classifier is less than p0 = 0.3
 - Now, by taking value of alpha = 0.025,
 - From t-table, the value of t = 2.262
 - Now, t here has more value than t we calculated.
 - \circ So, error of the classifier is less than p0 = 0.3

(ii) Decision Tree:

- Here we are given the error rate of fold i, pi for i from 1 through 10.
- With m and s as average and standard deviation,

o Hypothetical mean: 1.000000

o Actual mean: 0.787480

• Difference between Hypothetical mean and actual mean: m = -0.21252

• Standard Deviation: s = 0.0985356

95% confidence interval of this difference:

■ From -0.283008 to -0.142032

Now, for p0 = 0.1, 0.2, 0.3 we will calculate the t-value.

• For p0 = 0.1

o
$$t = (\sqrt{k} (m - p0))/s$$

o So,

$$t = 3.611075$$

- Now, by taking value of alpha = 0.01,
 - From t-table, the value of t = 2.821
 - Now, t here has less value than t we calculated.
 - So, error of the classifier is not less than p0 = 0.1
- Now, by taking value of alpha = 0.025,
 - From t-table, the value of t = 2.262
 - Now, t here has less value than t we calculated.
 - So, error of the classifier is not less than p0 = 0.1
- For p0 = 0.2

o
$$t = (\sqrt{k} (m - p0))/s$$

o So,

- Now, by taking value of alpha = 0.01,
 - From t-table, the value of t = 2.821
 - Now, t here has less value than t we calculated.
 - So, error of the classifier is not less than p0 = 0.2
- Now, by taking value of alpha = 0.025,
 - \circ From t-table, the value of t = 2.262
 - Now, t here has less value than t we calculated.
 - \circ So, error of the classifier is not less than p0 = 0.2

- For p0 = 0.3
 - o $t = (\sqrt{k} (m p0))/s$
 - o So,
 - t = -2.80747
 - Now, by taking value of alpha = 0.01,
 - From t-table, the value of t = 2.821
 - Now, t here has more value than t we calculated.
 - So, error of the classifier is less than p0 = 0.3
 - Now, by taking value of alpha = 0.025,
 - From t-table, the value of t = 2.262
 - Now, t here has more value than t we calculated.
 - \circ So, error of the classifier is less than p0 = 0.3

(iii) Nearest Neighbour:

• Here we are given the error rate of fold i, pi for i from 1 through 10.

• With m and s as average and standard deviation,

Hypothetical mean: 1.000000

o Actual mean: 0.760650

• Difference between Hypothetical mean and actual mean: m = -0.23935

Standard Deviation: s = 0.1248369

o 95% confidence interval of this difference:

■ From -0.328653 to -0.150047

Now, for p0 = 0.1, 0.2, 0.3 we will calculate the t-value.

• For p0 = 0.1

$$\circ \quad t = (\sqrt{k} (m - p0)) / s$$

o So,

t = 3.529912

- Now, by taking value of alpha = 0.01,
 - From t-table, the value of t = 2.821
 - Now. t here has less value than t we calculated.
 - So, error of the classifier is not less than p0 = 0.1
- Now, by taking value of alpha = 0.025,
 - From t-table, the value of t = 2.262
 - Now. t here has less value than t we calculated.
 - So, error of the classifier is not less than p0 = 0.1
- For p0 = 0.2

•
$$t = (\sqrt{k} (m - p0))/s$$

o So,

■ t = 0.9967856

- Now, by taking value of alpha = 0.01,
 - From t-table, the value of t = 2.821
 - Now, t here has more value than t we calculated.
 - \circ So, error of the classifier is less than p0 = 0.2
- Now, by taking value of alpha = 0.025,
 - \circ From t-table, the value of t = 2.262
 - o Now, t here has more value than t we calculated.
 - So, error of the classifier is less than p0 = 0.2

- For p0 = 0.3
 - o $t = (\sqrt{k} (m p0))/s$
 - o So,
 - t = -1.536341
 - Now, by taking value of alpha = 0.01,
 - From t-table, the value of t = 2.821
 - Now, t here has more value than t we calculated.
 - So, error of the classifier is less than p0 = 0.3
 - Now, by taking value of alpha = 0.025,
 - From t-table, the value of t = 2.262
 - Now, t here has more value than t we calculated.
 - \circ So, error of the classifier is less than p0 = 0.3