Лабораторная работа №2.1.4 Определение теплоемкости твердых тел

Рожков А. В. Преподаватель Яворский В. А.

1 апреля 2024 г.

Цель работы: 1. прямое измерение кривых нагревания $T_{heat}(t)$ и охлаждения $T_{cool}(T)$ пустого калориметра и системы «калориметр + твердое тело»; 2. определение коэффициента теплоотдачи стенок калориметра; 3. определение теплоемкости пустого калориметра и удельной теплоемкости твердого тела

В работе используются: калориметр с нагревателем и термометром сопротивления; универсальный вольтметр B7-78/3 в режиме омметра ($\sigma_T = 0.05~K$), измеритель температуры - термопара K-типа совместно с универсальным вольтметром B7-78/2 ($\sigma_{T_{\text{комн}}} = 0.1~K$), источник питания GPS-72303, универсальные вольтметры B7-78/3 (в режиме амперметра) ($\sigma_I = 0.01~A$) и KEITHLEY (в режиме вольтметра) ($\sigma_U = 0.1~B$) для измерения мощности нагревателя, компьютерная программа АКИП для сопряжения персонального компьютера и универсальных вольтметров B7-78/2 и B7-78/3 ($\sigma_t = 0.01~c$).

1 Теоретическая справка

В данной работе теплоемкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T},\tag{1}$$

где ΔQ – количество тепла, подведенного к телу, и ΔT – изменение температуры тела, произошедшее в результате подвода тепла.

Температура внутри калориметра измеряется термометром сопротивления. В реальных условиях $\Delta Q \neq P \Delta t$, так как часть энергии уходит из калориметра благодаря теплопроводности его стенок. В результате количество тепла $\Delta Q = C \Delta T$, подвелённое к системе "тело + калориметр" будет меньше на величину тепловых потерь:

$$C\Delta T = P\Delta t - \lambda (T - T_{\kappa})\Delta T \tag{2}$$

где λ - коэффициент теплоотдачи стенок калориметра, T - температура тела и калориметра, T_{κ} - комнатная температура.

Уравнение (2) является основной расчетной формулой работы. В дифференциальной форме для процессов нагревания и охлаждения (P=0) соответственно оно имеет следующий вид:

$$CdT = Pdt - \lambda \left[T_{heat}(t) - T_{\kappa}(t) \right] dt \tag{3}$$

$$CdT = -\lambda \left[T_{cool}(t) - T_{\kappa}(t) \right] dt \tag{4}$$

где P — мощность нагревателя, λ — коэффициент теплоотдачи стенок калориметра, t — время, измеряемое от момента включения нагревателя, $T_{heat}(t)$ — температура тела в момент времени t на кривой нагревания, $T_{cool}(t)$ — температура тела в момент времени t на кривой охлаждения, $T_{\kappa}(t)$ — температура окружающего калориметр воздуха (комнатная) в момент времени t, dt — время, в течение которого температура тела изменилась на dT

1.1 Экспериментальная установка

Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполненым из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют вид усеченных конусов и плотно прилегают друг к другу.

Экспериментально измеряемые данные:

- 1. $R_{heat}(t)$ кривая зависимости термометра сопротивления от времени при нагревании калориметра с телом при P=const.
- 2. $R_{cool}(t)$ кривая зависимости термометра сопротивления от времени при охлаждении калориметра с телом при P=0 (нагреватель выключен!).
 - 3. $T_{\kappa}(t)$ кривая зависимости комнатной температуры от времени

Рис. 1: Схема устройства калориметра

1.2 Методика эксперимента

Температура измеряется термометром сопротивления. Сопротивление проводника изменяется с температурой по закону

$$R_T = R_{273}(1 + \alpha(T - 273)), \tag{5}$$

где R_T — сопротивление термометра про $T^{\circ}C$, R_0 — его сопротивление при $0^{\circ}C$, α — температурный коэффициент сопротивления.

Выразим сопротивление R_{273} через исмеренное значение R_{κ} – сопротивление термометра при комнатной температуре. Согласно (5), имеем

$$R_{273} = \frac{R_{\rm K}}{1 + \alpha (T_{\rm K} - 273)},\tag{6}$$

Подставляя (6) в (5), найдём:

$$T(R_T) = 273 + \frac{R_T}{\alpha R_{\kappa}} \left[1 + \alpha (T_{\kappa} - 273) \right] - \frac{1}{\alpha}$$
 (7)

Формула (7) позволяет легко пересчитать кривые $R_{heat}(t)$, $R_{cool}(t)$ в кривые $T_{heat}(t)$, $T_{cool}(t)$. Входящий в формулу температурный коэффициент сопротивления меди равен $\alpha = 4.28 * 10^{-3} {\rm град}^{-1}$. Из уравнения (4) при $T_{\kappa}(t) = T_{\kappa} = const$:

$$CdT_{cool} = -\lambda \left[T_{cool} - T_{\kappa} \right] dt \tag{8}$$

Это дифференциальное уравнение с разделяющимися переменными T_{cool} и t:

$$\frac{CdT_{cool}}{-\lambda \left[T_{cool} - T_{\kappa}\right]} = dt \tag{9}$$

После интегрирования в пределах от t = 0 ($T_{cool} = T$) до произвольного момента времени t:

$$\frac{-C}{\lambda} ln \frac{T_{cool} - T_{\kappa}}{T - T_{\kappa}} = t \tag{10}$$

Отсюда находим явную зависимость от времени

$$T_{cool}(t) = (T - T_{\kappa})e^{\frac{-\lambda}{C}t} + T_{\kappa}$$
(11)

Уравнение (11) легко спрямляется в координатах $(ln\frac{T_{cool}-T_{\rm K}}{T-T_{\rm K}},\ t)$. Тангенс угла наклона данной прямой позволяет определить отношение искомых величин $\frac{\lambda}{C}$.

Из уравнения (3) при $T_{\kappa}(t) = T_{\kappa} = const$:

$$CdT_{heat} = Pdt - \lambda \left[T_{heat} - T_{\kappa} \right] dt \tag{12}$$

Это дифференциальное уравнение с разделяющимися переменными T_{heat} и t:

$$\frac{CdT_{heat}}{P - \lambda \left[T_{heat} - T_{\kappa}\right]} = dt \tag{13}$$

После интегрирования в пределах от t=0 ($T_{heat}=T_{\kappa}$) до произвольного момента времени t:

$$\frac{-C}{\lambda} ln \frac{P - \lambda (T_{heat} - T_{\kappa})}{P} = t \tag{14}$$

Отсюда находим явную зависимость от времени:

$$T_{heat}(t) = \frac{P}{\lambda} (1 - e^{\frac{-\lambda}{C}t}) + T_{\kappa}$$
(15)

Уравнение (15) позволяет по найденному ранее из кривой охлаждения отношению $\frac{\lambda}{C}$ определить λ , а зная λ и $\frac{\lambda}{C}$ легко найти искомую теплоемкость C.

Метод измерений величин С и λ рассмотренный выше, дает хорошие результаты при стабильной комнатной температуре во время проведения эксперимента и является по своей сути интегральным. С и λ определяются из уравнений (11) и (15), которые следуют из уравнений (3) и (4) после их интегрирования. При существенных колебаниях комнатной температуры ($\sim 2-3~^{0}C$) интегральные уравнения (11) и (15) могут привести к достаточно большой погрешности в определении величин С и λ . В этом случае следует использовать дифференциальные методы, основанные на измерении величин $\left(\frac{dT}{dt}\right)_{heat}$ и $\left(\frac{dT}{dt}\right)_{cool}$ в окрестностях каких-либо «удобных» точек. К таким «удобным» точкам относится точка на кривой нагревания, при которой температура калориметра совпадает с комнатной. Действительно, дифференцируя уравнение (3) по времени при $T_{heat}(t) = T_{\kappa}(t)$, получим простую и удобную формулу для определения теплоемкости С:

$$C = \frac{P}{(dT_{heat}/dt)_{T=T_{\kappa}}} \tag{16}$$

Она дает хорошие результаты, если ее применение никак не связано с моментом включения нагревателя. Причина проста: сразу после включения нагревателя в калориметре происходят переходные процессы формирования тепловых потоков, которые не описываются уравнением (3) и соответственно уравнением (16). Чтобы обойти данную трудность, перед включением нагревателя необходимо охладить калориметр до температуры на $\sim 2-5$ °C ниже комнатной. В этом случае при подходе к точке $T_{heat}(t) = T_{\kappa}(t)$ все переходные процессы уже закончатся и уравнение (16) будет корректным.

Другими «удобными» точками для определения С и λ являются точки при одной и той же температуре T на кривых нагревания $T_{heat}(t)$ и охлаждения $T_{cool}(t)$ соответственно. Действительно продифференцируем уравнения (3) и (4) по времени:

$$C\left(\frac{dT}{dt}\right)_{heat} = P - \lambda \left[T_{heat}(t) - T_{\kappa}(t)\right]$$
(17)

$$C\left(\frac{dT}{dt}\right)_{cool} = -\lambda \left[T_{cool}(t) - T_{\kappa}(t)\right] \tag{18}$$

Определим $A=\left(\frac{dT}{dt}\right)_{heat}$ и $B=\left(\frac{dT}{dt}\right)_{cool}$ при одной и той же температуре T на кривых $_{heat}(t)$ и $T_{cool}(t)$ соответственно. Тогда с учетом введенных обозначений, решая систему уравнений (17) и (18), получим следующие выражения для C и λ :

$$\lambda = \frac{P}{(T - T_{\kappa 2})(1 - \frac{A}{B}) + T_{\kappa 2} - T_{\kappa 1}}$$
 (19)

$$C = \frac{P}{A - B + A \frac{T_{\kappa 1} - T_{\kappa 2}}{T - T_{\kappa 1}}} \tag{20}$$

где $T_{\kappa 1}$ и $T_{\kappa 2}$ – комнатная температура в моменты времени $t=t_1$ и $t=t_2$, когда $T_{heat}(t_1)=T_{cool}(t_2)=T$.

В случае равенства комнатных температур, когда $T_{\kappa 1}=T_{\kappa 2}=T_{\kappa}$ формулы (19) и (20) упрощаются

$$\lambda = \frac{P}{(T - T_{\kappa})(1 - \frac{A}{B})} \tag{21}$$

$$C = \frac{P}{A - B} \tag{22}$$

Следует иметь в виду, что определение величины B на кривой охлаждения $T_{cool}(t)$ необходимо производить на участках кривой достаточно далеких от момента выключения нагревателя, после того как в калориметре закончатся переходные процессы «переполюсовки» тепловых потоков. Корректный интервал времени для определения B можно определить экспериментально из кривой $T_{cool}(t)$, спрямляя ее в координатах $(ln\frac{T_{cool}-T_{\rm K}}{T-T_{\rm K}},t)$, после чего исключить из рассмотрения начальный нелинейный участок:

2 Ход работы

2.1 Проведение измерений

2.1.1 Охлаждение калориметра

Вставляем в калориметр охлаждённый конус. Через 4 минуты после того, как температура в калориметре начинает медленно расти, вынимаем конус и ждём ещё 4 минуты. Калориметр охладился примерно на 5 ^{o}C .

2.1.2 Определение зависимости сопротивления терморезистора от времени при нагревании пустого калориметра

Включаем нагреватель, после того, как температура в калориметре превысила комнатную на $9 \, ^{o}C$, отключаем цепь спирали нагревателя.

2.1.3 Определение зависимости сопротивления терморезистора от времени при охлаждении пустого калориметра

Продолжаем следить за изменением температуры калориметра. После того, как она уменьшилась на 2 градуса по сравнению с максимальной, приступаем к измерению теплоёмкости калориметра вместе с исследуемым телом.

2.1.4 Охлаждение калориметра

Снова охлаждаем калориметр до температуры на 5 ^{o}C ниже комнатной. Вставляем в калориметр исследуемый образец и повторяем заново пункты 2-3

2.1.5 Исследуемые образцы

Измерения проводим для образцов из алюминия и титана

$$m_{\text{алюм}} = (294.1 \pm 0.5) \; \Gamma$$
 $m_{\text{титан}} = (293.2 \pm 0.5) \; \Gamma$

2.1.6 Окончание измерений

Останавливаем запись в программе. Сохраняем файлы с данным.

2.2 Обработка результатов измерений

2.2.1 Сопоставление кривых с отметками времени в лабораторном журнале

По результатам измерений имеем общий график 5 (представлен в приложении). Сопоставим кривые с временными отметками:

Событие	Начало, сек	Конец, сек
$T_{heat_1}(t)$ - нагрев пустого калориметра	1000	2500
$T_{cool_1}(t)$ - охлаждение пустого калориметра	2600	3700
$T_{heat_2}(t)$ - нагрев алюминия	4800	6000
$T_{cool_2}(t)$ - охлаждение алюминия	6300	6900
$T_{heat_3}(t)$ - нагрев титана	7800	8600
$T_{cool_3}(t)$ - охлаждение титана	8800	9300

Таблица 1: Сопоставление кривых с отметками времени

Также видим, что комнатная температура менялась менее чем на 2 K, значит мы можем использовать интегральный способ вычисления теплоёмкости.

2.2.2 Теплоёмкость пустого калориметра

Построим кривую $T_{cool}(t)$ в координатах $(ln\frac{T_{cool}-T_{\rm k}}{T-T_{\rm k}},t)$, где $T_{\rm k}$ - среднее значение комнатной температуры за время измерения; T - температура калориметра в начале кривой. соответствующий график 2:

Рис. 2: $T_{cool}(t)$ для пустого калориметра

Исключим начальный нелинейный участок и определим коэффициент угла наклона прямой по МНК. Из формулы (11) $\frac{\lambda}{C}=-k$

Приборная погрешность $\frac{\lambda}{C}$:

$$\sigma_{\frac{\lambda}{C}}^{\text{приб}} = \sqrt{\left(\frac{1}{t}\frac{\lambda}{C}\right)^2\sigma_t^2 + \left(\frac{1}{t}\frac{1}{T_{cool} - T_{\text{k}}}\right)^2\sigma_{T_{cool}}^2 + \left(\frac{1}{t}\frac{T_{cool} - T}{(T_{cool} - T_{\text{k}})(T - T_{\text{k}})}\right)^2\sigma_{T_{\text{k}}}^2 + \left(\frac{1}{t}\frac{1}{T - T_{\text{k}}}\right)^2\sigma_{T_{\text{k}}}^2}$$

Итого результат с полной погрешностью:

$$\frac{\lambda}{C} = (33 \pm 2) * 10^{-5} \text{ c}^{-1}$$

Из уравнения (15) ясно, что λ можно найти по углу наклона прямой $T_{heat}\left(P(1-e^{-\frac{\lambda}{C}t})\right)$. Из этой формулы $\lambda=\frac{1}{k}$. Приборная погрешность λ и C:

$$\begin{split} \sigma_{\lambda}^{\text{приб}} &= \sqrt{\left(\frac{\lambda}{P}\right)^2 \sigma_P^2 + \left(\frac{Pte^{-\frac{\lambda}{C}t}}{T_{heat} - T_{\text{K}}}\right)^2 \sigma_{\frac{\lambda}{C}}^2 + \left(\frac{P\frac{\lambda}{C}e^{-\frac{\lambda}{C}t}}{T_{heat} - T_{\text{K}}}\right)^2 \sigma_t^2 + \left(\frac{\lambda}{T_{heat} - T_{\text{K}}}\right)^2 \left(\sigma_{T_{heat}}^2 + \sigma_{T_{\text{K}}}^2\right)} \\ \sigma_C^{\text{приб}} &= C\sqrt{\left(\frac{\sigma_{\frac{\lambda}{P}}}{\frac{\lambda}{P}}\right)^2 + \left(\frac{\sigma_{\lambda}}{\lambda}\right)^2} \end{split}$$

Итого результат с полной погрешностью:

$$\lambda = (0.24 \pm 0.02) \; \frac{\text{Дж}}{\text{K}*\text{c}}$$

$$C_{\text{калориметр}} = \lambda/\frac{\lambda}{C} = (0.73 \pm 0.07) \; \frac{\text{кДж}}{\text{K}}$$

2.2.3 Теплоёмкость алюминия

Аналогично предыдущему пункту определяем теплоёмкость алюминиевого образца вместе с калориметром, затем вычитаем теплоёмкость калориметра. соответствующий график 3:

$$\frac{\lambda}{C} = (22 \pm 4) * 10^{-5} \text{ c}^{-1}$$

$$\lambda = (0.21 \pm 0.04) \frac{\text{Дж}}{\text{K} * \text{c}}$$

$$C = \lambda / \frac{\lambda}{C} = (1.0 \pm 0.2) \frac{\text{кДж}}{\text{K}}$$

$$C_{\text{алюм}} = C - C_{\text{калориметр}} = (0.2 \pm 0.3) \frac{\text{кДж}}{\text{K}}$$

$$c_{\text{алюм}} = \frac{C_{\text{алюм}}}{m_{\text{алюм}}} = (0.8 \pm 0.9) \frac{\text{кДж}}{\text{кг} * \text{K}}$$

2.2.4 Теплоёмкость титана

Аналогично найдём все нужные значения для титана.

$$\frac{\lambda}{C} = (24 \pm 6) * 10^{-5} \text{ c}^{-1}$$

$$\lambda = (0.19 \pm 0.05) \frac{\text{Дж}}{\text{K} * \text{c}}$$

Рис. 3: $T_{cool}(t)$ для калориметра с алюминиевым образцом

$$C = \lambda / \frac{\lambda}{C} = (0.8 \pm 0.3) \frac{\text{кДж}}{\text{K}}$$

$$C_{\text{титан}} = C - C_{\text{калориметр}} = (0.1 \pm 0.3) \frac{\text{кДж}}{\text{K}}$$

$$c_{\text{титан}} = \frac{C_{\text{титан}}}{m_{\text{титан}}} = (0.3 \pm 0.27) \frac{\text{кДж}}{\text{кГ * K}}$$

2.2.5 Теплоёмкость пустого калориметра дифференциальным методом

Определим теплоёмкость пустого калориметра по формуле (16) в момент, когда температура при нагреве равна комнатной. Возьмём $dT=0.5~{
m K}.$

$$\sigma_{C} = C\sqrt{\left(\frac{\sigma_{P}}{P}\right)^{2} + \left(\frac{\sigma_{dT_{heat}}}{\frac{dT_{heat}}{dt}}\right)^{2}} = C\sqrt{\left(\frac{\sigma_{P}}{P}\right)^{2} + \left(\frac{\sigma_{dT_{heat}}}{dT_{heat}}\right)^{2} + \left(\frac{\sigma_{dt}}{dt}\right)^{2}}$$

$$C_{\text{калориметр}} = (0.7 \pm 0.1) \frac{\text{кДж}}{\text{K}}$$

Другой способ: найдём теплоёмкость из уравнения (20). Возьмём $T_{heat}(t) = T_{cool}(t) = 304.5 \text{ K}$

$$C_{\text{калориметр}} = (0.8 \pm 0.2) \frac{\text{кДж}}{\text{K}}$$

2.3 Теплоёмкость алюминия дифференциальным методом

Аналогично предыдущим пунктам.

По формуле (16):

Рис. 4: $T_{cool}(t)$ для калориметра с титановым образцом

$$\begin{split} C_{\text{алюм}} &= (0.1 \pm 0.2) \ \frac{\text{кДж}}{\text{K}} \\ c_{\text{алюм}} &= \frac{\text{С}_{\text{алюм}}}{m_{\text{алюм}}} = (0.6 \pm 0.8) \ \frac{\text{кДж}}{\text{кг}*\text{K}} \end{split}$$

По формуле (20):

$$C_{\rm алюм} = (0.1\pm0.2)~\frac{\rm кДж}{\rm K}$$

$$c_{\rm алюм} = \frac{\rm C_{\rm алюм}}{m_{\rm алюм}} = (0.7\pm0.9)~\frac{\rm кДж}{\rm кг*K}$$

2.4 Теплоёмкость титана дифференциальным методом

Аналогично предыдущим пунктам По формуле (16):

$$\begin{split} C_{\text{титан}} &= (0.07 \pm 0.21) \; \frac{\text{кДж}}{\text{K}} \\ c_{\text{титан}} &= \frac{\text{C}_{\text{титан}}}{m_{\text{титан}}} = (0.2 \pm 0.7) \; \frac{\text{кДж}}{\text{кг} * \text{K}} \end{split}$$

По формуле (20):

$$C_{\scriptscriptstyle \mathrm{TИТАН}} = (0.07 \pm 0.21) \ \frac{\kappa \text{Дж}}{\mathrm{K}}$$

$$c_{ ext{tutah}} = rac{ ext{C}_{ ext{tutah}}}{m_{ ext{tutah}}} = (0.3 \pm 0.8) \; rac{ ext{кДж}}{ ext{кг} * ext{K}}$$

3 Вывод

Табличные значения удельных теплоёмкостей для алюминия и титана:

$$c_{\text{алюм}} = 0.902 \; \frac{\text{кДж}}{\text{кг} * \text{K}}$$
 $c_{\text{титан}} = 0.530 \; \frac{\text{кДж}}{\text{кг} * \text{K}}$

В ходе работы измерили кривые нагревания и охлаждения пустого калориметра и системы «калориметр + твердое тело». Определили коэффициент теплопередачи стенок калориметра. Определили тепломкость пустого калориметра и удельные теплоёмкости алюминия и титана

4 Приложение

Рис. 5: Температуры калориметра и комнаты за всё время эксперимента