

Loan Classifier

ML course Final Project

Bakhtovar Rahmatov

TABLE OF CONTENTS

About the Project

Background information, data sources, challenges and learning outcomes 01

02

04

Models

Logistics Regression, Random Forest, Catboost, KNN

Exploratory Data Analyses

Data content, analytics and main findings

05

Conclutoion

models comparison and conclusion

Preprocessing

Data distribution, Correlation, Target Mean encoding 03

ABOUT THE PROJECT

For the final project, I chose to build a classifier model for new loan requests. I chose this topic because back in 2015, one of my co-workers built a "lead-scoring" model, which gives "grades" to potential new customers, and first phone calls would be made based on the calculated "grade." This model showed significant improvement of lead conversion and sales. I was always curious how he used historical data to create this model on a simple Excel spreadsheet. create this model on a simple Excel spreadsheet. Thanks to this course, I learned about ML and the power it gives to get insights from the data

Data source and materials used:

- Kaggle was used to find data for the projectClass work opynb and materials from classroom

EDA

Libraries used

Initial data analytics

Visual analyses of some factors

NumPy
Pandas
matplotlib.pyplot
seaborn
sklearn.preprocessing
sklearn.model_selection
sklearn.linear_model
sklearn.metrics
sklearn.datasets
sklearn.ensemble
catboost
sklearn.neighbors

Preprocessing

Correlation Heatmap of Selected Numerical Columns								
person_age -	1.00	0.14	0.95	0.05	0.01	-0.04	0.88	0.17
person_income -	0.14	1.00	0.13	0.31	-0.00	-0.29	0.13	0.03
person_emp_exp -	0.95	0.13	1.00	0.05	0.02	-0.04	0.84	0.18
loan_amnt -	0.05	0.31	0.05	1.00	0.15	0.59	0.04	0.01
loan_int_rate -	0.01	-0.00	0.02	0.15	1.00	0.13	0.02	0.01
loan_percent_income -	-0.04	-0.29	-0.04	0.59	0.13	1.00	-0.03	-0.01
rson_cred_hist_length -	0.88	0.13	0.84	0.04	0.02	-0.03	1.00	0.15
credit_score -	0.17	0.03	0.18	0.01	0.01	-0.01	0.15	1.00
	on_age -	income -	np_exp -	n_amnt -	nt_rate -	income -	length -	it_score -

Models

Conclution

	Model	Accuracy
1	Random Forest	93.088121
2	Gradient Boost	90.187799
3	K Neighbors	90.187799
0	Logistic Regression	88.976553

All the models have an accuracy of 88% and higher

Random forest is the best model for out project with an accuracy of 93%

THANKS!