Biomechanics of the Optic Nerve Sheath in VIIP Syndrome

C. Ross Ethier¹, Julia Raykin¹, Rudy Gleason¹, Lealem Mulugeta³, Jerry Myers², Emily Nelson², Brian C. Samuels⁴

¹Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA; ²NASA Glenn Research Center, Cleveland, OH; ³Universities Space Research Association, Houston, TX; ⁴Department of Ophthalmology, U. Alabama at Birmingham, Birmingham, AL

Wallace H. Coulter Department of Biomedical Engineering

Disclosures and Acknowledgements

Disclosure: None

Funding

- NASA (CRE)
- Georgia Research Alliance (CRE)

Visual Impairment and Intracranial Pressure (VIIP) Syndrome

- Permanent changes in visual function after long-duration space flights
 - 41.7% incidence in U.S. astronauts

Structural Changes in the Optic Nerve

Cephalad Fluid Shifts

humanresearchroadmap.nasa.gov

Hypothesis

Increased CSF pressure drives remodeling of the posterior eye and the optic nerve sheath

Goal

Study the biomechanical response of the optic nerve sheath and posterior eye to elevated CSF pressures

 Eventually, understand visual disturbances that occur during longduration space travel

Optic Nerve Sheath: Anatomy

EXPERIMENTS

Experimental Protocol: Inflation Test

Optic Nerve Sheath

1. Sheath is peeled away from the nerve proper

2. Nerve proper is cut away

3. The optic nerve sheath is cannulated and connected to a pressure control system

Experimental System

System Components:

- 1 Specimen bath/mounted porcine eye
- 2 Syringe pump
- 3 Pressure transducers
- 4 CCD camera

Pressure-Diameter Tests

Modulus Increases at Higher Pressures

$$\varepsilon = \frac{r}{r_o} - 1 \qquad \sigma = \frac{Pr}{h}$$

Permeability - Experimental Setup

Permeability - Results

Permeability

(µL/min/cm²/mm Hg)

 0.79 ± 0.12 (mean \pm SEM; n=17)

Implication for Humans:

 $Outflow\ Rate = K \cdot P \cdot A = 125 \frac{mL}{day}$ at 7 mm Hg 20% of daily CSF production

$$A = 2 \cdot (\pi DL)$$

Geeraerts et al. Critical Care, 2008.

Collagen Structure

Post Mortem Porcine Optic Nerve Sheath

Arterial Adventitia

Beal et al. Journal of Surgical Research, 2013.

Collagen Orientation Changes with Pressure

Experimental Summary

- Optic nerve sheath exhibits typical soft tissue behavior:
 - Preconditioning effect, with repeatable behavior after 4th pressure cycle
 - Nonlinear stiffening
 - Anisotropic collagen orientation
- Structure and behavior appears to be similar to the adventitia
- High permeability suggests CSF drainage could play an important role in fluid transport in the optic nerve sheath

Limitations

 Peeling back the meninges could cause structural damage

 Lack of availability of long human optic nerves

Post mortem effects on permeability?

MODELING

Basic Modeled Geometry

Hansen et al. Acta Ophthalmologica, 2011.

Adopted from Ekington et al. 1990

Basic Modeled Geometry

Two dura mater geometries considered

Optic Nerve Head (ONH) Geometry

Based on models of Sigal et al., 2005

Material parameters

Linearly elastic

- Sclera 3.0 MPa
- Peripapillary Sclera 3.0 MPa
- Lamina Cribrosa 0.3 MPa

- Pia Mater 3.0 MPa
- Dura Mater 1.0 MPa
- Retinal Vessel Wall 0.3 MPa

Loading

1. Baseline (Standing or walking)

IOP - 15 mmHg ICP - 0 mmHg

RVP - 55 mmHg

2. Supine

RVP - 55 mmHg

3. Elevated ICP

RVP - 55 mmHg

von Mises Stress

von Mises Stress Distributions

Y-displacement

Z-displacement

1st Principal Strain

2nd Principal Strain

3rd Principal Strain

Displacements

Increase ICP: 0 to 30 mmHg

^{*} Color scale is total displacement

Regions of Interest

Principal Strain Distributions

Schematic Description

Schematic Description

Future Directions

- Quantify collagen microstructural changes during mechanical loading
- Incorporate collagen microstructure into computational models of VIIP syndrome
- Study possible static instability in ONS

Acknowledgements

- DeVon Griffin
- Ian Sigal
- Andrew Feola

Summer Biomechanics, Bioengineering & Biotransport Conference

Snowbird Resort, Utah, June 17-20, 2015

- **Key dates:** January 16, 2015: abstract submission deadline
 - Mid-April, 2015: early bird registration
 - June 17-20, 2015: SB3C Meeting at Snowbird, Utah

Your summer meeting is evolving: bigger, broader, better

www.sb3c2015.com