

Universidade Estadual Vale do Acaraú - UVA

Curso: Ciências da Computação

Disciplina: Construção e Análise de Algoritmos

Professor: Cláudio Carvalho

Lista de Revisão

Logaritmos

1. A solução para a expressão $a^{(x+1)} = \frac{b}{a}$, com a > 0, $a \ne 1$ e b > 0 é:

- a) \log_a^b
- b) $\log_a^{(b+1)}$
- c) $\log_a^b + 1$
 - d) $\log_a^b -2$

2. Se $\log_y^{\sqrt{x}} = a,$ o valor de $\log_y^{\sqrt[3]{x}}$ é:

- a) $\frac{3a}{2}$ b) $\frac{a}{3}$ c) $\frac{2a}{3}$

3. Se $\log^2 = x$, $\log^3 = y$ e $\log^5 = z$, calcule os seguintes logaritmos em função de x, y e z:

- a) \log^{10}
- b) \log^{20}
- c) $\log^{13.5}$
- d) $\log^{\sqrt{6}}$

4. Se $\log_3^{(7x-1)} = 3$ e que $\log_2^{(y^3+3)} = 7$, qual o valor de $\log_y^{(x^2+9)}$?

5. Se $\log_a^b = 3$ e $\log_{ab}^c = 4$, qual o valor de \log_a^c ?

Exponenciais

6. Seja a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = 2^x$. Então quanto vale f(a+1) - f(a)?

1

7. Resolva as equações:

a)
$$\left(\frac{2}{3}\right)^{x+1} = \frac{9}{4}$$

c)
$$3^{2x-1} = \frac{1}{9^{x+1}}$$

b)
$$3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} = 306$$

d)
$$\frac{4^x + 4}{5} = 2^x$$

8. Apresente o produto das soluções da equação $(4^{3-x})^{2-x} = 1$.

9. Apresente a soma das soluções da equação $(3^x)^{x-4} = \frac{1}{81}$.

Sequências

10. Apresente a soma dos termos das sequências:

a) $1, \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \dots$

c) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{256}$

b) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$

d) $1, \ ^3/_2, \ 2, \ ^5/_2, \ 3, \ \dots, ^{19}/_2, \ 10$

Métodos de Prova

- 11. Mostre que todo número natural $n \geq 8$ pode ser escrito na forma 3a+5b, com $a, b \in \mathbb{N}$.
- 12. Mostre que $n \equiv n^2 \pmod{2}$, para $n \in \mathbb{N}$.
- 13. Mostre que não existe um quadrado perfeito na sequência 11, 111, 1111, 11111, Mostre que o resto da divisão do quadrado de todo número natural por 4 é no máximo 1.
- 14. Mostre que a soma dos n primeiros termos de uma Progressão Aritmética (PA) cujo termo inicial é a_1 e a razão é r é dada pela fórmula $S_n = \frac{(a_1 + a_n)n}{2}$.
- 15. Mostre que $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- 16. Mostre que $1^3 + 2^3 + 3^3 + \ldots + n^3 = \left[\frac{(1+n)n}{2}\right]^2$.
- 17. Mostre que a soma dos n primeiros termos de uma Progressão Geométrica (PG) cujo termo inicial é a_1 e a razão é q é dada pela fórmula $S_n = \frac{a_1(q^n-1)}{q-1}$.
- 18. Mostre que a soma dos dígitos de qualquer número natural n múltimplo de 3 é também um múltiplo de 3.
- 19. Encontre a fórmula para $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(n-1) \times n}$, para $n \in \mathbb{N}$ e $n \ge 2$.
- 20. Considere um grupo de n pessoas, $n \geq 2$. Sabendo que a relação de amizade é simétrica (se a é amigo de b, então b é amigo de a) e antirreflexiva (uma pessoa não é amiga de si mesma), mostre que existem pelo menos duas pessoas que têm a mesma quantidade (total) de amigos dentro do grupo.