AMERICAN UNIVERSITY OF ARMENIA

College of Science and Engineering

CS 120 Introduction to Object-Oriented Programming

MIDTERM EXAM

Date / Time:

Friday, March 17 2017 at 17:30

Duration:

2 hours

Attention:

ANY TYPE OF COMMUNICATION IS STRICTLY PROHIBITED Write down your section, name and ID# at the top of all used pages

Participation:

Problem 1: Consider below a C++ function float kahan(float num1, float num2, float& compensation) that implements the Kahan Summation Algorithm for high-precision compensated summation of two float arguments float num1 and float num2:

float kahan(float num1, float num2, float &compensation)
{
 float result;
 num2 -= compensation;
 result = num1 + num2;
 compensation = (result - num1) - num2;
 return result;

Using this function, write a C++ function float pi(int n) that computes the value π by the following formula:

 $\pi = 2\sum_{k=0}^{n} \frac{(2k-1)!!}{(2k)!!(2k+1)} = \frac{2}{1*1} + \frac{1}{2}*\frac{2}{3} + \frac{1*3}{2*4}*\frac{2}{5} + \frac{1*3*5}{2*4*6}*\frac{2}{7} + \cdots$

Recall that n!! is the product of odd numbers from I to n, if n is odd; and is the product of even numbers from I to I to I to I is even. The double factorial of non-positive numbers equals to I by definition.

The initial value of float compensation is 0.0.

fload
$$pi(ind n)$$
 {

int result =0, $pi = 0$

int compensation = 0.0,

for (int $i = q$; $i < n$; $i < t < 0$) {

if $(i \% 2 = 1)$ {

for $(j = 0; j < n/2; j + = 2)$ {

 $pi = pi + 2$.

return regult

Use the backside, if needed

Problem 1 of 4

OOP. MT. 17031 J. KOS8

Problem 2: Write a Java method *public static double[] lin(double[] data)* that takes as its argument an array of data points *double[] data*, and returns a two-element array – the first element being the slope of the linear regression and the second element being the intercept. The linear regression approximates the data points by the linear formula

y - k where the slope k and the intercept b are computed as

value - y

 $k = \frac{\overline{xy} - \overline{x} \, \overline{y}}{\overline{x^2} - \overline{x}^2}, b = \overline{y} - k \, \overline{x}$

Here \bar{x} is the mean of the x coordinates, \bar{y} is the mean of the y coordinates, \bar{x}^2 is the mean of the squares of the x coordinates, and $\bar{x}y$ is the mean of the products of the x and y coordinates. Use the element indices of the array double[] data as x coordinates and the element values as y coordinates. You may assume and use the method double mean(double[] a).

public state double I lin (double I dada) {
int ymean = mean (double I data),

(Int)[] xarr = new int [data length].

tor(i=0; i < doda length, i++) {

xarr[i]=i

(int) x mean = mean (xarr)

int]xyarr = new [data length];

for(j=0; i < data length; i++){

xyarr[i] = i * data.[i];

ant xymean = mean (xyarr);

Int[] xlarr = new int [data length];

for(i=0; ic data length; i++){

x2ar[i] = i*i;

int x2 mean = mean (x larr);

Int[] result = new[2];

result [1] = (xymean - xmean * ymean)/(x2mean - xmean * xmean)

result[2] = ymean - result[1] * xmean

Use the backside, if needed

return result;

Problem 2 of 4

OOP.MI.170317.HOS8

4

public static int[][] transpose(int[][] arr){
int[][] trans = new int [arr.length][arr length];

for(i=0; c arr.length; i++){
 for(j=0; j < arr[i].length; j++){
 trans[j][i] = & arr[j][i];

}

return trans;

Problem 3: Write a Java function *public static double area(double[][] vertex)* that takes as its argument a 2-by-n array of a convex polygon's vertex coordinates *double[][] vertex* – the x coordinates in the first row and y coordinates in the second row. It returns polygon's area as follows:

1. Divides the polygon into triangles by connecting the *first* vertex with the n^{th} and $(n+1)^{st}$ vertices;

2. Adds the areas of the constructed triangles using the formula $area = \sqrt{p(p-a)(p-b)(p-c)}$, where

a, b and c are the sides and p = (a + b + c)/2.

You may assume and use a method double dist(double x1, double y1, double x2, double y2) that takes as its arguments coordinates of two points and returns the distance between them.

public static double crealdouble[][] vertex)

Use the backside, if needed

Problem 3 of 4

OOP. MT. 170317. HOS8

```
public static int[][] multiply (int[][] mal 1, int[][
  int[][] result = new int [mat 1 length] [mat 1 length],
 transpose (mat 2);
  for (int i = 0; i < result length; i++) of
     for (int i = 0; j < result. length; i++) of
      result [i][i] = product (mat [[i], mat 2[i]),
   return result;
public static int product (int[] arr1; int[] arr2)}
   int result =0;
   for (i=0; i carr1.length, i++)}
   result += arr [[i] * 'arr 2[i];
   return result
```

Problem 4: Write a Java method public static void magic4N(int[][] square) that creates a magic square of a 4N-by-4N size using the following algorithm:

Creates an array of the same size as int[][] square and fills it forward with successive integers assigning I to the top-left element:

Creates anther array of the same size as int[][] square and fills it backward with successive integers assigning I to the bottom-right element:

3. Divides the original *int[][] square* into 16 blocks of the same size – 4 blocks per row and column. In the on-diagonal (shaded) blocks copies the elements from the first array, and in the off-diagonal

blocks co	pies the	elements	from	second array.	

No.	AND DESCRIPTION OF THE PERSON	Tom second array.							
1	2					7	8		
9 1	10				9	15	16		
		19	20	21	22				
		27	28	29	30		-		
		35	36	37	38				
		43	44	45	46				
49	50		Marine Marine			55	56		
57	58					63	64		

12 1		62	61	60	59		
	(Medical)	54	53	52	51		
48	47	450 M		ALC: NO.		42	41
40	39		100		TOTAL SE	34	33
32	31		1990	10年日		26	25
24	23	+10/10	1 1	100 mar.		18	17
24		14	13	12	11		
26/1	254	6	5	4	3		

57 58 63 64 6 5	4 3
public static void magic 4N(int[][] square) {	·
1) int[][] magict- new int[square, length][square	e lengths,
for (i=0; i < square length, i++) {	
for(j=0,j < square [x].length,j++){	
magic [i][j] = t * magicf. length + j + 1	
2) int[][] magicb = new int[square length][square	e length J,
2) intests magico = new ince species	
for(i=0; i e magic b length, i++) {	

for(j=0,j < procequebli] length, j++){

magicht i][[] = magich.length * magic b. length - i * magic +. length
a

3) for (i=0, i < square length; it+) {

for (ij=0; j < square length; j+) {

if (i+j|| i+j = square length-1|| (some cases I don't know))

square [i][j] = magic f[i][j];

else Square [i][j] = magicb[i][j]; Use the backside, if needed

Problem 4 of 4