Optimization Methods (OM18) Date: 16-01-2018

Instructor: Sujit Prakash Gujar Scribes: Arushi Singhal

Sabuj Chattopadhyay Simran Singhal

Lecture 5: Convex Analysis and Properties Of A Solution to the Linear Programming

1 Recap

- X is a convex set if for any $x_1, x_2 \in X$, $\lambda x_1 + (1 \lambda)x_2 \in X$, $\forall \lambda \in [0, 1]$
- Intersection of convex sets is convex.
- Union of convex sets need not be convex, although in some cases it can be.
- Epigraph $(f) = \{(x, \mu) | \mu \ge f(x), x \in \mathbb{R}^n \}$
- \bullet A function f is convex if its epigraph is convex.
- ullet For two disjoint, non-empty convex subsets of \mathbb{R}^n , there is a hyperplane separating the two subsets
- Given vectors $a_1, a_2..., a_n$, the convex cone generated by these vectors is a set of all linear combinations of $a_i s$ with non-zero co-efficients
- A convex polyhedron is an intersection of finitely many closed half spaces in \mathbb{R}^n
- If a hyperplane touches the polygon at exactly one point, the point is called vertex.

2 Convex Combination

Definition 1. Let x^1, \ldots, x^k be vectors in R^n and let $\lambda_1, \ldots, \lambda_k$ be nonnegative scalars whose sum is unity. The vector $\sum_{i=1}^k \lambda_i x^i$ is said to be a *convex combination* of the vectors x^1, \ldots, x^k .

3 Convex Hull

Definition 2. Let $X \subset \mathbb{R}^n$ be a set. The *convex hull* of X is the intersection of all convex sets that contain X. Thus it is the smallest convex set containing X, in the sense that any convex set containing X also contains its convex hull.

This is not a very constructive definition. The convex hull can also be described using convex combinations,

Definition 3. Let x^1, \ldots, x^k be vectors in \mathbb{R}^n and let $\lambda_1, \ldots, \lambda_k$ be nonnegative scalars whose sum is unity. The *convex hull* of the vectors x^1, \ldots, x^k is the set of all convex combinations of these vectors.

We can prove that both the definitions are equivalent:-Let C(X) is the intersection of all convex sets that contain X.

$$C(X) = \bigcap_{\alpha} C_{\alpha}$$

Let \tilde{C} is the set of all convex combinations of points in X.

$$\tilde{C} = \{\sum_{i=1}^{m} \lambda_i x^i : m \ge 1, x^1, \dots, x^m \in X, \lambda_1, \dots, \lambda_m \ge 0, \sum_{i=1}^{m} \lambda_i = 1\}$$

Proof. First we prove by induction on m that $\tilde{C} \subset C(X)$.

For m = 1, $\lambda_1 = 1$, then $x^1 \in C(X)$

For m=2 it follows directly from the convexity of C(X).

Let us assume, as an induction hypothesis, that a convex combination of m elements of a convex set belongs to that set. Consider m+1 elements x^1, \ldots, x^{m+1} of a set X and let $\lambda_1, \ldots, \lambda_{m+1}$ be nonnegative scalars that sum to 1.

We assume, without loss of generality, that $\lambda_{m+1} \neq 1$. We then have

$$\sum_{i=1}^{m+1} \lambda_i x^i = \lambda_{m+1} x^{m+1} + (1 - \lambda_{m+1}) \sum_{i=1}^m \left(\frac{\lambda_i}{1 - \lambda_{m+1}} \right) x^i$$
 (3.1)

The coefficients $\lambda_i/(1-\lambda_{m+1})$, $i=1,\ldots,m$ are nonnegative and sum to unity.

Using the induction hypotheses, $\sum_{i=1}^{m} \lambda_i x^i / (1 - \lambda_{m+1}) \in C(X)$. Let $x' = \sum_{i=1}^{m} \lambda_i x^i / (1 - \lambda_{m+1})$ then Eq.(3.1) can be written as

$$\sum_{i=1}^{m+1} \lambda_i x^i = \lambda_{m+1} x^{m+1} + (1 - \lambda_{m+1}) x'$$
(3.2)

Then, the fact that C(X) is convex and Eq. (3.2) imply that $\sum_{i=1}^{m+1} \lambda_i x^i \in C(X)$. Hence proved $\tilde{C} \subset C(X)$.

Now, we prove that $C(X) \subset \tilde{C}$ by proving \tilde{C} is convex.

Let $y = \sum_{i=1}^{m} \alpha_i x^i$, $z = \sum_{i=1}^{m} \beta_i x^i$ be two elements of \tilde{C} , where $\alpha_i \geq 0$, $\beta_i \geq 0$, and $\sum_{i=1}^{m} \alpha_i = \sum_{i=1}^{m} \beta_i = 1$.

Let $\lambda \in [0, 1]$. Then,

$$\lambda y + (1 - \lambda)z = \lambda \sum_{i=1}^{m} \alpha_i x^i + (1 - \lambda) \sum_{i=1}^{m} \beta_i x^i = \sum_{i=1}^{m} (\lambda \alpha_i + (1 - \lambda)\beta_i) x^i$$
 (3.3)

The coefficients $\lambda \alpha_i + (1 - \lambda)\beta_i$, i = 1, ..., m, are non-negative and sum to unity. This shows that $\lambda y + (1 - \lambda)z$ is a convex combination of $x^i, ..., x^m$ and, therefore, belongs to \tilde{C} . Hence \tilde{C} is a convex set, and thus $C(X) \subset \tilde{C}$.

 $C(X) \subset \tilde{C}$ and $\tilde{C} \subset C(X)$ will be true if and and only if $C(X) = \tilde{C}$.

4 Basic Feasible Solution Of Linear Programming

The general linear-programming problem in equational form is to find a vector $x = (x_1, x_2, \dots, x_n)$ which maximizes the linear form (i.e the objective function) $c^T x$.

$$c^{T}x = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{j}x_{j} + \dots + c_{n}x_{n}$$

$$(4.1)$$

subject to the linear constraints Ax = b.

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1j}x_{j} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2j}x_{j} + \dots + c_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{ij}x_{j} + \dots + a_{in}x_{n} = b_{i}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mj}x_{j} + \dots + a_{mn}x_{n} = b_{m}$$

$$(4.2)$$

and

$$x_i \ge 0$$
 $i = 1, 2, ..., n$ (4.3)

Definition 4. A feasible solution to the linear-programming problem is a vector $x = (x_1, x_2, \dots, x_n)$ which satisfies the conditions (4.2) and (4.3).

Definition 5. Basic solution to (4.2) is a solution obtained by setting n-m variables equal to zero and solving for the remaining m variables, provided that the determinant of the coefficients of these m variables is nonzero. The m variables are called basic variables.

Definition 6. Basic feasible solution is a basic solution which also satisfies (4.3); that is, all basic variables are nonnegative.

In simple words Basic feasible Solution x of (Ax = b) is a basic solution if the n components of x can be partitioned into m "basic" and n - m "non-basic" variables in such a way that: the m columns of A corresponding to the basic variables form a nonsingular basis and the value of each "non-basic" variable is 0.

Basis is the set B of basic variables. The variables corresponding to B are called basic variables (X_b) and remaining are non-basic variables (X_n) . $B \subseteq \{1, 2, 3, ...n\}$. The matrix A_B (m columns of A corresponding to the basic variables) is a non singular matrix.

The system of functional constraints has n variables and m equations, so this will gives n-m degrees of freedom in solving the system, since any n-m variables can be chosen to be set equal to any arbitrary value in order to solve the m equations in terms of the remaining m variables. This n-m are non basic variables and are considered as zero for finding optimal solution.

The equation $x_1 + x_2 \le 1$ for $x_1, x_2 \ge 0$ has three corner points and all are basic feasible solution. The corner points are basic feasible solution as there is 1 functional constraint with two variables. So one variable should be zero and point (1,0), (0,1) and (0,0) is satisfying this condition. The equation

 $x_1 + x_2 \le 1$ can be written as $x_1 + x_2 + x_3 = 1$ in equational form where $x_1, x_2, x_3 \ge 0$. The corner points (1,0,0), (0,1,0) and (0,0,0) of the resultant polyhedron is the basic feasible solution and as there is 1 functional constraint with three variables. So 2 variables are zero.

If $x_1+x_2+x_3=1$ and $x_1+x_2=1/2$, in this there are two functional constraint with three variables, thus, corner points are (1/2,0,1/2) & (0,1/2,1/2) and both are basic feasible solution. If $x_1+x_2+x_3=1$ and $x_3=1/2$ and $x_1=x_2$, here we have three equation with three variables and this constraint will satisfy with no zero at corner point. The corner point satisfying the constraint is (1/4,1/4,1/2).

If there are m equations with n variables, then n-m variables should be zero and remaining m values can be non-zero.

Example 1.
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}$$

For $B = \{1,3\}$, obtain $A_B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

 A_B is invertible and $\{1,3\}$ is a basis of A.

Example 2.
$$A = \begin{pmatrix} 1 & 5 & 3 & 4 & 6 \\ 0 & 1 & 3 & 5 & 6 \end{pmatrix}$$

For $B = \{2,4\}$ and $b^T = [14,7]$, obtain $A_B = \begin{pmatrix} 5 & 4 \\ 1 & 5 \end{pmatrix}$
 $x = [0,2,0,1,0]$ and A_B is also non singular. Hence $\{2,1\}$ is a basis of A .

Definition 7. A non-degenerate basic feasible solution is a basic feasible solution with exactly m positive x_i ; that is, all basic variables are positive.

Definition 8. An optimal basic feasible solution is a basic solution that satisfies condition (4.1), (4.2) and (4.3).

5 Properties of Feasible basis solution

Proposition 1. A basic feasible solution is uniquely determined by the set B. That is, for every melement set $B \subseteq \{1, 2, ..., n\}$ with A_B nonsingular there exists at most one feasible solution $x \in \mathbb{R}^n$ with $x_j = 0$ for all $j \notin B$.

Proof. For x to be a feasible solution, Ax = b must be true. Ax can be rewritten to $Ax = A_Bx_B + A_Nx_N$, where $N = \{1, 2, ..., n\} \setminus B$. For x_N to be a basic feasible solution, x_N must equal 0. Thus,

$$A_B x_B = 0$$

As A_B is a nonsingular square matrix. The system $A_B x_B = b$ has exactly one solution $\tilde{x_B}$. If any of the component of the $\tilde{x_B}$ is negative then *no* basic feasible solution exist for the considered B.

Theorem 1. If a linear programming problem admits of an optimal solution, then the optimal solution will coincide with at least one basic feasible solution of the problem.

Proof. Let x_O be one of the basic feasible solution of a LP problem. Let X be defined as, $X = \{\tilde{x} | c^T \tilde{x} \ge c^T x_O\}$

 $\tilde{x^*}$ is one of the \tilde{x} which has maximum number of zeros. Only corner points are there in basic feasible solution.

Refer any standard book for the proof of this theorem.

6 References

- 1. MOKHTARS S. BAZARAA, JOHN J,
JARVIS, HANF D. SHERALI, "Linear Programming and network flows".
- 2. Bernd Grtner, Jir Matouek "Understanding and Using Linear Programming".
- 3. Dimitris Bertsimas, John N.Tsitsiklis "Introduction to Linear Optimization".