

Shapley Effects for Use as Sensitivity Measure

Elmar Plischke

Institut für Endlagerforschung TU Clausthal SAMO Summer School, Ispra, June 2022

Contents

Motivation

Game Theory and Shapley Values

Shapley Effects for Sensitivity Analysis

Example

Game Theory and Shapley Value

Shapley Effects for Sensitivity Analysi

Example

For independent variables

$$\mathbb{V}[X_1 + X_2] = \mathbb{V}[X_1] + \mathbb{V}[X_2]$$

but generally

$$V[X_1 + X_2] = \mathbb{E}[(X_1 + X_2)^2] - (\mathbb{E}[X_1 + X_2])^2 = \mathbb{E}[X_1^2] - \mathbb{E}[X_1]^2 + \mathbb{E}[X_2^2] - \mathbb{E}[X_2]^2 + 2(\mathbb{E}[X_1X_2] - \mathbb{E}[X_1]\mathbb{E}[X_2]) = V[X_1] + V[X_2] + Cov(X_1, X_2)$$

For independent variables

$$\mathbb{V}[X_1+X_2]=\mathbb{V}[X_1]+\mathbb{V}[X_2]$$

but generally

$$V[X_1 + X_2] = \mathbb{E}[(X_1 + X_2)^2] - (\mathbb{E}[X_1 + X_2])^2 = \mathbb{E}[X_1^2] - \mathbb{E}[X_1]^2 + \mathbb{E}[X_2^2] - \mathbb{E}[X_2]^2 + 2(\mathbb{E}[X_1X_2] - \mathbb{E}[X_1]\mathbb{E}[X_2]) = V[X_1] + V[X_2] + Cov(X_1, X_2)$$

Consequences for functional ANOVA under dependence

- Covariance terms need to be considered
- Orthogonality (strong annihilation) is lost: Hierarchical orthogonality can be used
- But this introduces dependence on the order of the factors in the model

First and last term in any ordering of the factors may receive special attention

Wanted

A concept to define main and total effects and related sensitivity indices without recurring to functional ANOVA decomposition

Back to the basics:

• Main effect S_i : Variance explained by a functional dependence on X_i

Wanted

A concept to define main and total effects and related sensitivity indices without recurring to functional ANOVA decomposition

Back to the basics:

- Main effect S_i : Variance explained by a functional dependence on X_i
- Total effect T_i : Residual variance un-explained by a functional dependence on X_{-i}

Wanted

A concept to define main and total effects and related sensitivity indices without recurring to functional ANOVA decomposition

Back to the basics:

- Main effect S_i : Variance explained by a functional dependence on X_i
- Total effect T_i : Residual variance un-explained by a functional dependence on X_{-i}

We study a game theoretic approach:

The goal is to attribute a fair share of the variance to each input factor

Game Theory and Shapley Values

Shapley Effects for Sensitivity Analysi

Example

Game Theory: Definitions

For *d* players,

- Coalition-worth value function val : $2^d \to \mathbb{R}_{\geq 0}$, 2^d : set of subsets of $[d] := \{1, \dots, d\}$
- Coalition $\alpha \subset [d]$ lists the active players, anti-coalition $\sim \alpha = [d] \setminus \alpha$
- Marginal contribution of player i joining coalition α : $\max(\alpha,i) = \mathsf{val}(\alpha \cup \{i\}) \mathsf{val}(\alpha)$

The value function assigns a payoff to a group of players

The value function is a game if it is grounded: $val(\emptyset) = 0$.

Grand total: val([d])

Axioms for the Shapley Value

Attribute a fair share of the grand total to each player:

Theorem

The Shapley value $\Phi_i(val)$ of player i for the payoffs val is uniquely characterized by the following four axioms,

- Pareto-efficiency: $\sum_{i=1}^{d} \Phi_i(\text{val}) = \text{val}([d])$
- Symmetry: If $val(\alpha \cup \{i\}) = val(\alpha \cup \{j\})$ for all subsets α containing neither i nor j then $\Phi_i(val) = \Phi_j(val)$
- Linearity: $\Phi_i(\text{val}_1 + \text{val}_2) = \Phi_i(\text{val}_1) + \Phi_i(\text{val}_2)$
- Null-player: If for all α , $val(\alpha \cup \{i\}) = val(\alpha)$ holds then $\Phi_i(val) = 0$.

Formulas for the Shapley Value

$$egin{aligned} \Phi_i(\mathsf{val}\,) &= rac{1}{d} \sum_{lpha: i
otin lpha} egin{pmatrix} d-1 \ |lpha| \end{pmatrix}^{-1} \mathsf{mar}(lpha, i) \ \Phi_i(\mathsf{val}\,) &= rac{1}{d} \sum_{lpha: i
otin lpha} egin{pmatrix} d-1 \ |lpha| - 1 \end{pmatrix}^{-1} (\mathsf{val}(lpha) - \mathsf{val}(\sim lpha)) \ \Phi_i(\mathsf{val}\,) &= \sum_{lpha: i
otin lpha} rac{\mathsf{mob}(lpha)}{|lpha|} \end{aligned}$$

All three formulas satisfy the axioms which uniquely describe the Shapley value, hence define the same object.

Möbius inverses

Unique decomposition $\operatorname{val}(\alpha) = \sum_{\beta} \operatorname{mob}(\beta) u_{\beta}(\alpha)$ $u_{\beta}(\alpha) = \mathbf{1}(\beta \subset \alpha)$ (Unanimity game) codes subset inclusion Weights: Möbius inverses / Harsanyi dividends. Implicitly defined by

$$\operatorname{val}(\alpha) = \sum_{\beta \subset \alpha} \operatorname{mob}(\beta).$$

This system of $2^k - 1$ linear equations can be solved by an inclusion-exclusion rule

$$\mathsf{mob}(\alpha) = \sum_{\beta \subset \alpha} (-1)^{|\alpha| + |\beta|} \mathsf{val}(\beta).$$

This approach is technical equivalent to the formation of higher order effects.

Main and total effects for games

Let us therefore introduce (unnormalized) main and total effects based on the coalition-worth value function,

- Main effects $S_i = \operatorname{val}(\{i\}) = \operatorname{mar}(\emptyset, i) = \operatorname{mob}(\{i\})$
- Total effects $T_i = \sum_{\alpha: i \in \alpha} \mathsf{mob}(\alpha)$

Note that always

$$T_i = \sum_{\alpha: i \in \alpha} \mathsf{mob}(\alpha) = \sum_{\alpha} \mathsf{mob}(\alpha) - \sum_{\alpha: i \notin \alpha} \mathsf{mob}(\alpha)$$

= $\mathsf{val}([d]) - \sum_{\alpha \in \alpha: i} \mathsf{mob}(\alpha) = \mathsf{val}([d]) - \mathsf{val}(\sim i)$

Shapley Effects for Sensitivity Analysis

Shapley Effects

Grand total: Output variance

Players: Input factors

Consider the value function $val(\alpha) = \mathbb{V}[\mathbb{E}[Y|X_{\alpha}]]$:

If $\alpha=\emptyset$ then we have to compute the variance of a constant value, i.e. val is a game

If $\alpha = [d]$ and $y = f(x_1, \dots, x_d)$ is a square integrable deterministic function then

 $\mathsf{val}([d]) = \mathbb{V}[\mathbb{E}[Y|X_{[d]}]] = \mathbb{V}[Y]$, i.e. the grand total is the output variance

SAMO 2022

How to compute the Shapley effects

Sobol' method, pick-and-freeze with conditionally independent sampling

```
for i=1:d; w0=1; for j=1:i-1; w0=w0*(d-i+j)/j; end; w(i)=w0; end % weights
[ua,ub]=createsample(d,n,randomsource); za=norminv(ua); zb=norminv(ub);
C=chol(S); na=za*C; nb=zb*C; xa=trafo(normcdf(na)); xb=trafo(normcdf(nb));
va=model(xa); vb=model(xb); Vv=(vb-va)'*(vb-va)/n/2; Shap=ones(1,d)*Vv;
for i=1:2^{(d-1)-1} % loop only over half of the indices
q = logical(bitqet(i, 1:d)); sz = sum(q); D = chol([S(q,q), S(q, \neg q); S(\neg q, q), S(\neg q, \neg q)]);
D11=D(sz+1:end, sz+1:end); D22=D(1:sz,1:sz); D21=D(1:sz,sz+1:end);
ni=na; ni(:, \neg g) = zb(:, \neg g) *D11+na(:, g) *(D22 \D21);
xi=trafo(normcdf(ni)); vi=model(xi); sz=k-sz; % complementary size
E=chol([S(\neg q, \neg q), S(\neg q, q); S(q, \neg q), S(q, q)]); E11=E(sz+1:end, sz+1:end); E22=E(1:sz, 1)
E21=E(1:sz,sz+1:end); nj=na; nj(:,q)=zb(:,q)*E11+na(:,\neg q)*(E22\E21);
xj=trafo(normcdf(nj));yj=model(xj); sz=k-sz; % reset sz
bal = (yj-yi) \cdot (yj+yi-2*ya) / (2*n); % bal = val(alfa) - val(¬alfa)
 Shap(q)=Shap(q)+bal/w(sz); Shap(\neg q)=Shap(\neg q)-bal/w(d-sz);
end, Shap=Shap/d;
```

14

Code Discussion

- d input dimension, n basic sample block size, model vectorized simulator, trafo marginal transformation from $[0,1]^d$, createsample create two basic sample blocks (not shown)
- Implemented are Gaussian Copula dependence structures
- Via Cholesky decompositions of reordered covariance matrices
- Using the second Shapley formula with a balanced value function
- Computationally costly: Visits half of all subsets, pick-and-freeze design for each of them, symmetric design

With a winding stairs approach one can compute $val(\alpha)$ for $\alpha = \{1, 2, ..., i\}$ (consecutive indices).

With a winding stairs approach one can compute $val(\alpha)$ for $\alpha = \{1, 2, ..., i\}$ (consecutive indices).

With a winding stairs approach one can compute $val(\alpha)$ for $\alpha = \{1, 2, ..., i\}$ (consecutive indices).

With a winding stairs approach one can compute $val(\alpha)$ for $\alpha = \{1, 2, ..., i\}$ (consecutive indices).

With a winding stairs approach one can compute $val(\alpha)$ for $\alpha = \{1, 2, ..., i\}$ (consecutive indices).

With a winding stairs approach one can compute $val(\alpha)$ for $\alpha = \{1, 2, ..., i\}$ (consecutive indices).

With a winding stairs approach one can compute $val(\alpha)$ for $\alpha = \{1, 2, ..., i\}$ (consecutive indices).

Shapley effects, Goda's method

```
x = rand(n,d); y = rand(n,d); % MC sample
[\neg, pm] = sort(rand(n,d),2); % random permutation
z = x; fz1 = func(trafo(z)); fx = fz1; % save fx as reference point
phi1 = zeros(1,d); phi2 = zeros(1,d);
for j=1:d
   % activate indices from permutation matrix
   ind = bsxfun(@eq,pm(:,j),1:d); % compare column with row
   z(ind) = y(ind); % copy over next pick'freeze dimension (per run)
   fz2 = func(trafo(z)):
   fmarg = ((fx-fz1/2-fz2/2).*(fz1-fz2))'; % update
   phi1 = phi1 + fmarg*ind/n;
   fz1 = fz2:
end
```


Code Discussion

- d input dimension, n basic sample block size, func vectorized simulator, trafo marginal transformation from $[0,1]^d$
- Only input independence (1D innovation injection)
- Reference point is the f(x) output, but may also consider differences to f(y)
- Original version offers error estimate
- Computationally cheap: $(d+1) \cdot n$ vs. $(2^d-1) \cdot n$

Example

Analytical Example: Gauss Linear

Input: Multivariate normal distribution with covariance Σ

Simulation model: $Y = \beta^0 + \beta^T X$, $X \in \mathbb{R}^d$

All conditional distributions are Gaussian, all conditional expectations are linear

Analytical Example: Gauss Linear

Input: Multivariate normal distribution with covariance Σ

Simulation model: $Y = \beta^0 + \beta^T X$, $X \in \mathbb{R}^d$

All conditional distributions are Gaussian, all conditional expectations are linear

Theorem

Under Gauss linear, unnormalized main, total and Shapley effects are given by

$$\begin{split} S_{j} &= \beta^{T} \left(\frac{\Sigma_{[d],j} \Sigma_{j,[d]}}{\Sigma_{j,j}} \right) \beta = \beta^{T} \left(\frac{\Sigma_{[d],j} \Sigma_{[d],j}^{T}}{\Sigma_{j,j}} \right) \beta \\ T_{j} &= \beta_{j}^{2} \frac{\det(\Sigma)}{\det(\Sigma_{-j,-j})} \\ \Phi_{j} &= \frac{1}{d} \sum_{i \in u} \binom{d-1}{|u|-1}^{-1} \beta^{T} \left(\Sigma_{[d],u} \Sigma_{u,u}^{-1} \Sigma_{u,[d]} - \Sigma_{[d],-u} \Sigma_{-u,-u}^{-1} \Sigma_{-u,[d]} \right) \beta \end{split}$$

Feed the Code

Input: $X \sim \mathcal{N}(0, \Sigma)$ with $\Sigma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \varrho \sigma \\ 0 & \varrho \sigma & \sigma^2 \end{pmatrix}$, $\sigma = 2$, ϱ is varied within [-1, 1] Model $Y = f(X_1, X_2, X_3) = X_1 + X_2 + X_3$

Thank You!

Thank You!

Questions, Comments

mailto:elmar.plischke@tu-clausthal.de

Preprints, Scripts, Stuff

http://www.immr.tu-clausthal.de/~epl/

References I