a) Probar que I + R es inversible. Sugerencia: Ver que suponiendo (I + R)x = 0 para algún $x \neq 0$ se llega a ||Rx||/||x|| = 1.

b) Probar que $||(I+R)^{-1}|| \leq \frac{1}{1-||R||}$. Sugerencia: Usar la igualdad $(I+R)^{-1} = I - R(I+R)^{-1}$.

c) Sea $A \in \mathbb{R}^{n \times n}$ una matriz inversible y $\delta A \in \mathbb{R}^{n \times n}$ tal que $\|\delta A\| < \frac{1}{\|A^{-1}\|}$. Probar que $A + \delta A$ es inversible y vale

$$\|(A + \delta A)^{-1}\| \le \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\delta A\|}$$

Supongamos que I+R no es inversible.
$$\exists x \in \mathbb{R}^n, x \neq 0$$
 tal que $(I+R)x = 0$.

$$(I+R) \times = 0$$

 $\langle = \rangle \times + R \times = 0$
 $\langle = \rangle R \times = - \times$

$$\Leftrightarrow$$
 $||Rx|| = ||-x||$

$$\Leftrightarrow$$
 $||Rx||/||x|| = 1$

$$||R \times || / ||X|| \le ||R|| \cdot ||X|| / ||X|| = ||R|| < 1$$

$$\Rightarrow$$
 $||R \times || / ||X|| < 1 \Rightarrow $||R \times || / ||X|| \neq 1$ Absorbe$

$$\not\exists x \neq 0 \text{ talque } (I+R)x = 0.$$