DISTRIBUIÇÃO NORMAL

Introdução

Exemplo: Observamos o peso, em kg, de 1500 pessoas adultas selecionadas, ao acaso, em uma população.

O histograma por densidade dos pesos é o seguinte:

A análise do histograma indica que:

- a distribuição dos valores é, aproximadamente, \leq simétrica em torno de 70 kg;
- a maioria dos valores (88%) encontra-se no intervalo (55;85);
- existe uma pequena proporção de valores abaixo de 48 kg (1,2%) e acima de 92 kg (1%).

Vamos definir a variável aleatória

X: peso, em kg, de uma pessoa adulta escolhida, ao acaso, **da população**.

Como se distribuem os valores da variável aleatória X, isto é, qual é a distribuição de probabilidades de X?

A curva contínua da figura denomina-se *curva Normal* (ou *curva de Gauss*).

A distribuição Normal é uma das mais importantes distribuições contínuas de probabilidade pois:

- Muitos fenômenos aleatórios comportam-se próximos a essa distribuição:
 - 1. altura;
 - 2. pressão sangüínea;
 - 3. Peso etc...
- Pode ser utilizada para calcular, de forma aproximada, probabilidades para outras distribuições, como por exemplo, para a distribuição binomial.
- → O modelo normal de probabilidade foi desenvolvido por Carl Friedrich Gauss

Nem todos os fenômenos se ajustam à distribuição Normal.

Exemplo: Considere a variável

Y: Duração, em horas, de uma lâmpada de certa marca, selecionada ao acaso.

A experiência sugere que esta distribuição deve ser *assimétrica*: grande proporção de valores entre 0 e 500 horas e pequena proporção de valores acima de 1500 horas.

Modelos Contínuos de Probabilidade

Variável Aleatória Contínua

- Assume valores num intervalo de números reais.
- Não é possível listar, individualmente, todos os possíveis valores da variável aleatória contínua.
- Associamos probabilidades a intervalos de valores da variável.

Propriedades dos modelos contínuos:

Uma $v.a.\ X$ contínua é caracterizada por sua função $densidade\ de\ probabilidade\ f(x)$, com as propriedades:

- (i) A área sob a curva de densidade f(x) é 1;
- (ii) $P(a \le X \le b)$ = área sob a curva da densidade f(x) e acima do eixo x, entre os pontos a e b;

(iii)
$$f(x) \ge 0$$
, para todo x ;

(iv)
$$P(X = x_0) = 0$$
, para x_0 fixo.

Assim,

$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b).$$

A DISTRIBUIÇÃO NORMAL (ou Gaussiana)

A v. a. X tem <u>distribuição Normal</u> com parâmetros μ e σ^2 se sua função densidade de probabilidade é dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty.$$

Pode ser mostrado que:

- 1. μ é o valor esperado (média) de X, com - ∞ < μ < ∞ ;
- 2. σ^2 é a variância de X, com $\sigma^2 > 0$.

Notação : $X \sim N(\mu ; \sigma^2)$

Propriedades de $X \sim N(\mu; \sigma^2)$

- $E(X) = \mu$ (média ou valor esperado);
- $Var(X) = \sigma^2$ (e portanto, $DP(X) = \sigma$);
- $f(x) \to 0$, quando $x \to \pm \infty$;
- $x = \mu$ é ponto de máximo de f(x);
- μ σ e μ + σ são pontos de inflexão de f(x);
- a curva Normal é simétrica em torno da média μ .

A distribuição Normal depende dos parâmetros μ e σ^2

Curvas Normais com mesma variância σ^2 mas médias diferentes $(\mu_2 > \mu_1)$.

Influência de σ^2 na curva Normal

Curvas Normais com <u>mesma média</u> μ mas com <u>variâncias diferentes</u> ($\sigma_2 > \sigma_1$).

Cálculo de probabilidades

$$P(a < X < b) = P(a \le X \le b)$$

Área sob a curva e acima do eixo horizontal (x) entre a e b.

Se
$$X \sim N(\mu; \sigma^2)$$
, definimos

$$Z = \frac{X - \mu}{\sigma}$$

A v.a. $Z \sim N(0;1)$ denomina-se normal padrão ou reduzida.

Portanto,

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

Dada a v.a. $Z \sim N(0; 1)$ podemos obter a v.a. $X \sim N(\mu; \sigma^2)$ através da transformação inversa

$$X = \mu + Z \times \sigma$$
.

USO DA TABELA NORMAL PADRÃO

Denotamos : $A(z) = P(Z \le z)$, para $z \ge 0$.

Exemplo: Seja $Z \sim N(0; 1)$, calcular

a)
$$P(Z \le 0.32)$$

$$P(Z \le 0.32) = A(0.32) = 0.6255.$$

Encontrando o valor na Tabela N(0;1):

Z	0	1	2
0,0	0,5000	0,5039	0,5079
0,1	0,5398	0,5437	0,5477
0,2	0,5792	0,5831	0,5870
0,3	0,6179	0,6217	0,6255
•	• •	•	•

b)
$$P(0 < Z \le 1,71)$$

$$= P(Z \le 1,71) - P(Z \le 0)$$

$$= A(1,71) - A(0)$$

$$= 0.9564 - 0.5 = 0.4564.$$

Obs.: A(0)=P(Z<0)=P(Z>0)=0,5.

c)
$$P(-1.32 < Z < 0) = P(0 < Z < 1.32)$$

$$= P(Z \le 1,32) - P(Z \le 0)$$

$$= A(1,32) - 0,5$$

$$= 0.9066 - 0.5 = 0.4066.$$

d)
$$P(Z \ge 1,5)$$

= $1 - P(Z \le 1,5)$
= $1 - A(1,5)$
= $1 - 0,9332 = 0,0668$.

e) $P(Z \le -1,3)$

$$= P(Z \ge 1,3) = 1 - A(1,3)$$

$$= 1 - 0.9032 = 0.0968.$$

<u>labela</u>

Obs.: Pela simetria, $P(Z \le -1,3) = P(Z \ge 1,3)$.

f)
$$P(-1,5 \le Z \le 1,5)$$

= $2 \times [A(1,5) - 0,5]$
= $2 \times 0,9332 - 1 = 0,8664$.
ou
= $P(Z \le 1,5) - P(Z \le -1,5)$
= $A(1,5) - [1 - A(1,5)]$

g)
$$P(-1 \le Z \le 2)$$

$$= P(Z \le 2) - P(Z \le -1)$$

$$= A(2) - P(Z \ge 1) = A(2) - (1 - A(1))$$

$$= 0.9773 - (1 - 0.8413)$$

= 0.9773 - 0.1587 = 0.8186.

Tabela

Como encontrar o valor z da distribuição N(0;1) tal que:

(i)
$$P(Z \le z) = 0.975$$

z é tal que A(z) = 0.975.

Pela tabela, z = 1,96.

(ii)
$$P(0 < Z \le z) = 0.4975$$

z é tal que
$$A(z) = 0.5 + 0.4975 = 0.9975$$
.
Pela tabela $z = 2.81$.

(iii)
$$P(Z \ge z) = 0.3$$

z é tal que
$$A(z) = 0,7$$
.

Pela tabela, z = 0.53.

$$a \in \text{tal que } A(a) = 0.975 \text{ e } z = -a.$$

Pela tabela a = 1,96.

Então, z = -1,96.

(v)
$$P(Z \le z) = 0.10$$

a é tal que A(a)=0,90 e z = -a. Pela tabela, a = 1,28

e, assim, z = -1.28.

(vi)
$$P(-z \le Z \le z) = 0.80$$

z é tal que
$$P(Z < -z) = P(Z > z) = 0,1$$
.

Isto é,
$$P(Z < z) = A(z) = 0.90$$

$$\Rightarrow$$
 z = 1,28 (pela tabela).

Exemplo: O tempo gasto no exame vestibular de uma universidade tem distribuição Normal, com média 120 *min* e desvio padrão 15 *min*.

a) Sorteando-se um aluno ao acaso, qual é a probabilidade dele terminar o exame antes de 100 minutos?

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120; 15^2)$

$$P(X \le 100) = P\left(Z \le \frac{100-120}{15}\right) = P(Z \le -1,33)$$

$$= 1 - A(1,33)$$

$$= 1 - 0.9082 = 0.0918.$$

Outra interpretação: 9,18% dos estudantes que prestam esse exame concluem em menos de 100 *min*.

b) Qual deve ser o tempo de prova, de modo a permitir que 95% dos vestibulandos terminem no prazo estipulado?

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120; 15^2)$

$$x = ? \text{ tal que } P(X \le x) = 0.95 \Rightarrow P(Z \le (x-120)) = 0.95$$

$$z = ?$$
 tal que $A(z) = 0.95$.

Pela tabela z = 1,64.

Então,
$$z = 1,64 = \frac{x - 120}{15}$$
 $\Rightarrow x = 120 + 1,64 \times 15 = 120 + 24,6$ $\Rightarrow x = 144,6 \ min.$

c) Qual é o valor do tempo tal que apenas 3% dos vestibulandos completam o exame até esse tempo de prova?

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120; 15^2)$

$$x = ? \text{ tal que } P(X \le x) = 0.03 \Rightarrow P(Z \le \underbrace{x-120}_{15}) = 0.03$$

$$a > 0$$
 é tal que $A(a) = 0.97$ e $z = -a$

Pela tabela,
$$a = 1.88$$

e, assim,
$$z = -1,88$$
.

Então,
$$z = -1.88 = \frac{x - 120}{15}$$
 $\Rightarrow x = 120 - 1.88 \times 15 = 120 - 28.2$
 $\Rightarrow x = 91.8 \ min.$

⇒ 3% dos vestibulandos terminam o exame em até 91,8 min

d) Qual é o intervalo de tempo, simétrico em torno da média (intervalo central), tal que 80% dos estudantes gastam para completar o exame?

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120, 15^2)$

Obter o intervalo (120-a; 120+a) tal que P(120-a < X < 120+a) = 0.80

$$P(120-a \le X \le 120+a) = 0.80 \Rightarrow P\left(\frac{120-a-120}{15} \le Z \le \frac{120+a-120}{15}\right) = 0.80$$
$$\Rightarrow P\left(\frac{-a}{15} \le Z \le \frac{a}{15}\right) = 0.80 \Rightarrow P(-z \le Z \le z) = 0.80$$

$$z = ?$$
 tal que $A(z) = 0.90$.

Pela tabela, z = 1,28.

Mas

$$z = 1,28 = \frac{a}{15} \Rightarrow a = 1,28 \times 15 = 19,2$$

Logo, o intervalo procurado é

$$(120 - 19,2; 120 + 19,2) = (100,8 min; 139,2 min)$$

Observação : Se $X \sim N(\mu; \sigma^2)$, então

(i)
$$P(\mu - \sigma \le X \le \mu + \sigma) = P\left(\frac{\mu - \sigma - \mu}{\sigma} \le Z \le \frac{\mu + \sigma - \mu}{\sigma}\right)$$

$$= P(-1 \le Z \le 1)$$

$$= 2 \times (A(1) - 0.5)$$

$$= 2 \times (0.8413 - 0.5)$$

= 0.6826

Analogamente,
$$\frac{99,7\%}{\text{(ii) } P(\mu - 2\sigma \le X \le \mu + 2\sigma) = P(-2 \le Z \le 2) = 0,955.}$$

(iii) $P(\mu - 3\sigma \le X \le \mu + 3\sigma) = P(-3 \le Z \le 3) = 0.997.$

Tabela

Z

											¥ \
		Segunda decimal de z									0 z z
		0	1	2	3	4	5	6	7	8	9
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	1.5	0.9332		0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
	3.4	0.9997		0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
	3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
	3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999

3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

<u>Volta</u>