1 An Elliptic Curve

1.1 Question

The following is a plot of the curve E, given by $y^2 = x^3 - 2x$, on \mathbb{R}^2 .

Figure 1: Curve E

Consider the set $E(\mathbb{Q}) := \{(x,y) \in \mathbb{Q}^2 | y^2 = x^3 - 2x \}.$

Define the map $\star: E(\mathbb{Q}) \times E(\mathbb{Q}) \to E(\mathbb{Q}) \cup \{ \text{ TYPE ERROR, RANGE ERROR} \}$ in the following manner:

- Given $P := (x_1, y_1)$ and $Q := (x_2, y_2) \in E(\mathbb{Q})$ as inputs.
- If $P \neq Q$ then let ℓ be the line joining P and Q and if P = Q then let ℓ be the tangent to the curve E at the point P.
- If ℓ does not intersect the curve at a new point, output RANGE ERROR.
- If ℓ intersects the curve again at a new point S, but $S \notin E(\mathbb{Q})$, output TYPE ERROR.
- If ℓ intersects the curve again at a new point, say $S \in E(\mathbb{Q})$ with coordinates (x_3, y_3) , then the value of $P \star Q$ is defined to be $(x_3, -y_3)$, a point named R.

Fill in the blanks:

For any choice of inputs in $E(\mathbb{Q})$, \star will never result in a ____.

Is the following statement true?

$$P \star Q = Q \star P$$
, for all $P, Q \in E(\mathbb{Q})$.

Additionally, compute the value of $(-1,1) \star (0,0)$, $(2,2) \star (2,2)$, and $(2,2) \star (-1,-1)$.

1.2 Answer

1.2.1 Assertion One

For any choice of inputs in $E(\mathbb{Q})$, \star will never result in an TYPE ERROR: TRUE

CASE ONE: $x_1 \neq x_2$

Let $(x_1, y_1), (x_2, y_2) \in E(\mathbb{Q})$, the equation of the line ℓ that contains (x_1, y_1) and (x_2, y_2) is:

$$\ell := y = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1) + y_1$$

We can rewrite this equation into the y = mx + c form by setting $m := \left(\frac{y_2 - y_1}{x_2 - x_1}\right)$ and $c := y_1 - \left(\frac{y_2 - y_1}{x_2 - x_1}\right)x_1$. Note that both m and c are rational numbers.

To compute the new intersection point, we can solve the following cubic:

$$(mx+c)^2 = x^3 - 2x$$

We already know two roots to this cubic, namely : x_1 and x_2 .

Using Vieta's formula, we obtain a new rational root $m^2 - x_1 - x_2$.

Plugging this value back in the equation of ℓ , we find that $(x_1, y_1) \star (x_2, y_2) \in E(\mathbb{Q})$.

CASE TWO: $x_1 = x_2 \text{ and } y_1 = y_2$

The line joining these two points is the tangent to the curve at (x_1, y_1) .

The slope of the tangent can be computed by differentiating the curve with respect to x:

$$\ell := y = \left(\frac{3x_1^2 - 2}{2y_1}\right)(x - x_1) + y_1$$

If y = 0, the tangent has an infinite slope and thus it intersects the curve at 1 point alone. This results in a RANGE ERROR.

If not, we can use the earlier method to find a new rational root to the cubic polynomial. Thus $(x_1, y_1) \star (x_1, y_1) \in E(\mathbb{Q})$

CASE THREE: $x_1 = x_2$ and $y_1 \neq y_2$

If $y_1 \neq y_2$ and $(x_1, y_1), (x_2, y_2) \in E(\mathbb{Q})$ then $y_1 = -y_2$.

Observe that the line ℓ joining these two points has an infinite slope and thus intersects the curve at 2 points alone, this results in a RANGE ERROR.

1.2.2 Assertion Two

It is not possible for * to produce a RANGE ERROR : FALSE

Consider $(-1,1) \star (-1,-1)$, the line joining these two points will have an infinite slope. This is an instance of a RANGE ERROR.

1.2.3 Assertion Three

$$P \star Q = Q \star P$$
, for all $P, Q \in E(\mathbb{Q})$: **TRUE**

Observe that the new point P depends on the line ℓ that joins the two points (x_1, y_1) and (x_2, y_2) . The order in which the inputs are fed to \star does not matter here, as the line ℓ will be identical.

1.2.4 Computation related

$$(-1,1) \star (0,0) = (2,2)$$

The line ℓ joining (-1,1) and (0,0) is y=-x.

To find the next intersection point, we must solve the cubic $x^3 - x^2 - 2x = 0$.

Observe that this cubic factors into x(x+1)(x-2) - the other root is 2.

Thus ℓ intersects the curve again at (2,-2) and hence $(-1,1) \star (0,0) = (2,2)$.

$$(2,2) \star (2,2) = \left(\frac{9}{4}, -\frac{21}{8}\right)$$

The line ℓ is the tangent to the curve E at (2,2).

The slope of the tangent can be computed using the earlier formula : $\frac{5}{2}$.

We can compute the new x-coordinate $\frac{25}{4} - 2 - 2 = \frac{9}{4}$. Thus the new point is $\left(\frac{9}{4}, -\frac{21}{8}\right)$

$$(2,2) \star (-1,-1) = (0,0)$$

The line ℓ joining (-1, -1) and (2, 2) is y = x.

The new x-coordinate is 1-2-(-1)=0 and thus the new y-coordinate is 0.

1.3 Additional

- A video about Elliptic Curves and their connection to Fermat's Last Theorem.
- An animation that illustrates \star on the curve $y^2 = x^3 4x + 1$ by John Voight, Dartmouth College.

Braid Group Actions 2

2.1Questions

Let S_3 be the symmetric group on the symbols $\{1, 2, 3\}$.

Let $\mathbb{X} := S_3 \times S_3$ and define a group action $\alpha : \mathbb{Z} \times \mathbb{X} \to \mathbb{X}$ as $\alpha(1, (g, h)) \mapsto (h, h^{-1}gh)$. Answer the following:

- $\alpha \Big(-1, (h, h^{-1}gh) \Big) = (a, b)$
- Let $p \in \mathbb{X}$ be ((1,2),(1,3)), What positive value of d satisfies $\mathrm{Stab}(p) = d\mathbb{Z}$?
- The largest orbit has the cardinality : ____

2.2Answer

Compute related 2.2.1

We have $\alpha(0,(g,h)) = (g,h)$.

Recall that group actions are compatible with group operations. Thus
$$\alpha \left(-1+1,(g,h)\right) = \alpha \left(-1,\alpha \left(1,(g,h)\right)\right)$$

This evaluates to $\alpha \Big(-1,(h,h^{-1}gh)\Big)=(g,h).$

2.2.2 Stabilizer

The orbit of $((1,2),(1,3)) = \{((1,2),(1,3)),((1,3),(2,3)),((2,3),(1,2))\}.$

From orbit-stabilizer theorem, the index of the stabilizer is 3.

2.2.3 Fill in the blank

The largest orbit has a cardinality of: 4

On manually computing all orbits, we observe that orbits have sizes of 1, 2, 3 and 4. The orbit of ((1,3,2),(1,2)) is:

$$\left\{ \Big((1,3,2), (1,2) \Big), \Big((1,2,3), (1,3) \Big), \Big((1,2), (1,2,3) \Big), \Big((1,3), (1,3,2) \Big) \right\}$$

3 Direct Limit

3.1 Question

Let S_{∞} be the set of all bijections $f: \mathbb{N} \to \mathbb{N}$. Observe that S_{∞} forms a group under composition.

Let U be any subset of \mathbb{N} define $Fix(U) := \{ f \in S_{\infty} \mid f(n) = n \text{ for all } n \in U \}$. For each $n \in \mathbb{N}$, define $S_n := Fix(\{ j \in \mathbb{N} \mid j > n \})$

Which of the following are true:

- $\bigcup_{n>0} S_n$ is a normal subgroup of S_{∞}
- For every $i \in \mathbb{N}$, $\operatorname{Fix} \Big(\{i\}\Big)$ is a subgroup of S_{∞}
- For any two non-empty subsets U,V of \mathbb{N} , there exists a subset W of \mathbb{N} such that: $\mathtt{Fix}(U) \cap \mathtt{Fix}(V) = \mathtt{Fix}(W)$.
- For any two non-empty subsets U, V of \mathbb{N} , there exists a subset W of \mathbb{N} such that: $Fix(U) \bigcup Fix(V) = Fix(W)$.

3.2 Answer

3.2.1 Key

- $\bigcup_{n>0} S_n$ is a normal subgroup of S_{∞} . TRUE
- For every $i \in \mathbb{N}$, $Fix(\{i\})$ is a subgroup of S_{∞} . **TRUE**
- For any two non-empty subsets U, V of \mathbb{N} , there exists a subset W of \mathbb{N} such that: $Fix(U) \cap Fix(V) = Fix(W)$. **TRUE**
- For any two non-empty subsets U, V of \mathbb{N} , there exists a subset W of \mathbb{N} such that: $Fix(U) \cup Fix(V) = Fix(W)$. **FALSE**

3.2.2 Normal subgroup

 $\operatorname{Claim}: \bigcup_{n>0} S_n$ is a subgroup of S_∞

Let f, g be two bijections in $\bigcup_{n>0} S_n$. Then $f \in S_{m_1}$ and $g \in S_{m_2}$ for some $m_1, m_2 \in \mathbb{N}$.

Without loss of generality, we may assume $m_1 \ge m_2$. By construction, $f \circ g^{-1}(i) = i$ for all $i > m_1$. Hence $f \circ g^{-1} \in S_{m_1}$.

As a result $f \circ g^{-1} \in \bigcup_{n>0} S_n$. Thus, $\bigcup_{n>0} S_n$ satisfies the subgroup test.

 $Claim: \bigcup_{n>0} S_n$ is normal

It suffices to show $g \circ f \circ g^{-1} \in \bigcup_{n>0} S_n$ for all $g \in S_{\infty}$ and $f \in \bigcup_{n>0} S_n$.

Let g be any bijection in S_{∞} , we have $g \circ g^{-1}(i) = i$ for all $i \in \mathbb{N}$.

Let f be an element in $\bigcup_{n>0} S_n$, then $f \in S_m$ for some $m \in \mathbb{N}$.

Since f is an element in S_m , f(i) = i for all i > m.

As a result, $g \circ f \circ g^{-1}(i) = i$ for all $g^{-1}(i) > m$.

This means the finite set of values $\operatorname{Disp}(f) := \{g(i) \mid 1 \leq i \leq m\}$ are mapped to another value. Set $n_{fg} := MAX(Disp(f)) + 1$.

Thus $g \circ f \circ g^{-1} \in S_{n_{f}g}$ and hence $g \circ f \circ g^{-1} \in \bigcup_{n > 0} S_n$

3.2.3 A Fix to the subgroup problem

Let f, g be any two elements in $Fix(\{i\})$.

Observe that, $f \circ g^{-1}(i) = f(i) = i$.

Thus $f \circ g^{-1} \in \text{Fix}(\{i\})$.

3.2.4 Closure properties

Intersection

Let U, V be non-empty subsets of \mathbb{N} .

$$\mathtt{Fix}(U) \cap \mathtt{Fix}(V) = \{ f \in S_{\infty} \mid f(n) = n \text{ for all } n \in U \} \cap \{ f \in S_{\infty} \mid f(n) = n \text{ for all } n \in V \}.$$

Bijections that lie in the intersection must fix both U and V, thus:

$$\begin{aligned} \operatorname{Fix}(U) \bigcap \operatorname{Fix}(V) &= \{ f \in S_{\infty} \mid f(n) = n \text{ for all } n \in U \cup V \}. \\ \operatorname{Set} W &:= U \cup V. \end{aligned}$$

Union

Consider the instance $U := \{1\}$ and $V := \{2\}$.

Fix(U) contains the bijection:

$$f(x) := \begin{cases} 1 & x = 1\\ x+1 & x \text{ is even and } x > 1\\ x-1 & x \text{ is odd and } x > 1 \end{cases}$$

Fix(V) contains the bijection:

$$g(x) := \begin{cases} 3 & x = 1\\ 2 & x = 2\\ 1 & x = 3\\ x+1 & x \text{ is even and } x > 3\\ x-1 & x \text{ is odd and } x > 3 \end{cases}$$

Both f and g are bijections in the set $Fix(U) \cup Fix(V)$.

Suppose these exists a non-empty subset of \mathbb{N} that is a candidate for W.

We note that f fixes 1 alone, no other elements are fixed.

Similarly, g fixes nothing but 2.

Thus W cannot contain any element in \mathbb{N} , else it will exclude f or g or both!

The only possible candidate for W is the empty set ϕ .

Observe that this bijection is not in $Fix(U) \cup Fix(V)$ but is in $Fix(\phi)$:

$$h(x) := \begin{cases} 2 & x = 1 \\ 1 & x = 2 \\ x & x \ge 3 \end{cases}$$

Thus, there is no subset of \mathbb{N} that satisfies this statement.

3.3 Additional

If U is countably infinite, is it true that Fix(U) is either finite or countably infinite?