REDMON

ROSS

SANTOSH

ALI

GIRSHICK DIVVALA

FARHADI

"You ONLY LOOK ONCE"

REAL-TIME DETECTION

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

1/₃ Mile, 1760 feet

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img

176 feet

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	63.4	45 FPS	22 ms/img

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	69.0	45 FPS	22 ms/img

DPM: Deformable Part Models

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

4. Classify regions

Sliding window, DPM, R-CNN all train region-based classifiers to perform detection

DPM: Deformable Part Models

R-CNN: Regions with CNN features

With YOLO, you only look once at an image to perform detection

We split the image into a grid

Each cell also predicts a class probability.

Each cell also predicts a class probability.

Bicycle Car Dog Dining **Table**

Conditioned on object: P(Car | Object)

Then we combine the box and class predictions.

Finally we do NMS and threshold detections

This parameterization fixes the output size

Each cell predicts:

- For each bounding box:
 - 4 coordinates (x, y, w, h)
 - 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

 $7 \times 7 \times (2 \times 5 + 20) = 7 \times 7 \times 30 \text{ tensor} = 1470 \text{ outputs}$

Thus we can train one neural network to be a whole detection pipeline

During training, match example to the right cell

During training, match example to the right cell

Adjust that cell's class prediction

Dog = 1 Cat = 0 Bike = 0

•••

Look at that cell's predicted boxes

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Decrease the confidence of other boxes

Decrease the confidence of other boxes

Some cells don't have any ground truth detections!

Some cells don't have any ground truth detections!

Decrease the confidence of these boxes

Decrease the confidence of these boxes

Don't adjust the class probabilities or coordinates

We train with standard tricks:

- Pretraining on Imagenet
- SGD with decreasing learning rate
- Extensive data augmentation
- For details, see the paper

YOLO works across a variety of natural images

It also generalizes well to new domains (like art)

YOLO outperforms methods like DPM and R-CNN when generalizing to person detection in artwork

	VOC 2007	Picasso		People-Art
	AP	AP	Best F_1	AP
YOLO	59.2	53.3	0.590	45
R-CNN	54.2	10.4	0.226	26
DPM	43.2	37.8	0.458	32

H. Cai, Q. Wu, T. Corradi, and P. Hall. The cross-depiction problem: Computer vision algorithms for recognising objects in artwork and in photographs.

S. Ginosar, D. Haas, T. Brown, and J. Malik. Detecting people in cubist art. In Computer Vision-ECCV 2014 Workshops, pages 101–116. Springer, 2014.

Code available! <u>pjreddie.com/yolo</u>

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	69.0	45 FPS	22 ms/img

