

Comparing train and test errors

Varying complexity: validation curves

Varying the sample size: learning curves

Goal: understand the overfitting/underfitting trade-off

Train vs test errors

Measure:

- errors on test data (generalization)
- errors on the train data

• Fitted degree 1 poly.

- Fitted degree 1 poly.
 - Fitted degree 2 poly.

Learning curves

Bayes error rate

The error of the best model trained on unlimited data.

Here, the data-generating process is a degree-9 polynomial

We cannot do better

Predictions limited by noise

Model families

Crucial to match:

- statistical model
- data-generating process

So far: polynomials for both

Some family names: linear models, decision trees, random forests, kernel machines, multi-layer perceptrons

Different model families

- Different "inductive bias"
- Different notion of "complexity"

Different model families

← regularization ←

Main takeaways

Models overfit:

- number of examples in the training set is too small
- testing error is much bigger than training error

Models underfit:

- models fail to capture the shape of the training set
- even the training error is large

Different model families = different complexity & inductive bias

