Přestup a prostup tepla Vzorce a konstanty

1. Základní mechanismy přenosu tepla

Vedení tepla - Fourierův zákon

$$\dot{Q} = -\lambda A \frac{dT}{dx} = \frac{\lambda A \Delta T}{d}$$

Kde:

 \dot{Q} - tepelný tok [W]

 λ - tepelná vodivost [W/(m·K)]

A - plocha kolmá na směr toku tepla [m²]

d - tloušťka vrstvy [m]

 ΔT - teplotní rozdíl [K]

Konvekce - Newtonův zákon ochlazování

$$\dot{Q} = hA(T_s - T_f)$$

Kde:

 \dot{Q} - tepelný tok [W]

 $h - součinitel\ přestupu\ tepla\ [W/(m^2\cdot K)]$

A - plocha teplosměnné plochy [m²]

 T_s - teplota povrchu [K]

 T_f - teplota tekutiny [K]

Sálání - Stefan-Boltzmannův zákon

$$\dot{Q} = \varepsilon \sigma A (T_1^4 - T_2^4)$$

Kde:

 \dot{Q} - tepelný tok [W]

ε - emisivita povrchu [-]

 σ - Stefan-Boltzmannova konstanta = 5.67×10⁻⁸ [W/(m²·K⁴)]

A - $plocha [m^2]$

 T_1 , T_2 - absolutní teploty [K]

2. Prostup tepla vícevrstvými konstrukcemi

Tepelný odpor vrstvy

$$R = \frac{d}{\lambda}$$

Kde:

R - tepelný odpor $\lceil m^2 \cdot K/W \rceil$

d - tloušťka vrstvy [m]

 λ - tepelná vodivost [W/(m·K)]

Celkový tepelný odpor (sériové řazení)

$$R_{celk} = R_1 + R_2 + R_3 + \ldots = \sum_{i=1}^n \frac{d_i}{\lambda_i}$$

Pro vícevrstvou stěnu s n vrstvami

Součinitel prostupu tepla

$$U = rac{1}{R_{celk}}$$
 nebo $rac{1}{U} = rac{1}{lpha_1} + \sum_{i=1}^n rac{d_i}{\lambda_i} + rac{1}{lpha_2}$

Kde:

U - součinitel prostupu tepla $[W/(m^2 \cdot K)]$

 $\alpha_{l},\,\alpha_{2}$ - součinitele přestupu tepla na površích [W/(m²·K)]

Tepelný tok vícevrstvou stěnou

$$\dot{Q} = UA\Delta T = rac{A\Delta T}{R_{celk}}$$

3. Válcové konstrukce (potrubí)

Tepelný odpor válcové vrstvy (na jednotku délky)

$$R' = rac{\ln(r_o/r_i)}{2\pi\lambda}$$

Kde:

R' - tepelný odpor na jednotku délky [m·K/W]

 r_o - vnější poloměr [m]

 r_i - vnitřní poloměr [m]

 λ - tepelná vodivost [W/(m·K)]

Tepelný tok válcovým potrubím (na jednotku délky)

$$\dot{q} = \frac{\Delta T}{R'_{celk}} = \frac{2\pi\Delta T}{\frac{1}{\alpha_i r_i} + \sum \frac{\ln(r_{o,j}/r_{i,j})}{\lambda_j} + \frac{1}{\alpha_o r_o}}$$

q - tepelný tok na jednotku délky [W/m]

4. Výměníky tepla

Základní rovnice výměníku

$$\dot{Q} = UA\Delta T_{log}$$

 ΔT_{log} - logaritmický střední teplotní rozdíl [K]

Logaritmický teplotní rozdíl

$$\Delta T_{log} = rac{\Delta T_{max} - \Delta T_{min}}{\ln(\Delta T_{max}/\Delta T_{min})}$$

Pro souproud:

$$\Delta T_{max} = T_{h,in} - T_{c,in}$$

$$\Delta T_{min} = T_{h,out} - T_{c,out}$$

Pro protiproud:

$$\Delta T_{max} = T_{h,in} - T_{c,out}$$

$$\Delta T_{min} = T_{h,out} - T_{c,in}$$

Energetická bilance výměníku

$$\dot{Q}=\dot{m}_h c_{p,h}(T_{h,in}-T_{h,out})=\dot{m}_c c_{p,c}(T_{c,out}-T_{c,in})$$

5. Fyzikální konstanty

Konstanta	Symbol	Hodnota	Jednotka
Stefan-Boltzmannova konstanta	σ	5.67×10^{-8}	W/(m ² ·K ⁴)
Absolutní nula	T ₀	-273.15	°C
Převod: °C → K	T[K]	T[°C] + 273.15	K

6. Typické hodnoty součinitelů přestupu tepla

Typ přenosu	Médium	h [W/(m²·K)]
Přirozená konvekce	Vzduch	3 - 15
Nucená konvekce	Vzduch (v = 5-20 m/s)	20 - 100
Nucená konvekce	Voda (laminární)	500 - 1500
Nucená konvekce	Voda (turbulentní)	1500 - 5000
Var vody	Nukleátní vření	3000 - 10000
Kondenzace páry	Na vertikální stěně	5000 - 15000

Poznámka: Uvedené hodnoty jsou orientační a závisí na konkrétních podmínkách (teplota, tlak, rychlost proudění, geometrie).

7. Praktické postupy výpočtů

Postup výpočtu prostupu tepla stěnou:

- 1. Identifikujte všechny vrstvy a jejich vlastnosti (d, λ)
- 2. Vypočítajte tepelný odpor každé vrstvy: $R_i = d_i/\lambda_i$
- 3. Sečtěte všechny odpory: $R_{celk} = \Sigma R_i$
- 4. Vypočítajte součinitel prostupu: $U = 1/R_{celk}$
- 5. Vypočítajte tepelný tok: $\dot{Q} = U \times A \times \Delta T$

Postup návrhu výměníku tepla:

- 1. Stanovte požadovaný tepelný výkon Q
- 2. Určete teplotní podmínky (vstupní/výstupní teploty)
- 3. Vypočítajte logaritmický teplotní rozdíl ΔT_{log}
- 4. Odhadněte celkový součinitel prostupu tepla U
- 5. Vypočítajte potřebnou plochu: $A = \dot{Q}/(U \times \Delta T_{log})$

8. Jednotky a převody

Veličina	Jednotka SI	Další běžné jednotky	Převodní vztahy
Tepelný tok	W	kW, cal/s, Btu/h	1 kW = 1000 W 1 Btu/h = 0.293 W
Tepelná vodivost	W/(m·K)	kcal/(h·m·°C)	$1 \text{ kcal/}(\text{h} \cdot \text{m} \cdot ^{\circ}\text{C}) = 1.163 \text{ W/}(\text{m} \cdot \text{K})$
Součinitel prostupu	W/(m²·K)	kcal/(h·m²·°C)	1 kcal/(h·m²·°C) = 1.163 W/(m²·K)
Tepelný odpor	m²·K/W	h·m²·°C/kcal	$1 \text{ h·m}^2 \cdot \text{°C/kcal} = 0.86 \text{ m}^2 \cdot \text{K/W}$

Upozornění: Při výpočtech vždy používejte jednotky SI pro konzistentní výsledky. Teploty v termodynamických výpočtech uvádějte v Kelvinech.