

Eletrônica Digital I

- Aula 12 -

Professora: Ma. Luciana Menezes Xavier de Souza e-mail: luciana.xavier@ifsc.edu.br

Conteúdo

- Mapa de Karnaugh;
- Exercícios.

Formas Canônicas de Expressões Lógicas

• Soma de produtos (SOP): consiste em dois ou mais termos AND conectados por uma operação OR. Observe que em uma expressão na forma de soma-deprodutos, um sinal de inversão (barra) não pode cobrir mais que uma variável em um termo (por exemplo, não poderíamos ter \overline{ABC} ou $\overline{RS}T$).

Exemplo:

$$X = ABC + \bar{A}B\bar{C}$$

• Produto de somas (POS): consiste em dois ou mais termos OR conectados por operações AND. As variáveis podem estar complementadas, porém nunca com barras sobre mais de uma variável.

Exemplo:

$$X = (A + \overline{B} + C)(\overline{A} + \overline{B} + C)(A + B + \overline{C})$$

- Para cada linha da tabela verdade de um circuito lógico, pode ser associado um mintermo e um maxtermo correspondente.
- Mintermo: <u>produto</u> de variáveis não repetidas. Para n variáveis, tem-se 2^n mintermos. Obtido pelo produto das entradas que resultam em <u>nível alto</u>.
- Maxtermo: <u>soma</u> de variáveis não repetidas. Para n variáveis, tem-se 2^n maxtermos. Obtido pela soma das entradas que resultam em <u>nível baixo</u>.

LINHA	Α	В	С	MINTERMO	MAXTERMO
0	0	0	0	$\overline{A} \cdot \overline{B} \cdot \overline{C}$	A+B+C
1	0	0	1	$\overline{A} \cdot \overline{B} \cdot C$	$A+B+\overline{C}$
2	0	1	0	$\overline{A} \cdot B \cdot \overline{C}$	$A + \overline{B} + C$
3	0	1	1	$\overline{A} \cdot B \cdot C$	$A + \overline{B} + \overline{C}$
4	1	0	0	$A \cdot \overline{B} \cdot \overline{C}$	$\overline{A} + B + C$
5	1	0	1	$A \cdot \overline{B} \cdot C$	$\overline{A} + B + \overline{C}$
6	1	1	0	$A \cdot B \cdot \overline{C}$	$\overline{A} + \overline{B} + C$
7	1	1	1	$A \cdot B \cdot C$	$\overline{A} + \overline{B} + \overline{C}$

- Soma canônica: soma dos mintermos de uma função lógica das linhas de sua tabela verdade que resultam em nível alto.
- **Produto canônico**: produto dos maxtermos de uma função lógica das linhas de sua tabela verdade que resultam em nível baixo.

Exemplo: Obtenha a função lógica da tabela verdade abaixo usando a soma canônica e o produto canônico.

Mintermos:

$$S = \sum_{A,B,C} (0,3,4,6,7) = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

Maxtermos:

$$S = \prod_{A,B,C} (1,2,5) = (A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+\overline{C})$$

A	В	С	S
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Exemplo. Projetar um circuito com três entradas A, B e C, cuja saída seja nível alto quando a maioria das entradas for nível alto.

Passo 1: escrever a tabela verdade do circuito.

Passo 2: escrever a soma canônica.

$$S = \sum_{A,B,C} (3,5,6,7) = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

Passo 3: simplificar a expressão algébrica encontrada.

$$S = \overline{A}BC + ABC + A\overline{B}C + ABC + AB\overline{C} + ABC$$

$$S = BC(\overline{A} + A) + AC(\overline{B} + B) + AB(\overline{C} + C)$$

$$S = BC(1) + AC(1) + AB(1)$$

$$S = BC + AC + AB$$

Exemplo. Projetar um circuito com três entradas A, B e C, cuja saída seja nível alto quando a maioria das entradas for nível alto.

Passo 4: implementar o circuito.

Apesar de se atingir os resultados esperados, corre-se o risco:

- Não simplificar a função adequadamente, ou pior ainda, pode-se cometer erros nas simplificações.
- O método de leitura por "Mapas de Karnaugh" elimina esses problemas, visto que a leitura já é dada na forma mais simplificada possível.

Mapa de Karnaugh (Mapa K)

- Método gráfico para simplificação (e projeto) de circuitos combinacionais. **Encontra-** se a expressão lógica mais simplificada possível.
- Uma função com N variáveis é representada como um mapa de 2^N células, uma para cada possível combinação das entradas.
- Cada célula difere da adjacente por um bit somente (código Gray).

Exemplo. Monte o mapa K da lista de mintermos:

• Pode-se simplificar as funções pela combinação de conjuntos de 2^i células 1^i adjacentes.

	\overline{C}	\boldsymbol{C}
$\overline{A}\overline{B}$	1	1
$\overline{A}B$	1	0
AB	1	0
$A\overline{B}$	0	0

• A função simplificada é a soma dos termos produtos que foram combinados.

• O mapa K é duplamente cilíndrico, ou seja, as células também são adjacentes nos cantos.

$$S = \overline{A}\overline{B} + B\overline{C}$$

• Para funções com quatro variáveis, tem-se um mapa K da seguinte forma:

D 61	<u>-</u> -	<u></u>		S	D	С	В	A
D CI	$\overline{C}D$	\overline{CD}		0	0	0	0	0
0	1	0	$\overline{A}\overline{B}$	1	1	0	0	0
0	1	0	$\overline{A}B$	0	0	1	0	0
1	1	0	AB	0	1	1	0	0
0 (0	0	$A \overline{B}$	0	0	0	1	0
				1	1	0	1	0
				0	0	1	1	0
1 11	01	00		0	1	1	1	0
0	1		00	0	0	0	0	1
			L	0	1	0	0	1
0				0	0	1	0	1
1	1	0	11 [
0	0	0	10					
				1	1	0	1	1
				0	0	1	1	1
				1	1	1	1	1
	1 1 1	0 0 0 0 0 0	00 [01	0 0 0 0 0 0 1	1 0 1 0 1 0 1	1 0 0 1 1 0 0	1 0 0 0 0 1 1 1	0 1 1 1 1 1 1

 $C\overline{D}$

10

	Casos	Α	В	C	D				•
ľ	0	0	0	0	0				
	1	()	0	0	1				
	2	()	()	1	()	₹	1 6		
	3	()	()	1	1		C		
	4	()	1	()	()	Caso 0 Caso 0 0 0 0 0 0		Caso 2 0 0 1 0	_
	5	()	1	()	1	A B C D A B C	DABCD	$\begin{array}{c} 0 & 0 & 1 & 0 \\ \overline{A} & \overline{B} & C & \overline{D} \end{array}$	В
	6	0	1	1	0	Caso 4 Caso 9	Caso 7	Caso 6 0 1 1 0	
-	7	()	1	1	1	ABCDABC		ĀBCD	В
	8	1	()	0	0	Caso 12 Caso 1		Caso 14	Ь
	9	1	()	()	1	1 1 0 0 1 1 0 A B C D A B C		1 1 1 0 A B C D	
	10	1	0	1	0	A Caso 8 Caso	Caso 11	Caso 10	
	11	1	0	1	1	1 0 0 0 1 0 0 A B C D A B C	1 1 0 1 1 D A B C D	1 0 1 0 A B C D	B
	12	1	1	0	O			D	
0	13	1	1	0	1	Δ	D	ΙD	
~ •	14	1	1	1	0				
.	15	1	1	1	1				

Mapa K

- A tabela-verdade fornece o valor da saída X para cada combinação de valores de entrada. O mapa K fornece a mesma informação em um formato diferente.
- Cada linha na tabela-verdade corresponde a um quadrado no mapa K.
- A condição A = 0, B = 0 na tabela-verdade corresponde ao quadrado $\bar{A}\bar{B}$ no mapa K.
- A condição A = 1, B = 1 na tabela-verdade corresponde ao quadrado AB no mapa K. Visto que X = 1 nesse caso, um 1 é colocado no quadrado AB.
- Todos os outros quadrados são preenchidos com 0s.

Α	В	X	
0	0	$1 \rightarrow \overline{A}\overline{B}$	
0	1	0	
1	0	0	
1	1	$1 \rightarrow AB$	

	B	В
Ā	1	0
Α	0	1

Mapa K, 3 variáveis (SEM SIMPLIFICAR)

 Os quadrados do mapa K são nomeados de modo que quadrados adjacentes horizontalmente difiram apenas em uma variável.

Λ	D	_	V		С	С
0 0	0 0	0 1	$ \begin{array}{c} X \\ 1 \to \overline{ABC} \\ 1 \to \overline{ABC} \end{array} $	ĀB	1	1
0	1	0	$ \begin{array}{ccc} 1 \rightarrow \overline{ABC} \\ 1 \rightarrow \overline{ABC} \\ 0 & X = \overline{ABC} + \overline{ABC} \end{array} $	ĀBC	1	0
1 1	0	0 1	0 + \(\overline{A}B\overline{C} + \(A \overline{A}B\overline{C}		1	0
1	1	0	1 → ABC 0	$A \overline{B}$	0	0

Mapa K, 4 variáveis (SEM SIMPLIFICAR)

										_ /_ (
Α	В	С	D	X						
0	0	0	0	0						
0	0	0	1	$1 \rightarrow \overline{A}\overline{B}\overline{C}D$			$\overline{C}\overline{D}$	CD	CD	$C\overline{D}$
0	0	1	0	0						
0	0	1	1	0		$\overline{A}\overline{B}$	0	1	0	0
0	1	0	0	0		710	U	'	U	
0	1	0	1	$1 \rightarrow \overline{A}B\overline{C}D$		_				
0	1	1	0	0		$\overline{A}B$	0	1	0	0
0	1	1	1	0						
1	0	0	0	0	$X = \overline{ABCD} + \overline{ABCD}$	AB	0	4	-1	0
1	0	0	1	0	$+ AB\overline{C}D + ABCD$	AD	U	'	'	0
1	0	1	0	0						
_1	0	1	1	0		$A\overline{B}$	0	0	0	0
1	1	0	0	0						
/ 1	1	0	1	$1 \rightarrow AB\overline{C}D$						
1	1	1	0	0						

- A expressão para a saída X pode ser simplificada combinando adequadamente os quadros do mapa K que contêm 1.
- O processo de combinação desses 1s é denominado agrupamento.

- Esse mapa contém um par de 1s adjacentes verticalmente; o primeiro representa ABC e o segundo, ABC.
- Observe que nesses dois termos a variável A aparece na forma normal e complementada (invertida);
- B e C permanecem inalteradas.
- Esses dois termos podem ser agrupados (combinados) resultando na eliminação da variável A, visto que ela aparece nos dois termos nas formas complementada e não complementada.

$$X = \overline{A}B\overline{C} + AB\overline{C}$$
$$= B\overline{C}$$

- O mesmo do anterior acontece nesta versão, agora na horizontal
- Esses dois 1s podem ser agrupados eliminando a variável C, visto que ela aparece nas formas complementada e não complementada, resultando em $X = \overline{A}B$.

• Nesse mapa K, as linhas superior e inferior de quadros são consideradas adjacentes. Assim, os dois 1s nesse mapa podem ser agrupados, gerando como resultado $X = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} = \overline{B}\overline{C}$.

REGRA: Agrupando um par de 1s adjacentes em um mapa K, elimina-se a variável que aparece nas formas complementada e não complementada.

	$\bar{C}\bar{D}$	$\overline{C}D$	CD	$C\overline{D}$	_ ĀBC
ĀB	0	0	1	1	ABC
ĀB	0	0	0	0	$X = \overline{ABCD} + \overline{ABCD}$ $+ \overline{ABCD} + \overline{ABCD}$
AB	0	0	0	0	$= \overline{ABC} + \overline{ABD}$
ΑB	1	0	0	1	>
					ABD

Agrupamento de quatro quadros (quartetos)

- Um mapa K pode conter um grupo de quatro 1s adjacentes entre si.
 Denominado de quarteto.
- Quando um quarteto é agrupado, o termo resultante conterá apenas as variáveis que não alteram a forma considerando todos os quadros 1s do quarteto.

	C	С
ĀB	0	1
ĀB	0	1
AB	0	1
ΑB	0	1
,		X = C

	CD	_ CD	CD	CD	
ĀB	0	0	0	0	
AB	0	0	0	0	
AB	1	1	1	1	
ΑB	0	0	0	0	
X = AB					

 Quando um quarteto é agrupado, o termo resultante conterá apenas as variáveis que não alteram a forma considerando todos os quadros 1s do quarteto.

	ĊΩ	СD	CD	CD	
ĀB	0	0	0	0	
ĀB	0	1	1	0	
ΑВ	0	1	1	0	
ΑB	0	0	0	0	
	X = BD				

	ΖD	СD	CD	CD	
ĀB	0	0	0	0	
ĀB	0	0	0	0	
AB	1	0	0	1	
ΑB	1	0	0	1	
$X = A\overline{D}$					

Agrupamento de 8 quadros (octetos)

- Um grupo de oito 1s adjacentes entre si é denominado octeto.
- Quando um octeto é agrupado em um mapa de quatro variáveis, três são eliminadas, porque apenas uma variável permanece inalterada.

	CD	CD	CD	CD
ĀB	0	0	0	0
ĀB	1	1	1	1
AB	1	1	1	1
$A\overline{B}$	0	0	þ	0

X = B

	CD	CD	CD	CD
ĀB	1	1	0	0
ĀB	1	1	0	0
AB	1	1	0	0
ΑB	1	1	0	0

X = C

Agrupamento de 8 quadros (octetos)

- Um grupo de oito 1s adjacentes entre si é denominado octeto.
- Quando um octeto é agrupado em um mapa de quatro variáveis, três são eliminadas, porque apenas uma variável permanece inalterada.

	CD	CD	CD	CD
ĀB	0	0	0	0
ĀB	1	1	1	1
AB	1	1	1	1
$A\overline{B}$	0	0	þ	0

X = B

	CD	CD	CD	CD
ĀB	1	1	0	0
ĀB	1	1	0	0
AB	1	1	0	0
ΑB	1	1	0	0

X = C

Agrupando um octeto de 1s adjacentes, eliminam-se três variáveis que aparecem nas formas complementada e não complementada.

١	CD	СD	CD	CD
$\overline{A}\overline{B}$	1	1	1	1
ĀB	0	0	0	0
AB	0	0	0	0
$A\overline{B}$	1	1	1	1
$X = \overline{B}$				

	$\overline{C}\overline{D}$	CD	CD	CD	
ĀB	1	0	0	1	
ĀB	1	0	0	1	
AB	1	0	0	1	
ΑB	1	0	0	1	
$X = \overline{D}$					

Processo completo de simplificação

Quando uma variável aparece nas formas <u>complementada e não</u> <u>complementada</u> em um agrupamento, tal <u>variável é eliminada da</u> <u>expressão</u>. As variáveis que não se alteram para todos os quadros do agrupamento têm de permanecer na expressão final.

Deve ficar claro que um grupo maior de 1s elimina mais variáveis.

Agrupamento total

	ŪŪ	ĒD	CD	$C\overline{\mathrm{D}}$
ĀB	1	1	1	1
ĀB	1	1	1	1
AB	1	1	1	1
$A\overline{B}$	1	1	1	1

Processo completo de simplificação

Passo 1: Construa o mapa K e coloque os 1s nos quadros que correspondem aos 1s na tabela-verdade. Coloque 0s nos outros quadros.

Passo 2: Analise o mapa quanto aos 1s adjacentes e agrupe os 1s que *não* sejam adjacentes a quaisquer outros 1s. Esses são denominados 1s *isolados*.

Passo 3: Em seguida, procure os 1s que são adjacentes a somente um outro 1. Agrupe *todo* par que contém tal 1.

Passo 4: Agrupe qualquer octeto, mesmo que contenha alguns 1s que já tenham sido agrupados.

Passo 5: Agrupe qualquer quarteto que contenha um ou mais 1s que ainda não tenham sido agrupados, *certificando-se de usar o menor número de agrupamentos*.

Passo 6: Agrupe quaisquer pares necessários para incluir 1s que ainda não tenham sido agrupados, *certificando-se de usar o menor número de agrupamentos*.

Passo 7: Forme a soma OR de todos os termos gerados por cada grupo.

A Figura mostra um mapa K para um problema de quatro variáveis. Faça a simplificação para reduzir o mapa K a uma expressão soma-de-produtos.

	$\bar{C}\bar{D}$	СD	CD	$C\overline{D}$
ĀB	0	0 2	0 3	1,4
ĀB	0 5	1 6	1 7	0 8
AB	0 9	1 10	1	0
$A\overline{B}$	0	0	1	0

$$X = \overline{ABCD} + \underline{ACD} + \underline{BD}$$
grupo 4 grupo grupo 6,
11, 15 7, 10, 11

A Figura mostra um mapa K para um problema de quatro variáveis. Faça a simplificação para reduzir o mapa K a uma expressão soma-de-produtos.

	$\overline{C}\overline{D}$	СD	CD	CD
ĀB	0	0 2	1 3	0 4
ĀB	1 5	1 6	1 7	1 8
AB	1 9	1	0	0
ΑB	0	0	0	0

$$X = \overline{AB} + \overline{BC} + \overline{ACD}$$

grupo 5 grupo 5 grupo 6, 7, 8 6, 9, 10 3,7

A Figura mostra um mapa K para um problema de quatro variáveis. Faça a simplificação para reduzir o mapa K a uma expressão soma-de-produtos.

	CD	СD	CD	$C\overline{D}$
ĀB	0	1 2	0 3	0 4
ĀB	0 5	1 6	1 7	1)8
AB	1 9	1)10	1	0
ΑB	0	0	1 15	0

$$X = \underbrace{AB\overline{C}}_{9, 10} + \underbrace{\overline{ACD}}_{2, 6} + \underbrace{\overline{ABC}}_{7, 8} + \underbrace{ACD}_{11, 15}$$

Considere os dois agrupamentos de mapas K. Qual deles é melhor?

	CD	CD	CD	CD
ĀB	0	1	0	0
ĀB	0	1	1	1
AB	0	0	0	1
ΑB	1	1	0	1

$$X = \overline{ACD} + \overline{ABC} + A\overline{BC} + AC\overline{D}$$

Exemplo

Quando a saída desejada é apresentada como uma expressão booleana em vez de uma tabela-verdade, o mapa K pode ser preenchido usando os seguintes passos:

- Passe a expressão para a forma de soma-de-produtos caso ela não esteja nesse formato.
- Para cada termo produto da expressão na forma de soma-de-produtos, coloque um 1 em cada quadrado do mapa K cuja denominação seja a mesma da combinação das variáveis de entrada. Coloque um 0 em todos os outros quadrados.

Exemplo

Use um mapa K para simplificar $y = \overline{C}(\overline{A} \ \overline{B} \ \overline{D} + D) + A\overline{B}C + \overline{D}$

1. Multiplique o primeiro termo para obter $y=\overline{A}\ \overline{B}\ \overline{C}\ \overline{D}+\overline{C}D+A\overline{B}C+\overline{D}$, que está agora na forma de soma-de-produtos.

	CD	$\overline{C}D$	CD	CD	
$\overline{A}\overline{B}$	1	1	0	1	
ĀB	1	1	0	1	
AB	1	1	0	1	
$A\overline{B}$	1	1	1	1	
$y = A\overline{B} + \overline{C} + \overline{D}$					

Condições de irrelevância (don't-care)

- Alguns circuitos lógicos podem ser projetados de modo que existam certas condições de entrada para as quais não existem níveis de saída especificados;
- Existem certas combinações para os níveis de entrada em que é irrelevante (don't-care) se a saída é nível ALTO ou BAIXO.
- X representa a condição de irrelevância;
- Um projetista está livre para fazer a saída ser 0 ou 1 para qualquer condição de irrelevância, podendo com isso gerar uma expressão de saída mais simples.

Exemplo:

O mapa K gerado pela tabela-verdade é mostrado abaixo:

- Veja x colocado nos quadrados $A\bar{B}\bar{C}$ e $\bar{A}BC$;
- O projetista deve alterar o x no quadrado $A\bar{B}\bar{C}$ para 1;
- O x no quadrado $\bar{A}BC$ para 0. Isso produz um quarteto que pode ser agrupado.

Α	В	С	Z			C	С	_		C	С	
0	0	0	0		$\overline{A}\overline{B}$	0	0		$\overline{A}\overline{B}$	0	0	
0	0	1	0									
0	1	0	0		$\overline{A}B$	0	X		$\overline{A}B$	0	0	
0	1	1	X.	irrolovanta								
1	0	0	x .	irrelevante	AB	1	1		AB	1	1	→ z = A
1	0	1	1									
1	1	0	1		$A\overline{B}$	х	1		$A\overline{B}$	1 1	1	
1	1	1	1									

Α	В	C	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

	ΑВ	A B	A B	A _B
C	1	0	0	0

	AΒ	AB	AB	АВ
С	(1	0	0	0
С	1	0	0	0
	/			

Y = A.B

Método da soma dos produtos:

$$Y = A.B.\overline{C} + A.B.C$$

Mapa de Karnaugh:

$$Y = A.B.(\overline{C} + C)$$

$$Y = A.B.(1)$$

$$Y = A.B$$

A	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

	ΑВ	ΑB	$\overline{A}\overline{B}$	A B
С	1	0	0	ackslash
C	0	0	0	0

Y = C.B

Método da soma dos produtos:

$$Y = \overline{A}.B.C + A.B.C$$

$$Y = C.B.(\overline{A}. + A)$$

$$Y = C.B.1$$

$$Y = C.B$$

Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

			ı
Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1 .
1	1	1	0

	ΑВ	ΑB	$\overline{A}\overline{B}$	A B
С	0	1	1	0
C	1	1	1	1

$$Y = \overline{C} + \overline{B}$$

Método da soma dos produtos:

$$Y = \overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.\overline{B}.\overline{C} + A.\overline{B}.C + A.B.\overline{C}$$

$$Y = \overline{A}.\overline{B}.(\overline{C} + C) + B.\overline{C}.(\overline{A} + A) + A.\overline{B}.(\overline{C} + C)$$

$$Y = \overline{A}.\overline{B}.(1) + B.\overline{C}.(1) + A.\overline{B}.(1)$$

$$Y = \overline{A}.\overline{B} + B.\overline{C} + A.\overline{B}$$

$$Y = \overline{B}.(\overline{A} + A) + B.\overline{C}$$

$$Y = \overline{B} + B.\overline{C}$$

 $Y = \overline{B} + \overline{C}$

Teorema 15b