Assuming ci = 0, the approach you know sets b = 10

but it *also* applies for b = 2

- ▶ adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

but it *also* applies for b = 2

- ▶ adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

but it *also* applies for b = 2

- ▶ Note that:
 - ▶ adding two n-digit integers produces an (n + 1)-digit result, and
 - instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

but it *also* applies for b = 2

- ▶ adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

but it *also* applies for b = 2

- ▶ adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

$$\begin{array}{rcl} x & = & 107_{(10)} & \mapsto & 1 & 0 & 7 \\ y & = & 14_{(10)} & \mapsto & 0 & 1 & 4 + \\ c & = & & & \hline{0} & 0 & 1 & 0 \\ r & = & 121_{(10)} & \mapsto & \underline{1} & \underline{2} & \underline{1} \end{array}$$

but it *also* applies for b = 2

- ▶ adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

$$\begin{array}{rcl} x & = & 107_{(10)} & \mapsto & 1 \ 0 \ 7 \\ y & = & 14_{(10)} & \mapsto & 0 \ 1 \ 4 + \\ c & = & & \hline r & = & 121_{(10)} & \mapsto & 1 \ 2 \ 1 \end{array}$$

but it *also* applies for b = 2

- adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

$$\begin{array}{rcl} x & = & 107_{(10)} & \mapsto & 1 & 0 & 7 \\ y & = & 14_{(10)} & \mapsto & 0 & 1 & 4 + \\ c & = & & & \hline{0 & 0 & 1 & 0} \\ r & = & 121_{(10)} & \mapsto & 1 & 2 & 1 \end{array}$$

but it *also* applies for b = 2

- adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

$$\begin{array}{rcl} x & = & 107_{(10)} & \mapsto & 1 \ 0 \ 7 \\ y & = & 14_{(10)} & \mapsto & 0 \ 1 \ 4 + \\ c & = & & \hline 0 \ 0 \ 1 \ 0 \\ r & = & 121_{(10)} & \mapsto & 1 \ 2 \ 1 \end{array}$$

but it *also* applies for b = 2

- adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

$$\begin{array}{rclcrcr} x & = & 107_{(10)} & \mapsto & 1 & 0 & 7 \\ y & = & 14_{(10)} & \mapsto & 0 & 1 & 4 + \\ c & = & & & \hline{0 & 0 & 1 & 0} \\ r & = & 121_{(10)} & \mapsto & 1 & 2 & 1 \end{array}$$

but it *also* applies for b = 2

- adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

but it *also* applies for b = 2

- adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

but it *also* applies for b = 2

- adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

but it *also* applies for b = 2

- adding two n-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Assuming ci = 0, the approach you know sets b = 10

but it *also* applies for b = 2

- adding two *n*-digit integers produces an (n + 1)-digit result, and
- instead of producing this directly (per the example), ADD outputs the extra digit as a separate carry-out.

Algorithm (Add)

```
Input: Two unsigned, n-digit, base-b integers x and y, and a 1-digit carry-in ci

Output: An unsigned, n-digit, base-b integer r = x + y, and a 1-digit carry-out co

1 r \leftarrow 0, c_0 \leftarrow ci

2 for i = 0 upto n - 1 step + 1 do

3 \mid r_i \leftarrow (x_i + y_i + c_i) \mod b

4 \mid \mathbf{if}(x_i + y_i + c_i) < b then c_{i+1} \leftarrow 0 else c_{i+1} \leftarrow 1

5 end

6 c_0 \leftarrow c_n

7 return r, c_0
```

Circuit $ci \xrightarrow{d} \overset{d} \overset{\omega}{\underset{R}{\longrightarrow}} \underbrace{d} \overset{\omega}{\underset{R$

Algorithm (Sub)

```
Input: Two unsigned, n-digit, base-b integers x and y, and a 1-digit borrow-in bi

Output: An unsigned, n-digit, base-b integer r=x-y, and a 1-digit borrow-out bo

1 r \leftarrow 0, c_0 \leftarrow bi

2 for i=0 upto n-1 step +1 do

3 \mid r_i \leftarrow (x_i-y_i-c_i) \bmod b

4 \mid \mathbf{if}(x_i-y_i-c_i) \ge 0 then c_{i+1} \leftarrow 0 else c_{i+1} \leftarrow 1

5 end

6 bo \leftarrow c_n

7 return r, bo
```

Definition

In two's-complement representation, for some y we have $-y \mapsto \neg y + 1$. Put more simply, to negate y we invert each bit y_i via a NOT gate, then add 1 to the result.

Example 1111111 00000001 10000001 00000000 0000000 10000000 10000001 1111110 00000001 -128(10) $-127_{(10)}$ +127(10) +128(10) +129(10) -254(10) -255₍₁₀₎ $-1_{(10)}$ +1(10) direct copy, contiguous number line

COMS12200 lecture: week #3

▶ Question: we *know* $x - y \equiv x + (-y)$, and can *already* compute x + y, so

given we want

$$r = \begin{cases} x + y + ci & \text{if } op = 0\\ x - y - ci & \text{if } op = 1 \end{cases}$$

how do we control x', y' and ci' to get the correct result?

ор	ci				r	
0	0	x	+	у	+ 0	i
0	1	x	+	y	+ 0	i
1	0	x	-	y	- (i
1	1	x	-	y	- (ci

ор	ci				r
0	0	x	+	у	+ 0
0		x	+	y	+ 1
	0	x	-	y	- 0
1	1	x	-	y	- 1

ор	ci					r	
0	0	x	+		y	+	0
0	1	x	+		y	+	1
1	1 0	x	+	\neg	y + 1	-	0
1	1	x	+		<i>y</i> + 1	-	1

ор	ci					r	
0	0	x	+		y	+	0
0	1	x	+		y	+	1
1	0	x	+	\neg	y	+	1
1	1	x	+	_	y	+	0

ор	ci					r	
0	0	x	+		y	+	0
0	1	x	+		y	+	1
1	0	x	+	\neg	y	+	1
1	1	x	+	\neg	y	+	0

• We can compute x' + y' + ci', so we translate via

ор	ci	x_i	y_i	ci'	x'_i	y_i'
0	0	0	0	0	0	0
0	1	1	1	1	1	1
1	0	0	0	1	0	1
1	1	1	1	0	1	0

i.e., $ci' = ci \oplus op$, $x'_i = x_i$ and $y'_i = y_i \oplus op$.

COMS12200 lecture: week #3

Example

Consider a signed, 16-bit integer *x*, used within (or **cast** into) a signed, 32-bit integer; use as is produces the wrong result, whereas **sign extension** by padding with the sign bit is correct:

```
x = \frac{11111111111111_{(2)}}{000000000000000000011111111111111_{(2)}} = \frac{-1_{(10)}}{65535_{(10)}}
\frac{1111111111111111111111111111111_{(2)}}{11111111111111111111111_{(2)}} = \frac{-1_{(10)}}{-1_{(10)}}
```

COMS12200 lecture: week #3

▶ It's common to think of a left-shift (resp. right-shift) of x by y bits as multiplication (resp. division) by 2^y , e.g.,

$$2^{y} \cdot x = 2^{y} \cdot \sum_{i=0}^{n-1} x_{i} \cdot 2^{i} = \sum_{i=0}^{n-1} x_{i} \cdot 2^{i+y}.$$

► So one reason for having **arithmetic shift** is to preserve sign:

Example

Note that

and right-shift by y = 1 bit should mean "divide by two". But if we use logical right-shift we get

whereas if we use arithmetic right-shift we get

$$r = x \gg_s y = 11011010 \gg_s 1$$

= 11101101
 $\mapsto -19_{(10)}$

as expected.

Consider use of an unsigned representation:

Here, the carry-out indicates an error: the correct result r = 16 is too large for n = 4 bits.

Consider use of a signed representation:

Irrespective of the carry-out, the signs of inputs and output make sense: there is no overflow, so r = 0 is correct.

Example

Consider use of a signed representation:

Irrespective of the carry-out, the signs of inputs and output make no sense: there is an overflow, so r = -8 is incorrect.

Listing (C)

