Contrôle n°1 d'Analyse 3:

CPI 2

Durée: 2h

Exercice 1:

Etudier la convergence des séries $\sum u_n$ suivantes :

1.
$$u_n = \frac{n!}{n^n}$$
 2. $u_n = \frac{\sqrt{n}}{n^2 + \sqrt{n}}$ 3. $u_n = n\sin(1/n)$
4. $u_n = \left(\frac{n-1}{2n+1}\right)^n$ 5. $u_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$ 6. $u_n = \frac{1}{n!}$
7. $u_n = \frac{\ln(n^n)}{n!}$

Exercice 2:

Montrer que la série de terme général

$$u_n = \frac{1}{\sqrt{n-1}} - \frac{2}{\sqrt{n}} + \frac{1}{\sqrt{n+1}}$$

(pour $n \ge 2$) est convergente, et calculer sa somme.

Exercice 3:

Pour $n \geq 1$, on pose $S_n = \sum\limits_{k=1}^n \frac{(-1)^{k-1}}{k}$

- 1. Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes.
- 2. Quelle est la nature de la suite (S_n) ?

Exercice 4:

Sachant que $e=\sum\limits_{k=0}^n\frac{1}{n!}$, $n^2=n(n-1)+n$ et $n^3=n(n-1)(n-2)+3n(n-1)+n$, déterminer la valeur des sommes suivantes :

1.
$$\sum_{n\geq 0} \frac{n+1}{n!}$$
 2. $\sum_{n\geq 0} \frac{n^2-2}{n!}$ 3. $\sum_{n\geq 0} \frac{n^3}{n!}$

Exercice 5:

Résoudre les équations différentielles suivantes :

- 1. $y' + y = x e^x + \cos x$;
- 2. $y'-y=(x+1)e^x$;
- 3. $y'' + \omega^2 y = \cos(\omega_0 x)$ vérifiant les conditions initiales y(0) = 1 et y'(0) = 0;
- 4. $y'' 3y' + 2y = \sin(2x)$.

Exercice 6:

Résoudre l'équations différentielle suivante :

$$y'' + 2my' + \omega_0^2 y = A\cos(\omega x)$$

avec m , ω_0 , A , ω des paramètres strictement positifs.

Bonne chance