Corso di Laurea in Informatica I parziale di Analisi Matematica 21 Dicembre 2022

Cog	gnome:	
Nor	ne:	
Numero di matricola:		
Email:		
Risultati		
	1.(pt.2)	
	2.(pt.8)	
	3.(pt.5)	

Risolvere gli esercizi seguenti, scrivendo e motivando dettagliatamente il procedimento seguito. Soluzioni prive di calcoli e spiegazioni NON SARANNO VALUTATE.

È possibile scrivere sul retro dei fogli nel caso in cui lo spazio previsto per la risposta non sia sufficiente.

Esercizio 1(pt. 2)

Sia data la funzione $\mathcal{D}(f) \to \mathbf{R}$

$$f(x) = |x|\sin(x).$$

Stabilire, usando esclusivamente la definizione di derivata prima e seconda, se:

- esiste la derivata prima di f in x = 0;
- ullet esiste la derivata seconda di f in x=0.

Motivare le risposte.

Esercizio 2(pt. 8)

Sia data la funzione $\mathcal{D}(f) \to \mathbf{R}$

$$f(x) = \frac{2x+3}{x+2} \cdot e^{-x}.$$

- I Disegnare il suo grafico (dominio di f, limiti ai bordi del dominio di f, zeri e segno della derivata prima).
- II Calcolare l'immagine di f sul suo dominio naturale $\mathcal{D}(f)$.
- III Stabilire per quali $K \in \mathbf{R}$ l'equazione f(x) = K ha 2 soluzioni.

Esercizio 3(pt. 5)

Sapendo che, per $t \to 0$,

•
$$\sin t = t - \frac{1}{3!}t^3 + \frac{1}{5!}t^5 - \frac{1}{7!}t^7 + o(t^7),$$

•
$$e^t = 1 + t + \frac{1}{2!}t^2 + \frac{1}{3!}t^3 + \frac{1}{4!}t^4 + \frac{1}{5!}t^5 + \frac{1}{6!}t^6 + o(t^6),$$

•
$$\cos t = 1 - \frac{1}{2!}t^2 + \frac{1}{4!}t^4 - \frac{1}{6!}t^6 + o(t^6),$$

calcolare

$$\lim_{x\to 0}\frac{2\cos(\sin(x))+e^{x\sin(x)}-3}{x^4}$$

Risposta:

CALCOLARE gli sviluppi di Taylor delle seguenti funzioni, NELLA FORMA in cui saranno usati nel limite dato (con tutte le semplificazioni algebriche effettuate) e risolvere il limite assegnato:

•
$$\cos(\sin(x)) =$$

•
$$e^{x\sin(x)} =$$

Quindi:
$$2\cos(\sin(x)) + e^{x\sin(x)} - 3 =$$

e infine

$$\lim_{x\to 0}\frac{2\cos(\sin(x))+e^{x\sin(x)}-3}{x^4}=$$