Advantages of Bayesian hierarchical modelling for constructing genetic linkage maps

Timothy Bilton^{1,2}, Matthew Schofield², Ken Dodds¹ and Mik Black³

¹ Invermay Agricultural Centre, AgResearch, Mosgiel, NZ

² Department of Mathematics and Statistics, University of Otago, Dunedin, NZ

³ Department of Biochemistry, University of Otago, Dunedin, NZ

Acknowledgements

- Funding:
 - UO doctoral scholarship
 - UO Postgraduate Publishing Bursary
 - The Genomics for Production & Security in a Biological Economy programme

- AgResearch
- New Zealand eScience Infrastructure

Introduction

- Genetic maps give a 1-D representation of inheritance on a chromosome
 - Genetic markers (positions on a genome where variation is present)
 - Genetic distance between markers
- They form the basis of a number of genetic analyses, e.g.
 - Multipoint linkage analysis
 - Quantitative trait locus analysis
 - Estimation of historic population size

The genetic linkage map problem

• Offspring inherits one chromosome from each parent

The genetic linkage map problem

- Offspring inherits one chromosome from each parent
- Meioses ⇒ genetic material inherited from both grandparents
- Change points are known as crossovers

Statistical Genetics workshop

The genetic linkage map problem

- Introduce notation for genetic information at markers
 - W_{ijk} gives inheritance information by marker:
 - individual i (i = 1, ..., N)
 - marker j $(j = 1, \ldots, M)$
 - parent k (k = 0: mother, k = 1: father)

$$W_{ij} = (\underbrace{W_{ij0}}_{mum}, \underbrace{W_{ij1}}_{dad})^T$$
 $W_{ijk} = \begin{cases} 0 & \text{if maternally derived} \\ 1 & \text{if paternally derived} \end{cases}$

Recombination

- Recombination: genetic material derived from different grandparents
- Occurs when odd # of crossovers
- Recombination fraction (ρ_j) between marker j and j+1:
 - Probability of a recombination, $\rho_j \in [0, 0.5]$

$$\hat{\rho}_j = \frac{1}{2N} \sum_{i=1}^{N} (|W_{ij+1}|_0 - W_{ij0}| + |W_{ij+1}|_1 - W_{ij1}|)$$

Genetic distance

- Genetic distance: # crossovers per chromosome between marker j and j+1.
 - Not a physical distance
 - Unit is Morgan (M): Average # of crossovers for 1 generation
 - Typically centimorgen (cM) is used (e.g., 1 cM = 0.01 M)
 - Genetic distance (δ_j) is a monotonic increasing function of ho_j
 - Haldane mapping function

$$\delta_j = -0.5 \log(1 - 2\rho_j)$$

• Cumulative genetic distance (from marker *j* to *h*):

$$\Delta_{jh} = \sum_{m=j}^{h-1} \delta_m, \quad h > j$$

• Typically $50 < \Delta_{ih} < 150$

Genetic map: Modelling

- ullet In practice, inheritance is unobserved (i.e., $oldsymbol{W}_{ij}$ is latent)
- Marker genotypes are observed
 - Assuming biallelic SNPs (& diploids)
 - $X_{ij} = \#$ of major alleles in genotype $(X_{ij} = 0, 1, 2)$

Genetic maps for high-throughput sequencing (HTS)

- Marker data obtained using HTS technology
 - e.g., genotyping-by-sequencing, exome capture
- Low depth HTS data
 - Data consists of "reads"
 - Short sequence of DNA from a subset of the genome
 - Each read is derived from one of the parental chromosomes
 - Reads from one or both parents may not be observed
 - ullet \Rightarrow true marker information $oldsymbol{X}$ is unobserved
 - Extend HMM to account for uncertainty in genotypes
 - Bilton et al. (2018) Genetics, 209:65-76
 - R package GUSMap (github.com/tpbilton/GUSMap)

High-throughput sequencing: HMM

• Model reads conditional on the genotypes as:

$$Y_{ij}|(X_{ij} = x) \sim \text{Bin}\left(d_{ij}, p_{\varepsilon_j}\right)$$
$$p_{\varepsilon_j} = \begin{cases} \varepsilon_j & x = 0\\ 0.5 & x = 1\\ 1 - \varepsilon_j & x = 2 \end{cases}$$

- Y_{ij} is the # of reads of major allele
- $d_{ij} = \text{number of reads}$
- ullet $arepsilon_j =$ probability of sequencing error
- i = individual & j = marker

High-throughput sequencing: model extension

High-throughput sequencing: HMM

Mānuka data

- Leptospermum scoparium
 - Native to NZ and South-East Australia
- Full-sib family of 177 plants
- Subset of SNPs located on chromosome 11
- SNPs filtered based on a range of criteria: 149 remaining
 - 95 are low depth (mean read depth: $\bar{d}_{\cdot j} < 6$)
 - 54 are high depth (80% of individuals had $d_{ij} \geq 20$)

Mānuka data

Mānuka plants:

- sequenced using GBS
- N = 177
- M = 149

Overall Map distance

• Usually between 50 and 150

Why use Bayes?

Why considering using a Bayesian framework?

- Obtain uncertainty intervals
 - Many estimates on boundary $\rho_j = 0$
 - ullet Various functions of parameters are of interest: Δ_{ij}
 - Makes quantifying uncertainty challenging in frequentist framework
- Enable more complex models to be fitted
 - Bayesian Hierarchical modelling
 - 'Borrow strengh' across parameters to improve estimates
 - Effectively applies shrinkage
 - Simplifies prior specification

Bayes with uniform priors: Mānuka data

Independent uniform prior for ρ_j and ε_j

Bayes with uniform priors for ρ_j : Implied priors

• Implied priors for δ_j and Δ_{1M}

Bayes with gamma priors: Implied priors

- Gamma prior for δ_i
 - shape =1.6384/(M-1) , rate = 0.0064
 - ullet Implied prior for Δ_{1M} : gamma with mode 100 and sd 200

Bayesian hierarchical model: High level details

- Hierarchical components
 - $\operatorname{cloglog}(2\rho_j) \sim N(\mu_\rho, \sigma_\rho^2), \quad j = 1, \dots, M-1$
 - $logit(\epsilon_j) \sim N(\mu_{\epsilon}, \sigma_{\epsilon}^2), \quad j = 1, \dots, M$
- Priors for means (on original scale and transform)
 - $f(\mu_{\rho}) \propto (1 \exp(-e^{\mu_{\rho}})^2)^{a-1} \exp(\mu_{\rho} e^{\mu_1})$ (a = 0.5)
 - $f(\mu_{\epsilon}) \propto \exp(a\mu_{\epsilon})(1 + \exp(\mu_{\epsilon}))^{-(a+b)}$ (a = b = 0.5)
- Priors for variance parameters:
 - $f(\sigma_{\rho}) = \mathsf{half-t}_3(0,1)$
 - $f(\sigma_{\epsilon}) = \mathsf{half-t}_3(0,1)$
- Use a non-centered parameterization
 - Improved MCMC convergence

Bayesian hierarchical model: Priors

- Common model for ρ_i
 - ullet 'Vague' priors for δ_j and Δ_{1M}

Mānuka data: Cumulative map distance

Mānuka data: Shrinkage plots (ρ)

Mānuka data: Shrinkage plots (ϵ)

Simulations

- To examine properties of the hierarchical model in terms of:
 - Mean square error
 - Coverage
- Simulate data to resemble mānuka data
 - 500 simulated datasets
 - Δ_{1M} log normal with mean 80 and variance 5
 - $\delta_1, \ldots, \delta_{M-1} = \Delta_{1M} \times z \ (z \sim Dir(0.25, \ldots, 0.25))$
 - $\epsilon_i \sim Beta(3, 1497)$
 - N = 50, 100, 177 (randomly sample individuals)
 - Genotypes simulated using PedigreeSim (Voorrips & Maliepaard; 2012)
 - d_{ij} were those observed in the mānuka data
 - Y_{ij} were simulated based on the model given X_{ij}

Simulations: coverage

Simulations: mean square error

Summary

Bayesian modelling for genetic maps

- Prior specification very important
 - Consider implied priors
- Provides reliable uncertainty intervals
 - Parameter estimates on boundary
 - Parameters of interest that are function of other parameters

Bayesian hierarchical modelling

- Hierarchical model is more straightforward to fit with Bayes
- Simplifies prior specification
- Improves parameters estimates (i.e., MSE)

