In [25]: #11. Data Visualization III

#Download the Iris flower dataset or any other dataset into a Do
#1.List down the features and their types (e.g., numeric, nominal) available i
#2.Create a histogram for each feature in the dataset to illustrate the featur
#3.Create a box plot for each feature in thedataset.
#4.Compare distributions and identifyoutliers.

#Iris.csv

In [26]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt

In [27]: df1 = pd.read_csv("Iris.csv")

In [28]: df1

Out[28]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

Out[29]:

	ld	sepal_length	sepal_width	petal_length	petal_width	species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [30]: df = pd.DataFrame(df1)
 df.head()

Out[30]:

	ld	sepal_length	sepal_width	petal_length	petal_width	species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [31]: df.describe()

Out[31]:

	ld	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [32]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 6 columns):
              Column
                            Non-Null Count Dtype
              -----
                            -----
                                            ----
          0
              Ιd
                            150 non-null
                                            int64
          1
              sepal_length 150 non-null
                                            float64
              sepal_width
                                            float64
          2
                            150 non-null
          3
              petal_length 150 non-null
                                            float64
          4
              petal_width
                                            float64
                            150 non-null
          5
              species
                            150 non-null
                                            object
         dtypes: float64(4), int64(1), object(1)
         memory usage: 7.2+ KB
In [33]: | df.columns
Out[33]: Index(['Id', 'sepal length', 'sepal width', 'petal length', 'petal width',
                'species'],
               dtype='object')
In [13]: | df['sepal_length'].max()
Out[13]: 7.9
```

```
In [34]: df['sepal_length'].hist(bins=30)
```

Out[34]: <AxesSubplot:>


```
In [36]: df['petal_length'].max()
```

Out[36]: 6.9

```
In [16]: df['petal_length'].min()
```

Out[16]: 1.0

```
In [37]: df['petal_length'].hist(bins=30)
```

Out[37]: <AxesSubplot:>


```
In [39]: df['petal_width'].max()
```

Out[39]: 2.5

```
In [40]: df['petal_width'].min()
```

Out[40]: 0.1

```
In [41]: df['petal_width'].hist(bins=30)
```

Out[41]: <AxesSubplot:>


```
In [42]: df['sepal_width'].max()
```

Out[42]: 4.4

In [43]: df['sepal_width'].min()

Out[43]: 2.0

```
In [44]: df['sepal_width'].hist(bins = 30)
```

Out[44]: <AxesSubplot:>

In [45]: df['species'].value_counts()

Out[45]: Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50

Name: species, dtype: int64

In [46]: df['species'].hist(bins=20)

Out[46]: <AxesSubplot:>


```
In [47]: sns.boxplot(x="sepal_length",data=df)
```

Out[47]: <AxesSubplot:xlabel='sepal_length'>

In [48]: sns.boxplot(x="sepal_width",data=df)

Out[48]: <AxesSubplot:xlabel='sepal_width'>


```
In [49]: sns.boxplot(x='petal_length',data=df)
```

Out[49]: <AxesSubplot:xlabel='petal_length'>


```
In [50]: sns.boxplot(x='petal_width',data=df)
```

Out[50]: <AxesSubplot:xlabel='petal_width'>

In []: