Robotic Food Delivery

Product Strategy

Product Manager: Shanish

Background

Problem

One of the food delivery restaurant chain in Singapore is facing high operational cost and unreliable food delivery due to multiple factors like unavailability of manpower, high traffic. Company is looking self-driven autonomous food delivery across Singapore to address the issues .Initially company is looking delivery within 2 miles and once robots are stabilized with autonomous delivery , company will widen its operations across the island

Background

Why Are We Here?

- Develop navigation system to control self driven food delivery Robots
 - Check the status of delivery
 - Remotely control the Robots that need intervention
- We target to develop fully automated food delivery system across SG

FoodByRobo

Business Case

Initial Focus

Where are we starting?

- Company targets fully automated Island wide food delivery
 - Reduce operational cost and
 - Provide more reliable delivery times
 - Initial focus on delivering food by self driven robot with in 2 miles
 - Train the robot to deliver the food with minimal human intervention
 - Targeting island wide delivery

What's the problem?

- Increase in the operational cost
- Inconsistency in delivery time
- High competency with physical food delivery

Current market trend

Revenue of online food delivery Singapore from 2017 to 2025

(in million U.S. dollars)

https://www.statista.com/forecasts/1183536/revenue-online-food-delivery-singapore#:~text=lr%20Singapore%2C%20the%20revenue%20generated,approximately%20708%20millior%20U.S.%20dalars.

- As per the analysis, the trend shows the revenue for online food delivery shoot by 3 times in last 4 years
- Expected there will be potential growth for next 4 years
- Due to COVID there is high demand for online food delivery
- Change in consumer habit
- Home office
- Increase in Demand for comfort
- Unavailability of time

"According to the study, which is based on data from 500 survey respondents in Singapore, 53 percent said that they have started using food ordering apps more frequently in the last two years"

Singapore Population clock (live)

6,074,613	Current population
3,062,204	Current male population (50.4%)
3,012,409	Current female population (49.6%)

Total: ~ 6 m

TAM - Assumptions

- Considered implement in Singapore
 - Divided Singapore into 34 areas
 - Took one region for initial roll out and considered average population

https://www.citypopulation.de/en/singapore/cities/

TAM - Assumptions

- As per studies ~50% of the population opt for online food delivery
- Considered 5% of the population opt for Robotic food delivery in the first year
- On an average 1 family will have 3 members
- Expected minimum 1 order per family in one day
- Fixed delivery rate 3(varies depends on the restaurant location)

TAM - Assumptions

- Considering 14 Robot in one region
 - Average area is 21Sq KM
 - One Robot serve 1.5 Sq KM

TAM

Population(online food Population ordering)		Expected Number of consumers	•	0.	Earning in vear(USD)
18000	- 0/		 	4500	,

What we need to do

Identify unique way of food delivery that solve the potential problem

Proposal

What's Our Solution?

- Build autonomous robot food delivery
 - Minimal manual intervention
 - Reduce the operational cost
 - On time delivery
 - Inline with consumer habit
- Initial phase has food delivery within 2 miles
- Long term plan to have island wide delivery by Robot
 - Assign team in initial phase to navigate Robot
 - Train Robot till they fully autonomous

Current cost

- Current Delivery cost in an average USD 7
- Restaurant commission 30% to 35%
- Cost with Robotic solution
 - Delivery cost to consumers USD 3

What can we do?

- Reduce the food delivery cost to consumers to 50%
 - Increase the number of consumers
 - Expecting 70%-80% increment
 - Increase in the number of restaurants joining the
 - Reduce restaurant commission (current 30%)
 - Expecting 70%-80% restaurants use the service

Expected Earning

1st Year

	Population(online food ordering)		Expected Number of consumers	•	0.	Earning in vear(USD)	
180000				\ <i>/</i>	4500		

2nd Year

	Population(online food	Expected % of Expected Number of I		Number of orders Rate per order		Earning per	Earning in
Population	ordering)	consumer	consumers	per day	(USD)	day(USD)	year(USD)
18000	0 90000	8%	7200	2400	3	7200	2628000

3rd Year

	Population(online food	Expected % of	Expected Number of	Number of	Rate per order	Earning per	Earning in
Population	ordering)	consumer	consumers	orders per day	(USD)	day(USD)	year(USD)
180000	90000	10%	9000	3000	3	9000	3285000

Expected Cost

1st Year

Number	of			Annual				
robots		Cost per robot		maintenance per		Development	Advertisement	Total cost
(USD)		(USD)	Total cost (USD)	robot(USD)	Total maintenance (USD)	cost (USD)	(USD)	(USD)
	14	10000	140000	10000	140000	1000000	50000	1330000

2nd Year

Num	ber of			Annual				Total
robo	ts	Cost per robot		maintenance per		Development	Advertisement	cost
(USE	0)	(USD)	Total cost (USD)	robot(USD)	Total maintenance (USD)	cost (USD)	(USD)	(USD)
	14	10000		10000	140000	400000	50000	590000

3rd Year

Nun	nber of							
rob	ots	Cost per robot		Annual maintenance	Total maintenance	Development	Advertisement	Total cost
(USI	D)	(USD)	Total cost (USD)	per robot(USD)	(USD)	cost (USD)	(USD)	(USD)
	14	10000		10000	140000	400000	50000	590000

Single Region

Island wide

Measurement

How will we know if we're successful?

- Target on on 0.25% on ROI in the first year in single region
 - Payback with profit in 1st year
- 100% on time delivery
- 8 % increase in the consumer

Competitors

[Competitor 1]

GrabFood Autonomous Mobility Robot

- Popular in food delivery and travel
- Island wide food delivery
- Capable of consolidating and delivering 350 orders in 15 min
- Hygiene and Fresh
- Not full fledged in Singapore
- Partner with Techmetics Robotics
- Total revenue in 2021: USD 157m (-9% drop compared to 2020)

https://www.grab.com/sg/press/others/grab-reports-third-quarter-2021-results/#:~:text=GMV%20for%20deliveries%20grew%2063.improved%20by%20%241%20million%20YoY

[Competitor 2]

Foodpanda

- Popular in food delivery and travel
- Island wide food delivery
- Initial stage and focused with in limited area
- Secured with order proof and OTP
- Partner with OTSAW
- Revenue jumped to 62% in 2021 Q4, total revenue USD 997.8 m

https://www.techinasia.com/foodpanda-posts-62-yoy-revenue-jump-delivery-hero-loss es-swell

Our Advantages

Why are we better?

- We target door to door food delivery
 - Consumers not needed to gather at one point
- We target island wide food delivery, targeting all the places
- Consumer can communicate to Robot directly, voice call facility
- Delivery within 15 min
- More number of Robot in one region
- On demand robotic store based on consumer's request

Roadmap and Vision

Roadmap Pillars

Where do we go from here?

"Relax , We provide food on time"

Our vision is to make our consumer happy by uninterrupted food supply in 15 minutes with less cost

- Short distance food delivery
- Training the robot
- Rollout at Region A

Roadmap Pillars

Where do we go from here?

R1- Robo with limited manual intervention

R2 - Self driven autonomous robot

Short distance delivery

Robot 1.0

- Implement and rollout short distance robot food delivery
 - Selected store in one region
 - Robot to be grouped based on area with in region
 - Register the destination address into Robot based on order sequence
 - Configure reroute based on objects(Human vs Material)
 - Alarm facility

Human voice recognition

Human interaction facility

- Implement human voice recognition
 - Feasibility of taking action based on voice
 - Easy to operate
- Feature inform consumer on route, current status.
- Configure call facility between robot and consumer

Autonomous delivery

Autonomous System- Robot 2.0

- Expand to entire area in a region
- Fully automated navigation system
- Zero human interaction
- Back up call alert

Where do we go from here?

Widening the scope

Q & A