\mathbb{C}^{\times} の部分群 H を次のように定める。

$$H = \{ z \in \mathbb{C}^{\times} \mid z^6 = 1 \}, \quad \mathbb{C}^{\times} = \mathbb{C} \setminus \{ 0 \}$$
 (1)

1. 次の中で H に属する複素数を全て選べ。

$$1, -1, i, -i, \sqrt{3}i, -\sqrt{3}i \tag{2}$$

$$\frac{1}{2} - \frac{1}{2}\sqrt{3}i, \ -\frac{1}{2} + \frac{1}{2}\sqrt{3}i, \ \frac{1}{2} + \frac{1}{2}\sqrt{3}i, \ -\frac{1}{2} - \frac{1}{2}\sqrt{3}i$$
 (3)

$$\frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{2}i, \ \frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i, \ -\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i, \ -\frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{2}i$$
 (4)

......

 $z^6 = 1$ を満たす複素数を探す。

全ての複素数はオイラーの公式から $re^{i\theta}$ と表せる。 $(re^{i\theta})^6=r^6e^{6i\theta}$ であり、 $e^{2\pi ni}=1$ であるので、 $r=1,\ 6\theta=2\pi n\ (n\in\mathbb{Z})$ を満たせばよい。

$$1=e^{i0},\ -1=e^{i\pi},\ i=e^{\frac{i\pi}{2}},\ -i=e^{\frac{3i\pi}{2}},\ \sqrt{3}i=\sqrt{3}e^{\frac{i\pi}{2}},\ -\sqrt{3}i=\sqrt{3}e^{\frac{3i\pi}{2}} \eqno(5)$$

$$\frac{1}{2} - \frac{1}{2}\sqrt{3}i = e^{\frac{5i\pi}{3}}, -\frac{1}{2} + \frac{1}{2}\sqrt{3}i, \frac{1}{2} + \frac{1}{2}\sqrt{3}i, -\frac{1}{2} - \frac{1}{2}\sqrt{3}i$$
 (6)

$$\frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{2}i, \ \frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i, \ -\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i, \ -\frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{2}i$$
 (7)

- 2. *H* の要素数を求めよ。
- 3. H が巡回群であるか否かを答えよ。

問題

- 1. $n \in \mathbb{Z}_{\geq 1}$ とする。任意の整数 k に対して、 $\bar{k} \in \{0,1,\ldots,n-1\}$ を k の n による じょうよとする。このとき、 $\phi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ を $k \mapsto \bar{k}$ とすると、 ϕ は準同型写像であることを示せ。
- 2. $\phi: \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to D_4$ を $(i,j) \mapsto r^i s^j$ とすると ϕ は同型写像であることを示せ。