Curso: Engenharia de Software

Componente

Curricular: Arquitetura de Computadores Professor: Eduardo Henrique Molina da Cruz

Alunos: Aline Yuka Noguti R.A.: 20220006500 Eduardo Albuquerque Ribeiro R.A.: 20220008021

Avaliação 1

Ex. 1. Elabore um circuito que recebe dois números binários de dois bits, A e B, e identifique quando A = B. Testar no Circuit Maker.

A1 = Primeiro bit do primeiro número

A2 = Segundo bit do primeiro número

B1 = Primeiro bit do segundo número

B2 = Segundo bit do segundo número

A1	A2	B1	B2	S	
0	0	0	0	1	→ ~A1.~A2.~B1.~B2
0	0	0	1	0	7 7.2. 2 22
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	1	→ ~A1.A2.~B1.B2
0	1	1	0	0	7
0	1	1	1	0	1
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	1	→ A1.~A2.B1.~B2
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	1	→ A1.A2.B1.B2

(~A1.~A2.~B1.~B2) + (~A1.A2.~B1.B2) + (A1.~A2.B1.~B2) + (A1.A2.B1.B2) ~A1.~B1. (~A2.~B2 + A2.B2) + A1.B1. (~A1.~B2 + A2.B2)

Ex. 2. Elabore um circuito que receba um número de 3 bits e identifique se o mesmo é divisível por 3. Testar no Circuit Maker.

A = Primeira entrada

B = Segunda entrada C = Terceira entrada

	S	С	В	A
→ ~A.~B.~C	1	0	0	0
	0	1	0	0
	0	0	1	0
→ ~A.B.C	1	1	1	0
	0	0	0	1
	0	1	0	1
→ A.B.~C	1	0	1	1
	0	1	1	1

(~A.~B.~C) + (~A.B.C) + (A.B.~C)

Ex. 3. Em uma banca de trabalho de conclusão de curso, há 3 membros na banca. O aluno só será aprovado caso pelo menos 2 membros da banca aceitem o trabalho. Convenção a adotar: aprovado=1, reprovado=0. Elabore um circuito. Testar no Circuit Maker.

A = Primeiro membro da banca

B = Segundo membro da banca

C = Terceiro membro da banca

	S	С	В	A
	0	0	0	0
	0	1	0	0
	0	0	1	0
→ ~A.B.C	1	1	1	0
	0	0	0	1
→ A.~B.C	1	1	0	1
→ A.B.~C	1	0	1	1
\rightarrow A.B.C	1	1	1	1

$$(\sim A.B.C) + (A.\sim B.C) + (A.B.\sim C) + (A.B.C)$$

C. (~A.B + A.~B) + A.B. (~C+C) C. (~A.B + A.~B) + A.B.1 C. (~A.B + A.~B) + A.B

Ex. 4. Uma porta automática de um shopping possui 2 sensores e 1 botão. O botão A, quando pressionado (pressionado=1), faz com que a porta nunca fique aberta. O sensor B indica que há uma pessoa na parte de trás da porta (se tiver alguém=1). O sensor C indica que há uma pessoa na parte de frente da porta (se tiver alguém=1). A porta ficará aberta (saída igual a 1) quando houver alguém atrás ou na frente da porta, exceto com botão A apertado. Elabore o circuito e teste no Circuit Maker.

A = 1 (pressionado) B = 1 (alguém atrás) C = 1 (alguém na frente)

	S	С	В	A
	0	0	0	0
→ ~A.~B.C	1	1	0	0
→ ~A.B.~C	1	0	1	0
→ ~A.B.C	1	1	1	0
	0	0	0	1
	0	1	0	1
	0	0	1	1
	0	1	1	1

```
(~A.~B.C) + (~A.B.~C) + (~A.B.C)
(~A.~B.C) + (~A.B.C) + (~A.B.~C)
~A.C. (~B + B) + (~A.B.~C)
~A.C.1 + (~A.B.~C)
~A.C + (~A.B.~C)
~A. (C + B.~C)
```


Ex. 5. Extraia a expressão booleana do seguinte circuito e minimize usando álgebra booleana. Faça a prova real com uma tabela verdade. Implemente o circuito simplificado no Circuit Maker.

Tabela da expressão: ~(~A + ~B) . (B.C)

A	В	С	~A	~B	~A+~B	~(~A + ~B)	B.C	S
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	0	0	0
0	1	0	1	0	1	0	0	0
0	1	1	1	0	1	0	1	0
1	0	0	0	1	1	0	0	0
1	0	1	0	1	1	0	0	0
1	1	0	0	0	0	1	0	0
1	1	1	0	0	0	1	1	1

Tabela da expressão simplificada: (A.B) . (B.C)

A	В	С	A.B	B.C	S
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	1	0	0
1	1	1	1	1	1

Circuito simplificado:

Ex. 6. Elabore um problema que possa ser resolvido por um circuito combinacional. A seguir, crie sua tabela verdade, extraia a expressão booleana e minimize usando álgebra booleana. Faça a prova real da expressão simplificada usando a tabela verdade. Após, implemente o circuito simplificado no Circuit Maker.