

Topic Modeling

Leveraging Machine Learning to identify underlying topics in a document.

Today's Agenda

- Machine Learning with Text Data
- Text Preprocessing
- Topic Modeling using LDA
- Demo

Use Cases!

- Text Classification, Clustering, Regression (scoring)
- Machine Translation
- Speech Processing (Recognition, Text-to-Speech, etc)
- Sentiment Analysis
- Topic Identification
- Document Recommendation
- ...And much more!

- Magical machine that can take raw text input and output feature vectors
 - With text, the rows in our X matrix will be documents

- Magical machine that can take raw text input and output feature vectors
 - With text, the rows in our X matrix will be documents

Is it really magical?!

- Magical machine that can take raw text input and output feature vectors
 - With text, the rows in our X matrix will be documents

Is it really magical?!

- Magical machine that can take raw text input and output feature vectors
 - With text, the rows in our X matrix will be documents

Is it really magical?!

Supervised Learning

Unsupervised Learning

Vector Space Models

- Models that map raw text documents into vector spaces for mathematical comparison
 - These vectors usually extract some form of meaning
- Input: Corpus of raw text documents
- Output: Vectors for text documents (and usually terms)
- How do VSM work?
 - · Start with raw text
 - Reduce the space
 - Using dimensionality reduction (like SVD, NMF)
 - Using neural networks
 - Using probabilistic models (LDA!)
 - Once we have "semantic", or meaning, vectors
 - We can do all sorts of further Machine Learning!

Step 1: Text Preprocessing

- Text is unstructured data
 - A lot of noise present
- Text preprocessing to remove noise and standardize it for analysis
 - Noise Removal
 - Lexicon Normalization
 - Object Standardization

Text Preprocessing: Noise Removal

Stopwords

- Words with little to semantic value, so we usually ignore them
- Can be domain specific
- Reduces complexity without loss of information

Anny eats the apples. <n>Anny<n> <v>eat<v> <n>apple<n>.

Removing Punctuation

Doesn't add semantic value
 Anny eats the apples.
 <n>Anny<n> <v>eat<v> <n>apple<n>

Lowercasing

 Makes case insensitive without loss of semantic value

Anny eats the apples.
<n>anny<n> <v>eat<v> <n>apple<n>

Text Preprocessing: Lexicon Normalization

Tokenization

- Breaking up text into words, phrases, symbols, or other meaningful elements called tokens
- Tokens become input for further ML processing and allows us to put text information into data vectors

Stemming

- Reducing words to their root form (verb forms, plurals, etc)
- Generally, the "semantic content" is in the root form

Anny eats the apples.
<t>Anny<t> <t>eat<t> <t>the<t> <t>apple<t>.

POS-tagging

 Tagging the parts of speech for a sentence

Anny eats the apples.
<n>Anny<n> <v>eat<v> <t>the<t> <n>apple<n>.

Text Preprocessing: Object Standardization

Words or phrases which are not present in any standard lexical dictionaries

Acronyms

• **RT**: retweet(?), roundtrip(?)

```
Anny visits MTV company.
lookup_dict = {'rt':'roundtrip', 'MTV':'Mountain View', "..."}
```

Colloquial slangs

- Pop vs. soda vs. Coke
 - "Can I get a Coke?" "Sure, which kind?" "Dr.Pepper, please!"

Anny visits MTV company.

lookup dict = { 'MTV company': 'Google', "..."}

Misspellings

Abcense, absance

Anny has no ragrets visiting MTV company. lookup_dict = { 'ragret':'regret', "..."}

Step 2: Topic Modeling

 Topic modeling is a type of statistical modeling for discovering the abstract "topics" that occur in a collection of documents.

Topic Modeling

Methods

- Latent Dirichlet Allocation (LDA)
 - Most common!
- Others
 - Hierarchical latent tree analysis (HLTA)
 - · Pachinko Allocation
 - Probabilistic Latent Semantic Analysis (PLSA)

- Latent Dirichlet Allocation (LDA) is an example of topic model
 - Classify text
 - Builds a topic per document model
 - Modeled as Dirichlet distributions

- Suppose you have the following set of sentences:
 - · Anny likes to eat broccoli and bananas.
 - Anny ate a banana and toast for breakfast.
 - Hedgehogs and kittens are cute.
 - My sister adopted a kitten yesterday.

- Suppose you have the following set of sentences:
 - Anny likes to eat broccoli and bananas.Anny ate a banana and toast for breakfast.

 - Hedgehogs and kittens are cute.
 My sister adopted a kitten yesterday.

- Suppose you have the following set of sentences:
 - Anny likes to eat broccoli and bananas.
 Anny ate a banana and toast for breakfast.
 - Hedgehogs and kittens are cute.
 My sister adopted a kitten yesterday.
 - Look at this cute hedgehog munching on a piece of broccoli.

- Suppose you have the following set of sentences:
 - Anny likes to eat broccoli and bananas.Anny ate a banana and toast for breakfast.

 - Hedgehogs and kittens are cute.
 My sister adopted a kitten yesterday.

 - Look at this cute hedgehog munching on a piece of broccoli.

 60% Topic A, 40% Topic B

Wait, but how?!

- LDA assumes this is how you write your document
 - First, you decide on the number of words
 - · Choose a topic mixture
 - Generate each word by:
 - Picking a topic
 - · Using the topic to generate the word itself
- Using these assumptions, LDA then tries to backtrack from the documents to find a set of topics

Wait, but how?!

- LDA assumes this is how you write your document
 - · First, you decide on the number of words
 - · Choose a topic mixture
 - Generate each word by:
 - · Picking a topic
 - · Using the topic to generate the word itself
- Using these assumptions, LDA then tries to backtrack from the documents to find a set of topics

- Document A
 - Number of words = 5
 - Topic mixture: 50% food, 50% cute animals
 - Generate each word:
 - · Pick topic: Food
 - · Words: broccoli, bananas, eat
 - Pick topic: Cute Animals
 - Words: Hedgehogs, kitten, adorable

Wait, but how?!

- Collapsed Gibbs sampling:
 - For each word w in document d, compute:
 - P (topic t | document d) = the proportion of words in document d that are currently assigned to topic t
 - P (word w | topic t) = the proportion of assignments to topic t over all documents that come from this word w
 - Reassign w a new topic, where we choose topic t with probability
 - P (topic t | document d) * P (word w | topic t) = probability that topic t generated word w
 - Rinse and repeat until you get to a steady state of assignments
 - Use the assignment to estimate the topic mixtures of each document

Example!

- Scenario: Anny just moved to San Francisco and is a motorcycle and MMA enthusiast
 - Caveat: Anny is introverted and hates asking people to find communities
- What to do?
 - Step 1: Scope out establishments (**documents**), making note of the people (**words**) in each establishment, find typical interest groups of each establishment (**topics**)
 - · Step 2: Pick some number of categories to learn, and make guess as to why people hang out where they do
 - Nate goes to the gym wearing a gi... He probably has an interest in jiu-jitsu!
 - · Bobby goes to the park with a stack of board games... He is probably meeting with his friends to play board games.
 - Step 3: Improve on your guesses
 - Make a new guess as to why Nate is at the gym and Bobby is at the park. What are the probabilities of these interests?
 - Step 4: Go through each place and person over and over again
 - The gym also has a lot of other people with gi, probability that Nate's interest in jiu-jitsu is very high!

Demo!

