Spec Document

Microprocessor Specification Document

Introduction

- The microprocessor is a simplified 8-bit design intended for basic arithmetic, data transfer, and I/O operations.
- It supports six general-purpose registers (A–F), an 8-bit instruction set, and a shared internal bus for data movement.
- The processor is designed to execute five basic instructions: ADD, SUB, MOV, IN, and OUT.

Instruction Set Overview

The microprocessor supports the following 8-bit instructions:

- ADD R: Adds the value in register R to the accumulator (A) and stores the result back in A.
- **SUB R**: Subtracts the value in register R from the accumulator (A) and stores the result back in A.
- MOV R1, R2: Copies the value from register R2 into register R1.
- IN R: Loads an 8-bit external value (data_in) into register R.
- OUT R: Place the contents of register R onto the output bus (data_out).

Inst[7:6]	Inst[5:3]	Inst[2:0]	Operation	
00	DDD	000	IN D	D ← input
00	DDD	SSS	Mov D,S	D ← S
00	000	SSS	OUT S	output ← S
01	0XX	S	ADD S	A ← A+S
01	1XX	S	SUB S	A ← A-S

Module Interface

Top-level Module

```
• module micro(
```

- input clk,input [7:0] inst,
- input [7:0] data_in,
- output [7:0] data_out
-);

Port Description

Signal	Direction	Width	Description
clk	input	1	System clock. All register operations occur on the rising edge.
inst	input	8	Instruction word controlling the operation (opcode and register selection).
data_in	input	8	External 8-bit data input bus.
data_out	output	8	External 8-bit data output bus.

Internal Architecture

The microprocessor consists of the following components:

- 1. Registers (A-F)
 - Six 8-bit registers store intermediate data and results.
 - Register A functions as the accumulator, used in arithmetic operations.

2. ALU (Arithmetic Logic Unit)

- Performs addition and subtraction between register A and the shared data bus.
- Controlled by instruction bit inst[5].
 - inst[5] = 0: Perform ADD.
 - inst[5] = 1: Perform SUB.

3. **Decoder (3-to-8)**

- o Two decoders are used:
 - Load Decoder (LD): Determines which register or output is enabled for writing.
 - Output Enable Decoder (OE): Determines which register drives the shared bus.

4. Multiplexers and Tri-state Buffers

- Control data flow between registers, the ALU, and the bus.
- o Ensure only one source drives the bus at a time.

5. D Flip-Flops

- Each register (A–F) is implemented using an 8-bit DFF.
- Data is updated on the rising edge of the clock.

Expected Operation

- **Arithmetic Operations**: The ALU must correctly perform addition and subtraction according to inst[5].
- Register Loads: All registers (A–F) must be loadable via LD signals.
- **Data Transfers**: MOV and IN instructions should correctly transfer values into the selected register.
- **Outputs**: OUT instructions must place the correct register contents on the output bus without floating (Z) states.

Observed Issues

During simulation of the current RTL design, the following problems were observed:

1. Arithmetic Inversion

- ADD instructions behave like subtraction, and SUB behaves like addition.
- This suggests incorrect control mapping in the ALU's add_sub logic.

2. Register C Not Updating

- o MOV and IN instructions targeting register C do not modify its value.
- Likely due to missing or incorrect assignment logic in the register load block.

3. OUT A Produces High-Impedance (Z)

- When executing OUT A, the bus shows Z instead of A's value.
- o Indicates a wiring issue in the tri-state buffer connecting register A to the bus.

Debugging Guidelines

1. Check ALU Mapping

• Verify that inst[5] correctly selects between addition and subtraction.

2. Inspect Register Load Logic

- o Ensure all registers (B–F) have proper load paths from the bus.
- Confirm that the decoder correctly asserts LD[i] for all registers.

3. Validate Tri-state Buffer Wiring

- For all registers, ensure its tri-state buffer connects to the bus when OE[i] is asserted.
- Verify bus contention does not occur with other outputs.

Timing and Latency

The microprocessor operates synchronously with the following characteristics:

Operation	Latency (Clock Cycles)
Arithmetic (ADD, SUB)	1 cycle (results written to A on next rising edge)
Register Load	1 cycle
IN Operation	1 cycle
OUT Operation	1 cycle

Deliverables

- Corrected Verilog RTL code .
- Simulation results showing correct execution of ADD, SUB, MOV, IN, OUT instructions.
- A short bug report describing the identified issues and fixes applied.