4-MicrosoftMalwarePrediction-RandomForest

May 20, 2020

1 Microsoft Malware Prediction

1.1 Random Forest

Importamos las librerías

```
[1]: import pandas as pd
  import plotly.express as px
  import matplotlib.pyplot as plt
  import seaborn as sns

from sklearn.model_selection import train_test_split
  from sklearn.ensemble import RandomForestClassifier
  from sklearn import metrics
  from time import time
```

Lectura de los datos

```
# Lectura de nuevo del conjunto de train y test, con los tipos de datos que

→hemos definido

train = pd.read_csv("./datos/train_malware.csv", dtype = dtypes_train)

test = pd.read_csv("./datos/test_malware.csv", dtype = dtypes_test)

[2]: # Leemos los datos con label encoding

train_label_encoding = pd.read_csv("./datos/train_filtrado_encoding.csv")
```

Partición

```
[3]: # Dividimos la variable target de
x = train_label_encoding.drop('HasDetections', axis=1)
y = train_label_encoding['HasDetections']
```

test_label_encoding = pd.read_csv("./datos/test_filtrado_encoding.csv")

```
[4]: # Creamos el conjunto de validación

X_train, X_val, y_train, y_val = train_test_split(x, y, test_size=0.25, □

→random_state = 3)

print(X_train.shape, y_train.shape, X_val.shape, y_val.shape)
```

```
(6580545, 58) (6580545,) (2193515, 58) (2193515,)
```

Lectura del conjunto de datos particionados

```
[3]: # Lectura del conjunto de datos particionado
X_train = pd.read_csv("./datos/X_train.csv")
X_val = pd.read_csv("./datos/X_val.csv")
y_train = pd.read_csv("./datos/y_train.csv")
y_val = pd.read_csv("./datos/y_val.csv")
```

Algoritmo de Random Forest

Partición 80-20

	${\tt max_depth}$	${\tt n_estimators}$	tiempo (seg.)	tiempo	accuracy
1	2	100	885.1690599918	14 minutos	0.6197803525391894
2	3	100	1381.4913179874	23 minutos	0.6198293606380626
3	None	100	10573.8996510506	2.93 horas	0.6500776151519365
4	2	300	5432.5211529732	1.50 horas	0.619139828084148
5	3	300	33088.3806273937	9.19 horas	0.6200863682263399
6	2	700	6232.4242198467	1.73 horas	0.6193934165027365

```
Partición 75-25, max_features = "auto" y min_samples_leaf = 50
```

```
rf = RandomForestClassifier(criterion = 'entropy', max_depth = d, n_jobs = -1, oob_score = Truenter = 100, max_features = "auto", min_samples_leaf = 50)
```

	max_depth	n_estimators	tiempo (seg.)	tiempo	accuracy
1	3	100	503.1005158424	9 minutos	0.6197803525391894
2	5	100	711.5991830826	12 minutos	0.623109028203591
3	9	100	1596.7300050259	27 minutos	0.6290889280447136
4	12	100	1967.6013000011	33 minutos	0.6345728203363096
5	7	150	1880.0360009670	32 minutos	0.6274044171113486
6	4	500	3667.4405992031	1 hora	0.6211163361089393
7	6	500	5644.0747678280	1.56 horas	0.625054307811891
8	8	500	7002.1717000008	1.95 horas	0.6281078542886646

/Users/gema/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:3: DataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

Tiempo de entrenamiento: 1854.0278778076 segundos Accuracy: 0.6349548555628751

Vamos a sacar las variables más importantes

[7]: feature_importance = feature_importance.sort_values('Valor', ascending=False) feature_importance.head()

```
[7]: Valor Variable
57 0.411256 SmartScreen
56 0.170796 AVProductsInstalled
55 0.074633 EngineVersion
```

```
54 0.033565 AppVersion
53 0.026912 Census InternalPrimaryDiagonalDisplaySizeInInches
```


Submission en Kaggle

[15]: (array([1, 1, 0, ..., 1, 0, 0]), 2193515)

```
# Pegamos la lista de los identificadores a la columna_{\sqcup}
                             →submission['HasDetections']
                         submission['HasDetections'] = pred_rf_model
                         submission.head()
[16]:
                                                                                                                    MachineIdentifier HasDetections
                        0 0000010489e3af074adeac69c53e555e
                         1 00000176ac758d54827acd545b6315a5
                                                                                                                                                                                                                                                                                  1
                         2 0000019dcefc128c2d4387c1273dae1d
                                                                                                                                                                                                                                                                                  0
                         3 0000055553dc51b1295785415f1a224d
                                                                                                                                                                                                                                                                                  1
                         4 00000574cefffeca83ec8adf9285b2bf
                                                                                                                                                                                                                                                                                  1
[17]: # Guardamos el fichero CSV
                         {\tt submission.to\_csv('./datos/Submissions/RandomForest/sample\_submission.csv',} {\tt lossion.to\_csv('./datos/Submissions/RandomForest/sample\_submission.csv',} {\tt lossion.to\_csv('./datos/Submissions/RandomForest/sample\_submission.csv',} {\tt lossions/RandomForest/sample\_submission.csv',} {\tt lossions/RandomForest/sample\_submissions/RandomForest/sample\_submission.csv',} {\tt lossions/RandomForest/sample\_submission.csv',} {\tt lossions/RandomForest/sample\_submissions/RandomForest/sample\_submission.csv',} {\tt lossions/RandomForest/sample\_submissions/RandomForest/sample\_submissions/RandomForest/sample\_submissions/RandomForest/sample\_submissions/RandomForest/sample\_submissions/RandomForest/sample\_submissions/RandomForest/sample\_submissions/RandomForest/sample\_submissions/RandomForest/sample\_submissions/RandomForest/sample\_submissions/RandomForest/s
                               →index = False, header = True)
```