Business Case Study - Target SQL

Que: 1 Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

Initial exploration of dataset

- 1. Data type of columns in a table String, Interger, float, timestamp
- 2. Time period for which the data is given Date is from 2016 TO 2018
- 3. Cities and States of customers ordered during the given period Customer data is from 27 States and 50 Cities

Analysis of tables in the dataset

Total 8 tables are there in the dataset

<u>Customer Table</u> – Customer data is from 27 States and 50 Cities

Primary Keys – customer_id

<u>Foreign Keys - customer_unique_id,customer_zip_code_prefix</u>

<u>Geolocation Table -</u> We can get the full name of the cities from this table using zipcode as key

Primary Key - geolocation_zip_code_prefix

Order items – freight_value and price for the order is in this table

PK - order_id,product_id,seller_id

Note: Freight value is the price paid or payable to the exporter for the cargo when it is unloaded from the shipper at the port when imported

<u>Order_reviews</u> – review_comment_title contains the review and where no review is given it is null

Que: 2 In-depth Exploration

1.Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
SELECT year,Order_count
FROM (SELECT COUNT(order_id)AS Order_Count, EXTRACT(Year FROM o.orde
r_purchase_timestamp ) AS year
FROM `scaler-dsml-sql-380819.Target_SQL_Project.orders` AS o
GROUP BY EXTRACT(Year FROM o.order_purchase_timestamp )) AS x
ORDER BY year
```

Query results

JOB IN	NFORMATION	RESULTS	JSON	EXECUT
Row	year //	Order_count //		
1	2016	329		
2	2017	45101		
3	2018	54011		

Insights - The YoY trend is positive from 2016 to 2018.

<u>Recommendation</u> - Introducing seasonal/new inventory to lower the impact of the decrease in sales.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT count(orders)AS total_orders,

CASE

WHEN hour BETWEEN 0 AND 6 THEN 'dawn'

WHEN hour BETWEEN 6 AND 12 THEN 'morning'

WHEN hour BETWEEN 12 AND 18 THEN 'afternoon'

WHEN hour BETWEEN 18 AND 23 THEN 'night'

END AS purchase_time

FROM(SELECT o.order_id AS orders, EXTRACT(HOUR FROM o.order_purchase_timestamp) AS hour

FROM `scaler-dsml-sql-380819.Target_SQL_Project.orders` AS o)

GROUP BY purchase_time

ORDER BY total_orders
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	
Row	total_orders	purchase_time		1
1	5242	dawn		
2	27733	morning		
3	28331	night		
4	38135	afternoon		

<u>Insights</u> – Maximum orders are in Afternoon and Minimum orders are in Dawn.

Recommendation - Offering discounts for dawn timings to increase sales.

Que: 3 Evolution of E-commerce orders in the Brazil region

1.Get month on month orders by states

```
SELECT state,months,COUNT(orders) AS total_orders
FROM(
SELECT c.customer_state AS state,EXTRACT(MONTH FROM o.order_purchase
_timestamp)AS months,o.order_id AS orders
FROM `scaler-dsml-sql-380819.Target_SQL_Project.orders` AS o
JOIN `scaler-dsml-sql-
380819.Target_SQL_Project.customers` AS c ON o.customer_id=c.custome
r_id)
GROUP BY state,months
ORDER BY total_orders DESC
```

Query results

JOB IN	IFORMATION	RESULTS	JSON		EXECUTION DETAILS
Row	state	le	months	h	total_orders
1	SP			8	4982
2	SP			5	4632
3	SP			7	4381
4	SP			6	4104
5	SP			3	4047

Insights – SP has the most numbers of orders

Recommendation- State with highest orders keep the warehouses in these state stocked to avoid shortage and in delay of delivery of product

2.Distribution of customers across the states in Brazil

```
SELECT c.customer_state AS state, COUNT(c.customer_id) AS customer_co unt FROM `scaler-dsml-sql-380819.Target_SQL_Project.customers` AS c
```

GROUP BY state

ORDER BY customer_count DESC

LIMIT 10

Row	state	customer_count
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

Insights – Above states are top 10 states with highest customers

Que: 4Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

1.Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
WITH payment_analysis AS (
SELECT EXTRACT(Year FROM o.order_purchase_timestamp ) AS Year, EXTRA
CT(Month FROM o.order_purchase_timestamp )AS Month,p.payment_value
FROM `scaler-dsml-sql-380819.Target_SQL_Project.orders` AS o
JOIN `scaler-dsml-sql-
380819.Target_SQL_Project.payments` AS p ON o.order_id=p.order_id),
payment_sum_analysis AS (SELECT Month, Year, avg(payment_value) AS sum
_payments FROM payment_analysis
GROUP BY Year. Month
HAVING Month<=8 AND Year BETWEEN 2017 AND 2018)
SELECT a.Month,a.Year,b.Year,((b.sum_payments-
a.sum_payments)/a.sum_payments)*100 AS pct_chg
FROM payment_sum_analysis AS a
JOIN payment_sum_analysis AS b ON a.Month=b.Month AND a.Year!=b.Year
ORDER BY a.Year, a.Month
LIMIT 8
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAI
Row	Month	Year	Year_1	pct_chg
1	1	2017	2018	-9.51240366
2	2	2017	2018	-7.76401578
3	3	2017	2018	-2.64671097
4	4	2017	2018	-0.91155223
5	5	2017	2018	7.58377628
6	6	2017	2018	7.19618306

2. Mean & Sum of price and freight value by customer state

```
SELECT c.customer_state, AVG(ot.freight_value) AS mean_freight_value,
SUM(ot.freight_value)AS sum_freight_value,AVG(ot.price)mean_price,SU
M(ot.price) AS sum_price
FROM `scaler-dsml-sql-380819.Target_SQL_Project.order_items` AS ot
JOIN `scaler-dsml-sql-
380819.Target_SQL_Project.orders`AS o ON o.order_id=ot.order_id
JOIN `scaler-dsml-sql-
380819.Target_SQL_Project.customers`AS c ON c.customer_id=o.customer
GROUP BY c.customer_state
 Query results

♣ SAVE RESULTS ▼

 JOB INFORMATION
                 RESULTS
                           JSON
                                   EXECUTION DETAILS
                                                    EXECUTION GRAPH PREVIEW
                                        sum_freight_value
                                                        mean_price
                          mean_freight_value
   1 SP
                                            718723.06999999378
                            15.147275390419132
                                                           109.65362915972931
                                                                          5202955.0500027407
   2 RJ
                            20.960923931682483
                                            305589.31000000431
                                                           125.11781809451907
                                                                          1824092.6699996467
   3
     PR
                            20.531651567944269
                                            117851.68000000058
                                                           119.00413937282218
                                                                           683083.76000003726
      SC
                            21.470368773946323
                                            89660.260000000053
                                                           124.65357758620696
                                                                           520553.34000002244
   4
   5 DF
                            21.041354945968422
                                           50625.499999999418
                                                           125.77054862842866
                                                                           302603.93999999622
```

Results per page:

50 ▼

Que: 5 Analysis on sales, freight and delivery time

Sort the data to get the following:

• Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

```
SELECT c.customer_state, ROUND((AVG(ot.freight_value)),2) AS avg_freight_value
FROM `scaler-dsml-sql-380819.Target_SQL_Project.order_items` AS ot
JOIN `scaler-dsml-sql-
380819.Target_SQL_Project.orders`AS o ON o.order_id=ot.order_id
JOIN `scaler-dsml-sql-
380819.Target_SQL_Project.customers`AS c ON c.customer_id=o.customer
_id
GROUP BY c.customer_state
```

ORDER BY avg_freight_value DESC LIMIT 5

0	Herv	resu	lts
9	uei y	resu	ILS

JOB IN	IFORMATION	RESULTS	JSON
Row	customer_state	li	avg_freight_valu
1	RR		42.98
2	PB		42.72
3	RO		41.07
4	AC		40.07
5	PI		39.15

Que: 6 Payment type analysis:

1. Month over Month count of orders for different payment types

SELECT COUNT(orders), month, type_of_paymentFROM(SELECT o.order_id ord ers, EXTRACT (MONTH FROM o.order_purchase_timestamp) AS month, p.payme nt_type AS type_of_payment

```
FROM `scaler-dsml-sql-380819.Target_SQL_Project.orders` AS o
JOIN `scaler-dsml-sql-
380819.Target_SQL_Project.payments` AS p ON o.order_id=p.order_id)
GROUP BY month, type_of_payment
ORDER BY type_of_payment, month
```

Query results				
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET
Row	f0_	month	type_of_payment	6
1	1715	1	UPI	
2	1723	2	UPI	
3	1942	3	UPI	
4	1783	4	UPI	
5	2035	5	UPI	

Insight - The lowest amount of transactions is done through UPI.

Recommendation – Provide discounts on UPI transactions to increase sales where people use UPI .As Not every person has a credit card but UPI transactions are also increasing we can use this to increase more sales.

2. Count of orders based on the no. of payment installments

```
SELECT payment_installments,COUNT(order_id) AS orderss
FROM `scaler-dsml-sql-380819.Target_SQL_Project.payments`
```

GROUP BY payment_installments
ORDER BY orderss DESC

Query results

JOB IN	IFORMATION	RESULTS
Row	payment_installr	orderss
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	10	5328

Insights – People make payments in less installments above are top5 number_of_installements in which people pay.

Recommendation- Provide them No cost EMI options for short installments.