1차년도 주요 결과물

(과제명) 대규모 분산 에너지 저장장치 인프라의 안전한 자율운영 및 성능 평가를 위한 지능형 SW 프레임워크 개발 (과제번호) 2021-0-00077

• 결과물명 : 사용 시나리오 기반 건강도 분석 설계서

• 작성일자 : 2021년 12월 1일

과학기술정보통신부 SW컴퓨팅산업원천기술개발사업 "1차년도 주요 결과물"로 제출합니다.

수행기관	성명/직위	확인
㈜퀀텀솔루션	장태욱/대표	

정보통신기획평가원장 귀하

사 용 권 한

본 문서에 대한 서명은 ㈜ 퀀텀솔루션 내부에서 본 문서에 대하여 수행 및 유지관리의 책임이 있음을 인정하는 것임.

본 문서는 작성, 검토, 승인하여 승인된 원본을 보관한다.

2 2 7 6 2 7 6 2 7 6 2 7 7 6 2 7 7 7 7 7						
작성자:	배동민	일자:	2021.09.30			
작성자:	김정욱	일자:	2021.11.01			
작성자:	장태욱	일자:	2021.12.01			

문서 이력

버전	변경일자	제.개정 내용	작성자
1.0	21.09.30	Draft 작성 완료	배동민
1.1	21.12.01	문서 보강 및 구체화	장태욱

목 차

1	н]] 1	터리 그	·	2
Ι.	. нд	니니 1	10고 시스늄	כ
	가.	배터리	기 건강도 정의 ···································	3
	나.	배터리	기 건강도 측정의 필요성	3
	다.	배터리	기 건강도 분석 시스템 구성	3
2.	明日	터리 분	른석 시스템 구성	5
	가.	분석 .	시스템 구성안	5
	나.	배터리	기 건강도/ 성능진단 시스템의 구성	5
	다.	배터리	기 건강도 운영/ 통합관리 시스템의 구성	7
3.	· 배 1	터리 분	분석 시스템 1차 상세 설계 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8
	가.	분석 .	시스템 1차 상세 설계안	8
	나.	분석 .	시스템의 하드웨어 요구사항	9
	다.	분석 .	시스템의 하드웨어 기반 물리적 구성 요구사항 ····································	0

1. 배터리 건강도 시스템

가. 배터리 건강도 정의

리튬 배터리의 지속적인 사용을 확인하기 위해 배터리의 건강도를 측정한다. 배터리의 건강도를 측정하는 방법으로 전압을 기반으로 SoH(State of Health)를 추정한다.

나. 배터리 건강도 측정의 필요성

고효율의 전기차 배터리 팩의 보증기간은 통상 8~10년이며, 이후 축전 능력이 저하되나 기존 용량 대비 80% 수준에서 재사용 가능 ('14.1 Navigant Research, 세계의 중고 배터리 시장)

미국 NREL(National Renewable Energy Laboratory)는 2010년 배터리 재사용기술에 대한 경제분석 결과를 발표, 배터리 재사용 시 저장능력을 신품대비 60% 수준으로 가정할 경우 68.7%, 신품대비 50%일 경우 약 31.4%의 비용절감 가능

- · 1단계 가치평가 : 경제성분석, 비용편익분석, 기술적 오류분석
- · 2단계 성능시험 : 잠재적 저장능력 및 수명가치 시뮬레이션
- · 3단계 실증분석: 마이크로그리드에서의 B2U 전기차 성능시험

전기차 배터리 혹은 구동시스템 진단기의 경우 차량 생산업체가 기본적으로 제 공해 주는 도구 이외에 범용 진단장비가 개발되어 있지 않음

Midtronics, Tekon 등이 전기차용 배터리 진단도구를 시장에 내놓았으나 아 직 보편적으로 사용되지는 못하고 있음

등으로 배터리의 건강도 측정이 필요함.

다. 배터리 건강도 분석 시스템 구성

- EV 프로파일러 기술 개발
 - 배터리 상태 진단을 위한 기준 프로파일 기술 개발
 - 기준 프로파일 적용 배터리 상태별 조견 데이터베이스 개발
- 충전 제어 기반의 BMS 기반 EV 배터리 상태분석 기술 개발
 - 충전 제어 인터페이스 및 충전 기준 프로파일 기술 개발
 - BMS 데이터 필수 항목 인자 평가 및 활용도 분석
 - BMS 데이터를 기반으로 배터리 상태 추정 기술
- 배터리 센터와 연계한 통신 기술 개발

- 충전 데이터를 기반으로 배터리 센터 연계한 상태 추정 기술
- 배터리 성능 및 안전성 이상 여부 판정 기술
- EV 배터리 통합진단시스템 기술 개발
 - 차량통합 정보 및 배터리 상태 정보 통합진단시스템 기술 개발
 - 배터리 진단 정보 통합 알고리즘 개발
 - 수집 데이터 배터리 센터와 연계를 통한 알고리즘 고도화 기술 개발
- 실증 관련 운영 소프트웨어 개발
 - EV 배터리 점검 프로세스 및 체계 개발
 - EV 배터리 점검 시스템 기술 개발
 - EV 배터리 유지보수 매뉴얼 개발

등의 기능으로 구성되어야 한다.

2. 배터리 분석 시스템 구성

가. 분석 시스템 구성안

건강도 분석 시스템은 진단 시스템 및 운영 시스템으로 구성되며 위의 기능을 각각의 시스템에서 담당한다.

< 시스템 구성안 >

나. 배터리 건강도/성능진단 시스템의 구성

- * 배터리 팩/모듈 성능진단 시스템은 각 시스템별로 팩 및 모듈에 대한 잔존 성능 진단 스택을 포함하여, 통합관리 시스템 연동 없이 독립적인 성능측 정이 가능
- * 해당 알고리듬은 추후 배터리 통합관리시스템 연동을 통해 업그레이드 가능하도록 구성된다.

< 전기 자동차 성능진단 시스템 (일부 데이터 재구성) >

- 배터리 모듈의 시험, 검사, 진단, 공정 제어
 - 안전성 검사 : 전압, 절연저항, 전해액 누출 검사 기능
 - 성능검사 : 용량, 출력, 온도 등 측정, 분석, 진단 기능
 - 검사장비, 계측기, 각종 인터페이스의 연동 운영 및 개별운영 제어
- 실시간 검사장비 및 계측기 사용 이력 및 고장 상태 점검 및 모니터링
- 배터리 모듈 안전성 및 잔존성능 검사진단
- 배터리 모듈의 안전성 : 전기적 상태 적합성, 절연 안전성, 유해물질 안전성 등 확인
- 배터리 모듈의 잔존성능 : 충전상태(SOC), 용량수명(SOH), 출력수명 (SOP), 균형상태(SOB) 계산
- 사용자 정의 기반 배터리 등급분류 및 출력, 저장 기능
- 배터리 검사진단 데이터 관리
- 시간, 온도, 전압, 전류, 용량, 등의 배터리 검사진단 및 통합 운영을 위한 데이터의 수집, 전송, 저장, 출력
- 사용 정의에 따른 데이터 분류, 조합, 저장, 이력 관리 지원

등의 기능으로 구성되어야 한다.

다. 배터리 건강도 운영/통합관리 시스템의 구성

- * 배터리 팩/모듈 성능진단 시스템에서 취득한 데이터와 배터리 전주기 관리 시스템에서 취득한 외부 데이터 연동을 통해 성능진단 알고리듬의 주기적 업데이트 가능
- * 성능진단 알고리듬의 업그레이드, 버전, 배포 등 통합관리 지원 가능

< 성능진단 엔진을 포함한 통합관리 시스템 (일부 데이터 재구성) >

- 배터리 팩/모듈 성능진단 시스템 연동
- 폐배터리 성능진단 데이터 인터페이스
- 연계 테스트 장비 운영 관리
- 수집 데이터 분류 및 DB 관리
- 배터리 팩 및 모듈별 공정 현황 및 잔존가치 등급 관리
- 배터리 전주기 관리 시스템 연동
 - EV 운행 이력 및 재사용 ESS 운행 이력 취득 데이터 연동을 통해 잔존 성능 판단 알고리듬 업그레이드 지원
- 팩/모듈 성능진단 알고리듬 업그레이드/배포/관리

- 취합 데이터 정보관리
- 각 라인별 공정 데이터 및 잔존가치 판단 시스템 데이터 취합 관리
- 각 배터리 종별 잔존가치 판단기준 데이터 관리
- 조회 데이터에 대한 출력 및 비교 기능 (그래프 출력 지원)
- 저장된 raw data 기준의 Primary data 출력
- Primary data를 조합한 Secondary data 계산 및 출력

등의 기능으로 구성되어야 한다.

3. 배터리 분석 시스템 1차 상세 설계

가. 분석 시스템 1차 상세 설계안

배터리 분석을 위한 기본 설계 단계에서 각 처리 엔진 및 측정 엔진을 고려한 1차 상세 설계안을 구성함.

< 소프트웨어 구성 >

- ① 지능형 알고리즘 검증을 위한 단셀 데이터 배터리셀
 - 가. 기초 저장장치 배터리 RAW 데이터 확보
 - 나. 분해능 기반 정밀 계측 데이터 확보
 - 다. 선형 데이터 보정을 위한 폐배터리 잔존가치 프로파일 개발
- ② 잔존가치 정밀 진단 알고리즘 개발
 - 가. 기초 장치 배터리 OCV 데이터 기반 알고리즘 개발
 - 나. 기초 장치 배터리 측정 데이터 기반의 HPPC 알고리즘 개발
 - 다. SoC 기반의 연계측정을 위한 지능형 알고리즘 개발
- ③ 기초 장치 배터리 성능진단 소프트웨어
 - 가. 지능형 클러스터 시스템 설치 및 화경 구성
 - 나. EV 성능진단 엔진 기반의 UI 소프트웨어

나. 분석 시스템의 하드웨어 요구사항

- * 지능형 클러스터 시스템 설치 및 환경 구성
 - CentOS 7.6, Hadoop 2.9, MongoDB 4.2, Redis 3.2 환경에서 동작해야 함.
 - 지능형 클러스터는 대용량 분산 파일 처리를 위해 Master Node, Slave node 1, Slave node 2의 분산구조를 적용해야 함.
 - 배터리 성능진단 시 빠른 처리를 위해 메모리 DB 기반인 Redis 3.2 를 설치를 요구함.

다. 분석 시스템의 하드웨어 기반 물리적 구성 요구사항

< 하드웨어 서버 기반의 물리적 모듈 구상안 1차 초안 >