- In [2]: 1 from sklearn.model_selection import train_test_split, GridSearchCV
 2 from sklearn.multioutput import MultiOutputRegressor
 3 from sklearn.ensemble import RandomForestRegressor
 4 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_sc
 5 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_sc
 6 import pandas as pd
 7 import seaborn as sns
 8 import matplotlib.pyplot as plt
 9 import random

Out[3]:

	SI No	x 1	y1	x2	y2	area	Model horizontal Class	Model Vertical class	Model Box Class	natural frequency of Mode 1	natural frequency of Mode 2	nati freque of Moc
0	1	0.00	0.0	0.06	0.06	0.0036	1	1	1	6.8818	25.361	27.
1	2	0.06	0.0	0.12	0.06	0.0036	1	1	1	6.8854	25.535	27.
2	3	0.12	0.0	0.18	0.06	0.0036	1	1	1	6.9176	25.713	27.
3	4	0.18	0.0	0.24	0.06	0.0036	2	1	1	6.9214	25.759	27.
4	5	0.24	0.0	0.30	0.06	0.0036	2	1	1	6.9401	25.767	27.
251	252	0.66	0.9	0.72	0.96	0.0036	4	5	9	6.9393	25.759	27.
252	253	0.72	0.9	0.78	0.96	0.0036	4	5	9	6.9443	25.757	27.
253	254	0.78	0.9	0.84	0.96	0.0036	5	5	9	6.9254	25.725	27.
254	255	0.84	0.9	0.90	0.96	0.0036	5	5	9	6.9163	25.691	27.
255	256	0.90	0.9	0.96	0.96	0.0036	5	5	9	6.9305	25.705	27.

256 rows × 15 columns

Out[3]:

	x1	y1	x2	y2	natural frequency of Mode 1	natural frequency of Mode 2	natural frequency of Mode 3	natural frequency of Mode 4	natural frequency of Mode 5	natural frequency of Mode 6
0	0.00	0.0	0.06	0.06	6.8818	25.361	27.925	46.167	67.591	72.011
1	0.06	0.0	0.12	0.06	6.8854	25.535	27.926	46.424	68.150	72.073
2	0.12	0.0	0.18	0.06	6.9176	25.713	27.932	46.575	68.315	72.107
3	0.18	0.0	0.24	0.06	6.9214	25.759	27.926	46.586	68.098	72.105
4	0.24	0.0	0.30	0.06	6.9401	25.767	27.916	46.589	67.902	72.108

```
In [6]:
          1 # Initialize a multi-output regression model (RandomForestRegressor as an
          2 base_regressor = RandomForestRegressor(random_state=42)
          4 # Create a multi-output wrapper for the regressor
            multi_output_regressor = MultiOutputRegressor(base_regressor)
          7 # Define parameter grid
          8 param_grid = {
         9
                 'estimator__n_estimators': [100, 200, 300],
         10
                 'estimator__max_depth': [None, 10, 20, 30],
                 'estimator__min_samples_split': [2, 5, 10],
         11
                'estimator__min_samples_leaf': [1, 2, 4]
         12
         13 }
         14
         15 # Initialize GridSearchCV with MultiOutputRegressor
         16 | grid_search = GridSearchCV(multi_output_regressor, param_grid, cv=5)
         17
         18 # Fit the grid search
         19 grid_search.fit(X_train, y_train)
         20
         21 # Make predictions on the testing data
         22 y_pred_test =grid_search.predict(X_test)
         23
         24 # Once the model is trained, predict values for the training set
         25 y_pred_train = grid_search.predict(X_train)
```

Mean Squared Error: 0.019482247101215624
Mean Absolute Error: 0.09749223107770277
R-squared: 0.7549440539660275
Median Absolute Error: 0.06641448685110714
Explained Variance Score: 0.7612940212359287
Mean Squared Logarithmic Error: 0.00999186530538691

```
In [8]:
             #Create a DataFrame to store actual and predicted values
          2
             output_values = pd.DataFrame(columns=['Actual_x1', 'Actual_y1', 'Actual_x2
                                                    'Predicted_x1', 'Predicted_y1', 'Pre
          3
          4
          5
             #Iterate through the training dataset and append actual and predicted value
             for i in range(len(y_train)):
          6
          7
                 actual_x1_train = y_train.iloc[i][' x1']
          8
                 actual_y1_train = y_train.iloc[i][' y1']
          9
                 actual_x2_train = y_train.iloc[i][' x2']
         10
                 actual_y2_train = y_train.iloc[i][' y2']
         11
         12
                 predicted_x1_train = y_pred_train[i][0]
                 predicted_y1_train = y_pred_train[i][1]
         13
         14
                 predicted_x2_train = y_pred_train[i][2]
         15
                 predicted_y2_train = y_pred_train[i][3]
         16
         17
                 output_values = pd.concat([output_values, pd.DataFrame({'Actual_x1': [
         18
                                                                           'Actual y1':
         19
                                                                           'Actual_x2':
         20
                                                                           'Actual_y2': [
         21
                                                                           'Predicted x1'
         22
                                                                           'Predicted y1'
         23
                                                                           'Predicted x2'
         24
                                                                           'Predicted y2'
         25
                                            ignore_index=True)
         26
         27
             #Iterate through the testing dataset and append actual and predicted value
         28
             for i in range(len(y_test)):
         29
                 actual x1 test = y test.iloc[i][' x1']
         30
                 actual_y1_test = y_test.iloc[i][' y1']
         31
                 actual_x2_test = y_test.iloc[i][' x2']
         32
                 actual_y2_test = y_test.iloc[i][' y2']
         33
         34
                 predicted_x1_test = y_pred_test[i][0]
         35
                 predicted_y1_test = y_pred_test[i][1]
         36
                 predicted_x2_test = y_pred_test[i][2]
         37
                 predicted_y2_test = y_pred_test[i][3]
         38
         39
                 output_values = pd.concat([output_values, pd.DataFrame({'Actual_x1': [
         40
                                                                           'Actual_y1': |
         41
                                                                           'Actual_x2':
         42
                                                                           'Actual y2': |
         43
                                                                           'Predicted x1'
         44
                                                                           'Predicted_y1'
         45
                                                                           'Predicted x2'
         46
                                                                           'Predicted y2'
         47
                                            ignore_index=True)
         48
         49 | # Display the DataFrame containing actual and predicted values
             print("Combined Output Values:")
         50
            output_values
```

Combined Output Values:

	Actual_x1	Actual_y1	Actual_x2	Actual_y2	Predicted_x1	Predicted_y1	Predicted_x2	Pred
0	0.90	0.48	0.96	0.54	0.770767	0.577944	0.829167	(
1	0.24	0.30	0.30	0.36	0.259497	0.290839	0.318175	(
2	0.42	0.18	0.48	0.24	0.441343	0.185062	0.500666	(
3	0.72	0.78	0.78	0.84	0.599064	0.768388	0.657564	(
4	0.48	0.36	0.54	0.42	0.513619	0.391467	0.569974	(
251	0.18	0.24	0.24	0.30	0.176288	0.443364	0.233887	(
252	0.42	0.78	0.48	0.84	0.239806	0.727956	0.300995	(
253	0.54	0.72	0.60	0.78	0.534885	0.731584	0.601093	(
254	0.06	0.66	0.12	0.72	0.203096	0.643591	0.264384	(
255	0.36	0.12	0.42	0.18	0.342342	0.322337	0.402059	(

256 rows × 8 columns

```
In [9]:
          1 # Calculate evaluation metrics for each target variable separately
          2 metrics_dict = {}
          3
          4
            for target in targets:
          5
                 # Select actual and predicted values for the target variable
                 actual_values = output_values[f'Actual_{target.strip()}'] # Remove ex
          6
          7
                 predicted values = output values[f'Predicted {target.strip()}'] # Ren
          8
          9
                 # Calculate evaluation metrics
         10
                 mse = mean squared error(actual values, predicted values)
                 mae = mean_absolute_error(actual_values, predicted_values)
         11
         12
                 r2 = r2_score(actual_values, predicted_values)
         13
                medae = median absolute error(actual values, predicted values)
         14
                 evs = explained_variance_score(actual_values, predicted_values)
         15
                 msle = mean_squared_log_error(actual_values, predicted_values)
         16
                 # Store metrics in a dictionary
         17
         18
                 metrics_dict[target] = {
         19
                     'Mean Squared Error': mse,
         20
                     'Mean Absolute Error': mae,
         21
                     'R-squared': r2,
         22
                     'Median Absolute Error': medae,
                     'Explained Variance Score': evs,
         23
         24
                     'Mean Squared Logarithmic Error': msle
         25
                 }
         26
         27
            # Print metrics for each target variable
         28 for target, metrics in metrics_dict.items():
         29
                 print(f"Metrics for {target}:")
         30
                 for metric, value in metrics.items():
         31
                     print(f"{metric}: {value}")
         32
                 print()
         33
        Metrics for x1:
        Mean Squared Error: 0.007044794840550779
        Mean Absolute Error: 0.0504333633023306
        R-squared: 0.9079111785548918
        Median Absolute Error: 0.032262734303693
        Explained Variance Score: 0.9084450856416482
        Mean Squared Logarithmic Error: 0.0037588897986350193
        Metrics for y1:
        Mean Squared Error: 0.004092602760262016
        Mean Absolute Error: 0.040247030885385025
        R-squared: 0.9465019247024573
        Median Absolute Error: 0.024628170571259753
        Explained Variance Score: 0.9467704617769523
        Mean Squared Logarithmic Error: 0.002297926889311344
        Metrics for x2:
        Mean Squared Error: 0.007089687411497405
        Mean Absolute Error: 0.05071536539577299
        R-squared: 0.9073243475621254
        Median Absolute Error: 0.03199182793718239
```

Explained Variance Score: 0.9078517608219387

Mean Squared Logarithmic Error: 0.0034589469456795955

Metrics for y2:

Mean Squared Error: 0.004128613002806427 Mean Absolute Error: 0.040239218666960286

R-squared: 0.9460312025776938

Median Absolute Error: 0.026199999999999696 Explained Variance Score: 0.9462965342809088

Mean Squared Logarithmic Error: 0.0021139367687811085

Combined data saved to 'D:\CV things\ML projects\MTP projects\combined_output _values.csv'

```
In [11]:
           1 | # Read the CSV file into a DataFrame
           2 file_path = r'D:\CV things\ML projects\MTP projects\combined_output_values
             output_values = pd.read_csv(file_path)
           4
             # Set the style for the plot
           6 sns.set_style("whitegrid")
           7
           8 # Create a line plot for actual and predicted x1 values
          9
             plt.figure(figsize=(10, 6))
          10
          11 # Plot actual x1 values in blue
          12 | sns.lineplot(data=output_values['Actual_x1'], marker='o', color='blue', ma
          13
          14 # Plot predicted x1 values in red
          15 | sns.lineplot(data=output_values['Predicted_x1'], marker='o', color='red',
          16
          17 # Add Labels and title
          18 plt.xlabel('Sample')
          19 plt.ylabel('Value')
          20 plt.title('Actual x1 Values vs Predicted x1 Values')
          21
          22 # Add Legend
          23 plt.legend()
          24
          25 # Show the plot
          26 plt.show()
```



```
In [12]:
           1 # Set the palette to 'bright'
             sns.set_palette('deep')
           2
           3
             # Create a line plot for actual and predicted y1 values
           4
             plt.figure(figsize=(10, 6))
           5
           6
           7
             # Plot actual y1 values in blue
             sns.lineplot(data=output_values['Actual_y1'], marker='o', color='skyblue',
           8
           9
          10 # Plot predicted y1 values in red
          11 | sns.lineplot(data=output_values['Predicted_y1'], marker='o', color='purple
          12
          13 # Add labels and title
          14 plt.xlabel('Sample')
          15 plt.ylabel('Value')
             plt.title('Actual y1 Values vs Predicted y1 Values')
          16
          17
          18 # Add Legend
          19 plt.legend()
          20
          21 # Show the plot
          22 plt.show()
```



```
In [13]:
             # Create a line plot for actual and predicted x2 values
           2
             plt.figure(figsize=(10, 6))
           3
           4
             # Plot actual x2 values in green
             sns.lineplot(data=output_values['Actual_x2'], marker='o', color='yellow',
           5
           6
           7
             # Plot predicted x2 values in orange
             sns.lineplot(data=output_values['Predicted_x2'], marker='o', color='green'
           8
           9
          10 # Add Labels and title
          11 plt.xlabel('Sample')
          12 plt.ylabel('Value')
          13 plt.title('Actual vs Predicted x2 Values')
          14
          15 # Add Legend
          16 plt.legend()
          17
          18 # Show the plot
          19 plt.show()
```



```
In [14]:
             # Create a line plot for actual and predicted y2 values
           2
             plt.figure(figsize=(10, 6))
           3
           4
             # Plot actual y2 values in purple
             sns.lineplot(data=output_values['Actual_y2'], marker='o', color='violet',
           6
           7
             # Plot predicted y2 values in yellow
             sns.lineplot(data=output_values['Predicted_y2'], marker='o', color='black'
           8
          9
          10 # Add Labels and title
          11 plt.xlabel('Sample')
          12 plt.ylabel('Value')
          13 plt.title('Actual y2 Values vs Predicted y2 Values')
          14
          15 # Add Legend
          16 plt.legend()
          17
          18 # Show the plot
          19 plt.show()
```



```
In [15]:
             # Randomly select 100 rows from the DataFrame
             sampled_data = output_values.sample(n=15)
           2
           3
             # Create a scatter plot for actual and predicted x1 values
             plt.figure(figsize=(10, 6))
           6
           7
             # Plot actual x1 values in blue
             plt.scatter(sampled_data.index, sampled_data['Actual_x1'], color='blue', ]
           9
          10 # Plot predicted x1 values in red
             plt.scatter(sampled_data.index, sampled_data['Predicted_x1'], color='red',
          12
          13 # Add Labels and title
          14 plt.xlabel('Sample')
          15 plt.ylabel('Value')
             plt.title('Actual x1 Values vs Predicted x1 Values - Scatter Plot')
          16
          17
          18 # Add Legend
          19 plt.legend()
          20
          21 # Show the plot
          22 plt.show()
```



```
In [16]:
             # Randomly select 15 rows from the DataFrame
             sampled_data = output_values.sample(n=15, random_state=40)
           2
           3
             # Create a scatter plot for actual and predicted y1 values
             plt.figure(figsize=(10, 6))
           6
           7
             # Plot actual y1 values in blue
             plt.scatter(sampled_data.index, sampled_data['Actual_y1'], color='skyblue'
           9
          10 # Plot predicted y1 values in red
             plt.scatter(sampled_data.index, sampled_data['Predicted_y1'], color='purpl
          11
          12
          13 # Add Labels and title
          14 plt.xlabel('Sample')
          15 plt.ylabel('Value')
          16
             plt.title('Actual y1 Values vs Predicted y1 Values - Scatter Plot')
          17
          18 # Add Legend
          19 plt.legend()
          20
          21 # Show the plot
          22 plt.show()
```



```
In [17]:
           1 # Create a scatter plot for actual and predicted x2 values
           2 plt.figure(figsize=(10, 6))
           4 # Plot actual x2 values in green
             plt.scatter(sampled_data.index, sampled_data['Actual_x2'], color='yellow',
           6
           7
             # Plot predicted x2 values in orange
             plt.scatter(sampled_data.index, sampled_data['Predicted_x2'], color='greer
           9
          10 # Add Labels and title
          11 plt.xlabel('Sample')
          12 plt.ylabel('Value')
          13 plt.title('Actual x2 Values vs Predicted x2 Values - Scatter Plot')
          14
          15 # Add Legend
          16 plt.legend()
          17
          18 # Show the plot
          19 plt.show()
```



```
In [18]:
           1 # Create a scatter plot for actual and predicted y2 values
           2 plt.figure(figsize=(10, 6))
           4 # Plot actual y2 values in purple
             plt.scatter(sampled_data.index, sampled_data['Actual_y2'], color='violet',
           6
           7
             # Plot predicted y2 values in yellow
             plt.scatter(sampled_data.index, sampled_data['Predicted_y2'], color='black
           9
          10 # Add Labels and title
          11 plt.xlabel('Sample')
          12 plt.ylabel('Value')
          13 plt.title('Actual y2 Values vs Predicted y2 Values - Scatter Plot')
          14
         15 # Add Legend
          16 plt.legend()
          17
          18 # Show the plot
          19 plt.show()
```



```
In [21]:
           1 # Read the sample data from the CSV file
           2 file_path = r'D:\CV things\ML projects\MTP projects\combined_output_values
           3 data = pd.read_csv(file_path)
           5 # Select 5 random rows from the data
           6 random_indices = random.sample(range(len(data)),15)
             random_data = data.iloc[random_indices]
           7
           9 # Extracting data from the DataFrame
          10 for i, row in random data.iterrows():
                 actual_x1, actual_y1, actual_x2, actual_y2 = row[['Actual_x1', 'Actual
          11
          12
                 predicted_x1, predicted_y1, predicted_x2, predicted_y2 = row[['Predict
          13
          14
                 # Plot rectangles
          15
                 plt.plot([actual_x1, actual_x2], [actual_y1, actual_y1], color='red')
                 plt.plot([actual_x1, actual_x2], [actual_y2, actual_y2], color='red')
          16
                 plt.plot([actual_x1, actual_x1], [actual_y1, actual_y2], color='red')
          17
                 plt.plot([actual_x2, actual_x2], [actual_y1, actual_y2], color='red')
          18
          19
                 plt.plot([predicted_x1, predicted_x2], [predicted_y1, predicted_y1], 
          20
                 plt.plot([predicted_x1, predicted_x2], [predicted_y2, predicted_y2], 
          21
                 plt.plot([predicted_x1, predicted_x1], [predicted_y1, predicted_y2], 
          22
          23
                 plt.plot([predicted_x2, predicted_x2], [predicted_y1, predicted_y2], (
          24
          25 plt.xlabel('X')
          26
             plt.ylabel('Y')
             plt.title('Randomly Selected Actual vs Predicted Data with Rectangles')
          27
          28
          29 #Show the plot
          30 plt.show()
```

Randomly Selected Actual vs Predicted Data with Rectangles

