WHAT IS CLAIMED IS:

1	1. An oximeter sensor, comprising:				
2	a substrate having a shape similar to a shape of at least a portion of a patient's				
3	forehead and including a section adapted to substantially fit over a portion of a forehead of a				
4	patient;				
5	an emitter disposed on said substrate at a position located on said section; and				
6	a detector disposed on said substrate at a distance from said emitter.				
1	2. The sensor of claim 1 wherein said substrate is resilient and has a				
2	shape conformable to the forehead of a patient.				
1	3. The sensor of claim 1 wherein said substrate comprises an adhesive				
2	layer for adhering to the forehead of a patient.				
1	4. The sensor of claim 1 wherein said substrate comprises a darkened				
2	layer so as to minimize the incidence of reflected light that does not go through the tissue of				
3	patient onto said detector.				
1	5. The sensor of claim 1 further comprising leads connected to said				
2	emitter and said detector, said leads extending along said substrate away from one of the top				
3	or a side of a patient's forehead.				
1	6. The sensor of claim 1 further comprising a hat for holding said				
2	substrate against the patient's forehead.				
1	7. The sensor of claim 6 wherein said substrate is adhered to the inside of				
2	said hat.				
1	8. The sensor of claim 7 wherein said substrate is adhesively adhered to				
2	the inside of said hat.				
1	9. The sensor of claim 1 wherein said substrate comprises a plurality of				
2	laminated layers.				
l	10. An oximeter sensor, comprising:				

2	a substrate having a shape similar to a shape of at least a portion of a patient's				
3	forehead and including a section adapted to substantially fit over a portion of a forehead of a				
4	patient;				
5	an emitter disposed on said substrate at a position located on said section;				
6	a detector disposed on said substrate at a distance from said emitter; and				
7	a hat for holding said substrate against the patient's forehead.				
1	11. A method for determination of a blood characteristic, comprising:				
2	applying an emitter and a detector to spaced-apart positions on a forehead of a				
3	patient in the lower forehead region, above the eyebrow, with both the detector and the				
4	emitter placed lateral of the iris;				
5	securing said emitter and detector to said patient;				
6	emitting electromagnetic radiation with said emitter;				
7	detecting electromagnetic radiation scattered by the forehead by said detector				
8	and producing a detector signal; and				
9	determining a blood characteristic in the patient from said detector signal.				
1	12. The method of claim 11 wherein said blood characteristic is oxygen				
2	saturation.				
1	13. The method of claim 11 wherein said securing comprises placing a hat				
2	over said emitter and said detector.				
1	14. The method of claim 11 wherein said securing comprises securing said				
2	emitter and said detector to the patient by attaching said emitter and said detector to an inside				
3	of a hat, and placing said hat on the head of the patient.				
1	15. The method of claim 11 comprising detecting light reflected from the				
2	forehead of the patient with said detector.				
1	16. A method for determination of a blood characteristic, comprising:				
2	applying an emitter and a detector to spaced-apart positions on a forehead of a				
3	patient in the lower forehead region, above the eyebrow, with both the detector and the				
4	emitter placed lateral of the iris;				
5	securing said emitter and detector to said patient, by attaching said emitter and				
6	said detector to an inside of a hat, and placing said hat on the head of the patient;				

7	emitting electromagnetic radiation with said emitter;			
8	detecting electromagnetic radiation scatte	detecting electromagnetic radiation scattered by the forehead by said detector		
9	and producing a detector signal; and			
10	determining a blood characteristic in the patient from said detector signal.			
1	17. The method of claim 16 wherein	said blood characteristic is oxygen		
2	saturation.			