(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 September 2002 (26.09.2002)

PCT

(10) International Publication Number WO 02/076148 A2

(51) International Patent Classification7: H04R 25/00 (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CII, CN, CO, CR, CU, (21) International Application Number: PCT/CA02/00397 (22) International Filing Date: 21 March 2002 (21.03.2002) (25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/277,275 21 March 2001 (21.03.2001) US 2,341,834 22 March 2001 (22.03.2001)

- (71) Applicant (for all designated States except US): UNI-TRON INDUSTRIES LTD. [CA/CA]; 20 Beasley Drive, P.O. Box 9017, Kitchener, Ontario N2G 4X1 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): LUO, Henry [CA/CA]; 216 Tatlock Court, Waterloo, Ontario N2L 4X1 (CA). ARNDT, Horst [CA/CA]; 6 Old Forest Crescent, Kitchener, Ontario N2N 2A3 (CA).
- (74) Agent: BERESKIN & PARR; 40 King Street West, 40th Floor, Toronto, Ontario M5H 3Y2 (CA).

- CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: APPARATUS AND METHOD FOR ADAPTIVE SIGNAL CHARACTERIZATION AND NOISE REDUCTION IN HEARING AIDS AND OTHER AUDIO DEVICES

(57) Abstract: A system and method for characterizing the contents of an input audio signal and for suppressing noise components of the input audio signal are described. The audio signal is divided into a number of frequency domain input signals. Each frequency domain input signal can be processed separately to determine its intensity change, modulation frequency, and time duration characteristics to characterize the frequency domain input signal as containing a desirable signal or as a type of noise. An index signal is calculated based on a combination of the determined characteristics and signals identified as noise are suppressed in comparison to signals identified as desirable to produce a set of frequency domain output signals with reduced noise. The frequency domain output signals are combined to provide an output audio signal corresponding to the input audio signal but having suppressed noise components and comparatively enhanced desirable signal components.

-1-

Title: Apparatus and Method for Adaptive Signal Characterization and Noise Reduction in Hearing Aids and Other Audio Devices

Field of the Invention

5 **[0001]** This invention relates to a method and apparatus for digital signal processing of audio signals. More particularly, the invention is suitable for use in a hearing aid or other devices in which noise signals are to be adaptively detected and suppressed in comparison to desirable signals.

10

15

20

25

30

Background of the Invention

[0002] The use of digital signal processing in hearing aids and other devices has become commonplace. One goal of such systems is to provide amplification of desirable audio information in a signal while suppressing undesirable audio noise in the signal.

[0003] A person using a hearing aid or other audio device will typically be in an environment with several different types of real-life audio signals consisting of noises and desirable sounds. Examples of such audio signals are: stationary noise (such as a fan or motor), pseudo-stationary noise (such as traffic noise or speech babble), desirable sounds (such as speech or music) and transient noise (such as gun shots or a door slamming).

[0004] Various methods of detecting noise have been proposed and implemented.

[0005] In one system, described in U.S. patent 4,852,175, the incoming audio signal is divided into a set of frequency bands and the "sound events" in each band are categorized by their amplitude (or intensity). An assumption is made that a pre-selected percentage of the sound events with the lowest amplitude are noise events and a gain is calculated separately for each band to attempt to minimize the effect of the identified noise on an output signal, which is formed by recombining the signal from each frequency band after having multiplied it by the

-2-

calculated gain. This system is deficient because it makes a presumption that a certain percentage of sound events in each frequency band are noise based only on their amplitude. This presumption is not a reliable measure of noise in most circumstances. Furthermore, this system cannot adapt to changing conditions in which noise is more or less prevalent at different times. The result is that many noise sound events will not be categorized as noise and many non-noise sound events will be categorized as noise.

[0006] In another system, described in U.S. patent 4,185,168, the absolute value, or a function thereof (e.g. the RMS value), of the signal in each frequency band is used to estimate the noise content in the frequency band, assuming that the noise has a fixed or narrow frequency spectrum over a selected time period. Alternatively, a smoothed version of the signal in each band can be used to produce the signal-to-noise ratio, SNR, which can be used to determine the presence of noise. If noise is detected, the gain of the band relative to other bands is reduced so that bands with noise are suppressed in favor of bands without noise. While this system does not assume that a selected amount of audio information in each band will be noise, it is deficient because it assumes that noise has a frequency spectrum which does not vary with time or varies only within a narrow range over a period of time. This system is accordingly limited to detecting stationary or slowly changing pseudo-stationary noise.

[0007] There is a need for a signal characterization and noise reduction system that is adaptable to signals which have different noise content over time and which is capable of detecting and suppressing different types of noise.

Summary of the Invention

10

15

20

25

30

[0008] The present invention provides a signal characterization and noise reduction system which detects desirable signals and noise based on various characteristics of different types of noise and desired signals.

- 3 -

[0009] Comparison of the different types of noise provides several characteristics which may be used to characterize the signal, or part of it, as a type of noise or as a desired signal.

[0010] One such characteristic is the change in the intensity (or volume) of the audio signal over a selected time period or the "intensity change" of the signal. The intensity change of a signal indicates the range of its intensity over the time period. The four types of audio information may be placed generally onto a continuum in which:

5

10

25

30

-stationary noises exhibit the smallest changes in intensity;

-pseudo-stationary noises exhibit larger changes in intensity than stationary noises but smaller changes than desirable sounds; and

-transient noises exhibit larger changes in intensity than desirable signals.

15 [0011] Another characteristic which may be used to classify audio information in a sound signal is the frequency of the signal's intensity modulation over a selected time period or the "modulation frequency". The modulation frequency is the number of cycles in the intensity of an audio signal during a time period. For example, an audio signal which exhibits 30 peaks in its intensity over a one second period will have a modulation frequency of 30 Hz. The individual peaks will generally not have the same intensity, and may in fact be substantially different. The four types of audio information may be placed generally onto a continuum in which:

-stationary noises exhibit the lowest modulation frequency;

-pseudo-stationary noises exhibit higher modulation frequencies than stationary noises but lower modulation frequencies than desirable sounds; and

-transient noises exhibit higher modulation frequencies than desirable signals.

[0012] The present invention provides a digital signal processing circuit for processing signals that advantageously uses these

-4-

characteristics of the desirable signal and noise components of a typical audio signal to amplify desired sounds while suppressing the noise components.

[0013] An incoming sound signal is first converted into an analog input signal. The analog input signal is digitized and then divided into a set of frequency domain input signals, each of which corresponds to a part of the audio signal within one frequency band. The frequency domain input signals are analyzed separately.

5

10

15

20

25

30

[0014] Each frequency domain input signal is analyzed to determine the change in the intensity of the signal during a selected time period and to produce an intensity change sub-index, which characterizes the frequency domain input signal as one of the different types of noise or as a desired signal.

[0015] Simultaneously, the frequency domain input signal is analyzed to determine the modulation frequency of the signal during a selected period (which may or may not be equal to the period selected to analyze changes in intensity) and to produce a modulation frequency sub-index, which characterizes the frequency domain input signal as one the different types of noise or as a desired signal.

gub-index are combined to produce a signal index which characterizes the frequency domain input signal along a two dimensional continuum defined by the change in intensity and modulation frequency criteria. The signal index is then converted into a gain signal, which may be done by using a look up table or a formula. The frequency domain input signal is then multiplied by the gain signal to produce a frequency domain output signal. The several frequency domain output signals calculated in this fashion are combined to form a digital output signal which is converted into an analog output signal, which is then converted into a sound signal using a loudspeaker.

[0017] Using this method, the audio signal is sliced into different parts defined by the frequency bands. The components of the audio

- 5 -

signal in each frequency band are analyzed and the entire band is characterized along a two-dimensional continuum as stationary noise, pseudo-stationary noise, desirable signal or as transient noise. The components in the frequency band are then amplified (or suppressed) in order to amplify desirable signals in preference to noise. The resulting signals are combined to produce an output sound signal which has an amplified desired signal component and relatively suppressed noise components.

5

10

15

20

25

30

[0018] In a second embodiment of the present invention the frequency domain input signals are also analyzed according to a third characteristic: the time duration of the signal. The four types of audio information may be placed generally onto a continuum in which:

-stationary noises generally exhibit the longest time duration; -pseudo-stationary noises generally exhibit shorter time duration than stationary noises but longer time duration than desirable sounds; and

-transient noises generally exhibit much shorter time duration than desired signals.

The frequency domain input signal is analyzed to determine the duration of its sound components and to produce a duration sub-index, which is combined with the intensity change and modulation frequency sub-indices to produce a signal index on a three dimensional continuum. This signal index is used to generate a gain signal as in the two dimensional embodiment.

[0020] The invention may be configured to use only one of the three characteristics (change in intensity, modulation frequency or time duration) to produce the signal index. Alternatively, any two or all three of the characteristics may be used. Furthermore, other characteristics of a sound signal may be used to classify the sound signal. For example, characteristics such as common onset/offset of frequency components, common frequency modulation, common amplitude modulation may be used to characterize an audio signal.

5

15

25

[0021] Depending on the particular requirements of a particular embodiment of the present invention, other types of signals may be considered desirable. For example, in a situation where explosions (a transient noise) are to be identified in a loud background noise (a stationary or pseudo-stationary noise), then the sub-indices and the gain signal will be configured accordingly to emphasize the transient noise and suppress other sounds, including speech and music sounds described above as desirable signals.

10 Brief Description of the Drawings

[0022] A preferred embodiment of the present invention will now be described in detail with reference to the drawings, in which:

Figure 1 is a block diagram of a first embodiment of a signal processing circuit for adaptively characterizing and reducing noise according to the present invention;

Figure 2 is block diagram of a gain stage of the circuit of Figure 1:

Figure 3 is a block diagram of a gain sub-stage of the gain stage of Figure 2;

Figure 4 illustrates the typical change in intensity over a time period for different signal types;

Figure 5 illustrates the typical modulation frequency over a time period for different signal types;

Figure 6 illustrates a preferred relationship between a signal index produced by the gain sub-stage of Figure 3 and different signal types;

Figure 7 illustrates modulation frequency of an audio signal versus the change in intensity of different signal types;

Figure 8 illustrates the relationship between gain signal 62 produced by the gain sub-stage of Figure 3 and the signal index of Figure 6:

Figure 9 illustrates a typical gain signal 62 for different signal types;

-7-

Figure 10 illustrates a typical signal time duration for different signal types;

Figure 11 is a block diagram of a gain sub-stage of a second embodiment of the present invention.

Figure 12 illustrates the relationship between the change in intensity, modulation frequency and time duration of desired signals.

Detailed Description of the Preferred Embodiment

5

[0023] Reference is first made to Figure 1, which illustrates a signal processing circuit 20 according to a first preferred embodiment of the present invention. Circuit 20 includes a microphone 22, a analog-to-digital converter (ADC) 24, an analysis filter 26, a gain stage 28, a synthesis filter 30, a digital-to-analog converter (DAC) 32 and a loudspeaker 34.

15 [0024] Microphone 22 receives an input sound signal 36 and provides an analog input signal 38 corresponding to input sound signal 36. Input sound signal 36 contains both desirable audio information and undesirable audio noise. Microphone 22 may be any type of sound transducer capable of receiving a sound signal and providing a 20 corresponding analog electrical signal. ADC 24 receives analog input signal 38 and produces time domain digital input signal 40. Analysis filter 26 receives digital input signal 40 and produces one or more corresponding frequency domain input signals 42-1, 42-2, ..., 42-N in response to digital input signal 40. Each frequency domain input signal 25 42 is processed separately by gain stage 28, which provides a set of frequency domain output signals 44-1, 44-2, ... 44-N, each corresponding to one of the frequency domain input signal 42. Synthesis filter 30 combines the frequency domain output signals 44 into a time domain digital output signal 46. DAC 32 converts the time domain digital 30 output signal 46 into an analog output signal 48. Loudspeaker 34 converts analog output signal 48 into an output sound signal 50 which may be heard by a user of circuit 20.

[0025] Reference is next made to Figure 2, which illustrates gain stage 28 in greater detail. Gain stage 28 is comprised of a number of gain sub-stages 52-1, 52-2, ..., 52-N, each of which in turn includes a signal detection stage 54, a noise reduction stage 56 and a multiplier 58.

5

10

15

20

25

[0026] Each gain sub-stage 52 receives one frequency domain input signal 42 from analysis filter 26. In each gain sub-stage 52, the received frequency domain input signal 42 is split into two parts. One part of the frequency domain input signal 42 is received by the signal detection stage 54 of the gain sub-stage 52. The other part of the frequency domain input signal 42 is received by multiplier 58. Signal detection stage 54 provides a signal index 60 to noise reduction stage 56. Signal index 60 corresponds to frequency domain input signal 42. Noise reduction stage 56 receives signal index 60 and provides a corresponding gain signal 62 to multiplier 58. Multiplier 58 multiplies the frequency domain input signal 42 received by the specific gain sub-stage

[0027] Reference is next made to Figure 3 which illustrates gain sub-stage 52-1 in greater detail. Gain sub-stage 52-1 includes an intensity change detector 64, a modulation frequency detector 66, an intensity change processor 68, a modulation frequency processor 70 and an index calculation stage 72.

52 and the gain signal 62 to provide the frequency domain output signal

44 corresponding to the received frequency domain input signal 42.

[0028] Intensity change detector 64 receives frequency domain input signal 42-1. Intensity change detector 64 determines the change in intensity (or volume or amplitude) of the sound content of frequency domain input signal 42-1 and provides an intensity change signal 74. Intensity change signal 74 will generally be a digital signal which indicates the amount of change in the intensity of frequency domain input signal 42-1 during a selected time period T.

30 [0029] Intensity change processor 68 transforms intensity change signal 74 to provide an intensity change sub-index 76. In the present exemplary embodiment, intensity change processor 68 is a band pass

filter which generates an intensity change sub-index 76 in response to an intensity change signal 74. If the intensity change signal 74 is between thresholds A_1 and A_2 , then intensity change sub-index 76 is larger than when intensity change signal 74 is less than threshold A_1 or greater than threshold A_2 , as is illustrated in intensity change processor 68.

5

10

15

20

[0030] Reference is next made to Figure 4, which illustrates the selection of thresholds A_1 and A_2 . The four signal types are plotted on the horizontal axis of Figure 4 against the typical intensity change of each type of signal during time period T. Stationary noises generally have the smallest change (between 0 and A_a) in their intensities over time period T. Pseudo-stationary noises exhibit the next smallest amount of change (typically between A_a and A_b) during time period T. Desirable speech and music signals typically exhibit an intensity change between A_b and A_c during time period T. Typically, transient noise will have a substantially larger change in its intensity, exceeding A_d during time period T. [0031] The thresholds A_1 and A_2 of intensity change processor 68 are selected to be equal to A_b and A_c , which define the lower and upper limits of the typical change in a desirable speech or music signal in the

are selected to be equal to A_b and A_c, which define the lower and upper limits of the typical change in a desirable speech or music signal in the present example. This has the effect that if the audio content of frequency domain input signal 42-1 is primarily a desirable signal such as speech or music, then intensity change sub-index 76 will have a larger magnitude than if frequency domain input signal 42-1 is primarily stationary noise, pseudo-stationary noise or transient noise.

[0032] Reference is again made to Figure 3. Modulation frequency detector 66 also receives frequency domain input signal 42-1.
 Modulation frequency detector 66 determines the frequency of intensity modulation of frequency domain input signal 42-1 and provides a modulation frequency signal 80. Modulation frequency signal 80 will typically be a digital signal that indicates the value of the modulation frequency during time period T.

- 10 -

[0033] Modulation frequency processor 70 receives modulation frequency signal 80 and transforms it into a modulation frequency sub-index 82. In the present exemplary embodiment, modulation frequency processor 70 is a band pass filter that produces a larger modulation frequency sub-index 82 in response to a modulation frequency signal 80 with a magnitude between threshold values F_1 and F_2 , according to its characteristic, as illustrated in modulation frequency processor 70.

5

10

15

20

25

30

[0034] Reference is next made to Figure 5, which illustrates the selection of threshold F_1 and F_2 . The four signal types are plotted on the horizontal axis of Figure 5 against the typical magnitude of their modulation frequency during time period T. Stationary noises generally have the smallest modulation frequency(between 0 and F_a) during time period T. Pseudo-stationary noises typically have larger modulation frequency (between F_a and F_b) during time period T. Desirable sound signals typically exhibit their modulation frequency between F_b and F_c . Transient noises typically exhibit a much larger modulation frequency, typically exceeding F_d during time period T.

[0035] Thresholds F_1 and F_2 of modulation frequency processor 70 are selected to be equal to F_b and F_c , so that modulation frequency sub-index 82 is largest when frequency domain input signal 42-1 contains a desired signal than when it contains a noise signal.

Figure 4 is illustrative of the change in intensity in different noise and audio signal types. A person skilled in the art will recognize that the different signal types may exhibit some overlap in intensity changes and in some cases may differ substantially from those illustrated. In cases where the intensity change of the desired signal is not in a pre-defined range (i.e. between A_b and A_c), then the intensity change processor 68 may be varied to select the desirable signal and to suppress other signals. For example, a low pass characteristic may be used to detect stationary and/or pseudo-stationary noises. Similarly, Figure 5 is only illustrative of the modulation frequency exhibited by different types of signals

- 11 -

[0037] Intensity change signal 74 and modulation frequency signal 80 will typically be digital signals. The signals may indicate their respective values on a pre-determined scale which corresponds to a selected range of values. The relationship between the range of the intensity change signal 74 and the intensity change of the frequency domain input signal 42 may or may not be linear. The correlation may be skewed to provide greater differentiation for selected parts of the range. For example, the range of the intensity change signal 74 may correlate to intensity changes in a frequency domain input signal 42 as indicated in Table 1.

5

Range of intensity change	Intensity change in frequency domain	
signal 74	input signal 42	
0-A _a	0 – 12 dB	
A_a - A_b	12 – 18 dB	
A _b -A _c	18 – 36 dB	
A_{c} - A_{d}	36 – 42 dB	
>A _d	>42 dB	

Table 1: Relationship between Intensity Change Signal and Intensity change in frequency domain input signal 42

- 15 [0038] A person skilled in the art will be capable of configuring intensity change detector 64 to provide either a linear or non-linear relationship between the value of intensity change signal 74 and the magnitude of intensity change in a frequency domain input signal 42 over time period T.
- 20 [0039] Intensity change processor 68 is configured to convert intensity change signal 74 into intensity change sub-index 76 according to the function with which it is configured (for example, the band pass function described above). Intensity change sub-index 76 will typically have a non-linear relationship with the intensity change of the frequency

domain input signal 42-1. Intensity change sub-index 76 may also have a pre-determined range. In the present exemplary embodiment, the relationship defined by the intensity change processor 68 may be configured to provide a higher intensity change sub-index 76 when intensity change signal 74 is between A_b and A_c , which, in this exemplary embodiment, correspond to the range of intensity changes in a typical desired music or sound signal over time period T. Intensity change sub-index 76 will have a lower value when intensity change sub-index 74 is less than A_b or greater than A_c .

5

20

25

30

10 [0040] Similarly, modulation frequency signal 80 may have a range greater than F_d which corresponds to changes in the modulation frequency of a frequency domain input signal 42. This relationship may also be linear or non-linear, as in the case of the intensity change signal 74. Also, modulation frequency processor 70 will operate to convert modulation frequency signal 80 into modulation frequency sub-index 82 according to the function programmed into it.

[0041] Reference is again made to Figure 3. Index calculation stage 72 combines intensity change sub-index 76 and modulation frequency sub-index 82 and produces signal index 60-1. Index calculation stage 72 may implement a formula or a two-dimensional look up table to determine the value of signal index 60-1 in response to a particular combination of intensity change sub-index 76 and modulation frequency sub-index 82. Index calculation stage 72 may also employ a formula to calculate signal index 60-1. A combination of a look-up table and a formula may also be used to determine signal index 60-1.

[0042] Reference is next made to Figure 6, which illustrates a preferred relationship between signal index 60-1 and signal type. In the present exemplary embodiment, signal index 60-1 is calculated by summing intensity change sub-index 76 and modulation frequency sub-index 82. This produces a signal index 60-1 which is larger when frequency domain input signal 42-1 is identified as containing the desired signals according to both the change in intensity and modulation

- 13 -

frequency criteria. Signal index 60-1 is comparatively smaller when frequency domain input signal 42-1 is identified as containing pseudostationary noise and smaller still when frequency domain input signal 42-1 is identified as containing stationary noises or transient noise. If frequency domain input signal 42-1 is identified as containing stationary noise or transient noise, then signal index 60-1 will have a value between 0 and S_a . If frequency domain input signal 42-1 is identified as containing pseudo-stationary noise, then signal index 60-1 will have a value between S_a and S_b . If frequency domain input signal 42-1 is identified as containing desired signals such as speech and music , then signal index 60-1 will have a value between S_b and S_c .

5

10

15

20

25

30

[0043] Figure 6 is merely illustrative of one set of relationships between signal index 60-1 and signal type. The relationship shown is preferable when speech and music sounds are to be emphasized in comparison to noise sounds. In another embodiment of the present invention, different types of sound signals may be emphasized, depending on the type of sound to be preferentially amplified.

[0044] One skilled in the art will recognize that some sounds will be classified differently according to the change in intensity and modulation frequency criteria. Reference is next made to Figure 7, which plots modulation frequency of an audio signal versus the change in intensity of an audio signal. Stationary noises fall into region 86, pseudostationary noises fall into region 88, desired speech and music signals into region 90 and transient noises into region 92. It is apparent from Figure 6 that some frequency domain input signals 42 will not fall within regions 86, 88, 90 or 92. For example, a frequency domain input signal 42 which has an intensity change between A_a and A_b (pseudo-stationary noise) and a modulation frequency between F_b and F_c (desired speech and music) will fall into region 94. Such a signal could represent, for example, a music signal with little change in its intensity, or a background noise with a high modulation frequency (i.e. a siren). In either case, the signal index 60-1 calculated for such a signal will be calculated according

- 14 -

to the look-up table or formula (or combination thereof) configured into index calculation stage 72 and may end up with a signal index which is typical of a signal identified by both criteria as a pseudo-stationary noise or as a desired signal.

Reference is again made to Figure 3. Noise reduction 5 [0045] stage 56 receives signal index 60-1 and provides gain signal 62-1 in response to it. Figure 8 illustrates the relationship between signal index 60 and gain signal 62, in the present exemplary embodiment. If signal index 60 is between 0 and S_b, gain signal 62 will have a negative value between -G_a and 0 dB. If signal index 60 is between S_b and S_c, gain 10 signal 62 will have a value of 0 dB. Figure 9 plots the gain signal 62 versus signal type. The relationships illustrated in Figures 8 and 9 indicate that in the preferred embodiment gain signal 62 will have no effect on desired speech and music signals, but will attenuate pseudo-15 stationary signals and substantially attenuate stationary and transient noises.

[0046] Figures 8 and 9 are only exemplary and noise reduction stage 56 may be configured to provide any relationship between a signal index 60 and a gain signal 62. Preferably, the selected relationship will provide a larger gain (or smaller attenuation) for signal indices which are typical of the type of signal which is to be amplified in preference to other types of signals.

20

25

30

[0047] Referring again to Figure 2, multiplier 58 multiplies frequency domain input signal 42-1 by gain signal 62-1 to produce frequency domain output signal 44-1. Frequency domain input signal 42-1 is either not changed, or is attenuated, as described above.

[0048] Each frequency domain input signal 42 is processed separately by a gain sub-stage 52 to provide a set of frequency domain output signals 44, each corresponding to one frequency domain input signal 42. The frequency domain output signals 44, which are separated into different frequency bands that correspond to the frequency bands of

- 15 -

the frequency domain input signals 42, are then combined into a single time domain digital output signal 46 by synthesis filter 30.

[0049] Referring to Figure 1, time domain digital output signal 46 is converted into a corresponding analog output signal 48 by DAC 32.

Loudspeaker 34 converts analog output signal 48 into an audible output sound signal 50, which may be heard by the user of system 20.

[0050] System 20 receives an input sound signal 36 and provides a corresponding output sound signal 50 which is processed to suppress noise components in favor of desirable speech and music signals.

Noise is suppressed by dividing the input sound signal 36 into frequency bands, characterizing the sound content of each band separately and suppressing the amplitude or intensity of those bands identified as containing noise. The processed frequency bands are combined to form output sound signal 50.

15 **[0051]** A second embodiment of the present invention will now be described with reference to Figures 10 – 12. In these Figures, elements with a function corresponding to an element in the embodiment of Figures 1-9 are identified by the same reference numerals or by similar reference numerals, increased by 100. This second embodiment has a general structure identical to that shown in Figures 1 and 2. The primary structural difference between the two embodiments is the structure of the gain sub-stages 152, which are illustrated in Figure 11.

[0052] Reference is next made to Figure 10. The inventors have found that the length of a sound signal is related to its signal type. Figure 10 illustrates that stationary noises tend to have long durations (longer than T_d), often exceeding the time duration T during which a signal is processed. Pseudo-stationary noises generally have shorter time durations (between T_c and T_d) than stationary signals, but longer durations than desired speech and music signals, which typically have a time duration between T_b and T_c . Transient noises tend to have relatively short durations, typically shorter than T_a .

25

- 16 -

This characteristic of the different signal types may be used [0053] to refine the suppression of undesirable signal types. Figure 11 illustrates a gain sub-stage 152-1, which is adapted to incorporate the time duration characteristic into the operation of characterizing a 5 frequency domain input signal 42-1. Intensity change sub-index 76-1 and modulation frequency sub-index 82-1 are calculated in the same way as in gain sub-stage 52-1. Gain sub-stage 152-1 also includes a time duration detector 186 and a time processor 188. Time duration detector 186 receives frequency domain input signal 42-1 and provides a time 10 duration signal 190. Time duration signal 190 will typically be a digital signal and will have a larger value when the audio content of frequency domain input signal 42-1 has a longer duration, during the selected time period T. Time duration signal 190 may have a selected range, like intensity change signal 74, which corresponds to a selected range of time durations of the different types of noise and desired signals that are 15 likely to be present in frequency domain input signal 42-1. The relationship between time duration signal 190 and the duration of the audio content of frequency domain input signal 42-1 may or may not be linear.

20 **[0054]** Time processor 188 processes time duration signal 190 to produce a time sub-index 192. Time sub-index 192 will have a smaller value when time duration signal 190 is smaller than threshold T_1 and will have a larger value when time duration signal 190 is greater than threshold T₁ as illustrated in time processor 188. The inventors have 25 noted that although stationary noise and pseudo-stationary noise generally tend to have a longer duration than desired speech and music signals, there is substantial overlap between the duration of these three types of signals. Accordingly, in this embodiment, time processor 188 implements a high pass filter function to provide a small time sub-index 30 192 for transient noise signals and a relatively uniform sub-index 192 for stationary noise, pseudo-stationary noise and desired speech and music

signals. The threshold T_1 for time processor 188 is selected to be equal to T_b (Figure 10).

[0055] In another embodiment, time processor 188 may contain a different criteria (such as a band pass filter, or a more complex function) intended to provide a small time sub-index for stationary noise and pseudo-stationary noise signals. This may be desirable in an environment when these noise signals have a substantially or consistently longer time duration than the desired signals.

5

20

25

30

[0056] Time sub-index 192 may have a range defined like intensity change sub-index 74 and modulation frequency sub-index 82. The three sub-index signals are combined by index calculation stage 172 to produce a signal index 160-1. In this embodiment, index calculation stage 172 simply sums the three sub-index signals to produce signal index 160-1. In another embodiment, index calculation stage may apply a formula which weights the three sub-index signals differentially or may determine signal index 160-1 using a three-dimensional look up table. A look-up table and one or more formulas may also be combined to determine signal index 160-1.

[0057] Signal index 160 is used by noise reduction stage 156 to produce a gain signal 162-1. Noise reduction stage 156 operates in a manner analgous to noise reduction stage 56.

[0058] Gain sub-stage 152-1 provides a gain signal 162-1 which is responsive to three characteristics of frequency domain input signal 42-1 during time period T: the change in the intensity, the modulation frequency, and the time duration of the audio content of frequency domain input signal 42.

[0059] Figure 12 is a three dimensional illustration of the characteristics of desired speech and music signals. The change in intensity, modulation frequency and time duration are plotted on the x, z and y axes in Figure 12. Desired speech and music signals have the following characteristics:

-a change in intensity between A_b and A_c;

- 18 -

-a modulation frequency between F_b and F_c; and

-a time duration longer than T_b,

5

15

during time period T. These signals are found in the region within three dimensional region 194 which extends above rectangle 196 and is bounded by lines 198a, 198b, 198c and 198d. The gain signals for these desired signals will be 0 dB, and the gain signal for signals (i.e. noise signals) outside this region will be smaller, leading to different degree of suppression for those noise signals.

10 **[0060]** The embodiment of Figures 10-12 has the advantage that a third characteristic of desirable signals and noises is used to further characterize these desirable signals and noises.

[0061] The inventors have selected the following ranges for each of the three characteristics to identify between typical noise signals and desired signals an a typical environment where a hearing impaired person wishes to hear speech and music sounds directed at him or her:

Signal Type	Typical Change in	Typical Modulation	Typical Time
	Intensity	Freq.	Duration
Stationary Noise	0 – 12 dB	0 - 0.5 Hz	> 20 ms
Pseudo-stationary	12 – 18 dB	0.5 – 1 Hz	> 20 ms
noise			
Desired Speech	18 – 36 dB	1 Hz – 20 Hz	> 20 ms
and Music			
Transient Noise	> 42 dB	> 40 Hz	< 10 ms

Table2: Characteristics of different signal types

20 [0062] As illustrated in Figures 4, 5 and 10, there is a jump in the ranges in each characteristic between the desired speech and music signals and transient noise. The portion of the range between these two signal types may be referred to as pseudo-transient noise and detectors 64, 66 and 186 and processors 68, 70 and 188 may be modified to take

this additional signal type into account. Using the change in intensity signal type as an example, if pseudo-transient signals are defined as typically exhibiting a change in intensity between 36 and 42 dB over time period T, then intensity change detector 64 may be configured to provide an appropriate intensity change signal 74 between the values for desired signals and transient noise when a change in this range is detected and intensity change processor 68 may be configured to provide an intensity change sub-index 76 between the value for desired signals and transient noise (i.e. similar to the values of intensity change sub-index 76 for pseudo-stationary noise). Similarly pseudo-transient noise may be defined as having a typical modulation frequency during a time period T between 20 Hz and 40 Hz and a typical time duration between 10 ms and 20 ms.

5

10

15

20

25

30

[0063] In the present exemplary embodiments, the same time period T is used to determine intensity change signal 74, modulation frequency signal 80 and time duration signal. This is not necessary and different time periods may be used. A person skilled in the art will recognize that the thresholds A_1 and A_2 of the intensity change processor 68, thresholds F_1 and F_2 of modulation frequency processor 70 and threshold T_1 of time duration processor 188 should be selected to match the time period selected for the analysis of the respective characteristics of the audio signal.

[0064] In addition, the specific thresholds A_1 , A_2 , F_1 , F_2 and T_1 may be selected to be different for each frequency band, depending on the frequency characteristics of the desirable sounds and of the undesirable noise components.

[0065] The present exemplary embodiments of the present invention have been described in the context of three types of noise signals: stationary noise, pseudo-stationary noise and transient noise.

The desired signals have been defined as speech and music. The present invention is adaptable for characterizing other types of signals as noise and for reducing or suppressing those noise signals in favor of

- 20 -

other desired signals. For example, if transient noises are of interest, the present invention may be modified to suppress other signal types by varying the operation of processors 68, 70 and 188.

[0066] The present exemplary embodiment utilizes three characteristics of sound signals to characterize the sound content of signals in each frequency domain input signal: the change in intensity, modulation frequency and the time duration of the signal. The present invention is adaptable to use other characteristics of sound signals by changing the characteristics to which detectors 64, 66 and 186 are sensitive. In this case, it will generally be desirable to vary the operation of processors 68, 70 and 188 to correspond to the desired ranges of the new characteristics.

5

10

15

20

In the present exemplary embodiments have been described in the context of typical ambient sounds that a person with a hearing deficiency may wish to hear or suppress. The use of different characteristics may be particularly beneficial when the present invention is used in a different environment with other types of desired signals and noise. For example, if the present invention is used in a specific industrial environment, known characteristics of noise and desired sounds in that environment may be used to suppress the noise.

[0068] Other variations of the present invention are possible and will be apparent to a person skilled in the art. All such variations fall within the scope of the present invention, which is limited only by the following claims.

WO 02/076148

- 21 -

PCT/CA02/00397

We claim:

1. A method of providing a time domain digital output signal corresponding to a time domain input signal comprising:

5

- (a) converting said time domain input signal into one or more frequency domain input signals;
- (b) for each of said frequency domain input signals:

10

- (i) providing a signal index corresponding to said each of said frequency domain input signal;
- (ii) providing a gain signal corresponding to said signal index; and
- (iii) amplifying or attenuating said each of said frequency domain input signal in response to said gain signal to provide a frequency domain output signal; and

15

- (c) combining said frequency domain output signals to provide said time domain output signal.
- 2. The method of claim 1 wherein step (b)(i) is performed by:

20

- (A) determining a change in intensity of the audio content of said each of said frequency domain input signals during a first time period;
- (B) providing an intensity change sub-index corresponding to said change in intensity; and

25

- (C) providing said signal index corresponding to said intensity change sub-index.
- 3. The method of claim 1 wherein step (b)(i) is performed by:
- (A) determining a change in intensity of the audio content of said each of said frequency domain input signals during a first time period;

- 22 -

- (B) providing an intensity change sub-index corresponding to said change in intensity;
- (C) determining a frequency of intensity modulation of the audio content of said each of said frequency domain input signals during a second time period;
- (D) providing a modulation frequency sub-index corresponding to said frequency of intensity modulation; and
- (E) providing said signal index corresponding to said intensity change sub-index and to said modulation frequency sub-index.
- 4. The method of claim 1 wherein step (b)(i) is performed by:
 - (A) determining a change in intensity of the audio content of said each of said frequency domain input signals during a first time period;
 - (B) providing an intensity change sub-index corresponding to said change in intensity;
 - (C) determining the time duration of the audio content of said each of said frequency domain input signals during a third time period;
 - (D) providing a time sub-index corresponding to said time duration; and
 - (E) providing said signal index corresponding to said intensity change sub-index and to said time sub-index.

25

5

10

15

- 5. The method of claim 1 wherein step (b)(i) is performed by:
 - (A) determining a frequency of intensity modulation of the audio content of said each of said frequency domain input signals during a second time period;
- 30 (B) providing a modulation frequency sub-index corresponding to said frequency of intensity modulation;

WO 02/076148

5

- 23 -

PCT/CA02/00397

- (C) determining the time duration of the audio content of said each of said frequency domain input signals during a third time period;
- (D) providing a time sub-index corresponding to said time duration; and
- (E) providing said signal index corresponding to said modulation frequency sub-index and to said time sub-index.
- 6. The method of claim 1 wherein step (b)(i) is performed by:
- 10 (A) determining a change in intensity of the audio content of said each of said frequency domain input signals during a first time period;
 - (B) providing an intensity change sub-index corresponding to said change in intensity;
- 15 (C) determining a frequency of intensity modulation of the audio content of said each of said frequency domain input signals during a second time period;
 - (D) providing a modulation frequency sub-index corresponding to said frequency of intensity modulation;
- 20 (E) determining the time duration of the audio content of said each of said frequency domain input signals during a third time period;
 - (F) providing a time sub-index corresponding to said time duration; and
- 25 (G) providing said signal index corresponding to said intensity change sub-index and to said modulation frequency subindex and to said time sub-index.
- 7. The method of any one of claims 2, 3, 4 or 6 wherein said intensity change sub-index is highest when said change in intensity corresponds to a range of intensity changes typical of one or more desired types of audio signals.

- 24 -

PCT/CA02/00397

8. The method of any one of claims 2, 3, 4 or 6 wherein said intensity change sub-index is highest when said change in intensity is between about 18 dB to about 36 dB.

5

10

15

WO 02/076148

- 9. The method of any one of claims 2, 3, 4 or 6 wherein said change in intensity may be placed on an intensity change continuum defined by typical changes in intensity exhibited by different types of sounds during said first time period and wherein said intensity change sub-index is selected to correspond to the placement of said change in intensity on said intensity change continuum.
- 10. The method of claim 9 wherein said intensity change continuum includes a first intensity change range corresponding stationary noise, a second intensity change range corresponding to pseudo-stationary noise, a third range intensity change corresponding to said speech and music and a fourth intensity change range corresponding to transient noise.
- 11. The method of claim 10 wherein said first intensity change range is below said second intensity change range, said second intensity change range is below said third intensity change range is below said fourth intensity change range.
- 25 12. The method of any one of claims 10 or 11 wherein said intensity change sub-index is highest when said change in intensity falls within a selected one of said first, second, third or fourth intensity change ranges.
- 13. The method of any one of claims 10 or 11 wherein said intensity30 change sub-index is highest when said change in intensity falls within said third intensity change range.

14. The method of any one of claims 10 or 11 wherein said first intensity change range is between about 0 dB to about 12 dB, the second intensity change range is between about 12 dB to about 18 dB, the third intensity change range is between about 18 dB to about 36 dB and the fourth intensity change range includes any intensity change greater than about 42 dB.

- 25 -

PCT/CA02/00397

- 15. The method of any one of claims 10 or 14 wherein said intensity change continuum further includes a fifth intensity change range corresponding to pseudo-transient noise, and wherein said fifth intensity change range falls between said third and fourth intensity change ranges.
- 16. The method of claim 15 wherein said fifth intensity change range is between about 36 dB and 42 dB.

15

10

5

WO 02/076148

17. The method of any one of claims 3 or 5 to 16 wherein said modulation frequency sub-index is highest when said frequency of intensity modulation corresponds to a range of intensity modulation frequencies typical of one or more desired types of audio signals.

20

- 18. The method of any one of claims 3 or 5 to 16 wherein said modulation frequency sub-index is highest when said frequency of intensity modulation is between about 1 Hz to about 20 Hz.
- 25 19. The method of any one of claim 3 or 5 to 16 wherein said frequency of intensity modulation may be placed on an intensity modulation frequency continuum defined by typical intensity modulation frequencies exhibited by different types of sounds during said second time period and wherein said modulation frequency sub-index is selected to correspond to the placement of said frequency of intensity modulation on said

intensity modulation frequency continuum.

WO 02/076148

5

10

25

- 26 -

PCT/CA02/00397

- 20. The method of claim 19 wherein said intensity modulation frequency continuum includes a first modulation frequency range corresponding to stationary noise, a second modulation frequency range corresponding to pseudo-stationary noise, a third modulation frequency range corresponding to said speech and music and a fourth modulation frequency range corresponding to transient noise.
- 21. The method of claim 20 wherein said first modulation frequency range is below said second modulation frequency range, said second modulation frequency range is below said third modulation frequency range and said third modulation frequency range is below said fourth modulation frequency range.
- 22. The method of any one of claims 20 or 21 wherein said frequency modulation sub-index is highest when said frequency of intensity modulation falls within a selected one of said first, second, third or fourth modulation frequency ranges.
- 23. The method of any one of claims 20 or 21 wherein said frequency
 20 modulation sub-index is highest when said frequency of intensity
 modulation falls within said third modulation frequency range.
 - 24. The method of any one of claims 20 or 21 wherein said first modulation frequency range is between about 0 Hz to about 0.5 Hz, the second modulation frequency range is between about 0.5 Hz to about 1 Hz, the third modulation frequency range is between about 1 Hz to about 20 Hz and the fourth modulation frequency range includes any frequency of intensity modulation greater than about 40 Hz.
- 30 25. The method of any one of claims 20 or 24 wherein said modulation frequency continuum further includes a fifth modulation frequency range corresponding to pseudo-transient noise, and wherein said fifth

- 27 -

modulation frequency range falls between said third and fourth modulation frequency ranges.

- 26. The method of claim 25 wherein said fifth modulation frequencyrange is between about 20 Hz and 40 Hz.
 - 27. The method of any one of claims 4 to 26 wherein said time subindex is highest when said time duration corresponds to a range of time durations typical of one or more desired types of audio signals.

10

- 28. The method of any one of claims 4 to 26 wherein said time subindex is highest when said time duration is longer than 20 ms.
- 29. The method of any one of claims 4 to 28 wherein said time duration may be placed on a time continuum defined by typical time durations exhibited by different types of sounds during said third time period and wherein said time sub-index is selected to correspond to the placement of said time duration on said time continuum.
- 30. The method of claim 29 wherein said time continuum includes a first time range corresponding to stationary noise, a second time range corresponding to pseudo-stationary noise, a third time range corresponding to said speech and music and a fourth time range corresponding to transient noise.

- 31. The method of claim 30 wherein said fourth time range includes time durations is shorter than said first, second, third and fourth time ranges.
- 30 32. The method of any one of claims 30 or 31 wherein said time subindex is lowest when said time duration falls within said fourth time range.

33. The method of any one of claims 30 or 31 wherein said fourth time range is between 0 ms and 10 ms and wherein said second, third and fourth time ranges are above 20 ms.

5

- 34. The method of any one of claims 30 or 33 wherein said time continuum further includes a fifth time range corresponding to pseudo-transient noise.
- 10 35. The method of claim 34 wherein said fifth time range is between about 10 ms and 20 ms.
 - 36. The method of claim 1 wherein step (b)(i) is performed by:
 - (A) determining a frequency of intensity modulation of the audio content of said each of said frequency domain input signals during a second time period;
 - (B) providing a modulation frequency sub-index corresponding to said frequency of intensity modulation; and
 - (C) providing said signal index corresponding modulation frequency sub-index.

20

25

15

- 37. The method of claim 36 wherein said modulation frequency subindex is highest when said frequency of intensity modulation corresponds to a range of intensity modulation frequencies typical of one or more desired types of audio signals.
- 38. The method of claim 36 wherein said modulation frequency subindex is highest when said frequency of intensity modulation is between about 1 Hz to about 20 Hz.

30

39. The method of claim 36 wherein said frequency of intensity modulation may be placed on an intensity modulation frequency

WO 02/076148

5

10

- 29 -

PCT/CA02/00397

continuum defined by typical intensity modulation frequencies exhibited by different types of sounds during said second time period and wherein said modulation frequency sub-index is selected to correspond to the placement of said frequency of intensity modulation on said intensity modulation frequency continuum.

- 40. The method of claim 39 wherein said intensity modulation frequency continuum includes a first modulation frequency range corresponding to stationary noise, a second modulation frequency range corresponding to pseudo-stationary noise, a third modulation frequency range corresponding to said speech and music and a fourth modulation frequency range corresponding to transient noise.
- 41. The method of claim 40 wherein said first modulation frequency
 range is below said second modulation frequency range, said second
 modulation frequency range is below said third modulation frequency
 range and said third modulation frequency range is below said fourth
 modulation frequency range.
- 42. The method of any one of claims 40 or 41 wherein said frequency modulation sub-index is highest when said frequency of intensity modulation falls within a selected one of said first, second, third or fourth modulation frequency ranges.
- 25 43. The method of any one of claims 40 or 41 wherein said frequency modulation sub-index is highest when said frequency of intensity modulation falls within said third modulation frequency range.
- 44. The method of any one of claims 40 or 41 wherein said first
 modulation frequency range is between about 0 Hz to about 0.5 Hz, the
 second modulation frequency range is between about 0.5 Hz to about 1
 Hz, the third modulation frequency range is between about 1 Hz to about

20 Hz and the fourth modulation frequency range includes any frequency of intensity modulation greater than about 40 Hz.

- 45. The method of any one of claims 40 or 44 wherein said modulation frequency continuum further includes a fifth modulation frequency range corresponding to pseudo-transient noise, and wherein said fifth modulation frequency range falls between said third and fourth modulation frequency ranges.
- 10 46. The method of claim 45 wherein said fifth modulation frequency range is between about 20 Hz and 40 Hz.
 - 47. The method of claim 1 wherein step (b)(i) is performed by:

15

20

- (A) determining the time duration of the audio content of said each of said frequency domain input signals during a third time period;
 - (B) providing a time sub-index corresponding to said time duration; and
 - (C) providing said signal index corresponding to said time subindex.
- 48. The method of claim 47 wherein said time duration may be placed on a time continuum defined by typical time durations exhibited by different types of sounds during said third time period and wherein said time sub-index is selected to correspond to the placement of said time duration on said time continuum.
- 49. The method of claim 48 wherein said time continuum includes a first time range corresponding to stationary noise, a second time range corresponding to pseudo-stationary noise, a third time range corresponding to said speech and music and a fourth time range corresponding to transient noise.

- 31 -

50. The method of claim 49 wherein said fourth time range includes time durations is shorter than said first, second, third and fourth time ranges.

5

- 51. The method of any one of claims 49 or 50 wherein said time subindex is lowest when said time duration falls within said fourth time range.
- 10 52. The method of any one of claims 49 or 50 wherein said fourth time range is between 0 ms and 10 ms and wherein said second, third and fourth time ranges are above 20 ms.
- 53. The method of any one of claims 49 or 50 wherein said time15 continuum further includes a fifth time range corresponding to pseudo-transient noise.
 - 54. The method of claim 53 wherein said fifth time range is between about 10 ms and 20 ms.

20

55. A signal processing apparatus for receiving a time domain digital input signal having an input frequency spectrum and for providing a time domain digital output signal, said apparatus comprising:

25

(a) an analysis filter for receiving said time domain digital input signal and for providing N frequency domain digital input sub-signals, each of said frequency domain digital input sub-signals corresponding to a portion of said input frequency spectrum, and wherein N is a positive integer;

30

(b) N signal characterization and noise reduction stages for providing N frequency domain digital output sub-signals, each of said signal detection and noise reduction stages including:

- 32 -

 (i) a signal detection stage coupled to said analysis filter to receive one of said frequency domain input signals and for providing a signal index corresponding to said one of said one frequency domain input signals;

5

 (ii) a noise reduction stage coupled to said signal detection stage for receiving said signal index and for providing a gain signal corresponding to said signal index; and

10

15

(iii) a multiplier coupled to said noise reduction stage for providing one of N frequency domain digital output sub-signals in response to said one of said frequency domain input signals and the corresponding signal index; and

(c) a synthesis filter for receiving said N frequency domain digital output sub-signals and for providing said time domain digital output signal.

56. The signal processing apparatus of claim 55 wherein each of said signal detection stages comprises:

20

(d) an intensity change detector for providing an intensity change signal corresponding to a change in the intensity of said one of said frequency domain input signals during a first selected time period;

- (e) an intensity change processor for providing an intensity change sub-index corresponding to said intensity change signal; and
- (f) an index calculation stage for providing said signal index in response to said intensity change sub-index.
- 30 57. The signal processing apparatus of claim 55 wherein each of said signal detection stages comprises:

- 33 -

- (d) an intensity change detector for providing an intensity change signal corresponding to a change in the intensity of said one of said frequency domain input signals during a first selected time period;
- 5 (e) an intensity change processor for providing an intensity change sub-index corresponding to said intensity change signal;

10

15

- (f) a modulation frequency detector for providing a modulation frequency signal corresponding to a frequency of intensity modulation of the sound content of said one of said frequency domain input signals during a second time period;
- (g) a modulation frequency processor for providing a modulation frequency sub-index corresponding to said modulation frequency signal
- (f) an index calculation stage for providing said signal index in response to said intensity change sub-index and to said modulation frequency sub-index.
- 20 58. The signal processing apparatus of claim 55 wherein each of said signal detection stages comprises:
 - (d) an intensity change detector for providing an intensity change signal corresponding to a change in the intensity of said one of said frequency domain input signals during a first selected time period;
 - (e) an intensity change processor for providing an intensity change sub-index corresponding to said intensity change signal;
- (f) a modulation frequency detector for providing a modulation frequency signal corresponding to a frequency of intensity modulation of the sound content of said one of said

- 34 -

frequency domain input signals during a second time period;

- (g) a modulation frequency processor for providing a modulation frequency sub-index corresponding to said modulation frequency signal;
- (h) a time duration detector for providing a time duration signal corresponding to a time duration of the sound content of said one of said frequency domain input signals during a third time period;
- 10 (i) a time processor for providing a time sub-index corresponding to said time duration signal;
 - (j) an index calculation stage for providing said signal index in response to said intensity change sub-index and to said modulation frequency sub-index and to said time sub-index.

15

20

- 59. The signal processing apparatus of claim 55 wherein each of said signal detection stages comprises:
 - (d) a modulation frequency detector for providing a modulation frequency signal corresponding to the frequency of intensity modulation of said one of said frequency domain input signals during a second selected time period;
 - (e) a modulation frequency processor for providing a modulation frequency sub-index corresponding to said modulation frequency signal; and
- 25 (f) an index calculation stage for providing said signal index in response to said modulation frequency sub-index.
 - 60. The signal processing apparatus of claim 55 wherein each of said signal detection stages comprises:
- 30 (d) a time duration detector for providing a time duration signal 190 corresponding to the duration of the audio content in

WO 02/076148

5

10

15

20

25

30

- 35 -

said one of said frequency domain input signals during a third selected time period;

PCT/CA02/00397

- (e) a time processor for providing a time sub-index corresponding to said modulation frequency signal; and
- (f) an index calculation stage for providing said signal index in response to said time sub-index.
- 61. The signal processing apparatus of any one of claims 56, 57 or 58 wherein said intensity change processor is configured to provide a higher intensity change sub-index in response to a range of intensity changes typical of a selected signal type.
- 62. The signal processing apparatus of any one of claims 56, 57 or 58 wherein said intensity change processor is configured to provide a higher intensity change sub-index in response to intensity changes between about 18 dB to about 36 dB.
- 63. The signal processing apparatus of any one of claims 57, 58, 59, 61 or 62 wherein said modulation frequency processor is configured to provide a higher modulation frequency sub-index in response to a range of frequency of intensity modulation typical of a selected signal type.
- 64. The signal processing apparatus of any one of claims 57, 58, 59, 61 or 62 wherein said modulation frequency processor is configured to provide a higher modulation frequency sub-index in response to a range of frequency of intensity modulation between about 1 Hz and 20 Hz.
- 65. The signal processing apparatus any one of claims 58 or 60 to 64wherein said time processor is configured to provide a higher time sub-index in response to a range of time durations typical of a selected signal type.

- 36 -

66. The signal processing apparatus of any one of claims 58 or 60 to 64 wherein said time processor is configured to provide a higher time sub-index in response to a time duration greater than 20 ms.

SUBSTITUTE SHEET (RULE 26)

FIG. 12

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 September 2002 (26.09.2002)

(10) International Publication Number WO 02/076148 A3

(51) International Patent Classification7: G10L 21/02

H04R 25/00,

- (21) International Application Number: PCT/CA02/00397
- (22) International Filing Date: 21 March 2002 (21.03.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/277,275 2,341,834

21 March 2001 (21.03.2001) 22 March 2001 (22.03.2001)

- (71) Applicant (for all designated States except US): UNI-TRON INDUSTRIES LTD. [CA/CA]; 20 Beasley Drive, P.O. Box 9017, Kitchener, Ontario N2G 4X1 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): LUO, Henry [CA/CA]; 216 Tatlock Court, Waterloo, Ontario N2L 4X1 (CA). ARNDT, Horst [CA/CA]; 6 Old Forest Crescent, Kitchener, Ontario N2N 2A3 (CA).
- (74) Agent: BERESKIN & PARR; 40 King Street West, 40th Floor, Toronto, Ontario M5H 3Y2 (CA).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PII, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RIJ, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 21 August 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: APPARATUS AND METHOD FOR ADAPTIVE SIGNAL CHARACTERIZATION AND NOISE REDUCTION IN HEARING AIDS AND OTHER AUDIO DEVICES

(57) Abstract: A system and method for characterizing the contents of an input audio signal and for suppressing noise components of the input audio signal are described. The audio signal is divided into a number of frequency domain input signals. Each frequency domain input signal can be processed separately to determine its intensity change, modulation frequency, and time duration characteristics to characterize the frequency domain input signal as containing a desirable signal or as a type of noise. An index signal is calculated based on a combination of the determined characteristics and signals identified as noise are suppressed in comparison to signals identified as desirable to produce a set of frequency domain output signals with reduced noise. The frequency domain output signals are combined to provide an output audio signal corresponding to the input audio signal but having suppressed noise components and comparatively enhanced desirable signal components.

INTERNATIONAL SEARCH REPORT

Internation Application No PCT/CA 02/00397

A CLASSI	EICATION OF SUBJECT MATTER				
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04R25/00 G10L21/02					
	International Patent Classification (IPC) or to both national classification	ation and IPC			
B. FIELDS SEARCHED					
IPC 7	cumentation searched (classification system followed by classification HO4R G10L HO3G	on symbols)			
1167 HOAK GISE HOSG					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)					
EPO-Internal, WPI Data, PAJ, INSPEC					
2.0 2					
			· · · · · · · · · · · · · · · · · · ·		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to daim No.		
Α	US 4 185 168 A (GRAUPE DANIEL ET	· AL)	1,55		
	22 January 1980 (1980-01-22)		•		
	column 1, line 55 -column 2, line				
	column 3, line 38 -column 9, line	9 32			
۸	US 4 852 175 A (KATES JAMES M)		1,55		
А	25 July 1989 (1989-07-25)		1,55		
	column 2, line 30 -column 3, line	2 44			
	column 4, line 13 -column 8, line				

	•		!		
	_				
Further documents are listed in the continuation of box C. X Patent family members are listed in annex.					
° Special ca	legorles of cited documents:	FT* leter decurrent published offer the liste	mational filing data		
or priority date and not in conflict with the application but					
considered to be of particular relevance					
"E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to					
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is clied to establish the publication date of another "Y" document of padicular relevance; the claimed invention					
citation or other special reason (as specified) cannot be considered to involve an inventive step when the					
*O' document referring to an oral disclosure, use, exhibition or other means document is combined with one or more other such documents, such combination being obvious to a person skilled					
'P' document published prior to the International filling date but later than the priority date claimed '8' document member of the same patent family					
Date of the actual completion of the international search Date of mailing of the international search report					
1.	1 June 2003	16/06/2003			
10 June 2003 16/06/2003					
Name and malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2		Authorized officer			
	NL – 2280 HV Rijswijk	_			
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Tsapelis, A			

INTERNATIONAL SEARCH REPORT

lation on patent family members

Internation Application No PCT/CA 02/00397

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 4185168 A	22-01-1980	US 4025721 A DE 2719973 A1 DK 193577 A ,B, GB 1579949 A JP 1307144 C JP 53000906 A JP 60031315 B NL 7704922 A	24-05-1977 01-12-1977 05-11-1977 26-11-1980 13-03-1986 07-01-1978 22-07-1985 08-11-1977
US 4852175 A	25-07-1989	AT 61504 T AU 2956289 A DE 68900039 D1 DK 43989 A EP 0326905 A1 JP 1288199 A JP 2962732 B2	15-03-1991 03-08-1989 11-04-1991 04-08-1989 09-08-1989 20-11-1989 12-10-1999