Computing the Modular Inverse of a Polynomial Function over $GF(2^P)$ Using Bit Wise Operation

Seshagiri Prabhu N

M.Tech, Cyber Security and Networks (First Year) Amrita School of Engineering, Amritapuri Campus

April 27, 2013

- Introduction
- Contribution of this paper
- Problem Description
- Proposed Algorithm
- Implementation of Algorithm
 - Conclusion

Introduction

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

- 2 Introduction

- Relevance of Modulo arithmetic in public key crypto system
- The use of Extended Euclidean Algorithm (EEA) to evaluate the multiplicative inverse

Contribution of this paper

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

3 Contribution of this paper

Contribution of this paper

Computerized algorithm for the determination of the multiplicative inverse of a polynomial over GF(2^P) using simple bit wise shift and XOR operations.

- 4 Problem Description

EEA

Let A(x) and B(x) be polynomials. EEA gives U and V such that gcd(A, B) = U * A + V * B

Note

If A is irreducible, then its gcd is 1, and we are only interested in V, which is the inverse of B[modA]

Problem Description

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

4 Problem Description

Polynomial representation

The finite field is a representative of a polynomial function with respect to one variable x: $GF(2^p) = x^{p-1} + x^{p-2} + ... + x^2 + x^1$

Example

Finite field $GF(2^8) = x^8 + x^4 + x^3 + x + 1$ $53_{10} \rightarrow 1010011_2 \rightarrow (x^6 + x^4 + x + 1)$ The EEA of 53 on $GF(2^8)$ is $x^7 + x^6 + x^3 + x$

Proposed Algorithm

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

5 Proposed Algorithm

```
procedure MULTIPLICATIVE INVERSE(A_3[], B_3[])
   C_1 = A_2 = B_2 = 0;
   while (B_3>1) do

⊳ Step 1 do

      Q = 0;
      Temp = B_3;
      while (A3 > Temp \mid\mid BitSize(C) > BitSize(Temp)) do
         Q_1 = 1;
         while (A_{3MSB} == B_{3MSB}) do
            B_3 = B_3 << LinearLeftShift;
            Q_1 = Q_1 * 2:
         end while
         Q = Q + Q_1;
         A_3 = A_3[] \oplus B_3[];
         B_3 = Temp;
      end while
      A_2 = B_2; B_3 = A_3; A_3 = Temp;
      N = BitSize(Q);
                                                                      Temp = B_2; C_2 = 0;

⊳ Step2

      while (N > 1) do
         C_2 = 0_{d}:
         if (Q_N == 1) then

    ▷ Testing if Nth bit of Q is 1

            C_1 = B_2 << N-1:
                                                              C_2 = C_2 \oplus C_1:
         end if
         N - -:
      end while
      B_2 = C_2; A_2 = Temp; B_2 = B_2 \oplus A_2;
                                                                     ←□ → ←□ → ←□ → ←□ → □
   end while
```

Implementation of Algorithm Let's apply EEA to A = 283 and B = 42

versity Established u/s 3 of UGC Act 19. Amritapuri Campus

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

- 6 Implementation of Algorithm

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i	Operation	Binary	U	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	A	100011011	1	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	000101010	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3 << B		0	1000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$A \leftarrow A \oplus (3 << B)$	001001011	1	1000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 << B	001010100	0	0010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		000011111	1	1010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$A < B A \rightleftharpoons B$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A	000101010	00	00001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		В	000011111	01	01010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 << B	000111110	10	10100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$A \leftarrow A \oplus (1 << B)$	000010100	10	10101
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$A < B A \rightleftharpoons B$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A	000011111	01	01010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					10101
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	$A \leftarrow A \oplus B$	000001011	11	11111
B 000001011 011 01111 1 << B 000010110 110 11111		$A < B A \rightleftharpoons B$			
1 << B 000010110 110 111111					010101
		В			011111
$ 6 A \leftarrow A \oplus (1 << B) 000000010 100 10101$		- ' ' -			111110
	6		000000010	100	101011
$A < B A \rightleftharpoons B$		$A < B A \rightleftharpoons B$			
					00011111
		_			00101011
_ \ \ - \ \ - \ \ \ - \ \ \ \ - \ \ - \ \ \ \ - \ \ - \ \ - \ \ - \ \ - \ \ \ \					10101100
					10110011
	8	$A \leftarrow A \oplus B$	000000001	10111	10011000

sed Al

- 7 Conclusion

- This algorithm can be easily extended for determining the elements of the S-Box used in AES.
- 2 This algorithm is efficient for determining the multiplicative inverse of polynomial over $GF(2^{\mathbf{P}})$

Future works

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

- 7 Conclusion

Possible future works

- Optimize the algorithm
- Comparative study with many existing algorithm
- Implementation in hardware for real time applications

Seshagiri Prabh N

- 2 Introduction
- this paper
- 4 Problem
 Description
- 5 Proposed
- 6 Implementation
- 7 Conclusion

Questions?

Seshagiri Prabhu seshagiriprabhu@gmail.com

