

FRACTIONS RATIONNELLES

4.0

N'DRI VALERIE © UVCI 2017

sept 2017

Domaine Public (dépréciée): http://creativecommons.org/licenses/publicdomain/2.0/fr/

Table des matières

Objectifs		5
I - GEN	ERALITES SUR LES FRACTIONS RATIONNELLES	7
A.	Fractions rationnelles, zéros et pôles	<i>7</i>
В.	Partie entière d'une fraction rationnelle	8
C.	Partie principale d'une fraction rationnelle relative à un pôle	8
D.	Exercice	9
II - DEC	COMPOSITION EN ELEMENTS SIMPLES DANS R.	11
A.	Décomposition en éléments simples	11
В.	Méthode pratique de décomposition	12
C.	Exercice	16
D.	Exercice	17
Caludia	a das avaraisas	10

Objectifs

A la fin de cette leçon, vous serez capable de :

- caractériser des fractions rationnelles ;
- résoudre une équation comportant des fractions rationnelles ;
- **décomposer** en éléments simples une fraction rationnelle dans R et dans C ;

GENERALITES SUR LES FRACTIONS RATIONNELLES

Fractions rationnelles, zéros et pôles.	7
Partie entière d'une fraction rationnelle	8
Partie principale d'une fraction rationnelle relative à un pôle	8
Exercice	9

Objectifs

A la fin de cette section vous serez capable de :

- Identifier une fraction rationnelle
- Caractériser et déterminer un zéro et un pôle d'une fraction rationnelle.

A. Fractions rationnelles, zéros et pôles.

Définition

Considérons deux polynômes P(x) et Q(x) ($Q(x) \neq 0$)

On appelle fonction rationnelle ou **fraction rationnelle** F(x) le quotient de P(x) par

Q(x) et on note
$$F(x) = \frac{P(x)}{Q(x)}$$

Zéro d'une fraction rationnelle F(x)

Soit a un nombre réel ou complexe.

On dit qu'un nombre **a** est un **zéro** d'ordre a de F(x) si et seulement si **a** est un **zéro** ou racine d'ordre a de P(x) et **a** n'est **pas zéro** de Q(x).

Pôle d'une fraction rationnelle.

On dit qu'un nombre a est un pôle d'ordre a de F(x) si et seulement si a est racine d'ordre a de Q(x).

Exemple

1)
$$F(x) = \frac{(x-1)^2}{x^2+1}$$
, 1 est un zéro d'ordre 2 de $F(x)$; $F(x) = \frac{x^2+1}{(x-1)^2}$, 1 est

un pôle d'ordre 2 de F(x).

2) La fraction
$$F(x) = \frac{x^2 - 4}{x^3}$$
 admet 2 et -2 comme zéro (simples) et 0 comme pôle d'ordre 3.

B. Partie entière d'une fraction rationnelle

Soit F(x) = P(x)/Q(x). Il existe un couple unique de polynômes à coefficients complexes (E(x), R(x)) tel que :

•
$$P(x) = Q(x) E(x) + R(x)$$

•
$$deg(R) < deg(Q)$$

Donc $F(x) = E(x) + R(x)/Q(x)$

 $\mathbf{E}(\mathbf{x})$ est appelée la **partie entière** de F(x).

Il en résulte que E(x) et R(x) coïncident avec le quotient et le reste de la division de P(x) par Q(x) suivant les **puissances décroissantes**.

Remarque Si deg(P) < deg(Q) alors E(x) = 0.

1) La fraction rationnelle $\frac{x^5-3}{x^3}$ admet x^2 comme partie entière ; elle peut s'écrire sous la forme F(x) = x2 - 3/x3.

C. Partie principale d'une fraction rationnelle relative à un pôle

Définition

On appelle **partie principale** de la fraction rationnelle F(x) relative au pôle a d'ordre a l'expression $\frac{A_1}{(x-a)^{\alpha}} + \frac{A_2}{(x-a)^{\alpha-1}} + \dots + \frac{A_{\alpha}}{x-a} \text{ où } A_1, A_2, \dots, A_{\alpha} \text{ sont} \quad \text{des constantes complexes.}$

Fondamental : Théorème

Toute fraction rationnelle se décompose en la somme de sa partie entière et des parties principales relatives aux différents pôles ; cette décomposition est unique.

Méthode : Détermination pratique de la partie principale relative à un pôle

Supposons que la fraction rationnelle F(x) admette un pôle a d'ordre a. Q(x) est donc de la forme $Q(x) = (x-a)a Q_1(x)$, $Q_1(a) \neq 0$.

Pour obtenir la partie principale relative au pôle a, on pose X = x-a et on effectue la division suivant les puissances croissantes de P(x-a) par Q(x-a) jusqu'à l'ordre a-1.

Exemple

La partie principale de la fraction rationnelle $F(x) = \frac{x^6 + 7}{(x-1)^4}$ est égale à

$$\frac{8}{(x-1)^4} + \frac{6}{(x-1)^3} + \frac{15}{(x-1)^2} + \frac{20}{(x-1)}.$$

En effet,
$$F(x) = \frac{x^6 + 7}{(x - 1)^4} = x^2 + 4x + 10 + \frac{8}{(x - 1)^4} + \frac{6}{(x - 1)^3} + \frac{15}{(x - 1)^2} + \frac{20}{(x - 1)}$$

D. Exercice

[Solution n°1 p 19]

On donne la fraction rationnelle suivante : $F(x) = (x^2 + 1) + \frac{(x-3)^3}{x^2(x+1)(x-2)}$ cochez les affirmations vraies.

GENERALITES SUR LES FRACTIONS RATIONNELLES

La partie entière de F(x) est : x2+1
3 est un pôle d'ordre 3
0 est pôle d'ordre 2
0,1 et 2 sont des zéros de F(x).
0, 1, et 2 sont des pôles de F(x).
La partie principale de F(x) relative au pôle 0 est de la forme : $\frac{A_1}{x^2} + \frac{A_2}{x}$

Décomposition en éléments simples	11
Méthode pratique de décomposition.	12
Exercice	16
Exercice	17

Objectifs

A la fin de cette section, vous serez capable de :

- déterminer la forme de la décomposition d'une fraction rationnelle en fonction du pôle.
- décomposer une fraction rationnelle ayant un pôle de première espèce.
- décomposer une fraction rationnelle ayant un pôle de seconde espèce.

Soit la décomposition du polynôme Q(x) en produit de **polynômes irréductibles** sur R. $Q(x) = a_n(x-a_1)n1 \dots (x-a_k)nk \quad (x2+p_1x+q_1)m1 \quad (x2+p_rx+q_r)mr$ avec $\Delta_i = p_i2 - 4q_i < 0$.

A. Décomposition en éléments simples

Fondamental : Théorème

Toute fraction rationnelle à coefficients réels se décompose sous la forme $\frac{P(x)}{Q(x)} = E(x) + \sum_{p \text{ oles réels}} \left(\frac{A_1}{(x-a_i)^{n_i}} + \frac{A_2}{(x-a_i)^{n_i-1}} + \dots + \frac{A_{n_i}}{x-a_i} \right) \\ + \sum_{p \text{ oles complexes}} \left(\frac{M_1 x + N_1}{(x^2 + p_i x + q_i)^{m_i}} + \frac{M_2 x + N_2}{(x^2 + p_i x + q_i)^{m_i-1}} + \dots + \frac{M_{m_i} x + N_{m_i}}{x^2 + p_i x + q_i} \right)$

Cette décomposition est unique.

Sachant que la décomposition est unique, si F(x) est paire, ou impaire, on obtient des relations entre les coefficients.

Définition

Les termes en
$$\dfrac{A_k}{(\mathrm{x}-a_k)^{n_i-i+1}}$$
, $k=1,\ldots,n_i$ (correspondant aux pôles

réels) sont dits éléments simples de première espèce.

Les termes en
$$\frac{M_{m_i}\mathbf{x}+N_{m_i}}{(\mathbf{x}^2+p_j\mathbf{x}+q_j)^{m_i-j+1}}$$
, $j=1,\ldots,m_i$ (correspondant aux

pôles complexes conjugués) sont dits éléments simples de seconde espèce.

B. Méthode pratique de décomposition.

Cas général

Si $deg(P) \ge deg(Q)$, on cherche la partie entière de F(x); celle-ci s'obtient en calculant le quotient de la division euclidienne de P(x) par Q(x). Une fois que E(x) est calculée, on est ramené automatiquement à décomposer une autre fraction F(x) avec deg(P) < deg(Q).

Pôles de première espèce - pôle simple

Si a est un pôle simple de F(x) alors Q(x) se met sous la forme

$$Q(x) = (x-a)a Q_1(x)$$
 avec $Q_1(a) \neq 0$

et la partie relative à
$$a$$
 se met sous la forme $\frac{\lambda}{x-a}$ avec $\lambda = \frac{P(a)}{Q_1(a)}$

Ainsi,
$$F(x)$$
 est de la forme $F(x) = \frac{\lambda}{x-a} + \frac{B(x)}{Q_1(x)}$.

De manière pratique, pour déterminer le coefficient λ , on multiplie les deux membres de F(x) par (x-a), c'est à dire

(x-a)F(x) et on fait x = a.

Exemple

Considérons la fraction rationnelle $F(x) = \frac{x^3}{(x+1)(x+2)}$ et calculons la partie

principale relative au pôle simple -1.

Ici,
$$Q(x) = (x+1)Q_1(x)$$
 et $Q_1(x) = x+2$. D'où $\lambda = \frac{P(-1)}{Q_1(-1)} = \frac{-1}{1} = -1$

De la même manière , la partie principale relative au pôle -2 est de la forme $\frac{8}{x+2}$.

On a ainsi F (x) =
$$(x-3) - \frac{1}{(x+1)} + \frac{8}{(x+2)}$$
.

Exemple

Décomposer en éléments simples dans R la fraction rationnelle $v^2 + v + 1$

Décomposer en éléments
$$F(x) = \frac{x^2 + x + 1}{(x+1)(x+2)(x+3)}$$

La partie entière est nulle, puisque le degré du numérateur est strictement inférieur à celui du dénominateur.

Il n'y a que des pôles réels et donc des éléments de première espèce.

La décomposition de F(x) en éléments simples est de la forme :

$$F(x) = \frac{A}{(x+1)} + \frac{B}{(x+2)} + \frac{C}{(x+3)}$$

où A, B et C sont des nombres réels à déterminer.

En considérant la fraction rationnelle associée et en remplaçant x par -1 dans (x+1)F(x), on obtient A = 1/2

En remplaçant x par -2 dans (x+2)F(x), on obtient B =-3.

En remplaçant x par -3 dans (x+3)F(x), on obtient C = 7/2.

La décomposition est donc :

$$F(x) = \frac{1}{2(x+1)} - \frac{3}{(x+2)} + \frac{7}{2(x+3)}$$

Exemple

Décomposer en éléments simples dans R la fraction rationnelle

$$F(x) = \frac{x^3 - 2x^2 - x - 3}{x^2 - 3x + 2}.$$

On détermine la partie entière E(x), puisque le degré du numérateur est supérieur à celui du dénominateur.

On effectue la division euclidienne du numérateur x3-2x2-x-3 par le dénominateur x2-3x+2,

ce qui donne x3 - 2x2 - x - 3 = (x2-3x+2)(x+1) - 5

D'où F(x) = x+1 -
$$\frac{5}{x^2 - 3x + 2}$$

Puisque $x^2-3x+2 = (x-1)(x-2)$, on cherche A et B tels que

$$R(x) = -\frac{5}{(x-1)(x-2)} = \frac{A}{(x-1)} + \frac{B}{(x-2)}$$

En passant aux fonctions rationnelles associées et en remplaçant x par 1 dans (x-1)R(x), on obtient A=5. En remplaçant x par 2 dans (x-2)R(x), on obtient B=-5. D'où

$$F(x) = x + 1 + \frac{5}{(x-1)} - \frac{5}{(x-2)}.$$

Pôle simple

Si 0 est **pôle multiple** d'ordre n alors $F(x) = \frac{P(x)}{x^n Q_1(x)}$ et $Q_1(0) \neq 0$. Les coefficients

de la décomposition relative au pôle 0 sont ceux de la **division suivant les puissances croissantes** de P(x) par Q(x) à l'ordre n-1 (on obtient les coefficients à l'envers).

Exemple

Décomposer en éléments simples dans R la fraction rationnelle $F(x) = \frac{1}{x^3(x-1)}$

La partie entière est nulle , puisque le degré du numérateur est strictement inférieur à celui du dénominateur.

Le dénominateur de F(x) admet deux pôles réels : 0 est pôle triple et 1 pôle simple.

La décomposition de F(x) en éléments simples est de la forme :

$$F(x) = \frac{1}{x^3(x-1)} = \frac{A_1}{x^3} + \frac{A_2}{x^2} + \frac{A_3}{x} + \frac{B}{x-1}$$

où A₁, A₂ ,A₃ et B sont des nombres réels à déterminer.

En considérant la fraction rationnelle associée et en remplaçant x par 1 dans (x-1)F(x), on obtient B=1.

Le pôle triple étant le réel 0, il y a pas lieu d'effectuer de translation. On forme la division suivant les puissances croissantes de 1 par -1+x jusqu'à l'ordre 2 ;

$$1 = (-1+x)(-1-x-x2) + x3$$

d'où par division par x3(1-x), on obtient

$$F(x) = \frac{1}{x^3(x-1)} = -\frac{1}{x^3} - \frac{1}{x^2} - \frac{1}{x} + \frac{1}{x-1}$$

et donc $A_1 = -1$, $A_2 = -1$ et $A_3 = -1$ (On retrouve la valeur B = 1).

Remarque

Si $a \neq 0$ est un pôle multiple d'ordre n > 1, on effectue d'abord **la translation h = x-a** et on se ramène au cas précédent en effectuant la division suivant les puissances croissantes de P(h) = P(x+a) par $Q_1(x+a)$ à l'ordre n-1.

Si l'ordre de **multiplicité est 2 ou 3**, on procède **par identification** en remplaçant x par une valeur particulière (en évitant les pôles) ou en multipliant par x et en faisant tendre x vers l'infini (ce n'est possible que si la partie entière est nulle).

Exemple

Décomposer en éléments simples dans R la fraction rationnelle $F(x) = \frac{x^2 + 1}{(x - 1)^2(x + 1)^3}$.

La partie entière est nulle. le dénominateur de F(x) admet deux pôles réels : 1 est un pôle double et -1 pôle triple.

DECOMPOSITION EN ELEMENTS SIMPLES DANS R.

La décomposition de f(x) en éléments simples est de la forme :

$$F(x) = \frac{x^2 + 1}{(x - 1)^2(x + 1)^3} = \frac{A_1}{(x - 1)^2} + \frac{A_2}{x - 1} + \frac{B_1}{(x + 1)^3} + \frac{B_2}{(x + 1)^2} + \frac{B_3}{x + 1}$$

où A₁, A₂, B₁, B₂, B₃ sont des nombres réels à déterminer.

Pour le pôle réel double 1, on effectue la translation x=1+h et on effectue la division suivant les puissances croissantes de x2+1=(1+h)2+1=2+2h+h2 par (x+1)3=(2+h)3=8+12h+6h2+h3

Le quotient de la division suivant les puissances croissantes de

2+2h h2 par 8+12h+6h2+h3 à l'ordre 1 est
$$\frac{1}{4} - \frac{h}{8}$$

d'où par division par h2(2+h)3,

$$\frac{2+2h+h^2}{h^2(2+h)^3} = \frac{1}{4h^2} - \frac{1}{8h} + \dots$$

et donc
$$A_1 = \frac{1}{4}$$
 et $A_2 = -\frac{1}{8}$

Pour le pôle réel triple -1, on effectue la translation x = -1+k et on effectue la division suivant les puissances croissantes de

$$x2+1 = (-1+k)2+1 = 2-2k+k2$$
 par $(x-1)2 = (-2+k)2 = 4-4k+k2$

Le quotient de la division suivant les puissances croissantes de 2-2k+k2 par 4-4k+k2

à l'ordre 2 est
$$\frac{1}{2} + \frac{k^2}{8}$$

d'où la division par k3(2-k)2

$$\frac{2-2\,\dot{k}+\dot{k}^2}{\dot{k}^3(2-\dot{k})^2} = \frac{1}{2\,\dot{k}^3} + \frac{1}{8\,\dot{k}} + \dots$$

et donc
$$\mathcal{B}_1 = \frac{1}{2}$$
, $\mathcal{B}_2 = 0$ et $\mathcal{B}_3 = \frac{1}{8}$

Par conséguent,

$$F(x) = \frac{x^2 + 1}{(x - 1)^2 (x + 1)^3} = \frac{1}{4(x - 1)^2} - \frac{1}{8(x - 1)} + \frac{1}{2(x + 1)^3} + \frac{1}{8(x + 1)}$$

Pôles de seconde espèce.

Pour déterminer les éléments simples de la forme $\dfrac{M_m x + N_m}{(x^2 + p x + q)^m}$, m > 1 , en

multipliant par $(x^2 + px + q)m$ et en remplaçant x par la racine complexe, en **identifiant** partie réelle et partie imaginaire des deux membres, on obtient un système de deux inconnues sur M_m et N_m qui permet de calculer ces deux coefficients.

On considère alors la fraction rationnelle F(x) - $\dfrac{M_m x + N_m}{(x^2 + px + q)^m}$, m > 1que l'on

simplifie, puisqu'il y a unicité de la décomposition en éléments simples. On calcule

alors les coefficients du terme $\frac{M_{m-1}x+N_{m-1}}{(x^2+px+q)^{m-1}}$ en utilisant la méthode

précédente de diminution du degré.

Conseil : Cas particulier :

S'il n'y a que des **pôles complexes**, c'est à dire si la fraction rationnelle se présente sous la forme $F(x) = \frac{P(x)}{(x^2 + px + q)^m}$, on effectue les divisions euclidiennes successives de P(x) (puis des différents quotients) par $x^2 + px + q$.

Exemple

Décomposer en éléments simples dans R la fraction rationnelle $F(x) = \frac{x^6 + 2}{(x-1)(x^2+1)^2}$

1 est un pôle simple et i et -i sont pôles doubles.

La décomposition est de la forme

$$F(x) = \frac{x^6 + 2}{(x - 1)(x^2 + 1)^2} = x + 1 + \frac{A}{x - 1} + \frac{ax + b}{(x^2 + 1)^2} + \frac{cx + d}{x^2 + 1}$$

Le coefficient A est obtenu en multipliant par x-1 et en faisant x=1; A=3/4

La fraction $\frac{ax+b}{(x^2+1)^2} + \frac{cx+d}{x^2+1}$ peut être calculée par la différence

$$\frac{x^6 + 2}{(x - 1)(x^2 + 1)^2} - (x + 1) - \frac{3}{4(x - 1)}$$

On trouve ainsi

$$\frac{ax+b}{(x^2+1)^2} + \frac{cx+a'}{x^2+1} = \frac{-7x^3 - 7x^2 - 9x - 9}{4(x^2+1)^2}$$

La division de -7x3 - 7x2 - 9x - 9 par x2 + 1 suivant les puissances décroissantes donne

-7x3 - 7x2 - 9x - 9 = (x2+1)[-7(x+1)] - 2(x+1).

On déduit, en divisant par $4(x^2+1)^2$:

$$\frac{ax+b}{\left(x^2+1\right)^2} + \frac{cx+d}{x^2+1} = -\frac{x+1}{2\left(x^2+1\right)^2} - \frac{7x+7}{4\left(x^2+1\right)}$$

d'où

$$F(x) = \frac{x^6 + 2}{(x - 1)(x^2 + 1)^2} = x + 1 + \frac{3}{4(x - 1)} - \frac{x + 1}{2(x^2 + 1)^2} - \frac{7x + 7}{4(x^2 + 1)}.$$

C. Exercice

[Solution n°2 p 19]

La fraction F(x) = P(x)/Q(x) admet x = 2 comme pôle réel d'ordre1 et x = 1 comme pôle réel d'ordre 2. Son dénominateur Q(x) peut s'écrire

0	DECOMPOSITION EN ELEMENTS SIMPLES DANS R.
	Q(x) = (x+2)(x+1)2
0	Q(x) = (x2-1)(x-2)
0	Q(x) = (x2-3x+2)(x-1)
0	Q(x) = (x2+3x+2)(x-1)

D. Exercice

[Solution n°3 p 20]

Parmi les affirmation suivantes, quelles sont celles qui sont correctes ?		
	$F_2(x) = \frac{4x+3}{(x+8)^4}$ est une fraction rationnelle d'élément simple de première espèce.	
	$F_2(x) = \frac{-15}{(x-7)^2}$ est une fraction rationnelle d'élément simple de première espèce.	
	$F_3(x) = \frac{-1}{x^2 + x + 1}$ est une fraction rationnelle d'élément simple de première espèce.	
	$G_1(x) = \frac{5x - 14}{(x^2 + x + 1)^2}$ est une fraction rationnelle d'élément simple de seconde espèce.	
	$G_2(x) = \frac{3}{2x^2 + 7}$ est une fraction rationnelle d'élément simple de seconde espèce.	

0

Solution des exercices

> Solution n°1 (exercice p. 9)

- La partie entière de F(x) est : x2+1
- 3 est un pôle d'ordre 3
- 0 est pôle d'ordre 2
- 0,1 et 2 sont des zéros de F(x).
- \bigcirc 0, 1, et 2 sont des pôles de F(x).
- La partie principale de F(x) relative au pôle 0 est de la forme : $\frac{A_1}{x^2} + \frac{A_2}{x}$

> Solution n°2 (exercice p. 16)

- Q(x) = (x+2)(x+1)2
- Q(x) = (x2-1)(x-2)
- Q(x) = (x2-3x+2)(x-1)
- Q(x) = (x2+3x+2)(x-1)

> Solution n°3 (exercice p. 17)

$F_2(x) = \frac{4x+3}{(x+8)^4}$ est une fraction rationnelle d'élément simple de première espèce.
$F_2(x) = \frac{-15}{(x-7)^2}$ est une fraction rationnelle d'élément simple de première espèce.
$F_3(x) = \frac{-1}{x^2 + x + 1}$ est une fraction rationnelle d'élément simple de première espèce.
$G_1(x) = \frac{5x - 14}{(x^2 + x + 1)^2}$ est une fraction rationnelle d'élément simple de seconde espèce.
$g_2(x) = \frac{3}{2x^2 + 7}$ est une fraction rationnelle d'élément simple de seconde espèce.