Permit Numbers 9347 and PSD-TX-285M5

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	<u>Emissic</u>	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**	
DR401D	Polyvinyl Chloride Dryer	PM NVVOC VCM (5)	1.79 15.41 4.62	7.83 39.15 9.45	
DR401E	Polyvinyl Chloride Dryer	PM NVVOC VCM (5)	1.79 15.41 4.62	7.83 39.15 9.45	
DR401F	Polyvinyl Chloride Dryer	PM (5) NVVOC VCM (5)	1.79 15.41 4.62	7.83 39.15 9.45	
DR401G	Polyvinyl Chloride Dryer	PM NVVOC VCM	1.80 17.70 5.30	7.91 44.95 10.85	
LV-1	Incinerator	CO HCI NO _x VCM (5)	<0.1 0.2 2.1 0.1	0.2 0.4 9.4 0.6	
LV-5	Incinerator	CO HCI NO _x VCM (5)	0.1 0.2 2.1 0.6	0.5 0.9 9.4 2.6	
PL251A	Polyvinyl Reactor Vent	VCM (5)	0.43	1.87	
PL251B	Polyvinyl Reactor Vent	VCM (5)	0.43	1.87	
PL251C	Polyvinyl Reactor Vent	VCM (5)	0.43	1.87	

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
PL251D	Polyvinyl Reactor Vent	VCM (5)	0.43	1.87
PL251E	Polyvinyl Reactor Vent	VCM (5)	0.43	1.87
PL251F	Polyvinyl Reactor Vent	VCM (5)`	0.43	1.87
TK116	Methanol Tank	VOC	0.023	0.10
TK117	Methanol Tank	VOC	0.023	0.10
TK124	OMS Tank	VOC	0.023	<0.1
TK115	Ethanol Tank	VOC	0.023	<0.1
TK123	OMS Tank	VOC	0.023	<0.1
TK502A	Polyvinyl Silo	PM VCM	0.43 0.32	1.85 1.40
TK502B	Polyvinyl Silo	PM VCM	0.43 0.32	1.85 1.40
TK502C	Polyvinyl Silo	PM VCM	0.43 0.32	1.85 1.40
TK502D	Polyvinyl Silo	PM VCM	0.43 0.32	1.85 1.40
TK503A	Polyvinyl Loading Silo	PM VCM	0.34 0.26	1.48 1.12
TK503B	Polyvinyl Loading Silo	PM VCM	0.34 0.26	1.48 1.12
TK503C	Polyvinyl Loading Silo	PM VCM	0.26 0.26	1.48 1.12
TK503D	Polyvinyl Loading Silo	PM VCM	0.34 0.26	1.48 1.12

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emissior lb/hr	n Rates *
	(=)			
TK503E	Polyvinyl Loading Silo	PM VCM	0.34 0.26	1.48 1.12
TK510	Polyvinyl Silo	PM VCM (5)	<0.1 <0.1	0.2 0.1
TK551A	Polyvinyl Storage Silo	PM (5) VCM (5)	0.13 0.25	0.50 0.37
TK551B	Polyvinyl Storage Silo	PM (5) VCM (5)	0.13 0.25	0.50 0.37
TK551C	Polyvinyl Storage Silo	PM (5) VCM (5)	0.13 0.25	0.50 0.37
TK551D	Polyvinyl Storage Silo	PM (5) VCM (5)	0.13 0.25	0.50 0.37
TK551E	Polyvinyl Storage Silo	PM VCM	0.13 0.25	0.50 0.37
TK553A	Polyvinyl Storage Silo	PM (5) VCM (5)	0.13 0.25	0.50 0.37
TK553B	Polyvinyl Storage Silo	PM VCM	0.13 0.25	0.50 0.37
TK561A	PVC Storage Silo Cyclone	PM VCM	0.17 0.12	0.75 0.53
TK561B	PVC Storage Silo Cyclone	PM VCM	0.17 0.12	0.75 0.53
TK561C	PVC Storage Silo	PM VCM	0.17 0.12	0.75 0.53

DATA			AIR	CONTA	AMINANTS	
Emission	Source	Air Contaminant	Ī	Emission Rates *		
Point No. (1)	Name (2)	Name (3)		b/hr	TPY**	
, ,	. ,	. ,				
UN752A	Boiler	CO		9.6	42.2	
		NO _x		1.4	19.2	
		PM ₁₀ /PM).4	1.6	
		SO ₂		1.0	4.6	
		VOC	C).3	1.4	
UN752B	Boiler	СО	g	9.6	42.2	
		NO_x	4	1.4	19.2	
		PM ₁₀ /PM	C).4	1.6	
		SO_2	1	0	4.6	
		VOC	C).3	1.4	
UN752C	Boiler	CO	1	1	5.0	
		NO_x	8	3.1	35.4	
		PM ₁₀ /PM	C).3	1.5	
		SO_2	<0).1	0.2	
		VOC	C).2	0.9	
UN752D	Boiler	СО	1	1	4.8	
		NO_x	C).9	3.95	
		PM ₁₀ /PM	C).3	1.3	
		SO_2	C).1	0.45	
		VOC).2	0.9	
FUG200	Fugitive (4)	PM	1	82	8.0	
		VCM (5)	C).75	3.3	
		NVVOC	C).63	2.8	
FUG300	Fugitive (4)	VCM (5)	1	44	6.30	

Permit umbers. 9347 and PSD-TX-285M5 Page 5

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
PL1WWSTRIP	Fugitive (4)	VCM	0.14	0.59
PL1BIO	Fugitives (Lagoon) (4)	VCM (5)	0.083	0.365

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) CO carbon monoxide
 - HCl hydrogen chloride
 - NO_x total oxides of nitrogen
 - NVVOC non-vinyl chloride volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1 (30 TAC § 101.1)
 - PM particulate matter, suspended in the atmosphere, including PM₁₀
 - PM₁₀ particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no particulate matter greater than 10 microns is emitted.
 - SO_2 sulfur dioxide
 - VCM vinyl chloride
 - VOC volatile organic compounds as defined in 30 TAC § 101.1
- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- (5) These emissions are under PSD-TX-285M5.
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

Hrs/day 24 Days/week 7 Weeks/year 52

**Compliance with annual emission limits is based on a rolling 12-month period.

Dated ____