

Packet Tracer - Практика проектирования и внедрения VLSM

Топология

Будет получена одна из трех возможных топологий.

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
[[R1Name]]	G0/0	172.31.103.1	172.31.103.0/27	Нет
	G0/1	172.31.103.33	172.31.103.32/27	Нет
	S0/0/0	172.31.103.97	172.31.103.96/30	_
[[R2Name]]	G0/0	172.31.103.65	172.31.103.64/28	_
	G0/1	172.31.103.81	172.31.103.80/28	_
	S0/0/0	172.31.103.98	172.31.103.96/30	_
[[S1Name]]	VLAN 1	172.31.103.2	172.31.103.0/27	172.31.103.1
[[S2Name]]	VLAN 1	172.31.103.34	172.31.103.32/27	172.31.103.33
[[S3Name]]	VLAN 1	172.31.103.66	172.31.103.64/28	172.31.103.65
[[S4Name]]	VLAN 1	172.31.103.82	172.31.103.80/28	172.31.103.81
[[PC1Name]]	NIC	172.31.103.30	172.31.103.0/27	172.31.103.1
[[PC2Name]]	NIC	172.31.103.62	172.31.103.32/27	172.31.103.33
[[PC3Name]]	NIC	172.31.103.78	172.31.103.64/28	172.31.10365
[[PC4Name]]	NIC	172.31.103.94	172.31.103.80/28	172.31.103.81

Задачи

- Часть 1. Изучение требований к сети
- Часть 2. Разработка схемы адресации VLSM
- Часть 3. Назначение сетевым устройствам ІР-адресов и проверка подключения

Общие сведения

В этом упражнении вы будете использовать заданный сетевой адрес /24 для разработки схемы адресации VLSM. На основании требований вы назначите подсети и адреса, настроите устройства и проверите подключения.

Инструкции

Часть 1. Изучение требований к сети

Шаг 1. Определите количество необходимых подсетей.

Вы разделите на подсети сетевой адрес [[DisplayNet]]. К сети предъявляются следующие требования.

- • Локальной сети [[S2Name]] потребуются IP-адреса хоста [[HostReg2]].
- • Локальной сети [[S3Name]] потребуются IP-адреса хоста [[HostReg3]].

Сколько подсетей требует данная топология сети?

5

Шаг 2. Определите маски для каждой подсети.

- а. Какая маска подсети обеспечит нужное количество IP-адресов для [[S1Name]]?
 Сколько доступных для использования адресов узлов будет поддерживать данная подсеть?
 30 узлов
- Какая маска подсети обеспечит нужное количество IP-адресов для [[S2Name]]?
 Сколько доступных для использования адресов узлов будет поддерживать данная подсеть?
 30 узлов
- с. Какая маска подсети обеспечит нужное количество IP-адресов для [[S3Name]]?
 Сколько доступных для использования адресов узлов будет поддерживать данная подсеть?
 /28 14 узлов
- d. Какая маска подсети обеспечит нужное количество IP-адресов для [[S4Name]]?
 Сколько доступных для использования адресов узлов будет поддерживать данная подсеть?
 /28 14 узлов
- е. Какая маска подсети обеспечит нужное количество IP-адресов для соединения [[R1Name]] и [[R2Name]]?

/30 2 узла

Часть 2. Разработка схемы адресации VLSM

Шаг 1. Разделите сеть [[DisplayNet]], исходя из количества узлов на каждую подсеть.

- а. Первую подсеть используйте для создания самой крупной сети LAN.
- b. Вторую подсеть используйте для создания второй по размеру сети LAN.
- с. Третью подсеть используйте для создания третьей по размеру локальной сети (LAN).
- d. Четвертую подсеть используйте для создания четвертой по размеру локальной сети (LAN).
- е. Пятую подсеть используйте для соединения маршрутизаторов [[R1Name]] и [[R2Name]].

Шаг 2. Задокументируйте подсети VLSM.

Заполните **Таблицу подсете**й, указав описания подсетей (например, локальная сеть [[S1Name]]), требуемое количество узлов, сетевой адрес подсети, первый используемый адрес узла и широковещательный адрес. Повторяйте эти действия до тех пор, пока все адреса не будут внесены в список.

Таблица подсетей

Описание подсети	Необходимое количество узлов	Сетевой адрес/CIDR	Первый используемый адрес узла	Широковещатель ный адрес
S1	27	172.31.103.0/27	172.31.103.1	172.31.103.31
S2	25	172.31.103.32/27	172.31.103.33	172.31.103.63
S3	14	172.31.103.64/28	172.31.103.65	172.31.103.79
S4	8	172.31.103.80/28	172.31.103.81	172.31.103.95
R1R2	2	172.31.103.96/30	172.31.103.97	172.31.103.99

Шаг 3. Задокументируйте схему адресации.

- а. Назначьте первые доступные IP-адреса маршрутизатору **[[R1Name]]** для двух каналов локальной сети (LAN) и одного канала сети WAN.
- b. Назначьте первые доступные IP-адреса маршрутизатору **[[R2Name]]** для двух каналов локальной сети (LAN). Последний из используемых IP-адресов назначьте каналу WAN.
- с. Второй из используемых ІР-адресов назначьте коммутаторам.
- d. Последний из используемых IP-адресов назначьте узлам.

Часть 3. Назначение IP-адресов устройствам и проверка подключения

Основная часть параметров IP-адресации для данной сети уже настроена. Для завершения настройки адресации выполните следующие шаги.

Шаг 1. Настройте IP-адресацию на интерфейсах локальной сети (LAN) маршрутизатора [[R1Name]].

- Шаг 2. Настройте IP-адресацию на коммутаторе [[S3Name]], включая шлюз по умолчанию.
- Шаг 3. Настройте IP-адресацию на компьютере [[PC4Name]], включая шлюз по умолчанию.

Шаг 4. Проверьте подключение.

Подключение можно проверить только от устройств [[R1Name]], [[S3Name]] и [[PC4Name]]. При этом необходимо отправлять эхо-запрос на каждый IP-адрес, перечисленный в **Таблице адресации**.

Pinging 172.31.103.30 with 32 bytes of data:

Request timed out.

Reply from 172.31.103.30: bytes=32 time=13ms TTL=126 Reply from 172.31.103.30: bytes=32 time=4ms TTL=126

Reply from 172.31.103.30: bytes=32 time=33ms TTL=126

© © 2013 г. - гггг Корпорация Сіsco и/или ее дочерние компании Всетррава заучищень Открытая информация Сіsco