Medical Cost In USA

Get dataset

```
In [3]: df=pd.read_csv('insurance.csv')
    print_df(df.head())
```

Out[3]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.9	0	yes	southwest	16884.9
1	18	male	33.77	1	no	southeast	1725.55
2	28	male	33	3	no	southeast	4449.46
3	33	male	22.705	0	no	northwest	21984.5
4	32	male	28.88	0	no	northwest	3866.86

- **bmi**: Body Mass Index (kg/m^2)
- charges: Individual medical costs billed by health insurance
- 1338 rows

Exploring the data

From this, it seems that the dataset sample is representative of the US population:

- male and female equally represented
- 4 regions equally represented
- a majority of non smokers

Exploring the data

In [7]: print_df(round(df.describe(),1))

Out[7]:

	age	bmi	children	charges	
count	1338	1338	1338	1338	
mean	39.2	30.7	1.1	13270.4	
std	14	6.1	1.2	12110	
min	18	16	0	1121.9	
25%	27	26.3	0	4740.3	
50%	39	30.4	1	9382	
75%	51	34.7	2	16639.9	
max	64	53.1	5	63770.4	

- ullet For age, bmi and number of children : $mean \simeq median$
- ullet For charges : mean > median

In [12]: fig

Out[12]:

ullet For charges : $mean>median\Rightarrow$ a lot of outliers (high charges)

Are there any correlations between numerical columns?

In [96]: f2 Out[96]: method = Pearson method = Spearman 0.11 0.04 0.3 0.53 0.11 0.06 - 0.8 - 0.8 0.11 0.01 0.2 0.11 0.02 0.12 þmi Ē - 0.6 - 0.6 - 0.4 - 0.4 0.13 0.07 0.06 0.02 children 0.04 0.01 children - 0.2 - 0.2 0.3 0.2 0.07 0.53 0.12 0.13 charges age bmi children age bmi children charges charges

- Charges correlated with age?
- Charges correlated with BMI?

In [98]: f3

Out[98]:

- In the charges=f(bmi) plot, there seem to be 2 groups on points (one with low charges, one with high charges)
- In the charges=f(age) plot, there seem to be 3 groups of points forming 3 lines with a positive slope

Scraping BMI intervals depending on gender and age

younger ages (Figure 1).

Table 1.

Apparent optimal^a and acceptable^a ranges of body mass index for longevity

	1	Men		Women		
Age (years)	Optimal BMI ^b	Acceptable BMI ^b	Age (years)	Optimal BMI ^b	Acceptable BMI ^b	
18–34	23.0-25.9	21.0-28.9	18-34	15.5-24.9 ^c	15.5–25.9 ^c	
35-44	23.0-26.9	22.0-28.9	35-44	19.0-23.9	17.5-25.9	
45-54	24.0-27.9	23.0-28.9	45-49	20.0-25.9	19.0-26.9	
			50-54	22.0-26.9	21.0-27.9	
55-64	24.0-28.9	23.0-31.4	55-64	23.0-27.9	22.0-29.9	
65-74	25.0-28.9	23.0-31.4	65-74	24.0-28.9	22.0-31.4	
75–99	25.0-32.9	24.0-34.9	75-99	24.0-29.9	22.0-36.4 ^d	

In [39]: | print_df(BMIs)

Out[39]:

	age	male.optimal	male.acceptable	female.optimal	female.acceptable
0	[18.0, 34.0]	[23.0, 25.9]	[21.0, 28.9]	[15.5, 24.9]	[15.5, 25.9]
1	[35.0, 44.0]	[23.0, 26.9]	[22.0, 28.9]	[19.0, 23.9]	[17.5, 25.9]
2	[45.0, 49.0]	[24.0, 27.9]	[23.0, 28.9]	[20.0, 25.9]	[19.0, 26.9]
3	[50.0, 54.0]	[24.0, 27.9]	[23.0, 28.9]	[22.0, 26.9]	[21.0, 27.9]
4	[55.0, 64.0]	[24.0, 28.9]	[23.0, 31.4]	[23.0, 27.9]	[22.0, 29.9]
5	[65.0, 74.0]	[25.0, 28.9]	[23.0, 31.4]	[24.0, 28.9]	[22.0, 31.4]
6	[75.0, 99.0]	[25.0, 32.9]	[24.0, 34.9]	[24.0, 29.9]	[22.0, 36.4]

adding a column that gives BMI range

(too low, optimal, acceptable, too high)

In [45]: print_df(df.sample(10))

Out[45]:

	age	sex	bmi	children	smoker	region	charges	bmi_range
965	35	male	27.1	1	no	southwest	4746.34	acceptable
1153	35	female	35.815	1	no	northwest	5630.46	too high
426	38	female	27.265	1	no	northeast	6555.07	too high
198	51	female	18.05	0	no	northwest	9644.25	too low
1160	43	female	34.58	1	no	northwest	7727.25	too high
709	36	female	27.74	0	no	northeast	5469.01	too high
76	29	female	29.59	1	no	southeast	3947.41	too high
347	46	male	33.345	1	no	northeast	8334.46	too high
724	50	female	27.075	1	no	northeast	10106.1	acceptable
1196	19	female	30.02	0	yes	northwest	33307.6	too high

Out[47]: fig2.figure Out[47]: too low optimal acceptable too high bmi_range

• A majority of the people in the sample have a too high BMI!

Influence of smoking

In [50]: print_df(round(df.groupby(df.smoker).mean(),1))

Out[50]:

	age	bmi	children	charges
smoker				
no	39.4	30.7	1.1	8434.3
yes	38.5	30.7	1.1	32050.2

• Smokers are charged much more: smoking has negative effect on health!

In [54]: fig3

Out[54]:

- In the charges=f(bmi) plot, the 2 groups on points (one with low charges, one with high charges) can be explained by smokers/non smokers
- In the charges=f(age) plot, the 3 groups of points can be *partially* explained by smokers/non smokers

Influence of BMI range?

Influence of smoking AND BMI

In [87]: fig5 Out[87]: 60000 50000 charges 00000 smoking and bmi smoker and high bmi non smoker and high bmi non smoker and bmi ok 20000 10000 50 60 40 20 30 age

In the charges=f(age) plot, the 3 groups of points can be explained by:

- low charges: non smokers (independant of BMI)
- medium charges: smokers with too low, optimal or acceptable BMI
- high charges: smokers with too high BMI