Etude des effets des pésticides dans la production des vins de table

Analyse empirique des marchés

A. Blanc, N. Gusarov, S. Picon

Université Grenoble Alpes

19/12/2019

Introduction

Introduction

Introduction

Quel est l'effet de l'utilisation des pesticides sur le marché des vins simples ?

Dans cette étude, nous chercherons à étudier l'équilibre sur le marché du vin.

Plan de la présentation

- Présentation de la problématique
 - Pesticides
 - Marché du vin
- Le modèle théorique
- Les données
- Modélisation
- Les résultats
- Conclusion

Les pesticides

Les pesticides

Les pesticides

- ► Présentation du problème des pésticides
- Etat actuel
- ► Comment baisser l'utilisation de pesticides

Présentation du problème des pesticides

- Source de nombreux débats sur la santé et l'environnement.
- Le rôle actuel :
 - Moyen de protection contre les aléas climatiques ;
 - Outil pour la réservation du rendement.
- Plusieurs mesures mises en places pour réduire leurs usages :
 - des interdiction des produits les plus toxiques ;
 - ► l'instauration d'une taxe, payée par les agriculteurs (Butault et al, 2011).
- ► Malgres les efforts l'utilisation perdure :
 - Hausse des ventes de produits phytosanitaires ;
 - ► Augmentation des doses utilisés (+12% en 2014-2016) ;

Etat actuel

Contrairement aux attentes des autorités aucune baisse de l'utilisation de pesticides :

- ► Le nombre de doses unité augmente de 23% entre 2008 et 2017 ;
- ► Le nombre de substances actives utilisées a augmenté de 15% entre 2011 et 2017 ;
- Une baisse des produits les plus dangereux de 6%, en 2017 (Moghaddam et al, 2019);
- ► Les grandes cultures (blés, etc...) sont les premières utilisatrices de pesticides 67.4%;
- Les vignes sont les deuxièmes 14.4% (Butault et al, 2011).

Comment baisser l'utilisation de pesticides

Les méthodes contemporaines visant à baisser l'utilisation des pésticides sont :

- Le changement de mode de culture :
 - agriculture biologique ;
 - agriculture raisonnée ;
- ▶ La diversification des cultures, ce qui est impossible pour la vigne (Moghaddam et al, 2019).

Le marché du vin français

Le marché du vin français

Le marché du vin français

- Le vin français
- Utilisation des pésticides dans la viticulture
- Le problème d'heterogénéité
- Les vins de table
- Le marché des vins de table français

Le vin français

France est un producteur de vin important :

- ▶ 10% surface de vigne mondiale ;
- 3% de la surface agricole française est dediée au vin ;
- ▶ 16% de la production mondiale ;
- Le vin est la boisson alcoolisée la plus consommée en France ;
- ▶ 88% des ventes de vins en France sont effectuées dans des grandes surfaces (CNIV, 2018).

La consommation de vins en France, tous types (FranceAgrimer, 2011) :

- ► 55% de vins rouges ;
- ▶ 16% de vins blancs ;
- ≥ 29% de vins rosés.

Utilisation des pesticides dans la viticulture

La viticulture un type de culture gourmand en pesticides :

- ▶ 14.4% des produits phytosanitaires utilisés en France ;
- 2-ème culture utilisatrice de pesticides en France ;
- ► Fortes disparités d'utilisation des pesticides entre les régions (Butault et al, 2011) ;
- Les bassins viticoles Français utilisent en majorité des fongicides et des bactéricides sur la vigne ;
- ► La champagne est la région la plus utilisatrice de pesticide avec un IFT de 21.4 en 2013 ;

Le problème d'heterogénéité

Il existe une forte hétérogénéité entre les différents labels mais aussi à l'intérieur de ces labels.

Les vins peuvent être divisés en 2 grandes classes suivant leurs prix (Cembalo et al., 2014) :

- Les vins de qualité supérieure
 - limitation des quantités produites
 - l'origine contrôlé
 - une demande spécifique
- Les vins de qualité faible
 - hétérogènéité moins importante (Cembalo et al., 2014)

Les vins de table

Les vins de tables sont des vins sans indication géographiques :

- hétérogènéité plus faible que pour les autre types ;
- prix bas.

Nous traitons seulement des vins sans indication géographique :

- La situation sur ce marché influence l'utilisation des pesticides ;
- ► Il existe une homogénéité presque parfaite dans les vins sans indication géographique (Cembalo et al, 2014).

Le marché des vins de tables Français

Représente 10% de la production (VIN & SOCIETE, 2018)

- ► Hausse des transactions en 2011 :
 - ► Vins rouges : 29 %
 - ► Vins rosés : 13%
 - Vins blancs: 76%
- ► Hausse des prix en 2011 :
 - ▶ Vins rouges : 12%
 - ► Vins rosés : 3%
 - ▶ Vins blancs : 13%

Le Modèle théorique

Le Modèle théorique

Le Modèle théorique

- Le rôle des pesticides dans la production du vin
- Le rôle de la demande sur la production et l'offre en général
- La formalisation et les équations

Le rôle de la demande sur la production et l'offre en génèral

- Nous supposons que sur le marché des vins simples la demande est unique pour toute la France.
- ► La production de vin varie par département à cause de variations climatologiques
- On observe l'équilibre sur le marché au niveau du pays. Ainsi, la quantité demandée = quantité offerte par l'ensemble des régions.
- ► La demande de pesticides est inélastique au prix. Ainsi, la quantité de pesticides utilisée dépend seulement des intentions et des besoins des agriculteurs.

Les données

Les données

Les données

- Souces des données
- Déscription des données
- Les variables choisi
- Les variables utilisées pour notre modèle

Sources des données :

- Les données de ventes de pesticides par département (INERIS)
- Les données sur les prix du vin (FranceAgrimer)
- Les données sur la population (INSEE)
- Les données sur la production de vin (SSM Finances Publiques)
- Variation par département français (pour les régions produisant le vin)
- ▶ Variation par année (2012 à 2016)

Déscription des données :

- Toutes les variables varient par département et par année.
- ▶ Le période temporelle comprise dans notre échantillon est de 2012 à 2016.
- Sélection des régions productrices de vin et utilisatrices de pesticides (69 départements).
- Utilisation de l'echelle logarithmique afin de contracter la variance.

Les variables utilisées pour notre modèle

- Variables endogènes :
 - ▶ la quantité totale produite de vin rouge et blanc non IG par département (en hectolitres, en log),
 - le prix moyen des vins rouges-blancs (idice, en log).
- Variables exogènes :
 - le revenu médian par département (en euros par personne par année, en log),
 - la surface agricole destinée aux vins de table (en hectares, en log),
 - la quantité des pesticides utilisés sur la vigne (indice, en log).

L'étude statistique

L'étude statistique

L'étude statistique

- L'étude bivarié
- L'étude de la variance
- L'étude des types d'effets
- L'analyse de la correlation
- ► La transformation within

Visualisatoin des interdependances

Visualisatoin des interdependances

Etude de la variance

Table 1: Variance study

	Mean	Overall	Between	Within
Index prix	0.175	0.568	0.368	0.434
Index pesticides	0.170	0.333	0.239	0.234
Surface	4.892	1.986	1.955	0.410
Revenus	9.891	0.061	0.061	0.011
Temps	3	1.416	0	1.416

Table 2: Chow pooling test

	Random	Fixed
Index prix	0.535	0.533
Index pesticides	0.485	0.451
Surface	0	0.0001
Revenus	0.297	0.247

L'étude des types d'effets

Table 3: Lagrange multiplier test, p-values

	Individual	Time	Two-ways
Index prix	0	0.169	0
Index pesticides	0	0.222	0
Surface	0	0.030	0
Revenus	0	0.248	0

L'analyse de la correlation

Table 4: Overall correlation

	Quantité du vin	IP	Surface	Revenus	Index pésticides	Temps
Quantité du vin	1	0.154	0.956	-0.027	-0.078	-0.036
IP	0.154	1	0.045	-0.037	-0.127	0.043
Surface	0.956	0.045	1	-0.057	-0.060	-0.064
Revenus	-0.027	-0.037	-0.057	1	-0.052	0.119
Index pésticides	-0.078	-0.127	-0.060	-0.052	1	0.291
Temps	-0.036	0.043	-0.064	0.119	0.291	1

Table 5: Within transformation correlation

	Quantité du vin	IP	Surface	Revenus	Index pésticides	Temps
Quantité du vin	1	0.961	0.366	-0.160	-0.228	-0.199
IP	0.961	1	0.289	-0.009	-0.127	0.056
Surface	0.366	0.289	1	-0.166	-0.191	-0.310
Revenus	-0.160	-0.009	-0.166	1	0.228	0.652
Index pésticides	-0.228	-0.127	-0.191	0.228	1	0.414
Temps	-0.199	0.056	-0.310	0.652	0.414	1

La transformation within

La transformation within

└ Modèlisation

Modèlisation

Modèlisation

- Presentation de la méthode
- Les estimations
 - OLS, WLS et SUR
 - 2SLS, W2SLS, 3SLS et i3SLS

Presentation de la méthode

- Explication de la méthode utilisée
 - Panel data
 - Within transforation
 - Fixed effects
 - Obtained slopes are averages for all population
 - AIDS model
 - Interdependent equations (simultaneity bias)
 - 3SLS estimator (that is identical to ILS estimator)
 - It generates consistent estimates
 - ► The distribution of the estimators are normally distributed only in large samples
 - ► The estimator is (asymptotically) efficient
- Limites du modèle
 - Faible representation des effets hetérogenes entre les régions (nous estimons seulemnt les effets moyens)
 - Les interferences induites par l'heterogénéité

Résultats des estimation

- Les coefficients estimés avec leurs variance
- L'efficience et comparaison des estimateurs
- Etude des erreurs
 - La distribution des erreurs
 - La normalité
 - Centrage sur 0
 - ► Independance des variables explicatives
 - L'autocorrelation des résidus
 - L'hétéroskedacité

Les résultats OLS, WLS et SUR

	OLS	WLS	SUR
Demande: ipi	0.93***	0.93***	0.93***
•	(0.01)	(0.01)	(0.01)
Demande: ri	-5.75***	-5.75***	-2.00***
	(0.47)	(0.47)	(0.33)
Offre: ipi	0.90***	0.90***	0.92***
	(0.01)	(0.01)	(0.01)
Offre: si	0.08***	0.08***	0.02*
	(0.01)	(0.01)	(0.01)
Offre: iki	-0.17***	-0.17***	-0.05**
	(0.02)	(0.02)	(0.02)
Demande: R ²	0.95	0.95	0.94
Offre: R ²	0.94	0.94	0.93
Demande: Adj. R ²	0.95	0.95	0.94
Offre: Adj. R ²	0.94	0.94	0.93
Num. obs. (total)	690	690	690
*** <i>p</i> < 0.001, *	p < 0.01	p < 0.05	

Table 6: Statistical models

Independance des résidus

Table 7: Correlation des résidus

	OLS D	OLS O	WLS D	WLS O	SUR D	SUR O
Vin	0.232	0.244	0.232	0.244	0.273	0.275
IP	-0	-0	0	-0	0	0
Surface	0.271	-0	0.271	0	0.313	0.236
Revenus	0	-0.480	-0	-0.480	-0.393	-0.542
Pesticides	-0.308	-0	-0.308	0	-0.373	-0.281

L'autocorrelation et l'hétéroskedacité

Table 8: Durbin-Watson test statistics

OLS	WLS	SUR
1.129 1.062	1.129 1.062	1.583 1.549
	1.129	1.129 1.129

Table 9: Bartlett heteroscedasticity test

	OLS	WLS	SUR
Equation de demande	0.828	0.828	1
Equation d'offre	0.999	0.999	1

Le comportement des résidus

Table 10: Shapiro-Wilk normality test

	OLS	WLS	SUR
Equation de demande	0	0	0
Equation d'offre	0.0003	0.0003	0

Les PDF des résidus

Les résidus contre la variable prédite

Les résultats 2SLS, W2SLS, 3SLS et i3SLS

	2SLS	W2SLS	3SLS	i3SLS
Demande: ipi	1.19***	1.19***	1.19***	1.19***
Demande. Ipi	(0.06)	(0.06)	(0.06)	(0.06)
Demande: ri	-5.67***	-5.67***	-5.67***	-5.67***
	(0.71)	(0.71)	(0.71)	(0.71)
Offre: ipi	-1.22	-1.22	-0.71	_0.81
	(1.97)	(1.97)	(1.96)	(1.60)
Offre: si	0.70	0.70	0.46	0.51
	(0.59)	(0.59)	(0.58)	(0.47)
Offre: iki	-0.46	-0.46	-0.73*	-0.68*
	(0.34)	(0.34)	(0.32)	(0.26)
Demande: R ²	0.88	0.88	0.88	0.88
Offre: R ²	-3.37	-3.37	-1.60	-1.90
Demande: Adj. R ²	0.88	0.88	0.88	0.88
Offre: Adj. R ²	-3.40	-3.40	-1.62	-1.92
Num. obs. (total)	690	690	690	690

Table 11: Statistical models

Comparaison des modèles

Table 12: Hausman 3SLS consistency test

Test	Resultats
2SLS contre 3SLS	0.350
2SLS contre i3SLS	0.735
	2SLS contre 3SLS

Table 13: Likelihood test

	#Df	LogLik	Df	Chisq	Pr(>Chisq)
1	6	-149.621	_	_	_
2	8	-65.614	2	168.013	0
3	8	-82.702	0	34.176	0

Le comportement des résidus

Table 14: Shapiro-Wilk normality test

	2SLS	3SLS	i3SLS
Equation de demande	0.00003	0.00003	0.00003
Equation d'offre	0.00000	0.00000	0.00000

Table 15: Bartlett heteroscedasticity test

	2SLS	3SLS	i3SLS
Equation de demande	0.975	0.975	0.975
Equation d'offre	0.0003	0.002	0.001

Les PDF des résidus

Les résidus contre la variable prédite

Les résidus et les prédictions pour i3SLS

L'autocorrelation

Table 16: Durbin-Watson test statistics

	2SLS	3SLS	i3SLS
Equation de demande	0.842	0.842	0.842
Equation d'offre	0.643	0.643	0.643

L'autocorrelation sur 2 dimentions pour i3SLS

L'independance des résidus

Table 17: Correlation des residus

	2SLS D	2SLS O	3SLS D	3SLS O	i3SLS D	i3SLS O
Vin	-0.561	0.906	-0.561	0.898	-0.561	0.901
IP	-0.746	0.948	-0.746	0.938	-0.746	0.941
Surface	-0.034	0	-0.034	0.032	-0.034	0.024
Revenus	0	0	-0	0	0	-0
Pesticides	-0.113	0	-0.113	0.105	-0.113	0.080

Conclusions

Conclusions

Conclusions

- Le marché du vin
- Le rôle des pésticides
- Validité

Le marché du vin

- ► Un comportement inattendus
 - Les effets de substitution contre les produits de la haute gamme
 - Les effets négatives du revenu

Le rôle des pésticides

- ► Confirmation des résultats des études précedentes
 - Utilisés pour réduire les pertes

Validité

- Faible validité du modèle économétrique
 - Variables ommises

Bibliographie

- Cembalo L., Caracciolo F., & Pomarici E. (2014). "Drinking cheaply: the demand for basic wine in italy." Australian Journal of Agricultural and Resource Economics, 58(3). 374-391.
- Butault J-P., Delame N., Jacquet F. & Zardet G. (2011). "L'utilisation des pesticides en France: état des lieux et perspectives de réduction." Notes et études socio-économiques, 35. 7-26
- Pujol J. (2017). "Apports des produits phytosanitaires en viticulture et climat : une analyse à partir des enquêtes pratiques culturales." Agreste Les Dossiers. 39. 3-25