Solución de los problemas de modelización

INVESTIGACIÓN OPERATIVA I.

2° Grado en Estadística

1.- Solución: El coste mínimo es 29.57€ y se obtiene consumiendo 12.52 porciones de pollo, 3.96 porciones de arroz y 4.26 porciones de brócoli.

Si se deben incluir al menos dos porciones de cada alimento en la dieta el coste mínimo sería $30.18 \in y$ se incluirían 11.33 porciones de pollo, 2.93 porciones de arroz, 3.75 porciones de brócoli, 2 porciones de leche y 2 porciones de manzanas.

2.- Solución:

Granja	Ha de maíz	Ha de trigo
Granja norte	0	27.5
Granja sur	10.77	0

El coste mínimo es de 3767.31€.

3.- Solución:

Apartado a.

	La Coruña	Lugo	Orense	Pontevedra
León	0	10	25	0
Burgos	45	0	5	0
Valladolid	0	10	0	30

El coste mínimo para satisfacer la demanda de energía es de 1020.

Apartado b. El problema no es factible porque la demanda es superior a la oferta. Si no satisfacemos toda la demanda, entonces el coste mínimo es 800.

	La Coruña	Lugo	Orense	Pontevedra	Zamora
León	5	20	10	0	0
Burgos	40	0	0	0	10
Valladolid	0	0	0	30	10

Apartado a.

	A1	A2	A3	A4	A5
León	0	0	0	150	50
Pontevedra	0	50	150	100	0
Lugo	100	50	0	0	0

Apartado b.

Solución no factible

Apartado c.

	A1	A2	A3	A4	A5
León	50	0	150	0	0
Pontevedra	50	100	0	100	50
Lugo	0	0	0	150	0

El beneficio máximo es 45500

5.- Solución:

Apartado a.

	A1	A2	París	Roma	Lisboa	Viena
Madrid	550	50				
Vigo	0	400				
A1			200	0	350	0
A2			0	150	0	300

El coste de transporte es 5200.

Apartado b.

		A1	A2	París	Roma	Lisboa	Viena
	Madrid	600	0				
	Vigo	0	400				
	A1			200	0	350	0
Ī	A2			0	150	0	300

El coste de transporte es 5150.

Ver Figura 1. Las unidades que van de un nodo al siguiente son las que aparecen en rojo.

Figura 1. Solución ejercicio 6

7.- Solución:

Mes	Produce	Almacena
1	40	20
2	30	20
3	30	0
4	40	0

El coste de producción es 2210.

8.- Solución:

Producción	Mes 1	Mes 2	Mes 3
Componente A	1000	3001	5399
Componente B	1929	2142	429

Almacenaje	Mes 1	Mes 2	Mes 3
Componente A	0	1	400
Componente B	1129	2771	200

El coste de producción es 223735.3

Apartado a.

	Trabajo 1	Trabajo 2	Trabajo 3	Trabajo 4
Máquina 1		X		
Máquina 2				X
Máquina 3			X	
Máquina 4	X			
Máquina 5				

El tiempo total es de 15.

Apartado b.

	Trabajo 1	Trabajo 2	Trabajo 3	Trabajo 4
Máquina 1				
Máquina 2	X			X
Máquina 3			X	
Máquina 4		X		
Máquina 5				

El tiempo total es de 14.

10.- Solución:

Ver Figura 2. El tiempo empleado es 70 minutos.

Figura 2. Solución ejercicio 10

11.- Solución:

Hace los viajes B, E y H y el beneficio que obtiene es 60.

12.- Solución:

Se cargan los contenedores C1, C2, C4, C5, C6, C7, C8, C9 y C10 y el valor de la carga es 199.

Para que estén todos los sectores cubiertos el mínimo número de cámaras que hay que poner son 6 en los puntos de localización 3, 4, 6, 7, 8 y 9.

14.- Solución:

El número total de empleados es 23. En la siguiente tabla se muestran los que empiezan a trabajar cada día:

Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
7	5	1	6	2	2	0

15.- Solución:

Hay dos rutas críticas que son A - B - C - G y A - B - E - F - G. La duración total del proyecto es 26.