Unit 2 Exam Study Guide

DNA Structure and Organization

Nitro Bases

Nucleoside

- 9'N of pur or 1'N of pyr + glyco bond + 1'C deoxy/ribose sugar
- Sugar addition makes molec more water sol
- DNA more stable since deoxy; OH at 2' (on ribose) has effect on 2ndry struc & hydrolysis
- Syn conf favored by pur more than pyr bc steric hind
- Common ribonucleosides (ribose+nitro base): CYTOdine, URidine, ADENosine,
 GUANosine → pyr get -dine while pur get -sine

Nucleotide

- 5'C Nucleoside + esterification bond + phosphate
- DNA nuc = deoxyribonucleotides; RNA nuc = ribonucleotides
- 1) Deoxyribonuc Types:

2) Ribonuc Types:

3) Other Nuc Types

- Used as epigenetic marker (pro: mark own DNA to degrade foreign; eu: mark which genes should be active)
- DNA Only
 - a) 5-Methylcytidine: found in eu/bac
 - b) N6-Methyladenosine: found in only bac
- RNA Only
 - a) Inosine: (adenosine w/o amine) gives rich gen code and found in wobble pos in anticodon
 - b) Pseudouridine: helps fold rRNA, stabilize tRNA, found more in eu than eubac

Nucleoside 5' Triphosphates

- Types: ATP (energy), CTP (lipid syn), UTP (carb met), GTP (prot syn)

- Function: E carriers; E stored in phosphoric bonds (explains E tranf in ADP to ATP)
- Major behavior of nuc: pyro/phosphoryl group transf (ADP → ATP, GDP → GTP, etc)
- Cyclic nucleotides: sig molec/ regulators of cell met of all cells (cAMP, cGMP etc)
- Bases make nuc unique and can be used as recognition units; not involved in the biochem of met

Nucleic Acids

- Cov bond via phosphodiester link 3'C → 5'C
- 1) Primary Struc → Sequencing
 - a) Chain Termination Method (F. Sanger)
 - DNA pol adds artificial primer and adds nuc to ssDNA
 - Last one will be dideoxynuc to terminate strand
 - Similar to PCR
 - b) Base-Specific Chemical Cleavage (Maxam & Gilbert)
 - Using chem agent, cleave strand at certain places of ssDNA with P-32 at end
 - Produces fragments that are read in electrophoresis based on ACTG
- 2) Secondary Struc: reassociation is inversely prop to genome complexity (the more complex the organism, the less time it would take to anneal after denaturing)
- 3) Tertiary Struc
 - Duplex DNA (dsDNAO = 10bp / turn)
 - Linking Number (L) = Twist (T)+ Writhe (W).
 - Twist = helical turns, writhe = # times double helix crosses over itself Ex of pos supercoiling:

- DNA gyrase creates neg supercoiling so easy unwind → A-subunit of gyrase cuts dna, holds ends, and ligates to form new supercoil

DNA Replication

Models

Semiconserv model proved by Meselson/ Stahl exp

Elongation

- Primase lays primer, gyrase undos supercoil, helicase unwinds, SSB prot attached
- DNA pol 3 adds new nuc: dNTP w/ 3 PO4 undergoes nuc attack on 3'OH to rid 2 PO4
 - → Pol 3 subunits: alpha (polymerase), epsilon (3' exonuclease), theta (holoenzyme assembly)
 - → Beta-subunit acts as a sliding clamp holds all subunits together
- Pol 1 (5' exonuclease) in pro only and is used for repair and primer removal
- DNA ligase glues 2gthr nicks made by pol 1 via phosphodiester linkage

Replication Experiments

- Rep is slow (50 nuc/sec) and activates in clusters 30k-300k bp apart (not all at same t) to create rep bubble pairs
- High condensed rep late, low rep early
- Exp to identify rep origins in yeast → yeast DNA seq called ARS (autonomously replicating sequence)

Origin Replication Complex

- Pre-replication complex (pre-RC) assembled via addition of Cdc6, Cdt1, MCM and ends in post-RC state
- At rep fork of yeast, Cdc45 + MCM + GINS form CMG complex
- CMG complex + other factors = RPC (replisome progression complex)

- Overall Process:
 - a) ORC binds to origin and recruits Cdc6, MCM (rep licensing factor), and Cdt1
 - b) Ppl (phosphorylation) mediated by S-CDK
 - c) Cdc7-Dbf4 trigger the switch from G1 to S phase
 - d) Ppl of Sld2 and Sld3 leads to recruit pol to origins
 - e) Ppl of MCM serve as helicase activ

- Mechanisms that may control ORC chrom binding sites:

B. Recruitment

C. Local Chromatin Structure

Rev this slide

Re-Replication Prevention

- Prevention by pre-RC Formation:
 - a) Inhibitory complex between Cdt1 and geminin
 - → Geminin is dna inhibitor that appears in S phase and disappears in M phase)
 - → Geminin prevents MCM from forming in pre-RC
 - b) Cdt1 degradation in S phase by Skp2
 - High activity of cdk in G2/ M phases inactivates and degrades Cdc6, Cdt1, MCM2-7, and ORC

- Prevention by CDK-Mediation:
 - a) Ppl of Cdc6 and Cdt1 renders them unstable/ degrades them
 - b) MCM mod by cdk inactivates it
 - c) ORC ppl inhibits rep

DNA Mutation, Repair, and Recombination

Homologous Recombination

The Holliday model for homologous recombination.

- (A) Two homologous DNA duplexes are aligned – synapsis.
- (B) Recombination begins with the introduction of single-stranded nicks at homologous sites on two chromosomes
- C) Strand invasion occurs through partial unwinding and base-pairing with the intact strand in the other duplex
- (D) Free ends from different duplexes are ligated resulting in cross-stranded intermediate – Holliday junction
- E) Branches can migrate by unwinding and rewinding of two duplexes

- Bacterial
 - RecBCD: initiates recombo, helicase (D)/ nuclease (B)activ, c chi site
 - RecA: strand invasion and homologous pairing
- Eu
- RuvA tetramer: helicase, branch migr, fits into Holliday jxn
- RuvB hexameric rings: helicase, branch migr, assemble on DNA sides and acts as motor
- RuvC resolvase: nuclease activ, branch migration

Transposons

- Class I (retrotransposons)
 - copy/paste
 - DNa→RNA→DNA via reverse transcriptase
 - 40% of human genome
- Class II (DNA transposons)

- cut/paste
- No RNA intermediate
- Uses many transposon enzymes

DNA Repairs

- 150 genes involved
- 1) Double strand break (ds DNA)
 - Nonhom DNA: break in dsDNA (looks like =) → Ku 70/80 holds ends → kinase, enzymes, and ligase fix break
 - Homo: break in dsDNA (looks like ___--) → D-loop like RecA in homo recombo → either noncross or crossover recombo
- 2) Direct reversal
- 3) Mismatch repair (ss DNA)
- 4) Base excision repair (ss DNA):
 - a) Dna glycosylases remove damaged base (creating an apurinic/apyrimidinic or "AP" site)
 - b) AP endonuclease cleaves backbone
 - c) Exonuclease removes AP site/ several nuc
 - d) Exp repaired by DNA pol/ligase

- 5) Nuc excision repair (ss DNA):
 - Used instead of base excision if repair region too large
 - Lesion can be like pyr dimer (UV light bonds nuc, so use light to break them)
 - Uses exinucleases which break backbone in 2 places
 - Bacteria: ABC exinuclease (UvrA, UvrB, UvrC) hydrolyzes 5th bond on 3' and 8th bond on 5' and removes ~12 nuc
 - Eu: exinuclease hydrolyzes 6th bond on 3' and 22nd bond on 5 and removes ~28 nuc