Determinisztikus véges automaták

Ahol a feladat mást nem mond, az ábécé legyen $\Sigma = \{a, b\}$.

- 1. Adj determinisztikus véges automatát a következő nyelvekre:
 - a) 3 betűből álló szavak

- b) a betűvel kezdődő szavak
- c) csak a betűt tartalmazó szavak
- d) b betűre végződő szavak
- e) 3 a betűt tartalmazó szavak
- f) a betűt nem tartalmazó szavak, $\Sigma = \{a, b, c\}$
- 2. Adj meg egy determinisztikus véges automatát, mely azokat a szavakat fogadja el, amelyekben szerpel legalább 3 darab a betű.
- 3. Milyen nyelvet fogadnak el az alábbi automaták?

- 4. Adj determinisztikus véges automatát a következő nyelvekre:
 - a) szavak, melyekben az aa részszó pontosan egyszer szerepel
 - c) a és b betűket felváltva tartalmazó szavak
 - (mint pl: abababa vagy babab)
 - e*) szavak, melyekben minden két c közt van a f*) a^nb^n (valahány a, majd **ugyanannyi** b) és $b, \Sigma = \{a, b, c\}$
- b) szavak, melyek első és utolsó betűje megegyezik
- d) szavak, melyekben minden a után bbkövetkezik
- 5. Adj determinisztikus véges automatát az oszthatósági szabályokra:
 - a) 5-tel osztható számok, $\Sigma = \{0, 1, 2, ..., 9\}$
- b) 3-mal osztható számok, $\Sigma = \{0, 1, 2, ..., 9\}$
- c) 2-vel osztható bináris számok, $\Sigma = \{0,1\}$
- d*) 3-mal osztható bináris számok, $\Sigma = \{0,1\}$

Hiányos, nemdeterminisztikus véges automaták

1. Milyen nyelvet fogadnak el az alábbi hiányos automaták?

2. Milyen nyelvet fogadnak el az alábbi nemdeterminisztikus automaták?

- 3. Adj nemdeterminisztikus véges automatát az alábbi nyelvekre! Ahol a feladat mást nem mond, az ábécé legyen $\Sigma = \{a, b\}$. Használd ki a nemdeterminisztikusságot, törekedj arra, hogy minél kevesebb állapot felhasználásával adj helyes megodást!
 - a) szavak, melyekben szerepel az abaab részszó
 - c) szavak, melyekben nem szerepel az abc részszó, $\Sigma = \{a,b,c\}$
 - e) szavak, melyekben legalább az egyik betű nem szerepel, $\Sigma = \{a,b,c,d\}$
 - g*) palindromok (tehát minden szó, ami balról és jobbról olvasva ugyanaz)
- b) szavak, melyekben van két olyan b betű, melyek közt néggyel osztható számú a van
- d) olyan betűre végződőik, ami korábban nem szerepelt a szóban, $\Sigma = \{a,b,c\}$
- f) szavak, melyekben szerepel az aaa és a bbb részszó is
- h*) szavak, melyekben nem szerepel sem az aaa, sem a bbb részszó

Veremautomaták

A veremautomaták esetében a determinisztikus és nemdeterminisztikus verziók nem azonos erősségűek. A nemdeterminisztikus változattal fel tudunk ismerni olyan nyelveket, amiket a determinisztikussal nem lehet. Veremautomaták esetén ezért mindig nemdeterminisztikussal szokás dolgozni, tegyél te is így!

1. Adj veremautomatát az alábbi nyelvekre! Ahol a feladat mást nem mond, a megadott nyelvek ábécéje $\Sigma = \{a, b\}$, a veremben viszont ezeken kívül bármilyen egyéb ábécét használhatsz.

a)
$$a^n b^n$$

b)
$$a^n b^m a^n$$

c) első és utolsó betű megegyezik

d)
$$a^n b^m$$
, ahol $m > n$

d)
$$a^n b^m$$
, ahol $m \ge n$ e) ugyanannyi a , mint b

f)
$$a^n b^m$$
, ahol $m = 2n$

h)
$$a^n b^n c^m d^m$$
, $\Sigma = \{a, b, c, d\}$ i) $a^n b^m c^m d^n$, $\Sigma = \{a, b, c, d\}$

i)
$$a^{n}b^{m}c^{m}d^{n}, \Sigma = \{a, b, c, d\}$$

$$j^*$$
) $a^n b^m$, $2n > m > n$

$$\mathbf{k}^*$$
) $a^n b^n c^n$, $\Sigma = \{a, b, c\}$

j*)
$$a^nb^m, 2n \geq m \geq n$$
 k*) $a^nb^nc^n, \Sigma = \{a,b,c\}$ l*) $a^lb^mc^n$, ahol $m = l+n$, $\Sigma = \{a,b,c\}$