TCS I – Discrete mathematics

- Week 12 -

1. Let $S = \mathbb{R}^2$ and let R be a binary relation on S defined by

$$(x_1, y_1)R(x_2, y_2) \Leftrightarrow x_1^2 + y_1^2 = x_2^2 + y_2^2$$
.

Show that R is equivalence relation and find R[(7,1)].

- 2. Show that $f = \{(x, y) \in \mathbb{R} \times \mathbb{R}; x = y^3\}$ is a function from \mathbb{R} to \mathbb{R} .
- 3. Is $g = \{(x, y) \in [-5, 5] \times \mathbb{R} : x^2 + y^2 = 25\}$ a function from [-5, 5] to \mathbb{R} .
- 4. Show that the following relations are not functions on \mathbb{R} :
 - (i) $\{(x,y) \in \mathbb{R} \times \mathbb{R} : x^2 = y^2\},\$
 - (ii) $\{(x,y) \in \mathbb{R} \times \mathbb{R} : x = \cos(y)\},\$
 - (iii) $\{(x,y) \in \mathbb{R} \times \mathbb{R} : y^2 = \sqrt{x}\}.$
- 5. Which of the following functions are injective or surjective:
 - (i) $f: \mathbb{R} \to \mathbb{R}; f(x) = x^2$,
 - (ii) $f: \mathbb{R} \to \mathbb{Z}; f(x) = \lfloor x \rfloor,$
 - (iii) $f: \mathbb{R}^+ \to \mathbb{R}^+; f(x) = \sqrt{x}$
 - (iv) $f: \mathbb{Z} \to \mathbb{N}; f(x) = |x|$.
- 6. We are given the following functions
 - (i) $f: \mathbb{N} \to \mathbb{N}, f(n) = \begin{cases} 2n, & n \text{ even} \\ 3n-1, & n \text{ odd,} \end{cases}$
 - (ii) $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, f(x) = (x^2, x^3).$
 - (a) Find images $f(\{1,2,3\})$ and $f(\mathbb{N})$.
 - (b) Find those preimages $f^{-1}(\{1,2,3,4\})$ and $f^{-1}(\{(1,-1),(4,8)\})$ that are well-defined.
- 7. Let $f: X \to Y$ and $g: X \to Z$ be two bijective functions. Is the function $h: X \to Y \times Z$ defined by

1

$$h(x) = (f(x), g(x)),$$

(i) injective, (ii) surjective?

- 8. Let A,B and C be arbitrary sets, and let $g\colon A\to B$ and $f\colon B\to C$ be functions. Show:
 - (i) if f, g are injective, then $f \circ g$ is injective,
 - (ii) if f,g are surjective, then $f\circ g$ is surjective.