

Universidade Federal do Sul e Sudeste do Pará Instituto de Geociências e Engenharias Faculdade de Computação e Engenharia Elétrica

Características Físicas das Fibras Ópticas

Aula 2

Prof.^a Cindy Stella Fernandes

cindy.fernandes@unifesspa.edu.br - cindy.fernandes@gmail.com

Agenda

Características Físicas das Fibras Ópticas

- Espectro eletromagnético
- Princípio de propagação
- Comprimento de onda
- Índice de refração
- Reflexão e refração na fronteira entre dois meios, reflexão interna total

- Bandas espectrais ópticas
 - Todos os sistemas de informação utilizam alguma forma de energia eletromagnética para transmitir sinais;

 O espectro de radiação eletromagnético (EM), baseado na energia eletromagnética, é a combinação dos campos elétrico e magnético, e inclui potência, ondas de rádio, micro-ondas, luz infravermelha, luz visível, luz ultravioleta, raios X e raios gama.

- As radiações não ionizantes são as que não produzem ionizações, ou seja, não possuem energia suficiente para arrancar elétrons dos átomos do meio por onde está se deslocando, mas tem o poder de quebrar moléculas e ligações;
- Radiação ionizante é a radiação que possui energia suficiente para ionizar átomos e moléculas, ou seja é capaz de arrancar um elétron de um átomo ou molécula.

• A natureza fundamental de toda radiação contida nesse espectro é que elas podem ser vistas como ondas eletromagnéticas que viajam a velocidade da luz ($\mathbf{c} \cong \mathbf{3} \times \mathbf{10^8} m/s$ no vácuo);

• Note que a velocidade da luz s em um material é menor por um fator igual ao índice de refração n que a velocidade da luz c no vácuo;

• Por exemplo: $n \approx 1,45$ para vidro de sílica, velocidade da luz nesse material $s = 2 \times 10^8 m/s$

 As propriedades físicas das ondas das diferentes partes do espectro podem ser medidas de diversas maneiras inter-relacionadas, que são: comprimento de um período da onda, energia contida ou a frequência de oscilação da onda;

 Considerando que a transmissão de sinais elétricos tende a usar a frequência para designar as bandas de operação desses sinais, a comunicação óptica geralmente utiliza o comprimento de onda para designar a região espectral e a energia do fóton ou potência óptica, quando se discutem tópicos como a força do sinal ou o desempenho do componente eletro-óptico.

 Há três maneiras de medir as propriedades físicas de uma onda em várias regiões do espectro EM;

 A palavra LUZ é utilizada para descrição das radiações eletromagnéticas visíveis e também das regiões adjacentes (infravermelhas e ultravioletas próximas, pois se comportam da mesma forma);

Quando caracterizamos a LUZ pelo comprimento de onda
\(\lambda \), e a frequência "f", essas grandezas estão relacionadas por algumas equações simples:

$$c = \lambda f$$

Onde:

- C é a velocidade da Luz no vácuo ≈ 3,0 X 108 m/s
- λ (lambda) comprimento de onda
- f frequência de ciclos por segundo ou hertz (Hz)

• Exemplo: Se $\lambda = 1 \times 10^{-6}$

$$f = \frac{3 \times 10^8}{1 \times 10^{-6}} = 3 \times 10^{14} = 300$$
THz

Obs: *T* indica *Tera* que significa expoente elevado a potência 12.

 As indicações da região próximo do infravermelho com comprimento de onda entre 800 e 1800 nm (ou 0,8 a 1,8 μm), são as que podem ser usadas para comunicações com Fibras Ópticas e estão mostradas na figura 3. As mesmas correspondem as chamadas JANELAS DE TRANSMISSÃO, 1ª, 2ª e 3ª janela respectivamente.

Figura 3 – Janelas de Transmissão

Fonte : Jorge Guedes Silveira, Ricardo Balbinot. Série Telecomunicações – Vol 1 , Apostila de Comunicações ópticas

Comprimento de onda

 Num sentido bastante amplo uma onda é qualquer sinal que se transmite de um ponto a outro de um meio com velocidade definida. A distância entre dois máximos sucessivos de uma onda é denominada comprimento de onda λ (figura 2) e ele pode ser visto como o espaço percorrido durante um período T. Então a velocidade v da onda pode ser dada por:

$$v = \frac{\lambda}{T}$$

Figura 2 - Amplitude A, comprimento de onda λ e velocidade v de uma onda.

Comprimento de onda

 A frequência é o inverso do período e é a mais importante característica da onda eletromagnética usada em comunicações. A frequência é expressa em ciclos por segundo ou Hz.

$$f = \frac{1}{T} = \frac{c}{\lambda}$$

 Quando a luz passa de um meio para outro, sua velocidade aumenta ou diminui devido às diferenças das estruturas atômicas dos dois materiais, ou de seus índices de refração.

- Quando a luz colide em uma superfície diferente da qual foi originada, dois fenômenos podem ser observados:
- Reflexão
- •Refração

- Definições
- Raio incidente: conforme observa-se na Fig.2.1, a radiação que se aproxima da superfície S é o raio incidente.

Figura 2.1 Raio incidente, refratado e refletido

- Definições
- Paio refletido: raio incidente, ao atingir a superfície S, poderá refletir, e esta radiação refletida chama-se raio refletido.

Figura 2.2 - Ao penetrar na água, o raio refratado aproxima-se da normal (nágua > nar)

• Raio refratado: O raio incidente, ao invés de refletir na superfície S, poderá ultrapassar esta superfície de separação entre os meios 1 e 2. O raio que penetra no meio 2 chama-se raio refratado. Sendo oblíqua a incidência, a refração é acompanhada de mudança de direção, Fig.2.2, o que não ocorre se a incidência for perpendicular à superfície de separação, Fig.2.3.

Figura 2.3 - Quando o raio incidente é perpendicular à superfície de separação, o mesmo não sofre mudança de direção

- REFRAÇÃO
- É a mudança de direção que a luz sofre quando passa de um meio para outro de densidade diferente, de acordo com a variação da velocidade luz.

Analisando-se a figura conclui-se:

- \checkmark Ângulo de incidência (θ_1) é o ângulo formado pelo raio incidente e a normal à superfície.
- \checkmark Ângulo de refração (θ_2) é o ângulo formado pelo raio refratado e a normal à superfície.
- ✓ O ângulo de refração depende do ângulo de incidência e dos meios 1 e 2.

REFRAÇÃO

Sendo,
$$n_1 sen\theta_1 = n_2 sen\theta_2$$

Quando a luz atravessa de um meio **MENOS** denso para um meio **MAIS** denso a luz tende a se **APROXIMAR** da normal à superfície.

$$n_1 < n_2 \Rightarrow sen \theta_1 > sen \theta_2 \Rightarrow \theta_1 > \theta_2$$

Quando a luz atravessa de um meio **MAIS** denso para um meio **MENOS** denso a luz tende a se **AFASTAR** da normal à superfície.

$$n_1 > n_2 \Rightarrow sen \theta_1 < sen \theta_2 \Rightarrow \theta_1 < \theta_2$$

REFRAÇÃO

$$\frac{sen\theta_1}{sen\theta_2} = \frac{v_1}{v_2} = cons \tan te$$

Índice de Refração

- O índice de refração é o parâmetro óptico que caracteriza qualquer meio transparente absoluto de um meio;
- Pode ser obtido experimentalmente e é definido como a relação entre a velocidade da luz no vácuo e a velocidade da luz no meio, matematicamente expresso como:

$$n = \frac{c}{v} = \frac{3 \times 10^8 \ m/s}{v}$$

• Onde, c = velocidade da luz no vácuo e v = velocidade da luz para um comprimento de onda específico num certo meio.

Índice de Refração

 Tratamos o índice de refração de um material de forma relativa, comparando-o com o do vácuo (ou ar), ou seja, quantas vezes o seu índice de refração é maior do que aquele do vácuo, e, portanto uma grandeza adimensional, que é derivado da expressão:

$$\frac{v_1}{v_2} = \frac{n_2}{n_1}$$

- Da equação do índice de refração absoluto, nota-se que o índice de refração de um material é inversamente proporcional à velocidade de propagação da luz em seu interior, ou seja, quanto mais denso opticamente for o material, menor será a velocidade de propagação da luz;
- Ainda podemos relacionar o índice de refração, a velocidade de propagação e o comprimento da onda da luz:

$$\frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$

Meio	Ìndice de Refração	Velocidade da Luz (km/s)
Vácuo	1,0	300.000
Ar	1,0003	300.000
Água	1,33	225.000
Vidro	1,5	200.000
Diamante	2,0	150.000
Silício	3,4	88.000
Arseneto de Gálio	3,6	83.000

Tabela comparativa de índice de refração e velocidade da luz em diferentes meios

Princípio da Propagação da Luz

O princípio de Huygens e a reflexão

• As construções geométricas mostrando como a luz é refletida ou refratada baseiamse no Princípio de Huygens (1690), que afirma: "Qualquer ponto ou partícula excitado pelo impacto da energia de uma onda de luz, torna-se uma nova fonte puntiforme de energia". Então, cada ponto sobre uma superfície refletora pode ser considerado como uma fonte secundária de radiação tendo a sua própria superfície de onda.

Princípio da Propagação da Luz

O princípio de Huygens e a reflexão

 A lei fundamental sobre a reflexão afirma que os ângulos de incidência e reflexão medidos a partir de uma normal à superfície refletora são iguais e situam-se no mesmo plano denominado plano de incidência, conforme ilustrado abaixo.

Figura - Reflexão.

Reflexão

É a mudança de direção que a luz sofre quando se choca contra uma superfície plana.

Analisando-se a figura conclui-se:

- ✓O ângulo de incidência (θ₁) é o ângulo formado pelo raio incidente e a normal a superfície;
- ✓O ângulo de reflexão (θ_2) é igual ao ângulo de incidência (ai);
- ✓O ângulo de reflexão depende do ângulo de incidência e dos meios 1 e 2.

O princípio de Huygens e a reflexão

Segundo a Lei da reflexão temos:

$$\theta_i = \theta_r$$

O princípio de Huygens e a reflexão

Segundo a Lei da reflexão temos:

$$\theta_i = \theta_r$$

Figura - Refração.

Através do Princípio de Huygens também é possível afirmar que quando um raio de luz atinge uma superfície que separa dois meios índices de com refração diferentes, parte da luz é refletida e a outra penetra no meio sendo desviada ou refratada, assim como ilustrado.

A relação entre os ângulos de incidência, refração e velocidades de propagação nos dois meios é dada pela Lei de Snell.

Segundo a Lei de *Snell*, quando um feixe luminoso ultrapassa de um meio para outro, existe uma razão constante entre o seno do ângulo de incidência (θ_1) e o seno do ângulo de refração (θ_2), definidos como :

$$\frac{sen\theta_1}{sen\theta_2} = \frac{v_1}{v_2}$$
, então $\frac{1}{v_1}sen\theta_1 = \frac{1}{v_2}sen\theta_2$

$$\frac{c}{v_1} sen \theta_1 = \frac{c}{v_2} sen \theta_2 \text{ , mas } n = \frac{c}{v}$$

finalmente: $n_1 sen \theta_1 = n_2 sen \theta_2$

$$n_1 sen\theta_1 = n_2 sen\theta_2$$

• Onde, θ_1 é o ângulo do raio incidente com relação à normal à superfície, θ_2 é o ângulo do raio refratado, n_1 é o índice de refração do meio 1 de incidência, e n_2 é o índice de refração do meio 2.

Lei de Snell

Quando um raio luminoso incidir em uma superfície que separa dois meios com índice de refração diferentes (p. ex. n1 e n2), este será dividido em duas componentes, uma irá **REFRATAR** e a outra **REFLETIR**.

- Esta expressão mostra que a relação entre as velocidades das ondas em meios com índices de refração diferentes é proporcional à relação entre os senos dos ângulos dos raios incidentes e refratados.
- Assim, se o ângulo de incidência θ_1 for zero, θ_2 também será zero, ou seja, a luz incidindo normalmente sobre uma superfície plana não será refratada.
- Por outro lado, se a luz incide obliquamente sobre um sólido opticamente mais denso, ou com maior índice de refração, o raio refratado se aproximará da normal e passará a se propagar com uma velocidade menor do que aquela em que vinha se propagando no outro meio.

Ângulo crítico e reflexão total

De acordo com a equação

$$n_1 sen\theta_1 = n_2 sen\theta_2$$

- se n_1 for maior que n_2 a relação n_2 / n_1 será sempre menor do que 1 e, consequentemente, θ_2 será sempre maior que θ_1 , ou seja, sempre haverá refração com o raio refratado aproximando-se da normal.
- Por outro lado, se o meio de incidência do raio de luz tiver um índice de refração n_1 menor que n_2 , a relação n_2 / n_1 será sempre maior do que 1,0 e, o ângulo refratado, será sempre maior que o ângulo incidente.

Ângulo crítico e reflexão total

- Portanto para que haja refração, há necessidade que o ângulo θ_1 seja tal que leve θ_2 ser menor do que 90°, ou seja, que sen θ_2 <1.
- Nesse caso, existe uma situação limite para a refração onde um raio incidente com um determinado ângulo menor que 90° , conhecido como ângulo crítico θ_c , implicando num raio refratado que se propaga paralelamente à superfície entre os dois meios dielétricos. **Então de acordo com a lei de Snell:**

$$sen\theta_c = \frac{n_2}{n_1}$$

• Qualquer raio incidente com um ângulo superior ao ângulo crítico não será mais refratado, mas refletido totalmente. Esse efeito de reflexão interna total é o mecanismo básico de propagação da luz em fibras ópticas.

Ângulo Crítico

Aumentando o ângulo de incidência θ_i , o ângulo de refração θ_r se aproxima de 90°.

Ângulo crítico é o ângulo de incidência que produz um ângulo de refração de 90° em relação a normal à superfície.

Reflexão Total da Luz

Se o ângulo de incidência θ_i for maior que o ângulo crítico θ_c , haverá reflexão total.

Para ocorrer reflexão total é necessário que duas condições sejam satisfeitas:

- ✓ O ângulo de incidência deve ser maior que o ângulo crítico.
- ✓O sentido de propagação da luz deve ser do meio mais denso para o meio menos denso, obrigatoriamente.

Cálculo do Ângulo Crítico

$$n_1 sen \theta_1 = n_2 sen \theta_2$$
$$\theta_2 = 90^{\circ}$$

$$n_1 sen \theta_1 = n_2 sen 90^\circ$$

$$sen\theta_c = \frac{n_2}{n_1}$$

Para ângulos de incidência maiores que o CRÍTICO ocorre a REFLEXÃO TOTAL.

Informações

Este material de slides foi escrito, para esta disciplina, por meio de colaboração dos professores: Prof. Dr. Valdez Aragão de Almeida Filho e profa. Dra. Cindy Stella Fernandes.

Bibliografia

Bibliografia Básica

- RIBEIRO, José Antônio Justino. **Comunicações ópticas**. 4. ed. São Paulo: Érica, 2009. 454 p. ISBN: 9788571949652.
- KEISER, Gerd. **Comunicações por fibras ópticas**. Porto Alegre: Bookman, 2014. xxiii, 670 p. ISBN:9788580553970.
- AGRAWAL, G. P.: Fiber-Optic Communication Systems. John Wiley & Sons, 2002.
- TRONCO, T. R., AVILA, L.F.: Fundamentos de Comunicações Ópticas. 1ª Edição, Abril de 2007.

Contato

Contato Aluno/professor

- SIGAA (Oficial)
- Dias de aulas
- E-mails para contato: cindy.fernandes@unifesspa.edu.br (Oficial Unifesspa) cindy.fernandes@gmail.com (Não Oficial pessoal)
- WhatsApp: (91) 98256 9649 (Não Oficial)