Question 1

1. Refer to the weighted graph *A* below;

Determine whether Graph *A* has an Euler Cycle or Euler Path. Justify your answer. If the cycle/path exists, indicate the cycle/path.

2. Use Dijkstra's algorithm to find the length of a shortest path between vertex A to H.

3. Answer the questions based on the incidence matrix for Graph *B* below.

	e ₁	e ₂	e 3	e 4	e 5	e 6	е7
A	1	0	0	0	0	0	1
В	1	0	1	0	0	0	0
C	0	0	1	0	1	1	0
D	0	1	0	1	1	0	0
E	0	1	0	0	0	1	0

- a) List the vertex in Graph *B* that has a self-loop.
- b) Calculate the sum of degrees for Graph *B*.

Question 2

1. Given a series of numbers in the following order;

- a) Create a binary search tree, by inserting the number listed in the order given.
- b) List the order in which the vertices are processed using Preorder Traversal, Inorder Traversal and Postorder Traversal.
- 2. A company plans to build a communications network connecting its six computer centres. Any pair of these centres can be linked with a leased telephone line. Use Kruskal's algorithm to design a minimum-cost communications network connecting all computers represented by the graph in Figure 1.

3. Consider the finite-state automaton M, shown in Figure 2:

- a) What are the initial state and accepting state(s) of *M*?
- b) Provide a finite-state table for M that consist of columns of states (S), a transition function (f) and an output function (g).
- c) Based on the transition diagram, find the output string for the given input string and determine whether the given string is accepted or not.

aabaabb