

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 09 Apr 2021 1 of 22

Sample Information

Patient Name: 劉秋香 Gender: Female ID No.: J201224023 History No.: 46864022

Age: 65

Ordering Doctor: DOC2683L 張世慶 Ordering REQ.: 0BEJKWK Signing in Date: 2021/04/07

Path No.: S110-98531 **MP No.:** F21033

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$110-108691 Percentage of tumor cells: 40%

Note:

Sample Cancer Type: Colon Cancer

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	4
Relevant Therapy Details	7
Clinical Trials Summary	10
Alert Details	15

Report Highlights 3 Relevant Biomarkers 2 Therapies Available 69 Clinical Trials

Relevant Colon Cancer Variants

Gene	Finding
BRAF	Not detected
KRAS	KRAS p.(G12V) c.35G>T
NRAS	Not detected
NTRK1	Not detected
NTRK2	Not detected
NTRK3	Not detected

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	PIK3CA p.(E545K) c.1633G>A phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha Allele Frequency: 34.55%	None	alpelisib + hormone therapy ^{1, 2}	18
IA	KRAS p.(G12V) c.35G>T KRAS proto-oncogene, GTPase Allele Frequency: 32.53%	None	cabozantinib	43
IA	FGFR1 amplification fibroblast growth factor receptor 1	None	None	12

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

🛕 Alerts informed by public data sources: 🧿 Contraindicated, 🛡 Resistance

⊘ cetuximab ¹,², cetuximab + chemotherapy ², panitumumab ¹, panitumumab + chemotherapy ² KRAS p.(G12V) c.35G>T

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

DNA Sequence Variants

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

Allele Gene Amino Acid Change Coding Variant ID Locus Frequency **Transcript** Variant Effect Coverage PIK3CA p.(E545K) c.1633G>A COSM763 chr3:178936091 34.55% NM 006218.3 missense 2000 **KRAS** p.(G12V) c.35G>T COSM520 chr12:25398284 32.53% NM_033360.3 missense 1992

Copy Number Variations		
Gene	Locus	Copy Number
FGFR1	chr8:38271445	9.85

Biomarker Descriptions

FGFR1 (fibroblast growth factor receptor 1)

Background: The FGFR1 gene encodes fibroblast growth receptor 1, a member of the fibroblast growth factor receptor (FGFR) family that also includes FGFR2, 3, and 4. These proteins are single transmembrane receptors composed of three extracellular immunoglobulin (Iq)-type domains and an intracellular kinase domain. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell proliferation, migration, and survival^{1,2,3}.

Alterations and prevalence: Recurrent somatic alterations common to the FGFR family include gene amplification, mutation, and chromosomal translocations leading to FGFR fusions4. Amplification of FGFR1 is observed in 15-20% of squamous lung cancer, 10-15% of breast cancer, 8% of bladder cancer, and 2-5% of uterine cancer cases^{5,6,7,8,9}. The most common recurrent mutations, N546K and K656E, are relatively infrequent (<1%); they activate mutations in the kinase domain and are distributed in diverse cancer types¹⁰. FGFR1 translocations giving rise to expressed fusions are common in certain hematological cancers, but less common in solid tumors^{11,12,13}.

Biomarker Descriptions (continued)

Potential relevance: The FDA has granted fast-track designation (2018) to Debio 1347¹⁴ for solid tumors harboring aberrations in FGFR1, FGFR2, or FGFR3. FDA has approved multi-kinase inhibitors, including regorafenib, ponatinib, lenvatinib, nintedanib, and pazopanib, that are known to inhibit FGFR family members. These inhibitors have demonstrated anti-tumor activity in select cancer types with FGFR alterations^{15,16,17,18,19,20,21}. In a phase II clinical trial, dovitinib, a multi-tyrosine kinase inhibitor (TKI), exhibited an overall response rate (ORR) of 11.5% and a disease control rate (DCR) of 50% in patients with advanced squamous cell lung cancer possessing FGFR1 amplification. The patients had a median overall survival (OS) of 5 months and progression-free survival (PFS) of 2.9 months²². Likewise, in a phase Ib study testing the FGFR inhibitor AZD4547, median OS was 4.9 months in patients with FGFR1-amplified advanced squamous cell lung cancer. One of 13 (8%) patients achieved a partial response, 4 (31%) exhibited stable disease, and 2 (13.3%) demonstrated PFS at 12 weeks²³.

KRAS (KRAS proto-oncogene, GTPase)

<u>Background:</u> The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{24,25,26}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60% of pancreatic cancer⁸. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{8,27,28}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{9,29}.

Potential relevance: Currently, no therapies are approved for KRAS aberrations. However, the KRAS G12C inhibitor, sotorasib (AMG 510)³⁰, was granted fast track (2019) and breakthrough (2020) therapy designation for previously treated non-small cell lung cancer (NSCLC) patients with KRAS G12C mutations³¹. Additionally, onvansertib³² was granted fast track designation (2020) for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab³³ and panitumumab³⁴, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)²⁹. Additionally, KRAS mutations are associated with poor prognosis in NSCLC³⁵.

PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha)

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme³⁶. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases^{37,38}. The p110 catalytic subunits include p110α, β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively³⁷. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{39,40}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{39,40,41,42}. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability^{43,44,45}.

Alterations and prevalence: Recurrent somatic activating mutations in PIK3CA are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck, and colorectal cancers^{8,9}. Activating mutations in PIK3CA commonly cluster in two regions corresponding to the exon 9 helical (codons E542/E545) and exon 20 kinase (codon H1047) domains, each having distinct mechanisms of activation^{46,47,48}. PIK3CA resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{8,9}.

Potential relevance: The PI3K inhibitor, alpelisib⁴⁹, is FDA approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer. Additionally, a phase lb study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)-positive breast cancer, the clinical benefit rate, defined as lack of disease progression \geq 6 months, was 44% (7/16) in PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors⁵⁰. Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations⁵⁰. However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations⁵¹. Case studies with MTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers^{52,53}.

Relevant Therapy Summary

In this cancer type

O In other cancer type

In this cancer type and other cancer types

× No evidence

PIK3CA p.(E545K) c.1633G>A

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
alpelisib + fulvestrant	0	0	0	0	×
everolimus	×	×	×	×	(II)
GDC-0077	×	×	×	×	(II)
ipatasertib	×	×	×	×	(II)
paxalisib	×	×	×	×	(II)
samotolisib	×	×	×	×	(II)
sirolimus	×	×	×	×	(II)
temsirolimus	×	×	×	×	(II)
copanlisib, nivolumab, ipilimumab	×	×	×	×	(/)
ipatasertib, atezolizumab	×	×	×	×	(/)
TAS-117, futibatinib	×	×	×	×	(/)
telaglenastat, chemotherapy	×	×	×	×	(/)
copanlisib, olaparib, durvalumab	×	×	×	×	(I)
gedatolisib + palbociclib	×	×	×	×	(I)
HH-CYH33, olaparib	×	×	×	×	(1)
paxalisib, radiation therapy	×	×	×	×	(I)

KRAS p.(G12V) c.35G>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
cabozantinib	×	×	×	0	×
apatinib, chemotherapy	×	×	×	×	(IV)
bevacizumab, chemotherapy	×	×	×	×	(III)
avelumab	×	×	×	×	(II)
binimetinib, palbociclib	×	×	×	×	(II)
cetuximab, chemotherapy	×	×	×	×	(II)
nivolumab, chemotherapy, bevacizumab	×	×	×	×	(II)
panitumumab, trametinib	×	×	×	×	(II)
pembrolizumab	×	×	×	×	(II)
regorafenib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

In this cancer type

In this cancer type and other cancer types

× No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials ³
ulixertinib	×	×	×	×	(II)
ASTX029	×	×	×	×	(I/II)
avelumab, binimetinib, talazoparib	×	×	×	×	(I/II)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(1/11)
HH-2710	×	×	×	×	(I/II)
mirdametinib, lifirafenib	×	×	×	×	(1/11)
navitoclax, trametinib	×	×	×	×	(1/11)
neratinib, valproic acid	×	×	×	×	(1/11)
onvansertib, chemotherapy, bevacizumab	×	×	×	×	(1/11)
RMC-4630, cobimetinib	×	×	×	×	(1/11)
SX-682, nivolumab	×	×	×	×	(1/11)
telaglenastat, palbociclib	×	×	×	×	(1/11)
AZD-0364	×	×	×	×	(l)
BBP-398	×	×	×	×	(l)
BGB-3245	×	×	×	×	(I)
BI-1701963, chemotherapy	×	×	×	×	(I)
chemotherapy, binimetinib	×	×	×	×	(I)
cobimetinib, belvarafenib	×	×	×	×	(I)
COM701, nivolumab	×	×	×	×	(I)
DAY-101	×	×	×	×	(I)
eftozanermin alfa, chemotherapy, bevacizumab	×	×	×	×	(1)
JAB-3312	×	×	×	×	(I)
JSI-1187	×	×	×	×	(I)
LY3214996, midazolam, abemaciclib, chemotherapy, encorafenib, cetuximab	×	×	×	×	(1)
neratinib, trametinib	×	×	×	×	(I)
RMC-4630	×	×	×	×	(I)
RMC-4630, pembrolizumab	×	×	×	×	(I)
RO-5126766, everolimus	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

In this cancer type

O In other cancer type

• In this cancer type and other cancer types

× No evidence

KRAS p.(G12V) c.35G>T (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
siremadlin, trametinib	×	×	×	×	(I)
TAK 659, chemotherapy	×	×	×	×	(I)
TNO-155, ribociclib	×	×	×	×	(I)
trametinib, ruxolitinib	×	×	×	×	(I)
ulixertinib, antimalarial	×	×	×	×	(I)

FGFR1 amplification

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
futibatinib	×	×	×	×	(II)
infigratinib	×	×	×	×	(II)
pemigatinib	×	×	×	×	(II)
ponatinib	×	×	×	×	(II)
sunitinib	×	×	×	×	(II)
ICP-192	×	×	×	×	(1/11)
TAS-117, futibatinib	×	×	×	×	(1/11)
zotatifin	×	×	×	×	(/)
BPI-17509	×	×	×	×	(I)
futibatinib, pembrolizumab	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 09 Apr 2021 7 of 22

Relevant Therapy Details

Current FDA Information

In this cancer type

\bigcirc	In	other	cancer	tvpe

In this cancer type and other cancer types

FDA information is current as of 2021-02-17. For the most up-to-date information, search www.fda.gov.

PIK3CA p.(E545K) c.1633G>A

O alpelisib + fulvestrant

Cancer type: Breast Cancer Label as of: 2020-09-01 Variant class: PIK3CA E545K mutation

Other criteria: ERBB2 negative, Hormone receptor positive

Indications and usage:

PIQRAY® is a kinase inhibitor indicated in combination with fulvestrant for the treatment of postmenopausal women, and men, with hormone receptor (HR)- positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, advanced or metastatic breast cancer as detected by an FDA-approved test following progression on or after an endocrine-based regimen.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212526s001lbl.pdf

Date: 09 Apr 2021 8 of 22

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2021-02-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

PIK3CA p.(E545K) c.1633G>A

O alpelisib + fulvestrant

Cancer type: Breast Cancer Variant class: PIK3CA activating mutation

Other criteria: ERBB2 negative, Hormone receptor positive

NCCN Recommendation category: 1

Population segment (Line of therapy):

Stage IV; Recurrent, Invasive (Second-line therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Breast Cancer [Version 1.2021]

Date: 09 Apr 2021 9 of 22

Current EMA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

EMA information is current as of 2021-02-17. For the most up-to-date information, search www.ema.europa.eu/ema.

PIK3CA p.(E545K) c.1633G>A

O alpelisib + fulvestrant

Cancer type: Breast Cancer Label as of: 2021-02-16 Variant class: PIK3CA E545K mutation

Other criteria: ERBB2 negative, Hormone receptor positive

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/piqray-epar-product-information_en.pdf$

Date: 09 Apr 2021 10 of 22

Current ESMO Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

ESMO information is current as of 2021-02-01. For the most up-to-date information, search www.esmo.org.

PIK3CA p.(E545K) c.1633G>A

alpelisib + fulvestrant

Cancer type: Breast Cancer Variant class: PIK3CA exon 9 mutation

Other criteria: ERBB2 negative, ER positive

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

■ Luminal A, Luminal B; Advanced (Line of therapy not specified); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-ESO-ESMO Advanced Breast Cancer [Annals of Oncology (2020), doi: https://doi.org/10.1016/j.annonc.2020.09.010 (ABC 5)]

KRAS p.(G12V) c.35G>T

O cabozantinib

Cancer type: Thyroid Gland Medullary Carcinoma Variant class: RAS mutation

ESMO Level of Evidence/Grade of Recommendation: II / C

Population segment (Line of therapy):

Metastatic (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Thyroid Cancer [Annals of Oncology 30: 1856–1883, 2019 doi:10.1093/annonc/mdz400]

Clinical Trials Summary

PIK3CA p.(E545K) c.1633G>A

NCT ID	Title	Phase
NCT02688881	Study to Evaluate the Safety and Efficacy of Sirolimus, in Subject With Refractory Solid Tumors	II
NCT04317105	A Phase I/II Biomarker Driven Combination Trial of Copanlisib and Immune Checkpoint Inhibitors in Patients With Advanced Solid Tumors	1/11
NCT04586335	Open Label, Phase Ib Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Clinical Activity of CYH33, an Oral a-specific PI3K Inhibitor in Combination With Olaparib, an Oral PARP Inhibitor in Patients With Advanced Solid Tumors.	I
NCT04632992	MyTACTIC: An Open-Label Phase II Study Evaluating Targeted Therapies in Patients Who Have Advanced Solid Tumors With Genomic Alterations or Protein Expression Patterns Predictive of Response	II
NCT03673787	Ice-CAP: A Phase I Trial of Ipatasertib in Combination With Atezolizumab in Patients With Advanced Solid Tumours With PI3K Pathway Hyperactivation	1/11

Date: 09 Apr 2021 11 of 22

Clinical Trials Summary (continued)

PIK3CA p.(E545K) c.1633G>A (continued)

NCT ID	Title	Phase
NCT03239015	Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular Event	II
NCT04589845	Tumor-Agnostic Precision Immunooncology and Somatic Targeting Rational for You (TAPISTRY) Phase II Platform Trial	II
NCT02861300	Phase I/II Study of CB-839 and Capecitabine in Patients With Advanced Solid Tumors and Fluoropyrimidine Resistant PIK3CA Mutant Colorectal Cancer	1/11
NCT03842228	A Phase Ib Biomarker-Driven Combination Trial of Copanlisib, Olaparib, and MEDI4736 (Durvalumab) in Patients With Advanced Solid Tumors	I
NCT03006172	A Phase I, Open-Label, Dose-Escalation Study Evaluating the Safety, Tolerability, and Pharmacokinetics of GDC-0077 as a Single Agent in Patients With Locally Advanced or Metastatic PIK3CA-Mutant Solid Tumors and in Combination With Endocrine and Targeted Therapies in Patients With Locally Advanced or Metastatic PIK3CA-Mutant Breast Cancer	I
NCT03065062	Phase I Study of the CDK4/6 Inhibitor Palbociclib (PD-0332991) in Combination With the PI3K/mTOR Inhibitor Gedatolisib (PF-05212384) for Patients With Advanced Squamous Cell Lung, Pancreatic, Head & Neck and Other Solid Tumors	I
NCT04192981	A Phase I Study With Expansion Cohort of Concurrent GDC-0084 With Radiation Therapy for Patients With Solid Tumor Brain Metastases or Leptomeningeal Metastases Harboring PI3K Pathway Mutations	I
NCT03297606	Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR): A Phase II Basket Trial	II
No NCT ID	Phase I/II Study of TAS-117 In Combination With TAS-120 In Patients With Advanced Solid Tumors	1/11
NCT04591431	The Rome Trial From Histology to Target: the Road to Personalize Target Therapy and Immunotherapy	II
NCT03994796	Genomically-Guided Treatment Trial in Brain Metastases	II
NCT03155620	NCI-COG Pediatric MATCH (Molecular Analysis for Therapy Choice) Screening Protocol	II
NCT03213678	NCI-COG Pediatric MATCH (Molecular Analysis for Therapy Choice)- Phase II Subprotocol of LY3023414 in Patients With Solid Tumors	II

KRAS p.(G12V) c.35G>T

NCT ID	Title	Phase
NCT04599140	Phase Ib/II Trial of SX-682 in Combination With Nivolumab for Refractory RAS Mutated (RAS) Microsatellite Stable (MSS) Metastatic Colorectal Cancer (mCRC) (STOPTRAFFIC-1)	1/11
NCT04303403	Phase Ib Study Evaluating Safety and Tolerability of Combination Trametinib and Ruxolitinib in Patients with Advanced RAS Mutant Colorectal Cancer and Pancreatic Adenocarcinoma	1
NCT03981614	Combination of MEK Inhibitor Binimetinib and CDK4/6 Inhibitor Palbociclib in KRAS and NRAS Mutant Metastatic Colorectal Cancers	II
NCT02079740	An Open Label, Two-Part, Phase Ib/II Study to Investigate the Safety, Pharmacokinetics, Pharmacodynamics, and Clinical Activity of the MEK Inhibitor Trametinib and the BCL2-Family Inhibitor Navitoclax (ABT-263) in Combination in Subjects With KRAS or NRAS Mutation-Positive Advanced Solid Tumors	I/II
NCT04627142	A Phase I Open-label Dose Escalation Trial of BI 1701963 in Combination With Irinotecan in KRAS Mutation Positive Patients With Unresectable Locally Advanced or Metastatic Colorectal Cancer	I
NCT04045496	A Phase I, Multi-Center, Open-Label Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Preliminary Evidence of Antitumor Activity of JAB-3312 in Adult Patients With Advanced Solid Tumors	I

Clinical Trials Summary (continued)

KRAS p.(G12V) c.35G>T (continued)

NCT ID	Title	Phase
NCT04000529	A Phase Ib, Open-label, Multi-center Study to Characterize the Safety, Tolerability, and Preliminary Efficacy of TNO155 in Combination With Spartalizumab or Ribociclib in Selected Malignancies	I
NCT02885753	Systemic Oxaliplatin or Intra-arterial Chemotherapy Combined With LV5FU2 and an Target Therapy in First Line Treatment of Metastatic Colorectal Cancer Restricted to the Liver	III
NCT03087071	A Phase II Enrichment Study of Panitumumab as a Single Agent or in Combination With Trametinib in Anti-EGFR-Refractory Stage IV Colorectal Cancer Patients	II
NCT03829410	A Phase Ib/II Study of Onvansertib (PCM-075) in Combination With FOLFIRI and Bevacizumab for Second Line Treatment of Metastatic Colorectal Cancer in Patients With a KRAS Mutation.	1/11
No NCT ID	Exploratory Study Of Apatinib For Advanced Colorectal Cancer	IV
NCT04189055	Cetuximab as Salvage herapy in Patients with Neo Wild-type RAS/RAF Metastatic Colorectal Cancer. A Proof-of-concept Study	II
NCT03519412	Pembrolizumab in MMR-Proficient Metastatic Colorectal Cancer Pharmacologically Primed to Trigger Dynamic Hypermutation Status	II
NCT03637491	A Phase Ib/II Study To Evaluate Safety And Clinical Activity Of Combinations Of Avelumab, Binimetinib And Talazoparib In Patients With Locally Advanced Or Metastatic Ras-Mutant Solid Tumors	1/11
NCT03202758	Phase Ib/II Trial Evaluating the Safety, Tolerability and Immunological Activity of Durvalumab (MEDI4736) (Anti-PD-L1) Plus Tremelimumab (Anti-CTLA-4) Combined With FOLFOX in Patients With Metastatic Colorectal Cancer	I/II
NCT03919292	Phase 1/2 Study of Neratinib and Divalproex Sodium (Valproate) in Advanced Solid Tumors, With an Expansion Cohort in Ras-Mutated Cancers	1/11
NCT03989115	A Phase Ib/II, Open-Label, Multicenter Dose-Escalation and Dose-Expansion Study of the Combination of RMC-4630 and Cobimetinib in Adult Participants With Relapsed/Refractory Solid Tumors With Specific Genomic Aberrations	1/11
NCT03965845	A Phase Ib/II, Open Label, Dose Escalation and Expansion Study of the Glutaminase Inhibitor Telaglenastat (CB-839) in Combination With CDK4/6 Inhibitor Palbociclib in Patients With Advanced or Metastatic Solid Tumors	I/II
NCT04249843	A First-in-Human, Phase Ia/Ib, Open Label, Dose-Escalation and Expansion Study to Investigate the Safety, Pharmacokinetics, and Antitumor Activity of the RAF Dimer Inhibitor BGB-3245 in Patients With Advanced or Refractory Tumors	I
NCT02613650	A Phase Ib Trial of a Combination of mFOLFIRI With MEK162 in Patients With Advanced RAS (HRAS, NRAS, or KRAS) Positive Metastatic Colorectal Cancers	1
NCT03667716	A Phase Ia/Ib Study of COM701 as Monotherapy and In Combination With an Anti-PD-1 Antibody in Subjects With Advanced Solid Tumors	1
NCT03082209	An Open-Label, Phase I, First-In-Human Study of TRAIL Receptor Agonist ABBV-621 in Subjects With Previously Treated Solid Tumors and Hematologic Malignancies	1
NCT04418167	A Phase I Study of ERK1/2 Inhibitor JSI-1187 Administered as Monotherapy and in Combination With Dabrafenib for the Treatment of Advanced Solid Tumors With MAPK Pathway Mutations	1
NCT03065387	Phase I Study of the Pan-ERBB Inhibitor Neratinib Given in Combination With Everolimus, Palbociclib, or Trametinib in Advanced Cancer Subjects With EGFR Mutation/Amplification, HER2 Mutation/Amplification, or HER3/4 Mutation or KRAS Mutation	I
NCT04418661	A Phase I, Open-label, Multicenter, Safety Study of SAR442720 in Combination With Pembrolizumab in Patients With Advanced Malignancies	1

Clinical Trials Summary (continued)

KRAS p.(G12V) c.35G>T (continued)

NCT ID	Title	Phase
NCT02407509	A Phase I Trial of R05126766 (a Dual RAF/MEK Inhibitor) Exploring Intermittent, Oral Dosing Regimens in Patients With Solid Tumours or Multiple Myeloma, With an Expansion to Explore Intermittent Dosing in Combination With Everolimus	I
NCT03714958	A Single-center, Phase I Dose Escalation Study of Trametinib Combined With HDM201 in Patients With RAS/RAF Mutant and TP53 Wild-type Advanced/Metastatic Colorectal Cancer.	1
NCT03756818	A Phase I Study of TAK-659 and Paclitaxel in Patients With Advanced Solid Tumors	1
NCT04145297	A Phase I Trial of Ulixertinib (BVD-523) and Hydroxychloroquine in Patients With Advanced MAPK- Mutated Gastrointestinal Adenocarcinomas	I
NCT02162563	Treatment Strategies in Colorectal Cancer Patients With Initially Unresectable Liver-only Metastases CAIRO5 a Randomized Phase III Study of the Dutch Colorectal Cancer Group (DCCG)	III
NCT04072198	Phase II Study on NIVolumab in Combination With FOLFOXIRI/Bevacizumab in First Line Chemotherapy of Advanced COloRectal Cancer RASm/BRAFm Patients.	II
NCT02619435	Regorafenib Monotherapy as Second-line Treatment of Patients With RAS-mutant Advanced Colorectal Cancer: a Multicentre, Single-arm, Two-stage, Phase II Study	II
NCT03905148	A Phase Ib, Open-Label, Dose-escalation and Expansion Study to Investigate the Safety, Pharmacokinetics and Antitumor Activities of a RAF Dimer Inhibitor BGB-283 in Combination With MEK Inhibitor PD-0325901 in Patients With Advanced or Refractory Solid Tumors	I/II
NCT03284502	A Phase Ib, Open-label, Multicenter, Dose Escalation Study of the Safety, Tolerability, and Pharmacokinetics of Cobimetinib and HM95573 in Patients With Locally Advanced or Metastatic Solid Tumors	I
NCT02857270	A Phase I Study of an ERK1/2 Inhibitor (LY3214996) Administered Alone or in Combination With Other Agents in Advanced Cancer	I
NCT03186326	Multicenter Randomized Phase II Study Comparing the Effectiveness and Tolerance of Avelumab Versus Standard 2nd Line Treatment Chemotherapy in Patients With Colorectal Metastatic Cancer With Microsatellite Instability (MSI)	II
NCT03155620	NCI-COG Pediatric MATCH (Molecular Analysis for Therapy Choice) Screening Protocol	II
NCT04198818	A First-in-Human, Open Label, Phase I/II Study to Evaluate the Safety, Tolerability and Pharmacokinetics of HH2710 in Patients With Advanced Tumors	1/11
NCT03429803	A Phase I Study of TAK-580 (MLN2480) for Children With Low-Grade Gliomas and Other RAS/RAF/ MEK/ERK Pathway Activated Tumors	I
NCT03634982	A Phase I, Open-Label, Multicenter, Dose-Escalation Study of RMC-4630 Monotherapy in Adult Participants with Relapsed/Refractory Solid Tumors	I
NCT03520075	A Phase I/II Study of the Safety, Pharmacokinetics, and Activity of ASTX029 in Subjects With Advanced Solid Tumors	1/11
NCT04305249	A Phase I, Open-Label, Multi-Center Dose Finding Study to Investigate the Safety, Pharmacokinetics, and Preliminary Efficacy of ATG-017 Monotherapy in Patients With Advanced Solid Tumors and Hematological Malignancies	I
NCT04528836	A Phase I/IB First-in-Human Study of the SHP2 Inhibitor BBP-398 (Formerly Known as IACS-15509) in Patients With Advanced Solid Tumors	I

14 of 22

Date: 09 Apr 2021

Clinical Trials Summary (continued)

FGFR1 amplification

NCT ID	Title	Phase
No NCT ID	A Multicenter Phase II Basket-type Clinical Trial to Evaluate Efficacy and Safety of TAS-120 in Patients with Advanced Solid Malignancies with FGFR Alterations in Circulating Tumor DNA	II
NCT04096417	A Phase II, Multicenter, Single-Arm Study of Pemigatinib in Patients With Metastatic or Unresectable Colorectal Cancer Harboring FGFR Alterations	II
NCT02693535	Targeted Agent and Profiling Utilization Registry (TAPUR) Study	II
NCT04092673	A Phase 1-2 Dose-Escalation and Cohort-Expansion Study of Intravenous Zotatifin (eFT226) in Subjects With Selected Advanced Solid Tumor Malignancies	1/11
NCT04233567	A Phase II Study of Oral Infigratinib in Adult Patients With Advanced or Metastatic Solid Tumors With FGFR1-3 Gene Fusions or Other FGFR Genetic Alterations	II
NCT02272998	Phase II Study Of Ponatinib For Advanced Cancers With Genomic Alterations In Fibroblastic Growth Factor Receptor (FGFR) And Other Genomic Targets (KIT, Pdgfra, RET FLT3, ABL1)	II
NCT04591431	The Rome Trial From Histology to Target: the Road to Personalize Target Therapy and Immunotherapy	II
NCT03297606	Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR): A Phase II Basket Trial	II
NCT04565275	A Multi-center Open-label, Phase I/II Clinical Trial to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ICP-192 in Patients With Advanced Solid Tumors and FGFR Gene Alterations	1/11
No NCT ID	Phase I/II Study of TAS-117 In Combination With TAS-120 In Patients With Advanced Solid Tumors	1/11
No NCT ID	Phase I Clinical Study of BPI-17509 In Patients With Advanced Solid Tumors	I
No NCT ID	A Phase Ib Study to Assess the Safety, Tolerability, and Efficacy of TAS-120 (Futibatinib) in Combination with MK-3475 (Pembrolizumab) in Patients with Solid Tumors.	I

Date: 09 Apr 2021 15 of 22

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Fast Track

FDA information is current as of 2021-02-17. For the most up-to-date information, search www.fda.gov.

KRAS p.(G12V) c.35G>T

cetuximab

Cancer type: Colorectal Cancer

Label as of: 2020-11-10

Variant class: KRAS G12 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125084s275lbl.pdf

🕢 panitumumab

Cancer type: Colorectal Cancer

Label as of: 2017-06-29

Variant class: KRAS G12 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test for this use) metastatic colorectal cancer (mCRC):

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecancontaining chemotherapy.
- Limitation of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC or for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125147s207lbl.pdf

Date: 09 Apr 2021 16 of 22

Fast Track

KRAS p.(G12V) c.35G>T (continued)

bevacizumab + onvansertib + FOLFIRI

Cancer type: Colorectal Cancer Variant class: KRAS mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the Polo-like Kinase 1 (PLK1) inhibitor, onvansertib, in combination with FOLFIRI and bevacizumab, for KRAS mutations in metastatic colorectal cancer in the second line.

Reference:

https://cardiffoncology.investorroom.com/2020-05-28-Cardiff-Oncology-Announces-Fast-Track-Designation-Granted-by-the-FDA-to-Onvansertib-for-Second-Line-Treatment-of-KRAS-Mutated-Colorectal-Cancer

FGFR1 amplification

A Debio 1347

Cancer type: Solid Tumor Variant class: FGFR1 aberration

Supporting Statement:

The FDA has granted Fast Track Designation to the FGFR 1-3 inhibitor, debio 1347, for FGFR1/2/3 alterations in unresectable or metastatic solid tumors.

Reference:

https://www.debiopharm.com/drug-development/press-releases/fda-grants-fast-track-designation-to-debiopharm-internationals-debio-1347-for-the-treatment-of-patients-with-unresectable-or-metastatic-tumors-with-a-specific-fgfr-gene-alteration/

Current NCCN Information

NCCN information is current as of 2021-02-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

KRAS p.(G12V) c.35G>T

cetuximab

Cancer type: Colon Cancer Variant class: KRAS exon 2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 2.2021]

Date: 09 Apr 2021 17 of 22

KRAS p.(G12V) c.35G>T (continued)

panitumumab

Cancer type: Colon Cancer Variant class: KRAS exon 2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 2.2021]

cetuximab

Cancer type: Rectal Cancer Variant class: KRAS exon 2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 1.2021]

panitumumab

Cancer type: Rectal Cancer Variant class: KRAS exon 2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 1.2021]

Current EMA Information

Ocontraindicated Not recommended Resistance Preakthrough A Fast Track

EMA information is current as of 2021-02-17. For the most up-to-date information, search www.ema.europa.eu/ema.

KRAS p.(G12V) c.35G>T

cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2020-01-30 Variant class: KRAS exon 2 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

Date: 09 Apr 2021 18 of 22

KRAS p.(G12V) c.35G>T (continued)

panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2020-01-24 Variant class: KRAS exon 2 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Current ESMO Information

ESMO information is current as of 2021-02-01. For the most up-to-date information, search www.esmo.org.

KRAS p.(G12V) c.35G>T

cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS exon 2 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

■ "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

cetuximab + chemotherapy

Cancer type: Colorectal Cancer Variant class: KRAS exon 2 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."
- "Thus, the activity of the anti-EGFR antibodies is confined to RAS WT tumours (and not only KRAS WT tumours). This is true for the combinations of cetuximab or panitumumab alone or with irinotecan- and oxaliplatin-based regimens. Treatment with anti-EGFR antibodies may even harm patients with a RAS mutation, especially when combined with oxaliplatin [I/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

Date: 09 Apr 2021 19 of 22

KRAS p.(G12V) c.35G>T (continued)

panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS exon 2 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

■ "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

panitumumab + chemotherapy

Cancer type: Colorectal Cancer Variant class: KRAS exon 2 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."
- "Thus, the activity of the anti-EGFR antibodies is confined to RAS WT tumours (and not only KRAS WT tumours). This is true for the combinations of cetuximab or panitumumab alone or with irinotecan- and oxaliplatin-based regimens. Treatment with anti-EGFR antibodies may even harm patients with a RAS mutation, especially when combined with oxaliplatin [I/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

Date: 09 Apr 2021 20 of 22

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- Babina et al. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer. 2017 May;17(5):318-332. PMID: 28303906
- Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta. 2012 Apr;1823(4):850-60. PMID: 22273505
- 3. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
- 4. Helsten et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin. Cancer Res. 2016 Jan 1;22(1):259-67. PMID: 26373574
- 5. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 6. Ciriello et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015 Oct 8;163(2):506-19. PMID: 26451490
- 7. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Lew et al. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci Signal. 2009 Feb 17;2(58):ra6. PMID: 19224897
- 11. Jackson et al. 8p11 myeloproliferative syndrome: a review. Hum. Pathol. 2010 Apr;41(4):461-76. PMID: 20226962
- 12. Li et al. Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer. 2012 Sep;51(9):890-7. PMID: 22619110
- 13. Wasag et al. The kinase inhibitor TKI258 is active against the novel CUX1-FGFR1 fusion detected in a patient with T-lymphoblastic leukemia/lymphoma and t(7;8)(q22;p11). Haematologica. 2011 Jun;96(6):922-6. PMID: 21330321
- 14. https://www.debiopharm.com/drug-development/press-releases/fda-grants-fast-track-designation-to-debiopharm-internationals-debio-1347-for-the-treatment-of-patients-with-unresectable-or-metastatic-tumors-with-a-specific-fqfr-gene-alteration/
- 15. Cha et al. FGFR2 amplification is predictive of sensitivity to regorafenib in gastric and colorectal cancers in vitro. Mol Oncol. 2018 Jun;12(7):993-1003. PMID: 29573334
- 16. Chae et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget. 2017 Feb 28;8(9):16052-16074. PMID: 28030802
- 17. Porta et al. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit. Rev. Oncol. Hematol. 2017 May;113:256-267. PMID: 28427515
- 18. Gozgit et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther. 2012 Mar;11(3):690-9. PMID: 22238366
- 19. Yamamoto et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell. 2014 Sep 6;6:18. doi: 10.1186/2045-824X-6-18. eCollection 2014. PMID: 25197551
- 20. Kim et al. Pazopanib, a novel multitargeted kinase inhibitor, shows potent in vitro antitumor activity in gastric cancer cell lines with FGFR2 amplification. Mol. Cancer Ther. 2014 Nov;13(11):2527-36. PMID: 25249557
- 21. Hibi et al. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib. Cancer Sci. 2016 Nov;107(11):1667-1676. PMID: 27581340
- 22. Lim et al. Efficacy and safety of dovitinib in pretreated patients with advanced squamous non-small cell lung cancer with FGFR1 amplification: A single-arm, phase 2 study. Cancer. 2016 Oct;122(19):3024-31. PMID: 27315356
- 23. Paik et al. A Phase Ib Open-Label Multicenter Study of AZD4547 in Patients with Advanced Squamous Cell Lung Cancers. Clin. Cancer Res. 2017 Sep 15;23(18):5366-5373. PMID: 28615371
- 24. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 25. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PPO.0000000000187. PMID: 27341593
- 27. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666

References (continued)

- 28. Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer–preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- 29. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- 30. http://investors.amgen.com/news-releases/news-release-details/amgen-announces-new-clinical-data-evaluating-novel
- 31. Amgen's Sotorasib Granted Breakthrough Therapy Designation For Advanced Or Metastatic Non-Small Cell Lung Cancer Patients With KRAS G12C Mutation. https://investors.amgen.com//news-releases/news-release-details/amgens-sotorasib-granted-breakthrough-therapy-designation
- 32. https://cardiffoncology.investorroom.com/2020-05-28-Cardiff-Oncology-Announces-Fast-Track-Designation-Granted-by-the-FDA-to-Onvansertib-for-Second-Line-Treatment-of-KRAS-Mutated-Colorectal-Cancer
- 33. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125084s275lbl.pdf
- 34. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125147s207lbl.pdf
- 35. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829
- 36. Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498
- 37. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduct Target Ther. 2017;2:17063. PMID: 29279775
- 38. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004 Nov;9(6):667-76. PMID: 15505410
- 39. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 40. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 41. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 42. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 43. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- 44. Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 45. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 46. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 47. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 48. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 49. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212526s001lbl.pdf
- 50. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 51. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 52. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 53. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929