**ELECTRIC CAMERA** 



JP4192681 Biblio Page 1 Drawing







JP4192681

Publication date:

1992-07-10

Inventor(s):

KITAJIMA TATSUTOSHI

Applicant(s):

RICOH CO LTD

Requested Patent:

☐ JP4192681

Application Number: JP19900319416 19901124

Priority Number(s):

IPC Classification:

H04N5/235; G03B15/05

EC Classification:

Equivalents:

JP3114103B2

## **Abstract**

PURPOSE: To allow the correction of the harmful reflected light occurring in stroboscope light on image data by detecting the image paint by the harmful reflected light and the size thereof in the image data by stroboscope light emission photographing and correcting the same by an image correcting means. CONSTITUTION:Stroboscope non-light emission photographing is executed in succession to stroboscope light emission photographing. The image data A by the stroboscope light emission photographing and the image data B by the stroboscope non-light emission photographing are respectively once written into an internal memory 7. The image data A and the image data B are thereafter read out by a memory control section 6 and are compared in a red-eye point detecting section 9. The image point of the harmful reflected light by the stroboscope light and the size thereof are corrected in an image correcting section 10 if such point and size are detected in the image data A. The harmful part, such as red eye, is corrected on the image data in this way.

Data supplied from the esp@cenet database - I2



# @ 公開特許公報(A) 平4-192681

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成 4年(1992)7月10日

H 04 N 5/235 G 03 B 15/05 8942-5C 7139-2K

審査請求 未請求 請求項の数 1 (全5頁)

の発明の名称 電子カメラ

②特 顧 平2-319416

②出 願 平2(1990)11月24日

@発明者 北島 達

東京都大田区中馬込1丁目3番6号 株式会社リコー内

の出 題 人 株式会 社リコー 東京都大田区中馬込1丁目3番6号

個代 理 人 弁理士 真田 修治

明知問

1. 発明の名称電子カメラ

## 2.特許請求の範囲

(1) カメラ本体内に設けられ複数枚の画像デー タの記憶可能な内部メモリと、ストロボ撮影時に ストロボ発光撮影とストロボ非発光撮影とを連続 的に行いかつ撮像素子駆動手段を制御する制御手 段と、上記ストロボ発光撮影による画像データと 上記ストロポ非発光撮影による画像データを上記 内部メモリに記憶および読出し制御を行うメモリ 制御手段と、このメモリ制御手段により上記内部 メモリから読み出された上記ストロボ発光撮影に よる画像データと上記ストロボ非発光撮影による 画像データとを比較して上記ストロボ発光撮影に よる画像データ中に上記ストロボ発光に起因する 赤目等の有害な反射光の画像発生個所と大きさを 検出する有害画像検出手段と、この有害画像検出 手段で検出された上記有害な反射光の画像発生個 所と大きさを基に上記メモリ制御手段により読み

出された上記ストロボ発光撮影による画像データ を補正する画像補正手段とを具備したことを特徴 とする電子カメラ。

3. 発明の詳細な説明

[産業上の利用分野]

この発明は、電子カメラに関し、より詳細には、 赤目現象等のストロボ光に起因する有害な反射光 の画像の発生個所を補正した画像を得ることがで きるようにした電子カメラに関するものである。

〔従来の技術〕

被写体の周囲の照度が不足している時に、ストロボを発光させて、カラー写真を撮影することが行われるが、このような照度下におけるストロボ発光による撮影を行うと、人間の目の瞳孔部分が赤くなる現象がしばしば現われる。

この原因は、上記のような照度の不足下にあっては、人間の目の瞳孔がかなり開いており、この 状態で高輝度のストロボ光が被写体に照射される と、目の内部の網膜部分でストロボ光が極端に反 射し、これによって目の部分が露出過大になって 赤目現像が生じるものと考えられている。

この赤目現象を防止するために、特公昭58-48088号公報により「フラッシュ撮影における赤目防止方法」が開示されている。

この公報に記載された方法の場合には、撮影用の閃光を照射する以前に、予備照射を行い、この予備照射により、人間の瞳孔が閉じ動作を行うことにより、フラッシュ撮影における赤目を抑制するようにしたものである。

### [発明が解決しようとする課題]

しかしながら、このようなフラッシュ撮影における赤目防止方法では、予備照射と、撮影用の照射の2回のストロボ発光を行わなければならないため、電池の消耗が早くなることに加えて、被撮影者に眩惑感を与えるために撮影効果を阻害する。

また、予備照射により、被撮影者の瞳孔が閉じ始めるまでに、1~2秒程度の時間がかかるために、予備照射から撮影までに時間をおく必要がある。このため、折角のシャッタチャンスを逃すおそれもあった。

画像検出手段と、この有害画像検出手段で検出された上記有害な反射光の画像発生個所と大きさを基に上記メモリ制御手段により読み出された上記ストロボ発光撮影による画像データを補正する画像補正手段と、を具備したことを特徴としたものである。

## 〔作 用〕

上記のように構成された電子カメラにおける制御手段は、ストロボ撮影時に撮像素子駆動手発光撮影とストロボ発光撮影とストロボ発光撮影とストロボ・撮像されたストロボを発像されたストロボを光撮影の画像データをメモリ制御部により内部メモリに同様に書き込む。

内部メモリに書き込まれたストロボ発光撮影による画像データとストロボ非発光撮影による画像 データをメモリ制御手段により読み出す。

この読み出されたストロボ発光撮影による画像

この発明は、上述の事情に鑑みてなされたもので、その目的とするところは、予備照射が必要でなく、シャッタチャンスを逃すこともなく、赤目のない画像データを得ることができる電子カメラを提供することにある。

## [課題を解決するための手段]

データとストロボ非発光による画像データとが有害画像検出手段で比較され、その比較の結果、ストロボ発光撮影による画像データ中にストロボ発光に起因する赤目等の有害な反射光の画像発生個所と大きさが検出されると、画像補正手段により、ストロボ発光撮影による画像データの有害な画像発生個所を適宜補正する。

## 〔実施例〕 =

以下、この発明の実施例を図面に基づいて具体的に説明する。

図は、この発明に係る電子カメラの一実施例の 全体構成を示すブロック図である。

図において、1はカメラ全体を制御する制御手段としての制御部であり、この制御部1により撮像素子駆動手段としての撮像素子駆動部4が制御されるようになっている。

撮影素子駆動部4により撮像素子3が駆動されるようになっている。この撮像素子3としては、 CCD素子(電荷結合素子)が使用されている。 この撮像素子3は撮影光学系2の後方に配置され ており、撮影光学系 2 で被写体像を撮像素子 3 に結像させることにより、被写体像の輝度に応じた電荷が得られることともに、撮像素子 3 の感光部にフィルタを設けることにより、R (赤)、G (緑)、B (青)のカラー撮像を行うことができ、その映像信号が出力される。

上記機像素子駆動部4により、撮像素子3の画像データのリセット、画像データの取込み、画像データの転送等を行うようになっている。

撮像素子3で撮像された映像信号は、信号処理 部5に転送されるようになっている。

信号処理部5は、制御部1の制御に基づき、輝度信号(Y信号)、色差信号(R-Y信号、B-Y信号)を標準テレビ信号に変換して、画像データを出力するようになっている。

信号処理部5から出力される画像データは、メモリ制御部6により内部メモリ7に書込んだり、あるいはこの内部メモリ7から読み出すようになっている。

このメモリ制御部6の内部メモリ7への画像デ

ータの奪込みと競出しは、制御部1の制御の基に 行われるようになっている。

上記内部メモリ7は、カメラ本体14の内部に設けられ、複数枚の画像データを記憶できる容量を有するものであり、一時的に画像データの保持のために使用されている。

メモリ制御部6を赤目個所検出手段としての赤目個所検出部9との間では、データの投受が行われるようになっており、メモリ制御部7から読光出されたストロボ撮影時におけるストロボ発光におび、大田が発光を動像で一タと、このストロが発光をの直後による画像データとをメモリ制御部6から取り込んで、その両者を比較するようになってのある。

このストロボ発光撮影による画像データとストロボ非発光撮影による画像データとの比較結果から、ストロボ発光撮影による画像データにストロボ発光に起因にする有害な反射光による赤目等が見られた場合には、ストロボ発光撮影による画像データにおける赤目等の発生部位と大きさに関す

るデータ(以下「赤目個所データ」と称する)を 赤目個所検出部9から制御部1に出力するように なっている。

また、制御部1からは、赤目個所データが画像 補正手段としての画像補正部10に出力されるようになっている。画像補正部10は、メモリ制御部6から内部メモリ7より読み出したストロが発 光撮影による画像データを入力し、この画像データの上記赤目個所データの部分の画像を補正して、再度メモリ制御部6に転送するようになっている。

メモリ制御部6は、外部メモリ8に画像補正部10で赤目個所データの発生部位を補正した画像データや、上記赤目個所データのない場合のストロが発光摄影による画像データ、すなわち正常な画像データを外部メモリ8に転送するようになっている。

この外部メモリ8としては、カメラ本体に装填 したりカメラ本体から取り出すことのできるフロ ッピディスク等が該当するものである。

なお、カメラ本体14に設けられているレリー

ズボタン (図示せず) の1 段押しにより、測光部 13 が被写体の測光を行うようになっており、こ の測光データは、制御部1に送出するようになっ ている。

また、レリーズボタンの2段押しにより、レリーズスイッチ11がオンするようになっている。 このレリーズスイッチ11は、制御部1に接続されている。

レリーズスイッチ11のオンにより、ストロポ 撮影時 (例えば、被写界が暗く、測光部13で測 光された測光値が所定以下のとき) には、ストロポ部12が制御部1により、ストロボ発光を行ったり、測光データを基にして、ストロボ部12の 観光制御を行うようになっている。

このように構成されたこの実施例の動作につい て説明する。

被写体周囲の照度が低く、ストロボ撮影を行う場合について述べる。まずレリーズボタンの1段押しにより、測光部13が被写体の測光を行い、その測光データを制御部1に送出する。

次いで、レリーズボタンの2段押しにより、レリーズスイッチ11がオンとなり、測光データとストロボ部12の調光に見合ったシャッタ速度でシャッタが開くと同時に、ストロボ部12が制御部1により制御されて、ストロボ発光が行われ、このストロボ光により照射された被写体像が撮影光学系2で撮像素子3に結像される。

これと同時に、 撮像素子駆動部4 が制御部1 により駆動され、 撮像素子3 で前回に 撮像されている 画像データをリセットするとともに、 今回のストロボ発光撮影による 画像データを撮像素子3 から取り込み信号処理部5 に転送する。

信号処理部5では、制御部1からの制御に基づき、撮影素子3から入力されるストロボ発光撮影による画像データの輝度信号(Y)と色差信号(R-Y,B-Y)の標準テレビ信号への変換を行う。

このストロボ発光撮影による標準テレビ信号の 画像データ (以下「画像データA」という)をメ モリ制御部6は、信号処理部5から取り出して内

撮影による画像データであるため、暗く、最終保 存用画像データとしては使用できないものである。

しかしながら、自然光下の画像データの概要を 把握するためのものである。つまり、参照用画像 データとなるものである。

次に、上述のようにして、内部メモリ7に書き込まれた画像データAと画像データBを、制御部1の制御に基づき、メモリ制御部6は、内部メモリ7から読み出して、この読み出した画像データAと画像データBとを赤目個所検出部9に転送する。

この赤目個所検出部9では、画像データAと画像データBとを比較する。この場合、画像データAの色差信号(R-Y)の大きさと、画像データBの色差信号(R-Y)との差により、画像像データAにストロボ光に起因する有害な反射光の赤目等のために赤く発色した撮像個所とその大きさを検出すると、赤目個所データCとして制御部1に出力する。

制御部1は、この赤目個所データCを入力する

部メモリ7に転送して書き込む。

次に、上記ストロボ発光撮影に連続して、ストロボ非発光撮影を行う、この場合は、レリーズボタンの2段押しにより、レリーズスイッチ11がオンとなって、シャッタが測光部13の測光データに対応して制御部1により開閉されるが、制御部1によりストロボ部12によるストロボの発光は行われない。

シャッタの開閉により、被写体像が撮影光学系2で撮像素子3に上記と同様にして結像され、画像データが撮像素子3から信号処理部5に送られる。

信号処理部5では、制御部1の制御に基づきストロボ非発光撮影による画像データを輝度信号と 色差信号の標準テレビ信号に変換する。

このストロボ非発光撮影による標準テレビ信号の画像データ(以下「画像データB」という)をメモリ制御部6は、信号処理部5から入力して、内部メモリ7に書き込む。この画像データBは、ストロボ撮影時にもかかわらず、ストロボ非発光

と、この赤目個所データ C を画像補正部 1 0 に転送する。この画像補部 1 0 には、メモリ制御部 6 により、内部メモリ 7 から赤目個所データの含有する画像データ A が入力される。

これにより、画像補正部10は、画像データAの赤く発色した撮像個所、色差信号(R-Y)を抑えるように補正する。この補正した画像データAは、再度メモリ制御部6に転送される。

メモリ制御部6は、この補正された画像データ Aを外部メモリ8に最終保存用画像データとして 客き込む。

このように、この実施例によれば、ストロボ光 地影に続いてストロボ非発光撮影を行い、ボ非発 地影による画像データAとストロロボが部と 大いである画像データBをそれぞれ一旦内が 地影による画像データBをそれぞれ一旦内が をリフに書き込んだ後、メモリ制御部6により モリフに書き込んだ後、メモリ制御部6により これらの画像データBとを読みよい これらの画像が一タBとを読みるに して赤目個所検出部9で比較し、画像個所とその大 となが検出されると、画像補正部10で補正する ようにしたので、赤目等の有客部分を画像データ 上で補正することができる。

したがって、赤目のない撮影を行え、予備照射を行って膣が閉じてから撮影を行う必要がなくなり、シャッタチャンスを逃すようなこともなくなる利点を有する。

なお、この発明は、上記実施例に限定されるものではなく、その要旨を逸脱しない範囲内において、種々の変形実施ができるものである。

例えば、ストロボ光がガラス面等で異常に強く 反射してしまう現象の解決にも応用可能である。

[発明の効果]

以上詳述したように、この発明によれば、ストロボ発光撮影に続いてストロボ非発光撮影を行い、その両方の画像データを内部メモリで保持した後に赤目個所検出手段で比較してストロボ発光撮影による画像データに有害反射光による画像は断とその大きさが検出されると、画像補正手段で補正するように構成したので、ストロボ光に起因する有害反射光の画像を画像データ上で補正すること

ができる。

したがって、従来の赤目防止方法のように、赤目防止のための予備発光を行って瞳孔が閉じた状態になってから撮影を行うような不便さを解消することができ、また、それにともなってシャッタチャンスを逃すようなことのない電子カメラを提供することができる。

### 4. 図面の簡単な説明

図は、この発明に係る電子カメラの一実施例の 全体精成を示すブロック図である。

- 1 … … 制御部、
- 2 … … 撮影光学系、
- 3 … … 摄像素子、
- 4 … … 摄像素子駆動部、
- 5 ……信号如理部、
- 6 … … メモリ制御部、
- 7 … … 内部メモリ、
- 8 … … 外部メモリ、
- 9 … … 赤目個所検出部、
- 10……画像補正部、

- 11……レリーズスイッチ、
- 12……ストロポ部、
- 13…… 御光部、
- 14 … … カメラ本体。

特許出願人 株式会社 リュー CENT (代 理 人 弁 理 士 真 田 修 治点)

