

PCT

国際特許局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C07D 207/08, 207/09, 207/16, 209/14, 209/18, 209/44, 211/16, 211/22, 211/26, 211/42, 211/46, 211/56, 211/60, 211/62, 211/74, 213/74, 215/12, 217/06, 295/16, 295/26, 309/20, 317/60, 317/62, 319/18, 319/20, 333/64, C07C 307/06, A61K 31/195, 31/215, 31/275, 31/335, 31/36, 31/38, 31/40, 31/435, 31/445, 31/445, 31/47, 31/495, 31/535	A1	(11) 国際公開番号 WO97/19919 (43) 国際公開日 1997年6月5日(05.06.97)
(21) 国際出願番号 PCT/JP96/03520 (22) 国際出願日 1996年12月2日(02.12.96) (30) 優先権データ 特願平7/312407 1995年11月30日(30.11.95) JP (71) 出願人 (米国を除くすべての指定国について) シー・アンド・シー・リサーチ・ラボラトリーズ (C&C RESEARCH LABORATORIES)[KR/KR] キョンギド、ファソングン、テアンウブ、アンニヨリ146-141 Kyunggi-do, (KR) (72) 発明者: および (73) 発明者/出願人 (米国についてのみ) 原村昌幸(HARAMURA, Masayuki)[JP/JP] 羽石 剛(HANEISHI, Tsuyoshi)[JP/JP] 黒丸精則(KUROMARU, Kiyonori)[JP/JP] 〒412 静岡県御殿場市駒門1丁目135番地 中外製薬株式会社内 Shizuoka, (JP)	(74) 代理人 弁理士 湯浅恭三, 外(YUASA, Kyozo et al.) 〒100 東京都千代田区大手町二丁目2番1号 新大手町ビル206区 湯浅法律特許事務所 Tokyo, (JP) (81) 指定国 AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ヨーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 歐州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). 添付公開書類 国際調査報告書	

(54) Title: SULFAMIDE DERIVATIVES

(54) 発明の名称 スルファミド誘導体

(57) Abstract

Sulfamide derivatives represented by general formula (1) or pharmacologically acceptable salts or hydrates thereof, characterized in that they have an excellent antithrombin activity and are useful as drugs for, e.g., the treatment of thrombosis, capable of oral administration, and reduced in side effects, wherein R₁ represents hydrogen, lower alkyl, or amino-protective group; R₂ represents optionally substituted and fused nitrogenous heterocycle; R₃ represents a group represented by A-(CH₂)_m-, hydrogen, or optionally substituted lower alkyl (where A represents optionally substituted aryl, optionally substituted and fused heterocycle, or optionally substituted lower cycloalkyl, m is an integer of 0 to 6, and the moiety represented by -(CH₂)_m- may have at least one substituent); R₄ represents hydrogen or lower alkyl; and R₅ represents a group represented by -C(=NR₆)NH₂, -NH-C(=NR₆)NH₂, or -(CH₂)_n-NHR₆ (where R₆ represents hydrogen, lower alkyl, hydroxy, acyl, acyloxy, lower alkoxy, lower alkoxy carbonyl, lower alkoxy carbonyloxy, or lower hydroxyalkylcarbonyloxy, n is an integer of 0 to 2, and the moiety represented by -(CH₂)_n- may have at least one substituent).

一般式 (1)

(式中、R₁ は水素原子、低級アルキル基またはアミノ保護基を示し、R₂ は置換基を有していてもよい、また縮合されていてもよい窒素原子含有の複素環を示し、R₃ は基A-(CH₂)_m-、水素原子または置換されていてもよい低級アルキル基を示す。ここでAは置換されていてもよいアリール基、置換されていてもよく、また縮合されていてもよい複素環または置換されていてもよい低級シクロアルキル基を、mは0~6の整数を示す。また-(CH₂)_n-部分は1個以上の置換基で置換されていてもよい。R₄ は水素原子または低級アルキル基を示し、R₅ は基-C(=NR₆)NH₂、基-NH-C(=NR₆)NH₂ または基-(CH₂)_n-NHR₆ を、ここでR₆ は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示し、nは0~2の整数を示す。また-(CH₂)_n-部分は1個以上の置換基で置換されていてもよい)で表されるスルファミド誘導体もしくはその製薬上許容しうる塩またはその水和物は、優れた抗トロンビン活性を示し、抗血栓治療剤等の医薬として有用で、しかも経口投与可能で副作用が少ないという特徴を有している。

情報としての用途のみ

PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

AL	アルバニア	EE	エストニア	LR	リベリア	RU	ロシア連邦
AM	アルメニア	ES	スペイン	LS	レスコト	SD	スードアン
AT	オーストリア	FIR	フィンランド	LT	リトアニア	SE	スウェーデン
AU	オーストラリア	FR	フランス	LU	ルクセンブルグ	SG	シンガポール
AZ	アゼルバイジャン	GB	ガボン	LV	ラトヴィア	SI	スロヴェニア
BB	バルバドス	GB	イギリス	MC	モナコ	SK	スロヴァキア共和国
BE	ベルギー	GE	グルジア	MD	モルドバ	SN	セネガル
BF	ブルガニア・ファソ	GH	ガーナ	MG	マダガスカル	SZ	スウェーデン
BG	ブルガリア	GN	ギニア	MK	マケドニア旧ユーゴスラ	TD	チャード
BJ	ベナン	GR	ギリシャ	VI	アメリカ合衆国	TG	トーゴ
BRY	ブラジル	HU	ハンガリー	ML	マリ	TJ	タジキスタン
BY	ベルarus	IIE	アイルランド	MN	モンゴル	TM	トルコメニスタン
CA	カナダ	IS	アイスランド	MR	モーリタニア	TR	トルコ
CF	中央アフリカ共和国	IT	イタリー	MW	マラウイ	TT	トリニダード・トバゴ
CG	コンゴー	JP	日本	MX	メキシコ	UA	ウクライナ
CH	スイス	KE	ケニア	NE	ニジェール	UG	ウガンダ
CI	コート・ジボアール	KGP	キルギスタン	NL	オランダ	US	米国
CM	カメルーン	KRP	朝鮮民主主義人民共和国	NO	ノルウェー	UZ	ウズベキスタン共和国
CN	中国	KR	大韓民国	NZ	ニュージーランド	VN	ヴィエトナム
CZE	チェコ共和国	KZ	カザフスタン	PL	ポーランド	YU	ユーゴスラビア
DE	ドイツ	LK	リヒテンシュタイン	PT	ポルトガル		
DK	デンマーク	LK	スリランカ	RO	ルーマニア		

明細書
スルファミド誘導体

技術分野

本発明は一般式(1)

- 5 (式中、R₁は水素原子、低級アルキル基またはアミノ保護基を示し、R₂は置換基を有していてもよい、また縮合されていてもよい窒素原子含有の複素環を示し、R₃は基A-(CH₂)_m-、水素原子または置換されていてもよい低級アルキル基を示す。ここでAは置換されていてもよいアリール基、置換されていてもよく、また縮合されていてもよい複素環または置換されていてもよい低級シクロアルキル基を、mは0~6の整数を示す。また-(CH₂)_m-部分は1個以上の置換基で置換されていてもよい。R₄は水素原子、低級アルキル基またはアミノ保護基を示し、R₅は基-C(=NR₆)NH₂、基-NH-C(=NR₆)NH₂または基-(CH₂)_n-NHR₆を、ここでR₆は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示し、nは0~2の整数を示す。また-(CH₂)_m-の部分は1個以上の置換基で置換されていてもよい)で表される新規なスルファミド誘導体に関し、さらに詳しくは抗トロンビン阻害活性を有するスルファミド誘導体もしくはその製薬上許容しうる塩または水和物およびそれらを有効成分として含有することを特徴とする医薬組成物に関する。

背景技術

血栓は凝集した血小板とフィブリンからなり、狭心症や心筋梗塞などの虚血性心疾患、脳梗塞などの脳血管障害、動脈血栓塞栓症、肺塞栓症などの静脈血栓症や汎発性血管内血液凝固症候群（D I C）などの発生や増悪に関与する。

5 抗血栓薬はアスピリン、ジビリダモール、アプロスタジル等の抗血小板薬とワーファリン、ヘパリン、アルガトロバン等の抗凝固薬に分類され、このうち抗血小板薬の多くは経口薬であるが、その効果については疑問が多い。一方、抗凝固薬のほうは経口薬としてはワーファリンのみで、ビタミンKに拮抗することで凝固因子の産生を阻害するが、皮膚壊死や催奇形性作用などの副作用があり、また10 薬物相互作用が多い。したがって、ワーファリンとは作用機序が異なる経口抗凝固薬の出現が臨床の場で望まれている。

トロンビンは血液凝固の最終ステップの活性因子で、フィブリノーゲンに作用し、フィブリンを生成する。トロンビン阻害薬にはアルガトロバン、トリペプチド（D-Phe-Pro-Arg-Hの合成誘導体）やヒルジンが挙げられるが、15 いずれも注射剤であり、血栓症の治療や予防には長期投与が可能な経口薬が望ましい。

従来、血栓形性には血小板凝集が重要であると考えられ、抗血小板薬が汎用されてきた。しかし最近になって、トロンビンが受容体を介して血小板凝集を強力に誘発することが明らかになり、抗トロンビン薬はトロンビン受容体の活性化を20 阻害することで血小板凝集も抑制すると報告されている（医学のあゆみ，167, 484 (1993) ; Journal of Biological Chemistry [ジャーナル オブ バイオロジカル ケミストリー]，268, 4734 (1993) ; 同268, 15605 (1993) 等参照）。

また経皮的冠状動脈形成術（PTCA）数時間後の血管平滑筋でトロンビン受容体の発現が10倍以上になるとの報告もあり、従来治療法がなかった再狭窄の予防に抗トロンビン阻害薬が使用できる可能性がある。したがって、経口可能で副作用の少ないトロンビン阻害薬はその開発が早急に望まれているのが実状である。

発明の開示

本発明者等は上記の課題に鑑み、経口可能で副作用の少ない抗トロンビン薬について鋭意研究を重ねた結果、特定のスルファミド誘導体が優れた効果を示すことを見出し、本発明に至った。

5 すなわち、本発明は一般式（1）

（式中、R₁ は水素原子、低級アルキル基またはアミノ保護基を示し、R₂ は置換基を有していてもよい、また縮合されていてもよい窒素原子含有の複素環を示し、R₃ は基A-(CH₂)_m-、水素原子または置換されていてもよい低級アルキル基を示す。ここでAは置換されていてもよいアリール基、置換されていてもよく、また縮合されていてもよい複素環または置換されていてもよい低級シクロアルキル基を、mは0~6の整数を示す。また-(CH₂)_n-部分は1個以上の置換基で置換されていてもよい。R₄ は水素原子、低級アルキル基またはアミノ保護基を示し、R₅ は基-C(=NR₆)NH₂、基-NH-C(=NR₆)NH₂ または基-(CH₂)_n-NHR₆ を、ここでR₆ は水素原子、低級アルキル基、10 水酸基、アシリル基、アシリオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示し、nは0~2の整数を示す。また-(CH₂)_n-の部分は1個以上の置換基で置換されていてもよい）で表される新規なスルファミド誘導体に関し、さらに詳しくは抗トロンビン阻害活性を有するスルファミド誘導体も15 しくはその製薬上許容しうる塩または水和物およびそれらを有効成分として含有することを特徴とする医薬組成物に関する。

発明を実施するための最良の形態

本発明において、特に限定がない場合は次の用語は以下の意味を示す。

低級アルキル基とは、炭素数1～6、好ましくは炭素数1～4の直鎖または分岐鎖状のアルキル基を意味し、例えばメチル基、エチル基、n-ブロピル基、i-ブロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基等が挙げられる。

低級アルコキシ基とは、炭素数1～6、好ましくは炭素数1～4の直鎖または分岐鎖状のアルキルオキシ基を意味し、例えばメトキシ基、エトキシ基、n-ブロボキシ基、i-ブロボキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基等が挙げられる。

アミノ保護基とは、一般式(1)の合成過程において、R₁が結合するアミノ基を保護できる基であればよく、一般的に使用できるアミノ保護基が用いられる。このようなアミノ保護基としては、例えばホルミル基、アセチル基、ベンゾイル基、トリフルオロアセチル基、ベンジルオキシカルボニル基、メトキシカルボニル基、t-ブトキシカルボニル基、フタロイル基、ベンジル基、トシリル基等が挙げられ、好ましくはt-ブトキシカルボニル基が挙げられる。

また、置換されていてもよいアミノ基とは、置換基として前述のアミノ保護基のほか、水酸基、置換されていてもよい低級アルキル基、置換されていてもよいアシル基、例えば置換されていてもよい低級アルコキシカルボニル基もしくは置換されていてもよい低級アルキルアミノカルボニル基、置換されていてもよいアリール基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環基、置換されていてもよい低級アルコキシ基、置換されていてもよいシクロアルキル基、置換されていてもよいシクロアルキルオキシ基、置換されていてもよいアリールオキシ基、置換されていてもよく、また縮合されていてもよい複素環オキシ基、置換されていてもよいシリル基等が1個以上置換されていてもよいアミノ基を意味し、例えばメチルアミノ基、エチルアミノ基、アセチルアミノ基、ジメチルアミノカルボニルアミノ基、フェニルアミノ基、

p-トルエンスルホニルアミノ基、メタンスルホニルアミノ基、4-ピペリジニルアミノ基、シクロヘキシルアミノ基、シクロペンチルアミノ基、シクロプロピルアミノ基などが挙げられ、好ましくはメチルアミノ基、エチルアミノ基、アセチルアミノ基、p-トルエンスルホニルアミノ基、メタンスルホニルアミノ基、シクロプロピルアミノ基等が挙げられる。

置換されていてもよい低級アルキル基とは、置換基として、ハロゲン原子、水酸基、チオール基、置換されていてもよいアミノ基、置換されていてもよいアシリ基、例えば置換されていてもよい低級アルコキシカルボニル基もしくは置換されていてもよい低級アルキルアミノカルボニル基、ニトロ基、シアノ基、置換されていてもよいアリール基、置換されていてもよいスルホニル基、置換されていてよく、また縮合されていてもよい複素環基、置換されていてもよいカルボキシル基、置換されていてもよい低級アルコキシ基、置換されていてもよいシクロアルキル基、置換されていてもよいシクロアルキルオキシ基、置換されていてもよいアリールオキシ基、置換されていてもよい低級アルキルチオ基、置換されていてよく、また縮合されていてもよい複素環オキシ基、置換されていてもよいシクロアルキルチオ基、置換されていてよく、また縮合されていてもよい複素環チオ基、置換されていてもよいアリールチオ基、置換されていてもよいスルホニルオキシ基、置換されていてもよいシリル基等が1個以上置換されていてもよい低級アルキル基を意味し、例えば、2-(ピロリジン-1-イルカルボニル)エチル基、3-フェニル-2-(ピロリジン-1-イルカルボニル)-n-プロピル基、3, 3, -ジフェニル-n-プロピル基、2, 2-ジフェニルエチル基、2-シクロヘキシルオキシエチル基等が挙げられ、好ましくは3-フェニル-2-(ピロリジン-1-イルカルボニル)-n-プロピル基、3, 3-ジフェニル-n-プロピル基、2, 2-ジフェニルエチル基等が挙げられる。

また置換されていてもよい低級アルコキシ基とは、置換基として前記の低級アルキル基で示したものと同様な基が置換された低級アルコキシ基を意味し、例えば、フルオロメトキシ基、フルオロエトキシ基、ベンジルオキシ基等が挙げられる。

アリール基とは芳香族炭化水素から水素原子1個を除いた基であり、例えば、フェニル基、トリル基、ナフチル基、キシリル基、ビフェニル基、アントリル基、フェナントリル基等が挙げられ、好ましくはフェニル基、ナフチル基等が挙げられる。

- 5 置換されていてもよいアリール基とは、前記のアリール基の任意の水素原子が1個以上の置換されていてもよい低級アルキル基、置換されていてもよい低級アルコキシ基、ハロゲン原子、水酸基、チオール基、置換されていてもよいアミノ基、置換されていてもよいアシル基、置換されていてもよい低級アルキルチオ基、ニトロ基、シアノ基、置換されていてもよいアリール基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールオキシ基、置換されていてもよいスルホニル基、置換されていてもよいカルボキシル基、置換されていてもよい低級アルキルスルホニル基、置換されていてもよい低級アルキルスルホニルアミノ基、置換されていてもよく、また縮合されていてもよい複素環基、置換されていてもよいシクロアルキルチオ基、置換されていてもよいスルホニルオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいシリル基、置換されていてもよく、また縮合されていてもよい複素環オキシ基、置換されていてもよく、また縮合されていてもよい複素環チオ基等で置換されていてもよい基を意味し、例えばo-メチルフェニル基、m-ヒドロキシフェニル基、p-カルボキシルフェニル基、2-フェネチルフェニル基、2, 3-ジメトキシフェニル基、2-メチル-4-アミノフェニル基、フェノキシフェニル基、3-フェネチルフェニル基、5-シアノナフチル基、4-アミノ-1-ナフチル基、6-ヒドロキシ-1-ナフチル基、3-メトキシフェニル基、2-メトキシフェニル基、2-エトキシフェニル基、2-ベンジルフェニル基、3-プロモ-1-ナフチル基、6-メトキシ-1-ナフチル基、1-ナフチル基、2-ナフチル基等が挙げられ、好ましくは2-フェネチルフェニル基、6-ヒドロキシ-1-ナフチル基、3-プロモ-1-ナフチル基、2, 3-ジメトキシフェニル基等が挙げられる。
- 20 置換されていてもよいシクロアルキル基とは、炭素数3~7、好ましくは4~6のシクロアルキル基の任意の水素原子が、1個以上の置換基で置換されていて
- 25

もよい基を示し、置換基の例としては、前記のアリール基と同様の基を示す。このような例としては、シクロプロビル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1-フルオロシクロプロビル基、2-ベンジルシクロヘキシル基、2-アミノシクロペンチル基、2-カルボキシシクロペンチル基、2-(6-メトキシ-1,4-ベンゾキノン)等が挙げられ、好ましくはシクロヘキシル基等が挙げられる。

置換されていてもよく、また縮合されていてもよい窒素原子含有複素環とは、ヘテロ原子として1個以上の窒素原子を含有し、さらに酸素原子、イオウ原子等のヘテロ原子を含有していてもよい、3~7員環の飽和または不飽和の複素環を意味し、さらに3~7員環の他の芳香環、複素環、シクロアルキル環が1個以上縮合していてもよい。環上の炭素原子に結合する任意の水素原子は、1個以上の置換基で置換されていてもよく、このような置換基の例は、前述のアリール基の置換基と同様のものが挙げられる。窒素原子含有複素環の例としては、例えばアジリジン環、アゼチジン環、ピロール環、ピロリン環、ピロリジン環、インドール環、インドリン環、イソインドール環、オクタヒドロインドール環、カルバゾール環、ビリジン環、ビペリジン環、キノリン環、ジヒドロキノリン環、テトラヒドロキノリン環、デカヒドロキノリン環、イソキノリン環、テトラヒドロイソキノリン環、デカヒドロイソキノリン環、キノロン環、アクリジン環、フェナントリジン環、ベンゾキノリン環、ピラゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ベンゾイミダゾール環、ピリダジン環、ピリミジン環、ピラジン環、ビペラジン環、ベンゾジアジン環、トリアゾール環、ベンゾトリアゾール環、トリアジン環、テトラゾール環、テトラジン環、プリン環、キサンチン環、テオフィリン環、グアニン環、ブテリジン環、ナフチリジン環、キノリジン環、キヌクリジン環、インドリジン環、オキサゾール環、ベンゾオキサゾール環、イソオキサゾール環、オキサジン環、フェノキサジン環、チアゾール環、チアゾリジン環、ベンゾチアゾール環、イソチアゾール環、チアジン環、オキサジアジン環、チアジアゾール環、チアジアジン環、ジチアジン環、モルホリン環等が挙げられ、このうち、ビペリジン環、ビペラジン環、イ

ソキノリン環、テトラヒドロイソキノリン環等が好ましい。置換基を有するものとしては、例えばN-アセチルピペラジン環、N-p-トルエンスルホニルピペラジン環、4-メチルピペリジン環等が好ましい例として挙げられる。

また、置換されていてもよく、また縮合されていてもよい複素環とは、ヘテロ原子として1個以上の窒素原子、酸素原子またはイオウ原子を含有している3~7員環の飽和または不飽和の複素環を意味し、さらに3~7員環の他の芳香環、複素環、シクロアルキル環が1個以上縮合していてもよい。環上の炭素原子に結合する任意の水素原子は、1個以上の置換基で置換されていてもよく、このような置換基の例は、前述のアリール基の置換基と同様のものが挙げられる。このような複素環の例としては、前述の窒素原子含有複素環のほかに、例えばピラン環、フラン環、テトラヒドロピラン環、テトラヒドロフラン環、チオフェン環、ベンゾチオフェン環、ジヒドロベンゾチオフェン環、ベンゾフラン環、イソベンゾフラン環、クロマン環、クロメン環、ジベンゾフラン環、イソクロマン環、フェノキサチン環、キサンチン環、チアヌスレン環、ベンゾジオキサン環、ベンゾジオキソラン環、チオラン環等が挙げられ、好ましくはベンゾチオフェン環が挙げられる。

アシル基とは、カルボン酸のカルボキシル基のOHを除いた基であり、例えばホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、オキサリル基、マロニル基、スクシニル基、ベンゾイル基、トルオリル基、ナフトイル基、フタロイル基、ピロリジンカルボニル基、ビリジンカルボニル基等が挙げられ、好ましくはアセチル基、ベンゾイル基等が挙げられる。また、置換されていてもよいアシル基とは、置換基として低級アルキル基、その他前記低級アルキル基で示したものと同様な基で置換されたアシル基を意味し、例えば、置換されていてもよい低級アルキルカルボニル基、置換されていてもよい低級アルキルアミノカルボニル基、置換されていてもよい低級アルキルオキシカルボニル基、アミノカルボニルカルボニル基等が挙げられる。

アシルオキシ基とは、アシル基に酸素原子が結合した基を意味し、例えばアセトキシ基、ベンゾイルオキシ基等が挙げられる。

低級アルコキカルボニル基とは、低級アルコキシ基にカルボニル基が結合した基を意味し、アルコキシ部分の炭素数が1～6、好ましくは1～4の基を示す。例えば、メトキシカルボニル基、エトキシカルボキル基、n-プロポキシカルボニル基、i-プロポキシカルボニル基、n-ブトキシカルボニル基、i-ブトキシカルボニル基等が挙げられ、好ましくはメトキシカルボニル基、エトキシカルボニル基等が挙げられる。

低級アルコキシカルボニルオキシ基とは、低級アルコキシカルボニル基に酸素原子が結合した基で、アルコキシ部分の炭素数が1～6、好ましくは1～4の基を示す。例えば、メトキシカルボニルオキシ基、エトキシカルボキルオキシ基、n-プロポキシカルボニルオキシ基、i-プロポキシカルボニルオキシ基、n-ブトキシカルボニルオキシ基、i-ブトキシカルボニルオキシ基、s-ブトキシカルボニルオキシ基、t-ブトキシカルボニルオキシ基等が挙げられ、好ましくはメトキシカルボニルオキシ基、エトキシカルボニルオキシ基等が挙げられる。

ヒドロキシアルキルカルボニルオキシ基とは、前記の低級アルキル基に1個以上の水酸基が置換した基にカルボニルオキシ基(COO)が結合した基を示し、例えばヒドロキシメチルカルボニルオキシ基、2-ヒドロキシエチルカルボニルオキシ基、2,3-ジヒドロキシプロピルカルボニルオキシ基等のアルキル部分の炭素数が1～6、好ましくは1～4の基が挙げられる。

ハロゲン原子とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

低級アルキルスルホニル基とは、前記の低級アルキル基にスルホニル基が結合した基で、炭素数1～6、好ましくは1～4のものが挙げられ、例えばメチルスルホニル基、エチルスルホニル基、n-プロピルスルホニル基、i-プロピルスルホニル基等が挙げられる。

またアリールスルホニル基とは、前記のアリール基にスルホニル基が結合した基を意味し、例えばフェニルスルホニル基、ナフチルスルホニル基等が好ましい例として挙げられる。

置換されていてもよい低級アルキルスルホニル基および置換されていてもよいアリールスルホニル基は、前記低級アルキルスルホニル基及びアリールスルホニル基の炭素原子に結合する任意の水素原子が1個以上の置換基で置換されていてもよい基を示し、置換基の例としては前記アリール基の置換基として記載したものと同様のものが挙げられる。このような例としては、例えば、p-トルエンスルホニル基、トリフルオロメタンスルホニル基等が挙げられる。

置換されていてもよいアミノスルホニル基とは、前記の置換されていてもよいアミノ基にスルホニル基が結合した基で、例えばメチルアミノスルホニル、ベンジルアミノスルホニル基等が挙げられる。

置換されていてもよい低級アルコキシスルホニル基とは、前記の置換されていてもよい低級アルコキシ基にスルホニル基が結合した基を意味し、例えばメトキシスルホニル基、ベンジルオキシスルホニル基等が好ましい例として挙げられる。

置換されていてもよいシクロアルキルオキシスルホニル基とは、置換されていてもよいシクロアルキル基に、酸素原子を介して、スルホニル基が結合した基を意味し、例えばシクロヘキシルオキシスルホニル基、シクロペンチルオキシスルホニル基等が挙げられる。

置換されていてもよいシクロアルキルスルホニル基とは、前記の置換されていてもよいシクロアルキル基にスルホニル基が結合した基で、例えばシクロヘキシルスルホニル基、シクロペンチルスルホニル基等が挙げられる。

置換されていてもよく、また縮合されていてもよい複素環スルホニル基とは、置換されていてもよい複素環基にスルホニル基が結合した基を意味し、例えば4-キノリルスルホニル基、8-テトラヒドロキノリルスルホニル基等が好ましい例として挙げられる。

さらに、置換されていてもよいスルホニル基とは、置換されていてもよい低級アルキルスルホニル基、置換されていてもよいシクロアルキルスルホニル基、置換されていてもよいシクロアルキルオキシスルホニル基、置換されていてもよいアミノスルホニル基、置換されていてもよく、縮合されていてもよい複素環スルホニル基、置換されていてもよい低級アルコキシスルホニル基あるいは置換され

いてもよいアーサルスルホニル基を示す。

置換されていてもよいカルボキシル基とは、前記の置換されていてもよいアシル基にオキシ基が結合した基を意味し、例えばメチルカルボニルオキシ基、エチルカルボニルオキシ基、イソプロピルカルボニルオキシ基、フェニルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基等が挙げられる。
5

低級アルコキシアルキル基とは、前記の低級アルコキシ基に低級アルキル基が結合した基を意味し、例えばメトキシメチル基、メトキシエチル基、*t*-ブトキシメチル基、1-エトキシエチル基、1-(イソプロポキシ)エチル基等が挙げられる。また低級アルコキシアルキル基のアルコキシ基またはアルキル基の部分
10 は、前記のアルキル基で示した置換基と同様な基で置換されていてもよい。

低級ヒドロキシアルキル基とは、前記の低級アルキル基に1個以上の水酸基が置換された基を意味し、例えばヒドロキシメチル基、2-ヒドロキシエチル基、1-ヒドロキシエチル基、3-ヒドロキシ-*n*-プロピル基、2, 3-ジヒドロキシ-*n*-ブチル基等が挙げられる。また、低級ヒドロキシアルキル基のアルキル基の部分は、前記アルキル基で示した置換基と同様な基で置換されていてもよい。
15

低級アミノアルキル基とは、前記の置換されていてもよいアミノ基に前記低級アルキル基が結合した基を意味し、例えば*t*-ブチルアミノメチル基、アミノメチル基、2-アミノエチル基、ベンジルアミノメチル基、メチルアミノメチル基、
20 2-メチルアミノエチル基等が挙げられる。また、低級アミノアルキル基のアルキル基の部分は、前記アルキル基で示した置換基と同様な基で置換されていてもよい。

低級カルボキシルアルキル基とは、前記の置換されていてもよいカルボキシル基に前記の低級アルキル基が結合した基で、例えばアセチルオキシメチル基、2-アセチルオキシエチル基、エチルカルボニルオキシメチル基、シクロヘキシカルボニルオキシメチル基、シクロプロピルカルボニルオキシメチル基、イソプロピルカルボニルオキシメチル基等が挙げられる。また低級カルボキシルアルキル基のアルキル基の部分は、前記アルキル基で示した置換基と同様な基で置換さ
25

れていてもよい。

低級カルボニルアミノアルキル基とは、前記の置換されていてもよいアシル基に前記低級アミノアルキル基が結合した基を意味し、例えばアセチルアミノメチル基、*t*-ブチルオキシカルボニルアミノメチル基、エチルカルボニルアミノメチル基、アセチルアミノエチル基、ベンジルオキシカルボニルアミノエチル基等が挙げられる。また、低級カルボニルアミノアルキル基のアミノ基またはアルキル基の部分は、前記アルキル基で示した置換基と同様な基で置換されていてもよい。

置換されていてもよい低級アルキルチオ基とは、前記の置換されていてもよい低級アルキル基にチオ基が結合した基で、例えばメチルチオ基、エチルチオ基、イソプロピルチオ基、*t*-ブチルチオ基等が挙げられる。

置換されていてもよいシクロアルキルチオ基とは、前記の置換されていてもよいシクロアルキル基にチオ基が結合した基を意味し、例えばシクロプロピルチオ基、シクロブチルチオ基、シクロペンチルチオ基、シクロヘキシルチオ基等が挙げられる。

置換されていてもよいアリールチオ基とは、前記の置換されていてもよいアリール基にチオ基が結合した基で、例えばフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基等が挙げられる。

置換されていてもよく、縮合されていてもよい複素環チオ基とは、前記の置換されていてもよく、また縮合されていてもよい複素環基にチオ基が結合した基を意味し、例えば4-キノリルチオ基、8-テトラヒドロキノリルチオ基等が挙げられる。

置換されていてもよいスルホニルオキシ基とは、前記の置換されていてもよいスルホニル基にオキシ基が結合した基で、例えば

-トルエンスルホニルオキシ基、メタンスルホニルオキシ基等が挙げられる。

置換されていてもよいシクロアルキルオキシ基とは、前記の置換されていてもよいシクロアルキル基にオキシ基が結合した基で、例えばシクロプロピルオキシ基、シクロペンチルオキシ基、4-アミノシクロヘキシルオキシ基等が挙げられ

る。

置換されていてもよく、また縮合されていてもよい複素環オキシ基とは、前記の置換されていてもよく、縮合されていてもよい複素環基にオキシ基が結合した基を意味し、例えば4-キノリルオキシ基、8-テトラヒドロキノリルオキシ基等が挙げられる。
5

置換されていてもよいシリル基とは、前記の置換されていてもよい低級アルキル基または置換されていてもよいアリール基が、同一または異なる1～3個結合したシリル基を示し、例えばトリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基、トリイソプロピルシリル基等が挙げられる。
10

また-(CH₂)_n-部分および-(CH₂)_n-部分で置換されていてもよい置換基としては、前記アリール基の置換基として記載したものと同様のものが挙げられる。

本発明化合物は製薬上許容しうる塩を形成することができ、この様な塩としては、例えば塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硝酸塩、リン酸塩等の無機酸塩、コハク酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、乳酸塩、酒石酸塩、クエン酸塩、酢酸塩、グリコール酸塩、メタンスルホン酸塩、トルエンスルホン酸塩等の有機酸塩等を挙げることができる。また本発明化合物及びその製薬上許容しうる塩は水和物を形成することもできる。さらに本発明化合物は各種の立体構造をとることができ、例えば不斉炭素原子を中心に考えた場合、その絶対配置はD体、L体、DL体のいずれでもよく、これらの化合物も本発明に含まれる。特に、一般式(1)中の置換フェニルアラニン残基中の不斉炭素原子の絶対配置はL体が望ましい。
15
20

一般式(1)で表される化合物において、R₃のAが置換されていてもよいアリール基、例えばベンジル基、ナフチル基等を示す化合物、特にR₃が1-ナフチルメチル、2-フェネチルベンジル基、3-プロモナフチル基、1-イソキノリル基、2、3-ジメトキシベンジル基または6-ヒドロキシナフチル基である化合物は医薬として特に優れた効果を示し、本発明の一部を構成する。
25

また一般式(1)において、R₂が基(2)～(6)

(式中、 $(R_7)_{sub}$ は基(2)～(6)中の炭素原子に結合する1個以上の任意の水素原子が、同一または相異なるR₇で置換されていてもよいことを意味し、R₇は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合されていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されていてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキルスルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシアアルキル基、低級ヒドロキシアルキル基、低級アミノアルキル基、低級カルボキシリアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原子、硫黄原子またはNR₈を示し、ここでR₈は水素原子、置換されていてもよい低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換されていてもよいアシル基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、0～5の整数を示すが、ただし、p+qが1, 2, 3, 4または5のいずれかであり、rおよびsは同一または異なって、0～5の整数を示すが、ただし r+s

は0, 1, 2, 3, 4または5のいずれかである) のいずれかである化合物、その中でもR₂が特に基(2)である場合、とりわけ置換されていてもよいピペラジニル基または置換されていてもよいピペリジニル基である化合物、さらに好ましくはR₂がN-アセチルピペラジニル基、4-メチルピペリジニル基、N-(N, N-ジメチルアミノカルボニル)ピペラジニル基、メタンスルホニルピペラジニル基、ベンゼンスルホニルピペラジニル基、p-トルエンスルホニルピペラジニル基である化合物も医薬として優れた効果を示し、本発明に含まれる。

さらに一般式(1)において、R₅が-C(=NR₆)NH₂(式中、R₆は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示す)である化合物、特に-C(=NH)NH₂である化合物も好ましい態様として挙げられる。

さらにまた上記で示したR₂、R₃及びR₅の好ましい置換基を同時に2つまたは3つ持つ化合物は特に好ましい化合物として挙げられる。

次に一般式(1)で表されるスルファミド誘導体の製造方法について説明する。本発明化合物は、目的とする化合物に適した反応の組合せにより製造することができ、以下に代表的な反応スキームを式示するが、以下の方法のみに限定されるものではない。

(式中、 R_1 、 R_3 、 R_4 、 R_6 、 R_7 、 $(R_7)_{\dots}$ 、 B 、 p 及び q は前記と同一の意味を示し、 R_2 は水素原子または低級アルキル基を、 R_5 は低級アルキル基を、 X はハロゲン原子、水酸基、アルカンスルホニル基、アリールスルホニル基等の脱離基を示す)。

5 上記反応スキームにおいて、一般式(1)、(11)、(12)、(13)、(14)、(15)、(16)、(17)及び(18)は文献未記載の新規化合物である。一般式(3)の化合物は、例えば特表平5-503300号公報に記載された方法と同様にして製造することができる。

一般式(10)の化合物は、一般式(9)の化合物及び一般式(19)の化合物の縮合反応を行うことにより得られる。ここで用いられる縮合反応としては、10 例えは通常用いられる活性エステル法、酸無水物法、アジド法、酸クロライド法、各種縮合剤等、ペプチド合成の基礎と実験(1985年、丸善発行)に示された方法等が挙げられる。用いられる縮合剤としては、 N 、 N' -ジシクロヘキシリカルボジイミド(DCC)、水溶性カルボジイミド(WSCI)、カルボニルジイミダゾール(CDI)、ジフェニルホスホリルアジド(DPPA)、Bop試薬、Pybop試薬等、通常用いられる試薬があげられる。一般式(19)の化合物は通常、一般式(9)の化合物に対して、1.0~10.0当量、好ましくは1.0~5.0当量用いる。

一般式(11)の化合物は、一般式(9)の化合物より、適当な溶媒中、塩基の存在下あるいは不存在下において適当なアルコール類及び例えばクロロスルホニルイソシアネート等のイソシアネート類を反応させることによってカルバメート化合物を得る。ここで用いられる溶媒としては、テトラヒドロフラン、ジオキサン、ジクロロメタン、酢酸エチル等が挙げられ、また塩基としては、トリエチルアミン、ピリジン等の有機塩基が挙げられる。またアルコール類としては、25 t -ブチルアルコール、ベンジルアルコール等が用いられ、またクロロスルホニルイソシアネートの代わりに、ホスゲン等を用いて反応に供することもできる。この反応は通常、-80~30°Cの温度条件下、0.1~24時間の反応で行うことができる。この反応において、用いられるイソシアネート類は、通常、一般式

(9) の化合物に対して、1. 0～5. 0当量、好ましくは1. 0～1. 2当量用いられ、アルコール類は、1. 0～5. 0当量、1. 0～1. 2当量用いられる。得られたカルバメート化合物は、脱保護を行うことによりアミン化合物に導くことができる。

5 一般式(12)の化合物は、上記の一般式(11)の化合物を得た時と同様の反応を一般式(10)の化合物から行うか、もしくは上記一般式(10)の化合物を得た時と同様の縮合反応を一般式(11)の化合物から行うことにより得ることができる。

一般式(13)の化合物は、一般式(11)の化合物から通常用いられるアルキル化、アリール化反応によって得られる。すなわち、適当な溶媒中、ジエトキシアザジカルボキシレート(DEAD)－トリフェニルホスフィン等により活性化した一般式(20)で示されるアルコール類(Xが水酸基である場合)を、または塩基の存在あるいは不存在下で一般式(20)で示されるハライド化合物等(Xがハロゲン原子等である場合)を反応させることにより得られる。アルコール類である一般式(20)の化合物としては、例えばメタノール、エタノール、フェノール、ベンジルアルコール、2, 3-ジメトキシベンジルアルコール、1-ナフタレンメタノール、3-ブロモ-1-ナフタレンメタノール、2-フェネチルベンジルアルコール等、好ましくは2, 3-ジメトキシベンジルアルコール、1-ナフタレンメタノール、2-フェネチルベンジルアルコール等が挙げられ、
10 ハライド化合物である一般式(20)の化合物としては、例えばベンジルブロミド、1-ナフチルメチルブロミド等、好ましくはベンジルブロミド等が挙げられる。この工程で使用される溶媒としては、ジクロロメタン、クロロホルム、テトラヒドロフラン、ベンゼン等が挙げられ、ハライド化合物等を反応させる場合に用いてよい塩基としては、水素化ナトリウム、炭酸カリウム、炭酸水素ナトリウム等が挙げられる。反応温度は、-80～100°C、反応時間は1～240時間の範囲で行うことができる。また一般式(20)の化合物は通常、一般式(11)の化合物に対して、1. 0～5. 0当量の範囲で用いることができる。
15
20
25

一般式(14)の化合物は、上記一般式(11)の化合物から一般式(13)

の化合物を得た場合と同様の反応を、一般式(12)の化合物から供することにより、または上記一般式(9)の化合物から一般式(10)の化合物を得た場合と同様の縮合反応を、一般式(13)から行うことにより製造することができる。

一般式(15)の化合物は、適当な溶媒中、塩基の存在あるいは不存在下で、
5 一般式(14)の化合物に硫化水素を反応させることにより得ることができる。ここで用いられる溶媒としては、ピリジン、メタノール、エタノール、n-ブロ
パノール、i-ブロパノール等が挙げられ、塩基を用いる場合の塩基としては、
ピリジン、トリエチルアミン、ジエチルアミン等が挙げられる。反応温度は0～
100°C、反応時間は1～72時間の範囲で行うことができる。

10 一般式(16)の化合物は、一般式(15)の化合物から適当な溶媒中、塩基
の存在あるいは不存在下で、アルキルハライド類を反応させることにより製造す
ることができる。アルキルハライド類としては、例えばヨウ化メチル、ヨウ化エ
チル等、好ましくはヨウ化メチル等が挙げられる。この工程で使用できる溶媒と
しては、アセトン、メタノール、アセトニトリル、テトラヒドロフラン等が挙げ
15 られ、塩基を使用する場合は、ピリジン、トリエチルアミン、ジエチルアミン等
の塩基を用いることができる。反応は0～100°Cの温度条件下、0.1～10
時間で行うことができる。またここで使用するアルキルハライド類は一般式(9)
の化合物に対して、1.0～20.0当量の範囲で用いることができる。

一般式(17)の化合物は、一般式(14)の化合物に低級アルコール溶媒中、
20 強酸を付すことにより得ることができる。ここで用いられる低級アルコール溶媒
とは、メタノール、エタノール、n-ブロパノール、i-ブロパノール等が挙げ
られる。また強酸としては塩酸、硫酸、硝酸、酢酸、p-トルエンスルホン酸、
メタンスルホン酸等、あるいはこれらの混酸を使用することができる。強酸は一
般式(14)の化合物に対して、1～1000当量、好ましくは100～300
25 当量で用いることができる。反応温度は-30～30°C、反応時間は1～48時
間の範囲で行うことができる。

一般式(1)の化合物は、適当な溶媒中、一般式(16)の化合物にアンモニ
ウム塩類またはアルキルアンモニウム塩類を反応させるか、一般式(17)の化

化合物にアンモニアを反応させることによって得られる。ここで使用されるアンモニウム塩類としては、例えばヒドロキシアンモニウムアセテート等が挙げられ、通常一般式(16)の化合物に対して、1.0~2.0当量用いられる。アルキルアンモニウム塩類としては、例えばメチルアンモニウムアセテート等が挙げられ、通常一般式(16)の化合物に対して、1.0~2.0当量の範囲で使用できる。この工程における反応温度は0~100°C、反応時間は1~72時間の範囲で行うことができる。

また本発明化合物の一部を構成する一般式(18)の化合物は、一般式(14)の化合物から通常行われる還元反応を行うことにより製造することができる。ここで用いられる還元反応としては、例えば白金、パラジウム、炭素-パラジウム、炭素-白金、ラネーニッケル等の触媒存在下で水素を添加させる方法または塩化スズ、亜鉛、硫化ナトリウム、アルミニウムアマルガム、塩化第1クロム、ナトリウムチオスルフェート、ナトリウムボロハイドライド、リチウムアルミニウムハイドライド等の通常用いられる還元剤を使用して還元させる方法が挙げられる。この工程における反応温度は-80~100°C、反応時間は1~72時間の範囲で行うことができる。

このようにして得られる一般式(1)の化合物は抽出、結晶化、再結晶、各種クロマトグラフィー等の通常の化学操作により単離精製することができる。本発明化合物は適当な賦形剤、希釈剤、補助剤、湿潤剤、滑沢剤、担体等、その他香料、着色剤、甘味剤、芳香剤、保存剤等と共に製剤化することができる。例えば顆粒剤、細粒剤、散剤、錠剤、カプセル剤、シロップ剤、液剤、懸濁剤、乳剤、凍結乾燥剤等の経口または静脈内、筋肉内あるいは皮下投与等の注射剤として使用することができる。またパップ剤、軟膏剤等に剤型化し、経皮吸収剤としても使用することができる。さらにまた坐剤としても使用できる。

固形製剤を製造する際に用いられる賦形剤としては、例えば乳糖、ショ糖、デンプン、タルク、セルロース、デキストリン、カオリン、炭酸カルシウム等が用いられる。経口投与のための液体製剤、すなわち乳剤、シロップ剤、懸濁剤、液剤等は一般的に用いられる不活性な希釈剤、例えば水または植物油等を含むこと

ができる。液体製剤においてはゼラチンのような吸収されうる物質のカプセル中に含まれてもよい。非経口投与の製剤、すなわち注射剤、坐剤等の製造に用いられる溶剤または懸濁剤としては、例えば水、プロピレングリコール、ポリエチレングリコール、ベンジルアルコール、オレイン酸エチル、レシチン等が挙げられる。
5 坐剤に用いられる基剤としては、例えばカカオ脂、乳化カカオ脂、ラウリン脂、ウィテップゾール等が挙げられる。製剤の調製方法は常法によればよい。

本発明化合物をヒトに投与する場合は、患者の年齢、性別、病体、体重、症状、体质等により適宜選択する必要があるが、通常一般式(1)の化合物として1日
10 0.1~1800mg、好ましくは1~600mgの範囲を、1日1回または適当な間隔をおいて2~3回に分けて投与してもよいし、間欠投与してもよい。

実施例

以下に本発明を参考例及び実施例を挙げて、さらに詳細に説明するが、本発明はこれらに何ら限定されるものではない。

参考例1

$\text{Na}-(\text{tert-}\text{ブチルオキシカルボニル})-\text{3-シアノフェニルアラニン}-4-\text{アセチルピペラジドの合成}$

$\text{Na}-(\text{tert-}\text{ブチルオキシカルボニル})-\text{3-シアノフェニルアラニン}$
2.45g (8.44mmol : 1.0eq) をジクロロメタン30ml 及び酢
20 酸エチル30ml に溶解し、水溶性カルボジイミド塩酸塩 (WSCl) 3.2g
(16.9mmol : 2.0eq) 及びアセチルピペラジン 1.19g (9.2
8mmol : 1.1eq) を加え、そのまま2.5日間攪はんする。水を加えジ
クロロメタンにて抽出する。有機相を飽和炭酸水素ナトリウム水溶液及び希塩酸
にて洗浄し、つづいて水洗浄を行う。無水硫酸ナトリウムにて乾燥し、減圧下で
25 溶媒を除去する。残留物をカラムクロマトグラフィー (和光C-200 : 移動相
ジクロロメタン→ジクロロメタン中メタノール 2.5% → 5% → 7.5%) して、
 $\text{Na}-(\text{tert-}\text{ブチルオキシカルボニル})-\text{3-シアノフェニルアラニン}-$
4-アセチルピペラジド 2.31g (5.78mmol : 収率 68%) を得る。

NMR (CDCl₃) δ値: 1. 40 (9H, s) 2. 09 (3H, d, J = 4. 95 Hz) 2. 92~3. 27 (2H, m) 3. 33~3. 72 (8H, m) 4. 82 (1H, br) 5. 39 (1H, br) 7. 33~7. 56 (4H, m)

5 参考例2

3-シアノフェニルアラニン-4-アセチルピペラジド塩酸塩の合成

Na-(tert-ブチルオキシカルボニル)-3-シアノフェニルアラニン-4-アセチルピペラジド 2. 31 g (5. 78 mmol : 1. 0 eq) をジクロロメタン 25 ml に溶解し、氷冷下トリフルオロ酢酸 25 ml を加え、そのまま 16 時間攪拌する。減圧下で溶媒を除去し、トルエンにて共沸した後、残留物に 4 N-塩酸-ジオキサン溶液を加え、減圧下で溶媒を除去する。メタノールを加え共沸した後、エーテルを加え固体を析出させる。析出物を濾取し、洗浄後、乾燥すると 3-シアノフェニルアラニン-4-アセチルピペラジド塩酸塩 2. 2 g (5. 3 mmol : 収率 92%) を得る。

15 NMR (DMSO) δ値: 2. 08 (3H, s) 3. 14~3. 77 (10H, m) 4. 80 (1H, br) 7. 42~7. 87 (4H, m)

参考例3

Na-(tert-ブチルオキシカルボニル)-4-シアノフェニルアラニン-4-アセチルピペラジドの合成

20 参考例1と同様にして、Na-(tert-ブチルオキシカルボニル)-4-シアノフェニルアラニン-4-アセチルピペラジド 2. 0 g (4. 99 mmol : 収率 73%) を得る。

NMR (CDCl₃) δ値: 1. 39 (9H, s) 2. 09 (3H, d, J = 5. 94 Hz) 2. 94~3. 73 (10H, m) 4. 84 (1H, br) 5. 32 (1H, br) 7. 32 (2H, d, J = 8. 09 Hz) 7. 58 (2H, d, J = 8. 09 Hz)

参考例4

4-シアノフェニルアラニン-4-アセチルピペラジド塩酸塩の合成

参考例2と同様にして、4-シアノフェニルアラニン-4-アセチルピペラジド塩酸塩0.93g(3.1mmol:収率100%)を得る。

実施例1

N_α- (tert-ブチルオキシカルボニルアミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルピペラジドの合成

窒素雰囲気下、クロロスルホニルイソシアネート2.02g(14.3mmol:1:1.2eq)をジクロロメタン20mlに溶解し、-40°C~-30°Cとする。ジクロロメタン20mlに溶解したtert-ブタノール1.06g(14.3mmol:1.2eq)をゆっくり滴下し、終了後、-40°C~-30°Cで2.5時間攪拌はんし、-78°Cとする。ジクロロメタン100mlに溶解した3-シアノフェニルアラニン-4-アセチルピペラジド塩酸塩4g(11.9mmol:1:1.0eq)及びトリエチルアミン4.33g(4.28mmol:3.6eq)をゆっくりと滴下する。ゆっくりと反応温度を上げながら室温とし、そのまま20時間攪拌はんする。飽和炭酸水素ナトリウム水溶液を加えジクロロメタンにて抽出する。有機相を希塩酸にて洗浄し、つづいて水洗浄を2回行う。無水硫酸ナトリウムにて乾燥し、減圧下で溶媒を除去する。残留物をカラムクロマトグラフィー(和光C-200:移動相ジクロロメタン→ジクロロメタン中メタノール2%)して、N_α- (tert-ブチルオキシカルボニルアミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルピペラジド3.38g(7.05mmol:収率59%)を得る。

NMR(CDCl₃) δ値: 1.46(9H, s) 2.09(3H, d, J=2.97Hz) 2.95~3.70(10H, m) 4.88(1H, br) 6.30(1H, br) 7.31~7.60(4H, m) 8.45~9.10(1H, br)

実施例2

N_α- (tert-ブチルオキシカルボニル(1-ナフチルメチル)アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルピペラジドの合成

N_α- (tert-ブチルオキシカルボニルアミノスルホニル) - 3-シアノ

フェニルアラニン-4-アセチルピペラジド200mg (0.42mmol : 1.0eq) をジクロロメタン2mlに溶解し、攪はんしながら1-ナフタレンメタノール66mg (0.42mmol : 1.0eq) 及びトリフェニルfosフィン110mg (0.42mmol : 1.0eq) を加える。ジクロロメタン1mlに溶解したジエチルアゾジカルボキシレート73mg (0.42mmol : 1.0eq) をゆっくり滴下し、終了後、室温にて、64時間攪はんする。減圧下で溶媒を除去し、残留物をカラムクロマトグラフィー (和光C-200 : 移動相ジクロロメタン→ジクロロメタン中酢酸エチル20%→50%→75%) して、N α - (tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド170mg (0.274mmol : 収率65%) を得る。

NMR (CDCl₃) δ値: 1.40 (9H, s) 2.04 (3H, d J = 7.91Hz) 2.50~3.57 (10H, m) 4.39 (1H, m) 5.35 (2H, m) 6.21 (1H, d J = 7.59Hz) 7.27 ~8.15 (11H, m)

実施例3

N α - (1-ナフチルメチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

N α - (tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド170mg (0.274mmol : 1.0eq) をジクロロメタン1ml及び飽和塩化水素-エタノール溶液5mlに溶解し、20時間放置する。減圧下で溶媒を除去し、得られたN α - (1-ナフチルメチルアミノスルホニル) -3-エトキシイミノカルボニルフェニルアラニン-4-アセチルピペラジド (Fab-Ms : 566 (M+H)⁺) を飽和アンモニア-エタノール溶液5mlに溶解し、1週間放置する。減圧下で溶媒を除去し、残留物をカラムクロマトグラフィー (富士シリシアDM1020 : 移動相酢酸エチル-メタノール20%→50%) して、N α - (1-ナフチルメチルアミノスルホニル) -3-アミジノフェニルアラニン-4

アセチルピペラジド 120 mg (0. 224 mmol : 収率 82%) を得る。

Fab-Ms : 537 (M+H) +

NMR (CDCl₃) δ 値: 1. 95 (3H, br s) 2. 63~3. 60
 (10H, m) 3. 83~4. 02 (1H, br) 4. 15~4. 32 (1
 5 H, br) 4. 35~4. 57 (1H, br) 6. 60~8. 10 (13H,
 m)

実施例4

Nα-(ジメチルアミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジドの合成

10 3-シアノフェニルアラニン-4-アセチルピペラジド塩酸塩 200 mg (0.
 59 mmol : 1. 0 eq) をジクロロメタン 20 mL に溶解し、氷冷下ゆっくりジメチルスルファモイルクロライド 84. 7 mg (0. 59 mmol : 1. 0
 eq) を滴下し、室温としながら 16 時間攪拌する。水を加え、ジクロロメタ
 ンにて抽出する。飽和炭酸水素ナトリウム水溶液、希塩酸、水にて順次洗浄し、
 15 無水硫酸ナトリウムにて乾燥し、減圧下で溶媒を除去すると Nα-(ジメチルア
 ミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジド 80
 mg (0. 2 mmol : 収率 33%) を得る。

NMR (CDCl₃) δ 値: 2. 09 (3H, br d, J = 5. 28 Hz)
 2. 66 (6H, br d, J = 4. 94 Hz) 3. 10~3. 81 (10H,
 20 m) 4. 43 (1H, dd J = 16. 83 7. 26 Hz) 5. 65 (1
 H, d, J = 9. 57 Hz) 7. 28~7. 68 (4H, m)

実施例5

Nα-(ジメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

25 実施例3と同様にして、Nα-(ジメチルアミノスルホニル)-3-アミジノ
 フェニルアラニン-4-アセチルピペラジド 38 mg (0. 09 mmol : 収率
 46%) を得る。

NMR (DMSO) δ 値: 1. 97 (3H, s) 2. 50 (6H, t, J =

1. 8.2 Hz) 2. 7.0~3.7.0 (10H, m) 4. 4.0 (1H, br)
 6. 7.0~7.2.5 (1H, br) 7. 3.2~7.3.4 (2H, d, J=4.
 6.2 Hz) 7. 6.0~7.6.8 (2H, m)

実施例6

5 N_α- (tert-ブチルオキシカルボニルアミノスルホニル) -4-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例1と同様にして、N_α- (tert-ブチルオキシカルボニルアミノスルホニル) -4-シアノフェニルアラニン-4-アセチルピペラジド 510 mg (1.06 mmol : 収率 71%) を得る。

10 NMR (CDCl₃) δ値; 1. 4.6 (9H, s) 2. 0.9 (3H, d, J
 =3. 9.6 Hz) 3. 0.5 (2H, d, J=7. 2.6 Hz) 3. 0.0~3.
 2.0 (1H, br) 3. 2.5~3. 7.8 (7H, br) 4. 9.0 (1H, b
 r) 6. 3.6 (1H, dd, J=18. 8 8. 5.8 Hz) 7. 3.6 (2H,
 d, J=8. 0.9 Hz) 7. 6.0 (2H, d, J=8. 0.9 Hz) 8. 6.5
 15 ~9. 2.5 (1H, br)

実施例7

N_α- (ベンジル (tert-ブチルオキシカルボニル) アミノスルホニル) -4-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例2と同様にして N_α- (ベンジル (tert-ブチルオキシカルボニル) アミノスルホニル) -4-シアノフェニルアラニン-4-アセチルピペラジド 8.0 mg (0.14 mmol : 収率 40%) を得る。

20 NMR (CDCl₃) δ値; 1. 4.4 (9H, s) 2. 0.7 (3H, brs)
 2. 7.0~3. 6.3 (10H, m) 4. 2.8~4. 6.0 (1H, br) 4.
 8.0 (2H, brs) 6. 2.3 (1H, brs) 7. 1.6~7. 7.0 (9H,
 25 m)

実施例8

N_α- (ベンジル (tert-ブチルオキシカルボニル) アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例2と同様にしてN α -（ベンジル（tert-ブチルオキシカルボニル）アミノスルホニル）-3-シアノフェニルアラニン-4-アセチルピペラジド0.8g (1.4mmol : 収率50%)を得る。

NMR (CDCl₃) δ値: 1.46 (9H, s) 2.08 (3H, s)
 5 2.55~3.60 (10H, m) 4.19~4.42 (1H, m) 4.7
 5~4.89 (2H, m) 6.11 (1H, d, J=7.26Hz) 7.2
 5~7.71 (9H, m)

実施例9

N α -（ベンジルアミノスルホニル）-4-アミジノフェニルアラニン-4-
 10 アセチルピペラジドの合成

実施例3と同様にしてN α -（ベンジルアミノスルホニル）-4-アミジノフェニルアラニン-4-アセチルピペラジド52mg (0.107mmol : 収率87%)を得る。

NMR (DMSO) δ値: 1.97 (3H, s) 2.75~3.85 (12H, m)
 15 4.38 (1H, m) 7.19~7.90 (12H, m)

実施例10

N α -（ベンジルアミノスルホニル）-3-アミジノフェニルアラニン-4-
アセチルピペラジドの合成

実施例3と同様にしてN α -（ベンジルアミノスルホニル）-3-アミジノフェニルアラニン-4-アセチルピペラジド600mg (1.23mmol : 収率87%)を得る。

NMR (DMSO) δ値: 1.96 (3H, s) 2.75~3.60 (10H, m) 3.57 (1H, d, J=14.84Hz) 3.78 (1H, d, J=14.85Hz) 4.41 (1H, m) 6.30~7.43 (7H, m)
 25 7.55~7.80 (2H, m)

実施例11

N α -（tert-ブチルオキシカルボニル（2-ナフチルメチル）アミノスルホニル）-3-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例2と同様にして、 $\text{N}\alpha$ -（tert-ブチルオキシカルボニル（2-ナフチルメチル）アミノスルホニル）-3-シアノフェニルアラニン-4-アセチルピペラジド170mg (0.27mmol : 収率65%)を得る。

NMR (CDCl₃) δ値: 1.47 (9H, s) 2.24~2.62 (2H, m) 2.73~3.55 (8H, m) 3.98~4.24 (1H, m) 4.99 (2H, d, J=2.93Hz) 6.28 (1H, brs) 7.10~8.00 (11H, m)

実施例12

$\text{N}\alpha$ -（2-ナフチルメチルアミノスルホニル）-3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

実施例3と同様にして、 $\text{N}\alpha$ -（2-ナフチルメチルアミノスルホニル）-3-アミジノフェニルアラニン-4-アセチルピペラジド116mg (0.21mmol : 収率78%)を得る。

Fab-Ms: 537 (M+H)⁺

NMR (DMSO) δ値: 1.96 (3H, s) 2.76~4.00 (10H, m) 4.47 (1H, m) 7.32~7.92 (11H, m)

実施例13

$\text{N}\alpha$ -（tert-ブチルオキシカルボニル（2-シクロヘキシルエチル）アミノスルホニル）-3-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例2と同様にして、 $\text{N}\alpha$ -（tert-ブチルオキシカルボニル（2-シクロヘキシルエチル）アミノスルホニル）-3-シアノフェニルアラニン-4-アセチルピペラジド200mg (0.34mmol : 収率80%)を得る。

NMR (CDCl₃) δ値: 0.80~1.78 (13H, m) 1.50 (9H, s) 2.10 (3H, br) 2.94~3.70 (12H, m) 4.68~4.88 (1H, br) 6.14~6.30 (1H, br) 7.40~7.76 (4H, m)

実施例14

N α - (2-シクロヘキシリエチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

実施例3と同様にして、N α - (2-シクロヘキシリエチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジド100mg (0.1
5 97mmol : 収率58%)を得る。

Fab-Ms : 507 (M+H) +

NMR (DMSO) δ値: 0.60~0.76 (13H, m) 1.99 (3H, s) 2.28~3.65 (12H, m) 4.36~4.50 (1H, m)
7.24~7.76 (4H, m)

10 実施例15

N α - (tert-ブチルオキシカルボニル (3-フェニル-n-プロピル)アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例2と同様にして、N α - (tert-ブチルオキシカルボニル (3-フェニル-n-プロピル)アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド250mg (0.42mmol : 収率99%)を得る。

15 NMR (CDCl₃) δ値: 1.47 (9H, s) 1.80~2.01 (2H, m) 2.07 (2H, brd, J=4.87Hz) 2.54~2.70 (2H, m) 2.84~3.67 (12H, m) 4.46~4.82 (1H, m) 5.98~6.10 (1H, m) 7.10~7.76 (9H, m)

20 実施例16

N α - (3-フェニル-n-プロピルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

実施例3と同様にして、N α - (3-フェニル-n-プロピルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジド130mg (0.25mmol : 収率60%)を得る。

Fab-Ms : 515 (M+H) +

NMR (DMSO) δ値: 1.53~1.70 (2H, m) 1.98 (3H,

s) 2. 30 (2H, m) 2. 63 (2H, m) 2. 75~3. 55 (12H, m)
 4. 38 (1H, d d, J=7. 26 Hz) 7. 26 Hz) 7. 10~7. 72
 (9H, m)

実施例17

5 $\text{N}\alpha$ - (tert-ブチルオキシカルボニル (2-フェニルベンジル) アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例2と同様にして、 $\text{N}\alpha$ - (tert-ブチルオキシカルボニル (2-フェニルベンジル) アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルピペラジド250mg (0. 38mmol : 収率92%)を得る。

10 NMR (CDCl₃) δ値; 1. 36 (9H, s) 2. 09 (3H, br d, J=5. 61Hz) 2. 74~3. 57 (10H, m) 4. 60~4. 78 (3H, m) 6. 14 (1H, br d, J=8. 58Hz) 7. 18~7. 75 (13H, m)

実施例18

15 $\text{N}\alpha$ - (2-フェニルベンジルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

実施例3と同様にして、 $\text{N}\alpha$ - (2-フェニルベンジルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジド90mg (0. 16mmol : 収率41%)を得る。

20 Fab-Ms: 563 (M+H) +

NMR (DMSO) δ値; 1. 98 (3H, s) 2. 56~3. 88 (12H, m) 4. 30~4. 45 (1H, m) 7. 10~7. 68 (13H, m)

実施例19

25 $\text{N}\alpha$ - (tert-ブチルオキシカルボニル (3-フェニルオキシベンジル) アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例2と同様にして、 $\text{N}\alpha$ - (tert-ブチルオキシカルボニル (3-フェニルオキシベンジル) アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルピペラジドの合成

ニルオキシベンジル)アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド 230 mg (0.34 mmol : 収率 82%) を得る。

Fab-Ms : 662 (M+H) +

NMR (CDCl₃) δ値: 1.42 (9H, s) 2.07 (3H, br d, J = 4.39 Hz) 2.70~3.60 (10H, m) 4.38~4.55 (1H, m) 4.77 (2H, s) 6.25 (1H, br d, J = 7.31 Hz) 6.80~7.75 (13H, m)

実施例 20

Nα-(3-フェニルオキシベンジルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

実施例 3 と同様にして、Nα-(3-フェニルオキシベンジルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジド 138 mg (0.24 mmol : 収率 68%) を得る。

Fab-Ms : 579 (M+H) +

NMR (DMSO) δ値: 1.96 (3H, s) 2.74~3.80 (12H, m) 4.30~4.50 (1H, m) 6.80~7.70 (15H, m)

実施例 21

Nα-(tert-ブチルオキシカルボニル(4-フェニルベンジル)アミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例 2 と同様にして、Nα-(tert-ブチルオキシカルボニル(4-フェニルベンジル)アミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジドを得る。

NMR (CDCl₃) δ値: 1.47 (9H, s) 2.04 (3H, d, J = 3.90 Hz) 2.60~3.78 (10H, m) 4.10~4.55 (1H, m) 4.70~5.04 (2H, m) 6.25~6.37 (1H, m) 7.20~7.88 (13H, m)

実施例 22

N_α- (4-フェニルベンジルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルビペラジドの合成

実施例3と同様にして、N_α- (4-フェニルベンジルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルビペラジド90mg (0. 16mmol : 収率38%)を得る。

Fab-Ms : 563 (M+H) +

NMR (DMSO) δ値: 1. 96 (3H, s) 2. 64~3. 90 (12H, m) 4. 34~4. 50 (1H, m) 7. 12~7. 80 (14H, m)

10 実施例23

N_α- (tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル) - 3-シアノフェニルアラニンエチルエステルの合成

実施例2と同様にして、N_α- (tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル) - 3-シアノフェニルアラニンエチルエステル245mg (0. 46mmol : 収率91%)を得る。

NMR (CDCl₃) δ値: 1. 20 (3H, t, J=7. 10Hz) 1. 46 (9H, s) 2. 80~3. 02 (2H, m) 3. 75~3. 90 (1H, m) 3. 92~4. 18 (2H, m) 5. 24 (1H, d, J=16. 49Hz) 5. 45 (1H, d, J=16. 50Hz) 5. 95 (1H, d, J=6. 6Hz) 7. 18~8. 18 (11H, m)

実施例24

N_α- (tert-ブチルオキシカルボニル (2-フェネチルベンジル) アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルビペラジドの合成

実施例2と同様にして、N_α- (tert-ブチルオキシカルボニル (2-フェネチルベンジル) アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルビペラジド340mg (0. 50mmol : 収率100%)を得る。

NMR (CDCl₃) δ値: 1. 39 (9H, s) 2. 06 (3H, m) 2. 78~3. 67 (14H, m) 4. 56~4. 90 (3H, m) 6. 0

8 (1H, d, J=8. 28) 7. 05~7. 77 (13H, m)

実施例25

N_α- (2-フェネチルベンジルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

5 実施例3と同様にして、N_α- (2-フェネチルベンジルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジド 179 mg (0. 3 0 mmol : 収率 72%) を得る。

Fab-Ms : 591 (M+H) +

10 NMR (DMSO) δ値: 1. 96 (3H, br s) 2. 70~4. 00 (16H, m) 4. 40~4. 55 (1H, br) 7. 04~7. 88 (1 4H, m)

実施例26

N_α- (tert-ブチルオキシカルボニル (2-フェニルベンジル) アミノスルホニル) -3-シアノフェニルアラニンエチルエステルの合成

15 実施例2と同様にして、N_α- (tert-ブチルオキシカルボニル (2-フェニルベンジル) アミノスルホニル) -3-シアノフェニルアラニンエチルエステル 130 mg (0. 22 mmol : 収率 44%) を得る。

NMR (CDCl₃) δ値: 1. 18 (3H, t, J=7. 31 Hz) 1. 38 (9H, s) 3. 06 (2H, d, J=5. 85 Hz) 4. 02~4. 13 (1H, m) 4. 12 (2H, q, J=6. 82 Hz) 4. 77 (2H, dd, J=26. 8 17. 06 Hz) 5. 95 (1H, d, J=6. 82 Hz) 7. 16~7. 60 (13H, m)

実施例27

N_α- (tert-ブチルオキシカルボニル (3-フェニルオキシベンジル) アミノスルホニル) -3-シアノフェニルアラニンエチルエステルの合成

実施例2と同様にして、N_α- (tert-ブチルオキシカルボニル (3-フェニルオキシベンジル) アミノスルホニル) -3-シアノフェニルアラニンエチルエステル 270 mg (0. 46 mmol : 収率 93%) を得る。

NMR (CDCl₃) δ値; 1. 20 (3H, t, J=7. 07Hz) 1.
 44 (9H, s) 2. 90~3. 14 (2H, m) 3. 88~4. 00 (1
 H, m) 4. 04~4. 10 (2H, q, J=7. 31Hz) 4. 77 (2
 H, dd, J=43. 4 15. 6Hz) 5. 97 (1H, d, J=6. 35
 Hz) 6. 80~7. 60 (13H, m)

実施例28

Nα-(tert-ブチルオキシカルボニル(2-フェネチルベンジル)アミノスルホニル)-3-シアノフェニルアラニンエチルエステルの合成

実施例2と同様にして、Nα-(tert-ブチルオキシカルボニル(2-フェ
 10 ネチルベンジル)アミノスルホニル)-3-シアノフェニルアラニンエチルエス
 テル180mg (0. 30mmol : 収率61%)を得る。

NMR (CDCl₃) δ値; 1. 16 (3H, t, J=7. 07Hz) 1.
 36 (9H, s) 2. 72~3. 05 (6H, m) 3. 90~4. 00 (1
 H, m) 4. 09 (2H, q, J=7. 31Hz) 4. 73 (2H, d, J
 15 =3. 41Hz) 5. 87 (1H, d, J=6. 82Hz) 7. 00~7.
 53 (13H, m)

実施例29

Nα-(tert-ブチルオキシカルボニル(4-フェニルベンジル)アミノスルホニル)-3-シアノフェニルアラニンエチルエステルの合成

実施例2と同様にして、Nα-(tert-ブチルオキシカルボニル(4-フェ
 20 ニルベンジル)アミノスルホニル)-3-シアノフェニルアラニンエチルエス
 テル230mg (0. 40mmol : 収率81%)を得る。

NMR (CDCl₃) δ値; 1. 15 (3H, t, J=7. 09Hz) 1.
 51 (9H, s) 2. 90~3. 10 (2H, m) 3. 88 (1H, dd,
 25 J=5. 94 5. 94Hz) 4. 00~4. 09 (2H, m) 4. 85
 (2H, dd, J=64. 33 15. 51Hz) 5. 92 (1H, d, J=
 6. 6Hz) 7. 28~7. 70 (13H, m)

実施例30

$\text{N}\alpha$ - (tert-ブチルオキシカルボニル (3-フェニル-2-(ピロリジン-1-イルカルボニル)-n-プロピル) アミノスルホニル) - 3-シアノフェニルアラニンエチルエステルの合成

$\text{N}\alpha$ - (tert-ブチルオキシカルボニルアミノスルホニル) - 3-シアノフェニルアラニンエチルエステル 200 mg (0. 5 mmol : 1. 0 eq) をジクロロメタン 2 ml に溶解し、攪はんしながら 3-フェニル-2-(ピロリジン-1-イルカルボニル)-n-プロピルアルコール 117 mg (0. 5 mmol : 1. 0 eq) 及びトリフェニルfosfin 92 mg (0. 5 mmol : 1. 0 eq) を加える。ジクロロメタン 1 ml に溶解したジエチルアゾジカルボキシレート 87 mg (0. 5 mmol : 1. 0 eq) をゆっくり滴下し、終了後、室温にて、5日間攪はんする。60°C に加熱し 5 時間攪はんし、さらに溶媒をクロロホルムに代え、5時間還流攪はんする。減圧下で溶媒を除去し、残留物をカラムクロマトグラフィー (和光 C-200 : 移動相 酢酸エチル : n-ヘキサン 1 : 1 → 2 : 1) して、 $\text{N}\alpha$ - (tert-ブチルオキシカルボニル (3-フェニル-2-(ピロリジン-1-イルカルボニル)-n-プロピル) アミノスルホニル) - 3-シアノフェニルアラニンエチルエステル 45 mg (0. 073 mmol : 収率 15%) を得る。

NMR (CDCl₃) δ 値 : 1. 15~1. 35 (3H, m) 1. 40~1. 85 (4H, m) 1. 49 および 1. 50 (9H, 2×s) 2. 47~2. 66 (1H, m) 2. 70~3. 00 (2H, m) 3. 04~3. 54 (6H, m) 3. 30~4. 54 (5H, m) 6. 06~6. 20 (1H, m) 7. 10~7. 68 (9H, m)

実施例 3 1

$\text{N}\alpha$ - (tert-ブチルオキシカルボニル (3, 3-ジフェニル-n-プロピル) アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルペラジドの合成

実施例 2 と同様にして、 $\text{N}\alpha$ - (tert-ブチルオキシカルボニル (3, 3-ジフェニル-n-プロピル) アミノスルホニル) - 3-シアノフェニルアラニ

ン-4-アセチルピペラジド68mg (0.10mmol: 収率24%)を得る。

Fab-Ms : 696 (M+Na) +

NMR (CDCl₃) δ値: 1.51 (9H, s) 2.00~2.13 (2H, m) 2.28~2.47 (2H, m) 2.80~3.62 (12H, m) 3.88~4.00 (1H, m) 4.64~4.80 (1H, m) 6.15~6.27 (1H, m) 7.14~7.80 (14H, m)

実施例3 2

10 Nα-(tert-ブチルオキシカルボニル(3,3-ジフェニル-n-プロピル)アミノスルホニル)-3-シアノフェニルアラニンエチルエステルの合成

実施例2と同様にして、Nα-(tert-ブチルオキシカルボニル(3,3-ジフェニル-n-プロピル)アミノスルホニル)-3-シアノフェニルアラニンエチルエステル219mg (0.37mmol: 収率74%)を得る。

Fab-Ms : 614 (M+Na) +

15 NMR (CDCl₃) δ値: 1.15 (3H, t, J=7.09Hz) 1.46 (9H, s) 2.28~2.41 (2H, m) 3.06~3.20 (2H, m) 3.52~3.65 (2H, m) 3.93 (1H, t, J=7.76Hz) 4.01~4.17 (2H, m) 4.24 (1H, dd, J=13.26, 2.27) 5.92 (1H, d, J=7.26Hz) 7.15~7.56 (14H, m)

実施例3 3

20 Nα-(tert-ブチルオキシカルボニル(2,2-ジフェニルエチル)アミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジドの合成

25 Nα-(tert-ブチルオキシカルボニルアミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジド200mg (0.43mol: 1.0eq)をクロロホルム4mlに溶解し、攪はんしながら2,2-ジフェニルエタノール256mg (1.29mmol: 3.0eq)及びトリフェニルfos

5 フィン 238 mg (1. 29 mmol : 3. 0 eq) を加える。クロロホルム 1 ml に溶解したジエチルアゾジカルボキシレート 225 mg (1. 29 mmol : 3. 0 eq) をゆっくり滴下し、終了後、5 時間還流攪はんする。減圧下で溶媒を除去し、残留物をカラムクロマトグラフィー (和光 C-200 : 移動相 ジクロルメタン : 酢酸エチル 1 : 1 → 2 : 3 → 1 : 2) して、 $\text{Na-}(\text{tert-}\text{B}\text{u}_2\text{O})_2$ (2, 2-ジフェニルエチル) アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルピペラジド 255 mg (0. 38 mol : 収率 90%) を得る。

10 NMR (CDCl₃) δ 値: 1. 56 (9H, s) 2. 03 (3H, d, J = 7. 92 Hz) 2. 55~3. 81 (14H, m) 5. 10~5. 28 (1H, br) 7. 32~7. 70 (14H, m)

実施例 34

15 $\text{Na-}(\text{tert-}\text{B}\text{u}_2\text{O})_2$ (2-メトキシメトキシベンジル) アミノスルホニル) - 3-カルボチオアミドフェニルアラニン-4-アセチルピペラジドの合成

NMR (CDCl₃) δ 値: 1. 40 (9H, s) 2. 08 (3H, s) 2. 99~3. 80 (10H, m) 3. 48 (3H, s) 4. 72~4. 90 (1H, m)

20 $\text{Na-}(\text{tert-}\text{B}\text{u}_2\text{O})_2$ (2-メトキシメトキシベンジル) アミノスルホニル) - 3-シアノフェニルアラニン-4-アセチルピペラジド 390 mg (0. 62 mmol) のピリジン 3 ml とトリエチルアミン 6 ml の混合溶液に、室温下流化水素ガスを 30 分間バーリングしたのち 3 日間放置する。

25 反応溶液に水 40 ml および酢酸エチル 40 ml を加え、2 N HCl を加えて水層を pH 4 にした後に、分液する。有機層は 1 N HCl ついで水で洗浄した後に無水硫酸ナトリウム上乾燥後、減圧留去し、得られた残渣をカラムクロマトグラフィー (富士シリシア化学 NH-DM-1020 : 移動相酢酸エチル中メタノール 9%) して、 $\text{Na-}(\text{tert-}\text{B}\text{u}_2\text{O})_2$ (2-メトキシメトキシベンジル) アミノスルホニル) - 3-カルボチオアミドフェニルアラニン-4-アセチルピペラジド 301 mg (0. 45 mmol : 収率 73%) を得る。

NMR (CDCl₃) δ 値: 1. 40 (9H, s) 2. 08 (3H, s) 2. 99~3. 80 (10H, m) 3. 48 (3H, s) 4. 72~4. 90 (1H, m)

5 (3H, m) 5、18 (1H, d J=7Hz) 5、21 (1H, d J=7Hz) 6、16 (1H, brd J=8Hz) 6、96~7、70 (10H, m)

実施例35

5 Nα-(tert-ブチルオキシカルボニル(2-メトキシメトキシベンジル)アミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

10 Nα-(tert-ブチルオキシカルボニル(2-メトキシメトキシベンジル)アミノスルホニル)-3-カルボチオアミドフェニルアラニン-4-アセチルピペラジド165mg (0.25mmol) のアセトン2mlけん渦液に、ヨウ化メチル353mgを加えて、50分加熱還流する。反応液を減圧留去し、得られた残渣にメタノール2mlと酢酸アンモニウム29mgを加えて4時間加熱還流したのちに反応液を減圧留去し、得られた残渣をカラムクロマトグラフィー(富士シリシア化学NH-DM-1020:移動相酢酸エチル中メタノール9%のち15 塩化メチレン中メタノール9%)して、Nα-tert-ブチルオキシカルボニル(2-メトキシメトキシベンジル)アミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジド101mg (0.16mmol):収率63%を得る。

20 NMR (DMSO) δ値: 1、29 (9H, s) 1、97 (3H, s) 2、85~3、60 (10H, m) 3、36 (3H, s) 4、58 (1H, m) 4、71 (2H, s) 5、20 (2H, s) 6、93~8、31 (12H, m)

実施例36

25 Nα-(2-ヒドロキシベンジル)アミノスルホニル-3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

Nα-(tert-ブチルオキシカルボニル(2-メトキシメトキシベンジル)アミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドのメタノール1ml溶液に4N HCl酢酸エチル溶液1mlを加えて、17時間

室温にて攪拌する。反応液を減圧留去し、 $\text{Na}-$ (2-ヒドロキシベンジル)アミノスルホニル-3-アミジノフェニルアラニン-4-アセチルピペラジド塩酸塩を得る。NMR(DMSO) δ値: 1.97(3H, s) 2.80~3.80(12H, m) 4.50~4.60(1H, m) 6.71~9.48(15H, m)。

- 5 このうちの17mg(0.032mmol)を残し、他の部分をカラムクロマトグラフィー(富士シリシア化学NH-DM-1020:移動相塩化メチレン中メタノール20%)して、 $\text{Na}-$ (2-ヒドロキシベンジル)アミノスルホニル-3-アミジノフェニルアラニン-4-アセチルピペラジド53mg(0.106mmol:収率あわせて90%)を得る。
- 10 NMR(DMSO) δ値: 1.94(3H, s) 2.50~3.60(10H, m) 3.84(2H, s) 4.45~4.47(1H, m) 5.00~6.60(6H, br) 6.69~7.72(8H, m)

実施例37

$\text{Na}-$ (tert-ブチルオキシカルボニル(1-ナフチルメチル)アミノスルホニル)-3-シアノフェニルアラニン 4-メタンスルホニルピペラジドの合成

- 15 $\text{Na}-$ (tert-ブチルオキシカルボニル(1-ナフチルメチル)アミノスルホニル)-3-シアノフェニルアラニンエチルエステル 6.46g(12.02mmol)をエタノール40mlに溶解し、2N-NaOH 40mlを加える。室温にて16時間攪拌する。減圧下で溶媒を除去し、クエン酸を加えpH=3~4まで酸性化し固体を析出する。上層液を除去し、酢酸エチル:水:メタノール=30:10:1の混合液をえた後、酢酸エチル層のみを分け、無水酢酸ナトリウムにて乾燥する。減圧下で溶媒を除去し、 $\text{Na}-$ (tert-ブチルオキシカルボニル(1-ナフチルメチル)アミノスルホニル)-3-シアノフェニルアラニン 5.74g(94%)を得る。

1N-NMR(CDCl₃) δ値: 1.34(9H, s) 3.01~3.16(2H, m) 4.01(1H, t, J=5.4Hz) 5.34(2H, s) 7.34~7.94(11H, m)

得られた $N\alpha$ - (tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル) - 3-シアノフェニルアラニン 1 g (1. 962 mmol) をジクロロメタン 50 ml に溶解し、氷冷下、ジメチルアミノピリジン 4.80 mg (3. 924 mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩 75.3 mg (3. 924 mmol)、1-メタンスルホニルピペラジン塩酸塩 59.1 mg (2. 945 mmol) を加え、3時間攪拌する。水を加えてジクロロメタンにて抽出し、飽和炭酸水素ナトリウム水溶液および希塩酸にて洗浄し、つづいて水洗浄を行う。無水酢酸ナトリウムにて乾燥し、減圧下で溶媒を除去する。残留物をカラムクロマトグラフィー（移動相 酢酸エチル : n-ヘキサン = 1 : 1）にて精製すると、 $N\alpha$ - (tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル) - 3-シアノフェニルアラニン 4-メタンスルホニルピペラジド 300 mg (23%) を得る。

以下同様にして得ることができる。

実施例	Structure	MS	NMR (δ value)
37			CDCl ₃ : 1.34(9H,s) 2.17-2.23(1H,m) 2.60(3H,s) 2.64-2.67(2H,m) 2.77-2.97(5H,m) 3.45-3.48(2H,m) 4.32-4.34(1H,m) 5.28(2H,m) 6.08(1H,d,J=7.80Hz) 7.19-7.50(8H,m) 7.76-8.02(3H,m)
38			CDCl ₃ : 1.40(9H,s) 2.76-3.52(10H,m) 4.50-4.53(1H,m) 5.36(2H,s) 7.38-8.07(12H,m)
39			CDCl ₃ : 0.81-1.01(4H,m) 1.42(9H,s) 2.49-2.73(2H,m) 2.87-2.93(3H,m) 3.20-3.58(6H,m) 4.32(1H,bs) 5.37(2H,q,J=13.1Hz) 6.03(1H,d,J=7.7Hz) 7.36-8.14(11H,m)
40			CDCl ₃ : 1.42(9H,s) 2.45-3.18(8H,m) 2.83(6H,s) 3.30-3.56(2H,m) 4.29-4.31(1H,m) 5.27-5.43(2H,m) 6.06(1H,d,J=7.4Hz) 7.30-8.14(11H,m)

実施例	Structure	MS	NMR (δ value)
41			CDCl ₃ : 1.41(9H,s) 2.65-3.51(10H,m) 3.73(3H,s) 4.32(1H,q,J=13.3) 5.33-5.37(2H,m) 6.02(1H,d,J=7.5Hz) 7.30-8.10(11H,m)
42			CDCl ₃ : 1.42(9H,s) 1.78-1.86(1H,m) 2.15-2.97(7H,m) 3.14(2H,s) 3.40-3.65(2H,m) 3.74(3H,s) 4.28-4.34(1H,m) 5.32-5.37(2H,m) 6.11(1H,d,J=7.4Hz) 7.32-8.18(11H,m)
43			CDCl ₃ : 1.42(9H,s) 2.46-2.75(2H,m) 2.85-2.92(3H,m) 3.22-3.58(5H,m) 4.27-4.31(1H,m) 5.27-5.44(2H,m) 6.07(1H,d,J=7.5Hz) 7.27-8.15(11H,m)
44			CDCl ₃ : 1.25-1.53(6H,m) 1.43(9H,s) 2.68-2.72(2H,m) 2.80-2.82(1H,m) 2.89-2.92(1H,m) 3.17-3.25(1H,m) 3.50-3.57(1H,m) 4.33-4.35(1H,m) 5.26-5.38(2H,m) 6.21(1H,d,J=7.3Hz) 7.30-8.11(11H,m)

実施例	Structure	MS	NMR (δ value)
45			CDCl ₃ : 1.30(4.5H,s) 1.40(4.5H,s) 2.29-4.72(9H,m) 5.20-5.34(2H,m) 6.17(0.5H,d,J=7.4Hz) 6.26(0.5H,d,J=7.4Hz) 7.17-7.88(15H,m)
46			CDCl ₃ : 1.44(9H,s) 1.96-2.55(4H,m) 2.27(3H,d,J=10.2Hz) 2.83-3.03(4H,m) 3.45-3.71(4H,m) 4.24-4.36(1H,m) 5.31-5.36(2H,m) 7.36-8.10(11H,m)
47			CDCl ₃ : 1.41(9H,s), 1.48(9H,s) 2.65 - 2.70(3H,m) 2.82-2.92(2H,m) 3.01-3.18(2H,m) 3.32-3.44(3H,m) 4.32(1H,q,J=6.9Hz) 5.35(2H,q,J=13.0Hz) 6.09(1H,d,J=7.5Hz) 7.30-8.10(11H,m)
48			CDCl ₃ : 0.90(3H,t,J=6.63Hz) 1.43(9H,s) 2.61-2.70(3H,m) 2.83-2.96(2H,m) 3.13-3.26(2H,m) 3.34-3.51(3H,m) 4.14-4.22(2H,m) 4.31-4.38(1H,m) 5.32-5.39(2H,m) 6.16(1H,d,J=7.38Hz) 7.29-7.39(3H,m) 7.50-7.61(5H,m) 7.85-8.11(3H,m)

実施例	Structure	MS	NMR (δ value)
49			$\text{CD}_3\text{OD}:$ 1.42(9H,s) 2.80-2.98(5H,m) 3.30-3.33(2H,m) 3.49-3.56(2H,m) 3.61-3.70(1H,m) 4.41-4.46(1H,m) 5.29-5.40(2H,m) 6.26-6.28(1H,m) 6.58(1H,d,J=8.54Hz) 6.72-6.74(1H,m) 7.13-7.18(3H,m) 7.51-7.58(5H,m) 7.84-7.91(2H,m) 8.09-8.24(2H,m)
50			$\text{CDCl}_3:$ 1.44(9H,s) 2.07-2.13(3H,m) 2.25(3H,s) 2.31-2.36(1H,m) 2.64-2.70(1H,m) 2.82-2.99(3H,m) 3.37-3.61(2H,m) 4.36-4.39(1H,m) 5.29-5.45(2H,m) 6.13-6.16(1H,m) 7.32-7.41(3H,m) 7.52-7.59(5H,m) 7.84-7.92(2H,m) 8.09-8.13(1H,m)
51			$\text{CDCl}_3:$ 1.34(9H,s) 2.28-2.31(1H,m) 2.67-2.97(7H,m) 3.54-3.58(2H,m) 4.30-4.33(1H,m) 5.20-5.37(2H,m) 6.08(1H,d,J=7.48Hz) 6.74-6.86(3H,m) 7.19-7.27(5H,m) 7.43-7.52(5H,m) 7.76-7.84(2H,m) 7.99-8.04(1H,m)
52			$\text{CDCl}_3:$ 1.32(9H,s) 2.63-2.87(6H,m) 2.98-3.22(4H,m) 4.35-4.38(1H,m) 5.22-5.36(2H,m) 6.02(1H,d,J=7.89Hz) 7.20-7.34(3H,m) 7.45-7.51(5H,m) 7.76-8.00(3H,m)

実施例	Structure	MS	NMR (δ value)
53			CDCl ₃ : 1.32(9H,s) 1.82-1.86(1H,m) 2.54-2.57(1H,m) 2.69-2.73(2H,m) 2.82-2.87(2H,m) 2.98-3.01(2H,m) 3.32-3.36(1H,m) 3.62-3.65(1H,m) 4.36-4.40(1H,m) 5.26-5.39(2H,m) 6.12(1H,brs) 7.19-7.21(4H,m) 7.51-7.70(9H,m) 7.84-8.05(3H,m)
54			CDCl ₃ : 1.44(9H,s) 2.41-2.45(1H,m) 2.73-2.78(1H,m) 2.83(6H,m) 2.87-2.99(5H,m) 3.11-3.18(2H,m) 3.51-3.55(2H,m) 4.38-4.41(1H,m) 5.30-5.45(2H,m) 6.05(1H,d,J=7.62Hz) 7.30-7.42(3H,m) 7.53-7.61(5H,m) 7.86-7.94(2H,m) 8.09-8.12(1H,m)
55			CDCl ₃ : 1.33(9H,s) 1.85-1.90(1H,m) 2.49(3H,s) 2.59-2.69(3H,m) 2.78-2.87(3H,m) 2.91-2.96(1H,m) 3.38-3.41(1H,m) 3.59-3.63(1H,m) 4.33-4.36(1H,m) 5.26-5.41(2H,m) 5.95(1H,d,J=7.68Hz) 7.19-7.26(4H,m) 7.39-7.42(2H,m) 7.52-7.61(6H,m) 7.84-7.95(2H,m) 8.08-8.12(1H,m)
56			CDCl ₃ : 1.36(3H,t,J=7.44Hz) 1.44(9H,s) 2.37-2.41(1H,m) 2.61-2.78(2H,m) 2.82-2.96(5H,m) 3.02-3.18(2H,m) 3.52-3.55(2H,m) 4.34-4.37(1H,m) 5.33-5.40(2H,m) 6.01(1H,d,J=7.69Hz) 7.30-7.42(3H,m) 7.51-7.61(5H,m) 7.87-7.97(2H,m) 8.10-8.14(1H,m)

実施例	Structure	MS	NMR (δ value)
57			CDCl ₃ : 1.44(9H,s) 2.62-2.95(5H,m) 3.12-3.51(5H,m) 3.92-3.97(5H,m) 4.38(1H,brs) 5.35-5.46(2H,m) 5.98(1H,d,J=7.57Hz) 7.31-7.41(3H,m) 7.51-7.60(5H,m) 7.87-7.95(2H,m) 8.13-8.15(1H,m)
58			CDCl ₃ : 1.45(9H,s) 1.81-1.98(1H,m) 2.52-2.61(1H,m) 2.86-3.01(3H,m) 3.30-3.33(3H,m) 3.50-3.88(4H,m) 4.10-4.32(1H,m) 5.32-5.41(2H,m) 6.09-6.27(1H,m) 7.36-7.43(3H,m) 7.50-7.59(5H,m) 7.83-7.90(2H,m) 8.06-8.12(1H,m)
59			CDCl ₃ : 0.85-0.95(3H,m) 1.20-1.65(4H,m) 2.25-3.00(5H,m) 4.20-4.50(2H,m) 5.20-5.40(2H,m) 6.10-6.30(1H,m) 7.25-8.15(11H,m)
60			CDCl ₃ : 0.89(3H,d,J=6.46) 1.20-1.65(14H,m) 2.75-3.15(4H,m) 4.20-4.55(2H,m) 5.20-5.55(3H,m) 6.15-6.35(1H,m) 7.25-8.15(11H,m)

実施例	Structure	MS	NMR (δ value)
61			CDCl ₃ : 1.40(9H,s) 1.70-2.35(4H,m) 2.80-3.20(4H,m) 3.60-3.85(2H,m) 4.45-4.55(1H,m) 5.35-5.45(2H,m) 6.0(1H,d,J=7.77) 7.25-8.15(11H,m)
62			CDCl ₃ : 1.25-1.85(14H,m) 2.25-2.85(4H,m) 3.65(3H,s) 4.15-4.40(2H,m) 5.20-5.45(2H,m) 6.05-6.15(1H,m) 7.20-8.15(11H,m)
63		Mass(ESI): 566(M+H) ⁺	DMSO-d ₆ : 1.45(3H,t,J=6.97Hz) 2.00(3H,s), 2.89(1H,bs) 3.00(1H,bs) 3.10-3.90(9H,m) 4.11(1H,d,J=13.9Hz) 4.50-4.70(3H,m) 7.36-7.62(7H,m) 7.71(1H,d,J=7.02Hz) 7.83-7.94(4H,m) 8.24(1H,bs), 11.40(1H,bs) 12.26(1H,bs)
64			CDCl ₃ : 1.36(9H,s), 1.97(3H,s) 2.15-2.21(1H,m) 2.43-2.47(1H,m) 2.51-2.57(1H,m) 2.69-3.01(4H,m) 3.28-3.40(1H,m) 3.66-3.70(2H,m) 4.29-4.33(1H,m) 5.23-5.27(2H,m) 6.01-6.04(1H,m) 6.28-6.46(3H,m) 6.93-6.96(1H,m) 7.40-7.51(4H,m) 7.72-7.82(2H,m) 7.97-8.01(1H,m)

実施例	Structure	MS	NMR (δ value)
65			CDCl_3 : 1.16(9H,s), 1.97(3H,s) 2.13-2.21(1H,m) 2.41-2.47(1H,m) 2.51-2.57(1H,m) 2.69-3.01(4H,m) 3.28-3.40(1H,m) 3.66-3.70(2H,m) 4.29-4.34(1H,m) 5.21-5.27(3H,m) 6.01-6.04(1H,m) 6.23-6.46(3H,m) 6.91-6.96(1H,m) 7.40-7.51(4H,m) 7.72-7.82(2H,m) 7.97-8.04(1H,m)

実施例 6 6N_α-(1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン 4-メタンスルホニルピペラジドの合成

実施例 3 と同様にして、N_α-(1-ナフチルメチルアミノスルホニル)-3
5 -アミジノフェニルアラニン 4-メタンスルホニルピペラジド 195 mg (7
4%) を得る。

以下同様にして得ることができる。

実施例	Structure	MS	NMR (δ value)
66		Mass(ESI): 573(M+H) ⁺	CD ₃ OD: 2.31-2.37(1H,m) 2.59(3H,s) 2.68-2.90(6H,m) 3.03-3.11(1H,m) 3.27-3.51(3H,m) 4.19-4.38(3H,m) 7.29-7.99(11H,m)
67		Mass(ESI): 523(M+H) ⁺	CD ₃ OD: 1.90-1.94(2H,m) 2.65-2.74(1H,m) 2.81-2.89(1H,m) 3.14-3.31(6H,m) 4.19-4.42(3H,m) 7.30-8.01(12H,m)
68		Mass(ESI): 563(M+H) ⁺	CD ₃ OD: 0.69-0.74(4H,m) 1.62-1.81(1H,m) 2.73-3.03(4H,m) 3.20-3.52(6H,m) 4.20-4.42(3H,m) 7.20-7.95(11H,m)
69		Mass(ESI): 566(M+H) ⁺	CD ₃ OD: 2.44-3.36(10H,m) 2.68(6H,s) 3.76(1H,bs) 4.21-4.41(3H,m) 7.19-8.02(11H,m)

実施例	Structure	MS	NMR (δ value)
70		Mass(ESI): 553(M+H) ⁺	CD ₃ OD: 2.71-3.77(10H,m) 3.57(3H,s) 4.19-4.41(3H,m) 7.21-8.02(11H,m)
71		Mass(ESI): 552(M+H) ⁺	CD ₃ OD: 1.79-2.32(4H,m) 2.69-2.87(2H,m) 2.78(2H,s) 3.09-3.50(4H,m) 4.23-4.42(3H,m) 7.23-8.03(11H,m)
72		Mass(ESI): 496(M+H) ⁺	CD ₃ OD: 2.64-3.50(10H,m) 4.20-4.41(3H,m) 7.22-7.98(11H,m)
73		Mass(ESI): 494(M+H) ⁺	CD ₃ OD: 1.19-1.52(6H,m) 2.65-2.71(1H,m) 2.83-2.90(1H,m) 3.11-3.42(4H,m) 4.23-4.41(3H,m) 7.27-7.99(11H,m)

実施例	Structure	MS	NMR (δ value)
74		Mass(ESI): 542(M+H) ⁺	CD ₃ OD: 2.19-2.95(4H,m) 3.38-3.77(2H,m) 4.03-4.46(5H,m) 7.01-7.99(15H,m)
75		Mass(ESI): 523(M+H) ⁺	CD ₃ OD: 1.98-3.55(12H,m) 1.98(3H,d,J=12.7Hz) 4.28-4.39(3H,m) 7.34-8.08(11H,m)
76		Mass(ESI): 495(M+H) ⁺	CD ₃ OD: 1.90-1.98(2H,m) 2.31-2.38(1H,m) 2.45-2.57(2H,m) 2.70-2.73(1H,m) 2.83-2.86(1H,m) 3.01-3.37(3H,m) 4.19-4.42(3H,m) 7.24-7.98(11H,m)
77			CD ₃ OD: 1.14(3H,t,J=7.08) 2.63-2.71(2H,m) 2.75-2.81(1H,m) 2.95-3.03(2H,m) 3.09-3.30(5H,m) 3.99(2H,q,J=7.10) 4.20-4.40(3H,m) 7.17-7.48(8H,m) 7.78-7.99(3H,m)

実施例	Structure	MS	NMR (δ value)
78			CD ₃ OD: 2.71-2.90(3H,m) 3.04-3.10(2H,m) 3.19-3.43(5H,m) 4.20-4.38(3H,m) 6.56-6.58(2H,m) 7.16-7.47(9H,m) 7.68-7.75(2H,m) 7.95-7.99(2H,m)
79			CD ₃ OD: 1.65-1.70(1H,m) 1.99(3H,s) 2.10-2.15(3H,m) 2.75-2.82(2H,m) 2.97-3.06(1H,m) 3.20-3.31(3H,m) 4.24-4.40(3H,m) 7.29-7.51(8H,m) 7.71-7.82(2H,m) 7.99-8.02(1H,m)
80		Mass(ESI): 571(M+H) ⁺	CD ₃ OD: 2.28-2.32(1H,m) 2.75-2.91(5H,m) 3.25-3.45(4H,m) 4.21-4.41(3H,m) 6.72-6.77(3H,m) 7.09-7.48(10H,m) 7.70-7.80(2H,m) 7.98-8.01(1H,m)
81		Mass(ESI): 627(M+H) ⁺	TFA-d: 2.69-2.94(2H,m) 3.20-3.65(8H,m) 4.49-4.61(3H,m) 7.28-7.39(4H,m) 7.47-7.54(4H,m) 7.79-7.87(3H,m)

実施例	Structure	MS	NMR (δ value)
82		Mass(ESI): 635(M+H) ⁺	CD ₃ OD: 2.24-2.27(1H,m) 2.66-2.82(5H,m) 3.22-3.41(4H,m) 4.31-4.36(3H,m) 7.22-7.59(13H,m) 7.79-7.97(3H,m)
83		Mass(ESI): 602(M+H) ⁺	CD ₃ OD: 2.48-2.52(1H,m) 2.66(6H,s) 2.71-2.82(2H,m) 2.88-2.95(3H,m) 3.21-3.36(4H,m) 4.30-4.46(3H,m) 7.35-7.52(8H,m) 7.73-7.81(2H,m) 7.98-8.03(1H,m)
84		Mass(ESI): 649(M+H) ⁺	DMSO-d ₆ : 1.58-1.61(1H,m) 2.18-2.22(1H,m) 2.43(3H,s) 2.50-2.59(2H,m) 2.80-2.87(4H,m) 3.62-3.69(2H,m) 3.97-4.44(3H,m) 7.16-7.22(3H,m) 7.36-7.55(8H,m) 7.66(1H,s) 7.84-7.97(3H,m)
85		Mass(ESI): 587(M+H) ⁺	CD ₃ OD: 1.11-1.16(3H,m) 2.56-2.60(1H,m) 2.75-2.80(2H,m) 2.88-2.94(4H,m) 3.01-3.08(1H,m) 3.22-3.30(2H,m) 3.42-3.49(2H,m) 4.21-4.42(3H,m) 7.26-7.37(4H,m) 7.43-7.49(4H,m) 7.73-7.82(2H,m) 7.98-8.02(1H,m)

実施例	Structure	MS	NMR (δ value)
86		Mass(ESI): 566(M+H) ⁺	CD ₃ OD: 2.66-2.70(1H,m) 2.81-2.85(2H,m) 2.99-3.03(1H,m) 3.20-3.37(6H,m) 4.21-4.41(3H,m) 7.17-7.36(4H,m) 7.42-7.48(4H,m) 7.70-7.78(2H,m) 7.99-8.02(1H,m)
87		Mass(ESI): 510(M ⁺)	CD ₃ OD: 1.77-1.79(1H,m) 2.64-2.90(4H,m) 3.00-3.10(3H,m) 3.28-3.43(2H,m) 3.52-3.70(2H,m) 4.01-4.35(3H,m) 7.25-7.49(8H,m) 7.70-7.80(2H,m) 7.94-7.98(1H,m)
88		Mass(ESI): 508(M+H) ⁺	CD ₃ OD: 0.80-0.98(3H,m) 1.10-1.55(5H,m) 2.25-2.95(5H,m) 3.50-3.75(1H,m) 3.95-4.45(4H,m) 7.05-8.05(11H,m)
89		Mass(ESI): 508(M+H) ⁺	CD ₃ OD: 0.70-0.95(3H,m) 1.15-1.60(5H,m) 1.90-2.85(5H,m) 3.45-3.70(1H,m) 3.95-4.65(4H,m) 7.05-8.05(11H,m)

実施例	Structure	MS	NMR (δ value)
90		Mass(ESI): 508(M+H) ⁺	CD ₃ OD: 1.15-1.45(4H,m) 2.70-2.95(4H,m) 3.30-3.45(1H,m) 4.15-4.80(4H,m) 7.15-8.05(11H,m)
91		Mass(ESI): 566(M+H) ⁺	CD ₃ OD: 1.15-1.65(8H,m) 2.30-2.85(4H,m) 3.50-3.75(1H,m) 3.85-4.40(6H,m) 7.10-8.10(11H,m)
92		Mass(ESI): 538(M+H) ⁺	CD ₃ OD: 1.20-1.70(5H,m) 2.25-2.90(4H,m) 3.55-3.65(1H,m) 4.05-4.45(4H,m) 7.20-8.15(11H,m)
93		Mass(ESI): 550(M) ⁺	CD ₃ OD: 1.91(3H,d,J=13.2Hz) 2.60-2.90(6H,m) 2.95-3.38(7H,m) 4.17(1H,t,J=12.85Hz) 4.26-4.40(2H,m) 7.11(1H,m) 7.23(1H,m) 7.32-7.49(6H,m) 7.70-7.81(2H,m) 7.97-8.04(1H,m)

実施例	Structure	MS	NMR (δ value)
94		Mass(ESI): 552(M) ⁺ 575(M+Na) ⁺	DMSO-d ₆ : 1.98(3H,s) 2.78-3.00(3H,m) 3.09-3.24(2H,m) 3.28-3.59(3H,m and nH ₂ O) 3.90-4.02(1H,m) 4.20-4.32(1H,m) 4.44(1H,q,J=8.13Hz) 5.83(2H,bs) 7.25-7.43(4H,m) 7.45-7.63(6H,m) 7.86(1H,d,J=8.1Hz) 7.92-8.03(2H,m) 9.64(1H,s)
95		Mass(ESI): 524(M+H) ⁺	CD ₃ OD: 2.06(3H,d,J=8.5Hz) 2.78-3.79(11H,m) 4.06(2H,s) 4.51-4.60(2H,m) 7.17-8.12(11H,m)
96		Mass(ESI): 510(M+H) ⁺	CDCl ₃ : 1.98(3/2H,s), 2.04(3/2H,s) 2.77-2.92(3H,m) 3.03-3.26(4H,m) 3.35-3.55(3H,m) 4.37-4.40(1H,m) 4.57-4.60(2H,m) 4.67-4.69(1H,m) 5.54-5.58(1H,m) 6.40-6.52(3H,m) 7.02-7.04(1H,m) 7.44-7.47(2H,m) 7.55-7.61(2H,m)

実施例97

$\text{N}\alpha - (\text{tert-} \text{ブチルオキシカルボニル (3-フェニル-} n\text{-プロピル) アミノスルホニル}) - 3\text{-シアノフェニルアラニン (2-エトキシカルボニル)}$
ビペリジドの合成

- 5 実施例2と同様にして、 $\text{N}\alpha - (\text{tert-} \text{ブチルオキシカルボニル (3-フェニル-} n\text{-プロピル) アミノスルホニル}) - 3\text{-シアノフェニルアラニン (2-エトキシカルボニル)}$ ビペリジドを得る。

以下同様にして得ることができる。

実施例	Structure	MS	NMR (δ value)
97			CDCl_3 1.24-4.73 (23H, m) 1.48 (9H, s) 6.06-7.55 (10H, m)
98			CDCl_3 1.19 (3H, ζ , $J=7\text{Hz}$) 1.47 (9H, s) 1.94 (2H, m) 2.63 (2H, m) 3.15 (2H, m) 3.62-3.65 (2H, m) 4.11 (2H, m) 5.92 (1H, d, $J=7\text{Hz}$) 7.17-7.58 (10H, m)
99			CDCl_3 1.25-4.76 (17H, m) 1.48 (9H, s) 5.21-5.43 (2H, m) 6.11-8.11 (12H, m)
100			CDCl_3 1.46 (9H, s) 1.21-5.30 (23H, m) 6.05-7.56 (10H, m)

実施例	Structure	MS	NMR (δ value)
101			CDCl_3 1.23-5.38 (19H, m) 1.43 (9H, s) 6.01-8.17 (12H, m)
102			CDCl_3 1.38 (9H, s) 2.04 (3H, s) 2.60-3.60 (13H, m) 5.10-5.25 (1H, m) 5.44 (2H, s) 7.30-8.05 (12H, m)
103			CDCl_3 1.19-1.32 (6H, m) 2.02, 2.05 (3H, s each) 2.60-3.80 (15H, m)
104			CDCl_3 1.33 (9H, s) 2.10 (3H, s) 2.90-3.70 (10H, m) 4.75-4.95 (1H, m) 5.33 (2H, s) 6.10-6.40 (1H, br) 7.30-8.00 (8H, m) 8.16 (1H, d, J=8.3Hz) 8.90 (1H, d, J=4.2Hz)

実施例	Structure	MS	NMR (δ value)
105		FAB-MS 534 ($M+H^+$)	CDCl_3 1.95, 2.06 (3H, sach s) 2.53 (3H, s) 2.40-3.75 (10H, m) 4.25-5.00 (3H, m) 5.30-5.50 (1H, m) 7.20-7.70 (8H, m) 7.80-8.00 (2H, m) 8.20-8.40 (1H, m)

実施例	Structure	MS	NMR (δ value)
106			CDCl ₃ 1.20-1.26 (3H, m) 1.38 (9H, s) 2.89-3.07 (2H, m) 3.76-3.86 (1H, m) 4.07-4.49 (6H, m) 5.70 (1H, d, J=5.94Hz) 7.19-7.53 (14H, m)
107			CDCl ₃ 1.40 (9H, s) 2.09 (3H, brs) 2.90-3.70 (10H, m) 3.81 (3H, s) 4.68-4.83 (3H, m) 6.22-6.25 (1H, m) 6.87-7.67 (8H, m)
108			CDCl ₃ 2.07, 2.09 (3H, each s) 1.37-1.41 (12H, m) 2.80-3.70 (10H, m) 4.12 (2H, q, J=7.14Hz) 4.75-4.98 (3H, m) 6.05-6.18 (1H, m) 6.82-7.71 (8H, m)
109			CDCl ₃ 1.47 (9H, s) 2.07 (3H, s) 2.63-3.49 (10H, m) 3.81 (3H, s) 4.22-4.28 (1H, m) 4.71-4.85 (2H, m) 6.05-6.08 (1H, m) 6.87-7.57 (8H, m)

実施例	Structure	MS	NMR (δ value)
110			CDCl_3 1.43 (9H, s) 2.07-2.08 (3H, m) 2.76-3.70 (10H, m) 3.84 (3H, s) 3.87 (3H, s) 4.55-4.60 (1H, m) 4.87 (2H, dd, $J=16.16, 34.64\text{Hz}$) 6.07 (1H, d, $J=7.26\text{Hz}$) 6.89-7.55 (7H, m)
111			CDCl_3 1.34 (9H, s) 2.07, 2.09 (3H, each s) 2.88-3.62 (10H, m) 4.03 (2H, s) 4.62-4.80 (3H, m) 6.06 (1H, d, $J=8.25\text{Hz}$) 7.03-7.70 (13H, m)
112			CDCl_3 1.06, 1.09 (3H, each s) 2.09 (3H, s) 3.00-3.80 (10H, m) 5.15-5.40 (1H, m) 5.48 (1H, d, $J=18\text{Hz}$) 5.58 (1H, d, $J=18\text{Hz}$) 7.40-8.10 (10H, m) 8.45-8.65 (1H, q)
113			CDCl_3 1.23 (3H, t, $J=7.25\text{Hz}$) 1.41 (9H, s) 3.02-3.05 (2H, m) 4.02-4.09 (3H, m) 4.75 (2H, dd, $J=16.83, 20.13\text{Hz}$) 5.90 (1H, d, $J=6.95\text{Hz}$) 7.06-7.54 (13H, m)

実施例	Structure	MS	NMR (δ value)
114			CDCl ₃ 1.32 (9H, s) 2.04 (23H, s) 2.94-3.91 (14H, m) 4.76 (1H, br) 6.00 (1H, br) 7.08-8.09 (10H, m)
115			CDCl ₃ 1.47 (9H, s) 2.10 (3H, s) 2.83-4.86 (13H, m) 3.84 (3H, s) 3.84 (3H, s) 3.85 (3H, s) 6.02 (1H, br) 6.60-7.58 (6H, m)
116			CDCl ₃ 1.50, 1.51 (9H, each s) 1.60-4.86 (25H, m) 7.23-7.59 (10H, m)
117			CDCl ₃ 1.46 (9H, s) 1.98, 2.03 (3H, each s) 2.74-3.69 (16H, m) 4.62 (1H, br) 6.13 (1H, br) 7.00-8.13 (10H, m)

実施例	Structure	MS	NMR (δ value)
118			CDCl_3 1.33 (9H, s) 2.04 (3H, s) 2.82-3.63 (12H, m) 3.83-4.00 (2H, m) 4.82 (1H, m) 6.15 (1H, d, $J=8.25\text{Hz}$) 7.30-8.15 (11H, m)
119			CDCl_3 1.36 (9H, s) 2.03 (3H, s) 2.85-3.70 (12H, m) 3.80-4.05 (2H, m) 4.78-4.90 (1H, m) 6.15-6.28 (6H, m) 7.25-7.88 (11H, m)
120		FAB-MS 695($M+H^+$)	CDCl_3 1.51 (9H, s) 1.50-1.80 (4H, m) 2.09 (3H, s) 2.44-4.03 (19H, m) 4.82-4.90 (1H, m) 6.20-6.35 (1H, m) 7.08-7.62 (9H, m)
121			CDCl_3 1.42 (9H, s) 2.09 (3H, s) 2.90-3.75 (12H, m) 3.75-3.95 (2H, m) 4.82 (1H, br) 6.08 (1H, br) 7.40-7.65 (6H, m) 8.05-8.15 (2H, m)

実施例	Structure	MS	NMR (δ value)
122			CDCl_3 1.40 (9H, s) 2.04,2.05 (3H, eachs) 2.72-3.65 (13H, m) 4.63-4.71 (1H, m) 6.40-6.53 (1H, m) 7.28-8.10 (10H, m)
123			CDCl_3 1.32 (9H, s) 1.51 (9H, s) 2.09 (3H, s) 2.70-3.90 (14H, m) 4.85-5.00 (1H, m) 5.90-6.00 (1H, m) 6.80-7.80 (9H, m)
124			CDCl_3 1.18 (3H, t, d=7.10Hz) 1.47 (9H, s) 2.90-3.10 (2H, m) 3.85-4.20 (3H, m) 5.31 (2H, dd, J=16.66,45.69Hz) 5.90 (1H, d, J=6.60Hz) 7.25-8.05 (10H, m)
125			CDCl_3 1.39 (9H, s) 1.52 (9H, s) 1.65-2.00 (2H, br) 2.08 (3H, s) 2.80-3.95 (15H, m) 4.85-5.00 (1H, m) 5.90-6.10 (1H, br) 6.90-7.85 (8H, m)

実施例	Structure	MS	NMR (δ value)
126			CDCl ₃ 1.44 (9H, s) 2.13 (3H, s) 2.20-4.05 (22H, m) 5.12 (1H, br) 7.25-7.60 (5H, m)
127			CDCl ₃ 1.49 (9H, s) 2.08 (3H, s) 2.60-3.60 (10H, m) 4.20-4.40 (2H, m) 4.71 (2H, m) 5.97-7.58 (10H, m)
128			CDCl ₃ 1.49 (9H, s) 2.07 (3H, s) 2.50-3.60 (10H, m) 4.15-4.45 (5H, m) 4.60-4.80 (2H, m) 5.95-6.10 (1H, m) 6.80-7.05 (3H, m) 7.30-7.70 (4H, m)
129			CDCl ₃ 1.44 (9H, s) 2.11 (3H, s) 2.95-3.80 (10H, m) 4.78 (1H, br) 5.07 (2H, m) 6.13 (2H, s) 6.20 (1H, br) 6.96 (1H, br) 7.43-7.60 (5H, m)

実施例	Structure	MS	NMR (δ value)
130			CDCl_3 1.20-2.00 (6H, m) 1.45, 1.49 (9H, each s) 2.11 (3H, s) 3.00-4.10 (15H, m) 4.85-5.05 (1H, m) 6.00-6.40 (1H, m) 7.40-7.58 (4H, m)
131			CDCl_3 1.45 (9H, s) 2.10 (3H, s) 2.90-3.71 (10H, m) 4.61-4.87 (3H, m) 6.06 (1H, brs) 7.39-7.88 (7H, m)
132			CDCl_3 1.42, 1.43 (9H, s) 2.00-2.15 (3H, m) 2.90-4.50 (15H, m) 4.80-5.00 (1H, br) 6.05-6.20 (1H, m) 6.86 (4H, s) 7.35-7.65 (4H, m)
133			CDCl_3 1.55, 1.56 (9H, s) 1.581, 2.04 (3H, s) 2.10-3.55 (10H, m) 4.04, 4.07 (3H, s) 4.30-4.50 (1H, m) 5.00-5.25 (2H, m) 6.05-6.25 (1H, m) 7.15-7.65 (6H, m) 7.70-7.90 (2H, m)

実施例	Structure	MS	NMR (δ value)
134			CDCl ₃ 1.20-1.90 (10H, m) 1.48 (9H, s) 2.10 (3H, s) 3.00-3.80 (15H, m) 4.92 (1H, m) 6.14 (1H, m) 7.39-7.58 (4H, m)
135			CDCl ₃ 1.41 (9H, s) 2.10 (3H, s) 2.90-3.65 (10H, m) 3.48 (3H, s) 4.70-5.23 (5H, m) 6.06 (1H, d) 6.96-7.58 (8H, m)
136			CDCl ₃ 1.48 (9H, s) 2.09 (3H, s) 2.60-3.62 (10H, m) 3.89 (6H, s) 4.75 (2H, dd, J=34, 14Hz) 6.04 (1H, brs) 6.81-7.62 (7H, m)
137			CDCl ₃ 1.47 (9H, s) 2.11 (3H, s) 3.00-3.70 (10H, m) 4.85-5.00 (1H, br) 4.93 (2H, s) 5.94 (1H, br) 7.44-7.57 (4H, m)

実施例	Structure	MS	NMR (δ value)
138			CDCl_3 1.43 (9H, s) 2.11 (3H, s) 2.85-3.75 (10H, m) 3.96 (3H, s) 4.50-4.95 (3H, m) 6.01 (1H, br) 6.90-7.20 (2H, m) 7.40-7.65 (4H, m) 7.83 (1H, d, $J=8.3\text{Hz}$)
139			CDCl_3 1.43 (9H, s) 2.04 (3H, s) 2.36-3.62 (10H, m) 3.95 (3H, s) 4.12-4.33 (1H, m) 5.29 (2H, dd, $J=42, 17\text{Hz}$) 7.12-8.10 (10H, m)
140			CDCl_3 0.03 (6H, s) 1.03 (9H, s) 1.42 (9H, s) 2.08 (3H, s) 2.34-3.66 (10H, m) 5.13-5.43 (2H, m) 5.98 (1H, brs) 7.08-8.10 (10H, m)
141			CDCl_3 1.42 (9H, s) 2.09 (3H, s) 2.80-3.80 (10H, m) 3.93 (3H, s) 4.45-4.65 (1H, br) 4.85 (2H, s) 6.00 (1H, br) 7.41-8.04 (8H, m)

実施例 142

N α -（アミノスルホニル）-3-アミジノフェニルアラニン-4-アセチルビペラジドの合成

実施例 3 と同様にして、N α -（アミノスルホニル）-3-アミジノフェニルアラニン-4-アセチルビペラジドを得る。

以下同様にして得ることができる。

実施例	Structure	MS	NMR (δ value)
142		FAB-MS 397($M+H^+$)	DMSO- d_6 1.95 (3H, s) 2.58-3.56 (10H, m) 4.40-4.56 (1H, m) 6.60-7.70 (7H, m) 8.31 (5H, s)
143			DMSO- d_6 1.16-4.38 (23H, m) 6.77-8.31 (14H, m)
144		FAB-MS 433($M+H^+$)	DMSO- d_6 1.12 (3H, t, J=7Hz) 1.49 (2H, m) 2.14-4.09 (9H, m) 6.86-8.31 (14H, m)
145		FAB-MS 405($M+H^+$)	DMSO- d_6 1.43-3.96 (9H, m) 6.74-12.80 (15H, m)

実施例	Structure	MS	NMR (δ value)
146			DMSO- d_6 2.90-4.47 (6H, m) 4.83 (2H, dd, J=16.5, 32.7Hz) 6.62 (1H, d, J=6.59Hz) 7.19 (1H, dd, J=7.59, 7.59Hz) 7.20-8.25 (10H, m)
147			DMSO- d_6 2.50-4.37 (6H, m) 6.40-7.70 (14H, m)
148			DMSO- d_6 2.78-4.44 (8H, m) 6.65-8.00 (15H, m)
149			DMSO- d_6 2.76-4.50 (12H, m) 6.72-7.96 (15H, m)

実施例	Structure	MS	NMR (δ value)
150			DMSO- d_6 2.74-4.52 (8H, m) 7.03-8.00 (15H, m)
151		FAB-MS 566(M+H ⁺)	DMSO- d_6 1.13-4.46 (19H, m) 6.90-8.35 (16H, m)
152		FAB-MS 544(M+H ⁺)	DMSO- d_6 1.13-5.16 (23H, m) 6.86-8.31 (14H, m)
153		FAB-MS 566(M+H ⁺)	DMSO- d_6 1.03-5.19 (19H, m) 7.01-8.31 (16H, m)

実施例	Structure	MS	NMR (δ value)
154		FAB-MS 516($M+H^-$)	DMSO- d_6 1.23-4.49 (18H, m) 6.84-9.38 (15H, m)
155		FAB-MS 538($M+H^+$)	DMSO- d_6 1.23-4.61 (14H, m) 7.20-12.38 (17H, m)
156		FAB-MS 516($M+H^+$)	DMSO- d_6 1.23-4.95 (18H, m) 6.92-10.20 (15H, m)
157		FAB-MS 538($M+H^+$)	DMSO- d_6 0.87-4.95 (14H, m) 7.31-9.15 (17H, m)

実施例	Structure	MS	NMR (δ value)
158		FAB-MS 551(M+H ⁺)	DMSO-d ₆ 1.93, 1.96 (3H, each s) 2.75-3.60 (13H, m) 4.15-4.35 (2H, br) 4.97 (1H, t, J=7.4Hz) 7.20-7.80 (9H, m) 7.80-8.00 (2H, m) 8.06 (1H, d, J=7.9Hz)
159			DMSO-d ₆ 1.38-1.80 (4H, m) 2.61-4.15 (15H, m) 6.93-8.30 (9H, m)
160			DMSO-d ₆ 2.05-2.09 (2H, m) 2.69-4.11 (9H, m) 7.12-7.66 (14H, m)
161		FAB-MS 453(M+H ⁺)	DMSO-d ₆ 0.97-1.49 (6H, m) 1.96 (3H, s) 2.69-3.60 (15H, m) 4.77-4.83 (1H, m) 7.34-7.89 (4H, m)

実施例	Structure	MS	NMR (δ value)
162		FAB-MS 538(M+H ⁺)	DMSO-d ₆ 1.98 (3H, s) 2.70-3.60 (10H, m) 4.02 (1H, d, J=16Hz) 4.23 (1H, d, J=16Hz) 4.50 (1H, t, J=7.3Hz) 7.25-7.85 (9H, m) 7.94 (1H, d, J=8.3Hz) 8.03 (1H, d, J=8.3Hz) 8.31 (3H, s) 8.84 (1H, d, J=4.6Hz)
163		FAB-MS 551(M+H ⁺)	DMSO-d ₆ 1.95, 1.97 (3H, each s) 2.29 (3H, s) 2.70-3.60 (10H, m) 4.15-4.65 (3H, m) 7.25-8.25 (12H, m)
164		FAB-MS 495(M+H ⁺)	DMSO-d ₆ 1.03-1.23 (5H, m) 2.72-4.09 (8H, m) 7.12-7.65 (14H, m)
165		FAB-MS 517(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.81-3.55 (11H, m) 3.69-3.85 (4H, m) 4.41-4.44 (1H, m) 6.87-7.66 (8H, m)

実施例	Structure	MS	NMR (δ value)
166		FAB-MS 531(M+H ⁺)	DMSO-d ₆ 1.33 (3H, t, J=6.95Hz) 1.95 (3H, s) 2.82-3.60 (10H, m) 3.81 (2H, dd, J=15.5, 15.2Hz) 4.30 (1H, q, J=6.82Hz) 4.41-4.45 (1H, m) 6.86-7.65 (8H, m)
167		FAB-MS 517(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.77-3.76 (16H, m) 4.37-4.43 (1H, m) 6.77-7.68 (8H, m) 8.29 (5H, s)
168		FAB-MS 547(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.85-3.87 (18H, m) 4.35-4.53 (1H, m) 6.87-7.66 (7H, m) 8.29 (5H, s)
169		FAB-MS 577(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.81-4.10 (14H, m) 4.42-4.45 (1H, m) 7.13-8.30 (18H, m)

実施例	Structure	MS	NMR (δ value)
170		FAB-MS 538($M+H^+$)	DMSO- d_6 1.96 (3H, s) 2.75-3.60 (10H, m) 4.29 (1H, d, $J=15Hz$) 4.45-4.60 (2H, m) 7.25-7.40 (2H, m) 7.40-7.90 (8H, m) 7.99 (1H, d, $J=7.9Hz$) 8.17 (1H, d, $J=8.2Hz$) 8.31 (2H, s) 8.41 (1H, d, $J=5.6Hz$)
171		FAB-MS 495($M+H^+$)	DMSO- d_6 1.08 (3H, t, $J=7.42Hz$) 2.81-4.29 (9H, m) 6.93-7.98 (13H, m) 8.30 (5H, s)
172		FAB-MS 540($M+H^+$)	DMSO- d_6 1.94 (3H, s) 2.78-3.60 (14H, m) 4.36 (1H, d, $J=7Hz$) 6.94-7.66 (15H, m)
173		FAB-MS 577($M+H^+$)	DMSO- d_6 1.96 (3H, s) 2.76-3.71 (21H, m) 4.38 (1H, m) 6.51-7.69 (11H, m)

実施例	Structure	MS	NMR (δ value)
174		FAB-MS 570(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 1.40-4.00 (26H, m) 4.42 (1H, m) 6.65-8.29 (9H, m)
175		FAB-MS 554(M+H ⁺)	DMSO-d ₆ 1.67 (2H, m) 1.96 (3H, s) 2.50-3.50 (15H, m) 4.38 (1H, br) 6.92-8.30 (14H, m)
176		FAB-MS 551(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.75-3.55 (14H, m) 4.40 (1H, m) 7.23-8.10 (11H, m)
177		FAB-MS 551(M+H ⁺)	DMSO-d ₆ 1.95 (3H, s) 2.80-3.55 (14H, m) 4.30-4.45 (1H, m) 7.00-7.90 (11H, m)

実施例	Structure	MS	NMR (δ value)
178		FAB-MS 612($M+H^+$)	DMSO- d_6 1.40-1.77 (14H, m) 1.97-1.99 (3H, eachs) 2.40-3.60 (19H, m) 4.30-4.45 (1H, m) 7.03-7.85 (9H, m)
179		FAB-MS 546($M+H^+$)	DMSO- d_6 1.97 (3H, s) 2.60-3.60 (14H, m) 4.30-4.45 (1H, m) 6.90-7.40 (4H, m) 7.50-7.70 (4H, m) 8.00-8.15 (2H, m)
180		FAB-MS 615, 617 ($M+H^+$)	DMSO- d_6 2.00 (3H, s) 2.85-4.60 (13H, m) 7.30-8.20 (10H, m)
181		FAB-MS 516($M+H^+$)	DMSO- d_6 1.97 (3H, s) 2.40-3.60 (15H, m) 4.39 (1H, brs) 4.95 (1H, brs) 6.15-6.45 (3H, m) 6.90 (1H, L, J=7.6Hz) 7.15-7.75 (6H, m)

実施例	Structure	MS	NMR (δ value)
182		FAB-MS 533,535 (M+H ⁺)	DMSO-d ₆ 1.17 (3H, t, J=7.21Hz) 2.80-3.25 (3H, m) 3.95-4.48 (4H, m) 4.86 (2H, dd, J=16.33 35.13Hz) 7.20-8.35 (15H, m)
183		FAB-MS 542(M+H ⁺)	DMSO-d ₆ 1.50-1.90 (2H, m) 1.97 (3H, s) 2.40-3.60 (15H, m) 4.30-4.55 (1H, br) 6.35-6.50 (2H, m) 6.75-6.85 (2H, m) 7.20-8.10 (6H, m)
184		FAB-MS 510(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.20-3.70 (22H, m) 4.40 (1H, m) 7.00-8.30 (9H, m)
185		FAB-MS 531(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.70-3.80 (12H, m) 4.39 (1H, m) 5.97 (2H, s) 6.60-8.30 (12H, m)

実施例	Structure	MS	NMR (δ value)
186		FAB-MS 545(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.70-3.80 (12H, m) 4.19 (4H, s) 4.39 (1H, t, J=7.6Hz) 6.50-8.00 (8H, m)
187		FAB-MS 576(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.70-3.80 (10H, m) 4.08 (2H, s) 4.43 (1H, t, J=7Hz) 6.23 (2H, s) 5.75-7.65 (11H, m)
188		FAB-MS 495(M+H ⁺)	DMSO-d ₆ 0.90-1.80 (6H, m) 1.97 (3H, s) 2.40-3.60 (14H, m) 3.82 (1H, d, J=11Hz) 4.39 (1H, t, J=7Hz) 5.75-7.65 (9H, m)
189		FAB-MS 567(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.70-3.93 (13H, m) 4.41 (1H, t, J=7Hz) 7.25-7.94 (7H, m)

実施例	Structure	MS	NMR (δ value)
190		FAB-MS 545(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.60-3.70 (12H, m) 3.80-3.95 (1H, m) 4.05-4.30 (2H, m) 4.43 (1H, t, J=7.3Hz) 6.70-6.95 (4H, br) 7.20-7.90 (5H, m)
191		FAB-MS 587(M+H ⁺)	DMSO-d ₆ 1.35 (3H, t, J=7Hz) 1.96 (3H, s) 2.70-3.60 (10H, m) 3.90-4.30 (4H, m) 4.46 (1H, t, J=7.4 Hz) 7.10-8.00 (10H, m)
192			DMSO-d ₆ 1.10-1.80 (10H, m) 1.97 (3H, s) 2.50-3.45 (15H, m) 4.40 (1H, t, J=7.5Hz) 6.90-7.70 (9H, m)
193			DMSO-d ₆ 1.94 (3H, s) 2.50-3.60 (10H, m) 3.84 (2H, s) 4.45-4.47 (1H, m) 5.00-6.60 (6H, br) 6.69-7.72 (8H, m)

実施例	Structure	MS	NMR (δ value)
194			DMSO- d_6 1.96 (3H, s) 2.76-3.60 (13H, m) 3.71 (3H, s) 3.73 (3H, s) 4.38 (1H, brs) 6.60-7.78 (7H, m)
195			DMSO- d_6 1.97 (3H, s) 2.80-3.80 (10H, m) 3.80 (1H, d, J=15Hz) 3.89 (1H, d, J=15Hz) 4.40 (1H, br) 6.00-7.20 (5H, br) 7.31-7.66 (4H, m)
196			DMSO- d_6 1.97 (3H, s) 2.70-3.90 (12H, m) 3.92 (3H, s) 4.40 (1H, t, J=7.6Hz) 6.96 (1H, d, J=8.3 Hz) 6.80-7.10 (2H, br) 7.16 (1H, s) 7.25-7.40 (2H, m) 7.83 (1H, d, J=8.3Hz)
197			DMSO- d_6 1.96 (3H, s) 2.87-3.70 (11H, m) 3.80-3.95 (4H, m) 4.17 (1H, d, J=14Hz) 4.44 (1H, t, J=7Hz) 7.13-7.93 (10H, m)

実施例	Structure	MS	NMR (δ value)
198			DMSO- d_6 1.97 (3H, s) 2.75-3.80 (11H, m) 3.90 (1H, d, J=15Hz) 4.20 (1H, d, J=15Hz) 4.45 (1H, t, J=7Hz) 7.00-7.95 (10H, m)
199			DMSO- d_6 1.96 (3H, s) 2.75-3.79 (12H, m) 3.84 (3H, s) 4.40 (1H, m) 5.75-7.92 (13H, m)
200			DMSO- d_6 1.96 (3H, s) 2.81-3.51 (10H, m) 3.90-4.26 (2H, m) 4.46 (1H, m) 7.53-8.31 (16H, m)
201		FAB-MS 591(M+H ⁺)	DMSO- d_6 1.96 (3H, s) 2.00-2.50 (2H, m) 2.75-3.50 (13H, m) 3.87-3.95 (1H, m) 4.46-4.42 (1H, m) 7.10-7.70 (14H, m)

実施例	Structure	MS	NMR (δ value)
202		FAB-MS 577($M+H^+$)	DMSO- d_6 1.97 (3H, s) 2.70-3.55 (13H, m) 3.98-4.03 (1H, m) 4.35-4.41 (1H, m) 7.05-8.00 (14H, m)

実施例 203N α - (2, 3-ジメトキシベンジル) -3-アミジノフェニルアラニン 4-ヒドロキシカルボニルメチルピペリジドの合成

実施例 36 と同様にして、N α - (2, 3-ジメトキシベンジル) -3-アミジノフェニルアラニン 4-ヒドロキシカルボニルメチルピペリジドを得る。

以下同様にして得ることができる。

実施例	Structure	MS	NMR (δ value)
203		FAB-MS 562(M+H ⁺)	DMSO-d ₆ 0.30-4.50 (16H, m) 3.72 (3H, s) 3.78 (3H, s) 6.90-9.10 (12H, m) 12.00-12.40 (1H, br)
204		FAB-MS 591(M+H ⁺)	CDCl ₃ 1.25 (3H, t, J=7.1Hz) 2.04-3.52 (12H, m) 3.85 (6H, d, J=2.31 Hz) 4.01-4.19 (4H, m) 4.44 (1H, t, J=7.26Hz) 6.82-7.43 (7H, m)
205		FAB-MS 563(M+H ⁺)	DMSO-d ₆ 2.70-4.80 (21H, m) 6.82-8.05 (10H, m)
206		FAB-MS 610(M+H ⁺)	CDCl ₃ 1.19-1.35 (3H, m) 2.99-3.18 (3H, m) 3.64 - 4.70 (12H, m) 5.46-5.54 (1H, m) 6.62 - 7.64 (11H, m)

実施例	Structure	MS	NMR (δ value)
207			
208		FAB-MS 645(M+H ⁺)	CDCl_3 1.23-2.04 (11H, m) 2.41-3.62 (7H, m) 3.85 (6H, s) 4.03-4.046 (8H, m) 6.80-7.51 (7H, m)
209		FAB-MS 618(M+H ⁺)	DMSO-d_6 1.65-4.50(27H, m) 6.80-7.85(10H, m)
210			

実施例	Structure	MS	NMR (δ value)
211			
212		FAB-MS 534(M+H ⁺)	DMSO-d ₆ 0.40-4.60 (16H, m) 3.68, 3.69, 3.70, 3.78 (6H, each s) 6.50-8.31 (13H, m)
213		FAB-MS 520(M+H ⁺)	DMSO-d6 1.15-1.40(2H,br) 1.45-1.65(2H,br) 2.70-3.90(15H,m) 4.44(1H,J=7Hz) 6.80-7.15(5H,m) 7.20-7.40(2H,m) 7.50-7.70(2H,m)
214			

実施例	Structure	MS	NMR (δ value)
215			
216			
217			
218			

実施例	Structure	MS	NMR (δ value)
219			
220			
221			
222			

実施例	Structure	MS	NMR (δ value)
223			
224			
225			
226			

実施例	Structure	MS	NMR (δ value)
227			
228			
229			
230		FAB-MS 577(M+H ⁺)	DMSO- <i>d</i> ₆ 1.96 (3H,s) 2.70-3.90 (21H,m) 4.42 (1H,t,J=7Hz) 6.76 (1H,d,J=8.6Hz) 6.93 (1H,d,J=8.6Hz) 7.25-7.40 (2H,m) 7.55-7.75 (2H,m)

実施例	Structure	MS	NMR (δ value)
231			
232		FAB-MS 547(M+H ⁺)	DMSO-d ₆ 1.99 (3H, s) 2.80-3.50 (10H, m) 3.72 (3H, s) 3.76 (3H, s) 3.76-3.95 (2H, m) 4.43-4.55 (1H, m) 6.70-7.85 (7H, m)
233			DMSO-d ₆ 0.05-4.44 (18H, m) 1.16 (3H, t, J=7Hz) 3.70 (3H, s) 3.78 (3H, s) 6.60-8.31 (12H, m)
234			

実施例	Structure	MS	NMR (δ value)
235	<p>Chemical structure of compound 235: A complex organic molecule containing a phenyl ring, a hydroxymethyl group, a guanidino group, and an N-acetyl group.</p>		
236	<p>Chemical structure of compound 236: A complex organic molecule containing a pyridine ring with a carboxylic acid group, a guanidino group, and an N-acetyl group.</p>		
237	<p>Chemical structure of compound 237: A complex organic molecule containing a pyridine ring with a hydroxyl group, a guanidino group, and an N-acetyl group.</p>		
238	<p>Chemical structure of compound 238: A complex organic molecule containing a phenyl ring with an amino group, a guanidino group, and an N-acetyl group.</p>		

実施例	Structure	MS	NMR (δ value)
239			
240			
241			
242			

実施例	Structure	MS	NMR (δ value)
243	<p>Chemical structure 243: A substituted benzyl amine derivative. It features a 4-nitrophenyl group attached to a methylene group, which is further attached to a guanidino group (-NH-C(=O)-NH-C(=O)-NH₂) and a 4-aminobenzyl group.</p>		
244	<p>Chemical structure 244: A substituted benzyl amine derivative. It features a 4-nitrophenyl group attached to a methylene group, which is further attached to a guanidino group (-NH-C(=O)-NH-C(=O)-NH₂) and a 4-nitrobenzyl group.</p>		
245	<p>Chemical structure 245: A substituted benzyl amine derivative. It features a 4-methoxyphthalimide group attached to a methylene group, which is further attached to a guanidino group (-NH-C(=O)-NH-C(=O)-NH₂) and a 4-aminobenzyl group.</p>		
246	<p>Chemical structure 246: A substituted benzyl amine derivative. It features a 4-hydroxy-2,6-diisopropylphenyl group attached to a methylene group, which is further attached to a guanidino group (-NH-C(=O)-NH-C(=O)-NH₂) and a 4-aminobenzyl group.</p>		

実施例	Structure	MS	NMR (δ value)
247			
248			
249			
250			

実施例	Structure	MS	NMR (δ value)
251			
252		FAB-MS 590(M+H ⁺)	
253		FAB-MS 538(M+H ⁺)	DMSO-d ₆ 0.80-1.85 (6H, m) 2.20-3.80 (4H, m) 4.05-5.10 (4H, m) 7.05-8.00 (11H, m)
254		FAB-MS 552(M+H ⁺)	DMSO-d ₆ 0.80-1.90 (6H, m) 3.00-3.60 (7H, m) 4.20-4.80 (4H, m) 5.20-5.32 (1H, m) 7.15-8.00 (11H, m)

実施例	Structure	MS	NMR (δ value)
255			
256			
257		FAB-MS 519(M+H ⁺)	DMSO-d ₆ , 1.95 (3H, s) 2.60-4.60 (13H, m) 4.65-8.30 (7H, br) 6.47-6.65 (3H, m) 7.31-7.70 (4H, m)
258		FAB-MS 533(M+H ⁺)	DMSO-d ₆ , 1.94 (3H, m) 2.50-3.91 (12H, m) 3.78 (3H, s) 4.00-8.31 (6H, br) 4.47 (1H, m) 6.64-6.85 (3H, m) 7.23-7.80 (4H, m)

実施例	Structure	MS	NMR (δ value)
259			DMSO- d_6 1.98 (3H, s) 2.50-4.90 (13H, m) 7.05-8.06 (13H, m) 9.20-10.00 (1H, br)
260		FAB-MS 517(M+H ⁺)	DMSO- d_6 1.99 (3H, s) 2.80-4.60 (15H, m) 7.13-9.38 (14H, m)
261		FAB-MS 549(M+H ⁺)	DMSO- d_6 1.82-2.20 (2H, m) 2.30 (4H, t, J=5.94Hz) 2.76-3.00 (2H, m) 3.14-3.42 (2H, m) 3.45 (4H, t, J=5.94Hz) 3.71(3H,s),3.79(3H,s) 3.79 (2H, dd, J=14.7,36.8Hz) 4.38-4.50 (1H, m) 6.87-7.70 (7H, m)

実施例262

$\text{N}\alpha - (\text{tert-} \text{ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル}) - 3 - \text{シアノ-L-フェニルアラニン-4-アセチルピペラジドの合成}$

実施例2と同様にして、 $\text{N}\alpha - (\text{tert-} \text{ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル}) - 3 - \text{シアノ-L-フェニルアラニン-4-アセチルピペラジドを得る。}$

以下同様にして得ることができる。

実施例	Structure	MS	NMR (δ value)
262			CDCl_3 1.41 (9H, s) 2.03, 2.07 (3H, each s) 2.50-3.60 (10H, m) 4.33 (1H, m) 5.36 (2H, m) 6.01 (1H, d, $J=8\text{Hz}$) 7.29-8.13 (11H, m)
263			CDCl_3 1.43 (9H, s) 1.37-1.80 (6H, m) 2.73-3.00 (4H, m) 3.69 (3H, s) 4.10-4.30 (2H, m) 5.05-5.40 (3H, m) 6.36 (1H, d, $J=6.93\text{Hz}$) 7.24-8.20 (11H, m)
264			CDCl_3 1.43 (9H, s) 2.08, 2.09 (3H, each s) 2.88-3.67 (10H, m) 3.75(3H,s) 3.77(3H,s) 4.65-4.90 (3H, m) 6.20 (1H, d, $J=7.59\text{Hz}$) 6.73-6.88 (3H, m) 7.40-7.75 (4H, m)
265			CDCl_3 0.20-4.93 (16H, m) 1.28 (3H, t, $J=7\text{Hz}$) 1.44, 1.45 (9H, each s) 3.84 (3H, s) 3.86 (3H, s) 4.14 (2H, q, $J=7\text{Hz}$) 6.14 (1H, m) 6.85-7.56 (7H, m)

実施例	Structure	MS	NMR (δ value)
266			CDCl ₃ 0.65-4.87 (28H, m) 3.83, 3.84, 3.86 (6H, each s) 6.10-6.19 (1H, m) 6.84-7.56 (7H, m)
267			CDCl ₃ 1.39 (9H, s) 2.08, 2.10 (3H, each s) 2.93-5.19 (17H, m) 3.49 (3H, s) 3.55 (3H, s) 6.15 (1H, d, J=8Hz) 6.90-7.58 (7H, m)
268			CDCl ₃ 1.40 (9H, s) 2.09 (3H, s) 2.90-5.11 (15H, m) 3.55 (3H, s) 3.85 (3H, s) 6.03 (1H, m) 6.86-7.58 (7H, m)
269			CDCl ₃ 1.46 (9H, s) 2.09 (3H, s) 2.12 (3H, s) 2.80-3.65 (10H, m) 4.35-4.55 (12H, br) 4.79 (2H, m) 5.11 (2H, s) 5.99 (1H, br) 7.33-7.58 (4H, m)

実施例	Structure	MS	NMR (δ value)
270			CDCl ₃ 1.31(3H,t,J=7.1Hz) 1.44-3.58(21H, m) 3.86(6H,d,J=4.6Hz) 4.15-4.97 (5H, m) 6.11(1H,d,J=7.2Hz) 6.88-7.56 (7H, m)
271			CDCl ₃ 1.24-2.18 (19H, m) 2.50-3.04 (6H, m) 3.41-3.86 (8H, m) 4.14-4.99 (8H, m) 6.09-6.18 (2H, m) 6.85-7.65 (7H, m)
272			CDCl ₃ 1.21-1.47 (12H, m) 2.99-3.20 (3H, m) 3.66-5.15 (13H, m) 6.80-7.60 (11H, m)
273			CDCl ₃ 1.42 (9H, s) 2.08, 2.09 (3H, each s) 2.85-3.70 (10H, m) 3.86 (3H, s) 3.88 (3H, s) 3.90 (3H, s) 4.65-4.95 (3H, m) 6.11 (1H, bs) 6.64 (1H,d,J=8.4Hz) 6.94 (1H,t,J=7.3Hz) 7.35-7.65 (4H, m)

実施例	Structure	MS	NMR (δ value)
274			CDCl_3 1.20-1.95(13H, m) 2.80-4.00(16H,m) 4.55-5.00 (3H, m) 6.14 (1H, t,J=8Hz) 6.80-6.95 (2H, m) 7.04 (1H, t,J=7.9Hz) 7.35-7.55 (4H, m)
275			CDCl_3 0.04 (6H, s) 0.88, 0.90 (9H, each s) 1.00-1.75(13H, m) 2.85-4.00(13H,m) 4.55-5.00 (3H, m) 6.15 (1H, d,J=7.3Hz) 6.80-7.15 (3H, m) 7.30-7.60 (4H, m)
276			CDCl_3 1.44 (9H, s) 2.07 (3H, s) 2.30-2.52(4H,m) 2.75(2H,t,J=5.9Hz) 2.90-3.00(2H,m) 3.20-3.70(4H,m) 3.86(3H,s),3.84 (3H,s) 4.10-4.23(2H, m) 4.50-4.70(1H,m) 4.80-5.00 (2H, m) 6.10-6.20 (1H, m) 6.87-7.60 (7H, m)
277			CDCl_3 0.83-1.07(3H,m) 1.22-1.38(3H,m) 1.45,1.41(9H, eachs) 1.67-2.00 (5H, m) 2.80-3.13(2H,m) 3.43-3.60(2H,m) 3.83(3H,s),3.85 (3H,s) 4.10-4.30(2H, m) 4.50-5.00(4H,m) 6.00-6.10 (1H, m) 6.85-7.63 (7H, m)

試験例 1トロンビンおよびトリプシン阻害のIC₅₀値の測定

測定はマイクロタイターブレート上で、室温にて実施した。50%メタノールに溶解した各濃度の化合物20μlを、160μlの0.05Mトリス塩酸塩緩衝液/0.125MNacI(pH8.0、0.25mMの発色性基質N-ベンゾイル-Phe-Val-Arg-p-ニトロアニリドを含む)と混和した。次いで、20μlのヒトトロンビンあるいはウシトリプシン(それぞれ最終濃度0.5NIH単位/ml、1単位/ml)を添加し、酵素反応を開始させた。30分間のインキュベーション後、マイクロタイターブレートリーダーで405nmにおける吸光度を測定し、酵素による基質の分解を吸光度の増大として捉えた。阻害剤のない場合の酵素活性を100%とし、酵素活性の50%阻害を生じる阻害剤濃度をIC₅₀とした。結果を表1に示す。

表1

実施例	IC ₅₀ (M)	
	トロンビン	トリプシン
3	4.9×10 ⁻⁹	3.0×10 ⁻⁷
10	1.9×10 ⁻⁷	2.7×10 ⁻⁶
12	2.1×10 ⁻⁸	2.2×10 ⁻⁷
14	2.8×10 ⁻⁸	2.3×10 ⁻⁷
16	3.9×10 ⁻⁸	7.7×10 ⁻⁷
18	3.6×10 ⁻⁸	2.3×10 ⁻⁶
20	3.3×10 ⁻⁸	1.4×10 ⁻⁶
22	5.6×10 ⁻⁸	3.4×10 ⁻⁶
25	6.5×10 ⁻⁸	4.8×10 ⁻⁷

表1 (つづき)

実施例	I C ₅₀ (M)	
	トロンビン	トリプシン
200	4. 6 X 10 ⁻⁹	1. 3 X 10 ⁻⁷
169	6. 9 X 10 ⁻⁹	1. 5 X 10 ⁻⁷
201	7. 2 X 10 ⁻⁹	2. 4 X 10 ⁻⁷
180	7. 3 X 10 ⁻⁹	1. 1 X 10 ⁻⁷
197	1. 0 X 10 ⁻⁸	2. 0 X 10 ⁻⁷
170	1. 6 X 10 ⁻⁸	1. 1 X 10 ⁻⁷
176	1. 8 X 10 ⁻⁸	4. 5 X 10 ⁻⁷
168	2. 3 X 10 ⁻⁸	4. 9 X 10 ⁻⁷

試験例2

雄性スラグードウレイ (Sprague-Dawley) ラット (190~280g、7~8週齢、日本チャールズリバー社) を1週間以上馴化した後、実験前日一日断食させた。水は自由摂取とした。部屋は温度24±2°C、湿度55±5%、照明時間5:00~19:00とした。

血漿トロンビン時間 (TT) は、自動血液凝固測定装置KC-10A (Amelung社) を用いて測定した。血液をクエン酸ナトリウム水溶液 (3. 2%、血液9容量に対して1容量) と混和し、氷上保存、遠心分離して血漿を得た。血漿はTT測定まで-20°Cに保存した。血漿をオーレン緩衝液 (ベーリンガー・マンハイム社) で5倍希釈し、その100μlを2分間、37°Cでインキュベートし、ヒトトロンビン (100μl、20NIH単位/mlトリス緩衝液、シグマ社) と混和する。最大300秒を限度として、37°Cで凝固時間を測定した。同一検体を二重測定し、平均値を求めた。

被検化合物を塩酸酸性 1 %カルボキシセルロースナトリウム水溶液に溶解し、
 50 mg / ml 剤とした。ラットに被検化合物 100 mg / kg 用量を経口投与
 により単回投与する。投与前および投与 0.5、1、2、4 時間後に血液標本
 5 (0.45 ml) を左心室からクエン酸採取し、血漿 TT を測定した。測定され
 た TT 値から被検化合物投与前後での TT 値の比 (TT ratio) を算出した。
 結果を表 2 に示す。

表2

	TT ratio			
	0.5	1	2	4 (時間)
実施例 3 の化合物	4.3	6.7	1.9	1.2

産業上の利用可能性

本発明のスルファミド誘導体もしくはその製薬上許容しうる塩またはその水和物は、優れた抗トロンビン活性を示し、しかも経口可能で副作用の少ない薬剤と
 10 して、抗血栓治療剤等の医薬として有効である。

請求の範囲

1. 一般式(1)

(式中、R₁ は水素原子、低級アルキル基またはアミノ保護基を示し、R₂ は置換基を有していてもよい、また縮合されていてもよい窒素原子含有の複素環を示し、R₃ は基A-(CH₂)_m-、水素原子または置換されていてもよい低級アルキル基を示す。ここでAは置換されていてもよいアリール基、置換されていてもよく、また縮合されていてもよい複素環または置換されていてもよい低級シクロアルキル基を、mは0~6の整数を示す。また-(CH₂)_n-部分は1個以上の置換基で置換されていてもよい。R₄ は水素原子または低級アルキル基を示し、R₅ は基-C(=NR₆)NH₂、基-NH-C(=NR₆)NH₂ または基-(CH₂)_n-NHR₆ を、ここでR₆ は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示し、nは0~2の整数を示す。また-(CH₂)_n-の部分は1個以上の置換基で置換されていてもよい)で表されるスルファミド誘導体もしくはその製薬上許容しうる塩またはその水和物。

2. R₃ 中のAが置換されていてもよいアリール基である請求項1記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
3. R₃ 中のAが置換されていてもよく、また縮合されていてもよい複素環である請求項1記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

4. R_2 が以下の基 (2) ~ (6)

(式中、 $(R_7)_{sub}$ は基 (2) ~ (6) 中の炭素原子に結合する1個以上の任意の水素原子が、同一または相異なる R_7 で置換されていてもよいことを意味し、 R_7 は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、

- 5 置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合されていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されていてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキルスルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシリル基、低級ヒドロキシリル基、低級アミノアルキル基、低級カルボキシリアル基、低級カルボニルアミノアル基を示す。Bは炭素原子、酸素原子、硫黄原子または NR_8 を示し、ここで R_8 は水素原子、置換されていてもよい低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換されていてもよいアシル基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環を示し、 p 及び q は同一または異なって、0~5の整数を示すが、ただし、 $p+q$ は1, 2, 3, 4または5のいずれかであり、 r および s は同一または異なって、0~5の整数を示すが、ただし $r+s$

は0, 1, 2, 3, 4または5のいずれかである) のいずれかで表される請求項
1記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

5. R_5 が $-C(=NR_6)NH_2$ (式中、 R_6 は水素原子、低級アルキル基、
水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボ
ニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボ
ニルオキシ基を示す) である請求項1記載の化合物もしくはその製薬上許容し
うる塩またはその水和物。
6. R_3 中のAが置換されていてもよいアリール基であり、かつ R_2 が基
(2) ~ (6)

- 10 (式中、 (R_7) ...は基 (2) ~ (6) 中の炭素原子に結合する1個以上の任意
の水素原子が、同一または相異なる R_7 で置換されていてもよいことを意味し、
 R_7 は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、
置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合され
ていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換
15 されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されて
いてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキル
スルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシア

ルキル基、低級ヒドロキシアルキル基、低級アミノアルキル基、低級カルボキシリアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原子、硫黄原子またはNR₈を示し、ここでR₈は水素原子、置換されていてもよい低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換されていてもよいアシル基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、0～5の整数を示すが、ただし、p+qが1, 2, 3, 4または5のいずれかであり、rおよびsは同一または異なって、0～5の整数を示すが、ただし r+s は0, 1, 2, 3, 4または5のいずれかである)のいずれかである請求項1、2または4のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

7. R₃中のAが置換されていてもよく、また縮合されていてもよい複素環であり、かつR₂が基(2)～(6)

(式中、(R₇)_{sub}は基(2)～(6)中の炭素原子に結合する1個以上の任意の水素原子が、同一または相異なるR₇で置換されていてもよいことを意味し、R₇は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合され

いてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されていてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキルスルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシア
 5 ルキル基、低級ヒドロキシアルキル基、低級アミノアルキル基、低級カルボキシルアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原子、硫黄原子またはNR₆を示し、ここでR₆は水素原子、置換されていてもよい低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換されていてもよいアシル基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、
 10 0～5の整数を示すが、ただし、p+qが1, 2, 3, 4または5のいずれかであり、rおよびsは同一または異なって、0～5の整数を示すが、ただし r+s
 15 は0, 1, 2, 3, 4または5のいずれかである)のいずれかである請求項1、3または4のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

8. R₃中のAが置換されていてもよいアリール基であり、かつR₃が-C
 (=NR₆)NH₂(式中、R₆は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示す)である請求項1、2または5のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

9. R₃中のAが置換されていてもよく、また縮合されていてもよい複素環であり、かつR₃が-C (=NR₆)NH₂(式中、R₆は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示す)である請求項1、3または5のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

10. R₃が基(2)～(6)

(式中、 (R_7) ...は基(2)～(6)中の炭素原子に結合する1個以上の任意の水素原子が、同一または相異なる R_7 で置換されていてもよいことを意味し、 R_7 は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合されていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されていてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキルスルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシリル基、低級ヒドロキシリル基、低級アミノアルキル基、低級カルボキシリアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原子、硫黄原子または NR_8 を示し、ここで R_8 は水素原子、置換されていてもよい低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換されていてもよいアシル基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環を示し、 p 及び q は同一または異なって、0～5の整数を示すが、ただし、 $p+q$ は1, 2, 3, 4または5のいずれかであり、 r および s は同一または異なって、0～5の整数を示すが、ただし $r+s$ は0, 1, 2, 3, 4または5のいずれかである)のいずれかであり、かつ R_8

が—C(=NR₆)NH₂ (式中、R₆は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示す)である請求項1、4または5のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

11. R₃ 中のAが置換されていてもよいアリール基であり、かつR₂ が基(2)～(6)

(式中、(R₇)...は基(2)～(6)中の炭素原子に結合する1個以上の任意の水素原子が、同一または相異なるR₇で置換されていてもよいことを意味し、
 10 R₇は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合されていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されていてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキルスルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシリル基、低級ヒドロキシリル基、低級アミノアルキル基、低級カルボキシリアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原

子、硫黄原子または NR_3 を示し、ここで R_3 は水素原子、置換されていてもよい低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換されていてもよいアシル基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、5 0～5の整数を示すが、ただし、p+qは1, 2, 3, 4または5のいずれかであり、rおよびsは同一または異なって、0～5の整数を示すが、ただし r+s は0, 1, 2, 3, 4または5のいずれかである)のいずれかであり、かつ R_3 が $-C(=NR_3)NH_2$ (式中、 R_3 は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示す)である請求項1、2、4、5、6、8または10のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

12. R_3 中のAが置換されていてもよく、また縮合されていてもよい複素環であり、かつ R_3 が基(2)～(6)

(2)

(3)

(4)

(5)

(6)

15 (式中、(R₇)...は基(2)～(6)中の炭素原子に結合する1個以上の任意の水素原子が、同一または相異なるR₇で置換されていてもよいことを意味し、R₇は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、

- 置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合されていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシリル基、置換されていてもよいアミノ基、置換されていてもよいカルボキシリル基、置換されていてもよいアシリルオキシ基、ハロゲン原子、置換されていてもよい低級アルキル
- 5 スルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシリル基、低級ヒドロキシリル基、低級アミノアルキル基、低級カルボキシリアル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原子、硫黄原子またはNR₆を示し、ここでR₆は水素原子、置換されていてもよい低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換され
- 10 ていてもよいアシリル基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、0～5の整数を示すが、ただし、p+qは1, 2, 3, 4または5のいずれかであり、rおよびsは同一または異なって、0～5の整数を示すが、ただし r+sは0, 1, 2, 3, 4または5のいずれかである)のいずれかであり、かつR₆
- 15 が-C(=NR₆)NH₂(式中、R₆は水素原子、低級アルキル基、水酸基、アシリル基、アシリルオキシ基、低級アルコキシ基、低級アルコキシリルボニル基、低級アルコキシリルボニルオキシ基または低級ヒドロキシリルカルボニルオキシ基を示す)である請求項1、3、4、5、7、9または10のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
- 20 13. R₃がナフチルメチル基である請求項1、2、6、8または11のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
14. R₂が置換されていてもよいビペラジニル基または置換されていてもよいピペリジニル基である請求項1、4、6、7、10、11または12のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
- 25 15. R₂がN-アセチルピペラジニル基である請求項1、4、6、7、10、11、12または14のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
16. R₅が-C(=NH)NH₂である請求項1、5、8、9、10、1

1または12のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

17. $\text{Na}-$ (1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩または
5 その水和物。

18. $\text{Na}-$ (ベンジルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

19. $\text{Na}-$ (2-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩または
10 その水和物。

20. $\text{Na}-$ (2-シクロヘキシルエチルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

21. $\text{Na}-$ (3-フェニル-n-プロピルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

22. $\text{Na}-$ (2-フェニルベンジルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩または
20 その水和物。

23. $\text{Na}-$ (3-フェニルオキシベンジルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

24. $\text{Na}-$ (4-フェニルベンジルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩または
25 その水和物。

25. $\text{Na}-$ (2-フェネチルベンジル)アミノスルホニル-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩ま

たはその水和物。

26. $\text{Na}-$ (2, 3-ジメトキシベンジルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容し
る塩またはその水和物。
- 5 27. $\text{Na}-$ (6-ヒドロキシー-1-ナフチルメチルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許
容し
うる塩またはその水和物。
- 10 28. $\text{Na}-$ (1-ナフチルメチル(メチル)アミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。
29. $\text{Na}-$ (3-インドリル-3-n-プロビルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容
し
うる塩またはその水和物。
- 15 30. $\text{Na}-$ (2, 2-ジフェニルエチルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。
31. $\text{Na}-$ (N-ベンジルピロリジン-2-イル-メチルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製
薬上許容し
うる塩またはその水和物。
- 20 32. $\text{Na}-$ (3-メトキシベンジルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容し
うる塩または
その水和物。
33. $\text{Na}-$ (3-フェニル-2-(1-ピロリジニルカルボニル) - n-プロビルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピ
25 ペラジドもしくはその製薬上許容し
うる塩またはその水和物。
34. $\text{Na}-$ (3-エトキシ-2-ベンズチオフェニルメチルアミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその
製薬上許容し
うる塩またはその水和物。

35. $\text{Na}-$ (2-ナフチル-2-エチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

5 36. $\text{Na}-$ (2-メトキシベンジルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

37. $\text{Na}-$ (4-ジヒドロキノリルメチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

10 38. $\text{Na}-$ (2-エトキシベンジルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

15 39. $\text{Na}-$ (2-シクロヘキシルオキシエチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

40. $\text{Na}-$ (2-ベンジル(ベンジル)アミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

20 41. $\text{Na}-$ (3, 3-ジフェニル- α -プロビルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

42. $\text{Na}-$ (1-ナフチルメチルアミノスルホニル) -3-アミジノ- α -フェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

25 43. $\text{Na}-$ (3-プロモ-1-ナフチルメチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

44. $\text{Na}-$ (6-メトキシ-1-ナフチルメチルアミノスルホニル) -3-

アミジノフェールアラニン-4-アセチルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。

45. $\text{Na}-$ (4-イソキノリルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。
5

46. $\text{Na}-$ (1-ナフチルエチルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。

47. $\text{Na}-$ (1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-メチルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。
10

48. $\text{Na}-$ (1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-メチルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。

49. $\text{Na}-$ (1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-ホルミルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。
15

50. $\text{Na}-$ (1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-N, N-ジメチルアミノカルボニルピペラジドもしくはその
20 製薬上許容し
うる塩またはその水和物。

51. $\text{Na}-$ (1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-メチルスルホニルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。
25

52. $\text{Na}-$ (1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-フェニルスルホニルピペラジドもしくはその製薬上許容し
うる塩またはその水和物。

53. $\text{Na}-$ (1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-(p-トルエンスルホニル)ピペラジドもしくはその製薬上

許容しうる塩またはその水和物。

54. $\text{Na}-\text{(1-ナフチルメチルアミノスルホニル)}-\text{3-アミジノフェニルアラニン-4-(2-テトラヒドロイソキノリル)ピペラジドもしくはその製薬上許容しうる塩またはその水和物。}$

55. $\text{Na}-\text{(1-ナフチルメチルアミノスルホニル)}-\text{3-アミジノフェニルアラニン-4-メトキシカルボニルピペラジドもしくはその製薬上許容しうる塩またはその水和物。}$

56. 一般式 (7)

- (式中、 R_1 は水素原子、低級アルキル基またはアミノ保護基を示し、 R_{2a} は水素原子または低級アルキル基を示し、 R_3 は基 $\text{A}-\text{(CH}_2)_n-$ 、水素原子または置換されていてもよい低級アルキル基を示す。ここで A は置換されていてもよいアリール基、置換されていてもよく、また縮合されていてもよい複素環または置換されていてもよい低級シクロアルキル基を、 m は0~6の整数を示す。また $\text{-}(\text{CH}_2)_n-$ 部分は1個以上の置換基で置換されていてもよい。 R_4 は水素原子、低級アルキル基またはアミノ保護基を示し、 R_5 は基 $-\text{C}(\text{=NR}_6)\text{NH}_2$ 、基 $-\text{NH}-\text{C}(\text{=NR}_6)\text{NH}_2$ または基 $-(\text{CH}_2)_n-\text{NHR}_6$ を、ここで R_6 は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示し、 n は0~2の整数を示す。
- また $\text{-}(\text{CH}_2)_n-$ の部分は1個以上の置換基で置換されていてもよい)で表される化合物もしくはその製薬上許容しうる塩またはその水和物。

57. 一般式 (8)

(式中、R₁は水素原子、低級アルキル基またはアミノ保護基を示し、R₂は水素原子または低級アルキル基を示し、R₃は基A-(CH₂)_m-、水素原子または置換されていてもよい低級アルキル基を示す。ここでAは置換されていてもよいアリール基、置換されていてもよく、また縮合されていてもよい複素環または置換されていてもよい低級シクロアルキル基を、mは0~6の整数を示す。また-(CH₂)_m-部分は1個以上の置換基で置換されていてもよい。R₄は水素原子、低級アルキル基またはアミノ保護基を示す)で表される化合物もしくはその製薬上許容しうる塩またはその水和物。

58. 請求項1~55のいずれかに記載された化合物もしくはその製薬上許容しうる塩またはその水和物を有効成分として含有することを特徴とする医薬組成物。

59. 請求項1~55のいずれかに記載された化合物もしくはその製薬上許容しうる塩またはその水和物を有効成分として含有することを特徴とする抗トロンビン阻害剤。

60. 請求項1~55のいずれかに記載された化合物もしくはその製薬上許容しうる塩またはその水和物を有効成分として含有することを特徴とする抗血栓治療剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03520

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl⁶ C07D207/08, 09, 16, 209/14, 18, 44, 211/16, 22, 26, 42, 46, 56, 60, 62, 74, 213/74, 215/12, 217/06, 295/16, 26, 309/20,
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl⁶ C07D207/08, 09, 16, 209/14, 18, 44, 211/16, 22, 26, 42, 46, 56, 60, 62, 74, 213/74, 215/12, 217/06, 295/16, 26, 309/20,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO, 95/23809, A (Eli Lilly and Company), September 8, 1995 (08. 09. 95), Full descriptions & AU, 9518843, A & ZA, 9501615, A & EP, 748333, A	1 - 60
A	JP, 7-278095, A (Eli Lilly and Co.), October 24, 1995 (24. 10. 95), Full descriptions & US, 5436229, A & 670310, A & CA, 2143532, A	1 - 60
A	JP, 6-312973, A (Yamanouchi Pharmaceutical Co., Ltd.), November 8, 1994 (08. 11. 94), Full descriptions (Family: none)	1 - 60
A	JP, 60-56919, A (Societe d'Etudes Scientifiques et Industrielles de l'Ile-de-France S.A.), April 2, 1985 (02. 04. 85), Full descriptions & EP, 133830, A & DE, 3426154, A & FR, 2550447, A & US, 4607047, A	1 - 60

 Further documents are listed in the continuation of Box C. See patent family annex.

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

February 12, 1997 (12. 02. 97)

Date of mailing of the international search report

February 25, 1997 (25. 02. 97)

Name and mailing address of the ISA/

Japanese Patent Office

Facsimile No.

Authorized officer

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03520

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 6-340619, A (Bristol-Myers Squib Co.), December 13, 1994 (13. 12. 94), Full descriptions & EP, 623596, A & AU, 9461837, A & CA, 2122646, A	1 - 60

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03520

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

317/60, 62, 319/18, 20, 333/64, C07C307/06, A61K31/195, 215,
275, 335, 36, 38, 40, 435, 44, 445, 47, 495, 535

B. (Continuation) FIELDS SEARCHED

317/60, 62, 319/18, 20, 333/64, C07C307/06, A61K31/195, 215,
275, 335, 36, 38, 40, 435, 44, 445, 47, 495, 535

A. 発明の属する分野の分類(国際特許分類 (IPC))

Int.Cl⁶ C07D207/08, 09, 16, 14, 18, 44, 211/16, 22, 26, 42, 46, 56, 60, 62, 74, 213/74, 215/12, 217/06, 295/16, 26, 309/20,
317/60, 62, 319/18, 20, 333/64, C07C307/06,
A61K31/195, 215, 275, 335, 36, 38, 40, 435, 44, 445, 47, 495, 535

B. 調査を行った分野

調査を行った最小限資料(国際特許分類 (IPC))

Int.Cl⁶ C07D207/08, 09, 16, 209/14, 18, 44, 211/16, 22, 26, 42, 46, 56, 60, 62, 74, 213/74, 215/12, 217/06, 295/16, 26, 309/20,
317/60, 62, 319/18, 20, 333/64, C07C307/06,
A61K31/195, 215, 275, 335, 36, 38, 40, 435, 44, 445, 47, 495, 535

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO, 95/23809, A (ELI LILLY AND COMPANY), 8. 9月. 1995 (08. 09. 95), 全文&AU, 9518843, A&ZA, 9501615, A&EP, 748333, A	1-60
A	JP, 7-278095, A (イーライ・リリー・アンド・カンパニー), 24. 10月. 1995 (24. 10. 95), 全文&US, 5436229, A&670310, A&CA, 2143532, A	1-60
A	JP, 6-312973, A (山之内製薬株式会社), 8. 11月. 1994 (08. 11. 94), 全文 (ファミリーなし)	1-60

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

12. 02. 97

国際調査報告の発送日

25.02.97

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

富永 保

4C 9159

電話番号 03-3581-1101 内線 3454

C(続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 60-56919, A (ソシエテ・デチュードウ・シヤンティフィツク・エ・アンデュストリエル・ドゥ・リールドウフランス), 2. 4月. 1985 (02. 04. 85), 全文&EP, 133830, A&DE, 3426154, A&FR, 2550447, A&US, 4607047, A	1-60
A	JP, 6-340619, A (ブリストルマイヤーズ スクイブ カンパニー), 13. 12月. 1994 (13. 12. 94), 全文&EP, 623596, A&AU, 9461837, A&CA, 2122646, A	1-60