A related experiment

- Consider a 'bin' with red and green marbles.

$$\mathbb{P}[\text{ picking a red marble }] = \mu$$

$$\mathbb{P}[\text{ picking a green marble }] = 1 - \mu$$

- The value of μ is <u>unknown</u> to us.
- We pick N marbles independently.
- The fraction of red marbles in sample $= \nu$

Learning From Data - Lecture 2

Does ν say anything about μ ?

No!

Sample can be mostly green while bin is mostly red.

Yes!

Sample frequency u is likely close to bin frequency μ .

possible versus probable

Learning From Data - Lecture 2 4/17

What does ν say about μ ?

In a big sample (large N), ν is probably close to μ (within ϵ).

Formally,

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2e^{-2\epsilon^2N}$$

This is called **Hoeffding's Inequality**.

In other words, the statement '' $\mu=\nu$ '' is P.A.C.

$$\mathbb{P}\left[\left|\nu - \mu\right| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

ullet Valid for all N and ϵ

- ullet Bound does not depend on μ
- ullet Tradeoff: N, ϵ , and the bound.
- $\bullet \quad \nu \approx \mu \implies \mu \approx \nu \quad \odot$

Learning From Data - Lecture 2

Connection to learning

Bin: The unknown is a number μ

Learning: The unknown is a function $f: \mathcal{X} \to \mathcal{Y}$

Each marble ullet is a point $\mathbf{x} \in \mathcal{X}$

- : Hypothesis got it right $h(\mathbf{x}) = f(\mathbf{x})$
- : Hypothesis got it wrong $h(\mathbf{x}) \neq f(\mathbf{x})$

Back to the learning diagram

The bin analogy:

Learning From Data - Lecture 2

Are we done?

Not so fast! h is fixed.

For this h, ν generalizes to μ .

'verification' of h, not learning

No guarantee ν will be small.

We need to **choose** from multiple h's.

Multiple bins

Generalizing the bin model to more than one hypothesis:

Learning From Data - Lecture 2 10/17

Notation for learning

Both μ and ν depend on which hypothesis h

 ν is 'in sample' denoted by $E_{\rm in}(h)$

 μ is 'out of sample' denoted by $E_{\text{out}}(h)$

The Hoeffding inequality becomes:

$$\mathbb{P}\left[|E_{\mathsf{in}}(h) - E_{\mathsf{out}}(h)| > \epsilon \right] \leq 2e^{-2\epsilon^2 N}$$

Notation with multiple bins

Learning From Data - Lecture 2 12/17

A simple solution

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \leq \mathbb{P}[|E_{\mathsf{in}}(h_1) - E_{\mathsf{out}}(h_1)| > \epsilon$$

$$\mathbf{or} |E_{\mathsf{in}}(h_2) - E_{\mathsf{out}}(h_2)| > \epsilon$$

$$\cdots$$

$$\mathbf{or} |E_{\mathsf{in}}(h_M) - E_{\mathsf{out}}(h_M)| > \epsilon]$$

$$\leq \sum_{m=1}^{M} \mathbb{P}[|E_{\mathsf{in}}(h_m) - E_{\mathsf{out}}(h_m)| > \epsilon]$$

The final verdict

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \leq \sum_{m=1}^{M} \mathbb{P}[|E_{\mathsf{in}}(h_m) - E_{\mathsf{out}}(h_m)| > \epsilon]$$
$$\leq \sum_{m=1}^{M} 2e^{-2\epsilon^2 N}$$

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

feasibility of learning

- can we make E_{out}(g) close enough to E_{in}(g) ?
- can we make E_{in}(g) small enough?

the complexity of \mathcal{H}

can we make E_{out}(g) close enough to E_{in}(g) ?

$$\mathcal{P}(|E_{in}(g) - E_{out}(g)| > \epsilon) \le 2Me^{-2\epsilon^2 N}$$

- M is a measure of "complexity" of ${\mathcal H}$
- we would like to keep M small
- but ...

the complexity of \mathcal{H}

can we make E_{out}(g) close enough to E_{in}(g) ?

$$\mathcal{P}(|E_{in}(g) - E_{out}(g)| > \epsilon) \le 2Me^{-2\epsilon^2 N}$$

- can we make E_{in}(g) small enough ?
 - a richer \mathcal{H} helps to get $E_{in}(g) \approx 0$
 - richer means more, and more complex h
 - ...so we want a large M

the complexity of \mathcal{H}

generalization

- can we make E_{out}(g) close enough to E_{in}(g) ?
- can we make E_{in}(g) small enough ?

approximation

the complexity of f

can we make E_{out}(g) close enough to E_{in}(g) ?

$$\mathcal{P}(|E_{in}(g) - E_{out}(g)| > \epsilon) \le 2Me^{-2\epsilon^2 N}$$

this does not depend on f

- can we make E_{in}(g) small enough ?
 - approximating a complex f is harder
 - we will need a ${\mathcal H}$ with more complex h
 - ...i.e., a larger M