Homework 2

Isaac Wilhelm: isaac.wilhelm@rutgers.edu

Problem 1. Which of the following are sentences of propositional logic (that is, of what is called TFL in forallx)?

- 1. p
- 2. $p \rightarrow q$
- $\beta. (p \vee q)$
- 4. $(p \rightarrow (q \lor (\neg r \leftrightarrow s \neg)))$
- 5. $\neg \neg p \wedge q$

Problem 2. How many sentences of propositional logic (that is, of what is called TFL in forallx) can be formed from just the sentence letter p and the unary sentence operator \neg ?

Problem 3. Is the argument below valid? Explain your answer by constructing a truth table for the argument.

- 1. $\neg p$
- 2. $p \rightarrow q$
- $3. \neg q$

Problem 4. Is the argument below valid? Explain your answer by constructing a truth table for the argument.

- 1. p
- 2. q
- 3. $p \wedge q$

Problem 5. Determine whether or not the following natural-language argument is sound by (i) translating it into the formalism of propositional logic (that is, into what is called TFL in forallx), (ii) constructing a truth table for the translated argument to determine whether or not the natural-language argument is valid, and (iii) determining whether or not the premises in the natural-language argument are true.

- 1. Either the Yankees won the 1998 world series or the Padres won the 1998 world series.
- 2. The Yankees won the 1998 world series.
- 3. The Padres did not win the 1998 world series.

Problem 6. Determine whether or not the following natural-language argument is sound by (i) translating it into the formalism of propositional logic (that is, into what is called TFL in forallx), (ii) constructing a truth table for the translated argument to determine whether or not the natural-language argument is valid, and (iii) determining whether or not the premises in the natural-language argument are true.

- 1. If Emily Dickinson was born in Chicago, then Emily Dickinson was born in Illinois.
- 2. Emily Dickinson was not born in Illinois.
- 3. Emily Dickinson was not born in Chicago.

Problem 7. Give the complete truth table for the sentence $((p \to \neg q) \lor r) \lor (p \land \neg r)$.

Problem 8. Which of the sentences below are tautologies? Which are contradictions? Which are neither?

- 1. $(p \vee \neg p)$
- 2. $(p \lor p)$
- 3. $(p \land \neg p)$
- 4. $\neg (p \land \neg p)$
- 5. $\neg(p \rightarrow \neg p)$

Problem 9. Which pairs of sentences are logically equivalent?

- 1. $\neg\neg p$, $\neg\neg\neg\neg\neg p$
- 2. $\neg (p \rightarrow \neg p), \neg p$
- 3. $(p \vee (\neg q \vee r)), ((p \vee \neg q) \vee r)$
- 4. $(p \leftrightarrow \neg (p \lor q)), (p \leftrightarrow \neg q)$
- 5. $(p \wedge q), \neg(\neg p \vee \neg q)$

Problem 10. Do $p \to q$ and $q \to r$ jointly entail $p \to r$? Construct a truth table to demonstrate that your answer is correct. If $p \to q$ and $q \to r$ do jointly entail $p \to r$, use the truth table to explain why. If not, use the truth table to explain why not.