

2K SPI Bus Serial EEPROM

Device Selection Table

Part Number	Vcc Range	Page Size	Temp. Ranges	Packages
25AA020A	1.8-5.5V	16 Bytes	I	P, MS, SN, ST, MC, OT
25LC020A	2.5-5.5V	16 Bytes	I, E	P, MS, SN, ST, MC, OT

Features:

- 10 MHz max. clock frequency
- · Low-power CMOS technology:
 - Max. Write Current: 5 mA at 5.5V, 10 MHz
 - Read Current: 5 mA at 5.5V, 10 MHz
 - Standby Current: 5 μA at 5.5V
- 256 x 8-bit organization
- Write Page mode (up to 16 bytes)
- · Sequential Read
- Self-timed Erase and Write cycles (5 ms max.)
- Block Write protection:
 - Protect none, 1/4, 1/2 or all of array
- · Built-in Write protection:
 - Power-on/off data protection circuitry
 - Write enable latch
 - Write-protect pin
- · High reliability:
 - Endurance: 1,000,000 Erase/Write cycles
 - Data retention: > 200 years
 - ESD protection: > 4000V
- Temperature ranges supported:
 - Industrial (I): -40°C to +85°C - Automotive (E): -40°C to +125°C
- · Pb-Free packages available

Pin Function Table

Name	Function			
CS	Chip Select Input			
SO	Serial Data Output			
WP	Write-Protect			
Vss	Ground			
SI	Serial Data Input			
SCK	Serial Clock Input			
HOLD	Hold Input			
Vcc	Supply Voltage			

Description:

The Microchip Technology Inc. 25XX020A* is a 2 Kbit Serial Electrically Erasable Programmable Read-Only Memory (EEPROM). The memory is accessed via a simple Serial Peripheral InterfaceTM (SPI) compatible serial bus. The bus signals required are a clock input (SCK) plus separate data in (SI) and data out (SO) lines. Access to the device is controlled through a Chip Select (\overline{CS}) input.

Communication to the device can be paused via the hold pin (HOLD). While the device is paused, transitions on its inputs will be ignored, with the exception of Chip Select, allowing the host to service higher priority interrupts.

The 25XX020A is available in standard packages including 8-lead PDIP and SOIC, and advanced packages including 8-lead MSOP, 8-lead TSSOP and rotated TSSOP, 8-lead 2x3 DFN, and 6-lead SOT-23.

Package Types (not to scale)

^{*25}XX020A is used in this document as a generic part number for the 25AA020A and the 25LC020A.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings(†)

Vcc	6.5V
All inputs and outputs w.r.t. Vss	0.6V to Vcc +1.0V
Storage temperature	65°C to 150°C
Ambient temperature under bias	40°C to 125°C
ESD protection on all pins	4 kV

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

DC CHARACTERISTICS		Industrial (I): $TA = -40$ °C to Automotive (E): $TA = -40$ °C to				
Param. No.	Sym.	Characteristic	Min.	Max.	Units	Test Conditions
D001	VIH1	High-level Input Voltage	0.7 Vcc	Vcc +1	V	
D002	VIL1	Low-level Input	-0.3	0.3 Vcc	V	Vcc ≥ 2.7V (Note 1)
D003	VIL2	Voltage	-0.3	0.2 Vcc	V	Vcc < 2.7V (Note 1)
D004	Vol	Low-level Output	_	0.4	V	IOL = 2.1 mA
D005	Vol	Voltage	_	0.2	V	IOL = 1.0 mA, VCC < 2.5V
D006	Voн	High-level Output Voltage	Vcc -0.5	_	V	ΙΟΗ = -400 μΑ
D007	ILI	Input Leakage Current	_	±1	μΑ	CS = Vcc, Vin = Vss to Vcc
D008	ILO	Output Leakage Current	_	±1	μΑ	CS = Vcc, Vout = Vss to Vcc
D009	CINT	Internal Capacitance (all inputs and outputs)	_	7	pF	TA = 25°C, CLK = 1.0 MHz, VCC = 5.0V (Note 1)
D010	Icc Read		_	5	mA	VCC = 5.5V; FCLK = 10.0 MHz; SO = Open
		Operating Current	_	2.5	mA	VCC = 2.5V; FCLK = 5.0 MHz; SO = Open
D011	Icc Write		_	5	mA	Vcc = 5.5V
			_	3	mA	Vcc = 2.5V
D012	Iccs	Standby Current	_	5	μΑ	CS = Vcc = 5.5V, Inputs tied to Vcc or Vss, TA = +125°C
			_	1	μΑ	CS = Vcc = 2.5V, Inputs tied to Vcc or Vss, TA = +85°C

Note: This parameter is periodically sampled and not 100% tested.

TABLE 1-2: AC CHARACTERISTICS

AC CHA	AC CHARACTERISTICS		` '			to +85°C
Param. No.	Sym.	Characteristic	Min.	Max.	Units	Test Conditions
1	FCLK	Clock Frequency	_ _ _	10 5 3	MHz MHz MHz	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
2	Tcss	CS Setup Time	50 100 150	_ _ _	ns ns ns	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
3	ТСЅН	CS Hold Time	100 200 250		ns ns ns	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
4	TCSD	CS Disable Time	50	_	ns	_
5	Tsu	Data Setup Time	10 20 30	_ _ _	ns ns ns	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
6	THD	Data Hold Time	20 40 50		ns ns ns	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
7	TR	CLK Rise Time	_	2	μs	(Note 1)
8	TF	CLK Fall Time	_	2	μs	(Note 1)
9	Тні	Clock High Time	0.05 0.1 0.15	1000 1000 1000	μs μs μs	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
10	TLO	Clock Low Time	0.05 0.1 0.15	1000 1000 1000	μs μs μs	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
11	TCLD	Clock Delay Time	50	_	ns	_
12	TCLE	Clock Enable Time	50	_	ns	_
13	Tv	Output Valid from Clock Low	_ _ _	50 100 160	ns ns ns	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
14	Тно	Output Hold Time	0	_	ns	(Note 1)
15	TDIS	Output Disable Time	_ _ _	40 80 160	ns ns ns	4.5V ≤ VCC < 5.5V (Note 1) 2.5V ≤ VCC < 4.5V (Note 1) 1.8V ≤ VCC < 2.5V (Note 1)
16	THS	HOLD Setup Time	20 40 80	_ _ _	ns ns ns	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V

Note 1: This parameter is periodically sampled and not 100% tested.

- 2: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from our web site: www.Microchip.com.
- **3:** Two begins on the rising edge of \overline{CS} after a valid write sequence and ends when the internal write cycle is complete.

TABLE 1-2: AC CHARACTERISTICS (CONTINUED)

AC CHARACTERISTICS					to +85°C	
Param. No.	Sym.	Characteristic	Min. Max. Units		Units	Test Conditions
17	Тнн	HOLD Hold Time	20 40 80		ns ns ns	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
18	THZ	HOLD Low to Output High-Z	30 60 160		ns ns ns	4.5V ≤ VCC < 5.5V (Note 1) 2.5V ≤ VCC < 4.5V (Note 1) 1.8V ≤ VCC < 2.5V (Note 1)
19	THV	HOLD High to Output Valid	30 60 160		ns ns ns	4.5V ≤ VCC < 5.5V 2.5V ≤ VCC < 4.5V 1.8V ≤ VCC < 2.5V
20	Twc	Internal Write Cycle Time (byte or page)	_	5	ms	(Note 3)
21	_	Endurance	1M	_	E/W Cycles	(NOTE 2)

- Note 1: This parameter is periodically sampled and not 100% tested.
 - 2: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from our web site: www.Microchip.com.
 - **3:** Two begins on the rising edge of $\overline{\text{CS}}$ after a valid write sequence and ends when the internal write cycle is complete.

TABLE 1-3: AC TEST CONDITIONS

AC Waveform:				
VLO = 0.2V	_			
VHI = VCC - 0.2V	(Note 1)			
VHI = 4.0V	(Note 2)			
CL = 100 pF	_			
Timing Measurement Reference Level				
Input	0.5 Vcc			
Output	0.5 Vcc			

Note 1: For VCC ≤ 4.0V **2:** For VCC > 4.0V

FIGURE 1-1: HOLD TIMING

FIGURE 1-2: SERIAL INPUT TIMING

FIGURE 1-3: SERIAL OUTPUT TIMING

2.0 FUNCTIONAL DESCRIPTION

2.1 Principles of Operation

The 25XX020A is a 256-byte Serial EEPROM designed to interface directly with the Serial Peripheral Interface (SPI) port of many of today's popular microcontroller families, including Microchip's PICmicro® microcontrollers. It may also interface with microcontrollers that do not have a built-in SPI port by using discrete I/O lines programmed properly in software to match the SPI protocol.

The 25XX020A contains an 8-bit instruction register. The device is accessed via the SI pin, with data being clocked in on the rising edge of SCK. The $\overline{\text{CS}}$ pin must be low and the $\overline{\text{HOLD}}$ pin must be high for the entire operation.

Table 2-1 contains a list of the possible instruction bytes and format for device operation. All instructions, addresses, and data are transferred MSb first, LSb last.

Data (SI) is sampled on the first rising edge of SCK after CS goes low. If the clock line is shared with other peripheral devices on the SPI bus, the user can assert the HOLD input and place the 25XX020A in 'HOLD' mode. After releasing the HOLD pin, operation will resume from the point when the HOLD was asserted.

2.2 Read Sequence

The device is selected by pulling $\overline{\text{CS}}$ low. The 8-bit READ instruction is transmitted to the 25XX020A followed by an 8-bit address. See Figure 2-1 for more details.

After the correct READ instruction and address are sent, the data stored in the memory at the selected address is shifted out on the SO pin. Data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses to the slave. The internal Address Pointer automatically increments to the next higher address after each byte of data is shifted out. When the highest address is reached (FFh), the address counter rolls over to address 00h allowing the read cycle to be continued indefinitely. The read operation is terminated by raising the $\overline{\text{CS}}$ pin (Figure 2-1).

2.3 Write Sequence

Prior to any attempt to write data to the 25XX020A, the write enable latch must be set by issuing the WREN instruction (Figure 2-4). This is done by setting \overline{CS} low and then clocking out the proper instruction into the 25XX020A. After all eight bits of the instruction are transmitted, \overline{CS} must be driven high to set the write enable latch. If the write operation is initiated immediately after the WREN instruction without \overline{CS} driven high, data will not be written to the array since the write enable latch was not properly set.

After setting the write enable latch, the user may proceed by driving $\overline{\text{CS}}$ low, issuing a WRITE instruction, followed by the remainder of the address, and then the data to be written. Up to 16 bytes of data can be sent to the device before a write cycle is necessary. The only restriction is that all of the bytes must reside in the same page. Additionally, a page address begins with XXXX 0000 and ends with XXXX 1111. If the internal address counter reaches XXXX 1111 and clock signals continue to be applied to the chip, the address counter will roll back to the first address of the page and overwrite any data that previously existed in those locations.

Note:

Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and, end at addresses that are integer multiples of page size - 1. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.

For the data to be actually written to the array, the $\overline{\text{CS}}$ must be brought high after the Least Significant bit (D0) of the n^{th} data byte has been clocked in. If $\overline{\text{CS}}$ is driven high at any other time, the write operation will not be completed. Refer to Figure 2-2 and Figure 2-3 for more detailed illustrations on the byte write sequence and the page write sequence respectively. While the write is in progress, the STATUS register may be read to check the status of the WIP, WEL, BP1 and BP0 bits (Figure 2-6). Attempting to read a memory array location will not be possible during a write cycle. Polling the WIP bit in the STATUS register is recommended in order to determine if a write cycle is in progress. When the write cycle is completed, the write enable latch is reset.

BLOCK DIAGRAM

TABLE 2-1: INSTRUCTION SET

Instruction Name	Instruction Format	Description	
READ	0000 x011	Read data from memory array beginning at selected address	
WRITE	0000 x010	Write data to memory array beginning at selected address	
WRDI	0000 x100	Reset the write enable latch (disable write operations)	
WREN	0000 x110	Set the write enable latch (enable write operations)	
RDSR	0000 x101	Read STATUS register	
WRSR	0000 x001	Write STATUS register	

x = don't care

FIGURE 2-1: READ SEQUENCE

FIGURE 2-2: BYTE WRITE SEQUENCE

FIGURE 2-3: PAGE WRITE SEQUENCE

2.4 Write Enable (WREN) and Write Disable (WRDI)

The 25XX020A contains a write enable latch. See Table 2-4 for the Write-Protect Functionality Matrix. This latch must be set before any write operation will be completed internally. The WREN instruction will set the latch, and the WRDI will reset the latch.

The following is a list of conditions under which the write enable latch will be reset:

- Power-up
- WRDI instruction successfully executed
- WRSR instruction successfully executed
- WRITE instruction successfully executed
- WP pin is brought low

FIGURE 2-4: WRITE ENABLE SEQUENCE (WREN)

FIGURE 2-5: WRITE DISABLE SEQUENCE (WRDI)

2.5 Read Status Register Instruction (RDSR)

The Read Status Register instruction (RDSR) provides access to the STATUS register. See Figure 2-6 for the RDSR timing sequence. The STATUS register may be read at any time, even during a write cycle. The STATUS register is formatted as follows:

TABLE 2-2: STATUS REGISTER

7	6	5	4	3	2	1	0
_	ı	-	ı	W/R	W/R	R	R
X	Х	Х	Х	BP1	BP0	WEL	WIP
W/R = w	W/R = writable/readable. R = read-only.						

The **Write-In-Process (WIP)** bit indicates whether the 25XX020A is busy with a write operation. When set to a '1', a write is in progress, when set to a '0', no write is in progress. This bit is read-only.

The Write Enable Latch (WEL) bit indicates the status of the write enable latch and is read-only. When set to a '1', the latch allows writes to the array, when set to a '0', the latch prohibits writes to the array. The state of this bit can always be updated via the WREN or WRDI commands regardless of the state of write protection on the STATUS register. These commands are shown in Figure 2-4 and Figure 2-5.

The **Block Protection (BP0 and BP1)** bits indicate which blocks are currently write-protected. These bits are set by the user issuing the WRSR instruction, which is shown in Figure 2-7. These bits are nonvolatile and are described in more detail in Table 2-3.

2.6 Write Status Register Instruction (WRSR)

The Write Status Register instruction (WRSR) allows the user to write to the nonvolatile bits in the STATUS register as shown in Table 2-2. See Figure 2-7 for the WRSR timing sequence. Four levels of protection for the array are selectable by writing to the appropriate bits in the STATUS register. The user has the ability to write-protect none, one, two, or all four of the segments of the array as shown in Table 2-3.

TABLE 2-3: ARRAY PROTECTION

BP1	BP0	Array Addresses Write-Protected
0	0	none
0	1	upper 1/4 (C0h-FFh)
1	0	upper 1/2 (80h-FFh)
1	1	all (00h-FFh)

FIGURE 2-7: WRITE STATUS REGISTER TIMING SEQUENCE (WRSR)

Note: An internal write cycle (Twc) is initiated on the rising edge of \overline{CS} after a valid write STATUS register sequence.

2.7 Data Protection

The following protection has been implemented to prevent inadvertent writes to the array:

- The write enable latch is reset on power-up
- A write enable instruction must be issued to set the write enable latch
- After a byte write, page write or STATUS register write, the write enable latch is reset
- CS must be set high after the proper number of clock cycles to start an internal write cycle
- Access to the array during an internal write cycle is ignored and programming is continued

2.8 Power-On State

The 25XX020A powers on in the following state:

- The device is in low-power Standby mode (CS = 1)
- The write enable latch is reset
- SO is in high-impedance state

TABLE 2-4: WRITE-PROTECT FUNCTIONALITY MATRIX

WP (pin 3)	WEL (SR bit 1)	Protected Blocks	Unprotected Blocks	STATUS Register
0 (low)	x	Protected	Protected	Protected
1 (high)	0	Protected	Protected	Protected
1 (high)	1	Protected	Writable	Writable

x = don't care

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Name	PDIP, SOIC, MSOP, TSSOP, DFN	Rotated TSSOP	SOT- 23	Function
CS	1	3	5	Chip Select Input
so	2	4	4	Serial Data Output
WP	3	5	_	Write-Protect Pin
Vss	4	6	2	Ground
SI	5	7	3	Serial Data Input
SCK	6	8	1	Serial Clock Input
HOLD	7	1	_	Hold Input
Vcc	8	2	6	Supply Voltage

3.1 Chip Select (CS)

A low level on this pin selects the device. A high level deselects the device and forces it into Standby mode. However, a programming cycle which is already initiated or in progress will be completed, regardless of the $\overline{\text{CS}}$ input signal. If $\overline{\text{CS}}$ is brought high during a program cycle, the device will go into Standby mode as soon as the programming cycle is complete. When the device is deselected, SO goes to the high-impedance state, allowing multiple parts to share the same SPI bus. A low to high transition on $\overline{\text{CS}}$ after a valid write sequence initiates an internal write cycle. After powerup, a low level on $\overline{\text{CS}}$ is required prior to any sequence being initiated.

3.2 Serial Output (SO)

The SO pin is used to transfer data out of the 25XX020A. During a read cycle, data is shifted out on this pin after the falling edge of the serial clock.

3.3 Write-Protect (WP)

The $\overline{\text{WP}}$ pin is a hardware write-protect input pin. When it is low, all writes to the array or STATUS register are disabled, but any other operations function normally. When $\overline{\text{WP}}$ is high, all functions, including nonvolatile writes operate normally. At any time, when $\overline{\text{WP}}$ is low, the write enable reset latch will be reset and programming will be inhibited. However, if a write cycle is already in progress, $\overline{\text{WP}}$ going low will not change or disable the write cycle. See Table 2-4 for the Write-Protect Functionality Matrix.

3.4 Serial Input (SI)

The SI pin is used to transfer data into the device. It receives instructions, addresses and data. Data is latched on the rising edge of the serial clock.

3.5 Serial Clock (SCK)

The SCK is used to synchronize the communication between a master and the 25XX020A. Instructions, addresses or data present on the SI pin are latched on the rising edge of the clock input, while data on the SO pin is updated after the falling edge of the clock input.

3.6 Hold (HOLD)

The HOLD pin is used to suspend transmission to the 25XX020A while in the middle of a serial sequence without having to retransmit the entire sequence again. It must be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the HOLD pin may be pulled low to pause further serial communication without resetting the serial sequence. The HOLD pin must be brought low while SCK is low, otherwise the HOLD function will not be invoked until the next SCK high-tolow transition. The 25XX020A must remain selected during this sequence. The SI, SCK and SO pins are in a high-impedance state during the time the device is paused and transitions on these pins will be ignored. To resume serial communication, HOLD must be brought high while the SCK pin is low, otherwise serial communication will not resume. Lowering the HOLD line at any time will tri-state the SO line.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

	1st Line Marking Codes										
Part Number	TSS	TSSOP		SOT-23		DF	N				
	Standard	Rotated		I Temp.	E Temp.	I Temp.	E Temp.				
25AA020A	5A2A	A2AX	5A2AT	22NN	_	411	_				
25LC020A	5L2A	L2AX	5L2AT	25NN	26NN	414	415				
Note: T = Tem	NN = Alphanumeric traceability code										

Legend	Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.					
	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.						

Package Marking Information (continued)

6-Lead SOT-23

Example:

8-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

	Units		INCHES*		M	IILLIMETERS	3
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8		_	8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eВ	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-001 Drawing No. C04-018

8-Lead Plastic Small Outline (SN) - Narrow, 150 mil (SOIC)

Units				MILLIMETERS			
Limits	MIN	NOM	MAX	MIN	NOM	MAX	
n	,	8			8		
р		.050			1.27		
Α	.053	.061	.069	1.35	1.55	1.75	
A2	.052	.056	.061	1.32	1.42	1.55	
A1	.004	.007	.010	0.10	0.18	0.25	
Е	.228	.237	.244	5.79	6.02	6.20	
E1	.146	.146 .154		3.71	3.91	3.99	
D	.189	.193	.197	4.80	4.90	5.00	
h	.010	.015	.020	0.25	0.38	0.51	
L	.019	.025	.030	0.48	0.62	0.76	
ф	0	4	8	0	4	8	
С	.008	.009	.010	0.20	0.23	0.25	
В	.013	.017	.020	0.33	0.42	0.51	
α	0	12	15	0	12	15	
β	0	12	15	0	12	15	
	Nation Nation	Nation Nation	Nome	n Limits MIN NOM MAX p .050 .061 .069 A2 .052 .056 .061 A1 .004 .007 .010 E .228 .237 .244 E1 .146 .154 .157 D .189 .193 .197 h .010 .015 .020 L .019 .025 .030 φ 0 4 8 c .008 .009 .010 B .013 .017 .020 α 0 12 15	n Limits MIN NOM MAX MIN p .050 .069 1.35 A2 .052 .056 .061 1.32 A1 .004 .007 .010 0.10 E .228 .237 .244 5.79 E1 .146 .154 .157 3.71 D .189 .193 .197 4.80 h .010 .015 .020 0.25 L .019 .025 .030 0.48 φ 0 4 8 0 c .008 .009 .010 0.20 B .013 .017 .020 0.33 α 0 12 15 0	n Limits MIN NOM MAX MIN NOM n 8 8 8 P .050 1.27 A .053 .061 .069 1.35 1.55 A2 .052 .056 .061 1.32 1.42 A1 .004 .007 .010 0.10 0.18 E .228 .237 .244 5.79 6.02 E1 .146 .154 .157 3.71 3.91 D .189 .193 .197 4.80 4.90 h .010 .015 .020 0.25 0.38 L .019 .025 .030 0.48 0.62 φ 0 4 8 0 4 c .008 .009 .010 0.20 0.23 B .013 .017 .020 0.33 0.42 α 0 12 15 0	

^{*} Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012

Drawing No. C04-057

[§] Significant Characteristic

8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

	Units		INCHES		MILLIMETERS*			
Dimension Limit	s	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8		
Pitch	р		.026			0.65		
Overall Height	Α	.039	.041	.043	1.00	1.05	1.10	
Molded Package Thickness	A2	.033	.035	.037	0.85	0.90	0.95	
Standoff	A1	.002	.004	.006	0.05	0.10	0.15	
Overall Width	Е	.246	.251	.256	6.25	6.38	6.50	
Molded Package Width	E1	.169	.173	.177	4.30	4.40	4.50	
Molded Package Length	D	.114	.118	.122	2.90	3.00	3.10	
Foot Length	L	.020	.024	.028	0.50	0.60	0.70	
Foot Angle	ф	0°	4°	8°	0°	4°	8°	
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20	
Lead Width	В	.007	.010	.012	0.19	0.25	0.30	
Mold Draft Angle Top	α	0°	5°	10°	0°	5°	10°	
Mold Draft Angle Bottom	β	0°	5°	10°	0°	5°	10°	

^{*} Controlling Parameter

Notes

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. JEDEC Equivalent: MO-153

Drawing No. C04-086

Revised 07-21-05

8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

	Units		INCHES		MI	LLIMETERS*	
Dimension Lim	nits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.026 BSC			0.65 BSC	
Overall Height	Α	-	-	.043	-	-	1.10
Molded Package Thickness	A2	.030	.033	.037	0.75	0.85	0.95
Standoff	A1	.000	-	.006	0.00	-	0.15
Overall Width	Overall Width E				4.90 BSC		
Molded Package Width	E1	.118 BSC			3.00 BSC		
Overall Length	D		.118 BSC			3.00 BSC	
Foot Length	L	.016	.024	.031	0.40	0.60	0.80
Footprint (Reference)	F		.037 REF		0.95 REF		
Foot Angle	ф	0°	-	8°	0°	-	8°
Lead Thickness	С	.003	.006	.009	0.08	-	0.23
Lead Width	В	.009	.012	.016	0.22	-	0.40
Mold Draft Angle Top	α	5°	1	15°	5°	-	15°
Mold Draft Angle Bottom	β	5°	1	15°	5°	-	15°

^{*} Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

See ASME Y14.5M

REF: Reference Dimension, usually without tolerance, for information purposes only.

See ASME Y14.5M

JEDEC Equivalent: MO-187

Drawing No. C04-111

Revised 07-21-05

8-Lead Plastic Dual-Flat, No-Lead Package (MC) 2x3x0.9 mm Body (DFN) - Saw Singulated

	Units		INCHES		М	ILLIMETERS*		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8		
Pitch	е		.020 BSC			0.50 BSC		
Overall Height	А	.031	.035	.039	0.80	0.90	1.00	
Standoff	A1	.000	.001	.002	0.00	0.02	0.05	
Contact Thickness	A3	.008 REF.			0.20 REF.			
Overall Length	D		.079 BSC		2.00 BSC			
Overall Width	E		.118 BSC		3.00 BSC			
Exposed Pad Length	D2	.051	_	.069	1.30**	_	1.75	
Exposed Pad Width	E2	.059	_	.075	1.50**	_	1.90	
Contact Length §	L	.012	.016	.020	0.30	0.40	0.50	
Contact-to-Exposed Pad	§ K	.008	_	_	0.20	_	_	
Contact Width	b	.008	.010	.012	0.20	0.25	0.30	

^{*} Controlling Parameter

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Exposed pad may vary according to die attach paddle size.
- 3. Package may have one or more exposed tie bars at ends.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

See ASME Y14.5M

REF: Reference Dimension, usually without tolerance, for information purposes only.

See ASME Y14.5M

JEDEC Equivalent MO-229 VCED-2

DWG No. C04-123

Revised 09-12-05

^{**} Not within JEDEC parameters

[§] Significant Characteristic

6-Lead Plastic Small Outline Transistor (CH or OT) (SOT-23)

		INCHES*		MILLIMETERS			
Dimension Lim	its	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		6			6	
Pitch	р		038 BSC		(0.95 BSC	
Outside lead pitch	p1		075 BSC		1	1.90 BSC	
Overall Height	Α	.035	.046	.057	0.90	1.18	1.45
Molded Package Thickness	A2	.035	.043	.051	0.90	1.10	1.30
Standoff	A1	.000	.003	.006	0.00	0.08	0.15
Overall Width	Е	.102	.110	.118	2.60	2.80	3.00
Molded Package Width	E1	.059	.064	.069	1.50	1.63	1.75
Overall Length	D	.110	.116	.122	2.80	2.95	3.10
Foot Length	L	.014	.018	.022	0.35	0.45	0.55
Foot Angle	ф	0	5	10	0	5	10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.014	.017	.020	0.35	0.43	0.50
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

^{*} Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

See ASME Y14.5M

JEITA (formerly EIAJ) equivalent: SC-74A

Drawing No. C04-120

Revised 09-12-05

APPENDIX A: REVISION HISTORY

Revision B

Corrections to Section 1.0, Electrical Characteristics.

Revision C

Added Packages SOT-23, DFN and X-rotated TSSOP; Revised AC Char., Params. 9, 10; Revised Package Legend.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Company	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	lication (optional):	
Wou	ıld you like a reply?YN	
Devi	ice: 25AA020A/25LC020A	Literature Number: DS21833C
Que	stions:	
1. \	What are the best features of this do	cument?
_		
-		
2. I	How does this document meet your	hardware and software development needs?
-		
_		
3. I	Do you find the organization of this c	locument easy to follow? If not, why?
=		
4. \	What additions to the document do v	ou think would enhance the structure and subject?
	,	
-		
5.	What deletions from the document c	ould be made without affecting the overall usefulness?
_		
_		
6. I	Is there any incorrect or misleading i	nformation (what and where)?
-		
-		
7. I	How would you improve this docume	ent?
-		
-		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>x</u>		- <u>X</u> / <u>/XX</u>		Exa	amples:					
Device:	754402		I Temperature Package 2k-Bit, 1.8V, 16 Byte Page, SPI Serial EEPROM	7	a) b)	25AA020A-I/MS = 2k-bit, 16-byte page, 1.8V Serial EEPROM, Industrial temp., MSOP package 25AA020AT-I/SN = 2k-bit, 16-byte page, 1.8V Serial EEPROM, Industrial temp., Tape & Reel, SOIC package					
Tape & Reel:	25LC020	λ	2k-Bit, 1.6V, 16 Byte Page, SPI Serial EEPROM Standard packaging		c)	c)	c)	c)	c)	c)	25LC020AT-I/SN = 2k-bit, 16-byte page, 2.5V Serial EEPROM, Industrial temp., Tape & Reel, SOIC package
Temperature Range:	<u> </u> :	= = =	Tape & Reel -40°C to+85°C -40°C to+125°C		d) e)	25LC020AT-I/ST = 2k-bit, 16-byte page, 2.5V Serial EEPROM, Industrial temp., Tape & Reel, TSSOP package 25LC020AT-E/SN = 2k-bit, 16-byte page, 2.5V					
Package:	P : SN : ST : MC :	= = = = = = = = = = = = = = = = = = = =	Plastic MSOP (Micro Small Outline), 8-lead Plastic DIP (300 mil body), 8-lead Plastic SOIC (150 mil body), 8-lead TSSOP, 8-lead 2x3 DFN, 8-lead SOT-23, 6-lead (Tape and Reel only)			serial EEPROM, Extended temp., Tape & Reel, SOIC Package					

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and Zena are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOO® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

http://support.microchip.com

Web Address: www.microchip.com

Technical Support:

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea - Gumi

Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang

Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu

raiwan - HSIN Chu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

10/31/05