Previously in Molecularity...

SN	0 LP	1 LP	2 LP	3 LP	4 LP	5 LP
2	X—E—X Linear	XE:				
3	X L X X Trigonal planar	E x X 120° Bent	X E			
4	X E,////X X Tetrahedral	Trig. pyramidal	X E, X 109.5° Bent	X E:		
5	X IIIIIII E X X X X X X Trig. bipyrimidal	X X X X X X X X See-saw	X : X : X T-shaped	X : : : : : : : : : :	:///::E: X	
6	X /////X E :::::X X X Octahedral	X IIIII X X X X X X X X X X X X X X X X	X IIIII X X Sq. planar	X IIIII X X T-shaped	:///X Linear	:////:: X E::::::::::::::::::::::::::::::::::

VSEPR Practice

- Draw the Lewis dot structure, VSEPR structure and provide the VSEPR structure name for:
 - Formaldehyde, CH₂O
 - Phosphine, PH₃
 - Ethene (ethylene), CH₂CH₂
 - Bromine pentachloride
 - Bromine trichloride

Lone pairs are fat #3 Methane Ammonia ~109.5° ~107° Water

Upcoming schedule

 Monday: §5.6-9 VSEPR wrap-up Good problems in Tro: 5.53–68 §5.2 and §5.10 Shapes, Dipoles, Polarity, oh my! Good problems in Tro: 5.69–74

- Tuesday: §6.2 Atomic overlap and §6.3 Hybridization of atomic orbitals Good problems in Tro: 6.25–34
- Wednesday: §6.3 Hybridization and the associated molecules

Upcoming schedule

- Thursday: recitation
- Friday: Exam 2
 - Same rooms
 - Same breakdown by last name.
 - Same coversheet.
 - Entire book through §6.3 (hybridization). Focus on Ch 4+

What happens in an electric field?

What happens in an electric field?

Dipole moment of a bond

$$\mu = \delta d$$
 Dipole moment in C m
1 C m = 1 Debye

Dipole moment of a bond

$$\mu = \delta d$$

Dipole moment in C m 1 C m = 1 Debye

In your book...

$$\mu = \delta d$$

...is written...

$$\mu = qr$$

Structure with Bond Dipole(s)	Direction of Overall Dipole	Dipole Moment (debyes)
		13

Formula	Structure with Bond Dipole(s)	Direction of Overall Dipole	Dipole Moment (debyes)
HF	$H \xrightarrow{\longleftarrow} F$		
H ₂ O	H		
NH ₃	H		
CHCl ₃	$CI \xrightarrow{\uparrow H} CI$ $CI \xrightarrow{C} CI$		
CC1 ₃ F	$ \uparrow^{F} \downarrow \\ Cl \downarrow^{C} Cl $ $ \downarrow^{C} Cl $		14
			14

Formula	Structure with Bond Dipole(s)	Direction of Overall Dipole	Dipole Moment (debyes)
HF	$H \xrightarrow{\longleftarrow} F$	+>	
H ₂ O	H	1	
NH ₃	H	1	
CHCl ₃	$CI \xrightarrow{\uparrow H} CI$ $CI \xrightarrow{C} CI$	‡	
CC1 ₃ F		1	15
			- 15

Formula	Structure with Bond Dipole(s)	Direction of Overall Dipole	Dipole Moment (debyes)
HF	$H \xrightarrow{\longleftarrow} F$	\longrightarrow	1.91
H ₂ O	H	1	1.85
NH_3	H	1	1.47
CHCl ₃	$CI \xrightarrow{\uparrow H} CI$ $CI \xrightarrow{C} CI$	‡	1.04
CC1 ₃ F	$ \begin{array}{c} \uparrow F \\ \downarrow \\ CI \\ \downarrow CI \end{array} $ $ \begin{array}{c} \downarrow CI \\ \downarrow CI \end{array} $	1	0.45

To think about on your own...

- Would the following molecules have permanent dipoles? If so, in what direction and what might the dipole moment be?
 - Phosgene, COCl₂; XeCl₂Br₂; Methanol CH₃OH
- Do resonance structures change dipoles? Why or why not?
- Additionally, think about what bond lengths angles might be...
- Similar problems from Recitation 4....

VSEPR Practice

- Draw the Lewis dot structure, VSEPR structure and provide the VSEPR structure name for:
 - Formaldehyde, CH₂O
 - Phosphine, PH₃
 - Ethene (ethylene), CH₂CH₂
 - Bromine pentachloride
 - Bromine trichloride

VSEPR Practice

- Draw the Lewis dot structure, VSEPR structure and provide the VSEPR structure name for:
 - Formaldehyde, CH₂O
 - Phosphine, PH₃
 - Ethene (ethylene), CH2CH2
 - Bromine pentachloride
 - Bromine trichloride

What are the polarities of these molecules? How would they align in an electric field?

