次の問8は必須問題です。必ず解答してください。

問8 次のプログラムの説明及びプログラムを読んで、設問1~3に答えよ。

与えられた n 個のデータの中から k 番目に小さい値を選択する方法として,クイックソートを応用したアルゴリズムを考える。クイックソートとは,n 個のデータをある基準値以下の値のグループと基準値以上の値のグループに分割し(基準値はどちらのグループに入れても構わない),更にそれぞれのグループで基準値を選んで二つのグループに分割するという処理を繰り返してデータを整列するアルゴリズムである。クイックソートを応用して k 番目に小さい値を選択するアルゴリズムでは,データを二つのグループに分割した時点で,求める値はどちらのグループに含まれるかが確定するので,そのグループだけに,更に分割する処理を繰り返し適用する。グループの分割ができなくなった時点で,k 番目に小さい値が選択されている。

〔プログラムの説明〕

n 個の数値が格納されている配列 x と値 k を与えて,k 番目に小さい値を返す関数 Select である。ここで,配列 x の要素番号は 1 から始まる。また,配列 x の大きさは,配列に格納される数値の個数分だけ確保されているものとする。Select の処理の流れを次に示す。

(1) 行番号 3~4

k番目に小さい値を選択するために走査する範囲(以下,走査範囲という)の左端をTop,右端をLastとし,まず配列全体を走査範囲とする。

(2) 行番号 5~32

- ① 走査範囲に含まれる要素の数が1以下になるまで、②、③を繰り返す。
- ② 基準値 Pivot を選び、走査範囲内の値で基準値以下のものを左に、基準値以上のものを右に集める(行番号 6 \sim 24)。
- ③ 走査範囲が基準値以下の値から成るグループと基準値以上の値から成るグループに分割されるので、k番目に小さい値が含まれるグループを新たな走査範囲とする(行番号 25 ~ 30)。

④ 繰返しが終了したときに、要素 x[k] の値が k 番目に小さい値として、選択される。

Select の引数と返却値の仕様は次のとおりである。

〔関数 Select の引数/返却値の仕様〕

引数名/返却値 データ型		入力/出力	意味			
×[]	整数型	入力	数値が格納されている一次元配列			
n	整数型	入力	数値の個数			
k	整数型	入力	選択する数値の小ささの順位を示す値			
返却値	整数型	出力	選択された数値			

[プログラム]

```
(行番号)
```

```
1 ○整数型: Select(整数型: x[], 整数型: n, 整数型: k)
 2 ○整数型: Top, Last, Pivot, i, j, work
 3 • Top ← 1
                                   /* 走査範囲の左端の初期値を設定 */
 4 • Last ← n
                                   /* 走査範囲の右端の初期値を設定 */
    ■ Top < Last</p>
      • Pivot \leftarrow x[k]
 7

    i ← Top

 8
      • j ← Last
 9
      true
                                   /* ループ */
10
        ■ x[i] < Pivot</pre>
11
         • i ← i + 1
12
13
        ■ Pivot < x[j]
14
          • j ← j - 1
15
16
        ▲i ≧ j
17
          • break
                                   /* ループから抜ける */
18
19
        • work \leftarrow x[i]
20
        • x[i] \leftarrow x[j]
21
        • x[j] \leftarrow work
22
        • i \leftarrow i + 1
23
        • j ← j - 1
24
25
       i \leq k
26
        • Top \leftarrow j + 1
27
28
      ∧k≦j
        • Last ← i - 1
29
30
31
32 • return x[k]
```

設問 1 関数 Select の追跡に関する次の記述中の に入れる正しい答えを、 解答群の中から選べ。

関数 Select の引数で与えられた配列 x の要素番号 $1 \sim 7$ の内容が 3, 5, 6, 4, 7, 2, 1 であり, n が 7, k が 3 のとき, 配列 x の走査範囲の左端 Top と右端 Last の値は次のとおりに変化する。

- ・Top と Last の初期値は、それぞれ1と7である。
- ・Top < Last が成り立つ間,次に示す (1) 選択処理 1 回目の① ~ ③, (2) 選択 処理 2 回目の① ~ ③, … と実行する。

(1) 選択処理1回目

- ① 配列 x の走査範囲を二つの部分に分ける基準値 Pivot に配列 x の 3 番目の要素 x[3] の値 6 を設定する。次に, i に Top の値 1, j に Lastの値 7 を設定する。
- ② 配列 x の Top から Last までの走査範囲内にある数値を、6 以下の数値の グループと 6 以上の数値のグループの二つに分ける処理を行う。その結果、 配列 x の内容は次のとおりになる。

3, 5, 1, 4, 2, 7, 6

- ③ a を設定して選択処理の2回目に進む。
- (2) 選択処理2回目
 - 基準値 Pivot に x[3] の値 1 を設定する。
 - ② 配列xのTopからLastまでの走査範囲内にある数値を、1以下の数値のグループと1以上の数値のグループの二つに分ける処理を行う。その結果、配列xの内容は次のとおりになる。

1, 5, 3, 4, 2, 7, 6

- ③ b を設定して選択処理の3回目に進む。
- (3) 選択処理3回目

:

この選択処理を繰り返して、Top < Last でなくなったときに処理を終了する。 このとき、関数の返却値 x[k] には与えられた数値の中から k 番目に小さい値が 選択されている。

a, bk	関する解	答群							
アエ	op に値 1	, Last に値	直 5	イ	Top に値 1	, Last	こ値 6		
ウ T	ウ Top に値 2, Last に値 5				Top に値 2	, Last	こ値 6		
才工	op に値3	, Last に値	直 5	力	Top に値3	, Last (こ値 6		
設問 2	次の記述	空中の	lc	入れる正し	,い答えを,	解答群σ)中から選	べ。	
					~ 7 の内容				
ă	あり,nが ——	7, kが3	のとき,	選択処理	が終了する。	までにプ	ログラムロ	‡の α	の部
5	分は	回実	行され,	7 の部分	は d	回実行	される。		
c, dに	関する解答	群							
ア 1		1 2	ウ 3	エ	4	才 5	力	6	
設問 3	次の記述	中の	(Z.	入れる正し	い答えを,	解答群の)中から選	べ。	
	プログラ	ム中のβ	の行 x[i] < Pivo	を誤って	([i] ≦ F	Pivotとし	ンた。	この
‡	易合,引数	で与えられ	た配列	x の要素番	持号1~6 σ	内容が	1, 1, 1	1, 1	1, 1
7	であり,n	が6, kが	3 のとき	, е	。また,	引数で-	与えられた	を配列	xの

- e, fに関する解答群

 - ア Last に値 0 が設定される イ Pivot に値 0 が設定される
 - ウ Top に値 0 が設定される
- エ 処理が終了しない
- オ 配列の範囲を越えて参照する

要素番号1~6の内容が 1,3,2,4,2,2 であり,nが6,kが3のとき,