# FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ



Mikroprocesorové a vestavěné systémy – IMP

Měření výpočetních režií modulem Data Watchpoint and Trace (DWT)

## Obsah

| 1 | Úvod                     | 3 |
|---|--------------------------|---|
| 2 | Vybavenie                | 3 |
| 3 | Funkcionalita            | 3 |
|   | 3.1 Registre             | 3 |
|   | 3.1.1 DWT_CTRL           | 3 |
|   | 3.1.2 Počítacie registre | 3 |
| 4 | Riešenie                 | 4 |
|   | 4.1 Globálne premenné    | 4 |
|   | 4.2 Inicializácia MCU    | 4 |
|   | 4.3 Inicializácia DWT    | 4 |
|   | 4.4 Počítanie réžie      | 4 |
|   | 4.4.1 Počítanie          | 4 |
|   | 4.4.2 Presnost'          | 5 |
| 5 | Zhrnutie                 | 5 |
| 6 | Prílohy                  | 5 |
| 7 | Zdroje                   | 6 |
| • | =•==°j•                  | • |

## 1 Úvod

Úlohou bolo vytvoriť projekt demonštrujúci meranie výpočetnej réžie pomocou modulu Data Watchpoint and Trace (DWT) na mikrokontroléry Kinetis K60 s jadrom ARM Cortex-M4.

## 2 Vybavenie

Na použitie aplikácie je potreba FitKit3, na ktorom bude aplikácia bežať, počítač s aplikáciou Kinetis Design Studio (KDS) a Putty pre komunikáciu so zariadením.

Bohužial v dobe pandémie FitKit3 nieje prístupný, takže odskúšanie aplikácie nebolo možné.

### 3 Funkcionalita

Aplikácia meria počet cyklov CPU, cyklov CPU strávených v spánku a cyklov CPU strávených spracovaním prerušení. Z výsledkov je zhrnutý celkový počet cyklov, maximum, minimum a priemer.

## 3.1 Registre

Stavové informácie o DWT poskytuje register DWT\_CTRL a používa sa na ovládanie funkcií DWT. Register DWT\_CTRL je zobrazený v obrázku č. 1. Na konkrétne počítanie cyklov sa využívajú počítacie registre

### 3.1.1 DWT\_CTRL

Z DWT CTRL používame bity 0,18,19,20,21,24,25.

## 3.1.2 Počítacie registre

Na počítanie používame 1 register na všetky cykly a na konkrétne merania profilové registre, ktorých DWT poskytuje 5. DWT\_CYCCNT na počítanie cyklov procesoru, DWT\_SLEEPCNT na počítanie cyklov počas, ktorých procesor spí, DWT\_EXCCNT na počítanie cyklov v prerušení, DWT\_LSUCNT na cykly vykonávajúce načítanie a uloženie(load & store), DWT\_FOLDCNT pre inštrukcie, ktoré zaberú 0 cyklov a DWT\_CPICNT počítajúci všetky inštrukcie . Príklady týchto registrov nájdeme na obrázkoch č. 2,3,4. Register DWT\_CYCCNT má 32 bitov. Profilové registre majú 8 bitov.

#### 4 Riešenie

Celá implementácia sa nachádza v main.c. Implementácia obsahuje globálne premenné, základnú inicializáciu mikrokontroléru, inicializáciu modulu DWT a samotné počítanie réžie.

## 4.1 Globálne premenné

Máme zadefinované registre na ich patričných adresách.

| DWT_CTRL     | 0xE0001000 |
|--------------|------------|
| DWT_CYCCNT   | 0xE0001004 |
| DWT_EXCCNT   | 0xE000100C |
| DWT_CPICNT   | 0xE0001008 |
| DWT_SLEEPCNT | 0xE0001010 |
| DWT_LSUCNT   | 0xE0001014 |
| DWT_FOLDCNT  | 0xE0001018 |

Premenné kde sa uloží začiatok a koniec počítania a premenné pre počet cyklov, maximum, minimum a priemer. Nachádza sa tu aj premenná, ktorá určuje počet opakovaní meraného kódu.

#### 4.2 Inicializácia MCU

Základné nastavenie hodín a vypnutie watchdogu.

#### 4.3 Inicializácia DWT

Zapnutie DWT\_CTRL nastavením nultého bitu na 1. Skontrolovanie bitu 24, ktorý určuje či implementácia podporuje čítače na výnimky, spánok, LSU a čítač inštrukcií, ktoré zaberú 0 cyklov. Ďalej bit 25,ktorý určuje či implementácia podporuje čítač cyklov procesora. V oboch prípadoch sa bit musí rovnať 0 aby indikoval, že sú podporované.

### 4.4 Počítanie réžie

#### 4.4.1 Počítanie

Čítače sa vynulujú a ich hodnoty sa uložia do premenných. DWT\_CYCCNT sa priradí 0 a to ho resetuje. DWT\_LSUCNT, DWT\_FOLDCNT, DWT\_SLEEPCNT, DWT\_EXCCNT a DWT\_CPICNT sa vynulujú bitmi 21, 20, 19,18 a 17 v registri DWT\_CTRL, v cykle sa vykoná sa kód určený na meranie, finálne hodnoty čítačov sa uložia do premenných, vypočítajú sa požadované maximá, minimá a priemery a vypíšu sa do terminálu. Premenné sa vynulujú a môže sa merať ďalší kus kódu určený na meranie réžie.

Profilové registre po napočítaní 256 cyklov pretečú a nastavia príslušný bit na 1.

#### 4.4.2 Presnosť

Pri veľkých meraniach môže DWT\_FOLDCNT silne ovplyvniť presnosť výpočtov. Menšie nepresnosti sú však povolené, nie je však jasne určené aká veľká nepresnosť je už nežiadúca.

### 5 Zhrnutie

Projekt som bez FitKitu3 nemohol vyskúšať, ale snažil som sa čo najvernejšie priblížiť funkčnému riešeniu. Podľa viacerých zdrojov a hlavne manuálu ARM®v7-M Architecture Reference Manual, ktorý poskytol všetky potrebné informácie k práci s DWT som bol schopný projekt vytvoriť. Problém v implementácii by som videl v spôsobe spracovania a konkrétne v prípade merania kedy sa vykonávajú všetky merania naraz, a testované kódy sa volajú cez funkcie, čo môže viesť k skresleniu výpočtov. Bez možnosti odskúšať projekt je implementácia riešená takto kvôli prehľadnosti. Nepodarilo sa mi implementovať meranie riadiacich algoritmov s prerušením a bez.

## 6 Prílohy



Obr. 1 – register DWT\_CTRL



Obr. 2 – register DWT\_CYCCNT



### Obr. 3 – register DWT\_EXCCNT



Obr. 4 – register DWT\_SLEEPCNT

## 7 Zdroje

- 1. ARM® Cortex®-M4 Processor Technical Reference Manual
- 2. K60 Sub-Family Reference Manual, Document Number: K60P144M100SF2V2RM Rev. 2 Jun 2012
- 3. ARM®v7-M Architecture Reference Manual
- 4. <a href="https://www.embedded-computing.com/articles/measuring-code-execution-time-on-arm-cortex-m-mcus">https://www.embedded-computing.com/articles/measuring-code-execution-time-on-arm-cortex-m-mcus</a>
- 5. <a href="https://arm-stm.blogspot.com/2014/05/dwt-data-watchpoint-and-trace-unit.html">https://arm-stm.blogspot.com/2014/05/dwt-data-watchpoint-and-trace-unit.html</a>