Recitation 1.3: Quotient Spaces

TA: Nate Clause

Quotient of a Vector Space

Definition

Let W be a linear subspace of the vector space V over \mathbb{F} . Define an equivalence relation \sim on V by stating $u \sim v$ if $u - v \in W$. Then the equivalence class of $v \in V$ is denoted [v]. It is also sometimes referred to as a *coset*, denoted v + W, as we have $[v] = \{v + w \mid w \in W\}$.

Quotient of a Vector Space

Definition

Let W be a linear subspace of the vector space V over \mathbb{F} . Define an equivalence relation \sim on V by stating $u \sim v$ if $u - v \in W$. Then the equivalence class of $v \in V$ is denoted [v]. It is also sometimes referred to as a coset, denoted v + W, as we have $[v] = \{v + w \mid w \in W\}$. The quotient space V/W is defined as V/\sim , the set of all equivalence classes induced by \sim on V. Addition and scalar multiplication are defined by:

$$[u] + [v] = [u + v] \forall u, v \in V$$
$$c[v] = [cv] \forall c \in \mathbb{F}, v \in V$$

With these operations, V/W is a vector space over \mathbb{F} .

Quotient Space Examples

• Suppose $V = \mathbb{R}^2$ and W is the span of $e_2 = (0,1)$. Then a basis for V/W is [(1,0)], or equivalently, (1,0)+W.

Quotient Space Examples

- Suppose $V = \mathbb{R}^2$ and W is the span of $e_2 = (0,1)$. Then a basis for V/W is [(1,0)], or equivalently, (1,0)+W.
- In general, if W has basis $\{w_1, \ldots, w_n\}$ and V has basis $\{w_1, \ldots, w_n, v_1, \ldots, v_m\}$, then $\{[v_1], \ldots, [v_m]\}$ is a basis for V/W.

Quotient Space Examples

- Suppose $V = \mathbb{R}^2$ and W is the span of $e_2 = (0,1)$. Then a basis for V/W is [(1,0)], or equivalently, (1,0)+W.
- In general, if W has basis $\{w_1, \ldots, w_n\}$ and V has basis $\{w_1, \ldots, w_n, v_1, \ldots, v_m\}$, then $\{[v_1], \ldots, [v_m]\}$ is a basis for V/W.
- Corollary: if V is an n dimensional vector space, and W is an m dimensional vector space with m < n, then V/W is an n-m dimensional vector space.

Composition of Linear Transformations

- If $f: V \to W$ and $g: W \to X$ are linear transformations, then $g \circ f: V \to X$ is a linear transformation, with $(g \circ f)(v) = g(f(v))$.
- Later in this course, we will frequently encounter such f and g with $im(f) \subseteq ker(g)$. We will then compute ker(g)/im(f). Let's work an example:

Computation Example

Let
$$f:\mathbb{R}^2 o \mathbb{R}^3$$
 be given by $T_f = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}$ and $g:\mathbb{R}^3 o \mathbb{R}^3$ be given by $T_g = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 3 & -3 & 0 \end{bmatrix}$. Compute $\operatorname{rref}(T_f)$ and $\operatorname{rref}(T_g)$:

Computation Example

Let
$$f:\mathbb{R}^2 o\mathbb{R}^3$$
 be given by $T_f=egin{bmatrix}1&2\\1&2\\1&2\end{bmatrix}$ and $g:\mathbb{R}^3 o\mathbb{R}^3$ be given by $\begin{bmatrix}1&-1&0\end{bmatrix}$

$$T_g = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 3 & -3 & 0 \end{bmatrix}$$
. Compute $\operatorname{rref}(T_f)$ and $\operatorname{rref}(T_g)$:

$$\operatorname{rref}(T_f) = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\operatorname{rref}(T_g) = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Computational Example

From $\operatorname{rref}(T_f)$, we can see the image of f is spanned by $B_f:=\{(1,1,1)\}$. From $\operatorname{rref}(T_g)$, we can compute the kernel of g is spanned by $\{(1,1,0),(0,0,1)\}$. We can rewrite the basis for $\ker(g)$ equivalently as $B_g:=\{(1,1,1),(0,0,1)\}$.

Computational Example

From $rref(T_f)$, we can see the image of f is spanned by $B_f := \{(1,1,1)\}.$

From $\operatorname{rref}(T_g)$, we can compute the kernel of g is spanned by $\{(1,1,0),(0,0,1)\}$. We can rewrite the basis for $\ker(g)$ equivalently as $B_g:=\{(1,1,1),(0,0,1)\}$.

As $B_f \subset B_g$, it is clear that $\operatorname{im}(f) \subset \ker(g)$, so it is valid to consider $\ker(g)/\operatorname{im}(f)$.

Computational Example

From $\operatorname{rref}(T_f)$, we can see the image of f is spanned by $B_f := \{(1,1,1)\}.$

From $\operatorname{rref}(T_g)$, we can compute the kernel of g is spanned by $\{(1,1,0),(0,0,1)\}$. We can rewrite the basis for $\ker(g)$ equivalently as $B_g:=\{(1,1,1),(0,0,1)\}$.

As $B_f \subset B_g$, it is clear that $\operatorname{im}(f) \subset \ker(g)$, so it is valid to consider $\ker(g)/\operatorname{im}(f)$.

We get basis for ker(g)/im(f) of [(0,0,1)] = (0,0,1) + im(f).