Initialization of Constrained LASSO path

안승환 2019년 9월

¹Department of Statistics University of Seoul

Goal

Constrained lasso problem with only equality constraints:

minimize
$$L(\beta) + \rho ||\beta||_1$$
 subject to $\mathbf{A}\beta = 0$ (1)

(We could think of $L(\beta)$ as $\frac{1}{2}||\mathbf{y} - \mathbf{X}\beta||_2^2$.) Since we perform path following in the decreasing direction, an initializing value for the parameter ρ is needed.

$$(\mathbf{y} \in \mathbb{R}^n, \mathbf{X} \in \mathbb{R}^{n \times p}, \boldsymbol{\beta} \in \mathbb{R}^p, \mathbf{A} \in \mathbb{R}^{m \times p})$$

Goal

As $\rho \to \infty$, the solution ${\boldsymbol \beta}$ to the original problem is given by

minimize
$$||\beta||_1$$
 subject to $\mathbf{A}\beta=0$

And obviously, the solution $\hat{\beta}$ for the above problem is 0_p .

KKT condition

The stationarity condition of KKT conditions is as follows:

$$\nabla L(\beta) + \rho sign(\beta) + \mathbf{A}^T \lambda = 0_p$$

, where $\lambda \in \mathbb{R}^m$ is lagrangian multiplier and $sign(\beta)$ means the subgradient of $||\beta||_1$. And $|sign(\beta)| \leq 1_p$, we can transform above condition as follows:

$$|\nabla L(\boldsymbol{\beta}) + \mathbf{A}^T \lambda| \le \rho 1_p$$

Lemma

For fixed ρ , β , let $\mathcal{E}_{\rho}(\beta) = \{\lambda \in \mathbb{R}^m : |\nabla L(\beta) + \mathbf{A}^T \lambda| \leq \rho \mathbf{1}_p\}$, and let $\rho_{max} = \inf\{\rho \in \mathbb{R} : \mathcal{E}_{\rho}(\beta) \neq \varnothing\}$. Then for $\rho < \rho_{max}$, $\beta = \mathbf{0}_p$ is not solution of (1).

Corollary

The minimizer of (1) for a ρ is $\beta=0_p$ if and only if $\rho\geq\rho_{max}$, where ρ_{max} is the solution of (3). And also, we can get the solution λ_{max} corresponding to ρ_{max} by (3).

minimize
$$\rho$$
 subject to $z = \mathbf{A}^T \lambda$
$$z \le -X^T y + \rho 1$$

$$z \ge -X^T y - \rho 1$$

$$\rho \ge 0$$
 (3)

Active Set

So, we can initialize active set A as follows:

$$\mathcal{A} = \{j : |\nabla L(\beta)_j + a_j^T \lambda_{max}| = \rho_{max}\}$$

where $\mathbf{A} = [a_1, \cdots a_p]$.

Because If ρ is decreased very little as $\rho < \rho_{max}$, $\hat{\beta}_j = 0$ cannot be the coefficient of solution (1) for predictor x_j . So, predictor x_j must be activated.

Uniqueness of λ

 λ_{\max} is the unique solution to (3) if the solution for $\mathbf{A}_{\mathcal{A}}^T \tilde{\lambda} = 0$ is only $\tilde{\lambda} = 0$. ($\Leftrightarrow \mathbf{A}_{\mathcal{A}}^T$ is full column).

Because we can formulate an equation for predictors which are set on boundaries of the stationarity condition(which are also included in active set A) as follows:

$$|\nabla L(\boldsymbol{\beta})_{\mathcal{A}} + \mathbf{A}_{\mathcal{A}}^T (\lambda_{max} + \tilde{\lambda})| = \rho_{max} 1_{\mathcal{A}}$$

Q) What happens if do NOT activate all the violated predictors (A)?

Let $L(\beta) = \frac{1}{2}||\mathbf{y} - \mathbf{X}\beta||_2^2$. Given $\rho_{max}, \lambda_{max}$, we want $\mathcal{B} \subseteq \mathcal{A}$, $\Delta \rho, \frac{d}{d\rho} \beta_{\mathcal{B}}, \frac{d}{d\rho} \lambda_{\mathcal{B}}$ such that satisfy following conditions(stationarity condition from KKT conditions, equality constraint):

$$-\mathbf{X}_{:\mathcal{B}}^{T}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}(\beta_{\mathcal{B}}^{(0)} + \Delta \rho \frac{d}{d\rho}\beta_{\mathcal{B}})) + \\ (\rho_{max} - \Delta \rho)sign(\beta_{\mathcal{B}}^{(0)} + \Delta \rho \frac{d}{d\rho}\beta_{\mathcal{B}}) + \mathbf{A}_{:\mathcal{B}}^{T}(\lambda_{max} + \Delta \rho \frac{d}{d\rho}\lambda) = 0 \\ |-\mathbf{X}_{:\mathcal{B}^{C}}^{T}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}(\beta_{\mathcal{B}}^{(0)} + \Delta \rho \frac{d}{d\rho}\beta_{\mathcal{B}})) + \mathbf{A}_{:\mathcal{B}^{C}}^{T}(\lambda_{max} + \Delta \rho \frac{d}{d\rho}\lambda)| \\ \leq (\rho_{max} - \Delta \rho \frac{d}{d\rho}\beta_{\mathcal{B}}) = 0$$

 ρ is in decreasing direction, so $\Delta \rho > 0$. And the moving direction of β is must be maintained. So,

$$\mathit{sign}(eta_{\mathcal{B}}^{(0)} + \Delta
ho rac{d}{d
ho} eta_{\mathcal{B}}) = \mathit{sign}(eta^{(0)})$$

. From corollary, we have following:

$$\begin{aligned} -\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) + \rho_{\mathsf{max}}\mathsf{sign}(\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) + \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}}(\lambda_{\mathsf{max}}) &= 0 \\ |-\mathbf{X}_{:\mathcal{B}^{\mathcal{C}}}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) + \mathbf{A}_{:\mathcal{B}^{\mathcal{C}}}^{\mathsf{T}}\lambda_{\mathsf{max}}| &\leq \rho_{\mathsf{max}}\mathbf{1}_{|\mathcal{B}^{\mathcal{C}}|} \\ \mathbf{A}_{:\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}}^{(0)} &= 0 \end{aligned}$$

Finally, we get

$$\begin{aligned} \mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}} \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}} - \Delta \rho sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) + \mathbf{A}_{:\mathcal{B}}^{T} \Delta \rho \frac{d}{d\rho} \boldsymbol{\lambda} &= 0 \\ \mathbf{A}_{:\mathcal{B}} \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}} &= 0 \\ |\mathbf{X}_{:\mathcal{B}^{C}}^{T} \mathbf{X}_{:\mathcal{B}} \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}} + \mathbf{A}_{:\mathcal{B}^{C}}^{T} \Delta \rho \frac{d}{d\rho} \boldsymbol{\lambda}| &\leq \Delta \rho \mathbf{1}_{|\mathcal{B}^{C}|} \end{aligned}$$

Let's focus on first two equations:

$$\begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} \\ \mathbf{A}_{:\mathcal{B}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \frac{d}{d\rho} \beta_{\mathcal{B}} \\ \frac{d}{d\rho} \lambda \end{bmatrix} = \begin{bmatrix} sign(\beta_{\mathcal{B}}^{(0)}) \\ \mathbf{0} \end{bmatrix}$$

And,

$$\begin{bmatrix} \frac{d}{d\rho} \beta_{\mathcal{B}} \\ \frac{d}{d\rho} \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} \\ \mathbf{A}_{:\mathcal{B}} & 0 \end{bmatrix}^{-1} \begin{bmatrix} sign(\beta_{\mathcal{B}}^{(0)}) \\ 0 \end{bmatrix}$$

Answer

 $\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}}$ is invertible.

$$\begin{bmatrix} (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} - (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^{T}M^{-1}\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} & (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^{T}M^{-1} \\ M^{-1}\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} & -M^{-1} \end{bmatrix} \begin{bmatrix} sign(\beta_{\mathcal{B}}^{(0)}) \\ 0 \end{bmatrix}$$

where $M = \mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^T\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^T$.

Therefore,

$$\frac{d}{d\rho}\beta_{\mathcal{B}} = \left((\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} - (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^{T}M^{-1}\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} \right) \operatorname{sign}(\beta_{\mathcal{B}}^{(0)})$$

Answer

If $\frac{d}{d\rho}\beta_{\mathcal{B}}\approx 0$, for new active set \mathcal{B} , there is no direction to move $\beta_{\mathcal{B}}$ that satisfies KKT conditions.

If not, we check $\frac{d}{d\rho}eta_{\mathcal{B}}$ and $\frac{d}{d\rho}\lambda$ for following condition:

$$|\mathbf{X}_{:\mathcal{B}^{\mathcal{C}}}^{\mathsf{T}}\mathbf{X}_{:\mathcal{B}}\frac{d}{d\rho}\boldsymbol{\beta}_{\mathcal{B}}+\mathbf{A}_{:\mathcal{B}^{\mathcal{C}}}^{\mathsf{T}}\frac{d}{d\rho}\boldsymbol{\lambda}|\leq 1_{|\mathcal{B}^{\mathcal{C}}|}$$

(Trivial: If $A_{:B}$ is invertible,

$$\begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} \\ \mathbf{A}_{:\mathcal{B}} & \mathbf{0} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{0} & \mathbf{A}_{:\mathcal{B}}^{-1} \\ (\mathbf{A}_{:\mathcal{B}}^{\mathsf{T}})^{-1} & -(\mathbf{A}_{:\mathcal{B}}^{\mathsf{T}})^{-1} \mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}} \mathbf{A}_{:\mathcal{B}}^{-1} \end{bmatrix}.$$

So, $\frac{d}{d\rho}eta_{\mathcal{B}}=0$ and there is no direction to move.)

Furthermore

From

$$\frac{d}{d\rho}\beta_{\mathcal{B}} = \left((\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} - (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^{T}M^{-1}\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} \right) \operatorname{sign}(\beta_{\mathcal{B}}^{(0)})$$

, let

$$\mathbf{Z} = \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} \mathcal{M}^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}})^{-1} = \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} (\mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}})^{-1} \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}})^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}})^{-1}$$

.

Furthermore

When $|\mathcal{B}| < |\mathcal{A}|$

If A_{:B}(X_{:B}^TX_{:B})⁻¹A_{:B}^T is invertible
 A_{:B} is right-invertible, and A_{:B}^T is left-invertible, so

$$\begin{array}{lll} \textbf{Z} & = & \textbf{A}_{:\mathcal{B}}^{\intercal} \textbf{A}_{:\mathcal{B}}^{-\intercal} (\textbf{X}_{:\mathcal{B}}^{\intercal} \textbf{X}_{:\mathcal{B}}) \textbf{A}_{:\mathcal{B}}^{-1} \textbf{A}_{:\mathcal{B}} (\textbf{X}_{:\mathcal{B}}^{\intercal} \textbf{X}_{:\mathcal{B}})^{-1} \\ & \approx & \textbf{I} \end{array}$$

• If $A_{:\mathcal{B}}(X_{:\mathcal{B}}^TX_{:\mathcal{B}})^{-1}A_{:\mathcal{B}}^T$ is NOT invertible

$$\begin{array}{lll} \textbf{Z} & = & \textbf{A}_{:\mathcal{B}}^{\mathcal{T}} \textit{Ginv} (\textbf{A}_{:\mathcal{B}} (\textbf{X}_{:\mathcal{B}}^{\mathcal{T}} \textbf{X}_{:\mathcal{B}})^{-1} \textbf{A}_{:\mathcal{B}}^{\mathcal{T}}) \textbf{A}_{:\mathcal{B}} (\textbf{X}_{:\mathcal{B}}^{\mathcal{T}} \textbf{X}_{:\mathcal{B}})^{-1} \\ & \approx & \textbf{I} \end{array}$$

where $Ginv(\mathbf{A})$ means generalized inverse of matrix \mathbf{A} . (It needs proof!)

Furthermore

Where
$$|\mathcal{B}| = |\mathcal{A}|$$

• $\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^T\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^T$ is invertible. But unlike before, $\mathbf{Z} \neq \mathbf{I}$. And this gap makes $\frac{d}{d\rho}\boldsymbol{\beta}_{\mathcal{B}} \neq 0$. (It needs proof!)