HOMEWORK 2

JACKSON VAN DYKE

Exercise 1 (Chapter 0, 9; Hatcher). Show that a retract of a contractible space is contractible.

Exercise 2. Let $X = \{(x,y) \in S^1 \times S^1 \mid x \neq -y\}$. Show that the map $f: S^n \to X$ given by f(x) = (x,x) is a homotopy equivalence.

Exercise 3. A *topological group* is a topological space which is also a group, such that the multiplication and inverse functions:

$$G \times G \longrightarrow G$$

$$(x,y) \longmapsto xy$$

$$G \longrightarrow G$$

$$x \longmapsto x^{-1}$$

are continuous. (Examples: \mathbb{R} , S^1 , $GL(n, \mathbb{R})$, SO(n),)

Let G be a topological group and $e \in G$ be the identity. If σ , τ are loops in G based at e let $\sigma \bullet \tau$ be the loop in G based at e defined by

$$(\sigma \bullet \tau)(s) = \sigma(s)\tau(s)$$

for all $s \in I$.

Show that

$$\sigma \bullet \tau \simeq \sigma * \tau \operatorname{(rel} \partial I) \sigma \bullet \tau \simeq \tau * \sigma \operatorname{(rel} \partial I)$$
.

Deduce that $\pi_1(G, e)$ is abelian.

Exercise 4. Show that a contractible space is path-connected.

Exercise 5. Show that there is no retraction from I^2 to the comb space C.