Digital Health

UCSD Extension – Specialization Certificate

Data Science for Healthcare

L2: Statistics

Hobson Lane, UC San Diego Instructor

Syllabus

Lesson	Title	Topics
1	Data Science for Digital Health	applications, terminology, HIPPA
2	Spreadsheet Data Science	ETL, exploration & visualization
3	Statistics, Privacy, Ethics	causality, correlation, MLE
4	Clinical Data Science & ML	PII, prescriptive vs descriptive
5	Deep Learning & Al	neural nets, radiology, CV
6	Hospital Performance Modeling	time series, unintended conseq.
7	Population Health & Epi	GIS, spatio-temporal modeling
8	Healthcare Public Policy	scoping review, gap analysis of diabetes
9	Natural Language Processing	IA, summarization, text mining
10	Bioinformatics	DNA, RNA, proteins, algorithms
Project	Train a healthcare ML model	find/download data, ETL,

Agenda

What is statistics? How is statistics used in healthcare?

Probability

Conditional Probability

Probability Distribution

Probability Distribution

PMF: Probability Mass Function (Discrete PDF)

PDF: Probability **Density** Function

Continuous Probability Distribution

Ethics and Accuracy

DeepMind (London)

Clinical records can predict Kidney failure

2 days in advance55% accuracy for acute problems90% accuracy for serious issues

Dataset: 100% UK citizens 100% military 90% male

Berkson's Paradox

	General Population			Hospitalization past 6 mo		
	Bone Disease	No Bone Disease	% Bone Disease	Bone Disease	No Bone Disease	% Bone Disease
Lung disease	17	207	7.6%	5	15	25.0%
No lung disease	184	2,376	7.2%	18	219	7.6%

Correlation enables prediction

Breast Cancer Rates 2011: bit.ly/ucsdbreast

Correlation is not enough

- Computers are good at finding patterns
- But often those patterns are "spurious correlation"

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

tylervigen.com

Bayes Rule

Updated Probability = Likelihood Ratio X Prior Probability

$$P(D \lor T) = \frac{P(T \lor D)}{P(T)} \times P(D)$$

Bayes Rule Example

Prior	P(D)	Probability of getting breast cancer	1 in 700 per yr 1 in 70,000 (men)
Sensitivity	P(T D)	Probability of mammogram detecting cancer	.73
False Positive Rate (False Alarm)	P(T ~D)	Probability of positive mammogram w/o cancer	.12
	P(T) = P(D) * P(T D) + P(~D) * P(T ~D)	Probability of a positive mammogram among all women	.73 * 1 / 700 + .27 * 699 / 700 = .121

Mammograms can cause harm!

ACP: biannually after age 50+

previously: annual exams at 40+

P(D)	1/700
P(T D)	.73
P(T)	.121

$$P(D \lor T) = \frac{P(T \lor D)}{P(T)} \times P(D)$$

$$P(D \vee T) = \frac{.73}{.121} \times \frac{1}{700} = .0086 \approx 1\%$$

Assignments

Quiz

1. Why is understanding Baye's Rule so important?

Homework: Create diabetes MLE

 Download diabetes dataset: http://totalgood.org/midata/...

2.

Project

1. Use numpy.random.randint() to simulated rolling a pair of dice.

2.