Introduction

False-Positiv

Discovery Rate

Lasso

Randon Forests

Hierarchica Clustering

Principal Componen Analysis

Comparison o

# Bladder Cancer - Survival Analysis

Arthur Lui Christine Ma

Department of Statistics Brigham Young University

April 22, 2014

False-Positi Discovery

Lasso

Randon Forests

Hierarchica Clustering

Principal Component Analysis

Comparison of

Entura

## Bladder Cancer

- USA 2014: 74690 new cases, 15580 deaths
- Interested in relationship between gene expression and bladder cancer
- Want to compare different statistical methods

False-Positiv

Lasso

Randon Forests

Hierarchica Clustering

Principal Componen Analysis

Comparison o Methods

Future

# Description of Data

- Biomarkers (43149)
- Survival Times
- Censoring Indicators
- Censoring Rate = 58%
- Number of Observations (Patients) = 165
- No dichotomization was done
- Removed the column of NA's in data set

#### Data

False-Position
Discovery
Rate

Lasso

Randon Forests

Hierarchica Clustering

Principal Componen Analysis

Comparison of Methods

e .

# Summary Statistics

## Summary Table of Survival Times

|          | Min. | 1st Qu. | Median | Mean  | 3rd Qu. | Max.   |
|----------|------|---------|--------|-------|---------|--------|
| Censored | 5.30 | 32.33   | 58.25  | 63.00 | 87.17   | 137.00 |
| Died     | 1.03 | 10.40   | 16.67  | 28.05 | 35.70   | 135.00 |
| Overall  | 1.03 | 17.13   | 36.57  | 48.38 | 74.17   | 137.00 |

Bladder Cancer -Survival Analysis

#### Arthur Lui Christine Ma

Introduction

False-Positiv

Rate

Lasso

Data

Random Forests

Hierarchica Clustering

Principal Componen

Comparison of

E .

# Histogram of Survival Times

#### Histogram of Time



#### Histogram of Censored Time



#### Histogram of Death Time



Note: We have more data on lower survival times. And more deaths occurred at lower survival times.

Introduction

## Data

alse-Positiv

Lacer

Random

Hierarchica

Principal Componen

Comparison of

Future



Median = 87.07 (33.97, 140.16)

False-Positive Discovery Rate

La330

Random Forests

Hierarchica Clustering

Principal Componer Analysis

Comparison o

Eutura

+ Appropriate for large size of independent and dependent coefficients

 Average fraction of false rejections has to be made or obtained using cross validation

Interaction terms were not included

False-Positive

Discovery Rate

# Cox Model Using Variables with FDR < .025

|                  | coef  | exp(coef) | se(coef) | Z     | Pr(> z ) |
|------------------|-------|-----------|----------|-------|----------|
| genelLMN_1666893 | 0.28  | 1.32      | 0.26     | 1.04  | 0.30     |
| genelLMN_1689037 | 0.82  | 2.26      | 0.22     | 3.70  | 0.00     |
| geneILMN_1690017 | 0.32  | 1.37      | 0.28     | 1.15  | 0.25     |
| genelLMN_1702933 | 0.45  | 1.57      | 0.32     | 1.42  | 0.15     |
| geneILMN_1714118 | 0.48  | 1.61      | 0.51     | 0.94  | 0.35     |
| genelLMN_1714592 | -0.15 | 0.86      | 0.37     | -0.40 | 0.69     |
| geneILMN_1718866 | 0.18  | 1.20      | 0.40     | 0.45  | 0.65     |
| genelLMN_1745238 | 0.23  | 1.26      | 0.33     | 0.69  | 0.49     |
| geneILMN_1757351 | 0.00  | 1.00      | 0.16     | 0.03  | 0.98     |
| genelLMN_1767685 | -0.26 | 0.77      | 0.48     | -0.55 | 0.59     |
| genelLMN_1807525 | -0.01 | 0.99      | 0.56     | -0.03 | 0.98     |
| genelLMN_1809336 | 0.40  | 1.49      | 0.28     | 1.42  | 0.15     |
| genelLMN_1889811 | 0.69  | 2.00      | 0.42     | 1.64  | 0.10     |

Rate

Lasso

Randon Forests

Hierarchica Clustering

Principal Componen Analysis

Comparison of Methods

Future

## FDR KM Plots

#### FDR Model: High-Risk vs. Low-Risk



Low Median = 18.2. High Median = 46.2

Likelihood ratio test=63 on 13 df, p=1.49e-08 n= 130.

False-Positive Discovery

Rate

Randon

Hierarchica Clustering

Principal Componen Analysis

Comparison o

E .

## Residuals Plot



False-Positive Discovery Rate

Lacco

Randon

Hierarchica

Principal Componen Analysis

Comparison o

## FDR AUC

## FDR Time-Dependent ROC



Introductio

.

False-Position Discovery

Rate

Lasso

Randon

Hierarchic

Clustering

Principal Componen Analysis

Comparison o Methods

Future

- + Performs model selection
  - Tuning parameter needs to be estimated

Interaction terms were not included

Introduction

IIILIOUUCLIOI

False-Positiv

Discovery

Lasso

Randon

Hierarchica

Principal
Componen

Comparison of

# Selecting Tuning Parameter $\lambda$





Introduction

IIILIOUUCLIO

False-Positive

Lasso

Random

Hierarchica

Principal Componen

Comparison o

Г. .....

## Selected Variables



|   | ILMN_1689037 | ILMN_1702933 |
|---|--------------|--------------|
| 1 | 0.17         | 0.03         |

Data

Discovery

Lasso

Randon

Hierarchica Clustering

Principal Componen Analysis

Comparison o

.........

## Residuals Plot

#### Residuals Plot



Rate

Lasso

Forests

Clustering

Principal Componen Analysis

Comparison of Methods

**Future** 

## Lasso KM Plots

## Penalized Model: High-Risk vs. Low-Risk



Low Median = 36.3 High Median = 18.2

Likelihood ratio test=41.9 on 2 df, p=7.83e-10

Introductio

False-Positiv Discovery

Lasso

Random

Hierarchica Clustering

Principal Componen

Comparison o



#### Random Forests

## Random Forests Model

- 1 A regression tree is a model that predicts the response of an input based on a sequence of decisions
- 2 A Random Forest is created from many trees
- 3 The predicted response of the random forest is the mean of the predictions of the individual trees

False-Positiv

Rate

.

Random Forests

Hierarchica Clustering

Principal Componen Analysis

Comparison o

Future

 Good for modelling non-linear data (data assumed to be nonlinear)

- Lower prediction accuracy

Interaction terms were not included

## Random Forests

# Variable Importance



Introduction

False-Position Discovery

Lasso

Random Forests

Hierarchica Clustering

Principal Componer Analysis

Comparison of Methods

Enture

# Cox Model Using Important Variables from Random Forest

|                   | coef  | exp(coef) | se(coef) | Z     | р    |
|-------------------|-------|-----------|----------|-------|------|
| genesILMN_1689037 | 0.68  | 1.98      | 0.18     | 3.70  | 0.00 |
| genesILMN_1702933 | 1.03  | 2.80      | 0.25     | 4.08  | 0.00 |
| genesILMN_1704154 | 0.32  | 1.37      | 0.19     | 1.69  | 0.09 |
| genesILMN_1749989 | -2.32 | 0.10      | 1.33     | -1.74 | 0.08 |

Likelihood ratio test=49.5 on 4 df, p=4.58e-10 n= 130, number of events= 49

Bladder Cancer -Survival Analysis

### Arthur Lui Christine Ma

Introduction

....

False-Positiv

Rate

Random

Forests

Clustering

Principal Componen Analysis

Comparison of Methods

Future

## Random Forest KM Plots

Important Markers: ILMN\_1689037, ILMN\_1702933, ILMN\_1704154, ILMN\_1749989

### Random Forest: High-Risk vs. Low-Risk



#### Median

|                 | Estimate | CI.Lower | CI.Upper |
|-----------------|----------|----------|----------|
| Low-Risk Group  | 36.30    | -39.43   | 112.03   |
| High-Risk Group | 25.83    | -9.78    | 61.45    |

False-Positiv

\_\_\_\_\_

Random Forests

Hierarchica Clustering

Principal Componen Analysis

Comparison o

## Residuals Plot



Introduction

Introduction

False-Positiv

Discovery

Lasso

Random Forests

Hierarchica

Principal Componen

Comparison o

## Random Forest AUC

## Time-Dependent ROC



False-Positi

Lacco

Randon Forests

Hierarchical Clustering

Principal Componen Analysis

Comparison o

F----

# Hierarchical Clustering Model

 Identify hyperplane that provides maximum separation between clusters

Hierarchical Clustering

# Hierarchical Clustering

- Good result visualization
- Will obtain a hierarchy of clusters
- + Fast computation
- Helpful for identifying gene expression data patterns in time and space
  - Doesn't identify best clusters
  - Sensitive to noise and outliers
  - Might break for large clusters

False-Positiv

Rate

Lasso

Randon Forests

Hierarchical Clustering

Principal Componen Analysis

Comparison of Methods

Euturo

## H-Clust model

## Cluster Dendrogram



dist hclust (\*, "ward")

Hierarchical Clustering

# Cox Model Using Important Variables from H-Clust

|                   | coef  | exp(coef) | se(coef) | Z     | р    |
|-------------------|-------|-----------|----------|-------|------|
| genesILMN_1651236 | -0.19 | 0.83      | 0.41     | -0.45 | 0.65 |
| genesILMN_1651260 | 0.44  | 1.55      | 0.38     | 1.16  | 0.25 |
| genesILMN_1651429 | 0.26  | 1.29      | 0.14     | 1.78  | 0.08 |
| genesILMN_1651433 | -0.02 | 0.98      | 0.35     | -0.05 | 0.96 |
| genesILMN_1651438 | 0.47  | 1.60      | 0.29     | 1.65  | 0.10 |
| genesILMN_1651557 | -0.23 | 0.80      | 0.25     | -0.92 | 0.36 |
| genesILMN_1651574 | -0.24 | 0.78      | 0.11     | -2.21 | 0.03 |
| genesILMN_1651611 | 0.17  | 1.19      | 0.16     | 1.04  | 0.30 |
| genesILMN_1651652 | -0.42 | 0.66      | 0.32     | -1.31 | 0.19 |
| genesILMN_1651694 | 0.32  | 1.38      | 0.25     | 1.27  | 0.20 |
| genesILMN_1651799 | 0.24  | 1.27      | 0.20     | 1.18  | 0.24 |

 $(p-value < 10^{-5})$ 

False-Positiv

Rate

Lasso

Randon

Hierarchical Clustering

Principal
Componen

Comparison o

## Plot of Deviance Residuals



Rate

Forests

Hierarchical Clustering

Principal Componen Analysis

Comparison of Methods

Future

## H-Clust KM Plots

#### Unsupervised Hierarchical Clustering: High-Risk vs. Low-Risk



Low Risk Median = 36.3 (23.1, 49.5)

High Risk Median = 25.8

Likelihood ratio test= 22.25 on 11 df. p-value=0.0225

Introduction

False-Positiv

Discovery

Randon

Hierarchical

Clustering

Principal Componen Analysis

Comparison o

## H-Clust AUC

## Time-Dependent ROC



False-Positiv Discovery

LdSSU

Randon

Hierarchica Clustering

Principal Component Analysis

Comparison of Methods

Euturo

# Principal Component Analysis (PCA)

- 1 Orthogonal Transformation
- 2 Convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables

False-Positiv

Discovery Rate

Randon Forests

Hierarchica Clustering

Principal Component Analysis

Comparison Methods

Future

- + Lack of redundancy of data
- + Reduced complexity
- + Smaller database representation
- + Reduced noise b/c the maximum variation basis is chosen (small variations are ignored)
  - The covariance matrix is hard to evaluate
  - Ability to capture variance depends on the training data

Interaction terms were not included

False-Positi

Discovery

Lasso

Randon

Hierarchica

Principal Component Analysis

Comparison o

## PCA LRT Threshold



Lasso

Forests

Clustering

Principal Component Analysis

Comparison of Methods

Entire

# Cox Model Using Principal Components

|                  | coef  | exp(coef) | se(coef) | Z     | Pr(> z ) |
|------------------|-------|-----------|----------|-------|----------|
| geneILMN_1651574 | -0.17 | 0.84      | 0.13     | -1.37 | 0.17     |
| geneILMN_1651429 | 0.23  | 1.25      | 0.21     | 1.08  | 0.28     |
| genelLMN_1651237 | -0.27 | 0.77      | 0.20     | -1.32 | 0.19     |
| genelLMN_1651611 | -0.07 | 0.93      | 0.16     | -0.46 | 0.65     |
| genelLMN_1651832 | -0.19 | 0.82      | 0.35     | -0.55 | 0.58     |
| genelLMN_1651428 | 0.16  | 1.18      | 0.27     | 0.60  | 0.55     |
| genelLMN_1651496 | 0.02  | 1.02      | 0.23     | 0.10  | 0.92     |
| genelLMN_1651776 | 0.23  | 1.26      | 0.32     | 0.70  | 0.48     |
| genelLMN_1651745 | -0.51 | 0.60      | 0.23     | -2.24 | 0.02     |
| geneILMN_1651364 | 0.39  | 1.48      | 0.38     | 1.03  | 0.30     |
| genelLMN_1651789 | 0.46  | 1.58      | 0.22     | 2.07  | 0.04     |
| genelLMN_1651538 | 0.02  | 1.02      | 0.36     | 0.05  | 0.96     |
| genelLMN_1651872 | 0.74  | 2.09      | 0.39     | 1.90  | 0.06     |
| genelLMN_1651254 | -1.15 | 0.32      | 0.44     | -2.61 | 0.01     |
| genelLMN_1651336 | -0.43 | 0.65      | 0.52     | -0.83 | 0.41     |
| genelLMN_1651544 | -0.97 | 0.38      | 0.40     | -2.42 | 0.02     |
| genelLMN_1651375 | 0.30  | 1.35      | 0.27     | 1.09  | 0.28     |
| geneILMN_1651517 | -1.59 | 0.20      | 0.88     | -1.82 | 0.07     |

Likelihood ratio test=3.76 on 3 df, p=0.288 n= 35

Lacer

Randon Forests

Hierarchica Clustering

Principal Component Analysis

Comparison of Methods

Future

## **PCA KM Plots**

#### PCA KM: High-Risk vs. Low-Risk



 $\label{eq:Low-Risk-Group-Median} \mbox{Low Risk Group Median} = 35.7. \mbox{ High Risk Group Median} = 25.8.$ 

Likelihood ratio test=59.8 on 18 df, p=2.21e-06

Lacer

Randon

Hierarchica Clustering

Principal Component Analysis

Comparison o

## Plot of Deviance Residuals



Data

Palse-Positiv

Lubbe

Random Forests

Hierarchica Clustering

Principal Component Analysis

Comparison of Methods

## **PCA AUC**

## Time-Dependent ROC



Comparison of Methods

# Comparison of Methods

## Time-Dependent ROC



#### Histogram of Time



Comparison of Methods

# Covariates that appeared most frequently

|              | FDR | Lasso | RF | H-Clust | PCA |
|--------------|-----|-------|----|---------|-----|
| ILMN_1702933 | *   | *     | *  |         |     |
| ILMN_1689037 | *   | *     | *  |         |     |
| ILMN_1651611 |     |       |    | *       | *   |
| ILMN_1651574 |     |       |    | *       | *   |
| ILMN_1651429 |     |       |    | *       | *   |

Introduction

False-Positiv

Discovery

racc

Lassu

Randon Forests

Hierarchica Clustering

Principal Componen Analysis

Comparison o

**Future** 

## Include other covariates