Football Manager Dataset

Player Ability Analysis

BFOR 516 Project:

Nicholas Lopez, Sajjad Khan, Jackson Nahom, Omer Keskin

Dataset

Football Manager 2020 Dataset (Kaggle)

- This dataset provides a collection of football players and their stats, such as age, position, club, nationality, value, wage, all player attribute components.
- Size: 35MB, 64 Columns, 144750 rows/players
- <u>Key Columns:</u> Wage, Value, Age, Long Shots, Long Throws, Passing,
 Dribbling, Aggression, Stamina, etc. (56 of the columns were used)

What is this Data

- Football Manager is a simulation game that could best be described as a spreadsheet simulator
- The data used comes from a network of 13,000 scouts of at varying levels that send reports to the developer Sports Interactive
- The data is so expansive and detailed that some high level clubs pay Sports Interactive for access to their database
- Everton publicly signed a database deal with Sports Interactive back in 2008

Business Questions

- 1. Can we predict a player's Current Ability?
- 2. Can we predict a player's Potential Ability?
- 3. Can we predict which players are in a Top 10 league?

Summary Statistics

Current Ability, Potential Ability, and Value

Number of Players per Country

Question 1

Can we predict a player's Current Ability (CA)?

- Used 6 regression Models: MLP, Random Forest, K Nearest Neighbors, Decision Tree, and SVR
- The two best models came out to be the Random Forest and MLP models

Evaluations	MLP Regressor	Random Forest Regressor
RMSE	5.0661	6.6949
MSE	25.6650	44.8221
R-squared	0.9628	0.9899
Avg Predicted Difference from actual	4.0952	4.9672

Question 2

Can we predict a player's Potential Ability (PA)?

- Used 6 regression Models: MLP, Random Forest, K Nearest Neighbors, Decision Tree, and SVR
- The two best models came out to be the Random Forest and MLP models

Evaluations	MLP Regressor	Random Forest Regressor
RMSE	11.1589	11.6928
MSE	124.5214	136.7206
R-squared	0.8098	0.9690
Avg Predicted Difference from actual	8.5016	8.9136

Question 3

Can we predict which players are in a Top 10 league?

 Solution: We predicted which players are in a Top 10 League by using five classification models.

- The MLP Classifier had the best AUC, Accuracy, Log Loss
- The Random Forest Classifier had the fewest false predictions
- The Decision Tree had average results

Classification Matrices

Statistic Evaluations

statistics for DecisionTreeClassifier	statistics for RandomForestClassifier
---------------------------------------	---------------------------------------

		precision	recall	f1-score	support		precision	recall	f1-score	support
	0	0.96	0.98	0.97	53639	0	0.95	0.99	0.97	53639
	1	0.69	0.51	0.59	4261	1	0.81	0.35	0.49	4261
accurac	су			0.95	57900	accuracy			0.95	57900
macro av	7g	0.83	0.75	0.78	57900	macro avg	0.88	0.67	0.73	57900
weighted av	7g	0.94	0.95	0.94	57900	weighted avg	0.94	0.95	0.94	57900

Model log loss: 0.3762755894684658

---- statistics for MLPClassifier ----

Model log loss: 0.15232815295472713

	precision	recall	f1-score	support
0	0.96	0.98	0.97	53639
1	0.64	0.53	0.58	4261
accuracy			0.94	57900
macro avg	0.80	0.75	0.78	57900
weighted avg	0.94	0.94	0.94	57900

Model log loss: 0.14463179575678917

Dataset Limitations

- Like other sports data, this dataset is likely to be incomplete to some degree.
 There will be errors/omissions and it will not encompass each goal or kick every player has made
- This data set also does not include statistics about players' likelihood of injuries. This likely would have had a tangible effect on players' long-term Potential Ability

Future Work

- Overall we are content with the outcomes of predicting Potential and current ability from our Regression models
- We believe that we can adjust the classification models to better predict if a player is in a top 10 league

Conclusions

- We can fairly accurately predict a player's current ability
- Predicting a player's potential we are not extremely accurate
- Our Classification model to predict if a player is in a top 10 league needs some work, most the accuracy comes from predicting a player is not in a top 10 league

Additional Problem - Digit Recognizer

DataSet

digit-recognizer (Kaggle)

- This dataset contain pixel values of gray-scale images (28x28) of hand-drawn digits, from zero through nine.
- Size: 128MB, 785 Columns, 42,000 Rows
- Key Columns: All

Business Question: Can we recognize hand drawn digits?

Basic Stats

Frequency of digits

Visuals of digit 9

Solution

We used three classification models for predictions. SVM, Neural Network, and Random Forest.

Random Forest Classifier had the best AUC, Accuracy, F1 score.

SVC_AUC: 0.99961

RF_AUC: 0.99982

MLP_AUC: 0.99875

Statistic Evaluations

	Stats for SVM	classif	ier						
preci	sion recal	l f1-sc	ore suppo	ort		Stats for MLI	P classif	ier	
0	0.99	0.99	0.99	1043		precision	recall	f1-score	support
	values	omited							
9	0.96	0.97	0.97	1038	0	1.00	0.96	0.98	1043
-	0.50	0.57	0.57	1050	1	0.98	0.99	0.98	1159
200110201			0.98	10500	2	0.96	0.97	0.96	1049
accuracy	0.00	0.00			3	0.94	0.97	0.95	1099
macro avg	0.98	0.98	0.98	10500	4	0.96	0.97	0.97	990
weighted avg	0.98	0.98	0.98	10500	5	0.99	0.96	0.97	955
					6	0.98	0.98	0.98	1058
	Stats for Rand	domEonos	+ -1ifi	on	7	1.00	0.95	0.97	1112
					8	0.92	0.99	0.95	997
	precision	recall	f1-score	support	9	0.96	0.92	0.94	1038
0	1.00	1.00	1.00	1043				M13222	ULUZUE:
li tă.	values			20.15	accuracy			0.97	10500
0				1020	macro avg	0.97	0.97	0.97	10500
9	0.96	0.98	0.97	1038	weighted avg	0.97	0.97	0.97	10500
accuracy			0.99	10500					
macro avg	0.99	0.99	0.99	10500					
weighted avg	0.99	0.99	0.99	10500					

Confusion Matrices

Limitations

- Provided test data does not contain actual values.
- Predictions using images not supported.

Future Work

Implement methods to use images rather than csv data for predictions.

Conclusion

Used models are fairly good at recognizing digits from grey-scale images.

Thank You!