Probability and Stochastic Process by Joshua Reed, page 1 of 2

Probabilty

Events

An event is a collection of outcomes of a random experiment $S = \{$ collection of all outcomes of the

experiment \} $\phi = \{\text{empty set}\}\$

If $A \cap B = \phi$. then A and B are mutually exclusive DeMorgan's $\overline{(A \cup B)} = (\overline{A} \cap \overline{B})$

Axioms and Properties

Axioms

I.
$$P(A) \ge 0$$

II. $P(S) = 1$

III. If
$$(A \cap B) = \phi$$
, then $P(A \cup B) = P(A) + P(B)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(\overline{A}) = 1 - P(A)$$

$$P(A) = 1 - P(A)$$

Independence

If
$$P\{A \cap B\} = P\{A\}P\{B\}$$
, then A and B are independent

If $P(A \cap B|C) = P(A|C)P(B|C)$, A and B are **conditionally** independent

given event C

Mutually Exclusivity

If $P\{A \cap B\} = \phi$, then A and B are M.E. And, in this case P(A|B) = P(A) and P(B|A) = P(B)

Conditional Probability

 $P(A|B) = P(A \cap B)/P(B) P(A \cap B) =$ P(A|B)P(B) = P(B|A)P(A)

Bayes' rule

P(B|A) = P(A|B)P(B)/P(A),

PDF and CDF **PDF**

The Probability Density Function is a function that accepts an outcome and returns the probability of that outcome occuring. Written as: p(x) and $f_x(x)$

PMF and CMF

Are the discrete time versions of the PDF and CDF

The Cumulative Distribution Function. Commonly written as:

P(x) and $F_x(x)$

Is the integral of the PDF.

 $F_x(x) = \int f_x(x) dx$

Distributions

Binomial

General

X = the number of successes in n trials. This is n trials of a Bernoulli random variable.

Probability Mass Function

$$P\{X=k\}=\binom{n}{k}p^kq^{n-k}$$
 , for $k=0,1,2,...,n,$ where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
 Mean

 $m_x = np$

Variance

$$Var(x) = np(1-p)$$

Uniform General

X has equal likeliness of taking any value in the interval [a, b]

Probability Density Function

 $f_x(u) = \frac{1}{b-a}$, for a < u < b, and is 0

Cumulative Distribution Function

$$F_x(u) = \begin{cases} 0, & u < a \\ \frac{u-a}{b-a}, & a < u < b \\ 1, & b < u \end{cases}$$

$$m_x = (a+b)/2$$
 Variance

$Var(X) = \frac{(b-a)^2}{12}$

Triangular

General

Upon adding two uniform distributions, we get the triangular density function. The function only has value over [2a, 2b]

$$f_x(\alpha) = \begin{cases} \frac{\alpha - 2a}{(b-a)^2}, & 2a < \alpha < (a+b)\\ \frac{2b - \alpha}{(b-a)^2}, & (a+b) < \alpha < (2b)\\ 0, & otherwise \end{cases}$$

Cumulative

This was not listed in the summary, and I need to review to understand why.

Exponential

General

X is the time to arrival or time to failure, where arrival rate is λ

X can also be viewed as departure time with departure rate μ

Probability Density Function

 $f_x(t) = \lambda e^{-\lambda t}$, for t > 0, and is 0 elsewhere.

Cumulative Distribution Function

 $F_x(t) = 1 - e - \lambda t$, for t > 0, and is 0 elsewhere.

Mean and Variance

$$m_x = \sigma_x = 1/\lambda$$

Gaussian General

The normal distribution

Probability Density Function

With mean m and standard deviation σ $f_x(u) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(u-m)^2}{2\sigma^2}}$

Unit Gaussian (normal) $\sigma = 1$, m = 0

$f_x(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}$ **Unit Gaussian Cumulative Distribution**

$\phi(u)$

 $\phi(u)$ was used to compute the following $P\{a < X < b\} = \phi(\frac{b-m}{\sigma}) - \phi(\frac{a-m}{\sigma})$

Mean and Variance

m and σ are the mean and standard deviation σ_x^2 is the variance

Geometric General

X is the number of trials before the first p is the probability of success

Mass Function $P\{X=k\} = p(1-p)^{k-1}$, for k=1,2,3,...Mean

$m_x = 1/p$ Variance $Var(X) = (1 - p)/p^2$

Poisson General

X is the number of arrivals in a time interval t

λ is the arrival rate Mass Function

 $P\{X=k\}=\frac{(\lambda t)^k}{k!}e^{\lambda t}$, for $k = 0, 1, 2, 3, \dots$ Mean and Variance

Moments

 $m_x = Var(X) = \lambda t$

First

General

The first moment is the mean of the distribution. Sometimes refered to as the center of mass.

Formula Where p(x) is the probabilty of the

outcome x occurring. $\mu_x = E\{X\} = \int p(x)xdx$

And applies via a sum for the discrete

case. Nth Moment

$E\{X^n\} = \int p(x)x^n dx$

Properties If Y = aX + b, then $m_y = am_x + b$ and $\sigma_u^2 = a^2 \sigma_r^2$

Expectation General

The expectation E of a function q of a random variable x, $E\{g(X)\}$: $E\{g(X)\} = \int_{-\infty}^{\infty} g(u) f_x(u) du$

A sum can be substituted for the integral in the discrete case unless using impulse **Properties**

 $Var(X) = E\left[(X - \mu_x)^2\right] = E[X^2] - \mu_x^2$ $Var(X) = \sigma^2 = \int (X - \mu_x)^2 f_x(x) dx$

 $Var(X) = \sigma^2 = \sum_{i=1}^{n} p_i (x_i - \mu_x)^2$

cov(X, a) = 0 cov(X, Y) = cov(Y, X)

cov(X + a, Y + b) = abcov(X, y)

 $\sigma_{\vec{X}\vec{Y}} = E[(\vec{X} - E[\vec{X}])(\vec{Y} - E[\vec{Y}])]$

A series with a constant ration between

For $r \neq 1$, the sum of the first n terms is:

cov(X + a, Y + b) = cov(X, Y)

Covariance for RV Vector

 $\sigma_{\vec{X}\vec{Y}} = E[\vec{X}\vec{Y}^T] - E[\vec{X}]E[\vec{Y}]^T$

 $E\{C\} = C$

Variance

Covariance

Correlation

 $\begin{array}{l} corr(X,Y) = \rho_{XY} \\ \rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}} \end{array}$

Basic Maths

successive terms.

Series and Sequences

Ex. $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ Often defined as using ar

And for infinite sequences:

between successive terms.

Ex. $2 + 5 + 8 + 11 + \dots$

 $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$, for |r| < 1

A series with a constant difference

Sum of an arithmetic series with n terms

 $\sum_{n=0}^{\infty} = a_n(x)^n$ The power series allows generalization of

multiplication, division, subtraction, and

addition between like series. It is also

possible to integrate or differentiate a

starting with a_1 and ending with a_2 :

Ex. $a + ar + ar^2 + ar^3 + \dots$

Geometric Sequence

 $\sum_{k=0}^{n-1} ar^k = a(\frac{1-r^n}{1-r})$

Arithmetic Series

Power Series

power series.

Taylor Series

A series of the form: $\sum_{n=0}^{\infty} = a_n (x-c)^n$ Where often c=0

 $E\{ag(X) + bh(X)\} =$

 $aE\{g(x)\} + bE\{h(X)\}$

Var(X) = Cov(X, X)

 $\sigma_{XY} = E[(X - \mu_x)(Y - \mu_y)]$ $\sigma_{XY} = E[XY] - E[X]E[Y]$

 $Cov(X,Y) = \sigma_{XY}$

If q(X) > 0, then $E\{q(X)\} > 0$

is the power series:

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a) + \dots$$
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Logarithms

 $log_b c = k$ $b^{k} = c$ ln(xy) = ln(x) + ln(y)ln(x/y) = ln(x) - ln(y) $ln(x^y) = yln(x)$ ln(e) = 1ln(1/x) = -ln(x)

Integrals

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1$ $\int \frac{1}{x} dx = \ln|x|$ $\int u dv = uv - \int v du$ $\int e^{ax} dx = \frac{1}{a} e^{ax}$ $\int x e^{ax} dx = (\frac{x}{a} - \frac{1}{a^2}) e^{ax}$

Derivatives

Combinatorics

Permutations

Number of ways to order n distinct elements:

k-Permutations of n

Ordered arrangements of a k-element subset of an n-set. $P(n,k) = \frac{n!}{(n-k)!}$

Permutations With Repitition

For a set S of size k, the number of n-tuples over S is. k^{τ}

Combination

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

The Taylor series of f(x) (a function that is infinetely differentiable at a number a) **Binomial Theorem**