שיעור 3 מכונות טיורינג מרובת סרטים

3.1 מכונת טיורינג מרובת סרטים: הגדרה היוריסטית

מכונת טיורינג מרובת סרטים (מטמ"ס) היא הכללה של מ"ט עם סרט יחיד. ההבדל הוא שלמטמ"ס ישנו מספר סופי של סרטים, נניח k>1 סרטים.

- לכל סרט יש ראש שלו.
- בתחילת העבודה הקלט w כתוב בתחילת הסרט הראשון וכל שאר הסרטים ריקים. הראשים בכל סרט מצביעים על התא הראשון בסרט, והמכונה נמצאת במצב התחלתי q_0
- בכל צעד חישוב, לפי המצב הנוכחי ול- k התווים שמתחת ל- k הראשים, המכונה מחליטה לאיזה מצב בכל צעד חישוב, לפרוב מתחת לכל אחד מ-k הראשים ולאן להזיז את הראש בכל אחד מ-k סרטים.
 - הראשים של הסרטים יכולים לזוז באופן בלתי-תלוי בהתאם לפונקצית המעברים של המטמ"ס.

3.2 מכונת טיורינג מרובת סרטים: הגדרה פורמלית

הגדרה 3.1 מכונט טיורינג מרובת סרטים

מכונת טיורינג מרובת סרטים היא שביעייה:

$$M = (Q, \Sigma, \Gamma, \delta_k, q_0, q_{\rm acc}, q_{\rm rei})$$

כאשר Q, Q, Q, Q, Q, Q מוגדרים כמו מ"ט עם סרט יחיד (ראו הגדרה 1.2). ההבדל היחיד בין מ"ט עם סרט יחיד לבין מטב"ס הוא הפונקצית המעברים. עבור מטמ"ס הפונקצית המעברים היא מצורה הבאה:

$$\delta_k : (Q \setminus \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$

דוגמה 3.1

$$\delta_k \left(q, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right) = \left(p, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} R \\ R \\ L \end{pmatrix} \right) .$$

3.3 קונפיגורציה של מטמ"ס

:הכללה של קונפיגורציה של מ"ט עם סרט יחיד

$$\begin{pmatrix} u_1 q & \mathbf{v}_1 \\ u_2 q & \mathbf{v}_2 \\ \vdots \\ u_k q & \mathbf{v}_k \end{pmatrix}$$

דוגמה 3.2

בנו מטמ"ס שמכריעה את השפה:

$$L_{w^R} = \{ w = \{a, b\}^* \mid w = w^R . \}$$

כלומר שפת הפלינדרומים.

פתרון:

נבנה מ"ט עם שני סרטים:

תאור המכונה:

 L_{w^R} השפה את שמכריעה שמכריט פרטים את נסמן לסמן אונסמ

:w על הקלט $=M_2$

2 מעתיקה את w לסרט (1)

- w בסרט w לתו האחרון ב- w ואת הראש בסרט w לתו האחרון ב- w
 - (3) משווה בין התווים שמתחת לראשים:
 - $acc \Leftarrow$ והוא 1 הוא בסרט
 - rej ← אם התווים שמתחת לראשים שונים •
- ullet אחרת מזיזה את הראש בסרט 1 ימינה ואת הראש בסרט 2 שמאלה, וחוזרת לשלב (3).

היא: M_2 היא המעברים אל היא

$$\delta \left(q_0, \begin{pmatrix} a \\ - \end{pmatrix} \right) = \left(q_0, \begin{pmatrix} a \\ a \end{pmatrix}, \begin{pmatrix} R \\ R \end{pmatrix} \right) ,$$

$$\delta \left(q_0, \begin{pmatrix} b \\ - \end{pmatrix} \right) = \left(q_0, \begin{pmatrix} b \\ b \end{pmatrix}, \begin{pmatrix} R \\ R \end{pmatrix} \right) ,$$

$$\delta \left(q_0, \begin{pmatrix} - \\ - \end{pmatrix} \right) = \left(q_{\text{back}}, \begin{pmatrix} - \\ - \end{pmatrix}, \begin{pmatrix} L \\ L \end{pmatrix} \right) .$$

. המילה של המרבוכיות אמן אל הסיבוכיות המילה שני סרטים, M_2 היט שני המכונה אמן אל המיבוכיות מען של המילה.

 $.L_{W^R}$ כעת נבנה מ"ט עם סרט יחיד שמכריעה את כעת נבנה מ

תאור המכונה:

 L_{w^R} נסמן M_1 המכונה עם סרט יחיד שמכריעה את נסמן

:w על הקלט $=M_1$

- $acc \leftarrow M_1$ אם התו שמתחת לראש הוא (1)
- X זוכרת את התו שמתחת לראש ומוחקת אותו ע"י (2)
- $_{-}$ מזיזה את הראש ימינה עד התו הראשון משמאול ל
 - $acc \Leftarrow X$ אם התו שמתחת לראש הוא
 - .rej \Leftarrow אם התו שונה מהתו שזכרנו \bullet
- חוזרת את התו שמתחת לראש ע"י $_-$, מזיזה את הראש שמאולה עד התו הראשון מימין ל- $_-$ וחוזרת לשלב (1).

3.4 שקילות בין מטמ"ס למ"ט עם סרט יחיד

מ"ט עם סרט יחיד היא מקרה פרטי של מטמ"ס.

משפט 3.1 שקילות בין מטמ"ס למ"ט עם סרט יחיד

M -לכל מטמ"ס M קיימת מ"ט עם סרט יחיד M השקולה ל

 $:w\in\Sigma^*$ כלומר, לכל קלט

- w אם $M' \leftarrow w$ מקבלת את $M' \leftarrow w$ אם M
 - wאם M דוחה את $w \leftarrow w$ אם M דוחה את w
- w אם M לא עוצרת על $M' \leftarrow w$ לא עוצרת על M

הוכחה:

רעיון הבנייה:

wעל Mעל ריצה M'על M'על איר הינתן קלט M'על M'על איר בהינתן קלט

<u>M - </u>

M' -ם

- .# $_{i+1}$ -ל $_i$ יופיע איז יופיע וופיע א הסרט, רק אל הסרט, א הסרטים של הסרטים א הסרטים א תשמור את M'
- Γ תשמור את המיקום של הראשים של Mע"י הכפלת הא"ב Mתשמור את המיקום של הראשים של $\hat{\alpha}$ ב- $\hat{\alpha}$ ב- $\hat{\alpha}$ ו- שמתחת שמור שתי התו שמתחת לכל אות התו M'י, $\alpha\in\Gamma$ אות לכל אות כלומר, לכל אות ב- $\hat{\alpha}$ ים אותיות שתי אותיות שמור שתי התו בכל הרט.
- בכל צעד חישוב, M' סורקת את הסרט שלה משמאל לימין כדי ללמוד מהם התווים שמתחת לראשים בכל $(\hat{\alpha} 1)$.
 - . משתמשת בפונקצית המעברים δ_k של המעברים את משתמשת M'
 - . הראשים הראשים ואת הסרטים את כדי לעדכן כדי לימין לימין הראשים הראשים את סורקת את הסרט שלה משמאל לימין כדי לעדכן את

:M' תאור הבנייה של

שלב האיתחול (1

בהינתן קלט M על הסרט שלה. מאתחלת את הקונפיגורציה ההתחלתית של M' , $w=\sigma_1\sigma_2\cdots\sigma_n$ בהינתן הינתן קלט

<u>М -д</u>

<u>M' -⊐</u>

M תאור צעד חישוב של (2

<u>М - а</u>

בן (
$$q$$
 מצב (q)) (q) (

$$\delta_k \left(q, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right) = \left(p, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} L \\ R \\ L \end{pmatrix} \right)$$

<u>M' -⊐</u>

- איסוף מידע •
- . $\hat{\alpha}$ -ם סורקת את הסרט שלה משמאל לימין ומזהה את התווים שמסומנים ב- M' מידע זה ניתן לשמור במצבים. לדוגמה:

$$q$$
, $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$

זה אפשרי מכיוון שמספר המצבים הנדרש הוא סופי:

$$|Q| \times |\Gamma|^k$$
.

עדכון הסרטים •

את הסרט שלה פעם נוספת כדי לפעול על פי פונקצית המעברים, כלומר, לעדכן את M^\prime התאים שמתחת לראשים ולעדכן את מיקום הראשים.