Corrigé du devoir maison 2.

Exercice 1

- 1°) Soit $a \in \mathbb{R}$. Les solutions sur \mathbb{R} de l'équation y' = ay sont les fonctions $x \mapsto \lambda e^{ax}$ où $\lambda \in \mathbb{R}$
- $\mathbf{2}^{\circ}$) a) $\forall x \in \mathbb{R}, g(x) = f(-x)f(x)$.

g est dérivable sur \mathbb{R} comme produit et composée de fonctions dérivables et, pour tout $x \in \mathbb{R}$,

$$g'(x) = -f'(-x)f(x) + f(-x)f'(x)$$

= -f'(-x)f(x) + 1 par (*)

On utilise ensuite (*) en remplaçant x par -x: f(x)f'(-x) = 1.

Donc g'(x) = 0 pour tout $x \in \mathbb{R}$.

Comme \mathbb{R} est un intervalle, on en déduit que g est constante sur \mathbb{R} .

b) Soit $x \in \mathbb{R}$.

D'une part, g est constante donc g(x) = g(0) i.e. $f(-x)f(x) = f(0)^2$ i.e. f(-x)f(x) = 16.

Nécessairement, $f(-x) \neq 0$ (sinon 0 = 16), donc $f(x) = \frac{16}{f(-x)}$ i.e. $\frac{1}{16}f(x) = \frac{1}{f(-x)}$.

D'autre part, avec (*): f(-x)f'(x) = 1, on obtient aussi $f'(x) = \frac{1}{f(-x)}$.

Finalement, pour tout $x \in \mathbb{R}$, $f'(x) = \frac{1}{16}f(x)$.

Ainsi, f est solution de l'équation (F_a) avec $a = \frac{1}{16}$.

c) On en déduit, par la question préliminaire, qu'il existe un réel λ tel que, pour tout $x \in \mathbb{R}$, $f(x) = \lambda e^{\frac{x}{16}}$.

Or f(0) = -4 donc $\lambda = -4$. Finalement, f est la fonction $x \mapsto -4e^{\frac{x}{16}}$

- 3°) ★ On a montré que si $f \in \mathcal{E}$ alors f est la fonction $x \mapsto -4e^{\frac{x}{16}}$.
 - ★ Réciproquement, posons $f: x \mapsto -4e^{\frac{x}{16}}$.

Alors, f(0) = -4.

De plus, f est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $f'(x) = -4 \times \frac{1}{16}e^{\frac{x}{16}} = -\frac{1}{4}e^{\frac{x}{16}}$.

Ainsi, pour tout $x \in \mathbb{R}$, $f(-x)f'(x) = -4e^{\frac{-x}{16}} \times \left(-\frac{1}{4}\right)e^{\frac{x}{16}} = 1$.

Donc, $f \in \mathcal{E}$.

 \bigstar Conclusion : $\boxed{\mathcal{E}}$ contient un seul élément, la fonction $x\mapsto -4e^{\frac{x}{16}}$

Exercice 2

 $\mathbf{1}^{\circ}$) Soit $x \in \mathbb{R}$.

$$(E_1) \iff \cos x + \sin x = 1$$

$$\iff \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos x + \frac{1}{\sqrt{2}} \sin x \right) = 1$$

$$\iff \sqrt{2} \left(\cos \left(\frac{\pi}{4} \right) \cos x + \sin \left(\frac{\pi}{4} \right) \sin x \right) = 1$$

$$\iff \sqrt{2} \cos \left(x - \frac{\pi}{4} \right) = 1$$

$$\iff \cos \left(x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}$$

$$\iff \exists k \in \mathbb{Z}, x - \frac{\pi}{4} = \frac{\pi}{4} + 2k\pi \text{ ou } x - \frac{\pi}{4} = -\frac{\pi}{4} + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, x = \frac{\pi}{2} + 2k\pi \text{ ou } x = 2k\pi$$

L'ensemble des solutions de (E_1) est : $\left\{\frac{\pi}{2} + 2k\pi, 2k\pi / k \in \mathbb{Z}\right\}$

 $\mathbf{2}^{\circ}$) $\forall x \in \mathbb{R}, \cos^2 x + \sin^2 x = 1.$

Ainsi, l'ensemble des solutions de (E_2) est \mathbb{R} tout entier

- **3°)** On suppose que $n \geq 3$.
 - a) Supposons que $0 < |\cos x| < 1$.

Par l'inégalité triangulaire :

$$|\cos^n x + \sin^n x| \le |\cos^n x| + |\sin^n x|$$
 i.e. $|\cos^n x + \sin^n x| \le |\cos x|^n + |\sin x|^n$.

Comme $n \ge 3$, on peut écrire $|\cos x|^n = |\cos x|^2 \cdot |\cos x|^{n-2}$.

Puisque $n-2 \ge 1$, la fonction $t \mapsto t^{n-2}$ est strictement croissante sur [0,1].

Comme $0 < |\cos x| < 1$, on en tire $0^{n-2} < |\cos x|^{n-2} < 1^{n-2}$ i.e. $0 < |\cos x|^{n-2} < 1$.

Multiplions cette inégalité par le réel strictement positif $|\cos x|^2$, on obtient $|\cos x|^n < |\cos x|^2$.

De même, comme $0 \le |\sin x| \le 1$, on a $|\sin x|^n \le |\sin x|^2$.

En sommant ces deux inégalités, on obtient $|\cos x|^n + |\sin x|^n < |\cos x|^2 + |\sin x|^2$.

Or $|\cos x|^2 + |\sin x|^2 = \cos x^2 + \sin x^2 = 1$, d'où:

$$\left| \cos^n x + \sin^n x \right| < 1$$

- **b)** Soit $x \in \mathbb{R}$.
 - ★ Si $0 < |\cos x| < 1$, d'après la question précédente, (E_n) n'est pas vérifiée. Donc, si x est solution de (E_n) , alors $\cos x = \pm 1$ ou $\cos x = 0$, et par conséquent x s'écrit : $x = k\pi$ ou $x = \frac{\pi}{2} + k\pi$ où $k \in \mathbb{Z}$.
 - \star Réciproquement, soit $k \in \mathbb{Z}$.

Si k est pair, il s'écrit k=2p avec $p\in\mathbb{N}^*$:

- $\cos^n(k\pi) + \sin^n(k\pi) = \cos^n(2p\pi) + \sin^n(2p\pi) = 1^n + 0^n = 1$, donc $k\pi$ est solution de (E_n) .
- $\cos^n\left(\frac{\pi}{2} + k\pi\right) + \sin^n\left(\frac{\pi}{2} + k\pi\right) = \cos^n\left(\frac{\pi}{2} + 2p\pi\right) + \sin^n\left(\frac{\pi}{2} + 2p\pi\right) = 0^n + 1^n = 1,$ donc $\frac{\pi}{2} + k\pi$ est solution de (E_n) .

Si k est impair, il s'écrit k = 2p + 1 avec $p \in \mathbb{N}^*$:

- $\cos^n(k\pi) + \sin^n(k\pi) = \cos^n(2p\pi + \pi) + \sin^n(2p\pi + \pi) = (-1)^n + 0^n = (-1)^n$,
- donc $k\pi$ est solution de (E_n) si et seulement si n est pair. $\cos^n\left(\frac{\pi}{2}+k\pi\right)+\sin^n\left(\frac{\pi}{2}+k\pi\right)=\cos^n\left(\frac{3\pi}{2}+2p\pi\right)+\sin^n\left(\frac{3\pi}{2}+2p\pi\right)=0^n+(-1)^n=$ donc $\frac{\pi}{2} + k\pi$ est solution de (E_n) si et seulement si n est pair.

Finalement, il y a 2 cas:

- Si n est pair, l'ensemble des solutions de (E_n) est $\left\{k\pi, \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$ i.e. $\left\{k\frac{\pi}{2} \ / \ k \in \mathbb{Z}\right\}.$
- Si n est impair, l'ensemble des solutions de (E_n) est $\left\{2p\pi, \frac{\pi}{2} + 2p\pi/p \in \mathbb{Z}\right\}$.