Luxmetr

Tomáš Kysela

17. prosince 2023

Vytvořeno jako semestrální projekt pro předmět BAB34BSP ${\rm FEL}\ \check{\rm CVUT}$

Obsah

1	Úvod	2		
2	Teoretický úvod 2.1 Jednotky světelné intenzity	6		
3	Návrh luxmetru 3.1 Hardware zapojení 3.2 Software zpracování 3.3 Curve fitting	4		
4	1 Závěr			
5	5 Zdroje			
S	eznam obrázků 2.1 Spektrum elektromagnetického záření 3.1 Logické zapojení prvků	6 4		
\mathbf{S}	eznam tabulek			
	1 Typické hodnoty lux	4		

1 Úvod

Cílem projektu je vytvořit funkční jednoduchý luxmetr za využítí fotorezistoru, zprácování výstupu v mikrokontroleru a zobrazení na displej. Dále je tento senzor kalibrován za využití komerčního přístroje.

2 Teoretický úvod

Elektromagnetické záření je pohyb částic vyvolaných kmitáním nabitých částic, či pohybem nabitých částic ve vysokých rychlestech. Samotné světlo je poté elektromagnetické záření přibližně o vlnových délkách 380 až 740nm. [1]

Obrázek 2.1: Spektrum elektromagnetického záření [1]

2.1 Jednotky světelné intenzity

Lumen je jednotka světelného toku, definovaná jako světelný tok vyzařovaný do prostorového úhlu 1 steradiánu bodovým zdrojem, jehož svítivost je 1 kandela. Pokud tuto jednotku dáme na metr čtvereční dostáváme lux. Běžné hodnoty luxů jsou dle tabulky 1.

Světelné podmínky	Typické hodnoty lux
Jasný den	10000 až 25000
Zatažený den	1000 až 5000
Umělé vnitřní osvětlení	100 až 500
Měsíční světlo	1

Tabulka 1: Typické hodnoty lux

2.2 Fotorezistor

Princip fotorezistoru (LDR) záleží na fotoelektrickém jevu. Foton narazí do elektronu ve valenční sféře a předá mu svoji energii, tím elektron získá dostatek energie k překonání zakázaného pásu a skočí do vodivé vrstvy. Takto uvolněné elektrony poté přispívají ke snížení elektrické odporu ve fotorezistoru. Tedy čím více světla dopadá na fotorezistor tím menší je jeho odpor.

3 Návrh luxmetru

Luxmetr realizujeme za využití LDR. Ten zapojíme jako napěťový dělič s pevným odporem a následujeme sledujeme úbytek napětí na LDR. K tomu využíváme Analog-To-Digital Convertor. Přečtené hodnoty napětí následně pomocí funkce získané z kalibrace za pomocí curve-fitting přepočítáme na hodnotu lux.

3.1 Hardware zapojení

Obrázek 3.1: Logické zapojení prvků

Obrázek 3.2: Zapojení jednotlivých prvků projektu

Součástka	počet	cena/kus
STM32 Nucleo-G441RE	1	363 Kč
TRIMMER 64 P 10K CN 250ppm	1	14 Kč
fotorezistor GL5516	1	7 Kč
rezistor 5.1 k Ω	1	4 Kč
rezistor 470 Ω	1	4 Kč
DM1602AB alfanumerický LCD	1	85 Kč

Tabulka 2: Seznam použitých součástek

3.2 Software zpracování

V software vyžíváme předgenerované prostředí z STM32 CUBE IDE. Následně doplníme logiku kde pravidelně spouštíme ADC konverzi, následně přečteme hodnotu, převedeme na napětí a z napětí přepočítáme na luxy, který následně zobrazíme.

```
int main(void)
 char txt [30];
 uint16_t adc_raw;
 uint32_t lux;
 float voltage;
 Lcd_PortType ports[] = {D4_GPIO_Port, D5_GPIO_Port,
    D6_GPIO_Port, D7_GPIO_Port};
 Lcd_PinType pins[] = \{D4_Pin, D5_Pin, D6_Pin, D7_Pin\};
 Lcd_HandleTypeDef lcd = Lcd_create(ports, pins,
    RS_GPIO_Port, RS_Pin, EN_GPIO_Port, EN_Pin,
    LCD_4_BIT_MODE);
 while (1)
       HAL_ADC_Start(&hadc1);
       HAL_ADC_PollForConversion(&hadc1, 100);
       adc_raw = HAL_ADC_GetValue(&hadc1);
       HAL_ADC_Stop(&hadc1);
       voltage = ((double) adc_raw / 4096) * 3.3;
       lux = LUX_SCALAR * pow(voltage, LUX_EXPONENT);
       sprintf(txt, "%ld-lux", lux);
       Lcd_clear(&lcd);
       Lcd_cursor(\&lcd, 0, 0);
       Lcd_string(&lcd, txt);
       HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);
```

```
\begin{array}{c} {\rm HAL\_Delay}\left(500\right);\\ \end{array}\}
```

3.3 Curve fitting

Vzhledem k naměřeným hodnotám jsme vypozorovali přibližně logaritmickou závislost. Tedy jsme jak naměřené hodnoty, tak napětí zlogaritmovali dekadickým logaritmem, tedy jsme dostali rovnici 1, kde y jsou naměřené luxy a x naměřené napětí.

$$\log_{10} y = m \log_{10} x + c \tag{1}$$

Tu jsme následně aproximovali a následně převedli na rovnci 2.

$$y = x^m \cdot 10^c = x^m \cdot a \tag{2}$$

Výsledné hodnoty jsou poté m = -1.974 a a = 48.842.

4 Závěr

Úspěšně jsme sestavili luxmetr, kalibrovali ho na rozsahu 0 až 14000 lx. Výsledné hodnoty úspěšně zobrazujeme na LCD alfanumerickém displeji. Veškeré podkladové materiály jsou dostupné na https://github.com/tomkys144/Luxmeter.

5 Zdroje

- VO, Kevin; HERNANDEZ, Mateo; PATEL, Nikita. Electromagnetic Radiation [online]. c2023. [cit. Dec. 17, 2023]. Dostupné z: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Fundamentals_of_Spectroscopy/Electromagnetic_Radiation.
- How to Measure Light Intensity [online]. Biological Innovation and Optimization Systems, c2023. [cit. Dec. 17, 2023]. Dostupné z: https://bioslighting.com/how-to-measure-light-intensity/architectural-lighting/.