纳米光子学 19-超材料1

超材料的概念 P2 介电常数的物理意义 P8 左手波和左手材料 P15 (重点)为什么左手材料折射率为负 P17 实现负折射率的一种思路 P25 双负负折射率材料 P32 超材料的性质-负折射率 P36 反常切伦科夫辐射 P44 零折射率材料 P47 光频段磁性超材料的实现 P51

- ▶ 1、超材料的概念与历史
- ▶ 2、实现负折射率的一种思路
- ▶ 3、超材料的性质
- ▶ 4、光频段磁性超材料的实现

01

1、超材料的概念与历史

1.1 基本概念

- 常规材料:原子构成,远小于光的波长 宏观参数 ε,μ 描述光-物质相互作用
- 超材料: 人造电磁共振结构, 结构单元小于光的波长 宏观参数 ¿eff, μeff 描述光-物质相互作用

03

1、超材料的概念与历史

1.2 Maxwell方程组

真空中的电磁规律

我们生活在介质中 介质带来了丰富的电磁现象-多彩的世界

05

1、超材料的概念与历史

1.3 本构关系

究竟是什么鬼? - 电磁波两条腿走路

电磁波两条腿走路,既有电场 E,又有磁场 H 介电常数和磁导率分别控制两条腿,因此可以<mark>操控电磁波</mark>

1、超材料的概念与历史

"Metamaterials", "meta-"超常、超越、另类 微波超材料 太赫兹超材料 电磁超材料 光波超材料 声波超材料 超材料 弹性波超材料 水波超材料

共同特点:通过其结 构特性和组合调控波 的行为

特征

- 人工设计合成制作的复合材料
- 具有自然界的材料所不具备的物理性质
- 性质不仅取决于构成材料的本征属性, 更取

02

04

06

决于其结构单元对波的响应

1、超材料的概念与历史

1.2 Maxwell方程组

麦克斯韦方程组 -所有电磁现象的规律

方程(2): 变换的磁场产生电场 方程(4): 变换的电场产生磁场

1、超材料的概念与历史

1.2 Maxwell方程组

介质中的Maxwell方程组

- ε , μ 个性化地描述了不同的介质对电磁波的响应
- ε , μ 导致了电磁波的迥异表现,使得我们的世界绚丽多彩!

1、超材料的概念与历史

1.3 本构关系

介电常数的物理含义

物质由大量原子组成,原子由原子核(带正电)和电子云组成

施加外电场时,电子云的中心位置 与原子核的位置被拉开,宏观上展现 了电性,这个过程叫做极化

ど 描述的正是物质对外电场响应的剧烈程度,就像弹簧

1、超材料的概念与历史

1.3 本构关系

磁导率是什么?

- 介质内部有大量的小磁针(分子环流)
- B=0时,这些小磁针随机分布,相互 抵消,体系没有磁性
- B不为0时,小磁针都被拉到磁场的方 向排列, 体系显示宏观磁性。这个过 程叫磁化
- 磁导率就是描述体系对外磁场的响应 能力

大部分材料在老被颗段的相对磁导率 μ. = 1,即对 磁场几乎没有响应。

09

1、超材料的概念与历史

1.4 材料的分类

111

1/3

P5

1、超材料的概念与历史

1.3 本构关系

调控光/电磁波

调节 ε, μ

自然材料调节能力有限

 ε, μ 是材料的本征属性,材料定了, ε, μ 就定了

人工材料?

F0

₽2

1、超材料的概念与历史

1.5 历史

从负折射率到超材料的提出

1、超材料的概念与历史

1.5 历史

Schuster-1904: Idea

Negative Refractive Index: A long history

- A. Schuster, An Introduction to the Theory of Optics, (1904)
 - Discussed in the context of anomalous dispersion as occurs at any absorption band.
- L.I. Mandelshtam, May 5 1944 (last lecture)

"In fact, the direction of wave propagation is determined by its phase velocity, while energy is transported at the group velocity." - Translated by E. F. Keuster

1、超材料的概念与历史

1.5 历史

Viktor Veselago- 1967: Theory

"The electrodynamics of substances with simultaneously

negative values of ε and μ"

V.G. Veselago, Sov. Phys. Usp 10, 509 (1968). (first published in Russian in 1967)

1/4

1、超材料的概念与历史

1.5 历史

左手波和左手材料

满足右手定则:

如果 ε < 0, μ < 0

则 $(\vec{E}, \vec{H}, \vec{k})$ 满足左手定则:

1、超材料的概念与历史

1.5 历史

为什么是左手?

 $\boldsymbol{S} = \frac{1}{2} \operatorname{Re}(\boldsymbol{E} \times \boldsymbol{H}^*)$ 右手定则

1、超材料的概念与历史

1.5 **历史** 为什么左手材料折射率为负?

$$n^2\!=\!arepsilon\mu$$
 \Rightarrow $n\!=\!\pm\sqrt{arepsilon\mu}$ 为什么取负号!?

光在任何非理想材料中传输都有损耗 $\varepsilon = \varepsilon_r + i\varepsilon_i$, $\mu = \mu_r + i\mu_i$

假定损耗很小 $\varepsilon = \varepsilon_r + i\delta_1$, $\mu = \mu_r + i\delta_2$, δ_i 为小量

$$\varepsilon\mu = (\varepsilon_r + \mathrm{i}\,\delta_1)\cdot(\mu_r + \mathrm{i}\,\delta_2)$$

$$=arepsilon_r \mu_r + i(arepsilon_r \delta_2 + \mu_r \delta_1) - \delta_1 \delta_2$$

$$pprox arepsilon_r \mu_r + i(arepsilon_r \delta_2 + \mu_r \delta_1)$$

$$n = \pm \sqrt{arepsilon \mu} = \pm \sqrt{arepsilon_r \mu_r + \mathrm{i} (arepsilon_r \delta_2 + \mu_r \delta_1)}$$

现在分情况讨论: $\varepsilon_r > 0$, $\mu_r > 0$

$$n = \pm \sqrt{\varepsilon_r \mu_r} \sqrt{1 + \mathrm{i} \frac{\varepsilon_r \delta_2 + \mu_r \delta_1}{\varepsilon_r \mu_r}} \approx \pm \sqrt{\varepsilon_r \mu_r} \bigg(1 + \mathrm{i} \frac{\varepsilon_r \delta_2 + \mu_r \delta_1}{2\varepsilon_r \mu_r} \bigg)$$

P7

1、超材料的概念与历史

1.5 历史

如何实现双负?

- 常规介质材料: $\varepsilon > 0$, $\mu \sim 1$
- $arepsilon=1-rac{\omega_{
 m p}^2}{\omega^2-{
 m i}\,\gamma\omega},\;\omega_{
 m p}=rac{ne^2}{arepsilon_0 m_o}$ • 金属材料:

其等离子体频率大多位于紫外

- 大部分非磁性材料 $\mu \sim 1$
- 自然界中 μ < 0的材料几乎没有
- 如何使感兴趣的频率区间 $\varepsilon < 0, \mu < 0$?

理论很充实, 现实很难!

49

1、超材料的概念与历史

1.5 历史

David Smith - 2000: 实现

"Composite medium with simultaneously negative permeability and permittivity

Experimental demonstration at λ = 60 mm (f = 5 GHz) of a metamaterial with ϵ_{eff} < 0 and μ_{eff} < 0

Rediscovery of Veselago's paper

自此超材料的研究 从此一发不可收拾

D.R. Smith et al., Phys. Rev. Lett. 84, 4184 (2000).

21

1、超材料的概念与历史

1.5 命名——超材料

什么是超(构)材料?

Metamaterials

超构材料

•结构单位:原子 •不能具有任意的 \mathcal{E} , μ

• 结构单位: 人工原子

1、超材料的概念与历史

为什么左手材料折射率为负?

$$n=\pm\sqrt{arepsilon_r\mu_r}\Big(1+\mathrm{i}\,rac{arepsilon_r\delta_2+\mu_r\delta_1}{2arepsilon_r\mu_r}\Big)$$

介质必然是损耗介质,折射率虚部大于0,因此

$$n = \sqrt{\varepsilon_r \mu_r} \left(1 + \mathrm{i} \frac{\varepsilon_r \delta_2 + \mu_r \delta_1}{2\varepsilon_r \mu_r} \right)$$

如果: $\varepsilon_r < 0$, $\mu_r < 0$

$$n = \pm \sqrt{\varepsilon_r \mu_r} \left[1 - \mathrm{i} \frac{\left(|\varepsilon_r| \delta_2 + |\mu_r| \delta_1 \right)}{2\varepsilon_r \mu_r} \right]$$

折射率虚部大于0,得到:

$$n = -\sqrt{\varepsilon_r \mu_r} + \mathrm{i}\,\frac{(|\varepsilon_r|\delta_2 + |\mu_r|\delta_1)}{2\sqrt{\varepsilon_r \mu_r}}$$

$$n_r = -\sqrt{\varepsilon_r \mu_r} < 0$$
 负折射!

1、超材料的概念与历史

1.5 历史

John Pendry的方法

- ▶ 1996年(Phys. Rev. Lett., 76, 4773):金属细线网格构成的周期性 阵列可**有效控制和调节金属的等离子体频率**,可在微波波段实现 负的介电常数。
- 1999年(IEEE Trans. Microwave Theory Tech., 47, 2075)用金属开 口环可以实现微波波段的有效负磁导率。

00000000 0000000 0000000 0000000 0000000 0000000

20

48

1、超材料的概念与历史

1.5 命名——超材料

"超材料"名字的起源

- "Metamaterial" coined in the late 1990's
- According to David R. Smith, any material composed of periodic, macroscopic structures so as to achieve a desired electromagnetic response can be referred to as a Metamaterial -(宽泛的定义)
- , Others prefer to restrict the term *Metamatetial* to materials with electromagnetic properties not found in nature
- . Still some ambiguity as the exact definition
- Almost all agree the Metamaterials do NOT rely on chemical/atomic alterations

₹2

2、实现负折射率的一种思路

2、实现负折射率的一种思路

2.1 电响应的调节

洛伦兹模型-电介质

Resulting Dielectric Function

$$\varepsilon_r = 1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2 - j\omega\Gamma}$$

$$\omega_p^2 = \frac{Nq^2}{\varepsilon_0 m}$$

ω,材料的固有频率,与能带宽度相关

2、实现负折射率的一种思路

2.1 电响应的调节

Durde 模型-金属

Governing Equation

$$m\frac{\partial^2 \vec{r}}{\partial t^2} + m\Gamma \frac{\partial \vec{r}}{\partial t} + m\omega_0^2 \vec{r} = -q\vec{E}$$

Electrons are not bound so

Resulting Dielectric Function

$$\varepsilon_r = 1 - \frac{\omega_p^2}{\omega^2 + j\omega\Gamma}$$

$$\omega_p^2 = \frac{Nq^2}{\varepsilon_* m}$$

26

ω,金属的等离子体频率,与电子浓度和电子有效质量相关

2、实现负折射率的一种思路

2.1 电响应的调节

如何调节电响应?

介质材料:
$$\varepsilon = 1 + \frac{\omega_{\mathrm{p}}^2}{\omega_0^2 - \omega^2 - \mathrm{i}\,\omega\gamma}, \; \omega_{\mathrm{p}}^2 = \frac{Nq^2}{\varepsilon_0 m}$$

ω, 对应于电子能带跃迁频率

金属材料:

$$\varepsilon = 1 - \frac{\omega_{\rm p}^2}{\omega^2 + {\rm i}\omega\gamma}, \ \omega_{\rm p}^2 = \frac{n_e e^2}{\varepsilon_0 m_e} \ \varepsilon = \begin{cases} >1 & \text{with} \\ 1 & \text{with} \\ <0 & \text{with} \end{cases}$$

有没有可能改变等离子体频率

27

29

31

25

2、实现负折射率的一种思路

2.1 电响应的调节

Pendry证明: 金属细线立方体网格结构, 可以降低等离子体频率

等效电子浓度: $N_{\text{eff}} = \frac{\pi r^2 N}{r^2}$

空气介质稀释电子浓度

等效的电子有效质量:

$$m_{\rm eff} = \frac{\mu_0 \pi r^2 N_{\rm eff} q^2}{2\pi} \ln \left(\frac{a}{2r}\right)$$

$$\omega_{p,\text{eff}}^2 = \frac{2\pi c^2}{a^2 \ln\left(a/2r\right)}$$

与材料固有属性相关的等离子体频率 变成与可以改变的结构参数相关

J. B. Pendry, A. J. Holden, W. J. Stewart, I Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).

Metallic wire 28

2、实现负折射率的一种思路

2.2 磁响应的调节

直接操控分子环流几乎不可能, 需要另辟蹊径

2、实现负折射率的一种思路

2.2 磁响应的调节

Pendry证明: 通过金属开口谐振环结构实现负有效磁导率

垂直圆环的交变磁场在线圈中 诱导电流,产生对磁场的响应

$$\mu_{\mathrm{eff}}\!=\!1\!-\!\frac{F\omega_{\mathrm{mp}}^2}{\omega^2\!-\!\omega_{\mathrm{mo}}^2\!+\!\mathrm{i}\,\omega\gamma_{m}}$$

- F几何填充因子
- $\omega_{
 m mp}$ 等效磁等离子体频率 $\omega_{
 m mo}$ 共振频率
- γ,,阻尼损耗因子

Split-ring resonators

J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, "Magnetism fr-IEEE Trans, Microwave Theory and Techniques 47(11), 2075–2084 (1

2、实现负折射率的一种思路

2.2 磁响应的调节

2、实现负折射率的一种思路

2.3 双负负折射率材料——实现思路

VOLUME 84, NUMBER 18 PHYSICAL REVIEW LETTERS

Composite Medium with Simultaneously Negative Permeability and Permittivity

Smith et al., PRL 84, 4184 (2000)

30

2、实现负折射率的一种思路

2.3 双负负折射率材料

合理设计结构 参数,使得:

 $\omega_{\mathrm{mo}} < \omega_2 \leqslant \omega_1$ 在区间 $\omega_{mo} < \omega < \omega_2$

有 $\operatorname{Re}(\mu_r) < 0$ & $\operatorname{Re}(\varepsilon_r) < 0$ 对应负折射率区间

缺点: 损耗非常大! 共振附近伴随 巨大的损耗

33

3、超材料的性质

3、超材料的性质

3.1 负折射率

对负折射材料,利用光程差相等,得到折射定律

入射光:

介质1中: A点、B点等相位面

介质2中: A点、D点等相位面

A点到A点的光程: 0

 $n_1 \, \overline{BC} + n_2 \, \overline{DC}$ B点到D点的光程: A点到A点光程要与B点到D点的光程相等

$$n_1 \, \overline{BC} + n_2 \, \overline{DC} = 0$$

 $\Rightarrow n_1 d \sin i + n_2 d \sin |t| = 0$

负折射率: 折射光与入射光在法线的同侧

37

35

3、超材料的性质

3.1 负折射率

−ε: 电共振结构 --- 金属线 -µ: 磁共振结构 --- 开口环

共振原理 - 响应参数随频率变化可正、可负

2、实现负折射率的一种思路

2.4 双负与单负负折射率材料

- μ , ε 为负, 折射率必然为负
- 要折射率为负,并不要求介电常数和磁导率同时为负
- "双负"不是获得负折射率的必要条件

$$n = n_r + \mathrm{i}\,n_i \ \Rightarrow \ n^2 = n_r^2 - n_i^2 + 2\,\mathrm{i}\,n_r n_i$$

$$\varepsilon \mu = (\varepsilon_r + i \varepsilon_i) (\mu_r + i \mu_i) = (\varepsilon_r \mu_r - \varepsilon_i \mu_i) + i (\varepsilon_r \mu_i + \varepsilon_i \mu_r)$$

$$ext{th} n^2 = arepsilon \mu \ \Rightarrow \ 2n_r n_i = arepsilon_r \mu_i + arepsilon_i \mu_r$$

 $\exists n_i > 0$,使 $n_r < 0$ 只需 $\varepsilon_r \mu_i + \varepsilon_i \mu_r < 0$

3、超材料的性质

3.1 负折射率

- 自然材料依靠反射/折射调控电磁波
- 斯涅尔定律描述反射/折射

 $\sin r = \sin i$ $n_1 \sin i = n_2 \sin t$

- 折射光与入射光在法线的两侧
- 折射取决于折射率的不同
- 子波干涉、光程差相等
- 传统光学器件(如棱镜)的基础

3、超材料的性质

3.1 负折射率

岸上的人观察负折射率水中的鱼,观察到的是实际光线汇 聚的实像,并且相位于水面上方

38

34

36

超材料的性质

3.1 负折射率

超材料的性质

3.1 负折射率 实验验证

41

3、超材料的性质

3.1 负折射率

实验验证

Fig. 3. Transmitted power at 10.5 GHz as a function of refraction angle for both a Teflon sample (dashed curve) and a LHM sample (solid curve). The two curves were normalized such that the magnitude of both peaks is unity. For

43

3、超材料的性质

3.3 逆多普勒效应

45

3、超材料的性质

3.5 零折射率材料的性质

▶ 光通过零折射率材料和没通过一样, 材料"隐身"了。

 $\Phi = \mathbf{k} \cdot \mathbf{r} = n\mathbf{k}_0 \cdot \mathbf{r} = 0$

3、超材料的性质

3.1 负折射率

实验验证

楔形超构材料

• 如果入射波和折射波在法线同侧,则为负折射!

3、超材料的性质

3.2 反常切伦科夫辐射

▶ 带电粒子在介质中运动的速度超过介质中的光速产生 的辐射。

44

42

3、超材料的性质

3.4 逆Goos-Hanchen位移

发生全反射时,反射光束在入射面内偏离几何光学路径的 一小段横向位移

46

3、超材料的性质

3.5 零折射率材料的性质

a, Region 2

- 介质中波长: $\lambda = \frac{\lambda_0}{n}$
- 0折射率材料中波长无限大
- 波导与0折射率材料连接处 反射损耗很小
- 实现波导间的任意耦合

4、光频段磁性超材料的实现

自然界的材料在光频段相对磁导率为1

4、光频段磁性超材料的实现

- 原因:相比于光波电分量同原子的耦合,磁分量同原子的耦合弱得多
- 同原子的磁耦合正比于波尔磁子_{//R}

$$\mu_{\scriptscriptstyle B} = rac{e \hbar}{2 m_{\scriptscriptstyle e} c} = lpha e rac{a_0}{2}$$

 α : 精细结构常数 $\alpha = 1/137$

• 原子的电耦合正比于 ea₀

因此,光引起的磁效应弱于电效应 α^2 倍。

相当于仅光的电场分量在起作用。

- 自然材料在由于电子自旋引起的磁响应在频率高于GHz完全消失
- 没有磁单极子,不可能像电子一样获得磁等离子体

个可能像电子一样获得磁等离子体

4、光频段磁性超材料的实现

开口环共振器(SRR)在光频段实现困难

- 材料制备困难:亚波长尺寸——几十纳米量级
- 金属材料的特性于频率相关,在光频段不能看做完美导电
- 光刻工艺方便加工平面结构
- SRR要求磁场分量垂直于环形面,入射光只能倾斜入射

- SRR: 40 μm
- 1 THz
- 共振频率附近相对 磁导率[-1 4]

T. J. Yen, et al, Science, 303, 1494 (2004)

4、光频段磁性超材料的实现

推向光频段的设计思路

50

52

SRR垂直于衬底 外界磁场产生磁偶极子 磁场诱导电流:<mark>直接作用</mark> 制作困难

SRR平行于衬底 在H方向开口 外界电场产生磁偶极子 电场诱导电流:<mark>间接作用</mark>

SRR平行于衬底 在E方向开口 没有磁响应

51

49

4、光频段磁性超材料的实现

平面SRR结构实验结果

S. Linden, et al., Science, 306, 1351 (2004)

囘接的磁响应 相比于磁场直接引起的磁共振而言更弱

53

4、光频段磁性超材料的实现

平面SRR阵列存在的问题

平面SRR结构随着尺寸的缩小,存在共振频率饱和的现象, 即共振频率不随尺寸的缩小而继续增大

磁共振频率: $\omega_{\scriptscriptstyle m} = \frac{1}{\sqrt{a^2 + const}}$ a: 尺度因子,正比于SRR尺寸

- 饱和现象源于金属的等离子体效应, 是平面SRR谐振器的本征特性,与 激发方式无关
- · 仿真表明共振波长最短只能到 800 nm

54

4、光频段磁性超材料的实现

新的设计方案需要满足的条件

- 1、同纳米加工工艺相兼容
- 2、磁共振由外界磁场直接激发
- 3、在高频的饱和行为可忽略

一种磁共振结构

- Au金属订书钉与其镜像构成 一对SRR
- 实验验证~65 THz, μ_r ~ -0.5
- 仿真:缩小尺寸,共振波长可以达到1.3 μm

4、光频段磁性超材料的实现

纳米棒对阵列磁共振结构

基本单元: 等效为双 开口线圈

可实现近红外负磁导率: 1-1.5 μm G. Dolling, et al., Opt. Lett., 30, 3198 (2005)

耦合纳米平板阵列

基本单元: 等效为双 开口线圈

