Micro-controllers

A **microcontroller** is a small computer on a single circuit containing a processor core, memory, and programmable I/O peripherals. It is one of the main components of modern embedded systems.

For our use we will using one of the basic μC IC named Atmel Atmega 16. Its pin diagram is shown below:

Overview of the IC

- It contains 40 pins numbered 1 to 40.
- Out of which 32 pins are divided into 4 groups containing 8 pins each.
 These are numbered from PAO-PA7, PBO-PB7, PCO-PC7 and PDO-PD7. These
 pins are the I/O pins of Atmega 16. They can be configured to act either as
 input or output. How? We will see below. Some of them are also used to
 program the microcontroller.
- Rest of the 8 pins are reserved.

Configuring I/O pins

- Input/output is controlled through special variables called "registers".
- \bullet Registers are actual hardware memory locations inside the μCs with predefined names and sizes.
- Assigning a value to these registers in the program changes the corresponding hardware configuration. And, these values can be altered multiple number of time at any point in the program.
- There are 3 registers that control the I/O pins: **DDR, PORT and PIN**.
- Each group has its own registers. Hence, DDRA, PORTA, PINA registers for group A; DDRB, PORTB, PINB for group B and likewise.

Data Direction Register (DDR)

- Decides whether the pin is Input or Output
- DDR is an 8 bit register. Each bit corresponds to a particular pin on the associated groups (often called ports).
- If a bit on the DDR register is 0, then the corresponding pin on the associated port is set as input.
- Similarly, if the bit is 1, then the pin is set as output.
- If a pin is configured as input, then it has some floating voltage unless an external voltage is applied.
- For an output pin, the voltage is fixed to a particular value.

- MSB of DDRA corresponds to the pin A7.
- If DDRA = 0b10010110, then:

PORT Register

- PORT is also an 8 bit register. The bits on the PORT register correspond to the pins of the associated port in the same manner as in the case of the DDR register.
- PORT is used to set the output value.
- If the pin is set as **output**, then a PORT value of 1 will set voltage at that pin to 5V, and PORT value 0 sets the voltage to 0V.
- If the pin is configured as an input, PORT values serves the purpose of pull up or pull down.

PIN Register

- PIN is a register whose value can be read, but cannot be changed inside the program.
- It gives the value of the actual voltage at a particular pin: 1, if the value at the corresponding pin is 5V and 0 for 0V.

Summary

DDR = 0		DDR = 1	
PORT = 0	PORT = 1	PORT = 0	PORT = 1
Pin is	Pin is	Pin is	Pin is
input. If	input. If	output,	output,
unconnec	unconnec	value is	value is
ted, PIN	ted, PIN	0. PIN is	5V. PIN is
is 0.	is 1 .	always	always
		equal to	equal to
		PORT	PORT

Software Needed

- **CVAVR**: **For** editing and compiling the code.
- AVR Studio: For transferring the code to Atmega.
- A circuit simulator if needed.

Example Code

Coding is done in C. The following code toggles the output value of port A pins after regular interval of 1000 ms.

As you can see coding is very simple.

Links

Links for additional details:

students.iitk.ac.in/eclub/assets/lectures/techkriti13/Introduction to mcu.pptx
students.iitk.ac.in/eclub/assets/lectures/techkriti13/Timers and Interrupts.pptx