Dynamic and Social Network Analysis

Lecture 8
Miray Kas
Bilkent University
Computer Engineering Department

Poll for the 5th homework

- Option-1: Convert attendance to 5th homework.
- Option-2: Regular take home homework (similar size to prior homeworks)
- Option-3: In-class informed quiz style (not pop-up, agreed time/date) (10-15 True/False Questions)

Let's do a poll!

⇒ Poll results: Option-1, Convert attendance to Assignment-5. For those that are interested, a homework (option-2) will be released.

Midterm Exam

- Midterms are graded.
 - o I will try to upload grades to Moodle. If I cannot, I will share the grades via a spreadsheet
 - We will arrange a time with your TA to show the papers
 - Need to give make up exam to a student, the time to show the papers will be arranged after that.

Next Project Milestone

 The deadline was this Wednesday, it is now extended to December 3rd, Saturday.

Dynamic Networks

Dynamic Network Analysis

- This is an emerging field of analysis
- Different frameworks exist to handle dynamic networks
 - Dynamic Metanetworks is one such framework.
- ORA depends on and implements Dynamic Metanetworks framework
- This concept is explained in detail <u>here</u>

Metanetworks

- Meta Network: A multi-mode, multilink, multi-level network
 - Unit of analysis for Dynamic Network Analysis (DNA)
- **Dynamic meta-network** is a structured collection of meta-networks.
 - Provides a way of grouping meta-networks together to record network evolution or change.

Simulations:

- Agent-based modeling and other forms of simulations are often used to explore
 - How networks evolve and adapt
 - Impact of induced changes (interventions) on those networks.

Dynamic Meta-Network Components

 Node → NodeSet → Network → Metanetwork → Dynamic Metanetwork

Metanetwork

- A meta-network incorporates both nodesets and networks into a unit.
- Unit of analysis for dynamic network analysis
- Each metanetwork may be given an optional timestamp

Dynamic Metanetwork

- container for meta-networks
- Uses the meta-network time value to indicate ordering

Keyframe (Snapshot) vs. Delta

Keyframe

- A starting point, or a snapshot of what the meta-network looks like at any given time.
- Doesn't care what came before or will occur after.
- Keyframes contain every node and network for each time slice.

Delta

- A set of instructions on how to change the metanetwork.
- It reviews what came before it, applies a set of changes, and displays the revised metanetwork.
- Advantage: Requires less information and space than full snapshot
- Only stores information about individual changes between time slices

Keyframe (Snapshot) vs. Delta

Keyframe Representation

Initial State: Nothing

KeyFrame: 3 nodes, 3 links

KeyFrame: 6 nodes, 9 links

Delta Representation

Initial State: Nothing

Delta: +3 nodes, +3 links

Delta: +3 nodes, +6 links

Conceptual Dynamic Metanetwork Example

- S1: 2 agents share 1 location
- S2: They move apart to separate locations
- S3: A 3rd connected agent is detected at its own location
- S4: 2 of the agents meet
- S5: The 3rd joins at same locale
- S6: One agent disappears

6 meta networks at 6 consecutive time periods

Time Notation

- Time notation dictates ordering, so it is important to be consistent
- Does not have to be timestamp, could be freeform strings but order must be correct

Time Format	Time Type	Example
yyyy-MM-dd'T'HH:mm:ssX	Date	2001-07-04T12:08:56-0700
yyyy-MM-dd HH:mm:ssX	Date	2001-07-04 12:08:56-0700
yyyy-MM-dd HH:mm:ss	Date	2001-07-04 12:08:56
yyyy-MM-dd	Date	2001-07-04
yyyy-MM	Date	2001-07
MM/dd/yyyy	Date	07/04/2001
EEE MMM dd HH:mm:ss ZZZZ yyyy	Date	Sat Jul 04 12:08:56 -0700 2001
Time period string	Period	Mesozoic

<u>Img</u> src

Aggregation for Metanetworks in DNA

- Allows creation of a metanetworks (and dynamic meta-networks) where a range of time are merged into a single meta-network.
 - Aggregate email messages by day
 - Seasonal disease mortality.
 - Publications by year.

Aggregations are commonly done via standard time units

- Year
- Month
- Week Sunday Start
- Week Monday Start
- Day
- Hour
- Minute
- Second

Comparison Techniques

Comparison Techniques

- Networks differ from snapshot to snapshot.
- How do you compare the two?
- Common comparison techniques
 - Distances
 - Similarities
 - Regression
 - Pearson Coefficient
 - QAP/MRQAP methods

Comparison Techniques: Distances

- Assume each network is a string.
- Also relevant for Machine Learning and clustering
 - Algorithms like k-means have distance functions at their heart.
- Most famous techniques:
 - Hamming
 - Euclidean
 - Manhattan
 - Chebyshev

Hamming Distance

- Binary computation
- Calculate the distance (or difference) between the two strings
- Multiple ways of saying the same thing:
 - How many bits do you need to flip in adjacency matrix A to make it look like adjacency matrix B?
 - The number of bits which differ in two binary strings
 - \circ Union $(A_i, B_i) A_i$

Hamming Visual Example

PROCESS: Picture ⇒ Matrix ⇒ String ⇒

Calculation

Hamming Distance, Difference, Similarity

- Maximum Hamming Distance = N (N-1)
- Hamming Difference
 - Since different networks have different sizes, it is more useful as a percentage and more meaningful across different networks.

$$HammingDifference = 100 * \frac{(MaxPossibleDistance-Hamming)}{MaxPossibleDistance}$$

Hamming Similarity

HammingSimilarity = 1 - HammingDifference

Euclidean Distance

- Can be used with valued or binary data
- Physical distance
- How to compute:
 - The strength of node-A's tie to node-C is subtracted from the strength of node-B's tie to node-C, and the difference is squared.
 - This is repeated across all the other nodes (D, E, F, etc.), and summed.
 - The square root of the sum is then taken.

$$EucledianDistance(A,B) = \sqrt{\sum_{i=1}^{n}{(A_i - B_i)^2}}$$

Manhattan Distance

- Sum of the absolute differences between the two vectors.
- Follows only axis aligned directions
- Block distance between the two vectors

- Better for agent models built on grid space
- Also good for geospatial networks, they naturally come with latitude/longitude based grids

Manhattan Distance

 This distance is simply the sum of the absolute difference between the actor's ties to each alter, summed across the alters.

Manhattan Distance

$$||x_1-x_2|+|y_1-y_2|$$

Chebyshev Distance

- Uses only the most significant dimension
- Metric defined on a vector space where the distance between two vectors is the greatest of their differences along any coordinate dimension.

Chebyshev Distance

$$\max(|x_1 - x_2|, |y_1 - y_2|)$$

Euclidean / Manhattan / Chebyshev Distances

Euclidean Distance

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

(Straight Line)

(City Block)

Manhattan Distance

$|x_1-x_2|+|y_1-y_2|$

Chebyshev Distance

$$\max(|x_1 - x_2|, |y_1 - y_2|)$$

(Chessboard)

Comparison Techniques: Similarities

- Hamming-based similarity (discussed)
- Jaccard Similarity
- Sorensen Similarity
- Pearson's Correlation coefficient

Jaccard Similarity (Intersection over Union)

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A|+|B|-|A \cap B|}$$

Sorensen Similarity

 The Sørensen similarity equals twice the number of elements common to both sets divided by the sum of the number of elements in each set.

$$S(A,B)=rac{2|A\cap B|}{|A|+|B|}$$

 It resembles Jaccard similarity, but gives more weight to the common elements

Network Comparison Techniques

- Regression Analysis
- QAP Quadratic Assignment Procedure
 - Pearson's coefficient
- MRQAP Multi Regression Quadratic Assignment Procedure
 - Regression on Networks

- Useful for comparing multiple networks
 - QAP: Good for comparing two networks.
 - MRQAP: Good when there are more than two networks.

What can you answer by comparing multiple networks?

- Do marriage ties correlate with business ties in the Medici family network?
- Are friendship relations correlated with work relations?
- Do the trends in 1990s correlate with 2000s?

Regression Analysis for Networks

- Is one network a function of another network?
- Is the perceived friendship network a function of the actual contact network?

Regression Analysis

- Regression assumes that one variable (dependent) is a function of another variable (independent)
 - A set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables
- Takes data on variables and determines the values of the coefficients;
- Assesses how confident we can be in those estimates
- Determines the coefficients by finding the best fitting line through the data
- The function is then found by estimating the conditional expectation

Mini Recap: Confidence Level

- The confidence that the researcher has that the selected sample is one that estimates the population parameter to within an acceptable range
- Usually expressed as the probability that a parameter lies within some range of the sample statistic
 - Range is called the confidence interval and is usually expressed in terms of the standard error
- 95% confidence is typical in research
 - The more confident we want to be, the more data is needed

Mini Recap: Standard Error

- Measures the accuracy of a sample –
 Expresses how close the sample statistic is to the population parameter
- If the standard error is small, then the sample estimates based on that sample size will tend to be similar and will be close to the population parameter
- If the standard error is large, then the sample estimates will tend to be different and many will not be close to the population parameter

Mini Recap: Coefficient of Determination

- R² measures the percentage of total variation in the dependent variable (Y) that is explained by the regression equation
- Ranges from 0 to 1
- High R² indicates Y and X are highly correlated

Linear Regression Analysis

• Simple linear regression relates dependent variable Y to one independent (or explanatory) variable

$$X - Y = a + bX$$

Intercept parameter (a) gives the value of Y where regression line crosses Y-axis (value of Y when X is zero)

Slope parameter (b) gives the change in Y associated with a one-unit change in X

- Parameter estimates are obtained by choosing values that minimize the sum of squared residuals
- The residual is the difference between the actual and fitted values of Y – Called Ordinary Least Squares (OLS)

Dependency Issue in Networks

- Unit of analysis is a dyad (e.g. a pair)
- The problem is that the observations are not independent on each other.
 - If A is related to B, and B is related to C, it may be relatively likely that A is related to C.
- The independent variables would be either attributes of each of one or both members of the pairs, or of similarities and / or matches between the pairs.

Problems with Statistics on Networks

- The basic assumptions of standard statistics are violated
 - Estimation procedures designed for independent
- In networks, there are row / column dependencies
 - Each entry is a dyad and dyads are not independent
 - Observations are correlated

- Observations will calculate incorrect standard errors
 - The fact that there are repeating observations means that the errors are correlated with each other.
 - Observations in individual rows or in individual columns tend to be highly correlated. This inflates or deflates standard errors.

Problems with Statistics on Networks

<u>src</u>

Problems with Statistics on Networks

QAP - Quadratic Assignment Procedure

- A permutation test that controls for this independence problem
- Scramble dependent variable data through several permutations
 - By scrambling the data repeated it results in several random datasets with the dependent variable
 - Those datasets form an empirical sampling distribution
 - Then, multiple analyses can be performed.
- Standard errors are estimated by using permutations of the data set.

Think about tossing a coin!

Repetition helps!

 If you toss it enough many times, you get closer to the expected value (0.5 Head, 0.5 Tail)

QAP - Quadratic Assignment Procedure

- This test is performed by:
 - Repeatedly (randomly) relabeling the input graphs
 - Recalculating the test statistic
 - Evaluating the fraction of draws >= OR <= the observed value
- Preserve row-column dependencies
 - For a single node, the row and column remain the same, and are permuted in the same way, so that the rows and columns for a single node are not separated.

QAP - Quadratic Assignment Procedure

- **1.** Calculate the Pearson's correlation coefficient (r) between the two original matrices, treating the computed coefficient as the observed coefficient.
- 2. Permute the dependent matrix Y by rearranging both its rows and columns.
- **3.** The permuted Y matrix is correlated with the original independent X matrix, producing a new Pearson's correlation coefficient (r) between the two matrices.
- **4.** Steps 2 and 3 are repeated at least 1000 times.
- **5.** The observed correlation coefficient from the first step is compared with the distribution of the coefficients generated from step 4 to determine the proportion among the coefficients from the permuted matrices that are equivalent or higher than the observed coefficient.

Correlation and Regression

Correlation: Measures the strength of association between variables

 Correlation Coefficient: Expresses the strength of association between variables

 Regression: Predicts a value for one variable given the value of another variable

Pearson Correlations for Networks

Useful to know, despite not implying causation!

Correlation does not mean causation

Is a person's gender correlated with pregnancy?

Being female does not cause one to get pregnant!

Two variables (gender and pregnancy) are strongly correlated

Pearson Correlations for Networks

- Pearson correlations are often used to summarize pairwise structural equivalence
- Particularly useful when the data on ties are "valued"
 - It can tell us about the strength and direction of association, rather than simple presence or absence.

- Pearson correlation values range from -1.00 to +1.00
 - -1.0: The two actors have exactly the opposite ties to each other actor
 - +1.0: The two actors always have exactly the same tie to other actors perfect structural equivalence).

Pearson Correlations for Networks

- Which of the following values indicate the stronger relationship (measured by Pearson's coefficient)?
 - a. -0.20
 - b. -0.68
 - c. 0.5
 - d. 0.12

Pearson Correlation Coefficient Formulation

• Given paired data $\{(x_1, y_1), (x_2, y_2), ... (x_n, y_n)\}$ [In our case, these will be the entries in the adjacency matrix]

$$r_{xy} = rac{\sum_{i=1}^{n}{(x_i - \overline{x})(y_i - \overline{y})}}{\sqrt{\sum_{i=1}^{n}{(x_i - \overline{x})^2}}\sqrt{\sum_{i=1}^{n}{(y_i - \overline{y})^2}}}$$

- N = Sample size (the number of entries in the adjacency matrices)
- x_i , y_i = Individual entries
- \overline{x} = Mean of entries (analogously for y)

Example for Pearson Correlations for a network

Figure 13.4. Pearson correlations of rows (sending) for Knoke information network

```
10
     1 000
                    -0.000
                             0.775
                                    0.293
                                            0.258
                                                    0.467
                                                            0.775
                                                                    1.000
                                                                            0.500
             1.000
                   -0.447
                             0.447
                                    0.655
                                            0.293
                                                    0.333
                                                            0.745
                                                                    0.333
                                                                            0.378
     0.447
                             0.258
                                   -0.293
                                                    0.600
                                                           -0.333
                                                                    0.447
                                                                            0.258
    -0.000
                     1.000
                                           -0.149
     0.775
                     0.258
                             1.000
                                           -0.258
                                                    0.745
                                                            0.775
                                                                    0.775
                                                                            0.775
             0.447
                                    0.293
     0.293
                                                                            0.378
             0.655
                   -0.293
                             0.293
                                     1.000
                                            0.000
                                                    0.218
                                                            0.488
                                                                    0.218
     0.258
                           -0.258
                                            1.000
             0.293
                    -0.149
                                    0.000
                                                   -0.447
                                                           -0.149
                                                                    0.149
                                                                            0.067
     0.467
             0.333
                     0.600
                             0.745
                                    0.218
                                           -0.447
                                                    1.000
                                                            0.600
                                                                    0.745
                                                                            0.258
     0.775
                   -0.333
                             0.775
                                    0.488
                                           -0.149
                                                    0.600
                                                            1.000
                                                                    0.600
                                                                            0.149
     1.000
             0.333
                     0.447
                             0.775
                                    0.218
                                            0.149
                                                    0.745
                                                            0.600
                                                                    1.000
                                                                            0.600
10
                            0.775
     0.500
             0.378
                     0.258
                                     0.378
                                            0.067
                                                    0.258
                                                                    0.600
                                                                            1.000
                                                            0.149
```

- Strong correlation between ties node-1 and node-9 have
- Moderate tendency for node-6 to have ties node-7 does not have

QAP - Example

Dependent

Row/ Col	1	2	3	4
1	Y1,1	Y1,2	Y1,3	Y1,4
2	Y2,1	Y2,2	Y2,3	Y2,4
3	Y3,1	Y3,2	Y3,3	Y3,4
4	Y4,1	Y4,2	Y4,3	Y4,4

Independent

Row/ Col	1	2	3	4
1	X1,1	X1,2	X1,3	X1,4
2	X2,1	X2,2	X2,3	X2,4
3	X3,1	X3,2	X3,3	X3,4
4	X4,1	X4,2	X4,3	X4,4

QAP - Example of a Permuted Matrix

Original Dependent

Row/ Col	1	2	3	4
1	Y1,1	Y1,2	Y1,3	Y1,4
2	Y2,1	Y2,2	Y2,3	Y2,4
3	Y3,1	Y3,2	Y3,3	Y3,4
4	Y4,1	Y4,2	Y4,3	Y4,4

Permuted Dependent

Row/ Col	1	2	3	4
1	Y3,3	Y3,2	Y3,4	Y3,1
2	Y2,3	Y2,2	Y2,4	Y2,1
3	Y4,3	Y4,2	Y4,4	Y4,1
4	Y1,3	Y1,2	Y1,4	Y1,1

Using QAP in practice

- QAP is designed as a bivariate test (only two variables).
- The networks need to be of the same size to be comparable.
 - Independent Network X
 - Dependent Network Y
- The larger the network, the higher number of runs expected for the same level of coverage
- In how many of the saved runs, was the observed ≥ new?
 - That's the significance

You can run QAP on network data, attributes or metrics

• A network directly, such as an Agent x Agent network.

 A vector of node-level numeric attributes (e.g. age) repeated by row or column to form a network

 A vector of node-level measure values (e.g. Betweeenness Centrality) repeated by row or column to form a network.

QAP - Each Dyad is an Observation

Person	A	В	C	D	E
A		0	2	3	1
В	4		8	10	6
C	5	5		5	5
D	2	8	7		3
E	2	4	3	5	

Pair	Row Number	Column Number	Absolute value of age difference	Friendship Rating
AA	1	1		
AB	1	2	5	0
AC	1	3	25	2
AD	1	4	35	3
AE	1	5	15	1
BA	2	1	5	4

QAP / MRQAP in ORA

Florentine Families

- Yet another famous benchmark dataset
- Models ultra wealthy Renaissance era Italian families' marriage and business ties.
- Extracted from historical documents (<u>more info</u>)
- You can run QAP to see if business and marriage ties are correlated

What if you have more than 2 matrices?

Not a bivariate problem anymore, it is multivariate.

- Use MRQAP (Multi Regression QAP)!
 - You have more than one independent matrix
 - You need to permute all of the independent matrices in the same way each iteration

Raiders of the Lost Ark

- Based on the movie Raiders of the Lost Ark (1981), directed by Steven Spielberg.
- Encodes the location of the characters for each time interval (where the location of characters is known).
- All meta-networks contain the same number of nodesets and nodes
 - 756 nodes in total are contained in the dynamic meta-network as a whole.

Dynamic Network Analysis in Gephi

Hospital Contact Dataset

- Dataset from "Estimating Potential Infection Transmission Routes in Hospital Wards Using Wearable Proximity Sensors" (paper)
- What counts as contact?
 - Wearing Proximity Sensors
 - Within 1.5 meters for 20 seconds
 - Patient, Nurse, Dr, Adm
 - 46 staff, 29 patients over 4 days 4 nights
 - 14,037 contacts were recorded

Infection Transmission Routes Network

- Dataset from SocioPatterns paper "What's in a crowd? Analysis of face-to-face behavioral networks" (link to data)
- Nodes: Visitors of Science Gallery
- **Edges:** Exists for contacts within face-to-face distance. Edge weight shows the number of contacts.
- One GML file for each of the 69 days
- Ids are reused across days
 - This is despite each visitor showing up only one day
 - This also means it is not a very accurate dataset although it simplifies some things

Infection Transmission Routes Network

High Level Steps

- Convert each gml file for the day to gexf format (Open in Gephi in gml format, export to gexf format)
- Edit the gexf xml file to make it dynamic
 - Before: <graph defaultedgetype="undirected" mode="static">
 - After: <graph defaultedgetype="undirected" mode="slice" timerepresentation="timestamp" timestamp="1">