Image Processing and Visual Communications

Nonlinear Image Filtering

Zhou Wang

Dept. of Electrical and Computer Engineering University of Waterloo

Previous Lectures

- Spatial Domain Linear Filters
 - Smoothing: Averaging, Gaussian
 - Sharpening
 - *–*
- Frequency (2D-DFT) Domain Filters
 - Lowpass, highpass, bandpass
 - Orientation selective
 - Orientation + radial selective
 - *–*
- Linear Image Restoration Filters
 - Inverse, pseudo-inverse, radially-limited inverse
 - Wiener, Wiener denoising
 -

All Linear!

Nonlinear Filtering

Motivation: Limitation of Linear Filters

- Frequency shaping
 enhance some frequency components and suppress the others
- For individual frequency component, cannot differentiate its "desirable" and "undesirable" parts

Nonlinear Filters

- Cannot be expressed as convolution
- Cannot be expressed as frequency shaping

• "Nonlinear" Means Everything (other than linear)

- Need to be more specific
- Often heuristic
- We will study some "nice" ones

Impulsive (Salt & Pepper) Noise

Definition

- Each pixel in an image has a probability p_a or p_b of being contaminated by a white dot (salt) or a black dot (pepper)

X: noise-free image, *Y*: noisy image

$$Y(m,n) = \begin{cases} 255 \\ 0 \\ X(m,n) \end{cases}$$

$$Y(m,n) = \begin{cases} 255 & \text{with probability } p_a & \underline{\hspace{1cm}} \\ 0 & \text{with probability } p_b & \underline{\hspace{1cm}} \\ X(m,n) & \text{with probability } 1 - p_a - p_b & \text{clean pixels} \end{cases}$$

add salt & pepper noise

Median Filters

Order Statistics (OS)

- Given a set of numbers

$$\mathbf{x} = \{x_1, x_2, \cdots, x_{2M+1}\}$$

max value

middle value

Denote the OS as

$$\mathbf{x}_{OS} = \{x_{(1)}, x_{(2)}, \dots, x_{(2M+1)}\}$$

such that

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(M+1)} \le \dots \le x_{(2M+1)}$$

Median

- Define

min value

$$Median\{x_1, x_2, \dots, x_{2M+1}\} = x_{(M+1)}$$

- Applying Median Filters to Images
 - Use sliding windows
 (similar to spatial linear filters)
 - Typical windows:3x3, 5x5, 7x7, other shapes

Median Filters

original

median filtered 3x3 window

noisy $(p_a = p_b = 0.1)$

median filtered 5x5 window

Iterative Median Filters

• Idea: repeatedly apply median filters

a b c d

FIGURE 5.10

(a) Image corrupted by saltand-pepper noise with probabilities $P_a = P_b = 0.1$. (b) Result of one pass with a median filter of size 3×3 . (c) Result of processing (b) with this filter. (d) Result of processing (c) with the same filter.

2 times

1 time

3 times

Switching Median Filters

Motivation

- Regular median filters change both "bad" and "good" pixels

Idea

- Detect/classify "bad" and "good" pixels
- Filter "bad" pixels only

Switching Median Filters

original

regular 5x5 median filtered

noisy $(p_a = p_b = 0.1)$

switching 5x5 median filtered

Order Statistics (OS) Filters

Recall Order Statistics:

For
$$\mathbf{x} = \{x_1, x_2, \dots, x_{2M+1}\}$$
OS $\mathbf{x}_{OS} = \{x_{(1)}, x_{(2)}, \dots, x_{(2M+1)}\}$
such that $x_{(1)} \le x_{(2)} \le \dots \le x_{(M+1)} \le \dots \le x_{(2M+1)}$

OS filter: General Form

$$OS\{x_1, x_2, \dots, x_{2M+1}\} = \sum_{i=1}^{2M+1} w_i x_{(i)}$$
 where $\sum_{i=1}^{2M+1} w_i = 1$

Special Cases

$$\begin{aligned} & Min\{x_1, x_2, \cdots, x_{2M+1}\} = x_{(1)} & \{w_i\} = \{1, 0, \cdots, 0, \cdots, 0\} \\ & Max\{x_1, x_2, \cdots, x_{2M+1}\} = x_{(2M+1)} & \{w_i\} = \{0, 0, \cdots, 0, \cdots, 1\} \\ & Median\{x_1, x_2, \cdots, x_{2M+1}\} = x_{(M+1)} & \{w_i\} = \{0, 0, \cdots, 1, \cdots, 0\} \\ & & \{0, 0, \cdots, 0, \cdots$$

Order Statistics (OS) Filters

Note: An OS Filter is Uniquely Defined by {w_i}

• Example 1:
$$\{w_i\} = \{0, \dots, 1/4, 1/2, 1/4, \dots, 0\}$$

M-th $(M+1)$ -th $(M+2)$ -th

then
$$OS\{x_1, x_2, \dots, x_{2M+1}\} = 0.25x_{(M)} + 0.5x_{(M+1)} + 0.25x_{(M+2)}$$

• Example 2: $\{w_i\} = \{1,1,\dots,1\}/(2M+1)$

then
$$OS\{x_1, x_2, \dots, x_{2M+1}\} = \sum_{i=1}^{2M+1} \frac{1}{2M+1} x_{(i)}$$

= $Mean\{x_{(i)}, i = 1, \dots, 2M+1\} = Mean\{x_i, i = 1, \dots, 2M+1\}$

Examples

• A 4x4 grayscale image is given by

1) Filter the image with a 3x3 median filter, after zeropadding at the image borders

					0	0	0	0	0	0					
5	6	7	8		0	5	6	7	8	0	median	0	5	6	0
0	6	7	8	zero-padding	0	0	6	7	8	0	filtering	5	6	7	7
5	6	15	8		0	5	6	15	8	0		5	6	7	7
5	6	7	8		0	5	6	7	8	0		0	5	6	0
					0	0	0	0	0	0					4.0

Examples

2) Filter the image with a 3x3 median filter, after replicatepadding at the image borders

Examples

3) Filter the image with a 3x3 OS filter, after replicatepadding at the image borders. The weighting factors of the OS filter are given by

$$\{w_i \mid i = 1, ..., 9\} = \{0, 0, 0, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, 0, 0, 0\}$$

					5	5	6	7	8	8					
5	6	7	8	replicate	5	5	6	7	8	8	OS	5	6	7	8
0	6	7	8	-padding	0	0	6	7	8	8	filtering	5	6	7.25	8
5	6	15	8		5	5	6	15	8	8		5	6	7.25	8
5	6	7	8		5	5	6	7	8	8		5	6	7.25	8
					5	5	6	7	8	8					