Design and Analysis of Occupancy Studies Part 4

Carl James Schwarz

Department of Statistics and Actuarial Science Simon Fraser University Burnaby, BC, Canada cschwarz @ stat.sfu.ca

Multiple States; Single-Season

Multiple-States Single-Season Occupancy Studies

Multiple States; Single-Season

Objectives:

- Estimate "gross" occupancy rates.
- Partition occupancy into a number of hierarchical states (e.g. non-breeders vs. breeders)

Multiple States; Single-Season - Sampling Protocol

Sampling Protocol:

- Landscape divided (artificially or naturally) into S patches or cells or SITES.
- Select $s \ll S$ sites at random (all sites have equal probability of selection).
- Visit each site K times .
- Record detection or not detection of species in site i in survey
 k.
- If occupancy detected, classify (with detection error) state of occupancy (e.g. adults seen, vs. adults seen with young.)
 [Most software can only deal with 2 states.]

Note:

- Two levels of false negatives, i.e. not detecting a species does not imply that site was unoccupied, and given that see an animal, no detection of breeding does not imply that breeding did not take place.
- States can be classified in a hierarchy.

Data: Detection/Encounter histories with ., 0, 1, and 2.

- 1021 Confirmed breeding status in survey 3.
- 0101 Occupied, but breeding status is unknown.
- 0000 Unsure if unoccupied or occupied.

Parameters:

- ψ_i^1 Prob(site *i* is occupied regardless of state).
- ψ_i^2 Prob(site *i* in state 2 (typically breeders) given that site is occupied.
- p_{ij}^1 Prob(detection in site i in survey j given that in state 1, non-breeder).
- p_{ij}^2 Prob(detection in site *i* in survey *j* given that in state 2, breeder).
- δ_{ij} Prob(identify as breeder (state 2) in site i in survey j given that site is occupied, in state 2, and species detected).

Then Prob(occupied in state 2) = $\psi^1 \psi^2$.

Parameters:

- ψ_i^1 Prob(site *i* is occupied regardless of state).
- ψ_i^2 Prob(site *i* in state 2 (typically breeders) given that site is occupied.
- p_{ij}^1 Prob(detection in site i in survey j given that in state 1, non-breeder).
- p_{ij}^2 Prob(detection in site *i* in survey *j* given that in state 2, breeder).
- δ_{ij} Prob(identify as breeder (state 2) in site i in survey j given that site is occupied, in state 2, and species detected).

Prob(1021) =

$$\psi_i^1 \psi_i^2 p_{i1}^2 (1 - \delta_{i1}) (1 - p_{i2}^2) p_{i3}^2 \delta_{i3} p_{i4}^2 (1 - \delta_{i4})$$

Parameters:

- ψ_i^1 Prob(site *i* is occupied regardless of state).
- ψ_i^2 Prob(site i in state 2 (typically breeders) given that site is occupied.
- p_{ij}^1 Prob(detection in site i in survey j given that in state 1, non-breeder).
- p_{ij}^2 Prob(detection in site *i* in survey *j* given that in state 2, breeder).
- δ_{ij} Prob(identify as breeder (state 2) in site i in survey j given that site is occupied, in state 2, and species detected).

Prob(0101) =

$$egin{aligned} \psi_i^1(1-\psi_i^2)\left[(1-
ho_{i1}^1)
ho_{i2}^1(1-
ho_{i3}^1)
ho_{i4}^1
ight] + \ \psi_i^1\psi_i^2\left[(1-
ho_{i1}^2)
ho_{i2}^2(1-\delta_{i2})(1-
ho_{i3}^2)
ho_{i4}^2(1-\delta_{i4})
ight] \end{aligned}$$

Parameters:

- ψ_i^1 Prob(site *i* is occupied regardless of state).
- ψ_i^2 Prob(site *i* in state 2 (typically breeders) given that site is occupied.
- p_{ij}^1 Prob(detection in site i in survey j given that in state 1, non-breeder).
- p_{ij}^2 Prob(detection in site i in survey j given that in state 2, breeder).
- δ_{ij} Prob(identify as breeder (state 2) in site i in survey j given that site is occupied, in state 2, and species detected).

Prob(0000) = Long and messy expression!

Multiple States; Single-Season - Assumptions

- Occupancy STATE of sites is constant during season (closure).
- ② Probability of occupancy in each state (ψ^1, ψ^2) is equal across all sites (homogeneity) unless modified by covariates.
- **3** Probability of detection (p^1, p^2) given occupancy is equal across all sites (homogeneity) unless modified by covaraites.
- Detection in each survey of a site is independent of those on other surveys
- Detections at each site are independent
- No false positives.
- NEW Reproduction has occurred at start of "season" and evidence of reproduction continues for entire season (i.e. reproduction doesn't start in survey 5 or 10, and you must know that breeding took place even after chicks fledged).
- NEW Evidence of states independent across surveys. Not valid to return to a new nest once chick found in subsequent surveys as no longer independent. Truncate record at confirmed reproduction and fill remainder with missing values.

Multiple States; Single-Season - Biological Hypotheses

- Do different habitats have different occupancy in state 1 and state 2?
- 2 Is detection in state 1 and state 2 the same?
- 3 Sink and Source habitat identification.

Nichols et al (2007) Ecology 88:1395-1400 looked at breeding and non-breeding California Spotted Owls in s=54 sites over k=5 surveys.

Hand-fed mice confirmed occupancy; breeding status only confirmed when owl took mouse to nest.

- . = site not visited.
- 0 = owl not detected.
- \bullet 1 = owl detected, but no detection of young.
- 2 = owl detected, along with evidence of young.

Using MARK

Locate the data file, and start MARK in the usual fashion:

Biological models:

- $m{p}_{it}^s=p, \ ext{or} \ p_{it}^s=p^s \ ext{or} \ p_{it}^s=p_t \ ext{or} \ p_{it}^s=p_{it}^s$
- $\delta_{it} = \delta$ or $\delta_{it} = \delta_{it}$ or $\delta_{it} = \delta^{12}$ or δ^{345} based on it being "hard" to detect reproduction early and "easier" to detect reproduction later in season.

Start by fitting the the model $\psi^1, \psi^2, p(*,*), \delta(*)$

Model $\psi^1, \psi^2, p(*,*), \delta(*)$ results. Interpret these.

Model AICc Delta AICc AICc Weight Model Likelihood No. Par. Deviance 2Log(L)									
Model	AICc	Delta AICc	AICc Weight	Model Likelihood	No. Par.	Deviance	-2Log(L)		
{psi1 psi2 p(*,*) delta(*)}	336.1948	0.0000	1.00000	1.0000	4	0.0000	327.3785		
California Spotted Owl - MultiState Model									
Real Function Parameters of {psi1 psi2 p(",") delta(")} 95% Confidence Interval									
Parameter	Estimate			Standard Error Lower			Upper		
1:Psi1 2:Psi2 3:p1 4:Delta	2:Psi2 0.5542889 3:p1 0.7448009		0.037778 0.112442 0.036310 0.084341	0.00	6474845 3375910 6674445 2713339	0.	.9988162 .7521436 .8093044 .5906726		
California Spotted Owl - MultiState Model									
Estimates of Derived Parameters Estimates of Psi1*Psi2 {psi1 psi2 p(*,") 9% Confidence Interval									
Group Psi1*Psi2-ha									
1 0.5405578	0.111638	1	0.3277341	0.739	5495				

Other models to fit:

- $\psi^1, \psi^2, p(*, t), \delta(*)$
- $\psi^1, \psi^2, p(s, *), \delta(*)$
- $\psi^1, \psi^2, p(s, t), \delta(*)$
- $\psi^1, \psi^2, p(*, *), \delta(12, 345)$
- $\psi^1, \psi^2, p(*, t), \delta(12, 345)$

Results:

Model	AICc	Delta AICc	AICc Weight	Model Likelihood	No. Par.	Deviance	-2Log(L)
{psi1 psi2 p(*,t) delta(12,345)}	283.4459	0.0000	0.95457	1.0000	9	0.0000	261.3550
{psi1 psi2 p(*,*) delta(12,345)}	289.5992	6.1533	0.04402	0.0461	5	0.0000	278.3492
{psi1 psi2 p(s,t) delta(12,345)}	296.4865	13.0406	0.00141	0.0015	14	0.0000	257.7172
{psi1 psi2 p(*,t) delta(*)}	329.5843	46.1384	0.00000	0.0000	8	0.0000	310.3843
{psi1 psi2 p(*,*) delta(*)}	336.1948	52.7489	0.00000	0.0000	4	0.0000	327.3785
{psi1 psi2 p(s,*) delta(*)}	338.6127	55.1668	0.00000	0.0000	5	0.0000	327.3627
{psi1 psi2 p(*,t) delta(*)}	341.3668	57.9209	0.00000	0.0000	13	0.0000	306.2668

```
Results:
                     California Spotted Owl - MultiState Model
           Real Function Parameters of {psi1 psi2 p(*,t) delta(12,345)}
                                                         95% Confidence Interval
 Parameter
                         Estimate
                                  Standard Error
   1:Psil
                                                       0.6817037
                                        0.0323620
   2:Psi2
                         0.4495324
                                        0.0801697
                                                       0.3020490
                                                                      0.6064560
   3:p1
                         0.5790117
                                        0.0821281
                                                       0.4154070
                                                                      0.7269281
   4:p1
                         0.8237920
                                        0.0677819
                                                       0.6518159
                                                                      0.9211063
   5:p1
                         0.9223752
                                        0.0429091
                                                       0.7859100
                                                                      0.9746595
   6:p1
                                        0.0771335
                         0.6970106
                                                       0.5292754
                                                                      0.8247649
   7:p1
                         0.6196330
                                                       0.3904316
                                                                      0.8055704
   8:belta
                         0.2935477E-016
                                        0.1555513E-008 -0.3048805E-008
                                                                      0.3048805E-008
   9:Delta
                         0.8683310
                                                                      0.9583604
                     California Spotted Owl - MultiState Model
                         Estimates of Derived Parameters
       Estimates of Psi1*Psi2 {psi1 psi2 p(*,t)
                                                            delta(12,345)}
                                                  95% Confidence Interval
          Psi1*Psi2-hat Standard Error
 Group
                                                   Lower
                                                                      Upper
          0.4400692
                     0.0798189 0.2940524
                                                                0.5972503
```

Unfortunately, GOF and \hat{c} not yet implemented in MARK.

Using PRESENCE

Locate the data file, start PRESENCE, and enter the data in the usual fashion:

Biological models:

- $p_{it}^s = p$, or $p_{it}^s = p^s$ or $p_{it}^s = p_t$ or $p_{it}^s = p_{it}^s$
- $\delta_{it} = \delta$ or $\delta_{it} = \delta_{it}$ or $\delta_{it} = \delta^{12}$ or δ^{345} based on it being "hard" to detect reproduction early and "easier" to detect reproduction later in season.

Start by fiting the the model $\psi^1, \psi^2, p(*, *), \delta(*)$. Note: PRESENCE uses R for ψ^2 .

Model $\psi^1, \psi^2, p(*, *), \delta(*)$ results. Interpret these.

```
Individual Site estimates of <psi>
                 Site estimate 1 site 1 : 0.9752
                                               Std.err 95% conf. interval
psi
                                                0.0378
                                                              0.6475 - 0.9988
   Individual Site estimates of <R>
                 Site
                                      estimate
                                               Std.err 95% conf. interval
                 1 site 1
                               : 0.5543
                                                0.1124
                                                              0.3376 - 0.7521
R
   Individual Site estimates of <p1(1)>
                                      estimate
                                                            95% conf. interval
                 Site
                                                Std.err
p1(1)
p1(2)
p1(3)
p1(4)
                 1 site 1
                                     : 0.7448
                                                0.0363
                                                              0.6674 - 0.8093
             1 site 1
1 site 1
1 site 1
                           : 0.7448
: 0.7448
: 0.7448
                                               1 site 1
                                : 0.7448
                                                  0.0363
                                                              0.6674 - 0.8093
   Individual Site estimates of <p2(1)>
                 Site
                                      estimate
                                                Std.err
                                                            95% conf. interval
p2(1)
                 1 site 1
                                     : 0.7448
                                                0.0363
                                                              0.6674 - 0.8093
p2(2)
p2(3)
p2(4)
              1 site 1
1 site 1
1 site 1
                 1 site 1
                               : 0.7448
: 0.7448
                                                0.0363
                                                              0.6674 - 0.8093
                                                  0.0363
                                                              0.6674 - 0.8093
                                     : 0.7448
                                                  0.0363
                                                              0.6674 - 0.8093
                 1 site 1
                                        0.7448
                                                  0.0363
                                                              0.6674 - 0.8093
   Individual Site estimates of <dlta(1)>
                 site
                                      estimate
                                                 Std.err
                                                            95% conf. interval
dlta(1)
                 1 site 1
                                       0.4230
                                                              0.2713 - 0.5907
                                                0.0843
             1 site 1
1 site 1
1 site 1
1 site 1
                               : 0.4230
: 0.4230
: 0.4230
: 0.4230
dlta(2)
                                                  0.0843
                                                              0.2713 - 0.5907
dlta(3)
                                                  0.0843
                                                              0.2713 - 0.5907
                                                0.0843
                                                          0.2713 - 0.5907
dlta(4)
dlta(5)
                                                  0.0843
                                                              0.2713 - 0.5907
```

Other models to fit:

- $\psi^1, \psi^2, p(*, t), \delta(*)$
- $\psi^1, \psi^2, p(s, *), \delta(*)$
- $\psi^1, \psi^2, p(s, t), \delta(*)$
- $\psi^1, \psi^2, p(*, *), \delta(12, 345)$
- $\psi^1, \psi^2, p(*, t), \delta(12, 345)$

Results:

Model	AIC	deltaAIC	AIC wat	Model Likel	no.Par.	-2*LoqLike
psi,R, p(*,t) delta(12,345)	279.36	0.00	0.9890	1.0000	9	261.36
psi,R, p(*,*) delta(12,345)	288.35	8.99	0.0110	0.0112	5	278.35
psi,R, p(*,t) delta(*)	326.38	47.02	0.0000	0.0000	8	310.38
psi,R, p(s,t) delta(*)	332.27	52.91	0.0000	0.0000	13	306.27
psi,R, p(*,*) delta(*)	335.38	56.02	0.0000	0.0000	4	327.38
psi,R, p(s,*) delta(*)	337.36	58.00	0.0000	0.0000	5	327.36

Results:

```
Individual Site estimates of <psi>
                Site
                                     estimate
                                               Std.err
                                                        95% conf. interval
                1 site 1
psi
                                    : 0.9789
                                               0.0324
                                                           0.6817 - 0.9990
   Individual Site estimates of <R>
                site
                                     estimate
                                               Std.err
                                                         95% conf. interval
                1 site 1
                                      0.4495
                                                0.0802
                                                           0.3020 - 0.6065
   Individual Site estimates of <p1(1)>
                site
                                     estimate
                                               Std.err
                                                        95% conf. interval
p1(1)
p1(2)
                1 site 1
                                      0.5790
                                               0.0821
                                                            0.4154 - 0.7269
                1 site 1
                                      0.8238
                                                0.0678
                                                           0.6518 - 0.9211
p1(3)
                1 site 1
                                      0.9224
                                              0.0429
                                                           0.7859 - 0.9747
p1(4)
                1 site 1
                                      0.6970
                                              0.0771
                                                           0.5293 - 0.8248
p1(5)
                1 site 1
                                       0.6196
                                                0.1123
                                                           0.3904 - 0.8056
   Individual Site estimates of <p2(1)>
                Site
                                     estimate
                                               Std.err
                                                          95% conf. interval
p2(1)
                1 site 1
                                      0.5790
                                               0.0821
                                                           0.4154 - 0.7269
p2(2)
                1 site 1
                                      0.8238
                                              0.0678
                                                           0.6518 - 0.9211
p2(3)
                                      0.9224
                                                           0.7859 - 0.9747
                1 site 1
                                              0.0429
p2(4)
                1 site 1
                                      0.6970
                                              0.0771
                                                           0.5293 - 0.8248
                1 site 1
                                       0.6196
                                                0.1123
                                                           0.3904 - 0.8056
   Individual Site estimates of <dlta(1)>
                Site
                                                          95% conf. interval
                                     estimate
                                               Std.err
dlta(1)
                1 site 1
                                      0.0000
                                               0.0000
                                                            0.0000 - 1.0000
dlta(2)
                1 site 1
                                               0.0000
                                                           0.0000 - 1.0000
                                      0.0000
dlta(3)
                1 site 1
                                      0.8683
                                              0.0729
                                                           0.6539 - 0.9584
dlta(4)
                  site 1
                                      0.8683
                                                0.0729
                                                           0.6539 - 0.9584
dlta(5)
                1 site 1
                                       0.8683
                                                0.0729
                                                           0.6539 - 0.9584
```

Multiple States; Single-Season

Multiple-States Single-Season Occupancy Studies

Using RPresence software.

Multiple States; Single-Season

Objectives:

- Estimate "gross" occupancy rates.
- Partition occupancy into a number of hierarchical states (e.g. non-breeders vs. breeders)

Multiple States; Single-Season - Sampling Protocol

Sampling Protocol:

- Landscape divided (artificially or naturally) into S patches or cells or SITES.
- Select s << S sites at random (all sites have equal probability of selection).
- Visit each site K times .
- Record detection or not detection of species in site i in survey
 k.
- If occupancy detected, classify (with detection error) state of occupancy (e.g. adults seen, vs. adults seen with young.)
 [Most software can only deal with 2 states.]

Note:

- Two levels of false negatives, i.e. not detecting a species does not imply that site was unoccupied, and given that see an animal, no detection of breeding does not imply that breeding did not take place.
- States can be classified in a hierarchy.

Data: Detection/Encounter histories with ., 0, 1, and 2.

- 1021 Confirmed breeding status in survey 3.
- 0101 Occupied, but breeding status is unknown.
- 0000 Unsure if unoccupied or occupied.

Parameters:

- ψ_i Prob(site *i* is occupied regardless of state).
- r_i Prob(site i in state 2 (typically breeders) given that site is occupied.
- p_{ij}^1 Prob(detection in site i in survey j given that in state 1, non-breeder).
- p_{ij}^2 Prob(detection in site *i* in survey *j* given that in state 2, breeder).
- δ_{ij} Prob(identify as breeder (state 2) in site i in survey j given that site is occupied, in state 2, and species detected).

Then Prob(occupied in state 2) = ψr .

Parameters:

- ψ_i Prob(site i is occupied regardless of state).
- r_i Prob(site i in state 2 (typically breeders) given that site is occupied.
- p_{ij}^1 Prob(detection in site i in survey j given that in state 1, non-breeder).
- p_{ij}^2 Prob(detection in site *i* in survey *j* given that in state 2, breeder).
- δ_{ij} Prob(identify as breeder (state 2) in site i in survey j given that site is occupied, in state 2, and species detected).

Prob(1021) =

$$\psi_i r_i p_{i1}^2 (1 - \delta_{i1}) (1 - p_{i2}^2) p_{i3}^2 \delta_{i3} p_{i4}^2 (1 - \delta_{i4})$$

Parameters:

- ψ_i Prob(site *i* is occupied regardless of state).
- r_i Prob(site i in state 2 (typically breeders) given that site is occupied.
- p_{ij}^1 Prob(detection in site i in survey j given that in state 1, non-breeder).
- p_{ij}^2 Prob(detection in site *i* in survey *j* given that in state 2, breeder).
- δ_{ij} Prob(identify as breeder (state 2) in site i in survey j given that site is occupied, in state 2, and species detected).

$$Prob(0101) =$$

$$egin{split} \psi_i(1-r_i)\left[(1-
ho_{i1}^1)
ho_{i2}^1(1-
ho_{i3}^1)
ho_{i4}^1
ight] + \ \psi_i r_i\left[(1-
ho_{i1}^2)
ho_{i2}^2(1-\delta_{i2})(1-
ho_{i3}^2)
ho_{i4}^2(1-\delta_{i4})
ight] \end{split}$$

Parameters:

- ψ_i^1 Prob(site *i* is occupied regardless of state).
- r_i Prob(site i in state 2 (typically breeders) given that site is occupied.
- p_{ij}^1 Prob(detection in site i in survey j given that in state 1, non-breeder).
- p_{ij}^2 Prob(detection in site i in survey j given that in state 2, breeder).
- δ_{ij} Prob(identify as breeder (state 2) in site i in survey j given that site is occupied, in state 2, and species detected).

Prob(0000) = Long and messy expression!

Multiple States; Single-Season - Assumptions

- Occupancy STATE of sites is constant during season (closure).
- **②** Probability of occupancy in each state (ψ, r) is equal across all sites (homogeneity) unless modified by covariates.
- **3** Probability of detection (p^1, p^2) given occupancy is equal across all sites (homogeneity) unless modified by covaraites.
- Detection in each survey of a site is independent of those on other surveys
- Detections at each site are independent
- No false positives.
- NEW Reproduction has occurred at start of "season" and evidence of reproduction continues for entire season (i.e. reproduction doesn't start in survey 5 or 10, and you must know that breeding took place even after chicks fledged).
- NEW Evidence of states independent across surveys. Not valid to return to a new nest once chick found in subsequent surveys as no longer independent. Truncate record at confirmed reproduction and fill remainder with missing values.

Multiple States; Single-Season - Biological Hypotheses

- Do different habitats have different occupancy in state 1 and state 2?
- 2 Is detection in state 1 and state 2 the same?
- 3 Sink and Source habitat identification.

Nichols et al (2007) Ecology 88:1395-1400 looked at breeding and non-breeding California Spotted Owls in s=54 sites over k=5 surveys.

Hand-fed mice confirmed occupancy; breeding status only confirmed when owl took mouse to nest.

- . = site not visited.
- 0 = owl not detected.
- 1 = owl detected, but no detection of young.
- 2 = owl detected, along with evidence of young.

Sites selected based on assumed occupancy so ψ is not relevant. Visits divided in two periods (early (visits 1,2), and late (visits 3,4,5).

Using RPresence

Read in the history data

Define the site-time covariates. These are in visit major order.

```
period <- data.frame(
    Site=rep(1:Nsites, Nvisits),

Visit=rep(1:Nvisits, each=Nsites),
Per =rep(c("E","E","L","L","L"), each=Nsites))</pre>
```

```
Create the *.pao object
```

nsurveys

survcov=period,

title="owl multi state single season"

nseasons

nunitcov

"1"

"1"

37 / 53

```
"54"
                         "5"
                   nmethods
nsurveyseason
          "5"
                         "1"
     nsurvcov
          "4"
unit covariates : TEMP
survey covariates: SURVEY Site Visit Per
Notice naive estimates of occupancy.
```

Notice strange number of unit covariates?

owl.pao <- createPao(input.history,</pre>

2

3

summary(owl.pao)

Naive occ=0.8703704 naiveR = 0.3518519nunits

Biological models:

- ullet $p_{it}^s=p$, or $p_{it}^s=p^s$ or $p_{it}^s=p_t$ or $p_{it}^s=p_{it}^s$
- $\delta_{it} = \delta$ or $\delta_{it} = \delta_{it}$ or $\delta_{it} = \delta^{12}$ or δ^{345} based on it being "hard" to detect reproduction early and "easier" to detect reproduction later in season.

Start by fitting the the model ψ , r, p1(*), p2(*), $\delta(*)$

```
Model \psi, r, p1(*) = p2(*), \delta(*)
1 mod1 <- occMod(model=list(</pre>
      psi~1, # occupancy regardless of state
      r~1, # occupancy in state 2 / occupied
3
      p~1, # detection in state i
4
      delta~1), # identified as state 2 if detected (and in s
5
6 data=owl.pao,
      type="do.ms.2")
  summary (mod1)
  Model name=psi()r()p()delta()
  AIC=335.3784
```

What are the parameters?

num. par=4

-2*log-likelihood=327.3784

Model
$$\psi$$
, r , $p1(*) = p2(*)$, $\delta(*)$

 ψ is not of interest (see previous) but compare to naive estimate. r estimates proportion of breeders - compared to naive estimate.

```
Model \psi, r, p1(*) = p2(*), \delta(*)
```

est se lower upper unit1_1-1 0.7448 0.0363 0.6674 0.8093 unit1_1-2 0.7448 0.0363 0.6674 0.8093

unit1_1-1 0.7448 0.0363 0.6674 0.8093 unit1_1-2 0.7448 0.0363 0.6674 0.8093 ...

Less than 50% chance of identifying a breeding pair if actually a breeding pair!

41 / 53

Other models to fit:

- ψ , r, p1(t) = p2(t), $\delta(*)$
- ψ , r, p1(*), p2(*), $\delta(*)$
- ψ , r, p1(*) = p2(*), $\delta(Per)$
- ψ , r, p1(t) = p2(t), $\delta(Per)$
- ψ , r, p1(*), p2(*), $\delta(Per)$

What do these models mean. Check the output to confirm. Caution with model that involve $\delta(Per)$ as the detection probability in period 1 is 0 which causes numerical problems.

AICc table:

```
Model
                               DAIC
                                     wgt npar neg2ll war
1 psi()r()p(SURVEY)delta(Per) 0.00 0.9848
                                               9 261.36
2
        psi()r()p()delta(Per) 8.99 0.0110
                                              5 278.35
3
  psi()r()p(STATE)delta(Per) 10.88 0.0043
                                              6 278.24
4
     psi()r()p(SURVEY)delta() 47.03 0.0000
                                               8 310.38
5
           psi()r()p()delta() 56.02 0.0000
                                              4 327.38
6
      psi()r()p(STATE)delta() 58.01 0.0000
                                               5 327.36
```

Model averaged estimates

```
> RPresence::modAvg(results, param="psi")[1,] est se lower_0.95 upper_0.95 unit1 0.9788445 0.03249207 0.681173 0.999003 
> RPresence::modAvg(results, param="r") [1,] est se lower_0.95 upper_0.95 \psi not useful (why?). Interpret estimate of r.
```

Model averaged estimates

```
> RPresence::modAvg(results, param="p1")[seq(1,by=Nsites, 1
               est se lower_0.95 upper_0.95
unit1_1-1 0.5814721 0.08402199 0.4138997 0.7321398
> RPresence::modAvg(results, param="p2")[seq(1,by=Nsites, 1
               est se lower_0.95 upper_0.95
unit1_1-1 0.5815911 0.08426813 0.4135243 0.7326347
> RPresence::modAvg(results, param="delta")[seq(1,by=Nsite;
                 est se lower_0.95 upper_0.95
unit1_1-1 2.593953e-11 NaN
                                      NaN
                                                NaN
unit1_1-2 2.593953e-11 NaN
                                      NaN
                                                NaN
unit1_1-3 8.683107e-01 0.07269637 0.6547659 0.9581997
unit1_1-4 8.683107e-01 0.07269637 0.6547659 0.9581997
unit1_1-5 8.683107e-01 0.07269637 0.6547659
                                          0.9581997
Interpret estimate of \delta.
```

45 / 53

Unfortunately, GOF and \hat{c} not yet implemented in *RPresence* but you could do a bootstrap after defining your appropriate statistic.

Coosa bass collected via electrofishing from four 50-80 m sections in streams at 54 sites in the Upper Coosa River basin. The objective was to evaluate the effect of streamflow variability on Coosa bass reproduction. States are:

- species not detected (state = 0),
- adult detected (state = 1),
- YOY present (state = 2).

There are 2 covariates stream link magnitude (standardized), and CV of stream flow during summer.

Models to fit:

- $\psi^1, \psi^2, p(*, *), \delta(*)$
- $\psi^1(L), \psi^2(L), p(*,*)(L), \delta(*)(L)$, i.e. as a function of length.
- $\psi^1(CV), \psi^2(CV), p(*,*)(CV), \delta(*)(CV)$, i.e. as a function of variation in flow

Hints:

- Does "time" have a meaning here?
- Don't forget that a logistic regressions has an intercept and a slope.

PRESENCE results:

T TEGETTEE TEGETES.						
Model	AIC	deltaAIC	AIC wat	Model Likel	no.Par.	-2*LogLike
psi,R, p1(*)=p2(*)(L) ,deta(*)(L)	360.74	0.00	0.9999	1.0000	8	344.74
psi,R, p1(*)=p2(*)(CV) ,deta(*)(CV)	380.02	19.28	0.0001	0.0001	8	364.02
psi,R, p1(*)=,p2(*), delta(*)	389.20	28.46	0.0000	0.0000	4	381.20

MARK results:

Ī	Model	AICc	Delta AICc	AICc Weight	Model Likelihood	No. Par.	Deviance	-2Log(L)
	{psi1(L), psi2(L) p(",")(L) delta(")(L)}	363.9405	0.0000	0.99993	1.0000	8	344.7405	344.7405
ſ	{psi1(CV), psi2(CV) p(",")(CV) delta(")(CV)}	383.2208	19.2803	0.00007	0.0001	8	364.0208	364.0208
	{psi1, psi2 p(",") delta(")}	390.0119	26.0714	0.00000	0.0000	4	381.1956	381.1956

MARK results:								
Coose Bass								
LOGIT Link Function Parameters of {psi1(L), psi2(L) p(*,*)(L) delt. 95% Confidence Int.								
Parameter	Beta	Standard Error	Lower	Upper				
1: 2: 3: 4: 5: 6: 7:		1.2414517 0.9709173 0.7437811	-1.9951112 1.0811277 -0.6687446	5.9672372 3.3227228 0.9205108 2.0354470 0.1661446 0.0521052				
Coose Bass								
Real Function Parameters of {psi1(L), psi2(L) p(*,*)(L) delta(*)(L)} Following estimates based on unstandardized individual covariate values: Variable Value								
STDLINK 0.1146296 CVFLOW 1.4740741								
Parameter	Estimate	Standard Error	95% Confid Lower	ence Interval Upper				
1:Psi1 2:Psi2 3:p1 4:Delta		0.0240583 0.1476977 0.0336287 0.0711546	0.7501328 0.3962592 0.7463313 0.2391065	0.9584072				

Multiple States; Single-Season - Summary

Multiple-State Single-season Summary

Multiple States; Single-Season - Summary

Similar to previous methods +:

- Key parameters are
 - $\psi^1=$ prob of occupancy regardless of state 1 (non-breeder) or state 2 (breeder)
 - $\psi^2=$ prob of state 2 (breeder) given that species present on site.
 - Must adjust for two types of false negative non-detect of occupancy; non-detect of breeding if occupancy confirmed.
 - Planning studies will require much thought. Use GENPRES in a similar fashion as in previous examples.

EXTENSIONS:

 Multiple seasons – colonization and extinction could depend on occupancy and breeding success.