Mecanismo de transmissão do risco *default* e coordenação de política macroeconômica em uma economia emergente sob regime de metas de inflação

Karlo Marques Junior

Universidade Estadual de Ponta Grossa/Brasil

Fernando Motta Correia

Universidade Federal do Paraná/Brasil

Área 4 - Macroeconomia, Economia Monetária e Finanças

RESUMO: O objetivo do artigo é analisar a coordenação entre políticas monetária e fiscal, em uma economia emergente com regime monetário do tipo metas de inflação, em um contexto em que choques no risco de *default* podem levar à existência de desequilíbrios macroeconômicos. É desenvolvido um modelo macrodinâmico no intuito de capturar os mecanismos de transmissão do risco *default* e seus efeitos na definição de funções reações para a autoridade monetária e fiscal. Os principais resultados do modelo apontam para novos mecanismos de transmissão do risco *default* associado com a estabilidade de preços e fiscal.

Palavras chaves: Coordenação de políticas econômicas, Risco país, Dinâmica econômica.

ABSTRACT: The aim of this paper is to analyze the coordination between monetary and fiscal policy in an emerging economy with monetary regime of inflation targeting, in a context in which the risk of default shocks can lead to the existence of macroeconomic imbalances. It developed a model macrodynamic in order to capture the mechanisms of transmission of default risk and its effects in the definition of functions reactions to monetary and fiscal authority. The main results of the research point to new mechanisms of transmission of the default risk associated with price stability and fiscal.

Keywords: coordination of economic policies, risk premium, economic dynamics.

JEL Classification: E42,E61, H62.

1. INTRODUÇÃO.

Diante do consenso de que é desejada uma inflação baixa e estável, as experiências na condução do regime de metas inflacionárias em muitos países vêm mostrando que o arcabouço operacional da política econômica está associado a medidas não só de cunho monetário, mas de busca pelo equilíbrio fiscal nas contas públicas, sobretudo em economias emergentes em que elevados níveis de Dívida Pública podem transmitir efeitos não desejáveis ao equilíbrio macroeconômico.

Há uma série de trabalhos que chama a atenção para a relação entre política fiscal e política monetária. Entre eles merecem destaque, Sargent e Wallace (1981), Woodford (1995,1996, 2001), Leeper (1991, 2009), Favero e Giavazzi (2004) e Blanchard (2004). Em geral, a hipótese subjacente a tais trabalhos é de que um ambiente fiscal pernicioso pode levar a uma situação de dominância fiscal. Neste caso, a política monetária é passiva em relação à fiscal e perde a condição de controlar a inflação uma vez que deve emitir moeda para fazer frente aos constantes defícits do governo.

Analisando a economia brasileira no período das eleições de 2002, Favero e Giavazzi (2004) e Blanchard (2004) ampliaram o escopo da literatura de dominância fiscal, inserindo os efeitos do risco de *default* em uma economia emergente com metas de inflação.

Para essa versão de dominância fiscal, um aumento da relação dívida líquida do setor público/PIB, devido à elevação da taxa de juros, desencadeia um incremento na percepção de risco, incidindo em uma fuga de capitais que provocaria uma desvalorização cambial e por fim, pressionaria a inflação. Assim, a dominância fiscal estaria sendo verificada devido à ineficiência da política monetária no controle da inflação face aos desajustes fiscais e a um ambiente de alta aversão ao risco. Uma situação indesejada que afetaria, sobretudo, uma economia emergente, sob um regime de metas de inflação, em que a manutenção de seus títulos em portfólios é considerada uma estratégia de risco. A situação seria mais provável em um ambiente econômico de alta relação DLSP/PIB,

expressiva indexação da dívida pública a moedas estrangeiras e alto grau de aversão ao risco por parte dos investidores internacionais.

Como se pode observar, a política monetária perde o controle sobre a inflação e é dominada pelas expectativas a respeito das condições fiscais. Blanchard (2004) sugere empiricamente que a economia brasileira passa por esse tipo de dominância fiscal entre os anos de 1999 e 2004, sendo a "probabilidade de *default*" o fator que desencadeia tal relação entre as políticas econômicas. Os resultados empíricos reforçam as conclusões de que a economia estará mais apta a tal resultado quanto maior for o estoque inicial da dívida, mais alta a proporção da dívida denominada em moeda estrangeira e maior a aversão ao risco dos investidores estrangeiros. Portanto, o trabalho pode ser considerado uma ferramenta teórica e empírica em apoio àqueles que advogam que uma condição fiscal austera é bem-vinda para tornar o regime de metas de inflação eficiente no seu objetivo de controle do nível de preços e manutenção da estabilidade dinâmica da economia.

Uma questão central no que se refere à literatura que busca investigar a coordenação monetária e fiscal é a generalidade com a qual os mecanismos de transmissões das políticas econômicas são tratados, sendo que na maior parte dos trabalhos há uma ausência de identificação de regras monetárias que incorporem uma reação da autoridade monetária a mudanças no cenário de política fiscal. Em um regime de metas de inflação, no qual há uma regra de política monetária semelhante a Taylor (1993), o comportamento adverso de algumas variáveis fiscais pode prejudicar o bom funcionamento da política monetária. Relaxar a hipótese de uma política fiscal ativa, bem como ignorar seus efeitos sobre as funções reações da autoridade monetária pode, de certa forma, suscitar numa perda de informações acerca dos reais efeitos que a política fiscal pode transmitir para o desempenho da política monetária, sobretudo os canais de transmissão que tais instrumentos fiscais exercem sobre o risco default e assim seus reflexos sobre a eficácia da política monetária.

Em uma economia emergente, a percepção de risco pode afetar e ser afetada por ambas as políticas. Como é de se esperar, o risco atribuído a cada país depende, em amplo grau, da condição de solvência dos títulos soberanos deste. Uma vez que o aumento da taxa de juros eleva o serviço da dívida, espera-se, tudo o mais constante, um efeito no sentido de incrementar o risco de *default*. Deste modo, cria-se um efeito cíclico, já que, como consequência, investidores financeiros exigiriam um maior prêmio de risco para adquirirem os títulos em questão.

Torna-se importante voltar a atenção para aspectos relacionados ao efeito dos choques econômicos exógenos – choques de risco, por exemplo- sobre a dívida pública, uma vez que regimes monetários do tipo metas de inflação buscam controlar tais choques a que está suscetível a economia por meio da operacionalização da taxa nominal de juros. Assim, o efeito da política monetária sobre a dívida pública se propaga em variáveis do tipo composição do endividamento público e crises de confiança.

Em um primeiro momento, os efeitos da política monetária sobre a dívida devem associar os choques que podem desviar a inflação de sua meta e com isso induzir a autoridade monetária a elevar os juros para anular tais choques. Uma vez que a autoridade monetária tem liberdade para manobrar a taxa de juros, esta se reflete num incremento da dívida em função da volatilidade inflacionária. Somando-se a isso, os choques relacionados às crises de confiança podem estar associados aos momentos de grandes incertezas, onde os investidores tendem a fugir de aplicações de risco mais elevado e quando as aceitam cobram uma taxa de retorno mais alta para compensar o risco, elevando o serviço da dívida.

Como consequência, em ambos os casos temos um efeito da política monetária sobre a dívida, que em um segundo momento poderá pressionar ainda mais o risco de *default* e assim, por em movimento o ciclo pernicioso citado acima. Torna-se, portanto, necessário compreender melhor essa relação colocada entre a manipulação da política monetária e comportamento da dívida pública, em um ambiente em que o risco soberano pode levar ao desiquilíbrio macroeconômico.

Tendo isso, o objetivo do artigo é analisar como deve ser realizada a coordenação entre políticas monetária e fiscal em uma economia emergente com regime monetário de metas de inflação, em um contexto em que choques no risco de *default* podem levar à existência de desequilíbrios macroeconômicos. As principais contribuições do artigo serão: i) sugerir uma regra de política monetária que leve em consideração uma variável fiscal, mais especificamente o desvio da dívida pública em relação a uma meta e; ii) estabelecer um modelo em que o risco é um fator que pode levar ao desequilíbrio macroeconômico, através de seu efeito sobre o câmbio, taxa de juros e, sobre a dívida pública e inflação. Em outras palavras, buscar-se-á responder a seguinte pergunta: Como deve ser realizada a coordenação entre as políticas monetária e fiscal em uma economia emergente com metas de inflação quando se deseja alcançar a estabilidade da taxa de juros, inflação e dívida pública.

Buscar-se-á, portanto, compreender como as políticas macroeconômicas devem acomodar choques exógenos, com o objetivo de manter-se em um equilíbrio estável sob diferentes conjunturas econômicas. Desta forma, será analisado os mecanismos de coordenação entre política fiscal e monetária em uma economia sob o regime de metas de inflação na presença de risco de *default* sobre quatro cenários diferentes: i) um regime de regra de superávit primário e taxa de câmbio exógena; ii) política fiscal flexível e taxa de câmbio exógena; iii) um

regime de regra de superávit primário e taxa de câmbio determinada pelo risco de *default*; iv) política fiscal flexível e taxa de câmbio determinada pelo risco de *default*.

Para isso, o artigo foi dividido de acordo com a seguinte estrutura: Na seção dois foi trabalhado um modelo teórico de coordenação entre políticas econômicas para uma economia com regime monetário de metas de inflação e em um ambiente de risco de default. Adicionalmente foi feito o estudo do comportamento de curto prazo através da análise da estática comparativa. Na seção três, estudou-se a estabilidade dinâmica para o modelo em uma configuração em que há uma regra de superávit primário e posteriormente, para a ausência de tal regra. Na quarta seção se entendeu o modelo através da endogenização da taxa de câmbio. Nesse caso, o risco de *default* é parte do argumento da função que determina a taxa de câmbio. Por último, tem-se a conclusão que de modo geral, afirma que o modelo sugere que o controle da inflação deve ser o objetivo principal da autoridade monetária em um regime de metas de inflação, e que cabe à autoridade fiscal trabalhe com um papel passivo de gerar superávits que estabilizem a dívida pública e garantam sua solvência intertemporal.

2. RISCO, JUROS E DÍVIDA: IDENTIFICANDO OS MECANISMOS DE TRANSMISSÃO DO RISCO DA DÍVIDA.

A seguir, será apresentado um modelo macroeconômico que busca representar hipóteses para uma economia emergente sob o regime de metas de inflação, no qual a coordenação entre as políticas econômicas atua no sentido de minimizar possíveis efeitos nocivos gerados por choques de risco.

Algumas considerações adicionais devem ser feitas antes da apresentação do arcabouço básico do modelo. Considerando que economias com regime de metas de inflação podem estar expostas a choques na taxa de câmbio, uma vez que a flexibilidade cambial é condição necessária na instrumentalização de tal regime monetário – quando há livre mobilidade de capital -, muitos autores incluem nas suas análises a taxa de câmbio como uma variável presente na função reação do banco central. Ball (1999) supondo uma economia aberta com um regime monetário do tipo metas de inflação, sugere que a função de reação de uma política monetária ótima deveria contemplar as variáveis taxa de juros, taxa de câmbio e uma medida para a meta de inflação.

No entanto, a análise de Ball (1999) padece de algumas limitações quando se trata de economias emergentes, onde a percepção de riscos elevados pode comprometer o objetivo da política monetária. Em economias com essas características, observa-se uma relação positiva entre o prêmio de risco e a taxa de câmbio¹. Assim, uma função de reação do tipo regra de Taylor poderia elevar a percepção de risco por meio de elevações da taxa de juros e gerar frequentes choques na taxa de câmbio, como discutido em Favero e Giavazzi (2004) e Blanchard (2004).

Deste modo, se tratando de uma economia onde a fragilidade de algumas variáveis fiscais poderiam afetar a conduta da política monetária, em face à relação entre câmbio e prêmio de risco, não seria infundado admitir que bancos centrais reajam à percepção de risco dos agentes.

Tem-se que a magnitude do prêmio de risco envolve as incertezas embutidas no comprometimento de remunerar o título público até o seu vencimento. Portanto, nunca é demais lembrar que os choques a que estão suscetíveis a estrutura a termo da taxa de juros torna o componente prêmio de risco sujeito a choques expectacionais, tendo em vista que, num ambiente onde a política fiscal não esteja comprometida com a estabilidade da relação (dívida do setor público/PIB), os agentes podem exigir uma taxa de remuneração elevada em função do elevado risco de carregar uma dívida com uma probabilidade de alto risco de default.

Diante de tais colocações, buscar-se-á desenvolver um modelo com três equações diferenciais simultâneas de primeira ordem, lineares e não-homogêneas, que permita estudar a coordenação entre política fiscal e monetária. O modelo terá como variáveis de longo prazo o prêmio de risco e a taxa de juros nominal, além do comportamento da relação dívida/PIB. Será, portanto, verificado o equilíbrio de longo prazo das variáveis estudadas e sua estabilidade, isto é, se elas convergem, ou não, para seus

¹Os trabalhos de Svensson (2000) e Ball (1999) supõem que nos países industrializados o prêmio de risco se comporta como um passeio aleatório, não afetando a condução da política monetária; no caso dos países em desenvolvimento há uma forte relação entre a percepção de risco na determinação dos fluxos de capitais, gerando efeitos na taxa de câmbio e na inflação. Tal argumento é complementar à definição de economia emergente, elaborada anteriormente.

valores de *steady state* ao longo do tempo. Em outras palavras, verificar-se-á se o equilíbrio é dinamicamente estável. Cabe destacar que a estabilidade da variável de risco no longo prazo é o resultado desejado para que se garanta a estabilidade macroeconômica e a eficiência da política monetária sob um regime de metas de inflação.

2.1. UM MODELO DE MECANISMOS DE TRANSMISSÃO DO RISCO DE DEFAULT.

De acordo com a estrutura a termo da taxa de juros, a taxa de rendimento sobre um título de dívida no momento t, depende da média da taxa de juros de curto prazo durante o seu prazo de duração n, mais um prêmio de risco correspondente às condições do mercado de tal título. Portanto, a relação entre as taxas de juros de curto e longo prazo pode ser escrita da seguinte forma:

$$r_{nt} = \frac{r_t + r_{t+1}^e + r_{t+2}^e + r_{t+3}^e + \dots + r_{t+(n-1)}^e}{n} + R_{nt}$$

Onde r_{nt} denota a taxa real de juros de longo prazo de vencimento do título de dívida, r_t a taxa real de juros de curto prazo para o período t e r_t^e a taxa de juros real esperada para o período t.

Podemos simplificar a estrutura de prazo até o vencimento da taxa de juros sobre o título da dívida pública da seguinte forma:

$$(1) r = r^e + R$$

A equação (1) decompõe a taxa de remuneração dos títulos do governo em dois componentes, o primeiro referente às expectativas da taxa real de juros de curto prazo até o vencimento (r^e) e o segundo, R, é o prêmio de risco. Este último expressa o risco a que estão expostos os compradores de títulos.

O prêmio de risco R é uma medida para o risco de *default* que captura as incertezas relacionadas ao comprometimento de remunerar o título público até o seu vencimento. Em geral, quanto mais longa a maturidade de um título, maiores serão seus retornos e seus riscos. A percepção dos agentes acerca da magnitude de variação do risco de *default* depende da comparação entre um título que remunera a taxa r_{nt}

em detrimento a outro título livre de risco, no caso, \bar{i} . Como \bar{i} representa a taxa nominal de um título livre de risco², podemos supor que a variação do risco R no tempo, é refletida, portanto, pela diferença

entre essas duas taxas, ou seja, pela diferença entre a taxa r e a taxa \bar{i} . A ideia é que esta diferença entre ambas as taxas é consequência de uma compensação pelo risco exigida pelos agentes, de modo que, no longo prazo, quanto maior essa diferença, maior a variação do risco default no tempo, como mostra a equação diferencial (2) a seguir:

(2)
$$\dot{R} = \sigma \left(r - \bar{i} \right)$$
 , $\sigma > 0$

Sendo assim, o coeficiente σ captaria a sensibilidade do risco de *default R* em relação ao diferencial das taxas de retorno de títulos com risco positivos e títulos livres de risco. Analogamente, o coeficiente capta a aversão ao risco dos agentes econômicos. Espera-se que esse tenha uma relação direta com a relação dívida/PIB.

A taxa nominal de juros da economia em questão é definida pela taxa real de juros (r) mais a taxa de inflação (π) , semelhante à regra de Fisher. Tal relação é dada pela equação (3) a seguir:

(3)
$$i = r + \pi$$

A equação acima sugere que a taxa nominal de juros pode variar tanto quando há uma mudança da taxa real de juros, quanto há variações na taxa de inflação.

É assumido que a taxa nominal de juros de curto prazo é definida pelo Banco Central (i^*) , sendo esta o principal instrumento de política monetária para guiar a inflação à meta desejada e se difere de i por ser a taxa básica de juros almejada pela autoridade monetária, ou seja:

(4)
$$i = i^*$$

²Em geral, consideram-se títulos livres de riscos para investidores internacionais os T-Bonds, emitidos pelo tesouro norte-americano.

Um comportamento de expansão da dívida pública pode também fazer com que a autoridade monetária perca o controle sobre a inflação. Logo, uma meta a relação dívida/PIB que atenda a restrição orçamentária intertemporal do governo, pode ser necessária para o sucesso do regime de metas de inflação. Dessa forma, a função de reação do Banco Central poderia levar em consideração choques fiscais na economia.

Consequentemente, são estabelecidos três fatores que influenciam a decisão do Banco Central ao fixar a taxa nominal de juros intertemporalmente, para o caso de uma economia emergente: por um lado, quando a inflação (π) se desvia da meta (π^*) pré-estabelecida pela autoridade monetária, esta reage com um aumento da taxa nominal de juros, de forma a conter tal desvio. Por outro lado, como essa taxa é a mesma que remunera os títulos públicos, conforme equação (3), presume-se que a taxa de juro deva reagir a desvios da dívida pública (b) em relação a uma meta (b^*) , estabelecida conforme as diretrizes de política econômica, com o objetivo de manter a dívida pública sustentável, ou seja, igualar as despesas e receitas do governo atualizadas para o período presente. Nesse sentido, é pressuposto um componente de coordenação de política econômica presente na função reação da autoridade monetária.

Essa reação da taxa de juros nominal se deve ao fato de que uma possível insolvência da dívida levaria a autoridade monetária a recorrer ao imposto inflacionário, perdendo o controle sobrea a taxa inflação. Deve-se também, ao fato da dívida pública gerar um efeito autônomo no prêmio de risco (R). O desvio da dívida da meta pré-estabelecida atua com uma espécie de termômetro para os investidores sobre o risco de inadimplência dos títulos do governo. Lembrando que um incremento no risco de *default* pode estabelecer uma fuga de capital e, consequente, depreciação cambial, culminando em pressões inflacionárias adicionais através do canal do câmbio.

O terceiro componente da função de reação proposta para autoridade monetária é o diferencial entre as taxas de juros nominal estabelecida pela política monetária (i^*) e a taxa de juros nominal no mercado

externo (\bar{i}) . Quanto maior esse diferencial, menor a necessidade da autoridade monetária em recorrer a uma política monetária contracionista, tendo em vista que reduções da taxa de juros estrangeira, mantida constante a taxa de juros interna, estimula uma apreciação cambial, o que contribui para a estabilidade dos preços. Busca-se, portanto, captar o efeito indireto da taxa de câmbio sobre a inflação. Desta forma, o parâmetro μ abaixo faz referência à preocupação do Banco Central em relação à variações na taxa de câmbio. Essa dinâmica é exposta na equação diferencial a seguir, uma adaptação da regra de Taylor (1993):

(5)
$$\frac{di}{dt} = \beta(\pi - \pi^*) + \alpha(b - b^*) + \mu(i^* - \bar{i})$$
 $, \beta > 0; \alpha > 0; \mu < 0$

A sugestão da regra de política monetária descrita acima consiste em uma das principais contribuições deste artigo. Admitido que a regra de Taylor original não é a mais adequada a uma economia emergente, torna-se necessário incluir uma variável fiscal na regra de política monetária conduzida pelo Banco Central. Outra contribuição importante do trabalho será dada na seção 5, quando se identifica o canal pelo qual o risco de *default* pode levar à instabilidade macroeconômica.

Uma vez que a equação (4) reflete a natureza exógena de curto prazo da taxa de juros num regime de metas de inflação, apresentando i* como a taxa de juros meta da política monetária, a equação (5) explicita uma regra de política monetária que irá balizar as decisões da autoridade monetária na fixação da taxa básica de juros ao longo de um determinado período. Algumas flutuações da taxa básica de juros podem ocorrer em períodos curtos de tempos, como definido em (4).

Em seguida, a equação (6) exibe a variação da dívida pública ao longo do tempo.

$$(6) \quad \dot{b} = ib + g - t$$

Onde (g) denota os gatos do governo e (t) a sua receita. De tal modo, uma elevação dos juros nominais, i, teria um efeito incremental sobre a dívida, b, assim como déficits primários do setor público (g-t > 0).

A taxa de inflação é, *à priori*, determinada por uma curva de Phillips com expectativas, acrescida do componente câmbio nominal³:

(7)
$$\pi = \tau \left(y - \bar{y} \right) + \pi^e + \theta(E)$$
 , $\tau > 0$; $\theta > 0$

Onde $\left(y - \bar{y}\right)$ representa o hiato do produto, π^e a inflação esperada e E a taxa de câmbio nominal⁴.

Aqui, além dos efeitos tradicionais sobre a inflação representados pela curva de Phillips, inclui-se o efeito do câmbio. O efeito de repasse da desvalorização cambial para a inflação, chamado de efeito *pass-through*, segundo testes empíricos realizados por Goldfajn e Werlang (2000) e Correa e Minella (2010), são mais acentuados em situações em que: i) a economia está em um ciclo de expansão acelerado, ii) a volatilidade cambial é baixa, iii)há um alto grau de abertura da economia, iv) a taxa inicial de inflação é elevada e principalmente, de acordo com o primeiro trabalho citado, nas economias emergentes e v) quando o desalinhamento cambial é alto.

No entanto, o componente expectacional (π^e) é determinado pelos desvios do produto esperado (y^e) em relação ao produto potencial (\bar{y}) , bem como pela diferença entre a taxa de câmbio nominal esperada⁵ e seu nível de equilíbrio $(E^e - E^*)$, uma vez que a taxa de câmbio afeta o nível de preço, como citado anteriormente, principalmente quando se encontra acima de um valor de equilíbrio. Assim, tem-se:

(8)
$$\pi^e = \phi \left(y^e - \bar{y} \right) + \kappa \left(E^e - E^* \right) , \phi > 0; \kappa > 0$$

(7.1)
$$\pi = \tau \left(y - \bar{y} \right) + \theta(E)$$

Na determinação da taxa de câmbio real, "e", é assumido, por simplificação, equilíbrio entre os preços internos e externos $(p = p^*)$. Sendo assim, a taxa de câmbio é determinada pela paridade da taxa de juros, conforme a equação (9):

(9)
$$E = E^* = e = \rho(i * - \bar{i})$$
 $\rho < 0$

A demanda agregada, por sua vez, é composta pela função consumo, pela função investimento, pelos gastos do governo e saldo da balança comercial, de acordo com a equação (10). Deste modo, tem-se uma curva IS para economia aberta como a seguir:

(10)
$$y = c(y) + I(i) + g + x(E)$$
 , $c_y > 0, I_i < 0, x_e > 0$

³ Apesar dos trabalhos originais a respeito da Curva de Phillips desprezarem o efeito do câmbio sobre a inflação, diversos trabalhos estimaram empiricamente tal efeito. Limitando-se à economia brasileira, temos: Goldfajn e Werlang (2000), Rigolon(2003) e Correa e Minella (2010).

⁴ Para ser mais preciso, a inflação é função da taxa de desvalorização cambial. A equação 9, que denota a paridade da taxa de juros e câmbio também deve ser expressada em termos de desvalorização da taxa de câmbio, assumindo a forma $E/E = (i - \bar{i}) + R$. Porém, tal simplificação não impacta os resultados do modelo.

2.2. ANÁLISE DE CURTO PRAZO: UM ESTUDO DE ESTÁTICA COMPARATIVA.

Será feito a seguir, uma análise de estática comparativa com o objetivo de inferir algumas relações de curto prazo entre as variáveis chaves para o modelo.

Substituindo (4) em (10), teremos:

(10.1)
$$y = \left(\frac{I_i}{1 - c_y}\right)i * + \left(\frac{1}{1 - c_y}\right)g + \left(\frac{X_e}{1 - c_y}\right)E$$

Como a inflação é função da renda, substitui-se a equação (10.1), em (7.1), obtendo o seguinte comportamento para a inflação:

(7.2)
$$\pi = \left(\frac{\tau I_i}{1 - c_y}\right) i * + \left(\frac{\tau}{1 - c_y}\right) g + \left(\frac{\tau X_e}{1 - c_y} + \theta\right) E - \tau \bar{Y}$$

Inserindo as equações (1) e (4) em (3), o resultado em (7.2) e posteriormente inserindo (9) no resultado final, tem-se:

$$(7.3) \quad \pi = \left[\frac{\left(\frac{\tau I_i}{1 - c_y}\right)}{v} + \frac{\left(\theta + \frac{\tau X_e}{1 - c_y}\right)}{v}(\rho)\right] R + \left[\frac{\left(\frac{\tau I_i}{1 - c_y}\right)}{v} + \frac{\left(\theta + \frac{\tau X_e}{1 - c_y}\right)}{v}\rho\right] r^e - \frac{\left(\theta + \frac{\tau X_e}{1 - c_y}\right)}{v} i \rho \dots$$

... +
$$\frac{\left(\frac{\tau}{1-c_y}\right)}{v}g - \frac{\tau \bar{Y}}{v}$$

onde
$$v = \left[1 - \left(\frac{\tau I_i}{1 - c_v}\right) + \left(\theta + \frac{\tau X_e}{1 - c_v}\right)\rho\right] > 0$$

De (7.3), pode-se extrair a derivada que indica o impacto de curto prazo do risco sobre a inflação:

$$(7.3.1) \frac{\partial \pi}{\partial R} = \frac{\left(\frac{\tau I_i}{1 - c_y}\right)}{v} + \frac{\left(\theta + \frac{\tau X_e}{1 - c_y}\right)}{v} (\rho) < 0$$

Conclui-se, pela derivada acima, que existe uma relação negativa no curto prazo entre a inflação e o risco. A variável de risco é um dos componentes da taxa de juros de curto prazo, conforme demonstrado em (1). Assim, uma vez que é observada uma elevação no risco de *default*, tem-se uma pressão sobre a taxa de juros que comprime a demanda agregada e, por consequência, reduz a inflação. É importante ressaltar o risco é uma variável que pode levar à macroeconômica, fazendo com que a autoridade monetária perca o controle sobre a meta de inflação.

A Figura 1, a seguir, ilustra o canal de transmissão do risco sobre a inflação. Uma vez que se tem o aumento no risco, há uma elevação da taxa de juros que remunera os títulos públicos, para que se garanta a demanda por parte dos investidores internacionais. Como consequência, observa-se uma redução na demanda agregada e finalmente, uma redução da inflação.

Figura 1: Fluxograma1-Canal de transmissão do risco sobre a inflação

$$\uparrow R$$
 $\uparrow i$ $\downarrow y$ $\downarrow \pi$

Para se estudar o efeito de mudanças no risco sobre a dívida pública, é necessário definir uma função para esta variável. Assim, insere-se (3) em (6), de tal forma que:

(6.1)
$$g - t = (r + \pi)b$$

E, posteriormente, substituindo (1) em (6.1), observa-se:

(6.2)
$$g - t = (r^e + R + \pi)b$$

Dado que o comportamento da inflação foi descrito em (7.3), se substituir esta em (6.2) e isolar b, encontra-se o seguinte comportamento para a dívida pública:

$$(6.3) b = \frac{g-t}{\left\{1 + \frac{\left(\frac{\mathcal{I}_{i}}{1 - c_{y}}\right)}{v} + \frac{\left(\theta + \frac{zX_{e}}{1 - c_{y}}\right)}{v}\rho\right\}R + \left[1 + \frac{\left(\frac{\mathcal{I}_{i}}{1 - c_{y}}\right)}{v} + \frac{\left(\theta + \frac{zX_{e}}{1 - c_{y}}\right)}{v}\rho\right]r^{e} + \frac{\left(\frac{\tau}{1 - c_{y}}\right)}{v}g - \frac{\left(\theta + \frac{zX_{e}}{1 - c_{y}}\right)}{v}i\rho - \frac{\tau}{v}\bar{Y}}$$

Pelos resultados da estática comparativa, pode-se analisar o efeito de um aumento marginal no componente de risco sobre o comportamento da dívida pública. A seguir, tem-se a derivada da dívida pública em relação ao risco, seguida de algumas manipulações algébricas.

$$(6.3.1) \quad \frac{\partial b}{\partial R} = \frac{\left[1 + \frac{\left(\frac{\tau I_i}{1 - c_y}\right)}{v} + \frac{\left(\theta + \frac{\tau X_e}{1 - c_y}\right)}{v}\right]}{i^2} > 0 \text{ para } t > g \text{ ou,}$$

$$< 0 \text{ para } t < g;$$

Rearranjando algebricamente e considerando a propensão marginal a poupar como $s = 1 - c_y$, podemos reescrever a derivada acima como:

(6.3.2)
$$\frac{\partial b}{\partial R} = \frac{(t-g)\left[1 + \frac{\tau I_i}{(s-\tau I_i)} + \frac{\theta + \tau X_e}{(s-\tau I_i)}(\rho)\right]}{i^2}$$

A Figura 2 abaixo ilustra o mecanismo de transmissão do risco sobre a dívida pública quando ocorre um superávit primário. Deste modo, um aumento do risco gera uma elevação da taxa de juros, devido às exigências dos investidores e consequentemente, a um aumento da dívida pública.

Figura 2: Fluxograma2-Canal de transmissão do risco sobre a dívida pública

O impacto da variável de risco sobre a dívida pública vai depender do resultado primário das contas do governo. Caso ocorra um superávit e, portanto, a receita do governo supere seus gastos, tem-se um efeito positivo do risco sobre o comportamento da dívida pública. Caso contrário, isto é, ocorra um déficit ptimário, o impacto do risco sobre a dívida pública será negativo.

Além das considerações acima, tem-se que a magnitude do impacto do risco sobre a dívida será menor quanto maior for a propensão marginal a poupar e quanto maior for a taxa de juros. Resultados estes, coerentes com a teoria macroeconômica.

Há, pelo canal de transmissão do superávit primário, uma relação ambígua entre risco e dívida pública que necessita ser explicitada com maiores detalhes: no caso de um superávit primário, um choque no risco é seguido por um aumento da taxa de juros nominal, como pode ser observado pelas equações (1) e (3). Consequentemente, como indicado pela equação (6), há uma elevação da dívida pública.

Por outro lado, se há um déficit primário, esse pressiona a inflação. Dado que a inflação foi elevada devido ao déficit, de acordo com a regra de política monetária (5) a taxa de juros se encontra em um

patamar elevado. Sendo assim, um choque no risco teria um efeito menor sobre os juros e, consequentemente, sobre a dívida pública.

3. EQUILÍBRIO DE LONGO PRAZO E REGRA DE POLÍTICA FISCAL.

Após ser exposta a estrutura básica do modelo e as relações de curto prazo através das derivadas parciais, será estudado o equilíbrio de longo prazo. Para isso, serão utilizadas as ferramentas e técnicas matemáticas adequadas para o estudo das condições que garantam a estabilidade assintótica do equilíbrio dinâmico de um sistema de equações diferenciais, como o que configura o modelo teórico apresentado. Essas relações estão de acordo com as esboçadas em Chiang e Wainwrigth (2006), Gandolfo(1997) e Simon e Blume (2008).

3.1. COMPORTAMENTO DE LONGO PRAZO PARA O MODELO COM REGRA DE SUPERÁVIT PRIMÁRIO.

Com base nos resultados das estáticas comparativas de curto prazo, pode-se agora estabelecer como se configura a dinâmica de longo prazo do modelo. Na presente seção, busca-se obter uma regra de coordenação entre políticas macroeconômicas. O modelo apresenta, inicialmente, três equações diferenciais. São elas:

$$\dot{R} = \sigma \left(r - \bar{i} \right) \qquad \sigma > 0 \tag{2}$$

$$\frac{di}{dt} = \beta(\pi - \pi^*) + \alpha(b - b^*) + \mu(i^* - \bar{i}) \qquad \beta > 0, \alpha > 0, \mu < 0$$
 (5)

$$\dot{b} = ib + g - t \tag{6}$$

Isolando r na equação (3) e substituindo o resultado em (2), pode-se observar a equação diferencial que dará a variação do risco de *default* ao longo do tempo. Tem-se, portanto:

$$\dot{R} = \sigma \left(i * -\pi - \bar{i} \right) \tag{2.1}$$

O equilíbrio do modelo requer, a princípio, um sistema (3X3). No entanto, assume-se uma dinâmica de *steady-state* para a dívida pública, a qual permite tomar como nulo o movimento da dívida ao longo do tempo, isto é, a autoridade fiscal segue uma regra em que se comporta de maneira passiva, evitando incorrer em déficits fiscais. Assim, tem-se que:

$$ib = g - t = 0 \tag{6*}$$

Em outras palavras, supõe-se uma regra de política fiscal em que exista um superávit primário suficiente para cobrir os encargos com o serviço da dívida pública, mantendo, portanto, a estabilidade intertemporal da dívida. Tal manobra permite que o modelo, outrora contendo três funções diferenciais, possa ser descrito como um sistema de duas equações dinâmicas.

De tal modo, em seguida, pode-se reescrever (2.1) e (5) da seguinte forma:

$$\stackrel{\bullet}{R} = \sigma \left[i * - \bar{i} - \pi(R, i) \right]$$
(2*)

$$\frac{di}{dt} = \beta \left[\pi(R, i) - \pi^* \right] + \alpha \left[b(R, i) - b^* \right] + \mu \left[i^*(R, i) - \bar{i} \right]$$

$$(5*)$$

Passa-se então a um sistema (2X2), em que o equilíbrio será extraído das equações (2.1) e (5). Assim sendo, em equilíbrio (stady-state), tem-se:

$$\stackrel{\bullet}{R} = 0 \Rightarrow \pi(R, i) = i * -\bar{i}$$

$$\frac{\partial i}{\partial t} = 0 \Rightarrow \pi(R, i) = \pi^* + \left(\frac{-\alpha [b(R, i) - b^*] - \mu [i(R, i)^* - \bar{i}]}{\beta}\right)$$

Linearizando, o sistema através de uma expansão de Taylor, em torno da sua posição de equilíbrio, tem-se:

$$\frac{\partial \dot{R}}{\partial t} = \sigma \left(-\frac{\partial \pi}{\partial R} \right) (R_* - R_0) + \sigma (i_* - i_0)$$
(12)

$$\frac{\partial i}{\partial t} = \left(\beta \frac{\partial \pi}{\partial R} + \alpha \frac{\partial b}{\partial R}\right) (R_* - R_0) + \mu (i_* - i_0)$$
(13)

Escrevendo os resultados em notação matricial:

$$\begin{bmatrix} \frac{\partial R}{\partial t} \\ \frac{\partial i}{\partial t} \end{bmatrix} = \begin{bmatrix} \sigma \left(-\frac{\partial \pi}{\partial R} \right) & \sigma \\ \left(\beta \frac{\partial \pi}{\partial R} + \alpha \frac{\partial b}{\partial R} \right) & \mu \end{bmatrix} \begin{bmatrix} (R_* - R_0) \\ (i_* - i_o) \end{bmatrix}$$
(14)

A condição necessária e suficiente para que o equilíbrio de um sistema dinâmico com duas dimensões seja assintoticamente estável (os dois autovalores da solução do sistema tenham partes reais negativas) é que o traço e o determinante da Matriz Jacobiana sejam negativo e positivo, respectivamente⁶.

Assim, observa-se que:

$$Traço: \sigma\left(-\frac{\partial \pi}{\partial R}\right) + \mu = ?$$

⁶Para maiores detalhes ver Gandolfo (1997).

$$Det: \sigma\left(-\frac{\partial \pi}{\partial R}\right)\mu - \sigma\left(\beta\frac{\partial \pi}{\partial R} + \alpha\frac{\partial b}{\partial R}\right) = ?$$

Para que as condições de estabilidade do equilíbrio sejam atendidas, será necessário que $|\mu| > \left| \sigma \left(-\frac{\partial \pi}{\partial R} \right) \right|$. Desta forma, o traço será negativo.

Em síntese, a primeira condição para a estabilidade indica que a sensibilidade da taxa de juros nominal em relação ao diferencial de juros, deve ser maior do que o produto do impacto do risco sobre a inflação e da sensibilidade do risco em relação ao diferencial de juros, ambos em módulo. Tem-se, portanto, dois canais que atuam sobre a estabilidade macroeconômica: i) o canal da taxa de câmbio, que atua levando à estabilidade, representado por μ ; e ii) o canal do risco, que atua levando a uma instabilidade, representado por $\sigma\left(-\frac{\partial \pi}{\partial R}\right)$.

Tal relação é esperada, haja vista que por um lado, uma redução da taxa de juros externa valoriza a taxa de câmbio, contendo pressões inflacionárias dadas por esse canal, diminuindo, portanto, a necessidade de elevar a taxa de juros de curto prazo para que se atinja a meta de inflação estipulada pela autoridade monetária, de acordo com a equação (5). Por outro lado, a redução da taxa externa de juros tem impacto sobre o risco, medido por σ , de acordo com a equação (2). Por sua vez, caso este impacto for elevado, irá exigir um significativo aumento da taxa de juros interna, como pode ser observado em (1), prejudicando a estabilidade da variável i.

Deve-se considerar ainda, que se o impacto negativo do risco sobre a taxa de inflação (de acordo com o modelo, um aumento do risco seria acompanhado de um aumento da taxa de juros que remunera os títulos públicos para garantir a solvência da dívida, pressionando a redução da inflação) possuir magnitude muito elevada, poderia haver também um aumento significativo na taxa nominal de juros.

Para que o traço
$$\sigma\left(-\frac{\partial\pi}{\partial R}\right) + \mu$$
 seja negativo, é necessário que $|\mu| > \left|\sigma\left(-\frac{\partial\pi}{\partial R}\right)\right|$.

Outra forma de se pensar tal relação, é admitindo-se a hipótese de que há uma relação direta entre a relação DLSP/PIB e o coeficiente σ , considerando que esse coeficiente mensura a desconfiança do credor em relação à capacidade de pagamento do governo.

Deste modo, um dos canais pelo qual um efeito explosivo sobre o risco poderia se propagar é o da dívida pública, uma vez que o aumento da taxa de juros eleva o serviço da dívida, aumentando a desconfiança do credor em relação à capacidade de pagamento do governo. Assim, uma política fiscal que levasse em conta a capacidade de solvência da dívida pública, poderia auxiliar a estabilidade da economia.

Tendo que a política fiscal foi destacada como um possível instrumento para se alcançar a estabilidade do modelo, torna-se relevante analisar os possíveis canais de transmissão desta política em relação às variáveis em que a estabilidade está sendo estudada.

Uma política superavitária impede o aumento da dívida pública ao longo do tempo, estabilizando a probabilidade de *default* e por consequência, a taxa de juros de longo prazo (fluxograma 3).

Figura3: Fluxograma 3-Canal 1 de transmissão da política fiscal.

Um segundo canal de transmissão da política fiscal é o de que uma contenção dos gastos públicos amortece impactos sobre a demanda agregada. Tal fator, exerce um efeito de redução da inflação, o que possibilita uma diminuição da taxa de juros usada como instrumento de política monetária para guiar a

inflação em direção à meta desejada, além de reduzir aumentos no serviço da dívida pública (fluxograma 4). Haveria, portanto, dois possíveis efeitos explicitados pelo fluxograma abaixo.

Figura 4: Fluxograma 4-Canal 2 de transmissão da política fiscal

O determinante, por sua vez, pode ser reescrito como se segue:

$$Det = -\sigma \left[\frac{\partial \pi}{\partial R} (\mu + \beta) + \alpha \frac{\partial b}{\partial R} \right]$$

Dessa forma, uma vez que se assumiu a hipótese de superávit primário e se tem $\frac{\partial b}{\partial R} > 0$, pode-se deduzir que $\beta > \mu$ é uma condição necessária para a estabilidade do equilíbrio dinâmico do modelo.

Dado que tais coeficientes indicam a sensibilidade da taxa nominal de juros, respectivamente à variação da inflação e à variação do diferencial de juros, conforme expresso em (5), essa condição é condizente com o que se espera no modelo. Isto porque considera-se em um regime de metas de inflação, o controle do nível de preços deve ser o objetivo mais importante na determinação dos instrumentos de política monetária.

Em resumo, para que ocorra a estabilidade do equilíbrio dinâmico do modelo, quando há uma regra fiscal de superávit primário, tem-se que: i) a taxa básica de juros deve ser mais sensível à desvalorização da taxa de câmbio do que a um aumento do risco; ii) é desejável manter uma configuração fiscal que estabilize a confiança dos investidores externos em relação à capacidade de solvência da dívida pública, que é refletida por σ e; iii) a autoridade monetária deve estar mais preocupado com possíveis desvios da inflação em relação à sua meta do que com a taxa de câmbio, quando operacionaliza a política monetária.

3.2. ESTENDENDO O MODELO: CONSIDERANDO UMA POLÍTICA FISCAL DISCRICIONÁRIA.

Estendendo o modelo, abre-se mão da hipótese de *steady-state* para a dívida pública. Nesse caso, diferentemente do modelo anterior, a equação (6) faria parte da análise de equilíbrio dinâmico de longo prazo. Em outras palavras, o equilíbrio fiscal entre receitas e despesas do setor público não estaria assegurado no modelo.

Assim, para estudar o equilíbrio de longo prazo do sistema de equações diferenciais, é necessário voltar a atenção também para a estabilidade do equilíbrio dinâmico da dívida pública. Desta forma, teríamos o seguinte conjunto de equações dinâmicas:

$$\dot{R} = \sigma \left(i * -\pi - \bar{i} \right) \tag{2.1}$$

$$\frac{di}{dt} = \beta(\pi - \pi^*) + \alpha(b - b^*) + \mu(i^* - \bar{i}) \qquad \beta > 0, \alpha > 0, \mu < 0$$
 (5)

$$\dot{b} = ib + g - t \tag{6}$$

Em seguida, pode-se reescrever o sistema (2.1), (5) e (6) da seguinte forma:

$$\overset{\bullet}{R} = \sigma \left[i * - \bar{i} - \pi(R, i, b) \right]$$

$$\frac{di}{dt} = \beta \left[\pi(R, i, b) - \pi^* \right] + \alpha \left[b(R, i, b) - b^* \right] + \mu \left[i^*(R, i, b) - \bar{i} \right]$$

$$\overset{\bullet}{b} = ib(R, i, b) + g - t$$

Em equilíbrio, tem-se:

$$\stackrel{\bullet}{R} = 0 \Rightarrow \pi(R, i, b) = i * -\bar{i}$$

$$(2**)$$

$$\frac{\partial i}{\partial t} = 0 \Rightarrow \pi(R, i, b) = \pi^* + \left(\frac{-\alpha \left[b(R, i, b) - b^*\right] - \mu \left[i(R, i, b)^* - \overline{i}\right]}{\beta}\right)$$

$$(5^{**})$$

$$\overset{\bullet}{b} = 0 \Rightarrow b(R, i, b) = \frac{g - t}{i} \tag{6**}$$

Linearizando tal sistema em torno da sua posição de equilíbrio, através de uma expansão de Taylor:

$$\frac{\partial R}{\partial t} = \sigma \left(-\frac{\partial \pi}{\partial R} \right) (R_* - R_0) + \sigma (i_* - i_0)$$
(15)

$$\frac{\partial i}{\partial t} = \beta \left(\frac{\partial \pi}{\partial R} \right) (R_* - R_0) + \left[\alpha \left(\frac{\partial b}{\partial i} \right) + \mu \right] (i_* - i_0)$$
(16)

$$\frac{\partial \dot{b}}{\partial t} = i(i_* - i_0) + b(b_* - b) \tag{17}$$

No formato matricial, tem-se:

$$\begin{bmatrix} \dot{R} \\ \frac{\partial i}{\partial t} \\ \dot{b} \end{bmatrix} = \begin{bmatrix} \sigma \left(-\frac{\partial \pi}{\partial R} \right) & \sigma & 0 \\ \beta \left(\frac{\partial \pi}{\partial R} \right) & \mu & 0 \\ 0 & b & i \end{bmatrix} \begin{bmatrix} (R_* - R_0^e) \\ (i_* - i_0) \\ (b_* - b_0) \end{bmatrix}$$
(18)

A equação característica associada ao sistema é representada por:

$$-\lambda^{3} + \lambda^{2} \left[\sigma \left(-\frac{\partial \pi}{\partial R} \right) + (\mu) + i \right] - \lambda \left[-\sigma \left(\frac{\partial \pi}{\partial R} \right) (\mu + i) + (\mu)i - \sigma \beta \left(\frac{\partial \pi}{\partial R} \right) \right] \dots$$

$$+ \left[-\sigma \left(\frac{\partial \pi}{\partial R} \right) \mu i - \sigma \left(\frac{\partial \pi}{\partial R} \right) i \beta \right] = 0$$
(19)

Utilizando o critério Routh-Hurwitz⁷ para polinômios do terceiro grau no intuito de verificar a estabilidade do sistema, tem-se:

$$\lambda^3 + \alpha_1 \lambda^2 + \alpha_2 \lambda + \alpha_3 = 0 \tag{20}$$

Para que o sistema 15-17 seja estável, é necessário que as seguintes condições sejam atendidas:

$$\alpha_{1} > 0$$

$$\alpha_{1}.\alpha_{2} - \alpha_{0}\alpha_{3} > 0$$

$$\alpha_{3}(\alpha_{1}.\alpha_{2} - \alpha_{0}\alpha_{3}) > 0$$
(21)

Analisando as condições de estabilidade, tem-se que:

i) Para $\alpha_1 > 0$, a seguinte condição tem que ser satisfeita: $-\sigma \left(\frac{\partial \pi}{\partial R}\right) + i > \mu$, lembrando que $\mu < 0$.

Reescrevendo $\alpha_2 = \left[i\mu - \sigma\frac{\partial\pi}{\partial R}(i+\mu+\beta)\right]$, para que o termo seja positivo, necessariamente, tem-se que $(i+\beta>\mu)$, uma condição razoável de se esperar, uma vez que que ao manipular a taxa nominal de juros, a autoridade monetária, em um regime de metas de inflação, deve se ater principalmente à variação da taxa de inflação em torno de sua meta. Sabe-se, que no presente modelo, essa resposta é mensurada pelo coeficiente β .

- iii) Como feito anteriormente, pode-se reescrever $\alpha_3 = -\sigma \frac{\partial \pi}{\partial R} i(\mu + \beta)$, que por sua vez, será positivo se consideramos a condição de que $\beta > \mu$, como dito anteriormente.
- iv) Sendo aceitas as condições i, ii e iii e sabendo que $\alpha_0 = -1$, tem-se aceita a estabilidade do modelo.

As condições para que o modelo seja estável dependem de alguma forma do valor do parâmetro µ, que por sua vez, trata-se do coeficiente de sensibilidade da taxa de juros utilizada como regra para a política monetária em relação ao diferencial da taxa de juros, interna e externa.

Analisando a condição de estabilidade de i, diferentemente do caso anterior, em que há uma regra de política fiscal de déficit primário zero (e era necessário que $\left|\frac{\partial \pi}{\partial R}\sigma\right| < |\mu|$), no presente caso, onde há

uma ausência de tal regra, admite-se a possibilidade de $\left|\frac{\partial \pi}{\partial R}\sigma + i\right| > |\mu|$. Uma explicação plausível para tal

fenômeno seria a de que com uma política fiscal discricionária, um aumento do diferencial de juros não promoveria as condições necessárias para a apreciação da taxa de câmbio, devido à desconfiança dos investidores internacionais em relação à condição de solvência do governo.

Desta forma, o coeficiente μ teria uma importância irrisória frente à necessidade de se elevar a taxa de juros para tornar atrativos os títulos da dívida pública e manter o equilíbrio estável. Em outras palavras, o coeficiente σ seria muito alto devido à falta de confiança dos investidores, havendo um impacto positivo sobre a taxa de juros em uma magnitude suficiente para que estes retenham os títulos em seus portfólios.

⁷ A respeito do o critério Routh-Hurwitz, ver Gandolfo(1997).

Em suma, nesse caso, ao contrário do que foi posto na seção anterior, para que se mantenha a estabilidade assintótica do equilíbrio dinâmico do modelo, diante de um choque de risco, a autoridade, objetivando manter a estabilidade da economia, teria que elevar fortemente a taxa de juros até o ponto em

que
$$\left| \frac{\partial \pi}{\partial R} \sigma + i \right| > |\mu|$$
.

Também é necessária a condição de que $\beta > \mu$ para garantir a estabilidade do sistema dinâmico. Ambos os parâmetros dizem respeito à regra de política monetária estabelecida na equação (5). Sendo mais preciso, β e μ representam, respectivamente, a preferência da autoridade monetária em relação à manter a inflação no nível da meta pré-estabelecida e a resposta dada às mudanças no diferencial de juros interno e externo.

Como é de se esperar, em um regime de metas de inflação, o objetivo principal da autoridade monetária deve ser manter a inflação estável a um valor pré-estabelecido (meta). Sendo assim, é razoável imaginar que o Banco Central, ao definir a taxa nominal de juros, estará dando peso maior para o desvio da inflação em relação à meta do que ao diferencial de juros⁸.

Como vimos anteriormente, para que o modelo seja estável, tem-se que $0>\mu>-1$, por outro lado, baseando-se na regra de Taylor, tem-se que $\beta>1$. O valor deste parâmetro se dá pelo motivo de que quando o Banco Central busca elevar a taxa de juros com o objetivo de conter a inflação, deve focar na taxa real e não da nominal (apesar de controlar a segunda), assim, dado a regra de Fisher, deve-se aumentar a taxa de juros nominal em um valor maior do que o desvio da inflação da meta.

É interessante chamar a atenção para o fato de que na ausência de uma regra fiscal, o diferencial de juros, que impacta o câmbio no longo prazo, como será visto a seguir, perde relevância na regra de política monetária. Trata-se também de uma condição plausível, considerando-se a expectativa do aumento do risco e a necessidade de atrair capitais para financiar a dívida.

4. ESTENDENDO O MODELO: A TAXA NOMINAL DE CÂMBIO SOB EFEITOS DO RISCO DE *DEFAULT*.

No modelo anterior, a taxa de câmbio foi apresentada como uma função do diferencial de juros. Porém, em uma economia emergente, o risco de *default* é uma importante variável para a determinação do câmbio, existindo, portanto, um efeito indireto do risco sobre a inflação. Sendo assim, uma forma do Banco Central perder o controle da política monetária⁹ é dada pelo canal do câmbio, que, por sua vez, pode ser afetado pelo risco.

4.1. O COMPORTAMENTO DE CURTO PRAZO DO MODELO COM TAXA DE CÂMBIO SOB EFEITOS DO RISCO DE *DEFAULT*: A ANÁLISE DA ESTÁTICA COMPARATIVA.

Essa parte do trabalho será destinada a analisar o comportamento do equilíbrio intertemporal das funções dinâmicas do modelo econômico apresentado anteriormente, em uma situação em que o câmbio é influenciado pelo risco de *default*. Para isso, a equação (9), que denota a taxa de câmbio, passa a ser representada da seguinte maneira:

$$E = \rho(i^* - \bar{i}) + \gamma R \qquad \rho < 0; \gamma > 0 \tag{9.1}$$

Onde ρ mede a sensibilidade da taxa de câmbio em relação à diferença entre a taxa de juros interna e externa e γ mede a elasticidade risco da taxa de câmbio. Este parâmetro, por sua vez, também pode ser

 $^{^8}$ O impacto medido por μ sobre a definição da taxa de juros vai depender do quanto a taxa de inflação é sensível à taxa de câmbio. Dessa forma, quanto mais dependentes forem os índices de preços de produtos importados, maior será o parâmetro em questão.

⁹ Por perda do controle da política monetária, se considera a situação em que a autoridade monetária não consegue atingir a meta de inflação estipulada.

considerado uma medida do grau de aversão ao risco por parte dos investidores internacionais, assim como σ , já que para um dado risco, quanto maior for γ , menos dispostos estarão tais investidores a compor seus portfólios com títulos domésticos, decorrendo em uma menor oferta de divisas e maior depreciação cambial. Espera-se também, baseando-se em Blanchard (2004), que γ responda positivamente a incrementos na relação DLSP/PIB.

Uma função semelhante à que foi exposta acima foi empiricamente estimada em Blanchard(2004), apresentando um efeito esperado e de magnitude elevada do componente risco sobre a taxa de câmbio. Resultados semelhantes forma encontrados em Favero e Giavazzi (2004).

Na sequência, considere-se a curva de Phillips apresentada da seguinte forma:

$$\pi = \tau \left(y - \bar{y} \right) + \theta(E) \tag{7.1}$$

Substituindo a curva IS, apresentada em (10.1) em (7.1) e substituindo (1) e (4) em (3) - para obter, $i^* = (r^e + R) + \pi$ - - e inserindo o resultado na curva de Phillips, juntamente com a função do câmbio (9.1), tem-se o seguinte comportamento para a inflação após se rearranjar a função:

$$\pi = \left[\frac{\left(\frac{d_i}{1 - c_y} \right)}{v} + \frac{\left(\theta + \frac{zX_e}{1 - c_y} \right)}{v} (\rho + \gamma) \right] R + \left[\frac{\left(\frac{d_i}{1 - c_y} \right)}{v} + \frac{\left(\theta + \frac{zX_e}{1 - c_y} \right)}{v} \rho \right] r^e - \frac{\left(\theta + \frac{zX_e}{1 - c_y} \right)}{v} i \rho + \frac{\left(\frac{z}{1 - c_y} \right)}{v} g - \frac{z}{v} \bar{Y}$$
onde
$$v = \left[1 - \left(\frac{zI_i}{1 - c_y} \right) + \left(\theta + \frac{zX_e}{1 - c_y} \right) \rho \right] > 1$$

De onde se pode extrair a seguinte derivada parcial:

$$\frac{\partial \pi}{\partial R} = \frac{\left(\frac{\tau I_i}{1 - c_y}\right)}{v} + \frac{\left(\theta + \frac{\tau X_e}{1 - c_y}\right)}{v} (\rho + \gamma) \tag{7.3.2}$$

Há uma ambiguidade no sinal de tal derivada parcial, uma vez que ela deve ser negativa em condições normais, ou positiva em casos extremos, onde γ - o parâmetro que representa elasticidade do risco sobre o comportamento da taxa de câmbio - apresenta valores demasiadamente elevados.

Em outras palavras, a derivada vai ter sinal oposto ao expresso anteriormente no modelo se tivermos $\gamma > \rho$. Isto pode ocorrer porque para uma alta aversão ao risco, um aumento da taxa de juros pode não ser suficiente para conter a inflação, uma vez que uma fuga de capital pode pressionar o nível de preços através do canal de transmissão do câmbio.

Analogamente, será inserido o efeito do câmbio, dado na função (9.1), sobre a restrição intertemporal do governo, representada pela função (6.3). Assim, considerando que a restrição orçamentária do governo é dada por:

$$g - t = (r^e + R + \pi)b \tag{6.3}$$

Inserindo (7.4) em (6.3) e resolvendo para o nível da dívida pública, tem-se:

$$b = \frac{g - t}{\left[1 + \frac{\left(\frac{\mathbf{I}_{i}}{1 - c_{y}}\right) + \left(\theta + \frac{tX_{e}}{1 - c_{y}}\right)}{v}(\rho + \gamma)\right]R + \left[1 + \frac{\left(\frac{\mathbf{I}_{i}}{1 - c_{y}}\right) + \left(\theta + \frac{tX_{e}}{1 - c_{y}}\right)}{v}\rho\right]^{e} + \frac{\left(\frac{\tau}{1 - c_{y}}\right)}{v}g - \frac{\tau}{v}i\rho - \frac{\tau}{y}}{v}}\right]}$$

$$(6.5)$$

Para se analisar o efeito de um aumento marginal no risco sobre o comportamento da dívida pública, extrai-se a seguinte derivada parcial:

$$(t-g)\left[1 + \frac{\left(\frac{\tau I_i}{1 - c_y}\right)}{v} + \frac{\left(\theta + \frac{\tau X_e}{1 - c_y}\right)}{v}(\rho + \gamma)\right] > 0 \text{ para } t > g$$

$$<0 \text{ para } t < g$$
(6.3.2)

A derivada acima, que indica a elasticidade risco da dívida pública, será positiva caso haja um superávit primário, e negativa no caso de um déficit, a exemplo do que ocorre na seção 3.2.

Pode-se notar, todavia, que quando se inclui o risco como variável que explica a taxa de câmbio, é admissível se esperar efeitos não previstos sob a configuração anterior do modelo. Ou seja, mais uma vez, se $\gamma > \rho$, a derivada pode ter seu sinal alterado em relação ao esperado.

4.2. EQUILÍBRIO DE LONGO PRAZO E ESTABILIDADE PARA O MODELO COM TAXA DE CÂMBIO SOB EFEITOS DO RISCO DE *DEFAULT*.

Seguindo o exemplo que foi efeito na seção 4.1 será estudada a estabilidade do equilíbrio de longo prazo para o modelo com regra fiscal de superávit primário, considerando, porém, a hipótese da taxa explicada pelo componente de risco. O equilíbrio, como anteriormente, é representado abaixo:

$$\stackrel{\bullet}{R} = 0 \Rightarrow \pi(R, i) = i * -\bar{i}$$

$$\frac{\partial i}{\partial t} = 0 \Rightarrow \pi(R, i) = \pi * + \left(\frac{-\alpha [b(R, i) - b^*] - \mu [i(R, i)^* - \bar{i}]}{\beta}\right)$$

Na forma matricial, temos novamente a matriz jacobiana encontrada na seção 4.1, porém agora, com um câmbio influenciado pelo risco, podem ser apresentados resultados diferentes dos esperados.

$$\begin{bmatrix} \frac{\partial R}{\partial t} \\ \frac{\partial i}{\partial t} \end{bmatrix} = \begin{bmatrix} \sigma \left(-\frac{\partial \pi}{\partial R} \right) & \sigma \\ \left(\beta \frac{\partial \pi}{\partial R} + \alpha \frac{\partial b}{\partial R} \right) & \mu \end{bmatrix} \begin{bmatrix} (R_* - R_0^e) \\ (i_* - i_o) \end{bmatrix}$$
(14)

A estabilidade do modelo dependerá, dos sinais do traço e do determinante da matriz.

Traço:
$$\sigma\left(-\frac{\partial \pi}{\partial R}\right) + \mu = ?$$

Det:
$$-\sigma \left[\frac{\partial \pi}{\partial R} (\mu + \beta) - \alpha \frac{\partial b}{\partial R} \right] = ?$$

O que diferencia essa configuração do modelo da situação observada anteriormente, é que agora a estabilidade sofrerá influência do efeito do risco sobre a taxa de câmbio. Mesmo ocorrendo um superávit primário, que possibilitaria o equilíbrio assintoticamente estável do modelo anteriormente, uma aversão ao risco muito elevada, medida pelo parâmetro γ , pode levar à instabilidade diante de um choque exógeno gerado pelo aumento do próprio risco.

Neste caso, determinante da matriz jacobiana pode ser negativo caso $\gamma > \rho$, uma vez que nessa situação, as derivadas parciais que mensuram o impacto do risco sobre a inflação e sobre a dívida pública, podem apresentar sinais diferentes do esperado. Como dito anteriormente, para um nível muito alto de aversão ao risco, um choque no componente de risco pode levar a uma desvalorização cambial que pressionaria a taxa de inflação e levaria à instabilidade do modelo.

Realizando o mesmo exercício para um modelo sem regra de superávit primário, tem-se novamente uma matriz jacobiana 3x3, como segue:

$$\begin{bmatrix} \dot{R} \\ \frac{\partial i}{\partial t} \\ \dot{b} \end{bmatrix} = \begin{bmatrix} \sigma \left(-\frac{\partial \pi}{\partial R} \right) & \sigma & 0 \\ \beta \left(\frac{\partial \pi}{\partial R} \right) & \mu & 0 \\ 0 & b & i \end{bmatrix} \begin{bmatrix} (R_* - R_0^e) \\ (i_* - i_0) \\ (b_* - b_0) \end{bmatrix}$$
(18)

Utilizando novamente o critério Routh-Hurwitz para verificar a estabilidade do sistema, como realizado na seção 4.2, uma vez que a derivada $\left(\frac{\partial \pi}{\partial R}\right)$ é determinante para o equilíbrio, fica claro que o efeito do risco sobre o câmbio desempenha o papel de um mecanismo que pode levar à instabilidade do sistema de equações representado no modelo.

Mais uma vez, o processo de transmissão é configurado por um ambiente em que uma alta aversão ao risco gera uma posição dos investidores em ativos externos, desvalorizando a taxa de câmbio e pressionando uma alta da inflação.

Pode-se deduzir, dos resultados acima extraídos pressupostos do modelo, que sob a configuração do modelo em que o risco afeta o comportamento da taxa nominal de câmbio, garantir um ambiente institucional de credibilidade acerca dos compromissos com os credores, torna-se uma importante condição para a estabilidade da economia. Por sua vez, uma das formas mais eficazes de se construir tal ambiente de credibilidade é criando mecanismos que garantam a solvência da dívida pública a longo prazo, ou seja, é recomendável que a autoridade fiscal opere de forma passiva.

5. ANÁLISE DOS RESULTADOS E CONCLUSÕES.

O objetivo do trabalho foi o de analisar a coordenação entre políticas monetária e fiscal, em uma economia emergente com regime de metas de inflação, em um contexto em que o risco de *default* pode levar à existência de desequilíbrios macroeconômicos. Buscou-se compreender como a economia acomoda choques exógenos, no sentido de manter-se em um equilíbrio assintoticamente estável, sob diferentes combinações de políticas.

Partindo de um modelo com a proposta de uma regra de política monetária que leva em consideração não só o desvio da inflação em relação à sua meta $(\pi - \pi^*)$, mas também, o desvio da dívida pública em relação a uma meta desejada $(b-b^*)$ e o diferencial entre as taxas de juros no mercado interno e externo $(i^* - \bar{i})$, foram identificadas as relações de estabilidade do equilíbrio do modelo apresentadas no parágrafo seguinte. O método utilizado, foi o de um modelo de equações diferenciais de primeira ordem simultâneas, onde se analisou o equilíbrio intertemporal e sua estabilidade.

- i) Para um modelo com a taxa de câmbio definida pela paridade das taxas de juros e onde há uma **regra de superávit primário**, a estabilidade requer que: a) o peso do desvio da inflação em relação à meta seja maior na função de reação da política monetária do que o peso dado ao diferencial de juros, além de que; b) o efeito de mudanças no diferencial de juros sobre a política monetária deve ser maior do que a necessidade da taxa de juros de curto prazo em acomodar choques do componente de risco. Tais condições possibilitam deduzir que no regime de metas de inflação, o controle do nível de preços deve ser a preocupação primordial da política monetária, sendo mais importante de que a necessidade de acomodar choques advindos de mudanças na taxa de juros externa. Além disso, um controle fiscal é desejado para que a economia não seja muito vulnerável a choques de risco de *default*.
- ii) Em uma configuração em que não há regra fiscal, tem-se que: a) continua válida a condição de que o peso do desvio da inflação em relação à meta seja maior do que o peso do diferencial da taxa de juros, no que tange à definição da taxa básica de juros por parte da regra de política monetária. Porém, b) nesse caso, pode ser necessário que a autoridade monetária tenha que acomodar, através de aumentos na taxa básica de juros, os efeitos de um aumento do risco provocado pela desconfiança do investidor. Provavelmente, se teria uma taxa de juros de equilíbrio maior sob essa configuração, em relação ao que se teria sob a anterior.
- iii) Observa-se agora, uma coordenação de políticas em que o câmbio nominal é definido pelo diferencial de juros e pelo fator de risco tanto no caso em que há ou não regra de superávit. Trata-se de uma configuração, portanto, mais aderente à realidade de uma economia de mercado emergente. Esse caso se diferencia da situação i e ii, pelo fato de que o impacto sobre a taxa nominal de câmbio de uma aversão ao risco muito elevada, medida por γ, poderia levar à instabilidade do modelo, uma vez que um aumento dos juros poderia ser interpretado como uma maior probabilidade de *default*. Consequentemente, ocorreria uma desvalorização cambial e uma possível perda do controle da inflação por parte da política monetária. Assim, em termos de política econômica, recomenda-se uma política de austeridade fiscal. As demais conclusões anteriores permanecem válidas sob essa configuração.

De modo geral, o modelo sugere que o controle da inflação deve ser o objetivo principal da autoridade monetária em um regime de metas de inflação. Concomitantemente, é desejado que a autoridade fiscal trabalhe de maneira passiva, gerando superávits que estabilizem a dívida pública e garantam sua solvência intertemporal, o que por sua vez, estabilizaria o risco de *default* e evitaria o risco de uma dominância fiscal.

REFERENCIAS BIBLIOGRAFICAS.

- BALL, L. **Policy rules for open economies**. In Taylor, J., Monetary Policy Rules, pp. 127-44. The University of Chicago Press, London, 1999.
- BLANCHARD, O. **Fiscal dominance and inflation targeting: Lessons from Brazil,** NBER Working Paper Series, Cambridge, MA: MIT Press, Working Paper 10389, 2004.
- HIANG, A. C., WAINWRIGHT, K. Matemática para Economistas, Rio de Janeiro: Elsevier 2006. CORREA, A.S.; MINELA, A. "Nonlinear mechanisms of the exchange rate pass-through: A Phillips curve model with threshold for Brazil," RevistaBrasileira de Economia, Graduate School of
- Economics, Getulio Vargas Foundation (Brazil), vol. 64(3), pages 231-243, September, 2010. FAVERO, C.; GIAVAZZI, F. Targeting inflation when debt and risk premia are high: lessons
- **from Brazil**. IGIER, BocconiUniversity, May. Mimeo, 2003. GANDOLFO, G. **Economic Dynamics**, Nova York: Springer Study Edition, 1997.
- GOLDFAJN, I.; WERLANG, W. The pass-through from depreciation to inflation: a panel study, Banco Central do Brasil working paper series, 2000.
- KYDLAND, F.; PRESCOTT, E. Rules rather than discretion: the inconsistency of optimal plans. Journal of Political Economy, n.85, 1977.
- LEEPER, E. M. **Equilibria under active and passive monetary and fiscal policies**. Journal of Monetary Economics, v. 27, n. 1, p. 129-147, 1991.
- Anchors away: how fiscal policy can undermine the taylor principle, NBER Working Paper Series, Cambridge, MA: MIT Press, Working Paper 15514, NBER, 2009.
- RIGOLON, F.J.Z. Regras de política monetária ótimas em pequenas economias abertas. Concursos de monografías BACEN, 2003.
- SARGENT, T. WALLACE, N. **Some unpleasant monetarist arithmetic**. Quartely Review, Federal Reserve Bank of Minneapolis, p. 1-17, 1981.
 - SIMON, C. P., BLUME, L. Matemática para Economistas, Porto Alegre: Bookman, 2004.
- SVENSSON, L. "Open-economy inflation targeting", Journal of International Economics 50, 155-83, 2000.
- TAYLOR, J.B. "Discretion versus Policy Rules in Practice," Carnegie-Rochester Conference Series on Public Policy, 39, pp. 195-214, 1993.
- WOODFORD, M. Monetary policy and price level determinacy in a cash-in-advance economy. Economic Theory, v. 4, n. 3, p. 345-380, 1994.
- ______.Control of Public Debt: A Requirement for Price Stability, NBER Working Paper, 5684, 1996.
- ———.Price-level determinacy without control of a monetary aggregate. Carnegie-Rochester.Conference Series on Public Policy, v. 43, p. 1-46, 1995.
- Fiscal requirements for price stability. Journal of Money, Credit and Banking, v. 33, n. 3,p. 669-728, 2001.