МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ЛЬВІВСЬКА ПОЛІТЕХНІКА

АВТОМАТИЗОВАНЕ ПРОЕКТУВАННЯ КОМП'ЮТЕРНИХ СИСТЕМ

Завдання 2: «Розробка клієнт серверної архітектури»

Виконав:

ст. гр. КІ-404

Зелений Т.Р.

Прийняв:

Федак П.Р.

ЗАВДАННЯ

Варіант	Ім'я	Група	Гра	Config
	студента			формат
	Зелений			
7	Тарас	KI-404	tik-tac-toe 3x3	XML
	Романович			

- 1. Створити просту схему зв'язку SW(клієнт) <-> UART <-> HW(сервер).
- 2. Клієнт повинен послати повідомлення на сервер. Сервер повинен модифікувати повідомлення і відправити його назад клієнту.
 - 3. Створіть YML файл з наступними функціями:
 - а. Зберіть всі двійкові файли (створіть скрипти в папці сі/, якщо потрібно);
 - b. запуск тестів;
 - с. створити артефакти з двійковими файлами та тестовими звітами;

ТЕОРЕТИЧНИЙ МАТЕРІАЛ

1. Створення схеми зв'язку SW(client) <-> UART <-> HW(server)

UART (Universal Asynchronous Receiver-Transmitter) – це апаратний інтерфейс для обміну даними між пристроями. Основні моменти:

- *Асинхронний режим:* UART не використовує тактовий сигнал, що означає, що клієнт і сервер повинні мати однакову швидкість передачі (baud rate).
- *Протокол:* Клієнт (SW) і сервер (HW) спілкуються через UART, де дані передаються як послідовність біт. UART перетворює байти даних у послідовність сигналів (битів) і навпаки на обох кінцях комунікації.

Схема

- **SW** (**client**) це програмна частина (наприклад, програма на ПК чи мікроконтролері), яка надсилає повідомлення до HW.
- **HW** (**server**) це апаратна частина (наприклад, інший мікроконтролер або плата), яка отримує повідомлення, модифікує його і відправляє назад клієнту через той же UART інтерфейс.

2. Надсилання повідомлення від клієнта до сервера і його модифікація

Завдання передбачає, що клієнт надсилає певне повідомлення до сервера через UART. Сервер повинен обробити це повідомлення (наприклад, змінити символи, додати дані, перетворити формат) і надіслати його назад клієнту.

Приклад процесу:

- Клієнт: надсилає текст «Hello, server!»
- Сервер: отримує текст, додає до нього «Response: » і відправляє назад повідомлення " Response: Hello, server!"

3. Створення YML файлу з функціоналом

YML (YAML Ain't Markup Language) – це формат даних для зручного опису конфігурацій. Він широко використовується в автоматизації завдань, зокрема в системах СІ/СD для опису кроків збірки, тестування і створення артефактів.

Основні елементи УМL файлу:

- Збірка всіх бінарних файлів: У YML файлі може бути описано, як викликати скрипти збірки (наприклад, make, cmake тощо), які знаходяться в папці сі/.
- Запуск тестів: Ви повинні прописати команду, яка запускає тестові сценарії, можливо з використанням таких інструментів, як руtest, unittest або інших, залежно від платформи.
- Створення артефактів: Після успішної збірки потрібно створити артефакти це можуть бути бінарні файли, звіти про тести чи інші важливі файли. У YML це може виглядати як крок з виведенням результатів у певну директорію.

ВИКОНАННЯ РОБОТИ

ЗАПУСК СЕРВЕРНОЇ СТОРОНИ(НW)

1. Клонуйте репо за допомогою наступної команди нижче:

Команда: https://github.com/Taras-Zelenyy/csad2425ki404zelenyytr07.git

- 2. Відкрийте git bash
- 3. Перейдіть до feature/develop/task2. Використовуйте наступну команду:

Команда: git checkout feature/develop/task2

- 4. Знайдіть наступний файл за наступним шляхом: your_path\server\server.ino
- 5. Відкрийте Arduino IDE, виберіть порт (у мене це COM3), плату та завантажте код.

ЗАПУСК КЛІЄНТСЬКОЇ СТОРОНИ(SW)

- 1. Bідкрийте pull feature/develop/task2
- 2. Перейдіть на вкладку Action
- 3. Виберіть останню збірку проекту
- 4. Завантажте артефакти
- 5. Розархівуйте завантажену папку
- 6. Перейдіть до «your path\build-artifacts\Debug\client.exe»
- 7. Двічі клацніть на client.exe

ЯК ЦЕ ПРАЦЮЄ

Користувач пише повідомлення у клієнтській консолі. Сервер обробляє введене користувачем повідомлення і повертає відповідь.

Приклад 1:

User input: Привіт Arduino!

Server answer: Привіт User!

Приклад 2: (Користувач вводить будь яке інше повідомлення)

User input: Привіт!

Server answer: Мені не відома така команда

```
© C:\NULP\IV course\I Term\CS/ × + v

Enter your message: Привіт!
[INFO] Message sent to Arduino: Привіт!
[INFO] Message received from Arduino: Мені не відома така команда

Press any key to continue . . .
```

ВИСНОВОК

Реалізовано просту комунікаційну схему, де програмний клієнт (SW) взаємодіє з апаратним сервером (HW) через інтерфейс UART. Така архітектура дозволяє асинхронний обмін даними між пристроями без потреби у тактовому сигналі, забезпечуючи ефективний зв'язок між ними.

Реалізовано передачу повідомлення від клієнта до сервера через UART. Сервер обробляє отримане повідомлення, модифікує його, а потім надсилає його назад клієнту.

Створено YML файлу з функціоналом для автоматизації:

- Збірка всіх бінарних файлів: Налаштовано автоматичну збірку всіх необхідних бінарних файлів для забезпечення безперервної інтеграції.
- Створення артефактів: Налаштовано створення артефактів, включаючи бінарні файли та звіти тестування, що забезпечує збереження та доступність результатів роботи для подальшого аналізу.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Шпіцер A.C. Instructions for practical tasks and coursework from «Computer systems automated design» – методичка. НУ «Львівська Політехніка», 12 с.