Introduction à la sécurité informatique

Examen - sans document

Durée: 1 heure 30

L'énoncé comporte de nombreuses questions, pensez à gérer votre temps. Attention, pour les questions type QCM, une mauvaise réponse enlève des points: si vous ne savez pas, ne répondez pas. Pour certaines questions, plusieurs réponses peuvent être justes. Bon courage! Répondez directement sur cette feuille. PRENOM: NOM: Cryptologie Concepts généraux QUESTION 1 L'art de déchiffrer des messages sans connaître la clé de chiffrement est appelé: ☐ La cryptographie □ La cryptologie ☐ La cryptanalyse QUESTION 2 Un algorithme de chiffrement qui possède une bonne propriété de diffusion est tel que: \Box le chiffrement du message s'effectue rapidement \square une petite modification du message en clair se traduit par une modification complète du chiffré

QUESTION 3 Oscar a réussi à intercepter un couple (message chiffré, message en clair correspondant). A l'aide de ce couple, il a réussi à déterminer la clé k utilisée entre Alice et Bob. C'est une attaque de type:

□ aucune propriété statistique ne peut être déduite du message chiffré

☐ Attaque à texte clair conn	u
\square Attaque à texte clair chois	i
Le résultat de l'attaque est un:	
☐ Cassage partiel	
☐ Cassage local	

☐ Cassage complet

☐ Attaque à texte chiffré

Chiffrements symétriques

 ${\bf QUESTION}$ 4 Le chiffrement de César est :

- □ une substitution polyalphabétique
- ☐ une substitution monoalphabétique
- \Box un chiffrement par bloc

QUESTION 5 Un message m (en français) chiffré avec l'algorithme de César a été intercepté par Oscar. Les plus fortes fréquences des lettres de ce messages sont les suivantes:

Lettre	Fréquence dans le message chiffré
J	15%
F	8%
N	$7{,}5\%$
X	7%
Autres lettres	<7%

A l'aide de cette information, retrouvez la clé utilisée pour chiffrer m (Rappel: la lettre la plus fréquente en moyenne dans un texte français est le \mathbf{e}).

• _____

QUESTION 6 Oscar a intercepté un message chiffré avec l'algorithme de Vigenere. Il a calculé l'indice de coïncidence de ce message (qui est en français) et a obtenu:

	i=1	i=2	i=3	i=4	i=5
l=1	0,045				
l=2	0,046	0,041			
l=3	0,083	0,075	0,081		
l=4	0,042	0,039	0,076	0,039	
l=5	0,043	0,058	0,049	0,031	0,052

Que peut-il déduire de ces résultats ?

• _____

Quelle autre méthode aurait-il pu utiliser pour obtenir cette information?

• _____

 ${\bf QUESTION~7}$ Les chiffrements al phabétiques sont désormais moins utilisés que les chiffrements par bloc.

- □ Vrai
- ☐ Faux
- ☐ Les deux sont autant utilisés

${\bf QUESTION~8}~{\bf Quel}$ est le mode de chiffrement par bloc qui possède la plus mauvaise propriété de diffusion ?
\square le mode ECB
\square le mode CTR
\Box le mode CBC
QUESTION 9 Le principal défaut de DES était:
\square Sa lenteur
\Box La petite taille de la clé
\Box La complexité de l'algorithme
QUESTION 10 Après l'abandon de DES, un nouveau standard Américain a été choisi. L'algorithme qui a remplacé DES est:
\square TDES
\square Blowfish
\square AES
Chiffrements asymétriques
${\bf QUESTION~11~L'avantage~des~chiffrements~asymétriques~par~rapport~aux~chiffrements~symétriques~est~que:}$
\Box Ils sont plus rapides que les chiffrements symétriques
\Box Il n'y a pas besoin de s'échanger de clé secrète
\Box Ils possèdent une meilleure propriété de $confusion$
QUESTION 12 Qu'est ce qu'une fonction à sens unique à brêche secrète?
QUESTION 13 Le protocole Diffie-Hellman est un protocole qui sert principalement à:
\Box chiffrer/déchiffrer des messages
\square signer des messages
\square s'échanger une clé secrète

QUESTION 14 Alice veut envoyer un message m à Bob. Elle décide de chiffrer ce message via l'algorithme RSA. Elle aura besoin de:
\Box la clé publique de Bob
\Box la clé privée de Bob
\Box la clé privée et la clé publique de Bob
Soit (n_b, e_b) la clé publique de Bob et d_b sa clé privée. Posez le calcul que vont effectuer:
\bullet Alice lorsqu'elle chiffrera le message $m\colon \underline{m'=}$
\bullet Bob lorsqu'il déchiffrera le message $m'\colon \underline{m=}$
QUESTION 15 Sur quel(s) problème(s) difficile(s) est basé le cryptosystème RSA ?
□ Factorisation
\Box LogarithmeDiscret
□ Diffie-Hellman
\square Racine Ieme Modulaire
QUESTION 16 Alice veut signer le message qu'elle envoie à Bob. Le message va être signé avec
\Box la clé publique d'Alice
\Box la clé privée d'Alice
\Box la clé privée de Bob
QUESTION 17 Quelle(s) propriété(s) du message permet de garantir la signature ?
\Box l'intégrité du message
\Box la confidentialité du message
\Box l'authenticité du message
QUESTION 18 Alice veut envoyer un message chiffré via RSA à Bob. L'infrastructure à clé publique (ou PKI) lui permet de:
\Box chiffrer le message de manière plus efficace
\Box augmenter la confidentialité du message
\Box s'assurer que la clé publique du destinataire est bien celle de Bob

Sécurité logicielle

T 111			11
Failles	logi	cie	lles

QUESTION 19 Soit le programme suivant:
<pre>int main(int argc, char** argv) { char texte[46];</pre>
<pre>strcpy(texte,argv[1]);</pre>
return 0; }
Ce programme est vulnérable à une attaque de type:
□ buffer overflow
\square race condition
□ format string
QUESTION 20 Donnez deux moyens de prévenir ou d'empêcher les stack overflow : •
•
QUESTION 21 La variable $\arg v[1]$ est renseignée par l'utilisateur. Laquelle de ces instructions est alors vulnérable à une attaque de type $format\ string$:
• strcpy(buffer,argv[1])
• printf(argv[1])
• sprintf(chaine,"%10s",argv[1])
QUESTION 22 Quel(s) conseil(s) donneriez-vous à un jeune programmeur qui débute pour développer des applications comportant le moins de failles possible ?