DS 7

Durée 3h00

- Les calculatrices sont <u>interdites</u> durant les cours, TD et *a fortiori* durant les DS de mathématiques.
- Si vous pensez avoir découvert une erreur, indiquez-le clairement sur la copie et justifiez les initiatives que vous êtes amenés à prendre.
- Une grande attention sera apportée à la clarté de la rédaction et à la présentations des solutions. (Inscrivez clairement en titre le numéro de l'exercice, vous pouvez aussi encadrer les réponses finales.)
- Vérifiez vos résultats.
- Le résultat d'une question peut être admis et utilisé pour traiter les questions suivantes en le signalant explicitement sur la copie.

Exercice 1.

- 1. (a) Donner un DL à l'ordre 2 de $(1+x)^x 1$ en 0.
 - (b) Donner un DL à l'ordre 2 de $\sqrt{1-x} \cos(x) + \frac{x}{2}$ en 0.
 - (c) En déduire la limite suivante $\lim_{x\to 0} \frac{(1+x)^x 1}{\sqrt{1-x} \cos(x) + \frac{x}{2}}$.
- 2. Calculer la limite suivante : $\lim_{x\to 1} \frac{\ln x}{x^2-1}$
- 3. (a) Montrer que le $DL_2(0)$ de $e^t e^{\frac{t}{t+1}} = t^2 + o(t^2)$
 - (b) Soit $f(x) = x^2 \left(e^{\frac{1}{x}} e^{\frac{1}{x+1}} \right)$. A l'aide du changment de variable $X = \frac{1}{x}$ calculer

$$\lim_{x \to +\infty} f(x)$$

(c) Interpréter géométriquement le résultat.

Exercice 2 (D'après Agro 2015).

- 1. Montrer que la fonction sinus réalise une bijection de $[-\pi/2, \pi/2]$ dans [-1, 1]. On note alors A la réciproque de la fonction $\begin{vmatrix} [-\pi/2, \pi/2] & \to & [-1, 1] \\ x & \longmapsto & \sin x. \end{vmatrix}$
- 2. Déterminer A(1/2) et A(0).
- 3. Soit x appartenant à [-1,1], montrer que $\cos(A(x)) = \sqrt{1-x^2}$.
- 4. On admet que A est dérivable sur] -1,1[. Montrer que pour tout $x \in]-1,1$ [on a :

$$A'(x) = \frac{1}{\sqrt{1 - x^2}}$$

- 5. (a) Déterminer le développement limité à l'ordre un de la fonction $t \mapsto \frac{1}{\sqrt{1+t}}$.
 - (b) Montrer que la fonction A admet un développement limité à l'ordre 3 en 0 donné par

$$A(x) = x + \frac{x^3}{6} + o\left(x^3\right)$$

Exercice 3. Roudoudou le hamster vit une vie paisible de hamster. Il a deux activités : manger et dormir... On va voir Roudoudou à 00h00 (n = 0). Il est en train de dormir.

- Quand Roudoudou dort à l'heure n, il y a 7 chances sur 10 qu'il dorme à l'heure suivante et 3 chances sur 10 qu'il mange à l'heure suivante.
- Quand Roudoudou mange à l'heure n, il y a 2 chances sur 10 qu'il dorme à l'heure suivante et 8 chances sur 10 qu'il mange à l'heure suivante.

On note D_n l'événement 'Roudoudou dort à l'heure n' et M_n 'Roudoudou mange à l'heure n'. On note $d_n = P(D_n)$ et $m_n = P(M_n)$ les probabilités respectives.

- 1. Justifier que $d_n + m_n = 1$.
- 2. Montrer rigoureusement que

$$d_{n+1} = 0,7d_n + 0,2m_n$$

3. Exprimer de manière similaire m_{n+1} en fonction de d_n et m_n .

4. Soit A la matrice

$$A = \frac{1}{10} \left(\begin{array}{cc} 7 & 2\\ 3 & 8 \end{array} \right).$$

Résoudre en fonction de $\lambda \in \mathbb{R}$ l'équation $AX = \lambda X$ d'inconnue $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

- 5. Soit $P = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ Montrer que P est inversible et calculer P^{-1} .
- 6. Montrer que $P^{-1}AP = \frac{1}{5} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$
- 7. Calculer D^n où $D = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$
- 8. En déduire que pour tout $n \in \mathbb{N}$, $A^n = \begin{pmatrix} 3(1/2)^n + 2 & -2(1/2)^n + 2 \\ -3(1/2)^n + 3 & 2(1/2)^n + 3 \end{pmatrix}$.
- 9. En déduire la valeur de d_n en fonction de n.

Exercice 4. On dispose d'une urne contenant initialement b boules blanches et r boules rouges. On fait des tirages successifs dans cette urne en respectant à chaque fois le protocole suivant :

- Si la boule tirée est de couleur blanche, on la remet et on ajoute une boule blanche
- Si la boule tirée est de couleur rouge, on la remet et on ajoute une boule rouge.

On appelle B_i l'événement "tirer une boule blanche au *i*-iéme tirage" et on note $p_i = P(B_i)$.

- 1. Calculer p_1 en fonction de b et r.
- 2. Montrer que $p_2 = \frac{b}{b+r}$.
- 3. On a tiré une boule blanche au deuxième tirage. Donner alors la probabilité que l'on ait tiré une boule blanche au premier tirage en fonction de b et r.
- 4. On appelle E_n l'événément

 E_n : "On tire que des boules blanches sur les n premiers tirages "

et F_n l'événement

 F_n : "On tire pour la première fois une boule rouge au n-ième tirage"

- (a) Exprimer E_n à l'aide des événements $(B_k)_{k \in \llbracket 1, n \rrbracket}$
- (b) Exprimer F_n à l'aide de E_{n-1} et B_n
- 5. Pour tout $k \geq 2$ calculer $P_{E_{k-1}}(B_k)$.
- 6. Calculer $P(E_n)$ en fonction de b, r et n puis $P(F_n)$.
- 7. On souhaite modéliser informatiquement cette expérience. On va utiliser la lettre 'B' pour désigner les boules blanches et 'R' pour les rouges.
 - (a) Créer une fonction **urne** qui prend en argument le nombre de boules blanches et rouges, et retourne une liste correspondant à l'urne initiale. (Cette liste n'a pas à être "mélangée")
 - (b) Créer une fonction tirage qui prend en argument une liste correspondant à une urne, modélise le tirage d'une boule alétoirement dans cette urne, affiche la couleur de la boule tirée et retourne une liste correspondant à l'urne aprés l'ajout de la boule de la couleur tirée.
 - (c) Créer une fonction compte qui prend une liste correspondant à une urne et retourne le nombre de boules blanches contenues dans l'urne.
 - (d) Créer une fonction expérience qui prend en argument le nombre de boules blanches et rouges initial et N le nombre de tirages effectués et retourne le nombre de boules blanches dans l'urne aprés N tirages.