Mesures de températures

Cours 2006-2007

Table des matières

1	Les 1.1	différentes unités de température 4 Les échelles de température 4
ก	TII.	
2		ermomètres à dilatation 4
	2.1	Présentation
	2.2	Thermomètres à dilatation de liquide
		2.2.1 Description
		2.2.2 Loi de variation
		2.2.3 Liquides thermométriques
		2.2.4 Nature de l'enveloppe
		2.2.5 Colonne émergente
	2.3	Thermomètres à dilatation de gaz
		2.3.1 Rappel
		2.3.2 Principe
	2.4	Thermomètres à tension de vapeur
		2.4.1 Définition
		2.4.2 Principe
	2.5	Thermomètres à dilatation de solide
		2.5.1 Principe
		2.5.2 Bilame
		2.5.3 Pyromètre linéaire
		v
3	The	ermomètres électriques 12
	3.1	Présentation
	3.2	Thermomètres à résistance et à thermistance
		3.2.1 Thermomètres à résistance
		3.2.2 Thermomètres à thermistance
		3.2.3 Montage de mesure
		3.2.4 Influence de la mesure sur la température
	3.3	Thermocouples
	0.0	3.3.1 Principes
		3.3.2 Application
		3.3.3 Les différents types de thermocouples
		3.3.4 Câbles de compensation
		3.3.5 Méthodes de mesure
		3.3.6 Comparaison
		5.5.0 Comparaison
4	Les	pyromètres optiques 22
	4.1	Présentation
	4.2	Principes physiques
		4.2.1 Lois du rayonnement thermique du corps noir
		4.2.2 Rayonnement thermique d'un corps réel
	4.3	Principes généraux des pyromètres optiques
	4.4	Le pyromètre optique à disparition de filament
	4.4	Le pyrometre optique à dispartiton de mament

4.5 4.6	Pyromètres bichromatiques
2 M 3 M	es différentes unités de température
	unette Infratherm
Annex	e 1 28
Annex	e 2
Annex	e 3
Annex	e 4 31
$M\epsilon$	ation - Année précédente 32 sure de débit
Figu	res
1 2 3 4 5 6 7 8	Echelles de température Thermomètre à dilatation de liquide Mesure de température dans d'un bain Colonne emergente Thermomètre à gaz Tension de vapeur saturante en fonction de la température (eau) Thermomètre à simple remplissage Thermomètre à double remplissage Bilame 12 13 14 15 16 17 18 18 19 19 10 10 10 11 11 11 11 11
10 11 12 13	Pyromètre linéaire
14 15 16 17 18 19 20 21 22 23 24	sonde platine Pt100. 14 Thermistances . 14 Montage deux fils avec source de courant . 15 Montage quatre fils avec source de courant . 15 Montage avec pont Weatstone . 16 Montage trois fils . 16 Montage quatre fils . 16 Effet Peltier . 17 Effet Thomson . 18 Effet Seebeck . 18 Relation Température/FEM pour le thermocouple considéré . 19 FEM en fonction de la température de thermocouples . 20
25 26	Câbles de compensation 20 Mesure en opposition 22

27	Pyromètre optique
	Emittance spectrale en fonction de la longueur d'onde pour diverses températures
29	Pont de mesure
30	Montage 3 fils
31	Montage 4 fils
32	Capteur
33	Boucle de régulation de température
34	Thermocouple Type T
	PT100

1 Les différentes unités de température

La température est une grandeur intensive, qui peut être mesurée de deux façons différentes :

- À l'échelle atomique, elle est liée à l'énergie cinétique moyenne des constituants de la matière;
- Au niveau macroscopique, certaines propriétés des corps dépendant de la température (volume massique, résistivité électrique, etc...) peuvent être choisies pour construire des échelles de température.

1.1 Les échelles de température

La plus ancienne est l'échelle centésimale (1742), attribuant arbitrairement les valeurs 0 et 100 degrés à la glace fondante et à l'eau bouillante, sous la pression atmosphérique normale. La température ainsi définie dépendant du phénomène choisi (la dilatation d'un fluide) pour constituer le thermomètre étalon, on utilise de préférence l'échelle Celsius, définie à partir de l'échelle Kelvin par :

$$T(^{\circ}C) = T(K) - 273,15 \tag{1}$$

Cette dernière échelle, qui est celle du système international, ne dépend d'aucun phénomène particulier et définit donc des températures absolues. Le zéro absolu (-273,15 °C) a pu être approché à quelques millionièmes de degrés près. Les phénomènes physiques qui se manifestent aux très basses températures connaissent d'importantes applications (supraconductivité). Dans le domaine des hautes températures, les torches à plasma permettent d'atteindre 50 000 K et les lasers de grande puissance utilisés pour les recherches sur la fusion nucléaire contrôlée donnent, pendant des temps très brefs, des températures dépassant 100 millions de degrés.

Figure 1 – Echelles de température

2 Thermomètres à dilatation

2.1 Présentation

Dans ce paragraphe, c'est la dilatation des corps qui sera le phénomène image de la grandeur thermométrique. On constate en effet que le volume d'un corps augmente en général, lorsque sa température s'élève (sans qu'il y ait de changement d'état physique). La dilatation étant réversible, elle fournit un mode pratique de repérage des températures. Ce phénomène se retrouve de façon analogue, mais avec une ampleur différente pour les liquides, les gaz et les solides. D'où les trois types de thermomètres à dilatation.

2.2 Thermomètres à dilatation de liquide

2.2.1 Description

Il est constitué d'un réservoir surmonté d'un capillaire de section faible et régulière (ordre de grandeur : $\emptyset = 0, 2 \ mm$) se terminant par une ampoule de sécurité (utile lors d'un dépassement de la température admissible). Il est réalisé en verre. Sous l'effet des variations de température, le liquide se dilate plus ou moins. Son niveau est repéré à l'aide d'une échelle thermométrique gravée sur l'enveloppe.

Figure 2 – Thermomètre à dilatation de liquide

2.2.2 Loi de variation

La loi de variation du volume du liquide en fonction de la température est :

$$V = Vo(1 + \alpha \times \theta) \tag{2}$$

avec :

- Vo: volume du liquide à $0^{\circ}C$;

- V: volume de liquide à θ °C;

- α : coefficient de dilatation du liquide en ${}^{\circ}C^{-1}$.

Cette équation nous montre que la sensibilité du thermomètre à dilatation de liquide est proportionnelle au volume Vo (fonction du volume du réservoir), au coefficient de dilatation du liquide (donc au type de liquide choisi) et inversement proportionnel à la section S du capillaire car :

$$\Delta h = \frac{\Delta V}{S} \tag{3}$$

2.2.3 Liquides thermométriques

L'espace libre au dessus du liquide peut-être vide. Toutefois, pour empêcher la colonne de liquide de se fractionner facilement et aussi pour permettre de mesurer des hautes températures, l'espace libre est rempli d'un gaz neutre (azote ou argon) mis sous une pression fonction de la température à mesurer. La chambre d'expansion évite les trop fortes variations de pression.

Liquides	Domaine d'emploi (°C)	α en ° C^{-1}
Pentane	-200 à 20	
Alcool éthylique	-110 à 100	1,17
Toluène	-90 à 100	1,03
Créosote - Alcool éthylique	-10 à 200	
Mercure	-38 à +650	0,182
Mercure - Thallium	-58 à +650	
Mercure - Gallium	0 à 1 000	

Tableau 1 – Liquides thermométriques

2.2.4 Nature de l'enveloppe

En fonction de la température à mesurer, il y a lieu de choisir le matériau constituant l'enveloppe du thermomètre :

- Verre d'Iena jusqu'à 450 °C;
- Verre Supremax jusqu'à 630 °C;
- Silice pure fondue jusqu'à 1 000 °C.

2.2.5 Colonne émergente

En dehors des réglages classiques (zéro, échelle), on doit pensé à corriger la mesure de la température si il est impossible d'immerger complètement la colonne (fig. 3). Dans les cas (a) et (c) la colonne de liquide

Figure 3 – Mesure de température dans d'un bain

thermométrique est totalement immergée dans l'enceinte dont on mesure la température. La dilatation de ce liquide se fait donc pleinement.

Dans le cas (b) la colonne de liquide est immergée jusqu'à la graduation n, dans l'enceinte de température inconnue (fig. 4). La partie de la colonne située entre n et h est en contact avec la température ambiante. Le volume correspondant à une graduation est noté v. Le volume à la température ambiante est : $V = (h-n) \times v$. Ce volume est à la température ambiante, donc il en résulte un défaut de dilatation de : $\delta V = V \times \alpha \times (x-t) = (h-n) \times v \times \alpha \times (x-t)$.

La correction à apporter est donc :

$$\delta h = \frac{\delta V}{v} = (h - n) \times \alpha \times (x - t) \tag{4}$$

En réalité, la partie émergée n'est pas à la température ambiante. Dans la pratique on prend les 7/10 de la correction calculée. Cette correction n'étant pas très précise, on essayera, dans la mesure du possible, de positionner au mieux le thermomètre (cas a ou c).

Figure 4 - Colonne emergente

2.3 Thermomètres à dilatation de gaz

2.3.1 Rappel

L'équation d'un gaz parfait est : $PV = nR\theta$, avec :

- n: Nombre de moles;
- $R = 8.31 J.mol^{-1}.K^{-1}$;
- θ : Température en K;
- P: Pression en Pa.

On voit donc que, si l'on enferme une certaine quantité de gaz dans une enveloppe de volume constant V, la pression développée par le gaz est proportionnelle à la température absolue : P=RT/V, avec le rapport R/V constant.

2.3.2 Principe

Sous une forme schématisée, un thermomètre à gaz est composé d'une sonde (A), formant une enveloppe dans laquelle est enfermé le gaz thermométrique (fig. 5). Cette sonde est reliée par un tube capillaire de raccordement à l'extrémité (B) d'un tube de Bourdon, appelée spirale de mesure. Cette extrémité est fixe. La longueur du tube de raccordement ne doit pas excéder 100 mètres. Sous l'effet de la température du milieu dans lequel la sonde est placée, la pression du gaz va varier, ce qui modifiera l'équilibre de l'extrémité libre du tube de Bourdon. Cette variation de pression se traduira par un mouvement de rotation de l'index indicateur qui se déplacera devant un cadran portant des graduations thermométriques.

Les gaz le plus souvent employés sont fournis tableau 2. Remarques :

- La température critique, c'est la température maximale à laquelle un gaz ou une vapeur peut être liquéfié par variation de pression uniquement.
- La différence de hauteur entre la sonde sensible et la spirale de mesure est sans effet, puisque la masse du gaz est négligeable.

Figure 5 – Thermomètre à gaz

Tableau 2	- Gaz	employés	dans le	s t	hermomètres
-----------	-------	----------	---------	-----	-------------

Gaz	Température critique
hélium	-267,8°C
hydrogène	-239,9°C
azote	-147,1 °C
gaz carbonique	-31,1°C

- Le gaz doit être soigneusement séché avant l'emploi et être utilisé dans des conditions qui le rapprochent de l'état parfait.
- L'avantage des thermomètres à gaz est leur précision, 1% en mesures industrielles. Mais leur sonde est d'assez grande dimension. Ils permettent le repérage des très basses températures. Certains thermomètres à gaz sont de véritables instruments de précision, auxquels on a recours pour les déterminations de référence de la température. Le thermomètre à hydrogène en est l'exemple classique.

2.4 Thermomètres à tension de vapeur

2.4.1 Définition

On appelle tension de vapeur d'un liquide, la pression sous laquelle ce liquide est en équilibre thermodynamique avec sa phase vapeur. La tension de vapeur n'est fonction que de la température d'un liquide donnée. À une température correspond pour le liquide choisie une pression de vapeur fixe.

2.4.2 Principe

La mesure de la tension de vapeur d'un liquide permet donc de connaître sa température. La mesure thermométrique se fait par l'intermédiaire d'une mesure de pression. Les thermomètres à tension de vapeur sont très sensibles. Mais la graduation n'est pas linéaire, comme le montre la courbe de tension de vapeur figure 6. La réalisation la plus simple est le thermomètre à simple remplissage (fig. 7). L'élément sensible est une sonde analogue à celle du thermomètre à gaz, mais le tube de raccordement plonge dans la sonde. Celle-ci et le tube de raccordement sont garnis de liquide vaporisable. Lorsque la sonde est placée dans une enceinte chaude, une partie du liquide se vaporise. Un équilibre liquide/vapeur s'établit, fonction de la température. En même temps, la pression a augmenté pour se fixer à la valeur de la tension de vapeur du liquide. Cette pression est transmise par le liquide au manomètre de mesure qui agit sur l'élément

Figure 6 – Tension de vapeur saturante en fonction de la température (eau)

 ${\bf Figure}~{\bf 7}~-{\bf Thermom\`etre}~\grave{\bf a}~{\bf simple}~{\bf remplissage}$

indicateur. La vaporisation du liquide se faisant toujours au point le plus chaud du système clos, les capteurs à simple remplissage ne sont utilisables que si le bulbe est à une température supérieure à la température ambiante (sinon, la vaporisation se ferait au niveau du capteur de pression). Pour pallier cet inconvénient et permettre des mesures de températures inférieures et supérieures à la température ambiante, on utilise le bulbe à double remplissage (fig. 8). Le liquide évaporable est placé dans la zone médiane du bulbe. C'est un liquide transmetteur non évaporable qui est dans le fond du bulbe et dans l'ensemble capillaire - capteur de pression. Ce liquide est soit de l'huile, soit de la glycérine. Il transmet au manomètre la pression de la vapeur.

Figure 8 – Thermomètre à double remplissage

Liquide	Domaine d'utilisation	Domaine d'utilisation
	Température en °C	Pression en bars
Ammoniac	-20 à +60	2 à 25
Propane	0 à +100	5 à 45
Butane	+20 à +140	2 à 30
Chlorure d'éthyle	+30 à +180	2 à 50
Alcool méthylique	+60 à +220	1 à 53
Benzène	+80 à +280	1 à 43

Tableau 3 – Liquides de remplissage et domaine d'utilisation

Remarques:

- La position de la sonde par rapport au capteur de pression influence sur la mesure.
- L'ordre de grandeur de la classe de précision est 1%.

2.5 Thermomètres à dilatation de solide

2.5.1 Principe

Lorsqu'une tige métallique est portée à la température θ sa longueur varie. La relation entre sa longueur L et θ est :

$$L = Lo(1 + \alpha\theta) \tag{5}$$

avec:

- L la longueur de la tige à la température θ ;
- Lo la longueur de la tige à 0 °C;
- θ la température en °C;
- α le coefficient de dilatation linéaire du métal.

La dilatation linéaire du métal peut servir de grandeur thermométrique.

Quelques valeurs de α :

- 9×10^{-6} °C⁻¹ pour le platine;
- 30×10^{-6} ° C^{-1} pour le Zinc;
- 0.5×10^{-6} °C⁻¹ pour l'Invar.

2.5.2 Bilame

Une bilame thermique est constituée de deux bandes d'alliage dont les coefficients de dilatation sont très différents, soudées à plat sur toute leur surface (fig. 9). Lorsqu'une telle bande est soumise à une variation de température, les dilatations différentes des deux faces provoquent des tensions, il en résulte une incurvation de l'ensemble. La soudure des deux constituants doit être suffisamment intime pour que la zone de jonction soit mécaniquement aussi résistante que chacune des deux lames.

Figure 9 - Bilame

Exemple de constitution:

- Métal très dilatable : Alliage de fer;
- Métal peu dilatable : Invar

2.5.3 Pyromètre linéaire

La sonde est formée d'une gaine de silice dans laquelle est placé un barreau métallique dilatable. Une tige en élinvar (Ferronickel dérivé de l'invar auquel on a ajouté du chrome pour assurer un module d'élasticité constant) transmet la dilatation du barreau à un système amplificateur permettant la lecture (ou la transmission) (fig. 10).

Figure 10 - Pyromètre linéaire

3 Thermomètres électriques

3.1 Présentation

Les capteurs qui précèdent sont à lecture directe et sont peut utilisés dans les régulations industrielles. De plus, à l'exception du thermomètre à gaz l'indication de température est proche du lieu de mesure. Les capteurs électriques qui suivent auront l'avantage d'une plus grande souplesse d'emploi (information transmissible, enregistrement) tout en gardant une précision suffisante pour les emplois industriels et beaucoup d'emplois de laboratoire. On les rencontrera dans le milieu industriel avec une structure proche de la figure 11.

Figure 11 – Canne pyrométrique

On décompose les capteurs de température en deux sous catégorie :

- Les capteurs passif, à résistance ou thermistance;
- Les capteurs actifs, à couple thermoélectrique.

3.2 Thermomètres à résistance et à thermistance

Le fonctionnement des thermomètres à résistance et thermistances est basé sur le même phénomène physique; l'influence de la température sur la résistance électrique d'un conducteur. La mesure d'une température est donc ramenée à la mesure d'une résistance. Comme la caractéristique résistance/température est de nature différente pour un métal et un agglomérat d'oxydes métalliques, deux cas sont distingués. On parlera de thermomètre à résistance d'une part et de thermistance d'autre part.

3.2.1 Thermomètres à résistance

Le conducteur est un élément métallique. On peut établir une relation bijective entre la résistance R et la température θ et ainsi mesurer θ en mesurant R. Cette relation est de la forme :

$$R = Ro(1 + a\theta + b\theta^2 + c\theta^3) \tag{6}$$

avec θ la température en °C, Ro la résistance à 0 °C, a, b et c des coefficients positifs, spécifiques au métal C'est le platine qui est le matériaux le plus utilisé. Un exemple d'élément sensible est donné pour une

Métal	Résistivité à 0°C en $\mu\Omega$	Point de fusion en °C	Domaine d'emploi en °C	$\frac{R(100^{\circ}C)}{R(0^{\circ}C)}$
Cuivre	7	1 083	-190 à 250	1,427
Nickel	6,38	1 453	-60 à 180	1,672
Platine	9,81	1 769	-250 à 1100	1,392

Tableau 4 – métaux utilisés

sonde de platine, sur la figure 12. La sonde Pt
100 est une sonde platine qui a une résistance de 100 Ω pour

Figure 12 - Sonde PT100

une température de 0 °C. (138,5 Ω pour 100 °C)

3.2.2 Thermomètres à thermistance

Une thermistance est un agglomérat d'oxydes métalliques frittés, c'est-à-dire rendus compacts par haute pression exercée à température élevée, de l'ordre de 150 bars et 1000 °C. La composition d'une thermistance peut-être, par exemple :

- Fe2O3 (oxyde ferrique);
- MgAl2O4 (aluminate de magnésium);
- Zn2TiO4 (titane de zinc).

La résistance électrique d'une thermistance est très sensible à l'action de la température. Il existe deux types de thermistance, les CTN à coefficient de température négatif, et les CTP à coefficient de température positif. La loi de variation est de la forme :

$$R = a \times \exp \frac{b}{\theta} \tag{7}$$

Figure 13 – Résistance en fonction de la température pour une thermistance de type CTP BH et une sonde platine Pt100.

Un second avantage des thermistances est leur faible encombrement. On les fabrique sous forme de petits cylindres (d = 1 à 12 mm, L = 5 à 50 mm) de disques, de perles. La variation de résistance des thermistances dépend des matériaux utilisés. Leur domaine d'utilisation va de -80°C à +700°C avec une précision de 0,1 à 0,5 degré. Les thermistances ne présentent pas le phénomène de polarisation et peuvent être traversées indifféremment par un courant continu ou alternatif.

Figure 14 - Thermistances

L'emploi des thermistances a donc des avantages de sensibilité et de faible encombrement, mais la loi de variation de la résistance en fonction de la température n'est pas linéaire.

3.2.3 Montage de mesure

La mesure de la température se ramène donc à une mesure de résistance. La méthode la plus simple (fig. 15), consiste à alimenter la résistance avec un courant I et de mesurer la tension aux bornes de la résistance (on rappelle : $U = R \times I$). Mais, dans ce montage, la tension V dépend aussi des résistances de ligne r. Pour

Figure 15 – Montage deux fils avec source de courant

éviter cela, on ajoute deux fils aux bornes de la résistance, on utilise alors une résistance avec quatre fils (fig. 16). Ces deux montages ne permettent pas de supprimer simplement la composante continue $R(0^{\circ}C)$

Figure 16 – Montage quatre fils avec source de courant

de la résistance de mesure R. On préfère généralement utiliser un montage utilisant un pont de Weatstone (fig. 17). Si on néglige les résistances r et si on note $R(T) = R(0^{\circ}C) + \alpha T$ on démontre :

$$V = \frac{\alpha T}{2Ro + \alpha T} \times \frac{E}{2} \tag{8}$$

Pour diminuer l'influence des résistances de ligne, on utilise un montage trois fils (fig. 18), ou mieux un montage quatre fils (fig. 19).

On trouve donc, d'après la norme CEI 751 les schémas de connections du tableau 5.

3.2.4 Influence de la mesure sur la température

La recherche d'une bonne sensibilité de mesure conduit à faire traverser la résistance par un courant relativement important. Cependant, celui-ci risque alors de provoquer par effet Joule un échauffement du

T = température à mesurer R = résistance fonction de la température

 $R(0^{\circ}C)$ = valeur de R à 0 °C

r = résistance de ligne

E = Source de tension

V = Tension image de la

température

Figure 17 - Montage avec pont Weatstone

T = température à mesurer R = résistance fonction de la température

 $R(0^{\circ}C)$ = valeur de R à 0 °C

r = résistance de ligne

E = Source de tension

V = Tension image de la température

Figure 18 - Montage trois fils

T = température à mesurer R = résistance fonction de la

température

 $R(0^{\circ}C)$ = valeur de R à 0 °C

r = résistance de ligne

E = Source de tension

V = Tension image de la

température

Figure 19 - Montage quatre fils

Tableau 5 – Schémas de connections d'après la norme CEI 751

capteur qui peut cesser d'être négligeable et qui en tous cas doit pouvoir être estimé et minimisé : c'est pourquoi les courants de mesure sont généralement de l'ordre du mA et rarement supérieurs à 10 mA. La mesure des très basses températures ne se fera pas à l'aide d'un thermomètre à résistance ou thermistance.

3.3 Thermocouples

3.3.1 Principes

Les phénomènes thermoélectriques dans les chaînes de conducteurs métalliques ou semi-conducteurs décrivent les conversions d'énergie qui s'opèrent en leur sein, effet Joule mis à part, entre énergie d'agitation thermique et énergie électrique des charges en mouvement. À la jonction de deux conducteurs A et B différents

Figure 20 - Effet Peltier

mais à la même température, s'établit une différence de potentiel qui ne dépend que de la nature des conducteurs et de leur température θ (effet Peltier).

$$V_M - V_N = P_{AB}^{\theta} \tag{9}$$

La loi de Volta nous dit que dans un circuit isotherme, constitué de conducteurs différents, la somme des f.e.m. de Peltier est nulle. On a donc :

$$P_{AB}^{\theta} + P_{BC}^{\theta} = P_{AC}^{\theta} \tag{10}$$

Entre deux points M et N à température différente, à l'intérieur d'un conducteur homogène A s'établit une force électromotrice qui ne dépend que de la nature du conducteur et des températures au points M et N (Effet Thomson) :

$$T_A^{\theta_M \theta_N} = \int_{\theta_N}^{\theta_M} h_A \times d\theta \tag{11}$$

C'est la force électromotrice de Thomson; h_A coefficient de Thomson du conducteur A est une fonction de la température. Soit un circuit fermé, constitué de deux conducteurs A et B dont les jonctions sont à

Figure 21 – Effet Thomson

Figure 22 – Effet Seebeck

des températures $\theta 1$ et $\theta 2$. Ce circuit constitue un couple thermoélectrique. Ce couple est le siège d'une force électromotrice dite de Seebeck qui résulte des effets de Peltier et de Thomson qui s'y produisent.

$$S_{AB}^{\theta_2\theta_1} = T_B^{\theta_2\theta} + P_{AB}^{\theta_2} + T_A^{\theta_1\theta_2} + P_{BA}^{\theta_1} + T_B^{\theta\theta_1}$$
(12)

$$S_{AB}^{\theta_2\theta_1} = T_B^{\theta_2\theta_1} - T_A^{\theta_2\theta_1} + P_{AB}^{\theta_2} - P_{AB}^{\theta_1}$$
(13)

On démontre (lois de composition):

$$S_{AC}^{\theta_2\theta_1} = S_{AB}^{\theta_2\theta_1} + S_{BC}^{\theta_2\theta_1}$$

$$S_{AB}^{\theta_3\theta_1} = S_{AB}^{\theta_3\theta_2} + S_{AB}^{\theta_2\theta_1}$$
(14)

$$S_{AB}^{\theta_3\theta_1} = S_{AB}^{\theta_3\theta_2} + S_{AB}^{\theta_2\theta_1} \tag{15}$$

3.3.2 **Application**

Un thermocouple fournie une tension qui est fonction de deux températures et de sa nature. Pour les thermocouples normalisés, on dispose de tables de références qui fournissent la F.E.M. en fonction d'une température, l'autre, dite de référence, est fixé à 0°C. Pour déterminer la F.E.M. fournie par un thermocouple, on utilisera donc la table correspondante et la formule de compositions des température.

Tableau 6 – Thermocouple Fer/Cuivre-Nickel - Tension en μV - CEI 584.1 (1995)

	0	1	2	3	4	5	6	7	8	9
0	0	50	101	151	202	253	303	354	405	456
10	507	558	609	660	711	762	814	865	916	968
20	1019	1071	1122	1174	1226	1277	1329	1381	1433	1485

Exemple: On cherche la FEM fournie par le thermocouple pour le couple de température: (4°C;27°C). On peut représenter les données comme sur la figure 23 (Attention : relation de type complexe, représentée ici par un tableau).

Figure 23 – Relation Température/FEM pour le thermocouple considéré

La FEM est égale à $(1381\mu V - 202\mu V)$ soit $1179\mu V$.

3.3.3 Les différents types de thermocouples

Pour la réalisation d'un couple thermoélectrique on choisit des fils utilisables dans la zone de température attendue pour la mesure et présentant des caractéristiques de précision et de sensibilité convenables. On tient compte également de l'action corrosive du milieu ambiant (atmosphère oxydante, réductive, sulfureuse, etc...) sur les constituants du couple pour arrêter son choix. Le tableau 7 donne les caractéristiques simplifiée des thermocouples les plus courants définies par la norme CEI 584.1.

3.3.4 Câbles de compensation

On utilise les câbles de compensation dans deux cas:

- Lorsque les métaux formant le couple sont d'un prix très élevé (métaux précieux notamment);
- Lorsque la distance entre la prise de température et la jonction de référence est grande;

Tableau 7 – Caractéristiques simplifiée de thermocouples	Tableau 7	- Caractéristiques	simplifiée de	ther mocouples
--	-----------	--------------------	---------------	----------------

Code	Couple	Usage continue	Précision	Remarques
littéral		Usage intermittent	en %	
K	Nickel - Chrome	0°C à 1100°C	1,5	Bien adapté aux
	Nickel - Aluminium	-180°C à 1300°C		milieux oxydants
Т	Cuivre	-185°C à 300°C	0,5	
	Cuivre - Nickel	$-250^{\circ}\text{C} \text{ à } 400^{\circ}\text{C}$		
J	Fer	20°C à 700°C	1,5	Pour milieu réducteur
	Cuivre - Nickel	-180°C à 750°C		
Е	Nickel - Chrome	0°C à 800°C	1,5	Utilisation sous vide ou
	Cuivre - Nickel	-40°C à 900°C		milieu légèrement oxydant
R	Platine - 13% Rhodium	0°C à 1600°C	1	
	Platine	0°C à 1700°C		
S	Platine - 10% Rhodium	0°C à 1550°C	1	Résistance à l'oxydation
	Platine	0°C à 1700°C		à la corrosion

Figure 24 – FEM en fonction de la température de thermocouples

 ${\bf Figure} \ {\bf 25} \ - {\rm C\^ables} \ {\rm de \ compensation}$

Il convient alors de réduire la résistance du circuit lorsque la résistance interne de l'appareil de lecture est plus élevée (galvanomètre). Le schéma de câblage de principe est représenté sur la figure 25.

On limite au minimum la longueur des fils A et B du thermocouple. La liaison entre la jonction intermédiaire à température θ_2 et la jonction de référence à température θ_{ref} est assurée par les câbles de compensation A' et B' associés aux métaux A et B respectivement. La condition à respecter est que la force électromotrice aux bornes des conducteurs A' et B' réunis en couple soit la même que celle du couple (A,B). Cette condition s'exprime par l'équation :

$$S_{AB}^{\theta_2\theta_{ref}} = S_{A'B'}^{\theta_2\theta_{ref}} \tag{16}$$

En conclusion, les câbles de compensation A' et B' ne modifient pas la tension délivrée par le couple AB à condition que :

- Les jonctions AA' et BB' soient à même température θ_2 ;
- Les couples A'B' et AB aient la même force électromotrice de Seebeck entre θ_2 et 0 °C.

Au-delà de la jonction de référence et jusqu'à l'appareil de mesure, la liaison peut être assurée par des fils de cuivre moins résistants et beaucoup moins chers que les fils du thermocouple et les câbles de compensation eux-mêmes. Il est important évidemment d'associer convenablement les câbles de compensation et les thermocouples correspondants. Une erreur sur les polarité introduirait une erreur systématique considérable puisque la compensation ne jouerait pas. La nature des câbles de compensation les plus courants est indiquée au tableau 8 en regard des thermocouples correspondants.

Fils de	compensation	Fils thermoco	ouples
Positif	Négatif	Positif	Négatif
Cuivre	Constantan T	Cuivre	Constantan
Fer	Constantan J	Fer	Constantan
Cuivre	Constantan V	Chromel	Alumel
Cuivre	Cupronickel S	Platine Rhodié 10%	Platine

Tableau 8 – Fils de compensation

Pour le couple [Fer/Constantan], on utilise des câbles de compensation en [Fer/Constantan] qui sont meilleur marché que les thermocouples car l'objet d'une sélection moins sévère. Il suffit en effet que les câbles de compensation aient la FEM convenable dans la plage limitée où se situera θ_2 .

3.3.5 Méthodes de mesure

C'est la FEM de Seebeck dont le thermocouple est le siège qui fournit l'information de température cherchée. Elle ne peut être connue avec précision que si l'on minimise la chute ohmique de tension due à la circulation d'un courant dans les éléments du thermocouple et les fils de liaison : leur résistance est en effet généralement mal connue car fonction de la température ambiante d'une part et de la température à mesurer d'autre part.

Deux méthodes sont généralement employées :

- La mesure à l'aide d'un millivoltmètre qui permet de minimiser la chute ohmique si sa résistance interne est élevée.
- La méthode d'opposition qui autorise une mesure rigoureuse puisque dans ce cas le courant traversant le thermocouple est annulé.

Méthode d'opposition :

On place une source de tension variable face à la FEM à mesurer. Quand le courant est nulle, la source variable à la même tension que la FEM à mesurer (fig. 26).

Figure 26 – Mesure en opposition

3.3.6 Comparaison

Le thermocouple à une capacité calorifique plus faible (temps de réponse plus court) et une température de fonctionnement (jusqu'à 2700 °C) plus élevée que les capteurs à variation de résistance. De plus, grâce à la mesure par opposition, le thermocouple est utilisé pour les basses températures.

4 Les pyromètres optiques

Figure 27 – Pyromètre optique

4.1 Présentation

La pyrométrie optique est une méthode de mesure de la température basée sur la relation entre la température d'un corps et le rayonnement optique (infrarouge ou visible) que ce corps émet. Les capteurs utilisés sont donc des capteurs optiques, photo-électriques ou thermiques. L'intérêt de la pyrométrie optique est de permettre la détermination d'une température sans contact avec l'objet; c'est donc une méthode appropriée quand les conditions expérimentales n'autorisent pas l'utilisation de capteurs thermométriques classiques :

- Température très élevée (supérieure à 2000 °C);
- Mesures à grande distance;
- Environnement très agressif;
- Pièce en mouvement;
- Localisation des points chauds.

4.2 Principes physiques

Tout corps émet spontanément et en permanence un rayonnement électromagnétique dont le spectre continu a une répartition énergétique fonction de la température : c'est le rayonnement thermique. Les lois de cette émission sont d'abord établies pour un corps idéal, le corps noir, caractérisé par une absorption totale de tout rayonnement incident ; le rayonnement thermique d'un corps réel, selon son pouvoir absorbant, se rapproche plus ou moins de celui du corps noir.

4.2.1 Lois du rayonnement thermique du corps noir

On définit :

- L'émittance E_n : C'est la puissance totale rayonnée dans un hémisphère, par unité de surface de l'émetteur.
- L'émittance spectrale $E_{\lambda,n}$: C'est la densité spectrale de puissance rayonnée dans un hémisphère, par unité de surface de l'émetteur, à une longueur d'onde λ ;

La loi, de Planck est la loi fondamentale de l'émission thermique; elle donne l'émittance spectrale d'une source (en $W.m^{-3}.sr^{-1}$))qui est un corps noir en fonction de la longueur d'onde et de la température absolue θ de cette source :

$$E_{\lambda,n}(\theta) = \frac{1}{\pi} \times \frac{C_1 \times \lambda^{-5}}{\exp(\frac{C_2}{\lambda \theta}) - 1}$$
(17)

avec:

- $C_1 = 2\pi \ hc^2 = 3{,}74 \ 10^{-16} \ Wm^2 \ et \ C_2 = \frac{hc}{k} = 14{,}4 \ 10^{-3} \ mK;$
- h: constante de Planck = 6,626 $10^{-34} J.s$;
- c: vitesse de la lumière = 2,99 $10^8 m/s$;
- k: constante de Boltzmann = 1,381 $10^{-23}J/K$;

Figure 28 – Emittance spectrale en fonction de la longueur d'onde pour diverses températures

Sur la figure 28, on remarque l'augmentation rapide de l'émittance avec la température et le déplacement du spectre de l'infrarouge vers le visible (de 0,4 μm à 0,8 μm) au fur et à mesure que la température augmente.

Remarques:

- En dessous de 500 °C, le rayonnement thermique est quasi totalement dans le domaine infrarouge;
- Dans le cas du soleil, (T = 5500 K,) lmax correspond au maximum de sensibilité de l'oeil.

4.2.2 Rayonnement thermique d'un corps réel

L'émittance spectrale d'une cible réelle E, est liée à l'émittance spectrale du corps noir $E_{\lambda,n}$ par la relation :

$$E_{\lambda}(\theta) = e(\lambda, \theta) \times E_{\lambda, n}(\theta) \tag{18}$$

Avec $e(\lambda, T)$ est l'émissivité à la longueur d'onde λ et à la température θ du matériau constituant la cible. L'émissivité d'un corps est égale à son coefficient d'absorption (loi de Kirchhoff) : sa valeur, égale à 1 pour le corps noir est inférieure à 1 pour un corps réel et dépend, en particulier; de sa nature et de son état de surface. L'incertitude sur les valeurs exactes de $e(\lambda, T)$ est l'une des principales sources d'erreurs potentielles en pyrométrie optique.

4.3 Principes généraux des pyromètres optiques

Suivant qu'on utilise les grandeurs spectrales à une longueur d'onde déterminée ou les grandeurs intégrales sur l'ensemble du spectre visible et infrarouge, les résultats obtenus n'ont pas la même signification physique.

On doit distinguer:

- Les pyromètres monochromatiques;
- Les pyromètres bichromatiques;
- Les pyromètres mesureurs d'énergie.

Un dispositif optique forme l'image de la source S sur la surface S' du récepteur avec juxtaposition d'une source de référence dans les appareils de zéro.

4.4 Le pyromètre optique à disparition de filament

Il s'agit d'un pyromètre monochromatique ($\lambda=0,65\mu m$). L'image du filament de tungstène d'une lampe à incandescence est superposée à l'image de la cible. Le courant de chauffage If du filament est ajusté de façon que sa brillance devenant égale à celle de la cible, les deux images se confondent. Un étalonnage préalable au moyen d'un corps noir (If = F(0,65 μm , θ) permet connaissant l'émissivité e(0,65 μm , θ) de la cible d'en déduire la température θ par la relation précédente.

Tableau 9	– Limite	d'emploi	des	capteurs	photoélectrique	en	pyrométrie opti	que

Capteurs	Température inférieure mesurable
Photodiodes Si	$600~^{\circ}\mathrm{C}$
Photodiodes Ge	200 °C
Photorésistance Pb S	100 °C
Photorésistance Pb Se	50 °C
Photorésistance In Sb	0 °C
Photorésistance Hg Cd Te	-50 °C

4.5 Pyromètres bichromatiques

Ce pyromètre peut être considéré comme un double pyromètre monochromatique exploitant deux plages voisines du rayonnement thermique centrées sur des longueurs d'onde λ_1 et λ_2 et de même largeur $d\lambda$. Si l'on note $s(\lambda)$ la sensibilité du capteur à la fréquence λ , $k(\lambda)$ le coefficient d'absorption du milieu, l'énergie électrique fournie par le détecteur est :

- pour la plage centrée sur $\lambda_1: E_{e1}(\lambda_1) = s(\lambda_1) \times p(\lambda_1) \times e(\lambda_1) \times E_{\lambda_1,n}(T)$;
- pour la plage centrée sur $\lambda_2: E_{e1}(\lambda_2) = s(\lambda_2) \times p(\lambda_2) \times e(\lambda_2) \times E_{\lambda_1,n}(T)$;

Dans la mesure où les longueurs d'onde λ_1 et λ_2 sont voisines :

$$e(\lambda_1, \theta) \times s(\lambda_1) \times p(\lambda_1) = e(\lambda_2, \theta) \times s(\lambda_2) \times p(\lambda_2)$$
 (19)

Le rapport des signaux délivrés par le détecteur devient :

$$\frac{E_{\lambda_1}(\theta)}{E_{\lambda_2}(\theta)} = \frac{E_{\lambda_1,n}(\theta)}{E_{\lambda_2,n}(\theta)} = \frac{\lambda_2^5}{\lambda_1^5} \times \frac{\exp(\frac{C_2}{\lambda_2\theta} - 1)}{\exp(\frac{C_2}{\lambda_1\theta} - 1)}$$
(20)

Ce rapport, calculé analogiquement ou par logiciel, ne dépend que de la température θ de la cible, c'est le grand intérêt de ce type de pyromètre.

4.6 Pyromètres mesureurs d'énergie

L'ensemble du spectre de rayonnement thermique de la cible (en fait une grande partie) est reçu par un détecteur à large bande, de type thermique. En pratique le pyromètre est étalonné dans ses conditions d'emploi à l'aide d'un thermocouple lorsque cela est possible.

EXERCICES

Exercice 1 Les différentes unités de température

- a) Exprimer les températures suivantes en °C, °F et °K :
- $-\theta_1 = 22 \text{ K};$
- $-\theta_2 = 22 \, ^{\circ}\text{C};$
- $-\theta_3 = 22 \, {}^{\circ}\text{F}.$

Lorsqu'une tige métallique est portée à la température θ , sa longueur varie. La relation entre sa longueur L et θ est : $L = Lo(1 + \lambda \theta_c)$. Avec L et Lo en m, θ_c en $^{\circ}C$ et λ de $^{\circ}C^{-1}$.

b) Exprimer L en fonction de Lo, λ et θ_f , pour θ_f en $^{\circ}F$.

Exercice 2 Mesure de température par thermocouple

Pour mesurer la température d'un bain de liquide à 200 $^{\circ}C$, on utilise un thermocouple de type T, dont on fournit les caractéristiques sur l'annexe 34 page 34. La température de la tète de canne varie entre 50 $^{\circ}C$ et 100 $^{\circ}C$. On utilise, une boite thermostatée à 20 $^{\circ}C$, pour la jonction froide du thermocouple. On utilise un transmetteur 4-20 mA pour transmettre la température.

- a) Faites le schéma d'installation de l'ensemble canne pyrométrique, fils de liaison, boite thermostatée, transmetteur (donnez tous les détails utiles : nature des fils ...)
- b) Quelle est la tension fournie U_{200} par le thermocouple pour une température de 200 °C?
- c) Quelle est la sensibilité du thermocouple en $mV/^{\circ}C$ autour du point de fonctionnement?
- d) On règle le transmetteur pour avoir une gamme de mesure de 160 °C à 240 °C. Tracez la caractéristique courant i en fonction de la température à mesurer θ du transmetteur.
- e) Quelle est la valeur du décalage du zéro du transmetteur (en mV)?
- f) Quelle est la valeur du réglage de la sensibilité en mA/mV du transmetteur?
- g) Quelle est la sensibilité en mA/°C du transmetteur?

Exercice 3 Mesure de température par sonde PT100

Pour mesurer la température d'un liquide, comprise entre $50 \, ^{\circ}C$ et $70 \, ^{\circ}C$ on utilise une sonde PT100. A l'aide des informations fournies en annexe 35 page 35, répondez aux questions suivantes.

- a) Quelle est la valeur maximale de la résistance R_m que peut prendre dans notre application la sonde PT100?
- b) Même question pour la valeur minimale.
- c) On considère que la résistance de la sonde PT100 est une fonction linéaire de la température entre les deux points calculés ci-avant. Exprimez la valeur de la résistance R en fonction de la température θ .
- d) Quelle est alors la sensibilité m en $\Omega/^{\circ}C$ de la sonde PT100. Pour mesurer la température on utilise un pont comme présenté sur la figure 29.
- e) Exprimer la valeur de U en fonction de R1, R2 et Rm.
- f) Si on suppose que la variation de la résistance des fils de liaisons n'est pas négligeable (en traits fins sur la figure 29), donner le montage que vous préconisez pour les figures 30 et 31.

Figure 29 - Pont de mesure

Figure 30 – Montage 3 fils

Figure 31 - Montage 4 fils

Exercice 4 Lunette Infratherm

Prenez connaissance de la documentation technique, fournie en annexe 3 page 30, concernant la lunette Infratherm DTM290C et répondez aux questions ci-dessous.

- a) Quelle est la température la plus haute et la plus basse pouvant être mesurées?
- b) Quelle est la classe de l'appareil?
- c) Quel est le temps de réponse de l'appareil?
- d) Sous quelle forme peut être disponible l'information température de sortie?
- e) Quelle est la sensibilité de la sortie analogique?
- f) Comment est prise en compte la nature des différents matériaux dont on souhaite mesurer la température?
- g) Quelle est la valeur de la surface mesurée à 1 m?

Exercice 5 Lunette Scrutherm 2

Prenez connaissance de la documentation technique, fournie en annexe 4 page 31 et répondez aux questions ci-dessous.

- a) Quelle est la température la plus haute et la plus basse pouvant être mesurées?
- b) Quel est le temps de réponse de l'appareil?
- c) Quelle est l'information délivrée et sous quelle forme?
- d) Choisissez un tube de visé, si l'on veut mesurer une surface inférieure à 10 cm^2 à 2,5 m.

Annexe 1

Couple thermoélectrique : cuivre/cuivre-nickel TYPE T : force électromotrice en fonction de la température - jonction de référence à 0°C force électromotrice en millivolts absolus

•c	0	1	2	3	4	5	6	7	8	9	10	•c
0	0.000	0.039	0.078	0.117	0.156	0.195	0.234	0.273	0.312	0.351	0.391	0
10	0.391	0.430	0.470	0.510	0.549	0.589	0.629	0.669	0.709	0.749	0.789	10
20	0.789	0.830	0.870	0.911	0.951	0.992	1.032	1.073	1.114	1.155	1.196	20
30	1.196	1.237	1.279	1.320	1.361	1.403	1.444	1.486	1.528	1.569	1.611	30
40	1.611	1.653	1.695	1.738	1.780	1.822	1.865	1.907	1.950	1.992	2.035	40
70	1.011	1.000	20073	10.50	20.00					_		
50	2.035	2.078	2.121	2.164	2.207	2.250	2.294	2.337	2.380	2.424	2.467	50
60	2.467	2.511	2.555	2.599	2.643	2.687	2.731	2.775	2.819	2.864	2.908	60
70	2.908	2.953	2.997	3.042	3.087	3.131	3.176	3.221	3.266	3.312	3.357	70
80	3.357	3.402	3.447	3.493	3.538	3.584	3.630	3.676	3.721	3.767	3.813	80
90	3.813	3.859	3.906	3.952	3.998	4.044	4.091	4.137	4.184	4.231	4.277	90
70	3,013	3.027	34700	34772	30,70			. •		-	-	_
100	4.277	4.324	4.371	4.418	4.465	4.512	4.559	4.607	4.654	4.701	4.749	100
110	4.749	4.796	4.844	4.891	4.939	4.987	5.035	5.083	5.131	5.179	5.227	110
120	5.227	5.275	5.324	5.372	5.420	5.469	5.517	5.566	5.615	5.663	5.712	120
130	5.712	5.761	5.810	5.859	5.908	5.957	6.007	6.056	6.105	6.155	6.204	130
140	6.204	6.254	6.303	6.353	6.403	6.452	6.502	6.552	6.602	6.652	6.702	140
140	6.204	0.274	0.000	0.333	04403	00472	00000					
150	6.702	6.753	6.803	6.853	6.903	6.954	7.004	7.055	7.106	7.156	7.207	150
160	7.207	7.258	7.309	7.360	7.411	7.462	7.513	7.564	7.615	7.666	7.718	160
	7.718	7.769	7.821	7.872	7.924	7.975	8.027	8.079	8.131	8.183	8.235	170
170		8.287	8.339	8.391	8.443	8.495	8.548	8.600	8.652	8.705	8.757	180
180	8.235 8.757	8.810	8.863	8.915	8.968	9.021	9.074	9.127	9.180	9.233	9.286	190
190	80131	8.010	0.003	0.717	0,,00	,,,,,,	20014	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
202	0.384	0 220	9.392	9.446	9.499	9.553	9.606	9.659	9.713	9.767	9.820	200
200	9.286	9.339	9.928	9.982	10.036	10.090	10.144	10.198	10.252	10.306	10.360	210
210	9.820	9.874	-	-	10.038	10.632	10.687	10.741	10.796	10.851	10.905	220
220	10.360	10.414	10.469 11.015	10.523 11.070	11.125	11.180	11.235	11.290	11.345	11.401	11.456	230
230	10.905	10.960		11.622	11.677	11.733	11.788	11.844	11.900	11.956	12.011	240
240	11.456	11.511	11.566	11.022	11.07	110,33	128.00	2200				- •
25.0	12 011	12 047	12.123	12.179	12.235	12.291	12.347	12.403	12.459	12.515	12.572	250
250	12.011	12.067 12.628	12.684	12.741	12.797	12.854	12.910	12.967	13.024	13.080	13.137	260
260	12.572	13.194	13.251	13.307	13.364	13.421	13.478	13.535	13.592	13.650	13.707	270
270	13.137	13.764	13.821	13.879	13.936	13.993	14.051	14.108	14.166	14.223	14.281	280
280	13.707	14.339	14.396	14.454	14.512	14.570	14.628	14.686	14.744	14.802	14.860	290
290	14.281	14.337	14.370	140424	144712	1.6510	1.0020					
300	14.860	14.918	14.976	15.034	15.092	15.151	15.209	15.267	15.326	15.384	15.443	300
310	15.443	15.501	15.560	15.619	15.677	15.736	15.795	15.853	15.912	15.971	16.030	310
320	16.030	16.089	16.148	16.207	16.266	16.325	16.384	16.444	16.503	16.562	16.621	320
330	16.621	16.681	16.740	16.800	16.859	16.919	16,978	17.038	17.097	17.157	17.217	330
		17.277	17.336	17.396	17.456	17.516	17,576	17.636	17.696	17.756	17.816	340
340	17.217	110211	11000	110000	2.4.50						-	-
350	17.816	17.877	17.937	17.997	18.057	18.118	18.178	18.238	18.299	18.359	18.420	350
	18.420	18.480	18.541	18.602	18.662	18.723	18.784	18.845	18.905	18.966	19.027	360
360	19.027	19.088	19.149	19.210	19.271	19.332	19.393	19.455	19.516	19.577	19.638	370
370	19.638	19.699	19.761	19.822	19.883	19.945	20.006	20.068	20.129	20.191	20.252	380
380 390	20.252	20.314	20.376	20.437	20.499	20.560	20.622	20.684	20.746	20.807	20.869	390
370	20.232	200314	20.576	204431		201200						•
400	20.869											400
400	20.009											

Annexe 2

Résistances thermométriques platine 100 Ω à 0°C relations température/valeur ohmique suivant NF C 42-321 relations température/valeur ohmique

°C	-0	-1	-2	-3	-4	-5	-6	-7	- 8	- 9
-200 -190 -180 -170 -160	18,49 22,80 27,08 31,32 35,53	22,37 26,65 30,90 35,11	21,94 26,23 30,47 34,69	21,51 25,80 30,05 34,27	21,08 25,37 29,63 33,85	20,65 24,94 29,20 33,43	20,22 24,52 28,78 33,01	19,79 24,09 28,35 32,59	19,36 23,66 27,93 32,16	18,93 23,23 27,50 31,74
-150	39,71	39,30	38,88	38,46	38,04	37,63	37,21	36,79	36,37	35,95
-140	43,87	43,45	43,04	42,63	42,21	41,79	41,38	40,96	40,55	40,13
-130	48,00	47,59	47,18	46,76	46,35	45,94	45,52	45,11	44,70	44,28
-120	52,11	51,70	51,29	50,88	50,47	50,06	49,64	49,23	48,82	48,41
-110	56,19	55,78	55,38	54,97	54,56	54,15	53,74	53,33	52,92	52,52
-100	60,25	59,85	59,44	59,04	58,63	58,22	57,82	57,41	57,00	56,60
- 90	64,30	63,90	63,49	63,09	62,68	62,28	61,87	61,47	61,06	60,66
- 80	68,33	67,92	67,52	67,12	66,72	66,31	65,91	65,51	65,11	64,70
- 70	72,33	71,93	71,53	71,13	70,73	70,33	69,93	69,53	69,13	68,73
- 60	76,33	75,93	75,53	75,13	74,73	74,33	73,93	73,53	73,13	72,73
- 50 - 40 - 30 - 20 - 10	80,31 84,27 88,22 92,16 96,09 100,00	79,91 83,88 87,83 91,77 95,69 99,61	79,51 83,48 87,43 91,37 95,30 99,22	79,11 83,08 87,04 90,98 94,91 98,83	78,72 82,69 86,64 90,59 94,52 98,44	78,32 82,29 86,25 90,19 94,12 98,04	77,92 81,89 85,85 89,80 93,73 97,65	77,52 81,50 85,46 89,40 93,34 97,26	77,13 81,10 85,06 89,01 92,95 96,87	76,73 80,70 84,67 88,62 92,55 96,48
°C	0	1	2	3	4	5	6	7	8	9
0	100,00	100,39	100.78	101,17	101,56	101,95	102,34	102,73	103,12	103,51
10	103,90	104,29	104,68	105,07	105,46	105,85	106,24	106,63	107,02	107,40
20	107,79	108,18	108,57	108,96	109,35	109,73	110,12	110,51	110,90	111,28
30	111,67	112,06	112,45	112,83	113,22	113,61	113,99	114,38	114,77	115,15
40	115,54	115,93	116,31	116,70	117,08	117,47	117,85	118,24	118,62	119,01
50	119,40	119,78	120,16	120,55	120,93	121,32	121,70	122,09	122,47	122,86
60	123,24	123,62	124,01	124,39	124,77	125,16	125,54	125,92	126,31	126,69
70	127,07	127,45	127,84	128,22	128,60	128,98	129,37	129,75	130,13	130,51
80	130,89	131,27	131,66	132,04	132,42	132,80	133,18	133,56	133,94	134,32
90	134,70	135,08	135,46	135,84	136,22	136,60	136,98	137,36	137,74	138,12
100	138,50	138,88	139,26	139,64	140,02	140,39	140,77	141,15	141,53	141,91
110	142,29	142,66	143,04	143,42	143,80	144,17	144,55	144,93	145,31	145,68
120	146,06	146,44	146,81	147,19	147,57	147,94	148,32	148,70	149,07	149,45
130	149,82	150,20	150,57	150,95	151,33	151,70	152,08	152,45	152,83	153,20
140	153,58	153,95	154,32	154,70	155,07	155,45	155,82	156,19	156,57	156,94
150	157,31	157,69	158,06	158,43	158,81	159,18	159,55	159,93	160,30	160,67
160	161,04	161,42	161,79	162,16	162,53	162,90	163,27	163,65	164,02	164,39
170	164,76	165,13	165,50	165,87	166,24	166,61	166,98	167,35	167,72	168,09
180	168,46	168,83	169,20	169,57	169,94	170,31	170,68	171,05	171,42	171,79
190	172,16	172,53	172,90	173,26	173,63	174,00	174,37	174,74	175,10	175,47
200	175,84	176,21	176,57	176,94	177,31	177,68	178,04	178,41	178,78	179,14
210	179,51	179,88	180,24	180,61	180,97	181,34	181,71	182,07	182,44	182,80
220	183,17	183,53	183,90	184,26	184,63	184,99	185,36	185,72	186,09	186,45
230	186,82	187,18	187,54	187,91	188,27	188,63	189,00	189,36	189,72	190,09
240	190,45	190,81	191,18	191,54	191,90	192,26	192,63	192,99	193,35	193,71
250	194,07	194,44	194,80	195,16	195,52	195,88	196,24	196,60	196,96	197,33
260	197,69	198,05	198,41	198,77	199,13	199,49	199,85	200,21	200,57	200,93
270	201,29	201,65	202,01	202,36	202,72	203,08	203,44	203,80	204,16	204,52
280	204,88	205,23	205,59	205,95	206,31	206,67	207,02	207,38	207,74	208,10
290	208,45	208,81	209,17	209,52	209,88	210,24	210,59	210,95	211,31	211,66
300	212,02	212,37	212,73	213,09	213,44	213,80	214,15	214,51	214,86	215,22
310	215,57	215,93	216,28	216,64	216,99	217,35	217,70	218,05	218,41	218,76
320	219,12	219,47	219,82	220,18	220,53	220,88	221,24	221,59	221,94	222,29

Annexe 3

INFRATHERM DTM290C

L'Infratherm DTM290C est un appareil à poste fixe, tout particulièrement adapté à des mesures sans contact. Spécialement utilisé pour contrôler des procédés de fabrication dynamiques où le contact physique est difficile voire même impossible, le DTM290C fournit une lecture fiable sur une large plage de température.

Par l'intermédiaire de sa sortie analo-

gique, il est capable d'informer le système de contrôle d'une chaîne de fabrication d'un éventuel problème de température, et ainsi d'automatiser la régulation de ce paramètre ou même de provoquer un arrêt du processus, et ce en temps réel puisque le temps de réponse de la sortie analogique est de 60 ms.

Cet aspect permet d'optimiser la qualité, la vitesse et par conséquent la rentabilité de la production.

Pour une application donnée, on installe l'appareil de manière à obtenir la mesure de température la plus précise. Par la suite, les mesures seront réalisées sans réglage.

Ce thermomètre infrarouge peut être associé à un système de refroidissement et de filtrage pour les mesures dans des ambiances à température élevée ou polluées.

L'Infratherm est conçu de telle sorte que sa mesure compense les éventuelles erreurs dues à l'émissivité des matériaux composant la cible ou dues à la radiation parasite induite par l'environnement.

Champ de visée:

Le capteur de l'Infratherm DTM290C comprend une lentille au Germanium qui focalise son champ de visée selon un petit angle. Ce capteur est particulièrement adapté à l'observation, à des distances relativement

grandes, de petites cibles. L'étroitesse du champ de visée est utile dans le but de réduire la surface angulaire lorsqu'on fait des mesures sur des surfaces cylindriques ou incurvées.

Caractéristiques:								
Gamme de température des cibles:	-10°C à +290°C							
Précision:	$\pm0,4\%$ de la pleine échelle							
Répétabilité :	±1℃							
Résolution:	1℃							
Mise à jour de l'afficheur:	10 fois/sec.							
Temps de réponse:	Affichage: 60 ms Sortie analogique: 60 ms							
Champ de visée du capteur:	10/1							
Sensibilité spectrale:	8 à 14 μm							
Sortie analogique:	10 mV /°C							

Applications:

Dans le domaine industriel, l'Infratherm sera utilisé par exemple pour la surveillance des processus de fabrication ou pour les bancs test d'un contrôle de qualité.

- Industrie automobile: Contrôle du processus de séchage de la peinture.
- Industrie du caoutchouc: Contrôle de la fabrication des pneus.
- Industrie du papier-carton.
- Industrie du composant, floppy-disc, disquette, cassette, film photo.
- Industrie agro-alimentaire, chimie, etc.

POUR COMMANDER:

Réf. 6517-02

Réf. 1006-20

Réf. 6004-01

Annexe 4

SCRUTHERM 2

APPLICATIONS

Chauffage • Climatisation • Bâtiment

- Echangeurs
- Conduits de chauffage et de refroidissement
- Fuites et obstructions de conduites
- Localisation de conduites
- Défaut d'isolation
- Infiltration d'air
- Pertes thermiques des murs et conduits
- Vérification des pièges à condensats
- Mesure des résistances thermiques
- · Registres d'air

Equipements électriques

- Moteurs
- Pallers
- · Relais, contacteurs
- Pupitres et tableaux de contrôle
- Blocs de jonctions boîtes de connexion borniers
- · Contrôles d'entrée réception d'équipement
- Transformateurs
- · Eclairages fluorescents (ballasts)
- Soudures
- Electronique de puissance
- · Boîtes à fusibles

Fabrication industrielle

- Chimie
- · Agro alimentaire
- Caoutchoucs et plastiques
- Pharmacie
- Pétrochimie
- Papeterie
- Cimenterie
- Fonderies
- Automobile

CARACTERISTIQUES

- Boîtier robuste
- Format de poche (1,5 \times 9 \times 13 cm)
- Réponse et affichage uitra-rapide : 0,1 seconde
- Sensibilité spectrale : 0,55 à 50 μm
- 5 tubes de visée interchangeables
- Mesure des différences de température
- Mesure des flux thermiques (watt/m²)
- Détection de 60°C à 200°C (550°C avec tubes de
- visée en option)
- Commutateur de sensibilité pour différences de 0,05°C; 0,5°C ou 5°C (0,3 W/m2; 3 W/m2 ou 30 W/m2)

Exemple: avec un tube de visée 200/1 la cible a un diamètre de 10 mm pour

Pour commander

Réf. 6004-01

 SCRUTHERM 2. livré en pochette de transport avec tube de visée pour champs; 3/1 et 25/1 pile de rechange et mode d'emploi.

Accessoires - Rechanges • Pile 9 V (6 LF 22)_

Lentilles Scrutherm

(tubes de visée pour champs 50/1,100/1 et 200/1) livrées en pochette de transport avec pare soleil et pièce de fixation pour montage du SCRUTHERM 2 sur pied (type photo).

31

ÉVALUATION - ANNÉE PRÉCÉDENTE

Mesure de débit

Figure 32 - Capteur

On désire mesurer le débit Q d'un liquide à l'intérieur d'une canalisation à l'aide de deux thermocouples de type T (FEM fournie en page 34). Un dispositif de chauffage assure l'élévation de la température du fluide entre les soudures A et B. Cette élévation de température est d'autant plus faible que le débit Q est grand.

- 1) [1] Quelle est la soudure la plus chaude, A ou B?
- 2) [1] Quelle est la valeur de la FEM E1 fournie pas le thermocouple T1, si la température au point A est de 100 °C et celle au point C de 0 °C?
- 3) [1] Même question si la température au point C est de 25 °C?
- 4) [1] Exprimer U en fonction de E1 et E2.
- 5) [2]En déduire la valeur de U si la température au point A est de 100 °C et celle du point B de 150 °C.
- 6) [2] Expliquer pourquoi U ne dépend pas de la température du point C.

Pour un débit variant de 10 à 100 kg/h, la différence de température Tb-Ta varie de 50 à 10 °C.

- 7) [1]Quelle est la valeur de la tension U, pour un débit de 10 kg/h et une température du point A de 100 °C?
- 8) [2] Même question pour une température du point A de 80 °C.
- 9) [1] Quelle est la précision en % sur la mesure, pour un débit de 10 kg/h, si la température du point A varie de 80 à 100 °C.

Le transmetteur de température est réglé de la manière suivante :

Tension U en mV	1	10
Courant en mA	4	20

Tableau 10 – Réglages du transmetteur de température

- 10) [1]Proposez un schéma électrique permettant la vérification de ce réglage, si le transmetteur est un transmetteur 2 fils.
- 11) [2]Pour une tension U de 5 mV, le transmetteur fournie un courant de 11 mA. La classe de précision du transmetteur est de 1. Le transmetteur a t-il était correctement paramètré? Justifiez votre réponse.

Régulation de température

Figure 33 – Boucle de régulation de température

On mesure la température Ts de l'eau (figure 33) à l'aide d'une sonde PT100 (valeurs de résistance fournie page 35). La régulation de la température de Ts se fait par l'intermédiaire de la vanne TV.

- 12) [1] Expliquer le fonctionnement d'une sonde PT100.
- 13) [1] Compléter le schéma ci-dessus pour faire apparaître la boucle de régulation.
- 14) [1] Quelle est la valeur de la résistance de la PT100, si la température Ts est de 50 °C?
- 15) [2] Quelle est la valeur du courant fourni par le transmetteur si la résistance de la PT100 est de 110 Ω et le transmetteur réglé conformement au tableau suivant?

Température en °C	0	100
Courant en mA	4	20

Tableau 11 – Réglages du transmetteur de température

Couple thermoélectrique : cuivre/cuivre-nickel TYPE T : force électromotrice en fonction de la température - jonction de référence à 0°C force électromotrice en millivolts absolus

•c	0	1	2	3	4	5	6	7	8	9	10	•c
0	0.000	0.039	0.078	0.117	0.156	0.195	0.234	0.273	0.312	0.351	0.391	0
	0.391	0.430	0.470	0.510	0.549	0.589	0.629	0.669	0.709	0.749	0.789	10
10	0.789	0.830	0.870	0.911	0.951	0.992	1.032	1.073	1.114	1.155	1.196	20
20					1.361	1.403	1.444	1.486	1.528	1.569	1.611	30
30	1.196	1.237	1.279	1.320				1.907	1.950	1.992	2.035	40
40	1,611	1.653	1.695	1.738	1.780	1.822	1.865	1.907	1.450	10772	2.033	70
50	2.035	2.078	2.121	2.164	2.207	2.250	2.294	2.337	2.380	2.424	2.467	50
60	2.467	2.511	2.555	2.599	2,643	2.687	2.731	2.775	2.819	2.864	2.908	60
70	2.908	2.953	2.997	3.042	3.087	3.131	3.176	3.221	3.266	3.312	3.357	70
80	3.357	3.402	3.447	3.493	3.538	3.584	3.630	3.676	3.721	3.767	3.813	80
90	3.813	3.859	3.906	3.952	3.998	4.044	4.091	4.137	4.184	4.231	4.277	90
			4 271	4 410	4.465	4.512	4.559	4.607	4.654	4.701	4.749	100
100	4.277	4.324	4.371	4.418		4.987	5.035	5.083	5.131	5.179	5.227	110
110	4.749	4.796	4.844	4.891	4.939		5.517	5.566	5.615	5.663	5.712	120
120	5.227	5 - 275	5.324	5.372	5.420	5 • 469	6.007	6.056	6.105	6.155	6.204	130
130	5.712	5.761	5.810	5.859	5.908	5.957				6.652	6.702	140
140	6.204	6.254	6.303	6.353	6.403	6.452	6.502	6.552	6.602	0.072	6.702	140
150	6.702	6.753	6.803	6.853	6.903	6.954	7.004	7.055	7.106	7.156	7.207	150
160	7.207	7.258	7.309	7.360	7.411	7.462	7.513	7.564	7.615	7.666	7.718	160
170	7.718	7.769	7.821	7.872	7.924	7.975	8.027	8.079	8.131	8.183	8.235	170
180	8.235	8.287	8.339	8.391	8.443	8.495	8.548	8.600	8.652	8.705	8.757	180
190	8.757	8.810	8.863	8.915	8.968	9.021	9.074	9.127	9.180	9.233	9.286	190
	••••											
200	9.286	9.339	9.392	9.446	9.499	9.553	9.606	9.659	9.713	9.767	9.820	200
210	9.820	9.874	9.928	9.982	10.036	10.090	10.144	10.198	10.252	10.306	10.360	210
220	10.360	10.414	10.469	10.523	10.578	10.632	10.687	10.741	10.796	10.851	10.905	220
230	10.905	10.960	11.015	11.070	11.125	11.180	11.235	11.290	11.345	11.401	11.456	230
240	11.456	11.511	11.566	11.622	11.677	11.733	11.788	11.844	11.900	11.956	12.011	240
240	11.450		111,000			_			•			
250	12.011	12.067	12.123	12.179	12.235	12.291	12.347	12.403	12.459	12.515	12.572	250
260	12.572	12.628	12.684	12.741	12.797	12.854	12.910	12.967	13.024	13.080	13.137	260
270	13.137	13.194	13.251	13.307	13.364	13.421	13.478	13.535	13.592	13.650	13.707	270
280	13.707	13.764	13.821	13.879	13.936	13.993	14.051	14.108	14.166	14.223	14.281	280
290	14.281	14.339	14.396	14.454	14.512	14.570	14.628	14.686	14.744	14.802	14.860	290
270	14,201	14.337										
300	14.860	14.918	14.976	15.034	15.092	15.151	15.209	15.267	15.326	15.384	15.443	300
310	15.443	15.501	15.560	15.619	15.677	15.736	15.795	15.853	15.912	15.971	16.030	310
320	16.030	16.089	16.148	16.207	16.266	16.325	16.384	16.444	16.503	16.562	16.621	320
330	16.621	16.681	16.740	16.800	16.859	16.919	16.978	17.038	17.097	17.157	17.217	330
340	17.217	17.277	17.336	17.396	17.456	17.516	17,576	17.636	17.696	17.756	17.816	340
540	1,002,	214277	1.0330	.,,,,,		•	- •					
350	17.816	17.877	17.937	17.997	18.057	18.118	18.178	18.238	18.299	18.359	18.420	350
360	18.420	18.480	18.541	18.602	18.662	18.723	18.784	18.845	18.905	18.966	19.027	360
370	19.027	19.088	19.149	19.210	19.271	19,332	19.393	19.455	19.516	19.577	19.638	370
380	19.638	19.699	19.761	19.822	19.883	19.945	20.006	20.068	20.129	20.191	20.252	380
390	20.252	20.314	20.376	20.437	20.499	20.560	20.622	20.684	20.746	20.807	20.869	390
2.0	200-72	200314	35									
400	20.869											400

Figure 34 - Thermocouple Type T

Résistances thermométriques platine 100 Ω à 0°C relations température/valeur ohmique suivant NF C 42-321 relations température/valeur ohmique

°C	-0	-1	-2	-3	-4	- 5	-6	-7	-8	- 9
-200 -190 -180 -170 -160	18,49 22,80 27,08 31,32 35,53	22,37 26,65 30,90 35,11	21,94 26,23 30,47 34,69	21,51 25,80 30,05 34,27	21,08 25,37 29,63 33,85	20,65 24,94 29,20 33,43	20,22 24,52 28,78 33,01	19,79 24,09 28,35 32,59	19,36 23,66 27,93 32,16	18,93 23,23 27,50 31,74
-150	39,71	39,30	38,88	38,46	38,04	37,63	37,21	36,79	36,37	35,95
-140	43,87	43,45	43,04	42,63	42,21	41,79	41,38	40,96	40,55	40,13
-130	48,00	47,59	47,18	46,76	46,35	45,94	45,52	45,11	44,70	44,28
-120	52,11	51,70	51,29	50,88	50,47	50,06	49,64	49,23	48,82	48,41
-110	56,19	55,78	55,38	54,97	54,56	54,15	53,74	53,33	52,92	52,52
100	60,25	59,85	59,44	59,04	58,63	58,22	57,82	57,41	57,00	56,60
90	64,30	63,90	63,49	63,09	62,68	62,28	61,87	61,47	61,06	60,66
80	68,33	67,92	67,52	67,12	66,72	66,31	65,91	65,51	65,11	64,70
70	72,33	71,93	71,53	71,13	70,73	70,33	69,93	69,53	69,13	68,73
60	76,33	75,93	75,53	75,13	74,73	74,33	73,93	73,53	73,13	72,73
- 50 - 40 - 30 - 20 - 10	80,31 84,27 88,22 92,16 96,09 100,00	79,91 83,88 87,83 91,77 95,69 99,61	79,51 83,48 87,43 91,37 95,30 99,22	79,11 83,08 87,04 90,98 94,91 98,83	78,72 82,69 86,64 90,59 94,52 98,44	78,32 82,29 86,25 90,19 94,12 98,04	77,92 81,89 85,85 89,80 93,73 97,65	77,52 81,50 85,46 89,40 93,34 97,26	77,13 81,10 85,06 89,01 92,95 96,87	76,73 80,70 84,67 88,62 92,55 96,48
°C	0	1	2	3	4	5	6	7	8	9
0	100,00	100,39	100.78	101,17	101,56	101,95	102,34	102,73	103,12	103,51
10	103,90	104,29	104,68	105,07	105,46	105,85	106,24	106,63	107,02	107,40
20	107,79	108,18	108,57	108,96	109,35	109,73	110,12	110,51	110,90	111,28
30	111,67	112,06	112,45	112,83	113,22	113,61	113,99	114,38	114,77	115,15
40	115,54	115,93	116,31	116,70	117,08	117,47	117,85	118,24	118,62	119,01
50	119,40	119,78	120,16	120,55	120,93	121,32	121,70	122,09	122,47	122,86
60	123,24	123,62	124,01	124,39	124,77	125,16	125,54	125,92	126,31	126,69
70	127,07	127,45	127,84	128,22	128,60	128,98	129,37	129,75	130,13	130,51
80	130,89	131,27	131,66	132,04	132,42	132,80	133,18	133,56	133,94	134,32
90	134,70	135,08	135,46	135,84	136,22	136,60	136,98	137,36	137,74	138,12
100	138,50	138,88	139,26	139,64	140,02	140,39	140,77	141,15	141,53	141,91
110	142,29	142,66	143,04	143,42	143,80	144,17	144,55	144,93	145,31	145,68
120	146,06	146,44	146,81	147,19	147,57	147,94	148,32	148,70	149,07	149,45
130	149,82	150,20	150,57	150,95	151,33	151,70	152,08	152,45	152,83	153,20
140	153,58	153,95	154,32	154,70	155,07	155,45	155,82	156,19	156,57	156,94
150	157,31	157,69	158,06	158,43	158,81	159,18	159,55	159,93	160,30	160,67
160	161,04	161,42	161,79	162,16	162,53	162,90	163,27	163,65	164,02	164,39
170	164,76	165,13	165,50	165,87	166,24	166,61	166,98	167,35	167,72	168,09
180	168,46	168,83	169,20	169,57	169,94	170,31	170,68	171,05	171,42	171,79
190	172,16	172,53	172,90	173,26	173,63	174,00	174,37	174,74	175,10	175,47
200	175,84	176,21	176,57	176,94	177,31	177,68	178,04	178,41	178,78	179,14
210	179,51	179,88	180,24	180,61	180,97	181,34	181,71	182,07	182,44	182,80
220	183,17	183,53	183,90	184,26	184,63	184,99	185,36	185,72	186,09	186,45
230	186,82	187,18	187,54	187,91	188,27	188,63	189,00	189,36	189,72	190,09
240	190,45	190,81	191,18	191,54	191,90	192,26	192,63	192,99	193,35	193,71
250	194,07	194,44	194,80	195,16	195,52	195,88	196,24	196,60	196,96	197,33
260	197,69	198,05	198,41	198,77	199,13	199,49	199,85	200,21	200,57	200,93
270	201,29	201,65	202,01	202,36	202,72	203,08	203,44	203,80	204,16	204,52
280	204,88	205,23	205,59	205,95	206,31	206,67	207,02	207,38	207,74	208,10
290	208,45	208,81	209,17	209,52	209,88	210,24	210,59	210,95	211,31	211,66
300	212,02	212,37	212,73	213,09	213,44	213,80	214,15	214,51	214,86	215,22
310	215,57	215,93	216,28	216,64	216,99	217,35	217,70	218,05	218,41	218,76
320	219,12	219,47	219,82	220,18	220,53	220,88	221,24	221,59	221,94	222,29

Figure 35 – PT100