Linear Algebra I: Homework 5

Due Friday, March 2, 2018

- 1. Let \vec{v} be the column vector in \mathbb{R}^4 which points from the point P=(2,-2,1,3) to Q=(0,-4,3,1).
 - a. Calculate the magnitude $\|\vec{v}\|$
 - b. Calculate the angle between \vec{v} and the vector,

$$\vec{w} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

2. This question pertains to an example of something called the *cross product* of two vectors in \mathbb{R}^3 . The cross product $\vec{u} \times \vec{v}$ is defined as,

$$\begin{pmatrix} u^1 \\ u^2 \\ u^3 \end{pmatrix} \times \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

where a, b, c are the coefficients of the variables i, j, k in the determinant,

$$\det \begin{pmatrix} i & j & k \\ u^1 & u^2 & u^3 \\ v^1 & v^2 & v^3 \end{pmatrix}.$$

This problem has you work out a specific example.

a. If i, j, k are arbitrary variables, calculate:

$$\det \begin{pmatrix} i & j & k \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

b. Let \vec{v} be the vector

$$\vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

where a is the coefficient of i in your answer to (a), b is the coefficient of j in your answer to (a), and z is the coefficient of c in your answer to (a).

1

Calculate the dot product,

$$\vec{v} \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

c. Calculate the dot product,

$$\vec{v} \cdot \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$$

3. Consider the vectors,

$$\vec{v} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 and $\vec{u} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$

Find the set of all vectors \vec{w} which are orthogonal to both of \vec{v} and \vec{u} .

4. Consider the matrix,

$$S = \begin{pmatrix} 4 & 3 \\ 0 & -2 \end{pmatrix}$$

- a. Calculate det(S).
- b. For λ a variable, solve the equation $\det(S \lambda I) = 0$, where I is the 2×2 identity matrix.

5. For any angle φ , multiplication by the matrix,

$$M_{\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$$

defines a linear transformation (a.k.a. a linear function) that rotates vectors \vec{v} in \mathbb{R}^3 around the x-axis by φ radians counterclockwise.

- a. If you have any vector \vec{v} and you know that $||\vec{v}|| = 3$, calculate $||M_{\varphi}\vec{v}||$. Hint: Think about how rotating something changes its length. The same principles apply here!
- b. Calculate the angle between $\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

c. Calculate the angle between $M_{\pi/3}\begin{pmatrix}0\\2\\0\end{pmatrix}$ and $M_{\pi/3}\begin{pmatrix}0\\1\\1\end{pmatrix}$. **Hint:** You're welcome to calculate this using matrix multiplication, but that might get a little exhausting. I encourage you to think about how this rotation will affect the angle between the vectors.