[2018–2019] группа: 9 класс 25 января 2019 г.

Тренировочная олимпиада

1. Можно ли расставить числа 1, 2, 3, 4, 5, 6 на гранях куба так, чтобы для каждой грани число на ней было делителем суммы чисел на четырёх соседних гранях?

- **2.** Биссектрисы AA_1 , BB_1 , CC_1 треугольника ABC пересекаются в точке I. Какой из отрезков: A_1I , B_1I , C_1I наибольший, если $\angle A > \angle B > \angle C$?
- **3.** Найдите все тройки (a,b,c) вещественных чисел (где $a \neq b, a \neq 0, b \neq 0$), для которых параболы $y = ax^2 + bx + c$ и $y = bx^2 + cx + a$ имеют общую вершину.
- **4.** В каждой клетке квадрата $n \times n$ стоит ребенок. Каждый из них смотрит в сторону одной из соседних по стороне клеток (никто не смотрит за пределы квадрата) и видит либо ухо, либо затылок ребенка, стоящего в этой клетке. Какое наименьшее число детей может видеть ухо?
- **5.** Дано простое число p. Члены бесконечной последовательности a_1, a_2, a_3, \dots натуральных чисел при всех натуральных $n \geqslant 1$ удовлетворяют соотношению:

$$a_{n+1} = a_n + p \cdot \left[\sqrt[p]{a_n}\right].$$

Докажите, что эта последовательность содержит точную p-тую степень некоторого натурального числа.