Principal Component Analysis

How

Source:

Best angle to taking a picture

- Which projection is better?
- **How to find that?**

Why: Housing data example

Moving from 5 to 2 dimensions Size Number of rooms Size feature Number of bathrooms

Schools around ➤Location feature Crime rate

Some Statistics - Mean vs Variance

Some Statistics - Mean vs Variance

Variance =
$$\frac{1^2 + 0^2 + 1^2}{3} = 2/3$$

Variance =
$$\frac{5^2 + 0^2 + 5^2}{3}$$
 = 50/3

Some Statistics - Variance in 2D

Some Statistics - Variance in 2D - Difficulties !!

x-variance =
$$\frac{2^2+0^2+2^2}{3}$$
 = 8/3
y-variance = $\frac{1^2+0^2+1^2}{3}$ = 2/3

Some Statistics - Covariance

covariance =
$$\frac{(-2) + 0 + (-2)}{3} = -4/3$$

$$covariance = \frac{2+0+2}{3} = 4/3$$

Some Statistics - Zero Covariance

$$(-2,1)$$
 $(0,1)$ $(2,1)$ $(-2,0)$ $(0,0)$ $(2,0)$ $(-2,-1)$ $(0,-1)$ $(2,-1)$

covariance =
$$\frac{-2+0+2+0+0+2+0+-2}{0}$$

Some Statistics - Covariance - Summary

negative covariance

covariance zero (or very small)

positive covariance

Some Statistics - Covariance Matrix

Some Statistics - Linear Transformations

Some Statistics - Linear Transformations

Finding Eigenvalues?

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$

$$\begin{vmatrix} x-9 & -4 \\ -4 & x-3 \end{vmatrix} = (x-9)(x-3) - (-4)(-4) = x^2 - 12x + 11$$
$$= (x-11)(x-1)$$

Eigenvalues 11 and 1

```
*WolframAlpha computational intelligence.
                                                                                                                 ☆ 目
eigenvectors ((9, 4), (4, 3))
                                                                                  ■ Browse Examples ⊃ Surprise Me
                                                                                                             Open code 🖎
Results:

✓ Step-by-step solution

 v_1 = (2, 1)
                                                                                                                      (
 v_2 = (-1, 2)
Corresponding eigenvalues:
                                                                                                  Step-by-step solution
 \lambda_1 = 11
 \lambda_2 = 1
```

Finding Eigenvectors?

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 11 \begin{pmatrix} u \\ v \end{pmatrix} \qquad \begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 1 \begin{pmatrix} u \\ v \end{pmatrix}$$
$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

PCA-1

