

Arquitetura de Computadores I

Curso de Ciência da Computação Primeira Lista de Exercícios Prof. Cláudio Dias Campos

5 PONTOS

ALUNO(A):	NOTA:
Questão 1 - Conversão Binária:	
Converta 10111101,1101 ₍₂₎ para: a) Decimal b) Hexadecimal c) BCD	

Questão 2 - Simplificação Booleana:

Determine a expressão **simplificada** via Mapa de Karnaugh. Destaque os agrupamentos e suas simplificações.

A BD+BCD+AD		ĒΒ	ζD	CD	СD
A BUTUCUTAD	ĀĒ	1	0	1	1
B BD+BC+AD	ĀB	1	1 0 ° 1 1 0 ° 1 1 0 ° 1 1 0 ° 1 1 1 1 1	0	1
c AD+BC+ABCD	AB	0	0	Х	0
D BD+ACD+BCD+ABD	ΑĒ	1	0	1	1

Questão 3 – Operações com números sinalizados:

Considere que os valores numéricos sejam representados com a sinalização em complemento de 2 em 8 bits. Apresente a resultado da operação S = (+12) - (+30) + (-8) em binário e em hexadecimal

Bina	ário								He	xadecima	ıl:		
	S ₇	S ₆	S ₅	S ₄	S ₃	S ₂	S ₁	S ₀					

Questão 4 - Projeto de Circuito Lógico:

Sejam $A = A_1A_0$ e $B = B_1B_0$ números binários de dois bits menores que 3. Desenhe um circuito lógico simplificado que ative uma saída Y se A x B > 0.

Questão 5 - Projeto com Multiplexador:

A figura seguinte mostra um circuito Multiplexador 8x1 sendo utilizado para implementar a expressão booleana $z = f_{sop}(D, C, B, A) = \{2,4,9,10\}$. Reconfigure as entradas do segundo MUX para realizar $z = f_{sop}(D, C, B, A) = \{2,3,6,7,9,15\}$.

Questão 6 - Simplificação Booleana:

Obtenha a expressão booleana **simplificada** para o circuito abaixo na forma de **soma de produtos**. Redesenhe o circuito utilizando a menor quantidade possível de portas NAND ou NOR.

Questão 7 - Projeto de Circuito Lógico:

O complemento 9 de um dado binário em BCD é realizado fazendo a seguinte operação: Sejam $A = A_3A_2A_1A_0$ e $B = 9_{10} = 1001_2$, então o complemento 9 de A é dado por C=B-A.

Exemplo: Se $A = 6_{10} = 0110_2$ então $C = (1001_2 - 0110_2) = 3_{10} = 0011_2$.

Pede-se: Complete o preenchimento da tabela verdade abaixo e gere a expressão booleana simplificada do circuito lógico da saída C_0

Atenção: Simplificar apenas a saída Co

A_3	A_2	A_1	A_0	C_3	C_2	C_1	C_0
0	0	0	0	1	0	0	1
0	0	0	1				
0	0	1	0				
0	0	1	1	0	1	1	0
0	1	0	0				
0	1	0	1				
0	1	1	0	0	0	1	1
0	1	1	1				
1	0	0	0				
1	0	0	1	0	0	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

Questão 8 - Circuito Somador de 4 bits:

Sejam $A = A_3A_2A_1A_0$ e $B = B_3B_2B_1B_0$ números binários de 4 bits representados com a sinalização em complemento de 2. Desenhe o bloco lógico interno do circuito somador de 4bits e mostre os valores das saídas $S = S_3S_2S_1S_0$ resultantes da soma de A=+9 e B=-2;

Questão 9 - Demultiplexador:

Implemente um Demultiplexador 1x12 utilizando blocos DEMUX 1x4.

Questão 10 - Decodicador:

Implemente um codificador 8x3 utilizando blocos COD 4x2 dotados de saída 'Enable Output' e, se necessários, o uso de portas lógicas elementares.

Folha para Resolução Manuscrita: Nome : _____ Página ___/__