Diuretics and antidiuretics

Attila Megyeri 01.10.2020

Background & definitions

- kidneys regulate fluid volume + electrolyte content
- diseases (e.g hypertension, heart failure, renal failure, nephrotic syndrome, cirrhosis) → fluid and electrolyte changes
- diuresis = ↑ excretion of urine / ↑ urine volume
 - extrarenal mechanisms
 - ↑ cardiac output pl. digoxin
 - ↑ renal blood flow pl. dopamine / bed rest

diuretics

drugs that influence renal tubular transport fuctions

Classification of diuretics

according to targets

- membrane transport proteins in renal tubular epithelial cells
 - Na+-K+-2Cl- symport inhibitors loop diuretics (high ceiling)
 - Na+-Cl- symport inhibitors thiazides / thiazide-likes
 - renal epithelial Na+ channel inhibitors K+ sparing
 - (SGLT-2 inhibitors) diabetes
- enzymes
 - carbonic anhydrase inhibitors
- hormone receptors in renal epithelial cells
 - aldosterone antagonists K+ sparing
 - vasopressin receptor agonists and antagonists
- no target osmotic effect
 - mannitol

Nephron structure and site of action of diuretics

Carbonic anhydrase inhibitors

- acetazolamide oral
- almost all CA must be blocked to see the effect
- ↓ NaHCO₃ / water reabsorption
- metabolic acidosis
 - alkaline urine
- efficacy ↓ with use

Clinical use of CAIs

- now rarely used as diuretic
- specific applications
 - glaucoma
 - topical dorzolamide, brinzolamide
 - acute mountain sickness
 - mild metabolic acidosis $\rightarrow \uparrow$ ventilation
 - urinary alkalinization
 - rare, in cystin or urate stones
 - metabolic alkalosis
 - epilepsy

Adverse effects / contraindications of CAI

- hyperchloremic metabolic acidosis
- renal stones
 - calcium phosphate
- renal K⁺ wasting
 - partly reabsorbed Na⁺ in collecting tubule → lumen negative potential → K⁺ secretion
- contraindicated in cirrhosis
 - alkalinization of the urine \downarrow urinary excretion of $NH_4^+ \rightarrow as NH_3$ is reabsorbed

Loop agents (high ceiling)

- furosemide, ethacrynic acid
- highest efficacy
- hypokalemic metabolic alkalosis
- ↓ lumen-positive potential → ↑
 Ca²⁺/Mg²⁺ excretion
- COX-2↑→PGE2↑→ ↑salt transport in TAL / vasodilation

PK: rapid absorption / short duration of action

Clinical use of loop diuretics

- common
 - acute pulmonary edema / other edemas (heart failure)
 - hypertension (renal insufficiency)
- less frequent
 - hypercalcemia
 - hyperkalemia
 - acute renal failure
 - anion (Br⁻, F⁻, I⁻) overdose

Adverse effects / contraindications of loop diuretics

- hypokalemic metabolic alkalosis
- ototoxicity
 - dose related / reversible
- hyperuricemia
 - avoid hypovolemia (lower doses)
- hypomagnesemia
- allergic reactions
 - potential cross allergenicity

Thiazides / thiazide-likes

- hydrochlorothiazide
- indapamide / clopamide
- lower efficacy
- hypokalemic metabolic alkalosis
- $\sqrt{\frac{1}{2}}$ Ca²⁺ excretion
- compete with uric acid secretion in PCT

Clinical use of thiazide diuretics

- hypertension
 - details on next slide
- heart failure
 - mild, loop agents preferred
- idiopathic hypercalciuria
 - nephrolithiasis
- nephrogenic diabetes insipidus
 - no response to ADH
 - cause: Li therapy of bipolar disease
 - mechanism?
 - 个 osmolality in the inner medulla
 - ↑ aquaporin-2 expression

Thiazide diuretics in hypertension

- widely used
- exact antihyp. eff. ?
 - low dose
- initially ↓ ECV / CO
- later ↓ TPR
- no effect in renal insuff. (GFR < 30 ml/min)

Adverse effects / contraindications of thiazide diuretics

- hypokalemic metabolic alkalosis
- hyperglycemia
 - dose related
- hyperlipidemia
- hyponatremia
- hyperuricemia
- allergic reactions
 - potential cross allergenicity

K⁺ sparing diuretics

- spironolactone / eplerenone
- amiloride / triamterene
- ↓ Na absorption
- ↓ K⁺ and H⁺ excret.
 - hyperkalemia
 - acidosis
- comb. with thiazides
- most eff. in case of 个 aldosterone

Clinical use of K⁺ sparing diuretics

- hyperaldosteronism
 - primary Conn's syndrome, ectopic ACTH prod.
 - secondary e.g. heart failure, cirrhosis
- in comb. with K⁺ wasting diuretics

Adverse effects / contraindications of K+ sparing diuretics

- hyperkalemia
 - renal disease
 - RAAS inhibition
 - β blockers, ACE inhibitors, angiotensin receptor blockers
- metabolic acidosis
- antiandrogenic effects
 - gynecomastia, impotence
 - difference between spironolactone and eplerenone

Osmotic diuretics

- filtered and not reabsorbed osmotically active
 - retain water
- mannitol iv.
 - also see hyperglycemia / glucose
- used to
 - — ↓ intracranial / intraocular pressure
 - maintain high urine flow
 - ↓ renal blood flow / hemolysis, rhabdomyolysis, tumor lysis
- initial expansion of ECV and hyponatremia
 - danger in pulmonary edema / renal insuff.
- may result in acute renal failure (6-7%)

Antidiuretic hormone agonists and antagonists

- agonists
 - vasopressin / desmopressin
- antagonists
 - conivaptan / tolvaptan(V₂)
 - (demeclocycline / lithium)
- used in hyponatremia / adj. to diuretics in CHF

SGLT-2 inhibitors

- dapagliflozin, canagliflozin, empagliflozin
- oral, metabolized, rifampin interaction
- indication: diabetes (3rd line)
- weight loss, drop in blood pressure, diuresis, acute kidney injury (?)
- rare hypoglycemia / infections (genital, UT)

