Database Management Systems

	(a) 2 NF	(b) :	3 NF	(c)	4 NF	(d) BCNF			
2.	The concept of loc	king can b	e used to s	olve the pr	oblem of				
	(a) lost update			(b)	uncommitte	d dependency			
	(c) inconsistent da	ta		(d)	deadlock				
3.	Given relations R(s SELECT FROM	DISTIN	37 7 7 7 5 TO	esult of					
	is guaranteed to be same as R, if								
	(a) R has no duplicates and S is non-empty								
	(b) R and S have no duplicates								
	(c) S has no duplicates and R is non-empty								
	(d) R and S have the same number of tuples								
4.	A functional depen	dency of t	he form X	$\rightarrow Y$ is triv	ial if				
	(a) <i>Y</i> ⊆ <i>X</i>	(b)	$Y \subset X$	(c)	$X \subseteq Y$	(d) $X \subset Y$ and $Y \subset X$			
5.	If every non-key at be in	tribute is f	unctionally	dependent	on the prima	ary key, then the relation will			
	(a) first normal for	m		(b)	second norm	nal form			
	(c) third normal form			(d)	(d) fourth normal form				

1. Which normal form is considered adequate for relational database design?

0.	The column of a table is referred to as the (a) tuple (b) attribute (c) entity (d) degree						
	The next four questions are based on the following details. Consider the given schemes.						
× 1	Branch_scheme = (Branch_name, assets, Branch_city) Customer_scheme = (Customer_name, street, Customer_city) Deposit_scheme = (Branch_name, account_number, Customer_name, balance)						
	Borrow_scheme = (Branch_name, loan_number, Customer_name, amount) Client_scheme = (Customer_name, banker_name)						
7.	Using relational algebra, the query that finds customers who have a balance of over 1000 is (a) $\pi_{\text{customer_name}}$ (σ_{balance} > 1000 (Deposit)) (b) $\sigma_{\text{customer_name}}$ (π_{balance} > 1000 (Deposit)) (c) $\pi_{\text{customer_name}}$ (σ_{balance} > 1000 (Borrow)) (d) $\sigma_{\text{customer_name}}$ (π_{balance} > 1000 (Borrow))						
8.	Which of the following queries finds the clients of banker Agassi and the city they live in? (a) $\pi_{\text{Client.Customer_name.Customer_City}}$ ($\sigma_{\text{client.Customer_name-Customer_name}}$ ($\sigma_{\text{Banker_name-*Agassi*}}$ (Client \times Customer))						
	 (b) π_{Customer_name.Customer_City} (σ_{Banker_name.*Agassi*} (Client × Customer)) (c) π_{Client.Customer_name.Customer_City} (σ_{Banker_name.*Agassi*} (σ_{Client.Customer_name.Customer_name} (Client × Customer)) 						
9.	(d) $\pi_{\text{Customer_name.Customer_City}}$ ($\sigma_{\text{Banker_name=*Agassi*}}$ (Client × Customer)) Which of the following tuple relational calculus finds all customers who have a loan amount of more than 1200?						
	<pre>(a) (t(Customer_name) t ε borrow Λ t[amount] > 1200) (b) (t t(Customer_name) ε borrow Λ t[amount] > 1200) (c) (t ∃ s ε borrow (t[Customer_name] = s[Customer_name] Λ s[amount] > 1200))</pre>						
10.	(d) None of the above Which of the following Domain relational calculus finds all customers who have a loan amount of over 1200?						

(a) $\{ <c > | \exists b, 1, a (<b, 1, c, a > \epsilon \text{ borrow } \forall a > 1200) \}$ (b) $\{ <c > | \exists b, 1, a (<b, 1, c, a > \epsilon \text{ borrow } \Lambda a > 1200) \}$

(c) {<c>| \exists <b, 1, c, a> ϵ borrow Λ a > 1200)}

(d) {<c>| <b, 1, c, a> ε borrow Λ a > 1200)}

11. Given the functional dependencies

```
X \to W; X \to Y; Y \to Z and Z \to PQ
```

which of the following does not hold good?

- (a) X → Z
- (b) $W \rightarrow Z$
- (c) $X \rightarrow WY$
- (d) None of the above

- 12. What are the potential problems when a DBMS executes multiple transactions concurrently?
 - (a) The lost update problem

- (b) The dirty read problem
- (c) The unrepeatable read problem
- (d) The phantom problem
- 13. The data flow model of an application mainly shows
 - (a) the underlying data and the relationships among them
 - (b) processing requirements and the flow of data
 - (c) decision and control information
 - (d) communication network structure
- 14. Consider the set of relations given below and the SQL query that follows:

Students: (Roll_number, Name, Date_of_birth)

Courses: (Course_number, Course_name, Instructor)

Grades: (Roll_number, Course_number, Grade)

SELECT DISTINCT Name

FROM Students, Courses, Grades

WHERE Students.Roll_number = Grades.Roll_number

AND Courses.Instructor = Korth

AND Course_number = Grades.Course_number

AND Grades.Grade = A

Which of the following sets is computed by the above query?

- (a) Names of students who have got an A grade in all courses taught by Korth
- (b) Names of students who have got an A grade in all courses
- (c) Names of students who have got an A grade in at least one of the courses taught by Korth
- (d) None of the above
- 15. Which of the following desired features are beyond the capability of relational algebra?
 - (a) Aggregate computation

(b) Multiplication

(c) Finding transitive closure

- (d) None of the above
- 16. In airline reservation system, the entities are date, flight number, place of departure, destination, type of plane and seats available. The primary key is
 - (a) flight number

(b) flight number + place of departure

(c) flight number + date

- (d) flight number + destination
- 17. For a database relation R(a,b,c,d) where the domains of a,b,c, and d include only atomic values, only the following functional dependencies and those that can be inferred from them hold.

$$\begin{array}{ccc} a & \rightarrow & c \\ b & \rightarrow & d \end{array}$$

The relation is in

- (a) first normal form but not in second normal form
- (b) second normal form but not in third normal form
- (c) third normal form
- (d) none of the above

The canonical cover for this set is

(a) $A \rightarrow BC$ and $B \rightarrow C$

(b) $A \rightarrow BC$ and $AB \rightarrow C$

(c) $A \rightarrow BC$ and $A \rightarrow B$

- (d) $A \rightarrow B$ and $B \rightarrow C$
- Assume transaction A holds a shared lock R. If transaction B also requests for a shared lock on R, it will
 - (a) result in a deadlock situation
 - (b) immediately be granted
 - (c) immediately be rejected
 - (d) be granted as soon as it is released by A

Answers

1.	ь	2. a, b, c	3. a	4. a	5. c
6.	b	7. a	8. a, c	9. c	10. ь
11.	b	12. a,b,c,d	13. b	14. c	15. a,b,c
16.	c	17. a	18. d	19. c	20. c
21.	c	22. c	23. d	24. c	25. c, d
26.	d	27. с	28. a	29. а	30. a, b, c
31.	a, b	32. a, b, c, d	33. a	34. a	35. a
36.	a	37. c	38. a	39. d	40. b
41.	b	42. b	43. a, b, c, d	44. d	45. a, b, c
46.	a, b, c	47. b	48. a,b,c	49. a	50. b

Explanations

18. The maximum number of tuples results when each of the 120 students enrolls for each of the 8 courses, giving 120 × 8 = 960 tuples. The minimum number of tuples results when all the 120 students enroll for the same course, giving 120 × 1 = 120 tuples.