Alumno:

Duración: dos horas. Una condición suficiente de aprobación es la resolución completa y justificada de dos ejercicios cualesquiera No se consideran cálculos dispersos o sin comentarios, ni diagramas sin la identificación completa de sus elementos.

1. En $A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9\}$ sea \mathcal{S} la relación determinada por el digraph de la figura, y \mathcal{T} la relación definida por la matriz $M_{\mathcal{T}}$, y sea \mathcal{R} la relación $\mathcal{R} = \mathcal{S} + \mathcal{T}$. Analizar si \mathcal{R} es una relación de orden en A, y en caso afirmativo dibujar su diagrama de Hasse y obtener todos los subconjuntos de A para los que a_4 es la máxima cota inferior y a_8 es maximal.

- 2. (a) Probar que para cualquier natural n es $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n}} \ge \sqrt{n}$.
 - (b) Si $f: B_1 \to B_2$ es una función biyectiva entre las álgebras de Boole $(B_1, +_1, \cdot_1, ', \mathbf{0}_1, \mathbf{1}_1)$ y $(B_2, +_2, \cdot_2, ', \mathbf{0}_2, \mathbf{1}_2)$, probar que basta que f preserve el producto y la complementación para que f sea un isomorfismo entre las dos álgebras.
- 3. En un autómata $M=(\Sigma,Q,q_0,\Upsilon,F)$, dado $k\in\mathbb{N}_0$ se define en Q la relación de k-equivalencia \mathcal{R}_k tal que $q\mathcal{R}_k r$ sii para cualquier $x\in\Sigma^\star:|x|\leq k$ se cumple que $\Upsilon^\star(q,x)\in F$ sii $\Upsilon^\star(r,x)\in F$ (con su correspondiente clausura, la \star -equivalencia \mathcal{R}_\star). Para el autómata M, determinar las clases de k-equivalencia, los conjuntos cociente $\bar{Q}=Q/\mathcal{R}_\star, \bar{F}=F/\mathcal{R}_\star$, la clase $\bar{q}_0=[q_0]$, la función $\bar{\Upsilon}:\bar{Q}\times\Sigma\to\bar{Q}$ y el autómata cociente $\bar{M}=(\Sigma,\bar{Q},\bar{q_0},\bar{\Upsilon},\bar{F})$ y determinar el lenguaje $\bar{L}=L(\bar{M})$. Hallar todas las palabras $x\in\bar{L}$ tales que $|x|\leq 3$.

4. Completar la tabla (detallar el proceso) de leyes binarias + y \cdot en $B = \{\alpha, \beta, \gamma, \delta\}$, definir una ley unaria (') y los elementos $\mathbf{0}_B, \mathbf{1}_B$ tal que $(B, +, \cdot, ', \mathbf{0}_B, \mathbf{1}_B)$ resulte un álgebra de Boole.

+	α	β	γ	δ		α	β	γ	δ
α					α		δ		
β	γ				β				
γ					γ				
δ					δ				

Graficar el diagrama de Hasse de (B, \leq) con $u \leq v$ sii uv = u, y determinar todos los $(x, y) \in B^2$ que satisfacen el sistema:

$$\begin{cases} \beta x + \beta xy & \leq \alpha + \delta \\ xy + \alpha xy & \leq \beta + \delta \\ x + y & \leq \beta \gamma \end{cases}$$