The Good Boy!

Sprint 1 Review

SUMMARY

Sprint objectives

Sprint 1

Issues

Adaptation & Organization

Issues and organization

Raspberry PI

PROBLEM

The Pi was not set up as it was expected

SOLUTION

Setup done in the beginning of the sprint (≈4 hours/person)

 \rightarrow time estimation : XL

CAN Communication

PROBLEM

The CAN communication was not operational

SOLUTION

- Connectors changed
- Currently, the reception of CAN messages works, but the sending does not

 \rightarrow time estimation : L

WiFi

PROBLEM

Impossible to use the Hotspot and Wifi at the same time

SOLUTION

The problem is not solved, it is still being worked on

 \rightarrow time estimation : XL

Issues and organization

→ Adaptation & Organization

Group organization (each dot represents a team member)

 Bypass of the Raspberry Pi : Implementation and test of the code directly on the Nucleo devices

Stories

Motors (CMC) & direction

Ultrasound

Image analysis

Control Motor Command (CMC)

Control Motor Command (CMC)

Demonstration

Motor - Direction (right & left)

Back

- Front motor → controls the direction
- Two control buttons:

Use of part of an already existing code

Time estimation spent on this task: M

Motor - Direction (right & left)

Demonstration

1 (

Ultrasonic (US) transceivers & CAN bus

US transceivers & CAN bus

US transceivers & CAN bus

Ultrasonic transceivers & CAN bus

Demonstration

Image analysis

- Find white parts of a picture
- Find the biggest white part of a picture
- Follow a specific white part among others

Image analysis

Convert image to grayscale

Apply a threshold

Analyse the picture

Image analysis

Next Sprint

User-oriented objectives

Postponed from last sprint

Obstacle detection

Placed in a open area (no objects nearby), the robot stops when an obstacle is detected at a distance of 50 cm or less.

Next Sprint

User-oriented objectives

New in this sprint

One direction follow-up

Placed in an open area, the robot **follows a person in front of it** at a distance of **two meters**, in a **straight line**.

Detection of people dressed in white

The robot is able to detect a person **dressed in white** on the camera, and to **differentiate** it from another white object.

Conclusion

- A lot of time spent on configuration, not anticipated
- Several technical issues, but also unexpected progress
- New technical skills acquired to fix problems

- Use progress made in this sprint in next one
- Gain experience from problem we faced to better anticipate issues in next sprint

Sources

- Icones8.fr:
 - o p.10: car
 - o p.10 and 12: camera
- Flaticon.com:
 - o p.20: https://www.flaticon.com/authors/berkahicon
 - o p.1, 4, 7, 19, 21: https://www.flaticon.com/authors/freepik
 - o p.21: https://www.flaticon.com/authors/surang