Forgetting and Projection

Revision: March 3, 2017; Rendered: May 25, 2021

Definitions of projection, literal forgetting, literal projection, and approximate versions of the latter two. Formalized with the PIE system.

1 Literal Forgetting

forglit(P-p, F)

Defined as

$$\exists Q (G \land \forall X (P_X \to Q_X)),$$

where

$$G := F[P \mapsto Q],$$

$$N := \text{arity of } P \text{ in } F,$$

$$X := x_1, \dots, x_N,$$

$$Q_X := Q(X),$$

$$P_X := P(X).$$

forglit(P-n, F)

Defined as

$$\exists Q (G \land \forall X (Q_X \to P_X)),$$

where

$$G := F[P \mapsto Q],$$

$$N := \text{arity of } P \text{ in } F,$$

$$X := x_1, \dots, x_N,$$

$$Q_X := Q(X),$$

$$P_X := P(X).$$

jorg(1 -pn, 1	forglit	(P-pn,	F
---------------	---------	--------	---

Defined as

 $\exists P F$.

Defined as

forglit([],F)

Defined as

F.

1.1 Literal Forgetting: Examples

ex basic

Defined as

$$\forall x \, (\mathsf{a} x \to \mathsf{p} x) \wedge \forall x \, (\mathsf{p} x \to \mathsf{b} x).$$

Input: $forglit([p-p], ex_basic)$.

Result of elimination:

$$\forall x \, (\mathsf{b} x \vee (\neg \mathsf{a} x \wedge \neg \mathsf{p} x)).$$

Input: $forglit([p-n], ex_basic)$.

Result of elimination:

$$\forall x\,(\mathsf{a} x\to \mathsf{b} x\wedge \mathsf{p} x).$$

 ${\bf Input:}\ forglit([{\sf p-p,p-n}], ex_basic).$

Result of elimination:

$$\forall x (ax \rightarrow bx).$$

2 Projection

proj(S, F)

Defined as

 $\exists S_1 F$,

where

$$S_2 := free_predicates(F),$$

 $S_1 := S_2 \setminus S.$

projlit(S, F)

Defined as

 $forglit(S_1, F),$

where

 $S_2 := S$ (in different representation), $S_3 := \mathsf{free_predicates}(F)$ in scope representation, $S_4 := S_3 \setminus S_2$, $S_5 := S_4$ closed under duals, $S_6 := S_5 \setminus S_2$, scse to $\mathsf{scsp}(\mathsf{S}6,\mathsf{S}1)$.

Here we subtract, add duals and subtract again to avoid *literal* forgetting induced by occurrences in the formula in just a specific polarity. Semantically we could just subtract as realized in the following version:

 $projlit_s(S, F)$

Defined as

 $forglit(S_1, F),$

where

 $S_2 := S$ (in different representation), $S_3 := \mathsf{free_predicates}(F)$ in scope representation, $S_4 := S_3 \setminus S_2$, $\mathsf{scse_to_scsp}(\mathsf{S4},\mathsf{S1})$.

3 Approximate Version of Literal Forgetting

Existentially quantifying upon all occurrences with specified polarity yields a possibly weaker formula than literal forgetting that might be simpler to process (see application in scratch_definientia). Also a version of projection, based on the weakened forgetting is specified.

lemma projlit(S, F)

Defined as

 $lemma_forglit(S_1, F),$

where

 $S_2 := S$ (in different representation), $S_3 := \mathsf{free_predicates}(F)$ in scope representation, $S_4 := S_3 \setminus S_2$, scse to $\mathsf{scsp}(\mathsf{S4},\mathsf{S1})$.

lemma forglit(P-p, F)

Defined as

 $\exists Q G$,

where

 $G := F[P\text{-}\mathsf{p} \mapsto Q].$

 $lemma_forglit(P\text{-}\mathsf{n},F)$

Defined as

 $\exists Q G$,

where

 $G:=F[P\text{-}\mathsf{n}\mapsto Q].$

 $lemma_forglit(P\text{-}\mathsf{pn},F)$

Defined as

 $\exists P F$.

 $lemma_forglit([P|Ps], F)$

Defined as

 $lemma_forglit(P, lemma_forglit(Ps, F)).$

 $lemma_forglit([], F)$

Defined as

F.

\mathbf{Index}

$ex_basic, 2$	$lemma_forglit([P Ps], F), 5$
forglit([], F), 2	$lemma_forglit(P-n, F), 4$ $lemma_forglit(P-p, F), 4$
forglit([P], F), 2 forglit([P]Ps], F), 2	$lemma_forglit(P-p, F), 4$ $lemma_forglit(P-pn, F), 4$
forglit([1,1],1), 2 forglit(P-n,F), 1	$lemma_projlit(S, F), 4$
forglit(P-p, F), 1	$temma_projim(S, T), 4$
forglit(P-pn, F), 2	proj(S,F), 3
	projlit(S,F), 3
$lemma_forglit([], F), 5$	$projlit_s(S,F), 3$