PHY293: Tutorial Problems

Tutorial 4 Solutions

QiLin Xue

Fall 2021

- 1. (a) All the arrows are pointed in the opposite direction of displacement.
 - (b) We have

$$m_A: \quad m\ddot{x}_A = -3kx_A + kx_B \tag{1}$$

$$m_B: \quad m\ddot{x}_B = -\frac{3}{2}kx_B + kx_A \tag{2}$$

(c) Let $\omega_0^2=k/m$. The matrix is

$$\begin{bmatrix} \ddot{x}_A \\ \ddot{x}_B \end{bmatrix} = -\omega_0^2 \begin{bmatrix} 3 & -1 \\ -1 & 3/2 \end{bmatrix} \begin{bmatrix} x_A \\ x_B \end{bmatrix}$$
 (3)

- (d) By Wolfram Alpha, the eigenvalues are 1,7/2, so the fundamental frequencies are $\omega=\omega_0$ and $\omega=\sqrt{7/2}\omega_0$.
- 2. (a) Again, arrows are opposite of displacement.
 - (b) We have

$$m_A: 3m\ddot{x}_A = -5kx_A + kx_B - mg \tag{4}$$

$$m_B: \quad m\ddot{x}_B = -kx_B + kx_A - mg, \tag{5}$$

(c) The matrix representation is

$$\begin{bmatrix} \ddot{x}_A \\ \ddot{x}_B \end{bmatrix} = -\omega_0^2 \begin{bmatrix} 5/3 & -1/3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_A \\ x_B \end{bmatrix} - mg \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 (6)

- (d) The eigenvalues are $\omega=\sqrt{2/3}\omega_0$ and $\omega=\sqrt{2}\omega_0.$
- 3. (a) We have $\lambda_n \propto \frac{1}{n}$ so

$$\frac{\lambda_n}{\lambda_{n+1}} = \frac{n+1}{n} = \frac{5}{4} \tag{7}$$

so n=4

- (b) We have $v=\sqrt{\frac{T}{\mu}}=205$ m/s and $f=v/\lambda$ gives $f_n=373$ Hz and $f_{n+1}=466$ Hz.
- (c) The length is $\frac{n\lambda_n}{2} = 1.1$ m.
- 4. We have $L=\frac{\lambda}{2}\left(2n+1\right)=\frac{v}{2f}\left(2n+1\right)$ so

$$f = \frac{v}{2L} \left(2n + 1 \right) \tag{8}$$