Automata Theory & Formal Languages Final Project CMSC 651

12/21/2010 Sandipan Dey UMBC CSEE

Problem Statement

 $X_5^{SAT}(\phi_1,\phi_2,\phi_3,\phi_4,\phi_5) = d_1d_2d_3d_4d_5 \text{ , where } d_i \in \{0,\!1\} \text{ and } d_i = 1 \Longleftrightarrow \phi_i \in SAT \text{ , with } X_5^{SAT} \text{ 32-enumerable.}$

Theorem to Prove: If X_5^{SAT} is 5-enumerable, then P = NP.

Proof

Let's rewrite the function X_5^{SAT} as per **definition 1.1** in [1], **definition 2** in [2], **definition 4** in [3] s.t.,

$$\begin{split} X_5^{SAT}(\phi_1,\phi_2,\phi_3,\phi_4,\phi_5) &= SAT(\phi_1)SAT(\phi_2)SAT(\phi_3)SAT(\phi_4)SAT(\phi_5) \text{ , where} \\ SAT(\phi_i) &= \begin{cases} 1, & \phi_i \in SAT \\ 0, & \phi_i \notin SAT \end{cases}, \forall i=1,\cdots,5 \text{ , a characteristic function.} \end{split}$$

The function X_5^{SAT} is easily seen to be computable with 5 || queries to SAT.

As argued in [1], if X_5^{SAT} can be computed with less (e.g., 4) queries to SAT, then SAT (NP complete) should be easy (in P?) in some sense ($\Rightarrow P = NP$?)

Fact 2.16 (ii) in [1] says that X_5^{SAT} is $2^5 = 32$ enumerable.

As in [1], we are interested to find out when the function $X_5^{\it SAT}$ requires 5 queries to SAT.

But, given, X_5^{SAT} is 5-enumerable $\iff X_{2^5}^{SAT}$ is 2^5 enumerable (replacing the constant 5 by 2^5)

 \Leftrightarrow SAT is 5 cheatable (by **Fact 2.16** (ii) and **definition 2.18** in [1])

(i.e., \exists a polynomial time Oracle Turing machine with SAT as Oracle, such that $X_{2^5}^{SAT}$ can be computed by asking at most 5 queries to the Oracle SAT!).

 \Rightarrow SAT is cheatable (by **definition 2.18**, since $\exists k=5$, s.t.

SAT is k-cheatable)

 \Rightarrow P = NP (From theorem 3.20, corollary 3.21 (i) and 3.23 (iii) in [1], we have the result: if SAT is cheatable then P = NP)

Also, corollary 36 of [2] directly proves the result:

```
P \neq NP \Rightarrow SAT is not cheatable \equiv SAT is cheatable \Rightarrow P = NP (contra-positive)
```

Proof that SAT is not 5-cheatable (by contradiction, mimicking corollary 36 in [2])

Assume, to the contrary that SAT is 5-cheatble. Given an instance of SAT, divide into 2^5 sub-problems, (by trying all possible assignments to 5 variables d_1, \dots, d_5): each sub-problem contains 5 variables smaller than the original problem. By theorem 30 in [2], one sub-problem can be eliminated. Again divide each of these 2^5-1 sub-problems into two and use theorem 30 [2] to reduce $2^{10}-2$ sub-problems to just 2^5-1 . Continuing this way, eliminate all the variables, SAT can be solved in polynomial time! A contradiction.

References

- 1. Amihood Amir, Richard Beigel, William I. Gasarch, Some Connections between bounded query classes and non-uniform complexity
- 2. Richard Beigel, Bounded queries to SAT and the Boolean hierarchy
- 3. Richard Beigel, When are k + 1 queries better than k queries
- 4. Robert Beals, Richard Chang, William I. Gasarch, Jacobo Toran, On finding number of Graph Automorphisms
- 5. Richard Chang, On the Query Complexity of Clique Size and Maximum Satisfiability
- 6. Richard Chang, William I. Gasarch, On Bounded Queries and Approximation