Министерство науки и образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет "Высшая школа экономики"

Факультет экономических наук

САМОСТОЯТЕЛЬНАЯ РАБОТА №2

По дисциплине «Временные ряды и их практическое применение»

Выполнили:

Студенты группы БЭК187

Черцов Павел

Андреичева Полина

Москва – 2021 г.

Оглавление

Введение	3
описание данных	
Стационарность	
Наличие взаимосвязей	
Спецификация моделей	15
Моделирование	15
Интерпретация	16
Заиличение	18

Введение

Выбранная статья изучает взаимовлияние стран Западной Европы и США на основе нескольких показателей, в том числе ВВП. Влияние изучалось с помощью построения логарифмической регрессии и проверки значимости коэффициентов. В результате исследователи пришли к выводу, что рост ВВП в каждой из стран стимулирует рост ВВП в остальных странах. Работа стала основой для данного исследования, изучающего взаимовлияние ВВП трех стран при помощи одной из следующих многомерных моделей – ЕСМ, ADL, VAR, VEСМ. Ожидается, что будут получены схожие выводы о значимом взаимовлиянии и о взаимном стимулировании роста ВВП в экономиках стран.

Для исследования выбраны три страны – США, Великобритании и Германии. Данные взяты с официального сайта Всемирного банка. Возможное взаимовлияние стран может иметь место из-за периодических всемирных кризисов, а развитые страны проходят через этот процесс похожим образом. Кроме того, это влияние может объясняться тесными торговыми отношениями между странами. Ниже приведено более подробное описание данных.

анализируемые	ВВП в долларах 2010 года
показатели,	
единицы	
измерения:	
анализируемые	США, Великобритания, Германия
страны/регионы:	
источник данных	https://databank.worldbank.org/indicator/NY.GDP.MKTP.CD/1ff4a498/Po
(ссылка):	<u>pular-Indicators</u>
период	1970-2019
наблюдения:	
количество	50
наблюдений:	
статья	Зимин А. А. Взаимовлияние стран в современной экономике на
(библиографическ	примере ЕС и США // Экономика образования. 2010. №1. URL:
ое описание):	https://cyberleninka.ru/article/n/vzaimovliyanie-stran-v-sovremennoy-
ОБЯЗАТЕЛЬНО!	ekonomike-na-primer-e-es-i-ssha (дата обращения: 10.06.2021)

Таблица 1. Описание исследуемых данных.

Описание данных

Рисунок 1. ВВП США с 1970 по 2019 год.

Временной ряд имеет заметный линейный тренд, дисперсия за данный период визуально не увеличивается. Сезонность в данном ряду не заметна. Данный ряд не является стационарным, так как имеет тренд. Возможно, потребуется взятие разности для того, чтобы ряд стал стационарным.

Рисунок 2. Автокорреляционная и частная автокорреляционная функция ВВП США с 1970 по 2019 год.

Несмотря на то, что графики напоминают стационарный процесс, так как лишь некоторые значения выходят за доверительный интервал, скорее всего это из-за того, что ряд довольно короткий, так как на графике ряда очевидно наличие тренда. На графиках не заметны повторяющиеся выступы из нулевого доверительного интервала, что говорит об отсутствии сезонности, но это требует подтверждения периодограммой.

Рисунок 3. Периодограмма и периодограмма первой разности ВВП США с 1970 по 2019 год.

При построении периодограммы для исходного ряда заметен скачок на нулевом шаге, что означает необходимость изучения периодограммы первой разности ряда. При взятии разности так же не обнаруживается наличие сезонности.

Рисунок 4. ВВП Великобритании с 1970 по 2019 год.

На данном графике так же заметен повышающийся линейный тренд, однако более заметна увеличивающаяся со временем дисперсия. Таким образом, ряд не является стационарным. На графике так же не заметна сезонность.

Рисунок 5. Автокорреляционная функция и частная автокорреляционная функция ВВП Великобритании с 1970 по 2019 год.

Автокорреляционная и частная автокорреляционная функции более напоминают нестационарный ряд, но по ним все еще сложно судить из-за достаточно короткого временного ряда. По графикам не обнаруживается сезонность.

Рисунок 6. Периодограмма и периодограмма первой разности ВВП Великобритании с 1970 по 2019 год.

Данные периодограммы не указывают на наличие сезонности.

Рисунок 7. ВВП Германии с 1970 по 2019 год.

Данный график более волатильный чем предыдущие, по нему не заметно увеличение дисперсии. Явно выраженный линейный тренд, который говорит о нестационарности ряда. Не заметно наличие сезонности.

Рисунок 8. Автокорреляционная функция и частная автокорреляционная функция ВВП Германии с 1970 по 2019 год.

Сезонность так же не обнаруживается на данных графиках. Они говорят о нестационарности ряда и отсутствии сезонности.

Рисунок 9. Периодограмма и периодограмма первой разности ВВП Германии с 1970 по 2019 год.

Во временном ряду отсутствует сезонность.

Рисунок 15. График прироста и темпов прироста ВВП США.

10. График прироста и темпов прироста ВВП Великобритании.

10. График прироста и темпов прироста ВВП Германии.

На графиках прироста и темпов прироста населения отсутствует концентрация волатильности, что говорит о том, что нет необходимости использовать GARCH-модели. На данных графиках более заметна схожая динамика временных рядов особенно в 2008 году с сильным падении. Кроме того, на всех графиках заметна повышающаяся со временем дисперсия. В целом все страны показывают в основном положительную динамику прироста ВВП.

Variable	Obs	Mean	Std. Dev.	Min	Max
USA	50	30546.6	17854.1	5234.297	65297.52
GBR	50	23827.41	15677.65	2347.544	50566.83
DEU	50	24810.76	14731.85	2761.167	47959.99

Таблица 2. Дескриптивные статистики всех переменных.

По дескриптивным статистикам США значительно отличается от двух других стран по минимальным, максимальным и средним значениям. Однако, схожа по стандартным отклонениям.

Для дальнейшей работы необходимо изучение рядов после взятия первой разности, так как для многих моделей требуются стационарные ряды.

Рисунок 11. График первых разностей, автокорреляционной и частной автокорреляционной функции первых разностей ВВП трех стран — США, Великобритании и Германии.

Визуально после взятия первой разности временные ряды стали стационарными. Однако, возрастающая дисперсия стала очевидна во всех рядах.

Стационарность

Были проведены тесты Дики-Фуллера (для у: H_0 : α =1, H_1 : α <1; для Δ у: H_0 : β =0, H_1 : β <0), Филлипса-Перрона (H_0 : ρ =0) и Квятковского-Филлипса-Шмидта-Шина (H_0 : σ_ϵ^2 = 0, H_1 : σ_ϵ^2 > 0) на стационарность для у и для Δy с учетом тренда и без для всех трех наборов данных. Суммарно по 12 тестов для каждой переменной. Результаты проведенных тестов для всех рядов получились схожи. Большая часть тестов показывает отсутствие стационарности в исходных рядах.

После взятия первой разности все три набора данных стали стационарны. Следовательно, мы имеем три разностно-стационарных ряда с порядками интегрируемости, равными 1. Одинаковые порядки интегрируемости.

BP	Тест	H_0	P-value /Статистика	Вывод
deu	DF	Ряд не стационарен	0.2582	Ряд не стационарен

	DF (без тренда)	Ряд не стационарен	0.8654	Ряд не стационарен
	PP	Ряд не стационарен	0.1945	Ряд не стационарен
	РР (без тренда)	Ряд не стационарен	0.8723	Ряд не стационарен
	KPSS	Ряд стационарен	0.0479 < 0.146	Ряд не стационарен
	KPSS (без тренда)	Ряд стационарен	0.909 > 0.463	Ряд стационарен
∆deu	DF	Ряд не стационарен	0.0000	Ряд стационарен
	DF (без тренда)	Ряд не стационарен	0.0000	Ряд стационарен
	PP	Ряд не стационарен	0.0000	Ряд стационарен
	РР (без тренда)	Ряд не стационарен	0.0000	Ряд стационарен
	KPSS	Ряд стационарен	0.0595 < 0.146	Ряд не стационарен
	KPSS (без тренда)	Ряд стационарен	0.0594 < 0.463	Ряд не стационарен
BP	Тест	H_0	P-value /Статистика	Вывод
gbr	DF	Ряд не стационарен	0.6713	Ряд не стационарен
	DF (без тренда)	Ряд не стационарен	0.8295	Ряд не стационарен
	PP	Ряд не стационарен	0.4963	Ряд не стационарен
	РР (без тренда)	Ряд не стационарен	0.8232	Ряд не стационарен
	KPSS	Ряд стационарен	0.103 < 0.146	Ряд не стационарен
	KPSS (без	Ряд стационарен	0.901 > 0.463	Ряд стационарен

тренда)

Δgbr	DF	Ряд не стационарен	0.0002	Ряд стационарен
	DF (без тренда)	Ряд не стационарен	0.0000	Ряд стационарен
	PP	Ряд не стационарен	0.0003	Ряд стационарен
	РР (без тренда)	Ряд не стационарен	0.0000	Ряд стационарен
	KPSS	Ряд стационарен	0.175 > 0.146	Ряд стационарен
	KPSS (без тренда)	Ряд стационарен	0.165 < 0.463	Ряд не стационарен

BP	Тест	H_0	Статистика	Вывод
у	DF	Ряд не стационарен	0.9570	Ряд не стационарен
	DF (без тренда)	Ряд не стационарен	1.0000	Ряд не стационарен
	PP	Ряд не стационарен	0.9213	Ряд не стационарен
	РР (без тренда)	Ряд не стационарен	1.0000	Ряд не стационарен
	KPSS	Ряд стационарен	0.232 > 0.146	Ряд стационарен
	KPSS (без тренда)	Ряд стационарен	0.939 > 0.463	Ряд стационарен
Δy	DF	Ряд не стационарен	0.0019	Ряд стационарен
	DF (без тренда)	Ряд не стационарен	0.0040	Ряд стационарен
	PP	Ряд не стационарен	0.0028	Ряд стационарен
	РР (без тренда)	Ряд не стационарен	0.0055	Ряд стационарен
	KPSS	Ряд стационарен	0.0499 < 0.146	Ряд не стационарен
	KPSS (без тренда)	Ряд стационарен	0 .624 > 0.463	Ряд стационарен

Таблица 1. Результаты тостов на стационарность.

Наличие взаимосвязей

Тест Энгла-Грейнджера	DEU	GBR	USA

Крит. Значения Девидсона- МакКинона			
DEU	Наличие связи;	Связи нет;	Связи нет;
	Значение	1.939 > -3.132	-2.270 > -3.132
	статистики	(10%)	(10%)
GBR	Связи нет;	Наличие связи;	Связи нет;
	-1.958 > -3.132	Значение	-0.964 > -3.132
	(10%)	статистики	(10%)
USA	Связи нет;	Связи нет;	Наличие связи;
	-1.988 > -3.132	-0.531 > -3.132	Значение
	(10%)	(10%)	статистики

Таблица 2. Результаты тестов Энгла-Грейнджера.

По результатам теста Энгла-Грейнджера (Н0: ρ=0 наличие ед.корня для СІсоотношения (коинтеграции нет). Если Н0 откл., то еt является стационарным рядом и существует коинтеграция) мы получаем, что все линейные комбинации временных рядов не являются стационарными и, следовательно, не коинтегрированны. Однако данный тест является менее предпочтительным в сравнении с тестом Йохансенна, в связи с малой мощностью теста Дики-Фуллера.

Проведем также тест Йохансенна. Для этого необходимо оценить порядок VAR модели, что можно сделать с помощью информационных критериев. Из таблицы ниже получаем, что можно выбрать 1 или 6 порядок. Пока остановимся на 1, поскольку такая модель будет проще.

Selection-order criteria

Sample: 1976 - 2019 Number of obs = 44

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1337.43				5.8e+22	60.9288	60.9739	61.0505
1	-1128.03	418.81	9	0.000	6.4e+18*	51.8196	52*	52.3062*
2	-1120.59	14.883	9	0.094	6.9e+18	51.8904	52.2062	52.742
3	-1116.75	7.6855	9	0.566	8.9e+18	52.1249	52.576	53.3413
4	-1100.75	32.003	9	0.000	6.7e+18	51.8066	52.3931	53.388
5	-1091.75	17.985	9	0.035	7.0e+18	51.807	52.5288	53.7533
6	-1080.43	22.637*	9	0.007	6.8e+18	51.7016*	52.5587	54.0129

Endogenous: gbr usa deu Exogenous: cons

Таблица 3. Информационные критерии моделей с разными лагами.

Тест Йохансенна (в двух вариациях) для 1 лага показывает, что для данных рядов 1 и 2 коинтеграционные ранги являются статистически значимыми. Это говорит о наличии коинтеграции между наборами данных.

Johansen tests for cointegration								
Trend: constant Number of obs = 49								
Sample:	1971 - 3	2019				Lags =	1	
					5%			
maximum				trace	critical			
rank	parms	LL	eigenvalue	statistic	value			
0	3	-1271.4164	•	43.8402	29.68			
1	8	-1253.3322	0.52199	7.6716*	15.41			
2	11	-1250.2826	0.11704	1.5724	3.76			
3	12	-1249.4963	0.03158					
					5%			
maximum				max	critical			
rank	parms	LL	eigenvalue	statistic	value			
0	3	-1271.4164	•	36.1685	20.97			
1	8	-1253.3322	0.52199	6.0992	14.07			
2	11	-1250.2826	0.11704	1.5724	3.76			
3	12	-1249.4963	0.03158					

Таблица 4. Результаты теста Йохансена.

Теперь проверим причинность по Грейнджеру. Для этого нужно оценить VAR модель с 1 (выяснили ранее) лагом.

Sample: 1971 - 2	obs	=	49				
Log likelihood =	-1249.496	5		AIC		=	51.48965
FPE =	4.62e+18	3		HQIC		=	51.66542
Det(Sigma_ml) =	2.83e+18	3		SBIC		=	51.95295
Equation	Parms	RMSE	R-sq	F	P > F		
usa	4	575.312	0.9990	15057.12	0.0000		
deu	4	2412.83	0.9742	565.4818	0.0000		
gbr	4	2427.44	0.9771	639.6683	0.0000		

		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
usa							
	usa						
	L1.	1.073862	.0234387	45.82	0.000	1.026654	1.12107
	deu						
	L1.	0110507	.0261176	-0.42	0.674	0636543	.0415529
	gbr						
	L1.	0519565	.0252478	-2.06	0.045	1028082	0011047
	_cons	509.6032	178.7893	2.85	0.007	149.503	869.7033
deu							
	usa						
	L1.	.1762634	.0983008	1.79	0.080	0217246	.3742513
	deu						
	L1.	.7410555	. 1095359	6.77	0.000	.5204389	.9616721
	gbr						
	L1.	.0384526	. 1058881	0.36	0.718	1748169	.2517221
	_cons	1041.183	749.8329	1.39	0.172	-469.0578	2551.424
gbr							
	usa						
	L1.	.1193669	.0988962	1.21	0.234	0798203	.318554
	deu						
	L1.	0732913	.1101993	-0.67	0.509	2952441	.1486616
	gbr						
	L1.	.9203733	. 1065294	8.64	0.000	.7058121	1.134935
	_cons	907.5996	754.3745	1.20	0.235	-611.7886	2426.988

Таблица 5. VAR-модель с 1 лагом.

Теперь проверим причинность:

Granger causality Wald tests

Equation	Excluded	F	df	df_r	Prob > F
usa	deu	.17902	1	45	0.6742
usa	gbr	4.2348	1	45	0.0454
usa	ALL	3.2202	2	45	0.0493
deu	usa	3.2152	1	45	0.0797
deu	gbr	.13187	1	45	0.7182
deu	ALL	2.8737	2	45	0.0669
gbr	usa	1.4568	1	45	0.2337
gbr	deu	.44233	1	45	0.5094
gbr	ALL	.73188	2	45	0.4866

Таблица 6. Результаты теста причинности по Грейнджеру.

Из данной таблицы получаем, что на 5% только ВВП Великобритании является причиной для ВВП США. На 10% также ВВП США является причиной для ВВП Германии.

Спецификация моделей

В целом ситуация с наличием в радах коинтеграции является неоднозначной, поэтому ЕСМ и VECM модели имеет смысл применять с осторожностью, либо вообще не применять. Остаются модели ADL и VAR (система ADL моделей), для которых основным ограничением является стационарность рядов. При этом, в связи с тем, что не все переменные являются экзогенными (USA и GBR — эндогенны) имеет смысл рассматривать VAR модели (но т.к. эндогенность только на определенных уровнях значимости, то ADL тоже рассмотрим).

Моделирование

Спецификация модели	Стационарность модели (по необходимости)	Ошибка модели, инф.критерии	Анализ остатков (автокорреляция, нормальность)	Наилучшая модель
1. VAR(1), exog DEU	Стационарна	AIC = 1593.905 BIC = 1608.875	Автокорреляция отсутствует Остатки не распределены нормально Имеют белый шум	Хорошая модель, но не нормально распределены остатки + модель с трендом имеет более высокие IC
2. VAR(6), exog DEU	Стационарна	AIC = 1443.079 BIC = 1457.169		Самые низкие IC + автокорреляция в остатках

3. t^2	VAR(1), +	, 1	BIC = 1609.246		Наилучшая модель (var D.usa D.gbr, lags(1) dfk small exog(D.deu t t2))
4. struct. GBR	VAR(1) + change in	, 1	BIC = 1641.603	Остатки не	Высокие IC, но плохо распределены остатки

Таблица 7. Сравнение VAR-модели.

По итогу моделирования получаем, что наилучшей является модель VAR(1) с квадратичным трендом. Ниже приведена ее запись в виде формулы:

$$\begin{cases} \Delta y_{GBR} = -654.392 + 86.839t - 1.83t^2 + 0.122\Delta y_{USA\ t-1} + 0.203\Delta y_{GBR\ t-1} + 0.551\Delta x_{DEU} \\ \Delta y_{USA} = 523.41 + 0.28t - 0.878t^2 + 0.341\Delta y_{USA\ t-1} + 0.016\Delta y_{GBR\ t-1} + 0.025\Delta x_{DEU} \end{cases}$$

Интерпретация

Рисунок 12. Влияние шока в ВВП США на ВВП Великобритании.

Рост ВВП США оказывает положительное влияние на ВВП Великобритании, которое проходит после 4 периода. В целом, не требуется увеличение количество исследуемых шагов.

Рисунок 13. Влияние шока в ВВП Великобритании на ВВП США.

Рост ВВП Великобритании оказывает неоднозначное влияние на ВВП США, последнее может как вырасти, так и упасть. Влияние немного более продолжительное, но также практически исчезает после 4 периода.

Рисунок 14. Влияние ВВП США и Великобритании на себя.

Рост ВВП США имеет немного более продолжительный эффект чем рост ВВП Великобритании.

Results from myirf

	(1)	(1)	(1)
step	oirf	Lower	Upper
0	1327.91	846.788	1809.02
1	335.43	-215.682	886.542
2	85.6176	-262.024	433.259
3	22.1644	-147.83	192.159
4	5.8455	-68.7322	80.4233
5	1.57842	-29.2163	32.3731
6	.438536	-11.7974	12.6745
7	.125875	-4.61076	4.86251
8	.037415	-1.76288	1.83771
	1		

Results from myirf

	(1)	(1)	(1)
step	oirf	Lower	Upper
	0	0	0
	13.3498	-110.293	136.992
	8.0803	-66.6081	82.7687
	3.71046	-30.2979	37.7188
	1.53141	-12.3164	15.3792
	.598859	-4.7275	5.92522
	.227071	-1.7587	2.21284
	.084491	644046	.813028
	.031063	234658	.296785

95% lower and upper bounds reported

95% lower and upper bounds reported

(1) irfname = myirf, impulse = D.USA, and response = D.GBR (1) irfname = myirf, impulse = D.GBR, and response = D.USA

Таблица 8. IRF ВВП и Великобритании.

step	(1) fevd	(2) fevd	(3) fevd	(4) fevd
0	0	0	0	0
1	1	0	.467232	.532768
2	.999522	.000478	.467848	.532152
3	.999359	.000641	.467939	.532061
4	.999324	.000676	.467949	.532051
5	.999318	.000682	.467951	.532049
6	.999317	.000683	.467951	.532049
7	.999317	.000683	.467951	.532049
8	.999317	.000683	.467951	.532049

- (1) irfname = myirf, impulse = D.USA, and response = D.USA
- (2) irfname = myirf, impulse = D.GBR, and response = D.USA
- (3) irfname = myirf, impulse = D.USA, and response = D.GBR
- (4) irfname = myirf, impulse = D.GBR, and response = D.GBR

Таблица 9. IRF.

Влияние ВВП США на себя самое значительное, влияние ВВП Великобритании на США практически незначительно. Влияние ВВП США на ВВП Великобритании, а также влияние ВВП Великобритании на себя практически одинаково.

Заключение

В результате гипотезы о положительном влиянии ВВП экономик выбранных стран друг на друга лишь частично подтвердились, так как в тестах Грейнджера связь на обнаружена. Однако, функция импульса показывает положительное влияние роста ВВП США на ВВП Великобритании. Влияние ВВП Великобритании на ВВП США малое и неоднозначное. Тем не менее, удалось построить VAR-модель с нормальными стационарными остатками.