CIS 8695

Linear Regression

Ling Xue

Computer Information System Georgia State University

Key Issues

- Problems that can be addressed using linear regression
 - Explanatory vs. predictive modeling
- Linear regression model specification
- Explanations on estimation results
- Model fit and assessing predictive accuracy
- Selecting a subset of predictors

Explanatory vs Predictive Use of Regression

- Explanatory Modeling
- Fit the data well and understand the contribution of explanatory variables.
- Use entire dataset for analysis
- Model performance is measured by "goodness-of-fit": R², residual analysis, p-values.
- Explaining role of predictors is a primary purpose.

- Predictive Modeling
- Optimize predictive accuracy.
- Train model on training data, assess performance on validation (holdout) data.
- Model performance is measured by predictive accuracy: total sum of squared errors (SSE), mean squared error (MSE), root mean squared error (RMSE).
- Explaining role of predictors is not primary purpose (but useful).
 Predicting target values in other data where we have predictor values, but not target values.

Problem: Prices of Toyota Corolla

• **Data:** Prices of 1442 used Toyota Corollas, with their specification information (CIS4930_ToyotaCorolla_Lab.xlsx)

(Original Sample)

Price	Age	KN	Λ	Fuel_Type	HP	1	Metallic	Automatic	СС	Doors	Quarterly_Tax	Weight
1350	0	23	46986	Diesel		90	1	0	2000	3	210	1165
13750	0	23	72937	Diesel		90	1	0	2000	3	210	1165
13950	0	24	41711	Diesel		90	1	0	2000	3	210	1165
14950	0	26	48000	Diesel		90	0	0	2000	3	210	1165
13750	0	30	38500	Diesel		90	0	0	2000	3	210	1170
12950	0	32	61000	Diesel		90	0	0	2000	3	210	1170
1690	0	27	94612	Diesel		90	1	0	2000	3	210	1245
1860	0	30	75889	Diesel		90	1	0	2000	3	210	1245
2150	0	27	19700	Petrol	1	L92	0	0	1800	3	100	1185
12950	0	23	71138	Diesel		69	0	0	1900	3	185	1105
20950	0	25	31461	Petrol	1	L92	0	0	1800	3	100	1185

Problem: Prices of Toyota Corolla

Potential Questions from the dealer:

- 1. Does mileage has an impact on price or not?
- 2. What is the relationship between price and # of doors, fuel_type, weight, and other car features? E.g., if the # of doors goes up, does the price go up or down?
- 3. If the age of a car goes up by 1 year, how much does the price increase or decrease?
- 4. How should I price a used 3-door, automatic, Toyota Corollas with 27 months in age, a mileage of 19700, 192 horsepower, and using Petrol?

Variables Used

- Price in Euros
- Age in months as of 8/04
- KM (kilometers)
- Fuel Type (diesel, petrol, CNG) → Converted to three dummies
 - Fuel_Type_CNG, Fuel_Type_Diesel, Fuel_Type_Petrol
- **HP** (horsepower)
- Metallic color (1=yes, 0=no)
- Automatic transmission (1=yes, 0=no)
- CC (cylinder volume)
- Doors
- Quarterly_Tax (road tax)
- Weight (in kg)

Linear Regression: Basic Idea

• **Linear regression** assumes the following relationship between predictors and target variable

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q + \varepsilon$$

• It uses the following for **prediction**:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_q x_q$$

• Training: choose the **intercept** $\hat{\beta}_0$ and **coefficients** $\hat{\beta}_k$, k=1..q to minimize (least square):

$$\sum_{\substack{training\\data}} (y_i - \hat{y}_i)^2$$

Fit a Linear Relationship

Issues to consider when using linear regression for prediction

- Missing input values
 - At training time, what to do with missing values.
 - Skip? Mean replacement? Using estimated values?
- Categorical inputs
 - Need to be transformed into dummies
- Extreme values
 - May bias the model
 - Remove outlier cases

Issues to consider when using linear regression for prediction

- How to choose inputs
 - May consider variable selection (more later)
- What if the relationship is nonlinear?
 - May consider variable transformations

fit a non-linear relationship with a square term

fit a non-linear relationship with log-transformed variables.

Data Preprocessing

- Fuel type is categorical, must be transformed into binary variables
 - Add three dummies, but only use two: Fuel_Type_Diesel, Fuel_Type_CNG.
 - No dummy needed for "Petrol" (reference category)
- Data partition (training 60% validation 40%)
- Other considerations
 - Correlational analysis
 - Transformation (e.g., log)
 - Add square, interaction terms
 - Variable selection (more later)
 - Outlier removal

Subset of the records selected for training partition (limited # of variables shown)

ld	Model	Price	Age 08 04	Mfg Month	Mfg Year	KM	Fuel_Type_Di	Fuel_Type_Pe
Id	Wiodei	FIICE	Age_00_04	Wing_Wionth	Wilg_ieai	LZIVI	esel	trol
1	RRA 2/3-Doors	13500	23	10	2002	46986	1	0
4	RRA 2/3-Doors	14950	26	7	2002	48000	1	0
5	SOL 2/3-Doors	13750	30	3	2002	38500	1	0
6	SOL 2/3-Doors	12950	32	1	2002	61000	1	0
9	/VT I 2/3-Doors	21500	27	6	2002	19700	0	1
10	RRA 2/3-Doors	12950	23	10	2002	71138	1	0
12	BNS 2/3-Doors	19950	22	11	2002	43610	0	1
17	ORT 2/3-Doors	22750	30	3	2002	34000	0	1

60% training data / 40% validation data

The Fitted Regression Model

Regression Model

Input Variables	Coefficient	Std. Error	t-Statistic	P-Value	CI Lower	CI Upper	RSS Reduction
Intercept	-1833.3	1363.468725	-1.34458531	0.179	-4509.46	842.8602	99626055314
Age_08_04	-121.6074	3.320627169	-36.6218141	0.000	-128.125	-115.09	8611425804
KM	-0.019282	0.001699871	-11.3431708	0.000	-0.02262	-0.01595	264977161.1
НР	29.75675	4.224060494	7.044584823	0.000	21.46594	38.04756	207959275
Met_Color	101.1609	97.8079189	1.034280977	0.301	-90.8125	293.1342	567466.6314
Automatic	456.6505	199.4455759	2.289599302	0.022	65.18689	848.114	30074032.84
сс	-0.022305	0.091510026	-0.2437426	0.807	-0.20192	0.157307	26418651.34
Doors	-118.3781	50.63479867	-2.33788041	0.020	-217.762	-18.9942	11322463.67
Quarterly_Tax	11.75023	2.201777534	5.336700883	0.000	7.42867	16.07179	281862947.6
Weight	16.06755	1.414469773	11.35941787	0.000	13.29129	18.84382	256344071.7
Fuel_Type_CN	-2367.255	448.7481365	-5.27524242	0.000	-3248.04	-1486.47	34110235.19
Fuel_Type_Di	-1077.4	354.0357916	-3.04319608	0.002	-1772.29	-382.513	16040259.65

Error Reports

Training Data Scoring - Summary Report

Total sum of		73.000
squared		Average
errors	RMS Error	Error
1472212319	1306.868	-2.17983E-12

Validation Data Scoring - Summary Report

Total sum of		
squared		Average
errors	RMS Error	Error
1033384804	1341.761	-58.72311001

Predicted Values

Predicted price computed using regression coefficients

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_q x_q$$

Residuals = difference between actual and predicted prices

$$e = Y - \hat{Y}$$

Predicted Value	Actual Value	Residual
12912.82	12450	-462.824
9536.681	10950	1413.319
18255,13	18500	244.8665
7148.686	7750	601.3145
9075.332	10500	1424.668
8260.328	9950	1689.672
11315.24	9980	-1335.24
6813.801	8950	2136.199
18585.64	19600	1014.357
10466.63	7900	-2566.63
7682.82	9900	2217.18
10770.61	10990	219.3929
10608.4	11950	1341.599
13114.49	12950	-164.488
8239.33	7500	-739.33

Distribution of Residuals

Symmetric distribution and some outliers on the right

Multicollinearity

- **Problem:** If one predictor is a linear combination of other predictor(s), model estimation will fail
 - Note that in such a case, we have at least one redundant predictor
- Solution: Remove extreme redundancies
 - Drop predictors via variable selection
 - Use data reduction methods such as PCA (Principal Component Analysis) (more details later)

Variable selection

- Reasons for variable selection: selecting a subset of predictors (rather than including them all):
 - *Parsimony*: simpler model is more robust; including inputs uncorrelated to response reduces predictive accuracy.
 - Multicollinearity: redundancy in inputs (two or more predictors share the same relationship with the response) can cause unstable results
- Exhaustive search
- Popular variable selection algorithms
 - Forward, backward, stepwise

Exhaustive Search

- All possible subsets of predictors assessed (single, pairs, triplets, etc.)
- Computationally intensive
- Judge by "adjusted R²"

$$R_{adj}^{2} = 1 - \frac{n-1}{n-p-1} (1 - R^{2})$$

Penalty for number of predictors

Forward Selection

- Start with no predictors
- Add them one by one (add the one with largest contribution)
- Stop when the addition is not statistically significant
- Alternative criterions may include:
 - Adjusted R-square (penalizes complex models)
 - F statistics
 - AIC (Akaike's information criterion), etc.

Forward Selection

	X1	X2	X 3	X4	X5	X6	X7	X8	X9
1			$\sqrt{}$						
2	$\sqrt{}$		$\sqrt{}$						
3	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$					
4	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$			
5	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$			$\sqrt{}$
6	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
7	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$

Backward Elimination

- Start with all predictors
- Successively eliminate least useful predictors one by one
- Stop when all remaining predictors have statistically significant contribution

Backward Elimination

	X1	X2	X 3	X4	X5	X6	X7	X8	X9
1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V
2	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
3	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	V
4	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$
5	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	
6	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$			$\sqrt{}$	-
7	$\sqrt{}$				$\sqrt{}$			$\sqrt{}$	

Stepwise

- Like Forward Selection
- Except at each step, also consider dropping nonsignificant predictors

	X1	X2	X 3	X4	X5	X6	X7	X 8	X9
1	$\sqrt{}$								
2	$\sqrt{}$	$\sqrt{}$							
3	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
4	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$					
5	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$				
6	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
7	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		
8				$\sqrt{}$	V		$\sqrt{}$	$\sqrt{}$	
9	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$

All 12 Models

Model (Constan	Model (Constant present in all models)											
1	2	3	4	5	6	7	8	9	10	11	12	
Constant	Age_08_04	*	*	*	*	*	*	*	*	*	*	
Constant	Age_08_04	Weight	*	*	*	*	*	*	*	*	*	
Constant	Age_08_04	KM	Weight	*	*	*	*	*	*	*	*	
Constant	Age_08_04	KM	iel_Type_Petrol	Weight	*	*	*	*	*	*	*	
Constant	Age_08_04	KM	iel_Type_Petrol	Quarterly_Tax	Weight	*	*	*	*	*	*	
Constant	Age_08_04	KM	iel_Type_Petrol	HP	Quarterly_Tax	Weight	*	*	*	*	*	
Constant	Age_08_04	KM	iel_Type_Petrol	HP	Automatic	Quarterly_Tax	Weight	*	*	*	*	
Constant	Age_08_04	KM	iel_Type_Petrol	HP	Met_Color	Automatic	Quarterly_Tax	Weight	*	*	*	
Constant	Age_08_04	KM	el_Type_Diesel	iel_Type_Petrol	HP	Met_Color	Automatic	Quarterly_Tax	Weight	*	*	
Constant	Age_08_04	KM	el_Type_Diesel	iel_Type_Petrol	HP	Met_Color	Automatic	Doors	Quarterly_Tax	Weight	*	
Constant	Age_08_04	KM	el_Type_Diesel	iel_Type_Petrol	HP	Met_Color	Automatic	cc	Doors	Quarterly_Tax	Weight	

Diagnostics for the 12 models

	#Coeffs	RSS	Ср	R-Squared	Adj. R- Squared
Choose Subset	2	2538203648	566.4946289	0.759902259	0.759623076
Choose Subset	3	2245803264	404.393219	0.787561455	0.787066837
Choose Subset	4	1796573056	154.2755432	0.830055744	0.829461533
Choose Subset	5	1689283456	96.06230164	0.84020465	0.839458814
Choose Subset	6	1555462272	22.9589653	0.852863273	0.85200383
Choose Subset	7	1516825984	3.27544785	0.856518017	0.855511126
Choose Subset	8	1515638144	4.60880661	0.856630379	0.855455219
Choose Subset	9	1515206272	6.36643076	0.856671232	0.855326999
Choose Subset	10	1514873088	8.1794405	0.856702749	0.855189045
Choose Subset	11	1514592768	10.02211857	0.856729265	0.855045708
Choose Subset	12	1514553344	11.99999332	0.856732995	0.854878951

Good model has:

High adj- R^2 , Cp = # predictors +1

Next step

- Subset selection methods give candidate models that might be "good models"
- Do not guarantee that "best" model is indeed best
- Also, "best" model can still have insufficient predictive accuracy
- Must run the candidates and assess predictive accuracy (click "choose subset")

Model with only 6 predictors

The Regression Model

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3874.492188	1415.003052	0.00640071	97276411904
Age_08_04	-123.4366303	3.33806777	0	8033339392
KM	-0.01749926	0.00173714	0	251574528
Fuel_Type_Petrol	2409.154297	319.5795288	0	5049567
HP	19.70204735	4.22180223	0.00000394	291336576
Quarterly_Tax	16.88731384	2.08484554	0	192390864
Weight	15.91809368	1.26474357	0	281026176

Training Data scoring - Summary Report

Model Fit _____

Total sum of squared errors	RMS Error	Average Error
1516825972	1326.521353	-0.000143957

Validation Data scoring - Summary Report

Predictive performance

(compare to 12-predictor model!)

Summary

- Linear regression models are very popular tools, not only for explanatory modeling, but also for prediction
- A good predictive model has high predictive accuracy (to a useful practical level)
- Predictive models are built using a training data set, and evaluated on a separate validation data set
- Removing redundant predictors is key to achieving predictive accuracy and robustness
- Subset selection methods help find "good" candidate models. These should then be run and assessed.

Additional In-class Exercise: Chapter Q2

- Explore SPENDING vs. FREQ, and SPENDING vs. LAST_UPDATE;
- To fit a predictive model for SPENDING:
 - Partition the 1000 records into training (60%) and validation (40%) sets;
 - Run a MLR for SPENDING versus all six predictors. Give the estimated predictive equation;
 - Based on this model, what type of purchaser is most likely to spend a large amount of money?
 - If we used backward elimination, which predictor would be dropped first?
 - Show how the prediction and the prediction error are computed for the first purchase in the validation set?
 - Evaluate the predictive accuracy on the validation set;
 - Create a histogram of the model residuals. Normal distribution?