Contents

Features1	
Pin Assignment1	
Block Diagram2	
Operation Mode2	
Absolute Maximum Ratings2	
Recommended Operating Conditions2	
DC Electrical Characteristics3	
Rewriting Times3	
Pin Capacitance3	
AC Electrical Characteristics4	
Operation8	
Dimensions9	
Ordering Information10	
Characteristics 11	

The S-2812A and the S-2817A are low power 2K×8-bit parallel E²PROMs. The S-2812A features wide operating voltage range, and the S-2817A features 5-V single power supply. Since provided with 32-byte page write function, they can perform fast programming operation.

Features

· Access time: 150 ns

 $(V_{CC}=5 V\pm 10\%, Ta=0^{\circ}C \text{ to } 70^{\circ}C)$

• Low power consumption

Operating: 30 mA max. (V_{CC} =5 V±10%) Standby: 1 μ A max. (V_{CC} =5 V±10%)

• Operating voltage range

<u>S-2812A</u> <u>S-2817A</u> Read: 1.8 to 5.5 V 5 V±10% Write: 2.7 to 5.5 V 5 V±10%

· Write inhibition

S-2812A: 2.1 V typ. S-2817A: 3.5 V typ.

- Data polling
- With Ready/Busy pin
- Page write for 32 bytes
- Rewritings: 10⁵ times
- Data retention: 10 years
- Program noise immunity
- Package: 28-pin DIP/SOP/TSOP
- · Supply in bare chip is also available

■ Pin Assignment

Pin name Function A_0 to A_{10} Address input I/O_0 to I/O_7 Data input / output CE Chip Enable ŌE **Output Enable** WE Write Enable R/B Ready/Busy (opendrain output) Power supply voltage V_{CC} **GND** Ground (0 V)

J ...

■ Block Diagram

■ Operation Mode

Table 1

Mode	CE	OE	WE	I/O
Read	L	L	Н	Data output
Write	L	Н	L	Data input
Write inhibition	×	×	Η	_
Will minbillon	×	L	×	_
Standby	Н	×	×	High-Z

x:Don't care

■ Absolute Maximum Ratings

Table 2

Parameter	Symbol	Ratings	Unit
Power supply voltage	V _{CC}	-0.3 to +7.0	V
Input voltage	V_{IN}	-0.3 to V _{CC} +0.3	V
Output voltage	V _{OUT}	-0.3 to V_{CC}	V
Storage temperature under bias	T_{bias}	-50 to +95	°C
Storage temperature	T_{stg}	-65 to +150	°C

■ Recommended Operating Conditions

Table 3

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Power supply voltage	V _{CC}	S-2812A	Read	1.8		5.5	V
			Write	2.7		5.5	V
		S-2817A		4.5	5.0	5.5	V
High level input voltage	V _{IH}	V_{CC} =2.7 to	5.5 V	2.2		V _{CC} +0.3	V
		V _{CC} =1.8 to 2.7 V		0.8×V _{CC}		V _{CC} +0.3	٧
Low level input voltage	V_{IL}	V _{CC} =5 V ±1	0%	-0.3		0.8	V
		V _{CC} =2.7 to	V _{CC} =2.7 to 4.5 V		_	0.4	V
		V_{CC} =1.8 to	2.7 V	-0.3		0.2×V _{CC}	٧
Operating temperature	T_{opr}			-40	_	85	°C

■ DC Electrical Characteristics

1. S-2812A

Table 4

(Ta=-40°C to 85°C)

Б	0 1 1	0 88			.,	0.1/1400/			
Parameter	Symbol	Conditions		V±109	%	3	V±109	%	Unit
			Min.	Тур.	Max.	Min.	Тур.	Max.	
Current consumption (Read)	I _{CC1}	$\overline{CE} \le V_{IL}, \ V_{IN} \le V_{IL} \text{ or } V_{IN} \ge V_{IH}$ $I_{OUT} = 0 \text{ mA}, \ f = 1/t_{RC}$	_		30			15	mA
	I _{CC2}	$\overline{\text{CE}} \le 0.2 \text{ V}, \ \ V_{\text{IN}} \le 0.2 \text{ V or } V_{\text{IN}} \ge V_{\text{CC}} - 0.2 \text{ V}$ $I_{\text{OUT}} = 0 \text{ mA}, \ \ f = 1/t_{\text{RC}}$	_	_	25	_	_	10	mA
Current consumption (Program)	I _{CC3}	$\overline{CE} \le V_{IL}, \ V_{IN} \le V_{IL} \text{ or } V_{IN} \ge V_{IH}$	_	_	30			15	mA
	I _{CC4}	CE≤0.2 V, V _{IN} ≤0.2 V or V _{IN} ≥V _{CC} -0.2 V	_		25	-		10	mA
Standby current	I _{SB1}	<u>C</u> E≥V _{IH}	_	_	1	_	_	0.5	mΑ
	I _{SB2}	CE≥V _{CC} -0.2 V	_	_	1.0	_	_	1.0	μΑ
Input leakage current	ILI	V _{IN} =GND to V _{CC}	_	_	1.0	_	_	1.0	μΑ
Output leakage current	I_{LO}	$V_{I/O}$ =GND to V_{CC}		_	1.0			1.0	μΑ
High level output voltage	V _{OH}	5-V operation: I_{OH} =-400 μA 3-V operation: I_{OH} =-100 μA	2.4			2.4			V
Low level output voltage	V _{OL}	5-V operation: I _{OL} =2.1 mA 3-V operation: I _{OL} =400 μA			0.4			0.4	V

2. S-2817A

Table 5

i able 5										
		(Ta=-40°C to 85°C, V_{CC} =5 V±10%								
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit				
Current consumption (Read)	I _{CC1}	$\overline{CE} \le V_{IL}, \ V_{IN} \le V_{IL} \text{ or } V_{IN} \ge V_{IH}$ $I_{OUT} = 0 \text{ mA}, \ f = 1/t_{RC}$			30	mA				
	I _{CC2}	$\overline{\text{CE}} \le 0.2 \text{ V}, \ \ V_{\text{IN}} \le 0.2 \text{ V or } V_{\text{IN}} \ge V_{\text{CC}} - 0.2 \text{ V}$ $I_{\text{OUT}} = 0 \text{ mA}, \ \ f = 1/t_{\text{RC}}$			25	mA				
Current consumption (Program)	I _{CC3}	$\overline{CE} \le V_{IL}, \ V_{IN} \le V_{IL} \text{ or } V_{IN} \ge V_{IH}$			30	mA				
	I_{CC4}	 CE≤0.2 V, V _{IN} ≤0.2 V or V _{IN} ≥V _{CC} -0.2 V	_	_	25	mΑ				
Standby current	I _{SB1}	CE≥V _{IH}	_	_	1	mA				
	I _{SB2}	CE≥V _{CC} -0.2 V	_	_	1.0	μΑ				
Input leakage current	ILI	V_{IN} =GND to V_{CC}	_	_	1.0	μΑ				
Output leakage current	I_{LO}	$V_{I/O}$ =GND to V_{CC}	-	-	1.0	μΑ				
High level output voltage	V_{OH}	Ι _{ΟΗ} =-400 μΑ	2.4			V				
Low level output voltage	V_{OL}	I _{OL} =2.1 mA			0.4	V				

■ Rewriting Times

Table 6

Parameter	Symbol	Min.	Тур.	Max.	Unit
Rewriting times	N_W	10 ⁵			times/byte

■ Pin Capacitance

Table 7

	Table 1											
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit						
Input capacitance	C _{IN}	V _{IN} =0 V	_	_	10	pF						
Input / output	C _{I/O}	V _{I/O} =0 V	_		10	pF						

■ AC Electrical Characteristics

Table 8 Measuring conditions

Parameter	S-2812A	S-2817A
Input pulse levels	V _{IL} =0.2 V V _{IH} =2.4 V	V _{IL} =0.4 V V _{IH} =2.4 V
Input rise and fall time	10 ns	10 ns
I/O reference level	1.5 V	1.5 V
Output load	See Figure 3	See Figure 3

* (When measuring $t_{\text{CLZ}},\,t_{\text{OLZ}},\,t_{\text{CHZ}},\,t_{\text{OHZ}},\\t_{\text{WHZ}},\,t_{\text{WLZ}})$: 5pF

Figure 3 Output load measuring circuit

1. Read Cycle

(1) 5-V operation

Table 9

(V_{CC}=5 V±10%)

Parameter	Symbol	0°C to 70°C		-40°C to 85°C		Unit
		Min.	Max.	Min.	Max.	
Read cycle time	t _{RC}	150	_	200	_	ns
CE access time	t _{CE}	_	150	_	200	ns
Address access time	t _{AA}		150		200	ns
OE access time	t _{OE}		70	_	90	ns
Output enable time (CE)	t _{CLZ}	10		10	_	ns
Output enable time (OE)	t _{OLZ}	10		10	_	ns
Output disable time (CE)	t _{CHZ}	10	70	10	90	ns
Output disable time (OE)	t _{OHZ}	10	70	10	90	ns
Output data hold time	t _{OH}	5	_	5		ns

(2) 3-V operation (S-2812A only)

Table 10

(V_{CC}=3 V±10%)

Parameter	Symbol	0°C to 70°C		-40°C to 85°C		Unit
		Min.	Max.	Min.	Max.	
Read cycle time	t _{RC}	400	—	500	_	ns
CE access time	t _{CE}		400	_	500	ns
Address access time	t _{AA}	1	400		500	ns
OE access time	t _{OE}		200		250	ns
Output enable time (CE)	t _{CLZ}	25	_	30	_	ns
Output enable time (OE)	t _{OLZ}	25	_	30		ns
Output disable time (CE)	t _{CHZ}	25	200	30	250	ns
Output disable time (OE)	t _{OHZ}	25	200	30	250	ns
Output data hold time	t _{OH}	10	_	15	_	ns

2. Write Cycle

(1) 5-V operation

Table 11

(V_{CC}=5 V±10%)

Parameter	Symbol	0°C to 70°C		-40°C 1	to 85°C	Unit
		Min.	Max.	Min.	Max.	
Write cycle time	t _{WC}	_	10		10	ms
Address setup time	t _{AS}	0	_	0	_	ns
Address hold time	t _{AH}	120	_	150	_	ns
Write setup time	t _{CS}	0	_	0	_	ns
Write hold time	t _{CH}	0	_	0	_	ns
CE pulse width	t _{CW}	120	_	150	_	ns
OE setup time	t _{OES}	15	_	20	_	ns
OE hold time	t _{OEH}	15	_	20	_	ns
WE pulse width	t _{WP}	120	_	150	—	ns
Data setup time	t _{DS}	85	_	100	_	ns
Data hold time	t _{DH}	0	_	0	_	ns
Page load time	t _{PL}	0.3	30	0.3	30	μs
(page data setting time)						
Page load time	t _{PDL}	100		100		μs
(page data write start time)						
Time to device busy	t_{DB}	110	_	140		ns

(2) 3-V operation (S-2812A only)

Table 12

(V_{CC}=3 V±10%)

		<u>·</u>				
Parameter	Symbol	0°C to 70°C		-40°C to 85°C		Unit
		Min.	Max.	Min.	Max.	
Write cycle time	t _{WC}	_	10	_	10	ms
Address setup time	t _{AS}	0		0	_	ns
Address hold time	t _{AH}	300	_	350		ns
Write setup time	t _{CS}	0		0	_	ns
Write hold time	t _{CH}	0		0	_	ns
CE pulse width	t _{CW}	300		350	_	ns
OE setup time	t _{OES}	30		35	_	ns
OE hold time	t _{OEH}	30		35	_	ns
WE pulse width	t _{WP}	300		350	_	ns
Data setup time	t _{DS}	180		210	_	ns
Data hold time	t_{DH}	0	_	0	_	ns
Page load time	t _{PL}	0.3	30	0.3	30	μs
(page data setting time)						
Page load time	t_{PDL}	100	_	100	_	μs
(page data write start time)						
Time to device busy	t _{DB}	250	_	300	_	ns

Figure 4 Read cycle

Figure 5 WE controlled write cycle

Figure 6 CE controlled write cycle

Figure 7 Page write cycle

■ Operation

(1) Read mode

This mode outputs data to I/O_0 to I/O_7 when both \overline{CE} and \overline{OE} are low and when \overline{WE} is high. The data bus is high impedance when either \overline{CE} or \overline{OE} is high.

(2) Byte write mode

A byte write cycle starts when both $\overline{\text{CE}}$ and $\overline{\text{WE}}$ are low and $\overline{\text{OE}}$ is high. $\overline{\text{CE}}$ - and $\overline{\text{WE}}$ -controlled write cycles are available. The address is latched at the falling of $\overline{\text{CE}}$ or $\overline{\text{WE}}$ whichever occurs last, and the data is latched at the rising of $\overline{\text{CE}}$ or $\overline{\text{WE}}$ whichever occurs first.

(3) Page write mode

In this mode, 1 page program operation of 32 bytes is completed in 10 ms, and all memory area is written within a second because the device organization is 64-page \times 32-byte. When starting this mode, first, addresses A_5 to A_{10} assign the page, then A_0 to A_4 assign the address to each byte within the page sequencially or at random. Less than 32 bytes of program is available. This address assignment is performed while $0.3 \ \mu s \le t_{PL} \le 30 \ \mu s$, and the program operation starts when $t_{PDL} \ge 100 \ \mu s$.

(4) Data polling

This function is to output the complement data written last on I/O_7 and to output low to I/O_0 to I/O_6 . This operation is performed by read operation during write cycle. R/\overline{B} outputs low during write cycle; it is in high impedance in other modes.

(5) Erase all mode

All data is erased when \overline{OE} is 13 V and both \overline{CE} and \overline{WE} are low. During erase all mode, A_0 to A_{10} and I/O_0 to I/O_7 must be fixed to either high or low.

(6) Write inhibition

Write operation is inhibited in the following cases:

• When power supply voltage is under write inhibit voltage (V_{WI}).

S-2817A: V_{WI}=3.5 V typ.
S-2812A: V_{WI}=2.1 V typ.
• When OE is low, or WE is high.

(7) Program noise immunity

CE, OE and WE are noise protected for preventing erroneous write operation at power on and off. Less than 20 ns write pulse will not activate a write cycle at 5-V operation, and less than 50 ns at 3-V operation. See Figure 9.

Figure 9

■ Dimensions (Unit : mm)

1. 28-pin DIP

Figure 10

2. 28-pin SOP

Figure 11

3. 28-pin TSOP

Figure 12

■ Ordering Information

Note: Each bit is set to 1 before delivery (except bare chip)

■ Characteristics

- 1. DC characteristics
 - 1.1 Current consumption (READ) I_{CC1} . Ambient temperature Ta

1.3 Current consumption (READ) I_{CC1} . Power supply voltage V_{CC}

1.5 Current consumption (READ) I_{CC2} . Ambient temperature Ta

1.7 Current consumption (READ) I_{CC2} . Power supply voltage V_{CC}

1.2 Current consumption (READ) I_{CC1} . Ambient temperature Ta

1.4 Current consumption (READ) I_{CC1} . Read cycle time t_{RC}

1.6 Current consumption (READ) I_{CC2} . Ambient temperature Ta

1.8 Current consumption (READ) I_{CC2} . Read cycle time t_{RC}

1.9 Current consumption (PROGRAM) I_{CC3} . Ambient temperature Ta

1.11 Current consumption (PROGRAM) I_{CC3} . Power Supply Voltage V_{CC}

1.13 Current consumption (PROGRAM) I_{CC4} . Ambient temperature Ta

1.15 Current consumption (PROGRAM) I_{CC4} . Power Supply Voltage V_{CC}

1.10 Current consumption (PROGRAM) I_{CC3} . Ambient temperature Ta

1.12 Current consumption (PROGRAM) I_{CC3} . Ambient temperature Ta

1.14 Current consumption (PROGRAM) I_{CC4} . Ambient temperature Ta

1.16 Current consumption (PROGRAM) I_{CC4} . Ambient temperature Ta

1.17 Standby current I_{SB1} . Ambient temperature Ta

1.19 Standby current I_{SB2} . Ambient temperature Ta

1.21 Input leakage current I_{LI} . Ambient temperature Ta

1.23 Output leakage current I_{LO} . Ambient temperature Ta

1.18 Standby current I_{SB1} . Ambient temperature Ta

1.20 Standby current I_{SB2} .
Ambient temperature Ta

1.22 Input leakage current I_{LI} . Ambient temperature Ta

1.24 Output leakage current I_{LO} . Ambient temperature Ta

1.25 High level output voltage V_{OH} . Ambient temperature Ta

1.27 Low level output voltage V_{OL} . Ambient temperature Ta

1.29 High level input voltage V_{IH} . Ambient temperature Ta

1.30 Low level input voltage V_{IL} . Ambient temperature Ta

1.26 High level output voltage $V_{\text{OH}}\,$ - Ambient temperature Ta

1.28 Low level output voltage V_{OL} . Ambient temperature Ta

1.31 Low level input voltage V_{IL} . Ambient temperature Ta

2. AC characteristics

2.1 Write cycle time $t_{\text{WC}}\,$. Ambient temperature Ta

2.2 Write cycle time $t_{\text{WC}}\,$. Ambient temperature Ta

2.3 Write cycle time $t_{\text{WC}}\,$. Power supply voltage V_{CC}

 $\begin{array}{c} \text{2.4 Address access time t_{AA} .} \\ \text{Ambient temperature Ta} \end{array}$

2.6 CE access time t_{CE} .
Ambient temperature Ta

 $\begin{array}{c} \text{2.5 Address access time } t_{\text{AA}} \,. \\ \text{Ambient temperature Ta} \end{array}$

2.9 OE access time t_{OE} .
Ambient temperature Ta

 $\begin{array}{c} \text{2.10 Address setup time t_{AS}.} \\ \text{Ambient temperature Ta} \end{array}$

2.11 Address hold time t_{AH} .
Ambient temperature Ta

2.12 Address hold time t_{AH} .

Ambient temperature Ta
200

2.13 Data setup time $\ensuremath{t_{\text{DS}}}$.

2.14 Data setup time t_{DS} .

