

N U M E R I K P R O J E K T

Titel ggf. mehrzeilig

ausgeführt am

unter der Anleitung von

Name des Betreuers

durch

Markus Rinke

Matrikelnummer: 1402581

Stefan Schrott

Matrikelnummer: 1607388

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Grundlagen	1
2	Implementierung von Aufgabe a 2.1 Tests	2
3	Implementierung von Aufgabe b Version 1 3.1 Tests	2
4	Implementierung von Aufgabe b Version 2 4.1 Tests	2
5	Implementierung von adaptiver Schrittweite 5.1 Tests	2
6	Implementierung von Niveaulinien 6.1 Tests	2
7	Anhang: Code-Listings	2

1 Grundlagen

Die Grundlage für die folgenden Überlegung ist der Hauptsatz über implizite Funktionen im Spezialfall von Funktionen $F: A \times B \to \mathbb{R}$, wobei A und B der Einfachheit halber offene Intervalle seien

Satz: Seien a < b sowie $c < d \in \mathbb{R}$ und $F : (a,b) \times (c,d) \to \mathbb{R}$ stetig differenzierbar. Seien $x_0 \in (a,b)$ und $y_0 \in (c,d)$, sodass $F(x_0,y_0) = 0$ und $\frac{\partial F}{\partial y}(x_0,y_0) \neq 0$.

Dann existieren $a_0, b_0 \in \mathbb{R}$ mit $a < a_0 < x_0 < b_0 < b$ und eine stetig differenzierbare Funktion $f: (a_0, b_0) \to \mathbb{R}$ mit $f(x_0) = y_0$, sodass

$$\forall x \in (a_0, b_0) : F(x, f(x)) = 0$$

und

$$\forall x \in (a_0, b_0) : f'(x) = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}.$$
 (1)

Beweis: Unter den gegebenen Voraussetzungen ist der Hauptsatz über implizite Funktionen anwendbar und liefert Umgebungen U von x_0 und V von y_0 und eine Funktion $f:U\to V$ mit den geforderten Eigenschaften. Da x_0 ein innere Punkt von U ist, enthält U ein Intervall (a_0,b_0) mit den geforderten Eigenschaften.

Die Umgebung $V \subseteq \mathbb{R}$ in der Zielmenge von f kann durch ganz \mathbb{R} ersetzt werden, da wir nur behauptet haben, dass y = f(x) eine Lösung von $F(x, \cdot) = 0$ ist, allerdings nicht dass diese eindeutig ist.

Satz: Sei unter den Vorraussetzungen des vorherigen Satz F zwei mal stetig differenzierbar.

Dann ist $f \in C^2((a_0, b_0))$ mit f''(x) =

$$\frac{-\frac{\partial^2 F}{\partial^2 x}(x,f(x))\left(\frac{\partial F}{\partial y}(x,f(x))\right)^2 + 2\frac{\partial^2 F}{\partial x \partial y}(x,f(x))\frac{\partial F}{\partial x}(x,f(x))\frac{\partial F}{\partial y}(x,f(x)) - \frac{\partial^2 F}{\partial^2 y}(x,f(x))\left(\frac{\partial F}{\partial x}(x,f(x))\right)^2}{\left(\frac{\partial F}{\partial y}(x,f(x))\right)^3}.$$

Außerdem gilt:

$$\forall x \in (a_0, b_0) \exists \xi \in (x_0, x) \cup (x, x_0) : f(x) = y_0 + \frac{\frac{\partial F}{\partial x}(x_0, y_0)}{\frac{\partial F}{\partial y}(x_0, y_0)} (x - x_0) + \frac{f''(\xi)}{2} (x - x_0)^2.$$

Beweis: Aus $F \in \mathbb{C}^2$ folgt mit der Kettenregel und Einsetzen der Darstellung (1) für f':

$$\begin{split} \frac{d}{dx} \left(\frac{\partial F}{\partial x}(x, f(x)) \right) &= \left(\frac{\partial^2 F}{\partial^2 x}(x, f(x)), \frac{\partial^2 F}{\partial x \partial y}(x, f(x)) \right) \cdot \begin{pmatrix} 1\\ f'(x) \end{pmatrix} \\ &= \frac{\partial^2 F}{\partial^2 x}(x, f(x)) - \frac{\partial^2 F}{\partial x \partial y}(x, f(x)) \frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}. \end{split}$$

Für $\frac{d}{dx}\left(\frac{\partial F}{\partial y}(x,f(x))\right)$ erhält man analog eine ähnliche Darstellung. Damit kann man den Ausdruck (1) mithilfe der Quotientenregel differenzieren und erhält durch Erweitern mit $\frac{\partial F}{\partial y}(x,f(x))$ obige Darstellung für f''.

Die zweite Aussage folgt aus dem Satz von Taylor und der Tatsache, dass f'' als Komposition stetiger Funktionen stetig ist.

2 Implementierung von Aufgabe a

- 2.1 Tests
- 3 Implementierung von Aufgabe b Version 1
- 3.1 Tests
- 4 Implementierung von Aufgabe b Version 2
- 4.1 Tests
- 5 Implementierung von adaptiver Schrittweite
- 5.1 Tests
- 6 Implementierung von Niveaulinien
- 6.1 Tests

7 Anhang: Code-Listings

```
assert(abs(dx/dy) ~= Inf);
14
15
      y(i) = y(i-1) - dx/dy * stepWidth;
                                               %predictor
16
      G = O(z)F(x(i), z);
17
18
      g = 0(z)dFy(x(i), z);
                                               %corrector
      y(i) = Newton(G, g, y(i));
19
20 end
21
22 end
```

Listing 1: Ich bin ein Beispiel-Lisitng