The question is: predict the median house value

Linear Regression For Price Prediction

```
In [3]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

# set_option to format our numeric values
   pd.set_option('display.precision',2) # precison mean the numbers after the diceme

# reset all options, *** ignore the warning that may appear ***
#pd.reset_option('all')

housing_data=pd.read_csv('housing.csv')

housing_data.sample(5)
```

Out[3]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househol
1018	-121.79	37.67	26.0	2163.0	339.0	947.0	346
5460	-118.47	34.00	37.0	2586.0	765.0	1801.0	737
26	-122.28	37.85	49.0	1130.0	244.0	607.0	239
14127	-117.09	32.75	24.0	1245.0	376.0	1230.0	362
12246	-116.96	33.74	19.0	3649.0	755.0	1717.0	696
4							+

Data preparation

```
In [4]: housing_data.shape
Out[4]: (20640, 10)
```

```
In [5]: housing data.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20640 entries, 0 to 20639
        Data columns (total 10 columns):
              Column
                                   Non-Null Count Dtype
         - - -
          0
              longitude
                                   20640 non-null float64
              latitude
                                   20640 non-null float64
          1
          2
              housing_median_age 20640 non-null float64
          3
              total_rooms
                                   20640 non-null float64
          4
              total bedrooms
                                   20433 non-null float64
          5
              population
                                   20640 non-null float64
                                   20640 non-null float64
          6
              households
          7
              median income
                                   20640 non-null float64
          8
              median house value 20640 non-null float64
          9
              ocean proximity
                                   20640 non-null object
        dtypes: float64(9), object(1)
        memory usage: 1.6+ MB
In [6]: # drop of fix null values, here wil just drop all rows with nulls
        housing data=housing data.dropna()
        housing_data.shape
Out[6]: (20433, 10)
In [7]: # check to see if this field is a categorical field
        housing_data['ocean_proximity'].unique()
Out[7]: array(['NEAR BAY', '<1H OCEAN', 'INLAND', 'NEAR OCEAN', 'ISLAND'],
               dtype=object)
In [8]: # convert the categorical columns to numeric data, this will add 4 new columns ar
        housing data=pd.get dummies(housing data,columns=['ocean proximity'])
        housing_data.shape
Out[8]: (20433, 14)
In [9]: housing_data.head()
Out[9]:
            longitude latitude housing_median_age total_rooms total_bedrooms population households
         0
              -122.23
                       37.88
                                                                   129.0
                                          41.0
                                                     880.0
                                                                             322.0
                                                                                        126.0
              -122.22
                       37.86
                                          21.0
                                                    7099.0
                                                                  1106.0
                                                                            2401.0
                                                                                       1138.0
              -122.24
         2
                       37.85
                                          52.0
                                                    1467.0
                                                                   190.0
                                                                             496.0
                                                                                        177.0
          3
              -122.25
                       37.85
                                          52.0
                                                    1274.0
                                                                   235.0
                                                                             558.0
                                                                                        219.0
              -122.25
                       37.85
                                          52.0
                                                    1627.0
                                                                   280.0
                                                                             565.0
                                                                                        259.0
```

```
In [10]: #we need to find out if there is any outliers i our data
    # will draw boxplot for all columns
    fig,ax=plt.subplots(figsize=(15,8))
    bp=sns.boxplot(data=housing_data)
    bp.set_xticklabels(bp.get_xticklabels(),rotation=90) # label rotation
```



```
In [11]: # will draw boxplot for all columns
fig,ax=plt.subplots(figsize=(10,8))
bp=sns.boxplot(data=housing_data['median_house_value'])
```


In [12]: # now we need to find out the max of 'median_house_value' to remove the outliers
housing_data.describe()

Out[12]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househo
count	20433.00	20433.00	20433.00	20433.00	20433.00	20433.00	2043
mean	-119.57	35.63	28.63	2636.50	537.87	1424.95	499
std	2.00	2.14	12.59	2185.27	421.39	1133.21	382
min	-124.35	32.54	1.00	2.00	1.00	3.00	•
25%	-121.80	33.93	18.00	1450.00	296.00	787.00	280
50%	-118.49	34.26	29.00	2127.00	435.00	1166.00	409
75%	-118.01	37.72	37.00	3143.00	647.00	1722.00	604
max	-114.31	41.95	52.00	39320.00	6445.00	35682.00	6082

```
In [13]: # filter the data using loc and get the count housing_data.loc[housing_data['median_house_value']==500001].count() # 958 rows of data could skewness يحرف our training model result, so it is better
```

```
Out[13]: longitude
                                         958
                                         958
         latitude
         housing median age
                                         958
         total_rooms
                                         958
         total bedrooms
                                         958
                                         958
         population
         households
                                         958
         median_income
                                         958
         median house value
                                         958
         ocean proximity <1H OCEAN
                                         958
         ocean_proximity_INLAND
                                         958
         ocean proximity ISLAND
                                         958
         ocean_proximity_NEAR BAY
                                         958
         ocean_proximity_NEAR OCEAN
                                         958
         dtype: int64
```

In [14]: # housing_data.drop(rows or columns indexies)
housing_data=housing_data.drop(housing_data.loc[housing_data['median_house_value'
housing_data.shape

Out[14]: (19475, 14)

```
In [15]: # now we need to get two sets of data
# x for train (features) and y for prediction (target)
# since we need to predict the median_house_value, so we need to drop it from our
X=housing_data.drop('median_house_value',axis=1) # axis=0 => rows and axis=1 => a
Y=housing_data['median_house_value']
```

Train our model -spliting data

```
In [17]: # we use the train data to train our model, and later will use the test data to m
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2)

In [18]: x_train.shape,x_test.shape

Out[18]: ((15580, 13), (3895, 13))

In [19]: y_train.shape,y_test.shape

Out[19]: ((15580,), (3895,))
```

Normalization scales all numersic features to be between 0 and 1.

Note: Having features in the same scale can vastly improve the performance of your ML model.

fit=Fit the linear model on the training data i.e. train the linear model using our features and target values.

```
In [20]: from sklearn.linear_model import LinearRegression
linear_model=LinearRegression(normalize=True).fit(x_train,y_train)
```

evaluation for training score

```
In [21]: #print the evaluation score (R-square ) ,
    # this shown how well our linear model capture the underlying variation in our tr
    print("Training_score :",linear_model.score(x_train,y_train))
#0.6144045851306654 it is not fantastic but not bad
```

Training_score : 0.6129260115752351

```
In [22]: predictors=x train.columns
         predictors
Out[22]: Index(['longitude', 'latitude', 'housing_median_age', 'total_rooms',
                 'total_bedrooms', 'population', 'households', 'median_income',
                 'ocean_proximity_<1H OCEAN', 'ocean_proximity_INLAND',
                 'ocean_proximity_ISLAND', 'ocean_proximity_NEAR BAY',
                 'ocean proximity NEAR OCEAN'],
               dtype='object')
In [23]: # the coef is the facter that effect our prediction
         # nagative values will lower the price
         # we can indecate that the most expensive houses these located in on island
         coef=pd.Series(linear_model.coef_,predictors).sort_values()
         print(coef)
         longitude
                                       -2.39e+04
         latitude
                                       -2.19e+04
         population
                                       -3.00e+01
         total rooms
                                       -7.93e+00
         households
                                        4.66e+01
         total bedrooms
                                        9.15e+01
         housing median age
                                        9.08e+02
         median income
                                        3.85e+04
         ocean_proximity_INLAND
                                        1.17e+17
         ocean proximity NEAR BAY
                                        1.17e+17
         ocean proximity <1H OCEAN
                                        1.17e+17
         ocean_proximity_NEAR OCEAN
                                        1.17e+17
         ocean proximity ISLAND
                                        1.17e+17
         dtype: float64
In [24]: # Let us predict using the x test
         y pred=linear model.predict(x test)
```

```
In [25]: # to take a look on our model prediction using our eyes
#we want to compare between our actual data and predicted data
df_pred_actual=pd.DataFrame({'predicted':y_pred,'actual':y_test})
df_pred_actual.head(10)
```

Out[25]:

	predicted	actual
15821	223088.0	262500.0
16022	360640.0	394100.0
19983	59216.0	54400.0
6951	180496.0	163300.0
16825	229440.0	254100.0
12428	45552.0	100000.0
13523	129504.0	122200.0
12778	75488.0	58500.0
7276	123776.0	100300.0
14341	224352.0	466700.0

evaluation for test score

the best way to calculate the evaluate a model is to calculate an R-squared score (r2_score) on your test data

```
In [26]: from sklearn.metrics import r2_score
    print('Testing_score :',r2_score(y_test,y_pred))
    # we can see here that our test score almost same as our Training_score : 0.61644
    Testing_score : 0.6128240315911189
In []:
```

```
In [27]: fig,ax=plt.subplots(figsize=(12,8))
    plt.scatter(y_test,y_pred)
    plt.show()
```



```
In [28]: # we want to take a sample of 100 rows and plot
    df_pred_actual_sample=df_pred_actual_sample(100)
    df_pred_actual_sample=df_pred_actual_sample.reset_index()
    df_pred_actual_sample.head()
```

Out[28]:

	index	predicted	actual
0	15363	275696.0	331300.0
1	17535	247712.0	199000.0
2	3204	148896.0	90600.0
3	1845	339008.0	333700.0
4	19931	185840.0	113000.0

```
In [29]: # we plot our sample data (100 rows), comparing between actual and predicted data
plt.figure(figsize=(20,10))
plt.plot(df_pred_actual_sample['predicted'],label='Predicted')
plt.plot(df_pred_actual_sample['actual'],label='Actual')

plt.ylabel('median_house_value')

plt.legend()
plt.show()
#notice: Predicted is blue and Actual is orange
```

