```
import numpy as np
import pandas as pd
import matplotlib.pyplot as ply
```

df=pd.read_csv(r"C:\Users\Om\Downloads\AirQuality.csv", sep=',')
df

4:00:00 -200.0

4:00:00 -200.0

8		Date	Time	CO_GT	PT08_S1_C0	NMHC_GT	C6H6_GT	PT08_S2_NMHC	Nox_GT	PT(
	0	11/23/2004	19:00:00	11.9	2008	-200	50.6	1980	1389	
	1	11/23/2004	20:00:00	11.5	1918	-200	49.4	1958	1358	
	2	11/17/2004	18:00:00	10.2	1802	-200	47.7	1924	748	
	3	11/23/2004	18:00:00	10.2	1982	-200	49.5	1959	1369	
	4	11/26/2004	18:00:00	10.1	1956	-200	45.2	1877	1389	
								•••		
	9352	3/23/2005	4:00:00	-200.0	993	-200	2.3	604	85	
	9353	3/26/2005	4:00:00	-200.0	1122	-200	6.0	811	181	
	9354	3/29/2005	4:00:00	-200.0	883	-200	1.3	530	63	

818

864

-200

-200

8.0

8.0

473

478

47

52

9357 rows × 16 columns

4/1/2005

4/4/2005

9355

9356

#histogram using matplotlib
df.hist(figsize=(12,12))

```
array([[<AxesSubplot:title={'center':'CO GT'}>,
         <AxesSubplot:title={'center':'PT08_S1_C0'}>,
         <AxesSubplot:title={'center':'NMHC GT'}>,
         <AxesSubplot:title={'center':'C6H6_GT'}>],
        [<AxesSubplot:title={'center':'PT08_S2_NMHC'}>,
         <AxesSubplot:title={'center':'Nox_GT'}>,
         <AxesSubplot:title={'center':'PT08_S3_Nox'}>,
         <AxesSubplot:title={'center':'NO2_GT'}>],
        [<AxesSubplot:title={'center':'PT08 S4 N02'}>,
         <AxesSubplot:title={'center':'PT08_S5_03'}>,
         <AxesSubplot:title={'center':'T'}>,
         <AxesSubplot:title={'center':'RH'}>],
        [<AxesSubplot:title={'center':'AH'}>, <AxesSubplot:>,
         <AxesSubplot:>, <AxesSubplot:>]], dtype=object)
            CO GT
                                 PT08 S1 CO
                                                           NMHC GT
                                                                                   C6H6 GT
                                                                          6000
 8000
                                                 8000
                         3000
 6000
                                                 6000
                                                                          4000
                         2000
 4000
                                                 4000
                                                                          2000
 2000
                         1000
                                                 2000
                                     1000
    -200
            -100
                                             2000
                                                              500
                                                                   1000
                                                                             -200
                                                                                   -100
        PT08_S2_NMHC
                                    Nox_GT
                                                          PT08_S3_Nox
                                                                                    NO2_GT
                         3000
 3000
                                                 4000
                                                                          3000
                                                 3000
                         2000
 2000
                                                                          2000
                                                 2000
                         1000
 1000
                                                                         1000
                                                 1000
   0
                                                    0 -
                                                                            0
             1000
                                        1000
                                                                                    ó
                    2000
                                    500
                                             1500
                                                           1000
                                                                  2000
                                                                             -200
                                                                                          200
                                                                                      RH
         PT08_S4_NO2
                                  PT08 S5 O3
                                                              Τ
 3000
                                                 5000
                         2000
                                                                          4000
                                                 4000
 2000
                         1500
                                                                          3000
```

#bar plot using matplot
x=df['PT08_S1_C0']
y=df['PT08_S2_NMHC']
ply.bar(x,y)

2000 -

#heatmap using matplot
df.corr()

	CO_GT	PT08_S1_C0	NMHC_GT	C6H6_GT	PT08_S2_NMHC	Nox_GT	PT08 _.
CO_GT	1.000000	0.041411	0.128351	-0.031378	0.029926	0.526451	-C
PT08_S1_CO	0.041411	1.000000	0.170007	0.852687	0.933102	0.277993	С
NMHC_GT	0.128351	0.170007	1.000000	0.037323	0.110104	-0.004427	С
С6Н6_GT	-0.031378	0.852687	0.037323	1.000000	0.767433	-0.001174	О
PT08_S2_NMHC	0.029926	0.933102	0.110104	0.767433	1.000000	0.331272	-C
Nox_GT	0.526451	0.277993	-0.004427	-0.001174	0.331272	1.000000	-C
PT08_S3_Nox	-0.089981	0.087019	0.048821	0.512193	-0.073667	-0.436084	1
NO2_GT	0.671127	0.154030	0.103307	-0.010992	0.176488	0.817139	-C
PT08_S4_NO2	-0.073724	0.845149	0.162680	0.774673	0.874782	0.035546	О
PT08_S5_O3	0.080310	0.892434	0.101185	0.641334	0.909905	0.461889	- C
Т	-0.068939	0.754844	-0.000009	0.971375	0.669025	-0.138452	(
RH	-0.048227	0.745375	0.008284	0.925062	0.585803	-0.053009	О
AH	-0.045892	0.764903	0.012500	0.984555	0.646572	-0.095847	О
4							•

x=df['PT08_S1_C0']
y=df['PT08_S2_NMHC']
ply.scatter(x,y)

<matplotlib.collections.PathCollection at 0x1f373cf3160>


```
#violin plot using matplot
ply.violinplot(df['df['PT08_S2_NMHC']'])
```

```
{'bodies': [<matplotlib.collections.PolyCollection at 0x1f373d31070>],
'cmaxes': <matplotlib.collections.LineCollection at 0x1f373d1de80>,
'cmins': <matplotlib.collections.LineCollection at 0x1f373d31760>,
'cbars': <matplotlib.collections.LineCollection at 0x1f373d31b20>}
```


#line using matplot
df.set_index('C6H6_GT').plot()

import seaborn as sns

```
#barplot seaborn
x=df['PT08_S1_C0']
```

```
y=df['NMHC_GT']
sns.barplot(x,y)
```

C:\Users\Om\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning:
 warnings.warn(

<AxesSubplot:xlabel='PT08_S1_C0', ylabel='NMHC_GT'>

#histogram
sns.distplot(df['NMHC_GT'])

C:\Users\Om\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarni
warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='NMHC_GT', ylabel='Density'>

#line plot
x=df['PT08_S1_C0']
y=df['NMHC_GT']
sns.lineplot(x,y)

4

C:\Users\Om\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning:
 warnings.warn(

<AxesSubplot:xlabel='PT08_S1_C0', ylabel='NMHC_GT'>

#Heatmap
sns.heatmap(df.corr())

<AxesSubplot:>

#scatter seaborn
x=df['PT08_S1_C0']
y=df['NMHC_GT']
sns.scatterplot(x,y)

C:\Users\Om\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning:
 warnings.warn(

<AxesSubplot:xlabel='PT08_S1_C0', ylabel='NMHC_GT'>

#treemap using seaborn
pip install squarify

Collecting squarify

Downloading squarify-0.4.3-py3-none-any.whl (4.3 kB)

Installing collected packages: squarify
Successfully installed squarify-0.4.3

Note: you may need to restart the kernel to use updated packages.

#treemap using seaborn
import squarify

#treemap using seaborn
x=df['CO_GT']
squarify.plot(x)

<AxesSubplot:>

#violine using seaborn
sns.violinplot(df['CO_GT'])

 $\label{limits} C:\Users\Om\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future\Warning: warnings.warn($

<AxesSubplot:xlabel='CO_GT'>

#boxplot
x=df['PT08_S1_C0']
y=df['NMHC_GT']
sns.boxplot(x,y)

C:\Users\Om\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning:
 warnings.warn(

<AxesSubplot:xlabel='PT08_S1_C0', ylabel='NMHC_GT'>

• X