This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

STIC-ILL

From:

Ceperley, Mary

Sent:

Saturday, March 01, 2003 1:25 PM STIC-ILL

To:

Subject:

REFERENCE ORDER

PLEASE PROVIDE ME WITH A COPY OF EACH OF THE FOLLOWING REFERENCES THANKS.

V. POCHINOK ET AL UKR. KHIM. ZH. (RUSS. ED.) (1984), 50(3), 296-301. ISSN: 0041-6045.

1 OLSHEVSKAWAYETTAL KHIM GETEROTSIKL. SOEDIN (1974), (5), 640-642. CODEN: KGSSAQ.

Mary E. (Molly) Ceperley Primary Examiner Art Unit 1641 (703) 308-4239 Office: CM1-8D15 Mailbox: CM1-7E12

09/898,885

.364 AGC 3-3-R.C

Химия Гетероциклических Соединений

YAK 547.789.6.07:668.8

И. А. Ольшевская, В. Я. Починок

СИНТЕЗ И РЕАКЦИИ АЗИДОВ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

III*. ЦИАНИНОВЫЕ КРАСИТЕЛИ НА ОСНОВЕ АЗИДОВ БЕНЗТИАЗОЛА И БЕНЗИМИДАЗОЛА

Из четвертичных солей азидов бензтиазола и бензимидазола получены цианиновые красители, содержащие в положениях 5 или 6 бензазольного цикла азидные группы. Введение азидогруппы в молекулу красителя приводит к значительному батохромному эффекту. Табл. 2, библиогр. 9.

Йодметилаты 5-азидо- (I) и 6-азидо-2-метилбензтиазолов (II), йодэтилаты 5-азидо-1-фенил-2-метил- (III) и 6-азидо-1,2-диметилбензимидазолов (IV), описанные в работе², использованы для синтеза цианиновых красителей, содержащих в положениях 5 или 6 бензазольного цикла азидные группы.

XIII, XIV, XIX, XX

 $\begin{array}{c} V \ R=5\cdot N_3; \ VI \ R=6\cdot N_3; \ VII \ R=5\cdot N_3, \ R'=H, \ R''=C_2H_5, \ n=0; \ VIII \ R=6\cdot N_3, \ R'=H, \\ R''=C_2H_5, \ n=0; \ IX \ R=R'=5\cdot N_3, \ R''=CH_3, \ n=1; \ XI \ R=6\cdot N_3, \ R'=CH_3, \ n=1; \ XII \ R=5\cdot N_3, \ R'=CH_3, \ n=1; \ XIII \ R=5\cdot N_3, \ R'=CH_3, \ n=1; \ XIII \ R=5\cdot N_3, \ R'=CH_3, \ N=1; \ XIII \ R=5\cdot N_3, \ R'=CH_3, \ X=N\cdot C_6H_5, \ Y=S; \ XVII \ R=6\cdot N_3, \ X=N\cdot C_6H_5, \ Y=CH=CH; \ XVIII \ R=6\cdot N_3, \ X=N\cdot CH_3, \ Y=CH=CH; \ XIX \ R=5\cdot N_3, \ R'=C_2H_5, \ X=N\cdot CH_3, \ X=N\cdot CH_$

В отличие от четвертичных солей азидов бензтиазола, четвертичные соли азидов бензимидазола не образуют симметричных карбоцианинов ни в уксусном ангидриде, ни в пиридине. При проведении реакции в нитробензоле в нашем случае происходит разрушение четвертичных солей азидов.

На основании данных ИК спектров цианиновых красителей (V—XX) можно заключить, что при переходе от четвертичных солей к цианиновым красителям азидогруппа в последних сохраняется и участвует в системе сопряжения. В ИК спектрах цианиновых красителей имеются полосы асимметричных валентных колебаний азидогруппы в области 2105—2123 cm⁻¹ (табл. 1 и 2).

Для выяснения вопроса о влиянии азидогруппы на окраску цианиновых красителей были использованы красители ряда бензтиазола. для которых получены стирилы (V, VI), монометинцианины (VII, VIII). сим-

Цнан

Соеди- нение	λ _{max} , ня
V*	540
vi*	535
VII	430
VIII	434
IX*	576
X*	580
XI*	566
XII*	570
XIII*	530
XIV*	536
	1

* Синтез красителей см

Цнани

Соеди- нение	Т. пл., °C	Брутто- формула
XV XVI XVII XVIII XIX XX	214—215 210—212 — — 169—170 198—200	C ₂₇ H ₂₅ IN ₆ S C ₂₂ H ₂₃ IN ₆ S C ₂₉ H ₂₃ I _N 6 C ₂₉ H ₂₅ IN ₆ C ₂₄ H ₂₅ IN ₆ O C ₁₇ H ₁₈ N ₆ O

метричные (IX, X) и цианины (XIII, XIV). Удалось. Из сравнения телей и соответствующ ующие выводы. Введ вого красителя привод щения в длинноволно несколько больше, чем ниях 5,5' или 6,6' тиак ный эффект по сравне соответственно (табл. лей, содержащих азил незначительно отлича

В работе³ отмечае: 6,6'-замещенных тиака пряжения заместитель атом азота, так и чере ется проводником эл заместителей и не уча этих положениях стои: сопряжения через атом объясняется большая в положениях 5,5' и 6 разница в максимума положениях 5,5' и 6,6 азидогруппа в данном

^{*} Сообщение II см.¹

Таблица 1

Цианиновые красители азидов бензтиазола

Соеди- нение	λ _{max} , ня	lg ε	λ _{тах} красителя без азндогруппы, ны (lg ε)	Батохром- ный сдвиг, им	v _{a s} N ₃ , см ⁻¹
V* VI* VII VIII IX* X* XI* XII* XIII*	540 535 430 434 576 580 566 570 530 536	4,70 4,74 4,97 4,91 5,15 5,15 5,07 5,09 4,78 4,79	528 (5,04) ⁶ 528 (5,04) ⁶ 422 (4,91) ⁷ 422 (4,91) ⁷ 558 (5,15) ⁸ 558 (5,15) ⁸ 558 (5,15) ⁸ 558 (5,15) ⁸ 521 (4,96) ⁶ 521 (4,96) ⁶	12 7 8 12 18 22 8 12 9	2123 2116 2115 2105 2114 2110 2120 2114 2114 2120

^{*} Синтез красителей см.2

Таблица 2

Цианиновые красители азидов бензимидазола

цианиновые правители воздел стана												
Соеди- нение	т. пл., °С	Брутто- формула	Найдено, %		Вычис- лено, %		λ _{max} ,	lg ε	, , , ,	ато- громный двиг, н <i>м</i>	Vas N3,	Выход, %
			N	s	N	S			Λ Kpa Tpy	Бат хро сдв	>	- AB
XV XVI XVII XVIII XIX XX	214—215 210—212 — — 169—170 198—200	C ₂₇ H ₂₅ IN ₆ S C ₂₂ H ₂₃ IN ₆ S C ₂₉ H ₂₃ IN ₆ C ₂₄ H ₂₅ IN ₆ C ₂₂ H ₂₀ N ₆ OS ₂ C ₁₇ H ₁₈ N ₆ OS ₂	14,6 16,0 14,0 16,2 18,8 21,6	5,6 6,2 — 13,9 16,4	14,2 15,8 14,3 16,0 18,9 21,9	5,4 6,0 — 13,9 16,1	522 522 574 534 524 526	5,03 4,97 4,92 5,13 	5179 5009 5599 5219 5119 5119	5 22 15 13 5 15	2110 2115 2110 2112 2110 2110	60 40 50 57 34 45

метричные (IX, X) и несимметричные (XI, XII) карбоцианины и мероцианины (XIII, XIV). Для имидацианинов такой серии получить не удалось. Из сравнения максимумов поглощения полученных нами красителей и соответствующих незамещенных красителей можно сделать следующие выводы. Введение азидогруппы в бензазольное кольцо цианинового красителя приводит к значительному смещению максимума поглощения в длинноволновую часть спектра, причем для тиацианинов оно ческолько больше, чем для имидацианинов. Две азидогруппы в положениях 5,5' или 6,6' тиакарбоцианина вызывают вдвое больший батохромный эффект по сравнению с одной азидогруппой в положениях 5 или 6 соответственно (табл. 1). Максимумы поглощения цианиновых красителей, содержащих азидогруппы в положении 6 бензтиазольного кольца, незначительно отличаются от максимумов поглощения 5-замещенных.

В работе³ отмечается, что незначительная разница в окраске 5,5'- и 6,6'-замещенных тиакарбоцианинов связана с равной возможностью сопряжения заместителей с полиметиновой цепью красителя как через атом азота, так и через атом серы. Атом серы тиазольного кольца является проводником электронов только со стороны электронодонорных заместителей и не участвует или слабо участвует в сопряжении, если в этих положениях стоит электроноакцепторный заместитель⁴. Отсутствием сопряжения через атом серы для электроноакцепторных заместителей объясняется большая разница в окраске тиакарбоцианинов, содержащих в положениях 5,5' и 6,6' электроноакцепторные заместители. Небольшая разница в максимумах поглощения тиакарбоцианинов, содержащих в положениях 5,5' и 6,6' азидогруппы, дает основание предположить, что азидогруппа в данном случае играет роль электронодонорного замести-

ЛИЧЕСКИХ

БЕНЗТИАЗОЛА

азола получены 5 бензазольного красителя прилиогр. 9.

газолов (II), йодиметилбензимидантеза цианиновых зазольного цикла

$$-CH = C \setminus R'$$

$$R''$$

$$H-CH=C$$

$$C_2H_5$$

 $VIII R = 16-N_3, R' = H,$ $R'' = CH_3, n = 1; XI$ 1; XIII $R = 5 - N_3$, R' = $_{5}$, Y=S; XVI R=6-N₃. $R = 6-N_3$, $X = N-CH_3$, C_2H_5 , $X = N-CH_3$

эла, четвертичные іх кар:боцианинов :дении реакции ^в ие четвертичных

ісителей (V—XX) солей к цианинося и участвует в ісителей имеются руппы в области

окраску цианинобензтиазола, для (VII, VIII), CHM- теля. По числовому значению ее батохромный эффект приближается к эффекту ацетиламиногруппы⁴. Ацетиламиногруппа при введении в одно ядро тиакарбоцианина не вызывает девиации5. То же самое мы наблюдаем при введении в одно бензтиазольное ядро красителя азидогруппы

Известно, что окраска мероцианинов углубляется при увеличении основности гетероциклического остатка, связанного с ядром роданина полиметиновой цепью. Тиамероцианины, содержащие в качестве замести телей азидогруппу, окрашены глубже (на 9-15 нм), чем незамещенные, что является косвенным подтверждением того, что азидогруппа выступает в роли электронодонорного заместителя. Сходство в оптическом от ношении тиакарбоцианинов, содержащих в положениях 5,5' и 6,6' азидогруппу, можно объяснить равной возможностью сопряжения азидогруппы в этих красителях как через атом азота, так и через атом серы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрофотометре UR-10 в таблетках с КВг, УФ спектры -

на приборе СФ-4 в этаноле.

(3-Метил-5-азидобенэтиазолил-2)-(3'-этилбенэтиазолил-2')монометинцианин йодиа (VII). Смесь 0,33 г (1 ммол) йодметилата 5-азидо-2-метилбензтиазола, 0,38 г (1 ммол) этилтозилата 2-метилмеркаптобензтиазола и 1 ммол триэтиламина в абсолютном этанож кипятят 30 мин. Уже при нагревании выпадает осадок красителя. После охлаждения осадок отфильтровывают, промывают спиртом. Выход 0,28 г (45%). Т. пл 262-264° (с разл., из этанола). Найдено: N 14,3; S 13,0%. С₁₈Н₁₆IN₅S₂. Вычислено: N 14,2; S 13,0%.

(3-Метил-6-азидобензтиазолил-2)-(3'-этилбензтиазолил-2')монометинцианин (VIII). Получают аналогично VII из 0,33 г (1 ммол) йодметилата 6-азидо-2-метилбензтиазола и 0,38 г (1 ммол) этилтозилата 2-метилмеркаптобензтиазола. Выход 0,32 г (56%). Т. пл. 225—228° (с разл., из этанола). Найдено: N 14,1; S 13,2%. С₁₈H₁₆IN₅S₂. Вычислено: N 14,2; S 13,0%.

Несимметричные карбоцианины XV, XVI получают при нагревании эквимолекулярных количеств соответствующей четвертичной соли (III или IV) и 3-этил-2-формилметиленбензтиазолина в уксусном ангидриде. Образовавшийся краситель фильтруют, промывают спиртом, эфиром, а затем кристаллизуют из спирта (табл. 2).

Несимметричные карбоцианины XVII, XVIII получают при нагревании эквимолекулярных количеств соответствующей четвертичной соли (III или IV) и йодэтилата 2-0ацетанилидовинилхинолина в уксусном ангидриде в присутствии триэтиламина. Очн щают хроматографированием раствора красителя в хлороформе на окиси алюминия 2-й степени активности (табл. 2).

Мероцианины XIX, XX получают нагреванием эквимолекулярных количеств соответствующих йодэтилатов III или IV и ацетанилидометилен-N-этилроданина в этаноле В присутствии триэтиламина. Очищают путем хроматографирования их хлороформных растворов на окиси алюминия 2-й степени активности (табл. 2).

ЛИТЕРАТУРА

1. І. А. Ольшевська, В. Я. Починок, Н. А. Пасмурцева, Н. Ф. Пархоменко, Віснях Київськ. унів., 1973, сер. хім., № 14, 61.

2. И. А. Ольшевская, В. Я. Починок, Л. Ф. Авраменко, ХГС, 1968, 898.

3. Е. Д. Сыч, Л. П. Уманская, ЖОХ, 1963, 33, 80. 4. Е. Д. Сыч, Укр. хим. журн., 1952, 18, 159.

5. А. И. Киприанов, Докт. дис., Харьков, 1940. 6. A. И. Киприанов, Ф. A. Михайленко, ЖОХ, 1961, 31, 781.

7. А. И. Киприанов, И. К. Ушенко, ЖОХ, 1950, 20, 135. 8. А. И. Киприанов, Ф. А. Михайленко, ЖОХ, 1961, 31, 786. 9. А. В. Стеценко, Л. И. Филилеева, Укр. хим. журн., 1966, 32, 853.

Киевский государственный университет им. Т. Г. Шевченко

Поступило 16 II 19⁷³

уДК 547.869.2'789.6.07

В. В. Шавыр

синтезы в г

XXXVII*. НЕКОТОРЫЕ СВ 2-МЕТИЛМЕРКАПТОТ

Изучены некоторые реакции 2-метилмеркапто-3-метилтиазоло[него спиртовой щелочью привог сульфиду; расщепление с послед мещенные фенотиазины. Библиог

Продолжая исследование хи [4,5-b]фенотиазина^{2, 3}, мы изучил 2-метилмеркаптотиазоло[4,5-b]ф

Известно, что четвертичные с дают повышенной реакционной зотиазолом. Благодаря значител углерода, связанном с алкилм легко вступают в реакции нукл

Поскольку четвертичные сол тичными солями 2-алкилмерка что они окажутся близкими и по

Нагреванием I с диметилсу сульфат 2-метилмеркапто-3-мет торый в отличие от йодметилат в горячем спирте. Поэтому из проводили преимущественно на

При кипячении с водой Пб или IIб крепкого раствора ще*з* ется 3-метил-2,3-дигидротиазол ченный изомеризацией IIa 3-мтион-2 (IV) был синтезировач раствором сернистого натрия. F

$$\left(\underbrace{\begin{array}{c} S \\ N \\ H \end{array}}_{N} \underbrace{\begin{array}{c} S^{-} \\ NHCH_{3} \\ \end{array}_{2} - \left[\underbrace{\begin{array}{c} C \\ \end{array}}_{2} \right]_{2} \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}}_{2} \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}_{2} + \underbrace{\begin{array}{c} C \\ NHCH_{3} \\ \end{array}}_{2} + \underbrace{\begin{array}{c} C \\$$

II a X = I, $6 X = CH_3SO_4^-$; III X = O; IV

^{*} Сообщение XXXVI см.1