ÁLGEBRA VECTORIAL

- **2.** Verifique se é, ou não, verdadeira a proposição seguinte relativa aos vectores $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$: se $\vec{u} \neq \vec{0}$ e $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, então $\vec{v} = \vec{w}$.
- **10.** Sejam os vectores de \mathbb{R}^3 , $\vec{u} = (2, 4, -6)$, $\vec{v} = (-2, 6, 2)$ e $\vec{w} = (3, -4, 5)$. Calcule:

a)
$$(\vec{u} \cdot \vec{v})\vec{w}$$
.

b)
$$\vec{v} \cdot (3\vec{u} - 2\vec{w})$$
.

c)
$$4\vec{v}/(\vec{u}\cdot\vec{w})$$
.

d)
$$\vec{v} \cdot (2\vec{u} - \vec{v}/3 + \vec{w}/2)$$
.

- **11.** Admita que os pontos A = (3,1,-2), B = (1,2,-2) e C = (4,0,-1) são três dos vértices de um paralelogramo. Determine:
 - a) Todos os pontos possíveis, D, que poderão ser o vértice restante do referido polígono.
 - **b**) A área do triângulo [ABC] e a área dos vários paralelogramos definidos na alínea anterior.
- **13.** Determine para que valores de α o ângulo formado pelos vectores de \mathbb{R}^3 $\vec{u} = (1-\alpha, 2, -2)$ e $\vec{v} = (2, -\alpha, 5)$ é obtuso.
- **14.** No espaço linear \mathbb{R}^3 , calcule os valores de α para os quais $(-4,1-\alpha,2) \perp (\alpha,-2\alpha,-4)$.
- **15.** Obtenha os valores de α para os quais o ângulo formado pelos vectores de \mathbb{R}^3 $(1,-\alpha,1)$ e $(1,1,-\alpha)$ é $\pi/3$.
- **18.** Obtenha os vectores não nulos, \vec{r} , de \mathbb{R}^3 , tais que $\vec{r} \cdot \vec{u} = \vec{r} \cdot \vec{v} = 0$, sendo que $\vec{u} = (3,0,2)$ e $\vec{v} = (4,-2,3)$.

J.A.T.B.

- **21.** Sendo $\vec{a} = (2,1,2)$ e $\vec{c} = (1,-1,-2)$, determine os vectores \vec{r} e \vec{s} de \mathbb{R}^3 , tais que $\vec{a} = \vec{r} + \vec{s}$, $\vec{c} \cdot \vec{s} = 0$ e \vec{r} é paralelo a \vec{c} .
- **27.** Determine o vector $\vec{v} \in \mathbb{R}^3$, com norma $\sqrt{10}$ e com os ângulos directores $\pi/4$, $\pi/2$ e $3\pi/4$.
- **28.** Sejam os pontos A = (1,1,1) e B = (-3,3,-3) de \mathbb{R}^3 . Determine todos os pontos C, de forma que o triângulo ABC seja rectângulo:
 - a) No vértice A.

b) No vértice *B*.

- c) No vértice C.
- **32.** Sejam os vectores não nulos \vec{x} , \vec{y} , \vec{z} , $\vec{w} \in \mathbb{R}^n$, tais que \vec{z} é paralelo a \vec{x} , \vec{w} é perpendicular a \vec{x} e $\vec{y} = 2\vec{z} 3\vec{w}$. Mostre que \vec{x} não é perpendicular a \vec{y} .
- **33.** Sejam os vectores $\vec{x}, \vec{y} \in \mathbb{R}^n$. Tendo em atenção que $\|\vec{x}\| = 4$, $\|\vec{x} + \vec{y}\| = 7$ e que \vec{x} e $\vec{x} + \vec{y}$ formam um ângulo de 60° , obtenha $\vec{x} \cdot \vec{y}$.
- **35.** Sejam \vec{u} e \vec{v} vectores de \mathbb{R}^n , tais que $\|\vec{v}\| = 2$, $\|\vec{u} + \vec{v}\| = \sqrt{13}$ e $\angle(\vec{u}, \vec{v}) = \pi/6$. Calcule $\|\vec{u}\|$.
- **36.** Considere os vectores $\vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{R}^n$, tais que $\|\vec{a}\| = \sqrt{3}$, $\|\vec{b}\| = \sqrt{6}$, $\vec{c} = \vec{a} + \vec{b}$, \vec{d} é paralelo a \vec{a} e $\angle(\vec{a}, \vec{b}) = \pi/4$. Determine:
 - a) A norma do vector \vec{c} .
 - **b**) O ângulo, β , formado pelos vectores \vec{c} e \vec{d} .

J.A.T.B.

- **38.** Relativamente aos vectores $\vec{u} = (1, 2, -2, 3)$ e $\vec{v} = (2, -1, 3, 1)$ de \mathbb{R}^4 , calcule o vector projecção ortogonal de \vec{u} sobre \vec{v} .
- **45.** Considere o conjunto $U = \{\vec{u}_1, \vec{u}_2\}$ de vectores do espaço linear \mathbb{R}^3 , em que $\vec{u}_1 = (0,1,0)$ e $\vec{u}_2 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$.
 - a) Mostre que U é um conjunto ortonormal.
 - **b**) Obtenha uma base ortonormal, W, para \mathbb{R}^3 que inclua os elementos de U.
- **47.** Seja o vector $\vec{u}_1 = (1,0,-1)$ do espaço linear \mathbb{R}^3 . Determine:
 - **a**) Uma base ortogonal, U, para \mathbb{R}^3 a partir do vector \vec{u}_1 .
 - **b**) Uma base ortonormal, W, para \mathbb{R}^3 a partir dos elementos da base U.
- **49.** Seja o conjunto $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ de vectores do espaço linear \mathbb{R}^3 , em que $\vec{u}_1 = (-2, 1, 1)$, $\vec{u}_2 = (-1, 0, 1)$, $\vec{u}_3 = (0, -1, 1)$ e $\vec{u}_4 = (-3, 2, 1)$.
 - a) Será o conjunto U linearmente independente? Justifique.
 - **b**) Calcule o subespaço L(U) gerado por U e conclua em relação à sua dimensão.
 - c) Obtenha uma base ortogonal, W, para L(U).
 - **d**) Obtenha uma base ortonormal, V, para L(U) a partir dos elementos da base W.

J.A.T.B.

50. Seja o conjunto $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ de vectores do espaço linear \mathbb{R}^4 , tal que $\vec{u}_1 = (2,1,1,-2)$, $\vec{u}_2 = (0,1,2,1)$, $\vec{u}_3 = (1,-1,2,2)$ e $\vec{u}_4 = (0,1,0,-1)$. Considere, ainda, o subespaço de \mathbb{R}^4 :

$$H = \left\{ (x, y, z, w) \in \mathbb{R}^4 : w - x - y = 0 \land z + x + y = 0 \right\}$$

- a) Calcule o subespaço L(U) gerado por U e conclua em relação à sua dimensão. Obtenha uma base para L(U).
- b) Será o conjunto U linearmente independente? Justifique a sua resposta.
- c) Determine uma base ortogonal, W, para o subespaço H.
- **d**) Construa uma base ortogonal, V, para o espaço vectorial \mathbb{R}^4 que contenha o máximo número possível de elementos de U e um elemento de H.
- e) Obtenha as coordenadas do vector $\vec{u}_1 = (2,1,1,-2)$ em relação à base ordenada V.
- **51.** Seja o vector $\vec{u}_1 = (1, 2, -1, 1)$ do espaço linear \mathbb{R}^4 . Determine:
 - **a**) Uma base ortogonal, U, para \mathbb{R}^4 a partir do vector \vec{u}_1 .
 - **b**) As coordenadas do vector $\vec{s} = (2, -1, 1, -3)$ em relação à base ordenada U.
- **54.** Sejam os vectores do espaço linear \mathbb{R}^4 , $\vec{u}_1 = (2, -2, 1, 1)$, $\vec{u}_2 = (1, -1, 2, -1)$, $\vec{v}_1 = (1, -2, 1, 1)$ e $\vec{v}_2 = (1, 1, -2, 1)$.
 - a) Determine os subespaços gerados pelos conjuntos $U = \{\vec{u}_1, \vec{u}_2\}$ e $V = \{\vec{v}_1, \vec{v}_2\}$.
 - **b**) Obtenha uma base ortogonal para cada um dos subespaços encontrados em a).
 - c) Calcule um vector não nulo, \vec{g} , que pertença simultaneamente aos subespaços L(U) e L(V) e exprima-o com combinação linear dos vectores das bases obtidas em b).

J.A.T.B. NAL-2.4

55. Considere o conjunto $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ de vectores do espaço linear \mathbb{R}^4 , em que $\vec{u}_1 = (1, -1, 0, 0)$, $\vec{u}_2 = (1, 0, 2, -1)$, $\vec{u}_3 = (0, 1, 0, 1)$ e $\vec{u}_4 = (1, 0, 1, 0)$. Seja o subespaço de \mathbb{R}^4 :

$$H = \{(x, y, z, w) \in \mathbb{R}^4 : z = x + y\}$$

- a) Calcule o subespaço L(U) gerado por U e conclua em relação à sua dimensão. Obtenha uma base para L(U).
- b) Será o conjunto U linearmente dependente? Justifique a sua resposta.
- c) Obtenha uma base ortogonal, W, para o subespaço L(U) que contenha o maior número possível de elementos de U.
- **d**) Determine uma base ortonormal, Q, para o subespaço L(U) a partir dos elementos da base W.
- e) Obtenha uma base ortogonal, V, para o espaço vectorial \mathbb{R}^4 que contenha dois elementos do subespaço $L(U) \cap H$.
- f) Encontre uma base ortonormal, T, para o espaço \mathbb{R}^4 a partir dos elementos da base V.
- g) Obtenha as coordenadas do vector $\vec{s} = (2, -1, 1, -3)$ em relação às bases ordenadas V e T.
- **56.** Considere o conjunto $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ de vectores do espaço linear \mathbb{R}^4 , em que $\vec{u}_1 = (1, 0, -1, 1)$, $\vec{u}_2 = (0, 1, 1, 0)$ e $\vec{u}_3 = (2, -1, 0, 1)$.
 - a) Determine o subespaço L(U) gerado por U e conclua em relação à sua dimensão.
 - **b**) Seja o vector $\vec{a} = (-1, 1, \beta, -1)$. Obtenha β de modo que $\vec{a} \in L(U)$.
 - c) Obtenha uma base ortogonal, V, para o subespaço L(U) que contenha os vectores \vec{u}_2 e $\vec{p} = (2,1,-1,\alpha)$. Comece por condicionar o valor de α .
 - **d**) Determine uma base ortogonal, W, para \mathbb{R}^4 que seja uma extensão de V.
 - e) A partir dos elementos da base W encontre uma base ortonormal, S, para $\,\mathbb{R}^4\,.$
 - f) Obtenha as coordenadas do vector $\vec{g} = (0, 2, 5, -1)$ em relação às bases ordenadas W e S.

J.A.T.B. NAL-2.5

57. Considere o conjunto de vectores $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\} \subset \mathbb{R}^4$, tal que $\vec{u}_1 = (-1, 0, 1, 2)$, $\vec{u}_2 = (2, 1, 0, -3)$, $\vec{u}_3 = (3, 2, 1, -4)$ e $\vec{u}_4 = (-3, -1, 1, 5)$. Seja, ainda, o subespaço de \mathbb{R}^4 :

$$H = \{(x, y, z, w) \in \mathbb{R}^4 : z = x - 2w\}$$

- a) Calcule o subespaço, L(U), gerado por U e conclua em relação à sua dimensão. Obtenha uma base para L(U). Será o conjunto U linearmente dependente? Justifique a resposta.
- **b**) Obtenha uma base ortogonal, W, para o subespaço L(U), que contenha o vector \vec{u}_1 .
- c) Determine qual dos vectores $\vec{a}_1 = (0,1,2,-1)$ e $\vec{a}_2 = (-1,1,3,3)$ é combinação linear dos elementos da base W e obtenha, nesse caso, a respectiva combinação linear.
- **d**) Construa uma base, V, para o espaço linear \mathbb{R}^4 , que inclua os vectores $\vec{v}_1 = (1,0,1,0)$ e $\vec{v}_2 = (0,0,2,-1)$ do subespaço H.
- e) Obtenha uma base ortogonal, Q, para o espaço linear \mathbb{R}^4 , que inclua dois vectores de L(U) e um vector do subespaço H.
- f) Calcule as coordenadas do vector $\vec{r} = (2, 1, -1, 3)$ em relação às bases ordenadas V e Q.
- **58.** Seja o conjunto de vectores $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ do espaço linear \mathbb{R}^4 , em que $\vec{u}_1 = (0, 1, 1, 0)$, $\vec{u}_2 = (1, -1, 0, 0)$, $\vec{u}_3 = (0, 1, 0, 1)$ e $\vec{u}_4 = (1, 1, 1, 1)$.
 - a) Determine o subespaço, L(U), gerado por U e conclua em relação à sua dimensão. Indique uma base para L(U).
 - **b**) Obtenha uma base, W, para o subespaço L(U), que inclua dois elementos do conjunto U e cujos elementos tenham norma igual a $\sqrt{2}$ e façam, entre si, ângulos de 60° .

J.A.T.B. NAL-2.6