

College of Computing And Informatics

DEPARTMENT OF SOFTWARE ENGINEERING

MACHINE LEARNING COURSE

Group Assignment

GROUP MEMBERS:

NAME:	STUDENT ID
1. YISHAK ALEMU	
2. YOHANNES AYENEW	
3. YOSEPH DAGNE	
4. YUSUF KEDIR	3737/14
5. ZEKARIAS TAMIRU	3747/14

SUBMISSION DATE: 2/14/2025

Example confusion matrix for a ternary classifier, it shows the predicted and actual temperature for 345 days. For 110 days the temperature is predicted correct, and for 235 it is predicted incorrectly.

N = 345	Predicted High	Predicted Medium	Predicted Low
Actual High	$TP_H = 50$	FP_H = 20	$FN_H = 10$
Actual Medium	$FP_M = 30$	$TP_M = 25$	$FN_M = 40$
Actual Low	FP_L = 60	FP_L = 75	TP_L = 35

Where:

- **TP** = True Positive
- **FP** = False Positive
- **FN** = False Negative

Metrics Calculation

1. Accuracy:

2. **Precision** for each class:

Precision_High =
$$TP_H / (TP_H + FP_H) = 50 / (50 + 20) = 0.714$$

Precision_Medium = $TP_M / (TP_M + FP_M) = 25 / (25 + 30) = 0.455$
Precision_Low = $TP_L / (TP_L + FP_L) = 35 / (35 + 60 + 75) = 35 / 170 = 0.21$

3. **Recall** for each class:

Recall_High =
$$TP_H / (TP_H + FN_H) = 50 / 50 + 10 = 0.83$$

Recall_Medium = $TP_M / (TP_M + FN_M) = 25 / 25 + 40 = 0.385$
Recall_Low = $TP_L / (TP_L + FN_L) = 35 / 35 + 10 + 40 = 35 / 85 = 0.412$

4. **Specificity** for each class (True Negative Rate):

Specificity_High = TN_H / (TN_H + FP_H) =
$$(25 + 35)$$
 / $(25 + 35 + 20)$ = 60 / 80 = 0.75
Specificity_Medium = TN_M / (TN_M + FP_M) = $(50 + 35)$ / $(50 + 35 + 30)$ = 85 / 115 = 0.74
Specificity_Low = TN_L / (TN_L + FP_L) = $(50 + 25)$ / $(50 + 25 + 60 + 75)$ = 75 / 210 = 0.36

5. Error Rate:

Error Rate = (
$$FP_H + FP_M + FP_L + FN_H + FN_M + FN_L$$
)/ total samples
= 1 - Accuracy = 1 - 0.32 = 0.68