Introducing SAP Archtecture

Introducing SAP HANA

SAP HANA platform

on-premise | cloud | hybrid

Key features of SAP HANA

- In-Memory Computing
- Column-Oriented Data Storage
- Unified Data Model
- Real-Time Analytics
- High Availability and Scalability

SAP HANA architecture

Role details: install SAP HANA

This role creates the configuration file for an unattended install of SAP HANA with hdblcm and kicks off the installation process.

It automatically detects the hdblcm binary or the installation files in the given installation directory

A minimal configuration example is on the right.

More information about configuration options can be found in the documentation

```
sap_hana_install_software_directory: /sap-software
sap_hana_install_master_password: "*******"
sap_hana_install_sid: 'RHA'
sap_hana_install_instance_number: "00"
```

Optional:

```
sap_hana_install_software_extract_directory: /my_local/inst_dir
```


LAB Install HANA

Introducing SAP Archtecture

SAP HA concepts

General SAP HSR architecture

SAP HANA System Repliction Scenarios

multi-tier replication

Replication Chain

SAP HANA System Repliction Scenarios

multi-target replication

RHEL High Availability Solutions for SAP

Performance Optimized

- RTO (recovery time objective), RPO (recovery point objective)
- cluster support guidelines:

https://access.redhat.com/articles/2912891 https://access.redhat.com/articles/3397471

- 1,2) See 3397471, 3569681 and 3974941 for further details on Support Policies for RHEL HA Cluster Management of SAP HANA, SAP NetWeaver and S/4HANA.
- 3) RHEL for SAP Solutions provides HA resource agents to automate the takeover from a primary to secondary SAP HANA instance. Customers may also configure multi-target and multi-tier SAP HANA system replication in conjunction with RHEL HA solutions for SAP. In such scenario, the RHEL HA solution will remain functional & supported within its defined scope, whereas failover to such additional targets are not taken care of by the HA cluster solution.
- 4) Current planning. Actual timelines / scope may change.

• syncmem (default)

- syncmem (default)
- sync

- syncmem (default)
- sync
- async

operation modes

delta_datashipping

- o default: every 10 minutes
- differential backup triggered by secondary
- o log only replayed at takeover

operation modes

- delta_datashipping
- logreplay
 - persistent log shipping and replay
 - retention period in case of network interruption
 - after retention full data snapshot is transferred again
- logreplay_readaccess

operation modes

- delta_datashipping
- logreplay
- logreplay_readaccess
 - identical to logreplay
 - enables read_access on the secondary

Manual installation steps

without ansible

- 1. Set up an operating system instance (100% identical on 2 systems).
- 2. Create file systems.
- 3. Check the subscription and repositories.
- 4. Prepare the operating system with preconfigured system roles.
- 5. Verify and update sync hostname resolution.
- 6. Obtain and download the SAP HANA installation package.
- 7. Install HANA and use the same SID (System Identifier), instance number, and UID (User ID).
- 8. Back up the primary database server.
- 9. Copy PKI files from the primary to the secondary database server.
- 10. Run the sr_enable command on the primary database server.
- 11. Run the sr_register command on the secondary database server

Overview of manual steps

Verify Logmode:

hdbsql -u system -p \$HANA_SYSTEM_PASSWORD -i 00 "select value from "SYS"."M_INIFILE_CONTENTS" where key='log_mode'"

Required commands to change log mode:

hdbsql -U HDB_SYSTEMDB -i 00

ALTER SYSTEM ALTER CONFIGURATION ('global.ini', 'SYSTEM') SET ('persistence', 'log_mode') = 'normal' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION('global.ini', 'HOST', '{{ ansible_hostname }}') SET ('persistence', 'log_mode') = 'normal' WITH RECONFIGURE;

List Databases for backup

SELECT * FROM M_DATABASES

Back up the primary database on hana01

hdbsql -i 00 -u system -p \$HANA_SYSTEM_PASSWOpythRD -d SYSTEMDB "BACKUP DATA USING FILE ('/tmp/foo')" hdbsql -i 00 -u system -p \$HANA_SYSTEM_PASSWORD -d RH1 "BACKUP DATA FOR RH1 USING FILE ('/tmp/foo-RH1')"

Initialize replication on the hanaO1 primary node:

sudo su - rh1adm

hdbnsutil -sr_enable --name=DC1

On secondary node:

sudo su - rh1adm -c "HDB stop" # stop HANA

copy the keys

scp root@hana01:/usr/sap/RH1/SYS/global/security/rsecssfs/key/SSFS_RH1.KEY /usr/sap/RH1/SYS/global/security/rsecssfs/key/SSFS_RH1.KEY /usr/sap/RH1/SYS/global/security/rsecssfs/key/SSFS_RH1.DAT /usr/sap/RH1/SYS/global/security/rsecssfs/data/SSFS_RH1.DAT /usr/sap/RH1/SYS/global/security/rsecssfs/data/SSFS_RH1.DAT sudo su - rh1adm

hdbnsutil -sr_register --remoteHost=nodeO1 --remoteInstance=O0 --replicationMode=syncmem --name=DC2

HDB start

hdbnsutil -sr_state

cdpy

python systemReplicationStatus.py

Role details: configure SAP HANA system replication

If you have used the sap_hana_install role to set up two identical instances, you can use this role to easily set up SAP HANA system replication between these instances.

Example:

Common variables that need to be used on both hosts:

```
# Already defined
sap_domain: domain.name
sap_hana_sid: RHA
sap_hana_install_instance_number: "00"
sap_hana_install_master_password: "*******"

# Optional
sap_ha_install_hana_hsr_rep_mode: sync
sap_ha_install_hana_hsr_oper_mode: logreplay
```

```
sap_hana_cluster_nodes:
    - node_name: "hana1"
        node_ip: "1.2.3.4"
        node_role: primary
        hana_site: DC01

- node_name: "hana2"
        node_ip: "hostvars['hana2']['private_ip']"
        node_role: secondary
        hana_site: DC02
```


LAB: Configure HSR

Explaining Red Hat Enterprise Linux HA for SAP Solutions

Pacemaker Architecture and Components

Definition Cluster

A **cluster** is a set of computers that work together on a single task. Which task is performed, and how that task is performed, differ from cluster to cluster.

High Availability Cluster:

- keep running a service as available as possible
- no bottlenecks , no single point of failure
- keep service alive by moving it to a "healthy node"

Active-Passive HA-Cluster

Active-Active HA Cluster

When to Use the High Availability Add-On for Clustering?

- what is the ability requirement?
- will the availability increase, when a cluster is used?
 - does the service has built-in HA (such as DNS, LDAP)?
 - does the service w/o built-in HA benefit (e.g. NFS)?
- Not every problem can be solved by a cluster (e.g. network, application flaw)
- a cluster involves risk management

Basic Components and Terminology

- Resources and Resource Groups
- Failover
- Fencing
- Shared Storage
- Quorum

Hardware Configuration of an HA Cluster

Software Components of Red Hat HA Cluster

- corosync
- pacemaker
 - cluster information base (CIB)
 - cluster resource management daemon (CRMd)
 - shot the other node in the head (STONITH)
- pcs pacemaker cluster shell
 - pcs command line interface
 - pcsd web frontend

Requirements and Recommendations

- number of nodes
- Single Site, Multisite, and Stretch or Geo Clusters
- Fencing
- Virtualized and Cloud Environments
- SE Linux Support

Planning for Failures

no SPOFs

Hardware Single Points of Failure

- Power supply
- Local storage
- Network interfaces
- Network switches
- Fencing software

Software Single Points of Failure

- Cluster communications
- Shared storage connection
- Software fencing configuration

Operation, Update, and Monitoring

Configuring Pacemaker Cluster HA for SAP HANA and SAP Netweaver

Overview

step by step installation instructions - cluster framework

1. Install the cluster software on **all** nodes

[root@node ~]# yum install pcs fence-agents-all

Overview

step by step installation instructions - cluster framework

- 1. Install the cluster software on **all** nodes
- 2. Disable or configure the firewall for cluster communication

```
[root@node ~]# firewall-cmd --permanent --add-service=high-availability
[root@node ~]# firewall-cmd --reload
```

Overview

step by step installation instructions - cluster framework

- 1. Install the cluster software on **all** nodes
- 2. Disable or configure the firewall for cluster communication on **all** nodes
- 3. Enable pacemaker and corosync on the **all** nodes

```
[root@node ~]# systemctl enable --now pcsd
```

step by step installation instructions - cluster framework

- 1. Install the cluster software on **all** nodes
- 2. Disable or configure the firewall for cluster communication on **all** nodes
- 3. Enable pacemaker and corosync on the **all** nodes

```
[root@node ~]# systemctl enable --now pcsd
[root@node ~]# echo redhat | passwd --stdin hacluster
```

step by step installation instructions - cluster framework

- 1. Install the cluster software on **all** nodes
- 2. Disable or configure the firewall for cluster communication on **all** nodes
- 3. Enable pacemaker and corosync on the **all** nodes
- 4. Authenticate the cluster nodes on **one** node

```
[root@node ~]# pcs host auth node1.example.com node2.example.com
```

Username: hacluster

Password: redhat

node1.example.com: Authorized

node2.example.com: Authorized

step by step installation instructions - configure basic cluster communication

1. Set up the cluster

```
[root@node ~]# pcs cluster setup mycluster --start \
> node1.example.com \
> node2.example.com
```

step by step installation instructions - configure basic cluster communication

- 1. Set up the cluster
- 2. Enable auto rejoin after reboot
 [root@node ~]# pcs cluster enable --all

step by step installation instructions - configure basic cluster communication

- 1. Set up the cluster
- 2. Enable auto rejoin after reboot
- 3. Verify the cluster status

```
[root@node ~]# pcs cluster status
Cluster Status:
Cluster Summary:
  * Stack: corosync
  * Current DC: node2.example.com (version 2.0.4-6.el8-2deceaa3ae) - partition
with quorum
  * Last updated: Fri Mar 5 12:23:08 2021
  * Last change: Fri Mar 5 12:22:57 2021 by root via cibadmin on
node1.example.com
  * 2 nodes configured
  * 0 resource instances configured
Node List:
  * Online: [ node1.example.com node2.example.com ]
PCSD Status:
 node1.example.com: Online
 node2.example.com: Online
```

step by step installation instructions - configure fencing

- 1. Select and test proper fence device and fencing method
 - a. supported fence devices: https://access.redhat.com/articles/2881341
 - b. how to test a fence device: https://access.redhat.com/solutions/18803

step by step installation instructions - configure fencing

- 1. Select and test proper fence device and fencing method
- 2. Configure fencing device

```
[root@node ~]# pcs stonith create fence_device_name fence_ipmilan \
> pcmk_host_list=node_private_fqdn \
> ip=node_IP_BMC \
> username=username \
> password=password
```

step by step installation instructions - configure fencing

- 1. Select and test proper fence device and fencing method
- 2. Configure fencing device
- 3. Display Status of fencing device

```
[root@node ~]# pcs stonith status
* fence_nodea (stonith:fence_ipmilan): Started node1.example.com
* fence_nodeb (stonith:fence_ipmilan): Started node2.example.com
```

step by step installation instructions - setting up HA for SAP HANA

1. Ensure HANA SR is configured and working properly

SAP HANA Topolgy Resource Agent

Required Parameters

- SID
- InstanceNumber

Responsibilities

- Gathers information about the status and configuration of the SAP HANA System Replication on each node.
- Starts and monitors the local SAP HostAgent, which is required for starting, stopping, and monitoring the SAP HANA instances.

- 1. Ensure HANA SR is configured and working properly
- 2. Configure SAP Hana topology clone resource

```
[root@node ~]# pcs resource create SAPHanaTopology_<SID>_<InstanceNumber> \
> SAPHanaTopology SID=<SID> InstanceNumber=<InstanceNumber> \
> op start timeout=600 op stop timeout=300 \
> op monitor interval=10 timeout=600 \
> clone clone-max=2 clone-node-max=1 interleave=true
```

SAP HANA Resource Agent (Scale Up)

Parameters

- SID (required)
- InstanceNumber (required)
- PREFER_SITE_TAKEOVER
- AUTOMATED_REGISTER
- DUPLICATE_PRIMARY_TIMEOUT

Responsibilities

- managing HANA instances and monitors HSR
- can trigger an SR takeover

- 1. Ensure HANA SR is configured and working properly
- 2. Configure SAP Hana topology clone resource
- 3. Create Master/Slave SAPHana resource

```
[root@node ~]# pcs resource create SAPHana_<SID>_<InstanceNumber> SAPHana \
> SID=<SID> InstanceNumber=<InstanceNumber> \
> PREFER_SITE_TAKEOVER=true \
> DUPLICATE_PRIMARY_TIMEOUT=7200 AUTOMATED_REGISTER=true \
> op start timeout=3600 op stop timeout=3600 op monitor interval=61 \
> role="Slave" timeout=700 op monitor interval=59 \
> role="Master" timeout=700 op promote timeout=3600 op demote timeout=3600 \
> promotable meta notify=true clone-max=2 clone-node-max=1 interleave=true
```

- 1. Ensure HANA SR is configured and working properly
- 2. Configure SAP Hana topology clone resource
- 3. Create Master/Slave SAPHana resource

- 1. Ensure HANA SR is configured and working properly
- 2. Configure SAP Hana topology clone resource
- 3. Create Master/Slave SAPHana resource
- 4. Create Virtual IP Address Resource
- 5. Create Constraints

```
# pcs constraint order SAPHanaTopology_<SID>_<InstanceNumber>-clone \
> then SAPHana_<SID>_<InstanceNumber>-clone symmetrical=false
# pcs constraint colocation add vip_<SID>_<InstanceNumber> \
> with master SAPHana_<SID>_<InstanceNumber>-clone 2000
```

step by step installation instructions - additional config for Active/Active HANA SR setup

step by step installation instructions - additional config for Active/Active HANA SR setup

- 1. Creating the resource for managing the secondary virtual IP address
- 2. Create contsraints

```
[root@node ~]# pcs constraint location vip2_<SID>_<InstanceNumber> \
> rule score=INFINITY hana_<sid>_sync_state eq SOK and hana_<sid>_roles \
> eq 4:S:master1:master:worker:master
[root@node ~]# pcs constraint location vip2_<SID>_<InstanceNumber> \
> rule score=2000 hana_<sid>_sync_state eq PRIM and hana_<sid>_roles eq \
> 4:P:master1:master:worker:master
```

redhat.sap_install. sap_hana_ha_pacemaker

Role details: configure pacemaker for SAP HANA

This role configures pacemaker on two SAP HANA systems that have properly configured SAP HANA system replication deployment on a RHEL 8.x systems.

Example variables to be used for both hosts:

```
sap_hana_sid: RH1
sap_instance_number: "00"
ha cluster cluster name: hanacluster
ha_cluster_hacluster_password: 'S3cr3tP@ssw0rd' # notsecret
sap_hana_vip:
   primary: 10.0.0.202
sap_ha_pacemaker_cluster_stonith_custom:
  - name: "fence_with_hmc"
    agent: "stonith:fence_lpar"
   options:
      [\ldots]
```

This role is TechPreview, hence parameters are subject to change

redhat.sap_install.sap_hana_ha_pacemaker

Role update: configure pacemaker for SAP HANA

There has been an interface change in the current role.

The cluster Setup now needs to look like this:

See also:

https://access.redhat.com/solutions/3786791

LAB: Configure SAP Cluster

Explaining SAP HANA System Replication

Installing the SAP HANA Scale-out Resource Agent

differences to scale-up HSR

- more than 4-nodes in a cluster
- additional shared mount points
- additional majority make node
- additional constraints on the majority maker node

HANA Scale-Out Shared Storage Architecture

Pacemaker Integration

Hana Installed and SR established

DC1 Scaling-out HANA System Scaling-out HANA System HANA Node N **HANA Node 1** HANA Node 2 HANA Node 1 HANA Node 2 CPU CPU CPU SAP HANA CPU CPU CPU CPU CPU CPU CPU CPU RAM RAM RAM RAM RH1 RAM RAM RAM Database Instance Database Instance Database Instance Primary Shared Storage System Replication 00 00 Data Log Data Log Data Log

DC2

CPU

CPU

RAM

HANA Node N

CPU

CPU

RAM

00

Data Log

CPU

SAP HANA RH1 Secondary

SAP HANA

RH1

Pacemaker Integration

SAP HANA RH1 Secondary

SAP HANA RH1 Secondary

SAP HANA Scale-Out Pacemaker Agents

- Resource Agents
 - SAPHanaTopology
 - Gathering all needed Information
 - Set the Scoring for the Cluster configuration
 - Clone Resource
 - SAPHanaController
 - Set the State of the Environment
 - IP, System Replication, Change State
 - Master/Slave Resource

SAP HANA Types

- Master
 - Master "Nameserver"
 - up to three
- Worker
 - Could be a Master node
 - Name- & Index-Server
- Standby
 - Waiting for orders
 - Has no Storage Attachment

SAPHanaSR hook

```
(a) (b) (c)
                            root@dc1hana01:/hana/shared
Datei Bearbeiten Ansicht Suchen Terminal Hilfe
[root@dc1hana01 shared]# SAPHanaSR-showAttr
Global cib-time
                               prim sec srHook sync_state
global Fri Jan 24 17:23:30 2020 DC1 DC2 SOK
Sit lpt
               lss mns
DC1 1579904610 4 dc1hana01 P
DC2 30
              4 dc2hana01 S
              clone_state node_state roles
                                                                   score site
Hosts
dc1hana01
                          online
                                     master1:master:worker:master 150
                                                                          DC1
             PROMOTED
dc1hana02
                                     slave:slave:worker:slave
             DEMOTED
                          online
                                                                   -10000 DC1
                                     master2:slave:worker:slave
dc1hana03
                         online
                                                                          DC1
             DEMOTED
                                                                   110
dc1hana04
                         online
                                     master3:slave:standby:standby 115
             DEMOTED
                                                                          DC1
                                     master2:master:worker:master 100
dc2hana01
                         online
                                                                          DC2
             DEMOTED
dc2hana02
                                     slave:slave:worker:slave
             DEMOTED
                         online
                                                                   -12200 DC2
dc2hana03
                         online
                                     master3:slave:worker:slave
                                                                          DC2
             DEMOTED
                                                                   80
dc2hana04
                          online
                                     master1:slave:standby:standby 80
                                                                          DC2
             DEMOTED
                         online
majoritymaker
[root@dc1hana01 shared]#
```

Landscape Overview

Each Data Center has its own Overview

1adm@dc1har	a01:/usr	/sap/RH1/H	IDB00> HDBS	ettings.sl	n landscapeHo	ostConfigurat	tion.py									
	Host	Host	Failover	Remove	Storage	Storage	Failover	Failover	NameServer	NameServer	IndexServer	IndexServer	Host	Host	Worker	Worker
	Active	Status	Status	Status	Config	Actual	Config	Actual	Config	Actual	Config	Actual	Config	Actual	Config	Actual
	100000000000000000000000000000000000000				Partition	Partition	Group	Group	Role	Role	Role	Role	Roles	Roles	Groups	Groups
	12.5557	155755		2.000.00						**********					******	1212277
c1hana01	yes	ok	i i	i i	1	1	default	default	master 1	master	worker	master	worker	worker	default	default
c1hana02	yes	ok			3	3	default	default	slave	slave	worker	slave	worker	worker	default	default
c1hana03	yes	ok			2	2	default	default	master 2	slave	worker	slave	worker	worker	default	default
c1hana04	yes	ignore	i		0	0	default	default	master 3	slave	standby	standby	standby	standby	default	+

System Replication Overview

Complete Overview of all replication states available on primary Environment

SAP HANA Scale-Out explained

Worker and Stand-by Nodes

An SAP HANA Scaleout database consists of multiple nodes and SAP HANA instances.

Each worker node has it's own data partition.

Standby nodes do not have a data partition

SAP HANA Scale-Out explained

Master and Slave Nodes

An SAP HANA Scaleout database consists of several services such as master nameserver (M).

The active master nameserver takes all client connections and redirect the client to the proper worker node. It always has data partition 1.

Master candidates could be worker or standby nodes.

Typically there are 3 nodes which could get active master nameserver

SAP HANA Scale-Out - Worker Node Failure

Failing Worker Node or Instance

if a normal worker node failed, client could still connect to the SAP HANA database.

However answers which need data of the failed node could not be processed

SAP HA tries to repair this situation using a standby node.

SAP HANA Scale-Out - Worker Node Failure

Failing Worker Node or Instance

first of all the SAP HANA HA storage API must guarantee, that the old node does not longer have access to the data (SAP STONITH)

After the data partition is "free" the failover could be processed

SAP HANA Scale-Out - Worker Node Failure

Failing Worker Node

Any available standby node could take the "lost" data partition

The standby node is now a worker node and loads the data.

The active master nameserver will now redirect clients to the new node.

the old worker will be a standby node once available again

SAP HANA Scale-Out - Worker Node Failure

Failing Worker Node

Summary:

SAPHanaSR detects all failovers of worker nodes

SAPHanaSR checks the overall landscape status of the SAP HANA database

SAPHanaSR "follows" the decision of the SAP HA and checks, if the failover is successful

Failing Master node

The active master nameserver is failing. All client connections are blocked.

As the active master nameserver is also a worker node SAP HA needs to failover the active master role including the worker part.

Failing Master node

The data partition 1 needs to be released (SAP STONITH).

One of the master nameserver candidates try to failover the active master nameserver role

In best case this should be a standby node because otherwise it's data partition would need to failover, too.

Failing Master node

The data partition 1 needs to be released (SAP STONITH).

One of the master nameserver candidates try to failover the active master nameserver role

In best case this should be a standby node because otherwise it's data partition would need to failover, too.

Failing Master node

Summary:

SAPHanaSR detects all failovers of the active master nameserver and migrates the virtual IP address to the standby node

SAPHanaSR allows clients to process a transparent reconnect and do not need to be configured for multiple access addresses

SAPHanaSR enables also high availability for software which is nor able to connect to different IP addresses

SAP HANA Scale-Out - Standby failure

Failing standby node or instance

A SAP HANA standby node could be either a master nameserver candidate or a "plain" standby node.

SAP HA does typically **not** repair this situation

The running SAP HANA database is not directly influenced, but HA capacity of the site gets degraded.

SAP HANA Scale-Out - Standby failure

Failing standby node or instance

Summary:

SAPHanaSR detects the outage of the SAP HANA standby node or instance

SAPHanaSR restarts the failed SAP HANA standby instance, if the node is still part of the pacemaker cluster or rejoining the cluster

SAPHanaSR takes care of the SAP HA failover "capacity" and increases the build-in SAP high availability

SAPHanaSR checks, if the situation allows a restart of the standby node or not

SAPHanaSR Typical Failures and Reactions

Failure	SAPHanaSR
Worker fails - node or instance	SAP HA processes failover. If SAP HA fails, SAPHanaSR processes a takeover or restart.
Active master nameserver fails - node or instance	Like the worker failure. In addition SAPHanaSR migrates the virtual IP address to the new active master nameserver.
Standby fails - node or instance	SAPHanaSR processes a instance restart to reestablish the full SAP HA capacity.
Primary site fails	SAPHanaSR processes a takeover on secondary or restart of the failed primary depending on configuration and system replication status.
Standby site fails	SAPHanaSR processes a database system restart to re-establish SAP HANA system replication.

Scale-Out with System Replication (SR)

A Scale-Out SR scenario consists of two SAP HANA Scale-Out database systems

Failing primary

Synchronisation of Scale-Out is done in pairs by all worker nodes and services like tenants

Failing Synchronization

Each single replication could fail **SAPHanaSR** detects such failures and excludes the secondary from site takeover

Failing primary

SAPHanaSR detects the failing primary.

Depending on the configuration and the system replication status a takeover is processed

Failing primary

SAPHanaSR processes the takeover to the secondary site and switches the virtual IP address so clients could transparently reconnect

Failing primary

SAPHanaSR could process a registration of the failed primary, depending in the configuration and checks if the new SR pair gets in sync

Failing secondary

SAPHanaSR detects failing secondary sites and handles the tracking of the system replication status to prevent sub-optimal takeovers

Failing secondary

SAPHanaSR processes the restart of the secondary site and checks the system replication status to allow optimal takeovers.

Explaining SAP HANA System Replication

Explaining Failover in the Multitarget System Replication Environment

Explaining Failover in the Multitarget System Replication Environment

Normal Operation

System Replication
SOK
SFAIL

Explaining Failover in the Multitarget System Replication Environment

Primary in DC1 fails

System Replication
SOK
SFAIL

DC2 takes over and DC3 is re-registered to DC2

DC1 is re-registered to DC2

Red Hat

Back to Normal Operation

nsdc1# hdbnsutil -sr_takeover

System Replication
SOK
SFAIL

Explaining SAP HANA System Replication

Installing SAP HANA Scale-out Multitarget System Replication

SAP Hana Multi Target Replication

"Multi-Target" System Replication is a new feature in HANA 2.0 SPS04

The primary system can replicate data changes to more than one secondary system

SAP Hana Multi Target Replication

"Multi-Target" System Replication is a new feature in HANA 2.0 SPS04

The primary system can replicate data changes to more than one secondary system

SAP Hana Multi Target Replication

"Multi-Target" System Replication is a new feature in HANA 2.0 SPS04

The primary system can replicate data changes to more than one secondary system

non-failed secondaries are re-registered after fail-over

Installation Steps

- > Set register_secondaries_on_takeover parameter in the SAP HANA global.ini
- > SAP HANA installation on a third site.
- > Register the third site as a secondary SAP HANA replication server.

Optional:

- > Add the nodes of the third site to the cluster.
- Create constraints to avoid SAP resource agent resources running on nodes of the third site.

Thank You!

- https://linkedin.com/company/Red-Hat
- https://facebook.com/RedHatinc
- https://youtube.com/user/RedHatVideos
- https://twitter.com/RedHat

