CS 3530: Assignment 3c

Fall 2014

Problems

Problem 1.54 (20 points)

Problem

Consider the language $F = \{a^i b^j c^k : i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k\}.$

- **a.** Show that F is not regular.
- **b.** Show that F acts like a regular language in the pumping lemma. In other words, give a pumping length p and demonstrate that F satisfies the three conditions of the pumping lemma for this value of p.
- c. Explain why parts (a) and (b) do not contradict the pumping lemma.

Solution a

```
Assume F is regular string s = ab^p c^p split s into s = xyz where:

1. xy^iz \in F(\text{for each } i \ge 0)

2. |y| > 0

3. |xy| \le p
```

If we make $x=ab^p$ and $y=c^p$ and $z=\varepsilon$ for some $i \le p-1$ than $xy^iz=ab^pc^{p+i} \notin F$.

Solution b

```
Assume F is regular string s = ab^p c^p split s into s = xyz where:

1. xy^iz \in F(\text{for each } i \ge 0)

2. |y| > 0

3. |xy| \le p
```

If we make x = a and $y = b^p c^p$ and $z = \varepsilon$ then $s \in F$.

Solution c

Solution a gives gives strings \notin F while solution b gives strings \in F. This proves that languages that are pumped do not necisarily have to be regular even though all regular languages can be pumped.