## PGE 337 Lecture 2: Probability



## Lecture outline . . .

- Probability Definitions
- Venn Diagrams
- Frequentist Concepts
- Bayesian Concepts

Introduction

**General Concepts** 

**Statistics** 

**Probability** 

Univariate

**Bivariate** 

**Time Series Analysis** 

**Spatial Analysis** 

**Machine Learning** 

**Uncertainty Analysis** 

Note: some slides were modified from Dr. Zoya Heidari's and Dr. Larry Lake's PGE 337 Course



## **Comments**

- We have group office hours 3:30 5:00 pm we can work through Anaconda,
   R and GSLIB software installation and example problems.
- I'm open to suggestions. My goal is to help you all learn. Let me know if you have ideas on improving the class anytime.

## **Statistics Moment By...**

2 mins.

## **Probability and Statistics**What should you learn from this lecture?

## Fundamentals of Statistics and Probability

- Fundamentals of Probability
  - » Basic Definitions and Rules
  - » Venn Diagram
  - » Conditional Probability
  - » Probability tree
  - » Bayes' Theorem
  - » Applications of Probability in Decision Making



# Probability Helps in Making Decisions

## For example:

- What is the probability that a well is a success? drill the well
- What is the probability that a valve has a crack? replace the valve
- What is the probability that a seismic survey finds a reservoir? acquire the seismic
- What is the probability that a reservoir seal will fail? inject the CO2

Most of our decisions involve uncertainty:

By quantifying probability we can make better decisions.

## Probability Definitions What is Probability?



**Measure of the likelihood that an event will occur.** For random experiments and well-defined settings (such as coin tosses):

$$\operatorname{Prob}(A) = \operatorname{P}(A) = \lim_{n \to \infty} \left( \frac{n(A)}{n(\Omega)} \right)$$

**frequentist approach** to probability is the limit of relative frequency over a large number of trails.

### where:

n(A) = number of times event A occurred

 $n(\Omega)$  = number of trails

Example: Possibility of drilling a dry hole for the next well, encountering sandstone at a location  $(\mathbf{u}_{\alpha})$ , exceeding a rock porosity of 15% at a location  $(\mathbf{u}_{\alpha})$ .

# Probability Concepts Venn Diagrams



## Venn Diagrams are a tool to communicate probability

**Experiments (Sampling) (J):** Establishment of conditions that produce an outcome.

**Simple Event (x):** A single outcome of an experiment.

**Event (A, B, ...):** Collection of simple events.

Occurrence of A: A has occurred if the outcome of experiment (sampling) belongs to it.

**Sample Space** ( $\Omega$ ): Collection of all possible events.

## What do we learn from a Venn diagram?

- size of regions = probability of occurrence
- overlap = probability of joint occurrence
- excellent tool to visualize marginal, joint and conditional probability.



Venn Diagram – illustration of events and relations to each other.





## **Experiments (Sampling) (J):**

Facies determined from a set of well cores (N=3,000 measures at 1 foot increments)

## Sample Space $(\Omega)$ :

Facies for the N=3,000 core measures

## **Event (A, B, ...):**

 Facies = {Sandstone, Interbedded Sandstone and Shale, Shale and other facies}

## **Venn Diagram Tells Us About Probability:**

- Prob{Other Facies} > Prob{Shale} >
   Prob{Sandstone} > Prob{Interbedded} =
   Prob{Shale and Sandstone}
- Prob{Sandstone and Shale given Sandstone } 
   Prob{Sandstone}



Venn Diagram – illustration of events and relations to each other.





#### **Union of Events:**

 All outcomes in the sample space that belong to either event A or B

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

#### **Intersection of Events:**

 All outcomes in the sample space that belong to both events A and B

$$A \cap B = \{x : x \in A \ and \ x \in B\}$$



Venn Diagram – illustrating union.



Venn Diagram – illustrating intersection.

# **Probability Definitions Probability Operators**



## Complementary Events: $A^c$

 All outcomes in the sample space that do not belong to A

## **Mutually Exclusive Events:**

The events that do not intersect or do not have any common outcomes

$$A \cap B = \emptyset \rightarrow \text{Null Set}$$



Venn Diagram – illustrating complementary events.



Venn Diagram – illustrating mutually exclusive.





## **Exhaustive, Mutually Exclusive Sequence of Events:**

 The sequence of events whose union is equal to the sample space

$$A_1 \cup A_2 \cup ... \cup A_n = \Omega$$

For example, all the samples are either A or B



Venn Diagram – illustrating exhaustive events.

## Probability Definitions Now We Refine Probability



$$\operatorname{Prob}(A) = \operatorname{P}(A) = \lim_{n \to \infty} \left( \frac{\operatorname{Area}(A)}{\operatorname{Area}(\Omega)} \right)$$

#### where:

Area(A) = area of A / total area = P(A)

Area( $\Omega$ ) = total area / total area = probability of any possible outcome = P( $\Omega$ ) = 1.0

Example: Possibility of drilling a dry hole for the next well (A<sup>C</sup>), encountering sandstone at a location ( $\mathbf{u}_{\alpha}$ )(B), exceeding a rock porosity of 15% at a location ( $\mathbf{u}_{\alpha}$ )(C).

$$Prob(A^C \cap B \cap C) = Area(A^C \cap B \cap C) / Area(\Omega)$$



## Probability Definitions Test Your Knowledge



Example: A petrophysicist has measured porosity of 7 core samples from a carbonate formation in the laboratory as follows:

We would like to investigate the following events:

- Event A: Porosity values of less than 0.15, {0.10, 0.12, 0.14}
- Event B: Porosity values of greater than 0.20, {0.25}
- Event C: Porosity values of between 0.14 and 0.17 {0.14, 0.15, 0.17}

#### **Union of Events:**

$$A \cup B =$$

$$B \cup C =$$

$$A \cup C =$$

Intersection of Events:

$$A \cap B =$$

$$B \cap C =$$

$$A \cap C =$$

**Complementary Events:** 

$$A^{c} =$$

$$B^c =$$

$$C^c =$$

**Mutually Exclusive Events:** 

$$A \cap B =$$

$$B \cap C =$$

All Events:

$$A \cup B \cup C =$$

## Probability Definitions Test Your Knowledge



Example: A petrophysicist has measured porosity of 7 core samples from a carbonate formation in the laboratory as follows:

Sample Space: {0.10, 0.12, 0.14, 0.15, 0.17, 0.19, 0.25}

We would like to investigate the following events:

- Event A: Porosity values of less than 0.15, {0.10, 0.12, 0.14}
- Event B: Porosity values of greater than 0.20, {0.25}
- Event C: Porosity values of between 0.14 and 0.17 {0.14, 0.15, 0.17}

### **Union of Events:**

 $A \cup B = \{0.10, 0.12, 0.14, 0.25\} \qquad \qquad B \cup C = \{0.14, 0.15, 0.17, 0.25\} \qquad \qquad A \cup C = \{0.10, 0.12, 0.14, 0.15, 0.17\}$ 

**Intersection of Events:** 

 $A \cap B = \phi \qquad \qquad A \cap C = \{0.14\} \qquad \qquad B \cap C = \phi$ 

**Complementary Events:** 

 $A^{c} = \{0.15, 0.17, 0.19, 0.25\}$   $B^{c} = \{0.10, 0.12, 0.14, 0.15, 0.17, 0.19\}$   $C^{c} = \{0.10, 0.12, 0.19, 0.25\}$ 

**Mutually Exclusive Events:** 

 $A \cap B = \phi$   $B \cap C = \phi$ 

**All Events:** 

 $A \cup B \cup C = \{0.10, 0.12, 0.14, 0.15, 0.17, 0.25\}$ 

# Probability Definitions Test Your Knowledge, Frequentist

Example: A petrophysicist has measured porosity of 7 core samples from a carbonate formation in the laboratory as follows:

Sample Space: {0.10, 0.12, 0.14, 0.15, 0.17, 0.19, 0.25}

We would like to investigate the following events:

- Event A: Porosity values of less than 0.15,  $\{0.10, 0.12, 0.14\}$
- Event B: Porosity values of greater than 0.20,  $\{0.25\}$
- Event C: Porosity values of between 0.14 and 0.17  $\{0.14, 0.15, 0.17\}$  P(C) = 3/7

#### **Union of Events:**

$$A \cup B = \{0.10, 0.12, 0.14, 0.25\}$$
  $B \cup C = \{0.14, 0.15, 0.17, 0.25\}$   $A \cup C = \{0.10, 0.12, 0.14, 0.15, 0.17\}$   $P(A \cup B) = 4/7$   $P(A \cup C) = 5/7$ 

#### **Intersection of Events:**

$$A \cap B = \phi, P(A \cap B) = 0$$
  $B \cap C = \{0.14\}, P(B \cap C) = 1/7$   $A \cap C = \phi, P(A \cap C) = 0$ 

## **Complementary Events:**

$$A^{c} = \{0.15, 0.17, 0.19, 0.25\}$$
  $P = 4/7$   $B^{c} = \{0.10, 0.12, 0.14, 0.15, 0.17, 0.19\}$   $P = 6/7$   $C^{c} = \{0.10, 0.12, 0.19, 0.25\}$   $P = 4/7$ 

### **Mutually Exclusive Events:**

$$A \cap B = \phi \ P(A \cap B) = 0$$
  $B \cap C = \phi$   $P(B \cap C) = 0$ 

## **Exhaustive Sequence of Events:**

 $A \cup B \cup C = \{0.10, 0.12, 0.14, 0.15, 0.17, 0.19, 0.25\} = \Omega$ ,  $P(A \cup B \cup C) = 1.0$ 

Prof. Michael Pyrcz, Ph.D., P.Eng., the University of Texas at Austin, PGE 337 - Introduction to Geostatistics, @GeostatsGuy





## Non-negativity, Normalization:

- Fundamental probability constraints
  - Bounded

$$0 \le P(A) \le 1$$

Closure

$$P(\Omega) = 1$$

Null Sets

$$P(\phi) = 0$$

## **Complimentary Events:**

Closure

$$P(A^c) + P(A) = 1$$



Venn Diagram – illustrating complementary events.

# Probability Definitions Probability by Venn Diagram



### The Addition Rule:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Must account for the intersection!

If mutually exclusive events:

$$A_i \cap A_j = \emptyset, \forall i \neq j$$

then,

$$P\left(\bigcup_{i=1}^{k} A_i\right) = \sum_{i=1}^{k} P(A_i)$$

no intersections to account for.



Venn Diagram – illustrating intersection.



Venn Diagram – illustrating intersection.





## Calculate the following probabilities for event A and B:

P(B) =

 $P(A \cap B) =$ 

 $P(A \cup B) =$ 

Note Event A: Sandstone and Event B: Shale

$$P(A) =$$
 $P(B) =$ 
 $P(A \cap B) =$ 
 $P(A \cup B) =$ 











## Calculate the following probabilities for event A and B:

Note Event A: Sandstone and Event B: Shale

$$P(A) = \frac{6}{20} = 30\%$$

$$P(B) = \frac{6}{20} = 30\%$$

$$P(A \cap B) = \frac{0}{20} = 30\%$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
  
= 30% + 30% - 0% = 60%



$$P(A) = \frac{8}{20} = 40\%$$

$$P(B) = \frac{6}{20} = 30\%$$

$$P(A \cap B) = \frac{2}{20} = 10\%$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 40% + 30% - 10% = 60%





**Probability of B given A occurred?** P(B | A)

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} \qquad P(A \cap B)$$

$$A \qquad P(A)$$



Conceptually we shrink space of possible outcomes.

A occurred so we shrink our space to only event A.



**Probability of B given A occurred?** P(B | A)

**Conditional Probability** 

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A \text{ and } B)}{P(A)}$$

**Marginal Probability** 

**Joint Probability** 







Marginal Probability: Probability of an event, irrespective of any other event

Conditional Probability: Probability of an event, given another event is already true.

$$P(X \ given \ Y), P(Y \ given \ X)$$

$$P(X \mid Y), P(Y \mid X)$$

Joint Probability: Probability of multiple events occurring together.

$$P(X \text{ and } Y), P(Y \text{ and } X)$$

$$P(X \cap Y), P(Y \cap X)$$



## **General Form for Conditional Probability?**

$$P(C \mid B, A) = \frac{P(A \cap B \cap C)}{P(A \cap B)}$$

Recall: 
$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Substitute:

$$P(C \mid B, A) = \frac{P(A \cap B \cap C)}{P(B|A)P(A)}$$

Reorganize:

$$P(A \cap B \cap C) = P(C \mid B, A)P(B \mid A)P(A)$$



General Form, Recursion of Conditionals

$$P(A_1 \cap \cdots \cap A_n) = P(A_n | A_{n-1}, \dots, A_1) P(A_{n-1} | A_{n-2}, \dots, A_1) \dots P(A_1)$$



## Other Relations with Conditional Probability

Closure with conditional probabilities:

$$P(A \mid B) + P(A^c \mid B) = 1$$

$$P(B \mid A) + P(B^c \mid A) = 1$$



Recall:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

For Case 1 calculate:

$$P(A \mid B) =$$

$$P(B \mid A) =$$

For Case 2 calculate:

$$P(A \mid B) =$$

$$P(B \mid A) =$$

Case 1:



Venn Diagram - case 1.

Case 2:



Venn Diagram – case 2.

Recall:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

For Case 1 calculate:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\emptyset}{P(B)} = \emptyset$$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{\emptyset}{P(A)} = \emptyset$$

For Case 2 calculate:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{P(B)} = 1$$
, since  $P(A \cap B) = P(B)$ 

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(B)}{P(A)}$$
, since  $P(A \cap B) = P(B)$ 

Case 1:



Venn Diagram - case 1.

Case 2:



Venn Diagram – case 2.

Question: Calculate the following probabilities for events A and B:

Event A: Porosity > 15%

Event B: Permeability > 200 mD

For Case 1 calculate:

$$P(A \mid B) =$$

$$P(B \mid A) =$$

**Bonus Question:** How much information does event B tell you about event A and visa versa?



Question: Calculate the following probabilities for events A and B:

Event A: Porosity > 15%

Event B: Permeability > 200 mD

For Case 1 calculate:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{8/20}{11/20} = 8/11$$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{8/20}{10/20} = 8/10$$



Bonus Question: How much information does B tell you about A and visa versa?

P(A) = 10/20, P(A|B) = 8/11 Probability from  $50\% \rightarrow 73\%$ 

P(B) = 11/20, P(B|A) = 8/10 Probability from 55%  $\rightarrow 80\%$ 

We cannot work with A and B independently, they provide information about each other.

Prof. Michael Pyrcz, Ph.D., P.Eng., the University of Texas at Austin, PGE 337 - Introduction to Geostatistics, @GeostatsGuy

### **Joint Distribution:**

$$f_{XY}(x,y)$$

## **Marginal Distribution:**

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy$$

### **Conditional Distribution:**

$$f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_Y(y)}$$

## **Table of Frequencies**

|              | ا م     |     |     |     |     |     |  |
|--------------|---------|-----|-----|-----|-----|-----|--|
|              | 25%     | 1   | 1   | 0   | 0   | 0   |  |
| (%) /        | 15% 20% | 2   | 3   | 2   | 0   | 0   |  |
| Porosity (%) |         | 1   | 2   | 2   | 1   | 0   |  |
| Ā            | 10%     | 0   | 0   | 2   | 3   | 2   |  |
|              | 2%      | 0   | 0   | 1   | 1   | 1   |  |
|              |         | 10% | 30% | 50% | 70% | 90% |  |

10% 30% 50% 70% 90° Fraction Shale (%)

### **Joint Distribution:**

$$f_{XY}(x,y)$$

## **Marginal Distribution:**

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy$$

### **Conditional Distribution:**

$$f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_Y(y)}$$

## **Table of Joint Probabilities**

| %27 | 4%          | 4%          | 0                         | 0                               | 0                                           |
|-----|-------------|-------------|---------------------------|---------------------------------|---------------------------------------------|
| 8%  |             | 12%         | 8%                        | 0                               | 0                                           |
| 12% | 4%          | 8%          | 8%                        | 4%                              | 0                                           |
| %0L | 0           | 0           | 8%                        | 12%                             | 8%                                          |
| %c  | 0           | 0           | 4%                        | 4%                              | 4%                                          |
|     | 10% 13% 20% | %07 %CI %0I | 8% 12%<br>8° 4% 8%<br>0 0 | 8% 12% 8%<br>8% 8% 8%<br>0 0 8% | 8% 12% 8% 0<br>86 4% 8% 8% 4%<br>0 0 8% 12% |

10% 30% 50% 70% 90% Fraction Shale (%)

## Given these joint probabilities calculate the:

## **Marginal Distributions:**

| Vsh               | 10% | 30% | 50% | 70% | 90% |
|-------------------|-----|-----|-----|-----|-----|
| $f_{Vsh}(v_{sh})$ |     |     |     |     |     |

| Porosity                 | 5% | 10% | 15% | 20% | 25% |
|--------------------------|----|-----|-----|-----|-----|
| $f_{\varphi}(\varphi) =$ | _  |     |     |     |     |
|                          |    |     |     |     |     |

### **Conditional Distribution:**

| Vsh                                       | 10% | 30% | 50% | 70% | 90% |
|-------------------------------------------|-----|-----|-----|-----|-----|
| $f_{Vsh \varphi}(v_{sh} \ \varphi=15\%)=$ |     |     |     |     |     |

## **Table of Joint Probabilities**

| 25% | 4%          | 4%             | 0                          | 0                                  | 0                                                                                                        |
|-----|-------------|----------------|----------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------|
| 20% | 8%          | 12%            | 8%                         | 0                                  | 0                                                                                                        |
| 15% | 4%          | 8%             | 8%                         | 4%                                 | 0                                                                                                        |
| 10% | 0           | 0              | 8%                         | 12%                                | 8%                                                                                                       |
| 2%  | 0           | 0              | 4%                         | 4%                                 | 4%                                                                                                       |
|     | 10% 15% 20% | %8 4% 0<br>0 0 | %07 %1 12%<br>4% 8%<br>0 0 | %07 %1 12% 8% 8% 4% 8% 8% 0 0 0 8% | %07     8%     12%     8%     0       %2     4%     8%     8%     4%       %0     0     0     8%     12% |

10% 30% 50% 70% 90% Fraction Shale (%)

Porosity (%)

## Given these joint probabilities calculate the:

## **Marginal Distributions:**

| Vsh               |     |     |     |     |     |
|-------------------|-----|-----|-----|-----|-----|
| $f_{Vsh}(v_{sh})$ | 16% | 24% | 28% | 20% | 12% |
| Porosity          |     | -   |     |     | -   |

| Polosity                 | 5%  | 10% | 15% | 20% | 25% |
|--------------------------|-----|-----|-----|-----|-----|
| $f_{\varphi}(\varphi) =$ | 12% | 28% | 24% | 28% | 8%  |

### **Conditional Distribution:**

| Vsh | Vsh 10% |     | 50% | 70% | 90% |  |
|-----|---------|-----|-----|-----|-----|--|
|     | 20%     | 40% | 40% | 0   | 0   |  |

## **Table of Joint Probabilities**

|   | 25% | 4% | 4%  | 0        | 0   | 0  |
|---|-----|----|-----|----------|-----|----|
| • | 20% | 8% | 12% | 8%       | 0   | 0  |
| • | 15% | 4% | 8%  | 8%       | 0   | 0  |
|   | 10% | 0  | 4%  | 8%       | 12% | 8% |
|   | 2%  | 0  | 0   | 4%       | 4%  | 4% |
|   |     |    |     | <b>-</b> |     |    |

10% 30% 50% 70% 90% Fraction Shale (%)

## Probability Definitions Multiplication Rule



## The Multiplication Rule:

$$P(A \cap B) = P(B|A) P(A)$$

If events A and B are independent:

$$P(B|A) = P(B)$$

Knowing something about A does nothing to help predict B. Then by substitution:

$$P(A \cap B) = P(B) P(A)$$

The general form given independence for all cases, i = 1, ..., k:

$$P(\bigcap_{i=1}^k A_i) = \prod_{i=1}^k P(A_i)$$





## Given there is independence between fluid type and porosity:

Event A = Oil

Given: P(A) = 30% and P(B) = 50%

Event B = Porosity > 10%

What is the  $P(A \cap B)$ ?

## Given there is independence between fluid type, porosity and saturation:

Event A = Oil

Given: P(A) = 30%, P(B) = 50%, P(C) = 25%

Event B = Porosity > 10%

Event  $C = S_{oil} > 40\%$ 

What is the  $P(A \cap B \cap C)$ ?





## Given there is independence between fluid type and porosity:

Event A = Oil

Given: P(A) = 30% and P(B) = 50%

Event B = Porosity > 10%

What is the  $P(A \cap B)$ ? 30% x 50% = 15%

## Given there is independence between fluid type, porosity and saturation:

Event A = Oil

Given: P(A) = 30%, P(B) = 50%, P(C) = 10%

Event B = Porosity > 10%

Event  $C = S_{oil} > 40\%$ 

What is the  $P(A \cap B \cap C)$ ? 30% x 5

30% x 50% x 10% = 1.5%





## **Events A and B are independent if and only if:**

$$P(A \cap B) = P(B)P(A)$$

or

$$P(A|B) = P(A)$$
 and  $P(B|A) = P(B)$ 

### **General Form:**

Events  $A_1, A_2, ..., A_n$  are independent if:

$$P(\bigcap_{i=1}^k A_i) = \prod_{i=1}^k P(A_i)$$

# Probability Definitions Evaluating Independence Example

**Example:** Facies F1, F2 and F3 in 10 wells:

| Position | Well<br>1 | Well<br>2 | Well<br>3 |    | Well<br>5 |    | Well<br>7 |    | Well<br>9 | Well<br>10 |
|----------|-----------|-----------|-----------|----|-----------|----|-----------|----|-----------|------------|
| Тор      | F3        | F2        | F2        | F1 | F1        | F1 | F2        | F2 | F1        | F1         |
| Middle   | F1        | F1        | F1        | F1 | F2        | F2 | F1        | F2 | F2        | F2         |
| Bottom   | F2        | F2        | F2        | F3 | F3        | F3 | F3        | F3 | F3        | F2         |

**Event**  $A_1 = F1$  is middle facies **Event**  $A_2 = F3$  is bottom facies

$$\mathsf{P}(A_1\cap A_2)=\mathsf{P}(A_1)\mathsf{P}(A_2)$$
 or

$$P(A_1|A_2) = P(A_1)$$
 and  $P(A_2|A_1) = P(A_2)$ 

**Question:** are events A1 and A2 independent?

# Probability Definitions Evaluating Independence Example

**Example:** Facies F1, F2 and F3 in 5 wells:

| Position | Well<br>1 | Well<br>2 | Well<br>3 | Well<br>4 | Well<br>5 | Well<br>6 | Well<br>7 | Well<br>8 | Well<br>9 | Well<br>10 |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| Тор      | F3        | F2        | F2        | F1        | F1        | F1        | F2        | F2        | F1        | F1         |
| Middle   | F1        | F1        | F1        | F1        | F2        | F2        | F1        | F2        | F2        | F2         |
| Bottom   | F2        | F2        | F2        | F3        | F3        | F3        | F3        | F3        | F3        | F2         |

**Event**  $A_1$  = middle facies if F1 **Event**  $A_2$  = bottom facies is F3

$$P(A_1 \cap A_2) = P(A_1)P(A_2)$$
 or  $P(A_1|A_2) = P(A_1)$  and  $P(A_2|A_1) = P(A_2)$ 

**Question:** are events A1 and A2 independent?

$$P(A_1) = \frac{5}{10} = 50\%, P(A_2) = \frac{6}{10} = 60\%, P(A_1 \cap A_2) = \frac{2}{10} = 20\%$$

$$P(A_1)P(A_2) = 50\% \cdot 60\% = 30\% \neq P(A_1 \cap A_2) = \frac{2}{10} = 20\%$$
 Not independent.

Prof. Michael Pyrcz, Ph.D., P.Eng., the University of Texas at Austin, PGE 337 - Introduction to Geostatistics, @GeostatsGuy



### Coin Flip:

**Events**  $A_1, ..., A_3$  are 3 coin flips:



All these outcomes are equiprobable.



### Coin Flip:

What is the probability of only one tails?



Sum of probability of : the specified outcomes

$$P(A_1, A_2, A_3) = P(A_1) P(A_2) P(A_3)$$
 $0.5 \times 0.5 \times 0.5 = 0.125$ 
...
 $0.5 \times 0.5 \times 0.5 = 0.125$ 

0.125 + 0.125 + 0.125 = 0.375



### **General Form of a Probability Tree**





### **General Form of a Probability Tree**







#### **Product Rule:**

$$P(B \cap A) = P(A|B) P(B)$$

$$P(A \cap B) = P(B|A) P(A)$$

It follows that:

$$P(B \cap A) = P(A \cap B)$$

Therefore we combine two product rules, substitute:

$$P(A|B) P(B) = P(B|A) P(A)$$

We get Bayes' Theorem!



Venn Diagram – illustrating intersection.

# Probability Definitions Bayesian Theorem



### **Bayes' Theorem:**

Make a easy adjustment and we get the popular form.

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

#### Observations:

- 1. We are able to get P(A | B) from P(B | A) as you will see this often comes in handy.
- 2. Each term is known as:

- 3. Prior should have no information from likelihood.
- 4. Evidence term is usually just a standardization to ensure closure.



Venn Diagram – illustrating intersection.

Note: we got to Bayes' Theorem by fundamental frequentist approaches.





### **Bayes Theorem:**

A common example of Bayes' Theorem for modeling the subsurface.

Model Updating with a New Data Source:



# Probability Definitions Bayesian Theorem Example



### **Bayes Theorem:**

Alternative form, symmetry:

$$\frac{P(A|B) = P(B|A) P(A)}{P(B)} \qquad P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$

Alternative form to calculate evidence term:

Given: 
$$P(A) = P(A|B) P(B) + P(A|B^c) P(B^c)$$

$$P(A \text{ and } B) \qquad P(A \text{ and } B^c)$$

$$\frac{P(B|A) = P(A|B) P(B)}{P(A)} = \frac{P(A|B) P(B)}{P(A|B) P(B) + P(A|B^c) P(B^c)}$$



Venn Diagram – illustrating intersection.





Bayesian approaches allow you to solve statistical problems that are not possible otherwise. Consider:

| Event A                             | Event B                           |  |  |  |  |
|-------------------------------------|-----------------------------------|--|--|--|--|
| You have a disease                  | You test positive for the disease |  |  |  |  |
| There is fault compartmentalization | Geologist says there's a fault    |  |  |  |  |
| Low permeability of a sample        | The laboratory measure is low     |  |  |  |  |
| A valve will fail                   | X-ray test is positive            |  |  |  |  |
| You drill a dry well                | Seismic AVO response looks poor   |  |  |  |  |

## In all of these cases you need to calculate:

$$P(\begin{array}{c|c} \text{Something is} & \text{Looks like} \\ \text{Happening} & \text{its happening} \end{array}) = P(\begin{array}{c|c} \text{Looks like} \\ \text{its happening} & \text{Something is} \\ \text{Happening} & \text{Happening} \end{array}) P(\begin{array}{c} \text{Something is} \\ \text{Happening} & \text{Happening} \\ \end{array})$$





Bayesian approaches allow you to solve statistical problems that are not possible otherwise. Consider:

**Correct Detection Rate x Occurrence Rate** 

$$P(\begin{array}{c|c} \text{Something is} & \text{Looks like} \\ \text{Happening} & \text{Its happening} \end{array}) = P(\begin{array}{c|c} \text{Looks like} \\ \text{its happening} \\ \hline \\ P(\begin{array}{c|c} \text{Looks like} \\ \text{Happening} \\ \hline \end{array}) P(\begin{array}{c|c} \text{Something is} \\ \text{Happening} \\ \hline \\ P(\begin{array}{c|c} \text{Looks like} \\ \text{its happening} \\ \hline \end{array})$$

All Detection Rate (included false positives)

Often these terms are much easier to collect:

$$\frac{P(B|A) = P(A|B) P(B)}{P(A)} = \frac{P(A|B) P(B)}{P(A|B) P(B) + P(A|B^c) P(B^c)}$$

Let's try this out next.

# Probability and Statistics Bayesian Methods



**Example:** Prior information at a site suggests a channel feature exists at a given location with probability of 60%. We decide to further investigate this information using seismic data.

Seismic survey can show a feature

- is present with 90% probability if it really is present
- is not present with a probability 70% if it really is not

P(A) = 0.6

P(B|A) = 0.9

 $P(B^c|A^c) = 0.7$ 

A=The feature is present

B =Seismic shows the feature

A<sup>c</sup> =The feature not present

B<sup>c</sup> =Seismic does not show the feature

Will seismic information be useful?

# Probability and Statistics Bayesian Methods



**Example:** Prior information at a site suggests a channel feature exists at a given location with probability of 60%. We decide to further investigate this information using seismic data.

Seismic survey can show a feature

- is present with 90% probability if it really is present
- is not present with a probability 70% if it really is not

A=The feature is present

B =Seismic shows the feature

A<sup>c</sup> =The feature not present

B<sup>c</sup> =Seismic does not show the feature

$$P(A) = 0.6$$
  
 $P(B|A) = 0.9$   
 $P(B^c|A^c) = 0.7$   
 $P(B|A^c) = 1 - P(B^c|A^c) = 0.3$   
 $P(A^c) = 1 - P(A) = 0.4$ 

$$P(A|B) = P(B|A) P(A) = P(B|A) P(A) = P(B|A) P(A) = \frac{(0.9)(0.6)}{(0.9)(0.6) + (0.3)(0.4)} = 82\%$$

True Positive

**False Positive** 





**Example:** One in every thousand BOPs has a serious crack. X-ray analysis has a 99% chance of detecting the crack correctly. If the BOP does not have a crack, there is a 2% chance that the X-ray detects a crack. The rate of BOP cracks is 0.1%. A BOP has been X-rayed and the result is positive. What is the chance that the BOP actually does have a crack?

#### Solution:

A = BOP has cracks P(A|B) = ?

B = BOP tests positive

 $A^c$  = BOP does not have cracks

 $B^c$  = BOP did not test positive

P(A) = 0.001 - crack rate

P(B|A) = 0.99 - true positive

 $P(B|A^c) = 0.02 - false positive$ 

# Probability and Statistics Bayesian Methods



**Example:** One in every thousand BOPs has a serious crack. X-ray analysis has a 99% chance of detecting the crack correctly. If the BOP does not have a crack, there is a 2% chance that the X-ray detects a crack. The rate of BOP cracks is 0.1%. A BOP has been X-rayed and the result is positive. What is the chance that the BOP actually does have a crack?

#### Solution:

A = BOP has cracks P(A|B) = ?

B = BOP tests positive

 $A^c$  = BOP does not have cracks

 $B^c$  = BOP did not test positive

P(A) = 0.001 - crack rate

 $P(A^c) = 0.999 - \text{not cracked rate}$ 

P(B|A) = 0.99 - true positive

 $P(B|A^c) = 0.02 - false positive$ 

#### **True Positive**

$$P(A|B) = P(B|A) P(A) = P(B|A) P(A) = P(B|A) P(A) = \frac{(0.99)(0.001)}{P(B|A) P(A) + P(B|A^c) P(A^c)} = \frac{(0.99)(0.001)}{(0.99)(0.001) + (0.02)(0.999)}$$

True Positive

**False Positive** 

Probability of a crack in the BOP given a positive crack test is only 4.7%! Why? Cracks are very unlikely + high false positive rate (2%)!

# **Probability and Statistics Bayesian Theorem General Form**

#### **General Form:**

$$P(A_i \mid B) = \frac{P(B|A_i) P(A_i)}{P(B)}$$

if non-overlapping

and exhaustive

$$\bigcup_{i=1}^{K} A_i = \Omega$$

#### then:

$$P(B) = \sum_{k=1}^{K} P(B|A_i) P(A_i) = \sum_{k=1}^{K} P(B|A_i) P(A_i)$$



Venn Diagram - illustrating exhaustive, mutually exclusive series.

#### we substitute:

$$P(A_i \mid B) = \frac{P(B|A_i) P(A_i)}{\sum_{k=1}^{K} P(B|A_i) P(A_i)} = \frac{P(B|A_i) P(A_i)}{\sum_{k=1}^{K} P(B,A_i)}$$

# **Probability and Statistics**What should you learn from this <u>lecture?</u>

Introduction

Lecture outline . . .

**General Concepts** 

Probability Definitions

**Statistics** 

Venn Diagrams

**Probability** 

Frequentist Concepts

Univariate

Bayesian Concepts

**Bivariate** 

**Time Series Analysis** 

**Spatial Analysis** 

**Machine Learning** 

**Uncertainty Analysis**