Analízis

Kepletek

analizis

٠		
•		

Тригонометрические тождества			Синус, косинус,			
$\sin^2 \alpha + \cos^2 \alpha = 1$			тангенс и котангенс углов α и -α			
$sin^2 \frac{\alpha}{2} + cos^2 \frac{\alpha}{2} = 1$ $tg \alpha \cdot ctg \alpha = 1$			$sin(-\alpha) = -sin \alpha$			
				$cos(-\alpha) =$	cos α	
				$tg(-\alpha) = -$	- tg α	
1+	$tg^2\alpha = \frac{1}{\cos^2\alpha}$			$ctg(-\alpha) = -$		
1 + a	$atg^2\alpha = \frac{1}{\sin^2\alpha}$					
	улы сложения		Сиг	гус, косинус, танг	енс и котангенс	
	os α cos β ∓ sin	$\alpha \sin \beta$	двойного угла			
	in α cos β ± cos			$\sin 2\alpha = 2 \sin$		
		C Diri C		$\cos 2\alpha = \cos^2 \alpha$	$\alpha = \sin^2 \alpha$	
$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha tg \beta}$						
			$tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha}$			
Синус, косинус,			Формулы понижения степени			
тангенс и котангенс половинного угла			$sin^2 \alpha = \frac{1-cos 2\alpha}{c}$			
cos α =	$\cos^2\frac{\alpha}{2} - \sin^2\frac{\alpha}{2}$			2 14	cos 2α	
$1 + \cos \alpha = 2\cos^2 \frac{\alpha}{2}$ $1 - \cos \alpha = 2\sin^2 \frac{\alpha}{2}$			$cos^{2}\alpha = \frac{1 + cos 2\alpha}{2}$ $tg^{2}\frac{\alpha}{2} = \frac{1 - cos \alpha}{1 + cos \alpha}$			
si	$n \alpha = \frac{2 t g \frac{\alpha}{2}}{1 + t g^2 \frac{\alpha}{2}}$	cos a	$=\frac{1-tg^2}{1+tg^2}$	$tg \alpha = \frac{2}{1}$	tg2 a	
Сумма и разнос	ть синусов и ко			оизведение синус	ов и косинусов	
$sin \alpha \pm sin$	$\beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \beta$	$s \frac{\alpha \mp \beta}{\alpha}$	sin a	$\cos \beta = \frac{1}{2} (\sin(\alpha +$	$-\beta$) + $sin(\alpha - \beta)$)	
	$\beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha}{2}$				β) – $cos(\alpha + \beta)$)	
	$\beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha}{2}$				$-\beta$) + $\cos(\alpha - \beta)$)	
	2	2 Формулы			r)(- r))	
β	sin β	cos	_	tgβ	ctg β	
$\pi/2 + \alpha$	cos a	- sir	ια	−ctg α	– tg α	
$\pi/2-\alpha$	cos a	sin α		ctg a	tg α	
$\pi + \alpha$	$-sin \alpha$	−cos α		tg a	ctg a	
$\pi - \alpha$	sin α	- cos α		−tg α	−ctg α	
$2\pi + \alpha$	sin α	cos a		tgα	ctg α	
$2\pi - \alpha$	$-\sin \alpha$	cos α		$-tg \alpha$	$-\operatorname{ctg}\alpha$	
$3\pi/2 + \alpha$	$-\cos \alpha$	sin	α	$-\operatorname{ctg}\alpha$	$-tg \alpha$	
$3\pi/2 - \alpha$	$-cos \alpha$	-sin	α	ctg α	tg α	
$-\alpha$	$-\sin \alpha$	cos a		$-tg \alpha$	−ctg α _{y€xdcas}	

A függvény	A derivált	A fliggyény danis (II
f(x) = c (állandó)	f(x) = 0	A függvény deriválhatósági tartománya
$f(x) = x^n, n \in \mathbb{N}$	$f(x) = nx^{n-1}$	R
$f(x) = \sqrt{x}, a > 0, a \neq 1$	$f'(x) = \frac{1}{2\sqrt{x}}$	R $(0, +\infty)$
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$	$(0, +\infty)$
$f(x) = \log_a x$	$f'(x) = \frac{1}{x \ln a}$	$(0, +\infty)$
$f(x) = e^x$	$f'(x) = e^x$	R
$f(x) = a^x, a > 0, a \neq 1$	$f(x) = a^x \ln a$	R
$f(x) = \sin x$	$f'(x) = \cos x$	R
$f(x) = \cos x$	$f(x) = -\sin x$	R
$f(x) = \operatorname{tg} x$	$f'(x) = \frac{1}{\cos^2 x}$	$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$
$f(x) = \operatorname{ctg} x$	$f'(x) = -\frac{1}{\sin^2 x}$	$\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}$
$f(x) = \arcsin x$	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$	(-1, 1)
$f(x) = \arccos x$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$	(-1, 1)
$f(x) = \operatorname{arctg} x$	$f'(x) = -\frac{1}{\sqrt{1 - x^2}}$ $f'(x) = \frac{1}{1 + x^2}$ $f'(x) = -\frac{1}{1 + x^2}$	R
$f(x) = \operatorname{arcctg} x$	$f'(x) = -\frac{1}{1+x^2}$	R

Tantargyak/Math/Analizis/Derivalas

Derivalas

Derivator Replete
$$f(x) = 2; x_1 + \frac{f(x_2)}{x_1 + x_2}$$

Dorivalasi szabalyok

Erinto egyenletlek

$$e: \gamma - J(\kappa_0) = J'(\kappa_0) \cdot (\kappa - \kappa_0)$$

Ilegyenesek meroleggesseg parhuzzamussag#1

Szagportok

I follower >0- hom

I's (x0)
$$\neq j!$$
 | (x0) \Rightarrow) together eggin regular $j \Rightarrow$

Vissiateroport

$$f_{k}(x_{0}) \geq co b = f_{j}(x_{0}) = f_{co} (f_{cond}(x_{0}))$$

$$\leq \chi_{i} = net_{cond}(x_{0}) + f_{cond}(x_{0})$$

Osszetett Augveryek derivalasa

$$\left[\frac{f_{2}(x)}{g(x)}\right]^{2} = \frac{g'(x)}{g(x)}$$

	85,0	- Serenyek deriváltjai		
A függvény	A derivált	A függvény deriválhatóság		
f(x) = c (állandó)	f'(x) = 0	turiomanya		
$f(x) = x^n, n \in \mathbb{N}$	$f'(x) = nx^{n-1}$	R		
$f(x) = \sqrt{x}, a > 0, a \neq 1$	$f'(x) = \frac{1}{2\sqrt{x}}$	\mathbb{R} $(0, +\infty)$		
$f(x) = \ln x$	$\frac{2\sqrt{x}}{f'(x) = \frac{1}{x}}$	The talk as meaning to the		
$f(x) = \log_a x$	x	$(0, +\infty)$		
	$f'(x) = \frac{1}{x \ln a}$ $f'(x) = e^x$	$(0, +\infty)$		
$f(x)=e^x$	$f'(x) = e^x$	R		
$f(x) = a^x, a > 0, a \neq 1$	$f'(x) = a^x \ln a$	R		
$f(x) = \sin x$	$f'(x) = \cos x$	R		
$f(x) = \cos x$	$f'(x) = -\sin x$	R		
$f(x) = \operatorname{tg} x$	$f'(x) = \frac{1}{\cos^2 x}$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$		
$f(x) = \operatorname{ctg} x$	$f'(x) = -\frac{1}{\sin^2 x}$	$\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}$		
$f(x) = \arcsin x$	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$	(-1, 1)		
$f(x) = \arccos x$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$	(-1, 1)		
$f(x) = \operatorname{arctg} x$	$f'(x) = \frac{1}{1+x^2}$	R		
$f(x) = \operatorname{arcctg} x$	$f'(x) = -\frac{1}{1 + x^2}$	R		

+ kepletek

(x zinx) = (enxzinx)=...

Matrix

Lineáris egyenletrendszerek

1. Felirjuk a bovitett matrixot:

1. kovetjuk az abrat

1. Megoldjuk a feladatot

matrix rangja

- Ha a matrix negyzetes matrix akkor eloszor det A -t szamolunk, ha az nem 0 akkor az lesz a matrix rangja (negyzetes matrix sor/oszlop)
- 2. Ha a matrix nem negyzetes akkor a matrixnak eloszor keresunk egy eloszor olyan 2 es determinanst amelyik nem 0, ammenyiben van legalabb 1 ami nem 0, akkor az azt jelenti hogy a matrix rangja >= 2. Ezutan szegelyezzuk ezt a 2 es determinanst hogy 3 as negyzetes matrixot kapjunk, amennyiben kapunk legalabb egy olyant amelynek erteke nem 0, abban az esetben a matrixnak a rangja novekedett 3 ra.

Megjegyzes

A fő determinans az amelyiknek a legnagyobb rangja van.

inverz matrix

$$A*B=B*A=I_n$$

Tetel:

 $det A \neq 0$

Jeloles:

 $A^{-1} = az inverz matrix$

Az inverz matrix felirasa

- Det A kiszamolasa
- A^t felirasa

3. A* felirasa

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}$$

$$A^{11} = (-1)^{1} \begin{vmatrix} A_{12} & A_{13} \\ A_{32} & A_{33} \end{vmatrix} = ?$$

$$A^{32} = A_{33} = ?$$

$$A^{33} = A_{33} = ?$$

4. Inveerz matrix meghatarozasa

$$A^-1 = \frac{1}{detA} * A^*$$

O.

matrix egyenletek

$$A * X = B$$

 $A^{-1}|A * X = B$
 $A^{-1} * A * X = A^{-1} * B$
 $I_n * X = A^{-1} * B$
 $X = A^{-1} * B$