Pattern Recognition and Machine Learning 2022 Winter Semester

Report - Lab Assignment - 8

Question - 1

- Imported all the necessary libraries such as wave, pandas, numpy, matplotlib, warnings and IPython.
- Read the 3 audio files and opened them in reading mode.
- Then, I converted the .wav signal into integer array format by reading the audioframes.
- Then visualization of the plots was as follows:

- Then, I listened to the 3 given audio files using IPython.display.Audio(<signal>)
- Then, I merged them to create dataset X.
- And, got the mixture signal as:

- Then, I implemented the ICA Algorithm from scratch where I passed n components as 3 for the three signals and used 1000 iterations.
- I firstly centered our merged signal X and then whitened the signal to transform it in such a way that potential correlations between its components are removed (covariance equal to 0) and the variance of each component is equal to 1.
- I was facing an issue with having to create the W matrix with dimensions 264515, 264515 when I was passing the merged matrix X as the argument.
- So, instead what I did was pass the transpose of matrix X and the dimension of W was changed to 3, 3 which was much easier and more efficient to process.

 Then, I visualized the Independent Components that I got from the Scratch implementation of ICA.

- Then, I saved the final audio files in the same directory and also played them in my jupyter notebook.
- After that I Implemented Fast ICA (import from sklearn.decomposition) selecting num_components = 3
- Plots were as follows:

• Then, I saved the final audio files from the Fast ICA in the same directory and also played them in my jupyter notebook.

Comparison between Scratch and FastICA for IC - 1.

Question - 2

- I downloaded the train.csv file from the given dataset and preprocessed, cleaned and prepared the dataset.
- Handled the missing values and encoded the data accordingly.
- Separated features and labels as X and Y respectively.
- Then I created an object of SFS by embedding a Decision Tree classifier object, providing 10 features, forward as True, floating as False and scoring = accuracy.
- Then I trained the SFS model I got and printed out the subsets.

```
feature_idx': (11,),
scores': array([0.78927867, 0.79308022, 0.79038545, 0.79240653, 0.78676612]),
_score': 0.790383396456308,
ture_names': ('Online boarding',)},
feature_idx': (3, 11),
scores': array([0.84798614, 0.85217266, 0.84798614, 0.85169145, 0.84860443]),
_score': 0.8496881632686332,
ture_names': ('Type of Travel', 'Online boarding')},
feature_idx': (3, 6, 11),
scores': array([0.89196863, 0.89307541, 0.8893701, 0.89293104, 0.88897979]),
_score': 0.8912649918655335,
ture_names': ('Type_of_Travel',
             ight wifi service ,
ne boarding')),
ature_idx': (3, 6, 9, 11),
ores': array([0.91934941, 0.92319908, 0.91906068, 0.92445022, 0.92252166]),
core': 0.9217162073206818,
re_names': ('Type of Travel',
ight wifi service',
        light mil.,
ine boarding'),
ine boarding'),
eature idx': (3, 6, 9, 11, 16),
cores': array([0.92714499, 0.93046533, 0.92748183, 0.93171647, 0.92906641]),
score': 0.9291750066542516,
ure names': ('Type of Travel',
           ne boarding ,
age handling')),
ature_idx': (1, 3, 6, 9, 11, 16),
ores': array([0.93888648, 0.94417978, 0.93917521, 0.94263991, 0.94225217]),
core': 0.941426709515091,
ire_names': ('Customer Type',
of Travel',
     ggage handling'),
feature_idx': (1, 3, 4, 6, 9, 11, 16),
scores': array([0.9472114 , 0.94865502, 0.94624898, 0.9515904 , 0.94947064]),
_score': 0.948635286758528,
ture_names': ('Customer Type',
pe_of Travel',
ass',
         ine boarding',
gage handling')},
eature_idx': (1, 3, 4, 6, 9, 11, 16, 18),
cores': array([0.95029113, 0.95178288, 0.94889563, 0.95337087, 0.95264678]),
score': 0.9513974558180622,
ure_names': ('Customer Type',
e of Travel',
       flight wifi service',
          page handling',
light service')},
eature_idx': (1, 3, 4, 6, 9, 11, 12, 16, 18),
cores': array([0.95125355, 0.95211972, 0.95019489, 0.95327463, 0.95279115]),
score': 0.9519267868836468,
ure_names': ('Customer Type',
        light wifi service',
e location'.
         e location',
ine boarding',
t comfort',
gage handling',
light service')},
feature_idx': (1, 3, 4, 6, 9, 11, 12, 13, 16, 18),
cores': array([0.95000241, 0.95057986, 0.94894375, 0.95221597, 0.95168431]),
score': 0.9506852575363249,
ure_names': ('Customer Type',
-Z Trayen'
        flight wifi service',
te location',
Gate location',
Online boarding',
Seat comfort',
Inflight entertainment'
Baggage handling',
Inflight service')}
```

- 10 Best Features Selected by SFS: ('Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Baggage handling', 'Inflight service')
- Then, I created four different models
 - 1. SFS Model forward = True, floating = False
 - 2. SBS Model forward = False, floating = False
 - 3. SFFS Model forward = True, floating = True
 - 4. SBFS Model forward = False, floating = True
- Cross Validation Scores for SFS are: [0.94933785 0.95006929 0.94926086 0.9513397]
- Cross Validation Scores for SBS are: [0.94687404 0.94702803 0.94818294 0.95049276]
- Cross Validation Scores for SFFS are: [0.9512627 0.95095473 0.95110872 0.9525716]
- Cross Validation Scores for SBFS are: [0.94687404 0.94702803 0.94818294 0.95049276]
- Then I visualized the output from the feature selection in a pandas
 DataFrame format using the get_metric_dict for all four configurations.

For SFS

	feature_idx	cv_scores	avg_score	feature_names	ci_bound	std_dev	std_err
1	(11,)	[0.7895364952263628, 0.792231290421928, 0.7930	0.790383	(Online boarding,)	0.003933	0.002454	0.001417
2	(3, 11)	[0.8483215275639051, 0.8512088081305821, 0.850	0.849688	(Type of Travel, Online boarding)	0.001959	0.001222	0.000705
3	(3, 6, 11)	[0.8915152448413921, 0.8920157068062827, 0.892	0.891265	(Type of Travel, Inflight wifi service, Online	0.001961	0.001224	0.000706
4	(3, 6, 9, 11)	[0.919271635355713, 0.9229673544810595, 0.9223	0.921735	(Type of Travel, Inflight wifi service, Gate l	0.002316	0.001445	0.000834
5	(1, 3, 6, 9, 11)	[0.9277024946104097, 0.9285494302433015, 0.929	0.9288	(Customer Type, Type of Travel, Inflight wifi	0.001189	0.000742	0.000428
6	(1, 3, 6, 9, 11, 16)	[0.9393671080997844, 0.9424468740375731, 0.939	0.941282	(Customer Type, Type of Travel, Inflight wifi	0.002875	0.001793	0.001035
7	(1, 3, 4, 6, 9, 11, 16)	[0.9464505697566985, 0.9486449029873729, 0.948	0.94826	(Customer Type, Type of Travel, Class, Infligh	0.001774	0.001107	0.000639
8	(1, 3, 4, 6, 9, 11, 16, 18)	[0.9498383122882661, 0.9504927625500462, 0.951	0.950791	(Customer Type, Type of Travel, Class, Infligh	0.001155	0.00072	0.000416
9	(1, 3, 4, 6, 9, 11, 12, 16, 18)	[0.9486449029873729, 0.9508777332922698, 0.950	0.950579	(Customer Type, Type of Travel, Class, Infligh	0.00207	0.001291	0.000746
10	(1, 3, 4, 6, 9, 11, 12, 13, 16, 18)	[0.9493378503233755, 0.9500692947336002, 0.949	0.950002	(Customer Type, Type of Travel, Class, Infligh	0.001337	0.000834	0.000482

For SBS

	feature_idx	cv_scores	avg_score	feature_names	ci_bound	std_dev	std_err
22	(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,	[0.9448336926393595, 0.9468740375731445, 0.945	0.945671	(Gender, Customer Type, Age, Type of Travel, C	0.001303	0.000813	0.000469
21	(0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14	[0.9449491838620265, 0.9470665229442562, 0.946	0.946335	(Gender, Customer Type, Age, Type of Travel, C	0.001324	0.000826	0.000477
20	(0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 1	[0.9448336926393595, 0.9459886048660302, 0.945	0.946306	(Gender, Customer Type, Age, Type of Travel, C	0.00215	0.001341	0.000774
19	(1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15,	[0.944795195565137, 0.9463350785340314, 0.9463	0.946643	(Customer Type, Age, Type of Travel, Class, In	0.002493	0.001555	0.000898
18	(1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16,	[0.9457191253464736, 0.9464890668309208, 0.945	0.946759	(Customer Type, Age, Type of Travel, Class, In	0.002774	0.001731	0.000999
17	(1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16,	[0.946181090237142, 0.947143517092701, 0.94548	0.946922	(Customer Type, Age, Type of Travel, Class, In	0.002039	0.001272	0.000734
16	(1, 2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17,	[0.947143517092701, 0.9479904527255929, 0.9444	0.946961	(Customer Type, Age, Type of Travel, Class, In	0.002378	0.001483	0.000856
15	(1, 2, 3, 4, 6, 9, 11, 12, 13, 15, 16, 17, 18,	[0.9460271019402525, 0.9462580843855867, 0.946	0.946662	(Customer Type, Age, Type of Travel, Class, In	0.000871	0.000543	0.000314
14	(1, 2, 3, 4, 6, 9, 11, 12, 13, 16, 17, 18, 19,	[0.9444487218971358, 0.9460271019402525, 0.943	0.945382	(Customer Type, Age, Type of Travel, Class, In	0.002131	0.001329	0.000767
13	(1, 2, 3, 4, 6, 9, 11, 12, 16, 17, 18, 19, 21)	[0.9432553125962427, 0.9472205112411457, 0.944	0.944603	(Customer Type, Age, Type of Travel, Class, In	0.00264	0.001647	0.000951
12	(1, 2, 3, 4, 6, 9, 11, 12, 16, 17, 18, 21)	[0.9432168155220203, 0.9453341546042501, 0.945	0.944728	(Customer Type, Age, Type of Travel, Class, In	0.001529	0.000954	0.000551
11	(1, 2, 3, 4, 6, 9, 11, 12, 16, 17, 18)	[0.9438327687095781, 0.9458731136433631, 0.944	0.94494	(Customer Type, Age, Type of Travel, Class, In	0.001596	0.000995	0.000575
10	(1, 3, 4, 6, 9, 11, 12, 16, 17, 18)	[0.9468740375731445, 0.9470280258700339, 0.948	0.948144	(Customer Type, Type of Travel, Class, Infligh	0.00232	0.001447	0.000835

For SFFS

	feature_idx	cv_scores	avg_score	feature_names	ci_bound	std_dev	std_err
1	(11,)	[0.7895364952263628, 0.792231290421928, 0.7930	0.790383	(Online boarding,)	0.003933	0.002454	0.001417
2	(3, 11)	[0.8483215275639051, 0.8512088081305821, 0.850	0.849688	(Type of Travel, Online boarding)	0.001959	0.001222	0.000705
3	(3, 6, 11)	[0.8915152448413921, 0.8920157068062827, 0.892	0.891265	(Type of Travel, Inflight wifi service, Online	0.001961	0.001224	0.000706
4	(3, 6, 9, 11)	[0.919271635355713, 0.9229673544810595, 0.9223	0.921735	(Type of Travel, Inflight wifi service, Gate l	0.002316	0.001445	0.000834
5	(1, 3, 6, 9, 11)	[0.9277024946104097, 0.9285494302433015, 0.929	0.9288	(Customer Type, Type of Travel, Inflight wifi	0.001189	0.000742	0.000428
6	(1, 3, 6, 9, 11, 16)	[0.9393671080997844, 0.9424468740375731, 0.939	0.941282	(Customer Type, Type of Travel, Inflight wifi	0.002875	0.001793	0.001035
7	(1, 3, 4, 6, 9, 11, 16)	[0.9464505697566985, 0.9486449029873729, 0.948	0.94826	Customer Type, Type of Travel, Class, Infligh	0.001774	0.001107	0.000639
8	(1, 3, 4, 6, 9, 11, 16, 18)	[0.9498383122882661, 0.9504927625500462, 0.951	0.950791	(Customer Type, Type of Travel, Class, Infligh	0.001155	0.00072	0.000416
9	(1, 3, 4, 6, 11, 12, 13, 16, 18)	[0.9506467508469356, 0.9507237449953804, 0.950	0.950993	(Customer Type, Type of Travel, Class, Infligh	0.001523	0.00095	0.000548
10	(1, 3, 4, 6, 11, 12, 13, 16, 18, 19)	[0.9512627040344934, 0.9509547274407145, 0.951	0.951474	(Customer Type, Type of Travel, Class, Infligh	0.00103	0.000643	0.000371

For SBFS

	fortuna idu			£b	al bassad	and alone	-4.d
	feature_idx	cv_scores	avg_score	feature_names	ci_bound	std_dev	std_err
22	(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,	[0.9448336926393595, 0.9468740375731445, 0.945	0.945671	(Gender, Customer Type, Age, Type of Travel, C	0.001303	0.000813	0.000469
21	(0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14	[0.9449491838620265, 0.9470665229442562, 0.946	0.946335	(Gender, Customer Type, Age, Type of Travel, C	0.001324	0.000826	0.000477
20	(1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 1	[0.9451801663073607, 0.94810594394826, 0.94664	0.947211	(Customer Type, Age, Type of Travel, Class, Fl	0.002288	0.001427	0.000824
19	(1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15,	[0.944795195565137, 0.9463350785340314, 0.9463	0.946643	(Customer Type, Age, Type of Travel, Class, In	0.002493	0.001555	0.000898
18	(0, 1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 14, 15,	[0.9466430551278103, 0.9476054819833692, 0.945	0.94697	(Gender, Customer Type, Age, Type of Travel, C	0.00142	0.000886	0.000511
17	(1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16,	[0.946181090237142, 0.947143517092701, 0.94548	0.946922	(Customer Type, Age, Type of Travel, Class, In	0.002039	0.001272	0.000734
16	(1, 2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17,	[0.947143517092701, 0.9479904527255929, 0.9444	0.946961	(Customer Type, Age, Type of Travel, Class, In	0.002378	0.001483	0.000856
15	(1, 2, 3, 4, 6, 9, 11, 12, 13, 15, 16, 17, 18,	[0.9460271019402525, 0.9462580843855867, 0.946	0.946662	(Customer Type, Age, Type of Travel, Class, In	0.000871	0.000543	0.000314
14	(1, 2, 3, 4, 6, 9, 11, 12, 14, 16, 17, 18, 20,	[0.94467970434247, 0.9463735756082537, 0.94510	0.945604	(Customer Type, Age, Type of Travel, Class, In	0.001168	0.000729	0.000421
13	(1, 2, 3, 4, 6, 9, 11, 12, 14, 16, 17, 18, 21)	[0.945218663381583, 0.9452571604558053, 0.9443	0.945286	(Customer Type, Age, Type of Travel, Class, In	0.001137	0.00071	0.00041
12	(1, 2, 3, 4, 6, 9, 11, 12, 16, 17, 18, 21)	[0.9432168155220203, 0.9453341546042501, 0.945.	(DE Partition Mar	stomer Type, Age, Type of Travel, Class, In	0.001529	0.000954	0.000551
11	(1, 2, 3, 4, 6, 9, 11, 12, 16, 17, 18)	[0.9438327687095781, 0.9458731136433631, 0.944	o	stomer Type, Age, Type of Travel, Class, In	0.001596	0.000995	0.000575
10	(1, 3, 4, 6, 9, 11, 12, 16, 17, 18)	[0.9468740375731445, 0.9470280258700339, 0.948	0.948144	(Customer Type, Type of Travel, Class, Infligh	0.00232	0.001447	0.000835

 Then I plotted the results for each configuration (from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs).

• Then I created objects of SFS by embedding Decision Tree classifier objects, varying features from 1 to complete 22, forward as True, floating as False and scoring = accuracy and observed the following results.

We see that the best number of features is 9 with an average accuracy of 95.05