# Smacof at 50: A Manual Part 8: Homogeneity Analysis with Smacof

Jan de Leeuw - University of California Los Angeles

Started April 13 2024, Version of June 08, 2024

Abstract

smacofVO

## **Contents**

| 1  | Simultaneous Non-Metric Unfolding |                           |   |
|----|-----------------------------------|---------------------------|---|
|    | 1.1                               | Homogeneity Analysis      | 3 |
| 2  | Loss Function 5                   |                           |   |
|    | 2.1                               | The Unconstrained Case    | 5 |
|    | 2.2                               | Normalization of X        | 8 |
|    | 2.3                               | The Unweighted Case       | 8 |
|    | 2.4                               | Centroid Constraints on Y | 8 |
|    | 2.5                               | Rank Constraints on Y     | 8 |
| 3  | Note                              |                           | 9 |
| Re | References                        |                           |   |

**Note:** This is a working manuscript which will be expanded/updated frequently. All suggestions for improvement are welcome. All Rmd, tex, html, pdf, R, and C files are in the public domain. Attribution will be appreciated, but is not required. The files can be found at https://github.com/deleeuw in the repositories smacofCode, smacofManual, and smacofExamples.

## 1 Simultaneous Non-Metric Unfolding

If we have data where the same objects give preference judgments over multiple domains, or over the same domain on multiple occasions, or over the same domain under different experimental conditions, then we can use the stress loss function

$$\sigma(X,Y_1,\cdots,Y_m) := \sum_{j=1}^m \sum_{i=1}^n \min_{\hat{d}_i^j \in \Delta_i^j} \sum_{l=1}^{k_j} w_{il}^j (\hat{d}_{il}^j - d(x_i,y_l^j))^2 \tag{1}$$

Note that for each object and variable there are different sets of transformations  $\Delta_j$  and for each variable there different matrices of column scores  $Y_j$ , but there is only a single matrix of row scores X.

If the  $\Delta_i^j$  contain zero, then the unconstrained minimum of (1) is clearly zero. Collapsing all  $x_i$  and all  $y_l^j$  into a single point makes all distances zero, and thus makes stress zero. Some sort of normalization of either X and/or the  $Y_i$  is needed to prevent this trivial solution.

There is a extensive literature in the case of non-metric unfolding on preveting trivial solutions. Initially Roskam (1968) and Kruskal and Carroll (1969) tried to use implicit normalization of stress, which in our context means that each component of (1) is given a numerator

$$\sigma(X,Y_1,\cdots,Y_m) := \sum_{j=1}^m \sum_{i=1}^n \frac{\min_{\hat{d}_i^j \in \Delta_i^j} \sum_{l=1}^{k_j} w_{il}^j (\hat{d}_{il}^j - d(x_i,y_l^j))^2}{\min_{\hat{d}_{ij}} \sum_{l=1}^{k_j} w_{il}^j (\hat{d}_{ij} - d(x_i,y_l^j))^2} \tag{2}$$

This is supposed to prevent solutions with all  $d(x_i, y_i^j)$  are equal within a row of the

In fact, it is easy to see that a minimum of zero is also possible in the situation where the  $\Delta_i^j$  have the subset of all constant vectors (or all non-negative constant vectors). Collapse all  $x_i$  into a single point, and place all  $y_l^j$  on a sphere around this point. Or collapse all  $y_l^j$  and put the  $x_i$  on a sphere. This makes all  $d(x_i, y_l^j)$  equal and thus makes stress zero.

## 1.1 Homogeneity Analysis

The Gifi System (Gifi (1990), Michailidis and De Leeuw (1998), De Leeuw and Mair (2009)) presents non-linear or non-metric versions of the classical linear multivariate analysis techniques (regression, analysis of variance, canonical analysis, discriminant analysis, principal component analysis) as special cases of Homogeneity Analysis, also known as Multiple Correspondence Analysis.

We give a somewhat non-standard introduction to homogeneity analysis here, to highlight the similarities with unfolding and the techniques we will present later on in this paper.

The data are a number of indicator matrices  $G_1, \cdots, G_s$ . Indicator matrices are binary matrices, with rows that add up to one. They are used to code categorical variables. Rows corresponds with objects (or objects), column with the categories (or levels) of a variable. An element  $g_{ij}$  is one in row if object i is in category j, and all other elements in row i are zero.

Homogeneity analysis makes a joint maps in p dimensions of objects and categories (both represented as points) in such a way that category points are close to the points for the objects in the category. And, vice versa, objects are close to the category points that they score in. If there is only one variable then it is trivial to make such a homogeneous map. We just make sure the object points coincide with their category points. But there are s>1 indicator matrices, corresponding with s categorical variables, and the solution is a compromise trying to achieve homogeneity as well as possible for all variables simultaneously.

Let us use loss function (1) to captures loss of homogeneity in the sense discussed above. The sets  $\Delta_i^r$  are defined in such a way that  $\hat{d}_{il}^j$  is zero if i is in category l of variable j. There are no constraints on the other  $\hat{d}$ 's in row i of variable j. Thus for zero loss we want an object to coincide with all m categories it is in. Under this definition of the  $\Delta_i^r$  we have

$$\min_{\hat{d}_i^j \in \Delta_i^j} \sum_{l=1}^{k_j} w_{il}^j (\hat{d}_{il}^j - d(x_i, y_l^j))^2 = w_{il(i,j)}^j d(x_i, y_{l(i,j)}^j)^2$$

where the l(i, j) on the right is the index of the category of variable j that object i is in. Using indicators we can write this as

$$\sigma(X,Y_1,\cdots,Y_m) = \sum_{j=1}^m \operatorname{tr}\,(X-G_jY_j)'W_j(X-G_jY_j),$$

with the weights now defined as

$$w_i^j := w_{il(i,j)}^j.$$

The other  $\boldsymbol{w}_{il}^{j}$  do not matter and play no part in the optimization problem. star plot

$$Y_{i} = (G'_{i}W_{i}G_{i})^{-1}G'_{i}W_{i}X$$

$$\min_{Y} \sigma(X,Y_1,\cdots,Y_s) = \operatorname{tr} X' \left\{ \sum_{j=1}^m \left\{ W_j - W_j G_j (G_j'W_jG_j)^{-1} G_j'W_j \right\} \right\} X$$

$$X'W_{\star}X = I$$

### 2 Loss Function

#### 2.1 The Unconstrained Case

Now consider the closely related problem in which we do not require, as in homogeneity analysis, that

$$\hat{d}^j_{il(i,j)} = 0$$

but we impose the weaker condition that  $\hat{d}^j_{il(i,j)}$  is less than or equal to all  $\hat{d}^j_{il}$  in row i.

In homogeneity analysis the geometric interpretation of loss is that we want objects to coincide with the categories they score in (for all variables). The geometric interpretation of loss function ... is that we want objects to be closer to the categories they score in than to the categories they do not score in (for all variables). The plot of the the  $k_j$  categories of variable r defines  $k_j$  Voronoi regions. The Voronoi region of category  $\ell$  is the polyhedral convex set of all points closer to category  $\ell$  than to any other category of variable r. The loss function ... vanishes if the  $x_i$  are all in the Voronoi regions of the categories they score in (for all variables). It is sufficient for contiguity that the stars in the star plot are disjoint? Also that the convex hulls of the object points are disjoint?

Minimizing ... over the rows  $\delta_i^r$  is a monotone regression for a simple tree order. This is easily handled by using Kruskal's primary approach to ties (Kruskal (1964a), Kruskal (1964b), De Leeuw (1977)).

In stage 2 we do one or more metric smacof iterations for given  $\Delta_j$  to decrease the loss. These smacof iterations, or Guttman transforms, more or less ignore the fact that we are dealing with a rectangular matrix and use the weights to transform the problem into a symmetric one (as in Heiser and De Leeuw (1979)).

Thus for stage two purposes the loss function is

$$\sigma(Z_1,\cdots,Z_m) = \sum_{j=1}^m \sum_{i=1}^{N_j} \sum_{j=1}^{N_j} w_{ij}^r (\delta_{ij}^r - d_{ij}(Z_j))^2,$$

with  $N_i := n + k_i$  and

$$Z_j := {n \atop k_j} \left[ \begin{array}{c} x \\ Y_j \end{array} \right].$$

The weights in  $W_j$  are now zero for the two diagonal blocks.

$$g_i^r := {n \atop k_j} \left[ \begin{array}{c} e_i \\ 0 \end{array} \right].$$

$$h^r_\ell := {n \atop k_j} \left[ \begin{array}{c} 0 \\ e_\ell \end{array} \right]$$

so that  $x_i = Z_j' g_i^r$  and  $y_\ell^r = Z_j' h_\ell^r$ . It follows that

$$d^2(x_i, y^r_\ell) = \operatorname{tr} Z'_j A^r_{i\ell} Z_j$$

where  $A_{i\ell}^r$ , of order  $n+k_j$ , is the rank-one, positive semi-definite, doubly centered matrix

$$A_{i\ell}^r := (g_i^r - h_{\ell}^r)(g_i^r - h_{\ell}^r)'$$

It further follows that

$$\sum_{i=1}^n \sum_{\ell=1}^{k_j} w^r_{il} d^2(x_i,y^r_\ell) = \operatorname{tr} Z'_j V_j Z_j,$$

where

$$V_{j} := \sum_{i=1}^{n} \sum_{\ell=1}^{k_{j}} w_{il}^{r} A_{i\ell}^{r},$$

so that  $V_j$  has the shape

$$V_j = \binom{n}{k_j} \left[ \begin{array}{cc} \ddots & \square \\ \square & \ddots \end{array} \right]$$

with  $-W_j$  in the off-diagonal block, while the two diagonal blocks are diagonal matrices with the row and column sums of  $W_j$ .

In a similar way we define  $B_j(Z_j)$ , with the same shape as  $V_j$ , and with

$$B(Z_j) = \sum_{i=1}^n \sum_{\ell=1}^{k_j} w_{i\ell}^r \frac{\delta_{i\ell}^r}{d_{i\ell}(Z_j)} A_{i\ell}^r$$

$$\sigma(Z_1,\cdots,Z_m) = \sum_{j=1}^m \{\eta_j^2 - 2 \mathrm{tr} \; Z_j' B(Z_j) Z_j + Z_j' V_j Z_j \}$$

with

$$\eta_j^2 := \sum_{i=1}^{N_j} \sum_{j=1}^{N_j} w_{ij}^r \{\delta_{ij}^r\}^2$$

Define the Guttman transforms of  $Z_i$  as

$$\tilde{Z}_j = V_j^+ B(Z_j) Z_j$$

Then

$$\sigma_j(Z) := \eta_j^2 - 2\mathrm{tr}\ Z_j'B(Z_j)Z_j + Z_j'V_jZ_j = \eta_j^2 - \eta^2(\tilde{Z}_j) + \mathrm{tr}\ (Z_j - \tilde{Z}_j)'V_j(Z_j - \tilde{Z}_j)$$

If  $Z_j^{(k)}$  is  $Z_j$  at iteration k then

$$\operatorname{tr} Z_i' B(Z_i) Z_i \geq \operatorname{tr} Z_i' B(Z_i^{(k)}) Z_i^{(k)} = \operatorname{tr} Z_i' V_i \tilde{Z}_i^{(k)}.$$

Thus

$$\sigma_j(Z) \leq \eta_j^2 - \eta^2(\tilde{Z}_j^{(k)}) + \operatorname{tr}\,(Z_j - \tilde{Z}_j^{(k)})'V_j(Z_j - \tilde{Z}_j^{(k)})$$

It follows that in iteration k + 1 we must minimize

$$\omega(Z_1,\cdots,Z_s) := \sum_{i=1}^m \operatorname{tr} \, (Z_j - \tilde{Z}_j^{(k)})' V_j (Z_j - \tilde{Z}_j^{(k)})$$

to compute the  $Z_j^{(k+1)}$ .

Computation of the Guttman transform requires Moore-Penrose inverses of the matrices  $V_j$ , which are of order  $n+k_j$  and extremely sparse. They can also be uncomfortably large because n can be large. It is much more memory-friendly to solve the partioned system

$$\begin{bmatrix} R_W & -W \\ -W' & C_W \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} R_B & -B \\ -B' & C_B \end{bmatrix}$$

More explicitly we must minimize

$$\begin{split} \sum_{j=1}^m \operatorname{tr} \ (X - \tilde{X}_j)' R_j (X - \tilde{X}_j) - 2 \sum_{j=1}^m \operatorname{tr} \ (X - \tilde{X}_j)' W_j (Y_j - \tilde{Y}_j) + \\ \sum_{j=1}^m \operatorname{tr} \ (Y_j - \tilde{Y}_j)' C_j (Y_j - \tilde{Y}_j) \end{split} \tag{3}$$

where  $\tilde{X}_j$  and  $\tilde{Y}_j$  are the two components of the Guttman transform  $\tilde{Z}_j$  of the current  $Z_j$ . First minimize over  $Y_j$  for given X. This gives

$$\begin{split} Y_j &= \tilde{Y}_j - \{V_{22}^j\}^{-1}V_{21}^j(X - \tilde{X}_j) \\ X &= \{V_{11}^{\star}\}^{-1}\sum_{i=1}^m \left\{V_{11}^j\tilde{X}_j - V_{12}^j(Y_j - \tilde{Y}_j)\right\} \end{split}$$

Require e'X = 0. Or X = JZ

$$\sum_{j=1}^{m} V_{11}^{j}(X - \tilde{X}_{j}) + \sum_{j=1}^{m} V_{12}^{j}(Y_{j} - \tilde{Y}_{j}) = 0$$

Or we substitute ... into ... we find that we have to minimize

$$\sum_{j=1}^m \operatorname{tr} \, (X - \tilde{X}_j)' (R_j - W_j C_j^{-1} W_j') (X - \tilde{X}_j)$$

over X. ## Missing Data

#### 2.2 Normalization of X

Constraint either (weak)

$$\operatorname{tr} X' V_{11}^{\star} X = 1$$

or (strong)

$$X'V_{11}^{\star}X = I$$

## 2.3 The Unweighted Case

In the unweighted case we have  $V_{11}^r=k_jI, V_{22}^r=nI$ , and  $V_{12}^r=-E_{n\times k_j}$ . Thus  $V_{1|2}^r=k_jJ_n$  and  $V_{1|2}^\star=k_\star J_n$  with  $J_n=I_n-n^{-1}E_{n\times n}$ , the centering matrix of order \$n.

The Guttman transform also simplifies in the unweighted case. The formulas were already given in Heiser and De Leeuw (1979).

## 2.4 Centroid Constraints on Y

$$Z_{j} = \prod_{k_{j}}^{n} \begin{bmatrix} I \\ D_{j}^{-1}G_{j}' \end{bmatrix} X = H_{j}X$$
$$\sum_{i=1}^{m} Z_{j}'V_{j}Z_{j} = X'\{\sum_{i=1}^{m} H_{j}'V_{j}H_{j}\}X.$$

$$X'H_j'V_jH_jX = X'\{V_{11}^j + V_{12}^jD_j^{-1}G_j + G_jD_j^{-1}V_{22}^jD_j^{-1}G_j'\}X$$

#### 2.5 Rank Constraints on Y

$$y_j^r = \alpha_j^r y_j$$

## 3 Note

In order to not have to deal with general inverses and multiplications of gigantic symmetric matrices with largely empty diagonal blocks we solve the system

$$\begin{bmatrix} W_j & -W \\ -W' & W_c \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} P \\ Q \end{bmatrix}$$

for X and Y, with the known right hand side

$$\begin{bmatrix} P \\ Q \end{bmatrix} = \begin{bmatrix} B_j & -B \\ -B' & B_c \end{bmatrix} \begin{bmatrix} X^{(k)} \\ Y^{(k)} \end{bmatrix}$$

$$W_jX-WY=P$$
 or  $X=W_j^{-1}(P+WY).$  Substitute in  $W_cY-W'X=Q$  to get  $W_cY-W'W_j^{-1}(P+WY)=Q$  or  $(W_c-W'W_j^{-1}W)Y=Q+W'W_j^{-1}P.$ 

Note that  $W_c-W'W_j^{-1}W$  is doubly-centered and  $Q+W'W_j^{-1}P$  is column-centered.

### References

- De Leeuw, J. 1977. "Correctness of Kruskal's Algorithms for Monotone Regression with Ties." *Psychometrika* 42: 141–44.
- De Leeuw, J., and P. Mair. 2009. "Homogeneity Analysis in R: the Package homals." *Journal of Statistical Software* 31 (4): 1–21. https://www.jstatsoft.org/v31/i04/.
- Gifi, A. 1990. Nonlinear Multivariate Analysis. New York, N.Y.: Wiley.
- Heiser, W. J., and J. De Leeuw. 1979. "Metric Multidimensional Unfolding." *Methoden En Data Nieuwsbrief SWS/VVS* 4: 26–50.
- Kruskal, J. B. 1964a. "Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis." *Psychometrika* 29: 1–27.
- ——. 1964b. "Nonmetric Multidimensional Scaling: a Numerical Method." *Psychometrika* 29: 115–29.
- Kruskal, J. B., and J. D. Carroll. 1969. "Geometrical Models and Badness of Fit Functions." In *Multivariate Analysis, Volume II*, edited by P. R. Krishnaiah, 639–71. North Holland Publishing Company.
- Michailidis, G., and J. De Leeuw. 1998. "The Gifi System for Descriptive Multivariate Analysis." *Statistical Science* 13: 307–36.
- Roskam, E. E. 1968. "Metric Analysis of Ordinal Data in Psychology." PhD thesis, University of Leiden.