C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \*

# Graph Algorithms - Lecture 13

Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru -

#### Table of contents

- C. Croitoru Graph Algorithms \* C. Croitoru Graph Algorithms \*
- Tree\_decompositions ms \* C. Croitoru Graph Algorithms \* C. Croitoru Graph
  - Algorithms \* C. Croitoru Graph Algorithms \* C. Croitoru
  - Smallg tree decompositions Algorithms \* C. Croitoru Graph Algorithms \* C.
  - Tree decomposition properties Algorithms \* C. Croitoru Graph Algorithms \* C. Croitoru Graph Algorithms \* C. Croitoru Graph Algorithms
  - Rooted-tree-decomposition or u- Graph Algorithms \* C. Croitor u- Graph
  - Algorithms \* C. Croitoru Graph Algorithms \* C. Croitoru Graph

# Tree decomposition - Definition

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \*

## Definition

A tree decomposition of a graph G=(V,E) is a pair  $\mathcal{T}=(T,\{V_t:t\in T\})$ , where T is a tree and  $\{V_t:t\in V(T)\}$  is a family of subsets of vertices of  $G,\ V_t\subseteq V$  for every node  $t\in T$  such that:

- (Node coverage)  $V = \bigcup_{t \in V(T)} V_t;$
- (Edge coverage) For every  $e \in E$ , both endpoints of e are contained in  $V_t$  for some  $t \in V(T)$ .
- (Coherence) Let  $t_1, t_2, t_3$  be three nodes in T such that  $t_2$  lies on the path between  $t_1$  and  $t_3$  in T. Then, if  $v \in V$  belongs to both  $V_{t_1}$  and  $V_{t_3}$ , v must also belong to  $V_{t_2}$ .

Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - G. Cro

#### Tree-width - Definition

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

#### Remarks

The coherence can be rephrased like follows

- (Coherence') Let  $t_1, t_2, t_3 \in V(T)$  s. t.  $t_2$  belongs to the path from  $t_1$  to  $t_3$  in T. Then  $V_{t_1} \cap V_{t_3} \subseteq V_{t_2}$ .
- (Coherence") For every  $x \in V$ , the subgraph of T induced by  $\{t \in V(T): x \in V_t\}$  is (a subtree of T) connected.

The sets  $V_t$  are called the bags of the corresponding tree decomposition.

Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru -

## Definition

Let  $\mathcal{T}=$  ( T, {  $V_t:t\in T$  }) be a tree decomposition of G, the width of  $\mathcal{T}$  is

$$width(\mathcal{T}) = \max_{t \in V(T)} (\mid V_t \mid -1).$$

#### Tree-width - Definition

#### Definition

The tree-width of a graph G, is the minimum width of a tree decomposition of G:

 $tw(G) = \min\{width(T) : T \text{ tree decomposition of } G\}.$ 



#### Tree-width

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

#### Remark

tw(G) = 0 if and only if  $E(G) = \emptyset$ .

# Proposition

If G is a forest with  $E(G) \neq \emptyset$ , then tw(G) = 1.

Proof.  $tw(G) \geqslant 1$  by the above remark. If G is a tree, then

- ullet let T be obtained from G by renaming  $t_v$  each vertex  $v\in V(G)$ ,
- ullet insert on each edge  $t_ut_v$  ( $uv\in E(G)$ ) a new vertex  $t_{uv}$ ,

Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

- ullet set  $V_{t_u}=\{u\}$  for all  $t_u$  associated to  $u\in V(G)$ , and  $V_{t_{uv}}=\{u,v\}$  for all  $t_{uv}\in V(T)$  associated to  $uv\in E(G)$ .
- $(T, \{V_t : t \in V(T)\})$  is a tree decomposition of G with width 1.

#### Tree-width

Proof (cont'd). A tree decomposition of a forest with k components can be obtained by adding k-1 arbitrary edges to tree decompositions for the components (without creating cycles).



# Small tree decompositions

#### Definition

A tree decomposition,  $\mathcal{T} = (T, \{V_t : t \in V(T)\})$ , is small if there are no distinct vertices  $t_1, t_2 \in V(T)$  such that  $V_{t_1} \subseteq V_{t_2}$ .

# Proposition

Given a tree decomposition of G, a small tree decomposition of G with the same width can be constructed in polynomial time.

**Proof.** Let  $\mathcal{T}=(T,\{V_t:t\in V(T)\})$  be a tree decomposition of G with  $V_{t_1}\subseteq V_{t_2}$  for  $t_1,t_2\in V(T)$ ,  $t_1\neq t_2$ . We can suppose that  $t_1t_2\in E(T)$  (otherwise, we find adjacent nodes with this property, by considering a path from  $t_1$  to  $t_2$ ).

Contracting  $t_1t_2$  into a new node  $t_{12}$  with  $V_{t_{12}}=V_{t_2}$ , gives a smaller tree decomposition of G (it contains less pairs of vertices  $(t_1',t_2')$  with  $V_{t_1'}\subseteq V_{t_2'}$ ).

## Small tree decompositions

Proof (cont'd). Repeat this reduction until a small tree decomposition is obtained

# Proposition

If  $\mathcal{T}=(T,\{V_t:t\in V(T)\})$  is a small tree decomposition of G, then  $|T|\leqslant |G|$ .

Proof. By induction on n = |G|. If n = 1, then |T| = 1.

In the inductive step, for  $n\geqslant 2$ , consider a leaf  $t_1$  of T with neighbor  $t_2$ .  $(T-t_1,\{V_t:t\in V(T-t_1)\})$  is a small tree decomposition of  $G'=G\setminus (V_{t_1}\setminus V_{t_2})$ . By induction hypothesis  $|T-t_1|\leqslant |G'|$ , therefore

$$|T| = |T - t_1| + 1 \leqslant |G'| + 1 \leqslant |G|.$$



#### Minors

#### Remarks

- If the graph H is obtained from G by contracting an edge uv into z, then  $tw(H) \leq tw(G)$ : in a tree decomposition of G, insert z in every bag containing u or v, and then remove u and v from every bag to obtain a tree decomposition of H.
- If H is a subgraph of G, then  $tw(H) \leqslant tw(G)$ .

## Definition

H is a minor of a graph G if it can be obtained from G by iteratively deleting and contracting edges.

# Corollary

If H is a minor of a graph G, then  $tw(H) \leq tw(G)$ .

Proof. Using the above remarks.



#### Tree-width

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \*

Let  $TW_k = \{G : tw(G) \leqslant k\}.$ 

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

TW (Tree-Width - decision version)

Instance: G a graph and  $k \in \mathbb{N}$ .

Question:  $G \in TW_k$ ?

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

#### Theorem

Tree-Width (decision version) problem is NP-complete.

Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \*

#### Proof. Omitted.

Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph

# Tree-width is FPT (fixed-parameter tractable)

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

#### Lemma

For every positive integer k,  $TW_k$  is minor closed.

#### Theorem

(Bodlaender) For every fixed k, the problem of determining whether or not  $G \in TW_k$  can be solved in  $\mathcal{O}(f(k) \cdot n)$  time.

Proofs. Omitted. (f(k)) is exponential in k.)

Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru

Notation: Let  $\mathcal{T}=(T,\{V_t:t\in V(T)\})$  be a tree decomposition of G. Then, if T' is a subgraph of T,  $G_{T'}$  denotes the subgraph of G induced by the set of vertices  $\bigcup_{t\in G}V_t$ .

 $t \in V(T')$ 

## Tree decomposition properties

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

#### Theorem

(Node separation property.) Suppose T-t has connected components  $T_1, T_2, \ldots, T_p$ . Then the subgraphs  $G_{T_1} - V_t, G_{T_2} - V_t, \ldots, G_{T_p} - V_t$  have no vertices in common and there are no edges between them.

Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru



# Tree decomposition properties

#### Theorem

(Edge separation property.) Let X and Y be the two connected components of T after the deletion of edge  $xy \in E(T)$ . Then, deleting  $V_x \cap V_y$  disconnects G into two subgraphs  $H_X = G_X - V_x \cap V_y$  and  $H_Y = G_Y - V_x \cap V_y$ . That is  $H_X$  and  $H_Y$  share no vertices and there is no edge in G with one endpoint in  $H_X$  and the other in  $H_Y$ .



## Tree decomposition properties

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \*

## Other properties:

- Let G be a connected graph with tw(G) = k, then |G| = k + 1 or G has a k-vertex cutset.
- If tw(G) = 1, then G is a forest.
- $tw(P_r \times P_s) = \min\{r, s\}.$
- $tw(K_n) = n 1$ .

Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C.

## Rooted tree decomposition

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \*

## Definition

A rooted tree decomposition of G is a tree decomposition  $\mathcal{T}=(T,\{V_t:t\in V(T)\})$  of G, where some vertex r of T is declared to be the root.

Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru

Notations: let t be a vertex in a rooted tree decomposition  $\mathcal{T}=$  ( T, {  $V_t: t \in V(T)$ }).

- $T_t$  is the subtree of T rooted at t.
- ullet G[t] is the subgraph of G induced by the vertices in  $igcup_{x\in V(\,T_t)}V_x$  (i.

e., 
$$G[t] = G_{T_t}$$
).

Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph

# Applications - Vertex coloring

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

- Recall: a p-vertex coloring of a graph G=(V,E) is a function  $c:V \to \{1,2,\ldots,p\}$  such that for all  $uv \in E$ ,  $c(u) \neq c(v)$ .
- Let H' and H'' be two subgraphs of G, with p-colorings c' and c'', respectively. c'' is c'-compatible if for all  $v \in V(H') \cap V(H'')$ , c'(v) = c''(v).
- Let  $\mathcal{T} = (T, \{V_t : t \in V(T)\})$  a rooted tree decompositions of G. For every  $t \in T$  and every p-coloring c of  $G_t$ , define

$$Prev_t(c) = \left\{egin{array}{ll} 1, & ext{if } G[t] ext{ has an $c$-compatible $p$-coloring $\overline{c}$} \\ 0, & ext{otherwise}. \end{array}
ight.$$

Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms

# Proposition

 $Prev_u(c)=1$  if and only if for all children v of u, there exists a c-compatible coloring  $\overline{c}$  of  $G_v$  with  $Prev_v(\overline{c})=1$ 

## Applications - Vertex coloring

C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \*

**Proof.** " $\Longrightarrow$ " If  $\gamma$  is a c-compatible coloring of G[u], since  $G_v$  is a subgraph of G[u], then the restriction of  $\gamma$  to  $G_v$  gives the required coloring  $\overline{c}$ .

"

"
Suppose that u has exactly two children v and w, and we have two c-compatible colorings  $\overline{c}'$  and  $\overline{c}''$ , respectively (the proof is similar for more children).

Since  $(T, \{V_t : t \in V(T)\})$  is a tree decomposition,  $V(G[v]) \cap V(G[w]) \subseteq V_u$ , so  $\overline{c}'$  is  $\overline{c}''$ -compatible.

Combining  $\overline{c}'$  and  $\overline{c}''$  gives  $\overline{c}: V(G[u]) \to \{1, 2, \ldots, p\}$ . Since  $(T, \{V_t: t \in V(T)\})$  is a tree decomposition, there are no edges  $xy \in E(G)$  with  $x \in V(G[v]) - V_u$  and  $y \in V(G[w]) - V_u$ , so  $\overline{c}$  is a p-coloring of G[u].

- Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \*

# Applications - Vertex coloring

#### Theorem

If G, a graph of order n, has a small tree decomposition  $(T, \{V_t : t \in V(T)\})$  of width w, then we can decide if G is p-colorable in  $\mathcal{O}(p^{w+1} \cdot n^{\mathcal{O}(1)})$  time complexity.

**Proof.** Transform  $(T, \{V_t : t \in V(T)\})$  in a rooted tree decomposition (r is the root). For every  $v \in V(T)$  and every p-coloring c of  $G_v$ , we compute  $Prev_v(c)$ : start at the leaves of T, and use the above proposition for the other nodes, in the right order.

G=G[r] is p-colorable if and only if  $Prev_r(c)=1$  for some c. Testing whether c is a  $G_v$  coloring and computing  $Prev_v(c)$  can be done in polynomial time  $\mathcal{O}(n^{\mathcal{O}(1)})$ , so the total time complexity is mainly determined by the number of candidates for c, which is  $p^{|V_v|}$ .

Complexity:  $|V(T)| \cdot p^{w+1} \cdot n^{\mathcal{O}(1)} = \mathcal{O}(p^{w+1} \cdot n^{\mathcal{O}(1)})$ .

# Other applications - Similar approaches (more advanced dynamic programming)

\* C. Croitoru - Graph Algorithms \* C. Croitoru -Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru

#### Theorem

If G, a graph of order n, has a small tree decomposition  $(T, \{V_t : t \in V(T)\})$  of width w, the size of a minimum vertex cover of G ca be computed in  $\mathcal{O}(2^{w+1} \cdot n^{\mathcal{O}(1)})$  time complexity.

Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \* C.

#### Theorem

If G, a vertex-weighted graph of order n, has a small tree decomposition  $(T, \{V_t : t \in V(T)\})$  of width w, a maximum stable set of G ca be computed in  $\mathcal{O}(4^{w+1} \cdot w \cdot n)$  time complexity.

<sup>-</sup> Graph Algorithms \* C. Croitoru - Graph Algorithms \* C. Croitoru - Graph Algorithms \*

#### The end

Graph Algorithms \* C. Croitoru - The inhering of thu - Graph Algorithms \* C. Croitoru - G. Croi