Requirements Saugroboter

Abbildung 1 Ein Beispiel eines autonomen Staubsaugerroboters

Inhalt

Inhalt	1
Dokumentorganisation	2
Autorenliste	2
Versionen	2
Freigabe	
Vision	₫
Systemkontext	3
Stakeholder	3
Use Case	
Use Case	4
Requirements Liste	6
Abnahmetests	7
Glossar ^[60]	

Dokumentorganisation

Autorenliste

Kürzel	Name
LMN	Prof. Dr. Thomas Lehmann
MAX	Maximilian Mang
STARK	Franek Stark
BCK	Martin Beckmann
FCD	Frederic Dlugi

Versionen

Version	Erstellt	Autor	Kommentar
0.1	2013-09-13	LMN	Initiale Version des Templates
0.2	2015-04-22	LMN	Erweiterung mit Forderung nach Tracing
0.3	2015-11-01	LMN	Ergänzung um Kapitel Glossar
0.4	2017-10-25	LMN	Ergänzung um Test-Template
0.5	2017-11-11	MAX	Stakeholders hinzugefügt
0.6	2017-11-11	MAX	Vision hinzugefügt
0.7	2017-11-12	STARK BCK	Überarbeitung der Stakeholder
0.8	2017-11-12	STARK, BCK, MAX	Erarbeitung des Systemkontextdiagrammes
0.9	2017-11-12	ВСК	Usecase UC001_v1 hinzugefügt
0.10	2017-11-12	STARK	Usecase UC002_v1 hinzugefügt
0.11	2017-11-12	MAX	Umwandlung aller Roboter in Roboter (Korrekturen)
0.12	2017-11-12	STARK, BCK, MAX	Erstellung der Requirements-Liste
0.14	2017-11-14	FCD, STARK	Überarbeitung der Usecases & Stakeholder
0.15	2017-11-15	STARK	Systemkontextdiagramm hinzugefügt
0.16	2017-11-15	FCD	Tests hinzugefügt
1.0	2017-11-15	ВСК	Rechtschreibkontrolle, Glossar erweitert

Freigabe

Version	Freigegeben durch
<freigegebene< td=""><td><name der="" des="" prüfers="" version=""></name></td></freigegebene<>	<name der="" des="" prüfers="" version=""></name>
Versionsnummer>	

Vision

Das Produkt soll voll autonom den Boden von Staub und Schmutz reinigen. Dabei soll es die Umgebung nach Hindernissen abscannen und kartographieren, um eine befahrbare Route zu berechnen. Gleichzeitig soll eine Fernsteuerung vom Kunden, oder vom Supportmitarbeiter möglich sein. Auf Ereignisse wie, dass der Schmutzbehälter voll ist, oder der Akku fast leer, soll mit einer Fahrt zur Ladestation reagiert werden.

Systemkontext

Stakeholder

Stakeholder	Interessen
Kunde / User	Möchte einen sauberen Boden, ohne selbst zu saugen
Entwicklerteam	Hohe Wartbarkeit, bei niedrigem Aufwand
Intern	
Projektleiter/Produk	Einhaltung der Requirements
tmanager	
TÜV	Das Produkt muss sicher sein
Dyson Kundendienst	Einfacher Support und Wartung der Dyson-Einheit
Vertrieb	Will genaue Daten zum Produkt bekommen, z.B. Bedienungsanleitung etc.
Auftraggeber	Zusätzlich ein günstiger Preis.
Kundenservice	Einfache Fernwartung und Reparatur des Produktes
Produktdesigner	Das Produkt soll hübsch sein und realistische Ausmaße haben.

Use Case

ID	UC001_v1
Titel	Saugvorgang
Kurzbeschreibung	Der Roboter führt einen Reinigungsvorgang aus. Dabei fährt er eine vorher
	geplante Route ab.
Kritikalität	Hoch
Autor	BCK
Verantwortlich	FCD
Akteure	Nutzer, Servicearbeiter
Auslösendes Ereignis	Wunsch eines sauberen Bodens.
Vorbedingung	Roboter ist geladen, aufnahmefähig und funktionstüchtig
Nachbedingung	Der Roboter befindet sich in der Homebase.
Ergebnis	Der Boden ist von Staub befreit.
Hauptszenario	1. Roboter verlässt die Homebase.
	2. Roboter fährt vorher geplante Route ab und saugt dabei.
	3. Wenn der Saugvorgang abschlossen ist, fährt der Roboter auf dem
	kürzesten Weg zu der Homebase und beginnt das Laden.
Alternativszenario	2.a) Wenn der Akku einen kritischen Ladestand erreicht, oder der
	Schmutzbehälter voll ist wird eine neue Route zurück zur Homebase
	wird eingeschlagen und ein Ladevorgang wird gestartet.
	2.b) Wenn der Ladevorgang abgeschlossen wurde, wird die Route am
	unterbrochenen Punkt fortgesetzt (falls der Schmutzbehälter nicht
	voll ist).
	2.c) Wenn der Roboter in der Homebase ist und der Schmutzbehälter voll,
	fängt er periodisch an zu piepen und sendet eine Nachricht an die App
	des Nutzers.
	2.d) Wenn der Roboter auf ein unbekanntes Hindernis trifft, wird er
	versuchen dieses zu umfahren.
Fehlerszenario	2.e) Wenn sich der Roboter fest fährt fängt er periodisch an zu piepen und
	sendet eine Nachricht an die App des Nutzers.

ID	UC002_v1
Titel	Scanvorgang
Kurzbeschreibung	Der Roboter scannt den Raum
Kritikalität	Hoch
Autor	STARK

Verantwortlich	FCD
Akteure	Roboter, User, Servicemitarbeiter
Auslösendes Ereignis	Neuer Raum erkannt
Vorbedingung	Roboter ist geladen und funktionstüchtig
Nachbedingung	Roboter befindet sich in der Homebase
Ergebnis	Der Raum wurde erfasst und die Karte abgespeichert
Hauptszenario	 Roboter verlässt die Homebase Der Roboter fährt den Raum Systematisch ab und scannt ihn Ist der komplette Raum gescannt, fährt er zurück zur Homebase, lädt und schaltet sich ab.
Alternativszenario	 2.a.1) Wenn der Akku einen kritischen Ladestand erreicht, wird eine neue Route zurück zur Homebase wird eingeschlagen und ein Ladevorgang wird gestartet. 2.a.2) Wenn der Ladevorgang abgeschlossen (Genug Akkuleistung für den Rest der Route) wurde, wird die Route am unterbrochenen Punkt fortgesetzt.
Fehlerszenario	2.a) Wenn sich der Roboter fest fährt fängt er periodisch an zu piepen und sendet eine Nachricht an die App des Nutzers.

Requirements Liste

ID	Titel	Version	Priorität	Anforderung
R1	Akkustand	2	3	Der Roboter muss seinen Akkufüllstand messen.
R2	Festfahrerkennung	1	2	Wenn der Roboter sich festgefahren hat, soll der Roboter dieses erkennen.
R3	Autoscannen	1	2	Nach dem ersten Einschalten, soll der Roboter automatisch den Raum systematisch scannen.
R4	Hinderniserkennung	2	3	Der Roboter muss bis zu drei Meter (x < 3) weit Hindernisse erkennen und kartographieren.
R5	Saugen	1	3	Der Roboter kann mittels einer Dyson- Saugeinheit den Boden eines Raumes gemäß der Spezifikation dieser Einheit von Staub bzw. Dreck befreien.
R6	Füllstand	1	2	Der Roboter erkennt den Füllstand des Schmutzauffangbehälters der Dyson- Einheit.
R7	Raumerfassen	2	2	Der Roboter soll Räume systematisch erfassen.
R8	Weitersaugen	1	1	Wenn der Roboter den Reinigungsvorgang unterbrechen musste, soll er an der letzten Position weiter reinigen.
R9	Autonom bewegen	1	3	Der Roboter soll sich autonom durch vorher gescannte Räume bewegen.
R10	Homebase- Kommunikation	1	1	Der Roboter soll mit seiner Homebase kommunizieren.
R11	Ausweichen	1	3	Wenn ein Hindernis auftaucht muss der Roboter ausweichen.
R12	Saugende	1	2	Nach Beendetem Saugvorgang soll der Roboter zur Homebase fahren, laden und sich abschalten.

Abnahmetests

T1	Akkustand
Requirements:	R1
Kurzbeschreibung:	Es wird getestet, dass der Akkustand richtig vom Roboter erfasst wird.
Vorbedingungen:	Batterie ist vollständig geladen.

Testablauf:

Schritt	Aktion	Erwartung	Erfüllt
1	Roboter wird eingeschaltet	Roboter Akkuladestand, wird als 100% gemessen.	
2	Roboter saugt solange bis der kritische Akkustand angezeigt wird.	Der Akkuladung wird gemessen und mit der des Roboters vergleichen.	
3	Akku wird entfernt und durch variables Netzteil ersetzt.	Akkustand ändert sich, wenn die Spannung des Netzteiles verändert wird.	

T2	Festfahrerkennung
Requirements:	R2
Kurzbeschreibung:	Es wird getestet, dass der Roboter erkennt wenn er sich festgefahren hat.
Vorbedingungen:	Batterie ist vollständig geladen, Roboter ist eingeschaltet.

Testablauf:

Schritt	Aktion	Erwartung	Erfüllt
1	Roboter wird bewegungsunfähig gemacht	Roboter erkennt, dass er sich nicht bewegen kann.	

T6	Füllstand
Requirements:	R6
Kurzbeschreibung:	Es wird getestet, dass der Roboter den Füllstand des Staubcontainers erkennt.
Vorbedingungen:	Batterie ist vollständig geladen. Roboter ein Staubcontainer leer.

Testablauf:

Schritt	Aktion	Erwartung	Erfüllt
1	Roboter wird eingeschaltet	Roboter erkennt, dass der Staubcontainer leer ist.	
2	Staubcontainer wird aufgefüllt	Roboter erkennt, dass der Staubcontainer voll ist.	
3	Staubcontainer wird wieder ausgeleert	Roboter erkennt, dass der Staubcontainer nicht mehr voll ist.	

Glossar

Produkt – Der Staubsaugroboter und die Ladestation

Homebase – Die Ladestation des Roboters

Roboter – Das zu entwickelnde Produkt ohne die Ladestation

Festfahren – Der Roboter ist von Hindernissen so umgeben, dass ein eigenständiges rangieren nicht mehr möglich ist.

Scannen – Der Roboter interpretiert seine Umwelt mittels eingebauter Sensoren.

Hindernis – Objekt, welches umfahren werden muss, da sonst Schaden am Roboter oder an der Umgebung entsteht oder fest fahren droht. (Auch Abhänge)

Systematisch – Nach einer Regel (nicht zufällig)