```
import matplotlib.pyplot as plt
In [1]:
        import pandas as pd
        import seaborn as sns
        import numpy as np
        import sklearn
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
        from sklearn.compose import ColumnTransformer
        from sklearn.preprocessing import LabelEncoder
        from sklearn.preprocessing import OneHotEncoder,StandardScaler
        import warnings
        warnings.filterwarnings('ignore')
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.feature selection import RFE
        from sklearn.preprocessing import MinMaxScaler,StandardScaler
        import joblib
        import datetime
        from sklearn.feature selection import SelectFromModel
        from sklearn.model_selection import cross_val_score,GridSearchCV
        from sklearn.linear model import Ridge,Lasso
```

In [2]: data = pd.read_csv("exams.csv")

In [3]: data

Out[3]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group D	some college	standard	completed	59.0	70.0	78.0
1	male	group D	associate's degree	standard	none	96.0	93.0	87.0
2	female	group D	some college	free/reduced	none	57.0	76.0	77.0
3	male	group B	some college	free/reduced	none	70.0	70.0	63.0
4	female	group D	associate's degree	standard	none	83.0	85.0	86.0

995	male	group C	some college	standard	none	77.0	77.0	71.0
996	male	group C	some college	standard	none	80.0	66.0	66.0
997	female	group A	high school	standard	completed	67.0	86.0	86.0
998	male	group E	high school	standard	none	80.0	72.0	62.0
999	male	group D	high school	standard	none	58.0	47.0	45.0

1000 rows × 8 columns

In [4]: data.head()

Out[4]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	fema l e	group D	some college	standard	completed	59.0	70.0	78.0
1	male	group D	associate's degree	standard	none	96.0	93.0	87.0
2	fema l e	group D	some college	free/reduced	none	57.0	76.0	77.0
3	male	group B	some college	free/reduced	none	70.0	70.0	63.0
4	female	group D	associate's degree	standard	none	83.0	85.0	86.0

In [5]: | data.tail()

Out[5]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
99	5 male	group C	some college	standard	none	77.0	77.0	71.0
996	6 male	group C	some college	standard	none	80.0	66.0	66.0
997	7 female	group A	high school	standard	completed	67.0	86.0	86.0
998	B male	group E	high school	standard	none	0.08	72.0	62.0
999) male	group D	high school	standard	none	58.0	47.0	45.0

In [6]: data.shape

Out[6]: (1000, 8)

In [7]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	gender	1000 non-null	object
1	race/ethnicity	1000 non-null	object
2	parental level of education	1000 non-null	object
3	lunch	1000 non-null	object
4	test preparation course	1000 non-null	object
5	math score	975 non-null	float64
6	reading score	993 non-null	float64
7	writing score	989 non-null	float64

dtypes: float64(3), object(5)

memory usage: 62.6+ KB

```
data.describe()
 In [8]:
 Out[8]:
                 math score reading score writing score
           count 975.000000
                              993.000000
                                          989.000000
           mean
                  67.841026
                               70.379658
                                           69.165824
                  15.210716
                               14.108946
                                           14.999555
             std
                  15.000000
                               25.000000
                                           15.000000
            min
            25%
                  58.000000
                               61.000000
                                           59.000000
                               70.000000
            50%
                  68.000000
                                           70.000000
                               80.000000
            75%
                  79.000000
                                           80.000000
            max 100.000000
                              100.000000
                                          100.000000
 In [9]:
          data.isnull().sum()
 Out[9]: gender
                                             0
          race/ethnicity
                                             0
          parental level of education
                                             0
          lunch
                                             0
          test preparation course
                                             0
          math score
                                            25
          reading score
                                             7
          writing score
                                            11
          dtype: int64
In [10]: |data['math score'].mean()
Out[10]: 67.84102564102564
          data['math score'].fillna(data['math score'].mean(),inplace = True)
In [11]:
          data['reading score'].mean()
In [12]:
Out[12]: 70.37965760322255
In [13]: | data['reading score'].fillna(data['reading score'].mean(),inplace = True)
In [14]: | data['writing score'].mean()
Out[14]: 69.16582406471183
          data['writing score'].fillna(data['writing score'].mean(),inplace = True)
In [15]:
```

```
In [16]: |data.isnull().sum()
Out[16]: gender
                                         0
         race/ethnicity
                                         0
         parental level of education
                                         0
                                         0
         test preparation course
                                         0
         math score
                                         0
         reading score
                                         0
         writing score
                                         0
         dtype: int64
In [17]: | mode_value = data['math score'].mode().iloc[0]
         print("Mode:", mode_value)
         Mode: 62.0
         mode_value = data['reading score'].mode().iloc[0]
In [18]:
         print("Mode:", mode_value)
         Mode: 72.0
         mode_value = data['writing score'].mode().iloc[0]
In [19]:
         print("Mode:", mode_value)
```

Mode: 72.0

In [20]: sns.heatmap(data.isnull(),yticklabels=False,cmap="Paired")

Out[20]: <Axes: >


```
In [21]: ax=sns.countplot(x='math score',data=data)
    plt.xticks(rotation=90)
    for bars in ax.containers:
        ax.bar_label(bars)
```



```
In [22]: fig = plt.gcf();
    fig.set_size_inches(15, 10);
    sns.scatterplot(data)
```

Out[22]: <Axes: >

In [23]: data

Out[23]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	
0	female	group D	some college	standard	completed	59.0	70.0	78.0	
1	male	group D	associate's degree	standard	none	96.0	93.0	87.0	
2	female	group D	some college	free/reduced	none	57.0	76.0	77.0	
3	male	group B	some college	free/reduced	none	70.0	70.0	63.0	
4	female	group D	associate's degree	standard	none	83.0	85.0	86.0	
•••									
995	male	group C	some college	standard	none	77.0	77.0	71.0	
996	male	group C	some college	standard	none	0.08	66.0	66.0	
997	female	group A	high school	standard	completed	67.0	86.0	86.0	
998	male	group E	high school	standard	none	80.0	72.0	62.0	
999	male	group D	high school	standard	none	58.0	47.0	45.0	

1000 rows × 8 columns


```
In [25]: plt.hist('writing score',color='r')
Out[25]: (array([0., 0., 0., 0., 1., 0., 0., 0., 0.]),
          array([-0.5, -0.4, -0.3, -0.2, -0.1, 0., 0.1, 0.2, 0.3, 0.4, 0.5]),
          <BarContainer object of 10 artists>)
           1.0
           0.8
           0.6
           0.4
           0.2
           0.0
                                         writing score
In [26]: encoder = LabelEncoder()
         data['gender'] = encoder.fit transform(data['gender'])
In [27]:
         data['parental level of education'] = encoder.fit_transform(data['parental lev
         data['lunch'] = encoder.fit_transform(data['lunch'])
In [28]: |data.shape
```

categorical_col = ['gender', 'parental level of education', 'lunch']

encoder_cols = pd.DataFrame(encoder.fit_transform(data[categorical_col]),colum

encoder = OneHotEncoder(drop='first',sparse=False)

Out[28]: (1000, 8)

In [29]:

In [30]: encoder_cols

Out[30]:

	gender_1	parental level of education_1	parental level of education_2	parental level of education_3	parental level of education_4	parental level of education_5	lunch_1
0	0.0	0.0	0.0	0.0	1.0	0.0	1.0
1	1.0	0.0	0.0	0.0	0.0	0.0	1.0
2	0.0	0.0	0.0	0.0	1.0	0.0	0.0
3	1.0	0.0	0.0	0.0	1.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	1.0
995	1.0	0.0	0.0	0.0	1.0	0.0	1.0
996	1.0	0.0	0.0	0.0	1.0	0.0	1.0
997	0.0	0.0	1.0	0.0	0.0	0.0	1.0
998	1.0	0.0	1.0	0.0	0.0	0.0	1.0
999	1.0	0.0	1.0	0.0	0.0	0.0	1.0

1000 rows × 7 columns

In [31]: data

Out[31]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	0	group D	4	1	completed	59.0	70.0	78.0
1	1	group D	0	1	none	96.0	93.0	87.0
2	0	group D	4	0	none	57.0	76.0	77.0
3	1	group B	4	0	none	70.0	70.0	63.0
4	0	group D	0	1	none	83.0	85.0	86.0
995	1	group C	4	1	none	77.0	77.0	71.0
996	1	group C	4	1	none	0.08	66.0	66.0
997	0	group A	2	1	completed	67.0	86.0	86.0
998	1	group E	2	1	none	80.0	72.0	62.0
999	1	group D	2	1	none	58.0	47.0	45.0

1000 rows × 8 columns

```
numerical_col = ['math score', 'reading score', 'writing score']
In [32]:
          Scaled = StandardScaler()
          Scaled= pd.DataFrame(Scaled.fit_transform(data[numerical_col]),columns=numeric
In [33]:
          Scaled
Out[33]:
                math score reading score writing score
             0
                 -0.588943
                               -0.027017
                                            0.592528
             1
                  1.875805
                               1.609714
                                            1.196179
             2
                 -0.722173
                               0.399956
                                            0.525456
             3
                  0.143820
                               -0.027017
                                           -0.413556
             4
                  1.009812
                               1.040416
                                            1.129107
           995
                  0.610123
                                0.471118
                                            0.123022
           996
                  0.809968
                               -0.311666
                                           -0.212339
           997
                 -0.056025
                                1.111578
                                            1.129107
                  0.809968
           998
                               0.115307
                                           -0.480628
           999
                 -0.655558
                               -1.663749
                                           -1.620857
          1000 rows × 3 columns
          x = pd.concat([encoder_cols,Scaled],axis=1)
In [34]:
          Y = data['gender']
In [35]: x.shape
Out[35]: (1000, 10)
In [36]:
Out[36]: 0
                  0
          1
                  1
          2
                  0
          3
                  1
          4
                  0
                  . .
          995
                  1
          996
                  1
          997
                  0
          998
                  1
          999
          Name: gender, Length: 1000, dtype: int32
In [37]: X_train,X_test,Y_train,Y_test=train_test_split(x,Y,test_size=0.2,random_state=
```

```
In [38]: |model=LinearRegression()
         model.fit(X train,Y train)
         y_pred=model.predict(X_test)
         model = LinearRegression()
In [39]:
         model.fit(X_train,Y_train)
         y_pred = model.predict(X_test)
In [40]: | from sklearn.metrics import r2_score, mean_squared_error
In [41]: R2= r2 score(Y test,y pred)
In [42]:
         mae = mean absolute error(Y test,y pred)
         mse = mean_squared_error(Y_test,y_pred)
         rmse = np.sqrt(mse)
         r2 = r2 score(Y test,y pred)
In [43]: |print('Mean Absolute Error', mae)
         print('Mean Squared error',rmse)
         print('Root Mean Squared Error',rmse)
         print('R2 Score',r2)
         Mean Absolute Error 7.844146439922244e-15
         Mean Squared error 9.906270116153703e-15
         Root Mean Squared Error 9.906270116153703e-15
         R2 Score 1.0
 In [ ]: | lr_model.fit(X_train,Y_train)
         lr prediction = lr model.predict(X test)
         lr_mae = mean_absolute_error(Y_test,lr_prediction)
         lr_mse = mean_squared_error(Y_test,lr_prediction)
         lr_r2 = r2_score(Y_test,lr_prediction)
 In [ ]: |print('Linear MAE', lr_mae)
         print('Linear MSE', lr_mse)
         print('Linear R2', lr r2)
In [44]: | lr model = LinearRegression()
         lr_scores = cross_val_score(lr_model, X_train, Y_train, cv=5)
In [45]: ridge model= Ridge(alpha=1.0)
         ridge scores = cross_val_score(ridge_model , X_train , Y_train , cv = 5)
In [46]: Lasso_model= Lasso(alpha=1.0)
         Lasso_scores = cross_val_score(Lasso_model , X_train , Y_train , cv = 5)
```

```
In [47]: Lasso_model.fit(X_train , Y_train)
         Lasso prediction = Lasso model.predict(X test)
         Lasso_mae = mean_absolute_error(Y_test ,Lasso_prediction)
         Lasso_mse = mean_squared_error(Y_test ,Lasso_prediction)
         Lasso r2 = r2 score(Y test ,Lasso prediction)
In [48]: | print('Lasso MAE', Lasso_mae)
         print('Lasso MSE',Lasso_mse)
         print('Lasso R2',Lasso r2)
         Lasso MAE 0.49981250000000005
         Lasso MSE 0.24982656250000002
         Lasso R2 -0.001810776942356096
In [49]: ridge model.fit(X train , Y train)
         ridge prediction = ridge model.predict(X test)
         ridge_mae = mean_absolute_error(Y_test ,ridge_prediction)
         ridge mse = mean squared error(Y test ,ridge prediction)
         ridge r2 = r2 score(Y test ,ridge prediction)
In [50]: |print('Lasso MAE', ridge_mae)
         print('Lasso MSE', ridge mse)
         print('Lasso R2',ridge_r2)
         Lasso MAE 0.002791417359187404
         Lasso MSE 1.1679906764055893e-05
         Lasso R2 0.9999531632811467
         from sklearn.linear model import HuberRegressor
In [53]:
         from sklearn.preprocessing import StandardScaler
         scaler=StandardScaler()
         X_scaled = scaler.fit_transform(X_test)
         huber = HuberRegressor(epsilon=1.35)
         huber.fit(X scaled, Y test)
         huber prediction = huber.predict(X scaled)
         huber_mae =mean_absolute_error(Y_test,huber_prediction)
         huber_mse =mean_squared_error(Y_test,huber_prediction)
         huber_rmse = np.sqrt(huber_mse)
         huber_r2 = r2_score(Y_test,huber_prediction)
         print('huber mae:',huber_mae)
         print('huber mse:',huber_mse)
         print('huber rmse:',huber_rmse)
         print('huber r2:',huber_r2)
         huber mae: 1.8375633237255328e-11
         huber mse: 5.549402194005609e-22
         huber rmse: 2.3557169172049533e-11
         huber r2: 1.0
 In [ ]:
```