Uniwersytet Gdański Wydział Matematyki, Fizyki i Informatyki

Informatyka Ogólnoakademicka

Julia Komorowska

Nr albumu: 266386

Specjalność: Ogólna

Rodzaj studiów: Stacjonarne

Testowanie klasyfikatorów na wybranej bazie danych

Gdańsk 2022

Streszczenie

Zakres pracy obejmuje projekt polegający na testowaniu klasyfikatorów i porównaniu ich do siebie. Cała praca została także opisana w pliku:

• projekt.ipynb

Cały projekt został napisany w języku Python w Jupyter Notebook.

Treść zadania

Celem projektu (typu d) jest przetestowanie klasyfikatorów na wybranej bazie danych. Można wybrać następującą bazę danych

• COVID19 https://www.kaggle.com/einsteindata4u/covid19

Spis treści

1	Wprowadzenie	4
	1.1 Importowanie paczek	4
	1.2 Preprocessing	5
	1.3 Statystyki	
	1.4 Dane na wykresach	9
2	Naive-Bayes	11
	2.1 Definicja	11
	2.1.1 Czym jest?	11
	2.1.2 Wzór	
	2.2 Kod	12
3	KNN	15
•	3.1 Definicja	15
	3.2 Kod	
4	Decision-Tree	18
	4.1 Definicja	18
	4.2 Kod	18
5	Neural-Networks	19
	5.1 Definicja	19
	5.2 Kod	20
c	Apriori	21
O	6.1 Definicja	
	6.2 Kod	
7	Link do githuba	28
8	Bibliografia	28

1. Wprowadzenie

Projekt został stworzony na podstawie bazy danych Covid-19 https://www.kaggle.com/datasets/meirnizri/covid19-dataset.

1.1. Importowanie paczek

Na początku trzeba zaimportować wszystkie paczki potrzebne do uruchomienia programu.

```
from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPClassifier
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, plot_confusion_matrix,precision
from sklearn.linear_model import Perceptron
from sklearn import tree
from sklearn.metrics import confusion_matrix,mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import make_blobs
from sklearn.tree import export_graphviz,export_text
from sklearn.naive_bayes import GaussianNB, BernoulliNB, CategoricalNB
from sklearn.preprocessing import StandardScaler,OrdinalEncoder
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from six import StringIO
from IPython.display import Image
import pydotplus
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules
import warnings
import json
warnings.filterwarnings("ignore")
```

1.2. Preprocessing

Wstępne przetwarzanie bazy danych w celu zapewnienia większej wydajności jest pierwszym krokiem do przygotowania naszej bazy danych do użytku.

• Pobranie bazy danych i pokazanie jej kolumn.

```
df = pd.read_csv("covid_data.csv")
for col in df.columns:
    print(col)
```

USMER MEDICAL_UNIT SEX PATIENT_TYPE DATE_DIED **INTUBED PNEUMONIA** AGE **PREGNANT DIABETES COPD** ASTHMA **INMSUPR HIPERTENSION** OTHER_DISEASE **CARDIOVASCULAR OBESITY** RENAL_CHRONIC T0BACC0 CLASIFFICATION_FINAL ICU

Jak widać po pierwszych pięciu wierszach i ostatnich baza danych jest niezrozumiała.
 Dobrym przykładem jest ciąża, jeśli dana osoba jest mężczyzną to wtedy kolumna "PREGNANT" zawiera liczbe 97, a kiedy jest kobietą zawiera liczbę 2 lub 98 w zależności od tego czy jest w ciąży.

	USMER	MEDICAL_UNIT	SEX	PATIENT_TYPE	DEATH	INTUBED	PNEUMONIA	AGE	PREGNANT	DIABETES	 ASTHMA	INMSUPR	HIPERTENSI
1048570	2	13	2	1	9999- 99-99	97	2	40	97	2	 2	2	
1048571	1	13	2	2	9999- 99-99	2	2	51	97	2	 2	2	
1048572	2	13	2	1	9999- 99-99	97	2	55	97	2	 2	2	
1048573	2	13	2	1	9999- 99-99	97	2	28	97	2	 2	2	
1048574	2	13	2	1	9999- 99-99	97	2	52	97	2	 2	2	

• Zmiana nazw kolumn or usunięcie niepotrzebnych. Wartości zostały zmienione na wartości binarne.

df['OTHER_DISEASE'] = change (df['OTHER_DISEASE'], [90], [0,1])
df['CARDIOVASCULAR'] = change (df['CARDIOVASCULAR'], [90], [0,1])

df['RENAL_CHRONIC'] = change (df['RENAL_CHRONIC'], [90], [0,1])

df['PNEUMONIA'] = change(df['PNEUMONIA'],[90],[0,1])

df['TOBACCO'] = change (df['TOBACCO'], [90], [0,1])

df['OBESITY'] = change(df['OBESITY'],[90],[0,1])

df['ASTHMA'] = change(df['ASTHMA'], [90], [0,1])

```
df['COPD'] = change(df['COPD'],[90],[0,1])
df['DIABETES'] = change(df['DIABETES'],[90],[0,1])

df = df.drop('INMSUPR', axis=1)
df = df.drop('CLASIFFICATION_FINAL', axis=1)
df = df.drop('ICU', axis=1)
```

	USMER	MEDICAL_UNIT	SEX	PATIENT_TYPE	DEATH	INTUBED	PNEUMONIA	AGE	PREGNANT	DIABETES	COPD	ASTHMA	HIPERTENSION	OTHE
0	2	1	1	1	03/05/2020	1	0	65	0	0	0	0	0	
1	2	1	2	1	03/06/2020	1	0	72	0	0	0	0	0	
2	2	1	2	2	09/06/2020	0	0	55	0	0	0	0	0	
3	2	1	1	1	12/06/2020	1	0	53	0	0	0	0	0	
4	2	1	2	1	21/06/2020	1	0	68	0	0	0	0	0	

1.3. Statystyki

Średnia, minimalna i maksymalna wartość dla danej kolumny oraz odchylenie standardowe są podstawowymi danymi, które pozwolą nam wykryć ewentualne błędy.

```
For SEX:
Mean: 1.501222
Min: 1
Max: 2
Std: 0.49999875671321103
For PATIENT TYPE:
Mean: 1.197682
Min: 1
Max: 2
Std: 0.39825115879302275
For INTUBED:
Mean: 0.809557
Min: 0
Max: 1
Std: 0.39265075821347645
For PNEUMONIA:
Mean: 0.015837
Min: 0
Max: 1
Std: 0.12484472362581059
For AGE:
Mean: 41.929601
Min: 0
Max: 121
Std: 16.941643603856352
For PREGNANT:
Mean: 0.003565
Min: 0
Max: 1
Std: 0.05960112689617811
For DIABETES:
Mean: 0.003266
Min: 0
Max: 1
Std: 0.05705555625297591
For COPD:
Mean: 0.002947
Min: 0
Max: 1
Std: 0.0542062554445345
For ASTHMA:
Mean: 0.002924
Min: 0
Max: 1
Std: 0.053994936238995025
For HIPERTENSION:
Mean: 0.003045
Min: 0
Max:
Std: 0.05509746827877857
For OTHER DISEASE:
Mean: 0.00493
Min: 0
Max:
     1
Std: 0.07004070249290768
```

1.4. Dane na wykresach

Aby baza danych była bardziej czytelna dla użytkownika została lekko zmodyfikowana.

```
repSex = {1: "Female", 2: "Male"}
df.replace({"SEX": repSex},inplace=True)
df['AGE']=change(df['AGE'],[1,11,18,60],["Unknown","Child","Teenager","Adr
repDate={"9999-99-99":0}
df.replace({"DEATH":repDate},inplace=True)
df.loc[df["DEATH"] != 0,"DEATH"]=1
Po tych zmianach tworzymy wykresy porównawcze.
new_cols=cols
new_cols.remove("SEX")
for x in new cols:
```

```
new_cols=cols
new_cols.remove("SEX")
for x in new_cols:
    sns.set(style="whitegrid")
    ax = sns.countplot(y=x, hue="SEX", data=df)
    plt.ylabel(x)
    plt.title('Gender Plot')
    plt.show()
```


2. Naive-Bayes

2.1. Definicja

2.1.1. Czym jest?

Naiwny Bayes jest to klasyfikator probabilistyczny, który jest oparty na założeniu o wzajemnej niezależności predykatów. Polega na "uczeniu się" w trybie uczenia z nadzorem.

Wyróżniamy trzy klasyfikatory w bibliotece scikit-learn:

- Gaussian dla danych ciągłych
- Multinomial dla danych dyskretnych
- Bernoulli dla danych binarnych

Model Bayesa używa metody maksymalnego prawdopodobieństwa.

2.1.2. Wzór

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- P(A|B) prawdopodobieństwo, że A prawdziwe jeśli widzimy dowody na B
- P(B) prawdopodobieństwo, że B prawdziwe jeśli widzimy dowody na A
- P(B) prawdopodobieństwo, że B prawdziwe
- $\bullet \ {\rm P(A)}$ prawdopodobieństwo, że B prawdziwe

2.2. Kod

```
def naive_Bayes(X,y,typ):
   y.astype('int')
   X_train, X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,re
   model=typ
   clf=model.fit(X_train,y_train.astype('int'))
   pred_labels=model.predict(X_test)
   print("Classes: ",clf.classes_)
   print("\n*----*\n")
   if str(typ)=='GaussianNB()':
      print("Class Priors: ", clf.class_prior_)
   else:
      print("Class Priors: ", clf.class_log_prior_)
   score=model.score(X_test,y_test.astype('int'))
   print("\n*----*\n")
   print("Score: ",score)
   print("\n*----*\n")
   print('Training set score: {:.4f}'.format(model.score(X_train, y_train))
   print('Test set score: {:.4f}'.format(model.score(X_test, y_test.asty)
   print("\n*----*\n")
   print( classification_report(y_test.astype('int'),pred_labels))
   print("\n*----*\n")
   y_pred = clf.predict(X_test)
   cm = confusion_matrix(y_test.astype('int'), y_pred.astype('int'))
   cm_matrix = pd.DataFrame(data=cm, columns=['Actual Positive:1', 'Actual
                           index=['Predict Positive:1', 'Predict Ne
   sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='YlGnBu')
   return X_train, X_test, y_train.astype('int'), y_test.astype('int'), clf,
```

• Gaussian

X=df["OTHER_DISEASE"].values.reshape(-1,1)
y=df["DEATH"].values
X_train,X_test,y_train,y_test,clf,pred_labels,=naive_Bayes(X,y,Gaussia

Classes: [0 1]

*------

Class Priors: [0.92659562 0.07340438]

Score: 0.9240254631285316

Training set score: 0.9237 Test set score: 0.9240

*				*
	precision	recall	f1-score	support
0 1	0.93 0.21	1.00 0.01	0.96 0.03	194349 15366
accuracy macro avg weighted avg	0.57 0.87	0.50 0.92	0.92 0.49 0.89	209715 209715 209715

*-----

• Bernoulli

X=df["OTHER_DISEASE"].values.reshape(-1,1)
y=df["DEATH"].values
X_train,X_test,y_train,y_test,clf,pred_labels,=naive_Bayes(X,y,Bernoul)

Classes: [0 1]

Class Priors: [-0.07623804 -2.61177164]

Score: 0.9267291323939633

Training set score: 0.9266 Test set score: 0.9267

*				*
	precision	recall	f1-score	support
0 1	0.93 0.00	1.00 0.00	0.96 0.00	194349 15366
accuracy macro avg weighted avg	0.46 0.86	0.50 0.93	0.93 0.48 0.89	209715 209715 209715

3. KNN

3.1. Definicja

Metoda K najbliższych sąsiadów należy do grupy algorytmów leniwych. Polega na podporządkowaniu danej obserwacji taką klasę, która ma najwięcej podobnych próbek.

Ciekawym przykładem może być klasyfikacja czy dany człowiek skłamał poprzez ewaulacje pulsu wraz z badaniami galwanometrem.

Zbiór treningowy

Puls	GSR	Winny
1	0,7	Tak
0,8	0,8	Tak
0,9	0,9	Tak
0,6	1	Tak
0,5	0,5	Tak
0,3	0,9	Tak
0,3	0,4	Nie
0,2	0	Nie
0,1	0,2	Nie
0	0,3	Nie
0,6	0,8	Nie

Zbiór testowy

Puls	GSR	Winny
0,4	0,6	Nie
0,6	0,6	Tak
0,4	0,9	Tak
0,5	0,2	Nie
0,5	0,6	Tak

3.2. Kod

```
def knn(X,Y):
    X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3
    knn_model = KNeighborsClassifier()
    knn_model.fit(X_train, Y_train.astype("int"))
    Y_predict_knn = knn_model.predict(X_test)
    #Comparing the output I expected (Y_test) against the ones the model
    knn_metrics = metrics.classification_report(Y_test.astype("int"),Y_pre
    print(knn_metrics)
    table = pd.DataFrame(Y_test.astype("int"))
    print('table 1')
    print(table.head())
    #add the predictions to the dataframe
    table['predictions'] = Y_predict_knn.astype("int")
    print('table 2')
    print(table.head())
    accuracy_knn = accuracy_score(Y_test.astype("int"),Y_predict_knn.asty]
    precision_knn = precision_score(Y_test.astype("int"), Y_predict_knn.astype("int"),
    f1_knn = f1_score(Y_test.astype("int"),Y_predict_knn.astype("int"))
    recall_knn = recall_score(Y_test.astype("int"), Y_predict_knn.astype(
    print(precision_knn)
    print(accuracy_knn)
    print(f1_knn)
    print(recall_knn)
    plt.bar(['Accuracy', 'F1 Score', 'Recall Score', 'Precision Score'], [acc
    plt.plot([accuracy_knn,f1_knn,recall_knn,precision_knn],color='black'
    plt.title('Evaluation Metrics for K-Nearest Neighbors')
    plt.show()
    cm = confusion_matrix(Y_test.astype('int'), Y_predict_knn.astype('int
    cm_matrix = pd.DataFrame(data=cm, columns=['Actual Positive:1', 'Actual
                                  index=['Predict Positive:1', 'Predict Ne
    sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='YlGnBu')
knn(X=df["OTHER_DISEASE"].iloc[:100000].values.reshape(-1,1),
Y = df["DEATH"].iloc[:100000].values)
```

support	f1-score	recall	precision	
17644	0.74	1.00	0.59	0
12356	0.01	0.00	0.71	1
30000	0.59			accuracy
30000	0.37	0.50	0.65	macro avg
30000	0.44	0.59	0.64	weighted avg

4. Decision-Tree

4.1. Definicja

Drzewo decyzyjne jest to jeden ze sposobów klasyfikacji, polegający na podejmowaniu decyzji na podstawie pytań. Przykładem może byc klasyfikacja czy człowiek zdrowo się odżywia.

4.2. Kod

5. Neural-Networks

5.1. Definicja

Sieci neuronowe wzorowane są na budowie biologicznego systemu neuronowego w ujęciu matematyczno- informatycznym są grafem skierowanym.

5.2. Kod

```
def neural_network():
    scaler = StandardScaler()
    scaler.fit(X_train)
    train_data = scaler.transform(X_train)
    test_data = scaler.transform(X_test)
    print(train_data[:3])
    mlp = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=1000)
    mlp.fit(train_data, y_train)
    predictions_train = mlp.predict(train_data)
    predictions_test = mlp.predict(test_data)
    percent = (mlp.score(test_data, y_test))
    return ["Neural Network", percent, mlp]
r=neural_network()
plot_confusion_matrix(r[2], X_test, y_test)
[[-0.04280095]
 [-0.04280095]
 [-0.04280095]
```

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x177f7f8b0>

6. Apriori

6.1. Definicja

Reguły asocjacyjne polegają na ocenie wiarygodności jakiejś reguły. Najlepiej wytłumaczyć takie reguły na bazie danych:

"Kiedy kupimy pieluche i mleko, wtedy też kupimy piwo" - stwierdzenie to jest prawdziwe tylko dla 3 i 4, a 5 nie zawiera piwa więc wiarygoność jest równa 2/3.

Tid	Towary	Reguła assocjacyjna: {Diaper, Milk} ⇒ Beer
1	Bread, Milk	Wsparcie: $s(Diaper, Milk, Beer) = \frac{2}{5} = 0.4$
2	Beer, Diaper, Bread, Eggs	 ****
3	Beer, Coke, Diaper, Milk	Wiarygodność:
4	Beer, Bread, Diaper, Milk	s(Diaper, Milk, Beer) 2
5	Coke, Bread, Diaper, Milk	$\frac{s(Diaper, Milk)}{s(Diaper, Milk)} = \frac{2}{3} = 0.67$

6.2. Kod

Aby rozpocząć trzeba przygotować baze danych. Wartości stają się kolumnami:

```
data = []
df_te=df.iloc[:1000]
for i in range(0, df_te.shape[0]-1):
     data.append([str(df_te.values[i,j]) for j in range(0, df_te.shape[1])]
th = TransactionEncoder()
th_arr = th.fit(data).transform(data)
new_df = pd.DataFrame(th_arr,columns=th.columns_)
new_df.head()
                         3 Adult Child False Female Male Senior Teenager True Unknown
         0 False True True False False
                                          True False
         1 False True True False False
                                                                      False
                                False
                                     True
                                          False
                                               True
                                                    True
                                                          False
                                                               True
         2 False True True False
                                False
                                     True
                                          False
                                               True
                                                    False
                                                          False
                                                              False
                                                                      False
         3 False True True False
                                     True
                                              False
                                                    False
                                                               True
                                                                      False
                                                          False
         4 False True True False False
                                                          False
                                                               True
                                                                      False
                                               True
```

Wyniki aprori:

```
apr = apriori(new_df,min_support = 0.2, use_colnames = th.columns_)
apr.head()
```

	support	itemsets
0	0.310310	(0)
1	1.000000	(1)
2	0.996997	(2)
3	0.679680	(3)
4	0.495495	(Adult)

Uruchamianie eksploracji reguł z konfiguracją:

```
config = [ ('antecedent support',0.7),('confidence',0.8),('conviction',3)]
for metric, new_th in config:
    rules = association_rules(apr, metric = metric, min_threshold=new_th)
    if rules.empty:
        print("Dataframe is Empty")
    print(rules.columns.values)
    print("My configuration: ", metric, " : ",new_th)
    print(rules)

support = rules.loc[:,"support"]
    confidence = rules.loc[:,'confidence']
    plt.scatter(support,confidence,edgecolors="blue")
    plt.xlabel('support')
    plt.ylabel('confidence')
    plt.title(metric+' : ' +str(new_th))
    plt.savefig('plot%03s.png'%(metric))
```

```
['antecedents' 'consequents' 'antecedent support' 'consequent support'
'support' 'confidence' 'lift' 'leverage' 'conviction']
My configuration: antecedent support : 0.7
    antecedents
                                   consequents antecedent support \
0
                                                            1.000000
             (1)
                                            (0)
             (2)
                                            (0)
                                                            0.996997
        (False)
2
                                            (0)
                                                            1.000000
3
                                                            0.996997
             (2)
                                            (1)
4
                                                            1.000000
             (1)
                                            (2)
349
     (1, False)
                          (2, Senior, Male, 3)
                                                            1.000000
                  (Senior, 1, Male, 3)
(2, Male, Senior, False, 3)
350
     (2, False)
                                                            0.996997
                                                            1.000000
351
             (1)
                                                             0.996997
             (2)
                  (1, Male, Senior, False, 3)
352
        (False)
                      (1, 2, Male, Senior, 3)
353
                                                            1.000000
     consequent support
                           support confidence
                                                       lift leverage
                                                                        conviction
                          0.310310
                                                  1.000000 0.000000
0
                0.310310
                                        0.310310
                                                                           1.000000
                0.310310
                           0.310310
                                        0.311245
                                                   1.003012
                                                             0.000932
                                                                           1.001357
2
                0.310310
                           0.310310
                                        0.310310
                                                  1.000000
                                                             0.000000
                                                                           1.000000
3
                                                  1.000000 0.000000
                1.000000 0.996997
                                        1.000000
                                                                                inf
4
                0.996997
                           0.996997
                                        0.996997
                                                   1.000000
                                                             0.000000
                                                                           1.000000
                0.209209
349
                           0.209209
                                        0.209209
                                                  1.000000 0.000000
                                                                           1.000000
                0.210210
                           0.209209
                                        0.209839
                                                   0.998236 -0.000370
                                                                           0.999531
350
                                                                          1.000000
351
                0.209209
                          0.209209
                                        0.209209
                                                  1.000000 0.000000
                           0.209209
                0.210210
                                        0.209839
                                                  0.998236 -0.000370
                                                                           0.999531
352
353
                0.209209 0.209209
                                        0.209209
                                                  1.000000 0.000000
                                                                           1.000000
[354 rows x 9 columns]
['antecedents' 'consequents' 'antecedent support' 'consequent support' 'support' 'confidence' 'lift' 'leverage' 'conviction']
My configuration: confidence : 0.8
                antecedents
                                   consequents antecedent support \
                                                            0.310310
                         (0)
                                            (1)
1
                         (0)
                                            (2)
                                                            0.310310
                         (0)
                                        (False)
                                                            0.310310
3
                                                            0.310310
                         (0)
                                         (True)
4
                         (2)
                                                            0.996997
                                            (1)
430
                                 (2, False, 3)
                                                            0.243243
          (Senior, 1, Male)
          (2, Senior, Male)
431
                                  (1, False, 3)
                                                            0.242242
                                                            0.243243
     (Senior, False, Male)
432
                                     (2, 1, 3)
433
          (Senior, Male, 3)
                                 (2, 1, False)
                                                            0.210210
434
             (Senior, Male)
                              (2, 1, False, 3)
                                                            0.243243
                                                       lift leverage
     consequent support
                            support confidence
                                                                        conviction
0
                1.000000
                           0.310310
                                        1.000000
                                                  1.000000
                                                             0.000000
                                                                                inf
1
                0.996997
                           0.310310
                                        1.000000
                                                  1.003012
                                                             0.000932
                                                                                inf
                                                  1.000000
                                                             0.000000
                                        1.000000
                1.000000
                           0.310310
                                                                                inf
3
                           0.249249
                                        0.803226
                                                  2.312457
                                                             0.141464
                                                                           3.316759
                0.347347
                          0.996997
4
                1.000000
                                        1.000000
                                                  1.000000
                                                             0.000000
                                                                                inf
                0.676677
                                                  1.271039
430
                           0.209209
                                        0.860082
                                                             0.044612
                                                                           2.310811
                           0.209209
                                                                          2.349016
431
                0.679680
                                        0.863636
                                                  1.270652
                                                             0.044562
                           0.209209
                                                                           2.310811
                0.676677
                                        0.860082
                                                  1.271039 0.044612
432
                          0.209209
                                        0.995238
                                                  0.998236 -0.000370
                                                                          0.630631
433
                0.996997
                                                  1.271039 0.044612
434
                0.676677
                          0.209209
                                        0.860082
                                                                           2.310811
```

```
[435 rows x 9 columns]
['antecedents' 'consequents' 'antecedent support' 'consequent support'
'support' 'confidence' 'lift' 'leverage' 'conviction']
My configuration: conviction : 3
                        antecedents
                                                        antecedent support \
                                          consequents
                                  (0)
                                                   (1)
                                                                    0.310310
1
2
                                  (0)
                                                                    0.310310
                                                   (2)
                                 (0)
(0)
                                               (False)
                                                                    0.310310
                                                                    0.310310
                                                (True)
4
                                  (2)
                                                   (1)
                                                                    0.996997
281
          (False, Adult, Male, 3)
                                                (2, 1)
                                                                    0.217217
                                                                    0.217217
                  (Adult, Male, 3)
                                       (2, 1, False)
282
     (1, 2, Male, Senior, 3)
(2, Male, Senior, False, 3)
(2, Senior, Male, 3)
283
                                              (False)
                                                                    0.209209
                                                                    0.209209
284
                                                   (1)
285
                                           (1, False)
                                                                    0.209209
     consequent support
                              support
                                        confidence
                                                           lift leverage
                                                                             conviction
                 1.000000 0.310310
                                           1.000000
                                                                  0.000000
                                                      1.000000
                                                                                      inf
                 0.996997
                             0.310310
                                           1.000000
                                                      1.003012
                                                                  0.000932
                                                                                      inf
1
2
3
4
                 1.000000
                             0.310310
                                           1.000000
                                                      1.000000
                                                                  0.000000
                                                                                      inf
                 0.347347
                             0.249249
                                           0.803226
                                                      2.312457
                                                                  0.141464
                                                                                3.316759
                 1.000000
                            0.996997
                                           1.000000
                                                     1.000000
                                                                  0.000000
                                                                                      inf
..
281
                 ...
0.996997
                                           1.000000
                                                                                      ...
inf
                             0.217217
                                                      1.003012
                                                                  0.000652
282
                 0.996997
                             0.217217
                                           1.000000
                                                      1.003012
                                                                  0.000652
                                                                                      inf
                                                                  0.000000
283
                 1.000000
                           0.209209
                                           1.000000
                                                      1.000000
                                                                                      inf
                             0.209209
284
                 1.000000
                                           1.000000
                                                      1.000000
                                                                  0.000000
                                                                                      inf
285
                 1.000000
                             0.209209
                                           1.000000
                                                      1.000000
                                                                  0.000000
                                                                                      inf
```


Reguly:

```
print(rules[rules['antecedents'] == frozenset({'Female'})].to_string())
print("\n-----\n")
print(rules[rules['antecedents'] == frozenset({'Male'})].to_string())
print("\n----\n")
print(rules[rules['antecedents'] == frozenset({'Senior'})].to_string())
print("\n----\n")
```

ant	tecedents cons	sequents	antecedent support	consequent support	support	confidence	lift	lev
erage	conviction							
5	(Female)	(0)	0.433433	1.0	0.433433	1.0	1.0	
0.0	inf							
11	(Female)	(1)	0.433433	1.0	0.433433	1.0	1.0	
0.0	inf							
26	(Female)	(0, 1)	0.433433	1.0	0.433433	1.0	1.0	
0.0	inf							
	tecedents cons conviction	sequents	antecedent support	consequent support	support	confidence	lift	le
erage 6	(Male)	(0)	0.566567	1.0	0.566567	1.0	1.0	
0.0	inf	(0)	0.300307	1.0	0.300307	1.0	1.0	
12	(Male)	(1)	0.566567	1.0	0.566567	1.0	1.0	
0.0	inf	(-)	31333331	200				
29	(Male)	(0, 1)	0.566567	1.0	0.566567	1.0	1.0	
0.0	inf							
ant	tecedents cons	sequents	antecedent support	consequent support	support	confidence	lift	le
erage	conviction							
7	(Senior)	(0)	0.419419	1.0	0.419419	1.0	1.0	
0.0	inf							
13	(Senior)	(1)	0.419419	1.0	0.419419	1.0	1.0	
0.0	inf							
32	(Senior)	(0, 1)	0.419419	1.0	0.419419	1.0	1.0	
0.0	inf							
			•	*	·			

7. Link do githuba

Cały projekt będący elementem mojej pracy został wstawiony na githuba https://github.com/komolcia/INF-D-2023-Julia-Komorowska-266386 oraz opisany w README.md.

8. Bibliografia

- https://www.kaggle.com/code/bhanuchanderu/data-mining-a-demo-with-titanic-data/notebook Apriori
- https://towardsdatascience.com/naive-bayes-classifier-how-to-successfully-use-it-in-- Naive Bayes
- https://pl.wikipedia.org/wiki/Naiwny_klasyfikator_bayesowski definicja Naiwnego Bayesa
- https://www.kaggle.com/code/prashant111/knn-classifier-tutorial-KNN
- https://scikit-learn.org/stable/modules/neural_networks_supervised.html-Neural Networks