

someshghoshjoyguru@gmail.com ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Getting Started with Competitive Programming (course)

Click to register for Certification exam

(https://examform.nptel.

If already registered, click to check your payment status

Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Week 0 ()

Week 1 ()

Week 2 ()

Week 3 ()

Week 4 ()

Week 11: Assignment 11

Assignment not submitted

Common Statement for Question 1 & 2

Your final End term exams are going to be over and you are catching up on Netflix. You have a schedule of interesting live shows during the next day. You hate to start or stop watching a show midway, so your aim is to watch as many complete shows as possible during the day.

Due date: 2025-04-09, 23:59 IST.

Suppose there are n such shows M_1,M_2,\ldots,M_n available during the coming day. The shows are ordered by starting time, so for each $i\in 1,2,\ldots,n-1$, M_i starts before M_{i+1} . However, show M_i may not end before M_{i+1} starts, so for each $i\in 1,2,\ldots,n-1$, Next[i] is the smallest j>i such that M_j starts after M_i finishes if exist, otherwise i=1.

Given the sequence M_1, M_2, \ldots, M_n and the values Next[i] for each $i \in 1, 2, \ldots, n-1$, your aim is to compute the maximum number of complete shows that can be watched.

1) Let Watch[i] denote the maximum number of complete shows that can be watched among $M_i, M_{i+1}, \ldots, M_n$. Which of the following is a correct formulation of Watch[i] for $i \in n-1, n-2, \ldots, 2, 1$? Consider initially Watch[n] = 1.

$$egin{aligned} \bigcirc \ Watch[i] &= egin{cases} Watch[i+1], & if \ Next[i] = -1 \ max(Watch[Next[i]], Watch[i+1]), & if \ Next[i]
ot= -1 \ Watch[i] &= egin{cases} Watch[i+1], & if \ Next[i] = -1 \ max(Watch[Next[i]], 1 + Watch[i+1]), & if \ Next[i]
ot= -1 \end{cases} \end{aligned}$$

Week 5 ()

Week 6 ()

Week 7 ()

Week 8 ()

Week 9 ()

Week 10 ()

Week 11 ()

- Week 11
 Feedback
 Form: Getting
 Started with
 Competitive
 Programming
 (unit?
 unit=101&less
 on=174)
- Practice:
 Week 11:
 Assignment 11
 (Non Graded)
 (assessment?
 name=529)
- Week 11:
 Practice
 Programming
 Assignment 1
 (/noc25_cs36/
 progassignme
 nt?name=535)
- Week 11
 Programming
 Assignment
 Q1
 (/noc25_cs36/
 progassignme
 nt?name=552)
- Week 11
 Programming
 Assignment
 Q2
 (/noc25_cs36/
 progassignme
 nt?name=553)

$$Watch[i] = egin{cases} Watch[i+1], & if \ Next[i] = -1 \ max(1+Watch[Next[i]], Watch[i+1]), & if \ Next[i]
eq -1 \ \end{bmatrix} \ Watch[i] = egin{cases} 1+Watch[i+1], & if \ Next[i] = -1 \ max(Watch[Next[i]], Watch[i+1]), & if \ Next[i]
eq -1 \end{cases}$$

2) How much time given dynamic programming approach will take to compute the **1 point** answer? Assume you have direct access to the \$Next\$ list as well and you don't have to worry about computing it on your own.

$$\bigcirc$$
 $O(n^2)$
 \bigcirc
 $O(n^3)$
 \bigcirc
 $O(n \log n)$
 \bigcirc
 $O(n)$

Common Statement for Question 3 and 4

Longest strictly decreasing subsequence (continuous) refers to a specific subset of elements within a larger sequence that meet the following criteria:

- 1. **Strictly Decreasing:** Each element in the subsequence must be strictly **larger** than the element that follows it. There can't be any equal values.
- 2. **Continuous:** The elements in the subsequence must appear consecutively in the original sequence without any gaps. They must be neighbors in the original order.
- 3. **Longest:** The subsequence should have the maximum possible length among all such decreasing subsequences within the original sequence.
- 3) Consider the input array A=[4,3,2,6,8,7,7,5,4,2,1] What is the length of the longest strictly decreasing subsequence(continuous) of numbers in array A?

1 point

- 4) Consider the following algorithm to find the length of the longest trictly decreasing **1** point subsequence(continuous) of numbers in array $A_{0...n-1}$:
- 1. n = length(A)
- 2. $Initialize\ list\ L_{0...n-1}=0$
- 3. $L_0 = 1$
- 4. For all i, start from index 1 to n-1:
- 5. Inductive structure
- 6. return max(L)

Note:- L_j is the length of the longest strictly decreasing sequences ending at A_j , where $0 \leq j \leq n-1$.

Which of the following is the correct **inductive structure** to fill at step 5 to return the correct result?

Quiz: Week
11:
Assignment
11
(assessment?
name=554)

Week 12 ()

Download Videos ()

Live Sessions ()

Transcripts ()

Books ()

$$egin{aligned} \bigcirc \ L_i &= egin{cases} 1 + L_{i+1}, & if \ A_i > A_{i+1} \ 1, & Otherwise \ \bigcirc \ L_i &= egin{cases} 1 + L_{i-1}, & if \ A_i > A_{i-1} \ 1, & Otherwise \ \bigcirc \ L_i &= egin{cases} 1 + L_{i-1}, & if \ A_i < A_{i-1} \ 1, & Otherwise \ \bigcirc \ L_i &= egin{cases} 1 + L_{i-1}, & if \ A_i \geq A_{i-1} \ 1, & Otherwise \ \end{cases} \end{aligned}$$

Common Statement for Question 5 and 6

Consider the following function $do_something(A,B)$, where A and B are two strings of length m and n respectively.

```
1 | def do_something(A, B):
        m = len(A)
3
        n = len(B)
        T = [[0] * (n + 2) \text{ for } i \text{ in } range(m + 2)]
        for i in range(m + 1):
            for j in range( n + 1):
6
                 if i == 0:
                     T[i][j] = j
8
9
                 elif j == 0:
                     T[i][j] = i
10
                 elif (A[i - 1] == B[j - 1]):
11
12
                     T[i][j] = 1 + T[i - 1][j - 1]
13
14
                     T[i][j] = 1 + min(T[i - 1][j], T[i][j - 1])
15
        return T[m][n]
```

5) What does function do_something(A, B) return?

1 point

1 point

- \bigcirc Length of the shortest possible string s , where A and B are subsequence of s .
- C Length of the longest common subsequence of A and B
- C Length of the longest continuous common sequence of A and B
- O Edit distance between A and B
- 6) What is the time complexity of function do_something(L, k)?

$$O(m+n)$$
 $O(m \log n)$
 $O(mn)$
 $O(n \log m)$

7) Let you have a single positive integer $\, x$, which is initially equal to1. You are given a positive integer $\, n \,$ where $\, n \,$ > $\, x$.

In each step, you can either increment $\,x\,$ by 1 or double $\,x\,$. Your goal is to produce a target value $\,n\,$ in minimum number of steps. For example, you can produce the integer n=10 in four steps as follows:

$$1(+1)
ightarrow 2(*2)
ightarrow 4(+1)
ightarrow 5(*2)
ightarrow 10$$

What is the minimum number of steps required if n = 1025?

You may submit any number of times before the due date. The final submission will be

considered for grading.

Submit Answers

1 point