

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
https://sites.google.com/view/iitkgpakdas/

Topic: Ring and Field

Definition (Ring)

A ring R, sometimes denoted by $(R, \circ, *)$ is a set of elements with two binary operations, \circ (e.g., ordinary addition) and * (e.g., ordinary multiplication), such that for all $a, b, c \in R$ the following axioms are obeyed:

- (A1-A5) R is an abelian group under ∘.
- (M1) Closure under *: If $a, b \in R$, then $a * b \in R$.
- (M2) Associativity of *: a*(b*c) = (a*b)*c, for all $a,b,c \in R$.
- (M3) Distributive Laws:
 - (i) Left Distributive Law: $a*(b \circ c) = (a*b) \circ (a*c)$, for all $a,b,c \in R$.
 - (i) Right Distributive Law: $(a \circ b) * c = (a * c) \circ (b * c)$, for all $a, b, c \in R$.

Definition (Commutative Ring)

A ring $(R, \circ, *)$ is said to be *commutative* if it satisfies the following additional condition:

• (M4) Commutative of *: a * b = b * a, for all $a, b \in R$.

Example

Let *E* denote the set of even integers, that is,

 $\pmb{E} = \{0, \pm 2, \pm 4, \pm 6, \cdots, \}$. Then, $(\pmb{E}, +, \times)$ is a commutative ring.

Example

Let M_n denote the set of all n-square $(n \times n)$ matrices over the real numbers. Then, $(M_n, +, \times)$ is a commutative ring, where + and \times denote the ordinary matrix addition and multiplication, respectively.

• **Problem:** Let $(R, +, \times)$ be a ring with identity, R is the set of real numbers. Using its elements, let us define another structure (R', \oslash, \otimes) , where R' = R and for $a, b \in R$, $a \oslash b = a + b + 1$ and $a \otimes b = a \times b + a + b$.

- (i) Prove that (R', \emptyset, \otimes) is a ring.
- (ii) Is R' is a ring with identity? If so, which one is the multiplicative identity (under \otimes)?