Mapping Insects from Space:

Combining DNA-based point samples and remote sensing data across a working forest for site management

Connecting Earth observation, high-throughput arthropod-biodiversity point samples, and joint species distribution modelling using neural networks to predict the distribution of biodiversity across a working forest

Yuanheng Li, Christian Devenish, Marie I. Tosa, Mingjie Luo, Damon B. Lesmeister, Douglas W. Yu, Taal Levi and David M. Bell Douglas W. Yu

add institution logos

KIZ, UEA, OSU, Forest Service, HJA

Research Object

- Earth Observation:
 - LiDAR, Multispectral, ...
- Fieldwork:
 - Malaise trap
- Lab work & Bioinformatics:
 - DNA extraction, sequencing
 - sequences mapping, taxonomy assignment (Kelpie)
- Statistics:
 - joint species distribution model

Connecting Earth observation to high-throughput biodiversity data

Alex Bush^{1,2,3}, Rahel Sollmann⁴, Andreas Wilting⁵, Kristine Bohmann^{6,7}, Beth Cole⁸, Heiko Balzter^{8,9}, Christopher Martius¹⁰, András Zlinszky¹¹, Sébastien Calvignac-Spencer¹², Christina A. Cobbold¹³, Terence P. Dawson¹⁴, Brent C. Emerson^{15,7}, Simon Ferrier³, M. Thomas P. Gilbert^{6,16}, Martin Herold¹⁷, Laurence Jones¹⁸, Fabian H. Leendertz¹², Louise Matthews¹³, James D. A. Millington¹⁴, John R. Olson¹⁹ Otso Ovaskainen^{20,21}, Dave Raffaelli²², Richard Reeve¹³, Mark-Oliver Rödel²³, Torrey W. Rodgers²⁴, Stewart Snape²⁵, Ingrid Visseren-Hamakers²⁶, Alfried P. Vogler^{27,28}, Piran C. L. White²², Martin J. Wooster^{14,29} and Douglas W. Yu^{1,7*}

Sample DNA (Malaise trap)

Sites	0	1	1	0	0
	1	1	0	0	0
	0	1	1	1	0
	0	0	1	1	0
	1	0	0	1	1

Species

no PCR (Kelpie) A new method for faster and more accurate inference of species associations from big community data

env.vars

$$Z_{ij} = \beta_{0j} + DNN(X_{in}) + X_{Sim} \cdot \beta_{Smj} + MVN(0, \Sigma_{ij})$$

coordinates

Study Site - HJ Andrews Experimental Forest, Oregon, USA

- 89 sampling points in forest the forest
- sampled 264 km² (HJA 65 km²)
- Malaise traps (32 sampling points had 2 traps)
- topography, forest structure, and management vary

Carpenter Mountain. Photo by Lina DiGregorio

used targeted assembly of DNA Barcodes to extract species lists from shotgun-sequenced Malaise-trap samples and achieved broad taxonomic coverage

Train: 2 classes, 12 orders, 79 families,

ESA 2021

Model tuning

jSDM modelling, with variable selection via regularisation

Perform not favored by abundance Species > 0.7 for prediction

used xAI (explainable AI) to infer the most important environmental covariate for each species

Prediction Maps

Species richness of 30*30m grid (more species inside HJA)

ordination
T-SNE snows composition similarity
colour similarity ~ species composition similarity

axis 1 correlated with elevation

axis 2 possibly correlated with forest structure

use six individual species prediction maps

species response to environment differently

Powe conclude that it is possible to predict arthropod species distributions at a high granularity using DNA-Lion based data and Earth-Observation predictors

+ DIVA DAILUUE

We expect better prediction performance with

• more sites (89 sites, 121 data, 190 species)

add a small version of the figure from slide CEOBE

more sampling effort (more traps, pitfall traps)

- •more sequencing depth or more PCRs per sample (for low-biomass species)
- more covariates Variates (hyperspectral, change metrics)

Applications:

To inform systematic conservation planning and site-level management For example: to balance timber production with biodiversity conservation

To infer niche requirements of data-poor species

References

Bush, A. et al. 2017. Connecting Earth observation to high-throughput biodiversity data. - Nat Ecol Evol 1: 0176.

Pichler, M. and Hartig, F. 2020. A new method for faster and more accurate inference of species associations from big community data. - arXiv in press.

Lina DiGregorio. https://andrewsforest.oregonstate.edu/about/visitor