Modeling Relationship between Alcohol Policy Perception and Alcohol Consumption in '01 Harvard College Alcohol Survey (CAS)

Youngsoo Baek, Michael Christensen, and Yufeng Jiang

Objective

- Data: 2001 Harvard College Alcohol Study (CAS)
- ▶ 10904 participants (unknown response rate)
- Investigate the correlation structure between subjective beliefs about campus alcohol policy and objective measures of alcohol consumption
- Section B for subjective questions, Section C for objective questions
- Standard survey modeling techniques: factor analysis, structural equations model, item response theory

Data Processing

- Consistent ordering of responses
- lacktriangle More stringent alcohol policy beliefs (1) -> Less stringent
- Less alcohol consumption (1) -> More consumption
- Aggressive pruning of the variables before modeling
- Unreliable responses classified based on
- Response to A7: A (alone) is not allowed with other responses (family/partner/roommate)
- Response in Section C: participants who chose 1 in C10 and answered C11–C15, etc.
- WEIGHT01 used as sampling weights (intended for cross-sectinoal studies)

Missing Reponses

 Missing response rate adjusted for questions that only target certain demographic subgroups

Missing Responses for Each Section

<><<< HEAD ## What A Structural Model Looks Like

... Graphic plot here (believe will be better to include it soon to give

the big picture)...

1242f462d3b86806b4f07d6cc047dc52c9558fea ## Structural Equations Modeling (SEM)

Graphical Representation of the Model

...PLOT...

Modeling Challenges

- ► The model is clearly misspecified: Gaussian error assumption is made on ordered response
 - Asymptotic standard errors of factor loading estimators are valid for nonnormal factor analyses (Anderson and Amemiya, 1988)
 - ▶ In practice can cause lower goodness-of-fit
- Complete case analysis due to excessive computation in maximizing the full likelihood
- ► (ANYTHING ELSE??)

Main Results

We define two factors corresponding to Section B of the survey, which we characterize as:

B1: Perception of strictness in school's alcohol policy, and B2: Desire for less restrictive alcohol policies

We also define three factors corresponding to Section C of the survey, which we characterize as:

C1: Volume of Drinking C2: Motivation for Drinking C3: Inhibition towards Drinking

Main Results

Correlation between latent factors:

Model Diagnostics

- Various statistics to evaluate model fit in practice (and suggested threshold indicating good fit): CFI (> .95), RMSEA (< .08), SRMR (< .06) (See Hu and Bentler, 1999)
- Goodness of fit statistics for our model: CFI: 0.866, RMSEA: 0.041, SRMR: 0.027

Interpretation

B5 and B3: current policy is linent, and students want even more linient policy; B19: minimal drinking age, Better knowledge of drinking, less alcohol use, more against drinking (C22); B3 and C's: stronger enforcement of policy does correlate with less consumption; B1, B5 and C's: however wanting more linient policy correlate with more consumption

Conclusion

- Limitations
- Alternative approaches to account for ordered response
- ▶ Theory-driven priors may improve fit of more complex models
- Need information to correct for estimate biases

Reference

- "Asymptotic Chi-Square Tests for a Large Class of Factor Analysis Models," Anderson, T. W. and Amemiya, Y. The Annals of Statistics, 16(2), 1988.
- "Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives," Hu, L.-T. and Bentler, P. M. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1999.