TRY

1. A Si step juntion operated at 300k with $N_A = 10^{17} cm^{-3}$ and $N_D 10^{14} cm^{-3}$;

Calculate the Fermi level poisitions in the pand n regions

- a) Draw the band diagram for the junction
- b) Determine the contact potential V_o or V_{bi}
- c) If the depletion into p-side is $2.27 \times 10^{-3} \mu m$, find the depletion on the n-side.
- 2. What is the hole diffusion constant in a sample of silicon with $\mu_p = 410cm^2/V-s$

PHYSICAL CONSTANTS

q	Electronic Charge	$1.602 \times 10^{-19}C$
Eo	Permittivity of free space	8.854 × 10 ⁻¹⁴ F/cm
μ_o	Permeability of free Space	$1.2566 \times 10^{-8} \frac{H}{cm}$
k	Boltzmann Constant	1.38×10^{-23} //K
h	Planck Constant	6.626×10^{-34} J.s
mo	Electron Rest Mass	$9.11 \times 10^{-31} \ kg$
eV	Electron Volt	1.602 × 10 ⁻¹⁴ /
c	Speed of Light	$3 \times 10^8 \text{ ms}^{-1}$
kT/q	Thermal Voltage	0.025 V

SOME PROPERTIES OF SILICON

n_i	Intrinsic Carrier Concentration	$1.5 \times 10^{10} cm^{-3}$
N _c	Effective Density of Stated (CB)	$2.8 \times 10^{19} cm^{-3}$
N_{ν}	Effective Density of States	$1.04 \times 10^{19} cm^{-3}$
E_G	Band Gap	1.12 eV
$\varepsilon_{\rm s}$	Dielectric Constant	11.8
Ear	Dielectric Constant	3.6
Y	Electron affinity	4.05 V

QUIZ 2- EEE, CE, REE 200

Answer all questions

1. An abrupt Si p-n junction has the following properties at 300K:

P side_	N side	1
$N_A = 10^{15} cm^{-3}$	$N_{h} = 10^{17} cm^{-3}$	
$\tau_n = 10\mu s$	$\tau_p = 0.1 \mu s$	
$\mu_n = 1300 cm^2/V.s$	$\mu_n = 700 cm^2/V.s$	31
$\mu_p = 450 cm^2/V.s$	$\mu_p = 250 cm^2/V.s$	7

$A = 10^{-4} cm^2$

- a. Draw the equilibrium band diagram for this junction, including numerical values for the fermi level position relative to the intrinsic level on each side.
- b. Calculate the contact potential
- c. Calculate the depletion width on each side
- d. Calculate the maximum electric field.
- e. Calculate the minority carrier concentrations at the depletion-layer edges under thermal equilibrium
- 2. Consider a p-n Si diode with $N_A = 10^{18} cm^{-3}$ and $N_D = 10^{16} cm^{-3}$. The hole diffusion coefficient in the n-side is $10 cm^2/s$ and $\tau_p = 10^{-7} s$. The device area is $10^{-4} cm^2$. Calculate the reverse saturation current and forward current at a forward bias of 0.7 V at 300K.

[kT= 0.026 V, $n_i = 1.5 \times 10^{10} cm^{-3}$, $q = 1.6 \times 10^{-19} C$, $\varepsilon_s = 11.8$, $\varepsilon_o = 8.854 \times 10^{-14} F/cm$]

m=

In of the

CENG 207: SOLID STATE ELECTRONIC DEVICES

QUIZ 1- EEE, CE 200

Answer all questions

- 1. An abrupt Si p-n junction has $N_D = 2 \times 10^{18} cm^{-3}$ on one side and $N_A = 5 \times 10^{16} cm^{-3}$ on the other.
 - a) Calculate the fermi level positions at 300K in the p and n regions
 - b) Draw an equilibrium band diagram for the junction and determine the barrier potential from the diagram
 - c) If the depletion on the p side is 14.65 µm, calculate the depletion width on the n-side
- A homogenously doped semi-conductor material has donors $1\times 10^{17}cm^{-3}$. The particles are observed to move 0.1 m in 100 μ s. If a potential of 10 V is applied across the material, Calculate
 - a) Mobility
 - b) Diffusion coefficient of electrons

[kT= 0.026 V, $n_i = 1.5 \times 10^{10} cm^{-3}$, $q = 1.6 \times 10^{-19} C$, $\varepsilon_s = 11.8$, $\varepsilon_o = 8.854 \times 10^{-14} F/cm$]

Xm2 v2 5-1 2 1

= 10 th) = 10+ V

9 AVA

1/2 1/2

J.