Probability 2

Raul Penaguiao - Mailbox in **J floor**

Due until: 8th October at 5 p.m.

Exercises marked with \ast should be easier after attending the lecture on Thursday.

Exercise 1 (2 points). Let X be a r.v. in [0,1] with distribution 2xdx and Y be a uniform r.v. in [0,X]. Compute $\mathbb{E}[Y|X]$ and $\mathbb{E}[X|Y]$.

(Hint: to compute the density p(x,y) of the pair (X,Y), you can multiply the density of X and the density of Y knowing X; this is Proposition 4.2 from the lecture used in the other direction.)

Exercise 2 (3 points). Consider an unknown quantity X. We would like to estimate the value of X, but each measurement comes with a noise Z_i , i.e. we only get the value of $Y_i := X + Z_i$. After n measurements, a natural estimator for X is the conditional expectation $\hat{X}_n := \mathbb{E}[X|Y_1, \ldots, Y_n]$. We will discuss its correctness when n tends to infinity in a Gaussian model.

We assume that the quantity X to measure and all noises $(Z_i)_{i\geq 1}$ follow independent centered normal distributions of variance σ^2 and $(c_i^2)_{i\geq 1}$, respectively.

- 1. Show that the vector (X, Y_1, \ldots, Y_n) is a centered Gaussian vector, whose covariance matrix is to be determined.
- 2. Compute \hat{X}_n .

Hint: recall that $\hat{X}_n = \sum_{i=1}^n \lambda_i Y_i$ for some real numbers λ_i (why?); the λ_i can be determined by using the orthogonality between $X - \hat{X}_n$ and Y_i , for i = 1, ..., n.

3. Compute $\mathbb{E}[(X-\hat{X_n})^2]$. Conclude that $\hat{X_n}$ tends to X in L^2 if and only if $\sum_{i>1} c_i^{-2} = \infty$.

Exercise 3 (1 point*). Let $\{X_n\}_{n\geq 0}$ be a random process with respect to the filtration $\{\mathcal{F}_n\}_{n\geq 0}$.

Show that $T = \min_n \{X_n > 0\}$ is a stopping time.

Exercise 4 (2 points). Let $p \in (0,1)$ and $\{Y_n\}_{n\geq 0}$ be a sequence of independent random variables with

$$\mathbb{P}[Y_n = 1] = p, \ \mathbb{P}[Y_n = -1] = 1 - p.$$

Let $\{X_n\}_{n\geq 0}$ be $X_n = \sum_{k=0}^n Y_k$. Consider the filtration $\mathcal{F}_n = \sigma(Y_0, \dots, Y_n)$.

- 1. Show that $\{X_n\}_{n\geq 0}$ is a martingale with respect to $\{\mathcal{F}_n\}_{n\geq 0}$ if p=0.5.
- 2. Define $Z_n = \left(\frac{1-p}{p}\right)^{X_n}$. Show that $\{Z_n\}_{n\geq 0}$ is a martingale.

Exercise 5 (2 points*). Let T be a stopping time for a sequence of σ -algebras $\{\mathcal{F}_n\}_{n\geq 0}$. We define the stopping time σ -algebra of T as

$$\mathcal{F}_T = \{ A \in \mathcal{F} | A \cap \{ T \le n \} \in \mathcal{F}_n \text{ for all } n \ge 0 \}.$$

- 1. Show that T is \mathcal{F}_T -measurable.
- 2. Show that, if S, T are stopping time with $S(\omega) \leq T(\omega)$ for all $\omega \in \Omega$, then $\mathcal{F}_S \subseteq \mathcal{F}_T$.