Assingment 4

NARESHSARATHY S, 21BCE8134, VIT-AP

→ Task 1

Load the dataset

import pandas as pd
Replace 'filename.csv' with the actual name of your CSV file.
df = pd.read_csv('winequality-red.csv')
Display the first few rows of the DataFrame to verify the data.
df.head()

₽		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

▼ Task 2

Data Preporcessing including visualization

 $\mbox{\ensuremath{\mbox{\#}}}$ Get summary statistics of numerical columns. df.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	a.
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.4
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.0
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.4
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.2
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.

```
# Check for missing values.
missing_values = df.isnull().sum()
print(missing_values)
# Impute missing values with the mean for numerical columns.
df.fillna(df.mean(), inplace=True)
```

fixed acidity 0
volatile acidity 0
citric acid 0
residual sugar 0
chlorides 0
free sulfur dioxide 0
total sulfur dioxide 0
density 0
pH 0
sulphates 0
alcohol 0
quality 0
dtype: int64

Countplot

```
import seaborn as sns
import matplotlib.pyplot as plt
# Example: Countplot for the 'quality' column.
sns.countplot(data=df, x='quality')
plt.show()
```


Correlation Matrix

```
import seaborn as sns
# Calculate the correlation matrix.
corr_matrix = df.corr()
# Create a heatmap of the correlation matrix.
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.show()
```


Ridge_param={ 'alpha':[1.0,1.1],

ElasticNet_param={'alpha':[1.0,1.1],

'max_iter':[1000,1200], 'solver':['auto','svd','lsqr']

> 'max_iter':[1000,1400], 'selection':['cyclic', 'random']

```
Task 4
  Machine Learning Model Building
  import numpy as np
  import pandas as pd
  import seaborn as sns
  from sklearn.svm import SVR
  import\ {\tt matplotlib.pyplot}\ as\ {\tt plt}
  from sklearn.linear_model import Lasso
  from sklearn.linear_model import Ridge
  from sklearn.linear model import ElasticNet
  {\tt from \ sklearn.tree \ import \ DecisionTreeRegressor}
  from sklearn.metrics import mean_squared_error
  from \ sklearn.preprocessing \ import \ StandardScaler
  from sklearn.linear_model import LinearRegression
  from sklearn.ensemble import RandomForestRegressor
  from sklearn.ensemble import GradientBoostingRegressor
  from \ sklearn.model\_selection \ import \ train\_test\_split, \ GridSearchCV
  # Split the data into train and test split and we use 20 percent data for testing
  x\_train, x\_test, y\_train, y\_test = train\_test\_split(df.drop("quality", axis=1),
                                                     df["quality"],
                                                     test size=0.2,
                                                     random_state=42)
  x\_train.shape, x\_test.shape, y\_train.shape, y\_test.shape\\
       ((1279, 11), (320, 11), (1279,), (320,))
  # Data Preprocessing (--normalise the values of dataset)
  std= StandardScaler()
  x_train= std.fit_transform(x_train)
  x\_test = std.transform(x\_test)
  # Defining Models
  models=[
          LinearRegression(),
          {\tt RandomForestRegressor(),}
          DecisionTreeRegressor(),
          GradientBoostingRegressor(),
          SVR(),
          Lasso(),
          Ridge(),
          ElasticNet()
  ]
  # Defining parameters
  Linear_param={'n_jobs':[-1]}
  \label{eq:Random_param} $$Random_param={\n_estimators':[100,200],}
                  'max_depth':[6,8],
                  'min samples split'
                 'criterion':['squared_error'],
  Decsion_param={'splitter':['best'],
                  'max_depth':[8,10],
                  'min_samples_split':[2],
                  'criterion':['squared_error'],
  gradient_param={'n_estimators':[100,200],
                      'learning_rate':[0.1, 0.01,0.001],
                       'max_depth':[8,10],
                      'min_samples_leaf':[2,4,5],
                      'loss':['squared_error'],
  SVR_param={'kernel':['rbf','poly'],
        'gamma':['scale', 'auto'],
  Lasso_param={'alpha':[1.0,1.1],
                'max_iter':[1000,1200],
                'selection':['cyclic', 'random']
```

```
parameters=[
    Linear_param,
    Random_param,
    Decsion_param,
    gradient_param,
    SVR_param,
    Lasso_param,
    Ridge_param,
    ElasticNet_param
]
```

▼ Task 5

result

Evaluate the Model

Hyperparameter Tuning

```
# Train the models using GridSearchCV
result={}
for i in range(len(models)):
    temp = []
    regressor = GridSearchCV(models[i], parameters[i], cv=2, scoring="r2", n_jobs=-1).fit(x_train, y_train)  # fitting the object
    models[i] = models[i].__class__.__name__
    best_parameters = regressor.best_params_
    y_pred = regressor.predict(x_test)
    mse = mean_squared_error(y_test, y_pred)
    temp.append(mse)
    result[f"{models[i]}"] = temp
```

final_results= pd.DataFrame(result)
final_results=final_results.T
final_results.columns = ["MeanSquaredError"]
final_results
MeanSquaredFinal_results

	MeanSquaredError
LinearRegression	0.390025
RandomForestRegressor	0.333888
DecisionTreeRegressor	0.541155
GradientBoostingRegressor	0.357565
SVR	0.351374
Lasso	0.657160
Ridge	0.390039
ElasticNet	0.657160

▼ Task 5

Test with Random Observation

```
# Create a random observation (replace with actual feature values).
random_observation = [7.0, 0.6, 0.1, 2.0, 0.075, 20, 50, 0.9975, 3.4, 0.6, 10.0]
# Reshape the random observation to match the input format (1 sample).
random_observation = np.array(random_observation).reshape(1, -1)
# Use the best model from GridSearchCV to predict.
prediction_grid_search = regressor.predict(random_observation)
print(f"GridSearchCV Prediction: {prediction_grid_search[0]}")
```

GridSearchCV Prediction: 5.623924941360438