PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS SOCIALES ESPECIALIDAD DE ECONOMÍA SEMESTRE 2013-II

ECONOMETRÍA 1: PRÁCTICA CALIFICADA 1

Profesor:

Gabriel Rodríguez

 $({\tt gabriel.rodriguez@pucp.edu.pe})$

Jefes de práctica:

Patricia Lengua Lafosse

(patricia.lengua@pucp.pe)

Fecha:

13 de Septiembre

No se permiten copias ni apuntes

Duración: 120 minutos

1 Parte I (2 puntos cada pregunta)

- (1) En el modelo de regresión lineal bivariado $Y_t = \beta_1 + \beta_2 X_t + \epsilon_t$, suponga que $E(\epsilon_t) \neq 0$. Si $E(\epsilon_t) = \alpha_0$, mostrar que el modelo anterior puese ser re-escrito con la misma pendiente, pero con un nuevo intercepto y error, donde el nuevo error tiene un valor esperado de cero.
- 2. En el modelo de regresión bivariado $Y_t = \beta_1 + \beta_2 X_t + \epsilon_t$.
 - (a) Encontrar la varianza y covarianza de los estimadores $\widehat{\beta}_1$ y $\widehat{\beta}_2$.
 - (b) Encontrar la varianza y covarianza estimada de los estimadores $\widehat{\beta}_1$ y $\widehat{\beta}_2$.
- (3) Considere dos estimadores insesgados e independientes $\widehat{\beta}$ y $\widetilde{\beta}$ construidos para estimar el parámetro β . Suponga que usted construye un tercer estimador β^* que es una combinación lineal de $\widehat{\beta}$ y $\widetilde{\beta}$; es decir, $\beta^* = \delta\widehat{\beta} + (1 \delta)\widetilde{\beta}$ con $\delta \in [0, 1]$.
 - (a) ¿Es β^* un estimador insesgado?
 - (b) Encuentre la varianza de β^* y exprésela en términos de la varianza de $\widehat{\beta}$ y $\widetilde{\beta}$.
 - (c) ¿Qué valor de δ elegiría para el estimador β^* ? Ayuda: De los estimadores insesgados se prefiere aquel que tenga menor varianza.
- (4) Sea $\hat{\beta}_1$ y $\hat{\beta}_2$ el intercepto y la pendiente estimados, respectivamente, de la regresión de Y_t contra X_t usando T observaciones.
 - (a) Sea c_1 y c_2 dos constantes con $c_2 \neq 0$. Sea $\widetilde{\beta}_1$ y $\widetilde{\beta}_2$ el intercepto y la pendiente estimados, respectivamente, de la regresión de c_1Y_t contra c_2X_t . Mostrar que $\widetilde{\beta}_2 = (c_1/c_2)\widehat{\beta}_2$ y $\widetilde{\beta}_1 = c_1\widehat{\beta}_1$.
 - (b) Ahora sea $\widetilde{\beta}_1$ y $\widetilde{\beta}_2$ el intercepto y la pendiente estimados, respectivamente, de la regresión de $Y_t + c_1$ contra $X_t + c_2$ (sin niguna restricción en c_1 o c_2). Mostrar que $\widetilde{\beta}_2 = \widehat{\beta}_2$ y $\widetilde{\beta}_1 = \widehat{\beta}_1 + c_1 c_2\widehat{\beta}_2$.

2 Parte II (6 puntos)

Se quiere investigar las diferencias de salarios entre 2 profesiones. Se tiene una muestra con 60 individuos de la profesión A y 40 individuos de la profesión B. El salario promedio en la profesión B es 1 y el salario promedio de la muestra completa es 0.85. Se quiere estimar el siguiente modelo por MCO:

$$Y_i = \beta_1 + \beta_2 X_i + \epsilon_i$$

donde y_i es el salario del individuo i y x_i es una variable que indica si el individuo i pertenece a la profesión A o B que toma el valor de 0 si el individuo i es de la profesión A y 1 si el individuo es de la profesión B.

- (a) Calcular por MCO los coeficientes estimados $\hat{\beta}_1$ y $\hat{\beta}_2$.
- (b) Si la desviación estándar de los salarios de las 2 muestras es 0.2 para la profesión A y 0.3 para la profesión B. Encontrar las varianzas estimadas de $\hat{\beta}_1$ y $\hat{\beta}_2$. Ayuda: La desviación estándar es $\sqrt{\frac{1}{T-1}\sum (Y_i \overline{Y})^2}$.
- (c) Encontrar el valor de \mathbb{R}^2 .
- (d) Construya un intervalo de confianza para β_2 al 95% de confianza.
- (e) Un economista cree que la profesión en realidad no es relevante para la explicación las diferencias de salarios. Al respecto, haga una prueba de hipótesis al 90%, 95% y 99% de confianza para analizar si la variable profesión es significativa.

3 Parte III (6 puntos)

Considere el siguiente modelo:

$$Y_t = \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + \epsilon_t$$

Se tiene una muestra de 33 observaciones. Además se sabe que:

$$\sum X_{1t}^{2} = 2, \quad \sum X_{2t}^{2} = 10, \quad \sum X_{3t}^{2} = 1, \quad \sum Y_{t}^{2} = 35,$$

$$\sum X_{1t}X_{2t} = 1, \quad \sum X_{2t}X_{3t} = 0, \quad \sum X_{1t}X_{3t} = 1,$$

$$\sum X_{1t}Y_{t} = 5, \quad \sum X_{2t}Y_{t} = 10, \quad \sum X_{3t}Y_{t} = 4.$$

- (a) Calcular por MCO los coeficientes estimados $\widehat{\beta}_1$, $\widehat{\beta}_2$ y $\widehat{\beta}_3$.
- (b) Hallar el estimador de σ^2 .
- (c) Hacer un prueba de hipótesis al 99% de confianza donde la hipótesis nula es:

$$H_0 : \beta_2 = 0$$

$$H_1 \ : \ \beta_2 \neq 0$$