Question 1: State the runtime requirements in big-O for each of the following code fragments.

|   | Code Fragment                                                                                                                                                          | Running Time in big-O |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| а | <pre>void f(int n) {   for(int i=0; i &lt; n; i++) {     for(int j=0; j &lt; 10; j++) {      for(int k=0; k &lt; n; k++) {        for(int m=0; m &lt; 10; m++) {</pre> | O(n2)                 |
| b | int $a = 0$ , $i = N$ ;<br>while $(i > 0)$ { $a += i$ ; $i \neq 2$ ;                                                                                                   | O(log n)              |

Question 2: Give the best Big-O characterization for each of the following running time estimates F(n), where n is the size of the input problem. /3.01

| F(n)                   | Big-O Characterization of F(n) |  |  |
|------------------------|--------------------------------|--|--|
| 1+2++(n-2)+(n-1)+n     | O(n <sup>2</sup> )             |  |  |
| log(7n <sup>2</sup> )  | O(log n)                       |  |  |
| log 2 <sup>n</sup>     | O(n)                           |  |  |
| $n^3 (1 + 6n + 78n^2)$ | O(n <sup>5</sup> )             |  |  |
| 210 + 1000             | O(1)                           |  |  |
| 100 n log n + 2 log n  | O(nlogn)                       |  |  |

Question 3: Use the definition of big-O to prove that:  $n^3 + 20n$  is  $O(n^3)$ 

1

/2.0]

from the definition of big-O  $n^3+20n$  is  $O(n^3)$  if  $n^3+20n \le c$ .  $n^3$  for all  $n \le n^0$ assume c = 2,  $n^3+20n \le 2. n^3$  $20n \le n^3$ divide over n

So,  $n^3+20n$  is  $O(n^3)$  for c=2 and  $n\geq 5$ 

 $20 \le n^2$  true for  $n \ge 5$ 

Another possible solution: from the definition of big-O  $n^3+20n$  is  $Q(n^3)$  if  $n^3+20n \le c. n^3$ for all n<=n0 (1+20) n<sup>3</sup> <= c. n<sup>3</sup> Then,  $n^3+20n$  is  $O(n^3)$  for c=21 and n >= 1

|        | Statements                        | S/E               | Freq.          | Total          |
|--------|-----------------------------------|-------------------|----------------|----------------|
| 1      | public void func2(int n) {        | 0                 |                |                |
| 2      | for (int i = 0; i < n * n; i++) { | 1                 | $n^2 + 1$      | $n^2 + 1$      |
| 3      | System.out.println(i);            | 1                 | n <sup>2</sup> | n <sup>2</sup> |
| 4      | for (int $j = 2 * n; j > n; j)$   | 1                 | $n^2(2n-n+1)$  | $n^3 + n^2$    |
| 5      | System.out.println(j);            | 1                 | $n^2(2n-n)$    | $n^3$          |
| 6      | 101                               | 0                 |                | 70             |
| 7      | System.out.println("Goodbye!");   | 1                 | 1              | 1              |
| 8      | 1 10                              | 0                 |                | -              |
| Total  |                                   | $2n^3 + 3n^2 + 2$ |                | +2             |
| Big Oh |                                   |                   | $O(n^3)$       | )              |

Problem 3

Analyze the performance of the following algorithms theoretically:

| 1 | Statements                                      | S/E                        | Freq.             | Total                  |  |
|---|-------------------------------------------------|----------------------------|-------------------|------------------------|--|
| 1 | public void func1(int n) {                      | d func1(int n) { 0         |                   | *                      |  |
| 2 | for (int $i = 0$ ; $i < n * log(n)$ ; $i++$ ) { | 1                          | $n \log n + 1$    | $n \log n + 1$         |  |
| 3 | System.out.println(i);                          | 1                          | n log n           | $n \log n$             |  |
| 4 | for (int $j = 2$ ; $j < n$ ; $j++$ )            | 1                          | $n\log n(n-2+1)$  | $n^2 \log n - n \log$  |  |
| 5 | System.out.println(j);                          | 1                          | $n\log n(n-2)$    | $n^2 \log n - 2n \log$ |  |
| 6 | }                                               | 0                          |                   | 7                      |  |
| 7 | System.out.println("Goodbye!");                 | 1                          | 1 00              | 1                      |  |
| 8 | }                                               | 0                          | 200               | 0.                     |  |
|   | Total                                           | $2n^2\log n - n\log n + 2$ |                   |                        |  |
|   | Big Oh                                          |                            | $O(n^2 \log n^2)$ | gn)                    |  |

```
(1) sum = 0;
     for( i = 0; i < n; i++ )
         sum++;
(2) sum = 0;
     for( i = 0; i < n; i++ )
         for(j = 0; j < n; j++)
             sum++;
(3) sum = 0;
     for( i = 0; i < n; i++ )
         for(j = 0; j < n * n; j++)
             sum++;
(4) sum = 0;
     for( i = 0; i < n; i++ )
         for(j = 0; j < i; j++)
             sum++;
   [True/False] The function f(n) = n log n is
   O(log n).
```

Order the following functions by asymptotic growth rate.

| 4n log n +2n   | 2 <sup>10</sup> |  |  |
|----------------|-----------------|--|--|
| 3n + 100 log n | 4n              |  |  |
| n² + 10n       | 2 <sup>n</sup>  |  |  |
| n <sup>3</sup> | n log n         |  |  |

|                                            | F(n)                         | Big-O Characteriza | 2) 1220         |         |
|--------------------------------------------|------------------------------|--------------------|-----------------|---------|
|                                            | 1000 nlog n + logn           | 0 (n logn)         |                 | 2000    |
|                                            | 210                          | 0(1)               | V               | 21 0    |
|                                            |                              |                    |                 |         |
|                                            | se the definition of big-O t |                    | s O(n³)<br>≽ '> | [1.0/]  |
| (in) & c                                   | .v. v.>n.                    |                    |                 | [1.0/ ] |
| (in) ≤ c                                   | N N 3 M 0                    |                    |                 | [1.0/ ] |
| (n) ≤ 0<br>ssume c=1<br>an3+2n.            | .v. v.>n.                    |                    |                 | [1.0/ ] |
| (n) ≤ 0<br>ssume c=1<br>an3+2n.<br>2n < n3 | N N 3 M 0                    | m ≤ C(g(m)) n      |                 | [1.0/ ] |

Question 2: Give the best Big-O characterization for each of the following running time estimates F(n), where n is the size of the input problem. [2.0/2]

| F(n)                                 | Big-O Characterization of F(n) | Score    |  |
|--------------------------------------|--------------------------------|----------|--|
| log(n) + 10000                       | O(bgn)                         | [0.5/    |  |
| $2^{10} + 3^{10}$                    | 0(11)                          | [0.5/    |  |
| 1+2++(n-2)+(n-1)+n                   | O(n2)                          | [0.5/05] |  |
| n log n + 15n + 0.002 n <sup>2</sup> | O (n2)                         | [0.5/ 5] |  |

Question 3: Use the definition of big-O to prove that:

1.  $2^{n+2}$  is  $O(2^n)$ Hint:  $2^{a+b} = 2^a \times 2^b$   $2^{n+2} \le C \cdot 2^n$  for  $n \ge n_0$ 1.  $2^{n+2} \le 2^n \cdot 2^n$ 1.  $2^n \cdot 2^n \le 2^n \cdot 2^n$ 2.  $2^n \cdot 2^n \le 2^n$ 2. 2

Q4. [3 points] Consider the following code fragments/algorithm in the table below. For each, state the runtime of the algorithm in **big-Oh notation**.

| No. | Algorithm                                                                                                                                                       | Runtime expressed in big-Oh |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| 1   | <pre>//N is a large number int sum = 0; for (int n = N; n &gt; 0; n -= 2)    for(int i = 0; i &lt; n; i++)         sum++;</pre>                                 | O(n²)                       |  |
| 2   | <pre>//N is a large number int sum = 0; for (int i = 1; i &lt; N; i ++)     for (int j = 0; j &lt; 10; j++)         sum++;</pre>                                | O(n)                        |  |
| 3   | Algorithm Algo (k) Input: k , a positive integer Output: k-th even natural number (the first even being 0)  if (k = 1) then return 0 else return Algo (k-1) + 2 | O(k) or is k<=n then O(n)   |  |

Q1 [2 points] Give the Big-Oh notation for the following functions

| $f(N) = N^2 + \log N^2 + 2N \log N$   | $O(N^2)$           |
|---------------------------------------|--------------------|
| $f(N) = (N \cdot (100N + 5000000))^2$ | O(N <sup>4</sup> ) |
| $f(N) = N^{1/2} + \log(\log N)$       | O(N)               |
| $f(N) = 1000^{100} + \log N$          | O(log N)           |

Q3 [4]. Given the following code, estimate the number of operations and describe the worst case running time in Big-Oh notation in terms of the variable n. Show trace where appropriate.

```
public int Mul(int [] A, int i, int t)
                                           Mul(new int[] {1,2,3,4}, 0, 1)
   if (i >= A.length-1)
     return t;
                                           ( Mul (A, O, 1)
   else
                                             Mul(A, 1, 1 = 2)
     return Mul(A, ++i, t * A[i]);
Mul() is recursively called i times. I
would run up to n, which is the length
of this array. The run time will be
0(n)
public void diag(int n) {
                                            diag(5)
  int count = 0;
  for (int i = 0; i < n; i++)
    for (int j = 0; j < i; j++)
                                            i:0 (1 times)
      if(i==j)
                                           j=0
         count++;
                                            i:1 (2 times)
                                            1=0
                                           j=1
                                           i:2 (3 times)
The if statement will execute
                                           \dot{1} = 0
n/2 * (n+1) times
                                            j=1
                                           j=2
1+2+3+4+5+... = \frac{n(n+1)}{2}
                                           i:3 (4 times)
                                            j=0
                                            1=1
which is O(n2)
                                            j=2
                                           j=3
                                           i:4 (5 times)
                                            \dot{1} = 0
                                            j=1
                                           j=2
                                           j=3
                                            j=4
```

# Question 2. (2+3+1+1+6=13 marks)

(a) How many times is the count++ executed in the following code segment? [2 marks]

(b) What is the runtime for the following code snippet? Give the runtime as an equation T(n) based on estimation and the Big-Oh notation. [3 marks]



```
1. s = 0;
                                             1+20 0/5
2. for (int i = 0; i < n; i++)
      for (int j = i; j < n; j++)
                                             (1+2m)Maps-
                                                        noted lay.
Worst Case Scenarios line 3 executes in times; in really the nested loops in the 2 and 3 run & nº times,
Extimation T(n) = 2n^2 + 3n + 4
         which is O(n2)
```

9-times

| 3                | i = 1;<br>while(i < n)<br>i = i * 2;                                                                          |
|------------------|---------------------------------------------------------------------------------------------------------------|
|                  | 1. Line 1: $\bigcirc A$ 0 $\bigcirc B$ 1 $\bigcirc C$ 2 $\bigcirc D$ $n$ $\bigcirc E$ $n^2$                   |
|                  | 2. Line 2: (A) $n$ (B) $n+1$ (C) $\log(n)$ (D) $\log(n)+1$ (E) $2^n$                                          |
|                  | 3. Line 3: (A) $n$ (B) $n+1$ (C) $\log(n)$ (D) $\log(n)+1$ (E) $2^n$                                          |
|                  | 4. Total $O$ : (A) 1 (B) $n$ (C) $n^2$ (D) $\log(n)$ (E) $2^n$                                                |
| (b)              | Choose the correct frequency for every line as well as the total $O$ of the following code:                   |
| 1<br>2<br>3<br>4 | <pre>c = 10; for (i = 1; i &lt;= c; i++)   for (j = 0; j &lt; n; j++)     count++;</pre>                      |
|                  | 1. Line 1: $\bigcirc$ 0 $\bigcirc$ B 1 $\bigcirc$ C 2 $\bigcirc$ D $n$ $\bigcirc$ E $n^2$                     |
|                  | 2. Line 2: (A) n (B) c (C) 11 (D) 10 (E) 9                                                                    |
|                  | 3. Line 3: (A) $n$ (B) $10n$ (C) $10(n+1)$ (D) $c$ (E) $n^2$                                                  |
|                  | 4. Line 4: (A) $count + 2$ (B) $10n$ (C) $11n$ (D) $n^2$ (E) $n(n+1)/2$                                       |
|                  | 5. Total $O$ : (A) 1 (B) $n$ (C) $n^2$ (D) $n \log(n)$ (E) $n^3$                                              |
| (c)              | Choose the correct answer:                                                                                    |
|                  | 1. $n^3 + n^2 \log n$ is : (A) $O(n^3)$ (B) $O(n^2)$ (C) $O(n^2 \log(n))$ (D) $O(n^5)$ (E) N                  |
|                  | 2. $2^n + n^n$ is: (A) $O(n)$ (B) $O(n^2)$ (C) $O(2^n)$ (D) $O(n^n)$ (E) None                                 |
|                  | 3. $n^4 \log n + 2^n$ is: (A) $O(n)$ (B) $O(n^4)$ (C) $O(n^5)$ (D) $O(\log(n))$ (E) None                      |
| 4                | . When traversing all nodes in a binary tree of depth d. The complexity would be:                             |
|                  | $\bigcirc$ |
|                  | (i) (a) (b) ((a) (b) ((a)) (b) ((a))                                                                          |

(a) Choose the correct frequency for every line as well as the total O of the following code:

```
1 | sum = 1;
for (i = 1; i <= n; i++) {
    sum+= i;
    for (j = i; j >= 2; j--)
    sum--;}
```

- 1. Line 1: (A) 1 (B) 2 (C) 3 (D) n (E) 2n
- 2. Line 2: (A) n (B) n+1 (C) n-1 (D) n+2 (E) n-2
- 3. Line 3:  $(\widehat{A})$  n  $(\widehat{B})$  n+1  $(\widehat{C})$  n-1  $(\widehat{D})$  n+2  $(\widehat{E})$  n-2
- 4. Line 4: (A)  $n^2$  (B) n(n-1)/2 (C) (2n+1)/2 (D) (2n-1)/2 (E) n(n+1)/2
- 5. Line 5: (A)  $n^2$  (B) n(n-1)/2 (C) (2n+1)/2 (D) (2n-1)/2 (E) n(n+1)/2
- 6. Total O: (A) 1 (B) n (C)  $n^2$  (D)  $n \log(n)$  (E)  $n^3$
- (b) Choose the correct frequency for every line as well as the total O of the following code:

```
count = 0;
for (i = 1; i < n+1; i++)
count ++;
for (j = 0; j <= count; j++)
k = j+1;</pre>
```

- Line 1: A 0 B 1 C 2 D n E n<sup>2</sup>
- 2. Line 2: (A) n (B) n+1 (C) n-1 (D) n+2 (E) n-2
- 3. Line 3: (A) n (B) n+1 (C) n-1 (D) n+2 (E) n-2
- 4. Line 4: (A) count + 2 (B) n + 1 (C) n 1 (D) n + 2 (E) n(n + 1)/2
- 5. Line 5: (A) count + 1 (B) n + 1 (C) n 1 (D) n + 2 (E) n(n 1)/2
- 6. Total O: (A) 1 (B) n (C)  $n^2$  (D)  $n \log(n)$  (E)  $n^3$
- (c) Choose the correct answer:
  - $1. \ n^2 + n \log n^4 \text{ is :} \quad \textcircled{A} \ O(n) \quad \textcircled{B} \ O(n^2) \quad \textcircled{C} \ O(n \log(n)) \quad \textcircled{D} \ O(n^4) \quad \textcircled{E} \ \text{None}$
  - 2.  $n^2 + 1000n$  is : (A) O(n) (B)  $O(n^2)$  (C)  $O(n \log(n))$  (D)  $O(nn^2)$  (E) None
  - 3.  $n^4 \log n + n!$  is : (A) O(n!) (B)  $O(n^4)$  (C)  $O(n^5)$  (D)  $O(\log(n))$  (E) None
  - 4. Algorithm A is O(n), and Algorithm B is O(2n). Given the same input:
    - (A) A always finishes before B. (B) B always finishes before A. (C) A and B finish at the same time. (D) B requires double the time taken by A. (E) None

(c) Which of the following two algorithms has a better time complexity: (1) algorithm A with a step count function  $2^{100} + \log n^{100}$ (ii) algorithm B with step count function  $n + 2 \log n$ . [1 mark] > Coned. (d) Which of the following two algorithms has a better time complexity: (i) algorithm A with a growth rate O(n²) (ii) algorithm B with a growth rate O(nlogn). [1 mark] - Conted (e) For what values of c and  $n_0$ , the function is  $O(n^3)$ , g(n) is  $O(n^2 \log(n))$ .([6 marks]  $f(n) = 4n^3 + 6n^2 + 2\pi + 1$ 4+ +6+ +2++1 < ch 1 < +3(c-1)-602-20 Assure c=5 and q=10 then Yes 1 < 1000-600-20 which is the hence f(n) is O(n3)  $g(n) = n^2 \log(10n^4 + 7) - 3n$ (ii) n2 log (10 n47) -3n +0 & entligh 0 < c22180- 2 (0 (1004+7)+30 No  $o \leqslant n^2 \left( closen - log \left( top l+1 \right) \right) + 3n$ which ever where of n, this will always give -ve him , hence the statement is wrong.



(a) Choose the correct frequency for every line as well as the total O of the following code: 1 int A = 0; for (int i = 1; i <= n; i++) 3 for (int j = 0; j < i; j++) A++: 1. Line 1: (A) 0 (B) 1 (C) 2 (D) n (E) A Line 2: (A) A (B) i (C) i+1 (D) n (E) n+1 3. Line 3: (A)  $n^2$  (B) n(n+1)/2 (C) n(n+1)/2+1 (D)  $(n^2+3n)/2$  (E) n(n-1)/2-14. Line 4: (A)  $A^2$  (B)  $n^2$  (C)  $(n^2+3n)/2$  (D)  $n^2(n+1)/2+1$  (E) n(n+1)/2 Tightest Total O: (A) n
 n<sup>2</sup> (C) n<sup>3</sup> (D) n<sup>4</sup> (E) None (b) Choose the correct frequency for every line as well as the total O of the following code: int i = 1; 2 while (i < n) { 3 1++; if (i > 7) break; 4 Line 1: A 1 B 0 C i D n E n+1 Line 2: A 8 B 7 C n D n−1 E n+1 Lines 3 (and similarly 4): (A) n (B) n−1 (C) 6 (D) 7 (E) 8

- (c) Choose the correct answer:
  - 1.  $n^7 + n^4 + n^2 + \log n$  is : (A)  $O(n^2)$  (B)  $O(n^4)$  (C)  $O(n^7)$  (D)  $O(\log(n))$  (E) None
  - 2.  $2^n + n!$  is: (A)  $O(n^2)$  (B)  $O(2^n)$  (C) O(n!) (D)  $O(n^n)$  (E) None
  - 3.  $n + \log n^3 + 6$  is: A O(n) B  $O(\log n^3)$  C  $O(n \log n)$  D  $O(n^3)$  E None
  - 4. The time complexity of inserting an element in a heap of n elements is:
    - $\bigcirc A O(n^2) \bigcirc B O(n) \bigcirc C O(2^n) \bigcirc D O(\log(n)) \bigcirc E$  None

4. Tightest Total O: (A) 1 (B) n (C)  $\log(n)$  (D)  $n^2$  (E)  $2^n$ 

Q1 (a) [2 points]. Sam gives the run-time for an algorithm using function f(x). Prove, for what values of  $n_0$ and constant c, f(x) is  $O(n^3)$ .

$$f(n) = 2x^3 + 5x^2 + 12$$

$$2n^3+5n^2+12 \le cn^3$$

(a) Choose the correct frequency for every line as well as the total O of the following code:

```
1  sum = 1;
2  for (i = 1; i <= n; i++) {
3    sum+= i;
4    for (j = i; j >= 2; j--)
5    sum--;}
```

- Line 1: A 1 B 2 C 0 D n E 2n
- 2. Line 2: (A) n (B) n+1 (C) n-1 (D) n+2 (E) n-2
- 3. Line 3: (A) n (B) n+1 (C) n-1 (D) n+2 (E) n-2
- 4. Line 4: (A)  $n^2$  (B) n(n-1)/2 (C) (2n+1)/2 (D) (2n-1)/2 (E) n(n+1)/2
- 5. Line 5: (A)  $n^2$  (B) n(n-1)/2 (C) (2n+1)/2 (D) (2n-1)/2 (E) n(n+1)/2
- 6. Total O: (A) 1 (B) n (C)  $n^2$  (D)  $n \log(n)$  (E)  $n^3$
- (b) Choose the correct frequency for every line as well as the total O of the following code:

```
count = 0;
for (i = 1; i < n+1; i++)
count ++;
for (j = 0; j <= count; j++)
k = j+1;</pre>
```

- Line 1: A 0 B 1 C 2 D n E n<sup>2</sup>
- 2. Line 2: (A) n (B) n+1 (C) n-1 (D) n+2 (E) n-2
- 3. Line 3: (A) n (B) n+1 (C) n-1 (D) n+2 (E) n-2
- 4. Line 4: (A) count + 1 (B) n + 1 (C) n 1 (D) n + 2 (E) n(n + 1)/2
- 5. Line 5: A count + 1 B n+1 C n-1 D n+2 E n(n-1)/2
- 6. Total O: (A) 1 (B) n (C)  $n^2$  (D)  $n \log(n)$  (E)  $n^3$

(c) Choose the correct frequency for every line as well as the total O of the following code;
1 int i = 1;
2 while (i < n) {</p>
3 i++;
4 if (i > 7) break;

- Line 1: (A) 1 (B) 0 (C) i (D) n (E) n+1
- Line 2: (A) 8
   (B) 7
   (C) n
   (D) n − 1
   (E) n + 1
- 3. Lines 3: (A) n (B) n-1 (C) 6 (D) 7 (E) 8
- Lines 4: (A) n (B) n−1 (C) 6 (D) 7 (E) 8
- Tightest Total O: (A) 1 (B) n (C) log(n) (D) n<sup>2</sup> (E) 2<sup>n</sup>

(d) Choose the correct answer:

5

- 1.  $n^7 + n^4 + n^2 + \log n$  is : (A)  $O(n^2)$  (B)  $O(n^4)$  (C)  $O(n^7)$  (D)  $O(\log(n))$  (E) None
- 2.  $2^n + n!$  is : (A)  $O(n^2)$  (B)  $O(2^n)$  (C) O(n!) (D)  $O(n^n)$  (E) None
- 3.  $n + \log n^3 + 6$  is : (A) O(n) (B)  $O(\log n^3)$  (C)  $O(n \log n)$  (D)  $O(n^3)$  (E) None
- 4. The time complexity of inserting an element in a heap of n elements is:
  - $\bigcirc A O(n^2)$   $\bigcirc B O(n)$   $\bigcirc C O(2^n)$   $\bigcirc D O(\log(n))$   $\bigcirc E$  None
- 5.  $n^2 + n \log n^4$  is : (A) O(n) (B)  $O(n^2)$  (C)  $O(n \log(n))$  (D)  $O(n^4)$  (E) None
- 6.  $n^2 + 1000n$  is : (A) O(n) (B)  $O(n^2)$  (C)  $O(n\log(n))$  (D)  $O(nn^2)$  (E) None
- 7.  $n^4 \log n + n!$  is : (A) O(n!) (B)  $O(n^4)$  (C)  $O(n^5)$  (D)  $O(\log(n))$  (E) None
- 8. Algorithm A is O(n), and Algorithm B is O(2n). Given the same input:
  - (A) A always finishes before B. (B) B always finishes before A. (C) A and B finish at the same time. (D) B requires double the time taken by A. (E) None

### Question 1 [30 points]

- 1. Choose the most appropriate answer.
  - (1)  $n \log(n^2)$  is
- (a)  $O(\log n)$  (b)  $O(n \log n)$  (c)  $O(n^2)$  (d)  $O(n^3 \log n)$  (e) O(n)



### Q1-1

1- Answer: (b)

2- Answer: (b) O(n log(n)

3- Answer: (e) O(n)

4-Answer: (c) O(1)

5-Answer: (c) O(1) - insert when curren is last, no loop needed.

6-Answer: (c) O(1)

#### Q1-2

|         | Statmenet                                | S/E | Freq                 | Total          | Answer |
|---------|------------------------------------------|-----|----------------------|----------------|--------|
| 1       | int sum = 0;                             | 1   | 1                    | 1              | b      |
| 2       | for (int $i = 0$ ; $i < n * n$ ; $i++$ ) | 1   | n <sup>2</sup> +1    | n2+1           | e      |
| 3       | for (int $j = n$ ; $j < 2 * n$ ; $j++$ ) | 1   | n <sup>2</sup> (n+1) | n³+n²          | d      |
| 4       | Sum += j                                 | 1   | n³                   | n <sup>3</sup> | e      |
| 5       | return sum                               | 1   | 1                    | 1              | d      |
| Total O |                                          |     |                      | O(n3)          | С      |
|         |                                          | _   |                      |                |        |

| _ | -       |                  |                                         |                   |                                    |                       |
|---|---------|------------------|-----------------------------------------|-------------------|------------------------------------|-----------------------|
|   | E-Chows | MICHAEL P. PRANT | WANTED TO                               | approp            | ITTO TO                            | IN PROCESSION FOR     |
| 4 | ~~~     | ADMIT BEARING    | 111111111111111111111111111111111111111 | -congregate trape | THE RESERVE OF THE PERSON NAMED IN | DESCRIPTION OF STREET |

(1) To show that  $2n^2 \log n + 2n^3$  is  $O(n^3 \log n)$ , we can take c = 4 and  $n_0$ :

$$(b) -2$$

(2) Which of the following is not O(n²)

(a) 
$$n^2 \log n$$

(b) 
$$2n^2 + 3$$

(c) 
$$n(n+2)/2$$

(3) Given an n-element array A of integers, an algorithm searches for the integer 9 and returns true if found. What is the best-case running of this algorithm.

(d) 
$$O(n^2)$$

#### 2. Consider the following code:

Choose the correct answer (select an answer for each line):

| Line    | Frequency           |                    |                    |                       |                   |
|---------|---------------------|--------------------|--------------------|-----------------------|-------------------|
| 1       | (a) n               | (b) −1             | (c) 0              | (d) 1                 | (e) log n         |
| 2       | (a) n               | (b) n <sup>2</sup> | *(c) n log n + 1   | ⊬(d) n log n          | (e) log n         |
| 3       | (a) n <sup>2</sup>  | (b) n2 log n       | (c) n2 + 1         | (d) $n(n \log n + 1)$ | (e) n(n+1)/2      |
| 4       | (a) n - 1           | (b) n <sup>3</sup> | (c) n <sup>2</sup> | (d) n(n log n)        | (c) (n - 1)n long |
| 5       | (a) 0               | (b) n              | (c) n log n        | (d) n <sup>2</sup>    | (e) 1             |
| Total O | $(a) O(n^2 \log n)$ | (b) O(n2)          | (c) O(n log n)     |                       | (e) O(n)          |

# Question 1 [16 points]

1. Consider the following code:

```
5 | System.out.println("good_bye");
```

Choose the correct answer:

| Line       |          |                    | Frequency              | Frequency    |                |  |
|------------|----------|--------------------|------------------------|--------------|----------------|--|
| 1          | (a) n    | (b) n+1            | (c) n <sup>2</sup>     | (d) 0        | (e) n+2        |  |
| 2          | (a) n    | (b) n+1            | (c) n <sup>2</sup>     | (d) 0        | (e) n-1        |  |
| 3          | (a) n    | (b) n <sup>2</sup> | (c) n log n            | (d) 1        | (e) $n(n+1)/2$ |  |
| 4          | (a) n    | (b) n <sup>2</sup> | (c) $n(n-1)/2$         | (d) 1        | (e) 1          |  |
| 5          | (a) n    | (b) n <sup>2</sup> | (c) 0                  | (d) 1        | (e) n log n    |  |
| Total<br>O | (a) O(n) | (b) O(n2)          | (c) O(n <sup>3</sup> ) | (d) O(n * i) | (e) O(1)       |  |

2. Consider the following code:

```
1 int sum = 0;
2 for (int i = 0; i <= n; i++)
3 for (int j = 2; j <n-1; j++)
4 sum += i;
                                                                                    n-1-2+1
5 return sun;
```

Choose the correct answer:

| Line  |               |                        | Frequency          |                |                    |
|-------|---------------|------------------------|--------------------|----------------|--------------------|
| 1     | (a) n         | (b) 1                  | (c) n <sup>2</sup> | (3) 0          |                    |
| 2     | (a) n         | (b) n+1                | (c) n+2            | (d) 0          | (e) i              |
|       | (n)(n+1)(n-3) | (b) n(n − 2)           | 1-57               | (d) n-1        | (e) n <sup>2</sup> |
| X     | (n+1)(n-2)    | (b) n(n − 2)           | Factor Carlot      | (d) $n^2(n+1)$ | (e) $n(n+1)$       |
| -5    | (a) n         | (b) n <sup>3</sup>     | (c) n <sup>2</sup> | (d) $n^2(n+1)$ | (e) $n(n+1)$       |
| Total | (a) O(n)      | (b) O(n <sup>2</sup> ) | (c) O(n3)          | (d) 1          | (e) n              |
| 0     |               |                        | Service V. 1       | (d) O(n4)      | (e) O(1)           |





```
Choose the correct frequency for every line as well as the total O of the following code:
for(int i = n; i > 0; i--) h+1
for(int j = i; j <= n; j++) ( h-1+2
    sun = 1 + j:
    System.out.println(sum); }
1. Line 1: (A) (B) 2 (C) 0 (D) 3 (E) None
2. Line 2: (A) i+1 (B) (n+1) (C) n-1 (D) n (E) None
3. Line 3: (a) (2n-1)/2 (b) n^2 (c) n(n+3)/2 (d) n(n+1)/2
4. Line 4: (A) n^2 (B) n(n+1) (C) n(n-1)/2 (D) (2n-1)/2 (E) None
5. Line 5: (A) n(n+1)/2 (B) (n+1)/2 (C) n^2 (D) n(n-1)/2 (E) None
6. Total O: (A) n \log(n) (B) n^3 (C) n (D) n^2 (E) None
Question 2.....
Choose the most appropriate answer answer:
 1. 2^{\log(n)^2} + 2^n is: (A) O(n^2) (B) O(2^n) (C) O(\log n^2) (D) O(4^{\log n}) (E) Non
 2. n \log(1000^n) + 1000n is : (A) O(n \log(n)) (B) O(n) (C) O(\log(1000^n))
 3. n^3 + n \log n^n is : (A) O(n^2 \log(n)) (B) O(n^n) (C) O(n^2) (D) O(n^3) (E) N
 4. n^3/2^{\log(n)} + n\log(n) is: (A) O(n^2) (B) O(n^3) (C) O(n\log(n)) (D) O(n^2\log(n))
  5. For every element of an n-element array X, Algorithm A executes an O(n \log(n))
     the element is at odd index and O(n)-time calculation if it is at even index. Wh
     running time of Algorithm A?:
     (A) O(n^2). (B) O(n^3). (C) O(n \log(n)). (D) O(n^2 \log(n)). (E) None
```

```
Choose the correct frequency for every line as well as the total O of the following
Int sum= 0;
for (int i = n; i > 0; i - -)
    for (int j = i; j < = n; j++) {
       sum = i + j;
       System.out.println(sum); }
  1. Line 1: (A) 1 (B) 2 (C) 3 (D) n (E) None.
     Answer: A
  2. Line 2: (A) n (B) n+1 (C) n-1 (D)n+2 (E) None
     Answer: B
  3. Line 3: (A) n^2 (B) n(n-1)/2 (C) (2n+1)/2 (D) n(n+3)/2 (E) None.
     Answer: D

    Line 4: (A) n<sup>2</sup> (B) n(n-1)/2 (C) (2n+1)/2 (D) n(n+3)/2 (E) None.

     Answer: E

    Line 5: (A) n<sup>2</sup> (B) n(n-1)/2 (C) n(n+1)/2 (D) (2n+1)/2 (E) None.

      Answer: C
```

#### Question2:

Answer: C

### Choose the most appropriate answer answer:

6. Total O: (A) 1 (B) n (C) n^2 (D) n log(n) (E) None.

- $1- n^2 + n \log(n^3)$  is: (A) O(n) (B) O(n^2) (C) O(n log(n)) (D) O(n^4) (E) None Answer: B
- 2- n/  $\log(n)$  + 1000n is: (A) O(n) (B) O(n^2) (C) O(n  $\log(n)$ ) (D) O( $\underline{n}\underline{n}^2$ ) (E) None Answer:
- 3- n^3 log n + 2^n is: (A) O(2^n) (B) O(n^4) (C) O(n^5) (D) O(log(n)) (E) None Answer: A
- 4-  $\log(n^2 + 1) + n$  is: (A)  $O(\log(n^2))$  (B)  $O(\log(n))$  (C)  $O(n^2)$  (D) O(n) (E) None Answer:



line as well as the total O of the following code:

1 int A = 0;

2 for ( int i = 1;  $i \le n$ ; i++)

3 for (int j = i; j < i \* 2; j++)

4A++;

1. Line 1: A. 0 (B. 1) C. 2 D. n E. A

2. Line 2: A.A B. I C. i + 1 D. n (E. n

```
3. Line 3: A. n2 B. n(n+1) 2
   C. n(n+1)/2 + 1 (n(n+3n)/2)
  E. n(n-1)/2 - 1
  4. Line 4: A A2 B n2 C (n2 + 3n) 2
  D n2(n+1)/2 + 1 (E n(n+1)/2)
  5. Tightest Total O: A.n
          E.None
  D. n4
  (c) Choose the correct answer:
 1. n7 + n4 + n2 + \log n \text{ is : A .O(n2)} B. (n4)
(C.O(n7)) D.O(log(n)) E.None
                                    (C.(n!))
 2. 2n + n! is: A. O(n2) B. O(2n)
D.O() E. None
                             B. O(log n3)
3. n + \log n3 + 6 is (A.O(n))
                            E. None
                 D.O(n3)
C. O(n log n)
```

```
Question I
     Choose the correct frequency for every line as well as the total O of the following code:
    int k = 100, sun = 0;
    for (int 1 = 0; 1 < n; 1++)
      for (j = 1; j <= k; j++) {
        mun - 1 + j:
        System out println(sum);)
     1. Line 1: (A) 0 (B) 2 (C) 3 (D) n (None
     2 Line 2 (A) n (B) n+1 (C) n-1 (D) n+2 (E) None
 -3 3 Line 3 (A) nk - n (B) n(k+2) (C) 102n (D) 101n (E) None
-5 L Line 1: (A) 100n (B) n(k+2) (C) n(k-1)/2 (D) n^2 (E) None
- 3 5. Line 5: (A) 99m (B) n(k+2) (C) 101n (D) n2 (E) None
- 56. Total O: (A) 1 (B) n (C) nk (D) n<sup>2</sup> (E) None
    Choose the most appropriate answer answer:
1. \log(n^2+1)+n is : (A) O(\log n^2) (B) O(\log n) (C) O(n^2) (D) O(n) (E) None
     2. n^{100} + 2^n is : (A) O(n^{100}) (B) O(n) (C) O(n^n) (D) O(2^n) (E) None
     3. n^2 + \log n^n + n \log n is : (A) O(n) (B) O(n \log(n)) (O(n^2) (D) O(n^n) (E) None
-4 4. n^3/2^{\log(n)} + n\log(n) is : \bigcirc O(n^2) \bigcirc O(n^3) \bigcirc O(n^2\log(n)) \bigcirc O(n\log(n)) \bigcirc O(n\log(n))

    Given an n-element array X, Algorithm A chooses n/2 elements in X at random and executes an O(n)-

        time calculation if the element is even and O(1)-time calculation if it is odd. What is the worst-case
        running time of Algorithm A?:
        (A) O(n). (B) O(1). (C) O(n^2). (D) O(n^3). (E) None
                                                                            n^2 + 1
    16. for (inti = 0; i < n * n; i ++) {
                                                                            n^2
   System .out. println (i);
                                                                            n^2(n-1)
   for(intj = 4; j \le n; j++) {
                                                                            n^2(n-2)
   System .out. println (j);
   System .out. println (" Goodbye !");
                                                                             1
```

```
Choose the correct frequency for every line as well as the total O of the following code:

int sum = 0;

for(int i = n; i > 0; i--) \( h - \) \( h - \) \( + 2 \)

for(int j = i; j <= n; j++) \( h - \) \( + 2 \)

sum = i + j;

System.out.println(sum); \( )
```

- 1. Line 1: (A) B 2 C 0 D 3 E None
- 2. Line 2: (A) i+1 (B) n+1) (C) n-1 (D) n (E) None
- 3. Line 3: (A) (2n-1)/2 (B)  $n^2$  (C) n(n+3)/2 (D) n(n+1)/2 (E) None
- 4. Line 4: (A)  $n^2$  (B) n(n+1) (C) n(n-1)/2 (D) (2n-1)/2 (E) None
- 5. Line 5: (A) n(n+1)/2 (B) (n+1)/2 (C)  $n^2$  (D) n(n-1)/2 (E) None

6. Total O: (A)  $n \log(n)$  (B)  $n^3$  (C) n (D)  $n^2$  (E) None

```
Choose the correct frequency for every line as well as the total O of the following
Int sum= 0;
for (int i = n; i > 0; i - - )
   for (int j = i; j < = n; j++) {
      sum= i + j;
      System.out.println(sum); }
 1. Line 1: (A) 1 (B) 2 (C) 3 (D) n (E) None.
     Answer: A
 2. Line 2: (A) n (B) n+1 (C) n-1 (D)n+2 (E) None
     Answer: B
  3. Line 3: (A) n^2 (B) n(n-1)/2 (C) (2n+1)/2 (D) n(n+3)/2 (E) None.
     Answer: D

    Line 4: (A) n<sup>2</sup> (B) n(n-1)/2 (C) (2n+1)/2 (D) n(n+3)/2 (E) None.

     Answer: E

    Line 5: (A) n<sup>2</sup> (B) n(n-1)/2 (C) n(n+1)/2 (D) (2n+1)/2 (E) None.

     Answer: C
  6. Total O: (A) 1 (B) n (C) n^2 (D) n log(n) (E) None.
     Answer: C
```

#### Question2:

#### Choose the most appropriate answer answer:

1- n^2 + n log(n^3) is: (A) O(n) (B) O(n^2) (C) O(n log(n)) (D) O(n^4) (E) None Answer: B

2- n/ log(n) + 1000n is: (A) O(n) (B) O(n^2) (C) O(n log(n)) (D) O(nn^2) (E) None Answer:

3- n^3 log n + 2^n is: (A) O(2^n) (B) O(n^4) (C) O(n^5) (D) O(log(n)) (E) None Answer: A

4- log(n^2 + 1) + n is: (A) O(log(n^2)) (B) O(log(n)) (C) O(n^2) (D) O(n) (E) None Answer:

Question3:

Given an n-element array X , Algorithm A chooses n/2 elements in X at random and executes an O(n)-time calculation if the element is even and O(1)-time calculation if it is odd. What is worst-case running time of Algorithm A?:

(A) O(n) (B) O(1) (C) O(n^2)

(D) O(n^3) (E) None

line as well as the total O of the following code:

1 int i = 1;
2 while (i < n) {  $\Rightarrow$  8 }  $\Rightarrow$  2  $\Rightarrow$  3 i++;
4 if (i > 7)(i = n;) 2  $\Rightarrow$  2  $\Rightarrow$  3 i++;
2 Line 2: A .1  $\Rightarrow$  8 C. n D. n 1 E. n+1
3. Lines 3 (and similarly 4): A. n B. n 1

C. 6 D.7 E. 8
4. Tightest Total O: A.1 B. n C. log(n)

D. n2 . E.2n

(b) Choose the correct frequency for every line as well as the total O of the following code:

1 int A = 0;

2 for ( int i = 1;  $i \le n$ ; i++)

3 for (int j = i; j < i \* 2; j++)

4 A++;

1. Line 1: A. 0 (B. 1) C. 2 D. n E. A

2. Line 2: A.A B. I C. i + 1 D. n (E. n + 1)

```
3. Line 3: A. n2 B. n(n+1) 2
       C. n(n+1) = 2 + 1 (n(n+3n)) = 2
E. n(n-1) = 2 - 1
       4. Line 4: A A2 B n2 C (n2 + 3n) = 2
       D n2(n+1) \neq 2+1 (E n(n+1))
      5. Tightest Total O: A.n
                E.None
      D. n4
      (c) Choose the correct answer:
      1. n7 + n4 + n2 + \log n \text{ is : A .O(n2)} B. (n4)
                                      E.None
     (C.O(n7)) D.O(log(n))
     2. 2n + n! is : A. O(n2) B. O(2n)
    D.O() E. None
    3. n + \log n3 + 6 is (A.O(n)) B. O(log n3)
                        D.O(n3) E. None
   C. O(n log n)
// fragment #1
                   Steps per Execution
                                  Times/ Frequency
                                              Total Steps
      Statement
 a. for(int i = 0; i < n; i++)
                   1
                                  n+1
                                              n+1
                   1
     sum++;
                                  n
                                              n
                                              Total: 2n + 1 = O(n)
```

//fragment #2

2.

b.

Statement Steps per Execution Times/ Frequency ceiling(n/2) +1 ceiling(n/2) +1 ceiling(n/2) +1 ceiling(n/2) Total: 2 (ceiling(n/2))+1 = 
$$O(n)$$
 //fragment #3

Statement Steps per Execution Times/ Frequency Total Steps a. for(int i = 0; i < n; i++) n+1n+1

## //fragment #4

| Statement                               | Steps per Execution | Times/ Frequency | Total Steps   |
|-----------------------------------------|---------------------|------------------|---------------|
| a. for( int $i = 0$ ; $i < n$ ; $i++$ ) | 1                   | n+1              | n+1           |
| b. sum++;                               | 1                   | n                | n             |
| c. for( int $j = 0$ ; $j < n$ ; $j++$ ) | 1                   | n+1              | n+1           |
| d. sum++;                               | 1                   | n                | n             |
|                                         |                     |                  | Total:        |
|                                         |                     |                  | 4n + 2 = O(n) |

## //fragment #5

|    | Statement                            | Steps per Execution | Times/ Frequency | Total Steps              |
|----|--------------------------------------|---------------------|------------------|--------------------------|
| a. | for( int $i = 0$ ; $i < n$ ; $i++$ ) | 1                   | n+1              | n+1                      |
| b. | for( int $j = 0$ ; $j < n *n; j++)$  | 1                   | $n(n^2+1)$       | $n(n^2+1)$               |
| c. | sum++;                               | 1                   | $n. n^2$         | $n^3$                    |
|    |                                      |                     |                  | Total:                   |
|    |                                      |                     |                  | $2n^3 + 2n + 1 = O(n^3)$ |

## //fragment #6

| Statement a. for( int $i = 0$ ; $i < n$ ; $i++$ ) b. for( int $i = 0$ ; $j < i$ ; $j++$ ) | Steps per Execution 1 1 | n+1<br>n-1                                  | Total Steps<br>n+1            |
|-------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------|-------------------------------|
|                                                                                           |                         | $i=0$ $\sum \ t_i \ where \ t_i=i+1$        | n(n+1)/2                      |
| c. sum++;                                                                                 | 1                       | n-1<br>i=0                                  | n(n-1)/2                      |
|                                                                                           |                         | $\sum (t_i - 1) \text{ where } t_i = i + 1$ |                               |
|                                                                                           |                         |                                             | Total: $n^2 + n + 1 = O(n^2)$ |

| Statement                                | Steps per Execution | Times/ Frequency                                          | Total Steps                          |
|------------------------------------------|---------------------|-----------------------------------------------------------|--------------------------------------|
| a. for( int $i = 0$ ; $i < n$ ; $i++$ )  | 1                   | n+1                                                       | n+1                                  |
| b for( int $j = 0$ ; $j < n*n$ ; $j++$ ) | 1                   | $n(n^2+1)$ $n^2-1$                                        | $n(n^2+1)$                           |
| c. for (int $k = 0$ ; $k < j$ ; $k++$ )  | 1                   | j=0                                                       | $n^3 (n^2+1)/2$                      |
|                                          |                     | $n \sum \ t_j \ where \ t_j = j{+}1$                      |                                      |
| d. sum++;                                | 1                   | $   \begin{array}{c}     n^2-1 \\     j=0   \end{array} $ | $n^3 (n^2-1)/2$                      |
|                                          |                     | $n \sum (t_j - 1) \text{ where } t_j = j + 1$             | Total: $n^5 + n^3 + 2n + 1 = O(n^5)$ |

# //fragment #8

| Statement                                   | Steps per Execution | Times/ Frequency       | Total Steps            |
|---------------------------------------------|---------------------|------------------------|------------------------|
| a. for( int $i = 1$ ; $i < n$ ; $i = i*2$ ) | 1                   | ceiling( $\log n$ ) +1 | ceiling(log n) +1      |
| b. sum++;                                   | 1                   | ceiling(log n)         | ceiling(log n)         |
|                                             |                     |                        | Total:                 |
|                                             |                     |                        | 2 (ceiling(log n))+1 = |
|                                             |                     |                        | O(log n)               |