Managing configuration drifts in large computing infrastructures: an experimental approach at CERN

Student: Andrea Giardini

Supervisor: Prof. Anna Ciampolini

Mentor: Ben Dylan Jones

December 19, 2016

University of Bologna

Outline

Introduction

CERN

Configuration management

Package Inventory

Project Structure

Results

Continuous Integration

Project Structure

Results

Conclusions

CERN

- European Organization for Nuclear Research
- Situated in the border between Switzerland and France
- 21 Member states
- Big challenges

Data Centres

Two data centers:

- Budapest
- Geneva

Two dedicated links:

• 2 x 100Gbps

The number of resources is growing year by year. As today:

- 18k servers
- 180PB on tape
- 260PB on disk

Cloud Computing

Requirements started to grow

Agile approach was needed

Since a few years we started using Openstack to deploy virtual machines for our users and Puppet to configure the services

Configuration Management with Puppet

Puppet is an open-source configuration management tool. It is designed to manage the configuration of Unix-like and Microsoft Windows systems declaratively.

- Service configuration
- Users/Groups management
- Automates repetitive taks

Package Drifts - Introduction

Package drifts started to be a problem:

- Servers with outdated packages
- Difficult to spot
- Users forcing their servers not to update

It is not easy to keep all the packages in sync and guarantee security

Project Structure

The configuration team needed a tool to query packages over a large number of hosts in a timely manner.

Package Inventory is made by three components:

- Reporter
- Cli
- Elasticsearch Cluster

Reporter

Software installed on every server, integrated with Yum using a plugin.

- Reports to Elasticsearch every package change
- Fault-tolerant
- Real-time updates

Elasticsearch stores and indexes all the metrics to make them searchable.

9

The Cli is used by the users to query the metrics that are stored in the Elasticsearch cluster.

- Possibility to compare clusters of machines
- Package history
- Package version across a set of servers

Optimized to scale for large queries: Query time to compare over twenty hundreds hosts is two minutes.

Processing hosts with:

- Hostgroup: bi/batch/gridworker/aishare
- Environment: production

Group 0	Group 1	Group 2
b6b3d71dfa b636f67ca8 b62b21e394 b65573753a b6a09855b8 b6a2bb83c8 b67af0481a b64f0f53c1 b69b92afd1 b67f818ae3 b67cc79825 b622b1cfdc	b6b1576a51 b604a66b3b b6c6f66a36 b67d439ea5	b60ba703db b6e493a1b6

Cli

Now that we know which hosts are drifting we can get more details.

Packages can have:

- Different versions
- Different status

Comparing two hosts gives us details about the installed packages.

pkginv -m 'b6b3d71dfa	b6b1576a	a51' compare	
Package	Field	b6b3d71dfa	b6b1576a51
httpd		Present	Not present
httpd-tools	l	Present	Not present
gridsite	l	Present	Not present
mod_ssl	l	Present	Not present
castor-lib	epoch	8.slc6	9.slc6
castor-rfio-client	epoch	8.slc6	9.slc6
castor-ns-client	epoch	8.slc6	9.slc6
castor-devel	epoch	8.slc6	9.slc6
+		+	

Results

- Installed in more than 55 hundreds of servers
- Spotted over **two hundreds of servers** out of sync
- Used extensively to monitor the deployment of security updates
- Debugging performance issues

Introduction

Shipping changes to production used to be a manual procedure:

- Multiple actions involved
- Human error

The process could had to be automated:

- Less time wasted
- More organization

Project Structure

Implementation of a Continuous Integration platform using Jenkins

- Open source software
- Highly customizable
- Active community

Manual CRM process

Gitlab merge request

Results

- Extremely customizable infrastructure
 - Users can define their tests
 - Service managers specify how the test server needs to be built
 - Tests can be re-triggered with a comment on JIRA or pushing new commits
- Every service manager is responsible for its Puppet module
- Procedure completely automated
- No need for users to learn how to use Jenkins

Conclusions

Package Inventory and the Continuous integration platform have been successfully integrated in the infrastructure at CERN.

Package Inventory has been used to spot several inconsistency and it has been used extensively to report several misconfigurations.

The Continuous integration platform has been used to automate the deployment of changes to production. Unfortunately, writing meaningful tests requires effort: obtaining a fully automated pipeline with complete tests will require time.

Questions