

STOCHASTIC DYNAMICAL SYSTEMS

Why

We want to model uncertain outcomes in dynamical systems.¹

Definition

Let $\mathcal{X}_0, \mathcal{X}_1, \ldots, \mathcal{X}_T$ and $\mathcal{U}_0, \mathcal{U}_1, \ldots, \mathcal{U}_{T-1}$ be sets. Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space. Let $\mathcal{W}_0, \ldots, \mathcal{W}_{T-1}$. Let $w_t : \Omega \to \mathcal{W}_t$ for $t = 0, \ldots, T-1$ be random variablesk. For $t = 0, \ldots, T-1$, let $f_t : \mathcal{X}_t \times \mathcal{U}_t \times \mathcal{W}_t \to \mathcal{X}_{t+1}$.

We call the sequence

$$((\mathcal{X}_t)_{t=0}^T), (\mathcal{U}_t)_{t=0}^{T-1}, (w_t)_{t=0}^{T-1}, (f_t)_{t=1}^{T-1})$$

a stochastic discrete-time dynamical system. We call w_t the noise variables.

1 Problem

Let $x_0: \Omega \to \mathcal{X}_0$ be a random variable. Define x_1, \ldots, x_T by

$$x_{t+1} = f_t(x_t, u_t, w_t)$$

for t = 0, ..., T-1. Here we see that we are effectively modeling the state transition functions as nondeterministic. In other words, it is uncertain which state we will arrive in given our current state and action. In fact, the choice u_t only determines the distribution of x_{t+1} . Here x_0 is (still) called the *initial state* and is a random variable, usually assumed independent of the w_t .

¹Future editions will expand.

