References where the mathematical symbols are defined:

The fragment molecular orbital method: practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds., CRC Press (2009), in press, chapter 1, **or** D. G. Fedorov, K. Kitaura, J. Comp. Chem. 28 (2007) 222-237.

One-body FMO properties.

	Ecorr E'_I	Euncorr	DX	DY	DZ
1(frg00001,L1)	-76.191947612	-76.007836505	-1.77830	0.65969	1.48864
2(frg00002,L1)	-76.191961348	-76.007891466	1.28642	1.11442	-1.69243
3(frg00003,L1)	-76.191905112	-76.007851357	0.38270	-2.11713	-1.05827

Total energy of the molecule: Ecorr (1)= -228.575814072

Total energy of the molecule: Euncorr(1)= -228.023579328

Total energy of the molecule: Edelta (1)= -0.552234744

Dipole moment D(xyz), DA(1) = -0.1091791 -0.3430276 -1.2620705 1.3124061

Two-body FMO properties.

DL: D=C dynamically correlated (MP2,CI), D=N not dynamically correlated (RHF,DFT). D=S separated dimer: semiclassical interaction (ES), D=M MCSCF. L stands for layer, Z is the monomer charge product, R is the interfragment distance relative to van-der-Waals radii (-1.00 is printed if distances are not computed). dDIJ*VIJ is the density polarisation contribution. Q(I->J) is the charge transfer amount, printed as zero if not available. Positive values correspond to I in IJ having extra negative charge.

- 1	J DL	Ζ	R	Q(I->J)	EIJ-EI-EJ	dDIJ*VIJ	total	Ees	Eex	Ect+mix	Edisp
			R_{IJ}	ΔQ_{II}	$\Delta E'_{IJ}$ $Tr($	$\Delta \mathbf{D}^{IJ} \mathbf{V}^{IJ}$	$\Delta E_{IJ}^{ m int}$	$\Delta E_{IJ}^{\rm ES}$	$\Delta E_{IJ}^{\mathrm{EX}}$	$\Delta E_{IJ}^{\text{CT+mix}}$	$\Delta E_{IJ}^{\mathrm{DI}}$
			13	~ 13	IJ	(/ 13	1J	13	13	13
2	1 C1	0	0.76	0.0282	-8.296	-0.455	-8.751	-9.826	5.191	-2.516	-1.599
3	1 C1	0	0.76	-0.0270	-8.250	-0.439	-8.690	-9.860	5.204	-2.460	-1.573
3	2 C1	0	0.77	0.0251	-7.566	-0.414	-7.980	-8.903	4.734	-2.293	-1.517
Total	energy	of	the mo	lecule: E	corr (2)=	-228.	616323629	$E^{\text{FMO2-MP2}}$			
	-										
Total	energy	of	the mo	lecule: E	Euncorr(2)=	-228.	056616444	$E^{ m FMO2-RHF}$			
	3,				()						
Total	energy	of	the mo	lecule: E	delta (2)=	-0.	559707186				

```
Interaction energy relative to PL state:
```

Eint = EES + EEX + E(CT+mix) + EDI

Eint = E(FMO2) - E(FMO1) - E(BDA)

Eint - interaction relative to PL state using PL state densities.

Electrostatic (PL state, incl. EPLs) EES
$$-28.590 \sum_{I>J} \Delta E_{IJ}^{ES}$$
 Exchange (PL state) EEX $15.128 \sum_{I>J} \Delta E_{IJ}^{EX}$ Charge transfer (PL state) E(CT+mix) $-7.270 \sum_{I>J} \Delta E_{IJ}^{CT+mix}$ Dispersion (PL state) EDI $-4.689 \sum_{I>J} \Delta E_{IJ}^{DI}$ Total interaction (PL state) Eint $-25.420 \sum_{I>J} \Delta E_{IJ}^{int}$

Dipole moment D(xyz), DA(2) = -0.1306606 -0.3288742 -1.2622253 1.3108941**D**^{FMO2-RHF}

Charge transfer for each fragment:

IFG QFG DeltaQ and its contributions from JFG, Q(JFG->IFG).

.....

1 0 0.0012 = 2-> 0.0282 3-> -0.0270 2 0 -0.0031 = 1-> -0.0282 3-> 0.0251 3 0 0.0019 = 1-> 0.0270 2-> -0.0251

Total absolute monomer transf. charge = 0.006128 ΔQ Total amount of absolute transf. charge = 0.080338 ΔQ

n-body Mulliken atomic charges Q(n)

IAT	IFG	Z	Q(1)	Q(2)	Q(3)
1	1	8.0	-0.959373	-0.961737	
2	1	1.0	0.499521	0.508812	
3	1	1.0	0.459853	0.454091	
4	2	8.0	-0.957268	-0.962262	
5	2	1.0	0.499446	0.507613	
6	2	1.0	0.457823	0.451585	
7	3	8.0	-0.957996	-0.958814	
8	3	1.0	0.499980	0.508432	
9	3	1.0	0.458016	0.452280	