The Pow-XOR Confusion Problem and an Efficient Solution

Akshay Trivedi

1 Problem Statement

When writing equations over ASCII text, people often use the '^' character to denote exponentiation. For example, 2 $^{\circ}$ 3 + 4 means 2^3+4 which evaluates to 12. Many programming languages use the same symbol for the bitwise exclusive-or operation, and with this definition the expression (2 $^{\circ}$ 3) + 4 evaluates to 5. For what values of a and b do these two meanings of '^' produce the same value for the expression a $^{\circ}$ b (using unsigned a-bit integers)?

1.1 Formal Problem Statement

1.1.1 Preliminary Stuff

The symbol $\mathbb N$ denotes the set of natural numbers, including zero, i.e. $\mathbb N=\{0,1,2,3,\ldots\}$.

The symbol \mathbb{Z} denotes the set of integers, which are the natural numbers and their negations (additive inverses), i.e. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$.

Definition 1.1 (congruence modulo an integer)

Let $x, y \in \mathbb{Z}, \ n \in \mathbb{N}$. For x and y to be congruent modulo n, denoted by $x \equiv y \pmod{n}$, means that $x = y + k \cdot n$ for some $k \in \mathbb{Z}$. The n is called the modulus.

Lemma 1.2

For every $x \in \mathbb{Z}$, $n \in \mathbb{N}$, there exists a unique $d \in \{0,1\}$ such that $x \equiv 2^n \cdot d + x_r \pmod{2^{n+1}}$ for some $x_r \in \mathbb{Z}$, $0 \le x_r < 2^n$.

Definition 1.3 (bit of an integer)

For every $x \in \mathbb{Z}$, $n \in \mathbb{N}$, the n^{th} bit of x is the $d \in \{0,1\}$ which satisfies ??.

Lemma 1.4

For every $x,y\in\mathbb{Z}$, there exists a unique $w\in\mathbb{Z}$ such that for all $n\in\mathbb{N}$, the n^{th} bit of w is 1 if and only if exactly one of the n^{th} bits of x and y is 1.

Definition 1.5 (exclusive-or / XOR)

For every $x,y\in\mathbb{Z}$, the exclusive-or/XOR of x and y is the integer w which satisfies $\ref{eq:condition}$ and is denoted by $x\oplus y=w$.

1.1.2 The Problem

Let $n \in \mathbb{N}$.

Definition 1.6 (X_n)

 X_n is the set of all solutions $(a,b) \in \mathbb{Z} \times \mathbb{Z}, \ 0 \le a,b < 2^n$ to the congruence $a^b \equiv a \oplus b \pmod{2^n}$.

The problem is to design an efficient algorithm which, given n, enumerates all of of X_n . Bonus points if, given one or two of the three variables a, b, and n, the algorithm can efficiently enumerate all possibilities for the remaining variables.

1.2 Examples

- For all $n \in \mathbb{N}$, $n \ge 1$, $1^0 \equiv 1 \pmod{2^n}$ and $1 \oplus 0 = 1$, so $(1,0) \in X_n$.
- For all $n \in \mathbb{N}, \ n \ge 1$, $(2^n 1)^{2^n 2} \equiv 1 \pmod{2^n}$ and $(2^n 1) \oplus (2^n 2) \equiv 1$, so $(n 1, n 2) \in X_n$.
- $0^0 = 1 \equiv 0 = 0 \oplus 0 \pmod{2^0}$, so $(0,0) \in X_0$ (in fact, $X_0 = \{(0,0)\}$).
- $(3109287477, 2325659185) \in X_{32}$ because

 $3109287477^{869091332} \equiv 2325659185 = 3109287477 \oplus 869091332 \pmod{2^{32}}.$

1.3 Properties of X_n

Warning: This section contains minor spoilers for the solution. I thought this problem was pretty fun, so I encourage you to stop here and try it for yourself if you like algebra and number theory.

You might expect the size of X_n to be kind of "random-ish" and difficult to compute since modular exponentiation and bitwise exclusive-or come from different and seemingly unrelated structures on \mathbb{Z}_{2^n} . However, as it turns out.

Proposition 1.7 (Strange Fact)

```
For all n \in \mathbb{N}, n \ge 1, |X_n| = 2^n - 1.
```

After observing this result, you might expect that each solution $(a,b) \in X_n$ is uniquely determined by either a or b. My initial guess was a, as intuitively I expected the base to dictate more properties of the exponent operation, like the number of exponents which map to unique powers $\pmod{2^n}$ by Euler's Theorem.

I collected the frequencies of a and b for $(a,b) \in X_n$ (for $n \ge 1$), and was surprised by the results:

- b is always even. b=0 occurs exactly once, and comes from the solution $(a,b)=(1,0)\in X_n$. Every positive even integer $0< b< 2^n$ occurs exactly twice. By summing the frequencies of b's, $|X_n|=2\cdot(2^{n-1}-1)+1=2^n-1$ since there are two solutions for each of the $2^{n-1}-1$ even positive integers and one extra solution for b=0.
- Every odd a occurs exactly once $(2^{n-1}$ solutions with odd a).
- a=0 never occurs. Almost every positive even a occurs once. There are very few exceptions that either occur exactly twice, or never occur at all, and these two kind of exceptions are equinumerous (excluding a=0). Hence there are $2^{n-1}-1$ solutions with even a, which is what you'd expect.

n	a occuring exactly twice (duplicate values)	nonzero a occuring zero times (absent values)
1		
2		
3	6	2
4	6	2
5	6	2
6	38	2
7	38,70	2,6
8	166,70	2,6
9	422, 260, 70	2, 4, 6
10	934, 260, 582	2, 4, 6
11	1958, 260, 1606, 1034	2, 4, 6, 10
12	4006, 260, 1606, 1034	2, 4, 6, 10
13	8102, 260, 1606, 1034	2, 4, 6, 10
14	8102, 260, 1606, 9226	2, 4, 6, 10
15	8102, 260, 17990, 25610, 16398	2, 4, 6, 10, 14
16	40870, 260, 50758, 58378, 16398	2, 4, 6, 10, 14
17	106406, 65796, 50758, 123914, 16398	2, 4, 6, 10, 14
18	237478, 65796, 181830, 254986, 16398	2, 4, 6, 10, 14
19	237478, 65796, 181830, 254986, 278542, 262162	2, 4, 6, 10, 14, 18
20	237478, 65796, 181830, 779274, 278542, 262162	2, 4, 6, 10, 14, 18
21	1286054, 65796, 1230406, 1827850, 1327118, 262162	2, 4, 6, 10, 14, 18
22	3383206, 2162948, 3327558, 1827850, 1327118, 262162	2, 4, 6, 10, 14, 18

• In fact, most solutions with a positive even a satisfy a=b. The only exceptions are when a is in the left-hand-side column of the table above and b is the corresponding value from the right-hand-side column. So for example, in row 22, the second duplicate a is 2162948, and the second absent a is 4. This means $2162948^4=2162948\oplus 4\pmod{2^{22}}$. With the table above (and that a=b for the rest of the solutions), you can enumerate all solutions $(a,b)\in X_n$ with a positive even a for $n\leq 22$.

2 Solution

2.1 Preliminary Stuff

The lemmas in this section have really easy proofs, and are either generally well-known or conveniently rewritten from well-known statements.

Lemma 2.1 (congruence modulo an integer is an equivalence relation)

For every $n \in \mathbb{N}$, congruence modulo n is an equivalence relation (transitive, symmetric, reflexive). In other words, for all $x, y, z \in \mathbb{Z}$:

if
$$x \equiv y \pmod{n}$$
, and $y \equiv z \pmod{n}$ then $x \equiv z \pmod{n}$
if $x \equiv y \pmod{n}$ then $y \equiv x \pmod{n}$
 $x \equiv x \pmod{n}$

Lemma 2.2 (reducing the modulus)

For every $x,y \in \mathbb{Z}$, $n,n' \in \mathbb{Z}$, if $x \equiv y \pmod{n}$ and $n \equiv 0 \pmod{n'}$, then $x \equiv y \pmod{n'}$.

Lemma 2.3 (congruence modulo an integer respects ring operations)

For every $n \in \mathbb{N}$, congruence modulo n "respects" addition, subtraction, and multiplication, in the sense that if $x, x', y, y' \in \mathbb{Z}$ such that $x \equiv x' \pmod n$ and $y \equiv y' \pmod n$, then

$$x + y \equiv x' + y' \pmod{n}$$
 $x - y \equiv x' - y' \pmod{n}$ $x \cdot y \equiv x' \cdot y' \pmod{n}$

Lemma 2.4

For every integer $x \in \mathbb{Z}, n \in \mathbb{N}, n \geq 1$, there exists a unique integer $x_0 \in \mathbb{Z}, 0 \leq x_0 < n$, such that $x_0 \equiv x \pmod{n}$.

Definition 2.5 (reduction modulo an integer)

For every integer $x \in \mathbb{Z}$, $n \in \mathbb{N}$, $n \ge 1$, the reduction of $x \pmod n$ is the integer x_0 which satisfies ??.

Lemma 2.6 (Properties of XOR)

The XOR operation is associative, has zero as an identity, is commutative, and is an involution. In other words, for all $x, y, z \in \mathbb{Z}$:

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
$$x \oplus 0 = x$$
$$x \oplus y = y \oplus x$$
$$x \oplus x = 0$$

Lemma 2.7 (congruence modulo an integer respects XOR)

For every $n \in \mathbb{N}$, congruence modulo n "respects" XOR, in the sense that if $x, x, y', y' \in \mathbb{Z}$ such that $x \equiv x' \pmod n$ and $y \equiv y' \pmod n$, then

$$x \oplus y \equiv x' \oplus y' \pmod{n}$$

This next result can be shown via Euler's Theorem (note that $\phi(2^n) = 2^{n-1}$):

Definition 2.8 (even and odd (parity))

For an integer $x \in \mathbb{Z}$ to be even means that $x \equiv 0 \pmod{2}$.

For an integer $x \in \mathbb{Z}$ to be odd means that $x \equiv 1 \pmod{2}$.

Lemma 2.9 (existence and uniqueness of a parity)

Every integer is either even or odd, but not both.

Lemma 2.10 (parity of a product)

A product of only odd integers is odd. A product of integers is even there is at least one even factor.

Last but certainly not least, the next lemma is the key to the solution.

Lemma 2.11 (Euler's Theorem with base=2)

For all integers $x, y, y' \in \mathbb{Z}$, if x is odd, $y, y' \geq 0$, $y \equiv y' \pmod{2^n}$, then $x^y \equiv x^{y'} \pmod{2^{n+1}}$.

2.2 Structure of X_n

Theorem 2.12

Let $n \in \mathbb{N}, \ n \geq 1$. For all $(a,b) \in X_n$ b is even.

Proof. Let $(a,b) \in X_n$, so by ??, $0 \le a,b < 2^n$ and $a^b \equiv a \oplus b \pmod{2^n}$.

By ??, $a \equiv a \pmod{2^n}$, so by ??, $a \oplus (a^b) \equiv a \oplus (a \oplus b) \pmod{2^n}$. By ??, $a \oplus (a \oplus b) = (a \oplus a) \oplus b = 0 \oplus b = b$, which by substituting into the previous congruence, yields $a \oplus (a^b) \equiv b \pmod{2^n}$.

Also, $2^n = 0 + 2^{n-1} \cdot 2$, so $2^n \equiv 0 \pmod{2}$ by ??, so by ??, $a \oplus (a^b) \equiv b \pmod{2}$.

By ??, either a is even or a is odd.

- Consider the case when a is odd. Then a^b is a product of integers with only odd factors, so a^b is odd by $\ref{eq:condition}$? Since a and a^b are both odd, $a\equiv 1\pmod 2$ and $a^b\equiv 1\pmod 2$ by $\ref{eq:condition}$? Then, by $\ref{eq:condition}$? Then, by $\ref{eq:condition}$? Then, by $\ref{eq:condition}$? Then, by $\ref{eq:condition}$?
 - Finally, $a \oplus (a^b) \equiv b \pmod 2$ and $a \oplus (a^b) \equiv 1 \oplus 1 \pmod 2$, so $b \equiv 1 \oplus 1 \pmod 2$ by $\ref{by ??}$. Additionally, $1 \oplus 1 = 0$ by $\ref{by ??}$, so by substituting this equation into the previous congruence, $b \equiv 0 \pmod 2$, which means b is even by $\ref{by ??}$.
- Consider the case when a is even. If b is zero, then b is already even. Otherwise if b>0, then a^b is a product of integers with an even factor, so a^b is even by ??. Since a and a^b are both even, $a\equiv 0\pmod 2$ and $a^b\equiv 0\pmod 2$ by ??. Then, by ??, $a\oplus a^b\equiv 0\oplus 0\pmod 2$.

Finally, $a \oplus (a^b) \equiv b \pmod 2$ and $a \oplus (a^b) \equiv 0 \oplus 0 \pmod 2$, so $b \equiv 0 \oplus 0 \pmod 2$ by $\ref{boundary}$. Additionally, $0 \oplus 0 = 0$ by $\ref{boundary}$, so by substituting this equation into the previous congruence, $b \equiv 0 \pmod 2$, which means b is even by $\ref{boundary}$?

Theorem 2.13

Let $n \in \mathbb{N}, n \ge 1$. For every odd $a \in \mathbb{Z}, \ 0 \le a < 2^n$ there exists a unique b such that $(a,b) \in X_n$.

Proof. The proof proceeds by induction on n.

1. Consider the case where n=1. Let $0 \le a < 2^1$. The only choices for a such that $0 \le a < 2^1$ are 0 and 1. Only 1 is odd. What remains is to show that there exists a unique $b \in \mathbb{Z}$ such that $(a,b) \in X_1$.

Existence of b: By by $\ref{eq:thm.eq}$, the congruence $1 \equiv 1 \pmod{2^1}$ holds. Additionally, $1^0 = 1$ and $1 \oplus 0 = 1$ by $\ref{eq:thm.eq}$? By substituting these equations into the congruence, $1^0 \equiv 1 \oplus 0 \pmod{2^1}$. Since $0 \le 1, 0 < 2^1$, by $\ref{eq:thm.eq}$? $(a,b)=(1,0)\in X_1$.

- Uniqueness of b: Let b,b' such that $(a,b),(a,b')\in X_1$. Then, by $\ref{eq:constraints},\ 0\leq b,b'<2^1$. There are only two choices for each of b,b' such that $0\leq b,b'<2^1$, namely 0 and 1. By $\ref{eq:constraints}$ both b and b' must be even. However, of the two choices, only b=b'=0 is even, which shows in particular b=b'.
- 2. Now suppose that $\ref{eq:n0}$ holds for $n=n_0\in\mathbb{N}, n_0\geq 1$. Let $0\leq a<2^{n_0+1}$ such that a is odd. What remains is to show that there exists a unique $b\in\mathbb{Z}$ such that $(a,b)\in X_{n_0+1}$.

Existence: Let a_0 be the reduction of $a \pmod{2^{n_0}}$. The remaining proof is lengthy, so it is divided into self-contained steps (each one only uses the last result of the previous one):

- (a) By the inductive hypothesis, there exists a unique b_0 such that $(a_0,b_0)\in X_{n_0}$, so $0\leq a_0,b_0<2^{n_0}$ and $a_0^{b_0}\equiv a_0\oplus b_0\pmod{2^{n_0}}$ by $\ref{eq:condition}$??. By $\ref{eq:condition}$?, $a_0\equiv a_0\pmod{2^{n_0}}$, so $a_0\oplus (a_0^{b_0})\equiv a_0\oplus (a_0\oplus b_0)\pmod{2^{n_0}}$ by $\ref{eq:condition}$??. By $\ref{eq:condition}$?, $a_0\oplus (a_0\oplus b_0)=(a_0\oplus a_0)\oplus b_0=0\oplus b_0=b_0$. By substituting into the previous congruence, $a_0\oplus a_0^{b_0}\equiv b_0\pmod{2^{n_0}}$. Note that $a_0\equiv a\pmod{2^{n_0}}$ by $\ref{eq:condition}$??. Therefore, $a_0^{b_0}\equiv a^{b_0}\pmod{2^{n_0}}$ by $\ref{eq:condition}$? (powers are iterated products). So, by $\ref{eq:condition}$?, $a_0\oplus a_0^{b_0}\equiv a\oplus a^{b_0}\pmod{2^{n_0}}$ by $\ref{eq:condition}$??. The left-hand-side is congruent to $b_0\pmod{2^{n_0}}$, so $b_0\equiv a\oplus a^{b_0}\pmod{2^{n_0}}$ by $\ref{eq:condition}$??.
- (b) Since a is also odd, by $\ref{eq:abo}$ it follows that $a^{b_0} \equiv a^{a \oplus a^{b_0}} \pmod{2^{n_0+1}}$. By $\ref{eq:abo}$, a^{b_0} , a^{b_0} , a^{b_0} , a^{b_0} is also equation into the congruence before it yields $a \oplus (a \oplus a^{b_0}) \equiv a^{a \oplus a^{b_0}} \pmod{2^{n_0+1}}$. Almost there!

(c) Let b be the reduction of $a \oplus a^{b_0} \pmod{2^{n_0+1}}$, so $0 \le b < 2^{n_0+1}$ and $b \equiv a \oplus a^{b_0} \pmod{2^{n_0+1}}$ by $\ref{eq:condition}$??. By $\ref{eq:condition}$?, $a \equiv a \pmod{2^{n_0+1}}$, so $a \oplus (a \oplus a^{b_0}) \equiv a \oplus b \pmod{2^{n_0+1}}$ by $\ref{eq:condition}$?. Additionally, $2^{n_0+1} = 0 + 2 \cdot 2^{n_0}$, so $2^{n_0+1} \equiv 0 \pmod{2^{n_0}}$ by $\ref{eq:condition}$??. Thus, by $\ref{eq:condition}$?? $b \equiv a \oplus a^{b_0} \pmod{2^{n_0}}$. By $\ref{eq:condition}$??, $a^b \equiv a^{a \oplus a^{b_0}} \pmod{2^{n_0+1}}$. At last, using the result from step (b), by $\ref{eq:condition}$? $a \oplus a \oplus a^{b_0} \pmod{2^{n_0+1}}$ implies that $a^b \equiv a \oplus b \pmod{2^{n_0+1}}$. Since $0 \le a, b < 2^{n_0+1}$, $(a,b) \in X_{n_0+1}$ by $\ref{eq:condition}$??

Uniqueness of b: Let b, b' such that $(a, b), (a, b') \in X_{n+1}$.

Let a_0, b_0, b_0' be the reductions of $a, b, b' \pmod{2^{n_0}}$, respectively. The remaining proof is lengthy, so it is divided into self-contained parts (the results of both parts will be used afterwards):

- (a) Since $a_0 \equiv a \pmod{2^{n_0}}$ by ??, $a_0^{b_0} \equiv a^{b_0} \pmod{2^{n_0}}$ and $a_0^{b_0'} \equiv a^{b_0'} \pmod{2^{n_0}}$ by ?? (powers are iterated products).
 - Since $2^{n_0}=0+2\cdot 2^{n_0-1}$, by $\ref{eq:condition}$? $2^{n_0}\equiv 0\pmod{2^{n_0-1}}$. Also by $\ref{eq:condition}$? $b_0\equiv b\pmod{2^{n_0}}$ and $b_0'\equiv b'\pmod{2^{n_0-1}}$. Since it is also true that a is odd, $a^{b_0}\equiv a^b\pmod{2^{n_0}}$ and $a^{b_0'}\equiv a^{b'}\pmod{2^{n_0}}$ by $\ref{eq:condition}$?
 - By ?? $a_0^{b_0} \equiv a^{b_0} \equiv a^b \pmod{2^{n_0}}$ implies that $a_0^{b_0} \equiv a^b \pmod{2^{n_0}}$, and $a_0^{b_0'} \equiv a^{b_0'} \equiv a^{b'} \pmod{2^{n_0}}$ implies that $a_0^{b^p r i m e_0} \equiv a^b \pmod{2^{n_0}}$.
- (b) Since $(a,b),(a,b') \in X_{n_0+1}$, by $?? \ a^b \equiv a \oplus b \pmod{2^{n_0+1}}$, and $a^{b'} \equiv a \oplus b' \pmod{2^{n_0+1}}$. Since $2^{n_0+1} = 0 + 2 \cdot 2^{n_0}$, so by $?? \ 2^{n_0+1} \equiv 0 \pmod{2^{n_0}}$, and by ??, $a^b \equiv a \oplus b \pmod{2^{n_0}}$, and $a^{b'} \equiv a \oplus b' \pmod{2^{n_0}}$.
- (c) By ?? $a_0 \equiv a \pmod{2^{n_0}}, b_0 \equiv b \pmod{2^{n_0}}, b_0' \equiv b' \pmod{2^{n_0}}$. Therefore, by ??, $a_0 \oplus b_0 = a \oplus b \pmod{2^{n_0}}$ and $a_0 \oplus b_0' \equiv a \oplus b' \pmod{2^{n_0}}$.

In summary, the three parts above show that

$$a_0^{b_0} \equiv a^b \pmod{2^{n_0}}$$

$$a_0^{b'_0} \equiv a^{b'} \pmod{2^{n_0}}$$

$$a^b \equiv a \oplus b \pmod{2^{n_0}}$$

$$a_0 \oplus b_0 \equiv a \oplus b \pmod{2^{n_0}}$$

$$a_0 \oplus b'_0 \equiv a \oplus b' \pmod{2^{n_0}}$$

$$a_0 \oplus b'_0 \equiv a \oplus b' \pmod{2^{n_0}}$$

Therefore, using ??, $a_0^{b_0} \equiv a_0 \oplus b_0 \pmod{2^{n_0}}$ and $a_0^{b_0'} \equiv a_0 \oplus b_0' \pmod{2^{n_0}}$. Since it also true that $0 \leq a_0, b_0, b_0'$, by ?? $(a_0, b_0), (a_0, b_0') \in X_{n_0}$. By the uniqueness part of the inductive hypothesis, it follows that $b_0 = b_0'$. What remains to be shown is that in fact b = b'.

By ??, $b \equiv b_0 \pmod{2^{n_0}}$. Substituting $b_0 = b_0'$ yields $b \equiv b_0' \pmod{2^{n_0}}$. By ??, $b_0' \equiv b' \pmod{2^{n_0}}$, so $b \equiv b' \pmod{2^{n_0}}$.

Finally, by $\ref{eq:conditions},$ since a is odd, $a^b \equiv a^{b'} \pmod{2^{n_0+1}}$. But since $(a,b),(a,b') \in X_{n_0+1}$, by $\ref{eq:conditions},$ $a \oplus b \pmod{2^{n_0+1}}$ and $a^{b'} \equiv a \oplus b' \pmod{2^{n_0+1}}$. Combining these three congruences by $\ref{eq:conditions},$ yields $a \oplus b \equiv a \oplus b' \pmod{2^{n_0}+1}$. Since $a \equiv a \pmod{2^{n_0}+1}$ by $\ref{eq:conditions},$ by $\ref{eq:conditions},$ $a \oplus (a \oplus b) \equiv a \oplus (a \oplus b') \equiv (a \oplus b') \equiv$

By $\ref{eq:constraints}$, there is a unique integer $b_0\in\mathbb{Z}, 0\leq b_0<2^{n_0+1}$ such that $b_0\equiv b\pmod{2^{n_0+1}}$. However, $0\leq b<2^{n_0+1}$ and $b\equiv b\pmod{2^{n_0+1}}$ by $\ref{eq:constraints}$, but on the other hand $0\leq b'<2^{n_0+1}$ and $b\equiv b'\pmod{2^{n_0+1}}$. Thus $b=b_0=b'$, so in particular, b=b'.

By the principle of induction, it follows that for all $n \in \mathbb{N}, \ n \ge 1$, and for every odd $a \in \mathbb{Z}, \ 0 \le a < 2^n$ there exists a unique b such that $(a,b) \in X_n$.

Theorem 2.14

Let $n \in \mathbb{N}, n \ge 1$. For every $0 \le b < 2^n$, there exists a unique even $a \in \mathbb{Z}$ such that $(a,b) \in X_n$.

Proof. TODO

2.3 The Algorithm

TODO

3 Proving the Preliminary Stuff

TODO