

Graph Embedding

S. Zhou

Word2Vec

DeepWalk

 ${\bf Node 2 Vec}$

Struc2Vec

LINE

SDNE

图表示学习

Zhou Shen

School of Computer Science, Wuhan University

October 20, 2021

Outline

Graph Embedding

S. Zhou

 ${\bf Word2Vec}$

 ${\bf DeepWalk}$

Node2Vec

Struc2Vec

LINE

- 1 Word2Vec
- 2 DeepWalk
- 3 Node2Vec
- 4 Struc2Vec
- 5 LINE
- 6 SDNE

Graph Embedding

S. Zhou

DeepWalk

Node2Vec

Struc2Vec

LINE

SDNE

1-of-N Encoding

bag =
$$[0 \ 1 \ 0 \ 0 \ 0]$$

$$cat = [0 \ 0 \ 1 \ 0 \ 0]$$

$$dog = [0 \ 0 \ 0 \ 1 \ 0]$$

elephant =
$$[0 \ 0 \ 0 \ 0 \ 1]$$

Word2Vec One-Word Context

Graph Embedding

S. Zhou

.....

 ${\bf DeepWalk}$

Node2Vec

Struc2Vec

LINE

Figure 1: A simple CBOW model with only one word in the context

$$\mathbf{h} = \mathbf{W}^T \mathbf{x} = \mathbf{W}_{(k,\cdot)}^T := \mathbf{v}_{w_I}^T, u_j = \mathbf{v}_{w_j}' h$$
 (1)

$$p(w_j \mid w_I) = y_j = \frac{\exp(u_j)}{\sum_{i'=1}^{V} \exp(u_{i'})}$$
(2)

Word2Vec Objective Function

Graph Embedding

S. Zhou

DeepWalk

Node2Vec

Struc2Vec

LINE

SDNE

$$\max p(w_{O} \mid w_{I}) = \max y_{j^{*}}$$

$$= \max \log y_{j^{*}}$$

$$= u_{j^{*}} - \log \sum_{j'=1}^{V} \exp(u_{j'}) := -E$$
(3)

常用变形

$$\min E = -u_{j^*} + \log \sum_{j'=1}^{V} \exp(u_{j'})$$

Word2Vec

Graph Embedding

S. Zhou

Word2Ve

DeepWalk

Node2Vec

Struc2Vec

LINE

$$\mathbf{h} = \frac{1}{C} (\mathbf{v}_{w_1} + \mathbf{v}_{w_2} + \dots + \mathbf{v}_{w_C})^T$$

$$E = -\log p \left(w_O \mid w_{I,1}, \dots, w_{I,C} \right)$$

$$= -u_{j^*} + \log \sum_{j'=1}^{V} \exp \left(u_{j'} \right)$$

Figure 2: Continuous bag-of-word model

Word2Vec Skip-Gram

Graph Embedding

S. Zhou

DeepWalk

-

Node2Vec

Struc2Vec

LINE

Figure 3: The skip-gram model.

Word2Vec Hierarchical Softmax

Graph Embedding

S. Zhou

DeepWalk

Node2Vec

Struc2Vec

LINE

$$p(w = w_O) = \prod_{i=1}^{L(w)-1} \sigma\left([n(w, j+1) = \text{ch}(n(w, j))] \cdot \mathbf{v}'_{n(w, j)} {}^{T}\mathbf{h} \right)$$

Word2Vec Negative Sample

Graph Embedding

S. Zhou

Word2Ve

DeepWalk

Node2Vec

Struc2Vec

LINE

LIIVE

SDNE

1. 词频计算

$$weight(w_i) = \frac{count(w_i)^{0.75}}{\sum_{j}^{V} count(w_j)^{0.75}}$$

2. 目标函数

$$E = -\log \sigma \left(\mathbf{v}_{w_O}^{\prime} \mathbf{h}\right) - \sum_{w \in \mathcal{W}_{\text{out}}} \log \sigma \left(-\mathbf{v}_{w_j}^{\prime} \mathbf{h}\right)$$

DeepWalk

Graph Embedding

S. Zhou

Word2Vec

Node2Vec Struc2Vec

LINE

SDNE

Definition

Problem Definition Let G = (V, E), where V are the members of the network, and E be its edgs. Our goal is to learn $X_E \in \mathcal{R}^{|V| \times d}$, where d is number of latent dimensions.

DeepWalk

Graph Embedding

S. Zhou

 ${\bf Word2Vec}$

Node2Vec

Struc2Vec

LINE

SDNE

- (a) YouTube Social Graph
- (b) Wikipedia Article Text

Connection

The power-law distribution of vertices appearing in the short random walks follows a power-law, much like the distribution of words in natural language.

${\bf DeepWalk}$

Graph Embedding

S. Zhou

Word2Vec

Node2Vec

Struc2Vec

LINE

SDNE

 \blacksquare give a sequence of random walk from vertice i

$$W_i^n = \{v_1, v_2, v_3, \cdots, v_n\}$$
 (4)

2 maximize the likehood

$$\Pr\left(v_i \mid (\Phi(v_1), \Phi(v_2), \cdots, \Phi(v_{i-1}))\right) \tag{5}$$

Mapping Function Φ

 $\Phi: v \in V \longrightarrow \mathcal{R}^{|V| \times d}$ where d is the number of dimensions

DeepWalk Disadvantages and Optimizations

Graph Embedding

S. Zhou

Word2Vec

Node2Vec

Struc2Vec

LINE

- As the walk length grows, computing this objective function becomes unfeasible.
- Restricts the order in which vertices appear

(b) Representation mapping.

DeepWalk Algorithm

Graph Embedding

S. Zhou

Word2Vec

Node2Vec

Struc2Vec

Strucz v

LINE

SDNE

Algorithm 1 DeepWalk (G, w, d, γ, t)

Input: graph G(V, E)window size wembedding size dwalks per vertex γ walk length t

Output: matrix of vertex representations $\Phi \in \mathbb{R}^{|V| \times d}$

- 1: Initialization: Sample Φ from $\mathcal{U}^{|V| \times d}$
- 2: Build a binary Tree T from V
- 2. fan i 0 ta t da
- 3: for i = 0 to γ do
- 4: $\mathcal{O} = \text{Shuffle}(V)$
- 5: for each $v_i \in \mathcal{O}$ do
- 6: $W_{v_i} = RandomWalk(G, v_i, t)$
- 7: SkipGram(Φ , W_{v_i} , w)
- 8: end for
- 9: end for

Corollary

$$\underset{\Phi}{\operatorname{minimize}} - \log \Pr \left(\left\{ v_{i-w}, \cdots, v_{i-1}, v_{i+1}, \cdots, v_{i+w} \right\} \mid \Phi \left(v_{i} \right) \right)$$

Node2Vec

Graph Embedding

S. Zhou

Word2Vec

 ${\bf DeepWalk}$

Node2Vec

Struc2Vec

LINE

Struc2Vec

Graph Embedding

S. Zhou

Word2Vec

DeepWalk

 ${\bf Node 2 Vec}$

LINE

LINE

Graph Embedding

S. Zhou

Word2Vec

 ${\bf DeepWalk}$

Node2Vec

 ${\tt Struc2Vec}$

LINE

 $_{\rm SDNE}$

SDNE

Graph Embedding

S. Zhou

Word2Vec

DeepWalk

 ${\bf Node 2 Vec}$

 ${\tt Struc2Vec}$

LINE