```
In [1]: ▶
```

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\munigreeshma\Downloads\loan1.csv")
df
```

Out[2]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [3]: ▶

object

df.info()

<class 'pandas.core.frame.DataFrame'>

Data columns (total 4 columns): # Column Non-Null Count Dtype _____ ------------Home Owner 0 10 non-null object 1 Marital Status 10 non-null object Annual Income 2 10 non-null int64

Defaulted Borrower 10 non-null

dtypes: int64(1), object(3)
memory usage: 452.0+ bytes

RangeIndex: 10 entries, 0 to 9

```
M
In [4]:
df['Marital Status'].value_counts()
Out[4]:
Marital Status
Single
Married
            4
Divorced
            2
Name: count, dtype: int64
In [5]:
                                                                                          H
df['Annual Income'].value_counts()
Out[5]:
Annual Income
125
100
       1
70
       1
120
       1
95
       1
       1
60
220
       1
85
       1
75
       1
90
       1
Name: count, dtype: int64
In [6]:
                                                                                          H
convert={"Home Owner":{"Yes":1,"No":0}}
df=df.replace(convert)
df
```

Out[6]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	Single	125	No
1	0	Married	100	No
2	0	Single	70	No
3	1	Married	120	No
4	0	Divorced	95	Yes
5	0	Married	60	No
6	1	Divorced	220	No
7	0	Single	85	Yes
8	0	Married	75	No
9	0	Single	90	Yes

In [7]: ▶

```
convert={'Marital Status':{"Single":1,"Married":2,"Divorced":3}}
df=df.replace(convert)
df
```

Out[7]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	No
1	0	2	100	No
2	0	1	70	No
3	1	2	120	No
4	0	3	95	Yes
5	0	2	60	No
6	1	3	220	No
7	0	1	85	Yes
8	0	2	75	No
9	0	1	90	Yes

```
In [8]:

x=["Home Owner", "Annual Income"]
y=["Yes", "No"]
all_inputs=df[x]
all_classes=df["Defaulted Borrower"]
```

```
In [9]:

(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.5)
```

```
In [10]:

clf=DecisionTreeClassifier(random_state=0)
```

```
In [11]:

clf.fit(x_train,y_train)
```

Out[11]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

In [12]:

score=clf.score(x_test,y_test)
print(score)

0.8