Coronal Seismology ASTR 598

Laurel Farris

Spring 2016

Coronal seismology

Technique and motivation

Motivation:

- Coronal heating problem
- Constraining flare/CME environment

Problem: properties of the corona, such as magnetic field strength, densities, and Alfvén velocities, are difficult to measure.

Solution: coronal seismology.

- Observe disturbances in the corona, and measure:
 - Period
 - Velocity
 - Timescales
- Compare observed quantities to MHD theory to identify the type of wave or mode.
- Insert observed properties into appropriate equations to derive coronal parameters.

Current questions:

- How are these disturbances initiated?
- How are they damped, and what determines the timescales?

Magnetohydrodynamics (MHD)

Theory

- Corona should support MHD oscillations
- Loop modeled by straight flux tube in uniform magnetic field.
- Characteristic speeds are determined by the environment
- Density, temperature inside loop different from outside loop
- Non-ideal effects: gravitational stratification, loop curvature, inhomogeneity in magnetic field strength (considered negligible).

Dispersion diagram

Solutions to dispersion relation

Magnetohydrodynamics (MHD)

Two mode categories

- 1. Magnetoacoustic $C_s = \sqrt{\frac{\gamma P}{\rho}}$
 - Fast $k_{A_0} < C_{fast} < C_{A_e}$
 - Slow $C_{T_0} < C_{slow} < C_{s_0}$
- 2. Alfvén $V_A = \frac{B}{\mu_0 \rho}$

Fast standing oscillations

Kinks vs. Sausages

Kink

- loop spatial displacement
- Asymmetric
- No intensity change
- $k\sigma \ll 1$, or $\sigma \ll \lambda$

Sausage

- No loop spatial displacement
- Symmetric
- Intensity change
 → density change
- $\lambda \sim \sigma$
- long-wavelength limit

Important Properties

	period	wavelength	velocity
kink osc	value	value	value
sausage osc	value	value	value
acoustic osc	value	value	value
acoustic waves	value	value	value
fast waves	value	value	value
torsional modes	10 m	value	$1000~\mathrm{km~s^{-1}}$

Acknowledgements