Subgraph Counting in Practice

Jess Ryan

July 29, 2019

What is the subgraph counting problem?

Problem Statement

How many (unlabelled) copies of the graph H are contained in the graph G?

We call the graph G the *host* graph and H the *pattern* graph.

Algorithmic complexity

 \bullet Subgraph isomorphism is NP-complete \to subgraph counting is NP-hard

Fixed-parameter tractable (FPT)

A problem is FPT with respect to parameter k if it can be solved by an algorithm with runtime $f(k) \times n^{O(1)}$

ullet Assuming Exponential Time Hypothesis o subgraph counting is not FPT in general

Algorithmic complexity

Almost bounded degree graph

A graph G has almost bounded degree k if G contains at most k vertices with degree greater than k.

• (Enright and Meeks) Subgraph counting is FPT for host graphs with almost bounded degree and small pattern graphs

FPT Algorithm: General Idea

- ullet Consider each way to assign part of H to the k high degree vertices in G
- ullet For each feasible assignment, count ways to assign the rest of H to the bounded degree part of G
- ullet Sum up the counts to obtain number of labelled copies of H in G
- ullet Divide by the number of symmetries in H to obtain number of unlabelled copies of H in G

h₁: g₁, g₂, g₃, g₄ h₂: g₁, g₂, g₃, g₄ h₃: g₁, g₂, g₃, g₄

h₁: g₁, g₂, g₃, g₄ h₂: g₁, g₂, g₃, g₄ h₃: g₁, g₂, g₃, g₄

Subset of V(H): \emptyset Count = 0

h₁: g₁, g₂, g₃,g₄ h₂: g₁, g₂, g₃,g₄ h₃: g₁, g₂, g₃,g₄

Subset of V(H): \emptyset Count = 0

 $h_1 \rightarrow g_1$

 $h_2: g_1, g_2, g_3$

Subset of V(H): \emptyset Count = 0

 $h_1 \rightarrow g_2$

 $h_2: g_1, g_2, g_3$

Subset of V(H): \emptyset Count = 0

 $h_1 \rightarrow g_3$

 $h_2: g_1, g_2, g_3$

Subset of V(H): h_1 Count = 0

 $\textit{h}_1 \rightarrow \textit{g}_4$

 $h_2: g_1, g_2, g_3$

Connected components of $H \setminus h_1$:

$$C_1=h_2$$

$$C_2 = h_3$$


```
copies of C_1 and C_2 in G \setminus g_4 = (copies of C_1 in G \setminus g_4) \times copies of C_2 in G \setminus g_4) — overlapping copies of C_1 and C_2 in G \setminus g_4
```


Counting overlapping copies of C_1 and C_2 in $G \setminus g_4$

Count =0

 h_2/h_3 : g_1, g_2, g_3

Counting overlapping copies of C_1 and C_2 in $G \setminus g_4$

 $G \setminus g_4$

Count
$$=0+3$$

$$h_2/h_3 \rightarrow g_1$$

copies of
$$C_1$$
 and C_2 in $G \setminus g_4 = (3 \times 3) - 3$
= 6

G

Subset of V(H): h_1 Count = 0+6

Subset of V(H): h_2 Count = 6

h₁: g₁, g₂, g₃, g₄ h₂: g₁, g₂, g₃, g₄ h₃: g₁, g₂, g₃, g₄

Subset of V(H): h_2 Count = 6

 $h_1: g_1, g_2, g_3$

 $\textit{h}_2 \rightarrow \textit{g}_4$

Connected components of $H \setminus h_2$:

$$C_1=h_1,h_3$$

Count = 0

 $h_1: g_1, g_2, g_3$

Count = 0

$$h_1 \to g_1$$

 $h_3 : g_1, g_2, g_3$

Count
$$=0+1$$

$$h_1 \rightarrow g_1$$

 $h_3 \rightarrow g_3$

Count =1

$$h_1 \rightarrow g_2$$

Count =1

$$h_1 \rightarrow g_3$$

 $h_2 \cdot g_1 \quad g_4$

Count
$$=1+1$$

$$h_1 \rightarrow g_3$$

 $h_3 \rightarrow g_1$

G

Subset of V(H): h_2 Count = 6+2

G

Subset of V(H): h_3 Count = 8+2

 $\mathsf{Count} = 10$

 $\mathsf{Count} = 10$

Number of copies of H in H=2

Count = 10

Number of copies of H in H = 2

ightarrow Number of unlabelled copies of H in G=10/2=5

Thank You!

