Demi-groupes, monoïdes et groupes

Soit un demi-groupe $(\mathbb{E}, +)$, c'est-à-dire que

• \mathbb{E} est stable par +

• La loi + est associative

On dira de plus que $\mathbb E$ est un *monoïde* si il existe $e \in \mathbb E$ tel que

$$\forall x \in \mathbb{E}, xe = ex = x$$

On dira enfin que \mathbb{E} est un *groupe* si il existe $\cdot^{-1}: \mathbb{E} \to \mathbb{E}$ tel que

$$\forall x \in \mathbb{E}, xx^{-1} = x^{-1}x = e$$

Question 0 Donner un groupe, puis un monoïde qui n'est pas un groupe, et enfin un demigroupe qui n'est pas un monoïde.

Correction

- $(\mathbb{Z},+)$
- $(\mathbb{N},+)$
- $(\mathbb{N}^{\star}, +)$

Si $\mathbb E$ est un monoïde commutatif, soit \sim \in $\left(\mathbb E^2\right)^2$ telle que $(a,b)\sim(c,d)\Longleftrightarrow a+d=b+c.$

Question 1 Que dire de \mathbb{E}^2/\sim ?

Correction

C'est un groupe.

- Monoïde (terme à terme).
- L'inverse de (a, b) est (b, a).

Soit Σ un ensemble fini. On appelle Σ^{\star} le plus petit monoïde contenant Σ et tel que tous les éléments de Σ^{\star} admettent une unique composition comme somme d'éléments de Σ . On note son neutre ε .

 \clubsuit Question 2 Justifier que Σ^* est l'ensemble des mots finis sur Σ

Correction

On pose φ la fonction qui à un mot fini sur Σ associe sa somme.

La surjectivité de φ est immédiate car Σ^{\star} est de taille minimale.

Démontrons l'injectivité de φ .

 \square Soient u, v des mots finis sur Σ tels que $\varphi(u) = \varphi(v)$. Par définition de φ ,

$$\sum_{i=0}^{|u|} u_i = \sum_{i=0}^{|v|} v_i$$

Par unicité de la décomposition de $\varphi(u)$ et $\varphi(v)$, $\forall i \leq |u|, u_i = v_i$.

La fonction φ est bijective (c'est d'ailleurs immédiatement un morphisme de monoïdes), donc on peut identifier les deux ensembles.

On pose $\mathcal{A} := \{x \mapsto wx, w \in \Sigma^{\star}\}$, que l'on munit de la loi de composition usuelle des fonctions.

 $\uparrow \uparrow$ Question 3 Justifier que Σ^* et $\mathcal A$ sont en isomorphes comme monoïdes.

Correction

On pose $\varphi: \Sigma^* \to \mathcal{A}$ la fonction $w \mapsto x \mapsto xw$. La surjectivité est encore une fois évidente. L'injectivité se démontre en regardant $\varphi(u)(\varepsilon)$. On constate vérifie que $\varphi(u) \circ \varphi(v) = \varphi(uv)$.

Associativité?

Dans cette partie, (S, +) est un demi-groupe.

Soit $n \in \mathbb{N}$ puis $a \in S^n$ un n —uplet.

Question 4 Donner le langage des expressions calculant $\sum a$. Est-il rationnel?

Ind: Par exemple, pour n = 3, $\mathcal{L} = \{a_1 + (a_2 + a_3), (a_1 + a_2) + a_3\}.$

Correction

C'est le langage des sommes bien parenthésées. C'est une question piège, le langage est fini donc rationnel.

Question 5 Mettre en bijection \mathcal{L} et l'ensemble des arbres binaires à n noeuds. Dénombrer \mathcal{L} .

Correction

À une somme on associe un arbre dont les noeuds sont les + et leurs enfants sont les termes sommés (donc la représentation sous forme d'arbre de la somme).

Pour dénombrer les arbres à n noeuds, on peut utiliser la méthode des classes combinatoires, si \mathcal{T} est la classe des arbres binaires,

$$\mathcal{T} = \mathcal{E} + \mathcal{Z} \times \mathcal{T}^2$$

Ainsi, $T=1+ZT^2$ donc $ZT^2-T+1=0$ et enfin $T=\frac{1\pm\sqrt{1-4Z}}{2Z}$. Par continuité, on écarte la solution en +. En faisant un développement en série entière, on retrouve les Nombres de Catalan.

On considère maintenant posséder une machine capable d'exécuter $\omega \in \mathbb{N}^*$ opérations "+" simultanées.

Question 6 Donner un mauvais ordre de calcul de $\sum a$, puis un choix plus raisonnable.

Un très mauvais ordre est de gauche à droite sans répartir le travail. Un meilleur choix est de faire une ω -chotomie, c'est-à-dire partager le travail récursivement en blocs de taille ω .

Retouches

Soient \mathcal{L} un langage rationnel et $M \in \Sigma^*$ un mot de longueur $n \in \mathbb{N}^*$. On appelle une requête un couple $1 \le i \le j \le n$ et sa *taille* est r := j - i.

On satisfait une requête en renvoyant si $M[i:j] \in \mathcal{L}$. On note $q \in \mathbb{N}$ le nombre d'états d'un automate qui reconnaît \mathcal{L} .

🤗 Question 7 🛮 Donner un algorithme satisfaisant une requête.

Correction

On se munit d'un automate, et on fait tourner l'automate sur M[i:j].

Moyennant un précalcul,

riangle Question 8 Donnez un algorithme efficace satisfaisant une requête en temps $\mathcal{O}(q\log r)$ Ind: On pourra introduire un ensemble de fonctions similaire à \mathcal{A} agissant sur l'automate.

Correction

Cette question est notée comme difficile car on préférera un précalcul permettant de répondre à la question suivante.

On se munit d'un automate dont on note l'ensemble des états Q,q_0 l'état initial et la fonction de transition δ .

On suit l'indication et on pose $\mathcal{A} := \{\delta^*(\cdot, M[i,j]), 1 \leq i \leq j \leq n\} \subset \mathbb{Q}^Q$.

Ne voulant pas stocker toutes ces valeurs, on opte pour une solution semblable au tri par tas. On stocke l'entrée associée à i,j si j-i est une puissance de 2 qui divise i et j. On peut stocker une telle fonction sous la forme d'un tableau de taille q par exemple. On peut reconstituer l'action de M[i,j] en temps logarithmique en r et proportionnel à q (il faut composer des fonctions de Q dans Q).

Une modification est une opération de la forme $M[i] \leftarrow a$ avec $a \in \Sigma$.

Question 9 Modifier l'algorithme précédent pour permettre des modifications en temps $\mathcal{O}(q \log n)$.

Correction

On modifie l'action de M[i:i] stockée, puis on fait percoler les modifications vers le haut. Cela se fait en temps logarithmique en n (et on a encore le facteur q pour les compositions).