

A04444L

80V N-Channel MOSFET SDMOS™

General Description

The AO4444L is fabricated with SDMOSTM trench technology that combines excellent $R_{DS(ON)}$ with low gate charge and low Qrr.The result is outstanding efficiency with controlled switching behavior. This universal technology is well suited for PWM, load switching and general purpose applications.

Product Summary

 $\begin{array}{lll} V_{DS} & 80V \\ I_{D} \; (at \, V_{GS} \! = \! 10V) & 11A \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 10V) & < 12m\Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 7V) & < 14.5m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

SOIC-8

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol Maximum		Units	
Drain-Source Voltage		V_{DS}	80	V	
Gate-Source Voltage		V_{GS}	±25	V	
Continuous Drain Current	T _A =25°C		11		
	T _A =70°C	'D	9	Α	
Pulsed Drain Current ^Ĉ		I _{DM}	80		
Avalanche Current ^C		I _{AS} , I _{AR}	45	А	
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	101	mJ	
	T _A =25°C	В	3.1	W	
Power Dissipation ^B	T _A =70°C	P _D	2	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	D	31	40	°C/W				
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	59	75	°C/W				
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	16	24	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units				
STATIC PARAMETERS										
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	80			V				
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =80V, V _{GS} =0V	,		10 50	μА				
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±25V	1		100	nA				
	Gate Threshold Voltage	V _{DS} =V _{GS} I _D =250μA	2.6	3	3.8	V				
V _{GS(th)}	On state drain current	V _{GS} =10V, V _{DS} =5V	80	3	0.0	A				
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =3V	00	10	12					
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125°C)	18	22	mΩ				
		V _{GS} =7V, I _D =10A		11.6	14.5	mΩ				
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =11A		32		S				
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V				
I _S	Maximum Body-Diode Continuous Current				4.5	Α				
DYNAMIC	PARAMETERS			•	•					
C _{iss}	Input Capacitance		1900	2386	2865	pF				
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =40V, f=1MHz	190	276	360	pF				
C _{rss}	Reverse Transfer Capacitance	1	60	100	140	pF				
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	0.4	0.8	1.2	Ω				
SWITCHII	NG PARAMETERS									
Q _g (10V)	Total Gate Charge		30	38	46	nC				
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =40V, I_{D} =11A	10	13	16	nC				
Q_{gd}	Gate Drain Charge	1	6	10	14	nC				
$t_{D(on)}$	Turn-On DelayTime			13		ns				
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =40V, R_L =3.64 Ω ,		9		ns				
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		23		ns				
t _f	Turn-Off Fall Time			5		ns				
t _{rr}	Body Diode Reverse Recovery Time	I _F =11A, dI/dt=500A/μs	12	18	24	ns				
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =11A, dI/dt=500A/μs	45	65	85	nC				
	· · · · · · · · · · · · · · · · · · ·	•	_							

A. The value of R_{0JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

D. The R_{0JA} is the sum of the thermal impedence from junction to lead R_{0JL} and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using $<300\mu s$ pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

0

5

7

V_{GS} (Volts)

Figure 5: On-Resistance vs. Gate-Source Voltage

6

8

9

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

10

1.0E-05

0.0

0.2

0.4

0.6

V_{SD} (Volts)

Figure 6: Body-Diode Characteristics (Note E)

8.0

1.0

1.2

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Single Pulse Power Rating Junction-to-Ambient (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Normalized Maximum Transient Thermal Impedance (Note F)

Figure 13: Diode Reverse Recovery Charge and Peak Current vs. Conduction Current

Figure 15: Diode Reverse Recovery Charge and Peak Current vs. di/dt

Figure 14: Diode Reverse Recovery Time and Softness Factor vs. Conduction Current

Figure 16: Diode Reverse Recovery Time and Softness Factor vs. di/dt

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

