

Figure 1

1.0054234 0.12202

Figure 2

LIPID HETEROGLYCOSIDES

Figure 3

- a) 1. TfN₃, H₂O, K₂CO₃, CH₂Cl₂, MeOH, CuSO₄; 2. Ac₂O, pyridine, DMAP;
 b) NH₃, MeOH, THF; 4. TBSCl, imidazole, CH₂Cl₂, 72% (four steps);
 c) 1. NaOMe, MeOH; 2. PhCH(OMe)₂, pTsOH, CH₃CN, 86% (two steps);
 d) Ac₂O, DMAP, pyridine;
 e) 1. TFA (60% aq.), CH₂Cl₂; 2. AcCl, collidine, -40°C; f) TES, TFA, CH₂Cl₂;
 g) 1. TBSOTf, lutidine, CH₂Cl₂; 2. TBAF, AcOH, THF; h) CCl₃CN, DBU, CH₂Cl₂;
 i) DAST, CH₂Cl₂, 0°C; j) SOBr₂, imidazole, THF.

Figure 4

- a) 1. NaOMe, MeOH; 2. AcCl, collidine, -40°C, 93% (two steps);
b) BnBr, Ag₂O, 4Å molecular sieves, CH₂Cl₂, 80%;
c) 1. THF, AcOH, TBAF; 2. CCl₃CN, DBU, CH₂Cl₂, 88% (2 steps).

IC054274.indd 202

Figure 5

a) 1. NaH , BnBr , THF, Bu_4NI ; 2. aq. HOAc (66%), 40°C ; 3. TBSCl , DMAP, CH_2Cl_2 , pyridine; 4. Ac_2O , DMAP, pyridine; 5. HF-pyridine, THF; 6. TEMPO (cat.), KBr , Bu_4NBr , NaHCO_3 , NaOCl , $\text{CH}_2\text{Cl}_2/\text{H}_2\text{O}$; 7. 4M NaOH , MeOH; 8. MeI , KHCO_3 , DMF, 65% (eight steps); b) TFA (90% aq.), quant; c) 1. Tf_2O , pyridine, CH_2Cl_2 ; 2. LevONa , DMF, 80°C , 82% (two steps); d) N_2H_4 , HOAc , pyridine, 91%.

10054234-042202

Figure 6

a) 2-methoxypropene, DMF, CSA;
b) methoxycyclopentene, DMF, CSA.

Figure 7

Glucuronic Acid Acceptors

- a) TBSOTf, 4Å molecular sieves, CH_2Cl_2 , -78°C to rt;
- b) AgClO_4 , SnCl_2 , Et_2O , 4Å molecular sieves, 0°C to rt;
- c) dichloroacetic acid (75% aq.);
- d) dichloroacetic acid (50% aq.);
- e) dichloroacetic acid (60% aq.)

Figure 8

- a) TBSOTf, 4Å molecular sieves, CH_2Cl_2 , -78°C to rt;
- b) AgClO_4 , SnCl_2 , Et_2O , 4Å molecular sieves, 0°C to rt;
- c) dichloroacetic acid (75% aq.);
- d) dichloroacetic acid (50% aq.);
- e) dichloroacetic acid (60% aq.)

30054234 042206

Figure 9

Glucuronic Acid Disaccharide Donors

- a) $(MCA)_2O$, CH_2Cl_2 , DMAP, pyridine;
- b) $BnNH_2$, ether, $0^\circ C$;
- c) $NCCl_3$, DBU, CH_2Cl_2 ;
- d) $TBSCl$, imidazole, CH_2Cl_2 ;
- e) $(Lev)_2O$, DMAP, CH_2Cl_2 ;
- f) $AllocCl$, DMAP, CH_2Cl_2 ;
- g) $TBAF$, $HOAc$, THF;
- h) Ac_2O , CH_2Cl_2 , DMAP, pyridine.

Figure 10

Figure 11

a) 4-penten-1-ol, TMSOTf, CH₂Cl₂, 0°C;
b) HF-pyridine, HOAc, THF.

Figure 12

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 13

a) TMSOTf, CH₂Cl₂, -20°C, 93%; b) HF-pyridine, AcOH, THF, 82%;
 c) TMSOTf, CH₂Cl₂, -5°C, 63%; d) 1. TBAF, AcOH, THF; 2.
 Cl₃CCN, DBU, CH₂Cl₂, 0°C, 87% (2 steps).

Figure 14

a) TMSOTf, CH_2Cl_2 , -20°C , 62%;

10054324 032202

Figure 15

a) Thiourea, DMF, pyridine, rt, 24 h (90%) b) BnBr, Ag₂O, 4 Å molecular sieves, CH₂Cl₂, rt, overnight (76%); c) Ac₂O, pyridine (quant.); d) NH₂NH₂-H₂O, pyridine, AcOH (90%); e) 1. aq. LiOH (0.7 M), H₂O₂ (50% aq.), THF overnight; 2. 4 M NaOH, rt overnight (82%); f) Et₃NSO₃, DMF, 50°C, overnight (50%); g) H₂, Pd/C, EtOH, water (quantitative); h) PySO₃, water (60%).

Figure 16

RECEIVED 12/2/2002

- a) Thiourea, DMF, pyridine, rt, 24 h (90%) b) BnBr, Ag₂O, 4Å molecular sieves, CH₂Cl₂, rt, overnight (76%); c) Ac₂O, pyridine (quant.); d) NH₂NH₂-H₂O, pyridine, AcOH (90%); e) 1. aq. LiOH (0.7 M), H₂O₂ (50% aq.), THF overnight; 2. 4 M NaOH, rt overnight (82%); f) Et₃NSO₃, DMF, 50°C, overnight (50%); g) H₂, Pd/C, EtOH, water (quantitative); h) PySO₃, water (60%).

Figure 17

