МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 52

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

кандидат тех. наук, доцент		Марковская Н.В.
должность, уч. степень, звание	подпись, дата	инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №2

ИСПОЛЬЗОВАНИЕ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ

по курсу: Надежность инфокоммуникационных систем

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР. №	5911	25.03.2022	Собакин М.С.
		подпись, дата	инициалы, фамилия

Лабораторная работа №2 ИСПОЛЬЗОВАНИЕ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ

1. Цель работы

Вычислить оценку вероятности связности пары вершин в случайном графе, используя имитационное моделирование и ускоренное имитационное моделирование. Сравнить полученные результаты.

2. Ход выполнения работы

2.1. Этап 1. Применение простого имитационного моделирования

Топология исходного графа:

Рисунок 1 – Заданный граф

В ходе первого этапа необходимо провести моделирование, используя алгоритм имитационного моделирования, изображенный на рисунке 2, и построить график функции , где р изменяется в интервале от 0 до 1 с шагом 0.1. Дополнительными входными данными для выполнения моделирования являются точность оценки и число экспериментов , которое необходимо провести для достижения заданной точности.

Число экспериментов, которое необходимо провести для достижения заданной точности, зависит от требуемой точности и вычисляется по формуле:

По результатам работы программы получим оценку вероятности существования пути и сравним ее с результатом, полученным при полном переборе.

Для точности получили:

Для точности получили:

По полученным данным видно, что оценка вероятности, полученная в результате имитационного моделирования, отличается от оценки, полученной полным перебором не более чем на . Из чего можем сделать вывод о том, имитационное моделирование было проведено верно.

2.2. Этап 2. Ускоренное моделирование

В ходе второго этапа лабораторной работы необходимо использовать один из методов ускоренного имитационного моделирования для получения оценки вероятности пути между двумя вершинами. Воспользуемся алгоритмом ускорения за счет уменьшения множества рассматриваемых при имитационном моделировании графов.

Во множестве всевозможных графов, которые можно получить на основе случайного, есть два подмножества. В первое множество входят графы, для которых достоверно известно, что рассматриваемая пара вершин в нем несвязна. Второе множество составляют графы, для которых также достоверно известно, что рассматриваемая пара в них связана. Для ускорения будем исключать процедуры вычисления связности для таких графов.

Число экспериментов, которое необходимо провести для достижения заданной точности, вычисляется также:

вычисляется программно, с помощью алгоритма Дейкстры. вычисляем вручную.

По результатам работы программы получим оценку вероятности существования пути и сравним ее с результатом, полученным при полном переборе.

Для точности получили:

Для точности получили:

По полученным данным видно, что оценка вероятности, полученная в результате ускоренного имитационного моделирования, отличается от оценки, полученной полным перебором не более чем на $\pm\Box$. Из чего можем сделать вывод о том, что ускоренное имитационное моделирование было проведено верно.

2.3. Графики

Построим графики зависимости оценки вероятности пути для $\square=0,1$ и $\square=0,01$ от вероятности существования ребра.

Pисунок – Γ рафик зависимости оценки вероятности пути для точности $\square=0.1$

Из графиков хорошо видно, что оценка вероятности при точности $\square=0,1$ имеет большее отклонение от точных значений, чем оценка вероятности при $\square=0,01$.

Построим график выигрыша, то есть зависимости отношения от вероятности появления ребра, где — количество экспериментов при имитационном моделирование, — количество экспериментов при ускоренном моделировании.

Из графика видно, что наибольший выигрыш ускоренное моделирование дает при вероятности существования ребра либо близкой к 0, либо к 1. Чем ближе значение вероятности к 0,5, тем менее заметным становится выигрыш. Это связано с тем, что, чем меньше вероятность существования ребра, чем чаще мы заходим в условие того, что вес графа меньше, чем , то есть пути точно нет. Аналогично для больших вероятностей существования ребра, мы часто заходим в условие, что путь точно существует.

Выводы

В ходе выполнения лабораторной работы, мы познакомились с методами имитационного моделирования и ускоренного имитационного моделирования, а также реализовали их на практике и сравнили. В результате чего сделали вывод о том, что ускоренное имитационное моделирование дает наибольший выигрыш при вероятностях существования ребра ближе к 0, или ближе к 1.

Вывод программы

```
Subgraph count = 224
Subgraphs with ways = 7
Result on current step: 0.03125
Advantage: 4.48
Subgraph count = 224
Subgraphs with ways = 24
Result on current step: 0.10714285714285714
Advantage: 1.792
Subgraph count = 224
Subgraphs with ways = 49
Result on current step: 0.21875
Advantage: 1.2873563218390804
Subgraph count = 224
Subgraphs with ways = 99
Result on current step: 0.4419642857142857
Advantage: 1.2108108108108109
Subgraph count = 224
Subgraphs with ways = 134
Result on current step: 0.5982142857142857
Advantage: 1.382716049382716
Subgraph count = 224
Subgraphs with ways = 175
Result on current step: 0.78125
Advantage: 1.9478260869565218
Subgraph count = 224
Subgraphs with ways = 199
Result on current step: 0.8883928571428571
Advantage: 3.7333333333333333
Subgraph count = 224
Subgraphs with ways = 215
Result on current step: 0.9598214285714286
Advantage: 11.789473684210526
Subgraph count = 224
Subgraphs with ways = 220
Advantage: 224.0
Subgraph count = 224
Subgraphs with ways = 224
Result on current step: 1.0
Advantage: Infinity
```

Pисунок – Bывод результатов вычислений для разных значений P