3. Devre Yasaları

Terimlerin Tanımları

- ❖ Dal:
 - o Tek bir devre elemanını gösterir.
- Düğüm
 - o İki veya daha fazla elemanın bağlandığı noktayı gösterir.
- Çevre
 - o Devre içinde kapalı bir yoldur.

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

3

Seri ve Paralel Bağlantılar Seri bağlantı Paralel bağlantı Elektrik Devreleri Y. Doç. Dr. Tuncay UZUN

Kirchhoff'un Akım Yasası (KAY)

Bir düğümdeki akımların cebirsel toplamı 0 dır. veya

düğüme giren akımların toplamı = düğümden çıkan akımların toplamı

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

7

Örnek 3.2, sf 22

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

KAY için örnekler

1. Seri devrelerde bulunan düğümlerde $i_1 = i_2$

2. Bu çeşit bağlantılara izin verilmez!

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

9

daha

$$I_t = I_1 + I_2 - I_3$$

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

Kirchhoff'un Gerilim Yasası (KGY)

kapalı bir yol boyunca bütün gerilimlerin toplamı= 0 veya

düşen gerilimlerin toplamı = artan gerilimlerin toplamı

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

11

Örnek 3.1, sf 21

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

Örnek 3.1, sf 21

$$-Va + V1 + Vb + V2 + V3 = 0$$

 $-Va + I \cdot R1 + Vb + I \cdot R2 + I \cdot R3 = 0$
 $I \cdot (R1 + R2 + R3) = Va - Vb$

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

13

Dirençlerin seri bağlanması

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

Şekil 3.3, sf 22

$$-V + V1 + V2 + V3 = 0$$
 (KGY)
 $-V + I \cdot R1 + I \cdot R2 + I \cdot R3 = 0$ (Ohm Yasası)
 $I \cdot (R1 + R2 + R3) = V$
 $I \cdot Reş = V$
 $Reş = R1 + R2 + R3 + ...$

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

15

Dirençlerin paralel bağlanması

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

Şekil 3.4, sf 24

$$-I + I1 + I2 + I3 = 0 (KAY)$$

$$-I + V/R1 + V/R2 + V/R3 = 0 (Ohm Yasası)$$

$$I = V/R1 + V/R2 + V/R3$$

$$I = V \cdot (1/R1 + 1/R2 + 1/R3)$$

$$I = V \cdot (1/Reş)$$

$$1/Reş = 1/R1 + 1/R2 + 1/R3 + \dots$$

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

17

KGY için örnekler, Ör 1

Paralel elemanlar aynı gerilime sahiptir!

$$\mathbf{v}_1 = \mathbf{v}_2$$

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

Ör 2

2. Bu şekildeki bağlantıya izin verilmez!

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

19

Ör 3

$$\mathbf{v}_{\mathsf{t}} = \mathbf{v}_1 \mathbf{-} \mathbf{v}_2 \mathbf{+} \mathbf{v}_3$$

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

Devre Yasalarının Özeti

- Ohm Yasası: $v = i \cdot R$
- o KAY: Bir düğüm için

$$\sum_{n=1}^{N} i_n = 0$$

o KGY: Kapalı bir yol için

$$\sum_{n=1}^{N} v_n = 0$$

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

21

Örnek 2.11, sf 17

Aşağıdaki devrede elemanların gücünü bulunuz.

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

Örnek 2.11, KGY ile çözüm

$$-V1 + V2 + V3 + V4 = 0$$
 (KGY)

$$-V1 + I \cdot R2 + V3 + I \cdot R4 = 0$$

(Ohm yasasından V=I·R, yararlanarak)

$$I \cdot (R2 + R4) = V1 - V3$$

$$I \cdot (1+2) = 20 - 50$$

$$I = -30/3$$

I = -10 A

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

23

Örnek 2.11, indirgeme ile çözüm

Seri bağlı elemanların yerlerini değiştirebiliriz.

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN 3. Devre Yasaları

Örnek 2.11, indirgeme ile çözüm

Aynı türden elemanların eşdeğerini buluruz.

$$\begin{aligned} Vt &= V1\text{-}V3 & Rt &= R2\text{+}R4 \\ Vt &= 20\text{-}50 = \text{-}30V & Rt &= 3\Omega \end{aligned}$$

$$Vt = -30V$$

$$I$$

$$I = Vt / Rt = -30/3 = -10 \text{ A (Ohm yasası)}$$

Elektrik Devreleri 3. Devre Yasaları

25

Örnek 2.11 Eleman güçleri

P1 = -V1·I = -20·(-10) = 200 W
P2 = I²·R2 = (-10)²·1 = 100 W
P3 = V3·I = 50·(-10) = -500 W
P4 = I²·R4 = (-10)²·2 = 200 W

$$\sum_{n=1}^{4} P_n = 0$$
P1 + P2 + P3 + P4 = 0
200 + 100 - 500 + 200 = 0

Elektrik Devreleri Y.Doç.Dr.Tuncay UZUN

Y.Doç.Dr.Tuncay UZUN

3. Devre Yasaları