



## Gravitational Waves from Cosmological Phase Transitions

Cyril Lagger

2019 Sydney Particle Physics and Cosmology meeting

Introduction

• A prediction of General Relativity and Einstein Field Equations:

$$8\pi G T_{\mu\nu} = G_{\mu\nu}$$

• A prediction of General Relativity and Einstein Field Equations:

 $8\pi G$  [Energy-matter density] = [Space-time curvature]

· A prediction of General Relativity and Einstein Field Equations:

8πG [Energy-ma

[Energy-matter density] = [Space-time curvature]



• A prediction of General Relativity and Einstein Field Equations:



• A prediction of General Relativity and Einstein Field Equations:



### GWs as a probe of the Universe

Gravitational Wave (GW) detections by LIGO/Virgo are promising for theoretical physics:

- · confirm a prediction of General Relativity
- allow us to test GR (and its modifications) in a strong and dynamical regime
- suggest to look for other sources of GWs in relation to particle physics: phase transitions, inflation cosmic strings,...

### GWs as a probe of the Universe

Gravitational Wave (GW) detections by LIGO/Virgo are promising for theoretical physics:

- · confirm a prediction of General Relativity
- allow us to test GR (and its modifications) in a strong and dynamical regime
- suggest to look for other sources of GWs in relation to particle physics: phase transitions, inflation cosmic strings,...

#### Main topic of this talk:

 exploring beyond the Standard Model physics with GWs from phase transitions









































GW background from bubble collisions

## Mechanism and dimensional analysis

Stochastic background from three sources [C. Caprini et al., JCAP 1604 (2016) no.04 001]:

$$h^2\Omega_{\text{GW}}(f)\simeq h^2\Omega_{col}+h^2\Omega_{\text{SW}}+h^2\Omega_{\text{MHD}}$$

### Mechanism and dimensional analysis

Stochastic background from three sources [C. Caprini et al., JCAP 1604 (2016) no.04 001]:

$$h^2\Omega_{GW}(f) \simeq h^2\Omega_{col} + h^2\Omega_{sw} + h^2\Omega_{MHD}$$

Peak frequency and amplitude of the background mainly depend on the mean bubble size  $\bar{R}$  at collision and kinetic energy  $\rho_{kin}$  stored in the bubbles:

• 
$$f_{\text{peak}} \sim (\bar{R})^{-1}$$

• 
$$\Omega_{\rm col} \sim (\bar{R}H_p)^2 \frac{\rho_{\rm kin}^2}{(\rho_{\rm kin} + \rho_{\rm rad})^2}$$

Going beyond dimensional analysis with simulations (and redshift)

[S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Going beyond dimensional analysis with simulations (and redshift)

[S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation:  $\alpha = \rho_{\rm kin}/\rho_{\rm rad}$  and  $\beta = v \bar{R}^{-1}$ 

### Going beyond dimensional analysis with simulations (and redshift)

[S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation: 
$$\alpha = \rho_{\rm kin}/\rho_{\rm rad}$$
 and  $\beta = v\bar{R}^{-1}$ 

Amplitude:

$$h^{2}\Omega_{col}(f) = 1.67 \times 10^{-5} \left(\frac{100}{g_{*}}\right)^{1/3} \left(\frac{\beta}{H_{p}}\right)^{-2} \kappa_{v}^{2} \left(\frac{\alpha}{1+\alpha}\right)^{2} \left(\frac{0.11v^{3}}{0.42+v^{2}}\right) S(f)$$
$$S(f) = \frac{3.8(f/f_{0})^{2.8}}{1+2.8(f/f_{0})^{3.8}}$$

#### Going beyond dimensional analysis with simulations (and redshift)

[S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation:  $\alpha = \rho_{\rm kin}/\rho_{\rm rad}$  and  $\beta = v\bar{R}^{-1}$ 

#### Amplitude:

$$h^{2}\Omega_{col}(f) = 1.67 \times 10^{-5} \left(\frac{100}{g_{*}}\right)^{1/3} \left(\frac{\beta}{H_{p}}\right)^{-2} \kappa_{v}^{2} \left(\frac{\alpha}{1+\alpha}\right)^{2} \left(\frac{0.11v^{3}}{0.42+v^{2}}\right) S(f)$$
$$S(f) = \frac{3.8(f/f_{0})^{2.8}}{1+2.8(f/f_{0})^{3.8}}$$

### Peak frequency:

$$f_0 = 1.65 \times 10^{-7} \left( \frac{T_p}{1 \text{ GeV}} \right) \left( \frac{g_*}{100} \right)^{1/6} H_p^{-1} \beta \left( \frac{0.62}{1.8 - 0.1 \text{V} + \text{V}^2} \right) \text{ Hz}$$

#### **Bubble collision simulations**

#### Going beyond dimensional analysis with simulations (and redshift)

[S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation:  $\alpha = \rho_{kin}/\rho_{rad}$  and  $\beta = v\bar{R}^{-1}$ 

Amplitude:

$$h^{2}\Omega_{col}(f) = 1.67 \times 10^{-5} \left(\frac{100}{g_{*}}\right)^{1/3} \left(\frac{\beta}{H_{p}}\right)^{-2} \kappa_{v}^{2} \left(\frac{\alpha}{1+\alpha}\right)^{2} \left(\frac{0.11v^{3}}{0.42+v^{2}}\right) S(f)$$
$$S(f) = \frac{3.8(f/f_{0})^{2.8}}{1+2.8(f/f_{0})^{3.8}}$$

Peak frequency:

$$f_0 = 1.65 \times 10^{-7} \left( \frac{T_p}{1 \text{ GeV}} \right) \left( \frac{g_*}{100} \right)^{1/6} H_p^{-1} \beta \left( \frac{0.62}{1.8 - 0.1 \text{v} + \text{v}^2} \right) \text{ Hz}$$

The set of parameters  $(\bar{R}, \rho_{kin}, v, \kappa_{\nu})$  is determined by the underlying particle physics model.

Model

Phase transitions beyond the Standard

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

 $\Rightarrow$  no stochastic GW background predicted in the SM

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

### Typical BSM electroweak PT:

- ·  $\mathcal{O}(1)$  bubbles produced per Hubble volume at  $T_n \lesssim T_{EW}$
- · they rapidly collide  $\Rightarrow$  percolation temperature  $T_p \sim T_n$
- · time scale of the process much shorter than Hubble time
- $f_{
  m peak} \sim {
  m milliHertz} \Rightarrow {
  m range \ of \ LISA}$  [C. Caprini et al., JCAP 1604 (2016) no.04 001]

#### In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

 $\Rightarrow$  no stochastic GW background predicted in the SM

#### Prolonged and supercooled PT [A. Kobakhidze, CL, A. Manning, J. Yue, arXiv:1703.06552]:

- · weaker nucleation probability
- $\cdot$  less bubbles produced  $\Rightarrow$  more time needed for them to collide
- $\cdot \Rightarrow T_p \ll T_n \lesssim T_{EW}$
- $f_{\rm peak} \sim 10^{-8} \; {\rm Hertz} \Rightarrow {\rm range} \; {\rm of} \; {\rm Pulsar} \; {\rm Timing} \; {\rm Arrays}$

#### In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

QCD-induced PT [S. Arunasalam, A. Kobakhidze, CL, S. Liang, A. Zhou, arXiv:1709.10322]:

- no EWPT before  $T \sim T_{\text{QCD}}$
- $\cdot$  at  $T_{QCD}$ : 1st order chiral phase transition with 6 massless quarks
- · quark condensates trigger EWPT
- $f_{\rm peak} \sim 10^{-8} \; {\rm Hertz} \Rightarrow {\rm range \; of \; Pulsar \; Timing \; Arrays}$

See also: [E. Witten Nucl.Pys.B177 (1981) 477] [W. Buchmuller, D. Wyler, PLB 249 (1990) 281] [S. Iso et al., PRL 119 (2017) 141301] [B. von Harling, G. Servant, JHEP 1801 (2018) 159]

#### In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

 $\Rightarrow$  no stochastic GW background predicted in the SM



Prolonged electroweak phase transition

#### The model

## Non-linear realization of the electroweak gauge group

[A. Kobakhidze, A. Manning, J. Yue, Int.J.Mod.Phys. D26 (2017) no.10, 1750114 ]

- $\mathcal{G}_{coset} = SU(2)_L \times U(1)_Y/U(1)_Q$  is gauged
- · broken generators  $T^i = \sigma^i \delta^{i3}\mathbb{I}$  and Goldstone bosons  $\pi^i(x)$
- physical Higgs as a singlet  $\rho(x) \sim (1,1)_0$
- SM Higgs doublet identified as  $H(x) = \frac{\rho(x)}{\sqrt{2}} e^{\frac{i}{2}\pi^i(x)\tau^i} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad i \in \{1, 2, 3\}$

#### SM particle content but BSM interactions

Minimal setup (usual SM configurations except Higgs potential):

$$V^{(0)}(\rho) = -\frac{\mu^2}{2}\rho^2 + \frac{\kappa}{3}\rho^3 + \frac{\lambda}{4}\rho^4.$$

Model specified by one parameter:  $\kappa = \bar{\kappa} \cdot \frac{m_h^2}{V} \sim 63.5 \cdot \bar{\kappa}$  GeV.



Decay probability per unit volume per unit time:  $\Gamma(T) \approx A(T)e^{-S(T)}$ 

Decay probability per unit volume per unit time:  $\Gamma(T) \approx A(T)e^{-S(T)}$ 

Probability for a point of space-time to remain in the false-vacuum:

$$p(t) = \exp\left[-\frac{4\pi}{3} \int_{t_{\star}}^{t} dt' \Gamma(t') a^{3}(t') r^{3}(t,t')\right] \qquad r(t,t') = \int_{t'}^{t} dt'' \frac{v(t'')}{a(t'')}$$

Percolation temperature ( $\sim$  collision) [L. Leitao et al., JCAP 1210 (2012) 024]:  $p(t_p) \approx 0.7$ 

Decay probability per unit volume per unit time:  $\Gamma(T) \approx A(T)e^{-S(T)}$ 

Probability for a point of space-time to remain in the false-vacuum:

$$p(t) = \exp\left[-\frac{4\pi}{3} \int_{t_{\star}}^{t} dt' \Gamma(t') a^{3}(t') r^{3}(t,t')\right] \qquad r(t,t') = \int_{t'}^{t} dt'' \frac{v(t'')}{a(t'')}$$

Percolation temperature ( $\sim$  collision) [L. Leitao et al., JCAP 1210 (2012) 024]:  $p(t_p) \approx 0.7$ 

Number density of produced bubbles:

$$\frac{dN}{dR}(t,t_R) = \Gamma(t_R) \left(\frac{a(t_R)}{a(t)}\right)^4 \frac{p(t_R)}{v(t_R)}$$

Decay probability per unit volume per unit time:  $\Gamma(T) \approx A(T)e^{-S(T)}$ 

Probability for a point of space-time to remain in the false-vacuum:

$$p(t) = \exp\left[-\frac{4\pi}{3} \int_{t_{\star}}^{t} dt' \Gamma(t') a^{3}(t') r^{3}(t,t')\right] \qquad r(t,t') = \int_{t'}^{t} dt'' \frac{v(t'')}{a(t'')}$$

Percolation temperature ( $\sim$  collision) [L. Leitao et al., JCAP 1210 (2012) 024]:  $p(t_p) \approx 0.7$ 

Number density of produced bubbles:

$$\frac{dN}{dR}(t,t_R) = \Gamma(t_R) \left(\frac{a(t_R)}{a(t)}\right)^4 \frac{p(t_R)}{v(t_R)}$$

Nucleation temperature  $T_n$ : maximum of  $\frac{dN}{dR}(t_p, t_R)$ 

# Bubbles properties at collision

## By definition:

- · most bubbles collide at  $t_p$
- majority of them produced at  $t_n$

```
\Rightarrow bubble physical radius: \bar{R} = a(t_p)r(t_p, t_n)
```

# Bubbles properties at collision

### By definition:

- · most bubbles collide at  $t_p$
- majority of them produced at  $t_n$

$$\Rightarrow$$
 bubble physical radius:  $\bar{R} = a(t_p)r(t_p, t_n)$ 

Kinetic energy stored in bubble-walls:

$$E_{\rm kin} = \kappa_{\nu} \cdot 4\pi \int_{t_n}^{t_p} dt \frac{dR}{dt}(t, t_n) R^2(t, t_n) \epsilon(t)$$

- $\epsilon(t)$ : latent heat ( $\sim$  vacuum energy)
- $\kappa_{\nu}$ : fraction of energy going into the wall motion (vs. heating the plasma)

# Bubbles properties at collision

## By definition:

- · most bubbles collide at  $t_p$
- majority of them produced at  $t_n$

$$\Rightarrow$$
 bubble physical radius:  $\bar{R} = a(t_p)r(t_p, t_n)$ 

Kinetic energy stored in bubble-walls:

$$E_{\rm kin} = \kappa_{\nu} \cdot 4\pi \int_{t_n}^{t_p} dt \frac{dR}{dt}(t, t_n) R^2(t, t_n) \epsilon(t)$$

- ·  $\epsilon(t)$ : latent heat ( $\sim$  vacuum energy)
- $\kappa_{\nu}$ : fraction of energy going into the wall motion (vs. heating the plasma)

 $\bar{R}$  and  $E_{kin}$ : key parameters to deduce the GW spectrum

## Numerical results

## Probability p(T):



## Numerical results

Number density distribution for  $|\bar{\kappa}| = 1.9$ :  $\Rightarrow T_n \sim 49 \text{ GeV}$ 



## Numerical results



- · Current constraints: EPTA, PPTA, NANOGrav
- · Possible detection: Square Kilometre Array

Conclusion

### Conclusion

 Gravitational Waves are allowing us to explore the fundamental laws of the Universe!

• Future detectors and theoretical investigations are likely to bring new discoveries!