

Rec'd PCT/PTO 15 DEC 2004
PCT/EP 03 / 064822
18.06.04

INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

R. Mahoney

Dated

16 APR 2003

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

Patents Form 1/77

Patents Act 1977
(Rule 16)

PCT/EP U3 / UD 4 8/
18.06.01

21 JUN 02 E72700-1 D02393
P01/7700 0.00 0214116.6

The Patent Office
Cardiff Road
Newport
South Wales
NP10 8QQ

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

1. Your reference

PF/5-70070P1

2. Patent application number

(The Patent Office will fill in this part)

0214116.6

19 JUN 2002

3. Full name, address and postcode of the or of each applicant (underline all surnames)

SYNGENTA PARTICIPATIONS AG
Intellectual Property Department
Schwarzwaldallee 215
4058 Basel, SWITZERLAND

Patents ADP number (if you know it)

8029555001

If the applicant is a corporate body, give the country/state of its incorporation

4. Title of the invention

ORGANIC COMPOUNDS

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Michael James RICKS

Syngenta Limited
Intellectual Property Department
Jealott's Hill Research Centre
PO Box 3538, BRACKNELL
Berkshire, RG42 6YA, UNITED KINGDOM

Patents ADP number (if you know it)

01282433003

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
(if you know it)

Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.

See note (d)

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description 77

Claim(s) 10

Abstract -

Drawing(s)

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination
(Patents Form 10/77)

Any other documents
(please specify)

I/We request the grant of a patent on the basis of this application.

SYNGENTA PARTICIPATIONS AG

Signature Date

Authorised Signatory

19/6/02

11. Name and daytime telephone number of person to contact in the United Kingdom

Joanna Carmen CHANDLER 01344 414079
Julie Anne BOWDICH 01344 414365

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

Organic Compounds

The present invention relates to novel α -sulfonylamino-acetonitrile derivatives of formula I. It further encompasses the preparation of the novel active compounds and to agrochemical compositions comprising at least one of these novel compounds as active ingredient. The invention further relates to the preparation of the said compositions and to the use of the compounds or of the compositions for controlling or preventing the infestation of plants by phytopathogenic microorganisms, especially fungi.

The α -sulfonylamino-acetonitrile derivatives according to the present invention correspond to the general formula I

including the optical isomers thereof and mixtures of such isomers, wherein Ar_1 and Ar_2 independently of each other stand for an optionally substituted aryl or heteroaryl group,

R_1 and R_2 stand independently of each other for hydrogen, optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl, optionally substituted $\text{C}_2\text{-}\text{C}_5$ alkenyl, $\text{C}_2\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

R_3 designates hydrogen, $\text{C}_3\text{-}\text{C}_5$ alkenyl, $\text{C}_3\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl;

R_4 is optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl, optionally substituted $\text{C}_2\text{-}\text{C}_5$ alkenyl, $\text{C}_2\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

R_5 and R_6 are independently of each other hydrogen or optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl, optionally substituted $\text{C}_2\text{-}\text{C}_5$ alkenyl, $\text{C}_2\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

R_7 and R_8 are independently of each other hydrogen or optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl, optionally substituted $\text{C}_2\text{-}\text{C}_5$ alkenyl, $\text{C}_2\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

W designates a bridge selected from $-\text{O}-$, $-\text{S}(\text{O})_{\text{m}}-$ or $-\text{NR}_3-$;

X designates a direct bond or a bridge selected from $-\text{O}-$, $-\text{S}(\text{O})_{\text{m}}-$ or $-\text{NR}_3-$;

a and b independently of each other stand for a number 1, 2 or 3; and

c and m independently of each other stand for a number zero, 1 or 2.

More specifically the present invention refers to the α -sulfonylamino-acetonitrile derivatives

of formula I wherein

Ar_1 stands for an aryl group which is optionally substituted with n radicals independently selected from R_9 ; or

stands for a 5-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R_{11} ; or

stands for a 6-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R_{11} ;

Ar_2 stands for an aryl group which is optionally substituted with n radicals independently selected from R'_9 and from one radical R_{10} ; or

stands for a 5-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R_{11} ; or

stands for a 6-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur, and being optionally substituted with n radicals independently selected from R_{11} ; or

stands for a fused bicyclic heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur, and being composed from the 5-ring- or 6-ring-membered heteroaryl groups as defined for Ar_2 with an annellated phenyl ring or with an annellated second 6-ring-membered heteroaryl, each ring and the bicyclic heteroaryl being optionally substituted with n radicals independently selected from R_{11} ;

R_1 and R_2 stand independently of each other for hydrogen or C_1-C_5 alkyl optionally substituted by halogen, C_1-C_3 alkoxy or $-NR_{12}R_{13}$; or

stand for C_2-C_5 alkenyl optionally substituted by halogen or C_1-C_3 alkoxy; or

stand for C_2-C_5 alkynyl; or

stand for C_3-C_6 cycloalkyl optionally substituted by halogen, C_1-C_3 alkoxy; C_1-C_3 alkyl or $-NR_{12}R_{13}$;

R_3 designates hydrogen, C_3-C_5 alkenyl, C_3-C_5 alkynyl or C_1-C_3 alkyl optionally substituted by C_1-C_3 alkoxy; C_3-C_5 alkenyloxy or C_3-C_5 alkynyoxy;

R_4 is C_1-C_5 alkyl optionally substituted by halogen, C_1-C_3 alkoxy or $-NR_{12}R_{13}$; or

is C_2-C_5 alkenyl optionally substituted by halogen or C_1-C_3 alkoxy; or

is C_2-C_5 alkynyl; or

is C_3-C_6 cycloalkyl optionally substituted by halogen, C_1-C_3 alkoxy or C_1-C_3 alkyl; or

R₅ and R₆ are independently of each other hydrogen or C₁-C₅alkyl optionally substituted by halogen, C₁-C₃alkoxy or -NR₁₂R₁₃; or
are C₂-C₅alkenyl optionally substituted by halogen or C₁-C₃alkoxy; or
are C₂-C₅alkynyl; or
are C₃-C₆cycloalkyl optionally substituted by halogen, C₁-C₃alkoxy; C₁-C₃alkyl or -NR₁₂R₁₃;

R₇ and R₈ are independently of each other hydrogen or C₁-C₅alkyl optionally substituted by halogen, C₁-C₃alkoxy or -NR₁₂R₁₃; or
are C₂-C₅alkenyl optionally substituted by halogen or C₁-C₃alkoxy; or
are C₂-C₅alkynyl; or
are C₃-C₆cycloalkyl optionally substituted by halogen, C₁-C₃alkoxy; C₁-C₃alkyl or -NR₁₂R₁₃;

R₉ and R'₉ independently of each other stand for C₁-C₅alkyl optionally substituted by halogen, C₁-C₄alkoxy, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; by a -X-aryl which is optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; by a -X-linked-5- or 6-ring-membered heteroaryl group optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stand for C₃-C₆cycloalkyl, optionally substituted by halogen, hydroxy, =O, C₁-C₄alkoxy, NR₁₂R₁₃; or stand for C₁-C₄alkoxy optionally substituted by halogen, C₁-C₄alkoxy, by -X-aryl which is optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; by a X-linked-5- or 6-ring-membered heteroaryl group optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stand for C₂-C₅alkenyl optionally substituted by halogen or aryl; or stand for C₂-C₅alkynyl optionally substituted by halogen, tri-alkyl-silyl or aryl; or stand for C₂-C₅alkenyloxy optionally substituted by halogen or aryl; or stand for C₂-C₅alkynyloxy optionally substituted by halogen, tri-alkyl-silyl or aryl; or stand for C₃-C₆cycloalkoxy optionally substituted by C₁-C₃alkyl, halogen or C₁-C₄alkoxy; or stand for halogen; or stand for -NR₁₂R₁₃, or stand for -NR₂-CO-R₁₂; or stand for -NR₂-CO-OR₁₂; or

stand for $-NR_2-CO-NR_8R_9$; or

stand for $-NR_2-CO-SR_{12}$; or

stand for $-NR_2-CS-OR_{12}$; or

stand for $-NR_2-CS-NR_8R_9$; or

stand for $-NR_2-CS-SR_{12}$; or

stand for $-NR_2-C(=N-O-R_{12})-S-OR_{12}$; or

stand for $-NR_2-C(=N-O-R_{12})-NR_8R_9$; or

stand for $-NR_2-C(=N-O-R_{12})-SR_{12}$; or

stand for $-S(O)_p-C_1-C_4\text{alkyl}$ optionally substituted by halogen; or

stand for $-NR_2-SO_2-NR_8R_9$; or

stand for nitro , for cyano or for $-CS-NH_2$;

R_{10} stands for hydrogen; or

stands for $-X\text{-aryl}$ which is optionally substituted by halogen, $C_1-C_4\text{alkyl}$, $C_1-C_4\text{haloalkyl}$, $C_1-C_4\text{alkoxy}$, $-CN$, $-NO_2$, $-NR_{12}R_{13}$, $-CO-R_{14}$ or the acyclic or cyclic ketals and acetals of $-CO-R_{14}$; or

stands for a X -linked 5-membered aromatic or non-aromatic heterocyclic ring comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, $C_1-C_4\text{alkyl}$, $C_1-C_4\text{haloalkyl}$, $C_1-C_4\text{alkoxy}$, $-CN$, $-NO_2$, $-NR_{12}R_{13}$, $-CO-R_{14}$ or the acyclic or cyclic ketals and acetals of $-CO-R_{14}$; or

stands for a X -linked 6-membered aromatic or non-aromatic heterocyclic ring comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, $C_1-C_4\text{alkyl}$, $C_1-C_4\text{haloalkyl}$, $C_1-C_4\text{alkoxy}$, $-CN$, $-NO_2$, $-NR_{12}R_{13}$, $-CO-R_{14}$ or the acyclic or cyclic ketals and acetals of $-CO-R_{14}$; or

stands for $-CO-R_{14}$ or the acyclic or cyclic ketals and acetals of $-CO-R_{14}$; or

stands for $-O-CO-R_{14}$; or

stands for $-C(=N-O-R_{12})-R_{14}$;

R_{10} and one R'_9 together form a 3- or 4-membered non-aromatic bridge forming an annellated ring which may contain a carbonyl function or nitrogen, oxygen or sulfur as ring members and is optionally substituted by $C_1-C_3\text{alkyl}$;

R_{11} is hydrogen, halogen, $C_1-C_4\text{alkyl}$, $C_1-C_4\text{haloalkyl}$, $C_1-C_4\text{alkoxy}$, $-NR_{12}R_{13}$, $-NO_2$, $-CN$, $-CO-R_{14}$ or the acyclic or cyclic ketals and acetals of $-CO-R_{14}$;

W designates a bridge selected from $-O-$, $-S(O)_m-$ or $-NR_3-$;

X designates a direct bond or a bridge selected from $-O-$, $-S(O)_m-$ or $-NR_3-$;

a stands for a number 1, 2 or 3;

- b stands for a number 1, 2 or 3;
- c stands for a number zero, 1 or 2;
- m stands for a number zero, 1 or 2;
- n stands for a number 1 or 2;
- p stands for a number zero, 1 or 2;

R_{12} and R_{13} independently of each other stand for hydrogen; C_1-C_5 alkyl optionally substituted by halogen, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl,

C_1-C_4 alkoxy or -CN ; or

stand for C_3-C_5 alkenyl optionally substituted by halogen, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy or -CN; or

stand for C_3-C_5 alkynyl optionally substituted by halogen, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy or -CN; or

together form a 5-ring-membered non-aromatic carbocyclic ring; or together form a 6-ring-membered non-aromatic carbocyclic ring which is interrupted by -O- or -N(C_1-C_4 alkyl)- ;

R_{14} stands for C_1-C_5 alkyl optionally substituted by halogen, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino; aryl which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, -CN, -NO₂, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino or C_1-C_4 alkylcarbonyl, C_1-C_4 alkoxycarbonyl, C_1-C_4 alkylaminocarbonyl or di(C_1-C_4 alkyl)aminocarbonyl; or by a 5- or 6-ring hetero-aromatic ring which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, -CN, -NO₂, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, C_1-C_4 alkylcarbonyl, C_1-C_4 alkoxycarbonyl, C_1-C_4 alkylaminocarbonyl or di-(C_1-C_4 alkyl)aminocarbonyl; or

stands for C_3-C_6 cycloalkyl optionally substituted by halogen, hydroxy, =O, C_1-C_4 alkoxy or C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino; or

stands for C_1-C_4 alkoxy optionally substituted by halogen, C_1-C_4 alkoxy; C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino; or

stands for phenyl which is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, -CN, -NO₂, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, C_1-C_4 alkylcarbonyl,

C_1-C_4 alkoxycarbonyl, C_1-C_4 alkylaminocarbonyl or di-(C_1-C_4 alkyl)aminocarbonyl; or

stands for a 5- or 6-ring membered heteroaryl comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl;

C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylaminocarbonyl or di-(C₁-C₄alkyl)aminocarbonyl.

In the above definitions "halo" or "halogen" includes fluorine, chlorine, bromine and iodine. The alkyl, alkenyl and alkynyl radicals may be straight-chain or branched. This applies also to the alkyl, alkenyl or alkynyl parts of other alkyl-, alkenyl- or alkynyl-containing groups, such as alkoxy, alkylthio, alkylamino and dialkylamino.

Depending upon the number of carbon atoms mentioned, alkyl on its own or as part of another substituent is to be understood as being, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the isomers thereof, for example isopropyl, isobutyl, tert-butyl or sec-butyl, isopentyl or tert-pentyl.

Cycloalkyl for example is, depending upon the number of carbon atoms mentioned, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclohexyl, cycloheptyl, bicycloheptyl, cyclooctyl or bicyclooctyl.

Depending upon the number of carbon atoms mentioned, alkenyl as a group or as a structural element of other groups is to be understood as being, for example, ethenyl, allyl, 1-propenyl, buten-2-yl, buten-3-yl, penten-1-yl, penten-3-yl, hexen-1-yl, 4-methyl-3-pentenyl or 4-methyl-3-hexenyl.

Alkynyl as a group or as a structural element of other groups is, for example, ethynyl, propyn-1-yl, propyn-2-yl, butyn-1-yl, butyn-2-yl, 1-methyl-2-butynyl, hexyn-1-yl, 1-ethyl-2-butynyl or octyn-1-yl, depending on the number of carbon atoms present.

A haloalkyl, haloalkenyl, haloalkynyl or halocycloalkyl group may contain one or more (identical or different) halogen atoms, and for example may stand for CHCl₂, CH₂F, CCl₃, CH₂Cl, CHF₂, CF₃, CH₂CH₂Br, C₂Cl₅, CH₂Br, CHClBr, CF₃CH₂, CH₂CH₂Cl, CH₂CH₂F, CH₂CHF₂, CH₂-C=CHCl, CH=CCl₂, CH=CF₂, CH₂-C≡CCl, CH₂-C≡C-CF₃, chlorocyclohexyl, dichlorocyclohexyl, etc.

Alkoxy thus includes methoxy, ethoxy, propoxy, isopropoxy, n-butyloxy, s-butyloxy, i-butyloxy or t-butyloxy.

Ar₁ and Ar₂ according to the present invention both present aromatic moieties, belonging to the chemical class of aromatic hydrocarbons or aromatic heterocycles, designated as aryl or heteroaryl.

The definition aryl includes aromatic hydrocarbon ring systems like phenyl, naphthyl, anthracenyl, phenanthrenyl and biphenyl like 1,3-biphenyl and 1,4-biphenyl, with phenyl being preferred. The same definition applies where aryl is part of aryloxy.

Heteroaryl stands for monocyclic aromatic ring systems comprising 1 to 4 heteroatoms selected from N, O and S, where it is understood that the for reasons of complying with the aromatic character of the heteroaryl rings 1 to 4 nitrogen atoms may be present in one ring, but in general not more than one of them may be replaced by oxygen or sulfur. However for the purposes of defining Ar₂ heteroaryl includes bicyclic aromatic ring systems comprising an aromatic 5- to 6-membered ring heterocycle condensed with another aromatic 6-membered ring, either an heterocycle or a benzene ring. Where condensed ring systems of more than one ring is intended this is especially pointed out, for example by mentioning condensation, including annellation with benzene rings

Typical examples for 5-rings, 6-rings and bicyclic condensed systems are furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, tetrazinyl, indolyl, benzothienyl, benzofuryl, isobenzothienyl, isobenzofuryl, benzimidazolyl, benzopyrazolyl, indazolyl, benzotriazolyl, benzothiazolyl, benzoisothiazolyl, benzoxazolyl, benzisoxazolyl, quinolinyl, isoquinolinyl, phthalazinyl, purinyl, naphthridinyl, pteridinyl, quinoxalinyl, quinazolinyl and cinnolinyl. Preferred heterocycles are furyl, thienyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolyl, benzothienyl, benzofuryl, benzopyrazolyl, benzothiazolyl, benzoxazolyl, benzisoxazolyl, quinolinyl, isoquinolinyl and quinazolinyl.

Depending on the position of the heteroaryl group, the heterocyclic ring may be linked to the basic molecular structure via a ring-carbon atom or via a nitrogen-ring atom.

The aryl and heteroaryl groups according to the invention may be unsubstituted or are optionally substituted. Where substituents are indicated according to this invention, the ring structures may carry one or more identical or different substituents. Normally not more than three substituents are present at the same time. Examples of substituents of aryl or heteroaryl groups are: alkyl, alkenyl, alkynyl, cycloalkyl, alkylamino, dialkylamino, cyano, nitro, amino, hydroxy, cycloalkyl-alkyl, aryl, arylalkyl, heteroaryl, heteroaryl-alkyl, phenyl and phenyl-alkyl, it being possible in turn for all of the preceding groups to carry one or more identical or different halogen atoms; alkoxy; alkenyloxy; alkynyoxy; alkoxyalkyl; haloalkoxy, alkylthio; haloalkylthio; alkylsulfonyl; formyl; alkanoyl; hydroxy; halogen; cyano; nitro; amino; hydroxy, alkylamino; dialkylamino; carboxyl; alkoxy carbonyl; alkenyloxycarbonyl; or alkynyoxy carbonyl.

Typical examples include 1-naphthyl, 2,3-dichlorophenyl, 2,3-difluorophenyl, 2,4,6-trichlorophenyl, 2,4,6-trifluorophenyl, 2,4-dichlorophenyl, 2,4-difluorophenyl, 2,5-dichlorophenyl,

2,5-difluorophenyl, 2,6-dichlorophenyl, 2-chloro-4-ethoxyphenyl, 2-chloro-4-methoxyphenyl, 2-chlorophenyl, 2-ethoxyphenyl, 2-fluoro-4-chlorophenyl, 2-fluoro-4-ethoxyphenyl, 2-fluoro-4-methoxyphenyl, 2-hexyloxyphenyl, 2-methoxy-4-chlorophenyl, 2-methoxyphenyl, 2-methyl-4-chlorophenyl, 2-naphthyl, 2-trifluoromethyl, 3,4,5-trichlorophenyl, 3,4-dibromophenyl, 3,4-dichlorophenyl, 3,4-difluorophenyl, 3,4-dimethoxyphenyl, 3,4-dimethylphenyl, 3,5-dimethyl-4-chlorophenyl, 3'4'-dichloro-4-biphenyl, 3-bromo-4-methylphenyl, 3-bromophenyl, 3-chloro-4-cyanophenyl, 3-chloro-4-ethoxyphenyl, 3-chloro-4-fluorophenyl, 3-chloro-4-methoxyphenyl, 3-chlorophenyl, 3-ethyl-4-chlorophenyl, 3-fluoro-4-ethoxyphenyl, 3-fluoro-4-methoxyphenyl, 3-methoxy-4-chlorophenyl, 3-methylphenyl, 4-(1,3,4-oxadiazol-2-yl)phenyl, 4-(1-imidazolyl)-phenyl, 4-(1-methyl-methoximinomethyl)-phenyl, 4-(2,6-dimethoxy-pyrimidin-2-ylthio)-phenyl, 4-(2-cyanopyrid-4-yl)-phenyl, 4-(3-methyl-1,2,4-thiadiazol-4-2-yloxy)phenyl, 4-(3-methyl-1,2,4-thiazol-5-yloxy)-phenyl, 4-(5-ethyl-1,3,4-oxadiazol-2-yl)phenyl, 4-(pyrid-2-yloxy)-phenyl, 4'-bromo-4-biphenyl, 4'-chloro-4-biphenyl, 4'-cyano-4-biphenyl, 4'-methyl-4-biphenyl, 4'-trifluoromethyl-4-biphenyl, 4-aminocarbonylethoxy-phenyl, 4-aminocarbonylmethyl-phenyl, 4-aminocarbonyl-phenyl, 4-biphenyl, 4-bromo-3-chlorophenyl, 4-bromophenyl, 4-chloro-3-cyanophenyl, 4-chloro-3-fluorophenyl, 4-chloro-3-methylphenyl, 4-chloro-3-trifluoromethyl-phenyl, 4-chlorophenyl, 4-cyanophenyl, 4-cyclohexylphenyl, 4-ethenylphenyl, 4-ethoxyphenyl, 4-ethylphenyl, 4-ethynyoxyphenyl, 4-ethynylphenyl, 4-fluorophenyl, 4-hexyloxyphenyl, 4-isopropylcarbonylamino-phenyl, 4-isopropylphenyl, 4-isopropoxyphenyl, 4-methoxy-3-methylphenyl, 4-methoxycarbonyl-phenyl, 4-methoxyphenyl, 4-methylphenyl, 4-methylsulfonyl-phenyl, 4-methylthiophenyl, 4-nitrophenyl, 4-N-morpholinocarbonylaminophenyl, 4-N-morpholinocarbonyloxyethoxy-phenyl, 4-phenoxyphenyl, 4-propargyloxyphenyl, 4-propylphenyl, 4-tert.-butylcarbonylamino-phenyl, 4-tert.butylphenyl, 4-trifluoromethoxyphenyl, 4-trifluoromethylphenyl, 5-chloro-thien-2-yl, 5-methyl-fur-2-yl, 5-methyl-thien-2-yl, 6-benzothienyl, 7-benzothienyl, etc.

Where R₁₀ and R'₉ together form a bridge the bridge is normally between vicinal carbon atom of Ar₂. Thus annellated ring structures are formed, which may be substituted with one or two lower alkyl groups, preferably methyl. The bridge includes -(CH₂)₃- , -(CH₂)₄- , -O-(CH₂)₃- , -CO-(CH₂)₃- , -S-(CH₂)₃- , -NH-(CH₂)₃- , -O-(CH₂)₂- , -O-(CH₂)₂-O- , -O-CH₂-CH(CH₃)-O- , -O-CH₂-O- , -CO-(CH₂)₂- , -S-(CH₂)₂- , -NH-(CH₂)₂- , -CH₂-O-CH₂- , -CH₂-CO-CH₂- , -CH₂-S-CH₂- , -CH₂-NH-CH₂- , -CO-O-(CH₂)₂- , -CO-NH-(CH₂)₂- , -NH-CO-(CH₂)₂- , -CH₂-CO-O-CH₂- , -CO-S-(CH₂)₂- , -NH-CO-CH₂- , -O-CO-(CH₂)₂- , -CH₂-CO-O- , -CH₂-O-CO- , -S-CO-(CH₂)₂- , -CO-NH-CH₂- and -CH₂-CO-NH-CH₂- , etc..

Where the acetals or ketals of $-CO-R_{14}$ are intended the acetals and ketals may appear as $-C(C_1-C_4alkoxy)_2-R_{14}$ or as cyclic structures wherein the former carbonyl carbon atom carries a dioxoalkylene bridge of the type $--O-C_1-C_3alkylene-O-$ which optionally may be branched, including $-O-CH_2-O-$, $-O-CH(CH_3)-O-$, $-O-(CH_2)_2-O-$, $-O-(CH_2)_3-O-$, $-O-CH_2-CH(CH_3)-O-$, and the like.

Where R_{12} and R_{13} together with the nitrogen binding the two radicals may form a non-aromatic carbocyclic ring this radical stands for pyrrolidine, piperidine, morpholine or thiomorpholine ring, which may be substituted by one or two methyl groups.

The presence of at least one asymmetric carbon atom in the compounds of formula I means that the compounds may occur in optically isomeric, diastereomeric and enantiomeric forms. As a result of the presence of a possible aliphatic $C=C$ double bond, geometric isomerism may also occur. Formula I is intended to include all those possible isomeric forms and mixtures thereof. Where no specific isomer is specified the mixtures of diastereomers, enantiomers or the racemate are meant, as obtainable from the disclosed synthesis methods. The optical isomers, diastereomers and enantiomers of formula I may be obtained in pure form either by isolation from the mixture by suitable separation methods, which are known in the art, or may be obtained by stereoselective synthesis methods.

Preferred subgroups of compounds of formula I are those wherein

Ar_1 stands for optionally substituted aryl group; or

Ar_1 is optionally substituted phenyl; or

Ar_2 stands for optionally substituted aryl; or

Ar_2 is optionally substituted phenyl; or

Ar_1 and Ar_2 independently of each other stand for optionally substituted phenyl; or

the optional substituents R_9 of Ar_1 are preferably selected from the group comprising halogen, C_1-C_4alkyl , $C_1-C_4haloalkyl$, $C_1-C_4alkoxy$, $C_1-C_4haloalkoxy$, $C_3-C_6cycloalkyl$, $-CN$ and $-CO-R_{14}$; or

the optional substituents R'_9 of Ar_2 are preferably selected from the group comprising halogen, C_1-C_4alkyl , $C_1-C_4haloalkyl$, $C_1-C_4alkoxy$, $C_1-C_4haloalkoxy$, $C_3-C_6cycloalkyl$, $-CN$, $-CO-R_{14}$, $-NR_{12}R_{13}$, $-NR_2-CO-R_{12}$, $-NR_3-CO-OR_{12}$, $-NR_2-CO-NR_8R_9$, $-NR_2-CO-SR_{12}$, $-NR_2-CS-OR_{12}$, $-NR_2-CS-NR_8R_9$, $-NR_2-CS-SR_{12}$, $-S(O)_p-C_1-C_4alkyl$, $-S(O)_p-C_1-C_4haloalkyl$, $-NR_2-SO_2-NR_8R_9$, nitro, cyano and $-CS-NH_2$; or

the optional substituents R_9 and R'_9 of Ar_1 and Ar_2 are selected from the group

comprising C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy and C₃-C₆cycloalkyl; or

the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising bromo, chloro, fluoro, iodo, cyano, hydroxy, amino, nitro, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, propoxy, isopropoxy, allyloxy, propargyloxy, benzyloxy, trifluoromethyl, trifluoromethoxy, 2-cyano-2-methyl-butyloxy, methylsulfonyl, methylsulfinyl, methylthio, cyclopentyl, cyclohexyl, aminocarbonylmethyl, methoximinoethyl, aminocarbonyl, butylcarbonylamino, tert-butylcarbonylamino, triazol-1-ylmethyl, 1,2,4-triazol-1-ylmethyl, N-morpholinocarbonylamino, aminocarbonyloxy-ethoxy, morpholinocarbonyloxyethoxy and cyanopyridyloxyethoxy; or

the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising bromo, chloro, fluoro, methyl, ethyl, methoxy, ethoxy, trifluoromethyl and trifluoromethoxy; or

the optional substituent R₁₀ on Ar₂ is selected from optionally substituted phenyl, optionally substituted imidazolyl, optionally substituted thiazolyloxy, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted oxadiazolyloxy, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy; or

the optional substituent R₁₀ on Ar₂ is selected from halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ and the acyclic or cyclic ketals and acetals of -CO-R₁₄; or

the optional substituent R₁₀ on Ar₂ is selected from -CO-R₁₄, -O-CO-R₁₄, optionally substituted phenyl, optionally substituted phenoxy, optionally substituted imidazolyl, optionally substituted imidazolyloxy, optionally substituted thiazolyloxy, optionally substituted thiazolyl, optionally substituted thiadiazolyloxy, optionally substituted thiadiazolyl, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted oxadiazolyloxy, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy; or

the optional substituent R₁₀ on Ar₂ is selected from -CO-C₁-C₄alkyl, -O-CO-C₁-C₄alkyl and -CO-C₁-C₄alkoxy; or

the optional substituent R₁₀ on Ar₂ is selected from aminocarbonyl, dimethylaminocarbonyl, acetyl, propionyl, acetoxy, methoxycarbonyl, ethoxycarbonyl, benzoyl, methoximinoethyl, 1-imidazolyl, 5-(3-methyl-1,2,4-thiadiazolyloxy), 2-pyridyl, 2-pyridyloxy, 4-pyrimidi-

nyl, 2-(3,5-dichloropyridyloxy), 2-(4,6-dichloropyridyloxy), 2-(4,6-dimethoxypyrimidinylthio), 2-oxadiazolyl, 2-(5-methyl-oxadiazolyl), 2-(5-ethyl-oxadiazolyl), 1-triazolyl, 1-pyrazolyl, 1-(3,4-dimethylpyrazolyl), 4-(2-methylthiazolyl), 2-(1,3,4-oxydiazolyl), N-pyrrolidin-2-onyl, and 2-quinoxaliny, or

R₁, R₂, R₅, R₆, R₇ and R₈ independently of each other stand for hydrogen or methyl; or

R₁ and R₅ are independently of each other C₁-C₄alkyl and R₂ and R₆ are hydrogen; or

R₃ is hydrogen or C₁-C₄alkyl optionally substituted with C₁-C₄alkoxy, C₃-C₄alkenyloxy, or C₃-C₄alkynyoxy; or

R₃ is hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy-C₁-C₄alkyl; or

R₄ is hydrogen or C₁-C₄alkyl optionally substituted with halogen, C₁-C₃alkoxy, C₁-C₃alkylamino or di-C₁-C₃alkylamino; or

R₄ is hydrogen, C₁-C₄alkyl or C₁-C₄haloalkyl or

R₄ is C₁-C₄alkyl or C₁-C₄haloalkyl; or

W is -O- ; or

X is a direct bond; or

the suffixes (a) and (b) designate the number 1 ; or

the suffix (c) stands for the number zero.

One preferred subgroup of formula I is wherein Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ of Ar₁ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN and -CO-R₁₄; and the optional substituents R'₉ of Ar₂ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN, -CO-R₁₄, -NR₁₂R₁₃, -NR₂-CO-R₁₂, -NR₃-CO-OR₁₂, -NR₂-CO-NR₈R₉, -NR₂-CO-SR₁₂, -NR₂-CS-OR₁₂, -NR₂-CS-NR₈R₉, -NR₂-CS-SR₁₂, -S(O)_p-C₁-C₄alkyl, -S(O)_p-C₁-C₄haloalkyl, -NR₂-SO₂-NR₈R₉, nitro, cyano and -CS-NH₂; and the optional substituent R₁₀ on Ar₂ is selected from optionally substituted phenyl, optionally substituted imidazolyl, optionally substituted thiazolyloxy, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted oxadiazolyloxy, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy.

Further preferred subgroups are those wherein

A) Ar₁ and Ar₂ independently stand for optionally substituted aryl groups; and the optional substituents R₉ of Ar₁ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN and -CO-R₁₄; and

the optional substituents R'₉ of Ar₂ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN, -CO-R₁₄, -NR₁₂R₁₃, -NR₂-CO-R₁₂, -NR₃-CO-OR₁₂, -NR₂-CO-NR₈R₉, -NR₂-CO-SR₁₂, -NR₂-CS-OR₁₂, -NR₂-CS-NR₈R₉, -NR₂-CS-SR₁₂, -S(O)_p-C₁-C₄alkyl, -S(O)_p-C₁-C₄haloalkyl, -NR₂-SO₂-NR₈R₉, nitro, cyano and -CS-NH₂; and

the optional substituent R₁₀ on Ar₂ is selected from halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ and the acyclic or cyclic ketals and acetals of -CO-R₁₄; -O-CO-R₁₄, optionally substituted phenyl, optionally substituted imidazolyl, optionally substituted thiazolyloxy, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted oxadiazolyloxy, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy; and

R₁, R₂, R₅, R₆, R₇ and R₈ independently of each other are hydrogen or methyl; and

R₃ is hydrogen or C₁-C₄alkyl optionally substituted with C₁-C₄alkoxy, C₃-C₆alkenyloxy, or C₃-C₄alkynyloxy; and

R₄ is hydrogen or C₁-C₄alkyl optionally substituted with halogen, C₁-C₃alkoxy, C₁-C₃alkylamino or di-C₁-C₃alkylamino; and

W is -O-; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1; and

the suffix (c) stands for the number zero; or wherein

B) Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy and C₃-C₆cycloalkyl; and the optional substituent R₁₀ on Ar₂ is selected from -CO-C₁-C₄alkyl, -CO-C₁-C₄alkoxy, -O-CO-C₁-C₄alkyl, optionally substituted phenyl, optionally substituted phenoxy, optionally substituted imidazolyl, optionally substituted imidazolyloxy, optionally substituted thiazolyloxy, optionally substituted thiazolyl, optionally substituted thiadiazolyloxy, optionally substituted thiadiazolyl, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally

substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted oxadiazolyloxy, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy; and

R₁ and R₅ are independently C₁-C₄alkyl and R₂ and R₆ are hydrogen; and

R₃ is hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy-C₁-C₄alkyl; and

R₄ is C₁-C₄alkyl or C₁-C₄haloalkyl; and

W is -O- ; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1 ; and

the suffix (c) stands for the number zero; or wherein

- C) Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising bromo, chloro, fluoro, iodo, cyano, hydroxy, amino, nitro, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, propoxy, isopropoxy, allyloxy, propargyloxy, benzyloxy, trifluoromethyl, trifluoromethoxy, 2-cyano-2-methyl-butyloxy, methylsulfonyl, methylsulfinyl, methylthio, cyclopentyl, cyclohexyl, aminocarbonylmethyl, methoximinoethyl, aminocarbonyl, butylcarbonylamino, tert-butylcarbonylamino, triazol-1-ylmethyl, 1,2,4-triazol-1-ylmethyl, N-morpholinocarbonylamino, aminocarbonyloxy-ethoxy, morpholinocarbonyloxyethoxy and cyanopyridyloxyethoxy; and

the optional substituent R₁₀ on Ar₂ is selected from aminocarbonyl, dimethylaminocarbonyl, acetyl, propionyl, acetoxy, methoxycarbonyl, ethoxycarbonyl, benzoyl, methoximinoethyl, 1-imidazolyl, 5-(3-methyl-1,2,4-thiadiazolyloxy), 2-pyridyl, 2-pyridyloxy, 4-pyrimidinyl, 2-(3,5-dichloropyridyloxy), 2-(4,6-dichloropyridyloxy), 2-(4,6-dimethoxypyrimidinylthio), 2-oxadiazolyl, 2-(5-methyl-oxadiazolyl), 2-(5-ethyl-oxadiazolyl), 1-triazolyl, 1-pyrazolyl, 1-(3,4-dimethylpyrazolyl), 4-(2-methylthiazolyl), 2-(1,3,4-oxydiazolyl), N-pyrrolidin-2-onyl, and 2-quinoxalinyl, and

R₁ and R₅ are independently C₁-C₄alkyl and R₂ and R₆ are hydrogen; and

R₃ is hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy-C₁-C₄alkyl; and

R₄ is C₁-C₄alkyl or C₁-C₄haloalkyl; and

W is -O- ; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1 ; and

the suffix (c) stands for the number zero; or wherein

D) Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising bromo, chloro, fluoro, methyl, ethyl, methoxy, ethoxy, trifluoromethyl and trifluoromethoxy; and

the optional substituent R₁₀ on Ar₂ is selected from aminocarbonyl, acetyl, methoxycarbonyl, ethoxycarbonyl, 1-imidazolyl, 5-(3-methyl-1,2,4-thiadiazolyloxy), 2-pyridyl, 2-pyridyloxy, 4-pyrimidinyl, 2-(3,5-dichloropyridyloxy), 2-(4,6-dimethoxypyrimidinylthio), 2-oxadiazolyl, 2-(5-methyl-oxadiazolyl), 2-(5-ethyl-oxadiazolyl), 1-triazolyl, 1-pyrazolyl, 4-(2-methylthiazolyl), 2-(1,3,4-oxydiazolyl), and N-pyrrolidin-2-onyl, and

R₁ and R₅ are methyl and R₂ and R₆ are hydrogen; and

R₃ is hydrogen, methyl, ethyl, propyl, ethoxymethyl or methoxymethyl, and

R₄ is methyl, ethyl, propyl or fluoromethyl; and

W is -O- ; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1 ; and

the suffix (c) stands for the number zero.

Preferred individual compounds are:

2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-chlorophenoxy)-methyl]-2-[(2-chlorophenyl)-methyl]-sulfonylamino-propionitrile,
2-[(4-chlorophenoxy)-methyl]-2-[(2-fluorophenyl)-methyl]-sulfonylamino-propionitrile,
2-[(4-trifluoromethoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-chloro-3-methylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-3-methoxy-propionitrile,
2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-methoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
(-)-2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-propionylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-imidazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,

2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(4-[1,3,4]oxadiazol-4-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-methoxyphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
(-)2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(4-methoxycarbonylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-propionylphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-3-fluoro-propionitrile,
2-[(4-(2-methyl-thiazol-4-yl)-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(4-pyrazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-(5-oxo-5,6,7,8-tetrahydronaphth-2-yloxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(4-chloro-phenoxy)-methyl]-2-benzylsulfonylamino-3-methyl-butyronitrile,
2-[(4-iso-propyl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(4-nitro-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(4-cyano-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
2-[(3-fluoro-4-propionyl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
(-) 2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile, and
(-)2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile.

Certain sulfonylamido-acetonitriles have been proposed for controlling plant-destructive fungi (for example in EP-A-176327 and EP-A-587110). The biological activity of those compounds is not, however, satisfactory in all aspects and for all needs of the agricultural practices in protecting crop plants.

Surprisingly, with developing the compounds of formula I a new type of microbiocides has been provided which satisfies to a greater extend the need for an agent for controlling phytopathogenic microorganisms on crop plants having a high level of activity, paired with long lasting effective protection.

The compounds of formula I and the respective starting materials may be obtained according to the processes of Schemes 1 to 5.

Scheme 1:

wherein Ar_1 , Ar_2 , a , b , c , W and R_1 to R_8 , are defined as under formula I, and A stands for a leaving group like an anhydride, i.e. $-\text{O}-\text{SO}_2-(\text{CR}_1\text{R}_2)_a-\text{X}-\text{Ar}_1$ or $-\text{O}-\text{CO-C}_1-\text{C}_4\text{alkyl}$, but preferably for halogen, especially bromine or more preferably chlorine.

The compounds of formula I may be prepared by sulfonylation of an amino-acetonitrile of formula III with a sulfonyl-halide / anhydride of formula II wherein A is a leaving group. Suitable solvents for this reaction include ketones, such as acetone and methylethylketone, halogenated hydrocarbons such as chloroform, carbontetrachloride, dichloromethane, dichloro-ethane, aromatic hydrocarbons such as toluene or xylene, ethers such as t-butyl-methyl-ether, di-ethyl-ether, tetrahydrofuran and dioxane. The reaction is performed preferentially in the presence of a base and a catalyst. Typical bases include tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, dimethyl-aniline, diazabi-cyclooctane and N-methylmorpholine, aromatic amines such pyridine and quinoline as well as inorganic bases such as alkaline bicarbonates or -carbonates. Typical salts are for example sodium and potassium bicarbonate and sodium, potassium or cesium carbonate. Suitable catalysts such as N,N-dialkyl- or cyloalkyl-aminopyridines, like e.g. 4-N,N-dime-thylaminopyridine, may improve the yield.

The substituents R_3 may be introduced into the final active ingredients when starting from the subgroup compounds of formula I wherein R_3 is hydrogen, by reacting them e.g. with an alkylating agent $\text{R}_3-\text{A}'$ wherein A' designates a leaving group, preferably a halogen atom, e.g. bromo or chloro. Suitable alkylating agents thus include suitably substituted alkylhalides or alkyl-O-sulfonates, e.g. or alkoxy-alkylhalides. On the other hand, when introducing R_3 with the starting compounds of formula III, alkylating of the compounds of the subgroup of formula III, wherein R_3 is hydrogen, may be achieved in a similar way by any commonly known alkylation method. Such alkylation prior to sulfonylation with a compound of formula II, as alternative to converting R_3 within the final products of formula I, allows to introduce a wide variety of radicals R_3 while leaving the choice to decide at which stage such optional conversion is preferably performed.

Cyano-amines of formula III may easily be prepared by the so-called Strecker –Synthesis according to Scheme 2 as described e.g. generically in any textbook on organic chemistry, or in a procedures disclosed in the patent literature (EP-A-953565-A; Nihon Noyaku or US 3,529,019, Colgate-Palmolive) starting from the corresponding ketone of formula IV.

Scheme 2:

wherein Ar₂, b, c, W and R₅ to R₈ are defined as under formula I and L is a leaving group. The reaction conditions correspond to the standard conditions for preparing amino-acetonitriles by treatment with ammonia and prussic acid.

For the preparation of the ketones of formula IV various methods are known from the literature. Preferably the synthesis is for example conducted in accordance with Scheme 3 by starting from the ketone of formula V, wherein R₄, R₅, R₆ and b are defined as for formula I and L is a leaving group such as e.g. halogen, preferably chlorine, bromine or iodine or a sulfonyloxy group such as e.g. methylsulfonyloxy-, toluylsulfonyloxy- or trifluoromethylsulfonyloxy- group, and reacting it with a compound of formula VI wherein Ar₂, R₇, R₈ and c are defined as for formula I and W' is either an anionic radical species of W such as O⁻, S⁻, S(O)_m⁻ combined with an alkaline- or earthalkaline – metal cation as counterion, or is defined as W-H, e.g. as OH, SH, NHR₃. In the latter case the reaction is generally carried out in the presence of a base such as alkaline-, earthalkaline-carbonates or hydrogencarbonates, e.g. sodium or potassium-carbonate, sodium or potassium -hydrogen-carbonate, cesium-carbonate or an agent capable of scavenging the formed acid.

Scheme 3:

wherein Ar₂, b, c, W and R₄ to R₈ , are defined as under formula I and W' is either an anionic radical species of W such as O⁻, S⁻, S(O)_m⁻ combined with an alkaline- or

earthalkaline – metal cation as counterion, or is defined as W-H, e.g. as OH, SH, NHR₃.

As a typical alternative method of preparing the intermediate ketones of formula (IV) Scheme 3A highlights two of the various pathways.

Scheme 3A:

wherein R₄, R'₉, R₁₀ and n are as defined under formula I and L is a leaving group, while Nu(R₄) designates the nucleophilic form of R₄, such as alkoxides or halides, especially iodides.

For the sake of simplicity in Scheme 3A the optionally substituted Ar₂ is displayed as phenyl, but it is assumed that the entire variation of Ar₂ as defined under formula I can be reacted similarly. According to Scheme 3A the selected intermediates of formula IVa may be prepared by oxidizing the corresponding alcohols of formulae Xa and Xb. Advantageous oxidation procedures include the sulfur-based oxidation agents (in literature referred to as Swern-oxidation, Pfizer-Moffat and others), the metal based oxidation agents, hydrogen peroxide in the presence of metal catalysts such as Na₂WO₄ (c.f. e.g. R. Noyori, Bull. Chem. Soc. Jpn. 1999, 72, 2287-2306) and others more.

The alcohols of formula Xa and Xb are available by ring-opening of an epoxide of formula VII or an epoxide of formula VIII, e.g. epichlorohydrine with a phenol of formula XII and in the latter case reacting the new intermediate epoxide of formula XI again with a nucleophilic derivative of Nu(R₄) such as alkoxides or halides, especially iodides.

The ring opening reaction may be performed in the presence of a catalyst. Suitable catalysts include bases, such as amines like pyridine, tri-ethanolamine and the like, or metal hydroxides and/or carbonates such as lithium hydroxide, cesium carbonate, potassium

carbonate, potassium hydroxide, sodium hydroxide or metal hydrides, such as sodium hydride and lithium hydride or cesium fluoride as well as Lewis acids, such as tetramethylammonium chloride. Suitable solvents include alcohols, such as ethanol, isopropanol, tert-butanol and the like, ketones such as acetone and methyl ethyl ketone, and more polar solvents such as N,N-dimethylformamide, dimethylacetamide and nitriles, such as acetonitrile and propionitrile. The reaction temperature can vary within wide limits. It typically lies in the range of room temperature and the boiling point of the reaction mixture.

Preferable solvents for ring opening of the phenoxy-substituted epoxides of formula XI include polyalcohols such as ethyleneglycol, diethyleneglycol and triethyleneglycol, sulfoxides and sulfones such as dimethylsulfoxide and sulfolane as well as other polar solvents. A nucleophile of special interest in this context is fluoride. Fluoride is typically used in form of potassium hydrogen difluoride (KHF_2). The nucleophilicity of the fluoride ion may be enhanced by phase transfer reagents such as quaternary ammonium salts and phosphonium salts as well as complexing agents such as crown ethers. The reaction temperature lies between +100°C and the boiling point of the reaction mixture.

In general, epoxides of the general formulae VII or VIII are commercially available or may be prepared according to published procedures such as reacting a phenol of the general formula XII with epichlorohydrine.

Many methods to prepare sulfonylation agent of formula II are known. General ways of preparing such compounds are e.g. described in Houben Weyl, Vol. E11, p 1067 ff (1985).

Another synthesis to prepare compounds of formula I is described in Scheme 4.

Scheme 4:

wherein Ar₁, Ar₂, a, b, c, X', W and R₁ to R₈ are defined as under formula I.

Compounds of formula XIII wherein Ar₂, b, c, W and R₃ to R₈ are defined as under formula I and L is a leaving group such as e.g. halogen, preferably chlorine, bromine or iodine or a sulfonyloxy group such as e.g. methylsulfonyloxy-, toluylsulfonyloxy- or trifluoromethylsulfo-

nyloxy- group, is coupled with a compound of formula XIV wherein X' is either an anionic radical species of X such as O⁻, S⁻, S(O)_m⁻ combined with an alkaline- or earthalkaline-metal cation as counterion or is defined as X-H such as OH, SH, NHR₃. In this case the reaction are generally carried out in the presence of a base such as alkaline-, earthalkaline-carbonates or hydrogencarbonates such e.g. sodium or potassium-carbonate, sodium or potassium –hydrogen-carbonate, cesium-carbonate or an agent capable of scavenging the formed acid.

The starting material of the chemical class of cyano-amines of formula III may also be prepared as described in Scheme 5.

Scheme 5 :

wherein Ar₁, Ar₂, b, c, W and R₃ to R₈ are defined as under formula I and symbol T designates a protecting group such as the well-acknowledged tert-butyloxycarbonyl- or benzyloxycarbonyl- groups , often referred to as (BOC)- or (Z)- groups, and converting the compound of formula XVI into the desired formula III by cleaving the protective group T off .

Many methods are known in the chemical literature e. g. Synthetic Comm. , 29 (23) ,4235-4239 (1999) or Synthesis (10), 1724-1726 (1999) or Tetrahedron Lett. 29 (18), 2155-2158 (1988) to convert amino acid –amides into amino-nitriles. The reaction conditions for the dihydratrisation according to Scheme 5 may be adopted from known examples in the art.

Enantiomeric mixtures of formula I may be separated into the enantiomers by chromatography on chiral stationary phase or by classical methods of fractionated crystallization of diastereomeric salts of a suitable precursor and subsequent conversion into the desired products. Enantiomers or diastereoisomers may also be prepared by enantioselective or diastereoselective synthesis methods.

The compounds of formula I are oils or solids at room temperature and are distinguished by

valuable microbiocidal properties. They can be used in the agricultural sector or related fields preventatively and curatively in the control of plant-destructive microorganisms. The compounds of formula I according to the invention are distinguished at low rates of concentration not only by outstanding microbiocidal, especially fungicidal, activity but also by being especially well tolerated by plants.

Surprisingly, it has now been found that the compounds of formula I have for practical purposes a very advantageous microbiocidal spectrum in the control of phytopathogenic microorganisms, especially fungi. They possess very advantageous curative and preventive properties and are used in the protection of numerous crop plants. With the compounds of formula I it is possible to inhibit or destroy phytopathogenic microorganisms that occur on various crops of useful plants or on parts of such plants (fruit, blossom, leaves, stems, tubers, roots), while parts of the plants which grow later also remain protected, for example, against phytopathogenic fungi.

The novel compounds of formula I prove to be effective against specific genera of the fungus class Fungi imperfecti (e.g. Cercospora), Basidiomycetes (e.g. Puccinia) and Ascomycetes (e.g. Erysiphe and Venturia) and especially against Oomycetes (e.g. Plasmopara, Peronospora, Pythium and Phytophthora). They therefore represent in plant protection a valuable addition to the compositions for controlling phytopathogenic fungi. The compounds of formula I can also be used as dressings for protecting seed (fruit, tubers, grains) and plant cuttings from fungal infections and against phytopathogenic fungi that occur in the soil.

The invention relates also to compositions comprising compounds of formula I as active ingredient, especially plant-protecting compositions, and to the use thereof in the agricultural sector or related fields.

In addition, the present invention includes the preparation of those compositions, wherein the active ingredient is homogeneously mixed with one or more of the substances or groups of substances described herein. Also included is a method of treating plants which is distinguished by the application of the novel compounds of formula I or of the novel compositions.

Target crops to be protected within the scope of this invention comprise, for example, the

following species of plants: cereals (wheat, barley, rye, oats, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pomes, stone fruit and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts); cucurbitaceae (marrows, cucumbers, melons); fibre plants (cotton, flax, hemp, jute); citrus fruit (oranges, lemons, grapefruit, mandarins); vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika); lauraceae (avocado, cinnamon, camphor) and plants such as tobacco, nuts, coffee, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, and also ornamentals.

The compounds of formula I are normally used in the form of compositions and can be applied to the area or plant to be treated simultaneously or in succession with other active ingredients. Those other active ingredients may be fertilisers, micronutrient donors or other preparations that influence plant growth. It is also possible to use selective herbicides or insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of those preparations, if desired together with further carriers, surfactants or other application-promoting adjuvants customarily employed in formulation technology.

The compounds of formula I can be mixed with other fungicides, resulting in some cases in unexpected synergistic activities. Such mixtures are not limited to two active ingredients (one of formula I and one of the list of other fungicides), but to the contrary many comprise more than one active ingredient of the component of formula I and more than one other fungicide. Mixing components which are particularly suited for this purpose include e.g. azoles, such as azaconazole, BAY 14120, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, pefurazoate, penconazole, pyrifenoxy, prochloraz, propiconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole; pyrimidinyl carbиноles, such as ancyprodimol, fenpropimorph, fenpropidin, fenpropimorph, dimethirimol, ethirimol; morpholines, such as dodemorph, fenpropidin, fenpropimorph, spiroxamine, tridemorph; anilinopyrimidines, such as cyprodinil, mepanipyrim, pyrimethanil; pyrroles, such as fenpiclonil, fludioxonil; phenylamides, such as benalaxyl, furalaxyl, metalaxyl, R-metalaxyl, ofurace, oxadixyl; benzimidazoles, such as benomyl, carbendazim,

debacarb, fuberidazole, thiabendazole; dicarboximides, such as chlozolinate, dichlozoline, iprodione, myclozoline, procymidone, vinclozoline; carboxamides, such as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, thifluzamide; guanidines, such as guazatine, dodine, iminoctadine; strobilurines, such as azoxystrobin, kresoxim-methyl, metominostrobin, SSF-129, trifloxystrobin, picoxystrobin, BAS 500F (proposed name pyraclostrobin), BAS 520; dithiocarbamates, such as ferbam, mancozeb, manebs, metiram, propineb, thiram, zineb, ziram; N-halomethylthiotetrahydrophthalimides, such as captafol, captan, dichlofuanid, fluoromides, folpet, tolyfluanid; Cu-compounds, such as Bordeaux mixture, copper hydroxide, copper oxychloride, copper sulfate, cuprous oxide, mancopper, oxine-copper; nitrophenol-derivatives, such as dinocap, nitrothal-isopropyl; organo-p-derivatives, such as edifenphos, iprobenphos, isoprothiolane, phosdiphen, pyrazophos, tolclofos-methyl; various others, such as acibenzolar-S-methyl, anilazine, benthiavalicarb, blasticidin-S, chinomethionate, chloroneb, chlorothalonil, cyflufenamid, cymoxanil, dichlone, diclomezine, dicloran, diethofencarb, dimethomorph, SYP-LI90 (proposed name: flumorph), dithianon, ethaboxam, etridiazole, famoxadone, fenamidone, fenoxyanil, fentin, ferimzone, fluazinam, flusulfamide, fenhexamid, fosetyl-aluminium, hymexazol, iprovalicarb, IKF-916 (cyazofamid), kasugamycin, methasulfocarb, metrafenone, nicobifen, pencycuron, phthalide, polyoxins, probenazole, propamocarb, pyroquilon, quinoxifen, quintozene, sulfur, triazoxide, tricyclazole, triforine, validamycin, zoxamide (RH7281).

In the above mentioned mixtures, the mixture ratio of the active ingredients is so selected that it reaches optional control of the phytopathogenic microorganism on the host plants. This ratio is in general between 100:1 and 1:100, more preferably between 10:1 and 1:10 of a compound of formula I vis-à-vis the second fungicide. The mixtures may not only comprise one of the listed combinational active ingredients, but may comprise more than one additional active ingredients selected from that specified group, thus forming for example 3-way- or even 4-way-mixtures.

Suitable carriers and surfactants may be solid or liquid and correspond to the substances ordinarily employed in formulation technology, such as e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilisers. Such carriers and additives are described, for example, in WO 95/30651.

A preferred method of applying a compound of formula I, or an agrochemical composition

comprising at least one of those compounds, is application to the foliage (foliar application), the frequency and the rate of application depending upon the risk of infestation by the pathogen in question. The compounds of formula I may also be applied to seed grains (coating) either by impregnating the grains with a liquid formulation of the active ingredient or by coating them with a solid formulation.

The compounds of formula I are used in unmodified form or, preferably, together with the adjuvants conventionally employed in formulation technology, and are for that purpose advantageously formulated in known manner e.g. into emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules, and by encapsulation in e.g. polymer substances. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.

Advantageous rates of application are normally from 1 g to 2 kg of active ingredient (a.i.) per hectare (ha), preferably from 10 g to 1 kg a.i./ha, especially from 25 g to 750 g a.i./ha. When used as seed dressings, rates of from 0.001 g to 5.0 g of active ingredient per kg of seed are advantageously used.

The formulations, i.e. the compositions, preparations or mixtures comprising the compound(s) (active ingredient(s)) of formula I and, where appropriate, a solid or liquid adjuvant, are prepared in known manner, e.g. by homogeneously mixing and/or grinding the active ingredient with extenders, e.g. solvents, solid carriers and, where appropriate, surface-active compounds (surfactants).

Further surfactants customarily used in formulation technology will be known to the person skilled in the art or can be found in the relevant technical literature.

The agrochemical compositions usually comprise 0.01 to 99 % by weight, preferably 0.1 to 95 % by weight, of a compound of formula I, 99.99 to 1 % by weight, preferably 99.9 to 5 % by weight, of a solid or liquid adjuvant, and 0 to 25 % by weight, preferably 0.1 to 25 % by weight, of a surfactant.

Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.

The compositions may also comprise further ingredients, such as stabilisers, antifoams, viscosity regulators, binders and tackifiers, as well as fertilisers or other active ingredients for obtaining special effects.

The Examples which follow illustrate the invention described above, without limiting the scope thereof in any way. Temperatures are given in degrees Celsius.

Preparation Examples :

Example 1: 2-(4-Chlorophenoxy-methyl)-2-benzylsulfonylamino-propionitrile

a) 1-(4-Chlorophenoxy)-propan-2-one

A suspension of 4-chlorophenol (2.6g, 20mmol), chloroacetone (2.8g, 30mmol) and potassium carbonate (3.45g, 25mmol) in acetone (100ml) is heated at reflux for 3 hours. The precipitating inorganic salts are filtered off and the filtrate is evaporated to dryness to give the 1-(4-chlorophenoxy)-propan-2-one.

b) 2-(4-Chlorophenoxy-methyl)-2- amino-propionitrile

suspension of 1-(4-chlorophenoxy)-propan-2-one (3.7g, 20mmol), ammonium chloride (1.6g, 29.2mmol) and sodium cyanide (1.15g, 23.3mmol) in a solution of aqueous ammonia (100ml, 28%) is stirred vigorously at room temperature for 20 hours. The aqueous phase is extracted repeatedly with ethyl acetate. The collected organic extracts are dried and the solvent is evaporated under reduced pressure to give the 2-(4-chlorophenoxy-methyl)-2-amino-propionitrile as a solid.

c) A solution of 2-(4-chlorophenoxy-methyl)-2- amino-propionitrile (0.5g, 2.4mmol) and benzylsulfonyl chloride (0.5g, 2.6mmol) in pyridine (5ml) is heated at +80°C with stirring in the presence of DMAP (0.02g) for about 16 hours. The reaction mixture is diluted with ethyl acetate and washed with brine. The organic phase is dried over magnesium sulfate and the product is purified by flash chromatography (eluent: ethyl acetate / hexanes 1:3) to give the 2-(4-chlorophenoxy-methyl)-2-benzylsulfonylamino-propionitrile in form of a colorless solid, m.p. 120-121°C.

Example 2: 2-(4-Chlorophenoxy-methyl)-2-benzylsulfonylamino-butyronitrile

a) 1-(4-Chlorophenoxy)-butane-2-ol

A suspension of chlorophenol (9.0g, 0.07mol) and butyleneoxide (6.9ml, 0.08mmol) in toluene (80ml) is heated at reflux with stirring in the presence of a catalytic amount of cesium fluoride (1.5g) for 20 hours. The reaction mixture is washed with an aqueous solution of sodium hydroxide and dried. The volatiles are evaporated under reduced pressure to give the 1-(4-chlorophenoxy)-butane-2-ol as a colorless solid.

b) 1-(4-Chlorophenoxy)-butan-2-one

Oxalylchloride (1.0ml, 0.011mmol) is added to a solution of dimethylsulfoxide (DMSO) (1.7ml, 0.022mol) in methylenechloride (20ml) at -60°C. 1-(4-Chlorophenoxy)-butan-2-ol (2.0g, 0.01mol) is added in one portion. After 15 minutes triethylamine (7ml, 0.05mol) is added and the reaction temperature is allowed to warm up and reach 0°C. The mixture is diluted with diethylether and washed repeatedly with brine. The organic phase is dried, filtered evaporated to give the 1-(4-chlorophenoxy)-butane-2-one.

¹H-NMR (CDCl₃): 7.26 (d, 2H); 6.82 (d, 2H); 4.53 (s, 2H); 2.60 (q, 2H); 1.12 (t, 3H).

c) 2-(4-Chlorophenoxy)-methyl)-2-amino-butyronitrile

A suspension of 1-(4-chloro-phenoxy)-butan-2-one (3.0g, 15mmol), ammonium chloride (1.3g, 25mmol) and sodium cyanide (1.0g, 20mmol) in a solution of aqueous ammonia (100ml, 28%) is stirred vigorously at room temperature for 20 hours. The aqueous phase is extracted repeatedly with ethyl acetate. The combined organic phases are dried over sodium sulfate and the solvent is evaporated under reduced pressure to give the 2-(4-chlorophenoxy)-methyl)-2-amino-butyronitrile as an oil having sufficient purity for being directly employable for the following reaction step.

d) A solution of 2-(4-chlorophenoxy)-methyl)-2-amino-butyronitrile (0.5g, 2.2mmol), benzylsulfonyl chloride (0.50g, 2.6mmol) and diazabicyclooctane (1.0g, 4mmol) in anhydrous tetrahydrofuran (20ml) is stirred for about 16 hours. The reaction mixture is diluted with ethyl acetate and washed with brine. The organic phase is dried over magnesium sulfate and the residue raw product is purified by flash chromatography (eluent: ethyl acetate / hexanes 1:3) to give the 2-(4-chlorophenoxy-methyl)-2-benzylsulfonylamino-butyronitrile in form of a colorless oil. $^1\text{H-NMR}$ (CDCl_3): 7.54-7.50 (m, 2H); 7.46-7.40(m,3H); 7.30 (d,2H); 6.84 (d, 2H); 4.70 (s, 1H); 4.49 (s, 2H); 4.22 (dxd, 2H); 2.26-2.04 (m, 2H); 1.12 (t, 3H).

Example 3: 2-(4-Chlorophenoxy-methyl)-2-(4-chlorophenyl-methylsulfonyl)-propionitrile

A solution of 2-amino-2-(4-chlorophenoxy-methyl)-propionitrile (0.5g, 0.24mmol), 4-chlorophenyl-methylsulfonyl chloride (0.46g, 2.4mmol) and diazabicyclooctane (0.6g, 2.4mmol) in anhydrous tetrahydrofuran (20ml) is stirred for about 16 hours. The reaction mixture is diluted with ethyl acetate and washed with brine. The organic phase is dried over magnesium sulfate and the raw product received as the residue is purified by flash chromatography (eluent: ethyl acetate / hexanes 1:3) to give the 2-(4-chlorophenoxy-methyl)-2-(4-chlorophenyl-methylsulfonyl)-propionitrile in form of colorless crystals, m.p. 119-120°C.

In analogous manner the compounds of following Table 1 are obtained.

Table 1:

No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	(R' ₈) _n	(R' ₉) _n	R ₁₀	m.p.[°C]
001	H	H	H	CH ₃	H	H		2-Cl	H	solid
002	H	H	H	CH ₃	H	H	4-F	2-Cl	H	
003	CH ₃	H	H	CH ₃	H	H		2-Cl	H	
004	H	H	H	CH ₂ CH ₃	H	H		2-Cl	H	
005	H	H	H	CH ₂ CH ₂ CH ₃	H	H		2-Cl	H	
006	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H		2-Cl	H	
007	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H		2-Cl	H	
008	H	H	H	CH ₃	H	H		2,3-Cl ₂	H	solid
009	H	H	H	CH ₂ CH ₃	H	H		2,3-Cl ₂	H	
010	H	H	H	CH ₂ (CH ₃) ₂	H	H		2,3-Cl ₂	H	
011	H	H	H	CH ₂ F	H	H		2,3-Cl ₂	H	
012	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H		2,3-Cl ₂	H	
013	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H		2,3-Cl ₂	H	
014	H	H	H	CH ₃	H	H		3,4-Cl ₂	H	
015	H	H	H	CH ₂ CH ₃	H	H		3,4-Cl ₂	H	
016	H	H	H	CH ₂ (CH ₃) ₂	H	H		3,4-Cl ₂	H	

017	H	H	H	CH ₂ F	H	H	H	3,4-Cl ₂	H
018	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	3,4-Cl ₂	H
019	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	3,4-Cl ₂	H
020	H	H	H	CH ₃	H	H	H	2,4-Cl ₂	H
021	H	H	H	CH ₂ CH ₃	H	H	H	2,4-Cl ₂	H
022	H	H	H	CH ₂ (CH ₃) ₂	H	H	H	2,4-Cl ₂	H
023	H	H	H	CH ₂ F	H	H	H	2,4-Cl ₂	H
024	H	H	H	CH ₂ CH ₃	H	H	CH ₃	2,4-Cl ₂	H
025	H	H	H	CH ₂ CH ₃	H	H	H	2,4-Cl ₂	H
026	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	4-F	2,4-Cl ₂	H
027	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	2,4-Cl ₂	H
028	H	H	H	CH ₃	H	H	H	4-CF ₃	H
029	H	H	H	CH ₃	H	H	4-F	4-CF ₃	H
030	CH ₃	H	H	CH ₃	H	H	H	4-CF ₃	H
031	H	H	H	CH ₂ CH ₃	H	H	H	4-CF ₃	H
032	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H	4-CF ₃	H
033	CH ₃	CH ₃	H	CH ₃	H	H	H	4-CF ₃	H
034	H	H	H	CH ₃	H	H	H	4-CH(CH ₃) ₂	H
035	H	H	H	CH ₃	H	H	4-F	4-CH(CH ₃) ₂	H
036	CH ₃	H	H	CH ₃	H	H	H	4-CH(CH ₃) ₂	H
037	H	H	H	CH ₂ CH ₃	H	H	H	4-CH(CH ₃) ₂	H
038	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H	4-CH(CH ₃) ₂	H

039	CH ₃	CH ₃	H	CH ₃	H	H	H	4-CH(CH ₃) ₂	H	H	
040	H	H	H	CH ₃	H	H	H	4-Cl	H	H	120-121
041	H	H	H	CH ₃	H	H	2-CH ₃	4-Cl	H	H	oil
042	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	4-Cl	H	H	
043	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	4-Cl	H	H	
044	H	H	H	CH ₃	H	H	2-Cl	4-Cl	H	H	116-117
045	H	H	H	CH ₃	H	H	4-F	4-Cl	H	H	105-106
046	H	H	H	CH ₃	H	H	4-SO ₂ CH ₃	4-Cl	H	H	134-137
047	H	H	H	CH ₃	H	H	3-Cl	4-Cl	H	H	110-111
048	H	H	H	CH ₃	H	H	2-CF ₃	4-Cl	H	H	98-100
049	H	H	H	CH ₃	H	H	2,6-Cl ₂	4-Cl	H	H	oil
050	H	H	H	CH ₃	H	H	2-F	4-Cl	H	H	96-97
051	H	H	H	CH ₃	H	H	4-Cl	4-Cl	H	H	119-120
052	H	H	H	CH ₂ CH ₃	H	H	4-Cl	4-Cl	H	H	oil
053	H	H	CH ₃	CH ₃	H	H	4-Cl	4-Cl	H	H	oil
054	H	H	H	CH ₂ OC-(CH ₃) ₃	H	H	4-Cl	4-Cl	H	H	oil
055	H	H	H	CH ₂ OCH ₂ CH-(CH ₃) ₂	H	H	4-Cl	4-Cl	H	H	oil
056	H	H	H	CH ₂ OCH ₂ CH=CH ₂	H	H	4-Cl	4-Cl	H	H	77-78
057	H	H	H	CH ₂ OCH ₃	H	H	4-Cl	4-Cl	H	H	oil
058	H	H	H	(CH ₂) ₂ CH ₃	H	H	4-Cl	4-Cl	H	H	oil
059	H	H	H	CH ₂ F	H	H	4-Cl	4-Cl	H	H	oil
060	H	H	H		H	H	H	H	2,4-Cl ₂ -6(N=CHCH=CH)-5		solid

127	H	H	H	CH ₃	H	H	3,4-F ₂	4-OCH ₃	H
128	H	H	H	CH ₂ CH ₃	H	H	3,4-Cl ₂	4-OCH ₃	H
129	H	H	H	CH ₃	H	H	3,4-Cl ₂	4-OCH ₃	H
130	H	H	H	CH ₂ CH ₃	H	H	4-CH ₃	4-OCH ₃	H
131	H	H	H	CH ₃	H	H	4-CH ₃	4-OCH ₃	H
132	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	4-OCH ₃	H
133	H	H	H	CH ₃	CH ₃	CH ₃	H	4-OCH ₃	H
134	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	4-OCH ₃	H
135	H	H	H	CH ₂ CH ₃	H	H	H	3-F; 4-OCH ₃	H
136	H	H	H	CH ₂ CH ₃	H	H	H	3-Cl; 4-OCH ₃	H
137	H	H	H	CH ₂ CH ₃	H	H	H	2-F; 4-OCH ₃	H
138	H	H	H	CH ₂ CH ₃	H	H	H	2-Cl; 4-OCH ₃	H
139	H	H	H	CH ₃	H	H	H	3-F; 4-OCH ₃	H
140	H	H	H	CH ₃	H	H	H	3-Cl; 4-OCH ₃	H
141	H	H	H	CH ₃	H	H	H	2-F; 4-OCH ₃	H
142	H	H	H	CH ₃	H	H	H	2-Cl; 4-OCH ₃	H
143	H	H	H	CH ₂ CH ₃	CH ₂ CH ₃	CH ₂ CH ₃	H	4-OCH ₃	H
144	H	H	H	CH ₃	H	H	H	H	(4)-O-C(=N)-CH ₃
145	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	H	(4)-O-C(=N)-CH ₃

157	H	H	H		CH ₃		H	H	H	H	H	H	H	H	128-131
158	H	H	CH ₂ -OCH ₂ CH ₃		CH ₃		H	H	H	H	H	H	H	(4)-N [C] [C]	
159	H	H	CH ₂ -OCH ₂ CH ₃		CH ₂ CH ₃		H	H	H	H	H	H	H	(4)-N [C] [C]	
160	H	H	H		CH ₂ CH ₃		H	H	H	H	H	H	H	(4)-N [C] [C]	
161	H	H	H		CH ₃		H	H	4-F	H	H	H	H	(4)-N [C] [C]	
162	CH ₃	H	H		CH ₃		H	H	H	H	H	H	H	(4)-N [C] [C]	
163	CH ₃	H	H		CH ₂ CH ₃		H	H	H	H	H	H	H	(4)-N [C] [C]	
164	H	H	H		CH ₂ CH ₃		H	H	4-Cl	H	H	H	H	(4)-N [C] [C]	
165	H	H	H		CH ₃		H	H	4-Cl	H	H	H	H	(4)-N [C] [C]	
166	H	H	H		CH ₂ CH ₃		H	H	2-F	H	H	H	H	(4)-N [C] [C]	

167	H	H	H	CH ₃	H	H	2-F	H	(4)-N C ₆ H ₄ N
168	H	H	CH ₂ CH ₃	H	H	2,4-F ₂	H	(4)-N C ₆ H ₄ N	
169	H	H	CH ₃	H	H	2,4-F ₂	H	(4)-N C ₆ H ₄ N	
170	H	H	CH ₂ CH ₃	H	H	4-CH ₃	H	(4)-N C ₆ H ₄ N	
171	H	H	CH ₃	H	H	4-CH ₃	H	(4)-N C ₆ H ₄ N	
172	H	H	CH ₂ CH ₃	H	H	H	3-F	(4)-N C ₆ H ₄ N	
173	H	H	CH ₂ CH ₃	H	H	H	3-Cl	(4)-N C ₆ H ₄ N	
174	H	H	CH ₂ CH ₃	H	H	H	2-F	(4)-N C ₆ H ₄ N	
175	H	H	CH ₂ CH ₃	H	H	H	2-Cl	(4)-N C ₆ H ₄ N	
176	H	H	CH ₃	H	H	H	3-F	(4)-N C ₆ H ₄ N	

177	H	H	H		CH ₃	H	H	H	H	H	H	H	H	H	H	(4)-N C ₆ H ₄ N	
178	H	H	H		CH ₃	H	H	H	H	H	H	H	H	H	H	(4)-N C ₆ H ₄ N	
179	H	H	H		CH ₃	H	H	H	H	H	H	H	H	H	H	(4)-N C ₆ H ₄ N	
180	H	H	H		(CH ₂) ₂ CH ₃	H	H	H	H	H	H	H	H	H	(4)-N C ₆ H ₄ N		
181	H	H	H		CH ₂ (CH ₃) ₂	H	H	H	H	H	H	H	H	H	(4)-N C ₆ H ₄ N		
182	H	H	H		CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	H	H	H	H	H	H	H	(4)-N C ₆ H ₄ N	
183	H	H	H		CH ₂ CH ₃	CH ₃	H	H	H	H	H	H	H	H	H	(4)-N C ₆ H ₄ N	
184	H	H	H		CH ₂ CH ₃	CH ₃	CH ₃	H	H	H	H	H	H	H	H	(4)-N C ₆ H ₄ N	
185	CH ₃	CH ₃	H		CH ₂ CH ₃	H	H	H	H	H	H	H	H	H	H	(4)-N C ₆ H ₄ N	
186	H	H	H		CH ₃	H	H	H	H	H	H	H	H	H	H	(4)-O C ₆ H ₄ N	169-170

187	H	H	CH ₃	H	H	4-O(CH ₂) ₅ CH ₃	H	H	93-94
188	H	H	CH ₃	H	H		4-C(CH ₃)=NOCH ₃		106-107
189	H	H	CH ₂ CH ₃	H	H		4-C(CH ₃)=NOCH ₃		
190	H	H	CH ₃	H	H		4-CONH ₂		174-176
191	H	H	CH ₃	H	H	4-F	H	4-CONH ₂	
192	CH ₃	H	CH ₃	H	H		4-CONH ₂		
193	H	H	CH ₂ CH ₃	H	H		4-CONH ₂		
194	H	H	CH ₂ CH ₂ CH ₃	H	H		4-CONH ₂		
195	H	H	CH ₂ CH ₃	CH ₃	H		4-CONH ₂		
196	CH ₃	CH ₃	H	CH ₃	H		4-CONH ₂		
197	H	H	CH ₃	H	H		4-CONH ₂		
							(4)-O-Cl	oil	
198	H	H	CH ₃	H	H		4-(C(=NOCH ₃)CH ₂ -CH ₂ -CH ₂)-3		100
199	H	H	CH ₃	H	H		4-NHCOC(CH ₃) ₃	H	165-166
200	H	H	CH ₂ CH ₃	H	H		4-NHCOC(CH ₃) ₃	H	
201	H	H	CH ₃	H	H		4-SCH ₃	H	102
202	H	H	CH ₃	H	4-F		4-SCH ₃	H	
203	CH ₃	H	CH ₃	H	H		4-SCH ₃	H	
204	H	H	CH ₂ CH ₃	H	H		4-SCH ₃	H	
205	H	H	CH ₂ CH ₂ CH ₃	H	H		4-SCH ₃	H	
206	H	H	CH ₂ CH ₃	CH ₃	H		4-SCH ₃	H	

217	H	H	H	CH ₂ CH ₃	CH ₃	H	H	(4)-N=O	4-morpholinyl	H
218	H	H	H	CH ₂ CH ₃	CH ₃	H	H	(4)-N=O	4-morpholinyl	H
219	H	H	H	CH ₃	H	H	4-Cl	4-SO ₂ CH ₃	H	152-153
220	H	H	H	CH ₃	H	H	4-F	4-SO ₂ CH ₃	H	
221	H	H	H	CH ₃	H	H	4-F	4-SO ₂ CH ₃	H	
222	CH ₃	H	H	CH ₃	H	H	4-F	4-SO ₂ CH ₃	H	
223	H	H	H	CH ₂ CH ₃	H	H	4-F	4-SO ₂ CH ₃	H	
224	H	H	H	CH ₂ CH ₂ CH ₃	H	H	4-F	4-SO ₂ CH ₃	H	
225	H	H	H	CH ₂ CH ₃	CH ₃	H	H	4-SO ₂ CH ₃	H	119-120
226	H	H	H	CH ₃	H	H	4-F	4-SO ₂ CH ₃	H	
227	H	H	H	CH ₃	H	H	H	N=C\cyclic	H	oil
228	H	H	H	CH ₂ CH ₃	H	H	H	4-CN	H	oil
229	H	H	H	CH ₃	H	H	H	4-CN	H	153-154
230	H	CH ₂ -OCH ₂ CH ₃	CH ₃	CH ₃	H	H	H	4-CN	H	oil
231	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	CH ₂ CH ₃	H	H	H	4-CN	H	
232	H	H	H	CH ₂ CH ₃	H	H	4-F	4-CN	H	
233	H	H	H	CH ₃	H	H	4-F	4-CN	H	

234	CH ₃	H	H	CH ₂ CH ₃	H	H	4-F	4-CN	H
235	CH ₃	H	H	CH ₃	H	H	4-F	4-CN	H
236	CH ₃	H	H	CH ₂ CH ₃	H	H	4-CN	4-CN	H
237	CH ₃	H	H	CH ₃	H	H	4-CN	4-CN	H
238	CH ₃	H	H	CH ₂ CH ₃	H	H	4-CN	4-CN	H
239	CH ₃	H	H	CH ₃	H	H	4-CN	4-CN	H
240	CH ₃	CH ₃	H	CH ₂ CH ₃	CH ₃	H	4-CN	4-CN	H
241	CH ₃	CH ₃	H	CH ₃	CH ₃	H	4-CN	4-CN	H
242	H	H	H	CH ₂ CH ₃	H	H	4-Cl	4-CN	H
243	H	H	H	CH ₃	H	H	4-Cl	4-CN	H
244	H	H	H	CH ₂ CH ₃	H	H	2-F	4-CN	H
245	H	H	H	CH ₃	H	H	2-F	4-CN	H
246	H	H	H	CH ₂ CH ₃	H	H	2,4-F ₂	4-CN	H
247	H	H	H	CH ₃	H	H	2,4-F ₂	4-CN	H
248	H	H	H	CH ₂ CH ₃	H	H	2,4-Cl ₂	4-CN	H
249	H	H	H	CH ₃	H	H	2,4-Cl ₂	4-CN	H
250	H	H	H	CH ₂ CH ₃	H	H	3,4-F ₂	4-CN	H
251	H	H	H	CH ₃	H	H	3,4-F ₂	4-CN	H
252	H	H	H	CH ₂ CH ₃	H	H	3,4-Cl ₂	4-CN	H
253	H	H	H	CH ₃	H	H	3,4-Cl ₂	4-CN	H
254	H	H	H	CH ₂ CH ₃	H	H	4-CH ₃	4-CN	H
255	H	H	H	CH ₃	H	H	4-CH ₃	4-CN	H

256	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H		4-CN	H		
257	H	H	H	CH ₃	CH ₃	CH ₃	CH ₃	H	4-CN	H		
258	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	CH ₂ CH ₃	H				
259	H	H	H	CH ₂ CH ₃	H	H	H	H	3-F; 4-CN	H		
260	H	H	H	CH ₂ CH ₃	H	H	H	H	3-Cl; 4-CN	H		
261	H	H	H	CH ₂ CH ₃	H	H	H	H	2-F; 4-CN	H		
262	H	H	H	CH ₂ CH ₃	H	H	H	H	2-Cl; 4-CN	H		
263	H	H	H	CH ₃	CH ₃	H	H	H	3-F; 4-CN	H		
264	H	H	H	CH ₃	CH ₃	H	H	H	3-Cl; 4-CN	H		
265	H	H	H	CH ₃	CH ₃	H	H	H	2-F; 4-CN	H		
266	H	H	H	CH ₃	CH ₃	H	H	H	2-Cl; 4-CN	H		
267	H	H	H	(CH ₂) ₂ CH ₃	CH ₃	H	H	H	4-CN	H		
268	H	H	H	CH ₂ (CH ₃) ₂	H	H	H	H	4-CN	H		
269	H	H	H	CH ₂ F	H	H	H	H	4-CN	H		
270	H	H	H	CH ₃	CH ₃	H	H	H	2-CH ₃ ; 4-CN	H		
271	H	H	H									
273	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	H		(4)-		
274	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	H		(4)-		

285	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	H	(4)- C ₂ H ₅ N=N O
286	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	H	(4)- C ₂ H ₅ N=N O
287	CH ₃	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	H	(4)- C ₂ H ₅ N=N O
288	H	H	H	CH ₂ CH ₃	H	H	H	4-OCH ₂ CH ₃	H
289	H	H	H	CH ₃	H	H	H	4-OCH ₂ CH ₃	H
290	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	4-OCH ₂ CH ₃	H
291	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	4-OCH ₂ CH ₃	H
292	H	H	H	CH ₂ CH ₃	H	H	4-F	4-OCH ₂ CH ₃	H
293	H	H	H	CH ₃	H	H	4-F	4-OCH ₂ CH ₃	H
294	CH ₃	H	H	CH ₂ CH ₃	H	H	4-F	4-OCH ₂ CH ₃	H
295	CH ₃	H	H	CH ₃	H	H	4-F	4-OCH ₂ CH ₃	H
296	CH ₃	H	H	CH ₂ CH ₃	H	H	H	4-OCH ₂ CH ₃	H
297	CH ₃	H	H	CH ₃	H	H	H	4-OCH ₂ CH ₃	H
298	CH ₃	H	H	CH ₂ CH ₃	H	H	H	4-OCH ₂ CH ₃	H
299	CH ₃	H	H	CH ₃	H	H	H	4-OCH ₂ CH ₃	H
300	CH ₃	CH ₃	H	CH ₂ CH ₃	CH ₃	H	H	4-OCH ₂ CH ₃	H
301	CH ₃	CH ₃	H	CH ₃	CH ₃	H	H	4-OCH ₂ CH ₃	H
302	H	H	H	CH ₂ CH ₃	H	H	4-Cl	4-OCH ₂ CH ₃	H

325	H	H	H	CH ₃	H	H	H	2-F; 4-OCH ₂ CH ₃	H
326	H	H	H	CH ₃	H	H	H	2-Cl; 4-OCH ₂ CH ₃	H
327	H	H	H	(CH ₂) ₂ CH ₃	H	H	H	4-OCH ₂ CH ₃	H
328	H	H	H	CH ₂ (CH ₃) ₂	H	H	H	4-OCH ₂ CH ₃	H
329	H	H	H	CH ₂ F	H	H	H	4-OCH ₂ CH ₃	H
330	H	H	H	CH ₂ CH ₃	CH ₂ CH ₃	H	H	4-OCH ₂ CH ₃	H
331	H	H	H	CH ₂ CH ₃	H	H	H	(4)-N=N	oil
332	H	H	H	CH ₃	H	H	H	(4)-N=N	103-105
333	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	(4)-N=N	
334	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	H	(4)-N=N	
335	H	H	H	CH ₂ CH ₃	H	H	4-F	(4)-N=N	
336	H	H	H	CH ₃	H	H	4-F	(4)-N=N	
337	CH ₃			CH ₂ CH ₃	H	H	4-F	(4)-N=N	

338	CH ₃	H	H	CH ₃	H	H	4-F	H	(4)-N=N
339	CH ₃	H	H	CH ₂ CH ₃	H	H	H	H	(4)-N=N
340	CH ₃	H	H	CH ₃	H	H	H	H	(4)-N=N
341	CH ₃	H	H	CH ₂ CH ₃	H	H	H	H	(4)-N=N
342	CH ₃	H	H	CH ₃	H	H	H	H	(4)-N=N
343	CH ₃	CH ₃	H	CH ₂ CH ₃	CH ₃	H	H	H	(4)-N=N
344	CH ₃	CH ₃	H	CH ₃	CH ₃	H	H	H	(4)-N=N
345	H	H	H	CH ₂ CH ₃	H	H	4-Cl	H	(4)-N=N
346	H	H	H	CH ₃	H	H	4-Cl	H	(4)-N=N
347	H	H	H	CH ₂ CH ₃	H	H	2-F	H	(4)-N=N

348	H	H	H	CH ₃	H	H	2-F	H	(4)-N=N
349	H	H	H	CH ₂ CH ₃	H	H	2,4-F ₂	H	(4)-N=N
350	H	H	H	CH ₃	H	H	2,4-F ₂	H	(4)-N=N
351	H	H	H	CH ₂ CH ₃	H	H	2,4-Cl ₂	H	(4)-N=N
352	H	H	H	CH ₃	H	H	2,4-Cl ₂	H	(4)-N=N
353	H	H	H	CH ₂ CH ₃	H	H	3,4-F ₂	H	(4)-N=N
354	H	H	H	CH ₃	H	H	3,4-F ₂	H	(4)-N=N
355	H	H	H	CH ₂ CH ₃	H	H	3,4-Cl ₂	H	(4)-N=N
356	H	H	H	CH ₃	H	H	3,4-Cl ₂	H	(4)-N=N
357	H	H	H	CH ₂ CH ₃	H	H	4-CH ₃	H	(4)-N=N

358	H	H	H	CH ₃	H	H	4-CH ₃	H	(4)-N'N
359	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	H	(4)-N'N
360	H	H	H	CH ₃	CH ₃	CH ₃	H	H	(4)-N'N
361	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	H	(4)-N'N
362	H	H	H	CH ₂ CH ₃	H	H	H	3-F	(4)-N'N
363	H	H	H	CH ₂ CH ₃	H	H	H	3-Cl	(4)-N'N
364	H	H	H	CH ₂ CH ₃	H	H	H	2-F	(4)-N'N
365	H	H	H	CH ₂ CH ₃	H	H	H	2-Cl	(4)-N'N
366	H	H	H	CH ₃	H	H	H	3-F	(4)-N'N
367	H	H	H	CH ₃	H	H	H	3-Cl	(4)-N'N

368	H	H	H	CH ₃	H	H	H	H	H	H	H	H	H	H	2-F	(4)-N'_H-N=				
369	H	H	H	CH ₃	H	H	H	H	H	H	H	H	H	H	2-Cl	(4)-N'_H-N=				
370	H	H	H	(CH ₂) ₂ CH ₃	H	H	H	H	H	H	H	H	H	H	(4)-N'_H-N=	(4)-N'_H-N=				
371	H	H	H	CH ₂ (CH ₃) ₂	H	H	H	H	H	H	H	H	H	H	(4)-N'_H-N=	(4)-N'_H-N=				
372	H	H	H	CH ₂ F	H	H	H	H	H	H	H	H	H	H	(4)-N'_H-N=	(4)-N'_H-N=				
373	H	H	CH ₂ -OCH ₃	CH ₃	H	H	H	H	H	H	H	H	H	H	(4)-N'_H-N=	(4)-N'_H-N=				
374	H	H	CH ₂ -OCH ₃	CH ₂ CH ₃	H	H	H	H	H	H	H	H	H	H	(4)-N'_H-N=	(4)-N'_H-N=				
375	H	H	H	CH ₃	H	H	H	H	H	H	H	H	H	H	4-COOCH ₃	133-134				
376	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	H	H	H	H	H	H	H	4-COOCH ₃					
377	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	H	H	H	H	H	H	H	4-COOCH ₃					
378	H	H	H	CH ₃	H	H	H	H	H	H	H	H	H	H	4-COC ₆ H ₅					
379	H	H	H	CH ₂ CH ₃	H	H	H	H	H	H	H	H	H	H	(4)-N'_H-N=CH ₃	H ₃ C	oil			

380	H	H	H	CH ₃	H	H	H	H	H	H	(4)-N-CH ₃	124-125
381	H	H	H	CH ₂ CH ₃	H	H	H	H	H	H	(4)-	pyridine
382	H	H	H	CH ₃	H	H	H	4-F	H	H	(4)-	pyridine
383	CH ₃	H	H	CH ₃	H	H	H	H	H	H	(4)-	pyridine
384	H	H	H	CH ₃	H	H	H	H	H	H	(4)-	pyridine
385	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H	H	H	H	(4)-	pyridine
386	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	H	H	H	(4)-	pyridine
387	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	H	H	H	(4)-	pyridine
388	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	H	H	H	(4)-	pyridine

389	CH ₃	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	H	(4)- pyridine
390	H	H	H	CH ₂ CH ₃	H	H	H	H	(4)- thiophene
391	H	H	H	CH ₂ CH ₃	H	H	H	H	(4)- thiophene
392	H	H	H	CH ₃	H	H	H	H	(4)- thiophene
393	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	H	(4)- thiophene
394	H	CH ₂ -OCH ₂ CH ₃			H	H	H	H	(4)- thiophene
395	H	H	H	CH ₂ CH ₃	H	H	H	4-F	
396	H	H	H	CH ₃	H	H	H	4-F	
397	CH ₃				H	H	H	H	

398	CH ₃	H	H	CH ₂ CH ₃	H	H	H	H	H	(4)
399	H	H	H	CH ₂ CH ₃	H	H	4-Cl	H	(4)	
400	H	H	H	CH ₃	H	H	4-Cl	H	(4)	
401	H	H	H	CH ₂ CH ₃	H	H	2-F	H	(4)	
402	H	H	H	CH ₃	H	H	2-F	H	(4)	
403	H	H	H	CH ₂ CH ₃	H	H	2,4-F ₂	H	(4)	
404	H	H	H	CH ₃	H	H	2,4-F ₂	H	(4)	
405	H	H	H	CH ₂ CH ₃	H	H	4-CH ₃	H	(4)	
406	H	H	H	CH ₃	H	H	4-CH ₃	H	(4)	

407	H	H	H	CH ₂ CH ₃	H	H	H	3-F	(4)	S	CH ₃
408	H	H	H	CH ₂ CH ₃	H	H	H	3-Cl	(4)	S	CH ₃
409	H	H	H	CH ₂ CH ₃	H	H	H	2-F	(4)	S	CH ₃
410	H	H	H	CH ₂ CH ₃	H	H	H	2-Cl	(4)	S	CH ₃
411	H	H	H	CH ₃	H	H	H	3-F	(4)	S	CH ₃
412	H	H	H	CH ₃	H	H	H	3-Cl	(4)	S	CH ₃
413	H	H	H	CH ₃	H	H	H	2-F	(4)	S	CH ₃
414	H	H	H	CH ₃	H	H	H	2-Cl	(4)	S	CH ₃
415	H	H	H	(CH ₂) ₂ CH ₃	H	H	H	H	(4)	S	CH ₃

416	H	H	H	$\text{CH}_2(\text{CH}_3)_2$	H	H	H	H	(4)- 	
417	H	H	CH_2CH_3	CH_3	CH_2CH_3	H	H	H	(4)- 	
418	H	H	CH_2CH_3	CH_3	H	H	H	H	(4)- 	
419	H	H	CH_2CH_3	CH_3	CH_2CH_3	H	H	H	(4)- 	
420	H	H	CH_2CH_3	CH_2CH_3	CH_2CH_3	H	H	H	(4)- 	
421	H	H			CH_2CH_3	H	H	H	(4)- 	solid
422	H	H			CH_3	H	H	H	(4)- 	solid
423	H	H	$\text{CH}_2\text{-OCH}_2\text{CH}_3$		CH_3	H	H	H	(4)- 	
424	H	H	$\text{CH}_2\text{-OCH}_2\text{CH}_3$		CH_2CH_3	H	H	H	(4)- 	

425	H	H	H	CH ₂ CH ₃	H	H	4-F	H	(4)-N pyrrole
426	H	H	H	CH ₃	H	H	4-F	H	(4)-N pyrrole
427	H	H	CH ₃	H	H	H			(4)-N pyrrole
428	CH ₃	H	H	CH ₂ CH ₃	H	H	H	H	(4)-N pyrrole
429	H	H	H	CH ₂ CH ₃	H	H	4-Cl	H	(4)-N pyrrole
430	H	H	CH ₃	H	H	H	4-Cl	H	(4)-N pyrrole
431	H	H	H	CH ₂ CH ₃	H	H	2-F	H	(4)-N pyrrole
432	H	H	H	CH ₃	H	H	2-F	H	(4)-N pyrrole
433	H	H	H	CH ₂ CH ₃	H	H	2,4-F ₂		(4)-N pyrrole
434	H	H	H	CH ₃	H	H	2,4-F ₂	H	(4)-N pyrrole

435	H	H	H	CH ₂ CH ₃	H	H	4-CH ₃	H	(4)-N pyrrole
436	H	H	H	CH ₃	H	H	4-CH ₃	H	(4)-N pyrrole
437	H	H	H	CH ₂ CH ₃	H	H	3-F		
438	H	H	H	CH ₂ CH ₃	H	H	3-Cl		
439	H	H	H	CH ₂ CH ₃	H	H	2-F		
440	H	H	H	CH ₂ CH ₃	H	H	2-Cl		
441	H	H	H	CH ₃	H	H	3-F		
442	H	H	H	CH ₃	H	H	3-Cl		
443	H	H	H	CH ₃	H	H	2-F		
444	H	H	H	CH ₃	H	H	2-Cl		

445	H	H	H	$(\text{CH}_2)_2\text{CH}_3$	H	H	H	H	$(4)-\text{N}=\text{N}$
446	H	H	H	$\text{CH}_2(\text{CH}_3)_2$	H	H	H	H	$(4)-\text{N}=\text{N}$
447	H	H	H	CH_2CH_3	CH_3	CH_2CH_3	H	H	$(4)-\text{N}=\text{N}$
448	H	H	H	CH_2CH_3	CH_3	H	H	H	$(4)-\text{N}=\text{N}$
449	H	H	H	CH_2CH_3	CH_3	CH_3	H	H	$(4)-\text{N}=\text{N}$
450	CH_3	CH_3	H	CH_2CH_3	H	H	H	H	$(4)-\text{N}=\text{N}$
451	H	H	H	CH_3	H	H	H	H	$4-(\text{COCH}_2\text{CH}_2\text{CH}_2\text{CH}_2)_3$
452	H	H	H	CH_2CH_3	H	H	H	H	$(4)-\text{N}(\text{C}(=\text{O}))_2$
453	H	H	H	CH_2CH_3	H	H	H	H	$4-(\text{COCH}_2\text{CH}_2\text{CH}_2\text{CH}_2)_3$
454	H	H	H	CH_2CH_3	H	H	H	H	$4-\text{CON}(\text{CH}_3)_2$
455	H	H	H	CH_2CH_3					$(4)-\text{N}=\text{N}$
456	H	H	H		CH_3	H	H	$4-\text{OCOCH}_3$	H
									$143-145$

457	H	H	H	CH ₃	H	H	H	H	4-OH		H			120-121
458	H	H	CH ₃	CH ₃	H	H	H	H	4-OH		H			resinous
459	H	H	H	CH ₃	H	H	4-F		4-OH		H			
460	CH ₃	H	H	CH ₃	H	H	H		4-OH		H			
461	H	H	H	CH ₂ CH ₃	H	H	H		4-OH		H			
462	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H		4-OH		H			
463	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H		4-OH		H			
464	H	H	H	CH ₂ CH ₃	CH ₃	H	H		4-OH		H			
465	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H		4-OH		H			
466	CH ₃	CH ₃	H	CH ₂ CH ₃	H	H	H		4-OH		H			
467	H	H	H	CH ₂ CH ₃	H	H	H		4-(C(CH ₃)=C-C(O)-O)-3					190-191
468	H	H	H	CH ₂ CH ₃	H	H	H		4-(CH=CH-C(O)-O)-3					131-132
469	H	H	H	CH ₂ CH ₃	H	H	H		4-OCH(CH ₃) ₂		H			98-99
470	H	H	H	CH ₃	H	H	4-F		4-OCH(CH ₃) ₂		H			
471	CH ₃	H	H	CH ₃	H	H	H		4-OCH(CH ₃) ₂		H			
472	H	H	H	CH ₃	H	H	H		4-OCH(CH ₃) ₂		H			
473	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H		4-OCH(CH ₃) ₂		H			
474	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H		4-OCH(CH ₃) ₂		H			
475	H	H	H	CH ₂ CH ₃	CH ₃	H	H		4-OCH(CH ₃) ₂		H			
476	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H		4-OCH(CH ₃) ₂		H			
477	CH ₃	CH ₃	H	CH ₃	H	H	H		4-OCH(CH ₃) ₂		H			

	H	H	H	CH ₂ CH ₃	H	H	H	(4)-O-	CN	CH ₃	H	H	108-109	
478														glass
479	H	H	H	CH ₂ CH ₃	H	H	H		4-NO ₂		H			153-154
480	H	H	H	CH ₂ CH ₃	H	H	H		4-NH ₂		H			
481	H	H	H	CH ₃	H	H	H		4-NH ₂		H			
482	H	H	H	CH ₃	H	H	H		4-F		H			
483	CH ₃	H	H	CH ₃	H	H	H		4-NH ₂		H			
484	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H		4-NH ₂		H			
485	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H		4-NH ₂		H			
486	H	H	H	CH ₂ CH ₃	CH ₃	H	H		4-NH ₂		H			
487	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H		4-NH ₂		H			
488	CH ₃	H	H	CH ₂ CH ₃	H	H	H		4-NH ₂		H			
489	H	H	H	CH ₂ CH ₃	H	H	H		4-I		H			resinous
490	H	H	H	CH ₃	H	H	H		4-I		H			
491	H	H	H	CH ₃	H	H	H		4-F		H			
492	CH ₃	H	H	CH ₃	H	H	H		4-I		H			
493	H	H	H	CH(CH ₃) ₂	H	H	H		4-I		H			
494	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H		4-I		H			
495	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H		4-I		H			
496	H	H	H	CH ₂ CH ₃	CH ₃	H	H		4-I		H			
497	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H		4-I		H			

498	H	H	H	CH ₂ F	H	H	H	H	4-I	H
499	H	H	H	CH ₂ CH ₃	H	H	H	H	4-Br	H
500	H	H	H	CH ₃	H	H	H	H	4-Br	H
501	H	H	H	CH ₃	H	H	4-F	4-Br		H
502	CH ₃	H	H	CH ₃	H	H	H	4-Br		H
503	H	H	H	CH(CH ₃) ₂	H	H	H	4-Br		H
504	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H	4-Br		H
505	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	4-Br		H
506	H	H	H	CH ₂ CH ₃	CH ₃	H	H	4-Br		H
507	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	4-Br		H
508	H	H	H	CH ₂ F	H	H	H	4-Br		H
509	H	H	H	CH ₃	H	H	H	4-CH(CH ₃) ₂		H
510	H	H	H	CH ₂ CH ₃	H	H	H	4-OCH ₂ C ₆ H ₅		H
511	H	H	H	CH ₃	H	H	H	4-OCH ₂ C ₆ H ₅		H
512	H	H	H	CH ₃	H	H	H	3-F	4-COCH ₂ CH ₃	103-104
513	H	H	H	CH ₂ CH ₃	H	H	H	3-F	4-COCH ₂ CH ₃	114-118
514	H	H	H	CH ₂ CH ₃	H	H	H	4-COCH ₂ CH ₃		oil
515	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	4-COCH ₂ CH ₃		4-COCH ₂ CH ₃
516	H	CH ₂ -OCH ₂ CH ₃		CH ₂ CH ₃	H	H	H	4-COCH ₂ CH ₃		4-COCH ₂ CH ₃
517	H	H		CH ₃	H	H	H	4-F		4-COCH ₂ CH ₃
518	H	H		CH ₂ CH ₃	H	H	H			4-COCH ₂ CH ₃
519	H	H		CH ₃	H	H	4-F	H		4-COCH ₂ CH ₃

520	CH ₃	H	H	CH ₂ CH ₃	H	H	4F	H	4-COCH ₂ CH ₃
521	CH ₃	H	H	CH ₃	H	H	4F	H	4-COCH ₂ CH ₃
522	CH ₃	H	H	CH ₂ CH ₃	H	H	H	H	4-COCH ₂ CH ₃
523	CH ₃	H	H	CH ₃	H	H	H	H	4-COCH ₂ CH ₃
524	CH ₃	H	H	CH ₂ CH ₃	H	H	H	H	4-COCH ₂ CH ₃
525	CH ₃	H	H	CH ₃	H	H	H	H	4-COCH ₂ CH ₃
526	CH ₃	CH ₃	H	CH ₂ CH ₃	CH ₃	H	H	H	4-COCH ₂ CH ₃
527	CH ₃	CH ₃	H	CH ₃	CH ₃	H	H	H	4-COCH ₂ CH ₃
528	H	H	H	CH ₂ CH ₃	H	H	4-Cl	H	4-COCH ₂ CH ₃
529	H	H	H	CH ₃	H	H	4-Cl	H	4-COCH ₂ CH ₃
530	H	H	H	CH ₂ CH ₃	H	H	2-F	H	4-COCH ₂ CH ₃
531	H	H	H	CH ₃	H	H	2-F	H	4-COCH ₂ CH ₃
532	H	H	H	CH ₂ CH ₃	H	H	2,4F ₂	H	4-COCH ₂ CH ₃
533	H	H	H	CH ₃	H	H	2,4F ₂	H	4-COCH ₂ CH ₃
534	H	H	H	CH ₂ CH ₃	H	H	2,4Cl ₂	H	4-COCH ₂ CH ₃
535	H	H	H	CH ₃	H	H	2,4Cl ₂	H	4-COCH ₂ CH ₃
536	H	H	H	CH ₂ CH ₃	H	H	3,4F ₂	H	4-COCH ₂ CH ₃
537	H	H	H	CH ₃	H	H	3,4F ₂	H	4-COCH ₂ CH ₃
538	H	H	H	CH ₂ CH ₃	H	H	3,4Cl ₂	H	4-COCH ₂ CH ₃
539	H	H	H	CH ₃	H	H	3,4Cl ₂	H	4-COCH ₂ CH ₃
540	H	H	H	CH ₂ CH ₃	H	H	4-CH ₃	H	4-COCH ₂ CH ₃
541	H	H	H	CH ₃	H	H	4-CH ₃	H	4-COCH ₂ CH ₃

542	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	H	4-COCH ₂ CH ₃
543	H	H	H	CH ₃	CH ₃	CH ₃	H	H	4-COCH ₂ CH ₃
544	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	H	4-COCH ₂ CH ₃
545	H	H	H	CH ₂ CH ₃	H	H	H	3-F	4-COCH ₂ CH ₃
546	H	H	H	CH ₂ CH ₃	H	H	H	3-Cl	4-COCH ₂ CH ₃
547	H	H	H	CH ₂ CH ₃	H	H	H	2-F	4-COCH ₂ CH ₃
548	H	H	H	CH ₂ CH ₃	H	H	H	2-Cl	4-COCH ₂ CH ₃
549	H	H	H	CH ₃	H	H	H	3-F	4-COCH ₂ CH ₃
550	H	H	H	CH ₃	H	H	H	3-Cl	4-COCH ₂ CH ₃
551	H	H	H	CH ₃	H	H	H	2-F	4-COCH ₂ CH ₃
552	H	H	H	CH ₃	H	H	H	2-Cl	4-COCH ₂ CH ₃
553	H	H	H	(CH ₂) ₂ CH ₃	H	H	H	H	4-COCH ₂ CH ₃
554	H	H	H	CH ₂ (CH ₃) ₂	H	H	H	H	4-COCH ₂ CH ₃
555	H	H	H	CH ₂ F	H	H	H	H	4-COCH ₂ CH ₃
556	H	H	H	CH ₃	H	H	H	H	(4)-C-N= N H ₂
557	H	H	H	CH ₂ CH ₃	H	H	H	H	(4)-C-N= N H ₂
558	H	H	H	CH ₂ CH ₃	H	H	H	H	solid (4)-C-N= N H ₂

559	H	H	H	H	CH ₃	H	H	4-F	H	(4)- pyridine
560	CH ₃	H	H	CH ₃	H	H	H	H	H	(4)- pyridine
561	H	H	H	CH ₃	H	H	H	H	H	(4)- pyridine
562	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H	H	H	(4)- pyridine
563	H	H	H	CH ₂ CH ₂ CH ₂ CH ₃	H	H	H	H	H	(4)- pyridine
564	H	H	H	CH ₂ CH ₃	H	H	H	H	H	4-COCH ₃
565	H	H	H	CH ₃	CH ₃	H	H	H	H	4-COCH ₃
566	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	H	H	4-COCH ₃
567	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	H	H	4-COCH ₃
568	H	H	H	CH ₃	H	H	H	H	H	4-COCH ₃
569	H	H	H	CH ₂ CH ₃	H	H	4-F	H	H	4-COCH ₃
570	H	H	H	CH ₃	H	H	4-F	H	H	4-COCH ₃
571	CH ₃	H	H	CH ₂ CH ₃	H	H	4-F	H	H	4-COCH ₃
572	CH ₃	H	H	CH ₃	H	H	4-F	H	H	4-COCH ₃
573	CH ₃	H	H	CH ₂ CH ₃	H	H	H	H	H	4-COCH ₃

574	CH ₃	H	H	CH ₃	H	H	H	H	4-COCH ₃
575	CH ₃	H	H	CH ₂ CH ₃	H	H	H	H	4-COCH ₃
576	CH ₃	H	H	CH ₃	H	H	H	H	4-COCH ₃
577	CH ₃	CH ₃	H	CH ₂ CH ₃	CH ₃	H	H	H	4-COCH ₃
578	CH ₃	CH ₃	H	CH ₃	CH ₃	H	H	H	4-COCH ₃
579	H	H	H	CH ₂ CH ₃	H	H	4-Cl	H	4-COCH ₃
580	H	H	H	CH ₃	H	H	4-Cl	H	4-COCH ₃
581	H	H	H	CH ₂ CH ₃	H	H	2-F	H	4-COCH ₃
582	H	H	H	CH ₃	H	H	2-F	H	4-COCH ₃
583	H	H	H	CH ₂ CH ₃	H	H	2,4-F ₂	H	4-COCH ₃
584	H	H	H	CH ₃	H	H	2,4-F ₂	H	4-COCH ₃
585	H	H	H	CH ₂ CH ₃	H	H	2,4-Cl ₂	H	4-COCH ₃
586	H	H	H	CH ₃	H	H	2,4-Cl ₂	H	4-COCH ₃
587	H	H	H	CH ₂ CH ₃	H	H	3,4-F ₂	H	4-COCH ₃
588	H	H	H	CH ₃	H	H	3,4-F ₂	H	4-COCH ₃
589	H	H	H	CH ₂ CH ₃	H	H	3,4-Cl ₂	H	4-COCH ₃
590	H	H	H	CH ₃	H	H	3,4-Cl ₂	H	4-COCH ₃
591	H	H	H	CH ₂ CH ₃	H	H	4-CH ₃	H	4-COCH ₃
592	H	H	H	CH ₃	H	H	4-CH ₃	H	4-COCH ₃
593	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	H	4-COCH ₃
594	H	H	H	CH ₃	CH ₃	CH ₃	H	H	4-COCH ₃
595	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	H	4-COCH ₃

596	H	H	H	CH ₂ CH ₃	H	H	H	3-F	4-COCH ₃
597	H	H	H	CH ₂ CH ₃	H	H	H	3-Cl	4-COCH ₃
598	H	H	H	CH ₂ CH ₃	H	H	H	2-F	4-COCH ₃
599	H	H	H	CH ₂ CH ₃	H	H	H	2-Cl	4-COCH ₃
600	H	H	H	CH ₃	H	H	H	3-F	4-COCH ₃
601	H	H	H	CH ₃	H	H	H	3-Cl	4-COCH ₃
602	H	H	H	CH ₃	H	H	H	2-F	4-COCH ₃
603	H	H	H	CH ₃	H	H	H	2-Cl	4-COCH ₃
604	H	H	H	(CH ₂) ₂ CH ₃	H	H	H	H	4-COCH ₃
605	H	H	H	CH ₂ (CH ₃) ₂	H	H	H	H	4-COCH ₃
606	H	H	H	CH ₂ F	H	H	H	H	4-COCH ₃
607	H	H	H	CH ₃	H	H	H	H	4-COCH ₃
									152-153 $n_D^{20} = +10.7^\circ$ (CHCl ₃ c 1,34)
608	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	H	-4-COCH ₃
609	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	H	-4-COCH ₃
610	H	H	H	CH ₃	H	H	H	H	-4-COCH ₃
									152-153 $n_D^{20} = -10.7^\circ$ (CHCl ₃ c 1,34)
611	H	H	CH ₂ -OCH ₂ CH ₃	CH ₃	H	H	H	H	-4-COCH ₃
612	H	H	CH ₂ -OCH ₂ CH ₃	CH ₂ CH ₃	H	H	H	H	-4-COCH ₃
613	H	H	H	CH ₃	CH ₂ CH ₃	H	H	H	4-COCH ₃
614	H	H	H	CH ₃	H	H	4-F	3,4-(OCH ₃) ₂	H

615	CH ₃	H	H	CH ₃	H	H	H	3,4-(OCH ₃) ₂	H
616	H	H	H	CH ₃	H	H	4-F	3,4-(OCH ₃) ₂	H
617	H	H	H	CH ₂ CH ₃	H	H	H	3,4-(OCH ₃) ₂	H
618	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H	3,4-(OCH ₃) ₂	H
619	H	H	H	CH ₂ CH ₃	CH ₃	H	H	3,4-(OCH ₃) ₂	H
620	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	3,4-(OCH ₃) ₂	H
621	H	H	H	CH ₃	H	H	4-F	3-OCH ₃ ;	H
622	CH ₃	H	H	CH ₃	H	H	H	4-OCH ₂ CH=CH ₂	H
623	CH ₃	H	H	CH ₃	H	H	H	3-OCH ₃ ;	H
624	H	H	H	CH ₃	H	H	4-F	3-OCH ₂ CH=CH ₂	H
625	H	H	H	CH ₂ CH ₃	H	H	H	4-OCH ₂ CH=CH ₂	H
626	H	H	H	CH ₂ CH ₂ CH ₃	H	H	H	4-OCH ₂ CH=CH ₂	H
627	H	H	H	CH ₂ CH ₃	CH ₃	H	H	3-OCH ₃ ;	H
628	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	H	4-OCH ₂ CH=CH ₂	H
629	H	H	H	CH ₃	CH ₃	H	H	3-OCH ₃ ;	H
630	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	4-OCH ₂ CH=CH ₂	H
631	H	H	H	CH ₃	H	H	4-F	3-OCH ₃ ;	H
								4-OCH ₂ C≡CH	

632	CH ₃	H	H	CH ₃	H	H	3-OCH ₃	H
633	H	H	H	CH ₃	H	H	4-OCH ₂ C≡CH	H
634	H	H	H	CH ₂ CH ₃	H	H	3-OCH ₃	H
635	H	H	H	CH ₂ CH ₂ CH ₃	H	H	4-OCH ₂ C≡CH	H
636	H	H	H	CH ₂ CH ₃	CH ₃	H	3-OCH ₃	H
637	H	H	H	CH ₂ CH ₃	CH ₃	H	4-OCH ₂ C≡CH	H
638	H	H	H	CH ₃	CH ₃	H	3-OCH ₃	H
639	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	4-OCH ₂ C≡CH	H
640	H	H	H	CH ₃	H	H	4-F	4-OCH ₂ C≡CH
641	CH ₃	H	H	CH ₃	H	H	4-OCH ₂ C≡CH	H
642	H	H	H	CH ₃	H	H	4-F	4-OCH ₂ C≡CH
643	H	H	H	CH ₂ CH ₃	H	H	4-OCH ₂ C≡CH	H
644	H	H	H	CH ₂ CH ₂ CH ₃	H	H	4-OCH ₂ C≡CH	H
645	H	H	H	CH ₂ CH ₃	CH ₃	H	4-OCH ₂ C≡CH	H
646	H	H	H	CH ₂ CH ₃	CH ₃	H	4-OCH ₂ C≡CH	H
647	H	H	H	CH ₃	CH ₃	H	4-OCH ₂ C≡CH	H

648	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	4-OCH ₂ C≡CH	H	H
649	H	H	H	CH ₃	H	H	4-F	4-OCH ₂ CH=CH ₂	H	H
650	CH ₃	H	H	CH ₃	H	H	4-OCH ₂ CH=CH ₂	H	H	H
651	H	H	H	CH ₃	H	H	4-F	4-OCH ₂ CH=CH ₂	H	H
652	H	H	H	CH ₂ CH ₃	H	H	4-OCH ₂ CH=CH ₂	H	H	H
653	H	H	H	CH ₂ CH ₂ CH ₃	H	H	4-OCH ₂ CH=CH ₂	H	H	H
654	H	H	H	CH ₂ CH ₃	CH ₃	H	4-OCH ₂ CH=CH ₂	H	H	H
655	H	H	H	CH ₂ CH ₃	CH ₃	CH ₃	4-OCH ₂ CH=CH ₂	H	H	H
656	H	H	H	CH ₃	CH ₃	H	4-OCH ₂ CH=CH ₂	H	H	H
657	H	H	H	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H	4-OCH ₂ CH=CH ₂	H	H
658	H	H	H	CH ₂ CH ₃	H	H	H	2-Cl	(4)-N ₂ C=NN	(-) isomer
659	H	H	H	CH ₃	H	H	H	3-F	(4)-N ₂ C=NN	(+) -isomer
660	H	H	H	CH ₂ CH ₃	H	H	H	H	(4)-N ₂ C=NN	(-) isomer
661	H	H	H	CH ₂ CH ₃	H	H	H	H	(4)-N ₂ C=NN	(+) -isomer

662	H	H	H	CH ₃	H	H	H	H	H	(4)-N=N	(+)-isomer			
662	H	H	H	CH ₃	H	H	H	H	H	(4)-N=N	(-)-isomer			
663	H	H	H	CH ₂ CH ₃	H	H	H	H	4-OCH ₂ CH ₃	H	(-)-isomer			
664	H	H	H	CH ₂ CH ₃	H	H	H	H	4-OCH ₂ CH ₃	H	(+)-isomer			
664	H	H	H	CH ₃	H	H	H	H	4-OCH ₂ CH ₃	H	(-)-isomer			
665	H	H	H	CH ₃	H	H	H	H	4-OCH ₂ CH ₃	H	(+)-isomer			
666	H	H	H	CH ₂ CH ₃	H	H	H	H	4-OCH ₂ CH ₃	H	(-)-isomer			
667	H	H	H	CH ₂ CH ₃	H	H	H	H	H	(4)-S-C(=O)N	(+)-isomer			
668	H	H	H	CH ₃	H	H	H	H	H	(4)-S-C(=O)N	(-)-isomer			
669	H	H	H	CH ₃	H	H	H	H	H	(4)-S-C(=O)N	(-)-isomer			
670	H	H	H	CH ₂ CH ₃	H	H	H	H	4-CN	H	(-)-isomer			
671	H	H	H	CH ₃	H	H	H	H	4-CN	H	(+)-isomer			
672	H	H	H	CH ₂ CH ₃	H	H	H	H	4-CN	H	(+)-isomer			
673	H	H	H	CH ₃	H	H	H	H	4-CN	H	(-)-isomer			
674	H	H	H	CH ₂ CH ₃	H	H	H	H	4-Cl	H	(-)-isomer			
675	H	H	H	CH ₂ CH ₃	H	H	H	H	4-Cl	H	(+)-isomer			

676	H	H	H	CH ₃	H	H	H	H	(4)-O-C ₂ H ₅
678	H	H	H	CH ₂ CH ₃	H	H	H	H	(4)-O-C ₂ H ₅
679	H	H	H	CH ₃	H	H	H	H	(4)-O-CF ₃
680	H	H	H	CH ₂ CH ₃	H	H	H	H	(4)-O-CF ₃
681	H	H	H	CH ₃	H	H	H	H	(4)-S-C ₂ H ₅
682	H	H	H	CH ₂ CH ₃	H	H	H	H	(4)-S-C ₂ H ₅
683	H	H	H	CH ₃	H	H	H	H	(4)-S-CF ₃
684	H	H	H	CH ₂ CH ₃	H	H	H	H	(4)-S-CF ₃
685	H	H	H	CH ₃	H	H	H	H	(4)-NH-C ₂ H ₅

705	H	H	CH ₂ CH ₃						
706	H	H	CH ₃						
708	H	H	CH ₂ CH ₃						
709	H	H	CH ₃						
710	H	H	CH ₂ CH ₃						
711	H	H	CH ₃						
712	H	H	CH ₂ CH ₃						
713	H	H	CH ₃						
714	H	H	CH ₂ CH ₃						

Formulations may be prepared analogously to those described in, for example, WO 95/30651.

Biological Examples

D-1: Action against Plasmopara viticola on vines

a) Residual-protective action

Vine seedlings are sprayed at the 4- to 5-leaf stage with a spray mixture (0.02 % active ingredient) prepared from a wettable powder formulation of the test compound. After 24 hours, the treated plants are infected with a sporangia suspension of the fungus. Fungus infestation is evaluated after incubation for 6 days at 95-100 % relative humidity and +20°C.

b) Residual-curative action

Vine seedlings are infected at the 4- to 5-leaf stage with a sporangia suspension of the fungus. After incubation for 24 hours in a humidity chamber at 95-100 % relative humidity and +20°C, the infected plants are dried and sprayed with a spray mixture (0.02 % active ingredient) prepared from a wettable powder formulation of the test compound. After the spray coating has dried, the treated plants are placed in the humidity chamber again.

Fungus infestation is evaluated 6 days after infection.

Compounds of Tables 1 exhibit a good fungicidal action against *Plasmopara viticola* on vines. Compounds No. 040, 052, 059, 071, 091, 101, 102, 104, 105, 157, 186, 197, 220, 228, 229, 271, 288, 289, 331, 332, 378, 381, 391, 421, 422, 452, 453, 469, 479, 489, 499, 512, 513, 514, 517, 464, 568 and 607 at 200 ppm inhibit fungal infestations in both tests D-1a) and D-1b) by 80 – 100 %. At the same time untreated plants showed pathogen attack of 60 – 100 %.

D-2: Action against Phytophthora on tomato plants

a) Residual-protective action

After a cultivation period of 3 weeks, tomato plants are sprayed with a spray mixture (0.02 % active ingredient) prepared from a wettable powder formulation of the test compound. After 48 hours, the treated plants are infected with a sporangia suspension of the fungus. Fungus infestation is evaluated after incubation of the infected plants for 5 days at 90-100 % relative humidity and +20°C.

b) Systemic action

After a cultivation period of 3 weeks, tomato plants are watered with a spray mixture (0.02 % active ingredient based on the volume of the soil) prepared from a wettable powder formulation of the test compound. Care is taken that the spray mixture does not come into contact with the parts of the plants that are above the ground. After 96 hours, the treated plants are infected with a sporangia suspension of the fungus. Fungus infestation is evaluated after incubation of the infected plants for 4 days at 90-100 % relative humidity and +20°C. Compounds of Tables 1 exhibit a good fungicidal action against *Plasmopara viticola* on vines. Compounds No. 040, 052, 059, 071, 091, 101, 102, 104, 105, 157, 186, 197, 220, 228, 229, 271, 288, 289, 331, 332, 378, 381, 391, 421, 422, 452, 453, 469, 479, 489, 499, 512, 513, 514, 517, 464, 568 and 607 at 200 ppm inhibit fungal infestations in both tests D-1a) and D-1b) by 80 – 100 %. At the same time untreated plants showed pathogen attack of 60 – 100 %.

D-3 : Action against Phytophthora on potato plants**a) Residual-protective action**

2-3 week old potato plants (Bintje variety) are sprayed with a spray mixture (0.02 % active ingredient) prepared from a wettable powder formulation of the test compound. After 48 hours, the treated plants are infected with a sporangia suspension of the fungus. Fungus infestation is evaluated after incubation of the infected plants for 4 days at 90-100 % relative humidity and +20°C.

b) Systemic action

2-3 week old potato plants (Bintje variety) are watered with a spray mixture (0.02 % active ingredient based on the volume of the soil) prepared from a wettable powder formulation of the test compound. Care is taken that the spray mixture does not come into contact with the parts of the plants that are above the ground. After 48 hours, the treated plants are infected with a sporangia suspension of the fungus. Fungus infestation is evaluated after incubation of the infected plants for 4 days at 90-100 % relative humidity and +20°C. Fungal infestation is effectively controlled with compounds of Table 1.

Compounds 040, 052, 105, 157, 228, 229, 271, 288, 289, 332, 421, 422, 469, 479, 489, 514, 517, 564, 568 and 607 at 200 ppm inhibit fungal infestations in both tests D-3a) and D-3b) by 60 – 100 %. At the same time untreated plants showed a pathogen attack of 60 - 100 %.

What is claimed is:

1. A compound of the general formula

including the optical isomers thereof and mixtures of such isomers, wherein
 Ar_1 and Ar_2 independently of each other stand for an optionally substituted aryl or heteroaryl group,

R_1 and R_2 stand independently of each other for hydrogen, optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl, optionally substituted $\text{C}_2\text{-}\text{C}_5$ alkenyl, $\text{C}_2\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

R_3 designates hydrogen, $\text{C}_3\text{-}\text{C}_5$ alkenyl, $\text{C}_3\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl;

R_4 is optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl, optionally substituted $\text{C}_2\text{-}\text{C}_5$ alkenyl, $\text{C}_2\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

R_5 and R_6 are independently of each other hydrogen or optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl, optionally substituted $\text{C}_2\text{-}\text{C}_5$ alkenyl, $\text{C}_2\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

R_7 and R_8 are independently of each other hydrogen or optionally substituted $\text{C}_1\text{-}\text{C}_5$ alkyl, optionally substituted $\text{C}_2\text{-}\text{C}_5$ alkenyl, $\text{C}_2\text{-}\text{C}_5$ alkynyl or optionally substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

W designates a bridge selected from $-\text{O}-$, $-\text{S}(\text{O})_m-$ or $-\text{NR}_3-$;

X designates a direct bond or a bridge selected from $-\text{O}-$, $-\text{S}(\text{O})_m-$ or $-\text{NR}_3-$;

a and b independently of each other stand for a number 1, 2 or 3; and

c and m independently of each other stand for a number zero, 1 or 2.

2. A compound according to claim 1 wherein

Ar_1 stands for an aryl group which is optionally substituted with n radicals independently selected from R_9 ; or stands for a 5-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R_{11} ; or stands for a 6-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R_{11} ;

Ar_2 stands for an aryl group which is optionally substituted with n radicals independently

selected from R₉ and from one radical R₁₀; or stands for a 5-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R₁₁; or stands for a 6-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur, and being optionally substituted with n radicals independently selected from R₁₁; or stands for a fused bicyclic heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur, and being composed from the 5-ring- or 6-ring-membered heteroaryl groups as defined for Ar₂ with an annellated phenyl ring or with an annellated second 6-ring-membered heteroaryl, each ring and the bicyclic heteroaryl being optionally substituted with n radicals independently selected from R₁₁;

R₁ and R₂ stand independently of each other for hydrogen or C₁-C₅alkyl optionally substituted by halogen, C₁-C₃alkoxy or -NR₁₂R₁₃; or stand for C₂-C₅alkenyl optionally substituted by halogen or C₁-C₃alkoxy; or stand for C₂-C₅alkynyl; or stand for C₃-C₆cycloalkyl optionally substituted by halogen, C₁-C₃alkoxy; C₁-C₃alkyl or -NR₁₂R₁₃; R₃ designates hydrogen, C₃-C₅alkenyl, C₃-C₅alkynyl or C₁-C₃alkyl optionally substituted by C₁-C₃alkoxy; C₃-C₅alkenyloxy or C₃-C₅alkynyloxy;

R₄ is C₁-C₅-alkyl optionally substituted by halogen, C₁-C₃alkoxy or -NR₁₂R₁₃; or is C₂-C₅alkenyl optionally substituted by halogen or C₁-C₃alkoxy; or is C₂-C₅alkynyl; or is C₃-C₆cycloalkyl optionally substituted by halogen, C₁-C₃alkoxy or C₁-C₃alkyl; R₅ and R₆ are independently of each other hydrogen or C₁-C₅alkyl optionally substituted by halogen, C₁-C₃alkoxy or -NR₁₂R₁₃; or are C₂-C₅alkenyl optionally substituted by halogen or C₁-C₃alkoxy; or are C₂-C₅alkynyl; or are C₃-C₆cycloalkyl optionally substituted by halogen, C₁-C₃alkoxy; C₁-C₃alkyl or -NR₁₂R₁₃;

R₇ and R₈ are independently of each other hydrogen or C₁-C₅alkyl optionally substituted by halogen, C₁-C₃alkoxy or -NR₁₂R₁₃; or are C₂-C₅alkenyl optionally substituted by halogen or C₁-C₃alkoxy; or are C₂-C₅alkynyl; or are C₃-C₆cycloalkyl optionally substituted by halogen, C₁-C₃alkoxy; C₁-C₃alkyl or -NR₁₂R₁₃;

R₉ and R'₉ independently of each other stand for C₁-C₅alkyl optionally substituted by halogen, C₁-C₄alkoxy, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄, by a -X-aryl which is optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; by a -X-linked-5- or 6-ring-membered heteroaryl group optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the

acyclic or cyclic ketals and acetals of -CO-R_{14} ; or stand for $\text{C}_3\text{-C}_6\text{cycloalkyl}$, optionally substituted by halogen, hydroxy, $=\text{O}$, $\text{C}_1\text{-C}_4\text{alkoxy}$, $\text{NR}_{12}\text{R}_{13}$; or stand for $\text{C}_1\text{-C}_4\text{alkoxy}$ optionally substituted by halogen, $\text{C}_1\text{-C}_4\text{alkoxy}$, by -X-aryl which is optionally substituted by halogen, $\text{C}_1\text{-C}_4\text{alkyl}$, $\text{C}_1\text{-C}_4\text{haloalkyl}$, $\text{C}_1\text{-C}_4\text{alkoxy}$, $-\text{CN}$, $-\text{NO}_2$, $-\text{NR}_{12}\text{R}_{13}$, $-\text{CO-R}_{14}$ or the acyclic or cyclic ketals and acetals of -CO-R_{14} ; by a X-linked-5- or 6-ring-membered heteroaryl group optionally substituted by halogen, $\text{C}_1\text{-C}_4\text{alkyl}$, $\text{C}_1\text{-C}_4\text{haloalkyl}$, $\text{C}_1\text{-C}_4\text{alkoxy}$, $-\text{CN}$, $-\text{NO}_2$, $-\text{NR}_{12}\text{R}_{13}$, $-\text{CO-R}_{14}$ or the acyclic or cyclic ketals and acetals of -CO-R_{14} ; or stand for $\text{C}_2\text{-C}_5\text{alkenyl}$ optionally substituted by halogen or aryl; or stand for $\text{C}_2\text{-C}_5\text{alkynyl}$ optionally substituted by halogen, tri-alkyl-silyl or aryl; or stand for $\text{C}_2\text{-C}_5\text{alkenyloxy}$ optionally substituted by halogen, tri-alkyl-silyl or aryl; or stand for $\text{C}_3\text{-C}_6\text{cycloalkoxy}$ optionally substituted by $\text{C}_1\text{-C}_3\text{alkyl}$, halogen or $\text{C}_1\text{-C}_4\text{alkoxy}$; or stand for halogen; or stand for $-\text{NR}_{12}\text{R}_{13}$, or stand for $-\text{NR}_2\text{-CO-R}_{12}$; or stand for $-\text{NR}_2\text{-CO-OR}_{12}$; or stand for $-\text{NR}_2\text{-CO-NR}_8\text{R}_9$; or stand for $-\text{NR}_2\text{-CO-SR}_{12}$; or stand for $-\text{NR}_2\text{-CS-OR}_{12}$; or stand for $-\text{NR}_2\text{-CS-NR}_8\text{R}_9$; or stand for $-\text{NR}_2\text{-CS-SR}_{12}$; or stand for $-\text{NR}_2\text{-C(=N-O-R}_{12}\text{)-S-OR}_{12}$; or stand for $-\text{NR}_2\text{-C(=N-O-R}_{12}\text{)-NR}_8\text{R}_9$; or stand for $-\text{NR}_2\text{-C(=N-O-R}_{12}\text{)-SR}_{12}$; or stand for $-\text{S(O)}_p\text{-C}_1\text{-C}_4\text{alkyl}$ optionally substituted by halogen; or stand for $-\text{NR}_2\text{-SO}_2\text{-NR}_8\text{R}_9$; or stand for nitro, for cyano or for $-\text{CS-NH}_2$;

R_{10} stands for hydrogen; or stands for -X-aryl which is optionally substituted by halogen, $\text{C}_1\text{-C}_4\text{alkyl}$, $\text{C}_1\text{-C}_4\text{haloalkyl}$, $\text{C}_1\text{-C}_4\text{alkoxy}$, $-\text{CN}$, $-\text{NO}_2$, $-\text{NR}_{12}\text{R}_{13}$, $-\text{CO-R}_{14}$ or the acyclic or cyclic ketals and acetals of -CO-R_{14} ; or stands for a $\text{X-linked 5-membered}$ aromatic or non-aromatic heterocyclic ring comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, $\text{C}_1\text{-C}_4\text{alkyl}$, $\text{C}_1\text{-C}_4\text{haloalkyl}$, $\text{C}_1\text{-C}_4\text{alkoxy}$, $-\text{CN}$, $-\text{NO}_2$, $-\text{NR}_{12}\text{R}_{13}$, $-\text{CO-R}_{14}$ or the acyclic or cyclic ketals and acetals of -CO-R_{14} ; or stands for a $\text{X-linked 6-membered}$ aromatic or non-aromatic heterocyclic ring comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, $\text{C}_1\text{-C}_4\text{alkyl}$, $\text{C}_1\text{-C}_4\text{haloalkyl}$, $\text{C}_1\text{-C}_4\text{alkoxy}$, $-\text{CN}$, $-\text{NO}_2$, $-\text{NR}_{12}\text{R}_{13}$, $-\text{CO-R}_{14}$ or the acyclic or cyclic ketals and acetals of -CO-R_{14} ; or stands for $-\text{CO-R}_{14}$ or the acyclic or cyclic ketals and acetals of -CO-R_{14} ; or stands for $-\text{O-CO-R}_{14}$; or stands for $-\text{C(=N-O-R}_{12}\text{)-R}_{14}$;

R_{10} and one R'_9 together form a 3- or 4-membered non-aromatic bridge forming an annellated ring which may contain a carbonyl function or nitrogen, oxygen or sulfur as ring members and is optionally substituted by $\text{C}_1\text{-C}_3\text{alkyl}$;

R_{11} is hydrogen, halogen, $\text{C}_1\text{-C}_4\text{alkyl}$, $\text{C}_1\text{-C}_4\text{haloalkyl}$, $\text{C}_1\text{-C}_4\text{alkoxy}$, $-\text{NR}_{12}\text{R}_{13}$, $-\text{NO}_2$, $-\text{CN}$, $-\text{CO-R}_{14}$ or the acyclic or cyclic ketals and acetals of -CO-R_{14} ;

W designates a bridge selected from $-\text{O-}$, $-\text{S(O)}_m-$ or $-\text{NR}_3-$;

X designates a direct bond or a bridge selected from $-O-$, $-S(O)_m-$ or $-NR_3-$;

a stands for a number 1, 2 or 3;

b stands for a number 1, 2 or 3;

c stands for a number zero, 1 or 2;

m stands for a number zero, 1 or 2;

n stands for a number 1 or 2;

p stands for a number 0, 1 or 2;

R_{12} and R_{13} independently of each other stand for hydrogen; C_1-C_5 alkyl optionally substituted by halogen, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy or $-CN$; or stand for C_3-C_5 alkenyl optionally substituted by halogen, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy or $-CN$; or stand for C_3-C_5 alkynyl optionally substituted by halogen, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy or $-CN$; or together form a 5-ring-membered non-aromatic carbocyclic ring; or together form a 6-ring-membered non-aromatic carbocyclic ring which is interrupted by $-O-$ or $-N(C_1-C_4$ alkyl)- ;

R_{14} stands for C_1-C_5 alkyl optionally substituted by halogen, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino; aryl which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, $-CN$, $-NO_2$, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino or C_1-C_4 alkylcarbonyl, C_1-C_4 alkoxycarbonyl, C_1-C_4 alkylaminocarbonyl or di(C_1-C_4 alkyl)amino carbonyl; or by a 5- or 6-ring hetero-aromatic ring which in turn is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, $-CN$, $-NO_2$, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, C_1-C_4 alkylcarbonyl, C_1-C_4 alkoxycarbonyl, C_1-C_4 alkylaminocarbonyl or di(C_1-C_4 alkyl)amino carbonyl; or stands for C_3-C_6 cycloalkyl optionally substituted by halogen, $(C_1-C_4$ alkyl)aminocarbonyl; or stands for C_3-C_6 cycloalkyl optionally substituted by halogen, $C_1-hydroxy$, $=O$, C_1-C_4 alkoxy or C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino; or stands for C_1-C_4 alkoxy optionally substituted by halogen, C_1-C_4 alkoxy, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, C_1-C_4 alkylamino; or stands for phenyl which is optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, $-CN$, $-NO_2$, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, C_1-C_4 alkylcarbonyl, C_1-C_4 alkoxycarbonyl, C_1-C_4 alkylaminocarbonyl or di(C_1-C_4 alkyl)aminocarbonyl; or stands for a 5- or 6-ring membered heteroaryl comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl; C_1-C_4 alkoxy, $-CN$, $-NO_2$, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, C_1-C_4 alkylcarbonyl,

C₁-C₄alkoxycarbonyl, C₁-C₄alkylaminocarbonyl or di-(C₁-C₄alkyl)aminocarbonyl.

3. A compound according to claims 1 or 2 wherein

wherein Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ of Ar₁ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN and -CO-R₁₄; and the optional substituents R'₉ of Ar₂ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN, -CO-R₁₄, -NR₁₂R₁₃, -NR₂-CO-R₁₂, -NR₃-CO-OR₁₂, -NR₂-CO-NR₈R₉, -NR₂-CO-SR₁₂, -NR₂-CS-OR₁₂, -NR₂-CS-NR₈R₉, -NR₂-CS-SR₁₂, -S(O)_p-C₁-C₄alkyl, -S(O)_p-C₁-C₄haloalkyl, -NR₂-SO₂-NR₈R₉, nitro, cyano and -CS-NH₂; and the optional substituent R₁₀ on Ar₂ is selected from optionally substituted phenyl, optionally substituted imidazolyl, optionally substituted thiazolyloxy, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted oxadiazolyloxy, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy.

4. A compound of formula I according to claim 1 wherein

Ar₁ and Ar₂ independently stand for optionally substituted aryl groups; and the optional substituents R₉ of Ar₁ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN and -CO-R₁₄; and

the optional substituents R'₉ of Ar₂ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN, -CO-R₁₄, -NR₁₂R₁₃, -NR₂-CO-R₁₂, -NR₃-CO-OR₁₂, -NR₂-CO-NR₈R₉, -NR₂-CO-SR₁₂, -NR₂-CS-OR₁₂, -NR₂-CS-NR₈R₉, -NR₂-CS-SR₁₂, -S(O)_p-C₁-C₄alkyl, -S(O)_p-C₁-C₄haloalkyl, -NR₂-SO₂-NR₈R₉, nitro, cyano and -CS-NH₂; and

the optional substituent R₁₀ on Ar₂ is selected from halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ and the acyclic or cyclic ketals and acetals of -CO-R₁₄; -O-CO-R₁₄, optionally substituted phenyl, optionally substituted imidazolyl, optionally substituted thiazolyloxy, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl,

optionally substituted oxadiazolyloxy, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy; and

R₁, R₂, R₅, R₆, R₇ and R₈ independently of each other are hydrogen or methyl; and
R₃ is hydrogen or C₁-C₄alkyl optionally substituted with C₁-C₄alkoxy, C₃-C₄alkenyloxy, or
C₃-C₄alkynyloxy; and

R₄ is hydrogen or C₁-C₄alkyl optionally substituted with halogen, C₁-C₃alkoxy,
C₁-C₃alkylamino or di-C₁-C₃alkylamino; and

W is -O- ; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1 ; and

the suffix (c) stands for the number zero.

5. A compound of formula I according to claim 1 wherein

Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and
the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising
C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy and C₃-C₆cycloalkyl; and
the optional substituent R₁₀ on Ar₂ is selected from -CO-C₁-C₄alkyl, -CO-C₁-C₄alkoxy,
-O-CO-C₁-C₄alkyl, optionally substituted phenyl, optionally substituted phenoxy, optionally
substituted imidazolyl, optionally substituted imidazolyloxy, optionally substituted thiazolyl-
oxy, optionally substituted thiazolyl, optionally substituted thiadiazolyloxy, optionally substi-
tuted thiadiazolyl, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally
substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally substituted oxadia-
zolyl, optionally substituted oxadiazolyloxy, optionally substituted triazolyl, optionally substi-
tuted pyrazolyl, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy;
and

R₁ and R₅ are independently C₁-C₄alkyl and R₂ and R₆ are hydrogen; and

R₃ is hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy-C₁-C₄alkyl; and

R₄ is C₁-C₄alkyl or C₁-C₄haloalkyl; and

W is -O- ; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1 ; and

the suffix (c) stands for the number zero.

6. A compound of formula I according to claim 1 wherein ; or wherein

Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising bromo, chloro, fluoro, iodo, cyano, hydroxy, amino, nitro, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, propoxy, isopropoxy, allyloxy, propargyloxy, benzyloxy, trifluoromethyl, trifluoromethoxy, 2-cyano-2-methyl-butyloxy, methylsulfonyl, methylsulfinyl, methylthio, cyclopentyl, cyclohexyl, aminocarbonylmethyl, methoximinoethyl, aminocarbonyl, butylcarbonylamino, tert-butylcarbonylamino, triazol-1-ylmethyl, 1,2,4-triazol-1-ylmethyl, N-morpholinocarbonylamino, aminocarbonyloxy-ethoxy, morpholinocarbonyloxyethoxy and cyanopyridyloxyethoxy; and the optional substituent R₁₀ on Ar₂ is selected from aminocarbonyl, dimethylaminocarbonyl, acetyl, propionyl, acetoxy, methoxycarbonyl, ethoxycarbonyl, benzoyl, methoximinoethyl, 1-imidazolyl, 5-(3-methyl-1,2,4-thiadiazolyloxy), 2-pyridyl, 2-pyridyloxy, 4-pyrimidinyl, 2-(3,5-dichloropyridyloxy), 2-(4,6-dichloropyridyloxy), 2-(4,6-dimethoxypyrimidinylthio), 2-oxadiazolyl, 2-(5-methyl-oxadiazolyl), 2-(5-ethyl-oxadiazolyl), 1-triazolyl, 1-pyrazolyl, 1-(3,4-dimethylpyrazolyl), 4-(2-methylthiazolyl), 2-(1,3,4-oxydiazolyl), N-pyrrolidin-2-onyl, and 2-quinoxalinyl, and

R₁ and R₅ are independently C₁-C₄alkyl and R₂ and R₆ are hydrogen; and

R₃ is hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy-C₁-C₄alkyl; and

R₄ is C₁-C₄alkyl or C₁-C₄haloalkyl; and

W is -O- ; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1 ; and

the suffix (c) stands for the number zero.

7. A compound according to claim 1, wherein

Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising bromo, chloro, fluoro, methyl, ethyl, methoxy, ethoxy, trifluoromethyl and trifluoromethoxy; and

the optional substituent R₁₀ on Ar₂ is selected from aminocarbonyl, acetyl, methoxycarbonyl, ethoxycarbonyl, 1-imidazolyl, 5-(3-methyl-1,2,4-thiadiazolyloxy), 2-pyridyl, 2-pyridyloxy, 4-pyrimidinyl, 2-(3,5-dichloropyridyloxy), 2-(4,6-dimethoxypyrimidinylthio), 2-oxadiazolyl, 2-(5-methyl-oxadiazolyl), 2-(5-ethyl-oxadiazolyl), 1-triazolyl, 1-pyrazolyl, 4-(2-methylthiazolyl), 2-(1,3,4-oxydiazolyl), and N-pyrrolidin-2-onyl, and

R₁ and R₅ are methyl and R₂ and R₆ are hydrogen; and
R₃ is hydrogen , methyl , ethyl, propyl, ethoxymethyl or methoxymethyl, and
R₄ is methyl , ethyl, propyl or fluoromethyl; and
W is -O- ; and
X is a direct bond; and
the suffixes (a) and (b) designate the number 1 ; and
the suffix (c) stands for the number zero.

8. A compound of formula I according to claim 1 selected from the group comprising
2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-chlorophenoxy)-methyl]-2-[(2-chlorophenyl)-methyl]-sulfonylamino-propionitrile,
2-[(4-chlorophenoxy)-methyl]-2-[(2-fluorophenyl)-methyl]-sulfonylamino-propionitrile,
2-[(4-trifluoromethoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-chloro-3-methylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-3-methoxy-propionitrile,
2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-methoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
(-)2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-propionylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-imidazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
2-[(4-[1,3,4]oxadiazol-4-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-methoxyphenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
(-)2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
2-[(4-methoxycarbonylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
2-[(4-propionylphenoxy)-methyl]-2-benzylsulfonylamino-butryonitrile,
2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-3-fluoro-propionitrile,

2-[(4-(2-methyl-thiazol-4-yl)-phenoxy]-methyl]-2-benzylsulfonylamino-butyronitrile,
 2-[(4-pyrazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
 2-(5-oxo-5,6,7,8-tetrahydronaphth-2-yloxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
 2-[(4-chloro-phenoxy)-methyl]-2-benzylsulfonylamino-3-methyl-butyronitrile,
 2-[(4-iso-propyl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
 2-[(4-nitro-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
 2-[(4-cyano-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
 2-[(3-fluoro-4-propionyl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
 (-) -2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile, and
 (-)-2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile.

9. A process for the preparation of a compound of formula I according to claim 1, which comprises reacting

a) reacting the the sulfonylating agent of formula II

wherein wherein Ar_1 , a , X and R_1 to R_2 , are defined as under formula I, and A stands for a leaving group like an anhydride, i.e. $-\text{O}-\text{SO}_2-(\text{CR}_1\text{R}_2)_a-\text{X}-\text{Ar}_1$ or $-\text{O}-\text{CO}-\text{C}_1-\text{C}_4\text{alkyl}$, but preferably for halogen, especially bromine or more preferably chlorine, with an amino-acetonitrile of formula III

wherein Ar_2 , b , c , W and R_3 to R_8 , are defined as under formula I, or

b) coupling the reacting the compound of formula XIII

wheren Ar_1 , Ar_2 , a , b , c , W and R_1 to R_8 are defined as under formula I and L is a leaving group such as e.g. halogen, preferably chlorine, bromine or iodine or a sulfonyloxy group such as e.g. methylsulfonyloxy-, toluylsulfonyloxy- or trifluoromethylsulfonyloxy- group, is

coupled with a compound of formula XIV

wherein Ar_1 is defined as under formula I and X' is either an anionic radical species of X such as O^- , S^- , S(O)_m^- combined with an alkaline- or earthalkaline- metal cation as counterion or is defined as X-H such as OH, SH, NHR_3 if at the same time the reaction is generally carried out in the presence of a base such as alkaline-, earthalkaline-carbonates or hydrogencarbonates such e.g. sodium or potassium-carbonate, sodium or potassium - hydrogen-carbonate, cesium-carbonate or an agent capable of scavenging the formed acid.

10. A composition for controlling and protecting against phytopathogenic microorganisms, comprising a compound of formula I according to claim 1 as active ingredient together with a suitable carrier.

11. The use of a compound of formula I according to claim 1 in protecting plants against infestation by phytopathogenic microorganisms.

12.. A method of controlling and preventing an infestation of crop plants by phytopathogenic microorganisms, which comprises the application of a compound of formula I according to claim 1 as active ingredient to the plant, to parts of plants or to the locus thereof.

13. A method according to claim 12, wherein the phytopathogenic microorganisms are fungal organisms.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.