Problem Solving with AI Techniques Refresher on Probability Theory

Paul Weng

UM-SJTU Joint Institute

VE593, Fall 2018

For more, see VE401 and VE501

- Introduction of Probability
- Pormal Definitions
- 3 Family of Probability of Distributions
- 4 Some Notions From Information Theory

Why is there Uncertainty?

- Knowledge is generally uncertain because
 - Full vs partial/non observable world
 - Observation comes from imperfect sensors
 - Data often imprecise, missing or contradictory
 - World is stochastic?
- Uncertainty can be handled with probability distribution
- Other uncertainty models, e.g., possibility theory, belief functions

Why Use Probability?

- Cox Theorem
 - If some "natural" postulates are satisfied, then belief is represented by probability

Why Use Probability?

- Cox Theorem
 - If some "natural" postulates are satisfied, then belief is represented by probability
- Dutch Book Argument: If rules of probability not respected, there
 exist a set of bets that guarantees to lose money (de Finetti).
 Example:

Proposition	Belief	
а	.4	
Ь	.3	
$a \lor b$.8	

Why Use Probability?

- Cox Theorem
 - If some "natural" postulates are satisfied, then belief is represented by probability
- Dutch Book Argument: If rules of probability not respected, there
 exist a set of bets that guarantees to lose money (de Finetti).
 Example:

Proposition	Belief	Bet		Stakes
а	.4	а		4 to 6
Ь	.3	b)	3 to 7
$a \lor b$.8	_	$\neg(a \lor b)$	2 to 8

- Empirical Justification
 - Many success stories in gambling, finance, engineering, machine learning...

Interpretation of Probability

- Objective Probability
 - probability = objective property of objects like mass

- Frequentist Interpretation
 - probability = limit of observed frequences

- Subjective Interpretation
 - probability = beliefs of an agent

- Introduction of Probability
- Pormal Definitions
- 3 Family of Probability of Distributions
- 4 Some Notions From Information Theory

• Sample space/domain Ω Sample point/possible world/atomic event $\omega \in \Omega$ Event $A \subseteq \Omega$ e.g., Roll of 6-face die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

- Sample space/domain Ω Sample point/possible world/atomic event $\omega \in \Omega$ Event $A \subseteq \Omega$
 - e.g., Roll of 6-face die: $\Omega = \{1,2,3,4,5,6\}$
- Probability $\mathbb{P}: A\subseteq \Omega\mapsto [0,1]$ e.g., $\mathbb{P}(\{1\})=\frac{1}{6}$, $\mathbb{P}(\{2,4\})=\frac{1}{3}$, $\mathbb{P}(\{3,5,6\})=\frac{1}{2}$

- Sample space/domain Ω Sample point/possible world/atomic event $\omega \in \Omega$ Event $A \subseteq \Omega$
 - e.g., Roll of 6-face die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Probability $\mathbb{P}: A \subseteq \Omega \mapsto [0,1]$ e.g., $\mathbb{P}(\{1\}) = \frac{1}{6}$, $\mathbb{P}(\{2,4\}) = \frac{1}{3}$, $\mathbb{P}(\{3,5,6\}) = \frac{1}{2}$
- Kolmogorov Axioms: $\forall A, B \subseteq \Omega$
 - Nonnegativity $\mathbb{P}(A) \geq 0$
 - Normalization $\mathbb{P}(\Omega) = 1$
 - Additivity $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ if $A \cap B = \{ \}$

- Sample space/domain Ω Sample point/possible world/atomic event $\omega \in \Omega$ Event $A \subseteq \Omega$
 - e.g., Roll of 6-face die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Probability $\mathbb{P}: A \subseteq \Omega \mapsto [0,1]$ e.g., $\mathbb{P}(\{1\}) = \frac{1}{6}$, $\mathbb{P}(\{2,4\}) = \frac{1}{3}$, $\mathbb{P}(\{3,5,6\}) = \frac{1}{2}$
- Kolmogorov Axioms: $\forall A, B \subseteq \Omega$
 - Nonnegativity $\mathbb{P}(A) \geq 0$
 - Normalization $\mathbb{P}(\Omega) = 1$
 - Additivity $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ if $A \cap B = \{ \}$
- Implications
 - $0 \leq \mathbb{P}(A) \leq 1$
 - $\mathbb{P}(\{\}) = 0$
 - $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$
 - $\mathbb{P}(\Omega \backslash A) = 1 \mathbb{P}(A)$
 - $\mathbb{P}(\cap_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$ if A_i 's are disjoint

• Random variable X: measurable function from Ω to some measurable space, e.g., \mathbb{R} or $\{true, false\}$ e.g., $X: \left\{ \begin{array}{l} \{1,2,3,4,5,6\} \\ x\mapsto x \end{array} \right.$, $Odd(\omega)$

• Random variable X: measurable function from Ω to some measurable space, e.g., $\mathbb R$ or $\{true, false\}$

e.g.,
$$X: \left\{ \begin{array}{l} \{1,2,3,4,5,6\} \rightarrow \{1,2,3,4,5,6\} \\ x \mapsto x \end{array} \right.$$
, $Odd(\omega)$

• For any random variable X, \mathbb{P} induces a probability distribution, denoted $\mathbb{P}(X)$

$$\mathbb{P}(X = x_i) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x_i\}) = \sum_{\{\omega : X(\omega) = x_i\}} \mathbb{P}(\omega)$$

e.g.,
$$\mathbb{P}(\textit{Odd} = \textit{true}) = \mathbb{P}(1) + \mathbb{P}(3) + \mathbb{P}(5) = 1/6 + 1/6 + 1/6 = 1/2$$

• Random variable X: measurable function from Ω to some measurable space, e.g., \mathbb{R} or $\{true, false\}$

e.g.,
$$X: \left\{ \begin{array}{l} \{1,2,3,4,5,6\} \rightarrow \{1,2,3,4,5,6\} \\ x \mapsto x \end{array} \right.$$
, $Odd(\omega)$

• For any random variable X, \mathbb{P} induces a probability distribution, denoted $\mathbb{P}(X)$

$$\mathbb{P}(X = x_i) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x_i\}) = \sum_{\{\omega : X(\omega) = x_i\}} \mathbb{P}(\omega)$$

e.g.,
$$\mathbb{P}(Odd = true) = \mathbb{P}(1) + \mathbb{P}(3) + \mathbb{P}(5) = 1/6 + 1/6 + 1/6 = 1/2$$

• For finite space, think of $\mathbb{P}(X)$ as a table

• Random variable X: measurable function from Ω to some measurable space, e.g., \mathbb{R} or $\{true, false\}$

e.g.,
$$X: \left\{ \begin{array}{l} \{1,2,3,4,5,6\} \rightarrow \{1,2,3,4,5,6\} \\ x \mapsto x \end{array} \right.$$
, $Odd(\omega)$

• For any random variable X, \mathbb{P} induces a probability distribution, denoted $\mathbb{P}(X)$

$$\mathbb{P}(X = x_i) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x_i\}) = \sum_{\{\omega : X(\omega) = x_i\}} \mathbb{P}(\omega)$$

e.g.,
$$\mathbb{P}(\textit{Odd} = \textit{true}) = \mathbb{P}(1) + \mathbb{P}(3) + \mathbb{P}(5) = 1/6 + 1/6 + 1/6 = 1/2$$

- For finite space, think of $\mathbb{P}(X)$ as a table
- Notation $\sum_{X} \mathbb{P}(X) = \sum_{X} \mathbb{P}(X = X)$

Assume we have two random variables X and Y

• Joint $\mathbb{P}(X, Y)$

Assume we have two random variables X and Y

- Joint $\mathbb{P}(X, Y)$
- Marginal $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$

Assume we have two random variables X and Y

- Joint $\mathbb{P}(X, Y)$
- Marginal $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$
- Conditional $\mathbb{P}(X \mid Y) = \frac{\mathbb{P}(X,Y)}{\mathbb{P}(Y)}$ What is the dimension of $\mathbb{P}(X \mid Y)$?

What is the value of $\sum_{X} \mathbb{P}(X \mid Y)$?

Assume we have two random variables X and Y

- Joint $\mathbb{P}(X, Y)$
- Marginal $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$
- Conditional $\mathbb{P}(X \mid Y) = \frac{\mathbb{P}(X,Y)}{\mathbb{P}(Y)}$ What is the dimension of $\mathbb{P}(X \mid Y)$? What is the value of $\sum_{X} \mathbb{P}(X \mid Y)$?
- X is independent of Y iff $\mathbb{P}(X \mid Y) = \mathbb{P}(X)$ What does it mean for $\mathbb{P}(X \mid Y)$ and $\mathbb{P}(Y \mid X)$?

Important Rules

Product rule

$$\mathbb{P}(X, Y) = \mathbb{P}(X \mid Y)\mathbb{P}(Y) = \mathbb{P}(Y \mid X)\mathbb{P}(X)$$

• Bayes' rule

$$\mathbb{P}(X \mid Y) = \frac{\mathbb{P}(Y \mid X)\mathbb{P}(X)}{\mathbb{P}(Y)}$$

 $\mathbb{P}(X \mid Y)$ posterior $\mathbb{P}(X)$ prior $\mathbb{P}(Y \mid X)$ likelihood $\mathbb{P}(Y)$ normalization

Extended form

$$\mathbb{P}(X \mid Y) = \frac{\mathbb{P}(Y \mid X)\mathbb{P}(X)}{\sum_{X} \mathbb{P}(Y \mid X)\mathbb{P}(X)}$$

Joint Distribution: General Case

Assume we have n random variables $X_{1:n}$

- Joint $\mathbb{P}(X_{1:n})$
- Marginal $\mathbb{P}(X_1) = \sum_{X_{2:n}} \mathbb{P}(X_{1:n})$
- Conditional $\mathbb{P}(X_1 \mid X_{2:n}) = \frac{\mathbb{P}(X_{1:n})}{\mathbb{P}(X_{2:n})}$
- X is independent of Y given Z iff $\mathbb{P}(X \mid Y, Z) = \mathbb{P}(X \mid Z)$

Expectation

- Discrete case: $\mathbb{E}[X] = \sum_{x} x \mathbb{P}(X = x)$
- Continuous case: $\mathbb{E}[X] = \int_{X} xp(x)dx$
- More generally, $\mathbb{E}[f(X)]$ for some function f
- $\mathbb{E}[X]$ if $X \in \mathbb{R}^n$
- Operator E is linear:
 - $\mathbb{E}(\lambda X) = \lambda \mathbb{E}(X)$
 - $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$

Variance

- $\mathbb{V}[X] = \mathbb{E}[(X \mathbb{E}[X])^2]$
- Covariance $cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])]$
- If X, Y are independent, then cov(X, Y) = 0. But opposite generally not true!
- Useful identities:
 - $\mathbb{V}(\lambda X) = \lambda^2 V(X)$
 - $\mathbb{V}(X + Y) = \mathbb{V}(X) + 2cov(X, Y) + \mathbb{V}(Y)$
- If $\mathbf{X} \in \mathbb{R}^n$, $\mathbb{V}[\mathbf{X}] = \mathbb{E}[(\mathbf{X} E[\mathbf{X}])(\mathbf{X} E[\mathbf{X}])^{\intercal}]$

- Introduction of Probability
- Pormal Definitions
- 3 Family of Probability of Distributions
 - Discrete case
 - Continuous case
- Some Notions From Information Theory

Bernoulli & Binomial Distribution

• Random variable $X \in \{0,1\}$ follows a Bernoulli distribution Bern(p)

$$\mathbb{P}(X = 1 \mid p) = p, \mathbb{P}(X = 0 \mid p) = 1 - p, \quad \mathbb{P}(X = x \mid p) = p^{x}(1 - p)^{1 - x}$$

Bernoulli & Binomial Distribution

• Random variable $X \in \{0,1\}$ follows a Bernoulli distribution Bern(p)

$$\mathbb{P}(X = 1 \mid p) = p, \mathbb{P}(X = 0 \mid p) = 1 - p, \quad \mathbb{P}(X = x \mid p) = p^{x}(1 - p)^{1 - x}$$

• Dataset of i.i.d. random variables $D = (X_1, X_2, ..., X_n)$ where $X_i \sim Bern(p)$

$$\mathbb{P}(D = (x_1, \ldots, x_n) | p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$\operatorname{arg\,max}_{p} \mathbb{P}(D \mid p) = \operatorname{arg\,max}_{p} \sum_{i=1}^{n} x_{i} \ln p + (1 - x_{i}) \ln(1 - p) = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Bernoulli & Binomial Distribution

• Random variable $X \in \{0,1\}$ follows a Bernoulli distribution Bern(p)

$$\mathbb{P}(X = 1 \mid p) = p, \mathbb{P}(X = 0 \mid p) = 1 - p, \quad \mathbb{P}(X = x \mid p) = p^{x}(1 - p)^{1 - x}$$

• Dataset of i.i.d. random variables $D = (X_1, X_2, ..., X_n)$ where $X_i \sim Bern(p)$

$$\mathbb{P}(D = (x_1, \ldots, x_n) | p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$\operatorname{arg\,max}_{p} \mathbb{P}(D \mid p) = \operatorname{arg\,max}_{p} \sum_{i=1}^{n} x_{i} \ln p + (1 - x_{i}) \ln(1 - p) = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

• Random variable $M = \sum_{i=1}^{n} X_i \sim \text{Binomial distribution } Bin(n, p)$

$$\mathbb{P}(M = m \mid n, p) = \binom{n}{m} p^m (1-p)^{n-m}, \quad \binom{n}{m} = \frac{n!}{(n-m)!m!}$$

How to Express Uncertainty over a Bernoulli Parameter p?

• Beta distribution $Beta(\alpha, \beta)$ with $\alpha, \beta > 0 =$ distribution over [0, 1]

$$Beta(p \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$
 with mean $\frac{\alpha}{\alpha + \beta}$

How to Express Uncertainty over a Bernoulli Parameter p?

• Beta distribution $Beta(\alpha, \beta)$ with $\alpha, \beta > 0 =$ distribution over [0, 1]

$$\mathit{Beta}(p \,|\, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$
 with mean $\frac{\alpha}{\alpha + \beta}$

• It can be used to represent belief about unknown p: $\mathbb{P}(p) = Beta(p \mid \alpha, \beta)$

How to Express Uncertainty over a Bernoulli Parameter p?

• Beta distribution $Beta(\alpha, \beta)$ with $\alpha, \beta > 0 =$ distribution over [0, 1]

$$\mathit{Beta}(p \,|\, lpha, eta) = rac{1}{B(lpha, eta)} p^{lpha-1} (1-p)^{eta-1} \quad ext{with mean } rac{lpha}{lpha+eta}$$

- It can be used to represent belief about unknown p: $\mathbb{P}(p) = Beta(p \mid \alpha, \beta)$
- After observing $D = (x_1, ..., x_n)$, with counts $a = \sum_i x_i$ and $b = \sum_i (1 x_i)$, the belief about p can be updated:

$$\mathbb{P}(p \mid D) = \frac{\mathbb{P}(D \mid p)\mathbb{P}(p)}{\mathbb{P}(D)} \propto Bin(D \mid p)Beta(p \mid \alpha, \beta)$$
$$\propto p^{a}(1-p)^{b}p^{\alpha-1}(1-p)^{\beta-1} = p^{\alpha-1+a}(1-p)^{\beta-1+b}$$
$$= Beta(\alpha + a, \beta + b)$$

Examples of Beta Distribution

Paul Weng (UM-SJTU JI)

Categorical & Multinomial Distribution

• Random variable $X \in \{1, 2, \dots K\}$ follows a categorical distribution $Cat(\boldsymbol{p})$ with $\boldsymbol{p} = (p_1, \dots, p_K)$ and $\sum_k p_k = 1$

$$\mathbb{P}(X=k\,|\,\boldsymbol{p})=p_k$$

Categorical & Multinomial Distribution

• Random variable $X \in \{1, 2, \dots K\}$ follows a categorical distribution $Cat(\boldsymbol{p})$ with $\boldsymbol{p} = (p_1, \dots, p_K)$ and $\sum_k p_k = 1$

$$\mathbb{P}(X=k\,|\,\boldsymbol{p})=p_k$$

• Dataset of i.i.d. random variables $D = (X_1, \dots, X_n)$ with $X_i \sim Cat(\boldsymbol{p})$

$$\mathbb{P}(D = (x_1, \dots, x_n) | \boldsymbol{p}) = \prod_{i=1}^n p_{x_i} = \prod_{i=1}^n \prod_{k=1}^K p_k^{[x_i = k]} = \prod_{k=1}^K p_k^{m_k}$$

where $m_k = \sum_{i=1}^{n} [x_i = k]$.

$$\operatorname{arg\,max}_{\boldsymbol{p}}\mathbb{P}(D \mid \boldsymbol{p}) = \frac{1}{n}(m_1, m_2, \dots, m_K)$$

Categorical & Multinomial Distribution

• Random variable $X \in \{1, 2, \dots K\}$ follows a categorical distribution $Cat(\boldsymbol{p})$ with $\boldsymbol{p} = (p_1, \dots, p_K)$ and $\sum_k p_k = 1$

$$\mathbb{P}(X=k\,|\,\boldsymbol{p})=p_k$$

• Dataset of i.i.d. random variables $D = (X_1, \dots, X_n)$ with $X_i \sim Cat(\boldsymbol{p})$

$$\mathbb{P}(D = (x_1, \dots, x_n) | \boldsymbol{p}) = \prod_{i=1}^n p_{x_i} = \prod_{i=1}^n \prod_{k=1}^K p_k^{[x_i = k]} = \prod_{k=1}^K p_k^{m_k}$$

where $m_k = \sum_{i=1}^{n} [x_i = k]$.

$$\operatorname{arg\,max}_{\boldsymbol{p}}\mathbb{P}(D \mid \boldsymbol{p}) = \frac{1}{n}(m_1, m_2, \dots, m_K)$$

• Random variable $\mathbf{M} = (\sum_{i=1}^{n} [X_i = k])_{k=1,...K}$ follows a multinomial distribution $Mult(n, \mathbf{p})$

$$\mathbb{P}(\boldsymbol{M}=(m_1,\ldots,m_K)\,|\,n,\boldsymbol{p})\propto\prod_{k=1}^K p_k^{m_k}$$

How to Express Uncertainty over Multinomial Parameter p?

• Dirichlet distribution $Dir(\alpha)$ with $\alpha_k > 0$ = distribution over (K-1)-simplex: $\{ \boldsymbol{p} \mid \boldsymbol{p} \geq 0, \sum_k p_k = 1 \}$

$$\mathit{Dir}(oldsymbol{p}\,|\,lpha) \propto \prod_{k=1}^{\mathcal{K}} p_k^{lpha_k-1} \quad ext{with mean } ig(rac{lpha_k}{\sum_j lpha_j}ig)_{k=1,\ldots,\mathcal{K}}$$

How to Express Uncertainty over Multinomial Parameter p?

• Dirichlet distribution $Dir(\alpha)$ with $\alpha_k > 0 =$ distribution over (K-1)-simplex: $\{ \boldsymbol{p} \mid \boldsymbol{p} \geq 0, \sum_k p_k = 1 \}$

$$\mathit{Dir}(oldsymbol{p}\,|\, lpha) \propto \prod_{k=1}^K oldsymbol{p}_k^{lpha_k-1} \quad ext{with mean } ig(rac{lpha_k}{\sum_j lpha_j}ig)_{k=1,\ldots,K}$$

• It can be used to represent belief about unknown p:

$$\mathbb{P}(\mathbf{p}) = Dir(\mathbf{p} \mid \alpha)$$

How to Express Uncertainty over Multinomial Parameter p?

• Dirichlet distribution $Dir(\alpha)$ with $\alpha_k > 0 =$ distribution over (K-1)-simplex: $\{ \boldsymbol{p} \mid \boldsymbol{p} \geq 0, \sum_k p_k = 1 \}$

$$\mathit{Dir}(oldsymbol{p}\,|\, lpha) \propto \prod_{k=1}^{K} p_k^{lpha_k-1} \quad ext{with mean } ig(rac{lpha_k}{\sum_j lpha_j}ig)_{k=1,\ldots,K}$$

- It can be used to represent belief about unknown p: $\mathbb{P}(\mathbf{p}) = Dir(\mathbf{p} \mid \alpha)$
- After observing $D = \{x_1, \dots, x_n\}$, with counts $a_k = \sum_i [x_i = k]$, the belief about p can be updated:

$$\mathbb{P}(\boldsymbol{\rho} \mid D) = \frac{\mathbb{P}(D \mid \boldsymbol{\rho})\mathbb{P}(\boldsymbol{\rho})}{\mathbb{P}(D)} \propto Mult(D \mid \boldsymbol{\rho})Dir(\boldsymbol{\rho} \mid \alpha)$$

$$\propto \prod_{k=1}^{K} p_k^{a_k} \prod_{k=1}^{K} p_k^{\alpha_k - 1} = \prod_{k=1}^{K} p_k^{\alpha_k - 1 + a_k}$$

$$= Dir(\boldsymbol{\alpha} + \boldsymbol{a})$$

19/30

Paul Weng (UM-SJTU JI) Probability VE593, Fall 2018

Examples of Dirichlet Distribution

Other Discrete Distributions

- Uniform discrete distribution
- Geometric distribution: How many Bernoulli trials before a success?
- Negative binomial distribution: How many successes in a sequence of Bernoulli trials with a fixed number of failures?
- Poisson distribution: How many successes in a duration of time if they occur at known constant rate?

- Introduction of Probability
- Pormal Definitions
- Family of Probability of Distributions
 - Discrete case
 - Continuous case
- Some Notions From Information Theory

Distributions over Continuous Domains

• Probability for $X \in \mathbb{R}$ determined by probability density function $p(x) \in [0, \infty)$:

$$\mathbb{P}(X \in [a,b]) = \int_a^b \rho(x) dx \in [0,1]$$

Cumulative probability distribution:

$$F(y) = \mathbb{P}(X \le y) = \int_{-\infty}^{y} p(x) dx$$

• Note: for continuous probability distribution, $\mathbb{P}(X = x) = 0$

Gaussian (or Normal) Distribution

ullet on \mathbb{R} :

$$\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

• on \mathbb{R}^n :

$$\mathcal{N}(oldsymbol{x} \,|\, oldsymbol{\mu}, oldsymbol{\Sigma}) = rac{1}{|2\pi oldsymbol{\Sigma}|^{1/2}} e^{-rac{1}{2}(oldsymbol{x} - oldsymbol{\mu})^\intercal oldsymbol{\Sigma}^{-1}(oldsymbol{x} - oldsymbol{\mu})}$$

Why are Gaussian Distributions Important?

• Central limit theorem: Averages of n i.i.d random variables (with mean μ and variance σ^2) $\sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

 If only mean and variance are known, it is the distribution that maximizes entropy

It makes math simpler, e.g., weighted sum of independent Gaussian
 r.v.s is also Gaussian

Dirac Distribution

• Dirac distribution $\delta(x) = 0$ except at x = 0 such that

$$\int \delta(x)dx = 1$$

- $\delta(x) = \frac{\delta}{\delta x} H(x)$ where $H(x) = [x \ge 0]$, Heaviside step function
- Limit of $\mathcal{N}(0, \frac{\sigma^2}{n})$ as $n \to \infty$
- Can represent certainty

Other Continuous Distributions

- Beta and Dirichlet distributions
- Continuous uniform distribution over a compact set (e.g., interval)
- Exponential distribution: How long before an event happens if it occurs at some known rate?
- Logistic distribution: distribution whose CDF is the logistic function $\frac{1}{1+e^{-\frac{X-\mu}{s}}}$
- χ^2 distribution: distribution of sum of n squared Gaussian

For more, see VE550

- Introduction of Probability
- 2 Formal Definitions
- Family of Probability of Distributions
 - Discrete case
 - Continuous case
- 4 Some Notions From Information Theory

Entropy

- Neg-log of a distribution $(-\log p(x))$ reflects something like "error":
 - neg-log of Gaussian ↔ squared error
 - neg-log of likelihood ↔ prediction error
- Term $-\log p(x)$ is "optimal" coding length you should assign to symbol x. This will minimize the expected length of an encoding:

$$H(p) = \int_{X} p(x) (-\log p(x)) dx \ge 0$$

- Entropy $H(X) = \mathbb{E}[-\log p(X)] =$ measure of uncertainty, or lack of information, we have about X
- Note: Uniform distribution has highest entropy and *Dirac* distribution has lowest entropy

Relative Entropy or Kullback-Leibler Divergence

• Assume distribution q(x) used to decide on coding length of symbols drawn from p(x). Expected length of encoding is given by *cross-entropy*:

$$\int_{x} p(x) \big(-\log q(x) \big) dx \ge H(p)$$

Difference

$$D(p||q) = \int_{x} p(x) \left(\log \frac{p(x)}{q(x)}\right) dx \ge 0$$

is called relative entropy or Kullback-Leibler divergence

 Note: Although not a distance, it can be used to measure how different two distributions are