Machine Learning Classification

Fernando Rodríguez Sánchez

Computational Intelligence Group

Universidad Politécnica de Madrid

27/01/2020

- Introduction
- K-nearest neighbours
- Support Vector Machines
- Decision Trees

- Introduction
- K-nearest neighbors
- Support Vector Machines
- Decision Trees

Supervised learning

	X_1	 X_n	Y
$(\mathbf{x}^{(1)}, y^{(1)})$	$x_1^{(1)}$	 $x_n^{(1)}$	$y^{(1)}$
$(\mathbf{x}^{(1)}, y^{(1)})$ $(\mathbf{x}^{(2)}, y^{(2)})$	$x_1^{(2)}$	 $x_n^{(2)}$	$y^{(1)}$ $y^{(2)}$
$(\mathbf{x}^{(m)}, y^{(m)})$	$x_1^{(m)}$	 $x_n^{(m)}$	$y^{(m)}$

Classification

- X_i is discrete/continuous
- Y is discrete (the **class**)

- ullet Given $(\mathbf{x}^{(1)},y^{(1)})$ learn a function $f(\mathbf{x})$ to predict y given \mathbf{x}
- y is discrete

One-dimensional

- \bullet Given $(\mathbf{x}^{(1)},y^{(1)})$ learn a function $f(\mathbf{x})$ to predict y given \mathbf{x}
- y is discrete

One-dimensional

- \bullet Given $(\mathbf{x}^{(1)},y^{(1)})$ learn a function $f(\mathbf{x})$ to predict y given \mathbf{x}
- y is discrete

One-dimensional

Multi-dimensional

- \bullet Given $(\mathbf{x}^{(1)},y^{(1)})$ learn a function $f(\mathbf{x})$ to predict y given \mathbf{x}
- y is discrete

One-dimensional

Multi-dimensional

- Introduction
- Support Vector Machines
- Openion Trees
- K-nearest neighbours

Support Vector Machines

Support Vector Machines try to find the linear function f(x) that best separate **two** classes

Tries to make the separation as wide as possible

Support vectors \rightarrow closest points to the line

Kernel trick

What happens when classes are not linearly separable?

The training points are mapped to a 3-dimensional space where a separating hyperplane can be easily found

$$(A,B) \rightarrow (A,B,A^2+B^2)$$

Multi-class classification

Multi-class classification via All vs. All

What happens on ties (grey area)?

- Depends on implementation
- Scikit-learn assigns a class probability via K-fold cross validation

Strengths and weaknesses

Strengths

- Memory efficient (only need to store the support vectors)
- Can represent many decision boundaries via kernels
- Effective in high dimensional spaces

Weaknesses

- Performance is sometimes kernel-dependent
- Don't scale well to large datasets

- Introduction
- Support Vector Machines
- Decision Trees
- K-nearest neighbours

Decision trees

Decision trees

Overfitting?

Strengths and weaknesses

Strengths

- Easy to understand
- Easy to generate rules
- Very good when done in ensembles

Weaknesses

- Individual trees are prone to overfitting
- Pruning is usually necessary (when/how to **prune**?)
- Does not easily handle nonnumeric data

- Introduction
- Support Vector Machines
- Decision Trees
- K-nearest neighbours

K-nearest neighbours

Non-parametric model (store all instances)

Procedure to classify a new x:

- Measure distance to all the other instances
- Select k closest ones
- Assigns the most frequent class of those k instances

K-nearest neighbours

Non-parametric model (just store all instances)

Procedure to classify a new x:

- Measure distance to all the other instance
- Select k closest ones
- Assigns the most frequent class of those k instances

K-nearest neighbours

What happens if there is a tie?

- Depends on implementation
- Scikit-learn chooses the first ordered instance of the k and assigns its class to x

Strengths and weaknesses

Strengths

- Easy to understand
- Can represent any function with enough data

Weaknesses

- Memory intensive
- Problems on high dimensional data (distances)

Machine Learning Classification

Fernando Rodríguez Sánchez

Computational Intelligence Group

Universidad Politécnica de Madrid

27/01/2020

