Soluzioni prova scritta

Ingegneria Informatica 21/07/2025

Esercizio 1

Il primo quesito consiste in 2 domande a risposta aperta da 1 punto ciascuna. Per i quesiti 2, 3 e 4 ci si deve esprimere sulla **correttezza o falsità di 6 affermazioni**. Si ottengono 0, 1 e 2 punti in base al numero di risposte corrette, errori o risposte in bianco, secondo lo schema:

$$\begin{array}{c} 6 \ corrette \rightarrow 2 \ punti \\ 5 \ corrette + 1 \ errore \rightarrow 1 \ punto \\ 5 \ corrette + 1 \ bianca \rightarrow 1 \ punto \\ 4 \ corrette + 2 \ bianche \rightarrow 1 \ punto \\ Tutti \ gli \ altri \ casi \rightarrow 0 \ punti \end{array}$$

1. | 2 Punti | Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua tale che

$$\begin{cases} \int_0^1 2f(x)dx + \int_1^2 f(x)dx = 3\\ \int_0^2 f(x)dx = 4 \end{cases}$$

Il valore di $\int_0^1 f(x)dx$ è $\boxed{-1}$

Il valore di $\int_1^2 f(x)dx \ e^{\left[\frac{5}{5} \right]}$

- 2. 2 Punti Sia $A \in \mathbb{C}^{n \times n}$ e si consideri il primo passo nel calcolo della fattorizzazione QR di A. Nello specifico, la prima iterazione del metodo è equivalente alla moltiplicazione H_1A , per una certa $H_1 \in \mathbb{C}^{n \times n}$ matrice di Householder.
- $V \to H_1$ è una matrice triangolare.
- $\overline{\mathbf{V}}$ F H_1 è una matrice invertibile.
- $\overline{\mathbf{V}}$ F H_1 è una matrice unitaria.
- $V F ||H_1v||_2 = ||v||_2 \ \forall v \in \mathbb{C}^n.$
- $V \to H_1 v$ è un multiplo del primo vettore della base canonica, $\forall v \in \mathbb{C}^n$.
- N.B. le soluzioni qui riportate sono in forma schematica e concisa. Quando si compila la prova d'esame è necessario fornire chiare giustificazioni di tutti i passaggi risolutivi degli esercizi 2, 3 e 4.

- $V [F] |\det(H_1)| = 1.$
- 3. Punti Data $f: \mathbb{R} \to \mathbb{R}$ si consideri il problema di interpolazione polinomiale di f(x) sui punti $(x_0, f(x_0)), \ldots, (x_k, f(x_k))$ assumendo $x_0 < x_1 < \cdots < x_k$. In particolare siano $\sum_{i=0}^k f(x_i)\ell_i(x)$ e $\sum_{i=0}^k f[x_0, \ldots, x_i]n_i(x)$ le espressioni del polinomio interpolante nelle basi di Lagrange e Newton, rispettivamente.
- **V** F Per $x \notin [x_0, x_k]$ si ha $\sum_{i=0}^k f(x_i)\ell_i(x) = \sum_{i=0}^k f[x_0, \dots, x_i]n_i(x)$.
- **V** F Per $x \in [x_0, x_k]$ si ha $\sum_{i=0}^k f(x_i)\ell_i(x) = \sum_{i=0}^k f[x_0, \dots, x_i]n_i(x)$.
- $\overline{\mathbf{V}}$ F $\ell_i(x)$ è un polinomio di grado k per ogni $i=0,\ldots,k$.
- V F $n_i(x)$ è un polinomio di grado k per ogni $i = 0, \ldots, k$.
- $V = \sum_{i=0}^{k} f(x_i)\ell_i(x)$ è un polinomio di grado k per ogni $f: \mathbb{R} \to \mathbb{R}$.
- V F $\sum_{i=0}^{k} f[x_0, \dots, x_i] n_i(x)$ è un polinomio di grado k per ogni $f: \mathbb{R} \to \mathbb{R}$.
- 4. 2 Punti Si consideri il problema di approssimare $\int_a^b f(x)dx$ con una formula di quadratura $\sum_{i=0}^k a_i f(x_i)$.
- V F I pesi a_i sono sempre maggiori o uguali a zero.
- V F Tutti i nodi x_i appartengono all'intervallo [a, b].
- V F Se si usa una formula di Newton-Cotes e $f \in \mathcal{C}^{\infty}$, l'errore è proporzionale a una potenza di (b-a).
- V F La formula di Simpson ha grado di precisione 2.
- V F Le formule di Newton-Cotes sono formule di quadratura interpolatorie.
- V F A parità di numero di nodi le formule Gaussiane hanno un grado di precisione più basso rispetto a quelle di Newton-Cotes.

Esercizio 2

Per una matrice $A \in \mathbb{C}^{n \times n}$ il cerchio di Gershgorin associato alla riga i è definito come

$$\mathcal{F}_i(A) = \left\{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ij}| \right\}, \quad i = 1, \dots, n.$$

Si osservi che due cerchi di Gershgorin hanno intersezione non vuota se e solo se la distanza dei loro due centri è minore della somma dei due raggi, ovvero:

$$\mathcal{F}_h(A) \cap \mathcal{F}_k(A) \neq \emptyset \quad \Leftrightarrow \quad |a_{hh} - a_{kk}| \leq \sum_{j \neq h} |a_{hj}| + \sum_{j \neq k} |a_{kj}|$$

4 Punti se non si usano cicli for/while, 2 punti se si usa 1 ciclo for/while

Si implementi, una funzione Matlab gersh che prende in ingresso

• una matrice quadrata $A \in \mathbb{C}^{n \times n}$,

e restituisce

- un vettore $c \in \mathbb{C}^n$ contenente i centri dei cerchi di Gershgorin,
- \bullet un vettore $r \in \mathbb{R}^n$ contenente i raggi dei cerchi di Gershgorin,

4 Punti se non si usano cicli for/while, 2 punti se si usano cicli for/while

Assumendo di avere a disposizione la funzione gersh del punto precedente, si implementi una funzione intersezione che prende in ingresso

• una matrice quadrata $A \in \mathbb{C}^{n \times n}$,

e restituisce

ullet una matrice quadrata M di dimensione $n \times n$ tale che

$$M_{ij} = \begin{cases} 1 & \text{se } \mathcal{F}_i(A) \cap \mathcal{F}_j(A) \neq \emptyset \\ 0 & \text{altrimenti} \end{cases}.$$

Soluzione senza cicli for:

```
function [c, r] = gersh(A)
    n = size(A, 1);
    c = diag(A);
    A = A - diag(c);
    r = abs(A) * ones(n, 1);
end

function M = intersezione(A)
    [c, r] = gersh(A);
    n = size(A, 1);
    M = c * ones(1, n) - ones(n, 1) * c.'; % sto assumendo che c sia un vettore colonna
    R = r * ones(1, n) + ones(n, 1) * r'; % sto assumendo che r sia un vettore colonna
    M = abs(M) <= R
end</pre>
```

Esercizio 3

Data la matrice

$$A = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 5 & \delta \\ 0 & 5\delta & 8 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

al variare del parametro reale δ .

- (i) 4 Punti Si determini per quale valore reale positivo δ , la matrice di iterazione del metodo di **Jacobi** ha raggio spettrale uguale a $\sqrt{\frac{7}{10}}$.
- (ii) 4 Punti Si determini per quali valori $\delta \in \mathbb{R}$, il metodo di Gauss-Seidel applicato ad un sistema lineare della forma Ax = b, risulta convergente.
- (i) Calcolando gli autovalori in funzione di δ si ottiene il valore desiderato per $\delta=2.$
- (ii) La matrice di iterazione per Gauss-Seidel risulta convergente per $\delta \in [-4\sqrt{\frac{2}{5}}, 4\sqrt{\frac{2}{5}}].$

Esercizio 4

Si consideri la funzione

$$f(x) = e^{x^2 - x - \frac{3}{4}} - 1,$$

- (i) 2 Punti Si determinino le due soluzioni reali α_1 e α_2 di f(x) = 0.
- (ii) | 6 Punti | Si consideri l'approssimazione di

$$\int_{\alpha_1}^{\alpha_2} f(x) dx,$$

mediante la formula dei trapezi generalizzata. Si dia una maggiorazione al numero n di sottointervalli necessari a raggiungere un errore assoluto inferiore a 10^{-4} .

- (i) Le due radici corrispondono alle radici dell'esponente e sono $\alpha_1 = -\frac{1}{2}$ e $\alpha_2 = \frac{3}{2}$.
- (ii) Utilizzando la stima $|\text{Err}| \leq \frac{(b-a)^3}{12n^2} \max_{x \in [\alpha_1, \alpha_2]} |f''(x)|$ si arriva alla stima n = 200 intervalli.