Artificial Intelligence and Machine Learning

Exercises – k-Nearest Neighbors (kNN)

Question 1 ®

You use a k-nearest neighbors classifier and set k := N, where N is the total number of data points in the dataset. Which class is predicted by the classifier?

Question 2 ®

The decision boundary shown in figure 1 was generated by a k-nearest neighbors classifier.

- 1. How do you rate the performance of the classifier?
- 2. What might be problems and how could they be mitigated?
- 3. Can you guess the value of k which was used? Please explain your answer!

Figure 1: Decision boundary of a *k*-nearest neighbors classifier.

Question 3 (Non-parametric methods)

You have a dataset consisting of 500,000 data points. Your boss suggests to use a non-parametric method for classification (e. g. a *k*-nearest neighbors classifier). What does the term *non-parametric* mean? Do you agree with your boss? *Please explain your answer!*

Question 4 (*k*-nearest neighbors algorithm) *****

The examples in the training dataset as shown in figure 2 below belong to either of the two classes \blacksquare or \bullet . Your goal is to classify the unknown data point $q := \begin{pmatrix} 2 & 3 \end{pmatrix}^{\top}$ using the *k*-nearest neighbors algorithm. You choose k := 3.

Row	x_1	x_2	Class
1	1.00	1.00	
2	1.00	2.00	
3	2.00	1.50	
4	3.00	3.00	•
5	4.50	2.00	•
6	3.75	3.00	•
7	5.00	4.00	•

Figure 2: Illustration of the training dataset.

- 1. Calculate the prediction
 - (a) using the Manhattan distance, and
 - (b) using the Euclidean distance.

Do both distance metrics lead to the same result?

- 2. Suppose you had chosen k := 7. Which class would have been predicted? What problem do you see?
- 3. Illustrate two possible *tie breaking strategies* in case that both classes appear equally often in the neighborhood of q.

Question 5 ⊗

Tick the correct statements concerning the *k*-nearest neighbors algorithm!

- \Box The *k*-nearest neighbors algorithm is model-based.
- \Box k can be determined using the validation set.
- \Box The choice of *k* does not have a noteworthy effect on the predictions.
- \square Too large of a *k* leads to overfitting.
- ☐ The algorithm is an instance of lazy learning.

Find all lecture material on GitHub (DaWe1992/Applied_ML_Fundamentals)
☐ The training phase is computationally expensive and time consuming.
☐ The prediction of unseen data points is computationally expensive and time consuming.
\Box k should be termined on the training set.