GPT-1

임세진

https://youtu.be/5FBZehUCkW4

01. 배경

02. GPT 이해

03. GPT-1 정의 및 구조

04. 성능평가 및 결론

논문 제목 : Improving Language Understanding by Generative Pre-Training

00. 딥러닝 기반의 기계 번역 흐름

- 현재 최신 고성능 기계 번역 모델들은 Transformer 구조를 기반으로 함
- GPT : Transformer의 **디코더(Decoder)** 구조 활용
- BERT : Transformer의 **인코더(Encoder)** 구조 활용

GPT-1 (Generative Pre-Training of a language model)

01. 배경

- 데이터의 수는 Unlabeled dataset이 훨씬 많음
- 지금까지의 모델들은 최적화된 값을 찾기 위해 Labeled dataset을 사용하여 지도 학습을 수행해옴
- 훨씬 많은 Unlabeled dataset을 활용해서 더 좋은 성능을 낼 순 없을까? (훈련에 필요한 시간과 비용 절약)

Labeled dataset

20.02 기준, English Wikipedia articles는 600만 건 이상, 35억 개 이상의 단어

Unlabeled dataset

01. 배경

- Unlabeled dataset의 정보를 활용하기 힘든 이유
- 1. 어떤 목적 함수(Optimization objective)가 효과적인지 알 수 없음
- 2. 모델에서 학습된 표현(representation)을 다양한 NLP task로 전환할 때 가장 효율적인 방법이 정해지지 않음

→ GPT-1이 이 두가지 단점을 보완

02. GPT 이해

Language Model (LM)

- 단어 시퀀스에 확률을 할당하는 모델 (특정 문장(단어)이 등장할 확률을 계산해주는 모델)
- 이전 단어들을 이용하여 다음 단어를 예측함 (특별히 Labeling이 필요 없음)
- 대량의 학습 데이터로 학습하면 오류율 ↓ , 자연어의 특성을 학습하게 되어 성능 ↑
- 통계를 이용한 방법과 인공신경망을 이용한 방법이 있음
- 기계번역, 음성인식, 철자 교정 등에 응용 가능
- 예) Unigram, n-gram, RNN 계열, Transfomer 계열 등

02. GPT 이해

머신러닝 학습 방법 분류

Generative model

VS

- ✓ 클래스 분류에 분포도 사용
- ✓ 충분한 데이터셋을 가졌을 때 학습효과가 뛰어남
- ✓ overfitting이 상대적으로 적게 발생
- ✓ 상대적으로 연산이 많음
- ✓ Language Model의 학습 방법

Discriminative model

- ✓ 두 클래스에 차이에 초점
- ✔ 적은 데이터로도 좋은 성능을 보임
- ✓ 상대적으로 연산이 적음
- ✓ 한정된 데이터셋에 overfitting 되기 쉬움
- ✓ 주로 많이 사용되는 학습 방법

02. GPT 이해

- Pre-training (사전 학습)
- GPT-1은 단순한 LM이 아니라 아래 유형의 문제에서도 뛰어난 성능을 보여줌
- Natural Language Inference
- Question Ansewring
- Semantic Similarity
- Classification

- ✔ GPT의 목적은 대량의 dataset을 이용해서 자연어 처리 등력이 뛰어난 모델을 만드는 것!
- ✔ 원래 NLP를 응용하려면 task 관련 layer를 추가적으로 연결해야함
- ✔ GPT-1은 layer 추가없이 추가 학습(fine-tuning) 가능. 모델이 이미 자연어 처리 능력이 뛰어나므로!

- Transformer (2017, Google) : 기계 번역
- GPT-1 (2018, OpenAI)
 - Natural Language Inference (두 문장의 관계 유추, entailment / contradiction)
 - Question Answering (질의응답, 정보가 담긴 문장과 질문을 줬을 때 알맞은 응답을 하는지)
 - Semantic Similarity (비슷한 문장 맞히기)
 - Classification (분류)

Sentence1	Label
I am happy	Positive
I am sad	Negative

Sentence1	Sentence2	Label
남자는 동아시아 국가에서 유니폼의 수치를 점검한다.	그 남자는 자고 있다.	Contradiction (모순)
여러 명의 남자들이 축구 게임을하고 있다.	몇 명의 남자 들 은 운동을 하고 있다	Entailment (참)

Transformer의 Decoder 구조를 사용

- Unlabeled dataset의 정보를 활용하기 힘든 이유
- 1. 어떤 목적 함수(Optimization objective)가 효과적인지 알 수 없음
- 2. 모델에서 학습된 표현을 다양한 NLP task로 전환할 때 가장 효율적인 방법이 정해지지 않음

- → GPT-1이 이 두가지 단점을 보완
- 비지도 학습(unsupervised)으로 사전 학습(pre-training)을 진행하고, 지도 학습(supervised)으로 추가 학습(fine-tuning)을 하여 준지도 학습(semi-supervised)을 구현
- 1. 신경망의 초기 매개변수를 학습하기 위해 unlabeled data에 언어 모델링 목적 함수를 사용
- 2. 앞에서 얻은 parameter를 supervised objective를 사용하여 fine-tuning한 후, 특정 task에 적용

- 1. Unsupervised Pre-training with LM objective function (LM 학습): Pre-Training
- 2. Supervised Fine Tuning (새로운 Layer 추가없이 모델 자체에서 이어서 학습) : Fine Tuning
 - Labeled data를 입력하여 최적화만 하면 됨
 - Task에 따라서 입력의 형태가 달라짐

• 진화된 임베딩 방법 : BPE (Byte Pair Encoding)

기존 임베딩 방법

- Word embedding : 단어 간 유사도를 찾기 쉬우나, 학습 데이터에 없는 단어는 유사도가 제로 벡터임 → 신조어와 오탈자에 취약
- Character embedding : 제로 벡터가 나올 확률은 매우 낮으나, 단어 간 유사도가 word embedding에 비해 떨어짐

04. 성능평가 및 결론

Natural Language Inference

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x) CAFE [58] (5x)	80.2	79.0	89.3 89.3	-	-	-
Stochastic Answer Network [35] (3x)	<u>80.6</u>	80.1	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64] Multi-task BiLSTM + Attn [64]	71.4 72.2	71.3 72.1	-	-	82.3 82.1	59.2 61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

Question & Answering

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	-
Hidden Coherence Model [7]	<u>77.6</u>	-	-	-
Dynamic Fusion Net [67] (9x)	-	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	<u>60.2</u>	<u>50.3</u>	<u>53.3</u>
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

Classification & Semantic Similarity

Method	Classification		Seman	GLUE		
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2	-	-	-	-
TF-KLD [23]	-	-	86.0	-	-	-
ECNU (mixed ensemble) [60]	-	-	-	81.0	-	-
Single-task BiLSTM + ELMo + Attn [64] Multi-task BiLSTM + ELMo + Attn [64]	35.0 18.9	90.2 91.6	80.2 83.5	55.5 72.8	66.1 63.3	64.8 68.9
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

04. 성능평가 및 결론

- GPT-1
- 1. Transformer의 decoder 기반 모델
- 2. 사전 학습은 Unlabeled text를 데이터셋으로 하여 비지도 학습으로 이루어짐
- 3. 추가 학습은 task specific model을 더하지 않고 그대로 진행한다.
- 4. Byte Pair Encoding을 사용하여 임베딩을 업그레이드함

Q&A