Graph Conceptions of Properties

Carlo Nicolai

Oxford, Philosophy of Mathematics Seminar, October 17, 2022

I. I am concerned with untyped theories of properties (formulated in first-order logic)

- I. I am concerned with untyped theories of properties (formulated in first-order logic)
- II. I consider some proposals to develop property theory in the same vein as standard set theory and the associated iterative conception

- I. I am concerned with untyped theories of properties (formulated in first-order logic)
- II. I consider some proposals to develop property theory in the same vein as standard set theory and the associated iterative conception
- III. To overcome some shortcomings of such proposals, I will develop some examples of property-theoretic analogues of non-wellfounded set theory

- I. I am concerned with untyped theories of properties (formulated in first-order logic)
- II. I consider some proposals to develop property theory in the same vein as standard set theory and the associated iterative conception
- III. To overcome some shortcomings of such proposals, I will develop some examples of property-theoretic analogues of non-wellfounded set theory
- IV. I will then ask whether "graph" conceptions of properties can support those formal frameworks

Frege, $Grundgesetze\ I$:

Concepts and objects are 'fundamentally distinct': 'the latter are fully saturated', the former are 'not saturated'.

Frege, Grundgesetze I:

Concepts and objects are 'fundamentally distinct': 'the latter are fully saturated', the former are 'not saturated'.

Gödel (via Hao Wang):

There is a concept of being a concept that should apply to concepts of all types. The hierarchical 'theory of concepts is an example of trying to eliminate the intensional paradoxes in an arbitrary manner'.

Frege, Grundgesetze I:

Concepts and objects are 'fundamentally distinct': 'the latter are fully saturated', the former are 'not saturated'.

Gödel (via Hao Wang):

There is a concept of being a concept that should apply to concepts of all types. The hierarchical 'theory of concepts is an example of trying to eliminate the intensional paradoxes in an arbitrary manner'.

Gödel (via Myhill):

There never were any set-theoretic paradoxes, but the propertytheoretic paradoxes are still unresolved. Just like sets are constituted by their membership structure, properties are partially constituted by their instantiation structure.

▶ Sets as extensional properties. Associated with any set S there is a property of belonging to S. To generate such a rich realm of properties, some of the ZFC axioms are our (current) best bet (Jubien).

- ▶ Sets as extensional properties. Associated with any set S there is a property of belonging to S. To generate such a rich realm of properties, some of the ZFC axioms are our (current) best bet (Jubien).
- ▶ *Iterative constructions*. Bealer: 'for any credible motivation that can be given for [...] set theory, an analogous motivation, which is at least as satisfactory, can be given for the axioms in a corresponding logic for the predication relation'.

- ▶ Sets as extensional properties. Associated with any set S there is a property of belonging to S. To generate such a rich realm of properties, some of the ZFC axioms are our (current) best bet (Jubien).
- ▶ Iterative constructions. Bealer: 'for any credible motivation that can be given for [...] set theory, an analogous motivation, which is at least as satisfactory, can be given for the axioms in a corresponding logic for the predication relation'.
- ▶ Unification of logical paradoxes. Drawing a parallel between the iterative conception and resolutions of semantic paradoxes based on implicit quantifier restrictions (groundedness, contextualism). Predication/instantiation may not be an exception.

$just \in as instantiation/predication?$

An obvious thought is to start with a non-extensional subsystem of set theory, and to see whether something goes wrong already.

$just \in as instantiation/predication?$

An obvious thought is to start with a non-extensional subsystem of set theory, and to see whether something goes wrong already. Working in ZFC (with collection), but without extensionality:

Define a class

E :=
$$\{e \mid e \text{ is a collection of (extensional) pairs } (x, y),$$

every $u \in x \text{ is s.t. } (u, v) \in e \text{ for some } v \in y,$
every $v \in y \text{ is s.t. } (u, v) \in e \text{ for some } u \in x\}$

An obvious thought is to start with a non-extensional subsystem of set theory, and to see whether something goes wrong already. Working in ZFC (with collection), but without extensionality:

Define a class

$$\begin{aligned} \mathbf{E} &:= \{e \mid e \text{ is a collection of (extensional) pairs } (x,y), \\ & \text{every } u \in x \text{ is s.t. } (u,v) \in e \text{ for some } v \in y, \\ & \text{every } v \in y \text{ is s.t. } (u,v) \in e \text{ for some } u \in x\} \end{aligned}$$

$$x \sim y : \leftrightarrow (x, y) \in e \text{ for some } e \in E$$

An obvious thought is to start with a non-extensional subsystem of set theory, and to see whether something goes wrong already. Working in ZFC (with collection), but without extensionality:

Define a class

$$\begin{split} \mathbf{E} &:= \{e \mid e \text{ is a collection of (extensional) pairs } (x,y), \\ & \text{every } u \in x \text{ is s.t. } (u,v) \in e \text{ for some } v \in y, \\ & \text{every } v \in y \text{ is s.t. } (u,v) \in e \text{ for some } u \in x\} \\ & x \sim y :\leftrightarrow (x,y) \in e \text{ for some } e \in \mathbf{E} \end{split}$$

Fact (Friedman, and others). ZFC is relatively interpretable in ZFC^{\neq} (i.e. ZFC axiomatized with collection minus extensionality).

Another – arguably more – principled way to recover the axioms of ZFC is to assume a formulation of ZFC $^{\neq}$ with abstraction terms, called ZFC $^{\neq}_{\lambda}$, e.g.:

$$x \in \lambda x. (x \in u \land A) \leftrightarrow x \in u \land A,$$

on the background of a *logic for abstraction* featuring classical predicate logic, the existence of a denumerable plurality of abstracta:

$$\Box A : \leftrightarrow \lambda x. A = \top$$
, governed by S5; $\lambda \vec{x}. A = \lambda \vec{x}. B \leftrightarrow \Box (A \leftrightarrow B)$ – up to α -conversion.

(The purely logical part of $\mathrm{ZFC}^{\neq}_{\lambda}$ is proved complete – by Bealer – with respect to an algebraic semantics).

The iterative process of set-formation can be then paralleled for a suitable class of properties – $determined\ properties$ – in the sense of ZFC_{λ}^{\neq} :

$$\begin{split} \operatorname{Det}(x) :& \leftrightarrow \exists y \, x = \lambda v. \, v \in y, \\ & \Box \forall u (u \in x \to \Box u \in x), \\ & \forall u (u \text{ in the instantiation structure of } x \to \operatorname{Det}(u)) \end{split}$$

(For 'instantiation structure', read: 'transitive closure').

The iterative process of set-formation can be then paralleled for a suitable class of properties – determined properties – in the sense of $\mathrm{ZFC}^{\neq}_{\lambda}$:

Fact. ZFC can be interpreted in ZFC $_{\lambda}^{\neq}$ (even with replacement in place of collection).

For the proof: $\operatorname{Det}(x)$ is the domain formula. Crucially, for x,y determinate, instantiation is necessary instantiation. Therefore, if $\Box(u \in x \leftrightarrow u \in y)$, then by the modal axioms also $\lambda v.v \in x = \lambda v.v \in y$, i.e. x = y.

Example. $(=vv,\varnothing)$ is a PR of form =vv that depends on nothing.

Example. $(=vv,\varnothing)$ is a PR of form =vv that depends on nothing.

The instantiation class of PRs is modelled after the inverse membership relation in standard set theory.

Example. $(=vv,\varnothing)$ is a PR of form =vv that depends on nothing.

The instantiation class of PRs is modelled after the inverse membership relation in standard set theory.

Two properties are identical iff

- 1. they have the same instantiation class (extensional)
- 2. they are structurally identical (non-extensional)

a set-theoretic model

The language \mathcal{L}

Primitives \mathcal{O} :

a set-theoretic model

The language \mathcal{L}

Primitives \mathcal{O} :

Atomic Structure of PRs:

 $(=, v_i, v_j), (P, v_i), \dots$

 ${\bf Complex\ Structure\ of\ PRs:}$

 $(\neg, p), (\land, p, q)...$

a set-theoretic model

The language \mathcal{L}

Primitives \mathcal{O} :

 $\begin{array}{lll} \text{Var} \, = \, \{ v_i \mid \, i \, \in \, \omega \}, \, = , \, \, \dot{\wedge}, \, \, \neg, \, \, \forall, \\ P, \dots \end{array}$

Atomic Structure of PRs:

$$(=, v_i, v_j), (P, v_i), \dots$$

Complex Structure of PRs:

$$(\neg, p), (\land, p, q)...$$

Primitives \mathcal{O} :

Atomic Structure of PRs:

$$(=, v_i, v_j), (P, v_i), \dots$$

Complex Structure of PRs:

$$(\neg, p), (\land, p, q)...$$

Primitives \mathcal{O} :

$$\text{Var} = \{ v_i \mid i \in \omega \}, \ \overline{\cdot}, \ \dot{\gamma}, \ \forall, \\ P, \dots$$

Atomic Structure of PRs:

$$(=, v_i, v_j), (P, v_i), \dots$$

Complex Structure of PRs:

$$(\neg, p), (\land, p, q)...$$

Primitives \mathcal{O} :

$$\text{Var} = \{ v_i \mid i \in \omega \}, \ =, \ \land, \ \neg, \ \forall, \\ P, \dots$$

Atomic Structure of PRs:

$$(=, v_i, v_j), (P, v_i), \dots$$

Complex Structure of PRs:

$$(\neg, p), (\land, p, q)...$$

Primitives \mathcal{O} :

 $\text{Var} = \{ v_i \mid i \in \omega \}, \ =, \ \land, \ \neg, \ \forall, \\ P, \dots$

Atomic Structure of PRs:

$$(=, v_i, v_j), (P, v_i), \dots$$

Complex Structure of PRs:

$$(\neg, p), (\land, p, q)...$$

Primitives \mathcal{O} :

Atomic Structure of PRs:

$$(=, v_i, v_j), (P, v_i), \dots$$

Complex Structure of PRs:

$$(\neg, p), (\land, p, q)...$$

Transfinite induction definition of $PR_{\mathcal{O}}$; for the algebraic structure, we only require the subformula relation (we can think of operations on codes).

Examples:

$$\begin{split} & \left((=, v_i, v_i), \varnothing \right) \in \mathbb{P}_1, \\ & \left((=, v_i, v_i), \{\neg\} \right) \in \mathbb{P}_1 \\ & \left((=, v_i, v_i), S \subsetneq \mathrm{PPR}_{\mathcal{O}} \times \mathbb{P}_{\omega} \right) \in \mathbb{P}_{\omega} \end{split}$$

7		
001	t ametamtaataa	\mathbf{n}
っしょ	$f ext{-}instantiation$,,,,

▶ Plato: Being beautiful is beautiful. Being large is large. In fact, all properties instantiate themselves.

- ▶ Plato: Being beautiful is beautiful. Being large is large. In fact, all properties instantiate themselves.
- ▶ Being a property is a property.

- ▶ Plato: Being beautiful is beautiful. Being large is large. In fact, all properties instantiate themselves.
- Being a property is a property.
- ▶ If properties are abstract entities, being abstract is abstract.

There are reasons to investigate a more expressive framework:

- ▶ Plato: Being beautiful is beautiful. Being large is large. In fact, all properties instantiate themselves.
- Being a property is a property.
- ▶ If properties are abstract entities, being abstract is abstract.
- ▶ There is a property of being a property referred to in these slides.

AFA: Every (pointed, directed, accessible) graph corresponds to a unique set AFA_1 : Every graph has at least one decoration

AFA₁: Every graph has at least one decoration AFA₂: Every graph has at most one decoration

AFA: Every (pointed, directed, accessible) graph corresponds to a unique set AFA_1 : Every graph has at least one decoration

AFA₂: Every graph has at most one decoration

AFA: Every (pointed, directed, accessible) graph corresponds to a unique set

AFA₁: Every graph has at least one decoration AFA₂: Every graph has at most one decoration

AFA: Every (pointed, directed, accessible) graph corresponds to a unique set

AFA₁: Every graph has at least one decoration AFA₂: Every graph has at most one decoration

H&L again: the theory CPR

1. Constants $v_i, \neg, \land, \forall, =, \dots$ are distinct basic entities, and their instantiation class is empty.

H&L again: the theory CPR

- 1. Constants $\psi_i, \neg, \wedge, \forall, =, \dots$ are distinct basic entities, and their instantiation class is empty.
- 2. Identity and structure of properties:
 - Structure of atomic properties (in fact, properties, propositions, relations) and of complex ones, e.g.: $(=, v_i, v_i)$ is atomic, and (\neg, p) is a complex properties.

- 1. Constants $\psi_i, \neg, \wedge, \forall, =, \dots$ are distinct basic entities, and their instantiation class is empty.
- 2. Identity and structure of properties:
 - Structure of atomic properties (in fact, properties, propositions, relations) and of complex ones, e.g.: $(=, v_i, v_i)$ is atomic, and (\neg, p) is a complex properties.
 - Properties are identical if they are structurally so and dependent on the same entities:

$$p \equiv (p_1, \dots, p_n) \land q \equiv (q_1, \dots, q_n) \rightarrow$$

$$(p = q \leftrightarrow (p_i = q_i \land \forall z (\mathrm{I}(p, z) \leftrightarrow \mathrm{I}(q, z))))$$

- 1. Constants $v_i, \neg, \wedge, \forall, =, \dots$ are distinct basic entities, and their instantiation class is empty.
- 2. Identity and structure of properties:
 - ▶ Structure of atomic properties (in fact, properties, propositions, relations) and of complex ones, e.g.: $(=, v_i, v_i)$ is atomic, and (\neg, p) is a complex properties.
 - Properties are identical if they are structurally so and dependent on the same entities:

$$p \equiv (p_1, \dots, p_n) \land q \equiv (q_1, \dots, q_n) \rightarrow$$

$$\left(p = q \leftrightarrow (p_i = q_i \land \forall z (\mathrm{I}(p, z) \leftrightarrow \mathrm{I}(q, z))) \right)$$

▶ Structural induction over properties: if some condition holds of atomic entities, and is preserved under the *structural* construction of complex ones, it holds of all properties.

- 1. Constants $\psi_i, \neg, \wedge, \forall, =, \dots$ are distinct basic entities, and their instantiation class is empty.
- 2. Identity and structure of properties:
 - ▶ Structure of atomic properties (in fact, properties, propositions, relations) and of complex ones, e.g.: $(=, v_i, v_i)$ is atomic, and (\neg, p) is a complex properties.
 - Properties are identical if they are structurally so and dependent on the same entities:

$$p \equiv (p_1, \dots, p_n) \land q \equiv (q_1, \dots, q_n) \rightarrow$$
$$\left(p = q \leftrightarrow (p_i = q_i \land \forall z (\mathrm{I}(p, z) \leftrightarrow \mathrm{I}(q, z)))\right)$$

- Structural induction over properties: if some condition holds of atomic entities, and is preserved under the *structural* construction of complex ones, it holds of all properties.
- 3. Existence and instantiation:
 - ▶ There is a property that is about primitive notions and operations.

- 1. Constants $v_i, \neg, \wedge, \forall, =, \dots$ are distinct basic entities, and their instantiation class is empty.
- 2. Identity and structure of properties:
 - ▶ Structure of atomic properties (in fact, properties, propositions, relations) and of complex ones, e.g.: $(=, v_i, v_i)$ is atomic, and (\neg, p) is a complex properties.
 - Properties are identical if they are structurally so and dependent on the same entities:

$$p \equiv (p_1, \dots, p_n) \land q \equiv (q_1, \dots, q_n) \rightarrow$$
$$\left(p = q \leftrightarrow (p_i = q_i \land \forall z (\mathrm{I}(p, z) \leftrightarrow \mathrm{I}(q, z)))\right)$$

- Structural induction over properties: if some condition holds of atomic entities, and is preserved under the *structural* construction of complex ones, it holds of all properties.
- 3. Existence and instantiation:
 - ▶ There is a property that is about primitive notions and operations.
 - ▶ There is a property that is about infinitely many objects.

- 1. Constants $v_i, \neg, \land, \forall, =, \dots$ are distinct basic entities, and their instantiation class is empty.
- 2. Identity and structure of properties:
 - ▶ Structure of atomic properties (in fact, properties, propositions, relations) and of complex ones, e.g.: $(=, v_i, v_i)$ is atomic, and (\neg, p) is a complex properties.
 - Properties are identical if they are structurally so and dependent on the same entities:

$$p \equiv (p_1, \dots, p_n) \land q \equiv (q_1, \dots, q_n) \rightarrow$$
$$(p = q \leftrightarrow (p_i = q_i \land \forall z (\mathrm{I}(p, z) \leftrightarrow \mathrm{I}(q, z))))$$

- Structural induction over properties: if some condition holds of atomic entities, and is preserved under the *structural* construction of complex ones, it holds of all properties.
- 3. Existence and instantiation:
 - ▶ There is a property that is about primitive notions and operations.
 - ▶ There is a property that is about infinitely many objects.
 - Separation, power set, union, pairs, replacement, choice, hold for any type of atomic property. E.g:

$$\forall x \exists p \forall u \big((\mathrm{I}(p,u) \leftrightarrow \mathrm{I}(x,u) \land \varphi(u)) \land p \equiv (=,v_i,v_i) \big)$$

expressing AFA in a modified H&L

- ▶ $Set(x) : \leftrightarrow x$ is a property of surface form $(=, v_i, v_i)$
- $\blacktriangleright \ x \in y : \leftrightarrow \mathtt{Set}(y) \land \mathrm{I}(y,x)$

expressing AFA in a modified H&L

- ▶ $Set(x) : \leftrightarrow x$ is a property of surface form $(=, v_i, v_i)$
- $ightharpoonup x \in y : \leftrightarrow \operatorname{Set}(y) \wedge \operatorname{I}(y,x)$

Sets give us graphs (or better, =-graphs):

- 1. A \rightleftharpoons -tagging function is a mapping $\tau \colon G \longrightarrow \operatorname{PR}_{\mathcal{O}} \times \{(\rightleftharpoons uv), \varnothing\}$ that assigns members of $\operatorname{PR}_{\mathcal{O}}$ and the empty instantiation class to childless nodes.
- 2. Let τ be given. A =-decoration of \mathcal{G} is a function d such that, for every node g:

$$d(g) = \begin{cases} \tau(g), & \text{for } g \text{ childless} \\ ((=, \psi, v), \{d(g_0) \mid (g, g_0) \text{ is an edge}\}), & \text{else} \end{cases}$$

expressing AFA in a modified H&L

- ▶ $Set(x) : \leftrightarrow x$ is a property of surface form $(=, v_i, v_i)$
- $ightharpoonup x \in y : \leftrightarrow \operatorname{Set}(y) \wedge \operatorname{I}(y,x)$

Sets give us *graphs* (or better, =-graphs):

- 1. A \rightleftharpoons -tagging function is a mapping $\tau \colon G \longrightarrow \operatorname{PR}_{\mathcal{O}} \times \{(= uv), \varnothing\}$ that assigns members of $\operatorname{PR}_{\mathcal{O}}$ and the empty instantiation class to childless nodes.
- 2. Let τ be given. A =-decoration of \mathcal{G} is a function d such that, for every node g:

$$d(g) = \begin{cases} \tau(g), & \text{for } g \text{ childless} \\ ((=, \psi, v), \{d(g_0) \mid (g, g_0) \text{ is an edge}\}), & \text{else} \end{cases}$$

(AFA=) Every tagged graph has a unique =-decoration ((=, u, v), X), to which it corresponds a unique PR of form (=, u, v) and instantiation class X.

Example.

A =-decoration the graphs above would assign to it the PR: $p \equiv ((=, u, v), \{p\}).$

Example.

A =-decoration the graphs above would assign to it the PR: $p \equiv ((=, u, v), \{p\}).$

Proposition. Assuming AFA=, there are PRs that belong to their instantiation class. However, no PR's instantiation class coincides with the entire universe!

Example.

A =-decoration the graphs above would assign to it the PR: $p \equiv ((=, u, v), \{p\}).$

Proposition. Assuming AFA=, there are PRs that belong to their instantiation class. However, no PR's instantiation class coincides with the entire universe!

However, we only have the axioms for =-decorations. As we (L&W) did for the other axioms, we need to relativize decorations to the *surface structure* Φ *of atomic PRs*:

Every tagged graph has a unique Φ -decoration (Φ, X) , to which it corresponds a unique PR of form Φ and (unique) instantiation class X.

Reductions and Consistency

Let CPR* be the theory given so far. The following is only bookkeeping:

Proposition. CPR^* relatively interprets ZFA (therefore, it's at least as strong as ZFA) .

Let CPR* be the theory given so far. The following is only bookkeeping:

Proposition. CPR^* relatively interprets ZFA (therefore, it's at least as strong as ZFA).

For the other direction, we would like to show in ZFA that, for each surface form $\lceil \varphi \rceil$ and class of indeterminates X, the system of equations

$$x = (\ulcorner \varphi \urcorner, s_x)$$

(with s_x a set possibly containing indeterminates in X) has a unique solution in \mathbb{V}_{afa} – i.e., a suitable substitution of x's with sets. But this is Aczel's solution lemma, which is equivalent to AFA.

Let CPR* be the theory given so far. The following is only bookkeeping:

Proposition. CPR* relatively interprets ZFA (therefore, it's at least as strong as ZFA).

For the other direction, we would like to show in ZFA that, for each surface form $\lceil \varphi \rceil$ and class of indeterminates X, the system of equations

$$x = (\ulcorner \varphi \urcorner, s_x)$$

(with s_x a set possibly containing indeterminates in X) has a unique solution in \mathbb{V}_{afa} – i.e., a suitable substitution of x's with sets. But this is Aczel's solution lemma, which is equivalent to AFA.

Claim. CPR* is interpretable in ZFA.

Besides unification, I have said nothing about a conception of circular properties that could support CPR^* .

Besides unification, I have said nothing about a conception of circular properties that could support CPR^* .

In fact, we can even ask a simpler question to start with (closer to the analogue of Bealer's theory for properties):

Is there a conception of properties supporting the theory $Z_{\neq}^- + AFA_1$ (i.e. ZF formulated with collection, minus foundation, and extensionality, plus the existence part of AFA)?

Besides unification, I have said nothing about a *conception* of circular properties that could support CPR*.

In fact, we can even ask a simpler question to start with (closer to the analogue of Bealer's theory for properties):

Is there a conception of properties supporting the theory $Z_{\neq}^- + AFA_1$ (i.e. ZF formulated with collection, minus foundation, and extensionality, plus the existence part of AFA)?

Incidentally, there's also a question about the strength of this theory. Friedman's proof employs foundation to show that bisimulations behave as expected.

- ▶ Is ZF consistent relative to $Z_{\neq}^- + AFA_1$?
- ▶ Is the addition of abstraction terms logically stronger?

If one takes properties to be entities constituted by their instantiation structure:

Properties are what is depicted by arbitrary graphs.

from nwf-sets to properties

By adapting work of Luca Incurvati, one can show that one can derive the axioms of Z_{\neq}^- from the following assumptions:

from nwf-sets to properties

By adapting work of Luca Incurvati, one can show that one can derive the axioms of Z_{\neq}^- from the following assumptions:

The existence of properties corresponding to the graphs:

By adapting work of Luca Incurvati, one can show that one can derive the axioms of Z_{\pm}^- from the following assumptions:

The following theory of properties (x, y, z, ...) and trees $(t_1, t_2, t_3, ...)$:

$$\forall x \exists t \operatorname{Dep}(x, t)$$

$$t_1 \leq t_2 \wedge t_2 \leq t_3 \to t_1 \leq t_3$$

$$\exists t_3 (t_1 \leq t_3 \wedge t_2 \leq t_3)$$

$$\operatorname{Dep}(x, t) \to (\forall y \in x)(\operatorname{Subtree}(y, t))$$

$$\operatorname{Dep}(x, t) \to (\forall y \subseteq x)(\operatorname{Subtree}(y, t))$$

$$\exists t \forall y (\varphi(y) \to \operatorname{Subtree}(y, t)) \to \exists x \forall y (y \in x \leftrightarrow \varphi(y))$$

The existence part of AFA:

 (AFA_1) There is a property decorating any graph.

is straightforwardly justified in the graph conception.

The existence part of AFA:

 (AFA_1) There is a property decorating any graph.

is straightforwardly justified in the graph conception.

If one is considering the modified L&W theory, one should look at further considerations for *uniqueness*:

(AFA_2) There is at most one property decorating any graph.

- ▶ 'one should be able to move from a graph to a property unambiguously', 'graphs are our only guide' (potentially troublesome for the conception in general, but OK for the instantiation class)
- ► AFA₂ is just a generalization of extensionality

Analogously to nwf set theory, these non-wellfounded property theories address paradox is by banning entities whose instantiation structure is too "complex" – Cantor's 'totality of everything thinkable' comes to mind.

Properties are *hereditarily simple* in their instantiation structure.

Analogously to nwf set theory, these non-wellfounded property theories address paradox is by banning entities whose instantiation structure is too "complex" – Cantor's 'totality of everything thinkable' comes to mind.

Properties are hereditarily simple in their instantiation structure.

How to understand 'complex', or 'not simple'? One option is to formulate a version of the limitation of size principle:

A system is complex if it has the same size as V_{afa} .

Analogously to nwf set theory, these non-wellfounded property theories address paradox is by banning entities whose instantiation structure is too "complex" – Cantor's 'totality of everything thinkable' comes to mind.

Properties are hereditarily simple in their instantiation structure.

How to understand 'complex', or 'not simple'? One option is to formulate a version of the limitation of size principle:

A system is complex if it has the same size as $V_{\rm afa}$.

It's fairly clear that there's no *universal property* (other axioms for non-wellfounded sets may be more attractive).

autononomy

An obvious objection to the picture is the role of set-theoretic graph theory required to *formulate and justify* the conception.

An obvious objection to the picture is the role of set-theoretic graph theory required to *formulate and justify* the conception.

If property theory is foundational, then it has to *eliminate* mathematical entities. But it cannot eliminate graphs and the associated set theory. Therefore, it cannot be foundational.

An obvious objection to the picture is the role of set-theoretic graph theory required to *formulate and justify* the conception.

If property theory is foundational, then it has to *eliminate* mathematical entities. But it cannot eliminate graphs and the associated set theory. Therefore, it cannot be foundational.

At least one can "eliminate" set-theoretic entities...

1. Second-Order Logic

- 1. Second-Order Logic
- 2. if (n, m, g), then $m \neq n$ and $\neg (m, n, g)$;

- 1. Second-Order Logic
- 2. if (n, m, g), then $m \neq n$ and $\neg (m, n, g)$;
- 3. There's a g with only one node and no edge;

- 1. Second-Order Logic
- 2. if \hookrightarrow (n, m, g), then $m \neq n$ and $\neg \hookrightarrow (m, n, g)$;
- 3. There's a g with only one node and no edge;
- 4. Given g_0 , we can construct g_1 s.t.: ISO $(g_0, g_1 \setminus \{n\})$ and $\hookrightarrow (m, n, g_1)$ with m childless in g_0 ;

- 1. Second-Order Logic 2. if $\mathbb{P}(n, m, a)$ then $m \neq n$ and $\mathbb{P}(m, n, a)$
- 2. if (n, m, g), then $m \neq n$ and $\neg (m, n, g)$;
- 3. There's a g with only one node and no edge;
- 4. Given g_0 , we can construct g_1 s.t.: ISO $(g_0, g_1 \setminus \{n\})$ and $\hookrightarrow (m, n, g_1)$ with m childless in g_0 ;
- 5. Every two nodes are connected by a unique path;

- 1. Second-Order Logic
 2. if 9 > (m, m, q), then $m \neq m$ and = 9 > (m, m, q)
- 2. if (n, m, g), then $m \neq n$ and $\neg (m, n, g)$;
- 3. There's a g with only one node and no edge;
- 4. Given g_0 , we can construct g_1 s.t.: ISO $(g_0, g_1 \setminus \{n\})$ and $\hookrightarrow (m, n, g_1)$ with m childless in g_0 ;
- 5. Every two nodes are connected by a unique path;
- 6. There's an infinite tree.

- 1. Second-Order Logic
- 2. if (n, m, g), then $m \neq n$ and $\neg (m, n, g)$;
- 3. There's a g with only one node and no edge;
- 4. Given g_0 , we can construct g_1 s.t.: ISO $(g_0, g_1 \setminus \{n\})$ and $\hookrightarrow (m, n, g_1)$ with m childless in g_0 ;
- 5. Every two nodes are connected by a unique path;
- 6. There's an infinite tree.

Proposition. Principles 1-6 together with the 'mixed' axioms for trees and properties above derive the axioms of Z_{\neq}^- .

The idea is that all relevant notions such as *subgraph*, *graph* isomorphism, path are now directly axiomatized.

A consistency proof for the theory is likely to require substantial resources.

▶ There's no free lunch: according to the graph conception, the ultimate *arbiter* for questions of existence for properties lies in graph theory. It may not be formulated set-theoretically, but it relies on strong assumptions.

- ▶ There's no free lunch: according to the graph conception, the ultimate *arbiter* for questions of existence for properties lies in graph theory. It may not be formulated set-theoretically, but it relies on strong assumptions.
- ▶ This, however, may not be unlike other conceptions of properties, like the possible worlds analysis, in which the set-theoretic machinery of possible worlds guides property-theoretic theorizing.

- ▶ There's no free lunch: according to the graph conception, the ultimate *arbiter* for questions of existence for properties lies in graph theory. It may not be formulated set-theoretically, but it relies on strong assumptions.
- ▶ This, however, may not be unlike other conceptions of properties, like the possible worlds analysis, in which the set-theoretic machinery of possible worlds guides property-theoretic theorizing.
- ▶ Ultimately, if properties are constituted at least partially by their instantiation structure, there seems to be nothing wrong in assuming a mathematical model of such a structure to establish conditions for their existence and constitution, unless one intends to eliminate mathematical objects altogether via properties.

- I. I have been concerned with untyped theories of properties (formulated in first-order logic)
- II. I considered some proposals to develop property theory in the same vein as standard set theory and the associated iterative conception
- III. To overcome some shortcomings of such proposals, I developed some examples of property-theoretic analogues of non-wellfounded set theory
- IV. I then asked whether "graph" conceptions of properties can support those formal frameworks