MATLAB第五次作业

刘沁雨2017301020231

习题1:

使用Combinational Logic模块完成对以下函数功能的建模和仿真:

$$X = \overline{AB} + \overline{BC} + \overline{AC}$$

$$Y=(\overline{A}+B)(\overline{B}+C)(\overline{C}+A)$$

Z1=X+Y

Z2=XY

真值表如下:

Α	В	С	X	Υ	Z1	Z2
0	0	0	1	1	1	1
0	0	1	1	0	1	0
0	1	0	1	0	1	0
0	1	1	1	0	1	0
1	0	0	1	0	1	0
1	0	1	1	0	1	0
1	1	0	1	0	1	0
1	1	1	0	1	1	0

Simulink仿真:

参数设置:

ABC三个脉冲参数分别设置为:

	Α	В	С
Amplitude	1	1	1
Period	8	4	2
Pulse width	4	2	1
Phase delay	4	2	1
Sample time	1	1	1

脉冲波形依次由000经历8个单位时间变化到111,以此循环

结果展示:

设置总时长为8个sample time

A B C - X Y:

XY-Z1Z2:

习题2:

采用触发器 (D or J-K) 构建10分频器, 完成对输入时钟10分频的功能

解题思路:

问题根本在于让输出脉冲在10个时钟脉冲内完成一个周期,也即是每5个时钟脉冲完成一次高低电平的翻转

很明显想到构建五进制计数器将进位电平输出到一个T触发器以实现电路翻转,五进制计数器与T触发器均可用D触发器和JK触发器

真值表如下:

Q ₃	Q ₂	Q ₁	Q ₃ *	Q ₂ *	Q ₁ *
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

JK触发器为下降沿触发,可直接由 Q_2 输出信号至T触发器,也可设置进位信号 $C=Q_3$ Q_2 Q_1 从而使得第一次上升脉冲经历了完整的五次时间脉冲(省略)

卡诺图如下:

 Q_3^st :

Q2Q1	0 0	0	()	10
0				
J		Х	X	X

逻辑表达式: $Q_3^*=\overline{Q_3}\,Q_2Q_1$

 $\mathsf{D}_{\mathsf{3}} = \overline{Q_3} \, Q_2 \, Q_1$

 $J_3 = Q_2 Q_1$; $K_3 = 1$

 Q_2^st :

03	0 0	0	()	10
0				
1		X	X	X

逻辑表达式: $Q_2^*=Q_2\overline{Q_1}+\overline{Q_2}Q_1$

 $\mathsf{D_2} = Q_2 \overline{Q_1} + \overline{Q_2} Q_1$

 $J_2 = K_2 = Q_1$

 Q_1^* :

Q2Q1	0 0	0	1)	10
0				
J		X	X	X

逻辑表达式: $Q_1^*=\overline{Q}_3\overline{Q}_1$

$$\mathsf{D_1} = \overline{Q}_3 \overline{Q}_1$$

$$J_1 = \overline{Q}_3$$
; $K_1 = 1$

simulink仿真:

计数器部分:

用JK触发器搭建:

用D触发器搭建:

T触发器部分:

JK触发器将J和K端相连即成为一个T触发器;D触发器将输出 \overline{Q} 回馈到输入端D即构成一个T触发器。

(很简单,不单独展示,见总图)

最终电路:

JK触发器搭建的十分频

D触发器搭建的十分频

结果展示:

设置总时长为40个sample time

得到10分频的结果略有不同,JK触发器搭建所得十分频为第五个下降沿产生高电平,D触发器搭建所得十分频为第五个上升沿产生高电平,**主要取决于T触发器的类型**

JK触发器搭建T触发器结果:

D触发器搭建的T触发器结果:

