5

6

7

8

2

3

2

3

2

3

2

3

2

3

What is claimed is:

	 An architecture for prioritizing data flow in a remote services system
!	comprising:
	at least one proxy;
ļ	a queuing module for ranking data files according to predetermined priority

parameters; and

at least one mid-level manager operable to control operation of said proxy

using said queuing module to prioritize data transmission over said

remote services system.

- The architecture according to claim 1, said priority parameters used by said queuing module comprising precedence and persistence attributes specified in accordance with predetermined quality-of-service parameters.
- The architecture according to claim 2, further comprising a throttle module, operating in conjunction with said queuing module, for controlling access to system bandwidth.
- 4. The architecture according to claim 3, further comprising a backchannel data path for implementing access control over system bandwidth by said throttle module.
- The architecture according to claim 4, further comprising a directory
 assistance protocol server for controlling access to configuration parameters relating
 to bandwidth allocation in said remote services system.
- 6. The architecture according to claim 5, further comprising an internet web access portal to provide a user with controlled access to said directory assistance protocol server to change said bandwidth allocation parameters.

1	7.	An architecture for prioritizing data flow in a remote services system
2	comprising:	
3	a plura	ality of proxies;
4	a quei	ing module for ranking data files according to predetermined priority
5		parameters;
6	an into	ermediate mid-level manager,
7	an app	olications mid-level manager, said applications mid-level manager
8		operating in conjunction with said queuing module and said
9		intermediate mid-level manager to control operation of said plurality of
10		proxies to prioritize data transmission over said remote services
11		system.
1	8.	The architecture according to claim 7, said queuing module operable to
2	rank data file	s according to precedence and persistence attributes specified in
3	accordance w	rith predetermined quality-of-service parameters.
1	9.	The architecture according to claim 8, further comprising a throttle
2	module, oper	ating in conjunction with said queuing module, for controlling access to
3	system bands	width.
1	10.	The architecture according to claim 9, further comprising a back-
2	channel data	path for implementing access control over system bandwidth by said
3	throttle modu	ıle.
1	11.	The architecture according to claim 10, further comprising a directory
2	assistance pr	otocol server for controlling access to configuration parameters relating
3	to bandwidth	allocation in said remote services system.

	12. The architecture according to claim 11, further comprising an internet			
	web access portal to provide a user with controlled access to said directory assistance			
	protocol server to change said bandwidth allocation parameters.			
	13. A method for prioritizing data flow in a remote services system			
	comprising:			
	receiving data on a proxy for transmission over said remote services system;			
ļ	queuing said data according to predetermined priority parameters to provide a			
,	queued set of data in a ranked order; and			
5	using a mid-level manager to control operation of said proxy to prioritize			
7	transmission of data over said remote services system in accordance			
3	with said ranked order.			
	14. The method according to claim 13, said control of said proxy further			
2	comprising use of a throttle for controlling access to system bandwidth.			
l	15. The architecture according to claim 14, further comprising storing data			
2	transfer parameters on a directory assistance protocol server for controlling access to			
3	configuration parameters relating to bandwidth allocation in said remote services			
4	system.			
l	16. The method according to claim 15, further comprising providing a			
,	customer access to said directory assistance protocol directory through an internet			

4 5

3

web-access portal to provide said customer with limited access to change bandwidth

parameters of said system.