• เป้าหมายของการรีลิส (Goal)

ใน sprint #1 เป็นการสร้างระบบเพื่อเพิ่มความสะควกสบายให้กับงานบริการของหอพัก

- Product Backlog ที่จัดความสำคัญ
 - 1. ระบบจองหอพัก
 - 2. ระบบทำสัญญาย้ายเข้าหอพัก
 - 3. ระบบแจ้งชำระเงิน
 - 4. ระบบลงทะเบียนขอใช้งานอินเทอร์เน็ต
 - 5. ระบบบันทึกการรับจดหมาย/พัสดุ
 - 6. ระบบเช่าเฟอร์นิเจอร์
- ความเสี่ยง (Risk)
 - 1. การจัดลำดับความสำคัญของการทำงานในทีมยังไม่ลงตัว
 - 2. ประสบการณ์การเขียนโปรแกรมในทีมยังน้อย
 - 3. Server ของระบบ เมื่อประมวลผลบ่อย ก็พังบ่อย ทำให้การทำงานลำบากขึ้น
 - 4. การรวมระบบย่อยเข้าด้วยกัน
- วันส่งโครงงาน (Due date)

วันศุกร์ที่ 26 มกราคม พ.ศ. 2561

Sprint Backlog ของสปรินต์ #1

V Sprint #1	no start	2018-01-26	0
251 ระบบจองหอพัก		Todo	
261 ระบบทำสัญญาย้ายเข้าหอพัก		Todo	
268 ระบบเช่าเฟอร์นิเจอร์		Todo	
279 ระบบลงทะเบียนขอใช้งานอินเทอร์เน็ต		Todo	
286 ระบบแจ้งชำระเงิน		Todo	
262 ระบบบันทึกการรับจดหมาย/พัสดุ		Todo	

รายงานการวางแผนรีลีส (Release Planning)

• เป้าหมายของการรีลิส

เพื่อให้ผู้เข้าพักอาศัยมีความปลอดภัยและสามารถรักษาผลประโยชน์ระหว่างเจ้าของหอพักกับผู้พัก

• Product Backlog

ระบบทำสัญญาย้ายเข้าหอพัก

• ความเสี่ยง

ฐานข้อมูลของผู้พักเมื่อมีข้อมูลเป็นจำนวนมากๆ อาจทำให้เกิดความผิดพลาดในระบบได้

• ระบุ Softwarer Features และ Function

Features: ทำสัญญาเช่าหอพักให้ผู้พัก

Functions: - สามารถรับข้อมูลของผู้พักเพื่อทำสัญญาได้ โดยจะทำการรับค่าข้อมูลต่างๆที่กรอก มาแล้วไปจัดเก็บในฐานข้อมูลของแต่ละคน

สามารถค้นหาข้อมูลสมาชิกได้ โดยจะทำการค้นหาข้อมูลสมาชิกคนต่างๆจากชื่อ
 ของผู้พักและระบบจะทำการค้นหาจากฐานข้อมูล แล้วคึงข้อมูลของสมาชิกมาแสดง

• ระบุวันส่งโครงงาน

26 มกราคม 2561

รายงานการวางแผนสปริน #1 (Sprint Planning #1)

• Sprint Backlog ของสปริน #1

ระบบทำสัญญาย้ายเข้าหอพัก

• System Use Case

• Activity Diagram ของแต่ละUse Case

• การประมาณ(Estimation)

- การประมาณpoint แยกเป็นรายUse case

UUCP =
$$(3/3) + 10$$

= 11

- การประมาณราคา แยกเป็นรายUse case

คำนวณค่า TCF

T1. ระบบนี้	ล้องการการประมวลผลแบบกระจาย	$2 \times 3 = 6$
T2. ระบบนี้	ต้องมีการตอบสนองกับผู้ใช้ภายใน 4 วินาที	$1 \times 2 = 2$
แม้ว่าผู้ใ	ช้จะมีจำนวนมากกว่า 100,000 คนกีตาม	
T3. ระบบตั้ง	องมีประสิทธิภาพสำหรับผู้ใช้ทั่วไปในเกณฑ์ดี	$1 \times 4 = 4$
T4. ระบบภา	ายในมีความซับซ้อนในการประมวลผลข้อมูลมาก	$1 \times 2 = 2$
T5. ต้นรหัส	ไม่จำเป็นต้องใช้ซ้ำใค้	$1 \times 4 = 4$
T6. การติดตั้	้งไม่จำเป็นต้องง่าย	$0.5 \times 3 = 1.5$
T7. การใช้งา	านต้องง่าย	$0.5 \times 3 = 1.5$
T8. ระบบใน	ู่จำเป็นต้องย้ายการทำงานข้ามแพล็ตฟอร์มได้	$2 \times 1 = 2$
T9. ระบบใน	ู่จำเป็นต้องง่ายต่อการเปลี่ยนแปลง	$1 \times 1 = 1$
T10. ระบบจ์	ำเป็นต้องรองรับผู้ใช้จำนวนมหาศาลได้พร้อมๆกัน	$1 \times 3 = 3$
T11. ระบบถึ	โคุณสมบัติทางค้านความปลอดภัยแบบมาตรฐาน	$1 \times 3 = 3$
T12. บุคคลอื่	วื่นสามารถเข้าใช้งานบางส่วนของระบบได้แบบสาธารณะ	$1 \times 3 = 3$
T13. ไม่จำเป็	ในต้องมีการฝึกเพื่อใช้งานระบบ	$1 \times 2 = 2$
TFactor	= 35	
TCF	$= 0.6 + (0.01 \times 35)$	
	= 0.95	

B5707089 นางสาวอินทิรา เพิ่มทอง

คำนวณหาค่า ECF

	a e	9/	9		ಡ,	. 4			
F1	ท่าเพต	เนาค้นแ	อยกาเ 1	$\Pi \mathbf{M} \mathbf{I}$.	าไทเคย	เางด่	•	1 5 x 3	6 = 4.5
	1100 1110	เคมาเหต	י שיוטוי	OIVIL 0	יט א ע	, , , , ,		1.J AJ	1.0

E2. ทีมพัฒนาทำงานแบบ Part time บ้าง
$$-1 \times 5 = -5$$

E3. ทีมพัฒนามีความสามารถในการวิเคราะห์น้อย
$$0.5 \times 2 = 1$$

E4. ทีมพัฒนามีประสบการณ์ด้านโปรแกรมประยุกต์ต่ำ
$$0.5 \times 4 = 2$$

E5. ทีมพัฒนามีประสบการณ์ด้านเชิงวัตถุปานกลาง
$$1 \times 2 = 2$$

E6. ทีมพัฒนามีความกระตือรื่อล้น
$$1 \times 3 = 3$$

E7. ภาษาโปรแกรมที่ใช้ไม่ยาก
$$-1 \times 3 = -3$$

E8. ความต้องการเชิงซอฟต์แวร์ค่อนข้างคงที่
$$2 \times 3 = 6$$

ECF =
$$1.40 - 0.03 \times 10.5$$

= 1.08

ค่า UCP

 $UCP = UUCP \times TCF \times ECF$

 $= 11 \times 0.95 \times 1.08$

= 11

ค่าแรงงาน

แรงงาน คนชั่วโมง- = UCP x PF

 $= 11 \times 6$

= 66 คน - ชั่วโมง

กำหนดให้แต่ละคนได้รับเงินเดือน 125 บาท - ชั่วโมง

ดังนั้น ค่าแรง = 66 x 125 x 5 = 41,250 บาท

- Software Features และ Functions ระบบเช่าเฟอร์นิเจอร์
 - O Features : สามารถรับข้อมูลที่ผู้เช่าหอ เพิ่มเข้ามา โดยจะรับค่าข้อมูลต่าง ๆ ที่กรอกมาแล้วไป จัดเก็บในฐานข้อมูลของแต่ละคน
 - O Functions: สามารถตรวจสอบห้องได้ ว่าผู้เช่าหอพักอยู่ห้องใหน เมื่อเข้าระบบ แล้วเพิ่ม ข้อมูลเข้าไปก็จะแสดงเลขห้องของผู้เช่าหอนั้นอยู่ด้วย
- System Use Case ระบบเช่าเฟอร์นิเจอร์

Activity Diagram – ระบบเช่าเฟอร์นิเจอร์

- การประมาณ (Estimation)
- O การประมาณ point ระบบเช่าเฟอร์นิเจอร์

น้ำหนักรูปแบบการต่อประสานกับ Actor Wa = 3/3 = 1

น้ำหนักต่อจำนวนทรานแซคชัน Wu = 10

UUCP = 10 + 1 = 11

ตัวคูณความซับซ้อนเชิงเทคนิค (TCF)

TCF	Wt	weight	result
Т1	2	3	6
Т2	1	4	4
Т3	1	4	4
Т4	1	2	2
Т5	1	3	3
Т6	0.5	2	1
Т7	0.5	4	2
Т8	2	1	2
Т9	1	3	3
T10	1	3	3
T11	1	3	3
T12	1	3	3
T13	1	2	2

TFactor = 38

$$TCF = 0.6 + (0.01 \times 38) = 0.98$$

ตัวคูณความซับซ้อนแวคล้อม (ECF)

ECF	We	weight	result
E1	1.5	4	6
E2	-1	3	-3
E3	0.5	3	1.5
E4	0.5	3	1.5
E5	1	3	3
E6	1	3	3
E7	-1	3	-3
E8	2	3	6

$$ECF = 1.40 - (0.03 \times 15) = 0.95$$

การประมาณราคา - ระบบเช่าเฟอร์นิเจอร์

จากค่า UUCP, TCF, ECF ต้องหาค่า UCP

$$UCP = UUCP \times TCF \times ECF$$

$$= 11 \times 0.98 \times 0.95$$

$$= 10.241 = 11$$

กำหนดค่า PF = 6

แรงงาน คน
$$-$$
 ชั่วโมง $=$ $UCP \times PF$

$$=$$
 11×6

เงินเดือน = 20,000 บาท

ทำงาน 20 วัน ใน 1 เดือน

1 วัน ทำงาน 8 ชั่วโมง

จะได้เงินชั่วโมงละ $20{,}000/(20 \times 8) = 125$ บาท

ดังนั้น ค่าแรง =
$$66 \times 125$$
 = $8,250$ บาท

ราคาขาย =
$$8,250 \times 5$$
 = $41,250$ บาท

Release Planning

• เป้าหมายของการรีลีส

เพื่อแจ้งให้ลูกค้าได้ทราบ ถึงค่าใช้จ่ายทั้งหมดที่ลูกค้าต้องชำระ

Product Backlog

ระบบแจ้งชำระเงิน

ความเสี่ยง

ฐานข้อมูลของลูกค้าเมื่อมีข้อมูลเป็นจำนวนมากๆ อาจทำให้เกิดความผิดพลาดในระบบ จำนวนเงินที่ต้องชำระอาจผิดได้

- Software Features and Functions
 - O Features : สามารถแจ้งค้าใช้จ่ายทั้งหมดที่ลูกค้าต้องชำระ
 - O Functions : สามารถทราบรายละเอียดที่เป็นจำนวนเงิน ของแต่ละรายการได้ สามารถดูวัน หมดเขตการชำระเงินได้
- วันส่งงาน

26 มกราคม 2561

Sprint Planning #1

- Sprint Backlog #1
 - > ระบบแจ้งชำระเงิน
- System Use Case

Activity Diagram

• การประมาณ(Estimation)

o การประมาณ point แยกเป็นราย Use case

มี 1 Use Case มี Actor ในรูปการต่อประสานกับผู้ใช้แบบกราฟฟิกและมีความซับซ้อนน้อย
UUCP = (3/3) + (1x10)
= 11 point

การประมาณราคา แยกเป็นราย Use case

คำนวณค่า TCF

T1. ระบบนี้ต้องการการประมวลผลแบบกระจาย	$2 \times 3 = 6$
T2. ระบบนี้ต้องมีการตอบสนองกับผู้ใช้ภายใน 4 วินาที	
แม้ว่าผู้ใช้จะมีจำนวนมากกว่า 100,000 คนก็ตาม	$1 \times 2 = 2$
T3. ระบบต้องมีประสิทธิภาพสำหรับผู้ใช้ทั่วไปในเกณฑ์ดี	$1 \times 4 = 4$
T4. ระบบภายในมีความซับซ้อนในการประมวลผลข้อมูลมาก	$1 \times 1 = 1$
T5. ต้นรหัสไม่จำเป็นต้องใช้ซ้ำได้	$1 \times 4 = 4$
T6. การติดตั้งไม่จำเป็นต้องง่าย	$0.5 \times 3 = 1.5$

T7. การใช้งานต้องง่าย	$0.5 \times 4 = 2$
T8. ระบบไม่จำเป็นต้องย้ายการทำงานข้ามแพล็ตฟอร์มได้	$2 \times 1 = 2$
T9. ระบบไม่จำเป็นต้องง่ายต่อการเปลี่ยนแปลง	$1 \times 1 = 1$
T10. ระบบจำเป็นต้องรองรับผู้ใช้จำนวนมหาศาลได้พร้อมๆ กัน	$1 \times 3 = 3$
T11. ระบบมีคุณสมบัติทางด้านความปลอดภัยแบบมาตรฐาน	$1 \times 3 = 3$
T12. บุคคลอื่นสามารถเข้าใช้งานบางส่วนของระบบได้แบบสาธารณะ	$1 \times 4 = 4$
T13. ไม่จำเป็นต้องมีการฝึกเพื่อใช้งานระบบ	$1 \times 2 = 2$
TEactor 25 5	

TFactor = 35.5TCF = $0.6 + (0.01 \times 35.5)$ = 0.955

คำนวณหาค่า ECF

E1. ทีมพัฒนาคุ้นเคยกับ UML เป็นอย่างดี	$1.5 \times 2 = 3$
E2. ทีมพัฒนาทำงานแบบ Part time บ้าง	$-1 \times 5 = -5$
E3. ทีมพัฒนามีความสามารถในการวิเคราะห์น้อย	$0.5 \times 2 = 1$
E4. ทีมพัฒนามีประสบการณ์ด้านโปรแกรมประยุกต์ต่ำ	$0.5 \times 4 = 2$
E5. ทีมพัฒนามีประสบการณ์ด้านเชิงวัตถุปานกลาง	$1 \times 2 = 2$
E6. ทีมพัฒนามีความกระตือรือล้น	$1 \times 2 = 2$
E7. ภาษาโปรแกรมที่ใช้ไม่ยาก	$-1 \times 4 = -4$
E8. ความต้องการเชิงซอฟต์แวร์ค่อนข้างคงที่	$2 \times 3 = 6$
ECF = $1.40 - 0.03 \times 7$	
= 1.19	

ค่า UCP

UCP = UUCP x TCF x ECF
=
$$11 \times 0.955 \times 1.19$$

= 12.5

ค่าแรงงาน

กำหนดให้แต่ละคนได้รับเงินเดือน 125 บาท-ชั่วโมง ดังนั้น ค่าแรง = 75 x 125 x 5 = 46,875 บาท

เป้าหมายของการรีถีส (Goal)

ใน sprint #1 เป็นการสร้างระบบพื้นฐานที่จำเป็นต้องมีในหอพัก

Product Backlog ที่จัดความสำคัญแล้ว

- 1. ระบบจองหอพัก
- 2. ระบบทำสัญญาย้ายเข้าหอพัก
- 3. ระบบเช่าเฟอร์นิเจอร์
- 4. ระบบลงทะเบียนขอใช้อินเทอร์เน็ต
- 5. ระบบแจ้งชำระเงิน
- 6. ระบบบันทึกการรับจดหมาย/พัสดุ
- 7. ระบบยกเลิกการจองหอพัก
- 8. ระบบย้ายออกจากหอพัก
- 9. ระบบยืนยันการชำระเงิน
- 10. ระบบแจ้งซ่อมบำรุง
- 11. ระบบแจ้งทำความสะอาด
- 12. ระบบลงทะเบียนยานพาหนะ

ความเสี่ยง (Risk)

- 1. ประสบการณ์ในการเขียนโปรแกรมของทีมยังน้อย
- 2. การวางแผนของทีมยังไม่แน่นอน

วันส่งโครงงาน (Due date)

วันศุกร์ที่ 26 มกราคม พ.ศ. 2561

Sprint Backlog ของสปรินต์ #1

Software Features 1182 Functions

ระบบลงทะเบียนขอใช้งานอินเตอร์เน็ต

Features: ขอใช้งานอินเตอร์เน็ต

Functions: กรอกห้อง เลือกระยะเวลาการใช้งาน WIFI และ บันทึกลงฐานข้อมูล

Use Case ระบบลงทะเบียนขอใช้งานอินเตอร์เน็ต

Activity Diagram ระบบลงทะเบียนขอใช้งานอินเตอร์เน็ต

การประมาณ (Estimation)

การประมาณ point use case ระบบลงทะเบียนขอใช้งานอินเตอร์เน็ต

UUCP คำนวณจาก (3/3) + 5 = 6

TCF คำนวณจาก

T1. ระบบนี้ต้องการการประมวลผลแบบกระจาย 2 × 1 = 2

T2. ระบบนี้ต้องมีการตอบสนองกับผู้ใช้ภายใน 4 วินาที $1 \times 4 = 4$

T3. ระบบต้องมีประสิทธิภาพสำหรับผู้ใช้ทั่วไปในเกณฑ์ดี $1 \times 4 = 4$

T4. ระบบภายในมีความซับซ้อนในการประมวลผลข้อมูลมาก $1 \times 1 = 1$

T5. ต้นรหัสไม่จำเป็นต้องใช้ซ้ำได้ $1 \times 1 = 1$

T6. การติดตั้งไม่จำเป็นต้องง่าย $0.5 \times 1 = 0.5$

T7. การใช้งานต้องง่าย $0.5 \times 5 = 2.5$

T8. ระบบไม่จำเป็นต้องย้ายการทางานข้ามแพล็ตฟอร์มได้ $2 \times 1 = 2$

T9. ระบบไม่จำเป็นต้องง่ายต่อการเปลี่ยนแปลง $1 \times 1 = 1$

T10. ระบบจำเป็นต้องรองรับผู้ใช้จำนวนมหาศาลได้พร้อมๆ กัน 1 imes 1 = 1

T11. ระบบมีคุณสมบัติทางด้านความปลอดภัยแบบมาตรฐาน $1 \times 3 = 3$

T12. บุคคลอื่นสามารถเข้าใช้งานบางส่วนของระบบได้แบบสาธารณะ $1 \times 1 = 1$

T13. ไม่จำเป็นต้องมีการฝึกเพื่อใช้งานระบบ $1 \times 5 = 5$

TFactor = 28

$$TCF = 0.6 + (0.01 \times 28) = 0.8$$

ECF คำนวณจาก

E1. ทีมพัฒนาคุ้นเคยกับ UML เป็นอย่างคี $1.5 \times 4 = 6$

E2. ทีมพัฒนาทำงานแบบ Part time บ้าง $-1 \times 3 = -3$

E3. ทีมพัฒนามีความสามารถในการวิเคราะห์น้อย $0.5 \times 2 = 1$

E4. ทีมพัฒนามีประสบการณ์ด้านโปรแกรมประยุกต์ต่ำ $0.5 \times 2 = 1.0$

E5. ทีมพัฒนามีประสบการณ์ด้านเชิงวัตถุปานกลาง $1 \times 3 = 3$

E6. ทีมพัฒนามีความกระตือรื้อร้น $1 \times 4 = 4$

E7. ภาษาโปรแกรมที่ใช้ไม่ยาก $-1 \times 8 = -8$

E8. ความต้องการเชิงซอฟต์แวร์ค่อนข้างคงที่ $2 \times 2 = 4$

 $\Im \mathfrak{U} = 8$

 $ECF = 1.40 - 0.03 \times 8 = 1.16$

UCP คำนวณจาก

 $UCP = UUCP \times TCF \times ECF$

 $= 6 \times 0.8 \times 1.16$

= 5.5

ค่า PF = 6

ค่าแรงงาน คำนวณจาก

แรงงาน คน-ชั่วโมง = UCP × PF

= 5.5 * 6

= 33 คน-ชั่วโมง

เงินเคือน 20,000 บาท ใค้ ชม. ละ 125 บาท

- $= 33 \times 125$
- = 4,125 บาท (ตั้นทุน)

ราคาขาย $4,125 \times 5 = 20,625$ บาท

นาย คลัง อรชุน B5716159 กลุ่ม 17 ระบบหอพัก ระบบบันทึกการรับจดหมาย/พัสดุ

3. รายงานการวางแผนรีลีส (Release Planning)

เป้าหมายของการรีถีส (Goal)

เพื่ออำนวยความสะดวกแก่ผู้ใช้งาน และเป็นระบบพื้นฐานของหอพักเพื่อคัดกรองจดหมาย/พัสดุที่ รับมา

Product Backlog ที่จัดความสำคัญแล้ว

ระบบบันทึกการรับจดหมาย/พัสดุ

ระบุความเสี่ยง (Risk)

- เมื่อมีข้อมูลเยอะอาจเกิดการซ้ำซ้อนกันในฐานข้อมูล
- ประสบการณ์เขียนโปรแกรมยังน้อย

ระบุวันส่งโครงงาน(Due date)

- ส่งงานโปรแกรมครั้งที่ 1

วันที่ 26 มกราคม 2561 ก่อนเวลา 21:00 น.

ระบุ Software Features and Functions UCP ระบบบันทึกการรับจดหมาย/พัสดุ

Features บันทึกรายงานการรับจดหมายหรือพัสดุและค้นหารายการบันทึก

Functions กรอกข้อมูลการรับจดหมายพัสดุ มีการสรุปข้อมูลก่อนบันทึก ค้นหารายการที่บันทึกไปแล้วได้

4.รายงานการวางแผนสปรินต์ #1 (Sprint Planning #1)

- Sprint Backlog ของสปรินต์ #1 ระบบบันทึกการรับจดหมาย/พัสดุ
- System Use Case ระบบบันทึกการรับจดหมาย/พัสดุ

Activity Diagram ระบบบันทึกการรับจดหมาย/พัสดุ

• การประมาณ (Estimation)

การประมาณ Point ระบบบันทึกการรับจดหมาย/พัสดุ

น้ำหนักรูปแบบการต่อประสานกับ Actor : Wa = 3/3 = 1

น้ำหนักต่อจำนวนทรานแซคชัน : Wu=10

ดังนั้น UUCP = 10 + 1 = 11

ตัวคูณความซับซ้อนเชิงเทคนิค (TCF) – ระบบบันทึกการรับจดหมาย/พัสดุ

TCF	Wt	We	Result
T1	2	2	4
T2	1	4	4
Т3	1	4	4
T4	1	3	3
Т5	1	3	3
Т6	0.5	3	1.2
Т7	0.5	4	2
Т8	2	3	6
Т9	1	3	3
T10	1	3	3
T11	1	2	2
T12	1	2	2
T13	1	2	2

9	ບ ຍ	ש		9	~	9	9
ตาดกเดา	าวเหาเหลา	แาดกลน	(FCF) -	. ~⊻9191919	ม ทกร	าารราเลด	เหมาย/พัสดุ
YI O I I OKO I I O	אסת מת 1991	00 9 Y I DI O 04	(ECI)	90001	0 11111	IIOODUR	11100 IU/ Mairi

ECF	We	Ei	Result
E1	1.5	4	6
E2	-1	4	-4
E3	0.5	3	1.5
E4	0.5	3	1.5
E5	1	4	4
E6	1	3	3
E7	-1	3	-3
E8	2	3	6

จากตารางจะได้ Ei รวม = 22
$$\sum (We * Ei) = 15$$

ECF =
$$1.40 - 0.03*\sum(We*Ei)$$

การประมาณราคา ระบบบันทึกการรับจดหมาย/พัสดุ

 $UCP = UUCP \times TCF \times ECF$

 $= 11x 0.992 \times 0.95$

UCP = $10.3664 \approx 11$

กำหนดค่า PF = 6

แรงงาน คน-ชั่ว โมง = UCP x PF $= 11 \times 6$

= 66 คน-ชั่วโมง

กำหนดเงินเดือน = 20,000 บาท ทำงาน 20 วันใน 1 เดือน

าวันทำงาน 8 ชั่วโมง จะได้เงินชั่วโมงละ = 125 บาท

ดังนั้น ค่าแรง = 66 x 125 = 8,250 บาท

ราคาขาย = 8,250 x 5 = 41,250 บาท

นายศุภสัณห์ ขวัญชู B5805808

Software Features !!@ Functions

ระบบจองหอพัก

Features: จองห้องพักให้ลูกค้า

Functions: ป้อนชื่อ,ป้อนเบอร์โทรศัพท์,เลือกห้องพักที่ว่าง,เลือกวันที่เข้าอยู่และวันที่ออก,บันทึกข้อมูลลง

ฐานข้อมูล

Use Case ระบบจองหอพัก

Activity Diagram ระบบจองหอพัก

การประมาณ (Estimation)

การประมาณ point use case ระบบจองหอพัก

UUCP คำนวณจาก $5 + \frac{3}{3} = 6$

TCF คำนวณจาก

T1. ระบบนี้ต้องการการประมวลผลแบบกระจาย $2 \times 1 = 2$

T2. ระบบนี้ต้องมีการตอบสนองกับผู้ใช้ภายใน 4 วินาที $1 \times 5 = 5$

T3. ระบบต้องมีประสิทธิภาพสำหรับผู้ใช้ทั่วไปในเกณฑ์ดี $1 \times 4 = 4$

T4. ระบบภายในมีความซับซ้อนในการประมวลผลข้อมูลมาก $1 \times 1 = 1$

T5. ต้นรหัสไม่จำเป็นต้องใช้ซ้ำได้ $1 \times 1 = 1$

T6. การติดตั้งไม่จำเป็นต้องง่าย $0.5 \times 1 = 0.5$

T7. การใช้งานต้องง่าย $0.5 \times 5 = 2.5$

T8. ระบบไม่จำเป็นต้องย้ายการทางานข้ามแพล็ตฟอร์มได้ $2 \times 1 = 2$

T9. ระบบไม่จำเป็นต้องง่ายต่อการเปลี่ยนแปลง $1 \times 1 = 1$

T10. ระบบจำเป็นต้องรองรับผู้ใช้จำนวนมหาศาลได้พร้อมๆ กัน $1 \times 1 = 1$

T11. ระบบมีคุณสมบัติทางด้านความปลอดภัยแบบมาตรฐาน $1 \times 4 = 4$

T12. บุคคลอื่นสามารถเข้าใช้งานบางส่วนของระบบได้แบบสาธารณะ $1 \times 1 = 1$

T13. ไม่จำเป็นต้องมีการฝึกเพื่อใช้งานระบบ $1 \times 5 = 5$

TFactor = 30

 $TCF = 0.6 + (0.01 \times 30) = 0.9$

ECF คำนวณจาก

E1. ทีมพัฒนากุ้นเคยกับ UML เป็นอย่างดี $1.5 \times 5 = 7.5$

E2. ทีมพัฒนาทำงานแบบ Part time บ้าง $-1 \times 3 = -3$

E3. ทีมพัฒนามีความสามารถในการวิเคราะห์น้อย $0.5 \times 2 = 1$

E4. ทีมพัฒนามีประสบการณ์ด้านโปรแกรมประยุกต์ต่ำ $0.5 \times 2 = 1.0$

E5. ทีมพัฒนามีประสบการณ์ด้านเชิงวัตถุปานกลาง $1 \times 4 = 4$

E6. ทีมพัฒนามีความกระตือรือร้น $1 \times 4 = 4$

E7. ภาษาโปรแกรมที่ใช้ไม่ยาก $-1 \times 4 = -8$

E8. ความต้องการเชิงซอฟต์แวร์ค่อนข้างคงที่ $2 \times 2 = 4$

ECF = $1.40 - 0.03 \times 10.5 = 1.085$

UCP คำนวณจาก

 $UCP = UUCP \times TCF \times ECF$

 $= 6 \times 0.9 \times 1.085$

= 6

ค่า PF = 6

ค่าแรงงาน คำนวณจาก

แรงงาน คน-ชั่วโมง = UCP × PF

= 36 คน-ชั่วโมง

เงินเดือน 20,000 บาท ได้ ชม. ละ 125 บาท

 $= 36 \times 125$

= 4500 บาท (ตั้นทุน)

ราคาขาย $4500 \times 5 = 22500$ บาท

การประมาณ (Estimation) - ระบบหอพัก

• การประมาณ point – ระบบหอพัก

ระบบทำสัญญาย้ายเข้าหอพัก Wa=3/3=1

Wu = 10

ระบบบันทึกการรับจดหมาย/พัสดุ Wa=3/3=1

Wu = 10

ระบบแจ้งชำระเงิน Wa = 3/3 = 1

Wu = 10

ระบบของหอพัก Wa = 3/3 = 1

Wu = 5

ระบบเช่าเฟอร์นิเจอร์ Wa = 3/3 = 1

Wu = 10

ระบบลงทะเบียนขอใช้งานอินเทอร์เน็ต Wa = 3/3 = 1

Wu = 5

ดังนั้น UCCP = [11+11+11+11]+[6+6] = 56

• การประมาณราคา – ระบบหอพัก

ตัวกูณความซับซ้อนเชิงเทคนิค (TCF)

TCF	Wt	Weight	Result
T1. ระบบนี้ต้องการการประมวลผลแบบกระจาย	2	2	4
T2. ระบบนี้ต้องมีการตอบสนองกับผู้ใช้ภายใน 4 วินาที แม้ว่าผู้ใช้ จะมีจำนวนมากกว่า 100,000 คนก็ตาม	1	4	4
T3. ระบบต้องมีประสิทธิภาพสำหรับผู้ใช้ทั่วไปในเกณฑ์ดี	1	3	3
T4. ระบบภายในมีความซับซ้อนในการประมวลผลข้อมูลมาก	1	3	3
T5. ต้นรหัสไม่จำเป็นต้องใช้ซ้ำได้	1	3	3
T6. การติดตั้งไม่จำเป็นต้องง่าย	0.5	5	2.5
T7. การใช้งานต้องง่าย	0.5	4	2
T8. ระบบไม่จำเป็นต้องย้ายการทำงานข้ามแพล็ตฟอร์มได้	2	2	4
T9. ระบบไม่จำเป็นต้องง่ายต่อการเปลี่ยนแปลง	1	3	3
T10. ระบบจำเป็นต้องรองรับผู้ใช้จำนวนมหาศาลได้พร้อมๆ กัน	1	4	4
T11. ระบบมีคุณสมบัติทางด้านความปลอดภัยแบบมาตรฐาน	1	3	3
T12. บุคคลอื่นสามารถเข้าใช้งานบางส่วนของระบบได้แบบ สาธารณะ	1	1	1
T13. ไม่จำเป็นต้องมีการฝึกเพื่อใช้งานระบบ	1	1	1

จากตารางจะได้

TFactor = 37.5

ดังนั้น TCF = 0.6 + (0.01 x 37.5) = 0.975

<u>ตัวคูณความซับซ้อนแวดล้อม (ECF)</u>

ECF	We	Weight	Result
E1. ทีมพัฒนาคุ้นเคยกับ UML เป็นอย่างคื	1.5	4	6
E2. ทีมพัฒนาทำงานแบบ Part time บ้าง	-1	3	-3
E3. ทีมพัฒนามีความสามารถในการวิเคราะห์น้อย	0.5	3	1.5
E4. ทีมพัฒนามีประสบการณ์ค้านโปรแกรมประยุกต์ต่ำ	0.5	2	1
E5. ทีมพัฒนามีประสบการณ์ด้านเชิงวัตถุปานกลาง	1	3	3
E6. ทีมพัฒนามีความกระตือรือล้น	1	3	3
E7. ภาษาโปรแกรมที่ใช้ไม่ยาก	-1	3	-3
E8. ความต้องการเชิงซอฟต์แวร์ก่อนข้างคงที่	2	3	6

จากตารางจะได้

ค่ารวม E1-E8 = 14.5

ดังนั้น ECF = 1.40 - (0.03 x 14.5) = 0.965

จากค่า UUCP, TCF และ ECF ต้องหาค่า UCP

UCP = UUCP x TCF x ECF = 56 x 0.975 x 0.965 = 53

กำหนดค่า PF = 6 หาค่าแรงงานที่ใช้พัฒนาระบบหอพัก

แรงงาน คน-ชั่วโมง = UCP x PF = 53 x 6 = 318 คน-ชั่วโมง

จากเงินเคือน 20,000 บาท ทำงาน 20 วัน ใน 1 เคือน 1 วันทำงาน 8 ชั่วโมง จะได้เงินชั่วโมงละ 20,000/(20 x 8) = 125 บาท คังนั้น ค่าแรง = 318 x 125 = 39,750 บาท ราคาขาย = 39,750 x 5 = 198,750 บาท