Math 501 Homework 3

Trevor Klar

September 18, 2017

1. Prove

Theorem. 1: (Openness Criterion) Let (X, \mathcal{T}) be a topological space. A set $S \subset X$ is open if and only if for every $x \in S$, there exists an open set $U_x \subset S$.

PROOF

 \Longrightarrow : Suppose $S \subset X$ is open. For any $x \in S$, let $U_x = S$. U_x is an open set such that $x \in U_x \subset S$, so we are done.

 \Leftarrow Suppose for every $x \in S$, there exists an open set $U_x \subset S$. Consider

$$\bigcup_{x \in S} U_x.$$

Now, every element of $\bigcup_{x \in S} U_x$ is in S, and every element of S is in $U_x \subset \bigcup_{x \in S} U_x$, so $\bigcup_{x \in S} U_x = S$. Since any arbitrary union of open sets is open, S is open.

2. Prove that in a Hausdorff space, a set consisting of a single point is a closed set.

PROOF Let (X, \mathcal{T}) be a Hausdorff space, and let x_0 be any point in X.

Claim: $S = X - \{x_0\}$ is open, so $\{x_o\}$ is closed.

Since (X, \mathcal{T}) is Hausdorff, for any $x \in X$ which is distinct from x_0 , there exist open sets $U_x \in \mathcal{T}$ and $V_x \in \mathcal{T}$ such that

$$x \in U_x$$
, $x_0 \in V_x$, and $U_x \cap V_x = \emptyset$.

Now consider $\bigcup_{x \in S} U_x \equiv \bigcup U_x$. For every $x \in S$,

$$x \in U_x \subset \bigcup U_x$$
,

and every $U_x \subset S$ since $x_0 \notin U_x \subset X$, which means that $\bigcup U_x \subset S$. Therefore, $\bigcup U_x = S$.

Thus, we have shown that S can be written as a union of open sets, and since an arbitrary union of open sets is open, $S = X - \{x_0\}$ is open in X, so $\{x_o\}$ is closed in X.

3. Let U be open and C closed subsets of a space X, with $C \subset U$. Prove that U - C is open.

PROOF By definition of set subtraction, $U - C = U \cap (X - C)$, and since C is closed in X, (X - C) is open. Thus, U - C is the intersction of two open sets, so it is open.

4. Let A be a subset of a space X. Prove that C is closed in A if and only if $C = A \cap F$, where F is closed in X.

PROOF

 \implies : Assume C is closed in A. By definition of closed in A, there exists some U which is open in X such that

$$A - C = A \cap U$$
.

Let F = X - U. Now, F and U are complements in X, and $A \subset X$. This means that $A \cap U$ and $A \cap F$ are complements in A. Thus, taking the complement in A of both sides, we find that

$$A - C = A \cap U \implies C = A \cap F$$
.

This completes the proof.

 \Leftarrow : Assume $C = A \cap F$, where F is closed in X. Let U = X - F. Then, using the same reasoning as above, we can take the complement in A of both sides to obtain

$$C = A \cap F \implies A - C = A \cap U.$$

Thus, C is closed in A by definition.

- 5. Find \overline{A} , int A, and A^{ℓ} for the following sets A in \mathbb{R}^2 . (Just answers, no proofs.)
 - (a) $A = \{(x,0) : 0 \le x < 1\}$
 - $\overline{A} = \{(x,0) : 0 \le x \le 1\}$
 - $int(A) = \emptyset$
 - $A^{\ell} = \overline{A} = \{(x,0) : 0 \le x \le 1\}$
 - (b) $A = \{(x, y) : x^2 + y^2 \le 10\}$
 - \bullet $\overline{A} = A$
 - $int(A) = \{(x, y) : x^2 + y^2 < 10\}$
 - \bullet $A^{\ell} = A$
 - (c) $A = \{(x, y) : x, y \in \mathbb{Q}, x^2 + y^2 \le 10\}$
 - $\overline{A} = \{(x, y) : x^2 + y^2 \le 10\}$
 - $int(A) = \emptyset$
 - $A^{\ell} = \overline{A} = \{(x, y) : x^2 + y^2 \le 10\}$
 - (d) $A = \{(x, y) : x, y \in \mathbb{Z}, x^2 + y^2 \le 10\}$
 - \bullet $\overline{A} = A$
 - $int(A) = \emptyset$
 - $A^{\ell} = \emptyset$
- 6. Let \mathbb{R}^1_f denote the real numbers endowed with the finite complement topology. What is the set of limit points of \mathbb{Z} in \mathbb{R}^1_f ?

Claim: \mathbb{Z}^{ℓ} in \mathbb{R}^1_f is \mathbb{R} .

PROOF In the finite complement topology on \mathbb{R} , every open set has a finite complement; that is, there is a greatest element of \mathbb{R} which the set does not contain. This means every open set is unbounded above. Since \mathbb{Z} is also unbounded above, every set which is open in \mathbb{R} contains elements of \mathbb{Z} . Thus, for any real number x, every open set containing x also contains elements of \mathbb{Z} distinct from x, so x is a limit point.

- 7. Let X be a space, A a subset of X. A point $p \in A$ is called an *isolated point* of A if p is not a limit point of A.
 - (a) What is the set of all isolated points of \mathbb{Z} in \mathbb{R} , where \mathbb{R} has the usual topology? Claim: The set of all isolated points of \mathbb{Z} is \mathbb{Z} .

PROOF For any integer n, the interval $B = (n - \frac{1}{2}, n + \frac{1}{2})$ is an open set such that $A \cap (B - \{n\}) = \emptyset$, so every integer is an isolated point.

- (b) What is the set of all isolated points of \mathbb{Z} in \mathbb{R}^1_f , where \mathbb{R}^1_f denotes the finite complement topology? **Answer:** The set of all isolated points of \mathbb{Z} in \mathbb{R}^1_f is \emptyset , since we proved in Exercise 6 that \mathbb{Z}^ℓ in \mathbb{R}^1_f is \mathbb{R} , and $\mathbb{Z} \subset \mathbb{R}$.
- 8. Prove that in a Hausdorff space X with subset A, x is a limit point of A if and only if every open set containing x contains infinitely many points of A.

PROOF

 \Leftarrow : If every open set U containing x contains infinitely many points of A, then $A \cap (U - \{x\}) \neq \emptyset$, so x is a limit point and we are done.

 \implies : Assume that x is a limit point of A, and let U be an arbitrary open set which contains x. Suppose for contradiction that U contains only finitely many elements of A, denoted a_1, a_2, \ldots, a_n . Since X is Hausdorff, then U with the subspace topology is also Hausdorff, so there exist n+1 disjoint sets which are open in U and contain a_1, a_2, \ldots, a_n , and x, respectively. Let U_x denote the last of these sets, which intersects with A only at the point x. Now, by definition, U_x is the intersection of some open set and U, so U_x is also open in X.

Since x is a limit point of A, then $A \cap (U_x - \{x\}) \neq \emptyset$, so U_x contains at least one element of A distinct from x, which contradicts our construction of U_x . Therefore, every open set U contains infinitely many points of A.

- 9. Suppose that A is a subset of a space X. Prove that $\overline{A} = A \cup A^{\ell}$.
- 10. Let A be a subset of a space X. We say A is dense in X if $\overline{A} = X$. (For example, \mathbb{Q} is dense in \mathbb{R} .) Prove that A is dense in X if and only if for every nonempty open set U in X, we have $U \cap A \neq \emptyset$.

PROOF

 \implies : Suppose A is dense in X. Then, by definition,

$$\overline{A} = \bigcap \{F : F \subset X \text{ is closed and } F \supset A\} = X,$$

so the only closed set which contains A is X. Let U be any nonempty open set in X. Now, (X-U) is closed and not equal to X, so it does not contain A. This means that U, the complement of (X-U), must contain some elements of A. So, $U \cap A \neq \emptyset$ and we are done.

 $\Leftarrow=$: Suppose that for every nonempty open set U in X, it is true that $U \cap A \neq \emptyset$. Let F be any closed set in X which is not equal to X. Now, (X - F) is a nonempty open set in X, so $(X - F) \cap A \neq \emptyset$. This means that $F \not\supset A$. Since it is given that $A \subset X$, X can be the only closed set which contains A, so $\overline{A} = X$.