A measure defined on a Borel σ -algebra is called a Borel measure. Write $\mathcal{M}(\mathbb{R}^n)$ for the Borel measures on \mathbb{R}^n . If $E \subset \mathbb{R}^n$, then $\mathcal{M}(E)$ are the borel measures on E, but $\mathcal{M}(E) \subset \mathcal{M}(\mathbb{R}^n)$, by zero padding.

Definition: a positive finite measure μ on \mathbb{R}^n is regular if

- 1. $\mu(E) = \inf{\{\mu(U); U \text{ open}, U \supset E\}}$
- 2. $\mu(E) = \sup{\{\mu(K); K \text{ compact}, K \subset E\}}$

Every positive finite measure on \mathbb{R}^n is regular. For every measure $\nu \in \mathcal{M}(\mathbb{R}^n)$, for all $E \in \mathcal{B}\ell(\mathbb{R}^n)$, there exists a sequence of open sets $U_k \supset E$, and compact sets $K_n \subset E$ such that $\nu(U_n) \to \nu(E)$ and $\nu(K_n) \to \nu(E)$.

Proof: ADD

Definition: we say a measure $\nu \in \mathcal{M}(\mathbb{R}^n)$ is regular if each positive ν_k , in the Jordan decomposition $\nu = \sum_{k=0}^3 i^k \nu_k$, is regular. By the last result, every $\nu \in \mathcal{M}(\mathbb{R}^n)$ is regular and then the condition about sequences of sets holds.

If $\nu \in \mathcal{M}(\mathbb{R})$, we define its distribution function by $F_{\nu}(x) = \nu((\infty, x])$. $\nu \mapsto F_{\nu}$ is injective and linear on $\mathcal{M}(\mathbb{R})$.

Proof: Linearity is easy, to see that $\nu \mapsto F_{\nu}$ is surjective, suppose $F_{\nu} = 0$, this means that $F_{\nu}(x) = 0$ for all $x \in \mathbb{R}$, so $\nu((-\infty, x]) = 0$ for all x, so $\nu((a, b]) = \nu((-\infty, b] \setminus (-\infty, a]) = 0 - 0 = 0$. Then because every open set in \mathbb{R} is a countable union of disjoint open invervals, and open intervals can written as a countable union of disjoint half open intervals, every open set in \mathbb{R} has ν -measure zero, and then by Jordan decomposition, ν can be written as a sum of regular measures, which are then all zero measures, so ν is the zero measure. Thus $\text{Ker}(\nu \mapsto F_{\nu}) = 0$, and so $\nu \mapsto F_{\nu}$ is surjective.

 $F: \mathbb{R} \to \mathbb{R}$ is of bounded variation, BV, or say $F \in BV$, if $Var(F) < \infty$, where $Var(F) := \sup\{V_F(x); x \in \mathbb{R}\}$, and $V_F(x)$ is the total variation function of F,

$$V_F(x) := \sup \left\{ \sum_{k=1}^n |F(x_k) - F(x_{k-1})|; \ x_0 < x_1 < \dots < x_n = x, (x_k) \in \mathbb{R}, n \in \mathbb{N} \right\}.$$

Def: $F: \mathbb{R} \to \mathbb{R}$ is in NBV if $F \in BV$, F is right continuous at all $x \in \mathbb{R}$, and $\lim_{x \to -\infty} F(x) = 0$; normalized BV.

If $\nu \in \mathcal{M}(\mathbb{R}, \mathcal{B}\ell(\mathbb{R}))$, then $F_{\nu} \in NBV$.

Proof: Let $x_0 < x_1 < ... < x_n = x \in \mathbb{R}$, then $\sum_{k=1}^n |F_{\nu}(x_k) - F_{\nu}(x_{k-1})| = \sum_{k=1}^n |\nu([x_{k-1}, x_k))| \le \sum_{k=1}^n |\nu|([x_{k-1}, x_k)) = |\nu|([x_0, x_n)) \le |\nu|(\mathbb{R}) = ||\nu|| < \infty$.

$$V_{F_{\nu}}(x) = \sup \left\{ \sum_{k=1}^{n} |\nu((x_{k-1}, x_k])|; \ x_0 < x_1 < \dots < x_n = x, (x_k) \in \mathbb{R}, n \in \mathbb{N} \right\} \le$$

$$\sup \left\{ \sum_{k=1}^{n} |\nu|((x_{k-1}, x_k]); \ x_0 < x_1 < \dots < x_n = x, (x_k) \in \mathbb{R}, n \in \mathbb{N} \right\} = V_{F_{|\nu|}}(x) \le$$

$$\sup \left\{ |\nu((-\infty, x_0])| + \sum_{k=1}^n |\nu|((x_{k-1}, x_k]); \ x_0 < x_1 < \dots < x_n = x, (x_k) \in \mathbb{R}, n \in \mathbb{N} \right\} \le |\nu|((-\infty, x])$$

so $V_{F_{\nu}}(x) \leq V_{F_{|\nu|}}(x) \leq |\nu|((-\infty, x]) \leq ||\nu|| < \infty$. So $V_{F_{\nu}}(x)$ is bounded by a constant in x, $||\nu||$, so $\sup(\{V_{F_{\nu}}(x); x \in \mathbb{R}\}) \leq ||\nu||$, so $V_{F_{\nu}}(x) = ||\nu||$

For $x \in [-\infty, \infty)$, pick $x_n \setminus x$, take Jordan decomposition of ν , to get $\nu = \nu_+ - \nu_-$, with ν_\pm positive finite measures, then $\nu_\pm((-\infty, x_n]) \to \nu_\pm((-\infty, x_k]) = \nu_\pm((-\infty, x_k])$, by continuity from above, so $\nu_\pm((-\infty, x_n]) \to \nu((-\infty, x_n])$. Thus $\lim_n F_\nu(x_n) = F_\nu(x)$, so $F_\nu(-\infty) = 0$, and F_ν is right continuous by definition.

(Folland 3.28) If $F \in BV$ then $\lim_{x \to -\infty} V_F(x) = 0$ and $F \in BV \Rightarrow V_F \in NBV$. Proof: ADD

Properties of BV,

- 1) If $F, G : \mathbb{R} \to \mathbb{R}$, $c \in \mathbb{R}$, then $V_{F+G}(x) \leq V_F(x) + V_F(x)$ and $V_{cF}(x) = |c|V_F(x)$. Hence BV is a vector space and if $F, G \in BV$, then $Var(F+G) \leq Var(F) + Var(G)$ and Var(cF) = |c|Var(F). NBV is a subspace of BV.
- 2) If $F \in BV$, then $V_F(x)$ is an increasing function of x, bounded above by Var(F).
- 3) a) Moreover, if x < y, then $V_F(y) V_F(x) = \sup \left(\left\{ \sum_{k=1}^n |F(x_k) F(x_{k-1})| ; x \le x_0 < x_1 < \dots < x_n = y \right\} \right)$.
 - b) special case: $|F(y) F(x)| \le V_F(y) V_F(x) \le V_F(y) \le Var(F)$.
 - c) consequence: $F \in BV \Rightarrow F$ is bounded.
- 4) An increasing $F: \mathbb{R} \to \mathbb{R}$ is in BV iff F is bounded.
- 5) $F: \mathbb{R} \to \mathbb{R} \in BV$ iff $F = F_1 F_2$, where $F_1, F_2: \mathbb{R} \to \mathbb{R}$ are bdd and increasing.
- 6) $F: \mathbb{R} \to \mathbb{C} \in BV$ iff $\operatorname{Re} F, \operatorname{Im} F \in BV$.
- 7) $F \in BV \Rightarrow F$ continuous except at countable many points, and for all $x \in \mathbb{R}$, $F(x+) = \lim_{t \to x^+} F(t)$ and $F(x-) = \lim_{t \to x^-} F(t)$, and $\lim_{x \to +\infty} F(x)$ and $\lim_{x \to -\infty} F(x)$ all exist and are in \mathbb{R} .
- 8) $F \in BV \Leftrightarrow F = F_1 F_2 + iF_3 iF_4$, where $F_k : \mathbb{R} \to \mathbb{R}$, increasing, bounded, right continuous, and $\lim_{x \to -\infty} F_k(x) = 0$ for all k.

Proof: ADD

The linear map $T = \nu \mapsto F_{\nu}$ from $\mathcal{M}(\mathbb{R})$ to NBV is an isomorphism. Thus it is bijective and $Var(F_{\nu}) = ||\nu||$ for all $\nu \in \mathcal{M}(\mathbb{R})$, which implies that NBV is a Banach space with norm ||F|| = Var(F), $||T(\nu)|| = ||\nu||$. This also applies to $\mathcal{M}([a,b])$ and NBV([a,b](), by zero padding F(x) and replacing ν by $\nu_{[a,b]}(E) := \nu(E \cap [a,b])$.

Proof: ADD

We say $F: \mathbb{R} \to \mathbb{R}$ is absolutely continuous, or say $F \in AC$ if given $\epsilon > 0$, there exists a $\delta > 0$ such that $a_1 < b_1 < a_2 < b_2 < \dots < a_n < b_n$ and $\sum_{k=1}^n (b_k - a_k) < \delta \Rightarrow \sum_{k=1}^n |F(b_k) - F(a_k)| < \epsilon$. If n = 1 then this is uniformly continuous, so $F \in AC \Rightarrow F$ is uniformly continuous, also $AC \subset BV$. Define $NAC := NBV \cap AC$. Again this can apply to $F: [a, b] \to \mathbb{R}$.

Proof: ADD

 $F \in NAC \Leftrightarrow \mu_F \ll \lambda$, where μ_F is the Lebesgue-Stieltjes measure from F, and λ is the Lebesgue measure.

Proof: ADD

(a Vitali covering lemma) Suppose $W \subset \mathbb{R}^k$, $W \subset \bigcup_{i=1}^n B(x_i, r_i)$, where B(x, r) is the ball centered at $x \in \mathbb{R}^k$, with readius r > 0, then there exists $S \subset \{1, 2, ..., n\}$ such that:

- a) $B(x_i, r_i) \cap B(x_j, r_j) = \phi$ if $i, j \in S, i \neq j$.
- b) $W \subset \bigcup_{i \in S} B(x_i, 3r_i)$
- c) $\lambda(w) \leq 3^k \sum_{i \in S} \lambda(B(x_i, r_i))$

Proof: ADD

For $\mu \in \mathcal{M}(\mathbb{R}^k)$, $x \in \mathbb{R}^k$, r > 0, define $(Q_r \mu)(x) = \frac{\mu(B(x,r))}{\lambda(B(x,r))}$. Call $M_{\mu}(x) := \sup\{(Q_r |\mu|)(x); 0 < r < \infty\}$, the maximal function of μ , $M_{\mu} : \mathbb{R}^k \to [0,\infty]$. A special case, for $F \in L^1(\mathbb{R}^k,\lambda)$, $\mu(E) := \int_E F d\lambda$, in this case write M_F for M_{μ} .

 $F: \Omega \to [-\infty, \infty]$ is called *lower semi continuous* (lsc) if $F^{-1}((t, \infty])$ is open for all $t \in \mathbb{R}$, this makes sense if Ω is any topological space.

 $\mu \in \mathcal{M}(\mathbb{R}^k) \Rightarrow M_{\mu}$ is lower semi continuous. Proof: ADD

(Hardy Littlewood theorem) If $\mu \in \mathcal{M}(\mathbb{R}^k)$, $a < t < \infty$ then $\lambda(\{x \in \mathbb{R}^k; M_{\mu}(x) > t\}) \leq 3^k ||\mu|| \div t$. Proof: ADD

A function $f: \mathbb{R}^k \to \mathbb{F}$ is called *locally integralbe*, or $f \in L^1_{loc.}(\mathbb{R}^k, \lambda)$ if $F|_K \in L^1(K, \lambda)$ for all compact $K \subset \mathbb{R}^k$.

If $f \in L^1_{loc}(\mathbb{R}^k, \lambda)$, $x \in \mathbb{R}^k$ is called a *lebesque point* for f if

$$\lim_{r \to 0} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| d\lambda(y) = 0.$$

If x is a Lebesgue point for f then

$$f(x) = \lim_{r \to 0} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} f(y) \, d\lambda(y).$$

Proof: ADD

For $\mu \in \mathcal{M}(\mathbb{R}^k)$, define the symmetric derivative of μ as $D_{\mu}(x) = \lim_{r \to 0} \frac{\mu(B(x,r))}{\lambda(B(x,r))}$, wherever this limit exists, $x \in \mathbb{R}^k$.

Define

$$f^*(x) = \limsup_{r \to 0} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| \, d\lambda(y).$$

then

- 1) $(f+g)^* \leq \int f^* + g^*$ for all $f, g \in L^1(\mathbb{R}^k, \lambda)$
- 2) If g is continuous at x then $g^*(x) = 0$.
- 3) If $f, g \in L^1(\mathbb{R}^k, \lambda)$, g continuous then $f^* = (f^* g + g) \le (f g)^* + g^* = (f g)^*$
- 4) If $f \in L^1(\mathbb{R}^k, \lambda)$ then $f^* \leq |f| + M_f$.

Proof: ADD

(Lebesue's theorem)

- a) If $f \in L^1_{loc}(\mathbb{R}^k, \lambda)$, then a.e. $x \in \mathbb{R}^k$ is a Lebesgue point.
- b) $\mu \in \mathcal{M}(\mathbb{R}^k), \ \mu \ll \lambda \Rightarrow D_{\mu} = \frac{d\mu}{d\lambda}, \ \lambda$ -a.e.

Proof: ADD

Corollary: If $[f] \in L^1_{loc.}(\mathbb{R}^k, \lambda)$ then for any $g \in [f]$, f(x) = g(x) for all Lebesgue points x for f. Thus, for all $[f] \in L^1(\mathbb{R}^k, \lambda)$, there is a cononical $\hat{f} \in [f]$ such that all points in \mathbb{R}^k are lebesgue points for \hat{f} .

Proof: ADD

For $x \in \mathbb{R}^k$, a sequence $(E_k)_{k=1}^{\infty}$ of measurable sets in \mathbb{R}^k is said to *shrink nicely* to x if there exists a C > 0, scalars $r_k \searrow 0$ such that $E_k \subset B(x, r_k)$ and $\lambda(B(x, r_k)) \leq C\lambda(B(x, r_k))$ for all $k \in \mathbb{N}$. In this case we write $E_k \stackrel{s.n.}{\to} x$.

If $f \in L^1_{loc.}(\mathbb{R}^k, \lambda)$, and x is a lebesgue point of f then

$$f(x) = \lim_{r \to 0} \frac{1}{\lambda(E_k)} \int_{E_k} f(y) \, d\lambda(y).$$

Proof: ADD

(first fundamental theorem of calculus)

If $[g] \in L^1([a,b],\lambda)$ resp. $[g] \in L^1(\mathbb{R},\lambda)$, let $G(x) = \int_a^x g(t) dt = \int_{[a,b]} f d\lambda$ resp. $G(X) = \int_{-\infty}^x g(t) dt = \int_{(-\infty,x)} g d\lambda$, then $G \in NAC([a,b])$ resp. $F \in NAC$, and G is differential be a.e. and G' = g a.e.

(second fundamental theorem of calculus, version 1)

- a) $F \in AC \Leftrightarrow (F \text{ is diff'able a.e. on } [a,b] \text{ and } F' \in L^1([a,b],\lambda) \text{ and } F(x) F(a) = \int_z^x F'(t) dt \text{ for all } x \in [a,b]$).
- b) $F \in AC \Leftrightarrow (F \text{ is diff'able a.e. on } \mathbb{R} \text{ and } F' \in L^1(\mathbb{R}, \lambda) \text{ and } F(x) F(a) = \int_z^x F'(t) \, dt \text{ for all } x \in \mathbb{R}).$
- c) $F \in NAC$ or $F \in NAC([a, b])$ then $F' = \frac{d\mu_F}{d\lambda}$.

Proof: ADD

If $\mu \in \mathcal{M}(\mathbb{R}^k)$ then

- a) $D_{\mu}(x)E$ exists for a.e. $x \in \mathbb{R}^k$ and $D_{\mu} = \frac{d\mu_a}{d\lambda} \lambda$ -a.e., where μ_a is the absolutely continuous part in the LDT of μ .
- b) If $\mu \perp \lambda$ Then $D_{\mu}(x) = 0$ λ -a.e. and for λ -a.e. x, $\lim_{k\to 0} \mu(E_k)/\lambda(E_k) = 0$ if $E_k \stackrel{s.n.}{\to} x$.
- c) For λ -a.e. x, $\lim_{k\to 0} \mu(E_k)/\lambda(E_k) = 0$ if $E_k \stackrel{s.n.}{\to} x$. ??? ADD.

Proof: ADD

Corollary: If $F \in NBV$ then $F' = \frac{d\mu_a}{d\lambda} = D_\mu \lambda$ -a.e. where $\mu \in \mathcal{M}(\mathbb{R})$ as $F(x) = \mu((-\infty, x])$. So a bigger class of functions is differentiable with this forumla. Proof: ADD

If $\mu \in \mathcal{M}(\mathbb{R}^k)$ then

- a) If $F: \mathbb{R} \to \mathbb{R}$ is increasing, then F is differentiable λ -a.e.
- b) if $F \in BV$, then F is differentiable λ -a.e.
- c) if $F \in BV$ there exists a constant c, and $G \in NBV$ such that F = C + G everywhere except at a countable number of points. May take $C = \lim_{x \to -\infty} F(x)$ and $G(x) = \lim_{y \to x^+} F(y) C$ for all x. Then $F' = G' = D_{\mu} = \frac{d\mu_a}{d\lambda}$ a.e. where μ is the measure on \mathbb{R} associated to G.

Proof: ADD

If $H \in BV$, $H \ge 0$ for all x, H = 0 except on a countable set, then H is differentiable a.e. and H' = 0 a.e.

Proof: ADD

Remark: A function $H: \mathbb{R} \to \mathbb{R}$ such that H' = 0 a.e. is called a *singular function*. Note: take any $\mu \in \mathcal{M}(\mathbb{R})$, $\mu \perp \lambda$, then defining $F_{\mu}(x) = \mu((-\infty, x])$, as usual, then $F_{\mu} \in NBV$, and $F' = \frac{d\mu_a}{d\lambda} = 0$ a.e. so F_{μ} is singular. Conversely, If $H \in NBV$ is singular, ADD.

$$F \in BV[a,b]$$

5,1) $F \in AC[a,b]$, take F(x) = 0 for $x \notin [a,b]$, then $\lim_{x\to -\infty} F(x) = 0$, and F is continuous because it's uniformly continuous, and $F \in BV[a,b]$, so $AC[a,b] \subset NBV$, and so $\mu_F \ll \lambda$ by theorem 5.1.6. $\mu_F \ll \lambda \Leftrightarrow |\mu_F| \ll \lambda$ by prop 4.1.5.e. F is not nescessify in AC[a,b] because F(a) is not nescessify 0.

Now that $|\mu_F| = \mu_{V_F}$. let $\alpha = \nu \mapsto |\nu|, \beta = F \mapsto V_F, \gamma = F \mapsto \mu_F$, and γ is invertible by 5.1.4. Want to show that $\alpha \circ \gamma = \gamma \circ \beta$, but then $\gamma^{-1} \circ (\alpha \circ \gamma) = \beta$, which says that $|\mu_F|((-\infty, x]) = V_F(x)$ for all x, which is true by last lines of proof of 5.1.4.

So $|\mu_F| = \mu_{V_F} \ll \lambda$. $F \in NBV \Rightarrow V_F \in NBV$ by lemma before 8 in 5.1.3, then again theorem 5.1.6 says that $\mu_{V_F} \ll \lambda \Rightarrow V_F \in NAC \Rightarrow V_F \in AC$, and so $V_F \in AC[a,b]$. \square

5,2) Suppose $F \in NBV[a,b], F \geq 0$ and F is increasing, F(a) = 0. Let μ be the measure associated to F, then by corollary 5.2.5, $F' = \frac{d\mu_{F,a}}{d\lambda}$, where $\mu_F = \mu_{F,a} + \mu_{F,s}$, form the Lebesgue decomposition theorem, $\mu_{F,a} \ll \lambda$. By 5.1.4, $\left|\frac{d\mu_{F,a}}{d\lambda}\right| = \frac{d|\mu_{F,a}|}{d\lambda}$, so that $\int_{[a,b]} |F'| d\lambda = |\mu_{F,a}|((a,b])$. Now $F \geq 0 \Rightarrow \mu_F \geq 0$, by the lebesgue decomposition theorem, so $\mu_{F,a} \leq \mu_F \Rightarrow |\mu_{F,a}|(a,b) \leq |\mu_F|(a,b) = V_F(a,b)$.

If $F \in BV[a, b]$, then by 5.2.6, F(x) = F(a) + G(x), a.e. where $G \in NBV[a, b]$, and F' = G' a.e. so that $\int_{[a,b]} |F'| d\lambda = \int_{[a,b]} |G'| d\lambda$.

5,3) In 5.2, have $\int_{[a,b]} |F'| d\lambda = |\mu_{F,a}|((a,b])$, and $\mu_F = \mu_{F,a} + \mu_{F,s}$, but $\mu_{F,s} = 0 \Leftrightarrow \mu_F \ll \lambda \Leftrightarrow F \in NAC[a,b]$.

5,4) If $F \in BV[a,b]$, then by 5.2.6, F(x) = F(a) + G(x), a.e. where $G \in NBV[a,b]$, and F' = G' a.e, so assume that $F \in NBV[a,b]$. In this case there is a $\mu \in \mathcal{M}(\mathbb{R})$ such that $\mu((-\infty,x]) = F(x)$ for all x. Apply lebesgue decomposition to obtain $\mu = \mu_a + \mu_s$, 5.2.6 says that $F' = \frac{d\mu_a}{d\lambda} = D_\mu$ a.e. So $|F'| = |D_\mu| = |\frac{d\mu_a}{d\lambda}| = \frac{d|\mu_a|}{d\lambda}$ by prop 1 in 4.1.7. Then again,

$$|F'| = \frac{d|\mu_a|}{d\lambda} = D_{|\mu|} = \lim_{r \to 0} \frac{|\mu_a|(B(x,r))}{\lambda(B(x,r))} = \lim_{r \to 0} \frac{V_F(x-r,x+r)}{2r} = V'_F(x) \quad \lambda - \text{a.e.}$$

Folland 33) $F: \mathbb{R} \to \mathbb{R}$, By 5.2.6a F is differentiable a.e.. Given $a < b \in \mathbb{R}$, replace F with $F1_{[a,b]}$. By problem 4, F' is measurable. If $F(x) < \infty$ then $F(y) < \infty$ for all $y \in [a,x]$ by F increasing; if $F(x) = \infty$ some $x \in [a,b]$ then $F(b) - F(a) = \infty >= \int_{[a,b]} F' d\lambda \in [-\infty,\infty]$ so the equality holds. assume $F(x) \in \mathbb{R}$ for all $x \in [a,b]$. Then F is bounded by F(b), so by 5.1.3b $F \in BV[a,b]$. By 5.2.6c F(x) = F(a) + G(x) a.e. where $G \in NBV[a,b]$, and G' = F' a.e., also then by problem 5,2) $\int_{[a,b]} |F'| \le V_F(a,b) < \infty$, so $G', F' \in L^1([a,b],\lambda)$. Let μ be the measure associated with F and G. This is the same measure for both F, G, because it is defined as the inf of sums of the numbers of the form $F(b_k) - F(a_k)$, but $F(b_k) - F(a_k) = G(b_k) - G(a_k)$. Now G(a) = 0 and G is increasing, so $G(x) \ge 0$ for $x \in [a,b]$, and $G \in NBV[a,b]$, so by the argument in problem 5,2, $\mu_a \le \mu$ and $F' = \frac{d\mu_a}{d\lambda}$ a.e., so $\int_{[a,b]} F' d\lambda = \mu_a([a,b])$. On the other hand, $F(b) - F(a) = \mu((a,b])$, and $\mu \ge \mu_a$ from the lebesgue decomposition, i.e. $\mu = \mu_a + \mu_s$ and all these are positive finite measures, because $G \ge 0$. This gives $F(b) - F(a) = \mu((a,b]) \ge \mu_a([a,b]) = \int_{[a,b]} F' d\lambda$. a,b are arbitrary so this holds for all $a,b \in \mathbb{R}$. \square