Notes: report for q2.1 would all be screenshots of my python script. I believe checking them in the script would be more convenient.

1.

```
Q2.2.1 Data Preprocessing

Number of data points in the whole dataset originally: 344

Number of data points in the whole dataset originally: 333

Number of data points in the training set after splitting: 233

Number of data points in the test set after splitting: 100
```


190 195 200 flipper_length_mm values

205

3.

4. Q2.1.4 Bagging of Trees:

- 1. Results with maximum depth as 5 and number of trees as [50, 100, 150]: training accuracy: 0.9871, test accuracy: 0.9800
- 2. Results with maximum depth as 5 and number of trees as [50, 100, 150]: training accuracy: 0.9957, test accuracy: 0.9800
- 3. Results with maximum depth as 5 and number of trees as [50, 100, 150]: training accuracy: 0.9957, test accuracy: 0.9800
- 4. Results with maximum depth as 5 and number of trees as [50, 100, 150]: training accuracy: 1.0000, test accuracy: 0.9900
- 5. Results with maximum depth as 5 and number of trees as [50, 100, 150]: training accuracy: 1.0000, test accuracy: 0.9900
- 6. Results with maximum depth as 5 and number of trees as [50, 100, 150]: training accuracy: 0.9957, test accuracy: 0.9800
- 7. Results with maximum depth as 5 and number of trees as [50, 100, 150]: training accuracy: 1.0000, test accuracy: 0.9900
- 8. Results with maximum depth as 5 and number of trees as [50, 100, 150]: training accuracy: 1.0000, test accuracy: 0.9900
- 9. Results with maximum depth as 5 and number of trees as [50, 100, 150]: training accuracy: 1.0000, test accuracy: 0.9900

```
02.1.5 Random Forests:
1. Results with maximum depth as 5 and number of trees as [50, 100, 150]:
training accuracy: 1.0000, test accuracy: 0.9900
2. Results with maximum depth as 5 and number of trees as [50, 100, 150]:
training accuracy: 1.0000, test accuracy: 0.9800
3. Results with maximum depth as 5 and number of trees as [50, 100, 150]:
training accuracy: 1.0000, test accuracy: 0.9900
4. Results with maximum depth as 5 and number of trees as [50, 100, 150]:
training accuracy: 1.0000, test accuracy: 0.9900
5. Results with maximum depth as 5 and number of trees as [50, 100, 150]:
training accuracy: 1.0000, test accuracy: 0.9900
6. Results with maximum depth as 5 and number of trees as [50, 100, 150]:
training accuracy: 1.0000, test accuracy: 0.9800
7. Results with maximum depth as 5 and number of trees as [50, 100, 150]:
training accuracy: 1.0000, test accuracy: 0.9900
8. Results with maximum depth as 5 and number of trees as [50, 100, 150]:
training accuracy: 1.0000, test accuracy: 0.9900
9. Results with maximum depth as 5 and number of trees as [50, 100, 150]:
training accuracy: 1.0000, test accuracy: 0.9800
```

5.

6. This question may be divided into 2 scenarios, by the given example using tree = 10,20,...100. which is :

When the number of trees are relatively small, as the number of trees increases, the model predictions become more accurate, reducing bias.

When the number of trees are relatively small, as the number of trees increases, variance typically decreases. This is because the Random Forest model becomes more stable, averaging the predictions of multiple trees, which reduces the overall variance of the predictions.

When the number of trees approach a larger scale, or extremely large, it would be:

When the number of trees are approaching larger scale, as the number of trees increases, the bias values would converge to a stable value.

When the number of trees are approaching larger scale, as the number of trees increases, variance would converge to a stable value.

Q2.2 The contents of this part would be the screenshot of the completed tables value & the conclusion of decision of the better model, as required. To see more details, please see attached python script for Q2.

Since the K fold process is shuffled, i.e. randomly split, the answer of mine displayed as:

Logistic Regression											
	Hyper-paramter	1	2	3	4	5					
	penalty	11	11	12	12	11					
Class 0	Metric	1	2	3	4	5	Avg				
	Precision	0.928205	0.92268	0.875	0.89372	0.924623	0.90884569				
	Recall	0.905	0.895	0.945	0.925	0.92	0.918				
	F1	0.916456	0.908629	0.908654	0.909091	0.922306	0.91302713				
Class1	Metric	1	2	3	4	5	Avg				
	Precision	0.907317	0.898058	0.940217	0.92228	0.920398	0.9176541				
	Recall	0.93	0.925	0.865	0.89	0.925	0.907				
	F1	0.918519	0.91133	0.901042	0.905852	0.922693	0.91188718				
Performace Evaluation	Metric	1	2	3	4	5	Avg				
	Accuracy	0.9175	0.91	0.905	0.9075	0.9225	0.9125				
	AUROC	0.947725	0.939175	0.962425	0.962025	0.956675	0.953605				

	SVM										
	Hyper-paramter	1	2	3	4	5					
	С	1.00E-05	0.001	1.00E-05	0.0001	0.0001					
	Metric	1	2	3	4	5	Avg				
Class 0	Precision	0.953125	0.928205	0.953846	0.958333	0.935	0.94570192				
Class 0	Recall	0.915	0.905	0.93	0.92	0.935	0.921				
	F1	0.933673	0.916456	0.941772	0.938776	0.935	0.93313537				
	Metric	1	2	3	4	5	Avg				
Class1	Precision	0.918269	0.907317	0.931707	0.923077	0.935	0.92307411				
Classi	Recall	0.955	0.93	0.955	0.96	0.935	0.947				
	F1	0.936275	0.918519	0.94321	0.941176	0.935	0.93483588				
	Metric	1	2	3	4	5	Avg				
Performace Evaluation	Accuracy	0.935	0.9175	0.9425	0.94	0.935	0.934				
	AUROC	0.9532	0.9444	0.96155	0.952975	0.9697	0.956365				

5. As observed in average value comparison for both class 0 & 1 and performance evaluation, we see the values of precision, recall, f1, accuracy, AUROC (all of them!!) of SVM model outperforms Logistic regression model for this dataset. The SVM's ability to effectively handle high-dimensional data and maximize the margin between classes likely contributes to its better performance.