北京大学数学学院泛函分析二期末试题

2008-2009 学年第一学期

- 1. (10 分) 设 Ω 为开区域. 算子 $Lu := \sum_{i,j=1}^{n} \partial_{i}(a_{ij}\partial_{j}u) + \sum_{j=1}^{n} b_{j}\partial_{j}u + cu$, 定义域为 $C_{0}^{\infty}(\Omega)$. 其中 a_{ij}, b_{j}, c 为实有基光滑函数.
 - (i) 求 L 在 $L^2(\Omega)$ 上的伴随算子 L^* .
 - (ii) 设 a_{ij} 满足强椭圆条件,证明 L 生成强连续算子半群.
- 2. (10 分) 设 $\mathcal{H} = L^2(\mathbb{R}^n)$. 定义算子 $T: u(x) \to |x|^2 u(x)$, 其定义域为

- 3. $(20\, \mathcal{G})$ 设 A 为希尔伯特空间 \mathscr{H} 中的自伴算子, $\{E_{\lambda},\mathbb{R}\}$ 为其谱族,证明: \mathcal{H} \mathcal
 - (i) $e^{iAt} = \int_{\mathbb{R}} e^{i\lambda t} dE_{\lambda} 为一酉群.$
 - (ii) 岩 $\mathcal{H} = L^2(\mathbb{R}^n)$, $A = -\Delta$. 写出对应酉群的积分核表达式.
- 4. (10 分) 设 A 为希尔伯特空间 \mathcal{H} 中的自伴算子, $\{E_{\lambda},\mathbb{R}\}$ 为其谱族. 令 $A_n = \int_{-n}^{n} \lambda \, \mathrm{d}E_{\lambda}$. 证明 A_n 在强预解式意义下收敛到 A. $A_n \in \mathcal{A}_n \setminus \mathcal{A}$ (i.e. $\chi = A_n \times A_n = A_n \times A_n \times$
- 5. $(20\, \mathcal{G})$ 设 S^1 为周长 2π 的圆,Laplace 算子 $\Delta = \frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial \theta^2}$ 定义在 $C_0^\infty(S^1 \times \mathbb{R}) \subset L^2(S^1 \times \mathbb{R})$ 上,设 V 为 $S^1 \times \mathbb{R}$ 上紧支集光滑函数,令 $H = -\Delta + V$ 证明本质谱 $\sigma_{\mathrm{ess}}(H) = [0,\infty]$ 、 V 为 $\mathcal{G}_{\mathrm{ess}}(H) = [0,\infty]$ 、 $\mathcal{G}_{\mathrm{ess}}(H) = [0,\infty]$ 、 \mathcal{G}_{\mathrm
- 6. (10 分) 设 A 为希尔伯特空间上的严格正的对称算子,证明 A 本质自伴等价于 $\ker(A^*)=0$.

- (i) Kato 不等式: $\forall u \in L^1_{loc}$, $\Delta_H u \in L^2_{loc}$, 有 $\Delta |u| \notin \operatorname{Re}(\operatorname{sgn} u \cdot \Delta_H u).$
- (ii) 若 $V \ge 0$, $V \in L^2_{loc}$, 则 $-\Delta_H + V$ 为 $C_0^{\infty}(\mathbb{R}^n)$ 上本质自伴算子.

1