PROB 1: In a concurrent force system, two forces are acting at an angle of 60°. The resultant force is 120kN and one of the forces is 80kN. Determine the other force.

Soln: Given P=80kN, R=120kN,
$$\alpha$$
=60°, Q=?

We know, R² = P² + Q² + 2PQcos α or 120² = 80² + Q² + 2x80xQcos60° or 14400 = 6400+ Q² +80Q or Q² + 80 - 8000 = 0 or Q = [-80 \pm \sqrt{80}^2-4x1x(-8000)] / 2x1 or Q = 57.98 kN or -137.98 kN (Taking +ve value, since -ve value means α = 120°

.: Q = 57.98 KN (Ans)

60°

PROB 2: In a concurrent force system, two forces are acting on a point in two different conditions. If they act at 60°, their resultant is 24kN and if they act at 90°, their resultant is 20kN, Determine the magnitude of two forces.

Soln: Let P & Q are the two forces.

i)
$$\alpha = 60^{\circ}$$
, $R = 24kN$
 $R^2 = P^2 + Q^2 + 2PQ\cos\alpha$
or $24^2 = P^2 + Q^2 + 2PQ\cos60^{\circ}$
or $P^2 + Q^2 + PQ = 576$ (i)

ii)
$$\alpha = 90^{\circ}$$
, $R = 20 \text{ kN}$
.: $R^2 = P^2 + Q^2 + 2PQ\cos\alpha$
or $20^2 = P^2 + Q^2 + 2PQ\cos90^{\circ}$
or $P^2 + Q^2 = 400$ (ii)

From equⁿ (i) 400+PQ = 576 or PQ = 176

Now
$$(P+Q)^2 = P^2 +_{\perp} Q^2 + 2PQ$$

or $(P+Q)^2 = 400+2x176$ or $(P+Q)^2 = 752$
or $P+Q = 27.42$ (iii)

Again
$$(P-Q)^2 = P^2 + Q^2 - 2PQ$$

or $(P-Q)^2 = 400 - 2x176 = 48$
or $P-Q = 6.93 \dots (iv)$

$$Q = 27.42-17.18 = 10.24kN (Ans)$$

PROB 3: Two forces equal to 2P and P act on a Particle. If the first is doubled and the Second is increased by 15N, the direction of resultant remains same. Find the value of P.

```
Soln: Case i) tan\theta = Psin\alpha / (2P+Pcos\alpha) ..... (i)
       Case ii) tan\theta = (P+15)sin\alpha / [4P+(P+15)cos\alpha] .....(ii)
From equ<sup>n</sup> (i) & (ii)
    Psin\alpha / (2P+Pcos\alpha) = [(P+15)sin\alpha] / [4P+(P+15)cos\alpha]
or 1/(2+\cos\alpha) = P+15/[4P+(P+15)\cos\alpha]
     4P + P\cos\alpha + 15\cos\alpha = 2P + 30 + P\cos\alpha + 15\cos\alpha
or 1/2 + \cos \alpha = P + 15 / 4P + (P + 15)\cos \alpha
     4P + P\cos\alpha + 15\cos\alpha = 2P + 30 + P\cos\alpha + 15\cos\alpha
or 2P = 30
or P = 15kN (Ans)
```

PROB 4: A simply supported beam AB, 8m long is loaded as shown in Fig. Determine the reactions at supports A & B.

Solⁿ: Let
$$R_A$$
 and R_B are reactions at A and B. By taking moment at B, $\Sigma M_B = 0$

 $-R_A x8 + 6x7+5x2+8x2 = 0$ or $-R_A x8 + 42+10+16 = 0$

 $R_A \times 8 = 68$, or $R_A = 8.5 \text{ kN (Ans)}$

Solⁿ: Let
$$R_A$$
 and R_B are reactions at A and B.
By taking moment at B, $\Sigma M_B = 0$
- $R_A \times 8 + 6 \times 7 + 5 \times 2 + 8 \times 2 = 0$
or - $R_A \times 8 + 42 + 10 + 16 = 0$
or $R_A \times 8 = 68$, or $R_A = 8.5$ kN (Ans)

By taking moment at A, $\Sigma M_A = 0$ $R_B x 8 - 5 x 6 - 8 x 6 - 6 x 1 = 0$ or $R_B x 8 - 30 - 48 - 6 = 0$ or $R_B x 8 = 84$, or $R_b = 10.5$ kN (Ans)

PROB 5: For a simply supported beam AB as shown in Fig, find the reactions at supports A and B.

Soln: Let R_A and R_B are the reaction at A and B. Considering FBD of beam.

Resolving the forces horizontally

Resolving the forces horizontally, $\Sigma X=0$, $H_A + 40\cos 60^{\circ} - 30\cos 30^{\circ} = 0$ or $H_A = 25.98 - 20$ or $H_A = 5.98$ kN

Soln: Let R' and R are the reactions at A and B.

Considering FBD of beam. Resolving the forces horizontally, $\Sigma X=0$, $H_A + 40\cos 60^{\circ} - 30\cos 30^{\circ} = 0$ or $H_A = 25.98 - 20$ or $H_A = 5.98$ kN

Taking moment at B, $\Sigma M_B = 0$ $40 \sin 60^{\circ}x5 + 50x3 + 30 \sin 30^{\circ}x2 - R_A x7 = 0$

Solⁿ: Let R'_A and R_B are the reactions at A and B. Considering FBD of beam. Resolving the forces horizontally, $\Sigma X=0$, H_A + $40\cos 60^{\circ}$ - $30\cos 30^{\circ}$ = 0 or H_A = 25.98-20 or H_A = 5.98 kN

Taking moment at B, $\Sigma M_B = 0$ $40 \sin 60^{\circ}x5 + 50x3 + 30 \sin 30^{\circ}x2 - R_A x7 = 0$ or $R_A x7 = 173.2 + 150 + 30$ or $R_A x7 = 353.2$ or $R_A = 50.46$ kN (Ans) $\Sigma Y=0$, $R_A + R_B - 40 \sin 60^\circ - 50 - 30 \sin 30^\circ = 0$ or $R_B = 34.64 + 50 + 15 - 50.46$ or $R_B = 49.18 \text{ kN (Ans)}$

$$R'_A = \sqrt{R_A^2 + H_A^2} = \sqrt{(50.46)^2 + (5.98)^2} = 50.81 \text{ kN (Ans)}$$

 $\alpha = \tan^{-1} R_A/H_A = \tan^{-1}(50.46/5.98) = 83.24^\circ$

PROB 6: A simply supported beam of 5m long is subjected to a uniformly distributed load, a point load and a clockwise couple as shown in Fig. Determine reactions a supports A and B.

Solⁿ: Let R_A and R_B are the reactions at A and B. Considering FBD, taking moment at A, ΣM_A =0 $R_B x 5 - 30 x 4 - 40 - 20 x 1 = 0$ or $R_B x 5 = 120 + 40 + 20 = 180$ or $R_B = 36$ kN (Ans)

supports A and B.

Soln: Let R_A and R_B are the reactions at A and B. Considering FBD, taking moment at A, $\Sigma M_A=0$ $R_B \times 5-30 \times 4-40-20 \times 1=0$ or $R_B \times 5=120+40+20=180$ or $R_B=36$ kN (Ans) Now resolving the forces vertically, $\Sigma Y=0$, $R_A+R_B-20-30=0$ or $R_A=20+30-36$ or $R_A=14$ kN (Ans)

PROB 7: Determine the reactions at supports of the structure, shown in Fig.

$$Sol^{n}$$
: Let R_{A} , R_{B} , R_{C} and R_{D} are the reactions at A,B,C and D.

Considering FBD of AC,

Taking moment about A, $\Sigma M_A = 0$ Taking moment about A, $\Sigma M_A = 0$

Soln: Let R_A , R_B , R_c and R_D are the reactions at A,B,C and D.

Considering FBD of AC, Taking moment about A, $\Sigma M_A = 0$ $R_c x 4 - 50 x 1 - 50 x 3 = 0$ or $R_c x 4 = 200$ or $R_c = 50 kN$ (Ans)

Now resolving the forces vertically, $\Sigma Y = 0$ or $R_A + R_C - 50 - 50 = 0$ or $R_A = 50+50-50 = 50$ kN (Ans)

DOKN

Considering FBD of CB
Taking moment about B, $\Sigma M_B = 0$ $-R_D x 3 + 50 x 4 + 60 x 1.5 = 0$ or $R_D x 3 = 200+90$ or $R_D = 96.67$ kN (Ans)
Resolving the forces yertically, $\Sigma Y = 0$ $R_D + R_D = 50 - 60 = 0$

$$R_D + R_B - 50 - 60 = 0$$

or $R_{\rm B} = 13.33 \, \text{kN} \, (\text{Ans})$

PROB 8: An overhanging beam shown in Fig, is on roller at end A and is hinged at the end B. Determined the reactions developed at supports A and B for the loading.

Soln: Let R_A and R_B are the reactions at A & B. Considering FBD of beam, by taking moment at B, $\Sigma M_B = 0$, $20 \times 12 + 20 \times 11 - R_A \times 10 + 180 \times 6 + 30 \times 2 = 0$ or $R_A \times 10 = 1600$ or $R_A = 160 \text{ kN (Ans)}$

end A and is pinned at the end B. Determined the reactions developed at supports A and B for the loading.

Soln: Let
$$R_A$$
 and R_B are the reactions at A & B. Considering FBD of beam, by taking moment at B, $\Sigma M_B = 0$, $20 \times 12 + 20 \times 11 - R_A \times 10 + 180 \times 6 + 30 \times 2 = 0$ or $R_A \times 10 = 1600$ or $R_A = 160 \text{ kN (Ans)}$

By resolving the forces vertically, $\Sigma Y = 0$

developed at supports A and B for the loading.

Soln: Let R_A and R_B are the reactions at A & B.

Considering FBD of beam, by taking moment at B, $\Sigma M_B = 0$, $20x12+20x11-R_Ax10+180x6+30x2=0$ or $R_Ax10=1600$ or $R_A=160$ kN (Ans.)

By resolving the forces vertically, $\Sigma Y = 0$ $R_A + R_B - 20 - 20 - 180 - 30 = 0$ or $R_B = 250 - 160$ or $R_B = 90$ kN (Ans)