

Un număr nu e niciodată suficient!!!!

Unitatea de măsură este o metodă implicită de comparație.

Măsurarea timpului de execuție

time ./executabil p a r a m e t r i

time sleep 5

real 0m5.001s user 0m0.000s sys 0m0.001s

time sleep 5

sleep 5 0.00s user 0.00s system 0% cpu 5.002 total

/usr/bin/time sleep 5

0.00user 0.00system 0:05.00elapsed 0%CPU (0avgtext+0avgdata 2076maxresident)k 0inputs+0outputs (0major+73minor)pagefaults 0swaps

time sleep 5

real 0m5.001s

user 0m0.000s

sys 0m0.001s

Wall clock time – Timpul trecut de la pornirea programului – Pe acesta îl folosim

time sleep 5

sleep 5 0.00s user 0.00s system 0% cpu 5.002 total

/usr/bin/time sleep 5

0.00user 0.00system 0:05.00elapsed 0%CPU (0avgtext+0avgdata 2076maxresident)k 0inputs+0outputs (0major+73minor)pagefaults 0swaps

time sleep 2

real 0m2.0**21**s user 0m0.000s sys 0m0.000s

time sleep 2

real 0m2.0**18**s user 0m0.000s sys 0m0.016s

Timpii măsurați nu sunt exacți. Pentru a măsura corect trebuie să facem medie a timpilor după mai multe rulări sau să considerăm doar timpi mari – peste o secundă.

time sleep 2

real 0m2.0**16**s user 0m0.000s sys 0m0.000s

time sleep 2

real 0m2.0**15**s user 0m0.000s sys 0m0.000s

time sleep 5

real 0m5.001s

user 0m0.000s

sys 0m0.001s

Suma timpului petrecut în user space pe fiecare core.

time sleep 5

sleep 5 0.00s user 0.00s system 0% cpu 5.002 total

/usr/bin/time sleep 5

0.00user 0.00system 0:05.00elapsed 0%CPU (0avgtext+0avgdata 2076maxresident)k 0inputs+0outputs (0major+73minor)pagefaults 0swaps

time sleep 5

real 0m5.001s

user 0m0.000s

sys 0m0.001s

Suma timpului petrecut în kernel pe fiecare core.

time sleep 5

sleep 5 0.00s user 0.00s system 0% cpu 5.002 total

/usr/bin/time sleep 5

0.00user **0.00system** 0:05.00elapsed 0%CPU (0avgtext+0avgdata 2076maxresident)k 0inputs+0outputs (0major+73minor)pagefaults 0swaps

Operațiile de I/O sunt executate de Kernel

```
time dd if=/dev/zero of=file.txt count=1024 bs=1 048576
1024+0 records in
1024+0 records out
```

1073741824 bytes (1.1 GB) copied, 9.4847 s, 113 MB/s

real 0m9.490s

user 0m0.000s

sys 0m0.992s

Măsurare timp cu sau fără I/O?

Maşina Turing

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

[Received 28 May, 1936.—Read 12 November, 1936.]

By A. M. TURING.

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers. it is almost equally easy to define and investigate computable functions able or a real or computable variable, computable forth. The fundamental problems involved are,

> n each case, and I have chosen the computable numbers nt as involving the least cumbrous technique. I hope account of the relations of the computable numbers, rth to one another. This will include a development nctions of a real variable expressed in terms of com-According to my definition, a number is computable written down by a machine.

Alan Turing 1912-1954


```
1 ∨ int·sum(int·*v,·int·n)

∨ → while · (i · < · n)
</p>
 → s·+=·v[i];

→ i++;
 → return·s;
```

Linia	Cost	Repetiții
3	C1 (atribuire)	1
4	C1 (atribuire)	1
5	C2 (comp + jump)	n + 1
7	C3 (adunare + adunare pointer + load)	n
8	C4 (incrementare)	n

<u>Timpul total de executie :</u>

$$T(n) = 2C_1 + (n+1)C_2 + C_3n + C_4n$$

= $(2C_1 + C_2) + n * (C_2 + C_3 + C_4)$
 $3C_{min} + 3nC_{min} \le T(n) \le 3C_{max} + 3nC_{max}$

Simplificare:

➤ Operaţiile fundamentale au acelaşi cost unitar (1)

Timpul total de execuție:

$$T(n) = (2C_1 + C_2) + n * (C_2 + C_3 + C_4)$$

= 3 + 3n = $\Theta(n)$ (funcție liniară)

- ➤ Constantele au o importanță relativă ; o constantă poate fi cumulul unor operații (ex. cazul buclei for)
- >Algoritmul are un timp de execuţie (ordin) liniar!


```
1 ∨ int·search(int·*v,·int·n,·int·a)
 3 \rightarrow int·i·=·0;
4 \vee \rightarrow while·(i·<·n)
 6 \lor \Rightarrow if \cdot (v[i] \cdot == \cdot a)
          → {
→ → return·i;
 8
10
             return -- 1;
```

Linia	Cost	Repetiții
3	C1 (atribuire)	1
4	C2 (comp + jump)	σ(a)
6	C3 (test egalitate)	σ(a)
10	C4 (incrementare)	σ(a)-1

 $\sigma(a)$ = pozitia lui a în cadrul vectorului (valori între 1 și n)

Timpul total de execuție (a există în vector):

$$T(n) = C_1 - C_4 + (C_2 + C_3 + C_4) * \sigma(a) = 3\sigma(a)$$

Timpul total de execuție (a nu există în vector):

$$T(n) = C_1 + C_2(n+1) + (C_3 + C_4)n = 3n+2$$

Cazul valorii a în vectorul $v : T(n) = 3\sigma(a)$

Cazul în care a nu există în vector : T(n) = 3n+2

- Cazul cel mai favorabil : $T(n) = 3 = \Theta(1)$
- Cazul cel mai defavorabil : $T(n) = 3n+2 = \Theta(n)$
- Cazul mediu : depinde de distribuţia probabilistică a intrărilor: $\sigma(a)$ este o variabilă aleatoare $(1 \dots n)$

Cazul mediu : depinde de distribuţia probabilistică a intrărilor: $\sigma(a)$ este o variabilă aleatoare (1 ... n)

Distribuţia celor N cazuri posibile : $\begin{pmatrix} T_1 & \dots & T_N \\ p_1 & \dots & p_N \end{pmatrix}$

$$T_{mediu}(n) = \sum p_i * T_i = \frac{3n+2}{n+1} + \sum \frac{1}{n+1} * 3 * \sigma(i) = \frac{3n+2}{n+1} + \frac{3n}{2}$$

Ordinul sau Rata de Creştere

Timpul de execuţie : T(n)

- $rac{r}{T}(n) = an^2 + bn + c \text{ sau } T(n) = qn + r$
- Constantele care contează sunt cele care însoţesc factorul dominant $(an^2 \text{ sau } qn)$
- ➤ Constantele factorului dominant contează mai puţin decât ordinul acestuia: pătratic, liniar, logaritmic, etc.

Ordinul sau rata de creştere

➤ Cum creşte timpul de execuţie dacă dimensiunea datelor de intrare se dublează/triplează?

$$> an^2 + bn + c = \Theta(n^2)$$
 sau $T(n) = qn + r = \Theta(n)$

Notaţia O

➤Ordin de creştere pentru cazul cel mai defavorabil

Definitia formală a notației O

Fie două functii $f: N \to N$ si $g: N \to N$. $f \in O(g)$:

 $\exists n_0 \in N, c > 0$ astfel încât $\forall n \geq n_0, f(n) \leq c * g(n)$

Exemple: $5n^2 + 3n + 1 \in O(n^2)$, $3n + \ln(n) \in O(n)$

Notaţiile asimptotice Ω şi θ

Cazul cel mai favorabil pentru timpul de execuţie

Definiţia formală a notaţiei Ω

Fie două funcții $f: N \to N$ și $g: N \to N$. $f \in \Omega(g)$:

 $\exists n_0 \in N, c > 0 \text{ astfel încât } \forall n \geq n_0, f(n) \geq c * g(n)$

Exemple: $5n^2 + 3n + 1 \in \Omega(n^2)$, $3n + \ln(n) \in \Omega(n)$

Definiţia formală a notaţiei θ

Fie două funcții $f: N \to N$ și $g: N \to N$. $f \in \Theta(g)$:

 $\exists n_0 \in N, c_1, c_2 > 0 \text{ astfel încât } \forall n \geq n_0$:

$$c_1 * g(n) \le f(n) \le c_2 * g(n) \text{ sau } \lim_{n \to \infty} \frac{f(n)}{g(n)} = ct.$$

Notaţii complexitate

O – ordin creștere caz cel mai defavorabil Fie două functii $f: N \to N$ si $g: N \to N$. $f \in O(g)$: $\exists n_0 \in N, c > 0$ a.î. $\forall n \geq n_0, f(n) \leq c * g(n)$ O – ordin de creștere cel mai apropiat (și favorabil și defavorabil) Fie două funcții $f: N \to N$ și $g: N \to N$. $f \in \Theta(g)$: $\exists n_0 \in N, c_1, c_2 > 0$ astfel încât $\forall n \geq n_0$ $c_1 * g(n) \leq f(n) \leq c_2 * g(n)$ sau $\lim_{n \to \infty} \frac{f(n)}{g(n)} = ct$.

 Ω – ordin creștere caz cel mai favorabil Fie două funcții $f: N \to N$ și g: $N \to N$. $f \in \Omega(g)$: $\exists n_0 \in N, c > 0$ astfel încât $\forall n \geq n_0, f(n) \geq c * g(n)$

Confuzia O, Ω și θ

Ω limită inferioară Θ limită inferioară și superioară Ο limită superioară

În industrie toata lumea folosește notația O când defapt se referă la θ.

Proprietăți de calcul ale notației θ

$$\Theta(c * f) = \Theta(f)$$
 oricare ar fi constanta c
 $\Theta(f) + \Theta(g) = \Theta(f + g) = \max(\Theta(f), \Theta(g))$
 $\Theta(f) * \Theta(g) = \Theta(f * g)$ (ex. bucle imbricate)

Notație	Referință	10^x	Aprox 2 ^x
р	0.000_000_001	10^{-12}	2-40
n	0.000_000_001	10^{-9}	2^{-30}
u	0.000_001	10^{-6}	2^{-20}
m	0.001	10^{-3}	2^{-10}
	1	10^{0}	20
k	1000	10^3	2^{10}
M	1000_000	10^{6}	2 ²⁰
G	1000_000_000	10 ⁹	2^{30}
Т	1000_000_000	10^{12}	2 ⁴⁰
Р	1000_000_000_000	10^{15}	2^{50}
Е	1000_000_000_000_000	10^{18}	2^{60}

Timp

UMI	Secunde
ns	0.00000001
us	0.00001
ms	0.001
	1
m	60s
h	3600s
day	86400s
year	31190400s

Timpi Execuție

Complexitate	Ops (N=10)	Ops (N=100)	Operații (N=1000)	Timp (N=1000)
O(1)	1	1	1	1 ns
O(log2(N))	4	7	10	10 ns
O(N)	10	100	1000	1 us
O(Nlog2N)	40	700	10_000	10 us
O(N^2)	100	10_000	1000_000	1 ms
O(N^3)	1000	1000_000	1000_000_000	1 s
O(2^N)	1024	10^{31}	10^{302}	>>> <u>universul</u>
O(N!)	3628_800	10^{161}	10^{2567}	I give up