CS57300 PURDUE UNIVERSITY FEBRUARY 7, 2019

DATA MINING

DECISION TREE

BUILDING TREE RECURSIVELY

Buildtree(examples, attributes)

```
/*examples: a list of training examples at the current node attributes: a set of candidate attributes to place question on*/
```

If examples={} then return

If examples have the same label y then return a leaf node with label y

If attributes={} then return a leaf node with the majority label in examples

 $A = Best_attribute(examples, attributes) /*Suppose attribute A has n possible values*/$

Create an internal node, node(A), with n children

For attribute A's i-th possible value A(i):

The i-th child of node(A) = **Buildtree**($\{examples with its value on A being A(i)\}, attributes-<math>\{A\}$)

ING THE BEST ATTR

- ► Information gain $Gain(S,A) = Entropy(S) \sum_{v \in values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$ ► Gini gain $Gain(S,A) = Gini(S) \sum_{v \in values(A)} \frac{|S_v|}{|S|} Gini(S_v)$ ► Chi-square score $\chi^2 = \sum_{i=1}^k \frac{(o_i e_i)^2}{e_i}$

WHEN TO STOP GROWING

- Full growth methods
 - There are no examples left
 - All examples at a node belong to the same class
 - There are no attributes left for further splits
- What impact does this have on the quality of the learned trees?
 - Trees overfit the training data and accuracy on testing data suffers

HOW TO AVOID OVERFITTING IN DECISION TREES

- Post-pruning
 - > Separate the training data into a training set and a validation set (i.e., a pruning set).
 - Fully grow a tree
 - Use the pruning set to evaluate the utility of pruning (i.e. deleting) nodes from the tree
- Pre-pruning
 - Apply a statistical test to decide whether to expand a node
 - Add penalty terms in scoring functions to prefer trees with smaller sizes

POST-PRUNING METHOD: REDUCED ERROR PRUNING

- Grow a full tree T using the training set
- Let v be an internal node of the current tree T

- If we prune at v to create a new tree T', in T', the subtree rooted at v will be replaced by a leaf node v', whose label is the majority label for all **training** examples fall under v
- Define the gain of pruning at v as, in the **pruning set**, # of misclassified examples under v (in T) # of misclassified examples that in v' (in T')
- Repeat: Prune at node with largest gain until only negative gain nodes remain

REDUCED ERROR PRUNING EXAMPLE

REDUCED ERROR PRUNING EXAMPLE

Training set

Pruning set

PRE-PRUNING METHODS

Stop growing tree at some point during top-down construction when there is no longer sufficient data to make reliable decisions

Gain(S,Income)= 0.029 Gini-Gain (S,Income)= 0.020 $\chi^2 = 0.57$

IS THIS SPLIT REALLY MEANINGFUL?

PREDICTIVE MODELING

PRE-PRUNING METHODS

- Approach:
 - Choose threshold on feature score (e.g., information gain, gini gain)
 - Stop splitting if the best feature score is below threshold
 - Threshold can be decided through significance in statistical test or cross validation

EXAMPLE: DETERMINE CHI-SQUARE THRESHOLD ANALYTICALLY

- Chi-square has known sampling distribution, can look up significance threshold
 - Degrees of freedom= (#rows-1)(#cols-1)
 - 3*2 table:5.99 is 95% critical value
- Stop growing when chi-square feature score is not statistically significant

$$\chi^2 = \sum_{i=1}^k \frac{\left(o_i - e_i\right)^2}{e_i}$$

K-FOLD CROSS VALIDATION

- Randomly partition training data into k folds
- For i=1 to k
 - Learn model on D ith fold; evaluate model on ith fold
- Average results from all k trials

EXAMPLE: CHOOSING A GINI THRESHOLD WITH CROSS VALIDATION

For i in 1.. k

Smaller threshold means the tree would be complex as we would keep growing the tree until we reach below that threshold value

- For t in threshold set (e.g, [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
 - Learn decision tree on Train_i with Gini gain threshold t (i.e. stop growing when max Gini gain is less than t)
 - Evaluate learned tree on Test_i (e.g., with accuracy)
- Set t_{max,i} to be the t with best performance on Test_i
- > Set t_{max} to the average of t_{max,i} over the k trials
- Relearn the tree on all the data using t_{max} as Gini gain threshold

ALGORITHM COMPARISON

- CART
 - Evaluation criterion:Gini gain
 - Search algorithm:
 Heuristic, greedy search
 - Pruning mechanism:
 Cross-validation to select gini threshold

- C4.5
 - Evaluation criterion:Information gain
 - Search algorithm:
 Heuristic, greedy search

15

Pruning mechanism:Reduce error pruning

NAIVE BAYES VS. DECISION TREES

- Naive Bayes
 - Probabilistic classification: output posterior class distribution $p(y|\mathbf{x})$, and model the underlying probability distributions
 - Parametric model
 - Model space: parameters in prior distributions p(y) and conditional distributions $p(\mathbf{x}|y)$
 - Scoring function: likelihood function / posterior probability of observing the data
 - Search: Convex optimization

- Decision trees
 - Discriminative classification: output class labels and model the decision boundary directly
 - Non-parametric model
 - Model space: all possible trees that can be generated from the set of attributes: different attribute to use on each node, different ways to split continuous variables into intervals, different depth of the tree, etc.
 - Scoring function: misclassification rate
 - Search: Greedy, heuristic search

DECISION TREES MODEL DECISION BOUNDARIES

NEAREST NEIGHBOR

NEAREST NEIGHBOR

- Discriminative classification, non-parametric, instance-based method
- Assumes that all points are represented in p-dimensional space
- Learning
 - > Stores (i.e., memorizes) all the training data
- Prediction
 - Look for "nearby" training examples
 - Classification is made based on class labels of neighbors

FROM 1NN TO KNN

- Training set: (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , ..., (\mathbf{x}_n, y_n) where $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{ip}]$ is a feature vector of p attributes and y_i is a discrete class label
- To predict a class label for new instance j: Find the training instance point \mathbf{x}_i such that $d(\mathbf{x}_i, \mathbf{x}_j)$ is minimized; Let $f(\mathbf{x}_j) = y_i$
- ▶ Key idea: Find instances that are "similar" to the new instance and use their class labels to make prediction for the new instance
 - Note that the Note of the N

1NN DECISION BOUNDARY

For each training example *i*, we can calculate its **Voronoi cell**, which corresponds to the space of points for which i is their nearest neighbor

All points in such a Voronoi cell are labeled by the class of the training point,

forming a Voronoi tessellation of the feature space

NEAREST NEIGHBOR: MODEL SPACE

- ▶ How many neighbors to consider (i.e., choice of *K*)?
 - ... Usually a small value is used, e.g. K<10
- What distance measure d() to use?
 - ... Euclidean L₂ distance is often used
- \blacktriangleright What function g() to combine the neighbors' labels into a prediction?
 - ... Majority vote is often used