# **Exercise 1 Report**

Submission Date: 22/12/2024

Student Name: Adir Serruya

Student ID: 316472455

#### Introduction

In this exercise, I investigate and enhance decision tree models. Specifically, I address the limitation of binary routing in standard decision trees by introducing soft splits. Additionally, I evaluate the performance of these models on multiple datasets using a rigorous evaluation framework.

**Programming Task 1: Soft Splits in Decision Trees** 

#### **Code Implementation**

For the soft split implementation, as requested, only the inference functionality was modified.

- 1. Soft Split Function: I began by implementing a soft\_split function. This function evaluates a sample at a split node and assigns a probability of routing the sample to the "opposite" branch instead of the branch dictated by the splitting condition. This probability is controlled by the alpha parameter:
  - $\circ$  With probability  $\alpha$  , the sample is routed in the opposite direction.
  - $\circ$  With probability 1- $\alpha$ , it is routed in the expected direction based on the splitting condition.
- 2. predict\_sample\_proba Implementation: I then implemented the predict\_sample\_proba function. This function simulates the soft split inference for a single sample nnn times (where nnn is the number of simulations). During each simulation, the sample is routed probabilistically through the tree, producing a probability vector. These simulations are averaged to generate a final probability vector for the sample.
- 3. Overriding predict\_proba: Finally, I overrode the predict\_proba method of the sklearn decision tree. The new implementation uses predict\_sample\_proba for all samples in the dataset and returns the averaged probability vectors across nnn simulations. This ensures that the final predictions reflect the uncertainty introduced by the soft splits.

The training process remains unchanged, preserving the original behavior of the sklearn decision tree during the fit process.

#### 1.2 Datasets Used - Classification

For evaluating the classifier, I used the following datasets, each of which has more than 1,000 samples and a variety of features and target classes:

#### 1. Obesity Dataset:

- Description: A classification dataset used to predict obesity levels based on health-related behaviors.
- Samples: Over 2,000 samples.
- Features: 16 Total, Gender, Agem Height, Weight, Family history etc.
- Target Classes: Multi-class problem with different obesity categories.

#### 2. Adult Income Dataset:

- Description: Predicts whether an individual's income exceeds \$50K/year based on demographic and economic attributes.
- Samples: Approximately 48,000 samples.
- Features: 14 Total, Includes age, education, work hours, and more.
- Target Classes: Binary classification (above or below \$50K income).

#### 3. Wine Quality Dataset:

- Description: Predicts the quality of wine based on chemical properties.
- Samples: Over 1600 samples.
- Features: 11 Total, Includes acidity, alcohol content, and other chemical measures.
- Target Classes: Multi-class classification (wine quality scores).

#### 4. Bank Marketing Dataset:

- Description: Predicts whether a customer will subscribe to a term deposit based on marketing campaign data.
- Samples: Over 45,000 samples.
- Features: 17 Total, Includes contact duration, previous campaign outcomes, and more.
- Target Classes: Binary classification (subscribed or not).

#### 5. Student Success Dataset:

- Description: Predicts student success in education based on demographic and academic performance.
- Samples: Over 4000 samples.
- Features: Includes parental education level, study time, and previous grades.
- Target Classes: Multi-class classification (Enrolled, Graduate, Dropout).

## **Datasets - Regression**

#### 1. Garments Worker Productivity Dataset:

- Description: Predicts the productivity of garment workers based on various operational and environmental factors.
- o Samples: 1,197 samples.
- o **Features**: 14 total, including production efficiency, work hours, and departmental indicators.
- Target Variable: Worker productivity.

#### 2. Air Quality Dataset:

- o **Description**: Predicts air quality metrics based on atmospheric and environmental factors.
- o Samples: 9,471 samples.
- o Features: 16 total, including CO, NOx levels, temperature, and humidity.
- o **Target Variable**: Air quality index or pollutant levels.

#### 3. Bike Sharing Dataset:

- Description: Predicts the number of bike rentals based on weather conditions, time, and seasonality.
- o Samples: 17,379 samples.
- o **Features**: 16 total, including temperature, humidity, and wind speed.
- o Target Variable: Number of bike rentals.

#### 4. Apartments for Rent Dataset:

- Description: Predicts the rental price of apartments based on various property features and location information.
- o Samples: 10,000 samples.
- o **Features**: 21 total, including apartment size, number of rooms, and location data.
- o Target Variable: Apartment rental price.

#### 5. Energy Efficiency Dataset:

- Description: Predicts energy consumption based on household environmental and operational factors.
- o Samples: 19,735 samples.
- o **Features**: 28 total, including temperature, humidity, and equipment usage data.
- Target Variable: Energy consumption or efficiency metrics.

# 1.3 Exploratory Data Analysis – Obesity Dataset

# **Description Statistics of the continuous variables:**

|      | Age   | Height | Weight | FCVC | NCP  | CH20 | FAF  | TUE  |
|------|-------|--------|--------|------|------|------|------|------|
| mean | 24.31 | 1.70   | 86.59  | 2.42 | 2.69 | 2.01 | 1.01 | 0.66 |
| std  | 6.35  | 0.09   | 26.19  | 0.53 | 0.78 | 0.61 | 0.85 | 0.61 |
| min  | 14.00 | 1.45   | 39.00  | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 |
| 25%  | 19.95 | 1.63   | 65.47  | 2.00 | 2.66 | 1.58 | 0.12 | 0.00 |
| 50%  | 22.78 | 1.70   | 83.00  | 2.39 | 3.00 | 2.00 | 1.00 | 0.63 |
| 75%  | 26.00 | 1.77   | 107.43 | 3.00 | 3.00 | 2.48 | 1.67 | 1.00 |
| max  | 61.00 | 1.98   | 173.00 | 3.00 | 4.00 | 3.00 | 3.00 | 2.00 |

# **Description Statistics of the categorical variables:**

|        | Gender | family_history_with_overweight | FAVC | CAEC      | SMOKE | scc  | CALC      | MTRANS                | NObeyesdad     |
|--------|--------|--------------------------------|------|-----------|-------|------|-----------|-----------------------|----------------|
| unique | 2      | 2                              | 2    | 4         | 2     | 2    | 4         | 5                     | 7              |
| top    | Male   | yes                            | yes  | Sometimes | no    | no   | Sometimes | Public_Transportation | Obesity_Type_I |
| freq   | 1068   | 1726                           | 1866 | 1765      | 2067  | 2015 | 1401      | 1580                  | 351            |

# **Distribution of Target Variable:**



#### <u>Contingency Tables between Categoricals + Chi Square Test for Independence:</u>



| SMOKE               | no     | yes    |
|---------------------|--------|--------|
| NObeyesdad          |        |        |
| Insufficient_Weight | 271    |        |
| Normal_Weight       | 274    | 13     |
| Obesity_Type_I      | 345    | 6      |
| Obesity_Type_II     | 282    | 15     |
| Obesity_Type_III    | 323    | 1      |
| Overweight_Level_I  | 287    | 3      |
| Overweight_Level_II | 285    | 5      |
|                     |        |        |
| Chi-Square Test Re  | sults  | :      |
| Chi-Square Statist  |        |        |
| p-value: 0.0000154  |        |        |
| Degrees of Freedom  |        |        |
| Result: Significan  | ιτ ass | остат: |



#### Distributions of Continuous variables per category:









## **Correlations between continuous variables**



The above didn't look very informative so I looked at it separately for females and males...

### Females and Males Accordingly:



We can see that for males age is much more correlated with the weight, if the goal of the project was to get the best results possible I would probably try to create interaction features here.

# **Sensitivity Analysis for Hyperparameters – Task 1**

#### Student Success Dataset Alpha n\_simulations Model Mean Accuracy Mean AUC 0.100000 100 Soft Split Decision Tree 0.65 0.78 0.100000 0.63 0.77 50 Soft Split Decision Tree 0.100000 10 Soft Split Decision Tree 0.55 0.74 0.200000 100 Soft Split Decision Tree 0.43 0.74 0.200000 0.42 8 50 Soft Split Decision Tree 0.73 0.200000 Soft Split Decision Tree 6 10 0.41 0.65 0.300000 Soft Split Decision Tree 0.34 12 10 0.59 0.300000 16 100 Soft Split Decision Tree 0.34 0.69 14 0.300000 50 Soft Split Decision Tree 0.33 0.66 0.400000 Soft Split Decision Tree 18 10 0.31 0.53 22 0.400000 100 Soft Split Decision Tree 0.31 0.61 20 0.400000 50 Soft Split Decision Tree 0.31 0.58

#### bank Dataset Alpha n\_simulations Model Mean Accuracy Mean AUC 0.100000 100 Soft Split Decision Tree 0.87 0.83 4 0.100000 50 Soft Split Decision Tree 0.87 0.81 0.100000 Soft Split Decision Tree 0.84 0.74 0 10 0.200000 Soft Split Decision Tree 0.84 10 100 0.77 8 0.200000 Soft Split Decision Tree 0.81 0.73 0.300000 100 Soft Split Decision Tree 0.79 0.66 22 0.400000 100 Soft Split Decision Tree 0.78 0.57 0.300000 Soft Split Decision Tree 0.76 0.63 0.200000 10 Soft Split Decision Tree 0.76 0.64 20 0.400000 50 Soft Split Decision Tree 0.74 0.55 0.300000 **Soft Split Decision Tree** 12 10 0.70 0.56 0.400000 Soft Split Decision Tree 18 0.69 0.52

| ad | adult_income Dataset |               |                          |               |          |  |  |  |  |  |
|----|----------------------|---------------|--------------------------|---------------|----------|--|--|--|--|--|
|    | Alpha                | n_simulations | Model                    | Mean Accuracy | Mean AUC |  |  |  |  |  |
| 4  | 0.100000             | 100           | Soft Split Decision Tree | 0.47          | 0.71     |  |  |  |  |  |
| 2  | 0.100000             | 50            | Soft Split Decision Tree | 0.46          | 0.69     |  |  |  |  |  |
| 10 | 0.200000             | 100           | Soft Split Decision Tree | 0.45          | 0.68     |  |  |  |  |  |
| 0  | 0.100000             | 10            | Soft Split Decision Tree | 0.44          | 0.64     |  |  |  |  |  |
| 8  | 0.200000             | 50            | Soft Split Decision Tree | 0.43          | 0.66     |  |  |  |  |  |
| 6  | 0.200000             | 10            | Soft Split Decision Tree | 0.39          | 0.60     |  |  |  |  |  |
| 16 | 0.300000             | 100           | Soft Split Decision Tree | 0.36          | 0.64     |  |  |  |  |  |
| 14 | 0.300000             | 50            | Soft Split Decision Tree | 0.35          | 0.61     |  |  |  |  |  |
| 12 | 0.300000             | 10            | Soft Split Decision Tree | 0.33          | 0.56     |  |  |  |  |  |
| 18 | 0.400000             | 10            | Soft Split Decision Tree | 0.29          | 0.53     |  |  |  |  |  |
| 20 | 0.400000             | 50            | Soft Split Decision Tree | 0.27          | 0.56     |  |  |  |  |  |
| 22 | 0.400000             | 100           | Soft Split Decision Tree | 0.26          | 0.58     |  |  |  |  |  |

| ob | esity D  | ataset        |                          |               |          |
|----|----------|---------------|--------------------------|---------------|----------|
|    | Alpha    | n_simulations | Model                    | Mean Accuracy | Mean AUC |
| 4  | 0.100000 | 100           | Soft Split Decision Tree | 0.92          | 0.98     |
| 2  | 0.100000 | 50            | Soft Split Decision Tree | 0.91          | 0.98     |
| 0  | 0.100000 | 10            | Soft Split Decision Tree | 0.84          | 0.96     |
| 10 | 0.200000 | 100           | Soft Split Decision Tree | 0.76          | 0.97     |
| 8  | 0.200000 | 50            | Soft Split Decision Tree | 0.74          | 0.96     |
| 6  | 0.200000 | 10            | Soft Split Decision Tree | 0.58          | 0.89     |
| 16 | 0.300000 | 100           | Soft Split Decision Tree | 0.52          | 0.91     |
| 14 | 0.300000 | 50            | Soft Split Decision Tree | 0.48          | 0.88     |
| 12 | 0.300000 | 10            | Soft Split Decision Tree | 0.38          | 0.77     |
| 22 | 0.400000 | 100           | Soft Split Decision Tree | 0.29          | 0.80     |
| 20 | 0.400000 | 50            | Soft Split Decision Tree | 0.28          | 0.74     |
| 18 | 0.400000 | 10            | Soft Split Decision Tree | 0.23          | 0.63     |

| wii | ne_qua   | ality Data    | set                      |               |          |
|-----|----------|---------------|--------------------------|---------------|----------|
|     | Alpha    | n_simulations | Model                    | Mean Accuracy | Mean AUC |
| 2   | 0.100000 | 50            | Soft Split Decision Tree | 0.59          | 0.71     |
| 4   | 0.100000 | 100           | Soft Split Decision Tree | 0.59          | 0.72     |
| 0   | 0.100000 | 10            | Soft Split Decision Tree | 0.55          | 0.67     |
| 10  | 0.200000 | 100           | Soft Split Decision Tree | 0.54          | 0.73     |
| 8   | 0.200000 | 50            | Soft Split Decision Tree | 0.53          | 0.68     |
| 6   | 0.200000 | 10            | Soft Split Decision Tree | 0.49          | 0.61     |
| 16  | 0.300000 | 100           | Soft Split Decision Tree | 0.48          | 0.67     |
| 14  | 0.300000 | 50            | Soft Split Decision Tree | 0.46          | 0.65     |
| 20  | 0.400000 | 50            | Soft Split Decision Tree | 0.44          | 0.58     |
| 12  | 0.300000 | 10            | Soft Split Decision Tree | 0.44          | 0.57     |
| 22  | 0.400000 | 100           | Soft Split Decision Tree | 0.43          | 0.59     |
| 18  | 0.400000 | 10            | Soft Split Decision Tree | 0.40          | 0.53     |

# **Obesity Results Comparison**



# Performance Comparison: Soft Split vs. Regular Decision Tree



# Results Table - Task 1

o Note – for each dataset, I showed here the best result we got (per alpha / n\_simulations).

| Dataset | Method      | Alpha | N_simulations | Accuracy | AUC  |
|---------|-------------|-------|---------------|----------|------|
| Obesity | Original DT | -     | •             | 0.92     | 0.99 |
| Obesity | Soft DT     | 0.1   | 100           | 0.92     | 0.98 |

| Dataset      | Method      | Alpha | N_simulations | Accuracy | AUC  |
|--------------|-------------|-------|---------------|----------|------|
| Adult Income | Original DT |       |               | 0.89     | 0.92 |
| Adult Income | Soft DT     | 0.1   | 100           | 0.47     | 0.71 |

| Dataset      | Method      | Alpha | N_simulations | Accuracy | AUC  |
|--------------|-------------|-------|---------------|----------|------|
| Wine Quality | Original DT |       |               | 0.6      | 0.61 |
| Wine Quality | Soft DT     | 0.1   | 100           | 0.59     | 0.72 |

| Dataset       | Method      | Alpha | N_simulations | Accuracy | AUC  |
|---------------|-------------|-------|---------------|----------|------|
| Bank Campaign | Original DT |       |               | 0.87     | 0.7  |
| Bank Campaign | Soft DT     | 0.1   | 100           | 0.87     | 0.83 |

| Dataset         | Method      | Alpha | N_simulations | Accuracy | AUC  |
|-----------------|-------------|-------|---------------|----------|------|
| Student Success | Original DT |       |               | 0.94     | 0.95 |
| Student Success | Soft DT     | 0.1   | 100           | 0.65     | 0.78 |

# **Programming Task 2: Regression with Soft Splits**

# 2.1 Description of the Adaptation from Classification to Regression

The transition from the SoftSplitDecisionTreeClassifier to the SoftSplitDecisionTreeRegressor involves the following key adaptations:

#### 1. Prediction Objective

- Classification: The predict\_proba method returns class probabilities. Each leaf node contains class counts, which are normalized to compute probabilities for each class.
- Regression: The predict method returns a continuous numerical value. Each leaf node contains the average of the target values for the samples that fall into that leaf.

#### Change Made:

 Replaced the \_predict\_sample\_proba method, which computed class probabilities, with \_predict\_sample, which computes the regression value (the mean of the target values in the leaf).

### 2. Leaf Node Representation

- Classification: Leaf nodes store the count of samples per class.
- Regression: Leaf nodes store the mean target value.

#### Change Made:

• In \_predict\_sample, the returned value is directly accessed as the first value of the leaf node (tree.value[node][0, 0]), representing the mean target value for regression.

#### 3. Soft Split Logic

• The logic of soft splits remains identical for both classification and regression. A sample is probabilistically routed to the left or right child node based on the alpha parameter.

#### No Changes Needed:

The soft split method is reused without modifications.

#### 4. Aggregation of Predictions

- Classification: Aggregates multiple simulations to compute the average class probabilities.
- Regression: Aggregates multiple simulations to compute the mean predicted value for regression.

#### Change Made:

• In the predict method, predictions from multiple simulations are averaged to return the final regression value.

# 2.2 Results and Analysis

#### worker\_productivity Dataset Model Mean MSE Mean RMSE Mean MAE Mean Max Error Mean R2 Alpha n\_simulations 10 0.200000 100 Soft Split Decision Tree 0.03096 0.17563 0.14330 0.45249 0.00529 0.46915 -0.01940 0.200000 50 Soft Split Decision Tree 0.14435 0.03170 0.17775 4 0.100000 100 Soft Split Decision Tree 0.03273 0.18024 0.13507 0.50325 -0.05300 50 Soft Split Decision Tree 0.18166 0.13545 2 0.100000 0.03325 0.53100 -0.06949 16 0.300000 100 Soft Split Decision Tree 0.03448 0.18514 0.15652 0.45282 -0.10821 14 0.300000 50 Soft Split Decision Tree 0.03463 0.18555 0.15614 0.46570 -0.11305 0.18584 0.14879 0.50413 -0.11650 6 0.200000 10 Soft Split Decision Tree 0.03468 0 0.100000 10 Soft Split Decision Tree 0.03531 0.18746 0.14052 0.56247 -0.13561 22 0.400000 100 Soft Split Decision Tree 0.03764 0.19326 0.16488 0.45160 -0.20794 12 0.300000 10 Soft Split Decision Tree 0.03816 0.19483 0.16163 0.49693 -0.22573 0.400000 50 Soft Split Decision Tree 0.03896 0.19664 0.16740 0.46027 -0.25098 0.400000 Soft Split Decision Tree 0.04262 0.20581 0.17056 0.50433 -0.37214

| air | _qualit  | y Datase      | t                        |             |           |           |                |          |
|-----|----------|---------------|--------------------------|-------------|-----------|-----------|----------------|----------|
|     | Alpha    | n_simulations | Model                    | Mean MSE    | Mean RMSE | Mean MAE  | Mean Max Error | Mean R2  |
| 4   | 0.100000 | 100           | Soft Split Decision Tree | 11292.37677 | 105.90131 | 76.42274  | 1018.50400     | 0.40478  |
| 2   | 0.100000 | 50            | Soft Split Decision Tree | 11530.88374 | 107.00077 | 76.48858  | 970.89600      | 0.39219  |
| 0   | 0.100000 | 10            | Soft Split Decision Tree | 13975.64402 | 117.77602 | 76.71353  | 1051.39000     | 0.26349  |
| 10  | 0.200000 | 100           | Soft Split Decision Tree | 19586.17294 | 139.35078 | 118.98461 | 963.38200      | -0.03279 |
| 8   | 0.200000 | 50            | Soft Split Decision Tree | 20033.62359 | 140.96075 | 118.64004 | 985.26800      | -0.05657 |
| 6   | 0.200000 | 10            | Soft Split Decision Tree | 23807.30643 | 153.63685 | 118.98299 | 1028.02000     | -0.25498 |
| 16  | 0.300000 | 100           | Soft Split Decision Tree | 27941.41817 | 166.51688 | 150.40832 | 969.46500      | -0.47358 |
| 14  | 0.300000 | 50            | Soft Split Decision Tree | 28453.11933 | 168.05393 | 149.86390 | 977.37800      | -0.50013 |
| 12  | 0.300000 | 10            | Soft Split Decision Tree | 33928.43295 | 183.46640 | 151.00458 | 1018.78000     | -0.78893 |
| 22  | 0.400000 | 100           | Soft Split Decision Tree | 35670.52802 | 187.99833 | 173.67822 | 1020.30800     | -0.88048 |
| 20  | 0.400000 | 50            | Soft Split Decision Tree | 36339.29497 | 189.80575 | 173.32093 | 1023.26800     | -0.91605 |
| 18  | 0.400000 | 10            | Soft Split Decision Tree | 43047.56307 | 206.61863 | 175.28831 | 1013.22000     | -1.27201 |

| ара | artmer   | it_rent Da    | ataset                   |                 |            |            |                |            |
|-----|----------|---------------|--------------------------|-----------------|------------|------------|----------------|------------|
|     | Alpha    | n_simulations | Model                    | Mean MSE        | Mean RMSE  | Mean MAE   | Mean Max Error | Mean R2    |
| 4   | 0.100000 | 100           | Soft Split Decision Tree | 13257115.01821  | 3288.31378 | 2733.54914 | 21993.68200    | -12.26612  |
| 2   | 0.100000 | 50            | Soft Split Decision Tree | 14102401.49645  | 3400.85004 | 2738.85201 | 22722.91600    | -13.12915  |
| 0   | 0.100000 | 10            | Soft Split Decision Tree | 20926720.57977  | 4164.50147 | 2776.08702 | 28395.32000    | -20.19945  |
| 10  | 0.200000 | 100           | Soft Split Decision Tree | 36617684.27035  | 5426.92760 | 4924.81188 | 22595.59700    | -36.03380  |
| 8   | 0.200000 | 50            | Soft Split Decision Tree | 37844331.65649  | 5541.38197 | 4913.63726 | 24195.66000    | -37.42466  |
| 6   | 0.200000 | 10            | Soft Split Decision Tree | 50275450.55970  | 6423.67507 | 4956.82226 | 33302.19000    | -50.25432  |
| 16  | 0.300000 | 100           | Soft Split Decision Tree | 61579587.49157  | 7088.88131 | 6723.24600 | 22619.13900    | -61.82504  |
| 14  | 0.300000 | 50            | Soft Split Decision Tree | 63775274.30977  | 7229.58623 | 6744.48877 | 24508.35200    | -64.22950  |
| 12  | 0.300000 | 10            | Soft Split Decision Tree | 79204464.08894  | 8123.96120 | 6746.36126 | 33936.82000    | -80.47150  |
| 22  | 0.400000 | 100           | Soft Split Decision Tree | 85541858.71366  | 8480.78673 | 8240.83855 | 23146.82600    | -87.51520  |
| 20  | 0.400000 | 50            | Soft Split Decision Tree | 86825456.90823  | 8564.97688 | 8202.39934 | 25045.54800    | -89.04647  |
| 18  | 0.400000 | 10            | Soft Split Decision Tree | 105444272.99311 | 9491.93053 | 8223.31850 | 34174.27000    | -109.03844 |

| bik | bike_sharing Dataset |               |                          |             |           |           |                |          |  |  |  |
|-----|----------------------|---------------|--------------------------|-------------|-----------|-----------|----------------|----------|--|--|--|
|     |                      |               |                          |             |           |           |                |          |  |  |  |
|     | Alpha                | n_simulations | Model                    | Mean MSE    | Mean RMSE | Mean MAE  | Mean Max Error | Mean R2  |  |  |  |
| 4   | 0.100000             | 100           | Soft Split Decision Tree | 1039.97462  | 32.24099  | 26.20372  | 190.80700      | 0.96863  |  |  |  |
| 2   | 0.100000             | 50            | Soft Split Decision Tree | 1103.71219  | 33.21276  | 26.54223  | 201.25400      | 0.96672  |  |  |  |
| 0   | 0.100000             | 10            | Soft Split Decision Tree | 1574.41636  | 39.66791  | 29.20591  | 272.16000      | 0.95250  |  |  |  |
| 10  | 0.200000             | 100           | Soft Split Decision Tree | 4959.47435  | 70.40635  | 59.66797  | 313.45700      | 0.85044  |  |  |  |
| 8   | 0.200000             | 50            | Soft Split Decision Tree | 5123.18049  | 71.55706  | 60.15528  | 351.75400      | 0.84554  |  |  |  |
| 6   | 0.200000             | 10            | Soft Split Decision Tree | 6531.38366  | 80.79113  | 64.11630  | 399.23000      | 0.80299  |  |  |  |
| 16  | 0.300000             | 100           | Soft Split Decision Tree | 13991.07520 | 118.25735 | 102.69790 | 438.48200      | 0.57811  |  |  |  |
| 14  | 0.300000             | 50            | Soft Split Decision Tree | 14316.56723 | 119.61763 | 103.21873 | 446.29400      | 0.56829  |  |  |  |
| 12  | 0.300000             | 10            | Soft Split Decision Tree | 16953.14388 | 130.17793 | 108.12801 | 511.67000      | 0.48887  |  |  |  |
| 22  | 0.400000             | 100           | Soft Split Decision Tree | 31229.88434 | 176.68038 | 155.77188 | 529.69300      | 0.05824  |  |  |  |
| 20  | 0.400000             | 50            | Soft Split Decision Tree | 31740.86336 | 178.11309 | 156.26867 | 548.17600      | 0.04291  |  |  |  |
| 18  | 0.400000             | 10            | Soft Split Decision Tree | 35763.05341 | 189.04700 | 161.03943 | 598.04000      | -0.07809 |  |  |  |

| en | energy Dataset |               |                          |           |           |          |                |         |  |  |  |  |
|----|----------------|---------------|--------------------------|-----------|-----------|----------|----------------|---------|--|--|--|--|
|    | Alpha          | n_simulations | Model                    | Mean MSE  | Mean RMSE | Mean MAE | Mean Max Error | Mean R2 |  |  |  |  |
| 4  | 0.100000       | 100           | Soft Split Decision Tree | 5.61343   | 2.36918   | 1.91937  | 7.23963        | 0.97331 |  |  |  |  |
| 2  | 0.100000       | 50            | Soft Split Decision Tree | 5.94971   | 2.43910   | 1.94325  | 8.68224        | 0.97171 |  |  |  |  |
| 0  | 0.100000       | 10            | Soft Split Decision Tree | 8.64637   | 2.94011   | 2.14403  | 14.44509       | 0.95889 |  |  |  |  |
| 10 | 0.200000       | 100           | Soft Split Decision Tree | 24.51028  | 4.95068   | 4.07054  | 12.82724       | 0.88346 |  |  |  |  |
| 8  | 0.200000       | 50            | Soft Split Decision Tree | 25.30226  | 5.03000   | 4.10270  | 14.13459       | 0.87969 |  |  |  |  |
| 6  | 0.200000       | 10            | Soft Split Decision Tree | 31.48418  | 5.61091   | 4.38365  | 21.19700       | 0.85028 |  |  |  |  |
| 16 | 0.300000       | 100           | Soft Split Decision Tree | 61.59845  | 7.84824   | 6.50678  | 18.18629       | 0.70713 |  |  |  |  |
| 14 | 0.300000       | 50            | Soft Split Decision Tree | 62.67511  | 7.91666   | 6.54524  | 19.47964       | 0.70199 |  |  |  |  |
| 12 | 0.300000       | 10            | Soft Split Decision Tree | 71.93152  | 8.48054   | 6.86026  | 26.59504       | 0.65801 |  |  |  |  |
| 22 | 0.400000       | 100           | Soft Split Decision Tree | 121.73839 | 11.03323  | 9.28390  | 23.31209       | 0.42118 |  |  |  |  |
| 20 | 0.400000       | 50            | Soft Split Decision Tree | 123.49644 | 11.11253  | 9.34658  | 25.06100       | 0.41283 |  |  |  |  |
| 18 | 0.400000       | 10            | Soft Split Decision Tree | 137.12957 | 11.70982  | 9.74165  | 32.44695       | 0.34796 |  |  |  |  |

# Results Table – Task 2

| Dataset     | Method      | Alpha | N_simulations | MSE   | RMSE  | MAE   | Max Error | R2   |
|-------------|-------------|-------|---------------|-------|-------|-------|-----------|------|
| Air Quality | Original DT |       |               | 8917  | 94    | 19.51 | 1235      | 0.53 |
| Air Quality | Soft DT     | 0.1   | 100           | 11292 | 105.9 | 76    | 1018      | 0.4  |

| Dataset   | Method      | Alpha | N_simulations | MSE        | RMSE | MAE   | Max Error | R2     |
|-----------|-------------|-------|---------------|------------|------|-------|-----------|--------|
| Apartment | Original DT |       |               | 740781     | 682  | 37.15 | 21697     | 0.55   |
| Apartment | Soft DT     | 0.1   | 100           | 13,255,115 | 3288 | 2733  | 21993     | -12.27 |

| Dataset      | Method      | Alpha | N_simulations | MSE   | RMSE  | MAE  | Max Error | R2   |
|--------------|-------------|-------|---------------|-------|-------|------|-----------|------|
| Bike Sharing | Original DT |       |               | 33.62 | 5.78  | 2.67 | 99.7      | 0.99 |
| Bike Sharing | Soft DT     | 0.1   | 100           | 1039  | 32.24 | 26.2 | 190.8     | 0.97 |

| Dataset | Method      | Alpha | N_simulations | MSE    | RMSE   | MAE    | Max Error | R2    |
|---------|-------------|-------|---------------|--------|--------|--------|-----------|-------|
| Energy  | Original DT |       |               | 0.0008 | 0.0091 | 0.0065 | 0.06186   | 0.99  |
| Energy  | Soft DT     | 0.1   | 100           | 5.61   | 2.369  | 1.9    | 7.23      | 0.973 |

| Dataset      | Method      | Alpha | N_simulations | MSE  | RMSE  | MAE   | Max Error | R2     |
|--------------|-------------|-------|---------------|------|-------|-------|-----------|--------|
| Worker       | Original DT |       |               | 0.03 | 0.175 | 0.143 | 0.70      | 0.0017 |
| Productivity |             |       |               |      |       |       |           |        |
| Worker       | Soft DT     | 0.2   | 100           | 0.03 | 0.175 | 0.143 | 0.45      | 0.0053 |
| Productivity |             |       |               |      |       |       |           |        |

# **Programming Task 3: Weighted Prediction**

## Proposed Method: Improved Soft Splits Using Distance from Uniform Distribution

#### **Description**

In this alternative method, I propose weighting the decision tree leaves during prediction based on their distance from a uniform class distribution. The key idea is to adjust the randomness of routing decisions within the tree (via soft splits) by incorporating a measure of uncertainty—specifically, how far the class distribution in a node is from being uniform.

Nodes with a high distance from a uniform distribution are considered more certain (i.e., dominated by a specific class), while nodes closer to uniformity indicate greater uncertainty. This additional information is used to dynamically adjust the split probabilities, promoting smoother decision boundaries and reducing overfitting.

#### **Theoretical Justification**

- 1. Soft Splits and Uncertainty:
  - Soft splits introduce stochasticity in routing decisions, which helps to avoid overfitting by reducing deterministic biases in individual splits.
  - Incorporating the distance from uniformity ensures that splits are guided by the reliability of the class distribution in the node.

### 2. Distance from Uniformity:

- o A uniform distribution indicates maximal uncertainty in class assignments.
- By penalizing nodes with higher uncertainty (closer to uniformity), I encourage more confident predictions in later stages of the tree.

#### 3. KL Divergence as a Measure:

o KL divergence quantifies how much a node's class distribution diverges from a uniform distribution: DKL(P||U)= $\sum i=1$ nP(i)log $\bigcap$ (P(i)U(i))D\_{\text{KL}}(P || U) = \sum\_{i=1}^{n} P(i) \log\left(\frac{P(i)}{U(i)}\right)DKL(P||U)=i=1 $\sum$ nP(i)log(U(i)P(i)) where PPP is the observed class probability, and UUU is the uniform distribution.

# 4. Regularization via Adjusted Alpha:

- The split probability α\alphaα is adjusted based on the KL divergence:  $\alpha$  adjusted =  $\frac{\alpha}{a+D_{KL}}$
- This ensures that nodes with uncertain distributions are less likely to make confident split decisions.

#### **Implementation Overview**

- 1. Calculate Distance from Uniformity:
  - Compute the KL divergence between the node's class distribution and a uniform distribution.

### 2. Adjust Alpha Dynamically:

Modify the split probability α\alphaα based on the calculated KL divergence.

### 3. Soft Split Decision:

Use the adjusted α\alphaα to probabilistically route samples during inference.

#### 4. Simulation for Robust Predictions:

 Perform multiple routing simulations for each sample and average the predicted probabilities to smooth the results.

#### Steps I Took

### 1. Enhanced Split Logic:

- The \_soft\_split function was updated to incorporate the distance from uniformity via KL divergence.
- This function adjusts the probability of going left or right based on the node's uncertainty.

#### 2. Dynamic Weighting:

- The \_distance\_from\_uniform function calculates KL divergence to inform the split probability adjustments.
- Nodes with high KL divergence (low uncertainty) are weighted more heavily in routing decisions.

#### 3. Stochastic Predictions:

- The predict proba method runs multiple simulations for each sample.
- The averaged probabilities from all simulations ensure robustness against noise and overfitting.

#### Advantages

- Reduced Overfitting:
  - By dynamically penalizing uncertain splits, this approach discourages overconfident routing in noisy or ambiguous regions of the tree.
- Improved Generalization:
  - o Promotes smoother decision boundaries by incorporating uncertainty into routing.
- Robustness:
  - Averaging over multiple simulations ensures stability in predictions.

#### **Disadvantages**

- Increased Computational Cost:
  - Multiple simulations during inference increase computational complexity compared to standard decision trees.
- Sensitivity to Hyperparameters:
  - $_{\circ}$  The effectiveness of the method depends on the choice of  $\alpha$  and the number of simulations

# 3.2 Results and Comparison

| wii | wine_quality_improved Dataset |               |                          |               |          |  |  |  |  |  |  |
|-----|-------------------------------|---------------|--------------------------|---------------|----------|--|--|--|--|--|--|
|     | Alpha                         | n_simulations | Model                    | Mean Accuracy | Mean AUC |  |  |  |  |  |  |
| 4   | 0.100000                      | 100           | Soft Split Decision Tree | 0.60          | 0.71     |  |  |  |  |  |  |
| 2   | 0.100000                      | 50            | Soft Split Decision Tree | 0.59          | 0.72     |  |  |  |  |  |  |
| 0   | 0.100000                      | 10            | Soft Split Decision Tree | 0.59          | 0.65     |  |  |  |  |  |  |
| 10  | 0.200000                      | 100           | Soft Split Decision Tree | 0.59          | 0.72     |  |  |  |  |  |  |
| 8   | 0.200000                      | 50            | Soft Split Decision Tree | 0.59          | 0.72     |  |  |  |  |  |  |
| 16  | 0.300000                      | 100           | Soft Split Decision Tree | 0.57          | 0.74     |  |  |  |  |  |  |
| 6   | 0.200000                      | 10            | Soft Split Decision Tree | 0.55          | 0.65     |  |  |  |  |  |  |
| 14  | 0.300000                      | 50            | Soft Split Decision Tree | 0.54          | 0.72     |  |  |  |  |  |  |
| 22  | 0.400000                      | 100           | Soft Split Decision Tree | 0.52          | 0.72     |  |  |  |  |  |  |
| 20  | 0.400000                      | 50            | Soft Split Decision Tree | 0.52          | 0.69     |  |  |  |  |  |  |
| 12  | 0.300000                      | 10            | Soft Split Decision Tree | 0.50          | 0.63     |  |  |  |  |  |  |
| 18  | 0.400000                      | 10            | Soft Split Decision Tree | 0.48          | 0.63     |  |  |  |  |  |  |

#### bank\_improved Dataset Alpha n\_simulations Model **Mean Accuracy** Mean AUC 0.100000 Soft Split Decision Tree 100 0.88 0.86 4 0.100000 50 Soft Split Decision Tree 0.88 0.84 2 0.200000 100 Soft Split Decision Tree 0.87 0.83 10 Soft Split Decision Tree 0.78 0 0.100000 10 0.86 0.200000 Soft Split Decision Tree 0.85 0.80 8 50 0.300000 100 Soft Split Decision Tree 0.84 0.76 16 22 0.400000 100 Soft Split Decision Tree 0.82 0.67 0.300000 50 Soft Split Decision Tree 0.82 0.72 14 0.200000 10 Soft Split Decision Tree 0.81 0.70 6 0.400000 50 Soft Split Decision Tree 0.79 0.64 20 0.300000 10 Soft Split Decision Tree 0.76 0.62 12 0.400000 Soft Split Decision Tree 0.72 0.56 18 10

#### obesity\_improved Dataset Alpha n\_simulations Model Mean Accuracy **Mean AUC** 0.100000 0.98 100 Soft Split Decision Tree 0.93 4 0.100000 Soft Split Decision Tree 0.93 0.98 2 50 Soft Split Decision Tree 0.200000 100 0.92 0.98 10 0.100000 10 Soft Split Decision Tree 0.91 0.97 0 0.200000 50 Soft Split Decision Tree 0.91 0.98 8 0.200000 Soft Split Decision Tree 0.80 0.96 6 10 0.300000 Soft Split Decision Tree 16 100 0.77 0.97 0.300000 50 Soft Split Decision Tree 0.75 0.96 14 0.300000 Soft Split Decision Tree 0.61 0.90 12 10 0.400000 Soft Split Decision Tree 0.54 0.93 22 100 20 0.400000 50 Soft Split Decision Tree 0.53 0.91 18 0.400000 10 Soft Split Decision Tree 0.43 0.80

| Sil | student_success_improved Dataset |               |                          |               |          |  |  |  |  |  |  |
|-----|----------------------------------|---------------|--------------------------|---------------|----------|--|--|--|--|--|--|
|     |                                  |               |                          |               |          |  |  |  |  |  |  |
|     | Alpha                            | n_simulations | Model                    | Mean Accuracy | Mean AUC |  |  |  |  |  |  |
| 4   | 0.100000                         | 100           | Soft Split Decision Tree | 0.68          | 0.80     |  |  |  |  |  |  |
| 2   | 0.100000                         | 50            | Soft Split Decision Tree | 0.68          | 0.79     |  |  |  |  |  |  |
| 0   | 0.100000                         | 10            | Soft Split Decision Tree | 0.64          | 0.77     |  |  |  |  |  |  |
| 10  | 0.200000                         | 100           | Soft Split Decision Tree | 0.63          | 0.79     |  |  |  |  |  |  |
| 8   | 0.200000                         | 50            | Soft Split Decision Tree | 0.61          | 0.77     |  |  |  |  |  |  |
| 6   | 0.200000                         | 10            | Soft Split Decision Tree | 0.53          | 0.72     |  |  |  |  |  |  |
| 16  | 0.300000                         | 100           | Soft Split Decision Tree | 0.50          | 0.75     |  |  |  |  |  |  |
| 14  | 0.300000                         | 50            | Soft Split Decision Tree | 0.47          | 0.73     |  |  |  |  |  |  |
| 12  | 0.300000                         | 10            | Soft Split Decision Tree | 0.43          | 0.66     |  |  |  |  |  |  |
| 18  | 0.400000                         | 10            | Soft Split Decision Tree | 0.37          | 0.60     |  |  |  |  |  |  |
| 22  | 0.400000                         | 100           | Soft Split Decision Tree | 0.37          | 0.70     |  |  |  |  |  |  |
| 20  | 0.400000                         | 50            | Soft Split Decision Tree | 0.37          | 0.66     |  |  |  |  |  |  |

| adı | adult_income_improved Dataset |               |                          |               |          |  |  |  |  |  |  |
|-----|-------------------------------|---------------|--------------------------|---------------|----------|--|--|--|--|--|--|
|     | Alpha                         | n_simulations | Model                    | Mean Accuracy | Mean AUC |  |  |  |  |  |  |
| 10  | 0.200000                      | 100           | Soft Split Decision Tree | 0.48          | 0.71     |  |  |  |  |  |  |
| 4   | 0.100000                      | 100           | Soft Split Decision Tree | 0.47          | 0.71     |  |  |  |  |  |  |
| 2   | 0.100000                      | 50            | Soft Split Decision Tree | 0.47          | 0.70     |  |  |  |  |  |  |
| 8   | 0.200000                      | 50            | Soft Split Decision Tree | 0.47          | 0.69     |  |  |  |  |  |  |
| 0   | 0.100000                      | 10            | Soft Split Decision Tree | 0.46          | 0.65     |  |  |  |  |  |  |
| 16  | 0.300000                      | 100           | Soft Split Decision Tree | 0.45          | 0.68     |  |  |  |  |  |  |
| 14  | 0.300000                      | 50            | Soft Split Decision Tree | 0.43          | 0.66     |  |  |  |  |  |  |
| 6   | 0.200000                      | 10            | Soft Split Decision Tree | 0.43          | 0.62     |  |  |  |  |  |  |
| 12  | 0.300000                      | 10            | Soft Split Decision Tree | 0.38          | 0.59     |  |  |  |  |  |  |
| 22  | 0.400000                      | 100           | Soft Split Decision Tree | 0.35          | 0.64     |  |  |  |  |  |  |
| 20  | 0.400000                      | 50            | Soft Split Decision Tree | 0.34          | 0.62     |  |  |  |  |  |  |
| 18  | 0.400000                      | 10            | Soft Split Decision Tree | 0.33          | 0.56     |  |  |  |  |  |  |

# **Results Table – Task 3**

| Dataset | Method              | Alpha | N_simulations | Accuracy | AUC   |
|---------|---------------------|-------|---------------|----------|-------|
| Obesity | Original DT         | -     | -             | 0.928    | 0.957 |
| Obesity | Improved Soft<br>DT | 0.1   | 100           | 0.928    | 0.980 |

| Dataset      | Method        | Alpha | N_simulations | Accuracy | AUC   |
|--------------|---------------|-------|---------------|----------|-------|
| Adult Income | Original DT   |       |               | 0.442    | 0.575 |
| Adult Income | Improved Soft |       |               | 0.483    | 0.707 |
|              | DT            |       |               |          |       |

| Dataset      | Method              | Alpha | N_simulations | Accuracy | AUC   |
|--------------|---------------------|-------|---------------|----------|-------|
| Wine Quality | Original DT         |       |               | 0.596    | 0.614 |
| Wine Quality | Improved Soft<br>DT |       |               | 0.595    | 0.717 |

| Dataset       | Method        | Alpha | N_simulations | Accuracy | AUC   |
|---------------|---------------|-------|---------------|----------|-------|
| Bank Campaign | Original DT   |       |               | 0.871    | 0.696 |
| Bank Campaign | Improved Soft |       |               | 0.875    | 0.855 |
|               | DT            |       |               |          |       |

| Dataset         | Method              | Alpha | N_simulations | Accuracy | AUC   |
|-----------------|---------------------|-------|---------------|----------|-------|
| Student Success | Original DT         |       |               | 0.679    | 0.726 |
| Student Success | Improved Soft<br>DT |       |               | 0.681    | 0.797 |