

Page 1 of 36

FCC TEST REPORT

Product Name : Blood Pressure Monitor

Trade Name :

BPUMP

Model/Type reference: BF2210(0B), BF2211(0B), BF2212(0B), BF2213(0B),

BF2214(0B), BF2215(0B), BF2216(0B), BF2217(0B), BF2200, BF2201, BF2202, BF2203, BF2204, BF2205, BF2206, BF2207, BF2210, BF2211, BF2212, BF2213,

BF2214, BF2215, BF2216, BF2217

Serial Number : N/A Ratings : 3V

FCC ID : 2AAS7-BFY

Report Number : EESZF07110009-1

Date : Aug. 19, 2013

Regulations : See below

Test Standards	Results
	PASS

Prepared by:

SHENZHEN PUMP MEDICAL SYSTEM CO.,LTD.

2/F West, M-7 Sinosteel Building, Maqueling Estate, Hi-Tech Industrial
Park, Nanshan District, Shenzhen 518057, P.R.China

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3666 FAX: +86-755-3368 3385

Tested by:

Reviewed by:

Approved by:

Date:

Lab manager

Check No.: 1702050875

TABLE OF CONTENTS

1.	GEI	NERAL INFORMATION	4
2.		ODUCT INFORMATION	
3.	TES	ST SUMMARY	6
4.	ME	ASUREMENT UNCERTAINTY	6
5.	FAC	CILITIES AND ACCREDITATIONS	6
5.	1	TEST FACILITY	6
5.:	2	TEST EQUIPMENT LIST	6
5.	3	LABORATORY ACCREDITATIONS AND LISTINGS	7
6.	SUF	PPORT EQUIPMENT	7
7.		BANDWIDTH MEASUREMENT	
7.	1.	LIMITS	8
7.:	2.	BLOCK DIAGRAM OF TEST SETUP	8
7.	3.	TEST PROCEDURE	8
7.	4.	TEST RESULT	8
8.	PΟ	WER SPECTRAL DENSITY MEASUREMENT	10
8.	1.	LIMITS	10
8.3	2.	BLOCK DIAGRAM OF TEST SETUP	10
8.3	3.	TEST PROCEDURE	10
8.4	4.	TEST RESULT	10
9.	MA	XIMUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT	12
9.	1.	LIMITS	12
9.:	2.	BLOCK DIAGRAM OF TEST SETUP	12
9.	3.	TEST PROCEDURE	12
9.	4.	TEST RESULT	12
10.	BAI	NDEDGE EMISSION MEASUREMENT	
10	0.1.	LIMITS	13
10	0.2.	BLOCK DIAGRAM OF TEST SETUP	13
10	0.3.	TEST PROCEDURE	13
10).4.	TEST RESULT	14
11.	SPU	JRIOUS RF CONDUCTED EMISSIONS MEASUREMENT	15
11	1.1.	LIMITS	15
11	1.2.	BLOCK DIAGRAM OF TEST SETUP	
11	1.3.	TEST PROCEDURE	15
11	1.4.	TEST RESULT	15
12.	RAI	DIATED EMISSIONS MEASUREMENT	19
12	2.1.	LIMITS	
12	2.2.	BLOCK DIAGRAM OF TEST SETUP	19

12.3.	TEST PROCEDURE	. 20
12.4.	TEST RESULT	. 21
APPENI	DIX 1 PHOTOGRAPHS OF TEST SETUP	.27
APPENI	DIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT	.29
APPENI	DIX 3 INTERNAL PHOTOGRAPHS OF PRODUCT	.32

N/A means not applicable.

Report No.: EESZF07110009-1 Page 4 of 36

1. GENERAL INFORMATION

Applicant: SHENZHEN PUMP MEDICAL SYSTEM CO.,LTD.

2/F West, M-7 Sinosteel Building, Magueling Estate, Hi-Tech

Industrial Park, Nanshan District, Shenzhen 518057,

P.R.China

Manufacturer: SHENZHEN PUMP MEDICAL SYSTEM CO.,LTD.

2/F West, M-7 Sinosteel Building, Maqueling Estate, Hi-Tech

Industrial Park, Nanshan District, Shenzhen 518057,

P.R.China

Equipment Authorization: Certification

FCC ID: 2AAS7-BFY

Product Name: Blood Pressure Monitor

Trade Name:

BPUMP

Model/Type reference: BF2210(0B), BF2211(0B), BF2212(0B), BF2213(0B),

BF2214(0B), BF2215(0B), BF2216(0B), BF2217(0B), BF2200,

BF2201, BF2202, BF2203, BF2204, BF2205, BF2206, BF2207, BF2210, BF2211, BF2212, BF2213, BF2214,

BF2215, BF2216, BF2217

Model difference: All the models are same product just different model names.

Serial Number: N/A

Report Number: EESZF07110009-1

Sample Received Date: Jul. 18, 2013

Sample tested Date: Jul. 18, 2013 to Aug. 19, 2013

The above equipment was tested by Centre Testing International (Shenzhen) Corporation for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, Subpart C and the measurement procedure according to ANSI C63.4:2003.

2. PRODUCT INFORMATION

Items	Description					
Rating	3V					
Operating Frequency	2402MHz to 2480MHz					
Type of Modulation:	GFSK					
Number of Channels	40 Channels					
Channel Separation:	2MHz					
Antenna Type	PCB Layout					
Antenna gain	0dBi					
Function	Blood Pressure Monitor with BT4.0 function to transmit signal.					

Frequencies information:

Frequencies inform	iation:		
Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	21	2442
2	2404	22	2444
3	2406	23	2446
4	2408	24	2448
5	2410	25	2450
6	2412	26	2452
7	2414	27	2454
8	2416	28	2456
9	2418	29	2458
10	2420	30	2460
11	2422	31	2462
12	2424	32	2464
13	2426	33	2466
14	2428	34	2468
15	2430	35	2470
16	2432	36	2472
17	2434	37	2474
18	2436	38	2476
19	2438	39	2478
20	2440	40	2480

Remark:

- 1. The test model is BF2214(0B).
- 2. Test frequencies are lowest channel (2402MHz), middle channel (2440MHz) and highest channel (2480MHz).

Page 6 of 36

3. TEST SUMMARY

Clause	Test Item	Rule	Result
1	Conducted Emission	15.207	PASS (See Note 1)
2	6dB Bandwidth	15.247(a)(2)	PASS
3	Peak Output Power	15.247(b)(3)	PASS
4	Power Spectral Density	15.247(e)	PASS
5	Bandedge Emission	15.247(d)	PASS
6	Spurious RF Conducted Emission	15.247(d)	PASS
7	Radiated Emission	15.247(d)	PASS
8	Antenna requirements	15.203	PASS (See Note 2)

Note:

- 1. The device is by battery.
- 2. The EUT uses a PCB layout antenna which in accordance with Section 15.203 is considered sufficient to comply with the provisions of this section.

4. MEASUREMENT UNCERTAINTY

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Radiated disturbance	4.4

5. FACILITIES AND ACCREDITATIONS

5.1 TEST FACILITY

All test facilities used to collect the test data are located at Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4, CISPR 16-1-1 and other equivalent standards.

5.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipments used at CTI for testing. The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument.

Equipment used during the tests:

Equipment	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due Date
3M Chamber & Accessory Equipment	ETS-LINDGREN	FACT-3	3510	07/13/2013	07/12/2016
Spectrum Analyzer	Agilent	E4443A	MY45300910	01/19/2013	01/18/2014
Spectrum Analyzer	Spectrum Analyzer R&S		100416	07/07/2013	07/06/2014
Receiver	R&S	ESCI	100435	07/20/2013	07/19/2014
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	618	06/26/2013	06/25/2014
Multi device Controller	ETS-LINGREN	2090	00057230	N/A	N/A
Horn Antenna ETS-LINGREN		3117	00057407	07/20/2013	07/19/2014
Microwave Preamplifier	Agilent	8449B	3008A02425	04/17/2013	04/16/2014

5.3 LABORATORY ACCREDITATIONS AND LISTINGS

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

6. SUPPORT EQUIPMENT

	No.	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
) =	1.						

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 8 of 36

7. 6DB BANDWIDTH MEASUREMENT

7.1. LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

7.2. BLOCK DIAGRAM OF TEST SETUP

7.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.
- 3. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level
- 4. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

Note: For more detail measurement procedure or testing method, please reference measurement procedure KDB 558074 document which is published on FCC website.

7.4. TEST RESULT

Please see the following plots (worst case).

Page 10 of 36

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1. LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

8.2. BLOCK DIAGRAM OF TEST SETUP

8.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer's RBW and VBW to applicable and set span wide enough to capture the whole plot, record the frequency of the max emission in the plot.
- 3. Set the frequency as center frequency, and set RBW = 3 kHz, VBW >RBW, sweep= (SPAN/3 kHz) with Peak detector in Max Hold mode.
- 4. Read the output peak data from the spectrum analyzer directly.

Note: For more detail measurement procedure or testing method, please reference measurement procedure KDB 558074 document which is published on FCC website.

8.4. TEST RESULT

Please see the following plots (worst case).

Page 11 of 36

Page 12 of 36

9. MAXIMUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT

9.1. LIMITS

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt (30dBm).

9.2. BLOCK DIAGRAM OF TEST SETUP

9.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Power was read directly from power meter.

Note: For more detail measurement procedure or testing method, please reference measurement procedure KDB 558074 document which is published on FCC website.

9.4. TEST RESULT

Frequency (MHz)	Output (dBm)	Cable Loss (dBm)	Final Result (dBm)	Limit (dBm)
2402	-3.87	0.2	-3.67	30
2440	-4.53	0.2	-4.33	30
2480	-4.48	0.2	-4.28	30

Max output power = -3.67dBm

For RF Safety, please see RF Exposures Evaluation report.

400-6788-333

Report No.: EESZF07110009-1 Page 13 of 36

10. BANDEDGE EMISSION MEASUREMENT

10.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

10.2. BLOCK DIAGRAM OF TEST SETUP

10.3. TEST PROCEDURE

- 1. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.
- 2. Record the emission drops at the band-edge relative to the highest fundamental emission level.
- 3. Use the marker-delta method to determine band-edge compliance as required.

Note: For more detail measurement procedure or testing method, please reference measurement procedure KDB 558074 document which is published on FCC website.

Page 14 of 36

10.4. TEST RESULT

2402MHz

The fundamental frequency (2402MHz) is 85.63dBuV/m in clause 13, and delta is 46.29dB, so the PK emission of 2400MHz is 39.34dBuV/m, and it is less than the AV limit (54dBuV/m). It is complies with the standard's requirements.

2480MHz

The fundamental frequency (2480MHz) is 83.10dBuV/m in clause 13, and delta is 53.23dB, so the PK emission of 2483.5MHz is 29.87dBuV/m, and it is less than the AV limit (54dBuV/m). It is complies with the standard's requirements.

Report No.: EESZF07110009-1 Page 15 of 36

11. SPURIOUS RF CONDUCTED EMISSIONS MEASUREMENT

11.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

11.2. BLOCK DIAGRAM OF TEST SETUP

11.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.
- 3. Record the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.

11.4. TEST RESULT

Worst case data---Please see the following plots.

2402MHz (1GHz~25GHz)

2440MHz (30MHz~1GHz)

2440MHz (1GHz~25GHz)

2480MHz (30MHz~1GHz)

Page 18 of 36

2480MHz (1GHz~25GHz)

Report No.: EESZF07110009-1 Page 19 of 36

12. RADIATED EMISSIONS MEASUREMENT

12.1. LIMITS

The field strength of any emissions, which appear outside of operating frequency band and restricted band specified on 15.205(a), shall not exceed the general radiated emission limits as below.

Frequency (MHz)	Field strength (μV/m)	Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note: the tighter limit applies at the band edges.

12.2. BLOCK DIAGRAM OF TEST SETUP

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30 - 1000MHz

Page 20 of 36

For radiated emissions from 1GHz to 25GHz

12.3. TEST PROCEDURE

Below 30MHz:

- a. The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the EUT was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

30MHz ~ 1GHz:

- a. The EUT was placed on the non-conductive turntable 0.8m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where EUT radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The EUT was placed on the non-conductive turntable 0.8m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, set 1MHz RBW. Record the maximum PK field strength in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where EUT radiated

Page 21 of 36

the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

12.4. TEST RESULT

A. Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

B. 30MHz ~ 1GHz:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel are chosen as representative in below:

H:

DC 3V

Humidity:

E-mail:info@cti-cert.com

55 %

Limit: FCC PART15.207

EUT: Blood Pressure Monitor

CENTRE TESTING INTERNATIONAL CORPORATION

M/N: BF2214(0B)

Mode: BT Note:

No.	Freq.	Reading_Level (dBuV)		Correct Factor	Measurement (dBuV/m)		Lin (dBu	nit V/m)	Mai (c	rgin IB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F Comment
1	49.4000	7.41			15.47	22.88			40.00		-17.12		Р
2	112.4500	8.52			13.19	21.71			43.50		-21.79		Р
3	358.1833	9.40			17.05	26.45			46.00		-19.55		Р

Power:

Page 22 of 36

55 %

V:

Site site #1 Limit: FCC PART15.207

EUT: Blood Pressure Monitor

M/N: BF2214(0B) Mode: BT

Note:

Polarization: Vertical Temperature:
Power: DC 3V Humidity:

No	. Freq.		ing_L dBuV)	evel	Correct Factor		Measurement (dBuV/m)		Limit (dBuV/m)		Margin (dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F Comment
1	49.4000	7.41			15.47	22.88			40.00		-17.12		Р
2	99.5167	8.09			14.01	22.10			43.50		-21.40		Р
3	590.9833	10.10			21.06	31.16			46.00		-14.84		Р
4	820.5500	10.03			24.08	34.11			46.00		-11.89		Р

C. Above 1GHz:

	Test Results-(Measurement Distance: 3m)_Channel low											
_	Mea	asurement v	alue	Li	mit	Antenna	Result					
Frequency (MHz)	PK AV factor (dBµV/m) (dB)		ΑV (dBμV/m)	PK (dBµV/m)	AV (dBµV/m)	(H/V)	(P/F)					
2402.000*	85.63	(E.	/	C	/	° H	Р					
4804.000	31.25	N)	(c	74	54	Н	Р					
7206.000	24.02			74	54	Н	Р					
				74	54	Н	Р					
			• >		• >	/						
2402.000*	84.36	(¿		(()	V	Р					
4804.000	27.25		<u> </u>	74	54	V	Р					
7206.000	24.22			74	54	V	Р					
				74	54	V	Р					

^{*:} fundamental frequency

	Test R	esults-(Mea	surement D	istance: 3m)	_Channel m	niddle		
F	Mea	asurement v	value	Li	mit	Antenna	Result	
Frequency (MHz)	PK (dBµV/m)	AV factor (dB)	ΑV (dBμV/m)	PK (dBµV/m)	ΑV (dBμV/m)	(H/V)	(P/F)	
2440.000*	84.96					Н	Р	
4880.000	32.31			74	54	Н	Р	
7320.000	22.02	(E.	/	74	54	° H	Р	
3)	(c	N)	(c	74	54	Н	Р	
							•	
2440.000*	82.96					V	Р	
4880.000	24.64			74	54	Н	Р	
7320.000	21.02	((1)	74	54	Н (Р	
	J		J	74	54	V	Р	

^{*:} fundamental frequency

Page 23 of 36

	Test Results-(Measurement Distance: 3m)_Channel high											
F	Mea	asurement v	alue	Li	mit	Antenna	Result					
Frequency (MHz)	PK (dBµV/m)			PK (dBµV/m)	ΑV (dBμV/m)	(H/V)	(P/F)					
2480.000*	83.10					Н	Р					
4960.000	30.02)	(c	74	54	H	Р					
7440.000	26.64			74	54	Н	Р					
				74	54	Н	Р					
	• \		•		•							
2480.000*	82.06	(2		(2		V	Р					
4960.000	31.23		J	74	54	V	Р					
7440.000	24.30			74	54	V	Р					
				74	54	V	Р					

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. According to the emissions below 18GHz, the data curve is lower than the limit, and the data between 18GHz to 25GHz will be lower than the limit, so they are not recorded in the report.
- 3. If the emissions are much lower than the limit and the relevant data are not reported.

Page 25 of 36

Note: All outside of operating frequency band and restricted band specified are below 15.209. For radiated band edge test data and plots in worst, please see below:

2402MHz @ Horizontal:

No.	Freq.		ing_Level IBuV)	Correct Factor		leasurement (dBuV/m)	Lin (dBu		Mai (d	rgin IB)		
	MHz	Peak	AVG	dB	peak	AVG	Peak	AVG	Peak	AVG	P/F	Comment
1	2399.284	43.03		0.01	43.04		74.00	54.00	-30.96	-10.96	Р	
2	2400.000	41.11		0.01	41.12		74.00	54.00	-32.88	-12.88	Р	
3	2401.984	86.87		0.02	86.89		-	-				

Page 26 of 36

2480MHz @ Horizontal:

No			Reading_Level (dBuV)				leasurement (dBuV/m)				rgin dB)		
	MHz	Peak	AVG	dB	peak	AVG	peak	AVG	peak	AVG	P/F	Comment	
1	2479.762	85.60		0.13	85.73		-	-					
2	2481.964	39.92		0.14	40.06		74.00	54.00	-33.94	-13.94	Р		
3	2482.682	39.22		0.14	39.36		74.00	54.00	-34.64	-14.64	Р		
4	2483.500	30.50		0.14	30.68		74.00	54.00	-43.32	-23.32	Р		

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

TEST SETUP OF RADIATED EMISSION-1

TEST SETUP OF RADIATED EMISSION-2

Page 28 of 36

TEST SETUP OF RADIATED EMISSION-3

Page 29 of 36

APPENDIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT

View of Product-1

View of Product-2

Page 30 of 36

View of Product-3

View of Product-4

Page 31 of 36

View of Product-5

Page 32 of 36

APPENDIX 3 INTERNAL PHOTOGRAPHS OF PRODUCT

View of Product-1

View of Product-2

View of Product-3

View of Product-4

View of Product-5

View of Product-6

View of Product-7

View of Product-8

View of Product-9

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this

