Электростатика				
	q = n * e	q - заряд		
Электрический заряд		n - число частиц		
		е - заряд электрона		
Закон Кулона	$F = \frac{k * q_1 * q_2}{r^2}$	F - сила		
		k - коэффициент		
		пропорциональности		
		q ₁ , q ₂ - заряды		
		r - расстояние		
Постоянная Кулона	$k = \frac{1}{4 \pi \varepsilon_0}$	k - коэффициент		
		пропорциональности		
		ε ₀ - электрическая постоянная		
Относительная	$F_{\mu\alpha\kappa}$	ε - диэлектрическая постоянная (проницаемость)		
диэлектрическая проницаемость	$oldsymbol{arepsilon} = rac{oldsymbol{F}_{oldsymbol{arepsilon} oldsymbol{\kappa} oldsymbol{arepsilon}}{oldsymbol{F}_{o\kappa p}}$	(проницаемость) Г _{вак} - сила в вакууме		
		Г _{вак} - сила в вакууме Г _{окр} - сила в окружающей среде		
		Е - электрическое поле		
Электрическое поле	$E = \frac{F}{O}$	F - сила		
	² Q	q - заряд		
		Е - электрическое поле		
Электрическое поле точечного заряда в вакууме		к - коэффициент		
	$E = \frac{k \cdot q_0}{r^2}$	пропорциональности		
	$L = \frac{r^2}{r^2}$	q ₀ - заряд		
		r - расстояние		
		Е - электрическое поле		
		k - коэффициент		
2	$E_{o\kappa p} = \frac{k \cdot q_0}{\varepsilon r^2}$	пропорциональности		
Электрическое поле точечного		q - заряд		
заряда в окружающей среде		ε - диэлектрическая постоянная		
		(проницаемость)		
		r - расстояние		
	$E = \frac{k * \sigma 4 * \pi * R^2}{r^2} =$	Е - электрическое поле		
		k - коэффициент		
		пропорциональности		
Электрическое поле вне		σ - плотность поверхностного		
заряженной сферы	$\underline{k*q}$	заряда		
	r^2	R - радиус		
		r – расстояние		
		Е опоктриноское по то		
Электрическое поле	$E = 2k *_{\sigma} \sigma * \pi =$	E - электрическое поле k - коэффициент		
бесконечной заряженной		пропорциональности		
плоскости		σ - плотность поверхностного		
IIJOCKOCIA	2* ε ₀	заряда		
Электрическое поле конденсатора	E = 4kσπ	Е - электрическое поле		
		k - коэффициент		
		пропорциональности		
		σ - плотность поверхностного		
		заряда		
Работа в электрическом поле	$A = F * \Delta d$	А - работа		
		F - сила		
		Δd - расстояние		
Потенциальная энергия	baa aa	W - потенциальная энергия		
системы двух точечных	$W = \frac{k \cdot q_0 \cdot q}{q}$	k - коэффициент		
зарядов	e*r	пропорциональности		

	T	
		q ₀, q - заряды
		є - диэлектрическая постоянная
		(проницаемость)
		r - расстояние
Работа в электрическом поле - разность потенциальных энергий	$A = W_1 - W_2$	A - работа
		W_1 - начальная потенциальная
		энергия
		W ₂ - конечная потенциальная
		энергия
П	TAZ	ф - потенциал
Потенциал	$\phi = \frac{W}{a}$	W - потенциальная энергия
электростатического поля	r q	q - заряд
•••		U - напряжение
Напряжение - разность	$U = \phi 1 - \phi 2$	$oldsymbol{\phi_1}$ - начальный потенциал
потенциалов	$0 - \psi_1 \psi_2$	$oldsymbol{\phi}_2$ - конечный потенциал
	A = q * U	А - работа
Работа переноса заряда		q - заряд
т иооти перепоси зиряди		U - напряжение
		ф - потенциал
		= -
Потохумия		k - коэффициент
Потенциал электростатического поля	$\star - k * q_0$	пропорциональности
	$\phi = \frac{\kappa * q_0}{\varepsilon * r}$	q ₀ - заряд
вокруг точечного заряда		ε - диэлектрическая постоянная
		(проницаемость)
		r - расстояние
Напряжённость	$E = \frac{U}{\Delta d}$	E - электрическое поле
электростатического поля		U - напряжение
	Δu.	Δd - расстояние
		E - результирующее
		электрическое поле
Результирующее	$E = E_0 - E_1$	$\mathbf{E_0}$ - внешнее электрическое
электрическое поле	$E - E_0 - E_1$	поле
		$\mathbf{E_1}$ - внутреннее электрическое
		поле
Электрический момент	p = ql	р - электрический момент
		q - заряд
		I - расстояние
Электрическая ёмкость	$C = \frac{q}{\varphi}$	С - электрическая ёмкость
		q - заряд
		φ - потенциал
		С - электрическая ёмкость
		ε - диэлектрическая постоянная
	ϵ^{*R}	(проницаемость)
Электрическая ёмкость шара	$C = \frac{\varepsilon * R}{k}$	R - радиус
		k - коэффициент
		пропорциональности
		С - электрическая ёмкость
Электрическая ёмкость двух	$C = \frac{q}{U}$	q - заряд
проводников	$\mathbf{J} = \mathbf{U}$	U - напряжение
		С - электрическая ёмкость
		г - диэлектрическая емкость
Электрическая ёмкость	5* 5~ * C	є - диэлектрическая постоянная (проницаемость)
плоского конденсатора	$C = \frac{\varepsilon * \varepsilon_0 * S}{d}$	* *
		$\mathbf{\epsilon}_0$ - электрическая постоянная
		S - площадь
		d - расстояние между

		пластинами
Электрическая ёмкость сферического конденсатора	$C = \frac{4 * \pi * \varepsilon * \varepsilon_0 * R_1 R_2}{R_1 - R_2}$	${f C}$ - электрическая ёмкость ${f \epsilon}$ - диэлектрическая постоянная (проницаемость) ${f \epsilon}_0$ - электрическая постоянная ${f R}_1$ - радиус внутренней сферы ${f R}_2$ - радиус
Потенциальная энергия заряженного плоского конденсатора	$W = q * E_1 * d =$ $\frac{q * E * d}{2} = \frac{q * U}{2} = \frac{C * U^2}{2} =$ $\frac{q^2}{2 * C} = \frac{\varepsilon * \varepsilon_0 * E^2 * V}{2} =$ $\frac{\varepsilon * \varepsilon_0 * E^2 * S * d}{2}$	 W - потенциальная энергия q - заряд E - электрическое поле E₁ - напряженность электрического поля, создаваемого пластиной конденсатора d - расстояние между пластинами U - напряжение ε - диэлектрическая постоянная (проницаемость) ε₀ - электрическая постоянная E - электрическое поле S - площадь d - диаметр V - объём C - электрическая ёмкость
Плотность энергии электрического поля	$\omega_p = \frac{W}{V} = \frac{\varepsilon * \varepsilon_0 * E^2}{2}$	ω_p - плотность энергии электрического поля W - потенциальная энергия V – объём ϵ_0 - электрическая постоянная ϵ - диэлектрическая постоянная (проницаемость) E - электрическое поле