An important step used in a mathematical argument is the <u>replacement</u> of a statement with another statement with the same truth value.

tautology is a compound proposition that is always true, no matter what the truth values of the propositions that occur in it.

example: ¬p v p

р	¬p	¬p v p	
0	1	1	
1	0	1	

contradiction is a compound proposition that always false.

example: ¬p ∧ p

р	¬p	¬р∧р	
0	1	0	
1	0	0	

contingency is a compound statement that is neither a tautology nor a contradiction.

example: $p \rightarrow q \vee \neg p$

Two compound propositions, **p** and **q**, are *logically equivalent* if $p \leftrightarrow q$ is a tautology.

We'll write p = q or $p \Leftrightarrow q$

Ways to determine whether two compound proposition are equivalent:

- truth tables (columns giving their truth values agree)
- use laws

Example 1: proof by truth tables that $p \rightarrow q$ and $\neg p \lor q$ are logically

equivalent.

р	q	¬p	$p \rightarrow q$	¬p v q
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Reading of both compound propositions:

Let p: "the weather is good" and q: "we'll go swimming" Then,

p → q: "If the weather is good, we'll go swimming"; and

¬p v q: "the weather is not good or we'll go swimming"