- α) Η ε_1 διέρχεται από την αρχή των αξόνων και από το σημείο $A(1,\sqrt{3})$ ενώ η ε_2 διέρχεται από την αρχή των αξόνων και από το σημείο B(1,1), όπως φαίνεται στο παρακάτω σχήμα.
- β) Η ε_1 έχει συντελεστή διεύθυνσης $\sqrt{3}$ οπότε σχηματίζει με τον xx΄ γωνία 60° , ενώ ε_2 έχει συντελεστή διεύθυνσης 1 οπότε σχηματίζει με τον xx΄ γωνία 45° .
- γ) Όπως φαίνεται και στο παρακάτω σχήμα, η οξεία γωνία που σχηματίζουν οι ευθείες $\varepsilon_1, \varepsilon_2$ είναι η διαφορά των γωνιών που σχηματίζει η κάθε μία από τις $\varepsilon_1, \varepsilon_2$ με τον xx', δηλαδή $60^\circ-45^\circ=15^\circ$.
- δ) Το $\vec{\delta}_1=(1,\sqrt{3})$ είναι παράλληλο στην ευθεία ε_1 και το $\vec{\delta}_2=(1,1)$ είναι παράλληλο στην ευθεία ε_2 . Είναι $\left|\vec{\delta}_1\right|=\sqrt{1^2+\left(\sqrt{3}\right)^2}=\sqrt{4}=2$, $\left|\vec{\delta}_2\right|=\sqrt{1^2+1^2}=\sqrt{2}$ και

$$\vec{\delta}_1 \cdot \vec{\delta}_2 = (1, \sqrt{3}) \cdot (1, 1) = 1 + \sqrt{3} > 0 \ \text{ opfile} \ \ \sigma \upsilon v \\ 15^\circ = \sigma \upsilon v \\ \left(\vec{\delta}_1^{\ \ \ \ \ }, \vec{\delta}_2^{\ \ \ }\right) = \frac{\vec{\delta}_1 \cdot \vec{\delta}_2}{\left|\vec{\delta}_1^{\ \ \ \ }\right| \cdot \left|\vec{\delta}_2^{\ \ \ \ }\right|} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \ .$$

