A METHODOLOGY TO DETERMINE FACTORS FOR SELECTING TRAINING SCENARIOS IN VIRTUAL AND CONSTRUCTIVE SIMULATIONS

by

BRIAN P. BEDELL B.S. United States Military Academy, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of
Master of Science in Simulators and Training Systems
Department of Industrial Engineering and Management Systems
College of Engineering
University of Central Florida
Orlando, Florida

Spring Term 1997

19970429 179

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

ABSTRACT

This research develops and demonstrates the use of a Preference-Characteristic methodology to select between scenarios for the purpose of training a unit in a virtual or constructive environment. The methodology proved successful though additional research will be required before the tool can become fully operational.

The effort to exploit the potential of simulation for improving task proficiency began in the early 1970's. Technology at the time limited most efforts to improvements in live simulation training. In 1973 the Constructive Tactical Engagement System (TES) was the first Army organizational computer based simulation training device.

The advancement in technology and the successful use of these initial training tools lead to the expansion of simulation training devices. Along with the explosion of computer based simulations was an order of magnitude explosion in the number of training scenarios. The number of scenarios became so unwieldy that numerous governmental review boards recommended that efforts be made to catalog them and place them in libraries.

To solve this problem the Army developed exercise development tools to serve the diverse training population. This research effort refines that process. The geographic dispersion of the users and limited resources mandated the use of a survey as a collection tool. The survey was conducted in two phases: 1) an informal pilot phase used to develop and refine the survey instrument along with analysis techniques and 2) a formal pilot test where members of the targeted populations were solicited for their responses.

Two types of statistical analysis were applied to the data, mean based and frequency based. The outcome of the analyses was a weight matrix that quantified the impact each selection factor imposed on the decision. The quantified data can then be applied through a mathematical model that uses these weights to differentiate between previously equivalently ranked alternatives. An automated search was accomplished by quantifying the characteristics of the scenarios and the users preferences against the same criteria. Simple mathematics and matrix comparisons and calculations were then be used to quantify the level of agreement between the scenarios and the users preferences. An automated example of the selection methodology demonstrates and yields a correct solution.

The methodology developed in the study can be applied to any scenario selection process. Only the codification and knowledge acquisition are domain dependent.

ACKNOWLEDGMENTS

I would like to acknowledge all of those who helped me during the research process. I owe a debt of gratitude to those that helped make this process possible from my lovely wife to my fellow graduate students who pointed me to resources and helped share the academic class load. My Committee Chairman, Dr. Michael Proctor, helped to focus my research, clarify my prose, and ensured I always tracked my goal of completion. Dr. George Stone's expertise with exercise planning tools, SATS-TREDS, and the current state of military simulations gave the opportunity to stay abreast of the current developments in the field, access to tremendous resources and a reference for the "is this important" questions. Dr. John Biegel's willingness to consider my approaches to the design of the expert system algorithm and the associated methodology is also greatly appreciated.

I would like to thank Colonel James Shiflet and Colonel Alan Hammond whose support of the Army graduate students made a difficult task much easier as well as the STRICOM employees and contractors who shared their expertise and knowledge. I also need to acknowledge the assistance of Lieutenant Colonel Aaron Hayes and Colonel Robert Johnson who helped enter me into the graduate school program.

TABLE OF CONTENTS

LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF EQUATIONS	ix
CHAPTER 1 IMPROVING RESPONSIVENESS OF SIMULATION TOOLS	1
INTRODUCTION	
SIMULATION TRAINING TODAY	
TRAINING THE EFFECTS OF VIRTUAL AND CONSTRUCTIVE SIMULATION TRAINING IN THE U.S.	
Army	
SHORTFALLS OF SIMULATION TRAINING	10
CHAPTER 2 PLANNING TOOLS AND A METHODOLOGY FOR IDENTIFYING	G
COMMANDERS NEEDS	
CURRENT APPROACHES TO PLANNING TRAINING	
Live Simulation	
Virtual and Constructive Training.	
SHORTCOMINGS OF EXISTING PLANNING TOOLS	
STANDARD ARMY TRAINING SYSTEM	
Task Performance Support Codes	23 1
METHODOLOGICAL VISION	
SUMMARY	
CHAPTER 3 THE PREFERENCE-CHARACTERISTIC CODE METHODOLOGY	27
BUILDING ON PREVIOUS EFFORTS	27
SIMULATION TRAINING SCENARIO SELECTION CRITERIA	
METT-T Application	
QUANTIFICATION OF SELECTION CRITERIA AND THE MANNER OF APPLICATION	30
Mission	
Enemy	
Time	36
Terrain	37
Troops	
General Category	40
PREFERENCE-CHARACTERISTIC MATRIX TECHNIQUE	42
THE CALCULATION OF THE WEIGHTED RESULT	44
SUMMARY	
CHARTER 4 A TECHNIQUE FOR EVALUATING THE WEIGHTS MATRIX	47
PUADTED A A THEHNIOUH HOR HVALUATING THE WEIGHIN MAIRIX	4 /

THEORETICAL APPROACH TO GATHERING INFORMATION NEEDED TO REFINE SCE	
SELECTION	47
The Use of Subject Matter Experts	48
Group Techniques	49
Surveys	50
Survey and Question Design	
SUMMARY	55
CHAPTER 5 INSTRUMENT CONSTRUCTION AND VALIDATION	57
PURPOSE	57
POPULATION	58
PRETESTING THE SURVEY	60
Preliminary	
Formal	61
DISTRIBUTION	62
Analysis	62
ANALYSIS OF PRETEST SURVEY DATA	66
SUMMARY	70
CHAPTER 6 DATA ANALYSIS	71
RESPONSES	71
TESTS AND ANALYSIS	73
The Determination of the Mean	73
Analysis of Variance	
Refinement of the One Way ANOVA of the Combined Population	78
Comparing the Importance of the Constructive and Virtual Factors	79
Test for Independent Frequencies	81
ASSIGNING WEIGHTS TO THE SCENARIO SELECTION FACTORS	85
USE OF THE SYSTEM BY A POTENTIAL USER	
User Preference Matrix	
Task Matrix	90
Previous Use Matrix	91
Untrained Matrix	
The Scenario Characteristic Code Matrices	
The Difference Matrix	93
The Rank Matrix	
AUTOMATED SAMPLE TOOL	
SUMMARY	98
CHAPTER 7 FINDING, LESSONS LEARNED AND FUTURE RESEARCH	99
BACKGROUND	99
FINDINGS	101
I ESSONS I EARNED	100

	FURTHER RESEARCH	. 104
4	PPENDICES	. 106
	APPENDIX A GLOSSARY	. 106
	APPENDIX B USER PREFERENCE CODE AND SCENARIO CHARACTERISTIC CODE	
	ELEMENTS	. 110
	APPENDIX C SURVEY QUESTIONS' INTENT	
	APPENDIX D SURVEY'S INITIAL FORM	. 130
	APPENDIX E SURVEY'S FINAL FORM	. 141
	APPENDIX F TABULATED PILOT DATA	. 151
	APPENDIX G PILOT MEAN DATA AND ANOVA	
	APPENDIX H SINGLE ENVIRONMENT CALCULATIONS (Z TEST)	. 156
	APPENDIX I ANOVA FOR ARMOR (PILOT)	. 160
	APPENDIX J ANOVA FOR INFANTRY (PILOT)	. 162
	APPENDIX K CHI-SQUARE TEST OF FREQUENCY INDEPENDENCE FOR TERRAIN AND	
	TASK (PILOT)	. 164
	APPENDIX L TABULATED DATA FOR THE TARGET POPULATION	. 166
	APPENDIX M MEAN/ANOVA DATA FOR TARGET POPULATION	
	APPENDIX N MEAN/ANOVA DATA FOR THE AIR DEFENSE POPULATION	
	APPENDIX O MEAN/ANOVA DATA FOR THE ARMOR POPULATION	
	APPENDIX P MEAN/ANOVA DATA FOR THE AVIATION POPULATION	
	APPENDIX Q MEAN/ANOVA DATA FOR THE FIELD ARTILLERY POPULATION	
	APPENDIX R MEAN/ANOVA DATA FOR THE INFANTRY POPULATION	
	APPENDIX S MEAN/ANOVA DATA FOR THE MILITARY POLICE POPULATION	
	APPENDIX T MEAN/ANOVA DATA FOR THE QUARTER MASTER POPULATION	
	APPENDIX U MEAN/ANOVA DATA FOR THE GROUND MANEUVER POPULATION	
	APPENDIX V MEAN/ANOVA DATA FOR THE COMBAT SUPPORT AND COMBAT SER	
	SUPPORT POPULATION	
	APPENDIX W COMPARISON OF FACTORS TO CONSTRUCTIVE TERRAIN MEAN (Z TES	
	APPENDIX X CONSTRUCTIVE VS. VIRTUAL FACTOR ANALYSIS (Z TEST)	
	APPENDIX Y CONSTRUCTIVE VS. VIRTUAL FACTOR ANALYSIS (CHI-SQUARE)	. 237
	APPENDIX Z GENERAL MANEUVER AND COMBAT SERVICE AND COMBAT SERVICE	- 40
	SUPPORT FREQUENCY TABLES	. 248
	APPENDIX AA CORRECTED GENERAL MANEUVER AND COMBAT SERVICE AND	050
	COMBAT SERVICE SUPPORT FREQUENCY FACTOR TABLES AND ANALYSIS	. 250
,	FEDENICES	266

LIST OF TABLES

TABLE 1 INCREMENTAL DIFFERENTIAL COST	8
TABLE 2 NTC ROTATION BUDGET	9
TABLE 3 METT-T CATEGORIES AND GENERAL SELECTION FACTORS	30
TABLE 4 SURVEY TECHNIQUE COMPARISONS	52
TABLE 5 LITERATURE REVIEW	
TABLE 6 PILOT FACTOR MEANS	67
TABLE 7 FREQUENCY COMPARISON BETWEEN CONSTRUCTIVE AND	
VIRTUAL	69
VIRTUALTABLE 8 FREQUENCY COMPARISON BETWEEN CONSTRUCTIVE AND	
VIRTUAL	
FACTOR: TASK	
TABLE 26 NUMBER OF RESPONDENTS BY CATEGORY	
TABLE 27 GROUND MANEUVER AND CS AND CSS RESPONDENTS	
TABLE 28 FACTOR MEANS	74
TABLE 29 ANOVA RESULTS: ALL RESPONDENTS	
TABLE 30 ANOVA RESULTS: ARMOR	
TABLE 31 ANOVA RESULTS: AVIATION	
TABLE 32 ANOVA RESULTS: INFANTRY	
TABLE 33 ANOVA RESULTS: MILITARY POLICE	
TABLE 34 ANOVA RESULTS: GROUND MANEUVER	
TABLE 35 ANOVA RESULTS: COMBAT SUPPORT AND COMBAT SERVICE	
SUPPORT	
TABLE 36 REFINEMENT OF ANOVA: CONSTRUCTIVE TERRAIN	79
TABLE 37 Z TEST: CONSTRUCTIVE VERSUS VIRTUAL	
TABLE 38 FACTOR FREQUENCIES FOR ALL RESPONDENTS	82
TABLE 39 FREQUENCY TEST: GROUND MANEUVER VERSUS COMBAT	
SUPPORT AND COMBAT SERVICE SUPPORT	84
TABLE 40 COMBINED CONSTRUCTIVE AND VIRTUAL FREQUENCY TABLE	E 86
TABLE 41 FACTOR WEIGHTS	
TABLE 42 EXAMPLE USER PREFERENCES	
TABLE 43 SCENARIO CHARACTERISTIC CODES	93
TABLE 9 U _{1,2} S _{1,2} VALUES	. 111
TABLE 10 U _{1,3} S _{1,3} : VALUES	
TABLE 11 U _{1,4} S _{1,4} VALUES	
TABLE 12 U _{1,5} S _{1,5} VALUES	
TABLE 13 U _{1,6} S _{1,6} VALUES	
TABLE 14 U _{1,7} S _{1,7} VALUES	
TABLE 15 U _{1,8} S _{1,8} VALUES	
TABLE 16 U _{1,9} S _{1,9} VALUES	
TABLE 17 II. 10 St 10 VALUES	. 113

TABLE 18 U _{1 11} S _{1 11} VALUES	113
TABLE 19 U _{1,12} S _{1,12} VALUES	114
TABLE 20 U _{1.13} S _{1.13} VALUES	114
TABLE 21 U _{1.14} S _{1.14} VALUES	114
TABLE 23 U _{1.16} S _{1.16} VALUES	115
TABLE 25 U _{1.19} S _{1.19} VALUES	
- 	
LICT OF EIGHDEC	
	00
FIGURE 3: AUTOMATED TOOL SCREEN 3	91
LIST OF EQUATIONS	
	42
FOLIATION 2 POPUL ATION SIZE FOLIATION	- 7∠ 5∩
FOLIATION 3 POPUL ATION SIZE EQUATION WITH FINITE CORRECTION	50 50
FOLIATION 4.7-TEST STATISTIC	50 61
EQUATION 7 TEST STATISTIC	, 5
	TABLE 18 U _{1,11} S _{1,12} VALUES TABLE 19 U _{1,12} S _{1,12} VALUES TABLE 20 U _{1,13} S _{1,13} VALUES TABLE 21 U _{1,14} S _{1,14} VALUES TABLE 22 U _{1,15} S _{1,15} VALUES TABLE 23 U _{1,16} S _{1,16} VALUES TABLE 24 U _{1,18} S _{1,18} VALUES TABLE 25 U _{1,19} S _{1,19} VALUES TABLE 25 U _{1,19} S _{1,19} VALUES TABLE 26 U _{1,19} S _{1,19} VALUES LIST OF FIGURES FIGURE 1: THE WEIGHT MATRIX FIGURE 2: AUTOMATED TOOL SCREEN 1 FIGURE 3: AUTOMATED TOOL SCREEN 2 FIGURE 3: AUTOMATED TOOL SCREEN 3 LIST OF EQUATIONS EQUATION 1 RANK MATRIX EQUATION 2 POPULATION SIZE EQUATION EQUATION 4 Z-TEST STATISTIC EQUATION 5 F TEST STATISTIC

CHAPTER 1 IMPROVING RESPONSIVENESS OF SIMULATION TOOLS

Introduction

"Everything is simulation except combat."

Defense Science Board, 1993

All skill training that takes place apart from the environment in which it will be utilized is simulation. The purpose of the training exercise is not important. A salesman rehearsing his pitch about a new car model and a tank gunner engaging targets in a virtual environment are both honing their skills in an effort to improve their levels of performance. They can improve their level of proficiency through the repetition of their tasks in an environment that supplies the same cues as the real world. Both are training with simulation.

"Large scale maneuvers are a thing of the past.... The ecologists will make you stop fighting if you raise too much dust."

General W. E. Depuy, 1973

Recognizing the impact of mounted maneuver exercises on the environment, General Depuy's made this statement as the U.S. Army began a massive drawdown in strength. These comments were not made after the fall of the Berlin Wall in the late 1980's but in 1973 as the United States moved from a conscription military to an all volunteer force (Gorman, The Secret of Future Victories, 1992). As the Chief of Staff of the Army in 1971, General Westmoreland had created the Board For Dynamic Training (BFDT) (Gorman, 1992). Westmoreland established the BFDT with the mandate to design realistic military training that compensated for the shortages of firing and maneuver ranges and ammunition while maximizing soldiers' safety and minimizing cost and environmental impact. The BFDT accomplished its mission by designing Tactical Engagement Simulations (TES) which supported maneuver training and battle simulations which supported the decision making process.

BFDT's successor, the Combat Arms Training Board, developed TES systems for live simulation training. The first successful fielded systems were SCOPES (not an acronym) and REALTRAIN (not an acronym) (Orlansky, The Value of Simulation Training, 1994). SCOPES used a rifle mounted optical sight and a number attached to each soldier's helmet. The system assessed a "kill" when the firing soldier could read the target's number. REALTRAIN was a similar system developed for mounted combat training. These systems led to the development of the Multiple Integrated Laser Engagement System (MILES) which was distributed throughout the Army in the early

1980's as the primary training device for the simulations conducted at the Combat Training Centers (CTC's).

The constructive simulations did not really advance until the 1973 Arab-Israeli war (Gorman, The Military Value of Training, 1990). The Army studied how Israel fought outnumbered and won. This battle simulation, constructive TES, was the forerunner of the computer simulations used for analysis and command post exercises today.

As the commander of The U.S. Army's Training and Doctrine Command (TRADOC), General Depuy asserted that simulation-based training (primarily TES) was important in that it trained the soldiers to function as teams. The gains achieved in teamwork and synchronization were far more important than improvement in individual skills. The U.S. Army currently recognizes that training in simulation benefits both performance and "the evaluation of concepts, the evaluation of weapon systems, supply [strategies], tactics and doctrine." (Orlansky, 1994)

Simulation Training Today

Although some overlap does occur, the U.S. Army groups simulation training into four categories: live simulation, virtual simulation, constructive simulation and distributed simulation.

Live simulation involves operations with actual units and equipment in real space under as close to battle conditions as possible (Piplani et al, Systems Acquisition Manager's Guide for the Use of Models and Simulations, 1994). The training location maximizes the soldiers' ability to practice the tactics, techniques, and procedures that will ensure unit success in combat. The soldiers' actions are monitored, adjudicated, and evaluated using the tools of live simulation. Systems such as the Multiple Integrated Laser Engagement System (MILES), the Tank Weapons Gunnery Simulation System (TWGSS), and instrumented ranges monitor the unit's progress and provide feedback.

Like live simulations, virtual simulations immerse individuals and crews in a realistic training environments designed to replicate combat. Virtual simulation differs in that first and foremost the environment is a computer generated or enhanced battlefield that is sensed or visualized by the trainee. The trainee then interacts with this environment via high fidelity representations of equipment. The simulation attempts to replicate the trainees' (usually a crew of a combat vehicle or weapon system) equipment and external environment as much as possible. Crew actions cause the simulator to interact with its virtual world as the real vehicle would interact in the real world. Thus, the crew can train on individual and collective tasks as well as battlefield synchronization. The best examples of virtual trainers are the M1 Tank Driver Trainer, the Unit Conduct of Fire Trainer (UCOFT), and aircraft pilot trainers.

Constructive simulations are complex, deterministic and stochastic computer driven models used to train commanders and their staffs to monitor, evaluate and develop

the battle. In a constructive simulation the battle space and the player entities exist entirely within the computer. The primary audience of trainees are usually isolated from this constructed computer simulation world by organic decision support systems.

Maneuver, attrition, and supply algorithms simulate the actions of real units in the training. Computer operators interact with the constructive simulation's computer interfaces to generate the reports that track the flow of the battle. Some of the most widely used constructive simulations in the Army are Janus, Battalion/Brigade Battle Simulation (BBS), and the Corps Battle Simulation (CBS).

Blurring the boundaries between live, virtual, and constructive simulation,
Distributed Interactive Simulations (DIS) facilitate the linking of all forms of simulation.
This linking can occur at any scale. Examples are the integration of two individual training simulations located in the same room connected via a local area network (LAN) or the linking of large units geographically-dispersed over a wide area using dedicated communications linkages to train higher level staffs (Hollenbach, 1995). In the distributed simulations, constructive entities can interact with manned virtual entities.
Live entities operate within their own environment, but can be acted upon by virtual or constructive entities. The integration of different simulations allows the scaling of the training audience. Individuals, teams, and units can all interact in the same battle space through live, virtual, and constructive means. The ability to integrate across simulation environments and certain simulators is very dependent on the architecture used to

transfer and trace data in the form of Protocol Data Units (PDU's) in the simulations (Brann, 1995) (Hollenbach, 1995).

The Simulation Networking Trainer (SIMNET) and the Combined Arms Tactical Trainer (CATT) family are examples of distributed simulations whose interface and distributed nature is so transparent to the trainee that the simulation appears to be virtual. The immersive virtual nature of the individual simulators causes the users to consider the trainers to be virtual simulator systems.

This paper seizes on the overwhelming virtual appearance these simulators present to their training audience and includes them when referring to virtual simulations.

Training

The U.S. Army's simulation programs are integrated into its overall training plan. All training in the Army begins with an assessment of the unit's proficiency based on the unit's Mission Essential Task List (Headquarters the Department of the Army (HQDA), 1990). The Mission Essential Task List (METL) is a list of the critical wartime functions for the unit. Each unit is rated on each task in terms of being trained, needing practice, and being untrained. This process gives the commander a list of tasks on which his unit must either sustain or improve their performance.

The unit commander and staff then incorporate the higher commander's guidance along with the status and availability of several factors (e.g., training audience, training objectives, risk assessment, and available resources). In simulation-based training, the

commander must also assess the availability of Training Aids, Devices, Simulators and Systems (TADSS) and then determine which training scenarios for the particular simulation system would best support the execution of the training (HQDA, , 1996). The commander ensures that the training scenario replicates the appropriate conditions and standards that the unit will encounter in combat (U.S. Army Research Institute (ARI), 1993).

The Effects of Virtual and Constructive Simulation Training in the U.S. Army

The Army has garnered great improvements in its operational readiness from the inclusion of virtual and constructive simulation based training. Simulator-based training provides:

- Excellent immediate or short delay feedback
- The opportunity to repeat situations that were not completed successfully
- The flexibility to modify training situations
- Great reduction in resource expenditure and risk (Orlansky, 1994).

The trainee receives prompt and accurate feedback because of the computer based nature of virtual and constructive simulations. The crew manning a tank in a virtual battle receives feedback on their performance as they maneuver. If they receive enemy fire, they learn that they exposed themselves; if they fail to maintain their place in formation they can view this problem when the battle is replayed. Similarly, constructive simulations show a commander if the staff is capable of monitoring and interpreting the

course of the battle. Any poor decisions could result in abnormal loss ratios, untenable positions, or a commander's inaccurate perception of the battle.

Simulations offer the commander the ability to repeat tasks and scenarios that their forces have failed to master. If a unit makes a drastic mistake the trainer can simply reset the scenario to the start time. This allows the unit to learn from its mistakes while their errors are still fresh. Repeatability and immediate feedback are two of the most important keys to learning (Anderson, Rules of the Mind, 1993). In live simulations, the process of moving troops to their original locations could require lots of time. The resetting of the live training scenario consumes valuable training time and resources; this consumption of time and resources takes away from the unit's opportunity to reinforce training.

The money saved in simulation training comes from three sources: the reduction in the use of vehicles, the savings associated with the repair of maneuver damage, and the simulator's life cycle costs (HQDA, <u>Battle Focused Training</u>, 1990). Some of the most significant savings occur in vehicle operation training simulators as indicated in Table 1.

TABLE 1 INCREMENTAL DIFFERENTIAL COST

Weapon System	Simulator Cost/(Unit)	System Cost/(Unit)
M1A1	\$2.50/mile	\$75.00/mile
UH-60	\$59.00/hour	\$1,448/hour
AH-64	\$70.00/hour	\$3,101/hour

(National Training Systems Association, 1997)

Huge savings can also be attained by applying virtual or constructive technologies to live simulations. In 1992 constructive and virtual constructs were applied to the annual Return of Forces to Germany (REFORGER) exercise. \$34 million were saved as compared to an equivalent exercise that occurred in 1988 (ADPA, 1997).

There are also great costs associated with deploying maneuver forces to the training location. The excessive costs in terms of money, time and resources of moving equipment to large training areas by truck, rail or barge can consume training budgets.

U.S. Army Combat Training Center Directorate breaks down of costs of a typical National Training Center (NTC) rotation of a Brigade Combat Team consisting of two Battalion Task Forces from Fort Riley Kansas follows in Table 2.

TABLE 2 NTC ROTATION BUDGET

Budget Item	Cost
Transportation of Personnel (4, 000)	\$1.6 million
Transportation of equipment (Barge)	\$800 thousand
Logistical base and supplies	\$2.3 million
Training Cycle	\$1.3 million
Total	\$6 million

(Croteau, Telephone Interview, 1997)

In this example, 21% of the exercise budget is expended during the conduct of training. The majority of the training funds are spent gathering the players, their equipment, and the resources that will be consumed during the exercise. It is often difficult to coordinate units' arrivals. This leads to the consumption of additional resources.

It is also expensive to train and equip an Opposing Force (OPFOR). Beyond the costs associated with equipping the OPFOR with equipment that accurately depicts the form and capabilities of the threats weapons, one also has to support the infrastructure of an entire brigade that does not contribute to the Army's combat projection.

The savings in resources extends beyond funds. Simulation training compensates for limits on maneuver space, the gathering of forces, a lack of a trained OPFOR, and the inability to replicate the logistical battle (HQDA, Battle Focused Training, 1990). As General Depuy indicated in the early 1970's, the Army has limited land available for large maneuver forces. The National Training Center, at Fort Irwin, California is one of the few remaining training areas that can support brigade level live fire maneuver exercises. The majority of training areas can support only restricted battalion level operations.

Shortfalls of Simulation Training

In an effort to improve the quality of simulation based training, the U.S. Army has commissioned 26 reviews of its training simulation programs since the 1970's (Flectcher, A Review of Study Panel Recommendations For Defense Modeling and Simulation, 1992). Many of the recommendations focus on two areas concerning training scenario selections. Many of the boards recommended that the Army reduce the planning and support requirements needed to conduct simulation training and that libraries be established from which commanders can choose training scenarios.

The 1988 Report of the Defense Science Board Task Force on Computer
Applications to Training and Wargaming (AD-A199 456) and the 1989 Wargaming
Activities in the Department of Defense (Report NO. 89-057) both recommended
reducing the burden associated with planning simulation based training (establishing
scenarios, placement of forces, etc.). These studies found that there was a great deal of
overhead associated with conducting training, particularly with Reserve Component
(RC) units. The study stated that the benefit of the training is impacted by planning
requirements and that the units' readiness would improve if the planning burden was
reduced.

Several review boards have also recommended the establishment of data or archived file libraries to hold simulation data and exercises for use by the troops. The Army Science Board Final Report of the Ad Hoc Subgroup on the use of Army Combat Models for the Analysis and Training of Joint Combined Operations (AD-B120 937) and the 1989 Wargaming Activities in the Department of Defense both made this recommendation. The Army Science Board 1991 Summer Study on Army Simulation Strategy (Draft) further recommended that a catalog of certified and uncertified simulations and scenarios be established.

Other recommendations for changes include the 1988 Report of the Defense Science Board Task Force on Computer Applications to Training (AD-A199 456) and Wargaming's desire to integrate allied forces into scenarios so that U.S. commanders can train for multi-national operations. Dr. Larocque, Director of the National Simulation

Center at Ft. Leavenworth, Kansas, and the 101st Airborne Division's (Air Assault)

Division Training Chief, Major Michael Rossi, both assert that work must be done to make the tools associated with planning simulation training more responsive to commanders. Both recommended that the selection should be based on mission, enemy, time, terrain, and troops (METT-T) considerations (Department of the Army, ARTEP 7-30-MTP, 1989).

A unit's METL is the Mission Essential Task List that is composed of the most important objectives the unit must be able to accomplish during war (Combined Arms and Service Staff School, <u>Training Management.</u> 1991). A sample METL for an infantry company (C company 1st battalion -27th Infantry Regiment (Wolfhounds) is composed of: Deploy, Assault, Move Tactically, Perform Reconnaissance, Defend, Occupy an Assembly Area, Perform Air Assault Conduct Non-combatant Evacuation Operations, Infiltrate/ Exfiltrate, Consolidate and Reorganize (Gubler, Personal Interview, 1996). Where the METL are the activities, METT-T are the conditions under which they are performed.

CHAPTER 2 PLANNING TOOLS AND A METHODOLOGY FOR IDENTIFYING COMMANDERS NEEDS

Current Approaches to Planning Training

Live Simulation

The majority of the collective training experience of the U.S. Army over the last 200 years has focused on live simulation. All of the training the U.S. Army conducted prior to the 1973 Arab-Israeli War were live simulations of combat. All training from the Continental Army's drills on the parade field during the Revolutionary War through the integration of SCOPES and REALTRAIN in the 1970's was live simulation. The U.S. Army's institutional training for the entire period was focused on maneuvering live forces on terrain replicating a real battlefield. This experience has led to a highly detailed Training Management planning process to gain the greatest benefit from the exercises.

Live simulations are also easily conceptualized by the training planners because they require concrete assets on land forms that are familiar to them. The training planners' life and work experience are in three-dimensional space. The wartime execution of the trained tasks is also going to be in three dimensional space (real world or real space). This is an important correlation for how the trainers visualize the training.

The military training planner functions within a formalized system of training

cycles (Combined Arms and Service Staff School, <u>Training Management.</u> 1991). Each U.S. Army battalion and brigade executes three training phases per quarter: post support, mission readiness, and prime training. The phase with the least amount of training is one of post support. During post support the unit's soldiers are used to support the other activities associated with the installation. This ranges from guarding ammunition storage facilities to supporting other unit's training activities. Post support is followed by a period of increased individual skill, weapon, and small unit training. During this period the unit's soldiers are trained and qualified with their weapons systems and the individual skills associated with their military occupational specialty. The unit's primary focus is on its ability to deploy and execute its war time mission. The final phase consists of rigorous collective task training. During this prime training phase the individual skills are integrated and synchronized. This often culminates in the evaluation of the unit at company, battalion, or brigade level.

This training phase structure affords the training planner the opportunity to conduct a leaders reconnaissance of training sites. At the site, the qualified trainer envisions the locations of units, their relative positions, and the movements of the elements during execution. Here the planners make decisions based on their experience and the training area.

This process involves the use of a multi-dimensional planar representation of the training area--a map. The map allows the planners to understand the relative positions of

the training areas. The map's depiction of the actual land forms is somewhat distorted. This distortion is based on scale and time. The scale distortion results from the compression of multi-dimensional topographical and cultural features onto a smaller, lesser dimensional tool. Decisions are made about the importance of objects based on their magnitude. Topographical features under selected sizes cannot be represented. Though this information may be essential at the tactical level, it may not be extractable from the map.

As a static representation of the terrain, a map's data does not reflect changes made since publication. Over time, the natural effects of erosion and man's impact on the terrain distance reality from the original representation. Natural events and man's actions render maps increasingly more inaccurate as time proceeds.

The impact of these distortions decreases as the primary training audience shifts from the company level to battalion and above. The importance of the placement of minor land forms at a unit or individual level decreases as the exercise includes larger groups. The impact is still felt locally by the elements involved at the site, but that impact is diluted at the larger scale.

The coordination of training resources and assets is also more easily understood in live training. The correct placement of assets and their need is most demonstrateable when their impact is visualized. The difficulty in maneuvering a tank that is equipped with a mine clearing plow over wooded terrain is more clearly understood when seen than when one simply acknowledges a reduced movement speed. The same effect is

noted when an event cannot take place because needed equipment is not in-place when required. The impact of trainees failing in their exercise is greater if the impact is direct and in real-time.

The impact in live simulation can be seen during a training exercise at the local training areas around any Army installation. A battalion task force training on defensive operations must notify its associated engineer company of what training tasks it wants to accomplish. The engineer assets are then moved to the training area. At the training area, the engineers are directed to help prepare defensive fortifications, lay mines and create obstacles. A properly prepared defense may take 72 or more hours to emplace. The defensive position is then defended.

At the end of the defense, the task force commander must decide if the unit needs to repeat any portion of the exercise, if another element must complete the same training, or if the exercise is completed.

If the unit needs to retrain on any of the defensive tasks it may be necessary to repeat the exercise. This could be accomplished on the same terrain or in another location. If either of these options are selected, the area of the defense must be returned to the its original condition in order to correct the problems that occurred in the last exercise or to make ready to move to a new area. If the retraining is to occur at the same location some training value is lost because the subjects do not review all of the same tasks. All of these options involve great costs.

The physicality of the landforms and assets used in planning training in live simulation also limit their use versus the virtual and constructive arenas. If an asset is planned to be used in a live simulation exercise, it must first exist and be moved to the proper location. Once in place, the unit, or resource, will consume other resources in the accomplishment of its tasks. These tasks will usually have impact on the other units in the area and the landform. This impact means that if the asset is to be used again some effort must be made to return it to its initial conditions and move it or the elements around it for its next use. This requires a great deal of effort in planning to accomplish efficiently.

Virtual and constructive simulations do not have this physical impact problem.

Resources and units can be created exclusively for the exercise. Fuel for live exercises must be purchased and distributed to the forces for consumption. In virtual exercises the resource can simply be incremented from a controller's workstation. Unit strengths can also be treated this way. In virtual or constructive simulation an enemy force can be automated or semi automated (SAF). This allows the trainers to conserve resources operating the enemy as opposed to live training where Opposing Forces (OPFOR) need all the same resources as the primary training audience.

In virtual and constructive simulation the transition to the next training task is almost effortless. Virtual forces can be relocated to any place in the computer based battlefield in a moment of time with the effort of a skilled computer operator. The transition also does not involve returning the training area to its original condition. The

units do not have to fill in dug in positions, retrieve sensors and other equipment, and reduce obstacles that were deployed during the exercise.

Thus, the factors that make planning live training easier to conceptualize become constraints in that expensive resources, detailed planning, and large amounts of coordination have to be accomplished in order to provide worthwhile training to any unit larger than squad size.

Virtual and Constructive Training

Planning virtual and constructive training is more difficult than planning live training because of the lack of a physical interface. The inability to see and understand the training area reduces the planner's ability to predict the direct actions of the units. This inability to conceptualize the flow of actions and predict the actions of units at the lowest level alters the training at the higher levels.

A trainer working with virtual and constructive simulation also has many more choices than trainers who use live simulation. The large costs associated with the movement and operation of people and equipment over great distances limits most live training to areas close to the element's permanent location. Virtual and constructive training are not similarly limited. Once the virtual and constructive simulator training sites are established (physically established training center, not digitized terrain), units can use these facilities to train in any location available to the database (as represented in

the virtual or constructive world). The training planner can conduct training under almost any conditions at any location and move from one position to the other with essentially no significant impact. This escalation in the number of training options without a significant change in planning time leads to a less thoughtful consideration of each option. As the number of options (scenarios) increases while the planning time remains constant, the consideration time per option decreases. This is coupled with the fact the virtual or constructive simulation planner may have to rely solely on a computer monitor or graphic map for inspecting the terrain. In this manner, the selection is complicated by a lack of resources (time) and reduced information.

Shortcomings of Existing Planning Tools

The Army has also experienced dissatisfaction with the current tools designed to support the use of virtual and constructive simulation training. Units from the 101st Airborne Division (Air Assault) at Fort Campbell, Kentucky to the 24th Infantry Division (Mechanized) at Fort Stewart Georgia, have expressed dissatisfaction with the tools used to plan simulation based training (Barrett, Telephone Interview, 1996, Rossi, Telephone Interview, 1996). One of the key shortcomings identified by the units in the field as well as Dr. Larocque, the Director of the National Simulations Center at Fort Leavenworth, is the lack of METT-T responsiveness within the planning tools.

This dissatisfaction with the planning tools occurs at the same time the U.S.

Army has undergone increased reliance on simulation based training and the establishment of extensive simulation libraries.

Standard Army Training System

The Standard Army Training System (SATS) is an automated training management tool the Army created to ease the burden of units in all types of training. The current version, 4.1, is being fielded to many units now. SATS-TREDS (Standard Army Training System-Training Exercise Development System) is a prototype training exercise planning tool being developed for the Combined Arms Tactical Trainer (PM-CATT) at STRICOM.

SATS-TREDS was designed to mimic the mental models of a Subject Matter Expert's (SME) conceptual planning development process (Stone, The Use of Computer-based Planning to Enhance the Effectiveness and Efficiency of Simulation-based Team Training, 1996). The planning tool was developed using interviews, conference data, rapid prototyping, commercial off the shelf software and the Cognitive Analysis Tool[®] (Stone, 1996).

The system's current capabilities include scheduling, monitoring unit proficiency, exercise products, training assessment tools, a scenario library, and mission and task selection. Though SATS-TREDS is designed to be used by a company, battalion and brigade staff, its exercise products support all levels of training from brigade to platoon.

Simulation scenario libraries, under the current version of SATS-TREDS, are searched using tasks lists. The planner creates a task list (This addresses the unit's

mission) by entering all of the tasks he wishes to train. All of the scenarios are then compared to this task list and the scenarios with the highest number of matches are reported to the planner as the most suitable. This gross search requires the user to manually examine each returned scenario for other factors that will affect his selection decision. For example, a user must analyze each scenario in terms of METT-T factors which include the training unit's mission (Defense in sector vs. Deliberate attack), the expected enemy (Motorized rifle regiment vs. Tank battalion), the terrain in the area (jungle vs. desert), friendly troops that are available (a pure infantry battalion vs. and armor task force) and time available as well as combat power ratios and the training units level of proficiency. This refinement process must be analyzed for the possible formal adoption and automation.

As the official scenario library is used, commanders will modify the sanctioned scenarios to make them more useful to their units. This process will quickly expand the number of scenarios available to the units and make their selection procedure more complex. It becomes more difficult to differentiate between similar scenarios as they branch from a root official scenario. Therefore, the refinement of the scenario selection procedure by the inclusion of significant METT-T factors will improve the unit training planning process. No work has been done on selecting training scenarios based on METT-T or other factors instead of task lists. The first step in understanding how

possible relationships between the two. Given the diversity of U.S. Army-wide needs, a methodology must be identified by which to determine:

- 1. What method of knowledge acquisition is most suitable for collecting information from a widely- dispersed non-homogeneous population?
- 2. What means of analysis are the most appropriate for differentiating levels of significance between the selection factors?
- 3. How can this information be applied to the selection of simulationbased training scenarios?

Part of this research process will be the quantification or classification of the existing scenarios and user preferences. Principles of classification must be harnessed to ensure that the classification system has the granularity to support a discriminating search process.

Task Performance Support Codes

Task Performance Support (TPS) Codes were developed by Sherikon in support of the automated SATS-TREDS tool as part of the Close Combat Tactical Trainer program. Sherikon developed this methodology to quantify the degree with which a simulation supports training a particular task (Sherikon, <u>Task Performance Support</u> (TPS) Codes. 1995). The TPS Code methodology adheres to the following principles:

1. There must be a single methodology which can be applied to all collective training simulations.

- The resulting codes must have sufficient granularity to provide reasonable assurance of distinguishing between simulation environments at the Mission Training Plan level.
- 3. The methodology must be efficient, unambiguous, repeatable and automated.
- 4. The methodology must be documented to facilitate reuse as new tasks are added or old ones are modified.
- SME assessments must be retained in a automated format for traceability and consistency analysis. (Sherikon, 1995, pg. 10)

The TPS Code principles could also be applied to the problem of quantifying the characteristics of each simulation scenario in terms of the scenario's association with the METT-T factors.

Methodological Vision

An intuitive approach to quantifying the characteristics of each simulation scenario will:

- 1. build on successful previous simulation scenario selection efforts;
- 2. determine user simulation training scenario selection criteria;
- quantify selection criteria so that it can be systematically applied to training scenarios and the training scenario selection process (weights);

- 4. apply the weights in a manner that supports meaningful discrimination of alternatives;
- ensure the process supports automation to reduce the training planner workload.

While these qualities may appear instinctive, it also constitutes a vision whereby the characteristics of simulation scenario's are quantified to better enable the user to select the optimal scenario. The most important parts of this vision are the ability to assign weights to the selection factors and application of the weights in a manner that supports discriminating decision making.

The value of determining the weights or relative degrees of importance of the simulation training scenario selection factors is that the weights allow the selection process to become multi dimensional. The tool can mimic the planners mental process of considering many different factors and assigning them differing levels of importance to the decision at hand.

The application method is important because it prepares a sound decision making process for automation. Once the process can be automated it can reduce the workload and increase the accuracy of the user.

Summary

Military training has focused on live simulation training since its inception. This has lead to excellent tools and methods for planning live training. Simulation based

training has lagged behind this effort because of the relative youth of the technologies that have made computer based training possible. Several categories of research have to be examined in order to contribute to the vision of simulation training planning and scenario selection. Areas of training, expert systems, METT-T, information elicitation, statistical analysis, and simulations have to be examined next. These efforts will improve the development of the envisioned methodology.

CHAPTER 3 THE PREFERENCE-CHARACTERISTIC CODE METHODOLOGY

Building on Previous Efforts

Understanding how METT-T and other factors might effect selection of a simulation training scenario begins with a mapping of the steps taken by a training planner. These steps could be transformed into a methodology which could be subsequently automated. This research attempts to propose and demonstrate the use of one such approach referred to herein as the Preference-Characteristic Code (PCC) methodology. The PCC methodology utilizes SATS-TREDS and many sources.

The U.S. Army's current Training Management and Battle Focused Training

Doctrine as well as the continuing efforts in training development being done by the

Army Research Institute (ARI) support the analysis tools used to plan live training. The

CCTT Program and other simulation based training programs provide insight into the

future needs of the commanders. The SATS-TREDS planning tools is the most basic

launching point a new improved technique that may be applicable to planning

simulation-based training in units..

SATS-TREDS provides the first cut of simulation training scenario selection.

PCC is designed to refine the search conducted by SATS-TREDS. The PCC methodology may be used as an initial search as well.

Simulation Training Scenario Selection Criteria

Simulation training scenario selection criteria needs to based on U.S. Army doctrine and training practices. Battlefield Operating Systems (BOS), Principles of Training, and METT-T are the most promising expressions of U.S. Doctrine and training practices for selection criteria use.

The Battlefield Operating Systems are the major functions a commander uses to ensure he accomplishes his mission (Training Management, 1991). Intelligence, Maneuver, Fire Power, Mobility/Counter Mobility/Survivability, Air Defense, Combat Service Support, and Command and Control are all of the systems present on the battlefield. These systems may not be appropriate or germane to all training situations because of unit "pure" training that may be done in simulations such as the Mobile Target Simulator (MTS) for Air Defense units or the Advanced Target Gunnery System (AGTS) for Armor.. The fact that they cannot be consistently applied to all cases could lead to a loss of granularity in the selection process.

The nine Principles of Training act as imperatives dictating the conduct of training (Training Management, 1991). The concepts of training as combined arms, training as you fight, training to maintain, training using multi-echelon techniques are easy to quantify and identify. However using appropriate doctrine, training to challenge, and using performance-oriented training would be hard to quantify. The inability to

apply all of the criteria to reasonable degree to all of the scenarios and preferences eliminated this as an option.

Not only was METT-T the recommended medium from the units in the field, it seems that the elements of METT-T are most applicable to the problem at hand.

Mission, Enemy, Terrain, Troops, and Time can be defined, quantified and applied to the scenarios and planner preferences. METT-T is applied to course of action analysis and other tactical decisions. Though METT-T can be broadly applied both to the scenario's and the users preferences, it should be bolstered with considerations affecting unit assessment, previous use of a scenario, difficulty, and available simulators.

METT-T Application

The five METT-T factors can easily be broken down into more precise subcategories that are easily recognizable to military trainers. Table 3 breaks the five factors into sub-categories and adds some general factors of interest.

TABLE 3 METT-T CATEGORIES AND GENERAL SELECTION FACTORS

METT-T Category	Selection Factor				
Mission	Task				
	Combat Power Ratio				
Enemy	Enemy Composition				
	Enemy Task Organization				
	Enemy Equipment				
	Enemy Training Level				
	Enemy Mission				
Time	Exercise Preparation Time				
	Mission Planning Time				
Terrain	Terrain				
	Weather				
	Light Data				
Troops	Friendly Composition				
	Friendly Equipment				
	Adjacent Unit				
	Supported Observation				
	Devices				
General	Previous Use of a Scenario				
	Difficulty				
	Simulator				
	Assessment				

The selection factors may be broken down into meaningful divisions. These divisions allow the scenarios and the users preferences to be coded. Coding supports automation of the selection processes.

Quantification of Selection Criteria and The Manner of Application

The selection factors from Table 4 are broken down into categories based on the U.S. Army's training doctrine and methods. These selection factors can be used to

describe user preferences sought in a scenario that maybe used for basis of training.

Similarly, the available simulation training scenarios might be evaluated and classified to indicate whether or not they offer the characteristics sought by the trainer.

The list of user preferences may be grouped to form a matrix of preferences referred to as the User Preference matrix (UPM) or the User Preference Code (UPC). The list of scenario characteristics can be grouped to form the Scenario Characteristic matrix (SCM) or Scenario Characteristic Code (SCC). Given the importance of the factors in Table 4 both the UPC and SCC structured around these factors as discussed below.

Mission

Task:

The U.S. Army breaks all operations down into a series of collective and individual tasks (Training Management, 1991) This type of decomposition supports the analysis of large complex missions in terms of the functions or tasks the subordinate elements must accomplish.

This type of crosswalk relationship carries over into the Army Training

Evaluation Plan (ARTEP) Mission Training Plan (MTP) manuals. MTP manuals contain
the standards of performance of these tasks along with the breakdown of who or which
element must perform each sub-task.

When considering how military units might go about applying simulator training systems to training a unit in a particular task, the planner first begins with identifying the

tasks to be trained. This task list is the basis of the SATS-TREDS selection process. For the purpose of this research one task can be determined the most important task to be trained. This selection can be codified in the Task matrix, $[t_{i,j}]$. The Task matrix is later intersected with a Scenario Task matrix $[T_{ij}]$ which contains all of the tasks supported by the training scenario. If the intersection of the matrixes results in the null set, the scenario in question does not support training the task to be trained.

This relationship between the tasks to be trained and the tasks supported by the scenario yields the first element of the User Preference Code (UPC). If the scenario does not support the required task, $U_{1,1}=1$. Otherwise, $U_{1,1}=0$.

If there is no particular task that must be trained $U_{11}=0$.

Combat Power Ratio:

Combat Power Ratio (CPR) refers to the aggregated strength levels of the opposing forces in the simulation training scenario expressed as a ratio of friendly forces to enemy forces. There exists normally acceptable ratios for certain types of operations. An example of this is that U.S. Army forces prefer to attack if the CPR is equal to or greater than 3:1. Ratios above this (3:1) favor the attacker, while ratios below this favor the defender.

The user's selection of CPR above or below the doctrinal level determines the value of the UPC element $U_{1,2}$. Similarly the ratio that exists in the scenario determines

the Scenario Characteristic Code (SCC) element $S_{1,2}$. The actual values for the element are found in Table 9 in Appendix B.

Enemy

Enemy Composition:

It is impossible to create a finite set that covers all aspects of enemy composition. To streamline this process the U.S. Army has developed various templates that are based on the enemy's characteristics. Though the Soviet Union no longer exists, its previous activities within its sphere of influence affected the equipment and doctrinal structure of many potential adversaries throughout the world (Soviet Army Equipment, Organization, and Operations, 1991). For this reason its former configurations and tactical dispositions make reliable starting -points for enemy classifications.

The User's Preference Code $(U_{1,3})$ for enemy composition as well as the Scenario Characteristic Code $(S_{1,3})$ are based on theses models. The coded values used for these elements are drawn from Table 10 in Appendix B. In the table the expected major enemy organizations are listed along with a coded value to represent them.

Enemy Task Organization:

The enemy's task organization is dependent to a large degree upon the role it plays within the enemy's larger plan. It is convenient to look at this aspect in terms of where the enemy unit exists in the enemy's maneuver structure (Soviet Army Equipment,

Organization, and Operations, 1991). For the purpose of templating the enemy this method is very useful.

The UPC $(U_{1,4})$ and the SCC $(S_{1,4})$ elements are determined from Table 11 in Appendix B. In the table the possible elements of the enemy organizations are listed along with a coded value to represent them.

Enemy Equipment:

The enemy's equipment can be generally categorized in terms of their most lethal maneuver systems. The most lethal systems available to most of our potential enemies are the T-80 main battle tank, the BMP-3 infantry fighting vehicle and the Holkum attack helicopter (Soviet Army Equipment, Organization, and Operations, 1991). More common, and less capable, systems in these categories are the T-72 series tanks, the BMP-2 infantry fighting vehicle, and the Hind series attack helicopter. If the enemy force has certain combinations of these systems, assumptions can be made about the other indirect fire and combat systems he possesses.

Knowing that the enemy posses certain weapon systems indicates some of their likely courses of actions, capabilities, and tactics.

The UPC $(U_{1,5})$ and the SCC $(S_{1,5})$ elements are determined from Table 12 in Appendix B. In the table the major weapon system classifications are listed along with a coded value to represent them.

Enemy Training Level:

Most training simulations use stochastic methods to determine target hits, kills and detection (Combat Simulation Laboratory, undated). Increasing or decreasing these levels may effect the effectiveness of the enemy elements which could be taken as improved or depressed levels of training. These characteristics can be important when a military planner prepares for battle or training.

The UPC $(U_{1,6})$ and the SCC $(S_{1,6})$ elements are determined from Table 13 in Appendix B. In the table the levels of probabilities of hit, kill and detection are listed along with a coded value to represent them.

Enemy Mission:

The enemy's mission has a significant impact on the activities he may engage in during a training session. The former Soviet Union and their client states only executed six (6) types of missions (Soviet Army Equipment, Organization, and Operations, 1991).

The UPC $(U_{1,7})$ and the SCC $(S_{1,7})$ elements are determined from Table 14 in Appendix B. In the table the possible enemy missions are listed along with a coded value to represent them.

Time

Exercise Preparation Time:

The amount of time and effort involved in the preparation of a training exercise can effect its selection. If an organization has a small amount of time to prepare for training (a National Guard or Reserve Unit) they may prefer to select simulation training scenarios that allow minimal unit planning prior to training execution. Scenarios with minimal preparation time may include very detailed graphics, training schedules, coordination check lists.

The UPC $(U_{1,8})$ and the SCC $(S_{1,8})$ elements are determined from Table 15 in Appendix B. In the table the levels of exercise preparation time are listed along with coded values to represent them.

Mission Planning Time:

Mission planning time refers to the amount of tactical planning and operations order development the unit must do. Units that are incomplete staffs or have the staff dedicated to other missions may wish to execute supplied orders. Similarly, the units staff may not be prepared to execute the mission planning process in the available time

The UPC $(U_{1,9})$ and the SCC $(S_{1,9})$ elements are determined from Table 16 in Appendix B. In the table the levels of mission planning required are listed along with coded values to represent them.

Terrain

Terrain:

The United State Army must be prepared to execute its missions anywhere in the world. This drives the requirement that the U.S. Army train on all different types of terrain, weather, and light conditions. For this reason the planner needs the ability to distinguish between the various land forms the unit could train on.

The UPC $(U_{1,,10})$ and the SCC $(S_{1,10})$ elements are determined from Table 17 in Appendix B. In the table the major land forms are listed along with coded values to represent them.

Weather:

Weather affects numerous aspects of tactical operations. Trafficability, equipment performance, tactics and procedures are effected by weather. Training planners may want to gauge their units ability to adapt to these different conditions.

The UPC $(U_{1,11})$ and the SCC $(S_{1,11})$ elements are determined from Table 18 in Appendix B. In the table the weather conditions are listed along with coded values to represent them.

Light Data:

Light data affects numerous aspects of tactical operations. Equipment performance, tactics and procedures are effected by light data. Training planners may want to gauge their units ability to adapt to these different conditions.

The UPC $(U_{1,12})$ and the SCC $(S_{1,12})$ elements are determined from Table 19 in Appendix B. In the table the light conditions are listed along with coded values to represent them.

Troops

Friendly Composition:

Though the system will take the unit data that is in use as a default, the Friendly
Unit Composition can be altered. This allows the commander to plan training for the
units one level down. This could happen in preparation for an evaluated training exercise
or assigning directed training.

The UPC $(U_{1,13})$ and the SCC $(S_{1,13})$ elements are determined from Table 20 in Appendix B. In the table the units are listed along with coded values to represent them (Organization of the Army in the Field, 1991).

Friendly Equipment:

The system default would be set for the unit's Table of Organization and Equipment (TO&E). However, units periodically deploy and unitize pre-positioned equipment. The propositioned equipment may be different from the equipment that the unit has at its home station. The ability to choose different equipment could affect the scenario selection.

The UPC $(U_{1,14})$ and the SCC $(S_{1,14})$ elements are determined from Table 21 in Appendix B. In the table friendly equipment categorize are listed along with coded values to represent them.

Adjacent Unit:

The U.S. Army has become increasingly involved in multi-national operations such as Somalia, Haiti, Macedonian, and Bosnia. When training for such missions it may become important to be knowledgeable about the allies' equipment, tactics, and capabilities.

The UPC $(U_{1,15})$ and the SCC $(S_{1,15})$ elements are determined from Table 22 in Appendix B. In the table possible allies are listed along with coded values to represent them.

Supported Observation Devices:

All simulations do not have the same capabilities to support or model different battlefield sensors (Combat Simulation Laboratory, undated). This demands that the planner have the ability to select simulations based on their capabilities.

The UPC $(U_{1,16})$ and the SCC $(S_{1,16})$ elements are determined from Table 23 in Appendix B. In the table sensors are listed along with coded values to represent them.

General Category

Previous Use of a Scenario:

The value of training can be degraded if the training audience constantly uses the same situations to learn (Anderson, 1993). However, repeating an exercise that was incorrectly performed can boost learning. Depending on the number of attempts to complete a single scenario the planner may wish to exclude or repeat a scenario.

The user's desired Previous Use of a Scenario determines the relationship between the Previous Use matrix, $[P_{i,j}]$, and the scenario number. If the user wants to reuse a scenario, the Preference-Characteristic Technique (PCT) examines the intersection of the set of used scenarios and the current scenario. If the intersection is the null set, $U_{1,17}=1$, otherwise $U_{1,17}=0$.

If the user does not want to reuse a scenario and the intersection is the null set then $U_{1,17} = 0$, otherwise $U_{1,17} = 1$.

Level of Difficulty:

In an effort to stress the training unit or to utilize a Crawl-Walk-Run training methodology it is needed to know the degree of difficulty associated with a simulation training scenario. Though the issue of how to objectively quantify the degree of difficulty is unresolved, there is a benefit to be gained throughout the application of the information.

The UPC $(U_{1,18})$ and the SCC $(S_{1,18})$ elements are determined from Table 24 in Appendix B. In the table levels of difficulty are listed along with coded values to represent them.

Simulator:

There may be constraints on the training plan that limit the user to a specific type of training simulator. This could be a resource constraint or an issue of the capabilities of a simulator to support a particular exercise. This generates the need for this element.

The UPC $(U_{1,19})$ and the SCC $(S_{1,19})$ elements are determined from Table 25 in Appendix B. In the table simulator systems are listed along with coded values to represent them.

Assessment:

U.S. Army training strategies focus on sustaining proficiency in tasks that are executed well and improving performance in tasks that are not executed well. Since all

training is evaluated and unit performance on critical tasks is formally evaluated quarterly, it is possible/desirable to give preference to simulation training scenarios that train tasks that have been identified during assessment as not being well executed (Training Management, 1991).

The user's desired use of the unit assessment data produces the following values of $U_{1,20}$:

If the user wants to consider Unit Assessment data: The tool examines the intersection of the set of the Scenario Task Matrix, $[T_{i,j}]$, and the Untrained Matrix, $[F_{i,j}]$. The Untrained Task matrix is a set of tasks that the unit has identified through the training management process that they do not execute well. If the intersection is the null set, $U_{1,20} = 1$, otherwise $U_{1,20} = 0$.

If the user does not want to consider unit assessment data , then $U_{1,20} = 0$.

The elements of the Scenario Characteristic Code matrix, $[S_{i,j}]$, correspond to those of the User Preference Code matrix, $[U_{i,j}]$. The elements that relate directly to the past actions of the training unit in the UPC matrix, $U_{1,1}$, $U_{1,17}$, $U_{1,20}$, all equal zero (0) in the SCC matrix, $S_{1,1}$, $S_{1,17}$, $S_{1,20}$.

Preference-Characteristic Matrix Technique

The Scenario Characteristic Code (SCC) then is a 1 x 20 matrix, $[S_{1,j}]$, whose elements, $S_{1,j}$, are coded qualities of the scenario in terms of the METT-T factors of mission, enemy, time, terrain, and troops.

The SCC elements are first organized by grouping all of the factors according to their METT-T associations as shown in Table 3.

The scenarios are then analyzed according to these factors by the standards and categories established in Tables 9 through 25. The elements characteristics are compared to the properties on the tables and categorized. The various categories on the charts are designed to be exhaustive. If in evaluating a scenario or preference it is not possible to place it into a category then an additional category must be added.

Each selection factor is discussed above along with an accompanying table (Table 9 through 25) that lists the possible values that enter the matrices based on the scenario's characteristics or user's preferences.

The SCC is subtracted from the User Preference Code (UPC), which is also a $1 \times 20 \text{ matrix}$, $[U_{1,j}]$. The elements of the $[S_{i,j}]$ are determined by examining the scenario, while the $[U_{i,j}]$ is determined by the user.

The Scenario Task matrix, $[T_{i,j}]$, is a listing of all of the training tasks associated with a scenario.

The Task matrix, $[t_{i,j}]$, is a matrix containing the most important training task as determined by the user.

The Previous Use matrix, $[P_{i,j}]$, consists of a list of all of the scenarios used by the unit.

The Untrained Matrix, [F_{i,j}], consists of a list of all of the METL tasks that the unit has incorrectly performed or for which the unit has failed to perform one or more critical subtasks. This classification of Untrained follows Army guidance (Combined Arms and Service Staff School, 1991).

The Calculation of the Weighted Result

Once the UPC and SCC matrices are constructed, the SCC matrix is subtracted from the UPC matrix. The resulting Difference matrix, $[D_{1,j}]$, is examined for the value of the elements, $D_{1,j}$.

If $D_{i,j}$ is equal to 0, then $U_{1,j} = 1$.

If $D_{i,j}$ is equal to (-1) $S_{i,j}$, then $U_{1,j} = 1$.

Otherwise, $U_{1,j} = 0$.

The assignment of the value 1 to $U_{1,j}$ if $D_{i,j}$ is equal to 0 or if $D_{i,j}$ is equal to (-1) $S_{i,j}$, is made so that a scenario receives a benefit if the matrix element of UPC is the same as the element of the SCC or if the user expressed no preference in that category. For example, if the user wants a scenario that has U.S. Marines as the adjacent unit and the user has no preference for supported imaging devices, the UPC would have a value of 9 for $[U_{1,15}]$ and a value of 0 for $[U_{1,16}]$. If one of the compared simulation training scenarios had values for those elements of $[U_{1,15}] = 10$ and $[U_{1,16}] = 2$ (-2 = -S_{i,j}) the

values for the Difference matrix would be $[D_{1,15}] = 0$ and $[D_{1,16}] = -2$. The adjacent unit characteristic should lead to positive consideration because it is the desired characteristic and the observation devices should have a positive impact because the user had no preference. The scenario receives no benefit if the scenario characteristic is different from the user's expressed preference.

The revised UPC matrix could be multiplied by a set of weights, the Weight matrix $[W_{i,1}]$. The Weight matrix accounts for the differing levels of importance the selection factors have.

This results in Rank matrix [R_{1,1}].
$$[R_{1,1}] = [u_{1,1}, u_{1,2}, \dots, u_{1,20}] * \begin{bmatrix} w_{1,1} \\ w_{2,1} \\ \vdots \\ w_{20,1} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{20} u_{1,k} w_{k,1} \end{bmatrix}$$
 (equation 1)

The Rank matrix is a single number whose value is proportional to the scenario's agreement with the user's preferences. A Rank matrix can be calculated for each scenario that SATS-TREDS has returned as matching a number of tasks. The Rank matrix now permits the automated differentiation of simulation training scenarios based on user METT-T preferences. An example illustrating the use of the Rank matrix appears in Chapter 6-Data Analysis.

The success of the methodology hinges on the ability to define a discriminating Weight matrix. The Weight matrix must be developed through the elicitation of knowledge from the expected using population or a sample of that population. The Weight matrix will allow the appropriate level of significance to be applied to each dimension (selection factor).

Summary

It is possible to define a series of matrices that describe the tool user and his desires, training audience, the units training activities and the available simulation training scenarios. These matrices can then be manipulated along with an objective Weight matrix to determine the best simulation training scenario to meet the users preferences. The key to the applicability of the matrix technique is the evaluation of the Weights matrix.

CHAPTER 4 A TECHNIQUE FOR EVALUATING THE WEIGHTS MATRIX

This research effort produces weights for METT-T factors. Those weights form the basis through which Scenario Characteristic Codes (SCC's) can be used by an automated tool to distinguish between simulation training scenarios that support equal numbers of training tasks. This is different from SATS-TREDS which currently sorts solely on the number of tasks supported by the scenario.

Theoretical Approach to Gathering Information Needed to Refine Scenario Selection

It would be possible to gather the information needed to augment the current scenario selection system through many means. The information concerning the use of METT-T factors in selecting a training scenario could be acquired using a subject matter expert, a Delphi group technique, or a survey. After the information is gathered a development process has to be selected in order to produce an exercise development tool.

The Use of Subject Matter Experts

The use of a subject matter expert (SME), with a great deal of experience with training in units, would yield valuable information in a very timely manner. A single person's input could be easily quantified and developed into a useful tool. A useful three phase method for extracting this information is commonly used; unstructured interviews, recording of the task, and structured interviews (Williams, 1995). The first phase is to conduct unstructured interviews focusing on the general task being analyzed. This initial interview is limited by the extent of domain knowledge held by the knowledge engineer (Kotnour, Design, Development, and Testing of an Automated Knowledge Acquisition Tool to Aid Problem Solving, Decision Making, and Planning, 1992). This is followed by recording (using video tape or other devices) the actions of the expert while engaged in the task. The recording is then analyzed by the SME along with the researcher. This analysis consists of structured interviews in which the SME describes the process portrayed in the recording (Welbank, An Overview of Knowledge Acquisition Methods, 1990).

Though great insight can be gained through this technique, a single SME's opinion may not prove to be representative of the entire population. The application of the information is going to vary over the entire Army at a tactical level of application. Though a person could easily become an expert in a single aspect of the battlefield and training, at this level the unique requirements of the different military specialties and

their associated idiosyncrasies would not support the formulation of a broadly utilized planning tool.

Group Techniques

The Delphi or Nominal Group techniques may also suffer from a lack of a wide base of knowledge. The Nominal Group Technique (NGT) utilizes a group of five to nine experts in a structured environment. The participants are prompted to compose a list of issues concerning a given problem. After each member of the group shares the factors they listed, the group discusses each item to produce a common definition. The experts then rank order the choices, and the facilitator tabulates the data and produces a ranked list. After group discussion of the preliminary ranked list a final vote is taken and a final rank order is produced (Delbecq, 1975).

Like the NGT, the Delphi process is used for aggregating group judgment and for distilling information on highly complex problems (Adler and Ziglio, 1996). The Delphi technique differs from the NGT in that the participants do not interact or discuss the issues that are presented. The facilitator simply gives each participant an issue statement in the form of a survey. The survey is then collected and the facilitator lists the ideas of the experts and returns this new list to the individuals for ranking. A ranked list is then produced as in the NGT (Delbecq, 1975). The lack of discussion of the issue between the experts makes this technique less desirable. Strengths of the Delphi method are that

it can be used in settings where the participants cannot be brought together, it is impossible for a forceful advocate of a view to dominate discussion, and its structure reduces the possibility of "group think" (Adler and Ziglio, 1996).

Though the collection of experts would broaden the applicability of the resulting tool, the results are still constrained to a smaller population of the whole. The values generated by the exercise would also be "averaged" over the whole population. This means that the method would be less able to determine the needs of smaller segments of the total population.

The Delphi and Nominal Group Techniques are also time and resources intensive.

The experts must be committed to the solution of the problem, willing to dedicate large blocks of time, and must be brought together at one location. This manipulation of the participants drives up the cost of the process.

Surveys

The use of a survey would allow for the elicitation of information from a much larger and more diverse population. This much larger population would support further analysis into sub groups characteristics. The cost associated with the data collection would also be much less than the other methods. However, the collection technique would suffer in timeliness.

Survey and Question Design

Three major requirements of a survey is that it is unambiguous, easily understood, and returned. There are many methods that can be used for implementing the survey depending on its use and the resources associated with the project. The main types of surveys are random sampling surveys and directed surveys (Lehtonen and Pahkinen, <u>Practical Methods for Design and Analysis of Complex Surveys</u>, 1995). These are implemented using mailed surveys, telephone interviews, and personal interviews. There are advantages associated with each type of survey and the associated implementation methods.

Random sampling surveys are used for definitive results over an entire population or survey frame. They are expensive in administering because of the low response rate and high number of returns needed to establish validity. Directed surveys are used in pilot studies (Fink, 1995).

Table 4 compares the various survey implementation strategies.

TABLE 4 SURVEY TECHNIQUE COMPARISONS

Aspect of Survey	Mailed Survey	Telephone interview	Face to face interview	Web Page Surveys	
Administrative					
Cost	Low	Low/Medium	High	Medium/High	
Length of data collection period	Long	Short	Medium/Long	Long	
Geographic distribution	Wide	May be wide	Clustered	Very Wide	
Survey Issues					
Length of	Short	Medium/Long	Long	Short	
survey	(4-12 pages)	1/4-3/4 hour	1/2-1 hour	(4-12 pages)	
Complexity of	Simple to	May be	May be	Simple to	
questions	moderate	complex	complex	moderate	
Sensitive topics	Good	Fair/good	Fair	Good	
Non threatening	Good	Good	Good	Good	
questions					
Data Quality Issues					
Sampling frame bias	Low	Low	Low	Low	
Response rate	45%-65%	60%-90%	65%-95%	45%-65%	
Response bias	Medium*	Low	Low	Medium*	
Control of response situation	Poor	Fair	Good	Poor	
Quality of recorded	Fair/good	Very good	Very good	Fair/good	
response					

^{*}Czaja indicates that response bias is lower in more educated respondents. (Czaja, 1996)

It takes approximately 400 responses from the population to achieve a 0.05 level of confidence that the results of the survey accurately portray the beliefs of the population (Czaja, <u>Designing Surveys</u>, 1996).

The number of valid responses needed to determine a valid output from a survey is determined by the size of the total population, the probability level, the expected variance, and the confidence interval that is acceptable within the study.

$$n = \frac{t^2(p^*q)}{d^2} = \frac{Probability \ level * variance}{confidence \ interval}$$

Where:

(equation 2)

n =The sample size or the number of completed interviews with eligible elements.

t² = The squared value of the standard deviation score that refers to the area under a normal of values.

p = The percentage category for which we are computing the sample size.

q = 1-p.

d = The value of one half of the precision interval around the sample estimate.

This formula is applicable for surveys of less than 5% of the total population. If more than 5% of the total population is surveyed, then a finite population factor is applied (Cochran, <u>Sampling Techniques</u>, 1977).

53

distribution

$$n = \left(1 - \frac{n}{N}\right) \frac{t^2(p * q)}{d^2}$$
(equation 3)

Where:

N = The size of the eligible population All other variables are the same as in equation 1.

Calculating the required sample size for a random sample of the eligible population is made using the first equation without the finite population factor.

Assuming a desired 95% probability level, a 0.05 confidence interval, and a percentage category for which we are computing a sample size of 50% yields a sample size of 384. The initial percentage category is assumed to be 50% because there is a lack of information about the population. The calculations following the pilot survey will update this value. At an expected response rate of 45% the number of unsolicited mailings becomes quite large (854).

The directed survey is much less costly to use and results in a much higher response rate. The higher response rate eliminates some biases but the method is best used when doing pilot surveys (Fink, 1995).

Ronald Czaja and Johnny Blair (1996) indicate that the survey should not exceed 10 pages in length, should appear uncluttered, should provide easily identifiable answer spaces. They continue to establish that the survey should have an introduction that explains the purpose of the survey and should engender the subject to complete the survey. A respondent section that allows the information to be collected on the subject of

the survey. This is the area where demographic information (independent variables) is gathered. The substantive questions follow. Theses questions are designed to measure the beliefs of the subjects (dependent variables) (Fink, <u>The Survey Handbook</u>, 1995). The survey was constructed so as to have construct validity, so as to establish that people with different characteristics have different beliefs (Fink, 1995).

Summary

The careful construction of a survey directed at a representative population can garner valuable information. Effort must be made to ensure that the solicited responses address the issues queried. If this is the case, the data can be screened in terms of frequency and means to produce usable information—The Weight Matrix. The information within the applicable domain (user preferences and training scenarios) can then be manipulated to determine the relative ranks of the scenarios. It is important to determine if the analysis techniques and instrument are valid. Table 5 summarizes the efforts in the literature and their applications. The works and authors are compared to their area of primary focus.

TABLE 5 LITERATURE REVIEW

<u>Work</u>	Author	Training	Expert Systems	METT-T	X Survey & Information	Analysis	Simulations
Gazing into the Oracle	Adler & Ziglio Anderson	X			Λ		$\vdash\vdash$
Rules of the Mind	ACGSC	X		X	\vdash		Х
Training Management How Probable is Probable	Beyth-Marom			A	X	X	Δ
The state of the s	Cochran				X	X	$\vdash\vdash$
Sampling Techniques Designing Surveys	Czaia				X	X	
Group Techniques for	Delbecq				X		
Program Planning Battle Focused Training.	Dept of the Army	X	X	X		X	
Expert Systems Design and Development			Λ		37	^	
The Survey Kit	Fink	77			X		77
Proceedings of the 1991 Summer	Gorman	X					X
Computer Simulation Conference	Caman	X					X
The Secret of Future Victories The High Level Architecture	Gorman Hollenbach						X
Design, Development and Testing of an Automated Knowledge-acquisition Tool to Aid Problem Solving, Decision Making, and Planning	Kotnour				X		
Advanced Questionnaire Design	Labaw			\vdash	X		
Practical Methods for Design and Analysis of Complex Surveys	Lehtone, Pahkinen				X	X	
Guide for the Use of Models and Simulations	Mercer, & Roop	X					X
The Value of Simulation for Training	Orlansky	X					X
Systems Acquisition Manager's	Piplani,	X	L.				X
Task Performance Support (TPS) Codes	Sherikon.	X	X				X
The Use of Computer-based Planning to Enhance the Effectiveness and Efficiency of Simulation-based Team Training	Stone	X			X	X	X
Commander's Battle Staff	USARI	X					
An Overview of Knowledge Acquisition Methods	Welbank				X		
Task Analysis	Williams				X		
The PCC Methodology	Bedell	X	X	X	X	X	X

CHAPTER 5 INSTRUMENT CONSTRUCTION AND VALIDATION

<u>Purpose</u>

The U.S. Army currently has many effective tools and methodologies for the planning of live simulation training. Literature research indicates there are difficulties associated with virtual and constructive simulation training planning, where as excellent methodologies exist for planning live simulation training. Further, experts indicate that METT-T and other factors could be used to improve the virtual and constructive simulation training planning. Hence, the purpose of the survey used in this research is to determine what METT-T factors affect the selection of virtual and constructive simulation training scenarios. Associated with this purpose are two sub objectives: 1) Determine if the level of importance of the METT-T factors differs between virtual and constructive simulation environments, and 2) Are there population sub-groups between which there are further differences?

Additional points of interest include determining if a strong correlation between virtual and constructive selection factor responses exists and if a significant correlation exists between selection factors within virtual and constructive environments.

Population

The survey must reach the appropriate population if it is to be useful. It is important to define the frame in order to include the people who can contribute to the area of interest while excluding those who cannot. In order to qualify to take this survey, each respondent must be, or have been, responsible for planning training for large groups of soldiers, understand the Army's current doctrine, and understand the Army's training philosophy. This requirement is established to ensure that the respondents are experienced in planning and conducting collective training and are knowledgeable as to the appropriate tactics, techniques, and conditions appropriate to productive training within their specialty. Explicitly, in order to qualify to respond to the survey the participant must meet one of the following sets of criteria.

- A U.S. Army officer, rank of major or above, who has successfully completed at least 50% of The U.S. Army's Command and General Staff School or its Military Education Level (MEL) IV equivalent.
- A U.S. Army officer, rank of captain or above, who has successfully completed a
 company level command, and currently works at Tactics or Doctrine Division at one
 of the Branch schools.
- Any U.S. Army officer that is currently serving or has served as a battalion level or above commander or operations officer of an operational unit in the last five years.

A survey is undertaken in six stages. Once the problem is identified and an objective is established the survey must be designed, pretested, finalized, distributed and collected, and analyzed.

There is no Department of the Army requirement for operations officers to have completed Command and General Staff College. However, division commanders usually set that as a local policy (Mahanken, Telephone Interview, March 1997). It is further designated that operations officers are responsible for ensuring that training is "oriented on the conditions and standards of combat" (Combined Arms and Service Staff School, Staff Skills, Roles and Relationships, 1991).

The independent variables are collected by the demographic portion of the survey. Theses variables are specific characteristics of the subjects. These include the facts about the individual's training history, military specialty, and their training experiences

There are two sets of dependent variables. These are the values each study participant places on the METT-T factors for virtual and constructive environments. These measures of belief are collected so they can be compared to the independent variables to check for correlation. A detailed explanation of the purpose and utility of each question is in Appendix B.

Pretesting the Survey

Preliminary

The original survey was composed of eight demographic and 19 substantive questions preceded by a short introduction describing the purpose of the survey. (See Appendix C.) All of the questions were designed to be concrete close ended questions with ordinal, nominative, or numerical responses. This form of question is designed to eliminate any ambiguity in the meaning of the question and confine the responses to a form that supports later mathematical analysis (Fink, 1996). The numerical responses referred to values such as age and military education level; the nominal responses applied to branch of assignment; and the ordinal responses covered the appropriateness of simulators that the respondent has used in the past.

The substantive portion consisted of 19 questions where the respondent is asked to indicate how greatly each factor would affect their selection of a training scenario (ordinal). The ordinal form used for all of these questions was derived from work done Ruth Beyth-Marom which focused the responses to the survey into a form that eliminates ambiguity and fosters analysis. The categorical and numeric responses support both analysis based on frequency of response and analysis of means and variance.

In this form the survey was shown to three observers to discuss content, appearance, and approach. This preliminary phase of pretesting was completed to ensure that the survey appeared professional and seemed to cover the correct material.

Formal

Formal pretesting of the survey and the individual questions used interview, overview, and sample gathering techniques. Survey pretesting to ensured that the questions allowed the respondent to focus on the issue, that there were no social or professional desirability associated with any possible response, that there was no linkage to authority, that all complex terms were defined, and that the dimensions of interest were measured.

The interview or think-aloud technique consisted of separate interviews with active duty army officers ranked captain through lieutenant colonel (7 in total). The selectees belonged to the same frame as the target population. This technique supports the most accurate evaluation of the survey because respondents are asked to read each portion (question or instruction) and relate the meaning of the portion to the interviewer (Czaja, 1996). During this iterative process each question is refashioned so that the interpretation of the question is matched by its intent. No focus groups were used to examine the questions because their use could obscure problems associated with a minority of the group (Fink, How to Design Surveys, 1995).

An overview method was then used to elicit comments on the survey from academic and active duty military personnel involved in simulations. In the overview process the respondent comments on portions of the survey that may seem ambiguous or

unclear. The instructions accompanying the survey were changed based on the feedback gained in this phase.

The final phase of the pretesting of the survey was the giving of the survey to a group of respondents to generate data to be used to test the data analysis techniques. This was done so the appropriateness of the planned statistical analysis techniques could be tested before the survey was distributed to the target population. This exercise produced essentially undifferentiated data. This was caused because the pretest sample did not have (and was not expected to have) the different characteristics that would have revealed different responses.

The survey's final form is as it appears in Appendix D.

Distribution

The survey was sent to selected active duty and reserve brigade and battalion commanders, operations officers, and other qualified respondents. The emphasis was to elicit responses from those units making the greatest use of simulations. The survey went to service branch schools to be evaluated by their respective Tactics Division and Doctrine Division. All respondents were pre-contacted to insure a high rate of return.

Analysis

The common methods of analyzing survey data include means, medians, modes, ranges, standard deviations, and analysis of variance (ANOVA) (Fink, 1995). In surveys comparing nominal independent variables and Ordinal or numerical dependent variables it is customary to conduct the analysis using an ANOVA technique (Fink, 1995). It is also possible to use regression techniques or frequency analysis.

The analysis conducted on this survey is accomplished using means, an ANOVA technique with multiple comparisons, pair wise comparisons using z or t test statistics, and a Chi Squared test for independence to determine:

- If for the entire sample the factors have an affect on the selection of the training scenarios.
- 2. If there are factors that are significant in one simulation environment and not the other.
- 3. If certain selection factors are more important than other factors in a given environment.
- 4. If different sample sub-groups select different factors as being significant.

Any factor whose value (including the confidence interval) is less than or equal to 30 (has a small chance of affecting the selection on the Beyth-Marom scale) will be discounted as not important.

The Fisher technique, a multiple comparison ANOVA, is used to measure the variation in the dependent variables. The variables' confidence intervals around their means will be compared when the they are grouped around the independent variables such as simulation environment (virtual versus constructive) or branch association. This test uses pooled standard deviations so that it compares each mean to the population as a whole.

The fourth group of tests will be done by examining the means within and between each category. This will be done using a simple comparison of the means using the central limit theorem and the equation:

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - D_o}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

(equation 4)

Where

z =the test statistic

 \bar{x}_1 = the mean from the first sample

 \bar{x}_2 = the mean from the second sample

 D_0 = the hypothesized difference between the two means

 σ_1^2 = the variance of the first sample

 σ_2^2 = the variance from the second sample

 n_1 = the number of points in the first sample

 n_2 = the number of points in the second sample

Because $n \ge 30$ the central limit theorem holds so there is no assumption of normalcy required for this test (Malone, Personal Interview, 1996). This test compares each mean against each other.

The simulation environment test results will be compared to similar tests for independence using Chi Squared techniques. The analysis of expected frequency tables will support the determination of whether frequency is independent of the population group or the environment.

Analysis of Pretest Survey Data

The tabulated data from the 30 pretest surveys appears in Appendix E. The pretest group consisted of ROTC cadets. The survey was administered to the cadets as part of their training and all surveys were returned.

Table 6 contains all of the mean values and lists them in descending order. A simple means analysis of the factors indicates that all of the factors are important to the pretest participants in selecting a simulation training scenario. Since all of the factors appear significant in Table 5 according to the screening criteria there is some question as to the validity of the test. These results could accurately measure the importance of all of the factors or could inaccurately report some or all of the factors as important when they truly were not important. They selection factors were selected because of their perceived importance and so it is determined that this result confirms that all of the factors are important to selecting simulation training scenarios.

TABLE 6 PILOT FACTOR MEANS

<u>Constructive</u>	Mean	<u>Virtual</u>	Mean
Exercise Preparation	63.90	Terrain	75.73
Combat Power Ratio	63.57	Weather	73.03
Enemy Equipment	62.77	Previous Use	70.33
Enemy Task Organization	61.43	Friendly Equipment	69.40
Enemy Composition	61.33	Level Difficulty	68.87
Enemy Mission	56.43	Simulator	66.83
Enemy Training Level	56.30	Unit Assessment	66.77
Task	54.33	Combat Power Ratio	65.43
Previous Use	54.17	Enemy Composition	64.43
Observation Devices		Mission Planning	62.70
Level Difficulty	53.03	Observation Devices	62.40
Mission Planning	52.77	Enemy Training Level	62.10
Light Data	51.23	Enemy Equipment	62.03
Weather	48.73	Friendly Composition	58.90
Friendly Equipment	47.60	Light Data	57.97
Terrain	47.00	3	57.47
Adjacent Unit	46.03	Enemy Mission	56.93
Unit Assessment		Task	53.17
Friendly Composition		Exercise Preparation	51.80
Simulator	42.47	Enemy Task Organization	51.53

(Computer output is located in Appendix F.)

The next item of interest is to determine if the pretest survey could be used to determine if selection factors could have various levels of importance based on the simulation environment. Based on the 95% confidence intervals (CI) for the factor means using the pooled standard deviation, there are several factors that that have different levels of importance based on their association with virtual or constructive

simulations. For example, the factor 'Terrain' in a virtual context has a 95% chance of being between 80 and 70. Terrain in a constructive context has a 95% chance of being between 57 and 37. Because these two confidence intervals do not over lap then the two factors' values cannot be the same at a 95% confidence level. Further examination yields different levels of importance for factors based on environment for "simulator selection"," friendly equipment"," weather", and "observation devices" (See Appendix F).

Determining the ability of the instrument to measure the different levels of importance of selection factors within a single environment is conducted next. A comparison of the means of Observation Devices (OD) and Combat Power Ratios (CPR) was conducted using the z statistic test in the constructive environment (See Appendix G). This test showed that the mean of the CPR was significantly larger than that of OD. Though no normalcy assumption was made using this test, each sample was found to follow a normal distribution using a chi-squared test (See Appendix G). The survey therefore has sufficient granularity to compare mean values within an environment.

A similar comparison of armor (Appendix H) and infantry (Appendix I) branch officers (Branch was assigned randomly for the pilot data) reveals no statistical difference. All of the factors have overlapping intervals. This result was expected because the branch groups were randomly assigned. Therefore the population groups should not have had distinguishing characteristics.

The factor results were also examined using a chi squared test for independence. These tests were done to because they did not rely on the assumptions associated with parrametric statistics. The survey results were tabulated using the frequency of occurrence of each category (Very Small Chance, Small Chance, Could Effect, High Chance, and Very High Chance). The resulting frequency tables appear in Appendix J.

Table 7 shows the frequency of each response's occurrence for the factor Terrain in each environment. The chi-squared test lends support for the ANOVA technique used above. The level of significance (p) from the chi-squared test for independence indicates that the expected frequencies are different for Terrain depending on the environment. This is in agreement with the results of the ANOVA.

TABLE 7 FREQUENCY COMPARISON BETWEEN CONSTRUCTIVE AND VIRTUAL

FACTOR: TERRAIN

<u>Factor</u> Terrain	Very Small Chance	Small Chance	Could Effect	High Chance	Very High Chance
Virtual	1	2	1	9	17
Constructive	9	4	11	3	3
p=0.000					

Table 8 contains the results of the chi-squared test for the selection factor Task.

The large value of "p" indicates that the value associated "Task" is unaffected by changing environments. This supports the ANOVA findings that "Tasks" level of importance unaffected by the choice of environment (See Appendix F).

TABLE 8 FREQUENCY COMPARISON BETWEEN CONSTRUCTIVE AND VIRTUAL

FACTOR: TASK

<u>Factor</u> Task	Very Small Chance	Small Chance	Could Effect	High Chance	Very High Chance
Virtual	3	3	12	9	3
Constructive	2	9	9	8	2
p=0.422					

Summary

The result of pre-testing the survey is the determination that the survey and the accompanying analysis techniques are valid. The pre-testing of the survey indicates that it should be able to determine:

- If for the entire sample the factors have an affect on the selection of the training scenarios.
- 2. If there are factors that are significant in one simulation environment and not the other.
- If certain selection factors are more important than other factors in a given environment.
- 4. If different sample sub-groups select different factors as being significant.
- 5. The value of the Weight Matrix can be determined

It is now appropriate to apply the instrument to the target population.

CHAPTER 6 DATA ANALYSIS

Responses

Eighty-five surveys were distributed of which 79 surveys were returned for the study. Of these 79, 62 were qualified. 6 surveys were not returned. The non-replies were continually re-contacted concerning the missing surveys. The previously agreeable survey candidates stated they had already returned the survey (not received) and were not interested in duplicating their previous responses (2) or that the survey was no longer a priority for them and they could not participate (4). It was determined that 7 more surveys could not be used because the solicited participant had another member of their unit complete the survey (ranked captain through private first class). Twelve of the respondents felt unqualified to estimate the impact the factors would have on determining training scenario selection in the virtual environment. The final response rate was 93%.

The participants qualifications and backgrounds covered all of the officer branches and ranged in rank from captain (assigned to a branch school and therefore qualified) to promotable colonel.

Tables 26 and 27 summarize the population membership information. In Table 26 the affiliation is by branch, the basic category of assignment. In Table 27 the

population is divided into two groups Ground Maneuver and Combat Support and Combat Service Support.

TABLE 26 NUMBER OF RESPONDENTS BY CATEGORY

Branch or Group	Number of responses
Air Defense	4
Armor	8
Aviation	6
Chemical Corps	1
Corps of Engineers	1
Field Artillery	. 7
Infantry	16
Military Intelligence	1
Military Police	5
Ordinance	3
Quarter Master	3
Signal Corps	2
Transportation Corps	1
Undeclared	4.
Total	62

TABLE 27 GROUND MANEUVER AND CS AND CSS RESPONDENTS

Branch or Group	Number of responses
Ground Maneuver	24
Combat Support and Combat Service Support (CS and CSS)	21
Total	45

The categories "Ground Maneuver" and "CS and CSS" were constructed from the responses. Ground Maneuver consists of the Armor and Infantry data while CS and CSS is made up from the data associated with Air Defense, Chemical Corps, Military Police,

Ordinance, Quarter Master, Signal Corps, and Transportation Corps. The Undeclared category is made up of the respondents who elected not to enter a branch. The complete set of tabulated data can be found in Appendix K. In the appendix the data is presented as the entire population and broken down into each group.

Tests and Analysis

The Determination of the Mean

The arithmetic mean of all of the values assigned to each factor were determined. Each of these values was screened against 30, the pre-selected level of minimal concern, all of the means exceeded this value. Table 28 contains all of the mean values and lists them in descending order.

TABLE 28 FACTOR MEANS

Constructive	Mean	Virtual	Mean
Light Data	77.80	Light Data	75.70
Previous Use	70.40	Task	66.40
Task	68.30	Previous Use	65.70
Simulator		Terrain	65.50
Exercise Preparation	66.80	Friendly Equipment	64.40
Level Difficulty	66.30	Level Difficulty	63.10
Friendly Equipment	66.00	Simulator	62.80
Enemy Composition	65.90	Enemy Composition	61.60
Enemy Mission	65.70	Unit Assessment	61.40
Friendly Composition	65.48	Enemy Mission	60.20
Combat Power Ratio	64.70	Exercise Preparation	58.80
Terrain	64.50	Weather	58.70
Mission Planning	62.60	Combat Power Ratio	58.40
Enemy Equipment	58.50	Mission Planning	57.80
Enemy Task Organization	58.00	Observation Devices	57.00
Adjacent Unit	57.70	Enemy Equipment	55.80
Enemy Training Level	51.80	Adjacent Unit	55.10
Weather		Friendly Composition	53.60
Observation Devices		Enemy Training Level	51.70
Unit Assessment	48.30	Enemy Task Organization	51.40

(See Appendix L)

Analysis of Variance

A One Way Analysis of Variance was conducted in order to determine which factor's levels of probable impact on scenario selection were significantly larger or smaller than others. This analysis was conducted on the various population groupings and is summarized in Tables 29 through 35. The ANOVA revealed that some factors are more important than others and that this varies according to population group.

TABLE 29 ANOVA RESULTS: ALL RESPONDENTS

Population:	All Responses
Most Important Factors:	Constructive Unit Assessment
	Virtual Unit Assessment
	Constructive Previous Use of a Scenario
Least Important Factors:	Constructive Light Data
	Constructive Observation Devices
	Virtual Enemy Training Level

(See Appendix L)

TABLE 30 ANOVA RESULTS: ARMOR

Population:	Armor
Most Important Factors:	Virtual Unit Assessment
	Constructive Unit Assessment
Least Important Factors:	Constructive Light Data
	Constructive Weather

(See Appendix N)

TABLE 31 ANOVA RESULTS: AVIATION

Population:	Aviation
Most Important Factors:	Constructive Exercise Preparation
	Virtual Observation Devices
Least Important Factor:	Constructive Observation Devices

(See Appendix O)

TABLE 32 ANOVA RESULTS: INFANTRY

Population:	Infantry
Most Important Factors:	Constructive Task
	Constructive Terrain
Least Important Factor:	Virtual Exercise Preparation
	Constructive Observation Devices
	Virtual Enemy Training Level

TABLE 33 ANOVA RESULTS: MILITARY POLICE

Population:	Military Police
Most Important Factors:	Constructive Unit Assessment
	Virtual Unit Assessment
	Constructive Previous Use of a Scenario
Least Important Factors:	Virtual Terrain
	Virtual Observation Devices
	Virtual Light Data

(See Appendix R)

TABLE 34 ANOVA RESULTS: GROUND MANEUVER

Population:	Ground Maneuver
Most Important Factors:	Constructive Unit Assessment
	Virtual Unit Assessment
	Virtual Terrain
Least Important Factors:	Constructive Weather
	Constructive Observation Devices
	Constructive Enemy Training Level

(See Appendix T)

TABLE 35 ANOVA RESULTS: COMBAT SUPPORT AND COMBAT SERVICE SUPPORT

Population:	Combat Support and Combat Service Support
Most Important Factors:	Constructive Unit Assessment
	Virtual Unit Assessment
	Constructive Previous Use of a Scenario
Least Important Factors:	Virtual Enemy Training Level
	Virtual Observation Devices
	Virtual Enemy Training Level

(See Appendix U)

There were no factors significantly more likely to be considered for Air Defense, Chemical Corps, Corps of Engineers, Field Artillery, Ordinance, Quarter Master, Signal Corps, or Transportation Corps. This is could be a result of the small number of participants or because no factors are more significant than any others.

Refinement of the One Way ANOVA of the Combined Population

Many of the results are very close in value based on the confidence intervals around the means. Further examination of the factors can be done using a two tailed z statistic test for the difference between two means. Prior to the conducting this test it may be important to recognize the relationships between the variances. An F test of equal variances can determine this relationship. This relationship then ensures that the appropriate mean test is conducted.

$$F = \frac{S_1^2}{S_2^2}$$

Where

 s_i^2 = the variance of population 1

 s_2^2 = the variance of population 2

 $df_{numerator} = n_1 - 1$

 $df_{denomin ator} = n_2 - 1$

(equation 5)

The results of this analysis are shown in Table 36. The table shows that only 3 factors' means are equal to the Constructive Terrain Mean.

TABLE 36 REFINEMENT OF ANOVA: CONSTRUCTIVE TERRAIN

Factor Mean is Less than the Constructive Terrain Mean	Factor Mean is Equal to the Constructive Terrain Mean	Factor Mean is More than the Constructive Terrain Mean
Constructive Enemy	Constructive Enemy Task	
Training Level	Organization	
Constructive Weather	Virtual Enemy Equipment	
Constructive Light Data	Virtual Adjacent Unit	
Constructive Observation		
Devices		
Virtual Friendly		
Composition		
Virtual Enemy Task		
Organization		
Virtual Enemy Training		
Level		

Comparing the Importance of the Constructive and Virtual Factors

A two tailed z statistic test for the difference between two means was conducted to determine the relative impact of Virtual and Constructive aspects of each factor for the total population. The surveys that did not include responses for each environment were eliminated from this analysis. The critical value for z in all of the tests was 1.96 (1.9599) at a 0.05 level of significance. Any test that produced a z statistic for which the absolute value exceeded 1.96 was determined to reject the hypothesis that the means were equal. Table 37 summarizes the results of the analysis. The environmental means were only

 $\label{eq:continuous} \mbox{different for Light Data and Observation Devices} \; . \; \mbox{All results can be found in Appendix} \\ \mbox{V}.$

TABLE 37 Z TEST: CONSTRUCTIVE VERSUS VIRTUAL

Means Are Not Equal	Means are Equal
Light Data	Terrain
Observation Devices	Task
	Simulator
	Friendly Composition
	Enemy Composition
	Combat Power Ratio
	Enemy Task Organization
	Enemy Equipment
	Friendly Equipment
	Adjacent Unit
	Enemy Training Level
	Enemy Mission
	Weather
	Previous Use
	Level Difficulty
	Unit Assessment
	Exercise Preparation
	Mission Planning

Though this type of test can be completed on any two factor value sets, an exhaustive analysis would require 2³⁸⁰ different combinations of factors and categories. All of the test results can be found in Appendix W.

Test for Independent Frequencies

All of the numerical responses given to each factor were categorized to produce

Table 38. The table lists each factor and the number of responses for each category

(Very Small Chance through Very High Chance):

TABLE 38 FACTOR FREQUENCIES FOR ALL RESPONDENTS

	Very Small	Small	Could	High	Very High
	Chance	Chance	Effect	Chance	Chance
Factor					
C Terrain	6	7	10	24	15
C Task	2	6	17	22	15
C Simulator	5	9	8	21	17
C F Comp	8	6	12	17	19
C E Comp	6	10	9	13	24
C Power Ratio	6	5	15	17	19
C Enemy Task	12	6	11	14	19
Org					
C E Equip	9	8	17	11	17
C F Equip	4	7	17	15	19
C Adjacent Unit	8	8	22	11	13
C E Train Level	13	10	15	14	10
C E Mission	6	7	11	18	20
C Weather	13	11	16	10	12
C Previous Use	2	5	16	19	20
C Difficulty	5	5	17	13	21
C Assessment	1	4	8	19	29
C Light Data	18	5	16	13	10
C Observation	16	12	14	10	10
Devices					
C Exercise Prep	6	8	7	21	20
C Mission	9	9	9	14	21
Planning					
V Terrain	6	4	8	15	17
V Task	3	7	11	14	15
V Simulator	7	6	9	11	16
V F Comp	11	9	9	9	12
V E Comp	5	10	8	13	. 14
V Power Ratio	5	7	18	11	9
V Enemy Task	12	6	12	9	11
Org					
V E Equip	10	4	12	14	10

	Very Small	Small	Could	High	Very High
	Chance	Chance	Effect	Chance	Chance
V F Equip	4	6	12	15	13
V Adjacent Unit	7	10	13	13	7
V E Train Level	13	7	9	11	10
Factor					
V E Mission	8	7	8	14	13
V Weather	9	3	16	9	13
V Previous Use	3	9	10	14	14
V Difficulty	5	7	13	10	15
V Assessment	5	3	4	9	28
V Light Data	10	4	14	10	12
V Observation	8	6	11	9	16
Devices					
V Exercise Prep	9	10	6	11	14
V Mission	10	7	10	9	14
Planning					

A chi-squared test for independence was then conducted to determine if the frequency that each factor was considered to be of a particular importance was independent of the environment under which it is considered. At the 0.05 level of significance none of the factors frequencies were effected by the environment. (Note the factor, Unit Assessment, could not be evaluated because more than 20% of the expected values were less than five (5). (All of the chi squared test results are in Appendix X.)

The same expected frequency sparseness problem arose with the examination of factor response frequency when comparing all of the factors, virtual and constructive, in terms of Ground Maneuver and CS and CSS. (See Ground Maneuver and CS and CSS Frequency Table in Appendix Y.) All of the resulting calculations produced more than 20% expected values under five (5). (See Appendix Z.)

In an effort to reduce the sparseness of the expected values the "Very Small Chance" and the "Small Chance" frequencies were combined into "Small". Similarly, "High Chance" and "Very High Chance" were combined into "High". The New frequency table appears in Appendix Z along with the frequency independence tests.

Even after combining the ranges, many of the expected values remained less than five (5) and the factor's frequencies remained independent of the grouping, Ground Maneuver versus Combat Service and Combat Service Support. Table 39 summarizes these results.

TABLE 39 FREQUENCY TEST: GROUND MANEUVER VERSUS COMBAT SUPPORT AND COMBAT SERVICE SUPPORT

Factor frequency is independent of Ground Maneuver or CS & CSS	More than 20% of the expected values are sparse (>5)
Constructive	Constructive
Terrain	Task
Simulator	Combat Power Ratio
Friendly Composition	Enemy Equipment
Enemy Composition	Friendly Equipment
Enemy Task Organization	Adjacent Unit
Enemy Mission	Enemy Training Level
Previous Use	Weather
Difficulty	Light Data
Assessment	Observation Devices
Exercise Preparation	Mission Planning
<u>Virtual</u>	<u>Virtual</u>
Terrain	Combat Power Ratio
Task	Enemy Task Organization
Simulator	Enemy Equipment
Friendly Composition	Adjacent Unit
Enemy Composition	Light Data
Friendly Equipment	
Enemy Training Level	

Factor frequency is independent of Ground Maneuver or CS &	More than 20% of the expected values are sparse (>5)
CSS	
Enemy Mission	
Weather	
Previous Use	·
Difficulty	
Assessment	
Observation Devices	
Exercise Preparation	
Mission Planning	

Assigning Weights to the Scenario Selection Factors

Two potential techniques exist for assigning weights to the various scenario selection factors. The first technique requires an exhaustive series of pair-wise comparisons of the factor means and variances. This method would result in groups of factors whose means could not be proven to be statistically different at a 0.05 level of significance. These factor-groups would then be assigned a weight or value derived from the means of all of the members of the group. This methodology would become quite cumbersome.

A far better approach is to address the issue of factor weights through the frequency table. The modal frequency group would determine the weight associated with the selection factor.

Table 40 is constructed by combining all of the frequency response data for environmental (constructive and virtual) and population (Ground Maneuver and Combat Service and Combat Service Support) groups. This can be done because the frequency analysis showed the responses to be independent of these associations.

TABLE 40 COMBINED CONSTRUCTIVE AND VIRTUAL FREQUENCY TABLE

	Very Small Chance	Small Chance	Could Effect	High Chance	Very High Chance
Factor					
Terrain	12	11	18	39	32
Task	5	13	28	36	30
Simulator	12	15	17	32	33
Friendly Composition	19	15	21	26	31
Enemy Composition	11	20	17	26	38
Combat Power Ratio	11	12	33	28	28
Enemy Task	24	12	23	23	30
Organization					
Enemy Equipment	19	12	29	25	27
Friendly Equipment	8	13	29	30	32
Adjacent Unit	15	18	35	24	20
Enemy Training Level	26	17	24	25	20
Enemy Mission	14	14	19	32	33
Weather	22	14	32	19	25
Previous Use	5	14	26	33	34
Difficulty	10	12	30	23	36
Assessment	6	7	12	28	57
Light Data	28	9	30	23	22
Observation Devices	24	18	25	19	26
Exercise Prep	15	18	13	32	34
Mission Planning	19	16	19	23	35

Table 41 is generated by selecting the modal value from Table 40.

TABLE 41 FACTOR WEIGHTS

	Very Small	Small	Could	High	Very High
		Chance (.3)			
Factor					
Terrain				X	
Task				X	
Simulator					X
Friendly Composition					X
Enemy Composition					X
Combat Power Ratio			X		
Enemy Task					X
Organization					
Enemy Equipment			X		
Friendly Equipment					X
Adjacent Unit			X		
Enemy Training Level	X				
Enemy Mission					X
Weather			X		
Previous Use					X
Difficulty					X
Assessment					X
Light Data			X		
Observation Devices					X
Exercise Prep					X
Mission Planning					X

The data in Table 41 produces the Weight matrix $[W_{i,1}]$ of equation 3 as shown in figure 1:

FIGURE 1: THE WEIGHT MATRIX

The Weight matrix is the final result of the survey data and analysis. All of the collected data is processed to produce this matrix that supports the multi-dimensional (METT-T factors) analysis of multiple simulation training scenarios.

Use of the System by a Potential User

As an example use of the system, consider the following: a user with the randomly assigned preferences, listed in Table 42, must decide between virtual simulation training scenario 1 (STS 1) or virtual simulation training scenario 2 (STS 2). The preferences in Table 42 are drawn from Tables 9 through 25 in chapter 3.

User Preference Matrix

TABLE 42 EXAMPLE USER PREFERENCES

Category	gory Desired Value	
Particular task to be trained	Task number 1642	See Task matrix
Combat Power Ratio	Doctrinal	2
Enemy Composition	Tank Company	9
Enemy Task Organization	Advanced Guard	4
Enemy Equipment	No preference	0
Enemy Training Level	Standard	2
Enemy Mission	Attack	6
Exercise Preparation Time	Complete package	2
Mission Planning Time	No Preference	0
Terrain	Desert	1
Weather	Clear	6
Light Data	Dusk	4
Friendly Composition	Battalion	12
Friendly Equipment	Current	2
Adjacent Unit	U.S. Army	10
Supported Observation Devices	Thermal and Optical	2
Previous Use of a Scenario	No previous use	See Previous Use matrix
Level of Difficulty	Standard	2
Simulator	No Preference	0
Unit Assessment	Yes	See Untrained matrix

Table 42 is in reality a multi-dimensional table. For example, in order to determine $[U_{11}]$ one must use the Task matrix and the Scenario Task matrix. The intersection of matrices yields $[U_{11}]$.

Task Matrix

In the military, tasks are generally represented by a Mission Training Plan (MTP) number (<u>Training Management</u>, 1991). For this example 1642 represents the task "Occupy an Assembly Area". Since our fictional user desires to train his unit on task 1642, that task number is placed in the Task matrix, $[t_{ij}]$. The various tasks that are trained by the Simulation Training Scenarios (STS) appear in the respective Scenario Task matrices, $[T_{ij}]$.

The value of $[U_{1,1}]$ is determined by the intersection of the Task matrix, $[t_{i,j}]$ with the Scenario Task matrix $[T_{ij}]$ for each scenario.

$$[t_{i,j}] = [1642]$$
 $[T_{ij}]$ for STS $1 = \begin{bmatrix} 1352 \\ 1642 \\ 5429 \end{bmatrix}$ $[T_{ij}]$ for STS $2 = \begin{bmatrix} 1352 \\ 1142 \\ 2431 \end{bmatrix}$

The values for $[U_{1,1}]$ for STS 1 is 0; the value for STS 2 is 1. This indicates that STS 1 contains the desired task while STS 2 does not.

Having determined the value of $[U_{11}]$, we must now consider the users desire not to repeat the use of a training scenario. This phase determines the value of $[U_{1,17}]$

Previous Use Matrix

The value of $[U_{1,17}]$ is determined by the relationship between the Previous Use matrix, $[P_{i,j}]$ and the scenario number. The Previous Use matrix, $[P_{i,j}]$ contains all of the numbers of the training scenarios the unit has previously executed. Because the user preferred not to reuse a scenario (see Table 42), the intersection of the sets are examined. If the intersection is the null set then $U_{1,17}=0$, otherwise $U_{1,17}=1$.

 $[P_{i,j}] = [STS \ 3 \ STS \ 4 \ STS \ 2]$ therefore, the values for $[U_{1,17}]$ for STS 1 is 0 the value for STS 2 is 1.

Untrained Matrix

During the unit's training assessment process the unit is evaluated on its performance on various tasks. The unit is evaluated as trained on a task (T), needing practice (P), or untrained on the task (U) (<u>Training Management</u>, 1991). The MTP task numbers of the tasks that the unit is untrained in are placed in the Untrained Matrix $[F_{i,j}]$. This information is required to evaluate $[U_{1,20}]$.

Since the user desires to consider the unit's assessment, the intersection of the Scenario Task Matrix, $[T_{i,j}]$, and the Untrained Matrix, $[F_{i,j}]$ are examined.

$$[T_{ij}]$$
 for STS 1 = $\begin{bmatrix} 1352\\1642\\5429 \end{bmatrix}$ $[T_{ij}]$ for STS 2 = $\begin{bmatrix} 1352\\1142\\2431 \end{bmatrix}$

[F_{ij}] for the unit =
$$\begin{bmatrix} 1476 \\ 1398 \\ 5429 \end{bmatrix}$$
 Therefore the values for [U_{1,20}] for STS 1 is 0 the

value for STS 2 is 1. This produces the following revised User Preference matrices:

With the evaluation of the of the final element of the User Preference Matrix it is necessary to evaluate the Difference Matrix with respect to the two simulation training scenarios.

The Scenario Characteristic Code Matrices

Table 43 summarizes the characteristics of the two training scenarios. The values for each category can be referenced from Tables 9 through 25 in chapter 3. By definition the values of $[S_{1,1}]$, $[S_{1,17}]$, $[S_{1,20}]$ are 0.

TABLE 43 SCENARIO CHARACTERISTIC CODES

Category	SCC for STS 1	SCC for STS 2
Particular task to be trained	0	0
Combat Power Ratio	2	2
Enemy Composition	8	9
Enemy Task Organization	4	4
Enemy Equipment	0	0
Enemy Training Level	2	2
Enemy Mission	6	6
Exercise Preparation Time	2	1
Mission Planning Time	0	0
Terrain	1	1
Weather	6	6
Light Data	4	4
Friendly Composition	12	12
Friendly Equipment	2	2
Adjacent Unit	10	10
Supported Observation Devices	2	2
Previous Use of a Scenario	0	0
Level of Difficulty	1	2
Simulator	0	0
Unit Assessment	0	0

Table 43 yields the following SCC for STS 1 and STS 2:

SCC for STS 1= [0 2 8 4 0 2 0 6 2 0 1 6 4 12 2 10 2 0 1 0 0]

SCC for STS 2= [0 2 9 4 0 2 0 6 1 0 1 6 4 12 2 10 2 0 2 0 0]

The Difference Matrix

The Difference matrix is formed by subtracting the SCC matrix from the UPC matrix. The Difference Matrix is a measure of the conceptual diastase between the simulation training scenario and the ideal simulation training scenario represented as:

The comparison of the User Preference Matrices and the Scenario Characteristic Code Matrices yields the two Difference matrices:

$$D_{i,i}$$
 for STS 1 = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

$$D_{i,j}$$
 for STS 2 = [1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1]

The final [U] matrices are then defined as:

Both these matrices are then multiplied by the Weight matrix [W].

The Rank Matrix

The impact of the weight matrix is that it applies the relative importance of each dimension (factor) as determined by the survey analysis to the selection process.

Equation 3 results in the Rank Matrix. This number is a measure of the agreement between the users preferences and the candidate simulation training scenarios.

$$\begin{bmatrix} R_{1,1} \end{bmatrix} = \begin{bmatrix} u_{1,1}, u_{1,2}, \dots, u_{1,20} \end{bmatrix}$$

$$\begin{bmatrix} w_{1,1} \\ w_{2,1} \\ \vdots \\ w_{20,1} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{20} u_{1,k} w_{k,1} \\ \vdots \\ w_{20,1} \end{bmatrix}$$

(equation 3)

$$[R_{1,1}]$$
 for STS 1 = [12.5] = 13.0

$$[R_{1,1}]$$
 for STS 2 = $[10.4]$ = 10.4

The larger value associated with STS 1 indicates that according to the users preferences, it is a better scenario for the required training.

Automated Sample Tool

The automated prototype tool is written using Microsoft Excel. The first screen, Figure 2, consists of the same User Preference matrix, Task matrix, Previous Use matrix, Untrained matrix, and Scenario Task matrices as in the above example. Due to the constraints of the prototype the matrices all appear in the form of [Element I, 1]. For all calculations the matrices were placed in their true form.

		STST	STS 2
Initial	Task	Scenario Task	Scenario Task
User Preference Matrix	Matrix	Matrix for STS 1	Matrix for STS 1
	1642	1352	1352
See Task matrix	1042	1642	1142
2			
9		5429	2431
4			
0			
2		Value of U (1,1)	Value of U (1,1)
6		0	Ι
2			
0	Previous		
1	Use Matrix		
6	STS 3		
4	STS 4		
12	STS 2		
2			
10		Value of U (1,17)	Value of U (1,17)
2		1	0
See Previous Use matrix			
2	Untrained		
0	Matrix		
See Untrained matrix			
	1476		
	1398		
	5429		
		Value of U (1,20)	Value of U (1,20)
		0	I

FIGURE 2: AUTOMATED TOOL SCREEN 1

Figure 2 also shows the calculation of the values of $[U_{1,\,1}]$, $[U_{1,\,17}]$, and $[U_{1,\,20}]$ for both STS 1 and STS 2. They are calculated the same way as they were in the manual example.

Figure 3 shows the revised User Preference matrices along with the Scenario Characteristic Codes for STS 1 and STS 2. The Difference matrices are also calculated for the two simulation training scenarios.

Revised	Revised			Difference	Difference
User Preference	User Preference			Matrix for	Matrix for
Matrix for STS 1	Matrix for STS 2	SCC for STS 1	SCC for STS 2	STS 1	STS 2
0	1	0	0	0	1
2	2	2	2	0	0
9	9	8	9	1	0
4	4	4	4	0	0
0	0	0	0	0	0
2	2	2	2	0	0
6	6	6	6	0 .	0
2	2	2	1	0	
0	0	0	0	0	0
1	1	1	I	0	0
6	6	6	6	0	0
4	4	4	4	0	0
12	12	12	12	0	0
2	2	2	2	0	0
10	10	10	10	0	0
2	2	2	2	0	0
0	1	0	0	0	1
2	2	1	2	1	0
0	0	0	0	0	0
0	1	0	0	0	

FIGURE 3: AUTOMATED TOOL SCREEN 2

Figure 4 shows the Final User Preference matrices for the two simulation training scenarios, the Weight matrix as determined from the analysis, and the resulting Rank matrices for the two simulation training scenarios. The larger value for STS 1 indicates it is a better selection.

Final	Final			
User Preference	User Preference	Weights	Rank Matrix	Rank Matrix
Matrix for STS 1	Matrix for STS 2	Matrix	for STS 1	for STS 2
T .	0	0.7	13.0	12.2
1	1	0.7		
0	I	0.9	Select STS 1	
I	I	0.9		
1	1	0.9		
I	1	0.5		
1	1	0.9		
1	0	0.5		
1 I	I	0.9		
T	1	0.5		
1	I	0.1		
1	1	0.9		
1	1	0.5		
1	I	0.9		
1	I	0.9		
1	I	0.9		
1	0	0.5		***
0	1	0.9		
T	1	0.9		
1	0	0.9		

FIGURE 4: AUTOMATED TOOL SCREEN 3

Summary

The frequency based statistical analysis yielded the weights needed for the implementation strategy. This type of analysis eliminated any problems of parameteric assumptions. The Preference-Characteristic technique proved to be a valid technique by which to differentiate between scenarios. The simplicity of the method lent itself easily to manual manipulation and a prototype automated tool.

CHAPTER 7 FINDING, LESSONS LEARNED AND FUTURE RESEARCH

The intent of this effort was to investigate a methodology to determine factors for selecting training scenarios in virtual and constructive simulations. The research addressed this issue in four areas:

- 1. How is simulation training used, and what can be accomplished to streamline the simulation planning process?
- 2. What method of knowledge acquisition is most suitable for collecting information from a widely dispersed non-homogeneous population?
- 3. What means of analysis are the most appropriate for differentiating levels of significance between the selection factors?
- 4. How can this information be applied to the selection of simulation training scenarios?

Background

The effort to exploit the potential of simulation for improving task proficiency began in the early 1970's. The technology of the time limited most efforts to improvements in live simulation training. It was not until 1973 that the use of computer tools was harnessed to the effort. Constructive TES was the first computer based simulation training device.

The advancement in technology and the successful use of these initial training tools lead to the expansion of simulation training devices. Along with the explosion of computer based simulations was an order of magnitude explosion in the number of training scenarios. The number of scenarios became so unwieldy that numerous governmental review boards recommended that efforts be made to catalog them and place them in libraries.

To control this problem, the Army's latest major simulation program, the Combined Arms Tactical Trainer (CATT), developed SATS-TREDS. The Standard Army Training Schedule-Training Exercise Development System searches a scenario database and presents a prioritized list of appropriate scenarios. Members of the Army simulation and training community have also emphasized the need for adding additional types of searches. This type of automated scenario selection streamlines the simulation training planning process.

The intended user group is very diverse and geographically spread out. The need to contact a large number of members from each group drove the decision to use a survey to gather the information. The expense involved in conducting face to face interviews with SME's or utilizing Nominal Group Techniques makes use of these techniques prohibitive. If the information gathering could be coupled with other activities the expense is reduced.

Findings

The survey was conducted in two phases; an informal pilot phase used to develop and refine the survey instrument and a formal pilot where members of the targeted populations were solicited for their responses. The informal portion ensured that the instrument's questions addressed the appropriate issues and could be easily understood. During this phase the form and substance of the questions were changed to ensure that the correct information could be gathered. The data garnered from a pre-sampling exercise was also examined using the intended analysis techniques to ensure that the type of analysis was appropriate.

The formal pilot study gathered data from members of the target population. This formal exercise allowed the accumulation of representative data for analysis from the target population.

Two types of statistical analysis were applied to the data, mean based and frequency based. The mean based comparisons required a great deal of iterative calculations. These comparisons revealed statistical differences within populations and between environments. The expansive number of variables (2³⁸⁰) makes this type of analysis too cumbersome for this application. Mean based comparisons would be appropriate for contexts which had fewer selection factors to compare.

The frequency based analysis was conducted using chi-squared tests to examine the frequency or preference levels. This analysis also revealed differences in factor

levels, but failed to determine differences in factors between the two environments.

Though this type of analysis may not be as precise, it easily lends itself to quantification.

The quantified data can then be applied through a mathematical model that uses these weights to differentiate between previously equivalently ranked alternatives. An automated search can be accomplished by quantifying the characteristics of the scenarios and the users preferences against the same criteria. Simple mathematics and matrix comparisons and calculations can then be used to quantify the level of agreement between the scenarios and the users preferences. An example demonstrated and yielded a correct solution.

Lessons Learned

The most important lessons learned during this process from the aspect of the research are related to the distribution and analysis of the instrument. The survey process could have been improved by taking two significant steps. The most important step would be the early co-opting of an organization that controlled a large number of the members of the target population. If an organization could have been brought into the process at the survey design phase, this leverage could have been used to ensure better participation by respondents who had a stake in the analysis.

Early efforts to make the survey an on-line document or electronic form would have benefited the process. Placement of the survey on the world wide web, though

restricting access via a password, would have improved data collection and organization.

Distributing the survey via electronic mail would have also improved the process. This step could have increased distribution, eased data categorization and analysis, and increased response rate.

The final lesson concerns the types of statistical analysis used to determine the weights. Better prior analysis of the informal pilot data would have revealed the exhaustive nature of means comparisons for such a large sample space. This effort would have lead to a much earlier focus on the frequency based statistical analysis. The frequency based analysis used in this research is the basis for the assignment of weights.

Further Research

Efforts should be made to implement this methodology in refining simulation scenario searches. Though the research was conducted within a military training environment, this methodology can be applied in any domain. The process of eliciting information from the user population, conducting discriminating analysis to determine levels of importance, and designing tools to automate the application of the knowledge can be beneficial in many situations.

Work can be continued on the studied problem as well. Based on the results of the pilot study, an effort should be made to gain wider distribution of the survey as an official Army survey. This could be accomplished in many ways. The Army Survey Office should be utilized to distribute the survey over a much wider range. This would require a formal proposal and funding for distribution, collection, and some automation of analysis. The survey could also be placed on line. Links could be placed on official Army web sites and the survey could be converted to an interactive document. The conversion to an interactive format would ease the problems of data tabulation and analysis. A great deal of effort would be required to coordinate for permission to establish links from other Army sites and to establish some kind of screening process to prevent unqualified respondents from contaminating the database.

Once data has been collected the selection methodology should be automated.

The automated system could be integrated into the SATS, SATS-TREDS or any other

planning tool and other scenario library devices. Resource Consultants Incorporated is currently working on the Close Combat Tactical Trainer (CCTT) scenario library. In their design they have included a METT-T factor selection screen. There is currently no code or algorithms functioning based on the screen, but the interface could be easily modified to support scenario searches based on the methodology.

Further research could also be conducted into use of other scenario screening factors. The Battlefield Operating Systems, Combat Imperatives, Principles of War, and Combat Instruction Sets are also good candidates for selection factors. This same methodology could be applied to determine their importance.

The methodology is also applicable in any industry that utilizes simulation based training. The tool designer must establish valid candidate selection factors, collect and analyze data to determine the appropriate weights for those factors, categorize the scenario database and user preferences using those factors, and apply the Preference-Characteristic Matrix Technique.

Appendix A

Glossary

ANOVA Analysis of Variance

AGTS Advanced Gunnery Training Simulator

ARI Army Research Institute

ARTEP Army Training and Evaluation Plan

BBS Brigade Battle Simulation

BDE Brigade

BFDT Board for Dynamic Training

BN Battalion

CBS Corps Battle Simulation

CATT Combined Arms Tactical Trainer

CCTT Close Combat Tactical Trainer

CTC Combat Training Center

CS & CSS Combat Support and Combat Service Support

df Degrees of freedom

DIS Distributed Interactive Simulation

GUARDFIST I Call for Fire Trainer

HLA High Level Architecture

HQDA Headquarters Department of the Army

Janus A constructive simulation

JCM Joint Combat Model

LAN Local Area Net

METL

Mission Essential Task List

METT-T

Mission, enemy, terrain, troops, and time

MTP

Mission Training Plan

MILES

Multiple Integrated Laser Engagement System

MTS

Moving Target Simulator

NGT

Nominal Group Technique

NTC

National Training Center at FT. Irwin

NTSA

National Training Systems Association

OPFOR

Opposing Forces

PCC

Preference-Characteristic Code

PDU

Protocol Data Unit

PM

Project Manager

REALTRAIN

Early vehicle/crew live simulation engagement

trainer

REFORGER

Re-enforce Germany Training Exercise

SAF

Semi-automated Forces

SATS-TREDS

Standard Army Training System-Training

Exercise Development System

SCC

Scenario Characteristic Code

SCOPES

Early small unit live simulation engagement

trainer

SIMNET

Simulation Networking Trainer

SME

Subject Matter Expert

STS

Simulation Training Scenario

TADSS

Training Aides, Devices, Simulators and

Systems

TPS Codes

Task Performance Support

TES

Tactical Engagement System

TWGSS

Tank Weapons Gunnery Simulation System

UCOFT

Unit Conduct of Fire Trainer

UPC

User Preference Code

Appendix B

User Preference Code and Scenario Characteristic Code Elements

TABLE 9 $U_{1,2}$ $S_{1,2}$ VALUES

User Preference	Value of U _{1,2}
CPR> doctrinal level	3
CPR = doctrinal level	2
CPR< doctrinal level	1
No Preference	0

TABLE 10 U_{1,3} S_{1,3}: VALUES

User Preference	Value of U _{1,3}
Motorized Rifle Division	16
Motorized Rifle Regiment	15
Motorized Rifle Battalion	14
Motorized Rifle Company	13
Tank Division	12
Tank Regiment	11
Tank Battalion	10
Tank Company	9
Airborne Division	8
Air Assault Brigade	7
Air Mobile Assault Brigade	6
Infantry Pure	5
Armor Pure	4
Aviation Pure	3
Air Defense Pure	2
Field Artillery Pure	1
No Preference	0

TABLE 11 $U_{1,4} S_{1,4} VALUES$

User Preference	Value of U _{1,4}
Main Body	6
Forward Security Element	5
Advanced Guard	4
Mobile Obstacle Detachment	3
Command Post	2
Reconnaissance Element	1
No Preference	0

TABLE 12 $U_{1,5} S_{1,5} VALUES$

	User Preferen	ce	Value of U _{1,5}
Tank	Infantry	Tactical Air	
T-80	BMP-3	Holkum	5
Any one o	f the above but	not all three	4
T-72	BMP-2	Hind series	3
Any one o	f the above but	not all three	2
	Other		1
No Preference		9	0

TABLE 13 $U_{1,6} S_{1,6} VALUES$

User Preference	Value of U _{1,6}
Enhanced Probability of Hit, Kill, or Detection	3
Standard Probability of Hit, Kill, or Detection	2
Depressed Probability of Hit, Kill, or Detection	1
No Preference	0

TABLE 14 U_{1,7} S_{1,7} VALUES

User Preference	Value of U _{1,7}
Offensive Operations	
Attack	6
Meeting Engagement	5
Pursuit	4
Defensive Operations	
Hasty Defense	3
Prepared Defense	2
Withdrawal	1
No Preference	0

TABLE 15 U_{1,8} S_{1,8} VALUES

User Preference	Value of U _{1,8}
Complete Training Support Package	2
Partial Training Support Package	1
No Preference	0

TABLE 16 U_{1,9} S_{1,9} VALUES

User Preference	Value of U _{1,9}
Unit Required to Execute Supplied Orders	2
Unit must Execute the Mission Planning Process	1
No Preference	0

TABLE 17 $U_{1,10} S_{1,10} VALUES$

User Preference	Value of U _{1,10}
Mountainous	6
Swamp	5
Jungle	4
Wooded	3
Rolling Hills	2
Desert	1
No Preference	0

TABLE 18 $U_{1,11} S_{1,11} VALUES$

User Preference	Value of U _{1,11}
Clear	6
Light Rain	5
Rain	4
Snow	3
Fog	2
Sleet/Icy	1
No Preference	0

TABLE 19 $U_{1,12} S_{1,12} VALUES$

User Preference	Value of U _{1,12}
Daylight	5
Dusk	4
Night (Moon)	3
Night (No moon)	2
Dawn	1
No Preference	0

TABLE 20 $U_{1,13} S_{1,13} VALUES$

User Preference	Value of U _{1,13}
Brigade	14
Task Force	13
Battalion	12
Squadron	11
Company	10
Battery	9
Troop	8
Platoon	7
Section	6
Detachment	5
Squad	4
Crew	3
Team	2
No Preference	0

TABLE 21 $U_{1,14} S_{1,14} VALUES$

User Preference	Value of U _{1,14}
Current Table of Organization and Equipment	2
Other	1
No Preference	0

TABLE 22 $U_{1,15} S_{1,15} VALUES$

User Preference	Value of U _{1,15}
United States Army	10
United States Marines	9
British	8
German	7
Kuwaiti	6
Saudi Arabian	5
French	4
Canadian	3
Korean	2
Other	1
No Preference	0

TABLE 23 $U_{1,16} S_{1,16} VALUES$

User Preference	Value of U _{1,16}
All Imaging Equipment	4
Radar, Thermal, and Optical	3
Thermal and Optical	2
Optical	1
No Preference	0

TABLE 24 $U_{1,18} S_{1,18} VALUES$

User Preference	Value of U _{1,18}
More Difficult	3
Standard	2
Less Difficult	1
No Preference	0

TABLE 25 $U_{1,19} S_{1,19} VALUES$

User Preference	Value of U _{1,19}
AGTS	14
BBS	13
CBS	12
CCTT	11
Driver Trainer	10
JANUS	9
JCM	8
MTS	7
Pilot Trainer	6
SIMNET	5
GUARDFIST I	4
TSFO	3
UCCATS	2
UCOFT	1
No Preference	0

Appendix C

Survey Questions' Intent

This section is designed to collect the demographic data that will determine if the respondent is qualified to respond to the questionnaire. It can also be used to differentiate the different sub-groups of the respondent population.

Please answer the following questions. All information will be kept in strict confidence. Only aggregate data will be reported.

A. General					
Name (optional):		Branch		Rank:	
Unit Current D	Outy Position:_		Last Level of Co	mmand:	
Military Education Level:		Age:	Time in Service:		
Time in Unit	Previous du	ity positions over t	the last five years:		
B. Training and Simulat	ion_				
For the following questions	s, circle the mo	ost appropriate resp	oonse.		
1. If you related your unit chart below?	training exper	ience in terms of y	ears, where would	you place yourself on	he
less than 5 years	6 - 10 years	11 - 15 years	16 - 21 years	over 21 years	
2. In the last year, how mu	ch total time h	nave you/your staff	spent planning sim	ulation based training	?
less than 10	11-20	21 - 30	31 - 40	over 41	
hours	hours	hours	hours	hours	
3. In the last year, how mu	ch time has yo	our unit spent execu	ating simulation ba	sed training?	
less than	1-5	6-10	10-15	over 16	
1 day	days	days	days	days	

4. Of your simulator training time, how much is in a virtual environment (SIMNET, UCOFT, Flight Trainer, etc.)?

5. Of your simulator training time, how much is in a constructive environment (JANUS, BBS, CSSTSS, CBS, etc.)?

6. How effective do you believe simulation based training is in preparing your unit for war?

Question 7 will elicit the simulators with which the subject has trained. The subjects estimation of effectiveness may also indicate biases. All acronyms are included in the glossary.

7. Which simulations or simulator devices have you or your unit trained with, and how would you evaluate their effectiveness? (Please check)

Simulator	I or my unit have trained with this simulator	Not effective 0-20%	Somewhat ineffective 21-40%	Effective 41-60%	Highly effective 61-80%	Very Highly Effective 81-100%
AGTS						
BBS						
CBS						
CCTT						
Driver Trainer						
JANUS						
JCM						
MTS						
Pilot Trainer						
SIMNET						
GUARDFIST I						
TSFO						

ADDITIONAL COMMENTS:					

All of these questions refer to factors that may or may not influence your selection of training scenarios to be utilized in constructive and virtual simulations. Please answer them by placing a numerical value corresponding to your level of belief that you would use each factor in selecting a training scenario. You may use any value between 0 and 100. The scale below is meant only as a guide. You are to give answers for both virtual and constructive environments. It may help to imagine that you are planning virtual (SIMNET, UCOFT, PGT, CCTT, Pilot trainer, etc.) and constructive (JANUS, BBS, CBS, etc.) training exercises. What are the chances you consider these factors?

The scale is designed to help the respondent to focus his response. The use of the numerical and verbal scale eliminates ambiguity.

1. How much does the type of terrain (desert, rolling hills, restrictive, etc.) affect your scenario selection?

INTENT: To determine the value the battle space land form has on the

selection

EFFECT: If this factor is not important then scenarios do not need to be

created on terrain bases representing the different geographic operational areas. This will reduce the number of scenarios significantly and eliminate the need to produce variants for

different theaters.

If this factor is important the scenario library must contain a

variant of every mission on each terrain base.

Keyed: Terrain is currently tracked in the training support package.

2. How much does one particular task to be trained (individual through collective) affect your scenario selection?

INTENT: To determine if a particular task can effect the scenario

selection.

EFFECT: If this factor is not important then the current task list comparison used

in SATS-TREDS is acceptable. The most matches between the desired task list and the training scenario's supported task list is desirable.

If this factor is important the search criteria must be altered so that a

training scenario must include the "key" task to be acceptable.

Keyed: Supported training tasks are currently tracked in the training support

package.

3. How much does the simulator type (JANUS, CBS, BBS, SIMNET, CCTT etc.) affect your scenario selection?

INTENT: To determine the value of limiting the search to a particular

simulator.

EFFECT: If this factor is not important then all of the scenarios must be

examined. This would be useful for long term planning before

resources constraints are considered. This would allow the trainer to select the best scenario available to train the desired tasks and then look

to resource that plan.

If this factor is important the training planner must consider resource

constraints prior to refining his search.

Keyed: Each simulation type is currently tracked in the training support

package.

EFFECT:

4. How much does the friendly unit's composition (pure or combined arms) affect your scenario selection?

INTENT: To determine the value the friendly units make up has on the selection.

If this factor is not important then the library will be searched without

regard to friendly force structure.

If this factor is important the search will have to consider the types of units and the types of vehicle crew configurations that the scenario is

designed to support.

Keyed: Friendly unit's composition is currently tracked in the training support

package.

5. How much does the enemy unit's composition/capabilities (motorized, light, armored, attack aviation, etc.) affect your scenario selection?

INTENT: To determine the value of enemy's characteristics on the selection.

EFFECT: If this factor is not important then very generic enemy force templates

can be created. Such templates could be built on battalion, regiment, division and corps frameworks and be associated with any terrain and

task list.

If this factor is important the scenario library must contain a variant of every mission on each terrain base.

Keyed:

Enemy unit's composition/capabilities are currently tracked in the

training support package.

6. How much does the enemy/friendly combat power ratio affect your scenario selection?

INTENT:

To determine the value combat power ratios have on the selection.

EFFECT:

If this factor is not important then generic enemy force templates may be

inserted in any scenario in the library.

If this factor is important the doctrinally correct combat power ratios

should be referenced in the scenario selection.

Keyed:

Combat power ratio is not currently tracked in the training support

package.

7. How much does the enemy's task organization affect your scenario selection?

INTENT:

To determine the value the enemy's task organization on the selection.

EFFECT:

If this factor is not important then enemy combat elements such as the regimental recon, advanced guard, or a motorized rifle regiment can be

standardized with little need to adjust later.

If this factor is important the scenario library must contain variations of

enemy force structure.

Keyed:

Enemy force structure is not currently tracked in this form.

8. How much does enemy equipment (T-62 vs. T-72 or Hind-D vs. Holkum) affect your scenario selection?

INTENT:

To determine the value enemy equipment types have on the selection.

EFFECT:

If this factor is not important then scenarios can be created with

"typical" enemy equipment. This will reduce the size of the data base

required to support the simulations.

If this factor is important the scenario library must track scenario variants with different enemy equipment. This causes a need for a larger data base to support the simulation and the ability to add or

modify equipment in the scenario.

Keyed:

Enemy equipment is currently tracked in the training support package.

Enemy equipment is currently tracked in the training support package. Keyed:

9. How much does friendly equipment (M60 vs. M1A2 or Cobra vs. Apache Longbow) affect your scenario selection?

INTENT:

To determine the value friendly unit equipment has on the selection.

EFFECT:

If this factor is not important all of the scenarios can be built with

"typical" friendly equipment. This will reduce the size of the data base

associated with the simulations.

If this factor is important the scenario library must be built to accommodate different friendly equipment types. This causes a need for a larger data base to support the simulation and the ability to add or modify equipment in the scenario.

Keyed:

Friendly equipment is currently tracked in the training support package.

10. How much does adjacent friendly unit equipment (M60 vs. M1A2 or Cobra vs. Apache Longbow) affect your scenario selection?

INTENT:

To determine the value adjacent friendly unit equipment types have on

the selection. This will support the simulation of multinational forces

fighting in adjacent areas of the battle field.

EFFECT:

If this factor is not important all of the scenarios can be built with

"typical" friendly equipment. This will reduce the size of the data base

associated with the simulations

If this factor is important the scenario library must be built to accommodate different equipment types. This causes a need for a larger data base to support the simulation and the ability to add or modify equipment in the scenario. This will also drive the need to depict all equipment types in a "friendly" and "enemy" mode.

Keyed:

Adjacent unit equipment is not clearly defined in the training support

package.

11. How much does the enemy's training level affect your scenario selection?

INTENT:

To determine the value the enemy's training level has on the selection.

EFFECT:

If this factor is not important standard values for enemy training indicators such as the time to acquire a target and the rate of fire of a

weapon system can be incorporated in all of the scenarios.

If this factor is important these training indicators must be coded in such a way that they can be changed for particular units in a given scenario (perhaps for recently reconstituted units). They may be able to

be correlated to a level of difficulty associated with the scenario.

Keyed:

The enemy's training level is not currently tracked in the training

support package.

12. How much does the enemy's mission affect your scenario selection?

To determine the value the enemy's mission has on the selection. *INTENT:*

EFFECT: If this factor is not important it will reduce the number of scenarios that

need to be maintained in the library.

If this factor is important the number of scenarios will increase substantially. The library will need to contain all combinations of friendly unit missions versus enemy unit missions for all other factors

that are significant.

The enemy's mission is currently tracked in the training support Keyed:

package.

13. How much does weather (fog, rain, or haze) affect your scenario selection?

To determine the value weather has on the selection. *INTENT:*

EFFECT: If this factor is not important weather effects can be either removed

from the scenarios or added as a random variable dependent on the

terrain form being utilized.

If this factor is important the scenario library must contain scenario variations that duplicate the weather patterns associated with the terrain forms. It would also become necessary to enable the trainer to

modify weather conditions on demand within the scenario.

Weather is not currently tracked in the training support package. Keyed:

14. How much does previous use of a scenario affect your scenario selection?

To determine the value previous use of a scenario have on the selection. *INTENT:* This will support the desire of a commander to expose his soldiers to new conditions under which to practice a task. Or the ability to re-train

a soldier/unit on an important scenario with which they have had

difficulty in the past.

EFFECT: If this factor is not important no preference will be given to a scenario

based on its prior use or lack of use.

If this factor is important the simulation selection tool must record previous use of a scenario at the soldier or unit level as well as the

trainer preference for re-use.

Keyed: The previous use of a scenario is not currently tracked in the training

support package.

15. How does the level of difficulty of the exercise affect your scenario selection?

INTENT: To determine the value the level of difficulty of the exercise has on the

selection. This factor would allow commanders to execute crawl, walk,

run training with their units more easily. It would also allow

soldiers/units to retrain on tasks they have had difficulty executing at an

easier level.

EFFECT: If this factor is not important no changes need to be made to the current

selection technique.

If this factor is important an algorithm for determining the level of difficulty for a simulation exercise must be developed. The algorithm must consider as a minimum simulator and mission. This information

would then have to be coded for the search.

Keyed: The level of difficulty of the exercise is not currently tracked in the

training support package.

16. How much does unit past performance assessment (T's, P's, and U's) affect you scenario selection?

INTENT: To determine the value unit past performance assessment has on the

selection.

EFFECT: If this factor is not important there is no need to reference training

assessment during selection.

If this factor is important it would have to be associated with a priority list. A commander would need to prioritize mission essential task list (METL) elements according to their assessment. This would affect the selection of the scenario both in terms of supported tasks and level of difficulty. (You would not want to have an untrained unit attempt to execute a task under the most difficult conditions.)

Keyed:

Unit past performance assessment is currently tracked by the SATS-TREDS tool.

17. How much do light conditions (daylight, night, % illumination, etc.) affect your scenario selection?

INTENT:

To determine the value light conditions have on the selection.

EFFECT:

If this factor is not important then each scenario can be established with a single time(local noon or midnight). This reduces the computational load on the simulator with the factors affected by lighting(shadow, detection, etc.) Only scenarios that included tasks that required darkness would be constructed to include night.

If this factor is important each scenario would have to be built with a scenario time clock. This would require the simulator to make calculations based on position of the sun and the moon. This adds computational a load to the system. The clock would need to be adjustable to be able to start the scenario at any scenario local time.

Keyed:

Light conditions are not currently tracked in the training support

package outside of tasks such as "Conduct night attack."

18. How much does the capability to support observation devices (FLIR, Thermal, NVG, Optic, etc.) and their degradation affect your scenario selection?

INTENT:

To determine the value the capability to support observation devices has

on the selection.

EFFECT:

If this factor is not important the scenarios can be used by nits that have

all versions of the same equipment. This reduces the number of

scenarios and their configurations.

If this factor is important scenarios have to be built maintained

specifically to support each improvement in sensing.

Keyed:

The capability to support observation devices is currently tracked by the

type of simulator.

19. How much does the amount of exercise preparation required (placement of forces on the battle field, coordination of simulation facility use, and other administrative tasks associated with the training) affect your scenario selection?

INTENT:

To determine the value the amount of exercise preparation required has on the selection. This affects the quality of the training support package needed to accompany each scenario.

EFFECT: If this factor is not important then each scenario/training support

package must be built to a predetermined level of completeness. The level of completeness addresses items such as unit placement on the land

forms, unit scheduling, and training schedule planning.

If this factor is important then all scenarios must still be built to a set standard, but certain scenario's should have placement and coordination data that can be used to support the training. This may be important for reserve and national guard units that may not have the

resources and time to do a complete training cycle.

Keyed: The amount of exercise preparation required is not currently tracked in

the training support package.

21. How much does the amount of mission planning required (troop leading procedures, course of action development, OPORD preparation) affect your scenario selection?

INTENT: To determine the value the amount of mission planning required has on

the selection.

EFFECT: If this factor is not important the all scenarios will be built to allow the

trained unit to conduct a complete planning cycle. The TSP will include

a complete higher headquarters' operations order (OPORD).

If this factor is important then some scenario TSP's will include complete orders and execution matrixes for the higher unit, the trained unit and any other elements taking part in the training. This will allow some units who lack planning time to train on operational execution.

Keyed: The amount of mission planning required is currently tracked in the

training support package.

22. Please list below any other factors that affect your scenario selection?

FACTOR:	
INTENT:	To determine if other potentially important factors affecting scenario selection have been left out of the survey.
EFFECT:	If factors are repeatedly noted on the form or seem particularly applicable to the process they will be included on the survey used in the definitive study.
Keyed:	Not applicable

Additional Comments:						

Appendix D Survey's Initial Form

Date	
Duto	

Please answer the following questions by circling your response. All information will be kept in strict confidence. Only aggregate data will be reported.

A. General

Name (optional):	MAX-	Branch:	·	Rank:
Current Duty Position:		Last Level of Co	ommand:	_
Military Education Level:		Age:	Time in Service:	
Time in Unit	Previous duty	positions over the	he last five years:	

B. Training and Simulation

1. If you related your unit training experience in terms of years where would you place yourself on the chart below ?

2. In the last year, how much time have you/your staff spent planning simulation based training?

3. In the last year, how much time has your unit spent in simulator based training?

4. Of your simulator training time, how much is in a virtual environment (SIMNET, UCOFT, Flight Trainer etc.)?

5. Of your simulator training time, how much is in a constructive environment (JANUS, BBS, CSSTSS, CBS, WARSIM, etc.)?

6. Does your unit use simulation as a capstone training event?

Yes	No

7. Which simulations or simulator devices have you, personally, trained with, and how would you evaluate their effectiveness? (Please check.)

Simulator	I have personally trained with this simulator	Not effective 0-20%	Somewhat ineffective 21-40%	Effective 41-60%	Highly effective 61-80%	Very Highly Effective 81-100%
AGTS						
BBS						
CBS						
CCTT						
Driver Trainer						
JANUS						
JCM						
MTS						
Pilot Trainer						
SIMNET						
STOW(E)						
TSFO						
UCCATS						
UCOFT						
OTHERS:						
					·	

ADDITIONAL COMMENTS:							

The following questionnaires are designed to determine what factors effect a commander's or operations officer's selection of a simulation training scenario. The intent is to determine which factors or properties are the most important for virtual simulations, such as CCTT, and which are most important for constructive simulations, such as JANUS or CBS.

The factors that are determined to be the most important will be converted to an expert system that will be incorporated into SATS-TREDS. As part of SATS-TREDS, the commander will be able to tailor them to aid in selecting the appropriate training scenario from the army's simulation library. The selection process will be interactive; the commander will be presented with 5 or 6 scenarios that closely meet his needs. Each choice's strengths will be highlighted to help the commander make his decision.

The separate questionnaires allow the commander to emphasize factors that he thinks can be better trained in each environment.

			Date	
Name (optional) Current Duty Position_ Previous duty positions			Rank	
All of these questions a scenarios to be utilized corresponding to your You may use any value	I in constructive sim level of belief that	ulations. Please ans you would use each	wer them by placing a factor in selecting a	g a numerical value training scenario.
Very Small Chance 0-20%	Small Chance 21-40%	Could Effect 41-60%	High Chance 61-80%	Very High Chance 81-100%
1. How much does the	e type of terrain (de	ssert, rolling hills, re	strictive etc.) affect	your selection?
			Val	lue
2. How much does one	e particular task affe	ect your selection?	Va	lue
3. How much does the	simulator selection	(JANUS, CBS, BBS	Setc.) affect your s	
4. How much does the	friendly unit's com	position (pure or co	mbined arms) affec	
5. How much does the aviation etc.) affect ye		oosition/capabilities (motorized, light, ar	mored, attack
,			Va	lue

6. How much does the enemy/friendly ratio affect your selection?	Value	
7. How much does enemy equipment (T-62 vs. T-72 or Hind D vs. Holkum)	affect yo	ur selection?
8. How much does friendly equipment (M60 vs. M1A2 or Cobra vs. Apache	Longbow) affect you
selection?	Value	
9. How much does friendly bordering unit equipment (M60 vs. M1A2 or Col Longbow) affect your selection?	ora vs. Ap	ache
Longbow) affect your selection?	Value	
10. How much does enemy's training level affect your selection?	Value	
11. How much does enemy's strength level affect your selection?	Value	
12. How much does the enemy's mission affect your selection?	Value	
13. How much does weather affect your selection?	Value	
14. How much does previous use of a scenario affect your selection?	Value	

15.	Please list below any other factors that effect your scenario selection.		
	FACTOR:	Value	
	ditional Comments:		
_			•

			Date	
Name (optional) Current Duty Position Previous duty position			Rank	
All of these questions scenarios to be utilize placing a numerical v selecting a training sconly as a guide.	ed in virtual environs alue corresponding	ment such as SIMNE to your level of belie	T or CCTT. Please of that you would us	answer them by e each factor in
Very Small Chance 0-20%	Small Chance 21-40%	Could Effect 41-60%	High Chance 61-80%	Very High Chanc 81-100%
1. How much does th	ne type of terrain (de	essert, rolling hills, re	estrictive etc.) affect	your selection?
			Va	lue
2. How much does the	e light condition (da	ylight, night, % illun	nination, etc.) affect	your selection?
o. v	. 1 1 C	S 4 1 4 i 9	Va	lue
3. How much does or	ie particular task an	ect your selection?	Va	lue
4. How much does the	e simulator selection	n (CCTT, SIMNET e	etc.) affect your sele	ection?
			Va	
5. How much does th	e friendly unit's cor	mposition (pure or co	mbined arms) affec Va	
6. How much does th aviation etc.) affect y		position/capabilities	(motorized, light, ar	mored, attack
4.144011 010.) WILOU	,		Va	lue
7. How much does th	e enemy/friendly ra	tio affect your select	ion?	
			Va	lue

8. How much does the existence of pre-planned fires affect your selection?	Value	
9. How much does enemy equipment (T-62 vs. T-72 or Hind D vs. Holkum)	affect you	ar selection?
	Value	
10. How much does friendly equipment (M60 vs. M1A2 or Cobra vs. Apache selection?	Longboy	v) affect your
	Value	
11. How much does friendly bordering unit equipment (M60 vs. M1A2 or Co	bra vs. A	pache
Longbow) affect your selection?	Value	
12. How much does enemy's training level affect your selection?	Value	
13. How much does enemy's strength level affect your selection?	Value	
14. How much does the enemy's mission affect your selection?	Value	
15. How much do thermal conditions affect your selection?	Value	
16. How much does fog, rain or haze affect your selection?	Value	
17. How much does previous use of a scenario affect your selection?	Value	

18.	Please list below any other factors that effect your scenario selection.		
	FACTOR:	Value	
AD	DITIONAL COMMENTS:		
_			

Appendix E

Survey's Final Form

The following questionnaire is designed to determine what factors affect a commander's or operations officer's selection of a simulation training scenario. The Standard Army Training System-TRaining Exercise Development System (SATS-TREDS) currently selects scenarios based on the desired MTP tasks that the commander wants trained. These selected tasks determine the training audience. The intent is to determine which additional factors or properties are the most important for virtual simulations, such as SIMNET, and which are most important for constructive simulations, such as JANUS or CBS. A general definition of a virtual training simulation is a training device where the trainee is immersed in a computer generated environment designed to replicate conditions and react to stimuli accurately mimicking the real world (battlespace). A constructive training simulation can be defined as computer generated people, units, and equipment operating in a synthetic battle, where the trainee(s) interacts through computer terminals, screens and other similar devices. The trainees may be insulated from the computer architecture by means of organic unit reporting systems.

The most important factors will be modeled in an expert system within SATS-TREDS. As part of SATS-TREDS, the commander will be able to tailor the factors to aid in selecting the appropriate training scenario from the Army's simulation library. The selection process will be interactive; the commander will be presented with 5 or 6 scenarios that closely meet his needs. Each choice's strengths will be highlighted to help the commander make his decision.

Indicate the impact each factor has on the environment by placing values for virtual simulations in the triangle and the responses for constructive simulations in the square.

Please respond for the two types of simulations: virtual (SIMNET, COFT, etc.) and constructive (Janus, BCTP, etc.). Your responses are independent for each category. For example: there is no reason you cannot assign a score of "100" to both types of simulations for the factor "Terrain".

Please answer the following questions. All information will be kept in strict confidence. Only aggregate data will be reported.

A. General

Name (optional)	:	_ Branch:_	Rank:
Unit	Current Duty Position:		Last Level of Command:
Military Educati	on Level: A	.ge:	Time in Service:
Time in Unit	Previous duty po	ositions over th	e last five years:

B. Training and Simulation

For the following questions, circle the most appropriate response.

1. If you related your unit training experience in terms of years, where would you place yourself on the chart below?

2. In the last year, how much total time have you/your staff spent planning simulation based training?

3. In the last year, how much time has your unit spent executing simulation based training?

4. Of your simulator training time, how much is in a virtual environment (SIMNET, UCOFT, Flight Trainer, etc.)?

5. Of your simulator training time, how much is in a constructive environment (JANUS, BBS, CSSTSS, CBS, etc.)?

6. How effective do you believe simulation based training is in preparing your unit for war?

7. Which simulations or simulator devices have you or your unit trained with, and how would you evaluate their effectiveness? (Please check)

Simulator	I or my unit have trained with this simulator	Not effective 0-20%	Somewhat ineffective 21-40%	Effective 41-60%	Highly effective 61-80%	Very Highly Effective 81-100%
AGTS						
BBS						
CBS						
CCTT						
Driver Trainer						
JANUS						
JCM						
MTS						
Pilot Trainer						
SIMNET						
GUARDFIST I						
TSFO						
UCCATS						
UCOFT						
OTHERS:						

ADDITIONAL COMMENTS:	

All of these questions refer to factors that may or may not influence your selection of training scenarios to be utilized in constructive and virtual simulations. Please answer them by placing a numerical value corresponding to your level of belief that you would use each factor in selecting a training scenario. You may use any value between 0 and 100. The scale below is meant only as a guide. You are to give answers for both virtual and constructive environments. It may help to imagine that you are planning virtual (SIMNET, UCOFT, PGT, CCTT, Pilot trainer, etc.) and constructive (JANUS, BBS, CBS, etc.) training exercises. What are the chances you consider these factors?

j					l	
Very Small Chance 0-20%	Small Cl 21-40		Could Effect 41-60%		High Chance 61-80%	Very High Chance 81-100%
1. How much does the selection?	e type of to	errain (desc	ert, rolling hills	s, resti	rictive, etc.) affec	t your scenario
	Value	\triangle	v	alue		
		Virtual		•	Constructive	
2. How much does one scenario selection?	e particula	r task to be	trained (indiv	idual	through collective	e) affect your
	Value	\triangle	V	alue		
		Virtual			Constructive	
3. How much does the scenario selection?	simulator	type (JAN	US, CBS, BBS	S, SIM	INET, CCTT etc.) affect your
	Value	\triangle	V	alue		
		Virtual			Constructive	
4. How much does the selection?	friendly	ınit's comp	osition (pure o	or con	abined arms) affe	ct your scenario
	Value	\triangle	V	alue		
		Virtual			Constructive	

10. How much does a Longbow) affect you			quipment	(M60 vs.	M1A2 or Cobra vs.	Apache
	Value	\triangle		Value		
		Virtual			Constructive	
Very Small Chance 0-20%	Small Cl 21-40		Could Eff 41-60%		High Chance 61-80%	Very High Chance 81-100%
11. How much does	the enemy'	s training le	vel affect	your sce	nario selection?	
	Value	\triangle		Value		
		Virtual			Constructive	
12. How much does	the enemy'	s mission af	fect your	scenario :	selection?	
	Value	\triangle		Value		
		Virtual			Constructive	
13. How much does	weather (fo	g, rain, or h	aze) affec	t your so	cenario selection?	
	Value	\triangle		Value		
		Virtual			Constructive	
14. How much does	previous us	e of a scena	ario affect	your sce	enario selection?	
	Value	\triangle		Value		
		Virtual			Constructive	
15. How does the le	vel of diffic	culty of the	exercise a	ffect you	r scenario selection?	,
	Value	\triangle		Value		
		Virtual			Constructive	

16. How much does us selection?	nit past pe	erformance a	assessment (T's, P	's, and U's) affect	you scenario
	Value	\triangle	Value		
		Virtual		Constructive	
Very Small Chance 0-20%	Small Cl 21-40		Could Effect 41-60%	High Chance 61-80%	Very High Chance 81-100%
17. How much do light selection?	t condition	ns (daylight,	night, % illumina	tion, etc.) affect y	our scenario
	Value	\triangle	Value		
		Virtual		Constructive	
18. How much does the and their degradation a	e capabili affect you	ty to suppor	t observation devi election?	ces (FLIR, Therma	al, NVG, Optic, etc.)
	Value	\triangle	Value		
		Virtual		Constructive	
19. How much does the field, coordination of straining) affect your s	simulation	facility use,	preparation require, and other admin	red (placement of fi strative tasks asso	orces on the battle ciated with the
	Value	\triangle	Value		
		Virtual		Constructive	
21. How much does th action development, C	e amount PORD pr	of mission preparation) a	planning required ffect your scenar	(troop leading procio selection?	cedures, course of
	Value	\triangle	Value		
		Virtual		Constructive	

Very Small Chance 0-20%	Small Chance 21-40%	Could Effect 41-60%	High Chance 61-80%	Very High Chance 81-100%
22. Please list below	any other factors that	affect your scenar	io selection?	
FACTOR:				
	Value Virtual	Value	Constructive	
FACTOR:	V II tuai			
	Value Virtual	Value	Constructive	
FACTOR:				
	Value Virtual	Value	Constructive	
Additional Comme	nts:			

Appendix F

Tabulated Pilot Data

Virtual Responses

	Terrain	Task	Simulator	F Comp	E Comp	Power Ratio	Enemy Task Org	E Equip	F Equip	Adjacent Unit	E Train Level	E Mission	Weather	Previous Use	Difficulty	Assessment	Light Data	Observation Devices	Exercise Prep	Mission Planning
1	70	60	65	55	40	65	80	65	80	60	55	75	70	80	65	65	65	65	75	80
2	75	57	90	40	20	25	20	90	95	95	85	65	100	90	100	75	65	95	10	
3	100	100	100	100	100	100	100	100	100	50	100	100	100	100	100	100	0	50	100	100
4	55	0	70	80	90	90	50	80	100	80	85	100	100	70	100	100	99	100	100	
5	80	70	90	10	90	40	0	80	20	15	15	30	70	70	25	30	75	30	20	7(
6		80	90	90	100	100	80	20	60	40	100	20	100	80	100	90	100	90	80	20
7	80	41	100	50	60	81	40	40	90	70	80	80	90	50	90	50	70	50	60	
8	30	60	90	10	40	25	20	16	25	50	40	45	25	25	40	50	65	40	70	50
9	80	100	80	60	60	60	50	60	60	60	70	80	90	60	70	70	90	50	45	4:
10	45	55	30	34	65	70	71	72	60	59	70	74	76	79	80	69	80	84	86	90
11	75	30	56	40	35	30	24	30	60	50	60	40	10	50	60	40	60	50	30	80
12	81	41	21	41	100	80	50	41	100	100	61	0	75	0	75	80	61	61	61	6
13	25	80	90	90	90	90	90	50	40	45	45	50	90	90	90	90	80	80	90	9(
14	95	15	10	92	81	87	15	97	92	90	87	8	90	90	80	20	90	70	2	
15	85	50	60	70	70	90	50	70	50	50	70	55	90	75	60	45	71	50	20	4(
16	80	50	100	100	100	50	50	70	70	50	20	50	50	100	100	70	0	100	50	5(
17	80	60	30	80	80	60	60	60	60	70	50	80	80	80	60	70	80	80	50	60
18	90	40	90	10	90	70	80	90	50	25	90	70	90	70	80	25	90	80	80	9(
19	81	80	61	81	65	60	81	80	80	60	40	40	15	81	61	60	60	80	40	41
20	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
21	80	20	60	25	27	100	80	100	80	85	50	41	85	85	70	25	20	38	75	7
22	80	20	50	30	40	20	10	30	70	40	55	30	90	50	50	30	50	50	20	9(
23	80	60	90	85	20	45	40	20	80	95	25	60	75	20	80	100	10	100	5	6
24	80	20	40	90	10	50	60	20	80	30	20	60	20	100	25	10	30	40	50	6
25	70	81	61	45	90	100	45		100	40	80	100	100	100	45	65	80	40	60	4
26	80	70	80	64	60	70	20	30	90	60	70	80	40	70	20	60	60	70	20	9
27	80	25	11	75	10	5	10	50	50	40	40	10	50	60	60	40	20	90	15	2
28	85	50	60	70	70	90	50	70	50	50	70	55	90	75	60	45	71	50	20	4
29	70	70	70	70	70	70	70	70	70	70	70	70	70	70		70	70	70	70	7
30	90	40	90	10	90	70	80	90	50	25	90	70	90	70	80	25	90	80	80	9

Constructive Responses

								-		- 4								20		_
Questionnaire	Terrain	Task	Simulator	F Comp	E Comp	Power Ratio	Enemy Task Org	E Equip	F Equip	Adacent Unit	E Train Level	E Mission	Weather	Previous Use	Difficulty	Assesment	Light Data	Observation Device	Exercise Prep	Mission Planning
1	20	75	89	25	90	95	90	50	50	60	60	90	50	40	40	40	60	80	10	85
2	20	30	20	36	40	30	80	70	10	40	30	20	60	30	80	40	40	30	80	10
3	60	90	25	40	100	65	80	80	80	60	100	90	80	100	50	70	90	50	60	45
4	60	60	80	10	50	50	30	90	40	70	50	30	8.0	10	35	20	80	60	50	40
5	20	40	10	15	80	55	60	80	20	5	75	40	25	80	20	0	90	0	95	40
6	20	80	50	70	60	80	90	70	30	60	45	70	10	50	50	70	50	50	80	10
7	60	45	41	30	41	80	80	100	85	85	50	45	85	85	75	30	30	50	75	80
8	20	70	45	60	30	80	45	70	40	40	80	60	30	85	8.5	8.5	40	35	65	45
9	6.0	60	65	81	65	60	81	80	60	55	55	80	10	81	61	40	65	80	60	65
10	50	50	50	40	10	0	50	40	40	0	10	50	30	75	30	0	0	70	10	10
11	40	60	70	60	60	80	60	70	70	60	50	75	60	80	60	50	60	60	50	70
12	79	50	0	0	0	50	50	30	70	50	80	50	50	0	0	30	100	0	50	50
13	15	50	40	30	30	10	50	30	50	50	30	45	10	25	60	55	25	50	70	60
14	5	85	90	8	19	13	85	3	8	10	13	92	10	10	30	80	10	30	98	98
15	90	80	60	90	90	90	50	90	80	45	80	90	55	90	90	90	45	40	90	90
16	81	0	0	0	100	80	0	41	100	100	61	0	75	0	75	80	61	61	61	61
17	25	70	50	60	65	70	80	70	40	50	40	60	90	50	40	60	40	50	70	20
18	50	40	29	35	70	74	72	69	80	61	70	61	62	69	70	72	72	68	68 85	59 85
19	60	50	50	80	80	80	60	80	80	80	80	80	80	60	70 50	70 65	85 70	85 15	50	40
20	55	30	20	10	75	60	60	75	10	20 30	60	30	10	60 50	10	50	30	50	40	0
21	60	60	0	50	100	100	60	60 10	10	40	100	20	100	80	100	90	90	90	80	20
22	100	80	80	90		50	80	20	35	40	55	70	25	25	30	0	15	10	15	85
23	40	90	50	40	50		0	95	100	90	90	100	100	75	100	100	99	100	100	100
24	75	0	10	80	90	90	50 50	100	50	25	50	100	50	50	100	50	0	0	50	50
25	50	50	100	50	50	100			50	5	15	25	0	10	0	25	25	5	90	95
26	25	45	10	60	80	75 75	80	10 75	85	65	60	50	70	65	60	40	50	60	40	80
27	75	40	60	65	60		60			5	75	40	25	80	20	0	90	0	95	40
28	20	40	10	15	80	55	60	80	20			70	10	50	50	70	50	50	80	10
29	20	80	50	70	60	80	90	70	10	60 20	45 60	30	60	60	50	65	70	15	50	40
30	55	30	20	10	7.5	60	60	1/5	10	20	80	30	00	00	30	0.5	1 70	113	30	40

Appendix G

Pilot Mean Data and ANOVA

```
One-Way Analysis of Variance
All Pilot Responses
Analysis of Variance
Source
       DF
                SS
                       MS
                               F
                                     p
             81212
                       2082
                              2.97
                                    0.000
        39
Factor
             812717
                        701
Error 1160
Total
      1199
              893929
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
                     Mean
                             StDev ---
                N
Level
                             17.18
Terrain
                30
                     75.73
                     53.17
                             25.08
Task
                30
                30
                     66.83
                             26.56
Simtor
                30
                     58.90
                             28.59
FComp
                30
                     64.43
                             28.54
EComp
                30
                             26.33
                     65.43
PowRat
                30
                     51.53
                             27,20
ETskOrg
                             26.92
                30
                     62.03
EEquip
                30
                     69.40
                             21.91
FEquip
                     57.47
                             21.96
                30
AdUnit
ETrnLev
                30
                     62.10
                             23.83
                30
                     56.93
                             26.78
EMision
                30
                     73.03
                             26.96
Weather
                30
                     70.33
                             23.78
PrevUse
Diff
                30
                     68.87
                             22.64
                30
                     57.97
                             25.43
Assment
                30
                     62.40
                             28.10
LtData
                             20.96
                30
                     66,77
ObDev
                30
                     51.80
                             29.62
ExPrep
                     62.70
                30
                             27.91
MnPlan
                30
                     47.00
                             25.28
CTern
                30
                     54,33
                             23.44
CTask
                30
                     42.47
                             29.02
CSimlatr
                30
                     43.67
                             27.76
CFComp
                             26,71
CEComp
                30
                     61.33
                30
                     63.57
                             26.64
CPowRat
CETaskOg
                30
                     61.43
                             22.87
                30
                     62.77
                             27.46
CEEquip
                     47.60
                             29.53
CFEquip
                30
                30
                     46.03
                             26.55
CAdUnit
                30
                             24.41
CETranLv
                     56.30
CEMssion
                30
                     56.43
                             26.94
CWeather
                30
                     48.73
                             30.43
                30
                     54.17
                             28.93
CPrevUse
                30
                             28.43
CDifclty
                     53.03
                30
                     51.23
                             28.81
CAssmnt
                     54,40
                             29.29
CLtData
                30
CObsDev
                30
                     44.80
                             29.16
CExPrep
                30
                     63.90
                             24.92
                30
                     52.77
                             29.86
CMsPlan
```

60

45

Pooled StDev =

26.47

75

Appendix H

Single Environment Calculations (z test)

z-Test: Two Sample for Means		- MI-0
	Combat Power Ratio	Observation Devices
Mean	63.56666667	44.8
Known Variance	709.42	850.3
Observations	30	30
Hypothesized Mean Difference	0	
Z	2.602702007	
P(Z<=z) one-tail	0.00462465	
z Critical one-tail	1.644853	***************************************
P(Z<=z) two-tail	0.002312325	
z Critical two-tail	1.959961082	120
z > z critical		
So reject the null hypothesis: the	ie means are not equal	•

Observation Devices	Chi Tes	-Squared			
80			1-2=3	df and alpha = 5% is 7.815	
30		clusion: Accep			
50	001	ioiabioni iioop		······,	
60					
0				Expected	Chi-Square
50		Bin Fre	quenc	Frequency	terms
50		Bin Tree	y	rioquency	•
50	0.00	25.00	8	5,5902	0,4523
35	25.00	40.00	4		0.3603
80	40.00	53.00	7	5.2829	0.0152
70	53.00	69.00	5	5.5794	0.0317
60	69.00	100.00	6		5.2235
0	100.00 Mo		0	_	6.0830
50	100,00 100			•	
30					
				Observation D	anicas
40				Observation De	evices
61				Mean	44.8
50				Standard Error	5.323856523
68 85				Median	5.525650525
				Mode	50
15 50				Standard Deviation	29.1599631
90				Sample Variance	850.3034483
10				Kurtosis	-0.882601457
100				Skewness	-0.101795785
0				Range	100
5				Minimum	0
60				Maximum	100
0				Sum	1344
50				Count	30
15				Confidence Level(95.0%)	10.88851511

Power Ratio 95	C	hi-Square ritical valı 815		=3 df and alpha = 5% is	
30	C	onclusion	: Accept Ho	(data is normal)	
65					
50					
55				Expected	Chi-Square
80		Bin	Frequency	Frequency	terms
80	0.00	40.00	5	5.3889	0.0281
80	40.00	55.00	5	5.5709	0.0585
60	55.00	67.00	4	5.3215	0.3282
0	67.00	81.00	11	5.7693	4.7424
80	81.00	100.00	5	5.1219	0.0029
50	100.00 M	lore (0		5.1600
10	-			•	
13					
90				Power Ratio	
80					
70				Mean	63.56667
74				Standard Error	4.862874
80				Median	72
60				Mode	#NUM!
20				Standard Deviation	26.63506
100				Sample Variance	709.4264
50				Kurtosis	0.212669
90				Skewness	-0.917163
100				Range	100
75				Minimum	0
75				Maximum	100
55				Sum	1907
80				Count	30
60				Confidence	9.9457
				Level(95.0%)	

Appendix I

ANOVA for Armor (Pilot)

```
One-Way Analysis of Variance
Armor
Analysis of Variance
                       MS
                               \mathbf{F}
Source DF
                SS
                                     p
                                   0.426
        39
             22761
                       584
                             1.04
Factor
       120
                       562
             67482
Error
              90243
Total
       159
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
                     StDev -----+----
        N
             Mean
Level
                     67.50
                             25.00
Terrain
                 4
                                         (-----*----)
                 4
                     55.25
                             34.01
Task
                 4
                     80.00
                             21.60
Simtor
                 4
                     37.50
                             22.17
FComp
                 4
                     50.00
                             11.55
EComp
                 4
                     46.50
                             29.08
PowRat
                             18.26 (-----*----)
                     30.00
                 4
ETskOrg
EEquip
                 4
                     36.50
                             18.50
                             27.20
FEquip
                 4
                     61.25
AdUnit
                 4
                     55.00
                             12.91
                 4
                     61.25
                             17.50
ETrnLev
                     58.75
                             25.29
EMision
                     73.75
                             32.50
Weather
                 4
                     46.25
                             14.93
PrevUse
            62.50
                     22.17
Diff
                 4
                     50.00
                             16.33
Assment
                                           (-----*----
LtData
                  4
                     68.75
                             16.52
ObDev
                  4
                     47.50
                              5.00
                  4
                     48.75
                             21.75
ExPrep
                  4
                     71.25
                             27.80
MnPlan
                                           ----*----)
                  4
                     60.00
                             32.66
CTern
                  4
                     63.75
                             14.93
CTask
CSimlatr
                  4
                      57.75
                             18.17
                  4
                      65.25
                             26.65
CFComp
                  4
                      59.00
                             30.99
CEComp
                  4
                      80.00
                              16.33
CPowRat
                  4
                      71.50
                              17.67
CETaskOg
                  4
                      65.00
                             38.73
CEEquip
                  4
                      56.25
                             21.36
CFEquip
                  4
                      55.00
CAdUnit
                             21.21
                  4
                      71.25
CETranLv
                             23.23
CEMssion
                  4
                      51.25
                             25.29
                  4
                      56.25
                             43.08
CWeather
                  4
                      82.75
                              2.63
CPrevUse
                  4
                      80.25
                              16.44
CDifclty
                  4
                      61.25
                              30.65
CAssmnt
CLtData
                  4
                      56.25
                              26.89
CObsDev
                  4
                      63.75
                              25.62
CExPrep
                  4
                      70.00
                              9.13
                      52.50
                             25.98
CMsPlan
                                                30
                                                             90
Pooled StDev = 23.71
                                                      60
```

Appendix J

ANOVA for Infantry (Pilot)

```
One-Way Analysis of Variance
Infantry
Analysis of Variance
        DF
                SS
                       MS
                               F
Source
                                     p
                       1047
                              1.36 0.104
        39
             40833
Factor
              92174
                       768
       120
Error
             133007
Total
       159
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
                             StDev ----
Level
                      Mean
                     81.25
                             13.15
Terrain
                 4
                                         (-----*----)
                 4
                     59.25
                             32.69
Task
                 4
                     78.75
                             19.31
Simtor
FComp
                 4
                     55.00
                             32.40
EComp
                 4
                     46.75
                             36.45
                 4
                     72.50
                             35.71
PowRat
                 4
                     70.00
                             34.64
ETskOrg
                  4
                             16.52
EEquip
                     88.75
FEquip
                 4
                     88.75
                             10.31
                 4
                      72.50
                             21.02
AdUnit
                 4
                             23.98
                      72.50
ETrnLev
                  4
                      70.25
                             24.43
EMision
                  4
                      88.75
                             14.36
Weather
                  4
                              8.54
                      88.75
PrevUse
                  4
                      83.75
                              18.87
Diff
                  4
                      66.25
                             31.19
Assment
LtData
                  4
                      37.50
                             32.79
ObDev
                  4
                      62.00
                             24.62
                  4
                      65.00
                             38.51
ExPrep
                  4
                      65.00
                             41.43
MnPlan
                  4
                      40.00
                             23.09
CTern
                  4
                      63.75
                             25.62
CTask
                  4
                      33.50
                              38.54 (
CSimlatr
CFComp
                  4
                      37.75
                              10.34
                  4
                      67.50
                              32.02
CEComp
                  4
                      52.50
                              34.28
CPowRat
                  4
                      77.50
                              12.58
CETaskOg
                  4
                      65.00
                              12.91
CEEquip
                  4
                      37.50
                              34.03
CFEquip
CAdUnit
                  4
                      47.50
                              15.00
CETranLv
                  4
                      52.50
                              35.94
                  4
                      57.50
                              37.75
CEMssion
                  4
                      50.00
                              29.44
CWeather
                  4
                      55.00
                              31.09
CPrevUse
                  4
                      45.00
                              28.87
CDifclty
                              14.14
                      50.00
CAssmnt
CLtData
                  4
                      55.00
                              26.46
CObsDev
                  4
                      52.50
                              20.62
CExPrep
                      47.50
                              29.86
                      35.00
                              38.51
CMsPlan
                                             30
                                                   60
                                                          90
Pooled StDev =
                 27.71
```

Appendix K

Chi-square test of Frequency Independence For Terrain and Task (Pilot)

Chi-Square Test Terrain

Expected counts are printed below observed counts

ChiSq =
$$3.200 + 0.333 + 4.167 + 1.500 + 4.900 +$$

 $3.200 + 0.333 + 4.167 + 1.500 + 4.900 = 28.200$
df = 4, p = 0.000
2 cells with expected counts less than 5.0

Chi-Square Test Task

Expected counts are printed below observed counts

V. Sm CH Sm. CH C. Effet Hi CH V. Hi CH Total 1 3 3 12 9 3 30 2.50 6.00 10.50 8.50 2.50
$$2 \quad 2 \quad 9 \quad 9 \quad 8 \quad 2 \quad 30 \\ 2.50 \quad 6.00 \quad 10.50 \quad 8.50 \quad 2.50$$
Total 5 12 21 17 5 60

ChiSq = $0.100 + 1.500 + 0.214 + 0.029 + 0.100 + 0.100 + 1.500 + 0.214 + 0.029 + 0.100 = 3.887$ df = 4, p = 0.422 4 cells with expected counts less than 5.0

Appendix L

Tabulated Data for the Target Population

Constructive Responses

O Mission Planning	50	10	90	95	30	50	06	80	70	20	0	90	100	80	20	100	90	20	20	20	85	9	100	80	90	100	100
qerq esicise D	90	10	90	80	20	75	90	70	06	80	20	90	100	90	70	100	80	70	20	90	92	20	100	80	20	80	100
C Observation Devices	80	20	06	20	20	25	09	40	20	80	0	9	0	90	20	20	22	10	9	30	85	9	70	100	20	0	100
C Light Data	80	25	9	20	70	0	9	40	20	20	0	9	20	06	30	10	20	10	9	20	85	09	0	80	20	0	100
Insmassa O	80	85	100	98	90	75	90	20	90	09	100	20	70	06	30	80	80	90	80	06	86	80	06	100	90	100	100
Viliculty O	80	85	80	85	20	100	06	20	20	10	20	06	20	20	20	100	80	20	9	20	06	80	100	80	90	80	100
Sevious Use	90	75	90	95	20	20	90	80	75	80	100	30	100	20	90	100	20	70	09	20	75	20	80	40	25	100	100
TedhseW O	90	20	70	20	70	25	81	40	40	0	0	10	20	90	30	100	20	40	09	20	90	30	0	80	30	100	100
C E Mission	06	20	90	20	70	75	06	41	40	20	30	30	100	80	30	100	20	70	80	75	92	90	22	80	25	100	100
C E Train Level	90	20	80	20	20	20	09	21	20	0	30	30	20	20	20	100	20	20	9	20	06	80	65	80	25	80	100
tinU tnessbA O	90	20	09	20	20	20	80	20	40	0	40	90	80	90	20	09	09	20	9	30	81	30	90	40	09	20	100
Q F Equip	06	75	80	20	20	20	100	20	20	0	40	06	80	06	20	60	09	30	9	30	81	30	100	9	70	. 80	100
C E Equip	90	25	80	20	20	75	80	20	20	0	40	10	0	90	40	09	20	9	9	30	81	60	100	80	70	80	100
C Enemy Task Org	90	25	80	20	70	25	75	61	20	09	40	10	0	06	20	80	20	09	80	50	81	90	0	80	20	80	100
C Power Ratio	90	20	80	20	70	75	90	61	20	09	40	10	100	06	70	80	20	60	80	20	81	9	90	80	20	20	100
C E Comp	06	9	09	50	06	20	80	61	40	0	30	30	85	90	80	9	20	09	80	22	06	100	80	9	06	100	100
qmoD I D	80	9	80	20	70	100	90	61	20	10	30	20	100	90	20	20	20	40	20	75	75	80	100	40	100	100	100
Totalumi& O	80	20	30	90	90	100	90	80	80	10	30	90	06	90	20	20	20	70		80				80		20	100
C Task	70	9	80	20	20	20	80	80	90	10	90	70	92	20	20	40	20	70	40	75	100	20	95	80	100	100	80
C Terrain	90	80	9	95	20	20	80	40	30	20	10	75	92	0	75	10	20	9	9	50	75	50	75	80	06	0	100
Капк	MAJ	MAJ	LTC	LTC	COL	CPT	MAJ	MAJ	COL	MAJ	COL	LTC	CPT	MAJ	CPT	MAJ		MAJ	ΝΑ	MAJ	MAJ	MAJ	MAJ	LTC	LTC	MAJ	MAJ
Branch	ΑD		AD	AD	AR	AR		AR	AR	AR	AR	AR	۸ ۲			۸۷			S				FA	FA	ΕA		FA
Questionnaire	10	49	56	61	-	31	36	50	52	57	9	62	22	37	38	45	46	51	43	19	2	က	4	5	12	40	58

Constructive Responses Continued

65	95	25	25	20	80	40	80	0	80	70	99	40	90	80	0	30	90	10	75	100	45	21	80	90	35	10	75	81	90	თ	80	100	40	100
65	92	0	25	70	80	40	80	0	80	30	75	40	20	80	40	25	9	45	22	92	85	21	80	90	20	2	22	90	06	6	80	100	40	100
100	20	20	25	30	80	40	80	20	20	10	40	40	30	0	0	80	40	2	10	75	90	21	90	90	20	10	25	85	20	54	80	0	09	100
85	22	20	80	0	100	20	80	30	90	10	20	90	09	0	20	100	9	5	10	85	20	21	90	90	15	15	61	65	80	68	80	0	20	100
92	20	100	20	22	80	20	06	80	70	20	82	90	30	80	100	25	80	90	80	100	88	21		90	92	8	8	75	8	28	80	80	20	100
85	21	20	25	100	100	20		65	20	20	20	90	20	100	20	100	20	10	20	20	9	38	90	90	30	15	90	06	80	25	100	20	20	100
20	20	22	90	20	80	20	06	90	20	20	20	90	20	80	09	90	09	15	20	20	80	40	90	90	09	80	100	55	80	8	92	100	20	100
55	09	0	20	20	80	20	80	30	09	20	20	40	20	0	0	85	90	2	20	75	90	36	65	90	75	10	80	90	20	66	90	0	40	100
06	85	0	80	09	80	06	06	20	20	10	80	90	09	0	9	80	20	25	40	20	82	41	90	90	80	10	75	100	20	96	82	20	75	100
40	80	0	21	20	80	06	06	0	70	10	09	20	22	2	40	100	10	30	20	75	80	21	90	90	20	0	25	55	20	92	80	0	9	80
85	92	0	80	20	80	40	20	0	10	20	20	90	90	100	20	80	20	20	90	20	80	40	90	90	92	20	25	20	8	83	80	0	80	20
100	92	25	80	20	80	40	06	75	20	20	82	9	88	100	40	80	20	20	20	20	81	18	90	90	98	70	75	80	90	80	80	0	80	100
85	92	0	85	90	80	20	06	75	30	10	80	90	88	2	90	85	40	10	20	20	81	22	90	90	32	40	41	82	20	92	80	0	09	80
85	98	0	85	25	80	80	90	0	90	10	82	90	90	2	40	90	9	10	10	85	8	22	90	90	90	10	41	80	20	79	82	0	90	75
75	92	0	85	20	80	80	90	20	40	20	90	20	90	80	90	82	40	35	10	85	81	36	90	90	85	15	41	80	20	51	85	0	80	80
100	92	0	80	40	80	80	90	199	30	10	90	9	82	2	40	80	10	30	40	85	8	40	90	06	85	30	20	100	06	83	90	0	80	80
100	92	20	80	100	80	40	8	90	20	10	75	9	92	80	0	80	90	10	20	100	80	40	90	90	80	30	20	20	9	64	80	0	90	80
40	92	25	80	100	80	09		20	30	70	80	9	92	80	20	80	90	40	75	100	80	26	20	06	75	20	80	82	06	39	80	90	80	80
100	80	20	80	09	80	80	90	9	9	70	92	80	85	20	90	80	20	20	80	06	80	22	06	8	80	40	25	45	9	30	80	90	70	80
06	92	75	100	20	80	40	8	6	40	20	20	20	85	75	40	100	40	2	20	6	61	21	80	8	82	20	75	41	75	75	80	80	.70	80
(P)	<u>(P</u>									<u>(P</u>						<u>a</u>			(P)							_								
COL(P	MAJ(P)	MA	ΜĄ	MA	CPT	CPT	ΣĄ	MA	CPT	LTC(P)	LTC	MA	5	LTC	LTC	CPT(P	LTC	MA	MAJ(P	MA	Ϋ́	¥	¥	¥	₹	Ž		LTC	MA				LTC	CPT
<u>N</u>	11 N	20 IN	27 IN	2 1	33 IN	34 IN	<u>N</u>	41 N	44 N	47 IN	48 IN	53 IN	54 IN	2 2	29 IN	24 MI	7 MP	8 MP	9 MP	21 MP	42 MP	25 NA	e NA	28 NA	9 NA	14 OD	15 OD	16 OD	13 QM	17 QM	23 QM	18 SC	29 SC	30 TC
Ĺ	÷	7	7	m	က်	က်	က်	4	4	4	4	ίĊ	Ω	ű	Ñ	5				2	4	2	Ö	7	n	_	_	_	_	-	2	-	2	(r)

gninnsiq noissiM V	20	10	90	92	30		90	80	70	9	20	90	100	80	20	100	90	30	20	20	82	90	100	80	90	20	100
ү Ехегсізе Ргер	40	10	06	09	20		90	80	80	20	20	90	100	06	30	80	90	20	40	80	92	70	100	80	20	20	100
V Observation Devices	40	20	06	92	06		06	80	20	09	20	09	100	90	20	100	92	80	90	22	85	80	75	00	20	00	00
_	40	25	90	90	90		09	80	20	85	30	90	00	06		20 1	20	80	60	22	85	80	0	80	20	00	00
V Light Data	20			86	06		06	80	06	85	00	90	_					20	80	06	98	80	90	001	06	1001	00
InemsessA V	70		_	06	20		06	80		85	60 1		20	20		00		20		20	06		06	80 1		80 1	
V Difficulty	40		3 06	85 6			3 06	80	75 €	80					9 06	-		30		20			80		25		1
Sel Sucious Use											_		-			001							0 8			-	100
19dfseW V	40		70	80	90		81	9	70	45	50	10	100		80	1		90			90					-	
noissiM 3 V	40	20	90	80	70		80	21	90	20	70	30	100	80		-		20			95		75		25	0	100
V E Train Level	40	20	90	80	20		90	40	20	0	70	30	100	50	70	100	20	20	80	75	90	80	20	80	25	80	100
V Adacent Unit	40	20	9	80	20		80	61	40	0	9	75	100	90	20	80	90	20	09	75	81	30	75	40	9	20	100
V F Equip	40	75	06	80	20		100	61	20	0	90	75	100	90	70	100	90	30	09	75	81	30	75	90	70	80	100
V E Equip	40	25	80	80	70		80	6	20	0	90	10	0	06	70	100	20	90	80	20	81	9	70	80	70	80	100
V Enemy Task Org	30	25	80	80	70		75	61	20	40	100	10	0	90	30	80	20	9	09	20	8	06	0	80	20	20	100
V Power Ratio	40	20	80	80	06		80	6	20	40	90	10	90	90	30	80	20	09	80	20	2	09	20	80	20	20	100
V E Comp	40	75	90	80	06		80	61	40	0	70	30	06	90	70	90	75	09	80	22	90	100	20	9	06	30	100
V F Comp	20	75	80	80	06		06	61	20	10	20	10	100	90	20	20	25	20	09	90	2	80	20	40	100	0	100
Totalumi2 V	20	20	30	92	06		90	80	80	90	20	06	06	90	20	20	90	20	9	80	06		9	80	25	0	100
V Task	30	90	80	20	20		8	80	06	20	06	6	95	90	20	40	80	20	80	75	100	80	09	80	100	100	80
N Terrain	20	80	80	95	70		90	20	70	80	20	90	90	06	20	10	90	30	80	75	06	80	85	80	90	0	100
Rank	MAJ	MAJ	LTC	LTC	COL	CPT	MAJ	MAJ	COL	MAJ	COL	LTC	CPT	MAJ	CPT	MAJ		MAJ	NA	MAJ	MAJ	MAJ	MAJ	LTC	LTC	MAJ	MAJ
Branch	AD			AD	1 AR	AR	AR	50 AR	52 AR	AR	60 AR		AV	۸			A\	51 AV	CM	EN	FA	FA	FA	ΕĀ	FA	FA	FA
Questionnaire	10	49	56	61	-	31	36	50	52	57	90	62	22	37 AV	38 AV	45 AV	46 AV	51	43	9	2	က	4	2	12	40	58

Virtual Responses Continued

	20					40		0	20	70	89	40	40	80	0		60	10	75		45	21	80	90	35	10	75	90	50	10		100		\Box
	25					40		0	20	30	33	09	40	80	30		20	45	75		85	21	80	90	20	5	75	90	90	94		100		
	21					40		100	20	10	45	09	80	80	20		40	5	10		09	21	06	90	20	10	21	06	20	52		0		
	20					20		90	90	90	20	09	20	20	20		09	5	10		20	21	90	90	15	10	61	45	80	71		0		
	2					20		90	100	20	85	40	20	100	100		80	06	80		88	21		90	92	80	90	80	90	20		80		
	21			_		20		100	92	20	70	40	20	100	40		20	10	9		60	38	90	90	30	10	9	80	20	23		70		
	9					20		06	80	20	20	40	20	80	40		09	15	20		80	40	20	90	60	10	100	65	20	80		100		
	20					20		0	80	20	20	09	20	0	20		09	5	20		09	36	90	90	09	10	20	65	20	98		20		
	20					90		20	20	10	100	20	20	0	80		20	25	40		85	41	90	90	80	10	75	100	20	91		20		
	20					90		0	20	10	06	20	20	2	20		10	30	20		80	21	06	90	60	0	25	65	20	90		0		
	20					40		0	10	30	80	9	30	100	70		20	20	09		80	26	20	90	20	40	25	20	80	78		0		
	20					40		80	20	30	70	9	70	100	40		20	20	50		81	20	9	90	75	9	75	90	06	75		0		
	20					20		80	20	10	06	10	20	5	9		09	10	20		81	22	90	90	75	30	41	06	20	88		0		
	20					80		0	09	10	100	10	20	5	90		40	10	10		81	21	90	90	20	10	41	06	20	81		0		
	20					80		40	09	20	100	20	20	80	30		09	35	10		81	30	90	90	65	15	9	80	20	20		0		
	20					80		100	20	10	100	40	65	5	40		09	30	30		81	31	90	90	65	25	20	100	90	80		0		
	21					40		90	80	10	80	40	95	30	0		40	10	20		20	36	90	90	20	25	20	20	20	51		20		
	21					9		90	80	20	66	9	95	80	20		20	40	50		20											90		
	21					80		85	06	30	9	80	65	06	09		10	20	9										9			06		
	98					40		90	70	20	90	50	85	85	09		10	5	50		20	22	90	90	45	20	90	40	75	70		80		
COL(P)	MAJ(P)	MAJ	MAJ	MAJ	CPT	CPT	MAJ	MAJ	CPT	LTC(P)	LTC	MAJ	LTC	LTC	LTC	CPT(P)	LTC	MAJ	MAJ(P)	MAJ	NA	NA	NA	NA	NA	MAJ	LTC	LTC	MAJ	MAJ	MAJ	MAJ	LTC	CPT
																1			1											Ø ∑				
9 9		20 IN	27	32	33	34	35	41	44	47	48	53	54	55	29 IN	24	7	8	O	21	42	25	26	28	39	14	15	16	13	17	23 QM	18	29	30 TC

C Mission Planning	20	9	90	95	gninnsIq noissiM V	20	9	90	95
iracia asiasiM 2	20	9	06	80		40	10	06	90
C Exercise Prep					Preprese Prep				
C Observation Devices	80	20	90	20	V Observation Devices	40	20	06	62
C Light Data	80	25	9	20	stsO thgi_l V	40	25	9	90
Insmassa D	80	85	100	98	Insmassa V	20	85	100	98
C Difficulty	80	85	80	85	V Difficulty	20	85	80	90
əsU suoivər9 Ə	90	75	90	92	esU suoiver V	40	75	90	85
C Weather	90	20	70	20	19disəW V	40	20	70	80
C E Mission	90	20	06	50	noissiM 3 V	40	20	90	80
level Train Level	8	20	80	20	level nisiT 3 V	40	20	90	80
JinU tnessbA O	6	20	90	20	V Adacent Unit	40	20	9	80
C F Equip	90	75	80	20	qiup3 7 V	40	75	90	80
qiup3 3 0	90	25	80	20	qiup3 3 V	40	25	80	80
C Enemy Task Org	90	25	80	20	V Enemy Task Org	30	25	80	80
C Power Ratio	90	20	80	20	V Power Ratio	40	20	80	80
C E Comp	90	9	9	20	ΛΕ Comp	40	75	90	80
C F Comp	80	9	80	20	V F Comp	20	75	80	80
Toʻshumis O	80	20	30	90	totalumi2 V	20	20	30	92
C Task	70	9	80	20	V Task	30	90	80	20
niธาา9T O	90	8	90	95	nismeT V	20	8	80	95
Капк	MAJ	MAJ	LT	LTC	Капк	AA.	AA.	12	LTC
Branch	AD		AD		Branch	AD		AD AD	AD
Questionnaire	9	49	26		Questionnaire	10	49	56	61

	_			_				\overline{a}	
C Mission Planning	30	20	90	80	70	20	0	8	6u
C Exercise Prep	20	75	90	70	90	80	20	8	ıeb
C Observation Devices	20	25	9	40	20	80	0	9	eesi
C Light Data	20	0	90	40	20	20	0	90	eta
Juameseze O	06	75	06	20	06	90	100	20	tnə
C Difficulty	20	100	8	20	20	10	20	8	Кџјг
esU suoiver9 O	70	20	8	8	75	80	100	30	əsr
C Weather	70	52	81	40	40	0	0	10	her
C E Mission	20	75	6	41	40	20	30	30	noi
C E Train Level	20	20	9	21	20	0	30	30	ləv
C Adacent Unit	20	20	8	20	40	0	40	90	jin!
C F Equip	20	20	100	20	20	0	40	90	diu
C E Equip	20	75	8	20	20	0	4	10	diu
C Enemy Task Org	2	25	75	6	22	90	9	10	Drg
C Power Ratio	2	75	8	6	20	90	4	10	oite
C E Comp	8	20	80	6	40	0	30	30	due
C F Comp	20	100	6	61	20	9	30	20	du
C Simulator	90	9	8	8	8	10	ဗ္ဂ	6	103
C Task	20	20	8	8	8	9	8	20	Яѕк
C Terrain	20	20	8	4	30	70	9	75	nis
Капк	COL	CPT	MAJ	MAJ	덩	MAJ	덩	7 7	иķ
Вгапсћ	AR	AR	AR	AR				AR	цэ
Questionnaire	-	31	36/				-	62 /	91i

			$\overline{}$	$\overline{}$	$\overline{}$	_		$\overline{}$
gninnsI9 noissiM V	30	*	90	80	70	9	20	8
детсізе Ргер	50	*	90	80	80	20	20	90
V Observation Devices	90	*	90	80	20	9	20	9
stsO thgiJ V	90	*	9	80	20	82	30	9
Insmassa V	90	*	90	80	90	82	100	90
V Difficulty	70		90	80	20	82	90	90
esU euoivery V	20	*	90	80	75	8	100	8
V Weather	90		81	90	20	45	20	9
noissiM 3 V	20	*	8	21	9	20	70	30
V E Train Level	20	*	9	40	20	0	20	30
JinU JneosbA V	20	*	80	61	40	0	90	75
qiup∃	20	*	100	61	20	0	90	75
qiup3 3 V	2	*	80	61	20	0	90	10
V Enemy Task Org	70	*	75	61	20	9	100	10
V Power Ratio	90	*	8	9	20	40	9	10
V E Comp	6	*	80	6	40	0	70	30
V F Comp	6	*	8	6	20	10	20	10
101slumi2 V	8	*	6	80	8	9	2	90
V Task	20	*	<u>∞</u>	8	6	20	06	90
N Terrain	2	*	8	2	2	8	. 70	90
Капк	CO	CPT	MA	MA	덩	MA	_덩	LTC
Branch	AR	AR	AR	AR	AR		AR	AR
Questionnaire	-	31	36				9	62

	٢	
		٥
	Ξ	3
	¢	3
•	5	٥
	2	á

		_											
C Mission Planning	100	80	20	100	90	20	gninnsI9 noissiM V	100	80	20	100	9	30
qərq əsicrəx∃ Ə	100	90	20	100	80	70	derd esicise Vrep	100	90	30	80	9	20
C Observation Device	0	90	20	20	75	10	9 Observation Device	100	90	70	100	92	80
C Light Data	20	06	30	10	70	10	sts O thei J V	100	90	20	20	70	80
InsmesseA O	2	06	30	80	80	09	in∍msəssA V	70	90	30	100	20	20
C Difficulty	20	20	20	100	80	20	V Difficulty	20	20	20	100	80	20
esU suoiver¶ O	100	20	90	100	20	70	əsU suoivər9 V	100	20	90	100	90	30
TedhseW O	20	90	30	100	70	40	V Weather	100	06	80	100	90	90
C E Mission	100	80	30	100	50	70	noissiM 3 V	100	80	40	100	20	20
C E Train Level	20	20	20	100	50	20	level Train Level	100	20	70	100	20	20
JinU fressbA D	80	90	20	9	9	20	JinU JuassbA V	100	90	20	80	90	20
qiup∃ 7 O	80	90	20	9	9	30	V F Equip	100	90	70	100	90	30
C E Equip	0	90	40	09	50	9	qiup3 3 V	0	90	20	100	20	09
C Enemy Task Org	0	06	20	80	70	09	V Enemy Task Org	0	90	30	80	20	90
C Power Ratio	100	06	70	80	70	9	V Power Ratio	90	90	30	80	20	9
C E Comp	85	90	80	90	70	9	√ E Comp	90	90	70	9	75	9
C F Comp	100	06	50	20	50	40	V F Comp	100	90	70	20	25	20
Totalumi& D	90	90	20	20	70	70	Totalumi& V	90	90	50	20	90	70
C Task	95	50	50	40	50	70	V Task	95	90	50	40	80	
nis אפררפור	95	0	75	10	70	09	Terrain V	90	90	50	10	90	30
Rank	CPT	MAJ	CPT	MAJ		MAJ	Капк	CPT	MAJ	CPT	MAJ		MAJ
Branch	AV	AV	AV		T	AV	Branch	22 AV	AV	AV	45 AV	46 AV	AV
Questionnaire	22 AV	37	38	45	46 AV	51	Questionnaire	22	37	38	45	46	51
	_												

C Mission Planning	85	9	100	80	06	100	100	gninnsI9 noissiM V	85	9	100	80	90	20	100
G Exercise Prep	92	20	100	80	20	80	100	qerq esicrex V	92	70	100	80	20	20	100
C Observation Device	85	09	2	100	20	0	100	V Observation Device	82	80	75	100	20	100	100
C Light Data	85	09	0	80	20	0	100	stsO thgiJ V	85	80	0	80	20	100	100
JnemeeseA O	98	80	90	100	90	100	100	tnemsessA V	98	80	9	100	90	100	100
C Difficulty	90	80	100	80	90	80	100	V Difficulty	90	80	90	80	90	80	100
S Previous Use	75	20	80	40	25	100	100	esU suoiver V	75	20	80	40	25	100	100
TedtseW O	90	30	0	80	30	100	100	TertheaW V	06	06	0	80	30	100	100
noissiM 3 0	95	90	75	80	25	100	100	noissiM 3 V	92	90	75	80	25	0	100
C E Train Level	90	80	65	80	25	80	100	ləvəl nisıT 3 V	90	80	20	80	25	80	100
tinU tnesebA O	81	30	90	40	9	20	100	tinU tnessbA V	81	30	75	40	9	20	100
C F Equip	84	30	100	9	70	80	100	qiup∃ ∃ V	81	30	75	9	70	80	100
qiup∃ ∃ O	84	90	100	80	70	80	100	qiup∃ ∃ V	84	9	2	80	2	80	100
C Enemy Task Org	84	90	0	80	50	80	100	V Enemy Task Org	84	90	0	80	20	20	100
C Power Ratio	84	9	90	80	50	50	100	V Power Ratio	<u>∞</u>	9	20	80	20	20	100
C E Comp	90	100	80	9	90	100	100	V E Comp	90	100	20	9	90	30	100
dmoJ I J	75	80	100	40	100	100	100	qmoD ∃ V	œ	80	20	40	100	0	100
C Simulator	6	*	20	80	25	20	100	votslumi& V	06	*	9	80	25	0	100
C Task	100	20	95	80	100	100	80	V Task	100	8	9	80	100	100	80
C Terrain	75	20	75	80	90	0	100	nisาา9T V	90	8	85	8	90	0	100
Rank	MAJ	MAJ	MAJ	LTC	170	MAJ	MAJ	Rank	MAJ	MAJ	MA	17	2	MAJ	MAJ
Branch	FA	Branch	FA	FA	FA	FA	FA	FA	EA :						
Questionnaire	2	3	4	2	12	40	58	Questionnaire	7	က	4	2	12	40	58

gninnsI9 noissiM O	65	95	25	25	20	80	40	80	0	80	70	66	40	90	80	0
qerq esicrex∃ O	92	92	0	25	70	80	40	80	0	80	30	75	40	20	80	40
Observation Device	100	20	20	25	30	80	40	80	20	70	10	40	40	30	0	0
C Light Data	82	75	20	80	0	100	20	80	30	9	10	70	9	9	0	20
Insmesse D	92	20	100	20	75	80	20	90	80	2	20	85	9	30	80	100
C Difficulty	85	21	20	25	100	100	20		65	20	70	20	09	20	100	20
SP Previous Use	20	70	25	90	20	80	20	06	9	2	70	20	90	20	80	09
C Weather	25	9	0	20	20	80	20	80	30	09	20	20	40	20	0	0
C E Mission	90	85	0	80	09	80	90	90	70	70	10	80	90	90	0	90
Level Train Level	40	80	0	21	20	80	90	90	0	70	10	9	20	75	2	40
JinU theosbA O	85	95	0	80	20	80	40	70	0	10	20	20	9	9	100	70
C F Equip	100	95	25	80	20	80	40	90	75	20	20	85	9	88	100	40
C E Equip	85	95	0	85	09	80	20	90	75	30	10	80	9	88	5	60
C Enemy Task Org	85	92	0	85	25	80	80	90	0	9	10	85	9	90	5	40
C Power Ratio	75	92	0	85	70	80	80	90	20	40	20	90	20	90	80	60
C E Comp	100	92	0	80	40	80	80	90	100	30	10	90	9	85	2	40
dmoD 7 D	100	95	20	80	100	80	40	90	90	20	10	75	9	92	80	0
Totalumi& D	40	92	25	80	100	80	9	*	20	30	70	80	9	98	80	20
C Task	100	80	50	80	9	80	80	90	90	90	70	95	80	85	20	90
nismeT O	90	95	75	100	70	80	40	06	90	40	70	70	20	85	75	40
Капк	COL(MAJ(MAJ	MAJ	MAJ	CPT	CPT	MAJ	MAJ	CPT	LTC(LTC	MAJ	LTC	LTC	LTC
Branch	Z	Z	Z	Z	Z	z	Z	Z	z	Z	Z	Z	Z	Z	Z	Z
Questionnaire	9	11	20	27	32	33	34	35	41	44	47	48	53	54	55	29

		20					40		0	20	0	89	40	40	80	0
gninnsI9 noissiM V	*		*	*	*	*		*			_		_			
qe₁¶ esiɔıex∃ V	*	25	*	*	k	*	40	*	0	20			9	40	80	30
V Observation Device	*	21	*	*	-k	*	40	*	100	70	10	45	9	80	80	20
stsO tdgiJ V	*	20	*	-k	-k	*	20	*	90	9	90	70	9	20	20	20
łnəmzəszA V	*	2	*	*	*	*	20	*	90	100	20	85	40	20	100	100
V Difficulty	-k	21	*	*	*	*	20	*	100	95	20	70	40	20	100	40
9sU suoiver V		09		*		*	20		90	80	20	70	40	20	80	40
Yeather V		20					20		0	80	20	20	9	20	0	20
noissiM 3 V		20	-	*	*	_	06		70	70	10	100	20	20	0	80
level ⊓rain Level		20		*		٠	06	٠	0	70	10	90	20	20	5	20
tinU tnessbA V		20		*		٠	40		0	10	30	80	9	30	100	70
qiup∃ ∃ V		20		*	*	٠	40		80	20	30	70	9	70	100	40
qiup∃ ∃ V		20		*			20		80	20	10	90	10	70	2	9
V Enemy Task Org		20				٠	80	٠.	0	90	10	100	10	20	2	60
V Power Ratio		20	_	*	*		80		40	9	20	100	20	20	80	30
V E Comp		20	_	*		*	80	_	100	20	10	100	40	9	2	40
V F Comp	*	21	*	*	*	*	40	*	06	80	10	80	40	95	30	0
Totalumi& V	*	21	*	*	*	*	9	*	90	80	70	66	9	95	80	20
V Task	*	21	*	*	*	*	80	*	.85	90	30	09	80	9	06	9
V Terrain	*	95	*	*	*	*	40	*	90	70	20	06	20	85	85	9
Капк	COL(MAJ(MAJ	MAJ	MAJ	CPT	CPT	MAJ	MAJ	CPT		LTC	MAJ	LIC	110	LTC
Branch	Z	Z	Z		z	Z	z	Z	Z	2	Z	Z	Z	Z	Z	Z
91isnnoiteau Questionnaire	9	11	20	27	32	33	34	35	41	44	47	48	53	54		59

	90	0	2	0	45		90	10	75		45
Buinnaly noiseiM D		-		100		gninnsI9 noissiM V				*	
G Exercise Prep	9	45	75	95	85	Prepriore Prepriore	2	45	75	*	85
C Observation Device	40	2	10	75	90	V Observation Device	40	5	10	*	9
stad thgid O	9	2	10	85	50	sts I thgi I V	9	2	10	*	20
fnemsessA D	80	90	80	100	88	InsmesseA V	80	06	80	*	88
C Difficulty	20	10	70	20	09	V Difficulty	20	10	9	*	9
esU suoivey O	90	15	20	20	80	esU suoiver V	09	15	20	-k	80
C Weather	09	2	20	75	9	V Weather	09	2	20	*	9
noissiM 3 0	20	25	40	70	85	noissiM ∃ V	20	25	40	*	82
C E Train Level	10	30	20	75	80	level ⊓rain Level	9	30	20	*	80
TinU tnessbA D	20	20	9	20	80	tinU tnessbA V	20	20	90	*	80
C F Equip	20	20	20	20	81	qiup∃ ∃ V	20	20	20	*	81
diup∃∃ ⊃	40	10	20	20	81	qiup∃ ∃ V	9	10	20	*	8
C Enemy Task Org	9	10	10	85	81	V Enemy Task Org	40	10	10	*	<u>∞</u>
C Power Ratio	40	35	10	85	81	V Power Ratio	9	35	10	*	<u>∞</u>
C E Comp	10	30	40	85	81	V € Comp	9	30	30		<u>∞</u>
C F Comp	9	10	20	100	80	V F Comp	40	10	20	*	20
TotslumiS O	9	40	75	100	80	Totalumi& V	20	40	20	*	20
S Task	20	20	80	06	80	V Task	10	20	9	*	61
C Terrain	40	2	20	90	61	Terrain V	10	2	20	*	20
Капк	110	MAJ	MAJ(MAJ	AA	Rank	2	MAJ	MAJ(MAJ	ΑA
Branch	MP	MP	MP	MP	MP	Branch	MP	MP	MP		MP
Questionnaire	-	00	တ	21	42	Questionnaire	-	∞	6	21	42

	_				-	_	,
C Mission Planning	10	75	81	gninnsI9 noissiM V	19	75	90
Q Exercise Prep	2	75	90	дэч Бхетсізе Ргер	2	75	90
Observation Device	10	25	85	V Observation Device	10	21	90
C Light Data	15	61	92	stsO thgiJ V	10	61	45
tnemsessA O	06	90	75	¹n∍mɛəɛɛA V	80	90	80
C Difficulty	15	90	90	V Difficulty	19	90	80
SP Previous Use	80	100	25	9sU suoiv919 V	10	100	99
C Weather	10	80	9	19d1seW V	9	20	65
noissiM 3 0	10	75	100	noissiM 3 V	10	75	100
S E Train Level	0	25	22	level Train Level	0	25	65
tinU tnessbA D	20	25	20	JinU fneosbA V	40	25	20
C F Equip	70	75	80	qiup∃ 4 V	9	75	90
C E Equip	40	41	85	qiup∃ ∃ V	30	41	90
C Enemy Task Org	10	41	80	V Enemy Task Org	10	41	90
C Power Ratio	15	41	80	V Power Ratio	15	9	80
C E Comp	30	20	100	qmo⊃ ∃ V	25	20	100
qmoD 4 D	30	20	20	ν F Comp	25	20	20
Totalumi2 D	20	80	85	notslumi2 V	20	80	65
C Task	40	25	45	V Task	40	25	80
nisınəT O	20	75	41	V Terrain	20	9	40
Rank	MAJ	LTC	LTC	Капк	MAJ	LTC	LTC
Branch	OD	go	ОО	Branch	OD	ОО	ОО
Questionnaire	14	15	16	Questionnaire	14	15	16

Quartermaster

gninnsI9 noissiM O	90	თ	80	gninnsI9 noissiM V	20	10	*
qərq əsicrəx∃ Ə	90	97	80	γετοίαε Prep	90	94	*
C Observation Device	20	54	80	V Observation Device	20	52	*
Stad 1dgid Data	80	98	80	stsO thgiJ V	80	71	*
łnemzeszA O	90	28	80	łnemesesA V	90	20	*
C Difficulty	80	25	100	V Difficulty	20	23	*
SP Previous Use	80	84	92	əsU suoivər9 V	20	80	*
C Weather	20	66	90	Y Weather	20	86	ł
C E Mission	20	96	85	noissiM ∃ V	20	91	*
Level Train Level	20	92	80	ləvəl nisıT 3 V	20	90	*
JinU theosebA O	80	83	80	tinU tneosbA V	80	78	*
C F Equip	90	80	80	qiup∃	90	75	*
C E Equip	20	92	80	qiup3 3 V	20	88	*
C Enemy Task Org	20	79	85	V Enemy Task Org	20	84	*
C Power Ratio	20	51	85	V Power Ratio	20	20	×
dmoD 3 D	90	83	90	Λ E Comp	90	80	*
C F Comp	100	64	80	V F Comp	20	51	*
Totalumie D	90	39	80	rotslumi2 V	90	46	*
AssT O	9	30	80	Л Таsk	9	20	*
C Terrain	75	75	80	V Terrain	75	70	*
Капк	MAJ	MAJ	MAJ	Вапк	MAJ	MAJ	MAJ
Branch	ΜQ	Ø	ΜÖ	Branch	Σ	Ø	δ
Questionnaire	13	17	23	Questionnaire	13	17	23

C Mission Planning	100	40	gninnsI9 noissiM V	100	
G Exercise Prep	100	40	V Exercise Prep	100	*
S Observation Device	0	9	9 Observation Device	0	*
stsO tight Data	0	20	stsO tdgiJ V	0	*
łnəmzəszA O	80	70	jnemsessA V	80	*
C Difficulty	70	50	V Difficulty	20	*
Sevious Use	100	70	9sU suoiv9rV	100	*
C Weather	0	40	Y Weather	70	*
noissiM 3 0	20	75	noissiM 3 V	20	*
C E Train Level	0	09	ləvə⊿ nisıT ∃ V	0	k
C Adacent Unit	0	80	V Adacent Unit	0	*
qiup∃ 7 O	0	80	qiup∃ ∃ V	0	¥
C E Equip	0	9	qiup∃ ∃ V	0	*
C Enemy Task Org	0	90	V Enemy Task Org	0	×
C Power Ratio	0	80	V Power Ratio	0	×
C E Comp	0	80	V E Comp	0	*
dmoJ I J	0	90	qmoJ I V	20	*
C Simulator	90	80	103slumi& V	90	*
C Task	90	70	V Task	6	*
C Terrain	80	70	V Terrain	80	*
Капк	MAJ	LTC	Капк	MAJ	LTC
Вгапсћ	သွ	SC	Вгапсћ	သွ	SC
Questionnaire	18	29	Questionnaire	9	29

$\overline{}$

· · · · · · · · · · · · · · · · · · ·				.,					
C Mission Planning	21	80	90	35	gninnsI9 noissiM V	21	80	90	35
qerq esicrex D	21	80	90	20	q o resiorex∃ V	21	80	90	50
C Observation Device	21	90	90	20	V Observation Device	21	90	90	20
C Light Data	21	06	90	15	stsO thgil V	21	90	90	15
InamsassA O	21		90	92	Insmassa V	21		90	95
C Difficulty	38	* 06	90	30	∧ Difficulty	38	* 06	90	30
C Previous Use	40	06	06	09	V Previous Use	40	20	90	09
C Weather	36	65	90	75	V Weather	36	06	06	09
	41	06	06	80	noissiM 3 V	41	06	06	80
C E Mission					noissiM 3 V	L			
C E Train Level	2	90	6	70	V E Train Level				9
JinU fascent Unit	40	90	90	95	tinU tneosbA V	26	20	90	70
C F Equip	18	06	90	92	diup∃ ↑ V	20	09	90	75
qiup3 3 0	22	90	90	92	qiup3 3 V	22	90	90	75
C Enemy Task Org	22	90	90	90	V Enemy Task Org	21	90	06	70
C Power Ratio	36	90	90	82	V Power Ratio	30	90	90	92
dmoJ ∃ J	40	90	90	85	dmo⊃∃V	31	90	90	92
C F Comp	40	90	90	80	V F Comp	36	90	90	20
C Simulator	56	20	90	75	notalumi2 V	24	90	90	40
C Task	22	06	90	80	V Task	21	06	06	80
Terrain	21	80	90	85	N Terrain	22	06	90	45
Rank	AA	NA	ΑA	NA	Rank	ΑĀ	ΑA	ΑĀ	ΑA
Branch	ΑN	ΑĀ	Y Y	NA	Branch	AA	ΑĀ	ΑA	ΑN
Questionnaire	25	26	28	39	Questionnaire	25	26	28	39

6	30		06	80	70	9	20	90		20					40		0	20	70	89	40	40	80	0
gninnsI9 noissiM V		*	0	0			0	0	*	2	*	*	*	*	40	*	0	0	0	က	0	0	0	0
V Exercise Prep	20	*	90	80	80	20	20	90	*	25	*	-k	*	*	4	*		20	30	33	9	40	80	30
V Observation Device	06	*	90	80	20	9	20	09	*	21	*	+k	*	*	40	*	100	70	10	45	9	80	80	20
stsO thgiJ V	90	*	9	80	20	82	30	09	*	20	*	*	*	*	20	*	90	9	90	2	9	20	20	20
tnəmzəzzA V	90	×	90	80	90	85	100	90	*	2	*	*	*	*	20	*	90	100	20	85	40	20	100	100
V Difficulty	70	*	90	80	20	85	90	90	*	21	*	*	*	k	20	*	100	95	20	70	40	20	100	40
esU suoiver¶ V	70	*	90	80	75	80	100	30	*	9	+	*	*	*	20	*	90	80	20	70	40	20	80	40
V Weather	90	*	84	9	70	45	50	10	*	20	*	*	*	*	20	*	0	80	20	20	09	50	0	20
noissiM 3 V	70	*	80	21	9	20	70	30	*	20	k	*	*	*	90	*	70	70	10	100	20	20	0	80
level Train Level	20	*	09	40	20	0	70	30	*	20	*	*	*	*	90	*	0	70	10	06	20	20	.5	20
tinU tressbA V	20	*	80	61	40	0	9	75	*	20	*	*	+k	*	40	*	0	10	30	80	9	30	100	70
qiup∃ 4 V	50	×	100	61	20	0	9	75	×	20	×	*	*	*	40	*	80	20	30	2	9	2	100	40
qiup∃ ∃ V	70	*	80	61	50	0	9	10	*	20	×	·k	*	*	20	*	80	20	10	06	10	20	2	9
V Enemy Task Org	70	*	75	61	20	40	100	10	*	50	*	*	*	*	80	*	0	9	10	100	10	20	5	90
V Power Ratio	90	k	80	61	20	40	9	10	*	20	*	*	*	*	80	*	40	90	20	100	20	20	80	30
qmoJ ∃ V	90	*	80	61	40	0	70	30	×	20	*	*	*	*	80	*	100	50	10	100	40	65	. 5	40
V F Comp	90	k	90	9	20	10	70	10	*	21	*	*	*	*	40	*	90	80	10	80	40	92	30	0
notalumi& V	90	*	06	80	80	09	70	90	¥	21	*	*	*	*	9	*	90	80	20	66				20
V Task	20	*	81	80	90	20	90	90	*	21	*	×	×	*	80	*		90	30	9				60
V Terrain	70	*	90	70	70	80	70	90	*	95	*	*	*	×	40	*	90	70	20	90	20	85	85	9
Капк	COL	CPT	MAJ	MAJ	COL	MAJ	SOL	LTC	COL(MAJ(MAJ	MAJ	MAJ	CPT	CPT	MAJ	MAJ	CPT	LTC(2	MAJ	LTC	170	LTC
Branch	AR	AR	AR		AR	AR		AR	z	Z	Z	Z	Z	Z		z	z	Z		Z		Z		Z
Questionnaire	_	31	36	20	52	57	09	62	ဖ	+	20	27	32	33	34	35	41	44	47	48	53	54	55	59

O Mission Planning	20	10	90	92	20	20	30	9	10	75	100	45	10	75	81	90	တ	80	100	40	100
G Exercise Prep	20	10	90	80	20	06	25	9	45	75	92	85	2	75	06	06	6	80	100	40	100
C Observation Device	80	20	90	20	9	30	80	40	2	10	75	09	10	25	82	20	54	80	0	9	100
C Light Data	80	25	9	20	9	20	100	9	2	10	85	20	15	61	65	80	98	80	0	20	100
fnemsessA D	80	85	100	86	80	90	25	80	06	80	100	88	06	06	75	90	28	80	80	70	100
C Difficulty	80	85	80	85	9	20	100	20	10	70	20	9	15	06	90	80	25	100	2	20	100
S Previous Use	90	75	06	95	9	20	90	9	15	20	20	80	80	100	55	80	8	92	100	2	100
C Weather	90	20	2	20	9	20	82	9	2	20	75	9	10	80	9	20	66	90	0	40	100
noissiM 3 0	90	20	90	20	80	75	80	20	25	40	70	85	10	75	100	20	96	85	20	75	100
C E Train Level	90	20	80	20	09	20	100	10	30	20	75	80	0	25	22	20	95	80	0	9	80
tinU tnessbA D	90	20	09	20	9	30	80	20	20	09	20	80	20	25	20	80	83	80	0	80	20
C F Equip	90	75	80	20	9	30	80	20	20	20	20	81	70	75	80	90	80	80	0	80	100
qiup∃ ∃ O	90	25	80	20	90	30	85	40	10	20	20	81	40	41	85	20	92	80	0	09	80
C Enemy Task Org	90	25	80	20	80	20	90	9	10	10	85	81	10	41	80	20	79	85	0	90	75
C Power Ratio	90	20	80	20	80	20	85	40	35	10	85	81	15	41	80	20	51	85	0	80	80
C E Comp	90	90	90	20	80	75	80	10	30	40	85	81	30	20	100	06	89	90	0	80	80
C F Comp	80	9	80	20	20	75	80	90	10	20	100	80	30	20	20	100	64	80	0	90	80
Totalumi2 O	80	20	30	90	80	80	80	9	40	75	100	80				90	39	8	90	80	80
C Task	20	9	80	20	4	75	80	20	20	80	90	80	40	25		9	30	8		20	80
C Terrain	90	80	9	95	9	20	100	40	5	20	6	61	20	75	41	75	75	8	80	2	80
Rank	MA	MAJ	2	170	ΑĀ	MAJ	CPT(5	MAJ	MAJ(MAJ	ΑĀ	MAJ	7		MAJ	MAJ	MAJ	MAJ	110	CPT
Вгапсћ	AD	AD	AD				Ξ	МР	MP	ΔM		МР	4 OD	0	0	Ø	ğ	23 QM	18 SC	သွင	ည
Questionnaire	10	49	56	61	43	19	24	7	80	6	21	42	14	15	16	13	17	23	18	29	30

Combat Service and Combat Service Support Continued

gninnsI9 noissiM V	20	10	06	92	20	20		9	10	75		45	10	75	06	20	10		100	_	
qərq əsicrəx∃ V	40	10	06	09	40	8	*	70	45	75	-	82	2	75	8	6	94		100		
V Observation Device	40	20	90	92	09	22	*	40	2	9	*	09	10	21	06	20	52		0		
stsO thgiJ V	40	25	09	90	9	75	*	09	2	9	*	20	9	61	45	80	7.1		0		-
łnemeseseA V	20	82	100	86	80	8		8	6	80		88	80	06	80	90	20		80		
V Difficulty	20	82	80	90	40	20		20	10	9		09	9	09	80	20	23		2		
V Previous Use	40	75	90	85	40	20	*	9	15	20	*	80	9	100	92	20	8	*	100	*	*
V Weather	40	20	70	8	09	75	*	09	2	20	*	09	10	20	65	20	86	*	20	*	*
noissiM 3 V	40	20	90	80	80	75	*	20	25	40	×	85	10	75	100	20	91	*	20	*	*
V E Train Level	40	20	90	80	80	75	-tr	10	30	20	·k	80	0	25	65	20	90	*	0	*	*
JinU JuessbA V	40	20	9	80	9	75	#	20	20	9	*	80	40	25	20	80	78	*	0	*	*
V F Equip	40	75	90	80	9	75	4	20	20	20	ŧ.	<u>8</u>	9	75	90	8	75	*	0	÷.	*
qiup3 3 V	40	25	80	80	80	20	*	09	10	20	*	81	30	41	90	20	88	-k	0	*	*
V Enemy Task Org	30	25	80	80	9	20	*	40	10	10	-k	81	10	41	90	20	8	*	0	-k	*
V Power Ratio	40	50	80	80	80	20	*	9	35	10	*	81	15	9	80	20	20	*	0	*	*
∧ E Comp	40	75	9	80	80	75	æ	9	30	30	*	84	25	20	100	90	80	4r	0	*	*
∧ F Comp	20	75	80	80	9	6	-Bt	40	10	20	*	20	25		20	20	51	*	20	*	*
Totalumi& V	20	20	30	95	9	80	*	20	40	20	*	20	20	8	65	6	46	k	8	*	*
V Task	30	9			80		*	10	20		*	61	L			9	20	*	8	*	*
nisməT V	20	80	80	95	80	75	*	10	2	20	¥	20	20	9	40	75	70	*	8	*	*
Вапк	MAJ	MAJ	170	LTC	NA	MAJ	CPT(110	MAJ	MAJ(MAJ	¥	MAJ	<u>1</u> 20	2	MAJ	MAJ	MAJ	MAJ	LTC	CPT
Branch	AD	AD			S		Σ	MΡ	MΡ	MΡ	MΡ	MΡ	8	8	8	Š	Ø	Ø		သွင	ည
Guestionnaire	10	49	56	61	43	19	24	7	8	တ	21	42	14	15	16	13	17	23	18	29	30

Appendix M

Mean/ANOVA Data for Target Population by Sub-category

```
One-Way Analysis of Variance
All Respondents
Analysis of Variance
Source DF
                SS
                       MS
                                    0.000
        39
             101672
                       2607
                              3.25
Factor
Error 2194 1757575
                         801
Total 2233 1859247
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
Level
                      Mean
                              StDev ----+--
C Terrai
                 62
                      64.48
                              26.49
C Task
                 62
                      68.34
                              22.14
                      67.00
                              25.92
                 60
C Simtor
C FComp
                 62
                      65.48
                              29.16
C EComp
                 62
                      65.90
                              29.28
C PowRat
                 62
                      64.69
                              25.47
                      57.98
                 62
                              31.80
C ETkOrg
C EEquip
                 62
                      58.47
                              29.39
C FEquip
                 62
                      66.02
                              25.66
                 62
                      57.65
                              26.93
C AdUnit
                              30.60
                 62
                      51.82
C ETrnLv
                 62
                      65.69
                              27.90
C EMison
                 62
                      51.47
                              30.76
C Wether
                 62
                      70.42
                              22.34
C PreUse
                              26.76
                 61
                      66.30
C Diff
                      77.75
                              21.08
C Assmnt
                 61
C LtData
                 62
                      49.60
                              31.78
C ObDev
                 62
                      48.31
                              31.12 (--
                              28.42
C ExPrep
                 62
                      66.77
                                            (----*----)
                      62.58
                              31.73
C MnPlan
                 62
                      65.54
                              27.42
V Terran
                 50
                       66.38
                              25.10
V Task
                  50
V Sim
                  49
                       62.86
                              28.70
                                            (----*----)
                  50
                       53.60
                              30.70
V FComp
                  50
                       61.56
                              28.69
V EComp
                                         (----*---)
                  50
                       58.36
                              24.75
V Ratio
                       51.42
                  50
                              31.88
                                        ----*----)
V ETaskO
                  50
                       55.78
                              29.95
V EEquip
                  50
                      64.36
                              25.32
V FEquip
V AdjUnt
                  50
                       55.12
                              27.19
V Trnlvl
                  50
                       51.72
                              31.92
                       60.16
                              30.24
V EMsn
                  50
                              29.68
                  50
                       58.70
V Wether
                       65.70
                              25.42
                  50
V PrevU
                  50
                       63.14
                              26.67
V LvlDif
                       75.71
                              27.28
V UtAsmt
                  49
                  50
                       56.96
                              29.61
V LtDta
                  50
                       61.40
                              30.94
V ObDev
                  50
                       58.80
                              30.58
V ExPrp
                  50
                       57.80
                              31.29
V MsnPln
                                   48
                                          60
                                                 72
                                                       84
```

Pooled StDev =

28.30

Appendix N

Mean/ANOVA Data for the Air Defense Population

```
One-Way Analysis of Variance
Air Defense
Analysis of Variance
                SS
                       MS
                               F
Source DF
                                     p
                             0.55 0.982
        39
             17320
                       444
Factor
       120
             96432
                       804
Error
Total
       159
             113752
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
                      Mean StDev ----+-
Level
                                          (-----*----)
                     81.25
                             15.48
C Terrai
                 4
                 4
                     57.50
                             26.30
C Task
                 4
                     62.50
                             27.54
C Simtor
C FComp
                 4
                     67.50
                             15.00
C EComp
                 4
                     65.00
                             17.32
                     67.50
C PowRat
                 4
                             20.62
                 4
                     61.25
                             29.55
C ETkOrg
C EEquip
                 4
                     61.25
                             29.55
C FEquip
                 4
                     73.75
                             17.02
                 4
                     55.00
                             28.87
C AdUnit
                             31.62
                 4
                     60.00
C ETrnLv
                 4
                     62.50
                             34.03
C EMison
                             35.59 (----*----)
                 4
                     50.00
C Wether
                 4
                     87.50
                             8.66
C PreUse
                 4
                             2.89
C Diff
                     82.50
                 4
                     90.75
                             9.78
C Assmnt
                 4
                     46.25
                             28.69
C LtData
                 4
                     52.50
                             37.75
C ObDev
                 4
                     57.50
                             35.94
C ExPrep
                 4
                     61.25
                             39.66
C MnPlan
V Terran
                 4
                     68.75
                             33.26
V Task
                 4
                     55.00
                             20.82
                 4
                     48.75
                             33.26
V Sim
                 4
                     63.75
                             29.26
V FComp
                             17.97
                 4
                     63.75
V EComp
                 4
                     62.50
                             20.62
V Ratio
                 4
                     53.75
                             30.38
V ETaskO
                 4
                     56.25
                             28.10
V EEquip
                 4
                     71.25
                             21.75
V FEquip
V AdjUnt
                 4
                     50.00
                             25.82
V Trnlvl
                 4
                     57.50
                             33.04
                 4
                     57.50
                             33.04
V EMsn
                 4
                             27.54
V Wether
                     52.50
                 4
                     72.50
                             22.55
V PrevU
                 4
                     68.75
                             32.76
V LvlDif
                 4
                     75.75
                             37.76
V UtAsmt
V LtDta
                 4
                     53.75
                             28.10
V ObDev
                 4
                     61.25
                             37.05
V ExPrp
                 4
                     50.00
                             33.67
                                      (-----*----)
                             39.66
V MsnPln
                     61.25
                                          60
                                                 90
                                                       120
                28.35
                                   30
Pooled StDev =
```

Appendix O

Mean/ANOVA Data for the Armor Population

```
Armor
Analysis of Variance
Source DF
                       MS
                               F
                SS
                              1.84
                                   0.003
        39
             48958
                      1255
Factor
             176989
                        681
Error
       260
             225947
Total
       299
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
                      StDev ----+
Level
         N
              Mean
                                       (----*---)
                     50.62
                             23.97
C Terrai
                 8
                                          (----*---)
                 8
                     65.00
                             27.26
C Task
                                           (----*---)
                 8
                     71.25
                             32.71
C Simtor
                 8
                     57.62
                             29.65
                                        (----*----)
C FComp
                 8
                     47.62
                             29.22
                                      (----*---)
C EComp
                                        (----*---)
                 8
                     57.00
                             24.36
C PowRat
                 8
                     48.87
                             22.55
C ETkOrg
                 8
                     44.38
                             27.96
C EEquip
                 8
                     53.75
                             30.68
C FEquip
                 8
                     50.00
                             27.26
C AdUnit
                 8
                     36.37
                             19.84
                                    (----*----)
C ETrnLv
                     49.50
                 8
                             25.37
C EMison
C Wether
                 8
                     33.25
                             30.57 (----*---)
                 8
                     71.87
C PreUse
                             22.35
C Diff
                 8
                     62.50
                             33.27
                 8
                     78.13
                             17.31
C Assmnt
                 8
                     37.50
                             27.65
C LtData
                 8
                     45.63
                             24.41
C ObDev
                 8
                     70.62
                             24.56
                                          (----*---)
C ExPrep
                 8
                             34.20
                     53.75
C MnPlan
                 7
                     77.14
                              9.51
V Terran
                 7
                     71.57
                             26.78
V Task
                 7
                     80.00
                             11.55
V Sim
                 7
                     54.43
                             33.62
V FComp
                 7
                     53.00
                             31.51
V EComp
                 7
V Ratio
                     55.86
                             26.40
                 7
V ETaskO
                     58.00
                             28.57
                 7
                                      (----*----)
V EEquip
                     47.29
                             30.47
                                       (----*---)
                 7
V FEquip
                     56.57
                             30.40
                 7
                     52.29
V AdjUnt
                             26.80
                 7
                     42.86
                             22.89
V Trnlvl
                 7
                     50.14
                             25.63
V EMsn
                 7
                     58.00
                             26.58
V Wether
                 7
                     75.00
                             22.17
V PrevU
                 7
V LvlDif
                     75.00
                             15.55
                 7
                     89.29
                              6.07
V UtAsmt
                 7
                     65.00
                             21.41
V LtDta
                 7
                     68.57
                             17.73
V ObDev
                 7
                     61.43
                             31.32
V ExPrp
                 7
V MsnPln
                     62.86
                             28.12
Pooled StDev = 26.09
                                            60
                                                         120
                                     30
                                                   90
```

One-Way Analysis of Variance

Appendix P

Mean/ANOVA Data for the Aviation Population

```
One-Way Analysis of Variance
Aviation
Analysis of Variance
                       MS
                              F
Source DF
                SS
                                    p
                      736
                            0.94 0.577
Factor
       39
             28721
                       784
Error
       200
             156746
Total
       239
             185467
                   Individual 95% CIs For Mean
                   Based on Pooled StDev
                             Level
                N
                     Mean
                                    (----*----)
                            38.04
C Terrai
                     51.67
                 6
                                      (-----*----)
C Task
                 6
                     59.17
                            20.10
C Simtor
                 6
                     65.00
                            26.65
                 6
                     58.33
C FComp
                            30.61
                 6
                     74.17
                            12.81
C EComp
                     78.33
                                          (-----*----)
                 6
                            14.72
C PowRat
                 6
                     58.33
                            31.89
C ETkOrg
                 6
                     50.00
                            29.66
C EEquip
                 6
                     61.67
                            21.37
C FEquip
C AdUnit
                 6
                     60.00
                            24.49
                 6
                     53.33
                            25.82
C ETrnLv
                 6
                     71.67
                            27.87
C EMison
C Wether
                 6
                     63.33
                            28.05
C PreUse
                 6
                     80.00
                            20.00
                 6
                     58.33
                            27.87
C Diff
                 6
C Assmnt
                     68.33
                            21.37
                 6
                     43.33
                            32.66 (----*----)
C LtData
                 6
                     40.83
                            36.66 (----*---)
C ObDev
                                           (-----*----)
                 6
                     85.00
                            13.78
C ExPrep
C MnPlan
                 6
                     73.33
                            32.04
                 6
                     60.00
                            35.21
V Terran
                 6
                     67.50
                            23.61
V Task
V Sim
                 6
                     68.33
                            28.58
                 6
                     54.17
                            36.93
                                          -*----)
V FComp
                 6
                     74.17
                             13.57
V EComp
V Ratio
                 6
                     66.67
                            24.22
V ETaskO
                 6
                     51.67
                            33.12
V EEquip
                 6
                     61.67
                            35.45
                 6
                     80.00
                            26.83
V FEquip
V AdjUnt
                 6
                     71.67
                            30.61
                            31.46
                 6
                     65.00
V Trnlvl
                 6
                     65.00
                            33.32
V EMsn
V Wether
                 6
                     86.67
                             15.06
                                         (-----*----)
V PrevU
                 6
                     76.67
                            29.44
V LvlDif
                     58.33
                            27.87
                 6
                     60.00
                            32.25
V UtAsmt
                 6
                     68.33
                            29.27
V LtDta
                 6
                     89.17
                             12.01
V ObDev
                 6
                     63.33
                             32.66
V ExPrp
V MsnPln
                     65.00
                            34.50
                                                90
                                                      120
                                         60
Pooled StDev = 28.00
                                  30
```

Appendix Q

Mean/ANOVA Data for the Field Artillery Population

```
One-Way Analysis of Variance
Field Artillery
Analysis of Variance
Source DF
                SS
                       MS
                                     p
                       724
                             0.94 0.577
        39
             28225
Factor
             183279
                        770
       238
Error
       277
             211504
Total
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
Level
                      Mean
                              StDev -----
C Terrai
                 7
                     67.14
                             33.40
                 7
                     86.43
                             18.42
C Task
                 6
                     60.83
                             34.12
C Simtor
                 7
                     85.00
                             22.55
C FComp
                 7
                     88.57
                             14.64
C EComp
                 7
C PowRat
                     73.00
                             19.82
                 7
                     68.71
                             33.93
C ETkOrg
                 7
                     81.57
                             14.63
C EEquip
                 7
                     74.43
                             24.44
C FEquip
                 7
                             26.47
                     64.43
C AdUnit
                 7
C ETrnLv
                     74.29
                             24.23
                 7
                      80.71
                             26.37
C EMison
                     61.43
                             40.59
C Wether
                 7
C PreUse
                      70.00
                             28.43
                 7
                              9.00
C Diff
                      88.57
                 7
                      94.00
                              7.66
C Assmnt
                 7
                      53.57
                             40.07
C LtData
                 7
                             34.97
                      66.43
C ObDev
                                           (-----*----)
                 7
C ExPrep
                     77.43
                             27.68
                                             (-----*----)
                  7
                      87.86
                              14.68
C MnPlan
                  7
                      75.00
                             33.79
V Terran
                  7
                      85.71
                              15.12
V Task
                      50.83
                             44.09
                                             ----)
                  6
V Sim
                  7
                              36.52
                      64.43
V FComp
                  7
                      70.00
                              33.67
V EComp
V Ratio
                  7
                      67.29
                              19.87
                  7
V ETaskO
                      64.43
                              34.17
V EEquip
                  7
                      77.29
                              12.58
                  7
                      70.86
                              21.76
V FEquip
                  7
                      62.29
                              24.59
V AdjUnt
                  7
                      72.14
                              25.80
V Trnlvl
                  7
                      66.43
V EMsn
                              38.48
V Wether
                  7
                      70.00
                              39.16
                  7
V PrevU
                      70.00
                              28.43
                  7
                      87.14
                              7.56
V LvlDif
                  7
                      89.71
                              15.07
V UtAsmt
                  7
                      70.71
                              35.41
V LtDta
                  7
                      84.29
                              18.35
V ObDev
                  7
                      68.86
                              35.06
V ExPrp
V MsnPln
                      76.43
                              28.39
                                                   100
                                             75
                                      50
Pooled StDev = 27.75
```

Appendix R

Mean/ANOVA Data for the Infantry Population

```
One-Way Analysis of Variance
Infantry
Analysis of Variance
                       MS
                               \mathbf{F}
Source
        DF
                SS
                              1.55 0.020
        39
             50388
                       1292
Factor
       478
             397869
                        832
Error
       517
             448257
Total
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
Level
                       Mean
                               StDev --+----
C Terrai
                 16
                       72.50
                               20.17
                                                  (-----*----)
                 16
                       73.75
                               15.55
C Task
                 15
                       64.33
                               26.31
C Simtor
C FComp
                 16
                       66.56
                               33.05
C EComp
                 16
                       61.56
                               35.44
                       67.81
                               25.03
C PowRat
                 16
                       55.63
                 16
                               36.28
C ETkOrg
                       59.56
                               31.94
C EEquip
                 16
                       69.25
                               24.10
                 16
C FEquip
                       56.25
                               31.22
                 16
C AdUnit
                       45.69
                               33.06
C ETrnLv
                 16
C EMison
                 16
                       61.56
                               30.97
                 16
                       44.06
                               25.11
C Wether
C PreUse
                 16
                       60.94
                               20.18
                       61.73
                               25.14
C Diff
                 15
                                                 (----*----)
                 16
                       69.69
                               24.18
C Assmnt
                       50.00
                               32.30
                 16
C LtData
                       41.56
                               29.20
                 16
C ObDev
                               29.49
C ExPrep
                 16
                       53.12
                 16
                       57.44
                               32.47
C MnPlan
                 10
                       71.50
                               20.15
V Terran
                       66.10
                               24.26
V Task
                 10
                 10
                       67.50
                               28.10
V Sim
                               34.88
                 10
                       48.60
V FComp
                       54.00
                               32.98
V EComp
                 10
V Ratio
                 10
                       59.00
                               21.32
V ETaskO
                 10
                       42.50
                               34.58
V EEquip
                 10
                       44.50
                               31.31
                 10
                       59.00
                               21.32
V FEquip
V AdjUnt
                 10
                       47.00
                               31.29
                  10
                       40.50
                               34.36
V Trnlvl
                       54.00
                               34.38
                  10
V EMsn
                       41.00
                               26.01
V Wether
                  10
                  10
                       58.00
                               22.01
V PrevU
                               30.96
V LvlDif
                  10
                       58.60
                  10
                       61.00
                               38.06
V UtAsmt
                  10
                       53.00
                               26.69
V LtDta
V ObDev
                  10
                       52.60
                               30.18
V ExPrp
                  10
                       35.80
                               21.85
V MsnPln
                  10
                       42.90
                               30.76
                                                                 80
                                            20
                                                   40
                                                          60
```

Pooled StDev =

28.85

Appendix S

Mean/ANOVA Data for the Military Police Population

```
One-Way Analysis of Variance
Military Police
Analysis of Variance
                SS
                       MS
                               F
        DF
Source
                             1.12 0.306
                       800
Factor
        39
              31181
Error
       140
              99595
                       711
Total
       179
             130777
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
                      Mean StDev ----
Level
                             31.00
C Terrai
                  5
                      49.20
                  5
                      70.00
                             18.71
C Task
                  5
                     71.00
                             22,47
C Simtor
                  5
                     60.00
                             33.91
C FComp
                  5
                      49.20
                             32.72
C EComp
                  5
C PowRat
                      50.20
                             32.06
                  5
                      49.20
                             37.02
C ETkOrg
                  5
                             25.44
                     46.20
C EEquip
                  5
                      50.20
                             21.57
C FEquip
                  5
                             21.68
                      52.00
C AdUnit
                  5
C ETrnLv
                      43.00
                             32.33
                  5
                      54.00
                             23.82
C EMison
                  5
                      44.00
                             29.87
C Wether
C PreUse
                  5
                      51.00
                             23.56
                  5
C Diff
                      48.00
                             22.80
                  5
                      87.60
                              8.29
C Assmnt
                  5
                              34.02
C LtData
                      42.00
                  5
                              30.54
C ObDev
                      38.00
                  5
                      72.00
                              19.87
C ExPrep
                  5
                      58.00
                              33.65
C MnPlan
                  4
                      28.75
                              24.62
                                              ----)
V Terran
                      45.25
                  4
                              24.02
V Task
                      40.00
                  4
                              14.14
V Sim
V FComp
                      37.50
                  4
                              18.93
                  4
                      50.25
                              24.90
V EComp
                  4
                      46.50
                              30.75
V Ratio
V ETaskO
                  4
                      35.25
                              33.62
V EEquip
                  4
                      50.25
                              29.78
                  4
                      50.25
                              24.90
V FEquip
                  4
                      52.50
                              25.00
V AdjUnt
                  4
                      35.00
                              31.09
V Trnlvl
V EMsn
                  4
                      50.00
                              25.50
V Wether
                  4
                      36.25
                              28.10
V PrevU
                  4
                      51.25
                              27.20
                  4
                      45.00
                              23.80
V LvlDif
                  4
                      84.50
                              5.26
V UtAsmt
                  4
                      31.25
                              27.80
V LtDta
                      28.75
V ObDev
                  4
                              25.94
                              17.02
V ExPrp
                  4
                      68.75
V MsnPln
                      47.50
                              27.84
                                                     90
                                       30
                                              60
```

Pooled StDev = 26.67

Appendix T

Mean/ANOVA Data for the Quarter Master Population

```
One-Way Analysis of Variance
Ouartermaster
Analysis of Variance
                        MS
                               F
Source
        DF
                SS
                                     p
                                   0.658
        39
             22148
                       568
                              0.88
Factor
        60
             38646
                       644
Error
        99
             60794
Total
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
                      Mean
                              StDev --+---
Level
                 N
C Terrai
                 3
                      76.67
                              2.89
                                             *----)
                 3
                      56.67
                             25.17
C Task
                 3
                             27.02
                     69.67
C Simtor
                                             (-----*----)
                 3
C FComp
                     81.33
                              18.04
                 3
C EComp
                     89.67
                              0.58
                 3
                      52.00
                              32.51
C PowRat
                 3
                              35.92
                      61.33
C ETkOrg
                  3
                      64.00
                              38.57
C EEquip
                  3
                              5.77
                      83.33
C FEquip
                  3
                      81.00
                              1.73
C AdUnit
                  3
C ETrnLv
                      65.00
                              39.69
                  3
                      77.00
                              24.02
C EMison
                  3
                      79.67
                              26.08
C Wether
                  3
                      85.33
                              8.39
C PreUse
                  3
                      68.33
                              38.84
C Diff
                  3
                              16.37
                      76.00
C Assmnt
                  3
C LtData
                      76.00
                              6.93
                  3
C ObDev
                      61.33
                              16.29
                  3
                      89.00
                              8.54
C ExPrep
                      59.67
                              44.16
                                               *----)
                  3
C MnPlan
                  2
                      72.50
                              3.54
V Terran
                  2
                      40.00
                              28.28
V Task
                  2
                      68.00
                              31.11
V Sim
                  2
                      50.50
                              0.71
V FComp
                  2
V EComp
                      85.00
                              7.07
                  2
                      35.00
                              21.21
V Ratio
V ETaskO
                  2
                      50.50
                              43.13
                  2
                      54.00
                              48.08
V EEquip
                  2
                      82.50
                              10.61
V FEquip
                  2
                                               ----*----)
V AdjUnt
                      79.00
                              1.41
                  2
V Trnlvl
                      55.00
                              49.50
                  2
                      70.50
                              28.99
                                             -----*----)
V EMsn
                  2
                      74.00
                              33.94
V Wether
V PrevU
                  2
                      65.00
                              21.21
                  2
                      36.50
                              19.09
V LvlDif
                  2
                      70.00
V UtAsmt
                              28.28
                  2
                      75.50
                              6.36
V LtDta
                  2
V ObDev
                      51.00
                              1.41
                  2
V ExPro
                      92.00
                              2.83
V MsnPln
                      30.00
                              28.28 (----
```

120

80

40

Pooled StDev =

25.38

Appendix U

Mean/ANOVA Data for the Ground Maneuver Population

```
One-Way Analysis of Variance
Ground Maneuver
Analysis of Variance
                       MS
Source DF
                SS
                                     p
                       1814
                                    0.000
        39
             70752
                              2.34
Factor
       778
             603723
                        776
Error
             674475
       817
Total
                    Individual 95% CIs For Mean
                    Based on Pooled StDev
                              StDev ---+---
Level
                      Mean
                      65.21
                              23.47
C Terrai
                 24
                                                (----*----)
                 24
                      70.83
                              20.04
C Task
                 23
                      66.74
                              28.15
C Simtor
C FComp
                 24
                      63.58
                              31.60
C EComp
                 24
                      56.92
                              33.52
                 24
                      64.21
                              24.83
C PowRat
                              32.00
                 24
                      53.37
C ETkOrg
                      54.50
C EEquip
                 24
                              30.93
                                              (----*---)
                      64.08
                              26.85
C FEquip
                 24
                 24
                      54.17
                              29.51
C AdUnit
                 24
                      42.58
                              29.20
C ETrnLv
                 24
                      57.54
                              29.24
C EMison
                 24
                      40.46
                              26.89
C Wether
                 24
                      64.58
                              21.11
C PreUse
                 23
                      62.00
                              27.47
C Diff
                 24
                      72.50
                              22.12
C Assmnt
                 24
                      45.83
                              30.81
C LtData
C ObDev
                 24
                      42.92
                              27.22
                 24
                      58.96
                              28.67
C ExPrep
                      56.21
                              32.35
C MnPlan
                 24
                      73.82
                              16.44
V Terran
                  17
                  17
                      68.35
                              24.65
V Task
V Sim
                  17
                      72.65
                              23.11
                  17
                       51.00
                              33.42
V FComp
                  17
                       53.59
                              31.38
V EComp
                       57.71
                              22.79
                  17
V Ratio
                  17
                      48.88
                              32.26
V ETaskO
                  17
                      45.65
                              30.02
V EEquip
                  17
                       58.00
                              24.57
V FEquip
                              28.76
                                        (-----*----)
V AdjUnt
                  17
                      49.18
                              29.36
V Trnlvl
                  17
                       41.47
V EMsn
                  17
                       52.41
                              30.25
                  17
                       48.00
                              26.83
V Wether
V PrevU
                  17
                       65.00
                              23.05
                  17
                       65.35
                              26.44
V LvlDif
                  17
                       72.65
                               32.17
V UtAsmt
V LtDta
                  17
                       57.94
                               24.69
V ObDev
                  17
                       59.18
                               26.38
V ExPrp
                  17
                       46.35
                               28.38
V MsnPln
                  17
                       51.12
                               30.52
                                             48
                                                           80
Pooled StDev = 27.86
                                       32
                                                    64
```

Appendix V

Mean/ANOVA Data for the Combat Support and Combat Service Support Population

```
One-Way Analysis of Variance
Combat Support and Combat Service Support
```

Analysis of Variance

MS \mathbf{F} Source DF SS 1532 2.01 0.000 Factor 39 59737 Error 700 764 534718

Total 739 594455

Individual 95% CIs For Mean Based on Pooled StDev

	B	ased on	Pooled 8	StDev
Level N	Mean	StDev -	+	+++-
C Terrai	21	65.57	24.43	(*)
C Task	21	61.67	21.81	(*)
C Simtor	21	70.90	22.02	(*)
C FComp	21	61.38	28.02	(*)
C EComp	21	64.29	28.41	(*)
C PowRat	21	56.57	28.69	(*)
C ETkOrg	21	56.71	31.97	(*)
C EEquip	21	54.71	27.85	(*)
C FEquip	21	65.29	25.20	(*)
C AdUnit	21	54.67	24.86	(*)
C ETrnLv	21	51.43	32.29	(*)
C EMison	21	66.48	26.80	(*)
C Wether	21	54.48	31.75	(*)
C PreUse	21	74.57	22.14	(*)
C Diff	21	66.67	26.89	(*)
C Assmnt	21	82.33	16.78	(*)
C LtData	21	53.52	30.42	(*)
C ObDev	21	49.24	31.31	(*)
C ExPrep	21	68.19	29.53	(*)
C MnPlan	21	59.52	32.43	(*)
V Terran	16	55.63	28.74	(*)
V Task	16	54.44	24.02	(*)
V Sim	16	55.38	25.95	(*)
V FComp	16	48.19	24.63	(*)
V EComp	16	59.75	27.95	(*)
V Ratio	16	49.44	27.45	(*)
V ETaskO	16	44.25	30.88	(*)
V EEquip	16	51.56	29.41	(*)
V FEquip	16	63.19	25.92	(*)
V AdjUnt	16	51.12	25.18	(*)
V Trnlvl	16	45.31	33.49	(*)
V EMsn	16	60.06	28.00	(*)
V Wether	16	52.06	26.60	(*)
V PrevU	16	61.88	27.50	(*)
V LvlDif	16	52.37	26.03	(*)
V UtAsmt	16	80.06	19.52	(*)
V LtDta	16	46.37	28.58	(*)
V ObDev	16	44.87	31.94	(*)
V ExPrp	16	65.56	29.54	(*)
V MsnPln	16	54.37	31.83	(*)
				+++
Pooled StDev =	27.64			40 60 80 100

Appendix W

Comparison of Factors to Constructive Terrain Mean (z test)

Constructive Terrain vs. Constructive Enemy Task Organization

	-	D			
1	C Terrain	Enemy Task Org			1
1	<u>=</u>	ask			
	°	Į,			
		neu			
		O			
	9 0	90	$(\overline{X}, -$	$\frac{\overline{X}_{2}) - D_{0}}{\frac{1}{2} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}}}$	
	80	2.5	$Z = \frac{(X_1 - X_2)^2}{2}$	2 2	
	60 95	8 0 5 0	σ	σ_1	C Enemy Task Org
	50	70	Count	n_2	62
	50	25	Mean	54.48	57.98
	80	75	Variance	701.83	1011.43
	40	61	d o f		122
	30	5 0		Z = 856.6267848	1.236512123
	70	6 0 4 0	Pooled Var. Pooled Z=	1,236512123	
	1 0 7 5	10	F-Test Two-Sample for Variance		
1	95	0	. Took is a dampio for rationed		
	0	90		C lerrain	C Enemy lask Org
	75	50	Mean	63.89024844	57.57479367
	10	8 0	Variance	702.1001763	990.0272354
	70	70	Observations	64	64
	60 60	6 0 8 0	d f	0.709172588	6.5
—	50	50	P (F <= f) one-tail	0.912312842	
	75	81	F Critical one-tail	0.658619825	
	50	9 0	Variances are not equal		
	75	0			
	8.0	8.0	t-Test: Two-Sample Assuming U		
	9 0	5 0	Magaz	C Terrain 63.89024844	C Enemy Task Org 57.57479367
	100	80	Mean Variance	702.1001763	990.0272354
	90	8.5	Observations	6 4	6.4
_	95	9.5	Hypothesized Mean Difference	0	
	75	0	d f	122	
	100	8.5	t Stat	1.228225432	
	7 0 8 0	2.5 8.0	P (T<=t) one-tail t Critical one-tail	1.657440407	
	40	80	P (T < = t) two-tail	0.221726564	
-	90	90	t Critical two-tail	1.97960162	
-	90	0	Means are Equal		
	4 0	60			
	70	10			
	70	8 5 6 0			
	5 0 8 5	90			
—	75	5			
	40	4 0			
	100	9 0			
	40	60			
	5 5 0	10			
\vdash	90				
	61	8 1			
	21	22			
	80	90			
	90	90			
	85	90			
	75	41			
	41	80			
	75	20			
	7.5	7 9			
	80	8.5			
	8 0 7 0	9 0			
	80	75			
	64.5	58			
	26.5				

Constructive Terrain vs. Constructive Enemy Training Level

			1	T
C Terrain	Train Lev			
e E	ء.			ļ .
15	E			
	ш			
	ပ			
90	90	$Z = \frac{(\overline{X}_1 - \overline{X}_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}}}$	$-D_0$	ļ
80	2 0 8 0	Z =	, 2	
60			1	C E Train Level
95	50 50		n_2	62
50		Count Mean		51.82
50	50	Variance		
8.0	60		701.83	122
40	21	dof	Z =	2.463167667
30	50	Daniel Van	819.08633	
70	0	Pooled Var.	Pooled Z=	2.463167667
10	30	L Toot I'm a Completor Veriane		2.403107007
75		F-Test Two-Sample for Varianc		C E Train Level
95	50	IM o a n	C Terrain 63.89024844	1
0	50	Mean	702.1001763	
75	50	Variance	702.1001763	
10	100	O b servations df	63	
70	50		0.768450123	
60	20	F B(E<=f) one tail	0.766450123	
60	60 50	P (F <= f) one-tail F Critical one-tail	0.658619825	
50			0.000019020	
75	90 80	Variances are not equal		
50	65	t-Test: Two-Sample Assuming U	Inequal Varianc	98
75		t-Test. Two-Sample Assuming C	T C Terrain	C E Train Level
8.0	80	Wasa	63.89024844	
90	25	Mean	702.1001763	
0	80	Variance	702.1001763	
100	100	Observations	0	1
90	40	Hypothesized Mean Difference	124	
95	80	df	2.467732909	
75	0	t Stat	0.007480449	
100	2 1	P(T<=t) one-tail	1.657235771	
70	50 80	t Critical one-tail P(T<=t) two-tail	0.014960898	
80	90	t Critical two-tail	1,97927875	
40	90	Means are not equal.	1.37327070	
90	0	Weans are not equal.		
90	70		1	
70	10			
70	60			
50	20			
85	75		 	
75	7 5			
40	40			
100	100			
40	100			
5	30			
50	20		<u> </u>	
90	75			
61	80			
21	21			
80	90			
90	90			
85	70			
20	0			
75	25			
41	55			
75	20			
75	95			
80	80			
80	0			
70	60			
80	80			
64.5	1			
26.5	30.6			
	1		1	

Constructive Terrain vs. Constructive Weather

Ē	e P			
C Terrain	C Weathe			
5	0			
90	90	(\overline{X})	$\frac{(x_1 - \overline{X}_2) - D_0}{(x_1 - \overline{X}_1)} + \frac{\sigma_1^2}{n_2}$	
80	20 70	$Z = \frac{1}{\sqrt{1-x^2}}$	2 2	•
60 95	20		σ_1^2 σ_1^2	
50	70	V	n, n	
50	25		1 2	
80	81			
40	40		C Terrain 62	C Weather 62
30 70	40	C ount M ean	64.48	51.47
10	0	Variance	701.83	945.89
75	10	dof		122
95	50		Z =	2.524852341
0	90	Pooled Var.	823.8599947	504050244
75	30		Pooled Z=	2.524852341
10 70	100 70			
60	40			
60	60	F-Test Two-Sample for Variance	S	
50	50		C Terrain	C Weather
75	90	Mean	63.89024844	51.14411102
50	30	Variance Observations	702.1001763	922.5672212
75 80	80	df	63	63
90	30	F	0.761028747	
0	100	P(F<=f) one-tail	0.859441545	
100	100	F Critical one-tail	0.658619825	
90	55	Variances are not equal		
95 75	60	t-Test: Two-Sample Assuming U	negual Variances	
100	50	t-rest. 1 We-bampie Assuming o	CTerrain	C Weather
70	50	Mean	63.89024844	51.14411102
80	80	Variance	702.1001763	922.5672212
40	50	Observations	64	64
90	80	Hypothesized Mean Difference	124	
90	30 60	t Stat	2.529800945	
70	50	P(T<=t) one-tail	0.006332892	10.17
70	50	t Critical one-tail	1.657235771	
50	40	P(T<=t) two-tail	0.012665784	
85	50	t Critical two-tail	1.97927875	
75 40	0	Means are not equal.		
100	85			
40				
77 0	60			
5	5			
5 50	5 20			
5 50 90	5 20 75			
5 50 90 61	5 20 75 60			
5 50 90	5 20 75			
50 90 61 21 80	5 20 75 60 36 65 90			
5 50 90 61 21 80 90 85	5 20 75 60 36 65 90 75			
5 50 90 61 21 80 90 85 20	5 20 75 60 36 65 90 75			
5 50 90 61 21 80 90 85 20 75	5 20 75 60 36 65 90 75 10 80			
5 50 90 61 21 80 90 85 20 75 41	5 20 75 60 36 65 90 75 10 80 60			
5 50 90 61 21 80 90 85 20 75	5 20 75 60 36 65 90 75 10 80			
5 50 90 61 21 80 90 85 20, 75 41 75 75	5 20 75 60 36 65 90 75 10 80 60 50 99			
5 50 90 61 21 80 90 85 20 75 41 75 75 80 80	5 20 75 60 36 65 90 75 10 80 60 50 99			
5 50 90 61 21 80 90 85 20 75 41 75 75 80 80	5 20 75 60 36 65 90 75 10 80 60 50 99			
5 50 90 61 21 80 90 85 20 75 41 75 75 80 80	5 20 75 60 36 65 90 75 10 80 60 50 99 90 40			
5 50 90 61 21 80 90 85 20, 75 41 75 75 80 80	5 20 75 60 36 65 90 75 10 80 60 50 99			

Constructive Terrain vs. Constructive Light Data

=	T E			
C Terrain	C Light Dat			
- Te	[호			
90	80		$\frac{\overline{X}_{1} - \overline{X}_{2}) - L}{\sqrt{\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}}}}$) ,
80 60	25 60	$Z = \overline{}$	<u> </u>	
95	20		$\sqrt{\frac{\sigma_1}{\sigma_1}} + \frac{\sigma_1}{\sigma_1}$	
50	70		$\sqrt{n_1}$ n_2	
50	0			C. Limbi Bada
80 40	60 40	Count	C Terrain 62	C Light Data 62
30	50	Mean	64.48	49.60
70	20	Variance	701.83	1009.85
10	0	d o f		122
75	60		Z= 855.8393707	2.833314132
95	50 90	Pooled Var.	Pooled Z=	2.833314132
75	30			
10	10	F-Test Two-Sample for Variance	es	
70	70		C Terrain	C Light Data
60	10	Mean	63.89024844	49.31835827 982.753358
60 50	60 50	Variance Observations	702.1001763	902.753356
75	85	df	63	63
50	60	F	0.714421549	
75	0	P(F<=f) one-tail	0.907612175	
80	80	F Critical one-tail	0.658619825	
90	50	Variences are not equal.		
100	100	t-Test: Two-Sample Assuming	Inequal Variances	
90	85	t-rest. Two Campio Accaming	C Terrain	C Light Data
95	75	Mean	63.89024844	49.31835827
75	50	Variance	702.1001763	982.753358
100	80	Observations	64	64
70 80	100	Hypothesized Mean Difference	123	
40	20	t Stat	2.840042241	
90	80	P(T<=t) one-tail	0.002640112	
90	30	t Critical one-tail	1.657335815	
40 70	60 10	P(T<=t) two-tail	0.005280225	
70	70	Means are not equal.	1.373407311	
50	60	Media are not equal.		
85	60			
75	0			
40	20			13.4.400
100	100			
5	5			
50	10			
90	85			
61 21	50 21			
80	90			
90	90			
85	15			
20	15			
75 41	61 65			
75	80			
75	68			
80	80			
80	0			
70 80	100			
64.5	49.6			
26.5	31.8			

Constructive Terrain vs. Constructive Observation Devices

C Terrain	C Observation Device				
	c ob				
90	80		(\overline{X}	$-\overline{X}_{a}$) $-D_{a}$	C Observation Devic
80 60	20 90	 Count Mean	$Z = \frac{(A_1)^2}{I}$	$\frac{\overline{X}_{2} - \overline{X}_{2} - D_{0}}{\overline{X}_{1} - \overline{X}_{1}}$	62 48.31
95	20	 Variance	<u> \sigma</u>	$\frac{1}{1}$ + $\frac{\sigma_1}{1}$	968.51
50	50	dof	ν,	n_1 n_2	122
50 80	25 60	 Pooled Var.		835.1693548	3.11675608
40	40	rooled val.		Pooled Z=	3.11675608
30	50				
70	80	F-Test Two-Samp	le for Variance		Observation Dayloo
10 75	0 60	 Mean		C Terrain 63.89024844	Observation Device 48.03792754
95	0	Variance		702.1001763	942.3794523
0	90	Observations		64	64
75 10	50 20	df		0.745029165	63
70	75	 F P(F<=f) one-tall		0.877257588	
60	10	F Critical one-tail		0.658619825	
60	60	Variances are no			
50	30 85	t-Test: Two-Samp	ole Assuming U	nequal variances	Observation Device
75 50	60	Mean		63.89024844	48.03792754
75	70	Variance		702.1001763	942.3794523
80	100	Observations		64	64
90	50 0	Hypothesized Me df	an Difference	123	
100	100	t Stat		3.127293147	
90	100	P(T<=t) one-tail		0.001101221	
95	50	t Critical one-tail		1.657335815	
75 100	50 25	P(T<=t) two-tail t Critical two-tail		0.002202442	
70	30	Means are not eq	ual.	1.070107011	
80	80				
40	40				
90	80 20				
40	70				
70	10				
70	40				
50 85	40 30				
75	0				
40	0				
100	80 40				
5	5				
50	10				
90	75				
61 21	60 21				
80	90				
90	90				
85 20	20 10				
75	25				
41	85				
75	50				
75 80	54 80				· · · · · · · · · · · · · · · · · · ·
80	0	 			
70	60				
80	100				

Constructive Terrain vs. Virtual Friendly Composition

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							ī	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i <u>r</u>	E O						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e_T	5 E						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	>				_		
Section Sect		20		$(\overline{V} - \overline{V}) - D$				V F Comp
Section Sect	80		7	$=\frac{(X_1 - X_2) - D_0}{(X_1 - X_2) - D_0}$				50
Section Sect			7	G 2 G 2				53.60
Section Sect	95			$-\sqrt{\frac{1}{1}} + \frac{1}{1}$			701.83	942.29
No. St. Pooled Var. St. St	50	90		$\mathbf{V} n_1 n_2$		dof		110
Total	50			1 2	-			1.981655
30 50 10 70 70 70 70 70 70 7	80	90				Pooled Var.		
TO 10	40	61					Pooled Z=	2.013246
10	30							
75				F-Test Two-Sample for Varia	nce	S		
95 100	10	70						
0 90	75	10						
75 70	95	100		Mean				
10	0	90		Variance		702.1001763	915.4210718	
70 25 F 60 20 P(F<=f) one-tail 0.835520886 60 60 F Critical one-tail 0.835520886 60 60 F Critical one-tail 0.8359197 50 80	75	70		Observations		64	52	
SO	10	20		df		63	51	
60	70	25		F		0.766969647		
60								
75						0.63899197		
75	50	90						
Store Stor	75	81		Variances are not equal				
80	50	80						
80	75	50		t-Test: Two-Sample Assumin	g U	nequal Variances		
0	80	40						
100	90	100				C Terrain	V F Comp	
90	0	0		Mean		63.89024844	53.1595514	· · · · · · · · · · · · · · · · · · ·
95 21 Hypothesized Mean Difference 0 0 75 df 100 t Stat 2.007419356 70 P(T<=t) one-tail 0.023675053 1	100	100		Variance		702.1001763	915.4210718	
95 21	90			Observations		64	52	
75	95	21		Hypothesized Mean Differen	се	0		
70	75					102		
80	100			t Stat		2.007419356		
80	70			P(T<=t) one-tail		0.023675053		
90						1.659930149		
90 90 Means are not equal. 40 80 70 10	40	40		P(T<=t) two-tail		0.047350106		
40 80 70 10 70 80 50 40 85 95 75 30 61 50 80 90 90 85 50 20 25 75 51 80 80 80 80 80 80 80 80 80 80 80 80 80	90			t Critical two-tail		1.983494258		
40 80 70 10 70 80 50 40 85 95 75 30 40 0 100 0 40 40 5 10 50 0 90 0 61 50 21 36 80 90 90 0 85 50 20 25 75 20 41 50 75 51 80 80 80 20 70 0	90	90		Means are not equal.				
70 80	40	80						
50 40 85 95 75 30 40 0 100 0 40 40 5 10 50 50 90 0 61 50 21 36 80 90 90 90 85 50 20 25 75 20 41 50 75 51 80 80 80 20 70 0	70	10						
85 95 75 30 40 0 100 40 40 5 10 50 50 90 61 50 21 36 80 90 90 90 90 90 85 50 20 25 75 20 41 50 75 50 75 51 80 80 20 70	70	80						
75 30 40 0 100 40 40 5 10 50 50 50 50 50 50 50 50 50 50 50 50 50	50							
40 0 100 40 40 5 10 50 50 90 61 50 21 36 80 90 90 90 85 50 20 25 75 20 41 50 75 50 75 51 80 80 20 70	85	95						
100 40 40 5 10 5 10 50 50 90 61 50 21 36 80 90 90 90 85 50 20 25 75 20 41 50 75 50 75 50 75 51 80 80 20 70	75	30						
40 40 5 10 50 50 90 61 61 50 21 36 80 90 90 90 85 50 20 25 75 20 41 50 75 50 75 51 80 20 70 0	40	0						
5 10 50 50 90 61 61 50 21 36 80 90 90 90 85 50 20 25 75 20 41 50 75 50 75 51 80 80 80 20 70 90	100							
50 50 90 61 61 50 21 36 80 90 90 90 85 50 20 25 75 20 41 50 75 50 75 51 80 80 80 20 70 90	40	40						
90 61 50 21 36 80 90 90 90 85 50 20 25 75 20 41 50 75 50 75 51 80 80 20	5							
61 50 21 36 80 90 90 90 85 50 20 25 75 20 41 50 75 50 75 51 80 80 20		50						
21 36 80 90 90 90 85 50 20 25 75 20 41 50 75 50 75 51 80 80 20	90							
80 90 90 85 50 85 50 86 85 50 86 80 20 70	61	50						
90 90 85 50 85 50 85 85 85 85 85 85 85 85 85 85 85 85 85	21							
85 50 20 25 75 20 41 50 75 50 75 51 80 80 9	80	90						
20 25	90	90						
75 20 41 50 75 50 75 51 80 80 20 70								
41 50 75 50 75 51 80 80 20 70								
75 50 75 51 80 80 20 70	75							
75 51 80 80 20 70	41	50					·	
80 80 20 70	75	50						
80 20 70	75	51						
70	80							
	80	20						
80	70							
1 **	80		l .					

Constructive Terrain vs. Virtual Enemy Task Organization

<u>.</u> E	ō			
C Terrain	Enemy Task O			
5	ک اع			
	me.			
	\ E			
90	30		$(\overline{X} - \overline{X}) - D$	V Enemy Task Org
80	25	Count Z	$= \frac{(\overline{X}_{1} - \overline{X}_{2}) - D_{0}}{\sqrt{\sigma_{1}^{2} + \sigma_{1}^{2}}}$	50 51.42
60 95	80 80	M e a n V a riance	$\left \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}}\right $	1016.33
50	70	d o f	$\sqrt{n_1} + n_2$	110
50				2.32225388
80	75	Pooled Var.	841.924217 Pooled Z=	2,368684493
40 30	61 50		Pooled 2-	2.300004493
70	40	F-Test Two-Sample f	for Variances	
10	100			
75	10		C Terrain 63.89024844	V Enemy Task Org 51.0442295
95	90	M ean Variance	702.1001763	983.8166979
75	30	Observations	64	52
10	80	df	63	51
70	50	F	0.71364938 0.892741137	
60 60	60 60	P (F <= f) one-tail F Critical one-tail	0.892741137	
50	50	T CTITICAT ONE-tail	0.0000	
75	81	Variances are not eq	ual	
50	90			
75 80	80	t-Test: Two-Sample A	Assuming Unequal Variances	
90	50		C Terrain	V Enemy Task Org
0	50	Mean	63.89024844	51.0442295
100	100	Variance	702.1001763	983.8166979
90	50	Observations Hypothesized Mean	Difference 0	52
75	50	idf	100	
100		t Stat	2.349668342	
70		P(T<=t) one-tail	0.010377535	
80 40	80	t Critical one-tail P(T<=t) two-tail	0.020755069	
90		t Critical two-tail	1.983971742	
90	0	Means are not equal		
40	60			
70 70	100			
50	100			
85	50			
75	5			
100	60			
40	40			
5	10			
50	10			
90 61	81			
21	21			
80	90			
90 85	90 70			, , , , , , , , , , , , , , , , , , , ,
20	10			
75	41			
41	90			
75 75	20 81			
80	"			
80	0			
70				
80				L

Constructive Terrain vs. Virtual Enemy Equipment

- T	= 1		
Terrai	Equi		
٥	V E	$Z = \frac{(\overline{X}_1 - \overline{X}_2)}{ \overline{X}_1 }$	\overline{X}_2) - D_0
90	40	$Z = \frac{(X_1)^2}{2}$	2 2 0
80 60	25 80	Count Mean	$\frac{1}{1} + \frac{\sigma^{2}}{1}$
95	80		
50	70	d o f	n_2
50	70	4 0 1	Z=
80	80	Pooled Var.	788.8005806
40	61	, 00104 1411	Pooled Z=
30	50		
70	0	F-Test Two-Sample for Variance	S
10	60		
75	10		C Terrain
95	0	Mean	63.89024844
0	90	Variance	702.1001763
75	70	Observations	64
10	100	df	63
70	50	F	0.802654197
60	60	P(F<=f) one-tail	0.790536249 0.63899197
60	80	F Critical one-tail	0.03088187
50	50	Veriences are not equal	
75	81	Variances are not equal	
50 75	60 70	t-Test: Two-Sample Assuming U	negual Variances
80	80	t- rest. Two-Dample Assuming O	
90	70		C Terrain
0	80	Mean	63.89024844
100	100	Variance	702.1001763
90	100	Observations	64
95	50	Hypothesized Mean Difference	0
75		df	104
100	-	t Stat	1.632639824
70		P(T<=t) one-tail	0.052784479
80		t Critical one-tail	1.659636837
40	50	P(T<=t) two-tail	0.105568958
90		t Critical two-tail	1.983034963
90	80	Means are equal.	
40	20		
70	10		
70	90		
50 85	10 70		
75	70		
40	60		
100	- 50		
40	60		
5			
50	50		
90			
61	81		
21	22		
80	90		
90	90		
85	75		
20	30		
75	41		
41	90		
75	20		
75	88		
80	0		
70	- 0		
80			
	L		

Constructive Terrain vs. Virtual Adjacent Unit

C Terrain	V Adacent Uni			
90	40	$\sqrt{\overline{Y}}$	$-\overline{X}$) $-D$	V Adacent Unit
80	20	Count $Z = \frac{(A_1)}{C}$	$\frac{-\overline{X}_{2})-\overline{D}_{0}}{\sigma_{1}^{2}}$	50
60	60	Mean	$\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}}$	55.12
95	80	Variance		739.41
50	50	dof	$n_1 \qquad n_2$	110
50				1.832601227
80	80	Pooled Var.	718.5705806	1.837775849
40	61		Pooled Z=	1.837775649
30	40			
70	0	F-Test Two-Sample for Varianc	es	
10	60		C Torrain	V Adacent Unit
75	75		C Terrain 63.89024844	54.58292626
95	100	Mean	702.1001763	725.4165612
0	90	Variance	702.1001703	52
75	50	Observations	63	51
10	80	df	0.967857937	31
70	90	F B(Ex-f) one-tail	0.544849281	
60	20	P(F<=f) one-tail F Critical one-tail	0.63899197	
60	60 75	r Childarone-tan	0.0000197	
50	81	Variances are not equal		
75 50	30	Variances are not equal		
75	75	t-Test: Two-Sample Assuming U	Inequal Variances	
80	40	t-rest. Two-campie Accaming	1	
90	60		C Terrain	V Adacent Unit
- 0	50	Mean	63.89024844	54.58292626
100	100	Variance	702.1001763	725.4165612
90	100	Observations	64	52
95	50	Hypothesized Mean Difference	0	
75		df	108	
100		t Stat	1.864426238	
70		P(T<=t) one-tail	0.032488605	
80		t Critical one-tail	1.659086593	
40	40	P(T<=t) two-tail	0.064977209	
90		t Critical two-tail	1.982170943	
90	0	Means are equal.		
40	10			
70	30			
70	80			
50	60			
85	30			
75	100			
40	70			
100	50			
5	20			
50				
90				
61	80			
21	26			
80	50			
90	90			
85	70			
20	40			
75	25			
41	50			
75	80			
75	78			
80				
80	0			
70				
80	1			ı

Constructive Terrain vs. Virtual Enemy Training Level

ni a	> o			
C Terrain	E Train Lev			
0	Ē			
	>			
90	40	(\bar{X})	$\frac{-\overline{X}_{2})-\overline{D}_{0}}{\overline{\sigma}_{1}^{2}+\overline{\sigma}_{1}^{2}}$	V E Train Level
80	20	$Z = \frac{(X_1)}{I}$	2 2	51.72
60	90 80	Mean Variance	σι' σι' Η	1018.74
95		Variance	+	110
50 50	50	dof	n_1 n_2	2.267202284
80	60	Pooled Var.	842.9960352	2.207202204
40	40	Fooled Val.	Pooled Z=	2.312818086
30	50		1 00104 2	
70	0	F-Test Two-Sample for Varian	ces	
10	70	1 -1 cst 1 wo-oumple for varian		
75	30		C Terrain	V E Train Level
95	100	Mean	63,89024844	51,33918556
0	50	Variance	702.1001763	986.3269035
75	70	Observations	64	52
10	100	di	63	51
70	50	F	0.71183314	
60	20	P(F<=f) one-tail	0.894457172	
60	80	F Critical one-tail	0.63899197	
50	75			
75	90	Variances are not equal		
50	80			
75	50	t-Test: Two-Sample Assuming	Unequal Variances	
80	80			
90	25		C Terrain	V E Train Level
0	80	Mean	63.89024844	51.33918556
100	100	Variance	702.1001763	986.3269035
90		Observations	64	52
95	50	Hypothesized Mean Differenc	e 0	
75		df	2.29386627	
100		t Stat	0.011945042	
70 80		P(T<=t) one-tail t Critical one-tail	1,66023483	
40	90	P(T<=t) two-tail	0.023890084	
90	30	t Critical two-tail	1.983971742	
90	0	Means are not equal.		
40	70			
70	10			
70	90			
50	20			
85	50			
75	5			
40	20			
100				_
40	10			
5	30			
50	20			
90				
61	80			
21	21			
80	90			
90 85	60			
20	0			
75	25			
41	65			
75	20			
75	90			
80	- 33			
80	0			
70				
80				
	1			

Appendix X

Constructive vs. Virtual Factor Analysis (z test)

Terrain

C Terrain	V Terrain			
<u></u>	Le l			
5	>			
90	20	Г		D.
80	80		$Z = \frac{(X_1 - X_2)}{(X_1 - X_2)}$	- D ₀
60	80		$Z = \sqrt{G^2 - G}$	2
95	95		$-\sqrt{\frac{0}{1}} + \frac{0}{1}$	1
50	70		$Z = \frac{(\overline{X}_1 - \overline{X}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma}{n}}}$	2
80	90			Constructive
40	70		Count	50
30	70		Mean	60.46
70	80		Variance	743.31
10	70		dof	
75	90			Z=
95	90		Pooled Var.	747.5187755
0	90			
75	50			Pooled Z=
10 70	10 90			ruoleu Z=
60	30			
60	80			
50	75			
75	90		A.A. I SANGON	
50	80			
75	85			
80	80			
90	90			
0	100			
100	100			
95	95			
	0.0			
40	40			
0.0	0.0			
90	90 70			
70	50			
70	90			
50	50			
85	85			
75	85			
40	60			
40	4.0			
40	10			
50	50			
61	50		1.00-00-00-1	
21	22			
80	90			
90	90			
85	45			
20 75	20 60			
41	40			
75	75			
75	70			
80	80			

Task

C Tas	VTas		\	
5	5			
70	30	 		
60	60	 \overline{Y}	$\frac{1}{1} - \overline{X}_{2}) - D$ $\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}^{2}}{n_{2}}}$) .
80	80	 $Z = \frac{A}{A}$	1 1 2) 1	0
1	i	 _	10 2 0 2	
20	50	_	$\frac{1}{1} + \frac{1}{1}$	
50	50	 1	$n_1 n_2$	
				Virtual
80	81		Constructive	50
80	80	Count	50	
90	90	Mean	66.54	1
10	20	Variance	538.38	
90	90	dof		98
70	90		Z=	0.033098
95	95			
50	90			
50	50	Pooled Var	584.2265306	
40	40			
50	80			
70	50		Pooled Z=	0.033098
40	80			
75	75			
100	100			
50	80			
95	60			
80	80			
100	100			
100	100			
80	80			
80	21			
80	80			
60	85			
60	90			
70	30			
95	60			
80	80			
85	65			
50	90			
60	60	 		
50	10	 		
50	50	 		
80	60	 		
80	61	 		
22	21			
90	90	 		
90	90			
80	80			
40	40	 		
25	25			-
45	80			
60	60	 -		
30	20	 		-
- 00	90			
90	90			
				-

Simulator

C Simulator	V Simulator				
80	20				
			$\sqrt{\overline{X}}$	$\int_{1}^{2} - \overline{X}_{2} - D dx + \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}^{2}}{n_{2}}$) ——
50	50		7 - (1	$\frac{1}{1}$ $\frac{A}{2}$ $\frac{1}{2}$	0
30	30		L -	G 2 G 2	
90	95			$\frac{1}{1}$	
90	90		1	ln, 'n,	
				. 1	
90	90			Constructive	
80	80		Count	49	49
80	80		Mean	64.80	
10	60		Variance	679.58	
30	70		dof		96
90	90			Z=	0.3500387
90	90				
90	90				
50	50		Pooled Var	751.6037415	
20	20				
70	90		-		
70	70			Pooled Z=	0.3500387
80	60				
80	80				
90	90		-		
30	- 50				
20	10				
	80				
80					
25	25				
50	0				
100	100				
95	21				
60	60				
50	90				
30	80				
70	70				
80	99				
60	60	/			
95	95				
80	80				
20	20				
60	20				
40	40				
75	50				
					
80	50				
26	24				
50	90				
90	90				
75	40				
20	20				
80					
85	65				
90	90	1	-		
39	46		-		1
39	1 40				
90	90				-
90	30		-	-	
					-

Friendly Unit Composition

E .	mo				
C F Com	V F Com				
5	>				
80	20	Г			
60	75		\mathcal{L}	$\frac{1}{n} - \overline{X}_{2} - \frac{1}{n}$ $\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}}{n}}$	D_{0}
80	80		Z =	2	2
50	80			$ \sigma_1 = \sigma_1 $	
70	90		1	n + n	
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 1 "	2
90	90			Constructive	
61	61		Count	50	50
50	50		Mean	60.60	53.60
10	10		Variance	886.20	
30	70		dof		98
50	10			Z=	1.157542
100	100				
90	90			011011000	
50	70		Pooled Var	914.244898	
20	20				
50	25			Pooled Z=	1 1575/17
40	20		7 Tact To	Sample for N	1.13/342
50	60 90		Z-Test. TW	Sample for N	leans
75 75	81				
80	80				
100	50				
40	40				
100	100				
100	0				
100	100				
95	21				
40	40				
40	40				
90	90				
20	80				
10	10				
75	80				
60	40				
95	95				
80	30				
0	0				
60	40				
10	10				
50	50				
80	50				
90	36 90				
90	90				
80	50				
30	25				
20	20				
50	50				
100	50				
64	51				
0	20				

Enemy Composition

٦	e 1	·		
C E Com	V E Com			
90	40			
60	75		$(\overline{X}, -\overline{X},)$	D_{α}
60	60		$Z = \frac{(21 + 1)^{2}}{2}$	
50	80		$\log r^2$, 2
90	90		-/+	<u> </u>
90	90		$Z = \frac{(\overline{X}_1 - \overline{X}_2) - \sqrt{\sigma_1^2}}{\sqrt{\sigma_1^2 + \sigma_1^2}}$	2
80	80			Constructive
61	61		Count	50
	40		Mean	64.62
40			Variance	882.98
0	0		d o f	002.50
30	70		aor	
30	30			Z=
85	90			
90	90			0.50.000.50
80	70		Pooled Var.	853.082653
60	60			
70	75			
60	60			Pooled Z=
80	80			
75	75			
90	90			
100	100			
80	20			
60	60			
90	90			
100	30			
100	100			
95	50			
80	80			
100	100			
30	50			
10	10			
90	100			
60	40			
85	65			
5	5			
40	40			
10				
30	30			
40	30			
81	. 81			
40	31			
90	90			
90	90			
85	65			
30	25			
50	50			
100	100			
90	90			
89	80			
0	0			

Combat Power Ratio

=	=			
C Power Rati	V Power Rati			
Ver.	ě			
ا ۋ ا	ا م			
Ö	>			
90	40	[
50	50		$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - \sqrt{\sigma_{1}^{2}}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}^{2}}{n_{2}}}}$	D_{0}
80	80		$Z = \frac{1}{\sqrt{2}}$,
50	80		$\frac{\sigma_1}{\sigma_1}$	
70	90		\sqrt{n}	
		l	1 2	
90	80		0	Constructive 50
61	61 50		Count Mean	62.42
50 60	40		Variance	651.19
40	60		d o f	
10	10			Z=
100	90			
90	90			
70	30		Pooled Var.	631.956122
80	80			
70	50			D = 1 = 1 = -
60	60			Pooled Z=
80 50	80 50			
81	81			
60	60			
90	50			
80	80			
50	50			
50	50			
100	100			
95	50			
80	80			
50	40			
40	60 50			
50 90	100			
50	50			
90	50			
80	80			
60	30			
40	60			
35	35 10			
10	10			
81	81			
36	30			
90	90			
90	90			
85	65			
15	15			
41	60			
80	80			
20	20			ļ
51	50			
0	0			
			.1	1

Enemy Task Organization

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					T	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o g	o				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ž.	sk				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	٦	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e e	e i				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ᇤ	ը				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	30	Г			
V N N N N N N N N N	25	25		$(\overline{X}_1 - \overline{X}_2) - D_0$		
V N N N N N N N N N	80	80		$Z = \frac{1}{\sqrt{1 - x^2 - x^2}}$		
V N N N N N N N N N				$\sqrt{\frac{\sigma_1}{\sigma_1}} + \frac{\sigma_1}{\sigma_1}$		- 100-
75	70	70		$\mathbf{V} n_1 n_2$		
ST			l		Constructive	Virtual
SO				Count		
100						
40 100						
90 90 90 90 90 90 90 90 90 90 90 90 90 9			V			
90 90	10	10			Z =	0.657881403
50						
80 80					4000 040705	
70				Pooled Var.	1009.246/35	
60						
80					Pooled Z=	0.657881403
50						
90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
0 0 50 50 50 50 50 50 50 50 50 50 50 50			*******			
80 80 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60						
50 50 80 50 95 50 80 80 0 0 60 60 10 10 85 100 60 10 90 50 5 5 60 40 10 10 10 10 10 10 10 10 81 81 22 21 90 90 90 90 90 90 90 90 90 20 20 20 79 81						
80 50						
100				11000		\$180 m
95						
80 80 80						
0 0 0	95	50				
0 0 0						
0 0 0						
0 0 0						
0 0 0	80	80				
60 60 10 10 85 100 60 10 90 50 90 90 90 90 90 90 90 90 90 90 90 90 90						
10	0	0				
85 100 60 10 90 50 5 5 40 60 60 40 10 10 10 10 81 81 22 21 90 90 90 90 90 70 10 10 41 41 80 90 20 20 79 81						
60 10 90 50 50 50 50 50 50 50 50 50 50 50 50 50						
90 50						
5 5 40 60 60 40 10 10 10 10 81 81 22 21 90 90						
40 60 60 60 60 60 60 60 60 60 60 60 60 60						
60 40						
10 10 10	-					
10 10						
81 81 22 21 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3						
22 21 90 90 90 90 90 90 90 90 90 90 90 90 90	10	10				
22 21 90 90 90 90 90 90 90 90 90 90 90 90 90	81	81				
90 90 90 90 90 90 90 90 90 90 90 90 90 9						
90 90 90 90 90 90 90 90 90 90 90 90 90 9						
10 10 41 41 80 90 20 20 79 81 S1		90				
41 41 80 90 20 20 79 81						
80 90 20 20 79 81	•					
20 20						
79 81						
	0	0				

Enemy Equipment

Equi	Equi				
CEE	∨ E				
90	40		/ == == : ==		
25	25	_	$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}^{2}}{n_{2}}}}$		
80	80				
50	80		$(\sigma_1^2 - \sigma_1^2)$		
50	70		2/ + 		
30	7 0		$\mathbf{V} n_1 \qquad n_2$		
					V/Internal
80	80				Virtual
50	61		Count	50	
50	50	N	Mean	55.90	
0	0	V	/ariance	900.09	897.07
40	60	d	o f		98
10	10			Z=	0.02001577
	0				0.02001011
0					
90	90			000 500 ()	
40	70	P	Pooled Var.	898.582449	
60	100				
50	50				
60	60			Pooled Z=	0.02001577
60	80				
30	50				
81	81				
60	60				
100	70				
80	80				
70	70				
80	80				
100	100				
100					
0.5	50				
95	50				
50	50				-
75	80		, , , , , , , , , , , , , , , , , , ,		
30	20				
10	10				
	90				
80					
60	10				
88	70				
5	5				
60	60				
40	60				
10					
50	50				
- 50	30				
	0.7				
81	81				
22	22				
90	90				
90	90				
95	75				
40	30				
41	41				
85	90				
20	20				
92	88				
0	0				

Friendly Equipment

C F Equi	V F Equi		
	40		
90		$Z = \frac{(\bar{X}_{1} - \bar{X}_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma}{n}}}$	D
75	75	$(X_1 - X_2)$	- D 0
80	90	$L = \frac{1}{2}$	2
50	80	/σ, σ	1
50	50	+	<u> </u>
- 50	- 30	V n , n	2
		<u></u>	
100	100		Constructive Virtual
50	61	Count	50 50
50	50	Mean	64.56 64.36
0	0	Variance	688.58 640.97
		d o f	98
40	60	Q O I	
90	75		Z= 0.03878493
80	100		
90	90		
50	70	Pooled Var.	664.77388
	100	, , , , , , , , , , , , , , , , , , , ,	
60			
60	90		
30	30		Pooled Z= 0.03878493
60	60		
30	75		
81	81		
30	30		
	1		
100	75		
60	60		
70	70		
80	80		
100	100		
100	100		
95	50		
- 75	10		
40	40		
75	80		
50	50		
50	30		
85	70		
60	60		
88	70		
100	100		
40	40		
50	50		
	1		
20	20		
50	50		
81	81		
18	20		
90	60		
90	90		
95	75		
70	60		
75	75		
	90		
80			
90	90		
80	75		
\vdash			
0	0		
⊢Ť			

Adjacent Unit

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55.12 739.41 98
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 55.12 739.41 98
$ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $ $ Z = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2}}} $	50 55.12 739.41 98
80 80 50 61 Count 50 40 40 Mean 56.38 0 0 Variance 758.98	50 55.12 739.41 98
80 80 50 61 40 40 Mean 56.38 0 0 Variance 758.98	50 55.12 739.41 98
80 80 50 61 40 40 Mean 56.38 0 0 Variance 758.98	50 55.12 739.41 98
80 80 50 61 40 40 Mean 56.38 0 0 Variance 758.98	50 55.12 739.41 98
80 80 50 61 40 40 Mean 56.38 0 0 Variance 758.98	50 55.12 739.41 98
50 61 Count 50 40 40 Mean 56.38 0 0 Variance 758.98	55.12 739.41 98
40 40 Mean 56.38 0 0 Variance 758.98	739.41
0 0 Variance 758.98	98
	A ARRIATION
90 75 Z=	0.230167109
80 100	
90 90	
50 50 Pooled Var. 749.1944898	
	0.230167109
	0.200107100
60 60	
30 75 81 81	
30 30	
90 75	
40 40	
60 60	+
50 50	
100 100	
95 50	
	-
40 40	
0 0	
10 10	
50 30	
50 80	
60 60	
60 30	-
100 100	
70 70	
50 50	
50 50 20 20	
60 60	1
80 80	4
	
40 26	
90 50	-
90 90	
95 70	1
50 40 25 25	-
25 25 50 50	
83 78	
0 0	
	+

Enemy Training Level

è	è.				
C E Train Lev	V E Train Lev	l			
<u>.</u>	ī				
	<u> </u>			A :	
1 5	>			V :	
90	40				
20	20		$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}^{2}}{n_{2}}}}$		
80	90		$Z = \frac{1}{\sqrt{2}}$		
50	80		$\sigma_1^2 = \sigma_1^2$		
50	50		1/2 + 7		
			V " 1 " 2		
60	60				Virtual
21	40		Count	50	
50	50		Mean	49.74	51.72
0	0		Variance	945.99	
30	70		dof		98
30	30			Z=	-0.315863114
50	100				
50	50				
50	70		Pooled Var.	982.3642857	
100	100				
50	50				
20	20			Pooled Z=	-0.315863114
60	80				
50	75				
90	90				
80	80				
65	50				
80	80				
2.5	25				
80	80				
100	100				
80	50				
90	90				
90	90				
0	0				
70	70				
10	10				
60	90				
20	20				
75	50				
5	5				
40	20				
10	10				
30	30				
20	20				
80	80				
21	21				
90	90				
90	90				
70	60				
0	0				
25	25				
55	65				
20	20				
95	90				
0	0				
<u> </u>					
L					

Enemy Mission

C E Missi	V E Missi				
90	40				
20	20		$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}^{2}}{n_{2}}}}$		
90	90		$Z = \frac{1}{\sqrt{2}}$		
50	80	****	$\left[\sigma_{1}\right]^{2}$ $\left[\sigma_{1}\right]^{2}$		
70	70		1/ " " "		
		****	V n 1 n 2		
90	80			Constructive	
41	21		Count	50	50
40	60		Mean	63.76	
20	20		Variance	804.31	
30	70		dof		98
30	30			Z =	0.61398493
100	100				
80	80				
30	40		Pooled Var.	859.467755	
100	100				
50	50	***			
70	20			Pooled Z=	0.61398493
80	80				
75	75				
95	95				
90	90				
75	75				
80	80				
25	25				
100	0				
100	100				
85	50				
90	90				1.0.12120
70	70				
70	70				
10	10				
80	100				
60	20				
60	50				
0	0				
60	80				
	En				
50 25	50 25			1	-
40	40				
40	40				
85	85			-	
41	41				
90	90			 	
90	90				
80	80				
10	10				
75	75				
100	100				
50	50			1	
96	91				
<u> </u>					
50	50				
		L			

Weather

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
90 40 20 20 20 20 20 20 20 20 20 20 20 20 20	C Weathe	Weather				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		 				
81 81 40 60 Count 50 50 50 40 70 Mean 49.22 58.70 Wariance 955.15 881.15 0 50 40 70 Wariance 955.15 881.15 0 50 100 90 90 90 90 90 90 90 90 90 90 90 90 9				$(\overline{X} - \overline{X})$	$ D - D - \vdash$	
81 81 40 60 Count 50 50 50 40 70 Mean 49.22 58.70 Wariance 955.15 881.15 0 50 40 70 Wariance 955.15 881.15 0 50 100 90 90 90 90 90 90 90 90 90 90 90 90 9				$Z = \frac{(X_1 - X_2)^2}{2}$	2) 0	
81 81 40 60 Count 50 50 50 40 70 Mean 49.22 58.70 Wariance 955.15 881.15 0 50 40 70 Wariance 955.15 881.15 0 50 100 90 90 90 90 90 90 90 90 90 90 90 90 9				2 2	G 2	
81 81 40 60 Count 50 50 50 40 70 Mean 49.22 58.70 Wariance 955.15 881.15 0 50 40 70 Wariance 955.15 881.15 0 50 100 90 90 90 90 90 90 90 90 90 90 90 90 9				101	+ 01	
81 81 40 60 Count 50 50 50 40 70 Mean 49.22 58.70 Wariance 955.15 881.15 0 50 40 70 Wariance 955.15 881.15 0 50 100 90 90 90 90 90 90 90 90 90 90 90 90 9	70	90		\mathbf{V}_{n}	` n ,	
40 60 Count				V 1		
40 70 Mean 49.22 58.70 0 45 Variance 955.15 881.15 0 50 d of 2 98 10 10 0 2= -1.564302 50 100 90 90 90 90 90 90 90 90 90 90 90 90 9						
0 45						
0 50						
10 10 10 2= -1.564302 50 100 90 90 90 90 90 90 90 90 90 90 90 90 9	0	45			955.15	
50 100 90 90 90 90 90 90 90 90 90 90 90 90 9	0	50		dof		
90 90 90 90 90 90 90 90 90 90 90 90 90 9	10	10			Z=	-1.564302
30 80 Pooled Var. 918.1538776 100 100 70 90 40 60 Pooled Z= -1.564302 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80 8	50	100				
100	90	90				
100	30	80		Pooled Var.	918.1538776	
70 90 40 60 Pooled Z = -1.564302 60 60 60 50 75 90 90 90 90 90 90 90 90 90 90 90 90 90						
40 60 60 60 75 75 90 90 90 90 90 90 90 90 90 90 90 90 90						
60 60 50 75 90 90 90 90 90 90 90 90 90 90 90 90 90					Pooled 7=	-1 564302
50 75 90 90 30 90 0 0 80 80 30 30 100 100 100 100 60 50 30 0 60 80 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 60 60 50 50 60 60 5 5 20 20 60 60 36 36 65 90 90 90 75 60 10 10 80 50 60 65 50 50 99 98	4				7 00104 2	1.00 1002
90 90 30 90 30 90 90 90 90 90 90 90 90 90 90 90 90 90						
30 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-		ļ
0 0 0 80 80 30 30 30 30 30 30 30 30 30 30 30 30 30						ļ
80 80 30 30 100 100 100 100 100 100 100 100						
30 30 100 100 100 100 100 100 100 100 10		-				
100 100 100 100 100 100 100 100 100 100	1 1					
100 100	30	30				
60 50 50 50 30 0 60 80 50 50 50 50 50 50 40 60 50 50 0 0	100	100				
50 50 50 50 50 50 50 50 50 50 50 50 50 5	100	100				
50 50 50 50 50 50 50 50 50 50 50 50 50 5						
30 0 0 60 80 50 50 50 50 50 50 50 50 50 50 50 50 50	60	50				
30 0 0 60 80 50 50 50 50 50 50 50 50 50 50 50 50 50						
30 0 0 60 80 50 50 50 50 50 50 50 50 50 50 50 50 50						
30 0 0 60 80 50 50 50 50 50 50 50 50 50 50 50 50 50						
30 0 0 60 80 50 50 50 50 50 50 50 50 50 50 50 50 50						
30 0 0 60 80 50 50 50 50 50 50 50 50 50 50 50 50 50	50	5.0				
60 80 50 50 50 50 50 50 50 50 50 50 50 50 50						
60 80 50 50 50 50 50 50 50 50 50 50 50 50 50	3.0	0				
50 50 50 50 40 60 50 50 0 0 0 20 60 60 5 5 20 20 60 60 36 36 65 90 90 90 75 60 10 10 80 50 60 65 50 50 99 98						
50 50 50 40 60 50 50 50 50 50 50 50 50 50 50 50 50 50						
40 60 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
0 20 60 60 5 5 20 20 60 60 36 36 65 90 90 90 75 60 10 10 80 50 60 65 50 50 99 98						
60 60 5 5 5 20 20 60 60 60 60 60 60 60 60 60 60 60 60 60						
5 5 5 20 20 60 60 60 60 60 65 50 50 60 65 50 60 65 50 60 60 60 60 60 60 60 60 60 60 60 60 60	U	20				
5 5 5 20 20 60 60 60 60 60 65 50 50 60 65 50 60 65 50 60 60 60 60 60 60 60 60 60 60 60 60 60						
20 20 60 60 60 60 60 60 60 60 60 60 60 60 60						
60 60 60 36 36 65 90 90 90 75 60 10 10 80 50 60 65 50 50 99 98						
36 36 65 90 90 90 75 60 10 10 80 50 60 65 50 50 99 98	20	20				
36 36 65 90 90 90 75 60 10 10 80 50 60 65 50 50 99 98						
65 90 90 90 75 60 10 10 80 50 60 65 50 50 99 98						
90 90 75 60 10 10 80 50 60 65 50 50 99 98						
75 60 10 10 80 50 60 65 50 50 99 98	65	90				
10 10 80 50 60 65 50 50 99 98	90	90				
10 10 80 50 60 65 50 50 99 98	75	60				
80 50 60 65 50 50 99 98		10				
60 65 50 50 99 98						
50 50 99 98						
99 98						
						
0 70	- 39	30				
		70				
	L	10				
		L	<u> </u>		<u> </u>	

Previous Use

e l	œ.				
C Previous Use	V Previous Use				
ğ	Į į				
re/) ie				
Ö	>				
90	40		$= \frac{(\overline{X}_{1} - \overline{X}_{2}) - D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}^{2}}{n_{2}}}}$		
75 90	75 90	Z	$=\frac{(X_1 - X_2) - D_0}{(X_1 - X_2) - D_0}$		
95	85		$\left \sigma_{1}^{2} \sigma_{2}^{2} \right $		
70	70		$\sqrt{\frac{1}{n}} + \frac{1}{n}$		
			V " 1 " 2		
90	90			Constructive	Virtual
80	80		unt	50	50
75	75		ean Flance	71.12 445.58	65.70 645.93
100	80 100	V a		445.58	98
30	30	u 0	7 1	Z =	1.160035505
100	100				
50	50				
90	90	Po	oled Var.	545.7528571	
100	100				
70	90			Pooled Z=	1.160035505
70 60	30 40		and the second s	JUIEU Z-	1,10003000
50	50		- Days		
75	75				
70	70				
80	80				
40	40				
25	25				
100	100				
100	100				
70	60				
50	50				
00	- 00		VIII		
60	90				
70	80				
70	20				
50	70				
60 50	40 50				
80	80				
60	40				
			A STATE OF THE STA		
60	60				
15	15				
50	50				
80	80				
40	40				
90	50				
90	90				
60	60				
80 100	100				
55	65				
80	50				
81	80		1,100		
100	100				
l	I				<u> </u>

Level of Difficulty

C Difficult	V Difficult				
80	20				
85	85		$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}^{2}}{n_{2}}}}$		
80	80		$Z = \frac{(X_1, X_2)}{(X_2, X_3)}$		
			$\int_{0}^{2} \int_{0}^{2} \int_{0$		
85	90		$\frac{1}{3}$ + $\frac{3}{3}$		
70	70		\mathbf{V}_{n} , n_{n}		
			1 2		
90	90			Constructive	
70	80		Count	50	50
50	50		Mean	63.68	
10	85		Variance	672.51	711.35
20	60	***	dof		98
90	90			Z =	0.102643973
50	50				
50	50				
50	50		Pooled Var.	691.927551	
100	100				
80	80				
20	20			Pooled Z=	0.102643973
60	40				
50	50				
90	90	·			
	80				
80					
100	90				
80	80				
90	90				
80	80	4			
100	100			441-4	
21	21				
50	50				
65	100				
50	95				
70	20				
50	70				
60	40				
50	50				
100	100				
50	40				
50	50				
10	10				
70	60				1
<u> </u>	-				
60	60				
38	38				
90	90				
90	90				
30	30				
15	10				
90	60				
90	80				
80	50				
25	23				,
70	70				

Unit Assessment

	_			T	
C Assesmen	V Assesmen				
use	esu				
SS	SS				
× ×	4				
80	20			1	
85	85	1.14 57	$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{1}^{2}}{n_{2}}}}$		
100	100		$Z = \frac{1}{\sqrt{2}}$		
98	98		$\left(\sigma_{1}^{2} - \sigma_{1}^{2}\right)$		
90	90		1 +		
			n_1		
90	90			Constructive	Virtual
70	80		Count .	49	
90	90		Mean	77.61	75.71
60	85		Variance	439.53	744.13
100	100	****	dof		96
50	90			Z =	0.386163839
70	70		Pooled Var.	591.8295068	
90	90			Pooled Z=	0.386163839
30	30		F-Test Two-Sample for Variance	e s	
80	100				
80	50			C Assesment	
60	20		Mean	77.6122449	75.71428571
80	80		Variance	439.5340136	744.125
90	90		Observations	49	49
98	98		d f	48	48
80	80		F	0.590672284	
90	60		P(F<=f) one-tail	0.964391517	
100	100		F Critical one-tail	0.619053253	
90	90				
100	100				
100	100				
50	5				
				-	
20	20				
	20				
80	90			 	
70	100				
50	50				
85	85				
60	40				
30	20				
80	100				
100	100				
80	80				
90	90				
80	80				
88	88				
21	21				
90	90			ļ	
95	95				
90	80				
90	90				
75	80				,
90	90				
58	50			 	
80	80				
0.0	-00				
	1				1

Light Data

C Light Dat	V Light Dat			
별	其			
🖺	ے ا			
80 25	40 25	 (\overline{V})	$-\frac{\overline{X}_2}{n} - D$	
60	60	$Z = \frac{(A_1)}{2}$	A_2) D	0
20	90	 Īσ	σ^2	
70	90	 - 1-	+ -1	
'		 V 7	n_1 n_2	
60	60	 	Constructive	Virtual
40	80	Count	50	50
50	50	 Mean	45.30	56.96
20	85	Variance	874.62	876.65
0	30	dof		98
60	60		Z=	-1.970182775
50	100			
90	90	Basisa Var	975 6360300	
30	50	 Pooled Var.	875.6369388 Pooled Z=	-1.970182775
10 70	20 70		1 00160 Z-	-1.570102773
10	80	 		
60	60			
50	75			
85	85			
60	80			
0	0			
80	80			
50	50			
0	100			
100	100			
75	50			
20	20			
30	90			
60	60			
10	90			
70	70			
60	60			
60 0	50 20			
20	20	 		
F-5				
60	60			
5	5			
10	10			
50	50			
21	21			
90	90			
90	90			
15	10			
61	61			
65	45			
80	80			
68	71			
0	0			

Observation Devices

9	e e				
C Observation Device	V Observation Device				
ă	ă				
<u> </u>	5	Į			l l
at	vat				l
, i	ě				
8	ä				
ő	>				
80	40		· 57 57		
20	20	7	$(X_1 - X$	$_{2}$) - $_{0}$	
90	90	Z =	2	$\frac{1}{2} - D_0$ + $\frac{\sigma_1^2}{n_2}$	
20	95		1 6 1	, O 1	
50	90		\sqrt{n}	' n .	
			V "1	. 2	
60	90				Virtual
40	80	Count		50	50
50	50	Mean		44.20	61.40
80	60	Varian	ce	951.02	957.22
0	50	d o t			98
60	60			=Z	-2.784174132
0	100				
90	90				
50	70	Pooled	Var.	954.122449	
20	100				
75	95				
10	80			Pooled Z=	-2./84174132
60	60				
30	75				
85	85				
60	80				
70	75				
100	100				
50	50				1
0	100				
100	100				
50	21				
40	40				
20	100				
70	. 70				
10	10				
40	45				
40	60				
30	80				
0	80				
0	20				
40	40				
5	5				
10	10				
60	60				
2 1	21		- 101		
90	90				
90	90				
20	20				
10	10				
25	21				
85	9 0 5 0				
50					
54	52				
0	0				
⊢ "	"				
—				-	
	L				I

Exercise preparation

se Pre	se Pre				
C Exercise Pre	V Exercise Pre				
5	>				
50	40				
10	10		$(X_1 -$	X_{2}) - D_{0}	
90	90		$Z = \frac{1}{\sqrt{2}}$	2	
80	60		σ_1	σ_1	
50	50		\sqrt{n}	+ n .	
			$Z = \frac{(\overline{X}_1 - \sqrt{\sigma_1^2})^2}{\sqrt{n_1}}$	7 2	
90	90			Constructive	Virtual
70	80		Count	50	
90	80		Mean	68.10 775.68	
80	20		Variance	175.00	934.00
20	20		dof	Z =	1.590015
90	90				1.000010
100	100 90				-
70	30		Pooled Var.	855.2704082	-
100	80		1 55164 7 41.	555.2754502	
80	60				-
70	20			Pooled Z=	1.590015
50	40				
90	80				
92	92				
70	70				
100	100				
80	80				
20	20				
80	20				
100	100				
- 55	0.5				-
95	25				
-					
40	40				
<u> </u>					
0	0				
80	20				
30	30				
75	33	100			
40	60				
50	40				
80	80				
40	30				
	-7 K				
60	70				
45 75	45 75				
/ 3	7.3				+
85	85				
21	21				
80	80				
90	90	-			
50	50				
5	5				
75	75				
90	90				
90	90				
97	94				
100	100				
1					1

Mission Planning

C Mission Planni	V Mission Planni				
is Si	S S				
50	> 50				
10	10		$(\overline{X}, -$	$\frac{(-X_2) - D_0}{(-1)^2}$	
90	90		$Z = \frac{1}{C}$	2 2	
95	95		σ	$_{1}^{2}$, σ_{1}^{2}	
30	30		$\sqrt{}$	$\frac{1}{n_1} + \frac{1}{n_2}$	
			ν,		
90	90				Virtual
80	80		Count	50 63.10	50 57.80
70 20	70 60		Mean Variance	1081.19	978.98
20	20		dof	1001.10	98
90	90		4 3 1	Z=	0.825675
100	100				
80	80				
20	20		Pooled Var.	1030.086735	
100	100				
90	60				0.005075
50	30			Pooled Z=	0.825675
50 50	50 50				
85	85				
60	60				
100	100				
80	80				
90	90				
100	20				
100	100			:	
- 0.5	0.0				
95	20				
40	40				
0	0				
80	50				
70 99	70 89				
40	40				
90	40				
80	80				
0	0				
60	60				
10	10				
75	75				
45	45			-	
21	21	1.200			
80	80				
90	90				
35	35				
10 75	10 75				
81	90				
90	50				
9	10				
100	100				
					}

Appendix Y

Constructive vs. Virtual Factor Analysis (chi-square)

Chi-Square Test Adjacent Unit

Expected counts are printed below observed counts

ChiSq =
$$0.011 + 0.387 + 0.356 + 0.393 + 0.336 + 0.014 + 0.480 + 0.441 + 0.488 + 0.417 = 3.322$$

df = 4, p = 0.506

Chi-Square Test Unit Assesment

Chi-Square Test Level of Difficulty

Expected counts are printed below observed counts

$$\begin{aligned} \text{ChiSq} &= \ 0.045 + \ 0.386 + \ 0.016 + \ 0.010 + \ 0.075 + \\ & 0.055 + \ 0.470 + \ 0.020 + \ 0.013 + \ 0.091 = 1.179 \\ \text{df} &= 4, \ p = 0.881 \end{aligned}$$

1 cells with expected counts less than 5.0

Chi-Square Test Enemy Composition

ChiSq =
$$0.001 + 0.104 + 0.018 + 0.135 + 0.418 + 0.002 + 0.129 + 0.022 + 0.167 + 0.518 = 1.513$$

df = 4, p = 0.824
1 cells with expected counts less than 5.0

Chi-Square Test Enemy Equipment

Expected counts are printed below observed counts

ChiSq =
$$0.219 + 0.277 + 0.056 + 0.583 + 0.282 + 0.272 + 0.344 + 0.069 + 0.722 + 0.350 = 3.174$$

df = 4, p = 0.530

Chi-Square Test Enemy Mission

$$\begin{aligned} \text{ChiSq} &= \ 0.395 + \ 0.073 + \ 0.022 + \ 0.005 + \ 0.164 + \\ & 0.490 + \ 0.090 + \ 0.027 + \ 0.006 + \ 0.204 = 1.475 \\ \text{df} &= 4, \ p = 0.831 \end{aligned}$$

Chi-Square Test Enemy Task Organization

Expected counts are printed below observed counts

ChiSq =
$$0.124 + 0.062 + 0.236 + 0.126 + 0.345 + 0.154 + 0.077 + 0.292 + 0.157 + 0.428 = 2.001$$

df = 4, p = 0.736

Chi-Square Test Enemy Training Level

ChiSq =
$$0.135 + 0.037 + 0.221 + 0.002 + 0.104 + 0.167 + 0.046 + 0.274 + 0.002 + 0.129 = 1.117$$

df = 4, p = 0.892

Chi-Square Test Exercise Preparation

Expected counts are printed below observed counts

ChiSq =
$$0.639 + 0.387 + 0.005 + 0.609 + 0.074 + 0.792 + 0.480 + 0.007 + 0.756 + 0.092 = 3.841$$

df = 4, p = 0.428

Chi-Square Test Friendly Composition

ChiSq =
$$0.603 + 0.639 + 0.012 + 0.472 + 0.197 + 0.747 + 0.792 + 0.015 + 0.586 + 0.244 = 4.308$$

df = 4, p = 0.367

Chi-Square Test Friendly Equipment

Expected counts are printed below observed counts

ChiSq =
$$0.041 + 0.005 + 0.056 + 0.156 + 0.093 + 0.051 + 0.007 + 0.069 + 0.193 + 0.116 = 0.787$$

df = 4, p = 0.940
2 cells with expected counts less than 5.0

Chi-Square Test Light Data

Expected counts are printed below observed counts

ChiSq =
$$0.403 + 0.000 + 0.022 + 0.006 + 0.390 + 0.500 + 0.000 + 0.028 + 0.007 + 0.483 = 1.839$$

df = 4, p = 0.765
2 cells with expected counts less than 5.0

Chi-Square Test Mission Planning

Expected counts are printed below observed counts

ChiSq =
$$0.219 + 0.002 + 0.219 + 0.126 + 0.136 + 0.272 + 0.003 + 0.272 + 0.157 + 0.169 = 1.575$$

df = 4, p = 0.813

Chi-Square Test Observation Devices

Expected counts are printed below observed counts

Chi-Square Test Combat Power Ratio

Expected counts are printed below observed counts

ChiSq =
$$0.001 + 0.406 + 0.383 + 0.143 + 0.790 + 0.002 + 0.504 + 0.725 + 0.180 + 0.980 = 4.318$$

df = 4, p = 0.365
1 cells with expected counts less than 5.0

Chi-Square Test Previous Use

Expected counts are printed below observed counts

Chi-Square Test Simulator

Expected counts are printed below observed counts

ChiSq =
$$0.390 + 0.067 + 0.197 + 0.651 + 0.075 + 0.478 + 0.082 + 0.241 + 0.797 + 0.092 = 3.069$$

df = 4, p = 0.547

Chi-Square Test Task

Expected counts are printed below observed counts

$$\begin{aligned} \text{ChiSq} &= \ 0.264 + \ 0.247 + \ 0.180 + \ 0.267 + \ 0.193 + \\ & 0.213 + \ 0.199 + \ 0.145 + \ 0.215 + \ 0.156 = 2.079 \\ \text{df} &= 4, \ p = 0.721 \end{aligned}$$

2 cells with expected counts less than 5.0

Chi-Square Test Terrain

Expected counts are printed below observed counts

ChiSq =
$$0.062 + 0.136 + 0.000 + 0.269 + 0.416 + 0.077 + 0.169 + 0.000 + 0.334 + 0.516 = 1.979$$

df = 4, p = 0.740
1 cells with expected counts less than 5.0

Chi-Square Test Weather

Expected counts are printed below observed counts

Appendix Z

General Maneuver and Combat Service and Combat Service Support Frequency Tables

Constructive Factors

	Very Small	Small Chance	Could Effect	High Chance	Very High
Factor	Chance				Chance
C Terrain	1	5	3	9	6
C Terrain	2	1	5	9	4
C Task	1	0	8	9	6
C Task	1	4	5	9	2
C Simulator	2	4	3	7	7
C Simulator	1	3	2	10	5
C F Comp	4	2	4	6	8
C F Comp	3	1	6	8	3
C E Comp	4	6	2	5	7
C E Comp	2	3	4	5	7
C Power Ratio	2	2	6	8	6
C Power Ratio	4	2	5	5	5
C Enemy Task Org	5	4	4	5	6
C Enemy Task Org	5	1	4	5	6
C E Equip	5	2	7	5	5
C E Equip	3	4	6	3	5
C F Equip	1	4	8	3	8
C F Equip	2	1	5	9	4
C Adjacent Unit	4	3	8	5	4
C Adjacent Unit	3	2	5	9	2
C E Train Level	6	6	6	4	2
C E Train Level	6	2	5	5	3
C E Mission	4	3	5	7	5
C E Mission	2	2	4	6	7
C Weather	6	5	3	9	1
C Weather	6	1	6	3	5
C Previous Use	1	2	8	9	4
C Previous Use	1	0	6	5	9
C Difficulty	2	2	8	4	7
C Difficulty	2	1	6	5	7
C Assessment	1	1	6	7	9
C Assessment	0	1	1	8	11
C Light Data	8	2	7	5	2
C Light Data	5	1	6	6	3
C Observation Devices	5	8	6	5	1
C Observation Devices	6	3	4	5	3
C Exercise Prep	3	5	2	10	4
C Exercise Prep	2	2	4	4	9
C Mission Planning	4	5	2	8	5
C Mission Planning	4	2	5	3	7

Factor frequencies in Bold Face are Maneuver
Factor frequencies in Italics are CS and CSS

Appendix AA

Corrected General Maneuver and Combat Service and Combat Service Support Frequency

Factor Tables and Analysis

Revised Frequency Table

	Small	Could	High		Small	Could	High
Factor				Factor	1		<u> </u>
C Terrain	6	3	15	V Terrain	1	3	13
C Terrain	3	5	13	V Terrain	5	3	8
C Task	1	8	15	V Task	3	3	11
C Task	5	5	11	V Task	5	5	6
C Simulator	6	3	14	V Simulator	2	3	12
C Simulator	4	2	15	V Simulator	5	5	6
C F Comp	6	4	14	V F Comp	8	1	8
C F Comp	4	6	11	V F Comp	6	6	4
C E Comp	10	2	12	V E Comp	7	2	8
C E Comp	5	4	12	V E Comp	5	3	8
C Power Ratio	4	6	14	V Power Ratio	4	7	6
C Power Ratio	6	5	10	V Power Ratio	6	5	5
C Enemy Task Org	9	4		V Enemy Task Org	6	5	6
C Enemy Task Org	6	4	11	V Enemy Task Org	8	3	5
C E Equip	7	7	10	V E Equip	6	5	6
C E Equip	7	6	8	V E Equip	6	4	6
C F Equip	5	8	11	V F Equip	4	6	7
C F Equip	3	5	13	V F Equip	3	4	9
C Adjacent Unit	7	8	9	V Adjacent Unit	7	4	6
C Adjacent Unit	5	5	11	V Adjacent Unit	6	5	5
C E Train Level	12	6	6	V E Train Level	8	5	4
C E Train Level	8	5	8	V E Train Level	9	0	7
C E Mission	7	5	12	V E Mission	6	3	8
C E Mission	4	4	13	V E Mission	5	3	8
C Weather	11	3	10	V Weather	4	9	4
C Weather	7	6	8	V Weather	5	5	6
C Previous Use	3	8	13	V Previous Use	4	3	10
C Previous Use	1	6	14	V Previous Use	4	4	8
C Difficulty	4	8	11	V Difficulty	4	4	9
C Difficulty	3	6	12	V Difficulty	5	6	5
C Assessment	2	6		V Assessmen	4	1	12
C Assessmen	1	1		V Assessmen	1	1	14
C Light Data	10	7		V Light Data	4	7	6
C Light Data	6	6		V Light Data	6	5	5
C Observation Devices	13	6		V Observation Devices	4	6	7
C Observation Devices	9	4	1	V Observation Devices	8	4	4
C Exercise Prep	8	2		V Exercise Prep	10	2	5
C Exercise Prep	4	4		V Exercise Prep	4	2	10
C Mission Planning	9	2		V Mission Planning	8	2	7
C Mission Planning	6	5	10	V Mission Planning	4	6	6

Bold Factors are Ground Maneuver

Italic Factors are Combat Service and Combat Service Support

Table Statistics for Constructive Terrain					
Test Statistic	Value	DF	Prob.		
Pearson Chi-Square	1.449	2	0.484		
Continuity Adjusted Chi-Square	0.514	2	0.773		
Likelihood Ratio Chi-Square	1.468	2	0.480		
Coefficient	Value As	ymptotic Sto	. Error		
Phi	0.179				
Contigency	0.177				
Cramer's V	0.179				
Goodman-Kruskal Gamma	0.065		0.271		
Kendalls tau-b	0.034		0.142		
Stuart's tau-c	0.036		0.148		
Somer's D (C R)	0.036		0.149		

Table Statistics for Constructive Task					
Test Statistic	Value	DF	Prob.		
Pearson Chi-Square	3.791	2	0.150		
Continuity Adjusted Chi-Square	2.096	2	0.351		
Likelihood Ratio Chi-Square	4.027	2	0.134		
Coefficient	Value As	ymptotic St	ā. Error		
Phi	0.290				
Contigency	0.279				
Cramer's V	0.290				
Goodman-Kruskal Gamma	-0.293		0.249		
Kendalls tau-b	-0.160		0.141		
Stuart's tau-c	-0.170		0.152		
Somer's D (C R)	-0.171		0.152		

Table Statistics for Constructive Simulator					
Test Statistic	Value	[D]F	Prob.		
Pearson Chi-Square	0.545	2	0.762		
Continuity Adjusted Chi-Square	C.090	2	0.956		
Likelihood Ratio Chi-Square	0.548	2	0.760		
Coefficient	Value Asv	mptotic S	(G# #7777		
Phi	0.111				
Contigency	0.111				
Cramer's V	0.111				
Goodman-Kruskal Gamma	0.210		0.283		
Kendalls tau-b	0.105		0.144		
Stuart's tau-c	0.105		0.144		
Somer's D (C R)	0.106		0.144		

Table Statistics for Constructive Friendly Composition					
Test Statistic	Value	DF	Prob.		
Pearson Chi-Square	0.964	2	0.617		
Continuity Adjusted Chi-Square	0.295	2	0.863		
Likelihood Ratio Chi-Square	0.966	2	0.617		
Coefficient	Value A	symptotic Sto	l. Error		
Phi	0.146				
Contigency	0.145				
Cramer's V	0.146				
Goodman-Kruskal Gamma	-0.033		0.258		
Kendalls tau-b	-0.018		0.142		
Stuart's tau-c	-0.020		0.154		
Somer's D (C R)	-0.020		0.155		

Table Statistics for Constructive Enemy Composition					
Test Statistic	Value	DF	Prob.		
Pearson Chi-Square	2.143	2	0.343		
Continuity Adjusted Chi-Square	0.946	2	0.623		
Likelihood Ratio Chi-Square	2.178	2	0.336		
Coefficient	Value A	symptotic S	itd. Error		
Phi	0.218				
Contigency	0.213				
Cramer's V	0.218				
Goodman-Kruskal Gamma	0.219		0.251		
Kendalls tau-b	0.121		0.141		
Stuart's tau-c	0.130		0.153		
Somer's D (C R)	0.131		0.153		

Table Statistics for Constructive Combat Power Ratio					
Test Statistic	Value	DIF	Prob.		
Pearson Chi-Square	0.962	2	0.618		
Continuity Adjusted Chi-Square	0.361	2	0.835		
Likelihood Ratio Chi-Square	0.963	2	0.618		
Coefficient	Value Asy	mptotic Std	. Error		
Phi	0.146				
Contigency	0.145				
Cramer's V	0.146				
Goodman-Kruskal Gamma	-0.226		0.246		
Kendalls tau-b	-0.126		0.141		
Stuart's tau-c	-0.138		0.155		
Somer's D (C R)	-0.139		0.156		

Table Statistics for Constructive Task Organization						
Test Statistic	Value	DF	Prob.			
Pearson Chi-Square	0.402	2	0.818			
Continuity Adjusted Chi-Square	0.077	2	0.962			
Likelihood Ratio Chi-Square	0.404	2	0.817			
Coefficient	Value Asy	mptotic Std	. Error			
Phi	0.094					
Contigency	0.094					
Cramer's V	0.094					
Goodman-Kruskal Gamma	0.144		0.25			
Kendalls tau-b	0.080		0.14			
Stuart's tau-c	0.089		0.15			
Somer's D (C R)	0.089		0.15			

Table Statistics for Constructive Enemy Equipment						
Test Statistic	Value	DF	Prob.			
Pearson Chi-Square	0.100	2	0.951			
Continuity Adjusted Chi-Square	0.000	2	1.000			
Likelihood Ratio Chi-Square	0.100	2	0.951			
Coefficient	Value Asy	mptotic Std	. Error			
Phi	0.047		***************************************			
Contigency	0.047					
Cramer's V	0.047					
Goodman-Kruskal Gamma	-0.075		0.244			
Kendalls tau-b	-0.043		0.141			
Stuart's tau-c	-0.049		0.161			
Somer's D (C R)	-0.050		0.162			

Table Statistics for Constructive Friendly Equipment						
Test Statistic	Value	DF	Prob.			
Pearson Chi-Square	1.164	2	0.559			
Continuity Adjusted Chi-Square	0.410	2	0.815			
Likelihood Ratio Chi-Square	1.171	2	0.557			
Coefficient	Value Asy	mptotic Std	. Error			
Phi	0.161					
Contigency	0.159					
Cramer's V	0.161					
Goodman-Kruskal Gamma	0.268		0.247			
Kendalls tau-b	0.148		0.140			
Stuart's tau-c	0.162		0.153			
Somer's D (C R)	0.163		0.15			

Table Statistics for Constructive Adjacent Unit						
Test Statistic	Value	DF	Prob.			
Pearson Chi-Square	1.030	2	0.597			
Continuity Adjusted Chi-Square	0.376	2	0.829			
Likelihood Ratio Chi-Square	1.034	2	0.596			
Coefficient	Value As	ymptotic Sto	d. Error			
Phi	0.151					
Contigency	0.150					
Cramer's V	0.151					
Goodman-Kruskal Gamma	0.212		0.240			
Kendalls tau-b	0.122		0.140			
Stuart's tau-c	0.138		0.159			
Somer's D (C R)	0.139		0.160			

Table Statistics for Constructive Enemy Training Level				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	0.981	2	0.612	
Continuity Adjusted Chi-Square	0.408	2	0.816	
Likelihood Ratio Chi-Square	0.983	2	0.612	
Coefficient	Value Asy	mptotic Std	. Error	
Phi	0.148			
Contigency	0.146			
Cramer's V	0.148			
Goodman-Kruskal Gamma	0.236		0.237	
Kendalls tau-b	0.136		0.140	
Stuart's tau-c	0.154		0.158	
Somer's D (C R)	0.155		0.159	

Table Statistics for Constructive Enemy Mission				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	0.773	2	0.680	
Continuity Adjusted Chi-Square	0.258	2	0.879	
Likelihood Ratio Chi-Square	0.780	2	0.677	
Coefficient	Value As	ymptotic St	d. Error	
Phi	0.131			
Contigency	0.130			
Cramer's V	0.131			
Goodman-Kruskal Gamma	0.227		0.252	
Kendalls tau-b	0.124		0.140	
Stuart's tau-c	0.134		0.152	
Somer's D (C R)	0.135		0.153	

Table Statistics for Constructive Weather				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	1.920	2	0.383	
Continuity Adjusted Chi-Square	0.935	2	0.626	
Likelihood Ratio Chi-Square	1.938	2	0.379	
Coefficient	Value A	symptotic SI	d. Error	
Phi	0.207			
Contigency	0.202			
Cramer's V	0.207			
Goodman-Kruskal Gamma	0.082		0.245	
Kendalls tau-b	0.047		0.142	
Stuart's tau-c	0.053		0.160	
Somer's D (C R)	0.054		0.160	

Table Statistics for Constructive Previous Use			
Test Statistic	Value	DF	Prob.
Pearson Chi-Square	1.128	2	0.569
Continuity Adjusted Chi-Square	0.256	2	0.880
Likelihood Ratio Chi-Square	1.170	2	0.557
Coefficient	Value Asy	mptotic Sto	i. Error
Phi	0.158		
Contigency	0.156		
Cramer's V	0.158		
Goodman-Kruskal Gamma	0.269		0.265
Kendalls tau-b	0.140		0.140
Stuart's tau-c	0.144		0.146
Somer's D (C R)	0.145		0.146

Table Statistics for Constructive Level of Difficulty			
Test Statistic	Value	DF	Prob.
Pearson Chi-Square	0.382	2	0.826
Continuity Adjusted Chi-Square	0.057	2	0.972
Likelihood Ratio Chi-Square	0.383	2	0.826
Coefficient	Value Asy	mptotic Std	. Error
Phi	0.093		
Contingency	0.093		
Cramer's V	0.093		
Goodman-Kruskal Gamma	0.155		0.259
Kendalls tau-b	0.085		0.143
Stuart's tau-c	0.093		0.157
Somer's D (C R)	0.093		0.157

Table Statistics for Constructive Assessment				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	3.980	2	0.137	
Continuity Adjusted Chi-Square	2.330	2	0.312	
Likelihood Ratio Chi-Square	4.360	2	0.113	
Coefficient	Value As	symptotic SI	id. Error	
Phi	0.297			
Contigency	0.285			
Cramer's V	0.297			
Goodman-Kruskal Gamma	0.604		0.263	
Kendalls tau-b	0.268		0.129	
Stuart's tau-c	0.229		0.117	
Somer's D (C R)	0.230		0.117	

Table Statistics for Constructive Light Data				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	1.132	2	0.56	
Continuity Adjusted Chi-Square	0.503	2	0.77	
Likelihood Ratio Chi-Square	1.138	2	0.566	
Coefficient	Value A	symptotic S	td. Error	
Phi	0.159			
Contigency	0.157			
Cramer's V	0.159			
Goodman-Kruskal Gamma	0.257		0.23	
Kendalls tau-b	0.149		0.13	
Stuart's tau-c	0.172		0.15	
Somer's D (C R)	0.173		0.16	

Table Statistics for Constructive Observation Devices				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	1.073	2	0.585	
Continuity Adjusted Chi-Square	0.410	2	0.815	
Likelihood Ratio Chi-Square	1.072	2	0.585	
Coefficient	Value As	ymptotic St	d. Error	
Phi	0.153			
Contigency	0.151			
Cramer's V	0.153			
Goodman-Kruskal Gamma	0.214		0.240	
Kendalls tau-b	0.122		0.139	
Stuart's tau-c	0.136		0.156	
Somer's D (C R)	0.137		0.157	

Table Statistics for Constructive Exercise Planning			
Test Statistic	Value	B)=	Prob.
Pearson Chi-Square	1.845	2	0.397
Continuity Adjusted Chi-Square	0.733	2	0.693
Likelihood Ratio Chi-Square	1.876	2	0.391
Coefficient	Value A	symptotic Sto	l. Error
Phi	0.202		
Contigency	0.198		
Cramer's V	0.202		
Goodman-Kruskal Gamma	0.149		0.26
Kendalls tau-b	0.079		0.142
Stuart's tau-c	0.083		0.14
Somer's D (C R)	0.083		0.15

Table Statistics for Constructive Mission Planning				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	2.086	2	0.352	
Continuity Adjusted Chi-Square	0.950	2	0.622	
Likelihood Ratio Chi-Square	2.125	2	0.346	
Coefficient	Value As	ymptotic Ste	. Error	
Phi	0.215			
Contigency	0.210			
Cramer's V	0.215			
Goodman-Kruskal Gamma	0.000		0.255	
Kendalls tau-b	0.000		0.143	
Stuart's tau-c	0.000		0.156	
Somer's D (C R)	0.000		0.157	

Table Statistics for Virtual Terrain				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	3.830	2	0.147	
Continuity Adjusted Chi-Square	2.228	2	0.328	
Likelihood Ratio Chi-Square	4.083	2	0.130	
Coefficient	Value As	symptotic Std	. Error	
Phi	0.341			
Contigency	0.322			
Cramer's V	0.341			
Goodman-Kruskal Gamma	-0.545		0.242	
Kendalls tau-b	-0.300		0.154	
Stuart's tau-c	-0.309		0.163	
Somer's D (C R)	-0.309		0.163	

Table Statistics for Virtual Task				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	2.443	2	0.295	
Continuity Adjusted Chi-Square	1.101	2	0.577	
Likelihood Ratio Chi-Square	2.473	2	0.290	
Coefficient	Value A	symptotic St	d. Error	
Phi	0.272			
Contigency	0.263			
Cramer's V	0.272			
Goodman-Kruskal Gamma	-0.420		0.253	
Kendalls tau-b	-0.245		0.159	
Stuart's tau-c	-0.272		0.177	
Somer's D (C R)	-0.272		0.177	

Table Statistics for Virtual Simulator				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	3.759	2	0.153	
Continuity Adjusted Chi-Square	1.996	2	0.369	
Likelihood Ratio Chi-Square	3.842	2	0.146	
Coefficient	Value As	ymptotic St	d. Error	
Phi	0.337			
Contigency	0.320			
Cramer's V	0.337			
Goodman-Kruskal Gamma	-0.543		0.228	
Kendalls tau-b	-0.319		0.154	
Stuart's tau-c	-0.349		0.169	
Somer's D (C R)	-0.349		0.169	

Warning: More than 1/5 of Fitted Cells are Sparse

Table Statistics for Virtual Friendly Composition				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	5.165	2	0.076	
Continuity Adjusted Chi-Square	3.140	2	0.208	
Likelihood Ratio Chi-Square	5.578	2	0.061	
Coefficient	Value A	symptotic St	d. Error	
Phi	0.396			
Contigency	0.368			
Cramer's V	0.396			
Goodman-Kruskal Gamma	-0.097		0.280	
Kendalls tau-b	-0.058		0.169	
Stuart's tau-c	-0.066		0.192	
Somer's D (C R)	-0.066		0.192	

Table Statistics for Virtual Enemy Composition				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	0.503	2	0.777	
Continuity Adjusted Chi-Square	0.038	2	0.981	
Likelihood Ratio Chi-Square	0.506	2	0.776	
Coefficient	Value As	symptotic Sto	i. Error	
Phi	0.124			
Contigency	0.123			
Cramer's V	0.124			
Goodman-Kruskal Gamma	0.114		0.297	
Kendalls tau-b	0.063		0.166	
Stuart's tau-c	0.070		0.183	
Somer's D (C R)	0.070		0.183	

Table Statistics for Virtual Combat Power Ratio				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	0.795	2	0.672	
Continuity Adjusted Chi-Square	0.204	2	0.903	
Likelihood Ratio Chi-Square	0.798	2	0.671	
Coefficient	Value Asy	mptotic Sta	. Error	
Phi	0.155			
Contigency	0.153			
Cramer's V	0.155			
Goodman-Kruskal Gamma	-0.180		0.277	
Kendalls tau-b	-0.105		0.164	
Stuart's tau-c	-0.121		0.189	
Somer's D (C R)	-0.121		0.189	

Table Statistics for Virtual Task Organization			
Test Statistic	Value	DF	Prob.
Pearson Chi-Square	0.847	2	0.655
Continuity Adjusted Chi-Square	0.217	2	0.897
Likelihood Ratio Chi-Square	0.853	2	0.653
Coefficient	Value Asy	mpione Sta	Error
Phi	0.160		
Contigency	0.158		
Cramer's V	0.160		
Goodman-Kruskal Gamma	-0.184		0.281
Kendalls tau-b	-0.106		0.164
Stuart's tau-c	-0.121		0.187
Somer's D (C R)	-0.121		0.187

Table Statistics for Virtual Enemy Equipment				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	0.081	2	0.960	
Continuity Adjusted Chi-Square	0.000	2	1.000	
Likelihood Ratio Chi-Square	0.081	2	0.960	
Coefficient	Value As	ymptotic Std.	Error	
Phi	0.050			
Contigency	0.049			
Cramer's V	0.050			
Goodman-Kruskal Gamma	0.000		0.286	
Kendalls tau-b	0.000		0.165	
Stuart's tau-c	0.000		0.189	
Somer's D (C R)	0.000		0.189	

Table Statistics for Virtual Friendly Equipment				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	0.763	2	0.683	
Continuity Adjusted Chi-Square	0.187	2	0.911	
Likelihood Ratio Chi-Square	0.766	2	0.682	
Coefficient	Value As	symptotic Sto	I. Error	
Phi	0.152			
Contigency	0.150			
Cramer's V	0.152			
Goodman-Kruskal Gamma	0.225		0.284	
Kendalls tau-b	0.128		0.164	
Stuart's tau-c	0.143		0.183	
Somer's D (C R)	0.143		0.184	

Table Statistics for Virtual Adjacent Unit			
Test Statistic	Value	DF	Prob.
Pearson Chi-Square	0.249	2	0.883
Continuity Adjusted Chi-Square	0.008	2	0.996
Likelihood Ratio Chi-Square	0.249	2	0.883
Coefficient	Value Asy	mptotic Sta	Enor
Phi	0.087		
Contigency	0.087		
Cramer's V	0.087		
Goodman-Kruskal Gamma	0.000		0.285
Kendalls tau-b	0.000		0.164
Stuart's tau-c	0.000		0.189
Somer's D (C R)	0.000		0.189

Table Statistics for Virtual Enemy Training Level				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	5.852	2	0.054	
Continuity Adjusted Chi-Square	3.476	2	0.176	
Likelihood Ratio Chi-Square	7.789	2	0.020	
Coefficient	Value A	symptotic St	d. Error	
Phi	0.421			
Contigency	0.388			
Cramer's V	0.421			
Goodman-Kruskal Gamma	0.058		0.298	
Kendalls tau-b	0.034		0.172	
Stuart's tau-c	0.037		0.189	
Somer's D (C R)	0.037		0.189	

Table Statistics for Virtual Enemy Mission				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	0.061	2	0.970	
Continuity Adjusted Chi-Square	0.000	2	1.000	
Likelihood Ratio Chi-Square	0.061	2	0.970	
			•	
Coefficient	Value Asy	mptatic Sta	. Error	
Phi	0.043			
Contigency	0.043			
Cramer's V	0.043			
Goodman-Kruskal Gamma	0.065		0.296	
Kendalls tau-b	0.036		0.165	
Stuart's tau-c	0.040		0.184	
Somer's D (C R)	0.040		0.184	

Warning: More than 1/5 of Fitted Cells are Sparse

Table Statistics for Virtual Weather				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	1.625	2	0.444	
Continuity Adjusted Chi-Square	0.653	2	0.722	
Likelihood Ratio Chi-Square	1.643	2	0.440	
Coefficient	Value A	symptotic St	d. Error	
Phi	0.222			
Contigency	0.217			
Cramer's V	0.222			
Goodman-Kruskal Gamma	0.071		0.285	
Kendalls tau-b	0.042		0.168	
Stuart's tau-c	0.048		0.192	
Somer's D (C R)	0.048		0.192	

Table Statistics for Virtual Previous Use				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	0.335	2	0.846	
Continuity Adjusted Chi-Square	0.018	2	0.991	
Likelihood Ratio Chi-Square	0.336	2	0.845	
Coefficient	Value As	ymptotic St	d. Error	
Phi	0.101			
Contigency	0.100			
Cramer's V	0.101			
Goodman-Kruskal Gamma	-0.122		0.298	
Kendalls tau-b	-0.067		0.166	
Stuart's tau-c	-0.073		0.181	
Somer's D (C R)	-0.074		0.181	

Table Statistics for Virtual Level of Difficulty				
Test Statistic	Value	DF	Prob	
Pearson Chi-Square	1.625	2	0.444	
Continuity Adjusted Chi-Square	0.653	2	0.722	
Likelihood Ratio Chi-Square	1.643	2	0.440	
Coefficient	Value A	symptotic S	td. Error	
Phi	0.222			
Contigency	0.217			
Cramer's V	0.222			
Goodman-Kruskal Gamma	-0.301		0.265	
Kendalls tau-b	-0.177		0.162	
Stuart's tau-c	-0.202		0.184	
Somer's D (C R)	-0.202		0.18	

Warning: More than 1/5 of Fitted Cells are Sparse

Table Statistics for Virtual Assessment				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	1.925	2	0.382	
Continuity Adjusted Chi-Square	0.307	2	0.668	
Likelihood Ratio Chi-Square	2.051	2	0.359	
Coefficient	Value 4s	ymptotic St	d, Error	
Phi	0.242			
Contigency	0.235			
Cramer's V	0.242			
Goodman-Kruskal Gamma	0.495		0.333	
Kendalis tau-b	0.214		0.157	
Stuart's tau-c	0.180		0.138	
Somer's D (C R)	0.180		0.138	

Table Statistics for Virtual Light Data				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	0.795	2	0.672	
Continuity Adjusted Chi-Square	0.204	2	0.903	
Likelihood Ratio Chi-Square	0.798	2	0.671	
Coefficient	Value Asy	mptotic Std	Error	
Phi	0.155			
Contigency	0.153		7	
Cramer's V	0.155			
Goodman-Kruskal Gamma	-0.180		0.277	
Kendalls tau-b	-0.105		0.164	
Stuart's tau-c	-0.121		0.189	
Somer's D (C R)	-0.121		0.189	

Table Statistics for Virtual Observation Devices				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	2.524	2	0.283	
Continuity Adjusted Chi-Square	1.245	2	0.537	
Likelihood Ratio Chi-Square	2.560	2	0.278	
Coefficient	Value Asy	mptotic Std	. Error	
Phi	0.277			
Contigency	0.267			
Cramer's V	0.277			
Goodman-Kruskal Gamma	-0.404		0.246	
Kendalls tau-b	-0.242		0.158	
Stuart's tau-c	-0.279		0.182	
Somer's D (C R)	-0.279		0.182	

Table Statistics for Virtual Exercise Preparation				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	4.212	2	0.122	
Continuity Adjusted Chi-Square	2.821	2	0.244	
Likelihood Ratio Chi-Square	4.325	2	0.115	
Coefficient	Value A	symptotic S	td. Error	
Phi	0.357			
Contigency	0.336			
Cramer's V	0.357			
Goodman-Kruskal Gamma	0.573		0.217	
Kendalls tau-b	0.343		0.155	
Stuart's tau-c	0.375		0.169	
Somer's D (C R)	0.375		0.169	

Table Statistics for Virtual Mission Planning				
Test Statistic	Value	DF	Prob.	
Pearson Chi-Square	3.383	2	0.184	
Continuity Adjusted Chi-Square	1.895	2	0.388	
Likelihood Ratio Chi-Square	3.499	2	0.174	
Coefficient	Value A:	symptotic Sto	l. Error	
Phi	0.320			
Contigency	0.305			
Cramer's V	0.320			
Goodman-Kruskal Gamma	0.161		0.275	
Kendalls tau-b	0.096		0.166	
Stuart's tau-c	0.110		0.190	
Somer's D (C R)	0.110		0.190	

REFERENCES

Adler, M. & Ziglio, E. (1996). Gazing into the Oracle. Bristol, PA: Jessica Kingsley Publishers.

Anderson, J. (1993). <u>Rules of the Mind.</u> Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.

Ayers, F. (1962). Theory and Outline of Matrices. NY: McGraw-Hill Book Company.

Barrett, Raymond, Chief of Staff, 24th Infantry Division, FT Stewart (Telephone Interview, August, 1996).

Battle Focused Training. (1990). Washington, DC. Department of the Army.

Berk, K. N. & Carey, P. (1995). Data Analysis with Microsoft Excel 5.0 for Windows [Computer software]. Boston, MA: Course Technology.

Beyth-Marom, R. (1982). How Probable is Probable? A Numerical Translation of Verbal Probability Expressions. <u>Journal of Forecasting</u>, <u>I</u>, 257-259.

Brann, J., LORAL Federal Systems, Orlando Florida (Distributed Interactive Simulation Protocols. Class presentation, November 1995).

Cochran, W. G. (1977). Sampling Techniques. NY: Wiley.

Combat Simulation Laboratory. (Undated). <u>User's Manual: Janus 5.X-UNIX Model.</u> West Point:: NY. United States Military Academy.

Createau, K., National Training Center Desk Officer, Combat Training Center Directorate (Personal Interview, February 1997).

Czaja, R., & Blair, J. (1996). <u>Designing Surveys</u>. Thousand Oaks, CA: Pine Forge.

Delbecq, A., Van de Van, A. & Gustafson, D. (1975). <u>Group Techniques for Program Planning</u>. Glenview, IL: Scott, Foresman and Company.

Department of the Army. (August 1996). Fire Coordination Exercise, <u>Training Circular No. 71-5</u> [On line]. Available: http://www.entelechy-inc.com/doc/knoxsdoc/tc71-5-0814/c1.htm

Department of the Army. (February, 1998). ARTEP 7-30-MTP, Fort Benning: GA.

Department of the Army. (December, 1991). <u>TO&E Handbook Infantry Battalion</u>, <u>Infantry Division</u>, Fort Benning: GA.

Durkin, J. (1994). <u>Expert Systems Design and Development</u>. NY: MacMillan Publishing Company.

Fink, A. (1995). How to Analyze Survey Data, <u>The Survey Kit.</u> Thousand Oaks, CA: Sage Publications.

Fink, A. (1995). How to Ask Surveys Questions, <u>The Survey Kit.</u> Thousand Oaks, CA: Sage Publications.

Fink, A., (1995). How to Report on Surveys, <u>The Survey Kit.</u> Thousand Oaks, CA: Sage Publications.

Fink, A., (1995). The Survey Handbook., <u>The Survey Kit.</u> Thousand Oaks, CA: Sage Publications.

Gorman, P. F. (1991). The Future of Tactical Engagement Simulation. <u>Proceedings of the 1991 Summer Computer Simulation Conference</u>, 1181-1186.

Headquarters US Army Simulation, Training, and Instrumentation Command (STRICOM). (1995). <u>Task Performance Support (TPS) Codes.</u> (Contract No. N61339-92-D-0018). Orlando, FL: Sherikon.

Hollenbach, J. (1995). Deputy Director, Defense Modeling and Simulation Office. <u>The High Level Architecture.</u> [On-line]. Available: http://www.dmso.mil

Institute of Defense Analysis (1992, June). <u>A Review of Study Panel Recommendations</u> for Defense Modeling Simulation, (IDA Document D-1161) Alexandria VA: Fletcher J. D.

Institute of Defense Analysis (1992, February). <u>The Secret of Future Victories</u> (IDA Paper P-2653). Alexandria, VA: Gorman.

Institute of Defense Analysis (1994, September). <u>The Value of Simulation for Training</u>, (IDA Paper P-2982). Alexandria, VA: Orlansky.

Kotnour, T. (1992). <u>Design, Development, and Testing of an Automated Knowledge</u> <u>Acquisition Tool to Aid Problem Solving, Decision Making, and Planning</u>. Blacksburg, VA: Author.

Labaw, P. J. (1980). Advanced Questionnaire Design. Cambridge, MA: Abt Books.

La Rouque, R. Director of the National Simulation Center (Personal Interview, September 1996).

Lehtonen, R. & Pahkinen, E. (1995). <u>Practical Methods for Design and Analysis of Complex Surveys</u>. NY: John Wiley and Sons.

Malone, L., Associate Professor, University of Central Florida (Personal Interview, November 1996).

Minitab 10x [Computer software]. (1995). State College, PA: Minitab.

National Training Systems Association. (1997). Return on Investment [On-line]. Available: http://www.adpa.org/ntsa/benefits/roi/index.htm

Orgaization of the Army in the Field. (May 1991). Fort Leavenworth, KS: U.S. Army Command and General Staff College.

Piplani, L., Mercer, J., & Roop, R. (1994). <u>Systems Acquisition Manager's Guide for the Use of Models and Simulations.</u> Ft. Belvoir, VA: Defense Systems Management College Press.

Rossi, Michael, Chief, G-3 Training, 101st Airborne Division (Air Assault) (Personal Interview, October, 1996).

Soviet Army Equipment, Organization, and Operations. (May 1991). Fort Leavenworth, KS: U.S. Army Command and General Staff College.

Staff Skills, Roles and Relationships. (May 1991). Fort Leavenworth, KS: U.S. Army Command and General Staff College.

Stone, G. F. (1996). <u>The Use of Computer-based Planning to Enhance the Effectiveness and Efficiency of Simulation-based Team Training.</u> Published doctoral dissertation, University of Central Florida, Orlando.

<u>Training Management.</u> (May 1991). Fort Leavenworth, KS: U.S. Army Command and General Staff College.

United States Army Research Institute. (1993, May). <u>Commander's Battle Staff</u>, Ft. Benning, GA.

Welbank, M. (1990). An Overview of knowledge acquisition methods. <u>Interacting with Computers</u>, 2 (1). (83-91).

Williams, K. University of Central Florida, Orlando Florida (Cognitive Task Analysis, November 1995).