The Hancock Scheme

Daniel W. Zaide* and Philip L. Roe[†]

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109

I. Governing Equations

The governing equations are the Euler Equations, however, this methodology also applies to any hyperbolic system of PDEs with an entropy, such as the shallow water, the Navier-Stokes, and the Magnetohydrodynamics equations.¹ All of these can be written in vector form as

$$\mathbf{u}_t + \mathbf{f}_{x_i}^i = \mathbf{u}_t + \mathbf{f}_{\mathbf{u}}^i \mathbf{u}_{x_i} = \mathbf{u}_t + \mathbf{A}^i \mathbf{u}_{x_i} = 0 \tag{1}$$

II. Hancock Approach

We have taken a more straightforward approach, based on a generalization to moving meshes of the Hancock scheme.² The Hancock scheme is second-order, monotone, and fully discrete. It is the subject of a recent analysis by Berthon³ and has been extended to third-order by Suzuki.⁴ Here we make a straightforward generalization of the second-order version, and have found it very satisfactory. Although this is a two-step scheme, it requires only a single call to a Riemann solver for each timestep per interface.

II.A. One dimension

Figure 1. A finite volume cell in a one-dimensional moving mesh.

By integrating the conservation law (1) around the control volume we obtain

$$\mathbf{u}_{j}^{n+1} = \mathbf{u}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{f}_{i+\frac{1}{2}}^{n+\frac{1}{2}} - \mathbf{f}_{i-\frac{1}{2}}^{n+\frac{1}{2}} \right). \tag{2}$$

In Hancock's method we take the initial data in cell i be

$$\mathbf{u}_i(x,0) = \bar{\mathbf{u}}_i + \tilde{\mathbf{S}}_i(x - \bar{x}_i),\tag{3}$$

^{*}Graduate Student

[†]Professor, AIAA Fellow

where the bar denotes cell averaged values and the slopes $\tilde{\mathbf{S}}_i$ are limited. Evaluate \mathbf{u}_i at the left and right cell edges, giving \mathbf{u}_i^- and \mathbf{u}_i^+ . From these states, evaluate \mathbf{f}_i^- and \mathbf{f}_i^+ . Then, halfway through the timestep evaluate

$$\mathbf{u}_{i-\frac{1}{2}}^{+} = \bar{\mathbf{u}}_{i} - \frac{1}{2}\tilde{\mathbf{S}}\Delta x_{i} - \frac{1}{2}\frac{\Delta t}{\Delta x_{i}}(\mathbf{f}_{i}^{+} - \mathbf{f}_{i}^{-})$$

$$\tag{4}$$

$$\mathbf{u}_{i+\frac{1}{2}}^{-} = \bar{\mathbf{u}}_i + \frac{1}{2}\tilde{\mathbf{S}}\Delta x_i - \frac{1}{2}\frac{\Delta t}{\Delta x_i}(\mathbf{f}_i^+ - \mathbf{f}_i^-). \tag{5}$$

These are the states to use in the Riemann problem in Equation (2). Note that if we assume constant data S = 0, this reduces to Forward Euler.

II.B. Two dimensions

Define a cell j with edges i and linear conserved variable distribution

$$\mathbf{u}_j = \overline{\mathbf{u}}_j + \tilde{\nabla} \mathbf{u}_j \cdot (\mathbf{r}_i - \mathbf{r}_j) \tag{6}$$

for cell center $\mathbf{r}_j = (x_j, y_j)$, edge midpoint $\mathbf{r}_i = (x_i, y_i)$ and limited gradient $\tilde{\nabla} \mathbf{u}_j$. The Hancock update is then

$$\mathbf{u}_j^{n+1} = \mathbf{u}_j^n - \frac{\Delta t}{A_j} \sum_i \left(\mathbf{f}_i^{n+\frac{1}{2}} \cdot \mathbf{n}_i^{n+\frac{1}{2}} \right)$$
 (7)

where $\mathbf{n}_i = [n_x, n_y]^T$ is the scaled outward edge normal and the flux is calculated via a Riemann solver. The conserved variables at $t^{n+\frac{1}{2}}$ at edge i are

$$\mathbf{u}_{i}^{n+\frac{1}{2}} = \overline{\mathbf{u}}_{j}^{n} + \tilde{\nabla}\mathbf{u}_{j}^{n} \cdot (\mathbf{r}_{i} - \mathbf{r}_{j}) - \frac{\Delta t}{2A_{j}} \sum_{k} \mathbf{f}(\overline{\mathbf{u}}_{j}^{n} + \tilde{\nabla}\mathbf{u}_{j}^{n} \cdot (\mathbf{r}_{k} - \mathbf{r}_{j})) \cdot \mathbf{n}_{k}$$
(8)

References

¹Serre, D., Systems of conservation laws, Vol. I, Cambridge University Press, 1999.

²van Leer, B., "On the relationship between the upwind-differencing schemes of Godunov, Engquist-Osher, and Roe," <u>SIAM</u> J. Sci. Stat. Comput., Vol. 5, No. 1, 1984, pp. 1–20.

³Berthon, C., "Why the MUSCL-Hancock scheme is L1 -stable," Numerische Mathematik, Vol. 104, 2006, pp. 27–46.

⁴Suzuki, Y., Discontinuous Galerkin methods for extended hydrodynamics, Ph.D. thesis, University of Michigan, 2008.