Binhao Wang

(+86) 180-5082-7575 | binhawang2-c@my.cityu.edu.hk | github.com/wbhtcl2019 Shenzhen / Hong Kong

EDUCATION

City University of Hong Kong

Expected Start Jan. 2026

Ph.D. in Data Science, College of Computing

City University of Hong Kong

Sep. 2024 – Expected Oct. 2025

M.Sc. in Data Science, College of Computing

GPA: 3.99/4.0 (Distinction)

Xiamen UniversityB.Sc. in Mathematical Statistics, WISE

Sep. 2019 – Jun. 2023 GPA: 3.52/4.0 (Top 10%)

B.Sc. in Chemistry, College of Chemistry and Chemical Engineering

GPA: 3.46/4.0

Honors, Awards, and Service

Conference Reviewer

2025 – Present

- ACM KDD 2026 (Datasets and Benchmarks Track)
- ACM CIKM 2025 (Short Papers)

Contemporary Undergraduate Mathematical Contest in Modeling (CUMCM)

Sep. 2021

Second Prize, Fujian Provincial Level

China National College Student Mathematics Competition

Third Prize, Fujian Provincial Level

Dec. 2020

PUBLICATIONS

Selected Conference Publications

• FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation

Maolin Wang^{*}, Yutian Xiao^{*}, **Binhao Wang**^{*}, Sheng Zhang, Shanshan Ye, Wanyu Wang[†], Hongzhi Yin, Ruocheng Guo, and Zenglin Xu.

Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data mining (KDD '25). [DOI] (CCF-A)

To address distribution inconsistency in multi-modal recommendation, we proposed (1) a theoretically-grounded Stein-guided entropic flow module for robust feature alignment; and (2) a cross-modal expert routing mechanism for adaptive signal fusion. The framework achieves a 2-4% relative performance lift over SOTA models while reducing inference overhead by 15%.

• SPARK: Adaptive Low-Rank Knowledge Graph Modeling in Hybrid Geometric Spaces for Recommendation

Binhao Wang, Yutian Xiao, Maolin Wang, Zhiqi Li, Tianshuo Wei, Ruocheng Guo, and Xiangyu Zhao[†]. *ACM International Conference on Information and Knowledge Management (CIKM '25)*, Accepted. (CCF-B)

To address challenges in knowledge-aware recommendation, **I developed** (1) a novel **hybrid geometric GNN** leveraging **Hyperbolic spaces** to model noisy hierarchical structures; and (2) an item **popularity-aware adaptive fusion** strategy to specifically target the long-tail problem. Our approach yields a **5-12**% **relative improvement** in long-tail recommendation accuracy.

Manuscripts under Review

• DDL: Collaborative Dual-Size Large Language Models with Dual-Stage Deferral Risk Control Maolin Wang, Binhao Wang, et al. (*Under review at NeurIPS '25*).

- SONATA: Synergistic Coreset Informed Adaptive Temporal Tensor Factorization Maolin Wang, Zhiqi Li, Binhao Wang, et al. (Under review at NeurIPS '25).
- DynaNS: Dynamic Negative Sampling Strategy for Multi-modal Recommendation Anonymous Author(s) (Under review at KDD '26, Research Track).
- Enhancing Sequential Recommendation with DTW-based Coreset Clustering Anonymous Author(s) (*Under review at AAAI '26*).
- MARS: Modality-Aligned Retrieval for Sequence Augmented CTR Prediction
 Yutian Xiao*, Shukuan Wang*, Binhao Wang, et al. (Under review at KDD '26, Applied Data Science Track).
- CuFun: Stable Temporal Point Processes via Cumulative Distribution Function Modeling Maolin Wang, Binhao Wang, et al. (Under review at IEEE Transactions on Knowledge and Data Engineering (TKDE)).

RESEARCH & PROJECT EXPERIENCE

Knowledge Graph-based Chemical Reaction Path Finding (Undergraduate Thesis) Nov. 2022 – May. 2023

- Automated semantic entity extraction from 1,000+ scientific papers by designing and implementing a data pipeline with the GPT API to construct a structured knowledge graph for reaction path analysis.
- Improved reaction pathway search efficiency by 20% over keyword-based baselines by developing an intelligent retrieval system leveraging graph algorithms and LLM embeddings.
- Tech Stack: Python, Django, GPT API, MongoDB, NetworkX.

Application of HSIC for Non-linear Dependency Analysis (Independent Research) Feb. 2022 – May. 2022

- Applied the **Hilbert-Schmidt Independence Criterion (HSIC)** as a robust non-parametric test to assess the goodness-of-fit for complex time-series models.
- Successfully demonstrated HSIC's capability to capture complex, **non-linear dependencies** in model residuals, a critical task where traditional linear methods like **Pearson correlation** fail.
- Core Concepts: HSIC, Non-parametric Statistics, R.

TECHNICAL SKILLS

Programming: Python (PyTorch, Recbole, Transformers, Scikit-learn, Pandas), R, SQL, C/C++.

Machine Learning:

- Recommender Systems: Sequential Rec, Multi-Modal Rec, KG-aware Rec, Temporal Point Processes.
- Natural Language Processing: Foundational Models (BERT, GPT), RAG, Fine-tuning (LoRA).
- Graph Learning: GNNs (GCN, GAT, GraphSAGE), Deep Graph Library (DGL).
- Core Techniques: Contrastive Learning, Multi-modal Fusion, GNNs.

Languages: English (IELTS 6.5).