BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

Solution

MSE Examination 2019-20

Max. Marks: 20

Semester: II

Class: FYMCA

Subject: Probability and Statistics

Q. 1 a) We prepare the following table.

C.I	Frequency f _i	Cumulative Frequency	
30-35	5	5	
35-40	10	15	
40-45	30	45	
45-50	35	80	
50-55	15	95	
55-60	5	100	
Σ	100		

 $N=\Sigma f_i=100$

$$\frac{N}{4} = 25$$

$$Q_1 \text{ class } (l_1 - l_2) = (40-45)$$

Frequency of the
$$Q_1$$
 class (f)= 35

$$Q_1 = l_1 + \frac{(l_2 - l_1)}{f} \left(\frac{N}{4} - F \right) = 40 + \frac{(45 - 40)}{30} (25 - 15) = 41.6667$$

For the second quartile
$$Q_2$$
=Median $\frac{N}{2}$ =50

Median class
$$((l_1 - l_2) = (45-50)$$

Frequency of the median class (f)=
$$35$$

Median
$$Q_2 = l_1 + \frac{(l_2 - l_1)}{f} \left(\frac{N}{2} - F \right) = 45 + \frac{(50 - 45)}{35} (50 - 45) = 45.7143$$

For the third quartile
$$Q_3$$
 $\frac{3N}{4} = 75$

$$Q_3$$
 class $(l_1 - l_2) = (45-50)$

Frequency of the
$$Q_3$$
 class (f)= 35

Cumulative Frequency of the just previous to
$$Q_3$$
 class (F)= 45

$$Q_3 = l_1 + \frac{(l_2 - l_1)}{f} \left(\frac{3N}{4} - F \right) = 45 + \frac{(50 - 45)}{35} (75 - 45) = 49.2857$$

Bowley's Coefficient of skewness=
$$\frac{(Q_3 + Q_1 - 2 \times Median)}{(Q_3 - Q_1)} = -0.06037$$

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

STORY OF

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

OR

Assumed r	mean (a)=	= 35,	class width	(c))=10
-----------	-----------	-------	-------------	-----	------

C.I	Class mark	f _i	$u_i = \frac{x_i - a}{c}$	f _i u _i	$f_i u_i^2$
0-10	5	15	-3	-45	135
10-20	15	15	-2	-30	60
20-30	25	23	-1	-23	23
30-40	35	22	0	0	0
40-50	45	25	1	25	25
50-60	55	10	2	20	40
60-70	65	5	3	15	45
70-80	75	10	4	40	160
Σ		125		2	488

Mean
$$\bar{x} = a + c \times \frac{\sum f_i u_i}{\sum f_i} = 35 + 10 \times \frac{2}{125} = 35.16$$

$$\sigma_x = c \sqrt{\frac{\sum (f_f u_i^2)}{N} - (\frac{\sum f_i u_i}{N})^2 = 10} \sqrt{\frac{488}{125} - (\frac{2}{125})^2} = 19.76$$

$$\therefore \text{Coefficient of Variation} = \frac{S.D}{Mean} \times 100 \% = \frac{19.76}{35.16} \times 100 = 56.20\%$$

(b)

Let the missing frequency be f.

Given mode=136

:. Modal class
$$(l_1 - l_2) = (135-140)$$

Frequency of modal class (f) = ?

Frequency of pre-modal class (f1) = 18

Frequency of post-modal class (f2) = 12

$$d_1=f-f1=f-18$$
, $d_2=f-f2=f-12$
 $Mode = l_1 + \left(\frac{d_1}{d_1+d_2}\right)(l_2-l_1)$

We get f=20. So missing frequency = 20.

Q. 2 a) Computation for Chi-Square Test

Day	Oi	Ėi	Oi-Ei	(Oi-Ei) ²
1	8	10	-2	4
2	8	10	-2	4
3	10	10	0	0
4	9	10	-1	1
5	12	10	2	4
6	8	10	-2	4

BHARATIYA VIDYA BHAVAN'S

SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

7	10	10	0	0
8	14	10	4	16
9	10	10	0	0
10	11	10	1	1
Total	100	100	0	34

Calculated
$$\chi_0^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} = 3.4$$
, critical $\chi_{0.05,9}^2 = 16.9$.

Since the calculated value≤The critical value, the hypothesis that numbers are uniformly distributed can be accepted.

OR

Given population mean (μ) =60 kg, Sample size (n)= 100,

Sample mean
$$(\bar{x}) = 58 \text{ kg}$$
,

Sample s.d
$$(s) = 4 \text{ kg}$$

$$z = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{58 - 60}{\frac{4}{\sqrt{100}}} = -5$$

Level of significance (α)=0.01

Critical Value $Z_{\alpha} = 2.58$

Since $|Z| \le |Z| \le |Z|$, the null hypothesis is rejected.

(L)	
(D)	n=5

Year	X=Year- 1990	у	x ²	y ²	ху
1991	1	56	1	3136	56
1992	2	68	4	4624	136
1993	3	60	9	3600	180
1994	4	51	16	2601	204
1995	5	66	25	4356	330
7	15	301	55	18317	906

$$\bar{x} = \frac{\sum x_i}{n} = 3$$
, $\bar{y} = \frac{\sum y_i}{n} = 60.20$, $b_{yx} = \frac{\frac{\sum x_i y_i}{n} - \frac{\sum x_i}{n} \times \frac{\sum y_i}{n}}{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2} = 0.30$

Regression of y on x is

$$y - \overline{y} = b_{vx}(x - \overline{x})$$

Hence y-60.20=0.3(x-3)

To estimate asset in the year 1997, x=1997-1990=7

Hence y-60.20=0.3(7-3)

∴ y=61.4