MLDS Homework 2-1 Report

Model description

我們採用 baseline 的 seq2seg model,分為 encoder、 decoder 兩個部分。

其中 encoder 和 decoder 的 hidden size 是 256 ,並採用 adam 當作 optimizer , dropout 設為 0.1 。整個訓練的過程 epoch 為 200 次, batch size 為 256。此外,在 decoder 的部分我們還有實作 attention 來增進模型的準確度。而在 schedule sampling 部分,我們則是使用老師上課講到的 reversed sigmoid 當作我們訓練模型 schedule sampling 機率的依據。而我們將輸出句子的最大長度 (MAX LENGTH) 設為 15。

How to improve your performance

我們主要透過兩種方式來增加模型的準確度,分別是 attention 以及 schedule sampling 。

Attention

在原本還未使用 attention 前, decoder 只能拿 encoder 最後的 output 當作判讀影片的依據,然而這會使 decoder 所能使用的影片資訊受限,加上 attention 將可以使 encoder 每一個 output 都使用到,透過 attention 將可以幫助 decoder 決定目前應該採用哪個 output 當作輸出的依據,如此,將會讓整個 seq2seq 的模型更有彈性。而我們做出來的結果也符合我們的猜測, 有 attention 的模型透過 bleu 算出的分數真的比沒有 attention 算出的來得好,以下為這兩者的比較:

Model	bleu evaluation score
with attention	0.6335506117254601
without attention	0.6292741737020789

Schedule sampling

我們認為 schedule sampling 會增加模型的精準度,因為在最初的時候 seq2seq 模型並沒有可以學習的依據,需要透過訓練資料來給予更正確的資訊,可是隨著 epoch 提升,如果還是完全依據 schedule sampling ,會讓模型沒辦法自主的學習,因此我們透過 reversed sigmoid 的方式,讓模型一開始完全都是 schedule sampling ,直至最後則會將至 40% schedule sampling 的機率,以下則是不同 schedule sampling 機率的比較:

Model	bleu evaluation score
reversed sigmoid	0.6335506117254601
schedule sampling 0.8	0.5863044834438557
schedule sampling 0.6	0.6190931094345329

Experimental results and settings

除了上述的比較,我們也比較了不同狀況的模型準確度,以下便是我們測試的狀況:

Model	bleu evaluation score
final model	0.6335506117254601
epoch 250	0.628111766613617
batch 64	0.61314303635326
batch 128	0.6256362364276797
hidden 128	0.6024542497281721

從這之中,會看出 epoch 越多不見得會越好,因為模型可能會 overfitting ,導致特定 詞彙因為在 training data 中太常出現,而在 testing 的時候也很常出現。此外,也會發現如果 batch size 比較小 bleu evaluation score 會略微低。當 hidden size 減少時,也會因為能夠使用的參數比較少而使模型的 bleu evaluation score 比較低。

README:

Dependencies:

python (3.5.2) torch (0.3.1)

training and testing:

python3 model_seq2_seq.py [training_labels] [training_feats] [testing_labels] [testing_feats] [result]

testing:

bash hw2_seq2seq.sh [testng_data] [result]