EEE225: Analogue and Digital Electronics Lecture XII

James E. Green

Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk

This Lecture

- 1 Equivalent Noise Generators
 - The Noise Equivalent Circuit
 - Quantifying The Noise Generators
- 2 Noise in Operational Amplifiers
 - Opamp Noise Model
 - Opamp Noise Model in a Circuit
 - Conclusions from the Noise Model
- 3 A Simplified Opamp Noise Model
 - Example with the Simplified Opamp Noise Model
- 4 Review
- 5 Bear

Equivalent Noise Generators

Representing noise using two or three noise sources is very attractive.

- It is a simple representation of the noise elements of large/complex circuits/systems.
- It is 'standard' we can compare two systems performance by comparing their input noise generators.
- It provides a standard approach (we make the same analytical steps to compute the noise irrespective of the individual circuit details).
- The parameters the model needs to represent a real system are (quite) easy to measure in the lab.

The Noise Equivalent Circuit

- The added noise, N_A is represented by two generators a series voltage generator, v_n , and a parallel current generator i_n .
- Two generators are required to make the model independent of source impedance.
- These represent the voltage noise that would be in series with real resistances in the system and current noise that would be in parallel with forward biased pn junctions.

 v_{ns} – noise of R_s

 v_n – amplifier input noise voltage i_n – amplifier input noise current

 r_i – input resistance of the

amplifier (noiseless)

G — is the gain of the amplifier.

- The equivalent noise generators can be found for a real system by selecting values of R_s and measuring the output noise.
- A true RMS voltmeter is needed with a known bandwidth Δf .
- To obtain v_n set $R_s=0$. It can be shown using standard circuit analysis that if $R_s=0$, i_n has no effect and $v_{on}=\sqrt{G^2\overline{v_n^2}\Delta f}$.
- Having obtained v_n any value of $R_s > 0$ can be used to find i_n as everything else is already known. With finite R_s :

$$\overline{v_{on}^2} = G^2 \left[\overline{v_n^2} \left(\frac{r_i}{R_s + r_i} \right)^2 + \overline{v_{ns}^2} \left(\frac{r_i}{R_s + r_i} \right)^2 + \overline{i_n^2} \left(\frac{r_i R_s}{R_s + r_i} \right)^2 \right] \Delta f \quad (1)$$

$$\overline{v_{on}^2} = G^2 \left(\frac{r_i}{R_s + r_i} \right)^2 \left[\overline{v_n^2} + \overline{v_{ns}^2} + \overline{i_n^2} R_s^2 \right] \Delta f \tag{2}$$

- Sometimes r_i is very large $10^{12} \Omega$ or so. In this case a finite R_s is necessary for i_n to flow through (and in so doing generate a noise voltage at the input w.r.t ground).
- This is often the case in FET input opamps. In a FET input opamp $\overline{i_n^2}$ is often very small say $0.01~\mathrm{pA}/\sqrt{\mathrm{Hz}}$ and $\overline{v_n^2}$ almost always dominates. Very small i_n^2 can often be neglected safely.
- If r_i is not very large say less than 10 M Ω , then R_s can be removed and (1) reduces to:

$$v_{on} = \sqrt{\left(G^2 \,\overline{i_n^2} \, r_i^2 \, \Delta f\right)} \tag{3}$$

assuming v_n has already been dealt with.

Noise in Operational Amplifiers

- Opamps can be quite complicated circuits. It's not practical to work out the noise of each resistor and transistor, and then combine them appropriately.
- SPICE does this, but having the numerical result doesn't tell the designer (you) what the dominant noise source is.
- Opamp noise is modelled in a similar way to the general unmatched amplifier.

The amplifier is ideal. v_n , i_{n+} and i_{n-} represent its noise. Other components are added around this model as if everything shown here is contained within the opamp.

Opamp Noise Model in a Circuit

A non-inverting *or* inverting amplifier with resistive feedback can be represented by

where the opamp and all resistors are replaced by their noise equivalent circuits.

- \blacksquare For an inverting amplifier the signal source is in series with R_1
- For a non-inverting amplifier the signal is in series with R_3

This leads to:

$$\overline{v_{on}^2} = G^2 \left[\overline{i_{n+}^2} R_3^2 + \overline{i_{n-}^2} \left(\frac{R_1 R_2}{R_1 + R_2} \right)^2 + \overline{v_n^2} + \overline{v_{nf}^2} + \overline{v_{n3}^2} \right]$$
(4)

- G closed loop gain $(R_1 + R_2)/R_1$.
- $\overline{v_{n3}^2}$ noise due to R_3 , 4 k T R_3 V²/Hz.
- $\overline{V_{nf}^2}$ noise due to the feedback resistors R_1 and R_2 , $4 k T R_1 R_2/(R_1 + R_2) V^2/Hz$.
- $\overline{v_n^2}$ opamp noise voltage generator
- $\overline{i_{n+}^2}$ opamp noise current generator at the non-inverting input
- $\overline{i_{n-}^2}$ opamp noise current generator at the inverting input

It would be good if you could derive this... try superposition. G is sometimes called the "noise gain" because it affects all the terms in the square braces irrespective of inverting or non-inverting feedback configuration.

Conclusions from the Noise Model

Eq. 4 can tell us if we can improve our circuit noise given a certain opamp and closed loop gain requirement.

- 1 $i_{n+}^2 R_3^2$ is due to the voltage across R_3 due to i_{n+} . If $R_3 = 0$ this noise goes away, but R_3 may be the source resistance or it may be there to reduce DC offset in the amplifier. If R_3 can not be reduced look for an opamp with low i_{n+} .
- $\overline{i_{n-}^2}\left(\frac{R_1R_2}{R_1+R_2}\right)$ is the voltage appearing across the parallel combination of R_1 and R_2 . R_1 and R_2 set the closed loop gain. Lowering both values and keeping the ratio is only possible to some extent. The opamp can not supply very large current and DC offset will be affected.
- $\overline{v_n^2}$ is the opamp's noise voltage. It is irreducible choose a different opamp.

- 4 $\overline{v_{nf}^2} = \frac{4 \, k \, T \, R_1 \, R_2}{R_1 + R_2}$ this represents the thermal noise of the feedback resistors. R_1 and R_2 are in parallel from the point of view of v_{n1} and v_{n2} . Reducing R_1 and R_2 but keeping the ratio is possible but has same problems as for point 2. If the gain is high $R_1//R_2 \approx R_1...$
- $\overline{v_{n3}^2}$ this is the noise due to R_3 . The same constraints apply as in point 1.
- A standard opamp may have $v_n = 20 \text{ nV}/\sqrt{\text{Hz}}$.
- At room temperature this is the same as the noise from about 24 $k\Omega$.
- If $R_1//R_2$ and R_3 can be reduced below 24 k Ω points 4 and 5 (above) diminish
- FET input opamps have small current noise $0.01 \text{ pA}/\sqrt{\text{Hz}} \text{ c.f.}$ 0.4 pA/ $\sqrt{\text{Hz}}$ for a BJT. Choose a FET opamp to reduce points 1 and 2 (above).

A Simplified Opamp Noise Model

Assume that an opamp circuit has been designed so that: it's non-inverting. The thermal noise associated with R_1 and R_2 is no longer significant (points 2 and 4 above). r_i is the input resistance – noiseless because it's accounted for by v_n and i_n

$$\overline{v_{on}^2} = G^2 \left(\overline{v_n^2} \frac{r_i^2}{(r_i + R_s)^2} + \overline{v_{ns}^2} \frac{r_i^2}{(r_i + R_s)^2} + \overline{i_{ns}^2} \frac{r_i^2 R_s^2}{(r_i + R_s)^2} \right) \quad (5)$$

Example Simple Opamp Model Question

A particular amplifier has an input resistance of 100 k Ω , a voltage gain of 100 V/V and equivalent input noise voltage generator of 6 nV $\sqrt{\rm Hz}$ and 0.0075 pA $\sqrt{\rm Hz}$ respectively. The amplifier is fed by a noisy source resistance of 1 k Ω . What is the noise at the output?

$$v_{on}^{2} = G^{2} \frac{r_{i}^{2}}{(r_{i} + R_{s})^{2}} \left(\overline{v_{n}^{2}} + \overline{v_{ns}^{2}} + \overline{i_{ns}^{2}} R_{s}^{2} \right)$$
 (6)

$$v_{on}^{2} = 100^{2} \frac{\left(100 \times 10^{3}\right)^{2}}{\left(\left(100 \times 10^{3}\right) + \left(1 \times 10^{3}\right)\right)^{2}} \left(\left(6 \times 10^{-9}\right)^{2} +4 k T R_{s} + \left(0.0075 \times 10^{-12}\right)^{2} \cdot \left(1 \times 10^{3}\right)^{2}\right)$$
(7)

Review

- Introduced the idea of equivalent noise generators
- Proposed a noise equivalent circuit consisting of two generators, making it independent of source impedance.
- Proposed a method to find the value of the noise generators for a real amplifier.
- Introduced a noise equivalent circuit for an opamp and added the noise sources of likely resistors.
- Developed an expression for the noise output in terms of the individual sources, and used this to investigate methods of minimising the noise output.
- Found a method to reconcile the simple noise equivalent circuit with the "full" opamp noise model provided some constraints are met.
- Did a quick example of a possible question using the simple model.

Thus ends this [course] on the minority field in the world of semiconductors. A field past glamour, often neglected, but undeniably essential. And a field of great satisfaction for those who know it.¹

- Hans Camenzind

¹His book can be downloaded free from www.designinganalogchips.com

