The Math Used To Develop The N^{th} Root Algorithm

Let us put G to represent a Guess and Ng to represent Next-Guess. $\forall N \in \mathbb{R}^+, \forall n \in \mathbb{N}^+$; we need to find the n^{th} root of N to a certain level of accuracy. This needs to be done by computing successive guesses as in the Newton-Raphson Algorithm for square roots, and in reference to the method outlined in class discussion. The first guess of $(\sqrt[n]{N})$ is likely off by δ and is written as follows: $G = \sqrt[n]{N} + \delta$.

Finding the next guess requires us to find an approximation of δ and subtract it from G. To achieve this goal, we first need to do the long division of $\left(\frac{N}{G^{n-1}}\right)$ in order to get the term $N^{\frac{1}{n}}$.

1 Find an Approximation for δ

We start the process with the following equality: $\frac{N}{G^{n-1}} = \frac{N}{(N^{\frac{1}{n}} + \delta)^{n-1}}(*)$.

Expand the denominator of the right hand side in (*) (Referring to the Binomial Theorem in Mathematics; and since we are looking for an approximation, first few terms and last term will suffice for this purpose):

$$(N^{\frac{1}{n}} + \delta)^{n-1} = \left[N^{\frac{n-1}{n}} + (n-1)N^{\frac{n-2}{n}}\delta + (n-1)N^{\frac{1}{n}}\delta^{n-2} + \dots + \delta^{n-1} \right]$$

1.1 Do the polynomial long devision of N over G^{n-1}

$$(1) \Big(N^{\frac{n-1}{n}} + (n-1) N^{\frac{n-2}{n}} \delta + (n-1) N^{\frac{1}{n}} \delta^{n-2} + \ldots + \delta^{n-1} \Big) \left\lceil N^{\frac{n}{n}} \right\rceil^{\frac{n}{n}}$$

- (2) Divide the 1st term of right hand side by the 1st term of left hand side in (1), the intermediate result is: $N^{\frac{1}{n}}$
- (3) Multiply (2) by the whole term in the left hand side in (1): $\left[N + (n-1)N^{\frac{n-1}{n}}\delta + (n-1)N^{\frac{1}{n}}\delta^{n-2} + \dots + N^{\frac{1}{n}}\delta^{n-1}\right]$
 - Subtract (3) from the right hand side in (1) and we get:

$$(4) \begin{cases} N - (3) &= N - \left[N + (n-1)N^{\frac{n-1}{n}}\delta + (n-1)N^{\frac{1}{n}}\delta^{n-2} + \dots + N^{\frac{1}{n}}\delta^{n-1} \right] \\ &= \left[-(n-1)N^{\frac{n-1}{n}}\delta - (n-1)N^{\frac{1}{n}}\delta^{n-2} - \dots - N^{\frac{1}{n}}\delta^{n-1} \right] \end{cases}$$

 \circlearrowright Bring down next term in right hand side of (1) & add it to (4):

$$(5) \left\{ \left(-(n-1)N^{\frac{n-1}{n}} \delta \underbrace{-(n-1)N^{\frac{1}{n}} \delta^{n-2} - \dots - N^{\frac{1}{n}} \delta^{n-1}}_{\textbf{Ignore remaining terms in lhs of (4)}} \right) + \underbrace{\mathbf{No terms left in rhs of (1)}}_{\mathbf{0}} \right\} \right\}$$

- (6) Divide 1st term of (5) by 1st term of (1), and the result is: $[-(n-1)\delta]$
- (7) Add (2) and (6) together to get the approximation of the long division as follows: (\cong) : $\left[N^{\frac{1}{n}} (n-1)\delta\right]$
 - Ignore the remaining terms as shown in (5) and therefore we get:

(8)
$$\begin{cases} \left(G - \frac{N}{G^{n-1}}\right) &= \left[N^{\frac{1}{n}} + \delta\right] - \left[N^{\frac{1}{n}} - (n-1)\delta\right] \\ &= n\delta \end{cases}$$

Simplify (8) and we get the approximation: $\delta \cong \frac{1}{n} \left(G - \frac{N}{G^{n-1}} \right)$

2 Find Next Guess' Formula:

(9)
$$\begin{cases} Ng = (G - \delta) \\ = (G - \frac{1}{n}G + \frac{1}{n}\frac{N}{G^{n-1}}) \\ = (\frac{(n-1)}{n}G + \frac{1}{n}\frac{N}{G^{n-1}}) \end{cases}$$

Simplify (9) and we get Ng's Formula: $Ng = \frac{1}{n} \left((n-1)G + \frac{N}{G^{n-1}} \right)$

3 The N^{th} Root Algorithm

goto Loop.

<u>Note:</u> The initial guess G can be any positive number. Here it is chosen to be 1.0 when (N > 1.0) and $\left(\frac{N}{2.0}\right)$ when (0 < N < 1.0).

```
Algorithm 1 N^{th} Root Algorithm
procedure nth\_root(N, n, limit)
     //Initializations
  \mathcal{E} \leftarrow limit;
  if ((N > 0)\&(n > 0)) then
             //Ínitialization of First Guess
             if (N > 1.0) then G \leftarrow 1.0; Else G \leftarrow \frac{N}{2.0};
             //Initialization of Next Guess
             Ng \leftarrow \frac{1}{n}\left((n-1)G + \frac{N}{G^{n-1}}\right);
             //(First\ guess) + (Next\ guess) = 2
             guess\_counter \leftarrow 2;
     Loop:
    DO
         G \leftarrow Ng;
        Ng \leftarrow \frac{1}{n}((n-1)G + \frac{N}{G^{n-1}});
         guess\_counter \leftarrow guess\_counter + 1;
         if ((G - Ng) \leq \mathcal{E}) then
              print_results (Ng, guess\_counter);
              exit;
```