Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	10 November 2023
Team ID	592230
Project Name	Dog Breed Identification Using Transfer Learning
Maximum Marks	20 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Functional Sprint Requirement (Epic)		User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint- 1	Project Setup & Infrastructure	USN-1	Set up the development environment with the required tools and frameworks to start the Dog Breed Identification project.	2	High	uday
Sprint- 1	Data Collection	USN-2	Gather a diverse dataset of dog images containing different breeds for training the deep-learning model.	3	High	uday
Sprint- 2	Data Preprocessing	USN-3	Preprocess the collected dog dataset by resizing images, normalizing pixel values, and splitting it into training and validation sets.	3	High	sharan
Sprint- 2	Model Development	USN-4	Explore and evaluate different deep learning architectures (e.g., CNNs) and transfer learning models to select the most suitable model for Dog Breed Identification.	4	High	sharan
Sprint-	Model Training	USN-5	Train the selected deep learning model using the preprocessed dog dataset and monitor its performance on the validation set.	5	High	goutham
Sprint- 2	Data Augmentation	USN-6	Implement data augmentation techniques (e.g., rotation, flipping) to improve the model's robustness and accuracy.	2	Medium	goutham
Sprint-	Model Deployment and Integration	USN-7	Deploy the trained deep learning model as an API or web service for Dog Breed Identification. Integrate the model's API into a user-friendly web interface for users to upload images and receive breed predictions.	4	Medium	nithin
Sprint- 5	Testing & Quality Assurance	USN-8	Conduct thorough testing of the model and web interface to identify and report any issues or bugs. Fine-tune the model hyperparameters and optimize its performance based on user feedback and testing results.		Medium	nithin

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	3	2 Days	28-Oct-23	10-Nov-23		
Sprint-2	5	5 Days	31-Oct-23	12-Nov-23		
Sprint-3	10	2 Days	05-Nov-23	17-Nov-23		
Sprint-4	1	2 Days	07-Nov-23	19-Nov-23		
Sprint-5	1	1 Day	09-Nov-23	20-Nov-23		_

Velocity:

Imagine we have a 29-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

$$AV = 29/20 = 1.45$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

SPRINT - 1:

Board section:

We have completed all sprints. So we can see the DONE tasks on board.

TEAM Sprint 1
Project Setup & Infrastructure Data Collection

Projects / team

TEAM Sprint 5

Reference: https://www.visual-paradigm.com/scrum/scrum-burndown-chart/

 $\underline{https://www.atlassian.com/agile/tutorials/burndown\text{-}charts}$

https://www.atlassian.com/agile/project-management

 $\underline{https://www.atlassian.com/agile/tutorials/how-to-do-scrum-with-jira-software}$

https://www.atlassian.com/agile/tutorials/epics

https://www.atlassian.com/agile/tutorials/sprints https://www.atlassian.com/agile/project-

management/estimation https://www.atlassian.com/agile/tutorials/burndown-charts