Cost-Efficient VM Configuration Algorithm in the Cloud using Mix Scaling Strategy

Presenter: Li Lu

Li Lu, Jiadi Yu, Yanmin Zhu, Guangtao Xue, Shiyou Qian, Minglu Li
Department of Computer Science and Engineering,
Shanghai Jiao Tong University

Popularity of Cloud Computing

VS.

- Cloud Computing vs. Typical Infrastructure
 - Thanks to pay-per-use pricing, more elastic in management
 - Cloud computing can satisfy the peak workload without over-provision computing resources
 - e.g., Brickfish migrates its services to cloud leading to a decrease of cost from \$700,000 to \$200,000

Difficulties in Managing Cloud Resources

- > VM instance type selection
 - Different VM instance type configurations → different performance & cost
- Precise VM instance type selection
 - need accurate prediction of future workload (difficult!)
 - even experienced administrators cannot precisely select VM instance type
- > Key point: the tradeoff between cost and performance during the runtime

Existing Solutions

- ➤ Cost-aware homogeneous VM configurations
 - Same VM instance type
- ➤ Multi-mechanisms in VM configurations
 - Local-resize, replication, migration

- ➤ However, during the runtime in cloud,
 - Utilizing heterogeneous VM instance types is more costefficient
 - Migration of VM leads to high performance degradation

Outline

- Problem Definition
- Cost-efficient Mix Scaling Algorithm
- Evaluation
- Conclusion

VM Configuration Model

- > objective: minimize the renting cost of cloud resources
- > constraints: the service rate of the configuration should be larger than the arrival rate of requests

$$\min \sum_{i=1}^{K} x_i c_i$$

$$s.t. \sum_{i=1}^{K} x_i \mu_i \ge \lambda$$

$$x_i \in N, \qquad i = 1, 2, ..., K$$

- the number of VM instance types: K
- the cost of the ith VM instance type: c_i
- the maximum service rate of ith VM instance type: μ_i
- the arrival rate of requests: λ
- the number of ith VM instance type in the configuration: x_i

Differences between Two Constitute Configurations

- \triangleright Due to the workload fluctuation, the two constitute VM configurations x_{old} and x_{new} are almost always different in all time slots.
 - Note that x_{old} and x_{new} are K-dimension vectors
- > 3 situations may occur:
 - $x_{new} \ge x_{old}$: more VMs of all types are needed to meet performance requirement
 - $x_{new} \le x_{old}$: less VMs of all types are needed to be cost-efficient
 - $x_{new} \neq x_{old}$: need to add or delete several VMs of different instance types
- For the first 2 situations, renting more or deleting several VMs would be OK
- For the 3rd situation, migrations would occur, which should be control to improve the performance

Cost-Migration Delay Tradeoff

- > Tradeoff: Cost vs. Migration delay
 - For Cost: the objective minimizes the cost

$$\min \sum_{i=1}^{K} x_i c_i$$

• For Migration delay: need to modeled

Migration Delay Modeling

- Migration Mechanism in Cloud
 - Instead of directly migration, migration in cloud should utilize the image server as a bridge
- Migration Delay can be modelled as:

$$\alpha = 2\frac{D}{b} + s$$

where *D* is the image size, *b* is the bandwidth, *s* is the start time of a new VM

Normal Migration

Migration in Cloud

Cost-Migration Delay Tradeoff (COMDT) Problem

$$\min \sum_{i=1}^{K} x_i c_i$$

$$s.t. \sum_{i=1}^{K} x_i \mu_i \ge \lambda$$

$$x_i \in \mathbb{N}, \qquad i = 1, 2, ..., K$$

Original Problem

$$\min \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \sum_{i=1}^{K} x_i(t) c_i$$

$$s.t. \sum_{i=1}^{K} x_i(t) \mu_i \ge \lambda(t), \forall t$$

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \alpha(t) \le MT \qquad \text{Migration Delay Constraint}$$

$$x_i \in N, \qquad \forall i, t$$

Cost-Migration Delay Tradeoff Problem

Outline

- Problem Definition
- Cost-efficient Mix Scaling Algorithm
- Evaluation
- Conclusion

Difficulty in Solving the COMDT Problem

- ➤ The COMDT problem aims to
 - minimize the long-term cost
 - constrain the long-term migration delay
- ➤ Notice that there are two limits in the objective and the migration delay constraint
 - Hard to solve with typical optimization techniques
 - Adopt Lyapunov optimization techniques

$$\min\left(\lim_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T-1}\sum_{i=1}^{K}x_{i}(t)c_{i}\right)$$
s.t.
$$\sum_{i=1}^{K}x_{i}(t)\mu_{i} \geq \lambda(t), \forall t$$

$$\left(\lim_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T-1}\alpha(t)\leq MT\right)$$

 $x_i \in N, \quad \forall i, t$

Cost-Efficient Mix Scaling Algorithm

- \triangleright Virtual Queue Construction Q(t)
- \triangleright Lyapunov Drift Construction $\Delta L(t)$
- ➤ One-slot Optimization Problem Construction
- Optimization Problem Solving

Virtual Queue

- ➤ Migration delay → Virtual queue
 - Q(0) = 0
 - $Q(t+1) = \max\{Q(t) + \alpha(t) MT, 0\}$
- ➤ The equivalence of migration delay constraint and the stability of virtual queue
 - $\lim_{T \to \infty} \sum_{t=0}^{T-1} \alpha(t) \le MT \Leftrightarrow \lim_{T \to \infty} \frac{Q(t)}{T} = 0$
- Thus, we first construct the virtual queue and utilize it to replace the migration delay constraint

Lyapunov Drift

- To represent the stability of the virtual queue, we define two notations based on Lyapunov optimization framework
 - Lyapunov function: $L(t) = \frac{1}{2}Q(t)^2$
 - Lyapunov drift: $\Delta L(t) = E\{L(t+1) L(t)|Q(t)\}$
- There always exists an upper bound of the Lyapunov drift:
 - $\Delta L(t) \leq M + Q(t)E\{2\frac{D(t)}{b} + B|Q(t)\}$
 - where $M = \frac{1}{2} (2 \frac{D_{max}}{b} + s MT)^2$, B = s MT

One-slot Optimization Problem

- ➤ Utilizing the upper bound, we formulate the objective of the one-slot optimization problem
 - $VC(t) + \Delta L(t) \le M + VC(t) + Q(t)E\{2\frac{D(t)}{b} + B|Q(t)\}$
 - where C(t) is the objective of COMDT problem
- To minimize this objective, the one-slot optimization problem is

$$\min VC(t) + Q(t)(2\frac{D(t)}{b} + B)$$
s.t.
$$\sum_{i=1}^{K} x_i(t)\mu_i \ge \lambda(t), \forall t$$

$$x_i \in N, \quad \forall i, t$$

Finally, we adopt typical optimization techniques to solve it

Outline

- Problem Definition
- Cost-efficient Mix Scaling Algorithm
- Evaluation
- Conclusion

Simulation Setup

- \triangleright Workload λ :
 - Generated by TPC-W
 - 2 types of workload: low-fluctuation & high fluctuation
- > VM types: 5 types as follows
 - capacity μ : preliminary runtime test on our OpenStack platform
 - price c: the same as AWS

Flavor	Configurations	Price/h	Price/core
m4.large	2 vCPUs, 8G RAM	\$0.979	\$0.490
m4.xlarge	4 vCPUs, 16G RAM	\$1.226	\$0.307
m4.2xlarge	8 vCPUs, 32G RAM	\$2.553	\$0.319
m4.4xlarge	16 vCPUs, 64G RAM	\$5.057	\$0.316
m4.10xlarge	40 vCPUs, 160G RAM	\$12.838	\$0.321

Comparison methods

> 4 algorithms:

- scale out: only use one type VM, and scale the number of the VM
- greedy scale up: first scale the VM type, then the number
- mix scale: our algorithm. 2 variations
 - small V mix scale: focus more on migration delay
 - large V mix scale: focus more on cost

Average Cost

- ➤ Our algorithm with small V achieves 30.8% and 26.3% higher cost-efficiency than that of scale out and greedy scale up algorithms
- ➤ Our algorithm with large V achieves 31.1% and 26.5% higher cost-efficiency than that of scale out and greedy scale up algorithms

Response Time

➤ Under the same workload, small V mix scale algorithm can reduce 38.19% migration delay to further reduce the response time compared with large V mix scale algorithm.

Large V

Small V

Outline

- Problem Definition
- Cost-efficient Mix Scaling Algorithm
- Evaluation
- Conclusion

Conclusion

- Formulate the cost-migration delay tradeoff problem
 - both cost of cloud resources and migration delay are considered
- > Propose the cost-efficient mix scaling algorithm
 - solve the COMDT problem utilizing the Lyapunov optimization techniques
- > Demonstrate the efficiency and feasibility of the algorithm
 - save 31.1% and 26.5% cost while controlling migration delay compared with scale out and scale up algorithms

Thank you!

Q & A

Image Size Modeling

- ➤ Image Size D
 - $D(t) = d \sum_{x_i(t-1) > x_i(t)} |x_i(t-1) x_i(t)|$
 - where d is the average image size, and x(t-1) & x(t) are two constitute VM configurations

Tradeoff with V

- Through tunning the weight V in the one-slot optimization problem, we can control the focus between cost and migration delay:
 - $V \rightarrow \infty$: reduce more cost, but less control on migration delay
 - $V \rightarrow 0$: reduce less cost, but more control on migration delay

$$\min VC(t) + Q(t)(2\frac{D(t)}{b} + B)$$

$$s.t. \sum_{i=1}^{K} x_i(t)\mu_i \ge \lambda(t), \forall t$$

$$x_i \in N, \quad \forall i, t$$

