====第六章练习====

1、设有水准网如图**6-1**所示,已知**A**点高程为 $H_A = 5.000$ m, P_1, P_2 点为待定点,观测高差及路线长度为:

$$h_1 = 1.365m$$
, $S_1 = 1km$
 $h_2 = 2.017m$, $S_2 = 2km$
 $h_3 = 3.377m$, $S_3 = 2km$

设 P_1 点高程为未知参数,试按附有未知参数的条件平差求:

- (**1**) *P*₁ 点高程平差值;
- (2) 各段高差平差值。

图6-1

2、已知附有未知参数的条件方程为:

$$v_1 + v_3 - 2 = 0$$

 $v_2 + v_3 + \hat{x} - 3 = 0$

试按附有未知参数的条件平差求未知数 \hat{x} 及观测值 3,1 的改正数 $^{\nu_1,\nu_2,\nu_3}(Q=I)$ 。

 $_3$ 、有水准网如图**6-2**,**A**点为已知点,已知 $H_{A}=5.000$ m, $h_{1}\sim h_{7}$ 为等精度独立观测值 Q=I.

$$h_1 = 1.215m, h_2 = 2.068m, h_3 = -0.850m, h_4 = 2.759m$$

 $h_5 = 1.903m, h_6 = 0.861m, h_7 = -2.760m$

若取平差后 P_4 点高程为未知参数 \hat{X} ,其近似值为 $X^0=9.830m$,试按附有未知参数的条件平差:

- (1) 列出条件方程及法方程;
- (2) 求最弱点 $\frac{P_4}{4}$ 点平差后高程的权倒数。

图6-2

4、有水准网如图6-3,各条路线长度相同,等精度观测高差:

$$h_1 = +1.359 m$$
,
 $h_2 = +2.009 m$,
 $h_3 = +1.012 m$,
 $h_4 = +0.657 m$

选取A,D两点间的最或是高差为未知参数,

- (1) 试求各段高差的平差值;
- (2) 求平差后A, D点间高差的中误差。

图6-3

5、在图6-4的测角网中,A,B点为已知点, P_1, P_2 点为待定点,已知起算数据如下表:

上口	坐标(m)		坐标方位角)+ // (····)
点号	Х	Υ	(" ' ")	边长(m)
В	14239.12	61653.72	104 00 40 4	224.64
А	11023.11	60851.16	194 00 43.4	3314.64

观测值为:

	角值		角值		
角号	(" ' ")	角号	(" ' ")		
1	55 15 33.5	4	55 28 53.0		
2	53 20 37.5	5	116 52 56.9		

3 | 39 05 24.7 | 6 | 39 16 33.2

已算得 凡 点的近似坐标为:

$$X_1^0 = 11801.16m, Y_1^0 = 55809.60m$$

设 P₁ 点的坐标为未知参数,试按附有未知数

的条件平差:

- (1) 列出线性形式的条件方程;
- (2) 组成法方程。

图6-4

6、有线形锁如图6-5, A, B点为已知点, 已知其坐标为:

$$\begin{cases} X_A = 97689.562m, & X_B = 102344.225m \\ Y_A = 31970.852m, & Y_B = 34194.167m \end{cases}$$

又已知BC边的坐标方位角为 $T^* = 284^{\circ}57'29.5''$ 。角度观测值为:

$$\beta_1 = 66^{\circ}40'43.9'', \beta_2 = 49^{\circ}21'49.8'', \beta_3 = 63^{\circ}57'27.7'',$$

$$\beta_4 = 65^{\circ}23'03.9'', \beta_5 = 60^{\circ}34'45.2'', \beta_6 = 54^{\circ}02'11.8'',$$

$$\beta_7 = 54^{\circ}14'40.2''$$

现选取 $\angle DBA$ 的最或是值为未知数 \hat{X} , 其近似值为 $X^0 = 25^{\circ}10'56''$, 试按附有未知数的条件平差:

- (1) 求未知数 \hat{X} ;
- (2) 求各角的改正数与平差值;
- (3) 求待定点D, E的坐标平差值。

图6-5

7、在测角网图6-6中, A, B点为已知点, 坐标值如下表:

点号	X (m)	Y (m)
A	9 582.67	13 931.43
В	13 701.90	17 053.34

又已知边长 $S_{AR} = 3012.89m$, 等精度观测角值为

	观测值		观测值	
角号	(" ' ")	角号	(" ' ")	
1	72 25 44.7	4	29 47 46.1	
2	77 09 44.9	5	105 15 16.7	
3	30 24 28.2	6	44 57 02.1	

し 3 | 30 24 28.2 | 6 \mathbb{R}^2 为未知参数,试按附有未知数的条件平差:

- (1) 计算未知数的近似值 X^0 ;
- (2) 列出线性条件方程式。

图6-6

8、有控制网如图6-7,A,B点为已知点, \hat{X} 为已知基线,取 $\angle BAD$ 的最或是值为未知数 \hat{X} ,试列出线性形式的条件方程及 \hat{X}^0 的计算公式。

图6-7

9、以同精度测得图6-8中的三条边长,得边长 观测值为:

 $S_1 = 387.363m$, $S_2 = 306.065m$, $S_3 = 354.631m$

A,B,C点为已知点,已知其起算数据见下表:

点号	坐标		边长(m)	坐标方位角		
	X	Y		(" ′ ")		
A	2692. 201	5203. 153	602 600	186 44		
В	1092. 765	5132. 304	603.608	26. 4		
С	2210. 593	5665. 422	545. 984	77 32 13.3		
A			667. 562	316 10 25.6		

若选边长AD为未知参数, 其近似值为 $X^0 = 387.350 m$, 试按附有未知数的条件平差:

- (1) 列出条件方程和法方程;
- (2) 计算各边的边长平差值及未知数平差值。

图6-8

10、 设有边角网如图6-9所示,观测2条边长和3个角度,其观测值为:

 $\beta_1 = 129°07'0.05'', S_1 = 2640.513m$

 $\beta_2 = 23^{\circ}28'50.06'', S_2 = 1356.011m$

 $\beta_3 = 27^{\circ}24'8.77''$

 $\sigma_{\rho_1} = \sigma_{\rho_2} = \sigma_{\rho_3} = \pm 1$ ", $\sigma_{S_1} = \sigma_{S_2} = \frac{1}{\sqrt{2}}cm$ 。令 $\sigma_0 = \sigma_{\rho} = \pm 1$ " ,并选取边长AB为未知参数,其近似值为 $X^0 = 1566.342m$,试按附有未知数的条件平差:

- (1) 列出条件方程;
- (2) 组成法方程,解出 **x**
- (3) 求AB边长平差值 \hat{X} 极其权倒数 $P_{\hat{x}}$ 。

图6-9

11、有测边往如图6-18。A, B, C点为已知点, P为待定点, 起算数据见下表:

.E.D.	坐标(m)		坐标方位角		± 1/ (ma)	
点号	Х	Υ	("	,	")	
Α	60 509.596	69 902.525				
	50 220 225	74 200 006	117	18	33.72	4 949.186
В	58 238.935	/4 300.086	107	50	34.18	6 354.379
С	51 946.286	73 416.515	107	33	J 4 .10	0 334.373

边长观测值为:

$$S_1 = 3128.86m, S_2 = 3367.20m, S_3 = 6129.88m$$

Q=I 。 & PC \updelow{D} by & DC \updelow{D} by &DC \updelow{D} by

- (1) 列出条件方程(取 $X^0 = 6129.85m$);
- (2) 组成法方程;

求PC边边长平差值极其权倒数。

