AA 652: Astronomy Lab II

End-Semester Exam - Part I

By

Keshav Aggarwal 2103121014 8 APRIL 2022

To: Dr. Narendranath Patra

Discipline of Astronomy, Astrophysics and Space Engineering
(DAASE)

IIT Indore

CONTENTS

1	Bar	d Pass Filter using R,L and C	3
	1.1	Formula used	3
	1.2	Problems	5
		1.2.1 Draw the circuit diagram for a band-pass filter using resistor, capacitor, and an inductor	5
		1.2.2 Assuming the frequency limitation of the function up to 5KHz, choose suitable capacitor and resistor to investigate the frequency response of the filter.	5
		1.2.3 Using expeyes, perform an experiment to determine the frequency response of the band-pass filter.	6
		1.2.4 Find out the cutoff frequency and bandwidth of a Band-pass filter	6
		1.2.5 Measure the phase difference between input and output of the signal and	Ü
		make a plot to show how it varies with frequency	7
		LIST OF FIGURES	
	1.1	Band pass filter	3
	1.2	Fitted curves for the Band Pass filter	5
	1.3	Circuit Diagram	5
	1.4	Frequency v/s gain	6
	1.5	Frequency v/s Phase Difference	7

1 BAND PASS FILTER USING R,L AND C

Band Pass Filter circuit design by using inductor, capacitor and resistor is given as below.

Figure 1.1: Band pass filter

1.1 FORMULA USED

The centre frequency of the band pass filter which is also termed as 'resonant peak' can be formulated by using the below equation -

$$f_c = \frac{1}{2\pi\sqrt{LC}}$$
Hz

The output voltage across R will be -

$$V_o = \frac{j\frac{R\omega}{L}}{-\omega^2 + j\frac{R\omega}{L} + \frac{1}{LC}}V_{in}$$

The Magnitude of the output voltage will be -

$$\left|\frac{V_o}{V_{in}}\right| = \frac{\frac{R\omega}{L}}{\sqrt{\left(\frac{1}{LC} - \omega^2\right)^2 + \left(\frac{R\omega}{L}\right)^2}} = \frac{R}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$

The Phase response of the output voltage -

$$\theta(\omega) = 90^{\circ} - \tan^{-1} \left(\frac{\omega R/L}{\frac{1}{LC} - \omega^2} \right)$$

Resonance Frequency:- The frequency at which the output is maximum.

To obtain maximum output , the required condition is - $X_L = X_C$.

$$\omega_o L = \frac{1}{\omega_o C} \Rightarrow \omega_o = \sqrt{\frac{1}{LC}}$$

Cut off Frequency:- The frequency at which the output falls down to the $\frac{1}{\sqrt{2}}$ of the maximum output(*i.e.* output at resonance frequency). *i.e.* $\left|\frac{V_o}{V_{in}}\right| = \frac{1}{\sqrt{2}}$

$$\frac{1}{\sqrt{2}} = \frac{\frac{R\omega}{L}}{\sqrt{\left(\frac{1}{LC} - \omega^2\right)^2 + \left(\frac{R\omega}{L}\right)^2}}$$

On solving this equation, we get

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

Bandwidth (β) :-

$$\beta = \omega_2 - \omega_1 = \frac{R}{L}$$

Quality Factor (Q):- It is defined as -

$$Q = \frac{\omega_o}{\beta} = \sqrt{\frac{L}{CR^2}}$$

or,

$$Q = \frac{\omega_o}{\beta} = \frac{\omega_o}{\omega_2 - \omega_1} = \frac{f_o}{f_2 - f_1}$$

Figure 1.2: Fitted curves for the Band Pass filter

1.2 PROBLEMS

1.2.1 Draw the circuit diagram for a band-pass filter using resistor, capacitor, and an inductor.

Figure 1.3: Circuit Diagram

 $1.2.2\,$ Assuming the frequency limitation of the function up to 5KHz, choose suitable capacitor and resistor to investigate the frequency response of the filter.

Resistance, R = 612 Ohm

Capacitance, C = 0.000001 Farad

1.2.3 Using expeyes, perform an experiment to determine the frequency response of the band-pass filter.

Figure 1.4: Frequency v/s gain

1.2.4 Find out the cutoff frequency and bandwidth of a Band-pass filter-

Cut off Frequency

$$\omega_1 = 195 \; Hz$$

$$\omega_1 = 862~Hz$$

Bandwidth

$$\beta = 862 - 195 = 667 \; Hz$$

 $1.2.5\,$ Measure the phase difference between input and output of the signal and make a plot to show how it varies with frequency.

Figure 1.5: Frequency v/s Phase Difference