

SEMICONDUCTOR TECHNICAL DATA

KIA6213S BIPOLAR LINEAR INTEGRATED CIRCUIT

AUDIO POWER AMPLIFIER

FEATURES

- · Designed for Output Power, Radio and Portable.
- · Casset Tape Recorder.
- Output Power : P_{OUT} =500mW(Typ.) at V_{CC} =6V, R_L =8 Ω , THD=10%
- Wide Operating Supply Voltage Range
 :Vcc=4~14V
- · Low Quiescent Current.
- · Without Heat Sink.

MAXIMUM RATINGS (Ta=25℃)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	V_{CC}	14	V	
Output Current (Peak)	$I_{O(Peak)}$	0.5	A	
Power Dissipation	P_{D}	750	mW	
Operating Temperature	T_{opr}	-25~75	$^{\circ}$	
Storage Temperature	T_{stg}	-55~150	$^{\circ}$	

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{CC} =6V, f=1kHz, Ta=25°C, R_L =8 Ω , R_g =600 Ω , R_f =47 Ω)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent Current I _C		_	V _{CC} =4V	7	-	-	mA
	$I_{\rm CCQ}$		V _{CC} =6V	-	15	20	
			V _{CC} =9V	-	17	23	
Output Power	D	_	THD=10%	0.45	0.5	_	W
	Pout		V_{CC} =9V, R_L =16 Ω	-	0.70	-	
Total Harmonic Distortion	THD	-	P _{OUT} =100mW	-	0.3	1.0	%
Open Loop Voltage Gain	Gvo	-	$R_f=0$	65	71	-	dB
Closed Loop Voltage Gain (Note)	G_{V}	_	R_f =47 Ω	47	50	52	dB
Input Resistance	$ m R_{IN}$	_	-	_	15	_	kΩ
Output Noise Voltage	$ m V_{NO}$	-	$R_g=10k\Omega$, BW=50~20kHz	_	0.4	1.0	mV_{rms}

Note) In regard to the vale of closed loop voltage gai, it is possible to be classified.

EQUIVALENT CIRCUIT

TEST CIRCUIT

2/4