

DATA MINING

Professeur:

Jen Tao YUAN

Binôme:

Mohamed II BAYO

Benoit FAGOT

Sommaire

- ★ Présentation du jeu de données
- ★ Analyse de données
- **★** Choix Algorithme
 - Arbre de décision
 - O KNN
- **★** Conclusion

Présentation des données - Wine Dataset

- Plateforme : UC Irvine Machine Learning Repository
- ☐ Source : The Institute of Pharmaceutical and Food Analysis and Technologies
- Objets : vins provenant de 3 cultivars différents, 13 attributs (valeurs continues)
- ☐ Problème posé : **classification**
- Attributs déterministes ?

Distribution des classes

Pour un total de 178 objets :

classe 1: 59 instances soit 33%

☐ classe 2: 71 instances soit 40%

□ classe 3: 48 instances soit 27%

Les attributs :

Attributs	Valeurs Distinctes	Valeurs Manquantes
type (classe)	3	0
Alcohol	126	0
Malic acid	133	0
Ash	79	0
Alcalinity of ash	63	0
Magnesium	53	0
Total phenols	97	0
Flavanoids	132	0
Nonflavanoid phe	enols 39	0
Proanthocyanins	101	0
Color intensity	132	0
Hue	78	0
id of diluted wine	s 122	0
proline	121	0

Les attributs

Analyse des données

Analyse des données - attribut déterministe

Analyse des données - attribut non déterministe

Attributs retenus

- Color intensity
- Flavonoids
- ID_of_diluted_wine
- Proline

4 / 13 attributs utilisés pour les classificateurs

CHOIX DES ALGORITHMES

- ★ Arbre de décision
- ★ KNN (K-Nearest Neighbors)

Arbre de Décision

Arbre De Décision

- Règles de décisions : attributs déterministes
- Librairie rpart :
 - découpe récursivement le jeu de données
 - plus grande réduction possible de l'hétérogénéité des classes
 - décision optimale locale → arbre non globalement optimal
- ☐ Training set / Testing set ratio : **0.7/0.3**
- ☐ Seuil de confiance minimale : **80**%

Précision du classificateur Arbre de décision

On obtient une précision globale de 95%.

- ☐ Type 1 : Précision 100%, Rappel 100%
- ☐ Type 2 : Précision 94%, Rappel 94%
- ☐ Type 3 : Précision 93%, Rappel 93%

KNN (K-Nearest Neighbors)

KNN(K-Nearest Neighbors)

Pourquoi KNN?

- ☐ Identifie le nombre k d'observations les plus proches de l'échantillon de test
- À partir de cet ensemble de k- voisins, la règle de la majorité est utilisée pour prédire la classe. Par exemple :
 - Si K = 5
 - Type des vins les plus proches voisins = {2, 2, 1, 1, 1} => échantillon de type 1

KNN(K-Nearest Neighbors)

Pour entraîner notre modèle nous avons utilisé :

```
La Bibliothèque caret
Méthode trainControl(): trainControl(
                              method="repeatedcv",
                              number = 10,
                              repeats = 3
Méthode train(): train(
                         type ~.,
                         data = df2_train, method = "knn",
                         trControl = trainCtrl,
                         preProcess = c("center", "scale"),
                         tuneLength = tunel
```

Notre modèle de formation choisit k = 31 comme valeur finale.

Choix du K optimal

KNN(K-Nearest Neighbors) - Prédiction

Nous avons utiliser la méthode Predict() pour faire de la prédiction.

predict(model_knn, newdata = test_df2)

On a obtenu une précision de **94.23**% pour l'ensemble de test.

Conclusion

Conclusion

- Jeu de données : attributs chimique de vins issus de cultivars différents
- Problème posé : vecteurs de caractéristiques → classification des vins
- Observation : 4 attributs potentiellement déterministes
- Modèles de classification testés : Arbre de décision, K-nn
- Résultats:
 - > Arbre de décision 95%
 - > K-nn **94**%