

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Projeto e Desenvolvimento de Algoritmos AD1 2° semestre de 2021

Assinatura -

1ª questão (valor 1.25)

Um investidor controla o seu patrimônio através de diversos cálculos financeiros. Por exemplo, considere que ele possui uma ação que vale R\$ 100,00 e ela perde 20% do seu valor, portanto ela passa a valer R\$ 80,00. Nesta nova situação, um índice importante para o investidor é calcular quanto, em percentagem, a ação deve subir a partir do seu valor depois da queda, para voltar ao seu valor original de R\$ 100,00. Neste caso a ação deve subir R\$ 20,00, ou seja 25% de R\$80,00. Lembre-se que subir é sempre mais difícil.

Escreva um algoritmo em PETEQS que leia o valor original de uma ação e quanto ela caiu em percentagem. Para indicar que foi uma queda de valor a percentagem fornecida dever ser negativa. O algoritmo deve imprimir o valor da ação depois da queda e quanto ela deve subir a partir deste valor para voltar ao patamar original. O valor calculado da percentagem de subida deve ser positivo, já que é uma subida. A seguir há alguns exemplos de entradas e resultados.

Exemplo 1:

Entradas:

100.00

-0.20

Saídas:

80.00

0.25

Exemplo 2:

Entradas:

100

-0.50

Saídas:

50.00

1.0

2ª questão (valor 1.25)

Nesta questão você construirá a tabela verdade de uma expressão booleana. Uma tabela verdade consiste nos valores de saída da função para todas as combinações possíveis das entradas.

Função:

$$F(A, B, C) = (\tilde{NAO} A E \tilde{NAO} B) OU (A E C) OU (B E \tilde{NAO} C)$$

Tabela verdade:

A	В	С	F(A,B,C)
falso	falso	falso	
falso	falso	verdadeiro	
falso	verdadeiro	falso	
falso	verdadeiro	verdadeiro	
verdadeiro	falso	falso	
verdadeiro	falso	verdadeiro	
verdadeiro	verdadeiro	falso	
verdadeiro	verdadeiro	verdadeiro	

3ª questão (valor 1.25)

Escreva as expressões aritméticas abaixo em PETEQS.

a)
$$\frac{3+x}{a+b+c}$$

b)
$$3x^3 + 2x^2 + 5x$$

c)
$$y + \frac{5}{1+a/c}$$

d)
$$\frac{n*(ini+fim)}{2}$$

4ª questão (valor 1.25)

Escreva um algoritmo em PETEQS que leia cinco números inteiros e calcule quantos destes números são pares. Neste algoritmo não são permitidos comandos de desvio nem laços de repetição.

5ª questão (valor 1.25)

Escreva um algoritmo em PETEQS que calcule a soma de todos os números pares entre 2 e 10000. Neste algoritmo não são permitidos comandos de desvio nem laços de repetição.

6ª questão (valor 1.25)

Quais dos nomes de variáveis abaixo são válidos em PETEQS. Justifique sua resposta no caso dos nomes inválidos.

- a) exemplo1
- b) lexemplo
- c) Preco\$
- d) taxa%
- e) raioDoCirculo

7ª questão (valor 1.25)

Quais dos números abaixo são válidos em PETESQ. Justifique sua resposta no caso dos números inválidos.

- a) 3.1415
- b) 3,1415
- c) 0.234234234...
- d) 10^2
- e) 456

8ª questão (valor 1.25)

As notas de Real em circulação são de R\$ 200, R\$ 100, R\$ 50, R\$ 20, R\$ 10, R\$ 5 e R\$ 2 Reais. Além disso nesta questão vamos considerar também as moedas de 1 Real.

Escreva um algoritmo em PETEQS que receba um valor inteiro em Real, ou seja não serão aceitos valores em centavos, e calcule como o valor vai ser distribuído entre as notas e a moeda de um Real em circulação. Considere que o algoritmo irá em ordem decrescente do valor das notas usar sempre a máxima quantidade possível de cada nota. Por exemplo se a quantia a ser distribuída é R\$ 300,00, então a algoritmo tem de indicar uma nota de R\$ 200,00 e uma nota de R\$ 100,00. Não é possível indicar, por exemplo, três notas de R\$100,00. Diferentemente de um caixa eletrônico assuma que sempre teremos notas a disposição para fazer a distribuição.

No exemplo 1 temos que o valor a ser distribuído é 763,00 Reais. O algoritmo calculou que este valor vai ser distribuído da seguinte maneira: 3 notas de R\$200,00, uma nota de R\$ 100,00, uma nota de R\$ 50,00, uma nota de R\$ 1,00, uma nota de R\$ 2,00, e uma moeda de R\$ 1,00.

```
Exemplo 1:
```

Entrada:

763

Saídas:

200 = 3

100 = 1

50 = 1

20 = 0

10 = 1

5 = 0

2 = 1

1 = 1

Exemplo 2:

Entrada:

357

Saídas:

200 = 1

100 = 1

50 = 1

20 = 0

10 = 0

5 = 1

2 = 11 = 0