CS 520 Theory of Programming Language

05/12 - 05/26, 2021

Lambda Calculuy

- 1. Remonder.
- () <exp> := (var) | X(vai). <exp> (exp) <exp).
- ② FV, Substitum. , d-required ence. $(\lambda x.x)(\lambda y.z) = (\lambda z.z)(\lambda y'.z)$

3 Contraction - reduction. B-regution $(\lambda \star \cdot e) e' \rightarrow e/_{\times \rightarrow e'}$ Renaming
e -> e' e' = e' e -> e" * Contextual dosane. e.' = e. e. → e, $e' \rightarrow e'$ (4) B-hormal form. e if e to e' for any e'.

(3) Given e, is it justible to get two formul-four expressions from e 4iff. using ->? Do. ... Church-Rosser Thu. a p-normal form e' from e using ? ρ. (λι. τ) (λε. ε ε) =:e. () 2. 2 2) () 2. 2 2). (3). Given e, if e it et for some p-normal form e , then can me find e' systematically? Yes. --- normal - order reduction. 2. Church - Rosses and unique p-normal form. [Church-Rossier] e... expression in landa cal. e - tez for some expressions e, and ez \Rightarrow $\exists e_{\circ}$ ς,t . $e_{\circ}^{!} \xrightarrow{t} e_{\circ}$ and $e_{z}^{!} \xrightarrow{t} e_{\overline{o}}$ diagramatic rewriting of the thun Prople.3. If $e \rightarrow e_1$ and $e \rightarrow e_2$ for provided form express e_1 and e_2 are disputational.

Then $e_1 = e_2$ (i.e., e_1 and e_2 are disputational.

Proof. By assume, $e \rightarrow e_1$ and $e \rightarrow e_2$. By CR, $\exists e_0 \leq 1$, $e_1 \rightarrow e_2$ and $e_2 \rightarrow e_2$.

Let e_1 and e_2 are e_1 formal form. $e_1 = e_2$ and $e_2 = e_3$. $e_1 = e_2$.

2. Novmal-order reduction. ... a Particular way of applying > (-> *) deterministic/algorithmic $(\lambda u. \lambda v. v) \left((\lambda x. x. x) (\lambda x. x. x) \right) \longrightarrow (\lambda v. v.)$ $(\lambda u. \lambda v. v) \qquad (\lambda x. x \Rightarrow \lambda)$

5-hormal - form 1) Normal-order reduction best in terms of getting ... leftmost and outermost reduction. (()x, x) (() (()x, 5 () () ()). → (>y.y) ((\x,x) (>y.y) $(\lambda x. x)$ $(\lambda y. y) \rightarrow (\lambda y. y)$ Thu If e tel for promal e', then e mormel e' Note: - momal 75 dderministre (modulo =

& Evaluation restorded version of - that corresponds to the run-time of.	
2 1	
(1) Which nestrators? (1). Only evaluate expressions who free vais. Closed expressions. (2) Don't evaluate the body of a for where the fundam is applied	
closed expussions.	
(2) Don't evaluate the body of a for where the function is	d.
λx . $(\lambda y. y) x$. $\longrightarrow \lambda x. x$.	ι.

② Evaluation relation => = < (exp)x < vexp). [-j. independent def/n.

(i) capturer (i) & (2). From above. equiv.

(ii) describus bīg-step. compitation.

3 Normal-order eval. (relation) = (closed exp) x (canonical-form exp). (cform) = Novary (exp). canonical (value expressions). Canonical tours. xr.e = normal. xr. e. Application. (p-evaluation). e = hormal >x.e. Co/x-re! = hormal. Z. e e' = 7 Z.

(hy.y) = (hy.y) (hz.z) = (hz.z) (\r. (\rangle y. y) =) = (\rangle x. (\rangle y. y) = () (\rangl $(\lambda_{x}, (\lambda_{y}, y)_{x}) (\lambda_{z}, z) \Rightarrow (\lambda_{z}, z).$ Any relationship between = mound and = ?? Note: Normal-Edur er. forms tru basit if Haskell, Scala.

c < closed exp> x < cform? D'Eger Chalhaton = eager. &=- eral napor. Go = /x - 2 = eager 2

* Performance of # of 6-eval / peval steps --- one dear winner.

Understandability --- Deager.

Theoretical property --- Dehaves butter.

(Thousand)