Документ для подготовки к тесту по материалу первого курса за 2024 г.

Куркотов Александр Сергеевич, СКБ-222 askurkotov@edu.hse.ru

TG: @one_true_cat

Содержание

1. Свойства числовых последовательностей	3
1.1. Определение	3
1.2. Свойства	3
2. Классификация точек разрыва	3
2.1. Точки разрыва первого рода	3
2.2. Точки разрыва второго рода	4
3. Бесконечно малые и большие функции	4
4. Формула тейлора	4
5. Неопределенный интеграл	6
5.1. Таблица интегралов	6
5.2. Интегрирование заменой переменной	6
5.3. Интегрирование по частям	6
5.4. Интегрирование рациональных функций	7
5.5. Интегралы, сводящиеся к рациональным	8
5.5.1. Экспонента	8
5.5.2. Корень рациональной функции	8
6. Множенство определения функции нескольких переменных	9
7. Производная функции, неявно заданной уравнением $F(x,y)=0$	10
8. Экстремум функции нескольких переменных	12
8.1. Локальный экстремум	12
8.2. Условный экстремум	12
8.3. Наибольшее/наименьшее значение на области	13

1. Свойства числовых последовательностей

1.1. Определение

Определение 1.1.1: Пусть задано множество $X=\mathbb{N}$ или $X=\mathbb{Z}_0$, функция $f(n), n\in\mathbb{N}$ $(n\in\mathbb{Z}_0)$. Такая функция называется последовательностью $f(n)=a_n$, обозначается

$$\left\{a_n\right\}_{n=1}^{\infty}$$

Если a_n — число, то последовательность называется числовой

1.2. Свойства

Определение 1.2.1: Последовательность $\{a_n\}$ называется:

- 1. возрастающей, если $a_n < a_{n+1} \quad \forall n$
- 2. неубывающей, если $a_n \leq a_{n+1} \quad \forall n$
- 3. убывающей, если $a_n > a_{n+1} \quad \forall n$
- 4. невозрастающей, если $a_n \geq a_{n+1} \quad \forall n$

В приведенных случаях последовательность называется монотонной

Теорема 1.2.1: Последовательность, имеющая конечный предел, ограничена

Теорема 1.2.2: Последовательность к a тогда и только тогда, когда все её подпоследовательности сходятся к a

2. Классификация точек разрыва

Определение 2.1: Точка называется точкой разрыва, если функция в ней не непрерывна

2.1. Точки разрыва первого рода

Определение 2.1.1: Точка нызвается точкой разрыва 1-го рода, если существуют конечные односторонние пределы слева и справа от точки

Определение 2.1.2: Точка a называется точкой *устранимого разрыва*, если f(a-0) = f(a+0)

Определение 2.1.3: Точка a называется *точкой скачка*, если $f(a-0) \neq f(a+0)$. Величина f(a+0) - f(a-0) называется величиной скачка

2.2. Точки разрыва второго рода

Определение 2.2.1: Точка называется точкой разрыва 2-го рода, если предел слева или справа от неё бесконечны или не существуют

Определение 2.2.2: Если предел слева или справа (или оба) бесконечны, то точка называется *точкой бесконечного разрыва*

3. Бесконечно малые и большие функции

Определение 3.1: Функция f называется бесконечно малой при $x \to x_0$, если её предел при стремлении к x_0 равен нулю

$$\lim_{x \to x_0} f(x) = 0$$

Теорема 3.1: Сумма, разность и произведение бесконечно малых функций — бесконечно малая функция

Определение 3.2: Функция f называется бесконечно большой при $x \to x_0$, если предел её модуля бесконечен при стремлении к x_0

$$\lim_{x \to x_0} |f(x)| = +\infty$$

4. Формула тейлора

Теорема 4.1: Формула тейлора для функции, дифференцируемой n раз имеет вид

$$T_n(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$

На всякий случай лучше повторить, как остаточные члены выражаются (если попросят оценить)

Теорема 4.2: Любую функцию можно представить с *остаточным членом в форме Лагран- жа* как

$$R_n(x_0) + \frac{1}{(n+1)!} f^{(n+1)}(\varepsilon) (x-x_0)^{n+1}$$

Теорема 4.3: Любую функцию можно представить с *остаточным членом в форме Пеано* как

$$R_n(x_0) = o(|x-x_0|^n)$$

Ну и родной Маклорен

Теорема 4.4: Можно представить любую функцию по формуле Маклорена как формулу тейлора с центром в точке $x_0=0$

$$f(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(0) x^k + R_n(x)$$

5. Неопределенный интеграл

5.1. Таблица интегралов

Интеграл	Значение
$\int 0 dx$	C
$\int \mathrm{d}x$	x + C
$\int x^n \mathrm{d}x$	$\frac{x^{n+1}}{n+1} + C$
$\int \frac{1}{x} \mathrm{d}x$	$\ln x + C$
$\int a^x \mathrm{d}x$	$\frac{a^x}{\ln a} + C$
$\int e^{ax} dx$	$\frac{e^{ax}}{a} + C$
$\int \sin x dx$	$\cos x + C$
$\int \cos x dx$	$-\sin x + C$
$\int \frac{1}{\sin^2 x} \mathrm{d}x$	$\cot x + C$
$\int \frac{1}{\cos^2 x} \mathrm{d}x$	$\tan x + C$
$\int \frac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x$	$\arcsin \frac{x}{a} + C$
$\int \frac{1}{a^2 + x^2} \mathrm{d}x$	$\frac{1}{a}\arctan\frac{x}{a} + C$
Высокий логарифм: $\int \frac{1}{a^2-x^2} \mathrm{d}x$	$\frac{1}{2a}\ln\left \frac{a+x}{a-x}\right + C$
Длинный логарифм: $\int \frac{1}{\sqrt{x^2 \pm a^2}} \mathrm{d}x$	$\ln x + \sqrt{x^2 \pm a^2} + C$

5.2. Интегрирование заменой переменной

Самый простой способ — замена переменной с внесением под дифференциал

$$\int f(x)dx = \int f(\varphi(t))dx = \int f(\varphi(t))\varphi'(t)dt$$

Пример: Чаще всего эту технику удобно применять при наличии вложенных функций

$$\int \sin \frac{x}{2} dx = \begin{vmatrix} t = \frac{x}{2} \\ x = 2t \\ dx = 2dt \end{vmatrix} = \int \sin 2t \cdot 2dt = -2\cos t + C = -2\cos \frac{x}{2}$$

5.3. Интегрирование по частям

$$\int f(x)\mathrm{d}x = \int u(x)\cdot v'(x)\mathrm{d}x = u(x)\cdot v(x) - \int v(x)\cdot u'(x)\mathrm{d}x$$

Другая форма записи

$$\int u(x) \, \mathrm{d}v = u(x) \cdot v(x) - \int v(x) \, \mathrm{d}u$$

Пример: Как правило применяется при произведении функций, которые легко интегрировать по отдельности, но не вместе

$$x^{\alpha} \ln x \mathrm{d}x = \int x^{\alpha} \left(\frac{1}{x}\right)' \mathrm{d}x = x^{\alpha-1} - \int \frac{1}{x} \alpha x^{\alpha-1} \mathrm{d}x = x^{\alpha-1} - \alpha \int x^{\alpha-2} \mathrm{d}x = x^{\alpha-1} - \alpha \frac{x^{\alpha-1}}{\alpha-1} \mathrm{d}x$$

Рекомендуется использовать в интегралах следующего вида (P(x) — многочлен):

- 1. $\int P(x) \sin(\alpha x) dx$
- 2. $\int P(x)\cos(\alpha x)dx$
- 3. $\int P(x) \ln x dx$
- 4. $\int P(x)e^x dx$

5.4. Интегрирование рациональных функций

Функции вида $R(x) = P_1 \frac{x}{P_2}(x)$

- 1. Если дробь неправильная сокращаем
- 2. Разбиваем знаменатели на множители разной кратности вида
 - $(Ax+B)^k$
 - $(Ax^2 + Bx + C)^k$
- 3. Разбиваем дробь как сумму простых дробей с знаменателями в виде корней разной кратности

$$(Ax+B)^k \to \sum_{i=1}^k \frac{C_i}{(Ax+B)^i}$$

$$(Ax^{2} + Bx + C)^{k} \to \sum_{i=1}^{k} \frac{C_{i}}{(Ax^{2} + Bx + C)^{i}}$$

- 4. Находим коэффициенты
- 5. Вычисляем интегралы от простых дробей
 - Случай №1:

$$\int \frac{\mathrm{d}x}{x+a} = \ln|x+a| + C$$

Случай №2:

$$\int \frac{dx}{(x+a)^n} = -\frac{1}{A} \frac{1}{(n-1)(x-a)^{n-1}}$$

• Случай №3:

$$\int \frac{Mx + N}{x^2 + px + q} \mathrm{d}x$$

Берем производную знаменателя, выносим её из числителя как множитель и получаем сумму дробей с числителями производная и константа. Та, что с производной уходит в логарифм (внос дифференциала Раздел 5.2), а та, что с константой — в арктангенс

• Случай №4:

$$\int \frac{Mx + N}{\left(x^2 + px + q\right)^n} \mathrm{d}x$$

Аналогично случаю №3 выносим производную из подстепенного многочлена, раскладываем на сумму дробей с производной и константой. Та, что с производной уходит в логарифм (аналогично случаю №3), а та, что с производной будет раскручиваться рекурсивно. Нужно вынести полный квадрат из знаменателя, сделать замену вида $t=x+\frac{p}{2}$, и можно будет задать интеграл I_n через I_{n-1}

5.5. Интегралы, сводящиеся к рациональным

Некоторые интегралы можно решать как в прошлом пункте, произведя замену

5.5.1. Экспонента

$$\int R(e^{\alpha x}) dx = \begin{vmatrix} t = e^{\alpha x} \\ x = \frac{1}{\alpha} \ln t \\ dx = \frac{1}{\alpha t} dt \end{vmatrix} = \int R(t) \cdot \frac{1}{\alpha t} dt$$

5.5.2. Корень рациональной функции

 $R(x,y)\;$ Обозначение для рациональной функции, содержащей члены x,y,xy Найдем интеграл вида

$$R\left(x, \sqrt[n]{\frac{\alpha x + \beta}{\gamma x + \delta}}\right)$$

Заменяем

$$t = \sqrt[n]{\frac{\alpha x + \beta}{\gamma x + \delta}}$$

Тогда

$$x=rac{-\delta t^n+eta}{\gamma t^n-lpha}=R_1(t)$$
 - рациональная функция

Поскольку умеем интегрировать рациональные функции, получим

$$\mathrm{d}x = R_2(t)\mathrm{d}t$$

Значит изначальный интеграл принимает вид

$$\int R(R_1(t), t) \cdot R_2(t) \mathrm{d}t$$

Дальше интегрируем как рациональную функцию

6. Множенство определения функции нескольких переменных

X Error

Без понятия, что тут. В лекциях ничего такого вроде нет особо. Удачи.

7. Производная функции, неявно заданной уравнением

$$F(x,y) = 0$$

Warning

В оригинальном документе от Кузьминой написано f(x, y, z) = 0 вместо F(x, y) = 0, но «это мы не проходили», все записи у нас про второй случай, так что надеемся, что она

Как правило задача ставится таким образом: есть некая функция y=f(x) неявно заданная через F(x,y)=0

Пример: Такое было на семинарах

$$F(x,y) = \sqrt{x} - \sqrt{y} + 2xy - 3xy^2 = 0$$

- 1. Найдите первую производную $\frac{dy}{dx}$
- 2. Найдите вторую производную $\frac{d^2y}{dx^2}$

Общая схема решения следующая:

1. Поскольку функция константно равна нулю, $\mathrm{d}F=0$. Записываем выражение для дифференциала неявно заданной функции

$$\mathrm{d}F = \frac{\partial F}{\partial x} \mathrm{d}x + \frac{\partial F}{\partial y} \mathrm{d}y = 0$$

Отсюда можно выразить, что

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

Получим формулу №1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

2. Аналогично делаем для дифференциала второго порядка, выражение:

$$d^{2}F = \frac{\partial^{2}F}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}F}{\partial x\partial y}dxdy + \frac{\partial^{2}F}{\partial y^{2}}dy^{2} = 0$$

Можно выразить $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$. Получим формулу №2

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{-\frac{\partial^2 F}{\partial x^2} - 2\frac{\partial^2 F}{\partial x \partial y}\frac{\mathrm{d}x}{\mathrm{d}y}}{\frac{\partial^2 F}{\partial y^2}}$$

Заметим, что в уравнении фигурирует посчитанная ранее первая производная

Задача 1: Если кому нужно попрактиковаться

$$F(x,y)=\sqrt{x}-\sqrt{y}+2xy-3xy^2=0$$

- 1. Найдите первую производную $\frac{\mathrm{d}y}{\mathrm{d}x}$ 2. Найдите вторую производную $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$

8. Экстремум функции нескольких переменных

8.1. Локальный экстремум

Дана некая функция от нескольких переменных (я буду рассматривать f(x,y,z)), надо найти её локальные экстремумы

Для этого задания ради краткости будем записывать частные производные через штрих: $\frac{\partial f}{\partial x}=f_x', \frac{\partial^2 f}{\partial x\partial y}=f_{xy}''$

1. Для начала нужно решить систему уравнений

$$\begin{cases} f_x' = 0 \\ f_y' = 0 \\ f_z' = 0 \end{cases}$$

Получим набор точек, которые могут быть экстремумами. Теперь необходимо исключить точки, в которых функция не дифференцируема и «точки седла»

2. Дальше составляем матрицу следующего вида

$$\begin{pmatrix} f_{x^2}'' & f_{xy}'' & f_{xz}'' \\ f_{yx}'' & f_{y^2}'' & f_{yz}'' \\ f_{zx}'' & f_{zy}'' & f_{z^2}'' \end{pmatrix}$$

Выделяем её миноры (определители меньших матриц) начиная из левого верхнего угла, выбирая подматрицу 1 на 1, 2 на 2 и т.п., в нашем случае обозначим их M_1 , M_2 , M_3 .

3. Чтобы посчитать значение минора в точке — надо подставить x, y, z точки в производные, входящие в минор. После подсчета — посмотрим на их знаки

T.е. если все миноры больше нуля — точка минимум. Если знаки миноров чередуются, начиная с отрицательного — точка максимум. В противном случае точка не является экстремумом

Задача 2: Если кто хочет потренироваться, найти локальные экстремумы функции

$$f(x,y,z) = 2x^3yz - x^2 - y^2 - z^2$$

8.2. Условный экстремум

Дана функция f(x,y) и *уравнение связи* g(x,y)=0. Задача — найти условные экстремумы функции на кривой, задаваемой *уравнением связи*.

1. Для начала составляем функцию, называемую функцией Лагранжа

$$\Phi(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

Точками условного экстремума могут быть только точки стационарности этой функции, так что ищем все точки, для которых верны уравнения

$$\begin{cases} \Phi'_x = 0 \\ \Phi'_y = 0 \\ \Phi'_\lambda = 0 \end{cases}$$

2. После этого надо определить знак $d^2\Phi$. Это делается через диференциалы dx и dy, как правило нужно выразить один через другой, а потом $d^2\Phi$ через него же.

$$\begin{array}{c|cc} \underline{\text{Минимум}} & \underline{\text{Максимум}} \\ \\ d^2\Phi > 0 & d^2\Phi < 0 \end{array}$$

Т.е. если диференциал отрицательный — точка условный максимум, если положительный — условный минимум, в противном случае ни то, ни другое

Задача 3: Если кому надо потренироваться, найти условные экстремумы для функции f(x,y) при уравнении связи g(x,y)

$$\begin{cases} f(x,y) = 2x + 3y \\ 2x^2 + 2y^2 - 2x + 3y = 0 \end{cases}$$

8.3. Наибольшее/наименьшее значение на области

Дана функция f(x,y) и некоторая область D, как правило заданная неравенством. Нужно найти наибольшее/наименьшее значение функции на этой области

Экстремум может находиться либо внутри области, в точке стационарности, либо на границе этой области в условном экстремуме. Решать такие задачи следует так:

1. Находим все точки стационарности внутри области, решая систему уравнений

$$\begin{cases} f_x'(x_0,y_0)=0\\ f_y'(x_0,y_0)=0 \end{cases}$$

Во всех точках, удовлетворяющих системе, находим значения функций

2. Находим все точки стационарности на границе, решая систему уравнений

$$\begin{cases} f_x'(x_0, y_0) + \lambda g_x'(x_0, y_0) = 0 \\ f_y'(x_0, y_0) + \lambda g_y'(x_0, y_0) = 0 \\ g(x_0, y_0) = 0 \end{cases}$$

Где g(x,y)=0 — уравнение границы области D

3. Выбираем наименьшее/наибольшее значение функции среди всех найденных точек

Задача 4: Если кому надо потренироваться, найти наибольшее и наименьшее значение функции $f(x,y)=2x^2-xy+y^2$ на области $D=\{|x|+|y|\leq 1\}$