기업연계프로젝트 Al 기반스마트 팩토리

APS 시스템 구축을 통한 수요 예측 및 원자재 발주 자동화

CONTENTS

- 01 비즈니스 이슈
- 02 프로젝트 과제 정의
- 03 프로젝트 과정 & 기대 효과
- **04** APS 시스템 시연

비즈니스 이슈

기업의 제품과 제조 공정을 소개하고 현재 직면하고 있는 비즈니스 이슈에 대해서 설명합니다.

기업소개

콘크리트용 화학 혼화제, 터널 공사용 급결제, 친환경 바닥재, 시멘트 분쇄조제 등을 제조 및 판매하는 건설 화학 소재 제조업체

프로젝트 과제 정의

프로젝트 정의

APS 시스템 (Advanced Planning and Scheduling)

2. 생산 판매 계획

3. 재고파악 & 주문 자동화

AI 기반의 수요 예측을 통하여 생산계획 및 자원소요계획을 스케줄링

APS 시스템

정확도 높은 수요 예측, 자재 발주 프로세스 자동화를 통한 생산성 향상 👕

과제 해결 단계

1단계 DB 구축

ERP와 외부데이터를 활용하여 데이터 마트 구축

2단계 수요 예측

머신러닝과 딥러닝을 활용하여 수요 예측

3단계 생산 관리

생산계획 및 자동발주 시스템 확립

4단계 시각화

Tableau를 활용한 대시보드에 시각화

Hillin

앞서 네 단계로 구분한 과제의 해결 과정을 상세히 설명하고 이에 따른 기대 효과에 대해서 발표합니다.

데이터마트구축

데이터 전처리

1. 제품명 통일

PEMA-HR1000가야(인천) -> PEMA-HR1000

투입지시 비율 : 0.095 -> 투입지시 비율 : 0.095

데이터마트구축

레시피 기존 레시피의 재가공

변수 예측 AUTO ARIMA, GRU를 사용하여 수요예측에 사용할 변수

수요예측 머신러닝을 활용한 6개월동안의 수요 예측

발주량 예측 수요예측에서 발주량 예측

안전재고량 과거 데이터를 활용한 안전 재고량

원자재 현황 예측된 수요를 바탕으로 일별 원자재량

데이터를 통합 정리하여 데이터 마트에 새롭게 가공 후 접근성이 향상됨

수요 예측 과정

1) 변수 선정 (날씨 관련 변수)

2) 변수 선정 (건축 착공면적)

건축 착공 면적

건설경기 동행지표로서 건설경제동향, 자재수급 동향 등 계절성을 포함하여 수요 예측 가능

(m²) (전월대비,%) 75 12,500,000 10,000,000 2021 042 2021 2021 2021 06월 07월 08월 09월 10월 11월 12월 01월 02일 02월 2022 03월

2) 변수 데이터 증강

Auto ARIMA					
Variable	R2 Score				
TEMP	0.99				
HUM	0.87				
RAIN	0.56				
SNOW	0.60				
CONSTRUCTION	0.71				

GRU					
Variable	R2 Score				
TEMP	0.99				
HUM	0.86				
RAIN	0.62				
SNOW	0.52				
CONSTRUCTION	-0.1				

기본 데이터 + 예측 데이터

3) 수요 예측 모델

Decision Tree Regressor					
MAE	286.49				
MSE	1,028,998.19				
RMSE	1,014.39				
R2	0.81				

Randor	n Forest Regressor
MAE	288.66
MSE	847,950.14
RMSE	920.84
R2	0.84

LGBM Regressor V						
MAE	342.58					
MSE	696,475.90					
RMSE	834.55					
R2	0.87					

XGB Regressor				
MAE	835.34			
MSE	1,540,205.50			
RMSE	1,241.05			
R2	0.72			

Ridge Regression						
MAE	969.21					
MSE	2,021,288.20					
RMSE	1,421.72					
R2	0.63					

Lasso Regression					
MAE	974.70				
MSE	2,040,926.77				
RMSE	1,428.61				
R2	0.63				

APS시스템 도입 이전 오차율 30%

APS시스템 도입 이후 **오차율 13**%

오차율 2배 이상 개선

생산 계획

생산 계획 (3개월)

생산 개시에 앞서 제품의 종류, 수량, 기간 등의 계획을 세우는 일

원자재 발주 자동화

원자재 발주 과정

리드타임

= (원자재 발주부터 입고까지의 기간) + (제품 수주로부터 납기까지의 기간)

요일	월		월	화	수	목	금	토	일
날짜	1	~	8	9	10	11	12	13	14
	발주		1일에 발주가 들어가야할 제품 목록						

안전 재고량

안전 재고량

= (일일 최고 판매량 X 최대 리드타임) - (일일 평균 판매량 X 평균 리드타임)

리드타임 동안 발생할 수 있는 비상 수요에 대비하기 위해 보유하는 재고

기대효과

설비투자의사결정지원과효율적고객관리,생산프로세스개선으로시간과비용절감(일 1시간 30분절약)

4

APS 시스템 시연

태블로 대시보드를 통해 APS 시스템 시각화를 시연합니다.

태블로 대시보드

태블로 대시보드

사용 설명서

1

소프트웨어에 대한 요약도를 제공

2

DataMart를 이용하는 방법과 구축에 필요한 파일 3

Tableau를 설치하는 방법과 대시보드의 이용방법을 소개

프로젝트 환경

사용 언어

사용 환경

활용 라이브러리

박광민(팀장) DB 구축, 발주 자동화 **ASSEMBLE** 문 성 윤

김 기 현 변수 개발, 시계열 모델

마경수 DB 구축, 사용설명서

시계열 모델, 피피티 제작

조 남 현

변수 개발, 시계열 모델

최 종 원 태블로, 프레젠테이션

소 감

박광민

데이터 마트 구축을 통해 이론상으로만 알고있던 가상 환경 구축과 네트워크 설정을 배울수 있었으며, 자동 화 코딩과정을 통해 규칙있는 코딩의 중요성을 다시 한 번 실감하는 경험을 하게 되었습니다.

김기현

한정된 데이터를, 합당한 논리를 근거로 증식하는 것도, 시계열 분석을 하는 것도 정말 어려운 일이다. 시간이 한정돼 있어 시계열 분석을 더 깊게 공부하지 못하고 결과를 내야만 했던 것이 너무 불만족스럽다.

마경수

이번 프로젝트를 진행하면서 데이터증식을 하는 부분에 대하여 많은 고민을 할 수 있게 되었고, 과정을 진행하면서 많은 부분들을 공부하여 익힐 수 있게 되었습니다. 이번 프로젝트를 팀원들과 잘 마무리할 수 있게 되어서 좋았습니다.

문성윤

다양한 시계열 알고리즘들을 공부하면서 데이터가 적 어서 정말 많이 어려움을 겪었고 기본기를 잘 다져야겠 다고 깨달았습니다. 그리고 팀원들과 함께 재밌게 소통 하면서 생소한 분야를 공부하여 프로젝트를 잘 마무리 해서 뿌듯합니다.

조 남 현

시계열데이터에 대해 자세히 공부하는 계기가 되었고, 사용자의 니즈에 맞는 솔루션제시 및 모델 개선에 도메인 지식이 매우 중요함을 다시금 깨달았습니다.

최종원

데이터 시각화 툴인 태블로를 이번 계기에 새롭게 경험해보고 배울 수 있어 좋은 계기였습니다. 혼자 공부하기쉽지 않았지만 태블로가 다방면으로 유용한 BI 툴이라 앞으로도 잘 활용해 볼 수 있을 것 같습니다.

