Format I			00 opcode	i1:r1	i2:r2 / qdata
If $i1$ then $opr1 = M_{(r1)}$ else $opr1 = r1$; If $i2$ then $opr2 = M_{(r2)}$ else $opr2 = r2$;			6 bits	6 bits	6 bits
Instruction		Opcode	Operation		
mov	opr1, opr2	0000	opr1	pr2);	
add	opr1, opr2	0001	opr1 ← (o	pr1) +	(opr2);
sub	opr1, opr2	0010	opr1 ← (o	pr1) - (opr2);
and	opr1, opr2	0011	opr1 ← (o	pr1) ^	(opr2);
or	opr1, opr2	0100	opr1 ← (o	pr1) V	(opr2);
xor	opr1, opr2	0101	opr1 ← (o	pr1) xc	or (opr2);
swap	opr1, opr2	0110	opr1 ⇔ (o	pr2);	
addq	opr1, qdata	0111	opr1	pr1) +	qdata;
subq	opr1, qdata	1000	opr1 ← (o	pr1) - c	qdata;
movq	opr1, qdata	1001	opr1 ⇔ qo	lata;	

Form	at II			010 opcode	r
				7 bits	5 bits
Instruction		Opcode	Operation		
jmp	r	0000	PC	-	
inc	r	0001	r 年 (r) + 1;		
dec	r	0010	r 年 (r) - 1;		
clr	r	0011	r		
not	r	0100	r		
neg	r	0101	r ← - (r);		
inc4	r	0110	r 年 (r) + 4;		
dec4	r	0111	r 年 (r) - 4;		

یک کامپیوتر دو آدرسه دارای حافظهای به گنجایش ۲^{۲۴} واحد آدرس پذیر ۶ بیتی، طول کلمه ۲۴ بیتی و ۳۲ ثبات همهمنظوره R31 تا R31 میباشد. شیوههای نشانی دهی ماشین شامل ثباتی (مستقیم و غیرمستقیم)، بلافاصله و حافظهای (مستقیم و غیرمستقیم)، و شیوه نمایش اعداد مکمل ۲ است. در این سیستم آدرس بازگشت به سیستم عامل در ثبات R31 دخیره میشود. دستورات این ماشین در چهار قالب (طبق جداول زیر) کد میشوند.

Format III		011 opcode	r	addr
	-	7 bits	5 bits	24 bits
Instruction	Opcode	Operation		
mov r, addr	0000	r	_{ddr});	
mov addr,r	0001	$M_{addr} \Leftarrow$	(r);	
mov r, (addr)	0010	r ⇔ (M(ı	M_addr)	;
mov (addr),r	0011	$M_{(M_addr)}$	(r);	,
jnz r, addr	0100	if (r) ≠ 0	then	PC ← addr;
jz r, addr	0101	if(r) = 0	then	PC ← addr;
jneg r, addr	0110	if $(r) < 0$) then	PC ← addr;
jpos r, addr	0111	if (r) ≥ 0 then PC ← addr;		
loop r, addr	1000	r ← (r) - 1; if (r)≠0 then PC ← addr;		
jmp+ r, addr	1001	r ← (r) + 1; PC←addr;		
call r, addr	1010	r	; PC¢	⊐addr;

Format V		1 r	data
		5 bits	24 bits
Instruction	Opcode	Operation	
mov r, #data	1	r ← data;	

- ۱- طول تمامی ثباتهای ماشین را تعیین کنید. (۱ نمره)
- ۲- برنامهای به زبان اسمبلی بنویسید که آرایه صد کلمهای array را به صورت صعودی مرتب کند. (۴ نمره)
 - ۳- برنامه زیر چه میکند؟ (۳ نمره)

```
org 0
mov R1,#100
mov R0,#array
dw 41006h
mov R1,#807004h
loop: subq R1,4
mov R2,R0
sub R2,R1
jneg R2,loop-6
jmp R31
array: dw 100 dup(?)
end
```

۴- برنامه سوال ۳ را به کد ماشین ترجمه کنید. (۲ نمره)