adult-income-dataset-intel-5

July 8, 2024

0.0.1 Loading Necessary Libraries

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  import plotly.express as px
  from sklearn.linear_model import LogisticRegression

# Warning Filter
  import warnings
  warnings.filterwarnings('ignore')
```

0.0.2 Loading Dataset

```
[2]: df = pd.read_csv('/content/adult.csv')
    df.head(10)
```

```
[2]:
                                          education educational-num
        age
                    workclass fnlwgt
                      Private 226802
                                               11th
     0
         25
                                                                   7
     1
         38
                      Private
                              89814
                                            HS-grad
                                                                   9
                    Local-gov 336951
                                         Assoc-acdm
     2
         28
                                                                   12
     3
         44
                      Private 160323 Some-college
                                                                   10
     4
         18
                            ? 103497 Some-college
                                                                  10
         34
                      Private 198693
                                               10th
     5
                                                                   6
     6
         29
                            ? 227026
                                            HS-grad
                                                                   9
         63 Self-emp-not-inc 104626
     7
                                        Prof-school
                                                                  15
                                       Some-college
                                                                   10
     8
         24
                      Private 369667
     9
         55
                      Private 104996
                                            7th-8th
                                                                   4
```

	marital-status	occupation	relationship	race	gender	\
0	Never-married	Machine-op-inspct	Own-child	Black	Male	
1	Married-civ-spouse	Farming-fishing	Husband	White	Male	
2	Married-civ-spouse	Protective-serv	Husband	White	Male	
3	Married-civ-spouse	Machine-op-inspct	Husband	Black	Male	
4	Never-married	?	Own-child	White	Female	

```
5
             Never-married
                                Other-service Not-in-family White
                                                                        Male
     6
                                                                        Male
                                                    Unmarried Black
             Never-married
     7
       Married-civ-spouse
                               Prof-specialty
                                                      Husband
                                                               White
                                                                        Male
     8
             Never-married
                                Other-service
                                                    Unmarried White
                                                                      Female
       Married-civ-spouse
                                 Craft-repair
                                                      Husband White
                                                                        Male
     9
        capital-gain capital-loss
                                    hours-per-week native-country income
     0
                   0
                                                 40
                                                     United-States
                                                                    <=50K
                   0
                                 0
     1
                                                 50
                                                     United-States <=50K
     2
                   0
                                 0
                                                     United-States
                                                                     >50K
                                                 40
     3
                7688
                                 0
                                                     United-States
                                                                     >50K
                                                 40
     4
                   0
                                 0
                                                     United-States <=50K
     5
                   0
                                 0
                                                 30
                                                    United-States <=50K
     6
                   0
                                 0
                                                 40
                                                    United-States <=50K
     7
                3103
                                 0
                                                    United-States
                                                                     >50K
                                                 32
                                 0
     8
                   0
                                                 40
                                                    United-States <=50K
     9
                   0
                                 0
                                                    United-States <=50K
                                                 10
    0.0.3 Learning More about Dataset
[3]: df.columns
[3]: Index(['age', 'workclass', 'fnlwgt', 'education', 'educational-num',
            'marital-status', 'occupation', 'relationship', 'race', 'gender',
            'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
            'income'],
```

[4]: (48842, 15)

[5]: df.dtypes

int64 [5]: age workclass object fnlwgt int64 education object educational-num int64 marital-status object occupation object relationship object race object gender object capital-gain int64 capital-loss int64 hours-per-week int64

dtype='object')

native-country object income object

dtype: object

[6]: df.isnull().sum()

[6]: age 0 workclass 0 0 fnlwgt education 0 0 educational-num marital-status 0 0 occupation relationship 0 race 0 0 gender 0 capital-gain capital-loss 0 0 hours-per-week 0 native-country income 0 dtype: int64

[7]: df.nunique()

74 [7]: age 9 workclass 28523 fnlwgt education 16 educational-num 16 marital-status 7 occupation 15 relationship 6 5 race 2 gender capital-gain 123 99 capital-loss hours-per-week 96 42 native-country 2 income dtype: int64

[8]: df.describe().T

[8]: count 25% \ mean std min 48842.0 38.643585 13.710510 17.0 28.0 age fnlwgt 48842.0 189664.134597 105604.025423 12285.0 117550.5

educational-num	48842.0	10.0780	89 2.	570973	1.0	9.0
capital-gain	48842.0	1079.0676	26 7452.	019058	0.0	0.0
capital-loss	48842.0	87.5023	14 403.	004552	0.0	0.0
hours-per-week	48842.0	40.4223	82 12.	391444	1.0	40.0
	50%	75%	max			
age	37.0	48.0	90.0			
fnlugt	1701/// 5	2276/12 0	1/00/00 0			

fnlwgt 178144.5 237642.0 1490400.0 16.0 educational-num 12.0 10.0 capital-gain 0.0 0.0 99999.0 capital-loss 0.0 0.0 4356.0 hours-per-week 40.0 45.0 99.0

0.0.4 Value Count Function

[9]: df['workclass'].value_counts() #fillna

[9]: workclass

Private 33906 Self-emp-not-inc 3862 Local-gov 3136 ? 2799 State-gov 1981 Self-emp-inc 1695 Federal-gov 1432 Without-pay 21 10 Never-worked Name: count, dtype: int64

[10]: df['occupation'].value_counts() #fillna

[10]: occupation

Prof-specialty 6172 Craft-repair 6112 Exec-managerial 6086 Adm-clerical 5611 Sales 5504 4923 Other-service Machine-op-inspct 3022 2809 Transport-moving 2355 Handlers-cleaners 2072 Farming-fishing 1490 Tech-support 1446 983 Protective-serv Priv-house-serv 242 Armed-Forces 15

Name: count, dtype: int64

[11]: df['native-country'].value_counts() #fillna

Γ11] :	native-country	
	United-States	43832
	Mexico	951
	?	857
	Philippines	295
	Germany	206
	Puerto-Rico	184
	Canada	182
	El-Salvador	155
	India	151
	Cuba	138
	England	127
	China	122
	South	115
	Jamaica	106
	Italy	105
	Dominican-Republic	103
	Japan	92
	Guatemala	88
	Poland	87
	Vietnam	86
	Columbia	85
	Haiti	75
	Portugal	67
	Taiwan	65
	Iran	59
	Greece	49
	Nicaragua	49
	Peru	46
	Ecuador	45
	France	38
	Ireland	37
	Hong	30
	Thailand	30
	Cambodia	28
	Trinadad&Tobago	27
	Laos	23
	Yugoslavia	23
	Outlying-US(Guam-USVI-etc)	23
	Scotland	21
	Honduras	20
	Hungary	19
	Holand-Netherlands	1

```
Name: count, dtype: int64
[12]: df['income'].value_counts() #0,1
[12]: income
      <=50K
               37155
      >50K
               11687
      Name: count, dtype: int64
[13]: df['marital-status'].value_counts()
[13]: marital-status
     Married-civ-spouse
                               22379
      Never-married
                               16117
     Divorced
                                6633
      Separated
                                1530
      Widowed
                                1518
      Married-spouse-absent
                                 628
      Married-AF-spouse
                                  37
      Name: count, dtype: int64
[14]: df['gender'].value_counts()
[14]: gender
      Male
                32650
      Female
                16192
      Name: count, dtype: int64
[15]: df['race'].value_counts()
[15]: race
      White
                            41762
      Black
                             4685
      Asian-Pac-Islander
                             1519
      Amer-Indian-Eskimo
                              470
                              406
      Other
      Name: count, dtype: int64
     0.0.5 Removing rows with? Values
[16]: # Replacing ? with NaN
      df['workclass'] = df['workclass'].replace('?', np.nan)
      df['occupation'] = df['occupation'].replace('?', np.nan)
      df['native-country'] = df['native-country'].replace('?', np.nan)
      # Drop rows with any NaN values
      df = df.dropna()
```

```
# Check the shape of the DataFrame
df.shape
df2=df.copy()
```

0.0.6 Feature Engineering

0

```
[17]: # For Education
      df.education = df.education.
       oreplace(['Preschool','1st-4th','5th-6th','7th-8th','9th','10th','11th','12th'],'School')
      df.education = df.education.replace('HS-grad', 'High School')
      df.education = df.education.
       oreplace(['Assoc-voc','Assoc-acdm','Prof-school','Some-college'],'Higher-Education')
      df.education = df.education.replace('Bachelors', 'Under-Grad')
      df.education = df.education.replace('Masters', 'Graduation')
      df.education = df.education.replace('Doctorate', 'Doc')
[18]: # For Marital status
      df['marital-status'] = df['marital-status'].
       →replace(['Married-civ-spouse','Married-AF-spouse'],'Married')
      df['marital-status'] = df['marital-status'].
       →replace(['Never-married'],'Unmarried')
      df['marital-status'] = df['marital-status'].
       →replace(['Divorced', 'Separated', 'Widowed', 'Married-spouse-absent'], 'Single')
[19]: # For Income
      df['income'] = df['income'].replace({'<=50K': 0, '>50K': 1})
[20]: df
[20]:
                                               education educational-num \
             age
                     workclass fnlwgt
      0
              25
                       Private 226802
                                                  School
                                                                        7
      1
              38
                       Private
                                89814
                                             High School
                                                                        9
      2
                     Local-gov 336951 Higher-Education
                                                                       12
              28
                       Private 160323 Higher-Education
      3
              44
                                                                       10
      5
              34
                       Private 198693
                                                  School
                                                                        6
      48837
              27
                       Private 257302 Higher-Education
                                                                       12
                       Private 154374
                                             High School
                                                                        9
      48838
              40
                       Private 151910
                                                                        9
                                             High School
      48839
              58
      48840
                       Private 201490
                                             High School
                                                                        9
              22
      48841
              52 Self-emp-inc 287927
                                             High School
                                                                        9
                                   occupation
                                                relationship
            marital-status
                                                               race gender \
```

Unmarried Machine-op-inspct

Own-child Black

Male

1	Married	Farming-fi	shing	Hι	ısband	White	1	Male	
2	Married	Protective	Hı	ısband	White	1	Male		
3	Married	Machine-op-i	nspct	Hı	ısband	Black	1	Male	
5	Unmarried	Other-se	rvice	Not-in-	family	White	ľ	Male	
	•••			•••	•••				
48837	Married	Tech-su	pport		Wife	White	Fer	nale	
48838	Married	Machine-op-i	nspct	Hı	ısband	White	1	Male	
48839	Single	Adm-cle	rical	Unma	arried	White	Fer	nale	
48840	Unmarried	Adm-cle	rical	Own-	-child	White	1	Male	
48841	Married	Exec-manag	erial		Wife	White	Fer	nale	
	capital-gain	capital-loss	hours	-per-weel	k nativ	e-count	ry	inco	ne
0	0	0		40) Unit	ed-Stat	es		0
1	0	0		50) Unit	ed-Stat	es		0
2	0	0		40) Unit	ed-Stat	es		1
3	7688	0		40) Unit	ed-Stat	es		1
5	0	0		30) Unit	ed-Stat	es		0
	•••	•••		•••	•••	•••			
48837	0	0		38	3 Unit	ed-Stat	es		0
48838	0	0		40) Unit	ed-Stat	es		1
48839	0	0		40) Unit	ed-Stat	es		0
48840	0	0		20) Unit	ed-Stat	es		0
48841	15024	0		40) Unit	ed-Stat	es		1

[45222 rows x 15 columns]

|--|

[21].										
[21]:		age	workclass	fnlwgt	education	n educational-	num \			
	0	25	Private	226802	11th	ı	7			
	1		Private	89814	HS-grad	l	9			
	2	28	Local-gov	336951	Assoc-acdm	1	12			
	3	44	Private	160323	Some-college)	10			
	5	5 34 Private		198693	10th	1	6			
			•••		•••	•••				
	48837	27	Private	257302	Assoc-acdn	1	12			
	48838	40	Private	154374	HS-grad	l	9			
	48839	48840 22 Private 2		151910	151910 HS-grad			9		
	48840			201490	201490 HS-grad		9	9		
	48841			287927	HS-grad	l	9			
	marital-status O Never-married			occupation	relationship	race	gender	\		
			Machin	e-op-inspct	Own-child	Black	Male			
	1	-				Husband White Husband White		Male		
	2							Male		
	3	Marr	ied-civ-spouse	Machin	e-op-inspct	Husband	Black	Male		
	5		Never-married	Ot	her-service	Not-in-family White Mai		Male		

•••		•••		•••				•••	
48837	Married-civ-s	pouse	Te	ch-support		Wi	.fe	White	Female
48838	Married-civ-s	pouse	Machine	-op-inspct		Husba	and 1	White	Male
48839	Wi	dowed	Ad	m-clerical		Unmarri	.ed '	White	Female
48840	Never-ma	rried	Ad	m-clerical		Own-chi	.ld \	White	Male
48841	Married-civ-s	pouse	Exec-	managerial		Wi	fe '	White	Female
	capital-gain	capit	al-loss	hours-per-	-week	native-	-coun	try in	.come
0	0		0		40	United	l-Sta	tes <	=50K
1	0		0		50	United	l-Sta	tes <	=50K
2	0		0		40	United	l-Sta	tes	>50K
3	7688		0		40	United	l-Sta	tes	>50K
5	0		0		30	United	l-Sta	tes <	=50K
	•••					•••	•••		
48837	0		0		38	United	l-Sta	tes <	=50K
48838	0		0		40	United	l-Sta	tes	>50K
48839	0		0		40	United	l-Sta	tes <	=50K
48840	0		0		20	United	l-Sta	tes <	=50K
48841	15024		0		40	United	l-Sta	tes	>50K

[45222 rows x 15 columns]

0.1 2. df2= Pre Column Reductions (Used in Plots)

0.1.1 Some Graphs and Plots

```
[22]: # Select only numeric columns
numeric_df = df.select_dtypes(include=['number'])

# Calculate the correlation matrix for numeric columns
correlation_matrix = numeric_df.corr()

# Display the heatmap
sns.heatmap(correlation_matrix, annot=True);
```



```
[23]: # @title Income with Education
sns.countplot(x=df2['income'],palette='magma',hue='education',data=df);
```



```
[24]: # @title Income Distribution by Workclass
plt.figure(figsize=(14,5))
sns.histplot(data=df2, x="workclass", hue="income",multiple="stack")
plt.title("Income Distribution by Workclass")
plt.xlabel("Workclass")
plt.ylabel("Count")
plt.show()
print(df2['workclass'].unique())
```



```
['Private' 'Local-gov' 'Self-emp-not-inc' 'Federal-gov' 'State-gov' 'Self-emp-inc' 'Without-pay']
```

```
[25]: # @title Income Distribution by Workclass
plt.figure(figsize = (15,5))
sns.countplot(data = df2, x = 'income',palette='magma', hue = 'workclass');
```



```
[26]: # @title Occupation Distribution by Income
plt.figure(figsize=(28,5))
sns.countplot(data=df2, x="occupation", hue="income")
plt.title("Occupation Distribution by Income")
plt.xlabel("Occupation")
plt.ylabel("Count")
plt.show()
print(df2['occupation'].unique())
```



```
['Machine-op-inspct' 'Farming-fishing' 'Protective-serv' 'Other-service' 'Prof-specialty' 'Craft-repair' 'Adm-clerical' 'Exec-managerial' 'Tech-support' 'Sales' 'Priv-house-serv' 'Transport-moving' 'Handlers-cleaners' 'Armed-Forces']
```



```
[28]: # @title Income Distribution by Marital Status
plt.figure(figsize=(18,5))
sns.countplot(data=df2, x="marital-status", hue="income")
plt.title("Income Distribution by Marital Status")
plt.xlabel("Marital Status")
plt.ylabel("Count")
plt.show()
print(df2['marital-status'].unique())
```



```
['Never-married' 'Married-civ-spouse' 'Widowed' 'Separated' 'Divorced' 'Married-spouse-absent' 'Married-AF-spouse']
```

```
[29]: # @title Income Graph
#df2 for income plots
df2['income'].value_counts().plot(kind='bar', color=sns.color_palette('Dark2'))
plt.title('Distribution of Income')
plt.xlabel('Income')
plt.ylabel('Count')
plt.xticks(rotation=0)
plt.show()
```



```
[30]: # @title Age Distribution by Income

# Plot the histogram with a custom hue using Seaborn
plt.figure(figsize=(10, 3))
sns.histplot(data=df2, x="age", hue="income", kde=True, multiple="layer")
plt.title("Age Distribution by Income")
```

```
plt.xlabel("Age")
plt.ylabel("Count")
plt.show()

# Get the sorted unique ages
unique_age = df2['age'].unique()
sorted_age = np.sort(unique_age)
print(sorted_age)
```


[17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90]

```
[31]: # @title Distribution of Workclass Categories
workclass_counts = df2['workclass'].value_counts()
labels = workclass_counts.index
sizes = workclass_counts.values
plt.figure(figsize=(8,14))
plt.pie(sizes,labels=labels, autopct='%1.2f%%', startangle=140)
plt.title("Distribution of Workclass Categories")
plt.show()
print(df2['workclass'].unique())
```

Distribution of Workclass Categories


```
['Private' 'Local-gov' 'Self-emp-not-inc' 'Federal-gov' 'State-gov' 'Self-emp-inc' 'Without-pay']
```

```
[32]: # @title Income Distribution by Gender
plt.figure(figsize=(4,3))
sns.countplot(data=df2,x="gender",hue="income")
plt.title("Income Distribution by Gender")
plt.xlabel("Gender")
plt.ylabel("Count")
plt.legend()
plt.show()
print(df2['gender'].unique())
```


['Male' 'Female']

```
[33]: # @title Income Distribution by Education
  education_order = df2.sort_values('educational-num')['education'].unique()
  plt.figure(figsize=(7,3))
  sns.countplot(data=df2,x="education",hue="income",order=education_order)
  plt.title("Income Distribution by Education Level")
  plt.xlabel("Education Level")
  plt.ylabel("Count")
  plt.ylabel("Count")
  plt.sticks(rotation=60)
  plt.legend(title="Income")
  plt.show()
```



```
[36]: # @title Income Distribution based on Race
plt.figure(figsize=(9, 5))
sns.countplot(data=df2, x="race", hue="income")
plt.title("Income Distribution based on Race")
plt.xlabel("Race")
plt.ylabel("Count")
plt.legend(title="Income")
plt.show()
```



```
[37]: # @title Histogram

df.hist(figsize=(12,12), layout=(4,3), sharex=False);

# Noticeable that most of the data of capital gain and loss is 0 so dropping

→ them

df.drop(['capital-gain', 'capital-loss'], axis=1, inplace=True)
```


[38]: # @title After Dropping capital gain, loss df.hist(figsize=(12,12), layout=(4,3), sharex=False);

[39]: # @title Boxplot for checking Outliers df.plot(kind='box',figsize=(12,12),layout=(3,3),sharex=False,subplots=True);

[40]: # To find out the Categorical dataset

categorical_df = df.select_dtypes(object)
categorical_df

[40]:	workclass	education	marital-status	occupation	\
0	Private	School	Unmarried	Machine-op-inspct	
1	Private	High School	Married	Farming-fishing	
2	Local-gov	Higher-Education	Married	Protective-serv	
3	Private	Higher-Education	Married	Machine-op-inspct	
5	Private	School	Unmarried	Other-service	
•••	•••	•••	•••	•••	
48837	Private	Higher-Education	Married	Tech-support	
48838	Private	High School	Married	Machine-op-inspct	
48839	Private	High School	Single	Adm-clerical	
48840	Private	High School	Unmarried	Adm-clerical	
48841	Self-emp-inc	High School	Married	Exec-managerial	

relationship race gender native-country

```
Husband White
                                    Male United-States
      1
      2
                  Husband White
                                    Male United-States
      3
                                    Male United-States
                  Husband Black
      5
            Not-in-family White
                                    Male United-States
      48837
                     Wife White Female United-States
                  Husband White
      48838
                                    Male United-States
                Unmarried White Female United-States
      48839
      48840
                Own-child White
                                    Male United-States
                     Wife White Female United-States
      48841
      [45222 rows x 8 columns]
[41]: #Checking nan values
      df.isna().sum()
[41]: age
                        0
      workclass
                        0
     fnlwgt
      education
      educational-num
     marital-status
                        0
     occupation
     relationship
                        0
     race
      gender
                        0
     hours-per-week
     native-country
                        0
                        0
      income
      dtype: int64
[42]: from sklearn.model_selection import train_test_split, GridSearchCV
      from sklearn.preprocessing import StandardScaler
      # One-hot encoding categorical variables
      df = pd.get_dummies(df, columns=['education', 'marital-status', 'race',

    'gender', 'relationship', 'occupation', 'workclass', 'native-country'])
      # Splitting the dataset into features and target variable
      X = df.drop('income', axis=1)
      y = df['income']
      # Splitting the data into training and testing sets
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      ⇒random state=42)
      # Scaling the features
```

Male United-States

0

Own-child Black

```
scaler = StandardScaler()
      X_train = scaler.fit_transform(X_train)
      X_test = scaler.transform(X_test)
     ### Prediction Models
[43]: # @title K-Nearest Neighbours
      from sklearn.neighbors import KNeighborsClassifier
      from sklearn.metrics import confusion_matrix, accuracy_score
      # Fitting the KNN model
      knn = KNeighborsClassifier(n_neighbors=5) # You can tune n_neighbors
      knn.fit(X_train, y_train)
      # Predicting the test set results
      y_pred_knn = knn.predict(X_test)
      # Making the Confusion Matrix
      cm_knn = confusion_matrix(y_test, y_pred_knn)
      print("KNN Confusion Matrix:")
      print(cm_knn)
      # Calculating the accuracy score
      accuracy_knn = accuracy_score(y_test, y_pred_knn)
      print('KNN Accuracy:', accuracy_knn)
```

```
KNN Confusion Matrix:
[[6097 745]
  [ 949 1254]]
KNN Accuracy: 0.8127142067440575
KNN Accuracy from Confusion Matrix: 0.8127142067440575
```

Calculating the accuracy score using the confusion matrix

accuracy_from_cm_knn = (cm_knn[0, 0] + cm_knn[1, 1]) / cm_knn.sum()
print('KNN Accuracy from Confusion Matrix:', accuracy_from_cm_knn)

```
[44]: # @title Decision Tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix, accuracy_score

# Fitting the Decision Tree model
dt = DecisionTreeClassifier(random_state=42)
dt.fit(X_train, y_train)
```

```
# Predicting the test set results
      y_pred_dt = dt.predict(X_test)
      # Making the Confusion Matrix
      cm_dt = confusion_matrix(y_test, y_pred_dt)
      print("Decision Tree Confusion Matrix:")
      print(cm_dt)
      # Calculating the accuracy score
      accuracy_dt = accuracy_score(y_test, y_pred_dt)
      print('Decision Tree Accuracy:', accuracy_dt)
      # Calculating the accuracy score using the confusion matrix
      accuracy_from_cm_dt = (cm_dt[0, 0] + cm_dt[1, 1]) / cm_dt.sum()
      print('Decision Tree Accuracy from Confusion Matrix:', accuracy from cm dt)
     Decision Tree Confusion Matrix:
     [[5786 1056]
      [1018 1185]]
     Decision Tree Accuracy: 0.770702045328911
     Decision Tree Accuracy from Confusion Matrix: 0.770702045328911
[45]: # @title Random Forest
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.metrics import confusion_matrix, accuracy_score
      # Fitting the Random Forest model
      rf = RandomForestClassifier()
      rf.fit(X_train, y_train)
      # Predicting the test set results
      y_pred_rf = rf.predict(X_test)
      # Making the Confusion Matrix
      cm_rf = confusion_matrix(y_test, y_pred_rf)
      print("Random Forest Confusion Matrix:")
      print(cm_rf)
      # Calculating the accuracy score
      accuracy_rf = accuracy_score(y_test, y_pred_rf)
      print('Random Forest Accuracy:', accuracy_rf)
      # Calculating the accuracy score using the confusion matrix
      accuracy_from_cm_rf = (cm_rf[0, 0] + cm_rf[1, 1]) / cm_rf.sum()
      print('Random Forest Accuracy from Confusion Matrix:', accuracy_from_cm_rf)
```

Random Forest Confusion Matrix: [[6219 623]

```
[ 968 1235]]
     Random Forest Accuracy: 0.8241017136539525
     Random Forest Accuracy from Confusion Matrix: 0.8241017136539525
[46]: # @title Logistic Regression
      from sklearn.linear_model import LogisticRegression
      from sklearn.metrics import confusion_matrix, accuracy_score
      # Fitting the Logistic Regression model
      logreg = LogisticRegression()
      logreg.fit(X_train, y_train)
      # Predicting the test set results
      y_pred_logreg = logreg.predict(X_test)
      # Making the Confusion Matrix
      cm_logreg = confusion_matrix(y_test, y_pred_logreg)
      print("Logistic Regression Confusion Matrix:")
      print(cm_logreg)
      # Calculating the accuracy score using the accuracy_score function
      accuracy_logreg = accuracy_score(y_test, y_pred_logreg)
      print('Logistic Regression Accuracy:', accuracy_logreg)
      # Calculating the accuracy score using the confusion matrix
      accuracy_from_cm_logreg = (cm_logreg[0, 0] + cm_logreg[1, 1]) / cm_logreg.sum()
      print('Logistic Regression Accuracy from Confusion Matrix:', 
       →accuracy_from_cm_logreg)
     Logistic Regression Confusion Matrix:
     [[6305 537]
      [ 972 1231]]
     Logistic Regression Accuracy: 0.833167495854063
     Logistic Regression Accuracy from Confusion Matrix: 0.833167495854063
[47]: # @title Accuracy Check
      # Summary of Accuracy Scores
      print('K Nearest Neighbour Accuracy:', accuracy_from_cm_knn)
      print('Decision Tree Accuracy:', accuracy_from_cm_dt)
      print('Random Forest Accuracy:', accuracy_from_cm_rf)
      print('Logistic Regression Accuracy:', accuracy_from_cm_logreg)
     K Nearest Neighbour Accuracy: 0.8127142067440575
     Decision Tree Accuracy: 0.770702045328911
     Random Forest Accuracy: 0.8241017136539525
     Logistic Regression Accuracy: 0.833167495854063
```