

अध्याय 13

जीव और समष्टियाँ

13.1 जीव और इसका पर्यावरण 13.2 समध्याँ

हमारे जैविक विश्व में लुभावनी विविधता और आश्चर्यजनक जटिलता है। हम जीव विज्ञानीय संगठन के विभिन्न स्तरों पर अन्वेषी प्रक्रमों से इसकी जटिलता को समझने का प्रयास कर सकते हैं। ये जीव विज्ञानीय संगठन स्तर हैं— बृहतअणु, कोशिकाएँ, ऊतक, अंग, व्यष्टि जीव, समष्टियाँ, समुदाय तथा पारितंत्र और जीवोम। इस संगठन के किसी भी स्तर पर हमारे मन में दो प्रकार के प्रश्न उठ सकते हैं— उदाहरण के लिए जब हम बाग में सुबह बुलबुल को गाते सुनते हैं तो प्रश्न उठता है 'पक्षी कैसे गाता है?' या 'पक्षी क्यों गाता है?' 'कैसे प्रकार' के प्रश्नों में प्रक्रम के पीछे कियाविधि जानने की जिज्ञासा है जबिक 'क्यों प्रकार' के प्रश्नों में प्रक्रम का महत्त्व तलाशा जाता है। इस उदाहरण में पहले प्रश्न का उत्तर पक्षी में वाक् यंत्र और कंपमान अस्थि का प्रचालन हो सकता है जबिक दूसरे प्रश्न के उत्तर में कहा जा सकता है कि प्रजनन ऋतू के दौरान पक्षी को अपने साथी से बात करने की आवश्यकता हो सकती है। जब आप अपने चारों ओर प्रकृति को वैज्ञानिक दुष्टिकोण से देखेंगे तो आपके मन में निश्चित रूप से दोनों प्रकार के अनेक दिलचस्प प्रश्न उठेंगे— रात को खिलने वाले फल आमतौर पर सफेद क्यों होते हैं? भ्रमर को कैसे पता चलता है कि किस फूल में मकरंद है? कैक्टस में इतने सारे काँटे क्यों होते हैं? चूज़े कैसे अपनी माँ को पहचान लेते हैं? आदि-आदि।

जीव और समष्टियाँ

आप पिछली कक्षाओं से सीख चुके हैं कि पारिस्थितिकी ऐसा विषय है जिसमें जीवों के बीच या जीवीय तथा भौतिक (अजीवीय/अबायोटिक) पर्यावरण के बीच होने वाली पारस्परिक क्रियाओं का अध्ययन किया जाता है।

मूलरूप से पारिस्थितिकी जीवीय संगठन के चार स्तरों से संबंधित है- जीव, समिष्टियाँ, समुदाय और जीवोम। इस अध्याय में हम पारिस्थितिकी के जैविक और समिष्ट स्तरों के बारे में अध्ययन करेंगे।

13.1 जीव और इसका पर्यावरण

जैविक स्तर पर पारिस्थितिकी मूलरूप से कायिकीय पारिस्थितिकी है जिसमें विभिन्न जीव न केवल जीवित रहने बिल्क जनन के संदर्भ में अपने पर्यावरणों के प्रति अनुकूलित हो जाते हैं। आपने पहले की कक्षाओं में पढ़ा होगा कि पृथ्वी का सूर्य के चारों ओर घूर्णन, इसके अक्ष का झुकाव तापमान की तीव्रता और अविध किस प्रकार वार्षिक परिवर्तनों का कारण बनता है जिसके फलस्वरूप भिन्न ऋतुएँ बनती हैं। ये परिवर्तन और वर्षण मिलकर

चित्र 13.1 वार्षिक तापमान और वर्षण के संदर्भ में जीवोम का वितरण

प्रमुख जीवोम का निर्माण करते हैं जैसे कि मरुस्थल, वर्षा वन और टुंड्रा (चित्र 13.1)। (बरसात या वर्षण में वर्षा और हिम दोनों शामिल हैं।) प्रत्येक जीवोम के अंदर ही क्षेत्रीय और स्थलीय विभिन्नताओं के कारण आवासों में व्यापक विविधता है। भारत के प्रमुख जीवोम चित्र 13.2 में दिखाए गए हैं। पृथ्वीग्रह पर जीवन न केवल थोड़े से अनुकूल आवासों में ही है बल्कि चरम और कठोर आवासों में भी है जैसे कि झुलसते राजस्थानी मरुस्थल, निरंतर वर्षा से भीगे मेघालय के वन, गहरे महासागर की खाइयाँ, वेगवती

जीव विज्ञान

चित्र 13.2 भारतवर्ष के प्रमुख जीवोम (अ) उष्ण कटिबंधीय-वर्षा वन (ब) पर्णपाती वन (स) मरुस्थल (द) समुद्र तट

सरिताएँ, ध्रुवीय क्षेत्रों की स्थायी तुषार भूमि, ऊँचे पर्वत शिखर, उबलते गरम झरने और दुर्गधयुक्त कंपोस्ट गर्त आदि कुछ नाम हैं। यहाँ तक कि हमारी आँत भी सूक्ष्मजीवों की हजारों जातियाँ का बेजोड आवास है।

विभिन्न आवासों की भौतिक और रासायनिक स्थितियों में इतनी अधिक विविधता के मुख्य तत्त्व क्या हैं? सबसे महत्त्वपूर्ण तत्त्व तापमान, जल, प्रकाश और मृदा हैं। हमें यह याद रखना जरूरी है कि भौतिक-रासायनिक (अजीवीय या अजैव) घटक अपने आप में पूरी तरह से किसी जीव के आवास की विशेषता नहीं बताते। आवास में जीवीय (बायोटिक) घटक भी शामिल हैं जैसे कि रोगजनक (पैथोजन), परजीवी, परभक्षी और जीव के वे स्पर्धी जिनके साथ वह लगातार पारस्परिक-क्रिया करता है। हम यह मानते हैं कि एक लंबे समय में प्राकृतिक वरण द्वारा अपने आवास में उत्तरजीविता (सर्वाइवल) और जनन को इष्टतम बनाने के लिए जीव ने अनुकृतनों का विकास किया।

13.1.1 प्रमुख अजैव कारक

तापमान पारिस्थितिक रूप से सबसे ज्यादा प्रासंगिक पर्यावरणीय कारक है। आप जानते ही हैं कि पृथ्वी पर औसत तापमान ऋतु के अनुसार बदलता रहता है। भूमध्यरेखा से ध्रुवों की ओर और मैदानों से पर्वत शिखरों की ओर उत्तरोत्तर घटता रहता है। ध्रुवीय क्षेत्रों और उच्च तंगता (एल्टिटयड) वाले क्षेत्रों में तापमान अवशन्य (सबजीरो) से लेकर ग्रीष्म में उष्णकटिबंधी मरुस्थलों में 50 डिग्री सेंटी से अधिक पहुँच जाता है। लेकिन कछ बेजोड आवास भी हैं जैसे कि गरम झरने और गंभीर सागर यानी गहरे सागर के उष्णजलीय निकास जहाँ औसत तापमान 100 डिग्री. सेंटी से अधिक होता है। यह सामान्य ज्ञान है कि आम के पेड कनाडा और जर्मनी जैसे शीतोष्ण देशों में नहीं होते हैं और न हो सकते हैं। हिम चीते केरल के जंगलों में नहीं मिलते और ट्युना मछली महासागर में शीतोष्ण अक्षांशों से आगे कभी-कभार ही पकड़ी जाती है। जीवधारियों के लिए तापमान के महत्त्व को आप उस समय अच्छी तरह से सराह सकते हैं जब आप को पता चले कि यह प्रकिण्वों (एंजाइमों) की बलगति (काइनेटिक्स) को प्रभावित करता है और इसके द्वारा आधारी उपापचय, जीव के अन्य कार्यिकीय प्रकार्यों तथा उसकी गतिविधियों को प्रभावित करता है। कुछ जीव तापमानों के व्यापक परास (चरम) सहन कर सकते हैं और उसमें खुब बढते हैं ये पृथ्ताजापी/युरीथर्मल कहलाते हैं), लेकिन उनमें से अधिकांश तापमानों की कम परास में ही रहते हैं ऐसी जीव तन्तापी (स्टेनोथर्मल) कहलाते हैं। विभिन्न जातियों के भौगोलिक वितरण काफी हद तक उनकी तापीय सहनशक्ति पर निर्भर है। (क्या आपके ध्यान में कुछ पृथुतापी और तन तापी प्राणियों और पादपों के नाम आते हैं? हाल ही के वर्षों में धीरे-धीरे बढते हुए औसत भुमंडलीय तापमान पर चिंता बढी है (अध्याय 16)। अगर यह बढोत्तरी जारी रही तो क्या आपको आशा है कि कछ जातियों के वितरण का दायरा प्रभावित होगा?

जल— तापमान के बाद, जीवों के जीवन को प्रभावित करने वाला महत्त्वपूर्ण कारक जल है। वास्तव में, पृथ्वी पर जीवन पानी में ही जन्मा था और यह बिना पानी के अपने आप में इसका प्रतिपालन नहीं हो सकता। मरुस्थल में इसकी उपलब्धता इतनी सीमित है कि केवल विशेष अनुकूलताओं के कारण ही वहाँ रहना संभव है। पादपों की उत्पादकता और वितरण भी पानी पर बहुत ज्यादा निर्भर है। आप सोचते होंगे कि महासागरों, झीलों और निदयों में रहने वाले जीवों को जल-संबंधित समस्याओं का सामना नहीं करना पड़ता होगा लेकिन यह सच नहीं है; जलीय जीवों के लिए जल की गुणता (रासायनिक संघटन, पीएच) महत्त्वपूर्ण होता है। लवण की सांद्रता (प्रति हजार भाग में लवणता के रूप में मापी गई), अंत:स्थलीय जल में 5 से कम, समुद्र में 30-35 और कुछ अतिलवणीय लगूनों में 100 से अधिक होती है। कुछ जीव लवणता की व्यापक परास के प्रति सहनशील होते हैं (पृथुलवणी/यूरीहेलाइन) लेकिन अन्य कम परास में सीमित होते हैं (तनुलवणी/स्टेनोहेलाइन)। बहुत से अलवण जल प्राणी समुद्र के पानी में और समुद्री प्राणी अलवण जल में लंबे समय तक नहीं रह सकते; क्योंकि उन्हें परासरणी (ऑस्मोटिक) समस्याओं का सामना करना पड़ता है।

प्रकाश— पौधे प्रकाश संश्लेषण द्वारा खाद्य उत्पन्न करते हैं। यह ऐसी प्रक्रिया है जो ऊर्जा के स्रोत के रूप में धूप उपलब्ध होने पर संभव है। इसिलए हम जीवधारियों के लिए, विशेषरूप से स्वपोषियों (ऑटोट्रॉफ्स) के लिए, प्रकाश के महत्त्व को समझ सकते हैं। वनों में अनेक जातियों के छोटे पौधे (शाक और झाड़ियाँ) बहुत हल्के प्रकाश वाली परिस्थितियों में इष्टतम प्रकाश संश्लेषण करने के लिए अनुकूलित हैं; क्योंकि उन पर

सतत् लंबे, वितानमय पेड़ों की छाया रहती है। बहुत से पौधे भी पुष्पन हेतु अपनी दीप्तिकालिक (फोटोपीरिऑडिक) आवश्यकता की पूर्ति के लिए धूप पर निर्भर होते हैं। बहुत से प्राणियों के लिए भी प्रकाश इस रूप में महत्त्वपूर्ण है कि वे प्रकाश की तीव्रता और अवधि (दीप्तिकाल) में दैनिक तथा मौसमी विभिन्नताओं को अपनी चारे की खोज, (फोरेजिंग), जनन और प्रवासी गतिविधियों का समय तय करने के लिए संकेत के रूप काम में लाते हैं। पृथ्वी पर प्रकाश की उपलब्धता तापमान से निकट से संबंधित हैं क्योंकि दोनों का स्रोत सूर्य है। लेकिन महासागरों की गहराई (500 मीटर से अधिक) में पर्यावरण निरंतर अंधकारमय रहता है और वहाँ रहने वालों को यह मालूम नहीं है कि सूर्य नामक खगोलीय ऊर्जा का कोई स्रोत भी है। तब, उनकी ऊर्जा का स्रोत क्या है? सौर विकिरण की स्पेक्ट्रमी गुणवत्ता भी जीवन के लिए महत्त्वपूर्ण है। सौर विकिरण की स्पेक्ट्रम का पराबैंगनी घटक बहुत से जीवों के लिए हानिकारक है जबिक महासागर की भिन्न-भिन्न गहराइयों में मिलने वाले समुद्री पादपों के लिए दृश्य स्पेक्ट्रम के सभी रंग घटक उपलब्ध नहीं है। समुद्रवासी लाल, हरे और भूरे शैवालों में से किन की गंभीरतम जल में मिलने की संभावना है? क्यों?

मृदा— विभिन्न स्थानों में मृदा की प्रकृति और गुण भिन्न-भिन्न होते हैं। यह जलवायु, अपक्षय-प्रक्रम (विदिरंग-प्रोसेस, क्या यह वाहित या अवसादी (सेडिमेंटरी) है तथा इसका विकास कैसे हुआ; इन सब बातों पर निर्भर है। मृदा की विभिन्न विशेषताएँ जैसे कि मृदा संघटक, कण-साइज और पुंजन मृदा के अंत:स्रवण (पर्कोलेशन) तथा जलधारण क्षमता का निर्धारण करते हैं। इन विशेषताओं के साथ-साथ पीएच, खनिज संघटन और स्थलाकृति (टोपोग्राफी) जैसे प्राचल काफी हद तक किसी क्षेत्र की वनस्पित का निर्धारण करते हैं। इसके बाद यह सब मिलकर तय करते हैं कि उस क्षेत्र में किस प्रकार के प्राणियों का पालन-पोषण हो सकता है। इसी प्रकार, जलीय पर्यावरण, अवसादी विशेषताएँ प्राय: वहाँ पनपने वाले नितलस्थ प्राणियों के प्रकार का निर्धारण करती हैं।

13.1.2 अजीवीय कारकों के प्रति अनुक्रियाएँ

यह अनुभव कर लेने के बाद कि अनेक आवासों की अजीवीय परिस्थितियाँ कभी न कभी सशक्तरूप से परिवर्तित हो सकते हैं, अब हम पूछते हैं ''इस तरह के आवासों में रहने वाले जीव दबाव वाली परिस्थितियों का कैसे सामना करते हैं या कैसे उन परिस्थितियों में रहने की युक्ति ढूँढ़ लेते हैं?'' लेकिन इस प्रश्न का उत्तर देने का प्रयास करने से पहले हमें यह पूछना चाहिए कि आखिर अत्यधिक परिवर्तनशील बाहरी पर्यावरण जीवों को क्यों परेशान करता है। व्यक्ति यह आशा करेगा कि अपने अस्तित्व के लाखों सालों के दौरान, अनेक जातियों ने अपेक्षाकृत स्थिर स्थायी आंतरिक (शरीर के भीतर ही) पर्यावरण विकसित कर लिया होगा। यह आंतरिक पर्यावरण सारे जैवरासायनिक अभिक्रियाओं (रिएक्शंस) और कार्यिकीय प्रकार्यों को अधिकतम दक्षता से होने देता है और इस प्रकार जातियों की 'तंदुरूस्ती' को बढ़ाता है। उदाहरण के लिए यह निरंतरता शरीर के इष्टतम तापमान और शरीर के तरल पदार्थों के परासरणी सांद्रण के रूप में हो सकता है। तब आदर्शत: जीव को अपने आंतरिक पर्यावरण (समस्थापन/होमिओस्टैसिस) कहा जाने वाला

प्रक्रम की स्थिरता (कांस्टेंसी) बनाए रखने का प्रयास करना चाहिए भले ही परिवर्ती बाह्य पर्यावरणीय परिस्थितियाँ उसके समस्थापन को बिगाड़ना चाहें। इस महत्त्वपूर्ण संकल्पना को स्पष्ट करने के लिए हम एक सादृश्य की चर्चा करते हैं। मान लीजिए कोई व्यक्ति परिवेश का तापमान 25 डिग्री सें. होने पर सर्वोत्तम रूप से कार्य कर सकता है और जब बाहर झुलसाने वाली गर्मी होने या जमा देने वाली ठंड होने पर भी अपने निष्पादन को सर्वोत्तम बनाए रखना चाहता है। यह घर में, कार में यात्रा करते हुए और अपने कार्यस्थल पर गर्मियों में वातानुकूलक (एयरकंडीशनर) और सर्दियों में तापक (हीटर) का प्रयोग करके ऐसा किया जा सकता है। तब भले ही उसके बाहर का मौसम कुछ भी हो उसका निष्पादन

चित्र 13.3 जैविक अनुक्रिया के तरीकों का आरेखीय निरूपण

हमेशा अधिकतम होगा। यहाँ व्यक्ति का समस्थापन, कार्यिकीय साधनों के बजाय कृत्रिम साधनों द्वारा हासिल किया जाता है। दूसरे जीव इन स्थितियों में कैसे रह सकते हैं? हमें विभिन्न संभावनाओं का ध्यान करना चाहिए (चित्र 13.3)।

(क) नियमन करना — कुछ जीव समस्थापन कार्यिकीय (कभी-कभी व्यावहारिक भी) साधनों द्वारा बनाए रखते हैं जिससे शरीर का तापमान, परासरणी सांद्रण, आदि स्थिर रहता है। सभी पक्षी और स्तनधारी और बहुत थोड़े से निम्न कशेरूकी और कुछ अकशेरूकी जातियाँ वास्तव में ऐसा नियमन (ताप नियमन और परासरण नियमन) बनाए रखने में सक्षम हैं। विकासवादी जीव वैज्ञानिकों का विश्वास है कि स्तनधारियों की 'सफलता' इस कारण है कि वे शरीर का तापमान स्थिर बनाए रखने में सक्षम है चाहे वे अंटार्कटिका में रहे या सहारा के रेगिस्तान में।

अधिकतर स्तनधारियों द्वारा अपने शरीर के तापमान को नियमित करने के लिए जो क्रियाविधि अपनायी जाती है वह वैसी ही है जैसी कि मानव अपनाते हैं। हम शरीर का तापमान 37°C स्थिर रखते हैं। ग्रीष्म ऋतु में जब बाहर का तापमान हमारे शारीरिक तापमान से अधिक होता है तब हमें बेहद पसीना आता है। गर्मी के फलस्वरूप पसीना के वाष्प बन कर उड़ने से होने वाला शीतलन वैसा ही है जैसे कि डेजर्ट कूलर चलने पर शरीर का तापमान कम हो जाता है। शीत ऋतु जब पर्यावरणीय तापमान 37°C से बहुत कम होता है। हम काँपने लगते हैं जो एक प्रकार का व्यायाम है जिससे ऊष्मा पैदा होती है और शरीर का तापमान बढ़ जाता है। लेकिन पौधों में आंतरिक तापमान को स्थिर बनाए रखने के लिए ऐसी कोई क्रियाविधि नहीं होती।

(ख) संरूपण रखना — प्राणियों की बहुत बड़ी संख्या (लगभग 99 प्रतिशत) और लगभग सभी पौधे स्थिर आंतरिक पर्यावरण नहीं बनाए रख सकते। उनके शरीर का तापमान परिवेशी तापमान के अनुसार बदलता रहता है। जलीय प्राणियों में

शरीर के तरल की परासरणी सांद्रता परिवेशी जल की परासरणी सांद्रता के अनुसार बदलती रहती है। ये प्राणि और पादप संरूपी (कॉनफॉर्मर्स) कहलाते हैं। जीव के लिए स्थिर आंतरिक पर्यावरण के लाभ को देखते हए, हमें यह अवश्य पूछना चाहिए कि ये संरूपी विकसित होकर नियामक क्यों नहीं बने। हमने ऊपर जिस मानव सादृश्य का उदाहरण दिया है उसे स्मरण कीजिए। कितने लोग नहीं चाहते हैं कि उनके पास भी 'वातानुकूलक' हो? और कितने हैं जो वास्तव में उसे खरीद सकते हैं? बहुत से लोग गरमी के महीनों में केवल पसीना निकल जाने देते हैं और उपानकलतम (सबऑप्टिमन) निष्पादन से ही संतोष कर लेते हैं। बहुत से जीवों के लिए ताप नियमन (सबऑप्टिमल) ऊर्जा के संदर्भ में खर्चीला है। यह बात मंजोरू (श्र) और गुंजन पक्षी जैसे छोटे प्राणियों के मामले में विशेष रूप से सच है। ताप हानि या ताप लाभ पृष्ठीय क्षेत्रफल (सर्फेस एरिया) का प्रकार्य है। चुँकि छोटे प्राणियों का पृष्ठीय क्षेत्रफल उनके आयतन की अपेक्षा ज्यादा होता है इसलिए जब बाहर ठंड होती है तो उनके शरीर की ऊष्मा बहुत तेजी से कम होती है। ऐसी स्थिति में उन्हें उपापचय (मेटाबोलिज्म) द्वारा शरीर की ऊष्मा पैदा करने के लिए काफी ऊर्जा खर्च करनी पडती है। यह मुख्य कारण है कि बहुत छोटे प्राणी बिरले ही ध्रवीय क्षेत्रों में पाए जाते हैं। विकास क्रम के दौरान स्थिर आंतरिक पर्यावरण बनाए रखने की लागत और लाभ का विचार किया जाता है। कुछ जातियों ने नियमन करने की क्षमता विकसित कर ली है, लेकिन केवल सीमित परास वाली पर्यावरणीय परिस्थितियों में। यदि पर्यावरणीय परास ज्यादा हो तो वे केवल संरूपण करते हैं। अगर दबावभरी बाहरी परिस्थितियाँ स्थान विशेष में हैं अथवा केवल थोडी अवधि के लिए हैं तो जीव के पास दो अन्य विकल्प हैं—

- (ग) प्रवास करना जीव दबावपूर्ण आवास से अस्थायी रूप से अधिक अनुकूल क्षेत्र में चला जाए और जब दबावभरी अविध बीत जाय तो वापस लौट आए। मानव सादृश्य में, यह नीति ऐसी है जैसे गरमी की अविध में व्यक्ति दिल्ली से शिमला चला जाए। अनेक प्राणी, विशेषत: पक्षी, शीतऋतु के दौरान लंबी दूरी का प्रवास करके अधिक अतिथि अनुकूली क्षेत्रों में चले जाते हैं। प्रत्येक शीतकाल में राजस्थान स्थित प्रसिद्ध केवलादेव राष्ट्रीय उद्यान (भरतपुर) साइबेरिया और अन्य अत्यधिक ठंडे उत्तरी क्षेत्रों से आने वाले प्रवासी पिक्षयों को अतिथि के रूप में स्वागत करता है।
- (घ) निलंबित करना जीवाणुओं, कवकों और निम्न पादपों में विभिन्न प्रकार के मोटी भित्ति वाले बीजाणु बन जाते हैं, जिससे उन्हें प्रतिकूल पिरिस्थितियों में जीवित बचे रहने में सहायता मिलती है। उपयुक्त पर्यावरण उपलब्ध होने पर ये अंकुरित हो जाते हैं। उच्च पादपों में, बीज और कुछ दूसरी वनस्पितक जनन संरचनाएँ उनके पिरक्षेपण में सहायता करने के अतिरिक्त दबाव वाले समय से पार पाने के साधन के रूप में काम आते हैं। नमी और तापमान की अनुकूल पिरिस्थितियों में वे नए पादपों के रूप में अंकुरित होते हैं। वे अपनी उपापचयी

सिक्रियता को कम कर और 'प्रसुप्ति' (डॉरमेंसी) अवस्था में जाकर ऐसा करते हैं और प्राणियों में, अगर जीव प्रवास नहीं कर सकता तो वह समय में पलायन करके दबाव से बचता है। शीतऋतु में भालुओं की शीतनिष्क्रियता (हाइबर्नेशन) में जाना तथा उस समय पलायन से बचाव करने का जाना पहचाना मामला है। कुछ घोंघे और मछिलयाँ ग्रीष्म ऋतु से संबंधित ताप तथा जलशुष्कन जैसी समस्याओं से बचने के लिए ग्रीष्मिनिष्क्रियता (अस्टिवेशन) में चली जाती हैं। प्रितिकूल परिस्थिति में झीलें और तालाबों में प्राणिप्लवक (जूप्लैंकटन) की अनेक जातियाँ उपरित (डायापॉज) में आ जाती है जो निलंबित परिवर्धन की एक अवस्था है।

13.1.3 अनुकूलन

अपने पर्यावरण की चरम परिस्थितियों का सामना करने के लिए हमने जीवों को उपलब्ध अनेक विकल्पों को अपनाते देखा है जहाँ कुछ जीव विशेष कार्यिकीय सामंजस्य द्वारा अनुक्रिया करने में समर्थ होते हैं जबिक दूसरे जीव व्यावहारिक अनुक्रिया द्वारा करते हैं (अस्थायी रूप से कम दबाव भरे आवास में प्रवास करके)। ये अनुक्रियाएँ वास्तव में उनका अनुकूलन भी हैं। इसलिए, हम अनुकूलन की परिभाषा इस प्रकार कर सकते हैं— यह जीव का कोई एक ऐसा गुण (आकारिकीय, कार्यिकीय, व्यावहारिक) है जो उसे अपने आवास में जीवित बने रहने और जनन करने के योग्य बनाता है। अनेक अनुकूलन लंबे समय की विकास यात्रा के बाद विकसित हुए हैं और आनुवंशिकत: स्थिर हो गए हैं। जल के बाह्य स्नोत न होने पर उत्तरी अमेरीका के मरुस्थल में कंगारू-चूहा अपनी जल की आवश्यकता की पूर्ति अपनी आंतरिक वसा के ऑक्सीकरण (जिसमें जल एक उप-उत्पाद है) से पूरी करने में सक्षम है। इसमें अपने मूत्र को संद्रित करने की क्षमता भी है जिससे उत्सर्जी पदार्थों को हटाने के लिए जल के न्यूनतम आयतन काम में लाई जाती है।

अनेक मरुस्थलीय पौधों की पत्तियों की सतह पर मोटी उपत्वचा (क्यूटिकल) होती है और उनके रंध्र (स्टोमैटा) गहरे गर्त में व्यवस्थित होते हैं, तािक वाष्पोत्सर्जन (ट्रांस्पिरेशन) द्वारा जल की न्यूनतम हािन हो। उनके प्रकाश संश्लेषी (सी ए एम) मार्ग भी विशेष प्रकार के होते हैं जिसके कारण वे अपने रंध्र दिन के समय बंद रख सकते हैं। कुछ मरुस्थली पादपों जैसे नागफनी (ओपंशिया) कैक्टस, आदि में पत्तियाँ नहीं होती बल्कि वे कांटे की रूप में रूपांतरित हो जाती हैं और प्रकाश संश्लेषण का प्रकार्य चपटे तनों द्वारा होता है।

ठंडी जलवायु वाले स्तनधारियों के कान और पाद आमतौर पर छोटे होते हैं तािक ऊष्मा की हािन न्यूनतम हो (यह 'एेलन का नियम' कहलाता है)। ध्रुवीय समुद्रों में सील जैसे जलीय स्तनधारियों में उनकी त्वचा के नीचे वसा (तिमिवसा/बलबर) की मोटी परत होती है जो ऊष्मारोधी (इंसुलेटर) का काम करती है और शरीर की ऊष्मा हािन को कम करती है।

कुछ जीवों के अनुकूलन कार्यिकीय होते हैं जिसकी वजह से वे दबावपूर्ण परिस्थितियों के प्रति शीघ्र अनुक्रिया करते हैं। अगर आपको कभी उच्च तुंगता वाले क्षेत्र

में जाने का मौका मिले (3,500 मी. से अधिक, मनाली के पास रोहतांग दर्ग, तिब्बत में मानसरोवर) तो आपने 'तुंगता बीमारी' का अवश्य अनुभव किया होगा। इस 'बीमारी' के लक्षण है मिचली, थकान, और हृदय स्पंदन में वृद्धि। इसका कारण यह है कि उच्च तुंगता वाले क्षेत्र में वायुमंडलीय दाब कम होता है इसिलए शरीर को पर्याप्त ऑक्सीजन नहीं मिलती। लेकिन धीरे-धीरे आप पर्यानुकूलित (एक्लेमिटाइज्ड) हो जाते हैं और आपको तुंगता बीमारी का अनुभव नहीं होता। आपके शरीर ने इस समस्या का समाधान कैसे किया? आपका शरीर कम ऑक्सीजन उपलब्ध होने की क्षितिपूर्ति लाल रुधिर कोशिका का उत्पादन बढ़ाकर, हीमोग्लोबिन की बंधनकारी क्षमता घटाकर और श्वसन दर बढ़ाकर लेता है। हिमालय के ऊँचे क्षेत्रों में अनेक जनजातियाँ रहती हैं। पता लगाइए कि क्या मैदानी इलाकों में रहने वाले लोगों की तुलना में उन जनजातियों में सामान्यतया लाल रुधिर कोशिका की संख्या (या कुल हीमोग्लोबिन) ज्यादा होती हैं?

अधिकांश प्राणियों में उपापचयी अभिक्रियाएँ और इसिलए सभी कार्यिकीय प्रकार्य संकीर्ण तापमान परास में इष्टतम होते हैं (मानव में यह तापमान 37°C है)। लेकिन ऐसे सूक्ष्मजीव (आर्किबैक्टीरिया) भी हैं जो तप्त झरनों और गहरे समुद्र के उष्णजलीय निकासों में, जहाँ तापमान 100 डिग्री से भी ज्यादा होता है, में खूब फलते-फूलते हैं। यह कैसे संभव है? अनेक मछिलयाँ दक्षिण ध्रुवीय जल में खूब पनपती हैं जहाँ का तापमान हमेशा शून्य से कम रहता है। वे अपने शरीर के तरल को जमने से कैसे बचा लेती हैं?

अनेकों समुद्री अकेशरूकी और मछिलयाँ महासागर की बहुत गहराई में रहती हैं जहाँ का दाब उस सामान्य वायुंमडलीय दाब से 100 गुना अधिक होता है जो हम पृथ्वी पर अनुभव करते हैं। वे ऐसे जबरदस्त दाब में कैसे रहती हैं और क्या उनमें कोई विशेष एंजाइम होते हैं? ऐसी चरम पर्यावरणीय परिस्थितियों में रहने वाले जीव जैवरासायिनक अनुकुलनों का मोहक क्रमविन्यास दर्शाते हैं।

कुछ जीव अपने पर्यावरण में होने वाले परिवर्तनों का सामना करने के लिए व्यावहारिक अनुक्रियाएँ दर्शाते हैं। स्तनधारियों में अपने आवास के उच्च तापमान से निबटने के लिए जो कार्यिकीय योग्यता होती है, मरुस्थल की छिपकलियों में इस योग्यता की कमी है लेकिन वे व्यावहारिक साधनों द्वारा अपने शरीर के तापमान को काफी स्थिर बनाए रखती हैं। जब उनका तापमान सुविधा स्तर से नीचे चला जाता है तब वे धूप सेंक कर ऊष्मा अवशोषित करती हैं लेकिन जब परिवेश का तापमान बढ़ने लगता है तब वे छाया में चली जाती हैं। कुछ जातियों में भूमि से ऊपर की ऊष्मा से बचने के लिए मिट्टी में बिल खोदने की क्षमता होती है।

13.2 समष्टियाँ

13.2.1 समिष्ट गुण

प्रकृति में, हमें किसी भी जाति के पृथक, एकल व्यष्टि के दर्शन बिरले ही होते हैं; उनमें से अधिकांश सुपरिभाषित भौगोलिक क्षेत्र में समूह में रहते हैं, समान संसाधनों का साझा

246

जीव और समष्टियाँ

उपयोग करते हैं अथवा उनके लिए स्पर्धा करते हैं, संकरण (इनब्रीड) करते हैं और इस प्रकार वे समिष्ट की रचना करते हैं। हालाँकि संकरण शब्द में लैंगिक जनन कार्य अंतर्निहित है, अलैंगिक जनन से भी जन्म लेने वाले व्यष्टियों का समूह को भी पारिस्थितिक अध्ययन के लिए आमतौर से समष्टि मान लिया जाता है। आई भूमि में सभी जलकाक, वन क्षेत्र के सागवान (टीकवूड) के पेड़, संवर्धन प्लेट के जीवाणु, त्याग दिए गए आवास में चूहे, और तालाब में कमल के पौधे, आदि समिष्ट के कुछ उदाहरण हैं। पहले अध्यायों में आपने यह सीखा कि हालाँकि व्यष्टि जीव वह है जो परिवर्तित पर्यावरण का सामना करे, प्राकृतिक वरण द्वारा वांछित विशेषकों (ट्रेट) को विकसित करने का कार्य समष्टि स्तर पर ही होता है। इसलिए समष्टि पारिस्थितिकी, पारिस्थितिकी का एक महत्त्वपूर्ण क्षेत्र है क्योंकि यह पारिस्थितिकी को समष्टि आनुवंशिकी (जेनेटिक्स) और विकास से जोड़ता है।

समिष्ट में कुछ ऐसे गुण होते हैं जो व्यष्टि जीव में नहीं होते। व्यष्टि जन्मता और मरता है लेकिन समिष्ट में जन्म दरें और मृत्यु दरें होती हैं। समिष्ट में इन दरों को क्रमश: प्रित व्यक्ति जन्म दर और मृत्यु दर कहते हैं। इसिलए दर को समिष्ट के सदस्यों के संबंधों में संख्या में परिवर्तन (वृद्धि या हास) के रूप में प्रकट किया उदाहरण के लिए अगर किसी ताल में पिछले साल कमल के 20 पौधे थे और जनन द्वारा 8 नए पौधे और हो जाते हैं जिससे वर्तमान समिष्ट 28 हो जाती है, तो हम जन्म दर को 8/20 = 0.4 संतित प्रित कमल प्रतिवर्ष के हिसाब से परिकलन (कैल्कुलेट) करते हैं। अगर प्रयोगशाला समिष्ट में 40 फलमिक्खयों में से 4 व्यष्टि किसी विशिष्टीकृत समय अंतराल में, मान लीजिए एक सप्ताह के दौरान मर जाते हैं, तो उस समय के दौरान समिष्ट में मृत्यु दर 4/40= 0.1 व्यष्टि प्रित फलमक्खी प्रित सप्ताह कहलाएगी।

समिष्ट का दूसरा विशिष्ट गुण **लिंग अनुपात** यानि नर एवं मादा का अनुपात है। व्यिष्ट या तो नर है या मादा है, लेकिन समिष्ट का लिंग अनुपात होता है (जैसे कि समिष्ट का 60 प्रतिशत स्त्री हैं और 40 प्रतिशत नर हैं)।

चित्र 13.4 मानव समष्टि के लिए आयु पिरैमिडों का निरूपण

किसी दिए गए समय में समिष्ट भिन्न आयु वाले व्यष्टियों से मिलकर बनती है। अगर समिष्ट के लिए आयु वितरण (दी गई आयु अथवा आयु वर्ग के व्यष्टियों का प्रतिशत) आलेखित (प्लॉटेड) किया जाता है तो बनने वाली संरचना आयु पिरैमिड कहलाती है (चित्र 13.4)। मानव समिष्ट के लिए आयु पिरैमिड आमतौर पर नर और

स्त्रियों का आयु वितरण संयुक्त आरेख को दर्शाता है। पिरैमिड का आकार समष्टि की स्थिति प्रतिबिंबित करता है – (क) क्या यह बढ़ रहा है, (ख) स्थिर है या (ग) घट रहा है।

समिष्ट का साइज आवास में उसकी स्थिति के बारे में बहुत कुछ बताता है। समिष्ट हम कैसे भी पारिस्थितिक प्रक्रम अन्वेषण (इन्वेस्टिगेट) करना चाहें, भले ही यह दूसरी जातियों से स्पर्धा का परिणाम हो, परभक्षी का प्रभाव हो, या पीडकनाशी (पेस्टिसाइड) अनुप्रयुक्त (एप्लाइड) करने का प्रभाव हो, हम उनका मुल्यांकन हमेशा ही समष्टि के साइज में कोई परिवर्तन के संदर्भ में करते हैं। प्रकृति में समष्टि के साइज की इतनी कम संख्या में भी (10 से कम भरतपुर आईभूमि क्षेत्रों में) साइबेरियाई सारस या किसी साल लाखों में हो सकती है (तालाब में क्लेमिडोमोनास)। यह आवश्यक नहीं है कि समष्टि को, जो अधिक तकनीकी रूप से **समष्टि घनत्व** कहलाती है। (N के रूप में अभिहित)। हालाँकि समिष्ट घनत्व की सबसे उपयक्त माप आमतौर पर कल संख्या है. कछ मामलों में यह अर्थहीन होती है अथवा इसका निर्धारण कठिन होता है। किसी क्षेत्र में. अगर 200 पार्थेनियम पादप हैं. लेकिन केवल एक अकेला बड़े वितान (कैनोपी) वाला बरगद का विशाल वृक्ष है तो यह कहना कि पार्थेनियम के सापेक्ष बरगद का समष्टि घनत्व कम है उस समुदाय में बरगद की महत्त्वपूर्ण भूमिका को अवांकलन करने के बराबर है। ऐसे मामलों में. समष्टि साइज के माप के लिए प्रतिशत आवरण अथवा जीव भार (बायोमास) अधिक अर्थपुर्ण है। अगर समष्टि बहुत बड़ी है और गणना असंभव है अथवा बहुत समय लेने वाली है तो कुल संख्या को अपनाने का आधार भी सरल नहीं है। अगर आपके पास प्रयोगशाला में पेट्रीडिश में जीवाणुओं का घना संवर्ध (कल्चर) है तो उसका घनत्व बताने की सर्वोतम माप क्या है? कभी-कभी, पारिस्थितिक अन्वेषणों के लिए निरपेक्ष समिष्ट घनत्व जानने की आवश्यकता नहीं है; आपेक्षिक घनत्वों से भी उद्देश्य की पूर्ति

भली भाँति हो जाती है। उदाहरण के लिए प्रति पाश (ट्रैप) पकड़ी गई मछलियों की संख्या, झील में कुल समष्टि घनत्व की काफी ठीक माप है। हम बहुधा समष्टि के साइज के बिना वास्तव में गिने अथवा बिना देखे अप्रत्यक्ष रूप से आकलन करते हैं। हमारे राष्ट्रीय उद्यानों और बाघ आरक्षितियों (रिजर्ब्स) में बाघ गणना प्राय: पग चिह्नों और मल गुटिकाओं (पैलेट) आधारित होती है।

13.2.2 समष्टि वृद्धि

किसी जाति के लिए समिष्ट की साइज स्थैतिक प्राचल नहीं है। यह समय-समय पर बदलता रहता है जो विभिन्न कारकों पर आहार उपलब्धता, परभक्षण दाब, और मौसमी पिरिस्थितियों पर निर्भर करता है। वास्तव में ये पिरवर्तन हमें समिष्ट में क्या घटित हो रहा है, इसका कुछ बोध कराते हैं। क्या समिष्ट घनत्व बढ़ रहा है या घट रहा है। अंतिम कारण कुछ भी रहे हों, परंतु दी गई अविध के दौरान दिए गए आवास में समिष्ट का घनत्व चार मूलभूत प्रक्रमों (प्रोसेस) में घटता-बढ़ता है। इन चारों में से दो (जन्मदर और आप्रवासन) समिष्ट घनत्व को बढ़ाते हैं। और दो (मृत्युदर तथा उत्प्रवासन) इसे घटाते हैं।

- (क) जन्मदर— जन्मदर से मतलब समष्टि में जन्मी उस संख्या से है जो दी गई अवधि के दौरान आंरभिक घनत्व में जुड़ती है।
- (ख) *मृत्युदर* यह दी गई अवधि समष्टि में होने वाली मौतों की संख्या है
- (ग) **आप्रवासन** उसी जाति के व्यष्टियों की वह संख्या है जो दी गई समय अविध के दौरान आवास में कहीं और से आए हैं।
- (घ) *उत्प्रवासन* समष्टि के व्यष्टियों की वह संख्या है जो दी गई समयाविध के दौरान आवास छोड़कर कहीं और चले गए हैं।

इसलिए अगर समय t पर समष्टि घनत्व N है तो समय t+1 पर इसका घनत्व $N_{t+1}=N_t+[(B+I)-(D+E)]$ है

ऊपर दिए गए समीकरण से आप देख सकते हैं कि अगर जन्म लेने वालों की संख्या जमा आप्रवासियों की संख्या (B+I) मरने वालों की संख्या जमा उत्प्रवासियों की संख्या (D+E) से अधिक है तो समष्टि घनत्व बढ़ जाएगा अन्यथा यह घट जाएगा। सामान्य परिस्थितियों में, समष्टि घनत्व को प्रभावित करने वाले कारकों में जन्म और मृत्यु सबसे महत्त्वपूर्ण है, दूसरे दो कारक विशेष परिस्थितियों में ही महत्त्वपूर्ण बन जाते हैं। उदाहरण के लिए, अगर आवास की बस्ती अभी बनी है, तो जन्म दरों की अपेक्षा आप्रवासन समष्टि की वृद्धि में अधिक महत्त्वपूर्ण है।

वृद्धि मॉडल — क्या किसी समष्टि की वृद्धि समय के साथ कोई विशिष्ट और प्रागुक्ति योग्य प्रतिरूप दर्शाती है? हम अपने देश में मानव समष्टि की अनियंत्रित वृद्धि और इससे जन्मी समस्याओं से चिंतित हैं और इसलिए अगर प्रकृति में भिन्न प्राणी समष्टियाँ इसी तरह वृद्धि करती हैं अथवा वृद्धि पर कुछ नियंत्रण दर्शाती हैं। इस बारे में हमारी जिज्ञासा स्वाभाविक है। समष्टि वृद्धि को कैसे नियंत्रित रखा जा सकता है इस बारे में शायद हम प्रकृति से एक दो बातें सीख सकते हैं।

(क) **चरघातांकी वृद्धि** किसी समष्टि की अबाधित वृद्धि के लिए स्पष्टत: संसाधन (आहार और स्थान) उपलब्ध होना अत्यावश्यक है। आदर्शत: आवास

में जब संसाधन असीमित होते हैं तो प्रत्येक जाति में संख्या में वृद्धि कर सकने की अपनी जन्मजात शिक्त को पूरी तरह अनुभव करने की योग्यता होती है जैसा कि डार्विन ने अपने प्राकृतिक वरण के सिद्धांत को प्रतिपादित करते हुए प्रेक्षित किया। तब समिष्ट चरघातांकी (एक्सपोनेन्शियल) अथवा ज्यामितीय (ज्योमेट्रिकल) शैली में वृद्धि करती है। अगर N साइज की समिष्ट में, जन्म दरें (कुल संख्या नहीं, बिल्क प्रति व्यक्ति जन्म) b के रूप में और मृत्यु दरें (प्रति व्यक्ति मृत्यु दर) d के रूप में निरूपित की जाती हैं तब इकाई समय अविध t (dN/dt) के दौरान वृद्धि या कमी निम्नलिखित होगी—

भू $\frac{dN}{dt} = rN$ अ $\frac{dN}{dt} = rN$ ब $\frac{dN}{dt} = rN\left(\frac{K-N}{K}\right)$ समय (t)

चित्र 13.5 समिष्ट वृद्धि वक्र

- (अ) जब अनुक्रियाएँ वृद्धि को सीमित करने वाली नहीं हैं तब आरेख चरघातांकी है,
- (ब) जब अनुक्रियाएँ वृद्धि के लिए सीमाकारी हैं तब आरेख लॉजिस्टिक है,
- (K) पोषण क्षमता है

$$dN/dt = (b - d) \times N$$

मान लोजिए $(b-d) = r$, तब $dN/dt = rN$

इस समीकरण में r' 'प्राकृतिक वृद्धि की इंट्रोन्जिक दर' कहलाती है और समिष्ट वृद्धि पर किसी भी जैविक अथवा अजीवीय कारक के प्रभाव को निर्धारित करने के लिए बहुत महत्त्वपूर्ण प्राचल है।

r मूल्यों के परिणाम (मैग्निट्यूड) के बारे में आपको कुछ बोध कराने के लिए, नार्वे चूहे के लिए r 0.015 है और आटा भृंग के लिए यह 0.12 है। 1981 में भारतवर्ष में मानव समिष्ट के लिए r मान 0.0205 थी। वर्तमान r मान क्या है पता कीजिए। इसके परिकलन के लिए आपको जन्म दरों और मृत्युदरों का पता होना जरूरी है।

ऊपर दिया गया समीकरण समिष्ट के चरघातांकी अथवा ज्यामितीय वृद्धि बताता है (चित्र 13.5) और जब N को समय के संदर्भ में आरेखित करते हैं तो इसका नतीजा J- आकार का वक्र है। अगर आपको मुलभूत कलन आता है

तो आप चरघातांकी वृद्धि समीकरण के समाकलित रूप को निम्न प्रकार से दिखा सकते हैं-

 $N^{t} = No^{ert}$

 $N^{t} = H^{t} + H^{t$

N = समय शून्य में समष्टि घनत्व

r = प्राकृतिक वृद्धि की इंट्रोन्जिक दर

e = प्राकृतिक लघुगणकों (लॉगेरिथ्मों) का आधार (2.71828)

असीमित संसाधन परिस्थितियों में चरघातांकी रूप से वृद्धि करने वाली कोई भी जाति थोड़े समय में ही विशाल समष्टि घनत्वों तक पहुँच सकती है। डार्विन ने दर्शाया कि हाथी जैसा धीमे बढ़ने वाला प्राणी, रोक न होने पर विशाल संख्या तक पहुँच सकता है। चरघातांकी रूप से वृद्धि करने पर विशाल समष्टि कितनी जल्दी निर्मित हो जाती है। इसके बारे में निम्नलिखित किस्सा लोकप्रिय है–

(राजा और मंत्री शतरंज खेलने बैठे। अपनी जीत के प्रति आश्वस्त राजा मंत्री द्वारा प्रस्तावित किसी शर्त को स्वीकार करने के लिए तैयार था। मंत्री ने नम्रतापूर्वक कहा कि अगर वह जीत गया तो वह गेहूँ के केवल कुछ दाने लेगा जिसकी मात्रा शतरंज की बिसात के पहले खाने (वर्ग) में एक दाना, तब दूसरे खाने में 2, तीसरे में 4, चौथे में 8 और इस प्रकार दानों को पिछली मात्रा से दुगना करते हुए अगले खानों में रखते जाना है जब तक कि सभी 64 खाने भर नहीं जाते। राजा ने मूर्खतापूर्ण लगने वाली शर्त मान ली और खेल शुरू किया लेकिन राजा के दुर्भाग्यवश मंत्री जीत गया। राजा को लगा कि मंत्री की शर्त पूरी करना बहुत आसान था। उसने पहले खाने में एक दाना रखकर शुरूआत की और मंत्री द्वारा सुझाई गई प्रक्रिया के अनुसार अन्य खानों को भरता गया लेकिन बिसात के आधे खाने भरने तक राजा ने अनुभव किया कि उसके राज्य में उत्पादित सारे गेहूँ मिलकर भी सभी 64 वर्गों को नहीं भर पाएँगे। अब छोटे से पैरामीशियम के बारे में सोचिए जो केवल एक व्यष्टि से आरंभ करके द्वि-विभाजन (बाइनरीफिशन) द्वारा प्रतिदिन संख्याओं को दुगुना करता रहता है और कल्पना कीजिए कि 64 दिनों में इसकी समष्टि साइज दिमाग को चकरा देने वाली हो जाएगी। बशर्ते असीमित आहार और स्थान उपलब्ध होता रहे)।

(ख) संभार तंत्र (लॉजिस्टिक) वृद्धि— प्रकृति में किसी भी समष्टि के पास इतने असीमित संसाधन नहीं होते कि चरघातांकी वृद्धि होती रहे। इसके कारण सीमित संसाधनों के लिए व्यष्टियों में प्रतिस्पर्धा होती है। आखिर में 'योग्यतम्' व्यष्टि जीवित बना रहेगा और जनन करेगा। अनेक देशों की सरकारों ने भी इस तथ्य को समझा है और मानव समष्टि वृद्धि को सीमित करने के लिए विभिन्न प्रतिबंध लागू किए हैं। प्रकृति में, दिए गए आवास के पास अधिकतम संभव संख्या के पालन — पोषण के लिए पर्याप्त संसाधन होते हैं इससे आगे और वृद्धि संभव नहीं है। उस आवास में उस जाित के लिए इस सीमा को प्रकृति की पोषण क्षमता (k) मान लेते हैं।

किसी आवास में सीमित संसाधनों के साथ वृद्धि कर रही समष्टि आरंभ में पश्चता प्रावस्था (लेग फेस) दर्शाती है। उसके बाद त्वरण और मंदन और अंतत: अनंतस्पर्शी प्रावस्थाएँ आती हैं, जब समष्टि घनत्व पोषण क्षमता तक पहुँच जाती है। समय (t) के संदर्भ में N का आरेख (प्लॉट) से सिग्मॉइड वक्र बन जाता है। इस प्रकार की समष्टि वृद्धि विहुस्ट-पर्ल लॉजिस्टिक वृद्धि (चित्र 13.5) कहलाता है और निम्नलिखित समीकरण द्वारा वर्णित है—

$$dN/dt = \frac{rN(K - N)}{K}$$

जहाँ N = समय t पर समष्टि घनत्व

r = प्राकृतिक वृद्धि की (इंट्रोन्जिक) दर

K = पोषण क्षमता

अधिकांश प्राणियाँ की समष्टियों में वृद्धि के लिए संसाधन परिमित (फाइनाइट) हैं और देर-सबेर सीमित होने वाले हैं, इसलिए लॉजिस्टिक वृद्धि मॉडल को अधिक यथार्थपर्ण माना जाता है।

सरकारी (जन) गणना से भारतवर्ष के लिए पिछले 100 वर्षों के समष्टि आँकड़े एकत्रित कीजिए उन्हें आरेखित कीजिए और जाँचिए कि कौन सा वृद्धि प्रतिरूप स्पष्ट है।

13.2.3 जीवन-वृत्त विभिन्नता

समिष्टियाँ जिस आवास में रहती हैं उसमें अपनी जनन योग्यता, जिसे डार्विनी योग्यता (डार्विनियन फिटनेस)भी कहा जाता है (उच्च r मान), को अधिकतम बनाने के लिए विकसित होती हैं। खास प्रकार के वरण दबाव-सेट में जीव सर्वाधिक दक्ष जनन-युक्ति की ओर विकास करते हैं कुछ अपने जीवन काल में केवल एक बार प्रजनन करती हैं (प्रशांत महासागरीय सामन मछली और बाँस) जबिक अन्य अपने जीवन काल में कई बार प्रजनन करती हैं (अधिकांश पक्षी और स्तनधारी), कुछ छोटी साइज की संतित बहुत बड़ी संख्या में उत्पन्न करती हैं (ऑयस्टर और पैलेजीक मछलियाँ) जबिक दूसरी बड़ी साइज की संतित कम संख्या में उत्पन्न करती हैं (पक्षी और स्तनधारी)। इसलिए योग्यता को अधिकतम करने के लिए कौन वांछनीय है? पारिस्थितिकिवज्ञों का सुझाव है कि जीवों के जीवन-वृत्त विशेषक (ट्रेट) जिस आवास में वे रहते हैं; उसके अजीवीय और जीवीय घटकों द्वारा लगाए गए प्रतिबंधों के संदर्भ में विकसित होते हैं। भिन्न जातियों में जीवन वृत्त विशेषकों का विकास इस समय अनुसंधान का महत्त्वपूर्ण क्षेत्र है और पारिस्थितिकीविज्ञ अनुसंधान में लगे हुए हैं।

13.2.4 समष्टि पारस्परिक क्रियाएँ

क्या आप पृथ्वी पर किसी ऐसे प्राकृतिक आवास के बारे में सोच सकते हैं जहाँ केवल एक ही जाति का वास हो? ऐसा कोई आवास है ही नहीं और इसिलए ऐसी पिरिस्थिति अकिल्पत है। किसी भी जाति के लिए न्यूनतम आवश्यकता एक और जाति की है जिसको वह भोजन के रूप में ले सके। पादप जाति भी जो अपना आहार स्वयं बनाती है, अकेली जीवित नहीं रह सकती; इसे मृदा के कार्बनिक पदार्थ को तोड़ने और अकार्बनिक पोषकों को इसके अवशोषण के लिए लौटने के लिए मृदा के सूक्ष्मजीवों की जरूरत पड़ती है। इसके अलावा बिना प्राणी एजेंट के पादप परागण की व्यवस्था कैसे करेगा? यह स्पष्ट है कि प्रकृति में प्राणी, पादप और सूक्ष्मजीव न तो पृथक रह सकते हैं और न ही रहते हैं, बल्कि जैव समुदाय बनाने के लिए विभिन्न तरीकों से परस्पर क्रिया करते हैं। न्यूनतम समुदायों में भी, अनेक परस्पर क्रियाशील अनुबंधताएँ होती हैं, हालाँकि सभी बंधताएँ आसानी से दिखाई नहीं देती।

अंतराजातीय पारस्परिक क्रियाएँ दो भिन्न जातियों की समिष्टियों की पारस्परिक क्रिया से उत्पन्न होती हैं। वे क्रियाएँ एक जाति या दोनों जातियों के लिए हितकारी, हानिकारक या उदासीन (न हानिकारक न लाभदायक) हो सकती हैं। लाभदायक पारस्परिक क्रियाओं के लिए '+' चिह्न तथा हानिकारक के लिए '-' चिह्न और उदासीन के लिए '0' चिह्न से दर्शाएँ। आइए! अंतराजातीय पारस्परिक क्रियाओं के सभी संभावित परिणामों पर विचार करें। (सारणी 13.1)

एक दूसरे से पारस्परिक क्रिया में सहोपकारिता में दोनों जातियों को लाभ होता है और स्पर्धा में दोनों को हानि होती है। **परजीविता** और **परभक्षण** दोनों में केवल एक जाति को लाभ होता है (क्रमश: परजीवी और परभक्षी को) और पारस्परिक क्रिया दूसरी

सारणी 13.1 समष्टियों की पारस्परिक क्रिया

जाति अ	जाति ब	पारस्परिक क्रिया का नाम
+	+	सहोपकारिता
-	-	स्पर्धा
+	-	परभक्षण
+	-	परजीविता
+	0	सहभोजिता (कमन्सेलिज्म)
-	0	अंतरजातीय परजीविता (एमेन्सेलिज्म)

जाति (क्रमश: परपोषी और शिकार) के लिए हानिकारक है। ऐसी पारस्परिक क्रिया जिसमें एक जाति को लाभ होता है और दूसरी को न लाभ होता है न हानि। उसे सहभोजिता कहते हैं। दूसरी ओर, अंतरजातीय परजीविता में एक जाति को हानि होती है जबिक दूसरी जाति-अप्रभावित रहती है। परभक्षण, परजीविता और सहभोजिता इन तीनों की एक साझा विशेषता है — पारस्परिक क्रिया करने वाली जातियाँ निकटता से साथ-साथ रहती हैं।

(क) परभक्षण — यदि किसी समुदाय में पादपों को खाने के लिए प्राणी ही न हों तो स्वपोषी जीवों द्वारा स्थिर की गई उस सारी ऊर्जा का क्या होगा? परभक्षण को आप प्रकृति का ऐसा तरीका सोच सकते हैं जिसमें पादपों द्वारा स्थिर की गई ऊर्जा उच्चतर पोषी स्तरों को स्थानांतरित होती है। जब हम परभक्षी और शिकार के बारे में सोचते हैं तो शायद बाघ और हरिण का उदाहरण सहज ही हमारे दिमाग में आता है, लेकिन बीज को खाने वाली गोरैया भी परभक्षी से कम नहीं। हालाँकि पौधों को खाने वाले प्राणियों को शाकाहारी के रूप में अलग श्रेणी में रखा जाता है, लेकिन सामान्य पारिस्थितिक संदर्भ में वे भी परभक्षी से ज्यादा भिन्न नहीं हैं।

पोषी स्तरों तक ऊर्जा स्थानांतरण के लिए संनाल ('कंड्यूट') के रूप में कार्य करने के अलावा, परभक्षी एक दूसरी महत्त्वपूर्ण भूमिका भी निभाते हैं। वे शिकार समिष्ट को नियंत्रण रखते हैं। अगर परभक्षी नहीं होते तो शिकार जातियों का समिष्ट घनत्व बहुत ज्यादा हो जाता और परितंत्र में अस्थिरता आ जाती । जब किसी भौगोलिक क्षेत्र में कुछ विदेशज जातियाँ लाई जाती हैं तो वे आक्रामक हो जाती हैं और तेजी से फैलने लगती हैं क्योंिक आक्रांत भूमि में उसके प्राकृतिक परभक्षी नहीं होते। 1920 के आरंभ में आस्ट्रेलिया में लाई गई नागफनी ने वहाँ लाखों हेक्टेयर प्रक्षेत्र में तेजी से फैलकर तबाही मचा दी। अंत में नागफनी खाने वाले परभक्षी (एक प्रकार का शलभ) को उसके प्राकृतिक आवास ऑस्ट्रेलिया लाए जाने के बाद ही आक्रामक नागफनी को नियंत्रित किया जा सका। कृषि पीड़कनाशी के नियंत्रण (पेस्ट कंट्रोल) में अपनाए गए जैव नियंत्रण विधियाँ परभक्षी की समिष्ट नियमन की योग्यता पर

आधारित हैं। परभक्षी, स्पर्धी शिकार जातियों के बीच स्पर्धा की तीव्रता कम करके किसी समुदाय में जातियों की विविधता (डाइवर्सिटी) बनाए रखने में भी सहायता करता है। अमेरीकी प्रशांत तट की चट्टानी अंतराज्वारीय (इंटरटाइडल) समुदायों में पाइसैस्टर तारामीन एक महत्त्वपूर्ण परभक्षी है। प्रयोगशाला के बाहर किए गए एक प्रयोग में जब एक बंद अंतराज्वारीय क्षेत्र से सभी तारामीन हटा दी गई तो अंतराजातीय स्पर्धा के कारण एक साल में ही अकशेरूकियों की 10 से अधिक जातियाँ विलुप्त हो गई।

अगर परभक्षी ज्यादा ही दक्ष है और अपने शिकार का अतिदोहन करता है तो हो सकता है शिकार विलुप्त हो जाए और इसके बाद खाने के अभाव में परभक्षी भी विलुप्त हो जाएगा। यही कारण है कि प्रकृति में परभक्षी 'विवेकी' हैं। परभक्षण के प्रभाव को कम करने के लिए शिकारी जातियों ने विभिन्न रक्षा विधियाँ विकसित कर ली हैं। कीटों और मेंढकों की कुछ जातियों परभक्षी द्वारा आसानी से पहचान लिए जाने से बचने के लिए गुप्तरूप से रंगीन (छद्मावरण) होती हैं। कुछ शिकार जातियाँ विषैली होती हैं और इसलिए परभक्षी उन्हें नहीं खाते। मॉनार्क तितली के शरीर में विशेष रसायन होने के कारण यह अपने परभक्षी (पक्षी) के लिए बहुत की अरूचिकर, यानी स्वाद में खराब है। यह दिलचस्प है कि तितली इस रसायन को अपनी इल्ली (कैटरपिलर) अवस्था में विषैली खरपतवार खाकर प्राप्त करती है।

पौधों के लिए शाकाहारी प्राणी परभक्षी हैं। लगभग 25 प्रतिशत कीट पादपभक्षी (फाइटोफैंगस) हैं अर्थातु वे पादप रस और पादपों के अन्य भाग खाते हैं। पादपों के लिए यह समस्या विशेष रूप से गंभीर है: क्योंकि वे अपने परभिक्षयों से दूर नहीं भाग सकते जैसा कि प्राणी कर सकते हैं। इसलिए पादपों ने शाकाहारियों से बचने के लिए आश्चर्यजनक रूप से आकारिकीय और रासायनिक रक्षाविधियाँ विकसित कर ली हैं। रक्षा के सबसे सामान्य आकारिकीय साधन कांटे (ऐकेशिया, कैक्टस)। बहुत से पादप ऐसे रसायन उत्पन्न और भंडारित करते हैं जो खाए जाने पर शाकाहारियों को बीमार कर देते हैं. पाचन का संदमन करते है. उनके जनन को भंग कर देते हैं या मार तक देते हैं। आपने परित्यक्त खेतों में उग रही *कैलोटोपिस* खरपतवार अवश्य देखी होगी। यह पौधा अत्यधिक विषैला हृदय ग्लाइकोसाइड उत्पन्न करता है और इसी कारण आपने कभी भी किसी पशु या बकरी को इस पौधे को चरते हए नहीं देखा होगा। रासायनिक पदार्थों की व्यापक किस्में: जिन्हें हम पौधों से व्यापारिक पैमाने पर निष्कर्षित करते हैं (निकोटीन, कैफीन, क्वीनीन, स्टिकनीन, अफीम, आदि)। वे पादपों द्वारा उत्पन्न होते हैं। वास्तव में ये रसायन चारकों (ग्रेजर) से बचने की रक्षाविधियाँ हैं।

(ख) स्पर्धा — जब डार्विन ने प्रकृति में जीवन-संघर्ष और योग्यतम की उत्तरजीविता के बारे में कहा तो वह निश्चयी (क़ायल) था कि जैव विकास में अंतरजातीय

स्पर्धा एक शक्तिशाली बल है। आमतौर पर यह माना जाता है कि स्पर्धा उस समय शरू होती है जब निकट रूप से संबंधित जातियाँ उन्हीं संसाधनों के लिए स्पर्धा करती हैं जो सीमित हैं, लेकिन यह पूरी तरह से सच नहीं है। पहली बात तो यह है कि ये असंबंध जातियाँ भी एक ही संसाधन के लिए स्पर्धा कर सकती हैं। उदाहरण के लिए दक्षिण अमेरीका की कुछ उथली झीलों में आगंतक फ्लेमिंगो और वहीं की आवासी मछलियाँ साझा आहार. झील में प्राणिप्लवक के लिए स्पर्धा करती हैं। दूसरी बात है, स्पर्धा के संसाधनों का सीमित होना आवश्यक है। बाधा स्पर्धा में एक जाति की अशनदक्षता दुसरी जाति की बाधाकारी और संदमनी उपस्थिति के कारण घट सकती है। भले ही संसाधन (आहार और स्थान) पर्याप्त मात्रा में उपलब्ध हों। इसलिए, स्पर्धा को एक ऐसे प्रक्रम के रूप में परिभाषित किया जा सकता है. जिसमें एक जाति की योग्यता (वृद्धि की इंट्रींजिक दर 'r' के रूप में मापित) दूसरी जाति की उपस्थिति में महत्त्वपूर्ण रूप से घट जाती है। प्रयोगशाला में किए गए प्रयोगों में यह दर्शाना अपेक्षाकृत आसान है. जैसा कि गॉसे और दसरे पारिस्थिकविज्ञों ने किया. कि जब संसाधन सीमित होते हैं तो स्पर्धीरूप से उत्तम जातियाँ अंतत: दुसरी जातियों को विलुप्त कर देगी, लेकिन प्रकृति में इस प्रकार के स्पर्धी बहिष्कार के साक्ष्य हमेशा निर्णायक नहीं होते। लेकिन कुछ मामलों में ठोस और स्वीकार्य परिस्थितिजन्य साक्ष्य मिलते तो हैं। गैलापैगो द्वीप में बकरियाँ लाई जाने के बाद एबिंग्डन कुछ एक दशक (10वर्ष) में ही विलुप्त हो गए जिसका स्पष्ट कारण था। बकरियों की अत्यधिक चारण दक्षता. प्रकृति में स्पर्धा होने का दसरा प्रमाण 'स्पर्धी मोचन' है। स्पर्धीरूप से उत्तम जाति की उपस्थिति के कारण जिस जाति का वितरण छोटे से भौगोलिक क्षेत्र तक प्रतिबंधित हो गया है। स्पर्धी जाति को प्रयोगात्मक रूप से हटा दिए जाने पर उसकी वितरण परास नाटकीय ढंग से फैल जाती है। कॉनेल के परिष्कृत क्षेत्र प्रयोगों ने दर्शाया कि स्कॉटलैंड के चट्टानी समुद्र तटों पर बडे और स्पर्धीरूप से उत्तम बार्नेकल बैलेनस की अंतरज्वारीय क्षेत्र में प्रमुखता है और इसने छोटे बार्नेकल चैथेमैलस को उस क्षेत्र से निकाल दिया। आमतौर पर. माँसाहारियों (कार्निवोर) की अपेक्षा शाकाहारी और पादप अधिक प्रतिकुलत: प्रभावित होते हैं।

गॉसे 'स्पर्धी अपवर्जन नियम' यह बतलाता है कि एक ही तरह के संसाधनों के लिए स्पर्धा करने वाली दो निकटतम से संबंधित जातियाँ अनंतकाल तक साथ-साथ नहीं रह सकती और स्पर्धीरूप से घटिया जाति अंतत: विलुप्त कर दी जाएगी। ऐसा तभी होगा जब संसाधन सीमाकारी होंगे अन्यथा नहीं। अधिक वर्तमान अध्ययन स्पर्धा के ऐसे घोर सामान्यीकरण की पुष्टि नहीं करते। वे प्रकृति में अंतराजातीय स्पर्धा होने को नकारते तो नहीं पर वे इस ओर ध्यान दिलाते हैं स्पर्धा सामना करने वाली जातियाँ ऐसी क्रियाविधि

विकसित कर सकती हैं जो बहिष्कार की बजाय सह-अस्तित्व को बढ़ावा दे। ऐसी एक क्रियाविधि 'संसाधन विभाजन' है। अगर दो जातियाँ एक ही संसाधन के लिए स्पर्धा करती हैं तो उदाहरण के लिए वे अशन (आहार) के लिए भिन्न समय अथवा भिन्न चारण प्रतिरूप चुनकर स्पर्धा से बच सकती हैं। मैक आर्थर ने दिखाया कि एक ही पेड़ पर रह रहीं फुदकी (वार्बलर) की पाँच निकटत: संबंधित जातियाँ स्पर्धा से बचने में सफल रहीं और पेड़ की शाखाओं और वितान पर कीट शिकार के लिए तलाशने की अपनी चारण गतिविधियों में व्यावहारिक भिन्नताओं के कारण साथ – साथ रह सकीं।

परजीविता — यह मानते हुए कि जीवन के परजीवी प्रणाली में रहने और खाने की मुफ्त व्यवस्था है तो यह आश्चर्य की बात नहीं है कि परजीविता, पादपों से लेकर उच्चकोटि कशेरूिकयों तक इतने अधिक वर्गिकीय समृहों में विकसित हुआ है। अनेक परजीवी परपोषी-विशिष्ट के रूप में विकसित हुए हैं (वे परपोषी की केवल एक ही जाति पर परजीवी जीवन बिताते हैं), इस प्रकार परपोषी और परजीवी दो सह-विकसित होते हैं: अर्थात एक ही परपोषी जाति के साथ सफल होने के लिए अगर परपोषी परजीवी को अस्वीकार करने या प्रतिरोध करने के विशेष साधन विकसित करता है तो परजीवी को उन साधनों को निष्प्रभावी और व्यर्थ करने के लिए साधन विकसित करने होंगे। अपनी जीवन शैली के अनुरूप परजीवी ने विशेष अनुकुल विकसित किए जैसे कि अनावश्यक संबंधी अंगों का अभाव परपोषी से चिपकने के लिए आसंजी अंगों या चुषकों की उपस्थिति पाचन तंत्र का लोप तथा उच्च जनन क्षमता। परजीवियों का जीवन चक्र प्राय: जटिल होता है जिसमें एक या दो मध्यस्थ पोषक अथवा रोगवाहक होते हैं जो इसके प्राथमिक परपोषी के परजीवीकरण को सुगम बनाते हैं। मानव यकृत पर्णाभ (लिवर फ्लूक) (पर्णाभ कृमि परजीवी — ट्रिमेटोड पैरासाइट) अपने जीवन चक्र को पूरा करने के लिए दो मध्यस्थ पोषकों जैसे घोंघा और मछली पर निर्भर करता है। मलेरिया परजीवी को दूसरे परपोषियों पर फैलने के लिए रोगवाहक (मच्छर) की आवश्यकता पडती है। अधिकांश परजीवी, परपोषी को हानि पहँचाते हैं: परपोषी की उत्तरजीविता, वृद्धि और जनन को कम कर सकते हैं और उसके समिष्ट घनत्व को घटा सकते हैं। वे परपोषी को कमजोर बनाकर उसे. परभक्षण के लिए अधिक असुरक्षित बना देते हैं। क्या आप ऐसा मानते हैं कि एक आदर्श परजीवी, परपोषी को हानि पहुँचाए बिना, पनप सकने योग्य होना चाहिए? तब प्राकृतिक वरण ने ऐसे पूरी तरह से अहानिकारक परजीवियों का विकास क्यों नहीं किया?

परपोषी जीव की बाह्य पृष्ठ पर अशन (आहार पूर्ति) करने वाले परजीवी, बाह्य परजीवी (एक्टोपैरासाइट) कहलाते हैं। इसके प्रसिद्ध उदाहरण मानवों पर जुँ के समृह और कृतों पर चिचिंडियाँ (टिक्स) हैं। अनेक समृद्री मीन

बाह्य परजीवी अरित्रपादों (कॉपिपोड्स) द्वारा ग्रस्त हैं। कस्कुटा (अमरबेल) एक परजीवी पौधा है जो सामान्यत: बाड़ पादपों पर वृद्धि करता है। विकास प्रक्रिया के दौरान इसका पर्णहरित और पत्तियाँ समाप्त हो जाती हैं। यह जिस पोषी पादप पर रहता है उसी से अपना पोषण लेता है। मादा मच्छर को परजीवी नहीं माना जाता हालाँकि जनन के लिए इसको हमारे रक्त की आवश्यकता पड़ती है। क्या आप बता सकते हैं क्यों?

इसके विपरीत, अंत: परजीवी (एंडोपैरासाइट) वे हैं जो परपोषी के शरीर में भिन्न स्थलों यकृत, वृक्क, फुप्फुस, लाल रुधिर कोशिका, आदि पर रहते हैं। उनके आकारिकीय और शारीरिक लक्षण अत्यधिक सरलीकृत होते हैं जबकि उनके जनन शक्ति को बल देते हैं।

पक्षियों में अंड परजीविता (ब्रूड पैरासिटिज्म), परजीविता का लुभावना उदाहरण है जिसमें परजीवी पक्षी अपने अंडे परपोषी के घोंसले में देता है और परपोषी को उन अंडों को सेने (इंक्युबेट) देता है। विकास प्रक्रिया के दौरान, परजीवी पक्षी के अंडे साइज और रंग में परपोषी के अंडों के सदृश विकसित हो गए तािक परपोषी पक्षी द्वारा विजातीय अंडों को पहचान लिए जाने और घोंसले से उन्हें निकाल दिए जाने की संभावना कम हो जाए। अपने आस पास के पार्क में प्रजनन ऋतु (बसंत से ग्रीष्म ऋतु) के दौरान कोयल की गतिविधियों का पीछा कीजिए और अंड परजीविता को होते हुए देखिए।

- (घ) सहभोजिता यह ऐसी पारस्परिक क्रिया है जिसमें एक जाति को लाभ होता है और दूसरी को न हानि न लाभ होता है। आम की शाखा पर अधिपादप (एपीफाइट) के रूप में उगने वाला ऑर्किड और ह्वेल की पीठ को आवास बनाने वाले बार्नेकल को फायदा होता है जबिक आम के पेड़ और ह्वेल को उनसे कोई लाभ नहीं होता। पक्षी बगुला और चारण पशु निकट साहचर्य में रहते हैं। यदि आप कृषि फार्म वाले ग्रामीण क्षेत्र में रहते हैं तो आपको यह दृश्य देखने को मिलेगा। सहभोजिता का यह उत्कृष्ट उदाहरण है। जहाँ पशु चरते हैं उसके पास ही बगुले भोजन प्राप्ति के लिए रहते हैं क्योंकि जब पशु चलते हैं तो वनस्पति को हिलाते हैं और उसमें से कीट बाहर निकालते हैं। बगुले उन कीटों को खाते हैं अन्यथा वनस्पतिक कीटों को ढूँढ़ना और पकड़ना बगुले के लिए कठिन होता। सहभोजिता का दूसरा उदाहरण समुद्री ऐनिमोन दंशन स्पर्शक (स्टिंगिंग टेंटेकल) होते हैं, जिसमें उनके बीच रहने वाली क्लाउन मछली का है। मछली को परभिक्षयों से सुरक्षा मिलती है जो दंशन स्पर्शकों से दूर रहते हैं। क्लाउन मछली से ऐनिमोन को कोई लाभ मिलता हो ऐसा नहीं लगता।
- (ङ) सहोपकारिता इस पारस्परिक क्रिया से परस्पर क्रिया करने वाली दोनों जातियों को लाभ होता है। कवक और प्रकाश संश्लेषी शैवाल या सायनोबैक्टीरिया के बीच घनिष्ठ सहोपकारी (म्यूच्युऑलिस्टिक) संबंध का उदाहरण लाइकेन

चित्र 13.6 अंजीर और बर्र के बीच पारस्परिक-क्रिया दिखाते हुए (अ) बर्र द्वारा परागित अंजीर पुष्प (ब) अंजीर के फल में बर्र द्वारा दिए गए अंडे

में देखा जा सकता है। इसी प्रकार कवकों और उच्चकोटि पादपों की जड़ों के बीच कवकमूल (माइकोराइजी) साहचर्य है। कवक, मृदा से अत्यावश्यक पोषक तत्वों के अवशोषण में पादपों की सहायता करते हैं जबिक बदले में पादप, कवकों को ऊर्जा-उत्पादी कार्बोहाइड्रेट देते हैं।

सहोपकारिता के सबसे शानदार और विकास की दुष्टि से लुभावने उदाहरण पादप-प्राणी संबंध में पाए जाते हैं। पादपों को अपने पुष्प परागित करने और बीजों के प्रकीर्णन के लिए प्राणियों की सहायता चाहिए। स्पष्ट है कि पादप को जिन सेवाओं की अपेक्षा प्राणियों से है उसके लिए 'शल्क' तो देना होगा। परस्कार अथवा शल्क के रूप में परागणकारियों (पॉलिनेटर) को पराग (पॉलन) और मकरंद (नेक्टर) तथा प्रकीर्णकों को रसीले और पोषक फल देते हैं। लेकिन परस्पर लाभकारी तंत्र की 'धोखेबाजी' से रक्षा होनी चाहिए, उदाहरण के लिए, ऐसे प्राणी जो परागण में सहायता किए बिना ही मकरंद चराते हैं। अब आप देख सकते हैं कि पादप-प्राणी पारस्परिक क्रिया में सहोपकारियों के लिए प्राय: 'सह-विकास' क्यों शामिल है. अर्थात पष्प और इसके परागणकारी जातियों के विकास एक दूसरे से मजबूती से जुड़े हुए हैं। अंजीर के पेड़ों की अनेक जातियों में बर्र की परागणकारी जातियों के बीच मजबूत संबंध है (चित्र 13.6)। इसका अर्थ यह है कि कोई दी गई अंजीर जाति केवल इसके 'साथी' बर्र की जाति से ही परागित हो सकती है, बर्र की दुसरी जाति से नहीं। मादा बर्र फल को न केवल अंडनिक्षेपण (अंडे देने) के लिए काम में लेती है; बल्कि फल के भीतर ही वृद्धि कर रहे बीजों को डिंबकों (लार्वी) के पोषण के लिए प्रयोग करती है। अंडे देने के लिए उपयुक्त स्थल की तलाश करते हुए बर्र अंजीर पुष्पक्रम (इनफ्लोरेसेंस) को

परागित करती है। इसके बदले में अंजीर अपने कुछ परिवर्धनशील बीज, परिवर्धनशील बर्र के डिंबकों को, आहार के रूप में देती है।

आर्किड पुष्प प्रतिरूपों की आश्चर्यचिकत कर देने वाली विविधता दर्शाते हैं जिसमें से अनेक सही परागणकारी कीट (भ्रमरों और गुंज मिक्षकाओं) को आकर्षित करने के लिए विकसित हुए हैं तािक इसके द्वारा निश्चितरूप से परागण हो सके (चित्र 13.7)। सभी आर्किड यह पुरस्कार पेश नहीं करते। ऑफ्रिस नाम भूमध्य सागरीय मेडिटेरेनियन आर्किड मिक्षका (बी) के एक जाित परागण कराने के लिए 'लैंगिक कपट' (सेक्सुअल डिसीट) का सहारा लेता है। इस पुष्प की एक पंखुड़ी साइज, रंग और चिह्नों में मादा मिक्षका से मिलती–जुलती है। नर मिक्षका इसे मादा समझकर इसकी ओर आकर्षित होती है, पुष्प के साथ 'कूट (छद्म) मैथून' (स्यूडोकपुलेट) करती है। इस प्रक्रम के दौरान इस पर पुष्प से पराग झडकर उस

चित्र 13.7 आर्किड पुष्प का मक्खी द्वारा परागण

पर गिरते हैं जब वही मिक्षका दूसरे पुष्प से 'कूट (छद्म) मैथुन' करती है तो यहाँ शरीर पर लगे पराग डालती है और इस प्रकार पुष्प को परागित करती है। मगर विकास के दौरान किसी भी कारण से मादा मिक्षका का रंग-प्रतिरूप जरा-सा भी बदल जाता है तो परागण की सफलता कम रहेगी अत: अर्किड पुष्प अपनी पंखुड़ी को मादा मिक्षका के सदृश बनाए रखते हैं।

सारांश

पारिस्थितिकी (इकोलॉजी) जीवों की अपने पर्यावरण के अजीवी (भौतिक-रासायिनक कारकों) और जैविक घटकों (अन्य जातियों) के संबंधों का अध्ययन है। यह जीव विज्ञान की शाखा है और जीव विज्ञानीय संगठन के चार स्तरों से संबंधित है – जीव, समिष्ट, समुदाय और जीवोम (बायोम)।

ताप, प्रकाश, जल और मृदा पर्यावरण के सबसे महत्त्वपूर्ण भौतिक कारक है जिनके प्रित जीव विभिन्न प्रकार से अनुकूलित हैं। जीवों द्वारा आंतरिक पर्यावरण (होमियोस्टैसिस) को स्थिर रखने से इष्टतम कार्य निष्पादन हो सकता है, लेकिन परिवर्तनशील बाह्य पर्यावरण के संदर्भ में केवल कुछ ही जीव (नियामक) होमियोस्टेटिस के लिए सक्षम हैं। जीव अपने आंतरिक पर्यावरण का आंशिक रूप से नियमन कर लेते हैं अथवा केवल उनके अनुरूप कर लेते हैं। कुछ अन्य जातियों ने स्थान प्रवासन अथवा समय (ग्रीष्म निष्क्रियता, शीत निष्क्रियता और उपरित/क्रमश: ऐस्टीवेशन, हाइबर्नेशन और डायपाज) में प्रतिकृल परिस्थितियों से बचने के लिए अनुकूलन विकसित कर लिए हैं।

प्राकृतिक वरण द्वारा विकासीय परिवर्तन समिष्ट स्तर पर होता है और इसिलए समिष्ट पारिस्थितिकी, पारिस्थितिकी का एक महत्त्वपूर्ण क्षेत्र है। समिष्ट िकसी दी गई जाति के व्यष्टियों का समूह है जो सीमांकित भौगोलिक क्षेत्र में समान संसाधनों के लिए स्पर्धा करते हैं या उन संसाधनों में जन्म और मृत्यु-दरें, लिंग अनुपात और आयु-वितरण, आदि गुण होते हैं जो व्यष्टियों में नहीं होते। समिष्ट में नरों और मादाओं के भिन्न आयु वर्ग का अनुपात प्राय: आयु पिरामिड के रूप में भौगोलिकत: दर्शाया जाता है। इसका आकार यह बताता है कि क्या समिष्ट स्थिर है, बढ़ रही है या घट रही है।

समष्टि पर किसी भी कारक का पारिस्थितिक प्रभाव आमतौर पर उसकी साइज में प्रतिबिंबित होता है, जिसे जाति के अनुसार विभिन्न तरीकों (संख्या, जीवभार, आवरण प्रतिशत, आदि) से व्यक्त किया जा सकता है।

समिष्टयाँ जन्म और आप्रवासन से बढ़ती हैं तथा मृत्यु और उत्प्रवासन से घटती हैं। जब संसाधन असीमित होते हैं तो वृद्धि प्राय: चरघातांकी है लेकिन जब संसाधन उत्तरोत्तर सीमाकारी होते जाते हैं तब वृद्धि प्रतिरूप लॉजिस्टिक (संभार तंत्रीय) हो जाती है। दोनों मामले में, वृद्धि अंतत: पर्यावरण की पोषण क्षमता से सीमित होती है। प्राकृतिक वृद्धि की इंट्रीनिजक दर (r) किसी समिष्ट का वृद्धि करने की जन्मजात शिक्त की माप है।

प्रकृति में भिन्न जातियों की समिष्टयाँ आवास में पृथक नहीं रहती; बिल्क कई तरह से पारस्परिक क्रिया करती हैं। दो जातियों के बीच पारस्परिक इन क्रियाओं को पिरणाम के आधार पर स्पर्धा (दोनों जातियों को हानि होती है), परभक्षण और परजीविता जिसमें एक जाति को लाभ होता है जबिक दूसरी को हानि, सहभोजिता जिसमें एक को लाभ पहुँचता है और दूसरी अप्रभावित रहती है अंतरजातीय परजीविता जिसमें एक को हानि होती है और दूसरा अप्रभावित रहता है तथा सहोपकारिता जिसमें दोनों जातियों को लाभ होता है। परभक्षण एक बहुत महत्त्वपूर्ण प्रक्रम है जिसके द्वारा पोषी ऊर्जा अंतरण सुगम होता है और कुछ परभक्षी अपनी शिकार समिष्टियों को नियंत्रित करने में सहायक होते हैं। पादपों ने शाकाहार के विरूद्ध आकारिकीय और रासायिनक विविध रक्षाविधियाँ विकसित की हैं। स्पर्धी में, ऐसा समझा जाता है कि उत्तम स्पर्धी घटिया स्पर्धी को विलुप्त कर देता है (स्पर्धी बहिष्कार सिद्धांत), लेकिन अनेक निकट संबंधित जातियों ने विभिन्न क्रियाविधियाँ विकसित कीं, जो उनके सह-अस्तित्व को सुगम बनाती हैं। कुछ प्रकृति में सहोपकारिता के कुछ सबसे आकर्षक मामले पादप-परागणकारी पारस्परिक क्रिया में देखे जा सकते हैं।

अभ्यास

- 1. शीत निष्क्रियता (हाइबर्नेशन) से उपरित (डायपाज) किस प्रकार भिन्न है?
- 2. अगर समुद्री मछली को अलवणजल (फ्रेशवाटर) की जलजीवशाला (एक्वेरियम) में रखा जाता है तो क्या वह मछली जीवित रह पाएगी? क्यों और क्यों नहीं?
- 3. लक्षण प्ररूपी (फीनोटाइपिक) अनुकूलन की परिभाषा दीजिए। एक उदाहरण दीजिए।

जीव और समष्टियाँ

- 4. अधिकतर जीवधारी 45° सेंटी. से अधिक तापमान पर जीवित नहीं रह सकते। कुछ सूक्ष्मजीव (माइक्रोव) ऐसे आवास में जहाँ तापमान 100° सेंटी. अधिक है, कैसे जीवित रहते हैं?
- 5. उन गुणों को बताइए जो व्यष्टियों में तो नहीं पर समष्टियों में होते हैं।
- 6 अगर चरघातांकी रूप से (एक्पोनेन्शियली) बढ़ रही समिष्ट 3 वर्ष दोगुने साइज की हो जाती है, तो समिष्ट की वृद्धि की इंट्रोनिजक दर (r) क्या है?
- 7. पादपों में शाकाहारिता (हर्बिवोरी) के विरूद्ध रक्षा करने की महत्त्वपूर्ण विधियाँ बताइए।
- 8. ऑर्किड पौधा, आम के पेड़ की शाखा पर उग रहा है। ऑर्किड और आम के पेड़ के बीच पारस्परिक क्रिया का वर्णन आप कैसे करेंगे?
- 9. कीट पीड़कों (पेस्ट/इंसेक्ट) के प्रबंध के लिए जैव-नियंत्रण विधि के पीछे क्या पारिस्थितिक सिद्धांत है?
- 10. निम्नलिखित के बीच अंतर कीजिए -
 - (क) शीत निष्क्रियता और ग्रीष्म निष्क्रियता (हाइबर्नेशन एंड एस्टीवेशन)
 - (ख) बाह्योष्मी और आंतरोष्मी (एक्टोथर्मिक एंड एंडोथर्मिक)
- 11. निम्नलिखित पर संक्षित टिप्पणी (नोट) लिखिए -
 - (क) मरुस्थल पादपों और प्राणियों का अनुकूलन
 - (ख) जल की कमी के प्रति पादपों का अनुकूलन
 - (ग) प्राणियों में व्यावहारिक (बिहेवियोरल) अनुकूलन
 - (घ) पादपों के लिए प्रकाश का महत्त्व
 - (च) तापमान और पानी की कमी का प्रभाव तथा प्राणियों का अनुकूलन
- 12. अजीवीय (एबायोटिक) पर्यावरणीय कारकों की सूची बनाइए।
- 13. निम्नलिखित का उदाहरण दीजिए -
 - (क) आतपोद्भिद (हेलियोफाइट)
 - (ख) छायोद्भिद "" स्कियोफाइट
 - (ग) सजीवप्रजक (विविपेरस) अंकुरण वाले पादप
 - (घ) आंतरोष्मी (एंडोथर्मिक) प्राणी
 - (च) बाह्योष्मी (एक्टोथर्मिक) प्राणी
 - (छ) नितलस्थ (बेंथिक) जोन का जीव
- 14. समष्टि (पॉपुलेशन) और समुदाय (कम्युनिटी) की परिभाषा दीजिए।
- 15. निम्नलिखित की परिभाषा दीजिए और प्रत्येक का एक-एक उदाहरण दीजिए
 - (क) सहभोजिता (कमेंसेलिज्म)
 - (ख) परजीविता (पैरासिटिज्म)
 - (ग) छद्मावरण (कैमुफ्लॉज)
 - (घ) सहोपकारिता (म्युचुऑलिज्म)
 - (च) अंतरजातीय स्पर्धा (इंटरस्पेसिफिक कंपीटीशन)

- 16. उपयुक्त आरेख (डायग्राम) की सहायता से लॉजिस्टिक (संभार तंत्र) समष्टि (पॉपुलेशन) वृद्धि का वर्णन कीजिए।
- 17. निम्नलिखित कथनों में परजीविता (पैरासिटिज्म) को कौन सा सबसे अच्छी तरह स्पष्ट करता है -
 - (क) एक जीव को लाभ होता है।
 - (ख) दोनों जीवों को लाभ होता है।
 - (ग) एक जीव को लाभ होता है दूसरा प्रभावित नहीं होता है।
 - (घ) एक जीव को लाभ होता है दूसरा प्रभावित होता है।
- 18. समष्टि (पॉपुलेशन) की कोई तीन महत्वपूर्ण विशेषताएँ बताइए और व्याख्या कीजिए।