Finite-size DMRG characterization of the 1D Fermi-Hubbard model phase diagram

University of Pisa, a.y. 2024-2025

Alessandro Gori*

Abstract

The one-dimensional Fermi-Hubbard model at zero temperature is studied, employing finite-size DMRG algorithm to investigate some of its ground state properties. The model contains a hopping term between neighbouring sites, a finite on-site interaction energy, and a chemical potential. [To be continued...]

The entire project heavily relies upon the precedent project carried out by the author together with Marco Pompili, where the 1D Bose-Hubbard model was studied using finite-size DMRG. You may find at this link our previous work.

All of the code can be found at open-access in this repository: https://github.com/nepero27178/FermiHubbardDMRG

Contents

1	Theoretical introduction	2
	1.1 Bosonization	
	1.3 Adding one effective interaction	
	Algorithms and simulations 2.1 Finite-size DMRG	2
3	Data analysis and results	2

 $[*]a.gori23@studenti.unipi.it\ /\ nepero27178@github.com$

1 Theoretical introduction

```
[To be continued...]
```

1.1 Bosonization

```
[To be continued...]
```

1.2 The Fermi-Hubbard model

```
[To be continued...]
```

1.3 Adding one effective interaction

```
[To be continued...]
```

2 Algorithms and simulations

```
[To be continued...]
```

2.1 Finite-size DMRG

```
[To be continued...]
```

3 Data analysis and results

```
[To be continued...]
```