CMPSC 465: LECTURE XVII

Shortest Path with Negative Weights

Ke Chen

October 08, 2025

► Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.

- ▶ Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- ► Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- ► Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- ► Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- ► Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- ▶ Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- ► Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- ► Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- ► Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- ▶ Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?

- Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?
- ► Even worse, if there are negative cycles, the "shortest distance" is not well-defined.

- Recall that the correctness of Dijkstra's algorithm relies on all edge weights being nonnegative.
- What happens if there are negative edges?
- ► Even worse, if there are negative cycles, the "shortest distance" is not well-defined.

Note that in directed graphs, negative edges ≠ negative cycles; however, in undirected graphs, a negative edge = a negative cycle. (Why?)

$$\frac{\mathsf{Update}((v,w) \in E)}{\left| \begin{array}{c} \mathbf{if} \ dist[w] > dist[v] + \ell(v,w) \ \mathbf{then} \\ \\ \left\lfloor \ dist[w] = dist[v] + \ell(v,w) \end{array} \right.}$$

Recall the Update operation:

▶ The shortest distance from S to any node can be correctly computed by a sequence of Update calls along a shortest path.

Recall the Update operation:

► The shortest distance from S to any node can be correctly computed by a sequence of Update calls along a shortest path. Remains valid with negative edges.

Recall the Update operation:

$$\label{eq:dist_equation} \frac{\mathsf{Update}\big((v,w) \in E\big)}{\left| \begin{array}{c} \mathbf{if} \ dist[w] > dist[v] + \ell(v,w) \ \mathbf{then} \\ \left\lfloor \ dist[w] = dist[v] + \ell(v,w) \end{array} \right.}$$

► The shortest distance from S to any node can be correctly computed by a sequence of Update calls along a shortest path. Remains valid with negative edges.

$$\frac{\mathsf{Update}((v,w) \in E)}{\left| \begin{array}{c} \mathbf{if} \ dist[w] > dist[v] + \ell(v,w) \ \mathbf{then} \\ \left\lfloor \ dist[w] = dist[v] + \ell(v,w) \end{array} \right.}$$

- ► The shortest distance from S to any node can be correctly computed by a sequence of Update calls along a shortest path. Remains valid with negative edges.
- Having additional Update calls doesn't hurt.

$$\begin{tabular}{|c|c|c|c|} \hline Update & & & & \\ \hline & if & $dist[w] > dist[v] + \ell(v,w)$ then \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

- ► The shortest distance from S to any node can be correctly computed by a sequence of Update calls along a shortest path. Remains valid with negative edges.
- ► Having additional Update calls doesn't hurt.
- Dijkstra applies a smart sequence of only O(|E|) Update calls that's guaranteed to include the required sequence for each node if no negative weights.

- ► The shortest distance from S to any node can be correctly computed by a sequence of Update calls along a shortest path. Remains valid with negative edges.
- ► Having additional Update calls doesn't hurt.
- Dijkstra applies a smart sequence of only O(|E|) Update calls that's guaranteed to include the required sequence for each node if no negative weights. It may fail with negative edges.

Can we find a sequence of Update calls that always work?

Can we find a sequence of Update calls that always work?

Yes! The following sequence contains (ALL) possible sequences of Update calls of length at most |V|-1:

Idea Call Update on each edge, and repeat |V|-1 times.

▶ Why |V| - 1?

Idea Call Update on each edge, and repeat |V|-1 times.

▶ Why |V|-1? A shortest path contains at most |V|-1 edges.

Idea Call Update on each edge, and repeat |V|-1 times.

- ▶ Why |V| 1? A shortest path contains at most |V| 1 edges.
- ► The order of edges doesn't matter.

Idea Call Update on each edge, and repeat |V|-1 times.

- ▶ Why |V| 1? A shortest path contains at most |V| 1 edges.
- ▶ The order of edges doesn't matter.

Example

Idea Call Update on each edge, and repeat |V|-1 times.

- ▶ Why |V| 1? A shortest path contains at most |V| 1 edges.
- ▶ The order of edges doesn't matter.

Example

Idea Call Update on each edge, and repeat |V|-1 times.

- ▶ Why |V| 1? A shortest path contains at most |V| 1 edges.
- ▶ The order of edges doesn't matter.

Example


```
Input: Graph G = (V, E, \ell), starting vertex s
Output: Shortest path from s to any other vertex
Bellman-Ford(G, s)
   // dist stores distances from s
   foreach v \in V do
   dist[v] = \infty
   dist[s] = 0
   repeat |V|-1 times do
      foreach e \in E do
      Update(e)
```

```
Input: Graph G = (V, E, \ell), starting vertex s
Output: Shortest path from s to any other vertex
Bellman-Ford(G, s)
   // dist stores distances from s
   foreach v \in V do
    dist[v] = \infty
   dist[s] = 0
   repeat |V|-1 times do
       foreach e \in E do
      \bigcup Update(e)
```

Time complexity?

```
Input: Graph G = (V, E, \ell), starting vertex s
Output: Shortest path from s to any other vertex
Bellman-Ford(G, s)
   // dist stores distances from s
   foreach v \in V do
    dist[v] = \infty
   dist[s] = 0
   repeat |V|-1 times do
       foreach e \in E do
      \bigcup Update(e)
```

Time complexity? $O(|V| \cdot |E|)$

```
Input: Graph G = (V, E, \ell), starting vertex s
Output: Shortest path from s to any other vertex
Bellman-Ford(G, s)
   // dist stores distances from s
   foreach v \in V do
    dist[v] = \infty
   dist[s] = 0
   repeat |V|-1 times do
      foreach e \in E do
     \bigcup Update(e)
```

Time complexity? $O(|V| \cdot |E|)$

Can we do better?

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Round:

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Round: 1

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Round: 1

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Consider the following example:

Assume we Update edges in the order (S,A), (B,A), (B,C), (C,D), (D,E), (F,E), (G,F), (S,G), (F,A), (A,E), (E,B)

Can we do better?

► Can stop earlier if no Update happened in the previous iteration.

- ► Can stop earlier if no Update happened in the previous iteration.
- Can skip edges from a node whose dist was not Updated in the previous iteration.

- ► Can stop earlier if no Update happened in the previous iteration.
- ► Can skip edges from a node whose *dist* was not Updated in the previous iteration.
- ▶ Worst-case remains $O(|V| \cdot |E|)$.

- ► Can stop earlier if no Update happened in the previous iteration.
- ► Can skip edges from a node whose *dist* was not Updated in the previous iteration.
- ▶ Worst-case remains $O(|V| \cdot |E|)$.
- \blacktriangleright JT Fineman improved it to $\tilde{O}\left(|V|^{\frac{8}{9}}|E|\right)$ in STOC 2024.

Can we do better?

- ▶ Can stop earlier if no Update happened in the previous iteration.
- ► Can skip edges from a node whose *dist* was not Updated in the previous iteration.
- ▶ Worst-case remains $O(|V| \cdot |E|)$.
- ▶ JT Fineman improved it to $\tilde{O}\left(|V|^{\frac{8}{9}}|E|\right)$ in STOC 2024.

What happens if we run |V| iterations?

Can we do better?

- ► Can stop earlier if no Update happened in the previous iteration.
- ► Can skip edges from a node whose *dist* was not Updated in the previous iteration.
- ▶ Worst-case remains $O(|V| \cdot |E|)$.
- \blacktriangleright JT Fineman improved it to $\tilde{O}\left(|V|^{\frac{8}{9}}|E|\right)$ in STOC 2024.

What happens if we run |V| iterations?

► Shouldn't be any Update in the last round...

Can we do better?

- ► Can stop earlier if no Update happened in the previous iteration.
- ► Can skip edges from a node whose *dist* was not Updated in the previous iteration.
- ▶ Worst-case remains $O(|V| \cdot |E|)$.
- ▶ JT Fineman improved it to $\tilde{O}\left(|V|^{\frac{8}{9}}|E|\right)$ in STOC 2024.

What happens if we run |V| iterations?

► Shouldn't be any Update in the last round... unless there are negative cycles!

Can we do better?

- ► Can stop earlier if no Update happened in the previous iteration.
- ► Can skip edges from a node whose *dist* was not Updated in the previous iteration.
- ▶ Worst-case remains $O(|V| \cdot |E|)$.
- ▶ JT Fineman improved it to $\tilde{O}\left(|V|^{\frac{8}{9}}|E|\right)$ in STOC 2024.

What happens if we run |V| iterations?

- ► Shouldn't be any Update in the last round... unless there are negative cycles!
- ▶ This can be used to detect negative cycles in a graph.

What if we need pairwise shortest paths, not just from s?

What if we need pairwise shortest paths, not just from s?

► We can run Bellman-Ford starting from each vertex. The running time is

What if we need pairwise shortest paths, not just from s?

We can run Bellman-Ford starting from each vertex. The running time is $O\left(|V|^2\cdot|E|\right)$, which can be $O\left(|V|^4\right)$ if the graph is dense.

What if we need pairwise shortest paths, not just from s?

We can run Bellman-Ford starting from each vertex. The running time is $O\left(|V|^2\cdot |E|\right)$, which can be $O\left(|V|^4\right)$ if the graph is dense.

To store pairwise shortest distances, we need to upgrade our $dist[\cdot]$ array to a $dist[\cdot, \cdot]$ matrix.

To store pairwise shortest distances, we need to upgrade our $dist[\cdot]$ array to a $dist[\cdot,\cdot]$ matrix.

$$\qquad \qquad \textbf{Initially, } \ \mathit{dist}[a,b] = \begin{cases} \ell(a,b) & \text{if } (a,b) \in E \text{ is an edge} \\ \infty & \text{otherwise} \end{cases}.$$

- ▶ To store pairwise shortest distances, we need to upgrade our $dist[\cdot]$ array to a $dist[\cdot,\cdot]$ matrix.
- ▶ Initially, $dist[a,b] = \begin{cases} \ell(a,b) & \text{if } (a,b) \in E \text{ is an edge} \\ \infty & \text{otherwise} \end{cases}$.
- For simplicity, assume vertices are labeled by $\{1, 2, \dots, n\}$.

- ▶ To store pairwise shortest distances, we need to upgrade our $dist[\cdot]$ array to a $dist[\cdot, \cdot]$ matrix.
- $\qquad \qquad \textbf{Initially, } \ dist[a,b] = \begin{cases} \ell(a,b) & \text{if } (a,b) \in E \text{ is an edge} \\ \infty & \text{otherwise} \end{cases}.$
- For simplicity, assume vertices are labeled by $\{1, 2, \dots, n\}$.
- ▶ Repeating Bellman-Ford fills dist row by row, first compute all correct values for $dist[1,\cdot]$, then for $dist[2,\cdot]$, ..., each row takes $O(|V|\cdot|E|)$ time.

- ▶ To store pairwise shortest distances, we need to upgrade our $dist[\cdot]$ array to a $dist[\cdot, \cdot]$ matrix.
- $\qquad \qquad \textbf{Initially, } \ dist[a,b] = \begin{cases} \ell(a,b) & \text{if } (a,b) \in E \text{ is an edge} \\ \infty & \text{otherwise} \end{cases}.$
- For simplicity, assume vertices are labeled by $\{1, 2, \dots, n\}$.
- ▶ Repeating Bellman-Ford fills dist row by row, first compute all correct values for $dist[1,\cdot]$, then for $dist[2,\cdot]$, ..., each row takes $O(|V|\cdot|E|)$ time.
- ► Can we use information from other rows to speed things up?