

User Group Meeting presentations 2016

Parsing and visualizing Chemkin formatted database in GNU Octave

Manikandarajan.M, Kameshwaran.B.N

Dept. of Mechanical Engineering, Velammal Engineering College

INTRODUCTION

 Molar Enthalpy, Entropy, Specific Heat of gases are significant in combustion reactions. Thermo chemistry deals with heat change in chemical reactions, which is a phenomena to be considered in simulation of combustions.

OBJECTIVE

- A parser to read all polynomial coefficients for a gas species from the Chemkin formatted database.
- Using the polynomials to calculate $c_{\rm p}$, ${\rm H^0}$, ${\rm S^0}$ in a given temperature using NASA defined formula
- Study their thermodynamic behavior in a range of temperature.

Database file

The NASA polynomials have the form:

$$Cp/R = a1 + a2 T + a3 T^2 + a4 T^3 + a5 T^4$$

 $H/RT = a1 + a2 T / 2 + a3 T^2 / 3 + a4 T^3 / 4 + a5 T^4 / 5 + a6/T$
 $S/R = a1 lnT + a2 T + a3 T^2 / 2 + a4 T^3 / 3 + a5 T^4 / 4 + a7$

Plot for H @ 1298 K

Units: H - cal/mol 1 mol = 4.18 J S - cal/mol-k 1 mol = $\frac{Grams}{Mol.wt}$ $c_p - cal/mol-k$ 1 mol(O) = 15.9994 gms

Plot for H2 @ 1298 K

Plot for CH4 @ 2000 K

RESULTS AND DISCUSSIONS

- •Molar Enthalpy of 'H' is always more than that of ' H_2 '@ same temperature.
- •This says, more energy is involved in reactions with H.
- The thermodynamic properties for gaseous species are visualized by parsing the database and can further be used in other simulation analyses.

REFERENCES

1.https://www.gnu.org/software/octave/doc/v4.0.0/
 2.http://www.edxengine.com

ACKNOWLDEGEMENTS

- Mechanical department- Velammal Engineering College
- Edxengine, www.edxengine.com