8 Product spaces

Definition 8.1 (Product space). Let $(\Omega_i, i \in I)$ be an arbitrary family of sets. We denote by $\Omega = \times_{i \in I} \Omega_i$ the sets of maps $\omega : I \to \bigcup_{i \in I} \Omega_i$ such that $\omega(i) \in \Omega_i$ for all $i \in I$. Ω is called the **product** of the spaces $(\Omega_i, i \in I)$, or briefly the **product space**. If $\Omega_i = \Omega_0$ for all $i \in I$, then we write $\Omega = \Omega_0^I$.

Example 8.2.

(i) If $\Omega_1 = \{1, 2\}$ and $\Omega_2 = \{1, 2, 3\}$, then $\Omega_1 \times \Omega_2$ is isomorphic to

$$\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}.$$

- (ii) If $\Omega_0 = \mathbb{R}$ and $I = \{1, 2\} \times \{1, 2, 3\}$, then \mathbb{R}^I is isomorphic to $\mathcal{M}(2, 3)$.
- (iii) If $\Omega_0 = \mathbb{R}$ and $I = \{1, 2\}$, then $\mathbb{R}^{\{1, 2\}}$ is isomorphic to the customary \mathbb{R}^2 .
- (iv) If $\Omega_0 = \mathbb{R}$ and $I = \mathbb{N}$, then $\mathbb{R}^{\mathbb{N}}$ is the space of sequences $(\omega(n), n \in \mathbb{N})$ in \mathbb{R} .
- (v) If $\Omega_0 = \mathbb{R}$ and $I = \mathbb{R}$, then $\mathbb{R}^{\mathbb{R}}$ is the set of maps $\mathbb{R} \to \mathbb{R}$.

Definition 8.3 (Coordinate maps). Let $(\Omega_i, i \in I)$ be an arbitrary family of sets and let Ω be the product of the spaces $(\Omega_i, i \in I)$. For every $i \in I$, $X_i : \Omega \to \Omega_i$, $\omega \mapsto \omega(i)$, denotes the *i*th **coordinate map**.

Definition 8.4 (Product σ -algebra). Let $(\Omega_i, \mathcal{A}_i)$, $i \in I$, be measurable spaces and let Ω be the product of the spaces $(\Omega_i, i \in I)$. The **product** σ -algebra

$$\mathcal{A} = igotimes_{i \in I} \mathcal{A}_i$$

is the smallest σ -algebra on Ω such that for every $i \in I$, the coordinate map X_i is measurable with respect to $\mathcal{A} - \mathcal{A}_i$, i.e.,

$$\mathcal{A} = \sigma(X_i, i \in I).$$

If $(\Omega_i, \mathcal{A}_i) = (\Omega_0, \mathcal{A}_0)$ for all $i \in I$, then we write $\mathcal{A} = \mathcal{A}_0^{\otimes I}$.