검계획과 응용

제7강 (7장)

요인배치법 1

이번시간

- 7.1 대비와 직교분해
- 7.2 2² 요인배치법
- 7.3 2³ 요인배치법

남계획과 응용

제7강 (7장)

요인배치법 1

다음시간

- $7.4 2^n$ 요인배치법
- 7.5 3² 요인배치법
- 7.6 회귀모형

정보통계학과 백재욱 교수

제7강 요인배치법1

7.1 대비와 직교분해

◆ kⁿ 요인배치법contrast)

- 요인의 수가 n이고 각 요인의 수준수가 k인 실험
- 요인의 수 및 수준수가 늘어나면 실험의 횟수가 비약적으로 증가함

◆ 대 비 (contrast)

 T_1 , T_2 , …, T_a 가 각 처리수준에서 측정값들의 합인 경우 선형식 $L = c_1 T_1 + c_2 T_2 + \dots + c_a T_a$ 에서

$$c_1 + c_2 + \dots + c_a = 0 \quad \dots \quad (7.3)$$

인 조건이 만족될 때 이 선형식을 대비라 한다.

대비의 변동
$$SS_L = \frac{L^2}{D \times r}$$
 으로 자유도 1 ($D = c_1^2 + c_2^2 + \cdots + c_a^2$, r 은 반복수)이다.

◆ 직교 (orthogonal)

2개의 대비가

$$L_1 = c_1 T_1 + c_2 T_2 + \dots + c_a T_a$$

$$L_2 = d_1 T_1 + d_2 T_2 + \dots + d_a T_a$$

로 주어질 때

$$c_1 d_1 + c_2 d_2 + \dots + c_a d_a = 0$$

이 성립하면, 2개의 대비 L_1 과 L_2 는 서로 $\[\mathbf{Q}_{\mathbf{w}}(\mathbf{orthogonal}) \]$ 한다고 말한다.

◆ 직교분해 (orthogonal decomposition)

수준수가 a인 처리 A 의 변동 SS_A 는 각각의 자유도가 1인 서로 직교하는 (a-1)개의 대비에 의한 변동으로 분해할 수 있다. 이때 서로 직교하는 대비를

$$L_1$$
, L_2 , \cdots , L_{a-1}

이라 하면 다음이 성립한다.

$$SS_A = SS_{L_1} + SS_{L_2} + \cdots + SS_{L_{a-1}}$$

예제 7.1

- 1) 원료의 제조회사 $A(A_0:$ 자회사, $A_1:$ 국내 타회사, $A_2:$ 외국회사)와 성형온도 $B(B_0: 100 ^\circ C, B_1: 110 ^\circ C B_2: 120 ^\circ C)$ 는 플라스틱 강도에 영향을 미치는가?
- 2) 제조회사(A)가 영향을 미친다면 이는 '국산과 외제 간의 차이' 때문인가 아니면 '자사와 국내 타회사 간의 차이' 때문인가?
- 3) 계량요인(B)이 영향을 미친다면 온도의 효과는 1차적인가 2차적인가?

<표 7-1> 플라스틱 강도

AB	B_0	B_1	B_2	$T_{i.}$
A_0	11	18	25	54
A ₁	1	6	14	21
A_2	6	15	18	39
T _{.j}	18	39	57	T = 114

풀이 1) 원료의 제조회사 A와 성형온도 B는 플라스틱강도에 유의한 영향을 미치는가?

< 분산분석표 >

요 인	제곱합	자유도	평균제곱	F_0
A	182	2	91	45.5**
В	254	2	127	63.5**
E	8	4	2	
T	444	8		

물이 2) '국산과 외제 간의 차이' 때문인가? 또는 '자회사와 국내 타회사 간의 차이' 때문인가?

$$L_1=$$
국산과 외제 간의 차이 $=\frac{1}{6}(T_{0.}+T_{1.})-\frac{1}{3}T_{2.}=-0.5$ $L_2=$ 자회사와 국내 타회사 간의 차이 $=\frac{1}{3}T_{0.}-\frac{1}{3}T_{1.}=11$ 2개의선형식 L_1 과 L_2 의계수는 $c_1=\frac{1}{6}$, $c_2=\frac{1}{6}$, $c_3=-\frac{1}{3}$ $d_1=\frac{1}{3}$, $d_2=-\frac{1}{3}$, $d_3=0$ 이므로

풀이 (계속)

선형식 L_1 과 L_2 는 대비이며 <mark>서로 직교</mark>한다.

$$SS_A = SS_{L_1} + SS_{L_2}$$

$$SS_{L_1} = \frac{(L_1)^2}{\left(\sum c_i^2\right) \times r} = \frac{(-0.5)^2}{\left\{\left(\frac{1}{6}\right)^2 + \left(\frac{1}{6}\right)^2 + \left(-\frac{1}{3}\right)^2\right\} \times 3} = 0.5$$

$$SS_{L_2} = \frac{(L_2)^2}{\left(\sum d_i^2\right) \times r} = \frac{(11)^2}{\left\{\left(\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2\right\} \times 3} = 181.5$$

 $SS_{L_1} <<< SS_{L_2}$ 제조회사 A에 의한 변동은 '국산과 외제 간의 차이' 때문이 기 보다는 '자회사와 국내 타 회사 간의 차이' 때문이다.

풀이 3) 성형온도의 경우 1차적(linear) 효과가 큰가? 또는 2차적(quadratic)인 효과가 큰가?

1차효과:
$$L_l = (T_{.1} - T_{.0}) + (T_{.2} - T_{.1}) = T_{.2} - T_{.0} = 39$$
 로주어지고 $c_1 = -1$, $c_2 = 0$, $c_3 = +1$ 이므로 대비이다.

2차 효과:
$$L_q = (T_{.2} - T_{.1}) - (T_{.1} - T_{.0}) = T_{.2} - 2T_{.1} + T_{.0} = -3$$
으로 주어지고 $d_1 = 1$, $d_2 = -2$, $d_3 = 1$ 이므로 대비이고 L_l 과 L_q 는 서로 직교한다(직접 확인!).

풀이 (계속)

각대비의변동:
$$SS_l = \frac{(39)^2}{2 \times 3} = 253.5$$

$$SS_q = \frac{(-3)^2}{6 \times 3} = 0.5$$

$$SS_B = SS_l + SS_q = 254$$

$$SS_l >>> SS_q$$

변동중에서 1차 효과가 대부분 차지함

풀이 (계속)

요 인	제곱합	자유도	평균제곱	$\boldsymbol{F_0}$
A	182	2	91	45.5**
L_1	0.5	1	0.5	0.25
L_2	181.5	1	181.5	90.75**
В	254	2	127	63.5**
L_l	253.5	1	253.5	117.75**
L_q	0.5	1	0.5	0.25
E	8	4	2	
T	444	8		

R 실습

```
gang \langle -c(11, 18, 25, 1, 6, 14, 6, 15, 18) \rangle
```

wol < -c(rep(0, 3), rep(1, 3), rep(2, 3))

temp < -c(rep(c(0, 1, 2), 3))

plastic.data <- data.frame(gang, wol, temp)</pre>

plastic.data\$wol <- factor(plastic.data\$wol, levels=c(0, 1, 2), labels=c("a0", "a1", "a2"))

plastic.data\$temp <- factor(plastic.data\$temp, levels=c(0, 1, 2), labels=c("b0", "b1", "b2"))

anova <- aov(gang ~ wol + temp, data=plastic.data)

summary(anova)

```
      Df
      Sum Sq
      Mean Sq
      F value
      Pr(>F)

      wol
      2
      182
      91
      45.5
      0.001773 **

      temp
      2
      254
      127
      63.5
      0.000932 ***

      Residuals
      4
      8
      2

      ----
      Signif. codes: 0 '***' 0.001' '**' 0.01' '*' 0.05 '.' 0.1' '
```

R 실습

c1 = c(1/6, 1/6, -1/3)

c2 = c(1/3, -1/3, 0)

mat.wol = cbind(c1, c2)

contrasts(plastic.data\$wol) = mat.wol

c3 = c(-1, 0, 1)

c4 = c(1, -2, 1)

mat.temp = cbind(c3, c4)

contrasts(plastic.data\$temp) = mat.temp

mod.contrast = aov(gang ~ wol + temp, data = plastic.data)

summary(mod.contrast, split=list(wol=list("국산과 외제"=1, "자사와 국내 타회사"=2),

temp=list("linear"=1, "quadratic"=2)))

```
Df Sum Sq Mean Sq F value Pr(>F)
                   2 182.0
                            91.0 45.50 0.001773 **
wol
  wol: 국산과 외제 1 0.5 0.5 0.25 0.643330
  wol: 자사와 국내 타회사 1 181.5 181.5 90.75 0.000678 ***
                   2 254.0
                           127.0 63.50 0.000932 ***
temp
 temp: linear 1 253.5 253.5 126.75 0.000355 ***
               1 0.5 0.5
                                    0.25 0.643330
  temp: quadratic
Residuals
              4 8.0 2.0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
```

정보통계학과 백재욱 교수

제7강 요인배치법1

7.2 2² 요인배치법

◆ 반복이 없는 경우

〈표 7-2〉 2² 요인배치법의 자료배열

	A_0	A_1	$T_{.j}$
$\boldsymbol{B_0}$	x_{00}	x_{10}	$T_{.0}$
$\boldsymbol{\mathit{B}}_{1}$	<i>x</i> ₀₁	<i>x</i> ₁₁	<i>T</i> _{.1}
$T_{i.}$	$T_{0.}$	$T_{1.}$	T

 $A = \frac{1}{2} (x_{11} + x_{10} - x_{01} - x_{00}) = \frac{1}{2} (ab + a - b - (1)) = \frac{1}{2} (T_{1.} - T_{0.})$ $B = \frac{1}{2} (x_{11} + x_{01} + x_{10} - x_{00}) = \frac{1}{2} (ab + b - a - (1)) = \frac{1}{2} (T_{.1} - T_{.0})$

$$AB = \frac{1}{2} \left[(x_{11} - x_{10}) - (x_{01} - x_{00}) \right] = \frac{1}{2} (ab + (1) - a - b)$$

■ 주효과(main effect) 및 상호작용효과(interaction effect)

■ 주효과(main effect) 및 상호작용효과(interaction effect)의 파악

 $\langle \pm 7-4 \rangle$ Yates 계산법 (반복이 없으면 r=1임) (2² 요인배치 이므로 n=2임)

처리 조합	(1)	(2)	요인효과 (2)/(2 ⁿ⁻¹ r)	변동 (2) ² /(2 ⁿ r)
(1)	(1) + a	(1) + a + b + ab	$(2)/(2^n r) = M$	CT
а	b + ab	a - (1) + ab - b	$(2)/(2^{n-1}r) = A$	SS_A
b	a - (1)	b + ab - (1) - a	$(2)/(2^{n-1}r) = B$	SS_B
ab	<i>a</i> b − b	ab - b - a + (1)	$(2)/(2^{n-1}r) = AB$	$SS_{A \times B}$

단, $M=(2)/(2^n r)$

 $\langle \text{표 7-5} \rangle$ 2^2 요인배치법의 분산분석표

요인	제곱합	자유도	평균제곱
\boldsymbol{A}	SS_A	1	MS_A
В	SS_B	1	MS_B
$A \times B$ (또는 E)	$SS_{A \times B}$	1	$MS_{A \times B}$
T	SS_T	3	

◆ 반복이 있는 경우

<표 7-6> 2² 요인배치법의 자료의 배열

	A_{0}	A_1	$T_{.j.}$
B_0	$ \begin{cases} x_{001} \\ x_{002} \\ \vdots \\ x_{00r} \end{cases} T_{00}. $	$ \begin{cases} x_{101} \\ x_{102} \\ \vdots \\ x_{10r} \end{cases} T_{10.} $	T _{.0} .
B_1	$ \begin{cases} x_{011} \\ x_{012} \\ \vdots \\ x_{01r} \end{cases} T_{01}. $	$ \begin{cases} x_{111} \\ x_{112} \\ \vdots \\ x_{11r} \end{cases} T_{11}. $	T _{.1} .
T _i	T_{0}	<i>T</i> ₁	T

<표 7-7> 반복이 있는 2^2 요인배치법의 분산분석표 $(F_0$ 를 보면 A, B가 고정인자의 경우임)

요인	제곱합	자유도	평균제곱	F_{0}
A	SS_A	1	MS_A	MS_A/MS_E
В	SS_B	1	MS_B	MS_B/MS_E
$A \times B$	$SS_{A \times B}$	1	$MS_{A\times B}$	$MS_{A\times B}/MS_E$
E	SS_E	4(r-1)	MS_E	
T	SS_T	4r - 1		

예제 7.2 온도(A), 습도(B) → 강도에 미치는 영향?

<표 7-8> 반복이 2회인 요인배치법의 자료

	A_0	A_1	$T_{.j.}$
B_0	$\begin{pmatrix} 4 \\ 6 \end{pmatrix}$ 10	$-\frac{2}{2}$ $\left.\right\}$ 0	10
B_1	$\begin{pmatrix} 3 \\ 7 \end{pmatrix}$ 10	${ -4 \atop -6} $ $\}$ -10	0
T i	20	-10	10=T

물이 < 예이츠(Yates)계산 >

처리조합	강도(합계)	(1)	(1)	요인효과	요인변동
시니오립 	정도(합계) 	강도(합계) (1) (2) 포르포 (2) /(2×2)		(2) /(2×2)	$(2)^2/(4\times2)$
(1)	10	10	10	1.25= <i>M</i>	12.5 = CT
a	0	0	-30	-7.5=A	$112.5 = SS_A$
Ь	10	-10	-10	-2.5= <i>B</i>	$12.5 = SS_{\mathcal{B}}$
a b	-10	-20	-10	-2.5= <i>AB</i>	$12.5 = SS_{A \times B}$

< 분산분석표 >

요 인	제곱합	자유도	평균제곱	F_{0}
A	112.5	1	112.5	22.5**
В	12.5	1	12.5	2.5
$A\times B$	12.5	1	12.5	2.5
E	20.0	4	5	
T	157.5	7		

R 실습

gang = c(4, 6, 3, 7, -2, 2, -4, -6)

temp = c(0, 0, 0, 0, 1, 1, 1, 1)

humidity = c(0, 0, 1, 1, 0, 0, 1, 1)

ex7.2data = data.frame(temp, humidity, gang)

ex7.2data = factor(ex7.2data temp, levels = c(0, 1),

<u>labels=c("A0","A1"))</u>

ex7.2data\$b = factor(ex7.2data\$humidity, levels=c(0, 1),

<u>labels=c("B0","B1"))</u>

attach(ex7.2data)

with(ex7.2data, interaction.plot(x.factor=temp, trace.factor=humidity,

response=gang, fun=mean, type="b", legend=T, ylab="강도",

main="Interaction Plot", pch=c(1,19)))

R 실습

boxplot(gang ~ temp)

boxplot(gang ~ humidity)

aov.out = aov(gang ~ temp * humidity, data=ex7.2data)
summary(aov.out)

	Df	Sum Sq	Mean Sq	F value	<i>Pr(>F)</i>
temp	1	112.5	112.5	22.5	0.00901**
humidity	1	12.5	12.5	2.5	0.18900
temp:humidity	1	12.5	12.5	2.5	0.18900
Residuals	4	20.0	5.0		

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0

제7강 요인배치법1

7.3 23 요인배치법

■ 주효과와 상호작용효과

$$A = \frac{1}{4r} (a + ac + ab + abc - (1) - c - b - bc) = \frac{1}{4r} (T_{1..} - T_{0..})$$

$$B = \frac{1}{4r} (b + bc + ab + abc - (1) - a - c - ac) = \frac{1}{4r} (T_{.1.} - T_{.0.})$$

$$C = \dots$$

$$AB = \frac{1}{4r} (ab + (1) - a - b + abc + c - bc - ac)$$
$$= \frac{1}{4r} (T_{11.} + T_{00.} - T_{01.} - T_{10.})$$

$$AC = ...$$

$$ABC = ...$$

<표 7-10> 예이츠계산법

처리	/4\	(0)	(0)	요인효과	요인변동	
조합	(1)	(2)	(3)	$(3) / (2^{n-1}r)$	$(3)^2 / (2^n r)$	
(1)	a ≠(1)	a b+ b+ a +(1)	a <u>bc+ bc</u> + a c+ c	$(3)/(2^n r) = M$	CT	
\	W (1)		+ab+b+a+(1)	(5)/(2 //-14		
a	a b+ b	a <u>bc+ bc</u> +ac+c	a <u>bc-bc</u> + a c-c	$(3)/(2^{n-1}r)=A$	SS_A	
			+ab-b+a -(1)	(0),(2 ,) 21		
Ь	a c + c	a b-b+a -(1)	a <u>bc+ bc</u> -a c-c	$(3)/(2^{n-1}r)=B$	SS_{E}	
			+ab+b-a(1)	(0)/(2 // 2		
a b a bc+ bc		a <u>bc-bc</u> +ac-c	a <u>bc=bc</u> =a c+ c	$(3)/(2^{n-1}r)=AB$	$SS_{A \times B}$	
	·	William Wall	+ab-b-a+(1)	(0))(2)) 1.44.	A^B	
c	$a \rightarrow (1)$	a b+ b-a -(1)	a <u>bc+ bc</u> + a c+ c	$(3)/(2^{n-1}r) = C$	SS_c	
	α (1)	u	-a b-b-a -(1)	(3)/(2 //-0	3~2	
a c	a b=b	a <u>bc+ bc-</u> a c-c	a <u>bc-bc</u> + a c-c	$(3)/(2^{n-1}r)=AC$	$SS_{A \times C}$	
4.5	0.5.5		-a b + b - a + (1)	(5)/(2 //-110		
bc	a c - c	a b-b-a +(1)	a <u>bc+ bc</u> -a c-c	$(3)/(2^{n-1}r) = BC$	$SS_{B \times C}$	
Milita		(1) D (1 · (1)	-a b - b + a + (1)	(3)/(2 1)-DC	~~B×C	
abc	a bo-bo	bc a bc-bc-a c+ c	a <u>bc=bc</u> =a c+ c	$(3)/(2^{n-1}r) = ABC$	$SS_{A \times B \times O}$	
α <u>μς.</u>		was as were	<i>¬a b+ b+ a ¬</i> (1)	(3)/(2 T)-ADC	~~A×B×U	

<표 7-11> 2³ 요인배치법의 분산분석표(r=1인 경우)

요 인	제곱합	자유도	평균제곱
A	SS_A	1	MS_A
B	SS_{E}	1	$MS_{\mathcal{B}}$
C	SS_{C}	1	$MC_{\mathcal{O}}$
$A \times B$	$SS_{A \times B}$	1	$MS_{A \times B}$
$A \times C$	$SS_{A \times C}$	1	$MS_{A \times \mathcal{O}}$
$B \times C$	$SS_{B \times C}$	1	$MS_{B \times C}$
$E(=A\times B\times C)$	$SS_{\it E}$	1	MS_{E}
T	$SS_{\mathcal{I}}$	7	

에게 7.3 온도(A), 습도(B), 압력(C) 세 요인에 대한 실험을 한 결과 제품의 강도가 다음 표와 같았다. 각 요인의 효과와 변동을 구하고 분산분석표를 작성하라 (반복이 없는 r=1인 경우임).

		A_0	A_1
B_{n}	C_0	(1)=2	a=-5
ا کا	C_1	c=-12	ac=−17
R.	C_0	b=15	ab=13
21	C_1	<u>bc</u> =-2	<u>abc</u> =−7

물이 < 예이츠계산법 >

처리조합	자료	(1)	(2)	(3)	요인효과	요인변동
(1)	2	-3	25	-13	-1.625= <i>M</i>	21.125 = CT
а	-5	28	-38	-19	-4.75= <i>A</i>	$45.125 = SS_{\mathbf{z}}$
Ь	15	-29	-9	51	12.75= <i>B</i>	$325.125 = SS_1$
a b	13	-9	-10	5	1.25= <i>AB</i>	$3.125 = SS_{A \times I}$
С	-12	-7	31	-63	-15.75= <i>C</i>	$496.125 = SS_{c}$
ас	-17	-2	20	-1	-0.25= <i>AC</i>	$0.125 = SS_{A \times C}$
<u>bc</u>	-2	-5	5	-11	-2.75= <i>BC</i>	$15.125 = SS_{\mathcal{B} \times \zeta}$
a <u>bc</u>	-7	-5	0	-5	-1.25= <i>ABC</i>	$3.125 = SS_{A \times B \times C}$

물이 < 분산분석표 >

요 인	제곱합	자유도	평균제곱	F_0
A	45.125	1	45.125	21.235*
В	325.125	1	325.125	153**
C	496.125	1	496.125	233.47**
$B \times C$	15.125	1	15.125	7.118
\mathcal{E}^*	6.375	3	2.125	
	887.875	7		

R 실습

gang $\langle -c(2, -5, -12, -17, 15, 13, -2, -7)$

temp < -rep(c(0, 1), 4)

 $\underline{\text{humidity}} \leftarrow \underline{\text{c(rep(0, 4), rep(1, 4))}}$

pressure < rep(c(0, 0, 1, 1), 2)

data <- data.frame(gang, temp, humidity, pressure)

	D_{I}	sum Se	q Mean Sq
temp	1	45.1	45.1
Humidity	1	325.1	325.1
Pressure	1	496.1	496.1
temp:humidity	1	3.1	3.1
temp:pressure	1	0.1	0.1
humidity:pressure	1	15.1	15.1
temp:humidity:pressure	1	3.1	3.1

data\$temp <- factor(data\$temp, levels=c(0, 1), labels=c("a0", "a1"))

data\$humidity <- factor(data\$humidity, levels=c(0, 1), labels=c("b0", "b1"))

data\$pressure <- factor(data\$pressure, levels=c(0, 1), labels=c("c0", "c1"))

ano <- aov(gang ~ temp*humidity*pressure, data=data)

summary(ano)

R 실습

```
anova <- aov(gang ~ temp+ humidity+ pressure+ humidity:pressure,
data=data)
summary(anova)</pre>
```

```
 Df \ Sum \ Sq \ Mean \ Sq \ F \ value \ Pr(>F)   temp \qquad 1 \quad 45.1 \quad 45.1 \quad 21.235 \quad 0.019220 \ *   humidity \qquad 1 \quad 325.1 \quad 325.1 \quad 153.000 \quad 0.001138 \ **   Pressure \qquad 1 \quad 496.1 \quad 496.1 \quad 233.471 \quad 0.000609 \ ***   humidity:pressure \qquad 1 \quad 15.1 \quad 15.1 \qquad 7.118 \quad 0.075826 \ .   Residuals \qquad 3 \quad 6.4 \quad 2.1
```

<표 7-12> **반복이 r회**인 **2**³요인배치법의 분산분석표

요 인	제곱합	자유도	평균제곱
A	SS_A	1	MS_A
В	SS_{E}	1	MS_B
С	SS_C	1	MS_C
$A \times B$	$SS_{A \times B}$	1	$MS_{A \times B}$
$A \times C$	$SS_{A \times O}$	1	$MS_{A \times C}$
$B \times C$	$SS_{\mathcal{B} \times \mathcal{C}}$	1	$MS_{\mathcal{B} \times \mathcal{O}}$
$A \times B \times C$	$SS_{A \times B \times C}$	1	$MS_{A \times B \times C}$
E	SS_E	8(<i>r</i> -1)	MS_E
T	SS_T	8 <i>r</i> -1	

다음 시간 안내

제8강 (7장)

요인배치법 2