Let $\mathfrak{n}=\mathfrak{v}\oplus\mathfrak{z}$ be a 2-step nilpotent Lie algebra.

Let $\mathfrak{n}=\mathfrak{v}\oplus\mathfrak{z}$ be a 2-step nilpotent Lie algebra.

Recall that the Lie bracket on a 2-step nilpotent Lie algebra is a bilinear map $[\ ,\]:\mathfrak{v}\times\mathfrak{v}\to\mathfrak{z}.$

Let $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ be a 2-step nilpotent Lie algebra.

Recall that the Lie bracket on a 2-step nilpotent Lie algebra is a bilinear map $[\ ,\]:\mathfrak{v}\times\mathfrak{v}\to\mathfrak{z}.$

For every $z\in \mathfrak{z}$, one can define a linear transformation $j_z:\mathfrak{v}\to\mathfrak{v}$ by the identity

$$\langle y, j_z(x) \rangle_{\mathfrak{v}} = \langle z, [x, y] \rangle_{\mathfrak{z}}.$$

Let $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ be a 2-step nilpotent Lie algebra.

Recall that the Lie bracket on a 2-step nilpotent Lie algebra is a bilinear map $[\ ,\]:\mathfrak{v}\times\mathfrak{v}\to\mathfrak{z}.$

For every $z\in \mathfrak{z}$, one can define a linear transformation $j_z:\mathfrak{v}\to\mathfrak{v}$ by the identity

$$\langle y, j_z(x) \rangle_{\mathfrak{v}} = \langle z, [x, y] \rangle_{\mathfrak{z}}.$$

We can use the matrix representations of $\langle \ , \ \rangle_{\mathfrak{v}}$ and $[\ , \]$ to find a matrix representation for j_z .

Let $\mathfrak n$ be a 2-step nilpotent Lie Algebra with $\mathfrak v$ as the non-center and $\mathfrak z$ as the center.

Recall that the Lie bracket on a 2-step nilpotent Lie algebra is a bilinear map $[\ ,\]:\mathfrak{v}\times\mathfrak{v}\to\mathfrak{z}.$

So for every $z\in \mathfrak{z}$, one can define a linear transformation $j_z:\mathfrak{v}\to\mathfrak{v}$ by the identity

$$\langle y, j_z(x) \rangle_{\mathfrak{v}} = \langle z, [x, y] \rangle_{\mathfrak{z}}.$$

We can then use the same methods as before to construct matrix representations of $\langle \ , \ \rangle_{\mathfrak v}$ and $[\ , \]$ to find a matrix representation for j_z .

By linearity, we will know how to construct any j-map, if we know the j-maps corresponding to basis vectors of \mathfrak{z} .

By linearity, we will know how to construct any j-map, if we know the j-maps corresponding to basis vectors of \mathfrak{z} .

Suppose $\mathfrak{z} = \operatorname{span} \{z_1, z_2, \dots, z_m\}.$

By linearity, we will know how to construct any j-map, if we know the j-maps corresponding to basis vectors of \mathfrak{z} .

Suppose $\mathfrak{z}=\operatorname{span}\{z_1,z_2,\ldots,z_m\}$. Then for any z_k , the j-map $j_{z_k}:\mathfrak{v}\to\mathfrak{v}$ is given by

$$\langle y, j_{z_k}(x) \rangle_{\mathfrak{v}} = \langle z_k, [x, y] \rangle_{\mathfrak{z}}$$

By linearity, we will know how to construct any j-map, if we know the j-maps corresponding to basis vectors of \mathfrak{z} .

Suppose $\mathfrak{z}=\operatorname{span}\{z_1,z_2,\ldots,z_m\}$. Then for any z_k , the j-map $j_{z_k}:\mathfrak{v}\to\mathfrak{v}$ is given by

$$\langle y, j_{z_k}(x) \rangle_{\mathfrak{v}} = \langle z_k, [x, y] \rangle_{\mathfrak{z}}$$

 $y^T E(J_{z_k} x) = z_k^T (x^T L y)$

By linearity, we will know how to construct any j-map, if we know the j-maps corresponding to basis vectors of \mathfrak{z} .

Suppose $\mathfrak{z}=\operatorname{span}\{z_1,z_2,\ldots,z_m\}$. Then for any z_k , the j-map $j_{z_k}:\mathfrak{v}\to\mathfrak{v}$ is given by

$$\langle y, j_{z_k}(x) \rangle_{v} = \langle z_k, [x, y] \rangle_{\mathfrak{z}}$$

 $y^T E(J_{z_k} x) = z_k^T (x^T L y)$
 $y^T (EJ_{z_k}) x = y^T (L^k)^T x$

taking advantage of some clever stack-matrix manipulations.

Since $y^T(EJ_{z_k})x = y^T(L^k)^Tx$ for arbitrary x and y in v, we deduce that $EJ_{z_k} = (L^k)^T$.

Since $y^T(EJ_{z_k})x = y^T(L^k)^Tx$ for arbitrary x and y in v, we deduce that $EJ_{z_k} = (L^k)^T$.

Since $det(E) \neq 0$, we may solve for J_{z_k} to obtain

Since $y^T(EJ_{z_k})x = y^T(L^k)^Tx$ for arbitrary x and y in v, we deduce that $EJ_{z_k} = (L^k)^T$.

Since $det(E) \neq 0$, we may solve for J_{z_k} to obtain

$$J_{z_k} = E^{-1}(L^k)^T \in \mathbb{R}^{n \times n}.$$

Since $y^T(EJ_{z_k})x = y^T(L^k)^Tx$ for arbitrary x and y in v, we deduce that $EJ_{z_k} = (L^k)^T$.

Since $det(E) \neq 0$, we may solve for J_{z_k} to obtain

$$J_{z_k} = E^{-1}(L^k)^T \in \mathbb{R}^{n \times n}.$$

If $z = \zeta_1 z_1 + \zeta_2 z_2 + \cdots + \zeta_m z_m$, then the map j_z is represented by the matrix

Since $y^T(EJ_{z_k})x = y^T(L^k)^Tx$ for arbitrary x and y in v, we deduce that $EJ_{z_k} = (L^k)^T$.

Since $det(E) \neq 0$, we may solve for J_{z_k} to obtain

$$J_{z_k} = E^{-1}(L^k)^T \in \mathbb{R}^{n \times n}.$$

If $z = \zeta_1 z_1 + \zeta_2 z_2 + \cdots + \zeta_m z_m$, then the map j_z is represented by the matrix

$$J_z = \zeta_1 J_{z_1} + \zeta_2 J_{z_2} + \cdots + \zeta_m J_{z_m}.$$

The j-maps of a 2-step nilpotent Lie algebra can be described by a stack of matrices of the same type as L.

The j-maps of a 2-step nilpotent Lie algebra can be described by a stack of matrices of the same type as L.

Indeed, if we let $J^k = J_{z_k}$,

The j-maps of a 2-step nilpotent Lie algebra can be described by a stack of matrices of the same type as L.

Indeed, if we let $J^k = J_{z_k}$, then

$$J = \begin{pmatrix} J^1 \\ J^2 \\ \vdots \\ J^m \end{pmatrix}$$

is an $(m \times 1)$ stack of $(n \times n)$ matrices.

The j-maps of a 2-step nilpotent Lie algebra can be described by a stack of matrices of the same type as L.

Indeed, if we let $J^k = J_{z_k}$, then

$$J = \begin{pmatrix} J^1 \\ J^2 \\ \vdots \\ J^m \end{pmatrix}$$

is an $(m \times 1)$ stack of $(n \times n)$ matrices. Then for $z = (\zeta_1, \zeta_2, \dots, \zeta_m)^T \in \mathfrak{z}$, the map j_z is represented by

The j-maps of a 2-step nilpotent Lie algebra can be described by a stack of matrices of the same type as L.

Indeed, if we let $J^k = J_{z_k}$, then

$$J = \begin{pmatrix} J^1 \\ J^2 \\ \vdots \\ J^m \end{pmatrix}$$

is an $(m \times 1)$ stack of $(n \times n)$ matrices. Then for $z = (\zeta_1, \zeta_2, \dots, \zeta_m)^T \in \mathfrak{z}$, the map j_z is represented by

$$J_z = z^T J$$
.

Some Examples

to be done ...

We wrote some code in Sage to help us compute the j-maps for a couple of interesting Lie algebras.