Finding Maximum and Minimum Values of a Function

Finding Max and Min in single variable

From one-variable calculus:

$$y = f(x)$$

The local minimum is the minimum of a portion of the graphp, and the same is true for max. Also:

$$f'(x_{max}) = f(x_{min}) = 0$$

 $f''(x) \ge 0$ - concave up

f''(x) < 0 - concave down

Definitions for multivariable

Definition

We say that (a, b) is a local etremum (max or min), if in a small neighborhood (the area around the point) at (a, b), f(a, b) is either maximum or minimum (it is greater than all its neighbors).

Theorem

If (a, b) is an extremum point for f(x,y), then we have:

$$\frac{\delta f}{\delta x}(a,b) = \frac{\delta f}{\delta y}(a,b) = 0$$

Definition

We say that (a,b) is a critical point if $\frac{\delta f}{\delta x}(a,b) = \frac{\delta f}{\delta y}(a,b) = 0$.

The Theorem above says that if (a, b) is an extremum point, then it must be a critical point.

The inverse is not true

Second Derivative Test

$$D(x,y) = \begin{vmatrix} f_{xx}f_{xy} \\ f_{yx}f_{yy} \end{vmatrix} = f_{xx}f_{yy} - f_{xy}f_{yx}$$

Let (a, b) be a critical point for the function z = f(x, y) Then, if

1. If D(a, b) > 0, we have (a, b) is an extremum point.

1. If $f_{xx}(a,b) > 0$, then f(a,b) is a local minimum (concave up)

2. If $f_{xx}(a,b) \le 0$, then f(a,b) is a *local maximum* (concave down)

3. If $f_{xx}(a,b) = 0$, then the test is inconclusive

2. If $D(a, b) \le 0$, then f(a, b) is netiher local maximum nor minimum

3. If D(a, b) = 0, then the results are inconclusive

If D(a, b) > 0, then (a, b) is called *saddle point*

▼ Click to show Example 3

Question 3 (Sec 14.7)

Find the local maximum and minimum values and saddle points of $f(x, y) = x^4 + y^4 - 4xy + 1$

Solution

First, find critical point (a,b): $\frac{\delta f}{\delta x}(a,b) = \frac{\delta f}{\delta y}(a,b) = 0$

$$\begin{vmatrix} \frac{\delta f}{\delta x} = 4x^3 - 4y = 0 \frac{\delta f}{\delta y} = 4y^3 - 4x = 0 \end{vmatrix}$$

$$y = x^3$$

$$x^9 - x = 0$$

$$x(x^8 - 1) = 0$$

$$x(x^4 - 1)(x^4 + 1) = 0$$

$$(x^4 + 1) > 0$$

$$x(x^2 - 1)(x^2 + 1) = 0$$

$$(x^2 + 1) > 0$$

$$x(x - 1)(x + 1) = 0$$

$$x = -1, 0, 1$$

$$x^3 = y = -1, 0, 1$$

Therefore, the critical points are (-1, -1), (0, 0), (1, 1)

After finding the critical points, let us compute D at that point

$$D(x,y) = f_{xx}f_{yy} - f_{xy}f_{yx}$$

$$D(x,y) = 144x^2y^2 - 16$$

$$f_{xx} = 12x^2 \ge 0$$

$$D(-1,-1) = 144 - 16 = 128 > 0$$

$$f_{xx} = 12(-1)^2 > 0$$

(-1, -1) is a *local min* by the second derivative test

$$D(0,0) = -16$$

(-1,-1) is a saddle point by the second derivative test

$$D(1, 1) = 144 - 16 = 128 > 0$$

 $f_{xx} = 12(1)^2 > 0$

(1,1) is a *local min* by the second derivative test