日本国特許庁 JAPAN PATENT OFFICE

17. 2. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 2月18日

出 願 番 号 Application Number:

人

特願2004-040842

[ST. 10/C]:

[JP2004-040842]

出 願 Applicant(s):

昭和電工株式会社

REC'D 1 0 MAR 2005

WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1月 6日

1)1

2005年

11)

特許庁長官 Commissioner, Japan Patent Office 【書類名】
 【整理番号】
 【提出日】
 平成16年 2月18日
 特許庁長官殿
 C09F 11/78
 C09F 11/08
 H01L 33/00
 【発明者】
 【発明者】
 工業県千葉市緑区

プロ』 【住所又は居所】 千葉県千葉市緑区大野台1-1-1 昭和電工株式会社 研究開

発センター内

【氏名】 塩井 恒介

【特許出願人】

【識別番号】 000002004

【氏名又は名称】 昭和電工株式会社

【代理人】

【識別番号】 100070378

【弁理士】

【氏名又は名称】 菊地 精一

【手数料の表示】

【予納台帳番号】 054634 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】明細書 1【物件名】図面 1【物件名】要約書 1【包括委任状番号】9722913

【書類名】特許請求の範囲

【請求項1】

一般式が $Eu_2-xLn_xM_2O_9$ で表されることを特徴とする蛍光体。但し、 $0 \le x$ <2,組成中のLnはY,La及びGdから選ばれた少なくとも1種であり、MはWまた はMoからなる群より選ばれた少なくとも1種である。

【請求項2】

上記一般式Eu2-x Lnx M2 O9 において、0≤x≤1.5である請求項1に記載 の蛍光体。

【請求項3】

粒子径が50μm以下であることを特徴とする請求項1または2に記載の蛍光体。

【請求項4】

赤色発光することを特徴とする請求項1~3の何れか1項に記載の蛍光体。

【請求項5】

請求項1~4の何れか1項に記載の蛍光体と発光素子とを組み合わせた発光装置。

【請求項6】

発光素子が窒化物系半導体発光素子であり、発光素子の発光波長が220nm~550 nmの範囲内であることを特徴とする請求項5に記載の発光装置。

【請求項7】

請求項1~4の何れか1項に記載の蛍光体を用いた発光スクリーン。

【書類名】明細書

【発明の名称】蛍光体及びそれを用いた発光装置

【技術分野】

[0001]

本発明は、紫外線又は可視光で効率よく励起され発光する蛍光体及びその蛍光体を用い た発光装置に関する。この蛍光体は特に赤色発光に好適である。

【背景技術】

[0002]

紫外線又は可視光を効率よく発光することができる窒化物系化合物半導体などの発光素 子と、紫外線又は可視光で効率よく励起され発光する蛍光体を組み合わせて、種々の発光 波長の発光ダイオード(以下、LEDともいう)が開発されている。現在、このような用 途への適用が検討されている蛍光体として、発光色が青色の(Sr, Ca, Ba)10(PO4) 6Cl2:Eu、緑色の3 (Ba, Mg, Mn) O・8Al2O3:Eu、赤色 のY2O2S:Euが開示されている(特許文献1参照)。これら3色の蛍光体を任意の 割合で混合することによって、多くの発光色を作ることができるが、白色系の場合、赤色 成分のY2O2S:Eu蛍光体の発光効率が他の蛍光体よりもかなり低いために混合割合 が多くなるといった問題があった。更に、白色系では赤、緑、青の発光バランスにより白 色を得ることができるが、赤色成分の発光効率が悪いために緑、青系蛍光体の発光量を低 く抑えなければならず、高輝度の白色が得られなかった。

また、波長域300~410nmの長波長紫外線又は近紫外線により励起され発光する 蛍光体は、発光スクリーン、例えばコンクリートやガラス等に混入され装飾板や間接照明 器具などに使用されることが期待されているが、その効果を十分に発揮するためには、さ らに発光輝度の高い蛍光体が要求される。

【特許文献1】特開2002-203991号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

本発明は、上述した問題の解決を目的とし、紫外線又は可視光で効率よく励起され赤色 の発光に好適な蛍光体及びそれを用いた発光装置を提供することを目的としている。

【課題を解決するための手段】

[0004]

本発明者は上記目的を達成するために鋭意検討した結果、一般式がEu2-xLnxM $_2$ O $_9$ で表される蛍光体(但し、 $0 \le x < 2$ 、組成中のLnはY, La及びGdから選ば れた少なくとも1種であり、MはWまたはMoから選ばれた少なくとも1種である。)が 、波長域220~550nmの紫外線又は可視光励起による赤色発光強度が高く、この赤 色発光蛍光体を用いた発光ダイオードなどの発光装置は発光特性が優れていることを新た に見いだし本発明を完成させるに至った。

即ち、本発明の蛍光体は、以下の各項の発明からなる。

[0005]

- (1) 一般式がEu2-xLnxM2O9で表されることを特徴とする蛍光体。但し, $0 \le x < 2$,組成中のLn は Y, La 及 G d から選ばれた少なくとも1種であり、<math>M kWまたはMoからなる群より選ばれた少なくとも1種である。
- (2) 上記一般式Eu2-x Lnx M2 O9 において、0≤x≤1.5である上記(1) に記載の蛍光体。
- (3) 粒子径が 50 µ m以下であることを特徴とする上記 (1) または (2) に記載の 蛍光体。
 - 赤色発光することを特徴とする上記(1)~(3)の何れかに記載の蛍光体。 (4)
- 上記(1)~(4)の何れかに記載の蛍光体と発光素子とを組み合わせた発光装 (5)置。
- 発光素子が窒化物系半導体発光素子であり、発光素子の発光波長が220nm~ (6)

5 5 0 n m の範囲内であることを特徴とする上記(5)に記載の発光装置。

(7) 上記(1)~(4)の何れかに記載の蛍光体を用いた発光スクリーン。

【発明の効果】

[0006]

本発明の蛍光体は220~550nmの波長域の紫外線又は可視光により効率よく励起 され発光することから、発光スクリーンや発光ダイオード、蛍光ランプ等の発光装置に有 効に利用することができる。更に、本発明の蛍光体又は本発明の蛍光体を含む複数種の蛍 光体を用いることにより、種々の発光色のLEDを作製することができ、白色LEDの場 合は演色性や輝度を向上させることができる。

【発明を実施するための最良の形態】

[0007]

本発明の一般式Eu2-x Lnx M2O9 (但し、0≤x<2,組成中のLnはY, L a及びGdから選ばれた少なくとも1種であり、MはWまたはMoから選ばれた少なくと も1種)で表される蛍光体において、0≤x≤1.5の範囲で発光強度はさらに高くなる 。特に、0≤x≤1.0の範囲で、非常に高い発光強度を得ることができる。

本発明の蛍光体においては、ユーロピウムイオンが発光イオンであるため、一般的には 、発光強度はユーロピウム濃度に依存し、ユーロピウム濃度が最大のとき発光強度も最大 となる。

一方、発光イオン濃度が高いと、(i)発光イオンの間に共鳴伝達による交差緩和が生 じ、励起エネルギーの一部が失われる。(ii)発光イオン間の共鳴伝達による励起の回遊 が生じ、これが結晶表面や非発光中心への励起の移行と消滅を助長する。(iii)発光イ オン同士が凝集あるいはイオン対を形成することによって、非発光中心やキラー(蛍光抑 制剤)に変わるなどの理由によって濃度消光が起こることが知られている。

上記の理由により、本発明の蛍光体においては、広範な組成範囲で高い発光強度を得る ことができる。

[0008]

図1に、実施例1の蛍光体の614nm発光に対する励起スペクトルを示す。図から、 この蛍光体の励起スペクトルは、220nmから550nmの波長領域に存在し、本発明 の蛍光体はこの波長域の紫外線又は可視光により効率よく励起され赤色発光することがわ かる。また、254 n m紫外線でも効率よく励起されるため、通常の蛍光ランプ用として も有効に利用できる。

また、本発明の蛍光体は長波長紫外線~近紫外線(波長域300~410nm)により 励起され発光するため、発光スクリーン、例えばコンクリートやガラス等に混入され装飾 板や間接照明器具などに使用できる。この装飾板は、太陽光や通常の蛍光灯下でのデイス プレイ効果とUVランプの出す長波長~近紫外線照射下でのディスプレイ効果により、装 飾効果や間接照明効果を発揮するものである。

蛍光体の分布は、蛍光体を含有する部材、形成温度、粘度や蛍光体の形状、粒径、粒度 分布などを調整させることによって種々形成させることができる。したがって、使用条件 などにより蛍光体の分布濃度を、種々選択することができる。このような分布を分散性よ く制御する目的で蛍光体の平均粒径は50μm以下であることが好ましい。

[0009]

本発明の蛍光体は次のようにして得られる。例えば、蛍光体原料として、加熱により酸 化物を形成するユーロピウム化合物、イットリウム化合物及びタングステン化合物を用い た場合、各化合物について一般式 $Eu_2-xY_xW_2O_9$ (但し、 $0 \le x < 2$)の割合に なるように秤取し、混合するか、又は必要に応じてこれら蛍光体原料にフラックスを加え て混合し、原料混合物を得る。この原料混合物をアルミナルツボ等に充填し、大気中、8 00~1300℃で数時間焼成する。冷却後、ボールミル等で分散・粉砕処理を行い、必 要に応じて水洗処理を施し、固液分離後、乾燥・解砕・分級して本発明の蛍光体を得る。

蛍光体原料としては、次のような酸化物又は加熱により酸化物を形成する化合物が好ま しく用いられる。例えば、ユーロピウム化合物としては炭酸ユーロピウム、酸化ユーロピ ウム、水酸化ユーロピウム等、イットリウム化合物としては炭酸イットリウム、酸化イットリウム等、ランタン化合物としては炭酸ランタン、酸化ランタン、水酸化ランタン等、ガドリニウム化合物としては炭酸ガドリニウム、酸化ガドリニウム、水酸化ガドリニウム等、タングステン化合物としては酸化タングステン、タングステン酸等、モリブデン化合物としては酸化モリブデン、モリブデン酸等、の化合物が好ましい。尚、上記以外にも、ユーロピウム、イットリウム、ランタン、ガドリニウム、タングステン及びモリブデンを含有する有機金属化合物等を用いて、気相法や液相法により、本発明の蛍光体や、原料混合物を得ることが出来る。また、フラックスとしてはアルカリ金属、アルカリ土類金属のハロゲン化物、フッ化アンモニウム等が好ましく、蛍光体原料100重量部に対し0.01~1.0重量部の範囲で添加する。

[0010]

本発明の蛍光体は220 nmから550 nmの紫外線又は可視光で効率よく励起されるため、蛍光ランプ用として有効であるだけでなく、本発明の蛍光体と発光スペクトルが220 nmから550 nmの波長域にある発光ダイオードと組み合わせることによって、種々の発光色のLEDに応用できる。例えば、本発明の蛍光体と、発光スペクトルが220~410 nm内の紫外線又は近紫外線を放射する発光ダイオードを組み合わせると、発光色が赤色のLEDが得られる。

また、本発明の蛍光体と、発光スペクトルが $400\sim550$ nm内の可視光を放射する発光ダイオードを組み合わせると、この可視光により励起され赤色発光蛍光体が放射する発光と発光ダイオードの可視光が混合された種々の発光色のLEDが得られる。さらに、本発明の蛍光体を含む複数種の蛍光体と上記発光ダイオードを組み合わせることによって種々の発光色のLEDを作製することができる。特に、白色LEDにおいて、本発明の蛍光体を用いることにより、演色性や輝度をを向上させることができる。

[0011]

本発明の発光装置はLEDや蛍光ランプなどの発光装置であるが、ここではLED発光装置について説明する。この発光装置は、本発明の蛍光体と220nmから550nmの波長域に発光する半導体発光素子を組み合わせてなる発光装置であって、半導体発光素子としてはZnSeやGaNなど種々の半導体が挙げられる。本発明で用いる発光素子は、発光スペクトルが220nmから550nmに発光可能なものであり、上記蛍光体を効率良く励起できる窒化ガリウム系化合物半導体が好ましく用いられる。発光素子はMOCVD法やHVPE法等により基板上に窒化物系化合物半導体を形成させて得られ、好ましくはIn。A1gGa1-α-gN(但し、0≦α、0≦β、α+β≦1)を発光層としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルヘテロ構造のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。

[0012]

発光素子上に設ける上記蛍光体層は、少なくとも1種以上の蛍光体を単層又は複数層として層状に積層配置しても良いし、複数の蛍光体を単一の層内に混合して配置しても良い。上記発光素子上に蛍光体層を設ける形態としては、発光素子の表面を被覆するコーティング部材に蛍光体を混合する形態、モールド部材に蛍光体を混合する形態、或いはモールド部材に被せる被覆体に蛍光体を混合する形態、更にはLEDランプの投光側前方に蛍光体を混合した透光可能なプレートを配置する形態等が挙げられる。

又、上記蛍光体は発光素子上のモールド部材に少なくとも1種以上の蛍光体を添加しても良い。更に、上記蛍光体の1種以上の蛍光体層を、発光ダイオードの外側に設けても良い。発光ダイオードの外側に設ける形態としては、発光ダイオードのモールド部材の外側表面に蛍光体を層状に塗布する形態、或いは蛍光体をゴム、樹脂、エラストマー、低融点ガラス等に分散させた成形体(例えばキャップ状)を作製し、これをLEDに被覆する形態、又は前記成形体を平板状に加工し、これをLEDの前方に配置する形態等が挙げられる。

【実施例】

[0013]

以下、本発明の実施例について説明するが、本発明は具体的実施例のみに限定されるも のではないことは言うまでもない。尚、以下の実施例では発光スペクトルは、日本分光株 式会社製FP-6500を用いて測定した。

[実施例1] 蛍光体構成原料として、WO3粉末を59.62gと、Eu2O3粉末を 31.67gと、Y2O3粉末8.71gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、不要な 可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径 5.8 µ m のEu1.4Y0.6W2〇9なる蛍光体を得た。同蛍光体を395nm励起下で発光さ せたところ、赤色発光が認められ、発光スペクトルの強度(相対強度、以下同じ)は10 0だった。この蛍光体の励起スペクトルを図1に示す。

[0014]

[実施例2] 蛍光体構成原料として、WO3 粉末を56.85gと、Eu2O3 粉末を 43.15gを正確に秤量し、これをボールミルを使用して均一に混合して原料混合体と した。次に、得られた原料混合体を、アルミナ製坩堝に入れ大気中1200℃の温度で6 時間焼成した。得られた焼成物を純水で十分洗浄し、不要な可溶成分を除去し、その後、 ボールミルにより細かく粉砕・分級し、平均粒径 6.0μmのΕu2W2O9なる蛍光体 を得た。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光ス ペクトルの強度は91.3だった。

[0015]

[実施例3] 蛍光体構成原料として、WO3 粉末を57.75gと、Eu2 O3 粉末を 39.44gと、Y2O3粉末2.81gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、不要な 可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径 5.9 µm のEu1.8Y0.2W2〇9なる蛍光体を得た。同蛍光体を395nm励起下で発光さ せたところ、赤色発光が認められ、発光スペクトルの強度は94.7だった。

[0016]

[実施例4] 蛍光体構成原料として、WO3粉末を61.62gと、Eu2O3粉末を 23.38gと、Y2O3粉末15gを正確に秤量し、これをボールミルを使用して均一 に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ大気 中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、不要な可溶 成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径5.0 µmのE uYW2O9なる蛍光体を得た。同蛍光体を395nm励起下で発光させたところ、赤色 発光が認められ、発光スペクトルの強度は93.8だった。

[0017]

[実施例5] 蛍光体構成原料として、WO3 粉末を63.75gと、Eu2O3 粉末を 14.51gと、Y2O3粉末21.73gを正確に秤量し、これをボールミルを使用し て均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入 れ大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、不要 な可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径 5. 1 μ mのEuYW2O9なる蛍光体を得た。同蛍光体を395nm励起下で発光させたところ 、赤色発光が認められ、発光スペクトルの強度は68.3だった。

[0018]

[実施例6] 蛍光体構成原料として、WO3粉末を66.04gと、Eu2O3粉末を 5. 01gと、Y2O3粉末28.95gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、不要な

[0019]

[実施例7] 蛍光体構成原料として、WO3粉末を59.62gと、Eu2O3粉末を 31.67gと、Y2O3粉末8.71gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、不要な 可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径 2.3 μ m のEuo.2Y1.8W2〇9なる蛍光体を得た。同蛍光体を395nm励起下で発光さ せたところ、赤色発光が認められ、発光スペクトルの強度は98.8だった。

[0020]

[実施例8] 蛍光体構成原料として、WO3 粉末を59.62gと、Eu2 O3 粉末を 31.67gと、Y2O3粉末8.71gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1200℃の温度で12時間焼成した。得られた焼成物を純水で十分洗浄し、不要 な可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径27.6 μmのEu1. 4 Yo. 6 W2 O9 なる蛍光体を得た。同蛍光体を395 n m励起下で発 光させたところ、赤色発光が認められ、発光スペクトルの強度は92.6だった。

[0021]

[実施例9] 蛍光体構成原料として、WO3粉末を59.62gと、Eu2O3粉末を 31.67gと、Y2O3粉末8.71gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1200℃の温度で12時間焼成した。得られた焼成物を純水で十分洗浄し、不要 な可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径47.8 μmのEu1. 4 Yo. 6 W2 O9 なる蛍光体を得た。同蛍光体を3 9 5 n m励起下で発 光させたところ、赤色発光が認められ、発光スペクトルの強度は88.4だった。

$[0\ 0\ 2\ 2\]$

[実施例10] 蛍光体構成原料として、WO3 粉末を59.62gと、Eu2 O3 粉末 を31.67gと、Y2O3粉末8.71gを正確に秤量し、これをボールミルを使用し て均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入 れ大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、不要 な可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径 5.8 μ mのEu1. 4 Yo. 6 W2 O9 なる蛍光体を得た。同蛍光体を465 n m励起下で発光 させたところ、赤色発光が認められ、発光スペクトルの強度は87.9だった。

[0023]

[実施例11] 蛍光体構成原料として、WO3 粉末を59.62gと、Eu2O3 粉末 を31.67gと、Y2O3粉末8.71gを正確に秤量し、これをボールミルを使用し て均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入 れ大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、不要 な可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径5.8μ mのE u 1 . 4 Y o . 6 W 2 O 9 なる蛍光体を得た。同蛍光体を 2 5 6 n m励起下で発光 させたところ、赤色発光が認められ、発光スペクトルの強度は94.6だった。

[0024]

[実施例12] 蛍光体構成原料として、WO3 粉末を57.4gと、Eu2 O3 粉末を 30.5gと、La2O3粉末12.1gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、不要な 可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径 5.2 µm のEu1. 4 Lao. 6 W 2 O 9 なる蛍光体を得た。同蛍光体を3 9 5 n m励起下で発光

[0025]

[実施例13] 蛍光体構成原料として、WO3粉末を56.63gと、Eu2O3粉末 を30.09gと、Gd2O3粉末13.28gを正確に秤量し、これをボールミルを使 用して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝 に入れ大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、 不要な可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径5. 5μmのEu1. 4 Gdo. 6 W2 O9 なる蛍光体を得た。同蛍光体を395nm励起下 で発光させたところ、赤色発光が認められ、発光スペクトルの強度は99.1だった。

[0026]

[実施例14] 蛍光体構成原料として、MoO3 粉末を47.82gと、Eu2 O3 粉 末を40.92gと、Y2O3粉末11.25gを正確に秤量し、これをボールミルを使 用して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝 に入れ大気中1200℃の温度で6時間焼成した。得られた焼成物を純水で十分洗浄し、 不要な可溶成分を除去し、その後、ボールミルにより細かく粉砕・分級し、平均粒径5. 9μmのEu1. 4 Yo. 6 Mo2 O9 なる蛍光体を得た。同蛍光体を395nm励起下 で発光させたところ、赤色発光が認められ、発光スペクトルの強度は87.6だった。

[0027]

[比較例1] 蛍光体構成原料として、WO3 粉末を67.25gと、Y2O3 粉末32 . 75gを正確に秤量し、これをボールミルを使用して均一に混合して原料混合体とした 。次に、得られた原料混合体を、アルミナ製坩堝に入れ大気中1200℃の温度で6時間 焼成した。得られた焼成物を純水で十分洗浄し、不要な可溶成分を除去し、その後、ボー ルミルにより細かく粉砕・分級し、平均粒径6.0μmのY2W2O9なる蛍光体を得た 。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクト ルの強度は0だった。

[0028]

[比較例2] 既存のY2O2S:Eu蛍光体を395nm励起下で発光させたところ、 赤色発光が認められ、発光スペクトルの強度は23.1だった。

[0029]

[実施例15] 実施例1で得られた蛍光体をシリコーンゴムに混合し、これを加熱プレ ス機を用いてキャップ状に成型した。これを、発光波長が395nmの近紫外線LEDの 外側に被覆し、発光させたところ、赤色発光が認められた。また、温度60℃90%RH 下で500時間点灯後においても蛍光体に起因する変化は認められなかった。

[0030]

[実施例16] 実施例1で得られた蛍光体と、青色発光蛍光体としてSr5 (PO4) 3 Cl:Euと、緑色発光蛍光体としてBaMg2Al16O27:Eu, Mnとをシリ コーンゴムに混合し、395 n m 近紫外線発光素子上にマウントして白色LEDを作製し たところ、得られた白色光の平均演色評価数は87だった。

[0031]

[実施例17] 実施例1で得られた蛍光体と、黄色発光蛍光体としてY3 A 1 5 O 1 2 :Ceとをエポキシ樹脂に混合し、465nm青色発光素子上にマウントして白色LED を作製したところ、得られた白色光の平均演色評価数は78だった。

[0032]

[実施例18] 実施例1で得られた蛍光体と、青色発光蛍光体としてSr5 (PO4) 3 Cl:Euと、緑色発光蛍光体としてBaMg2Al16O27:Eu, Mnとをシリ コーンゴムに混合し、395 n m 近紫外線発光素子上にマウントして作製した白色LED と、赤色発光蛍光体としてY2O2S:Eu、青色発光蛍光体としてSr5 (PO4)3 C1:Euと、緑色発光蛍光体としてBaMg2Al16O27:Eu, Mnとをシリコ ーンゴムに混合し、395nm近紫外線発光素子上にマウントして作製した白色LEDと を比較したところ、赤色発光蛍光体としてY2O2S:Euを用いた場合よりも2.1倍 の輝度を持つ白色光が得られた。

【産業上の利用可能性】

[0033]

本発明の蛍光体は発光スクリーン、例えばコンクリートやガラス等に混入し、装飾板や 間接照明器具などに使用できる。また発光ダイオード、蛍光ランプ等の発光装置に有効に 利用することができる。

【図面の簡単な説明】

[0034]

【図1】実施例1の蛍光体の励起スペクトル図である。

【書類名】図面【図1】

【書類名】要約書

【要約】

【課題】 紫外線又は可視光で効率よく励起され、赤色に発光する蛍光体及びそれを用い た発光装置を提供すること。

【解決手段】一般式Eu2-x Lnx M2 O9 で表される蛍光体である。但し0≤x<2 ,組成中のLnはY,La及びGdから選ばれた少なくとも1種であり、MはWまたはM oからなる群より選ばれた少なくとも1種である。

上記の蛍光体と窒化物系半導体発光素子等の発光素子とを組み合わせて発光装置とする ことができる。

なし 【選択図】

特願2004-040842

出願人履歴情報

識別番号

[000002004]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月27日 新規登録 東京都港区芝大門1丁目13番9号 昭和電工株式会社