Experimental level densities and γ strength functions from the Oslo Method

Sunniva Siem, Ann-Cecilie Larsen, Magne Guttormsen, Andreas Görgen et al.

Level density – discrete levels from spectroscopy

Level density: number of levels per energy bin from level counting

Incomplete!

[0: 500] 4 [500:1000] 12 [1000:1500] 35

- - -

Level density at S_n from average neutron resonance spacing

- resolve states with eV resolution
- \triangleright level density at $E_x = S_n$

s-wave capture populates states with $I=I_{gs}\pm\frac{1}{2}$

need model for spin distribution to get level density for all states

Oslo method "fills the gap" between discrete states and S_n

γ -decay in the (quasi-)continuum

- high level density
- levels overlap
- no discrete states anymore

$$P(E_x, E_y) \propto \rho(E_x - E_y)T(E_y)$$

 $\rho(E_x - E_y)$ level density at the final energy

$$\mathcal{T}(E_{\gamma}) = 2\pi \sum_{XL} E_{\gamma}^{2L+1} f_{XL}(E_{\gamma})$$

 γ transmission coefficient

Assuming dominance of dipole radiation (*E*1 and *M*1)

$$f(E_{\gamma}) \simeq \frac{1}{2\pi} \frac{\mathcal{T}(E_{\gamma})}{E_{\gamma}^3}$$

 γ strength function

average strength for emission of a γ ray of energy E_{γ}

γ -strength function

at high energy: dominated by the GDR

Oslo method provides data on the low-energy tail of the GDR

The Oslo Cyclotron Laboratory

Experimental Setup

- CACTUS: 28 5" x 5" NaI(TI)
- SiRi: Si ∆E-E particle telescopes
- PPAC fission detector

- > particle ID from Si telescope
- \triangleright E_x from reaction kinematics
- $\triangleright \ \gamma$ -ray spectrum for given E_x

Isolating primary γ rays

subtract weighted sum of transitions below

the stronger an energy bin is fed, the more has to be subtracted

weighting function = γ strength function

iterative procedure, converges quickly

M. Guttormsen et al., NIM A 255, 518 (1987)

Level density and γ SF from primary γ -ray matrix

$$P(E_x, E_y) \propto \rho(E_x - E_y) T(E_y)$$

 $n \times m \text{ matrix} \qquad n \text{ vector} \qquad m \text{ vector}$

- $\succ \chi^2$ minimization
- \triangleright normalization to discrete states and D_0

A. Schiller et al., NIM A 447, 498 (2000)

Quality of the fit

Blind test of method using DICEBOX simulations

Level density and thermodynamic properties

entropy:
$$S(E) = k_B \ln \left(\frac{\rho(E)}{\rho_0} \right)$$

temperature:
$$T(E) = \left(\frac{\partial S(E)}{\partial E}\right)^{-1}$$

pairing phase transition

Constant temperature behavior

Small (Pygmy) resonances on the tail of the Giant Dipole Resonance

Andreas Görgen Krapperup Workshop 16.11.2015

16

The scissors resonance in the actinide region

M. Guttormsen et al PRL 109, 162503 (2012)

M. Guttormsen et al. PRC 89, 014302 (2014)

Influence of the scissors resonance on the (n,γ) cross section

(n,γ) cross sections using experimental level densities and γ SF

