Assignment of Lecture 10

1. A reinforced concrete chimney is build in terrain B, the parameter are as H = 100m, $\zeta_1 = 0.05$, $T_1 = 2.102s$, $T_2 = 0.508s$, $u_{10} = 29.66$ m/s, $w_0 = 0.55$ kN/m². Calculate the equivalent cross-wind resonance force and base bending moment.

point	1	2	3	4	5	6	7	8	9	10
z_i (m)	10	20	30	40	50	60	70	80	90	100
$G(z_i)$ (kN)	3000	2100	1700	1510	1340	1200	1110	1070	990	490
$D(z_i)$ (m)	8.71	7.86	7.46	7.06	6.66	6.46	6.26	6.06	5.86	5.72
$\phi(z_i)$	0.008	0.036	0.085	0.158	0.255	0.374	0.513	0.667	0.833	1.000

Calculate the equivalent cross-wind resonance force and base bending moment using the method in China code (GB-50009-2012)

the slope ratio =
$$\frac{8.71 - 5.72}{2.100} = 0.015 < 1.02$$

For the First period:

$$\overline{Ucr1} = \frac{P}{StT_1} = \frac{6.43}{0.282 \cdot 102} = 15.86 \text{ m/s}$$

For the Second period:

$$\overline{U_{\text{CY2}}} = \frac{D}{S_{\text{t}} T_{2}} = \frac{b.43}{0.2 \times 0.408} = 62.303 \,\text{m/s}$$

So, only check the first period.

then Re=69000 Ucr, D > 24 × 10b
So, it need check.

$$H_{1} = H\left(\frac{U_{CT1}}{1.21U_{H}}\right)^{\frac{1}{2}}$$

$$= 100 \cdot \left(\frac{15.06}{1.2 \times 41.95}\right)^{\frac{1}{0.15}} = 0.052 \text{ m}$$

So the resonance height = 0.032 ~ loom

015
$$\frac{H_1}{H} = \frac{0.052}{100}$$
, $\lambda_1 = 1.56$

The cross-wind force

$$P_{\text{dl}(\overline{z}i)} = P_{\text{dli}(\overline{z}i)} h_i$$

$$= \lambda_i \frac{\phi_{1}(\overline{z}i) \overline{U}_{\text{cvi}} D_0 h_i}{12800 \overline{z}j}$$

= 3499 PILZI) hi

The result are shown in this figure =

point	1	2	3	4	5	6	7	8	9	10
zi (m)	10	20	30	40	50	60	70	80	90	100
G(zi) (kN)	3000	2100	1700	1510	1340	1200	1110	1070	990	490
D(zi) (m)	8.710	7.860	7.460	7.060	6.660	6.46	6.260	6.060	5.860	5.720
$\phi(zi)(m)$	0.008	0.036	0.085	0.158	0.255	0.374	0.513	0.667	0.833	1.000
$P_{dz1}(kN)$	0.816	1.224	2.890	5.372	8.670	12.716	17.442	22.678	28.322	17.000
M _{dz1} (KN·m)	8.160	24.480	86.700	214.880	433.500	762.960	1220.940	1814.240	2548.980	1700.000

The base bending moment:

Mails = 8814.84 KN.m