Morphismes de groupes

Définition

Soit (G_1, \star) et (G_2, \cdot) deux groupes et $\psi : G_1 \longrightarrow G_2$ une application.

1. On dit que ψ est un **homomorphisme** si ψ vérifie les propriétés suivantes :

$$\forall (x,y) \in G_1^2$$
, $\psi(x \star y) = \psi(x) \cdot \psi(y)$

- 2. On dit que ψ est un **isomorphisme** si ψ est un homomorphisme bijectif. Dans ce cas, on dit que les deux groupes (G_1, \star) et (G_2, \cdot) sont isomorphes.
- 3. Un automorphisme de groupe est un isomorphisme d'un groupe sur lui même.

Proposition

Soit (G_1, \star) et (G_2, \cdot) deux groupes et $\psi: G_1 \longrightarrow G_2$ un homomorphisme. Notons e_1, e_2 les éléments neutres de G_1 et G_2 respectivement. Nous avons :

1.
$$\psi(e_1) = e_2$$
.

2.
$$\forall x \in G_1, \quad \psi(x^{-1}) = (\psi(x))^{-1}.$$

Démonstration : On a :

$$\psi(e_1) = \psi(e_1 \star e_1) = \psi(e_1)\psi(e_1).$$

En composant avec l'inverse de $\psi(e_1)$ on obtient :

$$e_2 = (\psi(e_1))^{-1} \psi(e_1) = \psi(e_1).$$

De plus, pour tout $x \in G_1$ on a

$$\psi(x) \cdot \psi(x^{-1}) = \psi(x \star x^{-1}) = \psi(e_1) = e_2.$$

Remarque

- $1.\ \,$ La composée de deux homomorphismes de groupe est un homomorphisme de groupe.
- 2. Le réciproque d'un isomorphisme de groupe est un isomorphisme de groupe.

Exemple

L'application

$$\exp: (\mathbb{R}, +) \longrightarrow (\mathbb{R}_+^*, \cdot)$$
$$x \longmapsto \exp(x) = e^x$$

est un isomorphisme de groupe. Sa réciproque est

$$\ln: (\mathbb{R}_+^*, \cdot) \longrightarrow (\mathbb{R}, +)
x \longmapsto \ln(x).$$

1

Exemple

On rappelle que $\mathcal{G} = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} / a \in \mathbb{R} \right\}$ est un groupe pour la multiplication des matrices. L'application

$$\psi: (\mathbb{R}, +) \longrightarrow (\mathcal{G}, \cdot)$$

$$a \longmapsto \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

est un isomorphisme de groupe.

Exercice

1. Montrer que l'ensemble

$$\mathcal{R} = \left\{ \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right) / \theta \in \mathbb{R} \right\}$$

est un groupe pour la multiplication des matrices. Est-il commutatif? Montrer que l'application

$$\psi: (\mathbb{R}, +) \longrightarrow (\mathcal{G}, \cdot)$$

$$\theta \longmapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

est un homomorphisme de groupe.

2. De même, montrer que l'application

$$f: (\mathbb{R}, +) \longrightarrow (\mathbb{U}, \cdot)$$
$$t \longmapsto e^{it}$$

est un homomorphisme de groupe.

Exemples

1. Soit (G, \star) un groupe et $g \in G$. L'application

$$\psi_g: \mathbb{Z} \longrightarrow G$$

$$n \longmapsto g^n$$

est un homomorphisme de groupe.

2. Soit (G, \star) un groupe **commutatif** et $n \in \mathbb{Z}$. L'application

$$\psi_n: G \longrightarrow G$$
$$g \longmapsto g^n$$

2

qui est un homomorphisme de groupe.

Exercice

Soit (G, \star) un groupe tel que l'application

$$\psi: G \longrightarrow G$$
$$q \longmapsto q^2$$

qui est un homomorphisme de groupe. Montrer que G est commutatif.

Définition

Soit (G_1, \star) et (G_2, \cdot) deux groupes et $\psi : G_1 \longrightarrow G_2$ un homomorphisme de groupe.

- 1. On définit le noyau de ψ par $\ker(\psi) := \psi^{-1}(\{e_2\}) = \{x \in G_1 / \psi(x) = e_2\}.$
- 2. On définit l'image de ψ par $\operatorname{Im}(\psi) := \psi(G_1) = \{\psi(x) \mid x \in G_1\}.$

L'importance de cette notion vient de la proposition suivante :

Proposition

Soit (G_1, \star) et (G_2, \cdot) deux groupes et $\psi : G_1 \longrightarrow G_2$ un homomorphisme de groupe.

- 1. $\ker(\psi)$ est un sous groupe de G_1 et $\operatorname{Im}(\psi)$ est un sous groupe de G_2 .
- 2. ψ est surjectif si, et seulement si, $Im(\psi) = G_2$.
- 3. ψ est injectif si, et seulement si, $\ker(\psi) = \{e_1\}.$

Démonstration (i) Par définition du noyau, $e_1 \in \ker(\psi)$. De plus, si $x, y \in \ker(\psi)$ alors

$$\psi(x \star y^{-1}) = \psi(x) \cdot \psi(y^{-1})
= \psi(x) \cdot (\psi(y))^{-1}
= e_2 \cdot e_2 = e_2,$$

et $x \star y^{-1} \in \ker(\psi)$. Finalement, $\ker(\psi)$ est un sous groupe de G_1 .

De même, $e_2 = \psi(e_1) \in \text{Im}(\psi)$. De plus, si $y_1 = \psi(x_1), y_2 = \psi(x_2) \in \text{Im}(\psi)$ alors

$$y_1 \cdot y_2^{-1} = \psi(x_1) \cdot (\psi(x_2))^{-1}$$

= $\psi(x_1) \cdot \psi(x_2^{-1})$
= $\psi(x_1 \star x_2^{-1}) \in \operatorname{Im}(\psi).$

Ainsi $\operatorname{Im}(\psi)$ est un sous groupe de G_2 .

(ii) Maintenant supposons que ψ est injectif. Si $x \in \ker(\psi)$ alors

$$\psi(x) = e_2 = \psi(e_1)$$

et donc $x = e_1$. Donc $\ker(\psi) \subset \{e_1\}$. Finalement, comme $e_1 \in \ker(\psi)$, on déduit que $\ker(\psi) = \{e_1\}$. Réciproquement, supposons que $\ker(\psi) = \{e_1\}$. Soit $x, y \in G_1$ tels que $\psi(x) = \psi(y)$. Alors

$$e_2 = \psi(x) \cdot (\psi(y))^{-1}$$
$$= \psi(x) \cdot \psi(y^{-1})$$
$$= \psi(x \star y^{-1})$$

3

Donc $x \star y^{-1} \in \ker(\psi) = \{e_1\}$ et finalement x = y. La preuve est terminée.

Exercice

Soit (G_1, \star) et (G_2, \cdot) deux groupes et $\psi : G_1 \longrightarrow G_2$ un homomorphisme de groupe.

- 1. Montrer que si H_1 est un sous de G_1 alors $\psi(H_1)$ est un sous groupe de G_2 .
- 2. Montrer que si H_2 est un sous de G_2 alors $\psi^{-1}(H_2)$ est un sous groupe de G_1 .

Le groupe $\mathbb{Z}/n\mathbb{Z}$

Soit n>1 un entier naturel donné. On rappelle la relation d'équivalence sur $\mathbb Z$ définie par

$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z} / b - a = kn$$

On rappelle que la classe d'équivalence \overline{a} d'un entier $a \in \mathbb{Z}$ est la partie de \mathbb{Z} donnée par

$$\overline{a} = \{ b \in \mathbb{Z} \ / \ a \equiv b \pmod{n} \ \}.$$

Il est clair que

$$\overline{a} = \overline{b} \iff a \equiv b \pmod{n}$$

On définit ainsi l'ensemble des classes d'équivalence

$$\mathbb{Z}/n\mathbb{Z} := \{ \overline{a} / a \in \mathbb{Z} \}.$$

Montrons que

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$$
 et qu'il est de cardinal n .

Pour tout $a \in \mathbb{Z}$, la division euclidienne nous assure l'existence de $(k,r) \in \mathbb{Z}^2$ tel que

$$a = kn + r$$
 et $0 \le r \le n - 1$.

Ainsi,

$$\overline{a} = \overline{r}$$
.

De plus, si $0 \le a < b \le n-1$ alors $\overline{a} \ne \overline{b}$. Sinon b-a=kn et $0 \le b-a \le n-1$ donc k=0 et b=a ce qui est absurde.

Exemple

Dans $\mathbb{Z}/10\mathbb{Z}$ on a

$$\overline{10} = \overline{0} \ , \ \overline{95} = \overline{5} \ , \ \overline{-3} = \overline{7}$$

Addition sur $\mathbb{Z}/n\mathbb{Z}$

On munit $\mathbb{Z}/n\mathbb{Z}$ de l'addition suivante :

$$\overline{a} + \overline{b} = \overline{a+b}.$$

Cette opération est bien définie. En effet, soit $\overline{a} = \overline{a'}$ et $\overline{b} = \overline{b'}$. Alors il existe $k, k' \in \mathbb{Z}$ tels que

$$a = a' + kn$$
 et $b = b' + k'n$.

Donc

$$a + b = a' + b' + (k + k')n.$$

Autrement dit,

$$\overline{a} + \overline{b} = \overline{a + b} = \overline{a' + b'} = \overline{a'} + \overline{b'}$$

Théorème

 $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe commutatif.

Démonstration : L'associativité et la commutativité découle de celles de l'addition de \mathbb{Z} . L'élément neutre est $\overline{0}$ et l'élément opposé de \overline{a} est

$$-\overline{a} = \overline{-a} = \overline{n-a}$$

En affet, $\overline{a} + \overline{n-a} = \overline{n} = \overline{0}$.

Exemple

Par exemple, posons n = 18. Alors

Exemple

Expliciter les calculs dans $\mathbb{Z}/10\mathbb{Z}$ et remarquer que seul le chiffre des unités compte dans les calculs dans ce groupe.

Multiplication sur $\mathbb{Z}/n\mathbb{Z}$

On peut définir la multiplication sur $\mathbb{Z}/n\mathbb{Z}$ par

$$\overline{a}\overline{b} = \overline{ab}$$

Cette opération est bien définie. En effet, soit $\overline{a} = \overline{a'}$ et $\overline{b} = \overline{b'}$. Alors il existe $k, k' \in \mathbb{Z}$ tels que a = a' + kn et b = b' + k'n. Donc ab = a'b' + (kb' + a'k + kk'n)n. Autrement dit,

$$\overline{a}\overline{b} = \overline{ab} = \overline{a'b'} = \overline{a'b'}$$
.

On vérifie que ce produit est associatif, commutatif et que l'élément neutre est $\overline{1}$. Cependant, les éléments non nuls de $\mathbb{Z}/n\mathbb{Z}$ n'ont pas toujours un inverse pour la multiplication, et donc $((\mathbb{Z}/n\mathbb{Z})^*,\cdot)$ n'est pas toujours un groupe. Par exemple, dans $\mathbb{Z}/4\mathbb{Z}$ on a

$$\overline{2} \cdot \overline{2} = \overline{0}$$

Donc si $\overline{2}$ avait un élément inverse \overline{a} alors $\overline{2} = \overline{2} \cdot (\overline{2} \cdot \overline{a}) = \overline{0}\overline{a} = \overline{0}$ ce qui est absurde.

Résoudre les équations suivantes dans $\mathbb{Z}/10\mathbb{Z}$.

1.
$$\overline{3} \cdot \overline{x} = \overline{2}$$
.

Solution : Comme $3 \times 7 = 21$ on déduit que $\overline{3} \cdot \overline{7} = \overline{1}$ et donc $\overline{3}$ est inversible d'inverse $\overline{7}$. Ainsi notre équation admet une seule solution donnée par $\overline{x} = \overline{7} \cdot \overline{2} = \overline{14} = \overline{4}$.

- 2. $\overline{9} \cdot \overline{x} = \overline{4}$. Ici $\overline{9}$ est inversible d'inverse $\overline{9}$. Donc l'équation admet une seule solution $\overline{x} = \overline{9} \cdot \overline{4} = \overline{6}$.
- $3. \ \overline{2} \cdot \overline{x} = \overline{3}.$

Solution : Ici $\overline{2}$ n'est pas inversible. Si x est solution de l'équation alors 2x = 3 + 10k et donc 3 = 2(x - 5k) ce qui est impossible.

 $4. \ \overline{2} \cdot \overline{x} = \overline{8}.$

Solution : Si x solution alors 2x = 8 + 10k, i.e. x = 4 + 5k. Finalement, les solutions sont $\overline{4}$, $\overline{9}$.

Proposition

Un élément \overline{x} dans $\mathbb{Z}/n\mathbb{Z}$ est inversible pour la multiplication si, et seulement si, x et n sont **premiers** entre eux.

Démonstration : D'après le théorème de Bezout, x et n sont premiers entre eux si, et seulement si, il existe deux entiers u, v tels que ux + vn = 1, ce qui équivaut aussi à

$$\overline{u} \cdot \overline{x} = \overline{u}\overline{x} = \overline{1}$$

ce qui signifie que \overline{x} est inversible d'inverse \overline{u} . De plus, l'algorithme d'Euclide nous fournit une méthode de calcul de l'inverse.

Corollaire

Si p est un nombre premier, alors tout élément non nul de $\mathbb{Z}/p\mathbb{Z}$ est inversible pour la multiplication. On dit que, $(\mathbb{Z}/p\mathbb{Z}), +, \cdot)$ est un **corps**. Ce corps est commutatif car le produit l'est. Cette notion est hors programme.

Notion d'ordre d'un élément

Soit (G, \star) un groupe et $g \in G$. On rappelle que l'application

$$\psi_g: \mathbb{Z} \longrightarrow G$$

$$n \longmapsto g^n$$

qui est un homomorphisme. En fait, nous avons

Proposition

Soit (G, \star) un groupe.

- 1. Si $\psi : \mathbb{Z} \longrightarrow G$ est un homomorphisme de groupe alors il existe un unique élément g de G tel que $\psi = \psi_g$.
- 2. Si $g \in G$ alors il existe un unique homomorphisme $\psi : \mathbb{Z} \longrightarrow G$ tel que $\psi(1) = g$, il s'agit de $\psi = \psi_g$.

Démonstration : (i) Soit $\psi: \mathbb{Z} \longrightarrow G$ est un homomorphisme. Posons alors $g = \psi(1)$ qui est un élément de G. Alors

$$\psi(2) = \psi(1+1) = \psi(1)\psi(1) = g^2.$$

Par récurrence on montre que pour tout $n \in \mathbb{N}$ on a $\psi(n) = g^n$. Aussi,

$$\psi(0) = \psi(1-1) = \psi(1)\psi(-1) = e$$

6

et donc

$$\psi(-1) = (\psi(1))^{-1} = g^{-1}.$$

Ainsi,

$$\psi(-2) = \psi(-1-1) = \psi(-1)\psi(-1) = (g^{-1})^2 = g^{-2}.$$

Ainsi, par récurrence, pour tout $n \in \mathbb{N}$,

$$\psi(-n) = g^{-n}.$$

Finalement, nous avons montré que pour tout $n \in \mathbb{Z}$,

$$\psi(n) = g^n.$$

L'unicité de g est triviale car si un élément $x \in G$ vérifie $\psi(n) = x^n$ alors $g = \psi(1) = x$.

(ii) Soit $g \in G$. Alors on sait que le homomorphisme

$$\psi_g: \mathbb{Z} \longrightarrow G$$

$$n \longmapsto g^n$$

vérifie $\psi_g(1) = g$. Si ψ est un homomorphisme $\mathbb{Z} \longrightarrow G$ tel que $\psi(1) = g$ alors on vérifie comme plus haut que $\psi = \psi_g$.

Théorème

Soit (G, \star) un groupe et $g \in G$. Alors l'ensemble

$$\langle g \rangle = \{ g^k \ , \ k \in \mathbb{Z} \}$$

est un sous groupe de G. De plus, on a l'une des assertions suivantes :

- 1. $\langle g \rangle$ est isomorphe à \mathbb{Z} et dans ce cas on dit que g est **d'ordre infini**,
- 2. il existe un entier p tel que $\langle g \rangle$ est isomorphe à $\mathbb{Z}/p\mathbb{Z}$. Dans ce cas, on dit que g est **d'ordre** p et on a

$$\langle g \rangle = \{e, g, \dots, g^{p-1}\}$$
 et le cardinal de $\langle g \rangle$ est p.

Démonstration : On considère le morphisme de groupe

$$\psi: \mathbb{Z} \longrightarrow G$$

$$n \longmapsto g^n$$

Comme le noyau ker ψ est un sous groupe de \mathbb{Z} , il existe un entier positif p tel que

$$\ker \psi = \{ k \in \mathbb{Z} / g^k = e \} = p\mathbb{Z}$$

Si p=0 alors ψ est injective et le sous groupe engendré par g

$$\langle g \rangle = \{ g^k , k \in \mathbb{Z} \}$$
 est infini

et est isomorphe à \mathbb{Z} .

Si p est non nul alors p est le plus entier positif non nul tel que $g^p = e$, puisqu'il est le plus entier positif non nul de ker ψ . En particulier, le sous groupe engendré par g est

$$\langle g \rangle = \{e, g, \cdots, g^{p-1}\}$$
 et il est de cardinal p .

En effet, soit $k \in \mathbb{Z}$. Grâce à la division euclidienne, il existe $(q,r) \in \mathbb{Z}^2$ tel que $0 \le r \le p-1$ avec k = pq + r. Ainsi,

$$g^k = g^{pq+r} = g^{pq} \star g^r = g^r.$$

De plus, si $0 \le m < n < p$ tel que $g^m = g^n$ alors $g^{n-m} = e$ et donc $n-m \in \ker \psi$ et $0 \le n-m < p$; d'où n=m.

Maintenant, il suffit de considérer

$$\Psi: \mathbb{Z}/p\mathbb{Z} \longrightarrow \langle g \rangle$$
$$\overline{a} \longmapsto q^a$$

et de montrer que Ψ est un isomorphisme de groupe.

En effet, si $\overline{a} = \overline{b}$ alors il existe un entier k tel que b = a + kp et donc

$$\Psi(\overline{b}) = g^b = g^{a+kp} = g^a \star g^{kp} = g^a = \Psi(\overline{a}).$$

Autrement dit, Ψ est bien définie. De plus,

$$\Psi(\overline{a} + \overline{b}) = \Psi(\overline{a + b}) = g^{a + b} = g^a \star g^b = \Psi(\overline{a}) \star \Psi(\overline{b}).$$

Ainsi ψ est un homomorphisme. De plus, ψ est surjective puisque tout élément de G s'écrit comme une puissance de g.

Soit $\overline{a} \in \ker \Psi$. Alors

$$\Psi(\overline{a}) = g^a = e.$$

Donc $a \in \ker \psi$ et a est un multiple de p. Finalement, $\overline{a} = \overline{0}$ et Ψ est injective.

Remarque

Soit (G, \star) un groupe et $g \in G$. Si g = e alors $\langle g \rangle = \{e\}$. Si $g \neq e$ alors on a l'une des assertions suivantes :

1. ou bien g est d'ordre infini c'est-à-dire aucune puissance de g ne vaut e, et dans ce cas $\langle g \rangle$ est isomorphe à \mathbb{Z} . En particulier,

$$g^n = g^m \iff n = m$$

2. ou bien g est d'ordre fini p. Dans ce cas p est le plus petit entier naturel non nul tel que $g^p = e$. De plus, $\langle g \rangle$ est isomorphe à $\mathbb{Z}/p\mathbb{Z}$ et

$$g^n = e \iff p/n$$

Groupes cycliques

Définition

On dit que (G, \star) est un groupe cyclique s'il existe un élément a de G tel que $G = \langle a \rangle = \{a^k, k \in \mathbb{Z}\}$. On dit que G est engendré par a.

- 1. Si (G, \star) est un groupe cyclique engendré par un élément a d'ordre n alors le cardinal de G est n. On dit que G est d'ordre n.
- 2. Si (G, \star) est un groupe cyclique alors il est commutatif.

Exemples

- 1. $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$. Il s'agit d'un groupe cyclique d'ordre infini. Aucun élément de \mathbb{Z} autre de 1 ou -1 n'engendre \mathbb{Z} .
- 2. $(\mathbb{Z}/n\mathbb{Z}, +) = \langle \overline{1} \rangle$.
- 3. Dans $(\mathbb{Z}/4\mathbb{Z}, +)$, $\langle \overline{2} \rangle = \{ \overline{0}, \overline{2} \} \neq \mathbb{Z}/4\mathbb{Z} \text{ et } \langle \overline{1} \rangle = \langle \overline{3} \rangle = \mathbb{Z}/4\mathbb{Z}.$
- 4. $(\mathbb{Z}/5\mathbb{Z}, +) = \langle \overline{1} \rangle = \langle \overline{2} \rangle = \langle \overline{3} \rangle = \langle \overline{4} \rangle$.
- 5. Soit $n \ge 2$ un entier non nul. Posons

$$\mathbb{U}_n = \{ z \in \mathbb{C} / z^n = 1 \} = \{ e^{\frac{2ik\pi}{n}}, k = 0, 1, \dots, n-1 \}.$$

l'ensemble des n racines $n^{\text{ème}}$ de l'unité. Il est clair que \mathbb{U}_n muni de la multiplication des nombres complexes est un groupe commutatif. Ce groupe est cyclique et est engendré par $e^{\frac{2i\pi}{n}}$.

Proposition

Soit G un groupe cyclique d'ordre n engendré par a et soit $k \in \{0, 1, \dots, n-1\}$. L'ordre de a^k vaut n si, et seulement si, k et n sont premier entre eux.

Démonstration : Notons d'abord que l'ordre de a^k est n signifie que a^k est aussi un générateur de G. Supposons que k et n ne sont pas premiers entre eux et soit d un diviseur commun de k et n autre que 1. Alors k = dp et n = dq. Il vient que

$$(a^k)^q = a^{kq} = a^{dpq} = a^{np} = e$$

ce qui est absurde car q < n et n est l'ordre de a^k .

Réciproquement supposons que k et n sont premier entre eux et que n n'est pas l'ordre de a^k . Donc il existe 0 < d < n tel que $a^{kd} = (a^k)^d = e$. Donc n divise kd. Comme k et n sont premier entre eux, on déduit que n divise d ce qui est impossible.

Corollaire

Si G est un groupe cyclique d'ordre premier alors G est engendré par n'importe lequel de ses éléments autre que l'élément neutre. En particulier, tous sous groupe de G contenant un élément autre que l'élément neutre est G lui même. Autrement dit, $\{e\}$ et G sont les seuls sous groupe de G.

Ceci est un cas particulier du théorème de Lagrange qui dit que le cardinal de tout sous groupe H d'un groupe fini G divise le cardinal de G: |H|/|G|.

Exemple

Soit $n \ge 2$ un entier non nul. Le groupe cyclique \mathbb{U}_n est est engendré par $e^{\frac{2i\pi}{n}}$ ou par n'importe lequel de ses éléments $e^{\frac{2ik\pi}{n}}$ pour vu que k et n soient premiers entre eux.

Soit $z=e^{\frac{2i\pi}{n}}$ ou n'importe quel autre élément générateur de \mathbb{U}_n . L'application

$$\psi: \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{U}_n$$

$$\overline{k} \longmapsto z^k$$

est un isomorphisme de groupe.

En fait, nous avons le théorème suivant :

Théorème

 $Si(G,\star)$ est un groupe cyclique de cardinal n alors (G,\star) est isomorphe à $(\mathbb{Z}/n\mathbb{Z},+)$.

Démonstration : Soit a un élément générateur de G, i.e.

$$G = \{e, a, \cdots, a^{n-1}\} = \langle a \rangle.$$

On sait que

$$\psi: \mathbb{Z}/n\mathbb{Z} \longrightarrow \langle a \rangle$$
$$\overline{p} \longmapsto a^p$$

est un isomorphisme de groupe.