Dimensionality Reduction

Alessandro Minoli Flavio Perini Francesco Torgano

SciViz A.A. 2020-21

UNIVERSITÀ DEGLI STUDI DI MILANO

ISOMAP

Cosa significa ridurre la dimensionalità?

L'intuizione

Algoritmo di ISOMAP

Input:

- *X* (ad alta dimensionalità)
- una funzione di **distanza** $d(x_i, x_j)$, scegliamo la euclidea

1) Costruzione del grafo pesato

Troviamo i neighbors \mathcal{N}_i di ogni punto x_i

K-nearest neighbors
$$\Rightarrow |\mathcal{N}_i| = k$$

Fixed radius $\Rightarrow \mathcal{N}_i = \{j \mid ||x_i - x_i|| \le r\}$

Uniamo i neighbors \mathcal{N}_i a x_i con archi di peso

$$w_{ij} = ||x_j - x_i||, \forall j \in \mathcal{N}_i$$
 (distanze **locali**)

- grafo connesso
- vale la disuguaglianza triangolare

2) Ricava la matrice di distanze D

calcolando le distanze d_{sp} dei cammini minimi fra tutte le coppie di punti usando l'algoritmo di Dijkstra o di Floyd-Warshall

(distanze **geodesiche**)

Come scegliere k

3) Applica metric MDS con D come input per ottenere X (a bassa dimensionalità), cioè un embedding del dataset che preserva le distanze geodesiche

Data
$$D \in \mathbb{R}^{n \times n}$$
, $d_{ij} = \|x_i - x_j\|$ ricava i punti $(x_i)_{i=1...n} \in \mathbb{R}^d$

Questo problema di embedding è chiamato (metric) multi-dimensional scaling

Più generalmente il problema è:

Dati gli oggetti $x_1, ..., x_n \in X$ (ad alta dimensionalità), trova un embedding $\Phi: X \to \mathbb{R}^d$ t.c. $\|\Phi(x_i) - \Phi(x_j)\| = d_{ij}$

Per una generale D, non possiamo ottenere un tale embedding senza distorsione dei dati

Classic MDS

Data una D di **distanze euclidee** possiamo esprimere in termini di entrate di D la **matrice di Gram** S con entrate $s_{ij} = (\langle x_i, x_j \rangle)_{ij=1...n}$ in questo modo:

$$d_{ij}^{2} = ||x_{i} - x_{j}||^{2} = \langle x_{i} - x_{j}, x_{i} - x_{j} \rangle = \langle x_{i}, x_{i} \rangle + \langle x_{j}, x_{j} \rangle - 2\langle x_{i}, x_{j} \rangle$$

$$s_{ij} = \langle x_i, x_j \rangle = \frac{1}{2} (\langle x_i, x_i \rangle + \langle x_j, x_j \rangle - d_{ij}^2) = \frac{1}{2} (d(0, x_i)^2 + d(0, x_j)^2 - d_{ij}^2) = \frac{1}{2} (d_{1i}^2 + d_{1j}^2 - d_{ij}^2)$$

S è una matrice definita positiva, perciò possiamo decomporla nella forma $S = XX^t$, $X \in \mathbb{R}^{n \times d}$

L' i -esima riga di X sarà l'embedding del punto x_i in \mathbb{R}^d

Per trovare X calcoliamo la decomposizione spettrale di $S=V\Lambda V^t$ e poniamo $X=V\sqrt{\Lambda}$. Tipicamente, scegliamo una dimensione $d\leq n$ e poniamo:

- V_d uguale alle prime d colonne di V
- $lack \Lambda_d$ uguale alla matrice diagonale $d \times d$ con i primi d autovalori sulla diagonale
- $X = V_d \sqrt{\Lambda_d}$

Un esempio numerico (ci sto lavorando ma escono risultati non belli ⊗)

	x1	x2	х3	x4	x5	x6	x7
x1	0	1	1.2	1.9	1.5	1.5	1.8
x2	1	0	1.7	0.9	1.5	2.0	2.2
х3	1.2	1.7	0	0.8	0.3	0.3	0.6
x4	1.9	0.9	0.8	0	0.6	1.1	1.3
x5	1.5	1.5	0.3	0.6	0	0.5	0.7
х6	1.5	2.0	0.3	1.1	0.5	0	0.3
x7	1.8	2.2	0.6	1.3	0.7	0.3	0

Metric MDS

Se D non è di sole distanze euclidee non riusciremo a ricavare un embedding perfetto.

Perciò definiamo una funzione di **stress**, ad esempio:

$$stress(embedding) = \frac{\sum_{ij} (\|x_i - x_j\| - d_{ij})^2}{\sum_{ij} \|x_i - x_j\|}$$

Cercheremo di trovare un embedding x_1, \dots, x_n che minimizzi lo stress tramite un algoritmo standard di ottimizzazione non convessa (es. discesa del gradiente).

- Garanzia teorica che, con $x_1, ..., x_n$ campioni presi uniformemente da un manifold "buono", per $n \to \infty$ e $k \approx \log n$ i cammini minimi sul grafo pesato convergono alle distanze geodesiche fra i campioni
- $O[Dlog(k)Nlog(N)] + O[N^2(k + log(N))] + O[dN^2]$
- Problema dei buchi nel manifold

ISOMAP (global)

LLE (local)

ISOMAP sul dataset di cifre MNIST

