Methods in Human Geography

Quantitative Methods: Statistical Analysis II

Dr Justin van Dijk j.t.vandijk@ucl.ac.uk

This week

Part I

- Crosstabulation.
- Correlation.

Part II

- Regression.
- Assumptions.

- We often encounter nominal or ordinal variables like gender, ethnic group, educational qualifications, income bands, or age groups.
- Information across two variables can be presented with a crosstab (contingency table) that organises data into a matrix, showing the frequency distribution across categories of two categorical variables.

Large share population over 50

Winner	No	Yes	Total
Conservative	25	91	116
Labour	243	131	374
Liberal Democrats	24	42	66
Other	8	11	19
Total	300	275	575

Large share population over 50

Winner	No	Yes	Total
Conservative	25	91	116
	(21.6%)	(78.4%)	(20.2%)
Labour	243	131	374
	(65%)	(35.0%)	(65.0%)
Liberal	24	42	66
Democrats	(36.4%)	(63.6%)	(11.5%)
Other	8	11	19
	(42.1%)	(57.9)	(3.3%)
Total	300	275	575

- Chi-square test (χ^2) assesses if the observed frequencies differ significantly from expected frequencies:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- A significant chi-square result suggests an association, while a non-significant result implies independence between variables.

	Large sha		
Winner	No	Yes	Total
Conservative	25 60.5	91 55.5	116
Labour	243 195.1	131 178.9	374
Liberal Democrats	24 34.4	42 31.6	66
Other	8 9.9	11 9.1	19
Total	300	275	575

- Chi-square requires a sufficiently large sample size and expected frequency of at least five in each cell for valid results.
- It measures whether the associations (or not) in your data are different than random, but it cannot tell you strengths or directions of relationships.

Scatterplot

- Crosstabulations are useful for examining bivariate relationships between nominal and ordinal data but what about continuous data?
- Scatterplots offer a visual representation of the relationship between two continuous variables, though interpretation can be subjective.

- Correlation is the degree to which two variables 'vary together' or are 'related'.
- Variables are correlated when there is some change in one variable at the same time as there is a change in another variable.
- Correlation quantifies both the strength and direction of the relationship between two variables.
- There are several measures of correlation, with Pearson's correlation coefficient being the most commonly used.

Covariance

Covariance

- Variance is a statistical measure that quantifies the dispersion of a variable's values around its mean, indicating how much the values differ from the average:

$$\sigma^2 = \frac{\Sigma(x - \bar{x})^2}{n - 1}$$

Covariance

- Covariance assesses the degree to which two variables change together, showing whether increases in one variable correspond to increases or decreases in another:

$$cov_{x,y} = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{n - 1}$$

- Pearson's correlation is a standardised measure that quantifies the strength and direction of the linear relationship between two variables, ranging from -1 to +1:

$$r = \frac{cov_{x,y}}{s_x s_y}$$

Negative	Description	Positive
0.00	None	0.00
-0.19 – -0.01	Very weak	0.01 – 0.19
-0.39 – -0.20	Weak	0.20 – 0.39
-0.69 – -0.40	Modest	0.40 – 0.69
-0.89 – -0.70	Strong	0.70 – 0.89
-0.99 – -0.90	Very strong	0.90 – 0.99
-1.00	Perfect	1.00

More correlation

- Spearman's correlation is a non-parametric measure used to assess the strength and direction of the relationship between two ranked or ordinal variables.
- It is particularly useful when the data do not meet the assumptions of normality required for Pearson's correlation or when the relationship is not linear.
- Spearman's correlation calculates the degree to which the ranks of one variable correspond to the ranks of another.

- Correlation describes the association between variables.
- Correlation, however strong, does not imply causation, but it is one important aspect of inferring causality.
- A statistically significant relationship between two variables does not mean they are causally linked.

John Stuart Mill's conditions for establishing causality are:

- Temporal precedence: The cause must come before the effect.
- Covariance: The cause and effect must be related.
- Disqualification of alternative explanations: No other variable can explain the observed relationship.

r = 0.7

Number of ice scream sales

Χ

Number of people drowning

r = 0.7

Number of ice scream sales

Number of people drowning

r = 0.7

Number of ice scream sales

Number of people drowning

★

Heat wave

r = 0.8

Number of fire fighters

Χ

Damage caused by the fire

r = 0.8

Number of fire fighters

Damage caused by the fire

Causation

r = 0.8

Number of fire fighters

Damage caused by the fire

Size of the fire

Mentimeter

- Go to <u>www.menti.com</u>.

- Use code: 3503 0583

Regression

Bivariate regression

- We often want to know more than just whether two variables are related; we also want to predict how changes in one variable will affect another variable.
- To do this we can use a regression model to examine the relationship between a dependent variable (y) and one or more independent variables (x).

Bivariate regression

- Linear regression uses a line to summarise the relationship between x and y.
- The aim to find the line which best represents the relationships in the data.
- Typically, this line will not pass through every data point meaning we cannot predict y exactly.

Null model

Sum of squared errors

Sum of squared errors

Minimise sum of squared errors

Minimise sum of squared errors

Bivariate regression

- Ordinary Least Squares (OLS) regression:

$$\hat{y} = \beta_0 + \beta_1 x$$

- The β terms are coefficients that define the regression line.
- The model estimates these parameters to find the line that gives the smallest sum of squared errors: Ordinary Least Squares (OLS) regression.

Minimise sum of squared errors

Regression with error term

- Ordinary Least Squares (OLS) regression:

$$y = \hat{y} + e = \beta_{0} + \beta_{1}x + e$$

- The error term e captures the part of y that is not explained by the model, indicating how well the regression line fits the data.

Model fit

- The \mathbb{R}^2 measures the proportion of the variance in the dependent variable that is explained by the model.
- Values range from 0 to 1.
 - 0: The model explains none of the variance.
 - 1: The model explains all the variance.

Model significance

- The F statistic can be used to assess the significance of the model.
- Compares the sum of squared errors (SSE) of a baseline model (using only the mean) to the SSE of the proposed model to determine if the model provides a significantly better fit.
- A significant F-test (p-value < 0.05) suggests that the model explains more variance than the mean-only model and fits the data better.

Bivariate regression

Model summary

	$Dependent\ variable:$
	у
x	0.034
	(0.075)
Constant	33.582***
	(2.761)
Observations	200
\mathbb{R}^2	0.001
$Adjusted R^2$	-0.004
Residual Std. Error	10.267 (df = 198)
F Statistic	0.203 (df = 1; 198)
Note:	*p<0.1; **p<0.05; ***p<

Bivariate regression

Model summary

	$Dependent\ variable:$
	у
x	0.985***
	(0.023)
Constant	10.340***
	(0.665)
Observations	200
\mathbb{R}^2	0.902
$Adjusted R^2$	0.902
Residual Std. Error	4.722 (df = 198)
F Statistic	1,829.716*** (df = 1; 198
Note:	*p<0.1; **p<0.05; ***p<0.

Multiple regression

- Multiple regression allows for a more comprehensive explanation of variance in the dependent variable compared to bivariate models.
- Multiple predictors: It is often unrealistic to attribute variations in the dependent variable y to a single factor or independent variable x.
- Separating effects: Multiple regression enables us to isolate and understand the individual effects of each predictor on the dependent variable.

Multiple regression

- As we add variables, the original regression equation changes:

$$\hat{y} = \beta_{0} + \beta_{1} x_{1} + \beta_{2} x_{2} + \dots + \beta_{n} x_{n}$$

- Interpretation difference: In multiple regression, coefficients show the unique contribution of each predictor, isolating its effect from other predictors.

Model summary

	$Dependent\ variable:$
	\mathbf{y}
x	0.984***
	(0.023)
z	-0.016
	(0.035)
Constant	10.907***
	(1.419)
Observations	200
\mathbb{R}^2	0.902
$Adjusted R^2$	0.901
Residual Std. Error	4.732 (df = 197)
F Statistic	$911.285^{***} (df = 2; 197)$
Note:	*p<0.1; **p<0.05; ***p<0.

- There are several assumptions that must be satisfied in order to generalise our estimates beyond a sample.
- We can still use OLS when the assumptions are violated, but the estimates may be biased or inefficient.

- Linearity: The relationship between the independent and dependent variables is linear.
- Independence: Observations are independent of each other; no correlation exists between the error terms.
- Homoscedasticity: The variance of error terms is constant across all levels of the independent variables (no heteroscedasticity).
- Normality of errors: The error terms are normally distributed.
- No multicollinearity: Independent variables are not strongly correlated with each other.

Output from the easystats R package.

Output from the easystats R package.

Output from the easystats R package.

More regression?

- OLS regression on non-linear patterns (like curves): interaction terms, polynomials.
- Logistic regression to model the relationship between a binary dependent variable and one or more independent variables, estimating the probability of the outcome occurring.
- Poisson regression to model count data, where the dependent variable represents the number of events occurring within a fixed interval, assuming the events occur independently.

More regression?

- Time series regression for using historical data points collected over time to predict future values of a dependent variable, taking into account trends, seasonality, and autocorrelation.
- Multilevel regression to accounts for data with hierarchical or nested structures, allowing for the analysis of relationships at multiple levels.
- Geographically Weighted Regression to analyse spatial variations in relationships between variables by estimating coefficients for each observation based on its geographic location.

Summary

Summary

- Crosstabulation and chi-square statistic are useful tools for examining the association between categorical variables.
- For continuous variables, regression analysis is often used to quantify the relationship between variables.
- There are numerous variants of regression, each suited for different types of data and research questions.

Questions

Justin van Dijk j.t.vandijk@ucl.ac.uk

