Practice Midterm 2

October 23, 2019

"I have adhered to the Duke Community Standard in completing this assignment."

Signature:

Name:

The following list of mathematical statements may be useful.

Definition. A subspace of a vector space V over F is a subset W of V which itself is a vector space over F.

Theorem. A non-empty subset $W \subset V$ is a subspace of V if and only if, for every pair of vector $\underline{w}_1, \underline{w}_2 \in W$ and every scalar $s \in F$, the vector $s\underline{w}_1 + \underline{w}_2$ is also in W.

Definition. A *norm* on a vector space V is a function $\|\cdot\|: V \to \mathbb{R}$ that satisfies

- 1. $\|\underline{v}\| \ge 0 \quad \forall \underline{v} \in V$; equality holds if and only if $\underline{v} = \underline{0}$ (positive definiteness)
- 2. $||s\underline{v}|| = |s| \, ||\underline{v}|| \quad \forall \underline{v} \in V, s \in F$ (positive homogeneity)
- $3. \ \|\underline{v} + \underline{w}\| \leq \|\underline{v}\| + \|\underline{w}\| \quad \forall \underline{v}, \underline{w} \in V.$ (triangle inequality)

Definition. Let V be a vector space over $F = \mathbb{R}$ or $F = \mathbb{C}$. An *inner product* on V is a function that assigns a scalar $\langle \underline{v} | \underline{w} \rangle \in F$ to each ordered pair of vectors $\underline{v}, \underline{w} \in V$ such that, for all $\underline{u}, \underline{v}, \underline{w} \in V$ and all $s \in F$,

- 1. $\langle \underline{u} + \underline{v} | \underline{w} \rangle = \langle \underline{u} | \underline{w} \rangle + \langle \underline{v} | \underline{w} \rangle$
- 2. $\langle s\underline{v}|\underline{w}\rangle = s\langle \underline{v}|\underline{w}\rangle$
- 3. $\langle \underline{v} | \underline{w} \rangle = \overline{\langle \underline{w} | \underline{v} \rangle}$, where the overbar denotes complex conjugation;
- 4. $\langle \underline{v} | \underline{v} \rangle \geq 0$ with equality iff $\underline{v} = \underline{0}$.

Theorem. Suppose $\mathcal{B} = \underline{v}_1, \dots, \underline{v}_n$ is an ordered basis for the vector space V. Then, any inner product on V is completely determined by the values, $G_{ji} = \langle \underline{v}_i | \underline{v}_j \rangle$, it takes on pairs of vectors in \mathcal{B} .

Definition. For an inner product space V, two subsets $U,W\subseteq V$ are called *orthogonal* (i.e., $U\perp W$) if $\langle u|w\rangle=0$ for all $u\in U$ and $w\in W$.

Definition. The *projection* of $\underline{v} \in V$ onto $\underline{w} \in V$ is given by $\underline{u} = (\langle \underline{v} | \underline{w} \rangle / \|\underline{w}\|^2)\underline{w}$ and satisfies $\underline{v} - \underline{u} \perp \underline{w}$. **Definition.** Consider a complex $n \times n$ matrix A with elements a_{ij} . The *Hermitian transpose* $B = A^H$ of A is defined by the elements $b_{ij} = \overline{a_{ji}}$ where \overline{a} denotes the complex conjugate of a.

Definition. A complex matrix A is Hermitian if $A^H = A$. It is skew Hermitian if $A^H = -A$.

Problems:

- 1. True or False:
 - (a) 2.5 pt An orthogonal set of non-zero vectors must be linearly independent.
 - (b) **2.5 pt** A subset U of a vector space V is automatically a subspace of V.
 - (c) **2.5 pt** For inner product space V, if \underline{w} is the projection of $\underline{v} \in V$ onto $\underline{u} \in V$ then $\underline{v} \perp \underline{w}$.
 - (d) **2.5 pt** A $n \times n$ matrix over a field F is invertible if and only its rows form a basis for F^n .
- 2. Assign one of the following terms to each sentence: basis, inner product, invertible, non-singular, nullity, nullspace, operator norm, orthogonal, range, rank, subspace.
 - (a) **2.5 pt** Two subspaces $U, W \subset V$ that satisfy $\langle \underline{u} | \underline{w} \rangle = 0$ for all $\underline{u} \in U$ and $\underline{w} \in W$.
 - (b) 2.5 pt Let V be a vector space and $T: V \to W$ be a linear transformation that is injective.
 - (c) **2.5 pt** The largest scale factor by which a linear transform changes the length of a vector.
 - (d) **2.5 pt** The dimension of the column space of a matrix A.
- 3. Let V be the vector space of all functions from \mathbb{R} into \mathbb{R} . Let V_e be the subset of even functions satisfying f(-x) = f(x); and let V_o be the subset of odd functions satisfying f(-x) = -f(x).
 - (a) 5 pt Show that V_e and V_o are subspaces of V.
 - (b) 5 pt Prove that $V_e + V_o = V$.
 - (c) **5 pt** Prove that $V_e \cap V_o = \{0\}$.
 - (d) 5 pt Let $f \in V$. Show that the decomposition f = g + h where $g \in V_e$ and $h \in V_o$ is unique.
 - (e) 2.5 pt Prove or disprove the claim: a polynomial in V can be expressed as the sum of an even polynomial and an odd polynomial.
 - (f) **2.5 pt** Prove or disprove the claim: a continuous function in V can be expressed as the sum of an even continuous function and an odd continuous function.
- 4. Let V be the vector space of all real polynomial functions of degree 2 or less, i.e., the space of all functions f of the form

$$f(x) = c_0 + c_1 x + c_2 x^2$$
 where $c_0, c_1, c_2 \in \mathbb{R}$.

Consider the elements $g_0(x) = 1$, $g_1(x) = 1 + x$, $g_2(x) = (1 + x)^2$.

- (a) **5 pt** Prove that $\mathcal{B} = (g_0, g_1, g_2)$ is an ordered basis for V.
- (b) 5 pt If $f(x) = c_0 + c_1 x + c_2 x^2$, what are the coordinates of f in ordered basis \mathcal{B} ?

For the remainder of this problem, consider the linear transformation defined by

$$T(b_0g_0(x) + b_1g_1(x) + b_2g_2(x)) = (b_0 + 2b_1 - b_2) + b_2x^2.$$

- (c) $\mathbf{5}$ **pt** What is the rank and nullity of T? Substantiate your answer.
- (d) **5 pt** Find a matrix B such that $[Tf]_{\mathcal{B}} = B[f]_{\mathcal{B}}$ for any $f \in V$.
- (e) **5 pt** Let $\mathcal{A} = (1, x, x^2)$ be the standard ordered basis. Find a matrix A such that $[Tf]_{\mathcal{A}} = A[f]_{\mathcal{A}}$ for any $f \in V$.
- 5. The norm $\|\cdot\|_A$ is norm equivalent to the norm $\|\cdot\|_B$ if there exists an $M_{AB} < \infty$ such that

$$\frac{1}{M_{AB}} \|\underline{x}\|_{B} \le \|\underline{x}\|_{A} \le M_{AB} \|\underline{x}\|_{B}.$$

- (a) **5 pt** Show that norm equivalence is reflexive. In other words, show that " $\|\cdot\|_A$ norm equivalent to $\|\cdot\|_B$ " implies " $\|\cdot\|_B$ norm equivalent to $\|\cdot\|_A$ ".
- (b) **5 pt** Show that norm equivalence is transitive. In other words, show that " $\|\cdot\|_A$ is norm equivalent to $\|\cdot\|_B$ " and " $\|\cdot\|_B$ is norm equivalent to $\|\cdot\|_C$ " implies " $\|\cdot\|_A$ is norm equivalent to $\|\cdot\|_C$ ".

Let $V=\mathbb{C}^n$ be the standard vector space over the complex numbers and define

$$||x||_p \triangleq \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

to be the standard p-norm for $p \in [1, \infty)$.

- (c) **5 pt** Use simple bounds on $\|\cdot\|_p$ to show that any p-norm is norm equivalent to the ∞ -norm for all $p \in [1, \infty)$
- (d) **5 pt** Now, show that an arbitrary norm $\|\cdot\|$ is equivalent to the 1-norm. [Hint: You may assume that $\min_{x:\|x\|_1=1} \|\underline{x}\| = m > 0$ and that $\max_{i \in 1,...,n} \|\underline{e}_i\| = M < \infty$.]
- 6. Consider the functions $f_i: [-1,1] \mapsto \mathbb{R}$ given by $f_0(t)=1$, $f_1(t)=t$, $f_2(t)=t^2$. Let $V=\operatorname{span}(f_0,f_1,f_2)$. Also, define the inner product

$$\langle f|h\rangle = \int_{-1}^{1} f(t)h(t)t^2dt.$$

(a) **5 pt** – Since $\mathcal{B} = \{f_0, f_1, f_2\}$ is a basis for V, we know that any vector $f \in V$ can be expressed as $[f]_{\mathcal{B}} = [s_0 \ s_1 \ s_2]^T$ such that $f(t) = s_0 f_0(t) + s_1 f_1(t) + s_2 f_2(t)$. Find a matrix G such that

$$\langle f|h\rangle = [h]_{\mathcal{B}}^H G [f]_{\mathcal{B}}$$

for all $f, h \in V$.

(b) **5 pt** – Apply the Gram-Schmidt orthogonalization process to basis elements $\{f_0, f_1, f_2\}$ and derive an orthogonal basis for V. Call the resulting vectors $\mathcal{A} = \{h_0, h_1, h_2\}$.