

For questions during the exam: Lars Imsland, tel. 47 23 19 49.

Exam in TTK4130 Modeling and Simulation Friday, May 27th 2011 09:00 - 13:00

Permitted aids (code A): All written and handwritten examination support materials are permitted.

Note: A Norwegian text is appended.

Answers in English, Norwegian, or a mixture of the two accepted.

Grades available: As specified by regulations.

Problem 1 (26 %)

The gyroscopic pendulum consists of a physical pendulum with a rotating symmetric disc at the end, spinning about an axis parallel to the axis of rotation of the pendulum. See Figure 1. The stiff rod has mass m_1 , length ℓ_1 and moment of inertia I_1 . The position of the rod's center of gravity is given by ℓ_{c1} (cf. figure). The disc has mass m_2 and moment of inertia I_2 . The pendulum is attached to a fixed coordinate system (axis x and y).

Figure 1: Gyroscopic pendulum

The rotating disc is actuated by a torque τ (which could be generated e.g. by a DC-motor). The gyroscopic pendulum is sometimes used as an experiment to illustrate nonlinear control theory.

We will develop the equations of motion for the gyroscopic pendulum.

- (4%) (a) Choose appropriate generalized coordinates for this system. The figure should give you some hints. What are the corresponding generalized forces?
- (6%) (b) What is the angular velocity of the disc (that is, of a coordinate system fixed in the disc) in the earth-fixed coordinate system?
- (10%) (c) Find the kinetic and potential energy for the system as functions of the generalized coordinates.
- (6%) (d) Derive the equations of motion for the system.

Problem 2 (28%)

In this problem, we will consider four coordinate systems,

- coordinate system a with axes \vec{a}_1 , \vec{a}_2 , and \vec{a}_3 ,
- coordinate system b with axes b_1 , b_2 , and b_3 ,
- coordinate system c with axes $\vec{c_1}$, $\vec{c_2}$, and $\vec{c_3}$,
- coordinate system d with axes d_1 , d_2 , and d_3 .

The rotation from a to b is described by a rotation α about \vec{a}_3 , from b to c by a rotation β about \vec{b}_2 , and from c to d by a rotation γ about \vec{c}_1 . (Here, α , β , and γ are angles.)

- (8%) (a) Find the rotation matrix \mathbf{R}_d^a . The answer should contain the elements of this rotation matrix.
- (8%) (b) The angle/axis parameters \vec{k} and θ correspond to \mathbf{R}_d^a . Show that

$$\mathbf{R}_d^a - \left(\mathbf{R}_d^a\right)^\mathsf{T} = 2\mathbf{k}^\times \sin \theta.$$

- (4%) (c) In which of the coordinate systems a, b, c, and d is the coordinate vector \mathbf{k} specified?
- (8%) (d) Let $\alpha = \frac{\pi}{2}$, $\beta = 0$, and $\gamma = -\frac{\pi}{2}$. Make a sketch of coordinate system a and d, and find the parameters k and θ that correspond to \mathbf{R}_d^a for these values.

Problem 3 (26%)

Given the following Butcher array:

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 - \alpha & \alpha \\
\hline
& 1 - \alpha & \alpha
\end{array}$$

where $\alpha \in [0,1]$ is a parameter.

- (6%) (a) Write up the equations for this method, for a system $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, t)$. Is the method explicit or implicit? Why?
- (6%) (b) Derive the stability function for this method as a function of $s = h\lambda$ (correct answer without calculations give 50% score).
- (8%) (c) For which α is the method A-stable? Substantiate your answer.
- (6%) (d) For which α is the method L-stable? Substantiate your answer.

Problem 4 (20%)

When ice forms on water, the "rate of freezing" is mainly a function of air temperature (but also other factors, such as water temperature, water salinity, wind, etc.). Assume that this rate of freezing (per unit volume) is known, and denote it $S_h = S_h(\mathbf{x}, t)$.

Let $h = h(\mathbf{x}, t)$ denote the thickness of ice, and assume that ice density is constant.

(4%) (a) Explain *briefly* what the equation

$$\frac{\mathrm{D}}{\mathrm{D}t} \iiint_{V_{m}} h \mathrm{d}V = \iiint_{V_{m}} S_{h} \mathrm{d}V$$

express.

(6%) Set up a partial differential equation (on divergence form) for the dynamics of ice thickness. Assume that the velocity \vec{v} of ice is known,

$$\mathbf{v} = \begin{pmatrix} u \\ v \\ w \end{pmatrix},$$

where the velocity in z-direction is zero, w = 0.

Hint: Reynolds theorem on divergence form is

$$\frac{\mathbf{D}}{\mathbf{D}t}\iiint_{V}\phi\mathbf{d}V=\iiint_{V}\frac{\partial\phi}{\partial t}+\vec{\nabla}\cdot\left[\phi\vec{v}\right]\mathrm{d}V$$

- (4%) (c) If the velocity was not known, where should we start if we were to set up a model for the velocity? The answer should be a single sentence, and not contain mathematics.
- (6%) (d) Outline (briefly, in words or simple mathematics) a way to simulate the model found in (b).