En el ejemplo 1.2.2 se comenzó con

$$A_2 = \begin{pmatrix} 2 & 4 & 6 \\ 4 & 5 & 6 \\ 2 & 7 & 12 \end{pmatrix}$$

y se terminó con

$$R_2 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

En el ejemplo 1.2.3 se comenzó con

$$A_3 = \begin{pmatrix} 0 & 2 & 3 \\ 2 & -6 & 7 \\ 1 & -2 & 5 \end{pmatrix}$$

y se terminó con

$$R_3 = \begin{pmatrix} 1 & 0 & 8 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

Las matrices R_1 , R_2 , R_3 se denominan **formas escalonadas reducidas por renglones** de las matrices A_1 , A_2 y A_3 , respectivamente. En general, se tiene la siguiente definición:

Definición 1.2.2

Forma escalonada reducida por renglones y pivote

Una matriz se encuentra en la **forma escalonada reducida por renglones** si se cumplen las siguientes condiciones:

- i) Todos los renglones (si los hay) cuyos elementos son todos cero aparecen en la parte inferior de la matriz.
- ii) El primer número diferente de cero (comenzando por la izquierda) en cualquier renglón cuyos elementos no todos son cero es 1.
 - iii) Si dos renglones sucesivos tienen elementos distintos de cero, entonces el primer 1 en el renglón de abajo está más hacia la derecha que el primer 1 en el renglón de arriba
 - iv) Cualquier columna que contiene el primer 1 en un renglón tiene ceros en el resto de sus elementos. El primer número diferente de cero en un renglón (si lo hay) se llama pivote para ese renglón.

Nota

La condición iii) se puede reescribir como "el pivote en cualquier renglón está a la derecha del pivote del renglón anterior".

EJEMPLO 1.2.4 Cinco matrices en la forma escalonada reducida por renglones

Las siguientes matrices están en la forma escalonada reducida por renglones:

i)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 ii) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ iii) $\begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 0 & 1 & 2 \end{pmatrix}$ iv) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ v) $\begin{pmatrix} 1 & 0 & 2 & 5 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$