Analisi Matematica 2 - Ing. Informatica Telecomunicazioni		Esame del 7 febbraio 2022
Cognome:	Nome:	Matricola:

ESERCIZI: 24 punti.

Esercizio 1 (6 punti)

- 1) (3 punti) Determinare l'integrale generale dell'equazione differenziale $y''(t) + 2y'(t) 3y(t) = e^t$.
- 2) (1,5 punti) Stabilire se esistono soluzioni di tale equazione che verificano $\lim_{t\to -\infty} y(t)=0$ e, in caso affermativo, determinarle tutte.
- 3) (1,5 punti) Risolvere il problema di Cauchy $\left\{ \begin{array}{l} y''(t)+2y'(t)-3y(t)=e^t\\ y(0)=0\\ y'(0)=0 \end{array} \right. .$

Risposte

1) Consideriamo in primo luogo l'equazione omogenea associata y''(t) + 2y'(t) - 3y(t) = 0. Il polinomio caratteristico è $p(\lambda) = \lambda^2 + 2\lambda - 3$, che ha gli zeri reali e distinti $\lambda_1 = -3$ e $\lambda_2 = 1$. Concludiamo che l'integrale generale dell'equazione omogenea è $y_o(t) = c_1 e^{-3t} + c_2 e^t$, $c_1, c_2 \in \mathbb{R}$. Passiamo a studiare l'equazione completa. Essendo la forzante $e^t = e^{1 \cdot t}$ ed essendo 1 uno zero del polinomio caratteristico, una soluzione particolare avrà la forma $z(t) = Ate^t$ per una opportuna costante $A \in \mathbb{R}$. Calcolandone le derivate e sostituendo nell'equazione differenziale, otteniamo

$$\left(2Ae^t+z(t)\right)+2\left(Ae^t+z(t)\right)-3z(t)=4Ae^t \stackrel{pongo}{=} e^t \qquad \Rightarrow \qquad A=\frac{1}{4},$$

da cui una soluzione particolare è $y_p(t) = \frac{t}{4}e^t$. Concludiamo che l'integrale generale dell'equazione completa è

$$y(t) = c_1 e^{-3t} + c_2 e^t + \frac{t}{4} e^t, \quad c_1, c_2 \in \mathbb{R}.$$

2) Le soluzioni sono definite su tutto \mathbb{R} . Ricordando i limiti

$$\lim_{t \to -\infty} e^{-3t} = +\infty, \quad \lim_{t \to -\infty} e^t = 0, \quad \lim_{t \to -\infty} \frac{t}{4} e^t = 0$$

(l'ultimo deriva dalla scala degli infiniti), deduciamo che le soluzioni dell'equazione che verificano $\lim_{t\to-\infty} y(t) = 0$ sono tutte e sole quelle ottenute ponendo $c_1 = 0$, cioè del tipo $ce^t + \frac{t}{4}e^t$, con $c \in \mathbb{R}$.

3) Si ha $y(0) = c_1 + c_2$ e

$$y'(t) = -3c_1e^{-3t} + \left(c_2 + \frac{1}{4}\right)e^t + \frac{t}{4}e^t \qquad \Rightarrow \qquad y'(0) = -3c_1 + c_2 + \frac{1}{4}.$$

Per risolvere il problema di Cauchy dobbiamo quindi determinare le soluzioni c_1, c_2 del sistema

$$\begin{cases} c_1 + c_2 = 0 \\ -3c_1 + c_2 + \frac{1}{4} = 0, \end{cases}$$

da cui $c_1 = 1/16$, $c_2 = -1/16$ e la soluzione richiesta è

$$\frac{1}{16}e^{-3t} - \frac{1}{16}e^t + \frac{t}{4}e^t.$$

1

Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione 2π -periodica definita in $[-\pi, \pi)$ da $\begin{cases} -x & \text{per } x \in [-\pi, 0) \\ \frac{x}{2} & \text{per } x \in [0, \pi). \end{cases}$

- 1) (3 punti) Studiare la convergenza della serie di Fourier di f, in particolare:
 - a- discutere la convergenza in media quadratica;
 - b- determinare l'insieme di convergenza puntuale della serie di Fourier e la funzione somma della serie in tale insieme;
 - c- stabilire se la convergenza della serie di Fourier sia totale in tutto \mathbb{R} .
- 2) (3 punti) Determinare i coefficienti a_n della serie di Fourier di f. Non è richiesto di calcolare i coefficienti b_n .

Risposte

1) Essendo f periodica di periodo 2π e regolare a tratti in $[-\pi, \pi]$, deduciamo immediatamente che la serie di Fourier di f converge in media quadratica e che essa converge puntualmente in tutto \mathbb{R} . Quindi la somma della serie $F(x) = \lim_{m \to +\infty} F_m(x)$ risulta ben definita per ogni $x \in \mathbb{R}$, dove abbiamo indicato con $F_m(x)$ il polinomio di Fourier di ordine m associato a f. Inoltre

per ogni
$$x \neq \pi + 2k\pi$$
 $(k \in \mathbb{Z})$ si ha $F(x) = f(x)$

in quanto f è continua in tali punti, mentre

$$F(\pi + 2k\pi) = \frac{f(-\pi) + f(\pi)}{2} = \frac{3}{4}\pi \quad \text{ per ogni } k \in \mathbb{Z},$$

in quanto f è discontinua in tali punti. Infine, la convergenza non è totale in tutto \mathbb{R} , in quanto la funzione F è discontinua (essendo $F_m(x)$ somme parziali m-esime di funzioni continue, se la convergenza fosse totale in tutto \mathbb{R} , si avrebbe che la funzione somma F(x) sarebbe a sua volta una funzione continua).

2) Si ha

$$a_0 = -\frac{1}{2\pi} \int_{-\pi}^0 x \, dx + \frac{1}{2\pi} \int_0^{\pi} \frac{x}{2} \, dx = \frac{3}{8\pi}$$

$$a_n = -\frac{1}{\pi} \int_{-\pi}^0 x \cos(nx) \, dx + \frac{1}{\pi} \int_0^{\pi} \frac{x}{2} \cos(nx) \, dx = \frac{3}{2} \int_0^{\pi} \frac{x}{2} \cos(nx) \, dx = \frac{3}{2} \frac{(-1)^n - 1}{\pi n^2},$$

dove si è usato il seguente integrale ottenuto tramite integrazione per parti

$$\int x \cos(nx) \, dx = \frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2}.$$

Possiamo equivalentemente scrivere che, per k = 1, 2, 3...

$$a_{2k-1} = \frac{3(-1)^{2k-1}}{\pi(2k-1)^2},$$
 $a_{2k} = 0.$

2

- 1) (3 punti) Sia g la funzione di due variabili definita da $g(x,y) = \frac{\ln(1+x^2y)}{\sqrt{2x^2+y^2}}$.
 - a- Determinare il dominio di g e dire se si tratta di un insieme aperto/chiuso limitato/illimitato.
 - b- Stabilire se esiste il limite $\lim_{(x,y)\to(0,0)} g(x,y)$ e, in caso affermativo, determinarlo.
- 2) (3 punti) Sia ora $f(x,y) = e^{x^2 y}$. Determinare il massimo assoluto e il minimo assoluto di f sul vincolo $\mathcal{Z} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.

Risposte

1) Il dominio di q è

$$\{(x,y) \in \mathbb{R}^2 : 2x^2 + y^2 \neq 0, \ 1 + x^2y > 0\} = \{(x,y) \in \mathbb{R}^2 : (x,y) \neq (0,0), \ x^2y > -1\}.$$

Si tratta della regione piana che giace sopra il grafico della funzione $y=-\frac{1}{x^2}$, ad esclusione dell'origine. Esso è aperto e illimitato. Riguardo il limite di g nell'origine, sfruttando il limite notevole 1-dimensionale $\ln(1+t) \sim t$ per $t \to 0$, si ha

$$g(x,y) \sim \frac{x^2y}{\sqrt{2x^2 + y^2}}$$
 per $(x,y) \to (0,0)$.

Dimostriamo che il limite richiesto è 0. Passando in coordinate polari $(x, y) = (r \cos(\theta), r \sin \theta)$ e prendendo il valore assoluto si ottiene:

$$\left| \frac{x^2 y}{\sqrt{2x^2 + y^2}} \right| = \left| \frac{r^3 \cos^2 \theta \sin \theta}{\sqrt{2r^2 \cos^2 \theta + r^2 \sin^2 \theta}} \right| = \frac{r^2 |\cos^2 \theta \sin \theta|}{\sqrt{2\cos^2 \theta + \sin^2 \theta}}.$$

Possiamo stimare il denominatore ad esempio come segue

$$\sqrt{2\cos^2\theta + \sin^2\theta} = \sqrt{\cos^2\theta + \cos^2\theta + \sin^2\theta} = \sqrt{\cos^2\theta + 1} \ge 1.$$

Usando per il numeratore la disuguaglianza $|\cos^2\theta\sin\theta| \le 1$ si ottiene

$$\left| \frac{x^2 y}{\sqrt{2x^2 + y^2}} \right| \le r^2,$$

che permette di concludere che il limite richiesto è 0.

2) Essendo f continua su tutto il suo dominio ed essendo $\mathcal Z$ chiuso e limitato, il massimo e il minimo assoluti di f su $\mathcal Z$ esistono per il teorema di Weierstrass. Applicando il teorema dei moltiplicatori di Lagrange, ci si riconduce a risolvere il sistema

$$\begin{cases} 2xe^{x^2-y} = 2\lambda x \\ -e^{x^2-y} = 2\lambda y \\ x^2 + y^2 = 1 \end{cases}$$

Dalla prima equazione deduciamo che o x=0, oppure $\lambda=e^{x^2-y}$. Nel caso x=0 otteniamo i due punti candidati $P_1=(0,1)$ e $P_2=(0,-1)$. Nel caso complementare, andando a sostituire $\lambda=e^{x^2-y}$ nella seconda equazione, otteniamo

$$\begin{cases} -\lambda = 2\lambda y \\ x^2 + y^2 = 1 \end{cases} \Rightarrow \begin{cases} y = -\frac{1}{2} \\ x^2 = 1 - y^2 = \frac{3}{4} \end{cases}$$

da cui i punti candidati $P_3=(\frac{\sqrt{3}}{2},-\frac{1}{2})$ e $P_4=(-\frac{\sqrt{3}}{2},-\frac{1}{2})$. In conclusione, confrontando i valori $f(P_i)$ per $i=1,\ldots,4$,

$$\max_{\mathcal{Z}} f = e^{5/4} \qquad \min_{\mathcal{Z}} f = e^{-1}.$$

Il risultato poteva anche essere ottenuto con il metodo di sostituzione, sostituendo le coordinate polari nella f e cercando i punti critici tramite derivazione rispetto a θ .

3

Data la lamina piana

$$L = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, \ x \ge 0, \ -x \le y \le x\},\$$

avente densità di massa $\rho(x,y) = x$,

- 1) (2,5 punti) calcolare la massa m(L) della lamina L;
- 2) (3,5 punti) ricordando che il baricentro di L ha coordinate

$$\frac{1}{m(L)} \left(\iint_L x \rho(x,y) \, dx \, dy, \iint_L y \rho(x,y) \, dx \, dy \right),$$

determinarle.

Risposte

1) Calcoliamo la massa passando alle coordinate polari $(x, y) = (r\cos(\theta), r\sin\theta)$. Ricordando di moltiplicare l'integranda per il modulo dello jacobiano del cambiamento di coordinate r, abbiamo

$$m(L) = \iint_L \rho(x, y) \, dx \, dy = \int_{-\pi/4}^{\pi/4} \int_0^1 r \cos(\theta) \, r \, dr \, d\theta = \int_{-\pi/4}^{\pi/4} \cos(\theta) \, d\theta \cdot \int_0^1 r^2 \, dr = \frac{\sqrt{2}}{3}.$$

2) Per determinare il baricentro di L, utilizziamo ancora le coordinate polari:

$$\frac{1}{m(L)} \iint_L x^2 \, dx \, dy = \frac{3}{\sqrt{2}} \int_{-\pi/4}^{\pi/4} \int_0^1 r^2 \cos^2(\theta) \, r \, dr \, d\theta = \frac{3}{\sqrt{2}} \int_{-\pi/4}^{\pi/4} \cos^2(\theta) \, d\theta \cdot \int_0^1 r^3 \, dr = \frac{3}{\sqrt{2}} \frac{2+\pi}{16}$$

$$\frac{1}{m(L)} \iint_L xy \, dx \, dy = \frac{3}{\sqrt{2}} \int_{-\pi/4}^{\pi/4} \int_0^1 r \cos(\theta) \, r \sin(\theta) \, r \, dr \, d\theta = \frac{3}{\sqrt{2}} \int_{-\pi/4}^{\pi/4} \cos(\theta) \sin(\theta) \, d\theta \cdot \int_0^1 r^3 \, dr = 0$$

(l'ordinata del baricentro poteva anche essere dedotta dalla simmetria del problema).

TEORIA: 8 punti.

Tutte le domande a crocette ammettono una e una sola risposta corretta.

- 1) (1 punto) Si consideri il sistema differenziale omogeneo $\underline{y}'(t) = A\underline{y}(t)$, dove A è una matrice quadrata di ordine 2 avente autovalori complessi coniugati immaginari puri.
 - A Le soluzioni sono tutte limitate in \mathbb{R} $\boxed{\mathbf{V}}$
 - B Potrebbero esistere soluzioni non definite in tutto $\mathbb R$
 - C Le soluzioni sono tutte del tipo $\underline{v} e^{\lambda t}$, con λ reale e $\underline{v} \in \mathbb{R}^2$
 - D L'integrale generale è uno spazio vettoriale di dimensione 1
- 2) (1 punto) Siano $[a,b] \subset \mathbb{R}$ un intervallo limitato e $\underline{r}:[a,b] \to \mathbb{R}^n$ la parametrizzazione di una curva regolare γ . Siano poi $A \subset \mathbb{R}^n$ aperto tale che $\gamma \subset A$ e $f:A \to \mathbb{R}$ continua. L'integrale curvilineo di f lungo γ è
 - A $\int_a^b \|\underline{r}'(t)\| dt$
 - B $\int_{r(a)}^{\underline{r}(b)} f(\underline{r}(t)) dt$
 - $C \int_a^b f(\underline{r}(t)) dt$
 - D $\int_a^b f(\underline{r}(t)) \|\underline{r}'(t)\| dt \ \boxed{V}$
- 3) (1 punto) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione differenziabile in $\underline{x}_0 \in \mathbb{R}^2$. Allora
 - A fè di classe C^1 in un intorno di \underline{x}_0
 - B può esistere una successione di punti \underline{x}_n per cui si abbia $\lim_{n \to +\infty} \underline{x}_n = \underline{x}_0$ e $\lim_{n \to +\infty} f(\underline{x}_n) \neq f(\underline{x}_0)$
 - C se inoltre \underline{x}_0 è punto critico per f, allora $f(\underline{x}) f(\underline{x}_0) = o(\|\underline{x} \underline{x}_0\|)$ quando $\underline{x} \to \underline{x}_0$ \boxed{V}
 - D $\nabla f(\underline{x}_0)$ è tangente all'insieme di livello di f passante per \underline{x}_0
- 4) (1,5 punti) Enunciare il teorema di Fermat, specificandone le ipotesi di validità.
- 5) (3,5 punti) Enunciare e dimostrare la formula risolutiva per le equazioni differenziali ordinarie del primo ordine lineari.