EN.530.626: Trajectory Generation for Space Systems Homework 2 Due Oct 7th 11:59PM

The code for this assignment can once again be found on GitHub at this link and can be downloaded by running git clone https://github.com/JHU-ACEL/trajdesign_hw.git from a terminal window. You can either clone/download the repository out or simply git pull if you had cloned out the repository for the last homework. Homework submissions and grading will be managed through Canvas.

Introduction

This homework will focus on the following technical concepts:

- 1. Using Newton method to solve convex quadratic programs with linear equality and inequality constraints.
- 2. Synthesizing a primal-dual interior point method algorithm to satisfy the necessary conditions of optimality for such problems.

To accomplish this, the software development learning goals include,

- Implementing the primal-dual interior point solver using jax.
- Understanding how such generic QP solvers are used to solve optimal control problems.

Problem 1: A Vanilla Convex QP Solver

In this problem, we will be implementing the quadratic program solver from [1]. There is no additional write-up required for this problem.

Problem 2: Optimal Control as a Quadratic Program

Next, take the "vanilla" quadratic program solver from Problem 1 and use it solve a simple optimal control problem for a 2D spacecraft double integrator system. There is no additional write-up required for this problem.

Submission Instruction

• Download the marimo notebook for each problem and join them together into a single PDF or HTML file named hw2.pdf.

Johns Hopkins Fall 2025

- Compress the hw2 folder containing your python files. Name this file "hw3.zip".
- Upload both the PDF/HTML file and the zip folder into the canvas assignment "Homework 2".

References

[1] J. Mattingley and S. Boyd, "CVXGEN: A code generator for embedded convex optimization," *Optimization and Engineering*, vol. 12, no. 1, pp. 1–27.