$$\begin{split} f(n) &= L(n-1) + (n-2) \times L(n-2) + \left[\frac{(n-1)(n-2)}{2} - 1\right] \times L(n-3) \\ &+ \sum_{k=3}^{n-2} \frac{(n+k-3)!}{k!} \times \left[(n-1)(n-2) - k(k-1)\right] \times L(n-k-1) \\ & (\textit{Remark}: L(0) \textit{don't is not used }) \end{split}$$

we can compute
$$F_k = [(n-1)(n-2)-k(k-1)]$$
 by an addition with $F_k = F_{k-1}-2(k-1)$ and $\frac{1}{k!}$ recursively by $\frac{1}{k!} = k \times \frac{1}{(k+1)!}$; only one inversion for $\frac{1}{n!}$

So we have 6 multiplications modulus(1 000 000 007) by coefficient:

- one for $\frac{1}{n!}$
- one for $\frac{1}{k!}$
- one for (n + k 3)!
- three for the product (n + k - 3)! \times $\frac{1}{k!}$ \times F_k \times L(n-k-1)