Yue Gao

RESEARCH INTERESTS

AI Security ML System Security, Adversarial Robustness, Attacks and Defenses, Security and Privacy.

Machine Learning Vision Recognition, Natural Language Processing, Multi-Modality, Diffusion Models, LLMs.

Cybersecurity Multi-component ML Systems, Web-based Applications, Cryptography, Linux Kernel Memory.

EDUCATION

University of Wisconsin-Madison

Madison, WI

Ph.D. Candidate in Computer Science (advised by Prof. Kassem Fawaz)

Sep 2018 – Feb 2024 (expected)

- Thesis: Characterizing the Limitations of Defenses in Adversarial Machine Learning
- Selected Courses: Introduction to Information Security, Applied Cryptography, Advanced Operating Systems.

Shanghai University

Shanghai, China

B.S. in Computer Science and Technology (GPA 3.99/4.00, Ranked 1/292)

Sep 2014 – Jul 2018

- Thesis: A Deep Neural Network based Image Compression Method
- Selected Courses: Operating Systems, Computer Network, Assembly Language, Software Engineering.

WORK EXPERIENCE

Research Assistant @ University of Wisconsin-Madison

Madison, WI

Advised by Prof. Kassem Fawaz

Nov 2018 – Present

- Researched the security of multi-component ML Systems deployed in real-world environments.
- Systematized the security analysis of ML-based and web-based systems in black-box settings.

ML System Security Research Intern @ Microsoft Research

Redmond, WA

Mentored by Dr. Jay Stokes and Dr. Emre Kiciman

Jun 2021 – Sep 2021

- Proposed a research project on defenses against imperceptible textual backdoor attacks on language models.
- Discovered blind spots in state-of-the-art attacks and defenses, and published stronger defenses at MILCOM.
- Successfully reduced the attack success rate from 100% to 12%, even at a challenging poisoning rate of 10%.

ML Research and Development Intern @ TuCodec (Startup)

Shanghai, China

Mentored by Dr. Chunlei Cai

Jan 2018 – Jul 2018

- ML Research
- Secured 1st place as a primary contributor in the CVPR 2018 Challenge on Learned Image Compression.
- Improved the average runtime of DNN-based image compression algorithms from 1 min to 4 secs per 4K-res image.
- *ML Engineering & Security*
- Independently developed ML-based desktop apps on Ubuntu, MacOS, and Windows using TensorFlow and C++.
- Independently developed ML-based image compression systems using TensorFlow, Python, Docker, and Kubernetes.
- Protected ML systems from **security intrusion** and **model stealing** with security measures and anomaly analysis.

PUBLICATIONS

Conference

[1] On the Limitations of Stochastic Pre-processing Defenses

Yue Gao, Ilia Shumailov, Kassem Fawaz, and Nicolas Papernot
Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS), 2022

[2] Rethinking Image-Scaling Attacks: The Interplay Between Vulnerabilities in Machine Learning Systems *Yue Gao*, Ilia Shumailov, and Kassem Fawaz

Proceedings of the 39th International Conference on Machine Learning (ICML), 2022 Oral Presentation (Top 2%)

[3] Experimental Security Analysis of the App Model in Business Collaboration Platforms

Yunang Chen*, *Yue Gao**, Nick Ceccio, Rahul Chatterjee, Kassem Fawaz, and Earlence Fernandes 31st USENIX Security Symposium (USENIX Security), 2022

Bug Bounty (\$1500)

[4] I Know Your Triggers: Defending Against Textual Backdoor Attacks With Benign Backdoor Augmentation Yue Gao, Jack W. Stokes, Manoj Prasad, Andrew Marshall, Kassem Fawaz, and Emre Kiciman IEEE Military Communications Conference (MILCOM), 2022

Workshop

[1] Variational Autoencoder for Low Bit-rate Image Compression

Lei Zhou*, Chunlei Cai*, Yue Gao, Sanbao Su, and Junmin Wu Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018 Winner of the first Challenge on Learned Image Compression

Preprints

[1] SEA: Shareable and Explainable Attribution for Query-based Black-box Attacks

Yue Gao, Ilia Shumailov, and Kassem Fawaz arXiv, 2023

[2] Human-Producible Adversarial Examples

David Khachaturov, Yue Gao, Ilia Shumailov, Robert Mullins, Ross Anderson, and Kassem Fawaz arXiv, 2023

[3] Analyzing Accuracy Loss in Randomized Smoothing Defenses

Yue Gao*, Harrison Rosenberg*, Kassem Fawaz, Somesh Jha, and Justin Hsu arXiv, 2020

SELECTED PROJECTS

Real-world ML Systems Security: Threat Modeling, Defending, and Characterization

Sep 2020 - Jun 2023

- Investigated the security of multi-component ML systems exposed to diverse security threats, e.g., dependencies.
- Revealed **threats amplified by 9x** and **broke state-of-the-art defenses** by jointly exploiting multiple vulnerabilities.
- Formally proved the non-robustness of randomization-based defenses beyond demonstrating empirical attacks.
- Characterized the attack's progression for **forensic purposes** and **human-explainable intelligence sharing**.

GARD: Guaranteeing AI Robustness Against Deception

Jun 2019 - Feb 2024

- Leadership
- Led a 9-member cross-university team to 1st and 2nd place in grant competitions hosted by DARPA.
- Developed initial code bases and coordinated team members with varying technical backgrounds.
- Contributed plug-and-play modules to the official upstream evaluation team and received acknowledgment.
- Individual Contribution
- Performed **red teaming** and **broke over 10 internal defenses** proposed by team members prior to submission.
- Proposed CLIP-like and diffusion-based methods to enforce robust features across RGB and Depth modalities.
- Successfully reduced the disappearance rate from 62% to 9% even under the red-team evaluation from MITRE.

Security Analysis of Online Business Collaboration Platforms

Mar 2021 - Dec 2021

- Automated the analysis of security principle violations for 3K+ third-party apps in Slack and Microsoft Teams.
- Reverse engineered OAuth designs to bypass access control, and received bug bounty for medium severity.
- Demonstrated POC attacks of eavesdropping on private chats, spoofing video calls, and unauthorized code merging.

SELECTED HONORS & AWARDS

Slack Bug Bounty: Medium Severity, \$1500	2022
Top 10% Reviewers Award: NeurIPS	2022
CVPR Competition Winner: Challenge on Learned Image Compression	2018
National Scholarship: China	2017
Top 100 Elite Collegiate Award: China Computer Federation	2017

City Scholars Outstanding Outstanding Scholarship f Scholarship f Bronze Prize	for Exceptional Leadership: Shanghai University hip: Shanghai Student Award: Shanghai University Volunteer Award: ACM ICPC Asia Regional Contest for Exceptional Innovation: Shanghai University for Exceptional Academic Achievements: Shanghai University for Programming Contest: ACM ICPC Asia East-Continent Final Contest for Programming Contest: ACM ICPC Asia Shanghai Regional Contest	2017 2016 2016 2016 2016 2015 – 2018 2015 2015
PROFESSION A		2013
	eurIPS, ICML, and ICLR	2022 – 2024
External Rev	lewer: USENIX Security Symposium lewer: USENIX Security Symposium	2021 – 2023 2021 – 2022
	lewer: ACM Conference on Computer and Communications Security	2021 – 2022
	: Collegiate ICPC Team at Shanghai University	2016 – 2017
TALKS		
	and Intelligence Sharing for ML Security D PI Meeting, IBM Research	Oct 2023
	abilities of Preprocessing in Adversarial Machine Learning	Oct 2023
3. The Vulner	abilities of Preprocessing in Adversarial Machine Learning ung Scientist Seminar, RIKEN AIP	Apr 2023
4. On the Lim	itations of Stochastic Pre-processing Defenses D PI Meeting, University of Southern California (virtual)	Oct 2022
5. The Interp	ay Between Vulnerabilities in Machine Learning Systems	Sep 2022
6. Experimen	D PI Meeting, University of Michigan tal Security Analysis of the App Model in Business Collaboration Platforms	Aug 2022
USENIX Sec	urity 2022 lay Between Vulnerabilities in Machine Learning Systems	Jun 2022
ICML 2022	between valuerabilities in Macinic Bearining bystems	5 an 2022
TEACHING AN	ID MENTORING	
•	or: DARPA GARD Project, University of Wisconsin–Madison	Fall 2023
•	istant: CS 368 (C++ for Java Programmers), University of Wisconsin–Madison	Fall 2018
	er: Advanced Algorithms & Data Structures, Shanghai University	2015 – 2017
	igner: Undergraduate Programming Contests, Shanghai University tor: Undergraduate Computer Science Coursework, Shanghai University	2015 – 2017 2015 – 2017
		2013 – 2017
TECHNICAL S	Expertise in ML and Security Research (2018 – present) and Backend Development (2016 – 2	2018)
Python PyTorch	Expertise in ML Research (2019 – present) and Distributed Training (2020 – present).	
Docker	Expertise in ML Research (2018 – present) with familiarity in Kubernetes Cluster (2017 – pres	ent)
C / C++	Proficient in Security Research (2018 – 2019), Software Development (2017 - 2019), and ICP	C ^(2014 – 2018) .
Security	Familiarity in IDA Pro, OllyDbg, Burp Suite, and nmap for CTF (2015 – 2017).	
TensorFlow	Familiarity in ML Research (2017 – 2020) and Service Deployment (2018).	
Java EE	Familiarity in Backend Development ⁽²⁰¹⁶⁾ .	
ARTICLES ANI	D Media Coverage	
CleverHans.	Can stochastic pre-processing defenses protect your models?	2022
USENIX login	a. Experimental Security Analysis of the App Model in Business Collaboration Platforms	2022
Wired. Slack's	s and Teams' Lax App Security Raises Alarms	2022