		Created with OSCI OSCI OSCI OSCI OSCI OSCI OSCI OSCI	
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

1 Input Parameters

	1			DI A WILLIAM	
	Module			over Plate Welded Connection	
Main Module			Mome	ent Connection	
Bending Mom	Bending Moment (kNm) *			23.0	
Shear Ford	ce (kN) *			23.0	
Axial For	ce (kN)			23.0	
	Column Section	- Mechanical	Properties		
	Beam Sec	tion *		HB 400	
	Materia	ıl *	E 3	600 (Fe 440)	
. Y	Ultimate Strengt	$h, F_u \text{ (MPa)}$		440	
T + !	Yield Strength,	F_y (MPa)		300	
	Mass, m (kg/m)	77.43	$I_z \text{ (cm}^4)$	28000.0	
(B-t)/4	Area, $A \text{ (cm}^2)$	98.6	$I_y(\mathrm{cm}^4)$	2720.0	
Z Z Z D	D (mm)	400.0	r_z (cm)	16.8	
R2— /—R1	B (mm)	250.0	r_y (cm)	5.25	
	t (mm)	9.1	$Z_z \text{ (cm}^3)$	1400.0	
	T (mm)	12.7	$Z_y \text{ (cm}^3)$	218.0	
 1 B =	Flange Slope	94	$Z_{pz} (\mathrm{cm}^3)$	1560.0	
	$R_1 \text{ (mm)}$	14.0	$Z_{py} \ (\mathrm{cm}^3)$	360.0	
	$R_2 \text{ (mm)}$	7.0			
	Weld Details - In	put and Desig	n Preference		
Weld '	Гуре			Fillet	
Type of Weld	Fabrication		Shop Weld		
Material Grade Ove	Material Grade Overwrite, F_u (MPa)		440.0		
	Plate Details - In	put and Desig	n Preference		
Prefere	Preference *			Outside	
Ultimate Streng	$gth, \overline{F_u \text{ (MPa)}}$			440	
Yield Strength	h, F_y (MPa)			300	

Material *

Thickness (mm) \ast

E 300 (Fe 440)
[8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45,

 $50, \, 56, \, 63, \, 75, \, 80, \, 90, \, 100, \, 110, \, 120]$

		Created with OSdag®	
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2 Design Checks

Design Status	Pass
---------------	------

2.1 Member Capacity

Check	Required	Provided	Remarks
Section Classification		Semi-Compact	
Section Classification		[Ref: Table 2, Cl.3.7.2 and 3.7.4, IS 800:2007]	
		$T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$	
Axial Capacity Member (kN)	$P_x = 23.0$	$=\frac{9860.0\times300}{1.1\times10^3}$	
		= 2689.09	
		[Ref. IS 800:2007, Cl.6.2]	
		$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$	
Shear Capacity Member (kN)			
		$= \frac{374.6 \times 9.1 \times 300}{\sqrt{3} \times 1.1 \times 1000}$	
		= 536.76	
		[Ref. IS 800:2007, Cl.10.4.3]	
		$V_d = 0.6 \ V_{dy}$	
		$= 0.6 \times 536.76$	
Allowable Shear Capacity (kN)	$V_y = 23.0$	= 322.05	Pass
		[Limited to low shear]	
		$M_{d_{\mathbf{Z}}} = \frac{\beta_b Z_p f y}{\gamma_{m0}}$	
Plastic Moment Capacity		$= \frac{0.9 \times 1560000.0 \times 300}{1.1 \times 10^6}$	
(kNm)		= 381.82	
		[Ref. IS 800:2007, Cl.8.2.1.2]	

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Moment Deformation Criteria (kNm)		$M_{dc} = \frac{1.5Z_e f y}{\gamma_{m0} \times 10^6}$ $= \frac{1.5 \times 1400000.0 \times 300}{1.1 \times 10^6}$ $= 572.73$	
		[Ref. IS 800:2007, Cl.8.2.1.2]	
		$M_{dz} = \min(M_{dz}, M_{dc})$ = $\min(381.82, 572.73)$	
Moment Capacity Member (kNm)	$M_z = 23.0$	=381.82	
		[Ref. IS 800:2007, Cl.8.2]	

2.2 Load Consideration

Check	Required	Provided		Remarks
		I.R. axial	$=P_{\rm x}/T_{\rm dg}$	
			=23.0/2689.09	
			= 0.0086	
		I.R. momen	$t = M_z/M_{d_z}$	
Interaction Ratio			=23.0/381.82	
			= 0.0602	
		I.R. sum	= I.R. axial + I.R. momen	nt
			= 0.0086 + 0.0602	
			= 0.0688	

		Created with Osdag®	
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Minimum Required Load	$\begin{aligned} &\text{if I.R. axial} < 0.3 \text{ and I.R. moment} < 0.5 \\ &P_{\text{xmin}} = 0.3T_{\text{dg}} \\ &M_{\text{zmin}} = 0.5M_{dz} \end{aligned}$ $&\text{elif sum I.R.} <= 1.0 \text{ and I.R. moment} < 0.5 \\ &\text{if } (0.5 - \text{I.R. moment}) < (1 - \text{sum I.R.}) \\ &M_{\text{zmin}} = 0.5 \times M_{dz} \\ &\text{else} \\ &M_{\text{zmin}} = M_{\text{z}} + ((1 - \text{sum I.R.}) \times M_{dz}) \\ &P_{\text{xmin}} = P_{\text{x}} \end{aligned}$ $&\text{elif sum I.R.} <= 1.0 \text{ and I.R. axial} < 0.3 \\ &\text{if } (0.3 - \text{I.R. axial}) < (1 - \text{sum I.R.}) \\ &P_{\text{xmin}} = 0.3T_{\text{dg}} \\ &\text{else} \\ &P_{\text{xmin}} = P_{\text{x}} + ((1 - \text{sum I.R.}) \times T_{\text{dg}}) \\ &M_{\text{zmin}} = M_{\text{z}} \end{aligned}$ $&\text{else} $ $&P_{\text{xmin}} = P_{\text{x}} \\ &M_{\text{zmin}} = M_{\text{z}} \end{aligned}$	$M_{ m zmin} = 190.91$ $P_{ m xmin} = 806.73$ [Ref. IS 800:2007, Cl.10.7]	
Applied Axial Force (kN)	$P_x = 23.0$	$P_u = \max(P_x, P_{xmin})$ = $\max(23.0, 806.73)$ = 806.73	

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$	
		$= \min(0.15 \times 536.76, 40.0)$	
		=40.0	
Applied Shear Force	$V_y = 23.0$	$V_u = \max(V_y, V_{y_{\min}})$	
(kN)		$= \max(23.0, 40.0)$	
		=40.0	
		[Ref. IS 800:2007, Cl.10.7]	
		$M_u = \max(M_z, M_{z\min})$	
		$= \max(23.0, 190.91)$	
Applied Moment	$M_z = 23.0$	= 190.91	
(kNm)			
		[Ref. IS 800:2007, Cl.8.2.1.2]	
		$A_w = \text{Axial force in web}$	
		$=\frac{(D-2T)tAu}{A}$	
		$= \frac{(400.0 - 2 \times 12.7) \times 9.1 \times 806.73}{}$	
		9860.0	
		= 278.91 kN	
Force Carried by Web			
		$M_w = \text{Moment in web}$	
		$=rac{Z_wMu}{Z}$	
		Z 212826.49×190.91	
		$={1560000.0}$	
		=26.05 kNm	

		Created with OSdag®	
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$A_f = \text{Axial force in flange}$ $= \frac{AuBT}{A}$ $= \frac{806.73 \times 250.0 \times 12.7}{9860.0}$ $= 259.77 \text{ kN}$	
Force Carried by Flange		$M_f = \text{Moment in flange}$ = $Mu - M_w$ = 190.91 - 26.05 = 164.86 kNm	
		$F_f = \text{flange force}$ $= \frac{M_f \times 10^3}{D - T} + A_f$ $= \frac{164.86 \times 10^3}{400.0 - 12.7} + 259.77$ $= 685.45 \text{ kN}$	

2.3 Flange Weld Design

Check	Required	Provided	Remarks
Min. Flange Plate	T = 12.7	$t_{fp} = 18.0$	Pass
Thickness (mm)			
	$t_{w_{\min}}$ based on thinner part		
	$= \max(12, 12)$		
Min. Weld Size (mm)	s_{\min} based on thicker part = 5	$t_w = 11$	Pass
	[Ref. IS 800:2007, Table 21, Cl.10.5.2.3]		
	Thickness of thinner part		
	$= \min(12.7, 18.0) = 12.7$		
Max. Weld Size (mm)	$s_{\max} = 12.7$	$t_w = 11$	Pass
	[Ref. IS 800:2007, Cl.10.5.3.1]		

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	$sp = \max(15, (t_w + 5))$		
Clearance (mm)	$= \max(15, (11+5))$	sp = 16	Pass
	= 16		
		$t_t = 0.7t_w$	
	$t_t \ge 3$	$= 0.7 \times 11$	
Throat Thickness		= 7.7	Pass
(mm)	[Ref. IS 800:2007, Cl.10.5.3.1]		
		[Ref. IS 800:2007, Cl.10.5.3.1]	
		$l_{\text{eff}} = (2l_w) + B_{fp} - 2t_w$	
Effective Length (mm)		$= (2 \times 250) + 215 - 2 \times 11$	
		= 695	
		$f_w = \frac{t_t f_u}{\sqrt{3} \gamma_{mw}}$	
	$Stress = \frac{F_f \times 10^3}{l_{\text{eff}}}$	$\sqrt{3\gamma_{mw}}$	
	$l_{ m eff}$	$=\frac{7.7\times440}{\sqrt{3}\times1.25}$	
Flange Weld Strength	$=\frac{685.45 \times 10^3}{695}$	= 1564.85	Pass
(N/mm)	= 984.84		
	_ 501.01	[Ref. IS 800:2007, Cl.10.5.7.1.1]	
		l = plate length or height	
	(CL) 1504 (L) W (C) W	$l_l = 2(250 + (2 \times 11)) + 3.0$	
	if $l \ge 150t_t$, then $V_{\rm rd} = \beta_{l_w} V_{\rm db}$	= 547.0	
		- 547.0	
	$if l < 150t_t, then V_{\rm rd} = V_{\rm db}$	1 015	
		$l_h = 215$	
	where,		
Weld Strength (post	l = plate length or height	l = 547.0	
long joint) (N/mm)	$\beta_{l_w} = 1.2 - \frac{(0.2l)}{(150t_t)}$		
		$150 \times t_t = 150 \times 7.7 = 1155.0$	
	but, $0.6 \le \beta_{l_w} \le 1.0$	since, $l < 150 \times t_t$	
		then $V_{\rm rd} = V_{ m db}$	
	[Ref. IS 800:2007, Cl.10.5.7.3]	$V_{\rm rd} = 1564.85$	
		[Ref. IS 800:2007, Cl.10.5.7.3]	
Weld Strength	984.84	1564.85	Pass
(N/mm)			

		Created with OSdag®	
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.4 Flange Plate Dimension Check - Outside

Check	Required	Provided	Remarks
		$B_{fp} = B - 2sp$	
Min. Flange Plate Width	50	$= 250.0 - 2 \times 16$	Pass
(mm)		= 215	
	$B_{fp} = B - 2sp$		
Max. Flange Plate Width	$= 250.0 - 2 \times 16$	215	Pass
(mm)	= 215		
		$L_{fp} = [2 \times (l_w + 2 \times t_w) + g]$	
Min. Flange Plate Length	500.0	$= [2 \times (250 + 2 \times 11) + 3.0]$	Pass
(mm)		= 547.0	
Min. Flange Plate Thick-	T = 12.7	$t_{fp} = 18.0$	Pass
ness (mm)			
	plate area >=		
	1.05 X connected member area	plate area = $B_{fp} \times t_{ifp}$	
Plate Area Check (mm2)	= 3333.75	$= 215 \times 18.0$	Pass
		= 3870.0	
	[Ref: Cl.8.6.3.2, IS 800:2007]		

2.5 Web Weld Design

Check	Required	Provided	Remarks
Min. Web Plate Thick-	t = 4.55	$t_{wp} = 8.0$	Pass
ness (mm)			
	$t_{w_{\min}}$ based on thinner part		
	$= \max(8, 8)$		
Min. Weld Size (mm)	s_{\min} based on thicker part = 3	$t_w = 6$	Pass
	[Ref. IS 800:2007, Table 21, Cl.10.5.2.3]		

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	Thickness of thinner part		
	$= \min(9.1, 8.0) = 8.0$		
Max. Weld Size (mm)	$s_{\text{max}} = 8.0$	$t_w = 6$	Pass
	[Ref. IS 800:2007, Cl.10.5.3.1]		
		$l_{\text{eff}} = (2l_w) + W_{wp} - 2t_w$	
Effective Length (mm)		$= (2 \times 125) + 315 - 2 \times 6$	
		= 555	
	$sp = \max(15, (t_w + 5))$		
Clearance (mm)	$= \max(15, (6+5))$	sp = 15	Pass
	= 15		
		$t_t = 0.7t_w$	
	$t_t \ge 3$	$=0.7\times6$	
Throat Thickness		=4.2	Pass
(mm)	[Ref. IS 800:2007, Cl.10.5.3.1]		
		[Ref. IS 800:2007, Cl.10.5.3.1]	
		$M_d = (V_u \times \mathrm{ecc} + M_w)$	
		ecc = eccentricity	
Moment Demand		$M_w = $ external moment acting of	n web
(kNm)			
		$= (20.0 \times 10^3 \times 96.75 + 13.02 \times 10^3 \times $	(10^6)
		106	
		= 14.96	

Created with		eated with Osdag®	
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Web Weld Strength (N/mm)	Required $R_{\rm w} = \sqrt{(T_{\rm wh} + A_{\rm wh})^2 + (T_{\rm wv} + V_{\rm wv})^2}$ $T_{\rm wh} = \frac{M_d \times y_{\rm max}}{Ipw}$ $= \frac{14957500.46 \times 28.25}{8916839.13}$ $T_{\rm wv} = \frac{M_d \times x_{\rm max}}{Ipw}$ $= \frac{14957500.46 \times 151.5}{8916839.13}$ $V_{\rm wv} = \frac{V_u}{l_{\rm eff}}$ $= \frac{20000.0}{555}$ $A_{\rm wh} = \frac{A_u}{l_{\rm eff}}$ $= \frac{139453.36}{555}$ $R_{\rm w} = \sqrt{(47.39 + 251.27)^2 + (254.13 + 36.04)^2}$	Frovided $f_{w} = \frac{t_{t}f_{u}}{\sqrt{3}\gamma_{mw}}$ $= \frac{4.2 \times 440}{\sqrt{3} \times 1.25}$ $= 853.55$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	Pass
	=417.15		

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Weld Strength (post long joint) (N/mm)	if $l \geq 150t_t$, then $V_{\rm rd} = \beta_{l_w} V_{\rm db}$ if $l < 150t_t$, then $V_{\rm rd} = V_{\rm db}$ where, l = plate length or height $\beta_{l_w} = 1.2 - \frac{(0.2l)}{(150t_t)}$ but, $0.6 \leq \beta_{l_w} \leq 1.0$ [Ref. IS 800:2007, Cl.10.5.7.3]	$\begin{array}{l} l = {\rm plate\ length\ or\ height} \\ \\ l_l = 2(125 + (2 \times 6)) + 3.0 \\ \\ = 277.0 \\ \\ l_h = 315 \\ \\ l = 150 \times t_t = 150 \times 4.2 = 630.0 \\ \\ {\rm since},\ l < 150 \times t_t \\ \\ {\rm then\ } V_{\rm rd} = V_{\rm db} \\ \\ V_{\rm rd} = 853.55 \\ \\ [{\rm Ref.\ IS\ 800:2007,\ Cl.10.5.7.3}] \end{array}$	
Weld Strength (N/mm)	417.15	853.55	Pass

2.6 Web Plate Dimension Check

Check	Required	Provided	Remarks
	$0.6 \times (d_b - 2 \times t_f - 2 \times r_r)$		
	$= 0.6 \times (400.0 - 2 \times 12.7 - 2 \times 14.0)$	$W_{wp} = D - 2T - 2R1 - 2sp$	
Min. Web Plate Height	= 240.0	$= 400.0 - 2 \times 12.7 - (2 \times 14.0) - 2 \times 15$	Pass
(mm)		= 315	
	[Ref. INSDAG, Ch.5, sec.5.2.3]		
		$L_{wp} = [2 \times (l_w + 2 \times t_w) + g]$	
Min. Web Plate Width	250.0	$= [2 \times (125 + 2 \times 6) + 3.0]$	Pass
(mm)		= 280	
Min. Web Plate Thick-	t = 4.55	$t_{wp} = 8.0$	Pass
ness (mm)			

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	plate area >=		
	1.05 X connected member area	plate area = $2 \times W_{wp} \times t_{wp}$	
Plate Area Check	= 3579.3	$= 2 \times 315 \times 8.0$	Pass
(mm2)		=5040.0	
	[Ref: Cl.8.6.3.2, IS 800:2007]		

2.7 Member Check

Check	Required	Provided	Remarks
		$T_{ m dg} = rac{A_g f_y}{\gamma_{m0}}$	
Flange Tension Yielding Capacity (kN)		$A_g = lt = 250.0 \times 12.7$ $= \frac{3175.0 \times 300}{1.1 \times 10^3}$ $= 865.91$	
		[Ref. IS 800:2007, Cl.6.2]	
Flange Tension Capacity (kN)	$F_f = 685.45$	$T_{\rm d} = T_{ m dg}$ = 865.91	Pass
		[Ref.IS 800:2007, Cl.6.1] $T_{\text{dg}} = \frac{A_g f_y}{\gamma_{\text{reg}}}$	
		γ_{m0} $A_g = lt = 374.6 \times 9.1$	
Web Tension Yielding Capacity (kN)		$=\frac{3408.86\times300}{1.1\times10^3}$	
		= 929.69 [Ref. IS 800:2007, Cl.6.2]	

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Web Block Shear Capacity (kN)		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
pacity (KIV)		$T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 1197.88$	
		[Ref. IS 800:2007, Cl.6.4]	
		$T_{\rm d} = \min(T_{\rm dg}, \ T_{\rm db})$	
		$= \min(929.69, 1197.88)$	
Web Tension Capacity (kN)	$A_w = 278.91$	= 929.69	Pass
		[Ref.IS 800:2007, Cl.6.1]	

${\bf 2.8}\quad {\bf Flange\ Plate\ Capacity\ Check\ for\ Axial\ Load\ -\ Outside}$

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{\text{dg}} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 215 \times 18.0$ $= \frac{3870.0 \times 300}{1.1 \times 10^3}$ $= 1055.45$ [Ref. IS 800:2007, Cl.6.2]	
Flange Plate Tension Capacity (kN)	$F_f = 685.45$	$T_{\rm d} = T_{\rm dg}$ = 1055.45 [Ref.IS 800:2007, Cl.6.1]	Pass

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.9 Web Plate Capacity Check for Axial Load

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{\text{dg}} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = 2lt = 2 \times 315 \times 8.0$ $= \frac{2520.0 \times 300}{1.1 \times 10^3}$ $= 1374.55$ [Ref. IS 800:2007, Cl.6.2]	
Web Plate Tension Capacity (kN)	$A_w = 278.91$	$T_{ m d} = T_{ m dg}$ = 1374.55 [Ref.IS 800:2007, Cl.6.1]	Pass

2.10 Web Plate Capacity Check for Shear Load

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)		$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{2 \times 315 \times 8.0 \times 300}{\sqrt{3} \times 1.1 \times 1000}$ $= 793.59$ [Ref. IS 800:2007, Cl.10.4.3]	
Allowable Shear Capacity (kN)	V = 23.0	$V_d = 0.6 V_{dy}$ = 0.6×793.59 = 476.16 [Limited to low shear]	Pass
Web Plate Shear Capacity (kN)	$V_u = 40.0$	$V_d = S_c$ = 476.16 [Ref. IS 800:2007, Cl.6.1]	Pass

		Created with Osdag®	
Company Name		Project Title	column to column cover plate welded connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

3 3D Views

4 Design Log

2025-01-21 20:21:47 - Osdag - WARNING - The defined factored load(s) are less than the minimum recommended value [Cl.10.7, IS 800:2007]

 $2025\text{-}01\text{-}21\ 20\text{:}21\text{:}47\text{-} \text{Osdag-INFO-The load values have been set as per the minimum recommendations of Cl.}10.7, \text{ IS }800\text{:}2007$

2025-01-21 20:21:47 - Osdag - INFO - : Overall Column Cover Plate Welded member design is SAFE