

Sistemas Computacionais

Prática o: Introdução

Prof. Dr. Denis M. L. Martins

Ciência de Dados e Inteligência Artificial: 3° Semestre

Objetivos de Aprendizado

- Compreender a representação de números em diferentes bases.
- Compreender e aplicar o método do Complemento de 2 para representar números negativos no sistema binário.
- Resolver operações aritméticas, como soma e subtração, utilizando Complemento de 2.

Conversão de Números

Questão 1:

Converta os números decimais abaixo para a base 2 (binária).

- **Exercício 1:** Converta o número decimal 25_{10} para a base 2.
- Exercício 2: Converta o número decimal 42_{10} para a base 2.
- Exercício 3: Converta o número decimal 97_{10} para a base 2.
- Exercício 4: Converta o número decimal 156_{10} para a base 2.
- Exercício 5: Converta o número decimal 200_{10} para a base 2.

Conversão de Números

Questão 2:

Converta os números decimais abaixo para a base 16 (hexadecimal).

- **Exercício 1:** Converta o número decimal 58_{10} para a base 16.
- Exercício 2: Converta o número decimal 145_{10} para a base 16.
- Exercício 3: Converta o número decimal 273_{10} para a base 16.
- Exercício 4: Converta o número decimal 543_{10} para a base 16.
- Exercício 5: Converta o número decimal 1024_{10} para a base 16.

Exemplos de Uso da Base Hexadecimal

Endereços de Memória em Computadores

- ► Em arquiteturas de computadores, os endereços de memória são representados em **hexadecimal** porque facilita a leitura e manipulação de grandes valores binários.
- Exemplo: Um endereço de memória pode ser escrito como 0x7FFF8A2C ao invés de um longo número binário.

Códigos de Cores em Web Design (HTML/CSS)

- As cores na web são especificadas em hexadecimal, representando os valores de Red (R), Green (G) e Blue (B).
- ► Exemplo: A cor azul pode ser representada como #0000FF, onde os dois primeiros dígitos representam o vermelho (00), os dois do meio o verde (00) e os dois últimos o azul (FF).

Base Hexadecimal

Questão 3

Resolva os exercícios abaixo sobre a representação hexadecimal de cores no modelo RGB.

- Exercício 1: O código de cor #FF0000 representa qual cor no modelo RGB? Explique sua resposta com base nos valores hexadecimais.
- Exercício 2: A cor verde é representada no formato hexadecimal como #00FF00. Qual será a cor correspondente ao código #00FFFF? Justifique sua resposta.
- Exercício 3: Converta a cor representada pelo código hexadecimal #ABCDEF para os valores decimais correspondentes de RGB. Dado que cada par de caracteres representa um componente (R, G, B), faça a conversão e interprete a tonalidade da cor.
- Exercício 4: A cor branca é representada no modelo RGB como (255, 255, 255) na base decimal. Qual é a representação hexadecimal dessa cor?
- Exercício 5: A cor representada em hexadecimal como #4CAF50 é muito usada em design de interfaces. Qual é sua correspondência em RGB (valores decimais para R, G e B)?

Soma de números binários

- Some os dois números binários 0101010_2 e 0011011_2 abaixo, simulando o método comum de soma à mão.
- Insira o ou 1 para representar um possível bit transportado da posição anterior (para que o resultado final seja obtido somando as três linhas superiores).
- Na linha inferior deve constar o resultado final.

Representação de números negativos em base binária

- Some os dois números binários 0101010_2 e 0011011_2 abaixo, simulando o método comum de soma à mão.
- Insira o ou 1 para representar um possível bit transportado da posição anterior (para que o resultado final seja obtido somando as três linhas superiores).
- Na linha inferior deve constar o resultado final.

Representação de números negativos em base binária

Questão 7

Resolva os exercícios abaixo utilizando a representação de números negativos em binário pelo método do **Complemento de 2**.

- Exercício 1: Represente o número decimal -18_{10} em um sistema de 8 bits utilizando o complemento de 2.
- Exercício 2: Determine o valor decimal correspondente ao número binário 11110110_2 quando interpretado em complemento de 2 (considerando uma representação de 8 bits).
- Exercício 3: Execute a operação binária $01101001_2-00010111_2$ utilizando complemento de 2 e apresente o resultado em binário e decimal.
- Exercício 4: Converta o número decimal -45_{10} para complemento de 2 em uma representação de 8 bits e verifique a conversão aplicando o complemento novamente.
- Exercício 5: Qual é o menor e o maior número que pode ser representado em um sistema de 8 bits utilizando complemento de 2? Escreva as representações binárias e seus equivalentes decimais.

Complemento de 2

- Exercício 1: Explique o que é o Complemento de 2 e por que ele é amplamente utilizado na representação de números negativos em computadores.
- Exercício 2: No complemento de 2, como podemos identificar rapidamente se um número é positivo ou negativo apenas observando sua representação binária?

Complemento de 2

- Exercício 1: Explique o que é o Complemento de 2 e por que ele é amplamente utilizado na representação de números negativos em computadores. Resposta: O Complemento de 2 é um método de representação de números negativos em binário que simplifica operações de adição e subtração, eliminando a necessidade de tratamento especial para sinais e tornando os circuitos aritméticos mais eficientes. Procedimento: Inverte-se todos os bits (complemento de 1). Soma-se 1 ao resultado.
- Exercício 2: No complemento de 2, como podemos identificar rapidamente se um número é positivo ou negativo apenas observando sua representação binária?

Complemento de 2

- Exercício 1: Explique o que é o Complemento de 2 e por que ele é amplamente utilizado na representação de números negativos em computadores. Resposta: O Complemento de 2 é um método de representação de números negativos em binário que simplifica operações de adição e subtração, eliminando a necessidade de tratamento especial para sinais e tornando os circuitos aritméticos mais eficientes. Procedimento: Inverte-se todos os bits (complemento de 1). Soma-se 1 ao resultado.
- Exercício 2: No complemento de 2, como podemos identificar rapidamente se um número é positivo ou negativo apenas observando sua representação binária? Resposta: No complemento de 2, o bit mais significativo (MSB Most Significant Bit) é usado como bit de sinal. Se o **MSB for o**, o número é positivo. Se o **MSB for 1**, o número é negativo. Exemplo:
 - ▶ $01101001_2 \rightarrow MSB = o \rightarrow Número positivo (+105_{10}).$
 - ▶ 10010111_2 → MSB = 1 → Número negativo (-105_{10} em complemento de 2).

Representação de números negativos em base binária

Questão 8

Resolva os exercícios abaixo utilizando o método do **Complemento de 2**.

- Exercício 1: Represente o número decimal -18_{10} em um sistema de 8 bits utilizando o complemento de 2.
- Exercício 2: Determine o valor decimal correspondente ao número binário 11110110_2 quando interpretado em complemento de 2 (considerando uma representação de 8 bits).
- Exercício 3: Execute a operação binária $01101001_2-00010111_2$ utilizando complemento de 2 e apresente o resultado em binário e decimal.
- Exercício 4: Converta o número decimal -45_{10} para complemento de 2 em uma representação de 8 bits e verifique a conversão aplicando o complemento novamente.
- Exercício 5: Qual é o menor e o maior número que pode ser representado em um sistema de 8 bits utilizando complemento de 2? Escreva as representações binárias e seus equivalentes decimais.

Dúvidas e Discussão

Prof. Dr. Denis M. L. Martins denis.mayr@puc-campinas.edu.br