Software Requirement Specification (SRS)

Project: Air Quality Index (AQI) Predictor

Author: Tanmay Agarwal **Date:** 30 August 2025

1. Introduction

1.1 Purpose

The **Air Quality Index** (**AQI**) **Predictor** is being developed to help predict pollutant levels (CO, NO₂, NMHC, etc.) based on weather conditions and sensor data. This will allow the system to **forecast AQI trends**, making it easier for government agencies, researchers, and the public to take **preventive measures accordingly**.

1.2 Scope

- Uses machine learning (Linear Regression, KNN, and other models) to predict pollutant concentrations.
- Provides insights into air quality variations influenced by weather and sensor data.
- Supports data-driven awareness for the general public and government bodies.
- Long-term goal: Improve air pollution monitoring and preventive health measures.

1.3 Benefits & Goals

- Early warnings about rising pollution.
- Assists in policy-making for environmental protection.
- Acts as an educational tool for students and researchers.

2. Overall Description

2.1 Boundaries & Objectives

- Focuses only on **pollutant prediction** (not real-time monitoring).
- Data source: UCI Air Quality Dataset.

• Predicts pollutants using **historical weather and sensor readings**.

2.2 Glossary

- AQI: Air Quality Index
- CO: Carbon Monoxide
- NO₂: Nitrogen Dioxide
- NMHC: Non-Methane Hydrocarbons
- **Regression**: A machine learning method for predicting continuous values
- KNN: K-Nearest Neighbors (regression technique)
- SVR: Support Vector Regression (ML algorithm for complex prediction)
- Sensors: Devices that measure pollutant-related gases
- PT08.S1(CO): Tin Oxide (CO-sensitive)
- PT08.S2(NMHC): Titanium Oxide (Non-Methane Hydrocarbons)
- **PT08.S3(NOx)**: Tungsten Oxide (Nitrogen Oxides)
- **PT08.S4(NO₂)**: Tungsten Oxide (Nitrogen Dioxide)
- PT08.S5(O₃): Indium Oxide (Ozone-sensitive)

2.3 References

- UCI Machine Learning Repository: Air Quality Dataset
- Research papers on ML-based air pollution prediction
- WHO Air Quality Standards

2.4 Relation to Existing Systems

- Existing AQI dashboards (government platforms) only **display real-time values**.
- This system provides **prediction capabilities**, which most dashboards lack.

3. System Features

3.1 Key Features

- Accepts sensor + weather data as input.
- Predicts multiple pollutants (CO, NO₂, NMHC, etc.).
- Supports multiple ML models: Linear Regression, KNN.
- Provides accuracy metrics (RMSE, R² score).
- Displays **visualizations** (predicted vs. actual, residual plots).

3.2 Target Users

- Students & Researchers: Learn and test ML techniques on environmental data.
- Environmental Agencies: Use predictions for policy-making.
- General Public: Understand AQI levels in a simple form.

4. System Constraints

4.1 Limitations

- Prediction accuracy depends on dataset quality.
- Requires Python with ML libraries installed (Scikit-learn, Pandas, Matplotlib).

4.2 Assumptions

- Input dataset is preprocessed and valid.
- Sensor readings are calibrated and reliable.

5. Functional Requirements

5.1 Input Module

• Accepts dataset with weather and sensor readings.

5.2 Data Preprocessing Module

- Cleans invalid values.
- Handles missing data.
- Normalizes features if required.

5.3 Prediction Module

- Linear Regression: Basic pollutant prediction.
- KNN Regression: Predicts pollutant levels using nearest neighbors.

5.4 Evaluation Module

- Calculates model performance using:
 - RMSE (Root Mean Square Error)
 - R² Score (Coefficient of Determination)

5.5 Output & Visualization Module

- Displays predicted pollutant levels (CO, NO₂, NMHC).
- Shows summary of system performance metrics.
- Provides **visualizations**:
 - Predicted vs. Actual plots.
 - Residual error plots.
 - Feature vs. pollutant trend graphs.
- kit-learn, Pandas, Matplotlib).

4.2 Assumptions

- Input dataset is preprocessed and valid.
- Sensor readings are calibrated and reliable.

5. Functional Requirements

5.1 Input Module

• Accepts dataset with weather and sensor readings.

5.2 Data Preprocessing Module

- Cleans invalid values.
- Handles missing data.
- Normalizes features if required.

5.3 Prediction Module

- Linear Regression: Basic pollutant prediction.
- KNN Regression: Predicts pollutant levels using nearest neighbors.

5.4 Evaluation Module

- Calculates model performance using:
 - RMSE (Root Mean Square Error)
 - R² Score (Coefficient of Determination)

5.5 Output & Visualization Module

- Displays predicted pollutant levels (CO, NO₂, NMHC).
- Shows summary of system performance metrics.
- Provides visualizations:
 - Predicted vs. Actual plots.
 - Residual error plots.
 - Feature vs. pollutant trend graphs.
- Predicts pollutant levels using nearest neighbors.

5.4 Evaluation Module

- Calculates model performance using:
 - RMSE (Root Mean Square Error)
 - R² Score (Coefficient of Determination)

5.5 Output & Visualization Module

- Displays predicted pollutant levels (CO, NO₂, NMHC).
- Shows summary of system performance metrics.
- Provides visualizations:
 - Predicted vs. Actual plots.
 - Residual error plots.
 - Feature vs. pollutant trend graphs.
 - kit-learn, Pandas, Matplotlib).

4.2 Assumptions

- Input dataset is preprocessed and valid.
- Sensor readings are calibrated and reliable.

5. Functional Requirements

5.1 Input Module

• Accepts dataset with weather and sensor readings.

5.2 Data Preprocessing Module

- Cleans invalid values.
- Handles **missing data**.
- Normalizes features if required.

5.3 Prediction Module

- Linear Regression: Basic pollutant prediction.
- KNN Regression: Predicts pollutant levels using nearest neighbors.

5.4 Evaluation Module

- Calculates model performance using:
 - RMSE (Root Mean Square Error)
 - R² Score (Coefficient of Determination)

5.5 Output & Visualization Module

- Displays predicted pollutant levels (CO, NO₂, NMHC).
- Shows summary of system performance metrics.
- Provides **visualizations**:
 - Predicted vs. Actual plots.
 - Residual error plots.
 - Feature vs. pollutant trend graphs.