1 Основные понятия

Определение 1.1:

Сигнатура - множество имён операций с указанием их местности.

$$(f^{(2)}, g^{(3)}, h^{(0)}), (+^{(2)}, \cdot^{(3)})$$

 $h^{(0)}$ - символ константы, V - имена переменных

Определение 1.2:

Терм - выражение, составленное из символов сигнатуры и переменных

- 1. $x \in V, x$ терм
- $2. \ c$ символ константы, c терм
- 3. если $t_1,...,t_n$ термы и f символ n-местной операции, то $f(t_1,...,t_n)$ терм

Пример 1.1:

Примеры термов: -(x), -(0), +(x,y), 2+3+a

Определение 1.3:

Замкнутый терм - терм, не содержащий переменных

Определение 1.4:

Универсальная алгебра - пусть Σ - сигнатура, тогда универсальная алгебра сигнатуры Σ - это пара вида (A,I), где A - произвольное непустое множество, а I - некоторое отображение, которое для всякого $p^{(m)} \in \Sigma$, $I(p^{(m)})$ - n-местной операции на множестве

Пример 1.2:

Пример универсальной алгебры: пусть $\Sigma = (+^{(2)}, \cdot^{(2)}, -^{(1)}, 0^{(0)}, 1^{(0)})$, тогда

$$R = (\mathbb{R}, I) : I(+) -$$
 сложение $I(\cdot) -$ умножение $I(-) -$ вычитание $I(0) - 0$ $I(1) - 1$

Определение 1.5:

 \mathbb{R} называется **основным множеством** или носителем алгебры, а I - интерпретацией или интерпретирующей функцией

Определение 1.6:

Состояние - функция, приписывающая переменной некоторый элемент носителя $\sigma:V \to A$

Пример 1.3:

Пример состояний: $\sigma = \{(x,3), (y,-8)\}, \sigma(x) = 3$

Определение 1.7:

Значение терма на состоянии - значение того выражения, в котором переменные заменены их значениями

- 1. t переменная, $\sigma(t)$ по определению состояния
- 2. t символ константы, $I(t) = \sigma(t_1) = v_1$
- 3. если $t_1,...,t_n$ термы и $\sigma(t_1)=v_1,...,\sigma(t_n)=v_n$, то $\sigma(t)=I(f)(v_1,...,v_n)$

2 Изоморфизм

Определение 2.1:

Изоморфизм - Пусть Σ - сигнатура, $\mathbf{A} = (A, I)$, $\mathbf{B} = (B, J)$ - универсальные алгебры сигнатуры Σ , тогда изоморфизм между \mathbf{A} и \mathbf{B} - это $h: \mathbf{A} \to \mathbf{B}$ - биективная функция, которая удовлетворяет следующему условию:

$$h(I(f_i)(a_1,...,a_n)) = J(f_i)(h(a_1),...,h(a_n))$$

для любых $a_1,...,a_n$ и $f_i \in \Sigma$

Пример 2.1:

Пример изоморфизма: пусть $\Sigma=(f^{(2)}),\ \mathbf{A}=(\mathbb{R},+),\ \mathbf{B}=(\mathbb{R},\cdot)$ Надо доказать:

$$h(a_1 + a_2) = h(a_1) \cdot h(a_2)$$

 $a_1, a_2 \in \mathbb{R}$

Пусть $h(x) = e^x$, тогда

$$h(a_1 + a_2) = e^{a_1 + a_2} = e^{a_1} \cdot e^{a_2} = h(a_1) \cdot h(a_2) \blacksquare$$

Теорема 2.1. h - изоморфизм между A и B, то h^{-1} - изоморфизм между B и A

Доказательство. пусть $b_1,...,b_{n_i} \in B$, тогда надо доказать

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i}))$$

Так как $b_1 = h(a_1), ..., b_{n_i} = h(a_{n_i}),$

$$I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i})) = I(f_i)(h^{-1}(h(a_1)),...,h^{-1}(h(a_{n_i}))) = I(f_i)(a_1,...,a_{n_i})$$

По определению изоморфизма

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = h^{-1}(h(I(f_i)(a_1,...,a_{n_1}))) = I(f_i)(a_1,...,a_{n_1})$$

Из этих двух равенств следует то, что надо доказать

Определение 2.2:

Системы, между которыми существует изоморфизм называют **изо**морфными

$\mathbf{A} \simeq \mathbf{B}$

операции в изоморфных системах обладают одними и теми же свойствами

Определение 2.3:

 $t(x_1,...,x_n)$ - терм t не содержит других переменных кроме $x_1,...,x_n$

Определение 2.4:

Пусть **A** - алгебра, $a_1, ..., a_n$ - элементы алгебры **A**, тогда

$$t(a_1, ..., a_n) = \sigma(t), \sigma(x_1) = a_1, ..., \sigma(x_n) = a_n$$

Теорема 2.2. h - изоморфизм между $\mathbf{A} = (A, I)$ и $\mathbf{B} = (B, J)$, то для любого терма $t(x_1, ..., x_n)$ и любых $a_1, ..., a_n$ выполняется

$$h(t^{\mathbf{A}}(a_1,...,a_n)) = t^{\mathbf{B}}(h(a_1),...,h(a_n))$$

Доказательство. Индукция по построению терма t

1.
$$t = x$$

$$t^{\mathbf{A}}(a) = a \Leftrightarrow h(t^{\mathbf{A}}(a)) = h(a) \Leftrightarrow t^{\mathbf{B}}(h(a)) = h(a)$$

2. t = c

$$\sigma(c) = I(c) = J(c) \Rightarrow t^{\mathbf{A}} = I(c), t^{\mathbf{B}} = J(c) \Rightarrow h(I(c)) = J(c)$$

по определению гомоморфизма

3.
$$t = f(t_1, ..., t_k)$$

$$h(t^{\mathbf{A}}(a_{1},...,a_{n})) = h(I(f)(t_{1}^{\mathbf{A}}(a_{1},...,a_{n}),...,t_{k}^{\mathbf{A}}(a_{1},...,a_{n}))) = J(f)(h(t_{1}^{\mathbf{A}}(a_{1},...,a_{n})),...,h(t_{k}^{\mathbf{A}}(a_{1},...,a_{n}))) = J(f)(t_{1}^{\mathbf{B}}(h(a_{1}),...,h(a_{n})),...,t_{k}^{\mathbf{B}}(h(a_{1}),...,h(a_{n})) = t^{\mathbf{B}}(h(a_{1}),...,h(a_{n}))$$

Пример 2.2:

Доказать что
$$\mathcal{A}=(\mathbb{R};\cdot)
ot\cong\mathcal{B}=(\mathbb{R}^+;\cdot)$$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{A} \to \mathcal{B},$ тогда

$$h(0) = x, x \in \mathbb{R}^+$$

$$x = h(0) = h(0 \cdot 0) = h(0) \cdot h(0) = x^{2}$$

 $x = x^{2} \Rightarrow x = 1$

$$h(1) = y, y \in \mathbb{R}^+$$

$$y = h(1) = h(1 \cdot 1) = h(1) \cdot h(1) = y^{2}$$

 $y = y^{2} \Rightarrow y = 1$

h(0) = 1 = h(1) - противоречие (h не биективна). Утверждение не верно. \Box

Пример 2.3:

Доказать что $\mathcal{A} = (\mathbb{R}; +) \not\cong \mathcal{B} = (\mathbb{R}; \cdot)$

Доказательство. Предположим что существует изоморфизм $h:\mathcal{B}\to\mathcal{A},$ тогда

$$h(0) = x, h(1) = y; x, y \in \mathbb{R}$$

3 Подгруппы и моноиды

Определение 3.1:

Подгруппа - многообразие заданное множеством

$$(x*y)*z = x*(y*z)$$

Теорема 3.1. Значение терма не зависит от расстановки скобок (Ассоциативный закон)

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = a_1 a_2 ... a_n$$

 \mathcal{A} оказательство. Индукция по длине t

Базис: n=1, нет скобок Шаг: для n-1 верно, тогда

1. m = n - 1

$$t = t_1 * a_n = (a_1 a_2 ... a_m) * a_n = a_1 a_2 ... a_n$$

2. $1 \le m \le n - 1$

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = (a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1})a_n = (a_1 a_2 ... a_{n-1})a_n = a_1 a_2 ... a_n$$

Определение 3.2:

 e_l называется **нейтральным слева** в подгруппе, если $e_l*a=a$ для всех $a,\,e_r$ называется **нейтральным справа** в подгруппе, если $a*e_r=a$ для всех $a,\,e$ - нейтральный слева и справа

Пример 3.1:

Примеры нейтрального элемента:

Теорема 3.2. Если существуют нейтральный слева и нейтральный справа то они равны

Доказательство.

$$e_l = e_l * e_r = e_r$$

Следствие. Если нейтральный элемент существует, то он единственный.

Определение 3.3:

Моноид - подгруппа с нейтральным элементом

Пример 3.2:

Примеры моноидов:

Определение 3.4:

Свободный моноид - моноид, элементами которого являются конечные последовательности (строки) элементов носителя моноида. Свободный моноид на множестве $A \neq \emptyset$ это $\mathcal{A} = (A^*; \&)$

Теорема 3.3. Любой моноид, порождённый элементами множества, на котором есть свободный моноид, является гомоморфным образом этого моноида

Доказательство. Пусть
$$A \neq \emptyset$$
, $\mathcal{A} = (A^*; \&)$, $\mathcal{B} = (\{t^{\mathcal{B}}(a_1, ..., a_n) : a_1, ..., a_n \in A\}; *)$ и $h : \mathcal{A} \to \mathcal{B}$ - Гомоморфизм

$$h(a_1...a_n) = (a_1, ..., a_n)^{\mathcal{B}}$$

$$h(\varepsilon) = e^{\mathcal{B}}$$

Надо доказать свойство гомоморфизма:

$$h(u\&v) = h(u) * h(v)$$

Пусть $u = a_1...a_n$, $v = a'_1...a'_n$, тогда

$$h(u\&v) = h(uv) = h(a_1...a_na'_1...a'_n) = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

$$h(u) * h(v) = h(a_1...a_n) * h(a'_1...a'_n) = (a_1...a_n)^{\mathcal{B}} * (a'_1...a'_n)^{\mathcal{B}} = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

Из этого следует что h(u&v) = h(u) * h(v)

Пример 3.3:

Примеры свободных моноидов и их гомоморфных образов:

Определение 3.5:

Циклический моноид - моноид порождённый одним элементом. < a > - циклический моноид, порождённый элементом a.

$$e,a,a^1,a^2,a^3,\dots$$
 - элементы моноида $< a>$

- 1. $a^i \neq a^j$ при $i \neq j$ $h :< a > \to (\{a\}^*; \&), h(a^i) = i$ изоморфизм.
- 2. $a^i = a^j$ при $i \neq j$

$$k = i + (k - i) = i + y(j - i) + r$$
$$r = (k - i)mod(j - i)$$
$$r < j - i$$

тогда

$$a^{k} = a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y} a^{r} =$$

$$(a^{i}a^{j-i}) \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r} \overset{(a^{i}a^{j-i} = a^{i+j-i} = a^{j} = a^{i})}{=} a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r} =$$

$$a^{i}a^{r} = a^{i+r} (r < j - i; i + r < j)$$

Пример 3.4:

Пример циклическококо
кококого моноида: < $a>=(\{e,a,...\};*)$ Таблица умножения (*) -

2.1

	e	a	a^2
e	a	a	a^2
a	a	a^2	a
a^2	a^2	a	a^2