X1 = Atlanta - Los Angeles

X2 = Atlanta - New York

X3 = Tulsa - Los Angeles

X4 = Tulsa - New York

X5 = Seattle - Los Angeles

X6 = Seattle - New York

X7 = Baltimore- Los Angeles

X8 = Baltimore - New York

Objective Function: Minimize \$8X1 + \$5X2 + \$4X3 + \$7X4 + \$5X5 + \$6X6 + \$4X7 + \$6X8

X1 + X2 <= 600

X3 + X4 <=900

X5 + X6 <= 500

X7+ X8 <=500

X1 + X3 +X5 +X7 <=800

X2 + X4 +X6 +X8 <=1200

X1, X2, X3, X4, X5, X6, X7, X8 >=0

1	A	В	C	D	E	F
1						
2	Retail Stores	Manu	ifacturing P	Domand		
3	Retail Stores	Atlanta	Tulsa	Seattle	Demand	
4	Los Angeles	\$8.00	\$4.00	\$5.00	800	
5	New York	\$5.00	\$7.00	\$6.00	1200	
6	Capacity	600	900	500		
7						
8	Retail Stores	Manu	ifacturing P	lant	Domand	
9	Retail Stores	Atlanta	Tulsa	Seattle	Demand	
10	Los Angeles				0	
11	New York				0	
12	Capacity	0	0	0		
13						
14						
15	Datail Staver	Manu	facturing P	lant	Demand	
16	Retail Stores	Atlanta	Tulsa	Seattle	Demand	
17	Los Angeles	\$0.00	\$0.00	\$0.00		
18	New York	\$0.00	\$0.00	\$0.00		
19	Capacity				\$0.00	Total cos

1	A	В	C	D	E	F
1						
2	Datail Stance	Mar	ufacturing I	Damand		
3	Retail Stores	Atlanta	Tulsa	Seattle	Demand	
4	Los Angeles	\$8.00	\$4.00	\$5.00	800	
5	New York	\$5.00	\$7.00	\$6.00	1200	
6	Capacity	600	900	500		
7						
8	Date II Stame	Mar	ufacturing I	Plant	Damand	
9	Retail Stores	Atlanta	Tulsa	Seattle	Demand	
10	Los Angeles	0	800	0	800	
11	New York	600	100	500	1200	
12	Capacity	600	900	500		
13	3					
14						
15	D-4-II 64	Mar	ufacturing I	Plant	D	
16	Retail Stores	Atlanta	Tulsa	Seattle	Demand	
17	Los Angeles	\$0.00	\$3,200.00	\$0.00		
18	New York	\$3,000.00	\$700.00	\$3,000.00		
19	Capacity				\$9,900,00	Total cost

The total cost in choosing Seattle is \$9900.

Δ	А	В	С	D	E	F
1						
2	Retail Stores	Man	ufacturing I	Plant	Demand	
3	Ketan Stores	Atlanta	Atlanta Tulsa Baltimore		Demand	
4	Los Angeles	\$8.00	\$4.00	\$4.00	800	
5	New York	\$5.00	\$7.00	\$6.00	1200	
6	Capacity	600	900	500		
7						
8	Retail Stores	Man	ufacturing I	Demand		
9		Atlanta	Tulsa	Baltimore	решана	
10	Los Angeles	0	800	0	800	
11	New York	600	100	500	1200	
12	Capacity	600	900	500		
13						
14	Retail Stores	Man	ufacturing I	Plant	Domand	
15	Ketan Stores	Atlanta	Tulsa	Baltimore	Demand	
16	Los Angeles	\$0.00	\$3,200.00	\$0.00		
17	New York	\$3,000.00	\$700.00	\$3,000.00		
18	Capacity				\$9,900.00	Total cost

The total cost in choosing Baltimore is \$9900.

The cost is same in both the cases. Therefore, the company can select either of the location.

2)

Variables:

X1=Beef

X2=Pork

X3=Chicken

X4-Turkey

Objective function:

Objective is to provide most economical combination of four meats to make this hot dog i.e.

MinZ = 0.76X1 + 0.82X2 + 0.64X3 + 0.58X4

Constraints:

X1+X2+X3+X4=0.125 Constraints for Weight of each hot dog (2 ounce= 0.125 pound)

32.5X1+54X2+25.6X3+6.4X4 <= 6 Constraints for grams of Fat

210X1+205X2+220X3+172X4 <= 27 Constraints for grams of Cholesterol

640X1+1055X2+780X3+528X4 <= 100 Constraints for grams of Calorie

X1>=0.25(X1+X2+X3+X4) Constraint for each 2-ounce hot dog to be at least 25% beef

X2>=0.25(X1+X2+X3+X4) Constraint for each 2-ounce hot dog to be at least 25% pork

X1,X2,X3, X4 >=0 Non-negativity constraints

(S)	Cost/Pound	Calories/Pound	Fat (G/lb)	Cholesterol (G/lb)	Lb of meat/Hotdog
Beef(X1)	\$ 0.76	640	32.5	210	0.03125
Pork(X2)	\$ 0.82	1055	54	205	0.03125
Chicken(X3)	\$ 0.64	780	25.6	220	0
Turkey(X4)	\$ 0.58	528	6.4	172	0.0625
Objective Function (MinZ)	0.08562	5			
Constraints					
Weight Constraint	0.12	5 =	0.125		
Fat Constraint	3.10312	5 <=	6		
Cholesterol Constraint	23.7187	5 <=	27		
Calorie Constraint	85.9687	5 <=	100		
Constraints 25% beef	0.0312	5 >=	0.03125		
Constraints 25% pork	0.0312	5 >=	0.03125		

sij	1	2	3	4	5			Sub-Sche	edule Elimin	ation Con	straints	
1	0	20	15	8	6							
2	15	0	18	9	28			Sub-Sche	edule: 1-5			
3	24	23	0	13	13			x1,5	x5,1			
4	15	27	8	0	14			0	1	1	<=	1
5	8	17	24	15	0							
To	otal	Sur	gica	al S	etup	Time	58					
xij	1	2	3	4	5							
1	0	1	0	0	0	1	1-2-4-3-5	-1	Optimal S	chedule (n	o Sub-Sche	edules)
2	0	0	0	1	0	1						
3	0	0	0	0	1	1						
4	0	0	1	0	0	1						
	1	0	0	0	0	1						
5												

sij	1	2	2	3	4	5	6	7	8		9	10			Sub-Sche	dule Elimi	nation Co	nstraints							
1	0	9	9 1	12	26	11	24	12	13	3 3	17	15													
2	24	0	0 2	28	23	22	5	7	18	3	9	23			Sub-Sche	dule: 1-2-6	-5								
3	19	3	0	0	30	15	22	25	15	5 2	28	15			x1,2	x2,1	x2,6	x6,2	x6,5	x5,6	x5,1	x1,5			
4	18	1	0 2	27	0	28	12	16	15) ;	22	7			1	0	1	0	0	0	1	0	3	<=	3
5	5	1	6 1	11	7	0	25	27	30) 2	23	15													
6	7	2	6	6	17	б	0	28	10) 1	13	28			Sub-Sche	dule: 1-2-9									
7	23	2	6 2	20	20	24	30	0	16	5 :	18	27			x1,2	x2,1	x2,9	x9,2	x9,1	x1,9					
8	23	2	0 2	22	8	18	10	14	0		14	12			1	0	0	0	0	0	1	<=	2		
9	7	1	3	9	19	29	27	18	23	3	0	30													
10	16	1	0 1	11	11	28	26	6	11	1	12	0													
					1	Tota	al S	urg	ical	15	etı	ıp T	Time	92											
xij	1	12	2	3	4	5	6	7	8		9	10													
1	0	1	1	0	0	0	0	0	0	6	0	0	1		1-2-6-8-4	10-7-9-3-5	-1	Optimal S	chedule (r	no Sub-Sch	edules)				
2	0	(0	0	0	0	1	0	0	E	0	0	1												
3	0	0	3	0	0	1	0	0	0		0	0	1												
4	0	()	0	0	0	0	0	0	Ė	0	1	1												
5	1	()	0	0	0	0	0	0	i	0	0	1												
6	0	0	0	0	0	0	0	0	1		0	0	1												
7	0	0	0	0	0	0	0	0	0		1	0	1												
8	0	(0	0	1	0	0	0	0		0	0	1												
9	0	-	3	1	0	0	0	0	0	į.	0	0	1												
10	0	(0	0	0	0	0	1	0		0	0	1												
	1	1	1	1	1	1	4	1			1														

4)

Goals	Description	Rank	Wt
Goal 1	Minimize overutilization of plastic	2	0.364
Goal 2	Minimize overutilization of metals	1	0.182

Goal 3	Minimize overutilization of rubber	1	0.182
Goal 4	Minimize overutilization of budget	0.5	0.091
Goal 5	Minimize underutilization of budget	0.5	0.091
Goal 6	Maximize available hours usage (i.e. Minimize underutilization)	0.5	0.091

Decision Variables:

X1 = No. of Tiny Tanks produced

X2 = No. of Tiny Trucks produced

X3 = No. pf Tiny Turle produced

'Oi' = Excess of right side of the goal w.r.t. the goal 'i' and

'Ui' = Deficit of right side of the goal w.r.t. the goal 'i' for all i = 1,2,...,6

Objective Function:

Min (0.364O1 + 0.182O2 + 0.182O3 + 0.091O4 + 0.091U5 + 0.091U6)

Subject to,

$$0.5X1 + 0.5X2 + 1.0X3 + U3 - O3 = 5000$$

$$0.3X1 + 0.6X2 + 0.0X3 + U2 - O2 = 9000$$

$$2.0X1 + 2.0X2 + 1.0X3 + U6 - O6 = 40$$

$$7.0X1 + 5.0X2 + 4.0X3 + U4 - O4 = 164000$$

$$7.0X1 + 5.0X2 + 4.0X3 + U5 - O5 = 164000$$

$$X1, X2, X3, Oi, Ui >= 0$$

5)

Let X_1 = thousands of dollars spent on TV ads X_2 = thousands of dollars spent on radio ads

Min
$$P_1(d_1^-) + P_2(d_2^+) + P_3(d_3^+) + P_4(d_4^-) + P_5(d_5^- + 2d_6^-)$$

Subject to:

$$\begin{aligned} &10,000\mathbf{X}_{1}+7,500\mathbf{X}_{2}+\mathbf{d}_{1}-\mathbf{d}_{1}^{+}=750,000\\ &\mathbf{X}_{1}+\mathbf{X}_{2}+\mathbf{d}_{2}^{-}-\mathbf{d}_{2}^{+}=100\\ &\mathbf{X}_{1}+\mathbf{d}_{3}^{-}-\mathbf{d}_{3}^{+}=70\\ &10,000\mathbf{X}_{1}+7,500\mathbf{X}_{2}+\mathbf{d}_{4}^{-}-\mathbf{d}_{4}^{+}=1,000,000\\ &2,500\mathbf{X}_{1}+3,000\mathbf{X}_{2}+\mathbf{d}_{5}^{-}-\mathbf{d}_{5}^{+}=250,000\\ &3,000\mathbf{X}_{1}+1,500\mathbf{X}_{2}+\mathbf{d}_{6}^{-}-\mathbf{d}_{6}^{+}=250,000\\ &d_{i}^{+}\geq0\quad and\quad d_{i}^{-}\geq0\quad\forall i\quad i=1,2,3,4,5,6\\ &X_{i}\geq0\quad\forall j\quad j=1,2\end{aligned}$$

(At least 750,000 exposures)

(At most \$100,000 spent)

(At most \$70,000 spent on TV ads)

(Achieve 1 million exposures)

(At least 250,000 18-21 exposures)

(At least 250,000 25-30 exposures)

Extra Credit:

a)

Pattern	3-ft	4-ft	5-ft
1	3	0	0
2	2	1	0
3	1	0	1
4	0	1	1
5	0	2	0
6	0	0	2

b)

Define x_i as the number of 10-ft boards cut into pattern type i, i = 1, ..., 6. Then:

min
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

subject to $3x_1 + 2x_2 + 1x_3 \ge 90$
 $1x_2 + 1x_4 + 2x_5 \ge 60$
 $1x_3 + 1x_4 + 2x_6 \ge 60$
 $x_1, x_2, x_3, x_4, x_5, x_6 \in \mathbb{Z}_+$

The minimal number of 10-ft boards to be cut is 83. This can be done by cutting 2 boards into pattern 1, 42 into pattern 2, 9 into pattern 5, and 30 into pattern 6 (among other ways -- there are multiple optimal solutions to this integer program). Incidentally, this solution produces 20 feet of scrap.

Original Length	10					
	Board	width (in fe	et)			
Pattern #	3	4	5	Waste (ft)	Pattern	To Cut
1	3	0	0	1	1	2
2	2	1	0	0	2	42
3	1	0	1	2	3	0
4	0	1	1	1	4	0
5	0	2	0	2	5	9
6	0	0	2	0	6	30
	3	4	5		Min Total Cut	83
	90	60	60		Excess Scrap	20
	>=	>=	>=		Excess Inventory	0
Demand	90	60	60		Total Excess	20
eftover Inventory	0	0	0			

Optimize a model with 3 rows, 6 columns and 9 nonzeros Coefficient statistics:

Matrix range [1e+00, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [6e+01, 9e+01]
Found heuristic solution: objective 120
Presolve time: 0.00s
Presolved: 3 rows, 6 columns, 9 nonzeros
Variable types: 0 continuous, 6 integer (0 binary)

Root relaxation: objective 8.250000e+01, 3 iterations, 0.00 seconds

Nodes			Cu	rrent	Node		Object	Objective Bounds				
Ex	pl Une	expl	Obj	Depth	Intl	nf	Incumbent	BestBd	Gap	It/Node	Time	
	0	0	82.50	1000	0	1	120.00000	82.50000	31.3%		05	
H	0	0					83.0000000	82.50000	0.60%	_	05	

Explored 0 nodes (3 simplex iterations) in 0.01 seconds Thread count was 8 (of 8 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 8.300000000000e+01, best bound 8.30000000000e+01, gap 0.0%

Minimum # of Rolls = 83.0 Cut 45.0 of pattern2 Cut 8.0 of pattern5 Cut 30.0 of pattern6

```
3 nWidths = 3;
4 nPatterns = 6;
6 widthsInPatterns = [
7 [3, 2, 1, 0, 0, 0],
 8 [0, 1, 0, 1, 2, 0],
9 [0, 0, 1, 1, 0, 2]
10 1:
11 demand = [90, 60, 60];
12
13 model = Model("lumberyard")
14
15 patternsCut = []
16
17 for i in range(nPatterns):
      patternsCut.append(model.addVar(vtype=GRB.INTEGER, obj=1, lb=0,
18
      name="pattern%d" % (i+1)))
19
20
21 model.modelSense = GRB.MINIMIZE
22 model.update()
23
24 expr = LinExpr()
25 for i in range(nWidths):
26
      expr = 0
27
      for j in range(nPatterns):
28
           expr += widthsInPatterns[i][j]*patternsCut[j]
29
      model.addConstr(expr, GRB.GREATER EQUAL,demand[i] , name="sum%d" %(i))
30 model.update()
31 model.write('lumberyard.lp')
32 model.optimize()
33
34 if model.Status == GRB.OPTIMAL:
35
      print "\nMinimum # of Rolls =", model.ObjVal
36
      for v in model.getVars():
37
          if v.X > 0:
38
               print "Cut", v.X, "of", v.VarName
39
```