Package 'MixFishSim'

August 7, 2017

barar		
	ov_f Baranov F	
Index		5
	find_f	4
	delay_diff	3
	create_fields	2
	baranov_f	1
	ics documented:	
	Note 5.0.1	
LazyDa		
	g UTF-8	
•	What license is it under?	
Imports		
Depend	R (>= 3.3.1),	
-	ion A simulation framework for evaluating fleet dynamics in mixed heries.	
VCI SIUII	0.0.0.9000	
Vorcion	0.0.0000	

Description

baranov_f provides the function to solve in find_f for estimating weekly fishing mortality from catch (C), biomass (B) and natural mortality (M). It's based on the standard Baranov catch equation.

Usage

```
baranov_f(F, C, B, M)
```

2 create_fields

Arguments

F	is the fishing mortality rate to solve.
С	is a Numeric vector detailing the catch at $\boldsymbol{w}\boldsymbol{k}_t$
В	is a Numeric vector of the biomass at wk_t
М	is a Numeic vector of the natural mortality rate at wk_t

Value

Returns nothing, is objective to be solved by find_f

Examples

```
## No examples
```

create_fields

Create species distribution fields

Description

create_fields parametrises and returns the spatio-temporal fields used for the spatial distribution of fish populations and movement in space and time for the simulations.

The spatio-temporal fields are generated using spate.sim function from the *spate* package using an advective-diffusion Stochastic Partial Differential Equation (SPDE). See *Lindgren 2011 and Sigrist 2015* for further detail.

Usage

```
create_fields(npt = 1000, t = 1, seed = 123, n.spp = NULL,
    spp.ctrl = NULL, plot.dist = FALSE, plot.file = getwd())
```

Arguments

npt	Numeric integer with the dimensions of the field in $npt * npt$
t	Numeric integer with the number of time-steps in the simulation
seed	(Optional) Numeric integer with the seed for the simulation
n.spp	Numeric integer with the number of species to be simulated. Each species must have an individual control list as detailed below.
spp.ctrl	List of controls to generate each species spatio-temporal distribution. Must be of the form spp.ctrl = $list(spp.1 = c(rho0 = 0.001,), spp.2 = c(rho0 = 0.001,),$ and contain the following:

- **rho0** (>=0) Controls the range in a matern covariance structure.
- **sigma2** (>=0) Controls the marginal variance (i.e. process error) in the matern (>=0) covariance structure.
- **zeta** (>=0) Damping parameter; regulates the temporal correlation.
- **rho1** (>=0) Range parameter for the diffusion process
- gamma (>=0) Controls the level of anisotropy
- alpha ([0, $\pi/2$]) Controls the direction of anisotropy

delay_diff 3

path to save the plots of the species distributions

```
muX ([-0.5, 0.5]) x component of drift effect
muY ([-0.5, 0.5]) y component of drift effect
tau2 (>=0) Nugget effect (measurement error)
nu Smoothness parameter for the matern covariance function
Boolean, whether to plot the distributions to file
```

Value

plot.dist

plot.file

Silently returns a list of spatial distributions with first level of the list being the population $(1 \rightarrow n.spp)$ and the second being time $(1 \rightarrow t)$. If plot.dist = TRUE it produces an image of the spatial distributions at each time step for each of the populations saved to the working directory (unless specified otherwise in plot.file)

Examples

delay_diff

Delay-difference (weekly)

Description

delay_difference implements a two-stage delay-difference model with a weekly time-step after *Dichmont 2003*. Given the starting biomass, overall mortality and recruitment it returns the biomass in wk+1.

Usage

```
delay_diff(K = 0.3, F = NULL, M = 0.2, wt = 1, wtm1 = 0.1, R = NULL,
    B = NULL, Bm1 = NULL, al = NULL, alm1 = NULL)
```

Arguments

K	is a Numeric vector describing growth @param F is the weekly. Note: K is transformed to rho with $\rho=exp-K$ for the model. estimate of instantaneous fishing mortality (obtained elsewhere, via find_f and baranov_f functions.
М	is a Numeric vector of the instantaneous rate of natural mortality for the population
wt	is a Numeric vector of the weight of a fish when fully recruited
wtm1	is a Numeric vector of the weight of a fish before its recruited
R	is a Numeric vector of the annual recruitment for the population in numbers
В	is the biomass of the population during wk_t
Bm1	is a Numeric vector of the biomass of the population in the previous week $\boldsymbol{w} \boldsymbol{k}_{t-1}$
al	is a Numeric vector of the proportion of recruits to the fishery in wk_t
alm1	is a Numeric vector of the proportion of recruits to the fishery in wk_{t-1}

4 find_f

Value

Returns the biomass at the beginning of the following week, wk_{t+1}

Examples

```
delay\_diff(K = 0.3, F = 0.2, M = 0.2, wt = 1, wtm1 = 0.1, R = 1e6, B = 1e5, Bm1 = 1e4, al = 0.5, alm1 = 0.1)
```

find_f

find F (fishing mortality)

Description

find_f uses uniroot to find the fishing mortality rate given the catch, biomass and natural mortality using the baranov_f objective function.

Usage

```
find_f(C = C, B = B, M = M, FUN = baronov_f)
```

Arguments

C is a Numeric vector detailing the catch at wk_t B is a Numeric vector of the biomass at wk_t M is a Numeric vector of the natural mortality rate at wk_t FUN is the objective function, here the Baranov equation baranov_f

Value

Gives the fishing mortality estimate F

Examples

```
find_f(C = 3000, B = 12000, M = 0.2, FUN = baranov_f)
```

Index

```
baranov_f, 1, 3, 4
create_fields, 2
delay_diff, 3
find_f, 1-3, 4
spate.sim, 2
uniroot, 4
```