Лабораторная работа 7

Тагиев Б. А.

25 марта 2023

Российский университет дружбы народов, Москва, Россия

Цель работы

Цель работы

Целью данной работы является построение модели распространения рекламы.

Задание

Задание

Построить графики распространения рекламы для трех случаев. При этом объем аудитории N=1225, в начальный момент о товаре знает 8 человек. Для случая 2 определить, в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Выполнение

```
N = 1225
n0 = 8

function ode_fn(du, u, p, t)
  (n) = u
  du[1] = (0.815 + 0.000033*u[1])*(N - u[1])
end
```

1. Напишем код на julia, которое решает первое уравнение варианта 62.

2. Сохраним результаты нашего решения в график и увидим следующее

Figure 1: График 1

```
model lab07 1
  Real N = 1225;
  Real n;
initial equation
  n = 8:
equation
  der(n) = (0.815 + 0.000033*n)*(N-n);
end lab07 1
```

3. Теперь напишем код на языке Modelica.

4. Запустим сиуляцию и увидим следующее

Figure 2: График 1

```
N = 1225
n0 = 8

function ode_fn(du, u, p, t)
  (n) = u
  du[1] = (0.000044 + 0.27*u[1])*(N - u[1])
end
```

1. Напишем код на julia, которое решает второе уравнение варианта 62.

2. Сохраним результаты нашего решения в график и увидим следующее. Момент времени скорость распространения рекламы будет иметь максимальное значение также указан на графике.

Figure 3: График 2

```
model lab07 2
Real N = 1225;
Real n;
initial equation
n = 8:
equation
der(n) = (0.000044 + 0.27*n)*(N-n);
end lab07 2;
```

3. Теперь напишем код на языке Modelica.

4. Запустим сиуляцию и увидим следующее

Figure 4: График 2

```
N = 1225
n0 = 8

function ode_fn(du, u, p, t)
  (n) = u
  du[1] = (0.5*t + 0.8*cos(t)*u[1])*(N - u[1])
end
```

1. Напишем код на julia, которое решает третье уравнение варианта 62.

2. Сохраним результаты нашего решения в график и увидим следующее

Figure 5: График 3

```
model lab07 3
Real N = 1225;
Real n;
initial equation
n = 8:
equation
der(n) = (0.5 + 0.8*cos(time)*n)*(N-n);
end lab07 3;
```

3. Теперь напишем код на языке Modelica.

4. Запустим сиуляцию и увидим следующее

Figure 6: График 3

Выводы

В итоге проделанной работы мы построили графики распространения рекламы для трех случаев на языках Julia и OpenModelica.