Introductory Calculus

Derivative - rate of change of a function - at what rate is something increasing/decreasing?

of passengers

- this rate is the DERIVATIVE of the function

$$f(x) = 5x + 10$$

 $-) f'(x) = 5 \leftarrow for a linear function,$
this is the slope

- formula for a derivative:

$$\frac{d}{dx}(\alpha x^n) = (\alpha \cdot n) x^{N-1}$$

notation a is for taking a constant

a derivative

ex.
$$d/dx (5x) = (5\cdot1)(x^{1-1}) = 5x^0 = 5$$

 $d/dx (x^3) = (3)(x^{3-1}) = 3x^2$
 $d/dx (4x^4 + 3x^2) = (4\cdot4)x^{4-1} + (3\cdot2)x^{2-1}$
 $= 16x^3 + 6x$

· derivative rules:

SUM
$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$

ex. $\frac{d}{dx}(4x^4 + 3x^2) = 16x^3 + 6x$

DIFFERENCE
$$d_{Ax}(f(x) - g(x)) = f'(x) - g'(x)$$

ex. $d_{Ax}(4x^4 - 3x^2) = 16x^3 - 6x$

PRODUCT
$$d/dx (f(x) \cdot g(x)) = f(x)g'(x) + f'(x)g(x)$$

ex. $d/dx ((x^2+1)(3x^3-9)) = (x^2+1)(9x^2) + (2x)(3x^3-9)$

QUOTIENT
$$d_{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

ex.
$$\frac{d}{dx} \left(\frac{3x^2}{x^2+1} \right) = \left(\frac{x^2+1)(6x)-(3x^2)(2x)}{(x^2+1)^2} \right)$$

· derivative of a constant: ZERO

- mathematically: constants can be represented as CX° because x°=1

$$\frac{d}{dx}(cx^{\circ}) = (0 \cdot c)x^{-1} = 0 \quad \text{ex} \cdot \frac{d}{dx}(7) = \frac{d}{dx}(7x^{\circ})$$

$$= 0$$

$$= 0$$

 \rightarrow y=7 is a straight line slope = 0

there is no rate of change

· higher order derivatives: can take a derivative many times, until you get 0

as, and god ge	.0 0		dy
- written as:	1st derivative	f'(x)	qx
	2 nd devivative	f"(x)	9x2
	3 rd devivative	f"'(x)	434
	4th derivative	f4(x)	94A
	 nth derivative	t ⊌(x)	9,1 9x4
	West Comments	1) (^)	912

- ex. find $\frac{d^4y}{dx^4}$ of $x^6 + 4x^4 + 3x^3 + 2$ $\frac{d}{dx}(x^6 + 4x^4 + 3x^3 + 2) = 6x^5 + 16x^3 + 9x^2 \Rightarrow 1^{54}$ derivative $\frac{d}{dx}(6x^5 + 16x^3 + 9x^2) = 30x^4 + 48x^2 + 18x \Rightarrow 2^{nd}$ derivative $\frac{d}{dx}(30x^4 + 48x^2 + 18x) = 120x^3 + 96x + 18 \Rightarrow 3^{nd}$ derivative $\frac{d}{dx}(120x^3 + 96x + 18) = 360x^2 + 96 \Rightarrow 4^{nd}$ derivative

· application of durivatives: PHYSICS

vate of change of <u>velocity</u> with vespect to <u>time</u> is also known as acceleration

$$\frac{d}{dt}$$
 (velocity) = acceleration $\frac{dv}{dt} = \frac{d^2x}{dt^2} = \alpha$