Part III Category Theory

Based on lectures by Prof P.T. Johnstone

Michaelmas 2016 University of Cambridge

1

Contents

1 Definitions and Examples

2 The Yoneda Lemma
3 Adjunctions
1 Definitions and Examples
Definition 1.1 (Category). A category C consists of
a. a collection ob C of objects A, B, C, \ldots
b. a collection $\operatorname{mor} \mathcal{C}$ of morphisms f, g, h, \ldots
c. two operations dom, cod from morphisms to objects. We write $f: A \to B$ or $A \xrightarrow{f} B$ to mean 'f is a morphism and dom $f = A$ and cod $f = B$ '
d. an operation assigning to each object A a morphism $1_A:A\to A$
e. a partial binary operation $(f,g)\mapsto gf$, s.t. gf is defined \iff $\operatorname{dom} g=\operatorname{cod} f$, and then $gf:\operatorname{dom} f\to\operatorname{cod} g$
satisfying
$f. \ f1_A = f \ and \ 1_B f = f \ \forall f: A \rightarrow B$
g. $h(fg) = (hg)f$ whenever gf and hg are defined
Definition 1.2 (Functor). Let $\mathcal C$ and $\mathcal D$ be categories. A functor $\mathcal C \to \mathcal C$ consists of

a. a mapping $A \to FA$ from ob C to ob D

b. a mapping $f \to Ff$ from $\operatorname{mor} \mathcal{C}$ to $\operatorname{mor} \mathcal{D}$

satisfying dom $Ff = F \operatorname{dom} f$, $\operatorname{cod} Ff = F \operatorname{cod} f$ for all f, $F(1_A) = 1_{FA}$ for all A, and F(gf) = (Fg)(Ff) whenever gf is defined.

Definition 1.3. By a contravariant functor $\mathcal{C} \to \mathcal{D}$ we mean a functor $\mathcal{C} \to \mathcal{D}^{op}$ (or equivalently $\mathcal{C}^{op} \to \mathcal{D}$). A functor $\mathcal{C} \to \mathcal{D}$ is sometimes said to be covariant.

Definition 1.4 (Natural transformation). Let C and D be two categories and $F, G : C \Rightarrow D$ two functors. A **natural transformation** $\alpha : F \rightarrow G$ assigns to each $A \in \text{ob } C$ a morphism $\alpha_A : FA \rightarrow GA$ in D, such that

$$FA \xrightarrow{Ff} FB$$

$$\downarrow^{\alpha_A} \qquad \downarrow^{\alpha_B}$$

$$GA \xrightarrow{Gf} GB$$

commutes.

We can compose natural transformations: given $\alpha: F \to G$ and $\beta: G \to H$, the mapping $A \mapsto \beta_A \alpha_A$ is the A-component of a natural transformation $\beta \alpha: F \to H$.

Definition 1.5. Given categories C, D, we write [C, D] for the category of all functors $C \to D$ and natural transformations between them.

Lemma 1.6. Given $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \to G$, α is an isomorphism in $[\mathcal{C}, \mathcal{D}] \iff each \alpha_A$ is an isomorphism in \mathcal{D} .

Definition 1.7 (Faithful and full). Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

- a. We say that F is **faithful** if, given $f, g \in \text{mor } C$, the equations dom f = dom g, cod f = cod g and Ff = Fg imply f = g.
- b. F is **full** if, given any $g: FA \to FB$ in \mathcal{D} , there exists $f: A \to B$ in \mathcal{C} with Ff = g.
- c. We say a subcategory C' of C is **full** if the inclusion $C' \hookrightarrow C$ is a full functor.

For example, **Gp** is a full subcategory of the category **Mon** of monoids, but **Mon** is a non-full subcategory of the category **Sgp** of semigroups.

Definition 1.8 (Equivalence of categories). Let C and D be categories. An equivalence between C and D is a pair of functors $F: C \to D$, $G: D \to C$ together with natural isomorphisms $\alpha: 1_C \to GF$, $\beta: FG \to 1_D$. We write $C \simeq D$ to mean that C and D are equivalent.

We say a property P of categories is **categorical** if whenever C has P and $C \simeq D$ then D has P.

For example, being a groupoid is a categorical property, but being a group is not.

Definition 1.9 (Slice category). Given an object B of a category C, define the **slice category** C/B to have morphisms $A \xrightarrow{f} B$ as objects, and morphisms $(A \xrightarrow{f} B) \to (A' \xrightarrow{f'} B)$ are morphisms $h: A \to A'$ making

$$A \xrightarrow{h} A'$$

$$f \swarrow_{f'}$$

$$B$$

commute.

Lemma 1.10. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then F is part of an equivalence $\mathcal{C} \simeq \mathcal{D} \iff F$ is full, faithful and **essentially surjective**, i.e. for every $B \in \operatorname{ob} \mathcal{D}$, there exists $A \in \operatorname{ob} \mathcal{C}$ s.t. $FA \cong B$.

Definition 1.11. a. A **skeleton** of a category C is a full subcategory C' containing exactly one object from each isomorphism class of objects of C.

b. We say C is **skeletal** if it's a skeleton of itself. Equivalently, any isomorphism f in C satisfies dom $f = \operatorname{cod} f$.

For example, \mathbf{Mat}_K is skeletal. The full subgategory of standard vector spaces K^n is a skeleton of $\mathbf{fd} \ \mathbf{Mod}_K$.

Remark 1.12. The following statements are each equivalent to the Axiom of Choice:

- 1. Every small category has a skeleton
- 2. Any small category is equivalent to each of its skeletons
- 3. Any two skeletons of a given small category are isomorphic

Definition 1.13. Let $f: A \to B$ be a morphism in a category C.

a. f is a monomorphism if, given $g, h : D \Rightarrow A$, the equation fg = fh implies g = h. We write $A \mapsto B$ if f is monic.

- b. Dually, f is an **epimorphism** if, given $k, l : B \Rightarrow C$, kf = lf implies k = l. We write $A \rightarrow B$ if f is epic.
- c. C is a balanced category if every $f \in \text{mor } C$ which is both monic and epic is an isomorphism.

2 The Yoneda Lemma

Definition 2.1. A category C is **locally small** if, for any two objects A, B of C, the morphism $A \to B$ are parametrised by a set C(A, B).

Given local smallness, $B \mapsto \mathcal{C}(A, B)$ becomes a functor $\mathcal{C}(A, -) : \mathcal{C} \to \mathbf{Set}$: if $g : B \to B'$, the mapping $f \mapsto gf : \mathcal{C}(A, B) \to \mathcal{C}(A, B')$ is functorial since h(gf) = (hg)f for any $h : B' \to B''$.

Similarly, $A \mapsto \mathcal{C}(A, B)$ becomes a functor $\mathcal{C}^{op} \to \mathbf{Set}$.

Lemma 2.2 (Yoneda). Let C be a locally small category, $A \in \text{ob } C$ and $F : C \to Set$. Then

- i. There is a bijection between natural transformations $C(A, -) \to F$ and elements of FA.
- ii. Moreover, this bijection is natural in both A and F.

Proof. Bijection: given $\alpha : \mathcal{C}(A, -) \to F$, define $\Phi(\alpha) = \alpha_A(1_A) \in FA$. Given $x \in FA$, define $\Psi(x) : \mathcal{C}(A, -) \to F$ by

$$\Psi(x)_B(A \xrightarrow{f} B) = (Ff)(x) \in FB$$

 $\Psi(x)$ is natural: given $g: B \to C$, we have

$$\Psi(x)_{C}(\mathcal{C}(A,g)(f)) = \Psi(x)_{C}(gf)$$

$$= F(gf)(x)$$

$$= (Fg)(Ff)(x)$$

$$= (Fg)\Psi(x)_{B}(f)$$

 $\Phi\Psi(x)=x$ since $F(1_A)(x)=x$, and $\Psi\Phi(\alpha)=\alpha$ since, for any $f:A\to B$,

$$\Psi\Phi(\alpha)_B(f) = Ff(\Phi(\alpha))$$

$$= Ff(\alpha_A(1_A))$$

$$= \alpha_B(\mathcal{C}(A, f)(1_A))$$

$$= \alpha_B(f)$$

Corollary 2.3. The mapping $A \to \mathcal{C}(A, -)$ is a full and faithful functor $\mathcal{C}^{op} \to [\mathcal{C}, \mathbf{Set}]$.

Proof. Given two objects A, B, 2.2(i) gives us a bijection from $\mathcal{C}(B, A)$ to the collection of natural transformations $\mathcal{C}(A, -) \to \mathcal{C}(B, -)$ (by taking $F : C \to \mathcal{C}(B, C)$). We need to show this is functorial, but given $f \in \mathcal{C}(B, A), \Psi(F)_A$ sends 1_A to $\mathcal{C}(B, f)(1_A) = f$, so it's the natural transformation $g \mapsto gf$.

Hence, given
$$e: C \to B$$
, $\Psi(fe)(g) = g(fe) = (gf)(e) = \Psi(e)\Psi(f)g$

We call this functor the **Yoneda embedding**. Hence any locally small category C is equivalent to a full subcategory of $[C^{op}, \mathbf{Set}]$.

Definition 2.4. A functor $C \to Set$ is representable if it's isomorphic to C(A, -) for some A.

A representation of $F: \mathcal{C} \to \mathbf{Set}$ is a pair (A, x) where $A \in \text{ob } \mathcal{C}$, $x \in FA$ and $\Psi(x): \mathcal{C}(A, -) \to F$ is an isomorphism. We also call x a universal element of F.

Corollary 2.5 ('Representations are unique up to unique isomorphism'). If (A, x) and (B, y) are both representations of $F : \mathcal{C} \to \mathbf{Set}$, then there's a unique isomorphism $f : A \to B$ s.t Ff(x) = y.

Definition 2.6 (Product and coproduct). Given two objects A, B of a locally small category C, we define their **product** to be a representation of the functor

$$\mathcal{C}(-,A) \times \mathcal{C}(-,B) : \mathcal{C}^{op} \to \mathbf{Set}$$

i.e. an object $A \times B$ equipped with morphisms $\pi_1 : A \times B \to A$, $\pi_2 : A \times B \to B$ s.t. given any pair $(f : C \to A, g : C \to B)$, there exists a unique $h : C \to A \times B$ s.t. $\pi_1 h = f$ and $\pi_2 h = g$.

More generally, we can define the product $\prod_{i \in I} A_i$ of a family $\{A_i | i \in I\}$ of objects, or the product of the empty family, i.e. a **terminal object** 1 s.t. for every A there's a unique $A \to 1$.

Dualizing, we get the notion of coproduct or sum.

Definition 2.7 (Equaliser and coequaliser). Given a parallel pair $f, g : A \Rightarrow B$ in a locally small category C, the assignment $C \mapsto FC = \{h : C \to A \mid fh = gh\}$ is a subfunctor F of C(-,A). A representation of F is called an **equaliser** of (f,g).

In elementary terms, it's an object E equipped with $e: E \to A$ s.t. fe = ge, s.t. any h with fh = gh factors uniquely as h = ek

Dually, we have the notion of **coequaliser**, i.e. a morphism $q: B \to Q$ satisfying qf = qg, and universal among such.

Definition 2.8. a. We say a monomorphism is **regular** if it occurs as an equaliser (dually, regular epimorphism).

b. We say $f: A \to B$ is a **split monomorphism** if there exists $g: B \to A$ with $gf = 1_A$.

Every split monomorphism is regular: if $gf = 1_A$, f is an equaliser of $(1_B, fg)$ [see sheet 1, q2].

Definition 2.9. Let C be a (locally small) category, G a collection of objects of C.

- a. Say \mathcal{G} is a **separating family** if the functors $\mathcal{C}(G,-)$, $G \in \mathcal{G}$ are jointly faithful, i.e. if given $f,g:A \Rightarrow B$ with $f \neq g$, there exists $G \in \mathcal{G}$ and $h:G \to A$ with $fh \neq gh$.
- b. Say \mathcal{G} is a **detecting family** if the $\mathcal{C}(G, -)$, $G \in \mathcal{G}$ jointly reflect isomorphisms, i.e. if given $f : A \to B$ s.t. every $g : G \to B$ with $G \in \mathcal{G}$ factors uniquely through f, f is an isomorphism.

Lemma 2.10. i. If C is balanced, then any separating family is detecting

ii. If C has equalisers, then every detecting family is separating

Definition 2.11. An object P is **projective** if C(P, -) preserves epimorphisms, i.e. if given

$$P \\ \downarrow^f \\ A \stackrel{e}{-\!\!\!-\!\!\!-\!\!\!-} B$$

there exists $g: P \to A$ with eg = f.

Dually, P is **injective** in C if it's projective in C^{op} .

If P satisfies this property $\forall e$ in some class \mathcal{E} of epimorphisms, we call it \mathcal{E} -projective.

Corollary 2.12. Representable functors are (pointwise) projective in [C, Set]

Proof. Given

$$\begin{array}{ccc} & & \mathcal{C}(A,-) \\ & & \downarrow^{\beta} \\ F & \stackrel{\alpha}{---} & G \end{array}$$

 β corresponds to some $y \in GA$. α_A is surjective, so $\exists x \in FA$ with $\alpha_A(x) = y$. x corresponds to $\gamma : \mathcal{C}(A, -) \to F$ with $\alpha \gamma = \beta$.

3 Adjunctions

Definition 3.1 (D.M. Khan, 1958). Let C and D be categories and $F: C \to D$, $G: D \to C$ be two functors. An **adjunction** between F and G is a bijection between morphisms $FA \to B$ in D and morphisms $A \to GB$ in C, which is natural in A and B.

(If \mathcal{C} and \mathcal{D} are locally small, this says that $(A,B) \to \mathcal{D}(FA,B)$ and $(A,B) \to \mathcal{C}(A,GB)$ are naturally isomorphic functors $\mathcal{C}^{op} \times \mathcal{D} \to \mathbf{Set}$).

We say F is **left adjoint** to G, or G is **right adjoint** to F, and write $F \dashv G$.