SML: Exercise 2

Rinor Cakaj, Patrick Nowak

Summer Term 2020 Sheet 1

Task 1.1: Density Estimation

We are given data C1 and C2, which we suppose to be generated by 2D-Gaussians with parameters μ_1, Σ_1 and μ_2, Σ_2 , respectively.

1.1a)

Assume we are given iid. datapoints x_i , i = 1, ..., n which are generated by a 2D-Gaussian. Following the max-likelihood principle, we maximize the log-likelihood function

$$l(\mu, \Sigma, x_1, ..., x_n) = \ln(\prod_{i=1}^n p(x_i | \mu, \Sigma)) = \sum_{i=1}^n \ln(p(x_i | \mu, \Sigma))$$

for the Gaussian probability density

$$p(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma(x-\mu)\right) . \tag{1}$$

We receive

$$l(\mu, \Sigma) := l(\mu, \Sigma, x_1, ..., x_n) = \sum_{i=1}^{n} \left(-\frac{k}{2} \ln(2\pi) - \frac{1}{2} ln(|\Sigma|) - \frac{1}{2} (x_i - \mu)^T \Sigma (x_i - \mu) \right)$$
 (2)

$$= -\frac{nk}{2}\ln(2\pi) - \frac{n}{2}\ln(|\Sigma|) - \frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^T \Sigma(x_i - \mu) .$$
 (3)

We compute the derivatives w.r.t. μ and Σ and set them equal to zero. This yields

$$\frac{d}{d\mu}l(\mu, \Sigma, x_1, ..., x_n) = \frac{d}{d\mu} - \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^T \Sigma (x_i - \mu)$$
$$= -\sum_{i=1}^n \frac{d}{d\mu} \frac{1}{2} (x_i - \mu)^T \Sigma (x_i - \mu) .$$

Using the matrix identity $\frac{d}{dw} \frac{w^T A w}{dw} = 2Aw$ which holds if w does not depend on A and if A is symmetric, we get (with $w = (x - \mu), dw = -d\mu$)

$$0 \stackrel{!}{=} \frac{d}{d\mu} l(\mu, \Sigma, x_1, ..., x_n)$$

$$0 \stackrel{!}{=} -\sum_{i=1}^{n} \Sigma^{-1}(x_i - \mu) .$$

Finally, we use that Σ^{-1} is positive definite, so we can leave it out here and get

$$0 \stackrel{!}{=} n\mu - \sum_{i=1}^{n} x_i ,$$

which is solved for the MLE-estimate

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \ . \tag{4}$$

Secondly, we need to compute the derivative w.r.t Σ . To do that, we will need some results from mathematical classes. The following is used without prove:

• Cyclic permutations of a matrix product do not change the trace of it:

$$tr[ABC] = tr[CAB]$$

• The trace of a scalar is the scalar itself. In particular: the result of a quadratic form $x^T A x$ is a scalar, such that:

$$x^T A x = tr \left[x^T A x \right] = tr \left[x^T x A \right]$$

- $\frac{d}{dA}tr[AB] = B^T$
- $\frac{d}{dA} \ln |A| = A^{-T}$

As a first result of these assumptions, we can show, that

$$\frac{d}{dA}x^TAx = \frac{d}{dA}tr\left[x^TxA\right] = \left[xx^T\right]^T = xx^T \ .$$

We now got the tools to re-write the log-likelihood function in (3) to

$$l(\mu, \Sigma) = -\frac{nk}{2} \ln(2\pi) - \frac{n}{2} ln(|\Sigma|) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^T \Sigma (x_i - \mu)$$
$$= C + \frac{n}{2} ln(|\Sigma^{-1}|) - \frac{1}{2} \sum_{i=1}^{n} tr \left[(x_i - \mu)(x_i - \mu)^T \Sigma^{-1} \right]$$

for a constant C, and taking the derivative w.r.t Σ^{-1} yields

$$\frac{d}{d\Sigma^{-1}}l(\mu,\Sigma) = \frac{n}{2}\Sigma^{T} - \frac{1}{2}\sum_{i=1}^{n}(x_{i} - \mu)(x_{i} - \mu)^{T}$$

and plugging in $\hat{\mu}$ as an estimation of μ and setting equal to zero finally gives us

$$0 \stackrel{!}{=} \frac{d}{d\Sigma^{-1}} l(\hat{\mu}, \Sigma)$$
$$0 \stackrel{!}{=} \frac{n}{2} \Sigma^{T} - \frac{1}{2} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^{T}$$

which is solved for the biased MLE estimate

$$\tilde{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T$$
(5)