ĐỀ THI GIỮA KỲ MÔN ĐẠI SỐ- Học kì 20191

MÃ HP: MI 1141, Nhóm 1, Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi của sinh viên

Câu 1(1đ). Mệnh đề "Phương trình $x^2 + 2x - 3 = 0$ vô nghiệm nên $3 + 5 \ge 10$ đúng hay sai? Tại sao?

Câu 2(1đ). Cho ánh xạ $f: E \to F$ và $\emptyset \neq B \subset F$. Chứng minh rằng:

$$f^{-1}(F \setminus B) = E \setminus f^{-1}(B)$$

Câu 3(1đ). Tìm tam thức bậc hai hệ số thực, p(x) sao cho:

$$p(1) = 0; p(-1) = 4; p(2) = 1.$$

Câu 4(1,5đ). Tìm các nghiệm phức của phương trình $z^{10} + z^5 + 1 = 0$

Câu 5 (1đ). Tập hợp $G = \{z \in \mathbb{C}: |z| = 1\}$ có lập thành nhóm với phép nhân số phức hay không? Tại sao?

Câu 6 (1đ). Ký hiệu $M_{1\times 2}$ là tập hợp các ma trận thực có kích thước 1x2.

Tìm m để ánh xạ $f: M_{1\times 2} \to M_{1\times 2}, f(X) = X \begin{pmatrix} 2 & -1 \\ 4 & m \end{pmatrix}$ là đơn ánh.

Câu 7 (1,5đ). Tìm m để tồn tại ma trận X sao cho $\begin{pmatrix} -2 & 1 & -3 \\ 1 & 0 & 5 \\ -1 & 2 & -1 \\ 0 & 1 & 3 \end{pmatrix} X = \begin{pmatrix} -6 \\ 6 \\ m \\ 2 \end{pmatrix}$

Câu 8(1đ). Cho $A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 3 \\ 0 & 1 & 1 \end{pmatrix}$. Tìm $\lambda \in \mathbb{R}$ sao cho det $(A - \lambda E) = 0$, trong đó E là ma trận đơn vị cấp 3.

Câu 9 (1đ). Cho A, B là 2 ma trận vuông cùng câp thỏa mãn: $A^{2019} = 0$ và AB = A + B. Chứng minh rằng det(B) = 0.

ĐỀ THI GIỮA KỲ MÔN ĐẠI SỐ- Học kì 20191

MÃ HP: MI 1141, Nhóm 1, Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi của sinh viên

Câu 1(1đ). Mệnh đề " Hạng của ma trận $A = \begin{pmatrix} 1 & -3 \\ -2 & 6 \end{pmatrix}$ bằng 2 nên phương trình $x^2 - 3x + 2 = 0$ vô nghiêm " đúng hay sai? Tai sao?

Câu 2(1đ). Cho 3 tập hợp A, B, C khác tập rỗng. Chứng minh rằng

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Câu 3(1đ). Cho
$$z = \frac{\sqrt{2} - i\sqrt{2}}{2}$$
. Tính giá trị, $S = z^{2019} + (\bar{z})^{2019}$

Câu 4(1,5đ). Tìm ma trận X sao cho

$$X \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix} - 3 \begin{pmatrix} 0 & 2 \\ -4 & 1 \\ 3 & -2 \end{pmatrix} = 2 \begin{pmatrix} 1 & 3 \\ 5 & 1 \\ -3 & 1 \end{pmatrix}$$

Câu 5(1đ). Cho ánh xạ $f: \mathbb{C} \to \mathbb{C}: f(z) = 2z^4 + 1$. Tìm $f^{-1}(\{i\sqrt{3}\})$.

Câu 6(1,5đ). Cho ma trận $A = \begin{pmatrix} 1 & 0 & -1 & m \\ 1 & -1 & 3 & 5 \\ 0 & -1 & 4 & 3 \end{pmatrix}$ Tìm m để r(A) = 3

Câu 7(1đ). Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^2 + y^2 - 2x + 4y - 1$ và $A = [-1;1] \times [0;2]$. Tìm f(A)

Câu 8(1đ). Tìm m để phương trình ma trận sau có vô số nghiệm

$$\begin{pmatrix} 1 & 2 & m \\ 2 & 7 & 2m+1 \\ 3 & 9 & 4m \end{pmatrix} X = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

Câu 9(1đ). Cho $B = (b_{ij})_{7\times 7}$ thỏa mãn $b_{ij} + b_{ji} = 0; i, j = \overline{1,7}$. Chứng minh rằng hệ phương trình

$$\sum_{i=1}^{7} b_{ij} x_j = 0, i = \overline{1,7} \text{ có nghiệm không tầm thường}$$

ĐỀ THI GIỮA KỲ MÔN ĐẠI SỐ- Học kì 20191

MÃ HP: MI 1142, Nhóm 2, Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi của sinh viên

Câu 1. Cho $A = \{x \in \mathbb{R}: f(x) = 0\}$ và $B = \{x \in \mathbb{R}: g(x) = 0\}$. với f(x) và g(x) là các hàm số xác định trên \mathbb{R} . Biểu diễn tập nghiệm của phương trình $\frac{f^{2019}(x)}{2019g(x)} = 0$ qua A,B.

Câu 2. Cho ánh xạ: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 3x$ và tập $A = \left\{ x \in \mathbb{R}; \frac{x-1}{2-x} \ge 0 \right\}$. Xác định f(A)

Câu 3. Giải phương trình trên $\mathbb{C}: z^2 - (3-i)z + 4 - 3i = 0$

Câu 4. Cho $A = \begin{bmatrix} -2 & 2 & 0 \\ 0 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$ và đa thức $P(x) = x^2 + 4x + 4$. Tính P(A)

Câu 5. Tìm ma trận X thỏa mãn: $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} X = 2 \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}^T + X$ với A^T là ma trận chuyển vị của A.

Câu 6. Tìm m để ma trận $A = \begin{bmatrix} m+1 & m & 5 \\ 1 & m & 3-m \\ m & 0 & m+1 \end{bmatrix}$ không suy biến.

Câu 7. Giải hệ $\begin{cases} x+y-2z=1\\ 2x+z=3 \text{ bằng phương pháp Gauss.} \\ 3x+y-z=4 \end{cases}$

Câu 8. Tìm số nguyên m lớn nhất sao cho ánh xạ $f:[m,2] \rightarrow [0,4]; f(x) = x^2$ là một toàn ánh nhưng không là đơn ánh.

Câu 9. Cho A,B là ma trận thực, vuông cấp 2019 thỏa mãn:

$$AB+10A+2019B=0$$

Chứng minh rằng: AB=BA

ĐỀ THI GIỮA KỲ MÔN ĐẠI SỐ- Học kì 20183

MÃ HP: MI 1142, Nhóm 2, Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi của sinh viên

Câu 1(1đ). Cho các tập hợp con của \mathbb{R} là A = (1;5]; B = [m-2;m). Tìm m để $B \subset A$

Câu 2(1,5đ). Tìm các số phức z thỏa mãn $z^2 - (3+5i)z - 16+11i = 0$ trong đó i là đơn vị ảo.

Câu 3 (1,5đ). Cho ma trận $A = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$ khi đó $A^5 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Tính a+c

Câu 4 (1đ). Giải hệ phương trình $\begin{cases} x_1 - x_2 + x_3 + x_4 = 0 \\ 2x_1 - x_2 + 3x_3 - 2x_4 = 0 \\ -x_1 + x_2 - 3x_3 + 2x_4 = 0 \end{cases}$

Câu 5 (1,5đ). Giải phương trình ma trận $\begin{bmatrix} 1 & -2 & 2 \\ 0 & -1 & 1 \\ 2 & -4 & 3 \end{bmatrix} X = \begin{bmatrix} 2 & -1 \\ 1 & 3 \\ 3 & 1 \end{bmatrix}$

Câu 6 (1đ). Tìm điều kiện của tham số m để hạng của ma trận $\begin{bmatrix} m & 1 & 3 \\ 1 & -2 & m \\ 3 & 1 & 3 \end{bmatrix}$ bé nhất

Câu 7(1,5đ). Cho ánh xạ: $f[0;3] \rightarrow [1;5]$ xác định bởi $f(x) = x^2 - 2x + 2$. Ánh xạ trên có phải là đơn ánh, toàn ánh không? Vì sao?

Câu 8 (1đ). Cho các số phức $\varepsilon_k = \cos \frac{k2\pi}{2019} + i \sin \frac{k2\pi}{2019}$ với k=0;1;...;2018

Tính $A = (2\varepsilon_0 + 1)(2\varepsilon_1 + 1)(2\varepsilon_2 + 1)...(2\varepsilon_{2018} + 1)$

ĐỀ THI GIỮA KỲ MÔN ĐẠI SỐ- Học kì 20181

MÃ HP: MI 1141, Nhóm 1. Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi của sinh viên

Câu 1(1đ). Cho ba mệnh đề p,q,r. Hỏi hai mệnh đề $(p \wedge q) \rightarrow r$ và $(p \rightarrow r) \wedge (q \rightarrow r)$ có tương đương logic không? Tại sao?

Câu 2(1đ). Ánh xạ $f: \mathbb{R} \to \mathbb{R}^2$ $f(x) = (x^2 - 4; x^3 + 1)$ là đơn ánh không? Tại sao?

Câu 3 (1,5 \bar{d}) Tìm $z \in \mathbb{C}$ sao cho:

$$1 + (z+2i) + (z+2i)^{2} + (z+2i)^{3} + (z+2i)^{4} = 0$$

Câu 4 (1,5đ). Tìm m để hệ sau có vô số nghiệm:

$$\begin{cases} x + 2y + mz = -1 \\ 2x + 7y + (2m+1)z = 2 \\ 3x + 9y + 4mz = 2m - 1 \end{cases}$$

Câu 5 (1,5đ). Tìm ma trận *X* thỏa mãn: $X \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 6 & 2 & -7 \\ 15 & 2 & -13 \end{pmatrix}$

Câu 6(1,5đ). Cho ánh xạ: $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x,y,z) \mapsto (2x-y+z,x-z,x+my)$

Tìm m để f là toàn ánh.

Câu 7(1đ). Cho ma trận A khả nghịch và $\lambda \in \mathbb{R}$ thỏa mãn $\det(A - \lambda E) = 0$

Trong đó E là ma trận đơn vị. Chứng minh rằng $\det \left(A^{-1} - \frac{1}{\lambda} E \right) = 0$

Câu 8(1đ). Tính tổng:

$$S = C_{2018}^0 - 3.C_{2018}^2 + 3^2 C_{2018}^4 - 3^3.C_{2018}^6 + \dots - 3^{1009}.C_{2018}^{2018}$$

ĐỀ THI GIỮA KỲ MÔN ĐẠI SỐ- Học kì 20181

MÃ HP: MI 1141, Nhóm 1. Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi của sinh viên

Câu 1(1,5đ). Cho 3 mệnh đề p,q,r. Biết $p \to q$ là mệnh đề đúng. Hỏi mệnh đề $(p \lor r) \to (q \lor r)$ đúng hay sai? Tại sao?

Câu 2 (1đ). Ánh xạ $f: \mathbb{R} \to \mathbb{R}^2$, f(x) = (2x+1; x-3) là toàn ánh không? Tại sao?

Câu 3(1,5đ). Cho $z_n = \left(\frac{1+i\sqrt{3}}{\sqrt{3}+i}\right)^n$, $n \in \mathbb{N}$. Tìm n nhỏ nhất để: $\operatorname{Re}(z_n) = 0$

Câu 4 (1,5đ). Tìm m để hạng ma trận $A = \begin{pmatrix} 1 & m & -1 & 2 \\ 2 & -1 & m & 5 \\ 1 & 10 & -6 & 1 \end{pmatrix}$ nhỏ nhất

Câu 5 (1,5đ). Tìm λ để tồn tại ma trận X thỏa mãn:

$$\begin{pmatrix} 1 & 1 & -2 \\ 2 & -1 & 1 \\ 4 & 1 & \lambda \end{pmatrix} X = \begin{pmatrix} 0 \\ 2 \\ \lambda + 5 \end{pmatrix}$$

Câu 6 (1đ). Cho ánh xạ $f: \mathbb{C} \to \mathbb{C}; f(z) = z^5 + \sqrt{3} f^{-1}(\{i\})$.

Câu 7(1đ). Cho ma trận A và $\lambda \in \mathbb{R}$ thỏa mãn $\det(A - \lambda E) = 0$, trong đó E là ma trận đơn vị. Chứng minh rằng:

$$\det[A^2 + 2A - (\lambda^2 + 2\lambda)E] = 0$$

Câu 8 (1đ). Cho ma trận $A \neq 0$ và tồn tại $n \in \mathbb{N}$, $n \geq 2$ sao cho $A^n = 0$. Chứng minh rằng $\det(A - E) \neq 0$, trong đó E là ma trận đơn vị.

ĐỀ THI MÔN ĐẠI SỐ GIỮA KÌ 20181

Mã số: MI 1142 Nhóm ngành 2, Thời gian: 60 phút

Câu 1. Trong \mathbb{R}^2 cho các tập con $A = \{(x,y) \in \mathbb{R}^2 | x+y=4\}, B = \{(x,y) \in \mathbb{R}^2 | x^2-y=8\}$. Xác dịnh tập hợp $A \cap B$.

Câu 2. Cho ánh xạ $f:[3;\infty) \to \mathbb{R}$ xác định bởi $f(x)=x^2-6x+8$. Xét xem f là có đơn ánh không? Tại sao?

Câu 3. Xét ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi f(x, y) = (x+2y; 2x-y).

Cho $A = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 4 \}$. Xác định f(A).

Câu 4. Tìm nghiệm phức của phương trình: $(z+i)^4 = (2z-i)^4$.

Câu 5. Cho các ma trận $A = \begin{bmatrix} 2 & -3 \\ -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 2 & -8 \\ -3 & -2 & 15 \end{bmatrix}$. Tìm ma trận X sao cho $AX = B^T$, với B^T là chuyển vị của B.

Câu 6. Biện luận theo a, b hạng của ma trận $A = \begin{bmatrix} 1 & 1 & 2 & b \\ 2 & 1 & -1 & 2 \\ 4 & 3 & a & 5 \end{bmatrix}$.

Câu 7. Xác định m để hệ phương trình vô số nghiệm: $\begin{cases} mx + y + z = 0 \\ 3x - y + 2z = 0 \\ 7x + y + 2mz = 0 \end{cases}$

Câu 8. Giải hệ phương trình: $\begin{cases} x_1 + x_2 + x_4 = 3 \\ x_1 - 2x_3 + x_4 = 5 \\ x_2 + x_3 + 2x_4 = 3 \\ 3x_1 + x_2 - 3x_3 + x_4 = 8 \end{cases}.$

Câu 9. Biện luận số nghiệm của hệ phương trình theo $a, b: \begin{cases} x+2y+z=2\\ -x+ay+2z=1. \end{cases}$ $\begin{cases} x+2y+z=2\\ x+5y+4z=b \end{cases}$

Câu 10. Cho A là ma trận vuông thỏa mãn $A^3 = O$ với O là ma trận không.

ĐỀ THI GIỮA KÌ MÔN ĐAI SỐ (MI 1141) – HOC KÌ 20171

Thời gian: 60 phút **Khóa: K62 (Nhóm 1)**

Chú ý:

- Thí sinh không được sử dụng tài liệu.

- Giám thị phải kí xác nhận số đề vào bài thi.

Câu 1. Cho A, B, C là các tập hợp bất kì. Chứng minh rằng: $(A \setminus B) \cap C = (A \cap C) \setminus B$.

Câu 2. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 3x + 2$. Xác định $f^{-1}(0,2)$.

Câu 3. Giải phương trình trên \mathbb{C} : $iz^2 - (1+8i)z + 7 + 17i = 0$.

Câu 4. Tập các ma trận $W = \left\{ A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} | a, b, c \in \mathbf{R} \right\}$ với phép cộng ma trận có lập thành một nhóm không? Vì sao?

Câu 5. Tìm ma trận X thỏa mãn $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} X - 2 \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}^{t} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Câu 6. Tìm a để hệ $\begin{cases} (a+5)x+3y+(2a+1)z=0\\ ax+(a-1)y+4z=0 \end{cases}$ có nghiệm không tầm thường. (a+5)x+(a+2)y+5z=0

Câu 7. Giải hệ phương trình sau bằng phương pháp Gauss: $\begin{cases} x+2y-z+3t=12\\ 2x+5y-z+11t=49\\ 3x+6y-4z+13t=49\\ x+2y-2z+9t=33 \end{cases}$

Câu 8. Cho các mệnh đề A, B và C thỏa mãn $(A \wedge C) \rightarrow (B \wedge C)$ và $(A \vee C) \rightarrow (B \vee C)$ là các mệnh đề đúng. Chứng minh rằng $A \rightarrow B$ là mệnh đề đúng.

Câu 9. Cho ánh xạ $f:\mathbb{R}^2\to\mathbb{R}^2$, xác định bởi $f(x;y)=(x^2-y;x+y)$. Ánh xạ f có là đơn ánh, toàn ánh không? Vì sao?

Câu 10. Cho ma trân thực A vuông cấp $n \ge 2$ sao cho tổng các phần tử trên đường chéo chính của ma trận AA^T bằng 0. Chứng minh rằng A là ma trận không.

ĐỀ THI GIỮA KÌ MÔN ĐẠI SỐ (MI 1141) – HỌC KÌ 20171

Khóa: K62 (Nhóm 1) Thời gian: 60 phút

Chú ý:

- Thí sinh không được sử dụng tài liệu.

- Giám thị phải kí xác nhận số đề vào bài thi.

Câu 1. Cho p, q là các mệnh đề. Chứng minh mệnh đề $\left[q \land \left(q \lor p\right)\right] \rightarrow p$ là luôn đúng.

Câu 2. Cho A, B là các tập hợp bất kì. Chứng minh rằng: $A \setminus (A \cap B) = A \setminus B$.

Câu 3. Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}^2$, xác định bởi f(x; y) = (x - y; x + y). Tính f(A) với $A = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$.

Câu 4. Tìm số phức z sao cho: $z^3 + 2i|z|^2 = 0$.

Câu 5. Cho $A = \begin{bmatrix} 0 & 1 \\ 2 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ -1 & 0 \\ 3 & -1 \end{bmatrix}$. Tîm X thỏa mãn $B - 3X = XA^T$.

Câu 6. Tìm m để hệ $\begin{cases} x_1 + 2x_2 + mx_3 + (m+1)x_4 = 0 \\ 2x_1 + (m+2)x_2 + (2m+1)x_3 + (2m+4)x_4 = 0 \text{ có vô số nghiệm phụ thuộc 2 tham số.} \\ x_1 + (4-m)x_2 + (m-1)x_3 + (2m-4)x_4 = 0 \end{cases}$

Câu 7. Giải hệ phương trình: $\begin{cases} x-2y+z=1\\ 2x-3y+z=4\\ 3x-5y+2z=5 \end{cases}$

Câu 8. Cho z_1 , z_2 là hai nghiệm phức của phương trình $z^2 - z + ai = 0$ với a là một số thực và i là đơn vị ảo. Tìm a biết $\left|z_1^2 - z_2^2\right| = 1$.

Câu 9. Cho ánh xạ $f:[m;2] \to \mathbb{R}$, $f(x) = x^3 - 3x^2 - 9x + 1$. Xác định m để f là một đơn ánh.

Câu 10. Cho các ma trận thực A, B vuông cấp n, $(n \ge 2)$ thỏa mãn AB = BA. Chứng minh rằng: $\det(A^2 + B^2) \ge 0$.

ĐỀ THI GIỮA KÌ MÔN ĐAI SỐ (MI 1142) – HOC KÌ 20171

Khóa: K62 (Nhóm 2) Thời gian: 60 phút

Chú ý:

- Thí sinh không được sử dụng tài liệu.

- Giám thị phải kí xác nhận số đề vào bài thi.

Câu 1. (2 điểm) Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ với $f(x) = x^6 + 2x^3 + 4$, $\forall x \in \mathbb{R}$.

a) Tính $f(\mathbb{R})$.

b) Chứng minh rằng ánh xạ này không toàn ánh.

Câu 2. (1 điểm) Giải phương trình trong tập số phức: $(3z+4)^9 = 1+i$.

Câu 3. (2 điểm) Thực hiện phép tính sau hoặc nêu lý do tại sao phép tính không thực hiện được:

a)
$$\begin{pmatrix} 1 & 2 & -2 & 3 \\ 2 & -1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 3 \\ -1 & 4 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -3 \\ 2 & 5 \\ 4 & -2 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 0 & -2 & 4 \\ 1 & 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 3 & 0 \\ -2 & 1 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 5 & -2 \\ 4 & 9 \end{pmatrix}$$

Câu 4. (2 điểm) Giải các phương trình:

a)
$$\begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix} X - \begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 \\ -3 & 0 & 1 \\ 4 & 1 & 0 \end{pmatrix}$$
 b) $\begin{vmatrix} 3-x & 2 & 2 \\ 2 & 3-x & 2 \\ 2 & 2 & 3-x \end{vmatrix} = 0$.

b)
$$\begin{vmatrix} 3-x & 2 & 2\\ 2 & 3-x & 2\\ 2 & 2 & 3-x \end{vmatrix} = 0$$

Câu 5. (2 điểm) Cho hệ phương trình: $\begin{cases} x_1 + 2x_2 + mx_3 + x_4 = -1 \\ 2x_1 + 5x_2 - 2x_3 + x_4 = -2 \end{cases}$

a) Với m = -1, hãy tính hạng của ma trận bổ sung của hệ và giải hệ phương trình này.

b) Giải và biên luân hệ phương trình trên theo m.

Câu 6. (1 điểm) Cho n là số nguyên dương sao cho tồn tại hai ma trận A, B vuông cấp n, khả nghịch và thỏa mãn AB + BA = O. Chứng minh rằng $n \neq 2017$.

ĐỀ THI GIỮA KÌ MÔN ĐẠI SỐ – HỌC KÌ 20173

Mã môn: MI 1141 – Nhóm ngành I. Thời gian: 60 phút

Chú ý:

- Thí sinh không được sử dụng tài liệu.
- Giám thị phải kí xác nhận số đề vào bài thi.

Câu 1. (1 điểm) Khẳng định sau đây là đúng hay sai? Giải thích!

"Nếu A, B, C là các tập hợp thỏa mãn $A \cap B = A \cap C$ thì B = C."

Câu 2. ($l \, di e^m$) Cho N là tập hợp các số tự nhiên, ánh xạ $f: N \to N$, f(x) = 2x + 1 có là đơn ánh không? Có là toàn ánh không? Tại sao?

Câu 3. (1,5 điểm)

- a) Giải phương trình sau trong trường số phức: $(z-i)^4 = -7 + 24i$.
- b) Hãy biểu diễn các nghiệm của phương trình trên trong mặt phẳng phức.

Câu 4. (1,5 điểm) Cho các ma trận $A = \begin{pmatrix} 1 & 2 & -3 \\ -1 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix}$, $C = \begin{pmatrix} -1 & 0 \\ -2 & 1 \\ 4 & 1 \end{pmatrix}$. Phép tính nào sau đây

thực hiên được?

(A+C); $B(A+C^{t})$; $C^{t}B$. Hãy thực hiện phép tính đó.

Câu 5. ($l \ \vec{diem}$) Giải phương trình ma trận: $\left(\frac{1}{2}X^t - 2E\right)^{-1} = 2\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$, với E là ma trận đơn vị cấp 2.

Câu 6. (1,5 điểm) Tìm số thực a để ma trận sau có hạng bé nhất: $\begin{pmatrix} 2 & 2-a & 4 & a^2 \\ 1 & 1-a & 2 & 0 \\ 3 & 3-2a & 8-a & 4 \end{pmatrix}$.

Câu 7. (1,5 diễm) Tìm mối liên hệ ràng buộc giữa a,b,c để hệ phương trình sau có ít nhất một nghiệm:

$$\begin{cases} x_1 + 3x_2 + x_3 = a \\ x_1 + 2x_2 - x_3 = -b \\ 3x_1 + 7x_2 - x_3 = c \end{cases}$$

Câu 8. (1 điểm) Cho tập hợp $G \neq \emptyset$ và G cùng với phép toán hai ngôi * là một nhóm thỏa mãn $x * x = e, \forall x \in G, e \square$ phần tử trung hòa của G. Hỏi (G, *) có phải là một nhóm giao hoán không? Vì sao?

ĐỀ THI GIỮA KÌ MÔN ĐẠI SỐ – HỌC KÌ 20161

Khóa: 61 Thời gian: 60 phút

Chú ý:

- Thí sinh không được sử dụng tài liệu.
- Giám thị phải kí xác nhận số đề vào bài thi.

Câu 1. Cho p, q là các mệnh đề. Các mệnh đề $(\overline{p} \rightarrow \overline{q}) \land q$ và $p \land q$ có tương đương logic không? Tại sao?

Câu 2. Cho A, B, C là các tập hợp bất kì. Chứng minh rằng: $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$.

Câu 3. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - x$. Xác định a,b biết $f^{-1}(\{a\}) = \{0;-1;b\}$.

Câu 4. Giải phương trình phức: $(1+z)^3(1+i)=4$, với i là đơn vị ảo.

Câu 5. Tìm ma trận X thỏa mãn: $X\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = 2X - 2\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}^T$.

Câu 6. Cho ma trận $A = \begin{bmatrix} 1 & m+1 & 2 & m \\ -1 & m & m & 2-m \\ 2 & 2m+3 & m+6 & 3m \end{bmatrix}$. Tìm m để r(A) = 2.

Câu 7. Tìm m để hệ $\begin{cases} x - 2y + 2z = m \\ 2x + (m-3)y + 7z = m^2 \end{cases}$ có nghiệm duy nhất. $x + (m-1)y + (m+5)z = 3m^3$

Câu 8. Phân tích đa thức $p(x) = x^4 - 2x^3 + 5x^2 - 2x + 4$ thành tích của 2 đa thức bậc 2 với hệ số thực biết p(-i) = 0.

Câu 9. Cho $\varepsilon_k = \cos \frac{k2\pi}{2016} + i \sin \frac{k2\pi}{2016}$, k = 0, 1, ..., 2015. Tính $S = \sum_{k=0}^{2015} \varepsilon_k^{2017}$.

Câu 10. Cho A, B là hai ma trận vuông cấp $n \ge 2$ sao cho AB + A + B = 0. Chứng minh rằng nếu A khả nghịch thì B khả nghịch.

ĐỀ THI GIỮA KÌ MÔN ĐAI SỐ - HỌC KÌ 20161

Khóa: 61 Thời gian: 60 phút

Chú ý:

- Thí sinh không được sử dụng tài liệu.
- Giám thị phải kí xác nhận số đề vào bài thi.

Câu 1. Cho p, q, r là các mệnh đề. Các mệnh đề $(p \rightarrow q) \rightarrow r$ và $p \rightarrow (q \rightarrow r)$ có tương đương logic không? Tại sao?

Câu 2. Cho ánh xạ $f: \mathbb{R}\setminus\{2\} \to \mathbb{R}$, $f(x) = \frac{x}{x-2}$. Xác định $f^{-1}([0;1])$.

Câu 3. Giả sử f(x), g(x) là các hàm số xác định trên \mathbb{R} . Đặt $A = \{x \in \mathbb{R} | f(x) = 0\}, B =$ $\{x \in \mathbb{R} | g(x) = 0\}$. Biểu diễn qua A, B tập nghiệm của phương trình sau: $\frac{f(x).g(x)}{f(x)} = 0$.

Câu 4. Giải phương trình phức $z^4 - (3-i)z^2 - 3i = 0$, với *i* là đơn vị ảo.

Câu 5. Cho $A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 4 & 0 \end{bmatrix}$. Tìm X thỏa mãn $B^T - XA = 2X$.

Câu 6. Tìm x để $\begin{vmatrix} 1 & -2 & 4 \\ 1 & x & x^2 \\ 1 & 3 & 9 \end{vmatrix} = 0$.

Câu 7. Giải hệ sau bằng phương pháp Gauss: $\begin{cases} -x - 2y - 4t = -9\\ 2x + 4y - z + 7t = 15\\ x + 4y + 4z + 6t = 15\\ x - 2y - 9z + 2t = 0 \end{cases}$

Câu 8. Cho A, B, C là các tập hợp bất kì. Chứng minh rằng nếu $(A \setminus C) \subset (B \setminus C)$ và $(A \cap C) \subset (B \cap C)$ thì $A \subset B$.

Câu 9. Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+y,x+ay). Xác định tất cả các giá trị của a để f là một song ánh.

Câu 10. Cho $A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$. Tính $S = A + A^2 + ... + A^{2016}$