Transformations Revisited

Last time

Transformations were applied using google sheets and pre written python code

This time

new transformations in python with numpy

List of example transformations / computations

- given starting array, x
 - o mean, x
 - for every observation, i
 - error, x_i X̄
 - squared error, $(x_i \bar{x})^2$
 - Sum over all squared error
 - Sum over all squared error normalized by number of observations 1

Underlying math: mean

array:
$$x = 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9$$

$$\bar{x} = \frac{3+4+4+5+5+5+6+6+6+7+7+8+9}{13}$$

$$\bar{x} = 5.8$$

Underlying math: error and squared error

1/27			
х	\bar{x}	$(x_i - \bar{x})$	$(x_i - \bar{x})^2$
3	5.8	-2.8	7.84
4	5.8	-1.8	3.24
4	5.8	-1.8	3.24
5	5.8	-0.8	0.64
5	5.8	-0.8	0.64
5	5.8	-0.8	0.64
6	5.8	0.2	0.04
6	5.8	0.2	0.04
6	5.8	0.2	0.04
7	5.8	1.2	1.44
7	5.8	1.2	1.44
8	5.8	2.2	4.84
9	5.8	3.2	10.24

Underlying math: sum over all squared error

$(x_i - \bar{x})^2$
34
24
24
54
54
54
)4
)4
)4
14
4
34
.24
8

Underlying math: normalization by num observations - 1

$$x = 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9$$

number observations = 13

number observations - 1 = 12

Sum = 34.32

34.32 / 12

```
import numpy as np
                # create numpy array with original data
Code
                 x = np.array([3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9])
                # find number of observations
                 n = np.size(x)
                # mean
                 xbar = np.sum(x) / n
                # error
                 error = x - xbar
                 # squared error
                 se = error**2
                 # sum of squared error over all observations
                 sse = np.sum(se)
                 # normalization by number observations - 1
                 result = sse/(n-1)
                 # look at the result
                 print(result)
                2.858974358974359
```

Benefit of code

The size of the original array does not matter in code!

But imagine how annoying it would be to deal with **10 million** rows in google sheets...

```
import numpy as np
# create numpy array with 10 million numbers
x = np.arange(10000000)
# find number of observations
n = np.size(x)
# mean
xbar = np.sum(x) / n
# error
error = x - xbar
# squared error
se = error**2
# sum of squared error over all observations
sse = np.sum(se)
# normalization by number observations - 1
result = sse/(n-1)
# look at the result
print(result)
8333334166666.48
```

Exercise

Copy in the code shown in these slides into spyder and explore all the variables created!

What is the value of:

- n
- xbar
- error
- se
- sse
- result

Change x and repeat the exploration

fill in your results here: https://forms.gle/CKWEnykPyyH3Xxch6