1 Rayleighův podíl (Rayleigh quotient)

Pro hermitovskou matici $A \in \mathbb{C}^{n \times n}$ a nenulový vektor $x \in \mathbb{C}^n$ definujeme Rayleighův podíl

$$R(A, x) = \frac{x^* A x}{x^* x}.$$

Úloha 1. Nechť $A \in \mathbb{C}^{n \times n}$ je hermitovská. Ukažte následující vlastnosti:

- (i) $R(\alpha A, \beta x) = \alpha R(A, x)$ pro každé $\alpha, \beta \in \mathbb{C}, \beta \neq 0$.
- (ii) $R(A \alpha I, x) = R(A, x) \alpha$ pro každé $\alpha \in \mathbb{C}$.
- (iii) Nechť $Av = \lambda v$ pro nějaký nenulový $v \in \mathbb{C}^n$. Potom $R(A, v) = \lambda$.
- (iv) Nechť λ_{\min} a λ_{\max} jsou nejmenší, respektive největší vlastní číslo matice A. Ukažte, že

$$R(A, x) \in [\lambda_{\min}, \lambda_{\max}] \quad \forall x \in \mathbb{C}^n.$$

Proč požadujeme, aby matice A byla hermitovská (a nestačí například diagonalizovatelná)?

(v) Nechť jsou vlastní čísla A seřazena sestupně a největší je jednonásobné, tedy

$$\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n$$
.

Nechť v_1 je vlastní vektor příslušný λ_1 . Ukažte, že

$$R(A, x) \in [\lambda_n, \lambda_2] \qquad \forall x \in v_1^{\perp}.$$

(vi)
$$R(A, x) = \underset{\mu \in \mathbb{R}}{\arg \min} ||(A - \mu I)x||^2$$
.

2 Mocninná metoda

Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice. Cílem mocninné metody je nalezení jednoho vlastního páru (vlastního čísla a vlastního vektoru) matice.

Nechť $A \in \mathbb{C}^{n \times n}$ je diagonalizovatelná matice (tj. má n lineárně nezávislých vlastních vektorů, které tvoří bázi prostoru \mathbb{C}^n),

$$A = SDS^{-1}.$$

kde pro $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ jsou vlastní čísla seřazena sestupně, tj.

$$|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|,$$

a matice $S = [s_1, \dots, s_n]$ je tvořena příslušnými normalizovanými vlastními vektory.

Pro jednoduchost předpokládejme, že λ_1 je dominantní vlastní číslo, tj. $|\lambda_1| > |\lambda_2|$ a v je nenulový "startovací" (počáteční) vektor. Mocninnou metodu pak můžeme zapsat jako Algoritmus 1.

Když chceme měřit rychlost konvergence, lze se dívat buď na chybu aproximace vlastního vektoru $||s_1 - v_k||$ nebo na chybu aproximace vlastního čísla $||\lambda_1 - \mu_k||$ nebo na reziduum aproximace $||Av_k - \mu_k v_k||$. V praxi ale nelze měřit ani jednu z chyb (nemáme k dispozici vlastní pár (λ_1, s_1) , o tom to celé je), takže se musíme spokojit s reziduem. Ale pro naše zjednodušené a ilustrativní příklady se můžeme dívat jak na chybu tak na reziduum.

Algoritmus 1 Mocninná metoda

```
Vstup: A, v
v_0 = v/\|v\|
for k = 1, \dots do
w = Av_{k-1}
v_k = w/\|w\|
\mu_k = v_k^* A v_k
end for
```

Úloha 2. Naprogramujte mocninnou metodu na základě Algoritmu 1 do předpřipraveného skriptu power_method.m a poté spusťte power_method_test.m pro vstupní data

$$A = \begin{bmatrix} 4 & & & \\ & 3 & & \\ & & 2 & \\ & & & 1 \end{bmatrix} \quad \text{a} \quad v = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}. \tag{1}$$

K čemu a jak rychle mocninná metoda konverguje? Odhadněte předpokládanou velikost chyby approximace vlastního vektoru $||s_1 - v_k||$ po 70 iteracích na základě analýzy konergence mocninné metody z přednášky a porovnejte s výsledky v MATLABu.

Úloha 3. V Úloze 2 naše aproximace v_k dominantního vlastního vektoru s_1 dosáhla chyby $\approx 1.8 \times 10^{-9}$ během prvních 70 iterací. Změňte matici A tak, aby byla chyba $||s_1 - v_k||$ na stejné úrovni již po 35 iteracích (se stejným počátečním vektorem $v_0 = [1, 1, 1, 1]^T$). [Hint]: Zkuste nejprve změnit jen druhý diagonální prvek A z (1). Pro pomocný výpočet se může hodit MATLAB funkce nthroot(x,n).

Úloha 4. Mějme pět diagonálních matic

$$A_{1} = \begin{bmatrix} 4 & & & \\ & 4 & & \\ & & 2 & \\ & & & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} 4 & & & \\ & 3.9 & & \\ & & & 3.8 & \\ & & & & 3.7 \end{bmatrix}, A_{3} = \begin{bmatrix} -4 & & & \\ & 3 & & \\ & & 2 & \\ & & & 1 \end{bmatrix},$$

$$A_{4} = \begin{bmatrix} 4 & & & \\ & -3 & & \\ & & 2 & \\ & & & 1 \end{bmatrix}, A_{5} = \begin{bmatrix} 4 & & \\ & 3.9 & & \\ & & & 2 & \\ & & & & 1 \end{bmatrix},$$

na které použijeme mocninou metodu (Algoritmus 1) s počátečním vektorem $v_0 = [1, 1, 1, 1]^T$. Rozmyslete si jak budou vypadat grafy konvergence mocninné metody pro složky vektoru $v_k \to s_1$ a chyba $||s_1 - v_k||$. Na základě těchto úvah přiřaďte matice A_1, \ldots, A_5 k jednotlivým řádkům Obrázku 1.

Úloha 5.

- 1. Zkontrolujte si řešení Úlohy 3 pomocí scriptu power_method_test.m.
- 2. [Navíc]: Na druhém řádku Obrázku 1 chyba i reziduum konvergují ve dvou různých ale stálých režimech nejprve rychleji (prvních cca pět iterací) a posléze výrazně pomaleji (od desáté iterace dále). Dokážete vysvětlit proč tomu tak je pro chybu $||s_1 v_k||$? Zkonstruujte příklady, kde je tento rozdíl ještě více extrémní (tj. rozdíl mezi rychlostí konvergence je větší).

Úloha 6.

1. Pro matici A v (1) najděte nový počáteční vektor \tilde{v}_0 tak aby mocninná metoda konvergovala až k druhému dominantnímu vlastnímu páru, tj. $v_k \to s_2$.

Obrázek 1: Aproximace dominantního vlastního vektoru s_1 pomocí mocninné metody pro pět různých diagonálních matic A_1, \ldots, A_5 s použitím počátečního vektoru $v_0 = [1, 1, 1, 1]^T$. Ve čtvrtém řádku v prvním sloupci jsou složky $(v_k)_1$ a $(v_k)_2$ prakticky totožné, takže se na grafu překrývají a jsou vidět pouze $(v_k)_2$.

Obrázek 2: Aproximace dominantního vlastního vektoru s_1 pomocí mocninné metody.

- 2. Na základě v₀ a ṽ₀ najděte třetí počáteční vektor v̂₀, pro který mocninná metoda nejprve zdánlivě konverguje k s₂ (prvních deset iterací) ale nakonec zkonverguje k s₁ (po sedmdesáti iteracích).
 [Hint]: Víme-li jak najít počáteční vektor tak aby v_k → s₁ nebo naopak v_k → s₂, naším cílem se stává skloubit tyto dva jevy dohromady a tudíž je rozumné hledat v̂₀ jako nějakou vhodnou kombinaci v₀ a ṽ₀. Zkombinujme tento nápad s analýzou mocninné metody z přednášky.
- 3. [Navíc]: Najděte matici a počáteční vektor, pro které mocninná metoda konverguje kvalitativně podobně jako na Obrázku 2.

3 Inverzní iterace

Úloha 7. Nechť A je matice s vlastními čísly λ_i a odpovídajícími vlastními vektory s_i .

- 1. Nechť $\alpha \in \mathbb{C}$ a $(A \alpha I)$ je regulární. Ukažte, že vlastní čísla a vlastní vektory matice $(A \alpha I)^{-1}$ jsou rovny $(\lambda_j \alpha)^{-1}$ a s_j .
- 2. Zvolme $\alpha = 1.1$ a matici A jako v (1). K jakému vlastnímu páru bude konvergovat mocninná metoda pro matici $(A \alpha I)^{-1}$ a počáteční vektor $v_0 = [1, 1, 1, 1]^T$? Zobecněte pro libovolnou matici A a skalár $\alpha \in \mathbb{C}$, který nepatří do jejího spektra.

Úloha 8. [Navíc]: Pro danou matici A, skalár α a počáteční vektor v_0 naprogramujte v MATLABu funkci, která na základě Úlohy 7 iterativně aproximuje vlastní vektor s matice A odpovídající vlastnímu číslu λ matice A, které "je nejblíže α ", tj. pro které je $|\lambda - \alpha|$ minimální.

Tato metoda se jmenuje Inverzní iterace (inverse iteration).

Poznámka: Opakovaný výpočet $(A - \alpha I)^{-1}v_k$ v MATLABu buď řešte jako (A-alpha*eye(n))\v, nebo jedním LU-rozkladem matice a opakovaným řešením trojúhelníkových soustav.