

ALGORYTMY I STRUKTURY DANYCH

STRUKTURY DANYCH: GRAFY ALGORYTM: DFS

PRZESZUKIWANIE GRAFU W GŁĄB (DEPTH-FIRST-SEARCH, DFS)

Wejście: G = (V, E) – graf nieskierowany lub skierowany.

Wyjście: *las drzew przeszukiwań*, drzewo zawiera *osiągalne* wierzchołki; wierzchołkom są przypisane etykiety czasowe.

Opis: przy przeszukiwaniu w głąb są badane krawędzie ostatnio odwiedzonego wierzchołka v, z którego jeszcze wychodzą niezbadane krawędzie. Gdy wszystkie krawędzie opuszczające wierzchołek v są zbadane, przeszukiwanie "wraca" do wierzchołka, z którego v został odwiedzony. Proces ten jest kontynuowany dopóty, dopóki wszystkie wierzchołki osiągalne z początkowego wierzchołka źródłowego nie zostaną odwiedzone. Jeśli pozostaną jakieś nieodwiedzone wierzchołki, to jeden z takich wierzchołków wybiera się jako nowe źródło i przeszukiwanie jest powtarzane z tego źródła. Cały proces powtarza się, aż wszystkie wierzchołki w grafie nie zostaną odwiedzone.

Każdemu wierzchołkowi *v* są przypisywane dwie **etykiety czasowe**:

- pierwsza etykieta *v. time_*1 numer kroku obliczeń (*time*), w którym *v* jest odwiedzany po raz pierwszy;
- druga etykieta, *v. time*_2, jest numerem kroku, w którym kończy się badanie listy sąsiedztwa wierzchołka *v*.

Zadanie 1. Wykonaj przeszukiwanie w głąb na poniższych grafach; kiedy pojawia się wybór wierzchołka, zawsze użyj tego, który jest pierwszy w kolejności alfabetycznej. Przypisz do każdego wierzchołka etykiety czasowe. (*Pliki do wykorzystania*: *zadania_DSF.xlsx*, arkusz *zadanie_1*).

ALGORYTM (rekurencyjny, z powrotami):

time = 0

DFS(G)

- 1 **for** każdy wierzchołek $u \in V$:
- 2 u.p = None
- 3 u.visited = False
- 4 **for** każdy wierzchołek $u \in V$:
- 5 **if** u.visited == False
- 6 **DFS_Explore**(u)

DFS_Explore(*u*)

- 1 time = time + 1
- 2 $u.time_1 = time$
- $3 \quad u.visited = True$

6

- 4 **for** każda krawędź $(u, v) \in E$:
- 5 **if** v.visited == False:
 - v.p = u
- 7 $\mathbf{DFS}_{\mathbf{Explore}}(v)$
- 8 time = time + 1
- 9 $u.time_2 = time$

