

M15 142103012

classmate

At node A,

$$V_{R(S)} + (V_{R(S)} - V_{S})SL = 0$$

$$R \qquad (L_{S^2} + 1)$$

much analysis:

a) By voltage division:

Votage across R is,

MIS 142103012

Q2)	Find the transfer function of RLC curcuit
	(VC(5)) V(5)
	(V(5) /
	Lagar MM
	V(+)(±) + (= 7
	vdt)
	mm R
	E Laplace equation
a)	By mesh analysis: V= IRecy
	$V(s) = T(s) \times \left(\frac{1}{2} + R + \frac{1}{2} \right) = \text{Now},$
	VL(5) = I(5) X LS
	Using (1) 1 k V L (5) = V(5) x L 5 V C5
	V (5) = L5 V (5) L5 + R + 1
	V (5) L5 + R + 1

b) By nodal analysis

At pode A, $V_{L}(S) + V_{L}(S) - V(S) = 0$ $V_{L}(S) + V_{L}(S) = 0$

=> $\frac{V_{2}(s)}{V_{1}(s)} - \frac{S^{2}(s)}{R(s+1+Ls^{2}(s))} = \frac{Ls}{Ls+R+1}$

() By Voltage division:

Votlage across List

VL(5) = V(5) LS W(5) = 15 + R + 1/5(

VL(5) - 15 V(5) LS+R+1 SC

In mesh
$$- (D)$$
 $R_1T_1 + I_1(S) - I_2(S) = V(S) - (D)$
 SL
 (S)

In mesh - 3,

$$L_{5}I_{2}(5) + R_{2}I_{2}(5) + I_{2}(5) - I_{2}(5) = 0$$
(6)

On Solving

$$T_{2}(5) = (5)$$

V(5) $R_{1}S^{3}L^{2} + (R_{1}R_{2} + R_{1} + R_{2})(5 + L(S^{2})$