

FROM LAST DAY

• Anna Litical is doing the Plane Mirror Lab in physics class. She places a pin a distance of 4.9 cm from a plane mirror. How far behind the mirror can the image be expected to appear?

The image will be 4.9cm away!

TRY THIS

Work through the Law of Reflection Lab handout

THE LAW OF REFLECTION

- The angle the ray comes into the mirror with will be equal to the angle the ray leaves with
- $\Theta_i = \Theta_r$

PRACTICE

• In a physics lab, Ray Zuvlite arranges two mirrors with a right angle orientation as shown. Ray then directs a laser line at one of the mirrors. The light reflects off both mirrors as shown. If angle A is 38°, then what is the angle measure of angles B, C, and D?

RAY ZUVLITE ANSWER

- \bullet A and B must be equal because $\Theta_i = \Theta_r$
- $\ensuremath{\, \bullet \,}$ B and C add to 90° because of the right angle triangle
- C and * add to 90° because they are complimentary
- \bullet D and * are equal because $\Theta_i = \Theta_r$

TRY THIS

- Grab two plane mirrors, a protractor and an object
- Place the mirrors at 180°. Place the object in front of the mirror. How many images do you see?
- Place the mirrors at 90°. Place the object in front of the mirrors. How many images do you see?
- Keep moving the mirrors in until you see 4, images, then 5, then 6, then 7, and so on until you cannot reduce the angle anymore.

DESCRIBING THE IMAGE

- We can characterize the 4 key changes to an image using the acronym SALT
 - S is for SIZE (larger, same, smaller)
 - A is for ALTITUDE (upright, inverted)
 - L is for LOCATION (behind or in front of mirror)
 - T is for Type (real, virtual)
- Or you can use LOST**
 - Location, Orientation, Size and Type
 - ** You choose, you need 4 key pieces!!!

