#### 1

# Solution of Q9.3.21

### SUJAL GUPTA - EE22BTECH11052

It is known that 10% of certain articles manufactured are defective. What is probability that a random sample space of 12 such articles,9 are defective?

#### **Solution:**

| Parameter                 | Values           | Description                    |
|---------------------------|------------------|--------------------------------|
| n                         | 12               | Number of articles             |
| k                         | 9                | Number of defective articles   |
| p                         | 0.1              | Probability of being defective |
| X                         | $1 \le X \le 12$ | X defective elements out of 12 |
| Y                         | $1 \le Y \le 12$ | gaussian variable              |
| $\mu = np$                | 1.2              | mean                           |
| $\sigma = \sqrt{np(1-p)}$ | 1.039            | standard deviation             |

TABLE 0 TABLE 1

### 1) Binomial Distribution:

The X is the random variable, the pmf of X is given by

$$p_X(k) = {}^{n}C_k p^k (1 - p)^{n-k}$$
 (1)

We require Pr(X = 9). Since n = 12,

$$p_X(9) = 1.60379(10^{-7})$$
 (2)

## 2) Gaussian Distribution

Let Y be gaussian variable. Using central limit theorem, we can use the gaussian distribution function:

$$p_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad (x \in Y) \quad (3)$$

Using Normal distribution at X=9.

$$p_Y(9) = \frac{1}{\sqrt{2\pi \left(\frac{27}{25}\right)}} e^{-\frac{\left(x - \frac{6}{5}\right)^2}{2\left(\frac{27}{25}\right)}} \tag{4}$$

$$=\frac{1}{\sqrt{2\pi\left(\frac{27}{25}\right)}}e^{-\frac{169}{3}}\tag{5}$$

$$= 3.89010(10^{-9}) \tag{6}$$

#### 3) using Q function:

$$Y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$
 (7)



Fig. 3. Binomial-PMF and Gaussian-PDFof X

The CDF of Y:

$$F_{Y}(y) = \begin{cases} 1 - Q\left(\frac{y - \mu}{\sigma}\right), & y > \mu \\ Q\left(\frac{\mu - y}{\sigma}\right), & y < \mu \end{cases}$$
(8)

But,

$$\frac{Y - \mu}{\sigma} \sim \mathcal{N}(0, 1) \tag{9}$$

$$\implies F_Y(y) = 1 - Q\left(\frac{y - \mu}{\sigma}\right) \tag{10}$$

to include correction of 0.5,

$$p_Y(8.5 < Y < 9.5) = F_Y(9.5) - F_Y(8.5) \quad (11)$$

$$= Q\left(\frac{8.5 - \mu}{\sigma}\right) - Q\left(\frac{9.5 - \mu}{\sigma}\right)$$

$$= Q(7.02) - Q(7.98) \quad (13)$$

$$= 1.2798(10^{-12}) \quad (14)$$