UNIVERSIDAD NACIONAL DE TRUJILLO Facultad de Ciencias Físicas y Matemáticas Escuela Profesional de Informática

DISEÑO DE ALGORITMOS PARALELOS SOBRE LA ARQUITECTURA FOG COMPUTING PARA REDUCIR LA LATENCIA EN IoT

Nombre de autor(es):

Panana Rosales Andy Martín Valera Flores Cleiver

Nombre del Asesor:

Peralta Luján José Luis

Trujillo - La Libertad

2018

PROYECTO DE INVESTIGACIÓN PARA TRABAJO DE GRADUACIÓN

ESCUELA PROFESIONAL DE INFORMÁTICA

1. GENERALIDADES

El internet de las cosas(IoT) ha tenido gran acogimiento a lo largo de los años, durante los cuales la cantidad de dispositivos con conexión a internet superó a la de las personas alrededor del mundo. Con el avance de la tecnología, grandes cantidades de objetos físicos han sido conectados a la red generando lo que se denomina como "big data", un término que expresa una gran complejidad con la cual el IoT viene lidiando en los últimos años.

Esta situación se ve reflejada según cifras establecidas por grandes compañías relacionadas a este campo(entre ellas Cisco) las cuales pronostican un mayor crecimiento en cuanto a objetos conectados a internet en un futuro no muy lejano.

El Internet de las Cosas es un campo del cual se viene hablando desde hace varios años atrás y se busca lograr establecer las bases para darle el mejor soporte en tecnologías de comunicación, pero también se mencionan soluciones que antes eran muy eficientes y que actualmente están siendo delegadas, como por ejemplo, las redes 4G, las cuales en los últimos años están perdiendo su poder en cuanto a la conectividad de dispositivos IoT, y están viviendo la gran necesidad de evolucionar para abordar los nuevos problemas que aquejan a esta tendencia; además, si hablamos de soluciones que antes eran muy buenas, no podemos dejar de lado a Cloud Computing, que es por excelencia una de las soluciones más usadas en temas de IoT debido a su alto poder de cómputo, pero como no todo es perfecto en este mundo, frente al campo de IoT con un alto nivel de tráfico, Cloud Computing deja entrever una de sus peores falencias, la centralización, la cual la convierte en una solución no muy sofisticada para este campo.

Con esta problemática que aqueja a todo IoT nace Fog Computing, solución que viene a resolver el problema antes mencionado; Fog Computing plantea una arquitectura más distribuida y local, manejando un paradigma donde hay que aprovechar al máximo los dispositivos finales.

Para comenzar a dilucidar esta interrogante hay que ver primero el panorama actual del Internet de las Cosas el cual ha tenido grandes avances en los últimos años gracias a la constante mejora en el desarrollo en RFID, sensores inteligentes, tecnologías de comunicación y protocolos de Internet (Al Fuqaha et al., 2015; Borgia, 2014). Además, las mejoras en hardware y software de cómputo, en diversos dispositivos como los de sistemas integrados, de red, de visualización, de control, etc., han respaldado enormemente a IoT para crecer de manera lenta pero a la vez constante, logrando superar grandes expectativas y posicionarse como una gran tecnología emergente (Vyas et al., 2017).

Con el cálculo(operaciones matemáticas), la conectividad y el almacenamiento de datos cada vez más avanzados y universales, ha habido una explosión de soluciones de aplicación basadas en IoT en dominios diversificados desde la atención médica hasta la seguridad pública,

desde la programación de la línea de ensamblaje hasta la fabricación y otros dominios tecnológicos como el industrial y ciudades inteligentes (Borgia, 2014; Vyas et al., 2017).

IoT es una tecnología que está constantemente evolucionando gracias a la convergencia de otras como: comunicación inalámbrica, MEMS (sistemas microelectromecánicos), red inalámbrica de sensores, comunicación móvil, etc. (Vyas et al., 2017). Y en particular sobre la comunicación inalámbrica comenzamos a ver un nuevo horizonte para IoT, donde dejamos de tener problemas que no podían ser solucionados al emplear como comunicaciones de este tipo a las redes 4G y empezamos a ver con buenos ojos a la nueva y reciente mejora de dicha red, estamos hablando de las redes 5G, las cuales se espera que aporten a la expansión del Internet de las Cosas, ayudando a impulsar el funcionamiento de las redes celulares, la seguridad de IoT, los desafíos de la red, y llevar el futuro de Internet al límite (Li et al., 2018).

Pero como toda tendencia, siempre se presentan nuevos retos que impiden un correcto desenvolvimiento. Algunos problemas que obstaculizan este paradigma son mencionados en (Borgia, 2014; Ibrahim Abaker et al., 2015; Mahmud et al., 2018), estos incluyen: un incremento masivo de los datos, el aumento en la latencia y la heterogeneidad de los dispositivos.

Cloud computing (Ibrahim Abaker et al., 2015) es considerada actualmente como "la piedra base" para el Internet de las cosas, en la cual muchas aplicaciones científicas han sido desarrolladas; pero esta posee una arquitectura centralizada, por ello en (Mahmud et al., 2018; Patel et al., 2018; Yi et al., 2015) se menciona a fog computing, que sería una arquitectura ideal para IoT. Particularmente (Mahmud et al., 2018) habla de una interoperabilidad entre Cloud y Fog, y utilizando el simulador iFogSim se demuestran mejoras en cuanto al costo, latencia y el uso de energía, cubriendo las soluciones a ciertos problemas que presenta actualmente IoT y mejorando lo que se tiene actualmente.

Surge también la idea de Mist Computing (Uehara, 2017; Yogi et al., 2017) que permitiría construir sistemas de IoT a gran escala. Mist computing propone ser un centro de datos para cloudlets en Field Area Networks y alojarse entre pequeñas nubes (cloudlets) y la niebla (fog).

Nos encontramos actualmente en un terreno en donde se generan un promedio de 2,5 quintillones de bytes por día, de los cuales un gran porcentaje es gracias a las cosas que están conectadas a internet, donde dichos objetos son usados para capturar datos y producirlos para un futuro procesamiento. La cantidad de ellos que se necesita procesar está llegando a un nivel donde las técnicas actuales que son usadas para lidiar con estos problemas tienen demasiadas complicaciones, por lo cual IoT necesita buscar otros métodos de procesamiento de datos más eficientes y escalables; frente a esta problemática es por lo que se habla de una de las áreas que han surgido en las últimas décadas, la informática paralela y distribuida (Murazzo et al., 2017), donde sus técnicas se pueden aprovechar oportunamente para resolver problemas a gran escala y procesar los datos provenientes del paradigma de IoT (Piccialli et al., 2018).

En vista de lo mencionado anteriormente sale a relucir la siguiente interrogante ¿De qué manera se podría reducir la elevada latencia generada por las constantes peticiones desde los dispositivos IoT al servidor?

Ahora teniendo un conocimiento amplio de la actualidad de IoT y los problemas que tanto lo aquejan, planteamos una solución utilizando Fog Computing como arquitectura distribuida

para poder descentralizar las cargas que presentaba IoT con Cloud Computing e implementando algoritmos paralelos en cada punto donde se procesa la información, esto permitiría reducir la latencia de las peticiones al servidor.

1.1. Título

"Diseño de algoritmos paralelos sobre la arquitectura Fog Computing para reducir la latencia en IoT"

1.2. Autores

Tabla 1: Datos de los alumnos investigadores

Código(s)	Nombres y Apellidos	Cargo en el proyecto	Email
	Andy Martín Panana Rosales Cleiver Valera Flores	Estudiante invest. Estudiante invest.	apanana@unitru.edu.pe cvalera@unitru.edu.pe

1.3. Tipo de investigación

1.3.1. De acuerdo al fin que se persigue:

Aplicada

1.3.2. De acuerdo al alcanze de la investigación:

Explicativa o causal, porque se propone una solución concebida gracias a la combinación de la Arquitectura Fog Computing y la computación paralela con el objetivo de reducir la latencia que presentan las actuales propuestas en IoT, propuestas que en su gran mayoría funcionan bajo una arquitectura centralizada, Cloud Computing.

1.4. Área y línea de Investigación

1.4.1. Área de investigación :

Computación paralela y distribuida

1.4.2. Línea de Investigación:

Sistemas distribuidos

1.4.3. Tema de investigación :

Computación paralela y distribuida

1.5. Localidad e Institución donde se desarrollará el proyecto

1.5.1. Localidad:

Av.Juan Pablo II, Trujillo, Trujillo, La Libertad

1.5.2. Institución:

Universidad Nacional de Trujillo

1.6. Duración del trabajo de graduación (Plan TG y desarrollo del TG)

Del 20/08/2018 al 07/12/2018 (4 meses)

1.7. Cronograma del trabajo de graduación

Tabla 2: Etapas y actividades para el trabajo de graduación

Etapas	Actividades/tareas	Fecha inicio	Fecha término	Hs. semanal
Preparación del plan TG	Elaborar plan TG. Aprobación del plan TG por jurado.	20/08/2018 27/08/2018	26/08/2018 07/09/2018	12 - 16 2
Recolección de datos Inv. bibliográfica. Instrumentos de medición.		08/09/2018 24/09/2018	03/11/2018 30/09/2018	12 - 16 12 - 16
Análisis de datos	Comparar datos recolectados.	01/10/2018	14/10/2018	12 - 16
Redacción del informe	Introducción Marco Teórico Desarrollo de la propuesta, diseño de algoritmos paralelos Informe I: Avance Tesis Avance de resultados Informe II: Avance Tesis. Desarrollo de los algoritmos paralelos	15/10/2018 15/10/2018 22/10/2018 29/10/2018 04/11/2018 03/12/2018	21/10/2018 21/10/2018 03/11/2018 03/11/2018 03/11/2018 02/12/2018 07/12/2018 16/02/2019	12 - 16 12 - 16 12 - 16 4 8 4 12 - 16
	Implementación y de- bugging de los algorit- mos paralelos Resultados Conclusiones Trabajos futuros	16/02/2019 19/05/2019 11/06/2019 01/07/2019	18/05/2019 10/06/2019 30/06/2019 13/07/2019	12 - 16 12 - 16 12 - 16 12 - 16
Sustentación de tesis	Sustentacion del traba- jo de investigación.	15/07/2019	26/07/2019	4

Fuente: Elaboración propia.

1.8. Recursos disponibles

1.8.1. Personal

Tabla 3: Recursos disponibles - Personal

Código	Descripción	Nombre	
2.3.2.7.2.2	Asesor	José Luis Peralta Luján	
2.3.2.7.2.5	Investigador	Andy Martín Panana Rosales	
2.3.2.7.2.5	Investigador	Cleiver Valera Flores	

1.8.2. Materiales y equipos

1.8.2.1. Materiales de Consumo

Tabla 4: Recursos disponibles - Material de consumo

Código	Cantidad	Descripción
2.3.1.5.1.1	02	Memoria USB 8 GB
2.3.1.5.1.1	04	Lapicero
2.3.1.5.1.1	08	Fólfer Manila
2.3.1.5.1.1	04	Lápiz
2.3.1.5.1.1	02	Borrador
2.3.1.5.1.1	1000	Papel Bond A4

1.8.2.2. Hardware

Tabla 5: Recursos disponibles - Hardware

Código	Cantidad	Descripción	
2.6.3.2.1.1	01	Raspberry Pi 3 B	
2.6.3.2.1.1	01	Laptop ASUS Core i3	
2.6.3.2.1.1	01	Laptop LENOVO Z50-70	
		AMD A8	

1.8.2.3. Software

Tabla 6: Recursos disponibles - Software

Código	Cantidad	Descripción
2.6.6.1.3.2	02	Microsoft Office
2.6.6.1.3.2	01	Zorin OS
2.6.6.1.3.2	01	Linux Mint
2.6.6.1.3.2	02	Windows 10

1.8.2.4. Servicios

Tabla 7: Recursos disponibles - Servicios

Código Descripción	
2.3.2.2.1.1	Energía Eléctrica
2.3.2.1.2.1	Transporte Público
2.3.2.2.3	Internet Movistar

1.9. Presupuesto

1.9.1. Personal

Tabla 8: Presupuesto - Personal

Código	Descripción	Costo estimado
2.3.2.7.2.2	Asesor	S/. 0.00
2.3.2.7.2.5	Investigador	S/. 0.00
2.3.2.7.2.5	Investigador	S/. 0.00
	Total	S/. 0.00

1.9.2. Materiales y equipos

1.9.2.1. Materiales de Consumo

Tabla 9: Presupuesto - Materiales de Consumo

Código	Cantidad	Descripción	Costo
2.3.1.5.1.1	02	Memoria USB 8 GB	S/. 50.00
2.3.1.5.1.1	04	Lapicero	S/. 8.00
2.3.1.5.1.1	08	Fólfer Manila	S/. 4.00
2.3.1.5.1.1	04	Lápiz	S/. 3.00
2.3.1.5.1.1	02	Borrador	S/. 1.00
2.3.1.5.1.1	1000	Papel Bond A4	S/. 22.00
		Total	S/. 88.00

1.9.2.2. Hardware

Tabla 10: Presupuesto - Hardware

Código	Cantidad	Descripción	Vida útil	Costo
2.6.3.2.1.1	01	Raspberry Pi 3 B	2 años	S/. 230.00
2.6.3.2.1.1	01	Laptop ASUS Core i3	3 años	S/. 1500.00
2.6.3.2.1.1	01	Laptop LENOVO	3 años	S/. 1800.00
		Z50-70 AMD A8		
			Total	S/. 3530.00

1.9.2.3. Software

Tabla 11: Presupuesto - Software

Código	Cantidad	Descripción	Costo
2.6.6.1.3.2	02	Microsoft Office	S/. 365.00
2.6.6.1.3.2	01	Zorin OS	S/. 0.00
2.6.6.1.3.2	01	Linux Mint	S/. 0.00
2.6.6.1.3.2	02	Windows 10	S/. 555.00
		Total	S/. 920.00

1.9.2.4. Servicios

Tabla 12: Presupuesto- Servicios

Código	Descripción	Costo
2.3.2.2.1.1	Energía Eléctrica	S/. 288.00
2.3.2.1.2.1	Transporte Público	S/. 150.00
2.3.2.2.2.3	Internet Movistar	S/. 480.00
	Total	S/. 918.00

1.9.3. Costo del Proyecto

Tabla 13: Costo del Proyecto

Descripción	Costo
Personal	S/. 0.00
Materiales de consumo	S/. 88.00
Hardware	S/. 3530.00
Software	S/. 920.00
Servicios	S/. 918.00
Total	S/. 5456.00

1.10. Financiamiento

1.10.1. Con recursos universitarios

Ninguno

1.10.2. Con recursos externos

Ninguno

1.10.3. Autofinanciación

Autofinanciado

2. PLAN DE INVESTIGACIÓN

2.1. Realidad problemática

Según cifras establecidas por grandes empresas del medio como Cisco, se puede predecir que en un futuro próximo tendremos cerca de 50 a 100 mil millones de objetos conectados electrónicamente a internet, es un cifra bastante colosal que poco a poco genera problemas debido a las tecnologías que se usan actualmente para poder desplegar cualquier proyecto basado en Internet de las Cosas.

Desde el año 2000 se viene hablando sobre Internet de las Cosas y cómo cimentar las bases exactas para lograr darle el mejor soporte en tecnologías de comunicación, pero de acuerdo a ciertos autores, cada solución que se plantean para un problema es momentánea, es decir, funciona bajo el paradigma de una enfermedad terminal, dónde cura la herida por un cierto tiempo pero si no se plantean nuevas formas mas sofisiticadas para solucionar el problema, volvemos a caer en el mismo hoyo. Tal es el caso de las redes 4G que han permitido que IoT no tenga problemas con la conectividad por mucho tiempo, pero la gran cantidad de dispositivos ha obligado a esta tecnología a evolucionar y lidiar con el problema que presenta IoT.

La tecnología más usada por parte de IoT, es Cloud Computing, dicha tecnología es buena solución ya que nos provee alto poder de cómputo, pero ya que nos enfrentamos a un contexto en el cual tenemos que lidiar con grandes cantidades de datos provenientes de diferentes puntos de información, esta deja de ser una buena solución, su arquitectura centralizada provoca grandes problemas, uno de ellos la latencia. Al enfrentarse a una masiva cantidad de datos, las 24 horas del dia, Cloud Computing no la pasa nada bien, su arquitectura centralizada hace que IoT no despliegue todo su potencial.

Partiendo de esta problemática nace Fog Computing, una solución que viene de una u otra manera a lidiar con la latencia que se presenta en la entrega de los datos, planteando un arquitectura distribuida y más local al lugar donde se generan los datos; además de eso Fog Computing lanza la idea de aprovechar la capacidad de cómputo de los dispositivos finales, pero es ahí donde tenemos un nuevo problema, los dispositivos finales cuentan con recursos limitados; recursos que son accesibles en cuestiones económicas debido al auge y el crecimiento de IoT pero con limitaciones en su nivel de procesamiento y almacenamiento.

2.2. Antecedentes

Al Fuqaha et al. (2015) expresan que IoT está habilitado por los últimos desarrollos en RFID, sensores inteligentes, tecnologías de comunicación y protocolos de Internet. Donde la premisa básica es que los sensores inteligentes colaboren directamente sin participación humana para ofrecer una nueva clase de aplicaciones. También enfatizan en que la revolución actual en las tecnologías de Internet, dispositivos móviles y máquina a máquina (M2M) se puede ver como la primera fase del IoT. En los próximos años, esperan que IoT conecte diversas tecnologías para permitir nuevas aplicaciones conectando objetos físicos en apoyo de una toma de decisiones inteligente.

Este paper nos muestra el panorama actual de IoT entorno a los ultimos avances tecnologicos de algunos campos y culmina enfatizando la necesidad de muchas aplicaciones con respecto a la evolucion de IoT.

Borgia (2014) explica IoT como un nuevo paradigma que combina aspectos y tecnologías provenientes de diferentes enfoques. Donde la computación ubicua, el protocolo de Internet, las tecnologías de detección, las tecnologías de comunicación y los dispositivos integrados se fusionan para formar un sistema en el que el mundo real y digital se encuentran y están continuamente en interacción simbiótica. Además mencionan que la gran cantidad esperada de dispositivos interconectados y la gran cantidad de datos disponibles abren nuevas oportunidades para crear servicios que traerán beneficios tangibles a la sociedad, el medio ambiente, la economía y los ciudadanos individuales.

Esta investigación nos aporta un enfoque donde la cantidad de dispositivos que serán conectados a internet en los proximos años, abre un sinfín de posibilidades entorno a la creacion de servicios en diferentes campos como la economía, el medio ambiente, etc.

Mahmud et al. (2018) Esta investigación habla sobre IoT en el cuidado de la salud, y los problemas que existen relacionados a la latencia, carga de datos desigual y la heterogeneidad de las aplicaciones. Servicios de la computación en la nube han sido utilizados en este campo, sin embargo, la centralización geográfica de los centros de datos de la nube no ha podido solucionar del todo los problemas antes mencionados, por ello se habla de un interoperabilidad entre las arquitecturas Cloud y Fog Computing lo cual implica una compleja coordinación entre aplicaciones y servicios.

Este paper nos brinda resultados esperados en cuanto a lo solución de dichos problemas, simulando el uso de la arquitectura Fog Computing con el software iFogSim.

Verma et al. (2015) nos mencionan los problemas que presenta Cloud Computing como por ejemplo: limitación con respecto al equilibrio de la carga de datos y el alojamiento de centros de datos, los cuales crean un nivel de latencia de red grande e impredecible. Además, presentan como solución para dichos problemas a un nuevo modelo de computación llamado Fog Computing, el cual es análoga a la nube, con la única diferencia es que se encuentra en el borde de la red; otra ventaja es que las aplicaciones que requieren dependencia de ubicación pueden ser viables a través de ella. Y para finalizar, proponen una nueva arquitectura basada en el algoritmo de equilibrio de carga en el entorno de Fog Computing de manera menos compleja y efectiva, debido a la gran cantidad de usuarios finales los cuales aumentan cada día a un ritmo muy rápido.

Y para culminar, dicha investigación nos brindá información acerca del gran poder que tiene Fog Computing frente a temas de latencia y su manera eficiente de como solucionarlo, además nos muestran un panorama donde la combinación entre Fog Computing y el algoritmo de equilibrio de carga logran ser un dupla perfecta frente a estos problemas.

Con el transcurso de los años los dispositivos IoT requieren mayor espacio para poder almacenar datos, los cuales aumentan masivamente (**Murazzo et al., 2017**), habla de la necesidad de mejorar los tiempos de respuesta y la escalabilidad de sistemas; menciona ejemplos de aplicaciones web con datos masivos que podrían manejarse con técnicas de computación de alto rendimiento permitiendo que la velocidad de procesamiento mejore.

Este paper nos indica los campos necesarios a investigar para lidiar con grandes volúmenes de datos, tales como: arquitecturas híbridas, problemas de datos masivos y las herramientas existentes para resolverlos, entre otros.

Peng et al. (2015) presentan una red de acceso de radio basado en Fog Computing (F-RAN) como iniciativa para lograr alcanzar los objetivos propuestos para el sistema de comunicación

inalámbrica de quinta generación (5G). Además, resaltan que en las actuales redes propuestas los operadores necesitan desplegar una gran cantidad de recursos para cumplir con los requisitos de capacidad máxima, lo que los convierte en un serio desperdicio cuando el volumen de tráfico de entrega no es lo suficientemente grande. Por ende, proponen a Fog Computing como una buena alternativa frente a Cloud Computing, cuya propuesta viene a colocar una cantidad sustancial de almacenamiento, comunicación, control, configuración, medición y administración en el borde de una red.

Este trabajo nos aporta una aplicación importante de Fog Computing en un campo como las redes 5G, donde se busca lograr el aprovechamiento de los dispositivos finales (RRH) frente a las limitaciones que presenta la propuesta planteada con el fin de lograr los objetivos de 5G.

Piccialli et al. (2018) nos hablan de la cantidad de almacenamiento que se va generando por el incremento de dispositivos conectados a internet, en su mayoría debido a dispositivos IoT, y la estimada para el 2020; a su vez indica que el procesamiento actual de los datos no es ideal pero mejoraría con la inclusión de técnicas de computación paralela y distribuida.

Como aporte, esta investigación reafirma nuestra idea de que al utilizar algoritmos paralelos podemos lograr una mejora notable en cuanto a la velocidad del procesamiento de los datos y por ende disminuir la latencia.

T. Shanmugapriya et al. (2018) nos muestra un panorama donde una variante de un algoritmo de agrupamiento más reciente basado en el hallazgo rápido y la búsqueda de picos de densidad (CFS), tiene la capacidad de afrontar la agrupación de grandes cantidades de datos dinámicos en el Internet de las cosas industriales, donde muestra que dicha variación puede encontrar grupos de forma arbitraria y determinar la cantidad de clústeres automáticamente, solucionado de cierta manera las limitaciones que presentaba el algoritmo inicial frente al agrupamiento de grandes volúmenes de datos.

Como aporte, esta investigación nos permite ver el potencial oculto que tiene este algoritmo CFS propuesto por Alessandro Laio, Alex Rodriguez y Maria d'Errico frente al agrupamiento de datos, que si bien es cierto tiene una limitación bien marcada frente al volumen de estos, podemos mejorarlo de acuerdo a nuestras necesidades o al problema que queremos resolver y obtener mejores resultados.

2.3. Justificación

2.3.1. Justificación Informática

La necesidad de hacer frente a la problemática que vive actualmente la tecnología IoT y la que vivirá en los próximos años, nos hace pensar rápido en la manera de cómo mitigar esto y lograr solucionar los posible cuellos de botella que sufre y sufrirá esta tecnología si sigue tal y como esta. Por ende, la propuesta que planteamos nos hace involucrarnos a fondo en el paradigma donde cada objeto puede estar conectado a internet o de forma resumida, el Internet de las Cosas, también nos llama a sumergirnos en las diferentes arquitecturas enfocadas a dar soporte a esta tecnología y a lograr sacar a relucir todo el potencial de la computación paralela por medio de la creación de algoritmos de este tipo, que para procesar grandes cantidades de datos son mucho más eficaces que los comúnmente usados (algoritmos secuenciales), de tal manera que la complementación de estos nos permite plantear una nueva forma o enfoque de cómo solucionar la latencia que presenta IoT frente a un contexto donde se generar una gran cantidad de información de manera distribuida y la enorme necesidad de analizar toda esta data.

2.3.2. Justificación Organizacional

Frente al gran crecimiento de la cantidad de dispositivos conectados a internet y el problema de conectividad que enfrenta actualmente la tecnología IoT, encontramos un terreno donde el tema de la entrega de datos puede sufrir grandes complicaciones debido a factores como: la centralización que presenta la arquitectura sobre la cual funciona la mayoría de proyectos IoT y la gigantesca información proveniente de dispositivos finales que se necesitan procesar; conociendo este complicado panorama es que se necesita tener una solución frente al tema de la latencia existente en la transmisión de datos, por lo cual proponemos desarrollar un mecanismo concebido gracias a la complementación entre la arquitectura Fog Computing y algoritmos paralelos, permitiendo lograr reducir los tiempos de transmisión de datos entre los dispositivos donde se originan de los datos y los servidores alojados en la nube o centros de datos. De esta manera, se busca lograr que cada idea o proyecto sobre IoT, principalmente aquellos que manejan grandes cantidades de información de diferentes puntos de origen, no tengan complicaciones con respecto al tiempo de la transmisión de datos y el tema de análisis de la información se desarrolle la mejor manera posible.

2.4. Problema

¿De qué manera se podría reducir la elevada latencia generada por las constantes peticiones desde los dispositivos IoT al servidor?

2.5. Hipótesis

Utilizando Fog Computing como arquitectura distribuida para poder descentralizar las cargas que presentaba IoT con Cloud Computing e implementando algoritmos paralelos en cada punto donde se procesa la información se podrá reducir la latencia de las peticiones al servidor.

2.6. Variables

2.6.1. Variable Independiente

Tabla 14: Variable Independiente

Variable	Definición Con-	Dimensiones	Indicadores
	ceptual		
Algoritmos pa-	Algoritmos enfo-	Rendimiento de	Tiempo de ejecu-
ralelos sobre la	cados al uso de	los Algoritmos	ción
arquitectura Fog	varios procesa-	Paralelos	Aceleración
Computing	dores trabajando		(speedup)
	juntos para re- solver una tarea común		$SU = \frac{Ts}{Tp}$
			Eficiencia (efficiency)
			$E(n) = \frac{S(n)}{n}$

2.6.2. Variable Dependiente

Tabla 15: Variable Dependiente

Variable	Definición Con-	Dimensiones	Indicadores
	ceptual		
Latencia en el In-	Retardo existen-	Latencia	Tiempo existente
ternet de las Co-	te en la entrega		entre la transmi-
sas	de datos dentro la		sión y la recep-
	red		ción de los datos.

2.7. Objetivos

2.7.1. Objetivo general

Disminuir el tiempo de latencia en los dispositivos de internet de las cosas, utilizando algoritmos paralelos.

2.7.2. Objetivos específicos

- a) Determinar el nivel de latencia que presenta actualmente la arquitecturas IoT bajo Cloud Computing.
- b) Comparar el performance que existe entre Cloud Computing y Fog Computing como arquitectura para IoT.

- c) Diseñar algoritmos paralelos con la menor complejidad posible.
- d) Comprobar que los algoritmos paralelos permiten disminuir la latencia.

2.8. Método de trabajo

2.8.1. Tipo investigación

Estudio Explicativo

2.8.2. Diseño de la investigación

a) Tipo de Diseño

Diseño experimental - Experimento puro

a) Explicación del tipo

Los experimentos puros son aquellos que reúnen los dos requisitos para logar el control y la validez interna: grupos de comparación, y equivalencia de grupos. Asimismo, pueden utilizar prepuebas y pospruebas para analizar la evolución de los grupos antes y despues del tratamiento experimental Sampieri et al. (1997).

a) Diseño con posprueba únicamente y grupo de control

Este diseño incluye dos grupos, uno recibe el tratamiento experimental y el otro no (grupo de control).

Esquema del diseño:

RG1: - O1

RG2: X O2

Donde:

X: variable independiente (Algoritmos Paralelos sobre Fog Computing).

O1: medición previa (antes de la aplicación de Algoritmos Paralelos sobre Fog Computing) de la variable dependiente.

O2: medición posterior (después de la aplicación de Algoritmos Paralelos sobre Fog Computing) de la variable dependiente.

2.8.3. Población y muestra

Universo: Transmisiones de datos en Internet.

Población: Transmisiones de datos del Internet de las Cosas.

Muestra: Transmisiones de datos del Internet de las Cosas.

Tipo de muestra: Muestra Aleatoria.

Unidad de estudio: Transmision de los datos(paquetes) de IoT donde se manejan grandes cantidades de información.

Cálculo de la muestra:

Para calcular el tamaño de la muestra suele utilizarse la siguiente fórmula:

$$n = \frac{Z^2 S^2}{E^2} = 384,16$$

Figura 1: Fórmula para el cálculo de la Muestra. Fuente: Metología de la Investigación Sampieri et al. (1997).

Donde:

n = el tamaño de la muestra.

S = Desviación estándar de la población que, generalmente cuando no se tiene su valor, suele utilizarse un valor constante de 0.5.

Z = Valor obtenido mediante niveles de confianza. Es un valor constante que, si no se tiene su valor, se le toma en relación al 95 % de confianza que equivale 1.96 (como más usual) o en relación al 99 % de confianza que equivale 2.58, valor que queda a criterio del investigador.

E = Límite aceptable de error muestral que, generalmente cuando no se tiene su valor, suele utilizarse un valor que varía entre 1 % (0.01) y 9 % (0.09), valor queda a criterio del encuestador Sampieri et al. (1997).

En nuestro caso:

Tabla 16: Cálculo de la Muestra.

		Elevado al cuadrado
E (margen de errror)	0.05	0.0025
S (desviación de error	0.5	0.025
Z (nivel de confianza)	1.96	3.8416
		Redondeando
n (tamaño de la muestra)	38.416	38

2.8.4. Etapas

- a) Análisis de los principales problemas con respecto a la transmisión de datos a los que se enfrenta actualmente IoT y a los que va ha enfrentarse en un futuro cercano.
- b) Levantamiento de trabajos relacionados al tema de transmision de datos en IoT.
- c) Formulación del problema principal de la investigación.

- d) Levantamiento biliográfico de los diferentes temas necesarios para la elaboración de la investigación, tales como IoT, Cloud Comptuing, Fog Computing, computación paralela, entre otros.
- e) Estudio y análisis del panorama actual y remoto de IoT, con la finalidad de aportar al estado del arte del problema formulado.
- f) Estudio y análisis de los diferentes métodos de solución evaluados en la revisión bibliográfica, así como los que serán propuestos en este estudio.
- g) Investigación y estudio del software que nos permitirá observar a detalle las propuestas actuales que dan soporte a IoT, así como la propuesta desarrollada durante la investigación.
- h) Testes y validación de las propuestas estudiadas con el software seleccionado.
- i) Planificación de la propuesta que busca reducir la latencia en la transmisión de datos en IoT, por medio de la implentacion de algoritmos paralelos sobre la arquitectura Fog Computing.
- j) Elección de una aréa industrial para que sea utilizada como estudio de caso, tanto para los testes de las propuestas estudiadas como las desarrolladas.
- k) Levantamiento de los datos necesarios para validar y testear la propuesta desarrollada.
- 1) Levantamiento de simulación de datos para ejecutar la propuesta.
- m) Testes y validación de la propuesta desarrollada en la área industrial escogida.

Referencias

- Al Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols and applications. *IEEE*, 17(4):2347–2376.
- Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. *Computer Communications*, 54:1–31.
- Ibrahim Abaker, T. H., Ibrar, Y., Nor Badrul, A., Salimah, M., Abdullah, G., and Samee Ullah, K. (2015). The rise of "big data" on cloud computing: Review and open research issues. *Information Systems*, 47:98–115.
- Li, S., Zhao, S., and Xu, L. D. (2018). 5G Internet of Things: A survey. *Industrial Information Integration*.
- Mahmud, R., Luiz Koch, F., and Buyya, R. (2018). Cloud-Fog Interoperability in IoT-enabled Healthcare Solutions. *ACM New York*.
- Murazzo, M. A., Piccoli, M. F., Rodríguez, N. R., Medel, D., Mercado, J., Sánchez, F., and Tello, M. (2017). Paralelismo Híbrido aplicado a soluciones de problemas de datos masivos. *Buenos Aires: XIX Workshop de Investigadores en Ciencias de la Computación*.
- Patel, H. M., Chaudhari, R. R., Prajapati, K. R., and Patel, A. A. (2018). The Interdependent Part of Cloud Computing: Dew Computing. *Intelligent Communication and Computational Technologies*.
- Peng, M., Yan, S., Zhang, K., and Wang, C. (2015). Fog Computing based Radio Access Networks: Issues and Challenges. *National Natural Science Foundation of China*.
- Piccialli, F., Cuomo, S., and Jeon, G. (2018). Parallel Approaches for Data Mining in the Internet of Things Realm. *International Journal of Parallel Programming*.
- Sampieri, R. H., Fernández-Collado, C., and Lucio, P. B. (1997). *Metodología de la Investigación*. McGraw-Hill.
- T. Shanmugapriya, M., Anbuselvi, A., and Thendral, A. (2018). An Incremental CFS Algortihm for Clustering Large Data in Industrial Internet of Things. *CSE ULTRA College of Engineering & Technology for Womena*.
- Uehara, M. (2017). Mist Computing: Linking Cloudlet to Fogs. *Computational Science/Intelligence and Applied Informatics*, 726:201–213.
- Verma, M., Bhardawaj, N., and Yadav, A. K. (2015). An architecture for Load Balancing Techniques for Fog Computing Environment. *UPTU University Agra*, 6:269–274.
- Vyas, D. A., Bhatt, D., and Jha, D. (2017). IoT: Trends, Challenges and Future Scope. *Computer Science & Electronics Journals*, 7:186–197.
- Yi, S., Li, Q., and Li, C. (2015). A Survey of Fog Computing: Concepts, applications and issues. *Williamsburg: College of William and Mary*.

_	r, G. V. (2017). Mist Computing: Principles, trends al Journal of Computer Science and Engineering,
$\overline{Andy\ Panana\ Rosales}$	$\overline{CleiverValeraFlores}$
$\overline{Jose~L}.$	$\overline{Peralta\ Lujan}$ $Asesor$