6/3/25, 10:29 AM group04.html

CSE 280 Challenge Set 04

(c) BYU-Idaho

Question 1

For each of these functions, determine if they are well-defined, one-to-one, onto and/or a bijection. For these problems, let $A = \{x \mid x \in \mathbf{Z}, 0 < x < 5\}$ and let $B = \{x \mid x \in \mathbf{Z}, 0 \leq x \leq 5\}$. You may want to draw a digraph of each function (with dots and arrows). Recall that if not well-defined, then it is neither 1-1, onto, nor a bijection.

Function	Well Defined	1-1	Onto	Bijection
$f:A o A, ext{ where } f=\{(1,2),(2,2),(3,3),(4,3)\}$				
$f:A o A, ext{ where } f=\{(1,1),(2,2),(3,4),(4,3)\}$				
$f:A o A, ext{ where } f=\{(2,2),(3,4),(4,3)\}$				
$f:A o B, ext{ where } f=\{(1,2),(2,3),(3,4),(4,5)\}$				
$f:B o A, ext{ where } f=\{(0,1),(1,1),(2,2),(3,2),(4,4),(5,3)\}$				

Question 2

For each of these functions, determine if they are well-defined, one-to-one, onto, and/or a bijection. Consider using a graphing calculator like https://www.desmos.com.

Function	Well Defined	1-1	Onto	Bijection
$f: \mathbf{Z} o \mathbf{Z}, ext{ where } f(x) = 5x - 7$				
$f: \mathbf{Z}^+ o \mathbf{Z}^+, ext{ where } f(x) = \lceil rac{x}{5} ceil$				
$f: \mathbf{R} o \mathbf{R}, ext{ where } f(x) = x^5 - 3x$				
$f: \mathbf{R}^+ o \mathbf{R}, ext{ where } f(x) = rac{1}{x}$				
$f: \mathbf{R} o \mathbf{R}, ext{ where } f(x) = \log_5(x^2)$				
$f: \{x \mid x \in \mathbf{R}, x > 0\} ightarrow \mathbf{R}, ext{ where } f(x) = \log_5(x^2)$				
$f:\{x\mid x\in\mathbf{R}, x eq 0\} o\mathbf{R}, ext{ where } f(x)=\log_5(x^2)$				

Question 3

Part 1

Find the inverse $f^{-1}(x)$ (if it exists) of the following functions:

- $f: \mathbf{R} \to \mathbf{R}$, where f(x) = (x 32) * 5/9
- $f: \mathbf{R} \to \{x \mid x \in \mathbf{R}, x > 0\}$ where $f(x) = \frac{1}{2^x}$
- $f: \mathbf{R} \to \mathbf{Z}$, where f(x) = |x|

6/3/25, 10:29 AM group04.html

- $f: \mathbf{R} \to \mathbf{R}$, where $f(x) = x^2$
- $ullet \ f: {f R}
 ightarrow {f R}, ext{ where } f(x) = x^3$

Part 2

Select a value of x (per the domain) and calculate $(f^{-1} \circ f)(x)$ for all functions that had an inverse in Part 1 to demonstrate that the inverse was successfully created.

Question 4

Define the following two functions:

- $f: \mathbf{R} \to \mathbf{R}$, where $f(x) = \lceil x \rceil x$
- $g: \mathbf{R} \to \mathbf{R}$, where g(x) = x |x|

Part 1

Graph function f using a graphing calculator. Explain what this so-called "sawtooth" function represents.

Part 2

Based on your answer above, does an inverse to f exist?

Part 3

Determine what f(x) + g(x) is equal to.