KOD UCZNIA					

ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014

ETAP OKRĘGOWY

Instrukcja dla ucznia

- 1. Zestaw konkursowy zawiera 10 zadań.
- 2. Przed rozpoczęciem pracy, sprawdź, czy zestaw zadań jest kompletny.
- 3. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- 4. Zadania czytaj uważnie i ze zrozumieniem.
- 5. Przedstaw pełne rozwiązania.
- 6. (Obliczenia zapisane w brudnopisie nie będą oceniane.)
- 7. Rozwiązania zapisuj długopisem lub piórem. Rozwiązania zapisane ołówkiem nie będą oceniane.
- 8. W nawiasach obok numerów zadań podano liczbę punktów możliwych do uzyskania za dane zadanie.
- 9. Nie używaj kalkulatora.
- 10. Nie używaj korektora.

Pracuj samodzielnie.

Czas pracy:

90 minut

Liczba punktów możliwych do uzyskania: 45 Do następnego etapu zakwalifikujesz się, jeżeli uzyskasz co najmniej 36 punktów.

POWODZENIA!

Wypełnia komisja konkursowa

Nr zadania	1	2	3	4	5	6	7	8	9	10	Razem
Liczba punktów											

Zatwierdzam

Zadanie 1 (2p).

W miejscowości A mieszka 118 dzieci, a w miejscowości B 108 dzieci. W którym miejscu, na odcinku AB należy zbudować szkołę, aby dzieci idąc do szkoły pokonywały w sumie jak najmniejszą liczbę kilometrów?

Zadanie 2 (2p).

Jeden akr to jednostka powierzchni gruntów używana w krajach anglosaskich. Nazwano tak, obszar, który mógł zostać zaorany przez pług zaprzęgnięty w woły w ciągu jednego dnia. 1 akr = 0,40468564224 ha.

Oblicz, z dokładnością do części dziesiątych, ile akrów stanowi 1 ha?

Zadanie 3 (2p).

Kasia miała torebkę cukierków. Po zjedzeniu 1 cukierka, oddała Basi połowę tego co jej zostało. Po zjedzeniu kolejnego cukierka oddała Zosi połowę tego, co jej zostało. Kasi zostało w torebce 5 cukierków.

Ile cukierków miała Kasia na początku?

Zadanie 4 (3p).

Obwód trapezu równoramiennego jest równy 24 cm, zaś jego pole $28cm^2$. Oblicz długość ramienia tego trapezu jeśli, wysokość trapezu ma długość 4 cm.

Zadanie 5 (5p).

Każdy bok kwadratu jest średnicą koła. Wspólna część tych kół tworzy wewnątrz kwadratu czterolistną rozetę. Oblicz pole tej rozety (pole jej listków), jeżeli bok kwadratu ma długość 2 cm.

Zadanie 6 (8p).

Liczbę 45 podzielono na 4 części, z których każda jest liczbą naturalną. Do pierwszej liczby dodano 2, od drugiej części odjęto 2, trzecią pomnożono przez 2, a czwartą podzielono przez 2. Otrzymane w ten sposób cztery nowe liczby są równe.

Jak podzielono liczbę 45?

Zadanie 7 (5p).

Dane jest zbiór liczb: 1, 2, 3, 4, 5, 6. Dodajemy do dwóch spośród nich liczbę 1 i w ten sposób otrzymujemy nowy zbiór. Postępowanie to kontynuujemy.

Czy w pewnym momencie możemy uzyskać taki wynik, że wszystkie liczby będą równe ? Odpowiedź uzasadnij.

Zadanie 8 (7p).

Jaś pokonuje na rowerze trasę z miasta A do miasta B ze stałą prędkością. Gdyby prędkość zwiększył o 3 *m*/*sek*, to czas przejazdu byłby 3 razy krótszy. Oblicz, ile razy krócej będzie jechał, jeśli prędkość zwiększy o 6 *m*/*sek*.

Zadanie 9 (5p).

Liczby x i y są liczbami spełniającymi równanie $(x-y-1)^2 + (x+y-7)^2 = 0$. Wyznacz te liczby.

Zadanie 10 (6p).

Dany jest ułamek $\frac{34}{61}$. Te same cyfry i w tej samej kolejności wstaw między cyfry licznika i mianownika. Tak otrzymany nowy ułamek ma być równy $\frac{34}{61}$. Wyznacz te cyfry.

