A Basic Guide to High School Mathematics

Stasya (Discord: stasssiee)

2024

Contents

1	Proof	9
2	2.2 Surds	13 13 15
	2.3 Quadratics	18 18 18
	2.6 Polynomials & Rational Expressions	18 18
	2.8 Functions 2.9 Graph Transformations 2.10 Algebraic Fractions	18 18 18
_		18
3	Coordinate Geometry 3.1 Coordinate Geometry 3.2 Circles 3.3 Parametric Equations 3.4 Parametric Equation Modelling	19 19 19 19
4		21
	4.2Sequences4.3Sigma Notation4.4Arithmetic Sequences4.5Geometric Sequences	21 21 21 21 21 21
5		23
	5.2 Small Angle Approximation 5.3 Trig Graphs 5.4 Further Trigonometry 5.5 Trigonometric Identities	24 24 24 24 24
	5.7 Trig Equations	24 24 24
6	Exponentials & Logarithms	25
	6.1 Exponentials 6.2 Exponential Models 6.3 Logarithms 6.4 Laws of Logarithms 6.5 Exponential & Logarithmic Equations 6.6 Reduction to Linear Form 6.7 Exponential Growth & Decay	25 25 25 25 25 25 25
7	Differentiation 7.1 Differentiation from First Principles	27

	7.3 Gradients	28 28 28 28 28
8	8.1 Fundamental Theorem of Calculus 8.2 Indefinite Integrals	29 29 29 29 29 29 29 29
9	9.1 The Change of Sign Method 9.2 The x=g(x) Method & The Newton-Raphson Method 9.3 Numerical Integration 9.4 Numerical Methods in Context	31 31 31 31 31
10	10.1 Introducing Vectors 10.2 Magnitude & Direction of a Vector 10.3 Resultant & Parallel Vectors 10.4 Position Vectors	33 33 33 33 33
11	Statistical Sampling	35
12	12.1 Box Plots, Cumulative Frequency, & Histograms 12.2 Scatter Graphs 12.3 Central Tendency & Variation	37 37 37 37 37
13	13.1 Venn Diagrams, Tree Diagrams, & Two-Way Tables	39 39 39
14	14.1 Discrete Random Variables & The Binomial Distribution	41 41 41 41
15	15.1 Introducing Hypothesis Testing	43 43 43
16		45
17		47
	17.1 Displacement, Velocity, & Acceleration	47

	17.2 Graphs of Motion	47
	17.3 SUVAT	47
	17.4 Calculus in Kinematics	47
	17.5 Projectiles	47
10	Forces & Newton's Laws	49
10	18.1 Introducing Forces & Newton's First Law	49
	18.2 Newton's Second Law	49
	18.3 Weight & Tension	49
	18.4 Newton's Third Law and Pulleys	49
	18.5 F=ma & Differential Equations	49
	18.6 The Coefficient of Friction	49
19	Moments	51
20	Proof	53
21	Complex Numbers	55
	21.1 Introducing Complex Numbers	56
	21.2 Working with Complex Numbers	56
	21.3 Complex Conjugates	56
	21.4 Introducing the Argand Diagram	56
	21.5 Introducing Modulus-Argument Form	56
	21.6 Multiply and Divide in Modulus-Argument Form	56
	21.7 Loci with Argand Diagrams	56
	21.8 De Moivre's Theorem	56
	21.9 $z = re^{(i\theta)}$	56
	21.10 nth Roots of Unity	56
	21.11 Geometrical Problems	56
22	Matrices	57
	22.1 Introducing Matrices	58
	22.2 The Zero & Identity Matrices	58
	22.3 Matrix Transformations	58
	22.4 Invariance	58
	22.5 Determinants	58
	22.6 Inverse Matrices	58
	22.7 Simultaneous Equations	58
	22.8 Geometrical Interpretation	58
	22.9 Factorising Determinants	58
	22.10 Eigenvalues and Eigenvectors	58
	22.11 Diagonalisation	58
	22.12 Cayley-Hamilton Theorem	58
23	Further Algebra & Functions	59
	23.1 Roots of Polynomials	60
	23.2 Forming New Equations	60
	23.3 Summations	60
	23.4 Method of Differences	60
	23.5 Introducing Maclaurin Series	60
	23.6 Standard Maclaurin Series	60
	23.7 Limits and l'Hospital's Rule	60
	23.8 Polynomial Inequalities	60
	23.9 Rational Function Inequalities	60
	23.10 Modulus of Functions	60

	23.11 Reciprocal Graphs	60 60
	23.13 Quadratic Rational Functions	60
	23.14 Discriminants	60
	23.15 Conic Sections	60
	23.16 Transformations	60
24	Further Calculus	61
	24.1 Improper Integrals	61
	24.2 Volumes of Revolution	61
	24.3 Mean Value	61
	24.4 Partial Fractions	61
	24.5 Differentiating Inverse Trig	61
	24.6 Integrals of the Form $\sqrt{a^2-x^2}$ and $1/(a^2+x^2)$	61
	24.7 Arc Length and Sector Area	61
	24.8 Reduction Formulae	61
	24.9 Limits	61
25	Further Vectors	63
	25.1 Equations of Lines	63
	25.2 Equations of Planes	63
	25.3 The Scalar Product	63
	25.4 Perpendicular Vectors	63
	25.5 Intersections	63
	25.6 The Vector Product	63
26	Polar Coordinates	65
20	26.1 Polar Coordinates	65
	26.2 Polar Curves	65
	26.3 Polar Integration	65
27	Hyperbolic Functions	67
	27.1 Hyperbolic Functions	67
	27.2 Hyperbolic Calculus	67
	27.3 Hyperbolic Inverse	67
	27.4 Hyperbolic Inverse	67
	27.5 Hyperbolic Integration	67
	27.6 Hyperbolic Identities	67
	27.7 Hyperbolic Identities	67
28	Differential Equations	69
	28.1 1st Order Differential Equations - Integrating Factors	69
	28.2 1st Order Differential Equations - Particular Solutions	69
	28.3 Modelling	69
	28.4 2nd Order Homogeneous Differential Equations	69
	28.5 2nd Order Non-Homogeneous Differential Equations	69
	28.6 2nd Order Non-Homogeneous Differential Equations	69
	28.7 Simple Harmonic Motion	69
	28.8 Damped Oscillations	69
	28.9 Systems of Differential Equations	69
	28.10 Hooke's Law	69
	28.11 Damping Force	69
29	Numerical Methods	71
-3	29.1 Mid-Ordinate Rule & Simpson's Rule	71

	29.2 Euler's Step by Step Method	71 71
30	Tracing an Algorithm 30.1 Tracing an Algorithm	73 73 73
31	Bin Packing 31.1 Bin Packing	75 75 75
32	Sorting Algorithms 32.1 Introduction 32.2 Quick Sort 32.3 Bubble Sort	77 77 77 77
33	Graph Theory	79
34	Minimum Spanning Trees 34.1 Introduction	81 81 81 81
35	Dijkstra's Algorithm	83
36	Critical Path Analysis 36.1 Critical Path Analysis (CPA) 36.2 Precedence Tables	85 85 85 85 85
37	Network Flows 37.1 Network Flows 37.2 Cuts 37.3 Supersinks & Supersources	87 87 87 87
38	Linear Programming38.1 Drawing Inequalities & The Objective Function38.2 Formulating an LP Problem38.3 3-Variable to 2-Variable	89 89 89
39	Simplex Algorithm	91
40	LP Solvers 40.1 Indicator Variables 40.2 Shortest Path (Dijkstra's) 40.3 Longest Path (CPA) 40.4 Network Flows 40.5 Critical Path Analysis (Alternative) 40.6 Matching 40.7 Allocation 40.8 Transportation 40.9 LINDO	93 93 93 93 93 93 93 93 93
41	PMCC	95

	41.1 Bivariate Data	. 95
42	Linear Regression42.1 Introduction	. 97
43	PMCC Hypothesis Testing 43.1 PMCC Hypothesis Testing	
44	Spearman's Rank 44.1 Spearman's Rank Correlation Coefficient	
45	Chi-Squared Contingency Table Tests 45.1 The Chi-Squared Statistic	
46	Discrete Random Variables46.1 Discrete Random Variables46.2 The Expected Value $E(X)$ 46.3 The Variance $Var(X)$ 46.4 $E(aX+b)=aE(X)+b$ 46.5 $Var(aX+b)=a^2 Var(X)$ 46.6 $E(X+Y)=E(X)+E(Y)$ and $Var(X+Y)=Var(X)+Var(Y)$. 105 . 105 . 105 . 105
47	Discrete Uniform Distributions	107
	Discrete Uniform Distributions Geometric Distributions	107 109
48		
48 49	Geometric Distributions	109
48 49 50	Geometric Distributions Binomial Distributions	109 111 113 115 . 115 . 115 . 115 . 115
48 49 50 51	Geometric Distributions Binomial Distributions Poisson Distribution Goodness of Fit Tests 51.1 Goodness of Fit Tests 51.2 The Uniform Distribution 51.3 The Poisson Distribution 51.4 The Binomial Distribution	109 111 113 115 . 115 . 115 . 115 . 117 . 117 . 117
48 49 50 51	Geometric Distributions Binomial Distributions Poisson Distribution Goodness of Fit Tests 51.1 Goodness of Fit Tests 51.2 The Uniform Distribution 51.3 The Poisson Distribution 51.4 The Binomial Distribution 51.5 The Left Hand Tail Energy 52.1 Introduction to Energy 52.2 Conservation of Mechanical Energy	109 111 113 115 . 115 . 115 . 115 . 117 . 117 . 117 . 119 . 119 . 119

	54.2 54.3	Introduction to Friction12Block Sliding Down a Slope12Friction Examples12Exam-Style Question12	21 21
55		entum & Impulse 12 Momentum	_
		Impulse	
56	Colli	- -	_
		Conservation of Linear Momentum	
	56.2	The Coefficient of Restitution	25
	56.3	Hitting the Ground/Hitting the Wall	25
57	Mon	ents 12	27
	57.1	Moments - The Basics	27
		Couples	
		Ladders	
		Pivots/Hinges	
		Sliding & Toppling	
58	Cent	re of Mass	, a
-		Introducing CoM	_
		Laminas	
		Suspending a Lamina	
		Triangles	
		y	
	56.5	Other Shapes	.9
59		nsional Analysis 13	_
		Introducing Dimensional Analysis	
		Dimensional Consistency	
		Finding Formulae	
	59.4	Triangles	1
	59.5	Other Shapes	1

1 Proof

Introduction to Proof

Introduction to Proof

In this section we will working with these topics:

- Consequence and Equivalence
- Proof by Exhaustion
- Proof by Deduction
- Disproof by Counter-Example
- Proof by Contradiction

Introducing Consequence and Equivalence

When we look at consequence, we essentially say that "a implies b", or:

 $a \rightarrow b$

If the arrow points the other way, we say that "b implies a", or:

 $a \leftarrow b$

Let's say that statement a states that p is a prime number > 2.

Let's say that statement b states that p is an odd number.

For these statements, we see that a does imply b, so we can write that

$$a \rightarrow b$$

The other way however does not work, since because p is an odd number, it does not imply that p is a prime number.

However, if this was true, we can write that a implies b and b implies a, or:

$$a \leftrightarrow b$$

which is sometimes written as "a if and only b" or "a iff b".

Let's show a logical equivalence. Let a be the statement n^2 is odd and b be the statement n is odd.

We know that when n^2 is odd, that n is odd when we list out the odd squared numbers. We can see the converse is true as well in this statement since every time a number n is squared, we are given an odd number, therefore:

$$a \leftrightarrow b$$

10 CHAPTER 1. PROOF

Consequence and Equivalence Examples

Let's give some examples where we determine whether one of the statements implies the other statement.

Given that an object is a cube and an object has six faces. If an object is a cube, it definitely has six faces. Therefore, The object is a cube \implies The the object has six faces. The opposite is not true, because it can be a cuboid, for example.

Given x=29 and x>10, then $x=29 \implies x>10$. The opposite is not true, since there are many more values where x>10.

Given $x^3 = x$ and x = -1. We need to find the solutions of $x^3 = x$ first. By subtracting and obtaining $x^3 - x = 0$, we can factor this to $x(x^2 - 1) = 0$. Then we have x(x - 1)(x + 1) = 0, and the solution of this equation are 0, 1, and -1. Therefore $x^3 = x$ does not imply x = -1. However, going the other way, $x = -1 \implies x^3 = x$.

Given n is a positive integer greater than 1, we are given the statements that n is a prime number and n has exactly two factors. n always has two factors if it is prime, then n is a prime number $\implies n$ has exactly two factors. If n has exactly two factors, then it must be prime, so we can see that n has exactly two factors $\implies n$ is a prime number, so n is a prime number $\leftrightarrow n$ has exactly two factors.

Proof by Exhaustion

Introducing Proof by Exhaustion

Proof by Exhaustion is trying all possible variations to prove a statement is true.

We are going to prove a conjecture, which is a statement that we believe to be correct but needs to be proved.

The conjecture is "97 is a prime number". To show this, we need to show that 97 has two factors, 1 and itself. Let's try some numbers.

 $97 \div 2$ is 48.5, clearly 2 is not a factor of 97. $97 \div 3$ is $32.\overline{3}$. Therefore, 3 is not a factor either. We wouldn't need to try 4 since 2 already isn't a factor. Let's try 5. $97 \div 5$ is 19.4, so 5 is also not a factor of 97. We don't need to try 6 since 3 and 2 are both not factors of 97. Now we try 7. $97 \div 7 = 13.85...$, so 7 is not a factor either. It's clear we are just working through all the prime numbers now.

We don't need to go further than this because when we square root 97, we will get a number a little less than 10. Because the square root of 97 is a little less than 10, when we go beyond 10, if we are to find any factor above 10, then there would have to have been a factor less than 10 to multiply with to make 97.

In other words, because there were no factors below the square root of 97, this implies there are no factors larger than the square root of 97, indicating that 97 is a prime number.

Proof by Exhaustion Examples

Let's do three examples.

• No square number ends in an 8

This problem looks at squaring each unit digit. If a number ends in a 1, the square one gets will end in a 1 as well. If the number ends in a 2, and I square it, then this number will end with a 4. If the number ends with a 3, the number will end with a 9. If the number ends with a 4, the squared number will end with a 6. If the number ends with a 5, the squared number will end with a 5. If the number ends with a 6, the squared number will end with a 7, the squared number will end with a 9. If the number ends with a 8, the squared number will end with a 4. If the number ends with a 9, the squared number will end with a 1. If the number ends with a 0, the squared number will end with up with a 0.

As we can see, there are no numbers that can have a unit digit of 8.

• If n is an integer and $2 \le n \le 7$, then $A = n^2 + 2$ is not divisible by 4.

To show this, lets consider all values of n.

n	$n^2 + 2$	divisible by 4?
2 3	6	no
3	11	no
4	18	no
5	27	no
6	38	no
7	51	no

so in none of these cases, none of these values of A are divisible by 4 and we have gone through every single part of this and show that this is never divisible by 4.

• Every integer that is a perfect cube is either a multiple of 9, is 1 more than a multiple of 9, or is 1 less than a multiple of 9.

The first statement says that n=3k, that the number is a multiple of 3, or n=3k-1, one less than a multiple of three, or n=3k-2, a number is two less than a multiple of 3.

Let's start by cubing. $n^3=27k^3$. Because 27 is a multiple of 9, k is an integer and n^3 is a multiple of 9.

Let's look at n=3k-1. $n^3=27k^3-27k^2+9k-1$. If we factor a 9 out, we get $9(3k^3-3k^2+k)-1$. This is clearly 1 less than a multiple of 9.

Now let's look at n=3k-2. $n^3=27k^3-54k^2+36k-8$. If I write the 8 as a -9+1, we can factor out the 9 and get $9(3k^3-6k^2+4k-1)+1$, or one more than a multiple of 9.

Proof by Deduction

Introduction Proof by Deduction

Proof by deduction is all about going through a logical sequence of arguments where you will start with something you know to be true, and subsequently, the next thing is true, etc, until the conjecture is true.

Conjecture: "The sum of any two consecutive odd numbers is a multiple of 4."

We can start with an odd number 2n+1, since 2n is always an even number, so adding 1 will make it odd. If we are looking for the next consecutive odd number, then we can see this as 2n+3. The conjecture talks about the sum of the consecutive odd numbers. Adding them together, we get 4n+4, which factors to 4(n+1), which is always a multiple of 4.

Proof by Deduction Example

Example

For any four consecutive integers, the difference between the product of the last two and the product of the first two of these numbers is equal to their sum.

Let's first label four consecutive integers as n, n+1, n+2, n+3. We have to find the product of the last two and the product of the last two and to find the difference between the two things.

Therefore, we are finding (n+2)(n+3)-n(n+1). Expanding this, we get $n^2+5n+6-n^2-n$. Simplifying, we get 4n+6.

Adding the consecutive integers, we have n + n + 1 + n + 2 + n + 3 = 4n + 6. We have shown that the difference between the products of the last two and the first two is the same as the sum of the four numbers.

12 CHAPTER 1. PROOF

Example

 $k^3 - k$ is divisible by 6 for all integers k > 1.

First we can factor k^3-k to $k(k^2-1)$. We can factor this further as k(k-1)(k+1). Now if we write this in a slightly different order, as (k-1)(k)(k+1). What we have here is the product of three consecutive integers. At least one of these integers therefore will be an even integer, so k^3-k is divisible by 2.

Now because we have three consecutive integers, precisely one of them will be a multiple of 3 because since k > 1, there will always be a number that is divisible by 3 when consecutively counting. Therefore $k^3 - k$ is also divisible by 3.

Because $k^3 - k$ is divisible by 2 and 3, then it is divisible by 6.

Disprove by Counter-Example

Introducing Disproof by Counter Example

Sometimes we are asked to find a single example where a conjecture fails.

Let's start with the conjecture "The value of $n^2 + n + 11$ is prime for all integers n > 0"

When n = 11, we can see that $11^2 + 11 + 11$ which is equal to 11(13) which is evidently not prime.

Disproof by Counter Example Examples

Example

If $x^2 > x$, then x > 1.

When we plug in x = -2, we can see that 4 > -2, but -2 is not greater than 1.

Example

If n is prime, then $n^2 + n + 1$ is prime.

When we plug in n = 7, we get $n^2 + n + 1 = 57$, which is not prime, so this conjecture fails.

Example

The sum of n consecutive integers is divisible by n (where n is a positive integer).

We can easily disprove this in one example. 1+2+3+4=10, which is not divisible by 4.

2 Algebra & Functions

2.1 Indices

Subsets of Real Numbers

Introducing Subsets of Real Numbers

Natural numbers are represented by \mathbb{N} . They are just the counting numbers - like $1, 2, 3, 4, 5, 6, \ldots$ This does not include 0 or negative numbers.

Integers are represented by \mathbb{Z} . This includes all the natural numbers and also includes $0, -1, -2, -3, \ldots$. It is twice the size of natural numbers plus a zero.

Rational numbers are represented by \mathbb{Q} . This would include $\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, -\frac{5}{7}, -\frac{7}{2}$ along with the natural numbers and integers.

The real numbers are represented by \mathbb{R} . This includes everything above, along with things such as $\sqrt{2}$, $\sqrt{3}$, π , e.

The complex numbers are based on if we allowed to square root -1. We define this as i. The complex numbers will include things such as 2i, 3+i.

The Laws of Indices

The Laws of Indices

We should know that $x^2 = x \times x$, and $x^3 = x \times x \times x$. The index tells us how many times we are multiplying x by itself.

When we put the x as x^2 , we can see that $x^2 \times x^2 = x \times x \times x \times x = x^4$ or $(x^2)^2$.

As we can see, when multiplying $x^p \times x^q = x^{p+q}$.

Also when we have $(x^p)^q = x^{pq}$. Of course we know that pq = qp, and ad can also see that $(x^q)^p = (x^p)^q$.

Now let's imagine what we have $x^5 \div x^3 = \frac{x \times x \times x \times x \times x}{x \times x \times x} = x \times x = x^2$.

When we are dividing, then $x^p \div x^q = x^{p-q}$.

Let's say we have $x^{3.5}$. As long as the power is a rational number (in this case $3.5 = \frac{7}{2}$), then we can have an idea on what it is. We can write $x^{\frac{7}{2}}$ as $x^{\frac{1}{2} \times 7}$. This is the same now as $(x^{\frac{1}{2}})^7$.

This shows us our next rule - $x^{\frac{1}{p}} = \sqrt[p]{x}$.

So the above equation can be written as $(\sqrt{x})^7$.

Now let's also consider x^0 . If you think about writing this as x^{2-2} , this equals $\frac{x^2}{x^2}=1$.

Therefore, $x^0 = 1$.

Now we can look at $x^{-1}=x^{4-5}=\frac{x^4}{x^5}$. So from this we get $\frac{x\times x\times x\times x}{x\times x\times x\times x}=\frac{1}{x}$.

This means that $x^{-1} = \frac{1}{x}$.

We have the rule then that $x^{-p} = \frac{1}{x^p}$.

Examples of Negative Indices

Exercise $2^{-3} =$

Exercise $3^{-4} =$

Exercise $5^{-2} =$

Exercise $\left(\frac{1}{4}\right)^{-2} =$

Exercise $\left(\frac{2}{3}\right)^{-3} =$

Examples of Positive Rational Indices

Exercise $36\frac{1}{2} =$

Exercise $81^{\frac{1}{4}} =$

Exercise $\left(\frac{1}{8}\right)^{\frac{1}{3}} =$

Exercise $25^{\frac{3}{2}} =$

Exercise $\left(\frac{8}{27}\right)^{\frac{2}{3}} =$

Examples of Negative Rational Indices

Exercise $8^{-\frac{1}{3}} =$

Exercise $16^{-\frac{3}{4}} =$

Exercise $4^{-\frac{5}{2}} =$

Exercise $\left(\frac{36}{49}\right)^{-\frac{1}{2}} =$

Exercise $(\frac{10000}{16})^{-\frac{5}{4}} =$

More Complicated Examples

Example

$$2^3 \times 8^{-\frac{5}{3}} \times \frac{1}{\sqrt{2}} = 2^k$$
. Find k .

For this problem, you want to write everything in terms of 2 to the power of something. We can rewrite this equation as

 $2^3 \times (2^3)^{-\frac{5}{3}} \times 2^{-\frac{1}{2}}$

So this can be rewritten as $2^3 \times 2^{-5} \times 2^{-\frac{1}{2}}$, and using laws of indices, we can see that this is equivalent to $2^{-\frac{5}{2}}$. So $k=-\frac{5}{2}$.

Exercise Write $\frac{x^2y^5}{\sqrt{x}} \div \frac{x^{\frac{3}{2}}}{y^7}$ as a product of powers of x and y.

Examples of Simplifying Expressions

Exercise $5a^3b^2c \times 6a^8bc^{-3} =$

Exercise $(60a^4b^2c) \div (12a^8b^5c^{-4}) =$

Exercise $\frac{(3x)^3 \times (2x^3)^4}{(6x^8)^2} =$

2.2. SURDS 15

Write in the form of 2^k

Example

Write $\frac{\sqrt{2}}{4^3}$ in the form 2^k .

We can rewrite $\sqrt{2}=2^{\frac{1}{2}}$ and $4^3=(2^2)^3=2^6$. So now we have $\frac{2^{\frac{1}{2}}}{2^6}=2^{-\frac{11}{2}}$.

Exercise Write $8^4 imes \frac{2}{\sqrt[3]{16}}$ in terms of 2^k .

Write in the form of 3^k

Example

Write $\sqrt[3]{3} \times \sqrt[3]{9}$ in terms of 3^k .

We can rewrite this as $3^{\frac{1}{3}} \times (3^2)^{\frac{1}{3}} = 3^{\frac{1}{3}} \times 3^{\frac{2}{3}} = 3^1$.

Exercise Write $\frac{\sqrt[5]{27}}{\sqrt{3}} \times 81$ in terms of 3^k .

Write in the form of 4^k

Example

Write $\frac{16}{\sqrt[4]{5}}$ in terms of 4^k .

This can be rewritten as $\frac{4^2}{4^{\frac{1}{5}}},$ so this is equivalent to $4^{\frac{9}{5}}.$

Exercise Rewrite $2 \times \sqrt[3]{16} \times \sqrt[5]{64}$ in terms of 4^k .

Write in the form 5^k

Example

Rewrite $\frac{125}{\sqrt[3]{25}} \times \sqrt{5}$ in terms of 5^k .

We first start off with $\frac{5^3}{(5^2)^{\frac{1}{3}}} \times 5^{\frac{1}{2}}$.

This is equal to $5^{\frac{7}{3}}\times 5^{\frac{1}{2}}=5^{\frac{17}{6}}.$

Exercise Rewrite $\frac{\sqrt[3]{50}}{\sqrt{625}} \times \sqrt[3]{12.5}$ in terms of 5^k .

2.2 Surds

Simplifying Surds

Introducing Surds and Simplifying Surds

You can quite easily build up a list of what you believe are surds - $\sqrt{1} = 1$, $\sqrt{2}$ and $\sqrt{3}$ are surds, $\sqrt{4} = 2$. If the number under the square root if a square number, then obviously it will not be a surd.

Let's get an example with $\sqrt{8}$. Using our indices knowledge, we can write this as $8^{\frac{1}{2}}=(4\times2)^{\frac{1}{2}}=4^{\frac{1}{2}}\times2^{\frac{1}{2}}$.

This can be written as $\sqrt{4} \times \sqrt{2} = 2\sqrt{2}$.

Now let's look at $\sqrt{12}$. Now we can write this as $\sqrt{6} \times \sqrt{2}$, but there is no real point in doing this, since none of these can be simplified. We are looking for any square numbers that can go in 12. So we can write this as $\sqrt{4} \times \sqrt{3}$ which is equivalent to $2\sqrt{3}$.

This leads us to the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$.

Simplifying Surds Examples

Exercise $\sqrt{18}$

Exercise $\sqrt{200}$

Exercise $\sqrt{48}$

Exercise $\frac{\sqrt{12}}{\sqrt{300}}$

Exercise $\sqrt{24} \times \sqrt{150}$

Adding/Subtracting Surds

Let's start with an example.

If we are given $\sqrt{20} + \sqrt{180}$, we cannot add the two together. In most cases $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$.

We have $\sqrt{4} \times \sqrt{5} + \sqrt{36} \times \sqrt{5}$ when we simplify this. Now we can simplify this as $2\sqrt{5} + 6\sqrt{5}$. Surds can be combined like 'like' terms in algebra. So the answer so this expression is $8\sqrt{5}$.

Here's two more examples to try with the answer given.

Example 1: $\sqrt{63} - \sqrt{28} = \sqrt{7}$

Example 2: $\sqrt{108} + \sqrt{72} = \sqrt{2} + \sqrt{3} + \sqrt{5}$

Example

 $\sqrt{3}(\sqrt{2}+5)$.

Expanding this, we get that $\sqrt{6} + 5\sqrt{3}$. Note that if you can split up a surd, you can also do the reverse and multiply them back together.

Exercise $6(\sqrt{3}+\sqrt{6})$

Exercise $\sqrt{5}(8-\sqrt{7})$

Exercise $\sqrt{6}(\sqrt{15}-2\sqrt{2})$

Exercise $\sqrt{12}(\sqrt{50} + 3\sqrt{10})$

Example

 $(2+\sqrt{2})(3-\sqrt{5})$. This example is similar to above, but with double brackets instead.

So using a technique of your choice, you should end up with $6-2\sqrt{5}+3\sqrt{2}-\sqrt{10}$.

Exercise $(2 - \sqrt{5})(2 + \sqrt{5})$

Exercise $(3 + \sqrt{2})(2 + \sqrt{3})$

Exercise $(\sqrt{2}+1)(\sqrt{3}-\sqrt{5})$

Exercise $(2\sqrt{3} + 3\sqrt{5})(2\sqrt{2} - 5\sqrt{3})$

Rationalising the Denominator

In general, we do not want a surd in the denominator of a fraction such as $\frac{1}{\sqrt{2}}$. We can use a technique known as rationalising the denominator. In order to do this, we want to multiply by $1 = \frac{\sqrt{2}}{\sqrt{2}}$. So when we multiply $\frac{1}{\sqrt{2}}$ by this, we get that the answer is $\sqrt{2}2$.

Exercise $\frac{2}{\sqrt{3}}$

Exercise $\frac{10}{\sqrt{5}}$

Exercise $\frac{9}{2\sqrt{3}}$

Example

Let's try rationalising $\frac{1}{1+\sqrt{2}}$

For this, we must use the identity $x^2-y^2=(x-y)(x+y)$. If we multiply $(1+\sqrt{2})$ by $(1-\sqrt{2})$, we are able to rationalise the denominator in this case.

So multiplying by $\frac{1-\sqrt{2}}{1-\sqrt{2}}$ all the way simplifies to $-1+\sqrt{2}$, which is the rationalised form of what was given.

Exercise $\frac{2}{\sqrt{2}+2}$

Exercise $\frac{3}{4-\sqrt{5}}$

Exercise $\frac{1+\sqrt{2}}{3-\sqrt{2}}$

Exercise $\frac{4+2\sqrt{3}}{3+3\sqrt{2}}$

Challenge Problems

 $\triangle ABC$ has area 5. Find the exact perpendicular height of the triangle.

2. Rationalise the denominator of $\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}$

Problem Solving

2.3 Quadratics

The Difference of Two Squares

Factorising Quadratics

Sketching Quadratics from Factorised Form

Completing the Square

Sketching Quadratics from Completed Square Form

Solving Quadratics

Using the Discriminant

Using the Quadratic Formula

Sketching Quadratics Using the Quadratic Formula

Sketching Quadratic Using a Calculator

Using Quadratic Methods for Solving

2.4 Simultaneous Equations

The Elimination Method

The Substitution Method

Further Simultaneous Equations

2.5 Inequalities

Introducing Inequalities, Set Notation and Interval Notation

Linear Inequalities

Quadratic Inequalities

Discriminant Inequalities

More Inequalities

Double and Triple Inequalities

Representing Inequalities Graphically

2.6 Polynomials & Rational Expressions

Introducing Polynomials

Polynomial Division

The Factor Theorem

Simplifying Algebraic Fractions

Adding and Subtracting Algebraic Fractions

Simplifying using Polynomial Division

2.7 Graphs & Proportion

3 Coordinate Geometry

3.1 Coordinate Geometry

Introduction to Coordinate Geometry

Finding the Midpoint

Finding the Distance between Two Points

Finding the Gradient

The Equation of a Line

Parallel and Perpendicular Lines

Sketching Linear Graphs

Perpendicular Bisectors

Intersections of Lines

An Application of Linear Graphs

3.2 Circles

The Equation of a Circle

Sketching Circles

Circles: Completing the Square

Intersections with Circles

Circle Theorems

Circles: Pependicular Bisectors

Tangents and Normals

3.3 Parametric Equations

Introducing Parametric Equations

Cartesian to Parametric

Graphing Parametric Curves

Parametric to Cartesian

Ellipses

3.4 Parametric Equation Modelling

4 Sequences & Series

4.1 Binomial Expansion

The Factorial Function

Pascal's Triangle

Algebra Problems with nCr

Binomial Expansion

Finding a Coefficient

Approximating using Binomial Expansion

Further Binomial Expansion

The Range of Validity

4.2 Sequences

GCSE Sequences Revision

Inductive Definitions and Recurrence Relations

Describing Sequences

4.3 Sigma Notation

4.4 Arithmetic Sequences

Introducing Arithmetic Sequences

Arithmetic Series

Simultaneous Equation Problems

4.5 Geometric Sequences

Introducing Geometry Sequences

Geometric Series

Sum to Infinity

Simultaneous Equation Problems

4.6 Modelling with Sequences

5 Trigonometry

5.1 Trigonometry

SOHCAHTOA

The Sine Rule

The Cosine Rule

The Area of a Triangle

Radians

Arc Length

Area of a Sector

5.2 Small Angle Approximation

5.3 Trig Graphs

Sketching sin(x), cos(x), and tan(x)

Radians

5.4 Further Trigonometry

Cosec(x), Sec(x), Cot(x)

Sketching cosec(x), sec(x), and cot(x)

Inverse Trigonometric Functions

5.5 Trigonometric Identities

Trigonometric Identities

Further Trigonometric Identities

5.6 Compound Angles & Equivalent Forms

Compund Angle Formulae

Double Angle Formulae

Equivalent Forms

5.7 Trig Equations

Basic Trigonometric Equations

Quadratic Trigonometric Equations

Using tan(x)=sin(x)/cos(x)

Trigonometric Equations with Transformations

6 Exponentials & Logarithms

6.1 Exponentials

Introducing a^x

Introducing e

6.2 Exponential Models

6.3 Logarithms

Introducing Logarithms

Introducing Logarithmic Graphs

Sketching $y = \log_b(x+a)$

Sketching $y = \log_b(x+a) + c$

Introducing the Natural Logarithm

Sketching $y = \ln(x + a)$

SKetching $y = \ln(x+a) + b$

6.4 Laws of Logarithms

The Laws of Logarithms

The Natural Logarithm

6.5 Exponential & Logarithmic Equations

Solving $a^x = b$

Logging Both Sides

Inequalities

Hidden Quadratics

 ${\bf Solving}\,\,e^x=k$

Logarithmic Equations

Solving ln(x)=k

6.6 Reduction to Linear Form

6.7 Exponential Growth & Decay

7 Differentiation

7.1 Differentiation from First Principles

Gradient of a Straight Line

Differentiating Polynomials

Gradients of Gradient Functions

Second Derivatives

Differentiation from First Principles

Convex and Concave

7.2 Differentiation

Differentiating x^n

Differentiating Standard Functions

7.3 Gradients

Gradients of Functions

Tangents and Normals

Stationary Points

Increasing and Decreasing

The Second Derivative Test

Types of Stationary Point

Convex and Concave

Points of Inflection

Points of Inflection of the Normal Distribution

Optimisation

7.4 Further Differentiation

The Chain Rule

Connected Rates of Change

The Product Rule

The Quotient Rule

Choosing Between Rules

Differentiating an Inverse Function

7.5 Implicit Differentiation & Parametric Differentiation

8 Integration

8.1 Fundamental Theorem of Calculus

8.2 Indefinite Integrals

Integrating ax^n

Finding the Constant of Integration

Integrating Standard Functions

8.3 Definite Integrals & Parametric Integration

Finding Areas

Definite Integrals

Areas Between a Curve and a Line

Areas between Two Curves

Parametric Integration

8.4 Integration as the Limit of a Sum

8.5 Further Integration

Reversing the Chain Rule

Integrating by Substitution

Integration by Parts

Integrating ln(x)

Integration by Parts Twice

The Tabular Method for Integration by Parts

Further Integration

- 8.6 Integration with Partial Fractions
- 8.7 Differential Equations
- 8.8 Differential Equations in Context

9 Numerical Methods

9.1 The Change of Sign Method

The Need for Numerical Methods

The Change of Sign Method

9.2 The x=g(x) Method & The Newton-Raphson Method

The x=g(x) Method

The Newton-Raphson Method

9.3 Numerical Integration

Estimating Areas with Rectangles

The Trapezium Rule

9.4 Numerical Methods in Context

10 Vectors

10.1 Introducing Vectors

What is a Vector?
Finding the Vector between Two Points
Vectors in 3D

10.2 Magnitude & Direction of a Vector

The Magnitude & Direction of a 2D Vector Finding the Angle Between two Vectors
The Magnitude of a 3D Vector
The Angle between two 3D Vectors

10.3 Resultant & Parallel Vectors

Resultant Vectors
Parallel Vectors
Collinear Points

10.4 Position Vectors

10.5 Vector Problems

11 Statistical Sampling

The Large Data Set

Types of Sample and Sampling Methods

12 Data Presentation & Interpretation

12.1 Box Plots, Cumulative Frequency, & Histograms

Introducing Data Representation
Box Plots/Box and Whisker Diagrams
Cumulative Frequency Curves
Histograms

12.2 Scatter Graphs

Bivariate Data

The Product Moment Correlation Coefficient

Regression Lines

Interpolation vs Extrapolation

12.3 Central Tendency & Variation

Ungrouped Data: Mean, Mode, Median & Quartiles Grouped Data: Mean, Mode, Median & Quartiles

The Interquartile Range

The Midrange

Comparing Data Sets

Variance and Standard Deviation

Linear Coding

12.4 Outliers & Cleaning Data

13 Probability

13.1 Venn Diagrams, Tree Diagrams, & Two-Way Tables

Basic Probability Concepts

Venn Diagrams

Independent Events / Mutually Exclusive Events

Tree Diagrams

Two-Way Tables

Probability with a Histogram

13.2 Conditional Probability

13.3 Modelling with Probability

14 Statistical Distributions

14.1 Discrete Random Variables & The Binomial Distribution

Introducing Discrete Random Variables

Discrete Probability Distributions as Algebraic Functions

Discrete Uniform Distributions

Cumulative Distribution Functions

The Binomial Distribution

14.2 The Normal Distribution

Introducing the Normal Distribution

Finding Probabilities

The Inverse Normal

Normal to Binomial Problem

Normal to Histogram

Approximating the Binomial Distribution

14.3 Appropriate Distributions

15 Hypothesis Testing

15.1 Introducing Hypothesis Testing

Introducing Hypothesis Testing

Product Moment Correlation Coefficient Hypothesis Testing

Rank Correlation Coefficient Hypothesis Testing

15.2 Binomial Hypothesis Testing

Binomial Hypothesis Testing Finding the Critical Region The Critical Region Method

15.3 Sample Means Hypothesis Testing

Introducing Sample Means Hypothesis Testing

Example 1

Example 2

Example 3

16 Quantities & Units in Mechanics

17 Kinematics

17.1 Displacement, Velocity, & Acceleration

Position vs Displacement vs Distance Velocity vs Speed Acceleration and Deceleration

17.2 Graphs of Motion

Displacement / Time Graphs
Velocity / Time Graphs
Acceleration / Time Graphs
Graphs of Motion

17.3 SUVAT

Deriving the SUVAT Formulae
Using the SUVAT Formulae
Gravity
More Complicated SUVAT Problems
SUVAT in 2D

17.4 Calculus in Kinematics

General Motion in 1D General Motion in 2D

17.5 Projectiles

Introducing Projectiles
Projectiles from the Grond
Projectiles from a Height

18 Forces & Newton's Laws

18.1 Introducing Forces & Newton's First Law

Introducing Forces

Force Diagrams

Resultant Forces

Newton's First Law

18.2 Newton's Second Law

Newton's Second Law

Working with the SUVAT Equations

18.3 Weight & Tension

18.4 Newton's Third Law and Pulleys

Newton's Third Law

Pulleys

Lifts and Scale Pans

18.5 F=ma & Differential Equations

F=ma in Two Dimensions

F=ma as Differential Equations

18.6 The Coefficient of Friction

19 Moments

Introducing Moments
Centre of Mass
Equilibrium of a Rigid Body
Tilting
Non-Parallel Forces with Pivots and Ladders

20 Proof

Introducing Proof by Induction

Sums of Series

Divisibility

Sequences

Matrices

Inequalities

Extras

54 CHAPTER 20. PROOF

21 Complex Numbers

21.1 Introducing Complex Numbers

Introducing Complex Numbers

Solving Polynomial Equations with Real Coefficients

21.2 Working with Complex Numbers

Real and Imaginary Parts

Working with Complex Numbers

21.3 Complex Conjugates

The Complex Conjugate

Complex Conjugate Pairs

21.4 Introducing the Argand Diagram

21.5 Introducing Modulus-Argument Form

Introducing the Modulus and Argument

Modulus-Argument Form

21.6 Multiply and Divide in Modulus-Argument Form

21.7 Loci with Argand Diagrams

Circles

Perpendicular Bisectors

Loci Problems with Circles & Perpendicular Bisectors

Half-Lines

Loci Problems with Circles, Perpendicular Bisectors and Half-Lines

21.8 De Moivre's Theorem

Introducing De Moivre's Theorem

Expansions of $\cos(n\theta)$ and $\sin(n\theta)$

21.9
$$z = re^{(i\theta)}$$

Introducing $z = re^{i\theta}$

Summing Series

21.10 nth Roots of Unity

22 Matrices

22.1 Introducing Matrices

Introducing Matrices

Multiplying Matrices

22.2 The Zero & Identity Matrices

The Zero Matrix

The Identity Matrix

22.3 Matrix Transformations

2D Transformations

3D Transformations

22.4 Invariance

22.5 Determinants

Introducing Determinants

2x2 Matrix Determinants

Negative Determinants and Orientation

3x3 Matrix Determinants

Determinant Problems

22.6 Inverse Matrices

Notation

2x2 Inverse Matrices

Singular Matrices

3x3 Inverse Matrices

22.7 Simultaneous Equations

Two-Variable Simultaneous Equations

Three-Variable Simultaneous Equations

22.8 Geometrical Interpretation

Two Dimensions

Three Dimensions

22.9 Factorising Determinants

23 Further Algebra & Functions

23.1 Roots of Polynomials

23.2 Forming New Equations

Quadratics

Cubics

Quartics

The Substitution Method

23.3 Summations

Introduction

Examples

23.4 Method of Differences

Method of Differences

Method of Differences with Partial Fractions

23.5 Introducing Maclaurin Series

23.6 Standard Maclaurin Series

23.7 Limits and l'Hospital's Rule

Finding a Limit using Maclaurin Series

l'Hopital's Rule

23.8 Polynomial Inequalities

Cubic Inequalities

Quartic Inequalities

23.9 Rational Function Inequalities

Introducing Rational Function Inequalities

Rational Function Inequality Examples

23.10 Modulus of Functions

Modulus of Functions

Solving Equations

Solving Inequalities

24 Further Calculus

24.1 Improper Integrals

Introducing Improper Integrals
Integration Techniques Part 1
Integration Techniques Part 2

24.2 Volumes of Revolution

Introducing Volumes of Revolution Revolution about the x-axis Parametric Equations

24.3 Mean Value

Introducing the Mean Value Examples

24.4 Partial Fractions

Re-Introducing Partial Fractions

Quadratic Factors in the Denominator

24.5 Differentiating Inverse Trig

24.6 Integrals of the Form $\sqrt{a^2-x^2}$ and $1/(a^2+x^2)$

24.7 Arc Length and Sector Area

Arc Length
Surface Area

24.8 Reduction Formulae

24.9 Limits

25 Further Vectors

25.1 Equations of Lines

The Vector Equation of a Line
The Cartesian Equation of a Line

- 25.2 Equations of Planes
- 25.3 The Scalar Product
- 25.4 Perpendicular Vectors

25.5 Intersections

Two Lines Intersecting
Intersection of a Line and a Plane
Distance between Two Lines
Distance from a Point to a Line
Distance from a Point to a Plane

25.6 The Vector Product

Introducing the Vector Product
Using the Vector Product
Distances

26 Polar Coordinates

26.1 Polar Coordinates

Introducing Polar Coordinates

Converting between Polar and Cartesian Coordinates

26.2 Polar Curves

Polar Curves

Limacons

Rhodonea / Rose Curves

Further Polar Curves

26.3 Polar Integration

The Area enclosed by a Polar Curve

Polar Tangents

27 Hyperbolic Functions

27.1 Hyperbolic Functions

Introducing Hyperbolic Functions
Hyperbolic Identities & Equations

27.2 Hyperbolic Calculus

Differentiation & Integration
Differentiation
Integration

27.3 Hyperbolic Inverse

27.4 Hyperbolic Inverse

Logarithmic Forms
Differentiation

27.5 Hyperbolic Integration

Differentiating Standard Forms Integration

27.6 Hyperbolic Identities

Proving "Double Angle" formulae Using Identities

27.7 Hyperbolic Identities

28 Differential Equations

28.1	1st Order Differential Equations - Integrating Factors
Introdu	ction
Integrating Factors	
28.2	1st Order Differential Equations - Particular Solutions
28.3	Modelling
28.4	2nd Order Homogeneous Differential Equations
Introduction	
The Auxiliary Equation	
28.5	2nd Order Non-Homogeneous Differential Equations
28.6	2nd Order Non-Homogeneous Differential Equations
28.7	Simple Harmonic Motion
28.8	Damped Oscillations
28.9	Systems of Differential Equations
28.10	Hooke's Law
28.11	Damping Force

29 Numerical Methods

29.1 Mid-Ordinate Rule & Simpson's Rule

Mid-Ordinate Rule Simpson's Rule

- 29.2 Euler's Step by Step Method
- 29.3 Euler's Improved Step by Step Method

30 Tracing an Algorithm

- 30.1 Tracing an Algorithm
- 30.2 Complexity

31 Bin Packing

- 31.1 Bin Packing
- 31.2 Complexity

32 Sorting Algorithms

- 32.1 Introduction
- 32.2 Quick Sort
- 32.3 Bubble Sort

33 Graph Theory

34 Minimum Spanning Trees

- 34.1 Introduction
- 34.2 Kruskal's Algorithm
- 34.3 Prim's Algorithm
- 34.4 Prim's Algorithm with a Matrix

35 Dijkstra's Algorithm

36 Critical Path Analysis

- 36.1 Critical Path Analysis (CPA)
- 36.2 Precedence Tables
- 36.3 Activity Networks
- 36.4 Dummy Activities

37 Network Flows

- 37.1 Network Flows
- **37.2** Cuts
- 37.3 Supersinks & Supersources

38 Linear Programming

- 38.1 Drawing Inequalities & The Objective Function
- 38.2 Formulating an LP Problem
- 38.3 3-Variable to 2-Variable

39 Simplex Algorithm

40 LP Solvers

- 40.1 Indicator Variables
- 40.2 Shortest Path (Dijkstra's)
- 40.3 Longest Path (CPA)
- 40.4 Network Flows
- 40.5 Critical Path Analysis (Alternative)
- 40.6 Matching
- 40.7 Allocation
- 40.8 Transportation
- 40.9 LINDO

41 PMCC

- 41.1 Bivariate Data
- 41.2 Correlation & Association
- 41.3 The PMCC

96 CHAPTER 41. PMCC

42 Linear Regression

- 42.1 Introduction
- 42.2 Calculating Regression Lines
- 42.3 Interpreting

43 PMCC Hypothesis Testing

- 43.1 PMCC Hypothesis Testing
- 43.2 Effect Sizes

44 Spearman's Rank

- 44.1 Spearman's Rank Correlation Coefficient
- 44.2 Hypothesis Testing

45 Chi-Squared Contingency Table Tests

- 45.1 The Chi-Squared Statistic
- 45.2 Hypothesis Testing

46 Discrete Random Variables

- 46.1 Discrete Random Variables
- 46.2 The Expected Value E(X)
- 46.3 The Variance Var(X)
- 46.4 E(aX+b)=aE(X)+b
- 46.5 $Var(aX+b) = a^2 Var(X)$
- 46.6 E(X+Y) = E(X) + E(Y) and Var(X+Y) = Var(X) + Var(Y)

47 Discrete Uniform Distributions

48 Geometric Distributions

49 Binomial Distributions

50 Poisson Distribution

51 Goodness of Fit Tests

- 51.1 Goodness of Fit Tests
- 51.2 The Uniform Distribution
- 51.3 The Poisson Distribution
- 51.4 The Binomial Distribution
- 51.5 The Left Hand Tail

52 Energy

- 52.1 Introduction to Energy
- 52.2 Conservation of Mechanical Energy
- 52.3 The Work-Energy Principle

118 CHAPTER 52. ENERGY

53 Power

- 53.1 Introduction to Power
- 53.2 Horsepower
- 53.3 Maximum Speed
- 53.4 Work, Energy, & Power

120 CHAPTER 53. POWER

54 Friction

- 54.1 Introduction to Friction
- 54.2 Block Sliding Down a Slope
- **54.3** Friction Examples
- 54.4 Exam-Style Question

55 Momentum & Impulse

- 55.1 Momentum
- 55.2 Impulse

56 Collisions

- 56.1 Conservation of Linear Momentum
- 56.2 The Coefficient of Restitution
- 56.3 Hitting the Ground/Hitting the Wall

57 Moments

- 57.1 Moments The Basics
- 57.2 Couples
- 57.3 Ladders
- 57.4 Pivots/Hinges
- 57.5 Sliding & Toppling

58 Centre of Mass

- 58.1 Introducing CoM
- 58.2 Laminas
- 58.3 Suspending a Lamina
- 58.4 Triangles
- 58.5 Other Shapes

59 Dimensional Analysis

- 59.1 Introducing Dimensional Analysis
- **59.2** Dimensional Consistency
- **59.3** Finding Formulae
- 59.4 Triangles
- 59.5 Other Shapes