unit 3 Problems on Transient Response spuiffed
1. For a sim anshor K And the value stretz) cs+3)
of k to limit steady stake error to lo when
Soin HP to ten Slm is 1+10t + 40+2- Soin Kp = lt acs) 1+cs) = 30
Kv = St s (0) H(0) = 60
Ka = lr s2 (4) 1+(4) = K/6
ess: ess, + ess, 1 ess,
10 = 1 + to + to (5/6)
10 = 40x6
1
K = 4px6 -24
2. Fox the Sm Shown in the fig. obtain the closed loop
T.f. damping ratio, natural freq & expression for the olp response if subjected to unit step isp.
(cs) (S10(S14)) R(s)
SOM) (CS) = 20/(S+1)(S+9) 20
(S+1) (S+4) (S+4) + 20
$= \frac{20}{5^2 + 55 + 24}$

com - Co a
con = TKI 2 & con = K K & & = K K K = 1 TK K & A TK K & = 1 TK K & E
Mp arki = a Kike
Mp = = 114/1- = 2 1K1 K2 Y. Mp = = 174/1- = 2 1 100
X100
Q.25 = - 14/1-4- lin on both sides
len on both sides
- TY E = 0.4037
To- 17 17-9- 9
TP = TT = TT
3-11-E
4 = TT = con = 0.85 sy tall see
wn (1-6.405)2 con = = = = = = = = = = = = = = = = = = =
$\omega_{n} = R_{1}$ $\kappa_{1} = \omega_{n}^{2} = (6.888y)^{2} = 0.7369$
K1 = Wn = (0.8584) = 0.7369
€ = 1 K1 K1 = K2 = 09405
4. A sim is given by a diffunctial Egn dig tudy 184.
Determine all Ame domain specifications for unit
Step 1/P
Soll) 32 y(1) + 45 Y(1) + 8 Y(1) = 8 x(1)
$\frac{y(s)}{x(s)} = \frac{8}{s^2 + 4s + 8}$
xcs) 52+45+8
wn= 18 = 2.83 radl& 4 = 0.7067
wd = 2-002
TP = 1 = 1 = 1 57 See
MP = 4-351
Ts = 4 = 2se
ξωv.

0= Ty.
CLES = 1-141 = 2 sin (set + 2/4).
Service of a lawing cross = 15 House
i) chanactustic ego vii) woo & & (iii) Time at which 1st undushoot will ocem
(iv) Time reciped of oscillations
(v) no of cycles of will perform before
Settling alown $\frac{Schling}{Sch} = \frac{15}{(S+1)(S+3)} = \frac{15}{15}$
0n= (s= 4.2426
£ = 0.4714
- n=1 toushoot
n= 2 ystundushool
n=3 and overlest
$Tp = \frac{n\pi}{\omega d} = \frac{2\pi}{\omega d} = 1.6792$
time puriod of oschuation.
alanpeed seeg of oscillation: and = 29
T= 20 = 1.6791 7.
for 1 cyclu off will take 1.6792 see

	no of ceyeles of will newform
	no: of cycles of will pendorn. Total no: of cycle = 2 = 1,191. fd = 1 = 0.5955 Hz
6.	A second order sin is represented by the
11.00	ICS) - JS2+ FS+K I step ip of lown is applied to the slm a the ust results are
	Defermine the value of J, f XK
Sol)	$\frac{Q(S)}{TeS} = \frac{1}{S^2 + f_S + k_S}$ $wn = (k_S) = 24 \text{ fm} = f_S = 4 = \frac{f_S}{2 \text{ fg}} = \frac{1}{3} \text{ fg}$
	E = f & E & E & E & E & E & E & E & E & E &
	Hp = 6x = 0.06 . 9 = 0.667
	TP = TT ad = 1 see

2	
	Step ilp Jones
-	I(S) = 10/5
	10
	Q182= S(552+18+k)
	Steady state of = St SQ(S)
	0.5 = ll \$10 5-20 B(552+165+18)
	5-20 B(552+18+18)
	0.5. = . 10 K
	K = 10 = 20.
	att2 4.2165 = PR 5 = 1.1249
	0.667 = f = 6.3274.
7. A	sim has the pollowing transfer tunction (18) - 20 Res) - 5+10
cost	r zeus initial conditions. Sketch the response
2017)	(CS) - 20 ILT Res) 5+10.
	Res) = 20 FLT (ct) = 20 = 10t-
	impuse 20e
	(B) = 20 St10
	S+10

0 = fan (1-& - 1-042
(U+) - 1- 1.154 = lot sin(17.32++1
(i) KV = It S (x (x))+(y) = It S x k S = 0
Kv= 400 = 20
- (1) es = 1/20 = 0.05
eys = 0.02
$0.02 = \frac{1}{kv} = \frac{1}{\binom{k}{20}}$
0.02 = 20
9. A SIM has 30%, ourshoot or settling time of
i) The transfer function is parts beauty
all response (Assume ess as 2%)
SOID) HP = = 14/1-42 0-3 = 14/1-42
4 = 0.358
Ts = 4 con = 2.2346 tad /sec

$TF = \frac{\omega n^2}{5^4 2 \xi \omega n s + \omega n^2} = \frac{5}{5^2 + 16 s + 5}$
wd = wn (1-42 = 2088)
TP = 1 = 1-5045 see
0 = tan ((1-42) = 1-205 rack
Olp tesponse
$C(t) = 1 - \frac{e^{2t} \sin(t)}{t^{-\frac{n}{2}}} \sin(t)$
cur) = 1 - 1-0708 = sin(2-0881t + 1.205)
10. The open loop transful tunction of a unity FBCS 15 gluen by Gres) = K SEST+1)
i) By what factor the ampelified gain k should be multiplied so that demping ratio is increased from 0.2 to 0.8
1i) By what factor the time constant T should be onel tipued so that damping valio is recluded from 0.6 to 0.3
$\frac{SO(D)}{R(S)} = \frac{K}{TS^{2}+S+K} = \frac{K/T}{S^{2}+\frac{5}{7}+\frac{1}{7}}$

	con= (ky 24 wn= /7
Cash	i) \q_1 = 0.2 K= K1 \omega \omega \omega \qq \qu
	0,2 = 1 0.8 = 1 26K,T 2 K2T
	0.2 - 2 (KIT 0.8 - /2 (KIT
	16 = K2 1 K2 = 1/6 K1.
(1)	41 = 0.6 T=T1 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	0.6= 1 26KT, 26KT2
	0.6 = 872 0.3 = 77, 2 = 72
	4= T2 = 4T)

Scanned by CamScanner