

PROGRAMACIÓN

Unidad N° 1: El proceso de programación: Etapas en la resolución de problemas con computadora. Algoritmos. Formas de reducción de complejidad de problemas del mundo real.

2022

Lic. Mariela A. Velázquez

Repasemos lo visto

Descripción de la El diseño del forma en que se algoritmo se realiza debe realizar una usando un **PSEUDOCÓDIGO** tarea o un proceso Algoritmos Características: Estrategia que REFINAMIENTO Tiene un nombre, permite puede o no tener descomponer una entrada, tiene jerárquicamente un una salida. Las problema largo y entradas se deben complejo en leer y las salidas se subproblemas más pequeños deben escribir TOP-DOWN. Cátedra de Programación

Comenzamos!!!

Cátedra de Programación

El proceso de programación

Comencemos con algunas preguntas ...

¿Cómo se resuelve un problema del mundo real con una computadora?

¿ Cómo se expresa la solución al problema planteado?

¿Cómo se reduce la complejidad de los problemas ?

Cátedra de Programación

El proceso de programación

El programador debe realizar algunos procesos intelectuales

Ejemplo

Analicemos el proceso a través de un ejemplo

En una Universidad privada se ha establecido un programa que permita retener a los estudiantes en la casa de altos estudios. Para esto se tiene en cuenta las siguientes condiciones; el estudiante debe cursar 4 materias en cada período:

- Si el promedio obtenido en el último período es mayor o igual a 9, se hará un descuento del 20% sobre la cuota.
- Si el promedio es menor a 9 debe pagar la cuota completa.

Además se debe calcular el total a pagar por cada estudiante según el medio de pago:

- Si paga con transferencia bancaria, se hace un descuento del 5%.
- Si paga con débito, la cuota no recibe modificaciones.
- Si paga con tarjeta de crédito, se aplica un interés del 10%.

La institución desea saber cuanto debe pagar cada alumno, y cuanto es el monto total recaudado en un numero no determinado de estudiantes.

Diseñe una solución modular que resuelva el problema dado.

Abstracción

Interpretar los aspectos esenciales de un problema y expresarlo en términos precisos.

Obtengamos los aspectos esenciales del problema

• ¿Qué debo calcular?

La cuota que deberá pagar cada alumno y la recaudación total.

- ¿De qué depende el calculo?
 - Del promedio del alumno y el método de pago.
- ¿Tiene importancia el periodo?

Para realizar el calculo no es relevante el periodo en el que se encuentra.

 ¿El proceso se realizará más de una vez?

Si, un número indeterminado.

Modelización del problema

¿Cuáles serán los datos necesarios para procesar?

- Promedio del alumno
- Medio de pago
- Valor de la cuota
- DNI: dato que lo utilizo para marcar el final de una secuencia.

Simplificar su expresión, encontrando sus aspectos principales, los datos que se habrán de procesar y el contexto.

Especificación del problema real

Determinar en forma clara y concreta el


```
FUNCION CUOTAS(promedio, valorCuota, medioPago): real+, real+, caracter → real+
    SI (promedio >=9) ENTONCES
              cuotaFinal ← valorCuota *0,8
    SINO
              cuotaFinal ← valorCuota
    FIN SI
    SEGUN (medioPago)
              'T': cuotaFinal ← cuotaFinal * 0,95
              'C': cuotaFinal ← cuotaFinal + (cuotaFinal*0,1)
    FIN SEGUN
    RETORNA (cuotaFinal)
```

```
FIN Función
Algoritmo Universidad
ENTRADA: dni: entero+, nota1,nota2, nota3, nota4, valorCuota: reales+, medioPago:
carácter {T= transferencia, D= debito, C= credito}
SALIDA: totalRecaudado, cuotaTotal: real+
Vble AUX: promedio: real+
A0- totalRecaudado ← 0
A1- LEER(dni, valorCuota)
A2- MIENTRAS(dni <>0)
               LEER(nota1, nota2, nota3, nota4, valorCuota, medioPago)
              promedio ← (nota1+ nota2+ nota3+ nota4)/4
               cuotaTotal ← CUOTAS(promedio, valorCuota, medioPago)
               ESCRIBIR (cuotaTotal)
               totalRecaudado \leftarrow totalRecaudado + cuotaTotal
               LEER(dni)
   Fin_mientras
A3- ESCRIBIR (totalRecaudado)
A4- PARAR
```

Expresión de soluciones ejecutables en la PC.

Profundicemos este proceso...

Etapas de Resolución de Problemas

5. Pruesus

Análisis del problema.

La importancia del contexto:

La definición del contexto es importante para analizar y diseñar la solución usando computadoras.

Impone restricciones y consideraciones.

Diseño de la solución

Descomposición – Modularización:

Se usará la metodología top-down (arriba-abajo) de descomposición de problemas para desarrollar el sistema de software.

Se obtendrán módulos que deberán estar ligados entre si para obtener la solución final.

Especificación del Algoritmo

- □ Cada uno de los módulos habrá de tener su propio algoritmo.
- □ La elección del algoritmo es importante, de ella depende la eficiencia de la solución.

Escritura de programas

□ Un algoritmo es una especificación simbólica que debe convertirse a un programa real sobre un lenguaje de programación concreto.

Verificación

Antes de dar por finalizada cualquier labor de programación, es fundamental preparar un conjunto de datos representativos del problema que permiten probar el programa cuando se ejecute, y así verificar resultados. Para esto se realizan:

- Pruebas (testing)
- Depuración
- □ Alternativas de diseño y estilo

Importante!: Cuanto mas exhaustivas sean las pruebas mayor seguridad se tendrá que el funcionamiento del programa es correcto, por lo tanto menor posibilidad de errores.

La buena programación...

Un buen estilo hace que un programa sea fácil de leer e interpretar.

Los principios básicos : sentido común, lógica directa, expresión natural, nombres con significado, comentarios útiles, entre otros.

Tres criterios básicos a tener en cuenta

Correctitud...
Resultados deseados.

Tres criterios básicos a tener en cuenta

Claridad

Tres criterios básicos a tener en cuenta

Eficiencia....
rentabilidad en
función de tiempo
y espacio


```
#include <stdio.h>
int main()
   printf("Hasta la próxima clase!!\n");
   return 0;
```