VECTORS

KATTELA SHREYA

December 2023

CBSE VECTORS - CLASS 10 AND 12

1. The	distance	between	the	points	(m,-n)) and ((-m, n)) is
--------	----------	---------	-----	--------	--------	---------	---------	------

- (a) $\sqrt{m^2 + n^2}$
- (b) m + n
- (c) $2\sqrt{m^2 + n^2}$
- (d) $\sqrt{2m^2 + 2n^2}$

2. The point on the x-axis which is equidistant from (-4,0) and (10,0) is

- (a) (7,0)
- (b) (5,0)
- (c) (0,0)
- (d) (3,0)

3. The centre of a circle whose end points of a diameter are (-6,3) and (6,4) is

- (a) (8, -1)
- (b) (4,7)
- (c) $\left(0, \frac{7}{2}\right)$
- (d) $(4, \frac{7}{2})$

- 4. AOBC is a rectangle whose three vertices are $\mathbf{A}(0, -3)$, $\mathbf{O}(0, 0)$ and $\mathbf{B}(4, 0)$. The length of its diagonal is ______.
- 5. Find the ratio in which the y axis divides the line segment joining the points (6, -4) and (-2, -7). Also find the point of intersection.
- 6. Show that the points (7, 10), (-2, 5) and (3, 4) are vertices of an isosceles right triangle.
- 7. The area of a triangle formed by vertices **O**, **A** and **B**, where $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{OB} = -3\hat{i} 2\hat{j} + \hat{k}$ is
 - (a) $3\sqrt{5}$ sq. units
 - (b) $5\sqrt{5}$ sq. units
 - (c) $6\sqrt{5}$ sq. units
 - (d) 4 sq. units
- 8. The coordinates of the foot of the perpendicular drawn from the point (2, -3, 4) on the y axis is
 - (a) (2,3,4)
 - (b) (-2, -3, -4)
 - (c) (0, -3, 0)
 - (d) (2, 0, 4)
- 9. The angle between the vectors $\hat{i} \hat{j}$ and $\hat{j} \hat{k}$ is
 - (a) $\frac{-\pi}{3}$
 - (b) 0
 - (c) $\frac{\pi}{3}$
 - (d) $\frac{2\pi}{3}$
- 10. If $|\overrightarrow{a}| = 4$ and $-3 \le \lambda \le 2$, then $|\lambda \overrightarrow{a}|$ lies in
 - (a) [0, 12]
 - (b) [2, 3]
 - (c) [8, 12]

(d) [-12, 8]

- 11. The distance between parallel planes 2x+y-2z-6=0 and 4x+2y-4z=0 is _____ units.
- 12. If P(1, 0, -3) is the foot of the perpendicular from the origin to the plane, then the cartesian equation of the plane is ______.
- 13. Find the coordinates of the point where the line $\frac{x-1}{3} = \frac{y+4}{7} = \frac{z+4}{2}$ cuts the xy-plane.
- 14. Find a vector \overrightarrow{r} equally inclined to the three axes and whose magnitude is $3\sqrt{3}$ units.
- 15. Find the angle between unit vectors \overrightarrow{a} and \overrightarrow{b} so that $\sqrt{3}\overrightarrow{a}$ \overrightarrow{b} is also a unit vector.
- 16. Show that the plane x 5y 2z = 1 contains the line $\frac{x-5}{3} = y = 2 z$.
- 17. Find the equation of the plane passing through the points (1, 0, -2), (3, -1, 0) and perpendicular to the plane 2x y + z = 8. Also find the distance of the plane thus obtained from the origin.