D _m = d _m (X, X _m), se d _m : $\mathbb{R}^m \to \mathbb{R}^n$ è regolore posso risolire alla distribuzione di D _m OSS. Lo distribuzione di uma statistica D _m dipende dal parametro solo ottravarizo il compione ES. X X _m estrotto da $X \sim N(\mu, \sigma^2)$ extrambi incogniti So _m = $\frac{1}{m} \sum_{k=1}^{m} (x_k - \mu)^k \times S_k^2 = \frac{1}{m} \sum_{k=1}^{m} (x_k - \bar{x}_m)^k$ incognita Nom il uma statistica perchà mon dipende da $\theta = (\mu, \sigma^2)$ Solo attravaria $X_1 = X_1 = X_2 = X_1 = X_2 = X_2 = X_1 = X_2 =$	Ci	121	ztri	ωθj.	aur	.O	ما	Qa	S	tati	st, e	~	-	ora	met	rico		૦૫૫૦	م	SUF	pom	an	0	di	6	mos	യശ	F	6	ന്ന	مىنە	ઢાં	၉လ	тот	etri
Po to are discrete RECENTION: (1) X = R(8) B = (0,0 C R	9	ϵ	R ^K	<i>8</i> (1	(=1,2	2)							1							·															
ECENTRIC. (1) X PR (0) De (0) E R K-1 R (0) = \begin{array}{cccccccccccccccccccccccccccccccccccc	V	/	€ (.×>	se	0	vs. 0	onti	melo																										
ECENTRIC. (1) X PR (0) De (0) E R K-1 R (0) = \begin{array}{cccccccccccccccccccccccccccccccccccc	^		ο .	7	00	٦:	Cra	+_																											
Production of the state of the			TĐ C		٠,	G	مدرو	LEA.																											
(2) X N (p, a) D = (p, a) E R E E X P(N = 1 2p) 1 4 4 2p) De = Doktisio IN (0) MARIA IL PARAMETRO D See (X X m) c.c. estratte da fe meter a mieuro di D e De E R alliere (X X m) c.c. estratte da fe meter a mieuro di D e De E R alliere P(X X m = x 10) = g (x) g (xm) P(X X m = x 10) = g (x) g (xm) Discrete Discret	ESEMPIC	s: (4	ı) }	(√ B	e (O)			9 €	(0,1)	c R	k	-1																						
(2) X N (p, a) D = (p, a) E R E E X P(N = 1 2p) 1 4 4 2p) De = Doktisio IN (0) MARIA IL PARAMETRO D See (X X m) c.c. estratte da fe meter a mieuro di D e De E R alliere (X X m) c.c. estratte da fe meter a mieuro di D e De E R alliere P(X X m = x 10) = g (x) g (xm) P(X X m = x 10) = g (x) g (xm) Discrete Discret				ſ	×		v																												
(2) X N (p, a) D = (p, a) E R E E X P(N = 1 2p) 1 4 4 2p) De = Doktisio IN (0) MARIA IL PARAMETRO D See (X X m) c.c. estratte da fe meter a mieuro di D e De E R alliere (X X m) c.c. estratte da fe meter a mieuro di D e De E R alliere P(X X m = x 10) = g (x) g (xm) P(X X m = x 10) = g (x) g (xm) Discrete Discret		Poc	O =	∫ €	์ (J. ล	– Θ) [™]		×.	= 0, <u>1</u>																										
for = 1/2 mer 1 / 2 mer 1 / 2 mer) X ∈ R Do = Documbro IN COI VARAN IL PARAMETRO D See (X X.n) c.c. extratte da fo moto a meuo di 0 ∈ Do CR' allerra f(x X.n) c.c. extratte da fo moto a meuo di 0 ∈ Do CR' allerra P(X X.n) c.c. extratte da fo moto a meuo di 0 ∈ Do CR' allerra P(X					0			0.	ZLIBV																										
Do = DOMINIO IN COI VARIA IL PARAMETRO D Se (X X) c.c. actratto da fo moto a meuo di D E Do CR ^K allore \$\int_{(X X)}^{\int}(x x) = \int_{0}^{\int}(x \int_{0}^{\int}) = \int_{0}^{\in		(2														K=Z																			
Do = DOMINIO IN COI VARIA IL PARAMETRO D Se (X X) c.c. actratto da fo moto a meuo di D E Do CR ^K allore \$\int_{(X X)}^{\int}(x x) = \int_{0}^{\int}(x \int_{0}^{\int}) = \int_{0}^{\in				fo	(x) =		-	ex	}	1 (x.	μ) ² }	X	(€ R																						
Se (X_*, X_*) c.c. sotratto da f_0 moto a meuo di $0 \in b_0 \in \mathbb{R}^n$ allore $f_{(X_*, X_*)}(x_*, x_*) = f_0(x_*) f_0(x_*) \text{Ass. cours.}$ $P(X_*, X_*) = f_0(x_*) f_0(x_*) \text{Ass. cours.}$ $P(X_*, X_*) = f_0(x_*) f_0(x_*) \text{Discrete}$ $P(X_*, X_*) = f_0(x_*) f_0(x_*) f_0(x_*) f_0(x_*) \text{Discrete}$ $P(X_*, X_*) = f_0(x_*) f_0(x_*) $		A																																	
$f(x_1x_m) (x_1x_m) = f(x_1x_m) = f(x_1$		υę)	DO	11011			01	VATE	(15)	L FR	KHMC	IKO	8																					
$f(x_1x_m) (x_1x_m) = f(x_1x_m) = f(x_1$		Se	(x	4	Χ~)	ے (. c.	est	iratt		da	€e	m	oto	a	m	الدد		Ji €	€)	Se ⊂	RK	all	oro.											
P(X=xX_m=x_10) = $\rho_{\rm e}(x)\rho_{\rm e}(x_{\rm m})$ biserate Description of the complex cosmology $\rho_{\rm e}(x_{\rm m})$ biserate Description of $\rho_{\rm e}(x_{\rm m})$ and $\rho_{\rm e}(x_{\rm m})$ biserate Description of $\rho_{\rm e}(x_{\rm m})$ and $\rho_{\rm e}(x_{\rm m})$ biserate Description of $\rho_{\rm e}(x_{\rm m})$ and $\rho_{\rm e}(x_{\rm m})$ biserate Description of $\rho_{\rm e}(x_{\rm m})$ biserate																																			
OSS Se Dm à uma statistica del compiene cosmole X Xm estretto do f_0 o			¥.	(×,	. X _m)	(x		x., E	·) <u>-</u>	fe	(×a) .	· · fe	(×m)		Ass.	Con																			
OSS Se Dm à uma statistica del compiene cosmole X Xm estretto do f_0 o			P	(X,=	X	_ X	, m= }	<_10) =	D (×.	.)	P_ (x_	, ,	Discr	zto.																				
D _m = d _m (X, X _m), se d _m : $\mathbb{R}^m \to \mathbb{R}^m$ à regolore posso risoline alla distribuzione di D _m C ⁴ a invartibile (imiattiva) OSS. Lo distribuzione di uma statistica D _m dipende dale parametro solo ottrovarso il compione ES X X _m astrotto d _m X \sim N(μ , σ ²) autrombi incogniti S ² = $\frac{1}{m} \sum_{k=1}^{m} (X_k - \mu)^2 \times S^2 = \frac{1}{m-1} \sum_{k=1}^{m} (X_k - \overline{X}_m)^4$ Nom è uma ototistica perchà mon dipende da $\theta = (\mu, \sigma^2)$ Solo attraverso $X_1 X_m$ Ora $X_1 X_m$ c.e. astratto da $X \sim$ N(3, σ ²) N(μ , σ ²) com μ = 3										10		18																							
DSS. La distribuzione di una statistica Dm dipende dal porametro solo attravario il compione. ES. X X_m estretto da $X \sim N(\mu, \sigma^2)$ entrombi incogniti $S_{0,m}^2 = \frac{1}{m} \sum_{k=1}^m (X_k - \mu)^2 = S_m^2 = \frac{1}{m} \sum_{k=1}^m (X_k - \bar{X}_m)^2$ Incognito Nom il una otatistica perchi mon dipende da $\theta = (\mu, \sigma^2)$ solo attraverso $X_1 X_m$ Dra $X_1 X_m$ c.c. estratto da $X \sim N(2, \sigma^2)$ $N(\mu_0, \sigma^2)$ com $\mu_0 = 3$	<u>0ss</u>	<u>ح</u> و	1)m	è	Ume	s s	tatio	tica	ද්ශ) c	mpi	one	Ce	اعدو	De	Х,	Xس	ಲ್ಕ4	rott.		da	40	0	Po										
DSS. La distribuzione di una statistica Dm dipende dal porametro solo attravario il compione. ES. X X_m estretto da $X \sim N(\mu, \sigma^2)$ entrombi incogniti $S_{0,m}^2 = \frac{1}{m} \sum_{k=1}^m (X_k - \mu)^2 = S_m^2 = \frac{1}{m} \sum_{k=1}^m (X_k - \bar{X}_m)^2$ Incognito Nom il una otatistica perchi mon dipende da $\theta = (\mu, \sigma^2)$ solo attraverso $X_1 X_m$ Dra $X_1 X_m$ c.c. estratto da $X \sim N(2, \sigma^2)$ $N(\mu_0, \sigma^2)$ com $\mu_0 = 3$		Dw	<u>-</u> d	(X		X~)	,	se	d	. (R'''—	> R"	هٔ	ንዉ	Polo	u	pos	so	risol	ire ~1	aQ(<u> </u>	ರ್ಷನ	trib	υZìon	e	dن	D	·~						
ES. $X_1 X_m$ estrotte de $X \sim N(\mu, \sigma^2)$ entroubi incogniti $S_{0,m}^2 = \frac{1}{m} \sum_{k=1}^{m} (x_k - \mu)^2 \times S_m^2 = \frac{1}{m-1} \sum_{k=1}^{m} (x_k - \overline{x_m})^2$ Incognite Nom i uma otatistica perchia mem dipende da $\theta = (\mu, \sigma^2)$ Solo attraverso $X_1 X_m$ Ora $X_1 X_m$ c.c. entrotte de $X \sim N(3, \sigma^2)$ $N(\mu_0, \sigma^2) \text{ com } \mu_0 = 3$ $S_{0,m}^2 = \frac{1}{m} \sum_{k=1}^{m} (x_k - \mu_0)^2$																				ر	∧آ ع	rest	i bile	(im	iettiv	(a)									
ES. $X_1 X_m$ estrotte de $X \sim N(\mu, \sigma^2)$ entroubi incogniti $S_{0,m}^2 = \frac{1}{m} \sum_{k=1}^{m} (x_k - \mu)^2 \times S_m^2 = \frac{1}{m-1} \sum_{k=1}^{m} (x_k - \overline{x_m})^2$ Incognite Nom i uma otatistica perchia mem dipende da $\theta = (\mu, \sigma^2)$ Solo attraverso $X_1 X_m$ Ora $X_1 X_m$ c.c. entrotte de $X \sim N(3, \sigma^2)$ $N(\mu_0, \sigma^2) \text{ com } \mu_0 = 3$ $S_{0,m}^2 = \frac{1}{m} \sum_{k=1}^{m} (x_k - \mu_0)^2$	<u> </u>	La	9	istr	boz	ione	2	لخ	Um.	0	stat;	stice	.	D.		dip	ude	d	ما	ρου	ome	tro	50	م	04	trove	ત્ર ૭ ૦	iQ	cı	amp	ome				
$S_{0,m}^{2} = \frac{1}{M} \sum_{k=1}^{m} (K_{K} - \mu)^{2} \times S_{m}^{2} = \frac{1}{M} \sum_{k=1}^{m} (K_{K} - \overline{X}_{m})^{2}$ $Nom \text{ is time partial perchain more discussed do } 0 = (\mu, \sigma^{2}) \text{ Solo office }$ $N(\mu, \sigma^{2}) \text{ com } \mu_{0} = 3$ $S_{0,m}^{2} = \frac{1}{M} \sum_{k=1}^{m} (X_{K} - \mu_{0})^{2}$ $N(\mu, \sigma^{2}) \text{ com } \mu_{0} = 3$																																			
Now it was obstitute perchis man dipende do $\theta = (\mu, \sigma^2)$ solo attraverso $\chi_1 \dots \chi_m$ Ora $\chi_1 \dots \chi_m$ c.c. extratto do $\chi \sim N(3, \sigma^2)$ $N(\mu_0, \sigma^2)$ com $\mu_0 = 3$ $S_{0,m}^2 = \frac{1}{m} \sum_{\kappa=1}^m (\chi_{\kappa} - \mu_0)^2$	Es.	Χ	Κ ~	೬೮	trott.	,	da	Χ ^	N(+	1, 62	ء (utro	mbi	im	mga	:ti																			
Now it was obstitute perchis man dipende do $\theta = (\mu, \sigma^2)$ solo attraverso $\chi_1 \dots \chi_m$ Ora $\chi_1 \dots \chi_m$ c.c. extratto do $\chi \sim N(3, \sigma^2)$ $N(\mu_0, \sigma^2)$ com $\mu_0 = 3$ $S_{0,m}^2 = \frac{1}{m} \sum_{\kappa=1}^m (\chi_{\kappa} - \mu_0)^2$	5°2	-	1	<u>~</u> (X _K - 1	,)²	≠ S.	2	1	Ë	(X _K -	<u>x</u>)²																							
Now it was obstitute perchis man dipende do $\theta = (\mu, \sigma^2)$ solo attraverso $\chi_1 \dots \chi_m$ Ora $\chi_1 \dots \chi_m$ c.c. extratto do $\chi \sim N(3, \sigma^2)$ $N(\mu_0, \sigma^2)$ com $\mu_0 = 3$ $S_{0,m}^2 = \frac{1}{m} \sum_{\kappa=1}^m (\chi_{\kappa} - \mu_0)^2$	- 9,**		m	k= 1	1	~ശഉ	mits		m-1	K=1	<u> </u>	Si	, È	νm	s S	tatat	ce_																		
$S_{0,m}^{2} = \frac{1}{m} \sum_{\kappa=1}^{m} (\chi_{\kappa} - \mu_{0})^{2}$			N,	am	à i	ാനക	94	4104	tion	Pe	nchè	നം	m (سعونا	ځو	da	e) <u>-</u> (_}	(, o ²)	Ş	olo	م	Hra	(ers	×	4	χ								
$S_{0,m} = \frac{1}{m} \sum_{\kappa = 1} \left(\chi_{\kappa} - \mu_{0} \right)^{\epsilon}$	Ora	Χ,	٠	Χw	c.0		estra	2H2	له ا	la .	X ~	<i>N</i> (3	3,0	²) ` ,	١ ٢	2.	\																		
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\).m -	1	5	(X,	- µ.)2							1	, (μ.	, σ	<i>)</i> c	om	μ. =	: 3															
Adenso è una statistica, (m-1) 50 NON È UNA STATISTICA	Adessi		è,	Jma	∿4	oti.	stic	o .,	(0	o - 1)	5m	N	bu	Èι	NA	آک	ATIS	TICA																	