

Report No: CCISE180304704

FCC REPORT

Applicant: HUNG WAI HOLDINGS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin,

Hong Kong

Equipment Under Test (EUT)

Product Name: Android player main board with Wireless Module

Model No.: MOD-A18RK3188MBA-00

FCC ID: 2AB6Z-A18RK31

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 15 Mar., 2018

Date of Test: 15 Mar., to 10 Apr., 2018

Date of report issued: 10 Apr., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Apr., 2018	Original

Tested by: Mike OU Date: 10 Apr., 2018

Test Engineer

Reviewed by: Date: 10 Apr., 2018

Project Engineer

3 Contents

		Page
1 (COVER PAGE	1
2 V	/ERSION	2
3 (CONTENTS	3
	FEST SUMMARY	
	GENERAL INFORMATION	5
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF E.U.T.	
5.3	TEST ENVIRONMENT AND TEST MODE	
5.4	DESCRIPTION OF SUPPORT UNITS	
5.5	MEASUREMENT UNCERTAINTY	
5.6	RELATED SUBMITTAL(S) / GRANT (S)	
5.7	LABORATORY FACILITY	8
5.8	LABORATORY LOCATION	8
5.9	TEST INSTRUMENTS LIST	9
6 T	FEST RESULTS AND MEASUREMENT DATA	10
6.1	Antenna requirement	10
6.2	CONDUCTED EMISSION	
6.3	CONDUCTED OUTPUT POWER	14
6.4	Occupy Bandwidth	16
6.5	Power Spectral Density	31
6.6	BAND EDGE	
6.7		
•	S.7.1 Restricted Band	
_	5.7.2 Unwanted Emissions out of the Restricted Bands	
6.8	FREQUENCY STABILITY	82
7 T	TEST SETUP PHOTO	84
a F	FUT CONSTRUCTIONAL DETAILS	85

Test Summary

Test Item	Section in CFR 47	Test Result			
Antenna requirement	15.203 & 15.407 (a)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)	Pass			
26dB Occupied Bandwidth	15.407 (a) (5)	Pass			
6dB Emission Bandwidth	15.407(e)	Pass			
Power Spectral Density	15.407 (a) (1) (iv) & (a) (3)	Pass			
Band Edge	15.407(b)	Pass			
Spurious Emission	15.407 (b) & 15.205 & 15.209	Pass			
Frequency Stability	15.407(g)	Pass			
Pass: The EUT complies with the essential requirements in the standard.					

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI HOLDINGS LIMITED
Address:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/ Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address:	3rd floor, NO. 1, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Product Name:	Android player main board with Wireless Module
Model No.:	MOD-A18RK3188MBA-00
Operation Frequency:	Band 1: 5180MHz-5240MHz,
	Band 4: 5745MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11acH20/802.11n20: 4, 802.11n40/802.11acH40: 2, 802.11acH80: 1 Band 4: 802.11a/802.11acH20/802.11n20: 5, 802.11n40/802.11acH40: 2, 802.11acH80: 1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz,
	802.11ac: 20/40/80MHz
Modulation technology	BPSK, QPSK, 16-QAM, 64-QAM
(IEEE 802.11a):	
Modulation technology	BPSK, QPSK, 16-QAM, 64-QAM
(IEEE 802.11n):	
Modulation technology	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
(IEEE 802.11ac):	
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed	MCS0: 6.5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps,
(IEEE 802.11n20):	MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps,
(IEEE 802.11n40):	MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	External Antenna
Antenna gain:	2.0 dBi
Power supply:	AC 120V/60Hz
AC adapter:	Model No.:PS30D120K 2000UD
	Input: AC100-240V, 50/60Hz, 800mA
	Output: DC 12V, 2000mA

Operation Frequency each of channel							
	Band 1						
802.11a/802.11n	20 /802.11acH20	802.11n40 /802.11acH40		802.11ac H80			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						
		Ba	and 4				
802.11a/802.11n	20 /802.11acH20	802.11n40 /802.11acH40		802.11ac H80			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz						
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1						
802.11a/802.11n20 /802.11acH20		802.11n40 /802.11acH40		802.11ac H80		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz	
Middle channel	5200MHz	Highest channel	5230MHz			
Highest channel	5240MHz					
		Band	4			
802.11a/802.11r	n20 /802.11acH20	802.11n40 /802.11acH40		802.11ac H80		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
Lowest channel	5745MHz	Lowest channel	5755MHz	Middle channel	5775MHz	
Middle channel	5785MHz	Highest channel	5795MHz			
Highest channel	5825MHz					

5.3 Test environment and test mode

Operating Environment:					
Temperature:	24.0 °C	24.0 °C			
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Continuously transmitting mode	Keep the EUT in 100	0% duty cycle transmitting with modulation.			
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:					
Per-scan all kind of data rate, an	d found the follow lis	st were the worst case.			
Mode		Data rate			
802.11a		6 Mbps			
802.11n20		6.5 Mbps			
802.11n40		13 Mbps			
802.11ac		29.3 Mbps			

Report No: CCISE180304704

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
FLY POWER	Switching Adapter	PS24A120K2000UD	N/A	N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	4.56 dB (k=2)

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2018	02-24-2019		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2018	02-24-2019		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2018	02-24-2019		
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A		
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	02-25-2018	02-24-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15	5.207				
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kH	 Z				
Limit:	Frequency range	Limit (dBuV)			
	(MHz) Quasi-peak					
	0.15-0.5	66 to 56*	0.15-0.5			
	0.5-5	56	0.5-5			
	5-30	60	5-30			
	* Decreases with the loga					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test setup:	Reference Plane					
	AUX Equipment Test table/Insulation p Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilizati Test table height=0.8m	.U.T EMI Receiver	— AC power			
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details.					
Test results:	Passed					

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a) (3)		
Test Method:	ANSI C63.10: 2013, KDB789033		
Limit:	Band 1: 24dBm Band 4: 30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

 $Note: RMS\ detector\ ,\ RBW\ 1MHz\ VBW\ 3MHz\ ,\ Set\ channel\ Bandwidth\ to\ be\ 20MHz\ for\ 802.11a/802.11acH20/802.11n20\ ,\ 40\ MHz\ for\ 802.11n40/802.11acH40\ and\ 80MHz\ for\ 802.11acH80.$

Measurement Data:

Band 1					
Mode	Test CH	Test CH Conducted Output power L (dBm) (d		Result	
	Lowest	12.46			
802.11a	Middle	12.91	24.00	Pass	
	Highest	13.56			
	Lowest	12.41		Pass	
802.11n20	Middle	12.71	24.00		
	Highest	13.39			
000 44 = 40	Lowest	12.03	24.00	Door	
802.11n40	Highest	12.60	24.00	Pass	
	Lowest	12.40			
802.11ac20	Middle	12.93	24.00	Pass	
	Highest	13.46			
202.110040	Lowest	11.95	24.00	Door	
802.11ac40	Highest	12.65	24.00	Pass	
802.11ac80	Middle	12.20	24.00	Pass	

Band 4					
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result	
	Lowest	14.52			
802.11a	Middle	14.57	30.00	Pass	
	Highest	14.62			
	Lowest	14.31			
802.11n20	Middle	14.47	30.00	Pass	
	Highest	14.26			
802.11n40	Lowest	13.94	30.00	Pass	
002.111140	Highest	14.02	30.00	Fd55	
	Lowest	14.38			
802.11ac20	Middle	14.72	30.00	Pass	
	Highest	14.55			
902 112640	Lowest	13.96	30.00	Pass	
802.11ac40	Highest	14.17	30.00	rass	
802.11ac80	Middle	13.84	30.00	Pass	

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)		
Test Method:	ANSI C63.10:2013 and KDB 789033		
Limit:	Band 1/2/3/4: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz (6dB Bandwidth)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Band 1:

Tool	26dB Emission Bandwidth (MHz)							
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	22.16	22.48	40.48	22.16	40.00			
Middle	22.08	22.16		22.32		79.36	N/A	PASS
Highest	20.64	20.32	39.84	20.68	39.36			
Total		999	% Occupy B	andwidth (Mh	Hz)			
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	16.80	17.84	36.32	17.92	36.48			
Middle	16.80	17.92		17.84		75.84	N/A	PASS
Highest	16.72	17.92	36.32	17.84	36.32			

Band 4:

- .	26dB Emission Bandwidth (MHz)							
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	21.04	21.28	39.20	21.44	38.72			
Middle	21.12	21.44		21.52		79.04	N/A	PASS
Highest	21.04	21.52	39.20	22.00	39.36			
- .		99	% Occupy B	andwidth (MH	lz)			
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	16.64	17.92	36.16	17.84	36.16			
Middle	16.64	17.76		17.76		75.52	N/A	PASS
Highest	16.64	17.84	36.32	17.84	36.16			
- .		6d	B Emission B	andwidth (MI	Hz)			
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	16.48	17.52	36.16	17.52	36.32			
Middle	16.48	17.76		17.76		76.16	>500kHz	PASS
Highest	16.48	17.76	36.48	17.76	36.48			

Test plot as follows:

Band 1:

Band 4:

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a)(3)		
Test Method:	ANSI C63.10:2013, KDB 789033		
Limit:	Band 1: 11 dBm/MHz Band 4: 30 dBm/500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Band 1					
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result	
	Lowest	2.43			
802.11a	Middle	3.31	11.00	Pass	
	Highest	3.44			
	Lowest	1.94			
802.11n(HT20)	Middle	2.26	11.00	Pass	
	Highest	3.02			
000 11n/UT10\	Lowest	-1.28	44.00	Door	
802.11n(HT40)	Highest	-0.63	11.00	Pass	
	Lowest	2.07			
802.11ac(HT20)	Middle	2.28	11.00	Pass	
	Highest	2.85			
902 1100/UT40\	Lowest	-1.49	11.00	Pass	
802.11ac(HT40)	Highest	-0.75	11.00	rass	
802.11ac(HT80)	Middle	-4.37	11.00	Pass	

Band 4					
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result	
	Lowest	6.95			
802.11a	Middle	7.44	30.00	Pass	
	Highest	7.48			
	Lowest	6.50			
802.11n20	Middle	6.94	30.00	Pass	
	Highest	6.43			
802.11n40	Lowest	3.27	30.00	Pass	
602. I III40	Highest	3.44	30.00	Pass	
	Lowest	6.47			
802.11ac20	Middle	7.01	30.00	Pass	
	Highest	7.36			
802.11ac40	Lowest	2.95	30.00	Pass	
002.11ac40	Highest	3.34	30.00	rass	
802.11ac80	Middle	0.64	30.00	Pass	

Test plot as follows:

6.6 Band Edge

D	E00 B : := = =					
Test Requirement:	FCC Part 15 E Sec	tion 15.407 (b)				
Test Method:	ANSI C63.10:2013	, KDB 789033				
Receiver setup:	Detector	RBW	VBW	Remark		
	Peak	1MHz	3MHz	Peak Value		
	RMS	1MHz	3MHz	Average Value		
Limit:	Band		uV/m @3m)	Remark		
	Band 1		3.20	Peak Value		
	24.14.1		4.00	Average Value		
	Band 4		3.20	Peak Value		
	Band 4 limit:	54	4.00	Average Value		
	more above or belo 25 MHz above or belo 25 MHz above or belo the band edge income above or below the edge increasing lin Remark: 1. Band 1 limit: E[dBµV/m] = EIF 2. Band 4 limit: E[dBµV/m] = EIF E[dBµV/m] = EIF E[dBµV/m] = EIF	be limited to a by the band edge below the band edge reasing linearly to band edge, and early to a level of RP[dBm] + 95.2=68 RP[dBm] + 95.2=68 RP[dBm] + 95.2=10 RP[dBm] + 95.2=11	level of -27 dB e increasinglines dge, and from 29 o a level of 15.6 from 5 MHz ab 27 dBm/MHz ar 22 dBuV/m, for El 5.2 dBuV/m, for El 0.8 dBuV/m, for El 0.8 dBuV/m, for El 20 dBuV/m, for El 0.8 dBuV/m, for El 20 dBuV/m, for El 0.8 dBuV/m, for El 0.8 dBuV/m, for El 20 dBuV/m, for El 0.8 dBuV/m, for El 20 dBuV/m, for El 0.8 dBuV/m, for	m/MHz at 75 MHz or arly to 10 dBm/MHz at 5 MHz above or below 6 dBm/MHz at 5 MHz ove or below the band		
Test Procedure:	 The EUT was the ground at a to determine the determine the determine the determine the ground to wer. The antennance of the ground to Both horizonta make the mea For each suspicate and then meters and then meters and then find the maximum of the limit specified Bandon of the EUT wo have 10dB maximum or determined to find the maximum of the EUT wo have 10dB maximum or determined to determine the limit specified bandon of the EUT wo have 10dB maximum or determined to determine the limit specified bandon or determined to determine the limit specified bandon or determined the limit specified bandon or determin	placed on the top a 3 meter cambe he position of the set 3 meters away he was mounted on height is varied from the and vertical polysurement. He antenna was be rotatable was to kimum reading. Wer system was so dwidth with Maximal level of the EUT fied, then testing and be reported.	of a rotating tall r. The table was highest radiation by from the interior of a value of a value of arizations of the EUT was arrest tuned to height urned from 0 decent of the electron of the could be stopped otherwise the electron of the	ble 0.8 meters above rotated 360 degrees in. ference-receiving ariable-height antenna four meters above the field strength, antenna are set to ranged to its worst as from 1 meter to 4 grees to 360 degrees of Function and		

Measurement Data (worst case):

Band 1:

	Band 1 – 802.11a										
			Test cha	nnel: Lowest	channel						
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	46.36	36.23	7.05	41.93	47.71	68.20	-20.49	Horizontal			
5150.00	46.41	36.23	7.05	41.93	47.76	68.20	-20.44	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	37.45	36.23	7.05	41.93	38.80	54.00	-15.20	Horizontal			
5150.00	37.45	36.23	7.05	41.93	38.80	54.00	-15.20	Vertical			
				nnel: Highest							
			Dete	ctor: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	47.57	35.37	7.11	41.89	48.16	68.20	-20.04	Horizontal			
5350.00	47.48	35.37	7.11	41.89	48.07	68.20	-20.13	Vertical			
			Detec	tor: Average	√alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	37.06	35.37	7.11	41.89	37.65	54.00	-16.35	Horizontal			
5350.00	37.42	35.37	7.11	41.89	38.01	54.00	-15.99	Vertical			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11n(HT20)										
	Test channel: Lowest channel										
	Detector: Peak										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	46.32	36.23	7.05	41.93	47.67	68.20	-20.53	Horizontal			
5150.00	46.26	36.23	7.05	41.93	47.61	68.20	-20.59	Vertical			
			De	tector: Avera	ge						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	37.26	36.23	7.05	41.93	38.61	54.00	-15.39	Horizontal			
5150.00	37.43	36.23	7.05	41.93	38.78	54.00	-15.22	Vertical			
				nnel: Highest							
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	47.58	35.37	7.11	41.89	48.17	68.20	-20.03	Horizontal			
5350.00	47.43	35.37	7.11	41.89	48.02	68.20	-20.18	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	37.02	35.37	7.11	41.89	37.61	54.00	-16.39	Horizontal			
5350.00	37.03	35.37	7.11	41.89	37.62	54.00	-16.38	Vertical			
5 /							-				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 - 802.11n(HT40)										
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.29	36.23	7.05	41.93	47.64	68.20	-20.56	Horizontal		
5150.00	46.31	36.23	7.05	41.93	47.66	68.20	-20.54	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.23	36.23	7.05	41.93	38.58	54.00	-15.42	Horizontal		
5150.00	37.31	36.23	7.05	41.93	38.66	54.00	-15.34	Vertical		
				nnel: Highest						
				ector: Peak Va	alue			ı		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	47.61	35.37	35.37	7.11	41.89	68.20	-26.31	Horizontal		
5350.00	47.47	35.37	35.37	7.11	41.89	68.20	-26.31	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.02	35.37	7.11	41.89	37.61	54.00	-16.39	Horizontal		
5350.00	37.09	35.37	7.11	41.89	37.68	54.00	-16.32	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT20)										
	Test channel: Lowest channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.38	36.23	7.05	41.93	47.73	68.20	-20.47	Horizontal		
5150.00	46.44	36.23	7.05	41.93	47.79	68.20	-20.41	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.46	36.23	7.05	41.93	38.81	54.00	-15.19	Horizontal		
5150.00	37.41	36.23	7.05	41.93	38.76	54.00	-15.24	Vertical		
				nnel: Highest						
				ector: Peak Va	alue			I		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	41.52	35.37	7.11	41.89	42.11	68.20	-26.09	Horizontal		
5350.00	42.78	35.37	7.11	41.89	43.37	68.20	-24.83	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	31.32	35.37	7.11	41.89	31.91	54.00	-22.09	Horizontal		
5350.00	32.49	35.37	7.11	41.89	33.08	54.00	-20.92	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT40)										
	Test channel: Lowest channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.37	36.23	7.05	41.93	47.72	68.20	-20.48	Horizontal		
5150.00	46.29	36.23	7.05	41.93	47.64	68.20	-20.56	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.22	36.23	7.05	41.93	38.57	54.00	-15.43	Horizontal		
5150.00	37.46	36.23	7.05	41.93	38.81	54.00	-15.19	Vertical		
				nnel: Highest						
				ctor: Peak Va	alue			I		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.25	35.37	7.11	41.89	42.84	68.20	-25.36	Horizontal		
5350.00	41.36	35.37	7.11	41.89	41.95	68.20	-26.25	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.81	35.37	7.11	41.89	33.40	54.00	-20.60	Horizontal		
5350.00	31.27	35.37	7.11	41.89	31.86	54.00	-22.14	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT80)										
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.38	36.23	7.05	41.93	47.73	68.20	-20.47	Horizontal		
5150.00	46.34	36.23	7.05	41.93	47.69	68.20	-20.51	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.24	36.23	7.05	41.93	38.59	54.00	-15.41	Horizontal		
5150.00	37.39	36.23	7.05	41.93	38.74	54.00	-15.26	Vertical		
				nnel: Highest						
		-		ector: Peak Va	alue		_	I		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.18	35.37	35.37	7.11	41.89	68.20	-26.31	Horizontal		
5350.00	42.52	35.37	35.37	7.11	41.89	68.20	-26.31	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.84	35.37	7.11	41.89	33.43	54.00	-20.57	Horizontal		
5350.00	33.01	35.37	7.11	41.89	33.60	54.00	-20.40	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	Band 4 – 802.11a										
	Test channel: Lowest channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	41.23	34.65	7.69	41.94	41.63	78.20	-36.57	Horizontal			
5725.00	42.52	34.65	7.69	41.94	42.92	78.20	-35.28	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	31.38	34.65	7.69	41.94	31.78	54.00	-22.22	Horizontal			
5725.00	32.47	34.65	7.69	41.94	32.87	54.00	-21.13	Vertical			
				nnel: Highest							
				ector: Peak Va	alue	T					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	41.69	34.63	7.90	42.03	42.19	78.20	-36.01	Horizontal			
5850.00	40.52	34.63	7.90	42.03	41.02	78.20	-37.18	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	31.74	34.63	7.90	42.03	32.24	54.00	-21.76	Horizontal			
5850.00	30.85	34.63	7.90	42.03	31.35	54.00	-22.65	Vertical			
				-							

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 - 802.11n(HT20)										
	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	42.58	34.65	7.69	41.94	42.98	78.20	-35.22	Horizontal			
5725.00	41.62	34.65	7.69	41.94	42.02	78.20	-36.18	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	32.60	34.65	7.69	41.94	33.00	54.00	-21.00	Horizontal			
5725.00	31.37	34.65	7.69	41.94	31.77	54.00	-22.23	Vertical			
			Test cha	nnel: Highest	channel						
			Dete	ector: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	42.11	34.63	7.90	42.03	42.61	78.20	-35.59	Horizontal			
5850.00	41.35	34.63	7.90	42.03	41.85	78.20	-36.35	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	33.02	34.63	7.90	42.03	33.52	54.00	-20.48	Horizontal			
5850.00	31.25	34.63	7.90	42.03	31.75	54.00	-22.25	Vertical			
Domorke					<u> </u>	<u> </u>					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT40)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	41.68	34.65	7.69	41.94	42.08	78.20	-36.12	Horizontal			
5725.00	42.03	34.65	7.69	41.94	42.43	78.20	-35.77	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	32.65	34.65	7.69	41.94	33.05	54.00	-20.95	Horizontal			
5725.00	31.54	34.65	7.69	41.94	31.94	54.00	-22.06	Vertical			
			Test cha	nnel: Highest	channel						
			Dete	ector: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	41.65	34.63	7.90	42.03	42.15	78.20	-36.05	Horizontal			
5850.00	40.27	34.63	7.90	42.03	40.77	78.20	-37.43	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	31.56	34.63	7.90	42.03	32.06	54.00	-21.94	Horizontal			
5850.00	30.18	34.63	7.90	42.03	30.68	54.00	-23.32	Vertical			
Pomark:											

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT20)										
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	46.23	31.03	7.69	41.94	43.01	78.20	-35.19	Horizontal		
5725.00	45.52	31.03	7.69	41.94	42.30	78.20	-35.90	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	36.38	31.03	7.69	41.94	33.16	54.00	-20.84	Horizontal		
5725.00	35.47	31.03	7.69	41.94	32.25	54.00	-21.75	Vertical		
			Test cha	nnel: Highest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	46.72	31.37	7.90	42.03	43.96	78.20	-34.24	Horizontal		
5850.00	45.38	31.37	7.90	42.03	42.62	78.20	-35.58	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	36.37	31.37	7.90	42.03	33.61	54.00	-20.39	Horizontal		
5850.00	35.39	31.37	7.90	42.03	32.63	54.00	-21.37	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT40)									
			Test cha	nnel: Lowest	channel					
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	46.29	31.03	7.69	41.94	43.07	78.20	-35.13	Horizontal		
5725.00	45.37	31.03	7.69	41.94	42.15	78.20	-36.05	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	36.72	31.03	7.69	41.94	33.50	54.00	-20.50	Horizontal		
5725.00	35.49	31.03	7.69	41.94	32.27	54.00	-21.73	Vertical		
				nnel: Highest						
				ector: Peak Va	alue	ı				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	46.39	31.37	7.90	42.03	43.63	78.20	-34.57	Horizontal		
5850.00	45.26	31.37	7.90	42.03	42.50	78.20	-35.70	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	36.09	31.37	7.90	42.03	33.33	54.00	-20.67	Horizontal		
5850.00	35.31	31.37	7.90	42.03	32.55	54.00	-21.45	Vertical		
Pomork:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 - 802.11ac(HT80)										
			Test cha	nnel: Middle	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	46.53	31.03	7.69	41.94	43.31	78.20	-34.89	Horizontal		
5725.00	45.79	31.03	7.69	41.94	42.57	78.20	-35.63	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	46.49	31.03	7.69	41.94	43.27	54.00	-10.73	Horizontal		
5725.00	35.41	31.03	7.69	41.94	32.19	54.00	-21.81	Vertical		
				nnel: Middle						
			Dete	ctor: Peak Va	alue			T		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	46.43	31.37	7.90	42.03	43.67	78.20	-34.53	Horizontal		
5850.00	45.21	31.37	7.90	42.03	42.45	78.20	-35.75	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	36.11	31.37	7.90	42.03	33.35	54.00	-20.65	Horizontal		
5850.00	35.37	31.37	7.90	42.03	32.61	54.00	-21.39	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1 Restricted Band								
Test Requirement:	FCC Part15 E Section 15.407(b)							
Test Method:	ANSI C63.10: 20	13						
Test Frequency Range:	4.5 GHz to 5.15	GHz and 5	.35GHz to 5.46G	Hz				
Test site:	Measurement Di	stance: 3m	ı					
Receiver setup:	Frequency	Detecto		VBW	Remark			
	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value			
Limit:	Frequency		imit (dBuV/m @3		Remark			
	Above 1GH		68.20	,	Peak Value			
			54.00		Average Value			
Test Procedure:	the ground a to determine 2. The EUT was antenna, who tower. 3. The antenna the ground to Both horizon make the m 4. For each su case and the meters and to find the m 5. The test-red Specified Ba 6. If the emissis the limit specified Ba 7. The test-red Specified Ba 8. If the emissis the limit specified Ba 9. The test-red Specified Ba 10. If the emissis the limit specified Ba 10. If the emissis the li	at a 3 meters the position as set 3 meters in the position as	er camber. The ta on of the highest eters away from the ounted on the top varied from one re the maximum vartical polarization of the EUT enna was tuned from the eading. The was set to Pearlith Maximum Hole the EUT in peak of the EUT in peak of the EUT in peak of the eading the eading of the EUT in peak of the EUT i	ble was rota radiation. he interfered of a variable meter to four value of the is of the anti-was arrang to heights from 0 degree ak Detect Fild Mode. mode was a stopped arrang to the emissione by one und then report to the control of the the control	r meters above field strength. enna are set to ed to its worst om 1 meter to 4 es to 360 degrees unction and 10dB lower than and the peak values sions that did not using peak, quasi-			
		(Turntable)	Ground Reference Plane Test Receiver	or Controller				
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section	5.3 for deta	ails					
Test results:	Passed							

Measurement Data (worst case):

Band 1:

	Band 1 – 802.11a									
			Test cha	nnel: Lowest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	43.21	34.50	6.80	42.05	42.46	74.00	-31.54	Horizontal		
4500.00	42.18	34.50	6.80	42.05	41.43	74.00	-32.57	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	32.59	34.50	6.80	42.05	31.84	54.00	-22.16	Horizontal		
4500.00	31.07	34.50	6.80	42.05	30.32	54.00	-23.68	Vertical		
			Test char	nnel: Highest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	41.39	34.90	7.18	41.85	41.62	74.00	-32.38	Horizontal		
5460.00	42.54	34.90	7.18	41.85	42.77	74.00	-31.23	Vertical		
			Detec	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	31.39	34.90	7.18	41.85	31.62	54.00	-22.38	Horizontal		
5460.00	32.58	34.90	7.18	41.85	32.81	54.00	-21.19	Vertical		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT20)										
			Test cha	nnel: Lowest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	41.74	34.50	6.80	42.05	40.99	74.00	-33.01	Horizontal		
4500.00	42.25	34.50	6.80	42.05	41.50	74.00	-32.50	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	31.25	34.50	6.80	42.05	30.50	54.00	-23.50	Horizontal		
4500.00	32.76	34.50	6.80	42.05	32.01	54.00	-21.99	Vertical		
				nnel: Highest						
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	41.69	34.90	7.18	41.85	41.92	74.00	-32.08	Horizontal		
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	31.25	34.90	7.18	41.85	31.48	54.00	-22.52	Horizontal		
5460.00	32.77	34.90	7.18	41.85	33.00	54.00	-21.00	Vertical		
Domark:			·		·		·			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11n(HT40)										
			Test cha	nnel: Lowest	channel						
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	42.58	34.50	6.80	42.05	41.83	74.00	-32.17	Horizontal			
4500.00	41.39	34.50	6.80	42.05	40.64	74.00	-33.36	Vertical			
	Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	32.47	34.50	6.80	42.05	31.72	54.00	-22.28	Horizontal			
4500.00	31.29	34.50	6.80	42.05	30.54	54.00	-23.46	Vertical			
				nnel: Highest							
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	41.25	34.90	7.18	41.85	41.48	74.00	-32.52	Horizontal			
5460.00	42.18	34.90	7.18	41.85	42.41	74.00	-31.59	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	31.36	34.90	7.18	41.85	31.59	54.00	-22.41	Horizontal			
5460.00	33.20	34.90	7.18	41.85	33.43	54.00	-20.57	Vertical			
Domorlu		<u> </u>									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11ac(HT20)										
			Test cha	nnel: Lowest	channel						
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.61	29.30	6.80	42.05	41.66	74.00	-32.34	Horizontal			
4500.00	46.53	29.30	6.80	42.05	40.58	74.00	-33.42	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.52	29.30	6.80	42.05	31.57	54.00	-22.43	Horizontal			
4500.00	36.43	29.30	6.80	42.05	30.48	54.00	-23.52	Vertical			
				nnel: Highest							
	Г	T		ector: Peak Va	alue	 		T.			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	47.59	30.54	7.18	41.85	43.46	74.00	-30.54	Horizontal			
5460.00	46.37	30.54	7.18	41.85	42.24	74.00	-31.76	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	37.49	30.54	7.18	41.85	33.36	54.00	-20.64	Horizontal			
5460.00	36.39	30.54	7.18	41.85	32.26	54.00	-21.74	Vertical			
Domark:	·		·	·			·				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11ac(HT40)										
			Test cha	nnel: Lowest	channel						
			Dete	ector: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.59	29.30	6.80	42.05	41.64	74.00	-32.36	Horizontal			
4500.00	46.52	29.30	6.80	42.05	40.57	74.00	-33.43	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.49	29.30	6.80	42.05	31.54	54.00	-22.46	Horizontal			
4500.00	36.37	29.30	6.80	42.05	30.42	54.00	-23.58	Vertical			
				nnel: Highest							
	Ī			ector: Peak V	alue	Ī					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	47.65	34.90	7.18	41.85	47.88	74.00	-26.12	Horizontal			
5460.00	46.43	34.90	7.18	41.85	46.66	74.00	-27.34	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	37.52	34.90	7.18	41.85	37.75	54.00	-16.25	Horizontal			
5460.00	36.43	34.90	7.18	41.85	36.66	54.00	-17.34	Vertical			
Remark:											

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	l - 802.11ac((HT80)				
			Test cha	nnel: Lowest	channel				
			Dete	ector: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	47.41	29.30	6.80	42.05	41.46	74.00	-32.54	Horizontal	
4500.00	46.41	29.30	6.80	42.05	40.46	74.00	-33.54	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	37.53	29.30	6.80	42.05	31.58	54.00	-22.42	Horizontal	
4500.00	36.16	29.30	6.80	42.05	30.21	54.00	-23.79	Vertical	
				nnel: Highest					
			Dete	ector: Peak Va	alue	ı			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	47.63	30.54	7.18	41.85	43.50	74.00	-30.50	Horizontal	
5460.00	46.37	30.54	7.18	41.85	42.24	74.00	-31.76	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	37.43	30.54	7.18	41.85	33.30	54.00	-20.70	Horizontal	
5460.00	36.51	30.54	7.18	41.85	32.38	54.00	-21.62	Vertical	
Pomork:									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

			Ва	nd 4 – 802.1	1a					
			Test cha	nnel: Lowest	channel					
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.39	35.37	7.11	41.89	42.98	74.00	-31.02	Horizontal		
5350.00	41.74	35.37	7.11	41.89	42.33	74.00	-31.67	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.03	35.37	7.11	41.89	32.62	54.00	-21.38	Horizontal		
5350.00	31.27	35.37	7.11	41.89	31.86	54.00	-22.14	Vertical		
			Test cha	nnel: Lowest	channel					
				ector: Peak Va						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	42.71	34.90	7.18	41.85	42.94	74.00	-31.06	Horizontal		
5460.00	41.29	34.90	7.18	41.85	41.52	74.00	-32.48	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	33.13	34.90	7.18	41.85	33.36	54.00	-20.64	Horizontal		
5460.00	32.18	34.90	7.18	41.85	32.41	54.00	-21.59	Vertical		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Day 14 200 44 (UT00)										
				4 – 802.11n(
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.75	35.37	7.11	41.89	43.34	74.00	-30.66	Horizontal		
5350.00	41.31	35.37	7.11	41.89	41.90	74.00	-32.10	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.64	35.37	7.11	41.89	33.23	54.00	-20.77	Horizontal		
5350.00	31.23	35.37	7.11	41.89	31.82	54.00	-22.18	Vertical		
			Test cha	nnel: Lowest	channel					
			Dete	ector: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Horizontal		
5460.00	43.36	34.90	7.18	41.85	43.59	74.00	-30.41	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	32.17	34.90	7.18	41.85	32.40	54.00	-21.60	Horizontal		
5460.00	32.25	34.90	7.18	41.85	32.48	54.00	-21.52	Vertical		
Damadu			-				_			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT40)									
			Test cha	nnel: Lowest	channel					
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.06	35.37	7.11	41.89	42.65	74.00	-31.35	Horizontal		
5350.00	43.18	35.37	7.11	41.89	43.77	74.00	-30.23	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.58	35.37	7.11	41.89	33.17	54.00	-20.83	Horizontal		
5350.00	33.09	35.37	7.11	41.89	33.68	54.00	-20.32	Vertical		
				nnel: Lowest						
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	42.17	34.90	7.18	41.85	42.40	74.00	-31.60	Horizontal		
5460.00	41.38	34.90	7.18	41.85	41.61	74.00	-32.39	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	32.29	34.90	7.18	41.85	32.52	54.00	-21.48	Horizontal		
5460.00	31.59	34.90	7.18	41.85	31.82	54.00	-22.18	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT20)									
			Test cha	nnel: Lowest	channel					
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.41	30.82	7.11	41.89	42.45	74.00	-31.55	Horizontal		
5350.00	45.74	30.82	7.11	41.89	41.78	74.00	-32.22	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.21	30.82	7.11	41.89	32.25	54.00	-21.75	Horizontal		
5350.00	35.27	30.82	7.11	41.89	31.31	54.00	-22.69	Vertical		
				nnel: Lowest						
				ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	46.43	30.54	7.18	41.85	42.30	74.00	-31.70	Horizontal		
5460.00	45.36	30.54	7.18	41.85	41.23	74.00	-32.77	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.23	30.54	7.18	41.85	32.10	54.00	-21.90	Horizontal		
5460.00	35.41	30.54	7.18	41.85	31.28	54.00	-22.72	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT40)										
			Test cha	nnel: Lowest	channel						
			Dete	ctor: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	46.53	30.82	7.11	41.89	42.57	74.00	-31.43	Horizontal			
5350.00	45.36	30.82	7.11	41.89	41.40	74.00	-32.60	Vertical			
			Detect	tor: Average '	√alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	36.32	30.82	7.11	41.89	32.36	54.00	-21.64	Horizontal			
5350.00	35.31	30.82	7.11	41.89	31.35	54.00	-22.65	Vertical			
				nnel: Lowest							
				ctor: Peak Va	alue			T			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	46.37	30.54	7.18	41.85	42.24	74.00	-31.76	Horizontal			
5460.00	45.41	30.54	7.18	41.85	41.28	74.00	-32.72	Vertical			
			Detect	tor: Average '	√alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	36.16	30.54	7.18	41.85	32.03	54.00	-21.97	Horizontal			
5460.00	35.37	30.54	7.18	41.85	31.24	54.00	-22.76	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT80)										
			Test cha	nnel: Middle	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.57	30.82	7.11	41.89	42.61	74.00	-31.39	Horizontal		
5350.00	46.02	30.82	7.11	41.89	42.06	74.00	-31.94	Vertical		
			Detect	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	34.36	30.82	7.11	41.89	30.40	54.00	-23.60	Horizontal		
5350.00	35.23	30.82	7.11	41.89	31.27	54.00	-22.73	Vertical		
				nnel: Middle						
	_	_		ctor: Peak Va	alue	l	_	l		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	46.31	30.54	7.18	41.85	42.18	74.00	-31.82	Horizontal		
5460.00	45.39	30.54	7.18	41.85	41.26	74.00	-32.74	Vertical		
			Detect	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.26	30.54	7.18	41.85	32.13	54.00	-21.87	Horizontal		
5460.00	35.27	30.54	7.18	41.85	31.14	54.00	-22.86	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

6.7.2 Unwanted Emission						
Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205			
Test Method:	ANSI C63.10: 20)13				
Test Frequency Range:	30MHz to 40GH	Z				
Test site:	Measurement Di	stance: 3m				
Receiver setup:	Frequency	Detector	RBW	VE	3W	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300)kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	31/	1Hz	Peak Value
		RMS	1MHz	•	/Hz	Average Value
Limit:	Frequency		mit (dBuV/m @3	3m)		Remark
	30MHz-88M		40.0 43.5			luasi-peak Value
	88MHz-216M 216MHz-960M	1	46.0			luasi-peak Value luasi-peak Value
	960MHz-1GI		54.0			luasi-peak Value
			68.20			Peak Value
	Above 1GH	z	54.00			Average Value
	Remark:	•				
	Above 1GHz limit:					
	$E[dB\mu V/m] = EIRF$					
Test Procedure:			he top of a rota			sm(below leter camber. The
						ion of the highest
	radiation.	naica ooo acg	rees to determ		o pooiti	ion or the highest
		as set 3 meter	s away from th	e inter	ferenc	e-receiving
		nich was mour	ited on the top	of a va	ariable [.]	-height antenna
	tower.	- 11-1-4 1		4 4 -		
			ied irom one m naximum value			neters above the
						e set to make the
	measureme	•		io arito	illia ai	o oot to make the
						to its worst case
						eter to 4 meters
			ned from 0 dec	grees t	0 360 (degrees to find the
	maximum re 5. The test-red	•	was set to Pea	k Dete	ct Fun	ction and
			Maximum Hol			otion and
	· ·					dB lower than the
						peak values of the
			Otherwise the e			
			ied and then re			ak, quasi-peak or lata sheet
Test setup:		triod do opcon	Tod dild trioir is	ороно	<u> </u>	ata onoot.
1 001 0010p.	Below 1GHz					
		.	————	-	Antenna	Tower
					_ Amemia	Towa
		Ι,			Search	
	EUT	> 3m <			Antenn	
		4n			RF Test	
			- 		Receiver —	\neg I
		Turn 0.8m	im II		\ _	
		Table 0.8m	<u> </u>			
	7777		juninini.	,,,,,,	<i></i> 亡	
		Ground Plane	~			

Measurement Data (worst case):

Below 1GHz

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz: Band 1:

Ballu 1.			Daniel	14 000 4	4.0				
				11 – 802.1					
			Test chann						
			Detecto	or: Peak V	alue		_	1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	47.73	40.10	9.82	41.97	55.68	68.20	-12.52	Vertical	
10360.00	47.72	40.10	9.82	41.97	55.67	68.20	-12.53	Horizontal	
				: Average					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	37.63	40.10	9.82	41.97	45.58	54.00	-8.42	Vertical	
10360.00	37.52	40.10	9.82	41.97	45.47	54.00	-8.53	Horizontal	
Test channel: Middle channel									
	Ι		Detecti	or: Peak V	alue		0		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	46.59	40.00	9.85	41.95	54.49	68.20	-13.71	Vertical	
10400.00	46.96	40.00	9.85	41.95	54.86	68.20	-13.34	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	36.81	40.00	9.85	41.95	44.71	54.00	-9.29	Vertical	
10400.00	37.69	40.00	9.85	41.95	45.59	54.00	-8.41	Horizontal	
			Test chann						
			Detecto	or: Peak V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	47.68	39.70	9.96	41.88	55.46	68.20	-12.74	Vertical	
10480.00	46.55	39.70	9.96	41.88	54.33	68.20	-13.87	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	38.68	39.70	9.96	41.88	46.46	54.00	-7.54	Vertical	
10480.00	37.38	39.70	9.96	41.88	45.16	54.00	-8.84	Horizontal	
Dama and a									

Remark:

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

				- 802.11n(
			Test chann					
	T.		Detecto	or: Peak V	alue			T
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	47.62	40.10	9.82	41.97	55.57	68.20	-12.63	Vertical
10360.00	47.71	40.10	9.82	41.97	55.66	68.20	-12.54	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10360.00	37.23	40.10	9.82	41.97	45.18	54.00	-8.82	Vertical
10360.00	37.46	40.10	9.82	41.97	45.41	54.00	-8.59	Horizonta
			Test chann					
			Detect	or: Peak V	alue			I
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	46.61	40.00	9.85	41.95	54.51	68.20	-13.69	Vertical
10400.00	46.95	40.00	9.85	41.95	54.85	68.20	-13.35	Horizonta
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	36.86	40.00	9.85	41.95	44.76	54.00	-9.24	Vertical
10400.00	37.67	40.00	9.85	41.95	45.57	54.00	-8.43	Horizonta
			Test chann	el: Highest or: Peak V				
	D	A . (Detecti		alue	1.2 - 2	0	l
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	47.65	39.70	9.96	41.88	55.43	68.20	-12.77	Vertical
10480.00	46.51	39.70	9.96	41.88	54.29	68.20	-13.91	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	38.42	39.70	9.96	41.88	46.20	54.00	-7.80	Vertical
10480.00	37.62	39.70	9.96	41.88	45.40	54.00	-8.60	Horizonta

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11n(HT40)									
			Test chann	el: Lowest	channel					
			Detecto	or: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	47.73	40.00	9.85	41.95	55.63	68.20	-12.57	Vertical		
10380.00	47.68	40.00	9.85	41.95	55.58	68.20	-12.62	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	37.29	40.00	9.85	41.95	45.19	54.00	-8.81	Vertical		
10380.00	37.42	40.00	9.85	41.95	45.32	54.00	-8.68	Horizontal		
			Test channe							
			Detecto	or: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10460.00	46.58	39.80	9.92	41.90	54.40	68.20	-13.80	Vertical		
10460.00	46.97	39.80	9.92	41.90	54.79	68.20	-13.41	Horizontal		
			Detector	: Average '	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10460.00	36.94	39.80	9.92	41.90	44.76	54.00	-9.24	Vertical		
10460.00	37.63	39.80	9.92	41.90	45.45	54.00	-8.55	Horizontal		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11ac	-				
			Test chann	el: Lowest	channel				
			Detecto	or: Peak V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatior	
10360.00	47.67	40.10	9.82	41.97	55.62	68.20	-12.58	Vertical	
10360.00	47.62	40.10	9.82	41.97	55.57	68.20	-12.63	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	37.56	40.10	9.82	41.97	45.51	54.00	-8.49	Vertical	
10360.00	37.64	40.10	9.82	41.97	45.59	54.00	-8.41	Horizontal	
			Test chann	ol. Middlo	ahannal				
	Desil	A . (Detecti	or: Peak V	alue	1.2 - 21	Over	<u> </u>	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio	
10400.00	46.61	40.00	9.85	41.95	54.51	68.20	-13.69	Vertical	
10400.00	46.95	40.00	9.85	41.95	54.85	68.20	-13.35	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	36.86	40.00	9.85	41.95	44.76	54.00	-9.24	Vertical	
10400.00	37.67	40.00	9.85	41.95	45.57	54.00	-8.43	Horizonta	
			Test channe	el: Highest	channel				
				or: Peak V					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	47.68	39.70	9.96	41.88	55.46	68.20	-12.74	Vertical	
10480.00	46.57	39.70	9.96	41.88	54.35	68.20	-13.85	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	38.43	39.70	9.96	41.88	46.21	54.00	-7.79	Vertical	
10480.00	37.65	39.70	9.96	41.88	45.43	54.00	-8.57	Horizonta	

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Band 1 - 802.11ac(HT40)										
			Test chann	el: Lowest	channel						
			Detecto	or: Peak V	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	47.86	40.00	9.85	41.95	55.76	68.20	-12.44	Vertical			
10380.00	47.63	40.00	9.85	41.95	55.53	68.20	-12.67	Horizontal			
			Detector	: Average	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	37.24	40.00	9.85	41.95	45.14	54.00	-8.86	Vertical			
10380.00	37.47	40.00	9.85	41.95	45.37	54.00	-8.63	Horizontal			
			Took about		ah ann al						
			Test chann								
		I	Detecto	or: Peak V	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	46.56	39.80	9.92	41.90	54.38	68.20	-13.82	Vertical			
10460.00	46.91	39.80	9.92	41.90	54.73	68.20	-13.47	Horizontal			
			Detector	: Average	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	36.94	39.80	9.92	41.90	44.76	54.00	-9.24	Vertical			

41.90

45.49

54.00

-8.51

Horizontal

Remark:

10460.00

37.67

39.80

9.92

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11ac(HT80)										
	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10420.00	47.89	40.00	9.85	41.95	55.79	68.20	-12.41	Vertical			
10420.00	47.66	40.00	9.85	41.95	55.56	68.20	-12.64	Horizontal			
			Detector	: Average	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10420.00	37.44	40.00	9.85	41.95	45.34	54.00	-8.66	Vertical			
10420.00	37.61	40.00	9.85	41.95	45.51	54.00	-8.49	Horizontal			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Band 4:									
			Band	l 4 – 802.1	1a				
			Test chann	el: Lowest	channel				
			Detecto	or: Peak V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11490.00	47.25	41.50	10.81	42.29	57.27	74.00	-16.73	Vertical	
11490.00	46.69	41.50	10.81	42.29	56.71	74.00	-17.29	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11490.00	36.25	41.50	10.81	42.29	46.27	54.00	-7.73	Vertical	
11490.00	37.15	41.50	10.81	42.29	47.17	54.00	-6.83	Horizontal	
Test channel: Middle channel									
				or: Peak V					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11570.00	45.80	41.38	10.78	42.27	55.69	74.00	-18.31	Vertical	
11570.00	46.31	41.38	10.78	42.27	56.20	74.00	-17.80	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11570.00	36.03	41.38	10.78	42.27	45.92	54.00	-8.08	Vertical	
11570.00	35.58	41.38	10.78	42.27	45.47	54.00	-8.53	Horizontal	
			Test channe						
		1	Detecto	or: Peak V	alue		_		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11650.00	46.12	41.26	10.76	42.26	55.88	74.00	-18.12	Vertical	
11650.00	46.27	41.26	10.76	42.26	56.03	74.00	-17.97	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11650.00	36.69	41.26	10.76	42.26	46.45	54.00	-7.55	Vertical	
11650.00 Remark:	35.81	41.26	10.76	42.26	45.57	54.00	-8.43	Horizontal	

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT20)									
			Test chann	•						
				or: Peak V						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	47.12	41.50	10.81	42.29	57.14	74.00	-16.86	Vertical		
11490.00	47.03	41.50	10.81	42.29	57.05	74.00	-16.95	Horizontal		
			Detector	: Average	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	36.17	41.50	10.81	42.29	46.19	54.00	-7.81	Vertical		
11490.00	37.06	41.50	10.81	42.29	47.08	54.00	-6.92	Horizontal		
Test channel: Middle channel										
	T	1 _	Detecto	or: Peak V	alue	l				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	45.12	41.38	10.78	42.27	55.01	74.00	-18.99	Vertical		
11570.00	46.49	41.38	10.78	42.27	56.38	74.00	-17.62	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	36.12	41.38	10.78	42.27	46.01	54.00	-7.99	Vertical		
11570.00	35.58	41.38	10.78	42.27	45.47	54.00	-8.53	Horizontal		
			Toot shann	ol: Highoot	channal					
			Test channe	or: Peak V						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	46.36	41.26	10.76	42.26	56.12	74.00	-17.88	Vertical		
11650.00	46.27	41.26	10.76	42.26	56.03	74.00	-17.97	Horizontal		
				: Average						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	37.06	41.26	10.76	42.26	46.82	54.00	-7.18	Vertical		
11650.00 Remark:	36.12	41.26	10.76	42.26	45.88	54.00	-8.12	Horizontal		

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
 The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Band 4 – 802.11n(HT40)									
			Test chann	el: Lowest	channel				
			Detecto	or: Peak V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11510.00	45.89	41.50	10.81	42.29	55.91	74.00	-18.09	Vertical	
11510.00	46.12	41.50	10.81	42.29	56.14	74.00	-17.86	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11510.00	35.58	41.50	10.81	42.29	45.60	54.00	-8.40	Vertical	
11510.00	36.85	41.50	10.81	42.29	46.87	54.00	-7.13	Horizontal	
			Test channe	al: Highest	channel				
				or: Peak V					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11590.00	46.38	41.32	10.77	42.27	56.20	74.00	-17.80	Vertical	
11590.00	45.21	41.32	10.77	42.27	55.03	74.00	-18.97	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11590.00	35.57	41.32	10.77	42.27	45.39	54.00	-8.61	Vertical	
11590.00	36.42	41.32	10.77	42.27	46.24	54.00	-7.76	Horizontal	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT20)							
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.26	37.49	10.81	42.29	53.27	74.00	-20.73	Vertical
11490.00	46.63	37.49	10.81	42.29	52.64	74.00	-21.36	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.83	37.49	10.81	42.29	42.84	54.00	-11.16	Vertical
11490.00	37.13	37.49	10.81	42.29	43.14	54.00	-10.86	Horizontal
			Test chann	ol. Middle	ahannal			
				or: Peak V				
	D	A	Detecti	l	alue	1.111	0	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.67	37.55	10.78	42.27	51.73	74.00	-22.27	Vertical
11570.00	46.39	37.55	10.78	42.27	52.45	74.00	-21.55	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.26	37.55	10.78	42.27	42.32	54.00	-11.68	Vertical
11570.00	35.68	37.55	10.78	42.27	41.74	54.00	-12.26	Horizontal
			Test channe					
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.73	37.60	10.76	42.26	52.83	74.00	-21.17	Vertical
11650.00	46.64	37.60	10.76	42.26	52.74	74.00	-21.26	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	36.63	37.60	10.76	42.26	42.73	54.00	-11.27	Vertical
11650.00 Remark:	35.79	37.60	10.76	42.26	41.89	54.00	-12.11	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT40)							
Test channel: Lowest channel								
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	45.87	37.50	10.81	42.29	51.89	74.00	-22.11	Vertical
11510.00	46.62	37.50	10.81	42.29	52.64	74.00	-21.36	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	35.64	37.50	10.81	42.29	41.66	54.00	-12.34	Vertical
11510.00	36.87	37.50	10.81	42.29	42.89	54.00	-11.11	Horizontal
	Test channel: Highest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	46.37	37.56	10.77	42.27	52.43	74.00	-21.57	Vertical
11590.00	45.26	37.56	10.77	42.27	51.32	74.00	-22.68	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	35.61	37.56	10.77	42.27	41.67	54.00	-12.33	Vertical
11590.00	36.44	37.56	10.77	42.27	42.50	54.00	-11.50	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT80)									
	Test channel: Middle channel								
			Detecto	or: Peak V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11550.00	46.87	37.54	10.81	42.29	52.93	74.00	-21.07	Vertical	
11550.00	46.69	37.54	10.81	42.29	52.75	74.00	-21.25	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11550.00	35.87	37.54	10.81	42.29	41.93	54.00	-12.07	Vertical	
11550.00	36.84	37.54	10.81	42.29	42.90	54.00	-11.10	Horizontal	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

o.o Trequency stability			
Test Requirement:	FCC Part15 E Section 15.407 (g)		
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.		
Test setup:	Temperature Chamber Spectrum analyzer EUT		
	Variable Power Supply		
	Note: Measurement setup for testing on Antenna connector		
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Francisco (BALL-)	May Payistian (nmm)	
Temp(℃)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)	
	102V	5179.997643	0.45	
20	120V	5179.974779	4.87	
	138V	5179.963951	6.96	

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test co	nditions	Francisco (BALLE)	Max. Deviation (ppm)	
Voltage(ac)	Temp(°C)	Frequency(MHz)		
	-20	5179.987033	2.50	
	-10	5179.995377	0.89	
	0	5179.968421	6.10	
400) (10	5179.987556	2.40	
120V	20	5179.996681	0.64	
	30	5179.974290	4.96	
	40	5179.963775	6.99	
	50	5179.974929	4.84	

Band 4: Voltage vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		Francisco (MIII-)	Mary Davidian (man)	
Temp(℃)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)	
	102V	5744.974766	4.39	
20	120V	5744.993381	1.15	
	138V	5744.998588	0.25	

Temperature vs. Frequency Stability (Lowest channel=5745MHz)

Test co	nditions	F	Max. Deviation (ppm)	
Voltage(ac)	Temp(°C)	Frequency(MHz)		
	-20	5744.994798	0.91	
	-10	5744.993693	1.10	
	0	5744.994771	0.91	
120\/	10	5744.985355	2.55	
120V	20	5744.993864	1.07	
	30	5744.994481	0.96	
	40	5744.999347	0.11	
	50	5744.992458	1.31	