Revision

P107 Lines and Planes

CIE CAL FM P13 2011-11 Q9

Find a cartesian equation of the plane Π containing the lines $\mathbf{r} = 3\mathbf{i} + \mathbf{k} + s(2\mathbf{i} + \mathbf{j} - \mathbf{k})$ and 4 r = 3i - 7j + 10k + t(i - 3j + 4k). The line l passes through the point P with position vector $6\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and is parallel to the vector $2\mathbf{i} + \mathbf{j} - 4\mathbf{k}$. Find (i) the position vector of the point where l meets Π , (ii) the perpendicular distance from P to Π , 31 (iii) the acute angle between l and Π .

CIE CAL FM P12 2011-11 Q2

The position vectors of points A, B, C, relative to the origin O, are \mathbf{a} , \mathbf{b} , \mathbf{c} , where $\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $\mathbf{b} = 4\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$, $\mathbf{c} = 3\mathbf{i} - \mathbf{j} - \mathbf{k}$.

Find $\mathbf{a} \times \mathbf{b}$ and deduce the area of the triangle OAB.

Hence find the volume of the tetrahedron OABC, given that the volume of a tetrahedron is $\frac{1}{3} \times$ area of base \times perpendicular height. [2]

3

CIE CAL FM P13 2011-06 Q10

The lines l_1 and l_2 have equations l_1 : $\mathbf{r} = 6\mathbf{i} + 5\mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + \mathbf{k})$ and l_2 : $\mathbf{r} = 6\mathbf{i} + 5\mathbf{j} + 4\mathbf{k} + \mu(4\mathbf{i} + 6\mathbf{j} + \mathbf{k})$. Find a cartesian equation of the plane Π containing 4 l_1 and l_2 . Find the position vector of the foot of the perpendicular from the point with position vector $\mathbf{i} + 10\mathbf{j} + 3\mathbf{k}$ to Π . [4] The line l_3 has equation $\mathbf{r} = \mathbf{i} + 10\mathbf{j} + 3\mathbf{k} + v(2\mathbf{i} - 3\mathbf{j} + \mathbf{k})$. 5 Find the shortest distance between l_1 and l_3 .

CIE CAL FM P12 2011-06 Q6

The line l_1 passes through the point with position vector $8\mathbf{i} + 8\mathbf{j} - 7\mathbf{k}$ and is parallel to the vector $4\mathbf{i} + 3\mathbf{j}$. The line l_2 passes through the point with position vector $7\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$ and is parallel to the vector $4\mathbf{i} - \mathbf{k}$. The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 . In either order,

- (i) show that PQ = 13,
- (ii) find the position vectors of P and Q.

CIE CAL FM P12 2010-06 Q7

The lines l_1 and l_2 have vector equations

$$\mathbf{r} = 4\mathbf{i} - 2\mathbf{j} + \lambda(2\mathbf{i} + \mathbf{j} - 4\mathbf{k})$$
 and

$$\mathbf{r} = 4\mathbf{i} - 5\mathbf{j} + 2\mathbf{k} + \mu(\mathbf{i} - \mathbf{j} - \mathbf{k})$$
 respectively.

- (i) Show that l_1 and l_2 intersect. [3]
- (ii) Find the perpendicular distance from the point P whose position vector is 3i 5j + 6k to the plane containing l₁ and l₂.
 [3]
- (iii) Find the perpendicular distance from P to l_1 . [4]

CIE CAL FM P1 2008-06 Q12

The position vectors of the points A, B, C, D are $7\mathbf{i} + 4\mathbf{j} - \mathbf{k}$, $3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$, $2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$, $2\mathbf{i} + 7\mathbf{j} + \lambda\mathbf{k}$ respectively. It is given that the shortest distance between the line AB and the line CD is 3.

- (i) Show that $\lambda^2 5\lambda + 4 = 0$. [7]
- (ii) Find the acute angle between the planes through A, B, D corresponding to the values of λ satisfying the equation in part (i).
 [7]

<u>ASSIGNMENT</u>

Attempt all the questions in the following slides.

Assignment is to be submitted within **one week** after instruction!!!

Please write your name and your student's id in the script upon submission.

CIE CAL FM P11 2010-11 Q12

The plane Π_1 has equation $r = 2i + j + 4k + \lambda(2i + 3j + 4k) + \mu(-i + k)$. Obtain a cartesian equation of Π_1 in the form px + qy + rz = d. [4] The plane Π_2 has equation $\mathbf{r} \cdot (\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}) = 12$. Find a vector equation of the line of intersection of Π_1 and Π_2 . [3] The line l passes through the point A with position vector $a\mathbf{i} + (2a + 1)\mathbf{j} - 3\mathbf{k}$ and is parallel to $3c\mathbf{i} - 3\mathbf{j} + c\mathbf{k}$, where a and c are positive constants. Given that the perpendicular distance from A to Π_1 is $\frac{15}{\sqrt{6}}$ and that the acute angle between l and Π_1 is $\sin^{-1}\left(\frac{2}{\sqrt{6}}\right)$, find the values of a and c. **KFC** Revision (Lines Planes) 9

CIE CAL FM P1 2008-11 Q11

The plane Π_1 has equation

$$\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \theta(2\mathbf{j} - \mathbf{k}) + \phi(3\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}).$$

Find a vector normal to Π_1 and hence show that the equation of Π_1 can be written as 2x + 3y + 6z = 14. [4]

The line l has equation $\mathbf{r} = 3\mathbf{i} + 8\mathbf{j} + 2\mathbf{k} + t(4\mathbf{i} + 6\mathbf{j} + 5\mathbf{k})$.

The point on l where $t = \lambda$ is denoted by P. Find the set of values of λ for which the perpendicular distance of P from Π_1 is not greater than 4.

The plane Π_2 contains l and the point with position vector $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$. Find the acute angle between Π_1 and Π_2 . [4]

CIE CAL FM P1 2003-11 Q9

The line l_1 passes through the point A with position vector $\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ and is parallel to the vector $3\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$. The variable line l_2 passes through the point $(1 + 5\cos t)\mathbf{i} - (1 + 5\sin t)\mathbf{j} - 14\mathbf{k}$, where $0 \le t < 2\pi$, and is parallel to the vector $15\mathbf{i} + 8\mathbf{j} - 3\mathbf{k}$. The points P and Q are on l_1 and l_2 respectively, and PQ is perpendicular to both l_1 and l_2 .

- (i) Find the length of PQ in terms of t.
- (ii) Hence show that the lines l_1 and l_2 do not intersect, and find the maximum length of PQ as t varies.
- (iii) The plane Π_1 contains l_1 and PQ; the plane Π_2 contains l_2 and PQ. Find the angle between the planes Π_1 and Π_2 , correct to the nearest tenth of a degree. 4

CIE CAL FM P1 2002-11 Q9

has an infinite number of solutions.

The planes Π_1 and Π_2 , which meet in the line I, have vector equations $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k} + \theta_1(2\mathbf{i} + 3\mathbf{k}) + \phi_1(-4\mathbf{j} + 5\mathbf{k})$, $r = 2i + 4j + 6k + \theta_2(3j + k) + \phi_2(-i + j + 2k)$, respectively. Find a vector equation of the line l in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. [5] Find a vector equation of the plane Π_z which contains I and which passes through the point with position vector. $4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$. Find also the equation of Π_{χ} in the form |4| ax + by + cz = d. Deduce, or prove otherwise, that the system of equations 6x - 5y - 4z = -32, 5x - y + 3z = 24, 9x - 2y + 5z = 40, [3]