# Прикладная Криптография: Симметричные криптосистемы Блочные шифры

Макаров Артём МИФИ 2018

#### Блочный шифр

**Блочный шифр** – детерминированный шифр E = (E, D) определённый на (E, D):  $E: K \times X \to X$ .

 $x \in X$  — блок данных, X — множество блоков, K — множество ключей блочного шифра.

Для ключа  $k \in K$  определим функцию  $f_k: X \to X: f_k = E(k,*). f_k^{-1}: X \to X: f_k^{-1} = D(k,*).$ 

Из свойства корректности имеем  $f_k$ ,  $f_k^{-1}$  - подстановки на множестве X,  $f_k f_k^{-1} = e$ , где e – тождественная подстановка на X.

#### Блочный шифр

- Блочные шифры является основным криптографическим примитивом для построения симметричных криптосистем.
- Могут быть использованы для как схем шифрования (в схемах шифрования), так и для обеспечения аутентичности (в кодах аутентичности сообщений.



#### Понятие стойкости блочного шифры

Для блочных шифров требуют более строгое требование, чем семантическая стойкость: для случайно выбранного ключа  $k \in_R K$  перестановка  $E_k(*) = f_k$  должна быть псевдослучайной, т.е. выглядеть вычислительно неотличимой от случайной подстановки из S(X).

Идея игры — противник эффективный противник имеет доступ к оракулу, который выбирает функцию f либо случайно, либо использует псевдослучайную функцию на случайном ключе. Противник может получить произвольное число образов функции f на указанных им входах. Задача — различить эксперименты описанной игры.

#### PRP u PRF

Пусть функция  $F: K \times X \to Y$  определена на (K, X, Y).

Тогда F — **псевдослучайная функция (PRF)**, если существует эффективный алгоритм, вычисляющий  $F(k,m), k \in K, x \in X$ .

Пусть функция  $E: K \times X \to X$  определена на (K, X).

Тогда E — **псевдослучайная подстановка (PRP)**, если

- Существует эффективный алгоритм вычисляющий E(k,x).  $k \in K, x \in X$
- Функция  $f_k = E(k,*)$  подстановка.

## Игра на стойкость PRF

Для  $b \in \{0,1\}$  пусть  $W_b$  событие того, что b'=1 в эксперименте b.

Тогда преимуществом алгоритма A против блочного шифра  $\mathbf{E}=(E,D)$  на (K,X) называется величина  $PRF_{adv}[A,\mathbf{E}]=|\Pr[W_0]-\Pr[W_1]|.$ 



#### Стойкая PRF

PRF F, определённая на (K,X), называется стойкой PRF, если  $\forall A:A-$  эффективный алгоритм в игре на стойкость PRF величина  $PRF_{adv}[A,F] \leq \epsilon$ , где  $\epsilon$  – пренебрежимо малая величина.



#### Игра на стойкость PRF

Альтернативное определение: рассмотри игру на угадывание бита (см лекцию 1) для противника A против PRF F. Определим  $PRF_{adv}^*[A,F] = |\Pr[b'=b]-1/2|$ . Тогда F — стойкая PRF, если  $\forall A$ : A — эффективный алгоритм в игре на угадывание бита в игре на стойкость PRF величина  $PRF_{adv}^*[A,F] \leq \epsilon$ , где  $\epsilon$  — пренебрежимо малая величина.

$$PRF_{adv}[A,F] = 2 * PRF_{adv}^*[A,F]$$
. (см лекцию 1)



#### Вычислительная неразличимость

Пусть F — PRF на (K, X, Y)

Рассмотрим множество возможных значений  $\{F_k\} \subset \text{Funs} = \{f: X \to Y\}$ .

Тогда если F — стойкая PRF, то эффективный Противник не может имея доступ к оракулу отличить  $\{F_k\}$  от Funs.

$$|\{F_k\}| = |K|, |Funs| = |Y|^{|X|}$$



#### Пример

Пусть  $F: K \times X \to \{0,1\}^{128}$  стойкая PRF.

Является  $G: K \times X \to \{0,1\}^{128}$ ли стойкой PRF?

$$G(k,x) = \begin{cases} 0^{128}, x = 0\\ F(k,x), x \neq 0 \end{cases}$$

Нет, не является. A: передаёт сообщение x=0, возвращает 0, если ответ претендента  $0^{128}$ , иначе 1.  $PRF_{adv}[A,G]=|1-2^{128}|>1/2$ 

## Игра на стойкость PRP

Строится аналогично игре на PRF, но для подстановок.

Для  $b \in \{0,1\}$  пусть  $W_b$  событие того, что b'=1 в эксперименте b.

Тогда преимуществом алгоритма A против блочного шифра E=(E,D) на (K,X) называется величина  $PRP_{adv}[A,E]=|\Pr[W_0]-\Pr[W_1]|.$ 



#### Стойкая PRP

PRP E, определённая на (K,X), называется стойкой PRP, если  $\forall A:A$  – эффективный алгоритм в игре на стойкость PRP величина  $PRF_{adv}[A,E] \leq \epsilon$ , где  $\epsilon$  – пренебрежимо малая величина.



12

#### Игра на стойкость PRP

Альтернативное определение: рассмотри игру на угадывание бита (см лекцию 1) для противника A против PRP E. Определим  $PRP_{adv}^*[A,E] = |\Pr[b'=b]-1/2|$ . Тогда E — стойкая PRP, если  $\forall A$ : A — эффективный алгоритм в игре на угадывание бита в игре на стойкость PRP величина  $PRP_{adv}^*[A,E] \leq \epsilon$ , где  $\epsilon$  — пренебрежимо малая величина.

$$PRP_{adv}[A,F] = 2 * PRP_{adv}^*[A,E]$$
. (см лекцию 1)



## Стойкий блочный шифр

Пусть E = (E, D) – блочный шифр на (K, X). Тогда E – стойкий блочный шифр, если E – стойкая псевдослучайная перестановка.



14

Рассмотрим игру. Пусть E=(E,D) – блочный шифр на (K,X). Пусть претендент выбирает случайный ключ  $k\in_R K$ . Противник выбирает произвольные  $x_0,...x_q$  и получает шифтексты  $y_i=E(k,x_i)$ . Задача противника получить  $(x_{q+1},y)$ :  $x_{q+1}\notin\{x_0,...,x_q\}, y=E(k,x_{q+1})$ .



Блочный шифр называется стойким непредстказуемым блочным шифром, если для всех эффективных противников A величина  $Pred_{adv}[A, E] = |\Pr[y = E(k, x_{q+1})]| \le \epsilon, \epsilon -$ пренебрежимо малая величина.



16

**Теорема 4.1.** Пусть E = (E, D) — блочный шифр на (K, X). Тогда если E — стойкий, то E — непредсказуемый.

⊳Пусть E — предсказуемый. Тогда  $\exists A : Pred[A, E] = p, p$  — не пренебрежимо малая. Построим противника B следующим образом.



Если b = 0:  $W_0 = \Pr[b' = 1] = Perd_{adv}[A, E] = p$ .

Если b = 1:  $W_1 = \Pr[b' = 1] =$ 

Pr[угадать рузультат случайной функции] = 1/|X| - пренебрежимо малая, для суперполиномиального значения |X|.



**Теорема 4.1.** Пусть E = (E, D) — блочный шифр на (K, X). Тогда если E — стойкий, то E — непредсказуемый.

Тогда  $PRP_{adv}[B, E] = |\Pr[W_0] - \Pr[W_1]| = |p - \epsilon|$  - не пренебрежимо малая величина ⇒ построили атаку на блочный шифр ⇒ противоречие ⇒ E – не предсказуемый ⇒ теорема доказана.  $\triangleleft$ 

### Стойкость против восстановления ключа

Рассмотрим игру. Пусть E=(E,D) – блочный шифр на (K,X). Пусть претендент выбирает случайный ключ  $k\in_R K$ . Противник выбирает произвольные  $x_0,...x_q$  и получает шифтексты  $y_i=E(k,x_i)$ . Задача противника получить  $k'\in K$ : k=k.



#### Стойкость против восстановления ключа

Блочный шифр называется стойким к восстановлению ключа блочным шифром, если для всех эффективных противников A величина  $Rec_{adv}[A, E] = |\Pr[k' = k]| \le \epsilon, \epsilon$  – пренебрежимо малая величина.



#### Стойкость против восстановления ключа

**Теорема 4.2.** Пусть E = (E, D) — блочный шифр на (K, X). Тогда если E — непредсказуемый, то E — стойкий к восстановлению ключа.

ротивник может восстановить ключ блочного шифра — то он может получить пару открытый текст — шифртекст, просто используя ключ. ⊲

#### Следствия стойкости

- Если E стойкий блочный шифр, он должен быть стойким к восстановлению ключа.
- Если E стойкий к восстановлению ключа, то |K| супер полиномиальная
- Описанная выше атака на восстановление ключа называется exhaustive-search (полный перебор ключа, исчерпывающий поиск ключа, полная апробация). Если противник проверяет t ключей за время полиномиально ограниченное от t то вероятность совершить атаку составляет  $p \approx t/|K|$ .

#### Использование блочных шифров

Пусть E = (E, D) – блочный шифр на (K, X).

Можем ли мы использовать блочный шифр для построения семантически стойких шифров для сообщений произвольной длины?

#### **ECB**

Пусть E = (E, D) – блочный шифр на (K, X). Для полиномиально ограниченной величины  $l \ge 1$  определим шифр E' = (E', D') на  $(K, X^{\le l}, X^{\le l})$  следующим образом:

- Для  $k \in K, m \in X^{\leq l}, v = |m|$  определим  $E'(k,m) = \big(E(k,m[0]), \dots, E(k,m[v-1])\big).$
- Для  $k \in K, c \in X^{\leq l}, v = |c|$  определим  $D'(k,c) = \big(E(k,c[0]), ..., E(k,c[v-1])\big).$

#### ECB



Зашифрование

Расшифрование

**Теорема 4.3.** Пусть E = (E,D) — блочный шифр на (K,X). Для полиномиально ограниченной величины  $l \geq 1$  определим ЕСВ шифр E' = (E',D') на  $(K,X'^{\leq l},X'^{\leq l})$ , где  $X'^{\leq l}$  — сообщения, длины не более чем из l попарно различных блоков. Тогда если E — стойкий блочный шифр, то E' — семантически стойкий. В частности  $\forall A$  в игре на семантическую стойкость против E',  $\exists B$  в игре на стойкость блочного шифра, такой что  $SS_{adv}[A,E'] = 2*BC_{adv}[B,E]$ 

⊳Без доказательства, основная идея – для псевдослучайной подстановки противник не может отличить зашифрование уникальных блоков от случайных блоков, а значит не может отличить 2 различных зашифрования. ⊲

- Стойкий блочный шифр в режиме ЕСВ семантически стойкий для
  - Сообщений, состоящих из уникальных, попарно различных блоков (например есть открытый текст случайных ключ), не повторяющихся во время жизни ключа
  - Любых коротких, уникальных сообщений, длинной в один блок, не повторяющихся во время жизни ключа
- Что для произвольных сообщений произвольной длины?

Зашифрование в режиме ЕСВ происходит детерминированно и поблочно, как следствие одинаковые блоки имеют одинаковый шифртекст.





(a) plaintext



(b) plaintext encrypted in ECB mode using AES

**Теорема 4.4.** Пусть E = (E, D) -на  $(K, X^l)$  блочных шифр в режиме ЕСВ для произвольных сообщений из l блоков,  $x \in X^l$ . E -не семантически стойкий.

⊳Построим противника A. A генерирует 2 сообщения  $m_1, m_2$ :  $m_1 = (x, x), m_2 = (x, y), x, y \in X$ . От претендента он получает шифртекст  $c = E(k, m_b)$ . Тогда если  $c = (c_1, c_1)$  противник возвращает b' = 0, иначе 1.

Преимущество противника равно 1, т.к. одинаковые блоки открытого текста переходят в одинаковые блоки шифртекста ⊲

#### Построение блочных шифров

- Обычно блочные шифры строятся с использованием итеративных конструкций несколько раз подряд используется некоторая функция (наз. итеративной или раундовой).
- В качестве итеративной функции выбирается простой (с точки зрения реализации) блочный шифр  $\mathrm{E}'=(E',D')$ , в общем случае может быть не стойкой.
- Выбирается простой (с точки зрения реализации) PRG G, используемый для расширения ключа k в d раундовых ключей  $k_1, \dots, k_d$ . G называется функцией выработки раундовых ключей или функцией расширения ключа.

#### Построение блочных шифров

#### Алгоритм E(k, x):

- Используя функцию G получить раундовые ключи:  $(k_1, ..., k_d) \leftarrow G(k)$
- Для i = 1..d:  $y \leftarrow E'(k_d, E'(k_{d-1}, ..., E'(k_2, E'(k_1, x))...))$



#### Построение блочных шифров

- Расшифрование происходит аналогично зашифрованию, но с использованием обратной раундовой функции D'(k,x), и обратным порядком следования ключей.
- Иногда также могут использоваться входные и выходные преобразования: перед шифрованием используется некоторое входное преобразование над открытым текстов, после процедуры шифрования некоторое выходное преобразование



#### Построение раундовых функций

- Как строить хорошие раундовые функции? Как определить стойкость раундовой функции? Никто не знает.
- Раундовая функция должна быть сильно нелинейной от ключа, т.к. использование линейной функции (или близкой к линейной) даёт линейный блочный шифр. Пример плохой раундовой функции  $E'(k,x) = kx \mod q$ .
- Качество раундовой функции определяется возможностью практических атак на полученный шифр.
- Сколько нужно использовать раундов для фиксированной раундовой функции? Никто не знает.

#### Использование блочных шифров

- Никогда не строить собственных блочных шифров
- Использовать AES, ГОСТ Р 34.12-2015 (Магма (ex ГОСТ 28147-89), Кузнечик)