רובולגו

<u>הקדמה</u>

המעבדה משתמשת ברובוט הבנוי ממערכת Robots בחבילת התוכנה Python. ובשפת התכנות Python, בשימוש בחבילת התוכנה nxt-python. בחבילה זאת הקוד מתקמפל במחשב הפיתוח, והפקודות לרובולגו נשלחות ממחשב הפיתוח בעזרת תקשורת BlueTooth.

נושאי המעבדה:

תכנות ושימושי חיישנים במערכת RoboLego.

מטרות המעבדה:

תכנות אפליקציות שונות

שימוש מעשי בחיישנים וניתוח מידע המופק מהם.

מהלך המעבדה

מעבדה זו מורכבת משני חלקים עיקריים: שליטה ברובוט ובמנועים, ושימוש בחיישנים.

מבנה בקר הרובולגו (brick)

שימו לב שלבקר יש שתי קצוות.

בקצה אחד קיימות כניסות ממוספרות שאליהם יתחברו החיישנים. ובקצה השני קיימות יציאות A,B,C שאליהם יתחברו המנועים.

חיבור פיסי של הרובולגו למחשב

בצע את החיבור בהתאם להנחיות <u>הקישור</u>.

עקרונות עבודה עם מנועי הרובולגו

• הרובולגו מבצע את הפקודות בצורה אסינכרונית, לדוגמה אם הפקודה run נשלחת למנוע, המנוע יסתובב כל עוד לא ישלחו לו פקודה נוספת של brake.

מנועים בסיבוב:

- o הרצת מנוע יחיד, כשהשני כבוי.
- o הרצת מנוע אחד קדימה, והשני אחורה.
 - פקודות שימושיות לשימוש במנועים:
- Run(power) o המנוע יסתובב, ערך הפרמטר power יכול לנוע בטווח +-100, כאשר – המנוע יסתובב אחורה.
 - ()Brake c המנוע יעצור.
 - turn(power, dis4Turn) o .dis4Turn- את מספר הסיבובים שמצוין ב-power

עם run, עובדים בצמוד עם time.sleep, בעבודה עם turn עם run, עובדים בצמוד עם

- <u>פקודות שימושיות לשימוש בחיישנים/אקטואטורים:</u>
- /sensor_name>.get_sample) קריאת ערך מחיישן, כאשר במקום <sensor_name>. יופיע שם המופע של החיישן.
 - self.brick.play_tone_and_wait(262, 500) self.brick.play_tone_and_wait(294, 500) self.brick.play_tone_and_wait(330, 500) self.brick.play_tone_and_wait(294, 500) self.brick.play_tone_and_wait(294, 500)

<u>עבודה עם חיישנים:</u>

קישור לרובולגו ואיתחול החיישנים:

יש לשים לב לאיזה פורטים בפועל מחוברת החומרה.

קישור לרובולגו בשם שרה3

brick=nxt.locator.find_one_brick(name='Sara3')
הגדרת מנוע שמאלי וימני.

left=nxt.motor.Motor(brick, nxt.motor.PORT_A)
right=nxt.motor.Motor(brick, nxt.motor.PORT_B)
הגדרת חיישן מגע

touch=nxt.sensor.Touch(brick,nxt.sensor.PORT_2)

הגדרת חיישן תאורה (מודד את מידת ההחזרה של האור).

light=nxt.sensor.Light(brick, nxt.sensor.PORT_3) קביעת צורת הפעלת החיישן, ופורמט הנתונים המוחזרים

light.set_input_mode(nxt.sensor.Type.LIGHT_ACTIVE, nxt.sensor.Mode.RAW)

Page **6** of **8** עודכן ב-10/2021 גד הלוי. און להעתוה ואן להועתמוע

משימות לביצוע:

עליך ליצור מחלקה שבעזרתה הרובולגו:

- 1. ייסע ברבוע, כאשר כוח המנוע, זמן הנסיעה, ומרחק הסיבוב יקבל כפרמטרים.
- 2. יבצע ספירלה ריבועית, כאשר הפרמטרים יהיו זהים לסעיף הקודם, בצרוף מספר צלעות הספירלה, ותוספת הזמן שיוצרת את הספירלה.
- 3. יבצע מדידת כמות אור מוחזרת ממשטח שחור וממשטח לבן, וימצא את ערך הסף לכיוון החיישן כך שיוכל לזהות מעל איזה פס הוא ממוקם.
 - 4. יספור את כמות הפסים השחורים תוך כדי נסיעה מעל "מעבר חצייה".
 - 5. ייסע קדימה ואחורה לסירוגין, תוך כדי השמעת מוסיקה.

לפני ביצוע קידוד המחלקה אנא הקדישו זמן וחישבו על שיקולים תכנוניים כך שהקוד שלכם יהיה כמה שיותר יעיל ומדויק.

שיקולים:

- אלו משתנים יופיעו כמשתני מחלקה, ואלו כמשתנים מקומיים.
 - אלו פרמטרים תקבל כל מתודה.
 - באלו מתודות של חבילת nxt-python כדאי לי להשתמש.
 - אלו מתודות יופיעו במחלקה?

נסו לבצע משימות אלו לבדכם.

אם לא הצלחתם, תוכלו לקבל רמזים <u>מהסרטון הבא.</u>

קובץ פייטון עם דוגמאות הקוד מהסרט נמצא <u>במודל</u>.

<u>המעבדה לייצור בעזרת מחשב</u>

אוניברסיטת תל-אביב

הפקולטה להנדסה

הגשה:

יש להגיש ב-Verifier סרטונים של משימות 2,4, ומשימה 5.

