Lecture 6: Machine Learning 2

Sung In Cho

Div. AISW Dongguk Univ.

Concept of Support Vector Machine (SVM)

Distribution of data from two classes

Which class does q belong too?

Distribution of data from two classes

$$w_1 x_1 + w_2 x_2 + b = 0$$

A line can be written as dot product plus a bias

$$\begin{bmatrix} \omega, & \omega_1 \end{bmatrix} \begin{bmatrix} \lambda_1 & b \\ \lambda_2 & b \end{bmatrix} + b = 0$$

$$\boldsymbol{w} \in \mathcal{R}^2$$

Another version, add a weight 1 and push the bias inside

$$\begin{bmatrix} \omega_1 & \omega_2 & \omega_3 \\ \beta_1 & \omega_4 \end{bmatrix} \boldsymbol{w} \cdot \boldsymbol{x} = 0$$

$$\boldsymbol{w} \in \mathcal{R}^3$$

$$oldsymbol{w} \cdot oldsymbol{x} + b = 0$$
 (offset/bias outside) $oldsymbol{w} \cdot oldsymbol{x} = 0$ (offset/bias inside)

$$w_1 x_1 + w_2 x_2 + b = 0$$

$$oldsymbol{w}\cdotoldsymbol{x}+b=0$$
 (offset/bias outside) $oldsymbol{w}\cdotoldsymbol{x}=0$ (offset/bias inside)

$$w_1x_1 + w_2x_2 + b = 0$$

Important property:
Free to choose any normalization of w

The line

$$w_1 x_1 + w_2 x_2 + b = 0$$

and the line

$$\lambda(w_1 x_1 + w_2 x_2 + b) = 0$$

Scalays and define the same line Flyon yrakal off > yearson off

$$| \boldsymbol{w} \cdot \boldsymbol{x} + b = -1$$

$$| \boldsymbol{w} \cdot \boldsymbol{x} + b = 0 |$$

3D,4DTMINSTON => HIPPINS 中央七 地部 经知

What happens if you change **b**?

Intuitively, the line that is the farthest from all interior points

Maximum Margin solution: most stable to perturbations of data

Want a hyperplane that is far away from 'inner points'

The gap between parallel hyperplanes

is maximized 11W11 = minimize

Can be formulated as a maximization problem

$$\max_{oldsymbol{w}} rac{2}{\|oldsymbol{w}\|}$$

subject to
$$\boldsymbol{w} \cdot \boldsymbol{x}_i + b \stackrel{\geq}{\leq} +1$$
 if $y_i = +1$ for $i = 1, \dots, N$

What does this constraint mean?

Label of the data point

Why is it +1 and -1?

Can be formulated as a maximization problem

$$\max_{\boldsymbol{w}} \frac{2}{\|\boldsymbol{w}\|}$$
 subject to $\boldsymbol{w} \cdot \boldsymbol{x}_i + b \stackrel{\geq}{\leq} +1$ if $y_i = +1$ for $i = 1, \dots, N$

Equivalently,

Where did the 2 go?

$$\min_{\bm{w}} \|\bm{w}\|$$
 subject to $y_i(\bm{w}\cdot \bm{x}_i+b)\geq 1$ for $i=1,\ldots,N$

What happened to the labels?

'Primal formulation' of a linear SVM

$$\min_{oldsymbol{w}} \|oldsymbol{w}\|$$

Objective Function

subject to
$$y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \ge 1$$
 for $i = 1, \dots, N$

This is a convex quadratic programming (QP) problem (a unique solution exists)

 $\min_{\boldsymbol{w}} \|\boldsymbol{w}\|$

Objective Function

subject to
$$y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \ge 1$$
 for $i = 1, ..., N$

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 = 0$$
 for $\mathbf{x}_i \in \text{support vectors}$

Constraints

Lagrange Multiplier Method

$$L(\mathbf{w},b,\alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i \left[y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b \right) - 1 \right]$$

minimize w.r.t. w and b

maximize w.r.t. $\alpha_i \ge 0 \ \forall i$

 α :Lagrange multiplier

Finding Solution

$$\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i} \alpha_{i} y_{i} x_{i} = 0$$

$$\nabla_{b} L = -\sum_{i} \alpha_{i} y_{i} = 0$$

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} x_{i}$$

$$-\sum_{i} \alpha_{i} y_{i} = 0$$

$$2$$

If we know only the value of a, we can find w

Organize formulas into functions for a

$$\frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{N} \alpha_{i} \left[y_{i} \left(\mathbf{w} \cdot \mathbf{x}_{i} + b \right) - 1 \right]$$

$$= \sum_{i=1}^{N} \alpha_{i} + \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{N} \alpha_{i} \left[y_{i} \left(\mathbf{w} \cdot \mathbf{x}_{i} \right) \right] = \sum_{i=1}^{N} \alpha_{i} + \frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \mathbf{w}^{T} \mathbf{w}$$

$$\sum_{i=1}^{N} \mathbf{x}_{i} + \sum_{i=1}^{N} \mathbf{x}_{i} + \sum_{i=1}^{N$$

 $= \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \mathbf{w}^T \mathbf{w} = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j = L(\alpha)$

Since the coefficient of the a is negative, the problem of finding the minimum value is replaced with the problem of finding the maximum value.

Find a that maximizes *L*→ Dual Form

Finding Solution

$$\max L(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} =$$

From ②
$$\sum_{i} \alpha_{i} y_{i} = 0, \ \alpha_{i} \ge 0, \ i = 1,...,n$$

From KKT condition (KKT complimentary slackness)

$$\alpha_i = 0$$
 or $y_i (w^T x_i + b) - 1 = 0$

 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 = 0 \rightarrow a_i \neq 0$, \mathbf{x}_i is support vector otherwise, \mathbf{x}_i is not support vector \rightarrow it cannot influence to find the \mathbf{w}

Concept of Adaboost

Classifier ensemble

- ◆ The importance of collaboration (ensemble)
 - Collection of individual abilities
 - Better results if you cooperate → Motivation of classifier ensemble

CHOSOS ZUTZ (FUTVY)

Adaboost

- Boosting
 - Most popular boosting: Adaboost

Create final strong classifier by using various weak classifiers

Adaboost

- Boosting
 - Most popular boosting: Adaboost
 - Using effective resampling
 - The boosting algorithm is created so that the kth classifier c_k and the next c_k + 1 are related
 - Samples in training set X are separated by correct or incorrect classification results by c_k
 - The correct sample lowers the weight, and the wrong sample is still a 'tricky' opponent, increasing the weight
 - c_{k+1} is learned considering the above weight

Adaboost we ching st.

Vector: 1x feature 4

> Label: Saw (O. 1)

Input: Training sample, $\chi = \{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \cdots, (\mathbf{x}_N, t_N)\}$ K is the number of classifier

Output: Classifier ensemble, $C = \{(c_k, \alpha_k), 1 \le k \le K\}$ // a_k is the Confidence of classifier, c_k

k가 의가나 말만한 $C = \emptyset;$

for (j=1 to N) $w_i=1/N$; // Use the same weights initially

WORTH 子图, 黑色研 emont 子豆 for(k=1 to K) {

Learning classifier c_k considering $w_1, w_2, ..., w_N$ // More weighted samples are more important

predictioner 4511 Labeloiz 20209, ε =0;

for (j=1 to N) if $(c_k(\mathbf{x}_i) \neq t_i)$ $\varepsilon = \varepsilon + w_i$; // Calculate error (sum of weights of wrong samples)

if $(\varepsilon < 0.5)$ { // Classifier c_k is taken only when the error is less than 0.5 0,540 301 HZICL.

 $\alpha_k = \frac{1}{2}\log(\frac{1-\varepsilon}{\varepsilon})$; // Confidence of classifier α_k example $\alpha_k = \frac{1}{2}\log(\frac{1-\varepsilon}{\varepsilon})$ for(j=1 to N)

if $(c_k(\mathbf{x}_i) \neq t_i)$ $w_i = w_i \times e^{\alpha}$; // Increase the weight of wrong samples

else $w_i = w_i \times e^{-\alpha}$; // decrease the weight of correct samples

Normalize the sum of the $w_1, w_2, ..., w_N$ to be 1.

 $C=C \cup (C_k, \alpha_k); \leftarrow Classifier \stackrel{2}{\leftarrow} 7^k$

14

else $\{c_k = \text{Nil}; C = C \cup (c_k, 0);\}$ 15

16

10

11

12

13

(111) = 1 Wa=1

N2= 1

(2 151 82 BXTZ

0.5至程 い= 本

K=2

Oughter 1979

9=0.3

ot time scaled

Adaboost

Input: Training sample, $X = \{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \cdots, (\mathbf{x}_N, t_N)\}$, K is the number of classifier, t: ground truth Output: Classifier ensemble, $C = \{(c_k, a_k), 1 \le k \le K\}$ // a_k is the Confidence of classifier, c_k

```
C = \emptyset;
 1
         for (j=1 \text{ to } N) w_i = 1/N;
         for(k=1 \text{ to } K) {
            Learning classifier c_k considering w_1, w_2, ..., w_N
 4
             \varepsilon=0;
 5
             for (j=1 \text{ to } N) if (c_k(\mathbf{x}_i) \neq t_i) \varepsilon = \varepsilon + w_i;
 6
 7
             if(\varepsilon<0.5) {
                \alpha_{k} = \frac{1}{2} \log \left( \frac{1 - \varepsilon}{\varepsilon} \right);
                for(i=1 \text{ to } N)
 9
                    if (c_k(\mathbf{x}_i) \neq t_i) w_i = w_i \times e^{\alpha};
10
                    else w_i = w_i \times e^{-\alpha};
11
12
                 Normalize the sum of the w_1, w_2, ..., w_N to be 1.
                C=C\cup(c_{k},\alpha_{k});
13
14
15
             else \{c_k = \text{NiI}; C = C \cup (c_k, 0);\}
16
```

Adaboost

```
Input: Training sample, X = \{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \cdots, (\mathbf{x}_N, t_N)\}, K is the number of classifier, t: ground truth Output: Classifier ensemble, C = \{(c_k, a_k), 1 \le k \le K\} // a_k is the Confidence of classifier, c_k
```

```
1
        C = \emptyset;
        for (j=1 \text{ to } N) w_i=1/N; // Use the same weights initially
 2
        for(k=1 \text{ to } K) {
 3
          Learning classifier c_k considering w_1, w_2,..., w_N // More weighted samples are more important
 4
          \varepsilon=0;
 5
          for (j=1 \text{ to } N) if (c_k(\mathbf{x}_i) \neq t_i) \varepsilon = \varepsilon + w_i; // Calculate error (sum of weights of wrong samples)
 6
7
          if(\varepsilon<0.5) { // Classifier c_k is taken only when the error is less than 0.5
             \alpha_k = \frac{1}{2} \log \left( \frac{1 - \varepsilon}{\varepsilon} \right); // Confidence of classifier c_k
 8
             for(i=1 \text{ to } N)
 9
                 if (C_k(\mathbf{x}_i) \neq t_i) w_i = w_i \times e^{\alpha}; // Increase the weight of wrong samples
10
                 else w_j = w_j \times e^{-\alpha}; // decrease the weight of correct samples
11
12
              Normalize the sum of the w_1, w_2, ..., w_N to be 1.
             C=C\cup(c_{k},\alpha_{k});
13
14
          else \{c_{\nu} = \text{Nil}; C = C \cup (c_{\nu}, 0);\}
15
16
```