Scalar-isoscalar states in the large- N_c Regge approach

Enrique Ruiz Arriola^{1,*} and Wojciech Broniowski^{2,3,†}

¹Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain. ²The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland ³Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland (Dated: November 13, 2018)

Scalar-isoscalar states $(J^{PC}=0^{++})$ are investigated within the large- N_c Regge approach. We elaborate on the consequences of including the lightest $f_0(600)$ scalar-isoscalar state into such an analysis, where the position of $f_0(600)$ fits very well into the pattern of the radial Regge trajectory. Furthermore, we point out that the pion and nucleon spin-0 gravitational form factors, recently measured on the lattice, provide valuable information on the low-mass spectrum of the scalarisoscalar states on the basis of the scalar-meson dominance in the spin-0 channel. Through the fits to these data we find $m_{\sigma} = 450 - 600$ MeV. We compare the predictions of various fits and methods. An analysis of the QCD condensates in the two-point correlators provides further constraints on the parameters of the scalar-isoscalar sector. We find that a simple two-state model suggests a meson nature of $f_0(600)$, and a glueball nature of $f_0(980)$, which naturally explains the ratios of various coupling constants. Finally, we note that the fine-tuned condition of the vanishing dimension-2 condensate in the Regge approach with infinitely many scalar-isoscalar states yields a reasonable value for the mass of the lighest glueball state.

PACS numbers: 12.38.Lg, 11.30, 12.38.-t

Keywords: σ meson, scalar-isoscalar states, large- N_c Regge models, meson dominance, pion and nucleon

gravitational form factors, dimension-2 condensate

INTRODUCTION

The history and status of the σ -meson has been quite vacillating (for reviews see e.g. [1–3] and references therein). A scalar-isoscalar state with a mass of \sim 500 MeV was originally proposed in the fifties [4] as an ingredient of the nucleon-nucleon force providing saturation and binding in nuclei. Along the years, there has always been some arbitrariness in the "effective" or "fictitious" σ meson mass and the coupling constant to the nucleon, partly due to the lack of other sources of information. For instance, in the very successful Charge Dependent (CD) Bonn NN-potential [5], any partial wave $^{2S+1}L_J$ -channel is fitted with a different scalar-isoscalar meson mass and coupling. The σ -meson was also introduced as the chiral partner of the pion to account for spontaneous breaking of the chiral symmetry [6]. The lack of confidence in its existence motivated taking its mass to infinity, yielding the non-linear sigma model [7], which is the modern starting point for the Chiral Perturbation Theory [8].

During the last decade, the situation has steadily changed, and the σ -meson has been finally resurrected [9], culminating with the inclusion of the 0^{++} resonance in the Particle Data Group review (PDG) [10] as the $f_0(600)$ state, seen as a $\pi\pi$ resonance. It has widespread values for the mass, 400 - 1200 MeV, and for the

width, 600 - 1200 MeV [11]. A rigorous definition of the σ as a $\pi\pi$ resonance requires that it be a pole of the $\pi\pi$ scattering amplitude in the (J,T)=(0,0) channel in the second Riemann sheet in the Mandelstam variable s. Within such a framework, the uncertainties have recently been narrowly sharpened with a benchmark determination based on the Roy equations with constraints from the chiral symmetry [12], yielding the value ¹

$$m_{\sigma} - i\Gamma_{\sigma}/2 = 441^{+16}_{-8} - i272^{+9}_{-12} \text{ MeV}.$$
 (1)

The analysis of Ref. [13] yields a result with somewhat higher m_{σ} , $473 \pm 6 \pm 11 - i257 \pm 5 \pm 2$ MeV (with the errors statistical and systematic, respectively), while the unitarized Chiral Perturbation Theory (χ PT) gives a bit lower value of the mass, $401^{+12}_{-16} - i277^{+23}_{-26}$ MeV [14]. Nevertheless, various determinations of the pole mass agree with the values (1) within the uncertainties. These accurate determinations make somewhat tricky the original question on what σ mass should be used a priori within a meson-exchange picture, due to the very large width of the resonance. Moreover, the determinations mentioned above do not imply necessarily the standard assignment of the linear sigma-model where one takes $(\sigma, \vec{\pi})$ as chiral partners in the $(\frac{1}{2}, \frac{1}{2})$ representation of the chiral $SU(2)_R \otimes SU(2)_L$ group. A priori, the σ state

^{*}Electronic address: earriola@ugr.es

[†]Electronic address: Wojciech.Broniowski@ifj.edu.pl

¹ We use this definition for the pole mass in the \sqrt{s} variable. A better one is $s_{\sigma} = m_{\sigma}^2 - i\Gamma_{\sigma}m_{\sigma}$, which coincides with the previous one in the narrow resonance limit.