Math 240 Tutorial Questions

July 11

Question 1. Consider the matrix

- (a) Calculate the determinant of A using (1) cofactor expansion, and (2) row reduction.
- (b) Calculate the inverse using (1) the adjugate of A, and (2) row reduction.
- (c) Do the columns (rows) of A form a basis for \mathbb{R}^4 ? If they do, give the change of basis matrix from the standard basis of \mathbb{R}^4 to the columns of A.

Question 2. Consider the matrices

$$A = \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}.$$

The matrix P is invertible. Find P^{-1} by any means and calculate $P^{-1}AP = D$. Prove that A is invertible if and only if D is invertible. If A is invertible, find its inverse by first finding the inverse of D and then multiplying D^{-1} by P^{-1} and P in some order.

Question 3. Prove that the linear transformations of \mathbb{R}^2 consisting of compositions of reflections and rotations have determinants ± 1 .

Question 4. An isomorphism is an invertible linear transformation from one vector space onto another. Give two distinct isomorphisms $\mathbf{P}_3 \to \mathbf{R}^3$. NB: \mathbf{R}^n (or \mathbf{C}^n) are often referred to as the coordinate spaces. This question shows that the coordinate representation of a vector is not in general unique; it depends on the choice of basis.

Question 5. Define

$$H = \left\{ \begin{pmatrix} u & -u - x \\ 0 & x \end{pmatrix} : u, x \in \mathbf{R} \right\},$$

$$K = \left\{ \begin{pmatrix} v & 0 \\ w & -v \end{pmatrix} \right\}.$$

Do the following.

- (a) H and K are subspaces of $M_{2\times 2}(\mathbf{R})$.
- (b) Construct bases for H, K, H + K, and $H \cap K$.

Question 6. Answer whether the following are subspaces of \mathbb{R}^3 . The set of points $(x, y, z) \in \mathbb{R}^3$ such that

1

(a)
$$x + 2y - 3z = 4$$
,

- (b) $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z}{4}$,
- (c) x + y + z = 0 and x y + z = 1,
- (d) x = -z and x = z,
- (e) $x^2 + y^2 = z$, or
- (f) $\frac{x}{2} = \frac{y-3}{5}$.