

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	B23K 26/14, A61B 17/36	A1	(11) International Publication Number:	WO 98/33623
			(43) International Publication Date:	6 August 1998 (06.08.98)
(21) International Application Number:	PCT/US98/02063		(81) Designated States:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	4 February 1998 (04.02.98)		Published	<i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>
(30) Priority Data:	08/795,500	5 February 1997 (05.02.97)	US	
(71) Applicant:	BIOLASE TECHNOLOGY, INC. [US/US]; 981 Calle Amanecer, San Clemente, CA 92673 (US).			
(72) Inventors:	RIZOIU, Ioana, M.; 19 New York Court, Dana Point, CA 92624 (US). KIMMEL, Andrew, I.; 3338 Paseo Halcon, San Clemente, CA 92672 (US).			
(74) Agent:	MULLINS, Kenton, R.; 100 Pacifica #210, Irvine, CA 92618 (US).			

(54) Title: ELECTROMAGNETICALLY INDUCED CUTTER WITH SHAPED FLUID PARTICLES

(57) Abstract

An electromagnetically induced cutting mechanism which can provide accurate cutting operations on tissues, metals, and other materials is disclosed. The electromagnetically induced cutter can operate with a pulse duration on the order of nanoseconds or picoseconds, and is adapted to interact with atomized fluid particles having various shapes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republik of Korea	PT	Portugal		
CN	China	KZ	Kazakstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

ELECTROMAGNETICALLY INDUCED CUTTER WITH
SHAPED FLUID PARTICLES

Background of the Invention

The present invention relates generally to a cutting and ablating device and, more particularly, to a device for combining electromagnetic and hydro energies for cutting and removing both hard and soft materials.

Turning to Figure 1, a prior art optical cutter for dental use is disclosed. According to this prior art apparatus, a fiber guide tube 5, a water line 7, an air line 9, and an air knife line 11 (which supplies pressurized air) are fed into the hand-held apparatus 13. A cap 15 fits onto the hand-held apparatus 13 and is secured via threads 17. The fiber guide tube 5 abuts within a cylindrical metal piece 19. Another cylindrical metal piece 21 is a part of the cap 15.

When the cap 15 is threaded onto the hand-held device 13, the two cylindrical metal tubes 19 and 21 are moved into very close proximity of one another. A gap of air, however, remains between these two cylindrical metal tubes 19 and 21. Thus, the laser within the fiber guide tube 5 must jump this air gap before it can travel and exit through another fiber guide tube 23. Heat is dissipated as the laser jumps this air gap.

The pressurized air from the air knife line 11 surrounds and cools the laser as the laser bridges the gap between the two metal cylindrical objects 19 and 21. Thus, a first problem in this prior art apparatus is that the interface between the two metal cylindrical objects 19 and 21 has a dissipation of heat which must be cooled by

pressurized air from the air knife line 11. (Air from the air knife line 11 flows out of the two exhausts 25 and 27 after cooling the interface between elements 19 and 21.) This inefficient 5 interface between elements 19 and 21 results from the removability of the cap 15, since a perfect interface between elements 19 and 21 is not achieved.

The laser energy exits from the fiber guide 10 tube 23 and is applied to a target surface within the patient's mouth, according to a predetermined surgical plan. Water from the water line 7 and pressurized air from the air line 9 are forced into the mixing chamber 29. The air and water mixture is 15 very turbulent in the mixing chamber 29, and exits this chamber through a mesh screen with small holes 31. The air and water mixture travels along the outside of the fiber guide tube 23, and then leaves the tube and contacts the area of surgery. This air 20 and water spray coming from the tip of the fiber guide tube 23 helps to cool the target surface being cut and to remove cut materials by the laser. The need for cooling the patient surgical area being cut is another problem with the prior art.

In addition to prior art systems which utilize 25 laser light from a fiber guide tube 23, for example, to cut tissue and use water to cool this cut tissue, other prior art systems have been proposed. U.S. Patent No. 5,199,870 to Steiner et al., which issued 30 on April 6, 1993, discloses an optical cutting system which utilizes the expansion of water to destroy and remove tooth material. This prior art approach requires a film of liquid having a thickness of between 10 and 200 μm . Another prior

art system is disclosed in U.S. Patent No. 5,267,856 to Wolbarsht et al., which issued on December 7, 1993. This cutting apparatus is similar to the Steiner et al. patent, since it relies on the absorption of laser radiation into water to thereby achieve cutting.

5 Similarly to the Steiner et al. patent, the Wolbarsht et al. patent requires water to be deposited onto the tooth before laser light is
10 irradiated thereon. Specifically, the Wolbarsht et al. patent requires water to be inserted into pores of the material to be cut. Since many materials, such as tooth enamel, are not very porous, and since a high level of difficulty is associated with
15 inserting water into the "pores" of many materials, this cutting method is somewhat less than optimal. Even the Steiner et al. patent has met with limited success, since the precision and accuracy of the cut is highly dependent upon the precision and accuracy
20 of the water film on the material to be cut. In many cases, a controllable water film cannot be consistently maintained on the surface to be cut. For example, when the targeted tissue to be cut resides on the upper pallet, a controllable water
25 film cannot be maintained.

30 The above-mentioned prior art systems have all sought in vain to obtain "cleanness" of cutting. In several dental applications, for example, a need to excise small amounts of soft tissues and/or hard tissues with a great degree of precision has existed. These soft tissues may include gingiva, frenum, and lesions and, additionally, the hard tissues may include dentin, enamel, bone, and cartilage. The term "cleanness" of cutting refers

to extremely fine, smooth incisions which provide ideal bonding surfaces for various biomaterials. Such biomaterials include cements, glass ionomers and other composites used in dentistry or other sciences to fill holes in structures such as teeth or bone where tooth decay or some other defect has been removed. Even when an extremely fine incision has been achieved, the incision is often covered with a rough surface instead of the desired smooth surface required for ideal bonding.

One specific dental application, for example, which requires smooth and accurate cutting through both hard and soft tissues is implantology. According to the dental specialty of implantology, a dental implant can be installed in a person's mouth when that person has lost his or her teeth. The conventional implant installation technique is to cut through the soft tissue above the bone where the tooth is missing, and then to drill a hole into the bone. The hole in the bone is then threaded with a low-speed motorized tap, and a titanium implant is then screwed into the person's jaw. A synthetic tooth, for example, can be easily attached to the portion of the implant residing above the gum surface. One problem associated with the conventional technique occurs when the clinician drills into the patient's jaw to prepare the site for the implant. This drilling procedure generates a great deal of heat, corresponding to friction from the drilling instrument. If the bone is heated too much, it will die. Additionally, since the drilling instrument is not very precise, severe trauma to the jaw occurs after the drilling operation. The

drilling operation creates large mechanical internal stress on the bone structure.

Summary of the Invention

The present invention discloses an electromagnetically induced cutting mechanism, which can provide accurate cutting operations on hard and soft tissues, and other materials, as well. Hard tissue may include tooth enamel, tooth dentin, tooth cementum, tooth decay, amalgam, composites materials, tarter and calculus, bone, and cartilage, and the soft tissue may include skin, mucosa, gingiva, muscle, heart, liver, kidney, brain, eye, and vessels. The electromagnetically induced cutting mechanism can be used to cut or ablate biological materials, ceramics, cements, polymers, porcelain, and implantable materials and devices including metals, ceramics, and polymers. The electromagnetically induced cutting mechanism can also be used to cut or ablate surfaces of metals, plastics, polymers, rubber, glass and crystalline materials, concrete, wood, cloth, paper, leather, plants, and other man-made and naturally occurring materials.

The electromagnetically induced cutter is capable of providing extremely fine and smooth incisions, irrespective of the cutting surface. Additionally, a user programmable combination of atomized particles allows for user control of various cutting parameters. The various cutting parameters may also be controlled by changing spray nozzles and electromagnetic energy source parameters. Applications for the present invention include medical, dental, industrial (etching,

engraving, cutting and cleaning) and any other environments where an objective is to precisely remove surface materials without inducing thermal damage, uncontrolled cutting parameters, and/or rough surfaces inappropriate for ideal bonding. The present invention further does not require any films of water or any particularly porous surfaces to obtain very accurate and controllable cutting.

Drills, saws and osteotomes are standard mechanical instruments used in a variety of dental and medical applications. The limitations associated with these instruments include: temperature induced necrosis (bone death), aerosolized solid-particle release, limited access, lack of precision in cutting depth and large mechanical stress created on the tissue structure. The electromagnetically induced mechanical cutter of the present invention is uniquely suited for these dental and medical applications, such as, for example, implantology. In an implantology procedure the electromagnetically induced mechanical cutter is capable of accurately and efficiently cutting through both oral soft tissues overlaying the bone and also through portions of the jawbone itself. The electromagnetically induced mechanical cutter of the present invention does not induce thermal damage and does not create high internal structural stress on the patient's jaw, for example. After the patient's jaw is prepared with the electromagnetically induced mechanical cutter, traditional methods can be employed for threading the hole in the patient's jaw and inserting the dental implant. Similar techniques can be used for preparing hard tissue structures for insertion of

other types of medical implants, such as pins, screws, wires, etc.

The electromagnetically induced mechanical cutter of the present invention includes an electromagnetic energy source, which focuses electromagnetic energy into a volume of air adjacent to a target surface. The target surface may be a tooth, for example. A user input device specifies whether either a high resolution or a low resolution cut is needed, and further specifies whether a deep penetration cut or a shallow penetration cut is needed. An atomizer generates a combination of atomized fluid particles, according to information from the user input device. The atomizer may be configured to accurately generate single fluid particles at regular intervals, and the electromagnetically induced mechanical cutter may be configured to sequentially focus energy onto each of the generated fluid particles. The atomizer may also be configured to generate oval, elliptical, or oblong-shaped fluid particles or streams, to name a few, and the electromagnetically induced mechanical cutter may be configured to focus energy onto the generated fluid particles or streams.

The atomizer places the combination of atomized fluid particles into the volume of air adjacent to the target surface. The electromagnetic energy, which is focused into the volume of air adjacent to the target surface, is selected to have a wavelength diameter, and profile suitable for the fluid particles. The wavelength of the electromagnetic energy should be substantially absorbed by the atomized fluid particles in the volume of air adjacent to the target surface to thereby explode

the atomized fluid particles. Explosion of the atomized fluid particles imparts mechanical cutting forces onto the target surface.

The user input device may incorporate only a single dial for controlling the cutting efficiency, or may include a number of dials for controlling the fluid particle size, fluid particle shape, fluid particle velocity, spray cone angle, average laser power, laser repetition rate, fiberoptic diameter, etc. According to one feature of the present invention, the atomizer generates relatively small fluid particles when the user input specifies a high resolution cut, and generates relatively large fluid particles when the user input specifies a low resolution cut. The atomizer generates a relatively low density distribution of fluid particles when the user input specifies a deep penetration cut, and generates a relatively high density distribution of fluid particles when the user input specifies a shallow penetration cut. A relatively small fluid particle may have a diameter less than the wavelength of the electromagnetic energy and, similarly, a relatively large fluid particle may have a diameter which is greater than the wavelength of the electromagnetic energy.

The electromagnetic energy source preferably is either an erbium, chromium, yttrium, scandium, gallium garnet (Er, Cr:YSGG) solid state laser, which generates electromagnetic energy having a wavelength in a range of 2.70 to 2.80 microns, or an erbium, yttrium, aluminum garnet (Er:YAG) solid state laser, which generates electromagnetic energy having a wavelength of 2.94 microns. According to other embodiments of the present invention, the

electromagnetic energy source may be an erbium, yttrium, scandium, gallium garnet (Er:YSGG) solid state laser, which generates electromagnetic energy having a wavelength in a range of 2.70 to 2.80

5 microns; chromium, thulium, erbium, yttrium, aluminum garnet (CTE:YAG) solid state laser, which generates electromagnetic energy having a wavelength of 2.69 microns; erbium, yttrium orthoaluminate (Er:YALO₃) solid state laser, which generates

10 electromagnetic energy having a wavelength in a range of 2.71 to 2.86 microns; holmium, yttrium, aluminum garnet (Ho:YAG) solid state laser, which generates electromagnetic energy having a wavelength of 2.10 microns; quadrupled neodymium, yttrium, aluminum garnet (quadrupled Nd:YAG) solid state

15 laser, which generates electromagnetic energy having a wavelength of 266 nanometers; argon fluoride (ArF) excimer laser, which generates electromagnetic energy having a wavelength of 193 nanometers; xenon chloride (XeCl) excimer laser, which generates

20 electromagnetic energy having a wavelength of 308 nanometers; krypton fluoride (KrF) excimer laser, which generates electromagnetic energy having a wavelength of 248 nanometers; and carbon dioxide (CO₂), which generates electromagnetic energy having a wavelength in a range of 9.0 to 10.6 microns.

The electromagnetic energy source can be configured with the repetition rate greater than 1 Hz, the pulse duration range between 1 picosecond and 1000 microseconds, and the energy greater than 1 milliJoule per pulse. According to one operating mode of the present invention, the electromagnetic energy source has a wavelength of approximately 2.78 microns, a repetition rate of 20 Hz, a pulse

duration of 140 microseconds, and an energy between 1 and 300 milliJoules per pulse. In one preferred embodiment the electromagnetic energy source has a pulse duration on the order of nanoseconds, which is obtained by Q-switching the electromagnetic energy source, and in another preferred embodiment the electromagnetic energy source has a pulse duration on the order of picoseconds, which is obtained by mode locking the electromagnetic energy source. The atomized fluid particles provide the mechanical cutting forces when they absorb the electromagnetic energy within the interaction zone. These atomized fluid particles, however, provide a second function of cleaning and cooling the fiberoptic guide from which the electromagnetic energy is output.

The optical cutter of the present invention combats the problem of poor coupling between the two laser fiberoptics of Figure 1. The optical cutter of the present invention provides a focusing optic for efficiently directing the energy from the first fiberoptic guide to the second fiberoptic guide, to thereby reduce dissipation of laser energy between the first fiberoptic guide and the second fiberoptic guide. This optical cutter includes a housing having a lower portion, an upper portion, and an interfacing portion. The first fiberoptic tube is surrounded at its upper portion by a first abutting member, and the second fiberoptic tube is surrounded at its proximal end by a second abutting member. A cap is placed over the second fiberoptic tube and the second abutting member. Either fiberoptic tube may be formed of calcium fluoride (CaF), calcium oxide (CaO₂), zirconium oxide (ZrO₂), zirconium fluoride (ZrF), sapphire, hollow waveguide, liquid

core, TeX glass, quartz silica, germanium sulfide, arsenic sulfide, and germanium oxide (GeO₂).

The invention, together with additional features and advantages thereof may best be understood by reference to the following description taken in connection with the accompanying 5 illustrative drawings.

Brief Description of the Drawings

Figure 1 is a conventional optical cutter 10 apparatus;

Figure 2 is an optical cutter with the focusing optic of the present invention;

Figure 3 is a schematic block diagram 15 illustrating the electromagnetically induced mechanical cutter of the present invention;

Figure 4 illustrates one embodiment of the electromagnetically induced mechanical cutter of the present invention;

Figure 5 illustrates the presently preferred 20 embodiment of the electromagnetically induced mechanical cutter;

Figure 5a illustrates a nozzle having an oval aperture according to the present invention;

Figure 6 illustrates a control panel for 25 programming the combination of atomized fluid particles according to the present invention;

Figure 7 is a plot of particle size versus fluid pressure;

Figure 8 is a plot of particle velocity versus 30 fluid pressure;

Figure 9 is a schematic diagram illustrating a fluid particle, a source of electromagnetic energy,

and a target surface according to the present invention;

Figure 10 is a schematic diagram illustrating the "grenade" effect of the present invention;

5 Figure 11 is a schematic diagram illustrating the "explosive ejection" effect of the present invention;

10 Figure 12 is a schematic diagram illustrating the "explosive propulsion" effect of the present invention;

Figure 13 is a schematic diagram illustrating a combination of Figures 10-12;

15 Figure 14 illustrates a mono-disperse droplet generator according to the present invention;

Figure 15 is a schematic diagram illustrating electromagnetic energy contacting a center portion of a fluid particle;

20 Figure 16 is a schematic diagram illustrating electromagnetic energy contacting a side portion of a fluid particle;

Figure 17 is a schematic diagram illustrating electromagnetic energy contacting a side portion of an oval-shaped fluid particle;

25 Figure 18 is a schematic diagram illustrating electromagnetic energy contacting a center portion of an oval-shaped fluid particle;

Figure 19 is a schematic diagram illustrating electromagnetic energy contacting a center portion of a thin, oval-shaped fluid particle;

30 Figure 20 is a schematic diagram illustrating electromagnetic energy contacting a continuous stream of fluid particles;

Figure 21 is a schematic diagram illustrating electromagnetic energy contacting a center portion of a fluid particle formed into a cup shape;

5 Figure 22 is a schematic diagram illustrating electromagnetic energy contacting a center portion of a fluid particle formed into a half-bubble shape;

Figure 23 is a schematic diagram illustrating the "cleanness" of cut obtained by the present invention; and

10 Figure 24 is a schematic diagram illustrating the roughness of cut obtained by prior art systems.

Description of the Presently Preferred Embodiments

Figure 2 shows an optical cutter according to the present invention. The optical cutter 13 comprises many of the conventional elements shown in Figure 1. A focusing optic 35 is placed between the two metal cylindrical objects 19 and 21. The focusing optic 35 prevents undesired dissipation of laser energy from the fiber guide tube 5.

20 Specifically, energy from the fiber guide tube 5 dissipates slightly before being focused by the focusing optic 35. The focusing optic 35 focuses energy from the fiber guide tube 5 into the fiber guide tube 23. The efficient transfer of laser

25 energy from the fiber guide tube 5 to the fiber guide tube 23 vitiates any need for the conventional air knife cooling system 11 (Figure 1), since little laser energy is dissipated. The first fiber guide tube 5 comprises a trunk fiberoptic, which comprises one of calcium fluoride (CaF), calcium oxide (CaO₂), zirconium oxide (ZrO₂), zirconium fluoride (ZrF), sapphire, hollow waveguide, liquid core, TeX glass,

quartz silica, germanium sulfide, arsenic sulfide, and germanium oxide (GeO₂).

Figure 3 is a block diagram illustrating the electromagnetically induced mechanical cutter of the present invention. An electromagnetic energy source 51 is coupled to both a controller 53 and a delivery system 55. The delivery system 55 imparts mechanical forces onto the target surface 57. As presently embodied, the delivery system 55 comprises a fiberoptic guide for routing the laser 51 into an interaction zone 59, located above the target surface 57. The delivery system 55 further comprises an atomizer for delivering user-specified combinations of atomized fluid particles into the interaction zone 59. The controller 53 controls various operating parameters of the laser 51, and further controls specific characteristics of the user-specified combination of atomized fluid particles output from the delivery system 55.

Figure 4 shows a simple embodiment of the electromagnetically induced mechanical cutter of the present invention, in which a fiberoptic guide 61, an air tube 63, and a water tube 65 are placed within a hand-held housing 67. The water tube 65 is operated under a relatively low pressure, and the air tube 63 is operated under a relatively high pressure. The laser energy from the fiberoptic guide 61 focuses onto a combination of air and water, from the air tube 63 and the water tube 65, at the interaction zone 59. Atomized fluid particles in the air and water mixture absorb energy from the laser energy of the fiberoptic tube 61, and explode. The explosive forces from these atomized

fluid particles impart mechanical cutting forces onto the target surface 57.

Turning back to Figure 1, the prior art optical cutter focuses laser energy onto a target surface at an area A, for example, and the electromagnetically induced mechanical cutter of the present invention focuses laser energy into an interaction zone B, for example. The prior art optical cutter uses the laser energy directly to cut tissue, and the electromagnetically induced mechanical cutter of the present invention uses the laser energy to expand atomized fluid particles to thus impart mechanical cutting forces onto the target surface. The prior art optic cutter must use a large amount of laser energy to cut the area of interest, and also must use a large amount of water to both cool this area of interest and remove cut tissue.

In contrast, the electromagnetically induced mechanical cutter of the present invention uses a relatively small amount of water and, further, uses only a small amount of laser energy to expand atomized fluid particles generated from the water. According to the electromagnetically induced mechanical cutter of the present invention, water is not needed to cool the area of surgery, since the exploded atomized fluid particles are cooled by exothermic reactions before they contact the target surface. Thus, atomized fluid particles of the present invention are heated, expanded, and cooled before contacting the target surface. The electromagnetically induced mechanical cutter of the present invention is thus capable of cutting without charring or discoloration.

Figure 5 illustrates the presently preferred embodiment of the electromagnetically induced mechanical cutter. The atomizer for generating atomized fluid particles comprises a nozzle 71, which may be interchanged with other nozzles (not shown) for obtaining various spatial distributions of the atomized fluid particles, according to the type of cut desired. A second nozzle 72, shown in phantom lines, may also be used. The cutting power of the electromagnetically induced mechanical cutter is further controlled by the user control 75. In a simple embodiment, the user control 75 controls the air and water pressure entering into the nozzle 71. The nozzle 71 is thus capable of generating many different user-specified combinations of atomized fluid particles and aerosolized sprays.

Intense energy is emitted from the fiberoptic guide 23. This intense energy is preferably generated from a coherent source, such as a laser. In the presently preferred embodiment, the laser comprises either an erbium, chromium, yttrium, scandium, gallium garnet (Er, Cr:YSGG) solid state laser, which generates electromagnetic energy having a wavelength in a range of 2.70 to 2.80 microns, or an erbium, yttrium, aluminum garnet (Er:YAG) solid state laser, which generates electromagnetic energy having a wavelength of 2.94 microns. As presently preferred, the Er, Cr:YSGG solid state laser has a wavelength of approximately 2.78 microns and the Er:YAG solid state laser has a wavelength of approximately 2.94 microns.

Although the fluid emitted from the nozzle 71 preferably comprises water, other fluids may be used and appropriate wavelengths of the electromagnetic

energy source may be selected to allow for high absorption by the fluid. Other possible laser systems include an erbium, yttrium, scandium, gallium garnet (Er:YSGG) solid state laser, which generates electromagnetic energy having a wavelength in a range of 2.70 to 2.80 microns; an erbium, yttrium, aluminum garnet (Er:YAG) solid state laser, which generates electromagnetic energy having a wavelength of 2.94 microns; chromium, thulium, erbium, yttrium, aluminum garnet (CTE:YAG) solid state laser, which generates electromagnetic energy having a wavelength of 2.69 microns; erbium, yttrium orthoaluminate (Er:YALO₃) solid state laser, which generates electromagnetic energy having a wavelength in a range of 2.71 to 2.86 microns; holmium, yttrium, aluminum garnet (Ho:YAG) solid state laser, which generates electromagnetic energy having a wavelength of 2.10 microns; quadrupled neodymium, yttrium, aluminum garnet (quadrupled Nd:YAG) solid state laser, which generates electromagnetic energy having a wavelength of 266 nanometers; argon fluoride (ArF) excimer laser, which generates electromagnetic energy having a wavelength of 193 nanometers; xenon chloride (XeCl) excimer laser, which generates electromagnetic energy having a wavelength of 308 nanometers; krypton fluoride (KrF) excimer laser, which generates electromagnetic energy having a wavelength of 248 nanometers; and carbon dioxide (CO₂), which generates electromagnetic energy having a wavelength in a range of 9.0 to 10.6 microns. Water is chosen as the preferred fluid because of its biocompatibility, abundance, and low cost. The actual fluid used may vary as long as it is properly matched (meaning it

is highly absorbed) to the selected electromagnetic energy source (i.e. laser) wavelength.

The electromagnetic energy source can be configured with the repetition rate greater than 1 Hz, the pulse duration range between 1 picosecond and 1000 microseconds, and the energy greater than 1 milliJoule per pulse. According to one operating mode of the present invention, the electromagnetic energy source has a wavelength of approximately 2.78 microns, a repetition rate of 20 Hz, a pulse duration of 140 microseconds, and an energy between 1 and 300 milliJoules per pulse.

In one preferred embodiment the electromagnetic energy source has a pulse duration on the order of nanoseconds, which is obtained by Q-switching the electromagnetic energy source, and in another preferred embodiment the electromagnetic energy source has a pulse duration on the order of picoseconds, which is obtained by mode locking the electromagnetic energy source.

Q-switching is a conventional mode of laser operation which is extensively employed for the generation of high pulse power. The textbook, Solid-State Laser Engineering, Fourth Extensively Revised and Updated Edition, by Walter Koechner and published in 1996, the entire contents of which are expressly incorporated herein by reference, discloses Q-switching laser theory and various Q-switching devices. Q-switching devices generally inhibit laser action during the pump cycle by either blocking the light path, causing a mirror misalignment, or reducing the reflectivity of one of the resonator mirrors. Near the end of the flashlamp pulse, when maximum energy has been stored

in the laser rod, a high Q-condition is established and a giant pulse is emitted from the laser. Very fast electronically controlled optical shutters can be made by using the electro-optic effect in
5 crystals or liquids. An acousto-optic Q-switch launches an ultrasonic wave into a block of transparent optical material, usually fused silica. Chapter eight of the textbook, Solid-State Laser Engineering, Fourth Extensively Revised and Updated
10 Edition, discloses the above-mentioned and other various Q-switching devices.

Mode locking is a conventional procedure which phase-locks the longitudinal modes of the laser and which uses a pulse width that is inversely related
15 to the bandwidth of the laser emission. Mode locking is discussed on pages 500-561 of the above-mentioned textbook entitled, Solid-State Laser Engineering, Fourth Extensively Revised and Updated Edition.

20 The atomized fluid particles provide the mechanical cutting forces when they absorb the electromagnetic energy within the interaction zone. These atomized fluid particles, however, provide a second function of cleaning and cooling the
25 fiberoptic guide from which the electromagnetic energy is output.

The delivery system 55 for delivering the electromagnetic energy includes a fiberoptic energy guide or equivalent which attaches to the laser system and travels to the desired work site.
30 Fiberoptics or waveguides are typically long, thin and lightweight, and are easily manipulated. Fiberoptics can be made of calcium fluoride (CaF), calcium oxide (CaO₂), zirconium oxide (ZrO₂),

zirconium fluoride (ZrF), sapphire, hollow waveguide, liquid core, TeX glass, quartz silica, germanium sulfide, arsenic sulfide, germanium oxide (GeO₂), and other materials. Other delivery systems 5 include devices comprising mirrors, lenses and other optical components where the energy travels through a cavity, is directed by various mirrors, and is focused onto the targeted cutting site with specific lenses. The preferred embodiment of light delivery 10 for medical applications of the present invention is through a fiberoptic conductor, because of its light weight, lower cost, and ability to be packaged inside of a handpiece of familiar size and weight to the surgeon, dentist, or clinician. In industrial 15 applications, non-fiberoptic systems may be used.

The nozzle 71 is employed to create an engineered combination of small particles of the chosen fluid. The nozzle 71 may comprise several different designs including liquid only, air blast, 20 air assist, swirl, solid cone, etc. When fluid exits the nozzle 71 at a given pressure and rate, it is transformed into particles of user-controllable sizes, velocities, and spatial distributions. The nozzle may have spherical, oval, or other shaped 25 openings of any of a variety of different sizes, according to design parameters. Figure 5a illustrates a nozzle 74 having an oval-shaped aperture 76 disposed therein for emitting water particles.

30 Figure 6 illustrates a control panel 77 for allowing user-programmability of the atomized fluid particles. By changing the pressure and flow rates of the fluid, for example, the user can control the atomized fluid particle characteristics. These

characteristics determine absorption efficiency of the laser energy, and the subsequent cutting effectiveness of the electromagnetically induced mechanical cutter. This control panel may comprise, 5 for example, a fluid particle size control 78, a fluid particle velocity control 79, a cone angle control 80, an average power control 81, a repetition rate 82, a fiber selector 83, and a switch 84 for activating a mono-disperse droplet 10 generator 86 (Figure 14).

The cone angle may be controlled, for example, by changing the physical structure of the nozzle 71. Various nozzles 71 may be interchangeably placed on the electromagnetically induced mechanical cutter. 15 Alternatively, the physical structure of a single nozzle 71 may be changed.

Figure 7 illustrates a plot 85 of mean fluid particle size versus pressure. According to this figure, when the pressure through the nozzle 71 is increased, the mean fluid particle size of the 20 atomized fluid particles decreases. The plot 87 of Figure 8 shows that the mean fluid particle velocity of these atomized fluid particles increases with increasing pressure.

According to the present invention, materials 25 are removed from a target surface by mechanical cutting forces, instead of by conventional thermal cutting forces. Laser energy is used only to induce mechanical forces onto the targeted material. Thus, the atomized fluid particles act as the medium for transforming the electromagnetic energy of the laser 30 into the mechanical energy required to achieve the mechanical cutting effect of the present invention. The laser energy itself is not directly absorbed by

the targeted material. The mechanical interaction of the present invention is safer, faster, and eliminates the negative thermal side-effects typically associated with conventional laser cutting systems.

5 The fiberoptic guide 23 (Figure 5) can be placed into close proximity of the target surface. This fiberoptic guide 23, however, does not actually contact the target surface. Since the atomized
10 fluid particles from the nozzle 71 are placed into the interaction zone 59, the purpose of the fiberoptic guide 23 is for placing laser energy into this interaction zone, as well. A novel feature of the present invention is the formation of the
15 fiberoptic guide 23 of straight or bent sapphire. Regardless of the composition of the fiberoptic guide 23, however, another novel feature of the present invention is the cleaning effect of the air and water, from the nozzle 71, on the fiberoptic
20 guide 23.

25 The present inventors have found that this cleaning effect is optimal when the nozzle 71 is pointed somewhat directly at the target surface. For example, debris from the mechanical cutting are removed by the spray from the nozzle 71.

30 Additionally, the present inventors have found that this orientation of the nozzle 71, pointed toward the target surface, enhances the cutting efficiency of the present invention. Each atomized fluid particle contains a small amount of initial kinetic energy in the direction of the target surface. When electromagnetic energy from the fiberoptic guide 23 contacts an atomized fluid particle, the exterior surface of the fluid particle

acts as a focusing lens to focus the energy into the water particle's interior.

As shown in Figure 9, the water particle 101 has an illuminated side 103, a shaded side 105, and
5 a particle velocity 107. The focused electromagnetic energy is absorbed by the water particle 101, causing the interior of the water particle to heat and explode rapidly. This exothermic explosion cools the remaining portions of
10 the exploded water particle 101. The surrounding atomized fluid particles further enhance cooling of the portions of the exploded water particle 101. A pressure-wave is generated from this explosion.
This pressure-wave, and the portions of the exploded
15 water particle 101 of increased kinetic energy, are directed toward the target surface 107. The incident portions from the original exploded water particle 101, which are now traveling at high velocities with high kinetic energies, and the pressure-wave, impart strong, concentrated,
20 mechanical forces onto the target surface 107.

These mechanical forces cause the target surface 107 to break apart from the material surface through a "chipping away" action. The target
25 surface 107 does not undergo vaporization, disintegration, or charring. The chipping away process can be repeated by the present invention until the desired amount of material has been removed from the target surface 107. Unlike prior
30 art systems, the present invention does not require a thin layer of fluid. In fact, it is preferred that a thin layer of fluid does not cover the target surface, since this insulation layer would interfere with the above-described interaction process.

Figures 10, 11 and 12 illustrate various types of absorptions of the electromagnetic energy by atomized fluid particles. The nozzle 71 is preferably configured to produce atomized sprays with a range of fluid particle sizes narrowly distributed about a mean value. The user input device for controlling cutting efficiency may comprise a simple pressure and flow rate gauge 75 (Figure 5) or may comprise a control panel as shown in Figure 6, for example. Upon a user input for a high resolution cut, relatively small fluid particles are generated by the nozzle 71. Relatively large fluid particles are generated for a user input specifying a low resolution cut. A user input specifying a deep penetration cut causes the nozzle 71 to generate a relatively low density distribution of fluid particles, and a user input specifying a shallow penetration cut causes the nozzle 71 to generate a relatively high density distribution of fluid particles. If the user input device comprises the simple pressure and flow rate gauge 75 of Figure 5, then a relatively low density distribution of relatively small fluid particles can be generated in response to a user input specifying a high cutting efficiency. Similarly, a relatively high density distribution of relatively large fluid particles can be generated in response to a user input specifying a low cutting efficiency. The mono-disperse droplet generator 86 (Figure 14), which accurately generates single droplets 90 of fluid at predetermined intervals of time, represents a very high cutting efficiency configuration. In addition to high cutting efficiency, a very accurate and narrow cut may be generated. For example, a cut

having a width less than a diameter of the single droplets 90 of fluid may be generated using an electromagnetic energy source in combination with a mono-disperse droplet generator, according to the 5 present invention. Other engineered dispersions of fluid droplets may be generated as well, from pairs of fluid droplets to triplets of fluid droplets, etc. A single electromagnetic energy source or a number of electromagnetic energy sources may be 10 trained on the fluid droplets as the fluid droplets pass through the interaction zone above the target surface. Additional variations, such as different sized or shaped particles, or particles made of different materials, may be generated in each 15 dispersion. One or more similar lasers, or lasers having different wavelengths and/or powers, may be trained on the different fluid droplets as the fluid droplets pass through the interaction zone above the target surface.

20 These various parameters can be adjusted according to the type of cut and the type of tissue. Hard tissues include tooth enamel, tooth dentin, tooth cementum, bone, and cartilage. Soft tissues, which the electromagnetically induced mechanical 25 cutter of the present invention is also adapted to cut, include skin, mucosa, gingiva, muscle, heart, liver, kidney, brain, eye, and vessels. Other materials may include glass and semiconductor chip surfaces, for example. The electromagnetically induced mechanical cutting mechanism can be further 30 be used to cut or ablate biological materials, ceramics, cements, polymers, porcelain, and implantable materials and devices including metals, ceramics, and polymers. The electromagnetically

induced cutting mechanism can also be used to cut or ablate surfaces of metals, plastics, polymers, rubber, glass and crystalline materials, concrete, wood, cloth, paper, leather, plants, and other man-made and naturally occurring materials. Biological materials can include plaque, tartar, a biological layer or film of organic consistency, a smear layer, a polysaccharide layer, and a plaque layer. A smear layer may comprise fragmented biological material, including proteins, and may include living or decayed items, or combinations thereof. A polysaccharide layer will often comprise a colloidal suspension of food residue and saliva. Plaque refers to a film including food and saliva, which often traps and harbors bacteria therein. These layers or films may be disposed on teeth, other biological surfaces, and nonbiological surfaces. Metals can include, for example, aluminum, copper, and iron which is found in rebar.

A user may also adjust the combination of atomized fluid particles exiting the nozzle 71 to efficiently implement cooling and cleaning of the fiberoptics 23 (Figure 5), as well. According to the presently preferred embodiment, the combination of atomized fluid particles may comprise a distribution, velocity, and mean diameter to effectively cool the fiberoptic guide 23, while simultaneously keeping the fiberoptic guide 23 clean of particular debris which may be introduced thereon by the surgical site.

Looking again at Figure 9, electromagnetic energy contacts each atomized fluid particle 101 on its illuminated side 103 and penetrates the atomized fluid particle to a certain depth. The focused

electromagnetic energy is absorbed by the fluid, inducing explosive vaporization of the atomized fluid particle 101.

The diameters of the atomized fluid particles
5 can be less than, almost equal to, or greater than the wavelength of the incident electromagnetic energy. In each of these three cases, a different interaction occurs between the electromagnetic energy and the atomized fluid particle. Figure 10
10 illustrates a case where the atomized fluid particle diameter is less than the wavelength of the electromagnetic energy ($d < \lambda$). This case causes the complete volume of fluid inside of the fluid particle 101 to absorb the laser energy, inducing
15 explosive vaporization. The fluid particle 101 explodes, ejecting its contents radially. The present inventors refer to this phenomena as the "explosive grenade" effect. As a result of this interaction, radial pressure-waves from the
20 explosion are created and projected in the direction of propagation. The direction of propagation is toward the target surface 107, and in the presently preferred embodiment, both the laser energy and the atomized fluid particles are traveling substantially
25 in the direction of propagation.

The resulting portions from the explosion of the water particle 101, and the pressure-wave, produce the "chipping away" effect of cutting and removing of materials from the target surface 107.
30 Thus, according to the "explosive grenade" effect shown in Figure 10, the small diameter of the fluid particle 101 allows the laser energy to penetrate and to be absorbed violently within the entire volume of the liquid. Explosion of the fluid

particle 101 can be analogized to an exploding grenade, which radially ejects energy and shrapnel. The water content of the fluid particle 101 is evaporated due to the strong absorption within a small volume of liquid, and the pressure-waves created during this process produce the material cutting process.

Figure 11 shows a case where the fluid particle 101 has a diameter, which is approximately equal to the wavelength of the electromagnetic energy ($d \approx \lambda$). According to this "explosive ejection" effect, the laser energy travels through the fluid particle 101 before becoming absorbed by the fluid therein. Once absorbed, the fluid particle's shaded side heats up, and explosive vaporization occurs. In this case, internal particle fluid is violently ejected through the fluid particle's shaded side, and moves rapidly with the explosive pressure-wave toward the target surface. As shown in Figure 11, the laser energy is able to penetrate the fluid particle 101 and to be absorbed within a depth close to the size of the particle's diameter. The center of explosive vaporization in the case shown in Figure 11 is closer to the shaded side 105 of the moving fluid particle 101. According to this "explosive ejection" effect shown in Figure 11, the vaporized fluid is violently ejected through the particle's shaded side toward the target surface 107.

A third case shown in Figure 12 is the "explosive propulsion" effect. In this case, the diameter of the fluid particle is larger than the wavelength of the electromagnetic energy ($d > \lambda$). In this case, the laser energy penetrates the fluid particle 101 only a small distance through the

illuminated surface 103 and causes this illuminated surface 103 to vaporize. The vaporization of the illuminated surface 103 tends to propel the remaining portion of the fluid particle 101 toward the targeted material surface 107. Thus, a portion of the mass of the initial fluid particle 101 is converted into kinetic energy, to thereby propel the remaining portion of the fluid particle 101 toward the target surface with a high kinetic energy. This high kinetic energy is additive to the initial kinetic energy of the fluid particle 101. The effects shown in Figure 12 can be visualized as a micro-hydro rocket with a jet tail, which helps propel the particle with high velocity toward the target surface 107. The exploding vapor on the illuminated side 103 thus supplements the particle's initial forward velocity.

The combination of Figures 10-12 is shown in Figure 13. The nozzle 71 produces the combination of atomized fluid particles which are transported into the interaction zone 59. The laser 51 is focused on this interaction zone 59. Relatively small fluid particles 131 explode via the "grenade" effect, and relatively large fluid particles 133 explode via the "explosive propulsion" effect. Medium sized fluid particles, having diameters approximately equal to the wavelength of the laser 51 and shown by the reference number 135, explode via the "explosive ejection" effect. The resulting pressure-waves 137 and exploded fluid particles 139 impinge upon the target surface 107.

Figure 14 illustrates the mono-disperse droplet generator 86, according to the present invention. The mono-disperse droplet generator 86 comprises a

nozzle 88, which is adapted to accurately generate single droplets 90 of fluid at predetermined intervals. The electromagnetic energy source is preferably pre-focussed or focussed on a real-time basis, either automatically or manually, onto the single fluid droplets 90 as the fluid droplets 90 are sequentially generated and ejected from the mono-disperse droplet generator 86. The electromagnetic energy source is preferably intermittently fired onto the individual fluid droplets at predetermined intervals in order to conserve energy and to ensure a highly efficient transfer of energy from the electromagnetic energy source into the fluid droplets 90. The highly efficient, individualized focussing of electromagnetic energy 51 onto a center area of each of the fluid droplets 90 facilitates the accurate projection of energy onto the target surface 107.

As with the other embodiments of the present invention, the fluid droplets 90 may comprise a variety of materials and, additionally, may be encapsulated in various materials, in order to achieve various shapes and cutting characteristics. As another alternative, particles having high viscosities or having solid cores may be used with the present invention.

Using a high-speed video camera, the present inventors have determined that oval, elliptical, and oblong-shaped fluid particles can be generated using various conventional fluid atomizing configurations. The textbook entitled Atomization and Sprays, by Arthur H. Lefebvre and published in 1989, the entire contents of which are expressly incorporated herein by reference, discloses theory behind the generation

of various shapes and sizes of fluid particles. Due to surface tension effects of the fluid particles, however, these non-spherical fluid particles are generally formed in transitional phases, such as
5 before a fluid particle divides into a number of smaller particles.

In general, the breakup of a drop of fluid in a flowing stream is controlled by the dynamic pressure, surface tension, and viscous forces.
10 These parameters, among others, may be controlled to produce different droplet formations.

The electromagnetic energy 51 is preferably focussed onto a center point on or near the surface of the fluid particle 101, where the center point is defined as being intersected by a line passing from the target surface 107 through the fluid particle 101. Figure 15 illustrates electromagnetic energy 51 contacting a center point of a fluid particle 101. As illustrated, the "explosive propulsion" effect is generated to propel the fluid particle 101 directly toward the target surface 107. When the electromagnetic energy source focusses energy onto the center point of the fluid particle 101, the resulting mechanical forces are efficiently and accurately directed onto the target surface 107 to thereby propel the fluid particle 101 in the direction of the arrow A1. On the other hand, as shown in Figure 16, when the electromagnetic energy source focusses energy onto a point other than the center point of the fluid particle 101, a portion of the resulting mechanical forces is not directed onto the target surface 107. A fluid particle 101 which is not hit by the electromagnetic energy on the center point of the fluid particle 101 can be
15
20
25
30

misdirected away from the target source 101, for example. The fluid particle 101 in Figure 16 is hit on an upper surface thereof by the electromagnetic energy 51, resulting in the fluid particle 101 being 5 propelled in the direction of the arrow A2.

Since the shape of the outer surface of each fluid particle 101 acts as a micro-focussing lens for the impinging electromagnetic energy, the shape of a given fluid particle can affect the resulting 10 mechanical forces that are generated and imparted onto the target surface 107. The micro-focussing lens effect is a function of reflection and refraction of the electromagnetic energy at and/or near the surface of the fluid particle. Focused 15 electromagnetic energy within the fluid particle is then affected by absorption and scattering. The micro-focussing lens effect is a function of the electromagnetic energy beam profile (cross-sectional distribution of the electromagnetic energy beam), 20 the beam diameter relative to the fluid particle diameter, and other beam characteristics, and is also a function of the geometry and composition of the fluid particle. These parameters may be changed alone or in combination to achieve various end 25 results. The electromagnetic energy beam diameter and beam profile may be varied by any conventional means, including placement of a disk, having an aperture, inside of the electromagnetic energy source cavity.

As an example of the micro-focussing effect, an elliptically-shaped fluid particle 102, as shown in Figure 17, may have a larger surface area which can be contacted by the electromagnetic energy 51. Upon contacting of the surface area of the fluid particle 30

102 by the electromagnetic energy 51, the curvature of the oval-shaped fluid particle 102 results in a different focussing effect of the electromagnetic energy 51 therethrough. If the fluid particle 102
5 is not contacted by the electromagnetic energy 51 at a center point of the fluid particle 102, the fluid particle 102 will be propelled in a relatively inefficient direction.

10 Figure 17 illustrates an oval-shaped fluid particle 102 being contacted by electromagnetic energy 51 at an upper portion thereof, resulting in the fluid particle 102 travelling in the direction of the arrow A3. Figure 18 illustrates an oval-shaped fluid particle 104 being contacted at a
15 center point of the fluid particle 104 by electromagnetic energy 51, resulting in the fluid particle 104 travelling in the direction of the arrow A4 toward the target surface 107.

20 The elliptical shape of the fluid particle can be changed to adjust the interaction between the electromagnetic energy and the fluid particle. For example, the oval-shaped fluid particle 102 in Figure 17 comprises an oblong shape, and the oval-shaped fluid particle 104 in Figure 18 comprises a
25 more rounded shape. Regardless of the particular dimensions of the oval-shaped fluid particle, when electromagnetic energy is directed through both the small-diameter portion and the center point of the fluid particle, as presently preferred, the
30 interaction between the electromagnetic energy and the fluid particle can be varied by changing the curvature of the fluid particle. The interaction can thus be changed among a "grenade" type of effect (Figure 10), an "explosive ejection" type of effect

(Figure 11), and an "explosive propulsion" type of effect (Figure 12). Figure 19, for example, illustrates a narrow-shaped elliptical fluid particle 106. Electromagnetic energy 51 begins to 5 penetrate the exit side of the fluid particle 106, thus achieving either a "grenade" type of effect or an "explosive ejection" type of effect. The generation of oval-shaped fluid particles is disclosed on pages 39 and 42 of the above-mentioned 10 textbook entitled Atomization and Sprays.

Figure 20 illustrates a ligament 108 of fluid being ejected from a nozzle. The ligament of fluid 108 transitions into an oval-shaped particle 109 and, subsequently, the oval-shaped particle 109 15 transitions into smaller particles 110 and 111. These smaller particles 110 and 111 either break into smaller particles or form spherical fluid particles, resulting in part from surface tension forces. The generation of ligaments of fluid 108 is 20 discussed on page 130 of the above-mentioned textbook entitled Atomization and Sprays. The shape, length, and thickness of the ligament of fluid 108 may be varied. Additionally, laser energy may be directed onto the oval-shaped particles 109 25 and/or the smaller particles 110 and 111, in addition to the ligament 108 of fluid.

A single laser, or multiple lasers, may be configured to contact the ligament of fluid 108 at various points along the ligament of fluid 108. 30 Alternatively, a planar sheet of fluid 108 may also be generated. Generally, characteristics of the ligament can be controlled by changing the dynamic pressure, surface tension, and viscous forces of the fluid. The ligament 108 may alternatively comprise

polymers, which are configured to form into fibers upon exiting from the nozzle.

Figures 21 and 22 illustrate additional transitional shapes of fluid particles. The fluid particle 112 of Figure 21 generally comprises a cup formation, which is a precursor to the half-bubble formation of the fluid particle 117 of Figure 22. A thickness of the cup-formation fluid particle 112 of Figure 21 is thicker than a thickness of the half-bubble shape of the fluid particle 117 of Figure 22. Generation of cup-shaped and half-bubble shaped fluid particles is discussed on page 32 of the above-mentioned textbook entitled *Atomization and Sprays*. Similarly to the above-discussed embodiments, a single laser, or multiple lasers, may be focussed onto different portions of either of the fluid particles 112 or 117, according to design parameters.

Figure 23 illustrates the clean, high resolution cut produced by the electromagnetically induced mechanical cutter of the present invention. Unlike the cut of the prior art shown in Figure 24, the cut of the present invention is clean and precise. Among other advantages, this cut provides an ideal bonding surface, is accurate, and does not stress remaining materials surrounding the cut.

Although an exemplary embodiment of the invention has been shown and described, many changes, modifications and substitutions may be made by one having ordinary skill in the art without necessarily departing from the spirit and scope of this invention.

CLAIMS

1. A method of imparting mechanical forces onto a target surface, comprising the following steps:

generating a non-spherical particle;

5 placing the non-spherical particle into an interaction zone, the interaction zone defining a volume of space adjacent to the target surface;

introducing electromagnetic energy into the interaction zone;

10 exploding the non-spherical particle to impart the mechanical forces onto the target surface.

2. The method of imparting mechanical forces onto a target surface according to Claim 1, the step of generating a non-spherical particle including a step of generating a non-spherical particle having a liquid core.

5 3. The method of imparting mechanical forces onto a target surface according to Claim 2, the non-spherical fluid particle comprising an outer skin surrounding the liquid core.

4. The method of imparting mechanical forces onto a target surface according to Claim 2, the non-spherical fluid particle comprising an oblong shape.

5. The method of imparting mechanical forces onto a target surface according to Claim 4, the non-spherical fluid particle comprising a ligament of fluid.

6. The method of imparting mechanical forces onto a target surface according to Claim 4, the non-spherical fluid particle comprising an oval shape.

7. The method of imparting mechanical forces onto a target surface according to Claim 6, the non-spherical fluid particle comprising an elliptical shape.

8. The method of imparting mechanical forces onto a target surface according to Claim 4, the non-spherical fluid particle comprising a half-bubble shape.

5 9. The method of imparting mechanical forces onto a target surface according to Claim 1, the step of introducing electromagnetic energy into the interaction zone comprising a step of focussing electromagnetic energy onto the non-spherical particle.

5 10. The method of imparting mechanical forces onto a target surface according to Claim 1, the step of generating a non-spherical particle including a step of generating a non-spherical particle having a solid core.

11. The method of imparting mechanical forces onto a target surface according to Claim 10, the non-spherical particle comprising an oblong shape.

12. The method of imparting mechanical forces onto a target surface according to Claim 11, the non-spherical particle comprising a ligament.

13. The method of imparting mechanical forces onto a target surface according to Claim 11, the non-spherical particle comprising an oval shape.

14. The method of imparting mechanical forces onto a target surface according to Claim 13, the non-spherical particle comprising an elliptical shape.

15. The method of imparting mechanical forces onto a target surface according to Claim 11, the non-spherical particle comprising a half-bubble shape.

16. The method of imparting mechanical forces onto a target surface according to Claim 1, the step of introducing electromagnetic energy into the interaction zone comprising a step of generating the electromagnetic energy using a Q-switching procedure.

17. The method of imparting mechanical forces onto a target surface according to Claim 1, the step of introducing electromagnetic energy into the interaction zone comprising a step of generating the electromagnetic energy using a mode locking procedure.

18. The method of imparting mechanical forces onto a target surface according to Claim 1, the step of exploding the non-spherical particle to impart the mechanical forces onto the target surface comprising a subsequent step of imparting mechanical forces onto at least one of biological materials,

ceramics, cements, polymers, porcelain, and implantable materials and devices including metals, ceramics, and polymers.

19. The method of imparting mechanical forces onto a target surface according to Claim 18, the biological materials comprising at least one of plaque, tartar, decay, a biological layer or film of organic consistency, a smear layer, a polysacharide layer, and a plaque layer.

20. The method of imparting mechanical forces onto a target surface according to Claim 1, the step of exploding the non-spherical particle to impart the mechanical forces onto the target surface comprising a subsequent step of imparting mechanical forces onto at least one of metals, plastics, polymers, rubber, glass and crystalline materials, concrete, wood, cloth, paper, leather, and plants.

21. An electromagnetically induced mechanical cutter for removing portions of a target surface, comprising:

an atomizer for generating a combination of atomized fluid particles and for placing the combination of atomized fluid particles into an interaction zone, the interaction zone being defined as a volume above the target surface; and

an electromagnetic energy source for focusing electromagnetic energy into the interaction zone, the electromagnetic energy source having a pulse duration in a range from nanoseconds to picoseconds, the electromagnetic energy having a wavelength which

15 is substantially absorbed by a portion of atomized
fluid particles of the combination of atomized fluid
particles in the interaction zone, the absorption of
the electromagnetic energy by the portion of
atomized fluid particles causing the portion of
atomized fluid particles to explode and impart
20 mechanical cutting forces onto the target surface.

22. The electromagnetically induced mechanical
cutter as recited in Claim 21, further comprising Q-
switching means for Q-switching the electromagnetic
energy source in order to generate a pulse duration
5 on an order of nanoseconds.

23. The electromagnetically induced mechanical
cutter as recited in Claim 21, further comprising
mode locking means for mode locking the
electromagnetic energy source in order to generate a
5 pulse duration on an order of picoseconds.

24. The electromagnetically induced mechanical
cutter as recited in Claim 21, the mechanical
cutting forces being adapted to cut at least one of
biological materials, ceramics, cements, polymers,
5 porcelain, and implantable materials and devices
including metals, ceramics, and polymers.

25. The electromagnetically induced mechanical
cutter as recited in Claim 24, the biological
materials comprising at least one of plaque, tartar,
a biological layer or film of organic consistency, a
5 smear layer, a polysaccharide layer, and a plaque
layer.

26. The electromagnetically induced mechanical cutter as recited in Claim 21, the mechanical cutting forces being adapted to cut at least one of metals, plastics, polymers, rubber, glass and crystalline materials, concrete, wood, cloth, paper, leather, and plants.

27. The electromagnetically induced mechanical cutter as recited in Claim 26, the fluid comprising water, and

the electromagnetic energy source comprising one of the following:

(a) an erbium, chromium, yttrium, scandium, gallium garnet (Er, Cr:YSGG) solid state laser, which generates light having a wavelength in a range of 2.70 to 2.80 microns; and

(b) erbium, yttrium, aluminum garnet (Er:YAG) solid state laser, which generates electromagnetic energy having a wavelength of 2.94 microns.

28. The electromagnetically induced mechanical cutter as recited in Claim 21, the atomizer being adapted for generating at least one non-spherical fluid particle, and

the electromagnetic energy source being adapted for focusing electromagnetic energy onto the at least one non-spherical fluid particle in the interaction zone.

29. An apparatus for imparting mechanical forces onto a target surface, comprising:

an atomizer for placing at least one fluid particle into an interaction zone, the interaction

5 zone being defined as a volume above the target
surface; and
 an electromagnetic energy source for focusing
electromagnetic energy onto the at least one fluid
particle, the electromagnetic energy having a
10 wavelength which is substantially absorbed by the at
least one atomized fluid particle in the interaction
zone, the absorption of the electromagnetic energy
by the at least one atomized fluid particle causing
the atomized fluid particle to explode and impart
15 the mechanical forces onto the target surface.

30. The apparatus for imparting mechanical forces onto a target surface as recited in Claim 29, the atomizer comprising a mono-disperse droplet generator.

31. The electromagnetically induced mechanical cutter as recited in Claim 29, the atomizer being adapted for generating at least one non-spherical fluid particle, and

5 the electromagnetic energy source being adapted
for focusing electromagnetic energy onto the at
least one non-spherical fluid particle in the
interaction zone.

FIG. 3

4 / 8

FIG. 7

FIG. 8

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 23

FIG. 24
PRIOR ART

FIG. 14

FIG. 15

FIG. 16

FIG. 17

8 / 8

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 98/02063

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 B23K26/14 A61B17/36

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 B23K A61B A61C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 008, no. 148 (M-308), 11 July 1984 & JP 59 045092 A (FUJI DENPA KOUKI KK), 13 March 1984, see abstract ---	1-7, 9, 28-31
A	WO 96 41657 A (THERMOLASE CORP ; TANKOVICH NIKOLAI I (US)) 27 December 1996 see the whole document ---	21
X	WO 97 07928 A (BIOLASE TECHNOLOGY INC) 6 March 1997 see the whole document ---	1, 9, 10, 18 2-4, 21, 24, 28
A	---	21, 22, 24-27, 29

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

4 June 1998

02/07/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Aran, D

INTERNATIONAL SEARCH REPORT

In	ntional Application No
PCT/US 98/02063	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 192 833 A (MESSERSCHMITT BOELKOW BLOHM) 3 September 1986 see the whole document ---	1,2,9, 16, 18-22, 24-26, 29,31
A	US 5 267 856 A (WOLBARSHT MYRON L ET AL) 7 December 1993 cited in the application see the whole document ---	1,2,9, 27,29,31
A	US 5 199 870 A (STEINER RUDOLF ET AL) 6 April 1993 cited in the application see the whole document -----	1,21, 27-29,31

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 98/02063

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9641657	A	27-12-1996	US	5713845 A	03-02-1998
			AU	6950596 A	09-01-1997
WO 9707928	A	06-03-1997	US	5741247 A	21-04-1998
			AU	7011796 A	19-03-1997
EP 0192833	A	03-09-1986	DE	3506249 A	28-08-1986
			JP	61193653 A	28-08-1986
US 5267856	A	07-12-1993	NONE		
US 5199870	A	06-04-1993	DE	3911871 A	25-10-1990
			WO	9011728 A	18-10-1990
			EP	0467909 A	29-01-1992