Homework 1

Guozhen Li STA 208 - Statistical Machine Learning

April 18, 2018

1 Exercise 1

1.1 Predictor minimizing true risk

The true risk is

$$R(g) = \mathbb{E}[\ell(Y, g(X))]$$

By conditioning on X, we can write R(g) as

$$R(g) = \mathbb{E}_X \ell(Y, g(X)) \cdot Pr(Y|X)$$

Minimize R(g) pointwise:

$$\hat{g}(x) = \arg\min_{h \in \{0,1\}} \ell(Y,h) Pr(Y|X=x)$$

With $\ell()$ being the Hamming loss function this simplifies to:

$$\hat{g}(x) = \arg\max_{h \in \{0,1\}} Pr(Y = h|X = x)$$

Because Y only takes value of 0 or 1, $\hat{g}(x)$ in practical can be written as

$$\hat{g}(x) = 1\{Pr(Y = 1|X = x) > \frac{1}{2}\}$$

Reference: ESL pg. 20

1.2 True risk of Bayes classifier

The true risk is

$$R(g) = \mathbb{E}[\ell(Y, g(X))]$$

$$= \mathbb{E}_X \ell(Y, g(X)) \cdot Pr(Y|X)$$

$$= \ell(Y, g(X)) \cdot Pr(Y|X)$$

1.3 Classify with a single x_i

To fit a model like $h(x) = 1\{x_j > 0\}$, we can try all possible j's and find the one that gives smallest emperical risk. Pseudo code for this algorithm as follows:

This algorithm returns the best j.

When making a prediction based on a x_{new} , simply check the value of its jth component, and if $x_{new,j} > 0$, predict 1, otherwise predict 0.

1.4 Number of samples needed

$$\mathbb{P}\{R(\hat{g}) < R(h) + 0.1\} \ge 0.95$$

would be the same as

$$\mathbb{P}\{R(\hat{g}) > R(h) + 0.1\} \le 0.05$$

meanwhile,

$$\mathbb{P}\{R(\hat{g}) > R(h) + 0.1\} = \mathbb{P}\{R(\hat{g}) - R(h) > 0.1\}$$

$$= \mathbb{P}\{\bigcup_{i=1}^{n} [R_n(h_i) - R(h) > 0.1]\}$$

$$\leq \sum_{i=1}^{n} \mathbb{P}\{R_n(h_i) - R(h) > 0.1\}$$

$$\leq 2n \exp(-2n \times 0.1^2)$$

To make that ≤ 0.05 , we can make

$$2n \exp(-2n \times 0.1^2) \le 0.05$$
$$2n \exp(-0.02n) \le 0.05$$

Solve this to get $n \ge 495$. At least 495 samples needed.

2 Exercise 2

$\hat{m{y}} = m{H}m{y}$

In linear regression, we already know that

$$\hat{\boldsymbol{y}} = \boldsymbol{X}\hat{\beta} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})_{-1}\boldsymbol{X}^T\boldsymbol{y}$$

Here if we make $\boldsymbol{H} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})_{-1}\boldsymbol{X}^T$, then $\hat{\boldsymbol{y}} = \boldsymbol{H}\boldsymbol{y}$

In the case of kNN model, we can make a matrix H such that:

$$H_{i,j} = \begin{cases} \frac{1}{k}, & \text{if } x_j \in N_k(x_i) \\ 0, & \text{otherwise} \end{cases} \text{ for } i, j \in 1, 2, ..., N$$

Here $N_k(x_i)$ is the k-nearest neighborhood of observation x_i (x_i itself included). \mathbf{H} is a $N \times N$ matrix, and each row of it only has k elements with value $\frac{1}{k}$, and all other elements are 0. With such contraction, $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$.

2.2 kNN leave-one-out

To leave-one-out, we need to reconstruct the H matrix, taking the sample left out into account. Assume the i_0 th observation needs to be left out, make H such that

$$H_{i,j} = \begin{cases} \frac{1}{k}, & \text{if } x_j \in N_k(x_i) \text{ and } i \neq i_0 \\ 0, & \text{otherwise} \end{cases} \text{ for } i, j \in 1, 2, ..., N$$

Here $N_k(x_i)$ should be the set of x_i 's k nearest neighbors among all x's but excluding x_{i_0} . Denote the \mathbf{H} matrix for \mathbf{X} with the ith observation left out as \mathbf{H}_i . The square error

with the *i*th observation left out would be $e_i = (\hat{\mathbf{u}} - \mathbf{u})^T (\hat{\mathbf{u}} - \mathbf{u})$

$$e_i = (\hat{oldsymbol{y}} - oldsymbol{y})^T (\hat{oldsymbol{y}} - oldsymbol{y}) \ = (oldsymbol{H}_i oldsymbol{y} - oldsymbol{y})^T (oldsymbol{H}_i oldsymbol{y} - oldsymbol{y}) \ = oldsymbol{y}^T (oldsymbol{H}_i - oldsymbol{I})^T (oldsymbol{H}_i - oldsymbol{I}) oldsymbol{y}$$

Leave-one-out cross validated square error would be

$$SE = \frac{1}{N} \sum_{i=1}^{N} e_i$$
$$= \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{y}^T (\boldsymbol{H}_i - \boldsymbol{I})^T (\boldsymbol{H}_i - \boldsymbol{I}) \boldsymbol{y}$$

2.3 SVD in regression

Plug $X = UDV^T$ into linear regression model $Y = X\beta + e$, we get

$$Y = UDV^T\beta + e$$

Introduce a new vector $b = DV^T \beta$, the linear model becomes

$$Y = Ub + e$$

This takes the form of normal OLS linear regression model, and b can be estimated by

$$\hat{b} = (\boldsymbol{U}^T \boldsymbol{U})^{-1} \boldsymbol{U}^T \boldsymbol{y}$$

Because U is an orthogonal matrix, $U^TU = I$, \hat{b} simplifies to

$$\hat{b} = \boldsymbol{U}^T \boldsymbol{y}$$

And $\hat{\beta}$ can be estimated by

$$\hat{\beta} = (\boldsymbol{V}^T)^{-1} \boldsymbol{D}^{-1} \hat{b}$$

Again, because V is also an orthogonal matrix, $(V^T)^{-1} = V$, thus

$$\hat{\beta} = \boldsymbol{V} \boldsymbol{D}^{-1} \hat{b}$$

Define $\mathbf{A} = \mathbf{V}\mathbf{D}^{-1}$, we get an estimator for β and

$$\hat{\beta} = \mathbf{A}\hat{b}$$

To fit the model on a dataset, first performe SVD on the design matrix \boldsymbol{X} , then calculate \boldsymbol{D}^{-1} by replacing every diagonal element with its reciprocal (because \boldsymbol{D} is diagonal, all other places should be 0). Then multiply \boldsymbol{U} and \boldsymbol{y} to get \hat{b} . Finally calculate $\hat{\beta}$ via $\hat{\beta} = \boldsymbol{A}\hat{b}$.

Reference: Mandel, John. "Use of the singular value decomposition in regression analysis." The American Statistician 36.1 (1982): 15-24.

2.4 Change rank

Take the first r elements of \hat{b} to be \hat{b}_r , take the first r columns of \mathbf{A} to be \mathbf{A}_r , then $\hat{\beta}_r = \mathbf{A}_r \hat{b}_r$. If \mathbf{A} and \hat{b} already exist, this computation should take O(Nrp) time for the matrix mulplication $\hat{\beta}_r = \mathbf{A}_r \hat{b}_r$. Meanwhile since $r \leq p \leq N$, this time complexity is $O(N^3)$.