ÁLGEBRA LINEAL Y ESTRUCTURAS MATEMÁTICAS

Convocatoria Febrero 2011

(01/02/2011)

Alumno:	Grupo:	DNI:

Ejercicio 1. Sea $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ y $P = \{2, 3, 5, 7\}$. En P(X) definimos la relación de equivalencia

ARB si, y sólo si,
$$A \setminus P = B \setminus P$$

Entonces el conjunto cociente P(X)/R tiene cardinal

- (a) 64.
- (b) 4.
- (c) 16.
- (d) 10.

Justifica la respuesta.

Ejercicio 2.

1. Resuelve el siguiente sistema de congruencias en Z

camprels sel

$$5x \equiv 3 \pmod{6}$$

$$x \equiv 4 \pmod{7}$$

$$4x \equiv 6 \pmod{9}$$

2. Calcula, si existe, el inverso para el producto de 295 en \mathbb{Z}_{1274} .

Ejercicio 3. Resuelve en $\mathbb{Z}_5[x]$ la ecuación

$$(x^2 + 1) \cdot u(x) + (3x + 2) \cdot v(x) = x + 1$$

Ejercicio 4. Sean U el subespacio de $(\mathbb{Z}_7)^4$ generado por los vectores $\mathfrak{u}_1=(3,5,2,3),\,\mathfrak{u}_2=(1,6,3,4)$ y $\mathfrak{u}_3=(6,4,4,4);$ y sea W el subespacio dado por las ecuaciones $\left\{\begin{array}{cccc} 2x & + & y & + & 5z & + & 3t & = & 0\\ x & + & 4y & + & 6z & + & 5t & = & 0 \end{array}\right.$ Entonces una base de $U\cap W$ es:

- a) {(5, 2, 1, 6)}.
- b) {(6, 1, 1, 1)}.

-4-51

- c) {(5,2,1,6), (6,1,1,1)}.
- d) {(1, 2, 1, 4), (1, 1, 1, 2)}.

Justifica la respuesta.

Ejercicio 5. Sea el espacio vectorial $V = (Z_5)^3$ y sea U el subespacio vectorial de V generado por por (1,3,2), (2,1,1).

¿Para cuál de los siguientes subespacios vectoriales W de V se verifica que $V = U \oplus W$?

a)
$$W = \langle (3, 4, 3) \rangle$$
.

b)
$$W = \langle (2, 1, 3), (3, 4, 2) \rangle$$
.

-c)
$$W = \langle (2,3,1), (4,1,2) \rangle$$
.

d)
$$W = \left\{ (x, y, z) \in V : \begin{array}{c} 4x + 2y = 0 \\ x + 4z = 0 \end{array} \right\}.$$

Justifica la respuesta.

Ejercicio 6. Da una aplicación lineal $f:\mathbb{Q}^3\to\mathbb{Q}^3$ que verifique que el vector (1,2,-1) pertenezca al núcleo de f, que f(1,-1,0)=(3,1,2) y que Im(f) sea el subespacio de ecuación x-y-z=0.

Calcula la matriz de f en la base
$$B = \{(1,0,0), (1,1,0), (1,1,1)\}$$

Ejercicio 7. Dado el sistema de ecuaciones con coeficientes en \mathbb{Z}_5 :

Discútelo según el valor del parámetro α . Si para $\alpha = 4$ es compatible, resuélvelo.

Ejercicio 8. Sea $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\ 2 & 4 & 1 \end{pmatrix} \in M_3(\mathbb{Z}_7)$. Estudia si A es diagonalizable, y en caso afirmativo, calcula

una matriz regular P y una matriz diagonal D tal que $P \cdot D \cdot P^{-1}$ sea igual a A.