

9635 - STELLA MARY'S COLLEGE OF ENGINEERING

103-DEPARTMENT OF CIVIL ENGINEERING INTERNAL EXAM -II (2022 – 2023 EVEN)

III Year / VI Semester CS8603 - DISTRIBUTED SYSTEMS

Max.: 60 Marks

Date &Time: 17/04/2023 & 9:15 AM to 11:15 AM

Note:

- Write the examination using blue or black pen
- Draw neat sketch with pencil (if necessary)
- Use tables or charts (if necessary)
- Answer all questions

Q.No.	Question	Bloom's Taxonomy Level	со		
	Part - A	OF THE STATE OF			
	(Each Question carries 2 Marks)=5*2=10 mark	<u>s</u>			
1.	List the four classes of Knapp's classification of distributed deadlock detection algorithms.	Remembering	(CO3)		
2.	Define Z-dependency.	Remembering	(CO4)		
3.	What are the conditions for byzantine agreement problem.	Remembering	(CO4)		
4.	What are the performance features of P2P systems?	Remembering	(CO5)		
5.	List out the three requirements of the critical section problem.	Analyzing	(CO5)		
Q.No.	(Answer for each question carries 10 Marks)5*10=50 Question	Bloom's Taxonomy Level	со		
6.	(a) Explain about the chandy-misra-haas algorithm for the AND model	Creating	СОЗ		
	OR				
	(b) Formulate the mitchell and merritt's algorithm for the single-resource model.	Creating	CO3		
7.	(a) Elaborate the pessimistic logging, optimistic logging and casual logging.	Analyzing	CO4		
	OR				
	(b) What is rollback? and explain the several types of messages for rollback.	Remembering	CO4		

8.	(a) Explain agreement in (message-passing) synchronous systems with failures	Evaluating	CO ₄		
	OR				
	(b) Demonstrate in detail about the juang-venkatesan algorithm for asynchronous check pointing and recovery.	Understanding	CO5		
9.	(a) Summarize in detail how node insertion and node deletion are applied in tapestry	Understanding	CO5		
	OR				
	(b) Discuss the CAN maintenance and CAN optimizations	Creating	CO2		
		AND THE SHAPE OF SHAPE			
10.	(a) Discuss Lamport's bakery algorithm Lamport's WRWR mechanism and fast mutual exclusion.	Creating	CO5		
	OR				
	(b) Develop a detailed implementation of causal consistency, and provide a correctness argument for your implementation	Creating	CO5		

July 2)

Prepared by

SUBTHAN ANCH

Verified by

Canthyon G Aplese

HOD 12/4/25
[Dr. F.R. Shiny Molas 7