Exercícios Propostos

Simplifique cada expressão, utilizando a Álgebra de Boole:

a)
$$S = AB\overline{C} + \overline{A}BC + ABC + \overline{A}BC + \overline{A}B\overline{C}$$

b)
$$S = AB\overline{C}D + \overline{A}\overline{B}C\overline{D} + AB\overline{C}\overline{D} + \overline{A}BC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABCD$$

2) Simplifique utilizando a Álgebra de Boole:

$$S = [(\overline{B} + \overline{C} + \overline{D}) (\overline{A} + B + C) + C] + \overline{A}\overline{B}C + \overline{B}(\overline{A} + \overline{C})$$

3) Idem para a expressão:

$$S = A[\overline{B}(\overline{C + D}) + \overline{A}(\overline{B + C})] + C\overline{D} + A\overline{B}C + AB$$

4) Idem para a expressão:

$$S = (\overline{A \oplus B + \overline{B}C\overline{D}}) [\overline{D} + \overline{B}C + D(\overline{A} + B) + \overline{A}\overline{D}$$

Idem para a expressão:

$$S = \overline{[(B + C\overline{D} + \overline{D} + AC)(A + \overline{B} + \overline{C}) + \overline{B}(C + \overline{A}BC + AC)](A + B)}$$

6) Desenhe o circuito que executa a expressão, simplificado:

$$S = (\overline{B} + \overline{D}) \{ \overline{B} + C \odot D + \overline{A} [B\overline{C} + \overline{B}C + A + B (\overline{C} + \overline{D})] \}$$

Simplifique com a Álgebra de Boole:

$$S = (\overline{\overline{A}B} + C\overline{D} + A\overline{D}) (\overline{\overline{B}[C \oplus D + \overline{A}(\overline{\overline{B} + \overline{C}}) + A\overline{B}\overline{C}]} + \overline{A})$$

8) Demonstre que:

$$A \odot (B \oplus C) = A \oplus (B \odot C)$$

 Através dos diagramas de Veitch-Karnaugh, determine a expressão simplificada de S₁ e S₂ da Tabela 3,26;

Tabela 3.26

AB	Sı	S ₂
0 0	1	1
0 1	0	1
1 0	1	0
1 1	1	0

10) Simplifique as expressões de $S_1,\,S_2,\,S_3$ e S_4 da Tabela 3.27, utilizando os mapas de Veitch-Karnaugh:

Tabela 3.27

A	В	С	Sı	S ₂	S ₃	S ₄
0	0	0	1	1	0	0
0	0	1	0	1	1	1
0	1	0	1	1	0	1
0	1	1	1	0	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	0
1	1	0	0	1	1	1
1	1	1	1	0	0	1

Idem ao anterior para a Tabela 3.28:

Tabela 3.28

A	В	C	D	S ₁	S ₂	S ₃	S ₄
0	0	0	0	1	1	0	0
0	0	0	1	1	0	0	0
0	0	1	0	1	1	1	0
0	0	1	1	1	0	0	1
0	1	0	0	1	1	1	1
0	1	0	1	0	1	1	1
0	1	1	0	0	1	1	0
0	1	1	1	1	1	0	1
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	0	1	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	0	1	1	1
1	1	1	0	0	0	0	1
1	1	1	1	1	1	0	1

12) Simplifique as expressões utilizando diagramas de Veitch-Karnaugh:

a)
$$S = A\overline{B}\overline{C} + A\overline{B}C + \overline{A}BC + \overline{A}B\overline{C} + ABC$$

b)
$$S = \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D} + AB\overline{C}D + \overline{A}BCD + A\overline{B}\overline{C}D + ABCD + ABC\overline{D}$$

c)
$$S = \overline{B}\overline{D} + \overline{A} + A\overline{B}\overline{C}D + A\overline{B}CD + \overline{A}\overline{C}$$

d)
$$S = ABC + AB + \overline{A}BCD + BD + CD + \overline{B}C\overline{D} + \overline{A}B\overline{C}\overline{D}$$

Tabela 3.29

A	B	C	D	E	S ₁	S ₂
0	0	0	0	0	1	1
0	0	0	0	1	1	0
0	0	0	1	0	1	1
0	0	0	1	1	1	0
0	0	1	0	0	0	1
0	0	1	0	1	1	1
0	0	1	1	0	0	1
0	0	1	1	1	1	1
0	1	0	0	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	1	1
0	1	1	0	1	1	1
0	1	1	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	0	1	1
1	0	0	0	1	1	0
1	0	0	1	0	0	1
1	0	0	1	1	0	1
1	0	1	0	0	0	1
1	0	1	0	1	1	1
1	0	1	1	0	0	1

A	В	C	D	E	S ₁	S ₂
1	0	1	1	1	1	1
1	1	0	0	0	0	1
1	1	0	0	1	0	0
1	1	0	1	0	1	1
1	1	0	1	1	0	0
1	1	1	0	0	0	1
1	1	1	0	1	1	1
1	1	1	1	0	0	1
1	1	1	1	1	1	1

14) Simplifique as expressões de S_1 e S_2 da Tabela 3.30:

Tabela 3.30

A	В	С	S ₁	S ₂
0	0	0	X	1
0	0	1	0	X
0	1	0	1	0
0	1	1	Х	0
1	0	0	1	0
1	0	1	Х	1
1	1	0	X	Х
1	1	1	1	X

 $\textbf{15)} \ \ \text{Determine as expressões simplificadas de S}_1, \, \text{S}_2, \, \text{S}_3 \, \text{e S}_4 \, \text{da Tabela 3.31};$

Tabela 3.31

A	В	C	D	S ₁	S ₂	S ₃	S ₄
0	0	0	0	1	Х	0	Х
0	0	0	1	X	Х	0	0
0	0	1	0	X	1	0	Х
0	0	1	1	X	0	1	1
0	1	0	0	1	Х	Х	1
0	1	0	1	0	1	х	x
0	1	1	0	X	0	1	0
0	1	1	1	X	1	0	1
1	0	0	0	Х	1	х	0
1	0	0	1	1	0	1	1
1	0	1	0	Х	Х	0	0
1	0	1	1	1	1	0	x
1	1	0	0	х	0	1	1
1	1	0	1	х	1	0	1
1	1	1	0	1	1	x	1
1	1	1	1	0	Х	1	х

16) Desenhe os circuitos minimizados que executam as saídas S_1 e S_2 da tabela verdade:

Tabela 3.32

A	В	С	D	Е	S ₁	S ₂
0	0	0	0	0	0	1
0	0	0	0	1	0	X
0	0	0	1	0	1	1
0	0	0	1	1	0	Х
0	0	1	0	0	1	Х
0	0	1	0	1	1	1
0	0	1	1	0	0	Х
0	0	1	1	1	1	1
0	1	0	0	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	1	X
0	1	1	0	1	1	1
0	1	1	1	0	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	0	0	1	0	X
1	0	0	1	0	1	1
1	0	0	1	1	0	0
1	0	1	0	0	1	Х
1	0	1	0	1	1	1

A	В	C	D	E	S ₁	S ₂
1	0	1	1	0	0	0
1	0	1	1	1	1	1
1	1	0	0	0	0	Х
1	1	0	0	1	0	1
1	1	0	1	0	1	1
1	1	0	1	1	0	1
1	1	1	0	0	1	1
1	1	1	0	1	1	X
1	1	1	1	0	0	1
1	1	1	1	1	1	X

17) Obtenha a expressão simplificada:

$$S = (\overline{A} + B) (\overline{B} + (B \oplus C) (\overline{A}B\overline{C} + B(\overline{A} + \overline{D}) + B\overline{C} + \overline{B}D) + ABD)$$

18) Prove que:

$$\overline{A \oplus B \oplus C \oplus D} = A \odot B \odot C \odot D$$