Produto Escalar, Produto Vetorial e Produto Misto

Produto Escalar

O produto escalar (ou produto interno) entre dois vetores, resulta em um escalar.

Considere os seguintes vetores

$$\vec{u} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$$
 e $\vec{v} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$

representamos $\vec{u} \cdot \vec{v}$, ao número real

$$\overrightarrow{u} \cdot \overrightarrow{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

O produto escalar de \vec{u} por \vec{v} também é indicado por $<\vec{u}\cdot\vec{v}>$ e se lê " \vec{u} escalar \vec{v} ".

- 1. Dados os vetores $\vec{u} = 3\vec{i} 5\vec{j} + 8\vec{k}$ e $\vec{v} = 4\vec{i} 2\vec{j} \vec{k}$. Calcule $\vec{u} \cdot \vec{v}$.
- 2. Sejam os vetores $\vec{u} = (3, 2, 1)$ e $\vec{v} = (-1, -4, -1)$. Calcular:
- a) $(\vec{u} + \vec{v}) \cdot (2\vec{u} \vec{v})$
- b) $\vec{u} \cdot \vec{u}$
- c) $\vec{0} \cdot \vec{u}$
- 3. Dados os vetores $\vec{u} = (4, \alpha, -1)$ e $\vec{v} = (\alpha, 2, 3)$ e os pontos A(4, -1, 2) e B(3, 2, -1), determinar o valor de α tal que $\vec{u} \cdot (\vec{v} + \overrightarrow{BA}) = 5$.

Propriedades do Produto Escalar

Para quaisquer vetores \vec{u} , \vec{v} e \vec{w} e o número real α , é fácil verificar que:

I.
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

II.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$
 e $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$

III.
$$\alpha(\vec{u} \cdot \vec{v}) = (\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v})$$

IV.
$$\vec{u} \cdot \vec{u} > 0$$
 se $\vec{u} \neq \vec{0}$ e $\vec{u} \cdot \vec{u} = 0$ se $\vec{u} = \vec{0} = (0, 0, 0)$.

$$V. \vec{u} \cdot \vec{u} = |\vec{u}|^2$$

- 1) Sendo $|\vec{u}| = 4$, $|\vec{v}| = 2$ e $\vec{u} \cdot \vec{v} = 3$, calcular $(3\vec{u} 2\vec{v}) \cdot (-\vec{u} + 4\vec{v})$
- 2) Mostrar que:

a)
$$|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + 2 \vec{u} \cdot \vec{v} + |\vec{v}|^2$$

b)
$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 - 2 \vec{u} \cdot \vec{v} + |\vec{v}|^2$$

c)
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = |\vec{u}|^2 - |\vec{v}|^2$$

Definição Geométrica de Produto Escalar

Se \vec{u} e \vec{v} são vetores não nulos e θ o ângulo entre eles, então

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

Aplicando a lei dos cossenos ao triângulo ABC da figura, temos

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\theta$$
 (1)

Por outro lado, de acordo com o exercício anterior:

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 - 2 \vec{u} \cdot \vec{v} + |\vec{v}|^2$$
 (2)

Comparando as igualdades (1) e (2):

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 - 2\vec{u} \cdot \vec{v} + |\vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\theta$$

Daí

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta$$
, $0^{\circ} \le \theta \le 180^{\circ}$

O produto escalar de dois vetores não nulos é igual ao produto de seus módulos pelo cosseno do ângulo por eles formado.

Observações

a) Equivalência entre as expressões

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2 \tag{1}$$

e

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta \tag{2}$$

Dados os vetores $\vec{u} = (1, 1, 0)$ e $\vec{v} = (0, 1, 0)$ e $\theta = 45^{\circ}$ o ângulo entre eles, como na figura:

Então, por (1), temos

$$\vec{u} \cdot \vec{v} = 1(0) + 1(1) + 0(0) = 1$$

e, por (2)

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos 45^\circ = \left(\sqrt{2}\right) (1) \left(\frac{\sqrt{2}}{2}\right) = 1$$

- b) Para todos os vetores \vec{u} e \vec{v} vale:
- i. $|\vec{u} \cdot \vec{v}| \le |\vec{u}| |\vec{v}|$ (Designal dade de Schwartz)
- ii. $|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$ (Designaldade Triangular)

A segunda desigualdade confirma a propriedade geométrica segundo a qual, em um triângulo, a soma dos comprimentos de dois lados ($|\vec{u}| + |\vec{v}|$) é maior do que o comprimento do terceiro lado ($|\vec{u}+\vec{v}|$).

A igualdade ocorre somente quando \vec{u} e \vec{v} forem paralelos e de mesmo sentido .

c) Como em $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$ o sinal de $\vec{u} \cdot \vec{v}$ é o mesmo de $\cos \theta$ conclui-se que:

1°)
$$\vec{u} \cdot \vec{v} > 0 \iff \cos \theta > 0 \iff 0^{\circ} \le \theta < 90^{\circ}$$

2°)
$$\vec{u} \cdot \vec{v} < 0 \iff \cos \theta < 0 \iff 90^{\circ} < \theta \le 180^{\circ}$$

3°)
$$\vec{u} \cdot \vec{v} = 0 \iff \cos \theta = 0 \iff \theta = 90^\circ$$

Essa afirmação estabelece a condição de ortogonalidade de dois vetores:

Dois vetores \vec{u} e \vec{v} são ortogonais se, e somente se,

$$\vec{u} \cdot \vec{v} = 0$$

1) Mostrar que os seguintes pares de vetores são ortogonais:

a)
$$\vec{u} = (1, -2, 3) \vec{e} \vec{v} = (4, 5, 2)$$

- b) $\vec{i} \in \vec{j}$
- 2) Provar que o triângulo de vértices A(2, 3, 1), B(2, 1, -1) e C(2, 2, -2) é um triângulo retângulo.
- 3) Determinar um vetor ortogonal aos vetores $v_1 = (1, -1, 0)$ e $\vec{v}_2 = (1, 0, 1)$.

Cálculo do Ângulo de Dois Vetores

Da igualdade

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

temos

$$\cos \theta = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}||\overrightarrow{v}|}$$

fórmula a partir da qual se calcula o ângulo θ entre os vetores \vec{u} e \vec{v} não nulos.

- 1) Calcular o ângulo entre os vetores u = (1, 1, 4) e v = (-1, 2, 2).
- 2) Sabendo que o vetor v = (2, 1, -1) forma ângulo de 60° com o vetor \overrightarrow{AB} determinado pelos pontos A(3, 1, -2) e B(4, 0, m), calcular m.
- 3) Determinar os ângulos internos ao triângulo ABC, sendo A(3, -3, 3), B(2, -1, 2) e C(1, 0, 2).

Ângulos Diretores e Cossenos Diretores de um Vetor

Seja $\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$ não nulo.

 \hat{A} ngulos diretores de \vec{v} são ângulos α , β e γ que \vec{v} forma com os vetores \vec{i} , \vec{j} e \vec{k} , respectivamente.

Cossenos diretores de \vec{v} são os cossenos de seus ângulos diretores, isto é, $\cos \alpha$, $\cos \beta$ e $\cos \gamma$.

Para o cálculo destes valores utilizaremos a fórmula $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$:

$$\cos\alpha = \frac{\overrightarrow{v} \cdot \overrightarrow{i}}{|\overrightarrow{v}||\overrightarrow{j}|} = \frac{(x, y, z) \cdot (1, 0, 0)}{|\overrightarrow{v}|(1)} = \frac{x}{|\overrightarrow{v}|}$$

$$\cos \beta = \frac{\overrightarrow{v} \cdot \overrightarrow{j}}{|\overrightarrow{v}||\overrightarrow{j}|} = \frac{(x, y, z) \cdot (0, 1, 0)}{|\overrightarrow{v}|(1)} = \frac{y}{|\overrightarrow{v}|}$$

$$\cos \beta = \frac{\overrightarrow{v} \cdot \overrightarrow{J}}{|\overrightarrow{v}||\overrightarrow{J}|} = \frac{(x, y, z) \cdot (0, 1, 0)}{|\overrightarrow{v}|(1)} = \frac{y}{|\overrightarrow{v}|}$$

Observação

Note que os cossenos diretores de \vec{v} são precisamente as componentes do versor de \vec{v} :

$$\frac{\overrightarrow{v}}{|\overrightarrow{v}|} = \frac{(x, y, z)}{|\overrightarrow{v}|} = \left(\frac{x}{|\overrightarrow{v}|}, \frac{y}{|\overrightarrow{v}|}, \frac{z}{|\overrightarrow{v}|}\right) = (\cos \alpha, \cos \beta, \cos \gamma)$$

Como o versor é um vetor unitário, decorre imediatamente

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

- 1) Calcular os ângulos diretores de v = (1, -1, 0).
- Os ângulos diretores de um vetor são α, 45° e 60°.
 Determinar α.

Projeção de um Vetor sobre o Outro

Sejam $\vec{u} e \vec{v}$ não nulos e θ o ângulo entre eles. Suponha que $\vec{v} = \vec{v}_1 + \vec{v}_2$, sendo $\vec{v}_1 /\!/ \vec{u}$ e $\vec{v}_2 \perp \vec{u}$.

O vetor \vec{v}_1 é chamado **projeção ortogonal de** \vec{v} sobre \vec{u} e indicado por

$$\vec{v}_1 = proj_u \vec{v}$$

Além disso, sendo $\vec{v}_1 = \alpha \vec{u}_1$, conclui-se que,

$$proj_u \vec{v} = \left(\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}\right) \vec{u}.$$

- 1) Determinar o vetor projeção de $\vec{v} = (2, 3, 4)$ sobre $\vec{u} = (1, -1, 0)$.
- 2) Dados os vetores $\vec{v} = (1, 3, -5)$ e $\vec{u} = (4, -2, 8)$, decompor \vec{v} como $\vec{v} = \vec{v}_1 + \vec{v}_2$, sendo $\vec{v}_1 / / \vec{u}$ e $\vec{v}_2 \perp \vec{u}$.

Produto Vetorial

Chama-se **produto vetorial** de dois vetores $\vec{u} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$ e $\vec{v} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$, se representa por $\vec{u} \times \vec{v}$, ao vetor

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{l} & \vec{J} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Obs: o produto vetorial é um vetor, diferentemente do produto escalar, no qual tínhamos um numero real.

Calcular $\vec{u} \times \vec{v}$ para $\vec{u} = 5\vec{i} + 4\vec{j} + 3\vec{k}$ e $\vec{v} = \vec{i} + \vec{k}$

Observações

• $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$, logo o produto vetorial não é comutativo, assim, a ordem dos fatores é importante.

• $\vec{u} \times \vec{v} = \vec{0}$ se, e somente se, $\vec{u}/|\vec{v}|$.

Características do Produto Vetorial

Considere os vetores $\vec{u} = (x_1, y_1, z_1)$ e $\vec{v} = (x_2, y_2, z_2)$.

Direção de $\vec{u} \times \vec{v}$: o vetor $\vec{u} \times \vec{v}$ é simultaneamente ortogonal a \vec{u} e \vec{v} .

Para **provar** isso basta mostrar que

•
$$(\vec{u} \times \vec{v}) \cdot \vec{u} = 0$$

е

•
$$(\vec{u} \times \vec{v}) \cdot \vec{v} = 0$$

Sentido de $\vec{u} \times \vec{v}$: o sentido do vetor $\vec{u} \times \vec{v}$ pode ser determinado utilizando a "regra da mão direita". Sendo θ o ângulo entre os vetores, suponha que \vec{u} sofra rotação de ângulo até \vec{v} .

Comprimento de $\vec{u} \times \vec{v}$: se θ é o ângulo entre os vetores

 \vec{u} e \vec{v} não nulos, então

$$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| sen(\theta)$$

A área desse paralelogramo é A=(base)(altura), ou seja

$$A=|\vec{u}||\vec{v}|sen(\theta)=|\vec{u}\times\vec{v}|$$

seja $\vec{u} = (2,0,0)$ e $\vec{v} = (0,3,0)$, calcule a área.

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{vmatrix} = (0,0,6)$$

$$|\vec{u} \times \vec{v}| = 6$$

Propriedades do Produto Vetorial

O produto vetorial, em geral, não é associativo:

$$(\vec{u} \times \vec{v}) \times \vec{w} \neq \vec{u} \times (\vec{v} \times \vec{w})$$

Propriedades válidas:

•
$$\vec{u} \times (\vec{v} + \vec{w}) = (\vec{u} \times \vec{v}) + (\vec{u} \times \vec{w})$$

•
$$\alpha(\vec{u} \times \vec{v}) = (\alpha \vec{u}) \times \vec{v}$$

•
$$\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$$

- 1) Determinar o vetor x, tal que x seja ortogonal ao eixo dos y e $\vec{u} = \vec{x} \times \vec{v}$, sendo $\vec{u} = (1, 1, -1)$ e $\vec{v} = (2, -1, 1)$.
- 2) Sejam os vetores $\bar{u} = (1, -1, -4)$ e $\bar{v} = (3, 2, -2)$. Determinar um vetor que seja
 - a) ortogonal a u e v;
 - b) ortogonal a u e v e unitário;
 - c) ortogonal a u e v e tenha módulo 4;
 - d) ortogonal a u e v e tenha cota igual a 7.

Produto Misto

Chama-se **produto misto** dos vetores $\vec{u} = (x_1, y_1, z_1)$ e $\vec{v} = (x_2, y_2, z_2)$ $e \vec{w} = (x_3, y_3, z_3)$, o número real $\vec{u} \cdot (\vec{v} \times \vec{w})$. É também indicado por $(\vec{u}, \vec{v}, \vec{w})$.

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

Calcular o produto misto dos vetores $\vec{u} = 2\vec{i} + 3\vec{j} + 5\vec{k}$, $\vec{v} = -\vec{i} + 3\vec{j} + 3\vec{k}$ e $\vec{w} = 4\vec{i} - 3\vec{j} + 2\vec{k}$.

Propriedades de Produto Misto

 (\vec{u}, \vec{v}, \vec{w})=0, se um dos vetores for nulo, ou dois deles s\vec{a}o colineares, ou se os tr\vec{e}s s\vec{a}o coplanares.

• $(\vec{u}, \vec{v}, \vec{w}) = -(\vec{v}, \vec{w}, \vec{u}) = -(\vec{w}, \vec{u}, \vec{v})$

•
$$(\vec{u}, \vec{v}, \vec{w} + \vec{a}) = (\vec{u}, \vec{v}, \vec{w}) + (\vec{u}, \vec{v}, \vec{a})$$

• $(\alpha \vec{u}, \vec{v}, \vec{w}) = (\vec{u}, \alpha \vec{v}, \vec{w}) = (\vec{u}, \vec{v}, \alpha \vec{w}) = \alpha(\vec{u}, \vec{v}, \vec{w})$

- 1) Verificar se são coplanares os vetores u = (2, -1, 1), $\vec{v} = (1, 0, -1)$ e $\vec{w} = (2, -1, 4)$.
- 2) Qual deve ser o valor de m para que os vetores $\vec{u} = (2, m, 0), \vec{v} = (1, -1, 2)$ e $\vec{w} = (-1, 3, -1)$ sejam coplanares?

Interpretação Geométrica de Produto Misto

O produto misto $\vec{u} \cdot (\vec{v} \times \vec{w})$ é igual, em módulo, ao volume do paralelepípedo de arestas determinadas pelos vetores

não coplanares \vec{u} , \vec{v} e \vec{w} .

Volume do Tetraedro

Sejam A, B, C e D pontos não-coplanares. Portanto, os vetores \overline{AB} , \overline{AC} e \overline{AD} também são não-coplanares.

Em consequência, estes vetores determinam um paralelepípedo

cujo volume é

$$V = I(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})I.$$

Volume do prisma:

$$V_p = \frac{1}{2}V$$

Volume do tetraedro:

$$V_t = \frac{1}{3}V_p = \frac{1}{6}V$$

1) Sejam os vetores $\vec{u} = (3, m, -2)$, $\vec{v} = (1, -1, 0)$ e $\vec{w} = (2, -1, 2)$. Calcular o valor de m para que o volume do paralelepípedo determinado por \vec{u} , \vec{v} e \vec{w} seja 16 u.v. (unidades de volume).

- 2) Sejam A(1, 2, -1), B(5, 0, 1), C(2, -1, 1) e D(6, 1, -3) vértices de um tetraedro. Calcular
 - a) o volume deste tetraedro;
 - b) a altura do tetraedro relativa ao vértice D.