浙江工业大学 2022/2023 学年第一学期 概率论与数理统计(48学时)期末考试试卷

		1	2号:	姓:	名:		
班级:		:	任课教师:				
		题号	_	二	Ξ	总分	
		得分					
分) 位点数据	} :					
	$\chi^2_{0.975}$	$\zeta_{5}(5) = 0$		$4) = 11.143, \chi$ $0 = 0.484, \chi^{2}_{0.9}$ (x)			
	·			$A \cup B) = 3P(A$	AB),则 $P(B A)$	4) =	·
2.	方案其销 大于 100	i售额大· 0 万元的	于 1000 万元的 勺概率是	」概率分别为().3,0.5,0.4,则i 若该商店在促	该商店在该促	1.2,采用这三种 销活动中销售额 额大于 1000 万
3.	设 X ~	$P(\lambda)$,		$X \leq 2) = \frac{1}{\lambda},$	则 λ =		$E[(X-2)^2] =$
4.	设 $X \sim U$	U(a,b),	若 $P(X > a +$	-1 X < b - 1)	$=rac{1}{2}$,则 DX =	=	
5.	设随机变	量 X 满		$\mathbb{E}[(X-2)^2]$,贝	$ \exists EX = \underline{\hspace{1cm}}$		
6.	设 (X,Y)	$\sim N(1$	$(2, 2^2, 3^2, \frac{1}{3}),$	$\diamondsuit Z = 2X - Y -$	$+1$,则 $EZ=$ _		\bigcirc , $\operatorname{Cov}(X,Z)$ =
7.			观测值为 19,2 	1,22,17,21,则	样本均值 \bar{x} =	=	,样本方
				0,22) 的样本			布,其自由度

9. 设总体 $X \sim U(0,\theta)$, X_1, X_2, X_3 是 X 的样本. 令 $\overline{X} = \frac{1}{3}(X_1 + X_2 + X_3)$, 若 $C[(X_1 - X_2)]$

二. 选择题 (共 12 分, 每题 3 分)

- 1. 设 0 < P(A) < 1, 0 < P(B) < 1. 若 $P(B|A) + P(\overline{B}|\overline{A}) \ge 1$, 则)
 - (A) $P(B|A) \ge P(B)$

(B) P(B|A) < P(B)

(C) $P(B|A) \ge P(A)$

- (D) $P(B|A) \leq P(A)$
- 2. 设 X_1, X_2, X_3, \cdots 是独立同分布的随机变量序列, X_1 的密度函数为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & 其他, \end{cases}$ 对任意 $\varepsilon > 0$,

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\left(\frac{X_2}{X_1} + \frac{X_4}{X_3} + \dots + \frac{X_{2n}}{X_{2n-1}}\right) - A\right| > \varepsilon\right) = 0,$$

则 A =)

- (A) $\frac{2}{3}$
- (B) 1 (C) $\frac{4}{3}$ (D) $\frac{3}{2}$
- 3. 设总体 $X \sim N(\mu, \sigma^2)$, μ, σ^2 均未知. 设 X_1, X_2, \cdots, X_n 是 X 的样本, S^2 是样本方差, 则 σ^2 的置信水平为 $1-\alpha$ 的单侧置信上限是

(B) $\frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}$ (D) $\frac{(n-1)S^2}{\chi^2_{1-\alpha}(n)}$

- 4. 在假设检验问题 H_0 vs H_1 中,若取显著水平为 0.05 时,接受原假设,则根据相同的样 本数据,)
 - (A) 取显著水平为 0.025 时,接受原假设
 - (B) 取显著水平为 0.025 时, 拒绝原假设
 - (C) 取显著水平为 0.1 时,接受原假设
 - (D) 取显著水平为 0.1 时, 拒绝原假设

三.	解答题	(共	6	题,	60	分)
----	-----	----	---	----	----	----

1. (10 分) 设盒中有 2 红、2 蓝、1 黄共 5 个球. 从中随机取球,每次取 1 个,不放回,直到每种颜色的球至少取到一个为止. 记取球的次数为 X, 求 X 的分布列以及其期望、方差.

2. $(8 \ \beta)$ 设连续型随机变量 X 的分布函数 $F(x) = A \arctan x + B \arctan (x+1) + C$,且 $P(X>0) = \frac{1}{3}. \ \ \dot{x} \colon (1) \ \ \ddot{x} \ \ A, B, C; \ \ (2) \ X \ \ \$ 的密度函数.

3. (12 分)设离散型随机变量 (X,Y) 的联合分布表为

X Y	-1	0	1
-1	a	0.1	0.1
0	0.2	0	b
1	0	0.1	0.1

且 X,Y 不相关. 求: (1) 常数 a,b; (2) X+Y 的分布列; (3) X 与 X+Y 的相关系数.

4. (12 分)设连续型随机变量 (X,Y) 的密度函数

$$f(x,y) = \begin{cases} Cx, & 0 < x < y < 2x < 2, \\ 0, & \text{ 其他.} \end{cases}$$

求: (1) 常数 C; (2) P(X+2Y>3); (3) 边缘分布的密度函数 $f_X(x)$ 和条件分布的密度函数 $f_{Y|X}(y|x)$.

5. $(10 \, \beta)$ 设总体 X 的密度函数 $f(x) = \begin{cases} \frac{1}{\theta} x \mathrm{e}^{-\frac{x^2}{2\theta}}, & x \geq 0, \\ 0, & x < 0, \end{cases}$ 其中未知参数 $\theta > 0$. 根据 X 的 样本 X_1, X_2, \cdots, X_n ,求 θ 的矩估计和极大似然估计.

6. $(8\ \mathcal{O})$ 设某种导线的电阻值服从正态分布,要求其标准差不超过 0.05 欧姆. 从一批这种导线中随机选取 5 根,测得其样本标准差为 0.07 欧姆,取显著水平 $\alpha=0.05$,能否认为这批导线的标准差显著过高?