

### Folving the Heat Equation in Python!

By Melvyn Ian Drag



### Learning Objectives for Tonight:

### After this tutorial you will:

- Know what the heat equation is.
- Know a way solve the Heat Equation in Python
- Have a better familiarity with several impressive Python libraries.
- Be able to generate animations of your solutions.

### Why Python?

"Whereas a mathematical idea is a timeless thing, few things are more ephemeral than computer hardware and software."

-Tristan Needham



### **Useful Libraries**

"The SciPy Stack":

The SciPy "core library"
NumPy
Matplotlib
IPython

**Further reference:** 

Thompson



### **How to Get All This Stuff?**

Download either:

Anaconda

-Or-



Enthought Canopy



### The Discretization of the Heat Equation

$$u_t = u_{xx}$$

$$\frac{u(x,t+\Delta t)-u(x,t)}{\Delta t} = \frac{u(x+\Delta x,t)-2u(x,t)+u(x-\Delta x,t)}{\Delta x^2}$$

$$u(x,t+\Delta t) = u(x,t) + \frac{\Delta t}{\Delta x^2} (u(x+\Delta x,t) - 2u(x,t) + u(x-\Delta x,t))$$

$$u_{i,j+1} = u_{i,j} + r(u_{i+1,j} - 2u_{i,j} + u_{i-1,j})$$

### Remember this:



### The Mesh

Let's study this for a minute:



We can ignore the fractions in the image.
I took this image from voting.ukscientists.com/diffus, and they needed the fractions for something else.

### A Look at a Mesh From a UC Berkeley Lecture



### Repetion is the mother of all learning:

$$u_{i,j+1} = u_{i,j} + r(u_{i+1,j} - 2u_{i,j} + u_{i-1,j})$$



### **Boundary Conditions**



Or we could mix these conditions . . .

# Making a Matrix Equation



### Now Making a Matrix Equation

$$u_{i,j+1} = u_{i,j} + r(u_{i+1,j} - 2u_{i,j} + u_{i-1,j})$$

$$\begin{bmatrix} -2 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} u_{1,j} \\ u_{2,j} \\ u_{3,j} \\ u_{4,j} \\ u_{5,j} \end{bmatrix} = \begin{bmatrix} -2u_{1,j} + u_{2,j} \\ u_{1,j} - 2u_{2,j} + u_{3,j} \\ u_{2,j} - 2u_{3,j} + u_{4,j} \\ u_{3,j} - 2u_{4,j} + u_{5,j} \\ u_{4,j} - 2u_{5,j} \end{bmatrix}$$

If we add just a little more seasoning to the above equation, everything will work out just right.

### Finally, the



# Let's Now Look at Some Code Together.



### Should I use Arrays or Matrices?

### Short answer

Use arrays.

They are the standard vector/matrix/tensor type of numpy. Many numpy function return arrays, not matrices.

There is a clear distinction between element-wise operations and linear algebra operations.

You can have standard vectors or row/column vectors if you like.

The only disadvantage of using the array type is that you will have to use dot instead of \* to multiply (reduce) two tensors (scalar product, matrix vector multiplication etc.).

THEY DON'T MENTION THAT THERE ARE NO SPARSE ARRAYS! This is also a legitimate reason to use matrices.



### Lets Get Our Hands Dirty:



|  | Your Task:                                                               |      |            |
|--|--------------------------------------------------------------------------|------|------------|
|  |                                                                          |      |            |
|  | O. Import library(ies) for our sparse                                    |      | (V)        |
|  | matrices.                                                                | (A+) | excellent! |
|  | 1. Change the 2D array "T" in our code to a Sparse Matrix.               |      |            |
|  |                                                                          |      |            |
|  | 2. Change the boundary conditions                                        |      |            |
|  | from constant to variable.                                               |      |            |
|  | Here's how:                                                              |      |            |
|  | Change our domain to (-pi/2, pi/2). Use the exact solution to define the |      |            |
|  | value of u at the endpoints at each time step.                           |      |            |
|  |                                                                          |      |            |
|  | 2 To make cure you understand how                                        |      |            |
|  | 3. To make sure you understand how the animation function works, create  |      |            |
|  | a separate animation of the real                                         |      |            |
|  | solution at each time step. It should                                    |      |            |
|  | look exactly like the numerical solution!                                |      |            |

### The Heat Equation in 2D



### The 2D Discretization

$$u_t(x, y, t) = u_{xx}(x, y, t) + u_{yy}(x, y, t)$$

$$\frac{u_{i,j,k+1} - u_{i,j,k}}{\Delta t} =$$

$$\frac{u_{i+1,j,k} - 2u_{i,j,k} + u_{i-1,j,k}}{\Delta x^2} + \frac{u_{i,j+1,k} - 2u_{i,j,k} + u_{i,j-1,k}}{\Delta y^2}$$

$$u_{i,j,k+1} = u_{i,j,k} + r(u_{i+1,j,k} - 2u_{i,j,k} + u_{i-1,j,k})$$

$$+r(u_{i,j+1,k}-2u_{i,j,k}+u_{i,j-1,k})$$

Where we have let  $\ \Delta x = \Delta y$ 

### **Another Mesh from the UC Berkeley Site**

#### Discretization of the 2D Heat Equation



#### Our New Matrix, Graciously Provided By UC Berkeley

#### Matrix for Discrete Poisson Problem



# Let's Now Look at Some Code Together.

