Section: 1TA1 1TA2 1TA3

Niveau: 1ère année

Matière : Probabilités

Date: 21 Novembre 2020

Durée: 1H30

Nombre de pages : 2

Exercice 1

Soient $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré et $f: (\mathcal{X}, \mathcal{A}, \mu) \longrightarrow (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ une fonction intégrable pour la mesure μ .

1. Montrer que pour tout a > 0.

$$\mu(\{|f| \ge a\}) \le \frac{1}{a} \int_{\mathcal{X}} |f| d\mu \cdot$$

2. a) Montrer que $\mu(\{|f|=+\infty\})=0$

(Il suffit d'écrire l'ensemble $\{|f| = +\infty\} = \bigcap_{n \ge 1} \{|f| > n\}$).

b) Enoncer le Théorème de convergence dominé.

c) Montrer que

$$\lim_{n\to+\infty}\int_{\mathcal{X}}|f|I_{\{|f|>n\}}d\mu\longrightarrow 0\text{ quand }n\longrightarrow+\infty\cdot$$

3. Soit $\alpha > 0$, on pose pour tout $x \in \mathcal{X}$ et tout n > 0. $f_n(x) = n^{-\alpha} f(nx)$.

a) montrer que f_n est mesurable.

b) Montrer que f_n converge vers 0 en mesure.

4. Si $f:(\mathbb{R},\mathcal{B}_{\mathbb{R}}) \longrightarrow (\mathbb{R},\mathcal{B}_{\mathbb{R}})$ est la fonction indicatrice donnée par $f(x) = I_{[0,1]}(x)$.

a) En déduire que f est intégrable par rapport à la mesure de Lebesgue λ et que f_n converge en mesure vers 0.

b) Calculer $\int_{\mathbb{R}} f_n d\lambda$ et étudier sa convergence.

c) Etudier la convergence de $\int_{\mathbb{R}} |f_n - f| d\lambda$

Exercice 2

Pour tout entier $n \geq 1$, on note $\varphi(n)$ le nombre d'entiers appartenant à $\{1, \dots, n\}$ et premier avec n. Si $p_1^{\alpha^1} p_2^{\alpha^2} \cdots p_4^{\alpha^4}$ est la factorisation de n en produit de facteurs premier, on se propose de démontrer que l'on a $\varphi(n) = n(1 - \frac{1}{p_1})(1 - \frac{2}{p_2}) \cdots (1 - \frac{1}{p_1})$ Soit $\Omega = \{1, \dots, n\}$, muni de la probabilité uniforme.

1. Si d est un diviseur de n, on note D_d l'ensemble des multiples d dans Ω . Calculer $\mathbb{P}(D_d)$.

2. On rappelle que n événements A_1, \dots, A_n sont dit mutuellement indépendants si, pour toute famille finie I de $\{1, \dots, n\}$ on a :

$$P(\bigcap_{i\in I}A_i)=\prod_{i\in I}P(A_i)\cdot$$

Montrer que si p_1, \dots, p_r sont les facteurs premiers de n. alors les événements D_{p_1}, \dots, D_{p_r} sont mutuellement indépendants.

3. En déduire la formule annoncée.

Exercice 3

Le produit de convolution f * g de deux fonctions f et g est défini par

$$f * g(x) = \int_{-\infty}^{+\infty} f(t)g(x - t)dt$$

- 1. Montrer que le produit de convolution est commutatif : f*g=g*f .
- 2. On note $g_a(x) = e^{-ax^2}$ et $g_b(x) = e^{-bx^2}$.
 - a) calculer $g_a * g_b(x)$.
 - b) En déduire $||g_a * g_b||_1$.
- 3. Montrer que $g_a * g_b$ est dérivable et donner sa dérivée.

On rappelle que $\int_{-\infty}^{+\infty} e^{\frac{-z^2}{2}} = \sqrt{2\pi}$