

NEXI for the quantification of human gray matter microstructure on a clinical MRI scanner

Quentin Uhl¹, Tommaso Pavan¹, Thorsten Feiweier², Gian Franco Piredda^{4,5}, Sune N. Jespersen³ and Ileana Jelescu¹

¹Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland

²Siemens Healthcare GmbH, Erlangen, Germany ³Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ⁴Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland ⁵CIBM Center for Biomedical Imaging, Geneva, Switzerland

Speaker Name: Quentin Uhl

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Modeling Gray Matter...

Gray matter microstructure models require:

- Water exchange across the cell membrane
- Signal contribution from cell bodies
- Non-Gaussian diffusion (structural disorder)

Songbird Basal Ganglia, Neurobiology, J. Kornfeld Sources:

> Jelescu et al. 2022. NeuroImage Olesen et al. 2022. NeuroImage

using the Neurite Exchange Imaging (NEXI) model

Volume fraction

Intra-neurite space

Extra-neurite space

 t_{ex} : exchange time

f: intra volume fraction

 $D_{i/e}$: intra/extra diffusivities

Solving the NEXI differential equation

Narrow Pulses Approximation **NEXI**_{NPA}

Actual Wide Pulses
NEXI_{WP} (a.k.a. SMEX)

Fast analytical solution

Computationally expensive (ODE solver)
 but more accurate for clinical scanners

Both applied using preclinical scanners (short δ)

Already applied to human gray matter in vivo on CONNECTOM scanners (short δ)

Sources: NPA described in Jelescu et al. 2022. NeuroImage

WP described (as SMEX) in Olesen et al. 2022. NeuroImage

C1: Uhl et al. 2024. Imaging Neuroscience

C2: Chan et al. ISMRM Annual Meeting 2024 #0644

Gradient pulses: lower means longer

NEXI requires high b-values: above 5ms/µm²

$$b_{max} = \gamma^2 G_{max}^2 \delta^2 \left(\Delta - \frac{\delta}{3} \right)$$

	Preclinical	CONNECTOM 2.0	CONNECTOM 1.0	PRISMA
G_{max} (mT/m)	1000	500	300	80
δ (ms)	4	6	9	16.5

Sources: Preclinical: Jelescu et al. 2022. NeuroImage

C1: Uhl et al. 2024. Imaging Neuroscience

C2: Chan et al. ISMRM Annual Meeting 2024 #0644

Objectives

- ➤ Obtain NEXI parametric maps in the human cortex from a clinical scanner.
- Check whether, in the case of long gradient pulses, NEXI_{NPA} approximation is valid and gives equivalent results to NEXI_{WP}.
- Since exchange is supposed to reflect permeability, investigate how would these estimates relate to myelination in gray matter.
- Check consistency with previous & ongoing studies.
- Check the reproducibility (scan/rescan) and sensitivity to variations among subjects.

Preprocessing Diffusion-Weighted Images

Processing Multi-echo T2-weighted images

- Additional 10 min scan
- > GRASE sequence (Piredda et al., 2020)
- > 1.8 mm isotropic resolution

Non-parametric T_2 relaxometry method for MWF estimation (χ^2 -I)

Sources: Piredda et al., Magnetic Resonance in Medicine, 2020 Jorge Canales-Rodríguez et al., Medical Image Analysis, 2021 Jorge Canales-Rodríguez et al., Neurolmage, 2021

Results - Cortical maps of NEXI parameters

Distribution across the whole cortex

 t_{ex} : exchange time f: intra volume fraction $D_{i/e}$: in./ex. diffusivities

80

0.3

0.4

0.5

0.6

2.0

2.5

20

40

60

Distribution of the DKT atlas ROI means

0.7

1.5

 $t_{\rm ex}$: exchange time f: intra volume fraction $D_{i/e}$: in./ex. diffusivities

	t _{ex} (ms)	f	D _i (μm²/ms)	D _e (μm²/ms)	AICc	MWF
NEXI _{NPA}	41.1	0.51	2.61	1.59	-93	
	[15.5 - 66.7]	[0.41 - 0.61]	[2.03 - 3.20]	[1.18 - 2.00]	[-99,-84]	0.024
NEXI _{WP}	36.8	0.42	2.45	1.23	-88	[0.000 - 0.103]
	[17.6 - 58.0]	[0.34 - 0.50]	[1.99 - 2.90]	[0.88 - 1.61]	[-94 , -81]	

2.0

2.5

3.0

3.5

1.0

1.5

Reproducibility

Result - Myelin quantification

Myelin Map T₁ / T₂ (Glasser et al.)

I Another technique

Correlation between the estimated exchange time and MWF

$NEXI_{WP}$: r=0.79 (p=3e-14)

Cortical maps from DKT-correlated parameters

Take-home message

- The first NEXI parametric maps in the human cortex from a clinical scanner.
- \triangleright For the microstructure parameter patterns, NEXI_{NPA} is enough.
- For a more theoretically comprehensive approach, or studies with multiple scanners and different δ , NEXI_{WP} is more appropriate.
- \triangleright Out of all NEXI parameters, t_{ex} correlates the best with a myelin quantification method.
- \triangleright Our results are **consistent** with previous & ongoing studies. Notably, mean t_{ex} is around 40 ms, with a peak in the distribution around 10-15 ms.
- ➤ Good scan-rescan reproducibility + sensitivity to variations among subjects.

Gray Matter Swiss Army Knife

pip install graymatter_swissknife

from graymatter_swissknife import estimate_model **estimate_model**(model, dwi, b, Δ , δ , noisemap)

Acknowledgments

- Ileana Jelescu
- Tommaso Pavan
- Andreea Hertanu
- Jasmine Nguyen-Duc
- Inès de Riedmatten
- Saina Asadi
- Arthur Spencer
- Jean-Baptiste Perot

Collaborators from Siemens:

- Gian Franco Piredda
- Thorsten Feiweier

Collaborator from Aarhus University:

Sune N. Jespersen

Our funding:

PCEFP2_194260

