

POLITECHNIKA GDAŃSKA

Wydział Elektroniki, Telekomunikacji i Informatyki

Projekt grupowy Wizualizacja grafów za pomocą biblioteki Prefuse

 $nr\ indeksu$

106306

106317

106345

106386

Autorzy:
Anna Jaworska
Radosław Kleczkowski
Piotr Kunowski
Piotr Orłowski

17 czerwca 2009

Spis treści

1	Zled	cenie p	rojektowe	Ę
	1.1	Cele i	opis projektu	Ę
	1.2	Zleceni	iodawca	Ę
	1.3	Zleceni	iobiorca	F
	1.4	Zakres	prac	ļ
_	T 0			_
2			tura projektu	7
	2.1	_	izacja zespołu projektu	-
	2.2		nentacja	-
	2.3		lzia i wymiana informacji	-
		2.3.1	Narzędzia programistyczne	-
		2.3.2	Biblioteki i środowisko	- 1
		2.3.3	Komunikacja w zespole	
		2.3.4	Tworzenie dokumentacji	8
		2.3.5	Inne używane programy	8
3	Stu	dium w	vykonalności	ç
U	3.1		nia realizacji studium	(
	0.1	3.1.1	Podstawa wykonania i temat studium	ç
		3.1.1	Cel studium	Ç
		3.1.3	Ograniczenia	1(
	3.2	00		1(
	ე.∠	3.2.1	Inne systemy i zasoby mające wpływ lub będące pod wypływem planowanego pro-	1(
		3.2.1	duktu	10
		3.2.2	Istniejące na rynku podobne rozwiązania	1(
		3.2.2	Problem i motywacja wdrożenia nowego produktu	1(
	3.3		e wymagania stawiane produktowi i ich priorytety	1(
	ა.ა	3.3.1	Użytkownicy	1(
		3.3.1	Dane	1(
		3.3.3	Funkcjonalność	11
		3.3.4	Wymogi techniczno - technologiczne	11
	3.4		a ocena ryzyka i planowany sposób zarządzania nim	11
	0.4	3.4.1	• • • • •	$\frac{11}{12}$
	2 5	_	Czynniki ryzyka	
	3.5		nkowania prawne i inne	12
	3.6		nowane rozwiązania	12
		3.6.1	Wersja OWL	13
	0.7	3.6.2	Proponowane biblioteki do wizualizacji grafów	13
	3.7		nendowany wariant	14
	3.8	-	gia i wstępny harmonogram	14
		3.8.1	Harmonogram na I semestr	16
		3.8.2	Harmonogram na II semestr	17
4	Sne	cvfikac	ja wymagań systemowych	18
-	4.1		vstemu	18
	1.1	4.1.1	Cele biznesowe	18
		4.1.2	Cele funkcjonalne	19
	4.2		enie systemu	19
	4.2	4.2.1	Użytkownicy	19
		4.2.1 $4.2.2$	Systemy zewnętrzne	19
	12			
	4.3	4.3.1	dywane komponenty systemu	19
			Podsystemy	19
		4.3.2 4.3.3	Komponenty sprzętowe	19
	1 1		Programowe	20
	4.4		gania funkcjonalne	20
		4.4.1	Wymagania wizualizacji ontologii	21
		4.4.2	Projekt wizualizacji	22

	4.5	Wymagania na dane	23
	4.6	Wymagania jakościowe	24
		4.6.1 Wymagania w zakresie wiarygodności	24
		4.6.2 Wymagania w zakresie wydajności	24
		4.6.3 Wymagania w zakresie elastyczności	24
		4.6.4 Wymagania w zakresie użyteczności	24
	4.7	Sytuacje wyjątkowe	24
	4.8	Dodatkowe wymagania	24
		4.8.1 Wymagania sprzętowe	24
		4.8.2 Wymagania programowe	25
		4.8.3 Inne wymagania	25
	4.9	Kryteria akceptacyjne	25
5	Ana	aliza obiektowa	26
	5.1	Pakiety	26
		5.1.1 Diagram	26
		5.1.2 Opis pakietów	26
	5.2	Pakiet options	28
		5.2.1 Diagram	28
		5.2.2 Opis klasy	28
	5.3	Pakiet nodes	31
		5.3.1 Diagram	31
		5.3.2 Opis klasy	32
	5.4	Pakiet edges	37
		5.4.1 Diagram	37
		5.4.2 Opis klasy	37
	5.5	Pakiet visualization	40
		5.5.1 Diagram	40
		5.5.2 Opis klasy	40
	5.6	Pakiet graph	42
		5.6.1 Diagram	42
		5.6.2 Opis klasy	42
	5.7	Pakiet utils	43
		5.7.1 Diagram	43
		5.7.2 Opis klasy	43
6	Słos	wnik	44
U	6.1	Jak korzystać ze slownika	44
	6.2	Pojęcia ogólne	44
	6.2	Pojęcia specificzne dla projektu	46
	0.0	1 ojęcia specinezne dia projekta	
7	Zała	ączniki	46

1 Zlecenie projektowe

Symbol projektu:	Opiekun projektu:		
3@KASK	mgr inż. Tomasz Boiński		
Nazwa Projektu:			
Wizualizacja grafów za pomocą biblioteki Prefuse			

Nazwa Dokumentu:	Nr wersji:
Zlecenie projektowe	0.2
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:
Piotr Kunowski	30 marca 2009
Przeznaczenie:	Data ostatniej aktualizacji:
Wewnętrzne	17 czerwca 2009

Historia dokumentu

	\mathbf{Wersja}	Opis modyfikacji	Rozdział/strona	Autor modyfikacji	Data
ĺ	1	Stworzenie dokumentu	wszystkie	Grupa projektowa	30.03.09
	2	Dodanie forumułki o RUP	4	Anna Jaworska	15.04.09

1.1 Cele i opis projektu

Celem projektu jest utworzenie biblioteki umożliwiającej wizualizację ontologii zapisanych w OWL API. Do tego celu należy wykorzystać język Java oraz bibliotekę Prefuse. Szczególny nacisk w projekcie należy położyć na:

- Wizualizację elementów niejawnych (np. klasy anonimowe wyrażone poprzez unie, przecięcie itp. oraz dziedziczenie po tych klasach, łączenie wielu odwzorowań niejawnych)
- Wizualizację powiązań między klasami oraz innymi elementami grafu
- Udokumentowanie stworzonej biblioteki za pomoca JavaDoc
- Zapewnienie możliowości integracji uzyskanej biblioteki z istniejącą aplikacją OCS

1.2 Zleceniodawca

mgr inż. Tomasz Boiński, Katedra Architektury Systemów Komputerowych, Wydział Elektroniki, Telekomunikacji i Informatyki, Politechnika Gdańska.

1.3 Zleceniobiorca

Studenci wydziału Elektorniki, Telekomunikacji i Informatyki, Katedry Architektury Systemów Komputerowych.

Imię i nazwisko	Rola	E-mail	Telefon
Piotr Kunowski	Kierownik projektu	p.kunos@gmail.com	781-765-187
Anna Jaworska	Członek zespołu	valanthe86@gmail.com	666-089-481
Radosław Kleczkowski	Członek zespołu	radoslaw1201@gmail.com	brak
Piotr Orłowski	Członek zespołu	cmsptcp@gmail.com	brak

1.4 Zakres prac

Pierwszy etap projektu

- 1. Studium wykonalności stworzenie następujących dokumentów:
 - Zlecenie projektowe
 - Harmonogram
 - Słownik

- Studium wykonalności
- 2. Analiza wymagań stworzenie następujących dokumentów:
 - Specyfikacja wymagań
 - Specyfikacja przypadków użycia
- 3. Analiza obiektowa stworzenie następujących dokumentów:
 - Model klas
 - Model dynamiki
 - Specyfikacja przypadków testowych
- 4. Prototyp stworzenie kodu i dokumentów:
 - Prototyp klas
 - Opis prototypu
- 5. Odbiór projektu stworzenie następujących dokumentów:
 - Plakat
 - Prezentacja

Drugi etap projektu

- 1. Iteracja 1
 - Aktualizacja dokumentacji
 - Implementacja
 - Testowanie
- 2. Iteracja 2
 - Aktualizacja dokumentacji
 - Implementacja
 - Testowanie
- 3. Podsumownie
 - Aktualizacja dokumentacji
 - Podsumowanie

2 Infrastruktura projektu

Symbol projektu:	Opiekun projektu:		
3@KASK	mgr inż. Tomasz Boiński		
Nazwa Projektu:			
Wizualizacja grafów za pomocą biblioteki Prefuse			

Nazwa Dokumentu:	Nr wersji:
Infrastruktura projektu	1.0
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:
Anna Jaworska	31.03.09
Przeznaczenie:	Data ostatniej aktualizacji:
WEWNĘTRZNE	20.04.09

Historia dokumentu

Wersja	Opis modyfikacji	Rozdział/strona	Autor modyfikacji	Data
0.0	Stworzenie	wszystkie	Anna Jaworska	31.03.09
1.0	Wpisanie używanych na- rzędzi	wszystkie	Anna Jaworska	20.04.09

2.1 Organizacja zespołu projektu

Nazwa roli	Osoba(y)
Kierownik projektu	Piotr Kunowski
Specjalista ds. testów	Radosław Kleczkowski
Analityk ds. ontologii	Piotr Orłowski
Analityk ds. Prefuse	Piotr Kunowski
Analityk główny	Anna Jaworska
Programiści	cały zespół

2.2 Dokumentacja

Dokumenty tworzone sa na podstawie następujących szablonów składownych na SVN:

- \bullet szablon.tex
- $\bullet \ \, notatka_szablon.tex$

2.3 Narzędzia i wymiana informacji

2.3.1 Narzędzia programistyczne

• Netbeans 6.5

2.3.2 Biblioteki i środowisko

- $\bullet\,$ JAVA ver 6
- Prefuse ver prefuse-beta20071021
- OWL API ver 2.1.1

2.3.3 Komunikacja w zespole

- Gadu-gadu
- Email
- ullet Telefonicznie
- Wymiana dokumentacji przez SVN, materiałów dodatkowych przez email

2.3.4 Tworzenie dokumentacji

- Dokumenty w LateX
- na SVN wrzucamy pliki tex i ich wersje pdf

2.3.5 Inne używane programy

Rysowanie notacji dla ontologii Inkspace i Dia

 \mathbf{UML} Netbeans

Ontologie Programy używane jako wzorcowe zarówno w kwestii wizualizacji jak i implementacji: Protege, GrOWL.

Harmonogramy GanttProject

3 Studium wykonalności

Symbol projektu:	Opiekun projektu:	
3@KASK	mgr inż. Tomasz Boiński	
Nazwa Projektu:		
Wizualizacja grafów za pomocą biblioteki Prefuse		

Nazwa Dokumentu:	Nr wersji:
Studium wykonalności	0.8
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:
Anna Jaworska	31.03.09
Przeznaczenie:	Data ostatniej aktualizacji:
WEWNĘTRZNE	16.06.09

Historia dokumentu

Wersja	Opis modyfikacji	Rozdział/strona	Autor modyfika-	Data
			cji	
0.0	Przygotowanie zarysu do-	wszystkie	Anna Jaworska	31.03.09
	kumentu i określenie za-			
	kresu badań			
0.1	Zdefiniowanie wymagań	3	Cały zespół	31.03.09
0.2	Dołaczenie opisu popraw-	3.5	Radosław Klecz-	01.04.09
	nego tworzenia bibliotek		kowski	
0.3	Dołączenie opisów biblio-	6.2	Piotr Kunowski	02.04.09
	tek graficznych			
0.4	Opis uwarunkowań praw-	5, 6.1, 7	Anna Jaworska	06.04.09
	nych i rozszerzenie opisu			
	wariantów			
0.5	Uzupełnienie braków	wszystkie	Cały zespół	07.04.09
0.6	Dołączenie opisu odmian	6.1, 7	Piotr Orłowski	07.04.09
	języka OWL i korekta			
0.7	Korekta	6.1, 7	Radosław Klecz-	15.06.09
			kowski i Piotr	
			Orłowski	
0.8	Dołączenie harmonogra-	8, 9	Radosław Klecz-	16.06.09
	mów		kowski	

3.1 Założenia realizacji studium

3.1.1 Podstawa wykonania i temat studium

Studium wykonywane jest przede wszystkim aby określić możliwe sposoby realizacji projektu. Ma także za zadanie zebranie i podsumowanie informacji potrzebnych zespołowi do realizacji projektu.

3.1.2 Cel studium

Celem studium jest zbadanie na potrzeby projektu Wizualizacja grafów za pomocą biblioteki Prefuse:

- jak należy tworzyć biblioteki w technologii Java
- jakich mechnizmów wizualizacji grafów dostarczają biblioteki Java
- czy realizacja projektu za pomocą Prefuse jest odpowiednim rozwiązaniem
- jaki standard OWL powinien być wspierany przez wytworzony produkt

3.1.3 Ograniczenia

Do podstawowych ograniczeń należą:

- konieczność realizacji projektu w języku Java
- konieczność wykorzystania wersji bibliotek zgodnych z użytymi w OCS
- limit czasowy projektu

3.2 Stan istniejący

3.2.1 Inne systemy i zasoby mające wpływ lub będące pod wypływem planowanego produktu

- OCS Ontology Creation System
- OWL API ver 2.1.1 API do przetwarzania plików w formacie OWL zgodnych ze standardem W3C; ta wersja API została użyta w projekcie OCS
- biblioteki graficzne w szczególności Prefuse

3.2.2 Istniejące na rynku podobne rozwiązania

Protege - bardzo znany system do edycji i wizualizacji ontologii autorstwa Stanford University.
 Napisany w języku Java. Ze względu na fakt, iż jest aplikacją standalone, wykorzystującą stosunkowo duże zasoby systemowe i trudną do integracji z portalem OCS, nie może zostać wykorzystana jako gotowe rozwiązanie.

3.2.3 Problem i motywacja wdrożenia nowego produktu

Nowa biblioteka powinna powstać aby:

- ułatwić programistom wizualizacje ontologii
- zapewnić API pozwalające na bezpośrednią translację OWL na postać graficzną
- zapewnić rozwiązane przenośnie i uniwersalne

3.3 Ogólne wymagania stawiane produktowi i ich priorytety

Wymienione wymagania mają charakter orientacyjny, pozwalający nakreślić zakres problemu jaki ma pokrywać projekt. Szczegółową definicję wymagań będzie zawierać dokument *Specyfikacji wymagań*. W szczególność możliwe jest, że niektóre z wymienionych poniżej wymagań zostaną usunięte lub zmienione oraz to, że mogą zostać dodane inne wymagania.

3.3.1 Użytkownicy

Użytkownikami biblioteki będą programiści tworzący aplikacje wizualizujące ontologie. Inicjalnie będą to programiści związani z projektem OCS, później mogą to być dowolni inni programiści chętni do korzystania z biblioteki.

3.3.2 Dane

Obsługiwane formaty Biblioteka powinna obsługiwać te same formaty danych co OWL API (zgodne ze specyfikacją W3C):

- RDF
- RDF Schema
- OWL Lite
- OWL DL
- OWL Full

Wczytywanie danych Ponadto dane te powinny być przekazywane poprzez obiekt OWL API.

Modyfikowalność danych Biblioteka powinna udostępniać metody do modyfikacji wczytanych danych i możliwość zapisania zmienionych danych. Dane powinny być dostarczane użytkownikowi w postaci obietków OWL API. Biblioteka nie musi sprawdzać czy zmiany wprowadzone przez użytkownika są logicznie poprawne.

3.3.3 Funkcjonalność

Zakładamy, że biblioteka będzie zawierać następujące funkcjonalności:

- wizualizacja elmentów OWL
- definiowanie przez użytkownika własnych akcji dla zdarzeń okna (np. klinięcie, przeciągnięcie wierzchołka grafu)
- standardowe definicje zdarzeń okna
- wczytywanie, modyfikowanie i zapis ontologi
- definiowanie parametrów wygladu, w szczególności ilości widocznych poziomów grafu

3.3.4 Wymogi techniczno - technologiczne: Standard tworzenia biblioteki

Nie istnieją żadne formalne zalecenia dotyczące tworzenia bibliotek JAVA. Są jednak pewne zalecenia co do stosowanych praktyk ¹:

- 1. **Odpowiednie kapsułkowanie.** Publiczne powinny być jedynie te klasy i metody, które są istotne dla użytkownika i z których będzie on bezpośrednio korzystał.
- 2. **Możliwość debugowania.** Użytkownik powinien mieć możliwość debugowania kodu biblioteki, bez konieczności znajomości każdego jej szczegółu.
- 3. **Przejrzystość.** Kod biblioteki powinien być odpowiednio udokumentowany za pomocą javadoc. W szczególności, bardzo dokładnie należy opisać klasy oraz metody publiczne.
- 4. **Łatwość użycia.** Biblioteka powinna zawierać klasy, pokazujące przykłady wykorzystania jej klas i metod.
- 5. **Rozszerzalność.** Struktura wewnętrzna biblioteki powinna być odpowiednio podzielona na klasy (wykorzystując klasy abstrakcyjne i interfejsy. Dzięki temu użytkownik będzie miał możliwość stworzenia własnych klas, rozszerzających funkcjonalność biblioteki.
- 6. **Uniwersalność.** Biblioteka powinna mieć jasno określony problem, który rozwiązuje. Wyniki powinny być podane użytkownikowi w wygodny dla niego sposób (lub na kilka sposobów), który będzie umożliwiał wykorzystanie biblioteki w różnych aplikacjach. Innymi słowy, biblioteka powinna udostępniać łatwy i przejrzysty dla użytkownika interfejs.
- 7. Biblioteka powinna być napisana w taki sposób, aby użytkownik spojrzał na nią i mógł powiedzieć: "Wow, to jest dokładnie to, czego potrzebuję i dokładnie tak samo bym to napisał!".

3.4 Ogólna ocena ryzyka i planowany sposób zarządzania nim

Schemat opisu czynnika ryzyka

ID czynnika	RISKXX
Nazwa czynnika	Nazwa
Opis czynnika	Opis
Sposób zarządzania	Opis

 $^{^1\}mathrm{Greg}$ Travis. Build your own java library. publikacja http://www.digilife.be/quickreferences/PT/BuildyourownJavalibrary.pdf.

3.4.1 Czynniki ryzyka

ID czynnika	RISK01
Nazwa czynnika	Problemy logistyczne zespołu
Opis czynnika	Uwzględniamy możliwość wystąpienia problemów osobistych członków zespołu
	powodujących ich wyłączenie z prac.
Sposób zarządzania	Jeśli ktoś zostanie wyłączony z prac, reszta zespołu musi podzielić między sie-
	bie jego obowiązki i informować osobę wyłączoną o postępach, tak aby ona
	miała wgląd w postęp prac, które miała wykonywać i kontynuować je po nie-
	dyspozycji.

ID czynnika	RISK02
Nazwa czynnika	Problemy członków zespołu na uczelni
Opis czynnika	Możliwe jest powstanie zaległości związanych z innymi uczelnianymi obowiąz-
	kami
Sposób zarządzania	Członek zespołu musi zgłosić swoje problemy reszcie zespołu. W zależności
	od sytuacji termin wykonania jego zadań zostanie przedłużony lub zadania te
	przejmie ktoś inny.

ID czynnika	RISK03
Nazwa czynnika	Niedostępność opiekuna/klienta
Opis czynnika	Z różnych przyczyn niezależnych od zespołu opiekun może stać się niedostępny.
Sposób zarządzania	Wszelkie problemy wymagające, według zespołu, poznania opinii opiekuna bę-
	dą musiały zostać rozwiązanie poprzez podjęcie decyzji przez zespół bez wspar-
	cia. Wszelkie problemy organizacyjne związane z projektem grupowym powin-
	ny być pod nieobecność opiekuna zgłaszane do katedralnego koordynatora pro-
	jektów grupowych.

ID czynnika	RISK04	
Nazwa czynnika	Niewystarczająca wiedza programisty	
Opis czynnika	W trakcie pisania kodu może okazać się, że programista z powodu nieznajomo-	
	ści bibliotek/metod/praktyk zacznie mieć problemy z wydajnym kodowaniem	
	(zacznie popełniać częste błędy, pracować bardzo wolno).	
Sposób zarządzania	Osoba mająca problemy z danym kodem powinna zgłosić to reszcie zespołu.	
	Jeśli ograniczenia czasowe na to pozwolą dostanie ona dodatkowy czas na wyko-	
	nanie zadania. Jeśli nie będzie to możliwe, zadanie zostanie przekazanie osobie	
	będącej w stanie poradzić sobie z zagadnieniem lub zostanie podzielone między	
	większą liczbę osób.	

ID czynnika	RISK05
Nazwa czynnika	Awaria SVN
Opis czynnika	Serwer SVN nie jest dostępny lub działa w sposób nieporządany.
Sposób zarządzania	Problem należy niezwłocznie zgłosić opiekunowi i oczekiwac na jego interwen-
	cję.

3.5 Uwarunkowania prawne i inne

Docelowy produkt będzie własnością Katedry Architektury Systemów Komputerowych wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej. Należy zadbać o to aby używane w projekcie biblioteki były na licencjach pozwalających na użycie w produkcie zamkniętym.

3.6 Proponowane rozwiązania

Proponowane rozwiązania zostaną rozważone pod względem wersji OWL oraz biblioteki graficznej.

3.6.1 Wersja OWL

Lite • zawiera bazowe elementy OWL i RDF

- typy: Class, Property, Individual
- podstawowe nierówności, zależności, charakterystyki
- elementarna kardynalność
- adnotacje
- pozwala budować hierarchię elementów
- wymaga separacji typów

DL • zawiera wszystkie elementy języka OWL Lite

- dodatkowo zawiera zaawansowane elementy języka OWL
 - ma rozwinięta obsługe zależności między elementami podstawowymi
 - obsługuje kardynalność w jej pełnej formie
- można go bezpośrednio mapować na logikę opisową SHOIN jest rozstrzygalny
- ta wersje obsługuje portalSubsystem

DL • zawiera wszystkie elementy OWL DL

- nie wymaga separacji typów
- ma mniejsze ograniczenia od OWL DL
- nie ma w nim gwarancji rozstrzygalności dla wnioskowań

Należy zwrócić uwagę, że specyfikacja OWL jest dobrze zdefiniowana (rekomendacja W3C²) co sprawia, że zachodzi spójność pomiędzy jej elementami. Zaimplementowanie wersji bardziej rozwiniętej oznacza, że wymogi dla wersji niższej także zostaną spełnione.

3.6.2 Proponowane biblioteki do wizualizacji grafów

Prdfuse Prefuse jest elastycznym pakietem dostarczającym programiście narzędzia do przechowywania danych, manipulowania nimi oraz ich interaktywnej wizualizacji. Biblioteka jest rozwijana w całości w języku Java. Może być wykorzystana do budowania niezależnych aplikacji, wizualnych komponentów rozbudowanych aplikacji oraz tworzenia apletów.

Podstawowe cechy i elementy:

- kilkadziesiąt algorytmów i metod wizualizacji danych m.in: ForceDirectedLayout, RadialTreeLayout, NodeLinkTreeLayout, SquarifiedTreeMapLayout
- dynamiczne rozmieszczanie i animacje
- transformacje, przekształcenia geometryczne oraz przybliżanie/oddalanie obrazu
- podstawowym elementem struktury danych jest krotka
- $\bullet\,$ krotki mogą być tworzone bezpośrednio w aplikacji lub na podstawie zewnętrznych danych
- wbudowany język zapytań do filtrowania danych
- tworzenie struktur danych na podstawie zewnętrznych plików (CSV, XML) oraz bazy danych
- klasy wspomagające synchronizację danych pomiędzy tabelami Prefuse a bazą danych
- Prefuse posiada licencję BSD

Piccolo Piccolo jest zastawem narzędzi używanych przy tworzeniu graficznych aplikacji. Często wykorzystywana do tworzenie interfejsów użytkownika. w których elementy są przybliżane i oddalane. Istnieją trzy wersje tej biblioteki: Piccolo.Java, Piccolo.NET oraz PocketPiccolo.NET. Posiada Licencje BSD.

²Frank van Harmelen Deborah L. McGuinness. Owl web ontology language overview. publikacja elektroniczna, luty 2004.http://www.w3.org/TR/2004/REC-owl-features-20040210/

JUNG (Java Universal Network/Graph Framework) Biblioteka przeznaczona do wizualizacji danych za pomocą grafów oraz sieci. Umożliwia wizualizację nie tylko grafów prostych, ale m.in. multigrafów, digrafów oraz grafów posiadających wagi i etykiety na wierzchołkach i krawędziach. Biblioteka posiada podstawowe algorytmy grafowe. Została napisana w całości w Javie i wydana na licencji BSD.

JGraph Napisana w pełni w Javie biblioteka do wizualizacji grafów kompatybilna ze Swingiem. Posiada wiele ciekawych opcji wizualizacji zarówno wierzchołków jak i krawędzi grafów. Poza algorytmami wizualizacji w jej skład wchodzą podstawowe algorytmy grafowe. Została wydana na licencji LGPL.

3.7 Rekomendowany wariant

OWL Po zapoznaniu się ze specyfikacją stworzoną przez W3C najbardziej sensownym wydaje się być wykorzystanie wersji DL języka OWL. Dodatkowo wersja ta była dotychczas wykorzystywana przez portalSubsystem. Grupa nie odrzuca możliwości zaimplementowania obsługi wersji OWL Full, która pod względem zawartych w niej elementów zasadniczo nie różni się od wersji DL. Na jej niekorzyść przemawia jednak argument w postaci tego, że umożliwia pewne niejasności w prezentacji (szczególnie pod względem rozróżniania typów).

Biblioteka Po uważnym przejrzeniu bibliotek najbardziej użyteczne wydają się Prefuse oraz Piccolo. Ze względu na dostępność dużej ilości przykładowego kodu wykorzystującego Prefuse w portalSubsystem wykorzystana zostanie biblioteka Prefuse. Ponadto opinie wyrażone w pracy magisterskiej Andrzeja Jakowskiego silnie przemawiają na korzyść Prefuse.

3.8 Strategia i wstępny harmonogram

Ze względu na doświadczenie zespołu z Rational Unified Process (trzej członkowie zespołu uprzednio zrealizowali projekt w tej metodyce), zostanie on zastosowany z uwzględnieniem stosowanych dla charakteru projektu modyfikacji, w szczególności:

- celem projektu jest wytworzenie biblioteki, więc nie pojawią się typowe diagramy warstwy danych
- model interfejsu graficznego zostanie zastąpiony modelem interfejsów/funkcjonalności zewnętrznych udostępnianych przez pakiety i/lub klasy
- modele dynamiki zostaną okrojone do ilości faktycznie potrzebnej programistom

Pomimo ustalenia harmonogramu z terminami oddania dokumentów należy wziąć pod uwagę charakter metodyki RUP, która zakłada przyrostowe wytwarzanie dokumentacji - w póżniejszych etapach projektu pojawią się zmodyfikowane wersje wytorzonych wcześniej dokumentów.

3.8.1 Harmonogram na I semestr

3.8.2 Harmonogram na II semestr

4 Specyfikacja wymagań systemowych

Symbol projektu:	Opiekun projektu:	
3@KASK	mgr inż. Tomasz Boiński	
Nazwa Projektu:		
Wizualizacja grafów za pomocą biblioteki Prefuse		

Nazwa Dokumentu:	Nr wersji:
Specyfikacja wymagań systemowych	0.7
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:
Piotr Orłowski	15 kwietnia 2009
Przeznaczenie:	Data ostatniej aktualizacji:
DLA KLIENTA	17 czerwca 2009

Historia dokumentu

Wersja	Opis modyfikacji	Rozdział/strona	Autor modyfikacji	Data
1	Stworzenie	wszystkie	Grupa projektowa	15.04.09
2	Wpisanie celów i wymo-	cele	Grupa projektowa	16.04.09
	gów ogólnych			
3	Wpisanie funkcjonalnosci		Grupa projektowa	28.04.09
	wizualizacyjnych			
4	Opis wymagań		Grupa projektowa	05.05.09
5	Zmiana kolorów Proper-	Projekt wizualizacji	Grupa projektowa	18.05.09
	ty (SomeValuesFrom i Al-			
	lValuesFrom)			
6	WJ001 - klasa Thing w	Wymagania jakościowe	Grupa projektowa	25.05.09
	grafie			
7	Korekta	Całość	Piotr Kunowski	16.06.09

4.1 Cele systemu

4.1.1 Cele biznesowe

CB001 Ułatwienie pracy programistom tworzącym aplikacje alizujące ontologie	
Opis: Istnieje zapotrzebowanie na bibliotekę tłumaczącą O' bezpośrednio na elementy graficzne.	
Źródło: Wstępna specyfikacja projektu	
Priorytet: bardzo ważne	

CB002	Ułatwienie zakończenia projektu OCS	
	Moduł wizualizujący ontolgie w OCS wymaga modernizacji	
Opis:	i rozbudowy funkcjonalności. Zapewnienie biblioteki wizu-	
	alizującej ontologie ułatwi i przyspieszy ten proces.	
Źródło:	Klient - mgr inż. Tomasz Boiński	
Priorytet:	bardzo ważne	

CB003	Zwiększenie aktrakcyjności portalu OCS
Opis:	Poprawa estetyki modułu wizualizującego ontologię moze
	przyczynic się do sukcesu portalu po jego wdrożeniu.
Źródło:	Klient - mgr inż. Tomasz Boiński
Priorytet:	mało ważne

4.1.2 Cele funkcjonalne

CF001	Intuicyjne API
Opis:	API powinno być uznane za intuicyjne w opinii członków
	zespołu i klienta.
Źródło:	Klient - mgr inż. Tomasz Boiński
Priorytet:	średnio ważne

CF002	Dobra dokumentacja
Opis:	Przygotowanie dokumentacji w Javadoc ułatwi pracę użytkownikom biblioteki.
Źródło:	Klient - mgr inż. Tomasz Boiński
Priorytet:	bardzo ważne

CF003	Wizualizacja ontologii
Opis:	Stworzenie biblioteki, która pozwoli na wizualizacje obiektów OWL API przy użyciu odpowiedniej biblioteki graficznej.
Źródło:	Specyfikacja projektu
Priorytet:	bardzo ważne

CF004	Umożliwienie graficznej edycji i dodawania obiektów OWL API
Opis:	Dostarczenie tej funkcjonalności ułatwi tworzenie progra- mów z interfejsem pozwalającym na edycję ontologii zapi- sanych w OWL API.
Źródło:	Klient - mgr inż. Tomasz Boiński
Priorytet:	średnio ważne

CF005	Udostępnienie informacji do debuggowania
0.	Biblioteka powinna wysyłać komunikaty informacyjne,
Opis:	ostrzegawcze oraz informujace o błędach na strumień udo- stępniony użytkownikowi.
Źródło:	Standard tworzenia biblioteki
Priorytet:	średnio ważne

4.2 Otoczenie systemu

4.2.1 Użytkownicy

Specyfika projektu nie definiuje użytkowników systemu.

4.2.2 Systemy zewnętrzne

Specyfika systemu nie wymaga definiowaia systemów zewnętrznych.

4.3 Przewidywane komponenty systemu

4.3.1 Podsystemy

Specyfika projektu sprawia, że podsystemy nie będa rozpatrywane.

4.3.2 Komponenty sprzętowe

Specyfika projektu sprawia, że komponenty sprzętowe nie będa rozpatrywane.

4.3.3 Programowe

KS001	Prefuse
Opis:	Biblioteka graficzna do wizualizacji grafów w języku Java
Powiązania:	
Źródło:	Specyfikacja projektu
Priorytet:	bardzo ważne

KS002	OWL API
Opis:	Biblioteka do przetwarzania ontologii zapisanych w języku
	OWL. Napisana w języku Java.
Powiązania:	
Źródło:	Specyfikacja projektu
Priorytet:	bardzo ważne

4.4 Wymagania funkcjonalne

WF001	Udostępnienie kilku algorytmów wizualizacji
Opis:	Biblioteka powinna udostępniać kilka trybów prezentacji
Detrogra	grafów (np. w formie drzewa, w formie gwiazdy i innych). CF003
Dotyczy:	02 000
Źródło:	klient - mgr Tomasz Boiński
Powiązania:	WF002
Priorytet:	średnio ważny

WF002	Parametryzacja trybów wizualizacyjnych
Opis:	Domyślne parametry w trybach wizualizacji (takie jak długość krawędzi grafu, automatyczne układanie) powinny zostać dobrane w taki sposób, by obraz był przejrzysty, stabilny i czytelny.
Dotyczy:	CF003
Źródło:	klient - mgr Tomasz Boiński
Powiązania:	WF001
Priorytet:	średnio ważny

WF003	Udostępnienie strumienia błędów
	Biblioteka będzie udostępniać strumień danych, w którym
Opis:	znajdą się komunikaty o błędach. Strumień ten będzie mógł
	zostać wykorzystany przez użytkownika.
Dotyczy:	CF005
Źródło:	klient - mgr inż. Tomasz Boiński
Powiązania:	
Priorytet:	ważne

WF010	Dodatkowe informacje
	Biblioteka będzie dostarczać informacje o wersji ontologii
Opis:	zapisane w pliku OWL oraz dodatkowe informacje o klasach
	(annotationProperty).
Dotyczy:	CF003
Źródło:	klient - mgr inż. Tomasz Boiński
Powiązania:	
Priorytet:	średnio ważne

4.4.1 Wymagania wizualizacji ontologii

WF004	Rozróżnialność podstawowych symboli	
Opis:	Class, Individual, Property powinny mieć rozróżnialne sym-	
	bole	
Dotyczy:	CF003	
Źródło:	klient - mgr inż. Tomasz Boiński	
Powiązania:		
Priorytet:	bardzo ważne	

WF005	Rozróżnialność szczególnych typów Class	
Opis:	Klasa anonimowa, datatype, Thing i Nothing powinny być	
	łatwo rozpoznawalne.	
Dotyczy:	CF003	
Źródło:	klient - mgr inż. Tomasz Boiński	
Powiązania:	WF004	
Priorytet:	ważne	

WF006	Rozróżnialność związków między klasami (Class), instancjami (Individual) oraz predykatami (Property)	
Opis:	Rózne symobole dla equivalentClass, disjointWith, subClassOf, sameAs, differentFrom, allDifferent, oneOf, unionOf, intersectionOf, complementOf, subProperty, equivalentProperty, hasProperty.	
Dotyczy:	CF003	
Źródło:	klient - mgr inż. Tomasz Boiński	
Powiązania:	WF005, WF004	
Priorytet:	ważne	

WF007	Rozróżnialność ograniczeń predykatów (Restrictions)	
Opis:	Wyróżnić kardynalność (cardinality), domeny (domains) predykatów, inverseOf, właściwości predykatów (transitive, symmetric, functional, inverseFunctional).	
Dotyczy:	CF003	
Źródło:	klient - mgr inż. Tomasz Boiński	
Powiązania:	WF004	
Priorytet:	ważne	

WF008	Podświetlanie wybranych związków i powiazań.	
Opis:	Podświetlać subklasy danej klasy po ich wybraniu myszką po zdefiniowanym zdarzeniu; podobnie subproperty i complex class.	
Dotyczy:	CF003	
Źródło:	klient - mgr inż. Tomasz Boiński	
Powiązania:	WF006	
Priorytet:	mało ważne	

WF009	Możliwość definiowania zdarzeń.	
Opis:	Użytkownik będzie mógł pod uchwyty zdarzeń podpinać	
	własne funkcje obsługi.	
Dotyczy:	CF003, CF004	
Źródło:	klient - mgr inż. Tomasz Boiński	
Powiązania:		
Priorytet:	mało ważne	

4.4.2 Projekt wizualizacji

Identyfikator:	Nazwa	Wizualizacja
PW001:	Thing	
PW002:	Nothing	NT
PW003:	Class	Class
PW004:	Individual	Individual
PW005:	Property	Property
PW006:	Datatype	DataType
PW007:	Anonymous Class	
PW008:	Subclass	Class
PW009:	instanceOf	Class
		DataType Individual
PW010:	equivalentClass	Class
PW011:	$\operatorname{disjointWith}$	Class
		Individual
PW012:	differentFrom / allDifferent	Individual
PW013:	m same As	Individual = Individual
		Class
PW014:	oneOf	Individual
1 ((()))	oneo:	Class
PW015:	${ m unionOf}$	Class
		Class
		*
PW016:	intersectionOf	Class
		Class
		♦
PW017:	complementOf	Class

PW018:	subProperty	Property SubProperty
PW019:	inverseOf (property)	hasProperty
		(hasProperty) (hasProperty)
PW020:	equivalentProperty	(hasProperty) (hasProperty)
PW021:	functionalProperty	hasProperty
PW022:	inverseFunctionalProperty	hasProperty
PW023:	symmetricProperty	hasProperty
PW024:	transitiveProperty	hasProperty
		hasProperty
		Class Individual Class
PW025:	hasProperty	Class Individual Class
PW026:	domain	hasProperty DomainClass
PW027:	range	hasProperty RangeClass
PW028:	allValuesFrom	hasProperty
PW029:	someValuesFrom	hasProperty
		hasProperty
PW030:	minCardinality / maxCardinality	Class N 666
2 ,, 000.		hasProperty
		333
PW031:	cardinality	Class

4.5 Wymagania na dane

WD001	Obsługa obiektów OWL API
Opis:	Biblioteka będzie przystosowana do pobierania, obróbki i zwracania obiektów OWL API.
Powiązania:	
Źródło:	Klient - mgr inż. Tomasz Boiński
Priorytet:	bardzo ważne

4.6 Wymagania jakościowe

4.6.1 Wymagania w zakresie wiarygodności

WJ001	Poprawność wizualizacji	
Opis:	Wszystkie wizualizowane elementy powinny pochodzić z ontologii otrzymanej na wejściu programu. Program nie powinien dodawać własnych elementów (np. wywnioskowanych). Wyjątkowo dla klas, które nie mają zdefioniowany nadklas zostanie utworzony związek z klasą Thing.	
Powiązania:	WJ002	
Źródło:	klient - mgr inż. Tomasz Boiński	
Priorytet:	bardzo ważne	

WJ002	Kompletność wizualizacji	
Opis:	Jeżeli biblioteka nie wizualizuje danej funkcji OWL API	
	informacja o tym powinna znaleźć się w strumieniu błędów.	
Powiązania:	CF005, WJ001, WD001	
Źródło:	klient - mgr inż. Tomasz Boiński	
Priorytet:	ważne	

4.6.2 Wymagania w zakresie wydajności

Brak wymogów wydajnościowych ze względu na specyfikę projektu.

4.6.3 Wymagania w zakresie elastyczności

WJ003	Obsługiwane wersje Javy
Opis:	Biblioteka powinna wspierać wersje Javy 1.5 i nowsze.
Powiązania:	
Źródło:	klient - mgr inż. Tomasz Boiński
Priorytet:	bardzo ważne

WJ004	Obsługiwane wersje OWL API	
Opis:	Powinna istnieć możliwość podpięcia zewnętrznego OWL	
	API (wybranego przez użytkownika/programistę).	
Powiązania:		
Źródło:	klient - mgr inż. Tomasz Boiński	
Priorytet:	bardzo ważne	

4.6.4 Wymagania w zakresie użyteczności

Ze względu na przyjętą metodykę wytwarzania oprogramowania zagadnienie to zostanie rozpatrzone w przyszłości.

4.7 Sytuacje wyjątkowe

Ze względu specyfikę projektu sytuacje wyjątkowe nie będą rozpatrywane.

4.8 Dodatkowe wymagania

4.8.1 Wymagania sprzętowe

Ze względu na specyfikę projektu wymagania sprzętowe nie będą rozpatrywane.

4.8.2 Wymagania programowe

WD003	JVM
Opis:	Do skorzystania z biblioteki niezbędna jest JVM.
Dotyczy:	CF001, CF002
Źródło:	klient - mgr inż. Tomasz Boiński
Priorytet:	ważne

4.8.3 Inne wymagania

WD001	Dokumentacja w javadoc	
Opis:	Wszystkie ważne klasy i funkcje powinny mieć odpowiednią	
	dokumentację w formacie javadoc.	
Dotyczy:	CF001, CF002	
Źródło:	klient - mgr inż. Tomasz Boiński	
Priorytet:	ważne	

WI002	Dokumentacja w języku angielskim	
Opis:	Dokumentacja wszystkich funkcji i klas powinna posiadać	
	angielską wersję językową.	
Dotyczy:	CF001, CF002	
Źródło:	klient - mgr inż. Tomasz Boiński	
Priorytet:	mało ważne	

WI003	Dokumentacja w języku polskim	
Opis:	Dokumentacja wszystkich funkcji i klas powinna posiadać	
	polską wersję językową.	
Dotyczy:	CF001, CF002	
Źródło:	klient - mgr inż. Tomasz Boiński	
Priorytet:	ważne	

WI004	Nazwy zmiennych i funkcji w języku angielskim	
	Nazwy zmiennych i funkcji powinny zostać dobrane w ję-	
Opis:	zyku angielskim i zgodnie ze standardami programowania	
	w javie	
Dotyczy:	CF001, CF002	
Źródło:	klient - mgr inż. Tomasz Boiński	
Priorytet:	ważne	

4.9 Kryteria akceptacyjne

KA001	Spełnione są podstawowe wymagania wymienione w dokumencie SWS	
Opis:	Spełnione są wszystkie wymagania ważne i bardzo ważne zdefiniowane w SWS.	
Dotyczy:	wszystkie wymagania ważne i bardzo ważne	
Źródło:	klient - mgr inż. Tomasz Boiński	
Priorytet:	ważne	

KA002 Opis:	Biblioteka współpracuje z OWL API dostarczonym przez	
	KASK	
	Biblioteka współpracuje z OWL API dostarczonym przez	
	KASK zbudowanym na podstawie OWL API ver 2.1.1	
Dotyczy:	WJ004	
Źródło:	klient - mgr inż. Tomasz Boiński	
Priorytet:	ważne	

5 Analiza obiektowa

Symbol projektu: 3@KASK	Opiekun projektu: mgr inż. Tomasz Boiński	
Nazwa Projektu:		
Wizualizacja grafów za pomocą biblioteki Prefuse		

Nazwa Dokumentu:	Nr wersji:
Analiza obiektowa	2.0
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:
Piotr Kunowski	23 maja 2009
Przeznaczenie:	Data ostatniej aktualizacji:
DLA KLIENTA	17 czerwca 2009

Historia dokumentu

Wersja	Opis modyfikacji	Rozdział/strona	Autor modyfikacji	Data
1	Stworzenie	wszystkie	Grupa projektowa	23.05.09
1.1	Dodano pakiet Utils	1, 3	Anna Jaworska	2.06.09
2	Dodano zaktualizowane	wszystkie	Grupa projektowa	16.06.09
	diagramy oraz opisy klas			

5.1 Pakiety

5.1.1 Diagram

5.1.2 Opis pakietów

P001	options
Opis:	Pakiet zawierający klasy z polami opisującymi różne (modyfikowalne) ustawienia wizualizacji takie jak: kolory, grubość linii itp.
Interfejsy:	
Realizowane wymagania:	WF002, WF001, WI004
Priorytet:	średnio ważne

P002	nodes
Opis:	Pakiet z klasami odpowiedzialnymi za wizualizację i prze- chowywanie danych o wierzchołkach.
Interfejsy:	
Realizowane wymagania:	WF004, WF005, WF006, WF007, WI004
Priorytet:	bardzo ważne

P003	edges
Opis:	Pakiet z klasami odpowiedzialnymi za wizualizację i prze- chowywanie danych o krawędziach.
Interfejsy:	
Realizowane wymagania:	WF006, WF007, WI004
Priorytet:	bardzo ważne

P004	visualization
Opis:	Zawiera dodatkowe klasy przydatne w wizualizacji.
Interfejsy:	
Realizowane wyma-	WF001, WF008, WI004
gania:	W1001, W1008, W1004
Priorytet:	średnio ważne

P005	graph
Opis:	Pakiet zawiera klasy, które zawierają podstawowe operacje na danych OwlApi oraz graph.
T	na danych OwiApi oraz grapii.
Interfejsy:	
Realizowane wyma-	WD001
gania:	WDOOL
Priorytet:	bardzo ważne

P006	utils
Opis:	Pakiet zawiera klasy pomocnicze
Interfejsy:	
Realizowane wyma-	CF005
gania:	CF 009
Priorytet:	bardzo ważne

5.2 Pakiet options

5.2.1 Diagram

■NodeColors
Attributes
protected Color allValuesFromNodeColor
protected Color anonymous Class NodeColor
protected Color cardinalityNodeColor
protected Color cardinalityValueNodeColor
protected Color classNodeColor
protected Color complementOfNodeColor
protected Color dataTypeNodeColor
protected Color differentNodeColor
protected Color functionalPropertyNodeColor
protected Color individualNodeColor
protected Color informationNodeColor
protected Color intersectionOfNodeColor
protected Color inverseFunctionalPropertyColor
protected Color maxCardinalityValueNodeColor
protected Color minCardinalityValueNodeColor
protected Color nothingNodeColor
protected Color oneOfNodeColor
protected Color propertyNodeColor
protected Color sameAsNodeColor
protected Color someValuesFromNodeColor
protected Color symmetricPropertyNodeColor
protected Color thingNodeColor
protected Color transitivePropertyNodeColor
protected Color unionOfNodeColor

EdgeColors

Attributes
protected Color rangeEdgeColor
protected Color domainEdgeColor
protected Color edgeColor
protected Color edgeColor
protected Color equivalentEdgeColor
protected Color equivalentPropertyEdgeColor
protected Color functionalEdgeColor
protected Color inverseOfEdgeColor
protected Color propertyEdgeColor
protected Color subEdgeColor

5.2.2 Opis klasy

CO001	EdgeColors
Opis:	Zawiera definicje kolorów dla poszczególnych rodzajów krawędzi.
Klasy nadrzędne:	
Atrybuty:	 domainEdgeColor edgeColor equivalentEdgeColor equivalentPropertyEdgeColor functionalEdgeColor inverseOfEdgeColor propertyEdgeColor rangeEdgeColor subEdgeColor
Metody:	
Realizowane wymagania:	WF002
Priorytet:	średnio ważny

CO002	NodeColors

Opis:	Zawiera definicje kolorów dla poszczególnych rodzajów krawędzi.
Klasy nadrzędne:	
Atrybuty:	 allValuesFromNodeColor cardinalityNodeColor cardinalityValueNodeColor classNodeColor complementOfNodeColor dataTypeNodeColor differentNodeColor functionalPropertyNodeColor individualNodeColor informationNodeColor informationNodeColor intersectionOfNodeColor inverseFunctionalNodeColor maxCardinalityValueNodeColor minCardinalityValueNodeColor nothingNodeColor oneOfNodeColor sameAsNodeColor sameAsNodeColor someValuesFromNodeColor symmetricPropertNodeColor thingNodeColor transitivePropertyNodeColor unionOfNodeColor unionOfNodeColor
Metody:	
Realizowane wymagania:	WF002
Priorytet:	średnio ważny

5.3 Pakiet nodes

5.3.1 Diagram

5.3.2 Opis klasy

CN001	Node
Opis:	Klasa nadrzędna względem wszystkich klas obsługi wierzchołków. Zawiera definicje podstawowych atrybutów i metod.
Klasy nadrzędne:	
Atrybuty:	 strokeWidth height width annotation comment Color fillColor String label
Metody:	
Realizowane wymagania:	WF004, WF005, WF006, WF007, WI004
Priorytet:	bardzo ważne

CN002	AllValuesFromPropertyNode
Opis:	Klasa reprezentuje wierzchołek, będący OWL Property typu AllValuesFrom.
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wymagania:	WF004, WF006, WF007, WI004
Priorytet:	ważne

CN003	AnonymousClassNode
Opis:	Klasa reprezentuje wierzchołek klas anonimowych OWL.
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wyma-	WF005, WI004
gania:	,
Priorytet:	ważne

CN004	CardinalityNode
Opis:	Klasa reprezentuje wierzchołek klas anonimowych OWL bę-
	dących wynikiem ograniczenia kardynalności.
Klasy nadrzędne:	AnonymousNode
Atrybuty:	
Metody:	
Realizowane wyma-	WF007, WI004
gania:	WF007, W1004
Priorytet:	ważne

CN005	CardinalityValueNode
-------	----------------------

Opis:	Klasa reprezentuje wierzchołek z dokładnym ograniczeniem kardynalności (OWL Cardinality).
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wymagania:	WF007, WI004
Priorytet:	ważne

CN006	ClassNode
Opis:	Klasa reprezentuje wierzchołek OWL Class.
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wyma-	WF004, WF005, WI004
gania:	WF004, WF005, W1004
Priorytet:	ważne

CN007	ComplementOfNode
Opis:	Klasa reprezentuje wierzchołek klas anonimowych OWL będących wynikiem dopełnienia (OWL ComplementOf).
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wymagania:	WF006, WF007, WI004
Priorytet:	ważne

CN008	DataTypeNode
Opis:	Klasa reprezentuje wierzchołek OWL DataType.
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wyma-	WF004, WI04
gania:	WE 004, W104
Priorytet:	ważne

CN009	DifferentNode
Opis:	Klasa reprezentuje wierzchołek oznaczający relację DifferentFrom lub AllDifferent pomiędzy wystąpieniami klas (OWL Individual).
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wymagania:	WF006, WF007, WI004
Priorytet:	ważne

CN010	FunctionalPropertyNode
Opis:	Klasa reprezentuje wierzchołek oznaczający, że dane OWL
	Property to Functional Property.
Klasy nadrzędne:	InformationNode
Atrybuty:	
Metody:	

Realizowane wymagania:	WF006, WF007, WI004
Priorytet:	ważne

CN011	IndividualNode
Opis:	Klasa reprezentuje wierzchołek instancji OWL Individual.
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wyma-	WF004, WI004
gania:	W F 004, W 1004
Priorytet:	ważne

CN012	InformationNode
Opis:	Klasa ta jest klasą nadrzędną, dla klas wierzchołków reprezentujących informacje o różnych właściwościach OWL Property.
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wymagania:	WF010, WI004
Priorytet:	ważne

CN013	IntersectionOfNode
Opis:	Klasa reprezentuje wierzchołek klas anonimowych OWL będących wynikiem przecięcia (OWL IntersectionOf).
Klasy nadrzędne:	AnonymousNode
Atrybuty:	
Metody:	
Realizowane wymagania:	WF005, WI004
Priorytet:	ważne

CN014	inverseFunciotnalPropertyNode
Opis:	Klasa reprezentuje wierzchołek oznaczający, że dane OWL
	Property to InverseFunctionalProperty.
Klasy nadrzędne:	InformationNode
Atrybuty:	
Metody:	
Realizowane wyma-	WF007, WI004
gania:	WF007, W1004
Priorytet:	ważne

CN015	MaxCardinalityValueNode
Opis:	Klasa reprezentuje wierzchołek ograniczenia kardynalności OWL MaxCardinality.
Klasy nadrzędne:	CardinalityValueNode
Atrybuty:	
Metody:	
Realizowane wymagania:	WF007, WI004
Priorytet:	ważne

CN016	MinCardinalityValueNode
Opis:	Klasa reprezentuje wierzchołek ograniczenia kardynalności OWL MinCardinality.
Klasy nadrzędne:	CardinalityValueNode
Atrybuty:	
Metody:	
Realizowane wymagania:	WF007, WI004
Priorytet:	ważne

CN017	NothingNode
Opis:	Klasa reprezentuje wierzchołek OWL Nothing.
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wyma-	WF004, WF005, WI004
gania:	WE 004, WE 000, W1004
Priorytet:	ważne

CN018	OneOfNode
Opis:	Klasa reprezentuje wierzchołek klas anonimowych OWL reprezentujących 1 z klas określonego zbioru (wynik OWL OneOf).
Klasy nadrzędne:	AnonymousClassNode
Atrybuty:	
Metody:	
Realizowane wymagania:	WF005, WF006, WI004
Priorytet:	ważne

CN019	PropertyNode
Opis:	Klasa reprezentuje wierzchołek OWL Property.
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wyma-	WF004, WF007, WI004
gania:	WITOUH, WITOUT, WITOUH
Priorytet:	ważne

CN020	SameAsNode
Opis:	Klasa reprezentuje wierzchołek oznaczający relację OWL
	SameAs pomiędzy wystąpieniami klas (OWL Individual).
Klasy nadrzędne:	InformationNode
Atrybuty:	
Metody:	
Realizowane wyma-	WF005, WF006, WI004
gania:	W1000, W1004
Priorytet:	ważne

CN021	SomeValuesFromPropertyNode
Opis:	Klasa reprezentuje wierzchołek, będący OWL Property typu SomeValuesFrom.
Klasy nadrzędne:	PropertyNode
Atrybuty:	

Metody:	
Realizowane wymagania:	WF005, WF006, WI004
Priorytet:	ważne

CN022	SymmetricPropertNode
Opis:	Klasa reprezentuje wierzchołek oznaczający, że dane OWL
	Property to SymmetricProperty.
Klasy nadrzędne:	InformationNode
Atrybuty:	
Metody:	
Realizowane wyma-	WF007, WI004
gania:	W1007, W1004
Priorytet:	ważne

CN023	ThingNode
Opis:	Klasa reprezentuje wierzchołek OWL Thing.
Klasy nadrzędne:	Node
Atrybuty:	
Metody:	
Realizowane wyma-	WF004, WF005, WI004
gania:	WE 004, WE 000, W1004
Priorytet:	ważne

CN024	TreansitivePropertyNode
Opis:	Klasa reprezentuje wierzchołek oznaczający, że dane OWL
	Property to TransitiveProperty.
Klasy nadrzędne:	InformationNode
Atrybuty:	
Metody:	
Realizowane wyma-	WF006, WF007, WI004
gania:	WF000, WF007, W1004
Priorytet:	ważne

CN025	UnionOfNode
Opis:	Klasa reprezentuje wierzchołek klas anonimowych OWL bę-
	dących wynikiem unii (OWL UnionOf).
Klasy nadrzędne:	AnonymousNode
Atrybuty:	
Metody:	
Realizowane wyma-	WF005, WF006, WI004
gania:	W1000, W1000, W1004
Priorytet:	ważne

5.4 Pakiet edges

5.4.1 Diagram

5.4.2 Opis klasy

CE001	Edge
Opis:	Klasa reprezentująca prostą krawędź na grafie. Jest nadklasą dla pozostałych klas krawędzi.
Klasy nadrzędne:	

Atrybuty:	 Color strokeColor int strokeWidth boolean hasArrow boolean hasInvertedArrow Polygon arrowHead Color arrowHeadColor
Metody:	 getStrokeColor (Color val) getStrokeWidth () setStrokeWidth (int val) getArrowHead() setArrowHead(Polygon arrowHead) isHasArrow() setHasArrow(boolean hasArrow) isHasInvertedArrow() setHasInvertedArrow(boolean hasInvertedArrow) getArrowHeadColor() setArrowHeadColor(Color arrowHeadColor)
Realizowane wymagania:	WF006, WF007, WI004
Priorytet:	bardzo ważne

CE002	DisjointEdge
Opis:	Klasa reprezentująca krawędź oznaczającą rozłączność klas
Vlagu na duga dua.	(OWL Disjoint).
Klasy nadrzędne:	Edge
Atrybuty:	
Metody:	
Realizowane wyma-	WF006, WF007, WI004
gania:	, , ,
Priorytet:	ważne

CE003	DomainEdge
Opis:	Klasa reprezentująca krawędź łączącą Property z klasą wła-
	ściwości OWL DomainOf.
Klasy nadrzędne:	Edge
Atrybuty:	
Metody:	
Realizowane wyma-	WF006, WF007, WI004
gania:	WF000, WF007, W1004

Priorytet:	ważne
CE004	EquivalentEdge
Opis:	Klasa reprezentująca krawędź oznaczającą równoznaczność (OWL Equivalent).
Klasy nadrzędne:	Edge
Atrybuty:	
Metody:	
Realizowane wyma-	WEDGE WEGGE WIGGE
gania:	WF006, WF007, WI004
Priorytet:	ważne
CE005	EquivalentPropertyEdge
	Klasa reprezentująca krawędź oznaczającą równoznaczność
Opis:	OWL Property (OWL EquivalentProperty).
Klasy nadrzędne:	EquivalentEdge
Atrybuty:	1
Metody:	
Realizowane wyma-	
gania:	WF006, WF007, WI004
Priorytet:	ważne
Thorytet.	Wazne
CE006	FunctionaltEdge
CLOOO	Klasa reprezentująca krawędź łączącą wierzchołki Informa-
Opis:	tionNode(CN012) z OWL Property, którego dotyczy.
Klasy nadrzędne:	Edge
Atrybuty:	
Metody:	
Realizowane wyma-	WF006, WF007, WI004
gania:	W1 000, W1 001, W1004
Priorytet:	ważne
CE007	InverseOfEdge
Opis:	Klasa reprezentująca krawędź oznaczającą odwrotność
	(OWL InverseOf).
Klasy nadrzędne:	Edge
Atrybuty:	
Metody:	
Realizowane wyma-	WF006, WF007, WI004
gania:	W1000, W1001, W1004
Priorytet:	ważne
CE008	PropertyEdge
Onice	Klasa reprezentująca krawędź oznaczającą relację między
Opis:	Property a klasą.
Klasy nadrzędne:	Edge
Atrybuty:	
Metody:	
Realizowane wyma-	WEOOG WEOOZ WIOO4
gania:	WF006, WF007, WI004
Priorytet:	ważne
L	1

RangeEdge

CE009

Opis:	Klasa reprezentująca na grafie krawędź łączącą Property z klasą właściwości OWL Range.
Klasy nadrzędne:	Edge
Atrybuty:	
Metody:	
Realizowane wymagania:	WF006, WF007, WI004
Priorytet:	ważne

CE010	SubEdge
Opis:	Klasa reprezentująca krawędź związku OWL SubClass pomiędzy klasami.
Klasy nadrzędne:	Edge
Atrybuty:	
Metody:	
Realizowane wymagania:	WF006, WF007, WI004
Priorytet:	ważne

5.5 Pakiet visualization

5.5.1 Diagram

5.5.2 Opis klasy

CV001	EdgeRenderer
Onia	Klasa przeciążająca metody renderowania krawędzi grafu z
Opis:	biblioteki prefuse.
Klasy nadrzędne:	prefuse.render.EdgeRenderer
Atrybuty:	
Metody:	• render(Graphics2D g, VisualItem item) - metoda renderująca krawędź
Realizowane wymagania:	WF001, WF008, WI004
Priorytet:	ważne

CV002	NodeRenderer
-------	--------------

Opis:	Klasa przeciążająca metody renderowania wierzchołków grafu z biblioteki prefuse.
Klasy nadrzędne:	prefuse.render.LabelRenderer
Atrybuty:	
Metody:	 render (Graphics2D g, VisualItem item) - metoda renderująca wierzchołek drawString(Graphics2D g, FontMetrics fm, String text, boolean useInt, double x, double y, double w) - metoda wypisująca na wierzchołku String
Realizowane wymagania:	WF001, WF008, WI004
Priorytet:	ważne

CV003	OVDisplay
Opis:	Klasa tworząca obiekt JComponent do umieszczenia na okienku JAVA zawierający wygenerowany graf z wizualizacją
Klasy nadrzędne:	prefuse.Display
Atrybuty:	Graph graph - obiekt typu prefuse.data.graph zawierajacy dane o grafie do wyświetlenia.
Metody:	 getGraph() - zwarca graf z wyśiwetlanymi danymi setGraph(Graph graph) - nadpisuje obecny graf podanym generateGraphFromOWl(OWLOntology ont) - wpisuje do klasy obiekt Grpah wygenrowany na podstawie ontologii
Realizowane wymagania:	WF001, WF002, WF008, WI004
Priorytet:	ważne

CV004	OVFilter
Opis:	Klasa zawierająca filtry służace do wyświetlania danych w różnych zakresach
Klasy nadrzędne:	10ZIIYCII ZANICSACII
Atrybuty:	
Metody:	
Realizowane wyma-	WF001, WF008, WI004
gania:	111 001, 111 000, 111001
Priorytet:	ważne

5.6 Pakiet graph

5.6.1 Diagram

5.6.2 Opis klasy

CG001	GraphToOWLConverter			
Opis:	Klasa zawierająca metody pozwalające na przetwarzan obiektów grafów z prefuse na obiekty OWL API. Klasa je singletonem.			
Klasy nadrzędne:				
Atrybuty:	• INSTANCE - instancja klasy GraphToOWLConverter			
Metody:	 getInstance() - zwraca instancję klasy GraphToOWL(OWLOntology ontology) -Zamienia graf z biblioteki prefuse na ontologię zapisana w OWL API. 			
Realizowane wymagania:	WD001, WI004			
Priorytet:	ważne			

CG002	OWLtoGraphConverter
Opis:	Klasa zawierająca metody pozwalające na przetwarzanie obiektów OWL API na obiekty prefuse. Klasa jest singletonem.
Klasy nadrzędne:	
Atrybuty:	• INSTANCE - instancja klasy GraphToOWLConverter

Metody:	 getInstance() - zwraca instancję klasy recursiveSubClassReader(Node parent, OWLClass cls,OWLOntology ontology) - wczytuje do grafu OWL wszystkie klasy wraz z ich podklasami. OWLToGraph(OWLOntology ontology) -Zamienia ontologię w OWL API na graf z biblioteki prefuse.
Realizowane wymagania:	WD001, WI004
Priorytet:	ważne

5.7 Pakiet utils

5.7.1 Diagram

□ Debug		
Attributes		
private Debug INSTANCE		
private PrintStream debugStream		
Operations		
private Debug()		
public void sendMessage(String debugMessage)		
public void setStream(PrintStream ps)		
public Debug getInstance()		

5.7.2 Opis klasy

CU001	Debug			
Opis:	Klasa do użycia przy debugowaniu, zapewnia strumien z błędami zwracanymi przez bibliotekę. Klasa jest singletonem.			
Klasy nadrzędne:				
Atrybuty:	 INSTANCE - instacja klasy Debug Debug - Strumień do którego wpisywane są informacje potrzebne do debugowania 			
Metody:	 getInstance() - zwraca instację klasy setStream(PrintStream ps) - ustawia podany strumień jako strumień na który zwracane będa błędy sendMessage(String s) - wysyła wiadomość na strumień do debugowania, jeżeli został wcześniej podpięty za pomocą funkcji setStream 			
Realizowane wymagania:	WF006, WF007, WI004			
Priorytet:	bardzo ważne			

6 Słownik

Symbol projektu:	Opiekun projektu:	
3@KASK	mgr inż. Tomasz Boiński	
Nazwa Projektu:		
Wizualizacja grafów za pomocą biblioteki Prefuse		

Nazwa Dokumentu:	Nr wersji:
Słownik pojęć	0.04
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:
Piotr Orłowski	31.03.09
Przeznaczenie:	Data ostatniej aktualizacji:
WEWNĘTRZNE	15.05.09

Historia dokumentu

Wersja	Opis modyfikacji	Rozdział/strona	Autor modyfikacji	Data
1	Stworzenie zarysu słowni-	wszystkie	Anna Jaworska	31.03.09
	ka			
2	Podstawowe pojęcia Se-	Pojęcia ogólne	Piotr Orłowski	31.03.09
	mantic Web			
3	Licencje wolnego opro-	Pojęcia ogólne	Piotr Orłowski	07.04.09
	gramwania			
4	Uzupełnienie brakujących	wszystkie	Piotr Orłowski	15.06.09
	pojęć			

6.1 Jak korzystać ze slownika

Słownik został podzielony na dwie części:

- pojęcia ogólne
- pojęcia specyficzne dla projektu.

Pojęcia zostały podane w sposób alfabetyczny. Słownik ten będzie rozwijany na bieżąco razem z rozwijaniem całego projektu.

6.2 Pojecia ogólne

- agent (lm. agenty) jednostka (np. program), działającą w pewnym środowisku, zdolna do komunikowania się, monitorowania swego otoczenia i podejmowania autonomicznych decyzji, aby osiągnąć cele określone podczas jej projektowania lub działania.
- **API** ang. Application Programming Interface, interfejs dla programów, zestaw poleceń, funkcji, metod, formatów i danych, które służą do wymiany informacji pomiędzy aplikacją i systemem operacyjnym oraz innymi programami lub sterownikami.
- aplikacja standalone to aplikacja, która do uruchomienia nie wymaga innych programów
- **BSD** Berkeley Software Distribution License, jedna z licencji zgodnych z zasadami Wolnego Oprogramowania stworzona na Uniwersytecie Kalifornijskim w Berkeley.
- **debugowanie** znany także jako odpluskwianie, proces szukania i naprawiania błędów w programach komputerowych za pomocą specjalnych narzędzi do tego przeznaczonych.
- **GPL** GNU General Public License, jedna z licencji Wolnego Oprogramowania stworzona przez Richarda Stallmana i Ebena Moglena; zawiera zastrzeżenie, że wszystkie pochodne prace bazujące na kodzie wydanym na licencji GPL muszą być wydane na licencji GPL.
- **JAVA** Obiektowy język programowania; pojęcie używane czasem w sensie maszyny wirtualnej jezyka JAVA

- **javadoc** generator dokumentacji stworzony przez firmę Sun Microsystems; narzędzie to generuje dokumentację kodu źródłowego Javy na podstawie zamieszczonych w kodzie komentarzy javadoc(do ich tworzenia używa się specjalnych tagów, które pozwalają na prawidłową interpretację informacji tam zawartej).
- JVM Java Virtual Machine, maszyna wirtualna Javy, niezależny od platformy system uruchomieniowy dla programów napisanych w języku Java oraz innych (np. Jython) językach.
- kapsułkowanie znane również jako hermetyzacja, enkapsulacja (z ang. encapsulation), jedno z założeń paradygmatu programowania obiektowego. Polega ono na ukrywaniu pewnych danych składowych lub metod obiektów danej klasy tak, aby były one dostępne tylko metodom wewnętrznym danej klasy oraz, ewentualnie, wybranym innym obiektom (np. klas zaprzyjaźnionych)..
- KASK Katedra Architektury Systemów Komputerowych WETI
- **krotka** pojęcie matematyczne oznaczające uporządkowany, skończony zbiór elementów; w informatyce często używane do określenia rekordu bazy danych. W przypadku prefuse odnosi się do pojedynczego rekordu w tabeli.
- metadane są to dane opisujące inne dane, stosowane w celu ułatwienia korzystania z tych danych.
- OCS Ontology Creation System projekt realizowany w ramach grantu (tu id grantu) na KASK-u.
- ontologia dział filozofii starający się badać strukturę rzeczywistości i zajmujący się problematyką związaną z pojęciami bytu, istoty, istnienia i jego sposobów, przedmiotu i jego własności, przyczynowości, czasu, przestrzeni, konieczności i możliwości.
- OWL Web Ontology Language, jest to rozszerzenie RDFS. Język do opisu ontologii stworzony przez W3C.
- pakiet tutaj jednostka organizacji klas w programowaniu obiektowym.
- Prefuse Biblioteka języka JAVA, pozwalająca na estetyczna prezentacje danych, w szczególności grafów
- RDF Resource Description Framework, jest specyfikacją W3C stosowaną do modelowania metadanych w postaci wyrażeń zawierających predykaty, klasy i podmioty; wyrażenia te tworzą graf skierowany.
- RDFS RDF Schema, język reprezentacji wiedzy oparty na RDF.
- Sieć Semantyczna ang. Semantic Web, projekt, który ma umożliwić łatwiejsze i bardziej logiczne wyszukiwanie przez maszyny i programy(agenty) danych w sieci Internet; znaczenie zasobów informacyjnych opisywane jest tu przy pomocy ontologii; do standardów rozwijanych wraz z Semantic Web należą m.in. OWL, RDF oraz RDFS
- SHOIN/OWL język do wyrażania logiki opisowej ontologii.
- **strumień błędów** specjalny strumień danych w programie, na który kierowane są informacje o błędach oraz ewentualnie przebiegu działania funkcji programu, w których istnieje ryzyko wystąpienia błędów.
- SVN SubVersioN system kontroli wersji.
- W3C World Wide Web Consorcium organizacja odpowiedzialna za ustalanie standardów dla metajęzyków.
- WETI/ETI Wydział Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej
- **XML** ang. Extensible Markup Language, uniwersalny język formalny przeznaczony do reprezentowania różnych danych w ustrukturalizowany sposób.

6.3 Pojęcia specificzne dla projektu

 ${\bf kardynalność}\,$ tutaj występująca w języku OWL liczność elementu

klasa anonimowa tutaj klasa będąca wynikiem operacji (np. logicznej) na innych klasach bądź powstała przez wyliczenie instancji.

portalSubsystem część projektu OCS, pozwala na wizualizację online plików OWL

7 Załączniki

- 1. Notatka1
- 2. Notatka2
- 3. Notatka3
- 4. Notatka4
- 5. Notatka5
- 6. Notatka6
- 7. Notatka7
- 8. Notatka8
- 9. Notatka9
- 10. Notatka10
- 11. Notatka11
- 12. Notatka12
- 13. Notatka13
- 14. Notatka14
- 15. Notatka15
- 16. Notatka Specjalna
- 17. Plakat