

Prediction Model

ID/X Partners - Data Scientist

Presented by Difta Alzena Sakhi

1. Business Understanding

Dalam proyek ini, tujuan utama adalah meningkatkan akurasi penilaian risiko kredit bagi perusahaan multifinance melalui pengembangan model machine learning yang dapat memprediksi potensi kredit macet atau lancar dari calon peminjam. Dengan analisis mendalam terhadap dataset yang berisi berbagai atribut terkait profil peminjam, perilaku pembayaran, dan karakteristik pinjaman, diharapkan model ini mampu membantu manajemen dalam pengambilan keputusan pemberian kredit secara lebih objektif dan efisien. Peningkatan keakuratan prediksi risiko kredit tidak hanya akan meminimalkan potensi kerugian akibat kredit bermasalah tetapi juga mendukung strategi pemberian pinjaman yang lebih selektif dan bertanggung jawab, sehingga memperkuat portofolio kredit perusahaan serta meningkatkan kepercayaan stakeholder dan pertumbuhan bisnis jangka panjang.

About Company

id/x partners didirikan pada tahun 2002 oleh mantan bankir dan konsultan manajemen yang memiliki pengalaman luas dalam siklus dan proses kredit, pengembangan scoring, serta manajemen kinerja. Pengalaman gabungan mereka telah melayani berbagai perusahaan di kawasan Asia dan Australia, serta di berbagai industri seperti jasa keuangan, telekomunikasi, manufaktur, dan ritel.

id/x partners menyediakan layanan konsultasi yang mengkhususkan diri dalam pemanfaatan analitik data dan solusi pengambilan keputusan (DAD) yang dikombinasikan dengan disiplin manajemen risiko dan pemasaran terintegrasi untuk membantu klien mengoptimalkan profitabilitas portofolio dan proses bisnis mereka.

Layanan konsultasi yang komprehensif dan solusi teknologi yang ditawarkan menjadikan id/x partners sebagai penyedia layanan yang lengkap dan terpercaya.

3. Data Understanding

Tampilan Awal Dataset

	Unnamed: 0	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	 total_bal_il	il_util	open_rv_12m	open_
0	0	1077501	1296599	5000	5000	4975.0	36 months	10.65	162.87	В	 NaN	NaN	NaN	
1	1	1077430	1314167	2500	2500	2500.0	60 months	15.27	59.83	С	 NaN	NaN	NaN	
2	2	1077175	1313524	2400	2400	2400.0	36 months	15.96	84.33	С	 NaN	NaN	NaN	
3	3	1076863	1277178	10000	10000	10000.0	36 months	13.49	339.31	С	 NaN	NaN	NaN	
4	4	1075358	1311748	3000	3000	3000.0	60 months	12.69	67.79	В	 NaN	NaN	NaN	

5 rows × 75 columns

Penentuan Variabel Target

Status pinjaman awal:

• Current & In Grace Period dihapus karena status pinjaman masih berjalan.

Kategori target:

Good loan (1): 'Fully Paid', 'Does not meet the credit policy. Status: Fully Paid'

Bad loan (0): Semua status lain (Charged Off, Default, Late, dll.)

Data setelah filter: 238.913 baris, 76 kolom

Distribusi target:

Good loan: 186.727 (78%)Bad loan: 52.186 (22%)

Catatan: Data target tidak seimbang → perlunya teknik penanganan imbalance (upsampling/downsampling).

Tampilan Info Data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 466285 entries, 0 to 466284
Data columns (total 75 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	466285 non-null	int64
1	id	466285 non-null	int64
2	member_id	466285 non-null	int64
3	loan_amnt	466285 non-null	int64
4	funded_amnt	466285 non-null	int64
5	funded_amnt_inv	466285 non-null	float64
6	term	466285 non-null	object
7	int_rate	466285 non-null	float64
8	installment	466285 non-null	float64
9	grade	466285 non-null	object
10	sub_grade	466285 non-null	object
11	emp_title	438697 non-null	object
12	emp_length	445277 non-null	object
13	home_ownership	466285 non-null	object
14	annual_inc	466281 non-null	float64
15	verification_status	466285 non-null	object

Dataset terdiri dari 466.285 baris dan 75 kolom dengan tipe data campuran (numerik dan kategorikal). Beberapa kolom memiliki banyak nilai kosong, bahkan ada yang sepenuhnya kosong. Informasi ini menunjukkan perlunya pembersihan data sebelum analisis lebih lanjut. Kolom target untuk klasifikasi adalah loan_status.

3. Exploratory Data Analysis (EDA)

1. Hubungan Status Pinjaman dengan Total Pembayaran

Total pembayaran lebih tinggi pada pinjaman yang lunas (good loan) dibanding yang gagal (bad loan).

Good loan rata-rata total bayar: ±15.160 vs bad loan: ±7.024.

target	count	mean	std	min	25%	50%	75%	max
0	52186.0	7024.191781	5675.182531	0.00	3012.5975	5491.77000	9372.74250	50197.03000
1	186727.0	15160.113585	9452.545563	503.54	8035.1450	12930.93777	20429.38559	57777.57987

2. Status Pinjaman dan Besaran Pinjaman

Rata-rata pinjaman pada bad loan lebih besar (±14.625) daripada good loan (±13.168).

Namun total pembayaran di bad loan cenderung lebih rendah.

	count	mean	std	min	25%	50%	75%	max
target								
0	52186.0	14624.953053	8390.633508	500.0	8000.0	12800.0	20000.0	35000.0
1	186727.0	13167.962855	7944.742527	500.0	7000.0	11625.0	18000.0	35000.0

3. Exploratory Data Analysis (EDA)

3. Tujuan Pengajuan Pinjaman

Mayoritas untuk **debt consolidation (58%)**, diikuti credit card (20%) dan home improvement (6%).

Tujuan pendidikan, kesehatan, dan energi terbarukan sangat kecil porsinya.

4. Distribusi Peminjam Berdasarkan Negara Bagian

CA	16.97%
NY	8.63%
TX	7.60%
FL	6.97%
NJ	3.87%
IL	3.69%
PA	3.38%
GA	3.17%
VA	3.16%
OH	3.07%

Sebagian besar peminjam berasal dari:

- California (17%)
- New York (9%)
- Texas (8%)

3. Exploratory Data Analysis (EDA)

5. Status Kepemilikan Rumah

Terlihat bahwa kebanyakan peminjam menggunakan rumah mereka sebagai jaminan pinjaman, sedangkan yang memiliki rumah secara pribadi lebih sedikit.

6. Tingkat Suku Bunga Berdasarkan Grade Pinjaman

	count	mean	sta	min	25%	50%	15%	max
grade								
Α	39500.0	7.548551	1.002864	5.42	6.62	7.62	8.39	9.63
В	72239.0	11.654911	1.280894	6.00	10.74	11.71	12.49	14.09
С	61042.0	14.760351	1.229674	6.00	13.98	14.64	15.61	17.27
D	38715.0	17.623237	1.474671	6.00	16.59	17.77	18.75	20.31
E	18086.0	20.362172	1.887752	6.00	19.52	20.80	21.70	23.40
F	7348.0	23.192361	2.053790	6.00	22.95	23.70	24.50	25.57
G	1983.0	24.290570	2.460741	16.59	23.91	25.80	25.83	26.06

Tingkat suku bunga pinjaman cenderung meningkat dari grade A ke G, yang berarti semakin tinggi grade, semakin besar bunga yang dikenakan.

1. Penanganan Data yang Hilang (Missing Values)

 Identifikasi fitur dengan missing values

	features	missing_value	Percentage
0	open_acc_6m	238913	100.0
1	il_util	238913	100.0
2	verification_status_joint	238913	100.0
3	dti_joint	238913	100.0
4	annual_inc_joint	238913	100.0
	100		u.l.i
71	total_pymnt	0	0.0
72	total_pymnt_inv	0	0.0
73	total_rec_prncp	0	0.0
74	total_rec_int	0	0.0
75	target	0	0.0

Output menunjukkan fitur-fitur dengan persentase nilai hilang tertinggi hingga terendah.

Penghapusan fitur dengan missing values > 25%

- Pengisian missing values pada fitur lain
 - Fitur numerik diisi dengan rata-rata (mean)
 - Fitur non-numerik diisi dengan modus (nilai yang paling sering muncul)
- Pengecekan data duplikat

df.duplicated().sum()

0

Tidak ada data yang duplikat, ini menandakan data sudah unik dan bersih dari baris-baris yang sama.

Informasi ringkas data (info)

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 238913 entries, 0 to 466283
Data columns (total 50 columns):
                                Non-Null Count
    id
    member id
    funded amnt
    funded amnt inv
                                238913 non-null float64
                                238913 non-null object
    int rate
                                238913 non-null float64
    installment
                                238913 non-null float64
    grade
                                238913 non-null object
    sub grade
                                238913 non-null object
    emp title
                                238913 non-null
    emp length
                                238913 non-null
12 home ownership
                                238913 non-null object
13 annual inc
                                238913 non-null float64
14 verification status
                                238913 non-null object
15 issue d
                                238913 non-null object
```

Dataset tersisa 238,913 baris dan 50 kolom dengan tipe data campuran numerik dan objek.

2. Pemilihan Fitur (Feature Selection)

- Identifikasi fitur dengan nilai unik khusus
 - Fitur dengan nilai unik = 1 (konstan):
 ['application_type',
 'policy_code']
 - Fitur dengan nilai unik = jumlah baris (unik semua): ['url', 'id', 'member_id']
 - Fitur non-numerik dengan nilai unik sangat
 banyak (> 500):
 ['emp_title', 'url', 'title',
 'zip_code', 'earliest_cr_line']
- Gabungkan fitur-fitur di atas untuk dihapus
- Buat dataset baru tanpa fitur-fitur tersebut

```
new_df = df.loc[:, ~df.columns.isin(remove)].copy()
```


- Hapus fitur yang berpotensi menyebabkan data leakage: ['issue_d', 'loan_status', 'out_prncp', 'out_prncp_inv', 'total_pymnt', 'total_pymnt_inv', 'total_rec_prncp', 'total_rec_int', 'total_rec_late_fee', 'recoveries', 'collection_recovery_fee', 'last_pymnt_d', 'last_pymnt_amnt']
- Hapus beberapa fitur tambahan yang tidak diperlukan

```
new_df.drop(columns='sub_grade', axis=1, inplace=True)
new df.drop(columns='last credit pull d', axis=1, inplace=True)
```

Hasil Akhir

new df.columns

Dataset dengan fitur terpilih:Ukuran: (238913, 26)& Kolom:

Rakamin Academy

3. Rekayasa Fitur (Feature Engineering)

Identifikasi Fitur Kategorikal

Fitur bertipe *object* (kategorikal) yang ditemukan:

```
'term', 'grade', 'emp_length',
'home_ownership', 'verification_status',
'pymnt_plan', 'purpose', 'addr_state',
'initial_list_status'
```

Label Encoding (Ordinal)

Digunakan untuk fitur dengan urutan atau tingkatan:

- term: Diubah dari '36 months' / '60 months' → 36 / 60
- grade: Mapping dari {'A':1, ..., 'G':7}
- emp_length: Diubah jadi angka 0–10 berdasarkan lama kerja
- initial_list_status: 'f' → 1, 'w' → 0

- Cleaning Fitur Kategorikal 'home_ownership': Nilai
 'NONE' dan 'ANY' disamakan ke 'OTHER'
- One-hot Encoding (Nominal): Digunakan untuk fitur tanpa tingkatan:
 - 'verification_status', 'purpose', 'addr_state'
 - Hasil: 51 fitur one-hot baru ditambahkan ke dataset
- Seleksi Fitur Berdasarkan Korelasi: Mengukur korelasi fitur numerik terhadap target.
 - Top 5 korelasi negatif (semakin tinggi nilainya, makin cenderung gagal bayar): int_rate, grade, term, dti, revol_util
 - Top 5 korelasi positif (semakin tinggi, makin cenderung bayar lancar): annual_inc, initial_list_status, total_acc, revol_bal
 - Gabungkan Fitur Korelasi & One-hot Encoding

```
concat_df = pd.concat([cor_df, dummy], axis=1)
concat_df.shape

(238913, 77)
```


4. Penanganan Ketidakseimbangan Kelas (Target)

Cek Distribusi Awal Target

```
concat_df['target'].value_counts(normalize=True)

1  0.781569

0  0.218431

Name: target, dtype: float64
```

Data sangat tidak seimbang, berisiko membuat model bias terhadap mayoritas (kelas 1).

Strategi Penyeimbangan

Saya menerapkan dua teknik resampling secara simultan: (nilai tengah dari 186727 dan 52186)

- Oversampling (menambah data minoritas): Kelas minoritas (target = 1) disampling ulang sebanyak 119.456 contoh.
- Undersampling (mengurangi data mayoritas): Kelas mayoritas (target = 0) juga disampling ulang sebanyak 119.456 contoh.

Verifikasi Distribusi Baru

```
df_upsampled['target'].value_counts(normalize=True)

1  0.5
0  0.5
Name: target, dtype: float64
```

Data kini sudah seimbang secara proporsional, siap untuk pelatihan model machine learning.

5. Standardisasi Nilai Fitur (Feature Scaling)

Menjadikan semua fitur berada dalam skala yang seragam (μ = 0, σ = 1) untuk meningkatkan kinerja algoritma berbasis jarak atau gradien.

 Standardisasi dilakukan ke seluruh kolom, termasuk fitur hasil one-hot encoding dan setelah penyeimbangan kelas

```
for i in df_upsampled.columns:
    scale = StandardScaler().fit(df_upsampled[[i]])
    df_upsampled[i] = scale.transform(df_upsampled[[i]])
```

Isi DataFrame

	target	int_rate	grade	term	dti	revol_util	annual_inc	initial_list_status	total_acc	revol_bal		addr_state_SD	addr_state_TN	add
217852	1.0	-0.868912	-0.744832	-0.607742	0.350031	-0.951917	-0.899016	0.602514	-1.172083	-0.603726		-0.047375	-0.104831	
316157	1.0	-1.821496	-1.466816	-0.607742	0.121130	-0.642365	-0.180985	-1.659713	0.033477	-0.185334		-0.047375	-0.104831	
230539	1.0	-0.077708	-0.022849	1.645434	0.208087	1.582284	0.348090	0.602514	-0.741526	0.195450	***	-0.047375	-0.104831	
194264	1.0	-0.064259	-0.022849	-0.607742	-0.423629	0.364712	-0.596687	0.602514	-1.344306	-0.286406		-0.047375	-0.104831	
215135	1.0	-1.792358	-1.466816	-0.607742	-1.647418	-1.496729	1.047226	0.602514	0.033477	-0.314919		-0.047375	-0.104831	

Nilai-nilai dalam dataset sekarang telah berubah ke bentuk standar (rata-rata = 0 dan standar deviasi = 1), baik untuk fitur numerik maupun yang sebelumnya dikonversi dari kategorikal.

5. Pemodelan dan Evaluasi

Model ini menggunakan struktur pohon keputusan untuk memetakan input ke target. Cocok digunakan untuk interpretasi yang mudah.

```
# Decision Tree Classifier
dtree = DecisionTreeClassifier(random_state = 42)
dtree = dtree.fit(x_train, y_train)
y pred = dtree.predict(x test)
```

y_pred = dtree.predict(x_test)

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	cuppont
	precision	recall	11-2001-6	support
0.0	0.81	0.90	0.86	29965
1.0	0.89	0.79	0.84	29763
accuracy			0.85	59728
macro avg	0.85	0.85	0.85	59728
weighted avg	0.85	0.85	0.85	59728

Random Forest

Merupakan ensemble method yang menggabungkan beberapa decision tree, meningkatkan akurasi dan mengurangi overfitting.

```
# Random Forest Classifier
randof = RandomForestClassifier(random_state = 42)
randof.fit(x_train, y_train)
y_pred = randof.predict(x_test)
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0.0	0.86	0.91	0.89	29965
1.0	0.90	0.85	0.88	29763
accuracy			0.88	59728
macro avg	0.88	0.88	0.88	59728
weighted avg	0.88	0.88	0.88	59728

Hasil Evaluasi:

- Kinerja merata pada kedua kelas
- · Akurasi keseluruhan: 88% (tertinggi di antara model lain)

5. Pemodelan dan Evaluasi

XGBoost Classifier

Model boosting yang kuat dan sering digunakan untuk kompetisi machine learning. Meski kuat, ia sensitif terhadap skala dan data tidak seimbang

#XGBoost

```
xgb = XGBClassifier(random_state = 42)
xgb.fit(x_train, y_train)
y_pred = xgb.predict(x_test)
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0.0	0.68	0.70	0.69	29965
1.0	0.69	0.67	0.68	29763
accuracy			0.69	59728
macro avg	0.69	0.69	0.69	59728
weighted avg	0.69	0.69	0.69	59728

K-Nearest Neighbors (KNN)

Model ini mengklasifikasikan berdasarkan kedekatan jarak dengan tetangga terdekat. Cenderung lambat jika dataset besar.

K-Nearest Neighbors

knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
y_pred = knn.predict(x_test)
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support	
0.0	0.68	0.74	0.71	29965	
1.0	0.72	0.65	0.68	29763	
accuracy			0.70	59728	
macro avg	0.70	0.70	0.70	59728	
weighted avg	0.70	0.70	0.70	59728	

5. Pemodelan dan Evaluasi

Logistic Regression

Model linier yang cocok untuk prediksi kelas biner. Sangat cepat dan sering digunakan sebagai baseline dalam klasifikasi.

```
# Logistic Regression
from sklearn.linear_model import LogisticRegression
```

logreg = LogisticRegression(max_iter=1000, random_state=42)
logreg.fit(x_train, y_train)
y_pred = logreg.predict(x_test)
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support	
0.0	0.65	0.64	0.64	29965	
1.0	0.64	0.66	0.65	29763	
accuracy			0.65	59728	
macro avg	0.65	0.65	0.65	59728	
weighted avg	0.65	0.65	0.65	59728	

Hasil & Insight:

- Random Forest menunjukkan performa terbaik dengan akurasi 88%
- Model lain seperti Decision Tree dan KNN cukup kompetitif
- XGBoost & Logistic Regression kurang optimal pada data ini.

6. Kesimpulan dan Saran

Hasil pemodelan menunjukkan bahwa Random Forest Classifier memberikan performa terbaik dengan akurasi 88%, diikuti oleh Decision Tree. Proses penyeimbangan data melalui oversampling dan undersampling serta standardisasi fitur berhasil meningkatkan akurasi model secara signifikan. Sementara itu, model seperti XGBoost dan Logistic Regression belum optimal, kemungkinan karena parameter default yang belum disesuaikan.

Sebagai langkah lanjutan, disarankan melakukan hyperparameter tuning untuk meningkatkan performa, khususnya pada Random Forest dan XGBoost. Teknik validasi seperti k-fold cross-validation dan metode balancing lanjutan seperti SMOTE juga layak dipertimbangkan untuk hasil yang lebih robust dan akurat di masa depan.

7. Lampiran

Link Github Hasil Pengerjaan: Github

Thank You

