U.H.B.C. Chlef

Année Universitaire: 2019/2020

Faculté des Sciences Exactes et Informatique Niveau: 1ère Master/Option: M.A.S.

Madala Dagagara Chadagai and 1

Département des Mathématiques

Module: Processus Stochastiques 1.

Examen de Rattarpage (2 Heures)

Documents Non Autorisés

1. Questions de cours

Soit $X_1, X_2, X_3, ...$ une chaîne de Markov à espace d'état fini $E = \{1, 2, ..., N\}$ avec la matrice de transition \mathbf{P} . Parmi les affirmations suivantes, dites lesquelles impliquent lesquelles.

(a) Il existe une loi de probabilité $\bar{\pi}$ telleque $\lim_{n\to\infty} \pi \mathbf{P}^n = \bar{\pi}$ pour toute loi de probabilité π .

(b)
$$\lim_{n\to\infty} \mathbf{P}^n = \begin{bmatrix} \bar{\pi} \\ \vdots \\ \bar{\pi} \end{bmatrix}$$
, pour une certaine loi de probabilité $\bar{\pi}$.

- (c) Il existe une loi de probabilité $\bar{\pi}$ telleque $\bar{\pi} \mathbf{P} = \bar{\pi}$.
- (d) $P_{ij} > 0$ pour tout $i, j \in E$
- (e) Il existe n > 0 telque $P_{ij}^{(n)} > 0$ pour tout $i, j \in E$
- (f) $P_{ij}^{(n)} > 0$ pour tout $i, j \in E$ et n > 0.
- (g) Pour tout $i, j \in E$, Il existe n > 0 telque $P_{ij}^{(n)} > 0$.
- (h) $X_1, X_2, X_3, ...$ une chaîne de Markov irréductible.
- (i) $X_1, X_2, X_3, ...$ une chaîne de Markov irréductible apériodique.

2. Chaîne de Markov à temps discret

Soit X_1, X_2, X_3 ,...une suite de variables aléatoires i.i.d. à valeurs dans $E = \{1, 2, 3\}$ de loi de probabilité $\mathbb{P}(X_1 = 1) = 1/2$, $\mathbb{P}(X_1 = 2) = 1/3$, $\mathbb{P}(X_1 = 3) = 1/6$

- (a) Expliquer pourquoi cette suite définit une Chaîne de Markov homogène.
- (b) Calculer la matrice de transition et la loi limite $\bar{\pi}$.
- (c) Donner la loi du temps de séjour et le temps moyen de séjour dans l'état 1.
- (d) Quel est le temps moyen du retour à l'état 2?
- (e) Donner le nombre moyen de visites de l'état 3.
- (f) Calculer la limite: $\lim_{m\to\infty} \frac{1}{m} \sum_{n=1}^{m} (X_n)^r$; r>0.

3. Chaîne de Markov à temps continu.

Trois (3) satellites de communication sont placés sur une orbite. La durée de vie d'un satellite est exponentiellement distribuée de moyenne $1/\mu$, $\mu > 0$. Si l'un tombe en panne, son remplaçant sera envoyé. Le temps nécessaire pour préparer et envoyer un remplaçant est exponentiellement distribuée de moyenne $1/\lambda$, $\lambda > 0$. Soit X(t) le nombre des satellites sur l'orbite à l'instant t. Supposons que $[X(t)]_{t \geq 0}$ est un processus de Markov à temps continu.

- (a) Tracer le diagramme des transitions.
- (b) Donner le générateur infinitésimal.
- (c) Ecrire les équations de Kolmogorov directes (forward) et rétrogrades (backward) du processus.
- (d) $[X(t)]_{t\geq 0}$ est-il un processus de Naissance et de Mort? Justifier!
- (e) Montrer que la limite $\lim_{t\to\infty} \mathbb{P}(X_t=i)$; $i\geq 0$ existe. Que représente cette limite?
- (f) Calculer la probabilité qu'à long-terme aucun satellite n'est sur l'orbite.