

Travaux Dirigés de Compilation n°5 Licence d'informatique

Fonctions en assembleur

Le but de ce TD est d'apprendre à implémenter des fonctions en assembleur et à se familiariser avec les conventions AMD 64.

► Exercice 1. Les conventions d'appel AMD64

Écrivez un ou plusieurs exemples de code C tout petits. On obtient du code en assembleur en lançant la commande $\mathbf{g++}$ - \mathbf{S} -masm=intel monFichier. \mathbf{c} ou la même chose avec \mathbf{gcc} . Observez comment l'assembleur passe les arguments, accède aux arguments et renvoie la valeur de retour.

Remarques

- Dans le résultat, les accès à la mémoire peuvent contenir le mot-clé PTR. Ce mot-clé n'est pas conforme à la documentation de nasm et on peut le supprimer, mais certains outils le tolèrent.
- L'instruction leave libère le bloc d'activation.

Exercice 2. Arguments et valeur de retour

- 1. Écrivez en assembleur une fonction qui prend un entier signé codé sur 4 octets et qui renvoie son carré. Respectez les conventions d'appel AMD 64.
 - Complément de cours sur l'instruction imul : si on utilise l'instruction imul avec des opérandes sur 4 octets, elle tronque le résultat à 4 octets.
- 2. Écrivez dans un autre fichier du code en assembleur qui appelle votre fonction.

▶ Exercice 3. Registres volatils et non volatils

Écrivez une fonction qui prend l'adresse de deux entiers, codés sur 4 octets chacun, et qui les intervertit. Respectez les conventions d'appel AMD 64, y compris en ce qui concerne les registres volatils et non volatils. Testez en appelant votre fonction depuis du code en nasm.

Exercice 4. Alignement de la pile

Écrivez en assembleur une fonction récursive qui prend en arguments deux entiers positifs ou nuls m et n et qui renvoie mn en utilisant add mais ni imul ni mul. Respectez les conventions d'appel AMD 64, y compris en ce qui concerne l'alignement de la pile. Testez en appelant la fonction depuis du code en nasm.