APACHE AIRFLOW

1. What is Apache Airflow?

Apache Airflow is an open-source platform to programmatically author, schedule, and monitor workflows. It allows you to automate complex data pipelines, ensuring tasks run in the correct order with proper dependencies.

- Workflow Definition: Workflows are defined as Directed Acyclic Graphs (DAGs) using Python code.
- Task Management: Each node in the DAG is a task, which can be anything like running a script, executing SQL, or transferring files.
- Scheduler: Airflow has a scheduler that triggers tasks based on time or external events.
- Monitoring: Provides a web UI to monitor, track, and troubleshoot workflows.

2. Why is Airflow needed?

Modern data processing often involves multiple tasks that need to happen in a specific order. Airflow is needed because:

Automation

Eliminates manual intervention. Example: Loading data from multiple sources into a data warehouse every day automatically.

Scheduling

Tasks can be scheduled at fixed intervals (daily, hourly, or custom cron schedules).

• Dependency Management

Handles task dependencies. Example: Task B will run only after Task A succeeds.

Scalability

Can run multiple tasks in parallel across multiple workers

Monitoring and Logging

Tracks task progress, failures, and logs. Provides a retry mechanism for failed tasks.

Extensibility

Supports multiple operators like BashOperator, PythonOperator, SqlOperator, and cloud service operators.

3. Where is Airflow used?

Airflow is widely used in data engineering, data analytics, and DevOps. Common use cases:

• ETL Pipelines

Extract, Transform, Load workflows from multiple data sources into a warehouse.

• Machine Learning Pipelines

Automate ML workflows including data preprocessing, model training, evaluation, and deployment.

• Data Orchestration

Coordinate tasks across different systems. Example: Run a Spark job, upload results to S3, send notification email.

• Reporting and Analytics

Automate generation of dashboards or reports. Example: Run SQL queries daily to generate sales reports and email them to stakeholders.

• Cloud and DevOps Automation

Orchestrate cloud operations, backups, data transfers, and batch jobs

4. Advantages of Airflow

- Open-source and free to use.
- Workflow as code: fully programmable using Python.
- Supports complex dependencies with DAGs.
- Highly scalable and can distribute workloads across multiple workers.
- Provides built-in logging, monitoring, and alerting.
- Extensible with custom operators and plugins.
- Flexible scheduling with time-based or event-based triggers.

5. Key Components of Airflow

• DAGs

Directed Acyclic Graphs define the workflow structure, tasks, and dependencies.

Tasks

The smallest unit of work in Airflow, which can run Python code, bash scripts, SQL queries, or API calls.

Operators

Predefined templates for different types of tasks, e.g., BashOperator, PythonOperator, EmailOperator.

Scheduler

Executes tasks according to the DAG schedule and monitors dependencies.

Executor

Determines how and where tasks run.

WebUI

Graphical interface for monitoring DAGs, task logs, and performance metrics.

Metadata Database

Stores DAG definitions, task states, and logs for tracking workflow execution.