

中国人民解放军战略支援部队信息工程大学一葛文讲师

PLA Strategic Support Force Information Engineering University——Lecturer.Wen Ge

● 长期从事地理信息系统的教学与科研工作,研究方向为地理信息系统开发与应用、网络地理信息服务等。

- 获全国高校GIS青年讲课竞赛一等奖,指导学生参加全国大学生GIS技能大赛获二等奖,获高校GIS论坛"优秀教学成果奖"2项。
- 主持和参与国家、部门科研课题多项,获 省部级科技进步一等奖1项,二等奖1项,三等 奖2项,发表学术论文30余篇。

1 地理空间数据质量概念
Geospatial Data Quality Concepts

2 地理空间数据质量特征 Characteristics of Geospatial Data Quality

3 地理空间数据质量评价 Evaluation of Geospatial Data Quality

地理空间数据质量概念

地理空间数据质量概念

The Concept of Geospatial Data Quality

地理空间数据

>> 现实世界"真实值"

地理空间数据质量问题: 地理空间数据与真实值的差异无法消除, 但可以控制。

1 地图数字化概述 Geospatial Data Quality

数据本身角度

指的是其正确反映现实世界空间对象的准确性、一致性、完整性等方面的能力,也就是与"真值"之间的差异程度。

地理空间数据质量

用户角度

指的是地理空间数据满足应用要求的程度。 在不同的应用场景中,用户对地理空间数据质量的需求不尽相同,只要满足应用要求,就可以说 地理空间数据质量符合要求。

地理空间数据质量特征

DigitizingCharacteristics of Geospatial Data Quality

1.准确度

测量值与真值之间的接近程度,可用误差来衡量。

100km

地图上测量的距离为98km, 误差为2km

GNSS比地图测量的距离更准

GNSS测量计算的距离为99.0km, 误差为0.1km

2地理空间数据质量特征 DigitizingCharacteristics of Geospatial Data Quality

2.精度

对事物或现象描述的详细程度。

2位小数点 (113.43, 34.24) 精度高于 1位小数点 (113.4, 34.2)

3.不确定性

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 平均值

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$
 标准差

指事物或现象不能精确测得,当真值不可测或无法知道时,就无法确定误差,而用不确定性来取代误差。

4.相容性

两个不同来源的数据在同一个应用中使用的难易程度。

5.完整性

具有同一准确度和精度的数据在特定空间范围内完整的程度。

几何图形缺失

FID	Shape *	Id
. 0	面	0
1	. T	0
7 2	2 面	0
3	面	0
4	· 面	0
5	5 面	0
€	面	0
7	面	0
8	3 11	0
9) T	0
10) 面	0
11	. T	0
12	2 面	0
13	面	0
14	· 🗂	0
15	面	0

属性字段缺失

地理空间数据质量特征

DigitizingCharacteristics of Geospatial Data Quality

6.一致性

同一以及同类事物或现象表达的一致程度。

7.可得性

获取和使用数据的容易程度。

8.现势性

数据反映客观事物或现象目前状况的程度。

地形图

采集周期较长

局部变化快的地区 现势性差

位置精度

接边精度

属性精度

现势性

数据完整性

元数据与文档资料

逻辑一致性

要素关系处理

以地图扫描数字化获取矢量数据为例

位置精度

——评价坐标数据的准确程度

- 扫描图像有无明显变形, 扫描图像的定位精度;
- 图廓点、方里网、经纬网交点、控制点坐标的正确性;
- 点、线、面各要素位置的正确性等。

以地图扫描数字化获取矢量数据为例

属性精度

——评价属性数据的准确程度

• 检查每个地图要素属性赋值的正确性,包括属性值的漏赋或错赋情况。

以地图扫描数字化获取矢量数据为例

数据完整性

主要评价地图要素分层的完整性、地理实体的完整性(如几何图形是否完整)、属性数据的完整性以及注记的完整性等。

以地图扫描数字化获取矢量数据为例

逻辑一致性

——评价数据是否具有逻辑错误

- 点、线、面要素拓扑关系的正确性;
- 面状要素是否封闭,面状要素的标识点是否唯一或遗漏标;
- 有无重复线划,线划相交是否正确打断等评价内容。

以地图扫描数字化获取矢量数据为例

接边精度

- ◆ 图形方面: 评价相邻图幅接边要素在逻辑上是否无缝接边;
- ◆ 属性方面: 评价相邻图幅接边要素属性是否保持一致;
- ◆ 拓扑关系方面: 评价相邻图幅接边要素拓扑关系是否保持一致

以地图扫描数字化获取矢量数据为例

现势性评价

重点评价数据的获取时间和更新频率,需要确定数字化原图及更新资料的测量或更新年代。

以地图扫描数字化获取矢量数据为例

元数据与文档资料

主要评价元数据信息的完整性和正确性,以及文档薄等生产过程技术文档的记录质量。

以地图扫描数字化获取矢量数据为例

要素关系处理

主要评价重要要素关系(如公路与居民地内的街道的连接关系)是否正确且是否忠于原图,要素层与层之间是否出现整体平移等。

人工判断

通过图形目视检查、属性逐个检查、地理推理等方式实现

计算机程序自动检测

借助软件自动发现问题并进行质量评价

元素据检查

通过跟踪元数据了解到部分数据质量的状况

- 1 地理空间数据质量概念 Geospatial Data Quality Concepts
 - 2 地理空间数据质量特征 Characteristics of Geospatial Data Quality
 - 地理空间数据质量评价 Evaluation of Geospatial Data Quality
 - 从位置精度、属性精度、数据完整性、逻辑一致性、接边精度、现势性、元数据与文档资料、要素关系处理这八个方面进行地理空间数据质量评价。

