AI Computer Assignment 0

October 1, 2019

sajjad p. savoij 810195517

1 part A: data representation

```
[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

1.1 read data from csv file

To do so pandas read_csv is used , this attribute returns data as pandas dataframe

```
[2]: data = pd.read_csv('houses.csv')
```

1.2 describe and explore data

In this part diversity of df attributes are used to describe features of data provided in houses.csv - df.head() - df.describe() - df.count() - df.info()

```
[3]: data.head()

[3]: Id MSSubClass LotArea LotConfig OverallOugh LotErentage Neighborhood \
```

[3]:		Ιd	MSSubCla	lSS	LotArea	LotConfig	Uvera	IIQual	LotFr	ontage 1	Neigh	nborhood	\
	0	1		60	8450	Inside		7		65.0		CollgCr	
	1	2		20	9600	FR2		6		80.0		Veenker	
	2	3		60	11250	Inside		7		68.0		CollgCr	
	3	4		70	9550	Corner		7		60.0		Crawfor	
	4	5		60	14260	FR2		8		84.0		NoRidge	
		Ove:	rallCond	Ве	droomAbvO	Gr TotRmsA	bvGrd	TotalB	smtSF	YearBu	ilt	SalePric	е
	0		5			3	8		856	20	003	208.	5
	1		8			3	6		1262	19	976	181.	5
	2		5			3	6		920	20	001	223.	5
	3		5			3	7		756	19	915	140.	0
	4		5			4	9		1145	20	000	250.	0

[4]: data.describe()

[4]:		Id	MSSubClass	LotArea	OverallQual	LotFrontage	\
	count	1134.000000	1134.000000	1134.000000	1134.000000	937.00000	•
	mean	622.062610	54.056437	9487.280423	6.065256	68.40555	
	std	359.623823	38.760477	3866.279692	1.294012	20.13204	
	min	1.000000	20.000000	1300.000000	2.000000	21.00000	
	25%	310.250000	20.000000	7508.750000	5.000000	59.00000	
	50%	623.500000	50.000000	9246.500000	6.000000	70.00000	
	75%	932.750000	60.000000	11250.000000	7.000000	80.00000	
	max	1243.000000	180.000000	39104.000000	10.000000	134.00000	
		OverallCond	${\tt BedroomAbvGr}$	${\tt TotRmsAbvGrd}$	${\tt TotalBsmtSF}$	YearBuilt	\
	count	1134.000000	1134.000000	1134.000000	1134.000000	1134.000000	
	mean	5.551146	2.828924	6.354497	1032.037037	1972.981481	
	std	1.015560	0.734241	1.441257	385.301916	28.432646	
	min	3.000000	1.000000	3.000000	0.000000	1885.000000	
	25%	5.000000	2.000000	5.000000	796.000000	1955.000000	
	50%	5.000000	3.000000	6.000000	990.000000	1975.000000	
	75%	6.000000	3.000000	7.000000	1262.000000	2001.000000	
	max	8.000000	5.000000	11.000000	2223.000000	2009.000000	
		SalePrice					
	count	1134.000000					
	mean	174.783949					
	std	65.428985					
	min	34.900000					
	25%	129.925000					
	50%	161.875000					
	75%	207.500000					
	max	415.298000					

[5]: data.count()

[5]: Id 1134 MSSubClass 1134 LotArea 1134 LotConfig 1134 OverallQual 1134 LotFrontage 937 Neighborhood 1134 OverallCond 1134 ${\tt BedroomAbvGr}$ 1134 ${\tt TotRmsAbvGrd}$ 1134 TotalBsmtSF 1134 YearBuilt 1134 ${\tt SalePrice}$ 1134 dtype: int64

```
[6]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1134 entries, 0 to 1133
Data columns (total 13 columns):
Ιd
                1134 non-null int64
MSSubClass
                1134 non-null int64
LotArea
                1134 non-null int64
LotConfig
                1134 non-null object
                1134 non-null int64
OverallQual
LotFrontage
                937 non-null float64
Neighborhood
                1134 non-null object
                1134 non-null int64
OverallCond
BedroomAbvGr
                1134 non-null int64
TotRmsAbvGrd
                1134 non-null int64
TotalBsmtSF
                1134 non-null int64
YearBuilt
                1134 non-null int64
SalePrice
                1134 non-null float64
dtypes: float64(2), int64(9), object(2)
memory usage: 115.3+ KB
```

1.3 delete non-numeric fields

There are diffrent ways to handle non-numeric fields in data-frames, one obvious yet remarkable approach would be to neglect them to do so pandas data frame **drop** attribute is used

```
[7]: num_data = data.drop(['LotConfig','Neighborhood'] , axis = 1)
num_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1134 entries, 0 to 1133
Data columns (total 11 columns):
Τd
                1134 non-null int64
MSSubClass
                1134 non-null int64
                1134 non-null int64
LotArea
OverallQual
                1134 non-null int64
                937 non-null float64
LotFrontage
OverallCond
                1134 non-null int64
BedroomAbvGr
                1134 non-null int64
TotRmsAbvGrd
                1134 non-null int64
TotalBsmtSF
                1134 non-null int64
                1134 non-null int64
YearBuilt
                1134 non-null float64
SalePrice
dtypes: float64(2), int64(9)
memory usage: 97.6 KB
```

1.4 replace missing with mean of each column

To perform statistical analysis on data , all data cells should be filled with computable numerical values. For this matter pandas data-frame **fillna** attribute is used

```
[8]: num_data.fillna(num_data.mean() , inplace=True)
num_data.count()
```

```
[8]: Id
                      1134
     MSSubClass
                      1134
     LotArea
                      1134
     OverallQual
                      1134
     LotFrontage
                      1134
     OverallCond
                      1134
     BedroomAbvGr
                      1134
     TotRmsAbvGrd
                      1134
     TotalBsmtSF
                      1134
     YearBuilt
                      1134
     SalePrice
                      1134
     dtype: int64
```

1.5 Data Visualization

using matplotlib.pyplot.scatter

```
[9]: for col in num_data.columns[1:10] :
    plt.scatter(num_data[col] , num_data.SalePrice , alpha = 0.3)
    plt.xlabel(col)
    plt.ylabel('SalePrice')
    plt.title('scatter plot '+ col + ' vs Sale Price')
    plt.grid()
    plt.show()
```


It appeats the OverallQual feature shows stronger linear relation with house price

2 part B: Linear Regression

A linear regression model is illustrated as below in general

$$\hat{y} = \underline{\theta} \, \underline{x}$$

note that \hat{y} , θ and x are n by 1 vectors in general where n is dimension of feature vector

Our task is to find out the weight $vector(\theta)$ such that our estimation using linear model would have the least RMSE

hopefully this problem can be uniquely solved using algebric methods called ""Norm Equation" as I would use this method insted of random guessing the weights , derivation of norm equation is provided below

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n = \underline{\theta} \underline{x}$$

$$J(\theta) = \frac{1}{2m} \left(X \; \theta - Y \right)^T \left(X \; \theta - Y \right)$$

$$= \left((X\,\theta)^T - Y^T\right)(X\,\theta - Y) \\ = (X\theta)^T(X\theta) - (X\theta)^TY - Y^T(X\theta) + Y^TY \\ = \theta^TX^TX\theta - 2(X\theta)^TY + Y^TY \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY - Y^T(X\theta) \\ = (X\theta)^TY - Y^T(X\theta) + (X\theta)^TY -$$

$$\frac{\partial J(\theta)}{\partial \theta} = 2X^T X \theta - 2X^T Y = 0$$

hence, $\hat{\theta} = (X^T X)^{-1} X^T Y$

```
[10]: class LinearReg():
          def __init__(self) :
              self.theta = 0
          def fit(self , X , y):
              """X should be man where m is sample size and n is size of dimension"""
              """y should be mx1 where m is sampel size """
              s = X.shape
              X = np.hstack((np.ones((s[0],1)), X))
              self.theta = np.dot(np.dot(np.linalg.inv(np.dot(X.T , X)),X.T),y)
          def transform(self , X):
              s = X.shape
              X = np.hstack((np.ones((s[0],1)), X))
              return np.dot(self.theta.T,X.T).T
          def fit_transform(self , X , y):
              self.fit(X , y)
              return self.transform(X)
          def weights(self):
              return self.theta
      def RMSE(x, y) :
          '''x and y should be in size nx1 where n is dimension of feature vector'''
          s = x.shape
          return np.power((np.sum(np.power((x-y),2))/s[0]),0.5)
[11]: for col in num_data.columns:
          features = num_data[col].values.reshape(-1,1)
          targets = num_data.SalePrice.values.reshape(-1,1)
          linreg = LinearReg()
          estimation = linreg.fit_transform(features , targets)
          plt.scatter(features , targets , label = 'data' , alpha = 0.4)
          plt.scatter(features , estimation , label = 'estimation' , color = 'red')
          plt.xlabel(col)
          plt.ylabel('Salse Price')
          plt.title('Sale Price vs ' + col)
          plt.legend()
          plt.show()
          print("RMSE : ", RMSE(targets , estimation))
```


RMSE: 65.34563343158308

RMSE: 65.38398572522601

RMSE : 61.64965557918095

RMSE : 38.54666046317152

RMSE: 60.74279029934669

RMSE: 64.83939925268781

RMSE: 63.91833503338879

RMSE: 54.72247210447784

RMSE : 51.43001839349524

RMSE: 51.79510899546908

RMSE: 2.2932677893343486e-13

which features had linear relation with sale price?

according to RMSE factor of all features , the over all qual is the best feature for single variable linear regression

```
[12]: features = num_data.OverallQual.values.reshape(-1,1)
  targets = num_data.SalePrice.values.reshape(-1,1)
  linreg = LinearReg()
  lin_estimate = linreg.fit_transform(features, targets)
  print(linreg.weights())
```

```
[[-72.96290256]  [ 40.84689292]] thus the b = -72.96 and w1 = 40.84
```

3 part C: done in vectorization.inpy

4 part D: vectorize for-loops in part B

to do so I used "apply" attribute of pandas.dataframe

```
[13]: def scatter(x , y):
    plt.scatter(x , y , alpha = 0.4)
    plt.xlabel(x.name)
    plt.ylabel(y.name)
    plt.title(x.name + " vs " + y.name)
    plt.show()
```

```
[14]: num_data.apply(lambda x:scatter(x , num_data.SalePrice) , axis=0 )
```


[14]:	Id	None
	MSSubClass	None
	LotArea	None
	OverallQual	None
	LotFrontage	None
	OverallCond	None
	BedroomAbvGr	None
	TotRmsAbvGrd	None
	TotalBsmtSF	None
	YearBuilt	None
	SalePrice	None
	dtype: object	

5 part E: k nearest neighbors (KNN) non-parametric method

5.1 Standardized Data

As is explained in order to knn works , data should be standard. The following formula is used for standardization

$$\hat{x^{(i)}} = \frac{x^{(i)} - \min}{\max - \min}$$

```
[15]: class KNNReg():
          def __call__(self , samples):
              return self.estimate(samples)
          def __init__(self , df , k = 10):
              self.k = k
              self.prices = df.SalePrice
              self.df = df.drop(['Id', 'SalePrice'] , axis = 1)
              self.min = self.df.mean()
              self.max = self.df.max()
              self.df = self.standardize(self.df)
          def standardize(self , df):
              return (df - self.min)/(self.max - self.min)
          def calculate_estimation(self , sample):
              indices = np.argpartition(np.linalg.norm(self.df.values - sample.values⊔
       \rightarrow, axis = 1)
                                          ,self.k)
              return np.mean(self.prices[indices[:self.k]])
          def estimate(self , samples):
                  samples = self.standardize(samples)
                  return samples.apply(lambda x:self.calculate estimation(x), axis = 1
       \hookrightarrow 1)
[16]: knn = KNNReg(num_data)
[17]: samples = num_data[:]
      prices = samples.SalePrice
      samples = samples.drop(['Id' , 'SalePrice'] , axis = 1)
      knn_estimate = knn(samples)
[18]: RMSE(prices , knn_estimate)
```

[18]: 25.29561802039879

to test knnreg make an instance and call it by the sample such as above

5.2 compare two methods

In this part linear regression patametric method and KNN non-parametric method will be compared with regard to RMSE factor and in result the KNN methods worked more accurate over all neglecting the fact that knn computes more mathematical operations

5.2.1 visualization comparison

OverallQual

5.2.2 RMSE comparison

```
[20]: print('KNN : ', RMSE(true_price , knn_estimate))
print('linear reg : ', RMSE(true_price.values.reshape(-1,1) , lin_estimate))
```

KNN : 25.29561802039879

linear reg : 38.54666046317152