2018 MPC Programming Exercise Quadrotor Control

Contents

1	Q1 - Interpretation of Linearized System	3
2	Q2 - Choice of Tuning Parameters	3
3	Q3 - Initial Reponse Plots	3
4	Q4 - Steady State Reference Tracking	3
5	Q5 - Reference Signal Plots	3
6	Q6 - Varying Reference Signal Plots	3
7	Q7 - Nonlinear Model Reference Tracking	3
8	Q8 - Disturbance Observer Design	3
9	Q9 - Reference Signal Plots	3
10	Q10 - Varying Reference Signal Plots	4

1 Q1 - Interpretation of Linearized System

Interpretation of the structure of matrices A^c and B^c. Explain in particular the nonzero rows 4 and 5 of A^c and the nonzero rows of B^c in connection with the nonlinear dynamics described above. 2.5%

2 Q2 - Choice of Tuning Parameters

Choice of tuning parameters $(Q, R, P, A_{\mathcal{X}_f}, b_{\mathcal{X}_f})$ and motivation for them. 5%

3 Q3 - Initial Reponse Plots

Plots of the response starting from the given initial condition $x^1(0)$. 10%

4 Q4 - Steady State Reference Tracking

Define the steady state (x_r, u_r) as a function of n arbitrary reference r^1 . 5%

5 Q5 - Reference Signal Plots

Plots of the response or the constant reference signal $r^{1} = [1.0000 \ 0.1745 \ -0.1745 \ 1.7453]^{T}$. 10%

6 Q6 - Varying Reference Signal Plots

Plots of the response for the slowly varying reference signal $r^{1}(k) = [1 \ 0.1745 \cdot \sin(T_{s}k) \ -0.1745 \cdot \sin(T_{s}k) \ \pi/2]^{\mathrm{T}}$. **2.5**%

7 Q7 - Nonlinear Model Reference Tracking

Plots of a reference tracking response of the nonlinear model. 5%

8 Q8 - Disturbance Observer Design

Provide the matrix L and justify your choice. 5%

9 Q9 - Reference Signal Plots

Plots of the response or the constant reference signal $r^1 = [0.8 \ 0.12 \ -0.12 \ \pi/2]^T$. 10%

10 Q10 - Varying Reference Signal Plots

Plots of the response for the slowly varying reference signal $r^{1}(k) = [0.8 \ 0.12 \cdot \sin(T_{s}k) \ -0.12 \cdot \sin(T_{s}k) \ \pi/2]^{\mathrm{T}}$. **2.5**%