Syllabus for 1st Sem MTech CSE ADVANCED DATA STRUCTURE LAB (LABORATORY)

	ADVANCED DATA STRUCTURE LAB	
Credits: 2 (0-0-2)		
Pre-requisite for this course:	UG level course in Data Structures	
Course Objective:	 This course concentrates on the practical part of the course of Advanced Data Structure using C/C++ Programming Language. This course allows students to understand practically the Logical and physical representation of data, algorithms, complexity and efficiency, data Structure operations. Data structures are fundamental building blocks of algorithms and programs 	
Course Outcome:	 Course Objective: CO1: To be familiar with good programming design methods, particularly Top-Down design to solve all sorts of complicated problems. CO2: To understand the study of the Topics related to courses like "Principles of Programming Languages", "programming methodologies", and "design & analysis of algorithms" through knowledge of Data Structures. CO3: To develop algorithms for manipulating stacks, queues, linked lists, trees, and graphs, Hashing Techniques, searching and sorting. CO4: To develop recursive algorithms as they apply to trees and graphs. CO5: To be familiar with the issues of Time complexity and examine various algorithms from this perspective. CO6: To be familiar the student with the concepts and help in mastering their applications in real software projects. Upon successful completion of this course, the student should learn: understand the importance of structure and abstract data type, and their basic usability in different applications through different programming languages. analyze and differentiate different algorithms based on their time 	
	 complexity. understand the linked implementation, and its uses both in linear and non-linear data structure. understand various data structure such as stacks, queues, trees, graphs, etc. to solve various computing problems. implement various kinds of searching and sorting techniques, and know when to choose which technique. decide a suitable data structure and algorithm to solve a real world problem. 	

Syllabus for 1st Sem MTech CSE ADVANCED DATA STRUCTURE LAB (LABORATORY)

(LABUKATUKY)		
<u>Syllabus</u>		
Experiment No. 1	 a. Write a program that use both recursive and non recursive functions to perform the Binary search operation for a Key value in a given list of integers. b. Write a programs that implement Quick Sort, Merge Sort and Heap Sort method to sort a given list of integers in ascending order. c. Write a programs that implement Quick Sort by taking median as the pivot element to sort a given list of integers in ascending order. 	
Experiment No. 2	Write a program that uses functions to perform the following operations on Binary Search Tree: i) Creation ii) Insertion iii) Deletion iv) Traversal (Inorder, Preorder, Postorder)	
Experiment No. 3	Write a program that uses Stack operations to perform the following:a. Converting infix expression into postfix expressionb. Evaluating the postfix expression.	
Experiment No. 4	 a. Write a program that uses functions to perform the insert and delete operations on an AVL Tree. b. Write a program that uses functions to perform the insert and delete operations on a B-Tree. 	
Experiment No. 5	 a. Write a program to generate a graph given in Simple Interaction Format(SIF). b. Find single source shortest path (given a source) using Dijkstra algorithm. c. Find all pair shortest path using Floyd Warshall algorithm. 	
Experiment No. 6	Write a program to find minimum spanning tree using following algorithm from a graph given in SIF format. a) Prim's b) Kruskal	
Experiment No. 7	Write a program to encode data in a text file using Huffman coding.	
Experiment No. 8	Write a program to find longest common subsequence and all common subsequence between pair of string.	
Experiment No. 9	Write a program to implement Knuth-Morris-Pratt Algorithm and Rabin-Karp Fingerprinting Algorithm.	
Experiment No. 10	Write a program to multiply two matrices using Strassen's algorithm.	
Suggested Books:	 Thomas H. Cormen, Charles E. Leiserson, R.L. Rivest Introduction to Algorithms, Prentice Hall of India Publications. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 2nd Edition, Pearson, 2004. Pai: "Data Structures & Algorithms; Concepts, Techniques & Algorithms "Tata McGraw Hill. "Fundamentals of data structure in C" Horowitz, Sahani& Freed, Computer Science Press. 	
Evaluation:	 Continuous Evaluation: 70% End Term Assessment: 30% 	