Bayeno doep learning 1 NASH & IASD

Julyon ARBEL Feb 5, 2021

Bayesian NN under a leplace approximation Chap 5.7 of Bishop Univociate regression tER Grussia p(t/x) to be boussia the mean = y(x, w) outfut of vouionce B-2 B precision $\mathcal{D}ata$ $\mathcal{D} = \{(x_n, t_n), n = 1\}$ p(t 1x) = N(t (y(x,w), B-2) Model P(w/2) = N(w/0, 27 I) Prior $p(w|\mathcal{D}, x, \beta) \propto T N(t_n|y(x_n, w), \beta^{-1}) p(wk)$ Portenoi

Whap: numerically find local officient. $\log p(W|\mathcal{D}, x, \beta) = -\frac{\alpha}{2} W^T W - \frac{\beta}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2 + ct$ Laplace offrox. of the porterior: $q(W|D, \propto \beta) = N(W|W_{MAP}, A^{-1})$ oppose. $A = - \sqrt{10} p = \alpha I + \beta H$, will H = Hess (SSE)predictive $p(t \mid X, \omega) = \int p(t \mid X, w) q(w \mid \omega, x, \beta) AW (*)$ $W = W(t \mid y(x, w), \beta^{-1})$

Taylor approximation for NN: y(x,w) ~ y(x, wmap) + gT(w-wmap) g = Vw y (x, w) | w=wnAp p(t | x, w, B) & N(t | y(x, wmap) + g (w-wmap), p-1) ~ (*): $\Rightarrow p(y) = N(y|A\mu + b, L^{-1} + A\Lambda^{-1}A^{T})$ p(t | x, D, x, B) & N(t | y(x, w_{MAP}), \(\sigma^2(x) \) $(\Gamma^{2}(X) = \beta^{-1} + g^{T}A^{-1}g$ alcabolic x-defendent: episternic.

 d, β hyperparameters Norginal likelihood $p(\partial | l \alpha, \beta)$, ak a evidence ~ w is integrated out. $(\hat{a}, \hat{\beta}) = \operatorname{argmax} p(\mathcal{D}|x, \beta).$ (a, β) $p(\alpha)|x,\beta| = \int p(\alpha)|w,\beta|p(w|\alpha)dw$ $\Rightarrow \beta p(\lambda) | \lambda(\beta) = -E(w_{MAP}) - \frac{1}{2} \log |A| + \frac{W}{2} \log \lambda + \frac{N \log \beta}{2} + d$ regularized SSE: $\frac{2}{2}$ what what $\frac{2}{2}$ $\frac{2}{n=1}$ $(y(x_n, w_{nAP})^{-\frac{1}{2}})$ optimization in (2,1p) is done by analogy with linear regression. -> Bishof 5.7.

Other techniques for practical BNN:

variational inference: with various assumptions

on aprox family.

Distribution al properties of BNN Neal's result: 1-hidden layer NN, fully-connected

X WM U (2) Y W.: ~ N (0, 02)

O W J $m = 1... + Ho \qquad \text{nb H} \qquad Ho \qquad \text{lid} \qquad N(0, \sqrt{\frac{2}{H}})$ $g_{m}(x), \text{ pre non linearity} = \sum_{k=1}^{\infty} W_{mk}. \times_{k} \stackrel{\text{iid}}{\sim} N(0, ||x||_{2}^{2} \sigma^{2})$ post non linearity: $k_m(x) = \phi(g_m(x))$ $y = \sum_{m=1}^{\infty} W_m^{(2)} k_m(x)$ $y = \sum_{m=1}^{\infty} W_m^{(2)} k_m(x)$ $y = \sum_{m=1}^{\infty} W_m^{(2)} k_m(x)$ $y = \sum_{m=1}^{\infty} W_m^{(2)} k_m(x)$

Vm: (E[Ym) =) [[Wm] [[hm(x]) = 0 < / [E[hm(x]] = 0

 $V[Y_m] = IE[W_m^{(2|2)}]E[h_m^2(x)]$ $y \rightarrow N(0, HG^2)$ by CLT $G_{H}^{2} = \frac{1}{4}$ Goussian binit of output when width -> 00 Extended to any deeper NN in 2018.

Another distributional	property	el BN			
what is the distrib.	ef units	sunder	Coussia	m phò	
				3	
on weights?	X	~~~			
			\bigcirc		
Assumption on min:		O U ₁	้น	uz	
i la sa i ca for ad	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
index priors, contered		V			
eg: We 110 N(0, 52	-)				
Assumption on nonlinearity	ϕ				
					
sweloppe condition for	6				
·					
Theorem Conditionel or Llayer le is Sub Weil	~	the mi	n'for.	unit a	zf
loyer l is Sub Weil	aull (l/2)). '			
M 1:-1.M)
Tono on Sub-Weiball.	80.00	(30A X	up - Dow	Mian X	J

sub Exp propleties

density for Weishell' $g(w) \propto e^{-|w|^{1/\theta}}$ induces or penalty $\rightarrow |w|^{1/\theta}$ $\theta = \frac{l}{2}$ layer l $\sum_{i,j} |w_i|^{2/\ell} = ||w||_{2/\ell}$ 11-112/e unit ball in 12. Vladimirava, 2018 PyTorch