

http://docs.enthought.com/mayavi/mayavi/index.html

安装Mayavi的基本要求:

- VTK
- numpy
- Traits (Traits、TraitsUI 和 TraitsBackendWX/TraitsBackendQT)

```
VTK-7.1.1-cp36-cp36m-win_amd64.whl
mayavi-4.5.0-cp36-cp36m-win_amd64.whl
PyQt4-4.11.4-cp36-cp36m-win_amd64.whl
```

BuildingTools

pip install mayavi-4.5.0-cp36-cp36m-win_amd64.whl

```
E建员:命令提示符

C:\Tvtk>pip install mayavi-4.5.0-cp36-cp36m-win_amd64.whl
Processing c:\tvtk\mayavi-4.5.0-cp36-cp36m-win_amd64.whl
Requirement already satisfied: traitsui in c:\python36\lib\site-packages (from mayavi=4.5.0)
Requirement already satisfied: traits in c:\python36\lib\site-packages (from mayavi=4.5.0)
Requirement already satisfied: apptools in c:\python36\lib\site-packages (from mayavi=4.5.0)
Requirement already satisfied: pyface in c:\python36\lib\site-packages (from traitsui->mayavi=4.5.0)
Requirement already satisfied: configobj in c:\python36\lib\site-packages (from apptools->mayavi=4.5.0)
Requirement already satisfied: pygments in c:\python36\lib\site-packages (from pyface->traitsui->mayavi=4.5.0)
Requirement already satisfied: six in c:\python36\lib\site-packages (from configobj->apptools->mayavi=4.5.0)
Installing collected packages: mayavi
Successfully installed mayavi-4.5.0

C:\Tvtk>
```

代码编辑环境:Python3.6 自带的IDLE3.6

Pycharm Community Edition

>>> from mayavi import mlab

Mayavi.mlab

类 别	说明
绘图函数	<pre>barchar、contour3d、contour_surf、flow、imshow、 mesh、plot3d、points3d、quiver3d、surf、 triangular_mesh</pre>
图形控制函数	<pre>clf、close、draw、figure、gcf、savefig、screenshot、 sync_camera</pre>
图形修饰函数	colorbar, scalarbar, xlabel, ylabel, zlabel
相机控制函数	move、pitch、roll、view、yaw
其他函数	animate、axes、get_engine、show、set_engine
Mlab管线控制	Open、set_vtk_src、adddataset、scalar_cut_plane

Mayavi API

类 别	说明		
管线基础对象	Scene、Source、Filter、ModuleManager、 Module、PipelineBase、Engine		
主视窗和UI对象	DecoratedScene、MayaviScene、 SceneEditor、MlabSceneModel、 EngineView、EngineRichView		


```
>>> x=[[-1,1,1,-1,-1],[-1,1,1,-1,-1]]
>>> y=[[-1,-1,-1,-1,-1],[1,1,1,1, 1]]
>>> z=[[1,1,-1,-1,1],[1,1,-1,-1,1]]
>>> from mayavi import mlab
>>> s = mlab.mesh(x,y,z)
>>>
```

描述的坐标点为:

```
[[(-1, -1, 1), (1, -1, 1), (1, -1, -1), (-1, -1, -1), (-1, -1, 1)]
[(-1, 1, 1), (1, 1, 1), (1, 1, -1), (-1, 1, -1), (-1, 1, 1)]]
```



```
from numpy import pi, sin, cos, mgrid
from mayavi import mlab
```

```
#建立数据
dphi, dtheta = pi/250.0, pi/250.0
[phi,theta] = mgrid[0:pi+dphi*1.5:dphi,0:2*pi+dtheta*1.5:dtheta]
m0 = 4; m1 = 3; m2 = 2; m3 = 3; m4 = 6; m5 = 2; m6 = 6; m7 = 4;
r = sin(m0*phi)**m1 + |cos(m2*phi)**m3 + sin(m4*theta)**m5 + cos(m6*theta)**m7
x = r*sin(phi)*cos(theta)
y = r*cos(phi)
z = r*sin(phi)*sin(theta)
```

```
#对该数据进行三维可视化
s = mlab.mesh(x, y, z)
mlab.show()
```


键盘鼠标对场景进行操作

- 旋转场景:左键拖动或键盘的方向键
- 平移场景:按住Shift键并使用左键拖动,shift+方向键盘
- 缩放场景:鼠标右键上下拖动或使用 "+" 和 "-" 按键
- 滚动相机:按住CTRL键并用左键拖动
- 工具栏:从坐标轴6个方向观察场景、等角投影、切换平行透视和成角透视等

Mlab.mesh(x,y,z,representation='wireframe',line_width=1.0)

Mayavi管线的层级

- Engine:建立和销毁Scenes
- Scenes:多个数据集合Sources
- Filters:对数据进行变换
- Module Manager:控制颜色, Colors and Legends
- Modules:最终数据的表示,如线条、平面等

Mayavi Scene 1 X

mlab.show_pipeline()


```
from numpy import pi, sin, cos, mgrid
from mayavi import mlab
#建立数据
dphi, dtheta = pi/250.0, pi/250.0
[phi,theta] = mgrid[0:pi+dphi*1.5:dphi,0:2*pi+dtheta*1.5:dtheta]
m0 = 4; m1 = 3; m2 = 2; m3 = 3; m4 = 6; m5 = 2; m6 = 6; m7 = 4;
r = sin(m0*phi)**m1 + cos(m2*phi)**m3 + sin(m4*theta)**m5 + cos(m6*theta)**m7
x = r*sin(phi)*cos(theta)
v = r*cos(phi)
z = r*sin(phi)*sin(theta)
```

#对该数据进行三维可视化

#mlab.show()

s = mlab.mesh(x, y, z)

管线中的对象scene

Mayavi Scene:处于树的最顶层的对象,表示场景。

```
>>> s = mlab.gcf()
>>> print(s)
<mayavi.core.scene.Scene object at 0x00000249726A6E08>
>>> print(s.scene.background)
(0.5, 0.5, 0.5)
```

管线中的对象GridSource

管线中的对象GridSource

```
>>> source = s.children[0]
>>> print(repr(source))
<mayavi.sources.vtk_data_source.VTKDataSource object at 0x0000024972A508E0>
>>> print(source.name)
GridSource
>>> print(repr(source.data.points))
[(0.0, 2.0, 0.0), ..., (-0.025048897296365225, -1.9933803751132322, -0.0003
1479029697865414)], length = 126504
>>> print(repr(source.data.point_data.scalars))
[0.0, ..., -0.00031479029697865414], length = 126504
>>>
```

管线中的对象PlolyDataNormals

```
PolyDataNormals:数据源的法向量
```

```
>>> manager = source.children[0]
>>> print(manager)
<mayavi.filters.poly_data_normals.PolyDataNormals object at 0x0000024972570
938>
```

管线中的对象Colors and legends

管线中的对象Colors and legends

```
>>> colors = manager.children[0]
>>> colors.scalar_lut_manager.lut_mode = 'Blues'
>>> colors.scalar_lut_manager.show_legend = True
```


管线中的对象Surface

M Edit mo	dule: Sur	face			×	
Contours	Actor	Texturing				
Actor						
Actor —						
Visibili	ty: 🔽					
More opt	ions					
- Mapper -						
	2	Scalar visibi	lity: 🗹			
Interpola	ate scalar	rs before map	oping: 🗌			
	More op	otions				
Property	tition: w	ireframe ▼ 255,255,255)				
Line	width: 0.	000 🔾 📗		3 12.000 0.	.000	
Point	t size: O.	000 🔾 💳		11.000 1.	.000	
01	pacity: 0.	0		1.0 0.	. 6	
	More options					
				OK	Cancel	

管线中的对象Surface

```
>>> surface = colors.children[0]
>>> surface.actor.property.representation = 'wireframe'
>>> surface.actor.property.opacity = 0.6
```

>>> mlab.show()

程序配置属性的步骤

- 1、获得场景对象 , mlab.gcf()
- 2、通过children属性,在管线中找到需要修改的对象
- 3、配置窗口有多个选项卡,属性需要一级一级获得

程序配置属性的步骤

界面上文字与对象属性名的转换关系:

首字母变大写、下划线变空格

程序型黑性的光平

> Mayavi pipeline	- 0	×
🐺 👺 🦀 🕡 📦 📎		
✓ ■ Mayavi Scene 1 ✓ □ GridSource ✓ ② PolyDataNormals ✓ ❤ Colors and legen ■ Surface	Contours Actor Actor Actor Visibility: More options Mapper Scalar visibility: Interpolate scalars before mapping: More options Property Representation: surface Color: (255 255 255) Line width: 0.000 Point size: 0.000 Opacity: 0.0 More options	^

surface.actor.property.line_width

程序配置属性

