80-23 4931

U.S. Army Coast. Eng. Res. Ctr CETA 80-6 (AD-A007 Z61)

A Guide for Estimating Longshore Transport Rate Using Four SPM Methods

by Philip Vitale

COASTAL ENGINEERING TECHNICAL AID NO. 80-6 APRIL 1980

Approved for public release; distribution unlimited.

U.S. ARMY, CORPS OF ENGINEERS COASTAL ENGINEERING RESEARCH CENTER

Kingman Building Fort Belvoir, Va. 22060

TC 330 ,U8 no.80-6 Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

> National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22161

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
CETA 80-6			
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED		
A GUIDE FOR ESTIMATING LONGSHORE	Coastal Engineering		
RATE USING FOUR SPM METHODS	TIVUIOT OILT	Technical Aid	
	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(s)	
Philip Vitale			
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Department of the Army			
Coastal Engineering Research Cent		D31196	
Kingman Building, Fort Belvoir, V	irginia 22060		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
Department of the Army		April 1980	
Coastal Engineering Research Cent		13. NUMBER OF PAGES	
Kingman Building, Fort Belvoir, V	rt from Controlling Office)	16 5 C. 15. SECURITY CLASS. (of this report)	
MONTONINO AGENCY NAME & AGENESS(II amoto	in non commoning concey	is seeding a series (or and report)	
		UNCLASSIFIED	
		15a, DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for public release; dist	ribution unlimite	ed.	
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different from	m Report)	
		11	
18. SUPPLEMENTARY NOTES			

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Longshore transport rate

Coastal engineering

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report is a guide for computing longshore transport rate. Step-by-step procedures are presented as a guide through an analysis of the available data to the appropriate choice of one or more of the four SPM methods of estimating the longshore transport rate. Each of the four methods is explained with appropriate references or examples.

PREFACE

This report is a guide to selecting from among the four methods of estimating longshore transport rate given in the Shore Protection Manual (SPM). The information is taken from Chapter 4 of the SPM and presented in a more compact form. The report was prepared under the nearshore sediment transport research program of the U.S. Army Coastal Engineering Research Center (CERC).

The report was written by Philip Vitale, Hydraulic Engineer, under the general supervision of C. Mason, formerly Chief, Coastal Processes Branch (now Coastal Processes and Structures Branch).

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 885h Congress, approved 7 November 1963.

Colonel, Corps of Engineers Commander and Director

CONTENTS

	CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	• Pa	5
	SYMBOLS AND DEFINITIONS		6
]	I INTRODUCTION		7
I	DEFINITION OF TERMS	•	7
III	METHODS FOR COMPUTING LONGSHORE TRANSPORT RATE. 1. Method 1 2. Method 2 3. Method 3 4. Method 4	. 1	9 10 10
I	SUMMARY OF GUIDANCE	. 1	15
	LITERATURE CITED	. 1	16
1	TABLES Values of parameters in equation (3)		8
2	Approximate formulas for computing longshore energy flux factor, P_{ls} , entering the surf zone	. 1	12
1	FIGURES Selection guide to the four methods of estimating longshore transport rate		9
2	Design curve for longshore transport rate versus energy flux factor .	. 1	12
3	Longshore transport rate as a function of breaker height and breaker angle	. 1	13
4	Longshore transport rate as a function of deepwater height and deepwater angle.	. :	14

U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares
knots	1.852	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	1.0197×10^{-3}	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6	grams
•	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.01745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

 $^{^1}$ To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.

SYMBOLS AND DEFINITIONS

21 volume concentration equal to the ratio of the volume of solids to total volume in a sand deposit wave group velocity C_{α} breaker wave group velocity $C_{\alpha b}$ acceleration of gravity g Н wave height H_{2} breaker wave height \overline{H}_{2} average breaker wave height H_{c} significant wave height Hsh significant breaker wave height deepwater significant wave height Hso Ιo immersed weight rate of longshore transport K empirical coefficient relating Io to Po longshore component of wave energy flux Po Pos surf zone approximation of Po 0 longshore transport rate Q_{q} gross longshore transport rate QQ+ longshore transport rate to the left of an observer onshore looking seaward Qn. net longshore transport rate longshore transport rate to the right of an observer onshore looking Qnt seaward T wave period angle between wave crest and shoreline CL angle between breaking wave crest and shoreline Q.Z angle between deepwater wave crest and shoreline 0.0

mass density of water

mass density of sediment

0

PS

by Philip Vitale

I. INTRODUCTION

This report presents guidelines for calculating estimates of longshore transport rates which are important in most coastal engineering projects. The step-by-step procedures described herein are condensed from Sections 4.53 and 4.831 of the Shore Protection Manual (SPM) (U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977).

II. DEFINITION OF TERMS

The longshore transport rate, Q, is the volumetric rate of movement of sand parallel to the shoreline. Under most conditions, longshore transport takes place in or near the surf zone and is caused by the approach of waves at an angle to the shoreline. Q is expressed in terms of sand volume per unit time (such as cubic yards per year or cubic meters per year). Longshore transport per unit time to the right of an observer onshore looking seaward is Q_{pt} . Transport to the observer's left is Q_{Qt} . The gross longshore transport rate is

$$Q_{\alpha} = Q_{pt} + Q_{\ell t} \tag{1}$$

The net longshore transport rate is

$$Q_n = Q_{nt} - Q_{\ell,t} \tag{2}$$

Note that a negative Q_n means net transport to the left.

The quantities Q_{nt} , $Q_{\ell t}$, Q_n , and Q_g have engineering uses. For example, Q_g is used to predict shoaling rates in inlets; Q_n is used for design of jetties and for predicting beach erosion on an open coast; Q_{nt} and $Q_{\ell t}$ are used for design of jetties and impoundment basins behind weir jetties. In addition, Q_g provides an upper limit on Q_n , $Q_{\ell t}$, and Q_{rt} .

Another representation of longshore transport rate (referenced in literature sources) is the immersed weight rate, I_{ℓ} , which is given in units of force per unit time (such as pounds per second or newtons per second). The conversion from 0 to I_{ℓ} is

$$I_{\ell} = (\rho_{S} - \rho) \text{ ga'Q}$$
 (3)

where

 ρ_{S} = mass density of sand

 ρ = mass density of water

g = acceleration of gravity

a' = volume solids/total volume (accounts for the sand porosity)

This equation is valid for any consistent set of units. Table 1 lists commonly assumed values for the parameters in equation (3). If better estimates of ρ_8 , ρ , and a' are known for a specific site, they should be used in the equation. A discussion of equation (3) is provided by Galvin (1979).

Table 1. Values of parameters in equation (3).

rable 1. values of parameters in equation (3).						
Term	U.S. Customary ¹	Metric ²				
ρg	5.14 slugs/ft ³	2,650 kg/m ³				
ρ (saltwater)	1.99 slugs/ft ³	1,025 kg/m ³				
ρ (freshwater)	1.94 slugs/ft ³	1,000 kg/m ³				
a†	0.6	0.6				
g g	32.2 ft/s ²	9.81 m/s ²				

 $^{^{1}}Q$ in cubic feet per second; I_{ϱ} in pounds per second.

III. METHODS FOR COMPUTING LONGSHORE TRANSPORT RATE

The four methods described in the SPM for computing longshore transport are listed below in order of decreasing preference:

- $\underline{\text{Method 1}}$. The best way to predict longshore transport at a site is to adopt the best known rate from a nearby site, with necessary modifications for local conditions (assuming the rate from a nearby site is well established).
- Method 2. If rates from nearby sites are unknown, the next best way to predict transport rates at a site is to compute them from data showing historical changes in the topography of the nearshore zone.
- $\underline{\text{Method 3}}$. If neither method 1 nor method 2 is practical, the accepted practice is to use measured or calculated wave conditions to compute a longshore component of "wave energy flux" which is related through an empirical curve to longshore transport rate.
- $\frac{\text{Method 4.}}{\text{Solution}} \text{ Another empirical method is available which estimates } \text{gross longshore transport rate from mean annual nearshore breaker } \text{height.} \text{ The gross rate, so obtained, can be used as an upper limit } \text{on net longshore transport rate.}$

The following steps should be taken in selecting a method, depending on the data available. Figure 1 is a graphical representation of the decision process.

Step 1. Given a particular location where the longshore transport rate is needed, determine if there already exists an estimate of the rate for a nearby site (e.g., see SPM Table 4-6). If so, go to Section III, 1 of this report and use method 1; if not, proceed to step 2.

 $^{^{2}}$ Q in cubic meters per second; I_{0} in newtons per second.

Figure 1. Selection guide to the four methods of estimating longshore transport rate.

- Step 2. Study historical records of the area to see if sediment transport patterns and accretion or erosion volumes can be determined. Charts, surveys, dredging reports, beach nourishment reports, and aerial photos are primary sources. If these records exist, go to Section III, 2 and use method 2; if not, proceed to step 3.
- Step 3. Study the wave data available for the area. If the data include at least wave height and direction, go to Section III, 3 and use method 3. If only wave height is available, go to step 4. If no wave data are available, go to step 5.
- Step 4. With only an estimate of the wave height, go to Section III, 4 and use method 4. Remember that method 4 produces only an estimate of the gross longshore transport rate. If more than a gross estimate is needed, go to step 5.
- Step 5. This situation is reached if no data are available for estimating longshore transport rate. The only choice here is to collect data if judged necessary after considering the importance to, and budget of, the project. If some data are collected, return to step 1.

1. Method 1.

The longshore transport rate at a given location can be estimated by using a value for the transport at a nearby site modified for local conditions. Engineering judgment is an important part of this method. The first step is to

decide how well the estimate for the nearby site predicted the longshore transport rate. For example, was the dredging maintenance schedule or the fillet growth of a jetty predicted with adequate accuracy? If satisfied that it was, the two sites should be compared for similarity. Some items to check are:

- (1) Sediment sources and sinks (may affect one site but not the other; examples of sediment sources are eroding bluffs and river sediment discharge, and examples of sinks are offshore canyons and inlet shoals).
- (2) Shoreline orientation (can control which waves reach the shoreline from which direction).
- (3) Offshore bathymetry (controls refraction of waves, thereby affecting the wave climate; examples are shoals and canyons). The bathymetry also controls wave energy dissipation due to bottom friction (see Bretschneider and Reid, 1954).
 - (4) Offshore islands (can block waves from certain directions).
- (5) Coastal structures (groins and jetties can block longshore transport; offshore and submerged breakwaters can block waves).

Based on this comparison of the two sites, an estimate can then be made of the longshore transport rate at the location in question by using engineering judgment to increase, decrease, or leave unchanged the transport rate at the nearby site.

2. Method 2.

Method 2 is an application of historical data which gives usable answers if the basic data are reliable and available at reasonable cost and the interpretation is based on a thorough knowledge of the locality.

Some indicators of the transport rate are the growth of a spit, shoaling patterns and deposition rates at an inlet, and the growth of a fillet adjacent to a jetty or groin. As an example, the longshore transport rate across Cold Spring Inlet, New Jersey, was estimated based on fillet growth next to the updrift jetty and surveys of the surrounding area to account for the sand that was not impounded by the jetty (Beach Erosion Board, 1953). The rates of growth for Sandy Hook, New Jersey (U.S. Army Engineer District, New York, 1954) and for Sheshalik Spit, Alaska (Moore and Cole, 1960), were used to estimate longshore transport rate. Bruno and Gable (1976) measured the deposition behind the offshore breakwater and adjacent to the updrift jetty at Channel Island Harbor, California, to find the longshore transport rate. Various methods of finding longshore transport rates including surveys, aerial photos, dredge records of a tidal inlet, and a quantitative analysis of eroding sources of sand are discussed in Beach Erosion Board (1954).

3. Method 3.

This method of computing longshore transport rate is based on the empirical relationship between the longshore component of wave energy flux entering the

surf zone and the immersed weight of sand moved. Both have units of force per unit time

$$I_{\varrho} = KP_{\varrho} \tag{4}$$

where I_{ℓ} is the immersed weight transport rate (force/time), K a dimensionless coefficient, and P_{ℓ} the longshore component of wave energy flux (force/time). P_{ℓ} is defined as

$$P_{\ell} = \frac{\rho g}{16} H^2 C_g \sin 2\alpha \tag{5}$$

where H is the wave height, C_g the wave group velocity, and α the angle the wave crest makes with the shoreline. If the breaker values of the wave characteristics (H_b, C_{gb}, α_b) and the significant wave height (H_g) are put into equation (5), the energy flux factor results

$$P_{ls} = \frac{\rho g}{16} H_{sb}^2 C_{gb} \sin 2\alpha_b \tag{6}$$

The significant wave height is the average height of the one-third highest waves in a given wave condition. (See Section 3.21 of the SPM.)

The empirical relationship between longshore transport rate and $P_{\ell,S}$ is based on field measurements. Since the immersed weight of sand moved in the field cannot be measured directly, the volume of sand moved is usually determined. Therefore, Q is substituted for I_{ℓ} in equation (4), by using equation (3) to produce

$$Q = \frac{K}{(\rho_{S} - \rho) ga^{\dagger}} P_{LS}$$
 (7)

The SPM plots field data points of $\,Q\,\,$ versus $\,P_{\text{LS}}\,\,$ as shown in Figure 2 to produce the empirical relation

$$Q\left[\frac{yd^{3}}{yr}\right] = 7500 \left[\frac{yd^{3}/s}{1b/yr}\right] P_{ls} \left[\frac{ft-1b}{ft/s}\right]$$
(8)

where the dimensions of the factors are given in brackets. Note that the constant (7500) is dimensional. Using this dimensional constant and the values in Table 1, K in equation (7) is found to be 0.39. The scatter of the data points in Figure 2 shows that the value of Q estimated from equation (8) is accurate to only ± 50 percent. This can be seen by drawing a line 50 percent higher and a line 50 percent lower than the design curve in Figure 2. These two lines form an envelope of the data points.

Table 2 presents equations (9) to (12), which are alternate forms of P_{LS} . The choice of one of these equations depends on the data available. For example, if breaker wave height and direction are known, equation (9) should be used; if deepwater wave height and direction are known, equation (10) should be used. As a general rule, the closer the data have been collected to the surf zone, the better the data are for estimating P_{LS} . Therefore, if both deepwater and breaker values of wave height and direction are available, with comparable accuracy, the latter should be used. Figures 3 and 4 plot values of Q for different input data combinations based on equations (9) and (10).

Figure 2. Design curve for longshore transport rate versus energy flux factor; only field data are included (from U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977).

Table 2. Approximate formulas for computing longshore energy flux factor, P_{LS} , entering the surf zone.

Equation	Pls	Data required
	(ft-1b/s/ft of beach front)	(ft-s units)
(9)	32.1 $H_{SD}^{5/2}$ sin $2\alpha_b$	Η _{sb} , α _b
(10)	18.3 $H_{SO}^{5/2}$ (cos α_O) $^{1/4}$ sin $2\alpha_O$	H _{SO} , α _O
(11)	20.5 $TH_{SO}^2 \sin \alpha_b \cos \alpha_o$	Τ, H _{so} , α _o , α _b
(12)	100.6 (H_{Sb}^3/T) sin α_O	т, Н _{sb} , а _о

NOTE.--Subscript b = breaker value; o = deepwater value; and s = significant wave height.

(from U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977). Longshore transport rate as a function of breaker height and breaker angle

Figure 4. Longshore transport rate as a function of deepwater height and deepwater angle (from U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977).

To calculate an average $P_{\ell,S}$, a value of $P_{\ell,S}$ should be calculated for each combination of wave height and angle available. These values can then be used to find the average $P_{\ell,S}$. It is incorrect to compute an average wave height and an average wave angle and then use them to find an average $P_{\ell,S}$.

Computing P_{LS} using LEO current data is described in Walton (1980).

4. Method 4.

The SPM empirically relates the gross longshore transport rate in cubic yards per year to the mean annual breaker height, \overline{H}_{J_1} in feet, by the equation

$$Q_g \left[\frac{y d^3}{y r} \right] = 2 \times 10^5 \left[\frac{y d^3}{f t^2 / y r} \right] \overline{H}_b^2 \left[f t^2 \right]$$
 (9)

The gross rate, as defined earlier in equation (1), is the total amount of sand moving in both directions. If the net transport, \mathbf{Q}_n , is needed, this method is unsuitable.

IV. SUMMARY OF GUIDANCE

An engineer confronted with the problem of estimating the longshore transport rate at a project site must first survey all available data. Following the selection guide in Figure 1, the appropriate SPM method should be used if the engineer has (a) a rate from a nearby site (method 1); (b) historical changes in topography (method 2); (c) wave height and direction (method 3); and (d) wave height data (method 4).

If enough data, time, and money are available to use more than one method, the engineer can, and is encouraged to, estimate the transport rate using all methods possible. The most preferred method (see Section III) should be used for the design; the other methods should be used as checks. For example, if method 3 is used to find the net transport rate, Q_{η} , then method 4 can also be used to find the gross transport rate, Q_{σ} . This will allow the engineer a check to make sure Q_{η} does not exceed Q_{σ} .

A combination of methods can also be used if not enough data are available for any one method to be used completely. Jarrett (1977) presents an example of using methods 2 and 3 to estimate $\rm Q_{pl}$ and then checking the results with $\rm Q_{ql}$ found using method 4.

LITERATURE CITED

- BEACH EROSION BOARD, "Cold Spring Inlet (Cape May Harbor), New Jersey," H. Doc. 206, 83d Congress, 1st sess., U.S. Army, Corps of Engineers, Washington, D.C., 1953.
- BEACH EROSION BOARD, "Regional Study of the Atlantic Coast of New Jersey," U.S. Army, Corps of Engineers, Washington, D.C., (unpublished), 1954.
- BRETSCHNEIDER, C.L., and REID, R.O., "Modification of Wave Height Due to Bottom Friction, Percolation and Refraction," TM-45, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., Oct. 1954.
- BRUNO, R.O., and GABLE, C.G., "Longshore Transport at a Total Littoral Barrier," Proceedings of the 15th Coastal Engineering Conference, Honolulu, Hawaii, Vol. II, 1976, pp. 1203-1222 (also Reprint 77-6, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., NTIS A042 473).
- CALDWELL, J.M., "Wave Action and Sand Movement Near Anaheim Bay, California," TM-68, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., Feb. 1956.
- GALVIN, C.J., "Relation Between Immersed Weight and Volume Rates of Longshore Transport," TP 79-1, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., May 1979.
- JARRETT, J.T., "Sediment Budget Analysis Wrightsville Beach to Kure Beach, N.C.," *Proceedings of Coastal Sediments* '77, pp. 986-1005 (also Reprint 78-3, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., NTIS A051 572).
- KOMAR, P.D., "The Longshore Transport of Sand on Beaches," unpublished Ph.D. Thesis, University of California, San Diego, Calif., 1969.
- MOORE, G.W., and COLE, A.Y., "Coastal Processes, Vicinity of Cape Thompson, Alaska," *Geologic Investigations of Cape Thompson, NW Alaska-Preliminary Report*, Trace Element Investigation Report 753, U.S. Geological Survey, Washington, D.C., 1960.
- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Shore Protection Manual, 3d ed., Vols. I, II, and III, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977, 1,262 pp.
- U.S. ARMY ENGINEER DISTRICT, NEW YORK, "Atlantic Coast of New Jersey, Sandy Hook to Barnegat Inlet, Beach Erosion Control Report on Cooperative Study," New York, N.Y., (unpublished), 1954.
- WALTON, T.L., "Computation of Longshore Energy Flux Using LEO Current Observations," CETA 80-3, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Mar. 1980.
- WATTS, G.M., "A Study of Sand Movement at South Lake Worth Inlet, Florida," TM-42, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., Oct. 1953.

			,	_		
	four SPM oastal Engi- from National Engineering ort rate. ort manalysis or more of the rate. Each of ses or examples. Ittle.	627			four SPM astal Engi- from National Engineering ort rate, h an analysis or more of the carde. Each of es or examples, title.	627
	ansport rate using voir, Va.: U.S. C. i, Va.: available aid - U.S. Coastal ald - U.S. Coastal as a guide through as a guide through as choice of one ungaince transport propriate reference. It transport it reasons.	no. 80-6			ansport rate using voir, Va.: U.S. Co., Va.: U.S. Coatal aid — U.S. Coatal ag longshore transport as a guide throug are choice of one ugshore transport ransport in Transport. I. T. Esesarch Center.	no. 80-6
	A guide for estimating longshore transport rate using four SPM methods / by Philip Vitale - Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va.: available from National Technical Information Service, 1980. [16] p. iil.: 27 cm (Technical aid - U.S. Coastal Engineering Research Center; no. 80-6) Cover title. This report is a guide for computing longshore transport rate. This report is a guide for computing longshore transport rate. Set of the available data to the appropriate choice of one or more of the four methods of estimating the longshore transport rate. Each of the four methods is explained with appropriate references or examples. In Goastal engineering. 2. Littoral transport. I. Title. 11. Gestel. U.S. Coastal Engineering Research Center. Technical aid no. 80-6.	.U581ta			A guide for estimating longshore transport rate using four SPM methods / by Philip Vitale - Fort Belvoir, Va. 10.5. Coastal Engineering Research Genter; Springfield, Va.: available from National Technical Information Service, 1980. [16] p. ill.: 27 cm (Technical aid - U.S. Coastal Engineering Research Genter; no. 80-6) Cover title. This report is a guide for computing longshore transport rate. Step-by-step procedures are presented as a guide through an analysis of the available data to the appropriate choice of one or more of the four SPM methods is explained with appropriate references or examples. In Coastal engineering, 2. Littoral transport. Ill. Title. 11. Series: U.S. Coastal Engineering Research Center. Technical aid no. 80-6.	.U581ta
Vitale, Philip	A guide for estimating lon methods / by Philip Vitate - neering Research Center; 59 Technical Information Service [16] p. iil.: 27 cm. – (The Research Center; no. 80-6) Cover title. It a guide for This report is a guide for The worlds of estimatife four SM methods of estimatife four SM methods of estimatife four methods is explained; 11. Series: U.S. Coastal En aid no. 80-6.	TC203		Vitale, Philip	A guide for estimating lon methods / by Whilip Vitale—neering Research Center; Sp Technical Information Service [16] p. 111. : 27 cm.— (The post of the context in . 80-6) Cover title. This report is a guide for Step-by-step procedures are of the available data to the four Rehods is explained four SPM methods of estimation Four SPM methods is explained in Coastal engineering. 2 11. Series: U.S. Coastal Engiden. 80-6.	TC203
	s four SPM coastal Engi- from National l Engineering oort rate. by an analysis or more of the rate. Each of ces or examples. Tithe.	627			j four SPM Coastal Engi- from National L Engineering out rate. out rate, Each of the rate, Each of ces or examples, fithe.	627
	ansport rate using voir, Va.: U.S. (, Va.: available, aid - U.S. Coasta, as a guide through are choice of one nightone transport transport. I. Transport. I. Research Center.	по. 80-6			ansport rate using voir, Va.: U.S. (a. available aid — U.S. Coasta.) Blongshore transpare the choice of one ngshore transport the propriate referent transport. I. Research Center.	no. 80=6
	Limiting longshore transport rate using four SPM. Lip Vitale - Fort Belvoir, Va.: U.S. Coastal Enginerete: Springfield, Va.: available from National action Service, 1980. 27 cm (Technical aid - U.S. Coastal Engineering; no. 80-6) 3 mo. 80-6) 4 a guide for computing longshore transport rate. cedures are presented as a guide through an analysis data to the appropriate choice of one or more of the computing the longshore transport rate. Each of estimating the longshore transport rate. Each of is explained with appropriate references or examples, is explained with appropriate references or examples, innering. 2. Littoral transport. I. Tittle. Coastal Engineering Research Center. Technical	.U581ta			timating longshore transport rate using four SPM lytale - Fort Belvoir, Va.: U.S. Coastal Engitorner; Springfield, Va.: available from National action Service, 1980. 27 cm (Technical aid - U.S. Coastal Engineering; no. 80-6) a guide for computing longshore transport rate. aguide for computing longshore transport rate. cedures are presented as a guide chrough an analysis data to the appropriate choice of one or more of the of estimating the longshore transport rate. Each of is explained with appropriate references or examples, is explained with appropriate references or examples, incering. 2. Littoral transport. I. Title. Coastal Engineering Research Center. Technical	.U581ta
ale, Philip		23		ale, Philip		33
Vitale, Philip	A guide for estimating longshore transport rate using four SPM methods / by Philip Vitale - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center; Springiteld, Va. : available from National Technical Information Service, 1980. [16] p. iil.: 27 cm (Technical aid - U.S. Coastal Engineering Research Center; no. 80-6) Cover tille. This report is a guide for computing longshore transport rate. Step-by-step procedures are presented as a guide through an analysis of the available data to the appropriate choice of one or more of the four SPM methods of estimating the longshore transport rate. Each of the four methods is explained with appropriate references or example: 1. Coastal engineering. 2. Littoral transport. I fithe. II. Series: U.S. Coastal Engineering Research Center. Technical aid no. 80-6.	TC203		Vitale, Philip		CCCCE

Vitale, Philip

A guide for estimating longshore transport rate using four SPM methods / by Philip Vitale - Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va.: available from National Technical Information Service, 1980.

[16] p. ill. : 27 cm. - (Technical aid - U.S. Coastal Engineering Research Center ; no. $80 \cdot 6$)

esearch Center; no Cover title. This report is a guide for computing longshore transport rate. Step-by-step procedures are presented as a guide through an analysis of the available data to the appropriate choice of one or more of the four SPM methods of estimating the longshore transport rate. Each of the four methods is explained with appropriate references or examples.

1. Coastal engineering. 2. Littoral transport. I. Title.
11. S. Coastal Engineering Research Center. Technical aid no. 870-6.

TC203 .U581ta no. 80-6

Vitale, Philip

A guide for estimating longshore transport rate using four SPM methods / by Philip Vitale - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National

Technical Information Service, 1980. [16] p. ill. : 27 cm. - (Technical aid - U.S. Coastal Engineering

Research Center; no. 80-6) Cover title.

This report is a guide for computing longshore transport rate. Step-by-step procedures are presented as a guide through an analysis of the available deat to the appropriate choice of one or more of the four SPM methods of estimating the longshore transport rate. Each of the four methods is explained with appropriate references or examples.

1. Coastal engineering. 2. Littoral transport. I. Title.
11. Series: U.S. Coastal Engineering Research Center. Technical

Vitale, Philip

A guide for estimating longshore transport rate using four SPM neethods / by Philip Vitale - Fort Belvoir, Va.: U.S. Coastal Engineeting Research Center; Springfield, Va.: available from National Technical Information Service, 1980.

[16] p. ill. : 27 cm. - (Technical aid - U.S. Coastal Engineering Research Center ; no. 80-6)

Cover title.

This report is a guide for computing longshore transport rate. Step-by-step procedures are presented as a guide through an analysis of the available data to the appropriate choice of one or more of the Cour SPM methods of estimating the longshore transport rate. Each of the four methods is explained with appropriate references or examples.

1. Coastal engineering, 2. Littoral transport. I. Title.
I. Series U.S. Coastal Engineering Research Center. Technical id no. 80-6.

rc203

527

U581ta

no. su

527

Vitale, Philip

A guide for estimating longshore transport rate using four SPM methods / by Philip Vitale - Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va.: available from National Technical Information Service, 1980.

Contrast intormation service, 1900. [16] p. ill. : 27 cm. - (Technical aid - U.S. Coastal Engineering

Research Center; no. 80-6) Cover title. This report is a guide for computing longshore transport rate. Step-by-step procedures are presented as a guide through an analysis of the available data to the appropriate choice of one or more of the Cour SPM methods of estimating the longshore transport rate. Each of the four methods is explained with appropriate references or examples.

1. Coastal engineering. 2. Littoral transport. I. Title. II. Series: U.S. Coastal Engineering Research Center. Technical

aid no. 80-6.

.

627

no. 80-6

no.

no. 80-6

527

The second second

