Hybrid CNN-FNN Classifier on CIFAR-10 Dataset

Loading Libraries

```
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import classification_report, accuracy_score
import pandas as pd
from tabulate import tabulate
```

Loading Dataset

```
In [ ]: # Load CIFAR-10 dataset
        (x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()
        # Normalize pixel values to be between 0 and 1
        x_train, x_test = x_train / 255.0, x_test / 255.0
        # One-hot encode the Labels
        y_train, y_test = to_categorical(y_train), to_categorical(y_test)
In [ ]: # Define class names for CIFAR-10 dataset
        class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
In [ ]: # Display some images from the dataset (optional)
        plt.figure(figsize=(8,8))
        for i in range(16):
            plt.subplot(4,4,i+1)
            plt.xticks([])
            plt.yticks([])
            plt.grid(False)
            plt.imshow(x_train[i])
            \verb|plt.xlabel(class_names[np.argmax(y\_train[i][0])]|)|
        plt.show()
```


Defining the Hybrid Model

```
In [ ]: def create_hybrid_model():
            model = models.Sequential()
            # CNN part
            model.add(layers.Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))
            model.add(layers.MaxPooling2D((2, 2)))
            model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
            model.add(layers.MaxPooling2D((2, 2)))
            model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
            model.add(layers.MaxPooling2D((2, 2)))
            model.add(layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
            model.add(layers.MaxPooling2D((2, 2)))
            # Flatten the output for the fully connected part
            model.add(layers.Flatten())
            model.add(layers.Dense(128, activation='relu'))
            model.add(layers.Dropout(0.5))
            model.add(layers.Dense(64, activation='relu'))
            model.add(layers.Dropout(0.5))
            model.add(layers.Dense(10, activation='softmax'))
            return model
        model = create_hybrid_model()
In [ ]: model.compile(optimizer='adam'.
                      loss='categorical_crossentropy',
                      metrics=['accuracy'])
```

Training the Model

```
In [ ]: history = model.fit(x_train, y_train, epochs=20,
                             validation_data=(x_test, y_test),
                            batch_size=64)
       Epoch 1/20
       782/782
                                   20s 23ms/step - accuracy: 0.1996 - loss: 2.0747 - val_accuracy: 0.4685 - val_loss: 1.4487
       Epoch 2/20
       782/782
                                   - 17s 21ms/step - accuracy: 0.4427 - loss: 1.5046 - val_accuracy: 0.5474 - val_loss: 1.2260
       Epoch 3/20
       782/782
                                   - 17s 22ms/step - accuracy: 0.5487 - loss: 1.2687 - val_accuracy: 0.6165 - val_loss: 1.0864
       Epoch 4/20
       782/782
                                   - 17s 22ms/step - accuracy: 0.5977 - loss: 1.1428 - val accuracy: 0.6558 - val loss: 0.9779
       Epoch 5/20
                                   - 17s 22ms/step - accuracy: 0.6423 - loss: 1.0385 - val_accuracy: 0.6623 - val_loss: 0.9646
       782/782
       Epoch 6/20
       782/782
                                   - 17s 21ms/step - accuracy: 0.6713 - loss: 0.9610 - val_accuracy: 0.6836 - val_loss: 0.9091
       Epoch 7/20
       782/782
                                   - 17s 22ms/step - accuracy: 0.6935 - loss: 0.8960 - val accuracy: 0.6841 - val loss: 0.9160
       Epoch 8/20
       782/782
                                   - 17s 22ms/step - accuracy: 0.7218 - loss: 0.8281 - val_accuracy: 0.6988 - val_loss: 0.9039
       Epoch 9/20
       782/782
                                  - 18s 23ms/step - accuracy: 0.7341 - loss: 0.7879 - val_accuracy: 0.6958 - val_loss: 0.9109
       Epoch 10/20
       782/782
                                   - 17s 22ms/step - accuracy: 0.7497 - loss: 0.7606 - val_accuracy: 0.7133 - val_loss: 0.8703
       Epoch 11/20
       782/782
                                   - 19s 24ms/step - accuracy: 0.7630 - loss: 0.6998 - val_accuracy: 0.7159 - val_loss: 0.8830
       Epoch 12/20
       782/782
                                   18s 23ms/step - accuracy: 0.7744 - loss: 0.6760 - val_accuracy: 0.7166 - val_loss: 0.8870
       Epoch 13/20
       782/782
                                   - 18s 23ms/step - accuracy: 0.7843 - loss: 0.6485 - val_accuracy: 0.7317 - val_loss: 0.8433
       Epoch 14/20
       782/782
                                   - 17s 22ms/step - accuracy: 0.7971 - loss: 0.6105 - val_accuracy: 0.7136 - val_loss: 0.8998
       Epoch 15/20
                                   - 17s 22ms/step - accuracy: 0.8029 - loss: 0.5917 - val_accuracy: 0.7237 - val_loss: 0.8915
       782/782
       Epoch 16/20
       782/782
                                   - 17s 22ms/step - accuracy: 0.8101 - loss: 0.5593 - val accuracy: 0.7370 - val loss: 0.8801
       Epoch 17/20
                                   - 17s 22ms/step - accuracy: 0.8231 - loss: 0.5286 - val_accuracy: 0.7299 - val_loss: 0.8983
       782/782
       Epoch 18/20
       782/782
                                   - 17s 22ms/step - accuracy: 0.8232 - loss: 0.5278 - val_accuracy: 0.7283 - val_loss: 0.9235
       Epoch 19/20
       782/782
                                   - 18s 22ms/step - accuracy: 0.8315 - loss: 0.5022 - val_accuracy: 0.7211 - val_loss: 1.0048
       Epoch 20/20
       782/782
                                   - 18s 23ms/step - accuracy: 0.8373 - loss: 0.4881 - val_accuracy: 0.7280 - val_loss: 0.9925
```

Saving the model

```
In []: # Save the model architecture as JSON
    model_json = model.to_json()
with open("hybrid_model.json", "w") as json_file:
        json_file.write(model_json)
```

```
# Save the weights with the correct filename
model.save_weights("hybrid_model_weights.weights.h5")

print("Model weights saved to disk.")

# # To Load Model ::
# # Load the JSON file that contains the model architecture
# with open('fnn_model.json', 'r') as json_file:
# Loaded_model_json = json_file.read()

# # Reconstruct the model from the JSON file
# loaded_model = tf.keras.models.model_from_json(loaded_model_json)

# Load the saved weights into the model
# Loaded_model.load_weights("fnn_model_weights.h5")

# print("Model Loaded from disk.")
```

Model weights saved to disk.

Evaluating the Model Predictions

```
In []: test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
    print(f'Test accuracy: {test_acc*100:.2f}%')

313/313 - 2s - 5ms/step - accuracy: 0.7280 - loss: 0.9925
Test accuracy: 72.80%
Test accuracy: 72.80%
```

Plot: Accuracy vs Epoch

```
In []:
    # Plot training & validation accuracy values
    plt.figure(figsize=(7, 4))
    plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.title('Accuracy vs Epoch')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.legend(['Train', 'Test'], loc='upper left')
    plt.savefig('accuracy_vs_epoch_Hybrid.png')
```


Plot: Loss vs Epoch

```
In []: # Plot training & validation loss values
    plt.figure(figsize=(7, 4))
    plt.plot(history.history['loss'])
    plt.plot(history.history['val_loss'])
    plt.title('Loss vs Epoch')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend(['Train', 'Test'], loc='upper left')
    plt.savefig('loss_vs_epoch_Hybrid.png')

plt.show()
```


Visualising the Predictions

Tabulating Classification Report

```
In [ ]: # Convert predictions to class labels
        y_pred = np.argmax(predictions, axis=1)
        y_true = np.argmax(y_test, axis=1)
        # Calculate accuracy
        accuracy = accuracy_score(y_true, y_pred)
        print(f"Accuracy: {accuracy*100:.2f}")
        # Generate classification report
        report = classification_report(y_true, y_pred, target_names=class_names, output_dict=True)
        # Convert classification report to DataFrame
        report_df = pd.DataFrame(report).transpose()*100
        # Calculate accuracy for each class
        report_df['accuracy'] = report_df.apply(lambda row: row['support'] * row['recall'] / row['support']
            if row.name in class_names else np.nan, axis=1)
        # Remove accuracy, macro avg, and weighted avg rows
        report_df = report_df.loc[class_names]
        # Select and reorder columns
        report_df = report_df[['accuracy', 'precision', 'recall', 'f1-score']]
        # Round the DataFrame to 2 decimal places
        report_df = report_df.round(2)
       Accuracy: 72.80
```

Display the Table

```
In []: # Display the classification report in a box format
    print(tabulate(report_df, headers='keys', tablefmt='grid'))
# Optionally, save the table to a CSV file
    report_df.to_csv('classification_report_Hybrid.csv', index=True)
```

+	·		.	
	accuracy	precision	recall	f1-score
airplane	81.6	71.64		76.3
automobile	80.5		80.5	85.46
bird	60			63.46
cat	54.8			
deer	67.2	71.41	67.2	69.24
dog	65.2		65.2	
frog	69.9			: :
horse	80.3	73.2	80.3	76.59
ship	79.8	91.3	79.8	85.17
truck	88.7	74.92	88.7	81.23
T				r

```
In [ ]: # Create a matplotlib figure
       fig, ax = plt.subplots(figsize=(7, 6)) # Adjust the size as needed
       # Hide axes
        ax.xaxis.set_visible(False)
        ax.yaxis.set_visible(False)
        ax.set_frame_on(False)
        # Create the table
        table = ax.table(cellText=report_df.values,
                         {\tt colLabels=report\_df.columns,}
                         rowLabels=report_df.index,
                         cellLoc='center',
                        loc='center')
        # Adjust table properties
        table.auto_set_font_size(True)
        # table.set_fontsize(11)
        table.scale(1.2, 1.2)
        table.add_cell(0, -1, width=0.15, height=0.045)
        table[0, -1].set_text_props(text='Class Names / Scores', weight='bold')
        # Add a title to the plot
        plt.title('Classification Report (Hybrid CNN-FNN)', x=0.3, y=0.95, fontsize=16, fontweight='bold', ha='center')
        # Adjust plot layout
        # plt.subplots_adjust(top=1)
        # Save the table as an image
        plt.savefig('classification_report_Hybrid.png', bbox_inches='tight', dpi=300)
        # Show the plot
        plt.show()
```

Classification Report (Hybrid CNN-FNN)

Class Names / Scores	accuracy	precision	recall	f1-score
airplane	81.6	71.64	81.6	76.3
automobile	80.5	91.06	80.5	85.46
bird	60.0	67.34	60.0	63.46
cat	54.8	48.62	54.8	51.53
deer	67.2	71.41	67.2	69.24
dog	65.2	60.26	65.2	62.63
frog	69.9	89.5	69.9	78.5
horse	80.3	73.2	80.3	76.59
ship	79.8	91.3	79.8	85.17
truck	88.7	74.92	88.7	81.23