Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3207	_К работе допущен	
Студент	Путинцев Данил Денисович	_Работа выполнена	20.11.2024
Преподават	гель Агабабаев В. А.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.05

Исследование колебаний физического маятника

1. Цель работы.

1. Изучение характеристик затухающих колебаний физического маятника.

2. Задачи, решаемые при выполнении работы.

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

3. Объект исследования.

Физический маятник

4. Метод экспериментального исследования.

- Измерение периода N числа колебаний маятника с разными положениями груза, параллельно отмечая время, когда амплитуда отклонения маятника от равновесного положения будет равна 25, 20, 15, 10 и 5.
- Построение графиков зависимостей амплитуды колебаний от времени и квадрата периода от момента инерции.
- Определение, какой тип трения играет главную роль в затухании колебаний: сухое трение или вязкое.
- Вычисление экспериментальной и теоретической приведенной длины маятника при

разных его конфигурациях.

5. Рабочие формулы и исходные данные.

Зависимость логарифма отношения амплитуд от времени

$$ln\frac{A}{A_0} = -\beta t,$$

Зависимость амплитуды колебаний от ширины зоны застоя

$$A(t = nT) = A_0 - 4n\Delta\varphi_3.$$

Расстояния центров грузов от оси вращения

$$R = l_1 + (n-1)l_0 + b/2$$

Момент инерции грузов

$$I_{\rm rp} = m_{\rm rp} ({R_{\rm Bepx}}^2 + {R_{\rm HMK}}^2 + 2{R_{\rm fok}}^2).$$

Период колебаний маятника от момента инерции

$$T = 2\pi \sqrt{rac{I}{mgl}}.$$

Приведенная длина маятника от момента инерции

$$l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l.$$

6. Измерительные приборы.

Таблица 1: Характеристики средств измерения

№ п/п	Наименование средства измерения	Предел измерений	Цена деления	Погрешность прибора
1	Секундомер	356400 с	0.01 c	0.01 c
2	Шкала	60°	1°/дел.	1°

	Параметры установки					
1.	Масса каретки	(47,0 ± 0,5) г				
2.	Масса шайбы	(220,0 ± 0,5) Γ				
3.	Масса грузов на крестовине	(408,0 ± 0,5) Γ				
4.	Расстояние от оси до первой риски	(57,0 ± 0,5) мм				

5.	Расстояние между рисками	(25,0 ± 0,2) мм
6.	Диаметр ступицы	(46,0 ± 0,5) мм
7.	Диаметр груза на крестовине	(40,0 ± 0,5) мм
8.	Высота груза на крестовине	(40,0 ± 0,5) мм

7. Схема установки.

Рис. 1. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления
- 4. Передняя крестовина

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Замеры времени 10 колебаний маятника

t ₁	18,52
t_2	18,29
t ₃	18,43

$$\bar{t} = \frac{t_1 + t_2 + t_3}{3} = \frac{18,52 + 18,29 + 18,43}{3} = 18,41 c.$$

$$T = \frac{\bar{t}}{N} = \frac{18,41}{10} = 1,841 c.$$

Таблица 2

Амплитуда	30°	25°	20°	15°	10°	5°
отклонения Время, с.						
t_1	0	41,29	91,76	148,44	210	286,55
t_2	0	43,15	87,43	142,8	207,23	285,95
t ₃	0	42,98	89,17	142,93	205,4	286,08
<u>t</u>	0	42,47	89,45	144,72	207,54	286,19

Таблица 3

Положение боковых грузов	t ₁	t_2	t ₃	<i>t</i> ⁻	Т
1 риска	16,08	16,37	16,49	16,31	1,631
2 риски	17,26	17,48	17,31	17,35	1,735
3 риски	18,34	18,39	18,43	18,39	1,839
4 риски	19,91	19,76	19,71	19,79	1,979
5 рисок	21,19	20,85	20,99	21,01	2,101
6 рисок	22,73	22,42	23,07	22,74	2,274

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

t	Α	In(A/A ₀)
0	$A_0 = 0,13$	0,000
42,47	0,12	-0,092
89,45	0,11	-0,198
144,72	0,10	-0,320
207,54	0,08	-0,463
286,19	0,07	-0,633

$$\beta = \frac{\sum_{i=1}^{5} t_i \ln(\frac{A_i}{A_0})}{\sum_{i=1}^{5} t_i^2} = 0,00222 c^{-1}$$

$$\theta = \frac{1}{\beta} = 450.45 c$$

Таблица 4

Риски	1	2	3	4	5	6
R _{верх}			0.0	77		
R _{нижн}	0.202					
R _{60K}	0.077	0.102	0.127	0.152	0.177	0.202
I _{rp}	0.024	0.028	0.032	0.038	0.045	0.052
I	0.032	0.036	0.040	0.046	0.053	0.060

Іпр эксп	0,674	0,762	0,857	0.992	1.118	1,31
І _{пр теор}	0.685	0.771	0.857	0,985	1.135	1.285

$$T^2 = 4\pi^2 \frac{I}{mgl}$$

$$ml = \frac{4 \pi^2 \sum_{i=1}^{6} I_i^2}{g \sum_{i=1}^{6} I_i T_i^2} = 0,0467 \, \kappa z \cdot M$$

$$l_{meop} = \frac{ml}{4 m_{zp}} = \frac{0,0467}{4*0,408} = 0,0286 \,\text{M}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

Рисунок 1: График зависимости амплитуды от времени

Рисунок 2: График зависимости квадрата периода от момента инерции

12. Окончательные результаты.

	- ,					
Риски	1	2	3	4	5	6
I _{пр эксп}	0,674	0,762	0,857	0.992	1.118	1,31
І _{пр теор}	0.685	0.771	0.857	0,985	1.135	1.285

13. Выводы и анализ результатов работы.

В ходе лабораторной работы были исследованы характеристики затухающих колебаний физического маятника. При последовательном измерении времени, когда амплитуда колебаний снижалась до 25°, 20° и так далее, был построен график зависимости амплитуды от времени (см. рисунок 1). Этот график продемонстрировал экспоненциальный характер, что указывает на преобладание вязкого трения в данных колебаниях, а не сухого. Коэффициент затухания составил β = 0,00222 c⁻¹, а время затухания θ равно 450 с. Также были определены экспериментальные (Іпр эксп) и теоретические (Іпр теор) значения приведенной длины, которые представлены в последних столбцах таблицы 4.