

凸函数 (Convex Function) (1)

张伯雷

南京邮电大学计算机学院

https://bolei-zhang.github.io/course/opt.html

bolei.zhang@njupt.edu.cn

仿射集、凸集、凸锥

• 仿射集

• 一个集合C是仿射集,则连接集合内任意两点的直线也在仿射集内 $\forall x_1, x_2 \in C \Rightarrow x = \theta x_1 + (1 - \theta)x_2 \in C$

• 凸集

• 一个集合C是凸集,则集合中任意两点所组成的线段仍然在该集合中 $\forall x_1, x_2 \in C, 0 \le \theta \le 1. \Rightarrow \theta x_1 + (1 - \theta)x_2 \in C$

• 凸锥

• 一个集合C是凸锥,则集合中任意两点的非负组合仍然在集合中 $\forall x_1, x_2 \in \mathbb{C} \Rightarrow \theta_1 \geq 0, \theta_2 \geq, x = \theta_1 x_1 + \theta_2 x_2 \in \mathbb{C}$

几种重要的凸集

- 超平面、半空间
- 多面体
- 对称半正定矩阵集合
- 球、椭球

凸集的证明

- 1. 根据定义:集合C中任意两点所组成的线段仍然在该集合中 $x_1, x_2 \in C, 0 \le \theta \le 1. \Rightarrow \theta x_1 + (1-\theta)x_2 \in C$
- 2.集合 C 可由简单的凸集(超平面、半空间、范数球等) 经过保凸运算后得到
 - 交集
 - 仿射变换

目录

- 凸函数的定义
- 常见的凸函数

定义1

• 对于一个函数 $f: \mathbb{R}^n \to \mathbb{R}$, 如果dom f 为凸集, 且

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

对所有的 $x,y \in \text{dom} f$, $0 \le \theta \le 1$ 成立,则f为(下)凸函数

连接凸函数的图像上任 意两点的线段都在函数 图像上方

- f是凸函数,则-f是凹函数
- 如果domf 是凸集,且

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

对所有的 $x,y \in \text{dom} f$, $x \neq y$, $0 < \theta < 1$ 成立,则f是严格凸函数

定义2

- f是凸函数的充分必要条件为: $\forall x,v \in dom f, g(t) = f(x + tv)$ 是凸函数
- 证明

定义3:一阶条件

• 可微: 如果domf为开集, 且函数的导数

$$\nabla f(x) = (\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n})$$

对所有定义域中的值都存在,则函数f可微

• 一阶条件:对于可微函数f,如果dom f为凸集,则f为凸函数当且仅当

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \text{dom } f$

值的低估

一阶条件的证明

凸函数的最小值

• 假设对于凸函数f, 存在某个 x_0 , 使得 $\nabla f(x_0) = 0$

则对任意的y, $f(y) \ge f(x_0)$

定义4: 二阶条件

• 二阶可微: 如果dom f 为开集,且函数的Hessian矩阵满足 $\nabla^2 f(x) \in S^n$

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, i, j = 1, ..., n$$

对所有定义域中的值都存在,则函数f二阶可微

- 二阶条件:对于二阶可微函数f,如果定义域为凸集
 - f为凸函数当且仅当

$$\nabla^2 f(x) \succeq 0 \quad \text{ for all } x \in \text{dom } f$$

- 如果对所有定义域内的x满足 $\nabla^2 f(x) > 0$,则f为严格凸函数
- 几何解释

目录

- 凸函数的定义
- 常见的凸函数

一维空间举例

• 凸函数

• 仿射函数: $ax + b, \forall a, b \in \mathbb{R}$

指数函数: e^{ax}, ∀a, b ∈ R

• 幂函数: x^a on R_{++} , $\forall a \ge 1$ or $a \le 0$

• 负熵: xlogx on R++

• 凹函数

• 仿射函数: *ax* + *b*, ∀*a*, *b* ∈ R

• 幂函数: x^{α} on $R_{++}, \forall 0 \leq \alpha \leq 1$

• 对数函数: logx on R++

向量范数(norm)

• 范数是一个函数p, 满足以下性质:

- 非负性: $\forall x \in X, p(x) \geq 0$
- 齐次性: p(sx) = |s|p(x)
- 正定性: p(x) = 0 if f(x) = 0
- 三角不等式: $p(x + y) \le p(x) + p(y)$

• 常见的范数函数

- L1 范数: $||x||_1 = |x_1| + |x_2| + \dots + |x_n|$
- L2范数: $||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$
- l_p 范数: $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$
- l_{∞} 范数: $||x||_{\infty} = \max(|x_1|, ..., |x_n|)$

多维空间举例

- 多维向量 \mathbb{R}^n
 - 仿射函数: $f(x) = a^{T}x + b$
 - 范数函数: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ for $p \ge 1$;
 - 证明

- 极大值函数: $f(x) = \max\{x_1, ..., x_n\}, x \in \mathbb{R}^m$
 - 证明

• L0范数(作业): x中非零元素的个数

例-二次函数

• 二次函数: $f(x) = \frac{1}{2}x^T P x + q^T x + r, P \in S^n$

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

当P为半正定矩阵 (P≥0) 时为凸函数

• 最小二乘目标函数: $f(x) = ||Ax - b||_2^2$ $\nabla f(x) = 2A^T(Ax - b), \quad \nabla^2 f(x) = 2A^TA$ 对任意的A都为凸函数

• (作业)二次函数比线性函数: $f(x,y) = x^2/y$ 对所有的y > 0都为凸函数

例

• log-sum-up (极大值函数的解析逼近)

$$f(x) = \log(e^{x_1} + \dots + e^{x_n}), x \in \mathbb{R}^m$$

- 性质: $\max\{x_1, ..., x_n\} \le f(x) \le \max\{x_1, ..., x_n\} + \log n$
- 证明

作业

• 1: $f(x) = x^{-2}, x \neq 0$, 是否为凸函数, 请说明理由

• 2: 0范数: ||x||₀ = x中非零元素的个数, 是否为范数,是否为凸函数,写出证明过程

• 3. 求证: $f(x,y) = x^2/y$ 对所有的y > 0都为凸函数

• 4^* . 已知 $\forall x, v \in dom f, g(t) = f(x + tv)$ 是凸函数, 求证f是凸函数