机器学习笔记

Notes on Machine Learning

J.R.Tsien jade.ray.tsien@gmail.com

目 录

第1章	绪论	1
1.1	梯度下降法(gradient descent)	1
1.2	2 牛顿法和拟牛顿法	1
	1.2.1 牛顿法(Newton Method)	1
	1.2.2 拟牛顿法(Quasi Newton Method)	2
1.3	3 矩阵分析(matrix analysis)	2
	1.3.1 迹(Trace)和导数(matrix derivatives)	2
1.4	· 非线性规划	4
1.5	5 泛函分析	4
1.6	5 常用不等式	4
	1.6.1 柯西不等式(Cauchy Inequality)	4
	1.6.2 赫尔德不等式(Hölder Inequality)	4
	1.6.3 闵可夫斯基不等式(Minkowski Inequality)	4
第2章	回归分析	6
2.1	线性回归	6
	2.1.1 直接求解	6
	2.1.2 牛顿法(Newton's Method)	7
	2.1.3 批处理梯度下降法(batch gradient descent)	8
	2.1.4 随机梯度下降法(stochastic gradient descent)	8
2.2	2 局部加权线性回归(LWR)	8
2.3	3 逻辑斯蒂回归	9

第3章	K近邻	10
3.1	模型	10
3.2	2 策略	10
3.3	5 算法	10
第4章	朴素贝叶斯法	11
第5章	决策树	12
第6章	逻辑斯谛回归和最大熵	13
第7章	支持向量机	14
第8章	提升方法	15
第9章	EM方法	16
9.1	Jensen不等式	16
第10章	隐马尔可夫模型	17
参考文	献献	18

第1章 绪论

§ 1.1 梯度下降法 (gradient descent)

梯度下降法或者最速下降法(steepest descent)是求解无约束最优化问题的方法。特点是实现起来比较简单。其原理是如果函数f(x)在点a处可微且有定义,那么函数f(x)在a点沿着梯度的反方向,即 $-\nabla f(a)$,下降最快。

所以,可以从一个初始值 x_0 出发,沿梯度反方向迭代的更新解。如下

$$x_{n+1} = x_n - \alpha \nabla f(x_n)$$

直到 x_n 的值不再发生变化,或者变化很小,此时, x_n 等于或者接近f(x)的极小值。 α 称为学习率(learning rate)。 α 值过大,可能会在最小值附近振荡。 α 值过小,可能学习的时间比较长。同时, α 值的选取可以是预先设定的固定值,也可以是根据解更新的情况变化的值。

梯度下降法的一个问题在于,能否得到最优解取决于初始值的选取。

§ 1.2 牛顿法和拟牛顿法

1.2.1 牛顿法(Newton Method)

牛顿法,或牛顿-拉夫逊法(Newton-Raphson Method)也是求解无约束优化问题的常用方法,收敛速度比批处理梯度下降法快,但是一次迭代的代价比较高,因为需要计算矩阵的逆。

考虑无约束的最优化问题

$$\min_{x \in \mathbb{R}^n} f(x)$$

假设f(x)有二阶连续偏导数,且设第k次迭代的解为 x_k ,将f(x)在点 x_k 处进行二阶泰勒展开

$$f(x) = f(x_k) + (x - x_k)f'(x_k) + \frac{1}{2}(x - x_k)^2 f''(x_k)$$

函数f(x)在下次迭代点 x_{k+1} 处取得极值的必要条件是 $f'(x_{k+1}) = 0$,即

$$f'(x)|_{x_{k+1}} = f'(x_k) + (x_{k+1} - x_k)f''(x_k) = 0$$

解上式得到

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

迭代停止的条件可以设定为 $f'(x_k) < \epsilon$ 。

当x是向量的时候,其一阶导数要修改成梯度的形式,二阶导数修改成其Hessian矩阵,即

$$f(x) = f(x_k) + (x - x_k)\nabla_x f(x_k) + \frac{1}{2}(x - x_k)^T H(x_k)(x - x_k)$$

当 $H(x_k)$ 是正定矩阵时,f(x)的极值为极小值。其更新公式是

$$x_{k+1} = x_k - H^{-1}(x_k) \nabla_x f(x_k)$$

迭代终止的条件 $\nabla_x f(x_k) < \epsilon$.

1.2.2 拟牛顿法(Quasi Newton Method)

§ 1.3 矩阵分析(matrix analysis)

1.3.1 迹(Trace)和导数(matrix derivatives)

 $\diamondsuit f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$ 表示将 $m \times n$ (m-by-n) 矩阵映射为实数的函数。定义f对矩阵A的导数

$$\nabla_{\mathbf{A}} f(\mathbf{A}) = \begin{pmatrix} \frac{\partial f(\mathbf{A})}{\partial a_{11}} & \dots & \frac{\partial f(\mathbf{A})}{\partial a_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{A})}{\partial a_{n1}} & \dots & \frac{\partial f(\mathbf{A})}{\partial a_{nn}} \end{pmatrix}$$

矩阵的迹(trace)表示的是矩阵的对角元素的和,

$$tr\mathbf{A} = \sum_{i=1}^{n} a_{ii}$$

假设A, B, C, D均是方阵

$$trABCD = trDABC = trCDAB = trBCDA \tag{1.1}$$

循环将最右边矩阵放到最左边。假设a是实数

$$trA = trA^T (1.2)$$

$$tr(A+B) = trA + trB \tag{1.3}$$

$$traA = atrA \tag{1.4}$$

下面的一些公式出自Andrew Ng的机器学习讲义,这里证明一下。

$$\nabla_A tr A B = B^T \tag{1.5}$$

$$\nabla_{A^T} f(A) = (\nabla_A f(A))^T \tag{1.6}$$

$$\nabla_A tr A B A^T C = C A B + C^T A B^T \tag{1.7}$$

$$\nabla_A |A| = |A| (A^{-1})^T \tag{1.8}$$

证明 (1) $(\nabla_A tr AB)_{ij} = \frac{\partial tr AB}{\partial a_{ij}} = \frac{\partial \sum_m \sum_k a_{mk} b_{km}}{\partial a_{ij}}$, 只有当m = i, k = j时才有 a_{ij} 的系数,所以 $(\nabla_A tr AB)_{ij} = b_{ji}$,即证。

(2)
$$(\nabla_{A^T} f(A))_{ij} = \frac{\partial f(A)}{\partial a_{ji}}, \quad \square \stackrel{}{\text{iff}} .$$

(3)
$$trABA^TC = \sum_m \sum_k \sum_t \sum_s a_{mk} b_{kt} a_{st} c_{sm}$$
, 所以

$$(\nabla_A tr A B A^T C)_{ij} = \frac{\partial \sum_m \sum_k \sum_t \sum_s a_{mk} b_{kt} a_{st} c_{sm}}{\partial a_{ij}}$$

$$=\sum_{m}\sum_{k}\sum_{t}\sum_{s}\frac{\partial a_{mk}}{\partial a_{ij}}b_{kt}a_{st}c_{sm}+\sum_{m}\sum_{k}\sum_{t}\sum_{s}a_{mk}b_{kt}\frac{\partial a_{st}}{\partial a_{ij}}c_{sm}$$

左边, 令m = i, k = j, 右边, 令s = i, t = j,

$$(\nabla_A tr A B A^T C)_{ij} = \sum_t \sum_s b_{jt} a_{st} c_{si} + \sum_m \sum_k a_{mk} b_{kj} c_{im}$$
$$= \sum_t \sum_s b_{jt} a_{st} c_{si} + \sum_m \sum_k c_{im} a_{mk} b_{kj}$$
$$= (B A^T C)_{ji} + (C A B)_{ij}$$
$$= (C^T A B^T + C A B)_{ij}$$

§ 1.4 非线性规划

§ 1.5 泛函分析

§ 1.6 常用不等式

1.6.1 柯西不等式(Cauchy Inequality)

柯西不等式,又称柯西-施瓦茨不等式(Cauchy-Schwarz inequality)。对于一个内积空间所有向量x和y,

$$|\langle oldsymbol{x}, oldsymbol{y}
angle|^2 \leq \langle oldsymbol{x}, oldsymbol{x}
angle \cdot \langle oldsymbol{y}, oldsymbol{y}
angle$$

其中 $\langle \cdot, \cdot \rangle$ 表示内积(点积),当且仅当x与y线性相关时等式成立。

对于欧几里得空间№2,

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right)$$

当且仅当 $\frac{x_1}{y_1} = \frac{x_2}{y_2} = \cdots = \frac{x_n}{y_n}$ 时等式成立。

1.6.2 赫尔德不等式(Hölder Inequality)

赫尔德不等式揭示了 L^p 空间的相互关系。设S为测度空间, $1 \le p, q \le \inf$,且 $\frac{1}{p} + \frac{1}{q} = 1$,若 $f \in L^p(S)$, $g \in L^q(S)$,则 $fg \in L^1(S)$,且

$$\parallel fg \parallel_1 \leq \parallel f \parallel_p \parallel g \parallel_q$$

写成序列或向量的形式

$$\sum_{i=1}^{n} |a_i b_i| \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |b_i|^q\right)^{\frac{1}{q}}$$

1.6.3 闵可夫斯基不等式(Minkowski Inequality)

闵可夫斯基不等式表明 L^p 空间是一个赋范向量空间。设S是一个度量空间, $f,g \in L^p(S), 1 \le p \le \inf$,那么 $f + g \in L^p(S)$,有

$$\parallel f + g \parallel_p \leq \parallel f \parallel_p + \parallel g \parallel_p$$

写成序列或向量的形式

$$\left(\sum_{k=1}^{n}|x_k+y_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n}|x_k|^p\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}|y_k|^p\right)^{\frac{1}{p}}$$

第2章 回归分析

给定数据集

$$T = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\},\$$

其中, $x^{(i)}=(x_0,x_1,\cdots,x_n)\in\mathcal{X}=\mathbb{R}^{n+1}$, $y^{(i)}\in\mathcal{Y}$, $i=0,2,\cdots,m$,且 $x_0=1$ (表示截距,intercept term)。回归分析的任务是找出输入x 与输出y之间的关系。

§ 2.1 线性回归

假设输入与输出之间满足的关系是线性的, theta称为参数(parameters)或者权重(weights)

$$y = h_{\theta}(x) = \theta^T x = \sum_{i=0}^{n} \theta_i x_i, \qquad \theta \in \mathbb{R}^{n+1}$$

对于这个模型,需要有一个损失函数(cost function)来表示其对训练数据的拟合程度

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

这个被称为最小二乘方效用函数(least-square cost function)。

则这个问题的求解可以表述为如下的无约束最优化问题

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

2.1.1 直接求解

直接求 $J(\theta)$ 对 θ 的极值。首先定义设计矩阵(design matrix)X

$$X = \begin{bmatrix} (x^{(1)})^T & (x^{(2)})^T & \cdots & (x^{(m)})^T \end{bmatrix}^T$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & \cdots & y^{(m)} \end{bmatrix}^T$$

则有

$$X\theta - Y = \begin{bmatrix} h_{\theta}(x^{(1)}) - y^{(1)} & \cdots & h_{\theta}(x^{(m)}) - y^{(m)} \end{bmatrix}^T$$

考虑到 $z^T z = \sum_i z_i^2$,有

$$J(\theta) = \frac{1}{2} (X\theta - Y)^T (X\theta - Y) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

使用公式 $\nabla_A tr ABA^T C = CAB + C^T AB^T$, 且由于 $J(\theta)$ 只是个实数, 所以

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} tr J(\theta)$$
$$= X^{T} X \theta - X^{T} Y$$

令 $\nabla_{\theta}J(\theta)=0$ 得到

$$\theta = (X^T X)^{-1} X^T Y$$

不过,这个公式用来直接计算 θ 不现实,因为矩阵求逆比较麻烦,同时可能会是数值不稳定的矩阵。

2.1.2 牛顿法 (Newton's Method)

已知最优化问题

$$\min_{\theta} J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

函数 $J(\theta)$ 的Hessian矩阵是(注意 $x^{(i)}$ 和 θ 都是列向量)

$$H(\theta) = \begin{bmatrix} \frac{\partial^2 J(\theta)}{\partial \theta_1 \partial \theta_1} & \frac{\partial^2 J(\theta)}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 J(\theta)}{\partial \theta_1 \partial \theta_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 J(\theta)}{\partial \theta_n \partial \theta_1} & \frac{\partial^2 J(\theta)}{\partial \theta_n \partial \theta_2} & \cdots & \frac{\partial^2 J(\theta)}{\partial \theta_n \partial \theta_n} \end{bmatrix} = \sum_{i=1}^m x^{(i)} (x^{(i)})^T = X^T X$$

又, $J(\theta) = \frac{1}{2}(X\theta - Y)^T(X\theta - Y)$,所以其梯度

$$\nabla_{\theta} J(\theta) = X^T X \theta - X^T Y$$

代入牛顿法的迭代公式

$$\theta_{n+1} = \theta_n - (X^T X)^{-1} (X^T X \theta_n - X^T Y) = (X^T X)^{-1} X^T Y$$

2.1.3 批处理梯度下降法(batch gradient descent)

 $J(\theta)$ 对 θ 的梯度

$$\frac{\partial J(\theta)}{\partial \theta} = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})x^{(i)}$$

所以, 更新公式为

$$\theta_{n+1} = \theta_n - \alpha \frac{\partial J(\theta)}{\partial \theta}$$
$$= \theta_n - \alpha \sum_{i=1}^m (h_{\theta_n}(x^{(i)}) - y^{(i)}) x^{(i)}$$

这个公式更新时每次都需要全部的训练数据集,所以称之为批处理梯度下降法。当数据集比较 大时,进行一次更新就比较耗费时间。

2.1.4 随机梯度下降法 (stochastic gradient descent)

随机梯度下降法,也称增量梯度下降(incremental gradient descent),一次使用一条训练数据来更新参数。算法如下

$$\theta := \theta - \alpha(h_{\theta}(x^{(i)}) - y^{(i)})x^{(i)}, i = 1, 2, \cdots, m$$

随机梯度下降法更新的速度比梯度下降法快,但可能收敛不到最优值,不过通过调节学习率可以使得算法得到较好的解。

§ 2.2 局部加权线性回归(LWR)

线性回归的方法是参数学习算法(parametric learning algorithm),其参数的个数,即特征的个数是固定的,一旦算法学习完成,训练数据集就不再对参数产生影响。但是,当选取的参数过多时,可能存在过拟合问题,而当选取的参数过少时,存在欠拟合问题。局部加权线性回归(local weighted linear regression,LWR)是一种非参学习算法(non-parametric learning algorithm),其参数是随着预测点的不同而发生变化的,每有一个新的预测点,就需要整个训练数据集重新参与学习。所谓局部,是因为目标函数的逼近仅仅根据查询点附近的数据。所谓加权,是因为每个训练样例的贡献都是由它与查询点间的距离加权的。而回归是指数值逼近的方法。

线性回归的优化目标是

$$\min_{\theta} \sum_{i=1}^{m} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$

而LWR的优化目标是在上述公式上增加一个距离乘法项

$$\min_{\theta} \sum_{i=1}^{m} w^{(i)} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$

一个相对标准的权重选择是

$$w^{(i)} = exp(-\frac{(x^{(i)} - x)^2}{2\tau^2})$$

其中,x是要预测的输入数据, τ 称为带宽(bandwidth)。权重项使得离输入数据x越近的点影响越大。

非参数学习算法在局部预测能力上有时要比参数学习算法好,但是缺点是每次做预测都要重新学习,耗费时间空间。

§ 2.3 逻辑斯蒂回归

第3章 K近邻

- § 3.1 模型
- § 3.2 策略
- § 3.3 算法

第4章 朴素贝叶斯法

第5章 决策树

第6章 逻辑斯谛回归和最大熵

第7章 支持向量机

第8章 提升方法

第9章 EM方法

§ 9.1 Jensen不等式

第10章 隐马尔可夫模型

参考文献

- [1] 李航著. 《统计学习方法》. 北京:清华大学出版社,2012,3
- [2] Jiawei Han, Micheline Kamber, Jian Pei 著.范明, 孟小峰译. 《数据挖掘: 概念与技术》. 机械工业出版社, 2012, 8
- [3] Tom M. Mitchell 著.曾华军等译. 《机器学习》.机械工业出版社, 2003, 1
- [4] Andrew Ng, 《Machine Learning》公开课讲义