

Hierarchical Hourglass Convolutional Network for Efficient Video Classification Yi Tan, Yanbin Hao*, Hao Zhang, Shuo Wang, Xiangnan He*

Motivation:

Video dynamics result in misalignment of visual clues over temporal dimension tackle visual displacements with hourglass shaped receptive field

Rigid temporal Conv may lose the target motion area

Proposed framework:

Hourglass Convolution (HgC): enlarging spatial receptive field for temporal neighbors

 $HgC(\mathbf{X})_{t,h,w} = \sum_{i} \alpha_i \cdot f(\mathbf{X}_{t+i,:,:}; W_{p\cdot |i|+1,p\cdot |i|+1})_{h,w}, f(.)$ denotes spatial aggregation(e.g. conv & pool),

temporal offsets temporal receptive field Size of expanded spatial receptive field, *p* denotes the slope of expansion

> By expanding spatial receptive field, HgC captures the spatialtemporal dynamics which vary their location, scale and pattern

Comparison between HgC and 1D temporal conv

Method	$f(\bullet)$	Top-1	#P	FLOPs	
TSN		19.7	23.9M	32.9G	
R(2+1)D		46.0	23.9M	32.9G	
HgC-ResNet	AvgPool2D	46.4	23.9M	32.9G	
	Conv2D	47.0	23.9M	33.1G	

Architecture:

- Capture motion feature in different scales
 - a) Tiny motion between consecutive frames (Frame Motion Capture Block)
 - b) Large movement between key frames (Clip Motion Capture Block)

FMCB and its effectiveness

method		top-1	top-5	#p	FLOPs
w/o FN	ИСВ	45.6	74.2	23.9M	32.9G
	p=2	52.3	80.3	23.9M	33.6G
FMCB	p=4	52.5	80.5	23.9M	33.6G
	p=6	52.3	80.3	23.9M	33.6G

CMCB and its effectiveness

meth	od	top-1	top-5	#p	FLOPs
w/o CMCB		52.5	80.5	23.9M	33.6G
	p=2	53.6	81.4	24.1M	33.8G
CMCB	p=4	53.4	81.4	24.1M	33.8G
	p=6	53.6	81.8	24.1M	33.8G

Comparison with SOTA:

Something-Something V1&V2

Method	Backbone	Keyframes×Views	FLOPs	V1		V2	
- Wicthou				Top-1	Top-5	Top-1	Top-5
I3D [3]			153.0G×2	41.6	72.2	_	
NLI3D [51]	3DResNet-50	32×2	168.0G×2	44.4	76	_	_
NLI3D+GCN [52]			303.0G×2	46.1	76.8		_
GST [34]	ResNet-50	16×1	59.0G×1	48.6	77.9	62.6	87.9
TSM [30]	ResNet-50	16×1×2	65.8G×1×2	48.4	78.1	63.1	88.2
SDA-TSM [44]	Kesivet-30	16×1×2	67.8G×1×2	52.2	80.9	64.7	89.5
TIN [39]	ResNet-50	16×1	67.0G×1	47	76.5	60.1	86.4
TEINet [31]	ResNet-50	16×1	66.0G×1	49.9	·	62.1	_
TAM [33]	ResNet-50	16×1	66.0G×1	47.6	77.7	62.5	87.6
TEA [27]	ResNet-50	16×30	70.0G×30	52.3	81.9	_	
STM [22]	ResNet-50	8×30	33.3G×30	49.2	79.3	62.3	88.8
STM [22]	Residet-30	16×30	66.5G×30	50.7	80.4	64.2	89.8
MoViNet-A3 [24]	_	50	23.7G	 2	· —	64.1	88.8
TDN [49]	ResNet-50	(8+16)×1	108.0G×1	55.1	82.9	67.0	89.5
SELFYNet [25]		8×1	37.0G×1	52.5	80.8	64.5	89.4
SELFYNet [25]	ResNet-50	16×1	77.0G×1	54.3	82.9	65.7	89.8
SELFYNet [25]		(8+16)×1	114.0G×1	55.8	83.9	67.4	91.0
TimeSformer-HR [2]		16×3	1703G×3	_	_	62.5	
ViViT-L [1]	Tuenefermen	32×4	903G×4	_	; <u>—</u>	65.4	89.8
MViT-B [8]	Transformer	64×3	455G×3	_	_	67.7	90.9
Video-Swin-B [32]		16×3	321G×3	— 7	; <u>—</u>	69.6	92.7
$\mathbf{H}^2\mathbf{CN}(\text{ours})$		8×1	33.8G×1	53.6	81.4	65.2	89.7
$\mathbf{H}^2\mathbf{CN}(\text{ours})$	ResNet-50	16×1	67.6G×1	55.0	82.4	66.4	90.1
$\mathbf{H}^2\mathbf{CN}(\text{ours})$		(8+16)×1	101.4G×1	56.7	83.2	67.9	91.2
P							

Kinetics-400

unetics-400							
	Method	Backbone	Frames	GFLOPs	Top1	Top5	
	TSN [50]	InceptionV3	25	80×10	72.5	90.2	
	TSM [30]	ResNet50	16	65×30	74.7	91.4	
	I3D [3]	InceptionV1	64	_	72.1	90.3	
	R(2+1)D [47]	ResNet34	32	152×10	74.3	91.4	
	S3D-G [54]	InceptionV1	64×30	71.4×30	74.7	93.4	
	NL-I3D [51]	ResNet50	32	282×10	74.9	91.6	
	TEA [27]	ResNet50	16	70×30	76.1	92.5	
	TANet [33]	ResNet50	16	86×12	76.9	92.9	
	SmallBigNet [26]	ResNet50	8	57×30	76.3	92.5	
	SlowFast [12]	ResNet50	8+32	65.7×30	77.0	92.6	
	X3D-L [11]	_	16	24.8×30	77.5	92.9	
	MoViNet-A5 [24]	_	120	289	78.2	_	
	SELFYNet [25]	ResNet50	16	77×30	77.1	_	
	TDN [49]	ResNet50	8+16	108×30	78.4	93.6	
	H ² CN (Ours)	ResNet50	8	33.8×30	76.9	93.0	
	$\mathbf{H}^2\mathbf{CN}$ (Ours)	ResNet50	16	67.6×30	77.9	93.3	
	H ² CN (Ours)	ResNet50	8+16	101.4×30	78.7	93.6	

Visualization

Motion information on different levels works in a complementary way

➤ Spatiotemporal response of TSM (Backbone), H²CN w/o CMCB, and H²CN

Contact & Resources

ty133@mail.ustc.edu.cn, haoyanbin@hotmail.com {zhanghaoinf, shuowang.hfut, xiangnanhe}@gmail.com

