Let X_1, X_2, \ldots be independent random variables with distribution $Ber(\theta)$ under the model P_{θ} , and let $\mathcal{P} = \{P_{\theta} : 0 \leq \theta \leq 1\} \simeq [0, 1]$.

$$A_5 = \{X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 1, X_5 = 0\} = \langle 10110 \rangle$$

$$lik(\theta) \propto \theta^3 (1-\theta)^2$$

$$\widehat{\theta}_{ML} = \frac{3}{5} = 0.6$$

$$LR([0,\frac{1}{2}]) \approx 0.904$$

$$lik(\theta) \propto \theta^{16} (1 - \theta)^4$$

$$\widehat{\theta}_{ML} = \frac{16}{20} = 0.8$$

$$LR([0,\frac{1}{2}]) \approx 0.021$$

$$L: \mathcal{P} \times [0,1] \to [0,\infty)$$
 defined by $L(P_{\theta},d) = \left\{ \begin{array}{ll} 5 \left(d - \theta \right) & \text{if } d \geq \theta \\ \theta - d & \text{if } d \leq \theta \end{array} \right.$

minimax: $d = \frac{5}{6}0 + \frac{1}{6}1 = \frac{1}{6} \approx 0.167$

LRM_{0.15}: $d \approx \frac{5}{6} 0.595 + \frac{1}{6} 0.933 \approx 0.651$

MLD: $d = \widehat{\theta}_{ML} = 0.8$

MPL: $d \approx 0.716$

$$d = 0.7 d \approx 0.716$$

d = 0.72

PRE-DATA **POST-DATA** (random variable X) (X = x observed)**BAYESIAN** $E_{\pi}[E_{P}[L(P,\delta(X))]]$ $E_{\pi}[lik(P) L(P,d)]$ (prior π on \mathcal{P}) (temporal coherence) **NON-BAYESIAN** $\sup lik(P) L(P,d)$ $\sup E_P[L(P,\delta(X))]$ $\leftrightarrow \rightarrow$ (prior ignorance) $P \in \mathcal{P}$ $P \in \mathcal{P}$ (minimax risk) (MPL)