Chapter 3: Frequent Itemset Mining & Association Rules

崔金华

邮箱: jhcui@hust.edu.cn

主页: https://csjhcui.github.io/

办公地址: 东湖广场柏景阁1单元1568 室

Association Rule Discovery

Supermarket shelf management – Market-basket model:

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data collected with barcode scanners to find dependencies among items
- A classic rule:
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don't be surprised if you find six-packs next to diapers!

The Market-Basket Model

- A large set of items
 - e.g., things sold in a supermarket
- A large set of baskets
- Each basket is a small subset of items
 - e.g., the things one customer buys on one day
- Want to discover association rules
 - People who bought {x,y,z} tend to buy {v,w}
 - Amazon!

Input:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output:

Rules Discovered:

```
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

Applications – (1)

- Items = products; Baskets = sets of products someone bought in one trip to the store
- Real market baskets: Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items
 - Suggests tie-in "tricks", e.g., run sale on diapers and raise the price of beer
 - Need the rule to occur frequently, or no \$\$'s
- Amazon's people who bought X also bought Y

Applications – (2)

- Baskets = sentences; Items = documents containing those sentences
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be "in" baskets
- Baskets = patients; Items = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - But requires extension: Absence of an item needs to be observed as well as presence

More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among "items", not "baskets"
- For example:
 - Finding communities in graphs (e.g., Twitter)

Outline

First: Define

Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm + 2 refinements

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- **Support** (支持度) for itemset I: Number of baskets containing all items in I
 - (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s, then sets of items that appear in at least s baskets are called frequent itemsets

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of {Beer, Bread} = 2

Example: Frequent Itemsets

- Items = {milk, coke, pepsi, beer, juice}
- Support threshold = 3 baskets

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}.

Association Rules

- Association Rules: If-then rules about the contents of baskets
- $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain j"
- In practice there are many rules, want to find significant/interesting ones!
- **Confidence** (置信度,可信度) of this association rule is the probability of j given $I = \{i_1, ..., i_k\}$

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$

Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule $X \to milk$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high
- Interest (兴趣度) of an association rule $I \rightarrow j$, difference between its confidence and the fraction of baskets that contain j:

$$Interest(I \rightarrow j) = conf(I \rightarrow j) - Pr[j]$$

• Interesting rules are those with high positive or negative interest values (usually above 0.5): {diapers}->beer, {coke}->pepsi

Example: Confidence and Interest

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Association rule: {m, b} →c
 - **Confidence = 2/4 = 0.5**
 - Interest = |0.5 5/8| = 1/8
 - Item c appears in 5/8 of the baskets
 - Rule is not very interesting!

Finding Association Rules

- Problem: Find all association rules with support $\geq s$ and confidence $\geq c$
 - Note: Support of an association rule is the support of the set of items on the left side
- Hard part: Finding the frequent itemsets!
 - If $\{i_1, i_2, ..., i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, ..., i_k\}$ and $\{i_1, i_2, ..., i_k, j\}$ will be "frequent"

$$conf(I \to j) = \frac{support(I \cup j)}{support(I)}$$

Mining Association Rules

- Step 1: Find all frequent itemsets I
 - (we will explain this next)
- Step 2: Rule generation
 - For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - Since I is frequent, A is also frequent
 - Single pass to compute the rule confidence
 - confidence($A,B \rightarrow C,D$) = support(A,B,C,D) / support(A,B)
 - **Observation:** If $A,B,C \rightarrow D$ is below confidence, so is $A,B \rightarrow C,D$
 - Output the rules above the confidence threshold

Example

```
B_1 = \{m, c, b\} B_2 = \{m, p, j\}

B_3 = \{m, c, b, n\} B_4 = \{c, j\}

B_5 = \{m, p, b\} B_6 = \{m, c, b, j\}

B_7 = \{c, b, j\} B_8 = \{b, c\}
```

- Support threshold s = 3, confidence c = 0.75
- 1) Frequent itemsets:
 - {b,m} {b,c} {c,m} {c,j} {m,c,b}
- 2) Generate rules:

■ **b** → **m**:
$$c$$
 = 4/6 **b** → **c**: c = 5/6 **b**, **c** → **m**: c = 3/5 **b**, **m** → **c**: c = 3/4 **b** → **c**, **m**: c = 3/6

Compacting the Output

- To reduce the number of rules we can post-process them and only output in step 1 (Find all frequent itemsets I):
 - Maximal frequent itemsets: No immediate superset is frequent
 - Gives more pruning

or

- Closed itemsets: No immediate superset has the same count (> 0)
 - Stores not only frequent information, but exact counts

Example: Maximal/Closed

Finding Frequent Itemsets

Itemsets: Computation Model

- Back to finding frequent itemsets
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.

Items are positive integers, and boundaries between baskets are -1.

Computation Model

- The true cost of mining disk-resident data is usually the number of disk I/Os
- In practice, association-rule algorithms read the data in passes
 - all baskets read in turn
- We measure the cost by the number of passes an algorithm makes over the data

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main-memory is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster (why?)

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items $\{i_1, i_2\}$
 - Why? Freq. pairs are common, freq. triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- Let's first concentrate on pairs, then extend to larger sets
- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent

Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of n items, generate its n(n-1)/2 pairs by two nested loops
- Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10⁵ items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 = 5*10^9$
 - Therefore, 2*10¹⁰ (20 gigabytes) of memory needed

Counting Pairs in Memory

Two approaches:

- Approach 1: Count all pairs using a matrix
- Approach 2: Keep a table of triples [i, j, c] = "the count of the pair of items {i, j} is c."
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

Note:

- Approach 1 only requires 4 bytes per pair
- Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)

Comparing the 2 Approaches

Comparing the two approaches

- Approach 1: Triangular Matrix
 - n = total number items
 - Count pair of items {i, j} only if i<j</p>
 - Keep pair counts in lexicographic order:
 - **1**,2}, {1,3},..., {1,*n*}, {2,3}, {2,4},...,{2,*n*}, {3,4},...
 - Pair $\{i, j\}$ is at position (i-1)(n-i/2) + j-1
 - Total number of pairs n(n-1)/2; total bytes= $2n^2$
 - Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count > 0)
 - Beats Approach 1 if less than 1/3 of possible pairs actually occur