2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- dual cones
- separating and supporting hyperplanes

Affine set

Line through points x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$
 with $\theta \in \mathbf{R}$

Affine set: contains the line through any two distinct points in the set

Example: solution set of linear equations $\{x \mid Ax = b\}$

conversely, every affine set can be expressed as solution set of linear equations

Convex set

Line segment between points x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad \text{with } 0 \le \theta \le 1$$

Convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$

Examples (one convex, two nonconvex sets)

Convex combination and convex hull

Convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

Convex hull: conv S is set of all convex combinations of points in S

Convex cone

Conic (nonnegative) combination of points x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$
 with $\theta_1 \ge 0$, $\theta_2 \ge 0$

Convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

Hyperplane: set of the form $\{x \mid a^Tx = b\}$ where $a \neq 0$

 x_0 is a particular element, *e.g.*,

$$x_0 = \frac{b}{a^T a} a$$

 $a^T x = b$ $a^T x = b$ if and only if $a \perp (x - x_0)$

Halfspace: set of the form $\{x \mid a^Tx \leq b\}$ where $a \neq 0$

hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(**Euclidean**) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

 $\|\cdot\|_2$ denotes the Euclidean norm

Ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with *P* symmetric positive definite

other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Principal axes

$$\mathcal{E} = \{ x \mid (x - x_{c})^{T} P^{-1} (x - x_{c}) \le 1 \}$$

Eigendecomposition: $P = Q\Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T$

- Q is orthogonal $(Q^T = Q^{-1})$ with columns q_i
- Λ is diagonal with diagonal elements $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$

Change of variables: $y = Q^T(x - x_c)$, $x = x_c + Qy$

after the change of variables the ellipsoid is described by

$$y^T \Lambda^{-1} y = y_1^2 / \lambda_1 + \dots + y_n^2 / \lambda_n \le 1$$

an ellipsoid centered at the origin, and aligned with the coordinate axes

- eigenvectors q_i of P give the principal axes of \mathcal{E}
- the width of $\mathcal E$ along the principal axis determined by q_i is $2\sqrt{\lambda_i}$

Example in \mathbb{R}^2

Exercise: give an interpretation of tr(P) as a measure of the size of

$$\mathcal{E} = \{ x \mid (x - x_{c})^{T} P^{-1} (x - x_{c}) \le 1 \}$$

Norms

Norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$ for all x
- ||x|| = 0 if and only if x = 0
- $||tx|| = |t| ||x|| \text{ for } t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

Notation

- $\|\cdot\|$ is a general (unspecified) norm
- $\bullet \ \| \cdot \|_{symb}$ is a particular norm

Frequently used norms

Vector norms ($x \in \mathbb{R}^n$)

- Euclidean norm $||x||_2 = (x_1^2 + \dots + x_n^2)^{1/2}$
- p-norm ($p \ge 1$) and ∞ -norm (Chebyshev norm)

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}, \qquad ||x||_\infty = \max_{k=1,\dots,n} |x_k|$$

• quadratic norm: $||x||_A = (x^T A x)^{1/2}$, with A symmetric positive definite

Matrix norms $(X \in \mathbf{R}^{m \times n})$

- Frobenius norm: $||X||_F = (\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2)^{1/2}$
- 2-norm (spectral norm, operator norm)

$$||X||_2 = \sup_{y \neq 0} \frac{||Xy||_2}{||y||_2} = \sigma_{\max}(X)$$

 $\sigma_{\max}(X) = (\lambda_{\max}(X^TX))^{1/2}$ is largest singular value of X

Norm balls and norm cones

Norm ball with center x_c and radius r:

$${x \mid ||x - x_{c}|| \le r}$$

norm balls are convex

Norm cone:

$$\{(x,t) \mid ||x|| \le t\}$$

- norm cones are convex
- example: second order cone (norm cone for Euclidean norm)

Polyhedra

Polyhedron: solution set of *finitely many* linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

≤ denotes componentwise inequality between vectors

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

Notation

- S^n is set of symmetric $n \times n$ matrices
- $S_{+}^{n} = \{X \in S^{n} \mid X \geq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}_{+}^{n} \iff z^{T}Xz \ge 0 \text{ for all } z$$

 \mathbf{S}_{+}^{n} is a convex cone

• $S_{++}^n = \{X \in S^n \mid X > 0\}$: positive definite $n \times n$ matrices

Example

$$\left[\begin{array}{cc} x & y \\ y & z \end{array}\right] \in \mathbf{S}_{+}^{2}$$

Operations that preserve convexity

methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

Example

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt$

for m = 2:

Affine function

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is an affine function:

$$f(x) = Ax + b$$

with $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$

• the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n$$
 convex \Longrightarrow $f(S) = \{Ax + b \mid x \in S\}$ is convex

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m$$
 convex \Longrightarrow $f^{-1}(C) = \{x \in \mathbf{R}^n \mid Ax + b \in C\}$ is convex

Examples

- scaling, translation, projection
- image and inverse image of norm ball under affine transformation

$${Ax + b \mid ||x|| \le 1}, \qquad {x \mid ||Ax + b|| \le 1}$$

• hyperbolic cone

$$\{x \mid x^T P x \le (c^T x)^2, \ c^T x \ge 0\}$$
 with $P \in \mathbb{S}^n_+$

solution set of linear matrix inequality

$$\{x \mid x_1 A_1 + \dots + x_m A_m \leq B\}$$
 with $A_i, B \in \mathbb{S}^p$

Perspective and linear-fractional function

Perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t$$
, $dom P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

Linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\}$$

image and inverse image of convex sets under linear-fractional function are convex

Example

a linear-fractional function from ${\bf R}^2$ to ${\bf R}^2$

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$
, $dom f = \{(x_1, x_2) \mid x_1 + x_2 + 1 > 0\}$

Proper cone

Proper cone: a convex cone $K \subseteq \mathbb{R}^n$ that satisfies three properties

- *K* is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)

Examples

nonnegative orthant

$$K = \mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{i} \ge 0, i = 1, \dots, n\}$$

- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0, 1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

Generalized inequality

Generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x <_K y \iff y - x \in \text{int } K$$

Examples

• componentwise inequality $(K = \mathbf{R}_{+}^{n})$

$$x \leq_{\mathbf{R}_+^n} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \leq_{\mathbf{S}^n_+} Y \quad \Longleftrightarrow \quad Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \leq_K

Properties: many properties of \leq_K are similar to \leq on \mathbf{R} , e.g.,

$$x \leq_K y$$
, $u \leq_K v \implies x + u \leq_K y + v$

Minimum and minimal elements

 \leq_K is not in general a *linear ordering*: we can have $x \not\leq_K y$ and $y \not\leq_K x$

 $x \in S$ is the minimum element of S with respect to \leq_K if

$$y \in S \implies x \leq_K y$$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies y = x$

Example $(K = \mathbb{R}^2_+)$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

Inner products

in this course we will use the following standard inner products

• for vectors $x, y \in \mathbf{R}^n$:

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n = x^T y$$

• for matrices $X, Y \in \mathbf{R}^{m \times n}$

$$\langle X, Y \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} Y_{ij} = \operatorname{tr}(X^{T} Y)$$

• for symmetric matrices $X, Y \in \mathbf{S}^n$

$$\langle X, Y \rangle = \sum_{i=1}^{n} X_{ii} Y_{ii} + 2 \sum_{i>j} X_{ij} Y_{ij} = \operatorname{tr}(XY)$$

Dual cones

Dual cone of a cone *K*:

$$K^* = \{ y \mid \langle y, x \rangle \ge 0 \text{ for all } x \in K \}$$

note: definition depends on choice of inner product

Examples

	K	K^*
nonnegative orthant	\mathbf{R}^n_+	\mathbf{R}^n_+
second order cone	$\{(x,t) \mid x _2 \le t\}$	$\{(x,t) \mid x _2 \le t\}$
1-norm cone	$\{(x,t) \mid x _1 \le t\}$	$\{(x,t) \mid x _{\infty} \le t\}$
positive semidefinite cone	\mathbf{S}^n_+	\mathbf{S}^n_+

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0$, b s.t.

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$

the hyperplane $\{x \mid a^T x = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C closed, D a singleton)

Supporting hyperplane theorem

Supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

Supporting hyperplane theorem:

there exists a supporting hyperplane at every boundary point of a convex set C