共创考研辅导中心

绝密★启用前

2019 年全国硕士研究生入学统一考试

数 学(二)

(科目代码:304)

(模拟试卷1)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

2019 考研数学模拟试卷

共创考研辅导中心

绝密 * 启用前

2019 年全国硕士研究生入学统一考试

数学(二)试卷 (模拟1)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

- 一、选择题:1~8 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一个符合要求, 把所选项 前的字母填在题后的括号里.
- (1) 设 $x^k \sin x$ 是f(x)的一个原函数, $g(x) = a \int_0^{x^2} (\sqrt{1+t} 1) dt$,若 $x \to 0$ 时f(x)与g(x)是等价无 穷小,则().

(A)
$$a = 20, k = 4$$

(A)
$$a = 20, k = 4$$
 (B) $a = 30, k = 4$ (C) $a = 20, k = 3$ (D) $a = 30, k = 3$

(C)
$$a = 20, k = 3$$

(D)
$$a = 30, k = 3$$

- (2) 设函数 g(x) 在 x = 0 处连续, $f(x) = \begin{cases} \frac{g(x)\ln(1+x^2)}{(e^{|x|}-1)\sin^2 x}, & x \neq 0, \\ 1, & x = 0, \end{cases}$ 若 f(x) 在 x = 0 处连续,则().

 - (A) g(0) = 0, g'(0) 不存在 (B) g(0) = 0, g'(0) = 1
 - (C) g(0) = 1, g'(0) 不存在 (D) g(0) = 1, g'(0) = 1
- (3) 设 f(x) 在 x = 0 的某个邻域内二阶导数连续,且 f'(0) = 0, $\lim_{x \to 0} \frac{f'(x) + f''(x)}{\sin x} = 2$,则有()。
 - (A) f(0) 是 f(x) 的极小值, 但点 (0, f(0)) 不是曲线 y = f(x) 的拐点
 - (B) f(0) 是 f(x) 的极大值,但点 (0, f(0)) 不是曲线 y = f(x) 的拐点
 - (C) f(0) 不是 f(x) 的极值,但点(0, f(0)) 是曲线 y = f(x) 的拐点
 - (D) f(0) 不是 f(x) 的极值,且点(0,f(0)) 也不是曲线 y = f(x) 的拐点
- (4) 设 f(x) g(x) 在区间 [a,b] 上二阶可导,且 f(a) = g(a) = 1, f(b) = g(b) = 3,且 f''(x) > 0, g''(x) < 0, $\exists S_1 = \int_a^b f(x) dx$, $S_2 = \int_a^b g(x) dx$, $\exists S_1 = \int_a^b f(x) dx$, $\exists S_2 = \int_a^b g(x) dx$

 - (A) $S_1 < 2(b-a) < S_2$ (B) $S_2 < 2(b-a) < S_1$ (C) $S_1 < S_2 < 2(b-a)$ (D) $2(b-a) < S_2 < S_1$
- (5) 已知微分方程 $y'' 4y' + ay = xe^{bx}$ 的通解形式是 $y = c_1e^{2x} + c_2xe^{2x} + (Ax + B)e^{bx}$,则().

- (A) a = 4, b = 2 (B) $a = 4, b \neq 2$ (C) $a \neq 4, b = 2$ (D) $a \neq 4, b \neq 2$
- (6) 设累次积分 $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r\cos\theta, r\sin\theta) r dr$, a > 0, 则 I 可写成 ().

2019 考研数学模拟试卷

(A)
$$I = \int_{-a}^{a} dx \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} f(x, y) dy$$
 (B) $I = \int_{0}^{a} dx \int_{-\sqrt{ax-x^{2}}}^{\sqrt{ax-x^{2}}} f(x, y) dy$ (C) $I = 2 \int_{0}^{a} dx \int_{0}^{\sqrt{ax-x^{2}}} f(x, y) dy$ (D) $I = \int_{0}^{a} dy \int_{-\sqrt{ay-y^{2}}}^{\sqrt{ay-y^{2}}} f(x, y) dx$ (7) $\partial A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \Rightarrow \Box \partial A = \begin{pmatrix} a_{12} + a_{13} & a_{11} & a_{13} \\ a_{22} + a_{23} & a_{21} & a_{23} \\ a_{32} + a_{33} & a_{31} & a_{33} \end{pmatrix} \Rightarrow \nabla P_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
$$P_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$P_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

$$P_{4} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

則 $B^{-1} =$ () (A) $P_2A^{-1}P_4$ (B) $A^{-1}P_2P_3$ (C) $P_1P_3A^{-1}$ (D) $P_4P_1A^{-1}$

- (8) 设矩阵 A 是秩为 2 的 4 阶矩阵,又 a_1,a_2,a_3 是线性方程组 Ax=b 的解,且 $a_1 + a_2 - a_3 = (2,0,-5,4)^T$, $a_2 + 2a_3 = (3,12,3,3)^T$, $a_3 - 2a_1 = (2,4,1-2)^T$ 则方程组 Ax = b的通解

(A)
$$\begin{bmatrix} 1\\4\\1\\1 \end{bmatrix} + k_1 \begin{bmatrix} 2\\2\\-2\\1 \end{bmatrix} + k_2 \begin{bmatrix} 1\\-4\\-6\\3 \end{bmatrix}$$
, (B) $\begin{bmatrix} -2\\-4\\-1\\2 \end{bmatrix} + k_1 \begin{bmatrix} 2\\2\\-2\\1 \end{bmatrix} + k_2 \begin{bmatrix} 1\\8\\2\\5 \end{bmatrix}$, (C) $\begin{bmatrix} 2\\0\\-5\\4 \end{bmatrix} + k \begin{bmatrix} 2\\2\\-2\\1 \end{bmatrix}$, (D) $\begin{bmatrix} -2\\-4\\-1\\2 \end{bmatrix} + k \begin{bmatrix} 1\\12\\8\\-1 \end{bmatrix}$.

填空题:9~14 小题,每小题 4 分,共 24 分.把答案填在题中的横线上.

(9)
$$\lim_{x\to 0} \left(\frac{\arctan x}{x}\right)^{\frac{1}{e^{x^2}-1}} = \underline{\hspace{1cm}}$$

(10) 设 y = f(x) 在 x = 0 处连续,且 $\lim_{x \to 0} \frac{f(x) + \cos x}{\sqrt{1 + 2x} - 1} = 1$,那么曲线 y = f(x) 在 x = 0 处切线方程

- (11) 设函数 y(x) 由方程 $x = t^2$, $y = 3t + t^3$ 确定,其中 t > 0,则曲线 y = y(x) 的拐点是______.
- (12) 设f(x)在[0,1]上有连续的导数,f(1) = 0,且有 $xf'(x) f(x) = xe^{x^2}$,则
- (13) 设z = z(x, y)由方程 $\ln(e + z) = (x^2 1)z + x(2 + y) 1$ 确定,则 $dz|_{(1,0)} = \underline{\hspace{1cm}}$

2019 考研数学模拟试卷

共创考研辅导中心

(14) 设 A, B 为三阶矩阵,A 相似 B , $\lambda_1 = -1$, $\lambda_2 = 1$ 为矩阵 A 的两个特征值,又 $\left|B^{-1}\right| = \frac{1}{3}$,则

$$\begin{vmatrix} (A-3E)^{-1} & O \\ O & B^* + (-\frac{1}{4}B)^{-1} \end{vmatrix} = \underline{\qquad}.$$

- 三、解答题:15~23 小题, 共 94 分.解答应写出文字说明、证明过程或演算步骤.
- (15) (**本题满分 10 分**) 设 $\lim_{x\to 0} \frac{(1+ax+bx^2)\sqrt{1+x}-c}{\sin x \ln(1+x^2)} = d$, 求常数 a,b,c,d 的值.
- (16) (**本题满分 10 分**) 设 y = y(x) 由 $\begin{cases} x = \ln(t + \sqrt{1 + t^2}), \\ \int_1^y e^{u^2} du + \int_t^0 \frac{\sin u}{\sqrt{1 + u^2}} du = 0 \end{cases}$ 确定,求 $\frac{d^2 y}{dx^2} \bigg|_{t=0}$.
- (17) (**本题满分 10 分**) 设 f(u,v) 有二阶连续的偏导数,且满足 $\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} = 1$,又 $g(x,y) = f(xy, \frac{1}{2}(x^2 y^2))$,求 $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$.
- (18)(**本题满分 10** 分)设 f(x) 是单调可导函数, $f(-\frac{\pi}{2}) = 0$, $f(\frac{\pi}{2}) = 1$,g(x) 是 f(x) 的反函数,且 f(x) 满足 $\int_0^{f(x)} g(t) \, \mathrm{d}t = \int_0^x \frac{\sin^2 t}{1 + e^t} \, \mathrm{d}t$, 求积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, \mathrm{d}x$ 的值.
- (19) (**本题满分 10 分**) 已知函数 y = f(x) 在 $[0, +\infty)$ 上单增,曲线 y = f(x) 过点 $(0, \frac{1}{2})$,且对 $\forall t \in (0, +\infty)$,曲线 y = f(x) 在区间 [0, t] 上的一段弧的弧长等于它与 x 轴与 y 轴及直线 x = t 围成图形面积的两倍. (I) 求函数 y = f(x) 的表达式; (II) 求曲线 y = f(x) 与 x 轴, y 轴及直线 x = 1 围成的平面图形绕 x 旋转一周所形成立体的表面积.
- (20)(**本题满分 11 分**)计算二重积分 $I = \iint_D \sin x \sin y \cdot \max\{x,y\} \, d\sigma \,, \qquad \quad \ \ \, \\ \sharp + D : 0 \leq x \leq \pi, 0 \leq y \leq \pi \,.$
- (21) (本题满分 11 分)设 f(x) 在 [-a,a] 上连续,在 x = 0 处可导,且 $f'(0) \neq 0$.
- (I) 证明对 $\forall x \in (0,a]$,存在 $\theta \in (0,1)$ 使得 $\int_0^x f(t) dt + \int_0^{-x} f(t) dt = x[f(\theta x) f(-\theta x)];$ (II) 求 $\lim_{\alpha t \to 0} \theta$.
- (22) (**本题满分 11 分**) 设 $A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} a & 4 & 0 \\ -1 & 0 & c \\ 1 & b & 1 \end{pmatrix}$, 问 a,b,c 为何值时,矩阵方程 AX = B 有解,

2019 考研数学模拟试卷

共创考研辅导中心

有解时求出全部解.

(23)(**本题满分 11 分**)已知三元二次型 x^TAx 的平方项系数均为 0,设 $\alpha = (1,2,-1)^T$ 且满足 $A\alpha = 2\alpha$. (1) 求该二次型表达式; (2) 求正交变换 x = Qy 化二次形为标准型,并写出所用正交变换; (3) 若 A + kE 正定,求 k 的取值.

2019 考研数学模拟试卷

共创考研辅导中心

绝密★启用前

2019 年全国硕士研究生入学统一考试

数 学(二)

(科目代码:304)

(模拟试卷 2)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

2019 考研数学模拟试卷

共创考研辅导中心

绝密 * 启用前

2019年全国硕士研究生入学统一考试

数学(二)试卷 (模拟2)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

_	٠,	选择是	页:1	~8 4	小题,	每小题	4 分	,共3	32 分	. 在每个	小题给	出的匹	个选项	页中,	只有一	-个符1	合要求.	,把所:	选项
前	j的	字母均	真在是	返后的	括号	·里.													

- (1) 函数 $f(x) = \frac{x(x+1)e^{\frac{1}{x+1}}}{\ln|x^2-1|}$ 的无穷间断点个数为().

 (A) 1 (B) 2 (C) 3 (D) 4
- (2) 设有曲线 $y = \ln x$ 与 $y = kx^2$,当 $k > \frac{1}{2e}$ 时,它们之间(). (A) 没有交点 (B) 仅有一个交点 (C) 有两个交点 (D) 有三个交点
- (3) 广义积分 $\int_0^{+\infty} \frac{1}{(1+x^2)^2} dx =$ (D) $\frac{\pi}{6}$ (D) $\frac{\pi}{6}$
- (4) 设函数 f(x) 在 x = 0 的某个邻域内可导, g(x) 在 x = 0 的某个邻域内连续,且 $\lim_{x \to 0} \frac{g(x)}{x} = 0$,又 $f'(x) = \sin x^2 + \int_0^x g(x-t) dt$,则().
 - (A) x = 0 是 f(x) 的极小值点
 - (B) x = 0 是 f(x) 的极大值点
 - (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
 - (D) x = 0 不是 f(x) 的极值点,点(0, f(0)) 也不是曲线 y = f(x) 的拐点
- (5) 设 $I_1 = \frac{\pi}{4} \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx, I_2 = \frac{4}{\pi} \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx$,则(). (A) $I_1 < 1 < I_2$ (B) $1 < I_2 < I_1$ (C) $I_1 < I_2 < 1$ (D) $I_2 < 1 < I_1$
- (6) 设函数 f(u) 具有连续导数,函数 z = z(x, y) 由方程式 $x z = yf(z^2 x^2)$ 确定,则 $z \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y} =$ (). (A) x (B) y (C) -x (D) -y
- (7) 设向量组 α_1 , α_2 , α_3 线性无关, β_1 不可由 α_1 , α_2 , α_3 线性表示,而 β_2 可由 α_1 , α_2 , α_3 线性表示,则

2019 考研数学模拟试卷

共创考研辅导中心

下列结论正确的是().

- (A) α_1 , α_2 , β_2 线性相关
 (B) α_1 , α_2 , β_2 线性无关

 (C) α_1 , α_2 , α_3 , β_1 + β_2 线性相关
 (D) α_1 , α_2 , α_3 , β_1 + β_2 线性无关
- (8) 设 $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 3 & 2 & 1 \end{pmatrix}, 则 A 与 B ().$
 - (A) 合同不相似

- (B)相似不合同 (C)合同且相似 (D)不相似也不合同

二、填空题:9~14 小题,每小题 4 分,共 24 分,把答案填在题中的横线上.

(10) 曲线
$$y = \frac{x^2 + 1}{x + 1} e^{\frac{1}{x}}$$
 的斜渐近线是______.

(11) 曲线
$$y = \ln \cos x, x \in [0, \frac{\pi}{3}]$$
 的弧长是_____.

(12)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n \sqrt{n^2 + i^2}} = \underline{\hspace{1cm}}.$$

(13) 方程
$$xy' + 2y = \frac{1}{x}\cos 2x$$
 的通解是______.

(14) 设
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & -1 & a \\ 3 & 1 & 1 \end{pmatrix}$$
 (a为某常数), B 为 4×3 阶非零矩阵,且 $BA = 0$,则 $R(B) =$ _______.

三、解答题:15~23 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分 10 分) 设
$$f(x) = \begin{cases} -xe^x, & x \le 0, \\ 1 - \cos x, & x > 0. \end{cases}$$
 求极限 $\lim_{x \to 0} \left(\int_{-\infty}^{x^2} f(t) dt \right)^{\frac{1}{(x - \tan x)^2}}$.

(16) (本题满分 10 分) 求
$$\int \frac{x \ln(x + \sqrt{1 + x^2})}{(1 - x^2)^2} dx$$
.

(17) (**本题满分 10 分**) 求函数
$$z = (x^2 - y^2)e^{-x^2 - y^2}$$
 在集合 $D = \{(x, y) \mid x > -\frac{1}{2}, y > -\frac{1}{2}\}$ 上的极值.

(18) (**本题满分 10 分**) 设曲线 y = y(x) 与直线 4x - 4y = 3 在点 $(1, \frac{1}{4})$ 处相切,且 y = y(x) 满足方程 $y'' = 6\sqrt{y}$, 求曲线 y = y(x) 在相应于 $x \in [-1,1]$ 的点 (x,y) 处的曲率.

2019 考研数学模拟试卷

共创考研辅导中心

(19) (**本题满分 10 分**) 设 $f(x) = \int_0^{2x} \sqrt{2xt - t^2} \, dt + \int_0^1 |x - t| \, dt \, (x \ge 0)$,(I) 求 f(x) 在[0,+∞) 内的最小值; (II) 问 f(x) 在 (0,+∞) 内是否有最大值?为什么?

(20) (**本题满分 11 分**) 求二重积分
$$I = \iint_D \frac{x^2 + x\sqrt{x^2 + y^2}}{1 + x^2 + y^2} d\sigma$$
, 区域 $D: x^2 + y^2 \le 1, y \ge 0$.

(21) (**本题满分 11** 分)设
$$x > 0$$
,证明不等式: (I) $x - \sqrt{1+x} \ln(1+x) > 0$; (II) $\frac{1}{x(1+x)} > \ln^2(1+\frac{1}{x})$.

的基础解系为 $\alpha_1 = (1,-2,3,-1)^T$, $\alpha_2 = (0,1,-2,1)^T$ (I) 求矩阵 B;(II)若 Ax = 0与 Bx = 0同解,求 a_1,a_2,a_3,a_4 的值;(III)求方程组 Ax = 0 满足 $x_3 = -x_4$ 所有解.

(23) (**本题满分 11 分**) 已知二次型 $f(x_1 x_2 x_3) = x^T A x$ 通过正交变换 x = U y 化为标准形: $2y_1^2 + 2y_2^2$,且线性方程组 A x = 0 有解 $\xi_3 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$ (I) 求所作的正交变换; (II) 求该二次型.

绝密★启用前

2019年全国硕士研究生入学统一考试

数 学(二)

(科目代码:304)

(模拟试卷3)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

绝密 * 启用前

2019 年全国硕士研究生入学统一考试

数学(二)试卷 (模拟3)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

一、选择题: 1~8 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一个符合要求, 把所选项前 的字母填在题后的括号里.

- (1) 下列命题中不正确的是(
 - (A) 若 f(x) 在 $x = x_0$ 处左、右导数均存在但不相等,则 f(x) 在 $x = x_0$ 连续
 - (B) 若 $\lim_{n\to\infty} f(n) = A$, $\lim_{x\to+\infty} f'(x) = 0$, 则 $\lim_{x\to+\infty} f(x) = A$
 - (C) $\lim_{x \to x_0} f(x) = A$, A 为有限值, $\lim_{x \to x_0} g(x)$ 不存在,则 $\lim_{x \to x_0} f(x)g(x)$ 不存在
 - (D) $\lim_{x \to x_0} [f(x) + g(x)]$ 不存在,但 $\lim_{x \to x_0} g(x)$ 存在,则 $\lim_{x \to x_0} f(x)$ 不存在
- (2) 设 f(x) 在 x = 0 的某邻域内有连续导数, f(0) = 0 且 $\lim_{x \to 0} \frac{f(x) f'(x)}{\sqrt{x+1} 1} = 1$,则有(
 - (A) f(0) 是 f(x) 的极大值
- f(0) 是 f(x) 的极小值 (B)
- (C) f(0) 不是 f(x) 的极小值
- (D) 不能判别 f(0) 是否为 f(x) 的极值
- (3) 下列广义积分收敛的是(

(A)
$$\int_{1}^{+\infty} \frac{1}{x\sqrt{1+\ln^{2} x}} dx$$

(B)
$$\int_0^{+\infty} \frac{1}{\sqrt{x(1+x^2)}} dx$$

$$(C) \int_{-\infty}^{+\infty} \frac{x}{(1+x^2)\ln(1+x^2)} dx$$

$$(D) \int_0^{\frac{\pi}{2}} \frac{1}{\tan x} dx$$

(4)设在全平面上有 $\frac{\partial f(x,y)}{\partial x}$ <0, $\frac{\partial f(x,y)}{\partial y}$ >0,则保证不等式 $f(x_1,y_1)$ < $f(x_2,y_2)$ 成立的条件是(

- (A) $x_1 > x_2$, $y_1 < y_2$.
- (B) $x_1 < x_2, y_1 < y_2$.
- (C) $x_1 > x_2$, $y_1 > y_2$.
- (D) $x_1 < x_2, y_1 > y_2$.

(5) 设函数 z = f(x, y) 满足条件 f(0, y) = 1, f'(x, 0) = 2x, f''(x, y) = 1, 则 f(x, y) = 0.

- (A) $1-xy+y^2$ (B) $1+xy+x^2$ (C) $1-x^2y+y^2$ (D) $1+x^2y+x^2$

(6) 设平面区域 $D: x^2 + y^2 \le 1$, 记

$$I_1 = \iint_D (x+y)^3 d\sigma$$
, $I_2 = \iint_D \cos x^2 \sin y^2 d\sigma$, $I_3 = \iint_D [e^{-(x^2+y^2)} - 1] d\sigma$,

则有(

- (A) $I_1 > I_2 > I_3$ (B) $I_2 > I_1 > I_3$ (C) $I_1 > I_3 > I_2$ (D) $I_2 > I_3 > I_1$

2019 考研数学模拟试卷

共创考研辅导中心

(7) 设向量组(I): $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5$ 均为 4 维列向量, $A = (\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)$,若 $\eta_1 = (-1,1,0,0,0)$, $\eta_2 = (0,1,3,1,0)$, $\eta_3 = (1,0,5,1,1)^T$ 是齐次方程组 AX = 0 的一个基础解系,则向量组(I)的一个极大无关组是().

- (A) α_1, α_2
- (B) α_1, α_4
- (C) α_3, α_5
- (D) $\alpha_1, \alpha_3, \alpha_4$

(8) 设 A、B为 3 阶 \ddagger 0 矩阵,满足 AB = 0,其中 $B = \begin{pmatrix} 1 & -1 & 1 \\ 2a & 1-a & 2a \\ a & -a & a^2-2 \end{pmatrix}$,则().

- (A) a = -1时, 必有 r(A) = 1
- (B) $a \neq -1$ 时,必有 r(A) = 2

(C) a = 2 时, 必有 r(A) = 1

(D) $a \neq 2$ 时,必有 r(A) = 2

二、填空题:9~14 小题, 每小题 4 分, 共 24 分. 把答案填在题中的横线上.

(9)
$$\[\[\] \] f(x) = \int_0^x e^{-2x} \left| \ln \frac{t}{x} \right| dt \], \[\[\] \] f^{(n)}(x) = \underline{\qquad}$$

(11) 设
$$y = y(x)$$
 由参数方程决定
$$\begin{cases} x = \arctan t - t, \\ y = \int_{1}^{t} \frac{e^{-t^{2}}}{1+t^{2}} dt, & \lim_{t \to 1} \frac{d^{2}y}{dx^{2}} \Big|_{t=1} = \underline{\qquad}. \end{cases}$$

(13) $\exists z = z(x, y)$ 由方程 $xyz^2 + \sqrt{x^2 + y^2} + z = 2$ 确定,则 $dz|_{\substack{x=1 \ y=0}} = \underline{\qquad}$.

(14) 已知矩阵 $A = \begin{pmatrix} 4 & 5 & a \\ -2 & -2 & 1 \\ -1 & -1 & 1 \end{pmatrix}$ 只有一个线性无关的特征向量,那么矩阵 A 的特征向量是______.

三、解答题:15~23 小题, 共94分. 解答应写出文字说明、证明过程或演算步骤

(15) (本题满分 10 分) 设 f(x) 在 x = 0 处二阶可导,且 $\lim_{x \to 0} \frac{f(x)}{x} = 1$, $\lim_{x \to 0} \left(\frac{f(x)}{\sin x}\right)^{\frac{1}{f(x)}} = \sqrt{e}$,求 f''(0) 的值.

(16)(本题满分 10 分)计算二次积分 $I = \int_{-1}^{1} dx \int_{\sqrt{2-x^2}}^{1+\sqrt{1-x^2}} (\sqrt{x^2+y^2} + x^2 \sin^3 x) dy$.

(17) (本题满分 10 分) 设 $f(x,y) = 3x + 4y - ax^2 - 2ay^2 - 2bxy$, 试问参数 a,b 分别满足什么条件时,

2019 考研数学模拟试卷

共创考研辅导中心

f(x,y)有唯一极大值? f(x,y)有唯一极小值?

- (19) (本题满分 10 分) 设 $f(t) = \iint_D |xy t| dx dy, t \in [0,1]$, 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$ 。(I) 求 f(t) 的初等函数表达式;(II)证明:存在 $t_0 \in [0,1]$,使得 $f(t_0)$ 是 f(t) 在 (0,1) 内唯一的最小点.
- (20) (本题满分 11 分)设 y = f(x) 在[0,1] 上非负连续, $a \in (0,1)$,且 f(x) 在[0,a] 上的平均值等于在 [a,1] 上以 f(a) 为高的矩形面积. 试证明: (I) 存在点 $\xi \in (0,a)$ 内使得 $f(\xi) = f(a)(1-a)$; (II) 存在 $\eta \in (0,1)$ 使得 $(\xi-a)f'(\eta) = -af(a)$.
- (21) (本题满分 11 分) 设 f(x) 是在 $[0,\frac{\pi}{2}]$ 上满足 $\int_x^{\frac{\pi}{2}} f(t-x) f(t) dt = 1 \sin^4 x$ 的连续正值函数,试求 f(x) 在 $[0,\frac{\pi}{2}]$ 上的平均值.
- (22)(**本题满分 11 分**)设 n 阶矩阵 $A = (\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, \alpha_n)$ 的前 n-1 个列向量线性相关,后 n-1 个列向量线性无关, $\beta = \alpha_1 + \alpha_2 + \cdots + \alpha_n$,(I)证明: 方程组 $Ax = \beta$ 必有无穷多个解。(II)若 $(k_1, \cdots, k_n)^T$ 是 $Ax = \beta$ 的任意一个解,则必有 $k_n = 1$.
- (23) (**本题满分 11 分**) 已知 3 阶矩阵 A 的每行元素之和均为 3,且齐次线性方程组 Ax = 0 的一个基础解系为 $\alpha_1 = (1,0,-2)^T$, $\alpha_2 = (2,1,0)^T$,(I) 证明:A 能与对角阵相似; (II) 求 A 及 A^{1000} .