MNIST Classification with Softmax

何东阳 2019011462

#实验内容

- 实现一个简单的数字识别器
- 达到较高的识别率

#实验公式

$$N = ext{batch_size}$$
 $K = ext{dimension}$
 $o_i = w^T x + b$
 $y_i = rac{exp(o_i)}{\sum_{i=1}^N exp(o_i)}$
 $\cos = -rac{1}{N} \sum_{n=1}^N \sum_{j=1}^K t_j^{(n)} ext{ln} h(o_j)^{(n)}$
 $\operatorname{gradient} = rac{1}{N} \sum_{n=1}^N (y^{(n)} - t^{(n)}) (x^{(n)})^T$

#关键代码

def softmax_classifier(W, input, label, lamda):
 """

Softmax Classifier

```
Inputs have dimension D, there are C classes, a minibatch
have N examples.
      (In this homework, D = 784, C = 10)
      Inputs:
      - W: A numpy array of shape (D, C) containing weights.
      - input: A numpy array of shape (N, D) containing a
minibatch of data.
      - label: A numpy array of shape (N, C) containing labels,
label[i] is a
        one-hot vector, label[i][j]=1 means i-th example belong
to j-th class.
      - lamda: regularization strength, which is a hyerparameter.
      Returns:
      - loss: a single float number represents the average loss
over the minibatch.
      - gradient: shape (D, C), represents the gradient with
respect to weights W.
      - prediction: shape (N, 1), prediction[i]=c means i-th
example belong to c-th class.
    0.0000
    # TODO: 还需要加入正则化lambda
    N = input.shape[0]
    b = np.ones((N, W.shape[1])) # (N, C)
    o = np.dot(input, W) + b # (N, C)
    y = np.exp(o) / np.sum(np.exp(o), 1, keepdims=True) # (N, C)
    prediction = np.argmax(y, 1).reshape(N, 1) # (N, 1)
    loss = -(1 / N) * np.sum(label * np.log(y)) + 1 / N * lamda /
2 * np.sum(np.dot(W, W.T)) # (int) TODO: 还可以优化
    gradient = 1 / N * np.dot(
        (y - label).T, input).T + 1 / N * lamda * W # (N, C) *
(N, D) \rightarrow (D, C)
    return loss, gradient, prediction
```

#实验结果

可以看出,训练集的损失随着迭代轮数增加逐渐减少,最终在0.7至1之间收敛稳定

识别准确率曲线

• 可以看出随着迭代轮数增加,识别准确率逐渐上升,最终收敛至0.9附近

#参数设置

设至不同的超参数,实验结果也会有所不同,因此我尝试设置不同参数,记录了 测试集准确率和训练集损失最终收敛的范围

比较learning_rate的影响

实 验 组 数	batch_size	max_epoch	learning_rate	lamda	test accuracy	train loss
1	100	10	0.1	0.2	0.9162	0.8- 0.9
2	100	10	0.5	0.2	0.9096	0.95- 1.05
3	100	10	0.05	0.2	0.9156	0.7- 0.9
4	100	10	0.01	0.2	0.9012	0.6- 0.8

• 可以看出,学习率在0.1左右时,平均损失比较小,此时的测试集识别率也相对较高。

比较lamda的影响

实验组数	batch_size	max_epoch	learning_rate	lamda	test accuracy	train loss
1	100	10	0.01	0.2	0.9012	0.6- 0.8
2	100	10	0.01	0.5	0.9005	0.7- 0.8
3	100	10	0.01	0.5	0.9001	0.75- 0.85
4	100	10	0.01	0.05	0.9019	0.4- 0.6

• 可以看出, lamda为0.05左右时误差较小识别率也较高

比较batch_size的影响

实 验 组 数	batch_size	max_epoch	learning_rate	lamda	test accuracy	train loss
1	100	10	0.1	0.05	0.9198	0.4- 0.6
2	200	10	0.1	0.05	0.9164	0.36- 0.45
3	500	10	0.1	0.05	0.9095	0.3- 0.41
4	50	10	0.1	0.05	0.9209	0.8- 0.9

- 可以看到, 当batch_size为50时, 识别准确率上升了, 但训练集的损失是比较大的
- 综上我认为batch_size为100的情况是比较好的

比较max_epoch的影响

实验组数	batch_size	max_epoch	learning_rate	lamda	test accuracy	train loss
1	100	10	0.1	0.05	0.9198	0.4-0.6
2	100	20	0.1	0.05	0.9199	0.5- 0.6/td>
3	100	50	0.1	0.05	0.9217	0.6-0.7
4	100	5	0.1	0.05	0.9164	0.45- 0.6

• 可以看出,随着训练轮数的增加,测试集识别率逐渐上升,但是论述增加训练的时间也变长了

• 我认为最大轮数max_expoch为10是相对高效的

#实验总结

• 根据实验结果可以得出超参数为下列时,实验效果是相对较好的

```
batch_size = 100
max_epoch = 10
learning_rate = 0.1

# For regularization
lamda = 0.05
```

本次实验相对简单,主要在矩阵运算时出了一点小问题(对各个变量的维度不太熟悉),完成本次作业后我对softmax分类算法的理解更深入了一层,代码能力也有所提升,收获很大。