Physikalisches A-Praktikum

STED-Mikroskopie

Praktikant:	Philip Marszal		
Betreuer:			
Gruppe:			
Durchgeführt: Abgegeben:			
E-Mail:	philip.marszal@stud.uni-goettingen.de		
			Testat

Inhaltsverzeichnis

1	Ein	leitung								
2	The	Theorie								
	2.1	Lichtmikroskopie								
	2.2	Lichtmikroskopie								
	2.3	Konfokalmikroskopie								
	2.4	STED-Mikroskopie								
		rchführung swertung								
-1	4.1	Messung der PSF								
	4.2	Messung der PSF								
	4.3	STED-Auslöschung								
	4.4	Auflösung der STED-Mikroskopie								

1 Einleitung

2 Theorie

2.1 Lichtmikroskopie

STED-Mikroskopie ist eine Form der Lichtmikroskopie, die eine besonders gute Auflösung erreicht im Vergleich zu klassischen Mikroskopen. Das klassische Lichtmikroskop basiert auf einem simplen Aufbau aus Linsen, wie er für den einfachsten Fall in Abb. ?? zu sehen ist. Im simpelsten Fall wirft die erste Linse, das Objektiv, ein Bild in die Fokusebene der zweiten Linse, dem Okular [?]. Der kleinst mögliche Abstand zweier Punkte unter dem noch zwei getrennte Punkte erkannt werden können ist die Auflösung des Mikroskops. Sie ist bei der Lichtmikroskopie grundlegend durch Beugung beschränkt. Beugung bewirkt, dass das Bild eines Punktes kein weiterer Punkt ist sondern eine mithilfe der Besselfunktion beschriebene Verteilung konzentrischer Ringe [?], die sogenannte Punktspreizfunktion (PSF, point spread function). Insbesondere hat das Zentrum der Ringe, das erste Maximum, eine endliche Ausdehnung. Dieses erste Maximum wird im Allgemeinen als Arrayscheibe bezeichnet. Liegen zwei Punkte zu dicht beieinander so überlappen sich ihre Arrayscheiben, und die Punkte können nicht mehr aufgelöst werden.

Die minimale Distanz, die zwei Punkte voneinander haben müssen, um als zwei Punkte erkannt zu werden, wird durch Auflösungskriterien bestimmt. Das Sparrow'sche Auflösungskriterium [?] besagt, dass zwei Punkte (im Original Sterne) dann noch aufgelöst werden können, wenn die Intensitätsverteilung zwischen zwei Maxima gerade noch ein Minimum aufweist. Eine konservativere Definition eines Auflösungskriteriums ist hingegen das Rayleighkriterium, welches in diesem Versuch hauptsächlich benutzt wird. Nach Rayleigh werden zwei Punkte genau dann noch aufgelöst, wenn das Maximum eines Punktes in das Minimum des anderen fällt [?]. Dies entspricht dem Abstand des ersten Minimums der PSF vom ersten Maximum und ist gegeben durch die Formel 1

$$d_{min} = 1.22 \cdot \frac{\lambda}{2n \sin \alpha}.\tag{1}$$

Hierbei beschreibt λ die Wellenlänge des zu Mikroskopieren verwendeten Lichts, n den Brechungsindex des Mediums und α den maximalen Öffnungswinkel der Obejktivlinse. Der Term $n \sin \alpha$ wird als die numerische Apertur eines Objektivs NA bezeichnet [?].

Experimentell ist die Auflösung nach Rayleigh oder Sparrow nur schwer zu messen. Als Maß für die Auflösung kann jedoch die Halbwertsbreite der PSF (FWHM, full width at half maximum benutzt werden.

2.2 Fluoreszenzmikroskopie

Eine besondere Art von Lichtmikroskopie ist die Fluoreszenzmikroskopie. Im Gegensatz zur klassischen Mikroskopie wird nicht, das von der Probe reflektierte oder an der Probe gebrochene Licht im Okular detektiert, vielmehr wird die Probe selbst zum Leuchten angeregt. Das Prinzip der Fluoreszenz besteht darin Moleküle mithilfe von Licht einer spezifischen Wellenlänge in einen energetisch höheren Zustand zu versetzen. Bei der Rückkehr der Moleküle in ihren Grundzustand senden diese Photonen aus. Die Wellenlänge der absorbierten und emittierten Photonen hängt von der Verteilung der Energieniveaus des Moleküls ab. Sie ist in sogenannten Jablonski-Diagrammen schematisch dargestellt (siehe Abb. ??). In der Regel befindet sich ein angeregtes Molekül nicht nur in einem elektronisch angeregten Zustand sondern auch in einem angeregten Schwingungszustand. Durch die Relaxation aus dem Schwingungszustand besitzt das Molekül eine geringere Energie vor der Emission eines Photons als unmittelbar nach der Anregung. Dies führt dazu, dass emittiertes Licht eine größere Wellenlänge hat als absorbiertes Licht. Dieses Phanomen trägt den Namen Stokes-Shift [?].

Der Vorteil der Fluoreszenzmikroskopie gegenüber der herkömmlichen Lichtmikroskopie ist, dass gezielt Strukturen mit Fluoreszenzfarbstoff präpariert werden können (über Proteine u.ä.) und ungewollte Brechungszentren ausgeblendet werden können.

2.3 Konfokalmikroskopie

Eine Form der Fluoreszenzmikroskopie ist die Konfokalmikroskopie. Konfokalmikroskopie beleuchtet meist mit einem fokusierten Laser nur einen kleinen Ausschnitt der Probe. Allerdings wird die gesamte Probe abgerastert, sodass erst nach dem Zusammenfügen der einzelnen Flecken ein vollständiges Bild entsteht. Das Besondere an der Konfokalmikroskopie ist eine im Detektionsstrahlengang eingebrachte Lochblende. Ihre Funktion ist die Abschirmung von Licht, welches nicht von der Fokusebene stammt. Dadurch ist es möglich einen hohen Kontrast zu erzielen und nur einen scharfen Ausschnitt einer Ebene der Probe aufzunehmen.

Die axiale Auflösung eines Konfokalmikroskops ist durch Gleichung (2) bestimmt

[?].

$$d_{axial} = \frac{0.88 \cdot \lambda_{ex}}{n - \sqrt{n^2 - NA^2}}.$$
 (2)

Hier bezeichnet λ_{ex} die Wellenlänge der Fluoreszenzanregung. Die Dicke der beleuchteten Schicht lässt sich nach Gleichung (3) bestimmen [?].

$$d_{schicht} = \sqrt{\left(\frac{0.88\lambda_{ex}}{n - \sqrt{n^2 - NA^2}}\right)^2 + \left(\frac{\sqrt{2} \cdot n \cdot PH}{NA}\right)^2}.$$
 (3)

PH bezeichnet den Durchmeser der konfokalen Lochblende.

2.4 STED-Mikroskopie

3 Durchführung

Die Durchführung des Versuches kann grob in vier Abschnitte unterteilt werden. Im ersten Teil wird die Form der PSF der beiden Laser bestimmt. Dazu werden 80 nm große Goldkügelchen als Probe verwendet. Da die PSF der reinen fokussierten Laser betrachtet werden soll, wird die Phasenplatte aus dem Strahlengang entfernt.

Der Strahlteiler, der einen Teil des Lichts an den Photomultiplier (PMT) weitergibt wird eingesetzt. Mithilfe der Kamera wird die Fokusebene eingestellt. Dazu wird die z-Achse zunächst grob per Hand in die Nähe der Goldkügelchen bewegt, und anschließend die Feineinstellung mit dem Motor durchgeführt.

Nun können die Goldkügelchen mit dem Imspector im Scanmodus betrachtet werden. Für die Messung wird nun ein Goldkügelchen möglichst zentriert und sein Bild in der xy-, xz- und yz-Ebene gescannt. Aus diesen Bildern lässt sich nachher die PSF rekonstruieren.

Als nächstes wird die Tiefendiskriminierung des Anregungslasers bestimmt. Hierfür wird ein dünner Farbstofffilm als Probe verwendet. Anstelle des PMT wird nun eine Avalanche-Photodiode (APD) als Detektor verwendet. Die APD is direkt an eine Faser gekoppelt deren Kern die Rolle der konfokalen Lochblende übernimmt.

Der Farbstofffilm wird nun in z-Richtung gescannt und die gemessene Intensität in abhängigkeit von der z-Tiefe bestimmt.

Für den zweiten Teil wird die Überlagerung von Anregungslaser und STED-Laser untersucht. Dazu müssen zunächst die PSF der beiden Laser mittels des dikroitischen Spiegels überlagert werden. Es empfiehlt sich dies direkt an die Messung der Goldkügelchen anzuschließen und die durch ein Goldkügelchen erzeugten PSFs zu überlagern.

Jetzt kann die Auslöschung der Fluoreszenz durch den STED-Laser untersucht werden. Als Probe wird nun eine Lösung von fluoreszierenden Nanoteilchen verwendet (Größe 40 nm).

Bei konstanter Anregungsleistung wird die gemessene Intensität in Abhängigkeit von der STED-Leistung bestimmt. Pro STED-Leistung wird sechs mal die integrierte Intensität über einen Bereich bestimmt. Zwei mal nur mit dem Anregungslaser, zweimal mit Anregungs- und STED-Laser und wieder zweimal nur mit dem Anregungslaser. Die Messungen mit dem Anregungslaser, werden vor und nach der STED-Beleuchtung durchgeführt um Effekte durch Ausbleichen der Probe auszugleichen.

Dies wird für steigende STED-Leistungen durchgeführt. Wichtig für die Auswertung sind die Verhältnisse zwischen reiner Fluoreszenz durch den Anregungslaser und Auslöschung durch den STED-Laser.

Im dritten Teil des Versuches wird die Auflösung der STED-Mikroskopie bestimmt. Vorbereitend wird dafür mittels der Phasenplatte die 'Doughnut'-Form des STED-Lasers erzeugt. Um die PSF möglichst gut justieren zu können wird wieder die Goldkügelchenprobe verwendet, und die Form der STED-PSF durch Verschieben der Phasenplatte justiert. Außerdem muss, das Minimum der STED-PSF mit der Anregungs-PSF überlagert werden. Für die Auswertung wird die Restintensität am Minimum der STED-PSF bestimmt.

Die Auflösung der STED-Mikroskopie wird nun anhand der fluoreszierenden Probe aus dem zweiten Teil bestimmt.

Für steigende STED-Intensitäten werden Bilder der fluoresizierenden Kügelchen aufgenommen. Die Probe wird dabei nach jeder Aufnahme neu justiert, damit das Ausbleichen der Fluoreszenzpartikel möglichst wenig Einfluss auf die Messungen nimmt.

Im vierten Teil des Versuchs werden nun Säugetier-Zellen mithilfe von STED-MIkroskopie untersucht. Bei den Fluoreszierenden Teilen der Zelle handelt es sich um von fluoreszierenden Antikörpern besetztes Tubulin.

Zunächst wird eine Stelle mit dichten Tubulinstrukturen nur mithilfe des Anregungslasers gesucht. Von dieser Stelle werden nun Aufnahmen nur mit dem Anregungslaser, mit Anregungs- und STED-Laser und nur mit dem STED-Laser gemacht.

4 Auswertung

4.1 Messung der PSF

Zur Bestimmung der Form der PSF werden Aufnahmen, der xy-, xz, und yz-Ebene der Golbeads verwendet. Dabei wird jeweils die Ausdehnung des Bildes in x-,y- und z-Richtung bestimmt. Da die Goldkügelchen in erster Näherung als rund angenommen werden können, ist die Form der PSF theoretisch bekannt. Sie folgt der Besselfunktion J_1 , für die Beugung von Licht an einer Kreisblende. Dieses Interferenzmuster kann angenähert werden durch die Funktion 4

$$f(x) = I_0 \cdot \exp(-k \cdot x^2) \cdot \cos(-\omega \cdot x). \tag{4}$$

Die Ausdehnung der Airyscheibe entspricht nach dem Rayleigh-Kriterium dem Abstand der beiden ersten Minima voneinander. Durch (4) ist der Abstand des ersten Minimums vom ersten Maximum eindeutig mit dem Parameter w bestimmt als:

$$x_{min} = \frac{\pi}{2}\omega. (5)$$

Die PSF wird mit ImageJ vermessen indem das Profil entlang der jeweiligen Achse durch das Maximum bestimmt wird. In Abb. 1 sind die alle Vermessungen der PSF zu sehen. In Tab. 1 sind die durch nonlinear-regression bestimmten Werte aufgetragen, der Fehler ergibt sich aus der bei der Regression auftretenden Standartabweichung.

Die aus dem Aufbau nach Rayleigh (??) bestimmte Airyscheibe hat einen Durchmesser von 557.7 nm für eine Wellenlänge von 640 nm und 675.4 nm für eine Wellenlänge von 775 nm.

Bei der Messung der Auslöschung der F Luoreszenz durch den STED-Laser wird eine konfokale Lochblende mit einem Durchmesser von 62.5 μ m und einer 100-fachen Vergrößerung des Bildes benutzt. Dies entspricht dem 1.12-fachen Durchmesser der Airyscheibe für 640 nm und 0.92-fachen Durchmesser der Airyscheibe für 775 nm.

Ein geringerer Fehler der Messung der Ausdehnung der PSF ist für den Fit mit einer reinen Gaußfunktion zu erwarten, da die Minima nur sehr schwach ausgeprägt sind. In diesem Fall lässt sich die FWHM durch die Gaußfunktion bestimmen. Die bestimmten Werte für die FWHM sind in Tab. ?? abzulesen. Eine Übersicht der gemessenen Profile mit zugehörigen Fits ist in Abb. ?? zu finden. Die sich aus dem Aufbau ergebenden Werte sind in Tab. 2 zu sehen.

Abbildung 1: Verteilung der Intensität der Aufnahmen, als Funktion des Abstandes vom ersten Maximum. Mit ImageJ bestimmte Werte sind schwarz dargestellt. Maxima und erste Minima sind in rot hervorgehoben. Die gefittete Funktion (grün) entspricht Gleichung (4). Für die Messungen der y-Achse für die Wellenlängen 640 nm und 775 nm, liefert diese Methode der bestimmung der Minima keine sinnvollen Ergebnisse.

Tabelle 1: Gewichtete Mittelwerte der Messungen des Durchmessers der Airyscheibe. Für die y-Achse bei $\lambda=640$ nm ist der Fehler der Regression viel größer als der bestimmte Durchmesser, der weit außerhalb der betrachteten Region liegen würde. Bei der $\lambda=775$ nm Messung hat nur ein Fit ein sinnvolles Ergebnis erzielt.

Wellenlänge [nm]	Achse	Durchmesser der Airyscheibe $[\mu m]$
640	X	0.610(5)
	У	_
	Z	1.557(4)
775	X	0.639(5)
	У	0.761(8)
	Z	1.546(8)

Tabelle 2: Werte für die FWHM der PSF, wie sie durch die Parameter des Aufbaus vorgegeben sind (NA = 1.4). Die optische Schichtdicke $d_{schicht}$ wurde nach Gl. (3) bestimmt mit einem Pinholedurchmesser von PH = 625 nm.

Wellenlänge [nm]	FWHM [nm]	$d_{schicht}$ [nm]
640(lateral/axial)	233.14/606.86	1135.4
775(lateral/axial)	282.32/734.87	1208.7

4.2 Tiefendiskriminierung

In Abb. 2 ist der Intensitätsverlauf in Abhängigkeit von der z-Achse entlang der Farbfilmprobe dargestellt. Die Tiefendiskriminierung kann durch die Breite des Intensitätsabfalls abgeschätzt werden. Weil das Plateau der maximalen Intensität nicht exakt konstant ist wurde für den maximalen Wert der Mittellwert des Plateaus gebildet. Dafür wurde in Abb. 2 nur der Bereich zwischen den eingezeichneten roten Linien benutzt. Die Tiefendiskriminierung entspricht in etwa der Länge nach dem die Intensität auf die Hälfte ihres ursprünglichen Wertes abgefallen ist. In der Abbildung ist dies der Abstand des rechten Randes des Plateaus zur vertikalen gelben Linie. Der so bestimmte Wert ergibt sich zu 532.5 nm. Aus dem Aufbau ergibt sich für die optische Schichtdicke (Gleichung (3)) ein Wert von

4.3 STED-Auslöschung

Zu quantitativen Beschreibung der Auslöschung der Fluoreszenz durch den STED-Laser wird das Verhältnis der gemessenen Intensität ohne Auslöschung zur Intensität mit Auslöschung berechnet. Aus den Messwerten für die Intensitäten werden die Mittelwerte gebildet, wodurch auch der Effekt der Bleichung der Nanopartikel auf die Messung gemindert wird.

Für die Sättigungsintensität ergibt sich ein Wert von $I_S = 3.2 \text{ MW/cm}^2$.

4.4 Auflösung der STED-Mikroskopie

Zunächst wird der STED-Ring untersucht und das Verhältnis der Maximalintensität zur Intensität in der Mitte des Ringes gebildet. Dazu wird der Intensitätsverlauf entlang der Achse durch Minimum und Maximum des Ringes untersucht. Dieser ist in Abb. 4 zu sehen. Es ist zu erkennen, dass die Intensität in der Mitte des Ringes vollständig auf den Wert des Hintergrundes abfällt. In Abb. 4 ist dieser gelb unterlegt. Die Differenz zwischen Maximum und Minimum beträgt ca. 38 % der maximalen Intensität.

Abbildung 2: Verlauf der gemessenen Intensität beim Scannen des Farbfilms entlang der z-Achse. Die Intensität entspricht der Anzahl der detektierten Photonen im Photomultiplier. Die roten Linien markieren die Grenzen des Plateaus. Die horizontale gelbe Linie beschreibt die Höhe der halben Plateauintensität, und die vertikale gelbe Linie markiert die z-Koordinate bei dem dieser Wert erreicht ist. Aus dem Abstand des Plateaus von der halben Intensität lässt sich die Tiefendiskriminierung abschätzen.

Abbildung 3: Restintensität als Anteil der Anregungsintensität für verschiedene STED-Leistungen. Die Fehlerbalken ergeben sich aus der Standardabweichung der einzelnen Messungen für eine gegebene STED-Leistung und Beleuchtungsart. Die Messung der Intensität bei Beleuchtung duch den Anregungslaser allein ergibt vier Messwerte je STED-Leistung, und die Messung der Intensität bei gleichzeitiger Beleuchtung mit Anregungs- und STED-Laser liefert zwei Messwerte. Die Sättigungsintensität I_S wurde über Interpolation der Messwerte bestimmt. Sie liegt bei $I_S = 3.2 \ \mathrm{MW/cm^2}$.

Abbildung 4: Intensitätsverlauf entlang der Achse durch den Maximalwert des Ringes und dem Mittelpunkt. Die Intensität des Minimums entspricht dem Niveau der Intensität außerhalb des Ringes.

Die Auflösung der STED-Mikroskopie wird unter Verwendung des ImageJ Plugins *MosaicSuite* und der darin befindlichen Funktion PSF-Tool bestimmt.

Dieses Werkzeug erlaubt die Bestimmung der FWHM einer Aufnahme oder eines gesamten Aufbaus, durch die Berechnung der PSF, die durch einzelne isolierte Punkte erzeugt wird. Die PSFs mehrerer Nanopartikel wird dann gemittelt und daraus der Mittelwert der FWHMs bestimmt.

Die so bestimmten Werte für die FWHM sind als Funktion der relativen STED-Intensität $\zeta = I_{STED}/I_S$ in Abb. 5 aufgetragen. Durch den Fit mit der Funktion (6)

$$d = \frac{d_{konfokal}}{\sqrt{1 + k^2 \zeta}},\tag{6}$$

wird der Einfluss k aller nicht spektroskopischen Größen auf die Auflösung bestimmt. Der Parameter d bezieht sich zunächst auf die Auflösung der STED-Mikroskopie, wird aber als proportional zur FWHM angenommen. Aus den Messwerten ergibt sich k=0.56(8).

Abbildung 5: FWHM als Funktion der Intensität des STED-Lasers. Der Fit führt zu den Ergebnissen k=0.56(8) und $d_{konfokal}=1500(1)$ nm.