

Business Analytics Project Management

Model Evaluation and Recommendations: Predicting Hotel Cancellations

Presented by:

Hojin Lee • Qing Liu • Mostafa Salem • Shristi Lamsal • Sky Song • Yana Olshevskaya • Yu Zhang

Project Objective

Predicting customers who are likely to cancel their hotel reservations and providing recommendations that will allow hotels to reduce the cancellation rates.

Project Data Model Model evaluation and preparation selection

Model evaluation and recommendations

Predictive Analytics - Models

Decision Tree

Random Forest

Logistic Regression LGBM
(Light Gradient
Boosting Machine)

Model Evaluation Metrics - Minimizing false negatives

- 1. Confusion Matrix A table that displays and compares actual values with the model's predicted values.
- 2. Accuracy The percentage of correct decisions.
- 3. Precision How many predicted positives are actually correct.
- 4. Recall The proportion of the positive class that got correctly classified.
- 5. Fi Score The balance between Precision and Recall; deals with the uneven class distribution.
- 6. Gain and lift charts A visual way to evaluate the effectiveness of different models.
- 7. ROC (Receiver Operating Characteristics) A probability curve.
- 8. AUC (Area Under The Curve) The degree or measure of separability. It tells how much the model is capable of distinguishing between classes.

Model Evaluation - Logistic Regression

Accuracy: 0.738

FI: 0.585

Precision: 0.712

Model Evaluation - Decision Tree

Set decision tree depth to 11

Model Evaluation - Decision Tree

Accuracy: 0.807

F1: 0.716

Precision: 0.793

Model Evaluation - LGBM

(Light Gradient Boosting Machine)

Accuracy: 0.830

FI: 0.760

Precision: 0.801

Model Evaluation - Random Forest

Overfitting | SMOTE

SMOTE (Synthetic Minority Over-sampling Technique) - statistical technique for increasing the number of cases in a dataset in a balanced way. Reduces overfitting.

Accuracy before SMOTE

Training: 0.991

Test: 0.863

Accuracy after SMOTE

Training: 0.944

Test: 0.863

Model Evaluation - Random Forest

Accuracy: 0.863

FI: 0.804

Precision: 0.863

Best Model - Random Forest

Classifier	Accuracy	Precision	Recall	F score
Decision Tree Classifier	0.807460	0.792866	0.653442	0.716434
Random Forest	0.863464	0.863010	0.752664	0.804069
Logistic Regression	0.738010	0.712228	0.496939	0.585418
Light GBM	0.829900	0.800800	0.722800	0.759800

Best Model - Random Forest

Recommendations to Mitigate Cancellations

Project findings:

- Customers who had a special request were 26% less likely to cancel.
- Customers booking 30+ days in advance were 18% more likely to cancel.
- Winter months have the lowest demand and a high cancellation rate.
- Bookings with a lower average daily rate of under 60 EURO have the lowest cancellation rate.

Lead Time

- Discounted rates on non-refundable bookings.
- Personalized emails to customers who are most likely to cancel.
- Email guests one and two weeks before arrival.

Weather

• Include information about hotel amenities when sending booking reminders. For example, SPA information when the weather is predicted to be cold.

Total Special Request

- Offer add-ons to personalize the stay.
- Have an option to declare the occasion for the booking and offer special requests at discounted price.

Average Daily Rate

• Offer discounted bundle packages (hotel + full board + SPA) during winter months.

Q&A