Chapter 8

The expressions for the flip-flop inputs are

$$T_A = Q_A + Q_B'$$

 $T_B = Q_A + Q_B$

The flip-flops change state in every clock pulse depending only on the previous state. The transition table is

PS	FF inputs		NS
$Q_A(t)Q_B(t)$	$T_A(t)$	$T_B(t)$	$Q_A(t+1)Q_B(t+1)$
00	1	0	10
01	0	1	00
10	1	1	01
11	1	1	00

Let us define the following encoding:

Q_AQ_B	
00	S_0
01	S_2
10	S_1
11	S_3

The resulting state table is

$$egin{array}{c|c} {
m PS} & {
m NS} \\ \hline S_0 & S_1 \\ S_1 & S_2 \\ S_2 & S_0 \\ S_3 & S_0 \\ \hline \end{array}$$

The state diagram is presented in Figure ??. It is an autonomous modulo-3 counter.

Figure 8.1: State diagram for Exercise 8.18

The expressions for the flip-flop inputs are:

$$T_A = Q_A + Q_B$$

$$T_B = Q'_A + Q_B$$

The transition table is

PS	FF inputs	NS
$Q_A(t)Q_B(t)$	$T_A(t)T_B(t)$	$Q_A(t+1)Q_B(t+1)$
00	01	01
01	11	10
10	10	00
11	11	00

Let us define the following encoding:

Q_AQ_B	
00	S_0
01	S_1
10	S_2
11	S_3

The resulting state table is

$$\begin{array}{c|c} {\rm PS} & {\rm NS} \\ \hline S_0 & S_1 \\ S_1 & S_2 \\ S_2 & S_0 \\ S_3 & S_0 \\ \end{array}$$

The state diagram is shown in Figure ??. The network implements an autonomous modulo-3 counter.

Figure 8.2: State diagram for Exercise 8.20

Since the output at time t depends on the inputs at time t-3, t-2, t-1, it is necessary to store these in the state register. That is, the register consists of three flip-flops such that

$$Q_2(t) = x(t-3)$$

 $Q_1(t) = x(t-2)$
 $Q_0(t) = x(t-1)$

Consequently, the state description is

$$\begin{array}{rcl} Q_2(t+1) & = & Q_1(t) \\ Q_1(t+1) & = & Q_0(t) \\ Q_0(t) & = & x(t) \\ z & = & x(t-3) \oplus x(t-2) \oplus x(t-1) \oplus x(t) = Q_2 \oplus Q_1 \oplus Q_0 \oplus x \end{array}$$

If we use D flip-flops, we get

$$D_2 = Q_1$$

$$D_1 = Q_0$$

$$D_0 = x$$

The sequential network is shown in Figure ??.

Figure 8.3: Network for Exercise 8.24

The state corresponds to the count. That is,

$$s(t+1) = (s(t)+1) \mod 3$$

Using a radix-2 representation for the count we get the following state table

PS	Input	
Q_2Q_1	x = 0	x = 1
00	00	01
01	01	10
10	10	00
	NS	

Since the excitation function of a SR flip-flop is

we get the following switching expressions

$$S_2 = xQ_1$$

$$S_1 = xQ_2'Q_1'$$

$$R_2 = xQ_2$$

$$R_1 = xQ_1$$

The output is obtained directly from the state register. The sequential network is shown in Figure ??.

Figure 8.4: Network for Exercise 8.26

Exercise 8.32 Modulo-3 binary counter using "one flip-flop per state" approach. The counter has 3 states $S \in \{0, 1, 2\}$, thus 3 flip-flops are required. The state codes are:

$y_2y_1y_0$	State
0 0 1	0
$0\ 1\ 0$	1
$1 \ 0 \ 0$	2

The counter changes state when the input x = 1. The state diagram for the counter is shown in Figure ??. The switching expressions for the network can be obtained by inspection of the state diagram:

$$Y_2 = S_1 x + S_2 x' = y_1 x + y_2 x'$$

 $Y_1 = y_0 x + y_1 x'$
 $Y_0 = y_2 x + y_0 x'$
 $z_1 = y_2$
 $z_0 = y_1$

Figure 8.5: State Diagram for a Modulo-3 Counter

The corresponding network is shown in Figure ??.

Figure 8.6: Modulo-3 counter - Exercise 8.32