Algebra Lineal Básica

Hernandez Pacheco Moises Ramírez Hernandez Crystal

Matemáticas Aplicadas & Computación

Universidad Nacional Autónoma de México FES Acatlán

Índice general

Ι	Int	roducción	2
1.	Intr	oducción	3
II	\mathbf{C}	onceptos Iniciales	4
2.	Tipo	os de Matices	5
	2.1.	Matriz Cuadrada	5
	2.2.	Matriz Nula	5
	2.3.	Matriz Diagonal	6
	2.4.	Matriz Escalar	6
	2.5.	Matriz Identidad (o Unidad)	7
	2.6.	Matriz Triangular Superior	7
		Matriz Triangular Inferior	
	2.8.	Matriz Simétrica	8
	2.9.	Matriz Antisimétrica	9
	2.10.	Matriz Transpuesta	9
	2.11.	Matriz Inversa	10

Parte I Introducción

Capítulo 1 Introducción

Aquí irá la Introducción

Parte II Conceptos Iniciales

Capítulo 2

Tipos de Matices

2.1. Matriz Cuadrada

Es una matriz que consta del mismo número de filas que de columnas. En símbolos, es aquella en que m=n. Al referirse a una matriz cuadrada de orden (n,n), se dice simplemente que es una matriz cuadrada de orden n. Por ejemplo:

- a) la matriz $\mathbf{R} = [7]$, es una matriz cuadrada de orden 1;
- b) la matriz

$$\mathbf{S} = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$$
 es una matriz cuadrada de orden 2;

c) la matriz

$$\mathbf{T} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
es una matriz cuadrada de orden 3;

d) una matriz cuadrada de orden n, se indica en general por

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

2.2. Matriz Nula

Es una matriz en que todos sus elementos son nulos. En símbolos, una matriz $\mathbf{A} = [a_{ij}]$ es una matriz nula, si cumple que $a_{ij} = 0$ para todo i y j. Se las representa con la letra \mathbf{O} .

Ejemplos:

$$\mathbf{O} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$\mathbf{O} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\mathbf{O} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

2.3. Matriz Diagonal

Es una matriz cuadrada en que los elementos no diagonales son todos nulos. En símbolos, una matriz $\mathbf{A} = [a_{ij}]_{n \times n}$ es diagonal, si se cumple que $a_{ij} = 0$, para todo $i \neq j$.

Ejemplos:

$$\mathbf{E} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 9 \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \mathbf{G} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

2.4. Matriz Escalar

Es una matriz diagonal en la que todos los elementos son iguales. En símbolos, una matriz $\mathbf{A} = [a_{ij}]_{n \times n}$ es una matriz escalar, si se cumple que:

$$\mathbf{a} = \begin{cases} \lambda & \text{para } i = j \\ 0 & \text{para } i \neq j \end{cases}$$

Ejemplos:

$$\mathbf{J} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} \qquad \mathbf{K} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \qquad \mathbf{L} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

No se impone ninguna condición particular sobre el valor del número λ puede ser un número natural, entero, racional, real, o complejo.

2.5. Matriz Identidad (o Unidad)

Es una $matriz\ escalar$ en que todos sus elementos diagonales son iguales a la unidad. Se las simboliza con \mathbf{I}_n , en que n indica el orden matricial, o simplemente con \mathbf{I} .

Ejemplos:

$$\mathbf{J} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mathbf{K} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

En símbolos, se escribe

$$\mathbf{I} = [\delta_{ij}] \qquad \text{con } \delta_{ij} = \begin{cases} 1, & \text{si } i = j \\ 0, & \text{si } i \neq j \end{cases}$$

En razón de que la letra i ya se ha reservado para representar las filas de una matriz cualquiera, se acostumbra utilizar el símbolo δ_{ij} , llamada "delta de Kronecker", para representar el elemento genérico de la unidad.¹

NOTA: Esta matriz es muy útil, como base de espacios vectoriales, en la solución de sistemas de ecuaciones lineales, y de problemas de Programación Lineal.

2.6. Matriz Triangular Superior

Es una matriz en que todos los elementos bajo la diagonal principal son **nulos**. En símbolos, una matriz $\mathbf{A} = [a_{ij}]_{n \times n}$ es triangular superior, si se cumple que $a_{ij} = 0$ para todo i > j.

Ejemplos:

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0.1 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 3 & -1 & 2 & 0 \\ 0 & -1 & 0 & -5 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Note que no se impone ninguna condición sobre los elementos situados en la diagonal principal o por encima de ella; algunos de los elementos a_{ij} , para los que $i \leq j$ pueden ser también nulos. Ese es el caso de los elementos b_{14} , b_{23} y b_{33} de la matriz **B**.

 $^{^{1}\}mathrm{En}$ honor al matemático alemán Leopold Kronecker (1823-1891).

2.7. Matriz Triangular Inferior

Es una matriz en que todos los elementos sobre la diagonal principal son **nulos**. En símbolos, una matriz $\mathbf{A} = [a_{ij}]_{n \times n}$ es triangular inferior, si se cumple que $a_{ij} = 0$ para todo i < j.

Ejemplos:

$$\mathbf{C} = \begin{bmatrix} -3 & 0 & 0 \\ 5 & 1 & 0 \\ 2 & -2 & 0 \end{bmatrix}, \qquad \mathbf{D} = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 5 & -1 & 0 & 0 \\ 2 & -4 & 0 & 0 \\ -1 & 0 & 7 & 8 \end{bmatrix}$$

Note que algunos de los elementos a_{ij} , para los que $i \geq j$ pueden ser nulos; no se estipula ninguna condición especial sobre ellos. Ese es el caso de los elementos d_{33} y d_{42} de la matriz **D**.

2.8. Matriz Simétrica

Es una matriz $cuadrada \mathbf{A} = [a_{ij}]_{n \times n}$ en que $a_{ij} = a_{ji}$ para todo i, j.

Ejemplos:

1) Sea la matriz $\mathbf{M} = [m_{ij}]_{2 \times 2}$ siguiente:

$$\mathbf{M} = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$$

Esta matriz es simétrica, ya que se cumple la igualdad $m_{12} = m_{21} = 2$.

2) Sea la matriz $\mathbf{N} = [n_{ij}]_{\mathfrak{J} \times \mathfrak{J}}$ siguiente:

$$\mathbf{N} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & -3 \\ 1 & -3 & 4 \end{bmatrix}$$

Esta matriz es simétrica, ya que se cumplen las igualdades

$$n_{12} = n_{21} = 2,$$

 $n_{13} = n_{31} = 1,$
 $n_{23} = n_{32} = -3$

2.9. Matriz Antisimétrica

Es una matriz cuadrada $\mathbf{A} = [a_{ij}]_{n \times n}$ en que $a_{ij} = -a_{ji}$ para todo $i \ y \ j$.

Ejemplos:

1) Sea la matriz $\mathbf{Q} = [q_{ij}]$ de orden dos:

$$\mathbf{Q} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Esta matriz es antisimétrica, ya que se cumple la igualdad

$$q_{21} = -q_{12}$$
.

2) Sea la matriz $\mathbf{R} = [r_{ij}]$ de orden tres:

$$\mathbf{N} = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix}$$

Esta matriz es antisimétrica, ya que se cumplen las igualdades

$$r_{12} = -r_{21},$$

 $r_{13} = -r_{31},$
 $r_{23} = -r_{32}$

La definición de matriz antisimétrica implica que los elementos de su diagonal principal sean nulos.

En efecto, de la definición $a_{ij} = -a_{ji}$ y sumando a_{ji} a ambos miembros se obtiene que $a_{ij} + a_{ji} = 0$ y en particular para el caso en que i = j, $a_{ii} + a_{ii} = 0$, o sea $2a_{ii} = 0$, y dividiendo ambos miembros por el factor 2, se tiene que $a_{ii} = 0$.

2.10. Matriz Transpuesta

La transpuesta de una matriz $\mathbf{A} = [a_{ij}]$ de orden (m,n) es una matriz de orden (n,m), que se obtiene intercambiando filas por columnas (o lo que es igual, columnas por filas). El elemento a_{ij} de la matriz \mathbf{A} , ocupa el lugar de a_{ji} en la matriz transpuesta de \mathbf{A} .

Se simboliza la transpuesta de la matriz A por A' o por A^{t} .

Si
$$\mathbf{A}_{(m,n)} = [a_{ij}]$$
 su transpuesta es $\mathbf{A}'_{(n,m)} = [a_{ji}]$.

FES Acatlán 9 IR AL ÍNDICE

Ejemplos:

$$\mathbf{A}_{(2,3)} = \begin{bmatrix} 2 & 0 & -1 \\ 3 & -2 & 4 \end{bmatrix}, \qquad \mathbf{D}_{(2,2)} = \begin{bmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{bmatrix}$$

Solución

$$\mathbf{A}' = \begin{bmatrix} 2 & 3 \\ 0 & -2 \\ -1 & 4 \end{bmatrix}, \qquad \mathbf{D}' = \begin{bmatrix} d_{11} & d_{21} \\ d_{12} & d_{22} \end{bmatrix}$$

2.11. Matriz Inversa

En el conjunto de los números reales, para todo número $a \neq 0$ existe un número b, llamado inverso multiplicativo (o recíproco), que verifica la propiedad

$$a \cdot b = b \cdot a = 1$$
.

Se simboliza ese número b por a^{-1} o por $\frac{1}{a}$.

Análogamente se plantea la posibilidad de que dada una matriz \mathbf{A} cualquiera, existe otra matriz \mathbf{B} , conformable con \mathbf{A} para la operación de producto, que satisfaga la relación $\mathbf{A} \cdot \mathbf{B} = \mathbf{I}$, la relación $\mathbf{B} \cdot \mathbf{A} = \mathbf{I}$, o ambas simultáneamente, es decir:

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A} = \mathbf{I}$$
.

en que I es una matriz identidad de orden apropiado. Si esa matriz \mathbf{B} existe, diremos que es una inversa multiplicativa de la matriz \mathbf{A} , y se la simbolizará por \mathbf{A}^{-1} .

Ejemplo

Sean las matrices de orden 2:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad y \qquad \mathbf{B} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$

Efectuando los productos $\mathbf{A} \cdot \mathbf{B} \mathbf{y} \mathbf{B} \cdot \mathbf{A}$, se tiene:

$$\mathbf{A} \cdot \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I_2}$$

$$\mathbf{B} \cdot \mathbf{A} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I_2}$$

Bibliografía

[1] Kleiman, A., & K. de Kleiman, E. (2002). Matrices: Aplicaciones matemáticas en economía y administración. Limusa S.A. de C.V.