(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-153392 (P2000-153392A)

(43)公開日 平成12年6月6日(2000.6.6)

(51) Int.Cl. ⁷	識別記号	FΙ				テーマコード(参考)
B 2 3 K 35/30	3 4 0	B23K 3	35/30		3 4 0 Z	4E068
B 2 2 F 3/10		B 2 2 F	3/20		D	4K017
3/20			9/08		Α	4K018
9/08		B23K 2	26/00		310B	
B 2 3 K 26/00	3 1 0	3	35/40		G	
,	審査請求	未請求 請求項		OL	(全 9 頁)	最終頁に続く
(21)出願番号	特願平10-327747	(71)出願人	0000037	13		
			大同特别	株鋼株.	式会社	
(22)出顧日	平成10年11月18日(1998.11.18)		愛知県名	S古屋i	市中区錦一丁	目11番18号
		(71)出願人	0000039	97		
			日産自動	助車株:	式会社	
					市神奈川区宝	町2番地
		(72)発明者	内藤	善善	#	
		(, _, , , _, , , , , , , , , , , , , , ,			~ 中央町 6 -238	8-6
		(72)発明者		誠	1,76,10 20.	•
		(1.5/)03/16		,,,,	退桃台 315-1	
		(74)代理人			E-7010 1	
		(IEV) (VEX)	弁理士		#	
			开垤土	小畑	豆	
						最終頁に続く

(54) 【発明の名称】 肉盛用焼結体材料およびその製造方法

(57)【要約】

【課題】 従来の粉末を用いたレーザー肉盛り加工と同程度の必要エネルギーで済むと共に、従来の粉末を用いる場合には不可能であった三次元的なレーザー肉盛加工を可能にし、生産性の向上と部品コストの低減を可能にする肉盛用焼結体材料を提供する。

【解決手段】 Fe, Cu, A1, Ti, Si, Ni, Cr, Mn, Co, Mg, B, C, V, Nb, W, Mo, Zr, Ta, Hfのうち1種または2種以上の元素と製造上不可避的に含まれる不純物の成分組成を有する金属もしくは合金、あるいは、C:5重量%以下、Si:5重量%以下、および場合によってはさらにCr, Mo, W, V, Nb, Ta, Ti, Zr, Hfのうち1種または2種以上を適宜含み、残部Fe, Ni, Coのうち1種または2種以上を適宜含み、残部Fe, Ni, Coのうち1種または2種以上の元素と製造上不可避的に含まれる不純物の成分組成を有する金属もしくは合金からなる粉末を有機または無機バインダーと混合し押出し法により成形した後焼結することによって、前記金属もしくは合金からなる粉末の焼結体よりなり、その空孔率が10~50%の範囲にある肉盛用焼結体材料を得る。

【特許請求の範囲】

【請求項1】 金属もしくは合金からなる粉末の焼結体 よりなり、その空孔率が10~15%の範囲にあること を特徴とする肉盛用焼結体材料。

1

【請求項2】 金属もしくは合金からなる粉末が、ガス 噴霧粉末よりなり、最大粒径が500ミクロン以下の球 状金属もしくは合金粉末からなることを特徴とする請求 項1に記載の肉盛用焼結体材料。

【請求項3】 金属もしくは合金からなる粉末が、水噴 霧粉末よりなり、最大粒径が150ミクロン以下の急冷 10 金属もしくは合金粉末からなることを特徴とする請求項 1または2に記載の肉盛用焼結体材料。

【請求項4】 金属もしくは合金からなる粉末が、F e, Cu, Al, Ti, Si, Ni, Cr, Mn, C o, Mg, B, C, V, Nb, W, Mo, Zr, Ta, Hfのうち1種または2種以上の元素と製造上不可避的 に含まれる不純物からなることを特徴とする請求項1な いし3のいずれかに記載の肉盛用焼結体材料。

【請求項5】 金属もしくは合金からなる粉末が、C: 5重量%以下、Si:5重量%以下、および場合によっ 20 てはさらにCr, Mo, W, V, Nb, Ta, Ti, Z r, Hfのうち1種または2種以上を適宜含み、残部F e, Ni, Coのうち1種または2種以上の元素と製造 上不可避的に含まれる不純物からなることを特徴とする 請求項1ないし4のいずれかに記載の肉盛用焼結体材 料。

【請求項6】 請求項1ないし5のいずれかに記載の金 属もしくは合金からなる粉末を有機または無機バインダ ーと混合し押出し法により成形した後焼結することを特 徴とする肉盛用焼結体材料の製造方法。

【請求項7】 粉末を押出し法により成形するときのバ インダーがメチルセルロース系の有機バインダーであ り、粉末に対する混合量が1~5重量%、好ましくは2 ~4 重量%であって、焼結前または焼結時にバインダー を除去することを特徴とする請求項6に記載の肉盛用焼 結体材料の製造方法。

【請求項8】 粉末を押出し法により成形するときに使 用したバインダーを大気中300℃以下で加熱して残留 バインダー量を25~50%とした後焼結してバインダ ーを除去することを特徴とする請求項6または7に記載 40 の肉盛用焼結体材料の製造方法。

【請求項9】 焼結に際し真空中もしくは酸化雰囲気以 外の雰囲気中で焼結して焼結密度がその粉末材料の真密 度の50~90%となるように焼結することを特徴とす る請求項6ないし8のいずれかに記載の肉盛用焼結体材 料の製造方法。

【請求項10】 金属もしくは合金からなる粉末はガス 噴霧法によって作られた最大粒径が500ミクロン以下 の球状金属もしくは合金粉末であることを特徴とする請 求項6ないし9のいずれかに記載の肉盛用焼結体材料の 50 【課題を解決するための手段】本発明に係わる肉盛用焼

製造方法。

【請求項11】 金属もしくは合金からなる粉末は水噴 霧法によって作られた最大粒径150ミクロン以下の急 冷金属もしくは合金粉末であることを特徴とする請求項 6ないし10のいずれかに記載の肉盛用焼結体材料の製 造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、被加工材に、この 被加工材とは異なった特性をその表面に付加する肉盛技 術に用いるのに好適な肉盛用材料およびその製造方法に 関するものである

[0002].

【従来の技術】従来において、肉盛加工は、フレームも しくはプラズマなどを熱源として用い、肉盛材料と母材 とを溶融して肉盛層を形成するか、レーザービーム、電 子ビーム等の高エネルギー密度の熱源を用い、肉盛材料 である粉末材料を被加工材表面に溶着させるのが一般的 であった。

[0003]

【発明が解決しようとする課題】このうち、粉末のレー ザー肉盛加工では、肉盛材料である粉末の供給がパイプ またはその他の誘導装置による自由落下で行われるた め、例えば、重力に反した方向への肉盛や、三次元的な 加工に対しては有効でないという問題があった。

【0004】このような粉末材料を使用するレーザー肉 盛加工では、肉盛加工時に供給される粉末が被加工材に 照射されるレーザービームの面積以上に広がって供給さ れる場合があり、供給される粉末量に対して肉盛に消費 30 される粉末量の割合が低くなって部品コストの上昇の要 因になる問題もある。

【0005】また、フィラーワイヤなどの線材を肉盛材 料としたレーザー肉盛加工では、フィラーワイヤの熱容 量が粉末に比べて高いために高出力のエネルギーが必要 であり、そのため、被加工材への溶け込みが大きくなっ てキーホールが発生しやすくなり、本来の、被加工材の 溶融を最小限にするための手段としては不十分であると いう問題がある。

[0006]

【発明の目的】本発明は、上記した従来の課題に着目し てなされたものであって、従来のフィラーワイヤなどの 線材を用いた場合に比べてより低い出力のエネルギーで 肉盛材料を溶融することができ、従来の粉末を用いたレ ーザー肉盛加工と同程度の必要エネルギーで済ますこと ができると共に、従来の粉末を用いる場合には不可能で あった三次元的なレーザー肉盛加工を可能にし、生産性 の向上と部品コストの低減を可能にする肉盛用焼結体材 料を提供することを目的としている。

[0007]

2/17/2009, EAST Version: 2.3.0.3

結体材料は、請求項1に記載しているように、金属もしくは合金からなる粉末の焼結体よりなり、その空孔率が10~15%の範囲にあるものとしたことを特徴としており、このような焼結体を使用したレーザー肉盛方法の構成を前述した従来の課題を解決するための手段としている。

【0008】そして、本発明に係わる肉盛用焼結体材料の実施態様においては、請求項2に記載しているように、金属もしくは合金からなる粉末が、ガス噴霧粉末よりなり、最大粒径が500ミクロン以下の球状金属もし 10くは合金粉末からなるものとしたことを特徴としている。

【0009】同じく、本発明に係わる肉盛用焼結体材料

の実施態様においては、請求項3に記載しているように、金属もしくは合金からなる粉末が、水噴霧粉末よりなり、最大粒径が150ミクロン以下の急冷金属もしくは合金粉末からなるものとしたことを特徴としている。【0010】同じく、本発明に係わる肉盛用焼結体の実施態様においては、請求項4に記載しているように、金属もしくは合金からなる粉末が、Fe, Cu, Al, T 20i, Si, Ni, Cr, Mn, Co, Mg, B, C, V, Nb, W, Mo, Zr, Ta, Hfのうち1種また

は2種以上の元素と製造上不可避的に含まれる不純物か

らなるものとしたことを特徴としている。

【0011】同じく、本発明に係わる肉盛用焼結体材料の実施態様においては、請求項5に記載しているように、金属もしくは合金からなる粉末が、C:5重量%以下、Si:5重量%以下、および場合によってはさらにCr,Mo,W,V,Nb,Ta,Ti,Zr,Hfのうち1種または2種以上を適宜含み残部Fe,Ni,C 30のうち1種または2種以上の元素と製造上不可避的に含まれる不純物からなるものとしたことを特徴としている。

【0012】本発明に係わる肉盛用焼結体材料の製造方法は、請求項6に記載しているように、請求項1ないし 5のいずれかに記載の金属もしくは合金からなる粉末を 有機または無機バインダーと混合し押出し法により成形 した後焼結するようにしたことを特徴としている。

【0013】そして、本発明に係わる肉盛用焼結体材料の製造方法の実施態様においては、請求項7に記載しているように、粉末を押出し法により成形するときのバインダーがメチルセルロース系の有機バインダーであり、粉末に対する混合比が1~5重量%、好ましくは2~4重量%であって、焼結前または焼結時にバインダーを除去するようしたことを特徴としている。

【0014】同じく、本発明に係わる肉盛用焼結体材料の実施態様においては、請求項8に記載しているように、粉末を押出し法により成形したときに使用したバインダーを大気中300℃以下で加熱して残留バインダーとかできる。そして、球状粉末の最大粒径が500ミクロン以下の急冷金属もしくは合金粉末からなるものとすることができる。そして、球状粉末の最大粒径が500ミク

るようにしたことを特徴としている。

【0015】同じく、本発明に係わる肉盛用焼結体材料の製造方法の実施態様においては、請求項9に記載しているように、焼結に際し真空中もしくは酸化雰囲気以外の雰囲気中で焼結して焼結密度がその粉末材料の真密度の50~90%となるように焼結することを特徴としている。

【0016】同じく、本発明に係わる肉盛用焼結体材料の製造方法の実施態様においては、請求項10に記載しているように、金属もしくは合金からなる粉末はガス噴霧法によって作られた最大粒径が500ミクロン以下の球状金属もしくは合金粉末であるものとしたことを特徴としている。

【0017】同じく、本発明に係わる肉盛用焼結体材料の製造方法の実施態様においては、請求項11に記載しているように、金属もしくは合金からなる粉末は水噴霧法によって作られた最大粒径150ミクロン以下の急冷金属もしくは合金粉末であるものとしたことを特徴としている。

20 【0018】

【発明の作用】本発明に係わる肉盛用焼結体材料は、上述したように、金属もしくは合金からなる粉末の焼結体よりなり、その空孔率が10~50%の範囲内にあるものとしたから、この肉盛用焼結体材料をレーザー肉盛加工の肉盛材料として使用することにより、肉盛加工に際してレーザー照射時にレーザービームが粉末と粉末との間の空孔内で乱反射することとなるので、肉盛材料のエネルギー吸収率が従来のフィラーワイヤーに比べてかなり高いものとなる。

) 【0019】また、粉末同士が強固に結合していないため熱容量が粉末材料に近いものとなるので、粉末に対するものとほぼ同等のレーザー入熱で肉盛加工が行えることとなり、かつまた、従来の粉末を用いた肉盛加工では不可能である三次元的な加工が行えることとなる。

【0020】そして、このような作用を十分なものとするには、焼結体の空孔率が10%以上であるものとすることが望ましいが、焼結体の空孔率が50%よりも高いと強度が不足することとなって破壊しやすくなるので、上述した適度の空孔を有することによる作用が得られないこととなる。したがって、肉盛用焼結体材料の空孔率は10%以上、より好ましくは30%以上とするのがよく、また、空孔率が高すぎると焼結体の形状を維持することが困難となるので50%以下に抑える必要がある。【0021】本発明に係わる肉盛用焼結体材料においては、金属もしくは合金からなる粉末が、ガス噴霧粉末よりなり、最大粒径が500ミクロン以下の球状金属もしくは合金粉末からなるものとすることができ、あるいはまた、水噴霧粉末よりなり、最大粒径が1500ミクロン以下の急冷金属もしくは合金粉末からなるものとすることができる。そして、球状粉末の最大粒径が500ミク

ロンを超えたり、急冷粉末の最大粒径が150ミクロン を超えたりすると、後にも詳細に説明するように、押出 し成形性が低下することとなる。

【0022】本発明に係わる肉盛用焼結体材料はレーザ 一肉盛加工に際して溶融可能な金属もしくは合金材料で あり、前記金属もしくは合金からなる粉末が、Fe, C u, Al, Ti, Si, Ni, Cr, Mn, Co, M g, B, C, V, Nb, W, Mo, Zr, Ta, HfØ うち1種または2種以上の元素と製造上不可避的に含ま おいて必要とされる特性を必要な部位に付加するように なすことができる。

【0023】また、前記金属もしくは合金からなる粉末 が、C:5重量%以下、Si:5重量%以下、および場 合によってはさらにCr, Mo, W, V, Nb, Ta, Ti, Zr, Hfのうち1種または2種以上を必要に応 じて適宜含み、残部Fe, Ni, Coのうち1種または 2種以上の元素と製造上不可避的に含まれる不純物から なるものとすることができ、耐摩耗性および耐熱性が必 要とされる適用部品の必要な部位にそれらの特性を付加 20 するようになすことができる。

【0024】次に、上記成分とするのが好ましい限定理 由を説明する。

【0025】C:5重量%以下

Cは硬さを増すのに最も有効な元素であり、添加量の増 加に伴い硬さが増加する。また、Cは融点を下げる元素 であり、肉盛加工時の溶かし易さの向上に効果がある。 しかし、過剰に添加すると脆くなり、かつ融点低下の効 果もなくなるので、5重量%以下とするのが良い。

【0026】Si:5重量%以下

Siは融点を低下させる元素であり、レーザー肉盛加工 の湯流れ性を改善する効果がある。しかし、過剰に添加 すると金属間化合物を生成して脆くなることがあるの で、5重量%以下とするのがよい。

【0027】本発明に係わる肉盛用焼結体材料の製造方 法は、前記粉末を有機または無機バインダーと混合し押 出し法により成形した後焼結するようにしたから、棒状 ないしはリボン状に形状付与されることとなるので三次 元的な肉盛加工が行えることとなる。また、粉末を成形 して供給することにより、供給される粉末量に対する肉 40 盛加工に消費される粉末量の割合を高くできることか ら、部品コストの上昇要因を低減できることとなる。

【0028】そして、粉末を押出し法により成形すると きのバインダーがメチルセルロース系の有機バインダー であり、粉末に対する混合量が1~5重量%、好ましく は2~4重量%であって、焼結前または焼結時にバイン ダーを除去するようになすこともできるが、この場合、 バインダーの混合量が少なすぎると粉末混練物の硬さが 高くなって成形荷重が不安定なものとなることにより押 出しができない傾向となり、多すぎると粉末混練物の硬 50 である。しかし、バインダーの除去を焼結と同時に一工

さが低くなり、強度が不足して押出し時に端部にササク レ上の形状欠陥を生じる傾向となるため、バインダーの 混合量を2~4重量%とするのがより好ましく、多少の 欠陥を許容するとしても1~5重量%とするのがよい。

6

【0029】ここで、バインダーはメチルセルロース系 の有機バインダーが好ましいとしたのは、水溶性のバイ ンダーであるため成形作業および加熱による分解が安全 でありかつ容易であるためである。

【0030】このバインダーは、焼結前に除去すること れる不純物からなるものとすることができ、適用部品に 10 ができるが、焼結時とくに焼結時の昇温過程で除去する こともできる。

【0031】また、粉末を押出し法により成形するとき に使用したバインダーを大気中300℃以下で加熱して バインダー除去後の混合物のバインダー残留量を25~ 50%とするようになすことも必要に応じて望ましい。 これは、バインダーを完全に除去すると、バインダー除 去後の混合物の強度が低くなり過ぎるため、手では触れ がたくなり、焼結体材料を製造する際の作業性を害する 傾向となるためである。しかしながら、バインダーの残 留量が多すぎると、次の焼結工程時にバインダーが膨脹 して焼結中に混合物を破損することになるので、バイン ダーを残留させるとしても50%以下とするのがよい。 【0032】このバインダーは、加熱するとガス化して 蒸発するので、焼結中にバインダーを除去しながら焼結 を行なうようにすることも可能であるが、炉への挿入量 が増えると焼結炉を汚損し、焼結炉の特性を損なうこと もありうるので、これらについても考慮するのがよい。 【0033】また、バインダーは200℃以上で分解 し、300℃を超えると急速な分解を起こし、残留量の 30 制御が困難になる傾向となる。したがって、加熱温度は 300℃以下とするのが好ましいが、高温制御に適した 真空焼結炉は脱バインダーに適した低温の制御が困難で

【0034】一方、バインダーを完全に除去すると、金 属もしくは合金粉末の結合力がないためその後に脱バイ ンダーした混練物の成形体を焼結炉に入れ換える際の取 り扱いに支障を生じることもあるため、成形体には最少 限度のバインダーを残留させることが望ましく、この残 留量は最初のバインダー添加量のおよそ25%である が、添加量の多いものは金属もしくは合金粉末の充填密 度が低くなるため最大50%程度とするのが良い。

あるので、バインダーは低温制御専用の炉で焼結前にあ

らかじめ除去しておくことが必要に応じて望ましい。

【0035】また、高温で加熱するとバインダー除去中 にバインダーが膨脹して混合物の成形体を破損してしま うこともありうるため、加熱温度は300℃以下とする

【0036】他方、バインダーの除去を行なった混合物 の成形体の取り扱いを行わないようにするために、焼結 と同時にバインダーの除去を行うようにすることも可能

ことが望ましい。

程で実施する場合であってもバインダーの除去に関する 工程では上記と同様の現象が起きるため、バインダー除 去の際の加熱温度は300℃以下とすることが望まし

【0037】そして、バインダー除去後の焼結に際して は、真空中もしくは酸化雰囲気以外の雰囲気中で焼結し て焼結密度がその粉末材料の真密度の50~90%とな るように焼結することができ、これによって得られた肉 盛用焼結体材料は、レーザー肉盛加工時の取扱いにとっ て必要かつ十分な強度を有するものとなり、三次元形状 10 のレーザー肉盛加工を可能にするとともに、レーザービ ームの出力を粉末並みに少ないものにすることを可能に する。

【0038】このとき、焼結密度が50%よりも低い と、焼結体の強度が不足して取り扱い中に破損する傾向 となり、焼結密度が90%よりも高いと溶融のために必 要となるエネルギーが大きくなって焼結体を肉盛材料と して使用する効果が少ない傾向となる。

【0039】また、焼結体が酸化した場合にも表面の緻 密化が発生し、レーザービーム照射時に悪影響があるた め焼結中の雰囲気は非酸化雰囲気とするのが良い。ただ し、使用する粉末の組成によっては所要の焼結体特性を 得ることができるようにするために適当な雰囲気に調整 することは自明であり、焼結条件をそれぞれの粉末の組 成によって調整するのがよいことはいうまでもない。

【0040】本発明に係わる肉盛用焼結体材料の製造方 法において、金属もしくは合金からなる粉末はガス噴霧 法によって作られた最大粒径が500ミクロン以下の球 状金属もしくは合金粉末であるものとすることができ、 これによって、混合物を押出し成形したときの形状形成 30 を容易にし、レーザー照射時のレーザービームの乱反射 を効率的に起こしてエネルギー吸収率を高めうるものと なる。

【0041】ここで、最大粒径を500ミクロンとした のは、粉末が500ミクロンを超える粒径の場合、押出 し加工したときの形状形成や焼結が困難になり、焼結体 の空孔の分布が不均一になり、レーザー照射による溶融 量がばらつき、肉盛加工が不安定になる傾向となるため である。また、粉末自体を肉盛材料として使用する場合 のように粉末の流動性を阻害する微細粒を篩い分けして 除去する必要がなく、粒度分布の範囲を大幅に広げうる ものとなる。そして、これにより肉盛材料の製造コスト の低減がもたらされ、部品コストの上昇要因が軽減され ることとなる。

【0042】また、他の製造方法においては、金属もし くは合金からなる粉末は水噴霧法によって作られた最大 粒径150ミクロン以下の急冷金属もしくは合金粉末で あるものとすることができ、これによって、混合物を押 出し成形したときの形状形成を容易にし、レーザー照射 時のレーザービームの乱反射を効率的に起こしてエネル 50 C, V, Nb, W, Mo, Zr, Ta, Hfのうち1種

ギー吸収率を高めうるものとなる。

【0043】ここで、最大粒径を150ミクロンとした のは、水噴霧法による粉末は表面が不規則形状でレーザ ービームの乱反射を起こすためには有利であるものの、 150ミクロン超過の粒径では粉末の不規則形状化が著 しくなり、混合物の流動性が悪くなって、押出し成形が 困難になる傾向となる。このため、最大粒径を150ミ クロン以下とするのが良い。また、粉末の組成によって はガス噴霧粉に比較して肉盛材料の製造コストのさらな る低減がもたらされることとなり、部品コストの上昇要 因が軽減されることとなる。

[0044]

【発明の効果】本発明に係わる肉盛用焼結体材料は、請 求項1に記載しているように、金属もしくは合金からな る粉末の焼結体よりなり、その空孔率が10~50%の 範囲にあるものとしたから、この肉盛用焼結体材料をレ ーザー肉盛加工の肉盛材料として使用することにより、 肉盛加工に際してのレーザー照射時にレーザービームが 粉末と粉末との間の空孔内で乱反射することとなるの で、肉盛材料のエネルギー吸収率を従来のフィラーワイ ヤーに比べてかなり高いものとすることが可能であって 入熱量を少ないものとすることが可能であり、生産性の 向上と部品コストの低減を実現することが可能であると いう著しく優れた効果がもたらされる。また、粉末同士 が強固に結合していないため熱容量が粉末材料に近いも のとなるので、粉末に対するものとほぼ同等のレーザー 入熱で肉盛加工を行うことが可能となり、かつまた、三 次元的な加工を行うことが可能になるという著しく優れ た効果がもたらされる。

【0045】そして、請求項2に記載しているように、 金属もしくは合金からなる粉末が、ガス噴霧粉末よりな り、最大粒径が500ミクロン以下の球状金属もしくは 合金粉末からなるものとすることによって、焼結体材料 中の空孔の分布を均一なものとすることができ、レーザ 一照射による溶融量のばらつきを少なくし、安定したレ ーザー肉盛加工を行うことが可能であるという著しく優 れた効果がもたらされる。

【0046】また、請求項3に記載しているように、金 属もしくは合金からなる粉末が、水噴霧粉末よりなり、 最大粒径が150ミクロン以下の急冷金属もしくは合金 粉末からなるものとすることによって、表面が不規則形 状である水噴霧粉末の特長を活かしてレーザービームの 乱反射を起こしやすいものとすることが可能であり、少 ないエネルギーで安定したレーザー肉盛加工を効率良く 行うことが可能であるという著しく優れた効果がもたら される。

【0047】さらにまた、請求項4に記載しているよう に、金属もしくは合金からなる粉末が、Fe, Cu, A 1, Ti, Si, Ni, Cr, Mn, Co, Mg, B,

または2種以上の元素と製造上不可避的に含まれる不純物からなるものとすることによって、適用部品において必要とされる特性を必要な部位に付加することが容易に可能になるという著しく優れた効果がもたらされる。

【0048】さらにまた、請求項5に記載しているように、金属もしくは合金からなる粉末が、C:5重量%以下、Si:5重量%以下、および場合によってはさらにCr, Mo, W, V, Nb, Ta, Ti, Zr, Hfのうち1種または2種以上を適宜含み残部Fe, Ni, Coのうち1種または2種以上の元素と製造上不可避的に10含まれる不純物からなるものとすることによって、耐摩耗性および耐熱性が必要とされる適用部品の必要な部位にそれらの特性を付加することが容易に可能になるという著しく優れた効果がもたらされる。

【0049】本発明に係わる肉盛用焼結体材料の製造方法は、請求項6に記載しているように、請求項1ないし5のいずれかに記載の金属もしくは合金からなる粉末を有機または無機バインダーと混合し押出し法により成形した後焼結するようにしたから、棒状ないしはリボン状に形状付与されることとなるので、三次元的な肉盛加工20を行うことが可能となり、また、粉末を成形して供給することにより、供給される粉末量に対する肉盛加工に消費される粉末量の割合を高くできるので、部品コストの上昇要因を低減することが可能になるという著しく優れた効果がもたらされる。

【0050】そして、請求項7に記載しているように、 粉末を押出し法により成形するときのバインダーがメチルセルロース系の有機バインダーであり、粉末に対する 混合量が1~5重量%、好ましくは2~4重量%であって、焼結前または焼結時にバインダーを除去するようし 30 たから、粉末混練物の押出し法による成形を安定して行うことが可能であって棒状ないしはリボン状に形状付与された肉盛用焼結体材料を製造することが可能であるという著しく優れた効果がもたらされ、バインダーをメチルセルロース系の有機バインダーとすることによって、 水溶性のバインダーであるため成形作業および加熱による分解が安全でかつ容易に行えることになるという著しく優れた効果がもたらされる。

【0051】そしてまた、請求項8に記載しているように、粉末を押出し法により成形するときに使用したバインダーを大気中300℃以下で加熱して残留バインダー量を25~50%とした後焼結してバインダーを除去するようになすことによって、焼結体材料を製造する際の作業性を良好なものにすることが可能であり、残留バインダー量を適切なものにすることが可能であり、残留バインダー量を適切なものにすることが可能であり、残留がインダー量を適切なものにすることが可能であるという著しく優れた効果がもたらされる。

【0052】さらにまた、請求項9に記載しているよう 50 断面の厚さ:1.5mm×幅:2.5mm、長さ:約5

に、焼結に際し真空中もしくは酸化雰囲気以外の雰囲気中で焼結して焼結密度がその粉末材料の真密度の50~90%となるように焼結するようになすことによって、ここで得られた焼結体材料はレーザー肉盛加工時の取り扱いにとって必要かつ十分な強度を有するものとすることが可能であり、三次元形状のレーザー肉盛加工を可能にするとともに、レーザービームの出力を粉末並みに少ないものにすることが可能になるという著しく優れた効果がもたらされる。

10

【0053】さらにまた、請求項10に記載しているように、金属もしくは合金からなる粉末はガス噴霧法によって作られた最大粒径が500ミクロン以下の球状金属もしくは合金粉末であるものとすることによって、混合物を押出し成形したときの形状形成を容易なものにすることが可能であり、レーザー内盛加工に際してはレーザー照射時のレーザービームの乱反射を効率的に起こしてエネルギー吸収率を高めることが可能であり、少ない入熱エネルギーで安定した肉盛加工を行うことが可能であるという著しく優れた効果がもたらされる。

) 【0054】さらにまた、請求項11に記載しているように、金属もしくは合金からなる粉末は、水噴霧法によって作られた最大粒径150ミクロン以下の急冷金属もしくは合金粉末であるものとすることによって、混合物を押出し成形したときの形状形成を容易なものにすることが可能であり、レーザー肉盛加工に際してはレーザー照射時のレーザービームの乱反射を効率的に起こしてエネルギー吸収率を高めることが可能であり、少ない入熱エネルギーで安定した肉盛加工を行うことが可能であるという著しく優れた効果がもたらされる。

30 【0055】

【実施例】以下、本発明の実施例について説明するが、 本発明はこのような実施例に限定されないことはいうま でもない。

【0056】(実施例1)この実施例では、粉末として最大粒径が500ミクロン(分級篩網32メッシュ)であって主たる化学成分が3重量%C-2重量%Si-3重量%Cr-残部Feであるガス噴霧合金粉末を使用し、この合金粉末:100重量部にメチルセルロース系有機バインダー:2~7重量部を配合して5分間混合した。次いで、溶剤として水:18~30重量部を注入し、10分間混合して混練した。この混練終了時における混練物の硬さ(日本碍子製クレイハードネステスターによ

る)は表1に示すように約2.0~3.5であった。 【0057】次に、後工程での混練物中の細かい気泡による悪影響を防止するため、混練物を減圧下で2分間脱気した。この脱気終了後の混合物の硬さは同じく表1に示すように約7.5~8.0であった。

【0058】次いで、混練物の押出しに際しては、プランジャー式押出し機(シリンダー径30mm)を用い、

2/17/2009, EAST Version: 2.3.0.3

1 2

0cmに押出し成形した。なお、このときのヘッドスピードは40mm/minとした。また、成形に際しての押出し荷重は同じく表1に示すように $120\sim180$ kgとした。

【0059】次に、成形体に約100℃の熱風を吹きつけて乾燥した。このとき、乾燥後の水分量は同じく表1*

*に示すように約8.0~8.5%であった。

【0060】そして、押出し成形の際の成形性評価を行ったところ、同じく表1に示す結果であった。

[0061]

【表1】

混練物の製造と評価

成形体	1	バインダー	混紉	後	乾燥	後	押出し	乾煩	後		乾燥		
区分	份末	添加量	硬	₹	硬	ਰੱ	荷重	水纸	量	成形性	クラック	表面性状	備考
L		(重量部)					(k g)	〔重量	部)				
Α		2	2.	0	7.	5	180~	8.	0	Δ	0	Δ	エッジ部表面劣る
			L.				155						成形荷重不安定
В	100	3	3.	5	7.	5	140	8.	0	0	0	0	
C	重量部	4	3.	5	8.	0	135	8.	0	O	0	0	
D		5	3.	0	8.	0	130	8.	5	0	0	Δ	一部角にササクレ
E		7	3.	0	7.	5	120	8.	5	×	0	×	ササクレ
備	考	〇印:良	好、	Δ	印:	ф	や不適、	×印;	不適				

【0062】表1に示すように、バインダー添加量が多 ※然冷却で気孔の封孔を行すぎる成形体Eでは、粉末混練物の硬さが低くなり、強 この結果、表2に示すよ度が不足して押出し時に端部にササクレ状の形状欠陥を 20 45~99%であった。 生じていた。 【0065】次いで、こ

【0063】次に、上記成形体A~Dをセラミック板上にて大気中加熱してバインダーを除去した。このときのバインダー残留率は表2より算出されるように添加量の40~50%となるようにした。

【0064】次いで、焼結に際しては、真空焼結炉を用いて $1150\sim1250$ °×60分の加熱とした。そして、焼結体の焼結密度を測定するにあたり、パラフィンを溶融させた中に焼結体を浸し、次いで取り出した後自※

※然冷却で気孔の封孔を行ない水中法によって測定した。この結果、表2に示すように、焼結密度は相対密度で約45~99%であった。

【0065】次いで、このようにして得た肉盛用焼結体 材料を溶接材料として用い、Nd:YAGレーザーを照 射すると共に、Arシールドガスを送給しながらレーザー肉盛加工を行った。このレーザー肉盛加工において は、肉盛加工の幅に合わせて焼結体材料の幅を1~2m mにあらかじめ加工したものを使用した。このレーザー 肉盛加工による評価結果を同じく表2に示す。

[0066]

【表2】

肉盛用焼結体材料の製造と肉盛評価結果

		パインダー	残留	焼結温度	相対密度	ビーム幅	焼結体幅	肉盛評価		
No.	粉末	添加量	バインダー層	•			J			
		(重量部)	(重量部)	(°C)	(%)	(mm)	(mm)			
1		2	1	1150	50	2	1. 5	Ó		
2		3	0		_	成形体破	損			
3	100	3	1. 2	1150	6.0	2	2	Ó		
4	帝量重	3	1	1200	7 0	2	1. 5	0		
5	}	3	1	1230	9 0	2	1	0		
6]	3	1	1250	99	2	2	×		
7		4	2	1150	4 5	2	2	虎結体破損		
8		4	2	1230	9 0	2	1. 5	0		
9		4	2	1250	9 7	2	2	×		
10		5	1. 2	1150	4.5	2	2	虎結体破損		
11		5	1. 5	1200	6.5	2	2	Ö		
備	備考 〇印:良好、×印:不適									

【0067】この結果、表2に示すように、バインダーの残留率が0%であるNo.2の焼結体材料では成形体の強度が低くなりすぎて成形体の段階で破損してしまい、また、焼結体材料の密度が高すぎるNo.6,No.9ではレーザー肉盛加工の際に溶融のために必要となるエネルギーが大きくたるので空孔を有する焼結体を◆

★肉盛材料として使用した場合と同程度の入熱量では入熱 不足となり、焼結体材料の密度が低すぎるNo.7,N o.10ではその強度が不足して取り扱い中に破損して しまった。

【0068】

なるエネルギーが大きくなるので空孔を有する焼結体を★50 【実施例2】この実施例では、粉末として最大粒径が1

50ミクロン(分級篩網100メッシュ)であって主た る化学成分が4重量%C-1重量%Si-3重量%Cr - 残部 Feであるガス噴霧合金粉末を使用し、この合金 粉末:100重量部にメチルセルロース系有機バインダ ー:2~7重量部を配合して5分間混合した。次いで、 溶剤として水:18~30重量部を注入し、10分間混 合して混練した。この混練終了時における混練物の硬さ (日本碍子製クレイハードネステスターによる)は表3 に示すように約3.0であった。

よる悪影響を防止するため、混練物を減圧下で2分間脱 気した。この脱気終了後の混合物の硬さは同じく表3に 示すように約7.5であった。

【0070】次いで、混練物の押出しに際しては、プラ*

*ンジャー式押出し機(シリンダー径30mm)を用い、 断面の厚さ: 1.5mm×幅: 2.5mm、長さ: 約5 0 c m に押出し成形した。なお、このときのヘッドスピ ードは40mm/minとした。また、成形に際しての 押出し荷重は同じく表3に示すように120~210k gとした。

14

【0071】次に、成形体に約100℃の熱風を吹きつ けて乾燥した。このとき、乾燥後の水分量は同じく表3 に示すように約8%であった。

【0069】次に、後工程での混練物中の細かい気泡に 10 【0072】そして、押出し成形の際の成形性評価を行 ったところ、同じく表3に示す結果であった。

[0073]

【表3】

混練物の製造と評価

成形体区 分	粉末	バインダー 添加量 (重量部)	混線硬		乾炒 硬	後さ	押出し 荷重 (kg)	乾烟 水久 (重量	量	成形性	乾燥 クラック	麦面性状	備考
F		2	3.	0	7.	5	2 1 0~ 1 7 5	8.	0	0	0	Δ	成形荷重不安定
G	$1 \ 0 \ 0$	3	3.	0	7.	5	180	8.	0	0	0	0	
Н	重量部	4	3.	0	7.	5	170	8.	0	0	0	0	
I		5	3.	0	7.	5	140	8.	0	0	0	0	
J		7	3.	0	7.	5	120	8.	0	0	0	×	ササクレ
備	考	〇印:良	好、	Δ	印:	40	や不適、	×印:	不適				

【0074】表3に示すように、バインダー添加量が多 すぎる成形体Jでは、粉末混練物の硬さが低くなり、強 度が不足して押出し時に端部にササクレ状の形状欠陥を 生じていた。

にて大気中加熱してバインダーを除去した。このときの バインダー残留率は表4より算出されるように添加量の 40~50%となるようにした。

【0076】次いで、焼結に際しては、真空焼結炉を用 いて1150~1250℃×60分の加熱とした。そし て、焼結体の焼結密度を測定するにあたり、パラフィン を溶融させた中に焼結体を浸し、次いで取り出した後自※

※然冷却で気孔の封孔を行ない、水中法によって測定し た。この結果、表4に示すように、焼結密度は相対密度 で約45~99%であった。

【0077】次いで、このようにして得た肉盛用焼結体 【0075】次に、上記成形体F \sim Iをセラミック板上 30 材料を溶接材料として用い、Nd:YAGレーザーを照 射すると共に、Arシールドガスを送給しながらレーザ ー肉盛加工を行った。このレーザー肉盛加工において は、肉盛加工の幅に合わせて焼結体材料の幅を1~2m mにあらかじめ加工したものを使用した。このレーザー 肉盛加工による評価結果を同じく表4に示す。

【0078】

【表4】

肉盛用焼結体材料の製造と肉盛評価結果

		バインダー	残留	焼結温度	相对密度	ビーム幅	焼結体幅	肉盛評価		
Νo.	粉末	添加量	バインダー量							
		(重量部)	(重量部)	(°C)	(%)	(mm)	(mm)			
12		2	1	$1 \ 1 \ 5 \ 0$	55	2	1. 5	0		
13		3	0			成形体破	損			
14	1 0 0	3	1. 2	1150	55	2	2	Ö		
15	重量部	3	1	1200	8 5	2	1.5	0		
16		3	1	1230	9 7	2	1	×		
17		3	1.	1250	9 9	2	2	×		
18		4	2	1150	5 5	2	2	0		
19		4	2	1200	8.0	2	1. 5	0		
20		4	2	1250	99	2	2	Х		
2 1		5	2	1150	4 5	2	2	虎結体破損		
22		5	2	1200	7.5	2	2	0		
備	備考 〇印:良好、×印:不適									

【0079】この結果、表4に示すように、バインダー *となの残留率が0%であるNo.13の焼結体材料では成形 を依め強度が低くなりすぎて成形体の段階で破損してしま 熱不い、また、焼結体材料の密度が高すぎるNo.16,1 では7,20ではレーザー肉盛加工の際に溶融のために必要*20 た。

*となるエネルギーが大きくなるので空孔を有する焼結体を肉盛材料として使用した場合と同程度の入熱量では入熱不足となり、焼結体材料の密度が低すぎるNo.21 ではその強度が不足して取り扱い中に破損してしまっ

DA03 DA32 KA22 KA30

フロントページの続き

	,				
(51)Int.C1.	7 識別記号	F	Ι		テーマコード(参考
B 2 3 K C 2 2 C			22C 33/0 22F 3/1		1 C E
(72)発明者	加 納 眞 神奈川県横浜市神奈川区宝町2番地 自動車株式会社内	(72) _: 日産	神	元 宏 規 奈川県横浜市神奈川 動車株式会社内	区宝町2番地 日産
(72)発明者	鈴 木 健 司神奈川区宝町2番地神奈川県横浜市神奈川区宝町2番地自動車株式会社内	F夕 日産	ー ム(参考)	4E068 BB01 4K017 AA04 BA06 FA14 FA17 4K018 AA28 BB03	