Assignment 2 Statistical Methods in Applied Computer Science DD2447

Jim Holmström 890503-7571 jimho@kth.se

November 24, 2012

Exercise A1 Compute $p(D|T \in \text{Polytree})$ with Bernoulli CPD's Show how to compute p(D|T) where T is a DGM which is a polytree and $D = \{x_1, ..., x_N\}$ (and x_i is an assignment of values to all variables of T). Assume that all variables are binary and all CPD's Bernoulli.

Solution.

Theorem 0.1. Chain rule

$$p(\bigcap_k x_k) = \prod_k p(x_k \Big| \bigcap_{j:j < k} x_j)$$
 (1)

Proof. We can extend the rule

$$p(x_i, x_j) = p(x_i | x_j) p(x_j)$$
(2)

since x_i, x_j is just events we might as well have $x_j = \bigcap_{j'} x_{j'}$ which makes the expression look like this

$$p(x_i \cap \left(\bigcap_{j'} x_{j'}\right)) = p(x_i \middle| \bigcap_{j'} x_{j'}) p(\bigcap_{j'} x_{j'})$$
(3)

by tail-recursion on $p(\bigcap_{j'} x_{j'}) = p(x_a \cap (\bigcap_{j' \neq a} x_{j'}))$ we will exhaust all j' which leaves us with the base-case $p(x_a)$. Writing out the entire trace of the recursion will gives us the wanted expression for $p(\bigcap_k x_k)$.

The first goal is to break down p(D|T) into the CPD's for each node

$$p(D|T) = \phi\left(\left\{p(x_t|\cdot\right)\right\}_t\right) \tag{4}$$

this gives an explicit expression for the p(D|T).

Since T is a polytree \subset DAG it is always possible to sort the data topologically according to T.¹ We arrange the indices of the data this way so that it will be topologically sorted according to T and even if it's bad practice in math we replace the old indices with the new sorted ones. This results in variables always having the property $i < j \Rightarrow i$ higher up or equally high as j.²

Now apply the chain rule

$$p(D|T) = p(\{x_t\}_k|T) = \prod_k p(x_k | \{x_j\}_{j:j < k}, T)$$
(5)

Next we note that since we have that the data is topologically sorted we know that

$$\left(D \setminus \{x_j\}_{j:j < k}\right) \cap pa\left(x_k\right) = \emptyset \tag{6}$$

in other words the parent cannot be at the same or lower topological level. This results in

$$\{x_j\}_{j:j< k} \supset pa\left(x_k\right) \tag{7}$$

which basically states that the parents, denoted $pa(\cdot)$, always is at a higher level.

The next step is to use the conditional independence information from T, which is that a r.v. is only dependent on the parents r.v.'s³, together with the fact (7) in (5) we get

$$p(D|T) = \prod_{k} p(x_k | \{x_j\}_{j:j < k}, T) = \prod_{k} p(x_k | pa(x_k))$$
(8)

Finally since we only have $cpt's^4 f_t^5$, we have that

$$x_t \sim Ber\left(f_t(pa(x_t))\right)$$
 (9)

and as explicitly written out as possible

$$p(D|T) = \prod_{k} p(x_{k}|pa(x_{k})) = \prod_{k} f_{k} (pa(x_{k}))^{x_{k}} (1 - f_{k} (pa(x_{k})))^{1-x_{k}}$$
(10)

Exercise A2 Marginalize over non-observed variables

Assume instead that each x_i is an assignment to a subset of the variables say O. Show how to marginalize over $V \setminus O$ (i.e., the non-observed variables).

¹How we sort the data within a topological level doesn't matter.

^{2&}quot;higher" is the context of topological sorting means that it is higher up in the sorted DAG that grows downwards.

³At least for a completely visible graph.

⁴According to mail correspondence with the teacher.

⁵Since each distribution has only two states and needs to be normalized to 1, this is the same thing as setting $p \in (0,1)$ in a bernoulli

Solution.

Exercise 11.3 EM for the mixtures of Bernoullis

• Show that the M step for ML estimation of a mixture of Bernoullis is given by

$$\mu_{kj} = \frac{\sum_{i} r_{ik} x_{ij}}{\sum_{i} r_{ik}} \tag{11}$$

• Show that the M step for MAP estimation of a mixture of Bernoullis with a $\beta(\alpha, \beta)$ prior is given by

$$\mu_{kj} = \frac{\left(\sum_{i} r_{ik} x_{ij}\right) + \alpha - 1}{\left(\sum_{i} r_{ik}\right) + \alpha + \beta - 2} \tag{12}$$

Solution. The M step is to optimize the auxiliary function Q with respect to π, θ' . Q is the expected posterior log-likelihood⁶ with respect to the last parameter θ and the observed data D. ⁷ The expression for this is

$$Q(\theta', \theta) = E \left[\log \mathcal{L}_{MAP}(\theta') | D, \theta \right] = E \left[\log \left(\mathcal{L}(\theta') p(\theta') \right) | D, \theta \right] =$$
(13)

$$= E \left[\ell(\theta') + \log p(\theta') | D, \theta \right] = E \left[\ell(\theta') | D, \theta \right] + \log p(\theta')$$
(14)

and to derive this expression we introducing the latent variable z_i which corresponds to the hidden or missing variables which basically is the r.v. for how x_i belongs to the class k. ⁸ We start with MAP and then derive ML by setting a uniform priori.

$$Q(\theta', \theta) = E\left[\sum_{i} \log p(x_i, z_i | \theta')\right] + p(\theta') =$$
(15)

since E is linear and we can factor on the different classes and the factors become given with the parameters (π_k, θ'_k) of class k:

$$= \sum_{i} \left[\mathbb{E} \log \left(\prod_{k} \left(\pi_{k} p(x_{i} | \theta_{k}') \right)^{\mathbb{I}(z_{i} = k)} \right) \right] + \log \prod_{k} p(\theta_{k}') =$$
 (16)

then log the inner parts and let E operate on the expression

$$= \sum_{i} \sum_{k} \left[\mathbb{E}\left[\mathbb{I}(z_i = k) \right] \log \left[p(x_i \middle| \theta_k') \right] \right] + \sum_{k} \log p(\theta_k') = \tag{17}$$

⁶In the book it's actually just log-likelihood, but this will work in the same way instead of using $Q(\theta',\theta) + \log p(\theta')$ without derivation, we will use posterior-Q as Q instead.

⁷It can be shown that Q is so that the new parameters is always better or as good as the last one, but exclude the proof for this since it's not needed by the exercise.

⁸Responsibility $r_{ik} \stackrel{\triangle}{=} p(z_i = k|x_i, \theta)$

then we have that the expected $E[I(z_i = k)]$ will be $p(z_i = k|x_i, \theta) = r_{ik}$ which is the expected class-belonging of x_i given the previous parameters θ . The log product rule gives us

 $= \sum_{i} \sum_{k} r_{ik} \log \pi_k + \sum_{i} \sum_{k} \{r_{ik} \log p(x_i | \theta_k')\} + \sum_{k} \log p(\theta_k')$ (18)

Now since we have that $\sum_{i,k} r_{ik} \log \pi_k \perp \sum_{i,k} \{r_{ik} \log p(x_i|\theta_k')\} + \sum_k \log p(\theta_k')$ we can optimize the parameters π_k and θ_k' separately and only the θ_k' -term is asked for in the exercise which we denote $\ell(\theta_k')$.

The model parameters in this case is denoted by μ_k which is a vector and in indexnotation μ_{kj} . ⁹

We start with the MAP

$$\hat{\mu}_k' = \underset{\mu_k'}{argmax} \left\{ \sum_i \left\{ r_{ik} \log p(x_i | \mu_k') \right\} + \log p(\mu_k') \right\}$$
(19)

which we find by $\frac{\partial \ell(\mu_k')}{\partial \mu_k'} = 0$, where $p(x_i|\mu_k') = \prod_j p(x_{ij}|\mu_{kj}')$ is the multivariate Bernoulli¹⁰ distribution for class k. The priori in the same way is $p(\mu_k') = \prod_j p(\mu_{kj}')$. In our case for MAP this is $\beta(\alpha, \beta) = \frac{{\mu_{kj}'}^{\alpha-1}(1-{\mu_{kj}'})^{\beta-1}}{B(\alpha, \beta)}$.

 $^{^9\}mathrm{Not}$ using Einstein notation for tensor product.

 $^{^{10}{\}rm Often}$ called multinoulli.

$$\frac{\partial(\ell(\mu'_{k}))}{\partial \mu'_{kj}} = \frac{\partial \sum_{i} \left\{ r_{ik} \log \prod_{j'} p(x_{ij'} \middle| \mu'_{kj'}) \right\} + \log \prod_{j'} p(\mu'_{kj'})}{\partial \mu'_{kj}} = (20)$$

$$= \frac{\partial \sum_{i,j'} \left\{ r_{ik} \log p(x_{ij'} \middle| \mu'_{kj'}) \right\} + \sum_{j'} \log p(\mu'_{kj'})}{\partial \mu'_{kj}} = (21)$$

$$= \left\{ \frac{\partial \sum_{j \neq j'} (\cdot)}{\partial \mu'_{kj}} = 0 \right\} = \frac{\partial \sum_{i} \left\{ r_{ik} \log \left(\mu'_{kj} x_{ij} (1 - \mu'_{kj})^{(1-x_{ij})} \right) \right\} + \log \frac{\mu'_{kj}}{B(\alpha,\beta)}}{\partial \mu'_{kj}} = (22)$$

$$= \frac{\partial \sum_{i} r_{ik} \left(x_{ij} \log \mu'_{kj} + (1 - x_{ij}) \log(1 - \mu'_{kj}) \right)}{\partial \mu'_{k}} + (23)$$

$$+ \frac{\partial (\alpha - 1) \log \mu'_{kj} + (\beta - 1) \log(1 - \mu'_{kj}) - \log B}{\partial \mu'_{k}} = (24)$$

$$= \frac{(\sum_{i} r_{ik} x_{ij}) + \alpha - 1}{\mu'_{kj}} - \frac{(\sum_{i} r_{ik} (1 - x_{ij})) + \beta - 1}{1 - \mu'_{kj}} = (25)$$

$$= \frac{(1 - \mu'_{kj}) (\sum_{i} r_{ik} x_{ij}) - \mu'_{kj} (\sum_{i} r_{ik} (1 - x_{ij}))}{\mu'_{kj} (1 - \mu'_{kj})} + (26)$$

$$+ \frac{(1 - \mu'_{kj}) (\alpha - 1) - \mu'_{kj} (\beta - 1)}{\mu'_{kj} (1 - \mu'_{kj})} = (27)$$

$$= \frac{(\sum_{i} r_{ik} x_{ij}) - \mu'_{kj} (\sum_{i} r_{ik}) + (\alpha - 1) - \mu'_{kj} (\alpha + \beta - 2)}{\mu'_{kj} (1 - \mu'_{kj})} (28)$$

and now find the zero of this expression

$$\frac{\left(\sum_{i} r_{ik} x_{ij}\right) - \mu'_{kj} \left(\sum_{i} r_{ik}\right) + (\alpha - 1) - \mu'_{kj} (\alpha + \beta - 2)}{\mu'_{kj} (1 - \mu'_{kj})} = 0$$
(29)

$$(\sum_{i} r_{ik} x_{ij}) - \mu'_{kj} (\sum_{i} r_{ik}) + (\alpha - 1) - \mu'_{kj} (\alpha + \beta - 2) = 0$$
(30)

$$\mu'_{kj}[(\sum_{i} r_{ik}) + \alpha + \beta - 2] = (\sum_{i} r_{ik} x_{ij}) + \alpha - 1$$
 (31)

$$\mu'_{kj} = \frac{(\sum_{i} r_{ik} x_{ij}) + \alpha - 1}{(\sum_{i} r_{ik}) + \alpha + \beta - 2}$$
(32)

which is the same as the equation (12).

By just looking at the expression for $\beta(\cdot)$ we see that

$$\beta(1,1) = U(0,1) \tag{33}$$

and knowing that ML is a MAP with a uniform priori we can just set $\alpha, \beta = 1$ in the derived expression to get the ML.

$$\mu'_{kj} = \frac{\left(\sum_{i} r_{ik} x_{ij}\right) + 1 - 1}{\left(\sum_{i} r_{ik}\right) + 1 + 1 - 2} = \frac{\sum_{i} r_{ik} x_{ij}}{\sum_{i} r_{ik}}$$
(34)

which is the same as the equation (11).