7Metody numeryczne – laboratorium nr 3

Błędy obliczeń

Zadanie 1 (1 punkt)

Wykonaj obliczenia i zanotuj wyniki. Ustaw format wyświetlania danych na format long e. Wyjaśnij co się dzieje.

Wyrażenie	Wynik	
x=29/13	2.230769230769231e+00	
y=29-13*x	0	
x1=29/1300	2.230769230769231e-02	
y1=29-1300*x1	3.552713678800501e-15	
29-1300*(29/1300)	3.552713678800501e-15	
29-1300*29/1300	0	

Wyjaśnienie:

Wyniki prawidłowe.

Zadanie 2 (3 punkty)

1) Policz $f(x)=x-\sqrt{1+x\cdot x}$ algorytmem wprost wynikającym z tego wzoru, a następnie z wykorzystaniem równoważnego wzoru $f(x)=\frac{-1}{x+\sqrt{1+x\cdot x}}$. W tym celu napisz program, w którym zastosujesz dwa następujące algorytmy:

(A1)
$$w_1 = x - a$$
 gdzie: $a = \sqrt{1 + x \cdot x}$,

(A2)
$$w_2 = -\frac{1}{x+a}$$
 gdzie: $a = \sqrt{1+x\cdot x}$.

Obliczenia wykonaj dla $x = 10^k$ gdzie: k = 4,5,...,10

Obliczenia przeprowadź zarówno na liczbach pojedynczej precyzji (funkcja single) jak i podwójnej precyzji (funkcja double).

Dla wszystkich algorytmów (ustaw format wyświetlania danych na format long e).

Wyniki obliczeń:

	Pojedyncza precyzja		Podwójna precyzja	
	$w_1 = x - a$	$w_2 = -\frac{1}{x+a}$	$w_1 = x - a$	$w_2 = -\frac{1}{x+a}$
$x = 10^4$	0	-4.999999e-05	- 5.00000005558832e- 05	- 4.99999998750000e- 05
$x = 10^5$	0	-4.999999e-06	- 4.99999441672117e- 06	- 4.99999999987500e- 06
$x = 10^6$	0	-5.0000000e-07	- 5.00003807246685e- 07	- 4.99999999999875e- 07
$x = 10^7$	0	-5.0000001e-08	- 5.02914190292358e- 08	- 4.999999999999999- 08
$x = 10^8$	0	-5.0000000e-09	0	- 5.0000000000000000 09
$x = 10^9$	0	-4.9999999e-10	0	- 5.0000000000000000000e- 10
$x = 10^{10}$	0	-5.0000001e-11	0	- 5.0000000000000000000e- 11

Zadanie 3 (2 punkty)

Oblicz wartości wielomianu $(x-2)^4 = x^4 - \dots + 16$

na siatce równomiernej 1000 punktowej w przedziale (2-d,2+d) dla $d=10^{-3}$ za pomocą dwóch algorytmów. Ustaw format wyświetlania danych na format long e

Algorytm 1:
$$a = (x - 2), f_1(x) = a^4$$

Algorytm 2:
$$f_2(x) = x * x * x * x - \dots + 16$$

Narysuj oba wielomiany w jednym układzie współrzędnych.

Oblicz błąd $\parallel f_1(x) - f_2(x) \parallel_{\infty}$, czyli $\max_k \mid f_1(x(k)) - f_2(x(k)) \mid$

Przydatne funkcje:

```
linspace (a,b,N) - a i b: granice przedziału, N - liczba próbek
plot(x,y)
hold on - nakładanie wykresów
title('tytuł')
max(x) - największa wartość w wektorze x
abs(y) - wartość bezwzględna argumentu y
```

/tu wklej wykres z Matlaba z dwoma wielomianami, jako tytuł wstaw wartość błędu/

Zadanie 4 (2 punkty)Oblicz wartość podanej funkcji dla x = 40545 i y =70226

$$f(x,y) = 9 \cdot x^4 - y^4 + 2 \cdot y^2$$
 (1)

koleino dla:

Podwójna precyzja - domyślnie	Wynik	
float	-	
int64	9863382152	
int32	2147483647	
int16	32767	
Pojedyncza precyzja - single		
float	-	
int64	9863382152	
int32	2147483647	
int16	32767	

Przekształć podaną funkcję (1) do postaci równoważnej (2)

$$f(x,y) = (3 \cdot x^2 - y^2 + 1)(3 \cdot x^2 + y^2 - 1) + 1$$
(2)

$$f(x,y) = (3 \cdot x^2 - y^2 + 1)(3 \cdot x^2 + y^2 - 1) + 1$$

$$(2)$$
/Tutaj zapisz odpowiednie przekształcenia/
$$f(x,y) = 9 \cdot x^4 - y^4 + 2 \cdot y^2 = 9 \cdot x^4 - y^4 + 2 \cdot y^2 - 1 + 1 = 9 \cdot x^4 - (y^4 - 2 \cdot y^2 - 1) + 1$$

$$=$$

$$= 9 \cdot x^4 - (y^2 - 1)^2 + 1 = (3 \cdot x^2)^2 - (y^2 - 1)^2 + 1$$

$$= (3 \cdot x^2 - (y^2 - 1)) \cdot (3 \cdot x^2 + (y^2 - 1)) + 1 =$$

$$= (3 \cdot x^2 - y^2 + 1) \cdot (3 \cdot x^2 + y^2 - 1) + 1$$

Jeszcze raz powtórz obliczenia. Wyniki umieść w tabeli.

Podwójna precyzja - domyślnie	Wynik
float	-
int64	1
int32	2147483647
int16	32767
Pojedyncza precyzja - single	
float	-
int64	1
int32	2147483647
int16	32767

Który z wyników jest poprawny? Znajdź sposób na potwierdzenie prawidłowości wyniku.

Prawidłowy wynik to 1. Pierwszy z nawiasów równania (2), po wstawieniu x = 40545 i y = 70226 będzie równy 0, co za tym idzie wartość drugiego nawiasu nie ma znaczenia, ponieważ wartość pomnożona razy 0 zawsze będzie równa 0. Na koniec do 0 dodajemy 1 co daje wynik 1.

Zadanie 5 (2 punkty)

1) Oblicz iloczyn skalarny podanych wektorów X i Y:

```
X = [exp(1), -pi, sqrt(2), -psi(1), log10(2)]

Y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]
```

Obliczenia wykonaj dla podanych wariantów:

- W1 => Matlab mnożenie skalarne wektorów;
- W2 => Matlab sumowanie iloczynu elementów wektorów, z użyciem polecenia sum;
- **W3** => sumowanie w pętli iloczynu elementów wektorów na tych samych pozycjach. Sumowanie rozpocznij od elementu na pozycji 1;
- **W4** => sumowanie w pętli iloczynu elementów wektorów na tych samych pozycjach. Sumowanie rozpocznij od elementu na pozycji ostatniej;
- **W5** => sumowanie w pętli iloczynu elementów wektorów na tych samych pozycjach. Najpierw dokonaj obliczeń dla elementów leżących na pozycjach parzystych, potem na pozycjach nieparzystych.
- 2) Oblicz błąd bezwzględny dla wariantów **W2** do **W5**. Jako wzorzec przyjmij wynik uzyskany dla wariantu **W1**. Błąd przedstaw na wykresie słupkowym (funkcja bar).

/Wykres błędu (tu wstaw wykres z Matlaba)/

