

QCOURSE570

FACULTY OF COMPUTING, UNIVERSITY OF LATVIA | QWORLD MAY 5, 2022

PHYSICAL CONSTRAINTS

- 1. Chirality ——— "penalty_chiral"
- 2. 'No looping' ——— "penalty_back"
- 3. 'Penalize local overlap' ——— "penalty_1"

Parameters that define the strength of constraints enforcing in the problem.

"PENALTY_CHIRAL"

- Non-Superimposable.
- •Do not have a plane of symmetry.
- Different Optical activity.

"PENALTY_BACK"

- A penalty parameter used to penalize turns along the same axis.
- This term is used to eliminate sequences where the same axis is chosen twice in a row.
- In this way we do not allow for a chain to fold back into itself.

"PENALTY_1"

- A penalty parameter used to penalize local overlap between beads within a nearest neighbor contact.
- No Flip Flop Movement.

Protein Folding by Qiskit Nature

- Protein Folding Problem function
 - Protein Defining
 - Interaction Method
 - Penalty Terms
- VQE
 - ansatz
 - optimizer
 - backend
 - expectation

Candidates for our project outcome

- 1. Geometrical model (planar, cubic, tetrahedral)
- 2. Encoding (4 qubits, 2 qubits)
- 3. Energy model (HP, MJ)
- 4. Penalty parameters
- 5. Convert (mapping)
- 6. Initialization
- 7. VQE (Cvar expectation)
- 8. VQE (ansatz)
- 9. VQE (optimization)

Miyazawa-Jernigan model

Table 3. Contact energies in RT units; eij for upper half and diagonal and eij for lower half

		Cys	Met	Phe	Ile	Leu	Val	Trp	Tyr	Ala	Gly	Thr	Ser	Asn	Gln	Asp	Glu	His	Arg	Lys	Pro	
	Cys	-5.44	-4.99	-5.80	-5.50	-5.83	-4.96	-4.95	-4.16	-3.57	-3.16	-3.11	-2.86	-2.59	-2.85	-2.41	-2,27	-3.60	-2.57	-1.95	-3.07	Cys
	Met	0.46	-5.46	-6.56	-6.02	-6.41	-5.32	-5.55	-4.91	-3.94	-3.39	-3.51	-3.03	-2.95	-3.30	-2.57	-2.89	-3.98	-3.12	-2.48	-3.45	Met
	Phe	0.54	-0.20	-7.26	-6.84	-7.28	-6.29	-6.16	-5.66	-4.81	-4.13	-4.28	-4.02	-3.75	-4.10	-3.48	-3.56	-4.77	-3.98	-3.36	-4.25	Phe
	Ile	0.49	-0.01	0.06	-6.54	-7.04	-6.05	-5.78	-5.25	-4.58	-3.78	-4.03	-3.52	-3.24	-3.67	-3.17	-3.27	-4.14	-3.63	-3.01	-3.76	\mathbf{Ile}
	Leu	0.57	0.01	0.03	-0.08	-7.37	-6.48	-6.14	-5.67	-4.91	-4.16	-4.34	-3.92	-3.74	-4.04	-3.40	-3.59	-4.54	-4.03	-3.37	-4.20	Leu
	Val	0.52	0.18	0.10	-0.01	-0.04	-5.52	-5.18	-4.62	-4.04	-3.38	-3.46	-3.05	-2.83	-3.07	-2.48	-2.67	-3.58	-3.07	-2.49	-3.32	Val
	Trp	0.30	-0.29	0.00	0.02	0.08	0.11	-5.06	-4.66	-3.82	-3.42	-3.22	-2.99	-3.07	-3.11	-2.84	-2.99	-3.98	-3.41	-2.69	-3.73	Trp
	Tyr	0.64	-0.10	0.05	0.11	0.10	0.23	-0.04	-4.17	-3.36	-3.01	-3.01	-2.78	-2.76	-2.97	-2.76	-2.79	-3.52	-3.16	-2.60	-3.19	Tyr
	Ala	0.51	0.15	0.17	0.05	0.13	0.08	0.07	0.09	-2.72	-2.31	-2.32	-2.01	-1.84	-1.89	-1.70	-1.51	-2.41	-1.83	-1.31	-2.03	Ala
	Gly	0.68	0.46	0.62	0.62	0.65	0.51	0.24	0.20	0.18	-2.24	-2.08	-1.82	-1.74	-1.66	-1.59	-1.22	-2.15	-1.72	-1.15	-1.87	Gly
	Thr	0.67	0.28	0.41	0.30	0.40	0.36	0.37	0.13	0.10	0.10	-2.12	-1.96	-1.88	-1.90	-1.80	-1.74	-2.42	-1.90	-1.31	-1.90	Thr
	Ser	0.69	0.53	0.44	0.59	0.60	0.55	0.38	0.14	0.18	0.14	-0.06	-1.67	-1.58	-1.49	-1.63	-1.48	-2.11	-1.62	-1.05	-1.57	Ser
	Asn	0.97	0.62	0.72	0.87	0.79	0.77	0.30	0.17	0.36	0.22	0.02	0.10	-1.68	-1.71	-1.68	-1.51	-2.08	-1.64	-1.21	-1.53	Asn
	Gln	0.64	0.20	0.30	0.37	0.42	0.46	0.19	-0.12	0.24	0.24	-0.08	0.11	-0.10	-1.54	-1.46	-1.42	-1.98	-1.80	-1.29	-1.73	Gln
	Asp	0.91	0.77	0.75	0.71	0.89	0.89	0.30	-0.07	0.26	0.13	-0.14	-0.19	-0.24	-0.09	-1.21	-1.02	-2.32	-2.29	-1.68	-1.33	Asp
	Glu	0.91	0.30	0.52	0.46	0.55	0.55	0.00	-0.25	0.30	0.36	-0.22	-0.19	-0.21	-0.19	0.05	-0.91	-2.15	-2.27	-1.80	-1.26	Glu
	His	0.65	0.28	0.39	0.66	0.67	0.70	0.08	0.09	0.47	0.50	0.16	0.26	0.29	0.31	-0.19	-0.16	-3.05	-2.16	-1.35	-2.25	His
	Arg	0.93	0.38	0.42	0.41	0.43	0.47	-0.11	-0.30	0.30	0.18	-0.07	-0.01	-0.02	-0.26	-0.91	-1.04	0.14	-1.55	-0.59	-1.70	Arg
	Lys	0.83	0.31	0.33	0.32	0.37	0.33	-0.10	-0.46	0.11	0.03	-0.19	-0.15	-0.30	-0.46	-1.01	-1.28	0.23	0.24	-0.12	-0.97	Lys
	Pro	0.53	0.16	0.25	0.39	0.35	0.31	-0.33	-0.23	0.20	0.13	0.04	0.14	0.18	-0.08	0.14	0.07	0.15	-0.05	-0.04	-1.75	Pro
$e_{rr} - 2.55$	tir	-3.57	-3.92	-4.76	-4.42	-4.81	-3.89	-3.81	-3.41	-2.57	-2.19	-2.29	-1.98	-1.92	-2.00	-1.84	-1.79	-2.56	-2.11	-1.52	-2.09	
$e_r - 3.60$	e ₁	-4.29	-4.73	-5.57	-5.29	-5.71	-4.72	-4.41	-3.87	-3.17	-2.53	-2.63	-2.27	-2.14	-2.35	-2.02	-2.07	-2.94	-2.43	-1.82	-2.53	
$f_e - 3.60$	f_i	-5.58	-6.14	-7.39	-7.09	-7.88	-6.15	-5.34	-4.60	-3.24	-2.22	-2.48	-1.92	-1.74	-1.93	-1.54	-1.49	-2.91	-2.07	-1.17	-1.97	
N_{ir}/N_{i}	2.096	2.723	2.722	2.780	2.811	2.893	2.728	2.537	2.493	2.143	1.840	1.973	1.771	1.699	1.720	1.598	1.508	2.075	1.787	1.343	1.629	
q _i 7.162	6.281	6.646	6.137	5.870	6.042	6.087	6.155	5.793	6.037	6.334	6.284	6.486	6.582	6.574	6.469	6.487	6.235	6.241	6.318	6.569	5.858	

Coarse-Grained Protein Models

• Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A. E., & Kolinski, A. (2016). Coarse-grained protein models and their applications. Chemical reviews, 116(14), 7898-7936.

