上海交通大学 2015-2016 学年第一学期《矩阵理论》试卷(A)

一. 单项选择题(每题3分,共15分)

U =	$f(x) \in V$ 的 n 阶导数 $f(x) \in V \mid f^{(n)}(0)$ 的子空间 $U+W$ 的	, $f^{(0)}(x) = f(x)$. 给 = $0, n \le 1949$ }, W 勺维数 $\dim(U + W)$	定 V 的两个子空间 $=\{g(x)\in V g(x)$	实线性空间. 设n ≥ 0 J U, W 如下: = $x^{1896}(x-1)^{60}h(x)$, ∀ (D) 121		
	2. 设 A 是 $m \times n$ 阶 满秩分解. A^* 表示 R(A) = R(L), N(A) = N(L), 述等式恒成立的个	复矩阵, $R(A)$, $N(A)$ A 的共轭转置. 考虑 $R(A^*) = R(L^*)$, $N(A^*) = N(L^*)$,	A) 分别表示 A 的列: 志下述 8 个等式: R(A) = R(R), N(A) = N(R),	空间与零空间. 设 $A =$ $R(A^*) = R(R^*),$ $N(A^*) = N(R^*).$	<i>LR</i> 是 A 的	
	3. 设 $n \geq 3$, α , $\beta \in \mathbb{C}^n$ 是线性无关的向量. 则矩阵 $\begin{pmatrix} \alpha^* \alpha & \alpha^* \beta \\ \beta^* \alpha & \beta^* \beta \end{pmatrix}$ (). (A) 未必可逆 (B) 可逆但未必正定 (C) 半正定但未必正定 (D) 正定 4. 设 A 为 n 阶正规矩阵, $\ \bullet \ _F$ 是矩阵的 F -范数,则(). (A) $\ A^2 \ _F = \ A^* A \ _F$ (B) $\ A^2 \ _F = \ A \ _F^2$ (C) $\ A \ _F = \sup_{x \neq 0} \frac{x^* A x}{x^* x}$ (D) $\ A \ _F^2 = \sup_{x \neq 0} \frac{x^* A^* A x}{x^* x}$					
则上		$A^{\dagger}AA^{*} = A^{*},$ 数为(). (B) 3	$(A^*A)^{\dagger}A^* = A^{\dagger},$	广义逆.考虑下述 4 个 ⁴ (A*A) [†] A* = A*. (D) 1	等式:	
于基	$e_1 + e_2, e_1 - e_2$ 的矩).	$e_1)=e_1, \sigma(e_1+e_2)=1$ e_2 的最优解为(2e ₁ ,则σ关).	
	8. 设 $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $\cos^2(At) - \sin^2(At) = ($). 9. 设 A 是秩为 2 的 3 阶投影矩阵, $B = \sum_{n=0}^{\infty} \frac{(I-A)^n}{3^n}$,则 e^{2B} 的Jordan标准型为(10. 设 $\alpha, \beta \in \mathbb{C}^n \ (n \geq 2)$, $\ \bullet \ _2$ 是向量的 2 -范数(即欧几里德范数), $\ \alpha \ _2 = 2$, $\ \beta \ _2 = 1$, $\alpha * \beta = 1$					

).

1. 则矩阵 $\alpha\beta^* + \beta\alpha^*$ 的 Moore-Penrose 广义逆为(

三. 计算题与证明题 (11-14 题每题 15 分, 15题 10 分, 共 70 分)

11. 设

 $U = \{(x,y,z,w)^T \in \mathbb{R}^4 \, | \, x+y+z+w=0 \}, \ W = \{(x,y,z,w)^T \in \mathbb{R}^4 \, | \, x-y+z-w=0 \}$ 是通常欧氏空间 \mathbb{R}^4 的两个子空间.设 I 是 \mathbb{R}^4 上的恒等变换.

- (1) 求 $U \ni U \cap W$ 的正交补 $(U \cap W)^{\perp}$ 的各一组标准正交基;
- (2) 试求出 \mathbb{R}^4 上的所有正交变换 σ 使得线性变换 $I-\sigma$ 的核 $Ker(I-\sigma)=U$.

12. 设 $n \geq 2$, $x = (x_1, x_2, \cdots, x_n)^T \in \mathbb{C}^n$. 定义线性变换 $\sigma : \mathbb{C}^n \to \mathbb{C}^n$ 如下:

$$\sigma(x) = (x_2, x_3, ..., x_n, x_1)^T.$$

设 σ 在标准基 $e_1,e_2,...,e_n$ 下的矩阵为 A,其中 e_i $(1 \le i \le n)$ 为 n 阶单位矩阵的第 i 列.

- (1) 求A;
- (2) 求 σ 的特征值与特征向量;
- (3) 求 A 的谱分解, 请写出乘法形式与加法形式.

13. 设
$$A = \begin{pmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & -2 & 2 \end{pmatrix}$$
.

- (1) 求 A 的 Jordan 标准形 J;
- (2) 计算 e^{At} ;
- (3) 设 $x(0) = (1,0,0)^T$. 求定解问题x'(t) = Ax(t)的解.

- 14. 已知 n 阶Hermite矩阵 A 的秩为 r, 其谱分解为 $A=UDU^*$, 其中 U 为酉矩阵, $D=\mathrm{diag}\,(a_1,\cdots,a_r,0,\cdots,0)$ 是对角矩阵.
 - (1) 求 A 的一个满秩分解;
 - (2) 判断矩阵 e^A 是否存在三角分解(即 LU 分解)? 请说明理由;
 - (3) 求分块矩阵 $M = \begin{pmatrix} A & A \\ A & A \end{pmatrix}$ 的奇异值分解.

- **15.** 设 *A* 为 *n* 阶复矩阵.
- (1) 证明: 存在酉矩阵 U 和半正定矩阵 P, 使得A = UP. (此分解称为 A 的极分解.)
- (2) 给出U 与P唯一的充分必要条件.