A C^* -Theoretic Anomaly Calculation

March 16, 2022

Akshunna S. Dogra^{a1, 2}

¹Department of Mathematics, Imperial College London

²EPSRC CDT in Mathematics of Random Systems: Analysis, Modelling and Simulation

Imperial College London

Abstract

In this essay we go over the proof of the isomorphism between the $\check{\mathbf{C}}$ cohomology $\check{H}(M;\mathbb{R})$ and the de Rham cohomology $H_{\mathrm{dR}}(M;\mathbb{R})$ of a smooth manifold M.

Definition 0.1 • \mathcal{A}^p sheaf of smooth p-forms on M

• \mathcal{Z}^p sheaf of closed p-forms on M

Lemma 0.2 For p > 0 and all $q \ge 0$, the Čech cohomology groups of the sheaves \mathcal{A}^q are trivial, i.e. $\check{H}^p(M, \mathcal{A}^q) = 0$.

Lemma 0.3 The sheaf cochain complex

$$0 \longrightarrow \mathbb{R} \longrightarrow \mathscr{A}^0 \stackrel{d}{\longrightarrow} \mathscr{A}^1 \stackrel{d}{\longrightarrow} \mathscr{A}^2 \stackrel{d}{\longrightarrow} \cdots$$

is exact, that is it splits into short exact sequences

$$0 \longrightarrow \mathbb{R} \longrightarrow \mathscr{A}^0 \stackrel{d}{\longrightarrow} \mathscr{Z}^1 \longrightarrow 0$$

$$\vdots$$

$$0 \longrightarrow \mathscr{Z}^p \stackrel{d}{\longrightarrow} \mathscr{Z}^{p+1} \longrightarrow 0$$

$$\vdots$$

Proof. By definition, the cochain complex is exact iff it is exact on stalks. Thus, it suffices to prove that for every $x \in M$ there exists $x \in U \subset M$ open and sufficiently small, s.t.

$$\cdots \longrightarrow \mathscr{A}^{p-1}(U) \stackrel{d}{\longrightarrow} \mathscr{A}^{p}(U) \stackrel{d}{\longrightarrow} \mathscr{A}^{p+1}(U) \stackrel{d}{\longrightarrow} \cdots$$

^aadogra@nyu.edu

is exact as a cochain complex of Abelian groups. However, this exactly the content of the classical Poincaré Lemma, see for example [Lee12, Theorem 17.14]. If U is diffeomorphic to a star-shaped open subset of \mathbb{R}^n , e.g. diffeomorphic via a chart to an open ball, then every closed differential form is exact.

References

[Lee12] J. LEE. <u>Introduction to Smooth Manifolds</u>. Graduate Texts in Mathematics, 218. Springer New York, New York, NY, 2nd ed., 2012.