# Foundations on Continuum Mechanics - Week 6 - Constitutive Equations - Fluids

Athanasios A. Markou

PhD, University Lecturer Aalto University School of Engineering Department of Civil Engineering

May 26, 2021

# **Fluids**

### What is fluid?

#### Fluids can be classified in:

- ► Ideal (inviscid) fluids:
  - Called also perfect fluid
  - Water is an example of inviscid fluid
  - Resists only compressive stresses (pressure)
  - No resistance in fluid moves
- ► Real (viscous) fluids:
  - ► Has viscous (friction) behavior
  - ► Honey is an example of viscous fluid
  - Resistance in fluid moves

### Pascal's Law

For a fluid at rest, the pressure acts on all directions.



### Consequences of Pascal's Law

#### Consequences:

- ► No shear stresses at rest
- ▶ Only normal stresses due to pressure

The stress is isotropic at rest and of the form:

$$\underline{\underline{\sigma}} = -p_0 \underline{\underline{1}}$$

$$\sigma_{ij} = -p_0 \delta_{ij} \quad i, j \in \{1, 2, 3\}$$

 $p_0$  denotes the hydrostatic pressure.

### Pressure Concepts

#### Consequences:

- ightharpoonup Hydrostatic pressure  $p_0$ : normal compressive stress on a fluid.
- ightharpoonup Mean pressure  $\overline{p}$ :

$$\overline{p} = -\sigma_m = -\frac{1}{3} \operatorname{Tr}(\underline{\underline{\sigma}})$$

 $Tr(\underline{\boldsymbol{\sigma}})$  is an invariant and therefore  $\sigma_m$  and  $\overline{p}$  are also.

▶ Thermodynamic pressure *p*: used in constitutive equations. It is related to density and temperature through the kinetic equation of state:

$$F(\rho, p, \theta) = 0$$

For a fluid at rest:  $p_0 = \overline{p} = p$ 

### Pressure Concepts

#### Consequences:

▶ Barotropic fluid is the fluid in which the pressure depends only on the density, [1]:

$$F(\rho, p) = 0 \Rightarrow p = f(\rho)$$

Incompressible fluid, when the density is constant (special case of barometric):

$$F(\rho, p, \theta) \equiv F(\rho) = \rho - k = 0 \Rightarrow p = f(\rho) \Rightarrow \rho = k = const.$$

# **Constitutive Equations**

### Governing Equations: Thermo-mechanical problem

| $\dot{\rho} + \rho \vec{\nabla} \cdot \vec{v} = 0$                                                                    | Conservation of Mass             | 1 eqn.         | PDE |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|-----|
| $ \rho + \rho \mathbf{v} \cdot \mathbf{v} \equiv 0 $                                                                  | Continuity Equation              |                |     |
| $egin{equation} ec{m{ abla}} \cdot oldsymbol{ar{\sigma}} +  ho ec{m{b}} =  ho \dot{ec{m{v}}} \end{aligned}$           | Linear Momentum Balance          | 3 eqns.        | PDE |
| $oldsymbol{v}\cdot\underline{\underline{oldsymbol{arrho}}}+ hooldsymbol{oldsymbol{v}}= hooldsymbol{v}$                | Cauchy's Equation of motion      |                |     |
| $\overline{\qquad \qquad }$                                                                                           | Angular Momentum Balance         | 3 eqns.        | ALG |
| $\underline{\underline{\sigma}} = \underline{\underline{\sigma}}^T$                                                   | Symmetry of Cauchy stress tensor |                |     |
| $\vec{z} = \vec{z} \cdot \vec{d} + \vec{z} \cdot \vec{z}$                                                             | Energy Balance                   | 1 eqn.         | PDE |
| $ \rho \dot{u} = \underline{\underline{\sigma}} : \underline{\underline{d}} + \rho \ r - \vec{\nabla} \cdot \vec{q} $ | First Law of Thermodynamics      |                |     |
| $-\rho(\dot{u}-\theta\dot{s})+\underline{\boldsymbol{\sigma}}:\underline{\boldsymbol{d}}\geq 0$                       | Second Law of Thermodynamics     |                |     |
| $-rac{1}{ ho	heta^2}ec{m{q}}\cdotec{m{ abla}}	heta\geq 0$                                                            | Clausius-Plank Inequality        | 2 restrictions | PDE |
| $-rac{}{ ho	heta^2}oldsymbol{q}\cdotoldsymbol{f V}	heta\geq 0$                                                       | Heat Flow Inequality             |                |     |
| 0.000                                                                                                                 |                                  |                |     |

8 PDE and 2 restrictions

19 unknown scalars:  $\rho, \vec{\pmb{v}}, u, \underline{\underline{\pmb{\sigma}}}, \vec{\pmb{q}}, \theta, s$ 

# Constitutive Equations: Thermo-mechanical problem

### The Constitutive Equations:

| $\mathbf{r} = \mathbf{r}(\vec{\mathbf{z}}, \theta, \dot{c})$                                                                     |                                                                                                                                         | Thermo-Mechanical             | 6 egns.      |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|--|
| $\underline{\underline{\boldsymbol{\sigma}}} = \underline{\underline{\boldsymbol{\sigma}}}(\vec{\boldsymbol{v}}, \theta, \zeta)$ | Constitutive Equations                                                                                                                  |                               |              |  |
| $s = s(\vec{\boldsymbol{v}}, \theta, \zeta)$                                                                                     | Entropy                                                                                                                                 | 1 eqn.                        |              |  |
|                                                                                                                                  | Constitutive Equation                                                                                                                   |                               |              |  |
| $ec{m{q}} = ec{m{q}}(ec{m{v}}, 	heta) = -k ec{m{\nabla}} 	heta$                                                                  | <del>=</del> <del>=</del> <del>=</del> <del>=</del> <del>=</del> <del>=</del> <del>=</del> 0 1 <del>=</del> <del>=</del> <del>=</del> 0 | Thermal Constitutive Equation | 2 0000       |  |
|                                                                                                                                  | Fourier's Law of Conduction                                                                                                             | 3 eqns.                       |              |  |
| $u = v(\rho, \vec{\boldsymbol{v}}, \theta, \zeta)$                                                                               |                                                                                                                                         | Heat State Equation           | (1   n) ogns |  |
|                                                                                                                                  | $F_i(\rho, \theta, \zeta);  i \in \{1, 2,, p\}$                                                                                         | Kinetic State Equation        | (1+p) eqns.  |  |
|                                                                                                                                  |                                                                                                                                         |                               |              |  |

### Constitutive Equations

The constitutive equations along with governing equations can used to solve the problem In fluid mechanics can be grouped as:

Thermo-mechanical constitutive equations:

$$\underline{\underline{\sigma}} = -p\underline{\underline{1}} + \underline{\underline{f}}(\underline{\underline{d}}, \rho, \theta)$$

$$\sigma_{ij} = -p\delta_{ij} + f_{ij}(\underline{\underline{d}}, \rho, \theta); \quad i, j \in \{1, 2, 3\}$$

Caloric equation of state

$$u = g(\rho, \theta)$$

Entropy constitutive equation

$$s=s(\underline{\underline{\boldsymbol{d}}},\rho,\theta)$$

► Fourier's Law:

$$\vec{q} = -k\vec{\nabla}\theta$$
$$q_i = -k\frac{\partial\theta}{\partial x_i} \quad i, j \in \{1, 2, 3\}$$

Kinetic equation of state:

$$F(\rho, p, \theta) = 0$$



### Viscous Fluid Models

General form of the thermo-mechanical constitutive equations:

$$\underline{\underline{\sigma}} = -p\underline{\underline{1}} + \underline{\underline{f}}(\underline{\underline{d}}, \rho, \theta)$$

$$\sigma_{ij} = -p\delta_{ij} + f_{ij}(\underline{\underline{d}}, \rho, \theta); \quad i, j \in \{1, 2, 3\}$$

Fluids are classified as:

- ▶ Perfect fluid (no viscosity),  $\underline{\underline{f}}(\underline{\underline{d}}, \rho, \theta) = 0 \Rightarrow \underline{\underline{\sigma}} = -p\underline{\underline{1}}$ .
- ▶ Newtonian fluid (viscous),  $f(\underline{d}, \rho, \theta)$  is a linear function of strain rate.
- ▶ Stokesian fluid (viscous),  $\underline{f}(\underline{\underline{d}}, \rho, \theta)$  is a non-linear function of its arguments, [1].

Note that  $\underline{\underline{d}} = \frac{1}{2} \left( \vec{v} \otimes \vec{\nabla} + \vec{\nabla} \otimes \vec{v} \right)$  is the symmetric part of the velocity gradient tensor  $\underline{\underline{d}}$ .

### Constitutive Equations: Newtonian Fluids

Constitutive equations:

$$\underline{\underline{\sigma}} = -p\underline{\underline{1}} + \underline{\underline{C}} : \underline{\underline{d}}$$

$$\sigma_{ij} = -p\delta_{ij} + C_{ijkl}d_{kl}; \quad i, j \in \{1, 2, 3\}$$

where  $\underline{\underline{\boldsymbol{p}}}$  is a  $4^{th}$  order constant VISCOUS constitutive tensor.

For an isotropic material the viscous constitutive tensor becomes:

$$\underline{\underline{\underline{C}}} = \lambda \underline{\underline{1}} \otimes \underline{\underline{1}} + 2\mu \underline{\underline{I}}$$

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$

Finally in the constitutive equation:

$$\underline{\underline{\boldsymbol{\sigma}}} = -p\underline{\underline{1}} + \lambda \operatorname{Tr}(\underline{\underline{\boldsymbol{d}}})\underline{\underline{1}} + 2\mu\underline{\underline{\boldsymbol{d}}}$$

$$\sigma_{ij} = -p\delta_{ij} + \lambda d_{ll}\delta_{ij} + \mu d_{ij}; \quad i, j \in \{1, 2, 3\}$$

Note that  $\lambda$  and  $\mu$  can vary with  $\rho$  and  $\theta$ .



### Dissipative and Recoverable Parts of Stress Tensor

The mechanical energy balance:

$$\underbrace{P_e(t)}_{\text{mechanical power}} = \int \int \int_V \rho \vec{\boldsymbol{b}} \cdot \vec{\boldsymbol{v}} dV + \int \int_{\partial V} \vec{\boldsymbol{t}} \cdot \vec{\boldsymbol{v}} dS = \frac{d}{dt} \underbrace{\int \int \int_V \frac{1}{2} \rho v^2 dV}_{\text{kinetic energy}} + \underbrace{\int \int \int_V \underline{\boldsymbol{\sigma}}}_{\text{stress power}} : \underline{\underline{\boldsymbol{d}}} dV$$

Then:

$$P_e(t) = \frac{d}{dt}K(t) + P_{\sigma}$$

Note that a rigid body will have zero stress power.

The stress power is mechanical in the system, which is not spent in changing the kinetic energy, [1].

# Dissipative and Recoverable Stress

Knowing that:

$$\int\int\int_{V}\underline{\underline{\boldsymbol{\sigma}}}:\underline{\underline{\boldsymbol{d}}}\ dV;\quad\underline{\underline{\boldsymbol{d}}}=\frac{1}{3}\operatorname{Tr}(\underline{\underline{\boldsymbol{d}}})\underline{\underline{1}}+\underline{\underline{\boldsymbol{d}}}_{dev};\quad\underline{\underline{\boldsymbol{\sigma}}}=-\overline{p}\underline{\underline{1}}+\underline{\underline{\boldsymbol{\sigma}}}_{dev};\quad\overline{p}=-\frac{1}{3}\operatorname{Tr}(\underline{\underline{\boldsymbol{\sigma}}})$$

Then:

$$\underline{\underline{\sigma}} : \underline{\underline{d}} = \left( -\overline{p}\underline{\underline{1}} + \underline{\underline{\sigma}}_{dev} \right) : \left( \frac{1}{3} \operatorname{Tr}(\underline{\underline{d}})\underline{\underline{1}} + \underline{\underline{d}}_{dev} \right) =$$

$$= -\frac{1}{3} \overline{p} \operatorname{Tr}(\underline{\underline{d}}) \underline{\underline{1}} : \underline{\underline{1}} + \underline{\underline{\sigma}}_{dev} : \underline{\underline{d}}_{dev} - \overline{p} \underbrace{\underline{\underline{1}} : \underline{\underline{d}}_{dev}}_{= \operatorname{Tr}(\underline{\underline{d}}_{dev}) = 0} + \frac{1}{3} \operatorname{Tr}(\underline{\underline{d}}) \underbrace{\underline{\underline{\sigma}}_{dev} : \underline{\underline{1}}}_{\operatorname{Tr}(\underline{\underline{\sigma}}_{dev}) = 0} = -\overline{p} \operatorname{Tr}(\underline{\underline{d}}) + \underline{\underline{\sigma}}_{dev} : \underline{\underline{d}}_{dev} : \underline{\underline{d}}_{dev}$$

Noting that  $\underline{\underline{\sigma}}_{dev} = 2\mu \underline{\underline{d}}_{dev}$  and  $\overline{p} = p - \kappa Tr(\underline{\underline{\underline{d}}})$ , we have:

$$\underline{\underline{\sigma}}:\underline{\underline{d}} = \underbrace{-p \ Tr(\underline{\underline{d}})}_{\text{Recoverable Power } W_R} + \underbrace{\kappa Tr^2(\underline{\underline{d}}) + 2\mu \underline{\underline{d}}_{dev}:\underline{\underline{d}}_{dev}}_{\text{Dissipative Power } 2W_D}$$

where  $\kappa = \lambda + \frac{2}{3}\mu$  is the bulk viscosity.

### Dissipative and Recoverable Parts of Stress Tensor

In the Cauchy stress tensor the dissipative and recoverable parts can be split as follows:

$$\underline{\underline{\sigma}} = \underbrace{-p\underline{\underline{1}}}_{\text{Recoverable Part }\underline{\underline{\sigma}}_R} + \underbrace{\lambda \operatorname{Tr}(\underline{\underline{d}})\underline{\underline{1}} + 2\mu\underline{\underline{d}}}_{\text{Dissipative Part }\underline{\underline{\sigma}}_D}$$

More specifically, the recoverable and the dissipative part can be written:

$$W_R = -p Tr(\underline{\underline{d}}) = -p \underline{\underline{1}} : \underline{\underline{d}} = \underline{\underline{\sigma}}_R : \underline{\underline{d}}$$
$$2 W_D = \kappa Tr^2(\underline{\underline{d}}) + 2\mu \underline{\underline{d}}_{dev} : \underline{\underline{d}}_{dev} = \underline{\underline{\sigma}}_D : \underline{\underline{d}}$$

Note that for incompressible fluid:  $W_R = -p Tr(\underline{\underline{d}}) = 0$ . Due to second principle of thermodynamics:

- ▶ the dissipative part  $2W_D \ge 0$ ,
- ▶ the bulk viscosity  $\kappa = \lambda + \frac{2}{3}\mu \ge 0$
- ▶ the shear viscosity  $\mu \ge 0$ .



# Fluid Mechanics

# **Governing Equations**

| $\dot{ ho}+ hoec{m{ abla}}\cdot\dot{m{v}}=0$ Conservation of Mass 1 eqn.                                                                                                 | PDE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $ ho +  ho \mathbf{v} \cdot v \equiv 0$ Continuity Equation                                                                                                              |     |
| $\vec{\nabla} \cdot \underline{\sigma} + \rho \vec{b} = \dot{\vec{v}}$ Linear Momentum Balance 3 eqns.                                                                   | PDE |
| $\mathbf{v}\cdot \mathbf{\underline{\underline{\sigma}}} + \rho \mathbf{v} = \rho \mathbf{v}$ Cauchy's Equation of motion                                                |     |
| Angular Momentum Balance 3 eqns.                                                                                                                                         | ALG |
| $\underline{\underline{\sigma}} = \underline{\underline{\sigma}}^T$ Symmetry of Cauchy stress tensor                                                                     |     |
| Energy Balance 1 eqn.                                                                                                                                                    | PDE |
| $ ho\dot{u} = \underline{\boldsymbol{\sigma}} : \underline{\boldsymbol{d}} +  ho \ r - \vec{\boldsymbol{\nabla}} \cdot \vec{\boldsymbol{q}}$ First Law of Thermodynamics |     |
| $-\rho(\dot{u}-\theta\dot{s})+\underline{\underline{\sigma}}:\underline{\underline{d}}\geq 0$ Second Law of Thermodynamics                                               |     |
| $-\frac{1}{a\theta^2} \vec{q} \cdot \vec{\nabla} \theta \geq 0$ Clausius-Plank Inequality 2 restrictions                                                                 | PDE |
| $-rac{- ho	heta^2}{ ho	heta^2} oldsymbol{q}\cdotoldsymbol{\mathbf{v}} oldsymbol{artheta} \geq 0$ Heat Flow Inequality                                                   |     |

8 Eqns and 2 restrictions

### Constitutive Equations: Newtonian Fluids

The 12 missing equations:

| $\underline{\underline{\boldsymbol{\sigma}}} = -p\underline{\underline{1}} + \lambda \operatorname{Tr}(\underline{\underline{\boldsymbol{d}}})\underline{\underline{1}} + 2\mu\underline{\underline{\boldsymbol{d}}}$ | Thermo-Mechanical            | 6 cans  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|--|
|                                                                                                                                                                                                                       | Constitutive Equations       | 6 eqns. |  |
| $s = s(\vec{\boldsymbol{v}}, \theta, \zeta)$                                                                                                                                                                          | Entropy                      | 1 eqn.  |  |
|                                                                                                                                                                                                                       | Constitutive Equation        |         |  |
| $ec{m{q}} = ec{m{q}}(ec{m{v}}, 	heta) = -k ec{m{\nabla}} 	heta$                                                                                                                                                       | Thermal Consitutive Equation | 2 oans  |  |
|                                                                                                                                                                                                                       | Fourier's Law of Conduction  | 3 eqns. |  |
| $u = v(\rho, \theta, \zeta)$                                                                                                                                                                                          | Caloric State Equation       | 2 eqns. |  |
| $F(\rho, p, \theta) = 0$                                                                                                                                                                                              | Kinetic State Equation       | z equs. |  |
|                                                                                                                                                                                                                       |                              |         |  |

In total: 20 Eqns. with 20 unknowns:

$$\rho \to 1, \; \vec{\pmb{v}} \to 3, \; \underline{\underline{\pmb{\sigma}}} \to 9, \; u \to 1, \; \vec{\pmb{q}} \to 3, \; \theta \to 1, \; s \to 1, \; p \to 1$$

### Constitutive Equations: Barotropic Fluids

A barotropic fluid is defined by the kinetic state equation, not depend on temperature  $\theta$ :

$$F(\rho, p) = 0 \Rightarrow \rho = \rho(p)$$

The uncoupled problem becomes:

| $\dot{\rho} + \rho \vec{\nabla} \cdot \vec{v} = 0$                                                                                                              | Conservation of Mass        | 1 eqn.  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|
| $ ho +  ho \mathbf{v} \cdot \mathbf{v} \equiv 0$                                                                                                                | Continuity Equation         |         |
| $ec{m{ abla}}\cdot oldsymbol{ec{\sigma}} +  ho ar{m{b}} =  ho \dot{ar{m{v}}}$                                                                                   | Linear Momentum Balance     | 3 eqns. |
|                                                                                                                                                                 | Cauchy's Equation of motion |         |
| $\underline{\underline{\sigma}} = -p\underline{\underline{1}} + \lambda Tr(\underline{\underline{d}})\underline{\underline{1}} + 2\mu\underline{\underline{d}}$ | Thermo-Mechanical           | 6 0000  |
|                                                                                                                                                                 | Constitutive Equations      | 6 eqns. |
| $\rho = \rho(p)$                                                                                                                                                | Kinetic State Equation      | 1 eqn.  |
| 11 and $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$                                                                                                                  | -(c) -(1)                   |         |

11 scalar unknowns:  $\rho(1), \vec{v}(3), \underline{\sigma}(6), p(1)$ 

# **Hydrostatics**

### Hydrostatic stress state

Uniform velocity:

$$ec{m{v}}(ec{m{x}},t) \equiv ec{m{v}}(ec{m{x}}) \Rightarrow ec{m{\nabla}} ec{m{v}} = ec{m{\nabla}} \otimes ec{m{v}} = ec{m{v}} \otimes ec{m{\nabla}} = \underline{m{0}}$$

$$\underline{m{d}} = \frac{1}{2} \left( ec{m{v}} \otimes ec{m{\nabla}} + ec{m{\nabla}} \otimes ec{m{v}} 
ight) = \underline{m{0}}$$

Therefore, the hydrostatic stress state can be defines as:

$$\underline{\underline{\sigma}} = -p\underline{\underline{1}} + \lambda \underbrace{Tr(\underline{\underline{d}})}_{=0} \underline{\underline{1}} + 2\mu \underbrace{\underline{\underline{d}}}_{=\underline{\underline{0}}} \Rightarrow \underline{\underline{\sigma}} = -p\underline{\underline{1}} \Rightarrow \overline{p} = p$$

▶ Uniform and stationary velocity  $\vec{v}(\vec{x}, t) = \text{constant}$ :

$$ec{m{a}} = rac{dec{m{v}}}{dt} = rac{\partial ec{m{v}}}{\partial t} + ec{m{v}} \cdot ec{m{
abla}} ec{m{v}} = ec{m{0}}$$

There the hydrostatic case can be derived as:

$$\underline{\boldsymbol{\sigma}} = -p_0 \underline{\mathbf{1}} \Rightarrow Tr(\underline{\boldsymbol{\sigma}}) = -3p_0 \Rightarrow \overline{p} = p = p_0$$

Fluid at rest  $\vec{v}(\vec{x},t)=\text{constant}=\vec{0}$ . Hydrostatic (from Greek and means water at rest).

# Hydrostatic Problem

Hydrostatic problem  $\vec{v}(\vec{x},t) = \text{constant}$  is defined as:

| $\vec{\mathbf{x}}$                                                                                                                                                                                                                        | Conservation of Mass        | 1 eqn.  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|
| $\dot{\rho} + \rho \vec{\nabla} \cdot \vec{v} = 0 \Rightarrow \rho(\vec{X}, t) = \rho_0(\vec{X})$                                                                                                                                         | Continuity Equation         |         |
| $oxed{ec{ abla}\cdot\underline{oldsymbol{\sigma}}+ hoec{oldsymbol{b}}= ho\dot{ec{oldsymbol{v}}}\Rightarrowec{oldsymbol{ abla}\cdot\underline{oldsymbol{\sigma}}+ hoec{oldsymbol{b}}=ec{oldsymbol{0}}$                                     | Linear Momentum Balance     | 3 eqns. |
|                                                                                                                                                                                                                                           | Cauchy's Equation of motion |         |
| $\underline{\underline{\sigma}} = -p\underline{\underline{1}} + \lambda Tr(\underline{\underline{d}})\underline{\underline{1}} + 2\mu \underline{\underline{d}} \Rightarrow \underline{\underline{\sigma}} = -p\underline{\underline{1}}$ | Thermo-Mechanical           | 6       |
|                                                                                                                                                                                                                                           | Constitutive Equations      | 6 eqns. |

Introducing the constitutive equation in the Cauchy equation, we get the fundamental equation of hydrostatics:

$$\underline{\underline{\boldsymbol{\sigma}}} = -p\underline{\underline{\boldsymbol{1}}} \Rightarrow \vec{\boldsymbol{\nabla}} \cdot (-p\underline{\underline{\boldsymbol{1}}}) = -\vec{\boldsymbol{\nabla}}p_0 \rightarrow \begin{cases} -\vec{\boldsymbol{\nabla}}p_0 + \rho_0 \vec{\boldsymbol{b}} = \vec{\boldsymbol{0}} \\ \frac{\partial p_0}{\partial x_i} + \rho_0 b_i = 0; \quad i. \in \{1, 2, 3\} \end{cases}$$

We know the  $\rho_0$  we find the pressure p from above equation, then we define the stress  $\underline{\underline{\sigma}}$ 

# **Barotropic Perfect Fluids**

### Barotropic Perfect Fluids

A perfect fluid is a Newtonian fluid without viscosity ( $\mu = \lambda = 0$ ):

$$\underline{\underline{\sigma}} = -p\underline{\underline{1}} + \lambda \operatorname{Tr}(\underline{\underline{d}})\underline{\underline{1}} + 2\mu \underline{\underline{d}} \Rightarrow \underline{\underline{\sigma}} = -p\underline{\underline{1}} \Rightarrow \underline{\underline{\sigma}} = -p\underline{\underline{1}}$$

at hydrostatic stress state. Therefore:

$$\begin{split} \vec{\nabla} \cdot \underline{\underline{\sigma}} &= -\vec{\nabla} p \\ \underline{\underline{\sigma}} &: \underline{\underline{d}} &= -p \underline{\underline{1}} : \underline{\underline{d}} = -p \operatorname{Tr}(\underline{\underline{d}}) \end{split}$$

In a barotropic fluid temperature does not affect the kinetic state equation:

$$F(\rho, p) = 0 \Rightarrow \rho = \rho(p)$$

Note that most liquids can be assumed as barotropic (but not perfect). Some gases under certain circumstances.

### Barotropic Perfect Fluids: Field Equations

Hydrostatic problem  $\vec{v}(\vec{x},t) = \text{constant}$  is defined as:

|                                                                                                                                                                         | Conservation of Mass    | 1 egn.  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| $\dot{\rho} + \rho \vec{\nabla} \cdot \vec{v} = 0$                                                                                                                      |                         | r cqii. |
|                                                                                                                                                                         | Continuity Equation     |         |
| $\overrightarrow{m{ abla}} \cdot \underline{m{\sigma}} +  ho \vec{m{b}} =  ho \dot{\vec{m{v}}} \Rightarrow - \vec{m{\nabla}} p +  ho \vec{m{b}} =  ho \dot{\vec{m{v}}}$ | Linear Momentum Balance | 3 eqns. |
|                                                                                                                                                                         | <b>Euler's Equation</b> |         |
| $F(\rho, p) = 0 \Rightarrow \rho = \rho(p)$                                                                                                                             | Kinetic State Equation  | 1 eqn.  |
|                                                                                                                                                                         |                         |         |

There are 5 scalar quantities unknowns:  $\rho$ ,  $\vec{v}$ , p

### Bernoilli's Trinomial

Consider a barotropic fluid under potential body forces:

$$\phi(\vec{\boldsymbol{x}},t) = gz \Rightarrow -\vec{\boldsymbol{\nabla}}\phi(\vec{\boldsymbol{x}},t) = -\begin{bmatrix} \frac{\partial\phi}{\partial x} & \frac{\partial\phi}{\partial y} & \frac{\partial\phi}{\partial z} \end{bmatrix}^T = \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix}$$

The following lemmas hold:

▶ Lemma 1. For barotropic fluids there exist a function  $P(\vec{x},t) = \hat{P}(p(\vec{x},t))$  such that.

$$\vec{\boldsymbol{\nabla}}\boldsymbol{p} = \rho\vec{\boldsymbol{\nabla}}\boldsymbol{P}$$

▶ Lemma 2. The convective term of the acceleration can be expressed as:

$$ec{m{v}}\cdotec{m{
abla}}ec{m{v}}=2ec{m{\omega}} imesec{m{v}}+ec{m{
abla}}\left(rac{1}{2}v^2
ight)$$

where  $2\vec{\boldsymbol{\omega}} = \vec{\boldsymbol{\nabla}} \times \vec{\boldsymbol{v}}$  is the vorticity vector.



### Bernoilli's Trinomial

Using the Euler's equation:

$$-\vec{\nabla}p + \rho\vec{b} = \rho\vec{v} \rightarrow -\frac{1}{\rho}\vec{\nabla}p + \vec{b} = \frac{d\vec{v}}{dt}$$
$$\frac{1}{\rho}\vec{\nabla}p = \vec{\nabla}P; \vec{b} = \vec{\nabla}\phi$$
$$\vec{v}\vec{\nabla}\cdot\vec{v}$$

Combining the equations:

$$-\vec{m \nabla}P - \vec{m \nabla}\phi = rac{\partial ec{m v}}{\partial t} + 2ec{m \omega} imes ec{m v} + ec{m \nabla}\left(rac{1}{2}v^2
ight)$$

Finally we can derive the equation of motion for a barotropic perfect fluid:

$$-\vec{\nabla} \underbrace{\left[P + \phi + \frac{1}{2}v^2\right]}_{\text{Bernoulli's Trinomial}} = \frac{\partial \vec{v}}{\partial t} + 2\vec{\omega} \times \vec{v}$$

# **Newtonian Viscous Fluids**

# **Governing Equations**

The general fluid mechanics problem:

| 6                                                                                                                                                                                                                     |                                        |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|--|
| $\dot{\rho} + \rho \vec{\nabla} \cdot \vec{v} = 0$                                                                                                                                                                    | Conservation of Mass                   | 1 eqn.  |  |
| $\rho + \rho \mathbf{v} \cdot \mathbf{v} = 0$                                                                                                                                                                         | Continuity Equation                    |         |  |
| $ec{m{ abla}}\cdot oldsymbol{ec{\sigma}} +  ho oldsymbol{ec{b}} =  ho \dot{ar{v}}$                                                                                                                                    | Linear Momentum Balance                | 3 eqns. |  |
|                                                                                                                                                                                                                       | Cauchy's Equation of motion            |         |  |
| $\rho \dot{u} = \underline{\underline{\boldsymbol{\sigma}}} : \underline{\underline{\boldsymbol{d}}} + \rho r - \vec{\boldsymbol{\nabla}} \cdot \vec{\boldsymbol{q}}$                                                 | Energy Balance                         | 1 eqns. |  |
|                                                                                                                                                                                                                       | First law of Thermodynamics            |         |  |
| $\underline{\underline{\boldsymbol{\sigma}}} = -p\underline{\underline{1}} + \lambda \operatorname{Tr}(\underline{\underline{\boldsymbol{d}}})\underline{\underline{1}} + 2\mu\underline{\underline{\boldsymbol{d}}}$ | Mechanical                             | 6 eqns. |  |
|                                                                                                                                                                                                                       | Constitutive Equations                 |         |  |
| $s = s(\underline{\boldsymbol{d}}, \theta, \rho)$                                                                                                                                                                     | Entropy                                | 1 eqn.  |  |
| $s=s(\underline{\underline{u}}, 	heta,  ho)$                                                                                                                                                                          | Constitutive equation                  |         |  |
| → 12 <del>-7</del> 0                                                                                                                                                                                                  | Thermal constitutive equation. Fourier | 3 eqns. |  |
| $ec{m{q}} = -K \vec{m{ abla}} 	heta$                                                                                                                                                                                  | Law of conduction                      |         |  |
| $u = u(\rho, \theta)$ $F(\rho, \theta, p) = 0$                                                                                                                                                                        | Caloric and Kinetic State              | 2 eqns. |  |
| 17 scalar unknowns: $\rho(1), \vec{v}(3), \underline{\underline{\sigma}}(6), u(1), \vec{q}(3), \theta(1), s(1), p(1)$                                                                                                 |                                        |         |  |
|                                                                                                                                                                                                                       |                                        |         |  |

# Navier-Stokes equations

Consider the lemmas:

Lemma 1:

$$\vec{\nabla} \cdot \underline{\underline{d}} = \frac{1}{2} \Delta \vec{v} + \frac{1}{2} \vec{\nabla} (\vec{\nabla} \cdot \vec{v})$$

where  $\underline{d}$  is the deformation rate tensor.

Lemma 2:

$$\vec{\nabla} \cdot (a\underline{\mathbf{1}}) = \vec{\nabla} a$$

where  $a(\vec{x}, t)$  is a scalar fuction

Introducing the constitutive equation of stress in the term of Cauchy's equation (  $Tr(\underline{\underline{d}}) = \vec{\nabla} \cdot \vec{v}$ ):

$$\vec{\boldsymbol{\nabla}} \cdot \underline{\underline{\boldsymbol{\sigma}}} = \vec{\boldsymbol{\nabla}} \cdot (-p\underline{\underline{\mathbf{1}}} + \lambda \operatorname{Tr}(\underline{\underline{\boldsymbol{d}}})\underline{\underline{\mathbf{1}}} + 2\mu\underline{\underline{\boldsymbol{d}}}) = -\vec{\boldsymbol{\nabla}}p + \lambda \underbrace{\vec{\boldsymbol{\nabla}}(\operatorname{Tr}(\underline{\underline{\boldsymbol{d}}}))}_{\vec{\boldsymbol{\nabla}}(\vec{\boldsymbol{\nabla}} \cdot \vec{\boldsymbol{v}})} + \mu \Delta \vec{\boldsymbol{v}} + \mu \vec{\boldsymbol{\nabla}}(\vec{\boldsymbol{\nabla}} \cdot \vec{\boldsymbol{v}})$$

### Navier-Stokes equations

The linear momentum balance equation can be arranged as follows:

$$\vec{\nabla} \cdot \underline{\underline{\sigma}} + \rho \vec{b} = \rho \dot{\vec{v}} \Rightarrow -\vec{\nabla} p + (\lambda + \mu) \vec{\nabla} (\vec{\nabla} \cdot \vec{v}) + \mu \Delta \vec{v} + \rho \vec{b} = \rho \frac{d\vec{v}}{dt}$$

Finally the NAVIER-STOKES equations can be written as:

$$-\vec{\nabla}p + (\lambda + \mu)\vec{\nabla}(\vec{\nabla} \cdot \vec{v}) + \mu\Delta\vec{v} + \rho\vec{b} = \rho\frac{d\vec{v}}{dt}$$
$$-\frac{\partial p}{\partial x_i} + (\lambda + \mu)\frac{\partial^2 v_j}{\partial x_i \partial x_j} + \mu\frac{\partial^2 v_i}{\partial x_i \partial x_j} + \rho b_i = \rho\frac{dv_i}{dt}, \quad 1, j \in \{1, 2, 3\}$$

The Navier-Stokes equations are the equation of motion (balance of linear momentum) written in terms of velocities.

There are 4 unknowns:  $\vec{v}(3)$ , p(1) and 3 equations.

For incompressible fluids the  $(\vec{\nabla}\cdot\vec{\pmb{v}})=0$  and  $\underline{\underline{\pmb{\sigma}}}=-p\underline{\underline{\pmb{1}}}+2\mu\underline{\underline{\pmb{d}}}$ 



### **Energy Equations**

The energy balance equation can be given as, [1]:

$$\begin{split} \rho\frac{du}{dt} &= -p\vec{\nabla}\cdot\vec{v} + \rho\ r + \vec{\nabla}\cdot(K\vec{\nabla}\theta) + \underbrace{\kappa\,Tr^2(\underline{\underline{d}}) + 2\mu\underline{\underline{d}}_{dev}:\underline{\underline{d}}_{dev}:\underline{\underline{d}}_{dev}}_{\text{Dissipative Power }2W_D} \\ \rho\frac{du}{dt} &= -p\frac{\partial v_i}{\partial x_i} + \rho\ r + \frac{\partial}{\partial x_i}(K\frac{\partial\theta}{\partial x_i}) + \kappa\left(\frac{\partial v_i}{\partial x_i}\right)^2 + 2\mu\,d_{ij}^{dev}d_{ij}^{dev}; \quad i,j\in\{1,2,3\} \end{split}$$

The energy equation is just the energy balance in terms of velocity and pressure.

### References I



X. Oliver and C. Agelet de Saracibar.

Continuum Mechanics for Engineers. Theory and Problems.
2017.