MEASURING SKEWED OPERATORS

We consider the case where we aim to measure the pauli Z operator, but instead measure in some slightly rotated basis $\cos \theta Z + \sin \theta X$. The projection into this rotated basis, can be viewed as a rotation of the state, followed by the ideal Z projection, followed by an inverse rotation.

$$P(\theta) = R^{\dagger}(\theta) \, \hat{P}_Z R(\theta)$$

Where P_Z and $P(\theta)$ are taken to be even projection operators into the bases Z and $\cos \theta Z + \sin \theta X$, the rotation operator $R(\theta) = R_y(\theta) = \cos \frac{\theta}{2} \mathbb{I} - i \sin \frac{\theta}{2} Y$. writing $C = \cos \frac{\theta}{2}$ and $S = \sin \frac{\theta}{2}$,

$$P(\theta) = C^2 P_Z + S^2 Y P_Z Y + iSC [Y P_Z - P_Z Y]$$

= $C^2 P_Z + S^2 Y^2 P_{Z,odd} + iSC [Y P_Z - Y P_{Z,odd}]$

By using the relationship $P_ZY = YP_{Z,odd}$ we can write this projector in two equivalent ways:

$$P(\theta) = C^{2}P_{Z} + S^{2}P_{Z,odd} + iSCY [P_{Z} - P_{Z,odd}]$$

$$P(\theta) = C^{2}P_{Z} + S^{2}P_{Z,odd} + iSC [P_{Z,odd} - P_{Z}] Y$$

If an observed even measurement outcome corresponds to the projector $P(\theta)$ being applied to the state with probability $q(\theta)$ then we can write the resultant state as:

$$\rho_{measured} = \int q(\theta) R^{\dagger}(\theta) P_{Z}R(\theta) \rho R^{\dagger}(\theta) P_{Z}R(\theta) d\theta$$

expanding this expression, and

$$\begin{split} \rho_{measured} &= \int q\left(\theta\right)P\left(\theta\right)\rho P\left(\theta\right)d\theta \\ &= \left\{C^{2}P_{Z} + S^{2}P_{Z,odd} + iSCY\left[P_{Z} - P_{Z,odd}\right]\right\}\rho \left\{C^{2}P_{Z} + S^{2}P_{Z,odd} + iSC\left[P_{Z,odd} - P_{Z}\right]Y\right\} \\ &= C^{4}P_{Z}\rho P_{Z} + S^{4}P_{Z,odd}^{2}\rho P_{Z,odd}^{2} \\ &+ iC^{3}S\left[P_{Z}\rho P_{Z,odd}Y - P_{Z}\rho P_{Z}Y + YP_{Z}\rho P_{Z} - YP_{Z,odd}\rho P_{Z}\right] \\ &+ C^{2}S^{2}\left[P_{Z}\rho P_{Z,odd} + P_{Z,odd}\rho P_{Z} - YP_{Z}\rho P_{Z,odd}Y + YP_{Z,odd}\rho P_{Z,odd}Y \\ &+ YP_{Z}\rho P_{Z}Y - YP_{Z,odd}\rho P_{Z}Y\right] \\ &+ iCS^{3}\left[P_{Z,odd}\rho P_{Z,odd}Y - P_{Z,odd}\rho P_{Z}Y + YP_{Z}\rho P_{Z,odd} - YP_{Z,odd}\rho P_{Z,odd}\right] \end{split}$$

Label $\rho_{even} = P_Z \rho P_Z$, and $\rho_{odd} = P_{Z,odd} \rho P_{Z,odd}$, then

$$\begin{split} \rho_{measured} &= \int q\left(\theta\right)P\left(\theta\right)\rho P\left(\theta\right)d\theta \\ &\quad C^{4}\rho_{even} + S^{4}\rho_{odd} \\ &\quad + iC^{3}S\left[-\rho_{even}Y + Y\rho_{even} - YP_{Z,odd}\rho P_{Z} + P_{Z}\rho P_{Z,odd}Y\right] \\ &\quad + C^{2}S^{2}\left[Y\rho_{odd}Y + Y\rho_{even}Y + P_{Z}\rho P_{Z,odd} + P_{Z,odd}\rho P_{Z} - YP_{Z}\rho P_{Z,odd}Y - YP_{Z,odd}\rho P_{Z}Y\right] \\ &\quad + iCS^{3}\left[-Y\rho_{odd} + \rho_{odd}Y - P_{Z,odd}\rho P_{Z}Y + YP_{Z}\rho P_{Z,odd}\right] \end{split}$$

Assume $q(\theta)$ is symmetric about $\theta = 0$

Now all the assymetric terms in the integral vanish, and we are left with

$$\rho_{measured} = \int q(\theta) \left\{ C^4 \rho_{even} + S^4 \rho_{odd} + C^2 S^2 \left[Y \rho_{odd} Y + Y \rho_{even} Y \right] \right.$$
$$\left. + C^2 S^2 \left[P_Z \rho P_{Z,odd} + P_{Z,odd} \rho P_Z - Y P_Z \rho P_{Z,odd} Y - Y P_{Z,odd} \rho P_Z Y \right] \right\} d\theta$$

Apply Z with 50% probability - this introduces a sign in any $P_{Z,odd}$ operations, then the second line of terms in the equation above cancel to leave:

$$\rho_{measured} = \left[\int q\left(\theta\right) C^4 d\theta \right] \rho_{even} + \left[\int q\left(\theta\right) S^4 d\theta \right] \rho_{odd} + \left[\int q\left(\theta\right) C^2 S^2 d\theta \right] \left[Y \rho_{odd} Y + Y \rho_{even} Y \right] + \left[\int q\left(\theta\right) S^4 d\theta \right] \rho_{odd} + \left[\int q\left(\theta\right) S^4$$

So we can write the resultant channel as a superoperator

$$\mathcal{S}\left(\rho\right) = \sum p_i K_i \rho K_i^{\dagger}$$

With the following probabilities and Kraus operators:

$p_9 = \left[\int q(\theta) C^4 d\theta \right]$	$K_0 = P_Z$
$p_1 = \left[\int q(\theta) S^4 d\theta \right]$	$K_1 = P_{Z,odd}$
$p_{2} = \left[\int q(\theta) C^{2} S^{2} d\theta \right]$	$K_2 = YP_{Z,odd}$
$p_3 = \left[\int q(\theta) C^2 S^2 d\theta \right]$	$K_3 = YP_Z$

Case of systematic errors

If systematic error is present then the probability function, $q_{sys}(\theta)$, describing the distribution of the error does not average to zero, but rather $\int q_{sys}(\theta) d\theta = \bar{\theta}$. By changing variables to $\phi = \theta - \bar{\theta}$

$$\begin{split} \rho_{measured} &= \int_{\theta} q_{sys} \left(\theta\right) P\left(\theta\right) \rho P\left(\theta\right) d\theta \\ &= \int_{\phi} q_{sys} \left(\phi + \bar{\theta}\right) P\left(\phi + \bar{\theta}\right) \rho P\left(\phi + \bar{\theta}\right) d\phi \\ &= \int_{\phi} q_{rand} \left(\phi\right) R^{\dagger} \left(\phi + \bar{\theta}\right) \hat{P}_{Z} R\left(\phi + \bar{\theta}\right) \rho R^{\dagger} \left(\phi + \bar{\theta}\right) \hat{P}_{Z} R\left(\phi + \bar{\theta}\right) d\phi \\ &= R\left(\bar{\theta}\right) \left\{ \int_{\phi} q_{rand} \left(\phi\right) R^{\dagger} \left(\phi\right) \hat{P}_{Z} R(\phi) \rho_{\bar{\theta}} R^{\dagger} \left(\phi\right) \hat{P}_{Z} R\left(\phi\right) d\phi \right\} R^{\dagger} \left(\bar{\theta}\right) \\ &= R\left(\bar{\theta}\right) \left\{ \int_{\phi} q_{rand} \left(\phi\right) P\left(\phi\right) \rho_{\bar{\theta}} P\left(\phi\right) d\phi \right\} R^{\dagger} \left(\bar{\theta}\right) \end{split}$$

where $\rho_{\bar{\theta}} = R(\bar{\theta})\rho R^{\dagger}(\bar{\theta})$

So with systematic errors, we can also write the effect as a superoperators where a fixed rotation is followed by an application of random errors which average to zero.