

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

http://www.jstatsoft.org/

Comparing Optimization Algorithms in the Fitting of Linear Mixed Models: Evaluating Speed and Accuracy using lme4 in R and lmm in Julia

Douglas Bates

University of Wisconsin-Madison

Colin Longhurst

University of Wisconsin-Madison

Abstract

The **Timings** package allows for the comparison of several optimizers, in both R and Julia, used in the fitting of various linear mixed models. In R the optimizers are called by lmer from the **lme4** package (version 1.1-8). In Julia the optimizers are called by lmm from **MixedModels** package. From the **Timings** package, conclusions regarding an optimizers relative speed, accuracy and general effectiveness of different optimizers paired with different types of models (ranging from simple to complex) can easily be drawn and interpretted.

There are differences in the model formulations in **lme4** and in **MixedModels**. The numerical representation of the model in **lme4** and the method of evaluating the optimizers, described in this paper, is the same for all models. In **MixedModels** there are specialized representations for some model forms, such as models with a single grouping factor for the random effects. Some of the specialized representations allow for evaluation of the gradient of the objects, which can enhance convergence (but, interestingly, sometimes can impede convergence).

Keywords: optimizers, mixed models, linear mixed models, lme4, lmm, R, Julia.

1. Introduction

Mauris ac lectus sagittis, mollis diam porttitor, efficitur purus. Duis ut eros vitae dolor vulputate sagittis. Aenean viverra, dui in interdum consectetur, lectus elit placerat urna, dictum ultricies ex justo eget est. In at leo quam. Suspendisse eros nulla, gravida nec suscipit vel, egestas eget neque. Etiam pharetra, nisl nec viverra ultricies, mauris lectus facilisis velit, vel aliquam ipsum lorem ut sem. Nulla ornare, justo at tempus blandit, nulla urna porta ligula, id dictum mi est ac massa. Quisque at lacus neque. Pellentesque est nulla, dignissim

eget lobortis ut, vehicula at erat. Aenean ornare lacus mattis, elementum elit vel, tempor risus. In in purus tempor lacus imperdiet rhoncus nec nec tortor. Duis sagittis nisl ante, id egestas neque tristique fermentum. Fusce aliquet, odio non auctor aliquet, purus orci venenatis purus, sit amet pulvinar nisi est at dolor. Pellentesque lobortis dui eros, et ultricies tellus ultrices at. Ut sit amet interdum justo. Integer placerat vehicula interdum.

2. Methods

To provide consistency we have copied all the data sets used in the timings to the **Timings** package itself. We have done all timings on the same computer. This computer has a relatively recent Intel processor and we used the Intel Math Kernel Library (MKL) with Julia. We attempted to use Revolution R Open (RRO) as the R implementation as it can be configured with **MKL**. However, we ran into version problems with this so we used the standard Ubuntu version of R linked against OpenBLAS, which is also multi-threaded.

Variables were renamed in the pattern:

- Y the response
- A, B, ... categorical covariates
- G,H, I, ... grouping factors for random effects
- \bullet U, V, ... (skipping Y) continuous covariates

The timing results are saved in JSON (JavaScript Object Notation) files in the directory accessible as

```
> system.file("JSON",package="Timings")
```

within **R**. The directory name will end with ./Timings/inst/JSON/ in the package source directory, for example the result of cloning the github repository. There is one .json file for each data set. Each such file contains results on timings of one or more models.

The **Timings** package for R provides a **retime** function that takes the name of one of these JSON files and, optionally, the name of a file with the updated timings. Similarly there are some source files for **Julia** retimings.

```
> include("../julia/retime.jl")
> retime("../JSON/Alfalfa.json","/tmp/Alfalfa.json")
> retime("../JSON/Alfalfa.json","/tmp/Alfalfa.json")
```

INCLUDE SUMMARY TABLE USING res.rda

The timing was repeated so that compilation time is not included in the results. This repetition is only needed once per session.

A careful examination of these results shows that the main differences in the **Julia** timings (the **R** timings are merely reported, not evaluated) are that the LN_BOBYQA and LD_MMA optimizers

are much faster in the second run. This is because much of the code needs to be compiled the first time that a derivative-free optimizer and a derivative-based optimizer are used.

The names of the optimizers used with 1mm are those from the **NLopt** package for Julia. Names that begin with LD_ are gradient-based methods. Names that begin with LN_ are derivative-free methods. There is one other derivative-free method, LN_PRAXIS, available in the **NLopt** package but, for some reason, it can hang on very simple problems like this. Frequently we omit it.

The optimizers used with lmer include the Nelder_Mead optimizer built into the lme4 package, the bobyqa optimizer from the minqa package, the derivative-free optimizers from the nloptr package and several optimizers from the optimx package.

The optimx:bobyqa optimizer is just a wrapper around bobyqa (bounded optimization by quadratic approximation) from the **minqa** package and should provide results similar to those from the bobyqa optimizer. For some reason the number of function evaluations is not reported for the version in **optimx**.

The optimizers from **nloptr** (i.e. those whose names begin with NLOPT_LN_) use the same underlying code as do the similarly named optimizers in the **NLopt** package for Julia. The number of iterations to convergence should be similar for the same underlying code, although not nessarily exactly the same because the evaluation of the objective in R and in Julia may produce slightly different answers. Also the convergence criteria in the Julia version are more strict than those in the R version

Also shown are the value of the criterion (negative twice the log-likelihood, lower is better) achieved, the elapsed time and the number of function and gradient evaluations. The nopt value is the number of parameters in the optimization problem. mtype is the model type in the Julia code. There are special methods for solving the penalized least squares (PLS) problem, and for evaluating the objective and its gradient when there is only one grouping factor for the random effects. The model type is called PLSOne.

The Alfalfa example is a particularly easy one and all of the optimizerws converge to an objective value close to -10.81023 in less than 0.6 seconds.

3. Results

For the Alfalfa data there is not much of a burden in refitting the model with all the Julia optimizers just to get the table shown above. But other examples can take an hour or more to converge and we don't really need to refit them every time. The tabulate.jl file contains a function optdir to create a DataFrame from the results of all the model fits.

```
> include("../julia/tabulate.jl")
> res = optdir("../JSON");
```

The time column is the time in seconds to converge. The reltime column is the time relative to the LN_BOBYQA optimizer in the MixedModels package for Julia.

For Julia the time column is the time in seconds to converge. The reltime column is the time relative to the $LN_BOBYQAoptimizerintheMixedModelspackageforJulia$.

	opt	dsname	n	p	np	excess	time	reltime
1	LD_CCSAQ	Alfalfa	72	12	1	0.00	0.00	1.13
2	LD_CCSAQ	AvgDailyGain	32	8	1	0.00	0.00	0.82
3	LD_CCSAQ	AvgDailyGain	32	5	1	0.00	0.00	0.93
4	LD_CCSAQ	BIB	24	8	1	0.00	0.00	0.79
5	$LD_{-}CCSAQ$	Bond	21	3	1	0.00	0.00	1.03
6	$LD_{-}CCSAQ$	bs10	1104	4	20	0.00	1.10	4.44
7	LD_CCSAQ	bs10	1104	4	8	39.99	0.04	0.56
8	LD_CCSAQ	cake	270	18	1	0.00	0.00	1.37
9	LD_CCSAQ	Cultivation	24	6	1	0.00	0.00	0.99
10	LD_CCSAQ	Demand	77	5	2	3.22	0.01	0.81
11	LD_CCSAQ	dialectNL	225866	4	6	0.00	6.99	3.99
12	LD_CCSAQ	Dyestuff2	30	1	1	0.00	0.00	0.68
13	LD_CCSAQ	Dyestuff	30	1	1	0.00	0.00	1.02
14	LD_CCSAQ	$\operatorname{ergoStool}$	36	4	1	0.00	0.00	1.10
15	LD_CCSAQ	Exam	4059	5	1	0.00	0.01	1.19
16	LD_CCSAQ	Exam	4059	6	1	0.00	0.01	1.32
17	LD_CCSAQ	Gasoline	32	2	1	0.00	0.00	0.82
18	$LD_{-}CCSAQ$	gb12	512	8	20	0.00	3.52	17.48
19	$LD_{-}CCSAQ$	gb12	512	8	8	103.18	0.02	0.56
20	$LD_{-}CCSAQ$	HR	120	7	3	0.00	0.01	1.22
21	$LD_{-}CCSAQ$	Hsb82	7185	5	1	192.73	0.01	0.49
22	LD_CCSAQ	IncBlk	24	8	1	0.56	0.00	0.66
23	LD_CCSAQ	kb07	1790	8	72	8.21	17.47	4.12
24	LD_CCSAQ	Mississippi	37	3	1	0.93	0.00	0.67
25	$LD_{-}CCSAQ$	mm0	69588	4	6	0.00	4.83	4.40
26	LD_CCSAQ	Oxboys	234	2	3	136.79	0.02	0.71
27	$LD_{-}CCSAQ$	PBIB	60	15	1	0.00	0.00	1.00
28	LD_CCSAQ	Penicillin	144	1	2	0.00	0.01	4.94
29	$LD_{-}CCSAQ$	Semiconductor	48	16	1	0.00	0.00	1.05
30	LD_CCSAQ	SIMS	3691	2	3	3.61	0.13	0.99
31	LD_CCSAQ	sleepstudy	180	2	3	0.00	0.01	1.75
32	LD_CCSAQ	sleepstudy	180	2	2	0.00	0.00	1.13
33	LD_CCSAQ	TeachingII	96	12	1	0.00	0.00	0.93
34	LD_CCSAQ	Weights	399	6	3	99.13	0.02	0.51
35	$LD_{-}CCSAQ$	WWheat	60	2	3	18.20	0.01	0.68

	opt	dsname	n	p	np	excess	time	reltime
560	NLOPT_LN_BOBYQA	Alfalfa	72	$\frac{1}{12}$	1	0.00	0.04	27.52
561	NLOPT_LN_BOBYQA	Animal	20	1	2	0.00	0.02	13.92
562	NLOPT_LN_BOBYQA	Assay	60	31	2	0.00	0.03	10.80
563	NLOPT_LN_BOBYQA	AvgDailyGain	32	8	1	0.00	0.02	11.70
564	NLOPT_LN_BOBYQA	AvgDailyGain	32	5	1	0.00	0.02	13.70
565	NLOPT_LN_BOBYQA	BIB	24	8	1	0.00	0.02	12.61
566	NLOPT_LN_BOBYQA	Bond	21	3	1	0.00	0.02	23.27
567	NLOPT_LN_BOBYQA	bs10	1104	4	20	0.00	4.66	18.88
568	NLOPT_LN_BOBYQA	bs10	1104	4	8	0.00	1.06	15.65
569	NLOPT_LN_BOBYQA	cake	270	18	1	0.00	0.05	22.08
570	NLOPT_LN_BOBYQA	Chem97	31022	1	2	0.00	0.63	3.94
571	NLOPT_LN_BOBYQA	Chem97	31022	2	2	0.00	0.56	3.60
572	NLOPT_LN_BOBYQA	Cultivation	24	6	1	0.00	0.02	23.10
573	NLOPT_LN_BOBYQA	d3	130418	2	9	0.00	231.30	2.16
574	NLOPT_LN_BOBYQA	Demand	77	5	2	0.00	0.03	3.81
575	NLOPT_LN_BOBYQA	dialectNL	225866	4	6	0.00	16.88	9.64
576	NLOPT_LN_BOBYQA	Dyestuff2	30	1	1	0.00	0.05	62.58
577	NLOPT_LN_BOBYQA	Dyestuff	30	1	1	0.00	0.02	24.87
578	NLOPT_LN_BOBYQA	egsingle	7230	5	2	0.00	0.17	2.39
579	NLOPT_LN_BOBYQA	ergoStool	36	4	1	0.00	0.02	17.25
580	NLOPT_LN_BOBYQA	Exam	4059	5	1	0.00	0.05	5.40
581	NLOPT_LN_BOBYQA	Exam	4059	6	1	0.00	0.05	6.33
582	NLOPT_LN_BOBYQA	Gasoline	32	2	1	0.00	0.02	14.30
583	NLOPT_LN_BOBYQA	gb12	512	8	20	0.00	1.87	9.28
584	NLOPT_LN_BOBYQA	gb12	512	8	8	0.00	0.42	10.77
585	NLOPT_LN_BOBYQA	Genetics	60	5	2	0.00	0.03	9.60
586	NLOPT_LN_BOBYQA	HR	120	7	3	0.00	0.02	3.29
587	NLOPT_LN_BOBYQA	Hsb82	7185	5	1	0.00	0.07	3.52
588	NLOPT_LN_BOBYQA	IncBlk	24	8	1	0.00	0.02	12.89
589	NLOPT_LN_BOBYQA	InstEval	73421	28	2	0.00	10.06	4.28
590	NLOPT_LN_BOBYQA	InstEval	73421	2	3	0.00	15.82	3.63
591	NLOPT_LN_BOBYQA	kb07	1790	8	72	0.01	311.03	73.43
592	NLOPT_LN_BOBYQA	kb07	1790	8	16	0.00	18.50	26.31
593	NLOPT_LN_BOBYQA	Mississippi	37	3	1	0.00	0.02	21.53
594	NLOPT_LN_BOBYQA	mm0	69588	4	6	0.00	26.20	23.88
595	NLOPT_LN_BOBYQA	Oxboys	234	2	3	0.00	0.03	1.35
596	NLOPT_LN_BOBYQA	Pastes	60	1	2	0.00	0.02	9.51
597	NLOPT_LN_BOBYQA	PBIB	60	15	1	0.00	0.02	13.14
598	NLOPT_LN_BOBYQA	Penicillin	144	1	2	0.00	0.02	8.65
599	NLOPT_LN_BOBYQA	Poems	275996	3	3	0.00	21.31	3.74
600	NLOPT_LN_BOBYQA	ScotsSec	3435	4	2	0.00	0.08	5.04
601	NLOPT_LN_BOBYQA	Semi2	72	2	3	0.00	0.03	9.27
602	NLOPT_LN_BOBYQA	Semiconductor	48	16	1	0.00	0.02	15.96
603	NLOPT_LN_BOBYQA	SIMS	3691	2	3	0.00	0.15	1.10
604	NLOPT_LN_BOBYQA	sleepstudy	180	2	3	0.00	0.04	5.30
605	NLOPT_LN_BOBYQA	sleepstudy	180	2	2	0.00	0.02	8.62
606	NLOPT_LN_BOBYQA	TeachingII	96	12	1	0.00	0.02	15.38
607	NLOPT_LN_BOBYQA	Weights	399	6	3	0.00	0.04	1.13
608	NLOPT_LN_BOBYQA	WWheat	60	2	3	0.00	0.03	2.32
-	•							

3.1. Proportion Converged

The most important question regarding the optimizers is whether or not they have converged to the global optimum. We cannot test this directly. Instead we use a "crowd-sourced" criterion based on the minimum objective achieved by any of the algorithms. The difference between the objective achieved by a particular algorithm and this minimum is called the excess. In the summaries excess is rounded to 5 digits after the decimal so the minimum non-zero excess is 10^{-5} .

If we wish to declare "converged" or "not converged" according to the excess objective value we must establish a threshold. An absolute threshold seems reasonable because the objective, negative twice the log-likelihood, is on a scale where differences in this objective are compared to a χ^2 random variable. Thus an excess of 10^{-9} or even 10^{-5} is negligible.

For each optimizer we can examine which of the data set/model combinations resulted in an excess greater than a threshold.

At this threshold the most reliable algorithm in Julia is LN_BOBYQA. In R the most reliable algorithms are NLOPT_LN_BOBYQA, optimx:L-BFGS-B and optimx:nlminb. It is interesting that nlminb is reliable as I felt that it wasn't converging well when it was the default optimizer in lmer.

Interestingly, the derivative-based algorithms in NLopt were not as reliable as the derivative-free algorithms. The most likely explanation is that I don't have the gradient coded properly.

The Nelder-Mead simplex algorithm did not perform well, failing on 8 out of 48 cases. For many of these the value at which convergence was declared was far from the optimum.

The Nelder_Mead algorithm, either in the native form in lmer or in the NLopt implementation performed poorly on those cases with many parameters to optimize. It was both unreliable and slow, taking over 45 minutes to reach a spurious optimum on the "maximal" model (in the sense of Barr et al., 2012) for the kb07 data from Kronmueller and Barr (2007). This is not terribly surprising given that the model is horribly overparameterized, but still it shows that this algorithm is not a good choice in these cases.

We note in passing that all the models involving fitting 20 or more parameters are "maximal" models in the sense of Barr et al., 2012. Such models can present difficult optimization problems because they are severely overparameterized and inevitably converge on the boundary of the allowable parameter space. Whether or not it is sensible to compare results on such extreme cases is not clear.

The SBPLX (subplex) algorithm, which is an enhancement of Nelder_Mead, does better in these cases but is still rather slow.

By comparison, the LN_BOBYQA algorithm converges quite rapidly on the kb07 models.

3.2. Reliability

Sed iaculis sodales elit quis vehicula. In et tristique neque, sodales aliquet metus. In posuere dictum nisl, quis laoreet augue congue a. Aenean in commodo neque, sit amet hendrerit ex. Aliquam id faucibus ante. Vivamus in fermentum nunc. Nam condimentum eros id orci pretium, quis aliquam magna eleifend.

http://www.jstatsoft.org/

http://www.amstat.org/

Submitted: yyyy-mm-dd

Accepted: yyyy-mm-dd

4. Conclusions

5. References

Note all optimization packages used, lmm, lme4, jsonlite,

Affiliation:

Douglas Bates Emeritus Professor Department of Statistics University of Wisconsin-Madison 1300 University Ave Madison, WI 53706-1685 U.S.A.

E-mail: dmbates@stat.wisc.edu

Github URL: https://github.com/dmbates

MMMMMM YYYY