Algoritmi e Strutture Dati 2

Esercizi

Francesco Pasquale

9 ottobre 2020

Esercizio 1. Si consideri il seguente problema computazionale:

INPUT: Un insieme di punti del piano $\{p_1 = (x_1, y_1), p_2 = (x_2, y_2), \dots, p_n = (x_n, y_n)\} \subseteq \mathbb{R}^2$ OUTPUT: La coppia (una coppia, se ce n'è più di una) a distanza minima. Ossia, una coppia di punti distinti p_i, p_j , tali che

$$d(p_i, p_i) = \min\{d(p_h, p_k) : h, k = 1, \dots, n, h \neq k\}$$

dove $d(p_i, p_i) = \sqrt{(x_i - x_i)^2 + (y_i - y_i)^2}$ è la distanza Euclidea fra i due punti.

- 1. Osservare che esiste un algoritmo ovvio che ha running time $\mathcal{O}(n^2)$;
- 2. Usando la tecnica Divide et Impera, progettare un algoritmo con running time $o(n^2)$.

Esercizio 2. Si consideri il seguente algoritmo¹

Algorithm 1 Eu(a, b)

INPUT: Due interi positivi a e b

OUTPUT: Il massimo comun divisore dei due interi in input

if b = 0 then

return a

return $Eu(b, a \mod b)$

- 1. Implementare l'algoritmo in un linguaggio di programmazione a piacere;
- 2. Dimostrare che l'algoritmo restituisce il massimo comun divisore fra i due interi in input;
- 3. Stimare il numero di chiamate ricorsive dell'algoritmo.

Esercizio 3. Si consideri il seguente algoritmo

Algorithm 2 Eu2(a, b)

INPUT: Due interi positivi $a \in b$

OUTPUT: Una terna (d, x, y) dove d è il massimo comun divisore dei due interi in input, e x e y sono due interi tali che ax + by = d

if b = 0 then

return (d, 1, 0)

 $(d, x', y') = \text{Eu2}(b, a \mod b)$

return (d, y', x' - |a/b|y')

 $^{^1\}mathrm{Con}\ a \bmod b$ si intende il resto della divisione di a per b. Per esempio, 10 mod 3 = 1, 15 mod 5 = 0

- 1. Implementare l'algoritmo in un linguaggio di programmazione a piacere;
- 2. Dimostrare la correttezza dell'algoritmo.

Esercizio 4. Progettare un algoritmo efficiente per l'esponenziazione modulare:

INPUT: Tre interi positivi $x, y \in n$

OUTPUT: $x^y \mod n$