統計學習初論(105-2)

Self-Assessment Homework 3A

國立台灣大學資管系

Question 1

Consider the problem of performing least square for classification problem with K classes. Using 1-of-K binary coding scheme, each outcome is represented as $t_i = (0, 0, ..., 1, ...0)$, where t_i is a vector of length K and the "one" is located at the position that corresponds to the outcome class. The feature of point i is $x_i = (1, x_{i1}, x_{i2}, ..., x_{iD})^T$. We predict the outcome by comparing $y_k(x_i) = w_k^T x_i$ for k = 1, 2, ..., K, and assign to the class a with $y_a(x_i) > y_b(x_i)$ for all $b \neq a$.

To estimate w_k , k = 1, 2, ..., K, we adopted a vector notation:

$$T = \begin{bmatrix} t_1^T \\ t_2^T \\ \vdots \\ t_N^T \end{bmatrix}, X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_N^T \end{bmatrix},$$

Here T is a $N \times K$ matrix and X is a $N \times (D+1)$ matrix. The prediction for the N training data points are XW, where $W = [w_1 \ w_2 \ ... \ w_K]$ are the parameters for $y_i(\cdot)$. Define $\hat{Y} = XW$, then \hat{Y} is a $N \times K$ matrix. The row i is the predicted score for data point i, and we assign row i to the class that has the largest score. To train this model, we minimize the difference between the true 1-of-K representation and the predicted score for all training data point. Define $E_D(W) = \frac{1}{2}tr\ \{(XW-T)^T(XW-T)\}$. Show that the solution that minimize $E_D(W)$ is $W = (X^TX)^{-1}X^TT$. Use the derivative equations in "Matrix Cookbook" (cf. http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf) to help you solve the problem.

Question 2 (Exercise 4.8)

4.8 (\star) Using (4.57) and (4.58), derive the result (4.65) for the posterior class probability in the two-class generative model with Gaussian densities, and verify the results (4.66) and (4.67) for the parameters w and w_0 .

Question 3 (Exercise 4.9)

4.9 (*) www Consider a generative classification model for K classes defined by prior class probabilities $p(\mathcal{C}_k) = \pi_k$ and general class-conditional densities $p(\phi|\mathcal{C}_k)$ where ϕ is the input feature vector. Suppose we are given a training data set $\{\phi_n, \mathbf{t}_n\}$ where $n=1,\ldots,N$, and \mathbf{t}_n is a binary target vector of length K that uses the 1-of-K coding scheme, so that it has components $t_{nj} = I_{jk}$ if pattern n is from class \mathcal{C}_k . Assuming that the data points are drawn independently from this model, show that the maximum-likelihood solution for the prior probabilities is given by

$$\pi_k = \frac{N_k}{N} \tag{4.159}$$

where N_k is the number of data points assigned to class C_k .

Question 4 (Exercise 4.10)

4.10 (★★) Consider the classification model of Exercise 4.9 and now suppose that the class-conditional densities are given by Gaussian distributions with a shared covariance matrix, so that

$$p(\phi|\mathcal{C}_k) = \mathcal{N}(\phi|\mu_k, \Sigma). \tag{4.160}$$

Show that the maximum likelihood solution for the mean of the Gaussian distribution for class C_k is given by

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} t_{nk} \phi_n \tag{4.161}$$

which represents the mean of those feature vectors assigned to class C_k . Similarly, show that the maximum likelihood solution for the shared covariance matrix is given by

$$\Sigma = \sum_{k=1}^{K} \frac{N_k}{N} \mathbf{S}_k \tag{4.162}$$

where

$$\mathbf{S}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} t_{nk} (\phi_{n} - \mu_{k}) (\phi_{n} - \mu_{k})^{\mathrm{T}}.$$
 (4.163)

Thus Σ is given by a weighted average of the covariances of the data associated with each class, in which the weighting coefficients are given by the prior probabilities of the classes.