

Distributed Systems

Dr. Swaminathan J Department of Computer Science Amrita Vishwa Vidyapeetham

Objectives

- To discuss the concept of clock synchronization (NTP).
- To introduce Lamport's logical (scalar) clock and discuss its properties.
- To introduce Vector clock and discuss its properties.

Place your Webcam Video here Size 100%

Difficulty with Physical Clock

Two system clocks may not be in perfect sync or run in unison.

- P1 sends a message m to P2 at time t
- P2 receives m at time < t (why would this happen??)

8:00 7:45 7:51 Place your Webcam Video here Size 38%

P2's clock is behind P1

- Debugging and troubleshooting can be very challenging.
- You need to know the order of events that happened.

Solution 1: Synchronize clock

Network Time Protocol (NTP)

Place your Webcam Video here Size 38%

Reset clock to 8:08 - 00:15 = 7:53

Solution 1: Synchronize clock

Network Time Protocol (NTP)

Place your Webcam Video here **Size 38%**

Reset clock to 8:08 - 00:15 = 7:53

Let's generalize this

Solution 1: Synchronize clock

Network Time Protocol (NTP)

Place your Webcam Video here Size 38%

Reset clock by $\boldsymbol{\theta}$

Clock offset θ

What happens in case of irregular transmit delays?

Clocks tend to drift over time

Let's generalize this

Solution 2: Logical clock

Webcam Video here **Size 38%**

- Maintain a separate logical clock (like counter)
- Adjust the clock whenever necessary.

Place your

Time ticks only when an event happens

If recv time (m) < send time (m) Reset clock at receiver

Basic Terms

Place your Webcam Video here Size 38%

 Space-Time diagram, Events, Sender, Receiver, Messages, 'happens before' relation.

Lamport's Scalar Clock

 Consider the space-time diagram of 3 processes and the events given below. Place your Webcam Video here Size 38%

Properties of Scalar clock

Place your Webcam Video here Size 38%

- Consistency Property: ei → ej → C(ei) < C(ej)
- Not strongly consistent: C(ei) < C(ej) ⇒ ei → ej
- Total ordering

Vector Clock

Place your Webcam Video here Size 38%

Consider the space-time diagram of 3 processes.

Properties of Vector Clock

Place your Webcam Video here Size 38%

Strong clock consistency: (1) ei → ej ⇔ C(ei) < C(ej) and (2) ei || ej ⇔ C(ei) || C(ej)

Summary

 We discussed NTP, Scalar and Vector clocks.

Place your Webcam Video here Size 100%