Solutions to Exercises 1, Part I

Exercise 1. Any logical constant and connector can be simulated with Sheffer strokes. In fact:

$$\neg \varphi \qquad \equiv \varphi \uparrow \varphi
1 \equiv \varphi \uparrow \neg \varphi \qquad \equiv \varphi \uparrow (\varphi \uparrow \varphi)
0 \equiv \neg 1 \qquad \equiv (\varphi \uparrow (\varphi \uparrow \varphi)) \uparrow (\varphi \uparrow (\varphi \uparrow \varphi))
\varphi_0 \land \varphi_1 \equiv \neg (\varphi_0 \uparrow \varphi_1) \equiv (\varphi_0 \uparrow \varphi_1) \uparrow (\varphi_0 \uparrow \varphi_1)
\varphi_0 \lor \varphi_1 \equiv (\neg \varphi_0 \uparrow \neg \varphi_1) \equiv ((\varphi_0 \uparrow \varphi_0) \uparrow (\varphi_1 \uparrow \varphi_1))
\varphi_0 \to \varphi_1 \equiv \neg \varphi_0 \lor \varphi_1 \qquad \equiv (((\varphi_0 \uparrow \varphi_0) \uparrow (\varphi_0 \uparrow \varphi_0)) \uparrow (\varphi_1 \uparrow \varphi_1))$$

Exercise 2. First we rewrite the formulas using only the allowed symbols:

1.
$$((a \to b) \to a) \to a \equiv \neg(\neg(\neg a \lor b) \lor a) \lor a$$

2.
$$\neg(a \land b) \rightarrow (\neg a \lor \neg b) \equiv \neg \neg(a \land b) \lor (\neg a \lor \neg b)$$

3.
$$((\neg a \to b) \land (a \to b)) \to b \equiv \neg ((\neg \neg a \lor b) \land (\neg a \lor b)) \lor b$$

Then we derive $\neg F \vdash 0$ (we collapse sequences of SIMP):

1.

$$\frac{\neg(\neg(\neg(\neg a \lor b) \lor a) \lor a) \quad \neg(\neg(\neg(\neg a \lor b) \lor a) \lor a)}{(\neg(\neg(\neg(\neg 0 \lor b) \lor 0) \lor 0)) \lor (\neg(\neg(\neg(\neg 1 \lor b) \lor 1) \lor 1))} \frac{\text{CA (on a)}}{\text{SIMP}}}{\neg(\neg(\neg b \lor 1) \lor 1)}$$

Note that, if we are being pedantic, we cannot simplify further as the simplification rules only cover cases where a literal is on the left.

$$\frac{\neg(\neg(\neg b \lor 1) \lor 1) \quad \neg(\neg(\neg b \lor 1) \lor 1)}{(\neg(\neg(\neg 0 \lor 1) \lor 1)) \lor (\neg(\neg(\neg 1 \lor 1) \lor 1))} CA \text{ (on b)}}{\frac{0 \lor 0}{0} SIMP}$$

2.

$$\frac{\neg (\neg \neg (a \land b) \lor (\neg a \lor \neg b)) \quad \neg (\neg \neg (a \land b) \lor (\neg a \lor \neg b))}{(\neg (\neg \neg (0 \land b) \lor (\neg 0 \lor \neg b))) \lor (\neg (\neg \neg (1 \land b) \lor (\neg 1 \lor \neg b)))} }{\frac{0 \lor (\neg (\neg \neg b \lor \neg b))}{\neg (\neg \neg b \lor \neg b)}}{\text{SIMP}} \text{SIMP}}$$

$$\frac{\neg (\neg \neg b \lor \neg b) \neg (\neg \neg b \lor \neg b)}{(\neg (\neg \neg 0 \lor \neg 0)) \lor (\neg (\neg \neg 1 \lor \neg 1))} \overset{\text{CA (on b)}}{\text{SIMP}}$$

3.

$$\frac{\neg (\neg ((\neg \neg a \lor b) \land (\neg a \lor b)) \lor b) \quad \neg (\neg ((\neg \neg a \lor b) \land (\neg a \lor b)) \lor b)}{(\neg (\neg ((\neg \neg a \lor b)) \lor b)) \lor (\neg (\neg ((\neg \neg 1 \lor b) \land (\neg 1 \lor b)) \lor b))} \underbrace{\text{CA (on a)}}_{\text{SIMP}}$$

$$\frac{\neg (\neg (b \land 1) \lor b) \lor \neg (\neg b \lor b)}{\neg (\neg (b \land 1) \lor b) \lor \neg (\neg b \lor b)} \underbrace{\text{CA (on b)}}_{\text{SIMP}}$$

$$\frac{\neg (\neg (b \land 1) \lor b) \lor \neg (\neg b \lor b) \quad \neg (\neg (b \land 1) \lor b) \lor \neg (\neg b \lor b)}{(\neg (\neg (0 \land 1) \lor 0) \lor \neg (\neg (0 \lor 0)) \lor (\neg (\neg (1 \land 1) \lor 1) \lor \neg (\neg (1 \lor 1)))}} \underbrace{\text{CA (on b)}}_{\text{SIMP}}$$

Exercise 3.

1. Let's first express f1 and f2 as propositional formulas. **if** x **then** y **else** z means that when x is true then y is true and when x is not true z is true. In propositional logic this becomes $(x \to y) \land (\neg x \to z)$. By repeating the process and reducing them to CNF, we get the following formulas for f1 and f2:

f1(a, b, c)
$$\equiv$$
 $((a \lor b) \to (((b \land \neg a) \to (b \land c)) \land (\neg(b \land \neg a) \to (\neg b \land c)))) \land (\neg(a \lor b) \to c)$
 $\equiv (\neg(a \lor b) \lor ((\neg(b \land \neg a) \lor (b \land c)) \land ((b \land \neg a) \lor (\neg b \land c)))) \land ((a \lor b) \lor c)$
 $\equiv (\neg a \lor \neg b) \land c$

f2(a, b, c)
$$\equiv$$
 $(c \rightarrow (a \rightarrow \neg b) \land (\neg a \rightarrow 1)) \land (\neg c \rightarrow 0)$
 $\equiv (\neg c \lor (\neg a \lor \neg b) \land (a \lor 1)) \land (c \lor 0)$
 $\equiv (\neg a \lor \neg b) \land c$

which proves that they do always produce the same output. One could also have computed the truth tables of each formula and check that they were equal.

2. Since $a \uparrow b \equiv \text{if (if a then b else false)}$ then false else true, and any formula can be written with Sheffer strokes, any formula can also be written only using if then else.

By noting that $\varphi \equiv \text{if } a$ then $\varphi[a:=1]$ else $\varphi[a:=0]$ where $a \in FV(\varphi)$ and by applying the identity recursively we can express any formula with **if then else** with only one variable in the condition. The proof goes by induction on the number of variables in the formula, and by noting that if φ has n variables and $a \in FV(\varphi)$, then $\varphi[a:=0]$ and $\varphi[a:=1]$ contain only n-1 variables.

Exercise 4. Remember that for any formulas P, Q, and R, the formula $P \to Q \to R$ is parsed as $P \to (Q \to R)$ and is equivalent to $(P \land Q) \to R$.

- 1. If $P \wedge Q$ is true, then so is Q.
- 2. We consider two cases. If $P \to Q$ holds, then we are done, otherwise we have $P \land \neg Q$, and we are done as well.
- 3. Counterexample: $P = \top$, $Q = \bot$, $R = \bot$.
- 4. Counterexample: $P = \top$, $Q = \top$, $R = \bot$.
- 5. If R and $\neg R$ are true, then we have a contradiction and Q is true as well.
- 6. A formula always implies itself: $(P \to Q) \to (P \to Q)$.
- 7. (Peirce's law) We consider two cases. If P is true, then the whole formula is true. Otherwise, $(P \to Q)$ is true, meaning the implication $((P \to Q) \to P)$ is false. This makes the whole formula true as well.
- 8. Counterexample: $P = \top$, $Q = \bot$.
- 9. Assume $(\neg Q \to \neg P)$ and P are true. Assume now (by contradiction) that Q is false. Then, we would have that P is false, which is a contradiction. Therefore Q is true and so is the whole formula.
- 10. Counterexample: $P = \top$, $Q = \top$, $R = \bot$.
- 11. Assume the three disjunctions are true. We want to show that P is true as well. Consider the first two disjunctions (the third one is not needed). In either of them, if the left-hand-side (P) is true, then we are done. Otherwise, it means their right-hand-sides Q and $\neg Q$ are both true, which is a contradiction.
- 12. Counterexample: $P = \top$, $Q = \bot$.
- 13. Assume $\neg(P \land Q)$ and P are both true. If Q is true as well, then, we have $P \land Q$ is true, which is a contradiction. Therefore Q is false, which is what we needed to prove.