Потоки для одновременных manifold learning и оценки плотности

Плетнев Никита Вячеславович

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

15 декабря 2020 г.

Постановка задачи

Решается задача оценки плотности распределения $p^*(x)$

при условии, что входные данные принадлежат многообразию меньшей размерности, чем всё пространство.

Предположения

- ullet данные $x\in\mathcal{M}^*\subset X=\mathbb{R}^d$ семплируются из распределения $x\sim p^*(x)$, где \mathcal{M}^*-n -мерное Риманово многообразие, n< d;
- ullet это многообразие топологически эквивалентно \mathbb{R}^n , причём размерность n известна.

Для упрощения описываем все генеративные модели в терминах двух векторов латентных переменных: $u \in U = \mathbb{R}^n$ (латентное пространство, отображаемое в многообразие \mathcal{M}) и $v \in V$ — параметры «вне многообразия».

Возможные пути решения и их проблемы

Потоки в окружающем пространстве (ambient flows, AF)

$$f: U \times V \to X; \quad u, v \to f(u, v)$$

с вычислимой плотностью $p_{uv}(u,v)$. Результат: $p_x(x) = p_{uv}(f^{-1}(x))|\det J_f(f^{-1}(x))|^{-1}$.

Плотность получается «размазанной» по всему пространству.

Flows on a manifold (FOM)

$$g^*: U \to \mathcal{M}^* \subset X; \quad u \to g^*(u),$$

 $p_u(u)$ моделируется normalizing flow. Результат:

$$p_{x}(x) = p_{u}(g^{*-1}(x))|\det[J_{g}^{T}(g^{*-1}(x))J_{g}(g^{*-1}(x))]|^{-\frac{1}{2}}.$$

Многообразие считается априори известным.

Возможные пути решения и их проблемы

Генеративно-состязательные сети (GAN)

$$g: U \to \mathcal{M} \subset X; \quad u \to g(u),$$

где g — обучаемое вложение; поэтому плотность невычислима.

Вариационные автокодировщики (VAE)

Плотность невычислима, только ELBO.

Псевдообратимые кодировщики (РІЕ) и их последовательности

Уравнения как для AF, но для разных латентных переменных выбираются разные базовые плотности: для u-n-мерный евклидов поток, для v-c резким пиком около 0. Однако для PIE не достигается ограничение плотности требуемым многообразием, а для их последовательности плотность вычислима лишь с точностью до нормировки. Beitler, Sosnovik, Smeulders (2019): Pseudo-Invertible Encoder.

Предлагаемое решение: \mathcal{M} -потоки

Основная идея

Соединить вычислимую оценку плотности, присущую PIE, со связью латентного пространства и многообразия, которая есть у GAN, и добавить оценку близости точки к многообразию.

Алгоритм

Связь между латентным пространством и данными:

$$f: U \times V \to X; \quad u, v \to f(u, v).$$

Многообразие для модели:

$$g: U \to \mathcal{M} \subset X; \quad u \to g(u) = f(u,0),$$

На практике $g = f_k \circ \ldots \circ f_1 \circ Pad$ Базовая плотность $p_u(u)$ моделируется n-мерным потоком h, отображающим u в другое латентное пространство с $p_{\widetilde{u}}(\widetilde{u})$.

Предлагаемое решение: \mathcal{M} -потоки

Оценка плотности

$$p_{\mathcal{M}}(x) = p_{u}(g^{-1}(x))|\det[J_{g}^{T}(g^{-1}(x))J_{g}(g^{-1}(x))]|^{-\frac{1}{2}} =$$

$$= p_{\tilde{u}}(h^{-1}(g^{-1}(x)))|\det J_{h}(h^{-1}(g^{-1}(x)))|^{-1} \times$$

$$\times |\det[J_{g}^{T}(g^{-1}(x))J_{g}(g^{-1}(x))]|^{-\frac{1}{2}}.$$

Сэмплирование

$$\tilde{u} \sim p_{\tilde{u}}(\tilde{u}), \ u = h(\tilde{u}), \ x = g(u) = f(u, 0).$$

Предлагаемое решение: \mathcal{M} -потоки

Оценка принадлежности многообразию

g отображает из пространства меньшей размерности и, по сути, является декодировщиком. Определим кодировщик.

$$g^{-1}: X \to U, \quad x \to g^{-1}(x) = Proj(f^{-1}(x))$$

Здесь Proj(u, v) = u.

Ошибка восстановления:

$$||x - x'|| = ||x - g(g^{-1}(x))||$$

Проверка входных данных $x \in X$

- отобразить в латентное пространство;
- спроектировать на многообразие (оценивается плотность);
- отобразить в исходное пространство (вычисляется ошибка восстановления).

Предлагаемое решение: \mathcal{M}_e -потоки

Отличие от \mathcal{M} -потоков

Вместо g^{-1} используется обучаемый кодировщик e(x).

Сравнение подходов

Model	Manifold	Chart	Generative mode	Tractable density	Restricted to manifold
Ambient flow (AF)	no manifold	×	✓	✓	×
Flow on manifold (FOM)	prescribed	✓	✓	✓	✓
Generative adversarial network (GAN)	learned	×	✓	×	✓
Variational autoencoder (VAE)	learned	×	✓	only ELBO	(×)
Pseudo-invertible encoder (PIE)	learned	✓	✓	✓	(×)
Slice of PIE	learned	✓	×	up to normalization	✓
Manifold-learning flow (M-flow)	learned	✓	✓	√ (may be slow)	✓
Manifold-learning flow with sep. encoder (M_e -flow)	learned	✓	✓	√ (may be slow)	✓

Свойства и ограничения

Преимущества \mathcal{M} -потоков

- более точная аппроксимация истинного распределения;
- увеличение производительности;
- возможность моделировать условную плотность на фиксированном носителе;
- скрытое пространство меньшей размерности снижает сложность модели;
- проекция на носитель обеспечивает уменьшение размерности и возможность шумоподавления;
- возможно использование для обнаружения образцов вне распределения.

Сложности использования

Обычный подход к оценке плотности распределения — максимизация правдоподобия — в данном случае не работает.

Обучение модели

Проблема максимизации правдоподобия

(a) Setup. The model manifold is a straight line in 2D Euclidean space that passes through the origin and is rotated with respect to the x-axis by an angle α . On this line, the density is a Gaussian with mean at the origin, its standard deviation is a model parameter σ . The training data (black dots) are generated with $\alpha^*=\pi/2$ and $\sigma^*=1$.

Обучение модели

При обучении есть две цели: построение многообразия и оценка плотности. Соответственно, минимизация ошибки восстановления и максимизация правдоподобия на многообразии - разные шаги обучения.

Маnifold phase:

$$L_{manifold}[g] = \frac{1}{b} \sum_{x} ||x - g(g^{-1}(x))||_2^2 \to min.$$

Density phase:

$$L_{density}[h] = -\frac{1}{b} \sum_{x} \log p_{u}(g^{-1}(x))$$

Эксперименты

«Игрушечный» эксперимент на синтетических данных

Fig. 5. Learning a Gaussian density on a circle. Top left: true density of the data-generaling process. Top middle and top right: 20 density learned by a standard ambient flow (AF) and a PIE). Bottom: manifold and density learned by a manifold flow with specified true manifold (FOM), a manifold-learning flow (.V-flow (MD)), and a manifold-learning flow flow that was only trained on the reconstruction error (.V-flow (AE)). To highlight the differences, we use simple, less expressive architectures (see text).

Эксперименты

Fig. 6. Mixture model on a polynomial surface. Top: the true data manifold as well as the manifolds learned by the PIE, M-flow (MID), and M-flow (OT) models. The color shows the log likelihood for θ = 0 (tright) yellow represents a high density, dark blue a low density). In order to increase the darky of the PIE panel we have removed parts of that manifold which fold's above and below the shown part. Bottom: ground truth and M-flow (MID) manifold for θ = −1 and θ = 1.

Эксперименты

Обработка данных о столкновениях протонов с БАК

Model (algorithm)	Sample closure	Mean reconstruction error	Log posterior
AF	0.0019 ± 0.0001	-	-3.94 ± 0.87
PIE (original)	0.0023 ± 0.0001	2.054 ± 0.076	-4.68 ± 1.56
PIE (unconditional manifold)	0.0022 ± 0.0001	1.681 ± 0.136	-1.82 ± 0.18
\mathcal{M} -flow	0.0045 ± 0.0004	0.012 ± 0.001	-1.71 ± 0.30
\mathcal{M}_e -flow	0.0046 ± 0.0002	0.029 ± 0.001	$-$ 1.44 \pm 0.34
AF (SCANDAL)	0.0565 ± 0.0059	0.000 ± 0.000	-0.40 ± 0.09
PIE (original, SCANDAL)	0.1293 ± 0.0218	3.090 ± 0.052	0.03 ± 0.17
PIE (uncond. manifold, SCANDAL)	0.1019 ± 0.0104	1.751 \pm 0.064	0.23 ± 0.05
M-flow (SCANDAL)	0.0371 ± 0.0030	0.011 ± 0.001	0.11 ± 0.04
\mathcal{M}_e -flow (SCANDAL)	0.0291 ± 0.0010	0.030 ± 0.002	0.14 ± 0.09

SCANDAL — методика аугментации; видно, что ошибка восстановления у \mathcal{M} -потоков минимальна.

Значимость результатов

Предложены два типа потоков с использованием manifold learning: \mathcal{M} -потоки и \mathcal{M}_e -потоки.

Выявлена тонкость в наивной интерпретации плотности таких моделей и предложены более эффективные стратегии обучения.

Полученные результаты проверены экспериментально.

Практическое применение

Научный прогресс

Построенный метод позволит эффективнее извлекать знания из крупномасштабных экспериментов, как показывает эксперимент на данных об элементарных частицах.

Генерация изображений

Существует риск злоупотребления для генерации и дальнейшего использования реалистичных поддельных данных.

Использованные источники

- [1] Johann Brehmer and Kyle Cranmer: Flows for simultaneous manifold learning anddensity estimation, https://arxiv.org/pdf/2003.13913.pdf
- [2] Beitler JJ, Sosnovik I, Smeulders A (2019) PIE: Pseudo-Invertible Encoder.