Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

 $\begin{tabular}{ll} \textbf{Reaction scoring formula:} & TUNNEL_COEF*FGI_COEF*STEP*20+1000\\ 0000*(CONFLICT+NON_SELECTIVITY+FILTERS+PROTECT)\\ \end{tabular}$

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and main-

tained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 2250084.06

Figure 1: Outline of path 1

2.1.1 Alkenylation-Aldol reaction of enones and enoate esters

Substrates:

- 1. a,a,a-Trifluoro-p-tolualdehyde available at Sigma-Aldrich
- 2. Bromoethylene available at Sigma-Aldrich
- 3. 3-Buten-2-one available at Sigma-Aldrich

Products:

$1. \ C{=}CCC(C(C){=}O)C(O)c1ccc(C(F)(F)F)cc1 \\$

Typical conditions: 1.RCuLi.2.RCHO

Protections: none

Reference: 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3 AND 10.1021/jo2010186 AND 10.1021/jo101439h AND 10.1021/ja906241w

Retrosynthesis ID: 20547

2.1.2 Condensation of methyl ketones with esters

Substrates:

1. C=CCC(C(C)=O)C(O)c1ccc(C(F)(F)F)cc1

2. Methyl p-toluate - available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: NaOMe.MeOH

Protections: none

Reference: 10.1016/j.tetlet.2007.10.010 and 10.1016/j.tetlet.2013.09.025 and

 $10.1016/j.ejmech.2013.10.072 \ \ and \ \ 10.1002/ange.19921040631$

Retrosynthesis ID: 4792

2.1.3 Keto-enol Tautomerism

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.1.4 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- 1. $C=CCC(C(=O)/C=C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$
- 2. 4-methoxyphenyl-dithiophosphonsaeureanhydrid

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

 ${\bf Typical\ conditions:}\ {\bf Lawesson's\ Reagent.neat.microwave}$

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.2 Path 2

Score: 2250115.31

Figure 2: Outline of path 2

2.2.1 Aldol-like condensation with nitriles

Substrates:

 $1. \ \ \, a, a, a-Trifluoro-p-tolual de hyde - \qquad \textit{available at Sigma-Aldrich}$

2. 4-Pentenenitrile - available at Sigma-Aldrich

Products:

1. C=CCC(C#N)C(O)c1ccc(C(F)(F)F)cc1

 ${\bf Typical\ conditions:\ LDA.THF.} cooling$

Protections: none

Reference: 10.1039/B800634B and 10.1002/anie.201302613 and 10.1021/jm701319c and 10.1016/S0040-4020(98)00122-7 and 10.1021/jo025872t

Retrosynthesis ID: 23727

2.2.2 Blaise Reaction

1. C=CCC(C#N)C(O)c1ccc(C(F)(F)F)cc1

2. 2-Bromo-4'-methylacetophenone - available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

 ${\bf Typical\ conditions:}\ {\bf Zn.TMSCl.THF\ then\ HCl}$

Protections: none

Reference: 10.1002/ejoc.201403402 Retrosynthesis ID: 10000153

2.2.3 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

2.2.4 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$
- 2. 4-methoxyphenyl-dithiophosphonsaeureanhydrid

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: Lawesson's Reagent.neat.microwave

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.3 Path 3

Score: 2250115.31

Figure 3: Outline of path 3

2.3.1 Homologation of aldehydes to ketones with diazoalkanes

Substrates:

- 1. 1-diazo-but-3-en-2-one
- 2. p-Tolualdehyde available at Sigma-Aldrich

Products:

1. C=CC(=O)CC(=O)c1ccc(C)cc1

Typical conditions: Lewis.acid

Protections: none

Reference: 10.1021/jo00275a006 AND 10.1016/j.tet.2014.05.107 AND 10.1016/j.tet.2014.11.059 AND 10.1021/ol9010932

Retrosynthesis ID: 15017

2.3.2 Alkenylation-Aldol reaction of enones and enoate esters

Substrates:

- 1. a,a,a-Trifluoro-p-tolualdehyde available at Sigma-Aldrich
- $2. \ C=CC(=O)CC(=O)c1ccc(C)cc1$
- 3. Bromoethylene available at Sigma-Aldrich

Products:

$1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: 1.RCuLi.2.RCHO

Protections: none

Reference: 10.1021/jo2010186 AND 10.1021/jo101439h AND 10.1021/ja906241w AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

Retrosynthesis ID: 13048

2.3.3 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.3.4 Synthesis of Thioketones using Lawesson's Reagent

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$
- 2. 4-methoxyphenyl-dithiophosphonsaeureanhydrid

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: Lawesson's Reagent.neat.microwave

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.4 Path 4

Score: 2250125.08

Figure 4: Outline of path 4

2.4.1 Condensation of esters with aldehydes

Substrates:

- 1. a,a,a-Trifluoro-p-tolualdehyde available at Sigma-Aldrich
- 2. Methyl 4-pentenoate available at Sigma-Aldrich

Products:

1. C=CCC(C(=O)OC)C(O)c1ccc(C(F)(F)F)cc1

Typical conditions: LDA.THF

Protections: none

Reference: 10.1016/j.bmcl.2005.02.066 and 10.3762/bjoc.9.175 and

10.1021/ol1016178

Retrosynthesis ID: 4788

2.4.2 Acid catalyzed transesterification

${\bf Substrates:}$

1. C=CCC(C(=O)OC)C(O)c1ccc(C(F)(F)F)cc1

Products:

1. C=CCC1C(=O)OC1c1ccc(C(F)(F)F)cc1

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

Retrosynthesis ID: 50438

2.4.3 Ring opening of lactones with enolates

1. Methyl p-tolyl ketone - available at Sigma-Aldrich

2. C=CCC1C(=O)OC1c1ccc(C(F)(F)F)cc1

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Typical conditions: LiHMDS.THF

Protections: none

Reference: 10.1021/ol801493w and 10.1021/ol403423r and 10.1021/ja061938g

and 10.1021/ja036521e

Retrosynthesis ID: 24105

2.4.4 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

2.4.5 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1 \\$
- $2. \ \, 4\hbox{-methoxyphenyl-dithiophosphonsaeureanhydrid}$

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: Lawesson's Reagent.neat.microwave

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.5 Path 5

Score: 2250125.08

Figure 5: Outline of path 5

2.5.1 Tandem oxidation-esterification

Substrates:

1. 4-penten-1,2-diol

Products:

1. methyl 2-hydroxypent-4-enoate - available at Sigma-Aldrich

Typical conditions: Oxidant (eg. I2.K2CO3 or Ca(OCl)2).MeOH

Protections: none

Reference: 10.1016/S0040-4039(00)73550-7 and 10.1016/j.tet.2005.03.097 and

10.1021/ol062940f

Retrosynthesis ID: 25234

2.5.2 Synthesis Of Alkyl Iodides Via Appel Reaction

Substrates:

1. methyl 2-hydroxypent-4-enoate - available at Sigma-Aldrich

Products:

1. C=CCC(I)C(=O)OC

Typical conditions: Imidazole.PPh3.I2

Protections: none

Reference: 10.1002/anie.201311323 (SI) AND 10.1080/00397919008052864 and

10.1016/j.steroids.2015.02.018

2.5.3 Reformatsky Reaction

Substrates:

1. a,a,a-Trifluoro-p-tolualdehyde - available at Sigma-Aldrich

2. C=CCC(I)C(=O)OC

Products:

 $1. \ C{=}CCC(C({=}O)OC)C(O)c1ccc(C(F)(F)F)cc1 \\$

Typical conditions: Zn.THF

Protections: none

Reference: 10.1016/j.bmc.2016.07.052 p. 4521, 4520 and 10.1016/j.ejmech.2013.07.047 p. 214, 218

Retrosynthesis ID: 11539

${\bf 2.5.4}\quad {\bf Acid\ catalyzed\ transesterification}$

Substrates:

 $1. \ C{=}CCC(C({=}O)OC)C(O)c1ccc(C(F)(F)F)cc1 \\$

Products:

1. C=CCC1C(=O)OC1c1ccc(C(F)(F)F)cc1

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

Retrosynthesis ID: 50438

2.5.5 Ring opening of lactones with enolates

Substrates:

1. Methyl p-tolyl ketone - available at Sigma-Aldrich

2. C=CCC1C(=O)OC1c1ccc(C(F)(F)F)cc1

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

 $\textbf{Typical conditions:} \ \, \text{LiHMDS.THF}$

Protections: none

Reference: 10.1021/ol801493w and 10.1021/ol403423r and 10.1021/ja061938g

and 10.1021/ja036521e

Retrosynthesis ID: 24105

2.5.6 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.5.7 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- 1. $C=CCC(C(=O)/C=C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1$
- 2. 4-methoxyphenyl-dithiophosphonsaeureanhydrid

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

 ${\bf Typical\ conditions:}\ {\bf Lawesson's\ Reagent.neat.microwave}$

Protections: none

Reference: DOI: 10.1021/ol990629a