

ANOVA

Do the assumptions appear reasonable?

RECAP:

Outcome?

NO

Logistic regression

and other methods

1

3

COMING UP NEXT: ANOVA - a special case of linear regression

- What if the independent variables of interest are categorical?
- In this case, comparing the mean of the continuous outcome in the different categories may be of interest
- This is what is called ANalysis Of VAriance
- We will show that it is just a special case of linear regression

inear Regression

Examine main effects considering predictors of interest, and confounders

Compute and plot Residuals Assess influence

Test effect modification if scientifically relevant

Uses dummy variables to represent categorical variables!

4

Modify approach

REPORT

YES

- Motivation: We will consider some examples of ANOVA and show that they are special cases of linear regression
- ANOVA as a regression model
 - Dummy variables
- One-way ANOVA models
 - Contrasts
 - Multiple comparisons
- Two-way ANOVA models
 - Interactions
- ANCOVA models

ANOVA/ANCOVA: Motivation

- Let's investigate if genetic factors are associated with cholesterol levels.
 - Ideally, you would have a <u>confirmatory analysis</u> of scientific hypotheses formulated prior to data collection
 - Alternatively, you could consider an <u>exploratory analysis</u>
 hypotheses generation for future studies

5

7

6

ANOVA/ANCOVA: Motivation

- Scientific hypotheses of interest:
 - Assess the effect of rs174548 on cholesterol levels.
 - Assess the effect of rs174548 and diabetes on cholesterol levels
 - Does the effect of rs174548 on cholesterol differ between people with and without diabetes?
 - Assess the effect of rs174548 and age on cholesterol levels
 - Does the effect of rs174548 on cholesterol differ depending on subject's age?

ANOVA: One-Way Model Motivation:

- Scientific question:
 - Assess the effect of rs174548 on cholesterol levels.

Motivation: Example

Here are some descriptive summaries:

Motivation: Example

Another way of getting the same results:

9

10

Motivation: Example

Is rs174548 associated with cholesterol?

R command: boxplot(chol ~ factor(rs174548)) 11

as.factor(rs174548)

Factors

Motivation: Example

R command:
plot.design(chol ~ factor(rs174548))

10

Another graphical display:

Motivation: Example

- Feature:
 - How do the mean responses compare across different groups?
 - Categorical/qualitative predictor

One-way ANOVA as a regression model

13

15

14

ANalysis Of VAriance Models (ANOVA)

Compares the means of several populations

Assumptions for Classical ANOVA Framework:

Independence Normality Equal variances

4

ANalysis Of VAriance Models (ANOVA)

Compares the means of several populations

ANalysis Of VAriance Models (ANOVA)

- Compares the means of several populations
 - Counter-intuitive name!

ANalysis Of VAriance Models (ANOVA)

In both data sets, the true population means are: 3 (A), 5 (B), 7(C)

Where do you expect to detect difference between population means?

ANalysis Of VAriance Models (ANOVA)

- Compares the means of several populations
 - Counter-intuitive name!
 - Underlying concept:
 - To assess whether the population means are equal, compares:
 - Variation between the sample means (MSR) to
 - Natural variation of the observations within the samples (MSE).
 - The larger the MSR compared to MSE the more support that there is a difference in the population means!
 - The ratio MSR/MSE is the F-statistic.
- We can make these comparisons with multiple linear regression: the different groups are represented with "dummy" variables

17

19

ANOVA as a multiple regression model

- Dummy Variables:
 - Suppose you have a categorical variable C with k categories 0,1, 2, ..., k-1. To represent that variable we can construct k-1 dummy variables of the form

$$x_1 = \begin{cases} 1, & \text{if subject is in category 1} \\ 0, & \text{otherwise} \end{cases}$$

$$x_2 = \begin{cases} 1, & \text{if subject is in category 2} \\ 0, & \text{otherwise} \end{cases}$$

$$x_{k-1} = \begin{cases} 1, & \text{if subject is in category } k-1 \\ 0, & \text{otherwise} \end{cases}$$

The omitted category (here category 0) is the **reference group**.

ANOVA as a multiple regression model

ANOVA as a multiple regression model

- Dummy Variables:
 - Back to our motivating example:
 - Predictor: rs174548 (coded 0=C/C, 1=C/G, 2=G/G)
 - Outcome (Y): cholesterol

Let's take C/C as the reference group.

$$x_1 = \begin{cases} 1, & \text{if code } 1 \text{ (C/G)} \\ 0, & \text{otherwise} \end{cases}$$

$$x_2 = \begin{cases} 1, & \text{if code 2 (G/G)} \\ 0, & \text{otherwise} \end{cases}$$

21

22

ANOVA as a multiple regression model

- Regression with Dummy Variables:
 - Example:

Model: $E[Y|x_1, x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

• Interpretation of model parameters?

ANOVA as a multiple regression model

Mean	Regression Model
μ_0	β_0
μ_1	$\beta_0 + \beta_1$
μ_2	$\beta_0 + \beta_2$

ANOVA as a multiple regression model

- Regression with Dummy Variables:
 - Example:

Model:
$$E[Y|x_1, x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- Interpretation of model parameters?
 - $\mu_0 = \beta_0$: mean cholesterol when rs174548 is C/C
 - $\mu_1 = \beta_0 + \beta_1$: mean cholesterol when rs174548 is C/G
 - $\mu_2 = \beta_0 + \beta_2$: mean cholesterol when rs174548 is G/G

ANOVA as a multiple regression model

- Regression with Dummy Variables:
 - Example:

Model:
$$E[Y|x_1, x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- Interpretation of model parameters?
 - $\mu_0 = \beta_0$: mean cholesterol when rs174548 is C/C
 - $\mu_1 = \beta_0 + \beta_1$: mean cholesterol when rs174548 is C/G
 - $\mu_2 = \beta_0 + \beta_2$: mean cholesterol when rs174548 is G/G
 - Alternatively
 - β_1 : difference in mean cholesterol levels between groups with rs174548 equal to C/G and C/C (μ_1 μ_0).
 - β_2 : difference in mean cholesterol levels between groups with rs174548 equal to G/G and C/C (μ_2 μ_0).

ANOVA: One-Way Model

- Goal:
 - Compare the means of K independent groups (defined by a categorical predictor)
 - Statistical Hypotheses:
 - (Global) Null Hypothesis:

$$H_0$$
: $\mu_0 = \mu_1 = ... = \mu_{K-1}$ or, equivalently,
 H_0 : $\beta_1 = \beta_2 = ... = \beta_{K-1} = 0$

Alternative Hypothesis:

H₁: not all means are equal

 If the means of the groups are not all equal (i.e. you rejected the above H₀), determine which ones are different (multiple comparisons)

Estimation and Inference

Global Hypotheses

$$H_0$$
: $μ_1 = μ_2 = ... = μ_K$ vs. H_1 : not all means are equal H_0 : $β_1 = β_2 = ... = β_{K-1} = 0$

Analysis of variance table

Source	df	SS	MS	F
Regression	K-1	$SSR = \sum (\overline{y}_i - \overline{y})^2$	MSR=	MSR/
		i	SSR/(K-1)	MSE
Residual	n-K	$SSE = \sum (y_{ij} - \overline{y}_i)^2$	MSE=	
		$\overline{i,j}$	SSE/n-K	
Total	n-1	$SST = \sum_{i,j} (y_{ij} - \overline{y})^2$		

26

- How to fit a one-way model as a regression problem?
 - Need to use "dummy" variables
 - Create on your own (can be tedious!)
 - Most software packages will do this for you
 - R creates dummy variables in the background <u>as long as</u> you state you have a categorical variable (may need to use: factor)

ANOVA: One-Way Model > summary(fit0) By hand: Call: lm(formula = chol ~ dummy1 + dummy2) Creating "dummy" variables: Residuals: 1Q Median Min 30 -64.06167 -15.91338 -0.06167 14.93833 59.13605 > dummy1 = 1*(rs174548==1)Coefficients: > dummy2 = 1*(rs174548==2)Estimate Std. Error t value Pr(>|t|) (Intercept) 181.062 1.455 124.411 < 2e-16 *** dummv1 6.802 2.321 2.930 0.00358 ** dummy2 4.540 1.198 0.23167 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1 Residual standard error: 21.93 on 397 degrees of freedom Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718 F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184 Fitting the > anova(fit0) ANOVA model: Analysis of Variance Table Df Sum Sq Mean Sq F value Pr(>F) 1 3624 3624 7.5381 0.006315 ** 690 1.4350 0.231665 dummv2 1 690 Residuals 397 190875 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''

ANOVA: One-Way Model

Better:

Let R do it for you!

```
> fit1 = lm(chol ~ factor(rs174548))
> summary(fit1)
Call:
lm(formula = chol ~ factor(rs174548))
Residuals:
     Min
                1Q Median
-64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                    181.062 1.455 124.411 < 2e-16 ***
(Intercept)
factor(rs174548)1
                     6.802
                                  2.321 2.930 0.00358 **
factor(rs174548)2
                    5.438
                                  4.540 1.198
                                                0.23167
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184
> anova(fit1)
Analysis of Variance Table
Response: chol
                    Df Sum Sq Mean Sq F value Pr(>F)
factor(rs174548)
                    2 4314 2157 4.4865 0.01184 *
                   397 190875
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```


29

ANOVA: One-Way Model

- Your turn!
 - Compare model fit results (fit0 & fit1) What do you conclude?

> fit0 = lm(chol ~ dummy1 + dummy2)	> fit1 = lm(chol ~ factor(rs174548))					
> summary(fit0)	> summary(fit1)					
Call:	Call:					
<pre>lm(formula = chol ~ dummy1 + dummy2)</pre>	lm(formula = chol ~ factor(rs174548))					
Residuals:	Residuals					
Min 10 Median 30 Max	Min 10 Median 30 Max					
-64.06167 -15.91338 -0.06167 14.93833 59.13605	-64.06167 -15.91338 -0.06167 14.93833 59.13605					
	-04.00107 -15.91330 -0.00107 14.93033 59.13005					
Coefficients:	Coefficients:					
Estimate Std. Error t value Pr(> t)	Estimate Std. Error t value Pr(> t)					
(Intercept) 181.062 1.455 124.411 < 2e-16 ***	(Intercept) 181.062 1.455 124.411 < 2e-16 **					
dummy1 6.802 2.321 2.930 0.00358 **	factor(rs174548)1 6.802 2.321 2.930 0.00358 **					
dummy2 5.438 4.540 1.198 0.23167	factor(rs174548)2 5.438 4.540 1.198 0.23167					
Residual standard error: 21.93 on 397 degrees of freedom	Residual standard error: 21.93 on 397 degrees of freedom					
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718	Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718					
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184	F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184					
> anova(fit0)	> anova(fit1)					
Analysis of Variance Table	Analysis of Variance Table					
. •	Miaiyata of variance table					
Response: chol	Response: chol					
Df Sum Sq Mean Sq F value Pr(>F)	Df Sum Sq Mean Sq F value Pr(>F)					
dummy1 1 3624 3624 7.5381 0.006315 **	factor(rs174548) 2 4314 2157 4.4865 0.01184 *					
dummy2 1 690 690 1.4350 0.231665	Residuals 397 190875 481					
Residuals 397 190875 481						

ANOVA: One-Way Model

<pre>> fit0 = lm(chol ~ dummy1 + dummy2) > summary(fit0)</pre>	<pre>> fit1 = lm(chol ~ factor(rs174548)) > summary(fit1)</pre>
Call:	Call:
<pre>lm(formula = cho1 ~ dummy1 + dummy2)</pre>	<pre>lm(formula = chol ~ factor(rs174548))</pre>
Residuals:	Residuals:
Min 1Q Median 3Q Max	Min 10 Median 30 Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605	-64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients:	Coefficients:
Estimate Std. Error t value Pr(> t)	Estimate Std. Error t value Pr(> t)
(Intercept) 181.062 1.455 124.411 < 2e-16 ***	(Intercept) 181.062 1.455 124.411 < 2e-16 ***
dummy1 6.802 2.321 2.930 0.00358 **	factor(rs174548)1 6.802 2.321 2.930 0.00358 **
dummy2 5.438 4.540 1.198 0.23167	factor(rs174548)2 5.438 4.540 1.198 0.23167
Residual standard error: 21.93 on 397 degrees of freed Multiple R-squared: 0.0221, Adjusted R-squared: 0.0171 F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184	
> anova(fit0)	> anova(fit1)
Analysis of Variance Table	Analysis of Variance Table
Response: chol Df Sum Sq Mean Sq F value Pr(>F)	Response: chol Df Sum Sq Mean Sq F value Pr(>F)
dummy1 1 3624 3624 7.5381 0.006315 **	factor(rs174548) 2 4314 2157 4.4865 0.01184 *
dummy2 1 690 690 1.4350 0.231665	Residuals 397 190875 481
Residuals 397 190875 481	

- > 1-pf(4.4865,2,397)
- [1] 0.01183671
- > 1-pf(((3624+690)/2)/481,2,397)
- [1] 0.01186096

33

34

ANOVA: One-Way Model

> fit1 = lm(chol ~	factor (rs17	74548))		
> summary(fit1)				
Call:				
lm(formula = chol ~	factor(rs1	74548))		
Residuals:				
Min 1Q	Median	3Q	Max	
-64.06167 -15.91338	-0.06167	14.93833	59.13605	
Coefficients:				
			t value Pr	
	181.062		124.411 <	
factor (rs174548)1				
factor(rs174548)2	5.438	4.540	1.198 0	.23167
				.
Residual standard e				
Multiple R-squared:				
F-statistic: 4.487	on 2 and 39	9/ DF, p-v	alue: 0.011	84
> anova(fit1)				
Analysis of Varianc	- m-1-1-			
Analysis of Varianc	e Table			
Response: chol				
Neaponae. Choi	Df Sum Sc	Moan Sa F	value Pr(\E\
factor (rs174548)				
	397 190875		4.4003 0.01	104 "
Residuais	397 190875	, 401		

Let's interpret the regression model results!

What is the interpretation of the regression model coefficients? AN

ANOVA: One-Way Model

		or (rs17						
> summary(fit1)								
Call:								
<pre>lm(formula = chol</pre>	~ fact	or(rs1	74548))					
Residuals:								
		Median		3Q	M			
-64.06167 -15.9133	8 -0.	06167	14.938	333	59.136	05		
Coefficients:								
	Est	imate	Std. Er	ror	t valu	e P	r(>	t)
(Intercept)	18	31.062	1.	455	124.41	1	< 2e	-16
factor(rs174548)1		6.802	2.	321	2.93	0	0.00	358
factor(rs174548)2		5.438	4.	540	1.19	8	0.23	167
Residual standard								
Residual standard Multiple R-squared	: 0.02	221, A	djusted	R-	squared	: 0	.017	
Residual standard	: 0.02	221, A	djusted	R-	squared	: 0	.017	
Residual standard Multiple R-squared F-statistic: 4.487	: 0.02	221, A	djusted	R-	squared	: 0	.017	
Residual standard Multiple R-squared	: 0.02 on 2	221, A and 39	djusted	R-	squared	: 0	.017	
Residual standard Multiple R-squared F-statistic: 4.487 > anova(fit1)	: 0.02 on 2	221, A and 39	djusted	R-	squared	: 0	.017	
Residual standard Multiple R-squared F-statistic: 4.487 > anova(fit1)	: 0.02 on 2	221, A and 39	djusted	R-	squared	: 0	.017	
Residual standard Multiple R-squared F-statistic: 4.487 > anova(fit1) Analysis of Varian	on 2	221, A and 39	djusted 7 DF,	R-	squared	: 0 .01	.017 184	18
Residual standard Multiple R-squared F-statistic: 4.487 > anova(fit1) Analysis of Varian	on 2	221, A and 39 ble Sum Sq	djusted 7 DF, Mean S	R-: p-v	squared alue: 0	: 0 .01	.017 184	18
Residual standard Multiple R-squared F-statistic: 4.487 > anova(fit1) Analysis of Varian Response: chol factor(rs174548)	on 2 ce Tab	221, A and 39 ole Sum Sq 4314	djusted 7 DF, Mean S	P-v	squared alue: 0 value	: 0 .01	.017 184	18

Interpretation:

- Estimated mean cholesterol for C/C group: 181.062 mg/dl
- Estimated difference in mean cholesterol levels between C/G and C/C groups: 6.802 mg/dl
- Estimated difference in mean cholesterol levels between G/G and C/C groups: 5.438 mg/dl


```
> fit1 = lm(chol ~ factor(rs174548))
> summarv(fit1)
Call.
lm(formula = chol \sim factor(rs174548))
Residuals:
                 1Q Median
      Min
 -64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
 (Intercept)
                      181 062
                                  1.455 124.411 < 2e-16
factor (rs174548)1
                        6 802
                                  2.321 2.930 0.00358
4.540 1.198
                          5.438
factor (rs174548) 2
0.23167
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184
 > anova (fit1)
Analysis of Variance Table
Response: chol
                     Df Sum Sq Mean Sq F value Pr(>F)
factor (rs174548)
                      2 4314 2157 4.4865 0.01184 *
                    397 190875
                                   481
```

Overall F-test shows a significant p-value. We reject the null hypothesis that the mean cholesterol levels are the same across groups defined by rs174548 (p=0.01184).

 This does not tell us which groups are different! (Need to perform multiple comparisons! More soon...)

ANOVA: One-Way Model

Alternative form:

(better if you will perform multiple comparisons)

```
> fit2 = lm(chol \sim -1 + factor(rs174548))
> summary(fit2)
Call:
lm(formula = chol ~ -1 + factor(rs174548))
Residuals:
     Min
                10
                     Median
                                   3Q
                                            Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
factor(rs174548)0
                    181.062
                                 1.455 124.41 <2e-16 ***
factor(rs174548)1
                    187.864
                                 1.809 103.88
                                                 <2e-16 ***
factor(rs174548)2
                     186.500
                                 4.300
                                        43.37 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.9861, Adjusted R-squared: 0.986
F-statistic: 9383 on 3 and 397 DF, p-value: < 2.2e-16
Analysis of Variance Table
Response: chol
                    Df Sum Sq Mean Sq F value Pr(>F)
factor(rs174548)
                    3 13534205 4511402 9383.2 < 2.2e-16 ***
                   397 190875
Residuals
                                   481
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

37

ANOVA: One-Way Model

How about this one? How is rs174548 being treated now?

Compare model fit results from (fit1 & fit1.1).

```
> fit1.1 = lm(chol \sim rs174548)
> summary(fit1.1)
lm(formula = chol ~ rs174548)
Residuals:
   Min
            10 Median
                            30
                                   Max
-64.575 -16.278 -0.575 15.120 60.722
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.575
                         1.411 128.723 < 2e-16 ***
                         1.781 2.641 0.00858 **
rs174548
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
Residual standard error: 21.95 on 398 degrees of freedom
Multiple R-squared: 0.01723, Adjusted R-squared: 0.01476
F-statistic: 6.977 on 1 and 398 DF, p-value: 0.008583
> anova (fit1 1)
Analysis of Variance Table
Response: chol
          Df Sum Sq Mean Sq F value Pr(>F)
rs174548
         1 3363
                      3363 6.9766 0.008583 **
Residuals 398 191827
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 139
```


ANOVA: One-Way Model

```
> fit1.1 = lm(chol - rs174548)
> summary(fit1.1)
lm(formula = chol ~ rs174548)
            1Q Median
-64.575 -16.278 -0.575 15.120 60.722
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        1.411 128.723 < 2e-16 ***
(Intercept) 181.575
                         1.781 2.641 0.00858 **
              4.703
Residual standard error: 21.95 on 398 degrees of freedom
Multiple R-squared: 0.01723, Adjusted R-squared: 0.01476
F-statistic: 6.977 on 1 and 398 DF, p-value: 0.008583
> anova(fit1.1)
Analysis of Variance Table
Response: chol
          Df Sum Sg Mean Sg F value Pr(>F)
rs174548
          1 3363 3363 6.9766 0.008583 **
Residuals 398 191827
```

- Model: $E[Y|X] = \beta_0 + \beta_1 X$ where Y: cholesterol, x: rs174548
- Interpretation of model parameters?
 - β₀: mean cholesterol in the C/C group [estimate: 181.575 ma/dl1
 - β₁: mean cholesterol difference between C/G and C/C - or between G/G and C/G groups [estimate: 4.703 mg/dl]
- This model presumes differences between "consecutive" groups are the same (in this example, linear dose effect of allele) – more restrictive than the ANOVA model!

Back to the ANOVA model...


```
> fit1 = lm(chol ~ factor(rs174548))
> summary(fit1)
Call.
lm(formula = chol ~ factor(rs174548))
Residuals:
                1Q Median
-64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     181.062
                                 1.455 124.411 < 2e-16
factor (rs174548)1
                       6 802
                                  2.321 2.930 0.00358
                                        1.198 0.23167
factor (rs174548) 2
                       5.438
                                  4.540
Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184
Analysis of Variance Table
Response: chol
                    Df Sum Sq Mean Sq F value Pr(>F)
factor(rs174548)
                     2 4314 2157 4.4865 0.01184 *
Residuals
                   397 190875
                                 481
```

- We rejected the null hypothesis that the mean cholesterol levels are the same across groups defined by rs174548 (p=0.01184).
- What are the groups with differences in means?

MULTIPLE COMPARISONS (coming up)

41

One-Way ANOVA allowing for unequal variances

We can also perform one-way ANOVA allowing for unequal variances (Welch's ANOVA):

```
> oneway.test(chol ~ factor(rs174548))
                One-way analysis of means (not assuming equal variances)
data: chol and factor(rs174548)
F = 4.3258, num df = 2.000, denom df = 73.284, p-value = 0.01676
```

- We reject the null hypothesis that the mean cholesterol levels are the same across groups defined by rs174548 (p=0.01676).
 - What are the groups with differences in means?

MULTIPLE COMPARISONS (coming up)

42

One-Way ANOVA with robust standard errors

We can also use robust standard errors to get correct variance estimates:

```
fit1 = lm(chol ~ factor(rs174548))
> summary(fit1)
Call:
lm(formula = chol ~ factor(rs174548))
Residuals:
     Min
                1Q Median
                                   3Q
                                             Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     181 062
                                 1.455 124.411 < 2e-16
factor(rs174548)1
                       6.802
                                  2.321 2.930 0.00358
factor(rs174548)2
                       5 438
                                         1 198 0 23167
                                  4 540
> lmtest::coeftest(fit1, vcov = sandwich::sandwich)
t test of coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                               1.4000 129.3283 < 2.2e-16 ***
(Intercept)
                    181.0617
factor(rs174548)1
                                2.4020 2.8319 0.004863 **
factor(rs174548)2
                                3.6243 1.5005 0.134272
                      5 4383
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Kruskal-Wallis Test

- Non-parametric analogue to the one-way ANOVA
 - Based on ranks; does not require normality
- In our example:

- Conclusion:
 - Evidence that the cholesterol distribution is not the same across all groups.
 - With the global null rejected, you can also perform pairwise comparisons [Wilcoxon rank sum], but adjust for multiplicities!