Optimal control and trajectory optimization

Nicolas Mansard

Gepetto
LAAS-CNRS & ANITI

Autonomous Driving

Information Theoretic Model Predictive Control [Williams et al. 2018]

OC with Linear Inverted Pendulum Model [Herdt et al. 2010]

OC with Centroidal Momentum Dynamics and Full Body Kinematics [Ponton et al. 2018], [Carpentier et al. 2018], [Dai et al. 2014], [Herzog et al. 2015]

Synthesis and stabilization of complex behaviors with online trajectory optimization

Yuval Tassa, Tom Erez and Emo Todorov

Movement Control Laboratory
University of Washington

IROS 2012

[Tassa et al. 2010]
DDP with Full-Body Dynamics
(realtime control)

Discovery of complex behaviors through Contact-Invariant Optimization

Igor Mordatch, Emo Todorov and Zoran Popovic

Movement Control Laboratory and GRAIL University of Washington

SIGGRAPH 2012

[Mordatch et al. 2012] Nonlinear Optimization for Multi-Contact Tasks

Principles

Optimal control problem (discretized)

$$\min_{\substack{\{x\},\{u\}\\t=0}} \sum_{t=0}^{T-1} l(x_t,u_t) + l_T(x_T)$$
 Find control inputs to minimize cost terminal cost

$$x_0=\hat{x}$$
 initial dynamics
$$x_{t+1}=f(x_t,u_t)$$
 deterministic dynamics
$$\mathbf{g}\left(x_t,u_t\right)\geq 0$$
 state and control constraints

$$\{x'\} = x_0', \dots, x'_T$$

 $\{u'\} = u'_0, \dots, u'_{T-1}$

 $\{u\}^*$ the optimal control trajectory $\pi^*(x)$ the optimal control policy

Optimality principle

How can we find the optimal control?

>> The Principle of Optimality breaks down the problem

Subpath of optimal paths are also optimal for their own subproblem

How can we find the optimal control?

>> The Principle of Optimality breaks down the problem

Value Function
$$V_t(x_t) = \min_{u_t, \cdots, u_{N-1}} \sum_{k=t}^{T-1} l_k(x_k, u_k) + l_T(x_T)$$

Bellman's Principle of **Optimality**

$$V_{t}(x_{t}) = \min_{u_{t}} l_{t}(x_{t}, u_{t}) + V_{t+1}(x_{t+1})$$

$$x_{t+1} = f_{t}(x_{t}, u_{t})$$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

 $egin{aligned} ext{Stage T-1} & ext{Final States} \ ext{Stage T} \ V_{T-1}(x_{T-1}) & V_{T}(x_{T}) \ \pi_{T-1}(x_{T-1}) \end{aligned}$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Stage T-1
$$\frac{\text{Final States}}{\text{Stage T}}$$
 $V_{T-1}(x_{T-1})$ $V_{T}(x_{T})$ $\sigma_{T-1}(x_{T-1})$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Stage 0

 $V_0(x_0)$

 $\pi_0(x_0)$

Stage T-1 $\frac{\text{Final States}}{\text{Stage T}}$ $V_{T-1}(x_{T-1})$ $V_{T}(x_{T})$ $\sigma_{T-1}(x_{T-1})$

Dynamic programming

Bellman Equation
$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Problems:

- Curse of dimensionality
- minimization in Bellman equation

⇒ Approximate solution to Bellman equation
 (DDP, trajectory optimization, reinforcement learning, etc)

Solving Bellman's Equations

- [1] Bonnali'19 ArX:1903.00155
- [2] Mordach'14 DOI:2185520.2185539
- [3] Posa'14 DOI:0278364913506757
- [4] Winkler'18 IEEE:2798285
- [5] Rajamaki'17 DOI:3099564.3099579

Optimality principles

- Hamiltonien $H(x, u, p) = l(x, u) + \langle p | f(x, u) \rangle$
- Hamilton Jacobi Belman equation

$$u^*(x) = \max_{u} H\left(x , u, -\frac{\partial V}{\partial x}(x)\right)$$

Pontryagin Maximum principle

$$u^*(t) = \max_{u} H(x(t), u, p(t))$$

Optimality principles

Curse of dimensionality

- Solved in particular cases
 - Nonholonomic car-like robots
 - Reachability sets

Problem formulation

$$\min_{X,U} \sum_{t=0}^{T-1} l(x_t, u_t) + l_T(x_T)$$

s.t.
$$x_{t+1} = f(x_t, u_t)$$

• X and U are vectors of dimension T^*nx and T^*nu resp.

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \qquad U = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

• The information in X and U is somehow redundant

$$\min_{\substack{X, U \\ X, U \\ t=0}} \sum_{t=0}^{T-1} l(x_t, u_t) + l_T(x_T)$$
s.t. $x_{t+1} - f(x_t, u_t)$

$$u_t := f^{-1}(x_t, x_{t+1})$$

Explicit formulation

$$\min_{\substack{X,U \\ X,U}} \sum_{t=0}^{T-1} l(x_t, u_t) + l_T(x_T)$$
s.t. $x_{t+1} - f(x_t, u_t)$

$$x_t := f_t(x_0, u_0, ..., u_t)$$

Implicit formulation

$$\min_{X,U} \sum_{t=0}^{T-1} x_t^T L_X x_t + u_t^T L_U u_t + x_T^T L_T x_T$$
s.t. $x_{t+1} = F_X x_t + F_u u_t$

Linear quadratic regulator

$$x_0 = \hat{x}$$

initial dynamics

 $\dot{x}(t) = f(x(t), u(t))$ deterministic dynamics

$$\min_{\substack{\{x\}:t\to x(t)\\\{u\}:t\to u(t)}} \int_0^T l(x(t),u(t))dt + l_T(x(T))$$
s.t. $\forall t, \dot{x}(t) = f(x(t),u(t))$

Optimal control problem (OCP) with continuous variables (infinite-dimension)

$$\min_{\substack{\{x\}:t\to x(t)\\\{u\}:t\to u(t)}} \int_0^T l(x(t),u(t))dt + l_T(x(T)) \qquad \min_{\substack{\{x\}=\theta_{x_1}...\theta_{x_n}\\\{u\}=\theta_{u_1}...\theta_{u_n}}} \sum_t l(x(t|\theta),u(t|\theta)) + l_T(x(T|\theta))$$
s.t. $\forall t, \dot{x}(t) = f(x(t),u(t))$
s.t. at some $t, \dot{x}(t|\theta) = f(t|\theta_x,\theta_u)$

Nonlinear optimization problem (NLP) with static variables (finite dimension)

 θ_{x} θ_{u} represents the continuous $\underline{x},\underline{u}$ trajectories

 $\{u\}$ is easy to represent (piecewise polynomials)

- what about $\{x\}$?
- Collocation: $\{x\}$ is represented by another polynomials

 $\{u\}$ is easy to represent (piecewise polynomials) – what about $\{x\}$?

• Collocation: $\{x\}$ is represented by another polynomials

The solution to $\dot{x}(t) = f(x(t), u(t))$ is not polynomial

The dynamics is only checked at some remote points

 $\{u\}$ is easy to represent (piecewise polynomials)

- what about $\{x\}$?
- Shooting: {x} is represented by and integrator and only evaluated sparsely

Polynomials(θ_u)

$$\theta_{x} = (x_{I}, \dots x_{T})$$

```
\{u\} is easy to represent (piecewise polynomials) – what about \{x\}?
```

Shooting: {x} is represented by and integrator
 and only evaluated sparsely

CROCODILES

NO Problems:

The state is sparsely and approximately known
You may need an accurate integrator (complex+costly)

Shooting as control-only problem

$$\min_{\{u\}=(u_0..u_{T-1})} \sum_{t} l(x(u_0..u_{t-1}|x_0), u_t) + l_T(x(u_0..u_{T-1}))$$

where $x(u_0...u_{t-1}|x_0)$ if a function of $\{u\}$

- Unconstrained optimization
- □ The function $\{u\} \rightarrow \{x\}$ is numerically unstable

Shooting, pro and cons

- Easy to implement
 - Integrator, derivatives, Newton-descent
- Side effect: you can focus on efficiency

- Numerically unstable
- The initial-guess θ_{xu} should be meaningful
- At then end, maybe we don't care so much ...

Front-end / back-end separation solve second Discretize first, solve second

Front end

Formulation of the motion problem, system model, constraints Discretization

Formulation of a static optimization problem with constraints

Back end

Resolution of the static optimization problem

Formulation

transcription

Front end

Formulation of a static nonlinear optimization problem (NLP)

Resolution by convex optimization

Back end

Markovian optimal control problems

Solving with SQP

$$\min_{y} c(y) \quad s.t. \quad g(y) \ge 0$$

• Lagrangian:

$$\mathcal{L}(y,\lambda) = c(y) - \lambda^T g(y)$$

Solving with Newton method:

$$\nabla^2 \mathcal{L} = \begin{pmatrix} \nabla^2 c - \lambda^T \nabla^2 g & \nabla g^T \\ \nabla g & 0 \end{pmatrix}$$

Resulting KKT system

ſ	L_{xx}				L_{xu}			-I	F_x^T			7	$\begin{bmatrix} \Delta x_0 \end{bmatrix}$		$\int L_x$	1
		٠.				٠			٠.	٠			:		:	
			L_{xx}	T			L_{xu}			-I	F_x^T		Δx_{T-1}		L_x	l
	L_{ux}			L_{xx}	L_{uu}				F_u^T		-I	_	$\begin{vmatrix} \Delta x_T \\ \Delta u_0 \end{vmatrix}$		$egin{array}{c} L_x \ L_u \end{array}$	
	L_{ux}	٠.			Duu				- u	٠.			\(\times \)	= -	E_u :	
		••	L_{ux}			••	L_{uu}			٠.	F_u^T		$\left \begin{array}{c} \vdots \\ \Delta u_{T-1} \end{array} \right $		L_u	
	-I		Lux				$\boldsymbol{\omega}_{uu}$				- u	_	$\begin{vmatrix} \Delta a_I - 1 \\ \lambda_0 \end{vmatrix}$	-	f_0	l
	F_x	-I			F_u								λ_1		f_1	
١		٠.	٠.			٠						İ	:		:	l
			F_x	-I			F_u						$\left[\begin{array}{c}\lambda_{T-1}\end{array}\right]$		Lf_{T-1}	

Crocoddyl

Contact Robot Optimal Control by Differential Dynamic Programming Library

General API

ActionModel

Input: state x, control u

Output
next state x=f(x,u)
cost I(x,u)
constraints and bounds

Front-end implementation for Pinocchio

X=(q,vq) $U=\tau_q$

Differential action model Integral action model Cost, residual, contact ...

Solvers

FDDP Box solvers MiM-Solver

Action model

$$\min_{\underline{x},\underline{u}} \sum_{t=0}^{T-1} l(x_t, u_t) + l(x_T, \emptyset)$$
s.t.
$$x_{t+1} = f(x_t, u_t)$$

Calc method

action.calc(data,x,u)

- Compute the next state xnext
- Compute the cost (and maybe its derivatives)
- Calc diff: gradient, hessian, jacobian action.calcDiff(data,x,u)

Problem versus solver

```
problem = ShootingProblem
      (initialState
     [runningModel<sub>0</sub> ... runninModel<sub>T-1</sub>],
     terminalModel)
problem.rollout([u0 ... u_{\tau-1}])
solver = SolverDDP(problem)
xs,us,done = Solver.solve()
```

NumDiff

• If you don't want to compute your derivatives

```
model = XXXModel()
modelND = XXXModelNumDiff(model)
data = modelND.createData()
model.calc(data, x,u)

with XXX=ActionModel in this case
(works with cost, contact ...)
```

Differential model & integrators

- Dynamics typically written as differentials
 - $\dot{x} = f(x, u)$
 - $\ddot{q} = f(q, \dot{q})$
 - Then xnext is obtained by numerical integration

```
dmodel = DifferentialActionModel()
imodel = IntegratedActionModel(dmodel)
```

imodel works as a norm action model
You can finite-diff either the dmodel or the imodel

State mode

- In case you are not on a Euclidean space
 - Dimension nx and ndx
 - Integrate
 - Difference
 - And their Jacobians

Pinocchio DAModel

- The basic DifferentialActionModel accepts a Pinocchio model
- Dynamics written as Pinocchio.aba
- Cost model inside...

Cost Model

- Dedicated implementation of a cost
- Does not has its own Pinocchio data
- Provided residuals
 - Frame placement, translation, velocity
 - COM
 - State and control
 - Sum of cost and cost numdiff
 - Joint limits

Locomotion

Optimize 1 sec of preview every 1 ms (2000 variables)

Sébastien Kleff

Terminal ≪ IPyti	hon: cpin-ex/talos		IPython: sobec/mpc	IPython: sobec/mpc	*
===STARTUP=== With numpy linalg _oad posture from 'static-postures-talos-16.npy [mpact for foot 34 (contact #0) at time 80 [mpact for foot 48 (contact #1) at time 141 Varm start from file failed, now building a qua	Service Mark				
This program contains Ipopt, a library for large Ipopt is released as open source code under the For more information visit http://programmers	he Eclipse Public jects.coin-or.org/	License (EPL) Ipopt	•		
This is Ipopt version 3.11.9, running with line WOTE: Other linear solvers might be more effici		ocumentation).			
Number of nonzeros in equality constraint Jacob Number of nonzeros in inequality constraint Jacob Number of nonzeros in Lagrangian Hessian	cobian.: 0				
Fotal number of variablesvariables with only lower variables with lower and upper variables with only upper	bounds: 0 bounds: 0				
Fotal number of equality constraints Fotal number of inequality constraints	: 13192 : 0 bounds: 0 bounds: 0				
iter objective inf_pr inf_du lg(mu) 0 1,2717586e+02 3,18e+02 4,56e-02 -1,0 0,0		_du alpha_pr e+00 0,00e+00	ls 0		

Major paradigms in locomotion problems

Hybrid dynamics in contact

Decision variables

 $x = [q, v_q]$: the state

 $u = \tau$: the control

f: the contact forces

the contact phases (which, where, when)

Fixed-phased locomotion problem

We assume that we now the contact sequence

Projecting the contact dynamics

The acceleration and forces are linked by:

$$\begin{pmatrix} M & J^T \\ J & 0 \end{pmatrix} \begin{pmatrix} \ddot{q} \\ f \end{pmatrix} = \begin{pmatrix} u - b(q, \dot{q}) \\ j\dot{q} \end{pmatrix}$$

The acceleration is written as a function of state and control

The force is written as a function of state and control

The friction c
$$\min_{\underline{q},\underline{u}} \int_0^T l(q(t),\dot{q}(t),u(t),f(q,\dot{q},u))dt + l_T(q(T),\dot{q}(T))$$

$$s.t. \ \forall t, \begin{pmatrix} \ddot{q} \\ f \end{pmatrix} = \begin{pmatrix} M(q) & J(q)^T \\ J(q) & 0 \end{pmatrix}^{-1} \begin{pmatrix} u - b(q,\dot{q}) \\ -\dot{J}\dot{q} \end{pmatrix}$$

Ewen Dantec

Thomas Corberes

S Steve es Tonneau

Stanislas Brossette

