,,

运动控制基础

DX

2019-09-19

目录

1	磁路			5	
2	直流电机				
	2.1	直流电	L机的运行原理	7	
	2.2	直流电	L机的基本方程式	7	
		2.2.1	电动势平衡方程式	7	
		2.2.2	转矩平衡方程式	7	
		2.2.3	功率平衡	8	
	2.3	直流电	1动机的运动特性	8	
		2.3.1	概念	8	
		2.3.2	表示式	8	
		2.3.3	并励直流电动机的工作特性	8	
		2.3.4	直流电机的换向	9	
直	直流	記电机的	为基本方程式		

4 目录

Chapter 1

磁路

6 CHAPTER 1. 磁路

Chapter 2

直流电机

- 2.1 直流电机的运行原理
- 2.2 直流电机的基本方程式
- 2.2.1 电动势平衡方程式

$$u_a = G_{af}i_f\Omega + R_ai_a + L_a\frac{di_a}{dt}$$
(2.1)

$$u_f = R_f i_f + L_f \frac{di_f}{dt}$$

$$u_a = u_f = u$$
(2.2)

式中

u — 电源电压

ua — 电枢绕组上的端电压

... 见 P41

2.2.2 转矩平衡方程式

$$T_{em} = T_2 + T_0 + J\frac{d\Omega}{dt}$$

转速越大转矩越小

$$P = F \cdot v$$

2.2.3 功率平衡

$$P = UI = U(I_f + I_a)$$

PCuf 励磁损耗

PCua 电枢铜耗

 P_c 电刷接触损耗

Pmech 机械损耗

 P_{Fe} 铁心损耗

2.3 直流电动机的运动特性

2.3.1 概念

2.3.2 表示式

$$n, T_{em}, \phi = f(I_a)$$

2.3.3 并励直流电动机的工作特性

转速特性

 $n = f(I_a)$

转速公式

$$n = \frac{U}{C_e \Phi} - \frac{R_a}{C_e \Phi} I_a \tag{2.3}$$

若不计电枢反应的去磁作用,可以认为 Φ 是一个与 I_a 无关的常数。所以在 $U=U_n$ $I_f=I_{fN}$ 的条件下,转速特性可以表示为:

$$n = n_0 - \beta' I_a \tag{2.4}$$

例题

例题
$$1U = C_e \Phi n + R_a I_a + 2\Delta U_c I_a$$

当 Φ 减少 10%, 稳定时电枢电流

例题
$$2U_N = C_e \Phi n + R_a I_a + 2\Delta U_c I_a$$

转矩特性

2.3.4 直流电机的换向

电抗电动势 e_x

改善换向的方法

换向节

补偿绕组