EXAMEN DE ANÁLISIS I

1º Grado en Ingeniería Matemática

Modelo A

21/12/2022

Duración: 1 hora y 15 minutos.

1. (2.5 puntos) La población de parásitos que infecta un árbol, en miles, evoluciona diariamente siguiendo la sucesión recursiva $x_1 = 2$ y $x_{n+1} = 1 - (2 + x_n)^{-1} \ \forall n \in \mathbb{N}$. Demostrar que la sucesión converge y calcular su límite.

Solución

El término recurrente de la sucesión puede escribirse de la siguiente manera

$$x_{n+1} = 1 - (2 + x_n)^{-1} = \frac{1 + x_n}{2 + x_n} \ \forall n \in \mathbb{N}.$$

Veamos primero que la sucesión está acotada inferiormente por 0 por inducción. $x_1=2>0,$ y suponiendo $x_n>0$ se tiene que $x_{n+1}=\frac{1+x_n}{2+x_n}>0 \ \forall n\in\mathbb{N}.$

Veamos ahora que la sucesión es decreciente también por inducción. $x_1 = 2 < x_2 = 1 - (2+2)^{-1} = 3/4$. Supongamos ahora que $x_{n-1} > x_n$, entonces

$$x_{n-1} > x_n \Leftrightarrow 2 + x_{n-1} > 2 + x_n \Leftrightarrow (2 + x_{n-1})^{-1} < (2 + x_n)^{-1}$$

 $\Leftrightarrow 1 - (2 + x_{n-1})^{-1} > 1 - (2 + x_n)^{-1} \Leftrightarrow x_n > x_{n+1} \ \forall n \in \mathbb{N}.$

Así pues, como la sucesión es monótona decreciente y está acotada inferiormente, según el teorema de la convergencia monótona, la sucesión converge.

Para calcular el límite aprovechamos la recurrencia,

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1 + x_{n-1}}{2 + x_{n-1}} = \frac{1 + \lim_{n \to \infty} x_{n-1}}{2 + \lim_{n \to \infty} x_{n-1}} = \frac{1 + x}{2 + x},$$

y resolviendo la ecuación se tiene

$$x = \frac{1+x}{2+x} \Leftrightarrow x(2+x) = 1+x \Leftrightarrow x^2+x-1 = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{5}}{2}.$$

Como hemos visto que la sucesión está acotada inferiormente por 0, podemos descartar la solución negativa, de manera que, $\lim_{n\to\infty}x_n=\frac{-1+\sqrt{5}}{2}$.

2. (2 puntos) En el siglo III A.C usó el método por agotamiento para calcular el área encerrada por una circunferencia. La idea consiste en inscribir la circunferencia en polígonos regulares con un número de lados cada vez mayor.

El área de estos polígonos puede calcularse fácilmente descomponiendo los polígonos regulares en triángulos como en el siguiente ejemplo.

Loading required namespace: tinytex

- a) Dar el término general de la sucesión $(a_n)_{n=3}^{\infty}$ que expresa el área del polígono en función del número de lados n.
- b) Calcular el límite de la sucesión.

Solución

a) Consideremos cada uno de los triángulos en los que se puede descomponer un polígono regular de n lados.

Puesto que para un polígono de n lados se obtienen n triángulos iguales, se tiene que el ángulo $\alpha = \frac{2\pi}{n}$ de manera que $\frac{\alpha}{2} = \frac{\pi}{n}$.

Aplicando las razones trigonométricas de un triángulo rectángulo, se puede deducir que

$$\cos(\alpha/2) = \cos(\pi/n) = \frac{a}{r} \Rightarrow a = r\cos(\pi/n)$$
$$\sin(\alpha/2) = \sin(\pi/n) = \frac{b}{r} \Rightarrow b = r\sin(\pi/n)$$

Por tanto, el área del triángulo es

$$\frac{a2b}{2} = ab = r^2 \cos(\pi/n) \sin(\pi/n),$$

y como hay n triángulos idénticos en el polígono regular de n lados, se tiene que el área del polígono es

$$a_n = nr^2 \cos(\pi/n) \sin(\pi/n)$$

b) Calculamos ahora el límite de la sucesión

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} nr^2 \cos(\pi/n) \sin(\pi/n) = r^2 \lim_{n \to \infty} \cos(\pi/n) \lim_{n \to \infty} n \sin(\pi/n)$$

$$= r^2 \cos(0) \lim_{n \to \infty} \pi \frac{n}{\pi} \sin(\pi/n) = \pi r^2 \lim_{n \to \infty} \frac{\sin(\pi/n)}{\pi/n}$$

$$= \pi r^2 \lim_{\pi/n \to 0} \frac{\sin(\pi/n)}{\pi/n} = \pi r^2, \qquad \text{(infinitésimos equivalentes)}$$

que efectivamente es el área del círculo de radio r. $_{-}$

3. (1 punto) Sabiendo que sen(x) y x son infinitésimos equivalentes en x=0, demostrar que también lo son tg(x) y x.

Solución

Como sen(x) y x son infinitésimos equivalentes en x=0, se tiene que $\lim_{x\to 0} \frac{\operatorname{sen}(x)}{x}=1$.

Para demostrar que tg(x) y x también son infinitésimos equivalentes en x = 0 calculamos el límite

$$\lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = \lim_{x \to 0} \frac{\frac{\operatorname{sen}(x)}{\cos(x)}}{x} = \lim_{x \to 0} \frac{1}{\cos(x)} \frac{\operatorname{sen}(x)}{x}$$

$$= \lim_{x \to 0} \frac{1}{\cos(x)} \lim_{x \to 0} \frac{\operatorname{sen}(x)}{x} = \lim_{x \to 0} \frac{1}{\cos(x)} 1 = \frac{1}{\cos(0)} = 1.$$

Por tanto, tg(x) y x son infinitésimos equivalentes en x=0.

4. (2.5 puntos) Determinar el dominio y el tipo de asíntotas de la función

$$f(x) = \sqrt{\frac{x^3}{4x - 1}}.$$

Solución

Para que exista la raíz, el radicando debe ser positivo, es decir, $\frac{x^3}{4x-1} \ge 0$. Es fácil ver que $x^3 \ge 0 \Leftrightarrow x \ge 0$ y $4x-1 \ge 0 \Leftrightarrow x \ge 1/4$ de manera que $\frac{x^3}{4x-1} \ge 0 \Leftrightarrow x \le 0$ o $x \ge 1/4$.

Por otro lado, para que exista $\frac{x^3}{4x-1}$ el denominador no puede anularse, es decir $4x-1 \neq 0 \Leftrightarrow x \neq 1/4$. Por tanto, concluimos que el dominio de la función es $\text{Dom}(f) = (-\infty, 0] \cup (\frac{1}{4}, \infty)$.

Estudiamos ahora los tipos de asíntotas que tiene la función.

Asíntotas verticales

Los únicos puntos donde pueden existir asíntotas verticales son x = 0 y x = 1/4, así que calculamos los límites laterales en estos puntos.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \sqrt{\frac{x^{3}}{4x - 1}} = \sqrt{\frac{0^{3}}{4 \cdot 0 - 1}} = 0,$$

y por tanto, f no tiene asíntota vertical en x = 0.

$$\lim_{x \to 1/4^+} f(x) = \lim_{x \to 1/4^+} \sqrt{\frac{x^3}{4x - 1}} = \sqrt{\frac{(1/4)^3}{4(1/4) - 1}} = \infty,$$

y por tanto, f tiene una asíntota vertical en x = 1/4.

Asíntotas horizontales

Para ver si hay asíntotas horizontales estudiamos los límites en $\pm \infty$.

$$\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} \sqrt{\frac{x^3}{4x-1}} = \lim_{x\to -\infty} \sqrt{\frac{\frac{x^3}{x}}{\frac{4x-1}{x}}} = \lim_{x\to -\infty} \sqrt{\frac{x^2}{4-\frac{1}{x}}} = \infty.$$

$$\lim_{x\to \infty} f(x) = \lim_{x\to \infty} \sqrt{\frac{x^3}{4x-1}} = \lim_{x\to \infty} \sqrt{\frac{\frac{x^3}{x}}{\frac{4x-1}{x}}} = \lim_{x\to \infty} \sqrt{\frac{x^2}{4-\frac{1}{x}}} = \infty.$$

Por tanto, f no tiene asíntotas horizontales.

Asíntotas oblicuas

Para ver si hay asíntotas oblicuas estudiamos los límites de f(x)/x en $\pm \infty$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\sqrt{\frac{x^3}{4x - 1}}}{x} = \lim_{x \to -\infty} \sqrt{\frac{x^3}{4x^3 - x^2}} = \sqrt{\frac{1}{4}} = \frac{-1}{2}$$

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\sqrt{\frac{x^3}{4x - 1}}}{x} = \lim_{x \to \infty} \sqrt{\frac{x^3}{4x^3 - x^2}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

Por tanto, f tiene asíntotas oblicuas tanto en $-\infty$ como en ∞ .

5. (2 puntos) Dado el conjunto $A=\{x\in\mathbb{R}:\frac{x^2-1}{x-2}\leq 0\}$, calcular, si existe, el supremo, ínfimo, máximo y mínimo. ¿Es un conjunto cerrado o abierto?

Solución

A puede expresarse con la unión de intervalos, ya que $x^2-1\geq 0 \Leftrightarrow x^2\geq 1 \Leftrightarrow x\leq -1$ o $x\geq 1$, y por otro lado, $x-2\geq 0 \Leftrightarrow x\geq 2$, de manera que $\frac{x^2-1}{x-2}\leq 0 \Leftrightarrow x\leq -1$ o $1\leq x<2$, es decir, $A=(-\infty,-1]\cup [1,2)$.

Es fácil ver que A está acotado superiormente y la menor de las cotas superiores es 2, por lo que el supremo es 2, pero como $2 \notin A$, A no tiene máximo.

En cuanto al ínfimo, A no está acotado inferiormente, de manera que no tiene ínfimo, y por tanto, tampoco mínimo.

A no es abierto, ya que $-1 \in A$, pero -1 no es un punto interior de A, ya que para cualquier $\varepsilon > 0$ el intervalo $(-1 - \varepsilon, -1 + \varepsilon)$ contiene puntos de \overline{A} .

Por otro lado, A tampoco es cerrado ya que $\overline{A} = (-1,1) \cup [2,\infty)$ no es abierto, pues $2 \in \overline{A}$ pero no es un punto interior suyo, ya que para cualquier $\varepsilon > 0$ el intervalo $(2 - \varepsilon, 2 + \varepsilon)$ contiene puntos de A.