DEVOIR MAISON N° 9

Jeudi 13 février

Vous attacherez la plus grande importance à la clarté, à la précision et à la concision de la rédaction. L'usage d'une calculatrice est interdit.

POURQUOI FAIRE SIMPLE QUAND ON PEUT FAIRE COMPLIQUE?

Groupe infini dont les sous-groupes stricts sont finis

Étant donné un groupe (G, \cdot) , on dit qu'un sous-groupe H de G est strict lorsqu'il est strictement inclus dans G. Le but de ce problème est de construire un groupe infini dont tous les sous-groupes stricts sont finis.

Pour tout $n \in \mathbb{N}$, on définit G_n et ω_n par

$$G_n = \mathbb{U}_{2^n}$$
 et $\omega_n = e^{i\frac{2\pi}{2^n}}$

et on pose $G = \bigcup_{n \in \mathbb{N}} G_n$.

1. (a) Montrer que:

$$\forall n \in \mathbb{N} \quad G_n \subset G_{n+1}$$

- (b) Montrer que pour tout $n \in \mathbb{N}$, G_n est un sous-groupe de (\mathbb{U}, \cdot) .
- (c) En déduire que G est un sous-groupe strict infini de (\mathbb{U},\cdot) .
- 2. Le but de cette question est de montrer que les seuls sous-groupes stricts de G sont les G_n (pour $n \in \mathbb{N}$). On se donne donc H un sous-groupe strict de G.

- (a) Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que $\omega_{n_0} \in H$ et $\omega_{n_0+1} \notin H$.
- (b) Montrer que $G_{n_0} \subset H$.

On souhaite désormais montrer que $H \subset G_{n_0}$. On se donne donc $z \in H$ et on veut montrer que $z \in G_{n_0}$. Pour cela, on raisonne par l'absurde et on suppose que $z \notin G_{n_0}$.

- (c) Montrer qu'il existe un entier $n_1 > n_0$ et $k \in \mathbb{Z}$ tels que $z = \omega_{n_1}^k$.
- (d) Montrer que $(k \wedge 2^{n_1-n_0}) | 2^{n_1-n_0-1}$.
- (e) En déduire qu'il existe $u, v \in \mathbb{Z}$ tels que $z^u \omega_{n_0}^v = \omega_{n_0+1}$.
- (f) Conclure.

Théorème de Block et Thielmann (1951)

Notations

- Pour tout $\alpha \in \mathbb{C}$, on pose $P_{\alpha} = X^2 + \alpha \in \mathbb{C}[X]$
- On pose $G = \{P \in \mathbb{C}[X] : \deg(P) = 1\}$
- Pour tout polynôme $P \in \mathbb{C}[X]$, on pose

$$C(P) = \{ Q \in \mathbb{C}[X] : \deg(Q) \ge 1 \text{ et } P \circ Q = Q \circ P \}$$

— On dit qu'une famille $(Q_n)_{n\in\mathbb{N}^*}$ est commutante lorsque

$$\begin{cases} \forall n \in \mathbb{N}^* & \deg(Q_n) = n \\ \\ \forall (m, n) \in \mathbb{N}^{*2} & Q_m \circ Q_n = Q_n \circ Q_m \end{cases}$$

L'objectif du problème est de décrire les familles commutantes de $\mathbb{C}[X]$.

Préliminaires

- 1. Dans $\mathbb{C}[X]$, démontrer que la loi \circ est associative, et qu'elle est linéaire à gauche.
- 2. Soit $P, Q \in \mathbb{C}[X]$ avec P non nul et Q non constant. Calculer $\deg(P \circ Q)$.
- 3. Soit $\alpha \in \mathbb{C}$.
 - (a) Montrer que tous les polynômes de $\mathcal{C}(P_{\alpha})$ sont unitaires.
 - (b) Soit $n \in \mathbb{N}^*$. Montrer que $\mathcal{C}(P_{\alpha})$ contient au plus un polynôme de degré n.
- 4. En déduire que $C(X^2) = \{X^n : n \in \mathbb{N}^*\}.$
- 5. Soit $a \in \mathbb{C}^*$. Montrer que $\mathcal{C}(X+a) = \{X+b : b \in \mathbb{C}\}.$

Conjugaison dans G

1. Montrer que (G, \circ) est un groupe.

Voici quelques précisions pour la suite.

- Soit $U, V \in G$. Il sera *interdit* de réécrire $U \circ V$ sous la forme UV (trop de risques de le confondre avec le produit usuel dans $\mathbb{C}[X]$).
- L'inverse de U au sens de G sera noté U^{-1} .
- 1. On dira que $P,Q \in \mathbb{C}[X]$ sont conjugués lorsque

$$\exists U \in G \quad Q = U \circ P \circ U^{-1}.$$

- (a) Montrer qu'il s'agit d'une relation d'équivalence sur $\mathbb{C}[X]$.
- (b) Montrer que les polynômes constants forment une classe d'équivalence.
- (c) Soit P et Q conjugués non constants. Que dire de leurs degrés?
- 2. Soit P et Q conjugués, et fixons $U \in G$ tel que $Q = U \circ P \circ U^{-1}$. Exprimer $\mathcal{C}(Q)$ en fonction de $\mathcal{C}(P)$.
- 3. Soit $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$ et $P = aX^2 + bX + c$.
 - (a) Montrer que

$$\exists ! (U, \alpha) \in G \times \mathbb{C} \quad U \circ P \circ U^{-1} = P_{\alpha}.$$

On exprimera α en fonction de a, b et c.

- (b) Application : que valent U et α pour $P = 2X^2 1$?
- 4. Soit α,β deux complexes distincts. P_α et P_β sont-ils conjugués ?

Deux familles commutantes

1. Montrer que la famille $(X^n)_{n\geq 1}$ est commutante.

Nous nous attachons maintenant à exhiber une autre famille commutante.

2. (a) Soit $n \ge 1$. Montrer que

$$\exists ! T_n \in \mathbb{C}[X] \quad \forall x \in \mathbb{R} \quad T_n(\operatorname{ch}(x)) = \operatorname{ch}(nx).$$

On fixe un tel T_n .

- (b) Montrer que la famille $(T_n)_{n\geq 1}$ ainsi définie est commutante.
- (c) Déterminer $C(T_2)$.

Théorème de Block et Thielmann

- 1. Soit $(Q_n)_{n\geq 1}$ une famille commutante de $\mathbb{C}[X]$, et soit $U\in G$. Montrer que la famille $(U\circ Q_n\circ U^{-1})_{n\geq 1}$ est commutante.
- 2. Soit $\alpha \in \mathbb{C}$ tel que $\mathcal{C}(P_{\alpha})$ contienne un polynôme de degré 3. Montrer qu'on a nécessairement $\alpha \in \{-2, 0\}$.
- 3. Déterminer toutes les familles commutantes de $\mathbb{C}[X]$.

Un théorème de Chebychev

L'objet de ce problème est de démontrer le théorème suivant, dû à Chebychev.

Théorème : Soient $n \ge 1$ et $P \in \mathbb{R}[X]$ unitaire de degré n. Alors, $\max_{-1 \le x \le 1} |P(x)| \ge \frac{1}{2^{n-1}}$.

Partie I : polynômes de Chebychev

- 1. Soit $n \in \mathbb{N}$ fixé. Montrer qu'il existe *au plus* un polynôme $P \in \mathbb{R}[X]$ tel que, pour tout $\theta \in \mathbb{R}$, l'on ait $P(\cos \theta) = \cos(n\theta)$.
- 2. On considère la suite de polynômes définie par :

$$\begin{cases} T_0 = 1, \\ T_1 = X, \\ T_{n+2} = 2XT_{n+1} - T_n \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

- (a) Montrer que, pour tout $n \in \mathbb{N}$ et tout $\theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.
- (b) Déterminer, pour tout $n \in \mathbb{N}$, le degré et le coefficient dominant de T_n .

Partie II : une inégalité concernant les polynômes trigonométriques positifs

Dans cette partie, on fixe un naturel $n \ge 1$, des réels a_0, \dots, a_n , et on suppose que la fonction

$$f: \mathbb{R} \to \mathbb{R}, \theta \mapsto \sum_{k=0}^{n} a_k \cos(k\theta)$$

est à valeurs dans \mathbb{R}_+ . On se propose d'établir l'inégalité : $|a_n| \leq 2a_0$.

- 1. Calculer $\frac{1}{2\pi} \int_0^{2\pi} f(\theta) d\theta$, et montrer que $a_n = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \cos(n\theta) d\theta$.
- 2. Conclure.

On admet que l'inégalité $|a_n| \leq 2a_0$ peut être améliorée en $|a_n| \leq a_0$. Dans la suite du problème, on pourra utiliser cette dernière version (qui sera démontrée dans le dernier problème).

Partie III : démonstration du théorème de Chebychev

Dans toute cette partie, on fixe un naturel $n \ge 1$ et $P \in \mathbb{R}[X]$ unitaire de degré n. On définit la fonction $\varphi : \mathbb{R} \to \mathbb{R}, \theta \mapsto P(\cos \theta)$.

1. Montrer qu'il existe des réels uniques a_0, \ldots, a_n tels que

$$P = \sum_{k=0}^{n} a_k T_k.$$

Que vaut a_n ? Constater qu'alors $\varphi(\theta) = \sum_{k=0}^n a_k \cos(k\theta)$ pour tout $\theta \in \mathbb{R}$.

2. En utilisant les résultats de la partie II, terminer la démonstration du théorème de Chebychev.

Un théorème de Fejér

Étant donné un naturel n, on appelle polynôme trigonométrique de $degré \leq n$ toute fonction $f: \mathbb{R} \to \mathbb{C}$ pour laquelle il existe $(a_k)_{-n \leq k \leq n} \in \mathbb{C}^{2n+1}$ tels que, pour tout $\theta \in \mathbb{R}$,

$$f(\theta) = \sum_{k=-n}^{n} a_k e^{ik\theta}.$$

L'objectif de ce problème est de montrer le résultat suivant dû à Fejér ¹ : étant donné un polynôme trigonométrique f de degré $\leq n$ tel que, pour tout $\theta \in \mathbb{R}$, $f(\theta) > 0$, il existe des nombres complexes b_0, \ldots, b_n tels que

$$f(\theta) = \left| \sum_{k=0}^{n} b_k e^{ik\theta} \right|^2$$

pour tout $\theta \in \mathbb{R}$.

Soit donc f un polynôme trigonométrique, tel que, pour tout $\theta \in \mathbb{R}$,

$$f(\theta) = \sum_{k=-n}^{n} a_k e^{ik\theta},$$

avec $n \ge 1$ et $a_n \ne 0$. On suppose que, pour tout $\theta \in \mathbb{R}$, $f(\theta)$ est un réel strictement positif.

On pose par ailleurs

$$P = \sum_{k=0}^{2n} a_{k-n} X^k.$$

1. (a) Soit

$$g: \mathbb{R} \to \mathbb{C}, \theta \mapsto \sum_{k=-n}^{n} u_k e^{ik\theta}$$

un polynôme trigonométrique de degré $\leq n$ admettant 2n+1 zéros distincts dans $[0, 2\pi[$. Montrer que $u_k=0$ pour tout k tel que $-n \leq k \leq n$.

- (b) En déduire que, pour tout naturel k tel que $k \leq n$, $a_{-k} = \overline{a_k}$, et que 0 n'est pas racine de P.
- 2. Montrer que P n'admet aucune racine de module 1.
- 3. Montrer que, pour tout $z \in \mathbb{C}^*$,

$$P(z) = z^{2n} \overline{P\left(\frac{1}{\overline{z}}\right)}.$$

- 4. Montrer que si $\lambda \in \mathbb{C}^*$ est racine de P, alors $1/\overline{\lambda}$ est également racine de P, de même multiplicité que λ .
- 5. Terminer la démonstration du théorème de Fejér.
- 6. Établir l'inégalité admise à la fin de la partie II du problème précedent.

^{1.} dans son fameux article « Uber trigonometrische Polynome », Journal für Math., 146 (1915), 53-82.