Compositional Conditioning Consistency Model

賴柏宏 Oral Defense College of Artificial Intelligence, National Yang Ming Chiao Tung University 2025 07.02

Outline

1 Introduction
Page 3-7

Experiments
Page 34-43

Related Works and Preliminaries
Page 8-21

Conclusion
Page 45

Proposed Methods
Page 22-33

References and Appendix
Page 46-53

Introduction

1.Introduction

Our Contributions

- 1. We proposed **CCCM** -- the first consistency model capable of compositional zero-shot generation, effectively transferring CCDM's unseen image generation ability into 2–4 step
- **2. Modified consistency distillation,** combining teacher-predicted and forward-process-formulated supervision. Three fusion strategies: Switch, Step Fuse, and Loss Fuse
- 3. CCCM achieves superior FID scores and maintains zero-shot accuracy despite requiring only a fraction of CCDM's sampling steps.

Backgrounds

• Are there neural networks capable of generating unseen classes?

Dataset divided into 8 classes with compositional labels

Backgrounds

- Compositional Conditional Diffusion Models
 - Capable of generating unseen class images

Compositional Conditional

Diffusion Model

Motivation

• Can we make it faster (than DDIM) for sampling?

20~50 denoising steps!

Related Works and Preliminaries

Diffusion Denoising Probabilistic Models

Forward diffusion process and reparameterization

Forward Diffusion Process

$$q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} \cdot x_{t-1}, \beta_t \mathbf{I})$$

$$q(x_{1:T}|x_0) = \prod_{t=1}^{T} q(x_t|x_{t-1})$$
$$\bar{\alpha}_t = \prod_{s=1}^{t} (1 - \beta_s)$$

forward process formula

$$x_t = \sqrt{\overline{\alpha}_t} \cdot x_0 + \sqrt{1 - \overline{\alpha}_t} \cdot \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \mathbf{I})$$

Reparameterization

$$q(x_t \mid x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} \cdot x_0, (1 - \bar{\alpha}_t) \cdot \mathbf{I})$$

Diffusion Denoising Probabilistic Models

Reverse diffusion process, training and sampling

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

MSE loss
$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2$$

6: **until** converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for

stochasticity

6: **return** \mathbf{x}_0

Score-Based Generative Modeling Through SDE

• Stochastic differential equation & Ordinary differential equation

"For all diffusion processes, there exists a corresponding *deterministic process*, whose trajectories share the same marginal probability densities as the SDE."

Diffusion Denoising Implicit Models

- Non-Markovian, deterministic denoising
- Speeds up sampling
- No retraining required to utilize DDIM sampling

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{(t)}(\boldsymbol{x}_t)}{\sqrt{\alpha_t}} \right) + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{(t)}(\boldsymbol{x}_t)}_{\text{"direction pointing to } \boldsymbol{x}_t"} + \underbrace{\sigma_t \boldsymbol{\epsilon}_t}_{\text{random noise}} \right) + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{(t)}(\boldsymbol{x}_t)}_{\text{"direction pointing to } \boldsymbol{x}_t"} + \underbrace{\sigma_t \boldsymbol{\epsilon}_t}_{\text{random noise}} \right)$$

Classifier free guidance

- Doesn't need another classifier to guide the Diffusion model.
- When training, mostly learns **conditioned** output x^c with input c.
- Occasionally **drops** condition for **unconditioned** output x^{\emptyset} .
- Weighted combination of conditioned output and unconditioned output.

Problem: Needs twice (cond+uncond) as many inference steps.

Distillation on Diffusion models

Progressive Distillation [6]

14/

2-stage Distillation on Guided Diffusion models[7]

- Consistency function
 - Given any $t \in [0, ...T]$, exists a function: $f(x_t) \to x_0$
 - Same x_0 for x_t , $x_{t'}$, x_T on the same diffusion trajectory

- Loss function for training
 - Train a **model** f_{θ} to approximate this function
 - Due to the **deterministic** property of the **PF-ODE**, we may train a consistency model by enforcing the **Consistency objective**
 - Loss function for training:

$$\min_{\theta} \left[d\left(f_{\theta}(x_{t_n}, t_n), f_{\theta}(x_{t_{n-1}}, t_{n-1})\right) \right],$$

So that:

$$f_{\theta}(x_{t_n}, t_n) = f_{\theta}(x_{t_{n-1}}, t_{n-1}) = f_{\theta}(x_{t_1}, t_1) = f_{\theta}(x_0, t_0) = \widehat{x}_0$$

- Consistency Distillation
 - How to obtain adjacent point $x_{t_{n-1}}$?
 - ➤ May use forward process formula
 - ightharpoonup Or Better Teacher model f_{ϕ} as the ODE solver Φ
 - Consistency Distillation

Distill a pretrained Diffusion model into a CM

```
Algorithm 2 Consistency Distillation (CD)

Input: dataset \mathcal{D}, initial model parameter \boldsymbol{\theta}, learning rate \eta, ODE solver \Phi(\cdot,\cdot;\boldsymbol{\phi}), d(\cdot,\cdot), \lambda(\cdot), and \mu \boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}
repeat

Sample \mathbf{x} \sim \mathcal{D} and n \sim \mathcal{U}[\![1,N-1]\!]
Sample \mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x};t_{n+1}^2\boldsymbol{I})
\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1})\Phi(\mathbf{x}_{t_{n+1}},t_{n+1};\boldsymbol{\phi})
\mathcal{L}(\boldsymbol{\theta},\boldsymbol{\theta}^-;\boldsymbol{\phi}) \leftarrow
\lambda(t_n)d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}},t_{n+1}),\boldsymbol{f}_{\boldsymbol{\theta}^-}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}},t_n))
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta},\boldsymbol{\theta}^-;\boldsymbol{\phi})
\boldsymbol{\theta}^- \leftarrow \text{stopgrad}(\mu\boldsymbol{\theta}^- + (1-\mu)\boldsymbol{\theta})
until convergence
```


Sampling

Single step or Multistep Consistency Sampling

Algorithm 1 Multistep Consistency Sampling Input: Consistency model $f_{\theta}(\cdot, \cdot)$, sequence of time points $\tau_1 > \tau_2 > \cdots > \tau_{N-1}$, initial noise $\hat{\mathbf{x}}_T$ $\mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_T, T)$ for n = 1 to N-1 do Sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\hat{\mathbf{x}}_{\tau_n} \leftarrow \mathbf{x} + \sqrt{\tau_n^2 - \epsilon^2} \mathbf{z}$ $\mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_{\tau_n}, \tau_n)$ end for Output: \mathbf{x}

Example diagram of 3 step sampling

Compositional Zero-Shot Learning

 CZSL allows models to predict unseen classes by leveraging a combination of zero-shot learning and compositional understanding.

Compositional Conditional Diffusion Models

Compositional Conditional Diffusion Models

Algorithm Training CCDM

1: repeat:

2: $(x_0, c) \sim p(x, c)$

3: $c \leftarrow \emptyset$ with probability p_{uncond}

4: $t \sim Uniform(\{1, \dots, T\})$

5: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$

6: $x_t = \sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon$

7: Take a gradient step on $\nabla_{\theta} \| \epsilon - \epsilon_{\theta} (\sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon, t, c) \|^2$

8: until converged

Compositional Conditional Consistency Model

Using CCDM as the teacher model for consistency distillation

Follows Latent Consistency Model's (Luo, 2023) implementation of :

- skipping step k = 20
 Reduces training time
- guidance scale embedding layer

Notations:

 $n \in [1,2,..T]$: step index $t_n \in [0,1]$: time at step n $\epsilon \sim \mathcal{N}(0,\mathbf{I})$: Gaussian Noise X_{t_n} : noisy image at t_n \widehat{X}_{t_n} : predicted image at t_n X_0 : clean image from dataset \widehat{X}_0 : predicted clean image ω : guidance scale

High level block diagram of compositional consistency distillation

Compositional Conditional Consistency Model

Detailed block diagram of compositional consistency distillation

- ODE solver takes input x_{t_n} and outputs $\hat{x}_{t_{n-k}}$
- Deterministically estimates $\hat{x}_{t_{n-k}}$ from x_{t_n} using CCDM + DDIM under compositional conditions

online

Student

predict

original

 \mathbf{X}_{t_n}

 $\mathbf{c}_1, \mathbf{c}_2$

Notations:

 $n \in [1,2,..T]$: step index $t_n \in [0,1]$: time at step n X_{t_n} : noisy image at t_n \widehat{X}_{t_n} : predicted image at t_n X_0 : clean image from dataset \widehat{X}_0 : predicted clean image α_{t_n} : signal rate at t_n σ_{t_n} : noise rate at t_n $\widehat{\epsilon}$: predicted noise

 ω : guidance scale

Compositional Conditional Consistency Model

Detailed block diagram of compositional consistency distillation

• f_{θ} and f_{θ} -using same backbone UNet as teacher (CCDM)

both weights initialized as teacher.

• ω embedding layer initialized as 0

Notations: $n \in [1,2,..T]$: step index $t_n \in [0,1]$: time at step n X_{t_n} : noisy image at t_n \widehat{X}_{t_n} : predicted image at t_n X_0 : clean image from dataset \widehat{X}_0 : predicted clean image α_{t_n} : signal rate at t_n σ_{t_n} : noise rate at t_n $\widehat{\epsilon}$: predicted noise ω : guidance scale

Compositional Conditional Consistency Model

Detailed block diagram of compositional consistency distillation

Notations: $n \in [1,2,..T]$: step index $t_n \in [0,1]$: time at step n X_{t_n} : noisy image at t_n \widehat{X}_{t_n} : predicted image at t_n X_0 : clean image from dataset \widehat{X}_0 : predicted clean image α_{t_n} :signal rate at t_n σ_{t_n} :noise rate at t_n $\widehat{\epsilon}$: predicted noise ω : guidance scale

Ways of Computing $X_{t_{n-k}}$

- Teacher predicted or Forward-process formulation?
 - CCCM with teacher's supervision offers high-quality samples.
 - Could formulated $x_{t_{n-k}}$ do better?
 - ➤ Not quite if solely rely on formulated.

$$x_{t_{n-k}} = \sqrt{\overline{\alpha}_{t_{n-k}}} \cdot x_0 + \sqrt{1 - \overline{\alpha}_{t_{n-k}}} \cdot \epsilon$$
, ϵ same as in x_{t_n}

• Gradually shifting from teacher to formulated $x_{t_{n-k}}$ might help?

Epoch function $\lambda(e)$ - Fusion implementation

- To control the strength of 2 branches: $\hat{x}_{t_{n-k}}$ and $x_{t_{n-k}}$
 - Epoch function $\lambda(e)$: {1,2,..., e_{max} } \rightarrow [0,1]. 1 = fully teacher signal, 0 = formulated signal
 - Switch, Step Fuse, and Loss Fuse implemented via $\lambda(e)$
 - Controlled by Fuse Scheduler

Modified Consistency Distillation

- Switch Strategy
 - Switches source of $x_{t_{n-k}}$ based on an epoch threshold :

$$\lambda(e) = \begin{cases} 1, & e < threshold \\ 0, & e \ge threshold \end{cases}$$

Modified Consistency Distillation

- Step-Fuse Strategy
 - Pixel-wise weighted sum of two x_{t-k} sources:

$$\hat{x}_{t_{n-k}}^{\text{fuse}} = \lambda(e) \cdot \hat{x}_{t_{n-k}}^{\Psi} + (1 - \lambda(e)) \cdot x_{t-k}$$

Modified Consistency Distillation

- Loss-Fuse Strategy
 - Weighted sum of two loss terms:

$$\begin{split} \mathcal{L}_{teacher} &= \\ \mathbb{E}\left[d\left(f_{\theta}(x_{t_n}, t_n, c_1, c_2, \omega), f_{\theta}(\hat{x}_{t_{n-k}}^{\Psi}, t_{n-k}, c_1, c_2, \omega)\right)\right] \end{split}$$

$$\mathcal{L}_{formulated} = \mathbb{E}\left[d\left(f_{\theta}(x_{t_n}, t_n, c_1, c_2, \omega), f_{\theta}(x_{t_{n-k}}, t_{n-k}, c_1, c_2, \omega)\right)\right]$$

$$loss = \lambda(e) \cdot \mathcal{L}_{teacher} + \left(1 - \lambda(e)\right) \cdot \mathcal{L}_{formulated}$$

Fuse Scheduler design

• Constant:

$$\lambda(epoch) = \lambda_0$$
, fixed blending weight throughout training.

• Exponential Decay:

$$\lambda(epoch) = e^{-\gamma \cdot prog} \cdot (1 - prog),$$

 $\gamma = \text{decay rate}$

• Piecewise Linear:

$$\lambda(epoch) = \lambda_i + \frac{\lambda_{i+1} - \lambda_i}{p_{i+1} - p_i}(prog - p_i)$$
 Defined by control points :{ (p_i, λ_i) }, $p_i, \lambda_i \in [0,1]$. Linearly interpolated over epochs

- $epoch \in [1, epoch_{max}]$
- $prog = \frac{epoch}{epoch_{Max}} \in [0,1]$

Summary of proposed Strategies

Method	Source of x_{t-k}	Description
Fully Teacher	Teacher Model Prediction (via ODE Solver)	Uses noise predicted by teacher model to estimate x_{t-k} through an ODE solver.
Fully diffusion formula	Reused Forward Process Noise	x_{t-k} formulated using the same noise as x_t .
Step Fusion	Mixed (Teacher & Diffusion Formula)	Pixel-wise weighted combination of both teacher and formulated x_{t-k} .
Loss Fusion	Both (Teacher & Diffusion Formula)	Computes separate losses, combines with weighting.
Switch	Alternating	Uses teacher before an epoch threshold, switches to formulated x_{t-k} after.

Experiments

4.Experiments

Experiment setup

- Dataset preparation
 - c_1 : Hair color, 4 classes
 - c_2 : Gender, 2 classes
 - Total of 4*2=8 composition classes,
 - Unseen: (Brown hair, Male)
 - Dataset image counts: 1k~20k
 - Image size: 128*128

Training set with compositional class labels c_1 , c_2

4.Experiments

Experiment setup

CCCM and Baseline Training Configuration

Baseline CCDM

Training Epochs	120
Learning rate, scheduler	5e-5 linear with warmup
Loss type	L2-norm

Our CCCM

Training Epochs	80
Learning rate, scheduler	5e-6 constant with warmup
Loss type	Huber loss \ /
Guidance scale interval	2.6, 3.0
Fuse Method	Fully teacher

Experiment setup

• Modified Consistency Distillation Configuration

Fully Teacher

Fuse Method	Fully Teacher		
Fuse Scheduler	Constant = 1		

Fully Formulated x_{t-k}

Fuse Method	Fully Formulated			
Fuse Scheduler	Constant = 0			

Switch 32

Fuse Method	Switch		
Fuse Scheduler	Threshold = 32		

Switch 48

Fuse Method	Switch		
Fuse Scheduler	Threshold = 48		

Unchanged Hyperparameters

Training Epochs	80
Learning rate, scheduler	5e-6 constant with warmup
Loss type	Huber loss
Guidance scale interval	2.6, 3.0

Experiment setup

Modified Consistency Distillation Configuration

Loss Fuse Constant

Fuse Method	Loss Fuse		
Fuse Scheduler	Constant = 0.8		

Loss Fuse exponential

Fuse Method	Loss Fuse
Fuse Scheduler	Exponential Decay, $\gamma = 2.0$

Loss Fuse piecewise

Fuse Method	Loss Fuse			
Fuse Scheduler	Piecewise Linear, (40, 0.5)			

 $\lambda(epoch)$ drops to 0.5 at epoch 40 linearly, holds at 0.5 till finished.

Step Fuse exponential

Fuse Method	Step Fuse
Fuse Scheduler	Exponential Decay, $\gamma=2.0$

Unchanged Hyperparameters

Training Epochs	80
Learning rate, scheduler	5e-6 constant with warmup
Loss type	Huber loss
Guidance scale interval	2.6, 3.0

Experiment setup

- Evaluation metrics
 - **FID** score:
 - measures the similarity between generated and real image distributions.
 - Each model generates ~7k images
 (500 or 1000 per class) for evaluation

- Unseen Class Accuracy by human evaluation:
 Compositional class (*Brown_hair*, *Male*) is generated, to test the compositional zero-shot image generation ability.
- Each model generates 300 (Brown_hair, Male) images.

Standards:

Unseen class judged by both attributes.
 Masculine features required (e.g., short hair, no makeup).
 Feminine traits → failure, even if hair color is correct.

Qualitative result

• Baseline CCDM vs Fully teacher CCCM

4-step Blonde Hair		e Hair	Black Hair		Brown Hair		Gray Hair	
sampling	Male	Female	Male	Female	Male	Female	Male	Female
Baseline CCDM (with 8 inferences)		0	9		8	9	(2)	3
CCCM (with 4 inferences)		100	9				9	

Qualitative result

• Baseline CCDM vs Fully teacher CCCM

2-step	Blonde Hair		Black Hair		Brown Hair		Gray Hair	
sampling	Male	Female	Male	Female	Male	Female	Male	Female
Baseline CCDM (with 4 inferences)	3				-	9		(3)
CCCM (with 2 inferences)				9				

Quantitative result

• FID scores under 2,3 and 4 steps sampling

2	steps
---	-------

Method	FID score ↓	
Baseline DDIM	207.99	
Forward-process x_{t-k}	115.66	
Step Fuse (exponential)	97.13	
Switch (threshold = 32)	94.99	
Switch (threshold = 48)	93.97	
Loss Fuse (exponential)	91.27	
Loss Fuse (piecewise = 40:0.5)	88.82	
Loss Fuse (constant = 0.8)	88.47	
Fully Teacher x_{t-k}	81.30	

3 steps

Method	FID score ↓
Baseline DDIM	136.68
Forward-process x_{t-1}	92.15
Step Fuse (exponential)	83.73
Switch (threshold = 32)	85.66
Switch (threshold = 48)	84.23
Loss Fuse (exponential)	82.90
Loss Fuse (piecewise = 40:0.5)	80.16
Loss Fuse (constant = 0.8)	77.85
Fully Teacher x_{t-k}	73.27

4 steps

FID score ↓
94.67
80.94
77.27
76.26
75.86
75.34
73.45
70.15
68.11

Unseen Accuracy evaluation

• 300 images of Brown hair Male, compositional zero shot generation 4 steps sampling

Method	Acc% ↑
Baseline DDIM	40.6%
Diffusion-formulated $x_{t_{n-k}}$	43.0%
Step Fuse (exponential)	51.6%
Switch (threshold = 32)	49.3%
Switch (threshold $= 48$)	49.6%
Loss Fuse (exponential)	51.6%
Loss Fuse (piecewise = (40, 0.5))	52.0%
Loss Fuse (constant = 0.8)	50.6%
Fully Teacher $x_{t_{n-k}}$	47.0%

Loss Fuse piecewise (40,05)

Fully teacher $x_{t_{n-k}}$

Conclusions

Conclusion

- We propose the **Compositional Conditional Consistency Model.**
- Achieving faster sampling speed than CCDM.
- Preserves unseen class generation.
- Observed that modified consistency distillation strategies yield **better unseen accuracy.**

Our guess is: the teacher model may introduce **bias**, encouraging the student to generate seen or **high-confidence images**, which **limits generalization**.

References

- "Compositional Conditional Diffusion Model", S. -L. Lai, P. -C. Chen & C. -W. Ma, 2024.
- "Consistency Models", Y. Song, P. Dhariwal, M. Chen & I. Sutskever, 2023.
- "Latent consistency models: Synthesizing high-resolution images with few-step inference", Luo, S., Tan, Y., Huang, L., Li, J., & Zhao, H. 2023.
- "Improved techniques for training consistency models", Y. Song and P. Dhariwal, 2023.
- "Score-based generative modeling through stochastic differential equations", Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon & B. Poole, 2020.
- "Denoising diffusion implicit models", J. Song, C. Meng & S. Ermon, 2020.
- "Progressive distillation for fast sampling of diffusion models", T. Salimans and J. Ho, 2022.
- "On distillation of guided diffusion models", C. Meng, R. Rombach, R. Gao, D. Kingma, S. Ermon, J. Ho, and T. Salimans, 2023.
- "Classifier-free diffusion guidance", J. Ho and T. Salimans, 2022.
- "High-resolution image synthesis with latent diffusion models", R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, 2022.

ODE solver

CCCM uses DDIM as ODE solver

Notations:

 t_n : time at step n, $t_n \in [0,1], n \in [1..T]$

 α_{t_n} : signal rate ; σ_{t_n} : noise rate

 X_{t_n} : image at t_n ; \widehat{X}_{t_n} : predicted image at t_n

 $\hat{\epsilon}_{t_n}$: predicted noise at t_n

 ω : guidance scale

$$\widehat{X}_{t_0} = \frac{X_{t_n - \sigma_{t_n * \hat{\epsilon}}}}{\alpha_{t_n}}$$
 (2)

$$\widehat{X}_{t_{n-k}} = \alpha_{t_{n-k}} * \widehat{X}_0 + \sigma_{t_{n-k}} * \widehat{\epsilon}$$
 (3)

Guidance scale embedding

Fully teacher

Algorithm 4.1 Compositional label Consistency Distillation

Input:dataset \mathcal{D} , initial model parameter θ , learning rate η , ODE solver $\Psi(\cdot, \cdot, \cdot, \cdot)$, distance metric $d(\cdot, \cdot)$, guidance scale $[\omega_{min}, \omega_{max}]$, skipping steps k

- 1: $\theta^- \leftarrow \theta$
- 2: repeat
- 3: Sample $(x, c_1, c_2) \sim \mathcal{D}$, and $\omega \sim [\omega_{min}, \omega_{max}]$
- 4: Sample $\epsilon \sim \mathcal{N}(0, I), \ n \sim \mathcal{U}[1 + k, N]$
- 5: $x_{t_n} \leftarrow \sqrt{\bar{\alpha}_{t_n}} \cdot x + \sqrt{1 \bar{\alpha}_{t_n}} \cdot \epsilon$
- 6: $x_{t_{n-k}}^{\Psi,\omega} \leftarrow x_{t_n} + (1+\omega) \cdot \Psi(x_{t_n}, t_n, t_{n-k}, c_1, c_2) \omega \cdot \Psi(x_{t_n}, t_n, t_{n-k}, \varnothing, \varnothing)$
- 7: $\mathcal{L}(\theta, \theta^-; \Psi) \leftarrow d\left(f_{\theta}(x_{t_n}, t_n, c_1, c_2, \omega), f_{\theta^-}(\hat{x}_{t_{n-k}}, t_{n-k}, c_1, c_2, \omega)\right)$
- 8: $\theta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^{-})$
- 9: $\theta^- \leftarrow \text{stopgrad} (\mu \theta^- + (1 \mu) \theta)$
- 10: until convergence

Switch

Algorithm 4.2 Modified Consistency Distillation-Switch

Input:dataset \mathcal{D} , initial model parameter θ , learning rate η , ODE solver $\Psi(\cdot,\cdot,\cdot,\cdot)$, distance metric $d(\cdot, \cdot)$, guidance scale $[\omega_{min}, \omega_{max}]$, skipping steps k, switching threshold e_{switch}

- 1: $\theta^- \leftarrow \theta$
- 2: repeat
- Sample $(x, c_1, c_2) \sim \mathcal{D}, \ \omega \sim [\omega_{\min}, \omega_{\max}]$
- Sample $\epsilon \sim \mathcal{N}(0, I), \ n \sim \mathcal{U}[1 + k, N]$
- $x_{t_n} \leftarrow \sqrt{\bar{\alpha}_{t_n}} \cdot x + \sqrt{1 \bar{\alpha}_{t_n}} \cdot \epsilon$
- if $e < e_{\text{switch}}$ then

7:
$$x_{t_{n-k}}^{\Psi,\omega} \leftarrow x_{t_n} + (1+\omega) \cdot \Psi(x_{t_n}, t_n, t_{n-k}, c_1, c_2) - \omega \cdot \Psi(x_{t_n}, t_n, t_{n-k}, \varnothing, \varnothing)$$

$$\mathcal{L}_{\text{Switch}}(\theta, \theta^{-}; \Psi) \leftarrow d\left(f_{\theta}(x_{t_{n}}, t_{n}, c_{1}, c_{2}, \omega), f_{\theta^{-}}(x_{t_{n-k}}^{\Psi, \omega}, t_{n-k}, c_{1}, c_{2}, \omega)\right)$$

9: else

10:
$$x_{t_{n-k}} \leftarrow \sqrt{\bar{\alpha}_{t_{n-k}}} \cdot x + \sqrt{1 - \bar{\alpha}_{t_{n-k}}} \cdot \epsilon$$

11:
$$\mathcal{L}_{\text{Switch}}(\theta, \theta^{-}) \leftarrow d\left(f_{\theta}(x_{t_n}, t_n, c_1, c_2, \omega), f_{\theta^{-}}(x_{t_{n-k}}, t_{n-k}, c_1, c_2, \omega)\right)$$

- end if 12:
- $heta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}_{\mathrm{Switch}}(\theta, \theta^{-})$ $\theta^{-} \leftarrow \mathtt{stopgrad}\left(\mu \theta^{-} + (1 \mu)\theta\right)$
- 15: until convergence

StepFuse

Algorithm 4.3 Modified Compositional label Consistency Distillation—StepFuse

Input:dataset \mathcal{D} , initial model parameter θ , learning rate η , ODE solver $\Psi(\cdot, \cdot, \cdot, \cdot)$, distance metric $d(\cdot, \cdot)$, guidance scale $[\omega_{min}, \omega_{max}]$, skipping steps k, fuse scheduler $\lambda(e)$

- 1: $\theta^- \leftarrow \theta$
- 2: repeat
- 3: Sample $(x, c_1, c_2) \sim \mathcal{D}$, and $\omega \sim [\omega_{min}, \omega_{max}]$
- 4: Sample $\epsilon \sim \mathcal{N}(0, I), \ n \sim \mathcal{U}[1 + k, N]$
- 5: $x_{t_n} \leftarrow \sqrt{\bar{\alpha}_{t_n}} \cdot x + \sqrt{1 \bar{\alpha}_{t_n}} \cdot \epsilon$
- 6: $x_{t_{n-k}}^{\Psi,\omega} \leftarrow x_{t_n} + (1+\omega) \cdot \Psi(x_{t_n}, t_n, t_{n-k}, c_1, c_2) \omega \cdot \Psi(x_{t_n}, t_n, t_{n-k}, \varnothing, \varnothing)$
- 7: $x_{t_{n-k}} \leftarrow \sqrt{\bar{\alpha}_{t_{n-k}}} \cdot x + \sqrt{1 \bar{\alpha}_{t_{n-k}}} \cdot \epsilon$
- 8: $\hat{x}_{t-k}^{\text{fuse}} \leftarrow \lambda(e) \cdot \hat{x}_{t-k}^{\Psi,\omega} + (1 \lambda(e)) \cdot x_{t-k}$
- 9: $\mathcal{L}_{Stepfuse}(\theta, \theta^-; \Psi) \leftarrow d\left(f_{\theta}(x_{t_n}, t_n, c_1, c_2, \omega), f_{\theta^-}(\hat{x}_{t-k}^{\text{fuse}}, t_{n-k}, c_1, c_2, \omega)\right)$
- 10: $\theta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}_{Stepfuse}(\theta, \theta^{-})$
- 11: $\theta^- \leftarrow \operatorname{stopgrad}\left(\mu\theta^- + (1-\mu)\,\theta\right)$
- 12: **until** convergence

LossFuse

Algorithm 4.4 Modified Compositional label Consistency Distillation-LossFuse

Input:dataset \mathcal{D} , initial model parameter θ , learning rate η , ODE solver $\Psi(\cdot, \cdot, \cdot, \cdot)$, distance metric $d(\cdot, \cdot)$, guidance scale $[\omega_{min}, \omega_{max}]$, skipping steps k, **fuse scheduler** $\lambda(e)$

- 1: $\theta^- \leftarrow \theta$
- 2: repeat
- 3: Sample $(x, c_1, c_2) \sim \mathcal{D}$, and $\omega \sim [\omega_{min}, \omega_{max}]$
- 4: Sample $\epsilon \sim \mathcal{N}(0, I), \ n \sim \mathcal{U}[1 + k, N]$
- 5: $x_{t_n} \leftarrow \sqrt{\bar{\alpha}_{t_n}} \cdot x + \sqrt{1 \bar{\alpha}_{t_n}} \cdot \epsilon$
- 6: $x_{t_{n-k}}^{\Psi,\omega} \leftarrow x_{t_n} + (1+\omega) \cdot \Psi(x_{t_n}, t_n, t_{n-k}, c_1, c_2) \omega \cdot \Psi(x_{t_n}, t_n, t_{n-k}, \varnothing, \varnothing)$
- 7: $x_{t_{n-k}} \leftarrow \sqrt{\bar{\alpha}_{t_{n-k}}} \cdot x + \sqrt{1 \bar{\alpha}_{t_{n-k}}} \cdot \epsilon$
- 8: $\mathcal{L}_{teacher}(\theta, \theta^-; \Psi) \leftarrow d\left(f_{\theta}(x_{t_n}, t_n, c_1, c_2, \omega), f_{\theta^-}(\hat{x}_{t-k}^{\Psi, \omega}, t_{n-k}, c_1, c_2, \omega)\right)$
- 9: $\mathcal{L}_{fpf}(\theta, \theta^{-}) \leftarrow d\left(f_{\theta}(x_{t_n}, t_n, c_1, c_2, \omega), f_{\theta^{-}}(x_{t-k}, t_{n-k}, c_1, c_2, \omega)\right)$
- 10: $\mathcal{L}_{lossfuse} \leftarrow \lambda(e) \cdot \mathcal{L}_{teacher} + (1 \lambda(e)) \cdot \mathcal{L}_{fpf}$
- 11: $\theta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}_{lossfuse}(\theta, \theta^{-})$
- 12: $\theta^- \leftarrow \mathtt{stopgrad} \left(\mu \theta^- + (1 \mu) \, \theta \right)$
- 13: **until** convergence

Appendix

Experiment setup

• Training Configuration

Hyperparameters fixed across all experiments

Training timesteps	1000
Batch Size	24
Noise scheduler eta	0.0001-0.2 linear
Base channels dimension	128
# of Residual Blocks	2
Channel Multiplier	1,2,4,4
Optimizer	AdamW
ω embedding dimension	128
Huber loss param	$\delta = 0.001$
EMA decay	$\mu = 0.995$