Tema 2

Soluții

Exercițiul 1

Fie X_1, X_2, \ldots, X_n variabile aleatoare i.i.d. repartizate $\mathcal{U}([0,1])$.

- a) Determinați funcția de repartiție și densitatea variabilelor m_n și M_n , unde $m_n = \min(X_1, X_2, \dots, X_n)$ iar $M_n = \max(X_1, X_2, \dots, X_n)$.
- b) Fie $Z_n = n(1 M_n)$. Arătați că $Z_n \stackrel{d}{\to} Z$, unde Z este o variabilă aleatoare a cărei funcție de repartiție este $F_Z(z) = 1 e^{-z}$.
- a) Pentru $M_n = \max(X_1, X_2, \dots, X_n)$ observăm că pentru $x \in (0, 1)$

$$F_{M_n}(x) = \mathbb{P}(M_n \le x) = \mathbb{P}(X_1 \le x, X_2 \le x, \dots, X_n \le x) \stackrel{indep.}{=} \prod_{i=1}^n \mathbb{P}(X_i \le x) = F(x)^n = x^n.$$

Dacă x<0 atunci $F_{M_n}(x)=0$ iar dacă $x\geq 1$ avem $F_{M_n}(x)=1$. In mod similar pentru $m_n=\min(X_1,X_2,\ldots,X_n)$ și $x\in(0,1)$ rezultă că

$$F_{m_n}(x) = \mathbb{P}(m_n \le x) = 1 - \mathbb{P}(m_n > x) = 1 - \mathbb{P}(X_1 > x, X_2 > x, \dots, X_n > x)$$

$$\stackrel{indep.}{=} 1 - \prod_{i=1}^n \mathbb{P}(X_i > x) = 1 - [1 - F(x)]^n = 1 - (1 - x)^n.$$

Pentru a calcula densitatea v.a. m_n şi M_n este suficient să derivăm expresiile de mai sus şi obținem $f_{m_n}(x) = n(1-x)^{n-1}$ şi $f_{M_n}(x) = nx^{n-1}$ pentru $x \in [0,1]$ şi 0 in rest.

b) Fie $Z_n = n(1 - M_n)$. Pentru calculul funcției de repartiție avem

$$F_{Z_n}(z) = \mathbb{P}(Z_n \le z) = \mathbb{P}\left(M_n \ge 1 - \frac{z}{n}\right) = 1 - \left(1 - \frac{z}{n}\right)^n, \ z > 0.$$

Cum $\left(1-\frac{z}{n}\right)^n \to e^{-z}$ pentru $n \to \infty$ rezultă că

$$\lim_{n \to \infty} F_{Z_n}(z) = 1 - e^{-z}$$

această limită reprezentand funcția de repartiție a unei v.a. repartizată exponențial de parametru 1.

Exercitiul 2

Fie U_1 , U_2 două variabile aleatoare independente repartizate uniform $\mathcal{U}([0,1])$.

a) Arătați că variabilele

$$X_1 = \cos(2\pi U_1)\sqrt{-2\log(U_2)}, \quad X_2 = \sin(2\pi U_1)\sqrt{-2\log(U_2)}$$

sunt variabile aleatoare independente repartizate normal $\mathcal{N}(0,1)$.

b) Deduceți că reprezentarea în coordonate polare (R,Θ) a lui (X_1,X_2) verifică

$$R^2 \sim \mathcal{E}\left(\frac{1}{2}\right)$$
 și $\Theta \sim \mathcal{U}([0, 2\pi])$

a) Considerăm schimbarea de variabilă

$$g: (0,1)^2 \to \mathbb{R}^2 \setminus \{(x,0) \mid x \ge 0\}$$
$$(u_1, u_2) \mapsto (\sqrt{-2\log(u_1)}\cos(2\pi u_2, \sqrt{-2\log(u_1)}\sin(2\pi u_2))$$

Observăm că g este un difeomorfism de clasă \mathcal{C}^1 între mulțimile deschise $(0,1)^2$ și $\mathbb{R}^2\setminus\{(x,0)\,|\,x\geq 0\}$ cu

$$g^{-1}: \mathbb{R}^2 \setminus \{(x,0) \, | \, x \ge 0\} \to (0,1)^2$$
$$(x,y) \mapsto \left(\exp\left(-\frac{x^2 + y^2}{2}\right), \frac{1}{2} + \frac{1}{\pi} \arctan \frac{y}{x + \sqrt{x^2 + y^2}}\right)$$

Plecând de la densitatea cuplului (U_1, U_2) putem determina densitatea vectorului (X_1, X_2) în urma aplicării teoremei de schimbare de variabilă:

$$f_{(X_1,X_2)}(x_1,x_2) = f_{(U_1,U_2)}(g^{-1}(x_1,x_2)) \left| \det J_{q^{-1}}(x_1,x_2) \right|.$$

Avem

$$\det J_{g^{-1}}(x_1,x_2) = \begin{vmatrix} -x_1 \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) & -x_2 \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) \\ -\frac{x_2}{2\pi(x_1^2 + x_2^2)} & \frac{x_1}{2\pi(x_1^2 + x_2^2)} \end{vmatrix} = -\frac{1}{2\pi} \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) \begin{vmatrix} -x_2 \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) \\ -\frac{x_2}{2\pi(x_1^2 + x_2^2)} & \frac{x_1}{2\pi(x_1^2 + x_2^2)} \end{vmatrix}$$

și în plus

$$f_{(U_1,U_2)}(g^{-1}(x_1,x_2)) = \mathbf{1}_{\left\{\exp\left(-\frac{x_1^2 + x_2^2}{2}\right) \in [0,1]\right\}} \times \mathbf{1}_{\left\{\frac{1}{2} + \frac{1}{\pi} \arctan \frac{x_2}{x_1 + \sqrt{x_1^2 + x_2^2}} \in [0,1]\right\}} = 1$$

Astfel găsim că pentru $(x_1, x_2) \in \mathbb{R}^2 \setminus \{(x, 0) \mid x \ge 0\}$

$$f_{(X_1,X_2)}(x_1,x_2) = \frac{1}{2\pi} \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) = \left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_1^2}{2}\right)\right) \left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_2^2}{2}\right)\right)$$

ceea ce arată că variabilele aleatoare X_1 și X_2 sunt independente și repartizate $\mathcal{N}(0,1)$.

O altă soluție ar fi să notăm cu $R = \sqrt{-2\log(U_2)}$ și $\Theta = 2\pi U_1$, atunci $(X_1, X_2) = g(R, \Theta)$ cu $g(r, \theta) = (r\cos(\theta), r\sin(\theta)), g: [0, \infty) \times [0, 2\pi] \to \mathbb{R}^2$. Cum U_1 și U_2 sunt independente obținem că și R și Θ sunt independente (ca funcții de v.a. independente). Mai mult, cum $U_1 \sim \mathcal{U}([0, 1])$ avem că $\Theta \sim \mathcal{U}([0, 2\pi])$ iar din $R = h(U_2)$ cu $h(u) = \sqrt{1 - 2\log(u)}$ rezultă

$$f_R(r) = f_{U_2}(h^{-1}(r)) \left| \frac{d}{dr} h^{-1}(r) \right| = |r|e^{-\frac{r^2}{2}}$$

Obținem astfel că

$$\begin{split} f_{(X_1,X_2)}(x_1,x_2) &= f_{(R,\Theta)} \left(g^{-1}(x_1,x_2) \right) \left| \det J_{g^{-1}} \right| = f_{(R,\Theta)} \left(\sqrt{x_1^2 + x_2^2}, \arctan \frac{x_2}{x_1} \right) \frac{1}{\sqrt{x_1^2 + x_2^2}} \\ &= f_R \left(\sqrt{x_1^2 + x_2^2} \right) f_{\Theta} \left(\arctan \frac{x_2}{x_1} \right) \frac{1}{\sqrt{x_1^2 + x_2^2}} = \sqrt{x_1^2 + x_2^2} e^{-\frac{x_1^1 + x_2^2}{2}} \frac{1}{2\pi} \frac{1}{\sqrt{x_1^2 + x_2^2}} \\ &= \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x_1^2}{2}} \right) \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x_2^2}{2}} \right) \end{split}$$

unde am folosit faptul că determinantul Jacobian-ului este det $J_{g^{-1}} = \frac{1}{\sqrt{x_1^2 + x_2^2}}$. Astfel densitatea cuplului (X_1, X_2) se poate scrie ca un produs de densități care depind de x_1 și respectiv x_2 ceea ce conduce la concluzia problemei (densitățile din factorizare sunt tocmai densitățile normalei standard).

b) Din punctul precedent avem $R^2 = -2 \log U_1$ și $\Theta = 2\pi U_2$. Am văzut că $\Theta \sim \mathcal{U}([0, 2\pi])$. Cum funcția cuantilă F^{-1} a repartiției $\mathcal{E}\left(\frac{1}{2}\right)$ este $F^{-1}(u) = -2 \log u$ avem concluzia.

Exercițiul 3

Fie $U_{i1}, U_{i2}, V_i, i \in \{1, 2, ..., n\}$, variabile aleatoare independente repartizate unifom $\mathcal{U}([0, 1])$. Definim variabilele aleatoare

$$X_i = \begin{cases} 1, & U_{i1}^2 + U_{i2}^2 < 1 \\ 0, & \text{altfel} \end{cases} \quad \text{si} \quad Y_i = \sqrt{1 - V_i^2}, \quad i \in \{1, 2, \dots, n\}$$

Considerăm variabilele aleatoare $\hat{\pi}_1 = \frac{4}{n} \sum_{i=1}^n X_i$ și $\hat{\pi}_2 = \frac{4}{n} \sum_{i=1}^n Y_i$. Calculați media și varianța acestor variabile și stabiliți care este mai eficientă¹ în estimarea lui π .

Pentru $\hat{\pi}_1$: observăm că v.a. X_i sunt v.a. de tip Bernoulli cu

$$\mathbb{P}(X_i = 1) = \mathbb{P}\left(U_{i1}^2 + U_{i2}^2 < 1\right) = \iint_{\{u^2 + u^2 < 1\} \cap [0,1]^2} f_{(U_{i1}, U_{i2})}(u, v) \, du \, dv$$

$$\stackrel{indep.}{=} \iint_{\{u^2 + u^2 < 1\} \cap [0,1]^2} f_{U_{i1}}(u) f_{U_{i2}}(v) \, du \, dv = \int_0^1 \int_0^{\sqrt{1 - u^2}} 1 \, dv \, du = \int_0^1 \sqrt{1 - u^2} \, du$$

$$\stackrel{u = \sin \alpha}{=} \int_0^{\frac{\pi}{2}} \cos^2 \alpha \, d\alpha = \int_0^{\frac{\pi}{2}} \frac{\cos 2\alpha + 1}{2} \, d\alpha = \frac{\pi}{4} + \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos 2\alpha \, d\alpha = \frac{\pi}{4}$$

O altă variantă de calcul pentru $\mathbb{P}(X_i=1)$ era să observam că această probabilitate se exprima și ca raportul dintre aria mulțimii $\{(u,v)\in[0,1]^2\,|\,,u^2+u^2<1\}$ și cea a pătratului $[0,1]^2$, deci tot $\frac{\pi}{4}$.

Dacă $T = \sum_{i=1}^{n} X_i$ atunci $T \sim \mathcal{B}\left(n, \frac{\pi}{4}\right)$ de unde avem că media este $\mathbb{E}[T] = \frac{n\pi}{4}$ iar varianța

$$\mathbb{V}[T] = n\frac{\pi}{4} \left(1 - \frac{\pi}{4} \right).$$

Cum $\hat{\pi}_1 = \frac{4}{n}T$ deducem că $\mathbb{V}[\hat{\pi}_1] = \frac{4\pi - \pi^2}{n}$. Din Legea Numerelor Mari obținem că $\hat{\pi}_1 = \frac{4}{n}\sum_{i=1}^n X_i \overset{a.s.}{\to} 4\mathbb{E}[X_1] = 4\mathbb{P}(X_1 = 1) = \pi$.

Pentru $\hat{\pi}_2$, să observăm pentru inceput că media lui Y_1 este

$$\mathbb{E}[Y_1] = \int_0^1 \sqrt{1 - u^2} \, du = \frac{\pi}{4}$$

iar varianța lui Y_1 este

$$\mathbb{V}[Y_1] = \mathbb{E}[Y_1^2] - \mathbb{E}^2[Y_1] = \int_0^1 1 - u^2 \, du - \frac{\pi^2}{16} = \frac{2}{3} - \frac{\pi^2}{16}.$$

Prin aplicarea Legii Numerelor Mari rezultă că

$$\hat{\pi}_2 = \frac{4}{n} \sum_{i=1}^n Y_i \stackrel{a.s.}{\to} 4\mathbb{E}[Y_1] = \pi$$

iar varianța lui $\hat{\pi}_2$ este

$$\mathbb{V}[\hat{\pi}_2] = \frac{16}{n^2} \sum_{i=1}^n \mathbb{V}[Y_i] = \frac{16}{n} \left(\frac{2}{3} - \frac{\pi^2}{16}\right).$$

Pentru a vedea care dintre cei doi estimatori este mai eficient trebuie să verificăm care are varianța mai mică. Cum $\frac{32}{3} < 12 < 4\pi$ rezultă că $\mathbb{V}[\hat{\pi}_2] < \mathbb{V}[\hat{\pi}_1]$ deci al doilea estimator este mai eficient.

Grupele: 301, 311, 321

Exercițiul 4

Fie U_1, U_2, \ldots, U_n variabile aleatoare independente și repartizate $\mathcal{U}([0,1])$ și $S_n = \sum_{i=1}^n U_i$. Dacă variabila aleatoare N este definită prin

$$N = \min\{k \mid S_k > 1\}$$

atunci:

- a) Arătați că dacă $0 \le t \le 1$ atunci $\mathbb{P}(S_k \le t) = \frac{t^k}{k!}$.
- b) Determinați $\mathbb{E}[N]$ și Var[N].
- a) Pentru a calcula probabilitatea $\mathbb{P}(S_k \leq t)$ cu 0 < t < 1 să ne reamintim că dacă X și Y sunt două variabile aleatoare independente cu densitățile f_X și f_Y atunci densitatea sumei Z = X + Y (convoluția) este dată de

$$f_Z(z) = \int f_X(z-t) f_Y(t) dt.$$

Fie f_n densitatea variabilei aleatoare S_n pentru $n \ge 1$. Avem, pentru 0 < x < 1, că $f_1(x) = 1$ și pentru a calcula densitatea f_{n+1} a variabilei aleatoare S_{n+1} să observăm că $S_{n+1} = S_n + U_{n+1}$ cu S_n și U_{n+1} variabile aleatoare independente, de unde aplicând formula pentru densitatea sumei deducem că

$$f_{n+1}(x) = \int_0^x f_n(t) dt, \quad n \ge 1.$$

Prin inducție rezultă că $f_n(x) = \frac{x^{n-1}}{(n-1)!}$ pentru 0 < x < 1 de unde

$$\mathbb{P}(S_n \le t) = \int_0^t f_n(x) \, dx = \int_0^t \frac{x^{n-1}}{(n-1)!} \, dx = \frac{t^n}{n!}.$$

b) Pentru $n \geq 2$ să observăm c
ă $\mathbb{P}(N=n) = \mathbb{P}(S_{n-1} < 1 \leq S_n)$ de unde

$$\mathbb{P}(N=n) = \mathbb{P}(S_{n-1} < 1) - \mathbb{P}(S_n < 1) = \frac{1}{(n-1)!} - \frac{1}{n!} = \frac{n-1}{n!}.$$

Pentru medie avem

$$\mathbb{E}[N] = \sum_{n=2}^{\infty} n \mathbb{P}(N=n) = \sum_{n=2}^{\infty} n \frac{n-1}{n!} = \sum_{n=2}^{\infty} \frac{1}{(n-2)!} = e.$$

În mod similar se poate arăta că $Var[N] = e(3-e)^2$.

Exercițiul 5

Fie $(E_n)_{n\geq 1}$ un șir de variabile aleatoare independente și repartizate $\mathcal{E}(\lambda)$.

a) Pentru $n \ge 1$ definim

$$f_n(x) = e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!} \mathbf{1}_{\{x \ge 0\}}, \quad x \in \mathbb{R}.$$

Arătați că f_n este o densitate de repartiție pentru orice $n \ge 1$. Repartiția a cărei densitate este f_n se numește repartiția Gamma de parametrii $n \ge 1$ și λ și se notează cu $\Gamma(n, \lambda)$.

Grupele: 301, 311, 321

²Această metodă de a estima e este discutată în lucrarea: Russell, K.G. *Estimating the value of e by simulation*, The American Statistician, Vol. 45, Nr. 1, pp 66-68, 1991.

- b) Fie $S_n = \sum_{i=1}^n E_i$ pentru $n \ge 1$. Arătați că S_n este repartizată $\Gamma(n, \lambda)$.
- c) Considerăm variabila aleatoare

$$N = \max\{n \ge 1 \mid S_n \le 1\}$$

cu convenția N=0 dacă $X_1>1$. Arătați că variabila aleatoare N este repartizată $Pois(\lambda)$.

a) Prin inducție vom verifica că f_n este o densitate de repartiție. Să observăm că $f_n \ge 0$ prin urmare este suficient să arătăm că $\int_{\mathbb{R}} f_n(x) dx = 1$.

Pentru n=1 avem

$$\int_{\mathbb{R}} f_1(x) dx = \int_0^\infty \lambda e^{-\lambda x} dx = 1.$$

Presupunem proprietatea adevărată pentru n și arătăm pentru n+1:

$$\int_{\mathbb{R}} f_{n+1}(x) dx = \left[-\frac{\lambda^n x^n}{n!} e^{-\lambda x} \right]_0^{\infty} + \int_0^{\infty} n\lambda^n \frac{x^{n-1}}{n!} e^{-\lambda x} dx = \int_{\mathbb{R}} f_n(x) dx = 1.$$

b) Pentru a determina repartiția lui S_n vom folosi noțiunea de funcție generatoare de moment³, i.e. $M_E(t) = \mathbb{E}[e^{tE}]$.

Se poate calcula cu usurință că

$$M_{E_i}(t) = \frac{\lambda}{\lambda - t}, \qquad t < \lambda$$

și cum variabilele aleatoare E_1, \dots, E_n sunt independente deducem că funcția generatoare de moment a sumei S_n este

$$M_{S_n}(t) = \mathbb{E}[e^{tS_n}] = \prod_{i=1}^n M_{E_i}(t) = \left(\frac{\lambda}{\lambda - t}\right)^n, \quad t < \lambda.$$

Știm că dacă $X \sim Gamma(n, \lambda)$ atunci $f_X(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x}$ iar funcția generatoare de moment este

$$M_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^n, \quad t < \lambda.$$

Cum cele două funcții generatoare de moment sunt egale și ținând cont de faptul că funcția generatoare caracterizează repartiția, deducem că $S_n \sim Gamma(n, \lambda)$.

c) Pentru a demonstra că $N \sim Pois(\lambda)$ este suficient să calculăm $\mathbb{P}(N=n)$. Avem

$$\mathbb{P}(N=n) = \mathbb{P}(S_n \le 1 < S_{n+1}) = \int_0^1 \mathbb{P}(E_{n+1} \ge 1 - u \,|\, S_n = u) f_{S_n}(u) \,du,$$

unde f_{S_n} este densitatea lui S_n de la punctul a). Ținând seama că E_{n+1} și S_n sunt independente și cum $\mathbb{P}(E_{n+1} \ge 1 - u) = e^{-\lambda(1-u)}$ avem că

Grupele: 301, 311, 321

 $^{^3}$ Problema se poate face și fără această noțiune, ținând seama de schimbarea de variabilă $\phi:(x_1,\ldots,x_n) \to (s_1,\ldots,s_n)$ cu $s_n = \sum_{k=1}^n x_k$ a cărei inversă ϕ^{-1} este dată prin $x_1 = s_1$ și $x_k = s_k - s_{k-1}$. Determinantul matricii Jacobiene asociate lui ϕ^{-1} este 1 iar imaginea $\phi([0,\infty) = \{0 \le s_1 \le \cdots \le s_n\}$ ceea ce conduce la rezultatul dorit.

$$\mathbb{P}(N=n) = \int_0^1 \mathbb{P}(E_{n+1} \ge 1 - u \mid S_n = u) f_{S_n}(u) \, du = \int_0^1 e^{-\lambda(1-u)} \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x} \, du$$
$$= \frac{e^{-\lambda} \lambda^n}{(n-1)!} \int_0^1 u^{n-1} \, du = \frac{e^{-\lambda} \lambda^n}{n!}.$$

Exercițiul 6

Folosind metoda respingerii, propuneți o metodă de simulare pentru observații independente din densitatea de repartiție $f: x \mapsto (1-|x|)^+$.

Observăm că pentru toți $x \in \mathbb{R}$ avem

$$f(x) \le \mathbf{1}_{\{x \in [-1,1]\}} = 2g(x),$$

unde $g(x) = \frac{1}{2} \mathbf{1}_{\{x \in [-1,1]\}}$ este densitatea repartiției uniforme pe [-1,1].

Pentru a simula din repartiția f procedăm astfel

- 1. simulăm X repartizată $\mathcal{U}[-1,1]$ (X=2V-1 cu $V\sim\mathcal{U}(0,1))$
- 2. simulăm $U \sim \mathcal{U}(0,1)$
- 3. repetăm procedeul până când 2Ug(X) < f(X).