

OFFLINE SIGNATURE VERIFICATION

Jin Li

Supervisor Prof. Xia Hong

Outline

- >Introduction
- >Literature review
- > Methodology
- > Experiments
- ➤ Interface application
- ➤ Conclusion & Further work

Claud Baker

Introduction

- Biometrics
 - Automated individual identification related to human behavioral and physiological characteristics [1]
- Authorization form
 Still commonly used in bank system and law contracts
- Online and Offline
 Online signature records movement and shape (Dynamic)
- Genuine and Forgeries
 Three kind of forgeries: Random, Simple and Skilled Forgeries [9]

Problem statement

- 1. Offline signature dataset limitation
 - Most of research use private dataset
 - MCYT[67], GPDS[68], SigComp2011[69], CEDAR
 - Forgeries created by simulation or skilled forgers (incomparable)
- 2. In reality, system may not have someone's forgeries
 - Still a challenge to recognize forgeries without forgeries in training dataset
- 3. High intra-class variability [9]
 - Variability exists among samples even they are all genuine (inconsistency)

Literature review

- 1. Feature Extraction
 - Geometric feature: height, image area, width, signature orientation
 - Directional feature: gradient from local area
 - Key point feature: Harris, SIFT, SURF(scale and rotation invariance)
 - Raw data (the value of pixel): Deep learning CNN
- 2. Classification approach
 - Hidden Markov Models(HMM)
 - Probabilistic neural networks (PNN)
 - Support Vector Machines (SVM)
 - Convolutional Neural Network (CNN) (Softmax classifier)

1. PCA

- Dimension reduction
- Reconstruct the image with weighted uncorrelated principal component
- The weight matrix for images is

$$W = (Y^T Y)^{-1} Y^T Z$$

# of PCs	% of variance explained
40	52.49%
100	84.38%
140	94.53%

^{*}Total number of PCs is 180

140PCs

2. Convolutional Neural Network (CNN)

University of Reading

Methodology-Feature extraction

Forward Pass

- Input Layer
- Convolutional + ReLU Layer
- Max Pooling Layer
- Fully Connected Layer
- Softmax function

Backward Pass

- Backpropagation process
- Update weights, multiplication bias and additive bias
- Optimization method : stochastic gradient descent (SGD)

$$u^{l} = W^{l}x^{l-1} + b^{l} x^{l} = f(u^{l}) = \max(0, u^{l})$$

$$x_{j}^{l} = \beta_{j}^{l} \max(x_{j}^{l-1}) + b_{j}^{l}$$

$$f(x) = f(Wx + b) p_{j} = \frac{e^{y_{j}}}{\sum_{j} y_{j}}$$

Convolutional layer feature filters

Output of Convolutional layer 1

- 3. Bag of Words(BOW)
 - Feature detection approach : Speed up robust feature (SURF)
 - SURF make sure the feature is scale and rotation invariance
 - detect key points by calculating Hessian determinant (by using Box filter to calculate second order Gaussian derivative)
 - 2) using filter pyramid to make sure the key point is scale-invariance
 - 3) Using Haar wavelets as filter to determine the direction of keypoint
 - 4) Using square window around key point to obtain the feature vector
 - 5) K-Means clustering to reduce redundant features

3. Bag of Words(BOW)

Filter Pyramid

Feature vector

3. Bag of Words(BOW)

SURF Feature Points (19)

Histogram of Visual words

University of Reading

Methodology-Feature extraction

- 4. Histogram of Oriented Gradients (HOG)
 - Detect shape and edge orientation in local regions
 - invariance to small or local geometric changes
 - invariant to illumination change by block normalization
 - less computational complexity
 - only need calculate horizontal and vertical gradient

Histogram of Oriented Gradients (HOG)

Methodology-Classification approachading

Classification Approach

- 1) Support Vector Machine
 - A "Kernel" method in machine learning
 - Transform training data into a higher dimension by kernel map
 - Belong to Maximum margin classifier
- 2) Softmax classifier
 - giving probabilities for each class, not like margin scores in SVM
- 3) Distance classifier
 - Euclidean distance classifier

Experiments

1. Data

- 1) Collect signature in campus
 - (2583) signature from (123) students in University of Reading
- 2) Public dataset -SigComp2011
 - Chinese signature (362) from 10 writers
 - Dutch signature (575) from 10 writers

2. Pre-processing

Cropping, Colour to Gray, Noise Reduction, Binarization, Resizing

Table 1 Result on the SigReading2018 dataset

Approach	#Ref	Training	Testing	Average
		Dataset	Dataset	Accuracy
PCA+ Distance classifier	123	1845	738	1.13%
PCA+SVM	123	1845	738	5.56%
CNN+Softmax classifier	123	1845	738	75.52%
CNN+SVM	123	1845	738	74.98%
BOW+SVM	123	1845	738	91.47%
HOG+SVM	123	1845	738	89.80%

Experiments

Table 2 Result on the SigComp2011 (Dutch) dataset

Approach	#Ref	Training Dataset	Testing Dataset	Average Accuracy
PCA+ Distance classifier	10	253	109	65.14%
PCA+SVM	10	253	109	66.36%
CNN+Softmax classifier	10	253	109	71.25%
CNN+SVM	10	253	109	72.48%
BOW+SVM	10	253	109	79.53%
HOG+SVM	10	253	109	84.10%

Experiments

Table 3 Result on the SigComp2011 (Chinese) dataset

Approach	#Ref	Training Dataset	Testing Dataset	Average Accuracy
PCA+ Distance classifier	10	403	172	59.30%
PCA+SVM	10	403	172	68.99%
CNN+Softmax classifier	10	403	172	80.04%
CNN+SVM	10	403	172	82.36%
BOW+SVM	10	403	172	69.11%
HOG+SVM	10	403	172	88.95%

Interface application

	Signature Verific	cation	
Select TrainingFolder	/Users/jerry/Documents/MATLAB/data	a(resize64X128)Training	
Select TestingFolder	/Users/jerry/Documents/MATLAB/singleimage Tesing		
	Test signature	Predicted signature	
Select Method	-30 /	5/	
○ PCA	(Hoho	(3) h.m.	
O PCA+SVM	-	C) give	
● CNN			
○ CNN+SVM			
○ BOW+SVM			
○ HOG+SVM	Test Resu	ılt This is valid signature	

- Conclusion
 - Experiment on larger dataset may achieve better results
 - PCA may not be an efficient way to extract offline signature features
 - BOW and HOG perform better than CNN in genuine only system
 - HOG perform better than BOW and CNN in genuine and forgery system
 - The SVM and Softmax classifier have similar results
 - CNN, SURF and HOG can be consider as 'convolution' methods

University of Reading

Conclusion and Further work

- Further work
 - Investigate the factors that affect the accuracy of different approaches
 - Optimize the models by adjusting the parameter setting
 - The accuracy may depend on which dataset is used, so should attempt other dataset
 - Due to the limitation of CPU computer, GPU computer is more efficient choice for image process
 - All models are trained as writer-Independent system. It may test each writer's signature with dependent model.
 - Evaluate the suitability of different approaches to the different tasks

Reference

- [1] Joseph N. Pato and Lynette I.Millett.Biometric Recognition: Challenge and Opportunities.2010
- [9] Luiz G. Hafemann, Robert Sabourin, Luiz SlOliveira, Offline Handwritten Signature Verification-Literature Review, IEEE (2017)
- [24] Lowe, David G. (1999). "Object recognition from local scale-invariant features" (PDF). Proceedings of the International Conference on Computer Vision. 2. pp. 1150–1157
- [33] Gabe Alvarez, Blue Sheffer, Morgan Bryant, Offline Signature Verification with Convolutional Neural Networks
- [65]Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. "SURF:Speeded Up Robust Features." Computer Vision and Image Understanding (CVIU).Vol. 110, No. 3, pp. 346–359, 2008.

Questions

Thank you!