

Evaluating the performance of IoT-Protocols for autonomous Tractors

Presented by Mohamed Elashkr Wael Amer

Agenda

01 Problem
02 IoT Protocols
03 Design of Experiment
04 Evaluation

Problem

Autonomous tractor

Have been built on old technology

Performance issue

Transporting data is slowly to old environment

Heavy Data by Transport

Sensor data consume more CPU and RAM

Lack of security

Hackers can access and control the system

IoT Protocols

Hypertext transfer Protocol

- Establish synchronous connection between two devices
- Big challenge for IoT, Devices may not reachable

Advanced Message Queueing Protocol

- Open standard protocol Publish/Subscribe
- Considered for intensive data volume

Message Queuing Telemetry Transport

- It is a lightweight publication/subscription
- Working on TCP/IP and is asynchronous
- · Suitable for
 - Small Data processing and memory resources

Constrained Application Protocol

- Is a synchronous application layer protocol
- Enables small devices with CPU and lower power to use RESTful

Design of Experiment (1/2)

Performance test (Asynchronous)

- 100 Requests
- 1000 Requests
- 3000 Requests

Processing Sensor Data & Find out best performance

Data will be sent in JSON-Format

Design of Experiment (1/2)

Evaluation (1/3)

Evaluation (2/3)

Comparing the performance for HTTP, AMQP and MQTT

Evaluation (3/3)

3000 Requests

MQTT

- Has the highest performance
- 179651 ms

1000 Requests

AMQP

- Has the highest performance
- 53669 ms

100 Requests

AMQP

- Has the best performance
- 4470

