

SHALLOW AND DEEP NEURAL NETWORKS

COMPUTER VISION: DEEP LEARNING

SEBASTIAN HOUBEN

SCHEDULE

Today

- Construct a neural network
 - Extend linear classifier to do this
- Universal Approximation Theorem
- Train a neural network
 - Batch Stochastic Gradient Descent
 - Vanishing Gradient
- Improvements on training
 - Cross-entropy loss
 - Softmax function
- Convolutional neural networks
- New flavours of convolutions
 - Strided convolution
 - Transposed convolution

Feature Extraction

- Use very simple model for neural population
- Input and output neurons
- Connections among them
- Each connection has a strength
- Output neuron gathers all signals from input neurons according to strength of connection

SHOULD I ATTEND THE LECTURE TODAY?

SHOULD I ATTEND THE LECTURE TODAY?

Simple model of neurons leads to linear function

$$W := \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \\ w_{51} & w_{52} & w_{53} \end{pmatrix}$$

$$x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \tilde{y} := \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \\ \tilde{y}_3 \\ \tilde{y}_4 \\ \tilde{y}_5 \end{pmatrix}$$

$$\tilde{y} = Wx$$

Simple model of neurons leads to linear function

$$W := \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \\ w_{51} & w_{52} & w_{53} \end{pmatrix}$$

$$x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \tilde{y} := \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \\ \tilde{y}_3 \\ \tilde{y}_4 \\ \tilde{y}_5 \end{pmatrix}$$

$$\tilde{y} = Wx$$

- Simple model of neurons leads to linear function
- Bias can be introduced by setting one input constant to 1

$$W := \begin{pmatrix} w_{11} & w_{12} & b_1 \\ w_{21} & w_{22} & b_2 \\ w_{31} & w_{32} & b_3 \\ w_{41} & w_{42} & b_4 \\ w_{51} & w_{52} & b_5 \end{pmatrix}$$

$$x := \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} \quad \tilde{y} := \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \\ \tilde{y}_3 \\ \tilde{y}_4 \\ \tilde{y}_5 \end{pmatrix}$$

$$\tilde{y} = Wx$$

$$\tilde{y} = Wx$$

$$\tilde{y} = W_{:,1:2}x_{1:2} + b$$

Introduce several layers (here: 3 layers)

$$W := \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \\ w_{51} & w_{52} & w_{53} \end{pmatrix}$$

$$U := \begin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} & u_{15} \\ u_{21} & u_{22} & u_{23} & u_{24} & u_{25} \end{pmatrix}$$

$$x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad \tilde{y} := \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}$$

- Introduce several layers (here: 3 layers)
- Introduce elementwise non-linearity (otherwise we would just concatenate linear functions)

$$W := \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \\ w_{51} & w_{52} & w_{53} \end{pmatrix}$$

$$U := \begin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} & u_{15} \\ u_{21} & u_{22} & u_{23} & u_{24} & u_{25} \end{pmatrix}$$

$$x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad \tilde{y} := \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}$$

$$\tilde{y} = U\sigma (Wx)$$

- Introduce several layers (here: 3 layers)
- Introduce non-linearity (otherwise just concatenate linear functions)
- This is already a powerful model (Multilayer Perceptron)

den
$$\sigma(z) = \frac{1}{1+e^{-z}}$$
 Output $W := egin{pmatrix} w_{11} & w_{12} & w_{13} \ w_{21} & w_{22} & w_{23} \ w_{31} & w_{32} & w_{33} \ w_{41} & w_{42} & w_{43} \ w_{51} & w_{52} & w_{53} \end{pmatrix}$ $U := egin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} & u_{15} \ u_{21} & u_{22} & u_{23} & u_{24} & u_{25} \end{pmatrix}$ \tilde{y}_2 $x := egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}$ $\tilde{y} := egin{pmatrix} \tilde{y}_1 \ \tilde{y}_2 \end{pmatrix}$ $\tilde{y} := egin{pmatrix} y_1 \ \tilde{y}_2 \end{pmatrix}$ $\tilde{y}_3 = U \sigma (W x)$

NEURAL NET – NON-LINEARITIES

$$\sigma(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{1 + e^z} = \frac{1}{2} \left(1 + \tanh \frac{z}{2} \right)$$

$$\sigma'(z) = \left(\frac{1}{1+e^{-z}}\right)'$$

$$= \left(-\frac{1}{(1+e^{-z})^2}\right) \cdot (-e^{-z})$$

$$= \left(\frac{e^{-z}}{(1+e^{-z})^2}\right)$$

$$= \frac{1+e^{-z}-1}{(1+e^{-z})^2}$$

$$= \frac{1+e^{-z}}{(1+e^{-z})^2} - \frac{1}{(1+e^{-z})^2}$$

$$= \frac{1}{1+e^{-z}} - \frac{1}{(1+e^{-z})^2}$$

$$= \frac{1}{1+e^{-z}} \left(1 - \frac{1}{1+e^{-z}}\right)$$

$$= \sigma(z) (1-\sigma(z))$$

- Knowing the value of the sigmoid function, it is cheap to get the derivative.
- It acts like a cap or a threshold.

- Input norm should be limited
- Nothing should fire for zero input
- Shift by mean and normalize by standard deviation (over training set)

$$x := \frac{\hat{x} - \text{mean}}{\text{std}}$$

NEURAL NET - NON-LINEARITIES

$$\sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{2} \left(1 + \tanh \frac{z}{2} \right)$$
$$\sigma'(z) = \sigma(z) (1 - \sigma(z))$$

$$tanh'(z) = 1 - tanh^2(z)$$

- Sigmoid function
- Sigmoid means "shaped like S"
- Also: Logistic function

WHY WE DON'T NEED DEEP LEARNING

$$w = \begin{pmatrix} 100 \\ 100$$

Universal Approximation Theorem (UAT)

- A feed-forward neural network with a single hidden layer and a sigmoid activation function can approximate every continuous function on a compact subset of $\mathbb R$ mapping to $\mathbb R$
 - The number of hidden units is important for the approximation error.
 - This has been exemplified visually.
- A feed-forward neural network with a single hidden layer and a nonconstant, bounded monotonically-increasing continuous activation function can approximate every continuous function on a compact subset of \mathbb{R}^n mapping to \mathbb{R}^m
 - This also holds.
 - We can squash and shift every such activation function accordingly to construct step-like functions.
 - Mapping to \mathbb{R}^m is the same as finding m functions mapping to \mathbb{R}

Universal Approximation Theorem (UAT)

- Feedforward neural networks can approximate most of the functions relevant to most of the applications.
 - As can sine functions (Fourier series)
 - As can polynomial basis functions (Bernstein polynomials)
- In order to be more accurate or to approximate more complex functions, just add more hidden neurons.
- There is no principal need to use more than three layers.
- But
 - UAT does not tell us anything about trainability of the networks.
 - A three-layer network will not be able to recognize repeating or composite patterns (Generalizabilty).
 - It can only learn what it has been presented (Overfitting).

Universal Approximation Theorem (UAT)

- But
 - UAT does not tell us anything about trainability of the networks
 - A three-layer network will not be able to recognize repeating or composite patterns (Generalizability).
 - It can only learn what it has been presented (Overfitting).
 - Majority of phenomenons / learning problems are composite, hierarchical in nature.
 - Patterns reoccur and interact.

We currently have

- quite powerful model $\tilde{y}^{(i)} = U\sigma\left(Wx^{(i)}\right)$ training data $(x^{(i)},y^{(i)}); i=1,...,n; x^{(i)} \in \mathbb{R}^d$ training data

How do we encode the output class?

- integer (or 1d) encoding $y^{(i)} \in \{0; 1, 2, ..., m\}$
 - each class is represented by one integer
 - output of model is rounded to nearest integer
 - But: Native nature of neural network is linear
 - requires additional logic (training/complexity) to transform the "native" network output to the integer output encoding
- $y^{(i)} \in \{0, 1\}^m, ||y^{(i)}||_1 = 1$ one-hot encoding
 - as many output dimensions as classes
 - each class represented by a unit vector with a single 1
 - fits linear nature of network better

- n samples
- m classes
- d input size

$$y^{(i)} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

27

We currently have

- quite powerful model $\tilde{y}^{(i)} = U\sigma\left(Wx^{(i)}\right)$ training data $(x^{(i)},y^{(i)}); i=1,...,n; x^{(i)} \in \mathbb{R}^d$

How do we encode the output class?

- one-hot encoding $y^{(i)} \in \{0,1\}^m, ||y^{(i)}||_1 = 1$
 - as many output dimensions as classes
 - each class represented by a unit vector with a single 1
 - fits linear nature of network better
 - output vector just encodes preference for all classes (unbounded)
 - flag maximum element of output by piping output through argmax function

- *m* classes
- d input size

$$y^{(i)} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 21\\34\\\vdots\\10,000\\\vdots\\680 \end{pmatrix} \rightarrow \begin{pmatrix} 0\\0\\\vdots\\1\\\vdots\\0 \end{pmatrix}$$

n samples

m classes

d input size

We currently have

quite powerful model
$$ilde{y}^{(i)} = U\sigma\left(Wx^{(i)}
ight)$$

How do we train the model?

measure for current performance (ratio of correct predictions)

$$\frac{1}{n} \sum_{i=0}^{n} \mathbf{1} \left[\underset{j}{\operatorname{argmax}} \, \tilde{y}_{j}^{(i)} = \underset{j}{\operatorname{argmax}} \, y_{j}^{(i)} \right]$$

But: quite different solutions are valued as equally good

$$\operatorname{argmax} \begin{pmatrix} 21\\34\\ \vdots\\10,000\\ \vdots \end{pmatrix} = \operatorname{argmax} \begin{pmatrix} 9,900\\8,355\\ \vdots\\10,000\\ \vdots \end{pmatrix}$$

n samples

m classes

We currently have

quite powerful model
$$\tilde{y}^{(i)} = U\sigma\left(Wx^{(i)}\right)$$

d input size

training data

$$(x^{(i)}, y^{(i)}); i = 1, ..., n; y^{(i)} \in \{0, 1\}^m; ||y^{(i)}||_1 = 1, x^{(i)} \in \mathbb{R}^d$$

How do we train the model?

measure for current performance (ratio of correct predictions)

$$\frac{1}{n} \sum_{i=0}^{n} \mathbf{1} \left[\underset{j}{\operatorname{argmax}} \, \tilde{y}_{j}^{(i)} = \underset{j}{\operatorname{argmax}} \, y_{j}^{(i)} \right]$$

- But: quite different solutions are valued as equally good
- introduce softmax (should be named softargmax)

softmax
$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{e^{y_1}}{\sum e^{y_k}} \\ \vdots \\ \frac{e^{y_m}}{\sum e^{y_k}} \end{pmatrix}}_{\Sigma=1}$$

$$\operatorname{softmax}\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{e^{y_1}}{\sum e^{y_k}} \\ \vdots \\ \frac{e^{y_m}}{\sum e^{y_k}} \end{pmatrix}}_{\text{softmax}} \operatorname{softmax}\begin{pmatrix} 21 \\ 34 \\ \vdots \\ 10,000 \\ \vdots \\ 680 \end{pmatrix} = \begin{pmatrix} 0.005 \\ 0.005 \\ \vdots \\ 0.97 \\ \vdots \\ 0.01 \end{pmatrix} \neq \operatorname{softmax}\begin{pmatrix} 9,900 \\ 8,355 \\ \vdots \\ 10,000 \\ \vdots \\ 9,335 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 0.08 \\ \vdots \\ 0.11 \\ \vdots \\ 0.09 \end{pmatrix}$$

How to train your ANN - Surrogate Loss

For performance we measure (ratio of correct predictions)

$$\frac{1}{n} \sum_{i=0}^{n} \mathbf{1} \left[\underset{j}{\operatorname{argmax}} \, \tilde{y}_{j}^{(i)} = \underset{j}{\operatorname{argmax}} \, y_{j}^{(i)} \right]$$

For optimization (training) we measure

$$\frac{1}{n} \sum_{i=0}^{n} L\left(\operatorname{softmax} \tilde{y}_{j}^{(i)}, y_{j}^{(i)}\right)$$

- With a loss function surrogate L
- For example $L(y, y') = ||y y'||_2 = \sum_i (y_i y_i')^2$

fons)
$$y^{(i)} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{softmax } \tilde{y}^{(i)} = \begin{pmatrix} 0.005 \\ \vdots \\ 0.005 \\ 0.97 \\ 0.004 \\ \vdots \\ 0.01 \end{pmatrix}$$

How to train your ANN - One-Hot-Encoding and Softmax

For performance we measure (ratio of correct predictions)

$$\frac{1}{n} \sum_{i=0}^{n} \mathbf{1} \left[\underset{j}{\operatorname{argmax}} \, \tilde{y}_{j}^{(i)} = \underset{j}{\operatorname{argmax}} \, y_{j}^{(i)} \right]$$

For optimization (training) we measure

$$\frac{1}{n} \sum_{i=0}^{n} L\left(\operatorname{softmax} \tilde{y}_{j}^{(i)}, y_{j}^{(i)}\right)$$

we measure (ratio of correct predictions)
$$\frac{1}{n}\sum_{i=0}^{n}\mathbf{1}\begin{bmatrix} \arg\max \tilde{y}_{j}^{(i)} = \arg\max y_{j}^{(i)} \end{bmatrix} \\ \text{(training) we measure} \end{cases} \qquad y^{(i)} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \end{pmatrix} \text{softmax } \tilde{y}^{(i)} = \begin{pmatrix} 0.005 \\ \vdots \\ 0.005 \\ 0.97 \\ 0.004 \\ \vdots \\ 0.01 \end{pmatrix}$$

- Why softmax and one-hot-encoding?
 - When L is differentiable, we get a differentiable function (easier to optimize)
 - Even when the result is already correct, the loss is not minimal (and can still be optimized, training increases confidence)
 - Serves the nature of the linear neurons
 - Accumulate input cues, the stronger the signal the better
 - Just accumulate cues for every class in one output neuron (no bounds)

How to train your ANN - Properties of Softmax

Why not regular normalization?

$$norm(x) = \frac{x}{||x||_2}, norm(x) = \frac{x}{||x||_1}$$

- softmax is always non-negative (elementwise)
- you cannot devide by 0 when computing softmax (stability)
- can (and will) be interpreted as probabilities
- ANN output can (and will) be interpreted as log-likelihoods
- Invariant to elementwise offsets (only exponential functions can do this)

i-th element of vector

$$softmax(x+c)_{i} = \frac{e^{x_{i}+c}}{\sum_{j} e^{x_{j}+c}} = \frac{e^{c}e^{x_{i}}}{e^{c}\sum_{j} e^{x_{j}}} = \frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}} = softmax(x)_{i}$$

softmax
$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{e^{y_1}}{\sum e^{y_k}} \\ \vdots \\ \frac{e^{y_m}}{\sum e^{y_k}} \end{pmatrix}}_{\Sigma=1}$$

How to train your ANN – Properties of Softmax

Invariant to elementwise offsets (only exponential functions can do this)

$$\operatorname{softmax}(z+c)_i = \frac{e^{z_i+c}}{\sum_j e^{z_j+c}} = \frac{e^c e^{z_i}}{e^c \sum_j e^{z_j}} = \frac{e^{z_i}}{\sum_j e^{z_j}} = \operatorname{softmax}(z)_i$$

- (Regular norm is invariant to elementwise multiplication with a positive scalar)
- 2-dimensional softmax works like sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{1 + e^z} = \frac{1}{2} \left(1 + \tanh \frac{z}{2} \right)$$

$$\operatorname{softmax} \begin{pmatrix} 0 \\ z \end{pmatrix}_2 = \frac{e^z}{e^0 + e^z} = \frac{e^z}{1 + e^z} = \sigma(z) = \operatorname{softmax} \begin{pmatrix} c \\ z + c \end{pmatrix}_2$$

$$\operatorname{softmax} \begin{pmatrix} 0 \\ z \end{pmatrix}_1 = \frac{e^0}{e^0 + e^z} = \frac{1 + e^z - e^z}{1 + e^z}$$

$$= \frac{1 + e^z}{1 + e^z} - \frac{e^z}{1 + e^z} = 1 - \sigma(z)$$

$$\operatorname{softmax} \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} \frac{e^{y_1}}{\sum e^{y_k}} \\ \vdots \\ \frac{e^{y_m}}{\sum e^{y_k}} \end{pmatrix}$$

$$\sum_{\Sigma=1}^{\infty} \frac{e^{y_1}}{1 + e^z} = 1 - \sigma(z)$$

Training data:

$$(x^{(i)}, y^{(i)}); i = 1, ..., n; y^{(i)} \in \{0, 1\}^m; ||y^{(i)}||_1 = 1, x^{(i)} \in \mathbb{R}^d$$

- Predictions (!): $\tilde{y}^{(i)} = U\sigma\left(Wx^{(i)}\right)$
- Accuracy: $\frac{1}{n} \sum_{i=0}^{n} \mathbf{1} \left[\underset{j}{argmax} \, \tilde{y}_{j}^{(i)} = \underset{j}{argmax} \, y_{j}^{(i)} \right]$
- Loss: $L(x, y, W, U) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\operatorname{softmax} \ \tilde{y}_{j}^{(i)} y_{j} \right)^{2}$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\operatorname{softmax} \left(U\sigma \left(Wx^{(i)} \right) \right)_{j} - y_{j} \right)^{2}$$

Training:
$$W^{(k+1)} = W^{(k)} - \eta \frac{\partial}{\partial W} L(x, y, W^{(k)}, U^{(k)})$$

$$U^{(k+1)} = U^{(k)} - \eta \frac{\partial}{\partial U} L(x, y, W^{(k)}, U^{(k)})$$

$$y^{(i)} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \tilde{y}^{(i)} = \begin{pmatrix} 0.005 \\ \vdots \\ 0.005 \\ 0.97 \\ 0.004 \\ \vdots \\ 0.01 \end{pmatrix}$$

- n samples
- m classes
- d input size

• Simple case: d = 1, m = 1

$$L(x, y, w, u) = \sum_{i=1}^{n} \left(\sigma \left(u\sigma \left(wx^{(i)} \right) \right) - y^{(i)} \right)^{2}$$

$$\frac{\partial}{\partial w}L(x,y,w,u) = \sum_{i=1}^{n} 2\left(\sigma\left(u\sigma\left(wx^{(i)}\right)\right) - y^{(i)}\right) \cdot \sigma'\left(u\sigma\left(wx^{(i)}\right)\right) \cdot u\sigma'\left(wx^{(i)}\right) \cdot x^{(i)}$$

$$\frac{\partial}{\partial u}L(x,y,w,u) = \sum_{i=1}^{n} 2\left(\sigma\left(u\sigma\left(wx^{(i)}\right)\right) - y^{(i)}\right) \cdot \sigma'\left(u\sigma\left(wx^{(i)}\right)\right) \cdot \sigma\left(wx^{(i)}\right)$$

• Simple case: d = 1, m = 1

$$L(x, y, w, v, u) = \sum_{i=1}^{n} \left(\sigma \left(u\sigma \left(v\sigma \left(wx^{(i)} \right) \right) \right) - y^{(i)} \right)^{2}$$

$$\frac{\partial}{\partial w}L(x,y,w,v,u)$$

$$= \sum_{i=1}^{n} 2\left(\sigma\left(u\sigma\left(v\sigma\left(wx^{(i)}\right)\right)\right) - y^{(i)}\right) \cdot \sigma'\left(u\sigma\left(v\sigma\left(wx^{(i)}\right)\right)\right) \cdot u\sigma'\left(v\sigma\left(wx^{(i)}\right)\right) \cdot v\sigma'\left(wx^{(i)}\right) \cdot x^{(i)}$$

Sigmoid is small

$$\sigma(x) \le 1, \sigma'(x) \le \frac{1}{4}$$

Vanishing Gradient

To summarize

- Universal Approximation Theorem: "We do not need to train deep neural networks."
- Vanishing Gradient: "Even if we wanted, we cannot."

$$W^{(k+1)} = W^{(k)} - \eta \frac{\partial}{\partial W} L(x, y, W^{(k)}, U^{(k)})$$
$$U^{(k+1)} = U^{(k)} - \eta \frac{\partial}{\partial U} L(x, y, W^{(k)}, U^{(k)})$$

- Basic form of gradient: $\sum_{i=1}^{n} d\left(x^{(i)}, y^{(i)}, W, U\right)$
- With respect to the previous example:

$$\frac{\partial}{\partial w}L(x,y,w,u) = \sum_{i=1}^{n} 2\left(\sigma\left(u\sigma\left(wx^{(i)}\right)\right) - y^{(i)}\right) \cdot \sigma'\left(u\sigma\left(wx^{(i)}\right)\right) \cdot u\sigma'\left(wx^{(i)}\right) \cdot x^{(i)}$$

$$:=d(x^{(i)},y^{(i)},w,u)$$

$$W^{(k+1)} = W^{(k)} - \eta \frac{\partial}{\partial W} L(x, y, W^{(k)}, U^{(k)})$$
$$U^{(k+1)} = U^{(k)} - \eta \frac{\partial}{\partial U} L(x, y, W^{(k)}, U^{(k)})$$

- Basic form of gradient: $\sum_{i=1}^{n} d\left(x^{(i)}, y^{(i)}, W, U\right)$
- Batch gradient descent: $W^{(k+1)} = W^{(k)} \eta \sum_{i=1}^{n} d(x^{(i)}, y^{(i)}, W^{(k)}, U^{(k)})$
- Stochastic gradient descent: $W^{(k+1)} = W^{(k)} \eta d(x^{(r)}, y^{(r)}, W^{(k)}, U^{(k)})$
- $\qquad \text{Minibatch gradient descent} \quad W^{(k+1)} = W^{(k)} \eta \sum_{i \in B} d(x^{(i)}, y^{(i)}, W^{(k)}, U^{(k)})$
- \blacksquare B is a number of randomly drawn indices for training examples, r is a random index

How to train your ANN - Batch Training

- Minibatch is also called batch (weird nomenclature)
- In large datasets
 - Not all training examples can be kept in working memory
 - Training examples may repeat and be redundant, we do not need all of them
 - Using SIMD architectures (e.g., GPUs) a batch may be computed in parallel
- Gradient may be instable
- In practice batches are not drawn randomly
 - Shuffle training set beforehand
 - Take consecutive examples
- Usual batch sizes: 1, 2, 4, 8, 16, 32, 64
- Other reasons: Later...

$$W^{(k+1)} = W^{(k)} - \eta \sum_{i \in \text{BATCH}} d(x^{(i)}, y^{(i)}, W^{(k)}, U^{(k)})$$

How to train your ANN - Mini-Batch Training

$$W^{(k+1)} = W^{(k)} - \eta \sum_{i \in \text{BATCH}} d(x^{(i)}, y^{(i)}, W^{(k)}, U^{(k)})$$

- Varying batch sizes
 - Use small batch size when network starts training
 - Increase when network gets better (and needs a clearer gradient)
- Good idea, but not used in practice

DEEP NEURAL NETS

- 3-Layer network can approximate any continuous function
- More layers tend to work better
 - Not quite clear why
 - Handwavy: Natural phenonemons are hierarchically structered
 - Hopefully layers will adapt to those different

phenomenons

- Vanishing Gradient Problem
- Many, many parameters

Alex Krizhevsky et al.

DEEP NEURAL NETS - ADAPTATIONS

- Sigmoid function causes vanishing gradient
 - replace it with a function with a derivative that
 - is not (sytematically) less than 1 (vanishing gradient)
 - is not (systematically) larger than 1 (exploding gradient)

simplest imaginable non-linear function that qualifies

$$\sigma(z) \to \text{ReLU}(z) = \max\{0, z\} = z^+$$

This is a switch: If sufficient input is accumulated, the neuron puts it through.

DEEP NEURAL NETS - ADAPTATIONS

- Sigmoid function causes vanishing gradient
 - replace it with a function with a derivative that
 - is not (sytematically) less than 1 (vanishing gradient)

simplest imaginable non-linear function that qualifies

$$\sigma(z) \to \text{ReLU}(z) = \max\{0, z\} = z^+$$

ReLU (Rectified Linear Unit) is not differentiable (in a strict sense)

$$ReLU'(z) := \begin{cases} 0 \text{ for } z < 0\\ 1 \text{ for } z \ge 0 \end{cases}$$

- This is a so-called subgradient
- Regarding optimization this is as good as a real gradient.

How to train your ANN for Classification

Training data:

$$(x^{(i)}, y^{(i)}); i = 1, ..., n; y^{(i)} \in \{0, 1\}^m; ||y^{(i)}||_1 = 1, x^{(i)} \in \mathbb{R}^d$$

- Model: Multi-layer neural network with ReLU as non-linearities $ilde{y}^{(i)} = U \cdot \mathrm{ReLU}\left(Wx^{(i)}\right)$
- One-hot-encoding as output layer, thus softmax
- Accuracy: $\frac{1}{n} \sum_{i=0}^{n} \mathbf{1} \left[argmax \, \tilde{y}_{j}^{(i)} = argmax \, y_{j}^{(i)} \right]$
- Cross-entropy loss: $L(x, y, W, U) = \sum_{i=1}^{n} d(y^{(i)}, \tilde{y}^{(i)})$
- Training: (Mini-)batch gradient descent

$$W^{(k+1)} = W^{(k)} - \eta \sum_{i \in \text{BATCH}} d(x^{(i)}, y^{(i)}, W^{(k)}, U^{(k)})$$

$$y^{(i)} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \tilde{y}^{(i)} = \begin{pmatrix} 0.005 \\ \vdots \\ 0.005 \\ 0.97 \\ 0.004 \\ \vdots \\ 0.01 \end{pmatrix}$$

- n samples
- m classes
- d input size

DEEP NEURAL NETS - ADAPTATIONS

• Hidden layers: $\sigma(z) \to \text{ReLU}(z) = \max\{0, z\} = z^+$

Output layer:
$$\operatorname{softmax}(z)_i = \frac{exp(z_i)}{\sum\limits_k exp(z_k)}$$

- Non-linearity only around the origin
 - Weights too large
 - everything is put through
 - linear behaviour (and no need for several layers)
 - Weights too small
 - nothing is put through
 - constant zero and no gradient (no learning)
 - Initialize small weights $\,W \sim \mathcal{N}(0,0.1)\,$
 - some examples are put through, some are not

DEEP NEURAL NETS - ADAPTATIONS

• Hidden layers: $\sigma(z) \to \text{ReLU}(z) = \max\{0, z\} = z^+$

Output layer:
$$\operatorname{softmax}(z)_i = \frac{exp(z_i)}{\sum\limits_k exp(z_k)}$$

- Non-linearity only around the origin
 - Weights too large
 - everything is put through
 - linear behaviour (and no need for several layers)
 - Weights too small
 - nothing is put through
 - constant zero and no gradient (no learning)
 - Input data preparation

$$x^{(k)} := \frac{x^{(k)} - \operatorname{mean}(x^{(1)}, ..., x^{(n)})}{\operatorname{std}(x^{(1)}, ..., x^{(n)})}$$

- We proposed $L(y,y') = ||y-y'||_2 = \sum_i (y_i y_i')^2$ Used, e.g., in regression
- To find another (better) loss function, cast problem in probabilistic framework
- I.e. we assume the network with weights W yields the probability that y is the underlying class if an input x occurs

$$x \mapsto p_{\text{model}}(y|x;W)$$

Probability should be as high as possible for the training examples

$$p_{\text{model}}(y^{(1)}, ..., y^{(n)} | x^{(1)}, ..., x^{(n)}; W)$$

$$= \prod_{i=1}^{n} p_{\text{model}}(y^{(i)} | x^{(i)}; W)$$

- **Log-likelihood trick**: logarithm of that expression is
 - $\sum \log p_{\text{model}}(y^{(i)}|x^{(i)};W)$

- *n* samples
- *m* classes
- d input size

$$x \mapsto p_{\text{model}}(y|x;W)$$

Probability should be as high as possible for the training examples

$$p_{\text{model}}(y^{(1)}, ..., y^{(n)} | x^{(1)}, ..., x^{(n)}; W)$$

$$= \prod_{i=1}^{n} p_{\text{model}}(y^{(i)} | x^{(i)}; W)$$

Log-likelihood trick: logarithm of that expression is

$$\sum_{i=1}^{n} \log p_{\text{model}}(y^{(i)}|x^{(i)};W)$$

- Easier to optimize
 - differentiating sums is easier than products
 - variables are decoupled
- Negative log-probability can be seen as information / surprise of a variable
 - information is always positive
 - independent variables carry the sum of their information
- That is, maximizing the log-likelihood we minimize the surprise

- n samples
- m classes
- d input size

To find a good neural network, we maximize

$$\underset{W}{\operatorname{arg \, max}} \sum_{i=1}^{n} \log p_{\text{model}}(y^{(i)}|x^{(i)};W)$$

 If we had a probability for each example, we could do even better in minimizing surprise

$$\underset{W}{\operatorname{arg\,min}} - \sum_{i=1}^{n} p_{\text{\tiny data}}(y^{(i)}|x^{(i)}) \log p_{\text{\tiny model}}(y^{(i)}|x^{(i)};W)$$

For many training examples this expression then approximates

$$\underset{W}{\operatorname{arg \, min}} \, \mathbb{E}_{y|x \sim p_{\text{data}}} \left[-\log p_{\text{model}}(y^{(i)}|x^{(i)};W) \right]$$

- This is called cross-entropy and is actually a measure of difference between
 - the true data distribution
 - the distribution modelled by the network

- n samples
- m classes
- d input size

$$\operatorname{softmax} \begin{pmatrix} 21\\34\\\vdots\\10,000\\\vdots\\680 \end{pmatrix} \to \underbrace{\begin{pmatrix} 0.002\\0.004\\\vdots\\0.927\\\vdots\\0.03 \end{pmatrix}}_{\sum=1}$$

- We proposed $L(y,y')=||y-y'||_2=\sum_i(y_i-y_i')^2$ Used, e.g., in regression
- To find another (better) loss function, cast problem in probabilistic framework
- Cross-entropy measures distance between two distributions (one of them just consisting of peaks where the training data lies)
- However, our model is a bit different: For each input it generates a discrete distribution over the classes (not just a single probability)
- Cross-entropy also allows us to compare the generated distribution with the true distribution (given by y)

$$d_{\text{CE}}(y, y') = -\sum_{k=1}^{m} y_k \log y'_k$$

$$d_{\text{CE}}\begin{pmatrix} \begin{pmatrix} 0\\0\\\vdots\\1\\0\end{pmatrix}, \begin{pmatrix} 0.002\\0.004\\\vdots\\0.927\\\vdots\\0.03\end{pmatrix} \end{pmatrix} = -1 \cdot \log 0.927 \qquad \qquad \textbf{m classes} \\ \qquad \textbf{d input size}$$

$$\operatorname{softmax}\begin{pmatrix} 21\\34\\\vdots\\10,000\\\vdots\\680 \end{pmatrix} \to \underbrace{\begin{pmatrix} 0.002\\0.004\\\vdots\\0.927\\\vdots\\0.03 \end{pmatrix}}_{\sum=1}$$

 Cross-entropy also allows us to compare the generated distribution with the (assumed) true distribution (given by y)

$$d_{\text{CE}}(y, y') = -\sum_{k=1}^{m} y_k \log y'_k$$

$$d_{\text{CE}} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0.002 \\ 0.004 \\ \vdots \\ 0.927 \\ \vdots \\ 0.03 \end{pmatrix} = -1 \cdot \log 0.927$$

$$y^{(i)} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

- Faster to compute (only one term not a sum of several terms)
 - Uses fact that increase in one variable means decrease in other variables
- Softmax was made for cross-entropy

$$d_{CE}(y, \text{softmax}(a_1, ..., a_m)) = -\sum_{k=1}^m y_k \log \frac{e^{a_k}}{\sum_j e^{a_j}} = -\log \frac{e^{a_l}}{\sum_j e^{a_j}}$$

$$\frac{d}{da_i} d_{CE}(y, \text{softmax}(a_1, ..., a_m)) = \frac{d}{da_i} \left(-\sum_{k=1}^m y_k \log \frac{e^{a_k}}{\sum_j e^{a_j}} \right) \underset{y_l=1}{=} \frac{d}{da_i} \left(-\log e^{a_l} + \log \sum_j e^{a_j} \right)$$

softmax
$$\begin{pmatrix} 21\\34\\\vdots\\10,000\\\vdots\\680 \end{pmatrix} \rightarrow \underbrace{\begin{pmatrix} 0.002\\0.004\\\vdots\\0.927\\\vdots\\0.03 \end{pmatrix}}_{\sum=1}$$

Softmax was made for being combined with cross-entropy (literally)

$$\begin{split} d_{\text{CE}}(y, & \text{softmax}(a_1, ..., a_m)) \underset{y_l = 1}{=} - \sum_{k = 1}^m y_k \log \frac{e^{a_k}}{\sum_j e^{a_j}} \\ \frac{d}{da_i} d_{\text{CE}}(y, & \text{softmax}(a_1, ..., a_m)) \underset{y_l = 1}{=} \frac{d}{da_i} \left(- \sum_{k = 1}^m y_k \log \frac{e^{a_k}}{\sum_j e^{a_j}} \right) = \frac{d}{da_i} \left(- \log e^{a_l} + \log \sum_j e^{a_j} \right) \\ = \begin{cases} \frac{e^{a_i}}{\sum_j e^{a_j}} & i \neq l \\ -1 + \sum_j e^{a_i} & i = l \end{cases} \\ = & \text{softmax}(a_1, ..., a_m) - y \end{split}$$

- n samples
- m classes
- d input size

How to train your ANN for Classification

Training data:

$$(x^{(i)}, y^{(i)}); i = 1, ..., n; y^{(i)} \in \{0, 1\}^m; ||y^{(i)}||_1 = 1, x^{(i)} \in \mathbb{R}^d$$

- Model: Multi-layer neural network with ReLU as non-linearities $ilde{y}^{(i)} = U \cdot \mathrm{ReLU}\left(Wx^{(i)}\right)$
- One-hot-encoding as output layer, thus softmax
- Accuracy: $\frac{1}{n} \sum_{i=0}^{n} \mathbf{1} \left[argmax \, \tilde{y}_{j}^{(i)} = argmax \, y_{j}^{(i)} \right]$
- Cross-entropy loss: $L(x, y, W, U) = \sum_{i=1}^{n} d_{CE}(y^{(i)}, \tilde{y}^{(i)})$
- Training: (Mini-)batch gradient descent

$$W^{(k+1)} = W^{(k)} - \eta \sum_{i \in \text{BATCH}} d(x^{(i)}, y^{(i)}, W^{(k)}, U^{(k)})$$

$$y^{(i)} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \tilde{y}^{(i)} = \begin{pmatrix} 0.005 \\ \vdots \\ 0.005 \\ 0.97 \\ 0.004 \\ \vdots \\ 0.01 \end{pmatrix}$$

- n samples
- m classes
- d input size

COMPUTER VISION

- This course is about computer vision (we want to work with images)
 - images are high-dimensional
 - images contain structural information
 - a pixel value can help to predict pixel values in the close vicinity
 - the pixel belong to the same object / texture
 - a pixel value cannot meaningfully predict pixel values in far distance
 - the pixels may belong to different objects / textures
 - images are (somewhat) smooth structures
 - pixel values oftentimes do not change a lot

COMPUTER VISION

- This course is about computer vision (we want to work with images)
 - images are high-dimensional
 - images contain structural information
- Idea: Let the neural network find out that images are smooth if necessary
 - Learning this will take many images
 - Curse of dimensionality
- We must help the neural network to use vicinity information
 - new operation
 - preferably linear
 - that's convolution

CONVOLUTIONS - RECAP

- Select (rectangular) vicinity (or window) of fixed size
- Perform a fixed linear mapping with the intensity values
 - i.e. multiply values with given weight and sum them up
 - this is our basic neuron model from before

1/10 2/10 1/10 *	1/10	1/10	1/10	
1/10 1/10 1/10	1/10	2/10	1/10	*
	1/10	1/10	1/10	

4	3	2	4	5
6	2	4	4	5
3	5	3	7	6
6	1	9	8	7
2	1	1	2	7

$$\frac{1}{10} \cdot 4 + \frac{1}{10} \cdot 3 + \frac{1}{10} \cdot 2 + \frac{1}{10} \cdot 6 + \frac{2}{10} \cdot 2 + \frac{1}{10} \cdot 4 + \frac{1}{10} \cdot 3 + \frac{1}{10} \cdot 5 + \frac{1}{10} \cdot 3$$

3.4	3.9	4.9	
4.3	3.9	3.9	
4.6	4.7	4.8	

CONVOLUTIONS – TREATING THE BORDER

- For the border there are different strategies
 - normally neural networks just ignore the border (resulting image gets smaller by half the filter size on each side)
 - else "invent" something
 - mirroring / constant values / modulo

1,	/10	1/10	1/10	
1/	10	2/10	1/10	*
1/	10	1/10	1/10	

3	2	4	5
2	4	4	5
5	3	7	6
1	9	8	7
1	1	2	7
		5 3	5 3 71 9 8

$$\frac{\frac{1}{10} \cdot 4 + \frac{1}{10} \cdot 3 + \frac{1}{10}}{2 + \frac{1}{10} \cdot 6}$$

$$2 + \frac{\frac{1}{10} \cdot 6}{10} \cdot 2 + \frac{1}{10} \cdot 4 + \frac{1}{10} \cdot 3$$

$$3 + \frac{1}{10} \cdot 5 + \frac{1}{10} \cdot 3$$

Χ	Х	Х	Х	X
X	3.4	3.9	4.9	Χ
X	4.3	3.9	3.9	Χ
X	4.6	4.7	4.8	X
X	X	X	X	X

CONVOLUTIONS - INTERPRETATION

- Can be seen as a scalar product as well (which in turn is some measure of similarity)
- Convolution is block pattern matching (if the values were normalized)
- The masks can be regarded as "small images" that are searched in the input image

	1/10	1/10	1/10
*	1/10	2/10	1/10
	1/10	1/10	1/10

4	3	2	4	5
6	2	4	4	5
3	5	3	7	6
6	1	9	8	7
2	1	1	2	7

$$\frac{1}{10} \cdot 4 + \frac{1}{10} \cdot 3 + \frac{1}{10} \cdot 2 + \frac{1}{10} \cdot 6 + \frac{2}{10} \cdot 2 + \frac{1}{10} \cdot 4 + \frac{1}{10} \cdot 3 + \frac{1}{10} \cdot 5 + \frac{1}{10} \cdot 3$$

X	X	X	X	X
X	3.4	3.9	4.9	X
X	4.3	3.9	3.9	X
X	4.6	4.7	4.8	X
X	X	X	X	X

CONVOLUTIONS – MORE THAN 2D

- Images can have several channels (e.g. colors, sensor modes)
- Convolution idea stays the same, linear mapping in a small vicinity
- Channels are spatially correlated (the same pixel position carries information about the same location in different channels)
- Thus, we use windows with small spatial extent, but usually over all channels

DEEP NEURAL NETWORKS

CONVOLUTIONS – MORE THAN 2D

0	1/18	0
0	2/18	0
0	1/18	0

1/18	1/18	1/18
1/18	2/18	1/18
1/18	1/18	1/18

2	6	5	8	1
8	0	4	4	5
3_	5	3	7	6
5	1	9	8	7
2	1	1	2	7

	4	4	3	1	2
I	2	0	4	4	5
	3	5	3	7	6
	6	1	9	8	7
	5	1	1	2	7

$\frac{1}{18} (1 \cdot$	$8 + 2 \cdot 2 + 1 \cdot 4$
+	$1 \cdot 4 + 2 \cdot 2 + 1 \cdot 5$
+	$1 \cdot 4 + 1 \cdot 3 + 1 \cdot 2$
+	$1 \cdot 6 + 2 \cdot 2 + 1 \cdot 4$
+	$1\cdot 3 + 1\cdot 5 + 1\cdot 3)$
=	3.5

Χ	Χ	Χ	Χ	Χ
X	3.5	3.7	4.3	X
X	4.1	4.6	6.1	Χ
X	3.2	5.3	6.4	X
X	X	X	Χ	X

4	3	2	4	5
6	2	4	4	5
3	5	3	7	6
6	1	9	8	7
2	1	1	2	7

CONVOLUTIONS – LESS THAN 2D, MORE THAN 3D

- Next dimension: Time
- As with spatial vicinity signals correlate in close temporal vicinity
- 1D: e.g. audio signals, audio pressure for each time step
 - Convolution (with a 1D mask) works analogously
 - Mask can be regarded as short sound snippet
 - Breakthroughs in audio processing (e.g. natural language processing)
 - Not this course
- 4D: e.g. color videos [height x width x channels x time]
 - Convolution works analogously (with a 4D mask, limited spatial, full channel-wise, limited temporal extent)
 - Mask can be regarded as section of a video snippet

CONVOLUTIONS – INVARIANCES

- Window is mapped independently of position
- Only intensity values matter (not position in image)
- Translational invariance (in fact: translational covariance)
- No rotational invariance, scale invariance, perspective invariance (we care about that later)

CONVOLUTIONS - CAST IN THE NEURAL NETWORK SETTING

- Window is mapped independently of position
- Regard each pixel value (of each channel) as an input neuron
 - input neurons are not connected to all neurons in the first hidden layer
 - different input neurons share the same weights (weight sharing)

1/10 1/10 1/10 1/10 2/10 1/10 **	4	3	2	4	5				
1/10 2/10 1/10	6	2	4	4	5		3.4	3.9	
	3	5	3	7	6		4.3	3.9	
	6	1	9	8	7		4.6	4.7	
	2	1	1	2	7				

CONVOLUTIONS - CAST IN THE NEURAL NETWORK SETTING

- Window is mapped independently of position
- Regard each pixel value (of each channel) as an input neuron
 - input neurons are not connected to all neurons in the first hidden layer
 - different input neurons share the same weights (weight sharing)

CONVOLUTIONS – EXAMPLE

CONVOLUTIONS – EXAMPLE

CONVOLUTIONS – FEATURE MAPS

- Using convolutions with several filter masks yields multiple resulting images with the same size
- Can be interpreted as another image with multiple channels
- Called Feature Map
- Hopefully the channels of the feature map contain useful information like the location of certain characteristics

CONVOLUTIONS – FEATURE MAPS

- Location of features can be combined to form more complex features (like a configuration of nose and eyes can form a face)
- Checking if certain features are in spatial vicinity and local arrangement can be done by ...
- another convolution

CONVOLUTIONS – FEATURE MAPS

- Stacking convolutions will allow us to detect small features and combine them to larger features
- Each new layer of convolutions will hopefully detect more complex features
- Until a convolution will be able to decide whether a certain object (here: cat) is visible in the image

CONVOLUTIONS – DOWNSCALING

- Sometimes it is important to deal with deformations / change in perspective
- The arrangement of features is not fixed
- For that we must reduce the resolution of feature maps but retain the important information
- Also concatenating convolutions (they are linear) only results in convolution
- As with feedforward networks we need a non-linearity

CONVOLUTIONS – DOWNSCALING

- For that we must reduce the resolution of feature maps but retain the important information
- Also concatenating convolutions (they are linear) only results in convolution
- As with feedforward networks we need a non-linearity
- Meet Max-Pooling

Max-Pooling

- Another operation (similar to convolution, but not linear)
- Again, take a small vicinity of pixels (like 2x2 or 3x3) and slide over the input image
- Take the maximum value of the vicinity and map it to only one resulting pixel (that is the resulting image will be scaled down by 2 (if 2x2) or 3 (if 3x3))
- I.e. surpressing unimportant features next to more dominant ones

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

ComputerScienceWiki.org

LENET

- Network with 7 layers (not counting input)
- Convolutions and Max-Pooling
- Final 3 layers are fully-connected (like a regular feedforward network)

LeCun, Yann, et al (Y. Bengio). **Gradient-based learning applied to document recognition.**. 1998

LENET

- Network with 7 layers (not counting input)
- Convolutions and Max-Pooling
- Final 3 layers are fully-connected (like a regular feedforward network)
- Tested extensively on MNIST database (modified NIST (National Institute for Standards and Technology))

LeCun, Yann, et al (Y. Bengio). **Gradient-based learning applied to document recognition.**, 1998

MNIST - Modified National Institute of Standard and Technology

- Single handwritten digit classification, 0 9
- 60,000 images for training, 10,000 for testing
- Binary images
- 28 x 28 pixels (784-dimensional vector)
- Current best error rate:0.23% test error by Ciresan
- 3-Layer feed forward network (500 + 150 hidden units): 2.95%

Ciresan, Meier, Schmidhuber. **Multi-column Deep Neural Networks for Image Classification**, Computer Vision and Pattern Recognition 2012

LENET

- Tested extensively on MNIST database
- Error rate on test set: 0.8%

LeCun, Yann, et al (Y. Bengio). **Gradient-based learning applied to document recognition.**, 1998

STRIDED CONVOLUTION

- Combine convolution (feature search) and downscaling in one step
- Extend convolution operation a little bit (not done in classical image processing)
- Shift the linear mapping over the window, but do not compute for the vicinity of every pixel
- Instead only take each s-th pixel where s is called the stride
- Thus, a stride of s pixel will yield a resulting feature map with 1/s of the input resolution
- Hopefully feature search will already succeed if a pixel in the vicinity of the feature is hit
- Extending the convolution in this way spares the max-pooling (fully convolutional network)
- Still needs a non-linearity, e.g., ReLU

STRIDED CONVOLUTION: STRIDE 2

1/10	1/10	1/10	
1/10	2/10	1/10	7
1/10	1/10	1/10	

2	6	5	8	1	1	2
8	2	4	4	5	0	3
3	5	3	7	6	0	1
5	①	9	(3)	7	0	4
2	1	1	2	7	1	6
1	8	3	7	5	@	0
4	1	6	9	5	7	0

$$\frac{1}{10} \left(1 \cdot 2 + 1 \cdot 6 + 1 \cdot 5 + 1 \cdot 8 + 2 \cdot 2 + 1 \cdot 4 + 1 \cdot 3 + 1 \cdot 5 + 1 \cdot 3 \right)$$

$$= 4.0$$

4.0	4.7	3.7
4.3	5.8	3.6
3.5	5.2	4.7

STRIDED CONVOLUTION: STRIDE 2

1/10	1/10	1/10	
1/10	2/10	1/10	7
1/10	1/10	1/10	

2	6	5	8	1	1	2
8	2	4	4	5	9	3
3_	5	3	7	6	0	1
5	1	9	8	7	0	4
2	1	1	2	Z.	1	6
1	8	3	7	5	8	0
4	1	6	9	5	7	0

$$\frac{1}{10} (1 \cdot 2 + 1 \cdot 6 + 1 \cdot 5 + 1 \cdot 8 + 2 \cdot 2 + 1 \cdot 4 + 1 \cdot 3 + 1 \cdot 5 + 1 \cdot 3)$$

$$= 4.0$$

4.0	4.7	3.7
4.3	5.8	3.6
3.5	5.2	4.7

TRANSPOSED CONVOLUTION

- Also known as (do not use): Deconvolution, (Inverse Convolution), Upconvolution
- Upscaling effect
- Effect: Paste the scaled mask into the result image
 - Sum up overlapping patches
- Example: Transposed convolution with 3x3 mask with stride 3

1	1	1			
1	2	1	*	4	3
1	1	1	Т	2	0

4	4	4	3	3	3
4	<u>@</u>	4	3	6	3
4	4	4	3	3	3
2	2	2	0	0	0
2	4	2	0	0	0
2	2	2	0	0	0

TRANSPOSED CONVOLUTION

- Also known as (do not use): Deconvolution, (Inverse Convolution), Upconvolution
- Upscaling effect
- Effect: Paste the scaled mask into the result image
 - Sum up overlapping patches
- Example: Transposed convolution with 3x3 mask with stride 2

1	1	1			
1	2	1	*	4	3
1	1	1	Т	2	0

4	4	7	3	3
4	8	7	6	3
6	6	9	3	3
2	4	2	0	0
2	2	2	0	0

4	4	4	3	3	3
4	<u>@</u>	4	3	6	3
4	4	4	3	3	3
2	2	2	0	0	0
2	4	2	0	0	0
2	2	2	0	0	0

TRANSPOSED CONVOLUTION

- Also known as (do not use): Deconvolution, (Inverse Convolution), Upconvolution
- Upscaling effect
- Effect: Paste the scaled mask into the result image
 - Sum up overlapping patches
- Example: Transposed convolution with 3x3 mask (with stride 1)

1	1	1			
1	2	1	*	4	3
1	1	1	T	2	0

4	7	7	3
6	13	12	3
6	11	12	3
2	4	2	0

4	4	4	3	3	3
4	8	4	3	6	3
4	4	4	3	3	3
2	2	2	0	0	0
2	4	2	0	0	0
2	2	2	0	0	0

WHY IS IT CALLED "TRANSPOSED" CONVOLUTION?

- Convolution is a linear mapping (between finite-dimensional vector spaces)
- Hence, it can be delineated as a matrix multiplication

1		_	_	.							
	1	1	1		4	3	2	4		39	38
	4	2	4	*		_			_		
	-		_		6	2	4	4		11	46
	1	1	1		O	_	4	4		44	40
Į	ı	ı	'						· '		
					3	5	3	7			
					6	1	9	8			
					כ	1	7	٥			

WHY "TRANSPOSED" CONVOLUTION?

1	1	1		4	3	2	4
1	2	1	*	6	2	4	4
1	1	1		3	5	3	7
				6	1	9	8

4		
3		
2		
4		
6		
2		
4		$\sqrt{39}$
4	_	38
3		44
5		$\sqrt{46}$
3		, ,
3 7 6		
6		
1		
9		
(8)		

WHY "TRANSPOSED" CONVOLUTION?

 The transposed convolution can be computed with the corresponding transposed matrix

4	,	,					2	5	5	3
1	2	1	*_	2	3	_	3	8	9	3
1	1	1	ı	1	0	_	3	7	6	3
			•				1	1	1	0

	_	
0	0	0/
1	0	0
1	0	0
1	0	0
0	1	0
1	1	1
2	1	1
1	0	1
	1	0
1		1 2
1	1	2
1	0	1 0
	1	0
0	1	1
0	1	1
0	0	1/
	1 1 0 1 2 1 0 1 1 1 0 0 0 0	1 0 1 0 1 0 0 1 1 1 2 1 1 0 0 1 1 2 1 1 1 0 0 1 0 1

$$\begin{pmatrix} 2 \\ 5 \\ 5 \\ 3 \\ 8 \\ 9 \\ 3 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 3 \\ 8 \\ 9 \\ 3 \\ 7 \\ 6 \\ 3 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

TO SUMMARIZE: CONVOLUTIONAL NEURAL NETS

- Neural net with parameter reuse
- Each layer gets an image with c channels as input
- This is convoluted with d filters of size $k \times k$
- Resulting in an image with d channels
- Idea: Find certain local image patches / patterns

Alex Krizhevsky et al.

To summarize: Convolutional Neural Nets

- Idea: Exact location of image patch is not so important
- Compress information
- Maxpool-Layers: Take small window (e.g., 2x2) and only propagate maximum value to next layer

Alex Krizhevsky et al.

TO SUMMARIZE: CONVOLUTIONAL NEURAL NETS

- Idea: In the end only relevant information is propagated
- Use classical neural net (fully-connected) to classify results

Alex Krizhevsky et al.

