Chapter 1

Introduction to algorithm design

n/a

Chapter 2

Algorithm analysis

Notes

The dominance pecking order:

$$n! \gg c^n \gg n^3 \gg n^2 \gg n^{1+\epsilon} \gg n \log n \gg n \gg \sqrt{n} \gg \log^2 n \gg \log n \gg \log n / \log \log n \gg \log \log n \gg \alpha(n) \gg 1$$

Solutions

2-10

(a) $f(n) = (n^2 - n)/2$, g(n) = 6n.

Is f(n) = O(g(n))? If so, there is c such that $f(n) \le cg(n)$ for sufficiently large n.

$$\frac{1}{2}(n^2 - n) \le 6n \to n^2 - n \le 12n \to n(n-1) \le 12n$$

Suppose there is such a c, then

$$n(n-1) \le 12cn \to n-1 \le 12c$$

Clearly we can always find n such that this inequality won't hold, so $f(n) \neq O(g(n))$.

Is g(n) = O(f(n))? If so, there is c such that $g(n) \le cf(n)$ for sufficiently large n.

$$6n \leq \frac{1}{2} \left(n^2 - n \right) \ \to \ 12n \leq n^2 - n = n(n-1) \ \to \ 12 \leq n-1 \ \to \ 13 \leq n.$$

So with c=1 the inequality will hold for $n_0 \ge 13$, and g(n) = O(f(n)).

- (b) $f(n) = n + 2\sqrt{n}, g(n) = n^2$.
 - $f(n) = O(g(n)) \Leftrightarrow f(n) \le cg(n)$ for sufficiently large n.

$$n + 2\sqrt{n} \le cn^2$$
, with $c = 1$,
 $n + 2\sqrt{n} \le 2n$ for $n > 4$,
 $2n \le n^2$ so $f(n) = O(g(n))$.

 $g(n) = O(f(n)) \Leftrightarrow g(n) \leq cf(n)$ for sufficiently large n. But this asks to find c such that $n^2 \leq c(n+2\sqrt{n})$; since ultimately $n^2 \gg n$, $g(n) \neq O(f(n))$.

(c) $f(n) = n \log n, \ g(n) = n\sqrt{n}.$

$$f(n) = O(g(n)) \Leftrightarrow n \log n \le cn\sqrt{n}$$
, with $c = 1$,
 $\to \log n \le \sqrt{n/2}$,

since $\sqrt{n} \gg \log n$, f(n) = O(g(n)).

By the same argument, $g(n) \neq O(f(n))$.

- (d) $f(n) = n + \log n$, $g(n) = \sqrt{n} \rightarrow n + \log n \le c\sqrt{n}$, and since $n \gg \sqrt{n}$, any constant factor will be dominated by the linear term, so $f(n) \ne O(g(n))$. Conversely and by the same argument, g(n) = O(f(n)).
- (e) $f(n) = 2(\log n)^2$, $g(n) = \log n + 1$. Note that $2(\log n)^2 = 2\log^2 n$, and $\log^2 n \gg \log n$, so g(n) = O(f(n)) and $f(n) \neq O(g(n))$.
- (f) $f(n) = 4n \log n + n$, $g(n) = (n^2 n)/2$. We know that $n \log n \gg n$, so we can consider just this term from f(n). But ultimately the quadratic term in g(n) dominates so f(n) = O(g(n)).

2-11

(a) $f(n) = 3n^2$, $g(n) = n^2$.

With c = 3, f(n) < 3q(n) so f(n) = O(q(n)).

 $f(n) = \Omega(n) \Leftrightarrow cg(n) \leq f(n)$ for sufficiently large n. For c = 1 the inequality holds, so $f(n) = \Omega(g(n))$ and $f(n) = \Theta(g(n))$.

(b) $f(n) = 2n^4 - 3n^2 + 7$, $g(n) = n^5$.

 $n^5 \gg n^4$ so f(n) = O(q(n)) and $f(n) \neq \Omega(q(n))$.

(c) $f(n) = \log n, \ g(n) = \log n + \frac{1}{n}$.

 $\lim_{n\to\infty}\frac{1}{n}=0$, so as $n\to\infty$, f(n)-g(n)=0. So no function dominates the other. Thus, $f(n)=\Theta(g(n))$.

(d)
$$f(n) = 2^{k \log n}$$
, $g(n) = n^k$.

$$f(n) = O(g(n)) \Leftrightarrow f(n) \leq cg(n)$$

$$\to 2^{k \log n} \leq cn^k$$
; taking logarithms,
$$\to \log \left(2^{k \log n}\right) \leq \log \left(cn^k\right) = \log c + \log n^k$$

$$\to k \log n \log 2 \leq \log c + k \log n.$$

Ignoring constant terms and multiplicative constants, we are left with $\log n \leq \log n$, so $f(n) = \Theta(g(n))$.

(e)
$$f(n) = 2^n$$
, $g(n) = 2^{2n}$.
 $2^n \le c2^{2n}$ clearly holds for $c = 1$, so $f(n) = O(g(n))$.
 $c2^{2n} \le 2^n$? Well, $2^{2n} = 2^2 \cdot 2^n = 4 \cdot 2^n$, so $4c2^n \le 2^n$ is satisfied with $c = 1/4$. So $f(n) = \Omega(g(n))$ and finally, $f(n) = \Theta(g(n))$.