Subsets & Power Sets

Links: Math 3336

Lecture Video 11: Subsets, Power Sets; Textbook Section 1.3, 1.4

Subsets

A set B is a **subset** of another set A if every $b \in B$ satisfies $b \in A$ (i.e. if every element of B is also an element of A)

"every element in the second set is in the first set"

notation

subset:

 $B \subseteq A$

allows for the possibility that B = A

proper subset:

 $B \subset A$

"there are elements in A that are not in B"

example

 $\mathbb{N}\subseteq\mathbb{Z}$ (can also be written as the proper subset $\mathbb{N}\subset\mathbb{Z}$) all together:

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$$

"naturals are a subset of integers which are a subset of rationals which are a subest of reals"

(remember the familiar sets talked about in lecture video 9)

extended further (chain of familiar sets)

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

"naturals are a *proper* subset of integers, which are a proper subset of rationals, which are a proper subset of reals, which are a proper subset of complex numbers" (with \mathbb{C} being complex numbers)

The empty set, ϕ , is a subset of **all** sets!

Given any set S, $\phi \subseteq S$ (this is vaccuously true)

Power Set

The power set of a given set, S, is $\mathscr{P}(S)=\{all\ subsets\ of\ S\}$ $\mathscr{P}=\{x:\ x\subseteq S\}$

The power set is a *set of sets*, for instance, $\phi \in \mathscr{P}(S)$ its also true that $\phi \subseteq \mathscr{P}(S)$, as well as $S \in \mathscr{P}(S)$

summary:

$$x\in\mathscr{P}(S)\Leftrightarrow x\subseteq S$$

"x is an element power set of some set S, is the same thing as saying that x is a subset of S"

$$\begin{array}{l} \text{if } |S|=n \text{, then } |\mathscr{P}(S)|=2^n \\ \text{also } |S|=n=log_2(|\mathscr{P}(S)|) \end{array}$$