

Inferenza proposizionale

Federico Chesani

DISI

Department of Informatics – Science and Engineering

Disclaimer & Further Reading

- These slides are largely based on previous work by Prof. Paola Mello
- Russell Norvig, AlMA, vol. 1 ed. italiana:
 - Cap. 7.4, 7.5

Riassunto

Gli agenti logici applicano inferenze a una base di conoscenza per derivare nuove informazioni.

Concetti base della logica:

- sintassi: struttura formale delle sentenze
- semantica: verità di sentenze rispetto ad interpretazioni/modelli
- conseguenza logica (entailment): sentenza necessariamente vera data un'altra sentenza
- inferenza: derivare (sintatticamente) sentenze da altre sentenze
- correttezza (soundness): la derivazione produce solo sentenze che sono conseguenza logica.
- completezza (completeness): la derivazione può produrre tutte le conseguenze logiche.

Logica Proposizionale

E' la logica:

- più semplice;
- non molto espressiva;
- non possiamo esprimere variabili (solo enumerazione di tutti gli elementi);
- povera per rappresentare basi di conoscenza.

Se S_1 , S_2 sono sentenze allora sono anche sentenze:

- − ¬S (negazione)
- $S_1 \wedge S_2$ (congiunzione)
- $-S_1 \vee S_2$ (disgiunzione)
- $S_1 \Rightarrow S_2$ (implicazione)
- $S_1 \Leftrightarrow S_2$ (bicondizionale)

Dimostrazioni in logica proposizionale

Vedremo la dimostrazione basata su

Risoluzione (corretta e completa per clausole generali)

Casi Particolari:

- Forward chaining (corretta e completa per clausole Horn)
- Backward chaining (corretta e completa per clausole Horn)

Nota: una qualunque FBF della logica proposizionale si può trasformare in un equivalente insieme di clausole generali (formule SP - somme (OR) di prodotti (AND) o PS – prodotti (AND) di somme (OR) vedi reti logiche ed algebra di Boole).

IL PRINCIPIO DI RISOLUZIONE

- Sistema di deduzione per la logica a clausole per il quale valgono interessanti proprietà.
- Regola di inferenza: Principio di Risoluzione che si applica a teorie del primo ordine in forma a clausole.
- Robinson, J. Alan (1965): A Machine-Oriented Logic Based on the Resolution Principle, Journal of ACM, 12 (1): 23–41.
- Il principio di risoluzione si applica a formule della logica in forma a clausole, ed è utilizzato dalla maggior parte dei risolutori automatici di teoremi.
- È la regola di inferenza base utilizzata nella programmazione logica.

Clausole

- Una clausola è una disgiunzione di letterali (cioè formule atomiche negate e non negate), in cui tutte le variabili sono quantificate universalmente in modo implicito.
- Una clausola generica può essere rappresentata come la disgiunzione:

$$A_1 \lor A_2 \lor ... \lor A_n \lor \sim B_1 \lor ... \lor \sim B_m$$

dove A_i (i=1,...,n) e B_i (j=1,...,m) sono atomi.

- Una clausola nella quale non compare alcun letterale, sia positivo sia negativo, è detta clausola vuota e verrà indicata con

 , interpretato come contraddizione: disgiunzione falso v ~vero
- Un sottoinsieme delle clausole è costituito dalle clausole definite, nelle quali si ha sempre un solo letterale positivo:

$$A_1 \vee \sim B_1 \vee ... \vee \sim B_m$$

IL PRINCIPIO DI RISOLUZIONE

- Logica Proposizionale: clausole prive di variabili.
- Siano C₁ e C₂ due clausole prive di variabili:

$$C_1 = A_1 \vee ... \vee A_n$$
 $C_2 = B_1 \vee ... \vee B_m$

• Se esistono in C_1 e C_2 due letterali **opposti**, A_i e B_j , ossia tali che A_i = $\sim B_j$, allora da C_1 e C_2 , (clausole **parent**) si può derivare una nuova clausola C_3 , denominata **risolvente**, della forma:

$$C_3 = A_1 \lor ... \lor A_{i-1} \lor A_{i+1} \lor ... \lor A_n \lor B_1 \lor ... \lor B_{j-1} \lor B_{j+1} \lor ... \lor B_m$$

• C_3 è conseguenza logica di $C_1 \cup C_2$.

ESEMPI DI APPLICAZIONE DELLA RISOLUZIONE

$$C_1 = p(0,0)$$
 $C_2 = \sim p(0,0) \vee p(0,s(0))$
 $C_3 = p(0,s(0))$

$$C_1 = p \lor q \lor \sim a \lor \sim b$$
 $C_2 = f \lor a$
$$C_3 = p \lor q \lor \sim b \lor f$$

DIMOSTRAZIONE PER CONTRADDIZIONE ATTRAVERSO LA RISOLUZIONE (1)

Dati gli assiomi propri H di una teoria e una formula F, derivando da $H \cup \{\neg F\}$ la contraddizione logica si dimostra che F è un teorema della teoria.

1) Ridurre H e il teorema negato ~F in forma a clausole.

H trasformato nell'insieme di clausole H^{C} : $H \rightarrow H^{C}$

F negata e trasformata nell'insieme di clausole F^{C} : $\sim F \rightarrow F^{C}$

2) All'insieme $H^{C} \cup F^{C}$ si applica la risoluzione

Se F è un teorema della teoria, allora la risoluzione deriva la contraddizione logica (clausola vuota) in un numero finito di passi.

 Contraddizione: Nella derivazione compariranno due clausole del tipo A e ~B con A e B formule atomiche unificabili.

DIMOSTRAZIONE PER CONTRADDIZIONE ATTRAVERSO LA RISOLUZIONE (2)

Per dimostrare F, il metodo originario (Robinson) procede generando i risolventi per **tutte le coppie** di clausole dell'insieme di partenza $C_0 = H^C \cup F^C$ che sono aggiunti a C_0 . Procedimento iterato, fino a derivare, se è possibile, la clausola vuota.

- 1. $C_{i+1} = C_i \cup \{\text{risolventi delle clausole di } C_i\}$
- 2. Se C_{i+1} contiene la clausola vuota, termina.

Altrimenti ripeti il passo 1.

Nota

Ricordiamoci questa semplice trasformazione da regole a clausole:

- $a \rightarrow b$. Diventa in modo equivalente $\sim a \lor b$
- $a \land c \rightarrow b$. Diventa in modo equivalente ~ $(a \land c) \lor b$ e applicando de Morgan ~ $a \lor ~c \lor b$

ESEMPIO DI DIMOSTRAZIONE

BASE DI CONOSCENZA:

$$H = \{ (a \rightarrow c \lor d) \land (a \lor d \lor e) \land (a \rightarrow \neg c) \}$$

 $F = \{ d \lor e \}$

• La trasformazione in clausole di H e ~F produce:

$$H^{C} = \{ \sim a \lor c \lor d, a \lor d \lor e, \sim a \lor \sim c \}$$

 $F^{C} = \{ \sim d, \sim e \} \text{ (cioe' } \sim (d \lor e) \text{)}$

Si vuole dimostrare che H^C ∪ F^C:

$$a \lor c \lor d$$
, (1)
 $a \lor d \lor e$, (2)
 $a \lor a \lor a \lor a$, (3)
 $a \lor a \lor a \lor a$, (4)
 $a \lor a \lor a \lor a$, (5)

è contraddittorio.

ESEMPIO DI DIMOSTRAZIONE (cont.)

 \sim a \vee c \vee d,

(1)

 $a \lor d \lor e$,

(2)

~a v ~c,

(3)

~d,

(4)

~e

(5)

• Tutti i possibili risolventi al passo 1 sono:

 $c \lor d \lor e$,

(6) dc

da (1) e (2)

 $d \lor e \lor \sim c$,

(7)

da (2) e (3)

~a v c,

(8)

da (1) e (4)

 $a \vee e$,

(9)

da (2) e (4)

 $a \vee d$,

(10)

da (2) e (5)

 \sim a \vee d

(11)

da (1) e (3)

• Al passo 2, da (10) e (11) viene derivato il risolvente:

d

(12)

• al passo 3, da (4) e (12) viene derivata anche la clausola vuota.

Algoritmo di Risoluzione per la Logica Proposizionale

• Per contraddizione, i.e., $KB \land \neg a$ e' insoddisfacibile

```
function PL-RESOLUTION(KB, \alpha) returns true or false
clauses \leftarrow \text{ the set of clauses in the CNF representation of } KB \wedge \neg \alpha
new \leftarrow \{ \}
loop do
for each <math>C_i, C_j \text{ in } clauses do
resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)
if resolvents \text{ contains the empty clause then return } true
new \leftarrow new \cup resolvents
if new \subseteq clauses \text{ then return } false
clauses \leftarrow clauses \cup new
```


Esempio di Risoluzione

- $KB = (B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})) \land \neg B_{1,1}$
- $a = \neg P_{1,2}$

CASI PARTICOLARI: Forward e backward chaining

- Horn Form (sottinsieme della logica proposizionale)
 KB = congiunzione di clausole di Horn
 - Clausole di Horn =
 - Proposizioni atomiche; o
 - (congiunzione di proposizioni atomiche) ⇒ proposizione atomica (una!)
 - E.g. $KB = C \wedge (B \Rightarrow A) \wedge (C \wedge D \Rightarrow B)$
- Modus Ponens (per Horn): completo per Horn KB

 Può essere usato sia per forward chaining o backward chaining.

Algoritmi molto naturali e con compessità lineare in tempo.

Nota: in letteratura è più preciso il termine clausole definite per questo caso piuttosto che clausole di Horn.

Sommario

- La risoluzione è completa per la logica proposizionale
- Forward, backward chaining sono complete per le clausole di Horn
- La logica proposizionale è povera dal punto di vista espressivo.

