Software Clusterings with Vector Semantics and the Call Graph

Marios Papachristou

papachristoumarios@gmail.com

Business Analytics Lab (BALab), Athens University of Economics and Business National Technical University of Athens Advisor: Prof. Diomidis Spinellis

1.GOAL

Combine vector semantics and the call graph in order to produce module-level clusterings for software architecture recovery. We will study the Linux Codebase and compare it against baselines and state-of-the-art.

Source Code Preprocessing

- 1. Remove stopwords
- 2. Split identifiers

zone_seqlock_init inprogress

3. Lemmatize

SourceCode Paper https://github.com/papachristoumarios/sade

References

mm.h 3.SYSTEM • io.h **Document Embeddings** Call Graph(s)

Choosing Linux for Evaluation

- 1. Large and complex system with more than
- 27 years of continuous development
- 2. HUGE(!) project consisting of 20.3 million lines of source code
- 3. Easy to establish ground truth, due to clear directory structure

Linux codebase size. Source: Reddit The clusters we have used are the first-level directories. The embeddings are generated at the one-top directories. That means e.g. that the file drivers/net/ieee802154/mcr20a.c is groupped under drivers/net/ieee8021154 and belongs to the cluster drivers

4.RESULTS

Results							
Algorithm	Dim.	$n_{oldsymbol{c}}$	Range	$ar{x}$	σ	Median	MoJo
ACDC	_	9055	1 - 4245	5	46	2	33694
Average Linkage	300	21	1–3406	163	725	1	2092
Complete Linkage	300	21	1–1529	163	412	19	1710
LIMBO ¹	12317	21	50–1810	163	375	50	1482
Ward Linkage ²	300	21	21–948	163	223	70	1138
SADE	300	10 (± 2)	$2 (\pm 0) -132 (\pm 13)$	64 (± 4)	40 (± 4)	$65 (\pm 10)$	243 (± 1)
SADE (Directed)	300	5 (± 2)	$1 (\pm 1) - 614 (\pm 1)$	141 (± 39)	253 (± 25)	$2 (\pm 0.3)$	$237 (\pm 2)$
Ground Truth	_	21	1–1348	163	341	11.0	_

Clusters

MoJo Distance

Minimum number of operations to convert one clustering to another, where the only valid operations are:

- 1. Move a component
- between two clusters or create a new cluster.
- 2. **Join** two components together to a bigger cluster

Analysis of Results

Extremity

Our results generates reasonable cluster sizes (not too large and not too small) **Authoritativeness**

Our results show great improvement in terms of MoJo clustering distance. Our approach also found a number of clusters near the ground truth without prior knowledge of the number of clusters

Conclusions

- 1. Our results suggest further usage of vector semantics in software clustering methods
- 2. Our results show significant improvement in terms of closeness to the ground truth, overperforming the other methods.
- 3. Our method produces balanced clusters