

Super Mario KAIrt: AI agent

Charles Tsao and Claire Mai, {chtsao, cmai21}@stanford.edu

Stanford ENGINEERING **Computer Science**

Introduction

- Project Goal: Develop an AI agent to play Super Mario **Kart using Reinforcement** learning
- OpenAI Gym Retro provides an Integration UI that we used to define variables and done condition. [1]
- · Modeled the game as a state-

to determine its optimal value) [2]

based graph with states, actions, rewards, and next states. • Implemented O-learning with epsilon greedy and Double O-Learning (a variation of DON with 2 convolutional neural networks: one to determine the policy and the other

JSON file for

Data Acquisition

- Input: A frame of the game represented as a 224x256x3 tensor, corresponding to a 224x256 image with 3 RGB channels
- O-learning with epsilon greedy data acquisition:
- Converted 224x256x3 tensor to a vector of size 3 by averaging pixel values x axis wise (i.e. 224x256x3 frame $\rightarrow 256x3$ tensor) and then averaging pixel values v axis wise (256x3 tensor \rightarrow vector of size 3)
- Double Q-learning/Q-learning (v2) data acquisition:
 - Converted to gray scale then reduced size to 84x84 thereby warping the image. Process seen below in Figure 2:

References and Acknowledgements

- · We would like to thank our CS221 mentor Horace Chu for all the support and guidance.
- [1] OpenAI. "OpenAI Gym." Gym, gym.openai.com/.
- [2] Van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep reinforcement learning with double q-learning. arXiv preprint arXiv:1509.06461, 2015.

Method/Implementation

Method 1: O-learning with ensilon greedy (v2)

- Dictionary represented q-table. Each key mapped a state (encoded frame) to vector of 3 q-values, one for each action.
- Trained for 100,000 episodes (1 episode = 1 game of Super Mario Kart)

Learning rate: Alpha	Discount factor: gamma	Initial epsilon	Epsilon decay	Epislon minimum	
0.1	0.6	1	0.9999997	0.1	

Convolutional Neural Network for Double O-Learning:

- · Deep Q Network shown in Figure 3
- Input: Four 84x84 stacked grayscale images (84x84x4)
- 3 convolutional layers using ReLU with (32 filters, 8x8, stride = 4), (64 filters, 4x4, stride = 2), and (64 filters, 3x3, stride = 1) respectively
- 2 fully connected layers (flatten and dense)
- Output: n q-values, each one corresponding to a certain action

- Method 2: Double O-Learning
- Implemented convolutional neural network using TensorFlow

Attempt	# of actions	ϵ	Epsilon decay	Done condition	# of episodes	Reward function
	5	1	0.99999975	On dirt, exceed time limit, or finish race	10,000	-2*rank + (-100 if wrong direction else 0)
	3	1	0.99999975	On dirt, exceed time limit, or finish race	10,000	-2*rank + (-100 if wrong direction else 0)
	3	0.5	0.999999	Collided with obstacle, exceed time limit, or finish race	50,000	-2*rank + (-100 if wrong direction else 0) + (-40 if surface type is dirt, else 0
	3	1	0.9999993	Collided with obstacle, exceed time limit, or finish race	50,000	-2*rank + (-100 if wrong direction else 0) + (-40 if surface type is dirt, else 0
5 (v2)	3	1	0.9999995	Going in wrong direction, exceed time limit, or wins race	100,000	-2*rank + (-100 if wrong direction else 0) + (-20 if surface type is dirt, else 0) + (-10 if collides else 0)

Results & Discussion

Q-Learning with Epsilon Greedy (v2) Results:

- · Despite rise in avg reward per episode, agent did not learn
- · Avg reward caps at -145
- · Agent ends game early to achieve high reward

Double Q-Learning Results (v1):

- looks one state ahead which leads to poor estimations of q-values · CNN learns
- weights that predict optimal qvalues
- · Double O Learning can retrieve more information for each state, thus able to predict qvalues better
- · Agent is able to complete 2-3 laps of the course

Future work

- Train for longer (i.e. 200 million frames), as discussed in a paper [2]
- Continue to fine tune hyper parameters
- Engage advanced techniques for image augmentation
- Explore NEAT algorithm to train AI agent based on generations

Time Step (hours)

• Collect more data on other Super Mario Kart courses so the AI agent is able to play drive in all types of races

CS 221 Final Project Poster Session