

# Introduction to the Course on Mathematics for Machine Learning

#### David Raj Micheal Assistant Professor

Division of Mathematics School ofAdvanced Sciences Vellore Institute of Technology, Chennai

## Outline

Introduction

Vector Space

Subspace

# Binary Operator

Any function  $f: V \times V \to V$  is called as binary operator. For example,

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

So, let us define what is a vector space.

What is a vector?

### Definition 2.1 (vector space).

A non-empty set V with a field  $\mathbb{F}$  is called as vector space with respect to the operations  $+: V \times V \to V$  (binary operation) and  $\cdot: \mathbb{F} \times V \to V$  (scalar multiplication), if the following holds:

- (i) for all  $u, v \in V$ , u + v = v + u (commutativity)
- (ii) for all  $u, v, w \in V$ , (u+v)+w=u+(v+w) (associativity)
- (iii) there exists  $0 \in V$  such that u + 0 = u for all  $u \in V$
- (iv) for all  $u \in V$  there exists  $-u \in V$  such that u + (-u) = 0 and
- (v) for all  $v \in V$ , 1u = u
- (vi) for all  $\alpha, \beta \in \mathbb{F}$  and for all  $u \in V$ ,  $(\alpha \beta)u = \alpha(\beta u)$
- (vii) for all  $\alpha \in \mathbb{F}$  and for all  $u, v \in V$ ,  $\alpha(u+v) = \alpha u + \alpha v$
- (viii) for all  $\alpha, \beta \in \mathbb{F}$  and for all  $u \in V$ ,  $(\alpha + \beta)u = \alpha u + \beta u$ .

### Example 2.2.

Set of all real numbers is a vector space over real numbers with respect to the usual addition and scalar multiplication. That is  $(\mathbb{R},+,\cdot)$  is a vector space over  $\mathbb{R}$ .

## Example 2.2.

Set of all real numbers is a vector space over real numbers with respect to the usual addition and scalar multiplication. That is  $(\mathbb{R},+,\cdot)$  is a vector space over  $\mathbb{R}$ .

### Example 2.3.

Consider  $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$ . Now, let us define the addition operation as co-ordinate vice addition. Thats is,

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

and the scalar multiplication is defined as

$$\alpha(x_1,y_1)=(\alpha x_1,\alpha y_1).$$

Then,  $(\mathbb{R}^2, +, \cdot)$  is a vector space over  $\mathbb{R}$ . the set of vectors in  $\mathbb{R}^2$  is a vector space over  $\mathbb{R}$ .

#### Example 2.4.

More generally,  $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R} \text{ for all } i \in \{1, 2, \dots, n\} \}$  is a vector space over  $\mathbb{R}$ .

In fact, one can generalise little more and define set of all  $m \times n$  matrices.

#### Example 2.5.

Let  $M_{m \times n} = \text{ set of all matrices of size } m \times n \text{ where } m \text{ and } n \text{ are positive integers.}$  Then  $M_{m \times n}$  over  $\mathbb{R}$  is a vector space over  $\mathbb{R}$ . The addition and scalar multiplication is defined similar to the previous example as

$$(A+B)_{ij} = A_{ij} + B_{ij},$$
$$(\alpha A)_{ij} = \alpha A_{ij}.$$

#### Example 2.6.

Let V be set of all functions from a set X to the set Y. And define the addition of two functions as

$$(f+g)(x) = f(x) + g(x)$$
(1)

and scalar multiplication as

$$(\alpha f)(x) = \alpha f(x).$$

Then,  $(V, +, \cdot)$  is a vector space over any field  $\mathbb{F}$ .

# Theorem 2.7 (Cancellation law for vector addition).

If x, y and z are vectors in a vector space V, then

$$x + z = y + z \implies x = y$$
.

#### Proof.

There exists  $-z \in V$  such that z + (-z) = 0. And so,

$$x = x + 0$$
  
=  $x + z + (-z)$   
=  $y + z + (-z)$   
=  $y + 0$   
=  $y$ .



#### Corollary 2.8.

For any vector space V over  $\mathbb{F}$ , the following are true.

- (i) The zero vector is unique.
- (ii) Additive inverse of a vector is unique

#### Proof.

Let V be a vector space over  $\mathbb{F}$ .

- (i) Suppose there are two zero vectors, say, 0 and 0'. Take x = 0 and y = 0', z being any vector and apply 2.7.
- (ii) Suppose there are two inverse, say,  $v_2$  and  $v_2$  for v. Take  $x = v_1$  and  $y = v_2$ , z = v and apply 2.7.



#### Theorem 2.9.

For any vector space V over  $\mathbb{F}$ , the following are true.

- (i) 0v = 0 for all  $v \in V$ .
- (ii) (-a)v = -(av) = a(-v) for all  $a \in \mathbb{F}$  and for all  $v \in V$ .
- (iii) a0 = 0 for all  $a \in \mathbb{F}$ .

What is a subspace?

# THANK YOU!