Notes of Quantum Mechanics

Wyant College of Optical Sciences University of Arizona

Preface

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Contents

Pr	eface		2
1	One	-dimensional harmonic oscillator	8
	1.1	Introduction	9
	1.2	Eigenvalues of the Hamiltonian	11
	1.3	Eigenstates of the Hamiltonian	15
	1.4	Discussion	15

List of Figures

1.1	Potential energy $V(x)$ of a 1D harmonic oscillator	9
1.2	Any potential can be approximated by a parabolic potential. In $V(x)$, a classical particle of	
	energy E oscillates between x_1 and x_2	10

List of Tables

Listings

Chapter 1

One-dimensional harmonic oscillator

1.1	Introduction	9
1.2	Eigenvalues of the Hamiltonian	11
1.3	Eigenstates of the Hamiltonian	15
1.4	Discussion	15

1.1 | Introduction 9

1.1 Introduction

1.1.1 Importance of the harmonic oscillator in physics

The simplest example is a particle of mass m moving in a potential which depends only on x and has the form

$$V(x) = \frac{1}{2}kx^2, \quad k > 0.$$

The particle is attracted towards the x = 0 by a restoring force:

Figure 1.1 Potential energy V(x) of a 1D harmonic oscillator.

$$F_x = \frac{dV}{dx} = -kx.$$

In classical mechanics, the motion of the particle is a sinusoidal oscillation about x=0 with angular frequency $\omega=\sqrt{k/m}$.

Various systems are governed by the harmonic oscillator equations

Whenever one studies the behavior of a system in the neighborhood of a stable equilibrium position, one arrives at equations which, in the limit of small oscillations, are those of a harmonic oscillator.

1.1.2 The harmonic oscillator in classical mechanics

The motion of the particle is governed by the dynamics equation

$$m\frac{d^2x}{dt^2} = -\frac{dV}{dx} = -kx \longrightarrow x = x_M \cos(\omega t - \varphi). \tag{1.1}$$

The kinetic energy of the particle is

$$T = \frac{1}{2}m\left(\frac{dx}{dt}\right)^2 = \frac{p^2}{2m},\tag{1.2}$$

where p = mv is the momentum of the paticle. The total energy is

$$E = T + V = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \frac{1}{2}m\omega^2 x_M^2.$$

• The potential can be expanded in Taylor's series around x_0 :

$$V(x) = \underbrace{V(x_0)}_{a} + V'(x_0)(x - x_0) + \underbrace{\frac{1}{2!}V^{(2)}(x_0)}_{b}(x - x_0)^2 + \underbrace{\frac{1}{3!}V^{(3)}(x_0)}_{c}(x - x_0)^3 + \cdots$$

The force derived from the potential in the neighborhood of x_0 is

$$F_x = -\frac{dV}{dx} = -2b(x - x_0) - 3c(x - x_0)^2 + \cdots$$
 (1.3)

The point $x = x_0$ is a stable equilibrium for the particle: $F_x(x_0) = 0$. In adittion, if the amplitude of the motion of the particle about x_0 is sufficiently small, we can keep with the linear term only and we have a harmonic oscillator since the dynamics equation can be approximated by

$$m\frac{d^2x}{dt^2} \approx -2b(x-x_0).$$

For higher energies E, the particle will be in period but not sinusoidal motion (as signal in Fourier series) between the limits x_1 and x_2 . We then say that we are dealing with an **anharmonic oscillator**.

Figure 1.2 Any potential can be approximated by a parabolic potential. In V(x), a classical particle of energy E oscillates between x_1 and x_2 .

1.1.3 General properties of the quantum mechanical Hamiltonian

In QM, the classical quantities x and p are replaced respectively by the observables X and P, which satisfy

$$[X, P] = i\hbar.$$

It is then easy to obtain the Hamiltonian operator of the system from the total energy

$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2.$$

Since H is time-independent (conservative system), the quantum mechanical study of the harmonic oscillator reduces to the solution of the eigenequation:

$$H|\varphi\rangle = E|\varphi\rangle$$

which is written, in the $\{|x\rangle\}$ representation

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2 \right] \varphi(x) = E\varphi(x).$$

Let us indicate some properties of the potential function:

• The eigenvalues of the Hamiltonian are positive. If V(x) has a lower bound, the eigenvalues E of H are greater than the minimum of V(x):

$$V(x) \leq V_m$$
 requires $E > V_m$.

We have chosen for the harmonic oscillator that $V_m = 0$.

- The eigenfunctions of H have a definite parity due to that V(-x) = V(x) is an even function. We shall see that the eigenvalues of H are not degenerate; the wave functions associated with the stationary tates are necessarily either even or odd.
- The energy spectrum is discrete.

1.2 Eigenvalues of the Hamiltonian

1.2.1 Notation

It is easy to see that the observables \hat{X} and \hat{P}

dimensionless observables
$$\hat{X} = \sqrt{\frac{m\omega}{\hbar}}X$$
, $\hat{P} = \frac{1}{\sqrt{m\hbar\omega}}P$

are dimensionless. With these new operators, the canonical commutation is

Canonical commutation
$$[\hat{X}, \hat{P}] = i$$
 (1.4)

and the Hamiltonian can be put in the form

$$H = \hbar \omega \hat{H}, \quad \text{with} \quad \hat{H} = \frac{1}{2}(\hat{X} + \hat{P}).$$
 (1.5)

In consequence, we seek the solutions of the following eigenequation

$$\hat{H}|\varphi_{\nu}^{i}\rangle = \epsilon_{\nu}|\varphi_{\nu}^{i}\rangle,$$

where the operator \hat{H} and the eigenvalues ϵ_{ν} are **dimensionless**.

If \hat{X} and \hat{P} were numbers and not operators, we could write the sum $\hat{X}^2 + \hat{P}^2$ appearing in the definition of \hat{H} in the form of a product $(\hat{X} - i\hat{P})(\hat{X} + i\hat{P})$. However, the introuction of operators proportional to $\hat{H} \pm i\hat{P}$ enables us to simplify considerably out search for eigenvalues and eigenvectors of \hat{H} . We therefore set

$$a = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P}) \qquad \Leftrightarrow \hat{X} = \frac{1}{\sqrt{2}}(a^{\dagger} + a)$$

$$a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P}) \qquad \hat{P} = \frac{i}{\sqrt{2}}(a^{\dagger} - a)$$

$$(1.6)$$

The commutator of a and a^{\dagger} is

$$[a, a^{\dagger}] = \frac{1}{2} [\hat{X} + i\hat{P}, \hat{X} - i\hat{P}] = \frac{i}{2} [\hat{P}, \hat{X}] - \frac{i}{2} [\hat{X}, \hat{P}] = 1 \longrightarrow [a, a^{\dagger}] = 1.$$
 (1.7)

If we do aa^{\dagger} we obtain

$$a^{\dagger}a = \frac{1}{2}(\hat{X} - i\hat{P})(\hat{X} + i\hat{P}) = \frac{1}{2}(\hat{X}^2 + \hat{P}^2 + i\hat{X}\hat{P} - i\hat{P}\hat{X}) = \frac{1}{2}(\hat{X}^2 + \hat{P}^2 - 1).$$

Comparing with \hat{H} we see that

$$\hat{H} = a^{\dagger}a + \frac{1}{2} = aa^{\dagger} - \frac{1}{2} \ .$$

We see that we canot put \hat{H} in a product of linear terms, due to the non-commutatitivty of \hat{X} and \hat{P} (1/2 term).

We introduce another operator:

Operator
$$N N = a^{\dagger}a$$
 . (1.8)

This operator is Hermitian

$$N^{\dagger} = a^{\dagger} (a^{\dagger})^{\dagger} = a^{\dagger} a = N. \tag{1.9}$$

And its relation with \hat{H} is

$$\hat{H} = N + \frac{1}{2} \tag{1.10}$$

so that the eigenvectors of \hat{H} are eigenvectors of N, and viceversa. The commutators with a and a^{\dagger} are:

$$[N, a] = [a^{\dagger}a, a] = a^{\dagger}[a, a] + [a^{\dagger}, a]a = -a \longrightarrow [N, a] = -a$$
 (1.11)

$$[N, a^{\dagger}] = [a^{\dagger}a, a^{\dagger}] = a^{\dagger}[a, a^{\dagger}] + [a^{\dagger}, a^{\dagger}]a = a^{\dagger} \longrightarrow [N, a^{\dagger}] = a^{\dagger}. \tag{1.12}$$

The study of the harmonic oscilator is based on these operatores a, a^{\dagger} , and N. The eigenequation for N is

Eigenequation of
$$N$$
 $N|\varphi_{\nu}^{i}\rangle = \nu|\varphi_{\nu}^{i}\rangle$. (1.13)

When this is solved, we know that the eigenvector $|\varphi_{\nu}^{i}\rangle$ of N is also an eigenvector of H with the eigenvalue $E_{\nu}=(\nu+1/2)\hbar\omega$:

$$H|\varphi_{\nu}^{i}\rangle = (\nu + 1/2)\hbar\omega|\varphi_{n}u^{i}\rangle.$$
 (1.14)

The solution of the eigenequation of N will be based on the commutation relation $[a,a^{\dagger}]=1$.

1.2.2 Determination of the spectrum

Lemmas

• Properties of the eigenvalues of N The eigenvalues ν of the operator N are positive or zero. We can see this by looking the quure of the norm of the vector $a|\varphi_nu^i\rangle$

$$||a|\varphi_{\nu}^{i}\rangle||^{2} = \langle \varphi_{\nu}^{i}|a^{\dagger}a|\varphi_{\nu}^{i}\rangle = \langle \varphi_{\nu}^{i}|N|\varphi_{\nu}^{i}\rangle = \nu\langle \varphi_{\nu}^{i}|\varphi_{\nu}^{i}\rangle \geq 0 \Longrightarrow \nu \geq 0$$

- Properties of the vector $a|\varphi_{\nu}^{i}\rangle$
 - i) $\nu=0 \Longrightarrow a|\varphi_{\nu=0}^i\rangle=0$. If $\nu=0$ is an eigenvalue of N, all eigenvectors $|\varphi_0^i\rangle$ associated with this eigenvalue satisfy the relation

$$a|\varphi_0^i\rangle = 0. {(1.15)}$$

Anyn vector which satisfy this relation is therefore an eigenvector of N with the eigenvalue $\nu = 0$.

ii) $\nu>0\Longrightarrow a|\varphi^i_{\nu}\rangle$ is a non-zero eigenvector of N with eigenvalue $\nu-1$.

$$\begin{array}{ll} [N,a]|\varphi^i_\nu\rangle &= -a|\varphi^i_\nu\rangle \\ Na|\varphi^i_\nu\rangle &= aN|\varphi^i_\nu\rangle - a|\varphi^i_\nu\rangle &\Longrightarrow N[a|\varphi^i_\nu\rangle] = (\nu-1)[a|\varphi^i_\nu\rangle] \,. \\ N[a|\varphi^i_\nu\rangle] &= a\nu|\varphi^i_\nu\rangle - a|\varphi^i_\nu\rangle \end{array}$$

- Properties of the vector $a^{\dagger}|\varphi_{\nu}^{i}\rangle$
 - i) $a^{\dagger}|\varphi_{\nu}^{i}\rangle$ is always non-zero. We study it with the square of the norm:

$$||a^{\dagger}|\varphi_{\nu}^{i}\rangle||^{2} = \langle \varphi_{\nu}^{i}|aa^{\dagger}|\varphi_{\nu}^{i}\rangle = \langle \varphi_{\nu}^{i}|(N+1)|\varphi_{\nu}^{i}\rangle = (\nu+1)\langle \varphi_{\nu}^{i}|\varphi_{\nu}^{i}\rangle.$$

As $\nu \geq 0$ by lemma 1, the ket $a^\dagger |\varphi^i_{\nu}\rangle$ always has non-zero norm and, consequently, is never zero

ii) $a^{\dagger}|\varphi_{\nu}^{i}\rangle$ is an eigenvector of N with eigenvalue N+1. We do it analoguisly to lemma IIb):

$$\begin{array}{ll} [N,a^{\dagger}]|\varphi_{\nu}^{i}\rangle &=a^{\dagger}|\varphi_{\nu}^{i}\rangle \\ Na^{\dagger}|\varphi_{\nu}^{i}\rangle &=a^{\dagger}N|\varphi_{\nu}^{i}\rangle + a^{\dagger}|\varphi_{\nu}^{i}\rangle &\Longrightarrow \hline N[a^{\dagger}|\varphi_{\nu}^{i}\rangle] = (\nu+1)[a^{\dagger}|\varphi_{\nu}^{i}\rangle] \\ N[a^{\dagger}|\varphi_{\nu}^{i}\rangle] &=\nu a^{\dagger}|\varphi_{\nu}^{i}\rangle + a^{\dagger}|\varphi_{\nu}^{i}\rangle \end{array}$$

The spectrum of N is composed of non-negative integers

If ν is non-integral, we can therefore construct a non-zero eigenvector of N with a strictly negative eigenvalue. Since this is impossible by lemma 1, the hypothesis of non-integral ν must be rejected.

 ν can only be a non-negative integer.

We conclude that the eigenvalues of H are of the form

Eigenvalue of
$$H$$
 $E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n \in \mathbb{N}_0^+$ (1.16)

In QM, the energy of the harmonic oscillator is **quantized**. The smallest value (ground state) is $\hbar\omega/2$.

Interpretation of the a and a^{\dagger} operators

We have seen that, given $|\varphi_n^i\rangle$ with eigenvalue E_n , application of a gives an eigenvector associated with E_{n-1} while application of a^{\dagger} yields the energy E_{n+1} .

Thats why a^{\dagger} is said to be a **creation operator** and a an **annihilation operator**; their action on an eigenvector of N makes an energy quantum $\hbar\omega$ appear or dissapear.

1.2.3 Degeneracy of the eigenvalues

The grounds state is non-degenerate

The eigenstates of H associated with $E_0 = \hbar \omega/2$ (or eigenvector of N associated with n = 0), according to lemma II, must all satisfy the equation

$$a|\varphi_0^i\rangle = 0.$$

To find the degeneracy of the E_0 level, all we must do is see how many li kets satisfy the above. We can write the above equation using the definition of \hat{X}, \hat{P} and a in terms of them, in the form

$$\frac{1}{\sqrt{2}} \left[\sqrt{\frac{m\omega}{\hbar}} X + \frac{i}{\sqrt{m\hbar\omega}} P \right] |\varphi_0^i\rangle = 0.$$

In the $\{|x\rangle\}$ representation, this relation becomes

$$\left(\frac{m\omega}{\hbar}x + \frac{d}{dx}\right)\varphi_0^i(x) = 0, \text{ where } \varphi_0^i(x) = \langle x|\varphi_0^i\rangle.$$

Therefore we msut solve a first-order differential equation, which solution is

$$\varphi_0^i(x) = ce^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2} \tag{1.17}$$

The various solutions of the ODE are all proportional to each other. Consequently, there exists only one ket $|\varphi_0\rangle$ that satisfies the initial equation: the ground sate $E_0=\hbar\omega/2$ is not degenerate.

All the states are non-degenerate

We use recurrence to show that all other states are also non-degenerate. We need to prove that if E_n is non degenerate, the level E_{n+1} is not either.

Lets assume there exists only one vector $|\varphi_n\rangle$ such that

$$N|\varphi_n\rangle = n|\varphi_n\rangle.$$

Then consider an eigenvector $|\varphi_{n+1}^i\rangle$ corresponding to the eigenvalue n+1

$$N|\varphi_{n+1}^i\rangle=(n+1)|\varphi_{n+1}^i\rangle.$$

We know that the ket $a|\varphi_{n+1}^i\rangle$ is not zero and that it is an eigenvector of N with eigenvalue n. Since this ket is not degenerae by hypothesis, there exists a number c^i such that

$$a|\varphi_{n+1}^i\rangle = c^i|\varphi_n\rangle/a^\dagger \longrightarrow a^\dagger a|\varphi_{n+1}^i\rangle = N|\varphi_{n+1}^i\rangle = (n+1)|\varphi_{n+1}^i\rangle = c^i a^\dagger |\varphi_n\rangle.$$

We have,

$$|\varphi_{n+1}^i\rangle = \frac{c^i}{n+1}a^{\dagger}|\varphi_n\rangle.$$

We see that all kets $|\varphi_{n+1}^i\rangle$ associated with the eigenvalue n+1 are proportional to $a^{\dagger}|\varphi_n\rangle$. They are proportional to each other: the eigenvalue n+1 is not degenerate.

Since the eigenvalue n=0 is not degenerate, the eigenvalue n=1 is not either, nor is n=2, etc.: all the eigenvalues of N and, consequently, all those of H, are non-degenerate. Now, we can just write $|\varphi_n\rangle$ for the eigenvector of H associated with E_n .

1.3 Eigenstates of the Hamiltonian

1.3.1 The $\{\varphi_n\}$ representation

Since none of the eigenvalues of N (H) is degenerate, N (H) alon constitutes a CSCO in \mathcal{E}_c .

The basis vectors in terms of $|\psi_0\rangle$

We assume that the vector $|\varphi_0\rangle$ which satsfies $a|\varphi_0\rangle=0$, is normalized. According to lemma III, the vector $|\varphi_1\rangle$ is proportional to $a^{\dagger}|\varphi_0\rangle$ in the form

$$|\varphi_1\rangle = c_1 a^{\dagger} |\varphi_0\rangle.$$

We shall determine c_1 by requiring $|\varphi_1\rangle$ to e normalized and choosing the phase of $|\varphi_1\rangle$ such that c_1 is real and positive. The square of the norm of $|\varphi_1\rangle$ is

$$\langle \varphi_1 | \varphi_1 \rangle = |c_1|^2 \langle \varphi_0 | a a^\dagger | \varphi_0 \rangle = |c_1|^2 \langle \varphi_0 | (a^\dagger a + 1) | \varphi_0 \rangle = |c_1|^2 \underbrace{[\langle \varphi_0 | N | \varphi_0 \rangle}_{0 \langle \varphi_0 | \varphi_0 \rangle} + \langle \varphi_0 | \varphi_0 \rangle] = |C_1|^2.$$

We find that $c_1 = 1$:

$$\langle \varphi_1 | \varphi_1 \rangle = |c_1|^2 = 1 \Longrightarrow |\varphi_1 \rangle = a^{\dagger} |\varphi_0 \rangle.$$
 (1.18)

We can do the same to construct $|\varphi_2\rangle$ from $|\varphi_1\rangle$ and get c_2 and so on. In general, if we know $|\varphi_{n-1}\rangle$ (normalized), then the normalized vector $|\varphi_n\rangle$ is written

$$|\varphi_n\rangle = c_n a^{\dagger} |\varphi_{n-1}\rangle, \quad \text{so that} \quad c_n = \frac{1}{\sqrt{n}}.$$

In fact, we can express all $|\varphi_n\rangle$ in terms of $|\varphi_0\rangle$ by recursion:

$$|\varphi_n\rangle = \frac{1}{\sqrt{n}} (a^{\dagger})^n |\varphi_0\rangle \ .$$
 (1.19)

Orthonormalization and closure relations

Action of the various operators

1.3.2 Wave functions associated with the stationary states

1.4 Discussion

- 1.4.1 Mean values and rms eviations of X and P in a state $|\varphi_n\rangle$
- 1.4.2 Properties of the ground state
- 1.4.3 Time evolution of the mean values

Formula sheet

1.4.4 Useful formulas

Closure relation (discrete)	$\sum_k \sum_{i=1}^{g_k} v_k^i angle \langle v_k^i = 1$	Closure relation (continuous)	$\int_{eta}deta\; \omega_{eta} angle\langle\omega_{eta} =1$
Glauber Formula	$e^{A+B} = e^A e^B e^{-\frac{1}{2}[A,B]}$	Generalized uncertainty relation	$\Delta A \Delta B \ge \frac{1}{2} \langle [A, B] \rangle $
Function of an operator	$F(A) = \sum_{n=0}^{\infty} f_n (A - a)^n$		$\Delta Q = \sqrt{\langle Q^2 \rangle - \langle Q \rangle^2}$
Eigenequation of $F(A)$	$F(A) \psi\rangle = F(\lambda) \psi\rangle$		
Transformation $\{u\} \to \{v\}$	$\mathbb{M}_{jk} = \langle u_j v_k \rangle$	$ \psi\rangle_{\{u\}} = \mathbb{M} \psi\rangle_{\{v\}}$	$ \psi\rangle_{\{v\}} = \mathbb{M}^{\dagger} \psi\rangle_{\{u\}}$
		$ \psi\rangle_{\{u\}} = \mathbb{M} \psi\rangle_{\{v\}} $ $A_{\{u\}} = \mathbb{M}A_{\{v\}}\mathbb{M}^{\dagger} $	$ \psi\rangle_{\{v\}} = \mathbb{M}^{\dagger} \psi\rangle_{\{u\}}$ $A_{\{v\}} = \mathbb{M}^{\dagger}A_{\{u\}}\mathbb{M}$

1.4.5 **Basis**

Quantity	Discrete basis (sum over j, k)	Continuous basis (integrate over β, β')
1	$= \sum v_k\rangle\langle v_k $	$=\int deta\; \omega_{eta} angle\langle\omega_{eta} $
$ \psi\rangle=\mathbb{1} \psi\rangle$		$=\int deta \; \omega_{eta} angle \langle \omega_{eta} \psi angle$
$\langle \varphi = \langle \varphi 1\!\!1$	$= \sum \langle \varphi v_k \rangle \langle v_k $	$=\int deta \left\langle arphi \omega_{eta} ight angle \left\langle \omega_{eta} ight.$
$A=\mathbb{1}A\mathbb{1}$	$= \sum \sum v_j\rangle\langle v_j A v_k\rangle\langle v_k $	$= \iint d\beta \ d\beta' \ \omega_{\beta}\rangle\langle\omega_{\beta} A \omega_{\beta'}\rangle\langle\omega_{\beta'} $

Quantity	X representation	P_x representation
X	x	$i\hbar \ \partial/\partial p$
P_x	$-i\hbar \ \partial/\partial x$	$\mid p \mid$
$ x'\rangle$	$\langle x x'\rangle = \delta(x-x')$	$\langle p x'\rangle = \frac{1}{\sqrt{2\pi\hbar}} \exp(-ix'p/\hbar)$
p' angle	$\langle x p'\rangle = \frac{1}{\sqrt{2\pi\hbar}} \exp(ixp'/\hbar)$	$\langle p p'\rangle = \delta(p-p')$
$ \psi angle$	$\langle x \psi\rangle = \dot{\psi}(x)$	$\langle p \psi\rangle = \tilde{\psi}(p)$

Fourier transforms for 3D wavefunctions
$$\begin{split} \tilde{\psi}(\boldsymbol{p}) &= \mathscr{F}\left[\psi(\boldsymbol{r})\right] = \left(\frac{1}{2\pi\hbar}\right)^{3/2} \int_{-\infty}^{\infty} d^3\boldsymbol{r} \; e^{-i\boldsymbol{r}\cdot\boldsymbol{p}/\hbar} \psi(\boldsymbol{r}) & \psi(\boldsymbol{r}) = \mathscr{F}^{-1}\left[\tilde{\psi}(\boldsymbol{p})\right] = \left(\frac{1}{2\pi\hbar}\right)^{3/2} \int_{-\infty}^{\infty} d^3\boldsymbol{p} \; e^{i\boldsymbol{r}\cdot\boldsymbol{p}/\hbar} \tilde{\psi}(\boldsymbol{p}) \\ \mathscr{F}\left[\psi^{(n)}(x)\right] &= \left(\frac{ip}{\hbar}\right)^n \tilde{\psi}(p) & \tilde{\psi}^{(n)}(p) = \mathscr{F}\left[\left(-\frac{ix}{\hbar}\right)^n \psi(x)\right] \\ \tilde{\psi}(p-p_0) &= \mathscr{F}\left[e^{ip_0x/\hbar} \psi(x)\right] & e^{-ipx_0/\hbar} \tilde{\psi}(p) = \mathscr{F}\left[\psi(x-x_0)\right] \\ \mathscr{F}\left[\psi(cx)\right] &= \tilde{\psi}(p/c)/|c| & \int_{-\infty}^{\infty} dx \; \varphi^*(x) \psi(x) = \int_{-\infty}^{\infty} dp \; \tilde{\varphi}^*(p) \tilde{\psi}(p) \\ \psi(x) \; \text{imaginary:} \; [\tilde{\psi}(p)]^* = -\tilde{\psi}(-p) \end{split}$$

Commutators

Key points

- When a matrix has a block form, we can compute the eigenvalues in each block submatrix.
- The eigenpairs allows you to diagonalize $A = V\Lambda V^{-1}$ in the eigenbasis, where $V = [u_1|u_2|\cdots]$, $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots)$, and $A|u_i\rangle = \lambda_i|u_i\rangle$. In the eigenbasis we can do $F(A) = VF(\Lambda)V^{-1}$.
- When A is Hermitian, V is unitary: $V^{-1} = V^{\dagger}$.

$$\begin{aligned} [A,B] &= -[B,A] \\ [A,B]^\dagger &= [B^\dagger,A^\dagger] \\ [AB,CD] &= A[B,C]D + AC[B,D] + [A,C]DB + C[A,D]B \\ [A,[B,C]] &+ [B,[C,A]] + [C,[A,B]] &= 0 \\ [A,[B,C]] &+ [B,[C,A]] + [C,[A,B]] &= 0 \\ [A,B] &= e^A e^B &= e^{A+B} e^{\frac{1}{2}[A,B]} \left([A,[A,B]] = [B,[A,B]] = 0 \right) \\ [X,P] &= i\hbar \\ [H,P] &= i\hbar \frac{dV(X)}{dX} \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \\ [F(A),A] &= 0 \\ [A,B] &= [B,[A,B]] &= [B,[A,B]] &= 0 \\ [A,B] &= [B,[A,B]] &= 0 \\ [A,B] &= [B,[A,B]] &= 0 \\ [A,B] &= [B,[A,B]] &= 0 \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \\ [A,B] &= [B,[A,B]] &= 0 \\ [A,B] &= [B,[A,B]] &= 0 \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \\ [A,B] &= [B,[A,B]] &= 0 \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \\ [A,B] &= [B,[A,B]] &= 0 \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \\ [A,B] &= [B,[A,B]] &= 0 \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \\ [A,B] &= [B,[A,B]] &= 0 \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,C] + [A,D] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] \end{aligned}$$

$$\end{aligned} \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] + [B,C] + [B,D] \end{aligned}$$

$$\end{aligned} \end{aligned}$$

$$\end{aligned} \end{aligned} \end{aligned}$$

$$\begin{aligned} [A+B,C+D] &= [A,B] + [B,C] + [B,D] + [B,C] + [B,D] + [B,$$

- If the matrix is diagonal, the exponential acts directly onto the elements.
- The evolution operator is $U = e^{-iHt/\hbar}$ and it evolves the state by matrix multiplication $U|\psi\rangle$.
- The eigenequation show you the relation of the eigenvectors that must be considered to construct the eigenvectors of the eigenbasis: $A|u_i\rangle = \lambda |u_j\rangle$. Its matrix representation is λ in the ji position.
- You can reduce the dimension of an operator to its eigensubspace when only acting inside it.
- To know the action of an operator you can stimulate it by applying $|\psi\rangle$ or $\langle\psi|$.
- In the operation $|u_i\rangle\langle u_j|$, the element will be located at ij in the matrix.
- Conservative=H time-independent, Stationary state= $|\psi\rangle$ projects in a single eigenstate of H.
- Constant of motion=A time-independent and [A, H] = 0.

