

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE180916704

FCC REPORT

Applicant: Xwireless LLC

Address of Applicant: 11565 Old Georgetown Road Rockville MD 20852

Equipment Under Test (EUT)

Product Name: Smart phone

Model No.: Sync

Trade mark: Vortex

FCC ID: 2ADLJSYNC

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Sep., 2018

Date of Test: 08 Oct., to 29 Oct., 2018

Date of report issued: 30 Oct., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	30 Oct., 2018	Original

Test Engineer Date: Tested by: 30 Oct., 2018

Reviewed by: Date: 30 Oct., 2018

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
			-
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	20
	6.6	BAND EDGE	
	6.6.		
	6.6.	2 Radiated Emission Method	26
	6.7	Spurious Emission	
	6.7.		
	6.7.	2 Radiated Emission Method	46
7	TES	ST SETUP PHOTO	54
Ω	FIIT	CONSTRUCTIONAL DETAILS	55

Test Summary

Test Items	Section in CFR 47	Result			
Antenna requirement	15.203 & 15.247 (c)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(3)	Pass			
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass			
Power Spectral Density	15.247 (e)	Pass			
Band Edge	15.247 (d)	Pass			
Spurious Emission	15.205 & 15.209	Pass			
Pass: The FUT complies with the essential requirements in the standard					

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Xwireless LLC	
Address: 11565 Old Georgetown Road Rockville MD 20852		
Manufacturer/ Factory:	Shenzhen LEAGOO Intelligence Co., Limited	
Address:	2nd Floor of Building B, HongLianYing Technology Park, No.286 of SiLi Road, DaBuXiang Community, Longhua New District, Shenzhen, China	

5.2 General Description of E.U.T.

Product Name:	Smart phone
Model No.:	Sync
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.5dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V 2000mAh
AC adapter:	Model: ES007-U050100X0F Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE180916704

5.3 Test environment and test mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		

Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g 6Mbps				
802.11n(H20) 6.5Mbps				
802.11n(H40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)	

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE180916704

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC F

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.10: 2013	ANSI C63 10: 2013			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kl	 Ц ₇			
Limit:	Frequency range Limit (dBuV)				
Limit.	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm of the frequency.1. The E.U.T and simulators are connected to the main power through				
Test procedure	line impedance stab 50ohm/50uH coupling. The peripheral device a LISN that provides termination. (Please photographs). Both sides of A.C. light interference. In order positions of equipments.	ilization network (L.I.S.N.), ng impedance for the meastes are also connected to the action of a 500hm/50uH coupling in the refer to the block diagram are checked for maximum entry to find the maximum emit and all of the interface of 63.4: 2014 on conducted in the state of the conducted in the conducted in the state of the conducted in the state of the conducted in the conduc	which provides a suring equipment. The main power through mpedance with 50ohm of the test setup and the conducted ssion, the relative cables must be changed		
Test setup:	AUX Equipment Test table/Insula Remark E.U.T. Equipment Under LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power		
Test Instruments:	Refer to section 5.8 for d	etails			
Test mode:	Refer to section 5.3 for d	etails			
Test results:	Passed				

Measurement Data:

Product name:	Smart phone	Product model:	Sync
Test by:	Yaro	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	—dBu₹	—dBu∇	<u>db</u>	
1	0.194	31.16	0.15	10.76	42.07	63.84	-21.77	QP
2	0.194	13.43	0.15	10.76	24.34	53.84	-29.50	Average
3	0.242	29.27	0.14	10.75	40.16	62.04	-21.88	QP
1 2 3 4 5 6 7 8 9	0.242	12.74	0.14	10.75	23.63	52.04	-28.41	Average
5	0.538	31.83	0.12	10.76	42.71	56.00	-13.29	QP
6	0.538	15.87	0.12	10.76	26.75	46.00	-19.25	Average
7	0.788	29.87	0.13	10.81	40.81	56.00	-15.19	QP
8	1.077	10.56	0.13	10.88	21.57	46.00	-24.43	Average
9	2.650	28.66	0.16	10.93	39.75	56.00	-16.25	QP
10	2.978	10.93	0.16	10.92	22.01	46.00	-23.99	Average
11	16.928	30.04	0.30	10.91	41.25	60.00	-18.75	QP
12	26.001	11.85	0.35	10.87	23.07	50.00	-26.93	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Smart phone	Product model:	Sync	
Test by:	Yaro	Test mode:	Wi-Fi Tx mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral	
Test voltage:AC 120 V/60 HzEnvironment:Temp: 22.5℃Huni: 55%				

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>		dBu₹	dBu₹	<u>dB</u>	
1	0.194	32.87	0.93	10.76	44.56	63.84	-19.28	QP
2	0.242	19.70	0.94	10.75	31.39	52.04	-20.65	Average
3	0.246	28.72	0.95	10.75	40.42	61.91	-21.49	QP
1 2 3 4 5 6 7 8 9	0.294	26.84	0.97	10.74	38.55	60.41	-21.86	QP
5	0.489	26.66	0.97	10.76	38.39	56.19	-17.80	QP
6	0.489	24.16	0.97	10.76	35.89	46.19	-10.30	Average
7	0.538	31.33	0.97	10.76	43.06	56.00	-12.94	QP
8	0.538	28.25	0.97	10.76	39.98	46.00	-6.02	Average
9	0.634	21.44	0.97	10.77	33.18	46.00	-12.82	Average
10	1.172	19.81	0.97	10.89	31.67	46.00	-14.33	Average
11	1.610	19.92	0.98	10.93	31.83	46.00	-14.17	Average
12	16.398	26.69	0.83	10.91	38.43	60.00	-21.57	QP

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Toot CU	Maximum Conducted Output Power (dBm)					Dogult
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	13.46	11.96	12.00	11.16		
Middle	13.68	13.07	12.14	11.16	30.00	Pass
Highest	13.43	12.84	12.11	11.12		

Test plot as follows:

6.4 Occupy Bandwidth

I			
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		Limit/kHz)	Result			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.24	15.44	16.00	35.68		
Middle	10.24	15.28	16.32	35.52	>500	Pass
Highest	9.76	15.44	16.00	35.52		
Test CH		99% Occupy Ba		Limit(ItU=)	Result	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.24	16.48	17.52	35.84		
Middle	12.40	16.48	17.60	35.84	N/A	N/A
Highest	12.40	16.48	17.60	35.84		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Limit:	8dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Toot CU	Test CH Power Spectral Density (dBm)					
Test Ch	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	3.87	-0.14	0.22	-4.25		
Middle	4.19	0.86	-0.15	-4.18	8.00	Pass
Highest	4.03	0.66	-0.78	-3.93		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Oolidaotea Elilloololi			
Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission Me	etnoa									
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
	Test Method:	ANSI C63.10: 2	013 and I	KDE	3 558074						
	Test Frequency Range:	2.3GHz to 2.5G	Hz								
	Test Distance:	3m									
	Receiver setup:	Frequency	Above 1GHz Peak 1MHz 3MHz Peak Value								
		RMS 1MHz 3MHz Average Value Frequency Limit (dBuV/m @3m) Remark									
	Limit:	Frequency Limit (dBuV/m @3m) Remark									
	Little.	Above 1GHz 54.00 Average Value									
		Above 1GHz 74.00 Peak Value									
	Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the numbers and to find the number should be specified E. If the emission the limit spof the EUT have 10dB	at a 3 me at the positives set 3 me the positives set 3 me the positives at a height is to determine the and the rota to maximum ceiver systandwidth sion level decified, the would be margin we	ter of the control of	camber. The to of the highest ers away from the integration on the to aried from one the maximum cal polarization assion, the EUT na was turned from the integration of the example of the	able value interpretation and the interpretation and interpretati	vas rota tion. erference variable to four of the fi he anter arrange ghts fror degrees etect Funde. e was 10 ped and e emission one us	ted 360 degrees ce-receiving e-height antenna meters above eld strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and OdB lower than I the peak values ons that did not ing peak, quasi-			
	Test setup:	- 150cm	AE EU1	1	3m Ground Reference Plane	n Antenna	Antenna Tov	wer			
	Test Instruments:	Refer to section	5.8 for de	etails	S						
	Test mode:	Refer to section	5.3 for de	etails	S						
	Test results:	Passed									

802.11b mode:

Produc	ct Name:	Smart ph	one		Pro	duct Mode	el: S	ync		
Test B	y:	Yaro			Tes	st mode:	80	802.11b Tx mode		
Test C	hannel:	Lowest ch	nannel		Pol	arization:	V	Vertical		
Test V	oltage:	AC 120/6	0Hz		En	vironment:	T	Temp: 24℃ Huni: 57%		
Lev	vel (dBuV/m)									
100										
									m	
80								FCC	PART 15 (PK)	
60			00					#CC	PART 15 (AV)	
40	months ha	hours have	XXXXX	money	mylym	mm	mym		(6	
40										
20										
0231	10 2320		235		uency (MH:	7)			2422	
7000000		ReadA	ntenna				Limit	Over		
	Freq					Level		Limit	Remark	
;	MHz	dBm		<u>d</u> B	<u>ab</u>	dBm/m	dBm/m	<u>d</u> B		
1 2	2390.000 2390.000	18.19 7.98	27.37 27.37	4.69 4.69	0.00 0.00			-23.75 -13.96	Peak Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Prod	uct Nan	ne:	Smart ph	one		Pr	oduct M	odel:	Sync		
Test	Ву:		Yaro			Te	st mode):	802.11b Tx mode Horizontal Temp: 24°C Huni: 57%		
Test	Channe	el:	Lowest cl	hannel		Po	larizatio	n:			
Test	Voltage):	AC 120/6	0Hz		Er	vironme	ent:			
- 1	Level (dE	RuV/m)				<u> </u>					
110	Level (at	Javinij								17	
100										1	
80										FCC	PART 15 (PK)
60										1	
00		00.0	m d a	1				. ^ 1	~~~	FCC	PART 15 (AV)
40	~~~~~	mm	- V.		V.10 00	ALCOHOL:	V	2	vr		
20											
0 2	2310 2	320		235		juency (M	Hz)				2422
		Freq	Read# Level	intenna Factor	Cable	Preamp)	Lim el Li	it ne L	Over imit	Remark
		MHz	dBm	<u>dB</u> /m	<u>d</u> B	d <u>E</u>	dBm/	7m dBm	7m	₫Ē	

0.00 49.71

74.00 -24.29 Peak

0.00 40.76 54.00 -13.24 Average

Remark:

1 2

2390.000

2390.000

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

17.65 27.37 4.69 8.70 27.37 4.69

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	Sync
Test By:	Yaro	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

				Frequ	uency (WHZ)			
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBm	$\overline{dB/m}$	<u>ab</u>	<u>dB</u>	-dBm/m		<u>dB</u>	
1 2	2483.500 2483.500					53.24 40.91			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	Sync
Test By:	Yaro	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

				Frequ	uency (MHz	2)			
	Freq		intenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBm			<u>d</u> B	_dBm/m	_dBπ/m	dB	
1 2	2483.500 2483.500		27.57 27.57			51.77 41.10			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	Smart phone	Product Model:	Sync		
Test By:	Yaro	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Гest Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
Level (dBuV/m)					
100					
80			CC PART 15 (PK)		
60			FCC PART 15 (AV)		
40		www.ww	~~		
20					
02310 2320	2350 Frequency	. ////	2422		

				Freq	uency (MHZ	(1)			
	Freq		Antenna Factor			Level	Limit Line	Over Limit	Remark
	MHz	dBm	$-\overline{dB}/\overline{m}$		<u>d</u> B	_dBm/m	-dBm/m	<u>dB</u>	
1 2	2390,000 2390,000			4.69 4.69		49.88 40.32			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Toduc	ct Name:	Smart pho	one		Pro	duct Mode	el: S	Sync		
est By	y:	Yaro			Tes	t mode:	8	802.11g Tx mode		
est Cl	hannel:	Lowest ch	nannel		Pola	arization:	Н	Horizontal		
est Vo	oltage:	AC 120/6	0Hz		Env	vironment:	Т	Temp: 24℃ Huni: 57%		
Lou	vol /dDu\//m\				•		•			
110 10	vel (dBuV/m)									
100								Ass	4 C4 cm	
								1	J. M. July	
80										
_								FCC	PART 15 (PK)	
								لسره		
							10	FCC	PART 15 (AV)	
60							8.0			
60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	man	m	www	moran	and a			
40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	m	m	VVV	my	2			
n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	m	m	VVVV	moun	2			
40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Maria	man	ww	VVVV	month	2			
n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Survey	mun	ww	~~~~	month	2			
40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	mun	ww.	~~~~	month	2			
40	10 2320	m	235	50		·	2			
40	10 2320	P - 10		50 Frequ	uency (MHz		2		2422	
40			ntenna	50 Frequ	uency (MHz Preamp		Limit Line	Over	2422	
40	Freq	Level	ntenna Factor	60 Frequ Cable Loss	uency (MHz Preamp Factor	Level	Line	Over Limit		
40			ntenna	50 Frequ	uency (MHz Preamp			Over Limit	2422	
40	Freq	Level	ntenna Factor	60 Frequ Cable Loss	uency (MHz Preamp Factor dB	Level	Line dBm/m	Over Limit	2422 Remark	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Produc	t Name:	Smart ph	one		Pro	duct Mode	el: Sy	/nc		
Test By	':	Yaro			Tes	t mode:	80	802.11g Tx mode Vertical Temp: 24°C Huni: 57%		
Test Ch	annel:	Highest o	hannel		Pola	arization:	Ve			
Test Vo	ltage:	AC 120/6	60Hz		Env	ironment:	Te			
Lev	el (dBuV/m)						·			
110	cr (dbdv/iii)			10						
100										
80				1				FCC	PART 15 (PK)	
									17.00	
60				1	· ~			ECC	PART 15 (AV)	
					~	1	~~~	march 1	PART 13 (AV)	
40						2				
20										
20										
245	2			Feed					2500	
		Pando	int enna	120.00 material (120.00 material)	puency (MH:		Limit	Over		
	Freq				Preamp Factor		Limit		Remark	
	MHz	dBm	dB/m	<u>d</u> B	<u>ab</u>	_dBm/m	_dBm/m	<u>d</u> B		
1	2483.500	19.03	27.57	4.81	0.00	51.41		-22.59		
2	2483.500	8.75	27.57	4.81	0.00	41.13	54.00	-12.87	Average	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	Sync
Test By:	Yaro	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

					1000	16			
	Freq		Antenna Factor						
	MHz	dBm	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	_dBm/m	_dBm/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

		Sync		
Test By: Yaro	Test mode:	802.11n(HT20) Tx mode		
Test Channel: Lowest channel	Polarization:	Vertical		
Test Voltage: AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq	ReadAntenna Level Factor		Cable Preamp Loss Factor			Limit Line		
	MHz	dBm	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	_dBm/m	dBm/m	<u>dB</u>	
1 2	2390.000 2390.000			4.69 4.69		51.28 40.54			

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Produc	ct Name:	Smart pho	one		Pro	duct Mode	el: S	ync		
Test By:		Yaro				t mode:	8	802.11n(HT20) Tx mode		
Test Channel:		Lowest channel				Polarization:		Horizontal		
Test Vo	oltage:	AC 120/60Hz				Environment:		Temp: 24℃ Huni: 57%		
Lev	vel (dBuV/m)				·		·			
110	ver(abaviiii)									
100								~~	2000	
								$\int_{-\infty}^{\infty}$	a way	
80		1						FCC	PART 15 (PK)	
								1	71111 10 (11)	
60		-					100	M	PART 15 (AV)	
~~	manan	~~~~	~~~~~	N	v. v. v. v. v.	moun	m	rcc	PART 15 (AV)	
40			200				4			
20										
20										
23	10 2320	1	235		(0.011	,			2422	
		Roadú	ntanna		uency (MHz Preamp	.)	Limit	Over		
	Freq				Factor	Level			Remark	
	MHz	dBm			<u>d</u> B				-	
1	2390.000	23.20	27.37	4.69	0.00	55.26	74.00	-18.74	Peak	
2	2390,000	11.40	27.37	4.69	0.00				Average	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model: Sync			
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

			100000000000000000000000000000000000000		•			
Freq								
MHz	dBm	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	_dBm/m	_dBm/m	<u>dB</u>	
	MHz 2483.500	Freq Level MHz dBm 2483.500 19.97	Freq Level Factor MHz dBm dB/m 2483.500 19.97 27.57	Freq Level Factor Loss MHz dBm dB/m dB 2483.500 19.97 27.57 4.81	Freq Level Factor Loss Factor MHz dBm dB/m dB dB 2483.500 19.97 27.57 4.81 0.00	Freq Level Factor Loss Factor Level MHz dBm dB/m dB dBm/m 2483.500 19.97 27.57 4.81 0.00 52.35	Freq Level Factor Loss Factor Level Line MHz dBm dB/m dB dB dBm/m dBm/m 2483.500 19.97 27.57 4.81 0.00 52.35 74.00	Freq Level Factor Loss Factor Level Line Limit

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	Sync
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

				Freq	uency (MHz	2)			
	Freq		Antenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBm	dB/m	dB	<u>d</u> B	_dBm/m	_dBm/m	<u>d</u> B	
1 2	2483.500 2483.500			4.81 4.81		54.58 42.14			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	Smart phone	Smart phone Yaro			Sync 802.11n(HT40) Tx mode		
Test By:	Yaro						
Test Channel:	Lowest channel		Polarizatio	n:	Vertical		
Test Voltage: AC 120/60Hz En				nt:	Temp: 24℃	Huni: 57%	
Level (dBuV/m)							
110 Lever (dBdv/iii)							
100						-	
60						ART 15 (PK)	
1 N 1 1	James	munum	ma Min		FCC P	ART 15 (AV)	
40	2000 11 1200 120	0.000				-	
20						-	
0 2310 2320	2350	Frequency	(MHz)			2442	

				Frequ	uency (MHz)	Limit Over Line Limit Remark			
	Freq		Antenna Factor			Level			Remark	
	MHz	dBm	— <u>d</u> B/m		<u>d</u> B	_dBm/m	dBm/m	<u>d</u> B		-
N. C.	2390.000 2390.000		27.37 27.37	4.69 4.69		52.52 52.52			Peak Average	

Remark

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	Sync
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

				Freq	uency (MHz	(1)			
	Freq		Antenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz		<u>dB</u> /m	dB	<u>dB</u>	_dBm/m	_dBm/m	<u>dB</u>	
2	2390.000 2390.000	26.84 13.95	27.37 27.37	4.69 4.69		58.90 46.01		-15.10 -7.99	Peak Average

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		Smart phone			Pro	duct Mode	el: S	Sync		
Test By	y:	Yaro			Tes	Test mode: 802.11n(HT40) T:			10) Tx mode	
Γest Cl	hannel:	Highest o	hannel		Pola	arization:	\	Vertical		
Test Vo	oltage:	AC 120/6	60Hz		Env	rironment:	Т	emp: 24℃	Huni: 57%	
Lov	(al /dPu\//m\									
110	/el (dBuV/m)									
100										
	m	~~~	~~~	~~	hound					
80					1			FCC F	PART 15 (PK)	
1						1				
60						has	ma	→ FCC F	ΣΔRT 15 (ΔV)	
								James		
40										
20										
0										
243	32	245	50	Frequ	iency (MHz	1			2500	
	77. 71.	ReadA	Int enna		Preamp		Limit	Over		
	Freq		Factor						Remark	
								d B		
	MHz	dBm	dB/m	dB	dB	dBm/m	dBm/1	ı w		
1 2		dBm 24.45		dB 4.81					Peak	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	Sync
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

				1104	donoj (minz				
	Freq		Antenna Factor						Remark
35	MHz	dBm	<u>dB</u> /m	<u>ab</u>	<u>dB</u>	_dBm/m	-dBπ/m	<u>ab</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

<u>0.7.1</u>	Oonaactea Ennission	motriou					
	Test Requirement:	FCC Part 15 C Section 15.247 (d)					
	Test Method:	ANSI C63.10:2013 and KDB 558074					
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
	Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
	Test Instruments:	Refer to section 5.8 for details					
	Test mode:	Refer to section 5.3 for details					
	Test results:	Passed					

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2	Radiated Emission Me	ethod									
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
	Test Method:	ANSI C63.10:201	ANSI C63.10:2013								
	Test Frequency Range:	9kHz to 25GHz									
	Test Distance:	3m									
	Receiver setup:	Frequency	Detecto	or	RBW	VI	3W	Remark			
	•	30MHz-1GHz	Quasi-pe	eak	120KHz	300	KHz	Quasi-peak Value			
		Above 1GHz	Peak		1MHz		/IHz	Peak Value			
	1 toute.		RMS		1MHz : (dBuV/m @3r		/lHz	Average Value			
	Limit:	Frequency 30MHz-88MH	7	LIIIIII	40.0	11)	Oı	Remark uasi-peak Value			
		88MHz-216MH			43.5			uasi-peak Value			
		216MHz-960MI			46.0			uasi-peak Value			
		960MHz-1GH			54.0			uasi-peak Value			
		Above 1GHz			54.0		I	Average Value			
	Test Procedure:				74.0 e top of a rota			Peak Value			
		The table was highest radia? The EUT was antenna, who tower. The antenna the ground to Both horizon make the med. For each suscase and the meters and to find the med. The test-reconspecified Base. If the emission the limit spen of the EUT we have 10dB med.	as rotated ation. Its set 3 m ich was man height is to determinatel and versasureme spected eight he rota ta aximum reiver system determinatel of the color of th	eters nount s varied for the ertical able with Months about 10 for the ertical tennal able with Months en test report buld b	away from the don the top ed from one ne maximum value on, the EUT was turned from the examination on, the EUT was turned from the examination on the ed. Otherwise re-tested of the examination of the exa	ne into of a neter value s of the was a beginn 0 of mode stopped the ne by	erferent variable to four of the fane ante arrange hts fro degree tect Funde. e was 1 ped and emissione us	r meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees			
	Test setup:	Below 1GHz EUT Turn Table Ground P	0.8m	4m			_				

	Above 1GHz
	Hern Antenna Tower Ground Reference Plane Test Receiver Amptifier Controller
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

	Name:	Smart phone			Prod	uct Model	l: Sy	Sync		
Test By		Yaro			Test	mode:	Wi	Wi-Fi Tx mode		
Test Fre	equency:	30 MHz ~ 1 GHz			Pola	rization:	Ve	Vertical		
Test Vo	Itage:	AC 120/60	0Hz		Envi	ronment:	Те	Temp: 24°C Huni: 5		
Lovo	I (dBuV/m)									
80 Leve	(dbdv/iii)									٦
70										
60								ECC DAR	T15 CLASS E	B
50								TCCFAR	113 CLASS I	Γ
-								6]
40										
					4					
30							Ĭ			
30	. 1		2		Ã.		Ĭ		a mathematical between the	M
	h	\ <u>\</u> .	2	7 h / M	Month	white L) ideas	alexander de la constante de l	afferment to be here for	M
20	walk was a said	M	Jahren Jahren	*	Žww.	phyphoty Was like	and some land one	physical party and	of your travel laboration	h
	make more of	W	neda d	*		prophy poull	and the second	Aproportation of the second	of the second	ha
10	and larger of	M	Market of the	*	1	phyphotypaullh	and the board of the section of the	of the said of the		
20	Land Land of the South	M	100	Frequ	200 Jency (MHz	phyphpy phyllh	geland Society Lineary (19	500		000
10	50	ReadA	100 Intenna	400000000000000000000000000000000000000	200 lency (MHz Preamp	prograft poulle	Limit	500 Over		
10	50 Freq	ReadA Level	ıntenna	Cable	iency (MHz	hwall) Level	Limit Line	Over		
10			ıntenna	Cable	ency (MHz Preamp	Level		Over Limit	10	
20 10 30	Freq MHz	Level dBuV	Antenna Factor ——dB/m	Cable Loss dB	ency (MHz Preamp Factor dB	Level	Line	Over Limit dB	10 Remark	
20 10 30	Freq MHz 53.693 107.134	Level dBuV 40.12 39.41	antenna Factor dB/m 13.44 12.13	Cable Loss dB 1.32 2.02	Preamp Factor dB 29.81 29.48	Level dBuV/m 25.07 24.08	Line dBuV/m 40.00 43.50	Over Limit ———————————————————————————————————	10	
20 10 30	Freq MHz 53.693 107.134 162.041	Level dBuV 40.12 39.41 43.60	dntenna Factor dB/m 13.44 12.13 9.16	Cable Loss dB 1.32 2.02 2.60	ency (MHz Preamp Factor dB 29.81 29.48 29.12	Level dBuV/m 25.07 24.08 26.24	Line dBuV/m 40.00 43.50 43.50	Over Limit 	RemarkQP QP QP	
10	Freq MHz 53.693 107.134	Level dBuV 40.12 39.41	antenna Factor dB/m 13.44 12.13	Cable Loss dB 1.32 2.02	Preamp Factor dB 29.81 29.48	Level dBuV/m 25.07 24.08	Line dBuV/m 40.00 43.50 43.50 43.50	Over Limit ———————————————————————————————————	Remark QP QP	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Name:	Smart phone Product Model: Sync					Sync			
Test By		Yaro			Tes	t mode:	V	Wi-Fi Tx mode		
Test Fre	Test Frequency:		1 GHz		Pola	arization:	H	Horizontal		
Test Vo	Itage:	AC 120/6	0Hz		Env	ironment:	7	Temp: 24°C Huni: 5		
80 Leve 70 60 50 40 30 20	(dBuV/m)			\	M	JAMAN NO.	5 Liman Linn	FCC PAR	RT15 CLAS	S B
030	50		100	Frequ	200 uency (MHz	2)		500		1000
	Freq		intenna Factor		Preamp Factor	Level	Limit Line		Remark	
-	MHz	−dBuV	dB/m		<u>d</u> B	$\overline{dBuV/m}$	dBuV/π	<u>ab</u>		
1 2 3 4 5	55. 221 114. 114 180. 017 191. 745 383. 932 576. 644	36.44 43.34 46.68 55.75 53.77 40.68	13. 17 11. 41 9. 80 11. 25 15. 22 18. 65	1.36 2.10 2.73 2.81 3.09 3.92	29.80 29.43 28.97 28.89 28.71 29.01	21.17 27.42 30.24 40.92 43.37 34.24	43.50 43.50 43.50 46.00		QP QP QP QP	
Pomork:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz										
				802.11b						
Test channel: Lowest channel										
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	48.51	36.06	6.81	41.82	49.56	74.00	-24.44	Vertical		
4824.00	50.76	36.06	6.81	41.82	51.81	74.00	-22.19	Horizontal		
			Dete	ctor: Averag	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	39.61	36.06	6.81	41.82	40.66	54.00	-13.34	Vertical		
4824.00	39.78	36.06	6.81	41.82	40.83	54.00	-13.17	Horizontal		
				annel: Midd						
		T T	De	tector: Peak	Value		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.43	36.32	6.85	41.84	50.76	74.00	-23.24	Vertical		
4874.00	51.86	36.32	6.85	41.84	53.19	74.00	-20.81	Horizontal		
			Dete	ctor: Averag	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	40.23	36.32	6.85	41.84	41.56	54.00	-12.44	Vertical		
4874.00	41.51	36.32	6.85	41.84	42.84	54.00	-11.16	Horizontal		
				annel: Highe						
ı		T T		tector: Peak	Value		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	50.44	36.58	6.89	41.86	52.05	74.00	-21.95	Vertical		
4924.00	51.85	36.58	6.89	41.86	53.46	74.00	-20.54	Horizontal		
			Dete	ctor: Averaç	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	40.15	36.58	6.89	41.86	41.76	54.00	-12.24	Vertical		
4924.00 Remark:	41.32	36.58	6.89	41.86	42.93	54.00	-11.07	Horizontal		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g				
			Test ch	annel: Lowe				
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	48.47	36.06	6.81	41.82	49.52	74.00	-24.48	Vertical
4824.00	50.16	36.06	6.81	41.82	51.21	74.00	-22.79	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	39.75	36.06	6.81	41.82	40.80	54.00	-13.20	Vertical
4824.00	39.26	36.06	6.81	41.82	40.31	54.00	-13.69	Horizontal
			Toot ob	nannel: Mido	lla channal			
	D I	A . 1		tector: Peak	value T		l	Τ
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	49.83	36.32	6.85	41.84	51.16	74.00	-22.84	Vertical
4874.00	51.34	36.32	6.85	41.84	52.67	74.00	-21.33	Horizontal
			Dete	ctor: Averag	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	40.31	36.32	6.85	41.84	41.64	54.00	-12.36	Vertical
4874.00	41.27	36.32	6.85	41.84	42.60	54.00	-11.40	Horizontal
			Tost ch	annel: High	est channel			
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	50.41	36.58	6.89	41.86	52.02	74.00	-21.98	Vertical
4924.00	51.32	36.58	6.89	41.86	52.93	74.00	-21.07	Horizontal
				ctor: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	39.89	36.58	6.89	41.86	41.50	54.00	-12.50	Vertical
4924.00	40.57	36.58	6.89	41.86	42.18	54.00	-11.82	Horizontal
Remark [,]								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	20)			
				annel: Lowe				
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	48.31	36.06	6.81	41.82	49.36	74.00	-24.64	Vertical
4824.00	50.29	36.06	6.81	41.82	51.34	74.00	-22.66	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	39.61	36.06	6.81	41.82	40.66	54.00	-13.34	Vertical
4824.00	39.78	36.06	6.81	41.82	40.83	54.00	-13.17	Horizontal
			Test ch	annel: Mido	lle channel			
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	49.15	36.32	6.85	41.84	50.48	74.00	-23.52	Vertical
4874.00	50.24	36.32	6.85	41.84	51.57	74.00	-22.43	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	39.84	36.32	6.85	41.84	41.17	54.00	-12.83	Vertical
4874.00	39.89	36.32	6.85	41.84	41.22	54.00	-12.78	Horizontal
			Test ch	annel: High	est channel			
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	50.34	36.58	6.89	41.86	51.95	74.00	-22.05	Vertical
4924.00	51.21	36.58	6.89	41.86	52.82	74.00	-21.18	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	39.92	36.58	6.89	41.86	41.53	54.00	-12.47	Vertical
4924.00	40.14	36.58	6.89	41.86	41.75	54.00	-12.25	Horizontal
Remark [.]								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	(40)			
				annel: Lowe				
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4844.00	48.23	36.06	6.81	41.82	49.28	74.00	-24.72	Vertical
4844.00	49.24	36.06	6.81	41.82	50.29	74.00	-23.71	Horizontal
			Dete	ctor: Averag	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4844.00	38.57	36.06	6.81	41.82	39.62	54.00	-14.38	Vertical
4844.00	39.41	36.06	6.81	41.82	40.46	54.00	-13.54	Horizontal
			Test ch	annel: Mido	lle channel			
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	49.31	36.32	6.85	41.84	50.64	74.00	-23.36	Vertical
4874.00	49.96	36.32	6.85	41.84	51.29	74.00	-22.71	Horizontal
			Dete	ctor: Averag	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	38.95	36.32	6.85	41.84	40.28	54.00	-13.72	Vertical
4874.00	39.24	36.32	6.85	41.84	40.57	54.00	-13.43	Horizontal
			Test ch	annel: Highe	est channel			
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4904.00	49.96	36.45	6.87	41.85	51.43	74.00	-22.57	Vertical
4904.00	50.28	36.45	6.87	41.85	51.75	74.00	-22.25	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4904.00	39.43	36.45	6.87	41.85	40.90	54.00	-13.10	Vertical
4904.00	39.89	36.45	6.87	41.85	41.36	54.00	-12.64	Horizontal
Remark:						.		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.