Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Deep Neural Networks

Deep L-layer Neural network

What is a deep neural network?

logistic regression

2 hidden layers

Deep neural network notation 4 later NN x_2 × =0[0] [= 4 (#layers) N = 5 , N [5] = 5 , N [5] = 3 , N [7] = N [1] = 1 n(1) = #unts in layer & $a^{(e)} = autinotions$ in legal $a^{(e)} = a_x = 3$ $a^{(e)} = autinotions$ in legal $a^{(e)} = a_x = 3$ $a^{(e)} = autinotions$ in legal $a^{(e)} = a_x = 3$ $a^{(e)} = autinotions$ in legal $a^{(e)} = a_x = 3$

Andrew

Deep Neural Networks

Forward Propagation in a Deep Network

Forward propagation in a deep network

Deep Neural Networks

Getting your matrix dimensions right

Deep Neural Networks

Why deep representations?

Andrew Ng

Deep Neural Networks

Building blocks of deep neural networks

deeplearning.ai

Forward and backward functions

Forward and backward functions

Deep Neural Networks

Forward and backward propagation

Backward propagation for layer l

- \rightarrow Input $da^{[l]}$
- \rightarrow Output $da^{[l-1]}$, $dW^{[l]}$, $db^{[l]}$

Summary

Deep Neural Networks

Parameters vs Hyperparameters

 $\mathbb{W}^{[1]}$, $b^{[1]}$, $W^{[2]}$, $b^{[2]}$, $W^{[3]}$, $b^{[3]}$... Hyperparameters: dearning state of # hidden layer L

hidden layer

hidden layer choice of autivortion furtion dot: Monatur, min-Loth cize regularjohns...

$$dZ^{[L]} = A^{[L]} - Y$$

$$dW^{[L]} = \frac{1}{m} dZ^{[L]} A^{[L-1]^T}$$

$$db^{[L]} = \frac{1}{m} np.sum(dZ^{[L]}, axis = 1, keepdims = True)$$

$$dZ^{[L-1]} = W^{[L]^T} dZ^{[L]} * g'^{[L-1]} (Z^{[L-1]})$$

Note that * denotes element-wise multiplication)

:

$$dZ^{[1]} = W^{[2]^T} dZ^{[2]} * g'^{[1]}(Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[0]^T}$$

Note that $A^{[0]^T}$ is another way to denote the input features, which is also written as X^T

$$db^{[1]}=rac{1}{m}np.sum(dZ^{[1]},axis=1,keepdims=True)$$