							Required		
		ge coverage	Approach	Source type	Metadata	Metadata structures	information	Limitations	Data gathering
Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., and Reynolds, D. 200 SPARQL basic graph pattern optimization using selectivity estimation. In Proceeding of the 17th international Conference on World Wide Web (Bei China, April 21 - 25, 2008). WWW '08. ACM, New York, NY, 595-604.		OPTIONAL, UNION, FILTER	static optimization before evaluation: - join ordering	single source oriented optimization	Use of heuristics: - without pre-computed statistics - with pre-computed statistics	Summary statistics: - single triple patterns - joined triple patterns use of histograms	Selectivity of patterns, and estimation of selectivity	Only main memory graph implementations	Random sampling from the full dataset
Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K., and Umbrich, 2010. Data summaries for on-demand queries over linked data. In Proceed of the 19th international Conference on World Wide Web (Raleigh, North Carolina, USA, April 26 - 30, 2010). WWW '10. ACM, New York, NY, 411-	dings Conjunctive SPARQL		Source selection, join source selection, discard unnecessary sources Source ranking	Distributed data - linked open data	Prefetched data summaries	QTree, combination of histogram + RTree MBB Bucket [S.low, S.hi][P.low,P.hi][O. low,O.hi]	Count of data items	Focused on source selection, no SPARQL endpoints usage	Crawling to fill the QTree. Alternatively start w empty QTree and fill on every query
Schmidt, M., Meier, M., and Lausen, G. 2010. Foundations of SPARQL quotimization. In Proceedings of the 13th international Conference on Data theory (Lausanne, Switzerland, March 23 - 25, 2010). L. Segoufin, Ed. ICI ACM, New York, NY, 4-3	pase OPTIONAL		complexity analysis SPARQL rewriting rules with equivalences, algebraic optimization and semantic optimization exploiting constraints	Single source, rewriting can be used in dsitributed approaches	no	No	No	only rewriting rules heuistics, statistics, access paths, cost models out of scope	
Olaf Görlitz and Steffen Staab. Federated Data Management and Query Optimization for Linked Open Data. Book chapter. In: Athena Vakali & Lal Jain(eds.) Web Data Management Trails, Springer, to appear.	hmi 4 BGPs	OPTIONAL, UNION	Join order optimization using dynamic programming. Use of semi-join operators.	Federated SPARQL sources	Dynamic programming using a Cost Model Definition of a set of cost function for operators, based on cardinality and selectivity	Not specified	Estimated cardinality and selectivity of patterns	Theoretical work, no implementation or evaluation	Several approaches explained, not settled to any.
Quilitz, B. and Leser, U. 2008. Querying distributed RDF data sources wit SPARQL. In Proceedings of the 5th European Semantic Web Conference the Semantic Web: Research and Applications (Tenerife, Canary Islands, June 01 - 05, 2008). S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis, Eds. Lecture Notes In Computer Science. Springer-Verlag, B Heidelberg, 524-538.	on Spain,	GRAPH, UNION, OPTIONAL	Basic logical rewriting optimization Physical optimization, join reordering using Cost model, uses the statistics	Distributed SPARQL	Statistics provided in Source descriptions	No histograms, statistics provided as metadata for each source	of triples with a predicate	Only basic optimization techniques. could be extended.	Statistics provided beforehand
Obermeier, P., Nixon, L.: A Cost Model for Querying Distributed RDF-Repositories with SPARQL. In: Proceedings of theWorkshop on Advancin Reasoning on theWeb: Scalability and Commonsense. CEUR Workshop Proceedings, vol. 350	Seemingly includes OPTIONAL and 6 UNION		Estimates phyical costs of operations	Distributed query processing	Statistics, cardinalities	Not specified	Cardinalities, estimation of CPU instructions and estimation of disk access	Still to implement in a query processor	Recommended statistics beforehand, used to compute cost functions
Stuckenschmidt, H., Vdovjak, R., Houben, G., and Broekstra, J. 2004. Ind structures and algorithms for querying distributed RDF repositories. In Proceedings of the 13th international Conference on World Wide Web (Ne York, NY, USA, May 17 - 20, 2004). WWW '04. ACM, New York, NY, 631-	w 639 7 SeRQL	Previous to SPARQL standardization	Cost model, uses cardinality Heuristics for Join ordering	Distributed RDF storage	Cardinality of relations	Source index hierarchies	Cardinalities	Purely theoretical Not SPARQL really Source selection oriented	Not specified, assumed to be given
Neumann, T. and Weikum, G. 2008. RDF-3X: a RISC-style engine for RD Proc. VLDB Endow. 1, 1 (Aug. 2008), 647-659.	Includes OPTIONAL and UNION, though hints at other 8 specific technique	s No	Indexes over 6 permutation of triples Indexes compressed, claimed < size of data	Single source	Counters of frequent predicate sequences Paths are potential join Selectivity estimation	B+ sorted lexicographically Selectivity Histograms	Selectivity estimation is computed	Compression tradeoff, redundancy indexes	Frequent path mining algorithm