Banco de Dados I

07 - Cálculo Relacional

Arthur Porto - IFNMG Campus Salinas

arthur.porto@ifnmg.edu.br arthurporto.com.br

Sumário I

- Introdução
- Variáveis de tupla e relação de intervalo
- Seleção
- Projeção
- Exemplo
- União
- Interseção
- Oiferença
- Produto cartesiano
- Junção
- 🔟 Equi-Junção
- Quantificadores
- Cálculo relacional de domínio
- Referências

Sumário I

- Introdução
- Variáveis de tupla e relação de intervalo
- Seleção
- Projeção
- Exemplo
- 📵 União
- Interseção
- Oiferença
- Produto cartesiano
- Junção
- 🔟 Equi-Junção
- Quantificadores
- Cálculo relacional de domínio
- Referências

Introdução

- Representado por uma expressão declarativa para especificar uma solicitação de recuperação [1].
- Ao invés de especificar o como recuperar, aqui preocupa-se apenas com "O QUE" recuperar.
 - Diferente da álgebra que necessita de uma sequência em ordem.
- É um modo procedimental de indicar uma consulta.
- Qualquer expressão de álgebra relacional pode ser expressa pelo cálculo relacional.
- Motivos
 - Base na lógica matemática.
 - Serve de base pra o SQL.

Variáveis de tupla e relação de intervalo

Forma geral

$$\{t \mid \mathsf{P}(t)\}\tag{1}$$

onde:

: é uma variável de tupla.

P(t): Relação de intervalo (expressão condicional booleana)

- O resultado é o conjunto de todas as tuplas t tais que o predicado P seja verdadeiro para t [2].
- Encontrar todos os funcionários cujo salário é maior que R\$ 50.000,00 [1].

 $\{t \mid \mathsf{FUNCIONARIO}(t) \ \mathbf{AND} \ t.\mathsf{Salario} > 50.000\}$

Encontre o nome_agência, o numero_emprestimo e a quantia para empréstimos de mais de R\$1.200 [2].

$$\{t \mid t \in emprestimo \land t.[quantia] > 1200\}$$
(3)

lacktriangledown FUNCIONARIO(t) e $t\in$ FUNCIONARIO representam a **relação de intervalo**.

Seleção

$$\{t \mid t \in \mathsf{FUNCIONARIO} \land t.\mathsf{Salario} > 50.000\} \tag{4}$$

Projeção

$$\{t.\mathsf{Pnome}, t.\mathsf{Unome} \mid t \in \mathsf{FUNCIONARIO}\} \tag{5}$$

Exemplo

 Recuperar a data de nascimento e o endereço do funcionário com o nome 'João B. Silva'.

```
\{t. \mathsf{Datanasc}, t. \mathsf{Endereco} \mid t \in \mathsf{FUNCIONARIO} \land t. \mathsf{Pnome} = Joao \land t. \mathsf{Minicial} = B \land t. \mathsf{Unome} = Silva\} \tag{6}
```

- Projeção antes do (|).
- Relação de intervalo e Seleção após o (|).

União

- Relações
 - C1

<u>CliId</u>	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

• C2

<u>CliId</u>	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

$$\begin{cases}
t \mid t \in \mathsf{C1} \ \mathbf{OR} \ t \in \mathsf{C2} \\
t \mid t \in \mathsf{C1} \ \lor \ t \in \mathsf{C2}
\end{cases}$$
(7)

<u>CliId</u>	Nome
1532	Asdrúbal
1644	Jepeto
1755	Doriana
1780	Quincas
1982	Zandor

Interseção

- Relações
 - C1

<u>CliId</u>	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

• C2

<u>CliId</u>	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

$$\{t \mid t \in \mathsf{C1} \; \mathbf{AND} \; t \in \mathsf{C2}\}\$$
$$\{t \mid t \in \mathsf{C1} \; \land \; t \in \mathsf{C2}\}\$$
(8)

<u>CliId</u>	Nome
1532	Asdrúbal
1780	Quincas

Diferença

- Relações
 - C1

<u>CliId</u>	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

• C2

<u>CliId</u>	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

$$\{t \mid t \in \mathsf{C1} \; \mathbf{AND} \; \mathbf{NOT} \; t \in \mathsf{C2}\}$$

$$\{t \mid t \in \mathsf{C1} \; \land (\neg \; (t \in \mathsf{C2}))\}$$

$$(9)$$

<u>CliId</u>	Nome
1755	Doriana

Produto cartesiano

- Relações
 - C1

<u>CliId</u>	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

R1

<u>Clid</u>	<u>Placa</u>	<u>DataPeido</u>
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

(10)
(10)

	<u>CliId</u>	Nome	Clid	<u>Placa</u>	<u>DataPeido</u>
	1532	Asdrúbal	1755	DAE6534	15/02/2003
	1532	Asdrúbal	1982	JDM8776	18/02/2003
	1755	Doriana	1755	DAE6534	15/02/2003
1	1755	Doriana	1982	JDM8776	18/02/2003
	1780	Quincas	1755	DAE6534	15/02/2003
	1780	Quincas	1982	JDM8776	18/02/2003

Junção

- Produto cartesiano $C1 \times R1$

Clild Nome		<u>ClId</u>	<u>Placa</u>	<u>DataPeido</u>	
1532	32 Asdrúbal 1755		DAE6534	15/02/2003	
1532	1532 Asdrúbal 1982		JDM8776	18/02/2003	
1755	Doriana	1755	DAE6534	15/02/2003	
1755	Doriana	1982	JDM8776	18/02/2003	
1780	Quincas	1755	DAE6534	15/02/2003	
1780	Quincas	1982	JDM8776	18/02/2003	

$$\{t,s \mid t \in \mathsf{C1} \land s \in \mathsf{R1} \land t.cliId < s.clId\} \quad \textbf{(11)}$$

<u>CliId</u>	Nome	<u>Clid</u>	<u>Placa</u>	<u>DataPeido</u>
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

Equi-Junção

- Produto cartesiano $C1 \times R1$

Clild Nome 9 1532 Asdrúbal		<u>Clid</u>	<u>Placa</u>	<u>DataPeido</u>
		1755	DAE6534	15/02/2003
1532 Asdrúbal 1982		JDM8776	18/02/2003	
1755 Doriana		1755	DAE6534	15/02/2003
		1982	JDM8776	18/02/2003
		1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

$$\{t,s\mid t\in\mathsf{C}1\wedge\ s\in\mathsf{R}1\wedge t.cliId=s.clId\}\quad \textbf{(12)}$$

<u>Cli1d</u>		Nome	<u>Clid</u>	<u>Placa</u>	<u>DataPeido</u>	
	1755	Doriana	1755	DAE6534	15/02/2003	

Quantificadores

- As tuplas de uma só relação não é suficiente. Precisa de informações de outras relações.
- Quantificador existencial: ∃ (Existe):
 - $\exists s \in S(F(s))$
 - Existe pelo menos uma tupla s pertencente a S tal que a fórmula F(s) é verdadeira. [3]
 - No ∃, verificamos tupla por tupla para ver se há alguma verdadeira.
- Quantificador universal: ∀ (Para todo):
 - $\forall s \in S(F(s))$
 - Para toda tupla s pertencente a S a fórmula F(s) é verdadeira.
 - $\bullet~$ No $\forall,$ um conjunto de tuplas é avaliado, e todas elas precisam satisfazer as condições.
- Variável ligadas: São aquelas quantificadas (ligadas aos quantificadores).
- Variável livre: São as não ligadas.

Quantificadores

- Exemplo (∃)
 - Listar o nome e o endereço de todos os funcionários que trabalham para o departamento 'Pesquisa'

$$\{t.Pnome, t.Unome, t.Endereco \mid t \in \mathsf{FUNCIONARIO} \land \mathbf{X}\}$$

$$\mathbf{X} = \exists d(d \in \mathsf{DEPARTAMENTO} \land d.Dnome = Pesquisa \land d.Dnumero = t.Dnr)$$
 (13)

- Cliente x Corrida

$$\{t \mid t \in \mathsf{C1} \land \exists s (s \in \mathsf{R1} \land t.cliId = s.clId)\} \tag{14}$$

• Equi-junção porém somente t está na resposta.

<u>CliId</u>	Nome		
1755	Doriana		

07 - Cálculo Relacional Banco de Dados I 16/20

Quantificadores

- Exemplo ∀
 - Exemplo: Listar os nomes dos funcionários que trabalham em todos os projetos controlados pelo departamento 5.

EMPLOYEE

	Fname	Lname	<u>Ssn</u>	Supe	er_ssn	Dno	
PROJECT WORKS_ON							
Pname	Pnumber	Plocation	on [num	Essr	<u>Pno</u>	Hours

- Eliminar a consideração das tuplas que não estão na relação de interesse tornando verdadeiras
- Eliminar a consideração das tuplas que não interessa na relação de interesse.
- Stabelecer a condição determinante.

$$\{e.Lname, e.Fname \mid e \in \mathsf{EMPLOYEE} \land (\mathbf{X}')\}$$

$$\mathbf{X}' = \forall p(\neg(p \in \mathsf{PROJECT}) \lor \mathbf{X_1} \lor \mathbf{X_2})$$

$$\mathbf{X_1} = \neg(p.Dnum = 5)$$

$$\mathbf{X_2} = \exists t(t \in \mathsf{WORKS_ON} \land t.Essn = f.Ssn \land p.Pnumber = t.Pno)$$

$$(15)$$

- \bullet Com o \forall a fórmula precisa ser VERDADEIRA para todas as tuplas no universo.
- Exclui-se da quantificação as tuplas que não estamos interessados, tornando a condição VERDADEIRA para todas essas tuplas.

Cálculo relacional de domínio

- Baseada na linguagem QBE (Query-by-Example).
- Ao invés de variáveis percorrendo as tuplas, o cálculo é feito por valores isolados dos domínios.
- Não se tem uma variável para a tuplas, mas uma variável para cada atributo da relação.

$$\{x_1, x_2, ..., x_n \mid \mathsf{COND}(x_1, x_2, ..., x_n, x_{n+1}, n_{n+2}, ..., x_{n+m})\} \tag{16}$$

onde:

 x_n : variáveis de domínio

COND: fórmula

Cálculo relacional de domínio

• Listar a data de nascimento e o endereço do funcionário cujo nome é 'João B. Silva'.

$$dt, e \mid (\exists i)(\exists n)(\exists sn)(\exists e)(\exists dt)(\exists s)(\exists sn)(\exists sn)(\exists dn) \in \mathsf{FUNCIONARIO}(insnedtsxsupdn) \land n = JoaoBSilva \tag{17}$$

- Simplificando

$$dt, e \mid (\exists dt)(\exists e) \in \mathsf{FUNCIONARIO}(i \ n \ sn \ e \ dt \ s \ x \ sup \ dn) \land n = JoaoBSilva$$
 (18)

07 - Cálculo Relacional Banco de Dados I 19/20

Referências

R. Elmasri and S.B. Navathe. Sistemas de banco de dados. PEARSON BRASIL, 2011.

A. Silberschatz, H.F. Korth, and S. Sudarshan. Sistema de banco de dados.

C. C. Guimarães.

Fundamentos de bancos de dados. UNICAMP - SP. 2014.