LATIN SQUARE DESIGN

- ANALYSIS OF VARIANCE FOR THREE FACTORS OF CLASSIFICATIONS
- Let N=n^2 variate values {x_{ij}} representing the yield of paddy, be classified according to three factors. Let the rows, columns and letters stand for the three factors, say soil fertility, seed quality and treatment respectively.
- Our null hypothesis is that the rows, columns and treatment are homogeneous.

ANOVA FOR THREE FACTORS OF CLASSIFICATION

0.11			, , , , , , , , , , , , , , , , , , , ,	HOTT
S.V.	S.S.	d.f.	M.S.	FIRE
Between rows	Q_1	n-1	$Q_1/(n-1)=M_1$	$\left(\frac{M_1}{M_4}\right)^{\pm 1}$
Between columns	Q_2	n-1	$Q_2/(n-1)=M_2$	$\left(\frac{M_2}{M_4}\right)^{\pm 1}$
Between letters	Q_3	n-1	$Q_3/(n-1)=M_3$	$\left(\frac{M_3}{M_4}\right)^{\pm 1}$
Residual	Q_4	(n-1)(n-2)	$Q_4/(n-1)(n-2) = M_4$	
Total	Q	$n^2 - 1$		la sixtent/

1.
$$Q = \sum \sum x_{ij}^2 - \frac{T^2}{n^2}$$
, where $T = \sum \sum x_{ij}$

2.
$$Q_I = \frac{I}{n} \sum T_i^2 - \frac{T^2}{n^2}$$
, where $T_i = \sum_{i=1}^n x_{ij}$

3.
$$Q_2 = \frac{1}{n} \sum T_j^2 - \frac{T^2}{n^2}$$
, where $T_j = \sum_{i=1}^n x_{ij}$

4.
$$Q_3 = \frac{1}{n} \sum T_k^2 - \frac{T^2}{n^2}$$
, where T_k is the sum of all x_{ij} 's receiving the k^{th} treatment.

5.
$$Q_4 = Q - Q_1 - Q_2 - Q_3$$

Also $T = \sum_{i} T_i = \sum_{j} T_j = \sum_{k} T_k$

PROBLEM

Example 9 The following data resulted from an experiment to compare three burners B₁, B₂ and B₃. A Latin square design was used as the tests were made on 3 engines and were spread over 3 days.

*****	***********************	Engine 1	Engine 2	Engine 3
	Day 1	$B_1 - 16$	$B_2 - 17$	$B_3 - 20$
	Day 2	$B_2 - 16$	$B_3 - 21$	$B_1 - 15$
	Day 3	$B_3 - 15$	$B_1 - 12$	$B_2 - 13$

Test the hypothesis that there is no difference between the burners.

Solution We subtract 16 from the given values and work out with new values of x_{ii} .

	E_1	E_2	E ₃	T_i	$\frac{T_i^2}{n}$	$\sum_{j} x_{ij}^2$
D_1	0(B ₁)	1(B2)	4(B ₃)	5	8.33	17
D_2	$O(B_2)$	5(B ₃)	$-1(B_1)$	4	5.33	26
D_3	$-1(B_3)$	$-4(B_1)$	-3(B ₂)	-8	21.33	26
T_j	-1	2	0	T = 1	$\sum T_i^2 / n$ = 35	69
T_j^2/n	0.33	1.33	0	$\sum T_i^2 / n = 1.66$		
$\sum_{i} x_{ij}^{2}$	1	42	26	69		int significa

Rearranging the data values according to the burners, we have

0 = =	4 3 5-5	8.33 1.33
0	3	10,750,69505
5 200000	PERSONAL	
3	1 8	21.33
T:	$=1$ $\sum \frac{T_k^2}{}$	= 31
	T	$T=1 \qquad \sum \frac{T_k^2}{n}$

$$Q = \sum \sum x_{ij}^2 - \frac{T^2}{N} = 69 - \frac{1}{9} = 68.89$$

$$Q_1 = \frac{1}{n} \sum T_i^2 - \frac{T^2}{N} = 35 - \frac{1}{9} = 34.89$$

$$Q_2 = \frac{1}{n} \sum T_j^2 - \frac{T^2}{N} = 1.67 - \frac{1}{9} = 1.56 -$$

$$Q_3 = \frac{1}{n} \sum T_k^2 - \frac{T^2}{N} = 31 - \frac{1}{9} = 30.89$$

$$Q_4 = Q - Q_1 - Q_2 - Q_3 = 1.55$$

ANOVA table

			the state of the s
2.2	d.f.	M.S.	F ₀
	n-1=2	17.445	$\frac{17.445}{0.775} = 22.51$
	n-1=2	0.780	$\frac{0.780}{0.775} = 1.01$
SE SUFFER	n-1=2	15.445	$\frac{15.445}{0.775} = 19.93$
	(n-1)(n-2)	0.775	-
	$=2$ $n^2 - 1 = 8$	-	
	$Q_2 = 1.56$	$Q_1 = 34.89$ $n-1=2$ $Q_2 = 1.56$ $n-1=2$ $Q_3 = 30.89$ $n-1=2$ $Q_4 = 1.55$ $(n-1)(n-2)$ $= 2$	S.S. a_{-1} . $Q_1 = 34.89$ $n-1=2$ 17.445 $Q_2 = 1.56$ $n-1=2$ 0.780 $Q_3 = 30.89$ $n-1=2$ 15.445 $Q_4 = 1.55$ $(n-1)(n-2)$ 0.775 $= 2$

From the F-tables, $F_{5\%}$ ($v_1 = 2$, $v_2 = 2$) = 19.00

Since F_0 (= 19.93) > $F_{5\%}$ (= 19.00) for the burners, there is significant difference

Incidentally, since $F_0 > F_{5\%}$ for the rows, the difference between the days is between the burners. significant and since $F_0 < F_{5\%}$ for the columns, the difference between the engine ie not significant. af wields (in