Blakely, Sokoloff, Taylor & Zafman LLP (714) 5 Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND (714) 557-3800

METHODS

1st Named Inventor: Corey Gee Application No.: 10/602,349

Sheet: 1/10

FIG. 4

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND METHODS

1st Named Inventor: Corey Gee Application No.: 10/602,349

Sheet: 2/10

2/10

Docket No.: 42P14357

Instruction Description

[-C][-M] RZ, RX, RY Syntax: PADD

-N[-C][-M] RZ, RX, RY, <UI5 : start>, <UI5 : stop> -I[-C][-M] RZ, RX, <UI8 :immediate> PADD PADD

-N-I[-C][-M] RZ, RX, <UI8: immediate>, <UI5: start> PADD

RX, RY are the source data registers

RZ is the destination register

<UI8: immediate> specifies the value of an immediate operand

<UIS: start> specifies start of bit field to be modified

<UI5: stop> specifies end of bit field to be modified

-C indicates addition with carry in

-M indicates addition modulo 2ⁿ-1

N indicates that addition affects only a bit field

-I indicates that second operand is supplied as an immediate value

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND
METHODS

1st Named Inventor: Corey Gee Application No.: 10/602,349 Sheet: 3/10

Docket No.: 42P14357

3/10

Option Used Operation PADD RZ, RX, RY RZ = RX + RY PADD -C RZ, RX, RY RZ = RX + RY + Cin PADD -I RZ, RX, RY, <u18: immediate=""> RZ = RX + <immediate> PADD -N RZ, RX, RY, <ui5: start="">, <ui5: stop=""> RZ = { RX/31:stop}, (RX/stop:start] + RY/length] +</ui5:></ui5:></immediate></u18:>
<ui5: stop=""></ui5:>
<ui5: stop=""></ui5:>
<ui5: stop=""></ui5:>
RX[start:0]) modulo 2 ^{length} }
Where length = stop - start + 1
$RZ = (RX + RY) \text{ modulo } 2^{n} - 1$
PADD -N -I RZ, RX, <ui8: immediate="">, <ui5: start=""> $RZ = \{ (RX[31:start], + immediate[31-start: 0] \} modulo 2^{31-start+1} \}$</ui5:></ui8:>
In this case, a stop is assumed to be 31.

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND METHODS

1st Named Inventor: Corey Gee Application No.: 10/602,349 Sheet: 4/10

Docket No.: 42P14357

4/10

Syntax: SMAD [-A] [-M] RZ, RX, RY, <UI2: Length>, <UI2: Num Ops>

SMAD

RZ is the destination register

RX and RY are source data registers

-A option is used to accumulate results where RZ is used as the accumulator

-M option results in a modulo 2ⁿ- 1 addition

<UI2: Length> indicates the data widths

0: 8 bit operands, where each register is assumed to contain 4 8-bit operands

1: 16 bit operands, where each register is assumed to contain 2 16-bit operands

2: 32 bit operands

3: unused

<UI2: Num Ops> indicates the number of operands to be used in the addition

2 source operands RX and RY

1: 3 source operands RX, RX+1 and RY

2: 3 source operands RX, RY and RY+1

3: 4 source operands RX, RY, RX+1 and RY+1

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND
METHODS
1st Named Inventor: Corey Gee
Application No.: 10/602,349
Sheet: 5/10

5/10

Option Used	Operation
SMAD RZ, RX, RY,2, 0	
SMAD -A RZ, RX, RY, 2, 0	RZ = RZ + RX + RY
SMAD RZ, RX, RY, 2,3	RZ = RX + RY + (RX+1) + (RY+1)
SMAD RZ, RX, RY, 0, 0	RZ = RX[7:0] + RX[15:8] + RX[23:16] + RX[31:24] +
	RY[7:0] + RY[15:8] + RY[23:16] + RY[31:24]
SMAD -M RZ, RX, RY, 2, 0	$RZ = (RX + RY) \text{ modulo } 2^{n} - 1$
SMAD -A -M RZ, RX, RY, 2, 0	$RZ = (RZ + RX + RY) \mod u \log 2^n - 1$

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND METHODS

1st Named Inventor: Corey Gee Application No.: 10/602,349 Sheet: 6/10

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800

Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND

METHODS

1st Named Inventor: Corey Gee Application No.: 10/602,349

Sheet: 7/10

Docket No.: 42P14357

7/10

m + n	mask (32b)	mask (32b)
0: 00000	11111110	00000001
1: 00001	11111100	00000011
2: 00010	11111000	00000111
•	•	•
•	•	•
30: 1 1110	10000000	01111111
31: 1_1111	00000000	11111111

FIG. 6

Carry bits of special consideration in "32-b CSA"			
carry bit	output from	input to	not propagated for modulo 2 ⁿ addition, n=?
c[8] co_8 c[16] co_16 c[24] co_24 c[32] co_32	702-7 702-7 702-15 702-15 702-23 702-23 702-31 702-31	704-8 702-8 704-0 702-16 704-8 702-24 708 702-0	8 8 8, 16 8, 16 8 8 8, 16, 32 8, 16, 32

FIG. 11

Carry bits of special consideration in "16-b CSA"				
carry bit	output from	input to	not propagated for modulo 2 ⁿ addition, n=? (n = 32 not applicable)	
c[8] co1_8 c1[16] co1_16	704-7 704-7 704-15 704-15	706-0 704-8 704-0 704-0	8 8 8, 16 8, 16	

-- *FIG. 12*

Carry bits of special consideration in "8-b CSA"			
carry bit	output from	input to	not propagated for modulo 2 ⁿ addition, n=? (n = 32, 16 not applicable)
c2[8] co2_8	706-7 706-7	706-0 706-0	8 8

FIG. 13

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND

METHODS

1st Named Inventor: Corey Gee

Application No.: 10/602,349

Sheet: 8/10

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND

METHODS

1st Named Inventor: Corey Gee Application No.: 10/602,349

Sheet: 9/10

(714) 557-3800 Blakely, Sokoloff, Taylor & Zafman LLP

Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND METHODS 1st Named Inventor: Corey Gee

Application No.: 10/602,349 Sheet: 10/10

