

Funções (12.º ano)

Limite (definição de Heine) Exercícios de Provas Nacionais e Testes Intermédios

1. Considere a sucessão (u_n) de termo geral $u_n = \frac{8n-4}{n+1}$

Seja f a função, de domínio $]-\infty,8[$, definida por $f(x)=log_2(8-x)$

A que é igual $\lim f(u_n)$?

- (A) $-\infty$
- **(B)** 0
- **(C)** 1
- (D) $+\infty$

Exame - 2020, 1.a fase

2. Seja f a função, de domínio $\mathbb{R} \setminus \{0\}$, definida por $f(x) = \frac{x-1}{e^x-1}$

Considere a sucessão de números reais (x_n) tal que $x_n = -\frac{1}{n}$

Qual é o valor de $\lim f(x_n)$?

- $(A) -\infty$
- **(B)** 0
- **(C)** 1
- (D) $+\infty$

Exame - 2014, Ép. Especial

- 3. Seja guma função, de domínio] $-\infty, e[,$ definida por $g(x) = \ln(e-x)$ Considere a sucessão estritamente crescente de termo geral $x_n = \left(1 + \frac{1}{n}\right)^n$ Qual é o valor de $\lim g(x_n)$?
 - $(A) + \infty$
- **(B)** *e*
- **(C)** 1
- (D) $-\infty$

Exame - 2014, 2.a fase

4. Seja f a função, de domínio \mathbb{R}^+ , definida por $f(x) = e^{\frac{1}{x}} - 3$

Considere a sucessão de números reais (x_n) tal que $x_n = \frac{1}{\sqrt{n}}$

Qual é o valor de $\lim \frac{2}{f(x_n)}$?

- (A) $-\infty$
- (B) -e
- **(C)** 0
- (D) $+\infty$

Exame -2014, 1.^a fase

5. Na figura ao lado, está representada parte do gráfico de uma função h, de domínio $\mathbb{R} \setminus \{1,e\}$

Tal como a figura sugere, as retas de equações y = 0, x=1 e x=e são as assíntotas do gráfico da função h

Seja (x_n) uma sucessão tal que $\lim h(x_n) = +\infty$

Qual das expressões seguintes **não** pode ser termo geral da sucessão (x_n) ?

(B)
$$\left(1 + \frac{1}{n}\right)^3$$

(C)
$$1 - \frac{1}{n}$$
 (D) $e + \frac{1}{n}$

(D)
$$e + \frac{1}{n}$$

Teste Intermédio 12.º ano – 30.04.2014

6. Seja (u_n) a sucessão definida por $u_n = 2 + \frac{1}{n}$ De uma certa função f, sabe-se que $\lim f(u_n) = +\infty$

Em qual das seguintes opções pode estar representada parte do gráfico da função f?

(A)

(B)

(C)

(D)

Teste Intermédio 12.º ano – 28.02.2013

7. Na figura ao lado, está representada, num referencial o.n. xOy, parte do gráfico de uma função f, de domínio]-1,3[Sabe-se que:

- ullet a reta de equação x=1 é assíntota do gráfico de f
- (x_n) é uma sucessão com termos em] -1,1[
- $\lim(x_n) = 1$

Qual é o valor de $\lim (f(x_n))$?

(A)
$$+\infty$$
 (B) -4 (C) -5 (D) -6

(B)
$$-4$$

$$(\mathbf{C})$$
 $-$

(D)
$$-6$$

Exame - 2012, 2.a Fase

- 8. Considere a sucessão (u_n) , definida por $u_n = \left(1 + \frac{1}{n}\right)^n$ Seja f uma função contínua, de domínio \mathbb{R}^+ Sabe-se que $\lim f(u_n) = 0$ Qual das seguintes expressões pode definir a função f?
 - **(A)** $1 \ln x$

- **(B)** $1 + \ln x$ **(C)** $x \ln x$ **(D)** $x + \ln x$

Teste Intermédio 12.º ano - 13.03.2012

9. Considere a função f, de domínio $]0, +\infty[$ definida por

$$f(x) = \begin{cases} e^x - 1 & \text{se } 0 < x \le 2\\ \frac{4}{x} + 1 & \text{se } x > 2 \end{cases}$$

Seja (u_n) uma sucessão de números reais, de termos positivos, tal que $\lim f(u_n) = 3$ Qual das expressões seguintes pode definir o termo geral da sucessão (u_n) ?

(A)
$$2 - \frac{1}{n}$$

(B)
$$2 + \frac{1}{n}$$

(C)
$$3 - \frac{1}{r}$$

(A)
$$2 - \frac{1}{n}$$
 (B) $2 + \frac{1}{n}$ (C) $3 - \frac{1}{n}$

Exame - 2011, Prova especial

10. Considere a função g, de domínio \mathbb{R} , definida por

$$g(x) = \begin{cases} e^x & \text{se } x \le 0\\ \ln x & \text{se } x > 0 \end{cases}$$

Considere a sucessão de termo geral $u_n = \frac{1}{n}$ Qual é o valor de $\lim_{n\to+\infty} g(u_n)$?

- $(A) + \infty$
- **(B)** 1
- **(C)** 0
- (D) $-\infty$

Exame – 2010, $2.^a$ Fase

mat.absolutamente.net

11. Na figura ao lado, está representada parte do gráfico de uma função h, de domínio \mathbb{R}

Seja (u_n) a sucessão de termo geral $u_n = h\left(4 - \frac{1000}{n}\right)$

Qual é o valor de $\lim(u_n)$?

Teste Intermédio 12.º ano - 15.03.2010

12. Na figura ao lado está representada parte do gráfico de uma função g, de domínio \mathbb{R} e contínua em $\mathbb{R} \setminus \{-2\}$.

As retas de equações x=-2 e y=1 são as únicas assíntotas do gráfico de g.

Seja (x_n) uma sucessão tal que $\lim_{n\to+\infty} g(x_n) = +\infty$. Qual das expressões seguintes pode ser o termo geral da sucessão (x_n) ?

(A)
$$-2 + \frac{2}{n}$$
 (B) $-2 - \frac{1}{n}$

(B)
$$-2 - \frac{1}{n}$$

(C)
$$1 + \frac{1}{n}$$
 (D) $1 - \frac{1}{n}$

(D)
$$1 - \frac{1}{n}$$

Exame - 2008, 2.ª Fase

13. Seja g a função definida em \mathbb{R} por $g(x) = \frac{e^x + 5}{2 + \cos x}$

Considere a sucessão de termo geral $u_n = \frac{n+1}{n^2}$

Indique o valor de $\lim_{n\to+\infty} g(u_n)$.

Exame -2006, 1.^a fase

14. Seja (x_n) a sucessão de termo geral $x_n = \left(1 + \frac{1}{n}\right)^n$

Seja (y_n) a sucessão de termo geral $y_n = 1 + \ln(x_n)$ (l
n designa logaritmo de base e)

Qual é o valor de $\lim y_n$?

(C)
$$1 + e$$

(D)
$$2 + e$$

Teste Intermédio 12.º ano - 17.03.2006

15. Na figura ao lado está representada parte do gráfico de uma função g, de domínio \mathbb{R} , contínua em $\mathbb{R} \setminus \{3\}$. As retas de equações x = 3 e y = -4são as únicas assínto
tas do gráfico de g.

Seja (x_n) uma sucessão tal que $\lim g(x_n) = +\infty$

Qual das expressões seguintes pode ser o termo geral da sucessão x_n ?

(B)
$$3 + \frac{1}{n}$$

(C)
$$-4 - \frac{1}{n}$$
 (D) $-4 + \frac{1}{n}$

(D)
$$-4 + \frac{1}{n}$$

Exame – 2001, Ép. Especial

16. Considere a função f definida em \mathbb{R}^+ por $f(x) = \ln x$ (ln designa logaritmo de base e).

Seja (u_n) a sucessão de termo geral $u_n = \left(1 + \frac{1}{n}\right)^n$ Qual é o valor de $\lim f(u_n)$?

$$(A) + \infty$$

Exame - 1999, Prova para militares (prog. antigo)

17. Na figura ao lado está representada parte da representação gráfica de uma função f, de domínio $\mathbb{R} \setminus \{2\}$.

As retas de equações $x=2,\ y=1$ e y=0 são assíntotas do gráfico de f.

Seja (x_n) a sucessão de termo geral

$$x_n = 2 - n^2$$

Indique o valor de $\lim f(x_n)$

(C)
$$-\infty$$

(D)
$$+\infty$$

Exame - 1999, 1.^a fase - 1.^a chamada (prog. antigo)

18. Na figura ao lado está desenhada parte da representação gráfica de uma função f, cujo domínio é $\mathbb{R} \setminus \{1\}$.

A reta de equação x=1 é uma assíntota vertical do gráfico de f.

Considere a sucessão de termo geral $x_n = 1 + \frac{1}{n}$

Seja $u_n = f(x_n)$

Qual das afirmações seguintes é verdadeira?

(B)
$$\lim u_n = +\infty$$

(C)
$$\lim u_n = 1$$

(**D**) Não existe
$$\lim u_n$$

Exame – 1999, Prova modelo (prog. antigo)

19. Na figura ao lado está parte da representação gráfica de uma função g de domínio $\mathbb R$ e contínua em $\mathbb R\setminus\{0\}.$

Considere a sucessão de termo geral

$$u_n = \frac{1}{n}$$

Indique o valor de $\lim_{n\to+\infty} g(u_n)$.

(A) 0

(B) 1

(C) 2

(D) $+\infty$

Exame – 1998, Prova modelo (prog. antigo)