Equality handling and efficiency improvement of SMT for non-linear constraints over reals.

Vu Xuan Tung – Ogawa Lab - JAIST

Non-linear (polynomial) constraints over reals

$$\exists x, y(x^2 + y^2 < 1 \land x * y > 1)$$

Polynomial constraints over reals

Polynomial constraints solving has applications in:

- Automatic termination proving.
- Roundoff error and overflow error analysis.
- Invariant generation.

Polynomial constraints over reals

- In 1930, Tarski: polynomial constraints is decidable
- Methods:
 - QE-CAD: complete but DEXP complexity.
 - Interval constraint propagation: ISAT uses interval arithmetic (IA) only, ability of solving SAT problem is limited. raSAT: IA + testing
 - Bit-blasting: (UCLID, MiniSmt) suffers with high number of variables or high degree of polynomials.
 - Linearization: suffers with high degree of polynomials (Barcelogic, CORD).
 - Virtual substitution: Z3, SMT-RAT. Needs root formulas of polynomial
 - → degree <= 5

raSAT

- Developed by Dr. Khanh To who took his PhD in our lab.
- An SMT solver (initially) for solving polynomial strict Inequalities:
 - Approximation can be used.
 - Suppose f(x) > 0 has a real solution x_0 .
 - lacktriangle Because f(x) is continuous,
 - There is some rational numbers x_1 near x_0 such that $f(x_1) > 0$

Over approximation - Interval arithmetic (IA)

Under approximation - Testing

Completeness (strict inequality)

raSAT

- In this work:
 - Improve the efficiency of raSAT.
 - ► Handle equality.
 - Handle polynomial constraints over Integer (QF_NIA).

Problems

- 1. Exploration of:
 - \rightarrow test cases: n variables, 2 values for 1 variable \rightarrow 2ⁿ test cases.
 - Example: x: -1.94, 3.7; y: 0.98, 3.65
 - -4 test cases: (x, y) = (-1,9, 0.98), (-1.9, 3.65), (3.7, 0.98), (3.7, 3.65)
 - boxes: n variables are decomposed -> 2^n boxes.
 - Example: $x \in [-2,4] \to x \in [-2,1] \lor x \in [1,4]$ $y \in [-1,5] \to y \in [-1,2] \lor y \in [2,5]$
 - ■4 boxes: $x \in [-2,1] \land y \in [-1,2]$ $x \in [-2,1] \land y \in [2,5]$ $x \in [1,4] \land y \in [-1,2]$ $x \in [1,4] \land y \in [2,5]$

Problems.

- 2. Soundness.
 - Floating point arithmetic: round-off, overflow errors.
- 3. Equality handling.
 - Using the intermediate value theorem.

Current status

1. Exploration of test cases, boxes

- \rightarrow n variables \rightarrow 2ⁿ test cases.
- Priority on variables:
 - 1. Choice of constraint: Dependency between constraints

2. Choice of variables in one constraints: Sensitivity

E.g. with
$$x=1+\epsilon_1$$
, $y=2+\epsilon_2$
$$xy=2\epsilon_1+\epsilon_2+\epsilon_1\epsilon_2+2$$
: x is more sensible than y.

2. SAT, UNSAT verification

- Round-off, overflow errors can make the result unsound.
- iRRAM:
 - ■C++ package
 - Error-bounded real arithmetic
- Integrated iRRAM into raSAT for SAT verification.
- **► Future work**: Verify UNSAT results
 - ■Improve UNSAT core.

3. Equality handling.

Intermediate value theorem

- Single equality: Done in previous work
- Multiple equalities:
 - Number of variables ≥ number of equations
 - To be done.

6. Extend for QF_NIA

- Current approaches:
 - Bit blasting: suffers with high degree of polynomials.
 - **■** Linearization:
 - ■Bit-blast one operand of a multiplication.
- Can be solved by raSAT:
 - Decomposition: Stop when length of interval is 1
 - Generate integer test cases.
 - **■** Future work

raSAT

- Downloadable from http://www.jaist.ac.jp/~mizuhito/tools/rasat.html
- Participated in SMT-COMP 2014: 4th over 4 solvers of QF_NRA.
- Prefiminary experiments on SMT-LIB.
 - ► Mostly focus on Zankl family (166 benchmarks).
 - Around 50 problems solved (depending on tuning).

solver	solved	time (s)
nlsat	89	234.57
Mathematica	50	366.10
QEPCAD	21	38.85
Redlog-VTS	42	490.54
Redlog-CAD	21	173.15
z3	21	0.73
iSAT	21	24.52
cvc3	12	3.11
MiniSmt	46	1370.14

Delta Jovanovic, Leonardo Mendonça de Moura: Solving Non-linear Arithmetic. JJCAR 2012: 339-354

Thank you for your attention

Doctor course Proposal

Problems.

- 1. Equality extension: Grobner basis.
- 2. UNSAT proof generation

1. Equality extension: Grobner basis.

- Intermediate value theorem:
 - Restriction: Number of variables ≥ number of equations
 - For complete equality handling: Grobner basis.
- Grobner basis computation was implemented in Mathemtica, Reduce
 - as standalone library,
 - might not have been seriously considered in solving polynomial constraints.
- We expect to adapt the computation algorithms to the purpose of proving satisfiability, unsatisfiability of constraints.
 - During computation process, we expect to integrate decision procedure of constraints so that we might decide SAT (UNSAT) before finishing Grobner basis computation.

1. Grobner basis – Example

Equations:

$$f_1 = x^2 + y^2 + z^2 - 1 = 0$$

$$f_2 = x^2 + z^2 - y = 0$$

$$f_3 = x - z = 0$$

Ordering: x > y > z

Grobner basis: $\{-1 + 2z^2 + 4z^4, y - 2z^2, x - z\}$

1. Grobner basis - Algorithms

- Buchberger Algorithm.
 - Reduce one s-pair at a time
- $/F_4$, F_5 algorithms.
 - Reduce many s-pair at once.
- Need more investigations on algorithms and on how to adapt them to raSAT.

2. UNSAT proof generation

- Proof of UNSAT can be used to extract Craig interpolants.
- Craig interpolants have applications in:
 - Abstraction refinement.
 - Invariant generation.
- Most of the current works focus on Linear Arithmetic.
- Not much research on interpolants of polynomial constraints.
 - Such interpolants arise during verification of complex systems such as hybrid ones.

Primary idea

Two kinds of proofs:

- 1. Resolution proof: produced by SAT solver.
 - Resolution rule: $(a \lor b) \land (\neg a \lor c) \rightarrow b \lor c$
 - Interpolation from resolution proof is straitforward.
- 2. Proof of conflict clauses: produced by theory solver of raSAT.
 - Theory solver also infers interpolants from this proof.

Primary idea

Example:

- $A = x^2 + y^2 < 1$, B = xz > 1
- Intervals: $x \in [0, 10] \land y \in [0, 10] \land z \in [0, 1]$: $A \land B$ is UNSAT
- First, IA cannot conclude UNSAT.

Suppose $x \in [0, 10] \xrightarrow{decomposed} x \in [0, 1] \forall x \in [1, 10]$:

- $-x \in [0, 1] \land y \in [0, 10] \land z \in [0, 1]$
- $-x \in [1,10] \land y \in [0,10] \land z \in [0,1]$

$$A = x^2 + y^2 < 1$$
, $B = xz > 1$

$$x \in [0,1] \land y \in [0,10] \land z \in [0,1] \qquad x \in [1,10] \land y \in [0,10] \land z \in [0,1]$$

$$x \in [0,1] \qquad x \in [0,1] \qquad x^2 + y^2 < 1 \qquad y^2 \in [0,100] \qquad x \in [1,10]$$

$$xz > 1 \qquad xz \in [0,1] \qquad x^2 < 1 \qquad x^2 \in [1,100]$$

$$1 < 1 \qquad 1 < 1$$

Interpolant: ⊤

Interpolant: $x^2 < 1$

From resolution proof, we can infer $\,x^2 < 1\,$ as final interpolant of A and B

Thank you for your attention