Formulas & Definitions: Section 16-1

Definition: Let D be a set in \mathbb{R}^2 (a plane region). A **vector field** on \mathbb{R}^2 is a function F that assigns to each point (x,y) in D a two-dimensional vector F(x,y).

$$F(x,y) = P(x,y)i + Q(x,y)j = \langle P(x,y), Q(x,y) \rangle$$

or

$$F = Pi + Qj$$

Definition: Let E be a subset of \mathbb{R}^3 . A vector field on \mathbb{R}^3 is a function F that assigns to each point (x,y,z) in E a three-dimensional vector F(x,y,z).

$$F(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k.$$

Statement: If f is a scalar function of three variables, its gradient is a vector field on \mathbb{R}^3 given by

$$\nabla f(x, y, z) = f_x(x, y, z)i + f_y(x, y, z)j + f_z(x, y, z)k.$$

Definition: A vector field F is called **conservative vector field** if it is the gradient of some scalar function, that is, if there exists a function f such that $F = \nabla f$. In this situation f is called a potential function for F.