LaTeX Tips

Adjusting margins

The geometry package can be used to adjust margins. For example, this document uses the following options:

\usepackage[lmargin=2cm,rmargin=2.5cm,tmargin=3cm,bmargin=2cm]{geometry}

The align environment

If you have a long equation that you want to split up over multiple lines, you can use the align or align* environment. They are the same except that align includes equation numbers, whereas align* does not. For example, you can typeset the equation¹

$$x^{5} - 5x^{4} + 2x^{3} - 10x^{2} - x + 5 = (x - 5)(x^{4} + 2x^{2} - 1)$$
$$= (x - 5)((x^{2})^{2} + 2x^{2} - 1)$$
$$= (x - 5)(x^{2} + 1 + \sqrt{2})(x^{2} + 1 - \sqrt{2})$$

using the code

```
\label{eq:continuous} $$ x^5 - 5x^4 + 2x^3 - 10x^2 - x + 5 &= (x-5)(x^4 + 2x^2 - 1) \\ &= (x-5)((x^2)^2 + 2x^2 - 1) \\ &= (x-5)(x^2+1+\sqrt{2})(x^2+1-\sqrt{2}) \\ &= (x-5)(x^2+1+\sqrt{2})(x^2+1+\sqrt{2}) \\ &=
```

The ampersands tell the align* environment what you want aligned, and the backslashes force line breaks; as always, the whitespace in the code is irrelevant. For example,

```
\begin{align*}
x^5 - 5x^4 + 2x^3 - 10x^2 - x + 5
    &= (x-5)(x^4 + 2x^2 - 1) \\
    &= (x-5)((x^2)^2 + 2x^2 - 1) \\
    &= (x-5)(x^2+1+\sqrt{2})(x^2+1-\sqrt{2})
\end{align*}
```

would produce the same output.

Dot for multiplication

If you want to use a dot to denote multiplication, the command is \cdot . For example, $2\cdot3=6$ produces $2 \cdot 3 = 6$. Do not use an asterisk to denote multiplication.

¹Note that we do not repeat the left-hand side on each line.

The "divides" symbol

The symbol for "divides" is \mid. Note the difference between the following:

- Bad: $a \mid b$ produces $a \mid b$, which does not have correct spacing between symbols.
- Good: $a \mid b$, which is correct.

The "does not divide" symbol

The symbol for "does not divide is \nmid. (This requires the amssymb package.) Do not use \not\mid, which can come out wrong:

- Bad: $a \not b$ produces $a \not b$.
- Good: \$a \nmid b\$ produces $a \nmid b$.

Big parentheses

If you need to put parentheses around an expression that takes up a lot of vertical space, it would look ugly to have your tall formula breaking out of regular-sized parentheses:

$$\left(\sum_{i=1}^{n} u_i v_i\right)^2 \le \left(\sum_{i=1}^{n} u_i^2\right) \left(\sum_{i=1}^{n} v_i^2\right).$$

This inequality² looks much nicer if the parentheses are large enough to contain what they're supposed to contain:

$$\left(\sum_{i=1}^n u_i v_i\right)^2 \le \left(\sum_{i=1}^n u_i^2\right) \left(\sum_{i=1}^n v_i^2\right).$$

The easiest way to accomplish this is by using \left(and \right), which automatically resizes your parentheses as appropriate. For example, the left-hand side above is produced using

$$\left(\sum_{i=1}^n u_i v_i\right)^2$$

Note that \left and \right also work with other bracketing symbols, such as square brackets or absolute values.

Binomial coefficients

Binomial coefficients can be typeset using the \binom command, which requires the \amsmath package. For example,

$$\binom{5}{2} = \frac{5!}{2!3!} = \frac{120}{12} = 10$$

is typeset using

$$\[\int_{5}{2} = \frac{5!}{2!3!} = \frac{120}{12} = 10 \]$$

²The famous Cauchy-Schwarz inequality

Function composition

The o symbol for function composition can be typeset using \circ. For example,

$$g \circ f \colon R \to T$$

is typeset using

\[g \circ f \colon R \to T\]

"Implies" arrow

You should rarely use symbols like \Rightarrow in serious writing. They are meant to be used as symbols in formal logic, not because you're too lazy to write the word "implies" in the middle of a sentence. In the unlikely event that you have an appropriate opportunity to use one, you have a few options:

- $A \Rightarrow B$, typeset using A \Rightarrow B.
- $A \Longrightarrow B$, typeset using A \Longrightarrow B.
- $A \implies B$, typeset using A \implies B.

"There exists" and "For all"

As with the arrow for implies, you should rarely use these symbols in formal writing; you certainly should not use them to replace words in the middle of a sentence. The command for \exists is \exists and the command for \forall is \forall.

Blackboard bold

Familiar sets such as \mathbb{Z} , \mathbb{R} , and \mathbb{C} are commonly written in "blackboard bold" typeface. For example, \mathbb{Z} is typeset using \mathbb{Z}.

Custom commands

If you're going to type something frequently, you might want a shortcut for it. For example, I usually define \Z to mean $\mathcal L$. The command for this is $\boldsymbol \mathcal L$. After defining the command, I can write \Z to produce \Z .

Integers modulo m

The set $\mathbb{Z}/m\mathbb{Z}$ is typeset by $\mathbb{Z}/m\mathbb{Z}$, using the command \mathbb{Z} defined in the previous section. If I had not defined \mathbb{Z} earlier, I would need to write out $\mathbb{Z}/m\mathbb{Z}$ instead.

Math mode

Remember that mathematical symbols should be written in math mode. Note the difference between f (f) and f (\$f\$), or the difference between -1 (-1) and -1 (\$-1\$). Incorrectly using f or -1 in place of f or -1 is an unnecessary distraction for the reader.

Colons

If you use a colon in math mode, you get a symbol with equal spacing on both sides: for example L: K produces [L: K]. However, for many uses of the colon, you don't want space on both sides; you want it immediately after the previous symbol, just as in ordinary text. For this, you use the \colon command. For example, $f \subset R \to S$, which is correct. If you incorrectly use $f: R \to S$, you get $f: R \to S$, which looks wrong.