振り返りと導入

前回は KL ダイバージェンスの双対平坦多様体への一般化を考え始めた。本稿では次のことを行う:

- 双対平坦構造の canonical ダイバージェンスを定義する。
- 双対平坦構造からシンプレクティック構造が定まることをみる。

1 双対平坦構造とシンプレクティック構造

命題 1.1 (双対平坦構造のシンプレクティック構造). M を多様体、 (g, ∇, ∇^*) を M 上の双対平坦構造、 $D: \mathcal{U} \to \mathbb{R}$ を canonical ダイバージェンス、 $\omega_0 \in \Omega^2(T^\vee M)$ を $T^\vee M$ 上の自然シンプレクティック構造とする。写像 $d_1D: \mathcal{U} \to T^\vee M$ を第 1 成分に関する微分、すなわち $d_1D := D(\frac{\partial}{\partial x^i}\|) dx^i$ で定め、 \mathcal{U} 上の 2-形式 $\omega \in \Omega^2(\mathcal{U})$ を $\omega := (d_1D)^*(\omega_0)$ で定める。このとき次が成り立つ:

(1) M の任意の局所座標 $x=(x_i)_i$ に対し、 $x^*:=x$ とおいて $\mathcal U$ の局所座標 $(x,x^*)=(x^1,\ldots,x^n,x^{*1},\ldots,x^{*n})$ を定めると、 ω の成分表示は

$$\omega = D(\frac{\partial}{\partial x^i} \| \frac{\partial}{\partial x^{*j}}) dx^i \wedge dx^{*j}$$
 (1.1)

となる。

(2) ω は U 上のシンプレクティック形式である。

証明 (1) 前回示した。

(2) \mathcal{U} の局所座標として (η, θ^*) をとれば $D(\frac{\partial}{\partial \eta_i} \| \frac{\partial}{\partial \theta^{*j}}) = -\delta^i_j$ となるから d_1D ははめ込みである。よって ω は \mathcal{U} 上のシンプレクティック形式である。

例 1.2 (ℝⁿ の場合). [TODO]

今後の予定

• 双対平坦構造のシンプレクティック構造と双対アファイン座標

参考文献

[Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).

[野 20] 知宣 野田, シンプレクティック幾何的視点での BAYES の定理について (部分多様体の幾何学の深化と展開), 数理解析研究所講究録 2152 (2020), 29-43 (jpn).

A 付録

1.1 ??の条件 (i), (ii) について

M を多様体、g を M 上の Riemann 計量、∇ を M 上のアファイン接続とする。

定義 A.1 (simple chain (ここだけの用語)). X を位相空間とする。X の開集合の有限列 $(U_i)_{i=1}^N$ が simple chain であるとは、 $U_i \cap U_j \neq \emptyset \iff |i-j| \leq 1$ が成り立つことをいう。さらにすべての $U_i \cap U_{i+1}$ が連結のとき very simple chain という。

補題 A.2. ∇ -アファインチャートの列 $(U_i)_{i=1}^N$ が very simple chain ならば、 $\bigcup_{i=1}^N U_i$ を定義域とする ∇ -アファイン座標が存在する。

証明 $U_1 \cap U_2$ は連結であり、2 つの座標はアファイン変換で移り合うから、それに応じて U_2 上の座標を調整すれば $U_1 \cup U_2$ 上の ∇ -アファイン座標が得られる。以下同様にして $U_1 \cup \cdots \cup U_N$ 上の ∇ -アファイン座標が得られる。

命題 A.3. $\gamma:I\to M$ が単射な ∇ -測地線ならば、 $\gamma(I)$ を覆う単連結な ∇ -アファインチャートが存在する。

証明 [TODO] 要確認 $\gamma(I)$ の各点のまわりの ∇ -アファインチャートを集めて $\gamma(I)$ の開被覆 $\mathcal U$ を作る。Lebesgue 数の補題より、実数列 $0=t_0 < t_1 < \cdots < t_N = 1$ が存在して各 $S_i \coloneqq \gamma([t_{i-1},t_i])$ はある $U_i \in \mathcal U$ に含まれる。 γ の単射性より、ある $\varepsilon > 0$ であって $(U(S_i,\varepsilon))_{i=1}^N$ が very simple chain かつ $U(S_i,\varepsilon) \subset U_i$ となるものが存在する (ただし $U(S_i,\varepsilon)$ は Riemann 距離に関する ε -近傍)。 そこで $U \coloneqq \bigcup_{i=1}^N U(S_i,\varepsilon)$ とおくと、補題より U 上の ∇ -アファイン座標 θ が存在する。 $\theta(\gamma(I))$ が $\theta(U)$ 内の線分であることに注意すると、 $\theta(\gamma(I))$ の十分小さい近傍 V をとれば、 $\theta^{-1}(V)$ は $\gamma(I)$ を覆う単連結な ∇ -アファインチャートとなる。

1.2 ??の証明

証明 $p \in M$ を固定し、(p,p) の $M \times M$ におけるある開近傍が W に含まれることを示せばよい。そのような開近傍を次のように構成する。

まず ∇ の平坦性より p のまわりの ∇ -アファインチャート (U,θ) が存在する。p の M における (計量 g から定まる距離に関する)3r-近傍が U に含まれるように r>0 をとり、p の M における r-近傍を U' とおく。さらに $\theta(p)$ の \mathbb{R}^n における ε -近傍 V_ε が $\theta(U')$ に含まれるように $\varepsilon>0$ をとる。 $U_\varepsilon:=\theta^{-1}(V_\varepsilon)$ とおくと (p,p) の $U_\varepsilon\times U_\varepsilon$ は $M\times M$ における開近傍である。

以下 $U_{\varepsilon} \times U_{\varepsilon} \subset W$ を示す。すなわち、 $(a,b) \in U_{\varepsilon} \times U_{\varepsilon}$ として $(a,b) \in W$ を示す。 U_{ε} は ∇ -凸ゆえ、a,b を 結ぶ U_{ε} 内の ∇ -測地線 γ が存在する。このとき γ はとくに U 内の ∇ -測地線でもあるが、U は ∇ -アファインチャートだから γ は a,b を結ぶ U 内の唯一の ∇ -測地線である。U' の定め方から、a,b を結ぶ (M 内の) 任意 の ∇ -測地線は γ より真に長いか γ 自身である [TODO] 怪しい。したがって、a,b を結ぶ (M 内の) ∇ -測地線のうち最短なものはただひとつ存在し、それは γ である。よって (a,b) は条件 (i) をみたす。さらに U_{ε} は γ の像を覆う単連結 ∇ -アファインチャートだから、(a,b) は条件 (ii) をみたす。したがって $(a,b) \in W$ である。