Homework & Solutions

#| |
$$W \in \mathbb{R}^{K \times D}$$
, $X \in \mathbb{R}^{D}$ $f(x, W) = Soft wax (WX)$

a) $f_{c}(x, W) = \frac{\exp(w_{c}^{T} x)}{\sum_{k} \exp(w_{k}^{T} x)}$ $\frac{w_{k}^{T}}{f_{c}} = k$ -th row of W
 $f_{c}(x, W) + A = \frac{\exp(w_{c}^{T} x)}{\sum_{k} \exp(w_{k}^{T} x)} = \frac{\exp(w_{c}^{T} x) \cdot \exp(ax)}{\sum_{c'} \exp(ax)} = f_{c}(x, W)$

c) i) Set $a = Wx$, thun

 $a_{tot} = W_{tot}^{T} x = \sum_{k} w_{tot} x_{k} = \sum_{k} \sum_{k} w_{tot} \delta_{k} = \delta_{k} x_{k}$
 $\frac{\partial a_{tot}}{\partial x_{k}} = \sum_{k} w_{tot} \delta_{k} = w_{tot}^{T} x_{k}$

ii) Set $S_{c}(a) = \frac{\exp(ac)}{\sum_{c'} \exp(ac)}$ (c-th component of Soft wax f_{tot}), thun

 $\frac{\partial S_{c}}{\partial a_{tot}} = \frac{2a_{tot}}{\sum_{c'} \exp(ac)}$ $\frac{\partial C}{\sum_{c'} \exp(ac)}$ $\frac{\partial C}{\sum$

= Zu [Suc Sc(a) - Sc(a) Su(a)] Wuij = Sc(a). [Wes - Zwij Sm(a)]

the point (2,2) is
occupied by & but is
classified by B b/c there
are more B-weighbors

HW8#3 (N1, N2, N3) Where N, Z Nz Z N3 Meaus:

the largest cluster contains N1 data points

the 2nd largest cluster contains N2 data points

the 3rd largest cluster contains N3 data points

Cases
$$a$$
 (5,0,0): all data are in the same cluster \rightarrow 1 possibility

56 total

when counting these keep in mind that

- · data points are distinct.
- e clusters don't have distinct numbers

so, for instance,

counts as the same clustering

(N1, Nz) maus: Un data points are in the sigger cluster HW8#41 12 data points are in the Swaller cluster case 1: N is even (N,0) for (N-k,k) we have (k) possibilities to place (N-k,k) into the smaller cluster. In each case the bigger (N,k) cluster is fixed. (N,0)=) total number of clusterings = $\frac{N/a}{E}$ $\binom{N}{k}$

case 2: Nisodd

(N-1,1)

Some argument as before

(N-1,1)

total number of clusterings = $\sum_{k=0}^{N-1} \binom{N}{k}$ (N-1,1)

(N-1,1)

total number of clusterings

a.) arguin
$$d_{ij} = (1,2)$$
 => merge C_1 and C_2 => $C_{12} = {1,2}$

new distances
$$d(C_1, C_3) = \max \{ d_{13}, d_{23} \} = 0.5$$
 (complete linhage) $d(C_1, C_4) = \max \{ d_{14}, d_{24} \} = 0.8$

$$D = \begin{bmatrix} (1^{2}) & \frac{3}{5} & 4 \\ 0 & 0.5 & 0.8 \\ 0.5 & 0 & 0.45 \\ 0.8 & 0.45 & 0 \end{bmatrix} \begin{pmatrix} (1^{2}) \\ 4 \end{pmatrix}$$
 where C_{3} and C_{4} C_{3} := $\begin{cases} 3.4 \\ 3.4 \end{cases}$

New distances
$$d(C_{1},C_{3}) = \min \{d_{13},d_{23}\} = 0.4$$

 $d(C_{1},C_{4}) = \min \{d_{14},d_{24}\} = 0.7$ (Single linkage)

$$0 = (17) 0 0.4 0.7$$

$$0.4 0 0.45$$

$$4 0.7 0.45 0$$

$$0.40 0.45$$

$$0.7 0.45 0$$

$$0.40 0.45 0$$