Simple and Effective VAE Training with Calibrated Decoders

2022/09/29 Ping-Han Hsieh

ELBO of Variational Autoencoder

ELBO

$\ln p_{\theta}(x) \geq \mathbb{E}_{q_{\phi}(z|x)} \left[\ln p_{\theta}(x|z) \right] + \mathbf{D}_{\mathrm{KL}} (q_{\phi}(z|x) || p_{\theta}(z))$

Gaussian PDF

$$rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Gaussian data distribution (w/ unit variance)

$$D_{MGF(\hat{x})}$$

 $p_{ heta}(x|z) = \mathcal{N}(\mu_{ heta}(z), I)$

$$-\ln p(x|z) = \frac{1}{2}||\hat{x} - x||^2 + D\ln \sqrt{2\pi} = \frac{1}{2}||\hat{x} - x||^2 + c = \frac{D}{2}\text{MSE}(\hat{x}, x) + c$$

Gaussian data distribution (w/ full diagonal variance) $p_{\theta}(x|z) = \mathcal{N}\left(\mu_{\theta}(z), \sigma_{\theta}(z)^2\right)$

$$-\ln p(x|z) = \frac{1}{2\sigma^2} ||\hat{x} - x||^2 + D \ln \sigma \sqrt{2\pi} = \frac{1}{2\sigma^2} ||\hat{x} - x||^2 + D \ln \sigma + c = D \ln \sigma + \frac{D}{2\sigma^2} \text{MSE}(\hat{x}, x) + c.$$

Gaussian data distribution (w/ shared variance)

$$p_{\theta,\sigma}(x|z) = \mathcal{N}\left(\mu_{\theta}(z), \sigma^2 I\right)$$

$$-\ln p(x|z) = \frac{1}{2\sigma^2} ||\hat{x} - x||^2 + D \ln \sigma \sqrt{2\pi} = \frac{1}{2\sigma^2} ||\hat{x} - x||^2 + D \ln \sigma + c = D \ln \sigma + \frac{D}{2\sigma^2} \text{MSE}(\hat{x}, x) + c.$$

* share σ across images

Decoder

 σ -VAE w/ full diagonal variance

 σ -VAE w/ shared variance

optimal σ-VAE w/ shared variance (analytical solution)

Connection to β-VAE

ELBO (β -VAE w/ unit variance)

$$\mathcal{L}^{\beta} = \frac{D}{2}MSE(\hat{x}, x) + \beta D_{KL}(q(z|x)||p(z))$$

ELBO (σ -VAE)

$$\mathcal{L}_{\theta,\phi,\sigma} = D \ln \sigma + \frac{D}{2\sigma^2} MSE(\hat{x}, x) + D_{KL}(q(z|x)||p(z))$$

$$\det \sigma^2 = \beta$$

$$\mathcal{L}_{\theta,\phi,\beta} = \frac{D}{2\beta} MSE(\hat{x}, x) + D_{KL}(q(z|x)||p(z)) + c_1$$

$$\beta \mathcal{L}_{\theta,\phi,\beta} = \frac{D}{2} MSE(\hat{x}, x) + \beta D_{KL}(q(z|x)||p(z)) + c_2$$

Optimal σ -VAE

• The maximum likelihood estimation of variance:

$$\sigma^{*2} = \underset{\sigma^2}{\arg\max} \mathcal{N}(x|\mu, \sigma^2 I) = \text{MSE}(x, \mu)$$
$$\text{MSE}(x, \mu) = \frac{1}{D} \sum_i (x_i - \mu_i)^2$$

- Use batchwise estimation during mini-batch training.
- Using the running average of the variance over training during testing.

$$\sigma^* = \underset{\sigma}{\arg\max} \mathbb{E}_{x \sim \text{Data}} \mathbb{E}_{q(z|x)} \left[\ln p(x|\mu_{\theta}(z), \sigma^2 I) \right]$$
$$= \mathbb{E}_{x \sim \text{Data}} \mathbb{E}_{q(z|x)} \text{MSE}(x, \mu_{\theta}(z)).$$

optimal σ-VAE w/ shared variance (analytical solution)

Compare with β -VAE

Optimal σ-VAE	566	213 9		pic pic pic
Gaussian VAE (β=1)	₩ 🕏	16 B	E Total	is is
β -VAE, β =10 ⁻¹	3 3 3	A111110	n 7	tale tale
β-VAE, $β$ =10 ⁻²	4 4	311/5	東多	pair pair pair
β-VAE, $β$ =10 ⁻³	0 6 6	LII (SI ID)	*	pair pair pair
β-VAE, $β$ =10 ⁻⁴	3 3 3	間被開	建筑	hoje hoje hoje
β-VAE, β=10 ⁻⁵		P 121	機為多	pic pic pic
	CelebA	SVHN	CIFAR	BAIR

	β	$-\log p \downarrow$	FID↓
β -VAE	0.001	< 21.43	44.54
β -VAE	0.01	< -3186	27.93
β -VAE	0.1	< -1223	28.3
β -VAE	1	< 1381	70.39
β -VAE	10	< 4056	219.3
σ -VAE	0.006	< -3333	22.25

$$d_F(\mu,
u) := \left(\inf_{\gamma \in \Gamma(\mu,
u)} \int_{\mathbb{R}^n imes \mathbb{R}^n} \|x-y\|^2 \, \mathrm{d}\gamma(x,y)
ight)^{1/2}$$

Impact on Latent Variables

Decomposition of the KL-Divergence

$$E_{p_d(x)} [D_{KL}(q(z|x)||p(z))]$$

$$= E_{p_d(x)} [D_{KL}(q(z|x)||m(z))] + D_{KL}(m(z)||p(z))$$

$$= I_e(x;z) + D_{KL}(m(z)||p(z)).$$
where $m(z) = E_{p_d(x)}q(z|x)$

	β	$-\log p \downarrow$	FID↓
β -VAE	0.001	< 21.43	44.54
β -VAE	0.01	< -3186	27.93
β -VAE	0.1	< -1223	28.3
β -VAE	1	< 1381	70.39
β -VAE	10	< 4056	219.3
σ -VAE	0.006	< -3333	22.25

σ -VAE captures the inflection point

Compare with Other (Calibration) Methods

	CelebA HVAE		SVHN VAE		CIFAR HVAE		BAIR SVG	
	$-\log p \downarrow$	FID↓	$-\log p \downarrow$	FID ↓	$-\log p \downarrow$	FID ↓	$-\log p \downarrow$	FID↓
Bernoulli VAE [1] Categorical VAE Bitwise-categorical VAE Logistic mixture VAE	< 6359 < 9067 < 7932	177.6 71.5 66.61 65.3	< 9179 < 10800 < 9085	43.26 46.13 33.84 43.19	< 7179 < 9390 < 8443	284.5 101.7 91.2 143.1	N/A < 48744 < 40616	122.6 N/A 46.13 42.94
Gaussian VAE Per-pixel σ -VAE Student-t VAE [2] β -VAE [3] Shared σ -VAE Optimal σ -VAE	<7173 <-7814 <-8401 <-2713 <-6374 <-8446	186.5 159.3 71.06 61.6 60.7 60.3	< 2184 < -3592 < -3659 < -3186 < -3349 < -3333	112.5 114.7 70.4 27.93 22.25 27.25	<7186 <-7222 <-7419 <-331 <-5435 <-5677	293.7 131 123.6 103 116.1 101.4	< -10379 < -14051 - < -13472 < -13974 < -14173	35.64 41.98 - 34.64 34.24 34.13
Opt. per-image σ -VAE		66.01		26.28		104.0		33.21

Common Challenges on Variance Calibration

- Numerical instability (extremely low variance)
- Bounding variance leads to poor generative results despite high ELBO.
- Shared variance, per-image variance, and per-pixel variance lead to different performance.
 - More expressive variance decoder produces unrealistic samples and meaningless latent representations.
 - Sharing variance across images is a useful inductive bias.

Optimal σ -VAE Improves Learning Process

- Speed up learning process.
- Per-image optimal σ -VAE achieves best image quality.
- Analytical solution for the optimal σ -VAE makes it easy to implement perimage, per-pixel shared variance decoders.

