

Introduction

CISC 7404 - Decision Making

Steven Morad

University of Macau

Prerequisites	2
Grading	
Resources	
Cheating	
Lecture Topics	23
What is Decision Making?	28
History of Decision Making	35
Decision Making and Deep Learning	49
Questions?	
Homework	60

• Python numerical programming

- Python numerical programming
- Deep learning

- Python numerical programming
- Deep learning
- Statistics and probability

Python numerical programming:

Python numerical programming:

Python numerical programming:

You should know:

• Python loops, lists, dicts, etc

Python numerical programming:

- Python loops, lists, dicts, etc
- Python objects, inheritance, functional programming, etc

Python numerical programming:

- Python loops, lists, dicts, etc
- Python objects, inheritance, functional programming, etc
- numpy and torch

Python numerical programming:

- Python loops, lists, dicts, etc
- Python objects, inheritance, functional programming, etc
- numpy and torch
 - ▶ Batch matrix multiply, elementwise product, sum, max, etc

Python numerical programming:

- Python loops, lists, dicts, etc
- Python objects, inheritance, functional programming, etc
- numpy and torch
 - ▶ Batch matrix multiply, elementwise product, sum, max, etc
 - Multidimensonal tensors (i.e., shape)

Python numerical programming:

You should know:

- Python loops, lists, dicts, etc
- Python objects, inheritance, functional programming, etc
- numpy and torch
 - ▶ Batch matrix multiply, elementwise product, sum, max, etc
 - Multidimensonal tensors (i.e., shape)

Assignments in jax/equinox, similar to torch - final project in torch

Python numerical programming:

You should know:

- Python loops, lists, dicts, etc
- Python objects, inheritance, functional programming, etc
- numpy and torch
 - ▶ Batch matrix multiply, elementwise product, sum, max, etc
 - Multidimensonal tensors (i.e., shape)

Assignments in jax/equinox, similar to torch - final project in torch

If you do not know numerical programming, **you must learn immediately**: https://numpy.org/doc/stable/user/quickstart.html

Prerequisites Deep learning:

Prerequisites Deep learning:

Deep learning:

You should know:

• How to construct a neural network in torch

Deep learning:

- How to construct a neural network in torch
- Classification and regression losses

Deep learning:

- How to construct a neural network in torch
- Classification and regression losses
- Optimization/SGD

Deep learning:

- How to construct a neural network in torch
- Classification and regression losses
- Optimization/SGD
- How to train a neural network

Deep learning:

- How to construct a neural network in torch
- Classification and regression losses
- Optimization/SGD
- How to train a neural network
- Multilayer perceptrons

Deep learning:

- How to construct a neural network in torch
- Classification and regression losses
- Optimization/SGD
- How to train a neural network
- Multilayer perceptrons
- Convolutional networks

Deep learning:

- How to construct a neural network in torch
- Classification and regression losses
- Optimization/SGD
- How to train a neural network
- Multilayer perceptrons
- Convolutional networks
- Recurrent networks

Deep learning:

You should know:

- How to construct a neural network in torch
- Classification and regression losses
- Optimization/SGD
- How to train a neural network
- Multilayer perceptrons
- Convolutional networks
- Recurrent networks

If you do not, review the deep learning slides: https://github.com/smorad/um_cisc_7026

Statistics and probability:

Statistics and probability:

Statistics and probability:

You should know:

• Random variables (X)

Statistics and probability:

- Random variables (X)
- Probability density and mass functions (PDF, PMF)

Statistics and probability:

- Random variables (X)
- Probability density and mass functions (PDF, PMF)
- Conditional and unconditional probabilities

Statistics and probability:

- Random variables (X)
- Probability density and mass functions (PDF, PMF)
- Conditional and unconditional probabilities
- The entropy of a distribution

Statistics and probability:

You should know:

- Random variables (X)
- Probability density and mass functions (PDF, PMF)
- Conditional and unconditional probabilities
- The entropy of a distribution

Question: What does P(X = x) mean?

Statistics and probability:

You should know:

- Random variables (X)
- Probability density and mass functions (PDF, PMF)
- Conditional and unconditional probabilities
- The entropy of a distribution

Question: What does P(X = x) mean?

Answer: Probability of random variable X taking on a value of x

Statistics and probability:

You should know:

- Random variables (X)
- Probability density and mass functions (PDF, PMF)
- Conditional and unconditional probabilities
- The entropy of a distribution

Question: What does P(X = x) mean?

Answer: Probability of random variable X taking on a value of x

If you did not know this, you should review!

Grading

Grading

• Quizzes 30%

- Quizzes 30%
- Assignments 30%

- Quizzes 30%
- Assignments 30%
- Final Project 30%

- Quizzes 30%
- Assignments 30%
- Final Project 30%
- Participation 10%

Grading Quizzes:

Quizzes:

• I will tell you week before exam

Quizzes:

- I will tell you week before exam
- Expect 3 quizzes

Quizzes:

- I will tell you week before exam
- Expect 3 quizzes
- I will drop your lowest quiz score

Quizzes:

- I will tell you week before exam
- Expect 3 quizzes
- I will drop your lowest quiz score

Example 1: Quiz 1: 70%, Quiz 2: 80%, Quiz 3: 60%

Quizzes:

- I will tell you week before exam
- Expect 3 quizzes
- I will drop your lowest quiz score

Example 1: Quiz 1: 70%, Quiz 2: 80%, Quiz 3: 60%

Final quiz score: (70 + 80) / 2 = 75%

Quizzes:

- I will tell you week before exam
- Expect 3 quizzes
- I will drop your lowest quiz score

Example 1: Quiz 1: 70%, Quiz 2: 80%, Quiz 3: 60%

Final quiz score: (70 + 80) / 2 = 75%

Example 2: Quiz 1: 90%, Quiz 2: (sick) 0%, Quiz 3: 70%

Quizzes:

- I will tell you week before exam
- Expect 3 quizzes
- I will drop your lowest quiz score

Example 1: Quiz 1: 70%, Quiz 2: 80%, Quiz 3: 60%

Final quiz score: (70 + 80) / 2 = 75%

Example 2: Quiz 1: 90%, Quiz 2: (sick) 0%, Quiz 3: 70%

Final quiz score: (90 + 70) / 2 = 80%

Quizzes:

- I will tell you week before exam
- Expect 3 quizzes
- I will drop your lowest quiz score

Example 1: Quiz 1: 70%, Quiz 2: 80%, Quiz 3: 60%

Final quiz score: (70 + 80) / 2 = 75%

Example 2: Quiz 1: 90%, Quiz 2: (sick) 0%, Quiz 3: 70%

Final quiz score: (90 + 70) / 2 = 80%

Question: What if you are sick for two quizzes?

Quizzes:

- I will tell you week before exam
- Expect 3 quizzes
- I will drop your lowest quiz score

Example 1: Quiz 1: 70%, Quiz 2: 80%, Quiz 3: 60%

Final quiz score: (70 + 80) / 2 = 75%

Example 2: Quiz 1: 90%, Quiz 2: (sick) 0%, Quiz 3: 70%

Final quiz score: (90 + 70) / 2 = 80%

Question: What if you are sick for two quizzes? Only one quiz dropped, other quiz is zero

Grading Assignments:

Assignments:

• Programming

Assignments:

- Programming
- Expect 2-3 assignments

Assignments:

- Programming
- Expect 2-3 assignments
- We will use Google Colab: https://colab.research.google.com

Assignments:

- Programming
- Expect 2-3 assignments
- We will use Google Colab: https://colab.research.google.com

Late assignment policy:

• 0-1 day late (-15%)

Assignments:

- Programming
- Expect 2-3 assignments
- We will use Google Colab: https://colab.research.google.com

- 0-1 day late (-15%)
- 1-2 days late (-30%)

Assignments:

- Programming
- Expect 2-3 assignments
- We will use Google Colab: https://colab.research.google.com

- 0-1 day late (-15%)
- 1-2 days late (-30%)
- 2-3 days late (-50%)

Assignments:

- Programming
- Expect 2-3 assignments
- We will use Google Colab: https://colab.research.google.com

- 0-1 day late (-15%)
- 1-2 days late (-30%)
- 2-3 days late (-50%)
- 3+ days late (-100%)

Grading Final Project:

Final Project:

Final Project:

Honor of Kings

 Research project based on Tencent platform

Final Project:

- Research project based on Tencent platform
- Train agents to play each other

Final Project:

- Research project based on Tencent platform
- Train agents to play each other
- Implement RL algorithm, improve it, write up analysis

Final Project:

- Research project based on Tencent platform
- Train agents to play each other
- Implement RL algorithm, improve it, write up analysis
- More information later

Grading Participation:

Grading Participation:

Significance

Despite active learning being recognized as a superior method of instruction in the classroom, a major recent survey found that most college STEM instructors still choose traditional teaching methods. This article addresses the long-standing question of why students and faculty remain resistant to active learning. Comparing passive lectures with active learning using a randomized experimental approach and identical course materials, we find that students in the active classroom learn more, but they feel like they learn less. We show that this negative correlation is caused in part by the increased cognitive effort required during active learning. Faculty who adopt active learning are encouraged to intervene and address this misperception, and we describe a successful example of such an intervention.

Participation: I want this class to be interactive

Participation: I want this class to be interactive

Participation is **asking** or **answering** questions during lecture

Participation: I want this class to be interactive

Participation is **asking** or **answering** questions during lecture

To encourage you, your grade depends on interacting

Participation: I want this class to be interactive

Participation is asking or answering questions during lecture

To encourage you, your grade depends on interacting

• Class participation

Participation: I want this class to be interactive

Participation is asking or answering questions during lecture

To encourage you, your grade depends on interacting

- Class participation
- Individual participation

Office Hours: Thursday 10:00 AM - 12:00 PM

Office Hours: Thursday 10:00 AM - 12:00 PM

Textbook: http://incompleteideas.net/book/the-book-2nd.html

Office Hours: Thursday 10:00 AM - 12:00 PM

Textbook: http://incompleteideas.net/book/the-book-2nd.html

• Syllabus lists textbook chapter for each lecture

Office Hours: Thursday 10:00 AM - 12:00 PM

Textbook: http://incompleteideas.net/book/the-book-2nd.html

Syllabus lists textbook chapter for each lecture

Github: https://github.com/smorad/um_cisc_7404

Question: What is cheating?

Question: What is cheating?

Answer:

Question: What is cheating?

Answer:

• Copying assignment or exam from another student

Question: What is cheating?

Answer:

- Copying assignment or exam from another student
- Having notes, laptop, or phone during quiz/exam

Question: What is cheating?

Answer:

- Copying assignment or exam from another student
- Having notes, laptop, or phone during quiz/exam
- Submitting LLM output for assignments

I don't like cheating

I don't like cheating

All assignments and final project will use turnitin.com

I don't like cheating

All assignments and final project will use turnitin.com

Turnitin detects copying between students and LLM use

I don't like cheating

All assignments and final project will use turnitin.com

Turnitin detects copying between students and LLM use

I gave many zeros in last term's deep learning course

I don't like cheating

All assignments and final project will use turnitin.com

Turnitin detects copying between students and LLM use

I gave many zeros in last term's deep learning course

This term, I will report any cheating to the head of department

I don't like cheating

All assignments and final project will use turnitin.com

Turnitin detects copying between students and LLM use

I gave many zeros in last term's deep learning course

This term, I will report any cheating to the head of department

I will also give you an F grade in the course

I don't like cheating

All assignments and final project will use turnitin.com

Turnitin detects copying between students and LLM use

I gave many zeros in last term's deep learning course

This term, I will report any cheating to the head of department

I will also give you an F grade in the course

It is not worth cheating, do your best and you will get partial credit

Secret: After you graduate nobody will care about your grade/degree!

Secret: After you graduate nobody will care about your grade/degree!

For AI jobs, you will do 5 hours of in-person interviews

Secret: After you graduate nobody will care about your grade/degree!

For AI jobs, you will do 5 hours of in-person interviews

You will write on a whiteboard in front of interviewers

Secret: After you graduate nobody will care about your grade/degree!

For AI jobs, you will do 5 hours of in-person interviews

You will write on a whiteboard in front of interviewers

There is nobody to copy and no LLM to help

Secret: After you graduate nobody will care about your grade/degree!

For AI jobs, you will do 5 hours of in-person interviews

You will write on a whiteboard in front of interviewers

There is nobody to copy and no LLM to help

To get the job, you must **understand** the material

Secret: After you graduate nobody will care about your grade/degree!

For AI jobs, you will do 5 hours of in-person interviews

You will write on a whiteboard in front of interviewers

There is nobody to copy and no LLM to help

To get the job, you must **understand** the material

Your degree will be useless without the knowledge

Secret: After you graduate nobody will care about your grade/degree!

For AI jobs, you will do 5 hours of in-person interviews

You will write on a whiteboard in front of interviewers

There is nobody to copy and no LLM to help

To get the job, you must **understand** the material

Your degree will be useless without the knowledge

I want you to learn the material so you succeed in life

Machine Learning Engineer Interview

16 May 2024 •••

Anonymous interview candidate

No offer — Neutral experience X Difficult interview

Application

Linterviewed at Baidu in 16/5/2024

Interview

it has 5 rounds of interviews, each of them is very long. I only managed to get to the second round with technical interview, and I failed. It's not a pleasent experience

Interview questions [1]

Question 1

describle tree algorithm and wirte in python

Answer question \rightarrow

Helpful

Machine Learning Engineer Interview

Aug 27, 2023 •••

Beijing, Beijing

─ Declined offer ✓ Positive experience X Difficult interview

Application

I applied online. I interviewed at ByteDance (Beijing, Beijing) in 8/27/2023

Interview

machine learning knowledge, code. leetcode (medium, hard with python), AUC definition, method on dealing with long tailed data and causal inference, machine learning question and deep learning method such as attention mechaism.

Interview questions [1]

Question 1

machine learning knowledge, code. leetcode, AUC definition, method on dealin...

read more

Answer question \rightarrow

Question: Can you use LLMs in class?

Question: Can you use LLMs in class?

You can ask LLMs for help, but do not turn in LLM output

Question: Can you use LLMs in class?

You can ask LLMs for help, but do not turn in LLM output

Ok: LLM, is _____ a correct translation of _____

Question: Can you use LLMs in class?

You can ask LLMs for help, but do not turn in LLM output

Ok: LLM, is _____ a correct translation of _____

Ok: LLM, is _____ correct grammar?

Question: Can you use LLMs in class?

You can ask LLMs for help, but do not turn in LLM output

Ok: LLM, is ____ a correct translation of ____

Ok: LLM, is _____ correct grammar?

Cheating: LLM, answer the following homework question _____

Question: Can you use LLMs in class?

You can ask LLMs for help, but do not turn in LLM output

Ok: LLM, is ____ a correct translation of ____

Ok: LLM, is _____ correct grammar?

Cheating: LLM, answer the following homework question _____

Ok: LLM, why does my code raise AttributeError?

Question: Can you use LLMs in class?

You can ask LLMs for help, but do not turn in LLM output

Ok: LLM, is ____ a correct translation of ____

Ok: LLM, is _____ correct grammar?

Cheating: LLM, answer the following homework question _____

Ok: LLM, why does my code raise AttributeError?

Ok: LLM, why does my Q function return large values?

Question: Can you use LLMs in class?

You can ask LLMs for help, but do not turn in LLM output

Ok: LLM, is _____ a correct translation of _____

Ok: LLM, is _____ correct grammar?

Cheating: LLM, answer the following homework question _____

Ok: LLM, why does my code raise AttributeError?

Ok: LLM, why does my Q function return large values?

Cheating: LLM, implement the policy gradient algorithm in pytorch

Lecture Topics

• Basics

- Basics
- Modern Methods

- Basics
- Modern Methods
- Active Research

Basics:

• Bandits

- Bandits
- Decision Processes

- Bandits
- Decision Processes
- Value Iteration

- Bandits
- Decision Processes
- Value Iteration
- Policy Gradient

- Bandits
- Decision Processes
- Value Iteration
- Policy Gradient
- Actor Critic

Modern Methods:

• Advantage Actor Critic

- Advantage Actor Critic
- Trust Region Policy Optimization

- Advantage Actor Critic
- Trust Region Policy Optimization
- Proximal Policy Optimization

- Advantage Actor Critic
- Trust Region Policy Optimization
- Proximal Policy Optimization
- Deep Q Learning

- Advantage Actor Critic
- Trust Region Policy Optimization
- Proximal Policy Optimization
- Deep Q Learning
- Deep Deterministic Policy Gradient

- Advantage Actor Critic
- Trust Region Policy Optimization
- Proximal Policy Optimization
- Deep Q Learning
- Deep Deterministic Policy Gradient
- Soft Actor Critic

- Advantage Actor Critic
- Trust Region Policy Optimization
- Proximal Policy Optimization
- Deep Q Learning
- Deep Deterministic Policy Gradient
- Soft Actor Critic
- Imitation learning

Active Research:

• Memory

- Memory
- Offline RL

- Memory
- Offline RL
- RL and Search

- Memory
- Offline RL
- RL and Search
- World Models

- Memory
- Offline RL
- RL and Search
- World Models
- RL from Human Feedback

In this course, we will focus primarily on reinforcement learning

In this course, we will focus primarily on reinforcement learning

But reinforcement learning is a method, not a problem

In this course, we will focus primarily on reinforcement learning

But reinforcement learning is a method, not a problem

The problem is decision making

In this course, we will focus primarily on reinforcement learning

But reinforcement learning is a method, not a problem

The problem is decision making

In this course, we will learn how to make good decisions

Question: What is decision making?

Question: What is decision making?

Question: What is decision making?

It depends, each field has their own definition

Philosophy

Question: What is decision making?

- Philosophy
- Cognitive science

Question: What is decision making?

- Philosophy
- Cognitive science
- Economics

Question: What is decision making?

- Philosophy
- Cognitive science
- Economics
- Machine learning

Question: What is decision making?

It depends, each field has their own definition

- Philosophy
- Cognitive science
- Economics
- Machine learning

Answer: Given information, make a choice that impacts the world

Question: Why should we care about decision making?

Question: Why should we care about decision making?

Question: Why should we care about decision making?

Everything in life is a decision

• Do I eat dumplings or noodles?

Question: Why should we care about decision making?

- Do I eat dumplings or noodles?
- What time should I leave for class?

Question: Why should we care about decision making?

- Do I eat dumplings or noodles?
- What time should I leave for class?
- Should I go to school or find a job?

Question: Why should we care about decision making?

- Do I eat dumplings or noodles?
- What time should I leave for class?
- Should I go to school or find a job?
- Should I date this person?

Question: Why should we care about decision making?

- Do I eat dumplings or noodles?
- What time should I leave for class?
- Should I go to school or find a job?
- Should I date this person?
- Where should I live?

Question: Why should we care about decision making?

- Do I eat dumplings or noodles?
- What time should I leave for class?
- Should I go to school or find a job?
- Should I date this person?
- Where should I live?
- What should we use taxes for?

Humans are decision making machines – it is all we do!

Humans are decision making machines – it is all we do!

We can represent life as a series of decisions

Humans are decision making machines – it is all we do!

We can represent life as a series of decisions

What we do defines who we are

Humans are decision making machines – it is all we do!

We can represent life as a series of decisions

What we do defines who we are

"All we have to decide is what to do with the time that is given to us"

Humans are decision making machines – it is all we do!

We can represent life as a series of decisions

What we do defines who we are

"All we have to decide is what to do with the time that is given to us"

To study decision making is to study ourselves

Humans are decision making machines – it is all we do!

We can represent life as a series of decisions

What we do defines who we are

"All we have to decide is what to do with the time that is given to us"

To study decision making is to study ourselves

If we learn to make better decisions, we can lead better lives

In this course, we focus on **optimal** decision making

In this course, we focus on optimal decision making

Make the best possible decision, given the information we have

In this course, we focus on optimal decision making

Make the best possible decision, given the information we have

We will find methods that **guarantee** optimal decision making

In this course, we focus on optimal decision making

Make the best possible decision, given the information we have

We will find methods that **guarantee** optimal decision making

With these methods, we can create optimal decision making machines

In this course, we focus on optimal decision making

Make the best possible decision, given the information we have

We will find methods that **guarantee** optimal decision making

With these methods, we can create optimal decision making machines

With an optimal decision making machine, you can create:

In this course, we focus on optimal decision making

Make the best possible decision, given the information we have

We will find methods that guarantee optimal decision making

With these methods, we can create optimal decision making machines

With an optimal decision making machine, you can create:

• Best possible doctor (which medicine to give?)

In this course, we focus on optimal decision making

Make the best possible decision, given the information we have

We will find methods that **guarantee** optimal decision making

With these methods, we can create optimal decision making machines

With an optimal decision making machine, you can create:

- Best possible doctor (which medicine to give?)
- Best possible lawyer (what to argue?)

In this course, we focus on optimal decision making

Make the best possible decision, given the information we have

We will find methods that **guarantee** optimal decision making

With these methods, we can create optimal decision making machines

With an optimal decision making machine, you can create:

- Best possible doctor (which medicine to give?)
- Best possible lawyer (what to argue?)
- Best possible scientist (what to research?)

In this course, we focus on optimal decision making

Make the best possible decision, given the information we have

We will find methods that guarantee optimal decision making

With these methods, we can create optimal decision making machines

With an optimal decision making machine, you can create:

- Best possible doctor (which medicine to give?)
- Best possible lawyer (what to argue?)
- Best possible scientist (what to research?)

If the machine understands why it makes decisions, it is conscious

Let us discuss the history of decision making to better understand it

Question: Who was the first to apply decision making algorithms?

Question: Who was the first to apply decision making algorithms?

3.5 GYA: Single cell organism

Question: Who was the first to apply decision making algorithms?

3.5 GYA: Single cell organism

Decides to move away from danger and move towards food

Question: Who was the first to apply decision making algorithms?

3.5 GYA: Single cell organism

Decides to move away from danger and move towards food

Decision making is necessary for life

200 kYA: Humanoid huntergatherers develop more complex decision making capabilities

200 kYA: Humanoid huntergatherers develop more complex decision making capabilities

Sequence of decisions to make fire

200 kYA: Humanoid huntergatherers develop more complex decision making capabilities

Sequence of decisions to make fire

Sequence of decisions to plant crops

500 BCE: Humans begin to study decision making

500 BCE: Humans begin to study decision making

Sun Tzu studies and writes about various forms of decision making

500 BCE: Humans begin to study decision making

Sun Tzu studies and writes about various forms of decision making

E.g., zero sum games: "Attack where he is unprepared; appear where you are not expected."

400 BCE: Aristotle creates the earliest recorded framework for decision making

400 BCE: Aristotle creates the earliest recorded framework for decision making

Syllogistic logic and deductive reasoning from axioms

400 BCE: Aristotle creates the earliest recorded framework for decision making

Syllogistic logic and deductive reasoning from axioms

Axiom 1: All philosophers prioritize knowledge over leisure

400 BCE: Aristotle creates the earliest recorded framework for decision making

Syllogistic logic and deductive reasoning from axioms

Axiom 1: All philosophers prioritize knowledge over leisure

Axiom 2: I am a philosopher

400 BCE: Aristotle creates the earliest recorded framework for decision making

Syllogistic logic and deductive reasoning from axioms

Axiom 1: All philosophers prioritize knowledge over leisure

Axiom 2: I am a philosopher

Decision: I must attend lecture instead of the party

1654: Pascal formalizes decision making under uncertainty with "Pascal's Wager"

1654: Pascal formalizes decision making under uncertainty with "Pascal's Wager"

Premise: You are in bed, about to die. Should you believe in God?

1654: Pascal formalizes decision making under uncertainty with "Pascal's Wager"

Premise: You are in bed, about to die. Should you believe in God?

	Believe	Do not
		believe
God exists	Good	Bad
God does	Neutral	Neutral
not exist		

1906: Markov discovers Markov processes

1906: Markov discovers Markov processes

Modern decision making relies on Markov processes

1953: Bellman discovers dynamic programming

1953: Bellman discovers dynamic programming

Gives us the **Bellman equation**, the basis for optimal decision making

1983: Sutton solves the Bellman equation using neural networks

1983: Sutton solves the Bellman equation using neural networks

Combines reinforcement learning and neural networks

1983: Sutton solves the Bellman equation using neural networks

Combines reinforcement learning and neural networks

He is still alive and might answer your emails

1983: Sutton solves the Bellman equation using neural networks

Combines reinforcement learning and neural networks

He is still alive and might answer your emails

We use his textbook: *An Introduction to Reinforcement Learning*

1997: DeepBlue beats world champion Kasparov at chess

1997: DeepBlue beats world champion Kasparov at chess

People start to pay attention to decision making machines

1997: DeepBlue beats world champion Kasparov at chess

People start to pay attention to decision making machines

Chess AIs play each other because humans are too easy

1997: DeepBlue beats world champion Kasparov at chess

People start to pay attention to decision making machines

Chess AIs play each other because humans are too easy

https://www.youtube.com/watch? v=KF6sLCeBj0s

2016: AlphaGo beats world champion Sedol at Go

2016: AlphaGo beats world champion Sedol at Go

https://www.youtube.com/watch? v=tXlM99xPQC8

2018: OpenAI Five beats world champions at Dota2

2018: OpenAI Five beats world champions at Dota2

https://www.youtube.com/watch? v=eHipy_j29Xw

2020-2024: GPT-3, GPT-4 trained using reinforcement learning

2025?

We will formally define decision making and reinforcement learning later in the course

We will formally define decision making and reinforcement learning later in the course

For now, I want to clarify decision making in the context of machine learning

We will formally define decision making and reinforcement learning later in the course

For now, I want to clarify decision making in the context of machine learning

How does decision making differ from regular deep learning?

machine learning

unsupervised learning supervised learning

reinforcement learning

In deep learning, we usually know the answer

In deep learning, we usually know the answer

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \boldsymbol{y}$$

In deep learning, we usually know the answer

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \boldsymbol{y}$$

In decision making, we often do not know the answer!

In deep learning, we usually know the answer

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \boldsymbol{y}$$

In decision making, we often do not know the answer!

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = ?$$

In deep learning, we usually know the answer

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \boldsymbol{y}$$

In decision making, we often do not know the answer!

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = ?$$

What does this mean?

Example: You train a model f to play chess

Example: You train a model f to play chess

$$f: X \times \Theta \mapsto Y$$

Example: You train a model f to play chess

$$f: X \times \Theta \mapsto Y$$

 $X \in \text{Position of pieces on the board}$

Example: You train a model f to play chess

$$f: X \times \Theta \mapsto Y$$

 $X \in \text{Position of pieces on the board}$

 $Y \in$ Where to move piece

 $X \in \text{Position of pieces on the board}$ $Y \in \text{Where to move piece}$

 $X \in \text{Position of pieces on the board}$ $Y \in \text{Where to move piece}$

What is the correct answer?

What is the correct answer?

We do not know the answer

How can we learn a model without an answer?

An answer gives us just one move

An answer gives us just one move We

We need many moves to win

Decision making can give us the best **sequence** of moves to:

• Win a game of chess

- Win a game of chess
- Drive a customer to the store

- Win a game of chess
- Drive a customer to the store
- Cook a tasty meal

- Win a game of chess
- Drive a customer to the store
- Cook a tasty meal
- Treat a sick patient

- Win a game of chess
- Drive a customer to the store
- Cook a tasty meal
- Treat a sick patient
- Prevent climate change

- Win a game of chess
- Drive a customer to the store
- Cook a tasty meal
- Treat a sick patient
- Prevent climate change
- Reduce human suffering

Decision making can give us the best **sequence** of moves to:

- Win a game of chess
- Drive a customer to the store
- Cook a tasty meal
- Treat a sick patient
- Prevent climate change
- Reduce human suffering

We do not know the correct moves

Decision making can give us the best **sequence** of moves to:

- Win a game of chess
- Drive a customer to the store
- Cook a tasty meal
- Treat a sick patient
- Prevent climate change
- Reduce human suffering

We do not know the correct moves

But with decision making, we can find them!

Questions?

• Review prerequisites

- Review prerequisites
 - Especially probability

- Review prerequisites
 - Especially probability
- Play with Google Colab

- Review prerequisites
 - Especially probability
- Play with Google Colab
- Download Sutton and Barto textbook

- Review prerequisites
 - Especially probability
- Play with Google Colab
- Download Sutton and Barto textbook
 - Read Chapter 1.1 (few pages)

- Review prerequisites
 - Especially probability
- Play with Google Colab
- Download Sutton and Barto textbook
 - Read Chapter 1.1 (few pages)
 - ► Read Chapter 2 before next lecture