· Assume time undependent putertial V(7)

Apply Schridings equation:

 $\frac{ik}{\partial t} + (\vec{r},t) = \left[\frac{-K^2}{2m} \nabla^2 + \hat{V}(\vec{r},t) \right] + (\vec{r},t)$

 $in 4(\vec{r}) d f(t) = \left[\frac{-K^2}{2m} \nabla^2 4(\vec{r}) + \hat{V}(\vec{r}) 4(\vec{r}) \right]$

Diride by 4(7)f(t)
both sides

 $\frac{1}{f(t)} \frac{1}{dt} = \frac{1}{4(r^2)} \left[\frac{-\kappa^2}{2m} \nabla 4(r^2) + \sqrt{(r^2)} 4(r^2) \right]$

Metroil of separation of ranialles 2 Born sides must equal a constant which has dimensis of energy scall it E. ih d f(t) = E f(t) $dt f(t) = C e^{-iEt/K}$ Ĥ Ĥ 4(r) = E4(r) The eigenfunctions of H are * Stationary states with e-iE+/k time dep. * Eigenalus are E * H is Stermition and E is real · E is a nell definel quantity

for a Stationey state of Schrödings

equation. $\langle E \rangle = \int 4^* \left(i h \frac{\partial}{\partial t} \right) \psi d\vec{r} = \int 4^* \left(\frac{\partial}{\partial t} \right) \psi d\vec{r} = E$ since $\int 4^* \psi d\vec{r} = 1$

For statement states, probability 3 density is constant in time. $P(\vec{r}_{t}) = 4*(\vec{r}_{t}) 4(\vec{r}_{t}) = |4(\vec{r}_{t})|^{2}$

General solution of Schrödinger Equation:

We would like to construct any solution of the Schrödinger lequestric as a combination of statement states.

Just like basis ruthis is geometry, Nyme 4E and 4E, to be orthogonal. ($E \neq E'$)

J4# (+) 4E(+) d+=0, E == 1

Proof: A4E = E4E

multiply both sides by $4^*E'$ $4^*E'$ (If 4_E) = $E + 4_E'$ 4_E (1)

For the other function. $\hat{H}^{\prime}Y_{E}^{\prime}=E^{\prime}Y_{E}^{\prime}$

Jahr complex conjugate (Â4k1) = E'4k, sime E'is real Multiply on the right by 4E (A4E1) 4E = E 4E, 4E (2) Subtract (2) from (1) 4 * (H4E) = E4 * 4E (1) (A4E1) 4E = E 4E1HE 4 = (f 4 =) - (f 4 =) *4 = (E - E') 4 = 1 Integrate both sides, (E-E') | 4 + 4 dr = | 4 + (H4E) - (A 4 = 1) 4 dr 4/E'H'4/K Sime H=H* Jus Strict te (2) de = 5EE'

(5) * If there is degeneray, ie. cliffent eigenfunction hue The Seme eigenralue, me can me the Grahm-Schot proedre to general on ordonomal set. ### We postulate That the energy Spectrum obtained of solving the time-indep Schrödigner lyn respects all the possible realizable evergis foth suplin. Mus, a general State of the time dependent squation is 4(r,t)= & CE(t) 4E(r) coefficients depend or time. · compare to a vector expanded si basis vectors (19, x, G, \(\frac{x}{2}\)) not time ranjig cofficients.

To figure out coefficients, multiply by 4 to 1(2) and sitegrate:

 $\int Y_{E}^{*}(\vec{r}) Y(\vec{r},t) d\vec{r} = \sum_{E} C_{E}(t) \int Y_{E}^{*}(\vec{r}) Y_{E}^{*}(\vec{r}) Y_{E}^{*}(\vec{r}) d\vec{r}$

JEE'

 $= C_E/(t)$

Jo form the full time dependent solution, recall that each eigenfunction has a rime dependence e-iztik.

Aus, ends eignfinden is 4 (7) e -ikt/k

The general Solution is Them.

4(rit) = 2, CE(t=0) 4 = (r) e - 1 = 1/k

CE = J4 (+ (+, t=0) d+

Probabilit orsenation explicis & |CE|2=1

Starte wto E.

* Note: The probability den	sidy 7
of a <u>Sum</u> of Stationey	- States is
ompe	litudes of function
time dependent! (New ompo	diffet E (MW)!)
. As a final chuck of the formlism, lets c	aleule XI
(E) for a general Sa	tote.
$\langle E \rangle = \langle H \rangle = \begin{cases} 4^{*}(\vec{r},t) A \end{cases}$	4(7t)dr
J - 1 /5	-C1)+/v
= £ £ CECEE	- e JC/a
E E	J 4 E (T) H 9 (T)
-i(E-E')t,	1k c dr
= 5/5, C*, CEC (E-E')+, E E'	E J 4 () 4 ()
	dr
4	JEE'
$= \underbrace{1}_{E} C_{E} ^{2} E$	~ 12 lz ·
probabity mut a m	Vann y will
yield E.	
y · · · ·	

Lecture 9 1-D problems & Energy quartigation

Recall the Une undependent Schrödinger

A4=E4

The eigenfunctions one eigenenergies are different for differ types of patential functions $\hat{V}(\vec{r})$

Consider 1-D problems:

4(x,t) = 4(x) e - LEt/h

The Schrödinger equation thus reads

$$\left[\frac{-k^2}{2m}\frac{d^2}{dx^2} + V(x)\right] + V(x) = E + V(x)$$

$$\frac{d^2 \Psi(x)}{dx^2} = \frac{2m}{\kappa^2} \left[V(x) - E \right] \Psi(x)$$

-> · Ino linearly modep. Solutions for each E · Form of solution depended or whether V-E > 0 or V-E < 0.

· Require 4(x) to be fimite and single releved
to main probabilisti integretation

4(x) is fimite, continuous, and has a continuous deruntive

Case 1 E < Vmin

V(x) - E > 0 always, $\frac{d^4t}{dx^2}$ and $\frac{d^4t}{dx^2}$ Some eight $\frac{4(x)}{x}$

Thus, QM allows only certain discrete energies, but they are not confined to region with E>V!

Only one classical turning point at X3

Solution for every E since we have TES only to match cut X3. Continuous spectrum!

SCATTERING STATES

<u>Jecture 10</u> James solution to 1-D problems: pre particle and potential step

The Free Particle

$$\frac{-k^2}{2m} \frac{d^24(x)}{dx^2} = E + (x) \text{ for eigenfunctions}$$

$$\frac{-iEt/k}{k}$$

let
$$k = \left(\frac{2ME}{h}\right)^{\frac{1}{2}}$$

$$\frac{d^24(4)}{dx^2} + k^24(x) = 0$$

- General solution:
$$4(x) = Ae^{+ikx} + Be^{-ikx}$$

k must be a real # or 4-,00 as x+ ±00

•
$$E = \frac{\ln^2 k^2}{2 \text{ m}}$$
 $V=0$ so E is continuous and can take any value from 0 to ∞

· E is doubly degererate since etihx hur same energy (re particle moving left or rept)

Note $e^{\pm ihx}$ also eigenfunctus (2) of $\hat{P}_{x} = -ikd$ (Note $\hat{H} \sim \hat{P}_{x}^{2}$ $[\hat{H}, \hat{P}_{x}] = 0$) General time dependent solution $4(x,t) = \left(Ae^{i h x} + Be^{-i h x}\right) e$ $= A e^{i(hx - wt)} + B e^{-i(hx + wt)}$ Consider defferet boundag conditions. -> porticle moving to the right und moments Kk. Probability density $P = 14(x,t)|^2 = |A|^2$ (indep. of space t time) -> Remember, a plane was is an idealized, simple approx to a feel waxpacket.

Lite' Calculate the probability count of at t=0 j = K [4 24 - 4 24]

$$=\frac{k}{2mi}\left(A^*e^{-ikx} + (ik)e^{-ikx} - Ae^{-ikx} - Ae^{-ikx}\right)$$

$$=\frac{kk}{m}|A|^2 = \frac{p}{m}|A|^2 = v|A|^2$$
velocity prob
denset

Some as case a alone but moving to the left.

$$4(x,t) = A(e^{ihx} + e^{-ihx})e^{-i\omega t}$$
$$= 2A\cos(hx)e^{-i\omega t}$$

Standing was with nodes at
$$X_n = \pm \left(\frac{\pi}{2} + n\pi\right), \quad n = 0, 1, 2, \dots$$

Probability classif
$$P(x) = \frac{12A1^2co5^2(hx)}{c}$$

 $j = \frac{k}{2mi} \left(-c^*cos(hx)Cksin(hx) + Ccos(hx) \right)$
 $c^*ksin(hx) = 0$

No probable 'y curent!

-> 4 ransus at modes If we want to nomilige In 4, we can use the def. of the of function. We can use $\int_{-\infty}^{\infty} i(h_{m} - h') \times dx = 2\pi \delta(k - k')$ Thus $Y(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}$ The Patential Step No solution for E < 0 $\frac{d^24(x)}{dx^2} + k^24(x) = 0 \qquad k = \left(\frac{2mE}{h^2}\right)^{\frac{1}{2}} + m \times co$

require 4 and d4 to be finite and continuous

and

(5)

$$\frac{d^24(x)}{dx^2} - K^24(x) = 0 \quad K = \left[\frac{2m}{\hbar^2} \left(V_0 - E\right)\right]$$

$$\omega \times \infty$$

For x<0: Free particle

4(x) = Aeihx + Be-ihx

Jn x>0'

4(x) = Ce Kx - Kx + De

Require 4 and d4 to be finite and continuous at all x

We can consider a particle coming from An eleft. Thus C=0

· Now, we have to have continuely in 4 a dr at at x=

Continuty of 4(x)(a) $X = 0 \rightarrow A + B = D$

Continut of
$$\frac{d4}{dx} @ x = 0$$
 6
 $ik(A-B) = -KD$

Combine equeties,

$$A = \left(\frac{1 + i K/R}{2}\right)D \qquad B = \left(\frac{1 - i K/R}{2}\right)D$$

Note that $\frac{B}{A} = \frac{1 - i K/R}{1 + i K/R}$ is a # of modulus 1

and can be untilen as

$$\frac{B}{A} = e^{i\alpha}$$
 where $\alpha = 2 \tan^{-1} \left[-\left(\frac{V_0}{E} - 1\right)^{V_2} \right]$

We hue used the definition of K,h is tens of Vo, E

$$\frac{D}{A} = \frac{2}{1 + iK/h} = 1 + e^{ix}$$

We can then unite 4 as:

$$4(x) = \left(\frac{2Ae^{i\alpha/2} \cos(kx - 4z)}{2Ae^{i\alpha/2}}, x < 0 \right)$$

$$2Ae^{i\alpha/2} \cos\left(\frac{\alpha}{2}\right)e^{-kx}, x > 0$$

Be-ihx is the reflected war.

Reflection $R = \frac{|B|^2}{|A|^2} = 1$ Coefficient $\frac{|B|^2}{|A|^2} = 1$ Classical physics

Notion of probabilities for $E < V_0$.

But... predality density... $P(x) = 4|A|^{2}\omega s^{2} \left(hx - \alpha/2\right) \text{ for } x < 0$ $= |D|^{2}e^{-2Kx} \text{ for } x > 0$

Note: We cannot experimentally determine une-like character is the Legin x >0.

Justification: To have appreciable probability in this region, need to laulige \$x ~ 1

Uncedaing primple says $\Delta P_{X} \gtrsim \frac{h}{\Delta x} \sim h k = \left[2m \left(V_{0} - E \right) \right]^{1/2}$ The energy would thus he uncertain by $\Delta E = (\Delta P_X)^2 \gtrsim V_0 - E. \rightarrow Jhub, if your$

> measure the particle say with certainly that it is writer the bourier!

Consider the limit of on Minde Step.

let Vo-soo (E is kept unstant)

 $K \rightarrow \infty$, thus $4(x) \rightarrow 0$ is classically forbidden lim $\frac{B}{a} = -1$ lim $\frac{D}{a} = 0$

 $\lim_{V_0 \to \infty} \frac{B}{A} = -1 \qquad \lim_{V_0 \to \infty} \frac{D}{A} = 0$

Ihrs 4(x) = { A(eihx - eihx), x<0 , X>D

4 goes to 0 at x=0

* Note, there is a discontinuty of the slope of 4 at D, but "snoon" joing is of reall for

$$\frac{d^{2}4(x)}{dx^{2}} + k^{2}4(x) = 0 \qquad \begin{cases} k = \left(\frac{2mE}{k^{2}}\right)^{1/2} \\ x < 0 \end{cases}$$

$$\frac{d^{2}4(x)}{dx^{2}} + k^{2}4(x) = 0 \qquad \begin{cases} k = \left(\frac{2mE}{k^{2}}\right)^{1/2} \\ k = \left(\frac{2m}{k^{2}}\right)^{1/2} \end{cases}$$

-> Oscillatory solutions encymbere

$$4(x) = \begin{cases} Ae^{ihx} + Be^{-ihx} & x < 0 \\ Ce^{ihx} + De^{-ihx} & x > 0 \end{cases}$$

Consider paricle unidert pour left, Thus
Incident Transmittel
Reflect & Transmittel

Note: Classical physics says particle is always transmitted. QH says There is a probablity of reflection!

@ X=0 continuty of 4

Continuity of dy

$$\frac{B}{A} = \frac{h - h'}{h \cdot h'}$$

 $\frac{B}{A} = \frac{h - h'}{h + h'} \qquad \frac{C}{A} = \frac{2h}{h + h'} ; \text{ unds for all}$

$$j = \frac{kh}{m}$$

 $j = \frac{kh}{m} \left[|A|^2 - |B|^2 \right] \times \langle O$

$$= \frac{Kh'}{m} |C|^2, X>0$$

$$R = \frac{|B|^2}{|A|^2} = \frac{(h-h')^2}{(h+h')^2} = \frac{\left[1-(1-V_0/E)^{1/2}\right]^2}{\left[1+(1-V_0/E)^{1/2}\right]^2},$$

E>16

Iransminur = Rotio y transmitted prob. (1)
Colfficient milderet prob.

 $T = \frac{v' |c|^2}{v |A|^2} = \frac{4hh'}{(h+h')^2} = \frac{4(1-Vo/E)^{1/2}}{[1+(1-Vo/E)^{1/2}]^2}$

IN DM, ne get partial reflections of potential raniations!