TD 5. Calcul des séquents

Exercice 1. Recherche de preuves en calcul des séquents

On rappelle les règles du calcul des séquents 1 :

$$\frac{ \vdash \Gamma, \varphi, \psi}{\vdash \Gamma, P, \neg P} \text{ (ax)} \qquad \frac{ \vdash \Gamma, \varphi, \psi}{\vdash \Gamma, \varphi \lor \psi} \text{ (\lor)} \qquad \frac{ \vdash \Gamma, \varphi \vdash \Gamma, \psi}{\vdash \Gamma, \varphi \land \psi} \text{ (\land)}$$

où les formules sont toutes en forme normale négative :

$$\varphi, \psi ::= P \mid \neg P \mid \varphi \lor \psi \mid \varphi \land \psi$$

Pour chacune des formules suivantes, après l'avoir mise en forme normale négative, donner une preuve en calcul des séquents ou un contre-modèle :

(a)
$$P \vee \neg P$$

(b)
$$(P \Rightarrow Q) \Rightarrow P$$

(c)
$$P \Rightarrow (Q \Rightarrow P)$$

(d)
$$(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$$

(e)
$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor R)$$

Exercice 2. Contre-modèle à partir d'une preuve échouée

Dans cet exercice, nous reprenons la formule trouvée dans l'exercice 3 du TD 4, qui exprime en CNF le problème de mettre deux pigeons (A et B) dans deux tiroirs (1 et 2). Nous dénotons les quatre lettres propositionnelles par A_1, A_2, B_1, B_2 , où la lettre A_2 signifie « le pigeon A est dans le tiroir $2 \gg$, etc. Considérons la formule

$$\varphi = (A_1 \vee A_2) \wedge (B_1 \vee B_2) \wedge (\neg A_1 \vee \neg B_1) \wedge (\neg A_2 \vee \neg B_2).$$

- (a) Quelle partie de la formule φ exprime le fait que chaque pigeon est dans un tiroir? Quelle partie exprime le fait qu'un tiroir ne peut contenir qu'un pigeon?
- (b) Écrivez la négation $\neg \varphi$ de φ en forme normale négative.
- (c) La formule $\neg \varphi$ ne peut pas être prouvable. Pourquoi?
- (d) Trouvez une branche d'échec dans une recherche de preuve de $\neg \varphi$. (Attention : il n'est pas demandé (ni conseillé) d'écrire tout l'arbre de preuve, seulement de trouver une branche qui échoue, dans le sens que le séquent le plus haut dans cette branche ne nous permet plus d'appliquer une règle.)
- (e) En déduire une interprétation qui satisfait φ . Utilisez l'inversibilité sémantique des règles du calcul de séquents pour justifier votre réponse.

Exercice 3. Règles dérivables en calcul des séquents Montrer que la règle d'axiome généralisée

$$\overline{\vdash \Gamma, \varphi, \overline{\varphi}}^{(ax)}$$

est dérivable. Autrement dit, montrer que le séquent $\vdash \Gamma, \varphi, \overline{\varphi}$ est prouvable pour tout multi-ensemble de formules propositionnelles Γ et toute formule propositionnelle φ (sous forme normale négative).

^{1.} Techniquement, du calcul des séquents classique, monolatère, inversible, sans coupure.

