

What is AI? (Informally)

- Different people can define AI differently
- Most popular definitions:
 - "Artificial intelligence is a constellation of many different technologies working together to enable machines to sense, comprehend, act, and learn with human-like levels of intelligence."

(Accenture)

 Artificial intelligence is the simulation of human intelligence processes by machines, especially computer systems/Al refers to systems or machines that mimic human intelligence to perform tasks and can iteratively improve themselves based on the information they collect.

(SAS/Oracle)

Al refers to systems that acts rationally (aka. Intelligent agents): any system
that perceives its environment and takes actions that maximize its chance of
achieving its goals

(Al textbooks)

5

What about Australian industry?

- Suncorp Group Ltd. (ASX15) worked with us to understand the role of intelligent agents in future-generation markets for financial services/products
- Data61 and Defence Science and Technology are is working with us to create Al-based antifragile and resilient cyber-defence systems
- SmartSat CRC (Airbus, SAAB, Leonardo, Ascension, ... + UniSA, Swinburne, Deakin,...) are working with us on a project to develop SpaceCraft Autonomy and Onboard AI for Next Generation Space Systems (SCARLET-α).

7

Why study AI (from an academic perspective)

- It provides the core knowledge of computer science
- You'll learn to analyse problems and learn about techniques/algorithms to solve real-world problems
- It paves the way to understanding various sorts of intelligence (in both humans and machines)
- It is also fun (and different to most other subjects)

Why study AI? (from a career perspective)

- The global AI market value is expected to reach \$267 billion by 2027.
 (Fortune Business Insights)
- The total contribution of AI to the global economy is expected to hit \$15.7 trillion by 2030.

(PwC Global)

 Al will help boost the GDP of local economies, with China expected to record the greatest gains of 26% by 2030.

(PwC Global)

 The most in-demand AI job of 2023 can pay over \$200,000 and offers remote opportunities

(CNBC, Nov 2023)

 Searches for generative AI jobs on Indeed have increased almost 4,000% in the last year, and openings for generative AI jobs are up 306% over the same period.

(CNBC, Nov 2023)

9

What is Artificial Intelligence

- Different definitions due to different criteria
 - □ Two dimensions:
 - ☐ Thought processes/reasoning vs. behavior/action
 - □Success according to human standards vs. success according to an ideal concept of intelligence: rationality.

Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally

□ Each definition falls under a **PARADIGM** in which AI can be built

Systems that act like humans

- Al is the art of creating machines that perform functions that require intelligence when performed by humans
- Methodology: Take an intellectual task at which people are better and make a computer do it
- Turing test
- Prove a theorem
- Play chess
- Plan a surgical operation
- Diagnose a disease
- Navigate in a building

11

Systems that act like humans

- When does a system behave intelligently?
 - □ Turing (1950) Computing Machinery and Intelligence
 - □ Operational test of intelligence: imitation game

- ☐ Test still relevant now yet might be the wrong question.
- □ Requires the collaboration of major components of AI: knowledge, reasoning, language understanding, learning, ...

Systems that think like humans

- How do humans think?
 - ☐ Requires scientific theories of internal brain activities (cognitive model):
 - ☐ Level of abstraction? (knowledge or circuitry?)
 - □ Validation?
 - ☐ Predicting and testing human behavior
 - □ Identification from neurological data
 - ☐ Cognitive Science vs. Cognitive neuroscience.
- Both approaches are now distinct from AI
- Share that the available theories do not explain anything resembling human intelligence.
 - ☐ Three fields share a principal direction.

13

Systems that think like humans

- Some references:
 - ☐ Daniel C. Dennet.
 Consciousness explained.
 - ☐ M. Posner (edt.)

 Foundations of cognitive science
 - ☐ Francisco J. Varela et al. The Embodied Mind
 - ☐ J.-P. Dupuy. The mechanization of the mind

Systems that think rationally

- Capturing the laws of thought
 - □ Aristotle: What are 'correct' argument and thought processes?
 - □Correctness depends on irrefutability of reasoning processes.
 - ☐ This study initiated the field of logic.
 - □The logicist tradition in AI hopes to create intelligent systems using logic programming.
 - □ Problems:
 - □Not all intelligence is mediated by logic behavior
 - □What is the purpose of thinking? What thought should one have?

15

Systems that think rationally

- A reference;
 - □ Ivan Bratko, Prolog programming for artificial intelligence.

Systems that act rationally

- Rational behavior: "doing the right thing"
 - □The "Right thing" is the course of action that is expected to maximize goal achievement given the available information.
- Can include thinking, yet in service of rational action.
 - □Action without thinking: e.g. reflexes.

17

Systems that act rationally

- Two advantages over previous approaches:
 - ☐ More general than law of thoughts approach
 - ☐ More amenable to scientific development.
- Yet rationality is only applicable in *ideal* environments.
- Moreover, rationality is not a very good model of reality.

Some other terminologies

- Strong Al vs Weak Al
 - □ Weak AI:
 - ☐ Machines that can be made to act as if they were intelligent.
 - ☐ Strong AI:
 - ☐ Machines that act intelligently with real, conscious minds.
- Narrow Al vs Artificial General Intelligence (AGI)
 - □ Narrow AI:
 - ☐ Machine that is focused on one narrow (intellectual) task.
 - □ AGI:
 - ☐ Machine with the ability to apply intelligence to any problem, rather than just one specific problem.

19

Foundations of Al

- Different fields have contributed to AI in the form of ideas, viewpoints and techniques.
 - □ *Philosophy*: Logic, reasoning, mind as a physical system, foundations of learning, language and rationality.
 - ☐ *Mathematics*: Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability.
 - □ *Psychology*: adaptation, phenomena of perception and motor control.
 - □ *Economics*: formal theory of rational decisions, game theory.
 - ☐ *Linguistics*: knowledge represetation, grammar.
 - □ *Neuroscience*: physical substrate for mental activities.
 - ☐ *Control theory*: homeostatic systems, stability, optimal agent design.

A brief history

- What happened after WWII?
 - ☐ 1943: Warren Mc Culloch and Walter Pitts: a model of artificial boolean neurons to perform computations.
 - □First steps toward connectionist computation and learning (Hebbian learning).
 - ☐Marvin Minsky and Dann Edmonds (1951) constructed the first neural network computer
 - □1950: Alan Turing's "Computing Machinery and Intelligence"
 - □First complete vision of Al.

21

A brief history (2)

- The birth of AI (1956)
 - □ Darmouth Workshop bringing together top minds on automata theory, neural nets and the study of intelligence.
 - □ Allen Newell and Herbert Simon: The logic theorist (first nonnumerical thinking program used for theorem proving)
 - ☐ For the next 20 years the field was dominated by these participants.
 - ☐ Great expectations (1952-1969)
 - □ Newell and Simon introduced the General Problem Solver.
 - ☐ Imitation of human problem-solving
 - ☐ Arthur Samuel (1952-)investigated game playing (checkers) with great success.
 - □ John McCarthy(1958-):
 - ☐ Inventor of Lisp (second-oldest high-level language)
 - ☐ Logic oriented, Advice Taker (separation between knowledge and reasoning)

A brief history (3)

- The birth of AI (1956)
 - ☐ Great expectations continued ..
 - ☐ Marvin Minsky (1958 -)
 - □ Introduction of microworlds that appear to require intelligence to solve: e.g. blocks-world.
 - ☐ Anti-logic orientation, society of the mind.
- Collapse in Al research (1966 1973)
 - □ Progress was slower than expected.
 - ☐ Unrealistic predictions.
 - ☐ Some systems lacked scalability.
 - ☐ Combinatorial explosion in search.
 - ☐ Fundamental limitations on techniques and representations.
 - ☐ Minsky and Papert (1969) Perceptrons.

23

A brief history (4)

- Al revival through knowledge-based systems (1969-1970)
 - ☐General-purpose vs. domain specific
 - □E.g. the DENDRAL project (Buchanan et al. 1969)
 - ☐ First successful knowledge intensive system.
 - □ Expert systems
 - ☐MYCIN to diagnose blood infections (Feigenbaum et al.)
 - ☐ Introduction of uncertainty in reasoning.
 - □ Increase in knowledge representation research.
 - □Logic, frames, semantic nets, ...

A brief history (5)

- Al becomes an industry (1980 present)
 - ☐ R1 at DEC (McDermott, 1982)
 - ☐ Fifth generation project in Japan (1981)
 - ☐ American response ...
- Puts an end to the Al winter.
- Connectionist revival (1986 present)
 - □ Parallel distributed processing (RumelHart and McClelland, 1986); backprop.

25

A brief history (6)

- Al becomes a science (1987 present)
 - □ Neats vs. scruffies.
 - □In speech recognition: hidden markov models
 - □In neural networks
 - □In uncertain reasoning and expert systems: Bayesian network formalism
 - □...
- The emergence of intelligent agents (1995 present)
 - ☐ The whole agent problem:

"How does an agent act/behave embedded in real environments with continuous sensory inputs"

Different types of current AI systems

- Rule-based systems (e.g., expert systems, Mars Rover Al planner)
- Machine learning (ML)-based systems (e.g., IBM Watson, data analytics systems used by supermarkets, insurance and banking sector, telcos, etc.)
- Deep learning (DL)-based systems (e.g., those used in autonomous cars, Alpha Go, ChatGPT, etc.)

27

State of the art

- Deep Blue defeated the reigning world chess champion Garry Kasparov (1997)
- Proved a mathematical conjecture (Robbins conjecture) unsolved for decades
- Self-driving cars (and related technologies) have made their way into the real world ☐ Tesla, Google, Mercedes, ...
- During the 1991 Gulf War, US force deployed an Al logistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people
- NASA's on-board autonomous planning program controlled the scheduling of operations for a spacecraft
- Proverb solves crossword puzzles better than most humans
- Google Alpha Go beat Lee Sedol (9-dan pro) in a five-game Go match March 2016.
- A machine learning algorithm can identify tissue slides exhibiting a specific type of cancer with far greater accuracy than human epidemiologists
- ChatGPT, Google Bard Al/Gemini, Open Al/Microsoft CoPilot

Ethics and AI Ethical considerations in AI: Bias Privacy job displacement Examples of ethical issues in AI facial recognition algorithmic hiring Potential solutions to ethical challenges European Commission (EC)'s AI Act (AIA) Responsible AI

29

Future of Al

Transparent & Auditable Al

- In your hand
 - ☐ You'll create it!
- Topic for discussion in class (tutorial)

Summary

- Different people think of AI differently.
- Two important questions to ask are:
 - ☐ Are you concerned with thinking or behavior?
 - ☐ Do you want to model humans or work from an ideal standard?
- In this course, we adopt the view that intelligence is concerned mainly with **rational action**.
- Ideally, an *intelligent agent* takes the best possible action in a situation. We will study the problem of building agents that are intelligent in this sense.

31

Further food for thought

- https://www.forbes.com/sites/forbesbusinesscouncil/2023/07/24/artificial-intelligence-is-changing-the-world-and-your-business/?sh=6a647a432900
- https://builtin.com/artificial-intelligence/artificial-intelligence-future
- https://www.forbes.com/sites/bernardmarr/2023/06/02/the-15-biggest-risks-of-artificial-intelligence/?sh=655ed9b27066
- https://www.safe.ai/ai-risk
- https://time.com/6565026/ai-job-replacement-mit-study/

