Topic 6: Induction & Recursion

Mathematical Induction

- Can be used only to prove results obtained in some other way, *not* a tool for discovering formulae or theorems
- it can be used to prove formulas, inequalities, divisibility, properties of subsets and their cardinality.

Principle of Mathematical Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we compelte two steps:

Basis Step: We verify that P(1) is true.

Inductive Step: We show that the conditional statement $P(k) \to P(k+1)$ is true for all positive integers k.

Strong Induction and Well-Ordering

• Mathematic Induction \equiv Strong Induction \equiv Well-Ordering

Strong Induction

Basis step: P(1) is true.

Inductive step: $\forall k(P(1), P(2), \dots, P(k) \rightarrow P(k+1)) \Rightarrow \therefore \forall nP(n)$.

Direct Proof: $p \rightarrow q$

Proof by contrapositive: $\neg q \rightarrow \neg p$

Proof by contradiction: Assume $\neg p$ is true, prove $\neg p$ is false, thus p is true.

Well-Ordering Property: every nonempty set of nonnegative integers has a least element.

Recursive Definitions

• An equation defines a sequence based on a rule that produces the next term as a function of the previous.

Basis Step: Initial value of the function.

Recursive Step: Give a rule for finding its value at an integer from its values at smaller integers.

Linear recurrences

• A relation that each term of the sequence is a linear function of previous terms.

Linear Homogenous Recurrences: $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}$. $c_1,\ldots,c_k\in\mathbb{R}$. k is the degree of the relation.

Linear Non-homogenous Recurrences: $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + f(n)$. $c_1, \ldots, c_k \in \mathbb{R}$. k is the degree of the relation.

Arithmetic sequences: the *difference* between consecutive terms is a constant.

Geometric sequences: the *ratio* between consecutive terms is a constant.

Divide and conquer recurrence: divide problem into smaller subproblems and solve them recursively.