Machine Learning: Obesity Prediction

The Scale Doesn't Lie — But Does Our Model?

Team:

Nadine Daum, Jasmin Mehnert, Ashley Razo, Nicolas Reichardt

Intro

Predict 7 Obesity Levels

- Insufficient Weight
- Normal Weight
- Overweight Level I
- Overweight Level II
- Obesity Type I
- Obesity Type II
- Obesity Type III
- Cross-sectional Data (Kaggle)

Shared Preprocessing

Logistic Regression

Without Ridge

With Ridge

Test Set Performance: Accuracy: 0.9220				
Classification Repor	t: precision	recall	f1-score	support
Insufficient_Weight Normal_Weight Obesity_Type_I Obesity_Type_II Obesity_Type_III Overweight_Level_I Overweight_Level_II	0.89 0.91 0.96 0.95 1.00 0.84 0.88	0.98 0.81 0.94 0.97 1.00 0.86 0.90	0.93 0.85 0.95 0.96 1.00 0.85 0.89	56 62 78 58 63 56 50
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	423 423 423

Test Accuracy: 0.9362		3 5 33		
Classification Report:				
pr	ecision	recall	f1-score	support
Insufficient_Weight	0.90	1.00	0.95	56
Normal_Weight	0.96	0.84	0.90	62
Obesity_Type_I	0.96	0.97	0.97	78
Obesity_Type_II 0.9		0.93	0.94	58
Obesity_Type_III 0.95		0.98	0.97	63
Overweight_Level_I 0.88		0.91	0.89	56
Overweight_Level_II	0.94	0.90	0.92	50
accuracy			0.94	423
macro avg	0.94	0.93	0.93	423
weighted avg	0.94	0.94	0.94	423

KNN - Strategy & Encoding

Baseline KNN first, constantly making it better

```
ordinal_mappings = {
    "vegetables_freq": ["Never", "Sometimes", "Always"],
    "main_meal_count": ["Between 1 y 2", "Three", "More than three"],
    "snacking_freq": ["no", "Sometimes", "Frequently", "Always"],
    "water_intake": ["Less than a liter", "Between 1 and 2 L", "More than 2 L"],
    "physical_activity_freq": ["I do not have", "1 or 2 days", "2 or 4 days", "4 or 5 days"],
    "screen_time_hours": ["0-2 hours", "3-5 hours", "More than 5 hours"],
    "alcohol_consumption_freq": ["no", "Sometimes", "Frequently", "Always"]
}
```

Never < Sometimes < Always

0 < 1 < 2

KNN - The Baseline

KNN ... but with PCA

KNN ... but why k=1?

KNN didn't give the best results, but ...

 Ordered encoding is better than one-hot for distance-based models

PCA only helps if there's actual redundancy

 SMOTE can make small k look better than it is

Neural Network in a Nutshell

- Multi-class classifier (7 classes) using ReLU & dropout layers
- Trained on shared preprocessed data (scaled & one-hot encoded)
- Achieved 83.9% test accuracy with smooth learning curve
- Balanced predictions across all obesity categories
- Training setup: categorical crossentropy, Adam optimizer, 50 epochs
 - → after 50 rounds, the model stopped guessing & started generalizing

Neural Network: Training Curve

Neural Network: Confusion Matrix

Tree-based models

Leaf Us Alone, We're Too Busy Making Accurate Predictions

Tree-based models achieved exceptional accuracy:

Decision Tree: 96.11%XGBoost: 95.74%

- Random Forest: 93.6%

- All of them show **excellent generalizability**, extremely high cross-validation accuracies (>95%)
- Decision Tree hyperparameters:
 - Criterion: Entropy (measures information gain at each split)
 - Max Depth: 15 (maximum levels in tree hierarchy)
 - Min Samples Split: 2 (minimum samples needed to split a node)
 - Min Samples Leaf: 1 (minimum samples required in leaf nodes)

Leaf Us Alone, We're Too Busy Making Accurate Predictions

- Decision Tree surprisingly outperformed more complex models, why?
 - Relationship between features and obesity appears relatively simple (too simple maybe?)
 - Decision Trees directly select features with highest immediate predictive power
 - Complex models may have lost efficiency trying to model interactions that weren't necessary

TREE-BASED MODELS

Logistic regression, KNN, Neural Nets...

Plot Twist: Our Forest Isn't As Dense As We Thought

Feature_DT	Importance_DT	Feature_RF	Importance_RF
weight_kg	0.6249	weight_kg	0.3335
height_m	0.1965	age	0.114
gender_Male	0.1208	height_m	0.1105
age	0.0237	gender_Male	0.0489
high_caloric_food_freq	0.01	vegetables_freq	0.0424

$$BMI = \frac{weight(kg)}{height^2(m^2)}$$

Plot Twist: Our Forest Isn't As Dense As We Thought

- Features "weight" and "height" dominated feature importance!
- Models likely reverse-engineered
 BMI rather than discovering
 behavioral patterns
- We re-run the three tree-based models without the two features...
 and accuracy dropped dramatically
 (to ~79% for Random Forest)

Model Type	Accuracy	Strengths	Challenges
Logistic Regression	92.2%	Easily interpretable, Computationally inexpensive	Sensitive to multicollinearity, linearity assumption
Linear Regression w/ Ridge	93.62%	Controls overfitting, stable solution	Hard to interpret, hyperparameter tuning needed
KNN + PCA	~77%	Helped to understand the data better	With PCA hard to interpret, compared to other models low accuracy
Neural Network	~84%	Stable learning, strong generalization	Needs tuning, hard to interpret
Baseline Decision Tree	96.45%	Highest accuracy, generalization, interpretability	Potential target leakage, Limited behavioral insights
Random Forest	93.62%	Strong performance, consistent results	Same feature dominance issue
XGBoost	95.74%	Excellent performance	Computational intensity using GridSearch, API compatibility issue

Model Type	Accuracy	Strengths	Challenges
Logistic Regression	9: TREE-	BASED MODELS	Sensitive to multicollinearity, linearity assumption
Linear Regression w/ Ridge	9;		Hard to interpret, hyperparameter tuning needed
KNN + PCA	~		With PCA hard to interpret, compared to other models low accuracy
Neural Network	~1		Needs tuning, hard to interpret
Baseline Decision Tree	91		Potential target leakage, Limited behavioral insights
Random Forest	9;	A Dell	Same feature dominance issue
XGBoost	9!		Computational intensity using GridSearch, API compatibility issue