

Description

The VSM20N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =60V,I_D =20A

 $R_{DS(ON)}$ <35m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ <40m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM20N06-T2	VSM20N06	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	Vgs	±20	V A	
Drain Current-Continuous	I _D	20		
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	14	А	
Pulsed Drain Current ^(Note 1)	I _{DM}	60	А	
Maximum Power Dissipation	P _D	45	W	
Derating factor		0.3	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	72	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	℃	

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	R _{eJC}	3.3	°C/W

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.6	2.5	V
Drain-Source On-State Resistance	В	V _{GS} =10V, I _D =10A	-	24	35	mΩ
	R _{DS(ON)}	V _{GS} =4.5V, I _D =10A		30	40	
Forward Transconductance	G FS	V _{DS} =5V,I _D =10A	11	-	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss}	.,	-	973.2	-	PF
Output Capacitance	Coss	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	61.2	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.0WIHZ	-	58.8	-	PF
Switching Characteristics (Note 4)	·					
Turn-on Delay Time	t _{d(on)}		-	7	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, R_L =3 Ω	-	20	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	16	-	nS
Turn-Off Fall Time	t _f		-	23	-	nS
Total Gate Charge	Qg	V _{DS} =30V,I _D =10A,	-	25		nC
Gate-Source Charge	Q _{gs}		-	4.5		nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	6.5		nC
Drain-Source Diode Characteristics	·					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	20	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =10A	-	29	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	49	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition:Tj=25 $^{\circ}$ C,V_{DD}=30V,V_G=10V,L=0.5mH,Rg=25 $^{\circ}$

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

 T_J -Junction Temperature(${}^{\circ}\mathbb{C}$)

Figure 11 Current De-rating

Figure 12 Normalized Maximum Transient Thermal Impedance