PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-179926

(43)Date of publication of application: 27.06.2003

(51)Int.CI.

7/30 HO4N HO4N 1/413

5/232 HO4N

(21)Application number: 2002-300984

(71)Applicant:

NIKON CORP

(22)Date of filing:

14.06.2000

(72)Inventor:

KUNIBA HIDEYASU

(30)Priority

Priority number: 11167156

Priority date: 14.06.1999

Priority country: JP

(54) METHOD FOR COMPRESSION ENCODING, RECORDING MEDIUM RECORDING COMPRESSION CODING PROGRAM, AND ELECTRONIC CAMERA FOR CONDUCTING METHOD FOR COMPRESSION CODING

PROBLEM TO BE SOLVED: To flexibly change a compression distribution in a space frequency range by effectively utilizing conditions when image data is imaged.

SOLUTION: The method for compression coding comprises a trial step of digitizing and coding the image data after an orthogonal transformation by using a digitizing table obtained by multiplying a trial scale factor by a standard digitizing table, obtaining the compression coding amount of the image data, a parameter estimating step of estimating a scale factor for compressing the image data to a target code amount based on the compression code amount of the obtained image data, and a compression step of digitizing and coding the image data after the orthogonal transformation by using the digitizing table obtained by multiplying the estimated scale factor by the standard digitizing table. In this method, the trial step and the compression step prepare the standard digitizing table at each variation of imaging conditions, and selectively uses the standard digitizing table corresponding to the imaging conditions of the image data.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顯公開番号 特開2003-179926 (P2003-179926A)

(43)公開日 平成15年6月27日(2003.6.27)

(51) Int.Cl.7		識別記号	FΙ		Ť	-マコード(参考)
H 0 4 N	7/30		H04N	1/413	D	5 C 0 2 2
	1/413			5/232	Z	5 C 0 5 9
	5/232			7/133	Z	5 C 0 7 8

審査請求 未請求 請求項の数9 OL (全 22 頁)

(21)出願番号 (62)分割の表示	特願2002-300984(P2002-300984) 特願2000-178242(P2000-178242)の 分割	(71)出顧人	000004112 株式会社ニコン 東京都千代田区丸の内3丁目2番3号
(22)出願日	平成12年6月14日(2000.6.14)	(72)発明者	国場 英康 東京都千代田区丸の内3丁目2番3号 株
(31)優先権主張番号	特顧平11-167156		式会社ニコン内
(32)優先日	平成11年6月14日(1999.6.14)	(74)代理人	100072718
(33)優先権主張国	日本 (JP)		弁理士 古谷 史旺

最終頁に続く

(54) 【発明の名称】 圧縮符号化方法,圧縮符号化プログラムを記録した記録媒体,および圧縮符号化方法を実施する 電子カメラ

(57)【要約】

【課題】 本発明は、画像データを撮像した際の条件を 有効利用してすることにより、空間周波数領域上での圧 縮配分を柔軟に変更することを目的とする。

【解決手段】 本発明の圧縮符号化方法は、標準量子化テーブルに試行用スケールファクタを乗じて得た量子化テーブルを用いて、直交変換後の画像データを量子化および符号化し、画像データの圧縮符号量を求める試行ステップと、求めた画像データの圧縮符号量に基づいて、画像データを目標符号量に圧縮するスケールファクタを推定するパラメータ推定ステップと、標準量子化テーブルに推定スケールファクタを乗じて得た量子化テーブルを用いて、直交変換後の画像データを量子化および符号化する圧縮ステップとを有し、試行ステップおよび圧縮ステップは、撮像条件のバリエーションごとに標準量子化テーブルを準備し、画像データの撮像条件に対応して、標準量子化テーブルを選択使用する。

【特許請求の範囲】

【請求項1】 標準量子化テーブルに試行用のスケールファクタを乗じて得た量子化テーブルを用いて、直交変換後の画像データを量子化および符号化し、前記画像データの圧縮符号量を求める試行ステップと、

前記試行ステップで求めた前記画像データの圧縮符号量 に基づいて、前記画像データを目標とする符号量に圧縮 するためのスケールファクタを推定するパラメータ推定 ステップと、

前記標準量子化テーブルに前記パラメータ推定ステップ 10 で推定したスケールファクタを乗じて得た量子化テーブ ルを用いて、直交変換後の前記画像データを量子化およ び符号化する圧縮ステップとを有する圧縮符号化方法に おいて、

前記試行ステップおよび前記圧縮ステップは、

撮像条件のバリエーションごとに前記標準量子化テーブルを準備し、前記画像データの撮像条件に対応して、前記標準量子化テーブルを選択使用することを特徴とする 圧縮符号化方法。

【請求項2】 画像データを直交変換して変換係数を求 20 める直交変換ステップと、

前記直交変換ステップで求めた変換係数を、量子化テーブルに従って量子化する量子化ステップと、

前記量子化ステップで量子化された変換係数を符号化する符号化ステップとを有する圧縮符号化方法において、 前記量子化ステップは、

前記画像データの撮像条件に対応して前記量子化テーブルの量子化係数を変更することにより、空間周波数領域上の圧縮配分を変更することを特徴とする圧縮符号化方法。

【請求項3】 請求項1ないし請求項2のいずれか1項 に記載の圧縮符号化方法において、

前記撮像条件は、

前記画像データを撮像した撮像部の条件である、撮像感度設定、信号ゲイン、ガンマ補正カーブ、電子ズームの有無、電子ズームの倍率、シャッタ速度、ホワイトバランス調整値、特殊撮影効果、階調、エッジ強調、モノクロモード、露出補正値、ノイズリダクションモード、ワイドダイナミックレンジモード、出力画素数の少なくとも一つであることを特徴とする圧縮符号化方法。

【請求項4】 請求項1ないし請求項2のいずれか1項 に記載の圧縮符号化方法において、

前記撮像条件は、

前記画像データを撮像した撮像部の条件である、撮像感 度設定、信号ゲイン、エッジ強調、ノイズリダクション モードの少なくとも一つであることを特徴とする圧縮符 号化方法。

【請求項5】 請求項1ないし請求項2のいずれか1項 に記載の圧縮符号化方法において、

前記撮像条件は、

前記画像データを撮像した撮影環境の条件である、ストロボ使用の有無、スローシンクロ使用の有無、日中シンクロ使用の有無、測光値、マルチパターン測光値、被写体の配光状態、縦位置撮影の有無、カメラブレ量、温度、測光モードの少なくとも一つであることを特徴とする圧縮符号化方法。

【請求項6】 請求項1に記載の圧縮符号化方法において、

前記撮像条件は、

前記画像データを撮像した撮影レンズの条件である、マクロ撮影の有無、像倍率、被写界深度、絞り値、焦点距離、撮影画角、被写体距離、合焦状況、多点合焦状況、撮影レンズの種別、コンバータレンズの有無、コンバータレンズの種類、光学フィルタの有無、光学フィルタの種類の少なくとも一つであることを特徴とする圧縮符号化方法。

【請求項7】 請求項2に記載の圧縮符号化方法において、

前記撮像条件は、

前記画像データを撮像した撮影レンズの条件である、像 倍率、合焦状況、多点合焦状況の少なくとも一つである ことを特徴とする圧縮符号化方法。

【請求項8】 請求項1ないし請求項7のいずれか1項 に記載の圧縮符号化方法をコンピュータに実行させるた めの圧縮符号化プログラムを記録した機械読み取り可能 な記録媒体。

【請求項9】 被写体を撮像して画像データを生成する 撮像部と、

前記撮像部で生成された前記画像データに対して、請求 30 項1ないし請求項7のいずれか1項に記載の圧縮符号化 方法を実施する圧縮処理部とを備えたことを特徴とする 電子カメラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、圧縮符号化方法と、圧縮符号化プログラムを記録した記録媒体と、圧縮符号化方法を実施する電子カメラに関する。特に、本発明は、画像データの撮像条件(画像データを撮像した際の設定条件または撮影環境の条件)を有効利用して、画像データを適正に圧縮符号化する技術に関する。なお、この撮像条件は、文字通り撮像の条件である。したがって、目標圧縮率や目標圧縮符号量のような画像圧縮の条件(いわゆるスーパーファインモード、ファインモード、ノーマルモードなど)や、撮像後の画像データの実状(画像信号の高周波成分など)は撮像条件に一切含まれない。

[0002]

【従来の技術】一般に、電子カメラやコンピュータなど では、記録媒体に画像データを効率よく記録するため、

50 画像データに対して圧縮符号化(例えば、DPCMやJ

PEG圧縮など)の処理を施す。以下、代表的なJPE G圧縮の手順を下記(1)~(4)に示す。

【0003】(1)画像データを、8×8画素程度の画素ブロックに分割する。これらの画素ブロックにDCT変換(離散コサイン変換)などの直交変換を施し、画像データを空間周波数成分に変換する。

【0004】(2)8×8程度の空間周波数成分に対する量子化の刻みをそれぞれ定義した標準量子化テーブルを用意する。この標準量子化テーブルにスケールファクタSFを乗じて、実際に使用する量子化テーブルを作成 10する。

【0005】(3)上記で作成した量子化テーブルを用いて、DCT変換後の変換係数を量子化する。

【0006】(4) 量子化後のデータに対し、可変長符号化やランレングス符号化などの符号化を施す。ところで、上記のような手順を経た場合、画像データの個体差によって圧縮後の符号量は大きくばらつく。そこで、一般的なJPEG圧縮では、複数回の試し圧縮を行いながらスケールファクタの値を調整して、最終的な符号量を所望の範囲内に納める。なお、本願では、上記スケールファクタのように、圧縮符号化の処理過程において圧縮符号量の大きさに影響を与える調整可能な要素を総称して、『圧縮パラメータ』と呼ぶ。

[0007]

【発明が解決しようとする課題】一般に、画像データは、撮像時のカメラ設定や撮影環境などの違いによって、空間周波数成分やノイズ量などの特徴が変化する。しかしながら、従来の圧縮符号化方法では、撮像条件の異なる画像データに対しても、一律に同じ圧縮符号化の処理が施されていた。

【0008】そのため、特殊な撮像条件の元で撮像した 画像データについては、一般的な圧縮符号化がなかなか 通用せず、目標の圧縮符号量に圧縮できるまで試し圧縮 を何度も繰り返すなどの不具合が生じやすかった。ま た、特殊な撮像条件の元で撮像された画像データは、ノ イズの空間周波数分布などが特異なため、復号化後にノ イズが目立ちやすかったり、画質劣化が著しいなどの不 具合が生じやすかった。

【0009】そこで、本発明では、画像データの圧縮符号化処理に際して、画像データを撮像した際の条件を有効利用することにより、画像データを適正に圧縮符号化することを目的とする。さらに、本発明では、画像データを撮像した際の条件を有効利用することにより、空間周波数領域上での圧縮配分を柔軟に変更することを目的とする。

【0010】請求項3~7に記載の発明では、圧縮符号 化方法を適正化する上で有効な撮像条件のバリエーショ ンを具体的に示すことを目的とする。

【0011】請求項8に記載の発明では、請求項1~7 のいずれか一項に記載の圧縮符号化方法をコンピュータ 上で実現するための圧縮符号化プログラムを記録した記 録媒体を提供することを目的とする。

【0012】請求項9に記載の発明では、請求項1~7 のいずれか一項に記載の圧縮符号化方法を実施する電子 カメラを提供することを目的とする。

[0013]

【課題を解決するための手段】以下、後述する実施形態のステップ番号および符号を対応付けながら、課題を解決するための手段を説明する。なお、ここでの対応付けは参考のためであり、本発明の内容を特に限定するものではない。

【0014】 (請求項1) 請求項1に記載の発明は、標 準量子化テーブルに試行用のスケールファクタを乗じて 得た量子化テーブルを用いて、直交変換後の画像データ を量子化および符号化し、画像データの圧縮符号量を求 める試行ステップ(S16a, S17)と、試行ステッ プで求めた画像データの圧縮符号量に基づいて、画像デ ータを目標の圧縮符号量に圧縮するためのスケールファ クタを推定するパラメータ推定ステップ(S18~S2 2) と、標準量子化テーブルにパラメータ推定ステップ で推定したスケールファクタを乗じて得た量子化テーブ ルを用いて、直交変換後の画像データを量子化および符 号化する圧縮ステップ(S16a, S23~S26)と を有する圧縮符号化方法において、試行ステップおよび 圧縮ステップは、撮像条件のバリエーションごとに標準 量子化テーブルを準備し、画像データの撮像条件に対応 して、標準量子化テーブルを選択使用することを特徴と する。

【0015】請求項1の圧縮符号化方法では、圧縮対象の撮像条件によって、標準量子化テーブルを使い分ける。したがって、撮像条件ごとの画像データの特徴変化に対応して、低域空間周波数成分と高域空間周波数成分との圧縮配分を柔軟に変更することなどが可能となる。特に、請求項1の圧縮符号化方法では、試行ステップの段階から標準量子化テーブルを使い分ける。したがって、圧縮ステップと同様の条件で試し圧縮を行うことが可能となり、圧縮パラメータの推定をより正確に行うことが可能となる。

【0016】(請求項2)請求項2に記載の発明は、画像データを直交変換して変換係数を求める直交変換ステップ(S24)と、直交変換ステップで求めた変換係数を、量子化テーブルで量子化する量子化ステップ(S16a,S23,S25)と、量子化ステップで量子化された変換係数を符号化する符号化ステップ(S26)とを有する圧縮符号化方法において、量子化ステップは、画像データの撮像条件に対応して量子化テーブルの量子化係数を変更することにより、空間周波数領域上の圧縮配分を変更することを特徴とする。

【0017】請求項2の圧縮符号化方法では、圧縮対象 50 の撮像条件によって、量子化テーブルの量子化係数を変

更する。したがって、撮像条件ごとの画像データの特徴 変化に対応して、低域空間周波数成分と高域空間周波数 成分との圧縮配分を柔軟に変更することなどが可能とな る。

【0018】(請求項3)請求項3に記載の発明は、請求項1ないし請求項2のいずれか1項に記載の圧縮符号化方法において、撮像条件が、前記画像データを撮像した撮像部の条件である、撮像感度設定、信号ゲイン、ガンマ補正カーブ、電子ズームの有無、電子ズームの倍率、シャッタ速度、ホワイトバランス調整値、特殊撮影 10効果、階調、エッジ強調、モノクロモード、露出補正値、ノイズリダクションモード、ワイドダイナミックレンジモード、出力画素数の少なくとも一つであることを特徴とする。

【0019】(請求項4)請求項4に記載の発明は、請求項1ないし請求項2のいずれか1項に記載の圧縮符号化方法において、撮像条件が、前記画像データを撮像した撮像部の条件である、撮像感度設定、信号ゲイン、エッジ強調、ノイズリダクションモードの少なくとも一つであることを特徴とする。

【0020】(請求項5)請求項5に記載の発明は、請求項1ないし請求項2のいずれか1項に記載の圧縮符号化方法において、前記撮像条件が、前記画像データを撮像した撮影環境の条件である、ストロボ使用の有無、スローシンクロ使用の有無、日中シンクロ使用の有無、測光値、マルチパターン測光値、被写体の配光状態、縦位置撮影の有無、カメラブレ量、温度、測光モードの少なくとも一つであることを特徴とする。

【0021】(請求項6)請求項6に記載の発明は、請求項1に記載の圧縮符号化方法において、前記撮像条件 30が、前記画像データを撮像した撮影レンズの条件である、マクロ撮影の有無、像倍率、被写界深度、絞り値、焦点距離、撮影画角、被写体距離、合焦状況、多点合焦状況、撮影レンズの種別、コンバータレンズの有無、コンバータレンズの種類、光学フィルタの種類の少なくとも一つであることを特徴とする。【0022】(請求項7)請求項7に記載の発明は、請求項2に記載の圧縮符号化方法において、前記撮像条件が、前記画像データを撮像した撮影レンズの条件である、像倍率、合焦状況、多点合焦状況の少なくとも一つ 40であることを特徴とする。

【0023】(請求項8)請求項8に記載の記録媒体には、請求項1ないし請求項7のいずれか1項に記載の圧縮符号化方法をコンピュータに実行させるための圧縮符号化プログラムが記録される。

【0024】(請求項9)請求項9に記載の電子カメラ (10)は、被写体を撮像して画像データを生成する撮像部(11,13,15,16,17)と、撮像部で生成された画像データに対して、請求項1ないし請求項7 のいずれか1項に記載の圧縮符号化方法を実施する圧縮 50

【発明の実施の形態】以下、図面に基づいて本発明における実施の形態を説明する。なお、以下に述べる第1および第2の実施形態は、本願分割前の出願にかかる実施形態である。なお、本願発明の請求項に対応する実施形態は、後述する第3の実施形態およびその補足事項である。

【0026】〈第1の実施形態〉図1は、電子カメラ10の構成を示すブロック図である。図1において、電子カメラ10には、撮影レンズ11およびストロボ発光部12が装着される。この撮影レンズ11の像空間には、撮像素子13が配置される。この撮像素子13において生成される画像データは、信号処理部15、A/D変換部16、画像処理部17を順に介して処理された後、デジタルの画像データとして圧縮処理部18に与えられる。

【0027】圧縮処理部18は、この画像データを圧縮 符号化して、記録部19に出力する。記録部19は、圧 縮された画像データを、メモリーカードなどの記録媒体 (図示せず) に記録する。また、電子カメラ10には、 マイクロプロセッサからなる制御部21、マルチパター ン測光を行うマルチ測光部22、焦点検出を行う焦点検 出部(または測距を行う測距部) 23、カメラ操作やモ ード設定を行うための操作釦群24などが設けられる。 【0028】制御部21は、マルチ測光部22、焦点検 出部(または測距部)23、および操作釦群24などか ら、検出情報を取得する。制御部21は、これらの検出 情報に基づいて、画像データの撮像条件(例えば、撮像 感度設定など)を判断する。制御部21は、上述した撮 影レンズ11、ストロボ発光部12、撮像素子13、信 号処理部15、A/D変換部16、画像処理部17をそ れぞれ制御して、撮像条件に合った撮像動作を実行させ る。一方、圧縮処理部18は、この撮像条件を制御部2 1から取得する。圧縮処理部18では、この撮像条件を 適正な圧縮符号化を行うための有効情報として利用す る。以下、本発明の特徴である、この圧縮処理部18の 動作について詳しく説明する。

【0029】(圧縮符号化の前準備)図2は、圧縮符号化の前準備の手順を示した流れ図である。このような前準備は、通常、圧縮処理部18の開発者によって実施される。なお、電子カメラ10のユーザーが、撮影頻度の高い画像データを具体的に選んで前準備を実行しても勿論かまわない。

【0030】この図2を用いて、前準備の手順を説明する。なお、ここでは、説明の都合上、前準備の実行者を開発者と仮定している。まず、開発者は、電子カメラ10の撮像感度設定を変更しながら、なるべく多種類の被写体やシーンを撮影する。開発者は、このように収集した非圧縮の画像データ(以下「テスト画像」という)に

対して、DCT変換を実行する(図2S11)。

【0031】次に、開発者は、DCT変換を終えた各テスト画像に対して、スケールファクタSFの値を徐々に変えながら量子化および符号化を反復実行し、(スケールファクタSF,圧縮符号量ACVdata)のデータを多数求める(図2S12)。図4は、撮像感度ISO200のテスト画像について求めた、これらのデータをプロットしたグラフである。また、図5は、撮像感度ISO1600のテスト画像について求めたデータをプロットしたグラフである。

【0032】これらの図4および図5に示されるよう に、撮像感度の違いによって、グラフ上のデータ分布に は、明確な違いが現れる。このようなデータ分布の違い*

 $log (ACVdata) = a \cdot log (SF) + b \cdot \cdot \cdot [1]$

に当てはまる未定係数 a, bをテスト画像ごとに求める(図2 S 1 4)。なお、ここでの回帰分析は、回帰式とデータとの一致度をより高めるため、スケールファクタの範囲を 0. 1~1. 0に限定して行っている。

【0034】図6は、このようにして求めた未定係数 ※

ISO200の場合: b=C1_{ISO200}・a+C2_{ISO200} · · · · [2]

ISO1600の場合: b=C1 ISO1600・a+C2 ISO1600 · · · [3]

に当てはまる係数C1_{IS0200}、C2_{IS0200}、C1 IS01600、C2_{IS01600}をそれぞれ求める。開発者は、これらの係数を、撮像感度設定に対応付けた状態で、圧縮処理部18内の書き換え可能なメモリ領域に格納する(図2S15)。以上の手順により、圧縮符号化の前準備を完了する。

【0035】(圧縮符号化方法の説明)次に、具体的な圧縮符号化の手順について説明する。図7は、圧縮処理部18が実行する圧縮符号化方法を説明する流れ図である。まず、圧縮処理部18は、制御部21から画像データの撮像条件(ここでは撮像感度設定)を取得する。圧縮処理部18は、この撮像感度設定と目標圧縮率とに基づいて、前準備で作成したデータテーブル(図3)を検索し、初期スケールファクタISF(試行用の圧縮パラ★

 $a = \{l \circ g (ACVdata) - C2\} / \{l \circ g (ISF) + C1\} \cdot \cdot [4]$

 $NSF = (ACVdata/TCV)^{(-1/a)} \cdot ISF \cdot \cdot \cdot [5]$

を算出し、目標の圧縮符号量TCVを得る上で適当な目標スケールファクタNSFを求める(図7S22)。

【0039】なお、[式5]は、[式1~4]に(目標スケールファクタNSF,目標の圧縮符号量TCV)を代入して整理し、未定係数bを消去した式である。続いて、圧縮処理部18は、この目標スケールファクタNSFを標準量子化テーブルに乗じて量子化テーブルを作成する(図7S23)。圧縮処理部18は、この量子化テーブルを用いて、公知のJPEG圧縮手順(S24~S50

*は、撮像感度設定に依存するノイズ量の違いに起因すると考えられる。ここで、開発者は、図4および図5のグラフから、目標圧縮率1/4,1/8,1/16を達成する上で標準的と思われるスケールファクタSFをそれぞれ選び出し(図4および図5に示す白丸箇所)、初期スケールファクタISFとする。

【0033】図3は、このように選ばれた初期スケールファクタISFをデータテーブルに並べたものである。開発者は、このようなデータテーブルを、圧縮処理部1 8内の書き換え可能なメモリ領域に格納する(図2S1 3)。次に、開発者は、図4および図5に示すデータを回帰分析し、

※a, bを、横軸をaとし、縦軸をbとしてプロットした ものである。図6から分かるように、未定係数a, bの 分布は、撮像感度設定の違いによって2つに分かれる。 ここで、開発者は、撮像感度設定ごとに分けて、未定係 数a, bの回帰分析を行い、

メータに対応)を決定する(図7S16)。

【0036】圧縮処理部18は、このように決定した初期スケールファクタISFを標準量子化テーブルに乗じ、試し圧縮に使用する初期量子化テーブルを作成する。圧縮処理部18は、この初期量子化テーブルを用いて公知のJPEG圧縮手順を実行し、画像データの試し圧縮を実行する(図7S17)。次に、圧縮処理部18は、前準備で用意した係数C1ISO200、C2ISO200、C1ISO1600、C2ISO1600の中から、画像データの撮像感度設定に合致するものを選び出し、係数C1、C2とする(図7S18、S19、S20)。

【0037】次に、圧縮処理部18は、この係数C1, C2と、試し圧縮後の符号量ACVdataと、初期スケー ルファクタISFとを下式に代入して、

☆【0038】次に、圧縮処理部18は、目標の圧縮符号 量TCV(=画像データの符号量×目標圧縮率)を用い て、

26)を実行し、画像データを画像圧縮する。

【0040】ここで、圧縮処理部18は、画像圧縮後の符号量が、目標の圧縮符号量TCVの許容範囲内に入るか否かを判定する(図7S27)。万一、許容範囲内から外れた場合(図7S27のNO側)、圧縮処理部18は、ステップS22に動作を戻し、目標スケールファクタNSFを更新して画像圧縮を再度繰り返す。一方、許容範囲内に入った場合(図7S27のYES側)、圧縮処理部18は、所望の画像圧縮が達成されたと判断し

て、動作を終了する。

【0041】 (第1の実施形態の効果) 以上説明したよ うに、第1の実施形態では、撮像感度設定の情報に基づ いて、なるべく正解に近い初期スケールファクタを選択 する。したがって、目標の圧縮符号量に到達するまでの 試し圧縮の回数を効率的に削減することが可能となる。 また、初期スケールファクタが正解に近いので、試し圧 縮の結果は、正解近傍におけるスケールファクタと圧縮 符号量との関係を正確に反映する。したがって、目標ス ケールファクタの推定をより正確に行うことができる。 【0042】その上、第1の実施形態では、統計的関係 (を規定する係数C1, C2)を撮像感度設定ごとに準 備する。したがって、一つ一つの統計的関係の信頼性が 十分に高い。したがって、この点からも、目標スケール ファクタの推定を一段と正確に行うことが可能となる。 ちなみに、図8は、1回の試し圧縮で求めた目標スケー ルファクタと、圧縮率1/4を得るための正確なスケー ルファクタ(実測値)との関係を、多数の画像データに ついてプロットしたグラフである。なお、図8中の◇印 は、撮像感度設定を区分せずに目標スケールファクタを 算出した場合であり、黒三角印は、撮像感度設定を区分 して目標スケールファクタを算出した場合である。この 図8に明示されるように、撮像感度設定を区分した場合 (黒三角印)の方が、正解ライン(図8中の点線)に一 段と近く、すなわち、より正確な目標スケールファクタ であることが分かる。次に、別の実施形態について説明 する。

9

【0043】<第2の実施形態>なお、第2の実施形態 における電子カメラの構成については、第1の実施形態 (図1) と同じため、ここでの説明を省略する。以下、 第2の実施形態の特徴である、圧縮処理部18の動作に ついて説明する。

【0044】 (圧縮符号化の前準備) 図9は、第2の実 施形態における圧縮符号化の前準備の手順を示した流れ*

 $log(ACVdata) = a \cdot log(SF) + b \cdot \cdot \cdot [1]$

に当てはまる未定係数a, bを求める(図9S34)。 【0048】開発者は、このように求めた未定係数a, bについて回帰分析を行い、

に当てはまる係数C1、C2をそれぞれ求める。 開発者

 $b=C1 \cdot a+C2 \cdot \cdot \cdot [6]$

は、これらの係数を、圧縮処理部18内の書き換え可能 なメモリ領域に格納する(図9 S 3 5)。次に、開発者 は、この係数C1, C2を使って、ストロボ使用時のテ スト画像について、目標スケールファクタを推定する。 【0049】図13中の◇印は、このように推定した (補正前の) 目標スケールファクタをプロットしたもの である。この場合、補正前の目標スケールファクタ(◇ 印)は、正解ライン(図13中の点線)から若干ずれた 位置に分布する。そこで、開発者は、補正前の目標スケ ールファクタ(◇印)について回帰分析を行い、「補正 50

*図である。この図9を用いて、前準備の手順を説明す る。なお、ここでは、説明の都合上、前準備の実行者を 開発者と仮定している。まず、開発者は、ストロボ使用 の有無を切り替えながら、なるべく多種類の被写体やシ ーンを電子カメラ10で撮影する。開発者は、このよう に収集した非圧縮の画像データ(以下「テスト画像」と いう) に対して、DCT変換を実行する(図9S3

【0045】次に、開発者は、DCT変換を終えた各テ 10 スト画像に対して、スケールファクタSFの値を徐々に 変えながら量子化および符号化を反復実行し、(スケー ルファクタSF, 圧縮符号量ACVdata) のデータを多 数求める(図9532)。図11は、ストロボを使用し たテスト画像について、(スケールファクタSF、圧縮 符号量ACVdata)のデータをプロットしたグラフであ る。一方、図4は、ストロボを使用しなかったテスト画 像について、(スケールファクタSF, 圧縮符号量AC Vdata) のデータをプロットしたグラフである。

【0046】これら図4および図11に示されるよう に、ストロボ使用の有無によって、グラフ上のデータ分 布に違いが生じる。これは、ストロボ使用時において、 背景部分などが黒くつぶれ、画像情報量が減少するため と考えられる。ここで、開発者は、図4および図11の グラフから、目標圧縮率1/4,1/8,1/16を達 成する上で標準的と思われるスケールファクタSFをそ れぞれ選び出し(図4および図11に示す白丸の位 置)、初期スケールファクタISFとする。

【0047】図12は、このように選んだ初期スケール ファクタISFをデータテーブルに並べたものである。 開発者は、このようなデータテーブルを、圧縮処理部1 8内の書き換え可能なメモリ領域に格納する(図9S3 3)。次に、開発者は、図4に示すデータを回帰分析 し、

前の目標スケールファクタ」の回帰直線の式を、正解ラ インの式へ補正するための補正式を求める。開発者は、 この補正式を、圧縮処理部18内の書き換え可能なメモ リ領域に格納する(図9536)。以上の手順により、 圧縮符号化の前準備を完了する。

【0050】(圧縮符号化方法の説明)次に、具体的な 圧縮符号化方法について説明する。図10は、圧縮処理 部18が実行する圧縮符号化方法を説明する流れ図であ る。まず、圧縮処理部18は、制御部21から画像デー タの撮像条件(ここではストロボ使用の有無)を取得す る。圧縮処理部18は、このストロボ使用の有無と目標 圧縮率とに基づいて、前準備で作成したデータテーブル (図12)を検索し、初期スケールファクタISFを決 定する(図10537)。

【0051】圧縮処理部18は、このように決定した初

11

期スケールファクタISFを標準量子化テーブルに乗 じ、試し圧縮に使用する初期量子化テーブルを作成す る。圧縮処理部18は、この初期量子化テーブルを用い て公知のJPEG圧縮手順を実行し、画像データの試し*

 $a = \{log (ACVdata) - C2\} / \{log (ISF) + C1\} \cdot \cdot [7]$

を算出し、未定係数aを確定する(図10S39)。 【0052】次に、圧縮処理部18は、目標の圧縮符号※

 $NSF = (ACVdata/TCV)^{(-1/a)} \cdot ISF$

を算出し、目標の圧縮符号量TCVを得る上で適当な目 標スケールファクタNSFを求める(図10S40)。 【0053】ここで、圧縮処理部18は、画像データが ストロボ使用の状態で撮像されたものか否かを判定する (図10S41)。ストロボを使用せずに撮像された画 像データの場合、圧縮処理部18は補正処理の必要なし と判断して、ステップS43に動作を移行する。一方、 ストロボ使用の状態で撮像された画像データの場合、圧 縮処理部18は、前準備で求めた補正式を用いて目標ス ケールファクタNSFを補正した後(図10S42)、 ステップS43に動作を移行する。

【0054】次に、圧縮処理部18は、目標スケールフ アクタNSFを用いて、画像データを改めて画像圧縮す る(図10543)。ここで、圧縮処理部18は、画像 圧縮後の符号量が、目標の圧縮符号量TCVの許容範囲 内に入るか否かを判定する(図10S44)。万一、許 容範囲内から外れた場合(図10S44のNO側)、圧 縮処理部18は、ステップS40に動作を戻し、目標ス ケールファクタNSFを更新して画像圧縮を再度繰り返 す。一方、許容範囲内に入った場合(図10S44のY ES側)、圧縮処理部18は、所望の画像圧縮が達成さ れたと判断して、動作を終了する。

【0055】 (第2の実施形態の効果) 以上説明したよ うに、第2の実施形態では、ストロボ使用の有無に応じ て、正解に近い初期スケールファクタを選択する。した がって、目標の圧縮符号量に到達するまでの試し圧縮の 回数を効率的に削減することができる。また、初期スケ ールファクタが正解に近いので、試し圧縮の結果は、正 解近傍におけるスケールファクタと圧縮符号量との関係 を正確に反映する。したがって、目標スケールファクタ の推定をより正確に行うことも可能となる。

【0056】さらに、第2の実施形態では、ストロボ使 40 用の画像データについて、目標スケールファクタを補正 するので、目標スケールファクタをより正確に求めるこ とが可能となる。ちなみに、図13中の黒三角印は、補 正後の目標スケールファクタをプロットしたものであ

【0057】この図13に示されるように、補正後の目 標スケールファクタ(黒三角印)の方が、補正前の目標 スケールファクタ(◇印)よりも正解ライン(図8中の 点線)に近く、すなわち、目標スケールファクタは正確 に補正されていることが分かる。次に、別の実施形態に *圧縮を実行する。(図10538)。次に、圧縮処理部 18は、前準備で用意した係数C1, C2と、この試し 圧縮後の圧縮符号量ACVdataと、初期スケールファク タISFとを下式に代入して、

※量TCV(=画像データの符号量×目標圧縮率)を用い て、

· · · [5]

ついて説明する。

【0058】 〈第3の実施形態〉第3の実施形態は、請 求項1,2,3,9に記載の発明に対応した電子カメラ の実施形態である。なお、第3の実施形態における電子 カメラの構成については、第1の実施形態(図1)と同 じため、ここでの説明を省略する。以下、第3の実施形 態の特徴である、圧縮処理部18の動作について説明す

【0059】 (圧縮符号化の前準備) 図14は、第3の 実施形態における圧縮符号化の前準備の手順を示した流 れ図である。第3の実施形態における前準備の特徴点 は、テスト画像の撮像感度設定に応じて、標準量子化テ ーブルを使い分けている点である(図14S12a)。 【0060】このとき使用されるISО200専用の標 準量子化テーブルを、図15(a)に示す。また、IS O1600専用の標準量子化テーブルを、図15(b) に示す。これらの標準量子化テーブルは、復号化画像の 画質評価などにより、撮像条件ごとに決定されたもので ある。なお、図14に示すその他の動作(S11、S1 3~S15) については、第1の実施形態(図2) と同 じため、ここでの説明を省略する。

30 【0061】 (圧縮符号化方法の説明) 図16は、第3 の実施形態における圧縮符号化方法を示した流れ図であ る。第3の実施形態における動作上の特徴点は、次の (1), (2) である。

【0062】(1)圧縮処理部18は、画像データの撮 像感度設定に応じて、標準量子化テーブルを選択する (図16S16a)。

【0063】(2)圧縮処理部18は、選択した標準量 子化テーブルを使用して、試し圧縮(図16517)お よび本圧縮(図16S23~26)を実行する。なお、 図16に示すその他の動作については、第1の実施形態 (図7) と同じため、ここでの説明を省略する。

【0064】 (第3の実施形態の効果) 上述した ISO 1600専用の標準量子化テーブルは、高域空間周波数 成分の量子化係数が大きめに設定される。したがって、 高い撮像感度設定において発生しやすい高域ノイズ成分 を効果的に抑圧すると共に、圧縮符号量がノイズによっ て無意味に増加するのを防ぐことができる。一方、IS 〇200専用の標準量子化テーブルは、高域空間周波数 成分の量子化係数が比較的小さめに設定される。したが って、高域微小信号の消失やモスキートノイズを抑制

し、画質劣化を極力防止することが可能となる。

【0065】〈実施形態の補足事項〉なお、上述した実施形態では、電子カメラに本発明を適用する場合について説明した。この場合には、画像データの撮像条件を電子カメラから直に取得できるという構成上の利点がある。しかしながら、本発明の実施形態は電子カメラに限定されるものではない。

【0066】例えば、スキャナ装置などに本発明を適用してもよい。この場合、スキャナ装置における撮像条件(例えば、スキャン速度、スキャン方式、スキャンサイズ、スキャン対象物の種類、照明の種類など)を有効に利用して、スキャンされた画像データを適正に圧縮符号化することが可能となる。さらに、図7、図10または図16の動作手順を、圧縮符号化プログラムとして記録媒体(請求項8に対応)に記録してもよい。この場合、コンピュータ上において、本発明の圧縮符号化方法を実行することが可能となる。

【0067】また、上述した実施形態では、画像圧縮方式としてJPEG方式を採用する場合について説明したが、本発明はこれに限定されるものではない。例えば、画像圧縮方式として、MPEG方式、DPCM方式などを採用してもよい。勿論、動画像の圧縮に本発明を適用してもよい。さらに、上述した実施形態では、圧縮パラメータとしてスケールファクタを使用する場合について説明したが、これに限定されるものではない。一般に、圧縮符号化処理のプロセスにおいて圧縮符号量に影響を及ぼす調節可能な要素であれば、圧縮パラメータとして使用することができる。

【0068】例えば、量子化テーブルにおける個々の量子化係数を変更するなどにより、空間周波数領域上の圧 30縮配分を変更しても圧縮符号量を変更することが可能である。したがって、空間周波数領域上の圧縮配分(例えば、量子化テーブル上の個々の量子化係数)を圧縮パラメータとしてもよい。また、上述した実施形態では、最低1回の試し圧縮でスケールファクタを推定する手順について説明した。この場合、撮像条件の情報を有効利用することにより、最低1回の試し圧縮で目標スケールファクタの推定精度を非常に高いレベルまで高められるという利点がある。しかしながら、本発明はこれに限定されるものではなく、試し圧縮を複数回繰り返すような公知の圧縮パラメータ推定手順に本発明を適用することも可能である。

【0069】なお、上述した実施形態では、撮像条件として、『撮像感度設定』または『ストロボ使用の有無』を使用した場合について説明した。特に、このような撮像感度設定を撮像条件として使用した場合、ノイズ量の変化に敏感に対応して、適正な圧縮符号化を実行できるという利点がある。しかしながら、本発明の撮像条件は、これに限定されるものではない。一般に、撮像条件としては、画像データに有意な(例えば統計的な)差異 50

を生じせしめ、かつその差異が圧縮結果(圧縮符号量や 復号化画像の画質など)に影響を及ぼすものであればよ い。このような撮像条件であれば、本発明の効果を得る ことが可能である。例えば、このような撮像条件として は、撮像部の条件、撮影環境の条件、または撮影レンズ の条件などが挙げられる。

14

【0070】また、上述した実施形態では、一種類の撮像条件に対応して圧縮符号化を制御しているが、これに限定されるものではない。例えば、複数種類の撮像条件に対応して、圧縮符号化を制御してもよい。この場合、複数種類の撮像条件を論理的に組み合わせることによって飛躍的に細かな場合分けが可能となり、圧縮符号化処理を細かく制御することが可能となる。

【0071】なお、上述した実施形態では、撮影モード (スーパーファインモードなどの画像圧縮モードは含まない)の各種設定などに基づいて撮像条件を判断しているが、撮像条件を取得する方法はこれに限定されるものではない。例えば、ユーザーが撮像条件を判断して操作卸などを介して情報入力するようにしてもよい。この場合、本発明方法では、被写体の配光状態などの撮像条件をより詳しく取得し、より適正な圧縮符号化を実施することが可能となる。また、電子カメラ内の圧縮処理部などが、マイクロプロセッサ、撮像部、信号処理部、測光部、焦点検出部(測距部)、画像処理部、ストロボ発光部または撮影レンズなどから、撮像条件の情報を取得するようにしてもよい。以下、請求項3~7に記載の発明に列挙した、具体的な撮像条件について説明する。

【0072】 [A] 撮像感度設定、信号ゲイン、ガンマ補正カーブ

- 撮像感度を手動もしくは自動で高感度に設定するに従って(撮像部の信号ゲインを上げるに従って)、夜間や日陰などを明るく撮像できる反面、ノイズレベルも増大する。また、ガンマ補正カーブのγを大きくするに従って、撮像部の微少振幅ゲインが大きくなり、画面暗部のノイズレベルが増大する。このようにノイズレベルが増大するような撮像条件では、圧縮符号量がノイズ増加分だけ増えるため、次のような圧縮符号にが好ましい。
- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の高いものにする。
- ●パラメータ推定ステップにおいて、ノイズレベルの大きい画像データに関して求めた統計的関係を用いて、圧縮パラメータを推定する。
 - ●圧縮ステップにおいて、ノイズレベルの大きい画像データに関して求めた補正処理を用いて、圧縮パラメータを補正する。
 - ●標準量子化テーブルまたは量子化係数を変更して、ノイズの空間周波数成分を強く抑圧する。

【0073】 [B] 電子ズームの有無、電子ズームの倍率

60 電子ズームを使用したり、あるいは電子ズームの倍率が

大きくなるに従って、画像データの実質的な解像度が低 くなる。この場合、画像データの高域空間周波数成分が 欠落して、圧縮符号量が必然的に少なくなる。そこで、 電子ズームを使用する撮像条件の場合には、次のような 圧縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の低いものにする。
- ●パラメータ推定ステップにおいて、上記のような実質 的に低解像度の画像データに関して求めた統計的関係を 用いて、圧縮パラメータを推定する。
- ●圧縮ステップにおいて、上記のような実質的に低解像 度の画像データに関して求めた補正処理を用いて、圧縮 パラメータを補正する。
- ●標準量子化テーブルまたは量子化係数を変更して、欠 落している高域空間周波数成分に対する量子化係数を大 きくする。

【0074】 [C] シャッタ速度

シャッタ速度が遅くなるに従って、手ブレや被写体ブレ による像流れが生じやすくなる。この場合、信号成分に が比較的少なくなる。そこで、高域空間周波数成分の欠 落が顕著な低速シャッタの撮像条件では、次のような圧 縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の低いものにする。
- ●パラメータ推定ステップにおいて、低速シャッタの画 像データに関して求めた統計的関係を用いて、圧縮パラ メータを推定する。
- ●圧縮ステップにおいて、低速シャッタの画像データに 関して求めた補正処理を用いて、圧縮パラメータを補正 30
- ●画質の主観評価に基づいて、低速シャッタの画像デー タに適した標準量子化テーブルまたは量子化係数の配分 を決定する。低速シャッタの撮像条件に対応して、この 標準化量子化テーブルまたは量子化係数の配分を使用す る。一方、ノイズ成分については、シャッタ速度が遅く なってCCDの蓄積時間が長くなる分だけ増える(特に 高域空間周波数成分のノイズが増える)。このようなノ イズ量の変化が無視できない場合、シャッタ速度ごと に、これらの作用が重なった、特徴が統計的に現れる。 (例えば、1/100秒以下の高速シャッタでは、像流 れによる信号成分の変化はさほど生じず、専らノイズ成 分の変化が大きく現れる。一方、1/10秒以上の低速 シャッタでは、像流れによる信号成分の変化が顕著に現 れるようになり、ノイズ成分の変化は無視できる。)こ のようなシャッタ速度ごとにおける画像データの特徴に 対応して、圧縮符号化を行ってもよい。なお、このと き、三脚使用の有無を踏まえて、圧縮符号化を行うこと が好ましい。

【0075】 [D] ホワイトバランス調整値

撮像部のホワイトバランス調整値により、屋外撮影/室 内撮影、晴天撮影/曇天撮影、夕焼け撮影/日中撮影な どのように、撮影場所や撮影時刻や色相や彩度などを大 まかにグループ分けすることが可能となる。このよう に、ホワイトバランス調整値から画像データをグループ 分けすることにより、次のような圧縮符号化が可能とな る。

16

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 10 の圧縮パラメータとする。
 - ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
 - ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
- ●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 する。圧縮符号化時には、画像データのグループ分けに ついては、高域空間周波数成分が欠落して、圧縮符号量 20 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

【0076】 [E] 特殊撮影効果

特殊撮影効果(モノクロ処理、エンボス効果、明暗にじ み効果、ハイキー処理、ローキー処理、クロマキー処 理、ノイズ付加効果、モザイク効果など)の種類に基づ いて、画像データの特徴を大まかにグループ分けするこ とができる。このように、特殊撮影効果の種類ごとに画 像データをグループ分けすることにより、次のような圧 縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
 - ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
 - ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
- ●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 する。圧縮符号化時には、画像データのグループ分けに 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

【0077】[F] 階調

階調補正の程度などにより、画像データのコントラス ト、ノイズ量、ディテール、色相、彩度などが変化す る。そこで、階調の撮像条件から、画像データの特徴を 大まかにグループ分けすることが可能となる。このよう に、階調の撮像条件から画像データをグループ分けする

50 ことにより、次のような圧縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
- ●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 する。圧縮符号化時には、画像データのグループ分けに 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

【0078】 [G] ストロボ使用の有無

ストロボを使用とすると、ストロボ光の届かない背景が 黒くつぶれるため、画面内の一部領域において輝度レベ ルが欠落しやすい。このような輝度レベルの一部欠落が 生じると、画像データの情報量が少なくなり、画像デー タの圧縮符号量は小さくなる。そこで、ストロボ使用の 20 撮像条件の場合には、次のような圧縮符号化が一般的に 好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の低いものにする。
- ●パラメータ推定ステップにおいて、ストロボ使用の画 像データに関して求めた統計的関係を用いて、圧縮パラ メータを推定する。
- ●圧縮ステップにおいて、ストロボ使用の画像データに 関して求めた補正処理を用いて、圧縮パラメータを補正 する。
- ●画質の主観評価などに基づいて、ストロボ使用の画像 データに適した標準量子化テーブルまたは量子化係数の 配分を決定する。ストロボ使用の画像データについて は、この標準量子化テーブルまたは量子化係数の配分を 使用する。

【0079】 [H] スローシンクロ使用の有無 スローシンクロを使用すると、背景が明るく撮影され る。そのため、単なるストロボ使用に比べて、輝度レベ ルの潰れは少ない。したがって、スローシンクロの撮影 条件の場合、単なるストロボ撮影の撮像条件とは区別し 40 て、圧縮符号化を行うことが好ましい。

【0080】[I]日中シンクロ使用の有無

日中シンクロを使用すると、背景も被写体も明るく撮影 される。そのため、単なるストロボ使用とは異なり、輝 度レベルの潰れは極めて少ない。したがって、日中シン クロの撮影条件の場合、単なるストロボ撮影の撮像条件 とは区別して、圧縮符号化を行うことが好ましい。

【0081】[J] 測光値

測光値に基づいて、画像データの特徴を大まかにグルー

画像データをグループ分けすることにより、次のような 圧縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ 10 に関して求めた補正処理を用いて、圧縮パラメータを補
 - ●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 する。圧縮符号化時には、画像データのグループ分けに 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

【0082】 [K] マルチパターン測光値

マルチパターン測光値に基づいて、被写体の配光状態 (逆光、順光など) をグループ分けすることができる。 このように、マルチパターン測光値に応じて画像データ

- をグループ分けすることにより、次のような圧縮符号化 が可能となる。
- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ 30 に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
 - ●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 する。圧縮符号化時には、画像データのグループ分けに 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

【0083】 [L] 被写体の配光状態

被写体の配光状態(例えば、逆光、順光、側光、斜光、 半逆光)に基づいて、画像データを大まかにグループ分 けすることができる。このように、配光状態に応じて画 像データをグループ分けすることにより、次のような圧 縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ プ分けすることができる。このように、測光値に応じて 50 に関して求めた補正処理を用いて、圧縮パラメータを補

正する。

●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 する。圧縮符号化時には、画像データのグループ分けに 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

19

【0084】 [M] 縦位置撮影か否か

縦位置撮影か否かにより、画像データの画面構成を大ま かにグループ分けすることができる。このように、縦位 置撮影か否かに応じて画像データをグループ分けするこ 10 ●標準量子化テーブルまたは量子化係数の配分を変更し とにより、次のような圧縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補
- ●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 する。圧縮符号化時には、画像データのグループ分けに 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

【0085】 [N] カメラブレ量

カメラブレ量が大きくなるに従って、像が流れやすくな る。この場合、画像データの高域空間周波数成分が欠落 し、圧縮符号量が必然的に少なくなる。そこで、このよ うなカメラブレ量が大きい撮像条件では、次のような圧 縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の低いものにする。
- ●パラメータ推定ステップにおいて、カメラブレ量の大 きな画像データに関して求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、カメラブレ量の大きな画像デ ータに関して求めた補正処理を用いて、圧縮パラメータ を補正する。
- ●画質の主観評価に基づいて、カメラブレ量の大きな画 像データに適した標準量子化テーブルまたは量子化係数 の配分を決定する。カメラブレ量の大きい撮像条件に対 応して、この標準化量子化テーブルまたは量子化係数の 配分を使用する。

【0086】[O]マクロ撮影の有無、像倍率 フラクタル図形の特徴を有さない被写体(人工物など) に対して、マクロ撮影などの高倍率撮影を行った場合、 画像データの実質的な解像度は低くなる。この場合、画 像データの高域空間周波数成分が欠落し、圧縮符号量が 比較的少なくなる。そこで、マクロ撮影のような高倍率 50 行う。

撮影では、次のような圧縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の低いものにする。
- ●パラメータ推定ステップにおいて、上記のような低解 像度の画像データに関して求めた統計的関係を用いて、 圧縮パラメータを推定する。
- ●圧縮ステップにおいて、上記のような低解像度の画像 データに関して求めた補正処理を用いて、圧縮パラメー タを補正する。
- て、欠落している高域空間周波数成分に対する量子化係 数を大きくする。

【0087】 [P] 被写界深度

被写界深度が浅くなるに従って、被写体の前後でボケ量 が大きくなる。この場合、画像データの高域空間周波数 成分が欠落し、圧縮符号量が比較的少なくなる。そこ で、被写界深度の浅い撮像条件では、次のような圧縮符 号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 20 縮度の低いものにする。
 - ●パラメータ推定ステップにおいて、被写界深度の浅い 画像データに関して求めた統計的関係を用いて、圧縮パ ラメータを推定する。
 - ●圧縮ステップにおいて、被写界深度の浅い画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
 - ●画質の主観評価に基づいて、被写界深度の浅い画像デ ータに適した標準量子化テーブルまたは量子化係数の配 分を決定する。被写界深度の浅い撮像条件に対応して、 この標準化量子化テーブルまたは量子化係数の配分を使

【0088】 [Q] 絞り値、焦点距離、撮影画角、被写 体距離

次のような撮像条件では、画面内の背景部分などがいず れもぼけやすくなる。

- ・絞り値が解放側。
- ・撮影レンズの焦点距離が長い(撮影画角が狭い)。
- ・被写体距離が近い。

このように像がぼけると、画像データの高域空間周波数 成分が欠落し、画像データの圧縮符号量は比較的小さく なる。そこで、このようにボケが大きくなる撮像条件の 場合には、次のような圧縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の低いものにする。
- ●パラメータ推定ステップにおいて、ボケの大きな画像 データに関して求めた統計的関係を用いて、適正な圧縮 パラメータを推定する。
- ●圧縮ステップにおいて、ボケの大きな画像データに関 して求めた補正処理を用いて、圧縮パラメータの補正を

30

●画質の主観評価に基づいて、ボケの大きな画像データに適した標準量子化テーブルまたは量子化係数の配分を決定する。ボケの大きな撮像条件に対応して、この標準化量子化テーブルまたは量子化係数の配分を使用する。 【0089】 [R] 合焦状況

焦点検出ユニットなどから得られる合焦状況に基づいて、画像データのボケ具合をグループ分けすることができる。このように合焦状況に応じて画像データをグループ分けすることにより、次のような圧縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
- ●画質の主観評価などに基づいて、各グループごとに適正な標準量子化テーブルまたは量子化係数の配分を決定する。圧縮符号化時には、画像データのグループ分けに応じて、これらの標準量子化テーブルまたは量子化係数の配分を使い分ける。

【0090】[S] 多点の合焦状況

多点焦点検出ユニットなどから得られる多点合焦状況に 基づいて、画面内のボケ面積やボケ位置を大まかにグル ープ分けすることができる。このように多点合焦状況に 応じて画像データをグループ分けすることにより、次の ような圧縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データに関して予め求めた標準的な圧縮パラメータを、試行用の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
- ●画質の主観評価などに基づいて、各グループごとに適正な標準量子化テーブルまたは量子化係数の配分を決定する。圧縮符号化時には、画像データのグループ分けに応じて、これらの標準量子化テーブルまたは量子化係数の配分を使い分ける。

【0091】 [T] 撮影レンズの種別

撮影レンズの種別データに基づいて、画像データの収差性能、空間周波数特性(MTF特性)、ボケ味などを大まかにグループ分けすることができる。このように撮影レンズの種別に応じて画像データをグループ分けすることにより、次のような圧縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
- 10 ●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 する。圧縮符号化時には、画像データのグループ分けに 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

【0092】[U]温度

(12)

CCDなどの撮像素子温度が上昇するに従って、画像データのノイズレベルが大きくなる。したがって、温度の高い撮像条件では、圧縮符号量がノイズ増加分だけ増えるため、次のような圧縮符号化が好ましい。

- 20 ●試行ステップにおいて、試行用の圧縮パラメータを圧縮度の高いものにする。
 - ●パラメータ推定ステップにおいて、ノイズレベルの大きい画像データに関して求めた統計的関係を用いて、圧縮パラメータを推定する。
 - ●圧縮ステップにおいて、ノイズレベルの大きい画像データに関して求めた補正処理を用いて、圧縮パラメータを補正する。
- ●標準量子化テーブルまたは量子化係数を変更して、ノイズの空間周波数成分を強く抑圧する。なお、温度の検 30 出については、撮像素子に内蔵もしくは近傍配置された 温度センタを用いて検出することが好ましい。

【0093】[V]エッジ強調の有無、エッジ強調の強

電子カメラ内の画像処理部や画像処理プログラムでは、 画像の鮮明度を上げるため、エッジ強調(シャープネス 調整)の処理を施す。このようなエッジ強調により、画 像データの高域空間周波数成分は増え、圧縮符号量は大 きくなる。また、エッジ強調の程度を強めるに従って、 圧縮符号量も大きくなる。

- 10 【0094】そこで、エッジ強調を実行する撮像条件、 またはエッジ強調のより強い撮像条件では、次のような 圧縮符号化が好ましい。
 - ●試行ステップにおいて、試行用の圧縮パラメータを圧縮度の高いものにする。
 - ●パラメータ推定ステップにおいて、高域空間周波数成分の多い画像データ(より具体的には、エッジ強調を施した画像データ、エッジ強調を強く施した画像データ)に関して求めた統計的関係を用いて、圧縮パラメータを推定する。
- 50 ●圧縮ステップにおいて、高域空間周波数成分の多い画

像データ(より具体的には、エッジ強調を施した画像デ ータ、エッジ強調を強く施した画像データ)に関して求 めた補正処理を用いて、圧縮パラメータを補正する。

●画質の主観評価に基づいて、高域空間周波数成分の多 い画像データ(より具体的には、エッジ強調を施した画 像データ、エッジ強調を強く施した画像データ)に適し た標準量子化テーブルまたは量子化係数の配分を決定す る。エッジ強調を実行する撮像条件、またはエッジ強調 のより強い撮像条件に対応して、この標準化量子化テー ブルまたは量子化係数の配分を使用する。

【0095】 [W] モノクロモードか否か

電子カメラ内の画像処理部や画像処理プログラムでは、 ユーザー選択などにより、カラーの画像データをモノク 口化する処理が施される。このようなモノクロ化された 画像データは、色に関する画像情報が欠落するため、圧 縮符号量はその分だけ小さくなる。

【0096】そこで、モノクロモードの撮像条件では、 次のような圧縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の低いものにする。
- ●パラメータ推定ステップにおいて、モノクロの画像デ ータに関して求めた統計的関係を用いて、圧縮パラメー タを推定する。
- ●圧縮ステップにおいて、モノクロの画像データに関し て求めた補正処理を用いて、圧縮パラメータを補正す
- ●画質の主観評価に基づいて、モノクロの画像データに 適した標準量子化テーブルまたは量子化係数の配分を決 定する。モノクロモードの撮像条件に対応して、この標 準化量子化テーブルまたは量子化係数の配分を使用す

【0097】 [X] 露出補正値(露出補正の有無、露出 補正の土方向、露出補正の補正幅など)

電子カメラでは、ユーザー選択などにより、撮像時に露 出補正が行われる。撮像時の露光補正の情報(露出補正 値、露出補正の有無、露出補正の土方向、露出補正の補 正幅など)に基づいて、撮像された画像データの絵柄や 傾向をグループ分けすることができる。このようなグル ープ分けにより、次のような圧縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補
- ●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 50 ●圧縮ステップにおいて、ワイドダイナミックレンジモ

する。圧縮符号化時には、画像データのグループ分けに 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

【0098】 [Y] ノイズリダクションモード 電子カメラ内の画像処理部や画像処理プログラムでは、 ノイズの低減を目的として、画像データの微小振幅成分 を時間軸方向または空間軸方向に平滑化する。また、電 子カメラや画像処理プログラムでは、ノイズの低減を目 的として、撮像素子の固定パターンノイズを画像データ 10 から除去する。

【0099】このようなノイズリダクションを施された 画像データは、画像のノイズ量が減少するため、圧縮符 号量は小さくなる。そこで、いずれかのノイズリダクシ ョンを実行する撮像条件、またはノイズリダクションを 強く施す撮像条件では、次のような圧縮符号化が好まし

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の低いものにする。
- ●パラメータ推定ステップにおいて、微小振幅成分の平 20 滑化された画像データ(より具体的には、ノイズリダク ションを実行した画像データ、ノイズリダクションを強 く施した画像データ)に関して求めた統計的関係を用い て、圧縮パラメータを推定する。
 - ●圧縮ステップにおいて、微小振幅成分の平滑化された 画像データ(より具体的には、ノイズリダクションを実 行した画像データ、ノイズリダクションを強く施した画 像データ) に関して求めた補正処理を用いて、圧縮パラ メータを補正する。
 - ●画質の主観評価に基づいて、微小振幅成分の平滑化さ れた画像データ(より具体的には、ノイズリダクション を実行した画像データ、ノイズリダクションを強く施し た画像データ)に適した標準量子化テーブルまたは量子 化係数の配分を決定する。ノイズリダクションを実行す る撮像条件、またはノイズリダクションを強く施す撮像 条件に対応して、この標準化量子化テーブルまたは量子 化係数の配分を使用する。

【0100】 [Z] ワイドダイナミックレンジモード 電子カメラは、撮像画像の高階調化を目的として、露出 を変えて複数回撮像した画像データを合成するモード (ワイドダイナミックレンジモード) を実行する。この ように処理された画像データは、画像の階調情報が増え るため、圧縮符号量は大きくなる。そこで、ワイドダイ ナミックレンジモードの選択された撮像条件では、次の ような圧縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の高いものにする。
- ●パラメータ推定ステップにおいて、ワイドダイナミッ クレンジモードで処理された画像データに関して求めた 統計的関係を用いて、圧縮パラメータを推定する。

ードで処理された画像データに関して求めた補正処理を 用いて、圧縮パラメータを補正する。

25

●画質の主観評価に基づいて、ワイドダイナミックレンジモードで処理された画像データに適した標準量子化テーブルまたは量子化係数の配分を決定する。ワイドダイナミックレンジモードの撮像条件に対応して、この標準化量子化テーブルまたは量子化係数の配分を使用する。

【0101】 [α] 出力画素数

電子カメラでは、画像データの画素数を変換し、出力画 素数を適宜に変更することができる。このように出力画 素数を変更した場合、データ量の変化や、空間周波数成 分が周波数軸方向にシフトするなどの要因から、圧縮符 号量が顕著に変化する。そこで、出力画素数の撮像条件 で画像データをグループ分けすることにより、次のよう な、より適切な圧縮符号化が可能となる。

- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 20 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
- ●画質の主観評価などに基づいて、各グループごとに適 正な標準量子化テーブルまたは量子化係数の配分を決定 する。圧縮符号化時には、画像データのグループ分けに 応じて、これらの標準量子化テーブルまたは量子化係数 の配分を使い分ける。

【0102】 [β] 測光モード.

電子カメラは、露出決定のための測光モードとして、マルチパターン測光モード、中央重点測光モード、スポット測光モードなどを選択可能に有する。このうち、スポット測光モードが選択されるケースは、極端な明暗を有するために通常測光の困難な被写体であり、かつ撮像画面内の平均的でない輝度領域に撮影者が意図的に露出を合わせようとしている場合が多い。そのため、スポット測光の測光領域外では、白つぶれまたは黒つぶれを生じる可能性が非常に高くなる。このように白つぶれまたは黒つぶれが生じると、画像情報量が欠落するため、圧縮符号量が小さくなる。そこで、スポット測光モードが選択される撮像条件では、次のような圧縮符号化が好ましい。

- ■試行ステップにおいて、試行用の圧縮パラメータを圧縮度の低いものにする。
- ●パラメータ推定ステップにおいて、スポット測光モードで撮像された画像データ(より具体的には、黒つぶれまたは白つぶれの多い画像データ)に関して求めた統計的関係を用いて、圧縮パラメータを推定する。
- ●圧縮ステップにおいて、スポット測光モードで撮像さ 50

れた画像データ(より具体的には、黒つぶれまたは白つ ぶれの多い画像データ)に関して求めた補正処理を用い て、圧縮パラメータを補正する。

- ●画質の主観評価に基づいて、スポット測光モードで撮像された画像データ(より具体的には、黒つぶれまたは白つぶれの多い画像データ)に適した標準量子化テーブルまたは量子化係数の配分を決定する。スポット測光モードが選択される撮像条件に対応して、この標準化量子化テーブルまたは量子化係数の配分を使用する。なお、スポット測光モードほどではないが、その他の測光モードでも、画像データの明暗分布や絵柄に特有の傾向が現れる。そのため、選択される測光モードの種類によって、画像データの圧縮符号量には有意な変化が生じる。そこで、選択された測光モードの種類で画像データをグループ分けすることにより、次のような、適切な圧縮符号化が可能となる。
- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。
- ② ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
 - ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
- ●画質の主観評価などに基づいて、各グループごとに適正な標準量子化テーブルまたは量子化係数の配分を決定する。圧縮符号化時には、画像データのグループ分けに応じて、これらの標準量子化テーブルまたは量子化係数の配分を使い分ける。

【0103】 [7] 魚眼コンバータレンズの有無電子カメラは、撮影レンズに魚眼コンバータレンズを装着することにより、円形画面の画像データを得ることが可能となる。このような画像データは、円形画面の周囲に画像情報を持たないため、圧縮符号量が小さくなる。そこで、魚眼コンバータレンズが装着される撮像条件では、次のような圧縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧縮度の低いものにする。
- ●パラメータ推定ステップにおいて、円形画面の画像データ(より具体的には、魚眼コンパータレンズを用いて撮像された画像データ)に関して求めた統計的関係を用いて、圧縮パラメータを推定する。
 - ●圧縮ステップにおいて、円形画面の画像データ(より 具体的には、魚眼コンパータレンズを用いて撮像された 画像データ)に関して求めた補正処理を用いて、圧縮パ ラメータを補正する。
 - ●画質の主観評価に基づいて、円形画面の画像データ (より具体的には、魚眼コンパータレンズを用いて撮像 された画像データ)に適した標準量子化テーブルまたは

4)

27

量子化係数の配分を決定する。魚眼コンバータレンズが 使用される撮像条件に対応して、この標準化量子化テー ブルまたは量子化係数の配分を使用する。なお、魚眼コ ンバータレンズの有無については、例えば、ユーザー入 力、電子カメラとコンパータレンズとのデータ交信など による自動検出、画像データが円形画面か否かの自動識 別によって検出すればよい。

【0104】 [8] テレコンバータレンズの有無電子カメラは、撮影レンズにテレコンバータレンズを装着することにより、望遠の画像データを得ることが可能となる。このような画像データは、画面内の背景部分などがぼけやすくなる。その結果、画像データの高域空間周波数成分が欠落し、圧縮符号量が小さくなる。そこで、テレコンバータレンズが装着される撮像条件では、次のような圧縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧縮度の低いものにする。
- ●パラメータ推定ステップにおいて、ボケの大きな画像データ(より具体的には、テレコンバータレンズを用いて撮像した画像データ)に関して求めた統計的関係を用 20いて、適正な圧縮パラメータを推定する。
- ●圧縮ステップにおいて、ボケの大きな画像データ(より具体的には、テレコンバータレンズを用いて撮像した画像データ)に関して求めた補正処理を用いて、圧縮パラメータの補正を行う。
- ●画質の主観評価に基づいて、ボケの大きな画像データ (より具体的には、テレコンバータレンズを用いて撮像 した画像データ)に適した標準量子化テーブルまたは量 子化係数の配分を決定する。テレコンバータレンズが装 着される撮像条件に対応して、この標準化量子化テーブ 30 ルまたは量子化係数の配分を使用する。なお、テレコン バータレンズの有無については、例えば、ユーザー入 力、電子カメラとコンパータレンズとのデータ交信など による自動検出によって検出すればよい。

【0105】 [ε] ワイドコンバータレンズの有無電子カメラは、撮影レンズにワイドコンバータレンズを装着することにより、広角の画像データを得ることが可能となる。このような画像データは、画面内の背景部分などがぼけにくい。その結果、画像データの高域空間周波数成分が大きくなり、圧縮符号量が大きくなる。そこで、ワイドコンバータレンズが装着される撮像条件では、次のような圧縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧 縮度の高いものにする。
- ●パラメータ推定ステップにおいて、ボケの小さい画像データ(より具体的には、ワイドコンバータレンズを用いて撮像した画像データ)に関して求めた統計的関係を用いて、適正な圧縮パラメータを推定する。
- ●圧縮ステップにおいて、ボケの小さい画像データ(より具体的には、ワイドコンバータレンズを用いて撮像し 50

た画像データ)に関して求めた補正処理を用いて、圧縮 パラメータの補正を行う。

●画質の主観評価に基づいて、ボケの小さい画像データ (より具体的には、ワイドコンバータレンズを用いて撮像した画像データ)に適した標準量子化テーブルまたは量子化係数の配分を決定する。ワイドコンバータレンズが装着される撮像条件に対応して、この標準化量子化テーブルまたは量子化係数の配分を使用する。なお、ワイドコンバータレンズの有無については、例えば、ユーザ10 一入力、電子カメラとコンパータレンズとのデータ交信などによる自動検出によって検出すればよい。

【0106】 [ζ] 光学フィルタの有無、光学フィルタの種類

電子カメラは、撮影レンズに光学フィルタを装着することにより、多様な画像データを得ることが可能となる。例えば、軟焦点系や像流れ系の光学フィルタを装着することにより、幻想的な画像データを得ることができる。このような画像データは高域空間周波数成分が小さく、圧縮符号量が小さくなる。また例えば、特定色の光学フィルタを装着することにより、色相の偏った画像データを得ることができる。このような画像データは画面全体の色相変化の幅が狭く、圧縮符号量が小さくなる。また例えば、ND (Neutral Density) フィルタを装着することにより、露光時間を延長し、被写体ブレを強調した画像データを得ることができる。このような画像データは高域空間周波数成分が小さく、圧縮符号量が小さくなる。そこで、上記の光学フィルタが装着される撮像条件では、次のような圧縮符号化が好ましい。

- ●試行ステップにおいて、試行用の圧縮パラメータを圧縮度の低いものにする。
 - ●パラメータ推定ステップにおいて、光学フィルタを装着して撮像された画像データに関して求めた統計的関係を用いて、圧縮パラメータを推定する。
 - ●圧縮ステップにおいて、光学フィルタを装着して撮像 された画像データに関して求めた補正処理を用いて、圧 縮パラメータを補正する。
- ●画質の主観評価に基づいて、光学フィルタを装着して 撮像された画像データに適した標準量子化テーブルまた は量子化係数の配分を決定する。上記の光学フィルタが 装着される撮像条件に対応して、この標準化量子化テー ブルまたは量子化係数の配分を使用する。なお、コンパータレンズまたは光学フィルタの種類(フィルタ効果の 強弱も含む)によっても、画像データの圧縮符号量には 有意な変化が生じる。そこで、装着されたコンバータレンズや光学フィルタの種類で画像データをグループ分け することにより、次のような、より適切な圧縮符号化が 可能となる。
- ●試行ステップにおいて、同一グループ内の画像データ に関して予め求めた標準的な圧縮パラメータを、試行用 の圧縮パラメータとする。

- ●パラメータ推定ステップにおいて、同一グループ内の 画像データに関して予め求めた統計的関係を用いて、圧 縮パラメータを推定する。
- ●圧縮ステップにおいて、同一グループ内の画像データ に関して求めた補正処理を用いて、圧縮パラメータを補 正する。
- ●画質の主観評価などに基づいて、各グループごとに適正な標準量子化テーブルまたは量子化係数の配分を決定する。圧縮符号化時には、画像データのグループ分けに応じて、これらの標準量子化テーブルまたは量子化係数 10 の配分を使い分ける。

[0107]

【発明の効果】請求項1に記載の圧縮符号化方法では、標準量子化テーブル(スケールファクタ乗算前の量子化テーブル)を画像データの撮像条件に応じて変更する。したがって、撮像条件ごとの画像データの特徴に対応して、各空間周波数成分の圧縮配分を柔軟に変更し、画像データのノイズを目立たなくしたり、画質劣化を抑えることが可能となる。

【0108】請求項2に記載の圧縮符号化方法では、量 20子化テーブルの量子化係数を画像データの撮像条件に応じて変更する。したがって、撮像条件ごとの画像データの特徴に対応して、各空間周波数成分の圧縮配分を柔軟に変更し、画像データのノイズを目立たなくしたり、画質劣化を抑えることが可能となる。

【0109】請求項3に記載の圧縮符号化方法は、下記 撮像条件の少なくとも一つを使用する。

〇撮像感度設定・・この撮像条件では、主として画像データのノイズ量が変化する。したがって、ノイズ量の変化に適応した圧縮符号化が可能となる。

〇信号ゲイン・・・この撮像条件では、主として画像データのノイズ量が変化する。したがって、ノイズ量の変化に適応した圧縮符号化が可能となる。

〇ガンマ補正カーブ・・この撮像条件では、主として画像データのノイズ量と輝度階調が変化する。 したがって、これらの変化に適応した圧縮符号化が可能となる。

〇電子ズームの有無・・この撮像条件では、主として画 像データの実質的な解像度が変化する。したがって、実 質的な解像度の変化に適応した圧縮符号化が可能とな る

○電子ズームの倍率・・この撮像条件では、主として画像データの実質的な解像度が変化する。 したがって、実質的な解像度の変化に適応した圧縮符号化が可能となる。

〇シャッタ速度・・この撮像条件では、主として画像の ブレ量が変化する。また、撮像部での蓄積時間が長くな ることにより、画像データのノイズ量も増大する。した がって、ブレ量およびノイズ量の変化に適応した圧縮符 号化が可能となる。

〇ホワイトバランス調整値・・この撮像条件からは、主 50 が可能となる。

として画像データの撮影場所や撮影時刻を推定できる。 したがって、撮像場所や撮影時刻の変化に適応した圧縮 符号化が可能となる。

〇特殊撮影効果・・この撮像条件からは、特殊撮影効果 ごとに生じる画像データの特徴を推測できる。したがっ て、個々の特殊撮影効果に適応した圧縮符号化が可能と なる。

〇階調・・この撮像条件では、主として画像データのコントラストやディテールが変化する。したがって、これらの変化に適応した圧縮符号化が可能となる。

〇エッジ強調・・この撮像条件では、主として画像データの空間周波数成分が変化する。したがって、空間周波数成分の変化に適応した圧縮符号化が可能となる。

〇モノクロモード・・この撮像条件では、主として色情報の有無が変化する。したがって、色情報の有無に適応 した圧縮符号化が可能となる。

〇露出補正値・・この撮像条件からは、露出補正される 被写体の傾向や特徴を推測できる。したがって、露出補 正される被写体の傾向や特徴に適応した圧縮符号化が可 能となる。

〇ノイズリダクションモード・・この撮像条件では、主 として画像データのノイズ量が変化する。したがって、 ノイズ量の変化に適応した圧縮符号化が可能となる。

〇ワイドダイナミックレンジモード・・この撮像条件では、主として画像データの階調情報量が変化する。 したがって、階調情報量の変化に適応した圧縮符号化が可能となる。

〇出力画素数・・この撮像条件では、主として画像データのデータ量や空間周波数成分が変化する。したがって、これらの変化に適応した圧縮符号化が可能となる。

【0110】請求項4に記載の圧縮符号化方法は、撮像条件の少なくとも一つを、撮像感度設定、信号ゲイン、エッジ強調、ノイズリダクションモードのいずれかに特に限定するものである。なお、これら個々の条件が奏する効果については、いずれも請求項4で既に述べているため、ここでの説明を省略する。

【0111】請求項5に記載の圧縮符号化方法は、下記 撮像条件の少なくとも一つを使用する。

Oストロボ使用の有無・・この撮像条件では、背景にお 40 ける黒潰れの発生度合いや画像ブレなどが主として変化 する。したがって、これらの変化に適応した圧縮符号化 が可能となる。

〇スローシンクロ使用の有無・・この撮像条件では、単なるストロボ使用に比べて黒潰れの発生頻度が低い。したがって、このような変化に適応した圧縮符号化が可能となる。

〇日中シンクロ使用の有無・・この撮像条件では、単なるストロボ使用に比べて黒潰れの発生頻度が極めて低い。したがって、このような変化に適応した圧縮符号化が可能となる

〇測光値・・・この撮像条件からは、測光値ごとに異なる画像データの特徴を推測できる。したがって、測光値による画像データの変化に適応した圧縮符号化が可能となる。

〇マルチパターン測光値・・この撮像条件からは、主として被写体の配光状態を推測できる。したがって、配光 状態による画像データの変化に適応した圧縮符号化が可能となる。

〇縦位置撮影か否か・・この撮像条件では、主として画面構成が変化する。したがって、画面構成の変化に適応 した圧縮符号化が可能となる。

〇カメラブレ量・・この撮像条件では、主として画像の ブレ量が変化する。したがって、ブレ量の変化に適応し た圧縮符号化が可能となる。

〇温度・・この撮像条件では、主として画像データのノ イズ量が変化する。したがって、ノイズ量の変化に適応 した圧縮符号化が可能となる。

〇測光モード・・この撮像条件からは、被写体の配光状態の特殊性や、明暗階調のつぶれる可能性などの被写体状況を推測できる。したがって、これらの被写体状況に適応した圧縮符号化が可能となる。

【0112】請求項6,7に記載の圧縮符号化方法は、下記撮像条件の少なくとも一つを使用する。

〇マクロ撮影の有無・・この撮像条件からは、マクロ撮影の有無による画像データの変化を推測できる。 したがって、この変化に適応した圧縮符号化が可能となる。

〇像倍率・・この撮像条件からは、像倍率による画像データの変化を推測できる。したがって、この変化に適応した圧縮符号化が可能となる。

〇被写界深度・・この撮像条件では、主として画面内の ボケ量が変化する。したがって、ボケ量の変化に適応し た圧縮符号化が可能となる。

〇絞り値・・この撮像条件では、主として画面内のボケ 量が変化する。したがって、ボケ量の変化に適応した圧 縮符号化が可能となる。

〇焦点距離・・この撮像条件では、主として被写界深度や像倍率や構図(遠近感)などが変化する。したがって、これらの変化に適応した圧縮符号化が可能となる。 〇撮影画角・・この撮像条件では、主として被写界深度や像倍率や構図(遠近感)などが変化する。したがって、これらの変化に適応した圧縮符号化が可能となる。 〇被写体距離・・この撮像条件では、主として被写界深度や像倍率や構図(遠近感)などが変化する。したがって、これらの変化に適応した圧縮符号化が可能となる。 〇たが変化に適応した圧縮符号化が可能となる。 〇合焦状況・・この撮像条件からは、主として画面内のボケ量が分かる。したがって、ボケ量の変化に適応した圧縮符号化が可能となる。 ○多点の合焦状況・・この撮像条件からは、画面内を占めるボケ面積やボケ位置が推測できる。したがって、これらの変化に適応した圧縮符号化が可能となる。

〇撮影レンズの種別・・この撮像条件からは、撮影レンズの種別による画像データの変化が分かる。 したがって、この変化に適応した圧縮符号化が可能となる。

〇コンパータレンズの有無や種類・・この撮像条件から は、コンバータレンズの有無や種類による画像データの 変化が分かる。したがって、この変化に適応した圧縮符 号化が可能となる。

〇光学フィルタの有無や種類・・この撮像条件からは、 光学フィルタの有無や種類による画像データの変化が分かる。したがって、この変化に適応した圧縮符号化が可能となる。

【0113】請求項8に記載の記録媒体には、圧縮符号化プログラムが記録される。この圧縮符号化プログラムをコンピュータで実行することにより、請求項1~7のいずれか1項に記載の圧縮符号化方法をコンピュータ上で実現することができる。

20 【0114】請求項9に記載の電子カメラは、請求項1 ないし請求項7のいずれか1項に記載の圧縮符号化方法 を、撮像した画像データに施すことができる。

【図面の簡単な説明】

【図1】電子カメラの構成を示すブロック図である。

【図2】第1の実施形態における圧縮符号化の前準備の 手順を示す流れ図である。

【図3】初期スケールファクタISFのデータテーブル である。

【図4】 (ISO200) および (ストロボ使用せず) 30 の撮像条件で撮像したテスト画像について、スケールファクタと圧縮符号量との関係を示すグラフである。

【図5】 I SO1600の撮像条件で撮像したテスト画像について、スケールファクタと圧縮符号量との関係を示すグラフである。

【図6】未定係数a, bをプロットしたグラフである。

【図7】第1の実施形態における圧縮符号化方法を説明 する流れ図である。

【図8】1回の試し圧縮から推定した目標スケールファクタと、圧縮率1/4を得るための正確なスケールファクタ(実測値)との相関関係を示すグラフである。

【図9】第2の実施形態における圧縮符号化の前準備の 手順を示した流れ図である。

【図10】第2の実施形態における圧縮符号化方法を説明する流れ図である。

【図11】ストロボを使用して撮像されたテスト画像について、スケールファクタと圧縮符号量との関係を示すグラフである。

【図12】初期スケールファクタISFのデータテーブルである。

50 【図13】1回の試し圧縮から推定した目標スケールフ

rクタと、圧縮率1/4を得るための正確なスケールファクタ(実測値)との相関関係を示すグラフである。

【図14】第3の実施形態における圧縮符号化の前準備 の手順を示した流れ図である。

【図15】撮像感度設定に対応する標準量子化テーブルの一例を示す図である。

【図16】第3の実施形態における圧縮符号化方法を示した流れ図である。

【符号の説明】

- 10 電子カメラ
- 11 撮影レンズ

12 ストロボ発光部

- 13 撮像素子
- 15 信号処理部
- 16 A/D変換部
- 17 画像処理部
- 18 圧縮処理部
- 21 制御部
- 22 マルチ測光部
- 23 焦点検出部
- 10 24 操作卸群

【図1】

【図3】

初期スケールファクタ				
		操像感度設定		
		180200	1801600	
*	1/4	0. 1	0. 6	
目標圧船車	1/8	0. 3	1. 0	
	1/16	0. 7	1. 6	

【図2】

【図8】

【図4】

【図6】

【図12】

初期スケールファクタ

サンカスケールンプラブ					
		ストロポ使用の有無			
		ストロポ無し	ストロポ使用		
*	1/4	0. 1	0.04		
日和田田	1/8	0. 3	0. 12		
	1/16	0. 7	0.3		

【図7】

【図9】

【図11】

【図10】

【図13】

【図14】

【図15】

【図16】

フロントページの続き

Fターム(参考) 5C022 AA13 AB19 AB36 AB37

5C059 KK01 MA00 MA23 MC14 MC38

ME01 PP01 SS15 TA47 TB08

TC02 TC10 TC24 UA02

5C078 AA04 BA57 CA02 CA22 CA27

DA01 DA07 DB07