

at Softpia Japan Center Building Gifu, JPN

TOCOS TWE-Liteをつかってみた「トワイライトの世界にようこそ!」

matsujirushi(Takashi Matsuoka) 2014/8/17 17:00~

自己紹介

- ✓電子工作やります。
 - **✓** EAGLE CAD
- ✓プログラミングやります。
 - ✓ PIC10F322
 - ✓ PIC12F629,675,683,1822
 - ✓ PIC16F88,628
 - ✓ PIC18F1320
 - ✓ PIC18F2550,4550
 - ✓ ATmega64A
 - ✓ LPC1114
 - √ Visual Studio
- ✓1年前からレーザー加工。
 - ✓ LaserVelocity / DraftSight

Takashi Matsuoka (matsujirushi)

takashi.matsuoka.37

@matsujirushi12

エンベデッドシステムスペシャリスト データベーススペシャリスト マイクロソフト認定テクノロジースペシャリスト ORACLE MASTER 電気工事士

出展

- ■Make Ogaki Meeting 2012
- ●クリエーターズマーケット vol.28
- ■Maker Faire Tokyo 2012
- CONSOLARE 2013 EXHIBITION

後方支援プロダクト

4MOバッヂ

跳跳楽

編み機HACK

プレゼンの動機

オモチャ到着。

フレームワークが独特。体系的に知りたい。

買ったけど、標準機能(リモートI/O)は使い道が無いなぁ。

プログラマブル!開発についてkwsk!

TWE-Liteのプログラミングをプレゼンするぞー!

トワイライトの世界にようこそ!

- ✓ 気になる特徴
 - 通信距離
 - 消費電力
 - ToF(タイム・オブ・フライト)
 - ・パケットスニファ
 - ネットワークディスカバリー
- ✓ 内蔵マイコンのプログラミング
 - ・フレームワーク
 - ・ワイヤレス
 - ・ペリフェラル

本資料はmatsujirushiが作成したものであり、東京コスモス電機が保障するものではありません。

TOCOS TWEシリーズ トワイライ

超小型装置の無線化を実現できます。

http://tocos-wireless.com/jp/products/TWE-001Lite.html

TWE-Lite

TWE-Lite DIP

ToCoStick (TWE-Lite USB)

ネットワーク形態

TWE-Lite 気になる特徴

- ✓ 通信距離は1km
- ✓ コイン電池で数年動作
- ✓ 動作温度-40~105°C
- ✓ ToF距離測定
- ✓ パケットスニファ
- ✓ ネットワークディスカバリーツール
- ✓ 内蔵マイコンで制御可能

http://tocos-wireless.com/jp/products/TWE-001Lite.html

通信距離は1km

TWE-Liteは低消費電力を保ちつつ見通しで外部アンテナ(利得2dBi、無指向性)使用時に1kmと非常に長い到達距離を実現しております。

http://tocos-wireless.com/jp/products/TWE-001Lite.html#TWE-001-12

通信距離を測ってみた

某サーキット メインストレート(約1.5km)

● END DEVICE TWE-Lite + CR2032 高さ1m

● COORDINATOR TWE-Lite + 単三x2 + パソコン 高さ1m

測った結果

通信距離限界は180m

基板パターン?

マッチ棒アンテナは、TWE-LITEを実装するプリント <mark>基板パターン</mark>のレイアウトにより利得が大きく変 化します。

モジュール裏面に $30mm \times 30mm$ の銅箔面を作成の上、電池BOX、ベタGNDなどを可能な限り遠ざけます。

http://tocos-wireless.com/jp/tech/Hardware_guide/Lite_Guide/Lite_MotherPCB_Ant_Artwork.pdf

基板作った

基板裏面に、30 x 30mm の銅箔

通信距離を測つてみた 2回目

名古屋市北区 新川堤防(約600m)

● END DEVICE

TWE-Lite +単三x2 高さ1.2m

COORDINATOR TWE-Lite + 単三x2 + パソコン 高さ1.2m

測った結果 2回目

通信距離限界は250m

高さ不足?

アンテナの位置が十分に高い場合(※1)に最も通信距離が長くなります。

※1 端末間が100mでの通信の場合は約1m、1Kmの場合は 約3mの高さが必要です。

電波ノイズが少ない環境で通信距離が延びます。

電波ノイズが多い街中や自動車道路、工場等の近所では通信距離が短くなります。

http://tocos-wireless.com/jp/products/TWE-Lite-DIP/range.html

通信距離を測つてみた 3回目

稲沢市 田園(約550m)

● END DEVICE TWE-Lite +単三x2 高さ3.2m

COORDINATOR TWE-Lite + 単三x2 + パソコン 高さ3.2m

測った結果 3回目

通信距離限界は550m以上!

通信距離は1km?

- ✓ 実験結果は通信距離550m以上。
- ✓ 電波ノイズが少なく、見通し1km の場所が無いと分からない。

メーカーより 高さ不足と のアドバイス 有り。

1km飛ばすには5.6m

メーカーより **高さ不足**と のアドバイス 有り。

アンテナ間が100mの場合、2.4GHzは1.8m、920MHzは2.9mのアンテナ高が必要です。1000mの場合、2.4GHzは5.6m、920MHzは9mのアンテナ高が必要です。

http://tocos-wireless.com/jp/products/TWE-001Lite.html#TWE-001-11

コイン電池で数年動作

CR2032使用時、3秒間隔の送信で2年以上。

http://tocos-wireless.com/jp/products/TWE-001Lite.html#TWE-001-11

※ 暗電流はデータシート値より計算

電流を測ってみた

だいたい、75[mV]、1.75[ms]

- \rightarrow 7.5[mA], 1.75[ms]
- → 3秒間隔の場合、7.5[mA] * 1.75[ms] / 3[s] = 4.375[uA]
- → CR2032(220mAh)の場合、220[mAh] / 4.375[uA] = 50285[h] = 5.7年

ToF距離測定

TWE-Liteには電波を使用して距離を測定する際に電波強度(RSSI)を使用する方法に加え電波の往復時間による計測距離に対して誤差がほぼ一定な距離測定機能タイム・オブ・フライト(ToF)を搭載しております。

http://tocos-wireless.com/jp/products/TWE-001Lite.html#TWE-001-1

ToFを試してみた

名古屋市北区 新川堤防(約600m)

COORDINATOR TWE-Lite +単三x2 高さ1m

END DEVICE ToCoStick + パソコン 高さ1m

試した結果

✓ RSSIと比較して、ToFは精度が高い。

パケットスニファ(パケットアナライザ)は無線通信内容を解析するツールで… ツール上には、時系列に捕捉されたパケットが表示されるため、どの無線モジュールがどの順序で電波を出したかを記録できます。動作分析には必須のツールです。

http://tocos-wireless.com/jp/tech/sniffer.html

Sniffer Server Wireshark

Digi XBeeもキャプチャできた

ネットワークディスカバリー

ネットワークディスカバリーツールは<mark>電波環境</mark> (Site Survey: 2.4GHz帯の各チャネルごとの簡易スペアナ)やIEEE802.15.4、JenNet、ZigBee PROネットワークの通信状況を観測するツールとして使用できます。

http://tocos-wireless.com/jp/products/evalkit3.html

✓ ネットワークディスカバ リーツールはキットに付 属の無線センサーノード (液晶付き)で動作し ます。

ネットワークディスカバリー

UART

(自作)

自作

.15.4

ToCoStick (TWE-Lite USB)

✓ 液晶不要

内蔵マイコンで制御可能

ワイヤレスエンジン TWE-Lite

TOCOS

http://tocos-wireless.com/jp/products/TWE-001Lite.html#TWE-001-9

内蔵マイコンをプログラミングすることで、

- 1. 無線通信の制御
- 2. / 〇の制御

が可能!

プログラミング作業

雛形となるプログラムをコピー

プログラムを改修

TWE-Liteに書き込み

雛形となるプログラム

- ✓ TWE-Zeroアプリ
 - 超簡単!TWEアプリ
 - シリアル通信専用アプリ
 - 無線タグ
 - リモコン通信専用アプリ
 - オーディオ・信号通信専用アプリ
- ✓ (分類不明)
 - メロディアプリケーション
 - 連続的にパケットを送るサンプル
 - 12C サンプル
 - パケットエラー測定ツール
 - PingPong サンプル
 - 上り下り送信を行う子機のデモ

(App_TweLite)

(App_Uart)

(Samp_Monitor)

(App_IO)

(App_Audio)

(App_Melody)

(Samp ContTx)

(Samp_I2C)

(Samp_PER)

(Samp PingPong)

(Samp_Wayback)

TWE-Liteに書き込み

書込手順B: スイッチをゴニョしてから.binをD&D

TWE-Liteの中身

XTAL

 \leftarrow JN5164A+XTAL+ α

↓ JN516x Block Diagram

SPI Watchdog RAM Flash Master & Slave 8/32K 64/160/256K Timer 2-Wire Serial (Master/Slave) Voltage Brownout 2.4GHz Radio 32-bit 4xPWM + Timer RISC CPU O-QPSK Including Diversity 2xUART Modem 4kB 20 DIO **EEPROM** IEEE 802.15.4 Sleep Counter Baseband Processor 4-Channel 10-bit ADC 128-bit AES Power **Battery** and Hardware Management Encryption Temp Sensors

JN5164 ...

Flash 160kB

RAM 32kB

EEPROM 4kB

Software Architecture

ToCoNet Framework

Framework

電源投入時コールバック関数 cbAppColdStart()

スリープ復帰時コールバック関数 cbAppWarmStart()

ハードウェア割り込みハンドラ cbToCoNet_u8HwInt()

送信完了コールバック関数 cbToCoNet_vTxEvent()

ネットワークイベントコールバック関数 cbToCoNet_vNwkEvent()

ユーザ定義イベント処理関数 vProcessEvCore()

ハードウェア割り込み遅延実行部 コールバック関数

cbToCoNet_vHwEvent()

受信コールバック関数 cbToCoNet_vRxEvent()

メインループコールバック関数 cbToCoNet vMain()

- ✓ イベント駆動型。
- ✓ 予めコールバックする関数名が定 義されている。
- ✓ 処理は、状態遷移でユーザー定義 イベント処理関数に実装する。
- ✓ 電源ON
 - cdAppColdStart
 - cbAppWarmStart
- ✓ イベントハンドラ
 - vProcessEvCore
- ✓ 送信完了
 - cbToCoNet_vTxEvent
- ✓ 受信
 - cbToCoNet_vRxEvent

Framework

ToCoNet Framework

Framework

送信完了コールバック関数 cbToCoNet_vTxEvent()

ToCoNet Framework

Framework

状態を定義

ユーザー定義イベント処理関数を実装

状態毎の処理を実装

```
▶PRSEV_HANDLER_DEF(E_STATE_APP_TX, tsEvent *pEv, teEvent
    static wint8 sequence = 0;4
    vfPrintf(&uart, "#E_STATE_APP_TX"LB);↓
        tsTxDataApp tsTx;↓
        zero_memory(&tsTx, sizeof (tsTx));
        tsTx.u8CbId = 0;4
        //tsTx.u8Retry = 0x80;↓
       //tsTx.bAckReq = FALSE; 4
        tsTx.u8Seq = sequence++;
        tsTx.u32DstAddr = TOCONET_NWK_ADDR_PARENT; 4
       tsTx.u32SrcAddr = ToCoNet u32GetSerial();
       لي:tsTx.u8Len = 4
        tsTx.auData[0] = U16_LOWER_U8(ModuleTemperature)
        tsTx.auData[1] = U16_UPPER_U8(ModuleTemperature)
        tsTx.auData[2] = U16 LOWER U8(ModuleVolt);
        tsTx.auData[3] = U16 UPPER U8(ModuleVolt);
        if (!ToCoNet_Nwk_bTx(NwkContext, &tsTx))↓
           vfPrintf(&uart, "!Ix."LB);↓
           Reset();↓
        ToCoNet Tx vProcessQueue();↓
    also if (aFvent == F FVFNT APP FINISH TX SUCCESS)
```

ToCoNet Wireless

MAC

- ✓ Media Access Controlの略。
- ✓ 1対1の送受信。

ToCoNet Wireless

Network

LayerTreeの設定 ToCoNet_NwkLyTr_psConfig() ネットワークの初期化 ToCoNet_Nwk_blnit() ネットワークを開始 ToCoNet_Nwk_bStart() 送信API 受信コールバック関数 ToCoNet Nwk bTx() cbToCoNet vRxEvent() 送信完了コールバック関数 cbToCoNet vTxEvent() ネットワークを中断 ToCoNet Nwk bPause() ネットワークを再開 ToCoNet Nwk bResume()

ToCoNet Peripheral

Peripheral

Peripheral	ToCoNet Library	Integrated Peripherals API
SPI		xAHI_SpiXxx()
2-Wire Serial		xAHI_SiXxx()
PWM/Timer		xAHI_TimerXxx()
UART	serial.h serialInputMgr.h	xAHI_UartXxx()
DIO	utils.h btnMgr.h	<pre>xAHI_DioXxx() xAHI_DoXxx()</pre>
ADC		xAHI_AdcXxx()
EEPROM	eeprom_6x.h	xAHI_XxxEEPROMxxx()

ToCoNet Peripheral

Peripheral

提給	信号名	シルク	ピン	ピン	シルク	信号名	提給
電源グランド	GND	GND	1	8 Z H P 28	VGC	VCC	電源(2.3~36V)
120クロック	SCL	14	2	TWE. 50 28	3	МЗ	モード設定ビット3
UART受信	RX	7	3	E-Lite	2	M2	モード設定ビット2
PWM出力1	PWM1	5	4	D	1	AI4	アナログ入力4
デジタル出力1	DO1	18	5	च है (1) 24	A2	AIB	アナログ入力3
PWM出力2	PWM2	C	6	23 WEI OT 23	0	AI2	アナログ入力2
PWM出力3	PWM3	1	7	22	A1	AI1	アナログ入力1
デジタル出力2	DO2	19	8	21	R	RST	リセット入力
デジタル出力3	DOS			20	17	BPS	UART速度設定
UART送信	TX	6	10	19	15	SDA	120データ
PWM出力4	PWM4	8	11	18	16	D14	デジタル入力4
デジタル出力4	DO4	9	12	G J D D D D 17	11	DI3	デジタル入力3
モード設定ビット1	M1	10	13	RXD RXD PRG TXD GND	13	D12	デジタル入力2
電源グランド	GND	GND	14	A B B B B 12 15	12	DI1	デジタル入力1

製品によってピン配置が違う!十分注意が必要。

ToCoNet Peripheral

Peripheral

	TWE	L'i DID	THE L'	T 0 00 1	INE 404A						
jenprog		-Lite DIP 1L-DPC-WA	TWE-Lite TWE-001L-NC	ToCoStick TWE-Lite-USB	JN5164A						
Name	Pin# Si			IWE-Lite-03B	Pin#	Name	Alt1	Alt2	Alt3	Alt4	Alt5
Name	1	GND GND	20,28 GND		F II I#	Ivallie	AILI	AILZ	AIto	AILH	AIG
	2	14 SCL	20,28 GND 14 SCL		20	DIO14	SIF_CLK	TVD0 TVD1	ITAO TOO	ODIOCI 1	SPISSEL
RXD		7 RX	9 RX	FT233RQ[TXD]		DIO14	RXD0	TXD0 TXD1	_	SPISELI	SPISSEL
KXD	3	5 PWM1	7 PWM1	FT233RQ[IXD] FT233RQ[CTS]		DIO7	RTS0	JTAG_TDI JTAG_TMS		PC1	
	4 5	18 DO1		F1200MW[C10]		DIO3	SPIMOSI	JTAG_TMS	PWINI	PCT	
	6	C PWM2	3 DO1 1 PWM2				SPINUSI			PWM2	
PRG	7	I PWM8	2 PWM3	FT233RQ[CBUS3]		DO0 DO1	SPICER			PWM3	
PRG	-			F 1233RQ[CBUS3]		DIO19				PWW	
	8	19 DO2 4 DO3	4 DO2	FT233RQ[RTS]			SPISEL0	ITAO TOK	TIMOOUT	PC0	
TXD	9		6 DO3 8 TX	FT233RQ[RTS] FT233RQ[RXD]		DIO4	CTS0 TXD0	JTAG_TCK		PCU	
IXD	10	6 TX	10 PWM4	F 1233RQ[RXD]		DIO6		JTAG_TDO	PWM4		
	11	8 PWM4				DIO8	TIMOCK_GT			32KIN	
	12	9 DO4	11 DO4			DIO9	TIMOCAP	32KXTALIN		32KIN	
	13	10 M1	12 M1		30	DIO10	TIMOOUT	32KXTALO	J1		
	14 15	GND GND 12 DI1	20,28 GND 13 DI1		26	DIO12	PWM2	CTS0	ITAO TOK	400	SPISMOSI
	16	12 DI1 13 DI2	15 DI2			DIO12			JTAG_TCK		
							PWM3	RTS0	JTAG_TMS	ADE	SPISMISO
	17	11 DI3	16 DI3	1 CD #		DIO11	PWM1	OTE OLIK	TXD1		
	18	16 DI4	18 DI4	LED:赤		DIO16	COMP1P		SPISMOSI	ODTOFLA	ODTOOLK
	19	15 SDA	17 SDA			DIO15	SIF_D		JTAG_TDI	SPISEL2	SPISCLK
DOT	20	17 BPS	19 BPS	FT232RQ[CBUS2]		DIO17	COMP1M	SIF_D	SPISMISO		
RST	21	RRST	21 RST	F 1535K@[CB025]		RESETN					
	22	A1 AI1	23 AI1		-	ADC1	ODIOEL 1	4000			
	23	0 AI2	24 AI2			DIO0	SPISEL1	ADC3			
	24	A2 AI3	22 AI3			ADC2	ODIOELO	4004	DOO		
	25	1 AI4	25 AI4			DIO1	SPISEL2	ADC4	PC0		
	26	2 M2	26 M2			DIO2		RFRX	TIMOCK_GT		
	27	3 M3	27 M3		18	DIO3		RFTX	TIM0CAP		
	28	vec vec	5 VCC								

参照すべきドキュメント

Framework

Network

MAC

Peripheral

ToCoNet SDK マニュアル

ToCoNet_SDK_manual_201406.pdf

IEEE802.15.4 Stack API

Integrated Peripherals API

JN516x Integrated Peripherals API User Guide

JN-UG-3087-JN516x-Integrated-Peripherals-API_1v1.pdf

データシート TWE-Lite

TWD-PDS-TWE001L-JP-1.30.pdf

Data Sheet: JN516x

JN-DS-JN516x-1v3.pdf

IEEE802.15.4 Stack User Guide

http://www.nxp.com/documents/user_manual/JN-UG-3024.pdf

Memory Footprint

↓ RAM

8K used

个 Flash ROM 60K used

まとめ

- ✓ボタン電池による運用ができる。
- ✓距離を飛ばすのは難しい。
- ✓内蔵マイコンのプログラミングはコツがいる。
 - ・フレームワーク
 - ピン配置
 - 参照ドキュメント

おしまい