Forecasting County-wise Micro-Business Density (MBD)

Mar.2023

Project Goal

- What is a micro-business?
 - Businesses with 10 or fewer employees
 - Has an online presence
- Current Models:
 - Leverages available internal and census data
 - Uses econometric approaches
- Motivation:
 - Potential to include additional data
 - Explore feature engineering techniques
 - Using more advanced approaches to improve predictions

Parties of Interest

Commercial Interests

- → Shopify
- → Turbo Tax
- → Office Depot
- → MailChimp
- → Home Depot

Academic Interests

- → Policymakers
- → Economists
- → Social Scientists

Visualization of the Target: Monthly Micro-Business Density and Density Change

Microbusiness density by county on 2019-08-01

Monthly Change in Microbusiness density by county on 2019-09-01

Distribution of the Targets

- The MBD's are not nice and normally distributed, it's heavy-tail-ish.
- Outliers, in red, with high leverage exists.
- Candidate Distributions: f, mielke, nct, betaprime, invgamma

Data Collection & Feature EDA

Types of Features

- Monthly
- Yearly
- Static

Important Features

- **
- Business Tax

Google Trends Features

County-wise queries (7)

"Alameda County Tax"

State-wise queries (17)

- "Tax"
- "How to start a small business"
- "Business loan"

Selected Covid Indicators

National Personal Income

 Hypothesis: average personal income should be a good proxy on the economic impact of covid.

Covid Death Data

- Hypothesis: Number of death and its' Diff contains signal of severity of covid at given time.
- Hypothesis: Pct Diff in Covid death could act as a proxy for how much people care about Covid. (plotted)

• A proxy for how much people care about Covid

ChatGPT into BERT

County-wise queries to ChatGPT's API.

Dimension Reduction

K-Means into
10 & 10 clusters,
then one-hot

PCA with
10 axis

BERT's hidden layer

AutoEncoder
with 10 dims

bullet point or paragraph-wise embedding into tensors

Cluster 9 - "Government_Support":

- There are numerous resources available to help small businesses get started, such as the Small Business Development Center and the Baldwin County Economic Development Alliance.
- Access to resources such as the Blount County Chamber of Commerce, which provides support and resources to local businesses.
- Access to resources such as the Small Business Development Center and the Butler County Chamber of Commerce

ChatGPT Signal Accuracy

- By visual inspection, rarely does ChatGPT make a wrong description about a county. (County checked: Autauga, Orange, Santa Barbara, Alameda, Los Angeles, Iron County Utah, a bunch of Washington counties and a bunch of Jefferson counties.)
- By visual inspection, one in ten or 10% of the county wise description clustering is incorrect.

Yearly Median Rent Features

median rent (1 bed/s) by county for year 2019

median rent (2 bed/s) by county for year 2019

Nearest National University Features

- Tuition
- Enrollment
- Acceptance Rate
- SAT/ACT Scores
- Graduation Rate
- US News Score
- Average Debt at Graduation

Clustering Target Density Correlation

Cluster the correlations between the relative change in density between all counties

Modeling the data

- Used various regression models
 - Linear Regression
 - OLS
 - Lasso
 - Ridge
 - Elastic Net
 - Decision Trees (regression trees)
 - Ensemble of Trees
 - Random Forest
 - Boosting Adaboost, LightGBM
 - Neural Networks (MLP)
- PCA on Feature Space

Ordinary Least Squares (already not too shabby)

Root Mean Squared Error: 0.0716 R-squared: 0.0176, Adjusted R-Squared: 0.012 F-statistic vs. constant model: 3.14, p-value = 3.14e-36

r-statistic vs. constant model. 3.14, p-value - 3.14e-36	tStat	pValue
Remaining Tax Burden per 1 0000fPersonalIncome	6.7726	1.2901e-11
XXCountyRent	4.905	9.3964e-07
XXCountyLoan	4.8919	1.004e-06
National PI	4.5592	5.156e-06
(Intercept)	-4.1756	2.9816e-05
XXCountyInsurance	4.0506	5.1226e-05
XXCountyApartments	3.77	0.00016357
XXCountyBusiness	-3.7004	0.00021567
Public_Employees_Per_10_000_of_Populationfull_timeEquivalent_	-3.5612	0.00036974
XXCountyLoan_pct	-3.5437	0.00039521
Sales_Tax_Burden_per_1_0000fPersonalIncome_	3.5007	0.00046485
XXCountyTax_pct	3.4646	0.00053178
office_pct	-3.4595	0.00054193
GPT_PCA_dim6	-3.0109	0.0026071
GPT_OH_Tough_Labor_Market	-2.8551	0.004305
XXCountyTax	-2.8238	0.0047493
prev_year_excessive_drinking	2.7745	0.0055322
business	2.6869	0.0072167
prev_year_high_school_completion	-2.6743	0.007492
GPT OH Connected Economy	2.6361	0.0083919

Baseline RMSE (Validation) = 0.1599

Baseline RMSE (Test) = 0.0728

:: Model Number	∷ Model Type	:: Preset	∺PCA	:: RMSE (Validation)	RMSE (Test) ↑	
4.3	Linear Regression	Robust Linear	25 numeric components kept	0.072015	0.02767	74
8	Neural Network	Optimizable Neural Network	25 numeric components kept	0.07199	0.02768	81
4.1	Linear Regression	Linear	25 numeric components kept	0.071946	0.02774	41
4.20	Neural Network	Narrow Neural Network	25 numeric components kept	0.071843	0.02810	05
4.21	Neural Network	Medium Neural Network	25 numeric components kept	0.040067	0.02822	27
2.3	Linear Regression	Robust Linear	Disabled	0.07188	0.02825	57
3.3	Linear Regression	Robust Linear	Disabled	0.07188	0.02825	57
4.25	Kernel	SVM Kernel	25 numeric components kept	0.071918	0.02837	76
3.20	Neural Network	Narrow Neural Network	Disabled	0.071479	0.02899	95
4.2	Linear Regression	Interactions Linear	25 numeric components kept	0.07175	0.02912	24
4.26	Kernel	Least Squares Regression	25 numeric components kept	0.07122	0.02967	74
2.1	Linear Regression	Linear	Disabled	0.071359	0.02986	62
3.1	Linear Regression	Linear	Disabled	0.071359	0.02986	62
3.26	Kernel	Least Squares Regression	Disabled	0.070284	0.03013	33
3.21	Neural Network	Medium Neural Network	Disabled	0.039694	0.03172	23
4.22	Neural Network	Wide Neural Network	25 numeric components kept	0.06923	0.03869	94
3.23	Neural Network	Bilayered Neural Network	Disabled	0.040187	0.04137	77
3.22	Neural Network	Wide Neural Network	Disabled	0.066478	0.04760	06
3.24	Neural Network	Trilayered Neural Network	Disabled	0.040166	0.05143	31
3.15	Ensemble	Bagged Trees	Disabled	0.10896	0.06187	72
3.7	Tree	Coarse Tree	Disabled	0.1107	0.0625	52
4.15	Ensemble	Bagged Trees	25 numeric components kept	0.10896	0.06262	25
3.14	Ensemble	Boosted Trees	Disabled	0.10806	0.06288	82
4.7	Tree	Coarse Tree	25 numeric components kept	0.11066	0.06308	84
4.6	Tree	Medium Tree	25 numeric components kept	0.10998	0.06315	52
3.6	Tree	Medium Tree	Disabled	0.10968	0.06370	08
4.14	Ensemble	Boosted Trees	25 numeric components kept	0.10798	0.06426	62
1	Tree	Fine Tree	Disabled	0.10923	0.06519	97
3.5	Tree	Fine Tree	Disabled	0.10923	0.06519	97
7	Ensemble	Optimizable Ensemble	25 numeric components kept	0.10153	0.07654	47
4.5	Tree	Fine Tree	25 numeric components kept	0.10834	0.07989	92
4.24	Neural Network	Trilayered Neural Network	25 numeric components kept	0.035562	0.1045	59
5	Tree	Custom Tree	25 numeric components kept	0.10251	0.1881	17
6	Tree	Optimizable Tree	25 numeric components kept	0.10251	0.1881	17

Preliminary Modeling Conclusions

- Linear Models Works Pretty Well
 - Lasso on PCA data with 30 principal axis had the best cross validated performance
 - Lasso selected 8 PCA features
- More Feature Engineering to be Done
 - Tree based model were expected to perform better but not in reality.
 - Lasso and Elastic net could be better after better timewise stationarilization.
- Modeling on outliers the time axis
 - Current model excludes only spatial outliers
 - Time wise anomalies exist, shown on the next slides

Base Models:

County-wise Spline:

 Good Performance on recent extrapolations, not as much far into the future.

Lasso on PCA performance across time

How well does the model deal with Covid

Simple Hypothesis 1:

 Model takes into account of covid from the features' signals such as personal income, covid death, and pct growth in death rate.

• Simple Hypothesis 2:

 Covid had a lagged effect on microbusinesses, causing a turbulence from 2020-11 to 2020-03 (notable cross-sectional variance from our estimator).

Compared to best baseline (outlier excluded mean)

• On most time stamps, we outperforms the best case baseline estimator.

What's next?

- Include additional features (geospatial)
- Drop smallest x% of counties (currently using 93%)
- Different kinds of clustering (currently only using PCA)
- Better feature engineering (log? inverse?)
- Create multiple models for different clusters/county sizes
- Inspect residuals more closely