References

Ryan Hou

Invalid Date

Table of contents

Pr	eface	eface		
Re	esour	6		
1	Intro	oduction Perspective	7	
	1.2	High Level Ideas	7	
2	Circ	uit Basics	8	
	2.1	Important Constants	8	
	2.2	Common Unit Conversions	8	
	2.3	Charge, Voltage, Current, Power	9	
		2.3.1 Charge (Q)	9	
		2.3.2 Voltage (V)	9	
		2.3.3 Current (I)	9	
		2.3.4 Power (P)	10	
	2.4	Capacitance, Inductance	10	
		2.4.1 Capacitance (C)	10	
		2.4.2 Inductance (L)	10	
	2.5	KVL & KCL	11	
		2.5.1 Kirchhoff's Voltage Law (KVL)	11	
		2.5.2 Kirchhoff's Current Law (KCL)	11	
	2.6	Additional Topics Relevant to CMOS/VLSI	11	
		2.6.1 Small Signal Analysis	11	
		2.6.2 RC Networks	11	
		2.6.3 Noise and Signal Integrity	12	
		2.6.4 Semiconductor Physics Basics	12	
	2.7	PN Junctions	12	
		2.7.1 Built-in Potential	13	
		2.7.2 Depletion Region	13	
		2.7.3 Current-Voltage Relationship	13	
		2.7.4 Junction Capacitance	14	
		2.7.5 Temperature Effects	14	
	2.8	Note	14	

3	High-level Overview	15
	3.1 MOS Transistors	15
	3.2 CMOS Logic	
	3.2.1 Pass Transistors, Transmission Gates	
	3.2.2 Tristates	
	3.2.3 Multiplexers	
	3.3 Sequential Circuits	
	3.3.1 Latches	
	3.3.2 Flip-Flops	
	3.4 Fabrication & Layout	
	3.4.1 Fabrication Process	
	3.4.2 Layout Design Rules	
	3.5 Design Partitioning	
	3.7 Logic Design	
	3.8 Circuit Design	
	3.9 Physical Design	
	3.10 Design Verification	
	3.11 Fabrication, Packaging, and Testing	
4	CMOS Basics	18
5	CMOS Fabrication & Process Technology	19
6	CMOS Capacitance	20
7	Inverters and More Gates	21
8	Delay	22
9	Power	23
10	Interconnect	24
11	Robustness	25
12	? Circuit Simulation	26
13	S Combinational Circuit Design	27
		28
	Sequential Circuit Design	
	Datapath Subsystems	29
16	Array Subsystems	30

17	17 Special-Purpose Subsystems 18 Design Methodology and Tools							
18								
19 Testing, Debugging, and Verification								
20	Summary	34						
21	Interview & Problems 21.1 Interview 21.2 Problems 21.2.1 CMOS 21.2.2 Logic Design	35						
Re	eferences	36						

Preface

Notes on CMOS Integrated Circuits & VLSI.

Resources

Some relevant resources:

- EECS 312 University of Michigan
- EECS 427 University of Michigan
- CMOS VLSI Design Web Supplements
 - Contains supplemental materials e.g. lecture slides, figures, solutions, code, etc
- Digital VLSI Chip Design with Cadence and Synopsys CAD Tools

Textbooks:

- J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits A Design Perspective, Edition: 2. Alexandria, VA: Prentice Hall, 2003
- CMOS VLSI Design: A Circuits and Systems Perspective 4th Edition

1 Introduction

1.1 Perspective

 ${f i}$ Note 1: Definition - Some definition

 \mathbf{Term} is defined as blah blah blah...

This note does \dots

1.2 High Level Ideas

2 Circuit Basics

A brief review of the fundamental concepts of electrical circuits that form the foundation for understanding CMOS and VLSI design.

2.1 Important Constants

Constant	Symbol	Value	Units
Elementary Charge	e	1.602×10^{-19}	С
Boltzmann Constant	k_B	1.380×10^{-23}	m J/K
Room Temperature	T	300	K
Thermal Voltage at 300K	V_T	25.9	mV
Silicon Bandgap	E_q	1.12	eV
Permittivity of Free Space	ϵ_0	8.854×10^{-12}	F/m
Silicon Relative	ϵ_r	11.7	-
Permittivity	·		
Silicon Oxide Relative	ϵ_{ox}	3.9	-
Permittivity			

2.2 Common Unit Conversions

From	То	Conversion
$\overline{\mathrm{eV}}$	Joules	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
Temperature	Thermal Voltage	$V_T = \frac{k_B T}{q}$
Frequency	Time Period	$T = \frac{1}{f}$
Resistance \times Capacitance	Time Constant	$\tau = \dot{R}C$

2.3 Charge, Voltage, Current, Power

2.3.1 Charge (Q)

Electric charge is measured in Coulombs (C). The fundamental unit of charge is the electron charge:

$$Q_e = -1.602 \times 10^{-19} \ \mathrm{C}$$

The movement of charge carriers (typically electrons in circuits) creates current.

2.3.2 Voltage (V)

Voltage is the electric potential difference between two points, measured in Volts (V). Key equations:

$$V = IR$$
 (Ohm's Law)

$$V = \frac{dW}{dQ}$$
 (Work per unit charge)

2.3.3 Current (I)

Current is the rate of charge flow, measured in Amperes (A):

$$I = \frac{dQ}{dt}$$

For sinusoidal signals:

$$I=I_0\sin(\omega t)$$

2.3.4 Power (P)

Power is the rate of energy transfer, measured in Watts (W):

$$P = VI \text{ (instantaneous)}$$

$$P = I^2R \text{ (resistive loss)}$$

$$P = CV^2f \text{ (dynamic CMOS)}$$

$$P_{avg} = \frac{1}{T} \int_0^T p(t) dt \text{ (average)}$$

2.4 Capacitance, Inductance

2.4.1 Capacitance (C)

Capacitance is measured in Farads (F). Key equations:

$$\begin{split} Q &= CV \text{ (charge stored)} \\ I_C &= C \frac{dV}{dt} \text{ (capacitor current)} \\ \tau &= RC \text{ (time constant)} \end{split}$$

For parallel plate capacitors:

$$C = \frac{\epsilon_0 \epsilon_r A}{d}$$

where: - A is plate area - d is plate separation - ϵ_0 is permittivity of free space - ϵ_r is relative permittivity

2.4.2 Inductance (L)

Inductance is measured in Henries (H):

$$V_L = L \frac{dI}{dt}$$

$$\tau_L = \frac{L}{R} \mbox{ (inductive time constant)}$$

$$E = \frac{1}{2} L I^2 \mbox{ (stored energy)}$$

2.5 KVL & KCL

2.5.1 Kirchhoff's Voltage Law (KVL)

The sum of voltages around any closed loop equals zero:

$$\sum_{k=1}^{n} V_k = 0$$

2.5.2 Kirchhoff's Current Law (KCL)

The sum of currents entering a node equals the sum of currents leaving it:

$$\sum_{i=1}^{n} I_{in} = \sum_{i=1}^{n} I_{out}$$

$$\sum_{k=1}^{n} I_{k} = 0 \text{ (node equation)}$$

2.6 Additional Topics Relevant to CMOS/VLSI

2.6.1 Small Signal Analysis

Key parameters and equations:

$$\begin{split} g_m &= \frac{\partial I_D}{\partial V_{GS}} \text{ (transconductance)} \\ r_o &= \frac{\partial V_{DS}}{\partial I_D} \text{ (output resistance)} \\ A_v &= -g_m r_o \text{ (small-signal gain)} \end{split}$$

2.6.2 RC Networks

Time domain analysis:

$$\begin{split} v(t) &= V(1-e^{-t/RC}) \text{ (charging)} \\ v(t) &= Ve^{-t/RC} \text{ (discharging)} \\ t_p &\approx 0.69RC \text{ (propagation delay)} \end{split}$$

2.6.3 Noise and Signal Integrity

Thermal noise power spectral density:

$$S_v(f) = 4k_BTR \; (\mathrm{V^2/Hz})$$

Shot noise current spectral density:

$$S_i(f) = 2qI_D \text{ (A}^2/\text{Hz)}$$

Signal-to-Noise Ratio:

$$SNR = \frac{P_{signal}}{P_{noise}} = \frac{V_{signal,rms}^2}{V_{noise,rms}^2}$$

2.6.4 Semiconductor Physics Basics

Carrier concentration:

$$n_i^2 = N_C N_V e^{-E_g/k_B T}$$

Built-in potential:

$$V_{bi} = V_T \ln(\frac{N_A N_D}{n_i^2})$$

MOSFET threshold voltage:

$$V_{th} = V_{FB} + 2\phi_F + \frac{\sqrt{2\epsilon_s q N_A(2\phi_F)}}{C_{ox}}$$

where:

- V_{FB} is the flatband voltage
- ϕ_F is the Fermi potential
- N_A is acceptor concentration
- C_{ox} is oxide capacitance per unit area

2.7 PN Junctions

The PN junction is fundamental to semiconductor devices and CMOS operation. Key concepts and equations:

2.7.1 Built-in Potential

The built-in potential (V_{bi}) across the junction at equilibrium:

$$V_{bi} = V_T \ln(\frac{N_A N_D}{n_i^2})$$

where:

- N_A is acceptor concentration in p-region
- N_D is donor concentration in n-region
- n_i is intrinsic carrier concentration
- V_T is thermal voltage $(k_B T/q)$

2.7.2 Depletion Region

The depletion width (W) under bias:

$$W = \sqrt{\frac{2\epsilon_s}{q}(\frac{N_A + N_D}{N_A N_D})(V_{bi} - V_A)}$$

where:

- ullet V_A is the applied voltage
- ϵ_s is semiconductor permittivity
- q is elementary charge

2.7.3 Current-Voltage Relationship

The ideal diode equation:

$$I_D = I_S(e^{V_D/V_T} - 1)$$

where:

- I_S is the reverse saturation current
- \bullet V_D is the diode voltage
- V_T is thermal voltage

The saturation current:

$$I_S = qA(\tfrac{D_p}{L_p}p_n + \tfrac{D_n}{L_n}n_p)$$

where:

- D_n, D_n are diffusion coefficients
- L_p, L_n are diffusion lengths
- A is junction area

2.7.4 Junction Capacitance

The junction capacitance has two components:

Depletion capacitance:

$$C_j = \frac{C_{j0}}{\sqrt{1 - V_D/V_{bi}}}$$

Diffusion capacitance:

$$C_d = \tau_T \tfrac{dI_D}{dV_D} = \tau_T \tfrac{I_D + I_S}{V_T}$$

where:

- C_{j0} is zero-bias junction capacitance
- τ_T is transit time

2.7.5 Temperature Effects

Temperature dependence of key parameters:

$$I_S(T) \propto T^3 e^{-E_g/k_BT}$$

$$V_{bi}(T)=V_{bi}(T_0)-\beta(T-T_0)$$

where β is the temperature coefficient.

2.8 Note

Note on Temperature Dependencies

Many parameters in CMOS circuits have significant temperature dependencies. Key relationships include:

- $\begin{array}{l} \bullet \quad \text{Mobility: } \mu(T) \propto T^{-3/2} \\ \bullet \quad \text{Threshold voltage: } V_{th}(T) = V_{th}(T_0) + \alpha (T-T_0) \\ \bullet \quad \text{Leakage current: } I_{leak} \propto T^2 e^{-E_g/2k_BT} \end{array}$

3 High-level Overview

3.1 MOS Transistors

Silicon Lattice

PN Junction

NMOS PMOS

- 3.2 CMOS Logic
- 3.2.1 Pass Transistors, Transmission Gates
- 3.2.2 Tristates
- 3.2.3 Multiplexers
- 3.3 Sequential Circuits
- 3.3.1 Latches
- 3.3.2 Flip-Flops
- 3.4 Fabrication & Layout
- 3.4.1 Fabrication Process
- 3.4.2 Layout Design Rules
- 3.4.2.1 Gate Layout
- 3.4.2.2 Stick Diagrams
- 3.5 Design Partitioning
- 3.6 Architecture
- 3.7 Logic Design
- 3.8 Circuit Design
- 3.9 Physical Design
- 3.10 Design Verification
- 3.11 Fabrication, Packaging, and Testing

4 CMOS Basics

5 CMOS Fabrication & Process Technology

6 CMOS Capacitance

7 Inverters and More Gates

8 Delay

9 Power

10 Interconnect

11 Robustness

12 Circuit Simulation

13 Combinational Circuit Design

Ref (Weste and Harris 2015)

14 Sequential Circuit Design

15 Datapath Subsystems

16 Array Subsystems

17 Special-Purpose Subsystems

18 Design Methodology and Tools

19 Testing, Debugging, and Verification

20 Summary

In summary...

21 Interview & Problems

21.1 Interview

Concepts to know:

21.2 Problems

Common interview problems:

21.2.1 CMOS

21.2.2 Logic Design

References

Weste, Neil HE, and David Harris. 2015. CMOS VLSI Design: A Circuits and Systems Perspective. Pearson Education India.