Blatt 5: Folgen & Reihen

1 Berührpunkte und Häufungspunkte konkret.

Bestimme jeweils alle Berührpunkte und Häufungspunkte der angegebene Teilmengen von \mathbb{R} .

(a)
$$A = \{ \frac{1}{n^2} : 1 \le n \in \mathbb{N} \}$$

(b)
$$B = [a, b) \cup (b, c]$$
 für $a < b < c \in \mathbb{R}$

(c)
$$C = (1, \sqrt{2}) \cap \mathbb{Q}$$

- (d) $D \subseteq \mathbb{R}$ eine beliebige endliche Teilmenge.
- 2 Berührpunkte und Häufungspunkte theoretisch.

Beweise Vo. Prop. $\boxed{1}$ 3.30(ii), genauer zeige für eine Teilmenge $A\subseteq\mathbb{R}$ und $a\in\mathbb{R}$ die folgende Aussage gilt:

a ist Häufungspunkt von $A \iff a$ ist Berührpunkt von $A \setminus \{a\}$

Hinweis. Die schwierigere Richtung ist die Rückrichtung: Mit einer Konstruktion analog zu Vo. $\boxed{1}$ 3.30(i) " \Rightarrow " findest du entsprechende Punkte oder, falls dir das sympathischer ist, eine Folge...

3 Limes vs. Häufungswert.

Sei (a_n) eine reelle Folge. Ziel dieser Aufgabe ist es folgende wichtige Aussage zu zeigen:

- (a_n) konvergiert \iff (a_n) ist beschränkt und hat genau einen Häufungswert
- (a) Zeige die Hinrichtung $,,\Rightarrow$ ".

Anleitung. Die Beschränktheit folgt leicht. Außerdem ist $a := \lim a_n$ ein Häufungswert von (a_n) . Um zu zeigen, dass es keinen weiteren geben kann, nimm an, es gebe eine Teilfolge $(a_{n_k})_k$ mit $a_{n_k} \to b$. Nun bastle aus den Definitionen von Grenz- und Häufungswert einen $\varepsilon/2$ -Beweis, der a = b zeigt.

(b) Zeige die Rückrichtung ,,⇐".

Anleitung. Diesen Beweis führst du am einfachsten indirekt. Also sei a der (einzige) Häufungswert von (a_n) und angenommen $a_n \not\to a$, dann läßt sich aus der Negation der Limesdefinition eine Teilfolge $(a_{n_k})_k$ konstruieren, die "weit weg" von a bleibt. Diese ist aber lt. Vorraussetzung beschränkt, besitzt also nach Bolzano-Weierstraß eine konvergente Teilfolge $(a_{n_k})_l$ (Teilfolge der Teilfolge—uff!). Deren Limes muss aber a sein, und das ist ein Widerspruch.

- 4 Weitere Eigenschaften von Folgen? Kann eine (reelle) Folge (a_n) die folgenden Eigenschaften haben? Wenn ja gib ein Beispiel, wenn nein argumentiere.
 - (a) Hat zwei verschiedene Limiten.
 - (b) Hat zwei verschieden Häufungswerte.
 - (c) Hat einen Limes und einen Häufungswert.
 - (d) Hat einen Limes und zwei Häufungswerte.
 - (e) Hat einen Häufungswert, ist aber nach oben beschränkt.
 - (f) Ist beschränkt aber hat keinen Häufungswert.
- Konvergenz von Reihen Untersuche ob die angegeben Reihen $\sum_{n=1}^{\infty} a_n$ konvergieren.

(a)
$$a_n = \frac{(-1)^n n}{(n+2)(n+1)}$$
 (b) $a_n = \frac{1}{n(n+1)}$ (c) $a_n = \frac{1+n}{n}$

(b)
$$a_n = \frac{1}{n(n+1)}$$

(c)
$$a_n = \frac{1+n}{n}$$

- (d) Wie sieht es jeweils mit absoluter Konvergenz aus?
- | 6 | Absolute Konvergenz von Reihen, 1. Sind die folgenden Reihen absolut konvergent?

(a)
$$\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n+1}}$$
 (b) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$

(b)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

7 Absolute Konvergenz von Reihen, 2. Sind die folgenden Reihen absolut konvergent?

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n}$$

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n}$$
 (b) $\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)^n$