This version: October 25, 2016

1 Hypothesis Testing

A hypothesis is a statement about the parameter space Θ . The null hypothesis Θ_0 is a subset of Θ of interest, typically suggested by some scientific theory. The alternative hypothesis $\Theta_1 = \Theta \backslash \Theta_0$ is the complement of Θ_0 . Hypothesis testing is a decision whether to accept the null hypothesis or to reject it according to the observed evidence.

A test function is a mapping

$$\phi: \mathcal{X}^n \mapsto \{0,1\}\,,$$

where \mathcal{X} is the sample space. We accept the null hypothesis if $\phi(\mathbf{x}) = 0$, or reject it if $\phi(\mathbf{x}) = 1$. The acceptance region is defined as $A_{\phi} = \{\mathbf{x} \in \mathcal{X}^n : \phi(\mathbf{x}) = 0\}$, and the rejection region is $R_{\phi} = \{\mathbf{x} \in \mathcal{X}^n : \phi(\mathbf{x}) = 1\}$. The power function of the test ϕ is

$$\beta_{\phi}(\theta) = P_{\theta}(\phi(\mathbf{X}) = 1) = E_{\theta}(\phi(\mathbf{X})).$$

The power function measures, at a given point, the probability that the test function rejects the null. The size of the test ϕ is a real number

$$\alpha = \sup_{\theta \in \Theta_0} \beta_{\phi} \left(\theta \right).$$

The level of the test ϕ is a value $\alpha \in (0,1)$ such that $\alpha \geq \sup_{\theta \in \Theta_0} \beta_{\phi}(\theta)$, which is often used when it is difficult to attain the exact supremum. The probability of committing Type I error is $\beta_{\phi}(\theta)$ for some $\theta \in \Theta_0$. The probability of committing Type II error is $1 - \beta_{\phi}(\theta)$ for $\theta \in \Theta_1$.

There has been a philosophical debate for decades about the hypothesis testing framework. At present the prevailing framework in statistics education is the frequentist perspective. A frequentist views the parameter as a fixed constant, and they are conservative about the Type I error. Only if overwhelming evidence is demonstrated should a researcher reject the null.

Under the philosophy of protecting the null hypothesis, a desirable test should have a small level. Conventionally we take $\alpha = 0.01$, 0.05 or 0.1. There can be many tests of the correct size.

Example 1. A trivial test function is $\phi(\mathbf{x}) = 1 \{0 \le U \le \alpha\}$, where U is a random variable from a uniform distribution on [0,1]. This test has correct size, but no power.

Denote $\Psi_{\alpha} = \{\phi : \sup_{\theta \in \Theta_0} \beta_{\phi}(\theta) \leq \alpha\}$ as the class of test functions of level smaller than α . A uniformly most powerful test $\phi^* \in \Psi_{\alpha}$ is a test function such that, for every $\phi \in \Psi_{\alpha}$

$$\beta_{\phi^*}(\theta) \ge \beta_{\phi}(\theta)$$

uniformly over $\theta \in \Theta_1$.

Example 2. Suppose a random sample of size 6 is generated from

$$(X_1, ..., X_6) \sim \text{i.i.d.} N(\theta, 1)$$
,

where θ is unknown. We want to infer the population mean of the normal distribution. The null hypothesis is H_0 : $\theta \leq 0$ and the alternative is H_1 : $\theta > 0$. The test function

$$\phi\left(\mathbf{X}\right) = 1\left(\bar{X} \ge 1.64/\sqrt{6}\right)$$

is the most powerful test among all tests of level 0.05. The power function of ϕ^* is $\beta_{\phi^*}(\theta) = \Phi(\sqrt{6}\theta - 1.64)$.

2 Confidence Interval

An interval estimate is a function $C: \mathcal{X}^n \mapsto \{\Theta': \Theta' \subseteq \Theta\}$ that maps a point in the sample space to a subset of the parameter space. The coverage probability of an interval estimator $C(\mathbf{X})$ is defined as $P_{\theta}(\theta \in C(\mathbf{X}))$. The coverage probability is the frequency that the interval estimator captures the true parameter that generates the sample (In the frequentist perspective, the

parameter is fixed while the region is random), but not the probability that θ is inside the given region (In the Bayesian perspective, the parameter is random while the region is fixed conditional on X.)

Exercise 1. Suppose a random sample of size 6 is generated from

$$(X_1,\ldots,X_6)\sim \text{i.i.d. }N\left(\theta,1\right).$$

Find the coverage probability of the random interval

$$\left[\bar{X} - 1.96/\sqrt{6}, \bar{X} + 1.96/\sqrt{6} \right]$$
.

Hypothesis testing and confidence interval are closely related. Sometime it is difficult to directly construct the confidence interval, but easier to test a hypothesis. One way to construct confidence interval is by inverting a corresponding hypothesis testing problem.

Suppose $A_{\phi}(\theta)$ the acceptance region of a test ϕ whose size is α and the null is θ . If $C(\mathbf{x})$ is constructed as

$$C(\mathbf{x}) = \{\theta \in \Theta : \mathbf{x} \in A_{\phi}(\theta)\},\$$

the coverage probability $P_{\theta} (\theta \in C(\mathbf{X})) = 1 - \alpha$.

3 Hypothesis Testing: Application in OLS

3.1 Wald Test

If $\sqrt{n}\left(\widehat{\beta}-\beta\right) \stackrel{d}{\to} N\left(0,\Omega\right)$ where Ω is a $K \times K$ positive definite covariance matrix and R is a $q \times K$ constant matrix, then $R\sqrt{n}\left(\widehat{\beta}-\beta\right) \stackrel{d}{\to} N\left(0,R\Omega R'\right)$. Moreover, if rank (R)=q, then

$$n\left(\widehat{\beta}-\beta\right)'R'\left(R\Omega R'\right)^{-1}R\left(\widehat{\beta}-\beta\right)\stackrel{d}{\to}\chi_q^2.$$

Now we intend to test the null hypothesis $R\beta = r$. Under the null hypothesis, the Wald statistic

$$W_n = n \left(R \widehat{\beta} - r \right)' \left(R \widehat{\Omega} R' \right)^{-1} \left(R \widehat{\beta} - r \right) \stackrel{d}{\to} \chi_q^2$$

where $\widehat{\Omega}$ is a consistent estimator of Ω .

Example 3. In a linear regression

$$y = x_i'\beta + e_i = \sum_{k=1}^{5} \beta_k x_{ik} + e_i.$$

$$E[e_i x_i] = \mathbf{0}_5, \tag{1}$$

where $x_i = (\text{edu}, \text{age}, \text{experience}, \text{experience}^2, 1)'$. To test whether *education* has effect on wage, we specify the null hypothesis $\beta_1 = 0$. Let R = (1, 0, 0, 0, 0).

$$\sqrt{n}\widehat{\beta}_{1} = \sqrt{n}\left(\widehat{\beta}_{1} - \beta\right) = \sqrt{n}R\left(\widehat{\beta} - \beta\right) \stackrel{d}{\to} N\left(0, R\Omega R'\right) \sim N\left(0, \Omega_{11}\right), \quad (2)$$

where Ω_{11} is the (1,1) (scalar) element of Ω . Therefore,

$$\sqrt{n}\frac{\widehat{\beta}_1}{\widehat{\Omega}_{11}^{1/2}} = \sqrt{\frac{\Omega_{11}}{\widehat{\Omega}_{11}}}\sqrt{n}\frac{\widehat{\beta}_1}{\Omega_{11}^{1/2}}$$

If $\widehat{\Omega} \stackrel{p}{\to} \Omega$, then $\left(\Omega_{11}/\widehat{\Omega}_{11}\right)^{1/2} \stackrel{p}{\to} 1$ by the continuous mapping theorem. As $\sqrt{n}\widehat{\beta}_1/\Omega_{11}^{1/2} \stackrel{d}{\to} N\left(0,1\right)$, we conclude $\sqrt{n}\widehat{\beta}_1/\widehat{\Omega}_{11}^{1/2} \stackrel{d}{\to} N\left(0,1\right)$.

Example 1 is a test about a single coefficient, and the test statistic is essentially a t-statistic. Example 2 gives a test about a joint hypothesis.

Example 4. We want to simultaneously test $\beta_1 = 1$ and $\beta_3 + \beta_4 = 2$ in (1). The null hypothesis can be expressed in the general form $R\beta = r$, where the restriction matrix R is

$$R = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

and r = (1, 2)'.

Example 1 and 2 are linear restrictions. In order to test a nonlinear regression, we need the so-called *delta method*.

Theorem 1 (delta method). If $\sqrt{n} \left(\widehat{\theta} - \theta^* \right) \stackrel{d}{\to} N \left(0, \Omega_{K \times K} \right)$, and $f : \mathbb{R}^K \mapsto \mathbb{R}^q$ is a continuous function for some $q \leq K$, then

$$\sqrt{n}\left(f\left(\widehat{\theta}\right) - f\left(\theta^*\right)\right) \xrightarrow{d} N\left(0, \frac{\partial f}{\partial \theta}\left(\theta^*\right) \Omega \frac{\partial f}{\partial \theta}\left(\theta^*\right)'\right).$$

Example 5. In the regression (1), the optimal experience level can be found by setting the first order condition with respective to experience to set, $\beta_3 + 2\beta_4$ experience* = 0. We test the hypothesis that the optimal experience level is 20 years; in other words,

experience* =
$$-\frac{\beta_3}{2\beta_4} = 20$$
.

This is a nonlinear hypothesis. According to Theorem 1, if rank $\left(\frac{\partial f}{\partial \theta}(\theta^*)\right) = q \leq K$, we have

$$n\left(f\left(\widehat{\theta}\right) - f\left(\theta^*\right)\right)' \left(\frac{\partial f}{\partial \theta}\left(\theta^*\right) \Omega \frac{\partial f}{\partial \theta}\left(\theta^*\right)'\right)^{-1} \left(f\left(\widehat{\theta}\right) - f\left(\theta^*\right)\right) \xrightarrow{d} \chi_q^2,$$

where in this example, $\theta = \beta$, $f(\beta) = -\beta_3/(2\beta_4)$. The gradient

$$\frac{\partial f}{\partial \beta}(\beta) = \left(0, 0, -\frac{1}{2\beta_4}, \frac{\beta_3}{2\beta_4^2}\right)$$

Since $\widehat{\beta} \xrightarrow{p} \beta^*$, by Slutsky's theorem, if $\beta_4^* \neq 0$, we have $\frac{\partial}{\partial \beta} f\left(\widehat{\beta}\right) \xrightarrow{p} \frac{\partial}{\partial \beta} f\left(\beta^*\right)$. Therefore, the (nonlinear) Wald test is

$$W_n = n \left(f\left(\widehat{\beta}\right) - 20 \right)' \left(\frac{\partial f}{\partial \beta} \left(\widehat{\beta}\right) \widehat{\Omega} \frac{\partial f}{\partial \beta} \left(\widehat{\beta}\right)' \right)^{-1} \left(f\left(\widehat{\beta}\right) - 20 \right) \stackrel{d}{\to} \chi_1^2.$$

I did not teach the LM and LR tests below. Do not read.

3.2 Lagrangian Multiplier Test

Restricted least square

$$\min_{\beta} (y - X\beta)' (y - X\beta) \text{ s.t. } R\beta = r.$$

Turn it into an unrestricted problem

$$L(\beta, \lambda) = \frac{1}{2n} (y - X\beta)' (y - X\beta) + \lambda' (R\beta - r).$$

The first-order condition

$$\frac{\partial}{\partial \beta} L = -\frac{1}{n} X' \left(y - X \tilde{\beta} \right) + \tilde{\lambda} R = -\frac{1}{n} X' e + \frac{1}{n} X' X \left(\tilde{\beta} - \beta^* \right) + R' \tilde{\lambda} = 0.$$

$$\frac{\partial}{\partial \beta} L = R \tilde{\beta} - r = R \left(\tilde{\beta} - \beta^* \right) = 0$$

Combine these two equations into a linear system,

$$\begin{pmatrix} \widehat{Q} & R' \\ R & 0 \end{pmatrix} \begin{pmatrix} \widetilde{\beta} - \beta^* \\ \widetilde{\lambda} \end{pmatrix} = \begin{pmatrix} \frac{1}{n} X' e \\ 0 \end{pmatrix}.$$

$$\begin{pmatrix} \tilde{\beta} - \beta^* \\ \tilde{\lambda} \end{pmatrix} = \begin{pmatrix} \hat{Q} & R' \\ R & 0 \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{n} X' e \\ 0 \end{pmatrix}.$$

$$= \begin{pmatrix} \hat{Q}^{-1} - \hat{Q}^{-1} R' \left(R \hat{Q}^{-1} R' \right)^{-1} R \hat{Q}^{-1} & \hat{Q}^{-1} R' \left(R \hat{Q}^{-1} R' \right)^{-1} \\ \left(R \hat{Q}^{-1} R' \right)^{-1} R \hat{Q}^{-1} & - \left(R \hat{Q}^{-1} R' \right)^{-1} \end{pmatrix} \begin{pmatrix} \frac{1}{n} X' e \\ 0 \end{pmatrix}.$$

We conclude that

$$\sqrt{n}\tilde{\lambda} = \left(R\hat{Q}^{-1}R'\right)^{-1}R\hat{Q}^{-1}\frac{1}{\sqrt{n}}X'e$$

$$\sqrt{n}\tilde{\lambda} \Rightarrow N\left(0, \left(RQ^{-1}R'\right)^{-1}RQ^{-1}\Omega Q^{-1}R'\left(RQ^{-1}R'\right)^{-1}\right).$$

Let
$$W = (RQ^{-1}R')^{-1}RQ^{-1}\Omega Q^{-1}R'(RQ^{-1}R')^{-1}$$
, we have
$$n\tilde{\lambda}'W^{-1}\tilde{\lambda} \Rightarrow \chi_q^2.$$

If homosked astic, then $W=\sigma^2\left(RQ^{-1}R'\right)^{-1}RQ^{-1}QQ^{-1}R'\left(RQ^{-1}R'\right)^{-1}=\sigma^2\left(RQ^{-1}R'\right)^{-1}$.

$$\frac{n\tilde{\lambda}'RQ^{-1}R'\tilde{\lambda}}{\sigma^2} = \frac{1}{n\sigma^2}\left(y - X\tilde{\beta}\right)'XQ^{-1}X'\left(y - X\tilde{\beta}\right) = \frac{1}{n\sigma^2}\left(y - X\tilde{\beta}\right)'P_X\left(y - X\tilde{\beta}\right).$$

3.3 Likelihood-Ratio test

For likelihood ratio test, the starting point can be a criterion function $L(\beta) = (y - X\beta)'(y - X\beta)$. It does not have to be the likelihood function.

$$L\left(\widetilde{\beta}\right) - L\left(\widehat{\beta}\right) = \frac{\partial L}{\partial \beta} \left(\widehat{\beta}\right) + \frac{1}{2} \left(\widetilde{\beta} - \widehat{\beta}\right)' \frac{\partial L}{\partial \beta \partial \beta} \left(\dot{\beta}\right) \left(\widetilde{\beta} - \widehat{\beta}\right) = 0 + \frac{1}{2} \left(\widetilde{\beta} - \widehat{\beta}\right)' \widehat{Q} \left(\widetilde{\beta} - \widehat{\beta}\right).$$

From the derivation of LM test, we have

$$\sqrt{n} \left(\tilde{\beta} - \beta^* \right) = \left(\hat{Q}^{-1} - \hat{Q}^{-1} R' \left(R \hat{Q}^{-1} R' \right)^{-1} R \hat{Q}^{-1} \right) \frac{1}{\sqrt{n}} X' e
= \frac{1}{\sqrt{n}} \left(X' X \right) X' e - \hat{Q}^{-1} R' \left(R \hat{Q}^{-1} R' \right)^{-1} R \hat{Q}^{-1} \frac{1}{\sqrt{n}} X' e
= \sqrt{n} \left(\hat{\beta} - \beta^* \right) - \hat{Q}^{-1} R' \left(R \hat{Q}^{-1} R' \right)^{-1} R \hat{Q}^{-1} \frac{1}{\sqrt{n}} X' e$$

Therefore

$$\sqrt{n}\left(\tilde{\beta} - \hat{\beta}\right) = -\widehat{Q}^{-1}R'\left(R\widehat{Q}^{-1}R'\right)^{-1}R\widehat{Q}^{-1}\frac{1}{\sqrt{n}}X'e$$

and

$$n\left(\tilde{\beta}-\beta\right)'\hat{Q}\left(\tilde{\beta}-\hat{\beta}\right) = \frac{1}{\sqrt{n}}e'X\hat{Q}^{-1}R'\left(R\hat{Q}^{-1}R'\right)^{-1}R\hat{Q}^{-1}\hat{Q}\hat{Q}^{-1}R'\left(R\hat{Q}^{-1}R'\right)^{-1}R\hat{Q}^{-1}\frac{1}{\sqrt{n}}X'e$$

$$= \frac{1}{\sqrt{n}}e'X\hat{Q}^{-1}R'\left(R\hat{Q}^{-1}R'\right)^{-1}R\hat{Q}^{-1}\frac{1}{\sqrt{n}}X'e$$

In general, it is a quadratic form of normal distributions. If homoskedastic, then

$$\left(R\widehat{Q}^{-1}R'\right)^{-1/2}R\widehat{Q}^{-1}\frac{1}{\sqrt{n}}X'e$$

has variance

$$\sigma^{2} \left(RQ^{-1}R' \right)^{-1/2} RQ^{-1}QQ^{-1}R' \left(RQ^{-1}R' \right)^{-1/2} = \sigma^{2}I_{q}.$$

We can view the optimization of the log-likelihood as a two-step optimization with the inner step $\sigma = \sigma(\beta)$. By the envelop theorem, when we take derivative with respect to β , we can ignore the indirect effect of $\partial \sigma(\beta)/\partial \beta$.