REMARKS

Claims 1 and 4 have been objected to for certain informalities as noted on page 2 of the Office Action. As the Examiner will note, claim 1 has been amended to remove the informalities and claim 4 has been cancelled in the present application. Accordingly, it is believed that the Examiner's objections have been eliminated.

Claims 18-20 have been rejected by the Examiner under 35 U.S.C. § 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which Applicants regard as the invention. Since claims 18-20 have been cancelled from the present application, it is believed that this rejection has been eliminated.

Claims 7 and 9 have been objected to as being inaccurate because the contradict the dimension recited in claim 1. As the Examiner will note, claims 7 and 9 have been amended to eliminate the inaccuracy, and accordingly, it is believed that this objection has been eliminated.

Claims 1-3, 8, 10-15 and 18 have been rejected by the Examiner under 35 U.S.C. § 102(b) as being anticipated by the acknowledged prior art. In addition, claims 19-20 have been rejected by the Examiner under 35 U.S.C. § 103(a) as being unpatentable over Winchell '578. These rejections are respectfully traversed.

It is noted, with appreciation, that the Examiner has indicated that claims 4-6, 7, 9 and 16-18, although objected to as being dependent upon a rejected base claim, would be allowable if rewritten in independent for including all of the limitations of the base claim and any intervening claims. As the Examiner will note, original claim 1 has been amended to include the allowable subject matter of claim 6, and correspondingly claim 6 has been

cancelled from the present application. Also, the allowable subject matter of claim 4 has been combined with original claim 1 and rewritten as newly added claim 21. The allowable subject matter of claim 7 has been added to claim 1 and rewritten as newly added claim 22. The allowable subject matter of claim 9 has been combined with claim 8 and added to claim 1 and rewritten as newly added claim 23. Newly added claim 24 represents a substantial combination of original claim 1 and claim 7 with some minor variations thereof. Newly added claim 25 has been added to the present application to reflect a combination of a magnetic recording/reproducing apparatus containing the clutch device of the present invention. All of the remaining claims in the present application have been amended so as to be dependent from claims which the Examiner has indicated as containing allowable subject matter.

Accordingly, in view of the amendments made to the claims as discussed hereinabove, it is believed that the present application is in condition for allowance. Thus, reconsideration of the objections and rejections and allowance of the claims of the present application are respectfully requested.

Conclusion

Should there be any outstanding matters that need to be resolved in the present application, the Examiner is respectfully requested to contact the undersigned at the telephone number of the undersigned below, to conduct an interview in an effort to expedite prosecution in connection with the present application.

Pursuant to the provisions of 37 C.F.R. §§ 1.17 and 1.136(a), the Applicants hereby petition for an extension of two (2) months to August 13, 2003 in which to file a reply to the Office Action. The required fee of \$410.00 is enclosed herewith.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. §§ 1.16 or 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

P.O. Box 747

Falls Church, VA 22040-0747

oseph A. Kolasch, #22,463

(703) 205-8000

Attachments: Marked-Up Copy of Specification

JAK:bmp/bsh

0630-1388P

Clean Copy of Specification

A CLUTCH DEVICE FOR MAGNETIC RECORDING/REPRODUCING APPARATUS

BACKGROUND OF THE INVENTION

5

10

15

20

25

1. Field of the Invention

The present invention relates to a magnetic recording/reproducing apparatus, and in particular to a clutch device for a magnetic recording/reproducing apparatus which is capable of transmitting a power for traveling regularly conveying a tape, regularly regardless of a the quantity of the tape, wound around a reel.

2. Description of the Prior Art

Figure 1 illustrates a tape travelling path conveying structure of a general magnetic recording/reproducing apparatus.

As shown in Figure 1, a supplying reel driving body 1 and a winding reel driving body 21 are installed to drive a supplying reel (not shown) and a winding reel (not shown) of a tape cassette (not shown) at one side of a main chassis (C).

A plurality of posts and guide rollers are installed provided on the main chassis (C) to guide travelling the path of a tape (T) released from a tape cassette.

A tension post 3 for controlling a <u>the</u> tensile force of a <u>the</u> travelling tape (T) is installed at <u>on</u> a tension arm 4.

The tension arm 4 is rotated at a predetermined angle according to the tension of the tape (T) on the main chassis (C) centering around a shaft pin 2, for on which the tension arm 4 is elastically supported by a spring 5.

The tape (T) having passed the tension post 3 is guided by a guide post 6 and transmitted to a full width erasing head 7.

The full width erasing head 7 removes, in advance, a signal which has been recorded on the tape in a recording mode.

An inertia roller is installed at a position past the full width erasing head 7 to guide the travelling path of the tape (T).

5

10

15

20

Next, the tape (T) is guided by guide posts 10 and 11 of the supplying and winding side which are moved along loading paths formed at both sides of a rotational head drum 9.

The guide posts 10 and 11 draws draw the tape (T) from the inside of the tape cassette, the <u>a</u> position indicated in <u>by</u> a dotted line as shown in Figure 1, so as to be wound and traveled.

A supplying slant post 12 and a winding slant post 13 are provided next to the guide posts 10 and 11 toward and in the direction of the rotational head drum 9, so as to guide the traveling conveyance of the tape (T).

The guide posts 10 and 11 and the slant posts 12 and 13 are installed on a respective supplying and winding slant bases 14 and 15 and moved along the loading path.

As shown in Figure 1, the rotational head drum 9, on which the tape (T) is wound and traveled conveyed, is provided with a rotational head (not shown) for reading a signal recorded on the tape (T) or <u>for</u> recording a signal.

The tape (T) passes the rotational head drum 9 and the slant post 13 and the guide post 11 of the winding side and then passes the audio control head 16.

The audio control head 16 performs deleting, recording deletes, records and

reproducing of reproduces an audio signal, and recording records and reproducing reproduces a control signal.

A guide post 17 is provided on the main chassis (C), at an adjacent location of to the audio control head 16 to control for controlling the traveling height of the tape (T).

5

10

15

20

25

A capstan shaft 18 for providing a traveling force to the tape (T) is installed at a position passing past the guide post 17. The capstan shaft 18 is an output shaft of a capstan motor (not shown) installed at the opposite face of the main chassis (C), and a the traveling direction of the tape (T) is determined depending on by the rotational direction of the capstan motor.

A pinch roller 19 is installed selectively installed to tightly-attached to tightly engage the capstan shaft 18 to provide a force for pulling the tape (T).

A winding post 20 is provided at an adjacent to the location of the pinch roller 19 and the capstan shaft 18. A winding arm (not shown) is installed and moved at the winding post 20.

Between the supplying reel driving body 1 and the winding reel driving body 21, a clutch assembly 22 is installed to drive the supplying supply reel or the winding reel at a certain torque, regardless of the amount of the tape (T) wound on the supplying reel or the winding reel, upon receipt of a driving force received from the capstan motor.

An idler gear 24 is installed at a front end of an idler arm 25 which is coaxially installed with the clutch assembly 22. The idler gear 24 is adopted to selectively connected to engage either the supplying supply reel driving body 1 or the winding reel driving body 21 for transferring a driving force thereto upon receipt of a the driving force from the clutch assembly 22.

A tension brake 27 is installed wound on the supplying reel driving body 1 with its both of its ends fixed at to the tension arm 4. The tension brake 27 controls the rotational speed of the supplying reel driving body 1 according to the operation of the tension arm 4, thereby controlling a the tension of in the tape (T).

The construction of the clutch assembly 22 will be described in detail with reference to accompanying Figures 2 and 3.

5

10

15

20

25

As depicted in Figures 2 and 3, a centrical central shaft 30 is installed on the main chassis C. A driving pulley 32d is installed so as to rotate centering around the centrical central shaft 30. A belt 31 recieiving a which receives power from the capstan motor is wound around the driving pulley 32 and it receives a rotatinal 32d for transferring the rotational force of the capstan motor. A cyllindrcal clutch holder 34 is installed to on the driving pulley 32.

And, A an up/down gear 36 is installed to on the centrical central shaft 30 on the same axis as the driving pulley 32d. The up/down gear 36 transmits a the power of from the capstan motor by selectively engaging with the idler gear 24. Clutch springs 18, 18' are installed to the up/down gear 36. The clutch springs 18, 18' are wound around the outer circumferential surface of the cylindrical clutch holder 34. Herein, the lower spring 18 and the upper spring 18' are wound around in the opposite direction directions.

Accordingly, according to the rotational direction of the driving pulley 32d, for example, when the lower spring 18 is locked and the upper spring 18' rubs against the surface of the clutch holder 34, a slip occurs, accordingly traveling occurs. Accordingly, the movement of the tape (T) can be performed with a regular torque regardless of a the quantity of the tape (T) wound around the reel.

In the meantime, a first gear portion 37 and a second gear portion 37' are formed at on the up/down gear 36, the first and the second gear portions 37, 37' reduce reducing and transmit the transmitting power by respectively and selectively engaging with gear portions of the idler gear 24.

The idler gear 24 is <u>rotatably</u> installed on the front end portion of the idler arm 25, <u>installed rotatable</u> centering around the <u>centrical central</u> shaft 30, each gear portion (not shown) selectively engaging with the first and the second gear portions 37, 37' of the up/down gear 36 is formed at the idler gear 24. The idler gear 24 transmits the power of the capstan motor to the supplying reel and the winding reel by selectively engaging with the <u>supplying supply</u> reel body 1 and the winding reel body 21.

However, the above-mentioned conventional magnetic recording/reproducing apparatus has below the following problems.

The clutch springs 18, 18' are <u>selectively</u> used for <u>traveling of conveying</u> the tape (T) with a regular tension, regardless of a <u>the</u> quantity of the tape (T) wound aounrd <u>around</u> the <u>supplying supply</u> reel and the winding <u>reel</u>, <u>herein the clutch springs 18, 18' are selectively used reel</u> in accordance with a traveling direction of the tape (T).

In <u>this</u> use of <u>the</u> clutch springs 18, 18', a production <u>cost is costs are</u> increased due to <u>lots the large amount</u> of construction parts. In addition, <u>an the</u> operation efficiency of <u>an the</u> assembly process is <u>lowered reduced</u>.

SUMMARY OF THE INVENTION

5

10

15

20

In order to solve above-mentioned problems, it is an object of the present invention to provide a clutch device for a magnetic recording/reproducing apparatus which is capable of reducing a production cost and improving an the efficiency of an the assembly operation by minimizing the number of components.

5

10

15

20

In order to achieve the above-mentioned object, a clutch device for a magnetic recording/reproducing apparatus eomprises is provided which includes a rotating eentrical central shaft installed on a main chassis; a driving pulley installed to on the rotating eetnrical shaft, rotating central shaft which rotates by receiving a power of from a driving source and having a cylindrical pulley holder portion; an up/down gear having containing a cylindrical gear holder unit having an outer diameter smaller than an inner diameter of the pulley holder portion and being ascendable/descendable along the a rotating centrical central shaft; and a clutch spring placed between the inner surface of the pulley holder portion and the outer surface of the gear holder unit and for selectively transmitting a power with a certain torque from the driving pulley to the up/down gear in accordance with the rotational direction of the driving pulley.

The clutch spring has a coil spring structure, with the end of the clutch spring is contacted to contacting the inner surface of the pulley holder portion, and the other end of the clutch spring is contacted to contacting the outer surface of the gear holder unit.

A certain Certain portions of the pulley holder portion and the gear holder unit are formed so as to project out toward the clutch spring in order to contact with engage the clutch spring.

The gear holder unit includes an outer cylindrical portion having an inner diameter larger than an inner diameter of the pulley holder portion and connected to the pulley holder portion.

The driving pulley and the up/down gear respectively include an engaging means in order to rotate together by being meshed with each other which enables them to mesh and rotate together when the up/down gear is transferred toward the driving pulley.

5

10

15

20

The driving pulley and the up/down gear respectively include a movement restriction means restricting the up/down gear not to from moving over in a specific range when the up/down gear moves in a direction separated from the driving pulley.

The up/down gear is constructed with a gear unit having a large gear and a small gear and the <u>a</u> gear holder unit, and the gear unit and the gear holder unit are combined with each other.

A boss portion is formed at the center of the gear unit, with the large gear is being formed at a disc-shaped portion extended which extends from the boss portion, and the portion. The small gear having which has a diameter smaller than a the diameter of the large gear is formed at the side of the disc-shaped portion.

A cylindrical holder supporting portion is formed at the other side of the gear unit so as to support the gear holder unit.

The gear holder unit is constructed with an inner cylinder cylindrical portion and an outer cylinder cylindrical portion, and the clutch spring is contacted to contacts the inner cylinder cylindrical portion, and an engaging rib is formed at the outer cylindrical portion.

The inner cylindrical portion has a hook structure so as to engage for engaging with the driving drive pulley.

A driving The drive pulley of a clutch device for a magnetic recording/reproducing apparatus comprises includes a pulley body formed as a disc shape and with a belt is wound around the outer circumference thereof; a boss portion combined with a rotating centrical central shaft; a bridging bridge portion projected so as to restrict a the movement of an up/down gear; a pulley holder portion at which having an inner surface in contact with a clutch spring is centacted to its inner surface; and an engaging rib combined with an up/down gear so as to rotate for rotating together; wherein the boss portion, the bridging portion, the pulley holder portion and the engaging rib are formed as in a cylindrical shape and orderly placed positioned from the center of the pulley body.

5

10

15

20

25

A clutch spring of a clutch device for a magnetic recording/reproducing apparatus comprises includes an inner contacting portion formed at a certain portion, contacted to for engaging an up/down gear and having respectively lots of the number a plurality of windings; an outer contacting portion placed at the other portion, contacted to for engaging a driving drive pulley and having respectively lots of the number a plurality of windings; and a connecting portion connecting the inner contacting portion and the outer contacting portion and having the number containing a plurality of windings less than those of the inner contacting portion and the outer contacting portion.

A <u>The</u> diameter of the inner contacting portion is formed so as to be smaller than a <u>the</u> diameter of the outer contacting portion.

Accordingly, a clutch device for a magnetic recording/reproducing apparatus in accordance with the present invention is capable of reducing a

production cost and improving an the efficiency of an assembly operation by minimizing the number of components.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

Figure 1 is a plan view showing a tape traveling conveying structure of a general magnetic recording/reproducing apparatus;

Figure 2 is a sectional view illustrating a <u>the</u> structure of a clutch device for the magnetic recording/reproducing apparatus taken along the line A-A of Figure 1;

Figure 3 illustrates, in detail, a <u>the</u> combination structure of a <u>the</u> clutch holder and a the spring of Figure 2;

Figure 4 is a sectional view illustrating a clutch device for a magnetic recording/reproducing apparatus in accordance with the present invention;

Figure 5 is a sectional view illustrating a combination structure of a driving drive pulley, an up/down gear and a clutch spring;

Figure 6 is a sectional view illustrating a <u>the</u> structure of a clutch spring of the clutch device in accordance with the present invention; and

Figures 7A, 7B, 8a 8A and 8B are state diagrams illustrating the operation of the clutch device in accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Hereinafter, the preferred embodiments of a clutch device for a magnetic recording/reproducing apparatus in accordance with the present invention will be described with reference to accompanying drawings.

There Although there may be a plurality of embodiments of a magnetic recording/reproducing apparatus in accordance with the present invention, hereinafter the preferred embodiment will be described.

5

10

15

20

25

As depicted in Figure 4, a clutch assembly 60 is installed on a main chassis 50. In traveling of conveying a tape T by transmitting a power provided from a capstan motor to a supplying supply reel and a winding reel, the clutch assembly 60 performs the traveling conveyance of the tape T with a regular tension, regardless of a the quantity of the tape T wound around the supplying supply reel and the winding reel.

In the structure of the clutch assembly 60, a centrical central shaft 62 is formed on the main chassis 50. A driving pulley 64 is rotatably installed to at the centrical central shaft 62 so as to be rotatable. The driving pulley 64 receives a power transmitted from the capstan motor through a belt 65, and a cylindrical pulley holder 66 is formed at the inside of the driving pulley 64 on the same axis as the centrical central shaft 62. And, an An engaging rib 68 is formed on the driving pulley 64, corresponded to the exterior of to the pulley holder 66.

An up/down gear 70 is installed to the centrical central shaft 62 so as to move in an axial direction along the centrical central shaft 62. A sliding hole 72 in which the centrical central shaft 62 penetrates is formed at the center of the up/down gear 70. A large gear 74 and a small gear 75 are formed at on the up/down gear 70 in order to transmit the power received from the driving pulley 64 to an idler gear 102. The large gear 74 engages with the small gear 106 of the

idler gear 102 in a fast traveling mode, and the smaller gear 75 engages with the large gear 104 of the idler gear 102 in a normal traveling mode in order to transmit the for transmitting power.

A gear holder 76 is formed at the up/down gear 70 so as to face with the pulley holder 66 of the driving drive pulley 64. The gear holder 76 has a cylindrical shape in which an inner cylindrical portion 76b and an outer cylindrical portion 76a having the same axis as the centrical shaft 62 are connected to each other. The inner cylindrical portion 76b of the gear holder 76 is inserted into the pulley holder 66 so as to be ascendable. Accordingly, the outer diameter of the inner cylindrical portion 76b of the gear holder 76 is formed so as to be smaller than the inner diameter of the pulley holder 66.

5

10

15

20

25

And, an An engaging rib 78 is formed at the outer cylindrical portion 76a of the gear holder 76 in order to rotate the up/down gear 70 and the driving drive pulley 64 as one body in the fast traveling mode by engaging with them when the up/down gear 70 moves toward the driving drive pulley 64.

The <u>driving drive</u> pulley 64 includes a movement restriction means in order to restrict the up/down gear 70 not to <u>moving move</u> over a specific range when the up/down gear 70 moves in a direction separated from the <u>driving drive</u> pulley 64.

In more detail, a cylindrical bridging portion 64b is formed so as to project into the gear holder unit 76, and the movement restriction means is formed so as to engage the bridging portion 64b with the inner cylindrical portion 76b of the gear holder 76 as a hook structure.

A clutch spring 80 is installed between the driving drive pulley 64 and the up/down gear 70. The clutch spring 80 is constructed as a coil spring structure. As depicted in Figure 6, in the clutch spring 80, an outer contacting portion 82 is

formed at the lower portion thereof so as to contact to the inner surface of the pulley holder 66 of the driving pulley 64, and an 64. The inner contacting portion 84 is formed at the upper portion so as to contact to the outer surface of the gear holder 76. And, the The outer contacting portion 82 and the inner contacting portion 84 are connected to each other through a connecting portion 86.

5

10

15

20

In the connecting portion 86, connecting the outer contacting portion 82 and the inner contacting portion 84 in order to form the clutch spring 80 as one body, the number of windings is less than those of the outer contacting portion 82 or the inner contacting portion 84.

The clutch spring 80 is wound when it is rotated in a certain one direction and is unwound when it is rotated in the other direction, the direction. The outer contacting portion 82 and the inner contacting portion 84 are respectively contacted to in contact with the inner surface of the pulley holder 66 and the outer surface of the gear holder 76, respectively.

Accordingly, when the driving pulley 64 rotates in a certain direction, the outer contacting portion 82 and the pulley holder 66 are closely contacted contact each other, while the contact of the inner contacting portion 84 and the gear holder 76 is loosened, accordingly loosened. Accordingly a specific torque can be is transmitted by a slip. When the driving pulley 64 rotates in the other direction, the inner contacting portion 84 and the gear holder 76 are closely contacted, contact each other and the contact of between the outer contacting portion 82 and the pulley holder 66 is loosened, accordingly loosened. Accordingly, a specific torque can be is transmitted by a slip.

Herein, in the pulley holder 66 and the gear holder 76, the inner portion 66a and the outer portion 76c are formed so as to project toward the clutch spring 80 in order to smoothly contact to the clutch spring 80 smoothly.

In the meantime, the driving pulley 64, the up/down gear 70 and the clutch spring 80 are described in more detail with reference to accompanying Figures 5 and 6.

5

10

15

20

25

First, the driving drive pulley 64 includes a pulley body 64a having a disc shape in which a belt 54 is wound on the outer circumference, a boss portion 64c combined with the rotation centrical central shaft 62, the a bridging portion 64b projecting in order to restrict the movement of the up/down gear 70 by combining with the inner cylindrical portion 76b of the up/down gear 70 as a hook structure, the a pulley holder 66 with its inner surface is contacted to in contact with the clutch spring 80, and the an engaging rib 68 combined with the up/down gear 70 so as to enable them to rotate together.

The boss portion 64c, the bridging portion 64b, the pulley holder 66 and the engaging rib 68 have a cylindrical shape and <u>are</u> orderly placed from the center of the pulley body 64a.

Next, the up/down gear 70 includes a gear unit 71 having a large gear 74 and a small gear 75 and the gear holder 76, and the gear unit 71 and the gear holder 76 are combined with each other.

In the gear unit 71, a boss portion 73 having a sliding hole 72 is formed at the centrical central portion, the <u>a</u> large gear 74 is formed at the disc-shaped portion extended from the boss portion 73, and the <u>a</u> small gear 75 having a diameter smaller than a diameter of the large gear 74 is projected projects from the side of the disc-shaped portion.

In addition, a cylindrical holder supporting portion 77 is formed at the gear unit 71 so as to be 71, opposite to the small gear 75 in order to support the gear holder 76.

Next, in In the clutch spring 80, as depicted in Figure 6, a the diameter D1 of the inner contacting portion 84 is smaller than a the diameter D2 of the outer contacting portion 82.

5

10

15

20

In the meantime, a converting lever 90 is installed on the main chassis 50 in order to ascend and descend the up/down gear 70. The converting lever 90 is operated by an additional driving member (not shown). An idler arm 100 is installed so as to rotate at a certain angle centering around the centrical central shaft 62. An idler gear 102 is installed at the idler arm 100. A large gear 104 and a small gear 106 are formed at the idler gear 102, accordingly 102. Accordingly the idler gear 102 can receive the receives power by engaging with the small gear 75 and the large gear 74 of the up/down gear 70.

As depicted in Figure 4, a reference numeral 110 is a supplying supply reel body for operating a supplying the supply reel of a tape, a tape. A slave gear 112 which selectively engaging engages with the large gear 102 of the idler gear 102 is formed at the supplying supply reel body 110. A winding reel body is formed at the opposite side of the supplying supply reel body 110, it is abridged in Figure 4.

Hereinafter, the <u>The</u> operation of the clutch device for the <u>a</u> magnetic recording/reproducing apparatus in accordance with the present invention will <u>now</u> be described in detail.

The clutch assembly 60 transmits a regular torque to the supplying supply reel body 110 and the winding reel body (not shown) for traveling of a conveying

the tape T with a regular tension, regardless of a the quantity of the tape T wound around the supplying supply reel or the winding reel.

In more detail, when the rotational force of the capstan motor is transmitted through the belt 65, the power is transmitted through the driving drive pulley 64, the clutch spring 80, the up/down gear 70 and the idler gear 102.

5

10

15

20

The power transmission process will be described with reference to accompanying Figures 7A, 7B, 8A and 8B.

For example, as depicted in Figures 7A and 7B, when the driving pulley 64 rotates in the counter clockwise direction, when the rotational direction of the driving pulley 64 is the same with the winding direction of the clutch spring 80 (shortening a diameter), the inner contacting portion 84 of the clutch spring 80 is closely-contacted to in close contact with the exterior of the gear holder 76, the and contact of the outer contacting portion 82 of the clutch spring 80 with the inner surface of the pulley holder 66 is loosened (It This is exaggerated in Figures 7A and 7B).

Then, a slip occurs between the outer contacting portion 82 and the pulley holder 66, a 66 so that regular power can be transmitted.

In the meantime, as depicted in Figures 8A and 8B, when the driving pulley 64 rotates in the clockwise direction, the diameter of the clutch spring 80 is lengthened. Herein, the inner contacting portion 84 is loosened from the gear holder 76, so that a slip occurs between them, accordingly a there-between.

Accordingly, specific power can be transmitted. And, transmitted the outer contacting portion 82 is closely contacted to in close contact with the inner surface of the pulley holder 66.

In the meantime, as depicted in Figure 4, the converting lever 90 is rotatively installed on the main chassis 50. In more detail, the end of the converting lever 90 is hinge-connected to the main chassis 50, and the other end of the converting lever 90 is placed on a protrusion portion 79 projected out projecting from the outer circumference of the outer cylindrical portion 76a of the gear holder 76.

5

10

15

20

25

When the converting lever 90 is rotated at the hinge portion by an additional driving member (not shown) installed to <u>on</u> the main chassis 50, the end of the converting lever 90 rotates downwardly. Accordingly, it <u>pushes</u> the protrusion portion 79 <u>is pushed</u>, the gear holder 76 moves downwardly in Figure 4, and the engaging rib 78 of the gear holder 76 combines with the engaging rib 68 of the driving pulley 64. Herein, the <u>connection connecting</u> portion 86 of the clutch spring 80 generates an elastic force moving the gear holder 76 upwardly while being compressed. It <u>This</u> is described in Figure 5.

Accordingly, the rotational force of the driving pulley 64 is directly transmitted to the gear holder 76 through the engaging ribs 68, 78 without transmitting the torque of the clutch spring 80.

As described clutch assembly above. in а for magnetic recording/reproducing apparatus in accordance with the present invention, the interior of the upper portion and the exterior of the lower portion of a clutch spring are respectively contacted to in contact with a gear holder of an up/down gear and a pulley holder of a driving pulley, a pulley. The position at which a slip occurs is varied according to a the rotational direction of the driving pulley, and a regular torque can be transmitted. Accordingly, a torque adjustment according to the twoway rotation of the riving driving pulley can be performed with one spring.

Accordingly, a clutch device for a magnetic recording/reproducing apparatus in accordance with the present invention can reduce a production cost and simplify an the assembly process by minimizing the number of components.

ABSTRACT

5

10

15

In a A clutch device for a magnetic recording/reproducing apparatus for transmitting a power for traveling of a tape conveying regardless of a the quantity of the tape wound around a reel, a clutch device for a magnetic recording/reproducing apparatus comprises including a rotating centrical central shaft installed on a main chassis, a driving drive pulley installed connected to the rotating cetnrical central shaft, and having a cylindrical pulley holder portion, rotating said drive pulley being rotated by receiving a power of from a driving source, and having a cylindrical pulley holder portion, an up/down gear having a cylindrical gear holder unit having an with the outer diameter thereof being smaller than diameter of pulley inner the holder an the portion and ascendable/descendable along the rotating centrical rotatable central shaft, and a clutch spring placed between the inner surface of the pulley holder portion and the outer surface of the gear holder unit and for selectively transmitting a power with a certain torque from the driving pulley to the up/down gear in accordance with the rotational direction of the driving pulley, accordingly a production cost can be reduced by minimizing the number of components and an assembly process can be simplified.

20