UTN FRBA - SSL - Examen Final - 2019-02-18

Apellido, Nombre:	Leg	egajo:		Nota:	
-------------------	-----	--------	--	-------	--

- · Resuelva el examen en tinta y en esta hoja; no se aceptan hojas adicionales.
- Para los ítems de *una mejor respuesta*, marcados con una círculo (○), tilde (✔) sólo una opción, la mejor.
- Para los ítems de *respuestas múltiple*, marcados con un caja (□), tilde (✔) todas las respuestas correctas.
- Durante el examen no se responde consultas; si lo necesita, escriba hipótesis de trabajo, las cuales también se evalúan.
- 1. Sea P el LF nombres de los elementos de la tabla periódica, D el LF declaraciones de C, y O el LF constantes enteras octales sin sufijo de C:
 - a. (1 punto) Indique el tipo del LF P. Justifique.
 - b. (2 puntos) Indique el tipo del LF $D \cup O$. Justifique.
 - ^{C.} (2 puntos) Escriba una ERX para el LF $(P \cap D) \cup O$:
- 2. (2 puntos) Tilde todas las afirmaciones verdaderas con respecto a las ER:
 - * a es una ER.
 Tienen una sintaxis formal.
 Tienen operadores con precedencia.
 Las ER son un sublenguaje de las expresiones de C.
 Las expresiones de C son un sublenguaje de las ER.
- 3. Dada la siguiente sección de código C: x=f(4)[2]
 - a. (1 punto) Nivel léxico Indique cuantos ungetc son necesarios para detectar los lexemas.
 - b. (2 puntos) Niveles sintáctico y semántico Si es una expresión sintáctimante correcta escriba una declaración que la haga semánticamente correcta, si no, justifique.
 - c. (Punto extra) Escriba una definición de f que haga que la sección sea semánticamente correcta.

1. Una Resolución

- 1. a. Finito.
 - b. Tipo 2, es decir LIC. Justificación:
 - i. Primero determinamos el tipo de ambos LF de la unión:
 - A. Dado que C define sus declaraciones con notación BNF y que BNF puede representar LIC, entonces *D* **es LIC**, y no es LR por tener, entre otras cosas, paréntesis balanceados sin cota.
 - B. EI LF O se puede representar con por lo menos una ER, $0(0+1+2+3+4+5+6+7)^*$, lo cual hace que sea **LR**.
 - ii. Luego, hay por lo menos dos conclusiones posibles que justifican la respuesta:
 - A. D es LIC no LR, O es LIC y LR; por definición, la unión de dos LIC es es cerrada, entonces la unión es LIC, es decir tipo 2.
 - B. Como O es LR entonces, por definición, es posible escribir un GIC que lo genere, y dada un GIC es posible escribir un BNF. Para el LF $D \cup O$ es posible escribir por lo menos un BNF que lo genere, por ejemplo, <S>::=<D>|<0>, siendo <D> y <0> los axiomas para D y O respectivamente. Al encontrar un BNF, entonces la unión es LIC, es decir tipo 2.