Álgebra lineal 2024-I

Lista de ejercicios: Bases ortonormales y diagonalización ortogonal

1. Determine si los siguientes conjuntos forman una base ortonormal para el subespacio dado. De no serlo, utilice el proceso de Gram-Schmidt para hallar dicha base.

a)
$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 y $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ para \mathbb{R}^2 .

b)
$$u_1 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -3 \\ 3 \\ 0 \end{bmatrix}$ y $u_3 = \begin{bmatrix} -2 \\ 7 \\ 1 \end{bmatrix}$ para \mathbb{R}^3 .

c)
$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$
 y $x_2 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ para $X = \text{gen}\{x_1, x_2\} \subset \mathbb{R}^3$.

d)
$$w_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 y $w_2 = \begin{bmatrix} 3 \\ 3 \\ -1 \\ -1 \end{bmatrix}$ para $W = \text{gen}\{w_1, w_2\} \subset \mathbb{R}^4$.

e)
$$A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
 y $A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ para $S = \text{gen}\{A_1, A_2\} \subset M_{2 \times 2}$.

f)
$$p_1(x) = x^2 + x + 1$$
, $p_2(x) = x^2 + x$ y $p_3(x) = x^2$ para \mathcal{P}_2 .

2. Halle las coordenadas de los vectores dados en las bases ortonormales de los correspondientes subespacios halladas en el ejercicio 1.

$$a) \ v = \left[\begin{array}{c} -3 \\ 4 \end{array} \right] \ \text{en} \ \mathbb{R}^2.$$

c)
$$x = \begin{bmatrix} -15 \\ 8 \\ 3 \end{bmatrix}$$
 en X .
e) $A = \begin{bmatrix} -4 & 2 \\ 2 & 0 \end{bmatrix}$ en S .
f) $p(x) = -x^2 + 1$ en \mathcal{P}_2 .

$$e) \ \ A = \left[\begin{array}{cc} -4 & 2 \\ 2 & 0 \end{array} \right] \text{ en } S$$

Profesor: Pablo Toro Sánchez

b)
$$u = \begin{bmatrix} 0 \\ -1 \\ 5 \end{bmatrix}$$
 en \mathbb{R}^3 . $d = \begin{bmatrix} 3 \\ 3 \\ 1 \\ 1 \end{bmatrix}$ en W .

$$d) \ w = \begin{bmatrix} 3\\3\\1\\1 \end{bmatrix} \text{ en } W.$$

3. Halle una diagonalización ortogonal para las matrices simétricas A dadas a continuación. Es decir, halle una matriz diagonal D y una matriz ortogonal Q tales que $A = QDQ^T$.

$$a) \ \ A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

$$d) \ \ A = \left[\begin{array}{rrr} 3 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 5 \end{array} \right].$$

$$b) \ A = \left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -1 & 2 & 5 \end{array} \right].$$

$$e) \ \ A = \left[\begin{array}{cccc} 5 & 3 & 0 & 0 \\ 3 & 5 & 0 & 0 \\ 0 & 0 & 7 & 1 \\ \end{array} \right].$$

$$c) \ A = \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix}.$$