```
In [63]:
```

```
import numpy as np
from numpy import cov, corrcoef
import matplotlib.pyplot as plt
import astropy.units as u
from scipy.optimize import curve_fit
import scipy
import scipy.stats as stats
import pandas as pd
import sklearn
from sklearn import linear_model
from sklearn.linear_model import LinearRegression
ledd=np.log10(1.3)+38#Eddington luminosity of Solar Mass
#%matplotlib inline
```

In [93]:

```
def linear(x,a,b,c):
    return a+b*x[0]+c*x[1]
```

In [30]:

```
rqa=np.loadtxt('Downloads/fundamental_data/data0612radioquiet.txt')#radio quiet agn xrb=np.loadtxt('Downloads/fundamental_data/data0612allxrb.txt')#all xrb data anx=np.loadtxt('Downloads/fundamental_data/data0612allagnandxrb.txt')#all data rla=np.loadtxt('Downloads/fundamental_data/data0612radioloud.txt')#all radio loud agrax=np.loadtxt('Downloads/fundamental_data/data0612radioquietagnandxrb.txt')#all radio agn=np.loadtxt('Downloads/fundamental_data/data0612allagn.txt')
```

In [56]:

```
In [ ]:
```

```
In [99]:
```

```
#all agn
#curve_fit
x0=agn[:,1:3]
y=agn[:,0]
x=np.transpose(x0)
popt,pcov=curve_fit(linear,x,y)
perr=np.sqrt(np.diag(pcov))
xx=np.arange(32,46)
yy=np.arange(32,46)
plt.plot(xx,yy,'-')
plt.plot(y,linear(x,*popt),'g.')
plt.show()
print(popt)
print(perr)
```


#same with matrix method [[1.35775777] [0.71921014] [0.89322117]]

In [100]:

```
#radio quiet agn
x0=rqa[:,1:3]
y=rqa[:,0]
x=np.transpose(x0)
popt,pcov=curve_fit(linear,x,y)
perr=np.sqrt(np.diag(pcov))
xx=np.arange(32,46)
yy=np.arange(32,46)
plt.plot(xx,yy,'-')
plt.plot(y,linear(x,*popt),'g.')
plt.show()
print(popt)
print(perr)
```


[8.19968715 0.58957793 0.66442534] [1.2811166 0.02776613 0.07766573]

In [101]:

```
#radio quiet agn and xrb
x0=rqx[:,1:3]
y=rqx[:,0]
x=np.transpose(x0)
popt,pcov=curve_fit(linear,x,y)
perr=np.sqrt(np.diag(pcov))
xx=np.arange(25,46)
yy=np.arange(25,46)
plt.plot(xx,yy,'-')
plt.plot(y,linear(x,*popt),'g.')
plt.show()
print(popt)
print(perr)
```


[7.59597056 0.59542602 0.70983916] [0.72176607 0.02040482 0.01987654]

In [102]:

```
#agn and xrb
x0=anx[:,1:3]
y=anx[:,0]
x=np.transpose(x0)
popt,pcov=curve_fit(linear,x,y)
perr=np.sqrt(np.diag(pcov))
xx=np.arange(25,46)
yy=np.arange(25,46)
plt.plot(xx,yy,'-')
plt.plot(y,linear(x,*popt),'g.')
plt.show()
print(popt)
print(perr)
```


[3.95561574 0.69602065 0.69310598] [0.85187042 0.02412848 0.02479418]

```
In [104]:
```

```
#radio loud agn
x0=rla[:,1:3]
y=rla[:,0]

x=np.transpose(x0)
popt,pcov=curve_fit(linear,x,y)
perr=np.sqrt(np.diag(pcov))
xx=np.arange(37,46)
yy=np.arange(37,46)
plt.plot(xx,yy,'-')
plt.plot(y,linear(x,*popt),'g.')
plt.show()
print(popt)
print(perr)
```


[7.68779659 0.79159666 -0.06076855] [2.82630251 0.05964385 0.18069606]

In [242]:

```
#radio loud agn
x=rla[:,1]
y=rla[:,0]
fit=np.polyfit(x,y,1)
print(fit)
np.corrcoef(x,y)
```

```
In [76]:
```

```
#matrix method
agn=np.loadtxt('Downloads/fundamental_data/data0612allagn.txt')
agn1=np.loadtxt('Downloads/fundamental data/data0612allagn.txt')
x0=agn[:,0:3]
x0[:,0]=1
y0=agn1[:,0]
x=np.matrix(x0)
xt=x.T
y=np.matrix(y0)
yt=y.T
theta=(xt*x).I*xt*yt
print(theta)
ypred=theta[0]*x0[:,0]+theta[1]*x0[:,1]+theta[2]*x0[:,2]
ypred.shape, y.shape
xx=np.arange(32,48)
yy=np.arange(32,48)
plt.plot(xx,yy,'-')
plt.plot(y,ypred,'g.')
plt.show()
```

```
[[ 1.35775777]
[ 0.71921014]
[ 0.89322117]]
```



```
In [ ]:
```

In []:		
In []:		
In []:		
In []:		
In []:		

###methods test

```
In [137]:
import statsmodels.api as sm
import numpy as np
def regress m(y,x):
   ones=np.ones(len(y))
   X=sm.add_constant(np.column_stack((x[0],ones)))
    for ele in x[1:]:
       X=sm.add_constant(np.column_stack((ele,X)))
   results=sm.OLS(y,X).fit()
   return results
#test statsmodel model
x=np.random.rand(2,100)*10+20
y=3+0.6*x[0]+1.1*x[1]+np.random.rand(100)*2
print(regress_m(y,x).summary())
                          OLS Regression Results
______
=======
Dep. Variable:
                                    R-squared:
  0.972
Model:
                               OLS
                                     Adj. R-squared:
  0.971
Method:
                                     F-statistic:
                      Least Squares
  1687.
                  Tue, 13 Jun 2017
Date:
                                     Prob (F-statistic):
4.48e-76
Time:
                           16:41:25
                                     Log-Likelihood:
-91.507
No. Observations:
                               100
                                     AIC:
   189.0
```

Df Residuals: 97 BIC:

196.8

Df Model: 2

Covariance Type: nonrobust

========	========	.=======	========	-=======	=========	
====== f. Int.]	coef	std err	t	P> t	[95.0% Con	
x1 1.137	1.0949	0.021	51.851	0.000	1.053	
x2	0.5833	0.020	29.152	0.000	0.544	
0.623 const 6.188	4.7051	0.747	6.297	0.000	3.222	
========	========	=======	========			
Omnibus: 2.166		32.	472 Durbir	n-Watson:		
Drob (Omnibu	Drob (Omnibua)		0 000 Taxena Daxa (TD).			

Jarque-Bera (JB): Prob(Omnibus): 0.000

8.329
Skew: -0.395 Prob(JB):
0.0155
Kurtosis: 1.827 Cond. No.
430.

======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [166]:
```

```
import statsmodels.api as sm
import numpy as np
nobs=100
X=np.random.random((nobs,2))
X=sm.add_constant(X)
theta=[3,0.6,1.1]
e=np.random.random(nobs)
y=np.dot(X,theta)+e
result=sm.OLS(y,X).fit()
print(result.summary())
```

OLS Regression Results

======= Dep. Variable: y R-squared: 0.644 Model: OLS Adj. R-squared: 0.637 Method: Least Squares F-statistic: 87.81 Fri, 16 Jun 2017 Date: Prob (F-statistic): 1.71e-22 Time: 09:36:52 Log-Likelihood: -15.231 No. Observations: 100 AIC: 36.46 Df Residuals: 97 BIC: 44.28 Df Model: 2

Covariance Type: nonrobust

========	========				=========
======	coef	std err	t	P> t	[95.0% Con
f. Int.]				- 1-1	
const 3.508	3.3628	0.073	45.821	0.000	3.217
x1	0.6204	0.103	6.025	0.000	0.416
0.825 x2	1.2390	0.106	11.724	0.000	1.029
1.449	1.2390	0.100	11.724	0.000	1.029
========					========
======					
Omnibus:		18.7	752 Durbin	-Watson:	
2.238					
Prob(Omnibus):	0.0	000 Jarque	e-Bera (JB):	
6.323					
Skew:		0.3	327 Prob(J	ТВ):	
0.0424					
Kurtosis:		1.9	OS6 Cond.	No.	
5.26					

Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In []:
In [81]:
<pre>#test sklearn LinearRegression x=np.random.rand(2,100)*10+20 y=3+0.6*x[0]+1.1*x[1]+np.random.rand(100)*2 x=np.transpose(x) clf=LinearRegression() clf.fit(x,y) print(clf.coef_,clf.intercept_,clf.score(x,y))</pre>
[0.59753449 1.08251449] 4.44897482188 0.978455865471
In []:
In []:
In []:

=======

In [130]:

```
#test curve fit
x=np.random.rand(2,100)*10+20
y=3+0.6*x[0]+1.1*x[1]+np.random.rand(100)*2
popt,pcov=curve fit(linear,x,y)
perr=np.sqrt(np.diag(pcov))
xx=np.arange(35,58)
yy=np.arange(35,58)
plt.plot(xx,yy,'-')
plt.plot(y,linear(x,*popt),'g.')
plt.show()
print(popt)
print(perr)
```



```
[ 0.64520401  0.01913214
                         0.01803415]
```

In [40]:

```
#test linear regression
import numpy as np
a=np.random.rand(100,3)*10+20
a[:,0]=1
x=np.matrix(a)
b=3+0.6*a[:,1]+1.1*a[:,2]+np.random.rand(100)*2
y=np.matrix(b)
xt=x.T
yt=y.T
theta=(xt*x).I*xt*yt
print(theta)
print(a.shape,b.shape,y.shape)
```

```
[[ 3.78874166]
[ 0.61759225]
[ 1.0868239 ]]
(100, 3) (100,) (1, 100)
```

```
In [184]:
```

```
import lmfit
from scipy.optimize import leastsq
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def residual(p,x,y,sigma0=0.3):
    a=p[0]
    b=p[1]
    c=p[2]
    model=a+b*x[0]+c*x[1]
    return (model-y)/sigma0
x=np.random.rand(2,100)*10+20
y=3+0.6*x[0]+1.1*x[1]+np.random.random(100)*0.3
p=[3,0.6,1.1,0.3]
out=leastsq(residual,p,args=(x,y,0.3))
print(out)
```

```
(array([ 3.1110631 , 0.60284854, 1.09880373, 0.3
                                                        1), 2)
```

In []:

In [236]:

```
import lmfit
from scipy.optimize import leastsq
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
x=np.random.rand(2,100)*10+20
y=3+0.6*x[0]+1.1*x[1]+np.random.random(100)*0.3
p=lmfit.Parameters()
p.add_many(('a',3),('b',0.6),('c',1.1))
def residual(p):
    sigma0=0.3
    a=p['a']
    b=p['b']
    c=p['c']
    model=a+b*x[0]+c*x[1]
    return (model-y)/sigma0
mini=lmfit.Minimizer(residual,p)
out1=mini.minimize(method='Nelder')
out2=mini.minimize(method='leastsq',params=out1.params)
```

```
In [241]:
```

```
from lmfit import Parameters, minimize, fit report
print(fit_report(out2))
[[Fit Statistics]]
   # function evals = 7
   # data points = 100
   # variables
                      = 3
   chi-square
                     = 8.519
   reduced chi-square = 0.088
   Akaike info crit = -240.282
   Bayesian info crit = -232.467
[[Variables]]
         3.22171127 +/- 0.120359 (3.74%) (init= 3.221662)
   b:
         0.59728997 +/- 0.003225 (0.54%) (init= 0.5972919)
         1.09966194 +/- 0.003388 (0.31%) (init= 1.099662)
[[Correlations]] (unreported correlations are < 0.100)
                                 = -0.735
   C(a, c)
                                 = -0.692
   C(a, b)
In [238]:
res=mini.emcee(burn=300, steps=600, thin=10, params=out1.params)
```

```
In [239]:
```

```
import corner
```

corner.corner(res.flatchain,labels=res.var_names,truths=list(res.params.valuesdict(

Out[239]:


```
In [ ]:
```

In []:

In [195]:

```
lmfit.report_fit(out2.params,min_correl=0.5)
```

```
In [200]:
lmfit.report errors(out2.params,min correl=0.5)
[[Variables]]
    a:
         3.07543544 +/- 0.118937 (3.87%) (init= 3.075437)
    b:
         0.59911359 +/- 0.003332 (0.56%) (init= 0.5991131)
         1.10415315 +/- 0.003088 (0.28%) (init= 1.104153)
[[Correlations]] (unreported correlations are < 0.500)
    C(a, b)
                                  = -0.757
                                  = -0.708
    C(a, c)
In [199]:
lmfit.report_fit(out1.params)
[[Variables]]
         3.07543691 (init= 3)
    a:
    b:
         0.59911312 (init= 0.6)
         1.10415327 (init= 1.1)
    c:
In [196]:
lmfit.report fit(out1.params,min correl=0.5)
[[Variables]]
         3.07543691 (init= 3)
    a:
    b:
         0.59911312 (init= 0.6)
         1.10415327 (init= 1.1)
    c:
In [203]:
ci,trace=lmfit.conf interval(mini,out2,trace=True,verbose=False)
In [204]:
lmfit.printfuncs.report_ci(ci)
      99.73%
                95.45%
                          68.27%
                                     _BEST_
                                               68.27%
                                                          95.45%
                                                                    99.7
3%
    -0.36624 \quad -0.24098 \quad -0.11957
                                     3.07544 +0.11957 +0.24098 +0.36
a:
624
    -0.01026 -0.00676 -0.00335
                                    0.59911 +0.00335
                                                        +0.00676
b:
                                                                  +0.01
026
     -0.00950 \quad -0.00626 \quad -0.00309
                                   1.10415 +0.00309 +0.00626 +0.00
c:
950
In [ ]:
```

```
In [225]:
```

```
plt.plot(y, residual(out2.params)+y,'.' )
plt.show()
```


In [226]:

```
cx, cy, grid = lmfit.conf_interval2d(mini, out2, 'a','b',30,30)
plt.contourf(cx, cy, grid, np.linspace(0,1,11))
plt.xlabel('a')
plt.colorbar()
plt.ylabel('b')
plt.show()
```


In [229]:

```
cx, cy, grid = lmfit.conf_interval2d(mini, out2, 'a','c',30,30)
plt.contourf(cx, cy, grid, np.linspace(0,1,11))
plt.xlabel('a')
plt.colorbar()
plt.ylabel('c')
plt.show()
```


In [234]:

```
cx, cy, grid = lmfit.conf_interval2d(mini, out2, 'b','c',30,30)
plt.contourf(cx, cy, grid, np.linspace(0,1,11))
plt.xlabel('b')
plt.colorbar()
plt.ylabel('c')
plt.show()
```



```
%matplotlib inline
#test square loss
import matplotlib.pyplot as plt
import numpy as np
x=np.random.rand(2,100)*10+20
y0=3+0.6*x[0]+1.1*x[1]
y=3+0.6*x[0]+1.1*x[1]+np.random.normal(0,1,100)*2
err=0.8
def squared_loss(theta, x=x, y=y, sigma_r=0.3,sigma_x=0.3,sigma_m=0.3):
    dy = y - theta[0] - theta[1] * x[0]-theta[2]*x[1]
   deno=sigma_r**2+x[0]**2*sigma_x**2+x[1]**2*sigma_m**2
    return np.sum(dy**2/deno**2)
def squared_loss_only_y(theta, x=x, y=y, sigma_r=0.3):
   dy = y - theta[0] - theta[1] * x[0]-theta[2]*x[1]
    return np.sum(dy**2/sigma_r**2)
theta1 = optimize.fmin(squared_loss_only_y, [0,0,0], disp=False)
plt.plot(y, y)
plt.errorbar(y,theta[0] + theta[1] * x[0]+theta[2]*x[1],err, fmt='.k', ecolor='blacl
plt.errorbar(y,theta[0] + theta1[1] * x[0]+theta1[2]*x[1],err, fmt='.k', ecolor='red
plt.title('Maximum Likelihood fit: Squared Loss');
```


In [40]:

In []:

```
theta, theta1
```

```
Out[40]:

(array([-0.53597482, 1.02891375, 0.83023827]),

array([-0.41875304, 0.71172023, 1.13522538]))
```

```
In [41]:
```

```
from scipy import optimize
x0=agn[:,1:3]
y=agn[:,0]
x=np.transpose(x0)

def squared_loss(theta, x=x, y=y, sigma_r=0.3,sigma_x=0.3,sigma_m=0.3):
    dy = y - theta[0] - theta[1] * x[0]-theta[2]*x[1]
        deno=sigma_r**2+x[0]**2*sigma_x**2+x[1]**2*sigma_m**2
    return np.sum(dy**2/deno**2)

theta = optimize.fmin(squared_loss, [0,0,0], disp=False)
plt.plot(y, y)
plt.errorbar(y,theta[0] + theta[1] * x[0]+theta[2]*x[1],err, fmt='.k', ecolor='black
plt.title('Maximum Likelihood fit: Squared Loss');
```


In [42]:

```
x.shape,y.shape
```

Out[42]:

((2, 254), (254,))

In [43]:

theta

Out[43]:

array([-0.66136949, 0.9217987, 0.09705679])

In []:

In []:

In []: