数学系11级偏微分方程期末试卷(A卷)

2013/2014	学年第一学期	考试时间	2014.01.06	_ 考试成绩	
	_				
院系		学号		姓名	
凡尔		子 ラ		_ 灶石	

一. (10 分) 计算广义导数 $((1+x^2)H(x))'$, 其中 $x \in \mathbb{R}^1$, 其中 H(x) 为 Heaviside 函数.

解: 对任意 $\varphi \in C_0^{\infty}(\mathbb{R})$,

$$\langle ((1+x^2)H(x))', \varphi \rangle = -\langle (1+x^2)H(x), \varphi'(x) \rangle$$

$$= -\int_0^{+\infty} (1+x^2)\varphi'(x)dx$$

$$= \int_0^{+\infty} 2x\varphi(x)dx + (1+x^2)\varphi(x) \Big|_{x=0}$$

$$= \langle 2xH(x), \varphi \rangle + \varphi(0)$$

$$= \langle 2xH(x) + \delta(x), \varphi \rangle$$

所以 $((1+x^2)H(x))' = 2xH(x) + \delta(x)$.

二. (10 分) 求方程 $(1-|x|^2)\partial_{x_1}^2 u + (1-2|x|^2)(\partial_{x_2}^2 u + \partial_{x_3}^2 u) = 0$ 的双曲型, 椭圆型与抛物型的区域, 其中 $|x|^2 = x_1^2 + x_2^2 + x_3^2$.

解: 此方程所对应系数矩阵的特征值为 $\lambda_1=1-|x|^2,\,\lambda_{2,3}=1-2|x|^2,$

所以 $|x| < \frac{1}{\sqrt{2}}$ 或者 |x| > 1 时, 方程为椭圆型方程,

→ 时, 方程为双曲方程.

三.(12分)求解古尔沙问题

$$\begin{cases} \partial_t^2 u - \partial_x^2 = 0, & |x| < t, \quad t > 0, \\ u(x,t) = f(x), & \text{on } t = x, \\ u(x,t) = g(x), & \text{on } t = -x, \end{cases}$$

其中 $f(x) \in C^2([0, +\infty)), g(x) \in C^2((-\infty, 0]),$ 且 f(0) = g(0).

解: 由行波法,可设问题的解 u(x,t)=F(x+t)+G(x-t), 其中 F,G 为二阶连续可微函数. 从而由相应的边值条件可得: u(x,x)=F(2x)+G(0)=f(x), u(x,-x)=F(0)+G(2x)=g(x). 因此有 $F(0)+G(0)=f(0), F(x)=f(\frac{1}{2}x)-G(0), G(x)=g(\frac{1}{2})x)-F(0)$. 所以 $u(x,t)=f(\frac{1}{2}(x+t))-G(0)+g(\frac{1}{2}(x-t))-F(0)=f(\frac{1}{2}(x+t))+g(\frac{1}{2}(x-t))-f(0)$.

四. $(12 \ \mathcal{H})$ 设 $\Omega \in \mathbb{R}^2$ 是有界光滑区域, $\partial \Omega = \Gamma_1 \cup \Gamma_2$, 且 $\Gamma_1 \cap \Gamma_2 = \emptyset$. 试求下列定解问题所 对应的 Green 函数 $G(x;\xi)$ 满足的定解问题, 并写出解 u 的表达式.

解: 若 $G(x;\xi)$ 为对应问题的基本解, 由 Green 公式知,

$$u(\xi) = \int_{\Gamma_{1}} \left(u \frac{\partial G(x;\xi)}{\partial \mathbf{n}} - G(x;\xi) \frac{\partial u}{\partial \mathbf{n}} \right) dS + \int_{\Gamma_{2}} \left(u \frac{\partial G(x;\xi)}{\partial \mathbf{n}} - G(x;\xi) \frac{\partial u}{\partial \mathbf{n}} \right) dS$$

$$= \int_{\Gamma_{1}} \left(u \frac{\partial (x;\xi)}{\partial \mathbf{n}} + G(x;\xi)(u - g_{1}(x)) \right) dS + \int_{\Gamma_{2}} \left(g_{2} \frac{\partial G(x;\xi)}{\partial \mathbf{n}} - G(x;\xi) \frac{\partial u}{\partial \mathbf{n}} \right) dS$$

$$= \int_{\Gamma_{1}} \left(u \left(\frac{\partial G(x;\xi)}{\partial \mathbf{n}} + G(x;\xi) \right) - G(x;\xi) g_{1}(x) \right) dS + \int_{\Gamma_{2}} \left(g_{2} \frac{\partial G(x;\xi)}{\partial \mathbf{n}} - G(x;\xi) \frac{\partial u}{\partial \mathbf{n}} \right) dS.$$

从而 $G(x;\xi)$ 满足

$$\begin{cases}
-\Delta G(x;\xi) = \delta(x-\xi), & x \in \Omega, \\
\frac{\partial G(x;\xi)}{\partial \mathbf{n}} + G(x;\xi) = 0, & \text{on } \Gamma_1, \\
G(x;\xi) = 0 & \text{on } \Gamma_2.
\end{cases}$$

五. (12 分) 记 $Q = \{(x,t): 0 < x < l, t > 0\}$, 用变量分离法求解问题

$$\begin{cases} \partial_t u - \partial_x^2 u = f(x, t), & \text{in } Q, \\ u(x, 0) = \varphi(x), & 0 < x < l, \\ u(0, t) = 0, & \partial_x u(l, t) = 0. \end{cases}$$

解: 设其次方程的解具有形式 X(x)T(t), 从而 T'(t)X(x) = T(t)X''(x) = 0.

从而令 $X''(x) + \lambda X(x) = 0$.

所以
$$X''(x) + \lambda X(x) = 0$$
, $X(0) = 0$, $X'(l) = 0$

所以
$$X''(x) + \lambda X(x) = 0$$
, $X(0) = 0$, $X'(l) = 0$. 故 $\lambda_k = \left(\frac{k\pi - \frac{1}{2}\pi}{l}\right)^2$, $X_k(x) = sin(\sqrt{\lambda_k}x)$, $k = 1, 2, \cdots$.

设
$$\varphi(x) = \sum_{k=1}^{\infty} \varphi_k sin(\sqrt{\lambda_k}x), f(x,t) = \sum_{k=1}^{\infty} f_k(t) sin(\sqrt{\lambda_k}x),$$

其中 $\varphi_k = \frac{2}{l} \int_0^l \varphi(x) \sin(\sqrt{\lambda_k}x) dx$, $f_k(t) = \frac{2}{l} \int_0^l f(x,t) \sin(\sqrt{\lambda_k}x) dx$.

所以
$$T'_k(t) + \lambda_k T_k(t) = f_k(t), \quad T_k(0) = \varphi_k.$$

所以
$$T_k(t) = e^{-\lambda_k t} \left(\varphi_k + \int_0^t e^{\lambda_k s} f_k(s) ds \right).$$

从而原方程的解为
$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) X_k(x)$$
.

第三页(共七页) 第四页(共七页)

六. (12 分) 记 $B_1(0)$ 为 \mathbb{R}^2 中单位球, $Q = \{(x,t) : x \in B_1(0), 0 < t < T\}, \mathcal{L} = \partial_t - (1 - t)$ $|x|^2$) $\partial_{x_1}^2 - \partial_{x_2}^2$. 设二阶连续可微函数 u(x,t) 为下列问题

$$\begin{cases}
\mathcal{L}u = f(x,t), & \text{in } Q, \\
u(x,0) = \varphi(x), & x \in B_1(0), \\
u(x,t) = \phi(x,t), & (x,t) \in \partial B_1(0) \times [0,T),
\end{cases}$$

的解,证明:

(1). \mathcal{L} 在 Q 上有弱极值原理成立, 即若在 Q 上满足 $\mathcal{L}v > 0$, 有

$$\inf_{(x,t)\in Q} v(x,t) \ge \inf(x,t) \in Q$$
的抛物边界 $v^-(x,t)$.

(2). 存在正常数 C, 使得

$$\sup_{(x,t)\in Q} |u(x,t)| \le C \left(\sup_{(x,t)\in Q} |f(x,t)| + \sup_{x\in B_1(0)} |\phi(x)| + \sup_{(x,t)\in Q} |\phi(x,t)| \right).$$

解: (1). 记 $w(x,t) = v(x,t) + \epsilon t$, $\mathcal{L}w = \Box + \epsilon = f(x,t) + \epsilon > 0$,

若 w 在 Q 内某点 (x_0, t_0) 处取到负极小值, 则

$$\partial_t w(x_0, t_0) \le 0, \quad -(1 - |x|^2) \partial_{x_1}^2 - \partial_{x_2}^2 w(x_0, t_0) \le 0,$$

从而 $\mathcal{L}w(x_0,t_0) \leq 0$, 与已知条件矛盾.

所以
$$\inf_{(x,t)\in Q} w(x,t) \ge \inf_{(x,t)\in Q$$
的拋物边界 $w^-(x,t)$

$$\lim \inf_{(x,t) \in O} v(x,t) + \epsilon T \ge \inf_{(x,t) \in O} v^{-1}(x,t) - \epsilon T$$

所以 $\inf_{(x,t)\in Q} w(x,t) \geq \inf_{(x,t)\in Q$ 的抛物边界 $w^-(x,t)$,即 $\inf_{(x,t)\in Q} v(x,t) + \epsilon T \geq \inf_{(x,t)\in Q} v^-(x,t) - \epsilon T$,让 $\epsilon \to 0^+$,从而有 $\inf_{(x,t)\in Q} v(x,t) \geq \inf(x,t) \in Q$ 的抛物边界 $v^-(x,t)$.

(2). $i \exists v(x,t) = Ft \pm u(x,t),$

其中
$$F = \sup_{(x,t) \in Q} |f(x,t)| + \sup_{x \in B_1(0)} |\varphi(x)| + \sup_{(x,t) \in \mathbf{Q}$$
的抛物边界 $|\phi(x,t)|$.

从而
$$\mathcal{L}v(x,t) \ge 0$$
, $v |_{\mathbf{Q}$ 的抛物边界} ≥ 0 ,

由 (1), $v(x,t) \ge 0$, 从而 $|u(x,t)| \le TF$.

七. $(12 \, \text{分})$ 记 $B_1(0) = \{x \in \mathbb{R}^2 : |x| < 1\},$ 若 $u \in C^2(B_1(0)) \cap C^1(\overline{B_1(0)})$ 为定解问题

$$\begin{cases}
-\Delta u + 6u = f(x), & \text{in } B_1(0), \\
\frac{\partial u}{\partial \mathbf{n}} = \phi(x), & \text{on } \partial B_1(0),
\end{cases}$$

的解, 其中 \mathbf{n} 为 $\partial B_1(0)$ 的单位外法向, 证明:

(1). 对任意已知函数 $\psi(x) \in C^2(\overline{B_1(0)})$, 求 $v(x) = u(x)e^{\psi(x)}$ 所满足的定解问题;

(2). 存在正常数
$$C$$
, 使得 $\sup_{x \in B_1(0)} |u(x)| \le C \left(\sup_{x \in B_1(0)} |f(x)| + \sup_{x \in \partial B_1(0)} |g(x)| \right)$.

解: (1). 记 $u(x) = v(x)e^{-\psi(x)}$, 从而

$$\partial_x u = (\partial_x ve - \partial_x \psi v) e^{-\psi(x)},$$

$$\partial_{x_i}^2 u = \left(\partial_{x_i}^2 v - 2\partial_{x_i} \psi \partial_{x_i} v + (\partial_{x_i} \psi)^2 v - \partial_{x_i}^2 \psi v\right) e^{-\psi(x)},$$

$$-\Delta u + 6u = e^{-\psi(x)} \left(-\Delta v + 2\sum_{i=1}^{2} \partial_{x_i} \psi \partial_{x_i} v + (6 + \Delta \psi - (\partial_{x_i} \psi)^2) v \right) = f(x),$$

所以v满足下列边值问题,

$$\begin{cases} -\Delta v + 2\sum_{i=1}^{2} \partial_{x_{i}} \psi \partial_{x_{i}} v + (6 + \Delta \psi - (\partial_{x_{i}} \psi)^{2}) v = f(x) e^{\psi(x)}, & \text{in} \quad B_{1}(0), \\ \frac{\partial v}{\partial \mathbf{n}} - (1 + \frac{\partial \psi}{\partial \mathbf{n}}) v = \phi(x) e^{\psi(x)}, & \text{on} \quad \partial B_{1}(0). \end{cases}$$

(2). 记
$$c(x) = 6 + \Delta \psi - \sum_{i=1}^{2} (\partial_{x_i} \psi)^2$$
, $\alpha(x) = -(1 + \frac{\partial \psi}{\partial \mathbf{n}})$. 要建立对 v 的最大模估计, 我们需要找合适的 ψ , 使得 $c(x) > 0$, $\alpha(x)\big|_{|x|=1} > 0$.

从而选
$$\psi(x) = -\frac{3}{4}$$
,有 $(x) > \frac{3}{4}$, $\alpha(x) \Big|_{|x|=1} = \frac{3}{2} - 1 = \frac{1}{2} > 0$.

所以有标准的极值原理知,

$$\sup_{x \in B_1(0)} |v(x)| \le C \left(\sup_{x \in B_1(0)} |f(x)| + \sup_{x \in \partial B_1(0)} |g(x)| \right),$$

最终.

$$\sup_{x \in B_1(0)} |u(x)| \le C \left(\sup_{x \in B_1(0)} |f(x)| + \sup_{x \in \partial B_1(0)} |g(x)| \right).$$

第五页(共七页) 第六页(共七页) 八. (20 分) 记 $Q=\{(x,t):x\in\Omega,0< t< T\}$, 其中 Ω 为 \mathbb{R}^n 中有界开区域. 若 $u\in C^2(\overline{Q})$ 满足下列定解问题

$$\begin{cases} \partial_t^2 u - \Delta u = f(x, t), & \text{in } Q, \\ u(x, 0) = \varphi(x), & \partial_t u(x, 0) = \psi(x), & x \in \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} + u = 0, & \text{on } \partial\Omega \times [0, T), \end{cases}$$

其中 **n** 为 $\partial\Omega$ 的单位外法向, 则存在依赖于 T 的常数 C(T), 使得:

$$\int_{\Omega} ((\partial_t u)^2 + |\nabla u|^2) (x, t) dx + \int_{\partial \Omega} u^2(x, t) dx
\leq C(T) \left(\int_0^t \int_{\Omega} f^2(x, s) dx ds + \int_{\Omega} (|\nabla \varphi|^2 + |\psi|^2)(x) dx + \int_{\partial \Omega} \varphi^2(x) dS \right).$$

解: 方程两边乘以 $\partial_t u$, 在 $\Omega \times [0,t]$ 上分部积分, 有

$$\frac{1}{2} \int_{\Omega} \left((\partial_t u)^2 + |\nabla u|^2 \right) (x, t) dx - 2 \int_0^t \int_{\partial \Omega} \partial u \frac{\partial u}{\partial \mathbf{n}} (x, s) dS ds
= \int_{\Omega} \left((\psi)^2 + |\nabla \varphi|^2 \right) (x) dx + 2 \int_0^t \int_{\Omega} (f \partial_t u) (x, s) dx ds,$$

带入相应的边值条件,有

$$\frac{1}{2} \int_{\Omega} \left((\partial_t u)^2 + |\nabla u|^2 \right) (x, t) dx - 2 \int_0^t \int_{\partial\Omega} (\partial_t u u)(x, s) dS ds$$

$$= \int_{\Omega} \left((\psi)^2 + |\nabla \varphi|^2 \right) (x) dx + 2 \int_0^t \int_{\Omega} (f \partial_t u)(x, s) dx ds,$$

所以,

$$\int_{\Omega} ((\partial_t u)^2 + |\nabla u|^2) (x, t) dx + \int_{\partial\Omega} u^2(x, t) dS$$

$$= \int_{\Omega} (\psi^2 + |\nabla \varphi|^2) (x) dx + \int_{\partial\Omega} \varphi^2 dS + \int_0^t \int_{\Omega} f^2(x, s) dx ds + \int_0^t \int_{\Omega} (\partial_t u)^2(x, s) dx ds.$$

从而由 Granwall 不等式, 得

$$\int_{\Omega} \left((\partial_t u)^2 + |\nabla u|^2 \right) (x, t) dx + \int_{\partial \Omega} u^2(x, t) dx
\leq C(T) \left(\int_0^t \int_{\Omega} f^2(x, s) dx ds + \int_{\Omega} (|\nabla \varphi|^2 + |\psi|^2)(x) dx + \int_{\partial \Omega} \varphi^2(x) dS \right).$$