CS 2009 Design and Analysis of Algorithms

Waheed Ahmed Email: waheedahmed@nu.edu.pk

Week 14.2: NP-Completeness Reduction

Thomas H. Coreman (CLRS), Chapter 34. JON KLEINBERG, EVA TARDOS, Chapter 8.

Reductions

- Reduction is a way of saying that one problem is "easier" than another.
- We say that problem A is easier than problem B, (i.e., we write "A ≤ B")

if we can solve A using the algorithm that solves B.

• Idea: transform the inputs of A to inputs of B

Polynomial Reductions

Given two problems A, B, we say that A is

polynomially **reducible** to B (A
$$\leq_p$$
 B) if:

- 1. There exists a function f that converts the input of A to inputs of B in polynomial time
- 2. $A(i) = YES \Leftrightarrow B(f(i)) = YES$

Polynomial Reduction

- Use a polynomial time reduction algorithm to transform A into B
- 2. Run a known **polynomial time** algorithm for B
- 3. Use the answer for B as the answer for A

Implications of Reduction

 Problem A reduces to problem B if you can use an algorithm that solves B to help solve A.

Algorithm for Problem A

- If $A \leq_p B$ and $B \in P$, then $A \in P$
- if $A \leq_p B$ and $B \notin P$, then $A \notin P$

Cost of solving A = total cost of solving B + cost of reduction.

Reductions Examples

 Problem A reduces to problem B if you can use an algorithm that solves B to help solve A.

Algorithm for Problem A

- Example 1. [finding the median reduces to sorting]
- To find the median of N items:
 - Sort N items
- Return item in the middle: Cost of Sorting
 Cost of Reduction

 Cost of solving finding median = O(n log n) + 1

Reductions Examples

 Problem A reduces to problem B if you can use an algorithm that solves B to help solve A.

Algorithm for Problem A

- Example 2. [element distinctness reduces to sorting]
- To solve element distinctness on N items:
 - Sort N items
 - Check adjacent pairs for equality. Cost of Sorting Cost of Reduction

Cost of solving element distinctness = $O(n \log n) + O(n)$

Reductions Examples

 Convex hull. Given N points in the plane, identify the extreme points of the convex hull (in counterclockwise order).

- Example 3. [Convex hull reduces to sorting.]
- To solve convex hull:
 - Choose point p with smallest (or largest) y-coordinate.
 - Sort points by polar angle with p.
 - Consider points in order, and discard those that would create a clockwise turn.

Cost of Sorting Cost of Reduction
$$\cos = O(n \log n) + O(n)$$

Cost of solving element distinctness = $O(n \log n) + O(n)$

RECIPE FOR PROVING PROBLEM Is NP-Complete

To Prove B Is NP-Complete

- 1. Prove that B is a member of the class NP. $B \in NP$
- 2. Choose an NP-complete problem A.

3. Prove that there is a Levin reduction from A to B.

Independent Set (Example 1)

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6 ?

Ex. Is there an independent set of size ≥ 7 ?

{1} is independent Set

{2, 3} is independent Set

{1, 3} is independent Set

{1, 3, 6} is independent Set

[2, 5, 6, 7] is independent Set

{1, 3, 6, 7} is independent Set

{1, 3, 6, 7, 8, 9} is independent Set

independent set of size 6

Vertex Cover (Example 1)

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

- Ex. Is there a vertex cover of size ≤ 4 ?
- Ex. Is there a vertex cover of size ≤ 3 ?

Vertex Cover is NP-Complete Recipe to Prove a Problem Is NP-Complete

- Prove that a Vertex Cover is NP-Complete
- Step 1. Vertex Cover ∈ NP
- Step 2. Choose an NP-Complete problem A (Independent Set).
 Prove that A (Independent set) reduces to B (Vertex Cover)
 INDEPENDENT-SET ≤_p VERTEX-COVER.

Step 1: Vertex Cover ∈ NP

• Given Graph G = (V, E) contains Vertex cover of Size 3?

S is vertex cover if every edge in E has at least one endpoint in S. (Example V.C = $\{2,3,7\}$)

Vertex cover and independent set reduce to one another

- Lemma: INDEPENDENT-SET \leq_p VERTEX-COVER.
- Proof: We show S is an independent set of size k,
 iff V − S is a vertex cover of size n − k.
 - Let S be any independent set of size k.
 - Consider an arbitrary edge $(u, v) \in E$.

Thus, V – S covers (u, v). ■

Independent Set (Example 2)

 S is independent if there are no edges between vertices in S. (Example I.S = {1,4,5,6})

$$V.C = V - S$$

(V.C ={2,3,7})

Clique (Example 2)

Clique

— Graph G = (V, E), a subset S of the vertices is a clique if there is an edge between every pair of vertices in S. (Example Clique = {1,4,5,6})

Clique is NP-Complete

Recipe to Prove a Problem Is NP-Complete

Prove that a Clique is NP-Complete

• Step 1. Clique ∈ NP.

Step 2. Choose known NP-Complete problem A (IS).
 Prove that A (IS) reduces to B (Clique)
 IS ≤_p Clique.

Step 1: Clique ∈ NP.

- Graph G = (V, E), a subset S of the vertices is a clique if there is an edge between every pair of vertices in S. (Example Clique = {1,4,5,6})
- Given graph contains Clique of size = 4?

Step 2: $IS \leq_p Clique$

- Lemma: S is Independent in G iff S is a Clique in the complement of G
- To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K.
- Construction of Complement of the graph can easily be done in polynomial time.

$IS \leq_p Clique (Example 2)$

Reduction: Independent Set, Vertex Cover, and Clique (Example 3)

Figure 1: Relations among Independent Set, Vertex Cover, and Clique

INDEPENDENT-SET is NP-Complete Recipe to Prove a Problem Is NP-Complete

- To prove that a problem B (INDEPENDENT-SET) is NP-Complete:
- Step 1. INDEPENDENT-SET ∈ NP
- Step 2. Choose an NP-Complete problem A (3-SAT).
 Prove that A (3-SAT) reduces to B (INDEPENDENT-SET)
 3-SAT ≤_p INDEPENDENT-SET

Satisfiability

Literal. A Boolean variable or its negation.

$$x_i$$
 or $\overline{x_i}$

Clause. A disjunction of literals.

$$C_j = x_1 \vee \overline{x_2} \vee x_3$$

Conjunctive normal form (CNF). A propositional formula Φ that is a conjunction of clauses.

$$\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

SAT. Given a CNF formula Φ , does it have a satisfying truth assignment? 3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$\Phi \ = \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_3 \right) \ \land \ \left(\ x_1 \ \lor \ \overline{x_2} \ \lor \ x_3 \right) \ \land \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_4 \right)$$

yes instance: $x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false}$

3-satisfiability reduces to independent set

3-satisfiability reduces to independent set

3-satisfiability reduces to independent set

$$F = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_2} \vee x_3).$$

The Reduction

- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Proposition 23.2.

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \leftarrow Let **S** be an independent set of size **k**
 - 1. S must contain exactly one vertex from each clause
 - 2. S cannot contain vertices labeled by conflicting literals
 - 3. Thus, it is possible to obtain a truth assignment that makes in the literals in *S* true; such an assignment satisfies one literal in every clause

Poly-time reductions

Cook-Levin theorem shows that 3-SAT is a "universal" problem

