Série 9

Exercice 1.

Calculer la projection orthogonale de \vec{u} sur \vec{v} et celle de \vec{v} sur \vec{u} sachant que :

$$\|\vec{u}\| = 3, \ \|\vec{v}\| = 5 \text{ et } \theta = \frac{\pi}{3}.$$

Exercice 2. Dans l'espace muni d'un repère orthonormé, on donne les points A(3, -2, 5), B(1, 7, 11) et C(2, -1, 5). Quel est l'angle au sommet A dans le triangle ABC?

Exercice 3.

Soit un triangle ABC inscrit dans un demi-cercle. En utilisant le produit scalaire, montrer que l'angle au sommet A est droit (on pourra introduire le milieu de BC).

Exercice 4. On donne un repère (O, \vec{u}, \vec{v}) du plan. On sait que :

$$\|\vec{u}\| = 1$$
, $\|\vec{v}\| = \sqrt{2}$ et $\theta = \frac{\pi}{4}$,

où θ désigne l'angle géométrique formé par les vecteurs \vec{u} et \vec{v} .

- a. Exprimer le produit scalaire des vecteurs $\vec{w}\begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{w}'\begin{pmatrix} x' \\ y' \end{pmatrix}$ en fonction de x, x', y et y'.
- b. Exprimer la distance du point M(x, y) à l'origine en fonction de x et y.
- c. Déterminer, en fonction de \vec{u} et \vec{v} , un vecteur normal à la droite d'équation x-y+3=0.

Exercice 5. Dans le plan, on donne deux points A et B tels que $\|\overrightarrow{AB}\| = 2$. Dans chacun des cas suivants, décrire le lieu géométrique des points M du plan vérifiant la condition donnée.

- a. $\overrightarrow{AB} \cdot \overrightarrow{AM} = 0$.
- b. $\overrightarrow{AB} \cdot \overrightarrow{AM} = 2$ (on pourra introduire le milieu de AB).
- c. $\overrightarrow{AB} \cdot \overrightarrow{AM} = \alpha$ (on pourra introduire un point bien choisi de la droite (AB)).
- d. $\overrightarrow{AB} \cdot \overrightarrow{BM} \geqslant 0$.

Exercice 6.

Soit ABC un triangle non rectangle en A. On note I le point d'intersection de la droite (AB) et de la perpendiculaire à (AC) passant par C. Exprimer le vecteur \overrightarrow{AI} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

Exercice 7. On donne un triangle ABC dont on note G le centre de gravité. Pour tout point M, on note :

$$f(M) = \|\overrightarrow{AM}\|^2 + \|\overrightarrow{BM}\|^2 + \|\overrightarrow{CM}\|^2.$$

- a. En utilisant le produit scalaire, calculer f(M) en fonction de f(G) et de $\|\overrightarrow{GM}\|$.
- b. En déduire la valeur minimum de la fonction f.

Exercice 8. On donne un triangle ABC dans le plan.

a. Quels sont les lieux géométriques décrits par les conditions suivantes?

$$\overrightarrow{AM} \cdot \overrightarrow{BC} = 0$$
, $\overrightarrow{AM} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AC}$, $\overrightarrow{AM} \cdot \overrightarrow{AB} = \overrightarrow{AB} \cdot \overrightarrow{AC}$.

b. En utilisant a. montrer que les hauteurs du triangle ABC sont concourantes, c'est-à-dire qu'elles s'intersectent en un point.

Exercice 9. On donne deux points A et B dans le plan ainsi qu'un réel α . Quel est le lieu géométrique formé des points M vérifiant $\overrightarrow{AM} \cdot \overrightarrow{BM} = \alpha$? On discutera selon la valeur de α .

Éléments de réponse :

Ex. 1 : $\frac{3}{10}\vec{v}$ et $\frac{5}{6}\vec{u}$.

Ex. 2: $\frac{\pi}{4}$.

Ex. 4: a. xx' + xy' + x'y + 2yy', b. $\sqrt{x^2 + 2xy + 2y^2}$, c. $-3\vec{u} + 2\vec{v}$.

Ex. 5 : a. la perpendiculaire à (AB) passant par A, b. la médiatrice de (AB), c. la perpendiculaire à (AB) passant par le point d'abscisse $\frac{\alpha}{4}$ dans le repère (A, \overrightarrow{AB}) , d. un demi-plan découpé par la perpendiculaire à (AB) passant par B.

Ex. 6: $\overrightarrow{AI} = \frac{\|\overrightarrow{AC}\|^2}{\overrightarrow{AB} \cdot \overrightarrow{AC}} \overrightarrow{AB}$.

Ex. 7: a. $f(M) = f(G) + 3\|\overrightarrow{GM}\|^2$.

Ex. 8: a. les hauteurs du triangle ABC.

Ex. 9: un cerle, un point ou l'ensemble vide, selon que $\alpha >$, = ou $< -\frac{1}{4} \|\overrightarrow{AB}\|^2$.