

Program	Bachelor of Technology (BTech)	Semester - 6
Type of Course	Professional Core	
Prerequisite	Digital Fundamentals	
Course Objective	Students will learn the basic concepts of computer system which will lead them to comprehene processors. The students will acquire the knowledge of CPU, peripheral communication and diffwith hardware implementations.	-

Teaching Scheme (Contact Hours)				Examination Scheme					
Locture	Tutorial	Practical	Credit	Theory Marks		Practical Marks		Total	
Lecture				SEE (T)	CIA (T)	SEE (P)	CIA (P)	Marks	
4	0	0	4	70	30	-	-	100	

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cour	se Content	T - Teaching Hours W -	Weig	ghtag
Sr.	Topics		Т	W
1	Register Transf	er and Microoperation	8	20
	Register Transfe	er Language, Bus and Memory Transfers, Arithmetic Logic and Shift Microoperations		
2	Basic Computer	Organization and Design	9	20
		es, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory-Reference out-Output and Interrupt		
3	Central Process	ing Unit	10	20
		r Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulat I, Reduced Instruction Set Computer (RISC), Complex Instruction Set Computer (CISC)	on,	
4	Pipelining and (Computer Arithmetic	9	20
	Pipelining, Arith	metic Pipeline, Instruction Pipeline, RISC Pipeline, Addition and Subtraction Algorithm, Multiplication Alg	orith	m.
5	Input-Output Or	ganization	9	20
	Input-Output Int	terface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access (DMA), or (IOP)	Input	:-
	1	Total	45	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy

Level	Remembrance	Remembrance Understanding Application		Analyze	Evaluate	Create	
Weightage	15	40	15	20	10	0	

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

_	
(:nurse	Outcomes

	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
At the	At the end of this course, students will be able to:			
CO1	CO1 discuss common bus interface and microoprations performed by processor.			
CO2	carry out instruction formats, timing and control to design ALU.			
CO3	CO3 explore the internal architecture of CPU with stack organization.			
CO4	CO4 estimate execution timing with the help of pipeline and algorithm.			
CO5	CO5 illustrate peripheral operations, DMA operations and IOP communication.			

Printed on: 24-09-2024 10:41 AM Page 1 of 2

Refe	rence Books			
1.	1. Computer System Architecture By M. Morris Mano Pearson Education			
2.	2. Computer System Organization By N. D. Jotwani McGraw Hill			
3.	Computer Organization and Architecture By William Stallings Prentice Hall of India			
4.	Computer Architecture and Organization By John P. Hayes McGraw Hill			

Printed on: 24-09-2024 10:41 AM Page 2 of 2