Advanced in Embeded System Programing

Lập trình hệ nhúng nâng cao với vi điều khiển ARM

Mai Cường Thọ

1. Một số loại vi điều khiển trên thị trường

- Vi điều khiển 8051 ____
- Vi điều khiển AVR _
- Vi điều khiển PIC
- Vi điều khiển STM32 (ARM)
- Vi điều khiển MSP

• • •

	8051 🗸	PIC	AVR V	ARM		
Bus width	8-bit for standard core	8/16/32-bit	8/32-bit	32-bit mostly also available in 64-bit		
Communication Protocols	UART, USART,SPI,I2C	PIC, UART, USART, LIN, CAN, Ethernet, SPI, I2S	UART, USART, SPI, I2C, (special purpose AVR support CAN, USB, Ethernet)	UART, USART, LIN, I2C, SPI, CAN, USB, Ethernet, I2S, DSP, SAI (serial audio interface), IrDA		
Speed	12 Clock/instruction cycle	4 Clock/instruction cycle	1 clock/ instruction cycle	1 clock/ instruction cycle		
Memory	ROM, SRAM, FLASH	SRAM, FLASH	Flash, SRAM, EEPROM	Flash, SDRAM, EEPROM		
ISA	CLSC	Some feature of RISC	RISC	RISC		
Memory Architecture	Von Neumann architecture	Harvard architecture	Modified	Modified Harvard architecture		
Power Consumption	Average	Low	Low	Low		
Families	8051 variants	PIC16,PIC17, PIC18, PIC24, PIC32	Tiny, Atmega, Xmega, special purpose AVR	ARMv4,5,6,7 and series		
Community	Vast	Very Good	Very Good	Vast		
Manufacturer	NXP, Atmel, Silicon Labs, Dallas, Cyprus, Infineon, etc.	Microchip Average Atmel		Apple, Nvidia, Qualcomm, Samsung Electronics, and Tetc.		
Cost (as compared to features provide)	Very Low	Average	Average	Low		
Other Feature	Known for its Standard	Cheap	Cheap, effective	High speed operation Vast		
Popular Microcontrollers	AT89C51, P89v51, etc.	PIC18fXX8, PIC16f88X, PIC32MXX	Atmega8, 16, 32, Arduino Community	LPC2148, ARM Cortex-M0 to ARM Cortex-M7, etc.		

2. Giới thiệu ARM

- ARM (Advanced RISC Machine) là một loại cấu trúc vi xử lý 32 bit và 64 bit kiểu RISC được sử dụng rộng rãi trong các thiết kế nhúng.
- Do có đặc điểm tiết kiệm năng lượng, các bộ CPU ARM chiếm ưu thế trong các sản phẩm điện tử di động, mà với các sản phẩm này việc tiêu tán công suất thấp là một mục tiêu thiết kế quan trọng hàng đầu\
- Ngày nay, hơn 75% CPU nhúng 32-bit là thuộc họ ARM, điều này khiến ARM trở thành cấu trúc 32-bit được sản xuất nhiều nhất trên thế giới.
- Các nhà sản xuất IC đưa ra thị trường hơn 240 dòng vi điều khiển sử dụng lõi ARM.

Các dòng ARM

- Dòng Cortex gồm có 3 phân nhánh chính:
 - · dòng A dành cho các ứng dụng cao cấp.
 - dòng R dành cho các ứng dụng thời gian thực.
 - · dòng M dành cho các ứng dụng vi điều khiển và chi phí thấp.
- STM32 được thiết kế dựa trên dòng Cortex-M3, dòng CortexM3 được thiết kế đặc biệt để nâng cao hiệu suất hệ thống, kết hợp với tiêu thụ năng lượng thấp
- Cortex-M3 được thiết kế trên nền kiến trúc mới, do đó chi phí sản xuất đủ thấp để cạnh tranh với các dòng vi điều khiển 8 và 16-bit truyền thống
- Cortex-M4

ARM Cortex Processors: Scalability for Every Market

Nguồn: https://www.arm.com/zh/files/event/1 2015 ARM Embedded Seminar Richard York.pdf

Nguồn: https://www.arm.com/zh/files/event/1 2015 ARM Embedded Seminar Richard York.pdf

ARM: at the heart of embedded intelligence

Nguồn: https://www.arm.com/zh/files/event/1 2015 ARM Embedded Seminar Richard York.pdf

Cortex Processor roadmap

Architecture Versions and Thumb®ISA

FIGURE 1.7

The evolution of ARM processor architecture

Instruction set

FIGURE 1.9

The relationship between the Thumb instruction set and the instruction set implemented in the Cortex-M processors

3. Kiến trúc ARM Cortex M3, M4

- 32-bit architecture.
- Internal registers in the register bank,
- the data path, and the bus interfaces are all 32 bits wide.
 Interrupts
- The Instruction Set Architecture (ISA) in the Cortex-M processors is called the Thumb ISA
- Thumb ISA and is based on Thumb -2 Technology which supports a mixture of 16-bit and 32-bit instructions.

4. Giới thiệu STM32

- Tập đoàn ST Microelectronic cho ra mắt dòng STM32, vi điều khiển đầu tiên dựa trên nền lõi ARM Cortex-M3 thế hệ mới do hãng ARM thiết kế, lõi ARM Cortex-M3 là sự cải tiến của lõi ARM7 truyền thống
- Dòng ARM Cortex[™]-M là thế hệ mới, thiết lập các tiêu chuẩn mới về hiệu suất, chi phí, ứng dụng cho các thiết bị cần tiêu thụ năng lượng thấp, và đáp ứng yêu cầu thời gian thực khắt khe.

7 STM3 Giới thiệu 4

Legend: Optimized for Mixed-signals applications

STM32 MCUs 32-bit Arm® Cortex®-M

Cortex-M0+ Radio Co-processor

STM32 Solutions

4. Giới thiệu STM32 ...

STM32F1 MCU Series 32-bit Arm® Cortex®-M3 (DSP + FPU) - Up to 72 MHz

10. 10500	Product line	FCPU (MHz)	Flash (Kbytes)	RAM (Kbytes)	2.0 FS	2.0 FS	FSMC	CAN 2.0B	3-phase MC Timer	₽S	SDIO	Ethernet IEEE1588	HDMI
 -40 to 105°C range USART, SPI, I²C 16- and 32-bit timers 	STM32F100 Value line	24	16 to 512	4 to 32			•		•				•
Temperature sensor	STM32F101	36	16 to 1M	4 to 80			•						
 Up to 3x12-bit ADC Dual 12-bit ADC 	STM32F102	48	16 to 128	4 to 16	•								
 Low voltage 2.0 to 3.6V (5V tolerant I/Os) 	STM32F103	72	16 to 1M	4 to 96	1.		•	•	•		•		
	STM32F105 STM32F107	72	64 to 256	64			•	•	•				

Giới thiệu STM32

STM32F4 MCU Series 32-bit Arm® Cortex®-M4 - Up to 180 MHz

	Product lines	F _{CPU} (MHz)	Flash (Kbytes)	RAM (KB)	Ethemet I/F IEEE 1588	2x CAN	Camera I/F	SDRAM I/F	Dual Quad-SPI	SAI	SPDIFRX	Chrom-ART Graphic Accelerator TM	TFT LCD Controller	MIPI DSI
						Advanc	ed lines							
	STM32F469 ²	180	512 K to 2056 K	384	•	•	•	•	•	•		•	•	•
	STM32F429 ²	180	512 K to 2056 K	256	•	•	•	•		•		•	•	
	STM32F427 ²	180	1024 K to 2056 K	256	•	• *	•							
			300000			Foundat	tion lines							
ART Accelerator™ SDI0	STM32F446	180	256 K to 512 K	128		•	2.02	•	•	•	•			
USART, SPI, I ² C I ² S + audio PLL	STM32F407 ²	168	512 K to 1024 K	192	•	•	•							
• 16 and 32-bit timers • 12-bit ADC (0.41 µs) • True Random Number	STM32F405 ²	168	512 K to 1024 K	192		•								
Generator Batch Acquisition Mode Low voltage 1.7 to 3.6 V Temperature: -40 °C to 125 °C	Product lines	F _{OPU} (MHz)	Flash (Kbytes)	RAM (KB)	RUN current (pA/MHz)	STOP current (µA)	Small package (mm)	FSMC (NOR/ PSRAN/LCD support	OSPI	DFSDM	DAC	TRNG	DMA Batch Aquisition Mode	ISB 2.0 OTG FS

STM32F4 MCU Series 32-bit Arm® Cortex®-M4 - Up to 180 MHz

												199		
 Batch Acquisition Mode Low voltage 1.7 to 3.6 V Temperature: -40 °C to 125 °C 	Product lines	F _{opu} (MHz)	Flash (Kbytes)	RAM (KB)	RUN current (pA/MHz)	STOP current (µA)	Small package (mm)	FSMC (NOR/ PSRAM/LCD support	OSPI	DFSDM	DAC	TRNG	DMA Batch Aquisition Mode	USB 2.0 OTG FS
						Acce	ss lines							
	STM32F401	84	128 K to 512 K	up to 96	Down to 128	Down to	Down to 3x3							٠
	STM32F410	100	64 K to 128 K	32	Down to 89	Down to 6	Down to 2.553x 2.579				•	•	BAM	2
	STM32F411	100	256 K to 512 K	128	Down to 100	Down to	Down to						BAM	
	STM32F412	100	512 K to 1024 K	256	Down to 112	Down to	Down to			•		•	BAM	+LPM¹
	STM32F413 ²	100	1024 K to 1536 K	320	Down to 115	Down to	Down to		3.0	•	•	•	BAM	+LPM¹

Notes:

^{1.} Link Power Management

^{2.} The same devices are also found with embedded HW AES encryption (128-/256-bit)

5. Kit phát triển STM32F411 discovery

- Sử dụng MCU STM32F411VET6 32-bit lõi ARM Cortex-M4F.
- 1 MB Flash, 192 KB RAM và có 100 chân (LQFP100 package)
- Tích hợp sẵn mạch nạp STLINK/V2 trên board
- Nguồn sử dụng từ USB hoặc nguồn ngoài 5V

5. Kit phát triển STM32F411 discovery

- External application power supply: 3 V and 5 V
- L3GD20: ST MEMS motion sensor 3-axis digital output gyroscope – Cảm biến chuyển động
- LSM303DLHC: ST MEMS system-in-package featuring a 3D digital linear acceleration sensor and a 3D digital magnetic sensor – Cảm biến gia tốc
- MP45DT02: ST MEMS audio sensor, omnidirectional digital microphone - Câm biến âm thanh
- CS43L22, audio DAC with integrated class D speaker drive – Cửa xuất âm thanh
- Extension header for LQFP100 I/Os for a quick connection to the prototyping board and an easy probing
- Comprehensive free software including a variety of examples, part of STM32CubeF4 package or STSW-STM32136 for legacy Standard Libraries usage

6. Lập trình HTN

- Lập trình ứng dụng trên hệ nhúng **phụ thuộc vào**
 - nền tảng (platform) phần cứng,
 - phần mềm của hệ nhúng đó.
- Hệ nhúng không có hệ điều hành:
 - Thường sử dụng các vi điều khiển hiệu năng tương đối thấp (8051, ATMega, PIC, ARM7, ...)
 - Lập trình bằng C, ASM
 - Môi trường, công cụ lập trình tùy theo từng dòng vi điều khiển (CodeVision, AVR Studio, Keil C...)
 - Phù hợp các ứng dụng điều khiển vào/ra cơ bản, các giao tiếp ngoại vi cơ bản.

6. Lập trình HTN ...

- Sử dụng Ngôn ngữ lập trình bậc thấp: Lập trình hợp ngữ
- Sử dụng các ngôn ngữ lập trình bậc cao: C, C++, Java, Python

6.1. Lập trình hợp ngữ cho ARM-Cortex M

- Lập trình mức gần mã máy nhất
- Sử dụng ký hiệu gợi nhớ
- Thao tác trực tiếp lên các thanh gi lập trình được của CPU
- Uu điểm: Vì ngôn ngữ Assembler rất gần gũi với ngôn ngữ máy nên chương trình
 - Chạy nhanh.
 - Tiết kiệm bộ nhớ.
- Nhược điểm:
 - Khó viết bởi vì yêu cầu người lập trình rất am hiểu về phần cứng.
 - Khó tìm sai: bao gồm sai về cú pháp (syntax) và sai về thuật toán (Algorithm).
 - Không chuyển chương trình Assembler cho các máy tính có cấu trúc khác nhau.

6.1. Lập trình hợp ngữ cho ARM-Cortex M ..

Ví dụ

- Ngôn ngữ C
 x = (a + b) − e
- ARM Assembly

```
ADR r4, a
                     ; lấy địa chỉ của biến a, cất vào thanh ghi r4
                    ; lấy giá trị của a, ở ngăn nhớ có địa chỉ r4, cất vào thanh ghi r0
LDR r0, [r4]
                    ; lấy địa chỉ của b, cất vào thanh ghi r4 (sử dụng lại)
ADR r4, b
                    ; lấy giá trị của a, cất vào thanh ghi r1
LDR r1, [r4]
                     ; tính tổng a+b, cất vào thanh ghi r3
ADD r3, r0, r1
                     ; lấy địa chỉ của c, cất vào thanh ghi r4
ADR r4, c
                     ; lấy giá trị của c, cất vào thanh ghi r1
LDR r2, [r4]
SUB r3, r3, r2
                     ; r3=r3-r2, hoàn thiện tính x
                    ; lấy địa chỉ của x, cất vào thanh ghi r4
ADR r4, x
                     ; lưu giá trị trong r3, vào ngăn nhớ có địa chỉ r4 (store value of x)
STR r3, [r4]
```

7. The Cortex microcontroller software interface standard (CMSIS)

Chuẩn giao diện phần mềm cho vi điều khiển Cortex (hay thư viện CMSSIS)

24

7.1. CMSIS - why?

- CMSIS được phát triển bởi ARM
 - to allow microcontroller and software vendors to use a consistent software infrastructure to develop software solutions for Cortex -M microcontrollers
 - Currently the Cortex-M microcontroller market comprises
 - More than 15 microcontroller vendors shipping Cortex-M microcontroller products
 - More than 10 toolchain vendors
 - More than 30 embedded operating systems
 - Additional Cortex-M middleware software providers for codecs, communication protocol stacks, etc.

7.2 CMSIS - the aims?

Enhanced software reusability

 makes it easier to reuse software code in different Cortex-M projects, reducing time to market and verification efforts.

Enhanced software compatibility

 by having a consistent software infrastructure (e.g., API for processor core access functions, system initialization method, common style for defining peripherals), software from various sources can work together, reducing the risk in integration.

Easy to learn

• the CMSIS allows easy access to processor core features from the C language. In addition, once you learn to use one Cortex-M microcontroller product, starting to use another Cortex-M product is much easier because of the consistency in software setup.

Toolchain independent

• CMSIS-compliant device drivers can be used with various compilation tools, providing much greater freedom.

Openness

• the source code for CMSIS core files can be downloaded and accessed by everyone, and everyone can develop software products with CMSIS.

Without CMSIS, an embedded OS or middleware needs to include access functions to use processor features.

With CMSIS, an embedded OS or middleware can use standardized core access functions from device driver library

FIGURE 2.15

CMSIS-Core avoids the need for middleware or OS to carry their own driver code

7. Các thư viện lập trình cho STM32

7.1. STM32snippets

- collections of highly optimized code examples using CMSIS compliant direct register accesses
- to reduce the code overhead allowing
- to maximize the performance of the STM32 MCUs in various applications.
- The more than 100 Snippets per STM32 Series demonstrate efficient use of the STM32 peripherals with the smallest possible memory footprint.

7.1. STM32snippets ...

STM32Snippets gồm rất nhiều code ví dụ dựa trên các thanh ghi ngoại vi của STM32. Mục đích chính của nó phục vụ cho những người có kiến thức về chip 8 bit, lập trình hợp ngữ, lập trình C khá vững.

• Uu điểm:

- Tối ưu cao; Có thể truy cập tới mức thanh ghi; Kích thước code nhỏ
- Sát với tài liệu tham khảo; Debug ở mức thanh ghi

Nhược điểm:

- Khó chuyển đổi code khi đổi sang dòng chip STM32 khác.
- Phức tạp khi dùng với ngoại vi như USB
- Developer phải hiểu được kiến thức về các ngoại vi ở mức độ thanh ghi
- Chỉ hỗ trợ 2 dòng chip là L0 và F0.

7.2. Standard Peripheral Lib (SPL)

• Đây là thư vện gồm rất nhiều thư viện C dành cho ngoại vi của STM32. Phù hợp cho các developer có kiến thức về C tốt.

Uu điểm:

- Tối ưu mức trung bình, phù hợp với nhiều trường hợp khác nhau
- Không cần tác động trực tiếp lên thanh ghi như STM32snippets
- Hỗ trợ 100% ngoại vi; Dễ debug
- Có thể mở rộng với các middleware phức tạp như USB/TCP-IP/Graphics/Touch Sense

Nhược điểm:

- Chỉ hỗ trợ 1 số dòng STM32 nhất định
- Không có hàm API HAL hỗ trợ chuyển đổi khi thay thế chip STM32 dòng khác
- Thư viện middleware không thống nhất
- Không hỗ trợ các dòng STM32 L0, L4, F7

7.3. STM32Cube

7.3. STM32Cube – Embedded software

Architecture and User entrypoint

- Three entry points for the user application:
 - Middleware stacks
 - HALAPI
 - LLAPIs
- Possible concurrent usage of HAL and LL

7.3. STM32Cube – HAL API

Features:

- High level and functional abstraction
- · Easy port from one series to another
- 100% coverage of all peripherals
- Integrates complex middleware such as USB/TCP-IP/Graphics/Touch Sense/RTOS
- Can work with STM32CubeMX tool on the PC to generate initialization code

Limitations:

- May be challenging to low level C programmers in the embedded space.
- Higher portability creates bigger software footprints or more time spent executing adaptation code

Portability	Optimization (Memory & Mips)	Easy	Readiness	Hardware coverage		
+++	+	++	+++	+++		

7.3. STM32Cube – LL API

Features:

- Highly Optimized
- Register Level Access
- · Small code expressions
- · Closely follows the reference manual
- · Debugging close to register level

STM32 Cube Mid dl eware LWIP TCP/IP STM32 Cube STM32 Cube STM32 Cube STM32 Cube STM32 Hardware Abstraction Layer and Low-Layer

Limitations:

- Specific to STM32 devices, not portable directly between series
- Not matching complex peripherals such as USB
- Lack of abstraction means developers must understand peripheral operation at register level
- Available (today) on STM32 L4 series

Portability	Optimization (Memory & Mips)	Easy	Readiness	Hardware coverage
	+++			++

7.3. STM32Cube - In conclusion

Fisrt:

• install the STM32CubeMX (graphical tool that allows configuring STM32 microcontrollers) and read this manual.

Second:

- install the appropriate CUBE Library for your STM32xxx (SW example and driver for TCP/IP, USB, FS, etc)
- Also are available a special CUBE libraries for a particular application (BT, LPUART, etc).

7.4. The Arm[®] MbedTM Systems

- Is a platform and operating system based on 32-bit ARM ® Cortex-M microcontrollers
- is collaboratively developed by ARM ® and its technical partners,
- is designed for Internet of Things (IoT) devices
- provides
 - the operating system,
 - cloud services,
 - tools,
 - and developer ecosystem
 to make the creation and deployment of IoT solutions possible.

8. Cài đặt phần mềm

- PHẦN MỀM KHỞI TẠO CODE STM32CUBE MX
- PHẦN MỀM LẬP TRÌNH ARM KEIL UVISION5
- Phần mềm mô phỏng Proteus

8.1. STM32CubeMX

- PHẦN MỀM KHỞI TẠO CODE
- Công cụ giúp khởi tạo phần cứng, ngoại vi, xung nhịp... cho vi điều khiển STM32.

STM32CubeMX

Figure 1. Overview of STM32CubeMX C code generation flow

8.1. STM32CubeMX ...

- STM32CubeMX tự động download các driver mới nhất của ST dành cho các dòng chip của mình.
- ST đã không còn phát triển Standard Peripheral Libraries nữa, thay vào đó họ phát triển cấu trúc firmware mới bao gồm lớp cách ly phần cứng (HAL) bao gồm:
 - Các driver cho ngoại vi, lớp Middleware bao gồm hỗ trợ TCP/IP, USB, Graphics, FAT file system, Touch library, và hệ điều hành mã nguồn mở RTOS.
- Cấu trúc firmware mới này có mức độ trừu tượng cao hơn, tập trung vào các tính năng phần cứng chung thay vì tập trung thuần túy vào phần cứng. Mức độ trừu tượng cao hơn giúp phát triển các API thân thiện và có thể dễ dàng chuyển từ phần cứng này sang phần cứng khác.

The STM32CubeF4 firmware package comes with a rich set of examples running on STMicroelectronics boards. The examples are organized by board and provided with preconfigured projects for the main supported toolchains (see *Figure 1*).

Figure 1. STM32CubeF4 firmware components

8.2. Tổ chức Firmware của STM32 F4

Level 0:

- Board Support Package (BSP): cung cấp các API liên quan đến các thành phần phần cứng trên các board (ví dụ driver LCD, MicroSD).
 - Khi sử dụng các board của ST ví dụ như STM32F4 Discovery, các API này giúp chúng ta nhanh chóng cấu hình/sử dụng các phần cứng có sẵn trên đó ví dụ LED, Buttons, Gyroscope...
- Hardware Abstraction Layer (HAL): Cung cấp các driver ở mức thấp và các phương thức giao diện phần cứng để giao tiếp với các mức trên (application, libraries và stacks).
 - HAL API chia làm 2 nhóm: nhóm thứ nhất cung cấp các API chung đối với tất cả các serie STM32, và nhóm API mở rộng riêng cho từng dòng chip.

8.2. Tổ chức Firmware của STM32 F4

Level 1:

• Các thành phần Middlewares: Bao gồm các thư viện USB Device, STMTouch, thư viện đồ họa STemWin, hệ điều hành FreeRTOS, FatFS.

Level 2:

Dựa trên lớp dịch vụ Middleware, lớp trừu tượng mức độ thấp và sử dụng các ngoại vi.

8.3. Pinout tab

8.3. Pinout tab ...

- Middleware: chọn/cho phép các middleware sẽ sử dụng
- Peripherals: chọn các ngoại vi sẽ sử dụng
 - RCC (System Reset & Clock Control): Nguồn clock cho hệ thống ở ngoài
 - Crystal: Nguồn tạo dao động là thạch anh ở ngoài chip (có trên board mạch)
 - **SYS** debug: cấu hình nạp code cho vi điều khiển
 - Serial Wire: vi điều khiển được cấu hình nạp code thông qua chân SWDIO và SWCLK (sử dụng mạch nạp ST-Link và kết nối với vi điều khiển thông qua các chân này).

8.4. Clock configuration

Cấu hình tần số hoạt động của CPU và các ngoại vi

9. THỰC HÀNH

Thực hành các bài lập trình trên KIT phát triển STM32 Disco

Bài 1.0. Lập trình GPIO cơ bản

- Hệ thống được thiết kế như hình, Yêu cầu Lập trình bật/tắt Led sau mỗi giây
- VĐK: **STM32F401VE**
- Nguồn xung: **HSI** 16MHz

Bài 1. Lập trình GPIO cơ bản ..

Bài 1. Lập trình GPIO cơ bản ...

```
10
     SystemClock Config();
     /* Initialize all configured peripherals */
11
     MX GPIO Init();
12
     /* USER CODE BEGIN WHILE */
13
14
     while (1)
15 b
            HAL GPIO TogglePin (GPIOD, GPIO PIN 12);
16
17
            HAL GPIO TogglePin (GPIOD, GPIO PIN 13);
            HAL GPIO TogglePin (GPIOD, GPIO PIN 14);
18
19
            HAL GPIO TogglePin (GPIOD, GPIO PIN 15);
20
21
           HAL Delay (1000);
22
```

Bài 1.1. Lập trình GPIO cơ bản

- Hệ thống được thiết kế như hình, Yêu cầu Lập trình:
- Sáng lần lượt các led từ trên xuống dưới, sau đó tắt hết và lặp lại
- VĐK: STM32F401VE
- Nguồn xung: **HSI** 16MHz
- Hàm sử dụng:


```
HAL_GPIO_WritePin(cổng, chân, GPIO_PIN_SET); //đặt mức cao lên pin
HAL_GPIO_WritePin(cổng, chân, GPIO_PIN_RESET); //đặt mức thấp lên pin
```

Bài 2.0. Lập trình ngắt ngoài

Lập trình bật/tắt Led D5, khi nhấn vào nút bấm được nối ở chân A0

Bài 3. ADC

 Bài toán: Đọc dữ liệu từ biến trở ở chân A0, gửi dữ liệu đọc được qua module Bluetooth (giao tiếp UART)

BỘ ĐỊNH THỜI (TIMER)

Bật/ Tắt led sử dụng Timer

Timer – Điều chế độ rộng xung

Kết hợp: Ngắt ngoài + Băm xung

Kết hợp: Ngắt ngoài + Băm xung ...

Kiểm tra (maicuongtho@gmail.com) **.file** thiết kế mạch, và **main.c**

- Câu 1. Hệ thống nhúng có 10 led được gắn trên Cổng A của STM32F401, Lập trình ứng dụng sáng led theo qui tắc sau
 - Led ở vị trí chẵn sang, lẻ tắt, thời gian 1s, tiếp đến
 - Led ở vị trí lẻ sáng, chẵn tắt, thời gian 1s, tiếp đến
 - Tất cả led đều sáng 1s
 - Tắt tất cả các Led \rightarrow lặp lại từ đầu
- Câu 2. HTN có 1 nút bấm và 1 động cơ DC Moto, cầu L293D, và 10 led như câu 1. Lập trình ứng dụng cho HTN theo yêu cầu sau
 - 10 Led hoạt động như câu một
 - Ban đầu động cơ không quay, khi nhấn nút bấm thì động cơ bắt đầu quay

Ôn tập

- 1) Kiến trúc và các thành phần cơ bản của HTN
- 2) Chuẩn giao tiếp có dây của STM32F4: **UART**
- 3) Quá trình số hóa tín hiệu tương tự (ADC)
- 4) Cấu trúc cơ bản của Bộ định thời
- 5) Lập trình GPIO cơ bản
- 6) Lập trình ngắt và điều khiển động cơ
- 7) Hệ thống nhúng thời gian thực là gì, hệ điều hành thời gian thực?. Lập trình Nháy led trên HTN STM32 với FreeRTOS

Bài tập

- 1) Viết chương trình đọc nút nhấn trên chân PC13 sử dụng ngắt ngoài, nhấn lần 1 đèn trên chân PB9 sáng, lần thứ 2 led trên chân PB9 tắt... lặp đi lặp lại như vậy.
- 2) Viết chương trình đọc 2 nút nhấn trên chân PC13 và PB8 sử dụng ngắt ngoài. Nút nhấn trên chân PC13 có mức ưu tiên cao hơn chân PB8. Khi nhân nút trên chân PC13 led trên chân PB9 sáng, và khi nhấn nút trên chân PB8 led trên chân PB9 tắt. Lặp đi lặp lại quá trình đó.
- 3) Cấu hình ngắt tràn TIM4 với tần số là 1Hz. Led trên chân PB9 sáng tắt với tốc độ là 1s sáng, 1s tắt. Lặp đi lặp lại quá trình này.
- 4) Cấu hình ngắt tràn TIM1 với tần số là 2Hz. Led trên chân PB9 sáng tắt với tốc độ là 0.5s sáng, 0.5s tắt. Lặp đi lặp lại quá trình này.

Bài tập ...

- 5) Cấu hình PWM với duty cycle 20%, tần số 1Hz trên chanel1,2,3,4 của TIM2.
- 6) Cấu hình PWM với duty cycle 20%, tần số 1Hz trên chanel 1(20%) và chanel 1N(80%) của TIM1.
- 7) Đọc giá trị biến trở sử dụng kênh ADC1 channel 0 trên chân PA0, hiển thị giá trị ADC lên máy tính thông qua UART.
- 8) Đọc giá trị cảm biến nhiệt độ trong bộ ADC, nếu giá trị lớn hơn 35°C thì bật led ở chân PB9 cảnh báo, hiển thị giá trị nhiệt độ lên máy tính thông qua UART.