Physics Applicable to Respiratory System

Dr. Denny C.W. Ma

Respiratory System

Upper Tract

- Nose, pharynx & associated structures
- Filter & humidify incoming air

Lower Tract

- Larynx, trachea, bronchi & lungs
- Include delicate conduction passages & gas exchange surfaces (alveoli)

Respiratory System

Composed of <u>respiratory</u> & <u>conducting</u> zones

Respiratory zone

Site of gas exchange

Consists of bronchioles, alveolar ducts & alveoli

Respiratory System

Conducting zone

- Includes <u>all other</u> respiratory structures (e.g. <u>nose</u>, <u>nasal cavity, pharynx, trachea</u>)
- Provides rigid conduits for air to reach the sites of gas exchange

Respiratory muscles

<u>Diaphragm</u> & other muscles that promote ventilation

Processes in Respiration

To supply the body with oxygen & dispose of carbon dioxide

Respiration involves 4 distinct processes:

- Pulmonary ventilation movement of air into & out of lungs
- External respiration gas exchange between <u>lungs</u> & blood
- Transport transport of O₂ & CO₂ between lungs & tissues
- Internal respiration gas exchange between systemic blood vessels & tissues

Mechanics of Breathing

Pulmonary ventilation (breathing) consists of <u>2 phases</u>:

- Inspiration (inhalation) air flows into the lungs
- Expiration (exhalation) gases exit the lungs

Basic Atmospheric Conditions

Atmospheric pressure:

Pressure exerted by the weight of air in the atmosphere of Earth

Basic Atmospheric Conditions

Atmospheric pressure: 760 mmHg

(1 mmHg = Pressure generated by a column of mercury one millimetre high)

Basic Atmospheric Conditions

Composition of the atmosphere

- Nitrogen = 78%
- Oxygen = 21%
- Argon = 0.93%
- Carbon dioxide = 0.038%
- Water vapor, Neon, Helium, Methane, Krypton etc.

Gas Laws

- Dalton's Law
- Fick's Laws of Diffusion
- Boyle's Law
- Ideal Gas Law

These physical laws help explain how air is moved in & out of the body

1. Dalton's Law

Law of Partial Pressures:

The total pressure of a <u>mixture</u> of non-reacting gases is equal to the <u>sum</u> of the pressures of the <u>individual</u> gases

1. Dalton's Law

If we know the total atmospheric pressure (760 mmHg) & the relative abundances of gases (% of gases), we can calculate individual gas effects:

- P_{atm} x % of gas in atmosphere
- = Partial pressure of any atmospheric gas

- e.g. $P_{O_2} = 760 \text{ mmHg} \times 21\%$
 - = 160 mmHg

2. Fick's Laws of Diffusion

- Factors that affect rates of diffusion
 - Concentration gradient
 - Distance to diffuse
 - Solubility of particles
 - Temperature

Solute moves from region of <u>high</u> concentration <u>to low</u> concentration (at a rate which is directly proportional to the concentration gradient)

2. Fick's Laws of Diffusion

Pressure & volume of a gas in a system are inversely related $P_1V_1 = P_2V_2$

Robert Boyle (1627- 1691)

Physics of Breathing

Volume changes lead to pressure changes, which lead to the flow of gases to equalize pressure

In our body

Thoracic cavity (container) expands

- → Volume UP
- → Pressure DOWN
- If pressure <760 mmHg, what happens?

Thoracic cavity (container) shrinks

- → Volume DOWN
- → Pressure UP
- If pressure >760 mmHg, what happens?

Inspiration vs. Expiration

P_{alv} < P_{atmos}→ air molecules flow into lungs

P_{alv} > P_{atmos}→ air molecules flow out of lungs

Involvement of Diaphragm

volume increases.

volume decreases.

Involvement of Rib Cage

Changing circumference of thoracic cavity

Respiratory pressure is always described <u>relative to</u> <u>atmospheric pressure</u>

- Atmospheric pressure (P_{atm}):
 - Pressure exerted by the air surrounding the body
- Intrapulmonary pressure (P_{alv}):
 - Pressure within the alveoli

Always <u>equalizes</u> itself with atmospheric pressure eventually

- Intrapleural pressure (P_{ip}):
 - Pressure within the pleural cavity

Respiratory pressure is always described relative to atmospheric pressure

- Atmospheric pressure (P_{atm}):
 - Pressure exerted by the air surrounding the body
- Intrapulmonary pressure (P_{alv}):
 - Pressure within the alveoli

Always <u>higher than</u> intrapleural pressure

- Intrapleural pressure (P_{ip}):
 - Pressure within the pleural cavity

Pulmonary Function Test

Spirometer: an instrument to measure the volume & rate of air inspired & expired by the lungs

- A hollow bell is inverted over water
- Bell is <u>displaced</u> as <u>patient breathes</u> into a connecting <u>mouthpiece</u>

A graph is plotted on a rotating drum

4. Ideal Gas Law

Pressure & volume of a container of gas is directly related to the temperature of the gas & number of molecules in the container:

PV = nRT

- n = No. of moles of gas molecules
- T = Absolute temperature
- R = Universal gas constant = 8.3145 J K⁻¹mol⁻¹

Key Points

Respiratory System

- Upper & lower tracts
- Respiratory & conducting zones

Mechanics of Breathing

Inspiration & expiration

Basic Atmospheric Conditions

Dalton's Law

Total pressure of a mixture of gases = sum of the pressures of individual gases

Fick's Laws of Diffusion

Solute moves from region of high concentration to low concentration

Boyle's Law

- $P_1V_1 = P_2V_2$
- Breathing: Movement of diaphragm & rib → change in volume of thoracic cavity (△V) → △P → U

Pressure relationships in the thoracic cavity

• Atmospheric pressure (P_{atm}), intrapulmonary pressure (P_{alv}), intrapleural pressure (P_{ip})

Pulmonary function test: Spirometer

Ideal Gas Law

PV = nRT