Анализ временных рядов в задачах и упражнениях

Борзых Д. А., Демешев Б. Б.

30 марта 2015 г.

Предисловие

. . .

Глава 1

GARCH-модели

1.1 Элементы теории

Положение GARCH-модели среди классических моделей временных рядов

$$Y_{t} = c + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \sum_{j=1}^{k} \beta_{j} X_{tj},$$

$$\varepsilon_{t} = \sigma_{t} \cdot \xi_{t},$$

$$\sigma_{t}^{2} = \omega + \sum_{i=1}^{s} \delta_{i} \sigma_{t-i}^{2} + \sum_{j=1}^{r} \gamma_{j} \varepsilon_{t-j}^{2}.$$

- \bullet при $s=0,\,r=0,\,k=0$ ARMAX/GARCH это классическая ARMA(p,q)-модель,
- ullet при s=0, r=0 ARMAX/GARCH это ARMA(p,q)-модель, в которой в качестве объясняющих переменных дополнительно включены экзогенные ряды $\{X_{t1}\},...,\{X_{tk}\}$.

ПРИМЕР ИСПОЛЬЗОВАНИЯ GARCH-МОДЕЛИ

Пусть P_t — цена акции, фьючерса или значение некоторого индекса цен финансовых инструментов в момент времени t.

- простой доходностью называется $\frac{P_t P_{t-1}}{P_{t-1}}$,
- логарифмической доходностью называется $\ln \frac{P_t}{P_{t-1}}$.

Связь между простой и логарифмической доходностью

$$\ln \frac{P_t}{P_{t-1}} = \ln \left(\frac{P_{t-1} + P_t - P_{t-1}}{P_{t-1}} \right) = \ln \left(1 + \frac{P_t - P_{t-1}}{P_{t-1}} \right).$$

Используя формулу Тейлора $\ln(1+x) = x + o(x)$ при $x \to 0$, можем записать следующее приближенное равенство:

$$\ln \frac{P_t}{P_{t-1}} \approx \frac{P_t - P_{t-1}}{P_{t-1}}$$

при малых значениях простой доходности $\frac{P_t - P_{t-1}}{P_{t-1}}$. В финансовой математике, как правило, используется логарифмическая доходность. Это связано с тем, что

$$\ln \frac{P_T}{P_0} = \ln \frac{P_1}{P_0} + \ln \frac{P_2}{P_1} + \dots + \ln \frac{P_T}{P_{T-1}},$$

т. е. логарифмическая доходность за период [0;T] есть сумма логарифмических доходностей за периоды $[0;1],[1;2],\ldots,[T-1;T].$

- В качестве зависимой переменной Y_t возьмём логарифмическую доходность $\ln \frac{P_t}{P_{t-1}}$ интересующего нас финансового инструмента.
- Простейшая модель для расчёта и прогнозирования волатильности ARMAX(p=0,q=0,k=0)/GARCH(s=1,r=1)-модель:

$$Y_t = c + \varepsilon_t,$$

$$\varepsilon_t = \sigma_t \cdot \xi_t,$$

$$\sigma_t^2 = \omega + \delta \cdot \sigma_{t-1}^2 + \gamma \cdot \varepsilon_{t-1}^2,$$

• Дальнейшее изложение будем вести на примере данной модели.

Определение 1.1. Пусть $\omega > 0$, $\delta \ge 0$, $\gamma \ge 0$, $\delta + \gamma < 1$ — некоторые параметры, а σ_0 , ξ_0 , ξ_1 , ξ_2 , . . . — независимые случайные величины такие, что

$$\mathbb{E}\sigma_0^2 = \frac{\omega}{1 - \delta - \gamma}, \quad \mathbb{E}\xi_t = 0, \quad \mathbb{E}\xi_t^2 = 1, \quad t \ge 1.$$

В этом случае говорят, что последовательность случайных величин $\{\varepsilon_t\}_{t=0}^{\infty}$ образует GARCH(1,1)процесс, если выполнены следующие соотношения:

$$\varepsilon_0 = \sigma_0 \cdot \xi_0,$$

$$\varepsilon_t = \sigma_t \cdot \xi_t, \quad \sigma_t^2 = \omega + \delta \cdot \sigma_{t-1}^2 + \gamma \cdot \varepsilon_{t-1}^2, \quad t \ge 1.$$

Напомним определения слабо стационарного процесса и белого шума.

Определение 1.2. Случайный процесс $\{X_t\}_{t=0}^{\infty}$ называется *слабо стационарным*, если

- 1. $\mathbb{E}X_t^2 < \infty$ для всех $t \ge 0$;
- 2. $\mathbb{E}X_t = \mathbb{E}X_s$ для всех $t, s \ge 0$;
- 3. $D X_t = D X_s$ для всех $t, s \ge 0$;
- 4. $\operatorname{cov}(X_{t+h}, X_{s+h}) = \operatorname{cov}(X_t, X_s)$ для всех $t, s \geq 0$ и любого h такого, что $t+h \geq 0$ и $s+h \geq 0$.

Определение 1.3. Слабо стационарный процесс $\{X_t\}_{t=0}^{\infty}$ называется белым шумом, если $\mathbb{E}X_t = 0$ и $\text{cov}(X_t, X_s) = 0$ при $t, s \geq 0, t \neq s$.

Ниже мы покажем, что GARCH(1,1)-процесс $\{\varepsilon_t\}_{t=0}^{\infty}$ является белым шумом.

Лемма 1.1. Пусть случайные величины X_1, \ldots, X_m и Y_1, \ldots, Y_n независимы в совокупности. Тогда для любых (борелевских) функций $f \colon \mathbb{R}^m \to \mathbb{R}^1$ и $g \colon \mathbb{R}^n \to \mathbb{R}^1$ случайные величины $U = f(X_1, \ldots, X_m)$ и $V = g(Y_1, \ldots, Y_n)$ независимы.

Доказательство. См., например, Ширяев А. Н. [5], гл. II, § 6, стр. 256.

Лемма 1.2. Пусть независимые случайные величины X и Y имеют конечное математическое ожидание. Тогда

- (i) математическое ожидание случайной величины $X \cdot Y$ конечно;
- (ii) $\mathbb{E}[X \cdot Y] = \mathbb{E}X \cdot \mathbb{E}Y$.

Доказательство. См. Ширяев А. Н. [5], гл. II, § 6, стр. 267, теорема 6.

1.1. Элементы теории

Лемма 1.3. Пусть случайные величины X^2 и Y^2 имеют конечное математическое ожидание. Тогда случайная величина $X \cdot Y$ также имеет конечное математическое ожидание.

Доказательство. В силу свойства математического ожидания $|\mathbb{E}Z| \leq \mathbb{E}|Z|$ и неравенства $|X \cdot Y| \leq \frac{1}{2} \cdot X^2 + \frac{1}{2} \cdot Y^2$ получаем:

$$|\mathbb{E}[X \cdot Y]| \le \mathbb{E}|X \cdot Y| \le \frac{1}{2} \cdot \mathbb{E}X^2 + \frac{1}{2} \cdot \mathbb{E}Y^2 < \infty.$$

Лемма 1.4. Для любого $t \ge 0$ случайные величины σ_t и ξ_t независимы.

Доказательство. При t=0 независимость случайных величин σ_0 и ξ_0 содержится непосредственно в определении GARCH(1,1)-процесса.

При t=1 независимость σ_1 и ξ_1 следует из того, что случайные величины σ_0 , ξ_0 , ξ_1 независимы в совокупности, и того, что $\sigma_1=\sqrt{\omega+\delta\cdot\sigma_0^2+\gamma\cdot\sigma_0^2\cdot\xi_0^2}$, т. е. σ_1 является функцией от σ_0 , ξ_0 .

Независимость σ_t и ξ_t при $t \geq 2$ обосновывается аналогично тому, как это сделано при t = 1. Действительно, σ_t есть функция от $\sigma_0, \xi_0, \xi_1, \dots, \xi_{t-1}$, при этом величины $\sigma_0, \xi_0, \xi_1, \dots, \xi_t$ независимы в совокупности.

Утверждение 1.1. Пусть последовательность случайных величин $\{\varepsilon_t\}_{t=0}^{\infty}$ образует GARCH(1,1)-процесс. Тогда для любого $t \geq 0$

- (i) $\mathbb{E}\varepsilon_t^2 < \infty$;
- (ii) $\mathbb{E}\varepsilon_t = 0$;
- (iii) $\mathbb{E}\varepsilon_t^2 = \frac{\omega}{1-\delta-\gamma}$;
- (iv) $cov(\varepsilon_t, \varepsilon_s) = 0 \ npu \ t \neq s, \ s \geq 0.$

Доказательство. (i) (t=0) По условию случайные величины σ_0^2 и ξ_0^2 имеют конечное математическое ожидание. При этом независимость σ_0^2 и ξ_0^2 вытекает из независимости σ_0 и ξ_0 . Следовательно, в силу леммы 2 случайная величина $\varepsilon_0^2 = \sigma_0^2 \cdot \xi_0^2$ имеет конечное математическое ожидание.

- (t=1) Согласно лемме 4, случайные величины σ_1 и ξ_1 независимы. Значит, σ_1^2 и ξ_1^2 также независимы. Кроме того, по условию, математическое ожидание ξ_1^2 конечно, а конечность $\mathbb{E}\sigma_1^2$ вытекает из конечности $\mathbb{E}\sigma_0^2$, $\mathbb{E}\varepsilon_0^2$ и формулы $\sigma_1^2 = \omega + \delta \cdot \sigma_0^2 + \gamma \cdot \varepsilon_0^2$. Следовательно, $\varepsilon_1^2 = \sigma_1^2 \cdot \xi_1^2$ имеет конечное математическое ожидание.
 - $(t \ge 2)$ Доказательство конечности $\mathbb{E}\varepsilon_t^2$ при $t \ge 2$ проводится аналогично случаю t=1.
 - (ii) Для $t \ge 0$ имеем

$$\mathbb{E}\varepsilon_t = \mathbb{E}[\sigma_t \cdot \xi_t] = \mathbb{E}\sigma_t \cdot \mathbb{E}\xi_t = 0.$$

Здесь мы воспользовались независимостью случайных величин σ_t и ξ_t , а также $\mathbb{E}\xi_t=0$.

(iii) (t = 0) При t = 0 имеем

$$\mathbb{E}\varepsilon_0^2 = \mathbb{E}\sigma_0^2 \cdot \mathbb{E}\xi_0^2 = \frac{\omega}{1 - \delta - \gamma} \cdot 1 = \frac{\omega}{1 - \delta - \gamma}.$$

(t=1) Пусть t=1. По лемме 4 и доказанному выше, получаем

$$\mathbb{E}\varepsilon_1^2 = \mathbb{E}\sigma_1^2 \cdot \mathbb{E}\xi_1^2 = \mathbb{E}\sigma_1^2 = \omega + \delta \cdot \mathbb{E}\sigma_0^2 + \gamma \cdot \mathbb{E}\varepsilon_0^2 =$$

$$=\omega+\delta\cdot\frac{\omega}{1-\delta-\gamma}+\gamma\cdot\frac{\omega}{1-\delta-\gamma}=\frac{\omega}{1-\delta-\gamma}.$$

 $(t \geq 2)$ Доказательство утверждения при $t \geq 2$ выполняется аналогично рассмотренному случаю t=1.

(iv) Пусть $0 \le s < t$. Математическое ожидание ξ_t конечно по определению GARCH(1,1)-процесса. Конечность математического ожидания случайной величины $\sigma_t \cdot \varepsilon_s$ следует из конечности $\mathbb{E}\sigma_t^2$ и $\mathbb{E}\varepsilon_s^2$, а также леммы 1.3. Кроме этого, при $0 \le s < t$ случайные величины ξ_t и $\sigma_t \cdot \varepsilon_s$ независимы. Поэтому

$$cov(\varepsilon_t, \varepsilon_s) = \mathbb{E}[\varepsilon_t \cdot \varepsilon_s] = \mathbb{E}[\xi_t \cdot (\sigma_t \cdot \varepsilon_s)] = \mathbb{E}\xi_t \cdot \mathbb{E}[\sigma_t \cdot \varepsilon_s] = 0.$$

Замечание 1.1. В ходе доказательства пункта (i) утверждения 1.1 попутно было установлено, что $\mathbb{E}\sigma_t^2 < \infty$ для всех $t \geq 0$.

1.2 Задачи

Задача 1. Пусть Y_t — стационарный процесс. Верно ли, что стационарны:

- 1. $Z_t = 2Y_t$
- 2. $Z_t = Y_t + 1$
- 3. $Z_t = \Delta Y_t$
- 4. $Z_t = 2Y_t + 3Y_{t-1}$

Решение. а, б, в, г — стационарны

Задача 2. Известно, что временной ряд Y_t порожден стационарным процессом, задаваемым соотношением $Y_t = 1 + 0.5Y_{t-1} + \varepsilon_t$. Имеется 1000 наблюдений.

Вася построил регрессию Y_t на константу и Y_{t-1} . Петя построил регрессию на константу и Y_{t+1} . Как примерно будут соотносится между собой их оценки коэффициентов?

Решение. Они будут примерно одинаковы. Оценка наклона определяется автоковариационной функцией. ■

Задача 3. Рассмотрим следующий AR(1)-ARCH(1) процесс:

 $Y_t = 1 + 0.5Y_{t-1} + \varepsilon_t, \ \varepsilon_t = \nu_t \cdot \sigma_t$

 ν_t независимые N(0;1) величины.

$$\sigma_t^2 = 1 + 0.8\varepsilon_{t-1}^2$$

Также известно, что $Y_{100} = 2$, $Y_{99} = 1.7$

- 1. Найдите $E_{100}(\varepsilon_{101}^2)$, $E_{100}(\varepsilon_{102}^2)$, $E_{100}(\varepsilon_{103}^2)$, $E(\varepsilon_t^2)$
- 2. $Var(Y_t), Var(Y_t|\mathcal{F}_{t-1})$
- 3. Постройте доверительный интервал для Y_{101} :
 - (а) проигнорировав условную гетероскедастичность
 - (b) учтя условную гетерескедастичность

Решение. ■

Задача 4. Рассмотрим GARCH(1,1) процесс . . .

Pewehue.

Задача 5. Пусть X_t , $t=0,1,2,\ldots$ случайный процесс и $Y_t=(1+L)^tX_t$. Выразите X_t с помощью Y_t и оператора лага L.

1.2. Задачи 9

Решение.
$$X_t = (1 - L)^t Y_t$$

Задача 6. Пусть F_n — последовательность чисел Фибоначчи. Упростите величину

$$F_1 + C_5^1 F_2 + C_5^2 F_3 + C_5^3 F_4 + C_5^4 F_5 + C_5^5 F_6$$

$$Peшение. \ F_n = L(1+L)F_n, \$$
значит $F_n = L^k(1+L)^kF_n \$ или $F_{n+k} = (1+L)^kF_n$

Задача 7. Пусть $X_t, t = \ldots -2, -1, 0, 1, 2, \ldots$ – случайный процесс. И $Y_t = X_{-t}$. Какое рассуждение верно?

1.
$$LY_t = LX_{-t} = X_{-t-1}$$

2.
$$LY_t = Y_{t-1} = X_{-t+1}$$

Решение. а — неверно, б — верно.

Задача 8. Представьте процесс AR(1), $y_t = 0.9y_{t-1} - 0.2y_{t-2} + \varepsilon_t$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

- 1. Выбрав в качестве состояний вектор $\begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix}$
- 2. Выбрав в качестве состояний вектор $\left(\begin{array}{c} y_t \\ \hat{y}_{t,1} \end{array} \right)$

Найдите дисперсии ошибок состояний

Pewenue.

Задача 9. Представьте процесс MA(1), $y_t = \varepsilon_t + 0.5\varepsilon_{t-1}$, $\varepsilon \sim WN(0;1)$ в виде модели состояниенаблюдение.

1.
$$\begin{pmatrix} \varepsilon_t \\ \varepsilon_{t-1} \end{pmatrix}$$

$$2. \left(\begin{array}{c} \varepsilon_t + 0.5\varepsilon_{t-1} \\ 0.5\varepsilon_t \end{array}\right)$$

Pewehue.

Задача 10. Представьте процесс ARMA(1,1), $y_t = 0.5y_{t-1} + \varepsilon_t + \varepsilon_{t-1}$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

Вектор состояний имеет вид x_t, x_{t-1} , где $x_t = \frac{1}{1-0.5L} \varepsilon_t$

Pewehue.

Задача 11. Рекурсивные коэффициенты

- 1. Оцените модель вида $y_t = a + b_t x_t + \varepsilon_t$, где $b_t = b_{t-1}$.
- 2. Сравните графики filtered state и smoothed state.
- 3. Сравните финальное состояние b_T с коэффициентом в обычной модели линейной регрессии, $y_t = a + bx_t + \varepsilon_t$.

Решение.

Глава 1. GARCH-модели

Задача 12. Рассмотрим модель $y_t = \mu + \varepsilon_t$, где ε_t — стационарный AR(1) процесс $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$ с $u_t \sim N(0, \sigma^2)$. Найдите условную логарифмическую функцию правдоподобия $l(\mu, \rho, \sigma^2|y_1)$.

Peueeue.

Задача 13. Известно, что ε_t — белый шум. Классифицируйте в рамках классификации ARIMA процесс $y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.4\varepsilon_{t-2} + 0.3\varepsilon_{t-3} + 0.2y_{t-1} + 0.1y_{t-2}$.

Pewehue. ARMA(2,3), ARIMA(2,0,3)

Задача 14. Известно, что ε_t — белый шум. У каких разностных уравнений есть слабо стационарные решения?

- 1. $y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.25\varepsilon_{t-2}$
- 2. $y_t = -2y_{t-1} 3y_{t-2} + \varepsilon_t + \varepsilon_{t-1}$
- 3. $y_t = -0.5y_{t-1} + \varepsilon_t$
- 4. $y_t = 1 1.5y_{t-1} 0.5y_{t-2} + \varepsilon_t 1.5\varepsilon_{t-1} 0.5\varepsilon_{t-2}$
- 5. $y_t = 1 + 0.64y_{t-2} + \varepsilon_t + 0.64\varepsilon_{t-1}$
- 6. $y_t = 1 + t + \varepsilon_t$
- 7. $y_t = 1 + y_{t-1} + \varepsilon_t$

Решение.

- 1. $y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.25\varepsilon_{t-2}$ стационарный
- 2. $y_t = -2y_{t-1} 3y_{t-2} + \varepsilon_t + \varepsilon_{t-1}$
- 3. $y_t = -0.5y_{t-1} + \varepsilon_t$ стационарный
- 4. $y_t = 1 1.5y_{t-1} 0.5y_{t-2} + \varepsilon_t 1.5\varepsilon_{t-1} 0.5\varepsilon_{t-2}$
- 5. $y_t = 1 + 0.64y_{t-2} + \varepsilon_t + 0.64\varepsilon_{t-1}$ стационарный
- 6. $y_t = 1 + t + \varepsilon_t$ нестационарный
- 7. $y_t = 1 + y_{t-1} + \varepsilon_t$ нестационарный

Задача 15. Белые шумы ε_t и u_t независимы. Пусть $y_t = 2 - 0.5t + u_t$, $x_t = 1 + 0.5t + \varepsilon_t$.

- 1. Является ли процесс $z_t = x_t + y_t$ стационарным?
- 2. Являются ли процессы x_t и y_t коинтегрированными?

 $Peшение. \ z_t$ стационарный, x_t и y_t коинтегрированы

Задача 16. Рассмотрим GARCH(1,2) процесс $\varepsilon_t = \sigma_t \nu_t$, $\sigma^2 = 0.2 + 0.5 \sigma_{t-1}^2 + 0.2 \varepsilon_{t-1}^2 + 0.1 \varepsilon_{t-2}^2$. Найдите безусловную дисперсию $\mathbb{V}ar(y_t)$

Pewehue.

Задача 17. Для GARCH(1,1) процесса $\varepsilon_t = \sigma_t \nu_t$, $\sigma_t^2 = w + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$ найдите $\mathbb{E}(\mathbb{E}(\varepsilon_t^2 | \mathcal{F}_{t-1}))$

Решение.

Задача 18. Рассмотрим GARCH(1,1) процесс $\varepsilon_t = \sigma_t \nu_t, \ \sigma_t^2 = 0.1 + 0.7 \sigma_{t-1}^2 + 0.2 \varepsilon_{t-1}^2$. Известно, $\sigma_T = 1, \ \varepsilon_T = 1$. Найдите $\mathbb{E}(\sigma_{T+2}^2 | \mathcal{F}_T)$.

Pewehue.

Литература

- [1] Greene W. H. Econometric Analysis. Prentice Hall, 2012.
- [2] Francq C., Zakoian J.-M. GARCH models: structure, statistical inference, and financial applications. Wiley, 2010.
- [3] Tsay R. S. Analysis of Financial Time Series. Wiley, 2005.
- [4] Ширяев А. Н. Основы стохастической финансовой математики. Т. 1. М.: ФАЗИС, 2004.
- [5] Ширяев А. Н. Вероятность. Т. 1. М.: МЦНМО, 2007.

12 Литература

Список обозначений

14 Литература

Оглавление

1	GA	GARCH-модели			
	1.1	Элементы теории	5		
		Залачи	8		