Содержание

1 День 0*. Прелюдия, повторяем комбинаторику

2 День 1. Случайные события и элементарное определение вероятности

Назовем множеством элементарных исходов $\Omega = \{\omega_1\omega_2,...\omega_n\}$ такое конечное множеством, что ω_i и ω_j несовместны

Тогда Событие - это любое множество элементарных исходов.

Пусть $A \subset \Omega$ - событие, тогда

- $A \cup B = \{\omega \in \Omega : \omega \in A$ или $\omega \in B\}$
- $A \cap B = \{ \omega \in \Omega : \omega \in A \text{ if } \omega \in B \}$
- $\mathbf{C}A = \{\omega \in \Omega : \omega \notin A\}$

Примечание. Рассмотрим эксперимент бросок кубика d6

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Событие, что выпала грань с четным числом - $\{2,4,6\}$ Событие, что выпала грань с числом меньше 3 - $\{1,2\}$

Определим некоторую функцию $P:\Omega\to [0,1],$ которую назовем распределением вероятностей Такую, что

$$\sum_{\omega \in \Omega} P(\omega) = 1$$

Вероятность Р(А) события А тогда определим как

$$P(A) = \sum_{\omega \in A} P(\omega)$$

Пару (Ω, P) будем называть Дискретным вероятностным пространством

Примитивные свойства:

- 1. $P(\emptyset) = 0$
- 2. $P(\Omega) = 1$
- 3. P(CA) = 1 P(A)
- 4. Если A и B не совместны то есть $A \cap B = \emptyset$ то $P(A \cup B) = P(A) + P(B)$
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Вопрос аудитории: Верно ли что нулевая вероятность может быть только у пустого события (\emptyset) ?

Теорема 1 (Формула включений-исключений).

$$P(\bigcup_{i=1}^{m} A_i) = \sum_{i=1}^{m} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) \dots + (-1)^{m-1} P(\bigcap_{i=1}^{m} A_i)$$

Доказательство. Будем вести доказательство индукцией по т

База при ${\rm m}=1$ очевидна, при ${\rm m}=2$ сошлемся на пятый пункт, который также очевиден.

Переход от $m \kappa m+1$:

Пусть
$$B = \bigcup_{i=1}^{m} A_i$$

$$P(\bigcup_{i=1}^{m+1} A_i) = P(B \cup A_{m+1}) = P(B) + P(A_{m+1}) - P(B \cap A_{m+1})$$

Пусть
$$B_i = A_i \cap A_{m+1} \Rightarrow P(B \cap A_{m+1}) = P(\bigcup_{i=1}^m B_i)$$

$$\Rightarrow P(B) + P(A_{m+1}) - P(B \cap A_{m+1}) = P(B) + P(A_{m+1}) - P(\bigcup_{i=1}^{m} B_i)$$

$$= (\sum_{1}^{m} P(A_i) - \sum_{i < j \le m} P(A_i \cap A_j) + \sum_{i < j < k \le m} P(A_i \cap A_j \cap A_k) - \dots) + P(A_{m+1})$$

$$-(\sum_{1}^{m} P(A_{i} \cap A_{m+1}) - \sum_{i < j \leq m} P(A_{i} \cap A_{j} \cap A_{m+1}) + \dots)$$

Остается сгруппировать и понять, что это именно то, что нас интересует. Q.E.D.

Рассмотрим важный частный случай, когда все элементарные исходы равновозможны, то есть $P(w_i) = \frac{1}{|\Omega|}$

Тогда вероятность события А равна

$$P(A) = \frac{|A|}{|\Omega|}$$

3 День 2. Условная вероятность и независимые события

Пусть
$$P(B) > 0$$

Тогда Вероятность события А npu условии что наступило событие В определим как

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Свойства

- 1. P(A|A) = 1 и если $B \subset A$ то P(A|B) = 1
- 2. $P(\varnothing|B) = 0$
- 3. Если A_1 и A_2 не совместны, то $P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B)$
- 4. P(CA|B) + P(A|B) = 1 Вопрос аудитории: Будет ли равняться 1 P(A|B) + P(A|CB)
- 4 День 3. Случайные величины и вероятностные характеристики
- 5 День 4. Геометрическая вероятность и Метод Монте-Карло
- 6 День 5. Эпилог, что дальше?
- 7 День 6. Зачет

Post Scriptum