Class 15: Outline

Hour 1:

Magnetic Force

Expt. 6: Magnetic Force

Hour 2:

Creating B Fields: Biot-Savart

Last Time:
Magnetic Fields
&
Magnetic Dipoles

Magnetic Fields

Magnetic Dipoles Create and Feel B Fields:

Also saw that moving charges feel a force:

$$\vec{\mathbf{F}}_{B} = q \, \vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

What Kind of Motion Does this Lead to?

Cyclotron Motion

(1) r: radius of the circle

$$qvB = \frac{mv^2}{r} \implies r = \frac{mv}{qB}$$

(2) T: period of the motion

$$T = \frac{2\pi r}{v} = \frac{2\pi m}{qB}$$

(3) ω : cyclotron frequency

$$\omega = 2\pi f = \frac{v}{r} = \frac{qB}{m}$$

Current Carrying Wires

Magnetic Force on Current-Carrying Wire

$$\vec{\mathbf{F}}_{B} = q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

$$= (\text{charge}) \frac{m}{s} \times \vec{\mathbf{B}}$$

$$= \frac{\text{charge}}{s} m \times \vec{\mathbf{B}}$$

$$\left| \vec{\mathbf{F}}_{B} = I \left(\vec{\mathbf{L}} \times \vec{\mathbf{B}} \right) \right|$$

Demonstration: Jumping Wire

Magnetic Force on Current-Carrying Wire

Current is moving charges, and we know that moving charges **feel** a force in a magnetic field

PRS Questions: 5 Predictions For Experiment 6

Experiment 6: Magnetic Force

Mid-term Course Evaluation

Lab Summary: Currents FEEL Forces in Magnetic Fields

Question:
What happens if currents are next to each other?

Demonstration: Parallel & Anti-Parallel Currents

How Do They Interact?

Moving charges also create magnetic fields!

The current in one wire *creates* a magnetic field that is *felt* by the other wire.

This is the rest of today's focus

(http://ocw.mit.edu/ans7870/8/8.02T/f04/vis ualizations/magnetostatics/13-Parallel Wires 320 f185.html)

(http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/magnetostatics/14-SeriesWires/14-Series_320.html)

Sources of Magnetic Fields: Biot-Savart

Electric Field Of Point Charge

An electric charge produces an electric field:

$$\vec{\mathbf{E}} = \frac{1}{4\pi\varepsilon_o} \frac{q}{r^2} \hat{\mathbf{r}}$$

 $\hat{\mathbf{r}}$: unit vector directed from q to P

Magnetic Field Of Moving Charge

Moving charge with velocity v produces magnetic field:

$$\vec{\mathbf{B}} = \frac{\mu_o}{4\pi} \frac{q \, \vec{\mathbf{v}} \, \mathbf{x} \, \hat{\mathbf{r}}}{r^2}$$

: unit vector directed from q to P

 $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T} \cdot \mathrm{m/A}$ permeability of free space

The Biot-Savart Law

Current element of length ds carrying current I produces a magnetic field:

(http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/magnetostatics/03-CurrentElement3d/03-cElement320.html)

The Right-Hand Rule #2

$$\hat{\mathbf{z}} \times \hat{\boldsymbol{\rho}} = \hat{\boldsymbol{\varphi}}$$

Animation: Field Generated by a Moving Charge

(http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/magnetostatics/01-MovingChargePosMag/01-MovChrgMagPos_f223_320.html)

Demonstration: Field Generated by Wire

Consider a coil with radius R and current I

Find the magnetic field B at the center (P)

Consider a coil with radius R and current I

- 1) Think about it:
 - Legs contribute nothing
 I parallel to r
 - Ring makes field into page
- 2) Choose a ds
- 3) Pick your coordinates
- 4) Write Biot-Savart

In the circular part of the coil...

$$d\vec{s} \perp \hat{r} \rightarrow /d\vec{s} \times \hat{r} = ds$$

Biot-Savart:

$$dB = \frac{\mu_0 I}{4\pi} \frac{|d\vec{\mathbf{s}} \times \hat{\mathbf{r}}|}{r^2} = \frac{\mu_0 I}{4\pi} \frac{ds}{r^2}$$
$$= \frac{\mu_0 I}{4\pi} \frac{R d\theta}{R^2}$$
$$= \frac{\mu_0 I}{4\pi} \frac{d\theta}{R}$$

Consider a coil with radius R and current I

$$dB = \frac{\mu_0 I}{4\pi} \frac{d\theta}{R}$$

$$B = \int dB = \int_{0}^{2\pi} \frac{\mu_0 I}{4\pi} \frac{d\theta}{R}$$

$$= \frac{\mu_0 I}{4\pi R} \int_{0}^{2\pi} d\theta = \frac{\mu_0 I}{4\pi R} (2\pi)$$

$$\vec{\mathbf{B}} = \frac{\mu_0 I}{2R} \text{ into page}$$

$$\vec{\mathbf{B}} = \frac{\mu_0 I}{2R} \text{ into page}$$

Notes:

- •This is an EASY Biot-Savart problem:
 - No vectors involved
- This is what I would expect on exam

PRS Questions: B fields Generated by Currents

Group Problem: B Field from Coil of Radius R

Consider a coil with radius R and carrying a current I

WARNING:

This is much harder than what I just did! Why??

Field Pressures and Tensions: A Way To Understand the qVxB Magnetic Force

Tension and Pressures Transmitted by E and B

Fields (E or B):

- Transmit tension along field direction (Field lines want to pull straight)
- Exert pressure perpendicular to field (Field lines repel)

Example of E Pressure/Tension

(http://ocw.mit.edu/ans7870/ 8/8.02T/f04/visualizations/ele ctrostatics/11-forceq/11-ForceQ_f0_320.html)

Positive charge in uniform (downward) E field Electric force on the charge is combination of

- 1. Pressure pushing down from top
- 2. Tension pulling down towards bottom

Example of B Pressure/Tension

(http://ocw.mit.edu/ans7870/8/8 .02T/f04/visualizations/magneto statics/10-forcemovingq/10-ForceMovingQ_f0_320.html)

Positive charge moving out of page in uniform (downwards) B field. Magnetic force combines:

- 1. Pressure pushing from left
- 2. Tension pulling to right