

An Emulation Framework for Electric Vehicle Charging Using IEC-61499 Function Blocks

Researchers:
Heimana Palmer,
Sanath Vettivel

Supervisor: Dr Partha Roop

I. Background

Electric vehicles (EV) are extremely relevant in the current climate. Countries around the world are pushing towards using them more widely. This is due to both environmental and cost-saving factors. Singapore is a good example of a country adopting the wide-spread use of electric vehicles. There is a need for efficient electric vehicle charging. The optimising of electric vehicle charging stations through the use of an energy storage system (ESS) can help achieve this.

Intent

To investigate whether a Singaporean case-study of an electricvehicle charging station with ESS can be improved upon.

III. IEC-61499 Function Blocks

- This standard allows programming to be done in an objectorientated manner.
- . Basic Function Blocks are the building unit of this standard.
- Each block has an execution control chart to take in and responds to input events to then give outputs.
- . This is done via control algorithms.

II. MATLAB Algorithm

- . A MATLAB Algorithm set the foundation for the project.
- . Based on Singapore, this case-study looked at an Electric Vehicle Charging Station with an energy storage system which has 20 charging ports (5 fast and 15 normal).
- ESS can operate in three states: Peak, Off-Peak and Off-Peak Charging. State decision is based on minute of the day.
- . Algorithm does not run in real-time as states are predefined.

IV. Algorithm Implementation in IEC-61499

- Implementing the MATLAB Algorithm with function blocks allows testing of the emulation environment three different ways
- . This is done by simply swapping the 'controller' block with the new form of testing method to see which gives minimum running cost
- This is possible due to the benefits of IEC-61499 (others including portability, reusability, interoperability).

V. Overview of Function Block Environment

VI. Forms of Testing

1. Bollinger Bands

A simple moving
 average where an upper/
 lower threshold is calculated.

Above upper band is 'Peak', between Upper and Lower band is 'Off-Peak' and below lower band is 'Off-Peak Charging'.

2.Box and Whisker

- Medium, Upper Quartile and Lower Quartile were calculated from electricity price. These values set the thresholds for deciding which state the energy storage system should operate in.
- Power demand from electric vehicle users was also used in deciding the energy storage system state.

3.Artificial Neural Network

Neural network takes the current electricity price and power demand as well as the forecasted price and previous demand.
 It then predicts the likely state of the energy storage system.

VII. Results

- Neural Network gave the greatest savings in running costs (closely followed by Bollinger bands and then Box and Whisker).
- Days with low overall cost see the least improvement from ESS implementation.

VIII. Conclusions

- . The results indicate the neural network is the best for minimising costs. The intent of the research project was met.
- Looking ahead, the combination of neural networks with IEC-61499
 looks very promising and further research should be done.