Understanding the Limiting Factors of Topic Models via Posterior Contraction Analysis

Jian Tang, Zhaoshi Meng, XuanLong Nguyen, Qiaozhu Mei, Ming Zhang

> Presented by Changyou Chen July 31, 2015

Outline

Limiting Factors of the LDA

2 Experiments

Latent Dirichlet allocation (LDA)

 ϕ_k : word-topic distributions; θ_j : topic proportion;

 Z_{ij} : topic indicators; X_{ij} : observed words

 $egin{aligned} \phi_k | eta &\sim \mathsf{Dirichlet}(eta) \ heta_j | lpha &\sim \mathsf{Dirichlet}(lpha) \ Z_{ij} | heta_j &\sim \mathsf{Categorical}(heta_j) \ X_{ij} | \{\phi_k\}, Z_{ij} &\sim \mathsf{Categorical}(\phi_{Z_{ij}}) \end{aligned}$

Motivations & Contributions

- Common questions from non-experts in LDA:
 - is my data topic-model friendly?
 - why did LDA fail on my data?
 - how many documents do I need to learn 100 topics?
- This paper provides theory to describe how the following limiting factors affect convergence of the LDA:
 - # documents
 - lengths of documents
 - # topics
 - Dirichlet hyper-parameters

Problem setting

- In LDA, docs are generated from K topics $\phi = (\phi_1, \dots, \phi_K)$.
- Each doc is associated with a topic proportion vector $\theta_d \in \triangle^{K-1}$
 - equivalently, each doc uniquely corresponds to a word probability vector $\eta_d = \sum_{k=1}^K \theta_{dk} \phi_k$
 - observed words are generated from these $\{\eta_d\}$'s, represented with a $D \times N$ matrix
- Problem:
 - how fast (rate) does the posterior distribution of $\{\phi_k\}$'s converge to the true value as D and N approach infinity?

Latent topic polytope in LDA

- Study convergence of individual topic-word distribtion?
 - identifiability problems in LDA: e.g., the label-switching issue
- To avoid such problems, instead of studying individual topics, the topic polytope is used as a representation of topic structures in LDA:
 - given topics $\{\phi_k\}_{k=1}^K$, the topic polytope is defined as the convex hull of $\{\phi_k\}$:

$$G(\Phi) \triangleq \mathsf{conv}(\phi_1, \cdots, \phi_K)$$
 (1)

Distance between topic polytopes

- To compare 2 different models, distance between topics need to be defined.
- Define distance between two topic polytopes G_1 and G_2 :

$$d_{\mathscr{M}}(G_1, G_2) \triangleq \max\{d(G_1, G_2), d(G_2, G_1)\}, \text{ ,where}$$
 (2)

$$d(G_1, G_2) = \max_{\phi_1 \in \mathsf{extr}(G_1)} \min_{\phi_2 \in \mathsf{extr}(G_2)} \|\phi_1 - \phi_2\|_2 \tag{3}$$

where 'extr' means the extreme points (topics in LDA).

 Equivalent to the well-known Hausdorff metric in convex geometry under mild assumptions.

Posterior contraction analysis

- Posterior contraction analysis describes how fast the posterior of a given subset of data convergence to the true posterior distribution.
- This paper uses posterior contraction analysis to analyze the impact of limiting factors in LDA, e.g., #docs, #topics, lengths of docs.
- In the following:
 - K*: true #topics
 - K: #topics in a model
 - D: # docs
 - N: document length (assume same document length)

Contraction of the posterior of topic polytope

- Assume mild regularity conditions such that (formal descriptions omitted):
 - topic polytopes are not degenerated or collapsing
 - the prior is dense enough in the space of parameters

Theorem

Let the Dirichlet parameters for topic proportions $\alpha_k \in (0,1]$, and assume either one of the following holds:

- (A1) $K = K^*$, i.e., the true #topics is known;
- (A2) the Euclidean distance between every pair of topics is bounded from below by a known positive constant r_0 .

then as $D \to \infty$ and $N \to \infty$ such that $N \ge \log D$, for some C > 0 independent of N and D:

$$\Pi(d_{\mathscr{M}}(G, G^*) \le C\delta_{D,N}) \to 1 , \qquad (4)$$

where $\delta_{D,N}=(\frac{\log D}{D}+\frac{\log N}{N}+\frac{\log N}{D})^{1/2}$, $\Pi(\cdot)$ means under the posterior distribution.

Some observations on the convergence rate

$$\Pi(d_{\mathscr{M}}(G,G^*) \leq C\delta_{D,N}) \rightarrow 1, \ \delta_{D,N} = (\frac{\log D}{D} + \frac{\log N}{N} + \frac{\log N}{D})^{1/2}$$

- The proof of the theorem requires $N \ge \log D$.
- Convergence rate: $\max\{(\frac{\log N}{N})^{1/2}, (\frac{\log D}{D})^{1/2}, (\frac{\log N}{D})^{1/2}\},$ $(\frac{\log N}{D})^{1/2}$ does not play a noticeable role empirically (might be an artifact due to the proof techniques).
- The actually rate might be faster since this is an upper bound (there is an lower bound $\Omega(\frac{1}{DN})$ not given here).
- The rate does not depend on #topics K, meaning if K is known or the topics are well-seperated, the inference is statistically efficient.
- In practice, the overfitted setting is preferred, e.g., $K \gg K^*$, which is considered in the following.

Contraction of the posterior of topic polytope

- When neither of (A1) and (A2) hold, the rate is much worse:
 - (A1) $K = K^*$, *i.e.*, the true #topics is known;
 - (A2) the Euclidean distance between every pair of topics is bounded from below by a known positive constant r_0 .

Theorem

Under the same conditions as the previous theorem, except that none of the conditions (A1) and (A2) holds, then for $K^* < K < |V|$, we have

$$\Pi(d_{\mathscr{M}}(G, G^*) \le C\delta_{D,N}) \to 1 , \qquad (5)$$

where
$$\delta_{D,N}=(rac{\log D}{D}+rac{\log N}{N}+rac{\log N}{D})^{rac{1}{2(K-1)}}$$
 .

- This means the convergence is very slow, depending on *K*.
- It is said underfitting $(K < K^*)$ will result in a persistent error even with infinite data, thus not considered.

Outline

Limiting Factors of the LDA

2 Experiments

On synthetic data

- Generate data from an LDA with K* = 3, V = 5000, symmetric Dirichlet prior for topic proportions and word-topic distributions to being 1 and 0.01, respectively.
- Variation of parameters: #docs D, length of docs N, Dirichlet hyperparameter for topic-word distributions β , #topics K.
- Use collapsed Gibbs sampler.

Fixing N: theoretical upper bound: $\propto (\frac{\log D}{D})^{\frac{1}{2}}$

Fixing *D*: theoretical upper bound: $\propto (\frac{\log N}{N})^{\frac{1}{2}}$

Increasing N = D: theoretical upper bound: $\propto (\frac{\log N}{N})^{\frac{1}{2}}$

Compared with theoretically asymptotic error rates

Real data: Wikipedia

Real data: New York Times

Real data: Twitter

Implications and guidelines for LDA

- #docs plays the most important role:
 - it is theoretically impossible to guarantee identification of topics from a small docs
 - once sufficient docs are provided, further increasing the number might not help significantly, unless document lengths are also increased
- poor performance when lengths of docs are too short, even if there are a lot of docs.
- when over fitting $(K \gg K^*)$, convergence rates might deteriorate quickly.
- the LDA performs well when the underlying topics are well-seperated.
- if each doc is associated with few topics, the Dirichlet hyperparameter should be set to small

Thanks for your attention!!!

