

AMENDMENTS TO THE SPECIFICATION:

Please add the Abstract of the Disclosure appearing on the separate sheet following this section of the Amendment.

Kindly insert at page 1, after the title, the following paragraph:

This disclosure is based upon French Application No. 02/07688, filed June 19, 2002, and International Application No. PCT/FR2003/001871, filed June 18, 2003, the contents of which are incorporated herein by reference.

Kindly insert before numbered line 6, the following heading:

Background of the Invention

Kindly insert on page 7, between lines 19 and 20, the following heading:

Summary of the Invention

Kindly replace the paragraph beginning at page 8, line 26, with the following amended paragraph:

According to another variant which depends on the preceding variant, the calculation A-1) also takes account of the fact that e has a high probability of forming part of the set $\{3, 17, \dots, [[2^{16+1}]] 2^{16} + 1\}$, and for this use is made in the calculation of step A of a seed σ which makes it possible to calculate not pairs (p,q) but a representative value referred to as the image of the pairs

At page 11, between lines 20 and 21, insert the following heading:

Brief Description of the Drawing

At page 11, between lines 27 and 28, insert the following heading:

Detailed Description

Kindly replace the paragraph beginning at page 15, line 1, with the following amended paragraph:

The proposed solution makes use of the parameter Π . This parameter Π is the product of small prime numbers among which there may be found in particular 3, 17, $[[2^{16+1}]]$ $2^{16}+1$, which prime numbers are usually used as public exponents. Thus, the probability that a pair (p,q) will correspond to a given future pair (e,l) , which is already very high, rises even further when Π comprises such values.