FYZIKÁLNÍ PRAKTIKUM II FJFI ČVUT v Praze

Balmerova série

Číslo úlohy: 4 Skupina: 4

Kruh: Středa Jméno: Denis Krapivin

Datum měření: 2.3.2022 Kolega: Kseniia Politskovaia

Klasifikace:

1 Pracovní úkoly

1. $\mathbf{D}\hat{\mathbf{U}}$: V přípravě odvodťe vzorec (3) pro případ, kdy je splněna podmínka úhlu nejmenší deviace $\alpha 1 = \alpha 2$.

2. Metodou dělených svazků změřte lámavý úhel hranolu. Měření opakujte $5\times$.

3. Změřte index lomu hranolu v závislosti na vlnové délce pro čáry rtuťového spektra (o známé vlnové délce), vyneste do grafu a fitováním nelineární funkcí (5) určete disperzní vztah $n = n(\lambda)$.

4. Změřte spektrum vodíkové výbojky, vypočítejte vlnové délky jednotlivých čar a porovnejte s tabulkovými hodnotami. Ověřte pomocí naměřených hodnot platnost vztahu (1) a určete hodnotu Rydbergovy konstanty.

5. Určete charakteristickou disperzi $\frac{\mathrm{d}n}{\mathrm{d}\lambda}$ v okolí vlnové délky 589 nm (žlutá dvojitá čára v sodíkovém spektru). Poté spočítejte minimální velikost základny hranolu, vyrobeného ze stejného materiálu jako hranol, se kterým měříte, který je ještě schopný sodíkový dublet rozlišit.

2 Pomůcky

Goniometr, nástavec s nitkovým křížem, nástavec se štěrbinou, optický hranol, stolní lampa, rtuťová, vodíková a sodíková výbojka.

3 Teorie

3.1 Spektrální série energetických hladin atomu vodíku

Při studiu spektrálních čar vodíku [1] bylo zjištěno, že vlnové délky čar ve viditelné části spektra mohou být vyjádřeny empirických vztahem:

$$\frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{n^2}\right), \qquad n = 3, 4, 5, 6,\tag{1}$$

kde hodnota $R=10973731,57~\mathrm{m}^{-1}$ se nazývá Rydbergova konstanta.

3.2 Lom světla hranolem

Hranol je látkovým prostředím ohraničeným dvěma různoběžnými lámavými stěnami, úhel mezi lámavými stěnami nazveme lámavým úhlem φ . Nechť na lámavou stěnu dopadá paprsek pod úhlem α_1 , láme se pod úhlem β_1 , pak dopadá na protější stěnu pod úhlem β_2 a vystupuji do vnějšího prostředí pod úhlem α_2 (Obr. 1).

Po průchodu světelného svazku hranolem svazek se odráží od stěn hranolu pod uhly d_1 a d_2 . Lámavý úhel φ poté získáme ze vztahu:

$$\varphi = \frac{d_2 - d_1}{2}.\tag{2}$$

Obr. 1: Lom světla hranolem. φ je lámavý úhel hranolu, a je základna hranolu, ε je deviací, α_1 je úhel dopadu paprsku na lámavou stěnu hranolu, β_1 je uhel mezi paprskem v hranolu a normálou ke stěně hranolu, na kterou paprsek dopadá ze vnějšího prostředí. β_2 je uhel mezi paprskem v hranolu a normálou ke stěně hranolu, kterou paprsek vystupuje z hranolu, α_2 úhel výstupu paprsku do vnějšího prostředí.

Uhel mezi paprskem dopadajícím a vystupujícím budeme nazývat deviací ε , která závisí na orientace hranolu a vlnové délce λ . Pokud uvnitř hranolu je paprsek kolmý k ose lámavého úhlu φ , bude jeho deviace minimální. Pak mezi lámavým úhlem hranolu φ a minimální deviaci paprsku ε_0 platí vztah:

$$\frac{\sin\left(\frac{\varepsilon_0 + \varphi}{2}\right)}{\sin\left(\frac{\varphi}{2}\right)} = n,\tag{3}$$

kde n je relativní index lomu materiálu.

Hodnotu úhlu minimální deviace ε_0 lze najít podle vztahu:

$$\varepsilon_0 = \frac{|d_1 - d_2|}{2},\tag{4}$$

kde d_1 a d_2 jsou výchylky spektrálních čar po obě strany hranolu.

Závislost relativního indexu lomu n na vlnové délce dopadajícího paprsku λ vyjadřujeme pomocí tzv. disperzního vztahu:

$$n = n_n + \frac{C}{\lambda - \lambda_n},\tag{5}$$

kde n_n , λ , C jsou konstanty, které je třeba určit proložením naměřených dat.

Schopnost hranolu odlišovat jednotlivé spektrální čáry charakterizujeme pomocí tzv. rozlišovací schopnosti hranolu r:

$$r = \frac{\lambda}{\Delta \lambda} = a \frac{\mathrm{d}n}{\mathrm{d}\lambda},\tag{6}$$

kde $\Delta\lambda$ je minimální úhlová diference vlnových délek, které mohou být hranolem ještě rozlišeny, a je šířka podstavy hranolu.

4 Postup měření

4.1 Měření lámavého úhlu hranolu metodou dělených svazků

Skleněný hranol umístíme na měřicím stolku goniometru co nejdále od kolimátoru mezi dalekohledem a kolimátorem. Na konec kolimátoru umístěme nástavec s osvětleným nitkovým křížem a otočením stolku goniometru nastavíme hranol lámavou hranou směrem ke kolimátoru. Pak dalekohledem najdeme a změříme obě místa, kam se rozdělený paprsek zlomí (hledáme odraz nitkového kříže). Odečítání úhlů provádíme pomocí mikroskopu podle návodu [2]. Lámavý úhel se získá ze vztahu (2). Měření provádíme v 5 různých polohách hranolu.

4.2 Měření spektra rtuťové výbojky

Místo nástavce s nitkovým křížem umístíme nástavec se štěrbinou červenou tečkou směrem nahoru. Jako zdroj světla umístíme těsně před kolimátorem rtuťovou výbojku. Hranol na stolečku umístíme jednou z lámavých stěn ke kolimátoru.

K určení indexu lomu potřebujeme najít úhel nejmenší deviace ε_0 pro každou ze spektrálních čar. Pomocí dalekohledu zaměříme se na určitou spektrální čáru. Všimneme si, žě při malém otáčeni stolku s hranolem spektrální čára se pohybuje určitým směrem. Pak v jistém bodě se přestane čára pohybovat a začne se pohybovat opačným směrem. Uhel odpovídající bodu obratu změříme pomocí mikroskopu podle návodu [2].

Pak hranol zrcadlově obrátíme a stejným způsobem změříme druhý úhel pro každou spektrální čáru. Úhel nejmenší deviace ε_0 z naměřených hodnot najdeme pomoci vzorce (4).

4.3 Měření spektra vodíkové výbojky

Jako zdroj světla používáme vodíkovou výbojku. Stejně jako v minule úloze změříme polohy spektrálních čar, jednotlivé vlnové délky čar určíme na základě indexů lomu hranolu a disperzního vztahu.

4.4 Sodíkový dublet a rozlišovací schopnost hranolu

Jako zdroj nám poslouží sodíková výbojka. Dalekohledem najdeme dvě žluté spektrální čáry vedle sebe a stejně jako v minulých úlohách změříme polohy obou spektrálních čar. Z naměřených hodnot lze určit pomocí (6) rozlišovací schopnost hranolu r a minimální délku jeho základny a nutnou pro rozlišení dvou čar od sebe.

5 Zpracování dat

5.1 Měření lámavého úhlu hranolu metodou dělených svazků

Naměřené hodnoty úhlů d_1 a d_2 , pod kterými jsme naměřili odraz nitkového kříže od stěn hranolu a vypočtená podle (2) hodnota lámavého úhlu hranolu φ_i jsou v Tab. 1. Chyba měřicího přístroje vzhledem k systematické chybě, kterou jsme odhadli empiricky na $\sigma_{d_1} = \sigma_{d_1} = 0^{\circ}00'12''$, je zanedbatelně malá. Systematická chyba měření lámavého úhlu hranolu $(\sigma_{\varphi_i})_{\rm syst} = 0^{\circ}00'08''$ je vypočtena jako chyba nepřímého měření [3].

$d_1 [° ' '']$	$d_2 [° ' '']$	$\varphi_i \ [° ' '']$
59 05 10	179 11 32	60 03 11
58 11 26	178 15 06	60 01 50
53 20 16	173 25 28	60 02 36
49 58 48	170 03 50	60 02 31
57 33 52	177 09 06	60 02 37

Tab. 1: Naměřené hodnoty úhlů d_1 a d_2 , pod kterými jsme naměřili odraz nitkového kříže od stěn hranolu s chybami $\sigma_{d_1} = \sigma_{d_1} = 0^{\circ}00'12''$, φ_i je vypočtená hodnota lámavého úhlu hranolu pro každé měření se systematickou chybou $(\sigma_{\varphi_i})_{\text{syst}} = 0^{\circ}00'08''$.

Střední hodnotu lámavého úhlu hranolu $\overline{\varphi}$ jsme našli jako aritmetický průměr hodnot φ_i pro jednotlivé měření a statistickou chybu jako chybu aritmetického průměru [3]:

$$\overline{\varphi} = 60^{\circ}02'33'', \quad (\sigma_{\varphi})_{\text{stat}} = 0^{\circ}00'13''.$$

Celkovou hodnotu lámavého úhlu φ pak najdeme jako:

$$\varphi = \overline{\varphi} + \sqrt{(\sigma_{\varphi_i})_{\text{syst}}^2 + (\sigma_{\varphi_i})_{\text{stat}}^2} = (60^\circ 02' 33'' \pm 0^\circ 00' 15'').$$

5.2 Měření spektra rtuťové výbojky

Ze spektra rtuťové výbojky jsme změřili 6 spektrálních čar. Naměřené a vypočtené hodnoty jsou v Tab. 2. Systematické chyby měření úhlů jsme odhadli na $\sigma_{d_1} = \sigma_{d_2} = 0^{\circ}00'12''$, úhly minimální deviace jsme našli pomocí (2) a chyba $\sigma_{\varepsilon_0} = 0^{\circ}00'08''$ pro každé měření je vypočtena jako chyba nepřímého měření. Hodnoty indexů lomu n jsme spočítali podle vzorce (3), chybu $\sigma_n = 0,00005$ [-] jsme našli jako chybu nepřímého měření [3].

barva	$\lambda [nm]$	$d_1 [° ' '']$	$d_2 [° ' '']$	$\varepsilon_0 [° ' '']$	n [-]
fialová tmav.	404,66	170 25 14	67 59 34	51 12 50	1,64972
fialová svet.	435,83	169 35 14	68 51 02	50 22 06	1,64135
modrá	491,61	167 29 20	69 56 24	49 16 28	1,63039
zelená	547,07	167 36 30	70 18 20	48 39 05	1,62408
žlutá 1	577,96	167 28 58	70 56 54	48 16 02	1,62016
žlutá 2	579,07	167 24 00	70 57 30	48 13 15	1,61969

Tab. 2: Naměřené hodnoty úhlů d_1 a d_2 spektrálních cár s chybami $\sigma_{d_1} = \sigma_{d_2} = 0^{\circ}00'12''$ při měření spektra rtuťové výbojky, ε_0 je vypočtený úhel minimální deviace se systematickou chybou $\sigma_{\varepsilon_0} = 0^{\circ}00'08''$, n je index lomu hranolu vypočtený pro každou spektrální čáru s chybou $\sigma_n = 0,00005$ [-], λ jsou tabulkové hodnoty vlnových délek.

Obr. 2: Stanovené hodnoty indexu lomu n v závislosti na vlnové délce záření a jejich proložení funkcí ve tvaru $n(\lambda) = n_n + \frac{C}{\lambda - \lambda_n}$ s koeficienty $C = (12 \pm 3)$ nm, $n_n = (1,588 \pm 0,005)$ [-], $\lambda_n = (220 \pm 30)$ nm.

Pomocí programu GNUplot jsme proložili závislost indexu lomu n na délce vlny λ nelineární funkcí ve tvaru (5). Výsledky jsme vynesli do grafu na Obr. 2. Proložením dat jsme dostali hodnoty konstant C, n_n a λ_n s příslušnými chybami:

$$C = (12 \pm 3) \text{ nm}, \qquad n_n = (1,588 \pm 0,005) [-], \qquad \lambda_n = (220 \pm 30) \text{ nm}.$$

5.3 Měření spektra vodíkové výbojky

Ze spektra vodíkové výbojky jsme změřili 2 spektrální čáry. Naměřené a vypočtené hodnoty jsou v Tab. 3. Systematické chyby měření úhlů jsme odhadli na $\sigma_{d_1} = \sigma_{d_2} = 0^{\circ}00'12''$, úhly minimální deviace jsme našli pomocí (4) a chyba $\sigma_{\varepsilon_0} = 0^{\circ}00'08''$ pro každé měření je vypočtena jako chyba nepřímého měření. Hodnoty vlnových délek λ jsme spočítali pomoci vzorců (3) a (5). Hodnoty Rydbergove konstanty R_i pro každé ze dvou měření jsme našli pomoci vztahu (1) pro hodnoty parametrů n=3 pro H_{α} a n=4 pro H_{β} . Chyby σ_{λ} a σ_{R_i} jsme spočetli jako chyby nepřímého měření [3].

barva	$d_1 [° ' '']$	$d_2 [° ' '']$	$\varepsilon_0 [° ' '']$	$\lambda \text{ [nm]}$	σ_{λ} [nm]	$R_i \ [\mathrm{m}^{-1} \cdot 10^6]$	$\sigma_{R_i} \left[\mathbf{m}^{-1} \cdot 10^6 \right]$
červená H_{lpha}	166 53 28	71 27 30	47 42 59	660	30	10,9	0,5
zelená ${ m H}_{eta}$	168 34 00	69 47 12	49 23 24	500	30	10,7	0,6

Tab. 3: Naměřené hodnoty úhlů d_1 a d_2 spektrálních cár s chybami $\sigma_{d_1} = \sigma_{d_2} = 0^{\circ}00'12''$ při měřeni spektra vodíkové výbojky, ε_0 je vypočtený úhel minimální deviace se systematickou chybou $\sigma_{\varepsilon_0} = 0^{\circ}00'08''$, λ jsou hodnoty vlnových délek vypočtený pro každou spektrální čáru s chybou σ_{λ} , R_i jsou hodnoty Rydbergove konstanty vypočteně pro jednotlivé čáry.

Výslednou hodnotu Rydbergove konstanty R najdeme jako aritmetický průměr, chybu najdeme jako chybu aritmetického průměru:

$$R = (10, 8 \pm 0, 6) \cdot 10^6 \,\mathrm{m}^{-1}.$$

5.4 Sodíkový dublet a rozlišovací schopnost hranolu

Naměřené a vypočtené hodnoty jsou v Tab. 4. Systematické chyby měření úhlů jsme odhadli na $\sigma_{d_1} = \sigma_{d_2} = 0^{\circ}00'12''$, úhly minimální deviace ε_0 jsme našli pomocí (4) a chyba $\sigma_{\varepsilon_0} = 0^{\circ}00'08''$ pro každé měření je vypočtena jako chyba nepřímého měření. Hodnoty vlnových délek λ jsme spočítali pomoci vzorců (3) a (5). Chyby σ_{λ} a σ_{R_i} jsme spočetli jako chyby nepřímého měření [3].

b	arva	$d_1 [° ' '']$	$d_2 [° ' '']$	$\varepsilon_0 [° ' '']$	$\lambda [nm]$	$\lambda_{\mathrm{t}} \; [\mathrm{nm}]$
žlı	ıtá 1	167 20 02	70 57 36	48 11 13	605, 20	589, 59
žlı	ıtá 2	167 24 16	70 56 46	48 13 45	600, 68	588,99

Tab. 4: Naměřené hodnoty úhlů d_1 a d_2 spektrálních cár s chybami $\sigma_{d_1} = \sigma_{d_2} = 0^{\circ}00'12''$ při měření spektra vodíkové výbojky, ε_0 je vypočtený úhel minimální deviace se systematickou chybou $\sigma_{\varepsilon_0} = 0^{\circ}00'08''$, λ jsou zaokrouhlené na dvě desetinná místa hodnoty vlnových délek pro každou spektrální čáru, λ_t jsou tabulkové hodnoty vlnových délek.

Charakteristickou disperzi $\frac{\mathrm{d}n}{\mathrm{d}\lambda}$ v okolí vlnové délky 589 nm najdeme derivováním vztahu (5):

$$\frac{\mathrm{d}n}{\mathrm{d}\lambda} = -\frac{C}{(\lambda - \lambda_n)^2} = (-0.09 \pm 0.03) \cdot 10^6 \,\mathrm{m}.$$

Pro výpočet hodnoty minimální diference vlnových délek $\Delta\lambda$ zaokrouhlíme hodnoty vlnových délek na dvě desetinná místa. Pak pro odlišení jednotlivých spektrálních čar hodnota rozlišovací schopnosti hranolu r by měla splňovat:

$$r > \frac{\lambda}{\Delta \lambda} = (130 \pm 20) [-].$$

Potom minimální velikost základny hranolu a, vyrobeného ze stejného materiálu jako hranol, se kterým měříme, který je ještě schopný sodíkový dublet rozlišit najdeme pomocí (6):

$$a = \frac{r}{\left|\frac{\mathrm{d}n}{\mathrm{d}\lambda}\right|} = (10 \pm 2) \,\mathrm{mm}.$$

6 Diskuze

6.1 Měření lámavého úhlu hranolu metodou dělených svazků

Metodou dělených svazků jsme změřili lámavý úhel hranolu na $\varphi = (60^{\circ}02'33'' \pm 0^{\circ}00'15'')$ s relativně malou chybou cca 0,05%.

6.2 Měření spektra rtuťové výbojky

Ze spektra rtuťové výbojky jsme změřili pouze šest spektrálních čar. Možná by se při změně šířky štěrbiny podařilo změřit i větší počet spektrálních čar ve viditelné častí spektra.

Fitovánim závislosti indexu lomu n na délce vlny λ nelineární funkcí ve tvaru (5) jsme našli hodnoty konstant:

$$C = (12 \pm 3) \text{ nm}, \quad n_n = (1,588 \pm 0,005) [-], \quad \lambda_n = (220 \pm 30) \text{ nm}.$$

Konstanta C má relativitou chybu 25%, konstanta n_n cca 0,3%, λ_n cca 14%. Některé konstanty mají relativně velké chyby, což má určitý vliv na výpočet hodnot vlnových délek pomoci disperzního vztahu.

6.3 Měření spektra vodíkové výbojky

Ze spektra vodíkové výbojky jsme změřili pouze dvě spektrální čáry ze čtyř. Stejně jako v minulé úloze by pravděpodobně šlo zvětšit počet viditelných čar změnou šířky štěrbiny.

Nalezená hodnota vlnové délky fotonů odpovídajícím červené spektrální čáře $\lambda_{H\alpha t}=(660\pm30)$ nm je zatížena chybou cca 5%, výsledek v rámci chyby odpovídá tabulkové hodnotě $\lambda_{H\alpha t}=656,3$ nm [4], tím pádem můžeme říct, že vlnovou délku fotonů H_{α} jsme určili správně.

Nalezená hodnota vlnové délky fotonů odpovídajícím zelené spektrální čáře $\lambda_{\rm H}{}_{\beta^{\rm t}}=(500\pm30)\,{\rm nm}$ je zatížena chybou cca 6%, výsledek se shoduje s tabulkovou hodnotou $\lambda_{\rm H}{}_{\beta^{\rm t}}=486,1\,{\rm nm}$ [4] v rámci $0,5\sigma_{\rm H}{}_{\beta}<3\sigma_{\rm H}{}_{\beta}$, tím pádem můžeme říct, že vlnovou délku fotonů $\rm H_{\beta}$ jsme určili správně.

Výsledná hodnota Rydbergove konstanty $R=(10,8\pm0,6)\cdot10^6\,\mathrm{m}^{-1}$ je zatížena relativně malou chybou cca 6%, výsledek se shoduje s tabulkovou hodnotou $R_{\rm t}=10973731,57\,\mathrm{m}^{-1}$ [4] v rámci $0,02\sigma_R<3\sigma_R$, tím pádem můžeme říct, že Rydbergove konstanty R jsme určili správně.

6.4 Sodíkový dublet a rozlišovací schopnost hranolu

Spočetli jsme hodnotu charakteristické disperze v okolí vlnové délky 589 nm $\frac{\mathrm{d}n}{\mathrm{d}\lambda} = (-0,09\pm0,03)\cdot10^6\,\mathrm{m}$ s chybou cca 33%. Střední hodnotu vzdálenost dvou žlutých čar $\Delta\lambda$ jsme určili na $\Delta\lambda = (5\pm2)\,\mathrm{nm}$ s relativní velkou chybou cca 40%, co se shoduje s tabulkovou hodnotou $\Delta\lambda_{\mathrm{t}} = (0,6)\,\mathrm{nm}$ [4] v rámci $2,2\sigma_{\Delta\lambda} < 3\sigma_{\Delta\lambda}$.

Pak rozlišovací schopnost hranolu musí být $r > (130 \pm 20)$, hranol by mohl mít minimální velikost základny $a = (10 \pm 2)$ mm.

7 Závěr

- 1. $\mathbf{D}\dot{\mathbf{U}}$: V přípravě (viz Příloha. Domácí příprava) jsme odvodili vzorec (3) pro případ, kdy je splněna podmínka úhlu nejmenší deviace $\alpha 1 = \alpha 2$.
- 2. Metodou dělených svazků změřili jsme lámavý úhel hranolu $\varphi = 60^{\circ}02'33'' \pm 0^{\circ}00'15''$.
- 3. Změřili jsme index lomu hranolu a fitováním nelineární funkcí (5) určili jsme hodnoty konstant pro disperzní vztah $n = n(\lambda)$:

$$C = (12 \pm 3) \text{ nm}, \qquad n_n = (1,588 \pm 0,005) [-], \qquad \lambda_n = (220 \pm 30) \text{ nm}.$$

- 4. Změřili jsme spektrum vodíkové výbojky, vypočetli jsme vlnové délky dvou čar (Tab. 3). Dopočítané vlnové délky se shodují s tabulkovými hodnotami. Ověřili jsme pomocí naměřených hodnot platnost vztahu (1) a určili jsme hodnotu Rydbergovy konstanty $R = (10, 8 \pm 0, 6) \cdot 10^6 \,\mathrm{m}^{-1}$.
- 5. Spočetli jsme charakteristickou disperzi v okolí vlnové délky 589 nm (žlutá dvojitá čára v sodíkovém spektru) $\frac{\mathrm{d}n}{\mathrm{d}\lambda} = (-0,09\pm0,03)\cdot10^6 \,\mathrm{m}. \,\, \text{Minimální velikost základny hranolu, vyrobeného ze stejného materiálu jako hranol, se kterým měříme, který je ještě schopný sodíkový dublet rozlišit, jsme určili na <math>a = (10\pm2) \,\mathrm{mm}.$

Literatura

- [1] FJFI ČVUT: Balmerova série [online] https://moodle-vyuka.cvut.cz/pluginfile.php/435553/mod_resource/content/10/Uloha_4_LS_20200219.pdf [cit.6.3.2022]
- $[2] \ FJFI \ \check{C}VUT: \ N\'{a}vod \ ke \ goniometru \ [online] \\ https://moodle-vyuka.cvut.cz/pluginfile.php/435554/mod_resource/content/2/navod_goniometr_uloha4_200221.pdf \ [cit.6.3.2022]$
- [3] Petr Chaloupka, Základy fyzikálních měření, prezentace [online] https://people.fjfi.cvut.cz/chalopet/ZFM/ZFM.pdf [cit.6.3.2022]
- [4] NIST Atomic Spectra Database [online] https://www.nist.gov/pml/atomic-spectra-database. [cit.6.3.2022]

Příloha

8 Domácí příprava

