

AIM: Implement DES algorithm.

Faculty Of Engineering & Technology

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

Code:

def hex2bin(s): $mp = \{'0': "00000",$ '1': "0001", '2': "0010", '3': "0011", '4': "0100", '5': "0101", '6': "0110", '7': "0111", '8': "1000", '9': "1001", 'A': "1010", 'B': "1011", 'C': "1100", 'D': "1101", 'E': "1110", 'F': "1111"} bin = "" for i in range(len(s)): bin = bin + mp[s[i]]return bin def bin2hex(s): $mp = {"0000": '0',}$ "0001": '1', "0010": '2',

"0011": '3',

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

```
"0100": '4',
```

for i in range(0, len(s), 4):

$$ch = ch + s[i]$$

$$ch = ch + s[i + 1]$$

$$ch = ch + s[i + 2]$$

$$ch = ch + s[i + 3]$$

$$hex = hex + mp[ch]$$

return hex

def bin2dec(binary):

decimal,
$$i = 0, 0$$

while(binary != 0):

$$decimal = decimal + dec * pow(2, i)$$

binary = binary//10

i += 1

return decimal

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

```
def dec2bin(num):
res = bin(num)
```

$$div = len(res) / 4$$

$$div = int(div)$$

$$counter = (4 * (div + 1)) - len(res)$$

for i in range(0, counter):

$$res = '0' + res$$

return res

def permute(k, arr, n):

for i in range(0, n):

$$permutation = permutation + k[arr[i] - 1]$$

return permutation

def shift left(k, nth shifts):

$$s = ""$$

for i in range(nth shifts):

for j in range(1, len(k)):

$$s = s + k[i]$$

$$s = s + k[0]$$

$$k = s$$

$$s = ""$$

return k

def xor(a, b):

for i in range(len(a)):

if
$$a[i] == b[i]$$
:

$$ans = ans + "0"$$

else:

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

ans = ans + "1"

return ans

initial_perm = [58, 50, 42, 34, 26, 18, 10, 2,60, 52, 44, 36, 28, 20, 12, 4,62, 54, 46, 38, 30, 22, 14, 6,64, 56, 48, 40, 32, 24, 16, 8,57, 49, 41, 33, 25, 17, 9, 1,59, 51, 43, 35, 27, 19, 11, 3,61, 53, 45, 37, 29, 21, 13, 5,63, 55, 47, 39, 31, 23, 15, 7]

exp_d = [32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11,12, 13, 12, 13, 14, 15, 16, 17,16, 17, 18, 19, 20, 21, 20, 21,22, 23, 24, 25, 24, 25, 26, 27,28, 29, 28, 29, 30, 31, 32, 1]

per = [16, 7, 20, 21,

29, 12, 28, 17,

1, 15, 23, 26,

5, 18, 31, 10,

2, 8, 24, 14,

32, 27, 3, 9,

19, 13, 30, 6,

22, 11, 4, 25]

sbox = [[[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7]]

[0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],

[4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],

[15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13]],

[[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],

[3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],

[0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],

[13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9]],

[[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],

[13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],

[13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],

[1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12]],

[[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],

[13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],

[10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

```
[3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14]],
                [[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
                [14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
                [4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
                [11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3]],
                [[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
                [10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
                [9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
                [4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13]],
                [[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
                [13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
                [1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
                [6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12]],
                [[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
                [1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
                [7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
                [2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11]]]
final perm = [40, 8, 48, 16, 56, 24, 64, 32,39, 7, 47, 15, 55, 23, 63, 31,38, 6, 46, 14, 54, 22,
62, 30,37, 5, 45, 13, 53, 21, 61, 29,36, 4, 44, 12, 52, 20, 60, 28,35, 3, 43, 11, 51, 19, 59,
27,34, 2, 42, 10, 50, 18, 58, 26,33, 1, 41, 9, 49, 17, 57, 25]
def encrypt(pt, rkb, rk):
        pt = hex2bin(pt)
        pt = permute(pt, initial perm, 64)
        print("After initial permutation", bin2hex(pt))
        left = pt[0:32]
        right = pt[32:64]
        for i in range(0, 16):
                right expanded = permute(right, exp d, 48)
                xor x = xor(right expanded, rkb[i])
                sbox str = ""
```

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

```
for j in range(0, 8):
                     row = bin2dec(int(xor x[i*6] + xor x[i*6 + 5]))
                     col = bin2dec(
                            int(xor x[i*6+1] + xor x[i*6+2] + xor x[i*6+3] +
xor x[i * 6 + 4])
                     val = sbox[i][row][col]
                     sbox str = sbox str + dec2bin(val)
              sbox_str = permute(sbox_str, per, 32)
              result = xor(left, sbox str)
              left = result
              if(i!=15):
                     left, right = right, left
              print("Round", i + 1, "", bin2hex(left),
                     " ", bin2hex(right), " ", rk[i])
       combine = left + right
       cipher text = permute(combine, final perm, 64)
       return cipher text
pt = "ABCDEF1234567890"
key = "AABB09182736CCDD"
key = hex2bin(key)
60, 52, 44, 36,63, 55, 47, 39, 31, 23, 15,7, 62, 54, 46, 38, 30, 22,14, 6, 61, 53, 45, 37, 29,21,
13, 5, 28, 20, 12, 4]
key = permute(key, keyp, 56)
shift table = [1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1]
key comp = [14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13,
2,41, 52, 31, 37, 47, 55,30, 40, 51, 45, 33, 48,44, 49, 39, 56, 34, 53,46, 42, 50, 36, 29, 32]
left = key[0:28]
right = key[28:56]
rkb = []
rk = []
```

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

```
for i in range(0, 16):

left = shift_left(left, shift_table[i])

right = shift_left(right, shift_table[i])

combine_str = left + right

round_key = permute(combine_str, key_comp, 48)

rkb.append(round_key)

rk.append(bin2hex(round_key))

print("Encryption")

cipher_text = bin2hex(encrypt(pt, rkb, rk))

print("Cipher Text : ", cipher_text)

print("Decryption")

rkb_rev = rkb[::-1]

rk_rev = rk[::-1]

text = bin2hex(encrypt(cipher_text, rkb_rev, rk_rev))

print("Plain Text : ", text)
```

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

output:

Encryption				
After initial permutation 66F836078755472D				
Round		8755472D	6F8F9905	194CD072DF8C
Round	2	6F8F9905	495D933F	4568581ABCCE
Round		495D933F	990C30C2	06EDA4ACF5B5
Round				DA2D032B6EE3
Round	5	7EB4DFF6	35CFCCC3	69A629FEC913
Round	6	35CFCCC3	491862DF	69A629FEC913 C1948E87475E 708AD2DDB3C0
Round	7	491862DF	2FAAFEC4	708AD2DDB3C0
Round	8	2FAAFEC4	D66300BE	34F822F0C66D
Round				84BB4473DCCC
Round	10	B18882A5	6C2D87BD	02765708B5BF
Round	11	6C2D87BD	16C234A6	02765708B5BF 6D5560AF7CA5 C2C1E96A4BF3
Round	12	16C234A6	B1AB7B7D	C2C1E96A4BF3
Round	13	B1AB7B7D	91AA7741	99C31397C91F
Round	14	91AA7741	07B37698	251B8BC717D0
Round	15	07B37698	7A4F4C0F	251B8BC717D0 3330C5D9A36D 181C5D75C66D
Round	16	5886B6E8	7A4F4C0F	181C5D75C66D
Cipher Text: 22B63EEBC485E915				
Decryption				
After initial permutation 5886B6E87A4F4C0F				
Round	1	7A4F4C0F	07B37698	181C5D75C66D
Round	2			3330C5D9A36D
Round		91AA7741	B1AB7B7D	251B8BC717D0
Round	4	B1AB7B7D	16C234A6	99C31397C91F
Round	5	16C234A6	6C2D87BD	C2C1E96A4BF3
Round	6	6C2D87BD	B18882A5	C2C1E96A4BF3 6D5560AF7CA5 02765708B5BF
Round	7	B18882A5	D66300BE	02765708B5BF
Round	8	D66300BE	2FAAFEC4	84BB4473DCCC
Round	9	2FAAFEC4	491862DF	34F822F0C66D
Round	10	491862DF	35CFCCC3	708AD2DDB3C0 C1948E87475E
Round	11	35CFCCC3	7EB4DFF6	C1948E87475E
		7EB4DFF6	990C30C2	69A629FEC913
Round	13	990C30C2	495D933F	DA2D032B6EE3
Round	14	495D933F	6F8F9905	06EDA4ACF5B5 4568581ABCCE 194CD072DE8C
Round	15	6F8F9905	8755472D	4568581ABCCE
Round	16	66F83607	8755472D	194CD072DE8C
Plain Text : ABCDEF1234567890				
PS C:\work\7th sem>				

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

AIM: Implement AES algorithm.

Code:

```
from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes
from Crypto.Protocol.KDF import PBKDF2
from Crypto.Util.Padding import pad, unpad
def generate key(password):
  # Generate a 256-bit (32 bytes) key using PBKDF2 with 100,000 iterations
  salt = get random bytes(16)
  key = PBKDF2(password, salt, dkLen=32, count=100000)
  return key, salt
def aes encrypt(key, plaintext):
  # Generate a random 16-byte IV (Initialization Vector)
  iv = get random bytes(16)
  cipher = AES.new(key, AES.MODE CBC, iv)
  ciphertext = cipher.encrypt(pad(plaintext, AES.block size))
  return ciphertext, iv
def aes decrypt(key, ciphertext, iv):
  cipher = AES.new(key, AES.MODE CBC, iv)
  plaintext = unpad(cipher.decrypt(ciphertext), AES.block size)
  return plaintext
if name == " main ":
  # Ask the user to enter a password
  password = input("Enter The Password: ")
```


Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

key, salt = generate key(password.encode())

```
# Ask the user to enter the plaintext as a string
plaintext = input("Enter The Text: ").encode()
encrypted_text, iv = aes_encrypt(key, plaintext)
decrypted_text = aes_decrypt(key, encrypted_text, iv)
print("Encrypted Text: ", encrypted_text.hex())
print("Decrypted Text: ", decrypted_text.decode())
```

output:

PS C:\work\7th sem> & C:/Users/shivam/AppData/Local/Microsoft/WindowsApps/python3.9.exe "c:/work/7th sem/INS/AES.py"

Enter The Password: hello1234

Enter The Text: goodby

Encrypted Text: e9dbacdfc1f22df1734f41eff0352727

Decrypted Text: goodby PS C:\work\7th sem>

AIM: Implement GCD.

Code:

```
num1 = int(input("enter the num1: "))
num2 = int(input("enter the num2: "))
11 = []
12 = []
for i in range(1,num1+1):
  if num1 % i == 0:
     11.append(i)
for i in range(1,num2+1):
  if num2 % i == 0:
     12.append(i)
print(num1, "=", 11)
print(num2, "=", 12)
for i in 11:
  for j in 12:
     if i == j:
       max num = i
print(max num)
```

Faculty Of Engineering & Technology

Subject Name: information and network security

Subject Code: 203105311

B.Tech. IT 4rd Year 7th semester

```
Output:
PS C:\work\7th sem> & C:/Users/shivam/AppData/Local/Microsoft/WindowsApps/python3.9.exe "c:/work/7th sem/INS/GCD.py"
enter the num1: 10
enter the num2: 20
10 = [1, 2, 5, 10]
20 = [1, 2, 4, 5, 10, 20]
```

200303108116 Page No: