

TRABAJO FIN DE GRADO INGENIERÍA INFORMÁTICA

Estimación de la calidad de imágenes médicas 3D

Aprendizaje automático y Aprendizaje profundo

Autor

Brian Sena Simons

Directores

Pablo Mesejo Santiago Enrique Bermejo Nievas

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, mes de 201

Cosas Pendientes que hacer:

Fundamentos, Aprendizaje Automático	15
Fundamentos, Aprendizaje Profundo	15
Fundamentos, Redes Convoluciones	16
Importante	16

Estimación de la calidad de imágenes médicas 3D: Aprendizaje automático y Aprendizaje profundo

Brian Sena Simons

Palabras clave: palabra_clave1, palabra_clave2, palabra_clave3,

Resumen

Poner aquí el resumen.

Estimación de la calidad de imágenes médicas 3D: Aprendizaje automático y Aprendizaje profundo

Brian Sena Simons

Keywords: Keyword1, Keyword2, Keyword3,

Abstract

Write here the abstract in English.

Yo, Brian Sena Simons, alumno de la titulación TITULACIÓN de la Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación, con Pasaporte NX4L843F5, autorizo la ubicación de la siguiente copia de mi Trabajo Fin de Grado en la biblioteca del centro para que pueda ser consultada por las personas que lo deseen.

Fdo: Brian Sena Simons

Granada a X de mes de 201 .

- D. **Pablo Mesejo Santiago**, Profesor del Departamento de Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada.
- D. Enrique Bermejo Nievas, Profesor del Departamento de Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada.

Informan:

Que el presente trabajo, titulado *Estimación de la calidad de imágenes médicas 3D, Aprendizaje automático y Aprendizaje profundo*, ha sido realizado bajo su supervisión por **Brian Sena Simons**, y autorizamos la defensa de dicho trabajo ante el tribunal que corresponda.

Y para que conste, expiden y firman el presente informe en Granada a X de mes de 201 .

Los directores:

Pablo Mesejo Santiago Enrique Bermejo Nievas

Agradecimientos

Poner aquí agradecimientos...

Índice general

1.	Introducción	7
	1.1. Definición del Problema	. 7
	1.1.1. Subproblemas y dificultades	. 9
	1.2. Motivación	. 11
	1.3. Objetivos	. 12
	1.4. Planificación del proyecto	. 13
2.	Fundamentos Teóricos	15
	2.1. Métricas y Distorsiones	. 15
	2.2. Aprendizaje Automático	. 15
	2.3. Aprendizaje Profundo	
	2.3.1. Redes Convolucionales	. 16
	2.3.2. Regularizaciones	. 16
	2.3.3. Aplicadas a Videos	. 16
	2.4. Ensemble o Conjunto Deep Learning	
	2.5. Representaciones 3D de las imágenes	. 16
3.	Estado del Arte	17
4.	Materiales, Métodos y Distorsiones	19
	4.1. Materiales	. 19
	4.2. Métodos	. 19
	4.3. Distorsiones	. 19
5.	Implementación y Experimentos	21
	5.1. Detalles Técnicos de Implementación	. 21
	5.2. Experimentos	. 21
6.	Conclusiones y Trabajos Futuros	23
Bi	bliografía	27

Índice de figuras

1.1.	En este ejemplo, extraído de [1], vemos que sumar una cons-	
	tante positiva a una imagen de referencia (a) produce la ima-	
	gen (b) que contiene la misma distancia Minkowski que (c),	
	imagen fabricada por la misma constante pero permutando	
	signo de forma aleatoria. Siendo que la percepción final es	
	que la imagen (c) es peor que la (b)	10
1.2.	En este ejemplo, extraído de [2] la misma imagen distorsiona-	
	da de distintas maneras resulta en el mismo valor $MSE=181$.	
	Siendo evidente que algunas distorsiones producen efectos vi-	
	suales más marcados que otras haciendo que no sea una buena	
	estimación perceptual de la calidad.	10
1.3.	Ejemplo de visualización de un directorio DICOM. Se pueden	
	observar las proyecciones axial, coronal y sagital. Además de	
	una renderización volumétrica de los huesos. Para ello se ha	
	utilizado Slicer $3D$ [3]	11

Índice de tablas

1.1.	Planificación temporal inicial del proyec	ct	О						13
1.2.	Planificación resultante del proyecto .								14
1.3.	Total de horas y días trabajados								14
1.4.	Estimación final de coste del proyecto								14

Introducción 7

Capítulo 1

Introducción

Con la demanda incremental de aplicaciones, tanto para el entretenimiento como para el estudio biomédico, la información visual cada vez tiene un rol más importante. Sin embargo, la calidad de la información puede sufrir drásticamente con las etapas de adquisición, procesado, compresión, transmisión y reproducción. Es por ello que poder evaluar la calidad de la información se ha vuelto un tema cada vez más importante [4].

1.1. Definición del Problema

La evaluación de la calidad de la imagen (IQA) es un problema fundamental en el procesamiento de imágenes y de visión por computador. Se refiere a la tarea de medir y cuantificar la calidad perceptual de una imagen, teniendo en cuenta factores como el contenido, la resolución, el contraste, las distorsiones visuales y la percepción humana. La mejora de las técnicas suele estar altamente conectado con el avance de los estudio del sistema de visión humano (HVS) [2].

El problema de la evaluación de la calidad de la imagen se aborda mediante enfoques subjetivos y objetivos. Los enfoques subjetivos implican realizar experimentos perceptuales en los que se recopilan las opiniones y evaluaciones de los observadores humanos. Estos observadores pueden calificar las imágenes en términos de su calidad visual o realizar comparaciones entre diferentes versiones de una misma imagen. Con base a las respuestas recopiladas, se pueden establecer modelos y métricas que reflejen la calidad percibida por los humanos, también conocida como MOS^1 .

Alternativamente, los enfoques objetivos buscan desarrollar algoritmos y métricas automáticas que puedan estimar la calidad de la imagen sin intervención humana. Estos enfoques se basan en características y propiedades visuales extraídas de la imagen, que se utilizan para calcular una puntuación

de calidad. Estas características pueden incluir medidas de nitidez, contraste, estructura, color, distribución de texturas y otros aspectos relevantes para la percepción visual.

La elección entre enfoques subjetivos u objetivos depende del contexto y los recursos disponibles. Los enfoques subjetivos son considerados como la referencia estándar para la evaluación de la calidad de la imagen, ya que capturan la apreciación humana. Sin embargo, estos enfoques pueden ser costosos y requieren de un número significativo de participantes. Mientras que, los enfoques objetivos se pueden llegar a automatizar. Haciendo que sea muy prácticos para grandes cantidades de datos y diversas aplicaciones.

No obstante, el objetivo es desarrollar algoritmos y métricas que puedan proporcionar una estimación precisa y consistente de la calidad de la imagen, teniendo en cuenta tanto aspectos subjetivos como objetivos respecto a las distorsiones. Para así poder evaluar y comparar diferentes métodos de adquisición, compresión, restauración o manipulación de imágenes teniendo en cuenta que el receptor final es el humano.

Para abordar el problema de la IQA, se emplean diversas técnicas y enfoques. Entre ellos se incluyen métodos basados en características de baja y alta calidad, modelos de percepción visual, aprendizaje automático y técnicas de procesamiento de señales

Uno de los enfoques comunes es utilizar características básicas de la imagen. Las características elementales de la imagen son por ejemplo el contraste, la nitidez, la exposición y la uniformidad del color [2]. Estas características pueden ser cuantificadas mediante algoritmos de procesamiento de imágenes y proporcionar una estimación inicial de la calidad.

Por otro lado, los modelos de percepción visual intentan simular cómo el sistema visual humano percibe y evalúa la calidad de la imagen. Estos modelos se basan en el entendimiento de los mecanismos y procesos perceptuales del cerebro humano, y utilizan características visuales y estadísticas para calcular la calidad percibida [1,5]. Estos modelos buscan emular la forma en que los humanos interpretan y responden a las imágenes en términos de su calidad visual [6,7].

Habitualmente, se suelen emplear algoritmos de aprendizaje automático para tratar de resolver el problema. Se utilizan técnicas supervisadas o no supervisadas para intentar aproximar una función que a partir del conjunto de características extraídas pueda determinar la calidad de la imagen en una escala específica, generalmente en el rango de 0 a 10.

¹ Mean Opinion Score o Valor medio de opinión, consiste en la media de la opinión de diversas personas para establecer un valor de referencia.

Introducción 9

1.1.1. Subproblemas y dificultades

Existen tres subproblemas presenten en el ámbito de IQA. Los primeros, son problemas dónde tenemos acceso a la imagen original, que suponemos exenta de desperfectos, en la cúal se pueden aplicar métodos basados en diferencia de características entre ambas, como puede ser al nivel del color de píxel posición a posición, y se denomina "Full Reference" (FR). La tarea, aparentemente sencilla, en realidad presenta una complejidad alta dada por la necesidad de codificar la percepción humana a la hora de calificar la calidad de una imagen [8]. Ya que métricas que miden distancias no suelen ser suficientes, ver imágenes (1.1,1.2).

Los segundos son aquellos dónde tenemos algún tipo de información adicional respecto a la imagen original en el momento de asesoramiento de la calidad de la imagen final, denominados " $Reduced\ Reference$ " (RR). La información extra puede incluir características estadísticas, metadatos, parámetros de compresión o características extraídas de una región de interés específica.

Y por último, tenemos aquellos problemas donde desconocemos el origen y cualquier información respecto a la imagen inicial, denominados problemas "No reference" (NR). Estas métricas están exentas de cualquier información de referencia y se centran en capturar características generales de calidad.

La complejidad del problema crece conforme nos desplazamos a las tres dimensiones. El asesorar la calidad de los modelos 3D implica mayor nivel de dificultad dado que nos enfrentamos a dos grandes retos: La complejidad computacional de las operaciones y la escasez de bases de datos etiquetadas sobre objetos tridimensionales para entrenar y evaluar modelos.

Para las nubes de puntos, que representan una colección de puntos en un espacio tridimensional (x,y,z) cada uno con un color asociado RGB, se pueden emplear métricas y algoritmos basándose en criterios como la densidad de puntos, la uniformidad, la precisión geométrica y la detección de artefactos. También se pueden considerar aspectos relacionados con la coherencia de los colores o texturas asociadas a los puntos [9-11]

Un enfoque común es la evaluación de calidad de una nube de puntos tridimensional mediante proyecciones 2D desde diferentes perspectivas [12–14]. De esta forma podemos tratar el problema como uno de IQA reduciendo la complejidad computacional, pudiendo implementar métodos y soluciones ya existentes.

Teniendo en cuenta todas estas consideraciones, el presente TFG aborda la estimación de calidad de imágenes médicas en espacio tridimensional.

 $^{^1{\}rm La}$ distancia de Minkowskies una métrica vectorial que puede considerarse como una generalización tanto de la distancia euclidia como de la distancia de Manhattan .

²MSE: Mean squared error o error cuadrático medio es una métrica de distancia que se calcula como la media de la suma de las diferencias al cuadrado.

Figura 1.1: En este ejemplo, extraído de [1], vemos que sumar una constante positiva a una imagen de referencia (a) produce la imagen (b) que contiene la misma distancia $Minkowski^1$ que (c), imagen fabricada por la misma constante pero permutando signo de forma aleatoria. Siendo que la percepción final es que la imagen (c) es peor que la (b).

Figura 1.2: En este ejemplo, extraído de [2] la misma imagen distorsionada de distintas maneras resulta en el mismo valor MSE^2 =181. Siendo evidente que algunas distorsiones producen efectos visuales más marcados que otras haciendo que no sea una buena estimación perceptual de la calidad.

Introducción 11

1.2. Motivación

En el caso del ámbito biomédico, dado los rápidos avances en las últimas década de las técnicas no invasivas de imágenes y la gran cantidad de fabricantes de equipamentos, nació el estándar DICOM [15] en 1995 con objetivo de hacer que el intercambio de imágenes médicas se realice de forma fácil, segura y con alta calidad. Permitiendo integración con diversos sistemas e incluso almacenar información extra en forma de metadatos y anotaciones, así como segmentaciones.

Figura 1.3: Ejemplo de visualización de un directorio *DICOM*. Se pueden observar las proyecciones axial, coronal y sagital. Además de una renderización volumétrica de los huesos. Para ello se ha utilizado *Slicer3D* [3]

A pesar de ello, las distorsiones, que son una ocurrencia común en las imágenes cotidianas, están muy presentes en las imágenes médicas [16]. Prevalecen las distortiones de contraste, ruido y difuminado³. Estas a su vez, podrían afectar al volúmen 3D que se puede generar a partir las imágenes médicas. Y en medicina, se utilizan volúmenes tridimensionales, como tomografías computarizadas (TC) o resonancias magnéticas (RM) en lugar de radiografías convencionales, porque proporcionan una visión más completa y detallada de la anatomía y las estructuras internas del cuerpo, ver (1.3). Esto brinda a los médicos una comprensión más completa de la anatomía y les ayuda a identificar con mayor precisión lesiones, enfermedades o anormalidades [17–19].

³Con ruido nos referimos a pequeñas fluctuaciones no deseadas en los colores de los píxeles debido a interferencias de todo tipo. Difuminado se refiere a la pérdida de detalles en los bordes, como una pérdida de enfoque.

12 1.3. Objetivos

En [20] se estudió las razones por las que se suelen rechazar las radiografías, la relación con la calidad de la imagen y el valor del diagnóstico final. Reveló que la mayoría de los rechazos se producen por errores de posicionamiento, valores inadecuados de exposición, artefactos y los problemas de cooperación del paciente. Además, no es difícil imaginar que una alta calidad de imagen médica tiene implicaciones significativas sobre el cuidado del paciente. Ya que la mala calidad de imagen puede provocar diagnósticos erróneos o falsos negativos. Sin mencionar los elevados costes que supone realizar nuevas pruebas para conciliar las anteriores.

Resolver este problema, o dar pasos hacia adelante, formulando una medida de calidad puede conllevar a la mejora de los dispositivos médicos, de los algoritmos de comprensión, almacenado y transmisión de información. Tanto a nivel médico como cualquier aplicación con datos tridimensionales. Disminuyendo costes y ahorrando tiempo de consultas, mejorando la calidad de diagnóstico de pacientes.

1.3. Objetivos

Para el desarrollo de este documento se plantean una serie de objetivos. El objetivo principal consiste en encontrar un método adecuado para atacar al problema de la estimación de la calidad de imágenes médicas tridimensionales. Este objetivo se puede descomponer en una serie de metas parciales:

- 1. Realizar una revisión del estado del arte para la estimación de calidad de imágenes 3D. Comparativa entre métodos de aprendizaje automático y de aprendizaje profundo. Estudiar el método o arquitectura más adecuada para la resolución del problema y proponer posibles mejoras.
- 2. Estudiar las distorsiones comúnes en el mundo médico. Dado que, actualmente, no existen conjuntos de datos disponibles para la estimación de la calidad de imágenes médicas 3D, debemos analizar ejemplos de conjuntos de datos genéricos disponibles y seleccionar aquellos que traten las mismas distorsiones.
- 3. Preparar un conjunto de datos propio para validar. Preprocessar y elegir las nubes de puntos iniciales de mejor calidad. Estudiar la posibilidad de generar un pseudo-MOS utilizando métricas FR del estado del arte actual o realizar un experimento con un conjunto de individuos, como consta en [21,22], para la obtención del MOS. Analizando a su vez las implicaciones de cada camino.
- 4. Validar los resultados obtenidos, sacar conclusiones y propuestas de cara al futuro.

Introducción 13

1.4. Planificación del proyecto

Al planificar el proyecto, es fundamental tener en cuenta que la asignatura del Trabajo Fin de Grado (TFG) tiene una carga de 12 créditos ECTS, donde cada crédito representa aproximadamente 25 horas de trabajo. En total, se estima que se necesitarán alrededor de 300 horas para llevar a cabo el proyecto. Considerando que el segundo cuatrimestre tiene aproximadamente 20 semanas, se requerirá dedicar al TFG unas 15 horas por semana, lo cual equivaldría a unas 3 horas diarias durante 5 días a la semana.

La naturaleza del proyecto no presenta una complejidad significativa en términos de su alcance y requisitos, lo cual permite abordar su desarrollo a través de un enfoque de ciclo de vida en cascada [23]. No obstante, bajo este enfoque se evita retroceder en cualquiera de las fases del ciclo, y aunque se espera que el diseño y los requisitos del sistema sean estables, existe la posibilidad de realizar ajustes menores conforme se obtenga más información sobre el problema y los métodos. Es por ello que utilizamos una pequeña variante, la versión con retroalimentación.

Las fases del ciclo de vida son:

- Análisis de requisitos: Consiste en reuniones iniciales con los clientes, en este caso sería los directores del TFG. Se organiza el análisis bibliográfico del problema IQA y PCQA⁴, teniendo en cuenta un estudio previo de las distorsiones médicas.
- Diseño: Consistió en la investigación y selección de métodos conforme al análisis anterior, tanto para la resolución como la validación de la solución. Así como pruebas preliminares y diseño del software de experimentación.
- Implementación: Consiste en la adaptación de las técnicas encontradas, implementación de nuevas funcionalidas y generación de un conjunto de datos médicos nuevos.
- Pruebas: Realización de diversos experimentos de validación, tanto al la generación de las distorsiones como a los modelos y resultados.

Tarea	Semanas -	Feb	rero		Ma	rzo			Al	oril			1	May)			Ju	nio			Ju	lio	
Tarea	Horas	21	28	07	14	21	28	04	11	18	25	02	09	16	23	30	06	13	20	27	04	11	18	25
Análisis de Requisitos	4 - 60																							
Diseño	4 - 60																							
Implementación	6 - 90																							
Pruebas	6 - 90																							

Tabla 1.1: Planificación temporal inicial del proyecto

⁴Point cloud quality assessment o estimación de calidad de nubes de puntos

La planificación (1.1) se tomó como referencia, pero no de forma estricta. Ya que se tuvo en cuenta que el autor estaba realizando prácticas de empresa, tenía una asignatura y participaba de un curso de *Google* ofrecido por la universidad. Además, se esperaba que ocurriera retrasos sobre todo en la implementación, como se puede ver en (1.2), dado la novedad de la propuesta y dificultad del problema. Un ejemplo fue a la hora de simular las distorsiones médicas, caso que fue algo iterativo y manual.

Tarea	Semanas -	Feb	rero		Ma	rzo			Al	ril]	May	o			Ju	nio			Ju	lio	
Tarea	Horas	21	28	07	14	21	28	04	11	18	25	02	09	16	23	30	06	13	20	27	04	11	18	25
Análisis de Requisitos	5 - 75																							
Diseño	4 - 60																							
Implementación	8 - 120																							
Pruebas	5 - 75																							

Tabla 1.2: Planificación resultante del proyecto

Para realizar este proyecto se tuvo en cuenta los siguientes materiales: Suscripción a Google Colab Pro, un pórtatil personal de gama media, Google Drive 100GB y otros gastos. Además, para el coste estimado, se asume un salario de 25€/hora, como para un investigador senior o responsable I+D de una empresa tecnológica en España.

Respecto al servidor GPU, con las especificaciones actuales de Google, se estima un coste aproximado de $10.000 \in$. Se asume una amortización de 2 años, lo que implica un pago diario de $13.70 \in$. El desglose total de los costes se puede ver en la siguiente tabla (1.4)

Fecha inicio	21/02/2022
Fecha fin	25/07/2022
Duración	154 días, 110 laborables

Tabla 1.3: Total de horas y días trabajados

Item	Costo
Salario	8 250.00€
Portátil de Gama Media	700.00€
Google Colab Pro	55.50€
Servidor GPU	2 109.8€
Google Drive 100GB	10.00€
Otros	300.00€
Total	11 425.3 €

Tabla 1.4: Estimación final de coste del proyecto

Fundamentos Teóricos

Esta sección tiene el objetivo de introducir y explicar brevemente los fundamentos teóricos en los que se basan los métodos empleados en este proyecto, así como justificar su relevancia en la resolución del problema que se plantea.

2.1. Métricas y Distorsiones

2.2. Aprendizaje Automático

Cómo haremos uso de modelos de ML como SVR, KNNRegressor y entre otros, así como el hecho de haber hecho "feature selection", análisis PCA y de distribuciones creo que es oportuno empezar por este nivel de introducción.

Sería: La definición, para qué casos sirve y terminar en porqué sería un posible método para resolver este problema.

Creo que sería oportuno detenerme sobre todo con SVR y porqué es bueno para alta dimensionalidad y como funciona a nivel del cálculo de margínes y poner alguna imagen.

2.3. Aprendizaje Profundo

Introducir las redes neuronales, hablar del aspecto de profundidad versus anchura que presentan. Hablar de como se optimizan, backpropagation and feed-forward. Hablar de las funciones de activación y los optimizadores. Mencionar el proceso iterativo de entrenamiento, hablar del trade-off bias-variance, mencioanr el problema de overfitting and underfitting

2.3.1. Redes Convolucionales

Cómo el método ML principal actual es convoluciones, habrá que definir como funciona las convoluciones.

Quizás habría que unir subsecciones ó quizás hacer que fueran muy breves ya que hay demasiadas. Pero comentar-las todas me parece esencial para que el lector se ubique con los métodos empleados

Convoluciones, Pooling y BatchNorm

- 2.3.2. Regularizaciones
- 2.3.3. Aplicadas a Videos
- 2.4. Ensemble o Conjunto Deep Learning
- 2.5. Representaciones 3D de las imágenes

Estado del Arte 17

Capítulo 3

Estado del Arte

Materiales, Métodos y Distorsiones

- 4.1. Materiales
- 4.2. Métodos
- 4.3. Distorsiones

Implementación y Experimentos

- 5.1. Detalles Técnicos de Implementación
- 5.2. Experimentos

Conclusiones y Trabajos Futuros

BIBLIOGRAFÍA 25

Bibliografía

- [1] Kalpana Seshadrinathan, Thrasyvoulos Pappas, Robert Safranek, Junqing Chen, Zhou Wang, Hamid Sheikh, and Alan Bovik. Image quality assessment. *The Essential Guide to Image Processing*, 12 2009. doi:10.1016/B978-0-12-374457-9.00021-4.
- [2] Zhou Wang and Alan Conrad Bovik. Modern image quality assessment. In *Modern Image Quality Assessment*, 2006.
- [3] Andriy Fedorov, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet, Jean-Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique Jennings, Fiona Fennessy, Milan Sonka, John Buatti, Stephen Aylward, James V. Miller, Steve Pieper, and Ron Kikinis. 3d slicer as an image computing platform for the quantitative imaging network. *Magnetic Resonance Imaging*, 30(9):1323-1341, 2012. Quantitative Imaging in Cancer. URL: https://www.sciencedirect.com/science/article/pii/S0730725X12001816, doi:https://doi.org/10.1016/j.mri.2012.05.001.
- [4] Yong Ding. Visual Quality Assessment for Natural and Medical Image. 03 2018. doi:10.1007/978-3-662-56497-4.
- [5] Illya Bakurov, Marco Buzzelli, Raimondo Schettini, Mauro Castelli, and Leonardo Vanneschi. Structural similarity index (ssim) revisited: A data-driven approach. Expert Systems with Applications, 189:116087, 2022. URL: https://www.sciencedirect.com/science/article/pii/S0957417421014238, doi:https://doi.org/10.1016/j.eswa.2021.116087.
- [6] Edoardo Ardizzone and Alessandro Bruno. Image quality assessment by saliency maps. volume 1, 02 2012.
- [7] Jinjian Wu, Jupo Ma, Fuhu Liang, Weisheng Dong, Guangming Shi, and Weisi Lin. End-to-end blind image quality prediction with cascaded deep neural network. *IEEE Transactions on Image Processing*, 29:7414–7426, 2020. doi:10.1109/TIP.2020.3002478.

26 BIBLIOGRAFÍA

[8] Zhou Wang, Alan C. Bovik, and Ligang Lu. Why is image quality assessment so difficult? In 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 4, pages IV-3313-IV-3316, 2002. doi:10.1109/ICASSP.2002.5745362.

- [9] Zicheng Zhang, Wei Sun, Xiongkuo Min, Tao Wang, Wei Lu, and Guangtao Zhai. No-reference quality assessment for 3d colored point cloud and mesh models. *IEEE Transactions on Circuits and Systems for Video Technology*, 32(11):7618–7631, 2022. doi:10.1109/TCSVT. 2022.3186894.
- [10] Wei Zhou, Qi Yang, Qiuping Jiang, Guangtao Zhai, and Weisi Lin. Blind quality assessment of 3d dense point clouds with structure guided resampling, 2022. arXiv:2208.14603.
- [11] Ziyu Shan, Qi Yang, Rui Ye, Yujie Zhang, Yiling Xu, Xiaozhong Xu, and Shan Liu. Gpa-net:no-reference point cloud quality assessment with multi-task graph convolutional network, 2023. arXiv:2210.16478.
- [12] Qi Yang, Yipeng Liu, Siheng Chen, Yiling Xu, and Jun Sun. No-reference point cloud quality assessment via domain adaptation, 2022. arXiv:2112.02851.
- [13] Zicheng Zhang, Wei Sun, Yucheng Zhu, Xiongkuo Min, Wei Wu, Ying Chen, and Guangtao Zhai. Treating point cloud as moving camera videos: A no-reference quality assessment metric, 2022. arXiv:2208. 14085.
- [14] Zicheng Zhang, Wei Sun, Xiongkuo Min, Quan Zhou, Jun He, Qiyuan Wang, and Guangtao Zhai. Mm-pcqa: Multi-modal learning for no-reference point cloud quality assessment. 09 2022. doi:10.48550/arXiv.2209.00244.
- [15] Charles Parisot. The dicom standard. The International Journal of Cardiac Imaging, 11(3):171–177, Sep 1995. doi:10.1007/BF01143137.
- [16] Yuhao Sun and Gabriela Mogos. Impact of visual distortion on medical images. IAENG International Journal of Computer Science, 49:36–45, 03 2022.
- [17] Karl Heinz Höhne, Henry Fuchs, and Stephen M. Pizer. 3d imaging in medicine: algorithms, systems, applications. 1990.
- [18] Orhan Hakki Karatas and Ebubekir Toy. Three-dimensional imaging techniques: A literature review. *European Journal of Dentistry*, 8:132 140, 2014.

BIBLIOGRAFÍA 27

[19] Luuk H G A Hopman, Pranav Bhagirath, Mark J Mulder, Iris N Eggink, Albert C van Rossum, Cornelis P Allaart, and Marco J W Götte. Quantification of left atrial fibrosis by 3D late gadolinium-enhanced cardiac magnetic resonance imaging in patients with atrial fibrillation: impact of different analysis methods. European Heart Journal - Cardiovascular Imaging, 23(9):1182-1190, 11 2021. arXiv:https://academic.oup.com/ehjcimaging/article-pdf/23/9/1182/45316536/jeab245.pdf, doi:10.1093/ehjci/jeab245.

- [20] Elin Kjelle and Catherine Chilanga. The assessment of image quality and diagnostic value in x-ray images: a survey on radiographers' reasons for rejecting images. *Insights into Imaging*, 13, 03 2022. doi:10.1186/s13244-022-01169-9.
- [21] ITU-R. Methodology for the subjective assessment of the quality of television pictures. ITU-R Recommendation BT.500-13, International Telecommunication Union Radiocommunication Sector (ITU-R), 2012.
- [22] Junming Zhou, Gangyi Jiang, Xiangying Mao, Mei Yu, Feng Shao, Zongju Peng, and Yun Zhang. Subjective quality analyses of stereoscopic images in 3dtv system. 11 2011. doi:10.1109/VCIP.2011.6115913.
- [23] R. S. Pressman. Software Engineering: A Practitioner's Approach. Palgrave Macmillan, 2005.
- [24] 3D Slicer image computing plataform. https://www.slicer.org/. Visualizada en: 2023-06-01.