Discriminative Modeling Topics

April 2, 2013

Menu du Jour

- MaxEnt phrase reordering (Xiong et al., 2006)
- Discriminative lexicon models (Mauser et al., 2009)
- Translation as CRFs (Blunsom et al., 2008)

```
A \rightarrow bruja | witch 0.2

A \rightarrow verde | green 0.2

A \rightarrow A A | I 2 0.6

A \rightarrow A A | 2 I 0.2
```

```
A \rightarrow bruja | witch 0.2

A \rightarrow verde | green 0.2

A \rightarrow A A | I 2 0.6

A \rightarrow A A | 2 I 0.2
```


0.6

```
A \rightarrow bruja | witch 0.2
A \rightarrow verde | green 0.2
A \rightarrow A A | I 2 0.6
A \rightarrow A A | 2 I 0.2
```


 0.6×0.2

```
A → bruja | witch 0.2
```

$$A \rightarrow AA \mid 12$$
 0.6

$$A \rightarrow AA \mid 2 \mid 0.2$$

 $0.6 \times 0.2 \times 0.2 = 0.024$

```
A \rightarrow bruja | witch 0.2

A \rightarrow verde | green 0.2

A \rightarrow A A | I 2 0.6

A \rightarrow A A | 2 I 0.2

0.2 A 0.2 A 0.2 A bruja verde 0.2×0.2×0.2 = 0.008 green witch
```

```
A \rightarrow bruja | witch 0.2

A \rightarrow verde | green 0.2

A \rightarrow A A | I 2 0.6

A \rightarrow A A | 2 I 0.2

0.2 A 0.2 A 0.2 A bruja verde 0.2×0.2×0.2 = 0.008 green witch
```

Context-free rules apply independent of context.

More sophisticated grammars

$$A \rightarrow AA \mid 2 \mid$$

More sophisticated grammars

$$\frac{A \rightarrow AA \mid 2 \mid 1}{NP \rightarrow NN \mid J \mid \mid 2 \mid 1}$$

More sophisticated grammars

$$\frac{A \rightarrow AA \mid 2 \mid 1}{NP \rightarrow NN \mid J \mid 2 \mid 1}$$

What are the problems with this?

More sophisticated grammars

$$\frac{A \rightarrow AA \mid 2 \mid 1}{NP \rightarrow NN \mid J \mid \mid 2 \mid 1}$$

• Discriminative "parsing"

More sophisticated grammars

$$\frac{A \rightarrow AA \mid 2 \mid 1}{NP \rightarrow NN \mid J \mid \mid 2 \mid 1}$$

Discriminative "parsing"

Key Insight

- PCFGs are generative models of text (parallel text)
- In translation, the text is given: use discriminative models
- Xiong et al. propose a very simple approach:
 - Standard translation model (phrase based)
 - Standard (uniform) segmentation model
 - Standard n-gram language model
 - Innovation: every time you form a constituent, predict whether it should be monotone or inverted

$$p(A = \leftarrow | \text{bruja verde}, (0, 1), (1, 2))$$

MaxEnt Model

$$p(A = \{\leftarrow, \rightarrow\} \mid \mathbf{f}, A_{\text{left}}, A_{\text{right}}) = \frac{1}{Z} \exp \boldsymbol{w}^{\top} \boldsymbol{\phi}(\mathbf{f}, A_{\text{left}}, A_{\text{right}})$$

Again, we reduce a major component of translation to **binary classification**.

$$p(A = \leftarrow | \text{bruja verde}, (0, 1), (1, 2))$$

This is a lot of conditioning

MaxEnt Model

$$p(A = \{\leftarrow, \rightarrow\} \mid \mathbf{f}, A_{\text{left}}, A_{\text{right}}) = \frac{1}{Z} \exp \boldsymbol{w}^{\top} \boldsymbol{\phi}(\mathbf{f}, A_{\text{left}}, A_{\text{right}})$$

Again, we reduce a major component of translation to **binary classification**.

Training the Model

• What do we need to train the model?

Training the Model

• What do we need to train the model?

 How do we extract training examples from the training data?

Results

Condition	BLEU
monotonic	20. I
no-model	19.6
size of constituent	20.9
MaxEnt	22.2

General Insights

- Decoders make local translation and reordering decisions
 - Standard approach: relative frequency
 - Alternative: using "local classifiers"
 - Challenge: extract (noisy) training instances from the training data
 - Benefits: no decoding required for training these local classifiers
- The source is given: use it!

Questions?

Es wird morgen eine Pruefung geben

There's a test tomorrow.

Ob ich bestehen werde?

Will I pass?

Es wird morgen eine Pruefung geben

There's a test tomorrow.

Ob ich bestehen werde?

Will I pass?

Google Whether I shall consist?

Es wird morgen eine Pruefung geben

There's a test tomorrow.

Ob ich bestehen werde?

Will I pass?

Google Whether I shall consist?

Goal:

 $p_{\text{new model}}(\text{pass} \mid \text{bestehen}, C = \text{Prüfung}) > p(w \mid \text{bestehen})$

The DWL

"Discriminative Word Lexicon"

The DWL

"Discriminative Word Lexicon"

$$p(\mathcal{E} \mid \mathcal{F}) = \prod_{e \in \mathcal{E}} p(\text{contains } e \mid \mathcal{F}) \times \prod_{e \in \mathcal{E}^{C}} (1 - p(\text{contains } e \mid \mathcal{F}))$$

Model inclusion as conditionally independent binary decisions

Binary Classifiers

- Downside
 - Independence assumptions are harsh
- Upside
 - Training for every word in the vocabulary can be carried out in parallel

Training the Model

• What do we need to train the model?

 How do we extract training examples from the training data? $\Sigma = \{\text{the, and, of, cat, } \dots, \text{pass, test, } \dots \text{ resulting, xylophone}\}$

 $\Sigma = \{\text{the, and, of, cat, } \dots, \text{pass, test, } \dots \text{ resulting, xylophone}\}$

Sentence pair:

you will pass the test du wirst die Pruefung bestehen

 $\Sigma = \{\text{the, and, of, cat, } \dots, \text{pass, test, } \dots \text{resulting, xylophone}\}$

Sentence pair:

you will pass the test du wirst die Pruefung bestehen

Classifier	y	Feature Vector (x)
pass?	+	du= wirst= Pruefung= bestehen=
will?	+	du=I wirst=I Pruefung=I bestehen=I
insist?	-	du=I wirst=I Pruefung=I bestehen=I
insist?	-	du= wirst= Pruefung= bestehen= du= wirst= Pruefung= bestehen=
cat?		du=I wirst=I Pruefung=I bestehen=I
xylophone?	-	du=I wirst=I Pruefung=I bestehen=I

 $\Sigma = \{\text{the, and, of, cat, } \dots, \text{pass, test, } \dots \text{ resulting, xylophone}\}$

Sentence pair:

you will pass the test du wirst die Pruefung bestehen

Classifier	y	Feature Vector (x)
pass?	+	du=I wirst=I Pruefung=I bestehen=I
will?	+	du=I wirst=I Pruefung=I bestehen=I
insist?	-	du=I wirst=I Pruefung=I bestehen=I
insist?	-	du=I wirst=I Pruefung=I bestehen=I
cat?	-	du=I wirst=I Pruefung=I bestehen=I
xylophone?	-	du=I wirst=I Pruefung=I bestehen=I

 $O(N \times V)$ training instances

Rescoring with the DWL

- The DWL assigns probabilities to **sets** of words
 - Once a word is used once, subsequent uses are "free"
 - This makes dynamic programming difficult
- A simple strategy: reranking
 - Get k-best lists from baseline decoder, compute DWL score on each entry
 - Train a second model (using PRO, MERT, etc.) as if the k-best lists were the decoder
 - Search errors are very possible!

Arabic-English

Condition	BLEU
Baseline	42.0
+DWL	42.4

Chinese-English

Condition	BLEU
Baseline	25.3
+DWL	26.2

Source	目前,事故抢险组正在紧急恢复通风系统.	
Baseline	at present, the accident and rescue teams are currently emergency re-	
DWL	at present, the emergency rescue teams are currently restoring the ventilation system.	

Reference	right now, the accident emergency
	rescue team is making emergency
	repair on the ventilation system.

DWL		
emergency	0.894	
currently	0.330	
current	0.175	
emergencies	0.133	
present	0.133	
accident	0.119	
recovery	0.053	
group	0.046	
dealing	0.042	
ventilation	0.034	

Possible Extensions

- Condition on more context than the sentence (e.g., document)
- Model units larger than words (e.g., phrases)
- Model only words/phrases that have ambiguous translations
 - Measure of ambiguity: entropy

Questions?

Translation as CRFs

Translation as CRFs

No linear chains

CRFs on Synchronous Trees

- Model: discriminate "good" parses under an SCFG from bad ones
- Challenges:
 - What is a good parse?
 - One that produces a good translation
 - What is a good translation?
 - The one we see in the training data
 - What about the zillions of ways to derive a sentence pair?
 - Let's marginalize them
 - What about non-literal translations?
 - Regularize so we don't memorize "bad" stuff

the red hat / le chapeau

the red hat the red hat le chapeau

Parametric Form

Conditional probability of a derivation

$$p_{\Lambda}(\mathbf{d}, \mathbf{e}|\mathbf{f}) = \frac{\exp \sum_{k} \lambda_{k} H_{k}(\mathbf{d}, \mathbf{e}, \mathbf{f})}{Z_{\Lambda}(\mathbf{f})}.$$

Conditional probability of a translation

Features

The features must decompose with the rules:

$$H_k(\mathbf{d}, \mathbf{e}, \mathbf{f}) = \sum_{r \in \mathbf{d}} h_k(\mathbf{f}, r, q(r, \mathbf{d}))$$

- Any part of the **source** may be used
 - Source syntax
 - Morphology
 - Lexical context
 - POS information

Training

$$\mathcal{L} = \sum_{(\mathbf{e}, \mathbf{f}) \in \mathcal{D}} \sum_{\mathbf{d}} \log p_{\Lambda}(\mathbf{e}, \mathbf{d} \mid \mathbf{f}) + \sum_{m} \frac{\lambda_{m}^{2}}{2\sigma^{2}}$$

Training

$$\mathcal{L} = \sum_{(\mathbf{e}, \mathbf{f}) \in \mathcal{D}} \sum_{\mathbf{d}} \log p_{\Lambda}(\mathbf{e}, \mathbf{d} \mid \mathbf{f}) + \sum_{m} \frac{\lambda_{m}^{2}}{2\sigma^{2}}$$

Differentiable:

$$\frac{\partial \mathcal{L}}{\partial w_i} = \sum_{(\mathbf{e}, \mathbf{f}) \in \mathcal{D}} \mathbb{E}_{p_{\Lambda}(\mathbf{e}, \mathbf{d} | \mathbf{f})} h_i(\mathbf{e}, \mathbf{d}, \mathbf{f}) - \mathbb{E}_{p_{\Lambda}(\mathbf{d} | \mathbf{e}, \mathbf{f})} h_i(\mathbf{e}, \mathbf{d}, \mathbf{f}) - \frac{\lambda_i}{\sigma^2}$$

Inference

 How do we compute the following feature expectations?

$$\frac{\partial \mathcal{L}}{\partial w_i} = \sum_{(\mathbf{e}, \mathbf{f}) \in \mathcal{D}} \mathbb{E}_{p_{\Lambda}(\mathbf{e}, \mathbf{d} | \mathbf{f})} h_i(\mathbf{e}, \mathbf{d}, \mathbf{f}) - \mathbb{E}_{p_{\Lambda}(\mathbf{d} | \mathbf{e}, \mathbf{f})} h_i(\mathbf{e}, \mathbf{d}, \mathbf{f}) - \frac{\lambda_i}{\sigma^2}$$

Effect of Regularization

Grammar Rules	ML	MAP
	$(\sigma^2 = \infty)$	$(\sigma^2=1)$
$\langle X \rangle \rightarrow \langle carte, map \rangle$	1.0	0.5
$\langle X \rangle \rightarrow \langle carte, notice \rangle$	0.0	0.5
$\langle X \rangle \rightarrow \langle sur, on \rangle$	1.0	1.0
$\langle X \rangle \rightarrow \langle la, the \rangle$	1.0	1.0
$\langle X \rangle \rightarrow \langle table, table \rangle$	1.0	0.5
$\langle X \rangle \rightarrow \langle table, chart \rangle$	0.0	0.5
$\langle X \rangle \rightarrow \langle carte\ sur,\ notice\ on \rangle$	1.0	0.5
$\langle X \rangle \rightarrow \langle carte\ sur,\ map\ on \rangle$	0.0	0.5
$\langle X \rangle \rightarrow \langle sur \ la, \ on \ the \rangle$	1.0	1.0
$\langle X \rangle \rightarrow \langle la \ table, \ the \ table \rangle$	0.0	0.5
$\langle X \rangle \rightarrow \langle la \ table, \ the \ chart \rangle$	1.0	0.5

Training data:

carte sur la table ↔ map on the table carte sur la table ↔ notice on the chart

Condition	BLEU
Hiero -LM	28.1
Hiero +LM	32.0
CRF - max deriv	25.8
CRF - max trans	27.7

Questions?