Jacob Hauck

Math 6010

9-20-2023

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

$$a^0 = 1, \quad 1^m = 1, \quad a^1 = a$$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

- $a^0 = 1, \quad 1^m = 1, \quad a^1 = a$
- $a^m \cdot a^n = a^{m+n}$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

$$a^0 = 1, \quad 1^m = 1, \quad a^1 = a$$

$$a^m \cdot a^n = a^{m+n} \qquad \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}} \cdot \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

$$a^0 = 1, \quad 1^m = 1, \quad a^1 = a$$

$$a^m \cdot a^n = a^{m+n} \qquad \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}} \cdot \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

$$a^0 = 1, \quad 1^m = 1, \quad a^1 = a$$

$$a^m \cdot a^n = a^{m+n} \qquad \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}} \cdot \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

$$ightharpoonup \frac{1}{a^n} = a^{-n}$$
 want $a^{-n} \cdot a^n = a^0 = 1$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

$$a^0 = 1, \quad 1^m = 1, \quad a^1 = a$$

$$a^m \cdot a^n = a^{m+n} \qquad \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}} \cdot \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

$$ightharpoonup \frac{1}{a^n} = a^{-n}$$
 want $a^{-n} \cdot a^n = a^0 = 1$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

$$a^0 = 1, \quad 1^m = 1, \quad a^1 = a$$

$$a^m \cdot a^n = a^{m+n} \qquad \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}} \cdot \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

$$\frac{1}{a^n} = a^{-n}$$
 want $a^{-n} \cdot a^n = a^0 = 1$

$$(a^n)^m = a^{m \cdot n} \qquad \underbrace{a^n \cdot a^n \cdot \dots \cdot a^n}_{m \text{ times}}$$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

$$a^0 = 1, \quad 1^m = 1, \quad a^1 = a$$

$$a^m \cdot a^n = a^{m+n} \qquad \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}} \cdot \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

$$\frac{1}{a^n} = a^{-n}$$
 want $a^{-n} \cdot a^n = a^0 = 1$

$$(a^n)^m = a^{m \cdot n} \qquad \underbrace{a^n \cdot a^n \cdot \dots \cdot a^n}_{m \text{ times}}$$

$$a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}}$$
 $(1.5)^3 = 1.5 \cdot 1.5 \cdot 1.5 = 3.375$

$$a^0 = 1, \quad 1^m = 1, \quad a^1 = a$$

$$a^m \cdot a^n = a^{m+n} \qquad \underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}} \cdot \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

$$\frac{1}{a^n} = a^{-n}$$
 want $a^{-n} \cdot a^n = a^0 = 1$

$$ightharpoonup \frac{a^m}{a^n} = a^{m-n}$$

$$(a^n)^m = a^{m \cdot n} \qquad \underbrace{a^n \cdot a^n \cdot \dots \cdot a^n}_{m \text{ times}}$$

Want a function like

$$f(x) = C \cdot a^x$$

Want a function like

$$f(x) = C \cdot a^x$$

but x might not be $\frac{m}{n}$, for integers m, n...

Want a function like

$$f(x) = C \cdot a^x$$

but x might not be $\frac{m}{n}$, for integers m, n...

 $ightharpoonup x = \pi, \sqrt{2}$, and so on

Want a function like

$$f(x) = C \cdot a^x$$

but x might not be $\frac{m}{n}$, for integers m, n...

 $ightharpoonup x = \pi, \sqrt{2}$, and so on

...but every number has a decimal expansion

$$3 = 3,$$
 $\frac{2}{5} = 0.4,$ $\pi = 3.14159265...,$ $\sqrt{2} = 1.41421356...$

Want a function like

$$f(x) = C \cdot a^x$$

but x might not be $\frac{m}{n}$, for integers m, n...

 $ightharpoonup x = \pi, \sqrt{2}$, and so on

...but every number has a decimal expansion

$$3 = 3,$$
 $\frac{2}{5} = 0.4,$ $\pi = 3.14159265...,$ $\sqrt{2} = 1.41421356...$

Approximate any number x by finitely many of its decimal digits

$$a^{\pi} \approx a^{3.14} = a^{\frac{314}{100}} = \sqrt[100]{a^{314}}$$
 (1)

The more digits we use, the closer we get to the true value of a^{π}

2^3	$2^{3.1}$	$2^{3.14}$	$2^{3.141}$	$2^{3.1415}$	 2^{π}
8.0000	8.5742	8.8152	8.8213	8.8244	 8.8250

The more digits we use, the closer we get to the true value of a^{π}

2^3	$2^{3.1}$	$2^{3.14}$	$2^{3.141}$	$2^{3.1415}$	 2^{π}
8.0000	8.5742	8.8152	8.8213	8.8244	 8.8250

So we can use any number x in the exponent, and we also get to keep all the previous properties. Hooray!

The more digits we use, the closer we get to the true value of a^{π}

2^3	$2^{3.1}$	$2^{3.14}$	$2^{3.141}$	$2^{3.1415}$	• • •	2^{π}
8.0000	8.5742	8.8152	8.8213	8.8244		8.8250

So we can use any number x in the exponent, and we also get to keep all the previous properties. Hooray!

Exponential Functions

An **exponential function** is a function f such that

$$f(x) = C \cdot a^x$$

- $ightharpoonup C \neq 0$ is the **initial value**
- $ightharpoonup a > 0, a \neq 1$ is the growth factor

Consider the exponential function $f(x) = 5 \cdot 2^x$. Let's make a table of values

$$\begin{array}{ccc} x & f(x) \\ -2 & 1.25 \\ -1 & 2.5 \\ 0 & 5 \\ 1 & 10 \\ 2 & 20 \end{array}$$

Consider the exponential function $f(x) = 5 \cdot 2^x$. Let's make a table of values

$$\begin{array}{ccc} x & f(x) \\ -2 & 1.25 \\ -1 & 2.5 \\ 0 & 5 \\ 1 & 10 \\ 2 & 20 \end{array}$$

ightharpoonup f(x) goes up by $\times 2 = a$ each time x increases

Consider the exponential function $f(x) = 5 \cdot 2^x$. Let's make a table of values

$$\begin{array}{ccc} x & f(x) \\ -2 & 1.25 \\ -1 & 2.5 \\ 0 & 5 \\ 1 & 10 \\ 2 & 20 \\ \end{array}$$

- ightharpoonup f(x) goes up by $\times 2 = a$ each time x increases
- f(0) = 5 = C.

$$f(x) = C \cdot a^x$$

• $f(0) = C \cdot a^0 = C$, the initial value

$$f(x) = C \cdot a^x$$

- $ightharpoonup f(0) = C \cdot a^0 = C$, the initial value
- The growth factor: how much the function grows (or shrinks) every time x goes up by 1

$$f(x+1) = a \cdot f(x)$$

$$f(x) = C \cdot a^x$$

- $ightharpoonup f(0) = C \cdot a^0 = C$, the initial value
- The growth factor: how much the function grows (or shrinks) every time x goes up by 1

$$f(x+1) = a \cdot f(x)$$

because

$$\frac{f(x+1)}{f(x)} = \frac{C \cdot a^{x+1}}{C \cdot a^x}$$

$$f(x) = C \cdot a^x$$

- $ightharpoonup f(0) = C \cdot a^0 = C$, the initial value
- ► The growth factor: how much the function grows (or shrinks) every time x goes up by 1

$$f(x+1) = a \cdot f(x)$$

because

$$\frac{f(x+1)}{f(x)} = \frac{C \cdot a^{x+1}}{C \cdot a^x} = \frac{a^{x+1}}{a^x}$$

$$f(x) = C \cdot a^x$$

- $ightharpoonup f(0) = C \cdot a^0 = C$, the initial value
- ► The growth factor: how much the function grows (or shrinks) every time x goes up by 1

$$f(x+1) = a \cdot f(x)$$

because

$$\frac{f(x+1)}{f(x)} = \frac{C \cdot a^{x+1}}{C \cdot a^x} = \frac{a^{x+1}}{a^x} = a^{x+1-x} = a$$

Let's try to graph the function $f(x) = 5 \cdot 2^x$ from before. First, extend the table of values

Let's try to graph the function $f(x) = 5 \cdot 2^x$ from before. First, extend the table of values

\boldsymbol{x}	f(x)
-5	0.16125
-4	0.3125
-3	0.625
-2	1.25
-1	2.5
0	5
1	10
2	20
3	40
4	80
5	160

Let's try to graph the function $f(x) = 5 \cdot 2^x$ from before. First, extend the table of values

x	f(x)
-5	0.16125
-4	0.3125
-3	0.625
-2	1.25
-1	2.5
0	5
1	10
2	20
3	40
4	80
5	160

It seems that $f(x) \to 0$ as $x \to -\infty$, and $f(x) \to \infty$ as $x \to \infty$

Connect the points continuously and use the asymptotic behavior noted

