

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH11)

Paper 01 Mechanics and Materials

| Question<br>Number | Answer                                                                                  | Mark |
|--------------------|-----------------------------------------------------------------------------------------|------|
| 1                  | D is the correct answer                                                                 | (1)  |
|                    | A is incorrect because weight is a force, which is a vector                             |      |
|                    | B is incorrect because momentum is a vector                                             |      |
|                    | C is incorrect because velocity is a vector                                             |      |
| 2                  | C is the correct answer                                                                 | (1)  |
|                    | A is incorrect because it give units of m <sup>3</sup> kg <sup>-1</sup>                 |      |
|                    | B is incorrect because it give units of m <sup>3</sup> kg N <sup>-2</sup>               |      |
|                    | D is incorrect because it give units of N <sup>2</sup> kg <sup>-1</sup> m <sup>-3</sup> |      |
| 3                  | C is the correct answer                                                                 | (1)  |
|                    | A is incorrect because the frictional force from the road is the driving force          |      |
|                    | B is incorrect because a drag force is also acting                                      |      |
|                    | D is incorrect because the frictional force from the road is the driving force          |      |
| 4                  | B is the correct answer                                                                 | (1)  |
|                    | A is incorrect because it gives units of J                                              |      |
|                    | C is incorrect because it gives an input power less than the output power               |      |
|                    | D is incorrect because it gives units of J                                              |      |
| 5                  | D is the correct answer                                                                 | (1)  |
|                    | A is incorrect because the units are inconsistent                                       |      |
|                    | B is incorrect because it gives a greater length, and F is a compressive force          |      |
|                    | C is incorrect because the units are inconsistent                                       |      |
| 6                  | B is the correct answer                                                                 | (1)  |
|                    | A is incorrect because it gives units of J m $\neq$ N                                   |      |
|                    | C is incorrect because it gives units of W m s <sup>-1</sup> $\neq$ N                   |      |
|                    | D is incorrect because it gives units of m s $W^{-1} \neq N$                            |      |
| 7                  | B is the correct answer                                                                 | (1)  |
|                    | A is incorrect because the acceleration is g which has constant magnitude and direction |      |
|                    | C is incorrect because the objects gain the same k.e. for the same drop height          |      |
|                    | D is incorrect because both objects start with the same k.e. and gain the same k.e.     |      |
| 8                  | C is the correct answer                                                                 | (1)  |
|                    | A is incorrect because the acceleration does not reach zero                             |      |
|                    | B is incorrect because the acceleration does not reach zero                             |      |
|                    | D is incorrect because the acceleration does not reach zero                             |      |
| 9                  | D is the correct answer                                                                 | (1)  |
|                    | A is incorrect because the fracture point is at the extreme end of the graph            |      |
|                    | B is incorrect because proportionality ends before point X is reached                   |      |
|                    | C is incorrect because point X is not the highest point reached by the graph            |      |
| 10                 | C is the correct answer                                                                 | (1)  |
|                    | A is incorrect because R is in the wrong direction                                      |      |
|                    | B is incorrect because R is the wrong diagonal                                          |      |
|                    | D is incorrect because R is the wrong diagonal                                          |      |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 11(a)              | Use of $p = mv$ $p = 4.53 \times 10^{5} \text{ (kg m s}^{-1}\text{)}$ (reverse calculation can gain both marks) $\frac{\text{Example of calculation}}{p = mv}$ $p = (7.15 + 5.35) \times 10^{4} \text{ kg} \times 3.62 \text{ m s}^{-1} = 4.53 \times 10^{5} \text{ kg m s}^{-1}$                                                                                                                                                                                                                                                                                  | (1)<br>(1) | 2    |
| 11(b)              | Equates the initial with the final momentum. $v = 2.44 \text{ m s}^{-1}  \text{(allow ecf from (a))}$ $\frac{\text{Example of calculation}}{5.35 \times 10^4 \text{ kg} \times v + 7.15 \times 10^4 \text{ kg} \times 4.50 \text{ m s}^{-1} = 4.53 \times 10^5 \text{ kg m s}^{-1}}$ $v = (4.53 \times 10^5 \text{ kg m s}^{-1} - 7.15 \times 10^4 \text{ kg} \times 4.50 \text{ m s}^{-1}) / 5.35 \times 10^4 \text{ kg}$ $= 2.44 \text{ m s}^{-1}$                                                                                                               | (1)        | 2    |
| 11(c)              | Use of $E_{\rm K} = \frac{1}{2}  m  v^2$<br>$E_{\rm K} = 6.5 \times 10^4  {\rm J}  ({\rm allow \ ecf \ from \ (b)})$<br>Example of calculation<br>Initial k.e. = $0.5 \times (7.15 \times 10^4  {\rm kg} \times (4.50  {\rm m \ s^{-1}})^2 + 5.35 \times 10^4  {\rm kg} \times (2.44  {\rm m \ s^{-1}})^2) = 8.84 \times 10^5  {\rm J}$<br>Final k.e. = $0.5 \times 12.5 \times 10^4  {\rm kg} \times (3.62  {\rm m \ s^{-1}})^2) = 8.19 \times 10^5  {\rm J}$<br>Difference = $8.84 \times 10^5  {\rm J} - 8.19 \times 10^5  {\rm J} = 6.47 \times 10^4  {\rm J}$ | (1)<br>(1) | 2    |
|                    | Total for question 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 6    |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                              |     | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 12(a)              | Either                                                                                                                                                                                                                                                                                              |     |      |
|                    |                                                                                                                                                                                                                                                                                                     |     |      |
|                    | Decrease of GPE = gain of KE.                                                                                                                                                                                                                                                                       | (1) |      |
|                    | Use of $E_k = \frac{1}{2} m v^2$ and $\Delta E_{grav} = m g \Delta h$                                                                                                                                                                                                                               | (1) |      |
|                    | $v = 3.1 (\text{ m s}^{-1})$                                                                                                                                                                                                                                                                        | (1) |      |
|                    | Or                                                                                                                                                                                                                                                                                                  |     |      |
|                    | Use of trigonometry to find parallel component of g and distance along ramp                                                                                                                                                                                                                         | (1) |      |
|                    | Use of $v^2 = u^2 + 2 a s$ (or other valid <i>suvat</i> method)                                                                                                                                                                                                                                     | (1) |      |
|                    | $v = 3.1 (\text{ m s}^{-1})$                                                                                                                                                                                                                                                                        | (1) | 3    |
|                    | (reverse calculations can score maximum 2 marks)                                                                                                                                                                                                                                                    |     |      |
|                    | Example of calculation<br>$\frac{1}{2} m v^2 = m g \Delta h$<br>$\frac{1}{2} v^2 = 9.81 \text{ m s}^{-2} \times 0.5 \text{ m}$<br>$v = \sqrt{(2 \times 9.81 \text{ m s}^{-2} \times 0.5 \text{ m})} = 3.13 \text{ m s}^{-1}$                                                                        |     |      |
| 12(b)              | Use of Pythagoras' Theorem to calculate distance along the ramp Or                                                                                                                                                                                                                                  |     |      |
|                    | Use of trigonometry to find parallel component of g                                                                                                                                                                                                                                                 | (1) |      |
|                    | Use of $s = \frac{1}{2}(u + v) t$ (or other valid <i>suvat</i> method for $t_{AB}$ )                                                                                                                                                                                                                | (1) |      |
|                    | Use of $s = u t$                                                                                                                                                                                                                                                                                    | (1) |      |
|                    | Total time = 1.64 s (show that value gives 1.65 s)                                                                                                                                                                                                                                                  | (1) | 4    |
|                    | (may see some MPs for (b) in (a))                                                                                                                                                                                                                                                                   |     |      |
|                    | Example of calculation Distance along ramp = $(\sqrt{(2^2 + 0.5^2)})$ m = 2.06 m 2.06 m = $\frac{1}{2}$ (0 + 3.13) m s <sup>-1</sup> × $t_{AB}$ $t_{AB} = 2 \times 2.06$ m / 3.13 m s <sup>-1</sup> = 1.32 s $t_{BC} = 1$ m / 3.13 m s <sup>-1</sup> = 0.32 s Total time = 1.32 s + 0.32 s = 1.64 s |     |      |
|                    | Total for question 12                                                                                                                                                                                                                                                                               |     | 7    |

| Question<br>Number | Answer                                                                                                                                                                                      | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 13(a)(i)           |                                                                                                                                                                                             |      |
| 13(4)(1)           | Use of $\rho = m / V$ (and $U = mg$ ) (1)                                                                                                                                                   |      |
|                    | $U = 5.9 \times 10^7 \mathrm{N} \tag{1}$                                                                                                                                                    | 2    |
|                    | Example of calculation<br>$U = \rho \ g \ V = 1.03 \times 10^3 \ \text{kg m}^{-3} \times 9.81 \ \text{N kg}^{-1} \times 5.83 \times 10^3 \ \text{m}^3 = 5.89 \times 10^7 \ \text{N}$        |      |
| 13(a)(ii)          | Weight of submarine is equal to the upthrust. (1)                                                                                                                                           |      |
|                    | Refers to $W = m g$ to justify a mass of $6.00 \times 10^6 \text{ kg}$<br><b>Or</b>                                                                                                         |      |
|                    | Refers to mass calculated in (a)(i) to justify a mass of $6.00 \times 10^6$ kg (1)                                                                                                          | 2    |
|                    | Example of calculation<br>$W = U = 5.89 \times 10^7 \text{ N} = m \times 9.81 \text{ N kg}^{-1}$<br>$m = 5.89 \times 10^7 \text{ N} / 9.81 \text{ N kg}^{-1} = 6.00 \times 10^6 \text{ kg}$ |      |
| 13(b)(i)           | The upthrust (of the water on the submarine) is less than the weight of the submarine (1)                                                                                                   |      |
|                    | A resultant force acts (downwards) on the submarine (1)                                                                                                                                     |      |
|                    | So the submarine will (begin to) sink (dependent on MP1) (1)                                                                                                                                | 3    |
| 13(b)(ii)          | Use of $\rho = m/V$ and $W = mg$ to calculate new upthrust (1)                                                                                                                              |      |
|                    | Mass of water = $1 \times 10^5$ kg (pumped out) (allow ecf from (a)(i)) (1)                                                                                                                 | 2    |
|                    |                                                                                                                                                                                             |      |
|                    | Total for question 13                                                                                                                                                                       | 9    |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 14(a)              | Resolves velocity into horizontal and vertical components.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1) |      |
|                    | Use of $s = u t$ for horizontal displacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1) |      |
|                    | Use of $s = u t + \frac{1}{2} a t^2$ with $a = g$ for vertical displacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1) |      |
|                    | Height after $30 \text{ m} = 0.91 \text{ m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1) |      |
|                    | Or decrease in height = 1.99 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1) |      |
|                    | Comparison and conclusion consistent with student's calculation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1) |      |
|                    | A method that calculates horizontal displacement in time taken to fall 2.9 m can score full marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
|                    | e.g. Resolves velocity into horizontal and vertical components.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1) |      |
|                    | Use of <i>suvat</i> equations to calculate total time in flight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1) |      |
|                    | Use of $s = u t$ for horizontal displacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1) |      |
|                    | Total distance = 32.7 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1) |      |
|                    | Comparison and conclusion consistent with student's calculation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1) | 5    |
|                    | Example calculation<br>$v_H = 25 \text{ m s}^{-1} \times \cos 10^\circ = 24.6 \text{ m s}^{-1}$<br>$v_V = 25 \text{ m s}^{-1} \times \sin 10^\circ = 4.34 \text{ m s}^{-1}$<br>$30 \text{ m} = 24.61 \text{ m s}^{-1} \times t$<br>$\rightarrow t = 30 \text{ m} \div 24.6 \text{ m s}^{-1} = 1.22 \text{ s}$<br>$s = 4.34 \text{ m s}^{-1} \times 1.22 \text{ s} - 0.5 \times 9.81 \times 1.22^2 = -1.99 \text{ m}$<br>Height = $2.9 \text{ m} - 1.99 \text{ m} = 0.91 \text{ m}$<br>$0.91 \text{ m} > 0.00 \text{ m} \therefore \text{ success}$ |     |      |
| 14(b)              | Either                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |
|                    | Use of $E_{\rm K} = \frac{1}{2} m v^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1) |      |
|                    | Use of $\Delta W = F \Delta s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1) |      |
|                    | $F = 3.88 \times 10^2 \mathrm{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1) |      |
|                    | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
|                    | Use of $v^2 = u^2 + 2as$ or combination of <i>suvat</i> equations to find deceleration.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1) |      |
|                    | Use of $F = m a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1) |      |
|                    | $F = 3.88 \times 10^2 \mathrm{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1) | 3    |
|                    | Example of calculation<br>$E_{\rm K} = \frac{1}{2} \times 63 \times 23^2 = 1.67 \times 10^4 \text{J}$<br>$1.67 \times 10^4 \text{J} = F \times 43$<br>$F = 1.67 \times 10^4 \text{J} / 43 = 3.88 \times 10^2 \text{N}$                                                                                                                                                                                                                                                                                                                             |     |      |
|                    | Total for question 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 8    |

| Question | Answer                                                                                                                                              |                                                                                    |                                                                                                                                             |                                                                                                                 |                                                                                                          |                       |                                        | Mark |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|------|
| Number   |                                                                                                                                                     |                                                                                    |                                                                                                                                             |                                                                                                                 |                                                                                                          |                       |                                        |      |
| *15      | structured an<br>Marks are av<br>shows lines                                                                                                        | nswer with<br>warded for<br>of reasoning<br>table shore<br>reasoning.              | ows how the marks  Max linkage                                                                                                              | sustained reaso<br>and for how the<br>should be awar<br>Max final                                               | ning.<br>e answer is stru                                                                                | ectured and           |                                        |      |
|          | 6 or                                                                                                                                                | mark<br>4                                                                          | mark available 2                                                                                                                            | mark<br><b>6</b>                                                                                                |                                                                                                          |                       |                                        |      |
|          | more 5                                                                                                                                              | 3                                                                                  | 2                                                                                                                                           | 5                                                                                                               |                                                                                                          |                       |                                        |      |
|          | 4                                                                                                                                                   | 3                                                                                  | 1                                                                                                                                           | 4                                                                                                               | $\dashv$                                                                                                 |                       |                                        |      |
|          | 3                                                                                                                                                   | 2                                                                                  | 1                                                                                                                                           | 3                                                                                                               |                                                                                                          |                       |                                        |      |
|          | 2                                                                                                                                                   | 2                                                                                  | 0                                                                                                                                           | 2                                                                                                               |                                                                                                          |                       |                                        |      |
|          | 1                                                                                                                                                   | 1                                                                                  | 0                                                                                                                                           | 1                                                                                                               |                                                                                                          |                       |                                        |      |
|          | 0                                                                                                                                                   | 0                                                                                  | 0                                                                                                                                           | 0                                                                                                               |                                                                                                          |                       |                                        |      |
|          |                                                                                                                                                     |                                                                                    | 11 1 1                                                                                                                                      |                                                                                                                 |                                                                                                          | Marks                 |                                        |      |
|          |                                                                                                                                                     |                                                                                    | rent and logical stru<br>f reasoning demons                                                                                                 |                                                                                                                 |                                                                                                          | 2                     |                                        |      |
|          |                                                                                                                                                     |                                                                                    | ructured with some                                                                                                                          |                                                                                                                 |                                                                                                          | 1                     |                                        |      |
|          | reasoning                                                                                                                                           | 1. 1                                                                               |                                                                                                                                             |                                                                                                                 |                                                                                                          |                       |                                        |      |
|          | Answer has                                                                                                                                          | s no linkag                                                                        | es between points a                                                                                                                         | nd is unstructu                                                                                                 | red                                                                                                      | 0                     |                                        |      |
|          | <ul> <li>The seat applying</li> <li>As the file (As the reseat)</li> <li>The force the seat.</li> <li>The seat the rocker or The seat Or</li> </ul> | is applying a backwaruel is used mass of the between decompreet motor) by decompre | ft is accelerating the g a forward force to rd/opposite force to up, the mass of the e spacecraft decreas the seat and the astronomes zero. | the astronaut of the seat (which spacecraft decres) the accelerationaut increase tronaut forward (from the rock | so (by N3) the h compresses treases. Action increases is thus further (ds) when the forcet motor) is re- | astronaut is he seat) |                                        |      |
|          | 1IC<br>2IC <b>Or</b> 3IC<br>3IC + linkage                                                                                                           | e Or 4IC O<br>e Or 5IC +<br>kage Or 6                                              | linkage <b>Or</b> 6IC                                                                                                                       | ates the astron                                                                                                 | aut.                                                                                                     |                       | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | 6    |
|          | Total for que                                                                                                                                       | estion 15                                                                          |                                                                                                                                             |                                                                                                                 |                                                                                                          |                       |                                        | 6    |

| Question<br>Number | Answer                                                                                               | Mark |
|--------------------|------------------------------------------------------------------------------------------------------|------|
| 16(a)              |                                                                                                      |      |
|                    | Use of moment = $Fx$ (1)                                                                             |      |
|                    | Use of $\Sigma$ (moments) = 0 (1)                                                                    |      |
|                    | $R_1 = 3.7 \text{ kN and } R_2 = 8.6 \text{ kN}$ (1)                                                 | 3    |
|                    | Example of calculation                                                                               |      |
|                    | Taking moments about rear axle:                                                                      |      |
|                    | $R_1 = (1.8 \text{ m} \times 1.23 \times 10^4 \text{ N}) / 6 \text{ m} = 3.69 \times 10^3 \text{ N}$ |      |
|                    | Taking moments about the front axle:                                                                 |      |
|                    | $R_2 = (4.2 \text{ m} \times 1.23 \times 10^4 \text{ N}) / 6 \text{ m} = 8.61 \times 10^3 \text{ N}$ |      |
| 16(b)              |                                                                                                      |      |
|                    | Use of $\Sigma F = m a$ (1)                                                                          |      |
|                    | $\Sigma F = 6.77 \times 10^4 \mathrm{N} \tag{1}$                                                     | 2    |
|                    | Example of calculation                                                                               |      |
|                    | $\Sigma F = (1.23 \times 10^4 \text{ N} / g) \times 5.50 \text{ g} = 6.77 \times 10^4 \text{ N}$     |      |
| 16(c)              |                                                                                                      |      |
|                    | Reference to $P = W / t$ Or $\Delta W = F \Delta s$ (1)                                              |      |
|                    | Force decreases as velocity increases (1)                                                            | 2    |
|                    | Total for question 16                                                                                | 7    |

| Question<br>Number | Answer                                                                                                                                                                                                                   | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 17(a)              | The amentor the length of the name the amentor the extension for a given force (1)                                                                                                                                       |      |
|                    | The greater the length of the rope, the greater the extension for a given force (1)                                                                                                                                      |      |
|                    | Stiffness $k = F / \Delta x$ so stiffness decreases (if extension increases). (1)                                                                                                                                        | 2    |
| 17(b)(i)           | G F Av                                                                                                                                                                                                                   |      |
|                    | Use of $E = \frac{\sigma}{\varepsilon}$ and $\sigma = \frac{F}{A}$ and $\epsilon = \frac{\Delta x}{x}$ (1)                                                                                                               |      |
|                    | Use of $F = k\Delta x$ (1)                                                                                                                                                                                               |      |
|                    | $k = 1.35 \times 10^5 (\text{N m}^{-1})$ (1)                                                                                                                                                                             | 3    |
|                    | Example of calculation<br>$2.70 \times 10^9 \text{ N m}^{-2} = F \times 6.00 \text{ m} \div (3.00 \times 10^{-4} \text{ m}^2 \times \Delta L)$                                                                           |      |
|                    | $F = (2.70 \times 10^{9} \text{ N m}^{-2} \times 3.00 \times 10^{-4} \text{ m}^{2} \div 6.00 \text{ m}) \times \Delta L = k \Delta x$ $F = 2.70 \times 10^{9} \text{ N m}^{-2} \times 3.00 \times 10^{-4} \text{ m}^{2}$ |      |
|                    | $k = \frac{F}{\Delta L} = \frac{2.70 \times 10^9 \text{ N m}^{-2} \times 3.00 \times 10^{-4} \text{ m}^2}{6.00 \text{ m}}$ $= 1.35 \times 10^5 \text{ N m}^{-1}$                                                         |      |
| 17(b)(ii)          |                                                                                                                                                                                                                          |      |
| 17(2)(11)          | Correct use of factor of 2 to calculate $F$ or $\Delta x$ (1)                                                                                                                                                            |      |
|                    | Use of $\Delta F = k\Delta x$ (1)                                                                                                                                                                                        |      |
|                    | $1.85 \times 10^{-2} \text{ (m) (allow ecf from (i))} $ (1)                                                                                                                                                              | 3    |
|                    | Example of calculation                                                                                                                                                                                                   |      |
|                    | $F = 5\ 000\ \text{N}/\ 2 = 2\ 500\ \text{N}$ $\Delta x = \frac{F}{k} = \frac{2\ 500\ \text{N}}{1.35 \times 10^5\ \text{N m}^{-1}} = 1.85 \times 10^{-2}\ \text{m}$                                                      |      |
| 17(b)(iii)         |                                                                                                                                                                                                                          |      |
|                    | Use of $\Delta E_{\rm el} = \frac{1}{2} F \Delta x$ (1)                                                                                                                                                                  |      |
|                    | $\Delta E_{\rm el} = 23.1  \text{J (allow ecf from (ii))}$ (1)                                                                                                                                                           | 2    |
|                    | Example of calculation                                                                                                                                                                                                   |      |
|                    | $\Delta E_{\rm el} = 0.5 \times 2500 \text{ N} \times 1.85 \times 10^{-2} \text{ m} = 23.13 \text{ J}$                                                                                                                   |      |
| 17(c)              | Use of W = $F\Delta s$ (to find the work done in lifting the load) (1)                                                                                                                                                   |      |
|                    | Compares 7 500 J with their calculated value in b(iii) and draws suitable conclusion (1)                                                                                                                                 | 2    |
|                    | Example of calculation                                                                                                                                                                                                   |      |
|                    | Work done by pulley system = $5 \times 10^3$ N × 1.5 m = 7 500 J 23(.1) (J) << 7 500 (J) : not significant                                                                                                               |      |
|                    | Total for question 17                                                                                                                                                                                                    | 12   |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18(a)              | The constant maximum valuaity reached by an object falling (through a fluid) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                    | The constant maximum velocity reached by an object falling (through a fluid) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | '    |
|                    | When the resultant force equals zero  Or when the drag plus the upthrust equals the weight  (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
| 18(b)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 10(b)              | Use of $V = 4\pi r^3 / 3$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )    |
|                    | Use of upthrust $U =$ weight of fluid displaced $W$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •    |
|                    | Use of $\rho = m / V$ and $W_S = mg$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )    |
|                    | Use of $D = W - U$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )    |
|                    | D = 0.24  (N) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5    |
|                    | Example of calculation<br>$V = \frac{4}{3}\pi \times (0.0175 \text{ m})^3 = 2.24 \times 10^{-5} \text{ m}^3$<br>$U = 2.24 \times 10^{-5} \text{ m}^3 \times 1.43 \times 10^3 \text{ kg m}^{-3} \times 9.81 \text{ N kg}^{-1} = 0.314 \text{ N}$<br>$W = 2.24 \times 10^{-5} \text{ m}^3 \times 2.52 \times 10^3 \text{ kg m}^{-3} \times 9.81 \text{ N kg}^{-1} = 0.554 \text{ N}$<br>D = 0.554  N - 0.314  N = 0.240  N<br>$D = W - U = (2.52 - 1.43) \times 10^3 \text{ kg m}^{-3} \times 9.81 \text{ N kg}^{-1} \times \frac{4}{3}\pi$<br>$\times (0.0175 \text{ m})^3 = 0.24 \text{ N}$ |      |
| 18(c)(i)           | All data points are close to the straight line through origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                    | Or Best fit straight line goes through origin  (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )    |
|                    | This consistent with Stokes' Law. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •    |
|                    | Stokes' Law implies laminar flow (for the spheres). (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3    |
| 18(c)(ii)          | Determines gradient of graph (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )    |
|                    | Uses large triangle. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                    | $k = 5.8 \text{ to } 6.2 \text{ m}^{-1} \text{s}^{-1} $ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| 18(c)(iii)         | Use of $k = \frac{\left(\rho_g - \rho_s\right)g}{18n}$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )    |
|                    | $\eta = 99 \text{ Pa s (allow ecf from (c)(ii))} $ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    |
|                    | Example of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                    | $\eta = \frac{\left(\rho_g - \rho_s\right)g}{18k} = \frac{(2.52 - 1.43) \times 10^3 \text{ kg m}^{-3} \times 9.81 \text{N kg}^{-1}}{18 \times 6 \text{ m}^{-1} \text{s}^{-1}}$ $= 99.0 \text{ Pa s}$                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                    | Total for question 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15   |