Constructing an Associative Memory System Using Spiking Neural Network

A Seminar Report

submitted by

SANKAR VINAYAK E P PKD19CS046

to

the APJ Abdul Kalam Technological University in partial fulfillment of requirements for the award of degree

of

Bachelor of Technology

in

Computer Science and Engineering

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
GOVERNMENT ENGINEERING COLLEGE PALAKKAD
SREEKRISHNAPURAM 678 633
DECEMBER 2022

DEPT. OF COMPUTER SCIENCE ENGINEERING GOVRNMENT ENGINEERING COLLEGE PALAKKAD

2022 - 23

CERTIFICATE

This is to certify that the report entitled **Constructing an Associative Memory System Using Spiking Neural Network** submitted by **SANKAR VINAYAK E P**(PKD19CS046), to the APJ Abdul Kalam Technological University in partial fulfillment of the B.Tech. degree in Computer Science and Engineering is a bonafide record of the seminar work carried out by him under our guidance and supervision. This report in any form has not been submitted to any other University or Institute for any purpose.

Liji L Dominic

(Seminar Guide)
Assistant Professor
Dept.of CSE
GOVRNMENT ENGINEERING
COLLEGE PALAKKAD

Dr. Swaraj K P

(Seminar Coordinator)
Associate Professor
Dept.of CSE
GOVRNMENT ENGINEERING
COLLEGE PALAKKAD

Dr. Sabitha S

Professor and Head
Dept.of CSE
GOVRNMENT ENGINEERING COLLEGE
PALAKKAD

DECLARATION

I SANKAR VINAYAK E P hereby declare that the seminar report Constructing an

Associative Memory System Using Spiking Neural Network, submitted for partial

fulfillment of the requirements for the award of degree of Bachelor of Technology of

the APJ Abdul Kalam Technological University, Kerala is a bonafide work done by me

under supervision of Liji L Dominic

This submission represents my ideas in my own words and where ideas or words

of others have been included, I have adequately and accurately cited and referenced

the original sources.

I also declare that I have adhered to ethics of academic honesty and integrity

and have not misrepresented or fabricated any data or idea or fact or source in my

submission. I understand that any violation of the above will be a cause for disciplinary

action by the institute and/or the University and can also evoke penal action from the

sources which have thus not been properly cited or from whom proper permission has

not been obtained. This report has not been previously formed the basis for the award

of any degree, diploma or similar title of any other University.

Sreekrishnapuram

15-12-2022

SANKAR VINAYAK E P

Acknowledgement

I take this opportunity to express my deepest sense of gratitude and sincere thanks to everyone who helped me to complete this work successfully. I express my sincere thanks to **Dr. Sabitha S**, Head of Department, Computer Science and Engineering, Government Engineering College Sreekrishnapuram for providing me with all the necessary facilities and support.

I would like to express my sincere gratitude to **Dr. Swaraj K P** and **Prof. Seminar coordinator 2**, department of Computer Science and Engineering, Government Engineering College Sreekrishnapuram for their support and co-operation.

I would like to place on record my sincere gratitude to my seminar guide **Liji L Dominic**, Assistant Professor, Computer Science and Engineering, Government Engineering College for the guidance and mentorship throughout the course.

Finally I thank my family, and friends who contributed to the successful fulfilment of this seminar work.

SANKAR VINAYAK E P

Abstract

Associative memory is a concept widely used in the cases in which the memory needs to be accessed based on the content. A spiking neural network is a special type of neural network which simulates the biological neural network. Combining these two concepts can result in an effective memory representation technique in which the contents can be accessed with speed and efficiency. The report provides an overview of the principles of associative memory and spiking neural networks, and then describe the architecture and training procedure for the system. The results show that spiking neural networks can be effective for implementing associative memory systems, and have potential applications in a range of computational neuroscience and machine learning problems.

Contents

A	cknowledgement	i
Al	bstract	ii
Li	st of Figures	iv
Li	ist of Tables	v
Li	ist of Symbols	vi
1	Introduction	1
2	Literature Review	2
	2.1 section1	2
	2.1.1 title 2	3
3	Results and Discussion	4
4	Conclusion	6
Re	eferences	7

List of Figures

2.1	Autonomous System Hierarchy	2
2.2	The Sine and Cosine waves	3

List of Tables

2 1	test table.																																4
J.1	iest table.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•

List of Symbols

- Ω Unit of Resistance
- $\varepsilon^{'}$ Real part of dielectric constant
- c Speed of light
- λ Wavelength
- δ Delta

Introduction

The ability to store and retrieve associations between different stimuli is a fundamental component of many cognitive processes, including perception, learning, and memory. Associative memory is a type of memory system that allows for the storage and retrieval of relationships between different items in memory. It is a key component of many artificial intelligence and machine learning systems, and has been extensively studied in both neuroscience and computer science.

Spiking neural networks (SNNs) are a type of neural network that can simulate the dynamics of individual neurons and synapses in the brain. They have been shown to be effective for modeling a range of cognitive and sensory processing tasks, and have potential applications in a variety of fields, including computational neuroscience and machine learning.

In this report, we present a study on the construction of an associative memory system using a spiking neural network. We describe the architecture and training procedure for our system, and evaluate its performance on a variety of associative memory tasks. We discuss the implications of our results for the use of SNNs in implementing associative memory systems, and highlight their potential applications in computational neuroscience and machine learning.

Literature Review

Technical writing is writing or drafting technical communication used in technical and occupational fields [1], such as computer hardware and software [2], engineering, chemistry, aeronautics, robotics, finance [3], medical, consumer electronics, biotechnology, and forestry. Technical writing encompasses the largest sub-field in technical communication. See figure 2.1 that shows the autonomous systems in Internet.

Figure 2.1: Autonomous System Hierarchy

2.1 section1

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,

nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.1.1 title 2

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

The system is described by the equation 2.1 below. Here y is the ordinate and x is the abscissa, m is the slope and c a constant.

$$y = mx + c \tag{2.1}$$

Page centered and unnumbered multiple equations. The * symbol supresses equation numbering.

$$2x - 5y = 8$$

$$3x + 9y = -12$$

Side by side figures can be created using this environment. See fig 2.2 below.

Figure 2.2: The Sine and Cosine waves

Results and Discussion

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus,

quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Table 3.1: test table

Sl. No	Item 1	Itm 2
1	37	45
2	42	23
3	47	1
4	52	-21
5	57	-43
6	62	-65
7	67	-87
8	72	-109
9	77	-131
10	82	-153

Conclusion

In conclusion, our study demonstrates the feasibility of using spiking neural networks for implementing associative memory systems. We show that our SNN-based associative memory system is able to perform robust and efficient associative memory retrieval, and discuss the potential applications of this approach in computational neuroscience and machine learning. Our findings indicate that SNNs are a promising tool for modeling and implementing associative memory systems, and highlight the need for further research in this area.

References

- [1] HU, Yun Chao, et al., *Mobile edge computing?A key technology towards 5G*, ETSI white paper, 2015, vol. 11, no 11, p. 1-16.
- [2] @online Raspberry pi, https://www.raspberrypi.org/ Online; accessed 10-June-2019
- [3] HU, Yun Chao, et al., *Mobile edge computing?A key technology towards 5G*, ETSI white paper, 2015, vol. 11, no 11, p. 1-16.