Outline

- Selmer Sets + Weak MW
- Descent obstruction
- Comparison with Brauer-Manin

(All cohomology is fppf cohomology and all torsors are fppf-locally trivial right torsors)

Notation 1. For any field k

• G/k will denote a smooth (affine) algebraic group

We will use the following notation when k is a global field

- v will denote a place of k. k_v the completion and $\mathscr{O}_v \subset k_v$ its ring of integers.
- S will denote a nonempty finite set of places of k which includes all the archimedean places
- $\mathbb{A}_S = \mathbb{A}_{k,S} := \prod_{v \in S} k_v \times \prod_{v \notin S} \mathscr{O}_v$ the S-adeles
- $\mathbb{A} = \mathbb{A}_k := \varinjlim_{S} \mathbb{A}_{k,S}$ the adeles

Selmer 1

Recall 2 (Evaluation map). Let k be a field, let X be a k-variety, and let G be a smooth algebraic group over k. Let $Z \xrightarrow{f} X$ be a G-torsor with class $\zeta = [Z] \in H^1(X,G)$. Then, there is an evaluation map

$$\zeta: X(k) \longrightarrow \mathrm{H}^1(k,G)$$

defined via pullbacks, i.e. $\zeta(x)$ is represented by the fiber $Z_x \to \operatorname{Spec} k$ over x.

Now, given $\tau \in H^1(k,G)$, represented by some $T \to \operatorname{Spec} k$, let $f^{\tau}: Z^{\tau} \to X$ be the corresponding twisted G^{τ} -torsor¹, i.e $Z^{\tau} := Z \overset{G_X}{\times}_X T_X^{-1} = Z \overset{G}{\times}_k T^{-1}$.

Theorem 3. With notation as above, $\{x \in X(k) : \zeta(x) = \tau\} = f^{\tau}(Z^{\tau}(k))$, so

$$X(k) = \bigsqcup_{\tau \in H^1(k,G)} f^{\tau}(Z^{\tau}(k)). \tag{2}$$

This reduces the problem of finding rational points on X to that of finding rational points on twists of some torsor over X. In general, $H^1(k,G)$ can be rather big.³ Hence, we'd like to know when we can actually reduce to only looking at finitely many twists.

All the above on the board already at the start

variety = separated f.type

Should assume G is affine so Zis a scheme and not just an algebraic space

Give example in footnote?

In example last week, only 2 different twists, corresponding to $\mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$

 $[\]overline{ \begin{tabular}{l} {}^1G^\tau = T \times G \text{ with } G \curvearrowright G \text{ via conjugation} \\ {}^2G \curvearrowright T^{-1} \text{ on the left via acting by } g^{-1} \text{ on the right. Note, } T^{-1} \text{ is a } G - G^\tau\text{-bitorsor} \\ {}^3\text{If } G = A[m] \text{ with } (m, \text{char } k) = 1 \text{ and } A \text{ an abelian variety, and } L = k(A[m]), \text{ then inflation-restriction gives} \\ \mathrm{H}^1(k, A[m]) \to \mathrm{Hom}_{\mathrm{cts}}(G_L, \mathbb{Z}/m\mathbb{Z})^{2g} \text{ with finite kernel} \\ \end{array}$

Definition 4. Let k be a global field, and let G be a smooth algebraic group. Let $[Z \to X] = \zeta \in H^1(X,G)$ be G-torsor over a k-variety X. We define the **Selmer set**

$$\operatorname{Sel}_{Z}(k,G) := \left\{ \tau \in \operatorname{H}^{1}(k,G) : \tau_{v} \in \operatorname{im}\left(X(k_{v}) \xrightarrow{\zeta} \operatorname{H}^{1}(k_{v},G)\right) \text{ for all } v \right\}.$$

Example. Say $\varphi:A\to B$ is an isogeny of abelian varieties with kernel $G:=\ker\varphi$. Then, φ is a G-torsor, and the exact sequence $0\to G\to A\xrightarrow{\varphi} B\to 0$ gives rise to

 $0 \longrightarrow B(k)/\varphi(A(k)) \longrightarrow \operatorname{H}^{1}(k,G) \longrightarrow \operatorname{H}^{1}(k,A)[\varphi] \longrightarrow 0$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $0 \longrightarrow \prod_{v} B(k_{v})/\varphi(A(k_{v})) \longrightarrow \prod_{v} \operatorname{H}^{1}(k_{v},G) \longrightarrow \prod_{v} \operatorname{H}^{1}(k_{v},A)[\varphi], \longrightarrow 0$

from which we see that

$$\operatorname{Sel}_A(k,G) = \left\{ \tau \in \operatorname{H}^1(k,G) : \tau_v \in \ker \left(\operatorname{H}^1(k_v,G) \to \operatorname{H}^1(k_v,A) \right) \text{ for all } v \right\} =: \operatorname{Sel}_{\varphi}(A)$$

agrees with the Selmer groups usually defined in the context of abelian varieties.

Note that (by the recall applied to τ_v and k_v)

$$\operatorname{Sel}_{Z}(k,G) = \left\{ \tau \in \operatorname{H}^{1}(k,G) : Z^{\tau}(k_{v}) \neq \emptyset \text{ for all } v \right\} \supset \left\{ \tau \in \operatorname{H}^{1}(k,G) : Z^{\tau}(k) \neq \emptyset \right\},$$

so

$$X(k) = \bigsqcup_{\tau \in \operatorname{Sel}_{Z}(k,G)} f^{\tau}(Z^{\tau}(k)).$$

That is, we do not need to look at the whole (possibly infinite) set $H^1(k, G)$ to obtain the rational points of X, but only the (smaller) set $Sel_Z(k, G)$. To really be impressed by this, we better hope that $Sel_Z(k, G)$ is actually small. Before proving that Selmer sets are finite, we'll need the following lemma.

Lemma 5 (**Krasner's Lemma**). Let k be a local field. Let $f: Y \to X$ be a finite étale morphism of k-varieties. Then, the isomorphism type of the étale k-scheme $f^{-1}(x)$ is locally constant as x varies over X(k) in the analytic topology.

Proposition 6. Let k be a local field. Let X be a proper k-variety, and let F be a finite étale algebraic group over k. Let $f: Z \to X$ be an F-torsor over X. Then, the image of $X(k) \to \operatorname{H}^1(k,F)$ is finite.

Proof. Note that $Z \xrightarrow{f} X$ is a finite étale morphism since F is a finite étale k-scheme (descent: $Z \to X$ is fppf-locally isomorphic to $F \times_k X \to X$ by definition). Krasner's lemma then tells us that the isomorphism type of its fibers varies locally constantly, so evaluation $X(k) \to H^1(k, F)$ is continuous when the target is given the discrete topology and the domain is given the analytic topology. Finally, X(k) is compact, so the image is both compact and discrete.

Theorem 7. Say X is a proper variety over the global field k. Then, $Sel_Z(k,G)$ is finite.

Proof. The key to finiteness will be that torsors coming from rational points will be unramified, owing to a comparison with the evaluation on integral points.

Omit and leave as (easy) exercise? Yes

 \triangle

Only give proof sketch, and don't write down statement of Krasner. Let F be the (finite étale) component group of G. For a suitable finite nonempty set S of places containing all archimedean ones, we can spread out X to a proper $\mathcal{O}_{k,S}$ -scheme \mathcal{X} , spread G out to a smooth f.type separated group scheme \mathcal{G} over $\mathcal{O}_{k,S}$, and spread out Z to a \mathcal{G} -torsor over \mathcal{X} . Staring at the square

$$\begin{array}{ccc}
\mathcal{X}(\mathscr{O}_v) & \stackrel{=}{\longrightarrow} X(k_v) \\
\downarrow & & \downarrow \\
\mathrm{H}^1(\mathscr{O}_v, \mathcal{G}) & \longrightarrow \mathrm{H}^1(k_v, G)
\end{array}$$

(for $v \notin S$) shows that $Sel_Z(k,G) \subset H^1_S(k,\mathcal{G})$. Consider now the map

$$\mathrm{H}^1_S(k,\mathcal{G}) \longrightarrow \prod_{v \in S} \mathrm{H}^1(k_v,F).$$

By a previous talk, this map has finite fibers. By Proposition 6, $\operatorname{Sel}_Z(k,G)$ has finite image under this map (since $\#S < \infty$). Taken together, we conclude that the Selmer set is finite.

Remark 8. In fact, it is possible to show that $Sel_Z(k,G)$ is effectively computable.

Corollary 9. There exists a finite separable extension k'/k such that $X(k) \subset f(Z(k'))$.

Proof. Since $\mathrm{Sel}_Z(k,G)$ is finite, there exists some finite separable k' such that $f^{\tau}: Z^{\tau} \to X$ becomes isomorphic to $f: Z \to X$ over k' for all $\tau \in \mathrm{Sel}_Z(k,G)$.

Corollary 10 (Weak Mordell-Weil). Let A be an abelian variety over a global field k, and let m be a positive integer coprime to char k (so A[m] is smooth!). Then, A(k)/mA(k) is finite.

Proof. Multiplication $[m]: A \to A$ gives A the structure of a G = A[m]-torsor over itself, so we get an evaluation map⁴

$$A(k) \longrightarrow H^1(k, A[m])$$

with image contained in the (finite!) Selmer set $Sel_A(k, A[m])$. The kernel of this map consists of those points $x \in A(k)$ for which $[m]^{-1}(x)$ is the trivial A[m]-torsor, i.e. for which $[m]^{-1}(x)$ has a k-point, i.e. for which $x \in mA(k)$.

Note 1. Time for break?

2 Descent Obstruction

Recall 11 (Obstructions from functors). Let k be a global field with adele ring $\mathbb{A} = \mathbb{A}_k$. Let $F : \operatorname{Sch}_k^{\operatorname{op}} \to \operatorname{Set}$ be a functor. Let X be a k-variety. Given $A \in F(A)$, we get an obstruction set

$$X(\mathbb{A})^A:=\{x\in X(\mathbb{A}): A(x)\in \operatorname{im}\left(F(k)\to F(\mathbb{A})\right)\}\supset X(k).$$

We then set $X(\mathbb{A})^F := \bigcap_{A \in F(X)} X(\mathbb{A})^A$, so $X(k) \subset X(\mathbb{A})^F \subset X(\mathbb{A})$. We say there is an F-obstruction to local-global if $X(\mathbb{A}) \neq \emptyset = X(\mathbb{A})^F$, and an F-obstruction to rational points if $X(\mathbb{A})^F = \emptyset$.

classes unramified away from S. Unramified means in image of $H^1(\mathcal{O}_v, \mathcal{G}) \to H^1(k_v, G)$

 $\begin{array}{c}
\text{Composition} \\
\text{H}_S^1(k,\mathcal{G}) \to \\
\text{H}_S^1(k,\mathcal{F}) \to \\
\prod_v \text{H}^1(k_v, F)
\end{array}$

⁴This is a homomorphism, because addition induces an isomorphism $+:A_x\overset{A[m]}{\times}A_y\overset{\sim}{\longrightarrow}A_{x+y}$ of A[m]-torsors for $x,y\in A(k)$

The Brauer-Manin obstruction was obtained by applying this construction to F = Br. We now apply it to $F = H^1(-, G)$ for G a smooth (affine) algebraic group. With notation as in the recall, we define

$$X(\mathbb{A})^{\mathrm{H}^{1}(-,G)} := \bigcap_{\substack{\text{all G-torsors Z} \xrightarrow{f} X \\ X(\mathbb{A})^{\mathrm{descent}} := \bigcap_{\substack{\text{all smooth affine G}}} X(\mathbb{A})^{\mathrm{H}^{1}(-,G)}.$$

Let's connect this to the first half of this talk.

Theorem 12. Let k be a global field. Let X be a k-variety. Let G be a smooth affine algebraic group over k, and let $f: Z \to X$ be a G-torsor. Then,

$$X(\mathbb{A})^f = \bigcup_{\tau \in \mathrm{H}^1(k,G)} f^{\tau}(Z^{\tau}(\mathbb{A})) = \bigcup_{\tau \in \mathrm{Sel}_Z(k,G)} f^{\tau}(Z^{\tau}(\mathbb{A})).$$

If X is furthermore proper, then $X(\mathbb{A})^f$ is closed in $X(\mathbb{A})$.

Proof. By the general formalism, we have

$$X(\mathbb{A})^f = \{x \in X(\mathbb{A}) : Z_x \in \operatorname{im} (H^1(k, G) \to H^1(\mathbb{A}, G))\}.$$

By Recall 2, for any $\tau \in H^1(k, G)$, we have

$$\{x \in X(\mathbb{A}) : [Z_x] = \tau_{\mathbb{A}} \in \mathrm{H}^1(\mathbb{A}, G)\} = f^{\tau}(Z^{\tau}(\mathbb{A})),$$

from which the first part of the theorem follows. For the second part, it suffices to show that $f^{\tau}(Z^{\tau}(\mathbb{A})) \subset X(\mathbb{A})$ is closed, and then remark that $\mathrm{Sel}_Z(k,G)$ is finite when X is proper. This is because $f^{\tau}: Z^{\tau} \to X$ is smooth and so open (even in the analytic topology), so

$$f^{\tau}(Z^{\tau}(\mathbb{A})) = X(\mathbb{A}) \setminus \bigcup_{\zeta \in \mathrm{H}^{1}(\mathbb{A},G) \setminus \{\tau\}} f^{\zeta}(Z^{\zeta}(\mathbb{A}))$$

is closed.

Corollary 13. If X is proper, then $X(\mathbb{A})^{descent}$ is closed in $X(\mathbb{A})$.

This gives a description of the descent obstruction. How does it compare to our other favorite obstruction, the Brauer-Manin one? First note that in addition to the full descent obstruction, we can get weaker obstructions by restricting the set of algebraic groups under consideration, e.g.

$$X(\mathbb{A})^{\operatorname{PGL}} := \bigcap_{n \ge 1} X(\mathbb{A})^{\operatorname{PGL}_n}.$$

We claim that the PGL-obstruction equals the Brauer-Manin obstruction (so descent is stronger than Brauer-Manin).

Lemma 14. Let G be a smooth algebraic group over a global field k. Then, the natural map

Make exercise if low on time

$$\mathrm{H}^1(\mathbb{A},G) \longrightarrow \prod_v \mathrm{H}^1(k_v,G)$$

is injective.

Proof. Let $Z \to \operatorname{Spec} \mathbb{A}$ be a G-torsor.⁵ Spread this out to a G-torsor $Z_S \to \operatorname{Spec} \mathbb{A}_S$ for some finite set S of places including all archimedean ones. Suppose that $Z_S(k_v) \neq \emptyset$ for all v. We'll show that $Z_S(\mathbb{A}_S)$ is nonempty (so also is $Z_S(\mathbb{A}) = Z(\mathbb{A})$). Choose some $(z_v)_v \in \prod_v Z_S(k_v)$. For each $v \notin S$, since $G(k_v) \curvearrowright Z_S(k_v)$ transitively, we can choose some $g_v \in G(k_v)$ so that $z_v \cdot g_v \in \operatorname{im}(Z_S(\mathscr{O}_v) \to Z_S(k_v))$. For $v \in S$, we set $g_v = 1 \in G(k_v)$. Then, $(z_v \cdot g_v)_v \in Z_S(\mathbb{A}_S)$.

This let's us replace $H^1(\mathbb{A}, G)$ with $\prod_v H^1(k_v, G)$ in the definition of our obstruction sets.

Fact. Br(
$$\mathbb{A}$$
) $\simeq \bigoplus_v \operatorname{Br}(k_v) \hookrightarrow \prod_v \operatorname{Br}(k_v)$.

Lemma 15. Let k be a global field, and let X be a k-variety. Let $Z \xrightarrow{f} X$ be an PGL_n -torsor, and let $A \in \operatorname{Br}(X)$ be its associated Brauer class (image under $\operatorname{H}^1(X,\operatorname{PGL}_n) \to \operatorname{Br}(X)[n]$). Then, $X(\mathbb{A})^f =$ $X(\mathbb{A})^A$.

Proof. Fix $x = (x_v) \in X(\mathbb{A})$, and consider the commutative diagram

$$[f] \in \operatorname{H}^{1}(X,\operatorname{PGL}_{n}) \longrightarrow \operatorname{Br}(X)[n] \ni A$$

$$\downarrow^{x} \qquad \downarrow^{x}$$

$$f(x) \in \prod_{v} \operatorname{H}^{1}(k_{v},\operatorname{PGL}_{n}) \xrightarrow{(1)} \prod_{v} \operatorname{Br}(k_{v})[n] \ni A(x)$$

$$\uparrow \qquad \uparrow$$

$$\operatorname{H}^{1}(k,\operatorname{PGL}_{n}) \xrightarrow{(2)} \operatorname{Br}(k)[n]$$

Commutativity directly shows that $X(\mathbb{A})^f \subset X(\mathbb{A})^A$. To get the other inclusion, it would suffice to show that (1) is injective and (2) is surjective (in fact, both are isomorphisms). Injectivity of (1) follows from the exact sequences

$$1 = \mathrm{H}^1(k_v, \mathrm{GL}_n) \longrightarrow \mathrm{H}^1(k_v, \mathrm{PGL}_n) \longrightarrow \mathrm{H}^2(k_v, \mathbb{G}_m) = \mathrm{Br}(k_v).$$

Surjectivity of (2) is more involved and is omitted.⁷

Lemma 16. $H^1(k_v, PGL_n) \to Br(k_v)[n]$ is an isomorphism

Corollary 17. $X(\mathbb{A})^{descent} \subset X(A)^{\operatorname{PGL}} = X(\mathbb{A})^{\operatorname{Br}}$ when X is a regular, quasi-proj variety over a global field k.

Proof. The hypotheses on X ensure that every Brauer element comes from a PGL_n -torsor for some n.

Can we get an obstruction even stronger than descent? Recall

$$X(\mathbb{A})^{\operatorname{descent}} = \bigcap_{\text{all smooth affine } G} \bigcap_{\text{all } C \text{ torsors } Z \xrightarrow{f} Y} \bigcup_{\mathsf{T} \in \mathrm{H}^1(k,G)} f^\mathsf{T}(Z^\mathsf{T}(\mathbb{A})).$$

 $^{^5}Z \to \operatorname{Spec} A$ is finitely presented by descent with G is locally of finite presentation, quasi-compact, and (quasi)separated

⁶Compare $1 \to \mathbb{G}_m \to \operatorname{GL}_n \to \operatorname{PGL}_n \to 1$ and $1 \to \mu_n \to \operatorname{SL}_n \to \operatorname{PSL}_n \to 1$ (note $\operatorname{PGL}_n = \operatorname{PSL}_n$ as algebraic groups) ⁷Prove (1) is surjective by hand using that $\operatorname{Br}(k_v) \hookrightarrow \mathbb{Q}/\mathbb{Z}$. Then use class field theory

Define

$$X(\mathbb{A})^{\text{descent, descent}} = \bigcap_{\text{all smooth affine } G} \bigcap_{\text{all G-torsors } Z \xrightarrow{f} X} \bigcup_{\tau \in \mathcal{H}^1(k,G)} f^{\tau}(Z^{\tau}(\mathbb{A})^{\text{descent}}).$$

Theorem 18 (Yang Cao '17). For any smooth quasi-projective geometrically integral variety X over a number field,

$$X(\mathbb{A})^{descent} = X(\mathbb{A})^{descent, descent}$$