Théorie Spectrale

Chapitre 1 : Introduction à la théorie spectrale

Lucie Le Briquer

Table des matières

1	Rappels sur les espaces de Hilbert	2
	1.1 Projection sur un convexe	3
	1.2 Dualité	
	1.3 Bases hilbertiennes	
	1.4 Convergence faible	
2	Spectre des opérateurs continus	9
	2.1 Rappels étendus d'analyse complexe I	13
	2.2 Rappels étendus d'analyse complexe II	14
	2.3 Preuve du théorème 9	15
3	Opérateurs compacts	16
4	Opérateurs auto-adjoints	21
	4.1 Adjoint, auto-adjoint et propriétés	21
	4.2 Spectre essentiel	
5	Décomposition spectrale des opérateurs auto-adjoints compacts	29
6	Calcul fonctionnel continu	30
	6.1 Algèbre stellaires	30

1 Rappels sur les espaces de Hilbert

Soit \mathcal{H} un espace vectoriel (complexe).

Définition 1 (produit scalaire) -

Un produit scalaire sur \mathcal{H} est une forme sesquilinéaire (1+2) hermitienne définie positive. $B: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ telle que :

1.
$$\forall x, x', y \in \mathcal{H}, \forall \lambda \in \mathbb{C} \ B(x + \lambda x', y) = B(x, y) + \lambda B(x', y)$$

2.
$$\forall x, y, y' \in \mathcal{H}, \ \forall \lambda \in \mathbb{C} \ B(x, y + \lambda y') = B(x, y) + \bar{\lambda} B(x, y')$$

3.
$$\forall x, y \in \mathcal{H} \ B(y, x) = B(x, y)$$

4.
$$\forall x \in \mathcal{H}, B(x,x) \ge 0, B(x,x) = 0 \Leftrightarrow x = 0$$

On note $B(x,y) = \langle x,y \rangle = \langle x,y \rangle_{\mathcal{H}}$.

La norme associée est $||x|| = \sqrt{B(x,x)} = ||x||_{\mathcal{H}}$.

 $x,y \in \mathcal{H}$ sont orthogonaux si $\langle x,y \rangle = 0$. Et si E sev de \mathcal{H} on note :

$$E^{\perp} = \{ y \in \mathcal{H} \mid \langle x, y \rangle = 0 \ \forall x \in E \}$$

Remarque.

- $||x + y||^2 = ||x||^2 + ||y||^2 + 2\Re\langle x, y\rangle$
- $\|\frac{x+y}{2}\|^2 + \|\frac{x-y}{2}\|^2 = \frac{1}{2}(\|x\|^2 + \|y\|^2)$ (identité de la médiane)
- $||x + y||^2 ||x y||^2 = 4\Re\langle x, y\rangle$

- **Propriété 1** (inégalité de Cauchy-Schwarz) -

 $x \to ||x||$ est une norme et

$$\forall x, y \in \mathcal{H} \quad |\langle x, y \rangle| \leqslant ||x|| ||y||$$

- **Définition 2** (Espace de Hilbert, norme préhilbertienne et hilbertienne)

- Une norme préhilbertienne est une norme associée à un produit scalaire.
- Elle dite hilbertienne si complète.
- Un espace de Hilbert est un espace vectoriel (complexe) muni d'un produit scalaire de norme associée hilbertienne.
- Un isomorphisme d'espaces préhilbertiens (ou de Hilbert) $\mathcal{H}_1, \mathcal{H}_2$ est $\varphi: \mathcal{H}_1 \to \mathcal{H}_2$ isomorphisme linéaire préservant les produits scalaires $(\forall x, y \in \mathcal{H}_1 \ \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}_2} = \langle x, y \rangle_{\mathcal{H}_1}) \Leftrightarrow \text{préservant les normes associées } (\forall x \in \mathcal{H}_2 \ \|\varphi(x)\|_{\mathcal{H}_2} = \|x\|_{\mathcal{H}_1}) \Leftrightarrow \text{préservant les normes associées (isométrique)}$

Exemple.

- 1. Espace hermitien standard de dim $n \in \mathbb{N}$. \mathbb{C}^n , $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$
- 2. Soit (X, \mathcal{A}, μ) un espace mesuré non vide.

$$\mathbb{L}^2(X,\mathcal{A},\mu) = \{f: X \to \mathbb{C} \text{ mesurables tq } |f|^2 \text{ intégrable} \}$$

muni de
$$\langle f, g \rangle = \int_{x \in X} f(x) \overline{g(x)} d\mu(x)$$

Théorème 1 (complété) -

Pour tout \mathcal{H} espace préhilbertien, \exists $\hat{\mathcal{H}}$ espace de Hilbert et $i:\mathcal{H}\to\hat{\mathcal{H}}$ linéaire, isométrique, d'image dense. Si $(\hat{\mathcal{H}}^\#,i^\#)$ est un autre tel couple, alors $\exists!j:\hat{\mathcal{H}}\to\hat{\mathcal{H}}^\#$ isomorphisme d'espaces de Hilbert tq $j\circ i=i^\#$.

Remarque. $\hat{\mathcal{H}} = \text{le } complété \text{ de } \mathcal{H},$ on identifie \mathcal{H} avec son image dans $\hat{\mathcal{H}}$ et deux tels complétés par l'unique isomorphisme ci-dessus.

1.1 Projection sur un convexe

Théorème 2

Soit \mathcal{H} un espace de Hilbert. Soit C un convexe fermé non vide. $\forall x \in \mathcal{H} \exists ! y = p_C(x) \in C$ tel que

$$||x - y|| = \min_{z \in C} ||x - y|| \Leftrightarrow d(x, y) = d(x, C)$$

De plus $p_C: \mathcal{H} \to C$ est 1-lipschitzienne, c'est la projection orthogonale sur C. Et $y = p_C(x)$ est l'unique point de C tq:

$$\forall z \in C, \ \Re\langle x - y, z - y \rangle \leq 0 \quad \text{(angle obtus)}$$

Si C est un sev, alors p_C est linéaire et $y = p_C(x)$ est l'unique point de C tq $x - y \in C^{\perp}$

Corollaire 1

Soit E sev de \mathcal{H} .

- 1. E fermé $\Rightarrow E^{\perp}$ supplémentaire de $E \quad \mathcal{H} = E \oplus E^{\perp}$
- 2. $E \text{ dense} \Leftrightarrow E^{\perp} = \{0\}$

1.2 Dualité

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et E un espace vectoriel normé sur \mathbb{K} . Le dual topologique de E est l'espace vectoriel sur $\mathbb{K} : E^* = E' = \{l : E \to \mathbb{K} \text{ forme linéaire continue}\}$ muni de la norme duale

$$||l|| = \sup_{x \in E \setminus \{0\}} \frac{|l(x)|}{||x||} = \sup_{||x|| \le 1} |l(x)|$$

Le bidual topologique est E^{**}

- Proposition 1

$$\forall x \in E \quad ||x|| = \max_{l \in E^*, \ ||l|| \leqslant 1} |l(x)|$$

Remarque. Il y a suffisamment de formes linéaires pour mesurer la norme du vecteur.

- Corollaire 2

$$\left\{ \begin{array}{ccc} E & \to & E^{**} \\ x & \mapsto & \left\{ ev_x : l \mapsto l(x) \right\} \end{array} \right.$$

est linéaire isométrique. Son image est fermée si E est de Banach. On identifie souvent E avec son image dans E^{**}

Preuve.

 $\forall x \in E, \ ev_x : E \to \mathbb{K}$ linéaire, de norme égale à ||x|| par la proposition précédente. $x \mapsto ev_x$ est linéaire, isométrique, donc son image est complète si E Banach. Une partie complète d'un evn est fermée.

- **Définition 3** (application duale) -

 $\forall u \in \mathcal{L}(E, F),$

$${}^tu: \left\{ \begin{array}{ccc} F^* & \to & E^* \\ l & \mapsto & l \circ u \end{array} \right.$$

est appelée l'application duale de u. (\mathcal{L} notation pour les linéaires continues)

Remarques.

- si E, F de dim finie, si $(e_i)_{1 \leq i \leq n}$ et $(f_j)_{1 \leq j \leq m}$ bases de E, F. Si $(e_i^*)_{1 \leq i \leq n}$ et $(f_j^*)_{1 \leq j \leq m}$ bases duales de E^*, F^* , si M matrice de $u \in \mathcal{L}(E, F)$ dans les bases (e_i) et (f_j) , alors M^T est la matrice de $u \in \mathcal{L}(F^*, E^*)$ dans les bases (f_j^*) et (e_i^*)
- $\bullet \ \left\{ \begin{array}{ccc} \mathcal{L}(E,F) & \to & \mathcal{L}(F^*,E^*) \\ u & \mapsto & {}^t u \end{array} \right. \ \text{est lin\'eaire et isom\'etrique car} :$

$$\begin{split} \|u\| &= \sup_{\|x\| \leqslant 1} \|u(x)\| = \sup_{\text{prop } \|x\| \leqslant 1} \sup_{\|x\| \leqslant 1} |l(u(x))| \\ &= \sup_{\|l\| \leqslant 1} \sup_{\|x\| \leqslant 1} |^t u(l)(x)| = \sup_{\|l\| \leqslant 1} \|^t u(l)\| \\ &= \|^t u\| \end{split}$$

• ${}^{t}({}^{t}u)|_{E} = u \operatorname{car} {}^{t}({}^{t}u) \in \mathcal{L}(E^{**}, F^{**}), \forall x \in E, \forall l \in F^{*}$

$$t^{t}(^{t}u)(ev_{x})(l) = ev_{x}(^{t}u(l)) = ev_{x}(l \circ u)$$
$$= ev_{u(x)}(l)$$

Définition 4 (espace vectoriel conjugué) —

Soit E un ev complexe. Son $espace\ vectoriel\ conjugu\'e\ \overline{E}$ est le groupe additif E muni de la multiplication externe :

$$\left\{ \begin{array}{ccc} (\lambda,x) & \longmapsto & \bar{\lambda}x \\ \mathbb{C} \times \overline{E} & \longrightarrow & \mathbb{C} \end{array} \right.$$

Remarques.

• norme de $E \leftrightarrow$ norme de \bar{E}

 \bullet forme sesquilinéaire sur $E \leftrightarrow$ forme bilinéaire

Théorème 3 (Riesz-Fréchet) -

Soit $\mathcal H$ un espace de Hilbert. Soit $\overline{\mathcal H}^*$ le dual topologique du conjugué de $\mathcal H$. Alors :

$$\left\{ \begin{array}{ccc} \mathcal{H} & \longrightarrow & \overline{\mathcal{H}}^* \\ x & \longmapsto & \{y \mapsto \langle x, y \rangle \} \end{array} \right.$$

est un isomorphisme linéaire isométrique pour les normes de $\mathcal H$ et la norme duale de $\overline{\mathcal H}^*$

- Corollaire 3 —

 $\forall a: \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{C}$ forme sesquilinéaire continue :

$$\exists !\ u \in \mathcal{L}(\mathcal{H}) \text{ tel que } \forall x, y \in \mathcal{H} \quad \langle u(x), y \rangle = a(x, y)$$

De plus, a hermitienne $\Rightarrow u$ auto-adjoint $(\forall x, y \in \mathcal{H} \langle u(x), y \rangle = \langle x, u(y) \rangle)$.

Preuve.

 $\forall x \in \mathcal{H}, \left\{ egin{array}{ll} \bar{\mathcal{H}} & \longrightarrow & \mathbb{C} \\ y & \longmapsto & a(x,y) \end{array} \right.$ est linéaire, continue. Donc, par Riesz-Fréchet, il existe un unique $u(x) \in \mathcal{H}$ tel que $\forall y \in \mathcal{H} \ \langle u(x), y \rangle = a(x,y)$. Par unicité, u est linéaire. Comme :

$$||u(x)||^2 = \langle u(x), u(x) \rangle = a(x, u(x))$$

 $\leq ||x|| ||u(x)|| ||a||$

 $\Rightarrow ||u(x)|| \leq ||a|| ||x||$. u est donc continue.

- **Définition 5** (coercive) —

Une forme sesquilinéaire $a:\mathcal{H}\times\mathcal{H}\longrightarrow\mathbb{C}$ est coercive si :

$$\exists c' > 0, \ \forall x \in \mathcal{H} \quad a(x, x) \geqslant c' ||x||^2$$

5

Théorème 4 (Lax-Milgram) —

Soit $a: \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{C}$ sesquilinéaire, continue, coercive.

$$\forall l \in \overline{\mathcal{H}}^*, \ \exists ! u \in \mathcal{H}, \forall v \in \mathcal{H} \quad a(u, v) = l(v)$$

De plus, si a hermitienne, alors u est l'unique élément de $\mathcal H$ tel que :

$$\frac{1}{2}a(u,u) - \Re(l(u)) = \min_{v \in \mathcal{H}} \left(\frac{1}{2}a(v,v) - \Re(l(v))\right)$$

1.3 Bases hilbertiennes

Définition 6 (somme hilbertienne) -

Soit \mathcal{H} un espace de Hilbert. Soit $(E_n)_{n\in\mathbb{N}}$ suite de sev fermés de \mathcal{H} . On dit que \mathcal{H} est une somme hilbertienne de $(E_n)_{n\in\mathbb{N}}$ si :

- 1. les E_n sont 2 à 2 orthogonaux
- 2. le sev engendré par les E_n est dense dans $\mathcal H$

On note $\mathcal{H} = \overline{\bigoplus}_{n \in \mathbb{N}} E_n$

Remarque. (important) somme hilbertienne \neq somme directe

Exercice. Soit $(\mathcal{H}_n)_{n\in\mathbb{N}}$ une suite d'espaces de Hilbert. Posons :

$$\mathcal{H} = \{(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{H}_n \mid \sum ||x_n||_{\mathcal{H}_n}^2 < +\infty\}$$

et $\langle x, y \rangle = \sum_{n \in \mathbb{N}} \langle x_n, y_n \rangle_{\mathcal{H}_n}$.

- 1. Montrer que $(\mathcal{H}, <, >_{\mathcal{H}})$ est un espace de Hilbert, séparable (admet un sous ensemble dénombrable dense) si $\forall n \in \mathbb{N}, \mathcal{H}_n$ est séparable.
- 2. Soit \mathbb{E}_n = l'ensemble des éléments de \mathcal{H} dont tous les termes sont nuls sauf le $n^{\text{ème}}$. Montrer que E_n est un sev fermé de \mathcal{H} isomorphe à \mathcal{H}_n et que \mathcal{H} est somme hilbertienne des E_n .

Théorème 5 (égalité de Parseval)

Supposons \mathcal{H} somme hilbertienne de $(E_n)_{n\in\mathbb{N}}$. $\forall x\in\mathcal{H}$ posons $x_n=p_{E_n}(x)$. Alors $\forall x\in\mathcal{H}$, les séries $\sum x_n$ et $\sum \|x_n\|^2$ convergent et $x=\sum_{n\in\mathbb{N}}x_n$ et $\|x\|^2=\sum_{n\in\mathbb{N}}\|x_n\|^2$.

Réciproquement, $\forall n \in \mathbb{N}$, soit $x_n \in E_n$ tel que $\sum ||x_n||^2$ converge. Alors $\sum x_n$ converge et si $x = \sum_{n \in \mathbb{N}} x_n$ alors $||x||^2 = \sum_{n \in \mathbb{N}} ||x_n||^2$

Remarques.

- $\sum ||x_n||$ n'est pas toujours convergente
- D'une convergence de série en dimension 1 on en déduit une convergence en dimension infinie.

Définition 7 (base hilbertienne) –

Si \mathcal{H} est de dimension finie, une base hilbertienne de \mathcal{H} est une base orthogonale. Sinon, une base hilbertienne de \mathcal{H} est une suite orthonormée $(e_n)_{n\in\mathbb{N}}$ dans \mathcal{H} engendrant un sev dense. $||e_n||=1, \langle e_n, e_m\rangle=0$ si $n\neq m$ et $\overline{\mathrm{Vect}(e_n|n\in\mathbb{N})}=\mathcal{H}$

Remarques.

- $(e_n)_{n\in\mathbb{N}}$ base hilbertienne $\Leftrightarrow e_n$ unitaire et $\mathcal{H} = \overline{\bigoplus}_{n\in\mathbb{N}} \mathbb{C}e_n$
- ullet base hilbertienne \neq base vectorielle
- si $(e_n)_{n\in\mathbb{N}}$ base hilbertienne de \mathcal{H} alors $\forall x\in\mathcal{H}, \exists ! (\lambda_n)_{n\in\mathbb{N}}$ (coordonnées hilbertiennes) dans \mathbb{C} tel que $\sum \lambda_n e_n$ et $\sum |\lambda_n|^2$ convergent et $x=\sum_{n\in\mathbb{N}} \lambda_n e_n$, $||x||^2=\sum_{n\in\mathbb{N}} |\lambda_n|^2$ avec $\lambda_n=\langle x,e_n\rangle$

Exemple. $(e_n: t \longmapsto \frac{1}{\sqrt{2\pi}}e^{int})_{n \in \mathbb{Z}}$ base hilbertienne de $\mathbb{L}^2([0, 2\pi], \mathbb{C})$.

Coordonnées hilbertiennes :

$$c_n(f) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(t)e^{-int}dt$$

Ce sont les coefficients de Fourier.

Transformation de Fourier inverse:

$$f = \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} c_n(f) e^{int}$$

Formule de Parseval:

$$||f||_2^2 = \sum_{n \in \mathbb{Z}} |c_n(f)|^2$$

Théorème 6

 \mathcal{H} admet une base hilbertienne $\Leftrightarrow \mathcal{H}$ est séparable

Théorème 7

Deux espaces de Hilbert séparables sont isomorphes.

1.4 Convergence faible

Définition 8 (convergence faible) -

Une suite $(f_n)_{n\in\mathbb{N}}$ dans \mathcal{H} converge faiblement vers $f\in\mathcal{H}$ si:

$$\forall g \in \mathcal{H} \quad \langle f_n, g \rangle \xrightarrow[n \to +\infty]{} \langle f, g \rangle \text{ dans } \mathbb{C}$$

et on note $f_n \underset{n \to +\infty}{\rightharpoonup} f$

Remarque. (attention) convergence forte \Rightarrow convergence faible. En revanche la réciproque n'est vraie qu'en dimension finie.

• convergence forte :

$$f_n \to f \iff ||f_n - f|| \xrightarrow[n \to +\infty]{} 0$$

• convergence faible :

$$f_n \rightharpoonup f \Leftrightarrow \forall g \langle f_n, g \rangle \xrightarrow[n \to +\infty]{} \langle f, g \rangle$$

Propriété 2 (propriétés sur la convergence faible)

- 1. Toute suite faiblement convergente est bornée
- 2. si E, F sont des espaces de Hilbert, si $u \in \mathcal{L}(E, F)$ alors l'image par u d'une suite faiblement convergente est faiblement convergente

- **Théorème 8** (Théorème de compacité faible de la boule unité fermée d'un Hilbert) — Toute suite bornée dans \mathcal{H} admet une sous-suite faiblement convergente.

- Propriété 3 —

Si $(x_n)_{n\in\mathbb{N}}$ converge faiblement vers x dans \mathcal{H} et $||x_n|| \xrightarrow[n\to+\infty]{} ||x||$ alors $(x_n)_{n\in\mathbb{N}}$ converge fortement vers x.

Preuve.

$$||x_n - x||^2 = ||x_n||^2 + ||x||^2 - 2\Re \langle x_n, x \rangle$$

Exemple. (suite faiblement convergente mais pas fortement) (e_n) une base hilbertienne $e_n \overset{\rightharpoonup}{\underset{n \to +\infty}{\longrightarrow}} 0$ mais $e_n \nrightarrow 0$.

2 Spectre des opérateurs continus

Soient E espace de Banach complexe et $u \in \mathcal{L}(E)$ un opérateur continu de E.

Définition 9 (définitions importantes) —

- valeur régulière de $u: \lambda \in \mathbb{C}$ tel que $u \lambda$ id soit inversible dans $\mathcal{L}(E)$
- ensemble résolvant de u : {valeurs régulière de u} $\subset \mathbb{C}$
- valeur spectrale de $u: \lambda \in \mathbb{C}$ tel que $u \lambda$ id non inversible dans $\mathcal{L}(E)$
- $spectre de u : Sp(u) = \{valeurs spectrales de u\}$
- application résolvante :

$$R_u : \left\{ \begin{array}{ccc} \mathbb{C}\backslash \mathrm{Sp}(u) & \longrightarrow & \mathcal{L}(E) \\ \lambda & \longmapsto & (u - \lambda \mathrm{id})^{-1} \end{array} \right.$$

- rayon spectral : $\rho(u) = \sup_{\lambda \in \text{Sp}(u)} |\lambda|$
- valeur propre de $u: \lambda \in \mathbb{C}$ tel que $u \lambda id$ non injective $\Leftrightarrow \operatorname{Ker}(u \lambda id) \neq \{0\}$
- son espace propre associé : $\operatorname{Ker}(u \lambda \operatorname{id})$
- sa $multiplicit\acute{e} : \dim \operatorname{Ker}(u \lambda \operatorname{id}) \in \mathbb{N} \cup \{+\infty\}$
- un vecteur propre associé : un élément non nul de son espace propre
- le spectre poncutel : $Vp(u) = \{valeurs propres de u\}$
- le $spectre\ r\acute{e}siduel: \mathrm{Sp}_{\mathrm{res}}(u) = \{\lambda \in \mathbb{C} \mid \lambda \notin \mathrm{Vp}(u) \ \mathrm{et} \ \mathrm{Im}(u-\lambda \mathrm{id}) \ \mathrm{non} \ \mathrm{dense} \ \mathrm{dans} \ E\}$

Exemple. Si $E \neq \{0\}$, si u = 0 alors :

$$\operatorname{Sp}(u) = \operatorname{Vp}(u) = \{0\} \text{ et } \operatorname{Sp}_{\operatorname{res}}(u) = \emptyset$$

si u = id

$$\operatorname{Sp}(u) = \operatorname{Vp}(u) = \{1\} \text{ et } \operatorname{Sp}_{\operatorname{res}}(u) = \emptyset$$

Remarques.

1. Si dim $E < +\infty$, alors $\forall u : E \to E$ linéaire :

 $u - \lambda id$ inversible $\Leftrightarrow u - \lambda id$ surjective $\Leftrightarrow u - \lambda id$ surjective

$$\operatorname{donc} \operatorname{Sp}_{\operatorname{res}}(u) = \emptyset \text{ et } \operatorname{Sp}(u) = \operatorname{Vp}(u) = \{\operatorname{racines} \operatorname{de} \operatorname{det}(u - \lambda \operatorname{id})\}, \, \rho(u) = \max_{\lambda \in \operatorname{Vp}(u)} |\lambda|$$

2. Théorème de Banach. Soient E, F espaces de Banach, $f: E \to F$ linéaire, continue, bijective. Alors $f^{-1}: F \to E$ est continue. Donc :

 $u - \lambda id$ non inversible $\Leftrightarrow u - \lambda id$ non bijectif

- 3. bijectif \Rightarrow injectif donc $Vp(u) \subset Sp(u)$
- 4. bijectif \Rightarrow surjectif donc $\operatorname{Sp}_{res}(u) \subset \operatorname{Sp}(u)$
- 5. Soient E_1, E_2 espaces de Banach, $u_1 \in \mathcal{L}(E_1)$ et $u_2 \in \mathcal{L}(E_2)$. u_1 et u_2 sont conjugués si $\exists v : E_1 \to E_2$ homéo linéaire tel que : $u_2 = v \circ u_1 \circ v^{-1}$.

Dans ce cas :
$$\operatorname{Sp}(u_1) = \operatorname{Sp}(u_2)$$
, $\operatorname{Vp}(u_1) = \operatorname{Vp}(u_2)$, $\operatorname{Sp}_{\operatorname{res}}(u_1) = \operatorname{Sp}_{\operatorname{res}}(u_2)$ car $(u_2 - \lambda \operatorname{id}) = v \circ (u_1 - \lambda \operatorname{id}) \circ v^{-1}$

Méthodologie. Aide au calcul du spectre, conjuguer à partir d'exemples de spectres connus

Exercice. $\forall \alpha \in \mathbb{C} \setminus \{0\}, \forall \beta \in \mathbb{C} \text{ on a} :$

$$Sp(\alpha u + \beta id) = \alpha Sp(u) + \beta$$
$$Vp(\alpha u + \beta id) = \alpha Vp(u) + \beta$$
$$Sp_{res}(\alpha u + \beta id) = \alpha Sp_{res}(u) + \beta$$

Exercice. Si $E = E_1 \oplus E_2$ où E_i sev fermés et $u(E_i) \subset E_i$

$$\begin{aligned} \operatorname{Sp}(u) &= \operatorname{Sp}(u|_{E_1}) \cup \operatorname{Sp}(u|_{E_2}) \\ \operatorname{Vp}(u) &= \operatorname{Vp}(u|_{E_1}) \cup \operatorname{Vp}(u|_{E_2}) \\ \operatorname{Sp}_{\operatorname{res}}(u) &= \operatorname{Sp}_{\operatorname{res}}(u|_{E_1}) \cup \operatorname{Sp}_{\operatorname{res}}(u|_{E_2}) \end{aligned}$$

Remarque. (attention) ce résultat est faux pour une somme hilbertienne, valable que pour un nombre fini

Théorème 9

Soient E espace de Banach complexes et $u \in \mathcal{L}(E)$.

- 1. $\operatorname{Sp}(u) \subset \mathbb{C}$ est compact et $\rho(u) \leq ||u||$
- 2. $\operatorname{Sp}(u) \neq \emptyset \Leftrightarrow E \neq \{0\}$
- 3. si $E \neq \emptyset$, alors :

$$\rho(u) = \lim_{n \to +\infty} \|u^n\|^{\frac{1}{n}} = \inf_{n \in \mathbb{N} \setminus \{0\}} \|u^n\|^{\frac{1}{n}}$$

Remarque. Pour 1. on a pas toujours l'égalité, par exemple :

$$\operatorname{Sp}\begin{pmatrix}0&1\\0&0\end{pmatrix}=\{0\} \text{ mais } \left\|\begin{pmatrix}0&1\\0&0\end{pmatrix}\right\|=1\neq 0$$

Exercice 1.

Soient \mathcal{H} espace de Hilbert complexe (séparable de dimension infinie), $(e_n)_{n\in\mathbb{N}}$ une base hilbertienne de \mathcal{H} . C compact de \mathbb{C} et $(\lambda_n)_{n\in\mathbb{N}}$ suite dense dans C.

- 1. Montrer que $\exists ! u \in \mathcal{L}(\mathcal{H}), \ \forall n \in \mathbb{N} \ u(e_n) = \lambda_n e_n$
- 2. Montrer que $\operatorname{Vp}(u) = \{\lambda_n \mid n \in \mathbb{N}\}$ et que $\operatorname{Sp}(u) = C$, $\operatorname{Sp}_{res}(u) = \emptyset$. En déduire que tout compact de \mathbb{C} est le spectre d'un opérateur continu.

Solution 1.

1. Montrons que $\exists ! u \in \mathcal{L}(\mathcal{H}) \text{ tq } \forall n \in \mathbb{N}, u(e_n) = \lambda_n e_n$

Existence. Notons $(x_n)_{n\in\mathbb{N}}$ les coordonnées hilbertiennes de x dans $(e_n)_{n\in\mathbb{N}}$. En particulier $x=\sum_{n\in\mathbb{N}}x_ne_n$. Définissons :

$$u: \left\{ \begin{array}{ccc} \mathcal{H} & \longrightarrow & \mathcal{H} \\ x & \longmapsto & \sum_{n \in \mathbb{N}} x_n \lambda_n e_n \end{array} \right.$$

On a:

$$\sum |x_n \lambda_n|^2 < M \sum |x_n|^2 < +\infty$$

car les λ_n sont bornés car dans un compact, et $(x_n) \in \mathcal{L}^2$ Alors, par la réciproque de Parseval, $\sum x_n \lambda_n e_n$ converge. Donc u est bien définie.

Cette application est clairement linéaire par la linéarité des coordonnées hilbertiennes.

Montrons la continuité. $\exists K > 0, \forall n \in \mathbb{N}, |\lambda_n| < K$:

$$||u_n||^2 \underset{\text{Parseval}}{=} \sum_{n \in \mathbb{N}} |\lambda_n x_n|^2 \leqslant K^2 \sum_{n \in \mathbb{N}} |x_n|^2 \leqslant K^2 ||x||^2$$

Donc u est continue.

Unicité. Soit $x \in \mathcal{H}$. Pour un certain $N \in \mathbb{N}$,

$$u(x) = u\left(\sum_{n \in \mathbb{N}} x_n e_n\right) \underset{\text{cont} + \text{lin}}{=} u(x_n e_n) = \sum_{n \in \mathbb{N}} x_n \lambda_n e_n$$

- 2. Montrons que $Vp(u) = \{\lambda_n, n \in \mathbb{N}\}$:
 - \supset : $\forall n, \lambda_n \in \text{Vp}(u) \text{ car } u(e_n) = \lambda_n e_n, e_n \neq 0$
 - $\subset : \lambda \in Vp(u) \Leftrightarrow \exists x \in \mathcal{H}, x \neq 0, u(x) = \lambda x.$

Soit $x = \sum_{n \geqslant 0} x_n e_n \in \mathcal{H}, \exists n_0 \in \mathbb{N}, x_{n_0} \neq 0$

$$u(x) - \lambda x = \sum_{n} (\lambda_n - \lambda) x_n e_n = 0 \Leftrightarrow_{\text{unicité}} \forall n(\lambda_n - \lambda) x_n = 0$$

Comme $x_{n_0} \neq 0, \Rightarrow \lambda = \lambda_{n_0}$. Donc $\lambda \in \text{Vp}(u) \Rightarrow \lambda \in \{\lambda_n, n \in \mathbb{N}\}$.

Montrons que Sp(u) = C.

• Montrons que $C \subset \operatorname{Sp}(u)$

$$\operatorname{Vp}(u) \subset \operatorname{Sp}(u)$$
 et $\operatorname{Sp}(u)$ fermé, donc $\overline{\operatorname{Vp}(u)} = C \subset \operatorname{Sp}(u)$

• Montrons que $Sp(U) \subset C$

Soit $\lambda \notin C$. Montrons que $u - \lambda$ id est inversible. Il suffit de montrer que $u - \lambda$ id est surjective. Soit $y \in \mathcal{H}$. Remarquons que par compacité de C, $d(\lambda, C) = d > 0$. Posons $\forall i \geqslant 0, x_i = \frac{y_i}{\lambda_i - \lambda}$.

 $|\sum x_i e_i|$ converge car:

$$\sum \left| \frac{y_i}{\lambda_i - \lambda} \right|^2 \leqslant \frac{1}{d^2} ||y||^2$$

Donc $u(x) - \lambda x = y$. $u - \lambda$ id est bien surjective.

Montrons que $\operatorname{Sp}_{\operatorname{res}}(u) = \emptyset$. Soit $\lambda \notin V_p$. Montrons que $\overline{\operatorname{Im}(u - \lambda \operatorname{id})} = \mathcal{H}$.

$$e_n = (u - \lambda id) \left(\frac{e_n}{\lambda_n - \lambda}\right) \in Im(u - \lambda id)$$

$$\bigoplus_{n\in\mathbb{N}} \mathbb{C}e_n \subset \operatorname{Im}(u - \lambda \operatorname{id})$$

Donc en passant à l'adhérence :

$$\mathcal{H} \subset \overline{\mathrm{Im}(u - \lambda \mathrm{id})}$$

Soit $K \in \mathbb{C}$ un compact non-vide. Montrons que c'est le spectre d'un opérateur continu. Pour tout $N \geq 1$, on peut recouvrir K par un nombre fini (précompacité) de boules de rayon $\frac{1}{N}$. $\{\lambda_n\} = 1$ 'union des centres de ces boules pour $N \geq 1$ convient.

Exercice 2.

Soient \mathcal{H} , $(e_n)_{n\in\mathbb{N}}$ comme ci-dessus.

- 1. Montrer que $\exists ! \ u \in \mathcal{L}(\mathcal{H}) \ \forall n \in \mathbb{N} \ u(e_n) = e_{n+1}$
- 2. Montrer que $Vp(u) = \emptyset$, $Sp_{res}(u) = \{z \in \mathbb{C} \mid |z| < 1\}$, $Sp(u) = \{z \in \mathbb{C}, |z| \leq 1\}$

Solution 2.

1. Unicité. Soit $x \in \mathcal{H}$, notons $x = \sum_{n \in \mathbb{N}} x_n e_n$. Comme u est linéaire et continue on doit poser $u(x) = \sum_{n \in \mathbb{N}} x_n u(e_n)$. Donc $u(x) = \sum_{n \in \mathbb{N}} x_n e_{n+1}$.

$$\sum_{n\in\mathbb{N}} |x_n|^2 = ||x||^2 \text{ qui est finie}$$

Donc par la réciproque du théorème de Parseval, $\sum_{i\in\mathbb{N}\setminus\{0\}} x_{i-1}e_i$ converge, on la note u(x). Donc u(x) existe. Par le calcul précédent on a ||u(x)|| = ||x||, donc u est un opérateur continu (isométrique).

Linéarité. La linéarité est immédiate par la linéarité des coordonnées hilbertiennes.

Propriété 4 —

Soient E, F espaces de Banach.

- 1. Si $(x_n)_{n\in\mathbb{N}}$ suite dans E, si $\sum x_n$ converge normalement (i.e. $\sum ||x_n||$ converge), alors $\sum x_n$ converge dans E.
- 2. $\forall u \in \mathcal{L}(E)$, si ||u|| < 1 alors id -u est bijective d'inverse $\sum_{n \in \mathbb{N}} u^n$ (continue)
- 3. si $\mathcal{GL}(E,F)=\{f:E\to F \text{ isomorphisme linéaire continu d'inverse continu}\}$ alors $\mathcal{GL}(E,F)$ est un ouvert de $\mathcal{L}(E,F)$ et

$$\left\{ \begin{array}{ccc} \mathcal{GL}(E,F) & \longrightarrow & \mathcal{GL}(F,E) \\ u & \longmapsto & u^{-1} \end{array} \right.$$

est continue.

Preuve.

- 1. ok
- 2. $\sum_{k\in\mathbb{N}} u^k$ est normalement convergente car $||u^k|| \leq ||u||^k$ donc converge par 1 vers $v\in\mathcal{L}(E)$ tel que $u\circ v=v\circ u=v$ id
- 3. $\forall u \in \mathcal{GL}(E,F), \ \forall \ u \in \mathcal{B}_{\mathcal{L}(E,F)}\left(u_0, \frac{1}{\|u_0^{-1}\|}\right) \text{ posons } v = \text{id} u_0^{-1} \circ u \in \mathcal{L}(E). \text{ Alors } \|v\| \leqslant \|u_0^{-1}\|\|(u_0 u)\| < 1. \text{ Par } 2, \text{ id} v = u_0^{-1} \circ u \text{ est inversible, donc } u \text{ aussi. Et } u^{-1} = (\text{id} v)^{-1} \circ u_0^{-1}. \text{ Donc } \mathcal{GL}(E,F) \text{ est ouvert.}$

$$\begin{split} \|u^{-1} - u_0^{-1}\| &= \|(\mathrm{id} - v)^{-1} - \mathrm{id}\| \|u_0^{-1}\| \\ &= \left\| \sum_{n=1}^{+\infty} v^n \right\| \|u_0^{-1}\| \\ &\leqslant \frac{\|v\|}{1 - \|v\|} \|u_0^{-1}\| \xrightarrow[u \to u_0]{} 0 \end{split}$$

2.1 Rappels étendus d'analyse complexe I

Soient E espace de Banach complexe et U ouvert de $\mathbb{C}.$

- **Définition 10** (fonction analytique complexe) —

 $f:U\to E$ est analytique complexe si $\forall z_0\in U, \exists r>0, \exists (c_n)_{n\in\mathbb{N}}$ suite dans E tq $\mathcal{B}(z_0,r)\subset U$ et

 $\sum_{n\in\mathbb{N}}(z-z_0)^nc_n$ converge normalement sur $\mathcal{B}(z_0,r)$ de somme égale à f(z)

Remarque. $(c_n)_{n\in\mathbb{N}}$ est unique, analytique complexe \Rightarrow continue.

- **Théorème 10** (de Liouville) —

Si $f: \mathbb{C} \to E$ analytique complexe est bornée, alors f est constante.

- **Propriété 5** (application résolvante analytique complexe)

$$R_u: \left\{ \begin{array}{ccc} \mathbb{C}\backslash \mathrm{Sp}(u) & \longrightarrow & \mathcal{L}(E) \\ \lambda & \longmapsto & (u-\lambda \mathrm{id})^{-1} \end{array} \right.$$
 est analytique complexe

Preuve.

Soit λ_0 un valeur régulière de u et $v_0 = (u - \lambda_0 \mathrm{id})^{-1}$. $\forall \lambda \in \mathcal{B}\left(\lambda_0, \frac{1}{\|v_0\|}\right)$:

$$(u - \lambda id)^{-1} = ((u - \lambda_0 id)(id - (\lambda - \lambda_0)v_0))^{-1} = (id - (\lambda - \lambda_0)v_0)^{-1} \circ v_0$$

$$= \sum_{n \in \mathbb{N}} (\lambda - \lambda_0)^n v_0^{n+1}$$

qui converge normalement.

2.2 Rappels étendus d'analyse complexe II

Soient E espace de Banach complexe et $f: \mathcal{B}(0,r) \setminus \{0\} \to E$ analytique complexe.

Théorème 11 (de développement de Laurent) -

 $\exists ! (c_n)_{n \in \mathbb{Z}}$ suite dans E telle que :

- $\sum_{n\in\mathbb{N}} z^n c_n$ converge $\forall z\in\mathcal{B}(0,r)$
- $\sum_{n \in \mathbb{N} \setminus \{0\}} z^{-n} c_{-n}$ converge $\forall z \neq 0$
- $f(z) = \sum_{n \in \mathbb{Z}} z^n c_n \ \forall z \in \mathcal{B}(0,r) \setminus \{0\}$ appelé développement de Laurent

- **Définition 11** (rayon de convergence) -

 $\forall (a_n)_{n\in\mathbb{N}}$ suite dans E, le rayon de convergence de $\sum_{n\in\mathbb{N}} z^n a_n$ est

$$R = \sup \left\{ r > 0 \mid \forall z \in \mathcal{B}(0, r), \sum_{n \to +\infty} z^n a_n \text{ converge} \right\} = \frac{1}{\limsup_{n \to +\infty} \|a_n\|^{\frac{1}{n}}}$$

- Propriété 6 -

$$\rho(u) = \limsup_{n \to +\infty} \|u^n\|^{\frac{1}{n}}$$

Preuve.

Posons

$$f: \left\{ \begin{array}{ccc} \mathcal{B}\left(0, \frac{1}{\rho(u)}\right) \backslash \{0\} & \longrightarrow & \mathcal{L}(E) \\ z & \longmapsto & -\frac{1}{z} R_u\left(\frac{1}{z}\right) \end{array} \right.$$

Par la formule (**) (cf preuve du théorème 9) avec $\lambda = \frac{1}{z}$, f coïncide sur $\mathcal{B}\left(0, \frac{1}{\|u\|}\right)\setminus\{0\}$ avec $\sum_{n\in\mathbb{N}} z^n u^n$. Par unicité, $\sum_{n\in\mathbb{N}} z^n u^n$ est le développement de Laurent de f sur $\mathcal{B}\left(0, \frac{1}{\|u\|}\right)\setminus\{0\}$. Or f est définie et analytique complexe sur $\mathcal{B}\left(0, \frac{1}{\|u\|}\right)$ et $\frac{1}{\rho(u)} \geqslant \frac{1}{\|u\|}$.

Donc $\sum_{n\in\mathbb{N}} z^n u^n$ converge pour $z\in\mathcal{B}\left(0,\frac{1}{\rho(u)}\right)$ par le théorème de Laurent. D'où :

$$\frac{1}{\rho(u)}\leqslant R=\text{ rayon de convergence de }\sum z^nu^n=\frac{1}{\limsup\,\|u^n\|^{\frac{1}{n}}}$$

Réciproquement, si $|\lambda| > \frac{1}{R}$ alors $\sum_{n \in \mathbb{N}} \lambda^{-n} u^n$ converge. Donc $u - \lambda$ id est inversible (car d'inverse $-\frac{1}{\lambda} \sum_{n \in \mathbb{N}} \lambda^{-n} u^n$), donc $\lambda \notin \operatorname{Sp}(u)$ d'où $\rho(u) = \sup_{\lambda \in \operatorname{Sp}(u)} |\lambda| \leqslant \frac{1}{R}$.

Lemme 1 (propriété d'une suite réelle sous-additive) —

Si $(a_n)_{n\in\mathbb{N}}$ est une suite réelle sous-additive $(\forall n,m\in\mathbb{N},\ a_{n+m}\leqslant a_n+a_m)$ alors :

$$\left(\frac{a_n}{n}\right)_{n\in\mathbb{N}} \text{ converge dans } \mathbb{R} \text{ et } \lim_{n\to+\infty} \frac{a_n}{n} = \inf_{n\in\mathbb{N}\setminus\{0\}} \frac{a_n}{n}$$

2.3 Preuve du théorème 9

Preuve. (du théorème 9)

1. $\rho(u) \leq ||u||$. Soit $\lambda \in \mathbb{C}$, $|\lambda| > ||u||$, posons $v = \frac{1}{\lambda}u$. Alors ||v|| < 1, donc id -v est inversible $\Rightarrow u - \lambda \mathrm{id} = -\lambda(\mathrm{id} - v)$ inversible. λ est une valeur régulière.

 $\operatorname{Sp}(u)$ est fermé. Montrons que $\mathbb{C}\setminus\mathcal{L}(E)$ est ouvert $\mathbb{C}\to\mathcal{L}(E)$ et continue, donc par 3 si λ proche de λ_0 tq $u-\lambda_0$ id inversible, alors $u-\lambda$ id aussi. Donc $\operatorname{Sp}(u)$ fermé, borné et compact.

2. $E \neq \{0\} \Rightarrow \operatorname{Sp}(u) \neq \emptyset$

Par l'absurde, si $\operatorname{Sp}(u) = \emptyset$ alors $\mathbb{C}\backslash \operatorname{Sp}(u) = \mathbb{C}$ et R_u est analytique complexe sur tout \mathbb{C} . Notons que u = u - 0id est inversible, donc $||u|| \neq 0$. Montrons que R_u est bornée.

Si $|\lambda| > ||u||$ alors

$$(u - \lambda \mathrm{id})^{-1} = -\frac{1}{\lambda} \left(\mathrm{id} - \frac{u}{\lambda} \right)^{-1} = -\frac{1}{\lambda} \sum_{n \in \mathbb{N}} \lambda^{-n} u^n \qquad (**$$

Si $|\lambda| > 2||u||$ alors

$$\left\| (u - \lambda \mathrm{id})^{-1} \right\| \leqslant \left| \frac{1}{\lambda} \right| \sum_{n \in \mathbb{N}} \left(\frac{\|u\|}{|\lambda|} \right)^n = \left| \frac{1}{\lambda} \right| \frac{1}{1 - \frac{\|u\|}{|\lambda|}} = \frac{1}{|\lambda| - \|u\|} < \frac{1}{\|u\|} < +\infty$$

Donc R_u est bornée en dehors de $\bar{B}(0,2||u||)$, ainsi que dans cette boule compacte car R_u est continue. Par le théorème de Liouville, R_u est constante, donc $\lambda \longmapsto R_u(\lambda)^{-1} = u - \lambda \mathrm{id}$ est constante, impossible car $E \neq \{0\} \Rightarrow \mathrm{id}_E \neq 0 \Rightarrow u - 1\mathrm{id} \neq u - 0\mathrm{id}$.

Réciproquement, si $E = \{0\}$ alors $\operatorname{Card} \mathcal{L}(E) = 1$ donc $\forall \lambda \in \mathbb{C}, u - \lambda \operatorname{id} = \operatorname{id}_E$ est inversible $\Rightarrow \operatorname{Sp}(u) = \emptyset$.

3. Comme $\forall n, m \in \mathbb{N}, ||u^{n+m}|| \leq ||u^n|| ||u^m||$ (norme d'opérateur) le résultat découle du lemme 1.

3 Opérateurs compacts

Soient E, F des espaces vectoriels normés (réels ou complexes) et $\overline{B}_E = \{x \in E \mid ||x|| \leq 1\}$ la boule unité fermée de E, et $u \in \mathcal{L}(E, F)$.

Définition 12 (opérateur compact) –

u est compact s'il satisfait l'une des conditions suivantes :

- 1. $u(\overline{B}_E)$ est d'adhérence compacte dans F
- 2. l'image par u de tout borné de E est d'adhérence compacte dans F
- 3. $\forall (x_n)_{n\in\mathbb{N}}$ suite dans E telle que $\forall n\in\mathbb{N}\ \|x_n\|\leqslant 1,\ (u(x_n))_{n\in\mathbb{N}}$ admet une sous-suite convergente

Preuve. (équivalence entre les définitions)

- $(2) \Rightarrow (1)$ et $(1) \Rightarrow (3)$: ok
- $(1) \Rightarrow (2) : \forall B$ borné de $E, \exists r > 0$ tel que $B \subset \overline{\mathcal{B}}(0,r)$ donc $u(B) \subset u(\overline{\mathcal{B}}(0,r)) = \underline{ru}(\overline{B}_E)$ est d'adhérence compacte car les homothéties sont des homéomorphismes. Donc u(B) est compacte, car fermée et contenue dans un compact.
- $(3) \Rightarrow (1) : \text{Soit } (y_n)_{n \in \mathbb{N}}$ une suite dans $\overline{u(\overline{B}_E)}$. $\forall n \in \mathbb{N}$, soit $x_n \in \overline{B}_E$ tel que $d(u(x_n), y_n) \leq \frac{1}{n}$. Par (3) il existe une sous-suite $(u(x_{n_k}))_{k \in \mathbb{N}}$ qui converge, alors $(y_{n_k})_{k \in \mathbb{N}}$ aussi, par adjacence.

Théorème 12 (Riesz) -

E evn (réel ou complexe)

E est localement compact $\Leftrightarrow \overline{B}_E$ est compacte

 \Leftrightarrow les compacts de E sont les fermés bornées

 $\Leftrightarrow E$ est de dim finie

Exemple. (d'opérateurs compacts)

- 1. $u \in \mathcal{L}(E, F)$ est de rang fini si dim u(E) est fini. Par le théorème de Riesz de rang fini \Rightarrow compact
- 2. $\forall (X, \mathcal{A}, \mu)$ et (Y, \mathcal{B}, ν) espaces mesurés σ -finis. $\forall N \in \mathbb{L}^2((X, \mathcal{A}, \mu) \times (Y, \mathcal{B}, \nu))$, notons $\forall f \in \mathbb{L}^2(\nu)$,

$$K_f: x \longmapsto \int_{y \in Y} N(x, y) f(y) d\nu(y)$$

Alors $K = K_N \in \mathcal{L}(\mathbb{L}^2(\nu), \mathbb{L}^2(\mu))$ et K compact (appelé opérateur à noyau de type Hilbert-Schmidt, de noyau N)

Preuve.

Posons $E = \mathbb{L}^2(\nu)$ et $F = \mathbb{L}^2(\mu)$. Par le théorème de Fubini, $N_x : y \longmapsto N(x,y)$ est dans E pour μ -presque tout $x \in X$ et par l'inégalité de Cauchy-Schwarz :

$$\forall f \in E \ K_f(x) \text{ existe et } |K_f(x)|^2 \leqslant ||N_x||_2^2 ||f||_2^2 \text{ pour } \mu \text{ p.t. } x$$

De plus, par Fubini $||K_f||_2 \leq ||N||_2 ||f||_2$. Donc $K_f \in F$ et $K = K_N : \begin{cases} E \to F \\ f \mapsto K_f \end{cases}$ est bien défini, clairement linéaire et continue (puisque de norme $\leq ||N||_2$).

Montrons que K est un opérateur compact.

Soit $(f_n)_{n\in\mathbb{N}}$ suite dans \overline{B}_E . Montrons que, quitte à extraire, $(K_{f_n})_{n\in\mathbb{N}}$ converge dans F (pour la norme hilbertienne \Leftrightarrow fortement). Par le théorème de compacité faible, nous pouvons supposer quitte à extraire que $f_n \xrightarrow[n \to +\infty]{} f \in E$.

Donc $K_{f_n}(x) = \langle f_n, \overline{N_x} \rangle_E$ pour μ p.t. x. Comme $||K_{f_n}(x)||^2 \leqslant ||N_x||_2^2 \times 1$, par le théorème de convergence dominée de Lebesgue, on a $||K_{f_n}||_2 \leqslant ||K_f||_2$.

Comme K est linéaire continue (donc faiblement continue), $K_{f_n} \xrightarrow[n \to +\infty]{} K_f$. Par le critère de convergence forte dans les espaces de Hilbert; $K_{f_n} \longrightarrow K_f$ dans F

Propriété 7 -

Soient E, F, G_1, G_2 des evn (réels ou complexes).

1. $\mathcal{K} = \{u \in \mathcal{L}(E, F) \mid u \text{ compact}\}\$ est un sev de $\mathcal{L}(E, F)$, et $\forall u \in \mathcal{K}(E, F), \forall v \in \mathcal{L}(G_1, E), \forall w \in \mathcal{L}(F, G_2)$:

$$w \circ u \circ v \in \mathcal{K}(G_1, G_2)$$

2. si F est un espace de Banach, alors $\mathcal{K}(E,F)$ est fermé dans $\mathcal{L}(E,F)$.

Preuve.

1. $\mathcal{K}(E,F)$ est stable par combinaisons linéaires par la définition (3).

Si u, v, w sont comme ci-dessus, $v(\overline{B}_{G_1})$ est borné, car v continue, donc $u(v(\overline{B}_{G_1}))$ est d'adhérence K compacte, car u compact, donc $w \circ u \circ v(\overline{B}_{G_1}) \subset w(K)$ qui est un compact car w est continue. Donc $\overline{w} \circ u \circ v(\overline{B}_{G_1})$ est compacte, car fermée dans un compact.

2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite dans $\mathcal{K}(E,F)$ qui converge vers $u\in\mathcal{L}(E,F)$. Montrons que $u(\overline{B}_E)$ est d'adhérence compacte. Puisque F est complet, par Bolzano-Weiertrass, il suffit de montrer que $\forall \varepsilon > 0$, \exists un recouvrement de $u(\overline{B}_E)$ par un nombre fini de boules de rayon ε .

Soit $n \in \mathbb{N}$ tq $||u_n - u|| < \frac{\varepsilon}{2}$. Puisque u_n est compact, $\exists y_1, ..., y_k \in F$ tq:

$$u_n(\overline{B}_E) \subset \bigcup_{i=1}^k \mathcal{B}\left(y_i, \frac{\varepsilon}{2}\right)$$

Alors, par l'inégalité triangulaire,

$$u(\overline{B}_E) \subset \bigcup_{i=1}^k \mathcal{B}(y_i, \varepsilon)$$

 $\operatorname{car} \forall x \in \overline{B}_E, \exists i \in \{1, ..., k\} \text{ tq } u_n(x) \in \mathcal{B}\left(y_1, \frac{\varepsilon}{2}\right) \text{ donc } \|u(x) - y_i\| \leqslant \|u(x) - u_n(x)\| + \|u_n(x) - y_i\| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Remarque. En particulier, toute limite d'opérateurs de rang fini est compacte.

Propriété 8

Si E est un ev
n compexe et $\mathcal H$ un espace de Hilbert, alors tout opérateur comp
act est limite d'opérateurs de rang fini.

Preuve.

 $\forall \varepsilon > 0$, par compacité de $u(\overline{B}_E)$, $\exists y_1, ..., y_n \in \mathcal{H}$ tq $u(\overline{B}_E) \subset \bigcup_{i=1}^n \mathcal{B}\left(y_i, \frac{\varepsilon}{2}\right)$. Soit p la projection orthogonale de \mathcal{H} sur $\text{Vect}(y_1, ..., y_n)$ (qui est fermé dans \mathcal{H}) et $v = p \circ u$. Montrons que $||u-v|| \leq \varepsilon$, ce qui conclut.

 $\forall x \in \overline{B}_E$, soit $i \in \{1, ..., n\}$ tq $u(x) \in \mathcal{B}\left(y_i, \frac{\varepsilon}{2}\right)$. Puisque $p(y_i) = y_i$, p est 1-lipschitzienne, par l'inégalité triangulaire.

$$||u(x) - v(x)|| \le ||u(x) - y_i|| + ||p(y_i) - p(u(x))|| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Théorème 13 (de Schauder) -

- $u \in \mathcal{K}(E, F) \Rightarrow u^T \in \mathcal{K}(F^*, E^*)$
- Si F est un espace de Banach , $u \in \mathcal{K}(E,F) \Leftrightarrow u^T \in \mathcal{K}(F^*,E^*)$

Preuve. Admis

Propriété 9

Soient E espace de Banach, $u \in \mathcal{L}(E)$ opérateur compact.

- 1. $\dim \operatorname{Ker}(\operatorname{id} u)$ est finie
- 2. $\operatorname{Im}(\operatorname{id} u)$ est fermée
- 3. id u injective $\Rightarrow id u$ est surjective
- 4. toute valeur spectrale non nulle de u est une valeur propre, de multiplicité finie, isolée dans $\mathrm{Sp}(u)$
- 5. si E est de dimension infinie, alors $0 \in \operatorname{Sp}(u)$ et $\operatorname{Sp}(u) = \{0\} \cup \operatorname{Vp}(u)$ (attention, pas une union disjointe) Donc $\operatorname{Sp}(u)$ est ou bien fini, ou bien l'image d'une quite qui converge vers 0 en réunion avec $\{0\}$

Exercice 3.

Soient \mathcal{H} un espace de Hilbert et $(e_n)_{n\in\mathbb{N}}$ base hilbertienne

- 1. Montrer que $\exists ! u \in \mathcal{L}(\mathcal{H})$ tq $u(e_n) = \frac{1}{n+1} e_n \ \forall n \in \mathbb{N}$. Calculer ||u||.
- 2. Montrer que u est compact.
- 3. Montrer que $Vp(u) = \emptyset$ et $Sp(u) = Sp_{res}(u) = \{0\}$

Solution 3.

Preuve. (du théorème)

On note v = id - u et $N = \ker v$

- 1. $\forall x \in N, \ x = u(x) \text{ donc } \overline{B}_N := \overline{B}_E \cap N \subset u(\overline{B}_E). \ u$ est un opérateur compact donc $u(\overline{B}_E)$ est d'adhérence compacte, donc \overline{B}_N aussi et par le théorème de Riesz, N est de dimension finie.
- 2. Soit $(x_n)_{n\in\mathbb{N}}$ dans E tel que $v(x_n)\to y\in E$. Montrons que $y\in \mathrm{Im}(v)$. Puisque N est de dimension finie, donc fermé, et toute application continue d'un compact dans \mathbb{R} atteint sa borne inf:

$$\forall n \in \mathbb{N}, \exists z_n \in N \text{ tq } d(x_n, N) = d(x_n, z_n)$$

Par l'absurde supposons que $(x_n-z_n)_{n\in\mathbb{N}}$ n'est pas bornée, sinon, quitte à extraire, $d(x_n,z_n)=\|x_n-z_n\|\xrightarrow[n\to+\infty]{}+\infty$. Posons $w_n:=\frac{x_n-z_n}{d(x_n,N)}$. Puisque u est compact, quitte à extraire $u(w_n)\xrightarrow[n\to+\infty]{}w\in E$. Or :

$$w_n - u(w_n) = v(w_n) = \frac{v(x_n) - v(z_n)}{d(x_n, N)}$$

Comme $z_n \in N = \ker v, \, v(z_n) = 0.$ D'où :

$$w_n - u(w_n) = v(w_n) = \frac{v(x_n)}{d(x_n, N)} \xrightarrow[n \to +\infty]{} 0$$

Donc $w_n \xrightarrow[n \to +\infty]{} w$. Par continuité de $v, v(w_n) \to v(w)$. D'où $v(w) = 0 \Leftrightarrow w \in N$. N est un sev donc invariant par homothétie et translation. Or $d(w_n, N) = 1 \ \forall n \ \text{donc} \ d(w, N) = 1$. Contradiction. Donc $(x_n - z_n)$ est bornée.

Comme u est compact, quitte à extraire, $u(x_n-z_n)\xrightarrow[n\to+\infty]{}y'\in E.$ Donc :

$$x_n - z_n = \underbrace{u(x_n - z_n)}_{\to y'} + \underbrace{v(x_n - z_n)}_{=v(x_n) \to y}$$

Ainsi $x_n - z_n \xrightarrow[n \to +\infty]{} y' + y$. Par continuité, $y = \lim_{n \to +\infty} v(x_n - z_n) = v(y' - y)$. D'où $y \in \text{Im}(v)$ qui est donc fermé.

3. Soit $E_0 := E$ et $E_1 = v(E_0)$.

Supposons par l'absurde que v est injective et $E_1 \neq E_0$. On regarde $u|_{E_1} : E_1 \longrightarrow E_1$ car u et v commutent, donc $u(E_1) = u(v(E_0)) = v(u(E_0)) \subset v(E_0) = E_1$. Comme u est compact, $E_1 = \text{Im}(v)$ est fermé par (2). Alors $u|_{E_1}$ est encore compact $(\overline{u|_{E_1}(\overline{B_{E_1}})})$ est l'intersection de E_1 , fermé, et de $u(\overline{B}_E)$ compact par compacité de u).

Posons $E_n := v^n(E_0)$. Par récurrence (E_n) est une suite de sev fermés, strictement décroissante (car v injective). Soit $x_n \in E_n \setminus E_{n+1}$, $x_n' \in E_{n+1}$ tel que $d(x_n, x_n') \leq 2d(x_n, E_{n+1})$. Posons :

$$y = \frac{x_n - x_n'}{\|x_n - x_n'\|}$$

Soit m > n:

$$||u(y_n) - u(y_m)|| = ||y_n - v(y_n) - (y_m - v(y_m))|| = ||y_n - \underbrace{[y_m - v(y_m) + v(y_m)]}_{\in E_{n+1}}||$$

Donc:

$$||u(y_n) - u(y_m)|| \ge d(y_n, E_{n+1}) = \frac{d(x_n, E_{n+1})}{||x_n - x_n'||} \ge \frac{1}{2}$$

Donc $(u(y_n))$ n'admet pas de sous-suite convergente, ce qui contredit u compact. Donc $\mathrm{id} - u$ injectif $\Rightarrow \mathrm{id} - u$ surjectif.

- 4. Soit $\lambda \neq 0$ valeur spectrale. Par l'absurde on suppose $\lambda \notin \operatorname{Vp}(u)$. Comme u est compact, $\frac{u}{\lambda}$ est compact et id $-\frac{u}{\lambda}$ est injectif $(\lambda \notin \operatorname{Vp}(u))$. Par (3), id $-\frac{u}{\lambda}$ est aussi surjectif. Mais alors $\lambda \notin \operatorname{Sp}(u)$. Contradiction. Donc $\lambda \in \operatorname{Vp}(u)$.
 - Si $\lambda \neq 0$, sa multiplicité est dim ker (id $-\frac{u}{\lambda}$) finie âr (1)
 - Si λ non isolée dans $\mathrm{Sp}(u)$, soit (λ_n) valeurs propres non nulles, 2 à 2 différentes convergent vers λ . Soit e_n des vecteurs propres non nuls pour λ_n et posons $E_n := \mathrm{Vect}(e_0, ..., e_n)$.

Alors $(E_n)_{n\in\mathbb{N}}$ est une suite croissante (car les λ_i sont 2 à 2 distincts) de sev fermés (car de dimension finie), invariants par u. Par un raisonnement analogue à (2), il existe $y_n \in E_n$ unitaires tels que si $n \neq m$ alors :

$$\left\| u\left(\frac{y_n}{\lambda_n}\right) - u\left(\frac{y_m}{\lambda_m}\right) \right\| \geqslant \frac{1}{2}$$

ce qui contredit u compact.

5. Si $0 \notin \operatorname{Sp}(u)$ alors u est inversible et $u^{-1} \in \mathcal{L}(E)$. Puisque u est compact :

$$\overline{B}_E = u^{-1} \left[\underbrace{u(\overline{B}_E)}_{\text{adh cpcte}} \right] \quad \text{est compacte}$$

D'après Riesz, E est de dimension infinie.

4 Opérateurs auto-adjoints

4.1 Adjoint, auto-adjoint et propriétés

Soit \mathcal{H} un espace de Hilbert et $u \in \mathcal{L}(\mathcal{H})$.

Propriété 10 -

 $\exists ! u^* \in \mathcal{L}(\mathcal{H}) \text{ tel que} :$

$$\forall x, y \in \mathcal{H} \quad \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

appelé adjoint de u. De plus :

- 1. $u^{**} = u$ (involutive)
- 2. $||u^*|| = ||u||$ (isométrique)
- 3. $(v \circ u)^* = u^* \circ v^*$ (contravriante)
- 4. $id^* = id$
- 5. u^* est inversible $\Leftrightarrow u$ est inversible et $(u^*)^{-1} = (u^{-1})^*$.
- 6. $(u + \lambda v)^* = u^* + \bar{\lambda}v^*$ (anti-linéaire)
- 7. $||u^* \circ u|| = ||u \circ u^*|| = ||u||^2$ (propriété d'algèbre stellaire)

Preuve.

Unicité. Si u^* et $\widehat{u^*}$ vérifient les bonnes proprétés :

$$\forall x, y, \langle x, u^*(y) \rangle = \langle x, \widehat{u^*} \rangle = \langle u(x), y \rangle$$

Donc $\forall x, y, \ \langle x, u^*(y) - \widehat{u^*}(y) \rangle = 0$. Donc $\forall y, \ u^*(y) - \widehat{u^*}(y)$ est orthogonal à tout vecteur. Comme $\mathcal{H}^{\perp} = \{0\}, \ u^*(y) = \widehat{u^*}(y)$.

 $Existence. \quad {\bf Soit}:$

$$\varphi \colon \left\{ \begin{array}{ccc} \mathcal{H} & \longrightarrow & \overline{\mathcal{H}^*} \\ x & \longmapsto & \{y \mapsto \langle x, y \rangle \} \end{array} \right.$$

l'isomorphisme de Riesz-Frechet. Alors pour $u^* := \varphi^{-1} \circ u^T \circ \varphi$ convient.

- 1. Involution : ok par unicité
- 2. L'isomorphisme de Riesz-Frechet préserve la norme donc :

$$||u^*|| = ||\varphi^{-1} \circ u^T \circ \varphi|| = ||u^T|| = ||u||$$

- 3. ok par unicité
- 4. ok par unicité
- 5. ok par unicité
- 6. ok par unicité
- 7. D'un côté,

$$||u^* \circ u|| \le ||u^*|| ||u|| = ||u||^2$$

On a aussi:

$$||u(x)||^2 = \langle u(x), u(x) \rangle = \langle u^* \circ u(x), x \rangle$$

Par Cauchy-Schwarz,

$$||u(x)||^2 \le ||u^* \circ u(x)|||x|| \le ||u^* \circ u|||x||^2$$

D'où $||u||^2 \le ||u^* \circ u||$. Donc $||u^* \circ u|| = ||u||^2$. Par $u \to u^*$ et $u^{**} = u$ on a de même $||u \circ u^*|| = ||u||^2$

Définition 13 (auto-adjoint) -

u est auto-adjoint si $u = u^*$. Il est positif si $\langle u(x), x \rangle \geqslant 0 \ \forall x \in \mathcal{H}$.

Exemple.

- Soit (X, \mathcal{A}, μ) un espace mesuré σ -fini
- Soit $N \in \mathcal{L}^2((X, \mathcal{A}, \mu) \otimes (X, \mathcal{A}, \mu))$. L'adjoint de l'opérateur K_N de type Hilbert-Schmidt de noyau N est l'opératuer K_{N^*} de type Hilbert-Schmidt de noyau N^* : $(x, y) \mapsto \overline{N(y, x)}$.

$$\langle K_N(f), g \rangle = \int_X \left(\int_X N(x, y) f(y) dy \right) \overline{g(x)} dx$$
$$= \int_X \int_X N(x, y) f(y) \overline{g(x)} dy dx$$
$$= \int_X \int_X N(x, y) f(y) \overline{g(x)} dx dy$$

Et :

$$\langle f, K_{N^*}(g) \rangle = \int_X f(y) \int_X \overline{N^*(y, x)g(x)} dx dy$$
$$= \int_X \int_X f(y) \overline{\overline{N(x, y)}g(x)} dx dy$$
$$= \int_X \int_X N(x, y) f(y) \overline{g(x)} dx dy$$

D'où le résultat.

Si N est réel symétrique, K_N est auto-adjoint.

Remarque.

- Si u est auto-adjoint $(x, y) \mapsto \langle u(x), y \rangle$ est une forme sesquilinéaire hermitienne, continue (et positive si u l'est).
- Positif \Rightarrow auto-adjoint. Montrons que :

$$\langle u(x), y \rangle = \langle x, u(y) \rangle$$
 (1)

Comme le produit scalaire est hermitien, $\langle u(x), y \rangle = \overline{\langle y, u(x) \rangle}$ (2). D'où :

$$(1) = (2) \quad \Leftrightarrow \quad \left\{ \begin{array}{l} \Re \left(\langle u(x), y \rangle - \langle u(y), x \rangle \right) = 0 & (3) \\ \Im \left(\langle u(x), y \rangle + \langle u(y), x \rangle \right) = 0 & (4) \end{array} \right.$$

Or,

$$\langle u(x), y \rangle + \langle u(y), x \rangle = \langle u(x+y), x+y \rangle - \langle u(x), x \rangle - \langle u(y), y \rangle \in \mathbb{R}$$

Donc (3) ok et (4) ok pour $y \to iy$.

- $u^* \circ u$ et $u \circ u^*$ sont auto-adjoints positifs.
- En dimension finie, si u a pour matrice M alors u^* a pour matrice \overline{M}^T (dans les mêmes bases).

Lemme 2

 $\forall E, F$ espaces de Banach, $\forall v \in \mathcal{L}(E, F)$, si $\exists c > 0$, $\forall x \in E \|v(x)\| \ge c\|x\|$ alors v(E) est fermé et $v: E \to v(E)$ est un homéomorphisme.

Preuve.

Soit $(x_n)_{n\in\mathbb{N}}$ dans E tq $v(x_n)\xrightarrow[n\to+\infty]{}y\in F$. Montrons que $y\in v(E)$. $[v(x_n)]$ est de Cauchy donc par l'hypothèse (x_n) est de Cauchy. Par complétude $x_n\xrightarrow[n\to+\infty]{}x\in E$. Par continuité, $v(x_n)\xrightarrow[n\to+\infty]{}v(x)$. D'où $y=v(x)\in v(E)$.

Or, v est injectif par hypothèse, donc $v \colon E \longrightarrow v(E)$ est une bijection linéaire continue entre un Banach (E) et v(E) qui est un fermé d'un Banach donc encore un Banach. Par le théorème de Banach, v est un homéomorphisme.

- Propriété 11 -

- 1. $\operatorname{Sp}(u^*) = \operatorname{Sp}(u)$
- 2. $u(\mathcal{H})^{\perp} = \ker(u^*)$. En particuler, u est d'image dense ssi u^* est injectif.
- 3. $u \text{ compact} \Leftrightarrow u^* \text{ compact}$

Si de plus u est auto-adjoint :

- 4. $\forall E \text{ sev de } \mathcal{H}, \text{ si } u(E) \subset E \text{ alors } u(E^{\perp}) \subset E^{\perp}.$
- 5. Si $\mathcal{H} \neq \{0\}$, soient $M = \sup_{\|x\|=1} \langle u(x), x \rangle$ et $m = \inf_{\|x\|=1} \langle u(x), x \rangle$. Alors :
 - $\operatorname{Sp}(u)$ est réel, contenu dans [m, M].
 - $m, M \in \operatorname{Sp}(u)$
 - $\rho(u) = ||u|| = \sup_{||x||=1} |\langle u(x), x \rangle| = \max\{M, -m\}$

En particulier $Sp(u) = \{0\} \implies u = 0$.

- 6. $\operatorname{Sp}_{res}(u) = \emptyset$
- 7. Critère de Weyl : $\mathrm{Sp}(u) = \sigma(u)$ spectre de Weyl où :

$$\sigma(u) = \left\{ \lambda \in \mathbb{C} \mid \forall n \in \mathbb{N}, \ \exists x_n \in \mathcal{H} \ \mathrm{tq} \ \|x_n\| = 1 \ \mathrm{et} \ \|u(x_n) - \lambda x_n\| \xrightarrow[n \to +\infty]{} 0 \right\}$$

Preuve.

- 1. $(u \overline{\lambda}id)$ inversible $\Leftrightarrow (u \overline{\lambda}id)^* = u^* \lambda id$ inversible
- 2.

$$x \in u(\mathcal{H})^{\perp} \Leftrightarrow \forall y \in \mathcal{H} \ \langle u(y), x \rangle = 0$$
$$\Leftrightarrow \forall y \in \mathcal{H} \ \langle y, u^*(x) \rangle = 0$$
$$\Leftrightarrow u^*(x) = 0$$
$$\Leftrightarrow x \in \ker u^*$$

- 3. $u^* = \varphi^{-1} \circ u^T \circ \varphi \longrightarrow \text{Schauder} + \text{Continuit\'e de Riesz-Fr\'echet}$
- 4. u auto-adjoint. Soit $x \in E^{\perp}$.

$$\forall y \in E, \ \langle u(x), y \rangle = \langle \underset{\in E^T}{x}, u(y) \rangle = 0$$

Donc $u(x) \in E^{\perp}$.

5. $\forall x \in \mathcal{H} \ \langle u(x), x \rangle = \langle x, u(x) \rangle = \overline{\langle u(x), x \rangle}$, donc $\langle u(x), x \rangle \in \mathbb{R}$. Si x est unitaire, $|\langle u(x), x \rangle| \leq ||u||$ par Cauchy-Schwarz. Donc M, m bien définis. Montrons que $\mathrm{Sp}(u)$ est réel : • Si $\lambda \in Vp(u)$, si $x \neq 0$ est un vecteur propre non nul de λ :

$$\lambda \underbrace{\langle x,x\rangle}_{\neq 0} = \langle u(x),x\rangle = \langle x,u(x)\rangle = \langle x,\lambda x\rangle = \bar{\lambda}\underbrace{\langle x,x\rangle}_{\neq 0}$$

Donc $\lambda = \bar{\lambda}$, d'où $\lambda \in \mathbb{R}$.

• Soit $\lambda \in \mathbb{C} \backslash \mathbb{R}$ et $v := u - \lambda id$.

$$\forall x \in \mathcal{H} \quad |\Im(\lambda)| \|x\|^2 = \left| \Im\left(\underbrace{\langle u(x), x \rangle}_{\in \mathbb{R}} - \lambda \langle x, x \rangle\right) \right|$$
$$= |\Im\langle v(x), x \rangle|$$
$$\leqslant \|v(x)\| \times \|x\|$$
$$\underset{C.S.}{\leqslant} \|v(x)\| \times \|x\|$$

Donc
$$\underbrace{|\Im(\lambda)|}_{\neq 0} ||x|| \leq ||v(x)||.$$

Par le lemme, $v(\mathcal{H})$ est fermé $(*_1)$. De plus, $v(\mathcal{H})^{\perp} = \ker(v^*) = \ker(u - \bar{\lambda}id) = \{0\}$ car $\bar{\lambda} \notin \operatorname{Vp}(u) \subset \mathbb{R}$. Donc $v(\mathcal{H})$ est dense $(*_2)$.

Par $(*_1)$ et $(*_2)$, $v(\mathcal{H}) = F$. Par suite v est inversible $\forall \lambda \in \mathbb{C} \setminus \mathbb{R}$.

Donc $\lambda \notin \operatorname{Sp}(u) \ \forall \lambda \in \mathbb{C} \backslash \mathbb{R}$. Donc $\operatorname{Sp}(u) \subset \mathbb{R}$.

Montrons maintenant que $\operatorname{Sp}(u) \subset]-\infty, M]$. En faisant $u \leftrightarrow -u$ on aurait $\operatorname{Sp}(u) \subset [m, +\infty[$. D'où $\operatorname{Sp}(u) \subset [m, M]$.

Si $\lambda > M$, posons $v_{\lambda} := \lambda id - u$ et :

$$a\colon \left\{ \begin{array}{ccc} \mathcal{H}\times\mathcal{H} & \longrightarrow & \mathbb{C} \\ (x,y) & \longmapsto & \langle v_\lambda(x),y\rangle \end{array} \right.$$

Alors a est sesquilinéaire, continue. De plus :

$$a(x,x) = \langle v_{\lambda}(x), x \rangle = \langle \lambda x, x \rangle - \langle u(x), x \rangle \geqslant \underbrace{(\lambda - M)}_{>0} ||x||^2$$

Donc a est coercive. Donc v_{λ} est injective, surjective par Lax-Milgram.

$$\forall y \in \mathcal{H}, \ \exists x \in \mathcal{H}, \ \forall z \in \mathcal{H} \ \langle v_{\lambda}(x), z \rangle = a(x, z) = \langle y, z \rangle$$

D'où $\lambda \notin \operatorname{Sp}(u)$. Montrons que $M \in \operatorname{Sp}(u)$. En faisant $u \leftrightarrow -u$, on a $m \in \operatorname{Sp}(u)$. Supposons par l'absurde que $v := M \operatorname{id} - u$ est inversible. Alors :

$$a: \left\{ \begin{array}{ccc} \mathcal{H} \times \mathcal{H} & \longrightarrow & \mathbb{C} \\ (x,y) & \longmapsto & \langle v(x), y \rangle \end{array} \right.$$

est une forme ses quilinéaire, hermitienne, continue, positive (par définition de M). Par Cauchy-Schwarz on a :

$$|a(x,y)|^2 \leqslant |a(x,x)||a(y,y)|$$
 i.e.
$$|\langle v(x),y\rangle|^2 \leqslant \langle v(x),x\rangle\langle v(y),y\rangle$$

Donc:

$$||v(x)|| = \sup_{\text{C.S. } ||y||=1} \langle v(x), y \rangle \leqslant \sqrt{\langle v(x), x \rangle ||v||}$$

Soit $(x_n)_{n\in\mathbb{N}}$ unitaire tel que $\langle u(x_n), x_n \rangle \xrightarrow[n \to +\infty]{} M$ (par définition de M). Alors $\langle v(x_n), x_n \rangle \xrightarrow[n \to +\infty]{} 0$ donc $v(x_n) \xrightarrow[n \to +\infty]{} 0$. Donc $x_n = v^{-1}(v(x_n)) \xrightarrow[n \to +\infty]{} 0$. Contradiction car $||x_n|| = 1 \ \forall n$.

Montrons que $K := \sup_{\|x\|=1} |\langle u(x), x \rangle| \geqslant \|u\|. \ \forall x, y \in \mathcal{H}.$

$$\begin{split} |4\Re\langle u(x),y\rangle| &= |\langle u(x+y),x+y\rangle - \langle u(x-y),x-y\rangle| \\ &\leqslant \left| \langle \frac{u(x+y)}{\|x+y\|},\frac{x+y}{\|x+y\|}\rangle \right| \|x+y\|^2 + \left| \langle \frac{u(x-y)}{\|x-y\|},\frac{x-y}{\|x-y\|}\rangle \right| \|x-y\|^2 \\ &\leqslant K\left(\|x+y\|^2 + \|x-y\|^2\right) \\ &= 2K\left(\|x\|^2 + \|y\|^2\right) \\ &= 4K\|x\|\|y\| \end{split}$$

Alors.

$$||u(x)||^2 = \langle u(x), u(x) \rangle = \Re \langle u(x), u(x) \rangle \leqslant K||x|| \times ||u(x)||$$

D'où $||u(x)|| \leq K||x||$. Puis $||u|| \leq K$. Alors :

$$||u|| \geqslant \rho(u) \geqslant \max\{M, -m\} = K \geqslant ||u||$$

Donc toutes ces inégalités sont des égalités.

6. $\forall \lambda \in \mathrm{Sp}(u) \backslash \mathrm{Vp}(u)$. $\lambda \in \mathbb{R} \mathrm{donc}$:

$$(u - \lambda id)^* = u^* - \bar{\lambda} id = u - \lambda id$$

Alors $\ker(u - \lambda \mathrm{id}) = \ker((u - \lambda \mathrm{id})^*) = \{0\} \operatorname{Par}(2), \Im(u - \lambda \mathrm{id})^{\perp} = \{0\}. \operatorname{Donc} \Im(u - \lambda \mathrm{id})$ est dense et $\lambda \notin \operatorname{Sp}_{\operatorname{res}}(u)$. Donc $\operatorname{Sp}_{\operatorname{res}}(u) = \emptyset$.

7. Montrons tout d'abord que $\sigma(u) \subset \mathrm{Sp}(u)$ (vrai pour tout u, pas besoin de l'hypothèse auto-adjoint):

Par contraposée : si $\lambda \notin \mathrm{Sp}(u)$, alors,

$$x_n := \underbrace{(u - \lambda \mathrm{id})^{-1} (u(x_n) - \lambda(x_n))}_{\mathcal{L}(\mathcal{H})} \xrightarrow[n \to +\infty]{} 0$$

quand $u(x_n) - \lambda x_n \xrightarrow[n \to +\infty]{} 0$. En particulier pour n assez grand, $||x_n|| < 1$ et donc $\lambda \notin \sigma(u)$. Donc $\sigma(u) \subset \operatorname{Sp}(u)$.

Montrons que $Sp(u) \subset \sigma(u)$:

Soit $\lambda \in \operatorname{Sp}(u) \subset \mathbb{R}$ (car u est auto-adjoint).

- Si $\lambda \in \text{Vp}(u)$ alors $A \in \sigma(u)$ (prendre pour x_n une suite constante égale à un vecteur propre unitaire pour λ)
- Sinon $v := u \lambda id$ est injective. Par (6) v est d'image dense. Par l'absurde, si $\lambda \notin \sigma(u)$ alors $\forall x \in \mathcal{H}, \, \exists N \in \mathbb{N}^*$ tel que $\|v(x)\| \geqslant \frac{1}{N} \|x\|$. Par le lemme, $\Im(v)$ est fermé. Donc égale à \mathcal{H} et v est surjective, contredit $\lambda \in \mathrm{Sp}(u)$.

Corollaire 4

Soit \mathcal{H} un Hilbert, $u \in \mathcal{L}(\mathcal{H})$ auto-adjoint. Alors:

$$u \text{ positif} \Leftrightarrow \operatorname{Sp}(u) \subset [0, +\infty[$$

4.2 Spectre essentiel

Soient \mathcal{H} un Hilbert et $u \in \mathcal{L}(\mathcal{H})$ auto-adjoint.

- Définition 14 -

Le spectre essentiel de u est :

$$\mathrm{Sp}_{\mathrm{ess}}(u) = \left\{ \lambda \in \mathbb{R} \mid \exists (x_n)_{n \in \mathbb{N}} \in \mathcal{H} \ \mathrm{tq} \ \|x_n\| = 1, \ u(x_n) - \lambda x_n \xrightarrow[n \to +\infty]{} 0 \right\}$$
 et $(x_n)_{n \in \mathbb{N}}$ n'admet pas de sous-suite convergente

Propriété 12 —

 $\operatorname{Sp}(u) = \operatorname{Sp}_{\operatorname{ess}}(u) \cup \operatorname{Vp}(u)$

- L'union n'est pas nécessairement disjointe.
- $\lambda \in \mathrm{Sp}(u) \backslash \mathrm{Sp}_{\mathrm{ess}}(u)$ est une valeur propre de multiplicité finie et isolée dans $\mathrm{Sp}(u)$.

Preuve.

- $\operatorname{Sp}_{\operatorname{ess}}(u) \subset \sigma(u) = \operatorname{Sp}(u)$ Donc $\operatorname{Sp}_{\operatorname{ess}}(u) \cup \operatorname{Vp}(u) \subset \operatorname{Sp}(u)$
- Si $\lambda \in \operatorname{Sp}(u)$ n'est pas isolée, montrons que $\lambda \in \operatorname{Sp}_{\operatorname{ess}}(u)$. Soit $(\lambda_n)_{n \in \mathbb{N}}$ tq $\lambda_n \xrightarrow[n \to +\infty]{} \lambda$ et $\forall n \ \lambda_n \neq \lambda$. Par le critère de Weyl, $\exists x_n \in \mathcal{H}$ unitaire tq $\|u(x_n) \lambda_n x_n\| \leqslant \frac{|\lambda \lambda_n|}{n}$. Alors :

$$||u(x_n) - \lambda x_n|| \leqslant \underbrace{||u(x_n) - \lambda_n x_n||}_{n \to +\infty} + \underbrace{||\lambda_n - \lambda||}_{n \to +\infty} \xrightarrow[n \to +\infty]{} 0$$

Il suffit de montrer que x_n n'admet pas de sous-suite convergente. Par l'absurde, quitte à extraire, supposons $x_n \xrightarrow[n \to +\infty]{} x \in \mathcal{H}$ unitaire. Alors $u(x) = \lambda x$ par continuité. Calculons :

$$\begin{aligned} |\lambda_n - \lambda| |\langle x_n, x \rangle| &= |(\lambda - \lambda_n) \langle x_n, x \rangle + \langle x_n, (u - \lambda \mathrm{id}) x \rangle| \\ &= |(\lambda - \lambda_n) \langle x_n, x \rangle + \langle (u - \lambda \mathrm{id}) x_n, x \rangle| \\ &= |\langle u(x_n) - \lambda_n x_n, x \rangle| \\ &\leqslant \|u(x_n) - \lambda_n x_n\| \underbrace{\|x\|}_{=1} \\ &\leqslant \frac{|\lambda_n - \lambda|}{n} \end{aligned}$$

Ainsi
$$|\langle x_n, x \rangle| \leq \frac{1}{n}$$
. Donc $\langle x_n, x \rangle \xrightarrow[n \to +\infty]{} 0$ contradit $\langle x_n, x \rangle \xrightarrow[n \to +\infty]{} \langle x, x \rangle = ||x||^2 = 1$

- Soit $\lambda \in \operatorname{Sp}(u) \backslash \operatorname{Sp}_{\operatorname{ess}}(u)$. Montrons que λ est une valeur propre. Par le critère de Weyl, $\exists (x_n) \in \mathcal{H}$ tel que $\|u(x_n) \lambda x_n\| \xrightarrow[n \to +\infty]{} 0$. Comme $\lambda \notin \operatorname{Sp}_{\operatorname{ess}}(u)$, quitte à extraire, $x_n \xrightarrow[n \to +\infty]{} x$. Mais alors $\|x\| = 1$ et $u(x) \lambda x = 0$, donc $\lambda \in \operatorname{Vp}(u)$.
- Si $E_{\lambda} = \ker(u \lambda \mathrm{id})$ est de dimension infinie, alors il existe $(e_n)_{n \in \mathbb{N}}$ orthonormée dans E_{λ} donc unitaires et $u(e_n) \lambda e_n = 0 \xrightarrow[n \to +\infty]{} 0$ et n'admet pas de sous-suite convergente. Donc $\lambda \in \mathrm{Sp}_{\mathrm{ess}}(u)$.

Exercice. Soit \mathcal{H} un Hilbert séparable, F sev fermé de \mathcal{H} de co-dimension infinie; $(e_n)_{n\in\mathbb{N}}$ base hilbertienne de F^{\perp} , (λ_n) suite dans $]0; +\infty[$ $\lambda \xrightarrow[n \to +\infty]{} 0$. Montrer que $\exists ! u \in \mathcal{L}(\mathcal{H})$ auto-adjoint, positif, compact tel que $u|_F = 0$ et $\forall n \in \mathbb{N} \ u(e_n) = \lambda_n e_n$.

5 Décomposition spectrale des opérateurs auto-adjoints compacts

Théorème 14

Un opérateur auto-adjoint compact d'un espace de Hilbert séparable est diagonalisable en base Hilbertienne.

Plus précisément...

Théorème 15

Soit \mathcal{H} un Hilbert, $u \in \mathcal{L}(\mathcal{H})$ un opérateur auto-adjoint compact. Alors $\exists (\lambda_n)_{0 \leq n < N_+}$ et $(\nu_k)_{0 \leq k < N_-}$ suites finies ou infinies qui convergent vers 0 si infinies telles que si $E_{\mu} = \ker(u - \mu \mathrm{id})$:

- 1. Les valeurs spectrales de u, non nulles, sont les λ_n et $-\nu_k$. Ce sont des valeurs propres de multiplicité finie.
- 2. $||u|| = \max\{\lambda_0, \nu_0\} \text{ si } u \neq 0$
- 3. \mathcal{H} est somme Hilbertienne de $E_0,\,E_{\lambda_n}$ et $E_{-\nu_k}$ (donc E_0^\perp est séparable).
- 4. (principe de Rayleigh):

$$\lambda_n = \max_{x \in (E_0 \oplus \dots \oplus E_{\lambda_{n-1}})^{\perp}, ||x|| = 1} \langle u(x), x \rangle$$

$$-\nu_k = \min_{x \in (E_0 \oplus E_{-\nu_0} \dots \oplus E_{\nu_{k-1}})^{\perp}, ||x|| \leqslant 1} \langle u(x), x \rangle$$

Preuve.

- 1. découle des propriétés sur les opérateurs auto-adjoints et compacts
- 2. idem
- 3. Ces espaces (fermés) sont deux à deux orthogonaux :

$$\forall x, y \in \mathcal{H}, \text{ si } u(x) = \lambda x, \ u(y) = \mu y \text{ avec } \lambda \neq \mu \in \mathbb{R}$$

Alors
$$\mu\langle x,y\rangle=\langle x,u(y)\rangle=\langle u(x),y\rangle=\lambda\langle x,y\rangle.$$
 Ainsi $\langle x,y\rangle=0.$

Montrons maintenant que le sous-espace F qu'ils engendrent est dense. $u(F) \subset F \Rightarrow u(F^{\perp}) \subset F^{\perp}$ et $u|_{F^{\perp}}$ est auto-adjoint, compact, sans valeur propre non nulle. Donc $\operatorname{Sp}(u|_{F^{\perp}}) = \{0\}$ donc $u|_{F^{\perp}} = 0$ et $F^{\perp} \subset E_0 \subset F$. Donc $F^{\perp} = \{0\}$ et F est dense.

4. On applique à $u|_{(E_0 \oplus ... \oplus E_{\lambda_{n-1}})^{\perp}}$

Corollaire 5

Si u est un opérateur auto-adjoint, positif, compact alors :

 $\exists \lambda_n \in]0; +\infty[, \ \lambda_n \text{ décroissante} \xrightarrow[n \to +\infty]{} 0 \text{ telle que } \lambda_n \text{ est une valeur propre de multiplicité finie et, en notant } E_{\lambda_n} = \ker(u - \lambda_n \mathrm{id}),$

- $\operatorname{Sp}(u) = \{0\} \cup \{\lambda_n \mid n \in \mathbb{N}\}\$
- $\mathcal{H} = \ker u \bigoplus_{n \in \mathbb{N}} E_{\lambda_n}$ et $\lambda_0 = \sup_{x \in (\ker u)^{\perp}, ||x|| = 1} \langle u(x), x \rangle$

6 Calcul fonctionnel continu

Lorsque $u \in \mathcal{L}(\mathcal{H})$ est auto-adjoint, comment calculer le spectre de u^2 , exp u, etc. en fonction de u?

6.1 Algèbre stellaires

Ici algèbre désigne des algèbres unifères complexes et un morphisme d'algèbres est un morphisme préservant les unités.

- **Définition 15** (algère involutive) -

Une algèbre involutive est une algèbre A munie de $\left\{ \begin{array}{ccc} A & \longrightarrow & A \\ u & \longmapsto & u^* \end{array} \right.$ appelé adjoint telle que $\forall (u,v) \in A^2, \ \forall \lambda \in \mathbb{C}$:

- (involutive) $(u^*)^* = u$
- (anti-linéaire) $(u + \lambda v)^* = u^* + \bar{\lambda}v^*$
- (anti-multiplicative) $(uv)^* = v^*u^*$

Remarque. $1^* = 1$ $(u^n)^* = (u^*)^n$ u inversible $\Leftrightarrow u^*$ l'est et $(u^*)^{-1} = (u^{-1})^*$

- **Définition 16** (auto-adjoint, unitaire, normal) -

 $u \in A$ est :

- $\bullet\,$ auto-adjoint si $u=u^*$
- unitaire si $uu^* = u^*u = 1$
- normal si $uu^* = u^*u$

Remarque.

- 1 est auto-adjoint et unitaire
- $(u + u^*)$, $i(u + u^*)$, $uu^* u^*u$ sont auto-adjoints

Définition 17

 $\forall u \in A$,

 $\operatorname{Sp}(u) = \operatorname{Sp}_A(u) = \{ \lambda \in \mathbb{C} \mid u - \lambda \text{id non inversible dans } A \}$

Remarque. $\operatorname{Sp}(u^*) = \overline{\operatorname{Sp}(u)} \operatorname{car} (u - \lambda \operatorname{id})^* = u^* - \overline{\lambda} \operatorname{id}$. Si u est inversible on a aussi $\operatorname{Sp}(u^{-1}) = \operatorname{Sp}(u)^{-1} \operatorname{car} (u^{-1} - \lambda \operatorname{id}) = -\lambda u^{-1} \left(u - \frac{1}{\lambda} \operatorname{id}\right)$.

- **Définition 18** (morphisme d'algèbres involutives) -

Si A, B sont deux algèbres involtives, $\varphi \colon A \longrightarrow B$ est morphisme d'algèbres involutives si :

- $\bullet \ \varphi$ est un morphisme d'algèbres
- $\forall u \in A \quad \varphi(u^*)\varphi(u)^*$

Remarque. $\forall u \in A, \operatorname{Sp}_B \varphi(u) \subset \operatorname{Sp}_A(u) \operatorname{car} \varphi(u - \lambda \operatorname{id}) = \varphi(u) - \lambda \operatorname{id}.$

- **Définition 19** (algèbre normée involutive) —

Une algèbre normée involutive est une algèbre involutive A munie d'une norme $\|.\|$ telle que $\forall u,v\in A$:

- (sous-multiplicative) $||uv|| \le ||u|| ||v||$
- (isométrie) $||u^*|| = ||u||$

Exemple.

- $\forall K$ compact de \mathbb{C} , $\mathcal{L}^{\infty}(K) = \{f : K \longrightarrow \mathbb{C} \text{ mes. born\'ees}\}$ avec les lois point par point
- $f \longmapsto \bar{f}$
- $\bullet ||f|| = \sup_{x \in K} |f(x)|$

est une algèbre normée involutive.

Définition 20 (algèbre stellaire) —

Une algèbre stellaire (ou \mathbb{C}^* -algèbre) est une algèbre normée involutive A qui vérifie :

- \bullet A est complète
- $\forall u \in A \ ||uu^*|| = ||u||^2$

Exemples.

- 1. Si \mathcal{H} est un Hilbert complexe, alors l'espace vectoriel $\mathcal{L}(\mathcal{H})$ muni de la composition, de $\{u \mapsto u^*\}$ et de la norme d'opérateurs est une algèbre stellaire.
- 2. $\forall X$ e.m. compact, $\mathcal{C}(X) = \mathcal{C}(X,\mathbb{C})$ avec les lois point par point, muni de $\{f \mapsto \bar{f}\}$ et de la norme $\|.\|_{\infty}$ est une algèbre stellaire.

- **Définition 21** (rayon spectral) —

 $\forall u \in A$ algèbre normée involutive, on définit le rayon spectral de u par :

$$\rho(u):=\lim_{n\to +\infty}\|u^n\|^{\frac{1}{n}}=\inf_{n\in\mathbb{N}}\|u^n\|^{\frac{1}{n}}$$

- Propriété 13 -

 $\forall u \in A$ algèbre normée involutive.

- 1. $\rho(u^*) = \rho(u) \leqslant ||u||$
- 2. Si A est complète, $\rho(u) = \min\{r \in [0, ||u||] \mid \operatorname{Sp}(u) \subset \overline{\mathcal{B}(0, r)}\}$ et $\operatorname{Sp}(u) \neq \emptyset \Leftrightarrow A \neq \{0\}$
- 3. Si A est stellaire, u auto-adjoint alors $\rho(u) = ||u||$.
- 4. Si A,B sont des algèbres stellaires, et $\varphi\colon A\longrightarrow B$ est un morphisme d'algèbres involutives alors $\|\varphi\|\leqslant 1$

Preuve.

- 1. ok
- 2. même démonstration

3.
$$\|u\|^2 = \sup_{\text{auto-adj}} \|uu^*\| = \sup_{\text{alg stellaire}} \|u\|^2$$
. Ainsi $\|u^{2^n}\| = \|u\|^{2^n}$ et :

$$\rho(u) = \lim_{n \to +\infty} \|u^{2^n}\|^{\frac{1}{2^n}} = \lim_{n \to +\infty} \|u\| = \|u\|$$

4. Montrons que $\|\varphi\| \leq 1$:

$$\|\varphi(u)\|^2 = \|\underbrace{\varphi(u)\varphi(u)^*}\| \text{ stellaire}$$

$$= \rho\Big(\varphi(u)\varphi(u)^*\Big)$$

$$= \rho(\varphi(uu^*))$$

$$\leqslant \rho(uu^*)$$

$$= \|uu^*\|$$

$$= \|u\|^2 \text{ par stellarité}$$

$$\Rightarrow \|\varphi\| \leqslant 1$$