Advanced Calculus I

• single variable real analysis

Real numbers (\mathbb{R})

- $(\mathbb{R}, +, \cdot)$ is a field.
- (\mathbb{R}, \geq) is a partially ordered set.

Absolute value

$$\bullet |x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

• |x-a| is the distance between x and a.

Properties of the absolute value

1.
$$|x| \ge 0$$

$$2. |x| = 0 \Leftrightarrow x = 0$$

3.
$$|xy| = |x| \cdot |y|$$

$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, y \neq 0$$

4.
$$|x + y| \le |x| + |y|$$

 $|x| - |y| \le |x - y|$

5. If
$$a > 0$$
 then

$$|x| < a \Leftrightarrow -a < x < a$$

 $|x| > a \Leftrightarrow x > a \text{ or } x < -a$

Other consequences

1.
$$|-x| = |x|$$

2. If
$$a > 0$$
 then

$$|x-b| < a \Leftrightarrow b-a < x < b+a$$

3.
$$|x - y| = 0 \Leftrightarrow x = y$$

4.
$$||x| - |y|| \le |x - y|$$

Supremum and Infimum

Definition. Let $S \subseteq \mathbb{R}$ and $u, v \in \mathbb{R}$.

- 1. u is an upper bound of S if for all $s \in S$, $s \le u$
- 2. v is a lower bound of S if for all $s \in S$, $s \ge v$

Definition.

- 1. If S has an upper [lower] bound, then S is said to be bounded above [below].
- 2. If S is bounded above and below, then S is said to be bounded.

Remark.

1. S is bounded above if

$$(\exists u \in \mathbb{R})(\forall s \in S)(s \le u)$$

S is bounded below if

 $(\exists v \in \mathbb{R})(\forall s \in S)(s \ge v)$

2. S is bounded

$$\Leftrightarrow (\exists u, v \in \mathbb{R})(\forall s \in S)(v \le s \le u)$$

$$\Leftrightarrow (\exists M > 0)(\forall s \in S)(|s| \le M)$$

Definition. Let $S \subseteq \mathbb{R}$ and $u, v \in \mathbb{R}$.

- 1. u is the supremum (or least upper bound) of S if:
 - (a) u is an upper bound of S
 - (b) and for all upper bounds d of S, $u \leq d$.
- 2. v is the infimum (or greatest lower bound) of S if:
 - (a) v is a lower bound of S
 - (b) and for all lower bounds b of $S, v \geq b$.

Remark.

1. Notation:

$$\sup S=u$$

$$\inf S = v$$

- 2. The supremum and infimum of S are not necessarily in S.
- 3. Since \emptyset is bounded above and below by any $a \in \mathbb{R}$, \emptyset has neither a supremum nor an infimum.
- 4. S is not bounded above implies that S has no supremum.
 - S is not bounded below implies that S has no infimum.

Theorem.

Let $S \subseteq \mathbb{R}$. If a supremum [infimum] exists, then it is unique.

Proof.

Suppose that u and v are suprema of S. For the sake of contradiction, assume that $u \neq v$. Without loss of generality, assume that u < v. By definition of supremum, u is an upper bound of S. Also by definition of supremum, $v \leq d$ for any upper bound d of S. Taking d = u, we get $v \leq u$. Then $u < v \leq u$, which is absurd. Thus, u = v.

Theorem.

Let u be an upper bound of a non-empty set $S \subseteq \mathbb{R}$. Then the following are equivalent:

- 1. $\sup S = u$
- 2. $(\forall x \in \mathbb{R})(x < u \Rightarrow (\exists s \in S)(x < s))$
- 3. $(\forall \varepsilon > 0)(\exists s \in S)(u \varepsilon < s)$

Proof.

 $[(1) \Rightarrow (2)]$ Suppose that $\sup S = u$. Let x < u. Since u is the least upper bound then any number less than u is not an upper bound. In particular, x is not an upper bound. Thus, there exists $s \in S$ such that x < s.

[(2) \Rightarrow (3)] Suppose that $(\forall x \in \mathbb{R})(x < u \Rightarrow (\exists s \in S)(x < s))$. Let $\varepsilon > 0$. Take $x = u - \varepsilon < u$. Thus,

there exists $s \in S$ such that x < s so that $u - \varepsilon < s$. $[(3) \Rightarrow (2)]$ Suppose that $(\forall \varepsilon > 0)(\exists s \in S)(u - \varepsilon < s)$. For the sake of contradiction, suppose that u is not the supremum of S. Thus, there exists w such that w is an upper bound of S and w < u. Take $\varepsilon = u - w > 0$. Then, there exists s such that $u - \varepsilon < s$ so that w < s. Thus, w is not an upper bound, which is a contradiction.

Theorem.

Let v be a lower bound of a non-empty set $S \subseteq \mathbb{R}$. Then the following are equivalent:

- 1. $\inf S = v$
- 2. $(\forall x \in \mathbb{R})(x > v \Rightarrow (\exists s \in S)(x > s)$
- 3. $(\forall \varepsilon > 0)(\exists s \in S)(v + \varepsilon > s)$

Proof.

Left as an exercise. \blacksquare

Definition.

Let $a \in \mathbb{R}$ and $S \subseteq \mathbb{R}$.

- 1. $a + S = \{a + s \mid s \in S\}$
- 2. $-S = \{-s \mid s \in S\}$

Theorem.

Let $S \subseteq \mathbb{R}$ and $a \in \mathbb{R}$.

- 1. If S is bounded above then $\sup(a + S) = a + \sup S$.
- 2. If S is bounded below then $\inf(a+S) = a + \inf S$.
- 3. If S is counded then
 - (a) $\inf(-S) = -\sup S$
 - (b) $\sup(-S) = -\inf S$

Proof.

Let $S \subseteq \mathbb{R}$ and $a \in \mathbb{R}$.

- 1. Let $u = \sup S$ and $v = \sup(a + S)$. Since $u = \sup S$, we know that u is an upper bound of S. Hence, for all $s \in S$, $s \le u$. Thus, for all $s \in S$, $a + s \le u + a$. Then, u + a is an upper bound of S. Therefore, since v is the least upper bound of S, $v \le u + a$. Since $v = \sup(a + S)$, we know that v is an upper bound of a + S. Hence, for all $s \in S$, $a + s \le v$ so that $s \le v a$ for all $s \in S$. Thus, v is an upper bound of S. Since u is the least upper bound of S, we know that $u \le v a$ so that $u + a \le v$.
- 2. Exercise.
- 3. Exercise. ■

The Completeness Axiom of \mathbb{R}

• every non-empty subset of \mathbb{R} that has an upper [lower] bound has a supremum [infimum].

Theorem. Archimedean Property.

- 1. For every $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that x < n.
- 2. For every y > 0, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < y$.

Proof.

- 1. Suppose, for the sake of contradiction, that there exists $x \in \mathbb{R}$ such that for every $n \in \mathbb{N}$, $x \geq n$. Thus, x is an upper bound of \mathbb{N} . Also, \mathbb{N} is clearly non-empty. Thus, by the completeness axiom of \mathbb{R} , there exists $u \in \mathbb{R}$ such that $u = \sup \mathbb{N}$. Since 1 > 0, by a previous theorem, we know that there exists $n \in \mathbb{N}$ such that u 1 < n so that $u < n + 1 \in \mathbb{N}$. Thus, u is not an upper bound of \mathbb{N} so that u is not a supremum of \mathbb{N} , which is a contradiction.
- 2. Let y > 0. Take x = 1/y, then there exists $n \in \mathbb{N}$ such that $\frac{1}{y} = x < n$ so that $\frac{1}{n} < y$.

Corollary.

For any y > 0, there exists $n \in \mathbb{N}$ such that $n-1 \le y < n$.

Proof.

Let y > 0. Consider the set $S = \{n \in \mathbb{N} \mid y < n\}$. By the Archimedean Property, $S \neq \emptyset$. By the well-ordering principle, there exists $n \in S$ such that $n = \min S$ so that for all $m \in S$, $m \geq n$. Since $n \in S$, we know that y < n. From the fact that n is the least element of S, we get that m < n implies that $m \notin S$ for any $m \in \mathbb{R}$. In particular, n - 1 < n so that $n - 1 \notin S$. Thus, $n - 1 \leq y$.

Theorem. Density Theorem.

For every $x,y \in \mathbb{R}$ such that x < y, there exists $r \in \mathbb{Q}$ such that x < r < y.

Proof.

Since y-x>0, then by the Archimedean Property, there exists $n\in\mathbb{N}$ such that $\frac{1}{n}< y-x$. Thus, 1<|ny-nx|. This means that the distance of ny from nx is greater than 1 so that there exists $m\in\mathbb{Z}$ such that nx< m< ny and thus, $x<\frac{m}{n}< y$. Taking $r=\frac{m}{n}$, we are done. \blacksquare

Corollary.

For every $x, y \in \mathbb{R}$ such that x < y, there exists $r' \in \mathbb{Q}^{c}$ such that x < r' < y.

Proof.

Exercise.

Nested Interval Property.

Definition.

A set $S \subseteq \mathbb{R}$ that has at least two elements is an interval if for every $s, r \in S$ such that r < s, we have that $\{x \in \mathbb{R} \mid r < x < s\} \subseteq S$.

Definition.

A collection $(I_n)_{n=1}^{\infty}$ of intervals in \mathbb{R} is said to be nested if $I_{j+1} \subset I_j$ for all $j \in \mathbb{N}$.

Theorem. Nested Interval Property.

Let the collection $([a_n, b_n])_{n=1}^{\infty}$ be nested. Then the following are true:

- 1. $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$
- 2. $\inf\{b_n a_n \mid n \in \mathbb{N}\} = 0$ implies $\exists ! x \in \mathbb{R}$ such that $\bigcap_{n=1}^{\infty} [a_n, b_n] = \{x\}$

Proof.

Observe that since $([a_n,b_n])$ is nested, then for all $i,j\in\mathbb{N}$ such that $i\leq j$, we have that $a_i\leq a_j$ and $b_i\geq b_j$. And since each $[a_n,b_n]$ is an interval, we know that $a_n< b_n$ for all $n\in\mathbb{N}$. Hence, for any $n\in\mathbb{N}$, we have that $1\leq n$ so that $b_n\leq b_1$ and thus, $a_n< b_1$.

- 1. Let $A = \{a_n \mid n \in \mathbb{N}\}$. Since A is non-empty and bounded above by b_1 , then by the completeness axiom of \mathbb{R} , there exists $x \in \mathbb{R}$ such that $\sup A = x$ so that x is an upper bound of A. Thus, $a_n \leq x$ for any $n \in \mathbb{N}$. Let $m, n \in \mathbb{R}$. If $m \leq n$ then $a_m \leq a_n < b_n$. If m > n then $a_m < b_m \leq b_n$. Thus, b_n is an upper bound of A. Since x is the least upper bound of A, we have that $x \leq b_n$.
- 2. Let $B = \{b_n \mid n \in \mathbb{N}\}$. Similar arguments show that if $y = \inf B$ then for any $m, n \in \mathbb{N}$, $a_m \le y \le b_n$. Assume $\inf\{b_n a_n \mid n \in \mathbb{N}\} = 0$. Note that if $z \in \bigcap_{n=1}^{\infty} [a_n, b_n]$, then $x \le z \le y$. Otherwise, if for example, z > y, then there exists $n \in \mathbb{N}$ such that $b_n < z$ so that $z \notin [a_n, b_n]$. This implies that $\bigcap_{n=1}^{\infty} [a_n, b_n] \subseteq [x, y]$. Note that for all $n \in \mathbb{N}$, $b_n a_n \ge y x$ since $b_n \ge y$

and $a_n \leq x$. Thus, y - x is a lower bound of $\{b_n - a_n \mid n \in \mathbb{N}\}$. Since $0 = \inf\{b_n - a_n \mid n \in \mathbb{N}\}$, we have that $y - x \leq 0$ so that $y \leq x$. Since $x \leq y$, then x = y.

Topology.

• study of properties of a space that is preserved under continuous deformations

Definition.

Let $\varepsilon > 0$ and $x \in \mathbb{R}$. The ε -neighborhood of x, denoted by $N_{\varepsilon}(x)$, is the set $N_{\varepsilon}(x) = \{y \in \mathbb{R} \mid |x-y| < \varepsilon\}$, also called the ball about x of radius ε .

Definition.

- 1. A set $G \subseteq \mathbb{R}$ is open if for all $x \in G$, there exists $\varepsilon > 0$ such that $N_{\varepsilon}(x) \subseteq G$.
- 2. A set $F \subseteq \mathbb{R}$ is closed if F^{c} is open.

Theorem.

- 1. The arbitrary union of open sets and finite intersections of open sets are open.
- 2. The arbitrary intersection of closed sets and finite unions of closed sets are closed.

Proof.

- 1. Let G_{α} be open for all $\alpha \in \mathbb{R}$. Define $G = \bigcup_{\alpha \in \mathbb{R}} G_{\alpha}$. Let $x \in G$. Then, there exists $\alpha \in \mathbb{R}$ such that $x \in G_{\alpha}$. Since G_{α} is open, we know that there exists $\varepsilon > 0$ such that $N_{\varepsilon}(x) \subseteq G_{\alpha}$. Thus, $N_{\varepsilon}(x) \subseteq G_{\alpha} \subseteq G$.
 - Let G_1, G_2, \ldots, G_n be open sets. Define $G = \bigcap_{i=1}^n G_i$. Let $x \in G$. Then, for $i = 1, 2, \ldots, n$, $x \in G_i$. Since G_i is open, there exists $\varepsilon_i > 0$ such that $N_{\varepsilon_i}(x) \subseteq G_i$. Take $\varepsilon = \min\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$. Then, for $i = 1, 2, \ldots, n$, we have that $N_{\varepsilon}(x) \subseteq N_{\varepsilon_i}(x)$ so that $N_{\varepsilon}(x) \subseteq G_i$. Thus, $N_{\varepsilon}(x) \subseteq \bigcap_{i=1}^n G_i = G$.
- 2. Exercise. ■

Definition.

Let $x \in \mathbb{R}$ and $A \subseteq \mathbb{R}$. We say that x is a cluster point of A if for any $\varepsilon > 0$, we have that $(A \setminus \{x\}) \cap N_{\varepsilon}(x) \neq \emptyset$. We denote by A' the set of all cluster points of A.

Example. Proof is an exercise.

A	A'
[a,b], (a,b)	[a,b]
finite	Ø
\mathbb{N}	Ø
$\mathbb{Q},\mathbb{Q}^{c}$	\mathbb{R}

Trivia.

G is dense in F if G' = F.

Proof of $\mathbb{Q}' = \mathbb{R}$.

Let $x \in \mathbb{R}$. Let $\varepsilon > 0$. Since $x - \varepsilon < x$, we know by the density theorem that there exists $y \in \mathbb{Q}$ such that $x - \varepsilon < y < x$ so that $y \neq x$. Thus, $x - y < \varepsilon$ so that $|x - y| < \varepsilon$. \blacksquare

Theorem.

A set $F \subseteq \mathbb{R}$ is closed if and only if it contains all of its cluster points.

Proof.

Let $F \subseteq \mathbb{R}$ be closed. Let $x \in F'$. Suppose $x \notin F$. Then, $x \in F^{c}$. Note that F^{c} is open. Hence, there exists $\varepsilon > 0$ such that $N_{\varepsilon}(x) \subseteq F^{c}$. Thus, no element of F is in $N_{\varepsilon}(x)$ so that x is not a cluster point, which is a contradiction.

Let F contain all of its cluster points. Let $x \in F^{\mathsf{c}}$. Then, x is not a cluster point of F. Thus, there exists $\varepsilon > 0$ such that $(F \setminus \{x\}) \cap N_{\varepsilon}(x) = \varnothing$. Since $x \notin F$, we get that $F \setminus \{x\} = F$ so that $F \cap N_{\varepsilon}(x) = \varnothing$. Therefore, $N_{\varepsilon}(x) \subseteq F^{\mathsf{c}}$.

Definition.

The closure of A, denoted by \bar{A} , is the smallest closed set containing A. We state the following facts without proof:

- 1. $\bar{A} = A \cup A'$
- 2. A is closed if and only if $\bar{A} = A$

Compact Sets.

Definition.

Let $A \subseteq \mathbb{R}$. An open cover of A is a collection $\mathcal{G} = \{G_{\alpha}\}_{{\alpha} \in \mathbb{R}}$ of open setssuch that $A \subseteq \bigcup_{{\alpha} \in \mathbb{R}} G_{\alpha}$. A subcover of \mathcal{G} is a subcollection $\{G'_{\alpha}\}_{{\alpha} \in \mathbb{R}}$ such that $A \subseteq \bigcup_{{\alpha} \in \mathbb{R}} G'_{\alpha}$.

Definition.

A set $K \subseteq \mathbb{R}$ is compact if every open cover of K has a finite subcover.

Lemma.

Let $n \in \mathbb{N}$. Then $n \leq 2^n$.

Proof

Let $n \in \mathbb{N}$. If n = 1, then $n = 1 < 2 = 2^1 = 2^n$. Suppose that $n \leq 2^n$. Then $n + 1 \leq n + n = 2n \leq 2(2^n) = 2^{n+1}$. Thus, by the principle of mathematical induction, $n \leq 2^n$ for any $n \in \mathbb{N}$.

Theorem.

[a, b] is compact.

Proof.

Suppose, for the sake of contradiction, that $\mathcal{G} = \{G_{\alpha}\}$ is an open cover of [a, b] that does not have a finite subcover.

Consider the intervals $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$. Since [a, b] does not have a finite subcover, then one of the two is also not finitely covered, say I_1 .

Bisecting I_1 , we again can conclude that one of these two subintervals will not be finitely covered, say I_2 . Continuing this, we obtain a sequence of intervals $\{I_n\}_{n=1}^{\infty}$ such that

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
.

Clearly, the sequence is a nested set of closed and bounded intervals.

Suppose that $I_n = [a_n, b_n]$. If n = 1, then $b_1 - a_1 = \frac{b-a}{2}$. If $b_n - a_n = \frac{b-a}{2^n}$ then $b_{n+1} - a_{n+1} = \frac{1}{2}(b_n - a_n)$. So by the principle of mathematical induction, $b_n - a_n = \frac{b-a}{2^n}$ for any $n \in \mathbb{N}$

Consider the set $A = \{b_n - a_n \mid n \in \mathbb{N}\} = \{\frac{b-a}{2^n} \mid n \in \mathbb{N}\}$. Note that $\frac{b-a}{2^n} > 0$ for any $n \in \mathbb{N}$ so that 0 is a lower bound of A. Let $\varepsilon > 0$. By the archimedean property, there exists $r \in \mathbb{N}$ such that $\frac{1}{r} < \varepsilon$. Also by the archimedean property, there exists $s \in \mathbb{N}$ such that r(b-a) < s so that $\frac{b-a}{s} < \frac{1}{r}$. Taking n = s, we get $\frac{b-a}{2^n} \le \frac{b-a}{s} < \frac{1}{r} < \varepsilon$. Therefore, inf A = 0.

By the nested interval property, $\exists ! x \in \mathbb{R}$ such that $\bigcap_{n=1}^{\infty} I_n = \{x\}$. Since $x \in [a,b]$, there exists α such that $x \in G_{\alpha}$. Since G_{α} is open, there exists ε such that $N_{\varepsilon}(x) \subseteq G$. Choose N large enough such that $\frac{b-a}{2N} < \varepsilon$. Then, $I_N \subseteq N_{\varepsilon}(x)$ so that I_N is finitely

covered, which is a contradiction.

Theorem. Heine Borel Theorem.

A set $K \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.

Proof.

Suppose K is compact.

Consider $\mathcal{G} = \{G_n\}$ where $G_n = (-n, n)$. Clearly, \mathcal{G} covers \mathbb{R} . In particular, it covers K. Since K is compact, there exists a finite subcover $\mathcal{G}' = \{G_{m_1}, G_{m_2}, \cdots, G_{m_n}\}.$ Take $M = \max\{m_1, m_2, \cdots, m_n\}$. $\bigcup_{i=1}^n G_{m_i} = (-M, M) \supseteq K$, so that K is bounded. Let $x \in K^{\mathsf{c}}$. Take $\mathcal{G} = \{G_n\}$, where $G_n = \{y \mid |x - y| > \frac{1}{n}\}$. Then, $\bigcup_{n=1}^{\infty} G_n = \{y \mid |x - y| > \frac{1}{n}\}$. $\mathbb{R} \setminus \{x\} \supseteq K$. Since K is compact, there exists a finite subcover $\mathcal{G}' = \{G_{m_1}, G_{m_2}, \cdots, G_{m_n}\}.$ Take $M = \max\{m_1, m_2, \cdots, m_n\}$. Thus, $\bigcup_{i=1}^n G_{m_i} = G_M \supseteq K$. Take $\varepsilon = \frac{1}{M}$ so that $N_{\varepsilon}(x) \subseteq G_M^{\mathsf{c}}$ and thus, $N_{\varepsilon}(x) \subseteq K^{\mathsf{c}}$.

Suppose K is closed and bounded. Let $\mathcal{G} = \{G_{\alpha}\}\$ be an open cover for K. Since K is bounded, then there exists M > 0 such that $K \subseteq [-M, M]$. Since K is closed, K^{c} is open. Note that $\bigcup G_{\alpha} \supseteq K$ so that $\bigcup G_{\alpha} \cup K^{c} \supseteq K \cup K^{c} = \mathbb{R}$. Thus, $\mathcal{G} \cup \{K^{\mathsf{c}}\}$ is an open cover for \mathbb{R} and in particular, [-M, M]. Since [-M, M] is compact, there exists a finite subcover of $\mathcal{G} \cup \{K^{\mathsf{c}}\}\$ so that there exists $\mathcal{G}' = \{G_{m_1}, G_{m_2}, \cdots, G_{m_n}\}$ such that $\bigcup_{i=1}^n G_{m_i} \cup K^c \supseteq [-M, M] \supseteq K$. Thus, $\bigcup_{i=1}^n G_{m_i} \supseteq K$.

Sequences in \mathbb{R}

Definition.

A sequence in \mathbb{R} is a function defined on the set \mathbb{N} and whose range is contained in \mathbb{R} .

Definition.

Let (x_n) be a sequence of real numbers. We say that (x_n) approaches a real number x, denoted by $\lim x_n = x$ if and only if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that if $n \in N$ and $n \geq N, |x_n - x| < \varepsilon$. In this case, we say that (x_n) is convergent. Otherwise, we say that (x_n) is divergent.

Remark.

- 1. $\lim x_n = x$
 - $\Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that if } n \geq N, \text{ then }$ $|x_n - x| < \varepsilon$
 - $\Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n \geq N,$ $|x_n - x| < \varepsilon$
- 2. (x_n) is convergent $\Leftrightarrow \exists x \in \mathbb{R}$ such that $\lim x_n =$
 - (x_n) is divergent $\Leftrightarrow \forall x \in \mathbb{R}, \exists \varepsilon > 0$ such that $\forall N \in \mathbb{N}, \exists n \geq N \text{ such that } |x_n - x| \geq \varepsilon.$
- 3. $\lim x_n = x$ implies that there are only a finite number of terms outside of $N_{\varepsilon}(x)$.
- 4. If N satisfies our definition, then any $N_0 > N$ will also satisfy our definition.

Example.

- 1. $\lim c = c$.
 - Proof.

Let $\varepsilon > 0$. Choose N = 1. Thus if $n \geq N$ then $|x_n - x| = |c - c| = 0 < \varepsilon.$ 2. $\lim_{n \to \infty} \frac{1}{n} = 0.$

Proof.

Let $\varepsilon > 0$. By the Archimedean property, there exists $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. Thus if $n \ge N$ then $|x_n - x| = |\frac{1}{n} - 0| = \frac{1}{n} \le \frac{1}{N} < \varepsilon$. 3. $\lim_{\substack{n^2 - 5 \\ n^2 + 5}} = 1$.

Proof.

Let $\varepsilon > 0$. By the Archimedean property, there exists $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{10}$. Thus if $n \ge N$ then $|x_n - x| = |\frac{n^2 - 5}{n^2 + 5} - 1| = |\frac{-10}{n^2 + 5}| = \frac{10}{n^2 + 5} < 10$ $\frac{10}{n^2} \le \frac{10}{n} \le \frac{10}{N} < \varepsilon$. 4. Let $\varepsilon > 0$. By the Archimedean property, there

exists $N \in \mathbb{N}$ such that $\frac{10}{\varepsilon} + 5 < N$. Thus if $n \ge N \text{ then } |x_n - x| = \left| \frac{n^2 + 5}{n^2 - 5} - 1 \right| = \left| \frac{10}{n^2 - 5} \right| = \frac{10}{n^2 - 5} \le \frac{10}{N - 5} < \varepsilon.$

Theorem.

If for all $\varepsilon > 0$, $0 \le x < \varepsilon$, then x = 0.

Let $\varepsilon > 0$. Suppose that $0 \le x < \varepsilon$. Then $0 \le x$. Suppose, for the sake of contradiction, that $x \neq 0$. Then 0 < x. Take $\varepsilon = x$. Then $0 \le x < x$ so that x < x, which is a contradiction. Thus, x = 0.

Corollary.

If $|x-y| < \varepsilon$ for all $\varepsilon > 0$, then x = y. Proof.

Exercise.

Theorem.

If $\lim x_n$ exists, then it is unique.

Suppose that x and y are limits of x_n . Let $\varepsilon > 0$. Since $\lim x_n = x$, there exists $N_1 \in \mathbb{N}$ such that $|x_n - x| < \frac{\varepsilon}{2}$ for all $n \ge N_1$. Since $\lim x_n = y$, there exists $N_2 \in \mathbb{N}$ such that $|x_n - y| < \frac{\varepsilon}{2}$ for all $n \geq N_2$. Take $N = \max\{N_1, N_2\}$. Then $|x_N - x| < \frac{\varepsilon}{2}$ so that $-\frac{\varepsilon}{2} < x_N - x < \frac{\varepsilon}{2}$. Also, $|y - x_N| = |x_N - y| < \frac{\varepsilon}{2}$ so that $-\frac{\varepsilon}{2} < y - x_N < \frac{\varepsilon}{2}$. Hence, $-\varepsilon < x_N - x + y - x_N < \varepsilon$ so that $|y - x| < \varepsilon$. Thus, by the previous corollary, x = y.

Theorem.

If (x_n) is convergent then $\{x_n \mid n \in \mathbb{N}\}$ is bounded. Proof.

Let $\lim x_n = x$. Then there exists $N \in \mathbb{N}$ such that $|x_n - x| < 1$ for all $n \ge N$. $|x_n| - |x| \le |x_n - x| < 1$ so that $|x_n| < 1 + |x|$ for all $n \ge N$. Take $M = \max\{1 + |x|, |x_1|, |x_2|, \dots, |x_{N-1}\}$. Then $|x_n| \leq M$ for all $n \in \mathbb{N}$, so that $\{x_n \mid n \in \mathbb{N}\}$ is bounded.

Definition.

Let (x_n) and (y_n) be sequences.

- 1. $(x_n) + (y_n) := (x_n + y_n)$
- 2. $(x_n)(y_n) := (x_n y_n)$ 3. $\frac{(x_n)}{(y_n)} := (\frac{x_n}{y_n}), y_n \neq 0$

Let (x_n) and (y_n) be convergent sequences with $\lim x_n = x$ and $\lim y_n = y$. Then the following are

- $1. \lim x_n + y_n = x + y$
- $2. \lim x_n y_n = xy$
- 3. $\lim \frac{1}{x_n} = \frac{1}{x}$, provided that $x \neq 0$ and $x_n \neq 0$

Proof.

1. Let $\varepsilon > 0$. Since $\lim x_n = x$, there exists $N_1 \in \mathbb{N}$ such $|x_n-x|<\frac{\varepsilon}{2}$ for any $n\geq N_1$. Since $\lim y_n=$ y, there exists $N_2 \in \mathbb{N}$ such that $|y_n - y| < \frac{\varepsilon}{2}$ for

- any $n \geq N_2$. Take $N = \max\{N_1, N_2\}$. Thus if $n \ge N$, then $|(x_n + y_n) - (x + y)| = |(x_n - x) +$ $|(y_n-2)| \le |x_n-x|+|y_n-y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$
- 2. Let $\varepsilon > 0$. Since (y_n) is convergent, there exists M > 0 such that $|y_n| < M$ for all $n \in \mathbb{N}$. Take $K = \max\{M, |x|\}$. Since $\lim x_n = x$, then there exists $N_1 \in \mathbb{N}$ such that $|x_n - x| < \frac{\varepsilon}{2K}$ for any $n \geq N_1$. Since $\lim y_n = y$, there exists $N_2 \in$ N such that $|y_n - y| < \frac{\varepsilon}{2K}$ for any $n \ge N_2$. Take $N = \max\{N_1, N_2\}$. Thus if $n \ge N$, then $|x_n y_n - xy| = |(x_n y_n - xy_n) + (xy_n - xy)| \le$ $|y_n(x_n - x)| + |x(y_n - y)| = |y_n| \cdot |x_n - x| + |x|$ $|y_n - y| < K|x_n - x| + K|y_n - y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$
- 3. Let $\varepsilon > 0$. Since $\lim x_n = x$ and $x \neq 0$, there exists $N_1 \in \mathbb{N}$ such that $|x_n x| < \frac{|x|}{2}$ for any $n \geq N_1$. Hence, $|x| - |x_n| < \frac{|x|}{2}$ so that $\frac{|x|}{2} < |x_n|$. And since $\lim x_n = x$, there exists $N_2 \in \mathbb{R}$ $\begin{array}{l} \mathbb{N} \text{ such that } |x_n-x|<\frac{|x|^2}{2} \text{ for any } n\geq N_2.\\ \mathbb{T}\text{ake } N=\max\{N_1,N_2\}. \text{ Thus if } n\geq N, \text{ then }\\ |\frac{1}{x_n}-\frac{1}{x}|=|\frac{x-x_n}{x_nx}|=\frac{|x_n-x|}{|x_n|\cdot|x|}<\frac{\frac{x}{2}^2\cdot\varepsilon}{|\frac{x}{2}|\cdot|x|}=\varepsilon. \end{array}$

If (x_n) diverges and (y_n) converges then $(x_n + y_n)$ diverges.

Proof.

Suppose, for the sake of contradiction, that $(x_n + y_n)$ converges. Consider $(z_n) := (x_n + y_n) + (-1)(y_n)$, then this sequence converges by the previous theorem. Since $(z_n) = (y_n)$, we have a contradiction.

Theorem.

Let (x_n) and (y_n) be convergent sequences. Then the following are true.

- 1. If $x_n \geq 0$ for any $n \in \mathbb{N}$, then $\lim x_n \geq 0$.
- 2. If $x_n \geq y_n$ for any $n \in \mathbb{N}$, then $\lim x_n \geq \lim y_n$.
- 1. Let $\lim x_n = x$. Suppose, for the sake of contradiction, that x < 0. Then -x > 0, so that there exists $N \in \mathbb{N}$ such that $|x_n - x| < -x$ for any $n \geq N$. In particular, $|x_N - x| < -x$. But $|x_N-x|=x_N-x$, so that $x_N-x<-x$. Hence, $x_N < 0$, which is a contradiction. Thus, $x \ge 0$.
- 2. Consider $(z_n) = (x_n) + (-1)(y_n)$. By a previous theorem, (z_n) is convergent. Also, $z_n =$

 $x_n - y_n \ge 0$ for any $n \in \mathbb{N}$ so that $\lim z_n \ge 0$. But $\lim z_n = \lim x_n + -1 \cdot \lim y_n = \lim x_n - \lim y_n.$ Hence, $\lim x_n - \lim y_n \ge 0$ so that $\lim x_n \ge$ $\lim y_n$.

Theorem. Squeeze Theorem for Limits.

If (x_n) , (y_n) , and (z_n) are sequences satisfying

- 1. $x_n \leq y_n \leq z_n$ for any $n \in \mathbb{N}$ and
- 2. (x_n) and (z_n) are convergent with $\lim x_n = x$ and $\lim z_n = x$,

then $\lim y_n = x$.

Proof.

Let $\varepsilon > 0$. Since $\lim x_n = x$, there exists $N_1 \in \mathbb{N}$ such that if $n \geq N_1$,

$$|x_n - x| < \varepsilon$$

 $\Leftrightarrow -\varepsilon < x_n - x < \varepsilon.$

Since $\lim z_n = x$, there exists $N_2 \in \mathbb{N}$ such that if $n \geq N_2$,

$$|z_n - x| < \varepsilon$$

$$\Leftrightarrow -\varepsilon < z_n - x < \varepsilon$$

$$\begin{split} |z_n-x| < \varepsilon \\ \Leftrightarrow -\varepsilon < z_n - x < \varepsilon. \end{split}$$
 Take $N = \max\{N_1, N_2\}$. Thus if $n \geq N$, then $-\varepsilon < x_n - x \le y_n - x \le z_n - x < \varepsilon$ so that $|y_n - x| < \varepsilon$.

Remark.

In general, we can assume that $\exists N \in \mathbb{N}$ such that $x_n \le y_n \le z_n \ \forall n \ge N.$

Theorem. Monotone Subsequence Theorem.

Every sequence has a monotone subsequence. Proof.

Let (x_n) be a subsequence. Let S be the set of peaks of (x_n) , $S := \{x_m \mid m \le n \Rightarrow x_m \ge x_n\}$.

Suppose S is infinite. Since for all m_n such that $x_{m_n} \in S$, then $x_{m_{n_1}} \ge x_{m_{n_2}}$ if $m_{n_1} \ge m_{n_2}$. Thus the subsequence (x_{m_n}) is decreasing.

Now, suppose that S is finite. Thus, there exists $N_1 \in \mathbb{N}$ such that $N_1 > m$ for any $x_m \in S$. So x_{N_1} is not a peak, so that there exists $N_2 > N_1$ such that $x_{N_1} < x_{N_2}$. So x_{N_2} is not a peak so that there exists N_3 such that $x_{N_2} < x_{N_3}$. Continuing this, we obtain a strictly increasing subsequence (x_{N_k}) .

Theorem. Bolzano-Weierstrass Theorem.

Every bounded sequence has a convergent subsequence.

Let (x_n) be a bounded sequence. By the monotone subsequence theorem, there exists (x_{n_k}) monotone subsequence of (x_n) . Sinc (x_n) is bounded, then (x_{n_k}) is also bounded. By the monotone convergence theorem, (x_{n_k}) is convergent.

Theorem.

Let (x_n) be a bounded sequence. If every convergent subsequence of (x_n) converges to x, then (x_n) converges to x.

Proof.

Suppose, for the sake of contradiction, that (x_n) does not converge to x. Then there exists $\varepsilon > 0$ such that for any $N \in \mathbb{N}$, there exists $n \geq N$ such that $|x_n - x| \ge \varepsilon.$

Claim.

There exists a subsequence (x_{n_k}) such that

$$|x_{n_k} - x| \ge \varepsilon$$
.

Proof.

Indeed, if N = 1, there exists x_n such that

$$|x_{n_1} - x| \ge \varepsilon.$$

Also, if $N = n_1 + 1$, there exists x_{n_2} such that

 $|x_{n_2}-x|\geq \varepsilon.$ Continuing this for $N=n_k+1,$ there exists $X_{n_{k+1}}$ such that

$$|x_{k+1} - x| \ge \varepsilon.$$

And we are done.

Since (x_n) is bounded, then (x_{n_k}) is bounded. Thus by the Bolzano-Weierstrass theorem, there is a convergent subsequence of (x_{n_k}) , say (x'_{n_k}) . By assumption, $\lim x'_{n_k} = x$. Thus there exists $N \in \mathbb{N}$ such that if $n_k \geq N$ then $|x'_{n_k} - x| < \varepsilon$. This is a contradiction since $|x'_{n_k} - x| \ge \varepsilon$ by construction of (x_{n_k}) .

Definition.

Let (x_n) be a sequence. We say that y is a subsequential limit of (x_n) if there exists a subsequence (x_{n_k}) that converges to y.

Remark.

- 1. The subsequence (x_n) will diverge if it has at least two distinct subsequential limits.
- 2. Sometimes called a limit point, but definitely not

a cluster point.

3. y is a subsequential limit of (x_n) if and only if for any $\varepsilon > 0, \ N_{\varepsilon}(y)$ has infinitely many terms

Definition.

Let (x_n) be a bounded sequence. Let $a_n = \inf\{x_m \mid m \ge n\}$ and $b_n = \sup\{x_m \mid m \ge n\}$. 1. The limit inferior of (x_n) , denoted by Imaoo

 $\lim\inf$