Measuring Intelligence

- Thinks and acts like humans
 - Turing test
 - Basic: NLP, Knowledge Representation, Automated Reasoning, ML
 - Full: Vision, Motor Control, Other senses
 - Vision: CAPTCHA
- Thinks and acts rationally
 - Doing the right thing
 - More general, the goal is well-defined

Intelligent Agents

- Perceiving its environment through sensors and acting upon that environment through its effectors to maximize progress toward its goals

PAGE

- Percepts, Actions, Goals, Environment
- See, Think, Do
- Goals, Percepts, Sensors, Effectors, Actions, Environment
- Example: Lane Keeping Agent
 - Goals: Stay in the current lane
 - Percepts: Lane center, Lane boundaries
 - Sensors: Vision
 - Effectors: Steering wheel, Accelerator, Brakes
 - Actions: Steer, Speed up, Slow down
 - Environment: Freeway

Behavior and Performance of Intelligent Agents

- Perception Sequence to Action Mapping
 - What action should an agent take at any point in time
- Performance measure: Subjective measure to characterize how successful an agent is
- Autonomy: What extent an agent is able to make decisions and take actions on its own

Agent vs Software

- Agents are autonomous, acting on behalf of the user
- Agents contain some level of intelligence
- Agents sometimes act proactively
- Agents have social ability, communicating with user, system, and other agents
- Agents could cooperate
- Agents may migrate from one system to another

Types of Environments

- Accessible (observable) vs Inaccessible (partially observable)
 - Accessible: Sensors give a complete state of an environment
- Deterministic vs nondeterministic
 - Deterministic: The next state can be determined based on the current state and action
- Episodic (History insensitive) vs. episodic (Sequential)
 - Episodic: History does not matter, history does not affect the future
- Hostile vs Friendly

- Static vs Dynamic
 - Dynamic: Environment changes during deliberation
- Discrete vs Continuous
 - Ex: Chess vs. Driving

Types of Agents

- Reflex Agents
 - Reactive: No memory
- Reflex Agents with Internal States
- Goal-based Agents
 - Goal information needed to make decision
- Utility-based agents
 - How well can a goal be achieved (degree of happiness)
 - What to do if conflicting goals
 - What goals should be selected if multiple are available
- Learning agents
 - How can I adapt to the environment
 - How can I learn from mistakes

Summary on Intelligent Agents

• Intelligent Agents:

- Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through its effectors to maximize progress towards its goals.
- PAGE (Percepts, Actions, Goals, Environment)
- Described as a Perception (sequence) to Action Mapping: $f: \mathcal{P}^* \to \mathcal{A}$
- Using look-up-table, closed form, etc.
- **Agent Types:** Reflex, state-based, goal-based, utility-based, learning
- **Rational Action:** The action that maximizes the expected value of the performance measure given the percept sequence to date

Formulating a Problem

- 1. States Representation
- 2. Operators/Actions
- 3. Initial State
- 4. Goal State

Types of Problems

- Single State Problem
 - Deterministic, Accessible
 - The agent knows everything about the world and can calculator optimal action sequence to the goal state
- Multi-State Problem
 - Deterministic, Inaccessible
 - The agent does not know the exact state
 - Assumes states while working towards goal state

- Contingency Problem
 - Non Deterministic, Inaccessible
 - Must use sensors
- Exploration Problem
 - Unknown state space

Criteria for search algorithms

- Completeness: Does it always find a solution if exists
- Time complexity
- Space complexity
- Optimality

NP vs P problems

- Polynomial vs Non polynomial time problems
- Nondeterministic Polynomial (NP) has an algorithm that can guess a solution and then verify it in polynomial time

Summary

- This Week:
- Problem formulation usually requires abstracting away real-world details to define a state space that can be explored using computer algorithms.
- Once problem is formulated in abstract form, complexity analysis helps us picking out best algorithm to solve problem.

Uninformed Search

- BFS
 - FIFO
 - Shallowest unexpanded node
 - Complete, Time: O(b^d), Space: O(b^d), Optimal
- Uniform Cost
 - The least cost unexpanded node
 - Complete, Time: O(b^d), Space: O(b^d), Optimal
- DFS
 - LIFO
 - Deepest unexpanded node
 - Complete, Time: O(b^m), Space: O(bm), Not optimal
- Depth Limited
 - DFS with max depth set
- Iterative Deepening
 - Complete, Time: O(b^d), Space: O(bd), Optimal
 - Depth Limited Search inside a loop increasing depth until success

Bi-directional Search

- One search from the initial state, one search going up from the goal state, meet in the middle
- Complete, Time: O(b^(d/2)), Space: O(b^(d/2)), Optimal

- Bidirectional search issues
 - Predecessors of a node need to be generated
 - Difficult when operators are not reversible
 - What to do if there is no explicit list of goal states?
 - For each node: *check if it appeared in the other search*
 - Needs a hash table of $O(b^{d/2})$
 - What is the best search strategy for the two searches?

Criterion	Breadth- first	Uniform cost	Depth- first	Depth- limited	Iterative deepening	Bidirectional (if applicable)
Time	b^d	b^d	b^m	b^l	b^d	b^(d/2)
Space	b^d	b^d	bm	bl	bd	b^(d/2)
Optimal?	Yes	Yes	No	No	Yes	Yes
Complete?	Yes	Yes	No	Yes, if l≥d	Yes	Yes

- b max branching factor of the search tree
- *d* depth of the least-cost solution
- *m* max depth of the state-space (may be infinity)
- /- depth cutoff

Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can be explored using computer algorithms.
- Once problem is formulated in abstract form, complexity analysis helps us picking out best algorithm to solve problem.
- Variety of uninformed search strategies; difference lies in method used to pick node that will be further expanded.
- Iterative deepening search only uses linear space and not much more time than other uniformed search strategies.

Informed Search

- Best First Search
 - Estimate the "desirability" of a node and expand the most desirable node
- Greedy Search
 - h(n) is heuristic which is an estimation of the cost to the goal

- Expands the first node that appears to be the closest to the goal (least future cost or h(n))
- Complete with loop checking, Time: O(b^m), Space: O(b^m), Not Optimal
- A* Search
 - Avoid expanding paths that are expensive
 - f(n) = g(n) + h(n)
 - Admissible heuristic Never overestimates the goal

Function Optimization

- Iterative Improvement
 - Keep a single current state and try to improve
- Hill Climbing
 - Maximizes the value of the current state by replacing it with a successor state that has the highest value as long as possible
- Simulated Annealing
 - From the current state, pick a random successor state
 - If the successor state is better, pick it, if it's not, flip a coin and accept transition depending on a coin flip
 - A mix of greedy search and random search based on temperature
- Genetic Algorithm
 - How large is the population? How do you select the initial population? How will you cross-breed the population? How will you mutate the population?

Summary

- . Best-first search = general search, where the minimum-cost nodes (according to some measure) are expanded first.
- Greedy search = best-first with the estimated cost to reach the goal as a heuristic measure.
 - Generally faster than uninformed search
 - not optimal
 - not complete.
- A* search = best-first with measure = path cost so far + estimated path cost to goal.
 - combines advantages of uniform-cost and greedy searches
 - complete, optimal and optimally efficient
 - space complexity still exponential
- Hill climbing and simulated annealing: iteratively improve on current state
 - lowest space complexity, just O(1)
 - risk of getting stuck in local extrema (unless following proper simulated annealing schedule)
- Genetic algorithms: parallelize the search problem

CSP

Variables, Domains, Constraints

Variables: WA, NT, Q, NSW, V, SA, T

Domains: $D_i = \{\text{red, green, blue}\}$ (one for each variable)

Constraints: $C = \langle scope, rel \rangle$ where scope is a tuple of variables and rel is the relation over the values of these variables

- E.g., here, adjacent regions must have different colors e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue), (green,red), (green,blue), (blue,red), (blue,green)}
- Consistent Assignment: Assigned values do not violate any constraints
- Complete Assignment: Every variable is assigned a value
- DFS in CSP with Unary Constraints is called Backtracking Search

Constraint Graph

- Each constraint is an arc
- Nodes are variables

Constraint Types and Varieties

- Unary Constraint
 - Single variable
- Binary Constraint
 - Pairs of Variables
- Higher Order Constraint (Global)
 - 3 or more variables

Backtracking

- Most Constrained Variable
 - Fewest legal value (Minimum remaining value heuristic)
- Most Constraining Varaible
 - Variable with the most constraints on remaining variables (Degree heuristic)
- Least Constraining Variable
 - One that rules out the fewest values in the remaining variables

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no more legal values

Node and Arc Consistency

- A single variable is node constraint if the node is consistent if all values in the domain satisfy unary constraints
- A variable is arc-consistent if every value in its domain satisfies binary constraints
- A Network is arc-consistent if every variable is arc-consistent with each other
- Arc consistency algorithms

AC-3 Algorithm

- Start with a queue that contains all arcs
- Pop one arc and make the rest consistent
 - Check all arcs that are affected by that
- O(n^2d^3) n variables, d values

Summary

- CSPs are a special kind of search problem:
 - states defined by values of a fixed set of variables
 - · goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Iterative min-conflicts is usually effective in practice

A game as Search Problem

Initial State, Operators, Terminal State, Utility Function

Minimax Algorithm

- Perfect play for deterministic environments with perfect information
- Basic idea: choose move with highest minimax value
 - = best achievable payoff against best play

Algorithm:

- 1. Generate game tree completely
- 2. Determine utility of each terminal state
- 3. Propagate the utility values upward in the three by applying MIN and MAX operators on the nodes in the current level
- 4. At the root node use <u>minimax decision</u> to select the move with the max (of the min) utility value
- Steps 2 and 3 in the algorithm assume that the opponent will play perfectly.
 - Alpha Beta Pruning
 - Alpha is for max, Beta for min

Alpha Beta Pruning In Depth

- Alpha and Beta are Negative Infinity and Infinity respectively
- Find Max of the left-most branch and update v and alpha
 - Update the beta of the parent node
 - Repeat for every branch and prune as needed

- Go to the next branch and carry alpha and repeat

Non Determinist Games

- Like Backgammon
- Expectiminimax (Probabilities)
 - Expectimin: Add up both values
 - Expectimax: Average both values

State, Action, and Sensor Model

- Actions, Percepts, States, Transition, Appearance, Current Model
- Can be non deterministic

Little Prince's Model

```
\begin{array}{ll} A & \equiv & \{ \text{forward, backward, turn-around} \} \\ P & \equiv & \{ \text{rose, volcano , nothing} \} \\ Z & \equiv & \{ s_1, s_2, s_3, s_4 \} \\ \phi & \equiv & \phi(s_0, \text{forward}) = s_3, \phi(s_0, \text{backward}) = s_2, \dots \\ \theta & \equiv & \theta(s_1) = \{ \text{volcano} \}, \theta(s_0) = \{ \text{rose} \}, \theta(s_2) = \theta(s_3) = \{ \} \end{array}
```

Hidden Markov Model

 Actions, Percepts, States, Appearance (State -> Observations), Transitions, Current State

The HMM for Little Prince's Planet

(with <u>uncertain</u> actions and sensors)

```
\begin{array}{lll} A &\equiv& \{ \mbox{forward, backward, turn-around} \} & \{ f,b,t \} \\ Z &\equiv& \{ \mbox{rose, volcano , nothing} \} \\ S &\equiv& \{ s_1,s_2,s_3,s_4 \} \\ \phi &\equiv& \{ \mbox{P($s_3$}|s_0,f) = .51,\ \mbox{P($s_2$}|s_1,b) = .32,\ \mbox{P($s_4$}|s_3,t) = .89,\ldots \} \\ \theta &\equiv& \{ \mbox{P(rose}|s_0) = .76,\ \mbox{P(volcano}|s_1) = .83,\ \mbox{P(nothing}|s_3) = .42,\ldots \} \\ \pi_1(0) = 0.25,\pi_2(0) = 0.25,\pi_3(0) = 0.25,\pi_4(0) = 0.25 \end{array}
```


- Lookup tables for Transition Probabilities, Appearance Probabilities, and Initial State Probabilities
- Markov Assumption: History doesn't matter

Rewards and Utilities

- 3 types of rewards
 - Being at a state
 - Doing an action on a state
 - Making a transition

Every state may have a utility value

Partially Observable Markov Decision Process (POMDP) and Markov Decision Process (MDP)

- Partially Observable: The agent doesn't see the states, only percepts
- MDP: State and Actions, Initial State and Probability Distributions, Transition Model, Reward functions
- POMDP: State and Actions, Transition Model, Reward function, Sensor Model, Belief of current state

Maximum Expected Utility (MEU) and Rational Agents

$$EU(a \mid e) = \sum_{s'} P(result(a) = s' \mid a, e)U(s')$$

Overview

- Goals are given to the agent
- Rewards are given to the agent
- Utility values are computed by the agent based on rewards
- Policies are computed or learned by the agent and used by the agent to select actions
- Utility value: Sum of all future rewards
 - Add the rewards as they are

$$U_h = ([s_0, s_1, s_2, \dots]) = R(s_0) + R(s_1) + R(s_2) + \dots$$

- Discount the far-away rewards in the future

$$U_h = ([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

State Utility Value Iteration

- **Bellman Equations**
 - For n states, there are n equations must be solved simultaneously

$$U^*(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U^*(s')$$
(17.5)

Bellman iteration:

- Converge to $U^*(s)$ step by step

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U_{i}(s')$$
 (17.6)

In POMDP, where sensors are uncertain, we must average over all possible evidences for the next state s' (see the last term below):

$$\alpha_p(s) = R(s) + \gamma \left(\sum_{s'} T(s, a, s') \sum_{e} P(e \mid s') \alpha_{p.e}(s') \right)$$

POMDP: Optimal Policy

$$\pi_s^* = \underset{a}{\operatorname{argmax}} \sum T(s, a, s') U^*(s')$$

- Pick the highest utility values
- Calculate optimal policy after completely calculating all utility values or compute policy incrementally every iteration where the utility values are updated

Summary for Uncertain Environments

- POMDP is very (the most) general model
 - Deal with uncertainty by
 - action models and sensor models
- Incorporate goals -> rewards -> utilities -> policy
 - Utilities and policies can be computed from rewards
 - Systematically (Bellman equations)
 - Iteratively (Bellman's iteration algorithm)
 - Solve a problem by following a good policy
 - One policy for one problem/goal
 - Different policies are needed for different goals

Reinforcement Learning

- Try different actions in states to discover an optimal policy and eventually tell the agent which way to go
- 2 General Classes
 - Model-Based RL
 - Learn the transition model, utility values, then policy
 - Learn approximate model based on random actions
 - Model Free RL
 - Learn policy without learning explicit transition model but from samples from the environment

Monte Carlo

- Generate a fixed policy based on the utility function
- In each iteration, the learner follows policy starting at a random state
- Generate policy with policy iteration
- Fixed Utility values

Temporal Difference

- Improved on Monte Carlo
- Updates Utility values with each sample

Q Learning

Use Q value to represent the value of taking action a in state s

- Initially, let Q(s, a)=0, given α and γ
- Sample a transition and reward: (s,a,s',r)
 - Sample = $r + \gamma \max_{a'} Q(s',a')$
 - $-Q(s,a) = (1-\alpha)Q(s,a) + \alpha*Sample$

 $Q_{t+1}(s,a) = (1-\alpha)Q_{t}(s,a) + \alpha[R(s,a,s') + \gamma \max_{a'} Q_{t}(s',a')]$

Q Learning Summary

Modify Bellman equation to learn Q values of actions

- $U(s) = R(s) + \gamma \max_{a} \sum_{s=1}^{s} (P(s_1 | s, a)U(s_1))$
 - We don't know R or P
 - But when we perform a' in s, we move to s' and receive R(s)
 - We want Q(s,a) = Expected utility of performing a in state s

Update Q after each step

- If we get a good reward now, then increase Q
- If we later get to a state with high Q, then increase Q here too
- $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(R(s)+\gamma \max_{s}Q(s',a'))$
 - α is the learning rate, γ is the discount factor

Converges to correct values if α decays over time

• Similar to the "temperature" in simulated annealing

State Action Reward State Action (SARSA)

Modify Q learning to use chosen action, a', not max

- $Q_{t+1}(s,a) \leftarrow (1-\alpha)Q_t(s,a) + \alpha \left[R(s,a,s') + \gamma \max_{\alpha'} Q_{\overline{t}}(s',\alpha')\right]$
- $Q_{i,j}(s,a) \leftarrow (1-\alpha)Q_i(s,a) + \alpha \left[R(s,a,s') + \gamma Q_i(s',a')\right]$

On-policy, instead of off-policy

- SARSA learns based on real behavior, not optimal behavior
 - Good if real world provides obstacles to optimal behavior
- Q learning learns optimal behavior, beyond real behavior
 - · Good if training phase has obstacles that won't persist

Q Learning & SARSA

Converge to correct values

- Assuming agent tries all actions, in all states, many times
 - Otherwise, there won't be enough experience to learn Q
- And if α decays over time
 - · Similar to simulated annealing

Avoids the complexity of solving an MDP

- MDP requires solving for the optimal policy before starting
- An RL agent can start right away and then learn as it goes
 - Although this might be wasteful if you already know P and R

Exploitation vs Exploration

- Similar to simulated annealing, explore sometimes and exploit the policy other times