Analysis of Algorithms

Dr. Anirban Ghosh

School of Computing University of North Florida

Introduction

What is an algorithm?

An algorithm is a step-by-step well-defined procedure for performing some given task in a finite amount of time

What do we mean by analyzing an algorithm?

Figuring out theoretically (using math) how much **time** and **memory** it is going to take when implemented using any programming language

In this course

We will assume that an algorithm and a program written using it are equivalent from the analysis point of view

Why it is so important these days?

Nobody likes slow and memory-hungry softwares!

Speed

Problem

Generate **really long** strings made up of English language characters

Approach A: uses String

```
public static String generateLongStringA(int length) {
   String password = "";

for(int i = 0; i < length; i++)
    password += randomLetter();

return password;
}</pre>
```

Approach B: uses StringBuilder

```
public static String generateLongStringB(int length) {
   StringBuilder password = new StringBuilder();

for(int i = 0; i < length; i++)
   password.append( randomLetter() );

   return password.toString();
}</pre>
```

Speed

```
long startA = System.currentTimeMillis();
generateLongStringA(200000);
long timeTakenA = System.currentTimeMillis() - startA;

System.out.println("Time taken by A: " + timeTakenA + " ms" );
long startB = System.currentTimeMillis();
generateLongStringB(2000000);
long timeTakenB = System.currentTimeMillis() - startB;

System.out.println("Time taken by B: " + timeTakenB + " ms" );

System.out.println("Speedup: " + (double)timeTakenA/timeTakenB);
```

Output in one run (result varies slightly every time)

Time taken by A: 6726 ms

Time taken by B: 33 ms

Speedup: 203.8181818181818

Tip: for toString methods use StringBuilder instead of String

Reason

We will come back to the discussion of **StringBuilder** later this semester...

Real-world challenge for coders handling Big Data

The most challenging aspect of coding

Given a computational problem P, there may exist quite a few algorithms, say, A_1, A_2, \ldots, A_k , for solving P. Now, which algorithm among these will be one of the fastest when implemented using a programming language?

Real-world challenge for coders handling Big Data

A super-stressed coder!

"Gosh, which one am I going to use!"

An easy-peasy answer

I am going to implement all of them and find out the best ones

The real world situation

- Nobody has this amount of time unless you are doing **Algorithm Engineering** and **Experiments** for one problem (takes months)
- Even if you do, what datasets are you going to use to judge the implementations?
- Hardware and software dependent

Common concerns

- Why my program is taking so long?
- Why it is running out of memory?
- I am not sure if my program will run to completion within a reasonable amount of time for every dataset! What should I do?

A good solution to all these problems

Theoretical approach

Use math to analyze algorithms/programs so that we can get away from time-consuming experiments

Does it work?

Yes, it does in most cases and will work everywhere in this course

What is it?

Analysis of algorithms (completely theoretical, no machines needed!)

Exponents

Let a, b, n, m be real numbers. Then,

•
$$a^n \times a^m = a^{n+m}$$

Example: $2^3 \times 2^{10.5} = 2^{13.5}$

•
$$a^n/a^m = a^{n-m}$$

Example: $2^{30}/2^{10} = 2^{20}$, $6^3/6^{10} = 6^{-7}$

•
$$(a^n)^m = a^{nm}$$

Example: $(5^{30})^9 = 5^{270}$

•
$$a^0 = 1$$
, when $a \neq 0$
Example: $(-27.18)^0 = 1$

Logarithms

The *logarithm* of a positive real number x with respect to base b is the exponent by which b must be raised to yield x. The logarithm of x to base b is denoted by $\log_b x$.

$$\log_2 1024 = 10$$
 since $2^{10} = 1024$
 $\log_{10} 100 = 2$ since $10^2 = 100$

In this course, we will use **base-2** logarithms (b = 2) mostly

What is a function?

Definiton

Given two sets A,B, a function f from A to B is a rule that associates every element of A to an element of B

Example

The function f(n) = 2n + 10 is shown pictorially

 \mathbb{R} R is an infinite set

Upper bounds

Since we are interested in worst-case time analysis of algorithms, we will use functions like $T(n) \le 2n + 10$, etc. to derive upper bounds on algorithm runtimes

The 7 types of functions we are interested in

- **1 Constant.** $T(n) \le k$, for some positive constant k Examples: T(n) < 19.87: T(n) < 10, etc.
- **2 Logarithmic.** $T(n) \le k \log n$, for some positive constant k Examples: $T(n) \le 5 \log_2 n$; $T(n) \le 19 \log_{10} n$, etc.
- **3 Linear.** $T(n) \le kn$, for some positive constant k Examples: T(n) < 6n: $T(n) < 2^{100}n$, etc.
- **Linearithmic.** $T(n) \le kn \log n$, for some positive constant k Examples: $T(n) < 100n \log_2 n$; $T(n) < 16n \log_{10} n$, etc.
- **G** Quadratic. $T(n) \le kn^2$, for some positive constant k Examples: $T(n) \le 100n^2$; $T(n) \le \sqrt{2}n^2$, etc.
- **6 Cubic.** $T(n) \le kn^3$, for some positive constant k Examples: $T(n) \le 8999n^3$; $T(n) \le \sqrt{99}n^3$, etc.
- **Exponential.** $T(n) \le k \cdot 2^n$, for some positive constant k Examples: $T(n) \le 10 \cdot 2^n$; $T(n) \le 9^{99} \cdot 2^n$, etc.

Growth rates comparisons of the 7 functions

What are we trying to accomplish?

- ullet Assume that we have an algorithm A
- ullet Denote the input size by n
- Find out the function T(n), such that A takes T(n) units of time when executed on any input of size n
- T(n) is a theoretical upper bound on the runtime; a.k.a. the **time complexity** of A

One can also do the same for the additional space needed by A. This is known as the **space complexity** of A.

The two important aspects of an algorithm

- Time complexity. how much time as a function of the input size *n* does an algorithm takes to give the desired result?
- Space complexity. how much extra space (apart from the input and the expected output) as a function of the input size n does an algorithm need to get executed successfully?

Note that both are important in this age of Big Data!

Primitive operations

Definition

Basic computations performed by an algorithm which take constant amount of time on a fixed machine; such operations are largely independent from programming languages and hence can be used for theoretical analyses

Some examples

```
a = b + c;
i++;
arr[k] = 0;
arr[k] = s[i] + t[j];
Counter wallet = new Counter();
return arr;
boolean b = (i > j);
:
```

So what?

- Runtime of a program is proportional to the number of primitive operations it has; larger input means more such operations must be executed
- ullet Clearly, depending on n (input size), the number of such operations will vary
- T(n) denotes the theoretical runtime of a given algorithm
- ullet We try to obtain an upper-bound for T(n) using the number of primitive operations
- $a \le b$ is pronounced as 'a is at most b'

Example

We assume that every primitive operation or a constant number of contiguous primitive operations takes 1 unit of time. Let the total cost of line i be c_i . In our case, c_i is the number of times line i is executed. Then,

$$T(n) \le c_2 + c_3 + c_5 + c_6 + c_7 + c_9$$

$$\le 1 + 1 + n + (n - 1) + (n - 1) + 1$$

$$= 3 + 3n - 2$$

$$= 3n + 1 \le 3n + n = 4n$$

So, we conclude that T(n) < 4n.

9

10

What does this mean?

It means that the worst-case wall-clock runtime W(n) of this method is proportional to 4n. In other words,

$$W(n) = m \cdot T(n) \le m \cdot 4n,$$

for some positive constant m.

- ullet If you are using a speedy machine, m is smaller than when you are using a slower machine
- ullet But for a fixed machine m remains the same

Another example

$$T(n) \le c_1 + c_4 + c_5 + c_6 + c_7 + c_8 + c_9$$

$$\le 1 + n + n^2 + n^2 + n^2 + n^2 + n^2$$

$$= 5n^2 + n + 1$$

$$\le 5n^2 + n^2 + n^2$$

$$< 7n^2$$

So, we conclude that $T(n) \leq 7n^2$.

Growth rates and runtime

Class of $T(n)$	How does $T(n)$ look like?	Real-world impact
Constant	$T(n) \le k$	Best possible speed!
Logarithmic	$T(n) \le k \cdot \log n$	Crazy-fast
Linear	$T(n) \le k \cdot n$	Super-fast
Linearithmic	$T(n) \le k \cdot n \log n$	Very much acceptable in practice
Quadratic	$T(n) \le k \cdot n^2$	Very slow in practice
Cubic	$T(n) \le k \cdot n^3$	Do not expect to finish anytime soon
Exponential	$T(n) \le k \cdot 2^n$	You will surely get fired!

Observations are made when n (size of the input) is large

Deeper thoughts

- Say an algorithm A has runtime $T(n) \leq k \cdot n^2$
- What happens when the input size is doubled?

$$\bullet \ \frac{k \cdot (2n)^2}{k \cdot n^2} = \frac{k \cdot 4n^2}{k \cdot n^2} = 4$$

- This means runtime may quadruple on some inputs!
- But if $T(n) \le k \cdot n$, then $\frac{k \cdot 2n}{k \cdot n} = 2$ (quite expected, right?)
- What if $T(n) \leq k \cdot 2^n$?
- $\frac{k \cdot 2^{2n}}{k \cdot 2^n} = 2^n$ (is not even bounded by a constant!)

A real-world example

- Say you want to sort a million integers
- Quite common these days!
- Insertion sort takes roughly 70 hours on a 'slow' machine
- Merge sort takes roughly 40 seconds on the same machine
- Insertion sort: $T(n) \le k \cdot n^2$ (quadratic)
- Merge sort: $T(n) \le k \cdot n \log n$ (linearithmic)
- If the machine is 100x faster, then it is 40 minutes vs less than 0.5 seconds

Moral of the story: theoretical analyses maybe hard but super-helpful in practice!

Facts about T(n)

- ullet T(n) can be simplified if we just consider the highest order term without its coefficient; we denote it by h
- h for a given T(n) is defined considering the growth rates of all the terms in T(n)
- **Example:** $T(n) \le 10n^2 + 3n + 99$ (in this case, $h = n^2$)
- $T(n) < 10n^2 + 3n^2 + 99n^2 = 112n^2$
- Another example: $T(n) \le 22n \log n + 56$ (in this case, $h = n \log n$)
- $T(n) \le 22n \log n + 56n \log n = 78n \log n$
- **Yet another example:** $T(n) \le 99 \cdot 2^n + 66n^3 + n + 100$ (in this case, $h = 2^n$)
- $T(n) < 99 \cdot 2^n + 66 \cdot 2^n + 2^n + 2^n = 167 \cdot 2^n$
- T(n) can always be simplified to a form $T(n) \leq c \cdot h$, for some constant positive constant c
- This brings us to the famous **Big-Oh** notation used by the programmers around the globe no matter what programming language they are using!

Big-Oh

- The constant c does not matter since h is enough to determine the class of the algorithm we are analyzing; so just drop c
- $T(n) \leq 112n^2$ is thus written as $O(n^2)$
- $T(n) \le 78n \log n$ is thus written as $O(n \log n)$
- $T(n) \leq 167 \cdot 2^n$ is thus written as $O(2^n)$
- For a particular problem P, there may exist many algorithms for P which have the same runtime when expressed using Big Oh; in that case, they all are considered to be equivalent for solving P from efficiency perspective
- An easy method for determining the Big-Oh of T(n): drop the lower-order terms and then drop the coefficient of the highest order term
- Examples: $T(n) \le 5n^2 + 6n + 21 = O(n^2)$; $T(n) \le 99 \cdot 2^n + 66n^3 + n + 100 = O(2^n)$
- In other words, given T(n), we can simply write T(n) = O(h) where the highest order term in T(n) without its coefficient

Runtimes using Big-Oh

Class of $T(n)$	How it looks like?	Expressing $T(n)$ using Big-Oh
Constant	$T(n) \le k$	O(1)
Logarithmic	$T(n) \le k \cdot \log n$	$O(\log n)$
Linear	$T(n) \le k \cdot n$	O(n)
Linearithmic	$T(n) \le k \cdot n \log n$	$O(n \log n)$
Quadratic	$T(n) \le k \cdot n^2$	$O(n^2)$
Cubic	$T(n) \le k \cdot n^3$	$O(n^3)$
Exponential	$T(n) \le k \cdot 2^n$	$O(2^n)$

- **CONSTANT**. The algorithm under consideration has a constant (can be terribly big) number of operations; runtime is not dependent on input size
 - Printing out the first integer in A
 - ullet Finding the maximum and minimum elements in a sorted array A
 - Finding the Euclidean distance between two given points (x_1, y_1) and (x_2, y_2)

We say that the algorithm runs in constant time or O(1) time

- **LOGARITHMIC.** The algorithm under consideration has a runtime of $O(\log n)$ and is barely slower than a constant-time algorithm
 - ullet Binary search on a sorted array of size n

We say that the algorithm has a logarithmic runtime

- **LINEAR**. The algorithm under consideration spends a constant amount of time processing each piece of input data, or is based on a single loop and has a runtime of O(n)
 - ullet Finding the largest integer in an array A of length n
 - Given a set A of n points, find the farthest point in A from a given point not in A

We say that the algorithm has a linear runtime

- **LINEARITHMIC.** The running time of the algorithm under consideration has a runtime of $O(n \log n)$
 - ullet Merge sort an array of n comparable items

We say that the algorithm has a linearithmic runtime

- QUADRATIC. The running time of the algorithm under consideration has a runtime of $O(n^2)$; usually has two nested loops each of which iterates for n times approximately
 - Bubble sort an array of n comparable items
 - Insertion sort an array of n comparable items
 - Selection sort an array of n comparable items

We say that the algorithm has a quadratic runtime

- **CUBIC.** The running time of the algorithm under consideration has a runtime of $O(n^3)$; usually has three nested loops each of which iterates for n times approximately
 - Multiply two $n \times n$ matrices in a naive way

We say that the algorithm has a cubic runtime

- **EXPONENTIAL**. The running time of the algorithm under consideration has a runtime of $O(2^n)$ or even worse
 - Print out all possible subsets of an n-element set

We say that the algorithm has an exponential runtime

What to find the runtime without doing math?

- Find out the most costly statement/step; the one that is executed most number of times among all the statements/steps. Let the cost of that statement/step be t(n) and h be its highest order term without its constant coefficient

 Approximating t(n) is okay but over-approximation is certainly a bad idea!
- **2** Runtime of the algorithm is O(h)

Figuring out runtime just by eyeballing

```
public static double findMax(double[] array) {
    int n = array.length;
    double maxSoFar = array[0];

for(int i = 1; i < n; i++)
    if( array[i] > maxSoFar )
        maxSoFar = array[i];

return maxSoFar;
}
```

Runs in O(n) time

Figuring out runtime just by eyeballing

Runs in $O(n^2)$ time

Visualize sorting algorithms
https://visualgo.net/en/sorting

Runtime?

```
void somemethod(int[] items) {
    int result = 0;
    for (int i = 0; i < items.length; i++)
        for (int j = 0; j < 100; j++)
            result += items[i];

System.out.println(result);
}</pre>
```

Now from problem to code

Problem: used in finance to keep tracking of rising and falling profit averages

You are given an array X of n numbers. For every $0 \le i \le n-1$, you need to find out: $A[i] = \frac{X[0] + X[1] + \ldots + X[i]}{i+1}$. These are called **prefix averages** of an array.

Example

Input: $X = \{10, 0, 1, 5, 99, 3\}$ (here n = 6)

$$A[0] = (10)/1 = 10$$

$$A[1] = (10+0)/2 = 5$$

$$A[2] = (10 + 0 + 1)/3 \approx 3.67$$

$$A[3] = (10 + 0 + 1 + 5)/4 = 4$$

$$A[4] = (10 + 0 + 1 + 5 + 99)/5 = 23$$

$$A[5] = (10 + 0 + 1 + 5 + 99 + 3)/6 \approx 19.67$$

Output: $A = \{10, 5, 3.67, 4, 23, 19.67\}$

Approach A

```
public static double[] findPrefixAveragesA(double[] x) {
    int n = x.length;
    double[] a = new double[n];

for(int i = 0; i < n; i++) {
    double total = 0;

    for(int j = 0; j <= i; j++)
        total += x[j];

        a[i] = total/(i+1);
    }
    return a;
}
</pre>
```

Lines 8, 9 are the most expensive ones; they are executed approximately n^2 times each; so overall runtime is $O(n^2)$

Approach B

```
public static double[] findPrefixAveragesB(double[] x) {
    int n = x.length;
    double[] a = new double[n];

double total = 0;

for(int i = 0; i < n; i++) {
    total += x[i];
    a[i] = total/(i+1);
}
return a;
}</pre>
```

Lines 7, 8, 9 are the most expensive ones; they are executed approximately n times each; so overall runtime is O(n)

Experiment

```
Random generator = new Random():
int n = 100000:
double[] testArray = new double[n];
for( int i = 0: i < n: i++)
  testArrav[i] = generator.nextInt(n):
long startA = System.currentTimeMillis():
findPrefixAveragesA(testArray):
long timeTakenA = System.currentTimeMillis() - startA:
System.out.println("Time taken by approach A (runs in O(n^2) time): " + timeTakenA + " ms"):
long startB = System.currentTimeMillis();
findPrefixAveragesB(testArray):
long timeTakenB = System.currentTimeMillis() - startB:
System.out.println("Time taken by B (runs in O(n) time): " + timeTakenB + " ms" ):
System.out.println("Speedup: " + (double)timeTakenA/timeTakenB):
```

Output in one run (result varies slightly every time)

What happens in real life?

- f 1 You get a computational problem P
- $oldsymbol{2}$ You find multiple algorithms for solving P
- 3 Having the abstract ideas and/or pseudo-codes of these algorithms and using pencil + paper, you find out their theoretical runtimes
- 4 Implement the algorithm that appears best (has the best theoretical runtime)

In some cases, you may need to find out their **space complexities** too

Sorting faster

Problem

Sort an array of length n, where the array elements are taken from the set $\{0,1,2,3,4\}$.

Question

What's the fastest algorithm you can design for this problem?

Solution

Straightforward solution: runs in $O(n \log n)$ time

```
Arrays.sort(arr1);
System.out.println("Time taken by Arrays.sort(): " + (System.currentTimeMillis() - start) + " ms" );
```

A faster solution: runs in O(n) time

Speed comparison, n = 1,000,000

Time taken by Arrays.sort(): 27 ms

Time taken by our approach: 11 ms

Reading

Chapter 4 from

https://opendsa-server.cs.vt.edu/OpenDSA/Books/CS3/html/index.html