广东工业大学试卷参考答案及评分标准

课程名称: 线性代数

考试时间: ****年**月**日 (第**周 星期*)

一、填空题(每小题4分,共20分)

1.
$$\mathbf{X} = \begin{pmatrix} 2 & -23 \\ 0 & 8 \end{pmatrix}$$
; 2. -12 ; 3. $t = 5$, $t \neq 5$;

3.
$$t = 5$$
, $t \neq 5$

4.
$$\lambda = -2$$
, $c = \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix}$; 5. $\mathbf{A}^{-1} = \frac{1}{2}(\mathbf{A} - \mathbf{I})$.

5.
$$\mathbf{A}^{-1} = \frac{1}{2}(\mathbf{A} - \mathbf{I})$$
.

二、单项选择题(每小题 4 分,共 20 分)

1	2	3	4	5
С	A	С	A	D

三、(10 分)解法一:
$$\mathbf{A}_{31} + 3\mathbf{A}_{32} - 2\mathbf{A}_{33} + 2\mathbf{A}_{34} = \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 1 & 3 & -2 & 2 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 3 & -2 & 2 \\ -5 & 1 & 3 & -4 \end{vmatrix}_{\substack{r_{12}(5) \\ r_{14}(-1) \\ =}} \begin{vmatrix} 1 & 3 & -2 & 2 \\ 0 & 16 & -7 & 6 \\ 0 & -8 & 5 & -4 \\ 0 & -8 & 5 & -5 \end{vmatrix} = - \begin{vmatrix} 1 & 3 & -2 & 2 \\ 0 & 16 & -7 & 6 \\ 0 & -8 & 5 & -4 \\ 0 & 0 & 0 & -1 \end{vmatrix}$$

$$= (-1)(-1)(-1)^{4+4} \begin{vmatrix} 1 & 3 & -2 \\ 0 & 16 & -7 \\ 0 & -8 & 5 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 16 & -7 \\ -8 & 5 \end{vmatrix} = 80 - 56 = 24.$$

四、(10分)解:

$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}) = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 2 & -1 \\ 1 & -1 & 1 & 1 \end{pmatrix}^{r_{12}(-1)} \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & -1 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & -2 & -1 & 0 \end{pmatrix}^{r_{24}(-1)} \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & -1 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\overset{r_{34}(1)}{\overset{r_{2}(-1)}{\overset{r_{2}(-1)}{\overset{r_{3}(-1/2)}{\overset{r_{3}(-$$

.....6 分

于是 $\{\mathbf{\alpha}_1,\mathbf{\alpha}_2,\mathbf{\alpha}_4\}$ 构成元向量集的一个最大线性无关子集,

五、(10 分)解:
$$(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, 简记为 $\mathbf{B} = \mathbf{AC}$.

因为向量集 $\{\mathbf{a}_1,\mathbf{a}_2,\mathbf{a}_3\}$ 线性无关,C是可逆阵,所以 $r(\mathbf{B})=r(\mathbf{A})=3$,

从而向量集 $\{\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3\}$ 线性无关.

六、(15分)解:

$$\begin{vmatrix} \mathbf{A} | = \begin{vmatrix} 1 & 2 & -1 \\ 2 & k+3 & -3 \\ k-1 & 4 & -3 \end{vmatrix} = -3(k+3) - 8 - 6(k-1) - \left[-(k-1)(k+3) - 12 - 12 \right]$$
$$= k^2 - 7k - 10 = (k-2)(k-5),$$

令 $|\mathbf{A}| = 0$,解得k = 2或k = 5. 当k = 2时, $\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 5 & -3 \\ 1 & 4 & -3 \end{pmatrix}$ $\overset{r_{12}(-2)}{\sim} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{pmatrix}$ $\overset{r_{23}(-2)}{\sim} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ $\overset{r_{21}(-2)}{\sim} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{cases} x_1 + x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}, \quad \text{if } \mathcal{A} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix} = t \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \quad t \in \mathbb{R}.$ 当k=5时, $\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 8 & -3 \\ 4 & 4 & -3 \end{pmatrix}^{r_{12}(-2)} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 4 & -1 \\ 0 & -4 & 1 \end{pmatrix}^{r_{23}(1)} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 4 & -1 \\ 0 & 0 & 0 \end{pmatrix}^{r_{2}(1/4)} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -1/4 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{cases} x_1 - \frac{1}{2}x_3 = 0 \\ x_2 - \frac{1}{2}x_2 = 0 \end{cases}, \quad \text{for } A = \begin{bmatrix} x_1 \\ x_2 \\ x \end{bmatrix} = t \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \quad t \in \mathbb{R}.$ 七、(15分)解:(1) 特征多项式 $\left|\mathbf{A} - \lambda \mathbf{E}\right| = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3),$ 解得 $\lambda=1$ 或 $\lambda=3$. 当 $\lambda = 1$ 时, $\mathbf{A} - \mathbf{E} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}^r \sim \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $x_1 - x_2 = 0$, 对应的特征向量为 $\mathbf{p} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $t \in \mathbb{R} \perp t \neq 0$. 当 $\lambda = 3$ 时, $\mathbf{A} - 3\mathbf{E} = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}^r \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $x_1 + x_2 = 0$,

对应的特征向量为 $\mathbf{p} = t \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $t \in \mathbb{R} \perp t \neq 0$.

(2) 解法一:由(1)可知, |**A**|=1×3=3, $A^* + 2A - E = |A|A^{-1} + 2A - E = 3A^{-1} + 2A - E$, 其特征值为 $3λ^{-1}+2λ-1$, 把 $\lambda=1$ 和 $\lambda=3$ 代入,对应值为4和6,于是 $\left|\mathbf{A}^*+2\mathbf{A}-\mathbf{E}\right|=4\times 6=24$. 解法二: $\mathbf{A}^* = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $\mathbf{A}^* + 2\mathbf{A} - \mathbf{E} = \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$, $|\mathbf{A}^* + 2\mathbf{A} - \mathbf{E}| = 24$5 分