สรุปการทำงาน week 5

1. โครงสร้างหลักของระบบ

1. Detection & Tracking

- o ใช้ YOLO สองโมเคล (คน กับ กล่อง) ร่วมกับ ByteTrack
- o เก็บ track ID และ bounding box ของคนกับกล่องต่อเฟรม

2. Pose Extraction

- o ใช้ MediaPipe Pose เพื่อดึง landmarks 33 จุด
- o เก็บเฉพาะ joint สำคัญ (ใหล่, ข้อศอก, ข้อมือ, สะโพก)

3. Feature Buffer

- o เก็บ sequence ของ landmarks ข้อนหลัง SEQUENCE LENGTH (15) เฟรม
- o คำนวณความแปรปรวน (std) เพื่อแยก "idle" vs "moving" (rule-based)

4. Object-Person Matching

- o ใช้ฟังก์ชัน point_in_bbox ตรวจว่า key point ของกล่องตกในกรอบคนหรือไม่
- o แมตช์ได้หลายคนต่อกล่องเคียว \longrightarrow เก็บ history ใน object_id_to_person_ids[obj_id] (deque maxlen=50)
- \circ เลือกคนที่ถือกล่องจริงโดยดู freq >= 15 ใน deque \longrightarrow list carriers

2. กระบวนการจำแนกประเภท Carrying

เมื่อเจอคนที่ถือกล่อง (carrying) จะเรียกฟังก์ชัน extract_features_from_skeleton(landmarks, track_id) เพื่อ ตรวจรายละเอียด 6 กรณีหลัก:

Action	เงื่อนใขหลัก (Static + Smoothing)
push_forward	– มือยื่นไปข้างหน้า
pull_backward	– มืออยู่หลังลำตัว avg_hand_x < avg_shoulder_x – 0.03– ระดับมือระดับอก–เอว–
	$100^{\circ} \le \text{avg_elbow} \le 160^{\circ}$
carry_normal	_ มืออยู่ใกล้ตัว (\mid hand_x – shoulder_x \mid \leq 0.05)– ระดับมือระหว่าง
	(shoulder_y+0.05, hip_y+0.05)- $100^{\circ} < \text{avg_elbow} \le 165^{\circ}$

carry_heavy	– avg_elbow > 165° (เกือบเหยียดแขน)– avg_hand_y > hip_y – 0.03 (ถือแนบ
	สะโพก)
carry_on_shoulder	- avg_hand_y < shoulder_y - 0.05 (มื่อสูงพาคบ่า)- avg_elbow < 70° (งอข้อศอก)
carry_together	– กล่องเดียวมี ≥2 carry IDs (freq ≥ 15)–

Default fallback: ถ้าไม่เข้าข้อใด จะยัง label เป็น "carrying" ทั่วไป

3. การจัดการ Flicker & Stability

• Smoothing

- สำหรับ push_forward ใช้ deque เก็บ flag 5 เฟรมหลังสุด
- ต้องมี ≥2 True ก่อนจึงตัดสินเป็น push_forward

• Sequential priority (elif)

- เรียงลำดับตรวจเงื่อนไข: Push \longrightarrow Pull \longrightarrow Normal \longrightarrow Heavy \longrightarrow Shoulder
- ป้องกัน overlap ของเงื่อนใข static

4. สรุปผลลัพธ์

- ระบบสามารถจับทั้ง คนเดียวถือ และ หลายคนช่วยกันถือ (carry_together)
- แยก 5 รูปแบบหลักได้โดยใช้ Skeleton-based rules + history smoothing