#### Star Tracker without a Star Database

Stephen Scott COMPENG 4TN4

Instructor: Seyed Mehdi Ayyoubzadeh

2022

### What is a star tracker?



European Space Agency. Alphasat. 2013



- Camera system often found on satellites
- Expensive to implement effectively, not often used on low-budget nanosatellites

# Why do satellite's need a star tracker?



Jianan, Y. et al. "Pico-satellite attitude determination using a star tracker with compressive sensing". 2015

- Helps to stabilize the satellite (reduce pointing error)
- Used in trajectory control system

### The issue with star trackers



Jianan, Y. et al. "Pico-satellite attitude determination using a star tracker with compressive sensing". 2015

- Star lookup is computationally expensive
- Expertise in subject is needed to implement effectively (not helpful to small missions like university CubeSats)

1. Generate simulated star image dataset using open-source planetarium (Stellarium)



Preprocessed Image



Stellarium 0.22.0. https://stellarium.org. 2022

- 2,592 images by incrementing right ascension/declination angles by 5 degrees
- Deep space objects, milky way, and other elements disabled in Stellarium
- Gaussian blurred with sigma = 2, binarized using Otsu optimal threshold

I. Generate simulated star image dataset using open-source planetarium (Stellarium)



King, B. Right Ascension & Declination: Celestial Coordinates for Beginners. 2019

- Images were further classified into 4 regions based on RA and DEC
- North-East, North-West, South-East, and South-West

2. Find largest contour, get 4 brightest stars in region around largest contour



### 3. Train Support Vector Machine (SVM) using feature vector

| Feature No. | Feature Description                                          |
|-------------|--------------------------------------------------------------|
| I           | Radius of brightest star (star I)                            |
| 2           | # non-zero pixels around brightest star                      |
| 3           | Radius biggest star in local region (star 2)                 |
| 4           | Radius 2 <sup>nd</sup> biggest star in local region (star 3) |
| 5           | Radius 3 <sup>rd</sup> biggest star in local region (star 4) |
| 6           | Radius 4 <sup>th</sup> biggest star in local region (star 5) |
| 7           | Euclidean distance stars 1:2                                 |
| 8           | Euclidean distance stars 1:3                                 |
| 9           | Euclidean distance stars 1:4                                 |
| 10          | Euclidean distance stars 1:5                                 |
| H H         | Euclidean distance stars 2:3                                 |
| 12          | Euclidean distance stars 2:4                                 |
| 13          | Euclidean distance stars 2:5                                 |
| 14          | Euclidean distance stars 3:4                                 |
| 15          | Euclidean distance stars 3:5                                 |
| 16          | Euclidean distance stars 4:5                                 |

Matrix norm computed

# The proposed method: Results



- Struggles with distinguishing between South-East/West skies
- 88.1% accuracy on the test set

### The alternate method

- I. Downscale images to 96x96
- 2. Blur images with Gaussian blur (sigma = 40) to reduce sparsity
- 3. Augment the dataset with rotated images

0 degrees







Augmented dataset has 10,368 images

## The alternate method

4. Train a Convolutional Neural Network on the augmented dataset



- Adam optimizer used with learning rate = 0.001
- Batch size = 32

## The alternate method: Results



- Also struggles with distinguishing between South-East/West skies
- 91.1% accuracy on the test set