

Lars Kildehøj CommTh/EES/KTH

Diversit

Antenna Diversity

MIMO Capacity

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications¹

Lars Kildehøj CommTh/EES/KTH

Friday, April 27, 2018 9:30-12:00, Kansliet plan 3

¹Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversit

MIMO Capacity

Overview

Lecture 1-4: Channel capacity

- Gaussian channels
- Fading Gaussian channels
- Multiuser Gaussian channels
- Multiuser diversity

Lecture 5: Antenna diversity and MIMO capacity

- ① Diversity
- 2 Antenna/Spatial Diversity

Receive Diversity (SIMO)
Transmit Diversity (MISO), Space-Time Coding
2 × 2 MIMO Example

3 MIMO Capacity

Lars Kildehøj CommTh/EES/KTH

Diversii

Antenna Diversity

MIMO Capacit

Diversity

Multiuser diversity (lecture 4)

- Transmissions over independent fading channels.
- Sum capacity increases with the number of users.
- ightarrow High probability that at least one user will have a strong channel.

Fading channels (point-to-point links)

- Use diversity to mitigate the effect of (deep) fading.
- Diversity: let symbols pass through multiple paths.
- Time diversity: interleaving and coding, repetition coding.
- · Frequency diversity: for example OFDM.
- Antenna Diversity.

Antenna Diversity,

Lars Kildehøi CommTh/EES/KTH

Diversity

Antenna/Spatial Diversity

Motivation: For narrowband channels with large coherence time or delay constraints, time diversity and frequency diversity cannot be exploited!

(D. Tse and P. Viswanath, Fundamentals of Wireless Communications.)

Antenna diversity

Figure 3.11 (a) Receive

(c) transmit and receive

- Multiple transmit/receive antennas with sufficiently large spacing:
 - Mobiles: rich scattering $\rightarrow 1/2...1$ carrier wavelength.
 - · Base stations on high towers: tens of carrier wavelength.
- Receive diversity: multiple receive antennas, → single-input/multiple-output (SIMO) systems.
- Transmit diversity: multiple transmit antennas. → multiple-input/single-output (MISO) systems.
- Multiple transmit and receive antennas, → multiple-input/multiple-output (MIMO) systems.

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversity
SIMO
MISO
MIMO

MIMO Capacit

Antenna/Spatial Diversity - Receive Diversity (SIMO)

 Channel model: flat fading channel, 1 transmit antenna, L receive antennas:

$$\mathbf{y}[m] = \mathbf{h}[m] \cdot \mathbf{x}[m] + \mathbf{w}[m]$$

$$y_{l}[m] = h_{l}[m] \cdot \mathbf{x}[m] + w_{l}[m], \quad l = 1, ..., L$$

with

- additive noise $w_I[m] \sim \mathcal{CN}(0, N_0)$, independent across antennas,
- Rayleigh fading coefficients h_l[m].
- Optimal diversity combining: maximum-ratio combining (MRC)

$$r[m] = \mathbf{h}[m]^* \cdot \mathbf{y}[m] = \|\mathbf{h}[m]\|^2 \cdot x[m] + \mathbf{h}^*[m]\mathbf{w}[m]$$

• Error probability for BPSK (conditioned on h)

$$\Pr(x[m] \neq \operatorname{sign}(r[m])) = Q(\sqrt{2\|\mathbf{h}\|^2 \mathsf{SNR}})$$

with the (instantaneous) SNR

$$\gamma = \|\mathbf{h}\|^2 \mathsf{SNR} = \|\mathbf{h}\|^2 \mathsf{E}\{|x|^2\} / N_0 = L\mathsf{SNR} \cdot \frac{1}{L} \|\mathbf{h}\|^2$$

- \rightarrow Diversity gain due to $\frac{1}{l} \|\mathbf{h}\|^2$ and power/array gain LSNR.
- → 3 dB gain by doubling the number of antennas.

Lecture 5
Antenna Diversity,
MIMO Capacity

Lars Kildehøj
CommTh/EES/KTH

Diversity

Antenna Diversity
SIMO
MISO
MIMO

MIMO Capaci

Antenna/Spatial Diversity - Transmit Diversity (MISO), Space-Time Coding

Channel model

Flat fading channel, *L* transmit antennas, 1 receive antenna:

$$y[m] = \mathbf{h}^T[m] \cdot \mathbf{x}[m] + w[m], \text{ with}$$

- additive noise $w[m] \sim \mathcal{CN}(0, N_0)$,
- vector $\mathbf{h}[m]$ of Rayleigh fading coefficients $h_l[m]$.

Alamouti scheme

- Rate-1 space-time block code (STBC) for transmitting two data symbols u_1, u_2 over two symbol times with L=2 transmit antennas.
- Transmitted symbols: $\mathbf{x}[1] = [u_1, u_2]^T$ and $\mathbf{x}[2] = [-u_2^*, u_1^*]^T$.
- Channel observations at the receiver (with channel coefficients h₁, h₂):

$$[y[1], y[2]] = [h_1, h_2] \begin{bmatrix} u_1 & -u_2^* \\ u_2 & u_1^* \end{bmatrix} + [w[1], w[2]].$$

Lars Kildehøj CommTh/EES/KTH

Diversit

Antenna Diversity SIMO MISO MIMO

MIMO Capacit

Antenna/Spatial Diversity - Transmit Diversity (MISO), Space-Time Coding

Alternative formulation

$$\underbrace{\begin{bmatrix} y[1] \\ y[2]^* \end{bmatrix}}_{=y} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} w[1] \\ w[2]^* \end{bmatrix} \\
= \underbrace{\begin{bmatrix} h_1 \\ h_2^* \end{bmatrix}}_{=y_1} u_1 + \underbrace{\begin{bmatrix} h_2 \\ -h_1^* \end{bmatrix}}_{=y_2} u_2 + \begin{bmatrix} w[1] \\ w[2]^* \end{bmatrix}$$

- \rightarrow **v**₁ and **v**₂ are orthogonal; i.e., the AS spreads the information onto two dimensions of the received signal space.
- Matched-filter receiver²: correlate with $\mathbf{v_1}$ and $\mathbf{v_2}$

$$r_i = \mathbf{v_i}^H \mathbf{y} = \|\mathbf{h}\|^2 u_i + \tilde{w}_i, \quad \text{for } i = 1, 2,$$

with independent $\tilde{w}_i \sim \mathcal{CN}(0, \|\mathbf{h}\|^2 N_0)$.

• SNR (under power constraint $E\{||\mathbf{x}||^2\} = P_0$):

$$SNR = \frac{\|\mathbf{h}\|^2}{2} \frac{P_0}{N_0} \rightarrow \text{diversity gain of } 2!$$

²The textbook uses a projection on the orthonormal basis $\mathbf{v}_1/\|\mathbf{v}_1\|$, $\mathbf{v}_2/\|\mathbf{v}_2\|$.

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversity
SIMO
MISO

MIMO Capacit

Antenna/Spatial Diversity

- Transmit Diversity (MISO), Space-Time Coding

Determinant criterion for space-time code design

 Model: codewords of a space-time code with L transmit antennas and N time slots: X_i, (L × N) matrix.

$$\mathbf{y}^{T} = \mathbf{h}^{*} \mathbf{X}_{i} + \mathbf{w}^{T}$$
 with
$$\begin{cases} \mathbf{y}^{T} = [y[1], \dots, y[N]], \\ \mathbf{h}^{*} = [h_{1}, \dots, h_{L}], \\ \mathbf{w}^{T} = [w_{1}, \dots, w_{L}]. \end{cases}$$

Example: Alamouti scheme:

Repetition coding:

$$\mathbf{X}_{i} = \begin{bmatrix} u_{1} & -u_{2}^{*} \\ u_{2} & u_{1}^{*} \end{bmatrix} \qquad \mathbf{X}_{i} = \begin{bmatrix} u & 0 \\ 0 & u \end{bmatrix}$$

• Pairwise error probability of confusing X_A with X_B given h

$$Pr(\mathbf{X}_{A} \to \mathbf{X}_{B}|\mathbf{h}) = Q\left(\sqrt{\frac{\|\mathbf{h}^{*}(\mathbf{X}_{A} - \mathbf{X}_{B})\|^{2}}{2N_{0}}}\right)$$
$$= Q\left(\sqrt{\frac{SNR \,\mathbf{h}^{*}(\mathbf{X}_{A} - \mathbf{X}_{B})(\mathbf{X}_{A} - \mathbf{X}_{B})^{*}\mathbf{h}}{2}}\right)$$

(Normalization: unit energy per symbol $\rightarrow SNR = 1/N_0$)

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversity
SIMO
MISO

MIMO Capacit

Antenna/Spatial Diversity - Transmit Diversity (MISO), Space-Time Coding

Average pairwise error probability

$$Pr(\mathbf{X}_A \to \mathbf{X}_B) = E\{Pr(\mathbf{X}_A \to \mathbf{X}_B | \mathbf{h})\}$$

- Some useful facts...
 - $(\mathbf{X}_A \mathbf{X}_B)(\mathbf{X}_A \mathbf{X}_B)^*$ is Hermitian (i.e., $\mathbf{Z}^* = \mathbf{Z}$).
 - $(\mathbf{X}_A \mathbf{X}_B)(\mathbf{X}_A \mathbf{X}_B)^*$ can be diagonalized by an unitary transform, $(\mathbf{X}_A - \mathbf{X}_B)(\mathbf{X}_A - \mathbf{X}_B)^* = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^*.$

where
$${\bf U}$$
 is unitary (i.e., ${\bf U}^*{\bf U}={\bf U}{\bf U}^*={\bf I})$ and ${\bf \Lambda}={\rm diag}\{\lambda_1^2,\dots,\lambda_L^2\},$

with the singular values λ_l of $\mathbf{X}_A - \mathbf{X}_B$.

• And we get (with $\tilde{\mathbf{h}} = \mathbf{U}^* \mathbf{h}$)

$$\Pr(\mathbf{X}_A \to \mathbf{X}_B) = \operatorname{E}\left\{Q\left(\sqrt{\frac{\mathsf{SNR}\,\sum_{l=1}^L |\tilde{h}_l|^2 \lambda_l^2}{2}}\right)\right\},$$

$$\leq \prod_{l=1}^L \frac{1}{1 + \mathsf{SNR}\,\lambda_l^2/4}$$

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversity
SIMO
MISO
MIMO

MIMO Capacit

Antenna/Spatial Diversity - Transmit Diversity (MISO), Space-Time Coding

• If all $\lambda_L^2 > 0$ (only possible if $N \ge L$), we get

$$\Pr(\mathbf{X}_A \to \mathbf{X}_B) \leq \prod_{l=1}^{L} \frac{1}{1 + \operatorname{SNR} \lambda_l^2 / 4} \leq \frac{4^L}{\operatorname{SNR}^L \prod_{l=1}^{L} \lambda_l^2} \\
= \frac{1}{\operatorname{SNR}^L} \cdot \frac{4^L}{\det[(\mathbf{X}_A - \mathbf{X}_B)(\mathbf{X}_A - \mathbf{X}_B)^*]}$$

- \rightarrow Diversity gain of L is achieved.
- → Coding gain is determined by the determinant

$$\det[(\mathbf{X}_A - \mathbf{X}_B)(\mathbf{X}_A - \mathbf{X}_B)^*]$$
 (determinant criterion).

Lars Kildehøj CommTh/EES/KTH

Diversit

Antenna Diversity SIMO MISO MIMO

MIMO Capacit

Antenna/Spatial Diversity – 2 × 2 MIMO Example

Channel Model

• 2 transmit antennas, 2 receive antennas:

$$\underbrace{\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}}_{\mathbf{H}} \cdot \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}}_{\mathbf{w}}$$

- Rayleigh distributed channel gains h_{ij} from transmit antenna j to receive antenna i.
- Additive white complex Gaussian noise $w_i \sim \mathcal{CN}(0, N_0)$.
- → 4 independently faded signal paths, maximum diversity gain of 4.

$$H_{11}$$
 H_{12}
 H_{21}
 H_{21}
 H_{21}
 H_{21}
 H_{22}

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversity
SIMO
MISO
MIMO

MIMO Capacity

Antenna/Spatial Diversity

Degrees of freedom

- Number of dimensions of the received signal space.
- MISO: one degree of freedom for every symbol time.
 - \rightarrow Repetition coding (L=2): 1 dimension over 2 time slots.
 - \rightarrow Alamouti scheme (L=2): 2 dimension over 2 time slots.
- SIMO: one degree of freedom for every symbol time.
 - ightarrow Only one vector is used to transmit the data,

$$y = hx + w$$
.

- MIMO: potentially two degrees of freedom for every symbol time.
 - \rightarrow Two degrees of freedom if \mathbf{h}_1 and \mathbf{h}_2 are linearly independent.

$$\mathbf{y} = \mathbf{h}_1 x_1 + \mathbf{h}_2 x_2 + \mathbf{w}.$$

Figure 3.12 (a) In the 1 × 2 channel, the signal space is one-dimensional, spanned by h. (b) In the 2 × 2 channel, the signal space is two-dimensional, spanned by h. and h.

(D. Tse and P. Viswanath, Fundamentals of Wireless Communications.)

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversity SIMO MISO MIMO

MIMO Capacit

Antenna/Spatial Diversity – 2 × 2 MIMO Example

Spatial multiplexing

- Motivation: Neither repetition coding nor the Alamouti scheme utilize all degrees of freedom of the channel.
- Spatial multiplexing (V-BLAST) utilizes all degrees of freedom.
 - ightarrow Transmit independent uncoded symbols over the different antennas and the different symbol times.
- Pairwise error probability for transmit vectors x₁, x₂

$$\mathsf{Pr}(\mathbf{x}_1 \to \mathbf{x}_2) \leq \left[\frac{1}{1 + \mathsf{SNR} \, \|\mathbf{x}_1 - \mathbf{x}_2\|^2 / 4}\right]^2 \leq \frac{16}{\mathsf{SNR}^2 \|\mathbf{x}_1 - \mathbf{x}_2\|^4}$$

- → Diversity gain of 2 (not 4) but higher coding gain as compared to the Alamouti scheme (see example in the book).
- → Spatial multiplexing is more efficient in exploiting the degrees of freedom.
- Optimal detector, joint ML detection: complexity grows exponentially with the number of antennas.
- Linear detection, e.g., decorrelator (zero forcing): $\tilde{\mathbf{y}} = \mathbf{H}^{-1}\mathbf{y}$

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversity

MIMO Capacity

MIMO Capacity

• MIMO channel model with n_t transmit and n_r receive antennas:

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$$
, with $\mathbf{w} \sim \mathcal{CN}(\mathbf{0}, N_0 \mathbf{I})$.

- $\mathbf{x} \in \mathcal{C}^{n_t}$, $\mathbf{y} \in \mathcal{C}^{n_r}$, and $\mathbf{H} \in \mathcal{C}^{n_r \times n_t}$.
- Channel matrix **H** is known at the transmitter and receiver.
- Power constraint $E\{||\mathbf{x}||^2\} = P$.
- Singular value decomposition (SVD): H = UΛV*, where
 - $\mathbf{U} \in \mathcal{C}^{n_r \times n_r}$ and $\mathbf{V} \in \mathcal{C}^{n_t \times n_t}$ are unitary matrices;
 - $\mathbf{\Lambda} \in \mathcal{R}^{n_r \times n_t}$ is a matrix with diagonal elements $\lambda_1, \dots, \lambda_{n_{\min}}$ and off-diagonal elements equal to zero;
 - $\lambda_1, \ldots, \lambda_{n_{\min}}$, with $n_{\min} = \min\{n_r, n_t\}$ are the ordered singular values of the matrix \mathbf{H} ;
 - $\lambda_1^2, \dots, \lambda_{n_{\min}}^2$ are the eigenvalues of $\mathbf{H}\mathbf{H}^*$ and $\mathbf{H}^*\mathbf{H}$.
 - Alternative formulation: $\mathbf{H} = \sum_{i=1}^{n_{\min}} \lambda_i \mathbf{u}_i \mathbf{v}_i^*$.
 - \rightarrow Sum of rank-1 matrices $\lambda_i \mathbf{u}_i \mathbf{v}_i^*$.
 - \rightarrow **H** has rank n_{\min} .

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversity

MIMO Capacity

MIMO Capacity

Figure 7.1 Converting the MIMO channel into a parallel channel through the SVD.

(D. Tse and P. Viswanath, Fundamentals of Wireless Communications.)

 SVD can be used to decompose the MIMO channel into n_{min} parallel SISO channels.

$$\left\{ \begin{array}{lll} \tilde{x} & = & V^*x, \\ \tilde{y} & = & U^*y, \\ \tilde{w} & = & U^*w \end{array} \right\} \quad \Rightarrow \quad \tilde{y} = \Lambda \tilde{x} + \tilde{w}$$

with $\tilde{\mathbf{w}} \sim \mathcal{CN}(0, N_0 \mathbf{I}_{n_r})$ and $\|\tilde{\mathbf{x}}\|^2 = \|\mathbf{x}\|^2$; i.e., the energy is preserved.

MIMO capacity (with waterfilling)

$$C = \sum_{i=1}^{n_{\min}} \log \left(1 + rac{P_i^* \lambda_i^2}{N_0}
ight) \quad ext{with} \quad P_i^* = \left[\mu - rac{N_0}{\lambda_i^2}
ight]^+$$

with μ chosen to satisfy the total power constraint $\sum P_i^* = P$.

Lars Kildehøj

Diversit

Antenna Diversit

MIMO Capacity

MIMO Capacity

SVD architecture for MIMO communications

(D. Tse and P. Viswanath, Fundamentals of Wireless Communications.)

Lars Kildehøj CommTh/EES/KTH

Diversity

Antenna Diversity

MIMO Capacity

MIMO Capacity

Capacity at high SNR

• Uniform power allocation is asymptotically optimal; i.e., $P_i = P/k$.

$$C \approx \sum_{i=1}^k \log \left(1 + \frac{P \lambda_i^2}{k N_0}\right) \approx k \log \mathsf{SNR} \ + \sum_{i=1}^k \log \left(\frac{\lambda_i^2}{k}\right)$$

- $\rightarrow k$ spatial degrees of freedom; if **H** has full rank $k = n_{\min}$.
- · With Jensen's inequality

$$C \approx k \cdot \frac{1}{k} \sum_{i=1}^{k} \log \left(1 + \frac{P}{kN_0} \lambda_i^2 \right) \le k \log \left(1 + \frac{P}{kN_0} \left(\frac{1}{k} \sum_{i=1}^{k} \lambda_i^2 \right) \right)$$

- ightarrow Maximum capacity in high SNR if all singular values are equal.
- Condition number: $\max_i \lambda_i / \min_i \lambda_i$, **H** is well conditioned if $CN \approx 1$.

Capacity at low SNR

Allocate power only to the strongest eigenmode

$$C \approx \frac{P}{N_0} (\max_i \lambda_i^2) \log_2 e$$