SOLUZIONE DELLE RELAZIONI DI RICORRENZA

• Consideriamo la seguente relazione di ricorrenza:

$$T(n) \le \begin{cases} c_0 & \text{se } n \le c \\ \alpha T(n/\beta) + f(n) & \text{altrimenti} \end{cases}$$

con $\alpha \geq 1$ e $\beta > 1$ costanti.

- Nel caso in cui T(n) sia la funzione che scaturisce dall'analisi di un algoritmo basato sul paradigma del Divide et Impera, f(n) è il tempo per il lavoro di suddivisione e di ricombinazione. In altre parole, f(n) = d(n) + r(n).
- In realtà nella ricorrenza n/β dovrebbe essere $\lceil n/\beta \rceil$ oppure $\lfloor n/\beta \rfloor$. Per stimare T(n), assumiamo per semplicità che n sia una potenza di β in modo da poter omettere le parti intere superiori o inferiori.

Soluzione delle relazioni di ricorrenza

Sia h l'altezza dell'albero (h+1 livelli). Per i<h, Il tempo di esecuzione per tutte le chiamate ricorsive a livello i e` al piu` α^i f(n/ β^i).

Soluzione delle relazioni di ricorrenza

- L'algoritmo non effettua chiamate ricorsive quando l'input ha dimensione al più c. Quindi la ricorrenza non sarà più applicata quando si arriva al livello i per cui per la prima volta $n/\beta^i \leq c$, cioè $i = \lceil \log_\beta n/c \rceil$.
- Il numero di livelli dell'albero è quindi $\lceil \log_{\beta} n/c \rceil + 1$ (partiamo dal livello 0) e ciascun nodo sul livello $\lceil \log_{\beta} n/c \rceil$ corrisponde al tempo $T(n/\beta^{\lceil \log_{\beta} n/c \rceil}) \leq T(c) \leq c_0$. Il tempo totale per eseguire le $\alpha^{\lceil \log_{\beta} n/c \rceil}$ chiamate ricorsive in quest'ultimo livello è quindi $\leq \alpha^{\lceil \log_{\beta} n/c \rceil} c_0$.
- Abbiamo visto che per $i < \lceil \log_{\beta} n/c \rceil$, il tempo per eseguire tutte le chiamate sul livello $i \in \alpha^i f(n/\beta^i)$.
- Sommando su tutti i livelli (compreso l'ultimo) si ha

$$T(n) \leq \alpha^{\lceil \log_{\beta} n/c \rceil} c_0 + \sum_{i=0}^{\lceil \log_{\beta} n/c \rceil - 1} \alpha^i f(n/\beta^i).$$

Soluzione delle relazioni di ricorrenza

Vogliamo stimare la funzione

$$T(n) \le \left\{ egin{array}{ll} c_0 & ext{se } n \le c \\ lpha T(n/eta) + f(n) & ext{altrimenti} \end{array}
ight.$$

quando la funzione f(n) è limitata da $c'n^k$, dove c' e k sono due costanti tali che $k \ge 0$, c' > 0 (f(n) polinomiale).

• Da quanto ottenuto nella slide precedente si ha che

$$T(n) \leq \alpha^{\lceil \log_{\beta} n/c \rceil} c_0 + \sum_{i=0}^{\lceil \log_{\beta} n/c \rceil - 1} \alpha^i f(n/\beta^i)$$
$$\leq \alpha^{\lceil \log_{\beta} n/c \rceil} c_0 + \sum_{i=0}^{\lceil \log_{\beta} n/c \rceil - 1} \alpha^i c'(n/\beta^i)^k$$

Soluzione delle relazioni di ricorrenza

• Abbiamo visto che se $f(n) \le c' n^k$, dove c' e k sono due costanti tali che $k \ge 0$, c' > 0, allora

$$T(n) \leq \alpha^{\lceil \log_{\beta} n/c \rceil} c_0 + c' n^k \sum_{i=0}^{\lceil \log_{\beta} n/c \rceil - 1} (\alpha/\beta^k)^i.$$

- o consideriamo i 2 seguenti casi:
- $\alpha = \beta^k$: In questo caso si ha

$$\alpha^{\lceil \log_\beta n/c \rceil} c_0 = (\beta^k)^{\lceil \log_\beta n/c \rceil} c_0 < (\beta^k)^{\log_\beta (n/c) + 1} c_0 = \beta^k (n/c)^k c_0 = O(n^k)$$

е

$$c'n^k\sum_{i=0}^{\lceil\log_\beta n/c\rceil-1}(\alpha/\beta^k)^i=c'n^k\sum_{i=0}^{\lceil\log_\beta n/c\rceil-1}1=c'n^k\lceil\log_\beta n/c\rceil=O(n^k\log_\beta n).$$

Quindi
$$T(n) = O(n^k) + O(n^k \log_\beta n) = O(n^k \log_\beta n) = O(n^k \log n)$$
.

Soluzione delle relazioni di ricorrenza

• $\alpha \neq \beta^k$: In questo caso si ha

$$\alpha^{\lceil \log_{\beta} n/c \rceil} c_0 < c_0 \alpha^{\log_{\beta} n/c+1} = c_0 \alpha \cdot \alpha^{\log_{\beta} n/c} = c_0 \alpha \cdot \alpha^{\log_{\alpha} (n/c) \log_{\beta} \alpha}$$
$$= c_0 \alpha (n/c)^{\log_{\beta} \alpha} = O(n^{\log_{\beta} \alpha}), \tag{1}$$

е

$$c'n^k \sum_{i=0}^{\lceil \log_{\beta} n/c \rceil - 1} (\alpha/\beta^k)^i = c'n^k \cdot \frac{(\alpha/\beta^k)^{\lceil \log_{\beta} n/c \rceil} - 1}{(\alpha/\beta^k) - 1}.$$
 (2)

Soluzione delle relazioni di ricorrenza

Consideriamo i due sottocasi di $\alpha \neq \beta^k$: $\alpha < \beta^k$ e $\alpha > \beta^k$

• Caso $\alpha < \beta^k$:

$$\frac{(\alpha/\beta^{k})^{\lceil \log_{\beta}(n/c) \rceil} - 1}{(\alpha/\beta^{k}) - 1} = \frac{1 - (\alpha/\beta^{k})^{\lceil \log_{\beta} n/c \rceil}}{1 - (\alpha/\beta^{k})} < \frac{1}{1 - (\alpha/\beta^{k})} = \frac{\beta^{k}}{\beta^{k} - \alpha} = O(1).$$

Si ha quindi che la suddetta relazione insieme alla (1) e alla (2) della slide precedente implicano:

$$T(n) \leq O(n^{\log_{\beta} \alpha}) + c' n^k O(1) = O(n^{\log_{\beta} \alpha} + n^k).$$

Si noti che $\alpha < \beta^k$ implica $\log_\beta \alpha < k$ e di conseguenza si ha

$$T(n) = O(n^{\log_{\beta} \alpha} + n^k) = O(n^k).$$

Soluzione delle relazioni di ricorrenza

• Caso $\alpha > \beta^k$:

$$\frac{(\alpha/\beta^{k})^{\lceil \log_{\beta}(n/c) \rceil} - 1}{(\alpha/\beta^{k}) - 1} < \frac{(\alpha/\beta^{k})^{\log_{\beta}(n/c) + 1} - 1}{(\alpha/\beta^{k}) - 1} = \frac{(\alpha/\beta^{k})(\alpha/\beta^{k})^{\log_{\beta}(n/c)} - 1}{(\alpha/\beta^{k}) - 1}$$

$$= O((\alpha/\beta^{k})^{\log_{\beta}(n/c)}) = O((\alpha/\beta^{k})^{\log_{(\alpha/\beta^{k})}(n/c)\log_{\beta}(\alpha/\beta^{k})})$$

$$= O((n/c)^{\log_{\beta}(\alpha/\beta^{k})}) = O((n/c)^{\log_{\beta}\alpha - \log_{\beta}\beta^{k}})$$

$$= O(n^{\log_{\beta}(\alpha) - k})$$

Si ha quindi che la suddetta relazione insieme alla (1) e alla (2) della slide precedente implicano:

$$\mathcal{T}(n) \leq O(n^{\log_\beta \alpha}) + c' n^k O(n^{\log_\beta (\alpha) - k}) = O(n^{\log_\beta \alpha} + n^k n^{\log_\beta (\alpha) - k}) = O(n^{\log_\beta \alpha}).$$

SOLUZIONE DELLE RELAZIONI DI RICORRENZA

Abbiamo stimato la funzione

$$T(n) \leq \left\{ egin{array}{ll} c_0 & ext{se } n \leq c \\ lpha T(n/eta) + c' n^k & ext{altrimenti,} \end{array}
ight.$$

dove c' e k sono due costanti tali che $k \ge 0$, c' > 0

Abbiamo provato

$$T(n) = \begin{cases} O(n^k) & \text{se } \alpha < \beta^k \\ O(n^k \log n) & \text{se } \alpha = \beta^k \\ O(n^{\log_\beta \alpha}) & \text{se } \alpha > \beta^k \end{cases}$$

• **Esempi:** Nel caso di MergeSort $\alpha=2$, $\beta=2$ e k=1. Si ha $\alpha=\beta^k$ e quindi $T(n)=O(n^k\log n)=O(n\log n)$. Nel caso dell'algoritmo per la ricerca binaria $\alpha=1$, $\beta=2$ e k=0. Si ha $\alpha=\beta^k$ e quindi $T(n)=O(n^k\log n)=O(\log n)$.

Soluzione delle relazioni di ricorrenza quando \emph{n} non è potenza di β

Consideriamo la seguente relazione di ricorrenza:

$$T(n) = \left\{ egin{array}{ll} c_0 & ext{se } n \leq c \\ lpha T(n/eta) + c' n^k & ext{altrimenti} \end{array}
ight.$$

con $\alpha > 1$ e $\beta > 1$ costanti.

- Quando n non è una potenza di β la taglia di ciascun sottoproblema è $\lceil n/\beta \rceil$ oppure $\lceil n/\beta \rceil$.
- Siccome vogliamo stabilire un limite superiore per T(n) mettiamoci nel caso peggiore in cui la taglia di ciascun sottoproblema è $\lceil n/\beta \rceil$ Consideriamo quindi la seguente relazione di ricorrenza:

$$T(n) = \left\{ egin{array}{ll} c_0 & ext{se } n \leq c \ lpha T(\lceil n/eta
ceil) + c' n^k & ext{altrimenti} \end{array}
ight.$$

con $\alpha \geq 1$, $\beta > 1$ e $k \geq 0$ costanti.

• Usando questa nuova relazione di ricorrenza potremmo usare un procedimento simile a quello usato per il caso in cui n è potenza di β per provare le stesse limitazioni superiori viste per quel caso. Nel seguito invece useremo un argomento molto semplice per dedurre che quelle limitazioni valgono anche quando n non è potenza di β .

Soluzione delle relazioni di ricorrenza quando n non è potenza di β

- Sia p il più piccolo intero positivo per cui $n \leq \beta^p$, cioè p è l'intero per cui $\beta^{p-1} < n < \beta^p$.
- Osserviamo che siccome T(n) è una funzione non decrescente allora $T(n) \leq T(\beta^p)$.
- Applicando a $T(\beta^p)$ la limitazione asintotica dimostrata per le potenze di β si ha

$$T(\beta^{p}) = \begin{cases} O((\beta^{p})^{k}) & \text{se } \alpha < \beta^{k} \\ O((\beta^{p})^{k} \log(\beta^{p})) & \text{se } \alpha = \beta^{k} \\ O((\beta^{p})^{\log_{\beta} \alpha}) & \text{se } \alpha > \beta^{k} \end{cases}$$
(3)

• Osserviamo che $\beta^p=\beta\beta^{p-1}<\beta n$, dal momento che $\beta^{p-1}< n$. Si ha quindi che

$$O((\beta^p)^k) = O((\beta n)^k) = O(\beta^k n^k) = O(n^k),$$

$$O((\beta^p)^k \log(\beta^p)) = O((\beta n)^k) \log(\beta n) = O(n^k (\log(\beta) + \log n)) = O(n^k \log n),$$

$$O((\beta^p)^{\log_\beta \alpha}) = O((\beta n)^{\log_\beta \alpha}) = O(\beta^{\log_\beta \alpha} n^{\log_\beta \alpha}) = O(n^{\log_\beta \alpha}).$$

La (3) può essere quindi scritta come segue

$$T(\beta^{p}) = \begin{cases} O(n^{k}) & \text{se } \alpha < \beta^{k} \\ O(n^{k} \log n) & \text{se } \alpha = \beta^{k} \\ O(n^{\log_{\beta} \alpha}) & \text{se } \alpha > \beta^{k} \end{cases}$$

• Poichè $T(n) \leq T(\beta^p)$ allora le limitazioni appena provate valgono anche per T(n).

Esempi di relazioni di ricorrenza della forma $T(n) \le \alpha T(n/\beta) + cn^k$

Ricerca binaria

$$T(n) \leq \left\{ egin{array}{ll} c_0 & ext{se } n \leq 1 ext{ oppure } k ext{ \`e} ext{ l'elemento centrale} \ T(n/2) + c & ext{altrimenti} \end{array}
ight.$$

Si ha $\alpha = 1$, $\beta = 2$, k = 0.

Siccome $\alpha=\beta^k$, siamo nel secondo caso e si ha

$$T(n) = O(n^k \log n)) = O(\log n).$$

Esempi di relazioni di ricorrenza della forma $T(n) \leq \alpha T(n/\beta) + n^k$

Nell'ordinamento per fusione,

$$T(n) \leq \left\{ egin{array}{ll} c_0 & ext{se } n \leq 1 \ 2T(n/2) + cn & ext{altrimenti} \end{array}
ight.$$

Quindi,

- $\alpha = 2$, $\beta = 2$ e k = 1
- siamo nel caso $\alpha = \beta^k$ e quindi $T(n) = O(n^k \log n) = O(n \log n)$.

Esempi di relazioni di ricorrenza della forma $T(n) \le \alpha T(n/\beta) + n^k$

$$T(n) \leq \left\{ egin{array}{ll} c_0 & ext{se } n \leq 1 \ T(n/2) + cn & ext{altrimenti} \end{array}
ight.$$

Una relazione di questo tipo è quella che scaturisce dall'analisi per il caso ottimo' di QuickSelect. Qui tralasciamo il caso in cui l'elemento da selezionare è proprio il pivot.

Quindi,

- ullet $\alpha=1$, $\beta=2$ e k=1
- siamo nel caso $\alpha < \beta^k$ e quindi $T(n) = O(n^k) = O(n)$.

Moltiplicazione di interi

 Algoritmo che usiamo comunemente ha tempo di esecuzione O(n²), dove n e` il numero di cifre di ciascun numero

```
2345 x
5382 =
4690
18760
7035
11725
```

Moltiplicazione veloce di interi

Ogni numero intero w di n cifre può essere scritto come $10^{n/2} \times w_s + w_d$

- w_s indica il numero formato dalle n/2 cifre più significative di w
- w_d denota il numero formato dalle n/2 cifre meno significative.

Ad esempio 124100 può essere scritto come $10^3 \times 124 + 100$

Per moltiplicare due numeri x e y, vale l'uguaglianza

$$x y = (10^{n/2} x_s + x_d)(10^{n/2} y_s + y_d)$$

= 10ⁿ x_s y_s + 10^{n/2} (x_s y_d + x_d y_s) + x_d y_d

DECOMPOSIZIONE: se x e y hanno almeno due cifre, decomponi x nei due interi x_s e x_d aventi ciascuno la metà delle cifre di x e decomponi y nei due interi y_s e y_d aventi ciascuno la metà delle cifre di y.

RICORSIONE: calcola ricorsivamente le moltiplicazioni $x_s y_s$, $x_s y_d$, $x_d y_s$ e $x_d y_d$.

RICOMBINAZIONE: combina i numeri risultanti usando l'uguaglianza riportata sopra.

Moltiplicazione veloce di interi

- l'algoritmo esegue quattro moltiplicazioni di due numeri di n/2 cifre (ad un costo di T(n/2)), e tre somme di numeri di n cifre (a un costo O(n))
- la moltiplicazione per il valore 10^k può essere realizzata spostando le cifre di k posizioni verso sinistra e riempiendo di 0 la parte destra
- il costo della decomposizione e della ricombinazione è cn

Vale la relazione di ricorrenza

$$T(n) \le \left\{ egin{array}{ll} c_0 & ext{se } n \le 1 \ 4T(n/2) + cn & ext{altrimenti} \end{array}
ight.$$

Moltiplicazione veloce di interi

$$T(n) \leq \left\{ egin{array}{ll} c_0 & ext{se } n \leq 1 \ 4T(n/2) + cn & ext{altrimenti} \end{array}
ight.$$

Assumiamo per semplicità $n=2^k$ per un certo k e applichiamo iterativamente la relazione di ricorrenza:

$$T(n) \leq cn + 4T(n/2) \leq cn + 4(cn/2 + 4T(n/2^{2})) = cn + 2cn + 4^{2}T(n/2^{2})$$

$$\leq cn + 2cn + 4^{2}(cn/2^{2} + 4T(n/2^{3})) = cn + 2cn + 2^{2}cn + 4^{3}T(n/2^{3})$$

$$\leq \cdots$$

$$\leq cn + 2cn + 2^{2}cn + \cdots + 2^{i-1}cn + 4^{i}T(n/2^{i})$$

$$= cn \sum_{j=0}^{i-1} 2^{j} + 4^{i}T(n/2^{i}) = cn2^{i} - cn + 4^{i}T(n/2^{i})$$

Ponendo $i = k = \log_2 n$ si ha $T(n) \le cn^2 - cn + n^2 T(1) = O(n^2)$.

Moltiplicazione veloce di interi

- È possibile progettare un algoritmo più veloce?
- Abbiamo visto che $x y = 10^n x_s y_s + 10^{n/2} (x_s y_d + x_d y_s) + x_d y_d$.
- Osserviamo che sommando e sottraendo $x_s y_s + x_d y_d$ a $x_s y_d + x_d y_s$ si ha

$$x_{s}y_{d} + x_{d}y_{s} = x_{s}y_{d} + x_{d}y_{s} + x_{s}y_{s} + x_{d}y_{d} - x_{s}y_{s} - x_{d}y_{d}$$
$$= x_{s}y_{s} + x_{d}y_{d} + (x_{s}y_{d} + x_{d}y_{s} - x_{s}y_{s} - x_{d}y_{d})$$

• Poiché $x_s y_d + x_d y_s - x_s y_s - x_d y_d = -(x_s - x_d) \times (y_s - y_d)$ allora possiamo scrivere

$$x_s y_d + x_d y_s = x_s y_s + x_d y_d - (x_s - x_d) \times (y_s - y_d)$$

- quindi il valore $x_s y_d + x_d y_s$ può essere calcolato facendo uso di $x_s y_s$, $x_d y_d$ e $(x_s x_d) \times (y_s y_d)$
- Quindi per computare il prodotto xy sono necessarie tre moltiplicazioni e non più quattro come prima

Moltiplicazione veloce di interi

Si ha quindi la relazione di ricorrenza

$$T(n) \leq \left\{ egin{array}{ll} c_0 & ext{se } n \leq 1 \ 3T(n/2) + cn & ext{altrimenti} \end{array}
ight.$$

Assumiamo per semplicità $n = 2^k$, per un certo k, e applichiamo iterativamente la relazione di ricorrenza:

$$T(n) \leq cn + 3T(n/2) \leq cn + 3(cn/2 + 3T(n/2^{2})) = cn + (3/2)cn + 3^{2}T(n/2^{2})$$

$$\leq cn + (3/2)cn + 3^{2}(cn/2^{2} + 3T(n/2^{3})) = cn + (3/2)cn + (3/2)^{2}cn + 3^{3}T(n/2^{3})$$

$$\leq \cdots$$

$$\leq cn + (3/2)cn + (3/2)^{2}cn + \cdots + (3/2)^{i-1}cn + 3^{i}T(n/2^{i})$$

$$= cn \sum_{j=0}^{i-1} (3/2)^{j} + 3^{i}T(n/2^{i}) = cn \left(\frac{(3/2)^{i} - 1}{3/2 - 1}\right) + 3^{i}T(n/2^{i})$$

$$= 2cn((3/2)^{i} - 1) + 3^{i}T(n/2^{i}) = 2cn(3/2)^{i} - 2cn + 3^{i}T(n/2^{i})$$

Continua nella prossima slide

Ponendo $i = k = \log_2 n$ si ha

$$T(n) \leq 2cn(3/2)^{\log_2 n} - 2cn + 3^{\log_2 n} T(1)$$

$$= 2cn \left(2^{\log_2(3/2)}\right)^{\log_2 n} - 2cn + \left(2^{\log_2 3}\right)^{\log_2 n} T(1)$$

$$= 2cn \left(2^{\log_2 n}\right)^{\log_2(3/2)} - 2cn + \left(2^{\log_2 n}\right)^{\log_2 3} T(1)$$

$$= 2cn n^{\log_2(3/2)} - 2cn + n^{\log_2 3} T(1)$$

$$= 2cn n^{\log_2 3 - 1} - 2cn + n^{\log_2 3} T(1)$$

$$= 2cn^{\log_2 3} - 2cn + n^{\log_2 3} T(1)$$

$$\leq 2cn^{\log_2 3} - 2cn + n^{\log_2 3} T(1)$$

$$\leq 2cn^{\log_2 3} - 2cn + n^{\log_2 3} C_0$$

$$= O(n^{\log_2 3}) = O(n^{1,585})$$

Esempi di relazioni di ricorrenza della forma $T(n) \leq \alpha T(n/\beta) + cn^k$

• Moltiplicazione veloce di interi: primo algoritmo

$$T(n) \le \left\{ egin{array}{ll} c_0 & ext{se } n \le 1 \ 4T(n/2) + cn & ext{altrimenti} \end{array}
ight.$$

Applicazione del risultato provato:

- si ha che $\alpha = 4$, $\beta = 2$ e k = 1
- $\alpha > \beta^k$, quindi si applica il terzo caso e si ha $T(n) = O(n^{\log_2 4}) = O(n^2)$
- Moltiplicazione veloce di interi: secondo algoritmo

$$T(n) \le \left\{ egin{array}{ll} c_0 & ext{se } n \le 1 \ 3T(n/2) + cn & ext{altrimenti} \end{array}
ight.$$

Applicando il risultato dimostrato,

- si ha che $\alpha = 3$, $\beta = 2$ e k = 1
- $\alpha > \beta^k$, quindi si applica il terzo caso e si ha $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

SOMMATORIE UTILI

$$\sum_{i=1}^{n} i = n(n+1)/2$$

$$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$$

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1} \text{ per } a \neq 1$$

$$\sum_{i=0}^{\infty} a^{i} = \frac{1}{1-a} \text{ per } 0 < a < 1.$$

DIVIDE ET IMPERA SU ALBERI

- Caso base: per u = null o una foglia
- **Decomposizione**: riformula il problema per i sottoalberi radicati nei figli di *u*.
- Ricombinazione: ottieni il risultato con Ricombina

```
Decomponibile(u):
    If (u == null) {
        RETURN valore base;
    } ELSE {
        i=0;
        FOR( ciascun figlio f di u ){
        risultatiFigli[i] = Decomponibile(f);
        i=i+1 }
        RETURN Ricombina(risultatiFigli);
}
```

La ricombinazione del risultati della chiamate ricorsive sui figli potrebbe essere effettuata anche nel for man mano che vengono ottenuti i risultati delle chiamate sui figli.

Divide et impera su alberi binari

- Caso base: per u = null o una foglia
- Decomposizione: riformula il problema per i sottoalberi radicati nei figli u.sx e u.dx
- Ricombinazione: ottieni il risultato con Ricombina

```
Decomponibile(u):

IF (u == null) {
    RETURN valore base;

ELSE {
    risultatoSX = Decomponibile(u.sx);
    risultatoDx = Decomponibile(u.dx);
    RETURN Ricombina(risultatoSX, risultatoDx);
}
```

Analisi dell'algoritmo Decomponibile

- Assumiamo che il tempo per la decomposizione e la ricombinazione sia costante
- Se escludiamo il tempo impiegato per le chiamate ricorsive, l'algoritmo impiega tempo O(1+ c_v), dove c_v è il numero di figli di v
- Se cominciamo la visita dal nodo w, l'algoritmo viene invocato su tutti i discendenti di w

Tempo totale =
$$\sum_{v \in T_w} O(c_v + 1) = O(|T_w|)$$

- La visita di tutto l'albero richiede tempo O(|T|)
- Se l'albero ha n nodi la visita richiede tempo T(n)= O(n)

Analisi dell'algoritmo Decomponibile

- Nell'analisi precedente abbiamo usato il fatto che $\sum_{v \in T_w} c_v = |T_w| 1$.
- È facile vedere che vale questa uguaglianza in quanto ogni nodo di T_w , eccezion fatta per la radice w, è figlio di un unico nodo v dell'albero T_w e quindi viene contato esattamente una volta in quella sommatoria.

Analisi dell'algoritmo Decomponibile per un albero binari mediante relazione di ricorrenza

La funzione T(n) che esprime il tempo di esecuzione dell'algoritmo Decomponibile su un albero binario con n nodi può essere descritta dalla seguente relazione di ricorrenza, dove $r-1\geq 0$ è il numero di nodi del sottoalbero sinistro.

$$T(n) \leq \left\{ egin{array}{ll} c_0 & ext{se } n \leq 1 \ T(r-1) + T(n-r) + c & ext{altrimenti} \end{array}
ight.$$

Dimostriamo per induzione che $T(n) \le c'n$ per $n \ge 1$ e per una costante c' > 0. In altre parole T(n) = O(n).

- Base: $T(1) \le c_0$ implica $T(1) \le c'$ se si sceglie $c' \ge c_0$.
- Passo induttivo: Assumiano $T(m) \le c'm$ per ogni $1 \le m < n$ e dimostriamo $T(n) \le c'n$.

Applichiamo relazione di ricorrenza: $T(n) \le T(r-1) + T(n-r) + c$. L'ipotesi induttiva implica $T(r-1) \le c'(r-1)$ e $T(n-r) \le c'(n-r)$.

Si ha quindi $T(n) \le c'(r-1) + c'(n-r) + c = c'n - c'r + c$.

Affinché risulti $T(n) \le c'n$ basta scegliere c' in modo che $c'r \ge c$ cioè $c' \ge c/r$. Non sappiamo quanto vale r ma sappiamo che $r \ge 1$ per cui basta scegliere $c' \ge c$.

• Dalla base dell'induzione e dal passo induttivo, sappiamo che basta scegliere $c' = \max\{c_0, c\}$ affinché valga $T(n) \le c'n$ per $n \ge 1$.

ALGORITMI RICORSIVI SU ALBERI: DIMENSIONE

Calcolo della dimensione d = numero di nodi

- Caso base: albero vuoto $\Rightarrow d = 0$
- ullet Caso induttivo: d=1+ dimensione del sottoalbero sinistro + dimensione del sottoalbero destro

```
Dimensione( u ):

IF (u == null) {
RETURN 0;

ELSE {
    dimensioneSX = Dimensione( u.sx );
    dimensioneDX = Dimensione( u.dx );
    RETURN dimensioneSX + dimensioneDX + 1;
}
```

Se si vuole conoscere la dimensione di tutto l'albero, si invoca Dimensione con u uguale alla radice

Algoritmi ricorsivi su alberi: altezza

Calcolo dell'altezza *h* di un nodo:

- caso base per null $\Rightarrow h = -1$
- ullet passo induttivo: h=1+ massima altezza dei figli

```
1 Altezza( u ):
2    IF (u == null) {
3        RETURN -1;
4    } ELSE {
5        altezzaSX = Altezza( u.sx );
6        altezzaDX = Altezza( u.dx );
7        RETURN max( altezzaSX, altezzaDX ) + 1;
8    }
```

Per calcolare l'altezza dell'albero, si invoca Altezza con u uguale alla radice

VISITA DI UN ALBERO BINARIO: INORDER

Visita di un albero binario: preorder

```
• anticipata (preorder):
    1    Anticipata( u ):
    2    IF (u != null) {
    3         elabora(u);
    4         Antiticipata( u.sx );
    5         Antiticipata( u.dx );
    6    }
```

O(n) tempo per n nodi

Visita di un albero binario: postorder

O(n) tempo per n nodi

ESEMPIO DELL'USO DELLE VISITE

Esempio dell'uso delle visite: valutazione dell'espressione aritmetica rappresentata da un albero binario

- Albero binario associato ad una espressione:
 - Nodi interni: operatori
 - Nodi esterni: operandi
- Esempio: $((5 + a) 1) / (6 \times b)$

USO DELLA VISITA POSTORDER PER VALUTARE L'ESPRESSIONE ARITMETICA RAPPRESENTATA DA UN ALBERO BINARIO

```
1 Valuta( u ):
 2
    IF (u==null) {
 3
      RETURN null;
 4
    IF (u.sx == null && u.dx==null) {
 5
 6
      RETURN u.dato;
 7
     } ELSE {
8
      valSinistra=Valuta( u.sx );
9
      valDestra= Valuta( u.dx );
      ris= Calcola(u.dato, valSinistra , valDestra);
10
11
       RETURN ris;
12
```

- La funzione Calcola invocata su *u.dato*, *valSinistra* e *valDestra*, applica l'operatore memorizzato nel nodo interno *u* ai valori *valSinistra* e *valDestra*.
- N.B.: la condizione del primo if è soddisfatta (u è null) solo se inizialmente la funzione Valuta è invocata su null. Se inizialmente Valuta è invocata su un nodo u ≠ null allora la condizione del primo if non sarà mai soddisfatta perché quando è invocata su una foglia, la funzione restituisce il contenuto della foglia.

Uso della visita inorder per stampare l'espressione aritmetica rappresentata da un albero binario

- Il seguente algoritmo stampa l'espressione l'espressione aritmetica rappresentata da un albero binario.
- L'algoritmo deve effettuare una visita inorder in modo che per ogni nodo interno u, stampi prima la sottoespressione a sinistra dell'operatore contenuto in u, poi l'operatore contenuto in u e infine la sottoespressione a destra dell'operatore.
- Per ciascun nodo interno *u*, la sottoespressione rappresentata dal sottoalbero radicato in *u* viene stampata tra una coppia di parentesi tonde:
 - la parentesi sinistra viene aperta prima di invocare l'algoritmo ricorsivamente sul figlio sinistro di u
 - ullet la parentesi destra viene chiusa dopo aver invocato l'algoritmo ricorsivamente sul figlio destro di u

```
1 Stampa(u):
      IF (u==null) {
        print("");
 3
 4
     IF (u.sx == null \&\& u.dx == null) {
 5
        print(u.dato);
      } ELSE {
 6
 7
        print("(");
8
        Stampa(u.sx);
9
        print(u.dato);
10
        Stampa(u.dx);
        print(")");
11
12
      }
```

ALGORITMO PER VERIFICARE SE UN ALBERO BINARIO È COMPLETAMENTE BILANCIATO

Definizioni:

- Albero binario **proprio**: ogni nodo interno ha sempre due figli non vuoti
- Albero completamente bilanciato: albero proprio con tutte le foglie alla stessa profondità
 Esempio:

Algoritmo per verificare se un albero binario è completamente bilanciato

- Def. ricorsiva di albero completamente bilanciato:
 - Un albero binario vuoto è completamente bilanciato
 - Una albero binario con almeno un nodo è completamente bilanciato se e solo se il sottoalbero destro e il sottoalbero sinistro della radice sono completamente bilanciati e hanno la stessa altezza (per convenzione, un albero vuoto ha altezza -1)
- N.B. In un albero completamente bilanciato l'altezza dell'albero corrisponde alla profondità di tutte le foglie
- Indichiamo con T(u) il sottoalbero di T radicato in u
- Risolviamo un problema più generale per T(u), calcolandone anche l'altezza oltre che a dire se è completamente bilanciato o meno
- La ricorsione restituisce una coppia (booleano, intero)
- Tempo di risoluzione: O(n) tempo per n nodi

```
1 CompletamenteBilanciato( u ):
2
     IF (u == null) {
3
       RETURN <TRUE, -1>;
4
     } ELSE {
5
       <bilSX,altSX> = CompletamenteBilanciato( u.sx );
6
        <bilDX,altDX> = CompletamenteBilanciato( u.dx );
       bil = bilSX && bilDX && (altSX == altDX);
7
8
       altezza = max(altSX, altDX) + 1;
0
       RETURN <bil,altezza>;
10
```

Algoritmi ricorsivi su alberi: profondità di un nodo

- La radice ha profondità 0
- I figli della radice hanno profondità pari a 1, e così via
- ullet Un nodo ha profondità p ha i figli a profondità p+1

Versione iterativa dell'algoritmo per calcolare la profondità di un nodo u

```
p = 0;
while (u.padre != null) {
  p = p + 1;
  u = u.padre;
}
```

Definizione ricorsiva di profondità di un nodo:

- La radice ha profondità 0
- ullet I nodi diversi dalla radice hanno profondità pari alla profondità del padre + 1

Versione ricorsiva dell'algoritmo per calcolare la profondità di un nodo u

```
1 Profondita( u ):
2    IF (u.padre==null) {
3        RETURN 0;
4    }
5    RETURN profondita(u.padre)+1;
```

Trasmissione dell'informazione tra chiamate ricorsive

- postorder : l'informazione è trasferita dalle foglie alla radice
 - la soluzione del problema per T(u) può essere ottenuta dalla soluzioni dei sottoproblemi per T(u.sx) e T(u.dx)
- passaggio dei parametri : informazione passata attraverso i parametri dalla radice alle foglie
 - la soluzione del problema per T(u) può essere ottenuta utilizzando l'informazione raccolta dalla radice fino al nodo u

Esempio: stampa la profondità di tutti i nodi

```
1 Profondita( u, p ):
2    IF (u != null) {
3         PRINT profondità di u è pari a p;
4         Profondita( u.sx, p+1 );
5         Profondita( u.dx, p+1 );
6     }
```

Il parametro p indica la profondità del nodo u. Se vogliamo stampare le profondità di tutti i nodi dobbiamo invocare la funzione con u uguale alla radice dell'albero e p=0.

Algoritmo per trovare i nodi cardine

Trasferiamo informazione simultaneamente dalle foglie alla radice e dalla radice verso le foglie combinando i due approcci della slide precedente

• Nodo u è cardine se e solo se profondita(u) = altezza(T(u))

```
1 Cardine( u, p ):
 2
     IF (u == null) {
 3
      RETURN −1;
     } ELSE {
 5
       altezzaSX = Cardine( u.sx, p+1 );
       altezzaDX = Cardine( u.dx, p+1 );
 7
       altezza = max( altezzaSX, altezzaDX ) + 1;
      IF (p == altezza) PRINT u.dato;
9
      RETURN altezza;
     }
10
```

Il problema della coppia più vicina

Problema: vogliamo trovare la coppia di punti più vicina tra un insieme di punti del piano.

La distanza tra due punti $p_1=(x_1,y_1)$ e $p_2=(x_2,y_2)$ si calcola con la formula $\sqrt{((x_1-x_2)^2+(y_1-y_2)^2}$ in tempo O(1)

Il problema può essere risolto in tempo $O(n^2)$ calcolando le distanze tra tutte le coppie di punti.

Utilizzando la tecnica del divide et impera, il problema può essere risolto in tempo $O(n \log n)$.

Il problema della coppia più vicina

Idea intuitiva.

- l'insieme ha cardinalià minore o uguale di una certa costante: usiamo la ricerca esaustiva.
- altrimenti: lo dividiamo in due parti uguali S e D, per esempio quelli a sinistra e quelli a destra di una fissata linea verticale
 - troviamo ricorsivamente le soluzioni per S e quella per D individuando due coppie di punti a distanza minima, d_S e d_D
- soluzione finale: o una delle due coppie già individuate oppure può essere formata da un punto in S e uno in D
- se d_{SD} è la minima distanza tra punti aventi estremi in S e D, la soluzione finale è data dalla coppia di punti a distanza min $\{d_{SD}, d_S, d_D\}$.

Partizione in due sottoinsiemi di n/2 punti ciascuno

Linea L che divide i punti in due sottoinsiemi

- Ordina i punti in base alle ascisse
- x= ascissa punto pc centrale nell'ordinamento
- S= insieme dei punti a sinistra di pc nell'ordinamento
- D= insieme dei punti a destra di pc nell'ordinamento

Individuazione della coppia di punti a distanza

- I 2 punti a distanza minima o sono entrambi in S, o sono entrambi in D, o uno dei due si trova in S e l'altro in D
- Divide et impera:
- Decomposizione: partiziona l'insieme di punti in S e D
- Soluzione sottoproblemi: cerca la coppia a distanza minima d_s in S e la coppia a distanza minima d_p in D. d=min{d_s d_p}
- Ricombinazione: Cerca tra le coppie (p,q) con p in S e q in D quella a distanza minima d_{SD} e nel far questo ignora le coppie che evidentemente sono a distanza maggiore di d. Alla fine restituisce la coppia con distanza pari a min{d, d_{SD}}.

Ricerca della coppia (p,q) a distanza minima con p in S e q in D

- S'= insieme dei punti di S con ascissa nell'intervallo [x-d,x]
- D'= insieme dei punti di D con ascissa nell'intervallo [x,x+d]
- è sufficiente considerare coppie (p,q) con p in S' e q in D' ' in quanto le altre coppie (p,q) con p in S e q in D sono a distanza maggiore di d

Dividiamo S' e D' in tanti quadrati di lato uguale a d/2

 Osservazione 1: Ciascun quadrato contiene al piu` un unico punto altrimenti esisterebbe una coppia di punti entrambi in S' o entrambi in D', a distanza minore di d

Dividiamo S' e D' in tanti quadrati di lato uguale a d/2

Osservazione 2: Se un punto p di S' si trova in uno dei quadrati più a sinistra allora i punti di D' a distanza minore di d da p possono trovarsi solo nei quadrati di D' confinanti con L e in particolare in 5 di questi quadrati, in quello alla stessa altezza del quadrato contenente p, nei 2 quadrati al di sopra di questo e nei due al di sotto. Ad esempio se p è nel quadrato verde, allora un punto q di D' a distanza minore di d da p può trovarsi solo in uno dei quadrati in D' colorati di azzurro

Se q è più in alto rispetto a p allora q si trova in uno dei quadrati 1, 2, 3; altrimenti si trova ir uno dei quadrati 3, 4, 5.

Dividiamo S' e D' in tanti quadrati di lato uguale a d/2

- Osservazione 3: Se un punto p di S' si trova in uno dei quadrati confinati con L allora i punti di D' a distanza minore di d da p possono trovarisi solo nei due quadrati di D' alla stessa altezza di quello contenente p o nei quattro quadrati al di sopra di questi due quadrati o nei quattro al di sotto.
- Se p si trova nel quadrato verde allora un punto q di D' a distanza minore di d da p può trovarsi solo in uno dei 10 quadrati in D' colorati di azzurro
 - Se q è più in alto rispetto a p allora q si trova in uno dei quadrati 1-6; altrimenti q si trova in uno dei quadrati 5-10

Dividiamo S' e D' in tanti quadrati di lato uguale a d/2

S'	Ц	D'
	1	
	2	
р	3	
	4	
	5	
	×	

- P_d = array dei punti di S' e D' in ordine non decrescente di altezza
- per ogni punto p in P_d cerchiamo il punto a distanza minima da p tra quelli più in alto di p
- Ciascun quadrato contiene al più 1 punto → un punto q di D' a distanza al più d da p si trova al più 11 locazioni in avanti nell'array P_d rispetto a p
 - tra p e q possono esserci infatti al più 5 punti di D' e 5 punti di S' (II figura): ad esempio se q è più in alto rispetto a p allora tra p e q può esserci al più un punto di D' per ciascuno dei quadrati 1-6 (meno quello contente q) e un punto di S' per ciascuno dei quadrati verdi (meno quello contente p)

L'ALGORITMO CHE TROVA LA COPPIA PIÙ VICINA

Input: P_x = array dei punti ordinato in modo non decrescente rispetto alle ascisse; P_y = array dei punti ordinato in modo non decrescente rispetto alle ordinate, n dimensione degli array P_x e P_y

- ① Se $n \le 3$, calcola le distanze tra le tre coppie di punti per trovare la coppia a distanza minima.
- ② Se n > 3, esegue i seguenti passi:
- 3 Inserisce nell'array S_x i primi $\lfloor n/2 \rfloor$ punti di P_x e nell'array D_x gli ultimi $\lceil n/2 \rceil$ punti di P_x
- 4 Inserisce nell'array S_y i primi $\lfloor n/2 \rfloor$ punti di P_x nell'ordine in cui appaiono in P_y e nell'array D_y gli ultimi $\lceil n/2 \rceil$ punti di P_x nell'ordine in cui appaiono in P_y
- **5** Effettua una chiamata ricorsiva con input S_x , S_y e $\lfloor n/2 \rfloor$ e una chiamata ricorsiva con input D_x , D_y e $\lceil n/2 \rceil$. Siano d_S e d_D i valori delle distanze delle coppie di punti restituite dalla prima e dalla seconda chiamata rispettivamente. Pone $d = \min\{d_S, d_D\}$ e (p, q) uguale alla coppia a distanza d.
- © Copia in P_d i punti a distanza minore di d dalla retta verticale passante per l'elemento centrale di P_x nello stesso ordine in cui appaiono in P_y
- Per ciascun punto p' in P_d esamina gli 11 punti che seguono p' in P_d ; per ciascun punto q' (tra questi 11) computa la sua distanza da p' e se questa risulta minore di d, aggiorna il valore di d e pone (p,q)=(p',q')
- 8 Restituisce la coppia (p, q)

Analisi del costo dell'algoritmo che trova coppia più vicina

Assumiamo per semplicità che n sia un potenza di 2

- ① Se $n \approx <= 3$, il costo è limitato superiormente da una certa costante c_0
- ② Se $n \ge 3$, il costo dell'algoritmo è così computato:
- 3 il costo del passo 3 è O(n)
- 4 il costo del passo 4 è O(n): i punti di P_y vengono scanditi a partire dalla prima locazione.e vengono man mano inseriti in S_y o in D_y a seconda che si trovino in locazioni di P_x di indice minore di $\lfloor n/2 \rfloor$ oppure in locazioni di P_x di indice maggiore o uguale di $\lfloor n/2 \rfloor$
- ⑤ Il costo delle due chiamate ricorsive è 2T(n/2); il costo delle altre operazioni eseguite al passo 5 è costante
- © Il passo 6 richiede tempo O(n): i punti di P_y vengono scanditi a partire dalla prima locazione e quelli la cui ascissa differisce al più d dall'ascissa dell'elemento centrale di S_x vengono man mano inseriti in P_d
- 8 il passo 8 richiede tempo O(1)

Costo computazionale dell'algoritmo per la coppia più vicina definito mediante relazione di ricorrenza

$$T(n) \le \left\{ egin{array}{ll} c_0 & ext{se } n \le 2 \\ 2T\left(rac{n}{2}
ight) + cn & ext{altrimenti} \end{array}
ight.$$

dove c_0 , c sono costanti.

Abbiamo $T(n) = O(n \log n)$.

```
    CoppiaPiuVicina(Px,Py,n):

IF(n<=3){Return RicercaEsaustiva(Px,Py,n);}</li>
ELSE{ p=Px[n/2];}
4. j=k=0;
5. FOR(i=0;i<n/2;i=i+1){</p>
Sx[i]=Px[i]; Dx[i]=Px[i+n/2];}
7. if n\%2==1 Dx[n-1]=Px[n-1];
FOR(i=0;i<n;i=i+1){</li>
9. IF(Py[i].x<=p.x){Sy[j]=Py[i]; j=j+1;}</pre>
10. ELSE {Dy[k]=Py[i]; k=k+1;}
11. }
(ps,qs)= CoppiaPiuVicina(Sx,Sy,n/2);
13. (pd,qd)=CoppiaPiuVicina(Dx,Dy,(n+1)/2);
14. IF(Dist(ps,qs) < Dist(pd,qd)) \{d = Dist(ps,qs); (p,q) = (ps,qs); \}
15. ELSE {d=Dist(pd,qd); (p,q)=(pd,qd);}
16. FOR(i=m=0;i<n;i=i+1){
17. IF(|Py[i].x-p.x|<=d){Pd[m]=Py[i]; m=m+1;}</pre>
18. }
19. FOR(i=0;i<m;i=i+1){
20. FOR(j=i+1;j<=min{i+11,m};j=j+1){
      IF(Dist(Pd[i],Pd[j])<d){ d=Dist(Pd[i],Pd[j]); (p,q)=(Pd[i],Pd[j]);}
21.
22. }
23. }
24. RETURN(p,q);
25. }
```

Albero di decisione di un particolare algoritmo basato sui confronti per ordinare 3 numeri

Limite inferiore per gli algoritmi di ordinamento basati su confronti

- L'albero di decisione di un qualsiasi algoritmo di ordinamento deve avere una foglia per ogni possibile ordinamento dell'input
- Se l'input consiste di n numeri allora l'albero di decisione deve contenere almeno n! foglie. Sia h l'altezza dell'albero.
- Il massimo numero di foglie in un albero binario di altezza h e` 2^h
- · Ne consegue che l'altezza h dell'albero deve essere tale che

$$2^h \ge n! \rightarrow h \ge \log n! \ge \log (n/2)^{n/2} = n/2 \log(n) - n/2$$

 $\rightarrow h = \Omega(n \log n)$

• Siccome h=numero confronti fatti nel caso pessimo dall'algoritmo allora abbiamo dimostrato che il numero di confronti effettuati nel caso pessimo di da qualsiasi algoritmo di ordinamento basato su confronti e` Ω (nlogn).