UPPSALA UNIVERSITET Matematiska institutionen

Tentamen 3 Juni 2019 1MA016 FLERVARIABELANALYS

Skrivtid: 8 - 13. Tillåtna hjälpmedel: Papper, penna, radergummi, linjal. Varje uppgift ger som mest 5 poäng. Tydliga motiveringar krävs för full poäng.

- 1. Låt $f(x,y) = xy^2 + yx^2 x$. Bestäm alla stationära punkter till f och avgör om de är sadelpunkter, lokala maxima eller lokala minima.
- **2.** Finn det största och minsta värdet av $f(x,y) = x^2 y^3$ på enhetsskivan $x^2 + y^2 \le 1$.
- **3.** Visa att variabelbytet $u = \frac{1}{\sqrt{2}}(x-y), \ v = \frac{1}{\sqrt{2}}(x+y)$ transformerar Laplace ekvation $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$ till Laplace ekvation $\frac{\partial^2 \phi}{\partial u^2} + \frac{\partial^2 \phi}{\partial v^2} = 0$.
- **4.** Begrunda ekvationen $E: xyz + x^2y^3 = 2, (x, y, z) \in \mathbb{R}^3$.
 - (a) Ange den linjära ekvation som ger den bästa approximationen till E i närheten av (1,1,1).
 - (b) Avgör vilka av variablerna som är funktioner av de andra (x = x(y, z), y = y(x, z) och/eller z = z(x, y)) i närheten av (1, 1, 1) på lösningsmängden till E.
 - 5. Beräkna dubbelintegralen $\iint_D (x^2+y^2-2y)\,dxdy\,\mathrm{där}\,D=\{(x,y)\in\mathbb{R}^2\,|\,(x-1)^2+y^2\leq 1\}.$
- **6.** Betrakta vektorfältet $\mathbf{F}(x, y, z) = (xz^2, x^2y, y^2z 1)$.
 - (a) Beräkna flödet av \mathbf{F} ut ur halvklotet $D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 4, z \ge 0\}.$
 - (b) Längs vilken del av randytan är utflödet som störst, genom halvsfären eller genom bottenplattan?
- 7. Betrakta vektorfältet $\mathbf{F}(x,y,z)=(\frac{-y}{x^2+y^2},\frac{x}{x^2+y^2},z^2)$. Låt C vara skärningskurvan mellan ytorna $z=1+y^2$ och $x^2+y^2=4$ orienterad moturs sett från högt upp på z-axeln.
 - (a) Visa att $\nabla \times \mathbf{F} = 0$.
 - (b) Visa att $\int_C \mathbf{F} \bullet d\mathbf{r} = 2\pi$.
- 8. Ange den allmänna lösningen $\mathbf{r}(t) = (x(t), y(t))$ till följande system av ordinära differentialekvationer:

$$x' = 2x + y$$

$$y' = x + 2y$$