Enunciado:

Dado el enunciado del ejercicio 1.2 de la práctica realizar los siguientes pasos: Analizar el enunciado. Determinar el objetivo del modelo. Establecer las hipótesis y supuestos que hacen al negocio factible de resolver. Establecer las variables y realizar el modelo junto a la ecuación del funcional que dé solución al objetivo planteado.

Análisis del enunciado:

Para producir 2 productos necesitamos un proceso donde interfieren 3 máquinas y se hacen en orden A->B->C. Una máquina solo puede procesar un producto a la vez. Tiempos de las máquinas:

Producto	Máq. A	Máq. B	Máq. C
1	2	3	4
2	4	2	2
Disponibilidad (hs/mes)	80	60	100

Producto 1: \$60 por unidad. Producto 2: \$50 por unidad.

Objetivo:

Maximizar las ventas según el uso óptimo de los recursos para el mes próximo.

Hipótesis:

Se maximizarán las ventas si se produce la mayor cantidad de productos.

Supuestos:

- Todo lo que se produce se vende
- El uso de las máquinas no genera un gasto.
- Las máquinas funcionan y funcionarán correctamente.
- Los productos serán fabricados correctamente y no hará falta pasar por una máquina más de una vez.
- No hay cambio de los precios.
- No hay restricciones de mano de obra

Variables:

Variable	Descripción	Unidad
X1	Cantidad de productos del tipo 1	unidades/mes
X2	Cantidad de productos del tipo 2	unidades/mes

Restricciones:

Mag A:

$$2\frac{hs}{unidad} \cdot X1\frac{unidad}{mes} + 4\frac{hs}{unidad} \cdot X2\frac{unidad}{mes} <= 80\frac{hs}{mes}$$

Maq B:

$$3\frac{hs}{unidad} \cdot X1\frac{unidad}{mes} + 2\frac{hs}{unidad} \cdot X2\frac{unidad}{mes} \le 60\frac{hs}{mes}$$

Maq C:

$$4\frac{hs}{unidad} \cdot X1\frac{unidad}{mes} + 2\frac{hs}{unidad} \cdot X2\frac{unidad}{mes} \le 100\frac{hs}{mes}$$

Modelo Matemático:

MAX
$$(60 \frac{\$}{mes} \cdot X1 \frac{unidades}{mes} + 50 \frac{\$}{mes} \cdot X2 \frac{unidades}{mes})$$

MAQ A) 2 $\frac{hs}{unidad} \cdot X1 \frac{unidad}{mes} + 4 \frac{hs}{unidad} \cdot X2 \frac{unidad}{mes} <= 80 \frac{hs}{mes}$

MAQ B) 3 $\frac{hs}{unidad} \cdot X1 \frac{unidad}{mes} + 2 \frac{hs}{unidad} \cdot X2 \frac{unidad}{mes} <= 60 \frac{hs}{mes}$

MAQ C) 4 $\frac{hs}{unidad} \cdot X1 \frac{unidad}{mes} + 2 \frac{hs}{unidad} \cdot X2 \frac{unidad}{mes} <= 100 \frac{hs}{mes}$

Solucion grafica

Vemos que el punto óptimo es el (10,15)

Por ende la <u>solución</u> óptima es producir 10 unidades del producto 1 y 15 unidades del producto 2.