CSE 417T Introduction to Machine Learning

Lecture 10

Instructor: Chien-Ju (CJ) Ho

Logistics

- Homework 2: due on Feb 24 (Thursday)
- Exam 1: Mar 10 (Thursday)
 - Topics: LFD Chapters 1 to 5
 - Covid-permitting
 - Timed exam (75 min) during lecture time in the classroom
 - Closed-book exam with 2 letter-size cheat sheets allowed (4 pages in total)
 - No format limitations (it can be typed, written, or a combination)
 - Mar 8 (Tuesday) will be a review lecture
- Homework 3 will be posted around next Tuesday
 - Expected due: Mar 5 (Saturday)
 - A bit shorter amount of time than usual, but the goal is for you to work on questions that Exam 1 covers

Recap

VC Dimension of d-dimension Perceptron

- Claim:
 - The VC Dimension of d-dim perceptron is d+1
- How to prove it?
 - 1. Show that the VC dimension of d-dim perceptron $\geq d+1$
 - 2. Show that the VC dimension of d-dim perceptron $\leq d+1$

• To prove $d_{vc}(H) \ge d+1$, what do we need to prove? There is a set of d+1 points that can be shattered by H

Proof Sketch:

1. Let's construct a dataset of
$$d+1$$
 points: $X = \begin{bmatrix} \vec{x}_1^T \\ \vdots \\ \vec{x}_{d+1}^T \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 0 & \dots & 0 & 0 \end{bmatrix}$; It's easy to check that X^{-1} exists.

- 2. For any possible dichotomy \vec{y} , there exists a \vec{w} such that $X\vec{w} = \vec{y}$, i.e., $\vec{w} = X^{-1}\vec{y}$
- 3. Therefore, d-dim perceptron can shatter X
- To prove $d_{vc}(H) \le d+1$, what do we need to prove? Every set of d+2 points cannot be shattered by H

Proof Sketch:

- 1. Fact: For every set of d+2 points (in d+1 dimensions), there exists a point that can be written as linear combinations of the others.
- 2. Denote the point \vec{x}_{d+2} , we have $\vec{x}_{d+2} = \sum_{i=1}^{d+1} a_i \vec{x}_i$
- 3. Consider the dichotomy $(y_1, ..., y_{d+2}) = (\text{sign}(a_1), ..., \text{sign}(a_{d+1}), -1)$, we can show that no linear separator can generate this dichotomy (think about why).
- 4. Therefore, for every set of d + 2 points, there exist a dichotomy that H cannot shatter.

VC "Dimension"

- Degrees of freedom for your hypothesis in H
- (effective) # of parameters that control the hypothesis
- Examples:
 - d-dim perceptron: h is represented by $(w_0, ..., w_d)$; $d_{vc} = d + 1$
 - Positive rays: h is represented by a threshold; $d_{vc}=1$
 - Positive or negative rays: h is represented by a threshold and a direction; $d_{vc}=2$
 - Positive intervals: h is represented by two thresholds; $d_{vc}=2$
 - Positive or negative intervals: h is represented by two thresholds and a direction; $d_{vc}=3$
- Effective # parameters: An "approximation" for VC dimension

What We Have Taught So Far

• The explanation of "machine learning" from the first lecture

Find a hypothesis that "fits" the data (The process requires a lot of computation)

Our progress so far

- Generalization of learning
 - What to say about $E_{out}(g)$ from $E_{in}(g)$
- How to find g
 - Using linear models as examples
 - Focus on $g = argmin_{h \in H} E_{in}(g)$

Seems to make sense, but...

Overfitting


```
Number of data points ↑ Overfitting ↓

Noise ↑ Overfitting ↑

Target complexity ↑ Overfitting ↑
```

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Overfitting and Its Cures

Overfitting

- Fitting the data more than is warranted
- Fitting the noise instead of the pattern of the data
- Decreasing E_{in} but getting larger E_{out}
- When H is too strong, but N is not large enough

Regularization

- Intuition: Constrain H to make overfitting less likely to happen
- (Topic of this lecture)

Validation

- Intuition: Reserve data to estimate E_{out}
- (Focus of next lecture)

Regularization (Constrain H)

- Informal example:
 - Regression; $f = \sin(\pi x)$; $H = \{h(x) = ax + b\}$; N = 2

Regularization:

Constrain the hypothesis set to avoid large *a* and *b*

no regularization

bias =
$$0.21$$
 var = 1.69

 ${\it regularization}$

bias =
$$0.23$$
 var = 0.33

How to do this in a principled way?

Hard Constraints

We have seen hard constraints already

$$H_2 = \{h(x) = w_0 + w_1 x + w_2 x^2\}$$

$$H_{10} = \{h(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_{10} x^{10}\}$$

• H_2 can be written as constrained H_{10}

$$H_2 = \{h \in H_{10} \text{ and } w_3 = w_4 = \dots = w_{10} = 0\}$$

Soft-Order Constraints

Hard constraints

$$H_2 = \{ h \in H_{10} \text{ and } w_3 = w_4 = \dots = w_{10} = 0 \}$$

Instead of setting the weights to 0

$$H(C) = \left\{ h \in H_Q \text{ and } \sum_{q=0}^{Q} w_q^2 \le C \right\}$$
$$= \left\{ h \in H_Q \text{ and } \overrightarrow{w}^T \overrightarrow{w} \le C \right\}$$

- Observations
 - When $C \to \infty$, $H(C) = H_0$
 - When $C_1 \le C_2$, $H(C_1) \subseteq H(C_2)$ and therefore $d_{vc}\big(H(C_1)\big) \le d_{vc}(H(C_2))$
 - A smoother way to tune the complexity of hypothesis set

Soft-Order Constraints

$$H(C) = \{ h \in H_Q \text{ and } \overrightarrow{w}^T \overrightarrow{w} \leq C \}$$

- Two main questions
 - How do we choose C
 - Model selection: The same question as selecting H
 - The focus of the next lecture
 - How do we perform learning, i.e., find a $g \in H(C)$ such that $g \approx f$
 - Solve the following constrained optimization problem

minimize
$$E_{in}(\overrightarrow{w})$$
 subject to $\overrightarrow{w}^T\overrightarrow{w} \leq C$

Constrained to Unconstrained Optimization

Constrained optimization ⇔ Unconstrained optimization

- Why the above is true?
 - Will talk about how to utilize Lagrangian relaxation to get this in the 2nd half of the semester
 - For now, let's think about it graphically

- Notations
 - \vec{w}_{lin} : the solution for min $E_{in}(\vec{w})$
 - \vec{w}_{reg} : the solution for $\min E_{in}(\vec{w})$ subject to $\vec{w}^T \vec{w} \leq C$

- Notations
 - \vec{w}_{lin} : the solution for min $E_{in}(\vec{w})$
 - \vec{w}_{reg} : the solution for $\min E_{in}(\vec{w})$ subject to $\vec{w}^T \vec{w} \leq C$
- When C is large enough, i.e., $\overrightarrow{w}_{lin}^T \overrightarrow{w}_{lin} \leq C$
 - $\vec{w}_{reg} = \vec{w}_{lin}$
- When C is not large enough, i.e., $\vec{w}_{lin}^T \vec{w}_{lin} > C$
 - $\overrightarrow{w}_{reg}^T \overrightarrow{w}_{reg} = C$

• When *C* is not large enough

```
• \overrightarrow{w}_{lin}: the solution for \min E_{in}(\overrightarrow{w})
• \overrightarrow{w}_{reg}:the solution for \min E_{in}(\overrightarrow{w}) subject to \overrightarrow{w}^T\overrightarrow{w} \leq C
```

- When C is not large enough
 - Using graphical arguments
 - $\vec{w}_{reg} \propto \nabla_{\vec{w}} E_{in}(\vec{w}_{reg})$

- When C is not large enough
 - Using graphical arguments

•
$$\vec{w}_{reg} \propto - \nabla_{\vec{w}} E_{in}(\vec{w}_{reg})$$

• That is, we can find some constant $\lambda_C \geq 0$ such that

•
$$\nabla_{\overrightarrow{\mathbf{w}}} E_{in}(\overrightarrow{\mathbf{w}}_{reg}) = -\frac{2\lambda_C}{N} \overrightarrow{\mathbf{w}}_{reg}$$

• Therefore,

•
$$\nabla_{\overrightarrow{w}} \left(E_{in} (\overrightarrow{w}_{reg}) + \frac{\lambda_C}{N} \overrightarrow{w}_{reg}^T \overrightarrow{w}_{reg} \right) = 0$$

- This implies, \vec{w}_{reg} is the solution for
 - minimize $E_{in}(\overrightarrow{w}) + \frac{\lambda_C}{N} \overrightarrow{w}^T \overrightarrow{w}$

Constrained to Unconstrained Optimization

Constrained optimization ⇔ Unconstrained optimization

- Interpretations of regularization
 - Constraining H (by adding constraints)
 - Adding penalty to complex hypothesis in augmented errors

Augmented Error

- Define augmented error
 - $E_{aug}(\vec{w}) = E_{in}(\vec{w}) + \frac{\lambda_C}{N} \vec{w}^T \vec{w}$
 - Algorithm: Find $\vec{w}^* = argmin E_{aug}(\vec{w})$
- A bit more discussion
 - When $C \to \infty$, $\lambda_C = 0$
 - Smaller *C* (stronger constraints)
 - => larger λ_C
 - => smaller *H*
 - => stronger regularization
 - Use λ_C to tune the level of regularization

 $\overrightarrow{w}^T\overrightarrow{w}$: weight decay

Side note:

You will see people/us interchangeably use λ_C and $\frac{\lambda_C}{N}$ to be the constant, depending on whether the dependency on N is emphasized.

General Form of Regularization

$$E_{aug}(h,\lambda,\Omega) = E_{in}(\overrightarrow{w}) + \frac{\lambda}{N}\Omega(h)$$

- Key parameters
 - Ω : Regularizer
 - λ : Amount of regularization
- Does the form look familiar: VC Theory

•
$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

• If we pick the right Ω , E_{aug} can be a better proxy for E_{out}

How to Pick the Right Ω

- No definite answer, but generally
 - We like to pick Ω that leads to "smoother" hypothesis
 - Overfitting is due to noise
 - Informally, noise is usually "high frequency"
 - We prefer Ω that makes the optimization easier (e.g., convex/differentiable)
 - Similar to picking the error measure
 - We might have some other objective in mind
 - Ex: L-1 regularizer leads to weight vectors with more 0s
 - $E_{aug}(\vec{w}) = E_{in}(\vec{w}) + \lambda ||\vec{w}||_1 = E_{in}(\vec{w}) + \lambda \sum_i |w_i|$
- What if we pick the wrong Ω (Think about weight growth)
 - We might still fix it by picking the right λ using validation in the next lecture

More Discussion on Regularization

Why $\overrightarrow{w}^T\overrightarrow{w}$ is Called Weight Decay

• Run gradient descent on $E_{aug}(\vec{w}) = E_{in}(\vec{w}) + \lambda_C \vec{w}^T \vec{w}$

The update rule would be

$$\overrightarrow{w}(t+1) \leftarrow \overrightarrow{w}(t) - \eta \nabla_{\overrightarrow{w}} E_{aug}(\overrightarrow{w}(t))$$

$$\Rightarrow \overrightarrow{w}(t+1) \leftarrow (1 - 2\eta \lambda_C) \overrightarrow{w}(t) - \eta \nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t))$$

We are decaying the weights first, then do the update

Linear Regression with Weight Decay

•
$$E_{aug}(\overrightarrow{w}) = E_{in}(w) + \frac{\lambda_C}{N} \overrightarrow{w}^T \overrightarrow{w} = \frac{1}{N} ||X\overrightarrow{w} - \overrightarrow{y}||^2 + \frac{\lambda_C}{N} \overrightarrow{w}^T \overrightarrow{w}$$

- Solve $\nabla_{\overrightarrow{w}} E_{aug}(\overrightarrow{w})|_{\overrightarrow{w}=\overrightarrow{w}_{reg}}=0$, we get
 - $\frac{2}{N} (X^T X \overrightarrow{w}_{reg} X^T \overrightarrow{y} + \lambda_C \overrightarrow{w}_{reg}) = 0$
 - $(X^TX + \lambda_C I)\vec{w}_{reg} = X^T\vec{y}$
 - $\overrightarrow{w}_{reg} = (X^T X + \lambda_C I)^{-1} X^T \overrightarrow{y}$

Notation: I is an identity matrix: only the elements in the diagonals are 1, and all others are 0.

This is called "Ridge Regression" in statistics.

Effect of Regularization (Different λ)

• Minimizing $E_{in}(\vec{w}) + \frac{\lambda}{N} \vec{w}^T \vec{w}$ with different λ

Overfitting and Underfitting

Need to pick the right λ : Using validation: Focus of next lecture

Variations on Weight Decay (Different Ω)

Uniform Weight Decay

Low Order Fit

Weight Growth!

$$\sum_{q=0}^{Q} q w_q^2$$

Regularization Parameter, λ

$$\sum_{q=0}^{Q} \frac{1}{w_q^2}$$

How to Pick the Right Ω

- As discussed earlier
 - Intuition: pick Ω that leads to "smoother" hypothesis
 - Overfitting is due to noise
 - Informally, noise is generally "high frequency"
 - Computation: prefer Ω that makes the optimization easier (e.g., convex/differentiable)
 - Similar to picking the error measure
 - We might have some other objective in mind
 - Ex: L-1 regularizer leads to weight vectors with more 0s
- What if we pick the wrong Ω (weight growth)
 - We might still fix it by picking the right λ using validation

Summarizing Regularization

- Regularization is everywhere in machine learning
- Two main ways of thinking about regularization
 - Constrain H to make overfitting less likely to happen
 - Will discuss more regularization methods in the 2nd half of the semester
 - Pruning for decision trees, early stopping / dropout for neural networks, etc
 - Define augmented error E_{aug} to better approximate E_{out}

•
$$E_{aug}(h, \lambda, \Omega) = E_{in}(\overrightarrow{w}) + \frac{\lambda}{N}\Omega(h)$$

- We show the equivalence of the two for weight decay
 - The conceptual equivalence is general with Lagrangian relaxation (will cover later in the semester)

Validation

Prevent Overfitting

$$E_{out}(g) = E_{in}(g) + \text{overfit penalty}$$

- Regularization
 - Choose a regularizer Ω to approximate the penalty
- Validation
 - Directly estimate E_{out} (The real goal of learning is to minimize E_{out})

Review: Test Set

- Out-of-sample error $E_{out}(g) = \mathbb{E}_{\vec{x}}[e(g(\vec{x}), y)]$
 - Key: \vec{x} is out of sample
- Test set $D_{test} = \{(\vec{x}_1, y_1), ..., (\vec{x}_K, y_K)\}$
 - Reserve K data points used to estimate E_{out}
 - None of the data points in test set can be involved in training
- Using the data in test set to estimate E_{out}
 - Since all data points in D_{test} are out of sample

Test Set

- Test set $D_{test} = \{(\vec{x}_1, y_1), ..., (\vec{x}_K, y_K)\}$
- For a g learned using only training set
- Let $E_{test}(g) = \frac{1}{K} \sum_{k=1}^{K} e(g(\vec{x}_k), y_k)$
 - $E_{test}(g)$ is an unbiased estimate of $E_{out}(g)$
 - $\mathbb{E}[E_{test}(g)] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[e(g(\vec{x}_k), y_k)] = E_{out}(g)$
 - Single hypothesis Hoeffding bound applies

•
$$E_{out}(g) \le E_{test}(g) + O\left(\sqrt{\frac{1}{K}}\right)$$

Where are Test Set From?

- Given a data set D of N points
 - $D = D_{train} \cup D_{test}$
 - Reserving K points for test set means we only have N-K points for training
- Effect of the choice of *K*

Where are Test Set From?

- Given a data set D of N points
 - $D = D_{train} \cup D_{test}$
 - Reserving K points for test set means we only have N-K points for training
- Effect of the choice of *K*

Rule of Thumb:
$$K^* = \frac{N}{5}$$

Utilizing the Whole D

Process:

- $D = D_{train} \cup D_{test}$ where $|D_{test}| = K$, $|D_{train}| = N K$
- Learn some hypothesis g^- using only D_{train}
- Estimate $E_{out}(g^-)$ using D_{test}
- Let g be the hypothesis that would be learned using D
- Generally (informally, not theoretically proven)
 - Training on more data leads to better learned hypothesis
 - $E_{out}(g) \leq E_{out}(g^-)$

Validation: Beyond Test Set

• What if we want to estimate E_{out} multiple times?

- Model selection:
 - Should I use linear models or decision trees?
 - Should I set the regularization parameter λ to 0.1, 0.01, or 0.001?
 - A model with different λ can be considered as different model
- Validation set
 - $D = D_{train} \cup D_{val}$
 - Key difference: We need to account for the multiple usages of D_{val}