Egzamin maj 2006 r. Arkusz I, zadanie 1. SUMA SILNI

Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco:

$$n! = \begin{cases} 1 & dla & n=1\\ (n-1)!*n & dla & n>1 \end{cases}$$

Rozpatrzmy funkcję ss(n) zdefiniowaną następująco:

$$ss(n) = 1! + 2! + 3! + 4! + ... + n!$$
 (*)

gdzie *n* jest liczbą naturalną większą od zera.

a) Podaj, ile mnożeń trzeba wykonać, aby obliczyć wartość funkcji ss(n), korzystając wprost z podanych wzorów, tzn. obliczając każdą silnię we wzorze (*) oddzielnie.

Uzupełnij poniższą tabelę.

Wartość funkcji	Liczba mnożeń
ss(3)	
ss(4)	
ss(n)	

b) Zauważmy, że we wzorze na ss(n) czynnik 2 występuje w n-1 silniach, czynnik 3 w n-2 silniach, ..., czynnik n w 1 silni. Korzystając z tej obserwacji, przekształć wzór funkcji ss(n) tak, aby można było policzyć wartość ss(n), wykonując dokładnie n-2 mnożenia dla każdego $n \ge 2$. Uzupełnij poniższą tabelę (w ostatnim wierszu wypełnij tylko pusty prostokąt).

Wartość funkcji	Przekształcony wzór	Liczba mnożeń
ss(1)	1	0
ss(2)	1+2	0
ss(3)	1+2*(1+3)	1
ss(4)	1+2*(1+3*(1+4))	2
ss(5)		
ss(n)	1+2*(1+3*(1+(n-2)*()))	n-2

Zapisz w wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania) algorytm obliczania wartości funkcji ss(n) zgodnie ze wzorem zapisanym przez Ciebie w tabeli. Podaj specyfikację dla tego algorytmu.