第八章 非线性光学简介

普通光 符合叠加原理.....线性光学

激光 不符合叠加原理.....强光光学、非线性光学

对各向同性介质:

★ E 不太大时 电极化强度

式中
$$\chi_e = \varepsilon_r - 1$$
 --- 称为电极化率

$$\chi^{(1)} = \varepsilon_0 \chi_e$$

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \cdots$$
 — 非线性关系

 $\chi^{(I)}$ 线性电极化率

 $\chi^{(2)}$ 二次(阶)非线性电极化率

 $\chi^{(3)}$ 三次(阶)非线性电极化率

可以证明: 后一项对前一项的比值

而
$$E_{\mathbb{R}^2} \approx 10^{11} \, V / m$$

♦ 对普通光

 $E_{\#}\sim 10^4\,\mathrm{V/m}$,此时

$$\frac{\chi^{(2)}E^2}{\chi^{(1)}E} = \frac{\chi^{(2)}}{\chi^{(1)}}E = \frac{E_{\pm}}{E_{\text{F}}} \approx 10^{-7}$$

::高阶项不重要,只留第一项,成为线性效应;

◆ 对激光

 $E_{\mathcal{H}} \sim 10^7 \sim 10^{11} \, \text{V/m}$ (甚至更高),此时

$$\frac{\chi^{(2)}E^2}{\chi^{(1)}E} = \frac{\chi^{(2)}}{\chi^{(1)}}E = \frac{E_{\pm}}{E_{\text{F}}} \approx 10^{-4} \sim 10^{0}$$

第二项 $\chi^{(2)} E^2$ 就不能忽略了, 介质就表现出非线性效应。

下面举几个<u>非线性效应</u>的例子:

一. 倍频效应

由极化强度 P 中的第二项 $\chi^{(2)}E^2$ 会引起倍频效应:

若
$$E = E_0 \cos \omega t$$

则 第一项 $\chi^{(1)} E = \chi^{(1)} E_0 \cos \omega t$

第二项
$$\chi^{(2)} E^2 = \chi^{(2)} E_0^2 \cos^2 \omega t$$

= $\chi^{(2)} E_0^2 / 2$ (1+cos2 ω t)

实验证明:确实有二倍频现象出现

在激光问世后一年,有人做了以下实验:

又如. 钕玻璃激光器的不可见光(1.06 μm) →铌酸钡钠晶体→可见光(0.53μm)