

Kick-off "Projektwettbewerb Konzepte der Regelungstechnik"

Philipp Wenzelburger

Institute for Systems Theory and Automatic Control University of Stuttgart

May 07th, 2018

Significance

P-KRT. Within the "Praktikum KRT", you were asked to design a controller meeting predefined requirements (control objectives) under scientific **supervision** (TA). In doing so, the controller design procedure was a priori structured into work packages corresponding to the approach of S. Skogestad.

without scientific supervision. In doing so, you have

Challenge

You will have to organize this project over the entire semester!

Significance

P-KRT. Within the "Praktikum KRT", you were asked to design a controller meeting predefined requirements (control objectives) under scientific **supervision** (TA). In doing so, the controller design procedure was a priori structured into work packages corresponding to the approach of S. Skogestad.

PW-KRT. Within the "Proiektwettbewerb KRT", you are asked to design a controller meeting predefined requirements (control objectives) without scientific supervision. In doing so, you have to structure the controller design procedure into work packages, e.g. corresponding to the approach of S. Skogestad.

Challenge

You will have to **organize this project** over the entire semester!

Significance

P-KRT. Within the "Praktikum KRT", you were asked to design a controller meeting predefined requirements (control objectives) under scientific **supervision** (TA). In doing so, the controller design procedure was a priori structured into work packages corresponding to the approach of S. Skogestad.

PW-KRT. Within the "Proiektwettbewerb KRT", you are asked to design a controller meeting predefined requirements (control objectives) without scientific supervision. In doing so, you have to structure the controller design procedure into work packages, e.g. corresponding to the approach of S. Skogestad.

Challenge.

You will have to organize this project over the entire semester!

Schedule

Challenge (cont'd). You will have to organize this project over the entire semester!

May 7th May 8th May 9th - May 31st	Kick-off C@MPUS Registration closes Exam Registration*
↑ PW-KRT ↓	self-organization
June 17th	submission due evaluation closing discussion

Schedule

Challenge (cont'd). You will have to **organize this project** over the entire semester!

May 7th	Kick-off
May 8th	C@MPUS Registration closes
May 9th - May 31st	Exam Registration*
<u></u>	
PW-KRT	self-organization
<u></u>	
June 17th	submission due
\$	evaluation
July 2rd	closing discussion

Self-Organization

Organizing yourselves does not mean that you are on your own. In fact, **I encourage you to contact me** when you have questions!

^{*} only if you already passed P-KRT

Schedule

Challenge (cont'd). You will have to **organize this project** over the entire semester!

May 7th	Kick-off
May 8th	C@MPUS Registration closes
May 9th - May 31st	Exam Registration*
<u></u>	
PW-KRT	self-organization
+	
June 17th	submission due
	evaluation
July 2rd	closing discussion

Self-Organization.

Organizing yourselves does not mean that you are on your own. In fact, **I encourage you to contact me** when you have questions!

Applicability. We want you to work on a model-based controller design that applies to a problem of **practical relevance**, that is based on **a model that is used in industry**, and which has **intuitive performance criteria**.

- Practical Relevance. Vehicle Dynamics!
- A Model that is Used in Industry. Single-Track Model!
- Intuitive Performance Criteria. Lap Time!

Project Goal.

Design a **state-feedback controller** for the single-track model that steers it **along a racetrack**!

Applicability. We want you to work on a model-based controller design that applies to a problem of **practical relevance**, that is based on **a model that is used in industry**, and which has **intuitive performance criteria**.

- Practical Relevance. Vehicle Dynamics!
- A Model that is Used in Industry. Single-Track Model!
- Intuitive Performance Criteria. Lap Time!

Project Goal.

Design a **state-feedback controller** for the single-track model that steers it **along a racetrack**!

Applicability. We want you to work on a model-based controller design that applies to a problem of **practical relevance**, that is based on **a model that is used in industry**, and which has **intuitive performance criteria**.

- Practical Relevance. Vehicle Dynamics!
- A Model that is Used in Industry. Single-Track Model!
- Intuitive Performance Criteria. Lap Time!

Project Goal.

Design a **state-feedback controller** for the single-track model that steers it **along a racetrack**!

States. position, velocity, side slip angle, yaw angle, yaw rate, longitudinal velocity, lateral velocity, wheel rotary frequency **Controls.** steering, gear, breaking force (& distribution), pedal

States. position, velocity, side slip angle, yaw angle, yaw rate, longitudinal velocity, lateral velocity, wheel rotary frequency **Controls.** steering, gear, breaking force (& distribution), pedal

Goal. Assign to every vector of states x a vector of controls u that lets the single-track model drive on the depicted **racetrack**, i.e. find a function $K: x \mapsto u$: a **state feedback controller**!

Full Measurements.

You do not have to take into account an **output** $x \mapsto y$ (i.e. you do not have to design an observer) and you have knowledge of the **complete racetrack coordinates** at all times (which is required for **lane keeping**)!

Goal. Assign to every vector of states x a vector of controls u that lets the single-track model drive on the depicted **racetrack**, i.e. find a function $K: x \mapsto u$: a **state feedback controller!**

Full Measurements.

You do not have to take into account an **output** $x \mapsto y$ (i.e. you do not have to design an observer) and you have knowledge of the **complete racetrack coordinates** at all times (which is required for **lane keeping**)!

Software Architecture. You will have to implement your state feedback controller K in the MATLAB function controller.m whereas we have implemented the single-track model for you.

Deliverables.

You must deliver the *.m file containing K plus the simulation time t_f that you need to complete the racetrack!

Software Architecture. You will have to implement your state feedback controller K in the MATLAB function controller.m whereas we have implemented the single-track model for you.

Deliverables.

You must deliver the *.m file containing K plus the simulation time t_f that you need to complete the racetrack!

Competition. A **necessary condition** to pass the course is to deliver a controller that lets the single-track model complete one lap of the racetrack. The team which delivers the **lowest value** for t_f among all participants **wins the contest**!

time t_f, and a very brief LATEX document explaining how you derived your control law! (can be in German or English)

Resources. Most information is on the course website http://www.ist.uni-stuttgart.de/lehre/
lehrveranstaltungen/ss2018/PW_KRT and all material can be found on ILLAS as soon as the contest starts!

Improve

Competition. A **necessary condition** to pass the course is to deliver a controller that lets the single-track model complete one lap of the racetrack. The team which delivers the **lowest value** for t_f among all participants **wins the contest**!

Deliverables (cont'd). You must submit the controller K, the lap time t_f , and a **very brief** LaTEX document explaining how you derived your control law! (can be in German or English)

Resources. Most information is on the course website http://www.ist.uni-stuttgart.de/lehre/lehrveranstaltungen/ss2018/PW_KRT and all material can be found on ILIAS as soon as the contest starts!

Improve

Competition. A **necessary condition** to pass the course is to deliver a controller that lets the single-track model complete one lap of the racetrack. The team which delivers the **lowest value** for t_f among all participants **wins the contest**!

Deliverables (cont'd). You must submit the controller K, the lap time t_f , and a **very brief** LaTEX document explaining how you derived your control law! (can be in German or English)

Resources. Most information is on the course website http://www.ist.uni-stuttgart.de/lehre/lehrveranstaltungen/ss2018/PW_KRT and all material can be found on ILIAS as soon as the contest starts!

Improve

Competition. A **necessary condition** to pass the course is to deliver a controller that lets the single-track model complete one lap of the racetrack. The team which delivers the **lowest value** for t_f among all participants **wins the contest**!

Deliverables (cont'd). You must submit the controller K, the lap time t_f , and a **very brief** LaTEX document explaining how you derived your control law! (can be in German or English)

Resources. Most information is on the course website http://www.ist.uni-stuttgart.de/lehre/lehrveranstaltungen/ss2018/PW_KRT and all material can be found on ILIAS as soon as the contest starts!

Improve.

Organization

Teams

- Register in ILIAS
- Name your team-mate of choice (pair up in teams of two)
- If you don't name a team-mate, you will be assigned a
 partner. In this case, please contact your partner as soon as
 possible. If you don't get any response, please contact me to
 find a solution.

Delivery

- Upload on ILIAS
- Upload your report.pdf (or similar) and the controller.m
- Indicate clearly what is your submission and what are working files/folders
- The time and date of your submission will be checked

Summary

- This PW-KRT is organized by you!
- Contact me with questions, suggestions, or critique!
- Develop a state feedback K for the single-track model!
- The control objective is to complete one lap on a racetrack!
- You may access the state of the vehicle and all racetrack data!
- You must submit the *.m file containing K, the simulation time t_f, as well as a very brief LATEX document explaining how you derived your control law!
- The team with the lowest value for t_f wins the contest!

The End

Do you have any questions?

Summary

- This PW-KRT is organized by you!
- Contact me with questions, suggestions, or critique!
- Develop a state feedback K for the single-track model!
- The control objective is to complete one lap on a racetrack!
- You may access the state of the vehicle and all racetrack data!
- You must submit the *.m file containing K, the simulation time t_f, as well as a very brief LATEX document explaining how you derived your control law!
- The team with the lowest value for t_f wins the contest!

The End.

Do you have any questions?

