EE402 Discrete Time Control Systems Mini-Project 1

- 1. For each of the following systems with input u and output y, $t \ge 0$, determine whether the system is memoryless, linear, time-invariant, causal, finite-dimensional?
 - (a) $y(t) = (\sin(t))^3$
 - (b) $y(t) = \int_0^t \tau u(\tau) d\tau$
 - (c) y(t) = 2u(t) + 10
 - (d) y(t) = cos(t)u(t)
 - (e) y(t) = u(t T)
 - (f) y(t) = u[k-n]
 - (g)

- 2. Review of the basic properties of the convolution operation, denoted by *, as well as those of the Laplace transform, denoted by \mathcal{L} . Consider $f: \mathbb{R} \to \mathbb{R}$, and $g: \mathbb{R} \to \mathbb{R}$, and $h: \mathbb{R} \to \mathbb{R}$.
 - (a) * is associative, that is, (f * g) * h = f * (g * h)
 - (b) $f(t-\tau) = f(t) * \delta(t-\tau), \tau \ge 0$, sifting property of the dirac delta function $\delta(t)$
 - (c) $\mathcal{L}(f * g) = \mathcal{L}(f)\mathcal{L}(g)$
 - (d) $\mathcal{L}(f+g) = \mathcal{L}(f) + \mathcal{L}(g)$
- 3. Finding Y(s) = U(s) for the following system

$$y(t) = \int_{t_T}^t h(t - \tau) u(\tau) d\tau$$

$$h(t) = \begin{cases} t & if \quad t > 10 \\ 0 & if \quad t \le 0 \end{cases}$$

4. Analysis of the the control system that is illustrated with the block diagram topology given below. Let's assume that $M(s) = \frac{1}{s-a}, a > 0$ and $C(s) = \frac{K}{s+1}$.

Finding the range of K such that the closed-loop system is stable.

5. Inverted pendulum of length L, with mass m, that is actuated by an agonist/antagonist linear actuator pair that attach a distance l from the joint / pivot point. One can show

$$h(t) = \begin{cases} t & if \quad t > 10 \\ 0 & if \quad t \le 0 \end{cases}$$

Appendix

1 a