Finite Fields

Multiplicative inverse (w^{-1})

For each $w \in \mathbb{Z}_p$, $w \neq 0$, there exists a $z \in \mathbb{Z}_p$ such that $w \times z \equiv 1 \pmod{p}$

- 2. a*b mod p
- 3. $a+a^{-1} \mod p = 0$
- 4. $a^*a^{-1} \mod p = 1$

а	b	+
0	0	0
0	1	1
1	0	ı
1	1	0

а	b	+
0	0	0
0	1	O
1	0	0
1	1	1

$$(a+a^{-1}) \mod 2 = 0$$

 $(a+a^{-1}) \mod 2 = 1$

а	Add inv	Mul inv
0	0	
1	1]

Addition Modulo 7

$$(a+6) \mod 7 \quad 0 \rightarrow 0$$

$$1 \rightarrow 6$$

 $(a+a^{-1}) \mod 7$ = 0/1

9,16>	0	1	2	3	4	5	6
0	(0)	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	(0)	1	2
4	4	5	6	(6)	1	2	3
5	5	6	6		2	3	4
6	6	$\left(\begin{array}{c} 0 \end{array} \right)$		2	3	4	5

Multiplication Modulo 7

 $(ax b) \mod 7 \qquad |\rightarrow| \\ 2 \Rightarrow 4$

	0	1	2	3	4	5	6
0	O	0	0	0	0	0	\bigcirc
1	0		2	3	4	5	6
2	0	2	4	6		3	5
3							
4							
5							
6							

_		_		_			
+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

(d) Addition modulo 7

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

(e) Multiplication modulo 7

(f) Additive and multiplicative inverses modulo 7

					11100	G10 C	dila	1,10
+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

(a) Addition modulo 8

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

(b) Multiplication modulo 8

w	0	1	2	3	4	5	6	7
-w	0	7	6	5	4	3	2	1
w^{-1}	_	1	1-	3	_	5	_	7

(c) Additive and multiplicative inverses modulo 8

- 1. GF(p) consists of p elements.
- 2. The binary operations + and \times are defined over the set. The operations of addition, subtraction, multiplication, and division can be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse, and division is performed by multiplication by the multiplicative inverse.

Finding Multiplicative Inverse for large values

Polynomial Arithmetic

- 1. Addition
- 2. Subtraction
- 3. Multiplication
- 4. Division
- 5. GCD

Addition

$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$

$$\Rightarrow x^{3} + x^{2} + 2 + x^{2} - x + 1$$

$$\Rightarrow x^{3} + 2x^{2} - x + 3 = 0$$

Subtraction

$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$

$$\frac{f(x) - g(x)}{-} = \frac{x^3 + x^2}{-} + 2$$

$$= \frac{x^3 + x^4 + 1}{-}$$

Multiplication
$$f(x) = x^{3} + x^{2} + 2 \text{ and } g(x) = x^{2} - x + 1$$

$$x^{5} - x^{4}$$

$$x^{5} - x^{4} + x^{3} + x^{4} - x^{3} + x^{2} + 2x^{2} - 2x + 2$$

$$x^{5} + 3x^{2} - 2x + 2x$$

$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$

$$x+2 \rightarrow \text{quotient}$$

$$x^3 + x^2 + 2$$

$$x^3 - x^2 + x$$

$$0 + 2x^2 - x + 2$$

$$-2x^2 - 2x + 2$$

-

GCD - Step 1

low power -> divisor

Find gcd[a(x), b(x)] for $a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ and $b(x) = x^4 + x^2 + x + 1$. First, we divide a(x) by b(x):

$$x^{4} + x^{2} + x + 1/x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1$$

$$x^{6} + x^{4} + x^{3} + x^{2}$$

$$x^{5} + x + 1$$

$$x^{5} + x^{3} + x^{2} + x$$

$$x^{3} + x^{2} + x$$

Rem

remainder divisorner

Step 2

This yields $r_1(x) = x^3 + x^2 + 1$ and $q_1(x) = x^2 + x$.

Therefore, $gcd[a(x), b(x)] = r_1(x) = x^3 + x^2 + 1$.

Then, we divide b(x) by $r_1(x)$.

This yields
$$r_2(x) = 0$$
 and $q_2(x) = x + 1$.

 $x + 1$
 $x +$

$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1 + (x^{3} + x + 1)$$

$$x^{7} + x^{5} + x^{4}$$

(a) Addition

(b) Subtraction

(c) Multiplication

(d) Division

