PRACTICA DE LABORATORIO No. 1 CARGAS ELECTRICAS

Departamento de Ciencias F´ısicas y Tecnolog´ıa Facultad de Ingenier´ıa Universidad Icesi Cali - Colombia

13 de agosto de 2019

1. Objetivos

- 1. Familiarizar al estudiante con diversas t'ecnicas de experimentaci'on en f'isica e ingenier'ia.
- 2. Verificar experimentalmente algunas de las predicciones de los modelos, teor´ıas o leyes fundamentales estudiadas en clase.
- 3. Desarrollar y fortalecer habilidades de trabajo en grupo, as´ı como de pre paraci´on de informes t´ecnicos utilizando diferentes tipos de formatos.
- 4. Propiciar un espacio de trabajo para la discusi´on en grupo sobre temas t´ecnicos y fortalecer el saber cient´ıfico y profesional de los estudiantes.
- Confrontar a los estudiantes con la problem´atica asociada a la toma, ma nipulaci´on, organizaci´on, representaci´on e interpretaci´on de datos t´ecnicos experimentales.
- 6. Cultivar en los estudiantes los valores 'eticos impl'icitos en el trabajo cient'ifi co experimental.

2. Objetivos Espec´ıficos

- 1. Entender la forma como se tranfiere la carga el'ectrica.
- 2. Comprender como se generan fen'omenos de carga el'ectrica. 3.

Aprender el manejo y el m´etodo del sistema de medici´on de carga el´ectrica.

Figura 1: Sensor de carga Vernier.

3. Conceptos a Afianzar

- 1. Cargas el'ectricas.
- 2. Estructura de la materia.
- 3. Principo de conservaci´on de la carga.

4. Equipo Requerido

Sonda de medici´on de carga el´ectrica.

Software de interfase de la sonda para computador.

Computador portatil.

Jaula de Faraday.

Diferentes materiales como plastico, tefl'on, vidrio, tela, madera, etc.

5. Procedimiento

1. Instalar el software de medici´on y an´alisis de datos en el

computador. 2. Conectar la sonda de medici´on por medio del puerto USB.

Figura 2: Jaula de Faraday.

Figura 3: Software de an'alisis de datos.

3

- Conectar el conector negro a la placa inferior de la jaula de Faraday.
 Conectar el conector rojo a la rejilla de la jaula de Faraday.
- 5. Presionar el boton ubicado al lado del conector BNC de las sonda para calibrar a cero el valor inicial de la carga.
- 6. Frotar los diferentes tipos de materiales y acercarlos a la parte interna de jaula de Faraday.
- 7. Observar y guardar los gr´aficos generados en el software.
- 8. Realizar un informe registrando los gr´aficos correspondientes materiales y sacar concluciones al respecto.

6. Preguntas

- 1. De que depende la magnitud de las cargas el'ectricas medidas.
- 2. De que depende a polaridad en la medici´on de la magnitud de las cargas el´ectricas.
- 3. Para que materiales se obtinen mayores magnitudes de carga. 4. Para que materiales se obtienen polaridades positivas o negativas de carga.
- 5. Como es posible calcular el n'umero de electr'ones involucrados en una cierta magnitud de carga medida por el instrumento.

6.1. Preparaci'on

Revise los conceptos de carga el'ectrica, campo el'ectrico, potencial el'ectrico.

Referencias

- [1] R. A. Serway, FISICA, Tomo II, Edici'on.McGraw Hill, (2000)
- [2] S. Lea and J. Burke, *PHYSICS, The Nature of Things*, Brooks/Cole Publishing Company, (1997)
- [3] G. Maria E., *F´ısica fundamental III, Guias de laboratorio*, Universidad del Valle, (2016)