

Data set: stress environment evolved strains of *E. coli*

- E. coli K12 MG1655
- Culture Stress Tested:
 - Acidic
 - Oxidative
 - Osmotic
 - N Butanol
 - Control (Minimum Medium)

RNA-seq data generation

RNA-seq analysis workflow

Map reads to reference genome (Bowtie2)

Count reads per gene (HTSeq)

Evaluate probability of gene being differentially expressed

Rescale read counts

Fastq Quality Check

Sequencing Effort/Bowtie Mapping

Samples:

- Acidic Conditions = 2 tech replicates
- Oxidative = 2 tech replicates
- Osmotic = 2 tech x 2 bio replicates
- N Butanol = 2 tech replicates
- Control = 2 tech replicates
- Sequencing: ~1-2million single-end reads (33bases/read)
- Mapping: ~70-80% uniquely mapped, ~10-15% aligned >1 times

Heatmap Overview of Pairwise Comparisons of Culture Conditions

PCA: Qualitative assessment of gene expression similarity between different stress environments

Differentially expressed genes

Acidic Stress flgE - Flagellar regulon flgD - Flagellar regulon flgB - Flagellar regulon

Glycine beatine (osmoprotectant) transporters - like struggling in quicksand

Genetic mutation in addition to gene expression adaptation

Cross stress protection - potentially a function of Waddington's epigenetic landscape

Machine learning approaches

- Regressor to predict fitness
 - LASSO L1 regularized
 - Random forest regressor
 - Extremely randomized trees

Biclustering of differentially expressed genes

- Algorithm: Cheng and Church
- Objective: low MSR (mean squared residue).
 Rows approximately additive.

Biclustering results

- 100 biclusters, with 3-44 genes
- No enriched GO terms

Questions?