Numerical Computing (CS2008)

Date: Feb 27th 2024

Course Instructor (s)

Dr. Mukhtar Ullah, Dr. Imran Ashraf,

Dr. Muhammad Ali, Muhammad Almas Khan

Sessional-I Exam

Total Time: 1 Hour Total Marks: 55 Total Questions: 03

Semester: SP-2024 Campus: Islamabad

Dept. Computer Science

Solution

Student Name	Roll No	Section	Student Signature	
Vetted by			 Vetter Signature	

Instructions:

Follow these instructions for the source-code:

- Properly indent your code
- Use meaningful names of variable
- For the important parts, use comments to explain your code

Q1: [2+3+2+4+4=15 marks]

a) Consider the Figure 1 & Figure 2 below.

Figure 2

i) Name the type of error in Figure 1 above and mention the source of that error.

Name: Floating point error.

Source: Because of the gap in floating point numbers

ii) Modify the above code to get the output like mentioned Figure 2.

```
total = 0.0
for i in range(1, 10):
    total += 0.1
    print(round(total,2))
```

b) Consider the following function.

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

The approximate value of above given function cos (3.14) up to the 2nd term is -3.9298 while the value of cos (3.14) approximated through device using 20 terms is: -0.9999987317275388. Now answer the following questions

i) What type of error in the computation of cos (3.14) upto 2nd term and 20th term? Mentions the exact name.

Error type: Discretization error

Source: when we approximate the exact problem by a problem that computers can solve

ii) What is the absolute error between $\cos (3.14)_{\text{up to 2nd term}} = -3.9298$ and $\cos (3.14)_{\text{up to 20th term}} = -0.9999987317275388$.

```
|-3.9298 - (-0.9999987317275388)| =2.92980126827
```

iii) What is the relative error between cos $(3.14)_{\text{up to 2nd term}} = -3.9298$ and $\cos(3.14)_{\text{up to 20th term}} = -0.9999987317275388$.

Q2. [7 + 4 + 2 = 20 marks]

a) Taylor series are extremely powerful tools for approximating functions that can be difficult to compute otherwise. Find the first 4 terms of the Taylor's series expansion of $f(x) = e^x + \cos(x)$ centered around 0

$$f(x) = e^{x} + \cos(x)$$

$$f(x) = f(0) + f'(0)(x-0) + f''(0)(x-0)^{2} + \frac{f''(0)(x-0)^{3}}{3!} \dots$$

$$f(0) = e^{x} + \cos(x) \Rightarrow f'(0) = 1-0=1$$

$$f''(x) = e^{x} - \cos(x) \Rightarrow f''(0) = 1-1=0$$

$$f'''(x) = e^{x} + \cos(x) \Rightarrow f'''(0) = 1+1=2$$

$$f'''(x) = 2 + \cos(x) \Rightarrow f'''(0) = 1+1=2$$

$$f'''(x) = 2 + \cos(x) \Rightarrow f'''(0) = 1+1=2$$

$$f'''(x) = 2 + \cos(x) \Rightarrow f'''(0) = 1+1=2$$

$$f'''(x) = 2 + \cos(x) \Rightarrow f'''(0) = 1+1=2$$

b) Implement a function in python with the name f(x) which should implement this Taylor's series approximation using these 4 terms

```
import numpy as np

def f(x):
    # 4 terms
    term0 = 2
    term1 = x
    term2 = 0
    term3 = 1/3*(x)**3

# taylor approximatation of y
    y_approx = term0 + term1 + term2 + term3
    return y_approx
```

c) Provide the python code which should call this function f(x) to find the value of f(1.5) and print the result.

```
x = 1.5
y = np.exp(x) + np.cos(x)
y_approx = f(x)
print('f(1.5) = ', y)
print('f(1.5) approx = ', y_approx)
```

d) What will be order of the error in our approximation in Big-O notation?

$$f''(x) = e^{x} - \sin(x) \Rightarrow f''(0) = 1 - 0 = 0$$

$$\text{Next term} = \frac{f''(0)}{4!}(x - 0)^{4} = \frac{1}{4!}x^{4}$$

$$\text{if order of error} = 0(x^{4})$$

Given $f(x) = x^3 - x - 1$:

For x=1 f(x) is negative

For x=2 f(x) is positive

Therefore the roots lies between x=1 and x=2 the other values can be seen from the following table.

Iteration no	X_1	X_2	$X_3 =$	$F(x_1)$	$F(x_2)$	F(x ₃)
			$\frac{x_1 + x_2}{2}$			
1	1	2	1.5	-1	3	0.125
2	1	1.5	1.25	-1	0.125	-0.609375
3	1.25	1.5	1.375	-0.609375	0.125	-0.291015625
4	1.375	1.5	1.4375	-0.291015625	0.125	-0.095947265625
5	1.4375	1.5	1.46875	-0.095947265625	0.125	0.011199951171875
6	1.4375	1.468 75	1.453125	-0.095947265625	0.01119995117187	-0.043193817138671 875
7	1.453125	1.468 75	1.4609375	-0.0431938171386 71875	0.01119995117187 5	-0.016203403472900 39
8	1.460937 5	1.468 75	1.4648437 5	-0.0162034034729 0039	0.01119995117187 5	-0.002553522586822 5098
9	1.464843 75	1.468 75	1.4667968 75	-0.0025535225868 225098	0.01119995117187 5	0.0043102428317070 01
10	1.464843 75	1.466 79687 5	1.4658203 125			0.0008751200512051 582

b. Solution

Newton's method algorith

- 1. Set a tolerance TOL for the accuracy
- 2. Set the maximum number of iteration MAXIT
- 3. Set k=0
- 4. Initialize x_k and Error = TOL + 1
- 5. while Error > TOL and k < MAXIT do
 - if $f'(x_k) \neq 0$ then
 - Compute $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$
 - Set $Error = |x_{k+1} x_k|$
 - Increase the counter k=k+1
 - end if
- 6. end while
- 7. Return the approximation of the root x^{st}