

)第2章 體驗影像處理

- 2.1 影像處理系統的硬體組成
- 2.2 數位影像與C語言
- 2.3 取樣與量化
- 影像處理的流程 2.4

影像感知

- ▶ 影像處理是為了讓影像呈現較符合人眼所需
 - ▶ 必須考慮人類視覺系統(Human vision system, HVS)的限制
 - ▶ 明暗度(Observed intensities)會隨著背景改變
 - ▶ 對於連續變化的灰色漸層圖樣,人眼會感知事實上不存在的條狀明暗度

圖 1.20 不同背景的灰色方塊

Image = Magic

▶視覺缺陷

2.1 影像處理系統的硬體組成

- ▶ 影像處理系統是由影像輸入設備、保存影像的儲存設備, 以及處理影像的電腦、等硬體組成。
 - ▶ 像是附帶掃描器(把照片等圖片輸入電腦的設備)的個人電腦。
 - ▶ 用個人電腦,也可以進行整個影像處理和加工的工作(如圖2.1)。

主要組成的硬體

▶ 影像輸入設備

1.1 影像銳利化 (a) 原始影像 (b) 銳利化結果

主要組成的硬體

▶ 影像輸入設備

主要組成的硬體

▶ 影像輸入設備

ि

2.2 數位影像與C語言

圖2.2-1 數位影像

2.2 數位影像與C語言

48	219	168	145	244	188	120	58	
49	218	87	94	133	35	17	148	
174	151	74	179	224	3	252	194	
77	127	87	139	44	228	149	135	
138	229	136	113	250	51	108	163	人 焦點像素
38	210	185	177	69	76	131	53	
178	164	79	158	64	169	85	97	——— 3×5 鄰域
96	209	214	203	223	73	110	200	

圖 1.15 像素及其鄰域

圖 1.14 圖 1.13 之二維變數函數製圖

OpenCV

► https://opencv.org/

2.2 數位影像與C語言

W

圖2.3 利用電腦進行影像處理

ि

公用標準影像

► SIDBA(Standard Image Database)

▶ 類比(Analog)訊號轉數位(Digital)訊號的觀念

2.3 影像取樣與擷取

- ▶ Nyquist 原則 (Criterion) 可以敘述為取樣定理 (Sampling theorem)
 - ▶ 只要取樣頻率至少為連續函數最高頻率的2倍,可利用所得到的取樣點重建此一連續函數。

圖 1.8

取樣的效果 (a) 正確取樣,無混疊 (b) 低度取樣版本,有混疊現象

- ▶ 所謂取樣(Sample),指把空間域(Spatial domain)中連續的 影像分割為離散(Discrete)的像素集合。
 - 取樣越密集,其像素(Pixel)就越小,所能顯示的影像也就越清晰。
 - ▶ 一般的影像處理研究是採用256×256像素或512×512像素的影像解 析度(Resolution)。

(a) 8×8像素

(b) 16×16像素

(c) 32×32像素

(d) 64×64像素 (e) 128×128像素 (f) 256×256像素

▶ 取樣(Sampling)

- ▶ 灰階以位元平面(Bitplanes)分割後,就可以轉換為一系列的 二元影像
- ▶ 第0個位元平面
 - ▶ 最低位元平面(Least significant bit plane)
- ▶ 第7位元平面
 - ▶ 最高位元平面(Most significant bit plane)

- ▶ 所謂量化(Quantization),是指將其像素的濃淡變換為離 散的整數值,即灰階值(Gray scale)的操作。
 - ▶ 最簡單的量化是指用白(0)和黑(1)兩個值(1bit)來進行量化,稱為 二值(Binary)影像。
 - ▶ 量化得越細緻,所表現的色調就會越豐富。

(a) 1位元

(b) 2位元

(c) 3位元

(d) 4位元

(e) 6位元

(f) 8位元

▶ 先將一個灰階轉換成Double形態的矩陣,即:

▶ 將影像用兩種色調表示的方法也稱為半色調(Halftoning)。

- ► 在處理彩色影像(Color image)時,把色彩成分按紅(R)、綠(G)、藍(B)三原色進行取樣和量化。
 - ▶由於每種顏色用8bits進行量化,故共可以處理 28×28×28≒1,677萬種顏色。

數位影像的類型

▶ 二元影像(Binary Image)

二元數位影像

數位影像的類型

▶ 灰階影像(Gray scale)

圖 1.17

灰階影像

數位影像的類型

▶ 彩色影像(Color Image or RGB Image)

186 186

紅

藍

圖 1.18 全彩影像

2.4 影像處理的流程

(a) Windows作業系統

(c) Macintosh作業系統

2.4 通用參數的檔頭(Head File)

Params.h

Conne... 🛼 163.1...

WinCI...

™ LINE

Micro...

<u></u>

