中国矿业大学 2019-2020 学年第 2 学期 《数学分析 2》试卷 (B) 卷

考试时间: 120 分钟 考试方式: 闭卷

学院	班级	 学号	
题号	_	 11	总分
得分			
阅卷人			

- 一、选择题(共5小题,每题4分,共计20分)
- 1、已知 $\int xf(x)dx = \cos x + C$,则 f(x) = ().

(A)
$$\frac{\sin x}{x}$$
; (B) $x \sin x$; (C) $-\frac{\sin x}{x}$; (D) $x \cos x$.

2、曲线 $y = \sin x(-\frac{\pi}{2} \le x \le \frac{\pi}{2})$ 与 x 轴围成的图形绕 x 轴旋转所成的旋转体的体积为().

(A)
$$\frac{\pi}{2}$$
; (B) π ; (C) $\frac{\pi^2}{2}$; (D) π^2 .

- 3、下列选项正确的是 ().
 - (A) 若 $\sum_{n=1}^{\infty} u_n$ 收敛, 且 $u_n \ge v_n (n = 1, 2, ...)$,则 $\sum_{n=1}^{\infty} v_n$ 也收敛;

(B) 若
$$\sum_{n=1}^{\infty} |u_n v_n|$$
收敛,则 $\sum_{n=1}^{\infty} u_n^2 与 \sum_{n=1}^{\infty} v_n^2$ 都收敛;

(C) 若正项级数
$$\sum_{n=1}^{\infty} u_n$$
 发散,则 $u_n \ge \frac{1}{n}$;

(D) 若
$$\sum_{n=1}^{\infty} u_n^2$$
和 $\sum_{n=1}^{\infty} v_n^2$ 都收敛,则 $\sum_{n=1}^{\infty} (u_n + v_n)^3$ 收敛.

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

4、数列极限 $I = \lim_{n \to \infty} \int_0^{\sqrt{3}} \frac{\sqrt[n]{x^3}}{1 + x^2} dx = ($).

- (A) $\frac{\sqrt{3}}{12}\pi$; (B) $\frac{\pi}{12}$; (C) $\frac{\pi}{3}$; (D) $\frac{\pi}{2}$.

5、设常数 k > 0 ,则级数 $\sum_{n=1}^{\infty} (-1)^n \frac{k+n}{n^3}$ ().

- (A) 发散;
- (B) 绝对收敛:
- (C)条件收敛; (D)收敛或者发散与k的取值有关.

二、计算题(共9小题,每题6分,共计54分)

1、求不定积分 $\int e^{\sqrt{x}} dx$.

2、求平面曲线 $x = a(t - \sin t), y = a(1 - \cos t)(a > 0), 0 \le t \le 2\pi$ 绕 X 轴旋转所围 成立体的体积.

3、求定积分 $\int_{-1}^{1} \frac{2 + \tan x}{\sqrt{1 - x^2}} dx$.

诚信关乎个人一生,公平竞争赢得尊重。 以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

4、已知 f 是 [-a,a] 上的连续函数, $F(x) = \int_{-a}^{a} |x-t| f(t) dt, x \in [-a,a]$, 求 F''(x).

5、利用变换 $y = \pi - x$ 计算定积分 $I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$.

6、求幂级数 $\sum_{n=1}^{\infty} \frac{\ln n}{n} x^n$ 的收敛域.

7、求反常积分 $\int_0^{+\infty} e^{-ax} \cos bx dx$, 其中 a,b > 0.

8、求函数 ln(1-x) 的幂级数展开式并指出收敛域.

- 9、(1)证明反常积分 $\int_{1}^{+\infty} \frac{\ln x}{1+x^2} dx$ 收敛;
 - (2)利用变换 $t = \frac{1}{x}$ 证明反常积分 $\int_0^1 \frac{\ln x}{1+x^2} dx$ 收敛且 $\int_0^1 \frac{\ln x}{1+x^2} dx = -\int_1^{+\infty} \frac{\ln x}{1+x^2} dx$.

诚信关乎个人一生,公平竞争赢得尊重。

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

三、讨论证明题(共3小题,共计26分)

1、(8分) 设
$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
,

- (1) 用 Cauchy 收敛准则证明 $\lim_{n\to\infty} u_n = +\infty$;
- (2) 证明级数 $\sum_{n=2}^{\infty} \left(\frac{1}{n} \ln(1 + \frac{1}{n-1}) \right)$ 收敛;
- (3) 利用 (2) 的结论证明极限 $\lim_{n\to\infty} (u_n \ln n)$ 存在.

- 2、(8分)设在 $(0,\pi)$ 上, $f(x) = \pi x$.
- (1)将 f(x) 展开为正弦级数;
- (2)该正弦级数在 $(0,\pi)$ 上是否一致收敛?

诚信关乎个人一生,公平竞争赢得尊重。

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

- 3、(10 分)设函数项级数 $\sum_{n=1}^{\infty} ne^{-nx}$,
 - (1) 证明此级数在(0,+∞)收敛,
 - (2)证明此级数在(0,+∞)不一致收敛但内闭一致收敛,
 - (3) 求此级数的和函数(须说明依据).