

Copil

Plugin Qgis de reconstruction 3D de bâtiments

Commandité par Thomas Muguet

Arnaud Breillad | Maud Brossard Mathéo Maréchal | Louis Steinmetz

Mise en contexte

- 3D Bag est un visionneur 3D qui met à disposition une maquette des Pays-Bas à partir de données produites par l'AHN (carte numérique des altitudes aux Pays-Bas) et des données du BAG : BAG étant le registre des bâtiments et des adresses le plus détaillé et disponible en Open Source aux Pays-Bas.
- Nous utilisons Geoflow, le logiciel qui permet de reconstruire en 3D les bâtiments à partir des données du BAG et de l'AHN. L'utilisation de ce logiciel nous a été imposée par notre commanditaire. En effet, avant que l'on nous propose ce projet, des recherches avaient été effectuées en amont. C'est pourquoi nous n'avons pas eu à nous questionner à propos du logiciel que nous allions utiliser. Un état de l'art n'a donc pas été nécessaire dans notre cas.
- Le but de ce projet est donc de d'adapter l'outil Geoflow à nos données françaises et d'en faire un plugin Qgis.

Objectif

• Le but final est de générer un plugin QGIS open source permettant la reconstruction 3D de bâtiments.

- → La visualisation attendue est la même que celle sur 3D BAG
- → Nos données : **BD Topo et LiDAR HD**.
- → Mise en place d'un outil propre et en Opens source

Présentation des équipes

- Côté Oslandia :
 - Thomas Muguet : Commanditaire et ingénieur SIG à Oslandia.
 - Vincent Picavet : Président de l'entreprise Oslandia
 - Bertrand Parpoil : Project Manager
- Côté ENSG :
 - Mathéo Maréchal chef de projet, élève étudiant en ING2
 - Louis Steinmetz élève étudiant en ING2
 - Arnaud Breillad élève étudiant en ING2
 - Maud Brossard élève étudiant en M1

Phases du Projet

- 1) Lancement du projet : Phase d'analyse et d'appropriation du sujet (séance du 15 février)
 - Présentation du projet par les commanditaires (contraintes, livrables attendus...).
 - Définition d'une ligne de conduite générale pour le projet.
 - Détermination des rôles de chacun et désignation d'un chef de projet (Matheo Marechal).
 - Création d'un Github commun, avec la présence de branches pour chaque membre de l' équipe.
 - Assignation des tâches au moyen de "tickets" GitHub.
- 2) Analyse des besoins : Phase de Cadrage (séance du 29 février)
 - Mise en place des moyens de communication entre le commanditaire et l'équipe (lci mise en place de deux canaux. Le premier par Github, moyen de communication "officiel", le commanditaire a accès à tous les progrès et avancées de l'équipe). Le second est la mise en place d'un chat sur Matrix.
 - Lecture et compréhension de la documentation Geoflow et 3D BAG sur GitHub
- 3) Modélisation : Phase de conception (séance du 29 au 15 mars)
 - Lecture et compréhension de la documentation Geoflow et 3D BAG sur GitHub.
 - Début de recherche sur les jeux de données que nous allons utiliser (choix entre les données du cadastre ou les données de la BD Topo de l'IGN).

4) Développement du projet : Phase de conduite

- Phase de pilotage du Projet entre (15 mars au 16 avril)
 - COPIL (8 mars)
 - COTECH (15 mars)
- Premiers objectifs :
 - Réussir à faire fonctionner Geoflow sur nos ordinateurs personnels.
 - Réussir à reconstruire un bâtiment en 3D avec Geoflow et avec les données test proposées sur GitHub.
 - création d'un jeu de données test :
 - Choisir d'utiliser les données du cadastre ou de la BD Topo (trouver le plus adapté à l'aide de test)
 - choisir une tuile Lidar, en extraire des points et un bâtiment
 - Créer l'intersection avec le polygone 2D
 - Implémenter le Plugin sur Qgis.

5) Phase de clôture du projet

- Rédaction du Bilan du projet (on complète les rapports du COPIL et du COTECH)
- Rédaction des Livrables (21 Avril au 19 mai)
 - Documentation utilisateur
 - Plugin Qgis
- Présentation finale du projet (15 au 19 mai)

Calendrier prévisionnel (rajouter des pointeurs)

Premières explications : Geoflow et les LoD

Les différents data Layers

Etat d avancement : LoD

1.3

Etat d avancement : Lob

2.2

