Сравнение стратегий подбора обучающих примеров для few-shot оценки языковой компетенции LLM (на примере датасета BLiMP и модели Mistral)

1. Датасет

- → **BLiMP:** The Benchmark of Linguistic Minimal Pairs for English [Warstadt et al., TACL 2020]
- → создавался для выявления сильных и слабых сторон моделей (*n-gram, LSTM, Transformer-XL, GPT-2*) по сравнению с человеческими оценками
- → в отличие от CoLA (Corpus of Linguistic Acceptability) [Warstadt et al., TACL 2019], BLiMP оценивает модели на парах предложений, а не на отдельных предложениях, что позволяет точнее выявлять конкретные лингвистические способности моделей
- → был сгенерирован **автоматически** с сохранением структурной аналогии до ключевой позиции контраста, что исключает влияние других факторов на оценку, и использованием словаря с многоуровневой разметкой размером **3000** слов
- → состоит из **67** подразделов ('парадигм'), каждый из которых содержит **1 000** минимальных пар предложений на одно грамматическое явление

Phenomenon	N	Acceptable Example	Unacceptable Example
Anaphor agr.	2	Many girls insulted themselves.	Many girls insulted herself.
Arg. STRUCTURE	9	Rose wasn't disturbing Mark.	Rose wasn't boasting Mark.
BINDING	7	Carlos said that Lori helped him.	Carlos said that Lori helped himself.
CONTROL/RAISING	5	There was bound to be a fish escaping.	There was <u>unable</u> to be a fish escaping.
Detnoun agr.	8	Rachelle had bought that chair.	Rachelle had bought that chairs.
Ellipsis	2	Anne's doctor cleans one important	Anne's doctor cleans one book and
		book and Stacey cleans a few.	Stacey cleans a few important.
FILLER-GAP	7	Brett knew what many waiters find.	Brett knew that many waiters find.
IRREGULAR FORMS	2	Aaron <u>broke</u> the unicycle.	Aaron <u>broken</u> the unicycle.
ISLAND EFFECTS	8	Whose <u>hat</u> should Tonya wear?	Whose should Tonya wear <u>hat</u> ?
NPI LICENSING	7	The truck has clearly tipped over.	The truck has <u>ever</u> tipped over.
Quantifiers	4	No boy knew fewer than six guys.	No boy knew at most six guys.
SUBJECT-VERB AGR.	6	These casseroles disgust Kayla.	These casseroles disgusts Kayla.

Table 2: Minimal pairs from each of the twelve linguistic phenomenon categories covered by BLiMP. Differences are underlined. N is the number of 1,000-example minimal pair paradigms within each broad category.

2. 'Предыдущие' исследования

Тестирование в [Warstadt et al., TACL 2020]: «forced-choice» (модель сравнивает вероятности двух вариантов)

• минимальные пары создавались таким образом, чтобы различия в вероятностях объяснялись исключительно грамматическим контрастом, а не контекстом или длиной предложений

	ral	ANA. A	GR ST	ir m	3 CTRL. F	LAIS.	ir ost	FILLER	GAP IRREGU	LAR NO	4	QUANT	FERS GR
Model	Overal	ANA.	GR ARG. ST	R BINDIN	CTRL.	D-N AC	R ELLIPSI	FILLER	IRREU	ISLAND	MPI	QUAN	S-V AGR
5-gram	60.5	47.9	71.9	64.4	68.5	70.0	36.9	58.1	79.5	53.7	45.5	53.5	60.3
LSTM	68.9	91.7	73.2	73.5	67.0	85.4	67.6	72.5	89.1	42.9	51.7	64.5	80.1
TXL	68.7	94.1	69.5	74.7	71.5	83.0	77.2	64.9	78.2	45.8	55.2	69.3	76.0
GPT-2	80.1	99.6	78.3	80.1	80.5	93.3	86.6	79.0	84.1	63.1	78.9	71.3	89.0
Human	88.6	97.5	90.0	87.3	83.9	92.2	85.0	86.9	97.0	84.9	88.1	86.6	90.9

Table 3: Percentage accuracy of four baseline models and raw human performance on BLiMP using a forced-choice task. A random guessing baseline would achieve an accuracy of 50%.

3. Данное (квази-) исследование

- → тестирование путем **промптинга** (с прямым обращением к LLM)
- → сравнение качества относительно дообученной матрицы проекций
- → Цель: определить лучшую стратегию подбора обучающих примеров для few-shot оценки
- размер тестовой выборки: 670 предложений (10 предложений на каждое из 67 грамматических явлений)
- MOДель: mistral-large-latest
 - ◆ 123b параметров
 - ◆ доступ через АРІ

3. Как подбирался промпт (на основе zero-shot)

Промпт						
Which of the following sentences is grammatically correct? Please respond with the number of the correct sentence only.						
One of the following sentences contains a grammatical error. Which one is correct? Please respond with the number of the correct sentence only.	82.84					
Which of the following sentences has correct {inquiry['linguistic_term']}? Please respond with the number of the correct sentence only.						
Which of the following sentences is grammatically correct? Please respond with the number of the correct sentence, write a full stop and then explain your reasoning step-by-step in one or two sentences.						
Which of the following sentences is grammatically correct? Please respond with the number of the correct sentence, write a full stop and then explain your reasoning step-by-step.	87.01					

Сетапы:

1. Без использования NNS по эмбеддингам

- а. случайный выбор из всего датасета
- b. случайный выбор из **подраздела** датасета на то же грамматическое явление

2. С использованием NNS (по эмбеддингам предложений)

- а. поиск по близким к **неграмматичному** предложению в тестовой паре
- b. поиск по близким к **грамматичному** предложению в тестовой паре

3. С использованием NNS (по эмбеддингам пар предложений)

- а. поиск по близким к разности эмбеддингов тестовой пары
- b. поиск по близким к **покомпонентому умножению** эмбеддингов тестовой пары
- с. поиск по близким к усредненному эмбеддингу тестовой пары
- d. поиск по близким к **конкатенированному** эмбеддингу тестовой пары

4. С использованием NNS (комбинированный подход)

- а. поиск по близким к конкатенации разности и покомпонентного умножения
- b. поиск по близким к конкатенации разности и **усреднения**
- с. поиск по близким к конкатенации разности и конкатенации

Here are some examples of grammatically correct and incorrect sentences:

```
Example 1:
1: Who would Brenda respect Ellen before alarming?
2: Who would Brenda respect before alarming Ellen?
Correct sentence: 2

Example 2:
1: Who has Suzanne irritated without alarming Homer?
2: Who has Suzanne irritated Homer without alarming?
Correct sentence: 1

Example 3:
1: Who has Homer hated Brad while concealing?
2: Who has Homer hated while concealing Brad?
Correct sentence: 2
```

Now, please, determine, which of the following sentences is grammatically correct. Please respond with the number of the correct sentence, write a full stop and then explain your reasoning step-by-step.

<<<

- 1. Who had Andrew cared for while confusing Leslie?
- 2. Who had Andrew cared for Leslie while confusing?

>>>

>>> MODEL RESPONSE <<<

1.

Here's the step-by-step reasoning:

- Both sentences are trying to convey that Andrew cared for someone while confusing Leslie.
- In sentence 1, "Who had Andrew cared for while confusing Leslie?", the structure is clear: "cared for" is followed by "while confusing Leslie", which is a dependent clause modifying the verb "cared for".
- In sentence 2, "Who had Andrew cared for Leslie while confusing?", the structure is awkward because "while confusing" is left hanging without a clear object. It should be "while confusing [someone or something]".
- Therefore, sentence 1 is the grammatically correct choice.

Результаты:

1. Без использования NNS по эмбеддингам

- а. случайный выбор из всего датасета [Асс. 86.87]
- b. случайный выбор из **подраздела** датасета на то же грамматическое явление [Асс. **92.69**]

2. С использованием NNS (по эмбеддингам предложений)

- а. поиск по близким к **неграмматичному** предложению в тестовой паре [Acc. **91.04**]
- b. поиск по близким к *грамматичному* предложению в тестовой паре [Acc. **93.28**]

3. С использованием NNS (по эмбеддингам пар предложений)

- а. поиск по близким к **разности** эмбеддингов тестовой пары [Асс. **93.73**]
- b. поиск по близким к **покомпонентому умножению** эмбеддингов тестовой пары [Acc. **92.24**]
- с. поиск по близким к **усредненному** эмбеддингу тестовой пары [Асс. **90.09**]
- d. поиск по близким к **конкатенированному** эмбеддингу тестовой пары [Acc. **92.09**]

4. С использованием NNS (комбинированный подход)

- а. поиск по близким к конкатенации разности и **покомпонентного умножения** [Acc. **89.94**]
- b. поиск по близким к конкатенации разности и **усреднения** [Асс. **93.58**]
- с. поиск по близким к конкатенации разности и конкатенации [Асс. 91.94]

Difference Embeddings

morphology

semantics

syntax

syntax/semantics

syntax_semantics

Sentential Subject Island (Island Effects)

"Who would the men's appreciating Sara disturb."
"Who would the men's appreciating disturb Sara."

wh vs. that with gap long distance (Filler-Gap Dependency)

"Anne wasn't finding out **who** a lot of drivers that won't love Tanya weren't concealing."

"Anne wasn't finding out **that** a lot of drivers that won't love Tanya weren't concealing."

Complex NP Island (Island Effects)

"Who isn't Karen's friend who couldn't confuse Elaine listening to?"

"Who isn't Elaine listening to Karen's friend who couldn't confuse?"

Only NPI Scope (NPI Licensing)

"Only Carlos's tutor who most adults insult ever performed."

"Carlos's tutor who only most adults insult ever performed."

4. Дообучение матрицы проекций эмбеддингов

- → попытаться разделить пространство эмбеддингов по грамматичности
- → посмотреть, как качество соотносится с результатами промптинга
- Конфигурация обучения (для обеих моделей)
 - 1. **Фреймворк**: РуТогсһ
 - 2. **Оптимизатор**: Adam
 - Скорость обучения: 0,001 (1е-3)
 - 3. **Функция потерь**: Contrastive Loss
 - o Порог (*margin*): 0,5
 - 4. Протокол обучения:
 - Эпохи: 100 (максимум)
 - Ранняя остановка:
 - patience: 5 эпох
 - Дельта (минимальное улучшение): 0,0075
 - Порог сходства: 0,25

4. Дообучение матрицы проекций эмбеддингов

Модель 1: ProjectionMatrix

- 1. Тип архитектуры: Однослойная линейная проекционная модель
- 2. Входная размерность: 1024
- 3. Выходная размерность: 512
- 4. Параметры:
 - Одна матрица весов и вектор смещения
 - Количество параметров: ~524 тыс. (1024×512 + 512)

5. Метрики качества:

- o accuracy: 0.59
- o precision: 0.6
- o recall: 0.54
- o f1_score: 0.57
- o auc: 0.64
- o mean intra class dist: 0.25
- o mean inter class dist: 0.29
- o distance ratio: 1.13

4. Дообучение матрицы проекций эмбеддингов

Модель 2: ProjectionMultiLayer

- 1. Тип архитектуры: Многослойная нейронная сеть
- 2. Конфигурация слоёв:
 - о Входная размерность: 1024
 - о Скрытый слой: 768 нейронов
 - Выходная размерность: 512
 - Коэффициент *dropout*: 0.1
- 3. Параметры:
 - Первый слой: ~786 тыс. параметров (1024×768 + 768)
 - Второй слой: ~394 тыс. параметров (768×512 + 512)
 - Всего параметров: ~1,18 млн

1. Метрики качества:

- o accuracy: 0.85
- precision: 0.87
- o recall: 0.82
- o f1 score: 0.84
- o auc: 0.91
- o mean intra class dist: 0.16
- o mean inter class dist: 0.46
- o distance_ratio: 2.98

5. Выводы

1. Chain-of-Thought эффективнее простых вопросов:

- Но и влияние формулировки вопроса имеет вес
- Запрос на пошаговое объяснение повышает *ассигасу* на **3-4%**
- 🜣 Интересно расхождение с поведением людей, для которых подобный эффект не характерен
- 2. Few-shot превосходит zero-shot (но есть нюанс):
 - Случайный выбор примеров [Acc. **86.87**] незначительно лучше *zero-shot* [Acc. **87.01**]
 - Целенаправленный подбор примеров повышает *accuracy* до **93.73**

3. Наибольшую эффективность показали методы с использованием эмбеддингов:

- Поиск по разности эмбеддингов тестовой пары: [Асс. 93.73]
- о Поиск по конкатенации разности и усреднения: [Acc. **93.58**]
- Выбор примеров из того же грамматического явления: [Асс. 92.69]

4. Дообучение проекционной матрицы:

- о Исходные эмбеддинги не содержат явного разделения по грамматичности
- Простая линейная модель показывает результаты [Acc. **59**], сопоставимые с random baseline
- Многослойная модель достигает [Acc. **85**], что сравнимо с *zero-shot* промптингом

Библиография

- ★ Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and Samuel R. Bowman. 2020. BLiMP: The Benchmark of Linguistic Minimal Pairs for English. *Transactions of the Association for Computational Linguistics*, 8:377–392.
- ★ Alex Warstadt, Amanpreet Singh, Samuel R. Bowman. 2019. Neural Network Acceptability Judgments. *Transactions of the Association for Computational Linguistics*, 7: 625–641.

Спасибо за внимание!