Notes on Binius (Part II): Subspace Polynomial

- Yu Guo yu.guo@secbit.io
- Jade Xie <u>jade@secbit.io</u>

FRI-Binus 论文 [DP24] 中讨论了基于 Subspace Polynomial 的 Additive FFT 算法,并给出了用奇偶项分解的视角来理解 [LCH14] 中的基于 Novel Polynomial Basis 的 Additive FFT 算法。本文直接介绍子空间多项式 Subspace Polynomial,然后据此介绍奇偶项分解视角的 Additive FFT 算法。本文省去了 Normalized Subspace Polynomial 的定义,方便读者理解。 Normalization 只是影响 FFT 算法的性能、和本文介绍的简化版算法并没有本质的区别。

由于 Additive FFT 依赖的代数结构和素数域上的 Multiplicative FFT 非常相似,因此关于 Multiplicative FFT 的知识将有助于理解本文的内容。

线性子空间多项式 Subspace Polynomial

我们继续探索基于 \mathbb{F}_2 上的 Extension Field, \mathbb{F}_{2^m} 。不管是用何种方式构造的 \mathbb{F}_{2^m} ,所有的元素构成了一个向量空间,记为 V_m ,并且存在一组 Basis $(\beta_0,\beta_1,\ldots,\beta_{m-1})$,张成这个向量空间,记为 $V_m=\operatorname{Span}(\beta_0,\beta_1,\ldots,\beta_{m-1})$,或者用符号 $\langle \cdots \rangle$ 表示:

$$V_m = \langle \beta_0, \beta_1, \dots, \beta_{m-1} \rangle \tag{1}$$

这样任意一个元素 $heta\in\mathbb{F}_{2^m}$,可以写为 Basis 分量的线性组合:

$$\theta = c_0 \cdot \beta_0 + c_1 \cdot \beta_1 + \ldots + c_{m-1} \cdot \beta_{m-1}, \text{ where } c_i \in \mathbb{F}_2$$
 (2)

同时 V_m 还是一个加法群,单位元为 $V_0=\{0\}$,如果 V_k 是 V_m 的一个线性子空间,那么 V_k 也是 V_m 的一个加法子群。对于 V_k ,我们可以用一个多项式来编码其中的所有元素,即该多项式的根集合正好对应 V_k 的所有元素的集合,我们把多项式记为 $s_k(X)$ 。这个多项式也被称为「Subspace Polynomial」子空间多项式:

$$s_k(X) = \prod_{i=0}^{2^k-1} (X - \theta_i), \text{ where } \theta_i \in V_k$$
 (3)

多项式 $s_k(X)$ 也可以看成是 V_k 这个 Domain 上的 Vanishing Polynomial,因为对于任意的 $heta \in V_k$,都满足:

$$s_k(\theta) = 0 \tag{4}$$

Linearized Polynomial

上面介绍的 Subspace 多项式是一种所谓的 Linearized Polynomial,因为它的定义满足下面的形式:

$$L(X) = \sum_{i=0}^{n-1} c_i \cdot X^{q^i}, \quad c_i \in \mathbb{F}_q$$
 (5)

多项式 L(X) 之所以被称为 Linearized Polynomial,因为每一个 L(X) 都对应到 \mathbb{F}_q 的扩张域 K 上的一个线性算子(Linear Operator)。假如 L(X) 的所有根都在扩张域 $K=\mathbb{F}_{q^s}$ 中,那么对于所有的 $\theta\in K$,都有 $L(\theta)\in K$ 。而且,如果 $\theta\neq\theta'$,那么 $L(\theta)\neq L(\theta')$ 。每一个 L(X) 都可以被视为一个矩阵 $B\in\mathbb{F}_q^{s\times s}$,完成 向量空间 \mathbb{F}_q^s 上的线性变换,使得:

$$(c_0, c_1, \dots, c_{s-1})B = (d_0, d_1, \dots, d_{s-1})$$
 (6)

对于 Subspace Polynomial 而言,每一个 $s_k(X)$ 都是一个 Linearized Polynomial,反过来,任何一个 Linearized polynomial $L(X)\in \mathbb{F}_{q^m}[X]$,它的所有根都构成某个线性子空间 $V_n\subset V_m$ 。详细的证明过程请参考 [LN97]。

线性性质

由于 $s_k(X)$ 的每一项都是 $a_i \cdot X^{2^i}$ 的形式,因此它具有加法的同态性:

$$egin{aligned} s_k(x+y) &= s_k(x) + s_k(y), & orall x, y \in \mathbb{F}_{2^m} \ s_k(c \cdot x) &= c \cdot s_k(x), & orall x \in \mathbb{F}_{2^m}, orall c \in \mathbb{F}_2 \end{aligned}$$

我们来尝试简单证明第一个等式,根据有限域理论的一个常见定理(Freshman's dream):

$$(x+y)^2 = x^2 + 2xy + y^2 = x^2 + y^2$$
, where $x, y \in \mathbb{F}_{2^m}$ (7)

显然, 2xy = 0, 因为在二进制域中, 2 = 0。所以下面的等式也同理成立:

$$(x+y)^{2^{i}} = x^{2^{i}} + y^{2^{i}} (8)$$

接下来验证下 $s_k(X)$ 的加法同态性:

$$s_k(x+y) = \sum_{i=0}^k a_i \cdot (x+y)^{2^i} = \sum_{i=0}^k a_i \cdot (x^{2^i} + y^{2^i}) = s_k(x) + s_k(y)$$
 (9)

子空间多项式的递推式

对于子空间 V_k , 它可以被拆分为两个不相交的集合:

$$V_k = V_{k-1} \cup (\beta_{k-1} + V_{k-1}) \tag{10}$$

这里 $V_k = \langle \beta_0, \beta_1, \dots, \beta_{k-1} \rangle$, $V_{k-1} = \langle \beta_0, \beta_1, \dots, \beta_{k-2} \rangle$, 那么 V_k , V_{k-1} , V_{k-1} , 所对应的子空间多项式满足下面的关系:

$$s_k(X) = s_{k-1}(X) \cdot s_{k-1}(X + \beta_{k-1}) \tag{11}$$

举个简单例子,假设 k=3, $V_3=\langle\beta_0,\beta_1,\beta_2\rangle$ 由两部分构成,一部分是 $V_2=\langle\beta_0,\beta_1\rangle$,另一部分是 V_2 中的每一个元素加上 β_2 。因此, V_3 的元素个数为 $2^2+2^2=8$,下面列出 V_3 的全部元素:

$$V_3 = \{0, \beta_0, \beta_1, \beta_0 + \beta_1\} \cup \{\beta_2, \beta_0 + \beta_2, \beta_1 + \beta_2, (\beta_0 + \beta_1) + \beta_2\}$$
(12)

我们容易验证: $s_3(X) = s_2(X) \cdot s_2(X + \beta_{k-1})$ 。 当然 $s_2(X)$ 也可以拆成关于 $s_1(X)$ 和 $s_1(X + \beta_1)$ 的乘积,我们不妨试着拆解到底:

$$s_{3}(X) = s_{2}(X) \cdot s_{2}(X + \beta_{2})$$

$$= s_{2}(X)^{2} + \beta_{2} \cdot s_{2}(X)$$

$$= s_{1}(X) \cdot s_{1}(X + \beta_{1}) \cdot s_{1}(X) \cdot s_{1}(X + \beta_{1}) + \beta_{2} \cdot s_{1}(X) \cdot s_{1}(X + \beta_{1})$$

$$= (s_{1}(X)^{2} + \beta_{1} \cdot s_{1}(X))^{2} + \beta_{2} \cdot s_{1}(X)^{2} + \beta_{1}\beta_{2} \cdot s_{1}(X)$$

$$= s_{1}(X)^{4} + \beta_{1}^{2} \cdot s_{1}(X)^{2} + \beta_{2} \cdot s_{1}(X)^{2} + \beta_{1}\beta_{2} \cdot s_{1}(X)$$

$$= s_{1}(X)^{4} + (\beta_{1}^{2} + \beta_{2}) \cdot s_{1}(X)^{2} + \beta_{1}\beta_{2} \cdot s_{1}(X)$$

$$= (X \cdot (X + \beta_{0}))^{4} + (\beta_{1}^{2} + \beta_{2}) \cdot (X \cdot (X + \beta_{0}))^{2} + \beta_{1}\beta_{2} \cdot (X \cdot (X + \beta_{0}))$$

$$= (X^{2} + \beta_{0} \cdot X)^{4} + (\beta_{1}^{2} + \beta_{2}) \cdot (X^{2} + \beta_{0} \cdot X)^{2} + \beta_{1}\beta_{2} \cdot (X^{2} + \beta_{0} \cdot X)$$

$$= X^{8} + \beta_{0}^{4}X^{4} + (\beta_{1}^{2} + \beta_{2})X^{4} + \beta_{0}^{2}(\beta_{1}^{2} + \beta_{2})X^{2} + \beta_{1}\beta_{2}X^{2} + \beta_{0}\beta_{1}\beta_{2}X$$

$$(13)$$

最后 $s_3(X)$ 的展开式满足 $\sum_{i=0}^k a_i \cdot X^{2^i}$ 这样的模式,也符合了我们上面的结论。

子空间上的同态映射

因为 Subspace Polynomial 实际上是一种 Vanishing Polynomial,并且它还具有加法同态,所以我们可以利用 Subspace Polynomial 来定义子空间之间的同态映射。

例如对于 $V_3=\langle eta_0,eta_1,eta_2
angle$,我们定义 V_3 的子空间 $V_1=\{0,eta_0\}$ 及其 Subspace Polynomial $s_1(X)$

$$s_1(X) = X \cdot (X + \beta_0) \tag{14}$$

很显然, $s_1(V_1) = \{0,0\}$,如果将 $s_1(X)$ 作用到 V_3 ,我们会得到下面的结果:

$$s_{1}(0) = 0$$

$$s_{1}(\beta_{0}) = 0$$

$$s_{1}(\beta_{1}) = \beta_{0}\beta_{1} + \beta_{1}^{2}$$

$$s_{1}(\beta_{0} + \beta_{1}) = \beta_{0}\beta_{1} + \beta_{1}^{2}$$

$$s_{1}(\beta_{2}) = \beta_{0}\beta_{2} + \beta_{2}^{2}$$

$$s_{1}(\beta_{0} + \beta_{2}) = \beta_{0}\beta_{2} + \beta_{2}^{2}$$

$$s_{1}(\beta_{1} + \beta_{2}) = \beta_{0}\beta_{1} + \beta_{1}^{2} + \beta_{0}\beta_{2} + \beta_{2}^{2}$$

$$s_{1}(\beta_{0} + \beta_{1} + \beta_{2}) = \beta_{0}\beta_{1} + \beta_{1}^{2} + \beta_{0}\beta_{2} + \beta_{2}^{2}$$

$$(15)$$

上面的等式显示 $s_1(V_3)$ 被映射到了一个大小只有 V_3 一半的集合,记为 V_2 。该集合也是一个子空间, $V_2 = \langle \beta_0', \beta_1' \rangle = \langle \beta_0 \beta_1 + \beta_1^2, \beta_0 \beta_2 + \beta_2^2 \rangle$,维度为 2 。

这不是巧合,根据群同构定理,同态映射 $\phi:H\to G$ 的 Image G 满足 $G\cong H/Ker(\phi)$,其中 G 是一个商群,并且 $|G|=|H|/|Ker(\phi)|$ 。在上面这个例子里, $s_1:V_3\to V_2$ 是同态映射, $V_1=Ker(s_1)$ 。

映射构成的链

对于 $V_2 = s_1(V_3)$,我们仍然可以继续构造一个 Degree 为 2 的 Subspace Polynomial,

$$s_1'(X) = X \cdot (X + \beta_0 \beta_1 + \beta_1^2) \tag{16}$$

可以继续将 V_2 映射到一个一维的子空间 $V_1=\langle \beta'' \rangle$ 。我们只需要计算 $s_1(\beta_0')$ 与 $s_1(\beta_1')$ 即可,这些 Basis 分量构成了 V_2 :

$$s_{1}'(\beta_{0}\beta_{1} + \beta_{1}^{2}) = 0$$

$$s_{1}'(\beta_{0}\beta_{1} + \beta_{1}^{2} + \beta_{0}\beta_{2} + \beta_{2}^{2}) = \beta_{0}^{2}\beta_{1}\beta_{2} + \beta_{0}\beta_{1}^{2}\beta_{2} + \beta_{0}^{2}\beta_{2}^{2} + \beta_{0}\beta_{1}\beta_{2}^{2} + \beta_{1}^{2}\beta_{2}^{2} + \beta_{2}^{4}$$

$$= \beta''$$
(17)

其中 V_2 的 Basis (β'_0, β'_1) 中第一个分量会被映射到 0,第二个分量映射到 β'' 。

至此, 我们得到一个映射的链:

$$V_3 \xrightarrow{s_1} V_2 \xrightarrow{s_1'} V_1 \tag{18}$$

或者也可以写为:

$$\langle \beta_0, \beta_1, \beta_2 \rangle \xrightarrow{s_1} \langle s_1(\beta_1), s_1(\beta_2) \rangle \xrightarrow{s'_1} \langle s'_1(s_1(\beta_2)) \rangle$$
 (19)

并且每次映射到的线性子空间的维度都减一,即集合大小减半。这个代数结构是我们后续构造 FFT 与 FRI 协议的关键。

不难证明,对于任意的线性子空间,只要我们选定一个 Basis 之后,就可以依次构造 Degree 为 2 的 Subspace Polynomial 作为映射函数,然后通过映射得到一个维度减 1 的子空间,然后不断重复,直到子空间降至 1 维。当然 Basis 选择不同,以及 Subspace Polynomial 的选择不同都会导致不同的映射链。选择恰当的映射链可以显著提高计算的效率。

s_1 映射的复合

我们定义映射链的初始子空间为 $S^{(0)}$,映射后的子空间为 $S^{(1)}$,i次映射之后的子空间为 $S^{(i)}$:

$$S^{(0)} \stackrel{s_1}{\longrightarrow} S^{(1)} \stackrel{s_1^{(1)}}{\longrightarrow} \cdots \stackrel{s_1^{(n-1)}}{\longrightarrow} S^{(n)}$$

$$(20)$$

给定 $S^{(i)}$ 的一组 Basis 后,假设为 $B^{(i)}=(eta_0^{(i)},eta_1^{(i)},\ldots,eta_s^{(i)})$,在 Basis 上定义 Subspace Polynomial $s_1^{(i)}$,并用其作为群同态映射函数,把 $S^{(i)}$ 降维到 $S^{(i+1)}$ 。降维后的线性子空间 $S^{(i+1)}$ 的 Basis 需要把 $S^{(i)}$ 的 Basis 同步跟着 $s_1^{(i)}$ 转换到一个新的 Basis。切换到新 Basis 之后,我们又可以定义一组新的 Subspace Polynomial $s_i^{(i+1)}(X)$ 。

我们假设 $S^{(0)}=\langle \beta_0,\beta_1,\ldots,\beta_{k-1}\rangle$ 开始,给定一组 Basis B_k ,经过 s_1 的映射之后,我们得到了 $S^{(1)}$,以及其 Basis $B^{(1)}$.

$$B^{(1)} = \langle s_1(\beta_1), s_1(\beta_2), \dots, s_1(\beta_{k-1}) \rangle \tag{21}$$

在 $S^{(1)}$ 再定义 $s_1^{(1)}(X)$:

$$s_1^{(1)}(X) = X(X + s_1(\beta_1)) \tag{22}$$

那么, $S^{(1)}$ 映射后产生的 $S^{(2)}$ 和 $S^{(0)}$ 之间的关系是什么?对于任何一个元素 $a\in S^{(0)}$,它先经过 s_1 映射到 $S^{(1)}$,然后再经过 $s_1^{(1)}$ 映射到 $S^{(2)}$ 中的某个元素,因此经过两次映射后的值可以被写为两次映射函数的复合, $s_1^{(1)}(s_1(X))$,我们化简下这个复合函数:

$$s_1^{(1)}(s_1(X))=s_1(X)(s_1(X)+s_1(eta_1))$$

$$=s_1(X)(s_1(X+eta_1)) \qquad \qquad ({\rm additive\ homomorphism\ })$$

$$=s_2(X) \qquad \qquad ({\rm recurrency\ })$$

于是我们推导出了 $s_1^{(1)}(s_1(X))=s_2(X)$ 。这意味着经过两次 2-to-1 的映射,等价于做一次 4-to-1 的映射,并且对应的同态映射函数为 s_2 :

$$s_2: S^{(0)} \to S^{(2)}$$
 (23)
 $X \mapsto X(X + \beta_0)(X + \beta_1)(X + \beta_1 + \beta_0)$

如下图所示,左右两种映射方式都会得到 $S^{(2)}$:

同理,我们可以得到下面的结论,对于折叠 i 次之后的线性子空间 $S^{(j)}$ 为

$$S^{(j)} = \langle s_i(\beta_i), s_i(\beta_{i+1}), \dots, s_i(\beta_{k-1}) \rangle \tag{24}$$

并且 s_j 满足下面的复合等式:

$$s_j(X) = s_{j-1}^{(1)}(s_1(X)) = s_{j-1}^{(1)} \circ s_1$$
 (25)

这个复合映射的等式可以解读为: 先做一次 s_1 映射得到 $S^{(1)}$,然后再做一次 j-1 维的映射 $s_{j-1}^{(1)}$,等价于直接一次 j 维映射 s_j ,两者都映射到同一个子空间 $S^{(j)}$ 。

同样,我们还能证明:如果先做一次 j-1 维的映射 s_{j-1} ,再在映射后的子空间 $S^{(j-1)}$ 上做一次一维映射,同样可以得到子空间 $S^{(j)}$:

$$s_j(X) = s_1^{(1)}(s_{j-1}(X)) = s_1^{(1)} \circ s_{j-1}$$
(26)

更一般地,我们可以证明得到下面的重要性质,即在任意子空间 $S^{(i)}$ 上做一次 j 维映射,等价于在其上连续做 j 次 1 维映射:

$$s_{j}^{(i)}(X) = s_{1}^{(i+j-1)} \circ s_{1}^{(i+j-2)} \circ \dots \circ s_{1}^{(i)}$$
 (27)

多项式的 Polynomial Basis

对于一个次数小于 $N=2^n$ 的一元多项式 $f(X)\in\mathbb{F}[X]^{< N}$,它有两种常见的表达形式,「系数式」与「点值式」。其中系数式是我们最常见的形式:

$$f(X) = c_0 + c_1 X + c_2 X^2 + \ldots + c_{N-1} X^{N-1}$$
(28)

其中 $\vec{c}=(c_0,c_1,\ldots,c_{N-1})$ 为多项式的系数向量。另外未知数的向量 $(1,X,X^2,\ldots,X^{N-1})$ 则构成了一组多项式的基(Basis),按惯例称之为 Monomial Basis,记为 \mathcal{B}^{mono} :

$$\mathcal{B}^{mono} = (1, X, X^2, \dots, X^{N-1}) \tag{29}$$

这个基向量也可以表达为下面的 Tensor Product 形式:

$$\mathcal{B}^{mono} = (1, X) \otimes (1, X^2) \otimes \ldots \otimes (1, X^{2^{n-1}})$$

$$(30)$$

一元多项式的 「点值式」称为 Lagrange Basis 表示。即我们可以用 N 个「系数」来唯一确定一个 Degree 小于 N 的多项式(请注意,这里的系数是更广泛意义上的概念,而不是局限于「系数式」表示中的系数)。

通过多项式除法,我们可以得到多项式在 \mathcal{B}^{mono} 上的系数。例如有一个 degree 为 7 的多项式 t(X),那么我们可以先计算 $X^4 \cdot X^2 \cdot X$ 的系数,即计算多项式除法: $t(X)/(X^4 \cdot X^2 \cdot X)$,得到一个系数 c_7 与一个余数多项式 t'(X); 然后再计算 $t'(X)/(X^4 \cdot X^2)$,得到 $\mathcal{B}_6^{mono} = X^6$ 的系数 c_6 ,以此类推,最终我们可以得到 t(X) 关于 \mathcal{B}^{mono} 的系数向量 $\vec{c} = (c_0, c_1, \ldots, c_7)$,使得:

$$t(X) = c_0 + c_1 X + c_2 X^2 + \ldots + c_7 X^7$$
(31)

利用前文已讨论过的 Subspace Polynomial $s_k(X)$,我们可以定义一组新的 Basis。根据其定义, $s_k(X)$ 的 degree 恰好也是 2^k ,类似 $(1,X,X^2,X^4)$,因此 $(s_0(X),s_1(X),s_2(X))$ 也可作为构造多项式 Basis 的基本原料。仿照 \mathcal{B}^{mono} 的定义,我们定义 (Novel) Polynomial Basis \mathcal{B}^{novel} :

$$\mathcal{B}^{novel} = (1, s_0(X)) \otimes (1, s_1(X)) \otimes \ldots \otimes (1, s_{n-1}(X))$$

$$(32)$$

请注意与论文 [LCH14] 和 [DP24] 不同的是,这里我们暂时没有引入 Normalized Subspace Polynomial,以方便大家理解。回到上面的定义,其中每一个分量 \mathcal{B}_i^{novel} 我们简记为 $\mathcal{X}_i(X)$,定义如下:

$$\mathcal{X}_i(X) = \prod_{j=0}^{n-1} (s_j(X))^{i_j}, ext{ where bits}(i) = (i_0, i_1, \dots, i_{n-1})$$
 (33)

这里 bits(i) 表示把整数 i 按照二进制展开,比如 i=5,那么 bits(5)=(1,0,1), bits(6)=(0,1,1)。举例 n=3,N=8 ,按照上面的定义,我们可以计算出一组多项式基 $\left(\mathcal{X}_0(X),\mathcal{X}_1(X),\ldots,\mathcal{X}_7(X)\right)$

$$\mathcal{X}_{0}(X) = 1
\mathcal{X}_{1}(X) = s_{0}(X) = X
\mathcal{X}_{2}(X) = s_{1}(X)
\mathcal{X}_{3}(X) = s_{0}(X) \cdot s_{1}(X)
\mathcal{X}_{4}(X) = s_{2}(X)
\mathcal{X}_{5}(X) = s_{0}(X) \cdot s_{2}(X)
\mathcal{X}_{6}(X) = s_{1}(X) \cdot s_{2}(X)
\mathcal{X}_{7}(X) = s_{0}(X) \cdot s_{1}(X) \cdot s_{2}(X)$$
(34)

容易检验,每一个 Basis 分量 $\mathcal{X}_i(X)$ 的 Degree 恰好为 i,因此 \mathcal{B}^{novel} 就构成了一组线性无关的多项式 Basis。对于任意的 Degree 小于 8 的多项式 $f(X) \in \mathbb{F}_{2^m}[X]$:

$$f(X) = a_0 \mathcal{X}_0(X) + a_1 \mathcal{X}_1(X) + \dots + a_7 \mathcal{X}_7(X)$$

$$= a_0 + a_1 s_0(X) + a_2 s_1(X) + a_3 s_0(X) \cdot s_1(X)$$

$$+ a_4 s_2(X) + a_5 s_0(X) \cdot s_2(X) + a_6 s_1(X) \cdot s_2(X) + a_7 s_0(X) \cdot s_1(X) \cdot s_2(X)$$
(35)

同样,我们可以利用多项式除法来将一个多项式在 \mathcal{B}^{novel} 和 \mathcal{B}^{mono} 之间转换。

Additive FFT

类似 Multiplicative FFT,要构造 Additive FFT,我们需要在 \mathbb{F}_{2^m} 中定义一个加法子群的映射链。如前所述,Subspace Polynomials 恰好可以用来构造这个映射链。同时 Subspace Polynomials 又可以构造一组多项式 Basis。

$$S^{(0)} \xrightarrow{s_1} S^{(1)} \xrightarrow{s_1^{(1)}} \cdots \xrightarrow{s_1^{(n-1)}} S^{(n)}$$

$$(36)$$

为了演示方便,指定 n=3, $S^{(0)}=\langle \beta_0,\beta_1,\beta_2\rangle$ 。仿照 Multiplicative FFT 的思路,我们将用 \mathcal{B}^{novel} 表示的多项式 f(X) (Degree 为 7)进行奇偶项拆分,拆分成两个次数减半的多项式:

$$f(X) = a_0 \mathcal{X}_0(X) + a_1 \mathcal{X}_1(X) + \dots + a_7 \mathcal{X}_7(X)$$

$$= a_0 + a_1 s_0(X) + a_2 s_1(X) + a_3 s_0(X) \cdot s_1(X)$$

$$+ a_4 s_2(X) + a_5 s_0(X) \cdot s_2(X) + a_6 s_1(X) \cdot s_2(X) + a_7 s_0(X) \cdot s_1(X) \cdot s_2(X)$$

$$= (a_0 + a_2 s_1(X) + a_4 s_2(X) + a_6 s_1(X) \cdot s_2(X))$$

$$+ (a_1 + a_3 s_0(X) \cdot s_1(X) + a_5 s_0(X) \cdot s_2(X) + a_7 s_0(X) \cdot s_1(X) \cdot s_2(X))$$

$$= (a_0 + a_2 s_1(X) + a_4 s_2(X) + a_6 s_1(X) \cdot s_2(X))$$

$$+ s_0(X) \cdot (a_1 + a_3 \cdot s_1(X) + a_5 \cdot s_2(X) + a_7 \cdot s_1(X) \cdot s_2(X))$$

$$(37)$$

然后我们引入两个辅助多项式 $f_{even}(X), f_{odd}(X)$, 它们

$$f_{even}(X) = a_0 + a_2 \cdot s_1(X) + a_4 \cdot s_2(X) + a_6 \cdot s_1(X) \cdot s_2(X)$$

$$f_{odd}(X) = a_1 + a_3 \cdot s_1(X) + a_5 \cdot s_2(X) + a_7 \cdot s_1(X) \cdot s_2(X)$$
(38)

根据我们之前推导的映射的复合性质, $s_1(X)=s_0^{(1)}\circ s_0(X)$, $s_2(X)=s_1^{(1)}\circ s_1(X)$,于是我们可以得到:

$$f_{even}(X) = a_0 + a_2 \cdot s_0^{(1)}(s_1(X)) + a_4 \cdot s_1^{(1)}(s_1(X)) + a_6 \cdot s_0^{(1)}(s_1(X)) \cdot s_1^{(1)}(s_1(X))$$

$$= a_0 + a_2 \cdot s_0^{(1)}(s_1(X)) + a_4 \cdot s_1^{(1)}(s_1(X)) + a_6 \cdot s_0^{(1)}(s_1(X)) \cdot s_1^{(1)}(s_1(X))$$

$$f_{odd}(X) = a_1 + a_3 \cdot s_0^{(1)}(s_1(X)) + a_5 \cdot s_1^{(1)}(s_1(X)) + a_7 \cdot s_0^{(1)}(s_1(X)) \cdot s_1^{(1)}(s_1(X))$$

$$= a_1 + a_3 \cdot s_0^{(1)}(s_1(X)) + a_5 \cdot s_1^{(1)}(s_1(X)) + a_7 \cdot s_0^{(1)}(s_1(X)) \cdot s_1^{(1)}(s_1(X))$$

$$(39)$$

代入 $Y = s_1(X)$ 后,我们可以把 f(X) 拆分成关于 $f_{even}(Y)$ 和 $f_{odd}(Y)$ 的等式:

$$f(X) = f_{even}(Y) + s_0(X) \cdot f_{odd}(Y) \tag{40}$$

而多项式 $f_{even}(Y)$ 和 $f_{odd}(Y)$ 正好是定义在 $\mathcal{X}^{(1)}$ 上的多项式:

$$\mathcal{X}_{0}^{(1)}(X) = 1
\mathcal{X}_{1}^{(1)}(X) = s_{0}^{(1)}(X) = s_{0}(s_{1}(X)) = s_{1}(X)
\mathcal{X}_{2}^{(1)}(X) = s_{1}^{(1)}(X) = s_{1}(s_{1}(X)) = s_{2}(X)
\mathcal{X}_{3}^{(1)}(X) = s_{0}^{(1)}(X) \cdot s_{1}^{(1)}(X) = s_{0}(s_{1}(X)) \cdot s_{1}(s_{1}(X)) = s_{1}(X) \cdot s_{2}(X)$$
(41)

重写下奇偶多项式:

$$f_{even}(X) = a_0 \cdot \mathcal{X}_0^{(1)}(X) + a_2 \cdot \mathcal{X}_1^{(1)}(X) + a_4 \cdot \mathcal{X}_2^{(1)}(X) + a_6 \cdot \mathcal{X}_3^{(1)}(X)$$

$$f_{odd}(X) = a_1 \cdot \mathcal{X}_0^{(1)}(X) + a_3 \cdot \mathcal{X}_1^{(1)}(X) + a_5 \cdot \mathcal{X}_2^{(1)}(X) + a_7 \cdot \mathcal{X}_3^{(1)}(X)$$

$$(42)$$

从结构上看,这个等式与 Multiplicative FFT 中的 $f(X)=f_{even}(X^2)+X\cdot f_{odd}(X^2)$ 拆分非常相似;而 $X\mapsto X^2$ 映射也对应于 $s_1:X\mapsto X(X+\beta_0)$ 映射。而 $S^{(0)}$ 在 s_1 的映射下,产生出一个尺寸只有原来一半的子空间 $S^{(1)}$:

$$S^{(1)} = \langle s_1(\beta_1), s_1(\beta_2) \rangle \tag{43}$$

于是我们可以依赖递归调用,求得 $\{f_{even}(X) \mid X \in S^{(1)}\}$ 与 $\{f_{odd}(X) \mid X \in S^{(1)}\}$,然后再利用 $f(X) = f_{even}(X) + s_0(X) \cdot f_{odd}(X)$ 这个等式得到 f(X) 在 $S^{(0)}$ 上的值。

下面我们假设递归调用成功返回,那么我们就得到了 $f_{even}(X)$ 和 $f_{odd}(X)$ 在 $S^{(1)}$ 上的全部求值,记为 \vec{u} 与 \vec{v} ,定义如下:

$$(u_0, u_1, u_2, u_3) = (f_{even}(0), f_{even}(1), f_{even}(s_1(\beta_1)), f_{even}(s_1(\beta_1) + 1))$$

$$(v_0, v_1, v_2, v_3) = (f_{odd}(0), f_{odd}(1), f_{odd}(s_1(\beta_1)), f_{odd}(s_1(\beta_1) + 1))$$

$$(44)$$

然后我们就可以计算 f(X) 在 $S^{(0)}$ 上的全部求值,即 $f(X)|_{S^{(0)}}$:

$$f(0) = f_{even}(s_{1}(0)) + 0 \cdot f_{odd}(s_{1}(0))$$

$$= u_{0}$$

$$f(1) = f_{even}(s_{1}(1)) + 1 \cdot v_{1}$$

$$= u_{0} + v_{1}$$

$$f(\beta_{1}) = f_{even}(s_{1}(\beta_{1})) + \beta_{1} \cdot f_{odd}(s_{1}(\beta_{1}))$$

$$= u_{1} + \beta_{1} \cdot v_{1}$$

$$f(\beta_{1} + 1) = f_{even}(s_{1}(\beta_{1}) + s_{1}(1)) + (\beta_{1} + 1) \cdot f_{odd}(s_{1}(\beta_{1}) + s_{1}(1))$$

$$= u_{1} + \beta_{1} \cdot v_{1} + v_{1}$$

$$f(\beta_{2}) = f_{even}(s_{1}(\beta_{2})) + \beta_{2} \cdot f_{odd}(s_{1}(\beta_{2}))$$

$$= u_{2} + \beta_{2} \cdot v_{2}$$

$$f(\beta_{2} + 1) = f_{even}(s_{1}(\beta_{2}) + s_{1}(1)) + (\beta_{2} + 1) \cdot f_{odd}(s_{1}(\beta_{2}) + s_{1}(1))$$

$$= u_{2} + \beta_{2} \cdot v_{2} + v_{2}$$

$$f(\beta_{2} + \beta_{1}) = f_{even}(s_{1}(\beta_{2}) + s_{1}(\beta_{1})) + (\beta_{2} + \beta_{1}) \cdot f_{odd}(s_{1}(\beta_{2}) + s_{1}(\beta_{1}))$$

$$= u_{3} + \beta_{2} \cdot v_{3} + \beta_{1} \cdot v_{3}$$

$$f(\beta_{2} + \beta_{1} + 1) = f_{even}(s_{1}(\beta_{2}) + s_{1}(\beta_{1}) + s_{1}(1)) + (\beta_{2} + \beta_{1} + 1) \cdot f_{odd}(s_{1}(\beta_{2}) + s_{1}(\beta_{1}) + s_{1}(1))$$

$$= u_{3} + \beta_{2} \cdot v_{3} + \beta_{1} \cdot v_{3} + v_{3}$$

$$(45)$$

我们把上面这个 Additive FFT 递归算法用 Python 代码实现如下:

```
def afft(f, k, B):
    Perform the Additive Fast Fourier Transform (AFFT) on a given polynomial.
    Args:
        f (list): Coefficients of the polynomial to be transformed.
        k (int): The depth of recursion, where 2 k is the size of the domain.
        B (list): The basis of the domain over which the polynomial is evaluated.
    Returns:
       list: The evaluations of the polynomial over the domain.
    if k == 0:
        return [f[0]]
    half = 2**(k-1)
    f even = f[::2]
    f odd = f[1::2]
    V = span(B)
                                                # the subspace spanned by B
    q = lambda x: x*(x+B[0])/(B[1]*(B[1] + 1)) # s^(i)_1 map
    B_half = [q(b) \text{ for } b \text{ in } B[1:]]
                                               # the basis of the mapped subspace
    e_even = afft(f_even, k-1, B_half) # compute the evaluations of f_even
    e_odd = afft(f_odd, k-1, B_half) # compute the evaluations of f_odd
    e = [0] * (2 * half)
                                         # initialize the list of evaluations
```

```
for i in range(0, half):
    e[2*i] = e_even[i] + V[2*i] * e_odd[i]
    e[2*i+1] = e_even[i] + V[2*i+1] * e_odd[i]

return e
```

函数 afft(f, k, B) 总共有三个参数,分别是多项式 f(X) 在 \mathcal{B}^{novel} 上的系数向量,递归深度 k,以及当前的子空间 $S^{(0)}$ 的 Basis。

总结

Additive FFT 算法需要一个通过 Subspace Polynomial 构造的子空间的映射链。本文介绍的原理并不局限在递归构造的二进制域,而是一种更广泛的代数结构。 在 [LCH14] 论文中采用的是另外一种递归 Additive FFT 算法,我们将在下一篇文中介绍两者的差异,以及 [DP24] 论文中的 Additive FFT 迭代算法(Algorithm 2)。

References

- [DP24] Benjamin E. Diamond and Jim Posen. "Polylogarithmic Proofs for Multilinears over Binary Towers". 2024. https://eprint.iacr.org/2024/504
- [LCH14] Lin, Sian-Jheng, Wei-Ho Chung, and Yunghsiang S. Han. "Novel polynomial basis and its application to Reed-Solomon erasure codes." 2014 ieee 55th annual symposium on foundations of computer science. IEEE, 2014. https://arxiv.org/abs/1404.3458
- [LN97] Lidl, Rudolf, and Harald Niederreiter. Finite fields. No. 20. Cambridge university press, 1997.