

751-6212-00L Angewandte Zuchtwertschätzung für Nutztiere

Birgit Gredler-Grandl

Qualitas AG http://qualitasag.ch/

- Kompetenzzentrum für Informatik und quantitative Genetik
- Hält Datenbanken für Braunvieh Schweiz und Swissherdbook
- Zuchtwertschätzung für alle Milchviehrassen, Schafe, Ziegen
- Meine Aufgabe:
 - Routinezuchtwertschätzung
 - Weiterentwicklung Zuchtwertschätzung, neue Merkmale

Angewandte Zuchtwertschätzung für Nutztiere

- Ziel:
- Kennenlernen der angewandten Zuchtwertschätzung bei Rind, Schwein, Schaf und Ziege in der Schweiz
- Kennen der Merkmale und Modelle
- Interpretation der Zuchtwerte
- Lösen von einfachen Rechenbeispielen

Übersicht VO-Termine

Angewandte Zuchtwertschätzung Birgit Gredler	Angewandte statistische Methoden Peter von Rohr	
22. Februar	11. April	
29. Februar	18. April	
07. März (Exkursion)	25. April	
14. März	02. Mai	
21. März (Gastvorlesung Suisag)	09. Mai	
04. April	23. Mai	
30. Mai schriftliche Prüfung		
Unterlagen: http://charlotte-ngs.github.io/GELASM/		

Besuch bei Qualitas AG und Braunvieh Schweiz

- 7. März 2016
- Uhrzeit 08:00 bis 10:00
- Adresse: Chamerstrasse 56, 6300 Zug
- Referenten:
- Geschäftsführer Qualitas AG: Dr. Jürg Moll
- Geschäftsführer Braunvieh Schweiz: Dr. Lucas Casanova

Besuch bei Qualitas AG und Braunvieh Schweiz

Anreise per Zug oder Auto (Parkplätze vorhanden)

Heutige Vorlesung

- Grundlagen
 - Begriffe
 - Heritabilität und genetische Korrelation
 - Genauigkeit und Sicherheit
- Zuchtwertschätzung Rind in der Schweiz
 - Allgemeines zur nationalen ZWS
 - Internationale ZWS bei Interbull
 - Basis und Standardisierung

Quellen

- Kurs Zuchtwertschätzung 2015 (Qualitas AG)
 - Beat Bapst, Madeleine Berweger, Jürg Moll, Franz Seefried, Urs Schuler, Urs Schnyder
- Dr. Christian Fürst: Vorlesung Zuchtwertschätzung beim Rind, Universität für Bodenkultur Wien

22. Feb. 2016

Schritte im Zuchtgeschehen

Was heisst züchten?

Züchten ist die gezielte Auswahl von Elterntieren, von deren Nachkommen man erwarten kann, dass sie dem Zuchtziel im Durchschnitt näher sind als die Elterngeneration.

- Züchten ist durch folgende Kriterien gekennzeichnet:
- Definition eines Zuchtzieles
- Art und Weise der Auswahl der Elterntiere muss festgelegt sein Zuchtprogramm
- Für den Zuchterfolg sind Leistungen der Nachkommen entscheidend (nicht das Leistungsvermögen der Elterntiere an sich)

Angewandte Zuchtwertschätzung

Welche dieser Tiere sollen als Eltern der nächsten Generation eingesetzt werden?

Was ist der Zuchtwert (ZW)?

Unter dem **Zuchtwert** versteht man die im **Durchschnitt** bei den **Nachkommen** wirksamen **Erbanlagen** eines Tieres.

- Nur jener Teil der Erbanalgen eines Tieres ist züchterisch bedeutend, welcher auch bei seinen Nachkommen wirksam wird
- ZW ist im Gegensatz zum Genotyp variabel (keine fixe Grösse)
- Hängt von der genetischen Struktur einer Population ab
- ZW ändert sich mit der jeweiligen Population, zu der man das bestimmte Tier in Beziehung setzt – populationsspezifisch
- Mit dem ZW wird nicht die eigene Leistung eines Tieres beurteilt, sondern die Leistung der Nachkommen, wenn es an durchschnittliche Paarungspartner angepaart wird.

22. Feb. 2016

Mathematische Definition des Zuchtwerts

$$ZW = 2 * (NKD - PD)$$

- PD = Durchschnitt der jeweiligen Referenzpopulation
- NKD = Leistungsdurchschnitt der Nachkommen
- ZW = zuchtwertbedingte Abweichung des Tieres von PD
- Wenn folgende Annahmen zutreffen:
- Anzahl der Nachkommen geht gegen unendlich
- Paarungspartner entsprechen genetisch der Referenzpopulation
- Umwelt, in der Nachkommen ihre Leistung erbringen, muss im Durchschnitt jener der Referenzpopulation entsprechen

Qualitas AG

Mathematische Definition des Zuchtwerts

$$ZW = 2 * (NKD - PD)$$

- PD = Durchschnitt der jewe
- NKD = Leistungsdurchsch
- ZW = zuchtwertbedingte A

Multiplikation der
Abweichung mit "2" →
ein Tier bestimmt nur zur
Hälfte die Erbanlagen
seiner Nachkommen.

- Wenn folgende Annahmen zutren.
- Anzahl der Nachkommen geht gegen unendlich
- Paarungspartner entsprechen genetisch der Referenzpopulation
- Umwelt, in der Nachkommen ihre Leistung erbringen, muss im Durchschnitt jener der Referenzpopulation entsprechen

Qualitas AG

- Die Anzahl der Nachkommen geht gegen unendlich
- "Zufallshälftung" der Erbanlagen bei der Bildung von Samen- bzw. Eizellen
- Entweder zufällig das väterliche oder mütterliche Chromosom gelangt in Samen- bzw. Eizelle
- Stier kann mehr als > 1 Mrd. verschiedene veranlagte Samenzellen produzieren, die sich zumindest in einem Chromosom unterscheiden
- Nachkommen repräsentieren nur Zufallsstichprobe

- Paarungspartner entsprechen der Referenzpopulation
- Wenn genetische Veranlagung der Paarungspartner von Referenzpopulation abweicht, dann wird Abweichung (zur Hälfte) auch an die Nachkommen übertragen.
- Differenz (NKD PD) durch Zuchtwerte der Paarungspartner verzerrt

- Die durchschnittliche Umwelt für die Nachkommen muss der Umwelt für die Referenzpopulation entsprechen
- NKD ist nicht nur von Erbanlagen abhängig, sondern auch von der jeweiligen Umwelt, in der die Leistungen erbracht werden
- Differenz (NKD PD) durch die Umwelt der Nachkommen verzerrt
- Damit die Differenz (NKD PD) frei von Umweltwirkung ist, müssen sich die umweltbedingten Abweichungen der Nachkommenleistungen vom PD in Summe auf Null reduzieren

Bedingungen zur Erfassung des wahren Zuchtwerts sind in der Realität nicht erfüllbar

Jede Zuchtwertschätzung grundsätzlich fehlerhaft!

Zuchtwertschätzung (ZWS)

- Ziel der ZWS ist die Erstellung einer Rangierung der Tiere einer Population gemäss ihrem genetischen Wert
- ZW ist das Kriterium/Werkzeug um Tiere nach ihrem genetischen Potenzial zu rangieren
- Soll Hilfsmittel bei der gezielten Auswahl der Elterntiere sein.

Genetische Parameter - Heritabilität

Heritabilität (Erblichkeit) besagt, wie stark die Leistungsunterschiede von Tieren durch die Erbanlagen bestimmt sind.

- Jede Leistung ergibt sich aus Erbanlagen und Umwelteinflüssen
- Verhältniszahl zwischen 0 und 1
- Populationsspezifisch
- Keine Konstante
- Hängt stark davon ab, wie unterschiedlich die Umwelt ist bzw. wie gut diese erfasst werden kann

Genetische Parameter - Heritabilität

$$h^2 = rac{\sigma_A^2}{\sigma_P^2}$$

Additiv genetische Varianz

Phänotypische Varianz (genetische + Umweltvariation)

Schlechte Umwelterfassung: Fehlende Besamungen, Befragung von Merkmalen, ... machen Heritabilität niedriger!

> Niedrige Heritabilität bedeutet nicht automatisch, dass es keine grossen genetischen Unterschiede gibt!

Genetische Parameter – Heritabilität

Tierart	Merkmal	h² von - bis
Rind	Milchmenge	
	Fettgehalt	
	Tägliche Zunahme	
	Fruchtbarkeit	
	Widerristhöhe	
Schwein	Tägliche Zunahme	
	Rückenspeckdicke	
	Körperlänge	
	Wurfgrösse	

Genetische Parameter – genetische Korrelation

Der Korrelationskoeffizient (r) gibt an, in welchem Ausmass zwei Merkmale **genetisch** zusammenhängen.

- Pleiotropie als Ursache: Eigenschaft der Allele eines Locus, die phänotypische Ausprägung von mehreren Merkmalen zu beeinflussen.
- Werte von -1 bis +1
- Im mathematischen Sinne spricht man von positiven und negativen Korrelationen
- Im tierzüchterischen Sinne spricht man von erwünschten und unerwünschten Korrelationen
- Merkmale mit unerwünschter genetischer Korrelation sind schwieriger gemeinsam züchterisch zu verbessern

Genetische Parameter – genetische Korrelation

- Beispiele Rind:
- Milchmenge Eiweissmenge: 0.90
- Milchmenge Eiweissgehalt: -0.40
- Milchmenge Ausschlachtung: -0.20
- Milchmenge Zellzahl: 0.30 (unerwünscht!)
- Milchmenge Fruchtbarkeit: -0.30 bis -0.60

TH zürich

Bsp: Braunviehstiere Korrelation ZW Milch-kg und ZW Eiweiss-kg: 0.85

TH zürich

Bsp: Braunviehstiere Korrelation ZW Milch-kg und ZW Eiweiss-%: -0.31

TH zürich

Bsp: Braunviehstiere
Korrelation ZW Milch-kg und Fruchtbarkeit: -0.37

Prinzipien der Zuchtwertschätzung

1. Modell der Leistung:

Phänotyp = Genotyp + Umwelt

- → Genetik = Phänotyp (Leistung) Umwelt
- rechnerisch korrekte Trennung von genetischen und umweltbedingten Effekten

Prinzipien der Zuchtwertschätzung

2. Verwandte haben Anteil gleicher Gene

- Über die genetische Veranlagung eines Tieres sagt nicht nur seine eigene Leistung etwas aus, sondern auch die Leistungen verwandter Tiere
- optimale Gewichtung der Leistungen verwandter Tiere

Massnahmen in Zuchtwertschätzung

- Berücksichtigung aller verfügbaren Leistungsinformationen von Verwandten
 - Informationsgehalt abhängig von Verwandtschaftsgrad und Heritabilität
- Berücksichtigung des genetischen Niveaus der **Anpaarungspartner**
 - Zufällige Abweichung und Vorselektion der Paarungspartner von der Referenzpopulation führt zu Verzerrungen
 - Simultane Schätzung der Zuchtwerte für alle Tiere ermöglicht Zuchtwerte der Paarungspartner rechnerisch konstant zu halten
- Berücksichtigung systematischer Umwelteinflüsse
 - Für alle Tiere werden rechnerisch gleiche Umweltverhältnisse simuliert

Qualitas AG Birgit Gredler-Grandl 30

Genauigkeit und Sicherheit der ZWS

- Zuchtwerte stellen Schätzwerte für die wahren Zuchtwerte dar
- Der Zuchtwert ist deshalb immer mit Fehler behaftet
- Ein geschätzter Zuchtwert ist der wahrscheinlichste, im Durchschnitt zu erwartende Wert
- Die Sicherheit bzw. Genauigkeit sind Masse für die Zuverlässigkeit bzw. Qualität von Zuchtwerten (bzw. der Zuchtwertschätzung)

Genauigkeit und Sicherheit der ZWS

Genauigkeit

(engl. accuracy)

Korrelation zwischen wahrem und geschätztem Zuchtwert $r(r_{a,\hat{a}})$

Sicherheit

(engl. reliability)

Genauigkeit quadriert

$$r^2 (r^2_{a,\hat{a}})$$

statistisch: Bestimmtheitsmass (B%)

Werte zwischen 0 und 1 (keine Einheit)

Genauigkeit und Sicherheit der ZWS

- Die Sicherheit hängt ab:
 - Heritabilität (Erblichkeit) des Merkmals (je höher desto höher)
 - Umfang und Qualität der Informationen für die Zuchtwertschätzung (je mehr desto höher)
 - Vorfahrenleistung, Eigenleistung, Leistungen von Geschwistern und Nachkommen, etc...

ETH zürich

Verteilung der wahren Zuchtwerte bei einem geschätzten Zuchtwert von +500 kg Milch bei versch. Sicherheiten

Je höher die Sicherheit, desto geringer das züchterische Risiko!

Zuchtwertschätzung beim Rind in der Schweiz

Zuchtwertschätzung beim Milchrind

 Qualitas AG führt die ZWS für die Rassen Braunvieh, Holstein, Simmental, Swiss Fleckvieh, Jersey, Eringer im Auftrag der Rinderzuchtorganisationen durch

Zuchtwertschätzung beim Milchrind

Nationale Zuchtwertschätzung

Internationale Zuchtwertschätzung

Warum internationale ZWS?

- Züchter wollen ausländische Stiere einsetzen und deren Zuchtwerte deshalb vergleichen.
- Aber: Modell, Basis, Streuung, Skala aus verschiedenen Ländern nicht vergleichbar!

CHE	ISEL	Milch	USA	TPI	Milch
Saphir	1456	+421	Freddie	2217	+1135
Colin	1362	+623	Levi	2207	+1006
Jerry	1330	+573	Man-O-Man	2206	+1277

Warum internationale ZWS?

- 60er und 70er-Jahre: Genetik aus Nordamerika nach Europa, die besten (und sanitarisch verfügbaren) Stiere wurden ausgewählt und eingesetzt, Original-ZW verwendet
- Angebot wurde grösser, Züchter wollen besseren Vergleich der Zuchtwerte:
 - Ist ZW 1000 kg aus Kanada vergleichbar mit 1000 kg USA, mit 1000 kg CH?
- 90er-Jahre: Genetik aus Europa nach Nordamerika, generell weltweiter Handel
- Stiere haben Töchter mit Leistungen in vielen Ländern → Verknüpfungen und Verwandtschaftsbeziehungen über Ländergrenzen hinweg

Internationale ZWS bei Interbull

Interbull = International bull evaluation service

- http://www.interbull.org
- Sitz in Uppsala (Schweden)
- Seit 1994 internationale ZWS für Milch
- Finanzierung durch Mitgliedsbeiträge in Abhängigkeit von Kuhzahl

Internationale ZWS bei Interbull

- Methode: MACE (Multiple Across Country Evaluation)
- Entwickelt in den 90er Jahren
- Mehrmerkmals-Modell: Merkmal Milch-kg ist unterschiedliches
 Merkmal pro Land (Milch-kg USA, Milch-kg CH, Milch-kg FRA, ...)
- Informationen aus allen Ländern verwendet (Stiere haben Töchter in USA, CAN, DEU, ITA, ...)
- Nationale Stier-Zuchtwerte werden kombiniert
- Jedes Land erhält Liste mit Stier-ZW auf der eigenen Länderskala
- Re-ranking der Stiere ist möglich:
 - Genotyp-Umwelt Interaktionen
 - Unterschiedliche Schätz-Modelle in Ländern
 - Unterschiedliche Merkmals-Definition in Ländern

MACE re-ranking

Nationale ZWS mit nationalen ZW

Schweiz

1. Palue
2. Toedi
3. Pizol

Deutschland/Österreich

1. Egon

2. Knut

3. Till

Interbull-ZWS

MACE

Interbull-ZWS

Schweiz

- 1. Palue
- 2. Toedi
- 3. Knut
- 4. Egon
- 5. Pizol
- 6. Till

Deutschland/Österreich

- 1. Egon
- 2. Toedi
- 3. Knut
- 4. Till
- 5. Palue
- 6. Pizol

C

Korrelationen zwischen Ländern Braunvieh Milch-kg

	CAN	FRA	USA	CHE	ITA	DEA	NLD	SVN	NZL
CAN									
FRA	0.89								
USA	0.93	0.89							
CHE	0.90	0.91	0.88						
ITA	0.91	0.87	0.88	0.88					
DEA	0.86	0.86	0.86	0.93	0.90				
NLD	0.91	0.89	0.89	0.89	0.87	0.87			
SVN	0.87	0.86	0.87	0.86	0.86	0.86	0.86		
NZL	0.76	0.76	0.76	0.77	0.76	0.77	0.76	0.78	
GBR	0.86	0.87	0.86	0.88	0.86	0.86	0.89	0.87	0.76

Tochter aus NZL ist weniger wert als Tochter in DEA

Qualitas AG

Korrelationen zwischen Ländern Holstein Milch-kg

	CAN	DEU	DFS	FRA	ITA	NLD	USA	CHE	GBR	NZL	AUS
CAN											
DEU	0.91										
DFS	0.94	0.93									
FRA	0.92	0.89	0.93								
ITA	0.91	0.88	0.90	0.89							
NLD	0.93	0.93	0.94	0.92	0.88						
USA	0.94	0.90	0.93	0.92	0.92	0.91					
CHE	0.92	0.90	0.93	0.96	0.89	0.94	0.90				
GBR	0.87	0.85	0.89	0.87	0.85	0.89	0.86	0.90			
NZL	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.76	0.75		
AUS	0.80	0.77	0.77	0.83	0.76	0.80	0.77	0.85	0.78	0.85	
IRL	0.85	0.82	0.85	0.91	0.80	0.87	0.82	0.88	0.82	0.85	0.86

22. Feb. 2016

Korrelationen zwischen Ländern Braunvieh Nutzungsdauer

	CAN	CHE	DEA	NLD	NZL	USA	ITA	FRA	GBR
CHE	0.78								
DEA	0.82	0.84							
NLD	0.74	0.71	0.67						
NZL	0.44	0.46	0.35	0.44					
USA	0.93	0.69	0.77	0.81	0.52				
ITA	0.79	0.63	8.0	0.57	0.29	0.69			
FRA	0.71	0.73	0.76	0.67	0.35	0.68	0.59		
GBR	0.81	0.58	0.44	0.69	0.52	0.81	0.60	0.55	
SVN	0.73	0.67	0.81	0.80	0.48	0.74	0.79	0.68	0.59

Internationale ZWS bei Interbull Rassen und Länder

Produktionsmerkmale (Anzahl Populationen)

■ HOL(32), RDC (14), JER (11), BSW (10), GUE (6), SIM(12)

Exterieur

■ HOL (25), RDC (9), JER (9), BSW (9), GUE (4)

Somatic Cell Score / Mastitis

■ HOL (30), RDC (13), JER (8), BSW (10), GUE (6), SIM (11)

Nutzungsdauer

■ HOL (21), RDC (10), JER (9), BSW (10), GUE (6), SIM (5)

Geburtsablauf

HOL (16), RDC (7), BSW (5)

Weibliche Fruchtbarkeit

■ HOL (20), RDC (11), JER (9), BSW (9), GUE (6)

Vorteile der Interbull - ZWS

- Leistungsinformationen werden besser genutzt
- ZW für ausländische Stiere ohne Leistung im eigenen Land
- Berücksichtigung aller Verwandtschaften
- Berücksichtigung durchschnittlicher Genotyp-Umwelt-Interaktion
- Verringerung des Risikos durch schwach getestete Stiere

Nachteile der Interbull - ZWS

- Zusätzlicher Arbeitsaufwand (Bereitstellung der nationalen Zuchtwerte und Aufbereitung der Interbull-Zuchtwerte)
- Kosten
- Nur für Stiere
- Informationsgewinn f
 ür manche Rasse gering (z.B. Fleckvieh DEA)
- Verwendung der Originalnummern oft problematisch → falsche Verknüpfungen

Zuchtwertschätzung beim Milchrind

Nationale Zuchtwertschätzung

Praktischer Ablauf ZWS Schweiz

- 3-mal jährlich werden Zuchtwerte neu geschätzt:
 - April, August und Dezember
- Veröffentlichung: am 1. oder 2. Dienstag des Monats (Interbull)
- Beginn der ZWS ca. 6 8 Wochen vor Publikation
- Selektion der Leistungs- und Abstammungsdaten aus den Datenbanken
- Formatierung, Aufbereitung und Überprüfung der Datensätze
- Durchführung der konventionellen ZWS (einige Tage für versch. Merkmale)
- Überprüfung der Ergebnisse (Korrelationen, Abweichungen)
- Genomische Zuchtwertschätzung sobald konv. ZW vorliegen
- Nationale Zuchtwerte werden ca. 14 Tage vor Publikation zu Interbull geschickt → Interbull-ZW retour Donnerstag vor Publikation
- Veröffentlichung auf Datenbank/Online-Herdebuch (BrunaNet, redonline+,...) und in Excel- Listen auf Webseiten der Zuchtverbände

Basis und Standardisierung

- Die Basis stellt in der ZWS den Bezugspunkt für die geschätzten Zuchtwerte dar
- Tiergruppe wird als Basis definiert (z.B. Kühe oder Stiere bestimmter Geburtsjahrgänge)
- Definition des Nullpunktes der Zuchtwerte → durchschnittlicher Zuchtwert der Basistiere = 0 oder 100 (oder 1000 bei Relativzuchtwerten)
- Basisdefinition hat keinen Einfluss auf die Rangierung und Unterschiede zwischen den Tieren

Qualitas AG

Die Basis: ein Referenzwert für die Zuchtwertschätzung

Fotoquelle: www.t-online.de

Die Basis

- Die Höhe eines Berges wird mit Metern über Meer (m ü. M.) dargestellt (Meer = 0 m)
- Der Uetliberg ist 869 m ü. M. hoch
- Felsenegg ist 800 m ü. M.
- Der Hönggerberg ist 541 m ü. M.

Die Basis

- Nun könnte man aber auch Felsenegg (800 m ü. M.) als Nullpunkt (Basis) definieren...
- Der Uetliberg wäre dann 69 m ü. Felsenegg.
- Andere Berge erhalten Negativwerte: Der Hönggerberg (541 m ü. M.) wäre dann -259 m unter Felsenegg.
- → Die Reihenfolge der Berge bliebe aber genau die gleiche...

Was ist die Basis der Zuchtwerte?

- Die Basis stellt den Bezugspunkt für geschätzten Zuchtwerte dar und wird einmal im Jahr "nachgerückt" (gleitende Basis)
- Zuchtwerte von älteren Tiere werden kontinuierlich "abgeschrieben", da die "Latte" von Jahr zu Jahr höher gelegt wird (bei Zuchtfortschritt)

Standardisierung

- Zur richtigen Einschätzung von Einzeltieren in der Population ist die Berücksichtigung der Streuung (Standardabweichung) der Zuchtwerte erforderlich.
- Relativzuchtwerte werden auf ein Mittel von 100 (bzw. 1000) mit einer wahren genetischen Standardabweichung von 12 (bzw. 120) Punkten eingestellt.
- Zuchtwerte über 100 (bzw. 1000) züchterisch wünschenswert (Ausnahme Exterieur)

Angewandte Zuchtwertschätzung