First Hit Previous Doc Next Doc Go to Doc#

End of Result Set

11

43

Generate Collection

Print

L8: Entry 1 of 1

File: JPAB

Jan 16, 2001

PUB-NO: JP02001011327A

DOCUMENT-IDENTIFIER: <u>JP 2001011327 A</u> TITLE: BIODEGRADABLE RESIN COMPOSITION

PUBN-DATE: January 16, 2001

INVENTOR-INFORMATION:

NAME

TANAKA, SUMINORI MIYAHARA, YASUSHI KURAMOTO, YOSHIHIRO TANAKA, KAZUSAKU

ASSIGNEE-INFORMATION:

NAME

OKURA IND CO LTD

APPL-NO: JP11187193 APPL-DATE: July 1, 1999

INT-CL (IPC): C08L 101/16; C08L 67/02

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain the subject composition rapidly degradable in soil or water, simply obtainable at a low cost and capable of further exhibiting good moldability, strength, etc., by mixing a biodegradable resin with a barley cleaning refuse in a specific proportion.

SOLUTION: This composition is obtained by mixing (A) 50-99 wt.% of a biodegradable resin with (B) 50-1 wt.% of a barley cleaning refuse. The component A is preferably an aliphatic polyester and the component B is preferably the barley cleaning refuse of mainly a mesothelial part. The objective composition is obtained by adding 10 wt.% of the barley cleaning refuse in the mesotheial part of the barley as the component B to 90 wt.% of, e.g. a polyester resin prepared from succinic acid, adipic acid and 1,4-butandiol and converted into a high molecular weight with a polyisocyanate as the component A and kneading the resultant mixture. The composition can further be molded into a film having 300 µm thickness by, e.g. a T-die extrusion molding method. Thereby, a higher degradation rate than that when directly using the biodegradable resin can be expected.

COPYRIGHT: (C) 2001, JPO

Previous Doc Next Doc Go to Doc#

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-11327 (P2001-11327A)

(43)公開日 平成13年1月16日(2001.1.16)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

C 0 8 L 101/16

67/02

C08L 101/00

A 4J002

67/02

(C 0 8 L 101/16 97:02)

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出顯番号

特願平11-187193

(71)出願人 000206473

大倉工業株式会社

(22)出顧日

平成11年7月1日(1999.7.1)

香川県丸亀市中津町1515番地

(72)発明者 田中 住典

香川県丸亀市中津町1515番地 大倉工業株

式会社内

(72)発明者 宮原 康史

香川県丸亀市中津町1515番地 大倉工業株

式会社内

(72)発明者 倉本 由浩

香川県丸亀市中津町1515番地 大倉工業株

式会社内

最終頁に続く

(54) 【発明の名称】 生分解性樹脂組成物

(57)【要約】

【課題】 土中、あるいは水中に埋設した際に、速やかに分解する組成物で、安価で、簡単に得ることができ、更に成形性や強度等の良好な生分解性樹脂組成物を提供すること。

【解決手段】 混合する際に乾燥処理や粉砕処理を行う 必要のない精麦粕を生分解性樹脂と混合する。 1

【特許請求の範囲】

【請求項1】 生分解性樹脂50~99重量%に、精要 粕を50~1重量%混合したことを特徴とする生分解性 樹脂組成物。

【請求項2】 前記精麦粕が、主に中皮部分の精麦粕で あることを特徴とする請求項1記載の生分解性樹脂組成

【請求項3】 前記生分解性樹脂が、脂肪族ポリエステ ルであることを特徴とする請求項1乃至2のいずれかに 記載の生分解性樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、生分解性樹脂組成 物に関する。詳しくは、麦を精麦する際に発生する精麦 粕を利用した生分解性樹脂組成物に関する。

[0002]

【従来の技術】これまでに生産されてきた合成樹脂は、 安価に大量生産が可能であり、極めて有用な材料であっ た。しかしこれら合成樹脂は、天然高分子とは異なり、 生分解性を有していないため、その廃棄物処理において 20 深刻な問題をひき起こしている。そこで近年、土中また は水中の微生物によって分解され得る生分解性樹脂が開 発され、市販されているが、これらの生分解性樹脂は合 成樹脂と比較すると高価で、各種成形品の材料としては 用い難いのが現状である。またこれらの生分解性樹脂 は、土中や水中においては分解はされるのではあるが、 分解速度は遅いものが多く、様々な添加剤を混合して分 解速度を速めることが検討されている。

【0003】上述した生分解性樹脂の持つ問題のうち、 価格的な問題を解決するために、特開平09-1110 30 03号公報に於いては、有機性廃材の粉砕物である有機 性粉体と生分解性樹脂を均一に混合して成形することが 提案されており、該有機性粉体として、おから、生ゴミ 類、コーヒー粕、茶類の粕、麦芽粕等が例示されてい る。しかしながらこれらの有機性廃材は、廃材自身の価 格は安価であっても、生分解性樹脂と均一に混合するた めには、乾燥や粉砕等の処理を行わなければならず、非 常に使い辛いものであった。

【0004】また、特開平09-111003号公報で 提案された樹脂組成物のように、生分解性樹脂に有機性 40 粉体を混合した組成物は、有機性粉体の形状や種類にも よるが、土中に埋設した際に、生分解性樹脂単独よりも 速く分解するものが多い。しかしながら該組成物は、生 分解性樹脂を単独で用いた場合よりも、成形性が悪いも のが多く、所望の形状に成形できないことがあった。ま た、仮に所望の形状に成形できたとしても、得られる成 形品の強度は、生分解性樹脂を単独で用いた場合よりも 大きく低下していた。

[0005]

する課題は、土中、あるいは水中においては、速やかに 分解する組成物で、安価で、簡単に得ることができ、更 に成形性や強度等の良好な生分解性樹脂組成物を提供す ることである。

[0006]

【課題を解決するための手段】本発明によると、上記課 題を解決するための手段として、生分解性樹脂50~9 9重量%に、精安粕を50~1重量%混合したことを特 徴とする生分解性樹脂組成物が提供され、更に、前記精 **麦粕が、主に中皮部分の精麦粕であることを特徴とする** 前記生分解性樹脂組成物が提供され、更にまた、前記生 分解性樹脂が、脂肪族ポリエステルであることを特徴と する前記生分解性樹脂組成物が提供される。

【0007】本発明者等は、微生物によって分解される 樹脂組成物を安価に得るために、生分解性樹脂に有機性 廃材を混合するのであるが、混合する際に乾燥処理や粉 砕処理を行う必要のない有機性廃材を鋭意検討した結 果、精麦粕が特に適していることを見出した。精麦時に 麦粒から削り取られる精麦粕は、非常に細かな形状をし ており、また、含水率も低く抑えられているので、乾燥 処理や粉砕処理等を行わなくても生分解性樹脂と混合す ることが可能なのである。特に、麦の皮の中でも中皮の 部分は、たんぱく質と糖質が多く含まれており、生分解 性樹脂の分解速度を上げるのに有効であり、更に繊維分 が少なく精麦時に十分に小さな形状に粉砕されているの で、生分解性樹脂の持つ成形性、強度等をほとんど低下 させない。

[0008]

【発明の実施の形態】以下、本発明の実施の形態につい て説明する。本発明の生分解性樹脂組成物は、生分解性 樹脂と精麦粕からなる。生分解性樹脂としては、近年様 qな樹脂が開発されており、例えば、ポリー ϵ -カプロ ラクトン (PCL) や3-ヒドロキシブチレート/3-ヒドロキシバリレート共重合体(PHB/PHV)、ポ リ乳酸(PLA)、コハク酸と1、4-ブタンジオール から得られるポリエステル樹脂をポリイソシアネートに より高分子量化したもの(PBS)、コハク酸とアジピ ン酸と1.4-ブタンジオールから得られるポリエステ ル樹脂をポリイソシアネートを用いて高分子量化したも の (PBSA) 等の脂肪族ポリエステル、変性澱粉、あ るいはポリマー分子鎖にカルボニル基を導入した光分解 性プラスチック等が報告されているが、完全生分解性で あることが確認されている脂肪族ポリエステルを用いる ことが好ましい。尚、これらの生分解性樹脂は一種類の みを単独で用いても良く、複数種をブレンドして用いて も良い。

【0009】また、得られる組成物の成形性、成形後の 強度等を考慮すると、上述した脂肪族ポリエステル樹脂 の中でも、コハク酸と1,4-ブタンジオールから得ら 【発明が解決しようとする課題】本発明が解決しようと 50 れるポリエステル樹脂をポリイソシアネートにより高分

子量化したもの(PBS)、あるいはコハク酸とアジピ ン酸と1,4-ブタンジオールから得られるポリエステ ル樹脂をポリイソシアネートにより高分子量化したもの (PBSA)を用いることが特に好ましい。尚、これら 脂肪族ポリエステル樹脂はメルトインデックスが、それ ぞれ用途に応じて0.5~30.0g/10minのも のが好ましく、このうちフィルム・シートの用途には 0.5~5.0g/10minのものが、成形や真空成 形性の点で好ましく、射出成形品の用途には、5~30 g/10minのものが成形性の点で好ましい。

【0010】次に精麦粕であるが、図1に麦粒の一部切 り欠き断面図を記す。 麦粒は外側に皮2があり、その内 側に胚乳3と胚芽4がある。通常、麦は砥石のようなも ので皮2の部分が削り取られ、精麦される。このとき削 り取られた粕が、本発明で用いられる精麦粕である。該 精安粕は、精安の方法にもよるが、平均粒径が90~4 00μm程度、含水率が10%以下で、乾燥や粉砕等の 処理を別途施さなくても生分解性樹脂と混合することが できる。但し、得られる組成物を用いて非常に薄いフィ ルムを成形する場合や、生分解性樹脂が非常に加水分解*20

*を起こしやすい樹脂である場合などは、粉砕処理、乾燥 処理等を行っても良い。また、生分解性樹脂に精麦粕を 大量に添加する場合、精安粕をエステル化、あるいはエ ーテル化して用いても良い。

【0011】精安時に削り取られる皮2のうち、最も外 側の部分が「果皮」である。果皮は全粒中の約4%を占 め、繊維が特に多い。その内側は「種皮」と「珠心層」 で、合わせて小麦粒中の約2~3%である。繊維分は 「果皮」と比較するとかなり少なく、たんぱく質や灰分 10 が多い。珠心層の内側はアリューロン層(澱粉層)であ り、たんぱく質、糖質、灰分が多く含まれる特異な層 で、小麦粒中の約6~7%を占める。そうして、「種 皮」「珠心層」、「アリューロン層」の部分を合わせ て、本明細書に於いては「中皮」と称する。表1に、小 **麦の各部の平均的な組成と粒径を記す。尚、本発明に於** いて「麦」とは、特定の種類を指すのではなく、小麦、 大麦、裸麦、ライ麦、エン麦等の総称として用いてい る。

[0012] 【表1】

		蛋白質(重量%)	油脂(重量%)	炭水化物(重量%)		灰分 (重量%)	全体に占める 割合	平均粒径 (μm)
				糖質	繊維		(重量%)	
外皮	果皮	7. 5	0	34. 5	38. O	15	4	523
中皮	種皮(珠心層を含む)	16. 5	0	50. 5	11. 0	15	2~3	94
	アリューロン層	24. 5	8.0	38. 5	3, 5	15	6~7	Ì

【0013】表1からも明らかなように、精麦粕のうち 果皮部分の粕は粒径が比較的大きいのに対し、中皮部分 の粕は粒径が小さい。これは、果皮は繊維分が多く粉砕 されにくいが、中皮は繊維分をほとんど含まず粉砕され 30 易いためと考えられる。そうして、中皮部分の粕は粒径 が非常に小さいため、生分解性樹脂と均一に混合しやす く、また生分解性樹脂と混合しても樹脂の持つ成形性や 強度をほとんど低下させない。また中皮部分は果皮に比 べて、たんぱく質や糖分が多く含まれているため、分解・ 促進の向上に有効である。

【0014】尚、精麦粕の中から中皮部分の精麦粕のみ を選択して使用する方法は特に限定されず、例えば精麦 後に精麦粕を粒径等で選別して使用すると良い。また、 精麦時に精麦段階で選別しても良く、例えば精麦初期の 40 精麦粕を除き、次の段階の精麦粕を利用することによっ ても、中皮部分の精麦粕を選択的に利用することができ る。この場合、中皮部分の精麦粕に果皮部分の精麦粕や 胚乳や胚芽の一部が多少混入するが、性能面では特に問 題はない。

【0015】また、生分解性樹脂と精麦粕の混合割合は 特に限定されないが、得られる組成物のコストを考える と、麦の精安粕を大量に混入した方が好ましい。しかし ながら、大量に混入しすぎると成形品の強度が弱くな る。これらのことを考慮すると生分解性樹脂50~99※50 【0018】

※重量%に対して、麦の精麦粕を1~50重量%程度混合 することが好ましい。

【0016】生分解性樹脂と精麦粕を混合する方法は特 に限定されないが、例えば、一軸押出機、二軸押出機、 バンバリーミキサー、混練ロール、ブラベンダープラス トグラフ、ニーダー等の混練装置を単独で、もしくは適 宜組み合わせて使用し、生分解性樹脂に精麦粕を混合 し、生分解性樹脂の溶融温度において混練するとよい。 また本発明で用いられる精麦粕は、生分解性樹脂と混練 される際に分散性が向上するように、表面処理が施され ても良い。しかしながら、表面処理しなくても分散性に 特に問題はなく、表面処理を施さない方が分解速度は向 上する。

【0017】さらに、本発明の樹脂組成物は必要に応じ て、各種着色剤、添加剤、植物繊維等を含有しても良 い。また、本発明による樹脂組成物を用いて各種物品を 成形する場合、その成形方法は特に限定されず、押出成 形法、射出成形法、ブロー成形法等、公知の成形方法を 用いることができる。更にまた、本発明の樹脂組成物を 用いてどのような物品を成形するかも特に限定されず、 例えばフィルム、シートをはじめ、トレイや育苗ポット 等の各種成形品等、従来合成樹脂を用いて成形していた 物品と同様の物品を成形することができる。

5

【実施例】以下、実施例に基づいて本発明を更に詳細に 説明する。尚、得られた成形品の性能については以下の 要領で測定した。[分解速度試験]得られたフィルムを 市販の腐棄土に埋設し、室温23℃、温度50%の条件 下におき、一定期間経過後に重量変化率(%)を測定し た。

【0019】実施例1

生分解性樹脂としてコハク酸とアジピン酸、及び1,4 - ブタンジオールから得られるポリエステル樹脂をポリ イソシアネートにより高分子量化したもの(PBSA) 10 【0021】 を用い、該生分解性樹脂90重量%に大麦の中皮部分の*

* 精雯粕を10重量%添加し、混練して得られる樹脂組成 物をTダイ押出成形法にて、厚さ300μmのフィルム に成形した。得られたフィルムを用いて分解速度試験を 行った。結果を表3に示す。

【0020】実施例2、比較例1、2

実施例1と同様にして、フィルムを成形した。添加剤の 種類、添加量に関しては表2に示す。また、得られたフ ィルムを用いて分解速度試験を行った。結果を表3に示

【表2】

	組成	フィルム厚み (μm)	
実施例1	脂肪族ポリエステル 90重量% 中皮の精変粕 10重量%	300 µ m	
実施例2	脂肪族ポリエステル 95賞量% 中皮の精麦粕 5重量%	300 µ m	
比較例1	脂肪族ポリエステル 95重量% ヤシ酸 5重量%	300 µ m	
比較例2	脂肪族ポリエステル 100重量%	300 µ m	

[0022]

【表3】

	重量変化率(%)						
	開始時	1週間後	2週間後	5週間後			
実施例1	100	91. 2	74. 6	41. 7			
実施例2	100	94. 6	81. 8	61. 0			
比較例1	100	96. 6	86. 1	70. 4			
比較例2	100	97. 2	91. 3	96. 4			

【0023】実施例1、2に於いては、精麦粕を特に処 理することなく生分解性樹脂と混合したが、得られたフ ィルムは、外観、強度、共に、生分解性樹脂のみからな る比較例2のフィルムと同等であった。一方、比較例1 30 のヤシ殼は、そのままでは分散が悪かったのでステアリ ン酸処理を行って生分解性樹脂と混合した。また、実施 例1、2のフィルムは分解速度がいずれも速く、ヤシ殼 を添加した比較例1のフィルムや、有機性粉体を全く添 加していない比較例2のフィルムより重量の減少が大き かった。

[0024]

【発明の効果】本発明の生分解性樹脂組成物は、生分解 性樹脂に有機性廃材である精麦粕が混合されており、生 分解性樹脂を単独で用いるよりも、原料コストを低く抑 40 4 えることができる。また、精麦粕は粒径が小さく、含水 率も低いので、別途粉砕処理や乾燥処理等を施す必要が※

※無く、生分解性樹脂にそのまま混合することができる。

20 また、本発明の生分解性樹脂組成物は、精麦粕の影響で 生分解性樹脂をそのまま用いるよりも、分解速度がかな り速くなる。

【0025】更に、精安粕の中でも主として中皮の部分 を削って得られる精麦粕を用いると、分解促進が更に速 くなる他、従来廃棄処理されていた資源の有効利用に繋 がるだけでなく、中皮部分の精麦粕は極めて粒径が小さ いので、非常に簡単に生分解性樹脂と均一に混合するこ とができ、生分解性樹脂の持つ成形性、強度等をほとん ど低下させない。更にまた、生分解性樹脂としてコハク 酸やアジピン酸と1、4-ブタンジオールから得られる ポリエステルを、ポリイソシアネートにより高分子量化 したものを用いると、樹脂組成物の成形性が向上し、得 られる成形品の強度も良好である。

【図面の簡単な説明】

【図1】 麦粒の一部切り欠き断面図である。

【符号の説明】

1 麦粒 2 皮 3 胚乳 胚芽 頂毛 【図1】

フロントページの続き

(72)発明者 田中 一作 香川県丸亀市中津町1515番地 大倉工業株 式会社内 Fターム(参考) 4J002 AB041 AB042 CF031 CF181 CF191 CK021