Side channel attack against the Mbed TLS implementation of the RSA algorithm.

Presentació

Victor Micó Biosca

Escola Politècnica Superior Universitat de Girona

22 de Juny de 2023

Taula de Continguts

- Introducció i objectius del projecte
- Desenvolupament del projecte
- Conclusions
- Demostració

Breu història de la criptografia

- 4000 AC Jeroglífics a Egipte
- 50 AC Xifra de Cèsar
- 1553 Xifra de Vigenère
- 1941 Alan Turing Desxifra la màquina enigma
- 1976 Es publica el algoritme de xifra simètric DES
- 1976 Diffie i Hellman introdueixen l'Intercanvi de claus publica i privada
- 1978 Publicació del sistema de xifrat de clau publica RSA (Rivest, Shamir i Adleman)

RSA - Primitives criptogràfiques

- **Xifrat**: $c = m^e \mod n$ on m és el missatge, e és la clau pública i c és el text xifrat (*ciphertext*).
- **Desxifrat**: $m = c^d \mod n$ on c és el text xifrat, d és la clau privada i m és el missatge.
- Firma: En el procés de signatura, l'autor del missatge utilitza la seva clau privada per generar una firma $s=m^d\mod n$.
- Verificació de la firma: La firma s d'un missatge m es verifica computant $m' = s^e \mod n$. Si m = m', llavors la firma és valida.

RSA - Procés de generació de la clau RSA

- **I** Es generen dos nombres primers, *p* i *q* grans, distints i amb una longitud en bits similar.
- 2 Es calcula el mòdul $n = p \cdot q$
- **3** Es calcula el totient de n, i.e. $\varphi(n) = (p-1) \cdot (q-1)$
- 4 Es tria un nombre enter positiu que sigui coprimer amb $\varphi(n)$ i que compleixi $1 < e < \varphi(n)$. El parell (n, e) serà la clau pública.
- **5** Es calcula l'exponent privat d realitzant una operació d'aritmètica modular anomenada inversa multiplicativa. Ha de satisfer que $d \cdot e \equiv 1 \mod \varphi(n)$. L'exponent d serà la clau privada.

Dispositius criptogràfics

Els dispositius criptogràfics són capaços de rebre un missatge a través d'una interfície, xifrar el contingut del missatge i transmetre el missatge xifrat. Generalment, també són capaços de fer l'operació a la inversa: rebre un missatge xifrat, desxifrar-lo i transmetre el missatge en text pla.

Atacs a dispositius criptogràfics

■ Atacs actius: Un atac actiu consisteix a manipular els *inputs* o l'entorn del dispositiu amb l'objectiu que funcioni de forma errònia o diferent de les condicions normals. Amb la injecció de faltes (fault injection) és possible fer passar un PIN dolent per bo o extreure claus criptogràfiques, entre d'altres.

Desenvolupament del projecte

■ Atacs passius: En un atac passiu, l'atacant extreu informació del dispositiu a través de canals laterals (side-channel) mentre que el dispositiu funciona en condicions normals. Aquests canals laterals poden ser el consum elèctric, la radiació electromagnètica o, fins i tot, el so o la temperatura.

L'exponenciació modular és la operació més important del RSA. L'algoritme més bàsic per a computar m^e consisteix a multiplicar m per si mateix e vegades, i.e. $m \cdot m \cdot \ldots \cdot m$. Per a una clau de 1024 bits això suposaria:

$$2^{1024} > 2^{300}$$

Nombre d'operacions > Nombre estimat d'àtoms a l'univers.

Algorithm Left-to-right binary exponentiation

Require: *m* as message

Require: $(e = (e_t e_{t-1} \dots e_1 e_0)_2)$ for $e_i \in (0,1)$

Ensure: me

1: *A* ← 1

2: **for** $i \leftarrow t$ to 0 **do**

3: $A \leftarrow A \cdot A \{ Square \}$

4: **if** $e_i = 1$ **then**

5: $A \leftarrow A \cdot m$ {Multiply}

6: **return** *A*

SPA: Simple Power analysis

Figure: Traça de potència de RSA

Algorithm Left-to-right multiply always binary exponentiation

```
Require: m as message

Require: (e = (e_t e_{t-1} \dots e_1 e_0)_2) for e_i \in (0,1)

Ensure: m^e

1: A \leftarrow 1

2: for i \leftarrow t to 0 do

3: A \leftarrow A \cdot A {Square}

4: if e_i = 1 then

5: A \leftarrow A \cdot m {Multiply}

6: else

7: T \leftarrow A \cdot m {Multiply and discard}

8: return A
```

Algorithm Left-to-right k-ary exponentiation

```
Require: m as message
```

Require: $(e = (e_t e_{t-1} ... e_1 e_0)_b)$ for e_i where $b = 2^k$ for some k > 1

Ensure: me

1: $m_0 \leftarrow 1$

2: **for** $i \leftarrow 1$ to $(2^k - 1)$ **do**

3: $m_i \leftarrow m_{i-1} \cdot m \{ \text{Thus } m_i = m^i \}$

4: $A \leftarrow 1$

5: **for** $i \leftarrow t$ to 0 **do**

6: $A \leftarrow A^{2^k} \{ k \text{ Squares} \}$

7: $A \leftarrow A \cdot m_{e_i}$ {Multiply}

8: return A

Algorithm Sliding-window exponentiation

```
Require: m as message
Require: (e = (e_t e_{t-1} ... e_1 e_0)_2) with e_t = 1 and integer k \ge 1
Ensure: me
 1: m<sub>1</sub> ← m
 2: m_2 \leftarrow m^2
 3: for i \leftarrow 1 to (2^{k-1} - 1) do
 4: m_{2i+1} \leftarrow m_{2i-1} \cdot m_2
 5. A ← 1
 6 \cdot i \leftarrow t
 7: while i > 0 do
       if e_i = 0 then
 9: A \leftarrow A \cdot A \{ Square \}
10: i \leftarrow i - 1
11.
        else {Find the longest bitstring e_i e_{i-1} \dots e_l such that i-l+1 \ge k }
        A \leftarrow A^{i-l+1} \{ k \text{ Squares} \}
12.
        A \leftarrow A \cdot m_{(e_i e_{i-1} \dots e_l)2} \{ Multiply \}
13.
        i \leftarrow l - 1
14:
```

15: return A

Atacs de canal lateral

CPA: Correlation Power Analysis

Figure: Resultat de CPA per a diferents hipòtesis de valor intermedi

Contramesures contra Side-channel aplicades a RSA

Ofuscació de l'exponent

Els atacs de CPA ataquen l'exponent, que és fix en múltiples traces. Per a evitar-ho, és possible ofuscar l'exponent en cada nova execució afegint-hi una màscara additiva. L'exponent secret és aleatoritzat utilitzant la següent equació:

$$d' \leftarrow d + r \cdot \phi(n)$$

On r és un nombre aleatori i $\phi(n)$ és el totient d'Euler aplicat al mòdul n. Utilitzant l'exponent ofuscat s'obté el mateix missatge xifrat, i.e. $m^d \equiv m^{d'}$.

Contramesures contra Side-channel aplicades a RSA

Ofuscació del missatge

Els atacs de CPA també aprofiten que es pot controlar el missatge o bé que el missatge és conegut. Per tal que això no passi, podem ofuscar el missatge abans de la xifra. Per fer-ho, es genera un nombre aleatori r i amb aquest es calculen r_1 i r_2 encarregats de fer impredictible el missatge d'entrada i de corregir el resultat final respectivament:

$$r_1 = r^e \mod n$$

 $r_2 = r^{-1} \mod n$

Llavors durant l'operació d'RSA.

$$x' = x \cdot m_1$$

$$y' = x'^d \mod n$$

$$y = y' \cdot m_2 \iff \mathbb{R} \implies \mathbb{R$$

Atacs verticals vs atacs horitzontals

Atacs Verticals

- SPA
- CPA
- Template attacks
- DL-Based attacks

Atacs Horitzontals

- Big Mac attack
- Horizontal Correlation Analysis
- Cross-correlation
- Clustering Analysis

Figure: Atacs verticals i horitzontals.

Set up

Figure: Set up

Costos associats al projecte

Concepte	Quantitat	Valor Unitari	Cost
Hores científic de dades	200	50 €/hora	10000 €
Cost d'amortització de l'ordinador	200	0.11 €/hora	22 €
CW308 Target base board i targets	1	306 €	306 €
CW Husky	1	550 €	550 €
Altres materials i recursos	1	100 €	100 €
Total			10978 €

Table: Costos associats al projecte

Mètode proposat per a l'anàlisi

- 1 Analitzar les diferents llibreries públiques d'RSA i seleccionar-ne una que utilitzi un algoritme d'exponenciació de finestra per a realitzar l'atac
- Capturar una traça
- 3 Realitzar una anàlisi visual de la traça de potència, identificar les regions de l'RSA i les operacions modulars
- 4 Desenvolupar un mètode per a distingir quadrats de multiplicacions
- Desenvolupar un mètode per a distingir els diferents valors precalculats
- **6** En cas d'obtenir resultats satisfactoris, informar als desenvolupadors de la llibreria de la vulnerabilitat.

Figure: Traça RSA completa

Figure: Precomputacions i inici de l'exponenciació

Figure: Pics diferents entre les operacions modulars

Algorithm Lowpass filter

```
Require: t as Trace to filter
Require: weight as Weight of the lowpass filter
Ensure: result Trace filtered
weight_1 \leftarrow weight + 1
N \leftarrow length(trace)
for i \leftarrow 1 toN do
result[i] \leftarrow (result[i] + weight * result[i - 1])/weight_1
i \leftarrow N - 2
while i \geq 0 do
result[i] \leftarrow (result[i] + weight * result[i + 1])/weight_1
return result
```


Figure: Traça filtrada amb lowpass

Correspondència de patrons

Algorithm Pattern match

Require: *t* as trace

Require: ref as Reference pattern

Ensure: scores

```
N \leftarrow length(trace)
n \leftarrow length(ref)
```

for $i \leftarrow 1 to N$ do

 $score[i] \leftarrow corr(ref, trace(i, i + n))$

return score

Figure: Patró inci de finestra

Figure: Resultat de la correspondència de patrons

Figure: Identificació d'operacions modulars

Bits obtinguts de la primera exponenciació

Bits obtinguts de la segona exponenciació

Correspondència de patrons: Identificació de bits dins d'una finestra

Figure: Patrons corresponents a la càrrega d'un zero i d'un u

Correspondència de patrons: Identificació de bits dins d'una finestra

Figure: Dalt: Segment de traça corresponent a la càrrega dels bits d'una finestra Baix: Resultat de la correspondència de patrons per als bits zero i u.

Figure: Identificació de càrrega individual de cada bit de la finestra

Bits obtinguts de la primera exponenciació

Bits obtinguts de la segona exponenciació

Resum de resultats

	1ª exponenciació	2ª exponenciació
Distingir quadrats de multiplicacions	33, 98%	30,91%
Distingir bits de cada finestra	99,80%	100%

Table: Resum de resultats

Conclusions

Els atacs de canal lateral son factibles, es poden realitzar amb un pressupost ajustat i amb mètodes relativament senzills de processat de senyal

Com a treball futur es proposa:

- Actualitzar el codi de la llibreria Mbed TLS a l'última versió per comprovar si és possible explotar aquesta vulnerabilitat.
- **2** Provar altres dispositius *target* alternatius a l'STM32F3.
- 3 Utilitzar altres tècniques per extreure els valors de l'exponent, com algoritmes de *clustering*.

MOLTES GRÀCIES!

