Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

Институт микроприборов и систем управления

Моделирова	ние интегрального т	ензомоста	
(назван	ие лабораторной рабо	ты)	
Преобразователи инф		изических величин	:
(н	азвание дисциплины)		
	Выполі	нили стуленть	ı группы <u>ИВТ-32</u>
		<i>3</i> **	17
			Голев Андрей Дмитриеви
		(подпись)	(Ф.И.О.)
		Жиг	алов Даниил Владиславови
		(подпись)	(Ф.И.О.)
			Лазарева Мария Викторовн
		(подпись)	(Ф.И.О.)
		Пров	верил преподавател
		Стра	чилов Максим Васильеви
	·	(подпись)	(Ф.И.О.)

I. Теория

Для измерения каких-либо величин можно использовать схему полного моста:

Рисунок 1. Схема полного моста

Пусть температура действует синфазно на резисторы моста:

$$R_1 = R_0(1 + \varepsilon_x + \varepsilon_T);$$
 $R_2 = R_0(1 - \varepsilon_x + \varepsilon_T);$ $R_3 = R_0(1 - \varepsilon_x + \varepsilon_T);$ $R_4 = R_0(1 + \varepsilon_x + \varepsilon_T);$ где

- $\varepsilon_T = \Delta T/T_0$
- $\varepsilon_T = \gamma \cdot \Delta T$
- $\gamma = \frac{\Delta R}{\Delta T \cdot R_0}$ температурный коэффициент сопротивления (ТКС) величина, показывающая относительное изменение сопротивления при нагреве или охлаждении материала на 1°.

Найдём выходное напряжение:

$$\begin{split} \varphi_A &= E \frac{R_2}{R_1 + R_2} = E \frac{R_0(1 - \varepsilon_x + \varepsilon_T)}{R_0(1 + \varepsilon_x + \varepsilon_T) + R_0(1 - \varepsilon_x + \varepsilon_T)} = E \frac{1 - \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T} \\ \varphi_B &= E \frac{R_4}{R_3 + R_4} = E \frac{R_0(1 + \varepsilon_x + \varepsilon_T)}{R_0(1 - \varepsilon_x + \varepsilon_T) + R_0(1 + \varepsilon_x + \varepsilon_T)} = E \frac{1 + \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T} \\ U_{\text{вых}} &= E \frac{1 - \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T} - E \frac{1 + \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T} = E \frac{-2 \cdot \varepsilon_x}{2 + 2 \cdot \varepsilon_T} = -E \cdot \varepsilon_x \frac{1}{1 + \varepsilon_T} \\ \text{Определим температурный коэффициент чувствительности:} \\ \frac{\partial U_{\text{вых}}}{\partial \varepsilon_x} &= -E \frac{1}{1 + \gamma \cdot \Delta T} \end{split}$$

$$\frac{\partial U_{\text{вых}}}{\partial \varepsilon_{\chi}} = -E \frac{1}{1 + \gamma \cdot \Delta T}$$

На крутизну передаточной характеристики (зависимость выходного напряжения от входного воздействия в виде давления, силы и так далее) влияет такой дестабилизирующий фактор, как изменение температуры (каждый материал по-своему отвечает на это, что и определяет коэффициент γ).

Расчёт параметров принципиальной схемы модели II.

Таблица 1. Исходные данные для моделирования

	Tuoningi 1. Henomice dannie dan moderapo								
Ba $\gamma(\%C^{-1})$		$\alpha(\%C^{-1})$	$\pm \Delta T$ (°C)	$\mathbf{R_0}$ (кОм)	$\pm x_{max}$ (%)	кОм	E (B)	R_k	
риант					$g(\overline{B})$				
6	0,	-	±4	1,	0,32	0	9	1,	
	21	0,92	5	0		,82		1	

Таблица 2. Что-то

a_1 a_2		a_3	a_4	a_5
1	1	1	1	0,25

1. Устанавливаем номинальные сопротивления плеч моста R_0 :

$$U_0 = -\frac{R_0}{g \cdot a_1} = -\frac{10^3}{0.82 \cdot 10^3 \cdot 1} \approx -1.22 \text{ B}$$

2. Вычисляем амплитуду входного воздействия $U_{\rm d}$ по рассчитанному U_0 и выбранным значениям a_1 и a_2 :

$$U_{\rm A} = \pm x_{max} \cdot U_0 \cdot \frac{a_2}{a_1} = \mp 0.32 \cdot 10^{-2} \cdot 1.22 \cdot \frac{1}{1} = \mp 3.9 \text{ MB}$$

3. Вычисляем синфазную (температурную) составляющую в сигнале управления:

$$E_c = \frac{\gamma \cdot R_0 \cdot \Delta T}{a_4 \cdot a} = \frac{0.21 \cdot 10^{-2} \cdot 10^3 \cdot (\pm 45)}{1 \cdot 0.82 \cdot 10^3} = \pm 0.115 \text{ B}$$

4. Вычисляем номинальное сопротивление терморезистора при заданном α :

$$R_{T_0} = -rac{\gamma \cdot R_0}{lpha} = -rac{0.21 \cdot 10^{-2} \cdot 10^3}{-0.92 \cdot 10^{-2}} pprox 228 \ \mathrm{Om}$$

5. Устанавливаем номинальное сопротивление терморезистора R_{T_0} :

$$U_{\text{\tiny CM}} = \frac{R_{T_0}}{g \cdot a_5} = \frac{228}{0.82 \cdot 10^3 \cdot 0.25} \approx 1.11 \text{ B}$$

Таблица 3. Расчётные параметры модели

U_0 , B	$U_{\mathrm{A}}(x)$, мВ	$U_{\rm cm}$, B	E_c , B
-1,22	∓3,9	1,11	±0,115

III. Корректировка параметров базовой схемы тензомоста

Рисунок 2. Схема моделирования тензомоста с изменёнными параметрами

Рисунок 2. Что-то

IV. Моделирование тензомоста при разных температурных условиях

1. При 0 мВ:

Pисунок 3. Mоделирование nри 0 мB u c компенсацией $R_{\rm K}=$ 1,1 κ 0 ${\rm M}$

Pисунок 5. Моделирование при 0 мB и c компенсацией $R_{T_0}=228~\mathrm{Om}$

2. При -115 мВ:

Рисунок 6. Моделирование при -115 мВ и без компенсации

© Oscilloscope-XSC1

Рисунок 7. $\overline{\text{Моделирование при -115 мВ и с компенсацией } R_{\rm K} = 1,1 \ {\rm кОм}}$

Рисунок 8. Моделирование при -115 мВ и с компенсацией $R_{\rm K} = 2,2$ к0м $^{\circ}$ Овсіїюсюре-XSCI

Pисунок 9. Mоделирование при -115 мВ и с компенсацией $R_{T_0}=228~{\rm Om}$

3. При 115 мВ:

Рисунок 11. Моделирование при 115 мВ и с компенсацией $R_{\rm K}=$ 1,1 кОм

Рисунок 13. Моделирование при 115 мВ и с компенсацией $R_{T_0}=228~{\rm Om}$

Таблица 4. Результаты моделирования тензомоста

ант	Вари	Результаты моделирования						Оценка результатов моделирования				
6		T_0 , =0 MB)	T = $(Ec(T))$	$T = T_{1}$ $(T_{mi}$ $n)$ $(Ec(T)$ $=-115 \text{ MB})$		$T = T_2$ $(T_{\rm m})$ $(Ec(T))$ $=+115 {\rm mB}$		$\Delta U_1 = U_{\text{Bbix}1} - U_{\text{Bbix}0 \text{ (MB)}}$	$\Delta U_2 = U_{ ext{Bbix}2}$ - $U_{ ext{Bbix}0}$	Термочувствит средняя (мкВС ⁻¹).	Термочувствит расчетная (мкВС- ¹).	Чувствит-ть. мос-та при $T=T_{\theta}$ (мВ/%)
		BbIX()		BbIX1		BbIX2	`			сред	расч	идп
И	x = 0,32%	85,3		15,4	393	60,7	163	0,1	24,6	0,8		9,2
Компенсация Компенсаци Компенсаци Без R_T =228Om я R_K =1,1 кОм компенсации	x =- 0,32%	285,4	278	316,0		260,8		30,6	4,6	61,3		89,2
	x = 0,32%	36,0		42,5		30,2		,5	5,8	3,7		2,5
	x =- 0,32%	136,1		142,6		130,2		6,5	,9	13,8		42,5
	x = 0,32%	9,3		2,0		6,7		,7	2,6	,9		7,9
	x =- 0,32%	89,4		92,1		86,8		2,7	,6	5,9		27,9
	x = 0,32%	32,6		32,8		32,5		,2	0,1	,3		2,7
	x =- 0,32%	232,6		232,8		232,5		0,2	0,1	0,8		1,9