Topic: 30-60-90 triangles

Question: What are the values of a and b?

Answer choices:

A
$$a = 3\sqrt{3}$$
 and $b = 3$

B
$$a = 3$$
 and $b = 3\sqrt{3}$

C
$$a = 3$$
 and $b = 4$

D
$$a = 3$$
 and $b = 3$

Solution: B

The pattern for the lengths of the sides of a 30-60-90 triangle is x for the short leg, $x\sqrt{3}$ for the long leg, and 2x for the hypotenuse. In this case, we know that 6 is the length of the hypotenuse, which is represented by 2x.

Write 2x = 6 and solve for x.

$$2x = 6$$

$$x = 3$$

a is the length of the short leg, so a = x = 3.

b is the length of the long leg, so $b = x\sqrt{3} = 3\sqrt{3}$.

Topic: 30-60-90 triangles

Question: What are the values of a and c?

Answer choices:

$$A \qquad a = \frac{10\sqrt{3}}{3} \text{ and } c = \frac{5\sqrt{3}}{3}$$

$$B a = \frac{5\sqrt{3}}{3} \text{ and } c = \frac{10\sqrt{3}}{3}$$

C
$$a = 5\sqrt{3}$$
 and $c = 10$

D
$$a = 5\sqrt{3}$$
 and $c = 5$

Solution: B

The pattern for the lengths of the sides of a 30-60-90 triangle is x for the short leg, $x\sqrt{3}$ for the long leg, and 2x for the hypotenuse. In this case, we know that 5 is the length of the long leg, which is represented by $x\sqrt{3}$.

Write $x\sqrt{3} = 5$ and solve for x.

$$x\sqrt{3} = 5$$

$$x = \frac{5}{\sqrt{3}}$$

Rationalizing the denominator, we get

$$x = \frac{5}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{3}$$

a is the length of the short leg, so

$$c = 2x = 2\left(\frac{5\sqrt{3}}{3}\right) = \frac{10\sqrt{3}}{3}$$

c is the length of the hypotenuse, so

$$c = 2x = 2\left(\frac{5\sqrt{3}}{3}\right) = \frac{10\sqrt{3}}{3}$$

Topic: 30-60-90 triangles

Question: \triangle *SAM* is a 30-60-90 triangle, with *S* at (0,0), *A* at $(4\sqrt{3},4)$, and *M* at $(4\sqrt{3},0)$ in the Cartesian coordinate system. Which angle is the 60° angle?

Answer choices:

A S

 B A

 C M

D None of these

Solution: B

In a 30-60-90 triangle the angle opposite the long leg is the 60° angle, which in this case would be $\angle A$.

