Poil Find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \end{bmatrix}$ using Gauss Jordan elimination and write A is the product of elementary matrices. Write A-1 is the product of elementary matrix.

Are;

Augmented Matrix	Row operations	elementary matrix	Inverse of dementary malinx
1 2 3 1 0 0 2 3 5 0 1 0 1 0 2 0 0 1	$R_2 \rightarrow R_2 - 2R_1$	[1 0 0] = E ₁	f- 0 0 - 0
\[\begin{array}{cccccccccccccccccccccccccccccccccccc	$R_3 \rightarrow R_3 - R_1$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \mathcal{E}_2$	E2 = [0 0 0]
$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -1 & -2 & 1 & 0 \\ 0 & -2 & -1 & -1 & 0 & 1 \end{bmatrix}$	$R_2 \rightarrow (-1)R_2$	[0 0 0] = E3	E3 = [0 0 1]
[2 3 1 0 0] 0 1 2 -1 0 0 -2 -1 -1 0 1	R,-3R1-2R2	0 1 0 1	F4-= (1 2 0 0 1 0 0 0 1

$$\begin{bmatrix}
1 & 0 & 1 & -3 & 2 & 0 \\
0 & 1 & 1 & 1 & 2 & -1 & 0 \\
0 & 0 & 1 & 3 & -2 & 1
\end{bmatrix}$$

$$\begin{array}{c}
R_1 \rightarrow R_1 - R_3 \\
R_2 \rightarrow R_1 - R_3
\end{array}$$

$$\begin{bmatrix}
1 & 0 & 0 & -6 & 4 & -1 \\
0 & 1 & 0 & -1 & +1 & -1 \\
0 & 0 & 1 & 3 & -2 & 1
\end{bmatrix}$$
We stop the process. $A^{-1} = \begin{bmatrix} -6 & 4 & -1 \\ -1 & 1 & -1 \\ 3 & -2 & 1 \end{bmatrix}$

$$R_1 \rightarrow R_1 - R_3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -21 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_5^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = E_7 \qquad E_7 = \begin{bmatrix} 1 & \delta & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = E_{1}^{-1}E_{2}^{-1} = E_{3}^{-1}E_{4}^{-1} = E_{5}^{-1} = E_{7}^{-1}$$

$$A^{1} = E_{1} = E_{6} = E_{5} = E_{4} = E_{3} = E_{2} = E_{1}.$$

Permutation Matrix A permutation matrix is a square matrix obtained from the same size identity matrix by a permutation of rows. Mote: - Desmutation matrix is now equivalent to identity matrix. 2) Every permutation matrix is a product of elementary sow-interchange matrices 3) If Pis a elementary permutation matrix then $P^T = P = P^{-1}$; $P^2 = I$ 4) A product of permutation matrix is a permutation matrix. 5) Inverse of a fermulation matrix is a fermulation matin x and $P' = P^{-1}$ 6) left multiplication by a permutation matrix rearranges to the corresponding rows. 7) Right multiplication by a fermulation multiplication by a fermulation multiplication the corner ponding columns. 8) Some power of fermulation matrix is the identity

Moter-1) Let A be a nxn matrix. LU deamposition of A exists only if all major subminors matrices are invertible. 2) Let A be a MXN modrix. LO decomposition of A does not exists if we interchange two sous of A to get the upper hangular malrix Example:
[] [] 2

The subminor ([]) is not inversible

456 So LU does not exist. 2) x= (0 3 4) dres not have LU downfosition.
6 8 7)