Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение Высшего образования

«Северо-Осетинский государственный университет имени Коста Левановича Хетагурова»

Курсовая работа

«Транспортная задача. Методы решенияю.»

Выполнил:

Студент 3 курса направления: «Прикладная математика и информатика» Гамосов Станислав Станиславович

Научный руководитель:

кандидат физико-математических наук Тотиева Жанна Дмитриевна

«Работа допустима к защите»

Заведующий кафедрой доктор физико-математических наук $Kycpae s. \ A.\Gamma.$

Содержание

1	Введение	1
2	Постановка задачи	2
3	Методы построения опорного плана 3.1 Метод северо-западного угла	6 6 10
4	Проверка опорного плана на вырожденность	11
5	Методы решения 5.1 Метод северо-западного угла	12 12 13 14
6	Решение с помощью теории графов	15
\mathbf{C}_{1}	писок литературы	16

1 Введение

Транспортная задача — это спектр задач с единой математической моделью, классическая формулировка, которой звучит: «Задача о наиболее экономном плане перевозок однородного продукта или взаимозаменяемых продуктов из пунктов производства в пункты потребления». Такая форма встречается чаще всего в линейном программирование, а если точнее в его практических приложениях.

Линейное программирование является одним из разделов математического программирования – области математики, разрабатывающей теорию и численные методы решения многомерных экстремальных задач с ограничениями.

Проблема была впервые формализована французским математиком *Гаспаром Монжем* в 1781 году. Прогресс в решении проблемы был достигнут во время Великой Отечественной войны советским математиком и экономистом *Леонидом Канторовичем*. Поэтому иногда эта проблема называется **транспортной задачей Монжа** — **Канторовича**.

Если вернуться к самой задачи огромное количество возможных вариантов перевозок затрудняет получение достаточно экономного плана эмпирическим или экспертным путем. Применение математических методов и вычислительных в планировании перевозок дает большой экономический эффект. Транспортные задачи могут быть решены симплексным методом однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Они, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его получить оптимальный результат. Транспортная задача может также решаться с ограничениями и без ограничений.

В зависимости от способа представления условий транспортной задачи она может быть представлена в **графовой** или **матричной** форме.

2 Постановка задачи

Задача эта возникает, когда речь идет о рациональной перевозке некоторого однородного продукта от производителей к потребителям. В этом случае для каждого потребителя безразлично, откуда, из каких пунктов производства будет поступать этот продукт, лишь бы он поступал в нужном объеме. Однако от того, насколько рациональным будет прикрепление пунктов потребления к пунктам производства, существенно зависит объем транспортной работы. В связи с этим естественно возникает вопрос о наиболее эффективном прикреплении, правильном направлении перевозок груза, при котором потребности удовлетворяются, а затраты на транспортировку минимальны. Более точно задача формулируется так.

Пусть имеются пункты производства $(A_1, A_2, ..., A_n)$ с объемами производства в единицу времени, равными соответственно $(a_1, a_2, ..., a_n)$, и пункты потребления $(B_1, B_2, ..., B_m)$ с объемами потребления, равными $(b_1, b_2, ..., b_m)$ соответственно. Будем предполагать, что производство и потребление сбалансированы — сумма объемов производства равна сумме объемов потребления. Такой вид транспортной задачи называется **закрытым**.

$$\sum_{i=1}^{n} a_i = \sum_{j=1}^{m} b_j \tag{1}$$

В дальнейшем будем рассматривать только такой тип задачи. Однако любую **открытую** транспортную задачу $(\sum_{i=1}^n a_i \neq \sum_{j=1}^m b_j)$ легко закрыть. Нужно ввести дополнительный пункт производства (пункт потребления) с недостающим объемом производства (объемом потребления) и с нулевыми стоимостями перевозок.

Предполагается, что известны величины c_{ij} — затраты по перевозке единицы продукта из i-го пункта производства в j-й пункт потребления. Они могут быть выражены в стоимостной (денежной) форме или в натуральной (километрах). Требуется найти такой план перевозок, при котором были бы удовлетворены потребности в пунктах $(B_1, B_2, ..., B_m)$ и при этом суммарные затраты на перевозку были бы минимальны. Обозначая через x_{ij} количество продукта, перевозимое из i-го пункта производства в j-го пункт потребления, приходим к следующей математической формулировке задачи:

Найти минимум целевой функции:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} \longrightarrow \min$$
 (2)

Так же для корректности задачи необходимо соблюдать три условия:

1.
$$\sum_{i=1}^{n} x_{ij} = b_j; \quad (j = 1, 2, ..., m)$$

2.
$$\sum_{j=1}^{m} x_{ij} = a_i; \quad (i = 1, 2, ..., n)$$

$$3.x_{ij} \ge 0; \quad (i = 1, 2, ..., n; \quad j = 1, 2, ..., m)$$

Получается суммарные затраты на транспортировку в каждый пункт потребления завозится требуемое количество продукта, а так же из каждого пункта производства полностью вывозится произведенный продукт.

Всякий набор величин x_{ij} (i=1,2,...,n; j=1,2,...,m), удовлетворяющих условиям (1-3), мы будем называть допустимым планом перевозок. План, для которого суммарные затраты (2) достигают минимума, называется оптимальным.

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{pmatrix}$$

Таблица 2.1

Посторинии	Постаринки						Запасы
Поставщики	1	2	• • •	j	• • •	m	поставщика
1	c_{11} x_{11}	c_{12} x_{12}		c_{1j} x_{1j}	• • •	$\begin{vmatrix} c_{1m} \\ x_{1m} \end{vmatrix}$	a_1
2	c_{21} x_{21}	c_{22} x_{22}		c_{2j} x_{2j}	•••	$\begin{vmatrix} c_{2m} \\ x_{2m} \end{vmatrix}$	a_2
:	:	:		:		:	:
i	c_{i1} x_{i1}	c_{i2} x_{i2}		c_{ij} x_{ij}		c_{im} x_{im}	a_i
:	:	:		:		:	:
n	c_{n1} x_{n1}	c_{n2} x_{n2}		c_{nj} x_{nj}	• • •	$egin{array}{ccc} c_{nm} & & & & & & & & & & & & & & & & & & &$	a_n
Спрос потребителя	b_1	b_2		b_j		b_m	$\sum_{i=1}^{m} a_i$ $\sum_{j=1}^{m} b_j$

Рассмотрим теорему о разрешимости транспортной задачи:

Теорема 1. Транспортная задача имеет решение, если суммарный запас груза в пунктах отправления равен суммарному спросу в пунктах назначения, т.е. если выполняется равенство (1).

Доказательство. В случае превышения запаса над потребностью $\sum_{i=1}^{n} a_i > \sum_{j=1}^{m} b_j$ как уже было обговорено выше, вводится фиктивный (m+1)-ый пункт назначения с потребностью $b_{m+1} = \sum_{i=1}^{n} a_i - \sum_{j=1}^{m} b_j$

Соответствующие тарифы считаются равными нулю:

$$c_{im+1} = 0 \ (i = 1, \cdots, m)$$

После этих преобразований получим закрытую модель транспортной задачи.

Аналогично, при $\sum_{i=1}^n a_i < \sum_{j=1}^m b_j$ вводится фиктивный (n+1) пункт отправления с грузом, $a_{n+1} = \sum_{i=1}^m b_j - \sum_{i=1}^n a_i$ а тарифы полагаются равными нулю:

$$c_{n+1j} = 0 \ (j = 1, \cdots, n)$$

После этих преобразований получим закрытую модель транспортной задачи.

Теперь если в любом случаи мы можем свести задачу к виду $\sum_{i=1}^{n} a_i = \sum_{j=1}^{m} b_j = A$ можем получить такие величины

$$x_{ij} = \frac{a_i b_j}{A}; \quad i = 1, 2, ..., n; \quad j = 1, 2, ..., m$$

Исходя из выше полученного имеем решение:

$$x_{ij} \geqslant 0$$

Так как $\sum_{i=1}^{n} a_i = \sum_{j=1}^{m} b_j = A$ получаем:

$$\sum_{j=1}^{m} x_{ij} = \sum_{j=1}^{m} \frac{a_i b_j}{A} = \frac{a_i \sum_{j=1}^{m} b_j}{A} = a_i$$

$$\sum_{i=1}^{n} x_{ij} = \sum_{i=1}^{n} \frac{a_i b_j}{A} = \frac{b_j \sum_{i=1}^{n} a_i}{A} = b_j$$

Следовательно, система величин x_{ij} , удовлетворяя всем условиям транспортной задачи, является ее решением.

Условия транспортной задачи удобно представить в виде матрицы, которая имеет название **матрица перевозок**. В первой строке указаны величины потребностей, в первом столбце - значения запасов. В клетках внутренней матрицы $(m \times n \text{ штук})$ записывают стоимости перевозок и сами перевозки. Нумеровать будем только строки и столбцы внутренней матрицы.

Пример:

Составить математическую модель транспортной задачи перевоза груза из 3 складов в 5 магазинов. Матрица перевозок будет выглядеть так:

Таблица 2.2

Пункты	B1	B2	В3	B4	B5	Запасы
A1						30
711	2	7	3	6	2	30
A2						70
H2	9	4	5	7	3	10
A3			·	·	·	50
Ao	5	7	6	2	4	00
Потребность	10	40	20	60	20	

$$\sum_{i=1}^{3} a_i = 30 + 70 + 50 = 150 \qquad \sum_{j=1}^{5} b_j = 10 + 40 + 20 + 60 + 20 = 150$$

В качестве примера открытой модели давайте заменим потребность B4, которая равняется 60 на 40. В таком случаи нужно было бы ввести еще одного потребителя с потребностью B6 = 20 и с нулевыми стоимостями $c_{16} = c_{26} = c_{36} = 0$. Матрица перевозок тогда станет следующей:

Таблица 2.3

Пункты	B1	B2	В3	B4	В5	В6	Запасы
A1		7	3	6		0	30
A2		1		7	9		70
A 0	9	4	5	1	3		F.O.
A3	5	7	6	2	4	0	50
Потребность	10	40	20	40	20	20	

3 Методы построения опорного плана

3.1 Метод северо-западного угла

Теорема 2. Существует план, содержащее не более чем (m+n-1) положительных перевозок x_{ij} . При этом система векторов соответствующая таким перевозкам x_{ij} , линейно независима.

Доказательство. Конструктивным доказательством теоремы может послужить процесс получения первого опорного плана, предложенный Данцигом и названный Чарнесом и Купером «правилом северо-западного угла». Применим это правило к следующей таблице:

Определим сначала значение переменной x_{11} , стоящей в верхнем левом углу. Пусть $x_{11} = \min(a_1,b_1)$; если $a_1 \leqslant b_1$, то $x_{11} = a_1$ и все $x_{1j} = 0$ для j = 2, 3, 4. Если $a_1 \geqslant b_1$, то $x_{11} = b_1$, и все $x_{i1} = 0$ для i = 2, 3, 4. Для определенности допустим, что справедливо первое предположение; тогда таблица преобразуется, как показано ниже в шаге 1. Здесь общее количество продукта, вывозимого из первого пункта отправления, уменьшается до нуля, а общее количество, которое необходимо подвезти к первому пункту назначения, равно $b_1 - a_1$.

Шаг 1: Пример $b_1 > a_1$

После этого определяем значение первой переменной во второй строке. Пусть $x_{21} = \min(a_2, b_1 - a_1)$. Если допустить, что $a_2 > b_1 - a_1$, $x_{21} = b_1$, -1, и $_{31} = 0$. Это показано в шаге 2. Количество продукта, которое осталось перевезти из пункта отправления 2, теперь равно $a_2 - b_1 + a_1$. В свою очередь потребность первого пункта назначения полностью удовлетворена.

Шаг 2: Допустим, что $a_2 > b_1 - a_1$.

Подобным же образом в зависимости от допущений, указанных далее, получаем следующие шаги. В каждом из них определяется значение переменной x_i ,

и сводится к нулю либо запас i-го пункта отправления, либо потребность j-го пункта назначения, или и то и другое вместе.

Шаг 3: Положим $a_2 - b_1 + a_1 > b_2$.

Шаг 4: Пусть $a_2 - b_1 + a_1 - b_2 < b_3$.

Из шага 4 видно, что $x_{33}=b_3-a_2+b_1-a_2+b_2$ и $x_{34}=b_4$. Следует отметить, что каждая из перевозок x_i была получена прибавлением и вычитанием различных комбинаций a_i и b_j . Поэтому если a_i и b_j были первоначально неотрицательными целыми числами, то и решение, получаемое в результате описанного выше процесса, будет состоять из неотрицательных целых чисел. Нетрудно видеть, что этот план может содержать самое большее n+m-1 положительных перевозок. При наших предположениях относительно величин a_i и b_j , и допущениях, сделанных при построении плана в рассмотренном примере с тремя пунктами отправления и четырьмя пунктами назначения, положительными перевозками являются:

$$x_{11} = a_1; \quad x_{21} = b_1 - a_1;$$

 $x_{22} = b_2; \quad x_{23} = a_2 - b_1 + a_1 - b_2;$
 $x_{33} = b_3 - a_2 + b_1 - a_1 + b_2; \quad x_{34} = b_4;$

Используя приведенный алгоритм построения решения, можно доказать линейную независимость системы векторов, отвечающих выписанным положительным перевозкам. Тем самым будет установлено, что построенный план является опорным решением.

Пример: Имеется транспортная таблица с исходными данными.

Пункты	B1	B2	В3	Запасы
A1	5	3	1	10
A2	3	2	4	20
A3	4	1	2	30
Потребность	15	20	25	

Внесем в верхнюю левую клетку максимально возможного объема перевозки.

Пункты	B1	B2	В3	Запасы
A1	10	0	0	0
111	5	3	1	O
A2				$\frac{1}{20}$
112	3	2	4	20
A3				30
A.O	4	1	2	30
Потребность	5	20	25	

Запасы на складе A1 закончились, поэтому в оставшиеся ячейки данной строки ставим прочерки. Затем переходим к следующей строке и заполняем ее ячейки слева направо.

Пункты	B1	B2	В3	Запасы
A1	10	0	0	0
AT	5	3	1	U
A2	5			15
112	3	2	4	10
A3	0			30
110	$\boxed{4}$	1	2	50
Потребность	0	20	25	

Пункты	B1	B2	В3	Запасы
A1	10	0	0	0
A1	5	3	1	U
A2	5	15	0	0
A2	3	2	4	U
A3	0			30
A9	4	1	2	30
Потребность	0	5	25	

Переходим к третьей строке и тоже заполняем ее слева направо.

Пункты	B1	B2	В3	Запасы
A1	10	0	0	0
A1	5	3	1	U
A2	5	15	0	0
112	3	2	4	U
A3	0	5		25
M9	4	1	2	<u> </u>
Потребность	0	0	25	

Пункты	B1	B2	В3	Запасы
A1	10	0	0	0
711	5	3	1	U
$_{ m A2}$	5	15	0	0
112	3	2	4	U
А3	0	5	25	0
	4	1	2	U
Потребность	0	0	0	

Получено опорное решение:

$$X = \begin{pmatrix} 10 & 0 & 0 \\ 5 & 15 & 0 \\ 0 & 5 & 25 \end{pmatrix}$$

3.2 Метод наименьшего элемен	та
------------------------------	----

4	Проверка	опорного	плана	на	вырожденность

- 5 Методы решения
- 5.1 Метод северо-западного угла

\mathbf{a}

5.3 Метод потенциалов

Метод состоит из конечного числа итераций, с помощью которых по некоторому исходному плану задачи строится ее оптимальное решение. Каждая итерация разбивается на 2 этапа. На 1-ом этапе план, полученный в результате предыдущей итерации, проверяется на оптимальность. Если план оказывается решением, процесс заканчивается. Если же это не так, осуществляется переход к этапу 2. На 2-ом этапе строится новый план, приводящий к меньшим (по сравнению с предыдущим планом) транспортным издержкам. Перед тем, как начать детальное рассмотрение метода, введем несколько необходимых понятий.

6 Решение с помощью теории графов

Список литературы

- [1] Юдин Д.Б., Гольштейн Е.Г. Задачи и методы линейного программирования; Москва: Советское радио, 1969 736с.
- [2] Канторович Л.В., Горстко А.Б. Математическое оптимальное программирование в экономике; Москва: Знание, 1968 96с.
- [3] Палий И.А., Линейное программирование. Учебное пособие; Москва: Эксмо, 2008 256с.
- [4] Костевич Л.С. Математическое программирование. Информационные технологии оптимальных решений; Минск: Новое знание, 2003 424с.
- [5] Акулич И.Л. Математическое программирование в примерах и задачах; Санкт-Петербург: Лань, 2011 352с.
- [6] Данциг Д. Линейное программирование, его обобщения и применения; Москва: Прогресс, 1966 602с.
- [7] Гасс С. Линейное программирование; Москва: Физматгиз, 1961 303с.