Theorem (Progress): Suppose e is a well-typed term. Then either e is a value or else there is e' with $e \rightarrow e'$.

proof. By induction on a derivation of e:T.

(other cases are skipped)

Case T-CONS:

```
e = \cos e_1 e_2: List T
e_1: T, e_2: \text{List } T
```

By induction hypothesis, either e_1 is a value or there exists e' such that $e \to e'$. Similarly, e_2 is either a value or steps to e'_2

If e_1 is a value and e_2 is a value, e is a value by:

```
(v .... (cons v v))
```

If e_1 is a value and e_2 steps to e'_2 , e steps to $e' = \cos e_1 e'_2$ by eval-context:

```
(E-value ...
(cons v E-value)
...)
```

If e_1 steps to e'_1 , then e steps to cons e'_1e_2 by eval-context:

```
(E-value ...
```

```
(cons E-value e)
...)
```

We showed in each case, e is either a value or $e \rightarrow e'$. \square

Theorem (Preservation): If e:T and $e\to e'$, then e':T.

proof. By induction on derivation of e:T.

(other cases are skipped)

Case T-CONS:

```
e = \cos e_1 e_2: List T
e_1 : T, e_2: List T
```

If the last rule in the derivation is **T_CONS**, then we know from the form of this rule that e must have the form cons e_1e_2 for some e_1 and e_2 .

We must also have subderivations with conclusions $e_1: T$ and $e_2: \text{List } T$. Now looking at the eval-context, we find that there are two rules by which $e \to e'$ can be derived.

```
(E-value ...
(cons E-value e)
(cons v E-value)
...
```

• cons E-value e

Then cons $e_1e_2 \to \cos e'_1e_2$. We have a subderivation of the original typing whose conclusion is $e_1: T$. We can apply the I.H. to this, obtaining $e'_1: T$. Combining this with the facts that $e_2: \text{List } T$, we can apply the **T-CONS** rule that $\cos e'_1e_2: \text{List } T$.

• cons v E-value

Then cons $e_1e_2 \to \cos e_1e_2'$ and e_1 is a value. We have a subderivation of the original typing that e_2 : List T. By the I.H. e_2' : List T. Combining this with the facts that $e_1: T$, we conclude that $\cos e_1e_2'$: List T. \square

9/24/2017 type-safety-proof