

Wyższa Szkoła Oficerska Sił Powietrznych

Katedra Nauk Ogólnokształcących

Laboratorium elektroniki					
Grupa nr C9D Data wykonania ćwiczenia					
Zespół nr w składzie	27.01.2010				
1. Jakub Kurpas	Ćwiczenie prowadził				
2. Łukasz Kusek	ppłk rez. Bogdan Makarewicz				
3. Krzysztof Lewandowski	Ocena				
4. Wojciech Lorenc					
Podpis					
Sprawozdanie ćwiczenia nr 1					
Temat ćwiczenia: Badanie obwodów prądu stałego					

Spis tablic

1 2 3 4 5	Pomiar rezystancji2Sprawdzanie prawa Ohma w obwodzie prądu stałego3Sprawdzanie I prawa Kirchhoffa w obwodzie prądu stałego6Sprawdzanie II prawa Kirchhoffa w obwodzie prądu stałego7Zastosowanie praw Kirchhoffa8
Spis	rysunków
1	Schemat układu z pkt. 2
2	Schemat układu z pkt. 3
3	Wykres $I(U)$ dla R_1
4	Wykres $I(U)$ dla R_2
5	Schemat układu z pkt. 4
6	Schemat układu z pkt. 5
7	Schemat układu z pkt. 6

Lp.	R_1	R_2	R_3	R_4	
$R_{znamionowe}$	Ω	820	2770	820	178
$R_{zmierzone}$	Ω	843	3011	856	186

Tablica 1: Pomiar rezystancji

Rysunek 1: Schemat układu z pkt. 2

1 Pomiar rezystancji

Zmierzyliśmy wartości rezystancji oporników R_1 , R_2 , R_3 , R_4 . Wyniki umieściliśmy w tabeli [1].

2 Pomiar rezystancji układu oporników

Dla układu jak na rysunku [1] zmierzyliśmy rezystancję. Wyniki zapisaliśmy w $R_{zmierzone}$. Dla naszego układu wyprowadziliśmy wzór na wartość rezystancji opornika zastępczego

$$R = R_1 + R_2 + \frac{R_3 R_4}{R_3 + R_4} \tag{1}$$

Wykorzystując wartości zmierzone z tabeli [1] obliczyliśmy $R_{obliczona}$

$$R_{obliczona} \ = \ 843 \ \Omega + 3011 \ \Omega + \frac{856 \ \Omega \cdot 186 \ \Omega}{856 \ \Omega + 186 \ \Omega}$$

$$R_{obliczona} \ = \ 4007 \ \Omega$$

Poniżej wyniki rezystancji zmierzonej i obliczonej

$$R_{zmierzone} = 4007 \Omega$$

 $R_{obliczona} = 4007 \Omega$

R_1	U_1	V	7,65	12,6	17, 58	22,53	27, 5	32, 4	37, 4	42, 3	R_{1sr}
843	I_1	mA	9,06	14, 93	20,8	26,6	32, 5	38, 4	44, 2	50	847
Ω	R_1	Ω	844	860	845	847	846	844	846	846	Ω
R_2	U_2	V	7, 7	12,6	17,6	22, 5	27, 3	32, 4	37, 4	42, 3	R_{2sr}
3011	I_2	mA	2, 5	4, 2	5,8	7, 5	9, 1	10,7	12, 4	14,0	3025
Ω	R_2	Ω	3080	3000	3034	3000	3022	3028	3016	3021	Ω

Tablica 2: Sprawdzanie prawa Ohma w obwodzie prądu stałego

Rysunek 2: Schemat układu z p
kt. $3\,$

3 Sprawdzanie prawa Ohma w obwodzie prądu stałego

Prawo 3.1 (Ohma). Natężenie prądu I, płynącego przez przewodnik jest zawsze wprost proporcjonalne do różnicy potencjałów, przyłożonej do przewodnika.

Na podstawie zmierzonego natężenia prądu Ioraz napięcia Udla układu [2]obliczamy wartość rezystancji ze wzoru

$$R = \frac{U}{I} \tag{2}$$

Wyniki pomiarów oraz obliczone wartości rezystancji umieściliśmy w tabeli [2]

Rysunek 3: Wykres I(U) dla R_1

Rysunek 4: Wykres I(U) dla R_2

Lp.	I_1	I_2	I_3	$I_2 + I_3$	δ_i
	mA	mA	mA	mA	%
1	7,7	1,7	6,0	7,7	0%
2	14, 2	3,1	11,07	14, 17	-0,2%
3	20,8	4, 5	16, 11	20,61	-0,9%

Tablica 3: Sprawdzanie I prawa Kirchhoffa w obwodzie prądu stałego

Rysunek 5: Schemat układu z pkt. 4

4 Sprawdzanie I prawa Kirchhoffa w obwodzie prądu stałego

Prawo 4.1 (I Kirchhoffa). Dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru

$$\sum_{i=1}^{k} I_k = 0 \tag{3}$$

Dla układu jak na rysunku [5] mierzymy $I_1,\,I_2,\,I_3.$ Ze wzoru

$$\delta_i = \frac{(I_2 + I_3) - I_1}{I_1} \cdot 100\% \tag{4}$$

obliczamy względny uchyb pomiaru. Wyniki umieściliśmy w tabeli [3]

Lp.	U_z	U_1	U_2	U_3	U_4	$\sum U_i$	δ_u
	V	V	V	V	V	V	%
1	10,7	1,85	6,61	1,88	0,4	10,74	0,37%
2	20,63	3, 55	12,69	3,60	0,78	20,62	-0,05%

Tablica 4: Sprawdzanie II prawa Kirchhoffa w obwodzie prądu stałego

Rysunek 6: Schemat układu z pkt. 5

5 Sprawdzanie II prawa Kirchhoffa w obwodzie prądu stałego

Prawo 5.1 (II Kirchhoffa). W dowolnym oczku obwodu elektrycznego prądu stalego suma algebraiczna napięć źródłowych jest równa sumie algebraicznej napięć odbiornikowych.

Dla układu jak na rysunku [6] mierzymy $U_z,\,U_1,\,U_2,\,U_3,\,U_4.$ Ze wzoru

$$\delta_u = \frac{\sum_{i=1}^4 U_i - U_z}{U_z} \cdot 100\% \tag{5}$$

obliczamy uchyb względny pomiaru. Wyniki zapisujemy w tabeli [4]

6 Zastosowanie praw Kirchhoffa

Dla układu jak na rysunku [7] mierzymy natężenie prądu I_4 oraz U_x . Wyprowadzamy wzór na U_x .

$R_1 = \Omega$	$R_2 = \Omega$	$R_3 = \Omega$	$R_4 = \Omega$
I_4	U_{xobl}	U_x	δ_u
mA	V	V	%
9,39	36, 16	36, 25	-0,24%

Tablica 5: Zastosowanie praw Kirchhoffa

$$U_x = I \left(R_2 + \frac{R_3 R_4}{R_3 + R_4} \right)$$

Natężenie prądu I obliczamy

$$I = I_3 + I_4$$

$$U_{34} = I_3 R_3$$

$$U_{34} = I_4 R_4$$

$$I_3 R_3 = I_4 R_4$$

$$I_3 = I_4 \frac{R_4}{R_3}$$

$$I = I_4 \left(1 + \frac{R_4}{R_3}\right)$$

Ostatecznie korzystając ze wzoru

$$U_{xobl} = I_4 \left(1 + \frac{R_4}{R_3} \right) \left(R_2 + \frac{R_3 R_4}{R_3 + R_4} \right) \tag{6}$$

obliczamy napięcie korzystając ze zmierzonych wartości rezystancji z tabeli [1].

$$\begin{array}{rl} U_{xobl} \; = \; 9,39 \cdot 10^{-3} \; A \cdot \left(1 + \frac{186 \; \Omega}{856 \; \Omega}\right) \left(3011 \; \Omega + \frac{856 \; \Omega \cdot 186 \; \Omega}{856 \; \Omega + 186 \; \Omega}\right) \\ \\ U_{xobl} \; = \; 36,16 \; V \end{array}$$

Ze wzoru

$$\delta_u = \frac{U_{xobl} - U_x}{U_x} \cdot 100\% \tag{7}$$

obliczamy uchyb względny pomiaru. Obliczenia notujemy w tabeli [5]

Rysunek 7: Schemat układu z pkt. 6

7 Uwagi. Wnioski

Przeprowadzone przez nas doświadczenie potwierdziło słuszność praw Ohma oraz Kirchhoffa. Niewielkie różnice pomiędzy wartościami obliczonymi, a zmierzonymi wynika z tego, że badane układy, elementy układów, mierniki nie są idealne przez co mają wpływ na pomiary.