避障跟人小车 开题报告

组员: 郭子笑 仇琨元 郑磊 李昀镀

2020.10.16

项目背景 智能小车 OpenCV 图像识别库

主要设计目标 基本任务 基本参数指标

总体实现方案 总体流程图 模块流程图

拓展任务

致谢

A. 智能小车

本项目以电动智能小车为背景来研究智能化技术。智能小车 集单片机技术、无线通讯技术、多种传感器信号的检测技术为一 体,通过车载微控制器与传感器实现实时采集传感器信号、分析 外部环境信息、自动方向控制等功能,制作一个能够自主识别道 路的模型汽车,可以跟随人体进行移动,并能在移动过程中绕开 障碍物。

B.OpenCV 图像识别库

OpenCV 是一个基于 BSD 许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在 Linux(树莓派)、Windows和 Mac OS 等常用操作系统上,无论是 PC, 手机还是各种嵌入式平台均可良好支持。OpenCV 轻量级而且高效——此机器视觉库由一系列 C 函数和少量 C++ 类构成,同时提供了 Python、MATLAB 等语言的接口,便于与基于 Python 等语言的神经网络对接,实现了图像处理和计算机视觉方面的很多通用算法。

A. 基本任务

自动寻找并跟随人体前进,人移动时小车能跟随 避开随机摆放的障碍物,若避障过程中丢失目标能重新锁定 人体

小车离人体距离较近时停止前进, 距离拉远时继续跟踪 人移动时摄像头始终对准人体。

如果有多人在场小车只锁定上位机指定的人体目标

B. 基本参数指标

在不大于 4m*10m 的场地 (半个教室大小) 寻找并锁定一个 人体目标

不锁定人形纸板等干扰物, 若有多人在场时只锁定其中一人顺利避开所有障碍物, 不与任何障碍物碰撞, 若进入三面封闭的障碍物能自动原路退出

小车跟人并躲避障碍物移动到达终点总时间不大于 1 分钟, 离人体距离 30cm 时停止

避障过程中摄像头始终对准目标

总体由人体检测、目标轮廓识别、跟踪信号产生、测距四部分组成。

a. 人体检测

通过 PIR 传感器或红外温度计 (AMG8833) 检测人体散发的热量,或者使用雷达模块检测人体。

b. 目标轮廓识别

通过摄像头采集人体轮廓与颜色数据, 然后给出各个人体照片的特征矢量。

C. 跟踪信号生成

通过摄像头实时采集人体轮廓与颜色数据,判定确认为目标后计算几何中心移动量,除以帧频得到速度

d. 避障与原路退回

通过摄像头实时采集周围颜色数据,判定可通行区域的轮廓,结合人体的移动速度矢量 给出移动方向。

该实现与 (c) 部分相似,使用 OpenCV 二值化抽取实时图像轮廓,滑动平均、色彩 阈值滤波后给出可通行区域的中心坐标与边缘轮廓。在获取目标的移动方向后,若视野 内与目标移动方向同向的位置存在可通行区域,小车即向该区域移动;若视野内只有一个可通行区域,小车即向唯一可通行路径移动;若视野内不存在可通行区域,小车将反向行驶直至出现可通行区域。

使用一个 IMU 测量并存储一定时间(数十秒)内小车行进的路径。

A. 发挥任务

上位机指定人体目标 通过图传模块或 WiFi 实时传输摄像头图像 随时切换为手动遥控

X. 远期目标

基于 OpenCV 的 SLAM 算法 使用多个雷达模块实现相控阵 自动瞄准的车载电磁炮

... ...

Thank You