PRÁCTICA 3

NÚMEROS ALEATORIOS.

Ejercicio 1.

Analizar y comprender el principio de funcionamiento de los generadores congruenciales lineales. Experimentar con los distintos parámetros que lo definen empleando el material disponible en el aula virtual.

Ejercicio 2. Se propone el siguiente juego en el cual todas las variables aleatorias que se generan son i.i.d. U(0,1): Se simula la v.a. U. Si $U<\frac{1}{2}$, se suman dos nuevos números aleatorios. Pero si $U\geq\frac{1}{2}$, se generan y se suman tres nuevos números aleatorios. El resultado de la suma, en cualquiera de los casos, es una variable aleatoria X. Se gana en el juego si $X\geq 1$.

- a) ¿Cuál es la probabilidad de ganar?.
- b) La probabilidad de ganar, ¿Es independiente de U?.
- c) Implementar un algoritmo en computadora que estime la probabilidad de ganar, esto es, la fracción de veces que se gana en *n* realizaciones del juego. Completar la siguiente tabla:

n	$P[X \ge 1]$
100	
1000	
10000	
100000	

Ejercicio 3. Calcule exactamente el valor de las siguientes integrales. Mediante una simulación de Monte Carlo con *n* iteraciones, calcule a su vez un valor aproximado y compare con el valor exacto en caso de que sea posible calcularlo.

a)
$$\int_0^1 (1-x^2)^{3/2} dx$$

b)
$$\int_0^\infty x (1+x^2)^{-2} dx$$

c)
$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

d)
$$\int_0^1 \int_0^1 e^{(x+y)^2} dx dy$$

e)
$$\int_0^\infty \int_0^x e^{-(x+y)} dx dy$$

Ayuda: Sea: $I_y(x) = \begin{cases} 1 & \text{si } y < x \\ 0 & \text{si } y \geq x \end{cases}$. Utilice esta función para igualar la integral del item **e**) a otra cuyos términos vayan de 0 a ∞ .

Completar la siguiente tabla:

n	(a)	(b)	(c)	(d)	(e)	\leftarrow integral
100						
1000						
10000						
100000						
1000000						

Ejercicio 4. Para U_1, U_2, \ldots variables aleatorias uniformemente distribuídas en el intervalo (0,1), se define:

$$N = \text{M\'inimo}\left\{n : \sum_{i=1}^{n} U_i > 1\right\}$$

Es decir, N es igual a la cantidad de números aleatorios que deben sumarse para exceder a 1.

a) Estimar E[N] generando n valores de N y completar la siguiente tabla:

b) Calcular el valor exacto de E[N].

Ejercicio 5. Para U_1, U_2, \ldots números aleatorios, se define:

$$N = \text{Máximo}\left\{n : \prod_{i=1}^{n} U_i \ge e^{-3}\right\}$$

donde: $\prod_{i=1}^{0} U_i = 1$. Mediante *n* simulaciones determinar:

a)

b) P(N = i) para i = 0, 1, 2, 3, 4, 5, 6, usando n = 1000000.