

Problem R-09D (C₁₃H₁₆O₂)

IR spectrum (CCI₄)

(Source: B. Gudmundsson/Reich 10/22)

$\textbf{Problem R-09D} \; (C_{13}H_{16}O_2)$

125.76 MHz ¹³C NMR Spectra in CDCl₃ (Source: B. Gudmundsson/Reich 10/22)

the exter	nt the signa	H NMR signals. For each of the signals listed below report multiplicity and coupling constants to ls are amenable to first order analysis, and the part structure each corresponds to. (NOTE: the 2.8 are not strictly first order)
δ 1.9	9	δ 4.4
δ 2.1	1	δ 6.3
δ 2.2	2	δ 6.8
δ 2.8	3	δ 7.3
(c) Inte	•	C NMR spectrum. Identify what kind of carbon each signal corresponds to, and write possible
No	ppm	Type of C (e.g. sp ³ CH ₂) and/or part structures (e.g. N-CH ₂)
1	199.0 (s)	
2		
3		
4		
5	128.4 (d)	
6	128.3 (d)	
7	125.9 (d)	
8	70.3 (d)	
9	38.1 (t)	
10	31.7 (t)	
11	28.5 (q)	

(d) Determine the structure of R-09D. If more than one structure is possible, show them, and circle your best

choice. Why are the 1H NMR signals at δ 1.9 and δ 2.8 so complex?

Problem R-09D. ($C_{13}H_{16}O_2$). Determine the structure (or part structure) of **R-09D** from the ¹H NMR, ¹³C NMR and

(a) DBE_____ (b) What information can you obtain from the IR spectrum? List the data, and any conclusions you

IR spectra provided.

drew from it.

2 (a) DBE 6 (b) What information can you obtain from the IR spectrum? List the data, and any conclusions you drew from it.

3450 cm⁻1 broad OH stretch

4

7

1660 cm⁻¹ C=C stretch 3050 cm⁻¹ sp² C-H stretch

1680 cm⁻¹ conjugated ketone/aldehyde stretch (CO₂H?)

(b) Analyze the 1H NMR signals. For each of the signals listed below report multiplicity and coupling constants to the extent the signals are amenable to first order analysis, and the part structure each corresponds to. (NOTE: the peaks at δ 1.9 and δ 2.8 are not strictly first order)

(c) Interpret the ¹³C NMR spectrum. Identify what kind of carbon each signal corresponds to, and write possible part structures.

Type of C (e.g. sp³ CH₂) and/or part structures (e.g. N-CH₂) No ppm C=O ketone (very likely conjugated) 199.0 (s) sp² CH 149.3 (d) 2 sp² C (ipso Ph) 141.3 (s) 7 sp² CH 128.9 (d) sp² CH 2X, o/m phenyl There are 2 fewer signals than carbons - 2 128.4 (d) must be doubled sp² CH 2X, o/m phenyl 128.3 (d) 125.9 (d) sp² CH HC-O- sp³ 70.3 (d) _ 8 CH₂ sp³ 9 38.1 (t) CH₂ sp³ 10 31.7 (t) $CH_3 sp^3$ 28.5 (q) 11

(d) Determine the structure of **R-09D**. If more than one structure is possible, show them, and circle your best choice. Why are the 1 H NMR signals at δ 1.9 and δ 2.8 so complex?

2 These are two adjacent CH₂ groups, which are each diastereotopic, hence an AB MN X system - lots of coupling

