Fifth Homework

Write your answers neatly, in complete sentences. Recopy your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in for the grader Tuesday 3 October:

- 17. Which conjugacy class in S_6 is the largest? Justify your answer.
- 18. Given an example to show that the weak direct product is not a coproduct in the category of all groups. It suffices to consider the case of two factors. That is, find a group G and groups H, K that have homomorphisms $f_H \colon H \to G$ and $f_K \colon K \to G$ for which there is no homomorphism $f \colon H \times K \to G$ such that $f|_H = f_H$ and $f|_K = f_K$.
- 19. Following this last question up, show that weak product is a coproduct in the category of abelian groups. That is, suppose $\{H_{\alpha} \mid \alpha \in I\}$ is a family of abelian groups indexed by a set I, and G is an abelian group such that there are homomorphisms $f_{\alpha} \colon H_{\alpha} \to G$ for $\alpha \in I$. Prove there is a unique map $f \colon {}^w \prod \{H_{\alpha} \mid \alpha \in I\} \to G$ such that for each $\alpha \in I$ we have $f_{\alpha} = f \circ \iota_{\alpha}$, where $\iota_{\alpha} \colon H_{\alpha} \hookrightarrow {}^w \prod \{H_{\alpha} \mid \alpha \in I\}$ is the canonical injection.
 - Deduce that this property determines the weak product ${}^w\prod\{H_\alpha\mid\alpha\in I\}$ of abelian grops up to unique automorphism.
- 20. Let G be a group with normal subgroups H and K such that both G/H and G/K are abelian. Prove that $G/(H \cap K)$ is abelian.
- 21. Let F be a free group. Prove that the subgroup generated by all nth powers, $\{x^n \mid x \in F\}$, is a normal subgroup of F.