Identificação de Serviços e Dispositivos em Dados de Motores de Busca para o Enriquecimento de Análise de Vulnerabilidades

Lucas M. Ponce¹ Indra Ribeiro¹ Etelvina Oliveira¹ Ítalo Cunha¹ Cristine Hoepers² Klaus Steding-Jessen² Marcelo H. P. C. Chaves² Dorgival Guedes¹ Wagner Meira Jr.¹

Introdução Análise de Vulnerabilidades

Processo contínuo

Motores de busca (de dispositivos)

Introdução Motores de busca (de dispositivos conectados)

Motivação e Objetivo

Estatísticas do CPE para o ano de 2023.

2023

Month	New Entries	New Vendors	New Products
January	18,296	419	1,097
February	16,482	276	2,910
March	22,070	324	1,358
April	14,262	221	1,404
May	17,590	266	2,519
June	19,858	260	3,043
July	18,926	272	2,127
August	20,942	240	4,929
September	16,827	239	1,058
October	21,335	340	1,516
November	18,294	341	1,481
December	18,122	299	1,320

24.762 novos produtos só em 2023!

Objetivo:

- Arcabouço para o processamento eficiente de fingerprints;
- Aplicável em dados de motores de busca ou de outras fontes.

Fonte: https://nvd.nist.gov/products/cpe/statistics

Arquitetura Geral

Arquitetura Geral Coleta e limpeza das regex

Recog Vulners

Usuários

```
<fingerprint pattern="OpenSSH_(3\.8\.1p1) (Debian-11ubuntu\d+(?:\.\d+)?)">
    <param name="service.vendor" value="OpenBSD"/>
    <param name="service.family" value="OpenSSH"/>
    <param name="service.product" value="OpenSSH"/>
    <param name="os.vendor" value="Ubuntu"/>
    <param name="os.family" value="Linux"/>
    <param name="os.product" value="Linux"/>
    <param name="os.product" value="Linux"/>
    <param name="os.version" value="4.10"/>
    <param name="os.cpe23" value="cpe:/o:canonical:ubuntu_linux:4.10"/>
</fingerprint>
```

```
13 categorias de serviços
(HTTP Servers, SSH, etc) = 2432 padrões
```

Arquitetura Geral Processamento das regex

Arquitetura Geral Sistema de peso

```
pattern: OpenSSH_(3\.8\.1p1) (Debian-11ubuntu\d+(?:\.\d+)?)
```

```
Filtragem dos termos constantes
Resposta do serviço:
                                                                  pattern clean: OpenSSH_3.8.1p1 Debian-11ubuntu
SSH-2.0-OpenSSH_3.8.1p1 Debian-11ubuntu3
Key type: ssh-rsa
                                           weight1 = length(fingerprint)
Key: AAAAB3NzaC1yc2...
                                                    = length("OpenSSH_3.8.1p1 Debian-11ubuntu3") = 32
Fingerprint: 6a:ee:72:19:72:18:e9: ...
Kex Algorithms:
                                           weight2 = SequenceMatcher(fingerprint, pattern_clean)
      curve25519-sha256
                                            weight2 = SequenceMatcher(
      curve25519-sha256@libssh.org
                                                         "OpenSSH_3.8.1p Debian-11ubuntu",
      ecdh-sha2-nistp521
                                                         "OpenSSH_3.8.1p1 Debian-11ubuntu3"
      ecdh-sha2-nistp384
                                              ) = 14 + 16 = 30
```

93.5% do fingerprint é formado por termos obrigatórios

Mais forte do que o padrão: *OpenSSH_.+* weight1: 32, weight2: 7 (21,8%)

Avaliação Experimental

Estudo avaliativo

Caracterização inicial (1º semestre de 2021 e 2023)

Tabela 1. Relação do número de registros e IPs com a porcentagem de casamentos.

Métrica	Registros	# IPs	
Total	330.414.756	19.557.988	
% Inferidos	59,8	68,9	

175 min (no total) ou 28 seg/dia!

Ambiente: Spark com 10 VCPU e 20 GB RAM

Tabela 2. Relação dos padrões por categoria de serviço.

Fanta	Registros	IDa (0/)	Padrões	
Fonte	(%)	IPs (%)	(#)	(%)
HTTP (Servers)	41,34	36,25	402	90,33
DNS	9,15	25,01	57	81,42
HTML	8,53	19,61	195	43,33
SSH (Recog)	7,08	27,16	129	86
HTTP (Auth)	5,41	14,64	60	80
Apache (OS)	5,18	7,23	27	71,05
Telnet	4,32	18,63	57	39,58
HTTP (Cookies)	1,95	1,6	62	76,54
SNMP (SysDescr)	1,67	2,99	133	23,58
SMB (OS)	1,18	2,23	60	78,94
FTP	0,75	1,26	81	54,72
SSH (Outros)	0,25	0,51	65	98,48
SNMP (SysObjId)	0,02	0,12	7	16,66
SMB (LM)	0,01	0,05	5	62,5
NTP	< 0,01	< 0,01	1	1,33

Estudo avaliativo

Relação dos padrões encontrados

Figura 3: Histograma da quantidade de padrões por registro.

Múltiplos **tipos** de serviços ou Múltiplos **padrões** sobre um mesmo serviço

Figura 4: Número máximo de padrões de uma mesma fonte/registro.

Exemplo: o registro de 20 mil caracteres com diversos rastros de serviços *web*, impressoras, Windows e até serviços Linux.

Estudo avaliativo

1,6x mais IPs

Identificação de informações sobre o sistema operacional e o hardware

Tabela 5: Inferências sobre o S.O. e o *hardware*.

Shodan	Inferido	Sistema Operacional		Hardware	
Silouali		% IPs	% Registros	% IPs	% Registros
Х	Х	69,08	75,96	80,16	91,57
X	✓	11,90	18,21	18,43	7,81
✓	X /	[′] 2,70	1,77	0,92	0,32
√	√ /	16,32	4,06	0,49	0,30

RTSP/1.0 401 Unauthorized

CSeq: 1

WWW-Authenticate: Digest realm="Hikvision",\

nonce="3a359...", stale="FALSE"
WWW-Authenticate: Basic realm="/"

Cameradar, https://github.com/Ullaakut/cameradar

Poucos casos onde apenas o Shodan infere

14,1x mais IPs

Casos de uso

Caso de uso 1

Revisitando o census de 2016 sobre o protocolo SSH na Internet

Census: 15.646.188 IPs no mundo

2023: 2.957.615 IPs no Brasil (18,9% do Census global)

3,2x mais que 2021

Tabela 6: Top 5 produtos SSH em 2023.

Produto	% IPs	Censys 2016
DropBear	77,7	2° (13,8 %)
OpenSSH	16,9	1° (74,4 %)
ROSSSH	2,3	4° (2,9 %)
Ausente	0,7	7° (0,3 %)
Comware	0,5	12° (0,2 %)

- 1) Versões de 2019 em 93,8 %
- 2) Existem versões desde 2003!

Figura 5: Diversidade do protocolo SSH no Brasil em 2023.

Diminuição do SSH-1.X

Caso de uso 2

Utilização de sistemas Ubuntu desatualizados

Fim do suporte estendido em 2007.

Figura 6: Quantidade de dispositivos com o sistema Ubuntu no ano de 2023.

Considerações finais

Arcabouço para **processar padrões em larga escala** para o reconhecimento de aplicações e dispositivos conectados à Internet:

© Enriquecimento de dados provenientes de motores de busca.

Comparação experimental com as inferências nativas do Shodan:

- O Identificação de mais serviços: sistema operacional (em 1,6 vezes mais IPs) e informações sobre dispositivos (14,1 vezes);
- Qualidade das informações é melhor estruturada;

Trabalhos futuros

- O Análise:
 - O Comparação de vulnerabilidades entre abordagens (Shodan vs enriquecida);
 - Identificação de dispositivos em IPs dinâmicos.

- Arcabouço:
 - Inclusão de novas fontes e novos padrões de fingerprints;
 - Avaliação de outras abordagens para o ranqueamento dos casamentos obtidos;

Projeto TLHOP/SAM

Lucas M. Ponce

Ítalo Cunha

Marcelo H. P. C. Chaves

Cristine Hoepers

Dorgival Guedes

Etelvina Oliveira

Klaus Steding-Jessen

Wagner Meira Jr.

Identificação de Serviços e Dispositivos em Dados de Motores de Busca para o Enriquecimento de Análise de Vulnerabilidades

Lucas M. Ponce¹ Indra Ribeiro¹ Etelvina Oliveira¹ Ítalo Cunha¹ Cristine Hoepers² Klaus Steding-Jessen² Marcelo H. P. C. Chaves² Dorgival Guedes¹ Wagner Meira Jr.¹

²CERT.br/NIC.br