What is claimed is:

1	1.	A capacitor comprising:
2		a plurality of conductive layers embedded in a dielectric; and
3		a plurality of vias coupling at least two of the plurality of conductive layers to a
4	plural	ity of connection sites.
1	2.	The capacitor of claim 1, wherein the capacitor has a thickness of between about
2	.5 mi	llimeter and about 1 millimeter.
1	3.	The capacitor of claim 2, wherein the capacitor has a capacitance of between
2	about	20 and about 30 microfarads.
1	4.	The capacitor of claim 1, wherein the plurality of controlled collapse chip
2	conn	ection sites have a pitch of between about 100 and about 500 microns.
1	5.	The capacitor of claim 1, wherein the plurality of vias are plated through holes.
1	6.	A capacitor comprising:
2		a plurality of first conductive layers;
3		a plurality of second conductive layers interlaced with the plurality of first
4	conductive layers;	
5		a number of surfaces having a plurality of connection sites operable for coupling
6	the c	apacitor to a substrate using a controlled collapse chip connection (C4); and
7		a plurality of vias coupling the plurality of first conductive layers and the plurality
8	of se	cond conductive layers to the plurality of connection sites.
1	7.	The capacitor of claim 6, wherein each of the plurality of first conductive layers is
2	fabri	cated from a tungsten paste.

14.

about .05 millimeters and about .1 millimeters.

1

2

The capacitor of claim 6, wherein the number of surfaces is two. 1 8. A capacitor comprising: 9. 1 a multilayered capacitor having a number of outer surfaces; and 2 a number of pads located on at least two of the number of outer surfaces wherein 3 at least two of the number of pads are capable of being coupled to a substrate using a 4 5 solder bump. The capacitor of claim 9, wherein the multilayered capacitor includes a number of 10. 1 parallel conductive layers and the number of pads are coupled to the number of parallel 2 conductive layers through vias. 3 The capacitor of claim 10, wherein the number of conductive layers is greater than 1 11. 2 about 50. The capacitor of cam 11, wherein the number of pads is greater than about 4000. 1 12. 1 13. A system comprising: a die including an electronic system; 2 a capacitor located less than about .1 millimeter from the die and coupled to the 3 die, the capacitor is capable of decoupling a power supply connection at the die without 4 additional capacitors located external to the die; and 5 a dielectric layer located between the capacitor and the die. 6

The system of claim 13, wherein the dielectric layer has a thickness of between

1	15.	A system comprising:		
2		a first die;		
3		a second die; and		
4		a capacitor having a first surface having a controlled collapse chip connection		
5	coupl	ed to the first die and a second surface having a controlled collapse chip connection		
6	coupl	coupled to the second die.		
1	16.	The system of claim 15, wherein the first die includes a processor and the second		
2	die includes a communication system.			
1	17.	A system comprising:		
2		a substrate having a surface; and		
3		a capacitor have a plurality of vias coupled to a plurality of conductive layers in		
4	the ca	apacitor, the capalitor is coupled to the surface at a plurality of connection sites.		
1	18.	A system comprising:		
2		a substrate having a first surface and a second surface;		
3		a die coupled to the first surface; and		
4		a capacitor having a plurality of vias coupled to a plurality of conductive layers in		
5	the c	the capacitor, the capacitor is coupled to the second surface by a controlled collapse chi		
6	conn	ection and the capacitor is electrically coupled to the die through the substrate.		
1	19.	The system of claim 18, wherein the die includes a processor.		
1	20.	The system of claim 19, wherein the die has a die surface and the capacitor has a		
2	capa	capacitor surface and the capacitor surface is located less than about .1 millimeter from		
3	the c	the die surface.		

3

1	21.	A system comprising:
2		a processor requiring at least 5 watts of power to be operable; and
3		a single multilayered single package capacitor coupled to the processor and

- capable of decoupling a power supply from the processor. 4
- The system of claim 21, wherein the single multilayered single package capacitor 22. 1
- is capable of being mounted on a substrate by a plurality of solder bumps. 2
- The system of claim 22, wherein the single multilayered capacitor is capable of 23. 1
- being mounted on a substrate using a controlled collapse chip connection. 2
- A method comprising: 24. 1
- forming a stack of a plurality of screen printed dielectric sheets; 2
- forming a plurality of via holes in the stack; 3
- filling at least two of the plurality of via holes with a metal slurry; and 4
- co-firing the stack to form a capacitor. 5
- The method of claim 24, further comprising: 1 25.
- coupling the stack to a substrate using a controlled collapse chip connection. 2
- The method of claim 24, further comprising: 1 26.
- coupling a die to the substrate and to the capacitor. 2
- A method comprising: 1 27.
- forming a capacitor having a plurality of conductive layers and a surface; and 2
- forming a pattern of pads on the surface, at least one pad in the pattern of pads is 3
- capable of being coupled to at least one of the plurality of conductive layers and capable 4
- of being coupled to a substrate using a solder bump attachment. 5

1	28.	The method of claim 27, further comprising:
2		coupling the capacitor to a ceramic substrate using a solder bump attachment.
1	29.	A method comprising:
2		selective a substrate having a controlled collapse chip connection capability; and
3		mounting a multilayered capacitor on the substrate using the controlled collapse
4	chip c	connection capability.