

ESTACIÓN DE SATÉLITES CON ANTENAS QFH

ALEJANDRO FERNÁNDEZ - EA4BFK

Agenda

- Origen del Proyecto
- Elementos de la Estación
 - Esquema General
 - Antenas
 - Receptor
 - Software
- Antenas QFH
 - Historia y Características
 - Detalles de Construcción
 - Simulación
- Resultados
- Conclusiones Próximos pasos
- Agradecimientos y Referencias

Origen del Proyecto

S-NET A S-NET B S-NET C S-NET D	ACTIVE	43186 - 43189			435.950	1k2 FFSK	DPOTBS DPOTBC DPOTBD DPOTBE	latest report	details	YES	4
AoXiang-1	ACTIVE	42735			436.150	9k6 BPSK	NPUAX1	latest report	details	YES	
SHAONIAN-XING (Juvenile 1F)	ACTIVE	43199			436.375	9k6 BPSK	MXSAT-1	latest report	details	YES	
TianYi 6 (TY-6)	INACTIVE	43158			436.100	9k6 FSK		latest report	details	YES	-
TianYi 2 (TY-2)	ACTIVE	43155			435.350	9k6 FSK		latest report	details	YES	4
KAIDUN-1	ACTIVE	41915			437.600	1k2 BPSK	AXNWPU- 4	latest report	details	NO	
INS-1C	ACTIVE	43116			435.080	1k2 Manchester	INDUSR- 10	latest report	details	NO	
BEESAT-3	ACTIVE	39135	435.950	435.950		4k8 GMSK	DPOBEG	latest report	details	YES	
PicSat	INACTIVE	43132			435.525	1k2 BPSK		latest report	details	YES	
CAS-2T	ACTIVE	41847			435.712	CW		latest report	details	NO	
AO-92 (FOX-1D)	ACTIVE	43137	435.350 1267.350		145.880	Voice + 0k2 FSK data, FM		latest report	details	YES	
Radfxsat (AO-91, FOX-1B)	ACTIVE	43017	435.250	435.250	145.960	Voice + 0k2 FSK data, FM		latest report	details	YES	
OSIRIS-3U	INACTIVE	43027			437.505	38k4 GMSK		latest report	details	YES	
TechnoSat	ACTIVE	42829	435.950	435.950		FM CW 4k8 GMSK	DPCTBA	latest report	details	YES	-4
BIRD-B (BRAC Onnesha)	ACTIVE	42823			437.372 437.375	CW 1k2 AFSK/9k6 FSK/digital Voice	306Y2S	latest report	details	YES	-4
BIRD-J (Toki)	ACTIVE	42820			437.372 437.375	CW 1k2 AFSK/9k6 FSK/digital Voice	306Y30	latest report	details	YES	4
BIRD-M (Mazaalai, NUMSAT-1)	ACTIVE	42822			437.372 437.375	CW 1k2 AFSK/9k6 FSK/digital Voice	366Y3Q	latest report	details	YES	4
BIRD-N (EduSat-1)	ACTIVE	42824			437.372 437.375	CW 1k2 AFSK/9k6 FSK/digital Voice	306Y3R	latest report	details	YES	4
SUCHAI	ACTIVE	42788			437.225	CW GMSK 2k4	SUCHAI	latest report	details	YES	
ROBUSTA-18	ACTIVE	42792			437.325	CW / 1k2 APSK		latest report	details	YES	-4
SKCube	ACTIVE	42789	437.100	437.100	437.100	CW / 9k6 FSK	OM9SAT	latest report	details	YES	-4
Max Valier Sat	ACTIVE	42778			145.960	CW	II3MV	latest report	details	YES	
NIUSAT	ACTIVE	42766			436.000	1k2 FSK	NIUGSR	latest report	details	NO	

- > 120 Satélites activos en en la actualidad en 145 y 435MHz
- > 10 Satélites con Transponder de Fonía (SSB, FM)
- > 100 Satélites transmitiendo Telemetría en distintos modos (CW, 1k2 AFSK, 9k6 FSK,) en U y V

¿Como capturar Telemetría de forma efectiva y a bajo coste?

Elementos Estación Fija de Satélites

Super Estación	Estación Simple Recepción Telemetría
Antena Directiva 145MHz y polarización adjustable (RHCP/LHCP)	Antena Omnidireccional 145MHz
Antena Directiva 435MHz y polarización adjustable (RHCP/LHCP)	Antena Omnidireccional 435MHz
Previos Antena 145 y 435MHz bajo NF	Previos Antena 145 y 435MHz bajo NF
Cables de Bajas pérdidas	Cables de Bajas pérdidas
Rotor de Azimut y Elevación	-
Controlador de Rotores	-
Transceiver Analógico / SDR	Receptor SDR
PC (Windows, Linux, MacOS)	PC (Windows, Linux, MacOS) /Rpi 3?
Software de control Doppler y Rotores	Software de control Doppler y Rotores
Software para Decodificar Telemetría	Software para Decodificar Telemetría

eeeee ee

- Antenas Omnidirecionales 145 y 435 MHz
- Amplificadores de bajo ruido para 145 y 435 MHz
- Duplexor
- Receptor SDR
- PC con Software SDR y control Doppler + Decodificadores de Telemetría

Antenas

- Dipolos Cruzados
- Eggbeater
- QFH
- Lindelbald

••••

	Turnstile	Eggbeater	QFH
Gain 90°	2-3dB	5dB	4-5dB
Gain 30°	3dB	3dB	3dB
Gain 10°	1dB	-5dB	2dB
Pol C 90°	RHCP	RHCP	RHCP
Pol C 30°	Horizontal	Hor-RHCP	RHCP
Pol R/L	Si	Si	2 Ant
Dificultad	Baja	Media	Media

LNA's Amplificadores Ant

- LNA4all
- DEM (144LNA/435LNA)
- SHF Mini-70 / Mini-2
- SSB SP2000/SP7000
- HA8ET (Extra 70 / 2)

• • • •

	LNA4all	DEM	SHF/SSB
NF 145 MHz	< 1dB	<0,5dB	0,6-1dB
Gain 145 MHz	23,5dB	>17dB	10-20dB
NF 435 MHz	< 1dB	<0,5dB	0,7-1dB
Gain 435 MHz	23,5dB	>17dB	10-25dB
RX/TX	RX	RX	RX/TX
Coste	€	€	€€€

Duplexor y Coaxial

- Maldol / Comet
- Coaxiales
 - M&P Airborne 10
 - Aricom +
 - Westflex (Tenia en stock)
 - • • •

Comet	Perdidas Inserción	Aislamiento
145 MHz	0,25dB	>60-65dB
435 MHz	0,25dB	>60-65dB

Pérdidas dB/100m	M&P Ariborne 10	Aircom+	Westflex
145 MHz	4,2	4,5	6,0
435 MHz	7,6	8,2	11,5
Diámetro	10,3mm	10,3mm	10,0mm

Receptores SDR

- RTL SDR Dongle
- RSP1A (SDRPlay)
- Funcube Dongle
- • • •

Sens / NF	RTL SDR	RSP1A	Funcube
Sens	-134dBm	0,11uV	0,15uV FM
NF 145	6 dB	3,4dB	3,5dB
Sens/NF 435	-135dBm	0,11uV	0,15uV FM
	6 dB	3,7dB	3,5dB
ADC Bits	8	14	16

Antena QFH – Historia y características

- Desarrollada a finales de los 60
 Dr. C. C. Kilgus of the Applied Physics Laboratory, Johns Hopkins University
- Walter Maxwell (W2DU) de RCA desarrollo modelos de antenas QFH para los Satélites TIROS, NOAA y OSCAR 7 (2,3GHz)
- Teoría de funcionamiento muy descrita y estudiada
- La preferida de los amantes de los Satélites Meteorológicos
- 5 dBi de Ganancia a 90º
- Polarización Circular en todo el lóbulo de radiación desde 0º a 90º
- Diagrama de radiación f (D/H)
- Dificil de Construir ???

Antena QFH – Construcción para 435MHz

Calculador de ON6JC

- Frecuencia = 435 MHz
- Tubo de 6mm
- Varilla de 4mm
- Radio Doblado=5mm
- Ratio D/H = 0,44

Cuadro grande		
Largo total		755.7 mm
Separación vertical		280.5 mm
Largo total compensado	Jan 1997	764.2 mm
Separación vertical compensada		270.5 mm
Altura antena	H1	230.8 mm
Diámetro interno	Di1	97.5 mm
Separador horizontal	D1	101.5 mm
Separador horz. compensado	Dc1	91.5 mm

Plantilla para Taladrar

Generar una plantilla de perforación					
Para generar una plantilla de perforación en formato PDF, ingrese los siguientes datos:					
Diámetro caño soporte vertical:	40.5	mm			
Diámetro caños soporte horizontal:	6	mm			
Seleccionar tamaño del papel:	nar tamaño del papel: A4 (210x297 mm) 🔾 Generar PDF		Generar PDF		

Frecuencia de diseño	435 MHz
Cantidad de vueltas	0.5 🗘
Largo de una vuelta	1 o largos de onda
Radio del doblado	5 mm
Diámetro del conductor	mm (valor óptimo: 6.4 mm)
Relación diámetro/altura	0.44
	Calcular

Cuadro chico		
Largo total		718.1 mm
Caño vertical		266.7 mm
Largo total compensado		726.7 mm
Caño vertical compensado		256.7 mm
Altura antena	H2	219.4 mm
Diámetro interno	Di2	92.5 mm
Separador horizontal	D2	96.5 mm
Separador horz. compensado	Dc2	86.5 mm

Antena QFH – Construcción para 435MHz

Antena QFH – Construcción para 435MHz

Antena QFH - Construcción para 435MHz

Tubos Horizontales

Taladros

Montaje

Antena QFH - Construcción para 435MHz

Y a medir....

- La construcción ha quedado corta... Fcia Min: 442MHz
- Para ver como modificarla, una opción es modelar la antena mediante 4nec2

- 4nec2 (https://www.qsl.net/4nec2/)
 - Software gratuito para simulación de Antenas
 - Nucleo: Nec2
 - Uso de Variables para crear las estructuras de las antenas
 - Crea Antenas Helicoidales
 - Módulo de Optimización
 - Tutoriales y Ejemplos, pero pocos de QFH's
 - ON6JC tiene modelo para137,5MHz pero LHCP !!!

Modelo 4nec2 QFH 435 Optimizable

- Variables:
 - Alturas Lazo Largo (HL) y Lazo Corto (HC)
 - Diámetros Lazo Largo (DL) y Lazo Corto (DC)
 - Diámetros de las varillas
 - Medias iniciales según Calculadora de ON6JC

- Modelo 4nec2 QFH 435 Optimizable
 - Resultados

Diagrama de Radiación muy Sensible a la frecuencia de resonancia

Modelo 4nec2 QFH 435 Optimizable

Optimizando los diámetros DL y DC en función de min SWR a 435MHz

 Cambio: Diámetro Lazo Largo de 91mm a 99mm (Sacar las varillas 4mm por lado)

Antena QFH - 137 MHz by EA4LE

Dimensiones

Diámetro Lazo Largo: 374mm

Altura Lazo Largo: 560mm

Diámetro Lazo Corto: 356 mm

Altura Lazo Corto: 536 mm

Ratio D/H: 0,67

Medida de RL y SWR

Resultados

Recepción del FO-29 (435MHz con LNA)

File 1

Recepción del SO-50

File 2

Conclusiones y Próximos Pasos

- ✓ Las Antenas QFH no son tan difíciles de construir como parece y funcionan
- ✓ La optimización del lóbulo de radiación (ratio Diametro/Altura) es clave
- ✓ Si o Si se necesita previos de Antena en 435MHz y en 145MHz si hay mucho coaxial
- ✓ No son directivas, no esperes milagros... Pero son una buena forma de iniciarse....

Próximos pasos:

- Instalar el LNA de 145 MHz
- Comprobar en TX para evaluar eficiencia
- Evaluar Doble Polarización Circular conmutable con 2
 Antenas por frecuencia (RCHP / LHCP)
- Evaluar QFH de 1 vuelta, 1,5 vueltas

Agradecimientos

- Comité Organizador de IberRadio 2018
- Antonio Fernández EA4LE
- Amsat EA
- ❖ Walter Maxwell W2DU (SK)
- John Coppens ON6JC/LW3HAZ
- Arie Voors (Autor de 4nec2)
- Simon Braun (Autor de SDR Console)
- Y muchos más que me inspiran para seguir "cacharreando" y aprendiendo cada día....

Referencias

Antenas QFH

- http://jcoppens.com/ant/qfh/calc.php
- http://www.askrlc.co.uk
- https://www.mictronics.de/2016/10/self-phasedquadrifilar-helix-antenna-for-433mhz/
- http://www.radioamatoripeligni.it/i6ibe/i8cvs/qfe/q
 fe.htm
- http://uuki.kapsi.fi/qha.html
- http://nagara-ant.com/publics/index/7/#page7 102
- http://orbanmicrowave.com/

Antenas Eggbeater

http://on6wg.pagesperso-orange.fr/Page%201.html

Modelización de Antenas (4nec2)

https://www.gsl.net/4nec2/

Ejemplos de Modelos Antenas (4nec2)

- http://kaiyanotako.blogspot.com/2014/05/4nec2apt-qfh-antenna.html
- https://www.qsl.net/kp4md/index.html

SDRPlay (Receptor RSP1A)

https://www.sdrplay.com/rsp1a/

Amplificadores Antena

- http://lna4all.blogspot.com/2013/04/lna-for-all-low-noise-amplifier-for.html
- https://www.downeastmicrowave.com
- http://www.ha8et.hu

SDR Console

https://www.sdr-radio.com/Software/Version3

Satélites (Status y Software de Telemetría)

http://dk3wn.info/blog/

LIBROS

> ARRL Satellite Handbook

Martin Davidoff K2UBC

ARRL. ISBN: 0-87259-318-5

Ed: CQ Communications. ISBN: 0-943014-43-6

Reflections III Transmission Lines and Antennas

M. Walter Maxwell W2DU

Capítulos 22 y 27

Ed: CQ Communications. ISBN: 0-943014-43-6

GRACIAS