Homework #2

學號: 410821204 姓名: 杜昉紜

系級: 資工三

1. For $\Sigma = \{a, b\}$, construct dfa's that accept the sets consisting of

(a) all strings with no more than two a's. (最多兩個a)

 $L(G) \rightarrow$

 $0 a = b^*$

1 a = b*ab*

2 a = b*ab*ab*

Regular expression: $b^* + b^*ab^* + b^*ab^*ab^*$

DFA:

(b) all strings with at least one b and exactly two a's. (hint: label the state by a twodigit number such that the first digit represents the number of a's and the second digit represents the number of b's.) (只有兩個a和至少一個b組成)

$$L(G) =$$

$$(aab) = b*ab*ab*bb*$$

$$(aba) = b*ab*bb*ab*$$

$$(baa) = b*bb*ab*ab*$$

Regular expression: b*ab*ab*ab*+b*ab*ab*ab*ab*ab*ab*ab*

DFA:

2. Find an nfa with four states for $L = \{a^n : n \ge 0\} \cup \{b^n a : n \ge 1\}$.

L(G) =

$$(a^n : n \ge 0) = a^*$$

$$(b^n a : n \ge 1) = b*ba$$

Regular expression: $a^* + bb^*a$

3. Convert the nfa defined by

$$\delta(q0, a) = \{q0, q1\}$$

$$\delta\left(\mathbf{q}\mathbf{1},\,\mathbf{b}\right)=\left\{ \mathbf{q}\mathbf{1},\,\mathbf{q}\mathbf{2}\right\}$$

$$\delta\left(\mathbf{q2},\,\mathbf{a}\right)=\left\{ \mathbf{q2}\right\}$$

$$\delta(q0, \lambda) = \{q2\}$$

with initial state q0 and final state q2 into an equivalent dfa.

		a	b
initial	{q0}	{q0, q1,q2}	φ
	{q1}	φ	{q1, q2}
Final	{q2}	{q2}	φ
	φ	φ	φ
Final	{q0, q1,q2}	{q0, q1,q2}	{q1, q2}
Final	{q1, q2}	{q2}	{q1, q2}

equivalent dfa:

4. Show that if L is regular, so is L^R .

L is regular so it has a FSA.

FSA for L^R can be constructed:

- 1. Make one final state
- 2. Make final state initial
- 3. Make initial state final
- 4. Reverse all arrows

L^R has a FSA, so it is regular.

$$L = 001, 10001$$

 $L^R = 100, 10001$

It is straightforward to see that the new nfa is equivalent to the original one.

Hence, if L is regular, so is L^R

5. Given the following dfa:

Find a minimal equivalent dfa.

	0	1
0	1	4
1(F)	2	3
2(F)	2	3
3(F)	5	5
2(F) 3(F) 4(F)	5	5
5	6	5
6	6	6

0- Equivalence =
$$\{0,5,6\}\{1,2,3,4\}$$

$$\{0,5,6\}.0 = \{1,6\}$$

$$\{0,5,6\}.1 = \{4,5,6\}$$

----------------------------------因為 1,4 有包含在另一組所以需要分開

$$\{1,2,3,4\}.0 = \{2,5\}$$

$$\{1,2,3,4\}.1 = \{3,5\}$$

最後 = $\{0\}, \{5,6\}/\{1,2\}, \{3,4\}$ 黄色是 final state

