SOBREVIVIENDO AL TITANIC

PROYECTO FINAL ANALISIS DE DATOS
GUATEMALA DE LA ASUNCION 7 DE
MAYO 2023

JULIO ANTHONY ENGELS RUIZ

LIBRERIAS

PARA PODER RESOLVER ESTE PROBLEMA FUE NECESARIO INSTALAR LAS SIGUIENTES LIBRERÍAS PARA EXTRAER TEXTO, DIVIDIR EL CONJUNTO DE DATOS, IMPUTACIONES, Y ARBOLES DE REGRESIÓN.

DATOS

LUEGO SE NOS BRINDO EL DATASET LLAMADO DATA_TITANIC_PROYECTO.CSV ESTE DATASET ES PARA ENTRENAMIENTO Y VALIDACIÓN.

								٠
itanic_data <- itanic_data								
Passengerld	Name	Age	SibSp	Parch	Ticket	Fare	Cabin	
	Braund, Mr. Owen Harris							
	Cumings, Mrs. John Bradley (Florence Briggs Thayer)							
	Heikkinen, Miss, Laina							
	Futrelle, Mrs. Jacques Heath (Lily May Peel)							
	Allen, Mr. William Henry							
	Moran, Mr. James							
	McCarthy, Mr. Timothy J							
	Palsson, Master, Gosta Leonard							
	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)							
	Nasser, Mrs. Nicholas (Adele Achem)							

IMPUTACIÓN

CON EL MÉTODO COLSUMS SE VERIFICA QUE EN LA COLUMNA DE AGE HACEN FALTA DATOS.

PARA IMPUTAR LOS VALORES FALTANTES SE HACE USO DE UNA REGRESION LINEAL LA CUAL VIENE DADA MICE. (MULTIVARIATE IMPUTATIONS BY CHAINED

ACÁ SE PUEDE OBSERVAR A LA IZQUIERDA UNA GRÁFICA DE COLOR ROJO QUE ES EL VALOR OBTENIDO DE UNA REGRESION LINEAL DE LOS VALORES IMPUTADOS Y LA GRAFICA DE COLOR VERDE QUE ESTA INTERCALADA ES LA FORMA EN LA QUE SE DISTRIBUYEN LOS DATOS CONOCIDOS.

SE PUEDE DECIR QUE SE OBTIENE UN VALOR DE IMPUTACION DE LA EDAD BASTANTE ACEPTABLE.

EN LA GRÁFICA DE LA DERECHA SE PUEDE OBSERVAR LA VARIABLE PASSENGERID Y COMO ESTA VARIABLE NO TIENE NINGUN DATO FALTANTE NO IMPUTA NINGÚN VALOR.

AHORA SE COMPARA CON EL MÉTODO PARA IMPUTAR DE VALOR PROMEDIO DE LOS VALORES EXISTENTES

COMO SE PUEDE OBSERVAR CON EL VALOR PROMEDIO NO SE OBTIENE UNA BUENA DISTRIBUCIÓN DE DATOS IMPUTADOS.

DE ACUERDO AL MEJOR DESEMPEÑO EN IMPUTACIÓN SE ELIGIÓ EL MÉTODO DE REGRESIÓN LINEAL.

CON ESTO SE COMPRUEBA QUE YA TODAS LAS COLUMNAS NO TIENEN VALORES NAS

FEATURE ENGINEERING

SE TRANSFORMA LA COLUMNA EMBARKED,
PASSENGER_CLASS A FACTOR Y LA
COLUMNA PASSENGER_SURVIVED A
INTEGER

```
18 OF THE CONTROL OF
```

ACÁ EXTRAIGO EL TITULO DE LA COLUMNA NAMES Y CREO UNA COLUMNA TITULOS


```
# 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 | # 1 |
```

SE CRÉAN VARIABLES DUMMIES HASCABINNUM (RELACIONA CON LA VARIABLE CABIN), TICKET_CLASS(RELACIONA CON TICKET), DECK(SE RELACIONA CON CABIN).

Passengerld	Name	SibSp	Parch	Cabin	Embarked	
	Braund, Mr. Owen Harris					
	Currings, Mrs. John Bradley (Florence Briggs Thayer)					
	Herkkinen, Miss, Laina					
	Futrelle, Mrs. Jacques Heath (Lily May Peel)					
	Palsson, Master. Costa Leonard					
	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)					

ELIMINO LAS COLUMNAS INNECESARIAS

CREO VARIABLES DUMMY DE LA COLUMNA EMBARKED (EMBARKED_S, EMBARKED_C, EMBARKED_Q)

ELIMINO LAS VARIABLES ORIGINALES CATEGÓRICAS

CONVIERTO LA COLUMNA DE TITULOS EN CATEGÓRICAS

CONVIERTO LA COLUMNA DE PASSENGER_CLASS EN CATEGÓRICAS

CONVIERTO LA COLUMNA DE HASCABINNUM EN CATEGÓRICAS

SE GRAFICA EL HISTOGRA DE FARE PARA VER COMO ES LA DISTRIBUCION DE LA VARAIBLE FARE, COMO SE PUEDE APRECIAR ESTA VARIABLE TIENE MUCHO SESGO A LA DERECHA

APLICANDO LOGARITMOS NATURALES A LOS DATOS DE LA VARIABLE SE VE QUE MEJORA LA DISTRIBUCIÓN

ACÁ SE SUMA A LA COLUMA FARE UN 2 PARA EVITAR VALORES INDEFINIDOS DE LOGARITMO NATURAL CUANDO FARE TENGA UN VALOR 0 Y SE CREA LA COLUMNA FARE_LOG CON ESTE CALCULO

select(-Fare) titanic_data_clea								
PassengerId	SibSp	Parch	passenger_class	passenger_sex	passenger_survived	Titulos	HasCabinNum	Ticket_class

ELIMINO LA COLUMNA FARE

SE GRÁFICA LA MATRIZ DE CORRELACIONES PARA LA VARIABLE PASSENGER_SURVIVED DONDE SE PUEDE APRECIAR CON QUE OTRAS VARIABLES TIENE CORRELACIÓN SEA POSITIVA O NEGATIVA ESTO SERVIRÁ PARA DEFINIR LOS PREDICTORES QUE SERVIRÁN PARA ENTRENAR EL MODELO

EVALUACIÓN Y PREDICCIÓN

APARTIR DEL DATASET TITANIC_DATA_CLEAN SE CREA UNA DIVISIÓN DE DATOS ALEATORIA CON EL MÉTODO SPLIT 80%-20% PARA OBTENER LOS DATASETS DE ENTRENAMIENTO Y VALIDACIÓN

```
processing and the process of the pr
```

PARA ENTRENAR EL MODELO DE ARBOLES
DE REGRESIÓN LOGÍSTICA SE HACE USO
DEL DATASET TRAIN_DATA Y ADEMAS POR
CORRELACION SE DEFINEN LOS
PREDICTORES QUE SERVIRÁN PARA
PREDECIR A LA VARIABLE OBJETIVO
PASSENGER_SURVIVED

UNA VEZ EL MODELO ENTRENADO SE PROCEDE A PREDECIR LOS VALORES DE LA VARIABLE OBJETIVO PASSENGER_SURVIVED, USANDO EL METODO PREDICT Y PARA ELLO SE USA EL DATASET VALIDATION_DATA.

CON ESTAS MÉTRICAS SIRVEN PARA MEDIR QUE TAN BIEN ESTA PREDICIENDO EL MODELO CON DATOS DE ENTRENAMIENTO. ESTAS METRICAS SE OBTUVIERON DE LOS DIFERENTES INTENTOS Y MODELOS DE MACHINE LEARNING DE APRENDIZAJE SUPERVISADO.

	F1 SCORE	PRECISION	RECALL
Entrenamiento fallido			
Entrenamiento fallido			-
Entrenamiento fallido	-	<u> </u>	
Entrenamiento fallido	- - -	F11.0.21.20425	[1] 0.3725040
Entrenamiento y validación 60% - 40%	[1] 0.7420814	[1] 0.7130435	[1] 0.7735849
Entrenamiento y validación 60% - 40 %	[1] 0.7420814	[1] 0.7130435	[1] 0.7735849
Entrenamiento y validación 80% - 20 %	[1] 0.733945	[1] 0.7017544	[1] 0.7692308
Entrenamiento y validación 90% - 10 %	[1] 0.7666667	[1] 0.71875	[1] 0.8214286
Quitando Embarked_S, Embarked_C,	[1] 0.7868852	[1] 0.75	[1] 0.8275862
Embarked_Q y agregando columna Embarked entrenamiento y validación 90% - 10%			
Normalizando la columna Fare_log 90% - 10%	[1] 0.7868852	[1] 0.75	[1] 0.8275862
Aplicando Arboles de regresión logística 90% - 10%	[1] 0.7741935	[1] 0.75	[1] 0.8
Aplicando arboles de decisión con variables Dummies	[1] 0.8	[1] 0.7333333	[1] 0.88
Aplicando regresión logística	[1] 0.7857143	[1] 0.7333333	[1] 0.8461538
Aplicando regresión logística	[1] 0.7857143	[1] 0.7333333	[1] 0.8461538
Aplicando la normalización 80% - 20%	[1] 0.789916	[1] 0.7704918	[1] 0.8103448
Aplicando arboles de decisión 90% - 10%	[1] 0.7586207	[1] 0.6875	[1] 0.8461538
Aplicando RandomForest	[1] 0.75	[1] 0.7	[1] 0.8076923
Aplicando regresión logística	[1] 0.7333333	[1] 0.6875	[1] 0.7857143
Aplicando regresión logística	[1] 0.6896552	[1] 0.6666667	[1] 0.7142857
Aplicando regresión logística	[1] 0.7142857	[1] 0.6666667	[1] 0.7692308
Aplicando regresión logística	[1] 0.7213115	[1] 0.7333333	[1] 0.7096774
Aplicando regresión logística	[1] 0.6785714	[1] 0.6333333	[1] 0.7307692
Aplicando regresión logística	[1] 0.6785714	[1] 0.6333333	[1] 0.7307692
Aplicando arboles de regresión logística	[1] 0.6785714	[1] 0.6333333	[1] 0.7307692
Aplicando arboles de regresión logística	[1] 0.6724138	[1] 0.6393443	[1] 0.7090909
Aplicando arboles de regresión logística	[1] 0.6724138	[1] 0.6393443	[1] 0.7090909
Aplicando arboles de regresión logística	[1] 0.6724138	[1] 0.6393443	[1] 0.7090909

PRUEBAS DEL MODELO DE APRENDIZAJE CON DATOS DE EVALUACIÓN

LUEGO SE NOS BRINDO EL DATASET LLAMADO EVALUATION_DATASET.CSV ESTE DATASET NO CONTO CON LA COLUMNA DE PASSENGER_SURVIVED

	. ENTRENAMIENTO DEL MODELO DE REGRESION LOGISTICA BINOMIA					
Passengerid		SBSp			Embarked	
	Alt Mr. William					
	Harmer, Mr. Abraham (David Lishin)		374887			
	Sjoblom, Miss, Anna Sofia					
	Rice, Master. Ceorge Hugh					
	Dean, Master. Bertram Vere					

LUEGO DE IMPORTAR ESTE DATASET DE EVALUATION SE APLICO EL MISMO PROCEDIMIENTO DE ANALISIS DE DATOS, LIMPIEZA DE DATOS, IMPUTACION DE DATOS PARA DEJARLO DE LA MISMA FORMA QUE EL DATASET DE ENTRENAMIENTO Y CON ELLO SE BUSCA HOMOGENISAR LOS DATOS EN AMBOS ARCHIVOS. CON ESTE DATASET DE EVALUATION SE TIENE COMO OBJETIVO EVALUAR EL MODELO CON DATOS TOTALMENTE AGENOS A LOS QUE SIRVIERON EN EL ENTRENAMIENTO DEL MODELO DE APRENDIZAJE SUPERVISADO.

SE APLICA LAS PREDICCIONES CON EL DATASET DE EVALUATION_DATA_CLEAN PARA DETERMINAR LAS PREDICCIONES OBTENIDAS SON PROBABILIDADES DE OCURRENCIA DEL EVENTO POR LO QUE SE USA LA FUNCION PARA CLASIFICAR TODA PROBABILIDAD > 0.5 SE CONSIDERA COMO VERDADERO Y TODA PROBABILIDAD < 0.5 SE CONSIDERA COMO FALSO.

SE CONSTRUYE UN DATASET CON EL FORMATO PARA QUE KAGGLE PUEDA EVALUAR LA PRUEBA.

SIEMPRE VERIFICANDO LA CANTIDAD DE FILAS CON LOS DATASET ORIGINALES PARA NO TENER MAS O MENOS DATOS.

```
| Compared to the Compared to
```

PARA FINALIZAR SE GUARDA ESTE
DATASET DE LAS PREDICCIONES
OBTENIDAS POR EL MODELO EN UN
FORMATO DE CSV SEPARADO POR COMA

DEJO EVIDENCIA DE TODAS LAS PRUEBAS DE LOS MODELOS QUE UTILICE PARA ESTA SOLUCION AL PROBLEMA.

COMENTARIO FINAL

CON MI MODELO DE APRENDIZAJE AUTOMATICO SUPERVISADO DE ARBOLES DE REGRESION LOGISTICA PUEDE OBSERVAR QUE LAS METRICAS OBTENIDAS EN EL ENTRENAMIENTO ERAN MAYORES A LAS OBTENIDAS CUANDO SE ENTRENA EL MODELO CON DATOS NUEVOS ESTO ME HACE PENSAR EN QUE EXISTE UN OVERFITTING CONSIDERO QUE ESO HACE QUE EL RESULTADO OBTENIDO EN KAGGLE NO SEA DEL TODO ACEPTABLE YA QUE EL MODELO NO APRENDE LO SUFICIENTEMENTE BIEN PARA ELLO HACE FALTA MAYOR ANALISIS DE DATOS POR QUE ESTO PUEDE CAUSAR DICHOS EFECTOS.