Recitation 5 Solutions

- Feel free to solve this collaboratively during recitation, and ask (and answer) questions about this problem set on Piazza.
- This is an **optional** problem set; do not turn this in for grading.
- While you don't have to turn this in, be warned that this material **can** appear in a quiz or exam.
- 1. Indicate which of the following relationships are true and which are false, together with a brief explanation in words why you think that is the case:
- (a) $Z^+ \subseteq Q$.
- (b) $Q \subseteq Z$.
- (c) $Q \cap R = Q$.
- (d) $Z^+ \cap R = Z^+$.
- (e) $\emptyset \subset \mathbb{N}$.

Solution

- (a) True
- (b) False. $1/2 \in Q$ but $1/2 \notin Z$
- (c) True
- (d) True
- (e) True
- 2. Prove each of the following for all sets A, B, C in a universal set \mathbb{U} :
 - (a) $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.
 - (b) $A \oplus \emptyset = A$.
 - (c) $A \oplus A = \emptyset$
 - (d) If $A \oplus C = B \oplus C$, then A = B.

Solution

(a) Observe that $A\oplus B=\{x|(x\in A\wedge x\notin B)\vee (x\notin A\wedge x\in B)\}=\{x|x\in A\oplus x\in B\}$

Therefore:

$$A \oplus (B \oplus C) = \{x | x \in A \oplus (x \in B \oplus x \in C)\}$$

$$= \{x | (x \in A \oplus x \in B) \oplus x \in C\}$$
 (Because XOR is associative)

$$= (A \oplus B) \oplus C$$

(b)
$$A \oplus \emptyset = (A - \emptyset) \cup (\emptyset - A) = A \cup \emptyset = A$$
.

(c)
$$A \oplus A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$$
.

(d) Proof by contradiction:

Assume that $A \neq B$, then there exists an element x such that $x \in A$ and $x \notin B$.

• Case 1: $x \in C$:

Because $x \in C$ and $x \in A$, $x \notin (A \oplus C)$

Because $x \notin (A \oplus C)$ and $A \oplus C = B \oplus C$, $x \notin (B \oplus C)$.

Because $x \notin (B \oplus C)$ and $x \in C$, $x \in B$ which contradicts to the assumption that $x \notin B$.

• Case 2: $x \notin C$:

Because $x \notin C$ and $x \in A$, $x \in (A \oplus C)$

Because $x \in (A \oplus C)$ and $A \oplus C = B \oplus C$, $x \in (B \oplus C)$.

Because $x \in (B \oplus C)$ and $x \notin C$, $x \in B$ which contradicts to the assumption that $x \notin B$.

3. Either prove the following statement, or disprove it using a counter-example.

For all sets A, B, C, if $B \cap C \subseteq A$, then $(A - B) \cap (A - C) = \emptyset$.

Solution

Counter-example: $A = \{1, 2, 3, 4\}$ and $B = C = \emptyset$. Then $(A - B) \cap (A - C) = \{1, 2, 3, 4\}$

4. A pair of sets are called *disjoint* if their intersection is the empty set. Prove that two finite sets A and B are disjoint if and only if $|A| + |B| = |A \cup B|$.

Solution

A and B are disjoint $\implies |A| + |B| = |A \cup B|$.

If A and B are disjoint, $|A \cap B| = 0$.

Using the principle of inclusion - exclusion, $|A| + |B| = |A \cup B| + |A \cap B|$.

Substituting $|A \cap B| = 0$ to the above, we get $|A| + |B| = |A \cup B|$.

On the other hand, we also need to prove following:

 $|A| + |B| = |A \cup B| \implies A \text{ and } B \text{ are disjoint.}$

If $|A| + |B| = |A \cup B|$ is satisfied, we can substitute this to the principle of inclusion - exclusion and get following:

 $|A \cap B| = 0$. Since the cardinality of $|A \cap B| = 0$, A and B are disjoint.