Prediction of Fuel Emission in Cities using Multiple Linear Regression

Importing Libraries

```
import pandas as pd
from sklearn.preprocessing import StandardScaler,MinMaxScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
import seaborn as sns
import matplotlib.pyplot as plt
```

Loading The Dataset

Out[71]:

Inforr	Engine Information.Engine Type	Engine Information.Driveline	Dimensions.Width	Dimensions.Length	s.Height
	Audi 3.2L 6 cylinder 250hp 236ft-lbs	All-wheel drive	202	143	140
	Audi 2.0L 4 cylinder 200 hp 207 ft-lbs Turbo	Front-wheel drive	202	143	140
	Audi 2.0L 4 cylinder 200 hp 207 ft-lbs Turbo	Front-wheel drive	202	143	140
	Audi 2.0L 4 cylinder 200 hp 207 ft-lbs Turbo	All-wheel drive	202	143	140
	Audi 2.0L 4 cylinder 200 hp 207 ft-lbs Turbo	All-wheel drive	202	143	140
>					4

Understanding the dataset

In [72]: df.select_dtypes(include='number').describe()

Out[72]:

	Dimensions.Height	Dimensions.Length	Dimensions.Width	Information.Number of Forward Gears	Informa
count	5076.000000	5076.000000	5076.000000	5076.000000	507
mean	145.632191	127.825847	144.012411	5.519110	1
std	62.125026	77.358295	79.925899	0.845637	
min	1.000000	2.000000	1.000000	4.000000	
25%	104.000000	60.000000	62.000000	5.000000	1
50%	152.000000	128.000000	158.000000	6.000000	1
75%	193.000000	198.000000	219.000000	6.000000	2
max	255.000000	255.000000	254.000000	8.000000	3
4					•

In [73]: df.select_dtypes(include='object').describe()

Out[73]:

1	Engir nsmissio		Inf	orma	tion.Fu	be nel	
	507	76			50	76	
		11				4	
6	atic Se l e Sh				Gasoli	ne	
	131	13			45	91	
						•	

In [74]: df.shape

Out[74]: (5076, 18)

In [75]: df.ndim

Out[75]: 2

```
In [76]: df.dtypes
Out[76]: Dimensions.Height
                                                                int64
          Dimensions.Length
                                                                int64
          Dimensions.Width
                                                                int64
          Engine Information.Driveline
                                                               object
          Engine Information. Engine Type
                                                               object
          Engine Information. Hybrid
                                                                 bool
          Engine Information. Number of Forward Gears
                                                                int64
          Engine Information. Transmission
                                                               object
          Fuel Information.City mpg
                                                                int64
          Fuel Information. Fuel Type
                                                               object
          Fuel Information. Highway mpg
                                                                int64
          Identification.Classification
                                                               object
          Identification.ID
                                                               object
          Identification.Make
                                                               object
          Identification.Model Year
                                                               object
          Identification.Year
                                                                int64
          Engine Information. Engine Statistics. Horsepower
                                                                int64
          Engine Information. Engine Statistics. Torque
                                                                int64
          dtype: object
In [77]: | categorical_columns=df.select_dtypes(include='object')
         numerical_columns=df.select_dtypes(include='number')
```

Data Cleaning

```
In [78]: #checking for null values
         df.isnull().sum()
Out[78]: Dimensions.Height
                                                               0
         Dimensions.Length
                                                               0
          Dimensions.Width
                                                               0
         Engine Information.Driveline
                                                               0
          Engine Information. Engine Type
                                                               0
          Engine Information. Hybrid
                                                               0
          Engine Information. Number of Forward Gears
                                                               0
          Engine Information.Transmission
                                                               0
          Fuel Information.City mpg
          Fuel Information.Fuel Type
                                                               0
          Fuel Information. Highway mpg
                                                               0
          Identification.Classification
                                                               0
          Identification.ID
                                                               0
          Identification.Make
                                                               0
          Identification.Model Year
                                                               0
          Identification.Year
                                                               0
          Engine Information. Engine Statistics. Horsepower
                                                               0
          Engine Information. Engine Statistics. Torque
          dtype: int64
In [79]:
         duplicate_rows=df.duplicated().sum()
         print("Number of Duplicate Rows = ",duplicate_rows)
          Number of Duplicate Rows =
```

In [80]: #removing duplicate rows df=df.drop_duplicates() df

Out[80]:

	Dimensions.Height	Dimensions.Length	Dimensions.Width	Engine Information.Driveline	Informa				
0	140	143	202	All-wheel drive	Audi 3 25				
1	140	143	202	Front-wheel drive	Audi 2 200				
2	140	143	202	Front-wheel drive	Audi 2 200				
3	140	143	202	All-wheel drive	Audi 2 200				
5	91	17	62	All-wheel drive	Audi 3 26{				
5071	13	253	201	Front-wheel drive	l Cylinde				
5072	141	249	108	All-wheel drive	Lambor cylinde				
5073	160	249	108	All-wheel drive	Lambor cylinde				
5074	200	210	110	Rear-wheel drive	cylind				
5075	200	94	110	Rear-wheel drive	cylind				
5058 ı	rows × 18 columns								
■ To columns									
df.sh	df.shape								
(5058	(5058, 18)								
print	<pre>print("Number of Duplicate Rows = ",df.duplicated().sum())</pre>								

In [81]:

Out[81]:

In [82]:

Number of Duplicate Rows = 0

Handling Outliers

```
In [83]: for col in numerical_columns:
    Q1=df[col].quantile(0.25)
    Q3=df[col].quantile(0.75)
    IQR=Q3-Q1
    lower_bound=Q1-1.5*IQR
    upper_bound=Q3+1.5*IQR
    df=df[(df[col]>=lower_bound) & (df[col]<=upper_bound)]</pre>
```

In [84]: df

Out[84]:

	Dimensions.Height	Dimensions.Length	Dimensions.Width	Engine Information.Driveline	Informa
0	140	143	202	All-wheel drive	Audi 3 25
1	140	143	202	Front-wheel drive	Audi 2 200
2	140	143	202	Front-wheel drive	Audi 2 200
3	140	143	202	All-wheel drive	Audi 2 200
5	91	17	62	All-wheel drive	Audi 3 26
5069	3	253	201	Front-wheel drive	l Cylinde
5070	3	253	201	Four-wheel drive	l Cylinde
5071	13	253	201	Front-wheel drive	l Cylinde
5074	200	210	110	Rear-wheel drive	cylind
5075	200	94	110	Rear-wheel drive	cylind
4794 ı	rows × 18 columns				
4					•

In [85]: df=df.drop(columns='Engine Information.Hybrid')

In [86]: df

Out[86]:

	Dimensions.Height	Dimensions.Length	Dimensions.Width	Engine Information.Driveline	Informa
0	140	143	202	All-wheel drive	Audi 3 25
1	140	143	202	Front-wheel drive	Audi 2 200
2	140	143	202	Front-wheel drive	Audi 2 200
3	140	143	202	All-wheel drive	Audi 2 200
5	91	17	62	All-wheel drive	Audi 3 26{
•••					
5069	3	253	201	Front-wheel drive	l Cylind∈
5070	3	253	201	Four-wheel drive	l Cylind∈
5071	13	253	201	Front-wheel drive	l Cylinde
5074	200	210	110	Rear-wheel drive	cylind
5075	200	94	110	Rear-wheel drive	cylind
4794 r	ows × 17 columns				
4					•

Encoding

In [87]:	categorical_columns.nunique()		
Out[87]:	Engine Information.Driveline	4	
	Engine Information.Engine Type	535	
	Engine Information.Transmission	11	
	Fuel Information.Fuel Type	4	
	Identification.Classification	2	
	<pre>Identification.ID</pre>	5030	
	Identification.Make	47	
	Identification.Model Year	918	
	dtype: int64		

In [89]: df=pd.get_dummies(df,columns=catcols_onehot)

In [90]: df

Out[90]:

	Dimensions.Height	Dimensions.Length	Dimensions.Width	Engine Information.Engine Type	Informati of For
0	140	143	202	18.000000	
1	140	143	202	21.166667	
2	140	143	202	21.166667	
3	140	143	202	21.166667	
5	91	17	62	17.000000	
5069	3	253	201	16.800000	
5070	3	253	201	16.800000	
5071	13	253	201	16.800000	
5074	200	210	110	17.000000	
5075	200	94	110	17.000000	

4794 rows × 24 columns

Engino

In [91]: df

Out[91]:

	Dimensions.Height	Dimensions.Length	Dimensions.Width	Engine Information.Engine Type	Informati of For
0	140	143	202	18.000000	
1	140	143	202	21.166667	
2	140	143	202	21.166667	
3	140	143	202	21.166667	
5	91	17	62	17.000000	
5069	3	253	201	16.800000	
5070	3	253	201	16.800000	
5071	13	253	201	16.800000	
5074	200	210	110	17.000000	
5075	200	94	110	17.000000	

4794 rows × 24 columns

In [92]: corr_matrix = df.corr()

plt.figure(figsize=(20,10))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths

plt.title('Correlation Heatmap')
plt.show()

Scaling

```
In [93]:
           scaler=MinMaxScaler()
           df[df.select dtypes(include='number').columns]=scaler.fit transform(df[df.s
In [94]:
In [95]:
               0
                            0.545455
                                               0.557312
                                                                  0.794466
                                                                                     0.463415
               1
                            0.545455
                                               0.557312
                                                                  0.794466
                                                                                     0.617886
               2
                            0.545455
                                               0.557312
                                                                  0.794466
                                                                                     0.617886
               3
                            0.545455
                                               0.557312
                                                                  0.794466
                                                                                     0.617886
               5
                            0.351779
                                               0.059289
                                                                  0.241107
                                                                                     0.414634
                                                                                     0.404878
            5069
                            0.003953
                                               0.992095
                                                                  0.790514
            5070
                            0.003953
                                               0.992095
                                                                  0.790514
                                                                                     0.404878
            5071
                            0.043478
                                               0.992095
                                                                  0.790514
                                                                                     0.404878
            5074
                            0.782609
                                               0.822134
                                                                                     0.414634
                                                                  0.430830
            5075
                            0.782609
                                               0.363636
                                                                  0.430830
                                                                                     0.414634
           4794 rows × 24 columns
```

Feature Selection

```
In [96]: | df.columns
Out[96]: Index(['Dimensions.Height', 'Dimensions.Length', 'Dimensions.Width',
                 'Engine Information.Engine Type',
                 'Engine Information.Number of Forward Gears',
                 'Engine Information.Transmission', 'Fuel Information.City mpg',
                 'Fuel Information.Highway mpg', 'Identification.ID',
                 'Identification.Make', 'Identification.Model Year',
                 'Identification.Year',
                 'Engine Information. Engine Statistics. Horsepower',
                 'Engine Information.Engine Statistics.Torque',
                 'Engine Information.Driveline_All-wheel drive',
                 'Engine Information.Driveline Four-wheel drive',
                 'Engine Information.Driveline Front-wheel drive',
                 'Engine Information.Driveline_Rear-wheel drive',
                 'Fuel Information.Fuel Type_Compressed natural gas',
                 'Fuel Information.Fuel Type_Diesel fuel',
                 'Fuel Information.Fuel Type_E85', 'Fuel Information.Fuel Type_Gasol
         ine',
                 'Identification.Classification Automatic transmission',
                 'Identification.Classification Manual transmission'],
               dtype='object')
```

Selecting features using RFE

VIF (Variance Inflation Factor) and PCA

In [99]: df[selected_features]

Out[99]:

	Engine Information.Engine Type	Fuel Information.Highway mpg	Identification.ID	Identification.Model Year	Informatic Ty
0	0.463415	0.482759	0.476190	0.55556	
1	0.617886	0.586207	0.666667	0.55556	
2	0.617886	0.655172	0.619048	0.55556	
3	0.617886	0.586207	0.619048	0.55556	
5	0.414634	0.551724	0.380952	0.346405	
5069	0.404878	0.482759	0.476190	0.403922	
5070	0.404878	0.448276	0.428571	0.403922	
5071	0.404878	0.482759	0.476190	0.403922	
5074	0.414634	0.482759	0.428571	0.372549	
5075	0.414634	0.482759	0.428571	0.372549	

4794 rows × 5 columns

In [101]: df['Fuel Information.Fuel Type_E85']=df['Fuel Information.Fuel Type_E85'].a

In [102]: df[selected_features]

Out[102]:

	Engine Information.Engine Type	Fuel Information.Highway mpg	Identification.ID	Identification.Model Year	Informatic Ty
0	0.463415	0.482759	0.476190	0.555556	
1	0.617886	0.586207	0.666667	0.555556	
2	0.617886	0.655172	0.619048	0.55556	
3	0.617886	0.586207	0.619048	0.55556	
5	0.414634	0.551724	0.380952	0.346405	
5069	0.404878	0.482759	0.476190	0.403922	
5070	0.404878	0.448276	0.428571	0.403922	
5071	0.404878	0.482759	0.476190	0.403922	
5074	0.414634	0.482759	0.428571	0.372549	
5075	0.414634	0.482759	0.428571	0.372549	
4794 1	rows × 5 columns				

```
In [105]:
          # #vif
          # from statsmodels.stats.outliers influence import variance inflation facto
          # selected features = ['Engine Information.Engine Type', 'Fuel Information.
                    'Identification.ID',
          #
                    'Identification. Model Year',
                    'Fuel Information.Fuel Type E85']
          X = df[selected features]
          #Create a DataFrame to store VIF values
          vif data = pd.DataFrame()
          vif data["Feature"] = X.columns
          vif data["VIF"] = [variance inflation factor(X.values, i) for i in range(X.
          print(vif_data)
                                     Feature
                                                     VIF
             Engine Information. Engine Type
                                             153.036549
          1
               Fuel Information. Highway mpg
                                              62.119350
                           Identification.ID
                                              179.245052
                  Identification.Model Year
          3
                                               51.423572
            Fuel Information.Fuel Type_E85
                                                1.282206
In [106]:
          from sklearn.decomposition import PCA
          # Extract features with high VIF
          high_vif_features = ['Engine Information.Engine Type', 'Fuel Information.Hi
          # Apply PCA
          pca = PCA(n_components=1) # Reduce to a single component
          X_pca = pca.fit_transform(df[high_vif_features])
          # Create a new column in the DataFrame for the PCA component
          df['PCA_Enginetype_highway'] = X_pca
          # Drop the original correlated features
          df = df.drop(columns=high_vif_features)
          print("Transformed DataFrame with PCA feature added:")
          df.head()
```

Transformed DataFrame with PCA feature added:

Out[106]:

	Dimensions.Height	Dimensions.Length	Dimensions.Width	Engine Information.Number of Forward Gears	Information		
0	0.545455	0.557312	0.794466	0.666667			
1	0.545455	0.557312	0.794466	0.666667			
2	0.545455	0.557312	0.794466	0.666667			
3	0.545455	0.557312	0.794466	0.666667			
5	0.351779	0.059289	0.241107	0.666667			
5 rows × 23 columns							
\blacksquare					•		

```
In [107]:
          #vif
          from statsmodels.stats.outliers_influence import variance_inflation_factor
          selected_features = ['PCA_Enginetype_highway',
                  'Identification.ID',
                  'Identification.Model Year',
                 'Fuel Information.Fuel Type_E85']
          X = df[selected features]
          # Create a DataFrame to store VIF values
          vif data = pd.DataFrame()
          vif_data["Feature"] = X.columns
          vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.
          print(vif_data)
                                     Feature
                                                    VIF
          0
                     PCA_Enginetype_highway
                                              2.122976
                           Identification.ID
          1
                                             45.165115
                  Identification.Model Year
          2
                                              50.004440
             Fuel Information.Fuel Type_E85
                                               1.673974
In [108]:
          from sklearn.decomposition import PCA
          # Extract features with high VIF
          high_vif_features1 = ['Identification.ID', 'Identification.Model Year']
          # Apply PCA
          pca = PCA(n_components=1) # Reduce to a single component
          X_pca = pca.fit_transform(df[high_vif_features1])
          # Create a new column in the DataFrame for the PCA component
          df['PCA_ID_Model Year'] = X_pca
          # Drop the original correlated features
          df = df.drop(columns=high_vif_features1)
          print("Transformed DataFrame with PCA feature added:")
          df.head()
```

Transformed DataFrame with PCA feature added:

Out[108]:

	Dimensions.Height	Dimensions.Length	Dimensions.Width	Engine Information.Number of Forward Gears	Information				
0	0.545455	0.557312	0.794466	0.666667					
1	0.545455	0.557312	0.794466	0.666667					
2	0.545455	0.557312	0.794466	0.666667					
3	0.545455	0.557312	0.794466	0.666667					
5	0.351779	0.059289	0.241107	0.666667					
5 rows × 22 columns									
4					•				

```
In [109]:
          #vif
          from statsmodels.stats.outliers_influence import variance_inflation_factor
          selected_features = ['PCA_Enginetype_highway',
                  'PCA ID Model Year',
                  'Fuel Information.Fuel Type E85']
          X = df[selected_features]
          # Create a DataFrame to store VIF values
          vif data = pd.DataFrame()
          vif data["Feature"] = X.columns
          vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.
          print(vif_data)
                                     Feature
                                                    VIF
          0
                     PCA Enginetype highway 23.623078
          1
                          PCA_ID_Model Year
                                             23.140748
             Fuel Information.Fuel Type_E85
                                              1.208917
In [110]: from sklearn.decomposition import PCA
          # Extract features with high VIF
          high_vif_features2 = ['PCA_Enginetype_highway', 'PCA_ID_Model Year']
          # Apply PCA
          pca = PCA(n_components=1) # Reduce to a single component
          X_pca = pca.fit_transform(df[high_vif_features2])
          # Create a new column in the DataFrame for the PCA component
          df['PCA_Final'] = X_pca
          # Drop the original correlated features
          df = df.drop(columns=high_vif_features2)
          print("Transformed DataFrame with PCA feature added:")
          df.head()
```

Transformed DataFrame with PCA feature added:

Out[110]:

	Dimensions.Height	Dimensions.Length	Dimensions.Width	Engine Information.Number of Forward Gears	Information				
0	0.545455	0.557312	0.794466	0.666667					
1	0.545455	0.557312	0.794466	0.666667					
2	0.545455	0.557312	0.794466	0.666667					
3	0.545455	0.557312	0.794466	0.666667					
5	0.351779	0.059289	0.241107	0.666667					
5 rows × 21 columns									
$ \cdot $					•				

C!

PCA Final 1.192972

```
Hence, the features are multicollinear
```

Fuel Information.Fuel Type_E85 1.192972

Model Training

```
In [112]: from sklearn.linear_model import LinearRegression
    import matplotlib.pyplot as plt
    import seaborn as sns

model=LinearRegression()

X=df[['PCA_Final','Fuel Information.Fuel Type_E85']]
Y=df[['Fuel Information.City mpg']]

model.fit(X,Y)
pred=model.predict(X)
```

Calculating R^2 value

```
In [113]: from sklearn.metrics import r2_score
    r2_score_value = r2_score(Y, pred)
    print(r2_score_value)
```

0.9814751698519412

Homoscedasticity

```
In [114]: err=Y-pred
   plt.scatter(pred,err,color='b')
   plt.xlabel('predicted value')
   plt.ylabel('residual')
   plt.title('residual plot')
   plt.axhline(y=0,color='r')
```

Out[114]: <matplotlib.lines.Line2D at 0x1cf6242b4f0>

Linearity

```
In [115]: x=df['PCA_Final']
    y=df['Fuel Information.City mpg']
    plt.xlabel('PCA_Final')
    plt.ylabel('Fuel Information.City mpg')
    plt.scatter(x,y)
```

Out[115]: <matplotlib.collections.PathCollection at 0x1cf630b7850>


```
In [116]: x=df['Fuel Information.Fuel Type_E85']
    y=df['Fuel Information.City mpg']
    plt.xlabel('Fuel Information.Fuel Type_E85')
    plt.ylabel('Fuel Information.City mpg')
    plt.scatter(x,y)
```

Out[116]: <matplotlib.collections.PathCollection at 0x1cf6250f5b0>

Conclusion

The cars dataset was analysed, preprocessed, categorical variables encoded using various encoding techniques. Required features were selected using RFE and Dimentionality reduction was done using PCA to reduce the VIF value.

Model Training was done using Linear Regression model and Residual plot was plotted

Graphs were plotted to verify the assumptions like linearity and homoscedasticity