```
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
from patsy import dmatrices
```

import seaborn as sns

dataframe=pd.read_csv("/content/IBM HR Analytics Employee Attrition Modeling .zip")

dataframe.head()

	Age	Attrition	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	JobSatisfact
0	41	Yes	Sales	1	2	Life Sciences	2	
1	49	No	Research & Development	8	1	Life Sciences	3	
2	37	Yes	Research & Development	2	2	Other	4	
3	33	No	Research & Development	3	4	Life Sciences	4	
4	27	No	Research & Development	2	1	Medical	1	


```
names = dataframe.columns.values
print(names)
```

```
['Age' 'Attrition' 'Department' 'DistanceFromHome' 'Education' 
'EducationField' 'EnvironmentSatisfaction' 'JobSatisfaction'
```

```
# histogram for age
plt.figure(figsize=(10,8))
dataframe['Age'].hist(bins=70)
plt.title("Age distribution of Employees")
plt.xlabel("Age")
plt.ylabel("# of Employees")
plt.show()
```



```
# explore data for Attrition by Age
plt.figure(figsize=(14,10))
plt.scatter(dataframe.Attrition,dataframe.Age, alpha=.55)
plt.title("Attrition by Age ")
plt.ylabel("Age")
plt.grid(b=True, which='major',axis='y')
plt.show()
```

В

^{&#}x27;MaritalStatus' 'MonthlyIncome' 'NumCompaniesWorked' 'WorkLifeBalance'

^{&#}x27;YearsAtCompany']


```
# explore data for Left employees breakdown
plt.figure(figsize=(8,6))
dataframe.Attrition.value_counts().plot(kind='barh',color='blue',alpha=.65)
plt.title("Attrition breakdown ")
plt.show()
```



```
# explore data for Education Field distribution
plt.figure(figsize=(10,8))
dataframe.EducationField.value_counts().plot(kind='barh',color='g',alpha=.65)
plt.title("Education Field Distribution")
plt.show()
```

В

```
# explore data for Marital Status
plt.figure(figsize=(8,6))
dataframe.MaritalStatus.value_counts().plot(kind='bar',alpha=.5)
plt.show()
```


dataframe.describe()

	Age	DistanceFromHome	Education	${\bf Environment Satisfaction}$	JobSatisfaction	MonthlyIncome	NumCom
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	
mean	36.923810	9.192517	2.912925	2.721769	2.728571	6502.931293	
std	9.135373	8.106864	1.024165	1.093082	1.102846	4707.956783	
min	18.000000	1.000000	1.000000	1.000000	1.000000	1009.000000	
25%	30.000000	2.000000	2.000000	2.000000	2.000000	2911.000000	
50%	36.000000	7.000000	3.000000	3.000000	3.000000	4919.000000	
75%	43.000000	14.000000	4.000000	4.000000	4.000000	8379.000000	
max	60.000000	29.000000	5.000000	4.000000	4.000000	19999.000000	

dataframe.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 13 columns):
```

		- / -				
#	Column	Non-Null Count	Dtype			
0	Age	1470 non-null	int64			
1	Attrition	1470 non-null	object			
2	Department	1470 non-null	object			
3	DistanceFromHome	1470 non-null	int64			
4	Education	1470 non-null	int64			
5	EducationField	1470 non-null	object			
6	EnvironmentSatisfaction	1470 non-null	int64			
7	JobSatisfaction	1470 non-null	int64			
8	MaritalStatus	1470 non-null	object			
9	MonthlyIncome	1470 non-null	int64			
10	NumCompaniesWorked	1470 non-null	int64			
11	WorkLifeBalance	1470 non-null	int64			
12	YearsAtCompany	1470 non-null	int64			
<pre>dtypes: int64(9), object(4) memory usage: 149.4+ KB</pre>						

dataframe.columns

```
Index(['Age', 'Attrition', 'Department', 'DistanceFromHome', 'Education',
    'EducationField', 'EnvironmentSatisfaction', 'JobSatisfaction',
    'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
    'WorkLifeBalance', 'YearsAtCompany'],
    dtype='object')
```

dataframe.std()

Age	9.1353/3
DistanceFromHome	8.106864
Education	1.024165
EnvironmentSatisfaction	1.093082
JobSatisfaction	1.102846
MonthlyIncome	4707.956783
NumCompaniesWorked	2.498009

```
dataframe['Attrition'].value_counts()
            1233
             237
    Name: Attrition, dtype: int64
dataframe['Attrition'].dtypes
    dtype('0')
dataframe['Attrition'].replace('Yes',1, inplace=True)
dataframe['Attrition'].replace('No',0, inplace=True)
dataframe.head(10)
₽
                        Department DistanceFromHome Education EducationField EnvironmentSatisfa
        Age Attrition
     0 41
                               Sales
                                                     1
                                                                2
                                                                      Life Sciences
                          Research &
         49
                                                     8
                                                                      Life Sciences
     1
                                                                1
                        Development
                          Research &
         37
                                                     2
                                                                2
                                                                            Other
     2
                        Development
                         Research &
         33
                                                     3
                                                                4
                                                                      Life Sciences
                        Development
                          Research &
                                                     2
                                                                           Medical
         27
                                                                1
                        Development
                          Research &
         32
                                                     2
                                                                2
                                                                      Life Sciences
                        Development
                          Research &
                                                     3
                                                                3
                                                                           Medical
                        Development
                          Research &
         30
                                                    24
                                                                1
                                                                      Life Sciences
                        Development
                         Research &
                                                    23
                                                                      Life Sciences
         38
                                                                3
     8
                        Development
                         Research &
                                                    27
                                                                3
                                                                           Medical
                        Development
      1
dataframe['EducationField'].replace('Life Sciences',1, inplace=True)
dataframe['EducationField'].replace('Medical',2, inplace=True)
dataframe['EducationField'].replace('Marketing', 3, inplace=True)
dataframe['EducationField'].replace('Other',4, inplace=True)
dataframe['EducationField'].replace('Technical Degree',5, inplace=True)
dataframe['EducationField'].replace('Human Resources', 6, inplace=True)
dataframe['EducationField'].value_counts()
          606
     2
          464
     3
          159
          132
    Name: EducationField, dtype: int64
dataframe['Department'].value_counts()
     Research & Development
     Sales
                               446
     Human Resources
                                63
     Name: Department, dtype: int64
dataframe['Department'].replace('Research & Development',1, inplace=True)
dataframe['Department'].replace('Sales',2, inplace=True)
dataframe['Department'].replace('Human Resources', 3, inplace=True)
dataframe['MaritalStatus'].value_counts()
     Single
```

WorkLifeBalance

YearsAtCompany

dtype: float64

0.706476

6.126525

```
x=dataframe.select_dtypes(include=['int64'])
x.dtypes
   Age
                    int64
   Attrition
                    int64
                    int64
   Department
   {\tt DistanceFromHome}
                    int64
   Education
                    int64
   EducationField
                    int64
   EnvironmentSatisfaction
                    int64
                    int64
   JobSatisfaction
   MonthlyIncome
                    int64
                    int64
   NumCompaniesWorked
   WorkLifeBalance
                    int64
   YearsAtCompany
                    int64
   dtype: object
x.columns
   Index(['Age', 'Attrition', 'Department', 'DistanceFromHome', 'Education',
        'EducationField', 'EnvironmentSatisfaction', 'JobSatisfaction', 'MonthlyIncome', 'NumCompaniesWorked', 'WorkLifeBalance', 'YearsAtCompany'],
       dtype='object')
y=dataframe['Attrition']
y.head()
      1
   1
      0
      1
   3
      0
   4
      0
   Name: Attrition, dtype: int64
y, x = dmatrices('Attrition \sim Age + Department + \setminus
           DistanceFromHome + Education + EducationField + YearsAtCompany',
           dataframe, return_type="dataframe")
print (x.columns)
   dtype='object')
y = np.ravel(y)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model = model.fit(x, y)
# check the accuracy on the training set
model.score(x, y)
   0.8408163265306122
y.mean()
   0.16122448979591836
import sklearn.model selection
X\_train, X\_test, y\_train, y\_test=sklearn. model\_selection. train\_test\_split(x, y, test\_size=0.3, random\_state=0)
model2=LogisticRegression()
model2.fit(X_train, y_train)
   LogisticRegression()
predicted= model2.predict(X_test)
print (predicted)
```

Divorced

327 Name: MaritalStatus, dtype: int64

```
0. 0. 0. 0. 0. 0. 0. 0. 0. 1
probs = model2.predict_proba(X_test)
print (probs)
     [0.80585706 0.19414294]
     [0.83150068 0.16849932]
     [0.53816801 0.46183199]
     [0.95031821 0.04968179]
     [0.73291921 0.26708079]
     [0.89182874 0.10817126]
     [0.80079859 0.19920141]
     [0.87739802 0.12260198]
     [0.96805228 0.03194772]
     [0.81741596 0.18258404]
     [0.86150085 0.13849915]
     [0.59407578 0.40592422]
     [0.82625729 0.17374271]
     [0.92534969 0.07465031]
     [0.81692206 0.18307794]
     [0.9258678 0.0741322 ]
     [0.8909459 0.1090541 ]
     [0.70071778 0.29928222]
     [0.82181894 0.17818106]
     [0.96589935 0.03410065]
     [0.8699699 0.1300301]
     [0.89918545 0.10081455]
     [0.88983808 0.11016192]
     [0.81432466 0.18567534]
     [0.85830032 0.14169968]
     [0.8387865 0.1612135 ]
     [0.84056579 0.15943421]
     [0.82661166 0.17338834]
     [0.94075161 0.05924839]
     [0.83183533 0.16816467]
     [0.7756136 0.2243864]
     [0.69399555 0.30600445]
     [0.8596213 0.1403787
     [0.8251394 0.1748606 ]
     [0.84107717 0.15892283]
     [0.87191013 0.12808987]
     [0.8944765 0.1055235 ]
     [0.82945355 0.17054645]
     [0.72856817 0.27143183]
     [0.94692819 0.05307181]
     [0.96074297 0.03925703]
     [0.90500199 0.09499801]
     [0.88599986 0.11400014]
     [0.84865641 0.15134359]
     [0.79086983 0.20913017]
     [0.67302986 0.32697014]
     [0.93390204 0.06609796]
     [0.65644896 0.34355104]
     [0.74382857 0.25617143]
     [0.94248406 0.05751594]
     [0.78365668 0.21634332]
     [0.90655654 0.09344346]
     [0.81578726 0.18421274]
     [0.89149735 0.10850265]
     [0.85791873 0.14208127]
     [0.67453868 0.32546132]
     [0.93130389 0.06869611]
     [0.89999981 0.10000019]]
from sklearn import metrics
print (metrics.accuracy_score(y_test, predicted))
print (metrics.roc_auc_score(y_test, probs[:, 1]))
    0.8435374149659864
    0.6502502887947632
print (metrics.confusion_matrix(y_test, predicted))
print (metrics.classification_report(y_test, predicted))
    [[371
     [ 69
           1]]
                precision
                           recall f1-score
                                            support
            0.0
            1.0
                    1.00
                             0.01
                                      0.03
                                                70
                                               441
                                      0.84
       accuracy
       macro avg
                    0.92
                             0.51
                                     0.47
                                               441
                                               441
    weighted avg
                    0.87
                             0.84
                                      0.77
```

338 363 759 793 581 763 835 1216	Intercept 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Age 30.0 33.0 45.0 28.0 30.0 34.0 35.0 43.0 38.0	2.0 2.0 3.0 1.0 1.0 2.0 3.0 2.0	DistanceFromHome 5.0 5.0 5.0 15.0 15.0 1.0 10.0 8.0 2.0 2.0 10.0 10.0 10.0 10.0 10.0 10.0	3.0 3.0 4.0 2.0 3.0 4.0 4.0 3.0 5.0	\
684	1.0	40.0	2.0	10.0	4.0	
338 363 759 793 581 763 835 1216 559 684	EducationF	ield 3.0 3.0 2.0 1.0 1.0 5.0 2.0 2.0 3.0	6 4 2 1 5 10	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .		

[1029 rows x 7 columns]

#add random values to KK according to the parameters mentioned above to check the proabily of attrition of the employee kk=[[1.0, 23.0, 1.0, 500.0, 3.0, 24.0, 1.0]] print(model.predict_proba(kk))

[[6.25571946e-07 9.99999374e-01]]

/usr/local/lib/python3.8/dist-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but LogisticRegression was fitted wi warnings.warn(