PROGRAMACIÓN FUNCIONAL

Lambda Cálculo: Definición - Sustitución

- Definición de λ-cálculo
- Noción de binding
- Sustitución vs. reemplazo

- → ¿Cómo definimos un lenguaje de programación?
 - Sintaxis (qué forma tienen los programas)
 - Semántica (qué significan los programas)
- → ¿Qué es lo mínimo necesario para tener un lenguaje de programación (funcional)?
 - Variables
 - Abstracción funcional
 - Aplicación de funciones

- ¿Qué sintaxis podemos usar para escribir funciones y su aplicación?
 - Notación λ (lambda) para funciones
 - Ej: usamos (λx.x) para representar una función que retorna su argumento sin alterarlo (identidad)
 - Yuxtaposición para aplicación
 - Ej: (λx.x)(λx.x) representa la aplicación de la función identidad a sí misma
- → ¿Y las variables?
 - Cualquier conjunto infinito de identificadores

- Conjunto de strings para dar sintaxis
 - Sea V un conjunto infinito de identificadores
 - Usaremos las letras x, y, z, ..., x₀, x₁, ... para denotar elementos de V
 - Definimos el conjunto Λ por inducción
 - si $x \in V$ entonces, también se cumple que $x \in \Lambda$
 - si $x \in V$ y $M \in \Lambda$, entonces $(\lambda x.M) \in \Lambda$
 - si $M,N \in \Lambda$, entonces $(MN) \in \Lambda$
 - De manera sintética

- Ejemplos: x (xy) ($\lambda x.(xy)$) ($\lambda x.(\lambda y.((xy)x))$)
 - ¡Hay demasiados paréntesis!
- Convenciones de notación
 - La aplicación asocia a izquierda
 - Así (xyz) significa ((xy)z) y no (x(yz))
 - La aplicación tiene más precedencia que la abstracción
 - Así ($\lambda x.xy$) significa ($\lambda x.(xy)$) y no (($\lambda x.x$)y)
 - Los paréntesis externos pueden omitirse
 - Así (λx.(λy.xyz)) puede escribirse λx.λy.xyz
 - Pueden juntarse varios λs consecutivos
 - Así (λx.λy.λz.xyz) puede escribirse (λxyz.xyz)

- → ¿Es suficiente con esto para programar?
 - Sí. El λ-cálculo tiene el mismo poder computacional que cualquier lenguaje de programación tradicional
- → ¿Por qué es interesante tener tan poco?
 - Permite definiciones simples
 - Facilita el estudio de aspectos computacionales
 - Facilita la demostración de propiedades
- Usos del λ-cálculo
 - Compilación de lenguajes funcionales
 - Para dar semántica a lenguajes imperativos
 - Formalismo para definir otras teorías

- *▶ Binding* (Ligadura de variables)
 - ◆ Es un concepto recurrente en programación
 - Las apariciones (ocurrencias) de variables en una expresión son de tres tipos:
 - ocurrencias de ligadura (binders)
 - ocurrencias ligadas (bound occurrences)
 - ocurrencias libres (free occurrences)
 - ◆ Cada binder tiene un alcance (scope), y toda ocurrencia de esa misma variable en el scope está <u>ligada</u> (bounded) a dicho binder (si hay colisión, se liga al de menor scope)

- → ¿Para qué sirve la idea de binding?
 - ◆ Un binder identifica y define a una entidad (se lo suele llamar parámetro formal)
 - ◆ Las ocurrencias ligadas de una variable denotan la entidad asociada al *binder* a la que están ligadas
 - Ejemplo: procedure Reset (var x : Integer) begin x := 0; oc. ligada end;
 - → Y las ocurrencias libres ¿a qué corresponden?

- ¿Cómo es el binding en λ-cálculo?
 - Cada ocurrencia que sigue a un λ es un *binder*
 - ❖ Su scope es el cuerpo de la abstracción
 - Las demás son ocurrencias libres

◆ Formalmente:

- ◆ la ocurrencia de x en x es libre
- ◆ toda ocurrencia en M y N permanece igual en (MN)
- ightharpoonup la ocurrencia de x que sigue al λ en $(\lambda x.M)$ es un *binder*
- * toda ocurrencia libre de x en M es una ocurrencia ligada en $(\lambda x.M)$ (y se liga a ese binder)
- toda oc. que no es ligada ni *binder* en $(\lambda x.M)$ es libre en $(\lambda x.M)$

Ejemplos

- Observamos que
 - una misma variable puede ocurrir libre y ligada
 - distintas ocurrencias pueden ligarse a distintos binders
 - la ligadura depende de toda la expresión

 (una ocurrencia cambia de "status" de una subexpresión a
 la expresión final; ej: x vs. (λx.x))

- ❖¿Cómo modelamos el cambio de un parámetro formal por uno real en un término?
 - Un parámetro formal corresponde a una variable ligada y sus ocurrencias
 - → Por lo tanto, podemos cambiar cada ocurrencia ligada de esa variable por el término que representa al parámetro real
 - Ej: siendo f(x) = 2*x+1, f(3) es igual a 2*3+1
- ¿Y en λ-cálculo?

- Reemplazo
 - Cambiar una variable por un término
 - Ej: reemplazar x por (λy.y) en xz da (λy.y)z
 - ¿Qué pasa con los bindings?
 - Ej: reemplazar x por (λy.yz) en (λz.xz) da (λz.(λy.yz)z)
 - → ¿Es el resultado esperado? ¿Por qué?
 - ¡¡El binding de z en (λy.yz) cambió!!
 - ¿Qué significa que un binding cambie?
 - ¡La entidad denotada por la variable es otra!
 - ¿Qué debemos hacer para no capturar variables?

- Sustitución
 - Cambiar una variable por un término, teniendo en cuenta los bindings
 - → Dado que el nombre de una variable ligada no es importante, podemos renombrarla
 - Ej: sustituir x por (λy.yz) en (λz.xz) da (λw.(λy.yz)w)
 (observar que la z del término (λz.xz) cambió a w para evitar la captura de la z de (λy.yz))
 - Las entidades denotadas, ¿son las mismas? O sea, ¿cambió algún binding?

- Sustitución (definición)
 - ▶ Dados $M,N \in \Lambda$, y $x \in X$, se define $M\{x \leftarrow N\}$ (el término resultante de sustituir x por N en M) por inducción en el tamaño de M
 - a) $x\{x \leftarrow N\}$ es igual a N
 - b) si $y\neq x$, entonces $y\{x\leftarrow N\}$ es igual a y
 - c) $(PQ)\{x \leftarrow N\}$ es igual a $(P\{x \leftarrow N\}Q\{x \leftarrow N\})$
 - d) $(\lambda x.P)\{x \leftarrow N\}$ es igual a $(\lambda x.P)$
 - e) si $y\neq x$, entonces $(\lambda y.P)\{x\leftarrow N\}$ es igual a
 - 1) $(\lambda y.P\{x\leftarrow N\})$, si y no ocurre libre en N
 - 2) $(\lambda z.P\{y\leftarrow z\}\{x\leftarrow N\})$, en otro caso (donde z no aparece ni en N ni en P)

- Explicación
 - ◆ Los casos a), b) y c) son simples
 - ◆ En d), la x ligada en M es distinta de la que se sustituye y por ello M no cambia
 - → En e1), no hay peligro de captura, y se procede inductivamente
 - \bullet En e2), para evitar la captura de y en N se renombra y a una nueva variable z, antes de proseguir inductivamente
- Ej: $(\lambda z.xz)\{x\leftarrow(\lambda y.yz)\}$ es igual a $(\lambda w.(\lambda y.yz)w)$
 - ❖ Se aplica e2), obteniendo $(\lambda w.(xz){z\leftarrow w}{x\leftarrow (\lambda y.yz)})$
 - ❖ Aplicando c), luego b) y a) obtenemos $(\lambda w.(xw)\{x\leftarrow(\lambda y.yz)\})$
 - → Finalmente, c) y luego b) y a) dan el resultado final

- ¿Qué propiedades tiene la sustitución?
- Lema de sustitución
 - ❖ si x no ocurre libre en Q, entonces $M\{x\leftarrow P\} \{y\leftarrow Q\}$ es igual a $M\{y\leftarrow Q\} \{x\leftarrow P\{y\leftarrow Q\}\}$
- → Propiedad (a veces llamada garbage collection)
 - si x no ocurre libre en M, entonces $M\{x \leftarrow N\}$ es igual a M

Resumen

- Hacen falta muy pocos conceptos bien ensamblados para tener un lenguaje de programación
- El λ-cálculo es importante para el estudio de lenguajes de programación
- Las nociones de *binding*, sustitución y renombre de variables son útiles en toda teoría de lenguajes que considere abstracción