1 Minimal Spanning Tree Algorithm

1.1 Introduction

This project mainly contains

- Prim Algorithm
- Kruskal Algorithm

1.2 Prim Algorithm

1.2.1 Pseudo code

Algorithm 1 Prim algorithm

1: **function** PRIM(V, E)

 $\triangleright V$ denotes vertices, E denotes edges

Require: A weighted, connected map which vertices set as V and edges set as E.

Ensure: Using sets V_{new} and E_{new} which describe the minimal spanning tree.

2: $V_{new} \leftarrow \{x\}$

 $\triangleright x \in V$, x as the start vertex

3: $E_{new} \leftarrow \{\}$

 \triangleright set E_{new} as empty set

- 4: **while** $V_{new} \neq V$ **do**
- 5: Find the minimal edge $\langle u,v \rangle$ from E , s.t. $u \in V_{new}, v \notin V_{new}, v \in V$ \Rightarrow If there were multi answers, choose one randomly
- 6: Push v in V_{new} and push $\langle u, v \rangle$ in E_{new}
- 7: end while
- 8: end function

2

1.2.2 Flowchart

图 1: Prim algorithm flowchart

1.2.3 Analysis

Let v denotes the sum of vertices and e denotes the sum of edges, then, this algorithm's time complexity is:

- Adjacent matrix: $O\left(v^2\right)$
- Adjacent table: $O\left(e\log_2 v\right)$

1.3 Kruskal Algorithm

1.3.1 Pseudo Code

Algorithm 2 Kruskal algorithm

end if

end for

14: end function

12:

13:

```
\triangleright V denotes vertices, E denotes edges
  1: function KRUSKAL(V, E)
Require: A weighted, connected map which vertices set as V and edges set as E.
Ensure: Using map G_{new} which describe the minimal spanning tree.
                                                           \triangleright v_0 has the same vertices number as V, e_0 denotes
          G_{new} \leftarrow \{v_0, e_0 \mid v_0 = V, e_0 \in \emptyset\}
     empty set
          E_s \leftarrow sortFromSmallToLarge(E)
  3:
          V_{connected} \leftarrow \left\{v_0, v_1 \mid \langle v_0, v_1 \rangle \in E_s\left[0\right]\right\}
  4:
          for all e_i \in E_s do
                                                                                                  ⊳ From small to large
  5:
              if \forall v_t \in V, v_t \in G_{new} then
  6:
                   break
  7:
               end if
  8:
              if v_0 \in V_{connect} and v_1 \notin V_{connect} s.t. \langle v_0, v_1 \rangle \in e_i then
  9:
                   add e_i to G_{new}
 10:
                   add v_1 to V_{connected}
11:
```

1.3.2 Flowchart

图 2: Kruskal algorithm flowchart

1.3.3 Analysis

Let v denotes the sum of vertices and e denotes the sum of edges, then, this algorithm's time complexity is: $O\left(e\log_2 e\right)$