

BEST AVAILABLE COPY

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2004年4月8日 (08.04.2004)

PCT

(10) 国際公開番号
WO 2004/029104 A1

(51) 国際特許分類7:
C08F 8/40, A61K 9/127,
47/32, A61P 35/00, A61K 45/00, 7/00

弘 (KUBO,Kazuhiro) [JP/JP]; 〒213-0022 神奈川県 川崎市高津区 千年876-301 Kanagawa (JP). 伊藤智佳 (ITOH,Chika) [JP/JP]; 〒212-0051 神奈川県 川崎市中原区 市ノ坪291-8-503 Kanagawa (JP). 安河内徹 (YASUKOHCHI,Tohru) [JP/JP]; 〒224-0033 神奈川県 横浜市都筑区 茅ヶ崎東1-1-3-401 Kanagawa (JP). 菊池寛 (KIKUCHI,Hiroshi) [JP/JP]; 〒134-8630 東京都 江戸川区 北葛西1丁目16番13号 第一製薬株式会社 東京研究開発センター内 Tokyo (JP). 鈴木則男 (SUZUKI,Norio) [JP/JP]; 〒134-8630 東京都 江戸川区 北葛西1丁目16番13号 第一製薬株式会社 東京研究開発センター内 Tokyo (JP). 黒沢三保 (KUROSAWA,Miho) [JP/JP]; 〒428-0021 静岡県 棚原郡 金谷町金谷河原588番地 第一製薬株式会社 静岡工場内 Shizuoka (JP). 山内仁史 (YAMAUCHI,Hitoshi) [JP/JP]; 〒569-0806 大阪府 高槻市 明田町4番38号 第一製薬株式会社 大阪工場内 Osaka (JP).

(21) 国際出願番号:
PCT/JP2003/012502

(22) 国際出願日:
2003年9月30日 (30.09.2003)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 優先権データ:
特願2002-286306 2002年9月30日 (30.09.2002) JP

(71) 出願人(米国を除く全ての指定国について): 日本油脂株式会社 (NOF CORPORATION) [JP/JP]; 〒150-6019 東京都 渋谷区 恵比寿四丁目20番3号 Tokyo (JP). 第一製薬株式会社 (DAICHI PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8234 東京都 中央区 日本橋3丁目14番10号 Tokyo (JP).

(74) 代理人: 特許業務法人特許事務所サイクス (SIKS & CO.); 〒104-0031 東京都 中央区 京橋一丁目8番7号 京橋日殖ビル8階 Tokyo (JP).

(72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 大橋俊輔 (OHHASHI,Syunsuke) [JP/JP]; 〒210-0804 神奈川県川崎市川崎区 藤崎2-3-9 Kanagawa (JP). 久保和

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR,

(続葉有)

(54) Title: PHOSPHOLIPID DERIVATIVE

(54) 発明の名称: リン脂質誘導体

(57) Abstract: A phospholipid derivative which is a copolymer comprising structural units (A) represented by the formula (1), structural units (B) represented by the formula (2A) and/or (2B), and structural units (C) represented by the formula (3) (wherein R¹ and R² each represents hydrogen or methyl, provided that not both of R¹ and R² are methyl; R³ represents a C₁₋₃ divalent hydrocarbon group; AO represents C₂₋₄ oxyalkylene; m, indicating the average number of moles of the oxyalkylene which has added, is a number of 4 to 100; R⁴ represents hydrogen, a C₁₋₂₀ hydrocarbon group, or acyl; R⁵CO and R⁶CO each represents C₈₋₂₄ acyl; R⁷ represents a C₂₋₄ divalent hydrocarbon group; and X and Y each represents hydrogen, alkali metal, ammonium, or organic ammonium) as essential structural units, wherein the molar ratio of the structural units (A) to the sum of the structural units (B) and the structural units (C) is from 7/3 to 3/7, and the proportion of the structural units (C) is 1 to 4 mol per mol of the copolymer. The phospholipid derivative is utilizable in the modification of, e.g., liposome.

(続葉有)

WO 2004/029104 A1

HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NL, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

(84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,

2 文字コード及び他の略語については、定期発行される各 PCT ガゼットの巻頭に掲載されている「コードと略語のガイドノート」を参照。

(57) 要約:

式 (1) で表される構成単位 A、式 (2A) 及び/又は式 (2B) で表される構成単位 B、並びに式 (3) で表される構成単位 C [R¹ 及び R² は水素原子又はメチル基を示すが、R¹ 及び R² が同時にメチル基になることはなく; R³ は炭素数 1 ~ 3 の 2 倍の炭化水素基を示し; AO は炭素数 2 ~ 4 のオキシアルキレン基を示し; m はオキシアルキレン基の平均付加モル数を示し、4 ≤ m ≤ 100 の範囲の数であり; R⁴ は水素原子、炭素数 1 ~ 20 の炭化水素基、又はアシル基を示し、R⁵CO 及び R⁶CO は炭素数 8 ~ 24 のアシル基を示し; R⁷ は炭素数 2 ~ 4 の 2 倍の炭化水素基を示し; X 及び Y は水素原子、アルカリ金属原子、アンモニウム、又は有機アンモニウムを示す] を必須構成単位として含む共重合体であって、構成単位 A と構成単位 B 及び構成単位 C の合計とのモル比が 7/3 ~ 3/7 であり、かつ構成単位 C を共重合体 1 モル中に 1 ~ 4 モルの割合で含むリポソームなどの修飾に利用可能なリン脂質誘導体。

(1)

(3)

(2A)

(2B)

明細書

リン脂質誘導体

技術分野

本発明はリン脂質誘導体に関する。より具体的には、本発明は、アルケニルエーテル-無水マレイン酸共重合体とリン脂質とを反応させて得ることができるリン脂質誘導体に関する。

背景技術

リポソーム製剤に代表される微粒子性薬物キャリアー及び蛋白製剤等のポリペプチドは静脈内に投与すると血液中での滞留性が悪く、肝臓、脾臓などの細網内皮系組織 (Reticuloendothelial system: 以下「RES」と略する。) に捕捉されやすいことが知られている。RESの存在は、RES以外の臓器への薬物を送達させるターゲッティング型製剤や長時間にわたって血液中に製剤を滞留させ、医薬の放出をコントロールする徐放型製剤として微粒子性薬物キャリアーを利用するに際して大きな障害となる。

従来から、上記製剤に微小循環性を有するような研究がなされてきた。例えば、リポソームの脂質二分子膜の物理化学的性質を比較的容易に調整可能であることから、リポソームのサイズを小さくすることで血中濃度を高く維持する例 (バイオキミカ・エト・バイオフィジカ・アクタ、761巻、142頁、1983年)、相転移温度の高いレシチンを利用する例 (バイオケミカル・ファーマコロジー、32巻、3381頁、1983年)、レシチンの代わりにスフィンゴミエリンを用いる例 (バイオケミカル・ファーマコロジー、32巻、3381頁、1983年)、リポソームの膜成分としてコレステロールを添加する例 (バイオキミカ・エト・バイオフィジカ・アクタ、761巻、142頁、1983年) などが提案されている。

また、その他の解決方法として、リポソームの膜表面を糖脂質、糖蛋白質、ア

ミノ酸脂質、ポリエチレングリコール脂質などで修飾し、微小循環性を付与するとともにRESを回避する研究が行われている。例えば、グリコフォン（日本薬学会第106年会講演要旨集、336頁、1986年）、ガングリオシドGM1(FEBSレター、223巻、42頁、1987年)、フォスファチジルイノシトール(FEBSレター、223巻、42頁、1987年)、グリコフォンとガングリオシドGM3(特開昭63-221837号公報)、ポリエチレングリコール誘導体(FEBSレター、268巻、235頁、1990年)、グルクロン酸誘導体(ケミカル・アンド・ファーマシューティカル・ブレタン、38巻、1663頁、1990年)、グルタミン酸誘導体(バイオキミカ・エト・バイオフィジカ・アクタ、1108巻、257頁、1992年)、ポリグリセリンリン脂質誘導体(特開平6-228012号公報)などがその修飾物質として報告されている。

ポリペプチドを修飾する場合には、その結合点を減らしてポリペプチド中のリジン残基等の活性基の残存量を上げる目的で、トリアジンを用いて2分子の水溶性高分子を導入させた報告等がある。リポソーム製剤においても、水溶性高分子の分子量を上げる目的でトリアジンに2分子の水溶性高分子を導入し、それを用いてリポソーム表面を修飾した報告がある。しかしながら、リポソーム表面の水溶性高分子の鎖の数を増やすためには、トリアジンを用いて水溶性高分子を導入する場合には、トリアジン環には2本しか水溶性高分子を導入できないため、トリアジンに2本の水溶性高分子を含む化合物を多く配合する必要がある。

しかし、その場合、多く配合することにより、本来薬剤と反応させる活性点を消費してしまい、設計すべき薬剤が限定されてしまうといった問題があった。

発明の開示

本発明の課題は、リポソームなどの修飾に利用可能なリン脂質誘導体を提供することにある。本発明者らは、アルケニルエーテル-無水マレイン酸共重合体とリン脂質とを反応させて新規なリン脂質誘導体を提供すべく鋭意研究を行った結果、下記に示すリン脂質を提供することに成功した。

すなわち、本発明は、リン脂質であって、

(A) 下記式（1）で表される構成単位A、
 (B) 下記式（2A）及び／又は下記式（2B）で表される構成単位B、並びに
 (C) 下記式（3）で表される構成単位C：

(1)

(3)

(2A)

(2B)

[式（1）中、R¹及びR²はそれぞれ独立に水素原子又はメチル基を示すが、R¹及びR²が同時にメチル基になることはなく；R³は炭素数1～3の2価の炭化水素基を示し；AOはそれぞれ独立に炭素数2～4のオキシアルキレン基を示し；mはオキシアルキレン基の平均付加モル数を示し、4≤m≤100の範囲の数であり；R⁴は水素原子、炭素数1～20の炭化水素基、又は炭素数1～20のアシル基を示し、式（2A）中、Xはそれぞれ独立に水素原子、アルカリ金属原子、アンモニウム、又は有機アンモニウムを示し、式（3）中、R⁵CO及びR⁶COはそれぞれ独立に炭素数8～24のアシル基を示し；R⁷は炭素数2～4の2価の炭化水素基を示し；Xは水素原子、アルカリ金属原子、アンモニウム、又は有機アンモニウムを示し；Yは水素原子、アルカリ金属原子、アンモニウム、又は有機アンモニウムを示す] を必須構成単位として含む共重合体であって、構成単位

Aと構成単位B及び構成単位Cの合計とのモル比が7/3~3/7であり、かつ構成単位Cを共重合体1モル中に1~5モルの割合で含むリン脂質誘導体を提供するものである。

本発明の好ましい態様によれば、共重合体中に含まれる構成単位A、構成単位B、及び構成単位Cの総数が3以上で、かつ150以下である上記のリン脂質誘導体；共重合体中に含まれる構成単位A、構成単位B、及び構成単位Cの総数が5以上で、かつ50以下である上記のリン脂質誘導体；R¹及びR²が水素原子である上記のリン脂質誘導体；及びR⁷がエチレン基である上記のリン脂質誘導体が提供される。

別の観点からは、本発明により、上記のリン脂質誘導体を含む界面活性剤；上記のリン脂質誘導体を含む可溶化剤；上記のリン脂質誘導体を含む分散剤、好ましくは化粧料用の分散剤；上記のリン脂質誘導体を含有する脂質膜構造体、好ましくはリポソームが提供される。また、医薬を保持した上記の脂質膜構造体又はリポソームが本発明により提供され、その好ましい態様として抗腫瘍剤を保持した上記の脂質膜構造体又はリポソームが提供される。

さらに別の観点からは、上記のリン脂質誘導体の製造方法であって、構成単位Aと構成単位Bとを7/3~3/7のモル比で含む共重合体に対して下記の式(4)：

(式中、R⁵CO、R⁶CO、R⁷、及びYは上記と同義である)

で表される化合物を反応させる工程を含む方法が提供される。

発明を実施するための最良の形態

本発明のリン脂質誘導体は、式（1）で示されるアルケニルエーテルからなる構成単位Aと、マレイン酸若しくはその塩又は無水マレイン酸に由来する式（2 A）及び／又は式（2 B）で表される構成単位Bとを含む共重合体であって、さらにリン脂質化合物の残基を有する式（3）で表される構成単位Cを含むことを特徴としている。

R¹及びR²はそれぞれ独立する水素原子又はメチル基を示すが、R¹及びR²が同時にメチル基になることはない。好ましくはR¹が水素原子、R²が水素原子又はメチル基であり、R³がメチレン基である。R³は炭素数1～3の2価の炭化水素基であり、より具体的には、例えば、-CH₂-、-CH₂CH₂-、-CH(C_H₃)CH₂-、-CH₂CH₂CH₂-などの炭化水素基を挙げることができ、好ましくは-CH₂-（メチレン基）である。

A〇で表されるオキシアルキレン基は炭素数2～4のオキシアルキレン基であり、例えばオキシエチレン基、オキシプロピレン基、オキシトリメチレン基、オキシブチレン基、オキシテトラメチレン基などが挙げられる。これらのうち、オキシエチレン基又はオキシプロピレン基が好ましく、特にオキシエチレン基が好ましい。A〇であらわされるm個の炭素数2～4のオキシアルキレン基は1種又は2種以上でもよい。2種以上のオキシアルキレン基を含む場合には、その組み合わせ方には制限はなく、ブロック状であってもランダム状であってもよい。構成単位Aにおいて、A〇で示されるオキシアルキレン基としてオキシエチレン基を含むことが好ましく、オキシエチレン基の割合がオキシアルキレン基中の50～100質量%以上であることが好ましく、70～100質量%がより好ましく、100質量%がさらに好ましい。オキシエチレン基の割合が50質量%より少ないと、リン脂質誘導体の親油性が高くなり、乳化分散性が低下する場合がある。

mはオキシアルキレン基の平均付加モル数であり、mは4～100、好ましくは6～46の数である。mが4より小さいと共重合体の大きさに比べてポリオキシアルキレン鎖の鎖長が相対的に短くなつて水溶性が低下し、リン脂質誘導体を

ドラックデリバリーシステムに使用した場合の効果が小さくなる場合がある。また、 m が100より大きいとオキシアルキレン基からなるポリアルキレングリコール鎖の数が相対的に少なくなり、リン脂質誘導体をドラックデリバリーシステムに使用した場合の優位性が小さくなる場合がある。

R^4 は水素原子又は炭素数1～20の炭化水素基又はアシル基を示す。炭化水素基としては、例えば、炭素数1～20の脂肪族炭化水素基及び炭素数1～20の芳香族炭化水素基を挙げることができる。炭素数1～20の脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、イソヘプチル基、2-エチルヘキシル基、オクチル基、イソノニル基、デシル基、ドデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、イソセチル基、オクタデシル基、イソステアリル基、オクタデセニル基、オクチルドデシル基、ドコシル基及びデシルテトラデシル基などを挙げることができ、炭素数1～20の芳香族炭化水素基としては、ベンジル基、トリル基、ブチルフェニル基、ジブチルフェニル基、オクチルフェニル基、ノニルフェニル基、ドデシルフェニル基、ジオクチルフェニル基及びジノニルフェニル基などを挙げることができる。

炭素数1～20のアシル基としては、酢酸、プロピオン酸、酪酸、イソ酪酸、カプリル酸、2-エチルヘキサン酸、イソノナン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、イソパルミチン酸、ステアリン酸、イソステアリン酸、アラキン酸、ベヘン酸、パルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エルカ酸、安息香酸、ヒドロシキ安息香酸、桂皮酸、及び没食子酸などに由来するアシル基が挙げられる。 R^4 としては、炭素数1～4の炭化水素基又はアシル基が好ましく、炭素数1～4の炭化水素基がさらに好ましい。式(1)で表される各構成単位Aにおける R^4 はそれぞれ独立であり、1種又は2種以上であってもよい。

式(2A)、(2B)、又は式(3)で表される構成単位はマレイン酸若しくはその塩又は無水マレイン酸に由来する構成単位である。塩としては、アルカリ金属

原子、アンモニウム又は有機アンモニウムの塩が挙げられ、例えばナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ金属塩、アンモニア由来のアンモニウム塩、トリエチルアミン、ピリジン、ジメチルアミノピリジン由来の有機アンモニウム塩が挙げられる。マレイン酸若しくはその塩又は無水マレイン酸をそのまま共重合させてもよいが、共重合させた後に塩に変換してもよい。

R^5CO 及び R^6CO はそれぞれ独立に炭素数8～24のアシル基を示すが、このアシル基としては通常の脂肪酸に由来するアシル基を用いることができる。 R^5CO 及び R^6CO としては、例えばカプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、パルミトレイン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、アラキン酸、ベヘン酸、エルカ酸、リグノセリン酸などの飽和及び不飽和の直鎖又は分岐の脂肪酸由来のアシル基をあげることができる。一の構成単位中に含まれる R^5CO 及び R^6CO は同一であっても異なっていてよい。また、それぞれの構成単位中における R^5CO 又は R^6CO はそれぞれ独立であり、1種又は2種以上であってもよい。 R^5CO 及び R^6CO は好ましくは炭素数10～22のアシル基である。炭素数が24を越えると水相への分散が悪く反応性が下がる場合があり、炭素数が8より少ないと精製工程での結晶性が悪く純度が低くなる場合がある。

Xは、水素原子、アルカリ金属原子、アンモニウム又は有機アンモニウムの塩が挙げられ、例えばナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ金属塩、アンモニア由来のアンモニウム塩、トリエチルアミン、ピリジン、ジメチルアミノピリジン由来の有機アンモニウム塩が挙げられる。Yは水素原子、アルカリ金属原子、アンモニウム、又は有機アンモニウムを示し、好ましくは水素原子又はアルカリ金属原子である。より具体的には、アルカリ金属原子としてナトリウム及びカリウムを挙げることができ、有機アンモニウムとしてはトリエチルアミン由来の有機アンモニウムなどを挙げができる。 R^7 は炭素数2～4の2価の炭化水素基であり、より具体的には $-CH_2-$

CH_2- 、 $-\text{CH}(\text{CH}_3)\text{CH}_2-$ 、 $-\text{CH}_2\text{CH}_2\text{CH}_2-$ 、 $-\text{CH}_2\text{CH}_2\text{CH}_2$ CH_2- 、 $-\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_2-$ 、 $-\text{CH}_2\text{CH}(\text{CH}_3)\text{CH}_2-$ 、 $-\text{C}$ $\text{H}(\text{CH}_2\text{CH}_3)\text{CH}_2-$ などの炭化水素基を挙げることができ、好ましくは $-\text{CH}_2\text{CH}_2-$ であるエチレン基である。

本発明のリン脂質誘導体において、共重合体中に含まれる式(1)で表される構成単位A、式(2A)及び/又は式(2B)で表される構成単位B(構成単位Bは式(2A)又は式(2B)のいずれかで表される構成単位のみからなるものであってもよく、あるいは式(2A)及び式(2B)の構成単位の両者を含むものであってもよい)、及び式(3)で表される構成単位Cの総数は3以上で、かつ150以下である。 k^I を構成単位Aのモル数、 k^{II} を構成単位Bのモル数、 k^{III} を構成単位Cのモル数とした場合、 k^I 、 k^{II} 、及び k^{III} は以下の関係： $1 \leq k^{III} \leq 5$ 、 $3 \leq k^I + k^{II} + k^{III} \leq 150$ 、 $k^I / (k^{II} + k^{III}) = 7/3 \sim 3/7$ を満たし、好ましくは、以下の関係： $1 \leq k^{III} \leq 4$ 、 $5 \leq k^I + k^{II} + k^{III} \leq 100$ 、 $k^I / (k^{II} + k^{III}) = 6/4 \sim 4/6$ を満たし、より好ましくは、以下の関係： $1 \leq k^{III} \leq 2$ 、 $5 \leq k^I + k^{II} + k^{III} \leq 100$ 、 $k^I / (k^{II} + k^{III}) = 6/4 \sim 4/6$ を満たす。本発明のリン脂質誘導体の分子末端は、水素原子又は重合開始又は連鎖移動により共重合体末端に結合する残基である。構成単位Cが分子中にランダム状に存在していることが好ましい。

本発明のリン脂質誘導体は、上記の構成単位A、構成単位B、構成単位Cのほか、これらの構成単位と共に重合可能な他の単量体に由来する構成単位を含んでいてもよい。例えば、共重合可能な単量体としては、スチレン、酢酸ビニル、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチルなどを挙げることができる。他の共重合可能な単量体に由来する構成単位の割合は、構成単位Aに対して10モル%以下であることが好ましい。

本発明のリン脂質誘導体は、構成単位Aと構成単位Bとを含む共重合体に対して、上記の式(4)で表されるリン脂質化合物を反応させることによって製造す

ることができる。構成単位Aと構成単位Bとを含む共重合体は公知の重合体であり、公知の方法（例えば特開平2-163108号公報、特開平9-255740号公報等に記載の方法）を用いて製造することができる。該共重合体は、例えば、構成単位Aを与える適宜の单量体と、マレイン酸若しくはその塩又は無水マレイン酸とを、有機溶剤中又は水系溶剤中で溶液重合するか、あるいは無溶剤で塊状重合することにより製造することができるが、有機溶剤中の溶液重合又は無溶剤での塊状重合が好ましく、無溶剤での塊状重合がより好ましい。該共重合体において、式（I）で表される構成単位Aは、重合体中にランダム状又はブロック状のいずれの形態で存在していてもよいが、好ましくはランダム状である。また、式（2 A）及び／又は式（2 B）で表される構成単位は重合体中にランダム状又はブロック状のいずれの形態で存在していてもよいが、好ましくはランダム状である。

構成単位Bが無水マレイン酸に由来する場合には、有機溶剤中又は無溶媒で塊状重合した場合は、該共重合体中の構成単位Bは式（2 B）で表される構成単位として得ることができる。水系溶剤中で重合を行った場合はマレイン酸又はその塩の構成単位（式（2 A）で表される構成単位）として得られる。上記の反応で構成単位Bが無水物であっても、あるいはカルボン酸又はその塩であってもリン脂質を導入することができる。

重合反応に用いる重合開始剤としては、例えばベンゾイルペルオキシドなどの過酸化物系開始剤、2, 2'-アゾビスイソブチロニトリルなどのアゾ系開始剤等が挙げられ、仕込量は单量体の合計仕込量に対して通常0. 001～0. 1モル%、好ましくは0. 005～0. 1モル%である。また、必要に応じて連鎖移動剤を併用して重合を行うこともできる。反応条件は、通常反応温度0～120℃、反応時間1～50時間であり、好ましくは反応温度20～100℃、反応時間2～25時間である。共重合体における構成単位Aと構成単位Bとの構成モル比は7/3～3/7であり、好ましくは6/4～4/6であり、より好ましくは5/5である。また、該共重合体の質量平均分子量は10, 000～1, 000, 0

00であり、好ましくは10,000~200,000である。

構成単位Aと構成単位Bとを含む共重合体に対して上記の式(4)で表されるリン脂質化合物を反応させるにあたり、塩基性触媒又は、脱水縮合触媒の存在下で反応を行うことが好ましい。また、有機溶媒中で反応を行うことも好ましい。塩基性触媒の種類は特に限定されないが、例えば、窒素含有物質としてはトリエチルアミン、ピリジン、ジメチルアミノピリジン、酢酸アンモニウム等が、有機塩としてはリン酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、ホウ酸ナトリウム及び酢酸ナトリウム等が挙げられる。また、脱水縮合触媒としては、ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩等が挙げられる。触媒の量は、例えば上記のリン脂質化合物1モルに対して0.5~10倍モル、好ましくは1~5倍モルである。反応温度は通常20~90°C、好ましくは40~80°Cである。反応時間は1時間以上、好ましくは2~8時間である。20°Cより低温では反応率が低い場合があり、90°Cより高温では反応に用いる式(4)で表されるリン脂質化合物のアシル基が加水分解する場合がある。

式(4)で表されるリン脂質化合物の添加量は、構成単位Aと構成単位Bからなる共重合体(CP)の平均分子量に対して1~5モル、好ましくは1~4モル、より好ましくは1~2モルである。リン脂質化合物の添加量が多くすると、該共重合体に結合するリン脂質が増えてリポソームの形成が困難になる場合があり、界面活性剤としてはミセルの構成が困難になる場合がある。また、リン脂質化合物の添加量が少なすぎると界面活性剤として親油性基の割合が少なくなりすぎるので、界面活性剤としてのミセルの構成が期待できなくなる場合がある。

本発明のリン脂質誘導体は、脂溶性物質のため界面活性剤として可溶化、乳化、又は分散を行うことができ、あるいは化粧料分野における界面活性剤として用いることができ、さらには脂質膜構造体を形成するためのリン脂質として用いることができる。脂質膜構造体として、リポソームとして用いることが好適である。可溶化できる脂溶性物質は特に限定されないが、例えば高級アルコール、エステ

ル油、トリグリセリン、トコフェロール、及び高級脂肪酸等が挙げられる。化粧料分野における分散剤としての使用形態も特に限定されないが、例えば、アスコルビン酸等の水溶性物質を脂質二重膜に保持しておく場合などにおいて、本発明の化合物を脂質膜構造形成剤として用いることにより、より安定に対象物質を水溶液中に分散できる。界面活性剤及び分散剤として用いる場合、添加量としては可溶化、分散、乳化などの対象となる物質の全質量に対して0.1～20質量%、好ましくは0.5～7質量%、より好ましくは0.5～5質量%である。

また、本発明のリン脂質誘導体は、pH感受性リン脂質として、例えば分散剤として使用することができる。カチオン性の物質、例えばカチオン性の生理活性物質等や塩基性物質などを水中に分散する場合、例えばカチオン性物質又は塩基性物質を含む微粒子等の表面を上記化合物で被覆することにより、水中に安定に分散することができる。本発明のリン脂質誘導体は、ポリアニオン性基を有するのでイオン結合により安定に分散することができる。

脂質膜構造体中への本発明のリン脂質誘導体の配合量は、医薬の薬効を生体内で有効に発現させるのに充分な量であればよく、特に限定されることはない。例えば、脂質膜構造体に保持させるべき医薬の種類、治療や予防などの用途、脂質膜構造体の形態などにより適宜選択可能である。本発明により提供される脂質膜構造体に保持される医薬の種類は特に限定されないが、例えば、抗腫瘍剤として用いられる化合物が好ましい。これら化合物としては、例えば、塩酸イリノテカン、塩酸ノギテカン、エキサテカン、RFS-2000、Lurtotecan、BNP-1350、Bay-383441、PNU-166148、IDE-C-132、BN-80915、DB-38、DB-81、DB-90、DB-91、CKD-620、T-0128、ST-1480、ST-1481、DRF-1042、DE-310等のカプトテシン誘導体、ドセタキセル水和物、パクリタキセル、IND-5109、BMS-184476、BMS-188797、T-3782、TAX-1011、SB-RA-31012、SBT-1514、DJ-927等のタキサン誘導体、イホスファミド、塩酸ニムスチン、カルボコ

ン、シクロホスファミド、ダカルバジン、チオテパ、ブスルファン、メルファラン、ラニムスチン、リン酸エストラムスチンナトリウム、6-メルカプトプリンリボシド、エノシタビン、塩酸ゲムシタビン、カルモフル、シタラビン、シタラビンオクホスファート、テガフル、ドキシフルリジン、ヒドロキシカルバミド、フルオロウラシル、メトトレキサート、メルカプトプリン、リン酸フルダラビン、アクチノマイシンD、塩酸アクラルビシン、塩酸イダルビシン、塩酸エビルビシン、塩酸ダウノルビシン、塩酸ドキソルビシン、塩酸ピラルビシン、塩酸ブレオマイシン、ジノスタチンスマラマー、ネオカルチノスタチン、マイトイシンC、硫酸ブレオマイシン、硫酸ペプロマイシン、エトポシド、酒石酸ビノレルビン、硫酸ビンクリスチン、硫酸ビンデシン、硫酸ビンプラスチン、塩酸アムルビシン、ゲフィニチブ、エキセメスタン、カペシタビン、TNP-470、TAK-165、KW-2401、KW-2170、KW-2871、KT-555、KT-8391、TZT-1027、S-3304、CS-682、YM-511、YM-598、TAT-59、TAS-101、TAS-102、TA-106、FK-228、FK-317、E7070、E7389、KRN-700、KRN-5500、J-107088、HMN-214、SM-11355、ZD-0473等を挙げることができる。

また、本発明の脂質膜構造体には遺伝子などを封入してもよい。遺伝子としては、オリゴヌクレオチド、DNA及びRNAのいずれでもよく、特に形質転換等のイン・ビトロにおける導入用遺伝子や、イン・ビボで発現することにより作用する遺伝子、例えば、遺伝子治療用遺伝子、実験動物や家畜等の産業用動物の品種改良に用いられる遺伝子を挙げることができる。遺伝子治療用遺伝子としては、アンチセンスオリゴヌクレオチド、アンチセンスDNA、アンチセンスRNA、酵素、サイトカイン等の生理活性物質をコードする遺伝子等を挙げができる。

上記の脂質膜構造体は、さらにリン脂質、コレステロール、コレスタンール等のステロール類、その他の炭素数8~24の飽和及び不飽和のアシル基を有する

脂肪酸類、 α -トコフェロール等の酸化防止剤を含んでいてもよい。リン脂質としては、ホスファチジルエタノールアミン、ホスファリジルコリン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロール、カルジオリピン、スフィンゴミエリン、セラミドホスホリルエタノールアミン、セラミドホスホリルグリセロール、セラミドホスホリルグリセロールホスファート、1、2-ジミリストイル-1、2-デオキシホスファチジルコリン、プラスマロゲン及びホスファチジン酸等を挙げることができ、これらは1種又は2種以上を組み合わせて用いることができる。これらのリン脂質の脂肪酸残基は特に限定されないが、例えば、炭素数12から20の飽和又は不飽和の脂肪酸残基を挙げることができ、具体的には、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸等の脂肪酸由来のアシル基を挙げることができる。また、卵黄レシチン及び大豆レシチンのような天然物由来のリン脂質を用いることもできる。

本発明の脂質膜構造体の形態及びその製造方法は特に限定されないが、存在形態としては、例えば、乾燥した脂質混合物形態、水系溶媒に分散した形態、さらにこれを乾燥させた形態や凍結させた形態等を挙げることができる。乾燥した脂質混合物の形態の脂質膜構造体は、例えば、使用する脂質成分をいったんクロロホルム等の有機溶媒に溶解させ、次いでエバポレータによる減圧乾固や噴霧乾燥機による噴霧乾燥を行うことによって製造することができる。脂質膜構造体が水系溶媒に分散した形態としては、一枚膜リポソーム、多重層リポソーム、O/W型エマルション、W/O/W型エマルション、球状ミセル、ひも状ミセル、不定型の層状構造物などを挙げることができるが、これらのうちリポソームが好ましい。分散した状態の脂質膜構造体の大きさは特に限定されないが、例えば、リポソームやエマルションの場合には粒子径が50nmから5μmであり、球状ミセルの場合、粒子径が5nmから100nmである。ひも状ミセルや不定型の層状構造物の場合は、その1層あたりの厚みが5nmから10nmでこれらが層を形成していると考えればよい。

水系溶媒（分散媒）の組成も特に限定されず、例えば、リン酸緩衝液、クエン酸緩衝液、リン酸緩衝化生理食塩液等の緩衝液、生理食塩水、細胞培養用の培地などであってもよい。これらの水系溶媒に対して脂質膜構造体を安定に分散させることができるが、さらにグルコース、乳糖、ショ糖などの糖水溶液、グリセリン、プロピレングリコールなどの多価アルコール水溶液等を加えてもよい。この水系溶媒に分散した脂質膜構造体を安定に長期間保存するには、凝集などの物理的安定性の面から、水系溶媒中の電解質を極力なくすことが望ましい。また、脂質の化学的安定性の面から、水系溶媒の pH を弱酸性から中性付近（pH 3.0 から 8.0）に設定したり、窒素バーリングにより溶存酸素を除去することが望ましい。さらに凍結乾燥保存や噴霧乾燥保存をする場合には、例えば糖水溶液を凍結保存するに際して糖水溶液や多価アルコール水溶液をそれぞれ用いると効果的な保存が可能である。これらの水系溶媒の濃度は特に限定されるべきものではないが、例えば、糖水溶液においては、2～20% (W/V) が好ましく、5～10% (W/V) がさらに好ましい。また、多価アルコール水溶液においては、1～5% (W/V) が好ましく、2～2.5% (W/V) がさらに好ましい。緩衝液においては、緩衝剤の濃度が 5～50 mM が好ましく、10～20 mM がさらに好ましい。水系溶媒中の脂質膜構造体の濃度は特に限定されないが、脂質膜構造体における脂質総量の濃度は、0.1 mM～500 mM が好ましく、1 mM～100 mM がさらに好ましい。

脂質膜構造体が水系溶媒に分散した形態は、上記の乾燥した脂質混合物を水系溶媒に添加、さらにホモジナイザー等の乳化機、超音波乳化機、高圧噴射乳化機等により乳化することで製造することができる。また、リポソームを製造する方法としてよく知られている方法、例えば逆相蒸発法などによっても製造することもでき、分散体の製造方法は特に限定されることはない。脂質膜構造体の大きさを制御したい場合には、孔径のそろったメンブランフィルター等を用いて、高圧下でイクストルージョン（押し出し濾過）を行えばよい。

上記の水系溶媒に分散した脂質膜構造体を乾燥させる方法としては、通常の凍

結乾燥や噴霧乾燥を挙げることができる。この際の水系溶媒としては、上記したように糖水溶液、好ましくはショ糖水溶液、乳糖水溶液を用いるとよい。水系溶媒に分散した脂質膜構造体をいったん製造した上でさらに乾燥すると、脂質膜構造体の長期保存が可能となるほか、この乾燥した脂質膜構造体に医薬水溶液を添加すると、効率よく脂質混合物が水和するために医薬を効率よく脂質膜構造体に保持させることができるといったメリットがある。例えば、脂質膜構造体に医薬を添加することにより医薬組成物を製造することができ、該脂質膜構造体は疾患の治療及び／又は予防のための医薬組成物として用いることができる。医薬が遺伝子の場合は、遺伝子導入用キットとして用いることも可能である。

医薬組成物の形態としては、脂質膜構造体と医薬とが混合された形態のほか、該脂質膜構造体に医薬が保持された形態でもよい。ここでいう保持とは、医薬が脂質膜構造体の膜の中、表面、内部、脂質層中、及び／又は脂質層の表面に存在することを意味する。医薬組成物の存在形態及びその製造方法は、脂質膜構造体と同様に特に限定されることはないが、例えば、存在形態としては、混合乾燥物形態、水系溶媒に分散した形態、さらにこれを乾燥させた形態や凍結させた形態が挙げられる。

脂質類と医薬との混合乾燥物は、例えば、使用する脂質類成分と医薬とをいったんクロロホルム等の有機溶媒で溶解させ、次にこれをエバポレータによる減圧乾燥や噴霧乾燥機による噴霧乾燥を行うことにより製造することができる。脂質膜構造体と医薬との混合物が水系溶媒に分散した形態としては、多重層リポソーム、一枚膜リポソーム、O/W型エマルション、W/O/W型エマルション、球状ミセル、ひも状ミセル、不定形の層状構造物などを挙げることができるが、特に限定されることはない。混合物としての大きさ（粒子径）や水系溶媒の組成なども特に限定されることはないが、例えばリポソームの場合には50 nm～2 μm、球状ミセルの場合は5～100 nm、エマルジョンを形成する場合は50 nm～5 μmである。混合物としての水系溶媒における濃度も特に限定はされることはない。なお、脂質膜構造体と医薬との混合物が水系溶媒に分散した形態の製

造方法としてはいくつかの方法が知られており、通常は脂質膜構造体と医薬との混合物の存在様式に応じて下記のように適宜の製造方法を選択する必要がある。

製造方法 1

上記の脂質類と医薬との混合乾燥物に水系溶媒を添加し、さらにホモジナイザー等の乳化機、超音波乳化機、高圧噴射乳化機等による乳化を行う方法である。大きさ（粒子径）を制御したい場合には、さらに孔径のそろったメンブランフィルターを用いて、高圧力下でイクストルージョン（押し出し慮過）を行えばよい。この方法の場合には、まず脂質類と医薬との混合乾燥物を作るために、医薬を有機溶媒に溶解する必要があるが、医薬と脂質膜構造体との相互作用を最大限に利用できるメリットがある。すなわち、脂質膜構造体が層状構造を有する場合にも、医薬は多重層の内部にまで入り込むことが可能であり、一般的にこの製造方法を用いると医薬の脂質膜構造体への保持率を高くすることができる。

製造方法 2

脂質類成分を有機溶媒でいったん溶解後、有機溶媒を留去した乾燥物に、さらに医薬を含む水系溶媒を添加して乳化する方法である。大きさ（粒子径）を制御したい場合には、さらに孔径のそろったメンブランフィルターを用いて、高圧力下でイクストルージョン（押し出し慮過）を行えばよい。有機溶媒には溶解しにくいが、水系溶媒には溶解する医薬に適用できる。脂質膜構造体がリポソームの場合、内水相部分にも医薬を保持できる長所がある。

製造方法 3

水系溶媒に既に分散したリポソーム、エマルション、ミセル、又は層状構造物などの脂質膜構造体に、さらに医薬を含む水系溶媒を添加する方法である。この方法の適用は水溶性の医薬に限定される。既にできあがっている脂質膜構造体に外部から医薬を添加する方法であるため、医薬が高分子の場合には、医薬は脂質膜構造体内部には入り込めず、脂質膜構造体の表面に結合した存在様式をとる場合がある。脂質膜構造体としてリポソームを用いた場合、この製造方法 3 を用いると、医薬がリポソーム粒子同士の間に挟まったサンドイッチ構造（一般的には

複合体あるいはコンプレックスと呼ばれている。) をとることが知られている。この製造方法では、脂質膜構造体単独の水分散液をあらかじめ製造するため、乳化時の医薬の分解を考慮する必要がなく、大きさ(粒子径)の制御もたやすいので、製造方法1や製造方法2に比べて比較的製造が容易である。

製造方法4

水系溶媒に分散した脂質膜構造体をいったん製造した上でさらに乾燥させた乾燥物に、さらに医薬を含む水系溶媒を添加する方法である。この場合も製造方法3と同様に医薬は水溶性のものに限定される。製造方法3と大きく違う点は、脂質膜構造体と医薬との存在様式にある。すなわち、この製造方法4では、水系溶媒に分散した脂質膜構造体をいったん製造した上でさらに乾燥させた乾燥物を製造するために、この段階で脂質膜構造体は脂質膜の断片として固体状態で存在する。この脂質膜の断片を固体状態に存在させるために、前記したように水系溶媒として糖水溶液、好ましくはショ糖水溶液や乳糖水溶液を用いるのが好ましい。ここで、医薬を含む水系溶媒を添加すると、固体状態で存在していた脂質膜の断片は水の侵入とともに水和を速やかに始め、脂質膜構造体を再構成することができる。この時に、医薬が脂質膜構造体内部に保持された形態の構造体が製造できる。

製造方法3では、医薬が高分子の場合には、医薬は脂質膜構造体内部には入り込めず、脂質膜構造体の表面に結合した存在様式をとるが、製造方法4はこの点で大きく異なっている。この製造方法4は、脂質膜構造体単独の水分散液をあらかじめ製造するため、乳化時の医薬の分解を考慮する必要がなく、大きさ(粒子径)の制御もたやすいので、製造方法1や製造方法2に比べて比較的製造が容易であることが挙げられる。また、この他に、凍結乾燥あるいは噴霧乾燥を行うため、製剤としての保存安定性を保証しやすいこと、乾燥製剤を医薬水溶液で再水和しても大きさ(粒子径)を元にもどせること、高分子の医薬の場合でも脂質膜構造体内部に医薬を保持させやすいことなどが長所として挙げられる。

脂質膜構造体と医薬との混合物が水系溶媒に分散した形態を調製するための他

の方法としては、リポソームを製造する方法としてよく知られる方法、例えば逆相蒸発法などを別途用いてもよい。大きさ（粒子径）を制御したい場合には、さらに孔径のそろったメンブランフィルターを用いて、高圧力下でイクストルージョン（押し出し慮過）を行えばよい。また、上記の脂質膜構造体と医薬との混合物が水系溶媒に分散した分散液をさらに乾燥させる方法としては、凍結乾燥や噴霧乾燥が挙げられる。この時の水系溶媒としては、脂質膜構造体単独の場合と同様に糖水溶液、好ましくはショ糖水溶液や乳糖水溶液を用いるとよい。上記の脂質膜構造体と医薬との混合物が水系溶媒に分散した分散液をさらに凍結させる方法としては、通常の凍結方法が挙げられるが、この時の水系溶媒としては、脂質膜構造体単独の場合と同様に、糖水溶液や多価アルコール水溶液を用いるとよい。

医薬組成物において配合し得る脂質は、使用する医薬の種類などに応じて適宜選択すればよいが、例えば、医薬が遺伝子以外の場合には医薬 1 質量部に対して 0.1 から 1 0 0 0 質量部が好ましく、0.5 から 2 0 0 質量部がより好ましい。また、医薬が遺伝子の場合には、医薬（遺伝子） 1 μ g に対して、1 から 5 0 0 nmo l が好ましく、1 0 から 2 0 0 nmo l がより好ましい。

本発明の脂質膜構造体を含む医薬組成物の使用方法は、その形態に応じて適宜決定することが可能である。ヒト等に対する投与経路は特に限定されず、経口投与又は非経口投与のいずれでもよい。経口投与の剤形としては、例えば、錠剤、散剤、顆粒剤、シロップ剤、カプセル剤、内服液剤等を挙げることができ、非経口投与の剤形としては、例えば、注射剤、点滴剤、点眼剤、軟膏剤、座剤、懸濁剤、パップ剤、ローション剤、エアゾール剤、プラスター剤等を挙げができる。医薬の分野においては、これらのうち注射剤又は点滴剤が好ましく、投与方法としては、静脈注射、皮下注射、皮内注射などのほか、標的とする細胞や臓器に対しての局所注射が好ましい。また、化粧料の分野においては、化粧料の形態としては、具体的には、ローション、クリーム、化粧水、乳液、フォーム剤、ファンデーション、口紅、パック剤、皮膚洗浄剤、シャンプー、リンス、コンディショナー、ヘアトニック、ヘアリキッド、ヘアクリーム等を挙げができる。

る。

実施例

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されるものではない。

製造例 1 共重合体 (C P) の製造

下記の化合物を攪拌装置と冷却管を備えた 2 L フラスコ中で 1 L のトルエンに溶解し、窒素雰囲気下に 80 ± 2°C で 7 時間加熱し重合反応を行った。

$\text{CH}_2=\text{CHCH}_2\text{O} (\text{C}_2\text{H}_4\text{O})_{11}\text{CH}_3$ 556 g (1. 0 モル)

無水マレイン酸 103 g (1. 05 モル)

tert-ブチルペルオキシ-2-エチルヘキサノエート 4. 3 g (0. 02 モル)

次いで、トルエン及び未反応の無水マレイン酸を 1. 3 ~ 4. 0 kPa の減圧下に 100 ± 10°C で留去し、528 g の共重合体 No. 1 を得た。得られた共重合体 No. 1 は茶色で透明な液体であり、動粘度は 100°C で 206 cSt、鹼化価は 182 KOHmg/g であった。

製造例 2

下記の化合物を攪拌装置と冷却管を備えた 5 L フラスコ中で 2 L のトルエンに溶解し、窒素雰囲気下に 80 ± 2°C で 9 時間加熱して重合を行った。

$\text{CH}_2=\text{CHCH}_2\text{O} (\text{C}_2\text{H}_4\text{O})_{33}\text{CH}_3$ 1524 g (1. 0 モル)

無水マレイン酸 103 g (1. 05 モル)

tert-ブチルペルオキシ-2-エチルヘキサノエート 10. 8 g (0. 05 モル)

次いで、トルエン及び未反応の無水マレイン酸を 1. 3 ~ 4. 0 kPa の減圧下に 110 ± 10°C で留去し、1518 g の共重合体 No. 2 を得た。得られた共重合体 No. 2 は 25°C において茶色の固体であり、鹼化価は 49. 2 KOHm

g / g であった。

製造例 3 ~ 8

表 1 に示された式 (1) で示される化合物ならびに表 2 に示された無水マレイン酸及び触媒を表 1 及び表 2 で示されたモル比とした以外は製造例 2 と同様にして共重合体 No. 3 ~ No. 8 を調製した。共重合体 No. 3 ~ No. 8 の質量平均分子量、鹸化価、形状及び有機溶剤に対する溶解性などの特性を表 3 に示す。

表 1

共重合 体	式 (1) で示されるアルケニルエーテル			
	種類 (構造式)	モル比	OE*	分子量
No. 1	$\text{CH}_2=\text{CHCH}_2\text{O}(\text{C}_2\text{H}_4\text{O})_{11}\text{CH}_3$	1. 0	100	556
No. 2	$\text{CH}_2=\text{CHCH}_2\text{O}(\text{C}_2\text{H}_4\text{O})_{33}\text{CH}_3$	1. 0	100	1524
No. 3	$\text{CH}_2=\text{CHCH}_2\text{O}(\text{C}_2\text{H}_4\text{O})_6\text{CH}_3$	1. 0	100	336
No. 4	$\text{CH}_2=\text{C}(\text{CH}_3)\text{CH}_2\text{O}(\text{C}_2\text{H}_4\text{O})_{44}\text{CH}_3$	1. 0	100	2022
No. 5	$\text{CH}_2=\text{CHCH}_2\text{O}\{(\text{C}_2\text{H}_4\text{O})_{20}(\text{C}_3\text{H}_6\text{O})_{10}\}\text{CH}_3$	1. 0	100	1532
No. 6	$\text{CH}_2=\text{CHCH}_2\text{O}(\text{C}_3\text{H}_6\text{O})_{10}(\text{C}_2\text{H}_4\text{O})_{20}\text{CH}_3$	1. 0	60	1532
No. 7	$\text{CH}_2=\text{CHCH}_2\text{O}(\text{C}_2\text{H}_4\text{O})_{33}\text{CH}_3$	0. 5	100	1524
	$\text{CH}_2=\text{CHCH}_2\text{O}\{(\text{C}_2\text{H}_4\text{O})_{20}(\text{C}_3\text{H}_6\text{O})_{10}\}\text{CH}_3$	0. 5	60	1532
No. 8	$\text{CH}_2=\text{CHCH}_2\text{O}(\text{C}_2\text{H}_4\text{O})_{33}\text{C}_{16}\text{H}_{33}$	0. 2	100	1734
	$\text{CH}_2=\text{CHCH}_2\text{O}(\text{C}_2\text{H}_4\text{O})_{33}\text{CH}_3$	0. 8	100	1524

* : オキシエチレン基の割合 (質量%) を示す。

注) { } 内はランダム状付加物であることを示す。

表 2

共重合 体	無水マレイン酸	触媒	
	モル	種類	モル
No. 1	1.05	t BEH	0.02
No. 2	1.05	t BEH	0.05
No. 3	1.05	t BEH	0.01
No. 4	1.05	t BEH	0.05
No. 5	1.0	LPO	0.03
No. 6	1.0	LPO	0.03
No. 7	1.0	BPO	0.07
No. 8	1.0	t BEH	0.05

BPO : ベンゾイルペルオキシド

LPO : ラウロイルペルオキシド

t-BEH : t e r t -ブチルペルオキシ-2-エチルヘキサノエート

表 3

共重合 体	質量平 均 分子量	鹼化価	形状		溶解性		
			20°C	100°C	水	アセト ン	トルエ ン
No. 1	22,000	182.0	液体	液体	溶解	溶解	溶解
No. 2	21,000	73.3	固体	液体	溶解	溶解	溶解
No. 3	23,000	233.2	液体	液体	溶解	溶解	溶解
No. 4	91,000	49.2	固体	液体	溶解	溶解	溶解
No. 5	21,000	64.5	液体	液体	溶解	難溶	溶解
No. 6	21,000	61.9	液体	液体	溶解	難溶	溶解
No. 7	17,000	71.1	固体	液体	難溶	難溶	溶解
No. 8	16,000	62.0	固体	液体	難溶	難溶	溶解

実施例 1

共重合体No. 1—ジステアロイルホスファチジルエタノールアミン(1 mmol)

付加体の合成

ジステアロイルホスファチジルエタノールアミン748mg(1mmol)を、攪拌装置を備えた100mLのフラスコ中で、トルエン50mLを加えて40°Cで攪拌し、さらに酢酸ナトリウム82mg(1mmol)を添加し、共重合体No. 1を21.9g(0.98mmol)加えて40°Cで5時間反応を行った。反応終了の確認はTLCにより行い、ニンヒドリン発色にてジステアロイルホスファチジルエタノールアミンが検出されなくなる点とした。冷却後、ろ過して未反応のジステアロイルホスファチジルエタノールアミンと酢酸ナトリウムとを除去し、トルエンを減圧留去することにより共重合体No. 1—ジステアロイルホスファチジルエタノールアミン19.8gを得た。

生成物の同定は、シリカゲルプレートを用いた薄層クロマトグラフィー(TL

C) によって行った。展開溶媒にはクロロホルムとメタノールの混合比が 85 : 15 体積比の混合溶媒を用い、ヨウ素蒸気にて発色させて既知量の標準物質との比較により含有物質の定量を行った。TLCにて R_f 値 0.05 付近に認められるジステアロイルホスファチジルエタノールアミンのスポットが消失した。生成物の確認は IR スペクトルにおいて、ホスファチジルエタノールアミンのアミノ基が共重合体 No. 1 とアミド結合することにより、アミノ基の 2960 cm^{-1} のピークが消失し、新たに 2 級アミドのピークが 1740 cm^{-1} に見られることにより確認した。

実施例 2

共重合体 No. 1 - ジステアロイルホスファチジルエタノールアミン (2 mol) 付加体の合成

ジステアロイルホスファチジルエタノールアミン 748 mg (1 mmol) を、攪拌装置を備えた 100 mL のフラスコ中で、トルエン 50 mL を加えて 40°C で攪拌し、さらに酢酸ナトリウム 82 mg (1 mmol) を添加し、共重合体 No. 1 を 11.0 g (0.5 mmol) 加えて 40°C で 5 時間反応を行った。反応終了の確認は下記の TLC により行い、ニンヒドリン発色にてジステアロイルホスファチジルエタノールアミンが検出されなくなる点とした。冷却後、ろ過して未反応のジステアロイルホスファチジルエタノールアミンと酢酸ナトリウムを除去し、トルエンを減圧留去することにより共重合体 No. 1 - ジステアロイルホスファチジルエタノールアミン 10.4 g を得た。

生成物の同定は、シリカゲルプレートを用いた薄層クロマトグラフィー (TLC) によって行った。展開溶媒にはクロロホルムとメタノールの混合比が 85 : 15 体積比の混合溶媒を用い、ヨウ素蒸気にて発色させて既知量の標準物質との比較により含有物質の定量を行った。TLCにて R_f 値 0.05 付近に見られるジステアロイルホスファチジルエタノールアミンのスポットが消失した。生成物の確認は IR スペクトルにおいて、ホスファチジルエタノールアミンのアミノ基

が共重合体No. 1とアミド結合することにより、アミノ基の 2960 cm^{-1} のピークが消失し、新たに2級アミドのピークが 1740 cm^{-1} に見られることにより確認した。

実施例3

共重合体No. 2-ジステアロイルホスファチジルエタノールアミン(1mol)付加体の合成

ジステアロイルホスファチジルエタノールアミン748mg(1mmol)を、攪拌装置を備えた100mLのフラスコ中で、トルエン50mLを加えて40°Cで攪拌し、さらに酢酸ナトリウム82mg(1mmol)を添加し、共重合体No. 2を20.9g(0.99mmol)加えて40°Cで5時間反応を行った。反応終了の確認は下記のTLCにより行い、ニンヒドリン発色にてジステアロイルホスファチジルエタノールアミンが検出されなくなる点とした。冷却後、ろ過して未反応のジステアロイルホスファチジルエタノールアミンと酢酸ナトリウムを除去し、トルエンを減圧留去したのち、トルエン20mLを加え溶解し、ヘキサン100mLに滴下し、共重合体No. 2-ジステアロイルホスファチジルエタノールアミンの結晶を得た。結晶はろ過し真空乾燥することにより19.3gの目的物の乾燥結晶を得た。

生成物の同定は、シリカゲルプレートを用いた薄層クロマトグラフィー(TLC)によって行った。展開溶媒にはクロロホルムとメタノールの混合比が85:15体積比の混合溶媒を用い、ヨウ素蒸気にて発色させて既知量の標準物質との比較により含有物質の定量を行った。TLCにてRf値0.05付近に見られるジステアロイルホスファチジルエタノールアミンのスポットが消失した。生成物の確認はIRスペクトルにおいて、ホスファチジルエタノールアミンのアミノ基が共重合体No. 1とアミド結合することにより、アミノ基の 2960 cm^{-1} のピークが消失し、新たに2級アミドのピークが 1740 cm^{-1} に見られることにより確認した。

実施例4

共重合体No. 2-ジステアロイルホスファチジルエタノールアミン(2 mol)付加体の合成

ジステアロイルホスファチジルエタノールアミン748mg(1mmol)を、攪拌装置を備えた100mLのフラスコ中で、トルエン50mLを加えて40°Cで攪拌し、さらに酢酸ナトリウム82mg(1mmol)を添加し、共重合体No. 2を10.5g(0.5mmol)加えて40°Cで5時間反応を行った。反応終了の確認は下記のTLCにより行い、ニンヒドリン発色にてジステアロイルホスファチジルエタノールアミンが検出されなくなる点とした。冷却後、ろ過して未反応のジステアロイルホスファチジルエタノールアミンと酢酸ナトリウムを除去し、トルエンを減圧留去したのち、トルエン20mLを加え溶解し、ヘキサン100mLに滴下し、共重合体No. 2-ジステアロイルホスファチジルエタノールアミンの結晶を得た。結晶はろ過し真空乾燥することにより10.0gの目的物の乾燥結晶を得た。

生成物の同定は、シリカゲルプレートを用いた薄層クロマトグラフィー(TLC)によって行った。展開溶媒にはクロロホルムとメタノールの混合比が85:15体積比の混合溶媒を用い、ヨウ素蒸気にて発色させて既知量の標準物質との比較により含有物質の定量を行った。TLCにてR_f値0.05付近に見られるジステアロイルホスファチジルエタノールアミンのスポットが消失した。生成物の確認はIRスペクトルにおいて、ホスファチジルエタノールアミンのアミノ基が共重合体No. 1とアミド結合することにより、アミノ基の2960cm⁻¹のピークが消失し、新たに2級アミドのピークが1740cm⁻¹に見られることにより確認した。

実施例5

共重合体No. 5-ジステアロイルホスファチジルエタノールアミン(2 mol)

付加体の合成

ジステアロイルホスファチジルエタノールアミン 748 mg (1 mmol) を、攪拌装置を備えた 100 mL のフラスコ中で、トルエン 50 mL を加えて 40°C で攪拌し、さらに酢酸ナトリウム 82 mg (1 mmol) を添加し、共重合体 No. 5 を 10.4 g (0.49 mmol) 加えて 40°C で 5 時間反応を行った。反応終了の確認は下記の TLC により行い、ニンヒドリン発色にてジステアロイルホスファチジルエタノールアミンが検出されなくなる点とした。冷却後、ろ過して未反応のジステアロイルホスファチジルエタノールアミンと酢酸ナトリウムを除去し、トルエンを減圧留去することにより共重合体 No. 5-ジステアロイルホスファチジルエタノールアミン 10.1 g を得た。

生成物の同定は、シリカゲルプレートを用いた薄層クロマトグラフィー (TLC) によって行った。展開溶媒にはクロロホルムとメタノールの混合比が 85 : 15 体積比の混合溶媒を用い、ヨウ素蒸気にて発色させて既知量の標準物質との比較により含有物質の定量を行った。TLC にて R_f 値 0.05 付近に見られるジステアロイルホスファチジルエタノールアミンのスポットが消失した。生成物の確認は IR スペクトルにおいて、ホスファチジルエタノールアミンのアミノ基が共重合体 No. 1 とアミド結合することにより、アミノ基の 2960 cm^{-1} のピークが消失し、新たに 2 級アミドのピークが 1740 cm^{-1} に見られることにより確認した。

実施例 6

共重合体 No. 5-ジステアロイルホスファチジルエタノールアミン (1 mol) 付加体の合成

ジステアロイルホスファチジルエタノールアミン 748 mg (1 mmol) を、攪拌装置を備えた 100 mL のフラスコ中で、トルエン 50 mL を加えて 40°C で攪拌し、さらに酢酸ナトリウム 82 mg (1 mmol) を添加し、共重合体 No. 4 を 90.9 g (0.99 mmol) 加えて 40°C で 8 時間反応を行った。

反応終了の確認は下記のTLCにより行い、ニンヒドリン発色にてジステアロイルホスファチジルエタノールアミンが検出されなくなる点とした。冷却後、ろ過して未反応のジステアロイルホスファチジルエタノールアミンと酢酸ナトリウムを除去し、トルエンを減圧留去することにより共重合体No. 4-ジステアロイルホスファチジルエタノールアミン85.4gを得た。

生成物の同定は、シリカゲルプレートを用いた薄層クロマトグラフィー(TLC)によって行った。展開溶媒にはクロロホルムとメタノールの混合比が85:15体積比の混合溶媒を用い、ヨウ素蒸気にて発色させて既知量の標準物質との比較により含有物質の定量を行った。TLCにてR_f値0.05付近に見られるジステアロイルホスファチジルエタノールアミンのスポットが消失した。生成物の確認はIRスペクトルにおいて、ホスファチジルエタノールアミンのアミノ基が共重合体No. 1とアミド結合することにより、アミノ基の2960cm⁻¹のピークが消失し、新たに2級アミドのピークが1740cm⁻¹に見られることにより確認した。

実施例7：化粧水の調整（可溶化剤としての評価）

合成例6の共重合体No. 5-ジステアロイルホスファチジルエタノールアミン(1m o l)付加物を使用して化粧水を作成した。表4の組成からなる基材のうち精製水にグリセリン、プロピレングリコールを加え均一に溶解した。他の基材をエタノールに加え均一にした後、前述の精製水相部に攪拌しながら添加し可溶化し化粧水を得た。

表 4

プロピレングリコール	5.0wt%
グリセリン	2.0wt%
オクタデシルアルコール	0.5wt%
大豆水添レシチン	0.5wt%
エタノール	7.0wt%
共重合体No. 5-ジステアロイルホスファチジルエタノールアミン (1 mol) 付加物	2.0wt%
トコフェロール	0.02wt%
香料	適量
防腐剤	適量
精製水	73.0wt%

実施例 8：リポソーム乳液の調整（化粧料用分散剤としての評価）

リポソーム調製法

大豆水添ホスファチジルコリン 645 mg、コレステロール 299 mg 及びミリスチン酸 23 mg (モル比 1 : 1 : 0.1) 及び共重合体 No. 2-ジステアロイルホスファチジルエタノールアミン (1 mol) 付加物を混合脂質濃度 5 mol % となるように加えて、予め 60 °C に加温した生理食塩水 10 ~ 11 mL を混合脂質濃度 10 質量% となるように加えて攪拌し、さらに 60 °C の水浴中でホモゲナイザーにて 10 分間混合しリポソーム溶液を得た。そのリポソーム溶液を用いて表 5 の組成からなる基材のうち乳化剤を含む油相部を 60 °C に加温し均一に溶解した後、攪拌しながら水相部を同温度で添加しリポソーム乳液を得た。

表5

油相部：	
ヘキサデシルアルコール	2.0wt%
ワセリン	2.0wt%
スクワラン	5.0wt%
流動パラフィン	10.0wt%
ポリオキシエチレンモノオレイン酸エステル	2.0wt%
トコフェロール	0.02wt%
香料	適量
防腐剤	適量
水相部：	
プロピレングリコール	2.0wt%
精製水	67.0wt%
リポソーム溶液	10.0wt%

実施例9：血中滞留性リポソームとしての評価

(1) リポソームの調製

表6に示した膜組成比率(処方例1～6、対照例1～2)の脂質を各々秤取し、クロロホルム・メタノール混液(2:1)に溶解させた後、エバボレーターにより有機溶媒を留去し、さらに1時間減圧乾固させた。次に、この脂質乾燥物(リピドフィルム)に、予め65℃に加温しておいた155mM硫酸アンモニウム水溶液(pH5.5)10mLを加え、湯浴につけながらボルテックスミキサーにて軽く攪拌した(ナスフラスコから脂質が剥がれる程度まで)。この脂質分散液をホモジナイザーに移して、10strokeホモジナイズした後、種々孔径のポリカーボネートメンブレンフィルターを用いてサイジング(0.2μm×3回、0.1μm×3回、0.05μm×3回及び0.03μm×3回)を行い、粒子

径 100 nm 前後の空リポソーム分散液を調製した。

この空リポソーム分散液 4 mL を生理食塩水で 2.5 倍希釈し、この希釈したリポソーム分散液を超遠心用チューブに入れ、65,000 rpm で 1 時間遠心分離した後、上清を捨て、生理食塩水で遠心前のリポソーム分散液量 10 mL になるように再懸濁させた（この時点で、トータル脂質濃度として 50 mM となるよう調整した）。上記の外水相を生理食塩水に置換した空リポソーム分散液（トータル脂質濃度 50 mM）及びドキソルビシン溶液（医薬濃度：3.3 mg/mL 生理食塩水）を予め 60 °C に加温しておき、容量比で空リポソーム分散液 4 に対しドキソルビシン溶液 6 を加えた後（最終医薬濃度は 2.0 mg/mL、最終脂質濃度は 20 mM）、1 時間、60 °C でインキュベートした。次いでこれを室温にて冷却し、ドキソルビシン含有リポソーム分散液とした。

（2）リポソームの物性

ドキソルビシンのリポソームへの保持率は、上記リポソーム分散液の一部を取ってゲル滻過（セファデックス G-50；移動相は生理食塩水）を行い、ボイドボリュームに溶出したリポソーム分画中のドキソルビシンを液体クロマトグラフィーにて定量することにより求めた。また粒子径は、上記リポソーム分散液の一部を取って準弾性光散乱（QELS）法にて測定した。その結果、表 6 に示すように、処方例 4 及び 5 以外のリポソームでは、主薬ドキソルビシンの保持率がほぼ 100% であったため、元のリポソーム分散液をそのまま用い、以下に示すラットでの血中滞留性実験用に生理食塩水にて 4/3 倍希釈した（最終医薬濃度は 1.5 mg/mL、最終脂質濃度は 15 mM）。また、処方例 4 及び 5 のリポソームは、超遠心分離（65,000 rpm、1 時間）操作を行い、上清の未封入薬物を除去した後、生理食塩水にて最終薬物濃度が 1.5 mg/mL となるように調製した（最終脂質濃度は処方例 4 が約 17.2 mM、処方例 5 が約 17.9 mM）。なお、いずれのリポソームもその粒子径は 50 ~ 100 nm であった。

（3）ラットでの血中滞留性実験

上記処方例 1 ~ 6、対照例 1 ~ 2 を用いて、SD 系雄性ラット（6 週令）にお

ける血中滞留性実験を行った。エーテル麻酔下でラット頸静脈より各リポソーム分散液を投与し(1群5匹;投与量は7.5 mg ドキソルビシン/5 mL/kg)、その後、各採血時点(2、4、8、24、48、72、120、168時間)でエーテル麻酔下、頸静脈よりヘパリン採血(0.5~1 mL)を行い、血漿分離を行った。その後、常法に従い、前処理してHPLC法にて血漿中医薬濃度を測定した。各リポソーム分散液処方の血漿中医薬濃度から台形法にてAUC(0~∞)を算出した。表6に示すように、対照例1の本発明の脂質誘導体を含まないリポソーム、あるいは対照例2の本発明の脂質誘導体のリン脂質部分(DSPE;ジステアロイルホスファチジルエタノールアミン)のみを添加したリポソームのAUCに比して、本発明のリン脂質誘導体を含むリポソーム処方(処方例1~6)では1オーダー以上大きなAUCが得られ、明らかに高い血中滞留性が認められた。

表 6

	リポソーム膜組成	粒子径 (nm)	主薬保 持率 (%)	AUC _{0~∞} ± S. D. (μg · hr/mL)
処方 例 1	DSPE1 — AKM0531/HSPC/Cholesterol = 0.104 mM/11.28 mM/7.68 mM	89	100.0	3877 ± 308
処方 例 2	DSPE1 — AKM0531/HSPC/Cholesterol = 0.520 mM/11.28 mM/7.68 mM	92	93.4 (n=4)	4191 ± 388
処方 例 3	DSPE1 — AKM0531/HSPC/Cholesterol = 1.04 mM/11.28 mM/7.68 mM	55	100.0	3064 ± 413
処方 例 4	DSPE1 — AKM0350/HSPC/Cholesterol = 0.104 mM/11.28 mM/7.68 mM	49	87.4	2809 ± 288
処方 例 5	DSPE2 — AKM0350/HSPC/Cholesterol = 0.104 mM/11.28 mM/7.68 mM	52	83.9	3063 ± 181
処方 例 6	DSPE1 — AKM1511/HSPC/Cholesterol = 1.04 mM/11.28 mM/7.68 mM	72	99.5	1918 ± 74
対照 例 1	HSPC/Cholesterol = 11.90 mM/8.10 mM	91	100.0	452 ± 98
対照 例 2	DSPE/HSPC/Cholesterol = 1.04 mM/11.28 mM/7.68 mM	94	100.0	397 ± 133

注) DSPE1 — AKM0531 ⇒ PEG 鎮分子量=500, k=30, k30mol に対して DSPE 1mol
 DSPE1 — AKM0350 ⇒ PEG 鎮分子量=300, k=50, k50mol に対して DSPE 1mol
 DSPE2 — AKM0350 ⇒ PEG 鎮分子量=300, k=50, k50mol に対して DSPE 2mol
 DSPE1 — AKM1511 ⇒ PEG 鎮分子量=1500, k=10, k10mol に対して DSPE 1mol
 HSPC : 大豆水添フォスファチジルコリン

$$K = K^I + K^{II}$$

産業上の利用可能性

本発明のリン脂質誘導体は生体に対して安全性が高く、化粧料の分野などにおける界面活性剤、可溶化剤、又は分散剤として有用である。また、本発明のリン脂質誘導体は、リポソームなどの脂質膜構造体の製造のために用いることができ、本発明のリン脂質誘導体を含む脂質膜構造体、好ましくはリポソームは、血中滞留性に優れるという特徴がある。

請求の範囲

1. リン脂質であって、

- (A) 下記式（1）で表される構成単位A、
- (B) 下記式（2 A）及び／又は下記式（2 B）で表される構成単位B、並びに
- (C) 下記式（3）で表される構成単位C：

(1)

(3)

(2A)

(2B)

〔式（1）中、R¹及びR²はそれぞれ独立に水素原子又はメチル基を示すが、R¹及びR²が同時にメチル基になることはなく；R³は炭素数1～3の2価の炭化水素基を示し；AOはそれぞれ独立に炭素数2～4のオキシアルキレン基を示し；mはオキシアルキレン基の平均付加モル数を示し、4≤m≤100の範囲の数であり；R⁴は水素原子、炭素数1～20の炭化水素基、又は炭素数1～20のアシル基を示し、式（2 A）中、Xはそれぞれ独立に水素原子、アルカリ金属原子、アンモニウム、又は有機アンモニウムを示し、式（3）中、R⁵CO及びR⁶COはそれぞれ独立に炭素数8～24のアシル基を示し；R⁷は炭素数2～4の2価の

炭化水素基を示し；Xは水素原子、アルカリ金属原子、アンモニウム、又は有機アンモニウムを示し；Yは水素原子、アルカリ金属原子、アンモニウム、又は有機アンモニウムを示す]を必須構成単位として含む共重合体であって、構成単位Aと構成単位B及び構成単位Cの合計とのモル比が7/3～3/7であり、かつ構成単位Cを共重合体1モル中に1～5モルの割合で含むリン脂質誘導体。

2. 共重合体中に含まれる構成単位A、構成単位B、及び構成単位Cの総数が3以上で、かつ150以下である請求の範囲第1項に記載のリン脂質誘導体。
3. 共重合体中に含まれる構成単位A、構成単位B、及び構成単位Cの総数が5以上で、かつ50以下である請求の範囲第1項に記載のリン脂質誘導体。
4. R¹が水素原子であり、R²が水素原子又はメチル基であり、R³がメチレン基である請求の範囲第1項ないし第3項のいずれか1項に記載のリン脂質誘導体。
5. R⁷がエチレン基である請求の範囲第1項ないし第4項のいずれか1項に記載のリン脂質誘導体。
6. 請求の範囲第1項ないし第5項のいずれか1項に記載のリン脂質誘導体を含む界面活性剤。
7. 請求の範囲第1項ないし第5項のいずれか1項に記載のリン脂質誘導体を含む脂質膜構造体。
8. リポソームである請求の範囲第7項に記載の脂質構造体。
9. 医薬を保持した請求の範囲第7項又は第8項に記載の脂質構造体を含む医薬組成物。
10. 医薬が抗腫瘍剤である請求の範囲第9項に記載の医薬組成物。
11. 請求の範囲第1項ないし第5項のいずれか1項に記載のリン脂質誘導体の製造方法であって、構成単位Aと構成単位Bとを7/3～3/7のモル比で含む共重合体に対して下記の式（4）：

(式中、 R^5CO 、 R^6CO 、 R^7 、及び Y は上記と同義である)
で表される化合物を反応させる工程を含む方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/12502

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C08F8/40, A61K9/127, A61K47/32, A61P35/00, A61K45/00,
A61K7/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C08F8/40, A61K9/127, A61K47/32, A61P35/00, A61K45/00,
A61K7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI (L)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 99/09955 A1 (Aston University), 04 March, 1999 (04.03.99), Claims & JP 2001-513544 A Claims & EP 1007002 A1 & US 6436905 B1	1-11
A	WO 00/33817 A1 (Phares Pharmaceutical Research N.V.), 15 June, 2000 (15.06.00), Claims & JP 2002-532389 A Claims & EP 1137402 A1	1-11

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
---	--

Date of the actual completion of the international search 19 December, 2003 (19.12.03)	Date of mailing of the international search report 13 January, 2004 (13.01.04)
---	---

Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/12502

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 7-268038 A (NOF Corp.), 17 October, 1995 (17.10.95), Claims (Family: none)	1-11
A	WO 01/74400 A1 (Santen Pharmaceutical Co., Ltd.), 11 October, 2001 (11.10.01), Claims; page 14 & JP 2002-326962 A Claims; Par. No. [0038] & EP 1279406 A1 & US 2003/0144247 A1	1-11

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl' C08F8/40, A61K9/127, A61K47/32, A61P35/00,
A61K45/00, A61K7/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl' C08F8/40, A61K9/127, A61K47/32, A61P35/00,
A61K45/00, A61K7/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

WPI (L)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO 99/09955 A1 (Aston University) 1999. 03. 04、特許請求の範囲 & JP 2001-513544 A、特許請求の範囲 & EP 1007002 A1 & US 6436905 B1	1-11
A	WO 00/33817 A1 (Phares Pharmaceutical Research N.V.) 2000. 06. 15、特許請求の範囲 & JP 2002-532389 A、特許請求の範囲 & EP 1137402 A1	1-11

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 19. 12. 03	国際調査報告の発送日 13.01.04
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 佐藤 邦彦 電話番号 03-3581-1101 内線 6825 4 J 8215

C (続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 7-268038 A (日本油脂株式会社) 1995.10.17、特許請求の範囲 (ファミリーなし)	1-11
A	WO 01/74400 A1 (Santen Pharmaceutical Co., Lt d.) 2001.10.11、特許請求の範囲、第14頁 & JP 2002-326962 A、特許請求の範囲、【0 038】 & EP 1279406 A1 & US 2003/0144247 A1	1-11

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.