Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction  $h_{\theta}(x)$  = 0.4. This means (check all that apply):

- Our estimate for P(y=0|x; heta) is 0.4.
- Our estimate for  $P(y=0|x;\theta)$  is 0.6.
- Our estimate for  $P(y=1|x;\theta)$  is 0.4.
- Our estimate for  $P(y=1|x;\theta)$  is 0.6.



Suppose you have the following training set, and fit a logistic regression classifier  $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ .

|  | $x_1$ | $x_2$ | у |
|--|-------|-------|---|
|  | 1     | 0.5   | 0 |
|  | 1     | 1.5   | 0 |
|  | 2     | 1     | 1 |
|  | 3     | 1     | 0 |



Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using  $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2) \text{ ) could increase how well we can fit the training data.}$
- At the optimal value of heta (e.g., found by fminunc), we will have  $J( heta) \geq 0$ .
- Adding polynomial features (e.g., instead using  $h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2) \text{ ) would increase } J(\theta)$  because we are now summing over more terms.
- If we train gradient descent for enough iterations, for some examples  $x^{(i)}$  in the training set it is possible to obtain  $h_{\theta}(x^{(i)}) > 1$ .



$$heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m \left( h_{ heta}(x^{(i)}) - y^{(i)} 
ight) x^{(i)}$$
 (simultaneously update for all  $j$ ).

$$heta_j := heta_j - lpha \, rac{1}{m} \sum_{i=1}^m ig( h_ heta(x^{(i)}) - y^{(i)} ig) x_j^{(i)}$$
 (simultaneously update for all  $j$ ).

$$\theta_j := \theta_j - \alpha \, \tfrac{1}{m} \sum_{i=1}^m \left( \tfrac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)} \right) \! x_j^{(i)} \text{ (simultaneously update for all } j).$$

Which of the following statements are true? Check all that apply.

- The sigmoid function  $g(z)=rac{1}{1+e^{-z}}$  is never greater than one ( > 1).
- The cost function  $J(\theta)$  for logistic regression trained with  $m \geq 1$  examples is always greater than or equal to zero.
- Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.
- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

Suppose you train a logistic classifier  $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$ . Suppose  $\theta_0=-6, \theta_1=0, \theta_2=1$  Which of the following figures represents the decision boundary found by your classifier?

Figure:



Figure:



Figure:



Figure:



- $\mathsf{5.}$  Suppose you train a logistic classifier  $h_{ heta}(x) = g( heta_0 + heta_1 x_1 + heta_2 x_2)$ . Suppose  $heta_0=-6, heta_1=0, heta_2=1$  Which of the following figures represents the decision boundary found by your classifier?
  - Figure:



Figure:



Lecture 6 Slide 10

Figure:



-6+ × ≥0 × ≥ 6

$$x \ge 6$$

Figure:

