MA 361: Probability Theory

Naman Mishra

August 2024

Contents

Ι	Review of discrete probability Measure-theoretic probability			
П				
	II.1	σ -alge	bras	6
	II.2	Proba	bility spaces	7
		II.2.1	The σ -algebra	8
		II.2.2	The probability measure	8
	II.3	Existe	ence of Lebesgue measure	10
		II.3.1	Push forward	10
		II.3.2	Structure of $P(\Omega, \mathcal{F})$	12

The course

Grading

• Homework: 20%

• Two midterms: 15% each

• Final: 50%

Lecture 1.
Thursday
August 1

Chapter I

Review of discrete probability

Definition I.1 (Discrete probability space). A discrete probability space is a pair (Ω, p) where Ω is a finite or countable set called *sample space* and $p:\Omega\to [0,1]$ is a function giving the *elementary probabilities* of each $\omega\in\Omega$ such that

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

Examples.

• "Toss a fair n times" is modeled as

$$\Omega = \{0, 1\}^n$$

with

$$p(\omega) \equiv \frac{1}{2^n}.$$

• "Throw r balls randomly into m bins" is modeled as

$$\Omega = [m]^r$$

with p given by the multinomial distribution (assuming uniformity).

• "A box has N coupons, draw one of them."

$$\Omega = [N]$$

$$p = \omega \mapsto \frac{1}{N}.$$

• "Toss a fair coin countably many times." The set of outcomes is clear: $\Omega = \{0, 1\}^{\mathbb{N}}$. What about the elementary probabilities?

Probabilities of some events are also fairly intuitive. For example, the event

$$A = \{ \underline{\omega} \in \Omega \mid \omega_1 = 1, \omega_2 = 1, \omega_3 = 0 \}$$

has probability 1/8. Similarly $B = \{\underline{\omega} \in \Omega \mid \omega_1 = 1, \omega_2 = 0\}$ has probability 1/4. Where does this come from?

What about this event:

$$C = \{ \underline{\omega} \in \Omega \mid \frac{1}{n} \sum_{i=1}^{n} \omega_i \to 0.6 \}$$

What about:

$$D = \{\underline{\omega} \in \Omega \mid \sum_{i=1}^{n} \omega_i = \frac{n}{2} \text{ for infinitely many } n\}^1$$

• "Draw a number uniformly at random from [0, 1]." Ω is obviously [0, 1]. Again some events have obvious probabilities.

$$A = [0.1, 0.3] \implies \mathbf{P}(A) = 0.2$$

Similarly

$$B = [0.1, 0.2] \cup (0.7, 1) \implies \mathbf{P}(B) = 0.4$$

What about $C = \mathbb{Q} \cap [0,1]$? What about D, the $\frac{1}{3}$ -Cantor set?

The $\frac{1}{3}$ -Cantor set is given by the limit of the following sequence of sets.

$$K_0 = [0, 1]$$

 $K_1 = [0, 1/3] \cup [2/3, 1]$
 $K_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$
:

where each K_{n+1} is obtained by removing the middle third of each interval in K_n .²

The resolution for the above examples is achieved by taking the 'obvious' cases as definitions.

What we wish for:

What we agree on:

(*)
$$\mathbf{P}([a,b]) = b - a$$
 for all $0 \le a \le b \le 1$.

(#1) If
$$A \cap B = \emptyset$$
, then $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$.

(#2) If
$$A_n \downarrow A$$
, then $\mathbf{P}(A_n) \downarrow \mathbf{P}(A)$.

Question: Does there exist a $P: 2^{[0,1]} \to [0,1]$ that satisfies (*), (#1) and (#2)? **No.**

Question: Does there exist a $P: 2^{[0,1]} \to [0,1]$ that satisfies (*), (#1) and even *translational invariance*? **Yes!** However, it is not unique.

$${}^{1}\mathbf{P}(C) = 0 \text{ and } \mathbf{P}(D) = 1.$$

Lecture 1: Discrete probability and σ -algebras

 $^{{}^{2}\}mathbf{P}(C) = \mathbf{P}(D) = 0.$

What about the same for a probability measure on $[0,1]^2$ that is translation and rotation invariant?

What about $[0,1]^3$?

Lack of uniqueness is a disturbing issue. The way out is the following: restrict the class of sets on which ${\bf P}$ is defined to a σ -algebra.

 $^{^3{\}rm The~Banach\text{-}Tarski}$ paradox gives a "no" for the 3D case.

Chapter II

Measure-theoretic probability

σ -algebras **II.1**

Definition II.1 (σ -algebra). Given a set Ω , a collection $\mathcal{F} \subseteq 2^{\Omega}$ is

- $(\varsigma 1) \varnothing \in \mathcal{F}.$ $(\varsigma 2) A \in \mathcal{F} \implies A^c \in \mathcal{F}.$ $(\varsigma 3) \text{ If } A_1, A_2, \ldots \in \mathcal{F}, \text{ then } \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}.$

This gives us a modified question.

Question: Does there exist any σ -algebra \mathcal{F} on [0,1] and a function $\mathbf{P} \colon \mathcal{F} \to \mathbf{P}$ [0,1] that satisfies (#), (*) and (**)?

Answer: Yes, and it is sort-of unique.

Exercise II.2. Prove that (**) is equivalent to the following: if $(B_n)_{\mathbb{N}}$ are pairwise disjoint, then

$$\mathbf{P}(\bigcup B_n) = \sum \mathbf{P}(B_n).$$

Solution.

A σ -algebra that works for our case is the *smallest* one that contains all

Exercise II.3. If $\{\mathcal{F}_i\}_{i\in I}$ are σ -algebras on Ω , then $\bigcap_{i\in I}\mathcal{F}_i$ is also a σ algebra.

Proof. \varnothing is in each \mathcal{F}_i and hence in the intersection. If A is in each \mathcal{F}_i , then so is A^c . If A_1, A_2, \ldots are in each \mathcal{F}_i , then so is $\bigcup_{n=1}^{\infty} A_n$.

This allows us to make sense of the word 'smallest' above.

Definition II.4. Let $S \subseteq 2^{\Omega}$. The *smallest* σ -algebra containing S is given by the intersection of all σ -algebras on Ω that contain S. We denote this by $\sigma(S)$.

This will contain S since 2^{Ω} itself is a σ -algebra.

Example (Borel σ -algebra). The Borel σ -algebra on [0,1] is the smallest σ -algebra containing all intervals in [0,1]. It is denoted by $\mathcal{B}_{[0,1]}$.

II.2 Probability spaces

Definition II.5 (probability space). A probability space is a triple $(\Omega, \mathcal{F}, \mathbf{P})$, where Ω is a non-empty set called the sample space, \mathcal{F} is a σ -algebra on Ω , and \mathbf{P} is a probability measure on \mathcal{F} .

A probability measure on a σ -algebra \mathcal{F} is a function $\mathbf{P} \colon \mathcal{F} \to [0,1]$ such that $\mathbf{P}(\Omega) = 1$ and

$$\mathbf{P}\bigg(\bigsqcup_{n} A_{n}\bigg) = \sum_{n} \mathbf{P}(A_{n})$$

for any sequence of pairwise disjoint sets $A_n \in \mathcal{F}$ (countable additivity).

Countable additivity is a stronger condition than finite additivity.

Exercise II.6. Prove that countable additivity is equivalent to the following two conditions taken together:

- (i) finite additivity: if $A \cap B = \emptyset$, then $\mathbf{P}(A \sqcup B) = \mathbf{P}(A) + \mathbf{P}(B)$
- (ii) If $A_n \uparrow A$, then $\mathbf{P}(A_n) \uparrow \mathbf{P}(A)$.

Solution. We first show that these follow from countable additivity.

If one takes $A_1 = A$ and $A_n = \emptyset$ for $n \ge 2$, then countable additivity implies $\mathbf{P}(\emptyset) = 0$. Finite additivity is immediate by taking only A_3, A_4, \ldots to be empty.

Let $A_n \uparrow A$. Define $B_1 = A_1$ and $B_n = A_n \setminus A_{n-1}$ for $n \geq 2$. Then $(B_n)_{\mathbb{N}}$ are pairwise disjoint and $\bigcup B_n = A$. By countable additivity,

$$\mathbf{P}(A) = \sum_{n} \mathbf{P}(B_n).$$

But the partial sums of this series are exactly $\mathbf{P}(A_n)$ by finite additivity. Thus $\mathbf{P}(A) = \lim \mathbf{P}(A_n)$.

Where do Ω , \mathcal{F} , and P come from?

 Ω is simply the set of all possible outcomes.

August 6

Lecture 2. Tuesday

II.2.1 The σ -algebra

 $\mathcal{F} = 2^{\Omega}$ and $\mathcal{F} = \{\varnothing, \Omega\}$ are bullshit choices. In reality, \mathcal{F} is always chosen to be the smallest σ -algebra containing some specified sets of interest. That is, for some $\mathcal{S} \subseteq 2^{\Omega}$, $\mathcal{F} = \sigma(\mathcal{S})$.

This is sometimes called the σ -algebra "generated by" S. However, this can create a misconception. Recall the similar notion of the *span* of a set of vectors. We can define the span of a set $S \subseteq V$ of vectors in two ways:

- (external) the smallest subspace containing S.
- (internal) the set of all linear combinations of vectors in S.

For $\sigma(S)$, there is no "internal" definition. $\sigma(S)$ cannot be generated by unions, intersections, etc. of sets in S.

A frequent choice for S is the following.

Definition II.7 (Borel σ -algebra). Let (X, d) be a metric space. The Borel σ -algebra on X is the smallest σ -algebra containing all open sets in X, and is denoted $\mathcal{B}(X)$.

II.2.2 The probability measure

There is some collection $S \subseteq \Omega$ for which we know what the probabilities "should" be, $\mathbf{P} \colon S \to [0, 1]$.

Question II.8. Does **P** extend to a probability measure on $\sigma(S)$? If so, is it unique?

Uniqueness does not hold.

Example. Let $\Omega = \{1, 2, 3, 4\}$ and $S = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$. $\mathcal{F} = \sigma(S) = 2^{\Omega}$.

Then the probability measures given by

$$\underline{p} = (.25, .25, .25, .25)$$
$$\underline{q} = (.5, 0, .5, 0)$$

agree on S but differ on F.

When does uniqueness hold?

Uniqueness

Definition II.9 (π -system). A collection $S \subseteq 2^{\Omega}$ is a π -system if it is closed under finite intersections. That is, for any $A, B \in S$, $A \cap B \in S$.

Lecture 2: Probability measures and their existence

Definition II.10 (λ -system). A collection $\mathcal{C} \subseteq 2^{\Omega}$ is a λ -system if it contains Ω and is closed under

- proper differences: if $A, B \in \mathcal{C}$ and $B \subseteq A$, then $A \setminus B \in \mathcal{C}$.
- increasing limits: if $A_n \in \mathcal{C}$ and $A_n \uparrow A$, then $A \in \mathcal{C}$.

Theorem II.11. If $\mathcal{F} = \sigma(\mathcal{S})$ where \mathcal{S} is a π -system and P, Q are probability measures on \mathcal{F} that agree on \mathcal{S} , then P = Q.

Proof sketch. Consider $\mathcal{G} = \{A \in \mathcal{F} \mid P(A) = Q(A)\}$. Then $\mathcal{G} \supseteq \mathcal{S}$. Further, if $A \in \mathcal{G}$, then $A^c \in \mathcal{G}$ since $P(A^c) = 1 - P(A) = 1 - Q(A) = Q(A^c)$. If $A, B \in \mathcal{G}$ are disjoint, then

$$P(A \sqcup B) = P(A) + P(B) = Q(A) + Q(B) = Q(A \sqcup B).$$

But how do we deal with A, B not disjoint? We need to show that $A, B \in \mathcal{G} \implies A \cap B \in \mathcal{G}$.

Resolution: Show that \mathcal{G} is a λ -system, and then apply the π - λ theorem. Suppose $A, B \in \mathcal{G}$ with $B \subseteq A$. Then $P(A \setminus B) = P(A) - P(B) = Q(A) - Q(B) = Q(A \setminus B)$. Thus \mathcal{G} is closed under proper differences.

If $A_n \uparrow A$ are in \mathcal{G} , then $P(A_n) \uparrow P(A)$ and $Q(A_n) \uparrow Q(A)$. But $P(A_n) = Q(A_n)$ for all n, so P(A) = Q(A). Thus \mathcal{G} is closed under increasing limits.

 \mathcal{G} contains Ω since $P(\Omega) = Q(\Omega) = 1$.

Thus by the π - λ theorem, \mathcal{G} is a σ -algebra and thus $\mathcal{G} \supset \mathcal{F}$.

Theorem II.12 $(\pi$ - λ theorem). Let S be a π -system and C be a λ -system. If $C \supseteq S$, then $C \supseteq \sigma(S)$.

This is due to Sierpiński and Dynkin.

What about existence?

Existence

In the general case, obviously not. Consider $\Omega = [0, 1]$ with

$$S = \{(0, \frac{1}{2}), (0, \frac{1}{4}), (\frac{1}{4}, \frac{1}{2})\}$$
$$\mathbf{P}(a, b) = (b - a)^{2}.$$

Then the sum of $\mathbf{P}(0,\frac{1}{4})$ and $\mathbf{P}(\frac{1}{4},\frac{1}{2})$ is less that $\mathbf{P}(0,\frac{1}{2})$.

Let us impose some necessary conditions.

Definition II.13 (Algebra). A collection $\mathcal{A} \subseteq 2^{\Omega}$ is an *algebra* if it is closed under complements and finite unions.

Lecture 2: Probability measures and their existence

Theorem II.14 (Carathéodory's extension theorem). Let S be an algebra. Assume that $P: S \to [0,1]$ is countably additive. Then there exists an extension of P to a probability measure P on $F = \sigma(S)$.

Corollary II.15. The above extension is unique.

Proof. An algebra is a π -system. Theorem II.11 applies.

II.3 Existence of Lebesgue measure

Theorem II.16. There is a unique probability measure λ on $([0,1], \mathcal{B}_{[0,1]})$ such that

$$\lambda([a,b]) = b-a \quad \textit{for all } 0 \leq a \leq b \leq 1.$$

Proof. Let $\Omega = [0, 1)$.

Let $S_0 = \{[a, b) \mid 0 \le a \le b \le 1\}$. Half-open intervals are nice because they are closed under complements: $[a, b)^c = [0, a) \sqcup [b, 1)$.

Let

$$\mathcal{S} = \{I_1 \sqcup \cdots \sqcup I_k \mid k \geq 1, I_j \in \mathcal{S}_0\}$$

be the collection of all finite disjoint unions of half-open intervals. This is an algebra. $\hfill\blacksquare$

Definition II.17. Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be two sets with σ -algebras. A function $T \colon \Omega \to \Omega'$ is *measurable* if

Lecture 3. Thursday
August 8

$$T^{-1}(B) \in \mathcal{F}$$
 for all $B \in \mathcal{F}'$.

II.3.1 Push forward

Lemma II.18. Let (Ω, \mathcal{F}, P) be a probability space and (Ω', \mathcal{F}') be a measurable space. Let $T: \Omega \to \Omega'$ be measurable. Then $Q := P \circ T^{-1}$ is a probability measure on \mathcal{F}' .

Proof. Notice that $T^{-1}(B)^c = T^{-1}(B^c)$ and that if B_1 and B_2 are disjoint, so are $T^{-1}(B_1)$ and $T^{-1}(B_2)$.

Definition II.19 (cumulative distributive function). A cumulative distributive function (CDF) is a function $F: \mathbb{R} \to [0,1]$ such that

- (i) (increasing) $x \le y \implies F(x) \le F(y)$
- (ii) (right-continuous) $\lim_{h \searrow 0} F(x+h) = F(x)$
- (iii) $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$

Let $P(\mathbb{R})$ be the set of all probability measures on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. If $\mu \in P(\mathbb{R})$, then $F_{\mu}(x) := \mu(-\infty, x]$ is a CDF (increasing, right-continuous with $F(-\infty) = 0$, $F(\infty) = 1$)).

Lecture 4. Tuesday August 13

Theorem II.20. Given a CDF $F: \mathbb{R} \to [0,1]$, there exists a unique probability measure $\mu \in P(\mathbb{R})$ such that $\mu(-\infty, x] = F(x)$ for all $x \in \mathbb{R}$.

Proof. Consider $((0,1), \mathcal{B}, \lambda)$ and define

$$T: (0,1) \to \mathbb{R}$$

 $u \mapsto \inf\{x \in \mathbb{R} : F(x) > u\}$

The set is non-empty since $F(x) \to 1$ as $x \to \infty$. Moreover, T is increasing since

$$\{x \in \mathbb{R} : F(x) \ge u\} \subseteq \{x \in \mathbb{R} : F(x) \ge v\}$$

whenever $u \leq v$. T is left-continuous.

Finally, $T(u) \leq x \iff F(x) \geq u$. (This is reminiscent of the inverse property: $T(u) = x \iff F(x) = u$.) If $F(x) \geq u$, then $x \in F^{-1}[u, 1)$, so $T(u) \leq x$. If $T(u) \leq x$, then $x + \frac{1}{n} \in F^{-1}[u, 1)$ for all $n \in \mathbb{N}$. By right-continuity, $F(x) \geq u$.

Now T is Borel-measurable, so

$$\mu \coloneqq \lambda \circ T^{-1}$$

is a probability measure on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Further, $\mu(-\infty, x] = \lambda(T^{-1}(-\infty, x]) = \lambda(0, F(x)] = F(x)$. Uniqueness if by the π -system thingy.

Examples.

- Take $f: \mathbb{R} \to [0, \infty)$ measurable whose total integral is 1. Then $F = x \mapsto \int_{-\infty}^{x} f(u) du$ is a CDF.
- (Cantor measure) Consider the $\frac{1}{3}$ -Cantor set $K = K_1 \cap K_2 \cap \ldots$ where

$$K_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$K_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$
:

Notice that

$$K = \{x \in [0,1] : x = \sum_{n=1}^{\infty} \frac{x_n}{3^n}, x_n = 0 \text{ or } 2\}.$$

We can construct the measurable function

$$T: [0,1] \to \mathbb{R}$$

$$\sum_{n=1}^{\infty} \frac{x_n}{2^n} \mapsto \sum_{n=1}^{\infty} \frac{2x_n}{3^n}$$

where we are considering the non-terminating binary expansion of x on the left. It is obvious that T maps only to K. Since $T^{-1}(K) = [0, 1]$, we have that $\mu(K) = 1$. However, $\lambda(K) = 0$. Thus the CDF cannot arise from a density. However, the CDF is continuous!

• (just for fun) Fix a $\theta > 2$ and define

$$T_{\theta} \colon [0,1] \to [0,1]$$

$$\sum_{n=1}^{\infty} \frac{x_n}{2^n} \mapsto \sum_{n=1}^{\infty} \frac{x_n}{\theta^n}$$

define $\mu_{\theta} = \lambda \circ T_{\theta}^{-1}$. $\mu_2 = \lambda$. It is known that for $\theta > 2$, μ_{θ} has no density. What about $1 < \theta < 2$? This is an open problem. "Bernoulli convolution problem".

II.3.2 Structure of $P(\Omega, \mathcal{F})$

What is the structure of $P(\Omega, \mathcal{F})$? Is it a vector space? A group?

One thing to note is that $P(\Omega, \mathcal{F})$ is convex. That is, given any $\mu, \nu \in P(\Omega, \mathcal{F})$ and $0 \le t \le 1$, $(1 - t)\mu + t\nu \in P(\Omega, \mathcal{F})$. This is called a *mixture* of μ and ν .

We would like to study *closeness* of probability measures. Consider a computer generating a random number between 0 and 1, by generating a sequence of 8 random bits. The computer is actually sampling from the uniform distribution

$$\mu_{2^8} = \text{Unif}\left\{\frac{0}{2^8}, \frac{1}{2^8}, \dots, \frac{2^8 - 1}{2^8}\right\}.$$

However, we do accept μ as an approximation of λ . We will thus attempt to define a *metric* on $P(\mathbb{R})$.

Attempt 1. (total variation distance) Define

$$d(\mu, \nu) = \sup_{A \in \mathcal{B}_{\mathbb{R}}} |\mu(A) - \nu(A)|.$$

This does not work for out for our use case, as

$$d(\mu_{2^8}, \lambda) = 1.$$

Attempt 2. (Kolmogorov-Smirnov metric) Choose a suitable $\mathcal{C} \in \mathcal{B}_{\mathbb{R}}$ and

define

$$d(\mu, \nu) = \sup_{A \in \mathcal{C}} |\mu(A) - \nu(A)|.$$

 \mathcal{C} should be "measure-determining".

Attempt 3. (Lévy metric)

$$d(\mu, \nu) = \inf\{\varepsilon > 0 : F_{\mu}(x + \varepsilon) + \varepsilon \ge F_{\nu}(x) \text{ and } F_{\nu}(x + \varepsilon) + \varepsilon \ge F_{\mu}(x) \text{ for all } x \in \mathbb{R}\}.$$

This is symmetric by sheer obviousness. For \triangle , consider three measures μ, ν, ρ .

$$t > d(\mu, \nu)$$
 $\Longrightarrow F_{\mu}(x+t) + t \ge F_{\nu}(x)$
 $s > d(\nu, \rho)$ $\Longrightarrow F_{\nu}(x+s) + s \ge F_{\rho}(x)$

Thus

$$F_{\mu}(x+t+s) + t + s \ge F_{\nu}(x+s) + t \ge F_{\rho}(x)$$

Thus $t + s \ge d(\mu, \rho)$. \triangle holds.

Finally, suppose $d(\mu, \nu) = 0$. Let $\varepsilon_n \downarrow 0$ be a sequence such that $F_{\mu}(x + \varepsilon_n) + \varepsilon_n \geq F_{\nu}(x)$ for all x for all n. Taking limits, we have $F_{\mu}(x) \geq F_{\nu}(x)$ by right-continuity. By symmetry, $F_{\mu}(x) = F_{\nu}(x)$.