EXERCICE N°1

(Le corrigé)

Le tableau ci-dessous donne l'évolution du SMIC horaire brut de 2015 à 2019.

Année: x_i	2015	2016	2017	2018	2019
SMIC horaire: y_i (en \in)	9,61	9,67	9,76	9,88	10,03

Source: https://www.insee.fr/fr/statistiques/1 375188

1) Représenter le nuage de points de la série statistique dans un repère orthogonal. On prendra comme unités graphiques

1 cm pour 1 an sur l'axe des abscisses en prenant pour origine 2014 et 10 cm pour 1 € sur l'axe des ordonnées en prenant pour origine 9,40 €.

2) Déterminer l'équation réduite de la droite d'ajustement de y en x par la méthode Δ des moindres carrés. Les coefficients a et b seront arrondis à 10^{-3} près.

Avec l'aide de la calculatrice, on peut dire que l'équation réduite Δ est y = 0.105x - 201.995

3) Représenter la droite Δ sur le graphique de la question 1).

4) Déterminer, par le calcul, le SMIC horaire brut estimé pour l'année 2025.

En se basant sur la droite d'ajustement :

 $0,105 \times 2025 - 201,995 = 10,63$

En 2025, le SMIC horaire brut serait de 10,63 €

5) Déterminer, par le calcul, à partir de quelle année on peut estimer que le SMIC horaire brut dépassera 10,90€.

Il s'agît de résoudre l'inéquation $0,105 x - 201,995 \ge 10,9$.

$$0,105 \, x - 201,955 \ge 10,9 \Leftrightarrow 0,105 \, x \ge 212,895 \Leftrightarrow x \ge \frac{212,895}{0,105} \approx 2027,6$$

On en déduit qu'il faudra attendre | 2028

EXERCICE N°2

(Le corrigé)

Indiquer si les affirmations suivantes sont vraies ou fausses, puis justifier.

1) Voici le nuage de points d'une série statistique à deux variables. Un ajustement affine de ce nuage de points est envisageable.

La droite d'équation

y=0.5x+2 réalise un bon ajustement affine.

Voici le nuage de points 3) d'une série statistique à deux variables. G est le point moyen du nuage.

La droite Δ est la droite d'ajustement par la méthode des moindres carrés.

1)

Vrai . Les points du nuage étant « presque » alignés, un ajustement affine est envisageable.

2)

Ici, on peut tracer la droite et constater que « ça ne va pas du tout! »

. Il est évident que cette droite ne réalise pas un bon ajustement.

Faux | . Le point moyen n'appartient à Δ donc elle ne peut pas être la droite d'ajustement par la méthode des moindres carrés.

Voir la propriété n°1 (tout à la fin du cours)

(le qrcode est cliquable également)

STATISTIQUES À DEUX VARIABLES E02

EXERCICE N°3 (Le corrigé)

Pour chacune des deux séries statistiques à deux variables suivantes, répondre aux questions.

	Série n°1						
\boldsymbol{x}_{i}	1	2	3	4	5		
y_i	123	129	135	140	145		

		Série n°2					
	t_{i}	18	20	21	25	28	30
Ī	N_{i}	24	44	62	100	132	14

- 1) Déterminer les coordonnées du point moyen G
- 2) Déterminer, à l'aide de la calculatrice l'équation de Δ , la droite d'ajustement par la méthode des moindres carrés (coefficients arrondis à 10^{-3} près).
- 3) Vérifier que $G \in \Delta$.
- 4) Déterminer les coordonnées d'un autre point appartenant à Δ .

Pour la série n°1

1)

Notons
$$G(x_G; y_G)$$
.
 $x_G = \frac{1+2+3+4+5}{5} = 3$ et $y_G = \frac{123+129+135+140+145}{5} = 134,4$
Ainsi $G(3; 134,4)$

2)

$$y = 5.5 x + 117.9$$

3)

Un point appartient à une droite si et seulement si ses coordonnées vérifient l'équation de cette droite.

Or:
$$5.5 \times 3 + 117.9 = 134.4$$

Souvenez-vous de l'exercice n°1 de la fiche A01...

Donc $G \in \Delta$

4)

Par exemple pour x=0, $5.5\times0+117.9 = 117.9$

On en déduit que le point de coordonnées (0; 117,9) appartient à Δ .

Ici, comme on a le choix, on ne cherche pas à faire compliqué...

Pour la série n°2

1)

Notons
$$G(x_G; y_G)$$
.
 $x_G = \frac{18+20+21+25+28+30}{6} = \frac{142}{6} = \frac{71}{3} \approx 23,667$ et
$$y_G = \frac{24+44+62+100+132+14}{6} = \frac{376}{6} = \frac{188}{3} \approx 62,667$$

Ainsi

2,924x-6,524

3)

Or:
$$2,924 \times \frac{71}{3} - 6,524 \approx 62,677$$

On peut donc admettre que $G \in \Delta$

(on vous fait travailler avec des valeurs approchées donc on acceptera ce raisonnement)

4)

Par exemple pour x=0, $2,924\times0-6,524 = -6,524$

On en déduit que le point de coordonnées (0; -6,524) appartient à Δ .