AIQL: Enabling Efficient Attack Investigation from System Monitoring Data

USENIX

ATC '18

Peng Gao¹, Xusheng Xiao², Zhichun Li³, Kangkook Jee², Fengyuan Xu³, Sanjeev R. Kulkarni¹, Prateek Mittal¹

Advanced Persistent Threat (APT) Attack

APT attacks have plagued many well-protected businesses

- Advanced: sophisticated techniques exploiting multiple vulnerabilities
- Persistent: continuously monitoring and stealing data from target
- Threat: strong economical or political motives

Ubiquitous System Monitoring

System monitoring records system events from kernels in a unified structure of logs (not bound to applications)

System activities (system events): <subject, operation, object>

Challenges in enabling efficient attack investigation

- Attack behavior specification
- Timely "big data" security analysis
- ➤ Collect and store system monitoring data for hosts in an organization (~50 GB for 100 hosts per day) => data storage optimization
- Query data for attack investigation

=> query execution optimization

AIQL System

Novel query system for attack investigation (~50K lines of Java code)

• Built on top of existing mature tools: auditd, ETW, DTrace for system-level monitoring; PostgreSQL, Greenplum for relational databases

AIQL (Attack Investigation Query Language) Design

AIQL supports the specification of three types of attack behaviors. Typical constructs: event patterns (subject-operation-object), global constraints, attribute/temporal relationships, constraint chaining, sliding windows and history state access, syntax shortcuts (e.g.,

Dependency AIQL query

Query Execution Engine

- Synthesize a SQL data query for every event pattern
- Schedule the data queries using domain-specific optimizations
 - > Leverage event relationships for optimizing search strategies
 - itize event search based on estimated pruning power
 - Prune search space of related events
 - ➤ Leverage domain-specific characteristics of data for parallel search
 - Time window partition

Case Study: APT Attack Investigation

8 return distinct p1, p2, p3, f1, p4, i1

Multievent AIQL query

27 queries, touching 119 GB of data (422 million system events)

- As the attack behaviors become more complex, SQL and Cypher queries become verbose with many joins and constraints
- AIQL takes less than 3 minutes for the entire investigation process, 127x faster than PostgreSQL, 157x faster than Neo4j

Conciseness and Scheduling Efficiency

19 queries on four major types of attack behaviors, touching 738 GB of data (2.1 billion system events)

a1-a5: Multi-step attack behaviors

Anomaly AIQL query

- d1-d3:Dependency tracking behaviors
- v1-v5: Real-world malware behaviors
- s1-s6: Abnormal system behaviors

• Both PostgreSQL and Greenplum employ our optimized data storage

