Problem (Problem 1): Describe the topology of the Grassmanian Gr(k, n) in a uniform way, so that \mathbb{RP}^n becomes the special case of Gr(1, n).

Solution: We let elements of Gr(k, n) be defined as equivalence classes of linearly independent k-tuples of vectors in \mathbb{R}^n , where $(v_1, \dots, v_k) \sim (w_1, \dots, w_k)$ if $span\{v_1, \dots, v_k\} = span\{w_1, \dots, w_k\}$.

By extending $(v_1, ..., v_k)$ and $(w_1, ..., w_k)$ to ordered bases $\mathcal{B}_1 = (v_1, ..., v_n)$ and $\mathcal{B}_2 = (w_1, ..., w_n)$, we see that these k-tuples are equivalent if and only if there is an invertible linear transformation Q with matrix representation

$$Q = \begin{pmatrix} A & H \\ 0 & B \end{pmatrix},$$

where A is a $k \times k$ invertible matrix, and B is a $(n - k) \times (n - k)$ invertible matrix, so that

$$Q[v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_n] = [w_1, \dots, w_k, w_{k+1}^*, \dots, w_n^*],$$

where $\{w_{k+1}^*, \dots, w_n^*\}$ is a basis for the n-k-dimensional complementary subspace. The subgroup of all such $Q \subseteq GL_n(\mathbb{R})$, which we call P, is the stabilizer of Gr(k,n) as we have defined it, so by the orbit-stabilizer theorem (seeing as $GL_n(\mathbb{R})$ acts transitively on all ordered bases of \mathbb{R}^n), we obtain $Gr(k,n) \cong GL_n(\mathbb{R})/P$, where the latter coset space is given the quotient topology.

This definition comports with the definition of \mathbb{RP}^n as the space of one-dimensional subspaces, as the invertible 1×1 matrices are precisely the nonzero scalars, so the stabilizers in the case of Gr(1, n) are the 1×1 invertible block matrices A, or the nonzero scalars.

Problem (Problem 2): Fix an inner product on \mathbb{R}^n . Show that the map $V \mapsto V^{\perp}$ induces a C^{∞} diffeomorphism $Gr(k,n) \to Gr(n-k,n)$.

Solution: Due to the inner product, we make the identification $v \mapsto v^*$ such that $v^*(w) = \langle v, w \rangle$. In particular, we have isomorphisms $V \cong V^*$ and $V^{\perp} \cong (V^{\perp})^*$. Therefore, given an element $T \in \text{Hom}(V, V^{\perp})$, dualization gives the transpose map $T^* \in \text{Hom}((V^{\perp})^*, V^*)$.

Now, given any chart (U_V, φ_V) in Gr(k, n), we identify $T \in Hom(V, V^{\perp}) \cong U_V$ to $T^* \in Hom((V^{\perp})^*, V^*) \cong U_{V^{\perp}}$, and identify subspaces $W \in U_V$ with their annihilators

$$W^0 = \{ w^* \in (\mathbb{R}^n)^* \mid w^*(v) = 0 \text{ for all } v \in W \},$$

so that $W^0 \cap V^* = 0$. Finally, we define $\varphi_{V^{\perp}}$ by

$$\varphi_{V^{\perp}} = P_{V^*} \circ P_{(V^{\perp})^*}|_{W^0}^{-1}.$$

Since every $W \in Gr(k,n)$ has a unique annihilator subspace $W^0 \in Gr(n-k,n)$, we have the series of bijective correspondences

$$\begin{array}{c} \operatorname{Hom}(V,V^{\perp}) \overset{\varphi V}{\longleftrightarrow} U_{V} \\ & \overset{W \leftrightarrow W^{0}}{\longleftrightarrow} U_{V^{\perp}} \\ & \overset{\varphi_{V^{\perp}}}{\longleftrightarrow} \operatorname{Hom}((V^{\perp})^{*},V^{*}) \\ & \overset{\langle \cdot, \cdot \rangle}{\longleftrightarrow} \operatorname{Hom}(V^{\perp},V), \end{array}$$

meaning that this identification is a C^{∞} diffeomorphism.

Problem (Problem 3): Prove that a C^k map which is a C^1 diffeomorphism is necessarily a C^k diffeomorphism.

Solution: Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a \mathbb{C}^k map that is a \mathbb{C}^1 diffeomorphism. In order to show that f is a \mathbb{C}^k diffeomorphism, we need to show that $f^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ exists and is of class \mathbb{C}^k .

First, by the inverse function theorem, since f is a C^1 diffeomorphism, we see that $f^{-1} \colon \mathbb{R}^n \to \mathbb{R}^n$ exists, is continuous, and is such that $D(f^{-1})$ is continuous.

Now, we observe that the association $y \mapsto D_y(f^{-1})$ can be written as

$$y \mapsto f^{-1}(y) \mapsto D_{y} f(f^{-1}(y)) \mapsto (D_{y} f(f^{-1}(y)))^{-1} = D_{y}(f^{-1}),$$

where we observe that f^{-1} is of class C^1 , the derivative $D_y f$ is of class C^{k-1} , and matrix inversion is C^∞ ; since $D(f^{-1})$ is a composition of C^1 functions, $D(f^{-1})$ is C^1 , so f^{-1} is C^2 . Inductively, we see that f^{-1} is also of class C^k , so f is a C^k diffeomorphism.

Problem (Problem 4): Recall that a topological space is paracompact if every open cover admits a locally finite refinement. Prove that a connected, paracompact manifold of dimension one is either \mathbb{R} or S^1 , depending on whether it is compact or not.

Solution: Let M be a connected, paracompact manifold of dimension 1, and let $\mathcal{A} = \{(U_i, \phi_i)\}_{i \in I}$ be a locally finite atlas, where without loss of generality, each of the U_i are connected, and $\phi_i(U_i) = (0,1)$. We will show that this atlas allows us to define a homeomorphism between M and either S^1 or \mathbb{R} .

Consider two open sets, U_1 and U_2 with respective charts ϕ_1 and ϕ_2 . Suppose $U_1 \cap U_2$ admits one connected component, and assume that $U_1 \triangle U_2 \neq \emptyset$. We will show that this allows us to, in a sense, "amalgamate" their respective coordinate maps ϕ_1 and ϕ_2 , so that we may reduce to the case of two subsets. Since $U_1 \cap U_2$ is an open subset of U_1 , the coordinate map $\phi_1 \colon U_1 \to (0,1)$ restricts to an embedding $\phi_1 \colon U_1 \cap U_2 \to (0,1)$. Note that since ϕ_1 is continuous, there is at most one cluster point for $\phi_1(U_1 \cap U_2)$ within (0,1), seeing as ϕ_1 is not defined on $U_2 \setminus U_1$. Thus, we may assume that $\phi_1(U_1 \cap U_2) = (b,1)$ for some $b \in (0,1)$. Similarly, we may assume that $\phi_2(U_1 \cap U_2) = (0,a)$, so on $U_1 \cup U_2$, we may define $\phi_{1,2} \colon U_1 \cup U_2 \to (0,1)$ by $\phi_1(U_1 \setminus U_2) = (0,a/(a+1)]$ and $\phi_2(U_2) = (a/(a+1),1)$, which is our desired amalgamation.

By taking a countable basis for the topology of M, using the fact that $\{(U_i)\}_{i\in I}$ is locally finite, and amalgamating the charts via this process for the finitely many elements of $\{U_i\}_{i\in I}$ that intersect elements of this topological basis, we may assume that the atlas $\mathcal{A}' = \{(V_k, \psi_k)\}_{k\geqslant 1}$ is countable. There are then two cases.

If M is compact, then M is covered by finitely many of these charts, $\left\{ \left(V_j, \psi_j \right) \right\}_{j=1}^n$, so by using the amalgamation process once again, we are left with two charts. Without loss of generality, we call them (V_1, ψ_1) and (V_2, ψ_2) . Observe that $V_1 \cap V_2$ must have two connected components; if there is one connected component, we may use this amalgamation process one more time, yielding a homeomorphism between the compact manifold M and the non-compact interval (0,1), a contradiction, and if there are no connected components, then M is disconnected. Thus, if we are able to develop a continuous bijection between M and S^1 , since S^1 is Hausdorff and M is compact, we automatically find that $M \cong S^1$.

From earlier, we know that if W_1 and W_2 are the connected components of $V_1 \cap V_2$, then we may take $\psi_1(W_1) = (0, a)$ and $\psi_1(W_2) = (b, 1)$. Similarly, we may take $\psi_2(W_2) = (0, c)$ and $\psi_2(W_2) = (d, 1)$. We define the continuous bijection $r \colon M \to S^1$ piecewise, by taking

$$r(x) = \begin{cases} (\cos(\pi\psi_1(x)), \sin(\pi\psi_1(x))) & x \in V_1 \\ \left(\cos\left(\frac{\pi}{d-c}\psi_2(x) + \pi\right), \sin\left(\frac{\pi}{d-c}\psi_2(x) + \pi\right)\right) & x \in V_2 \setminus V_1. \end{cases}$$

If M is not compact, then via some rearrangement, cutting, and compositions, we may assume that $V_k \cap V_{k+1}$ has one connected component, and $V_k \cap V_{k+n}$ for $n \ge 2$ has no connected components, and

that $\psi_k(V_k) = (k, k+2)$ for each k. Then, we define $r^* \colon M \to (1, \infty)$ by

$$r(x) = \begin{cases} \psi_1(x) & x \in V_1 \\ \psi_k(x) & x \in V_k \setminus V_{k-1}. \end{cases}$$

This is a homeomorphism, so by composing with a homeomorphism between $(1, \infty)$ and \mathbb{R} , we find that M is homeomorphic to \mathbb{R} .

Problem (Problem 5): In this problem, we prove a weak version of the Whitney Embedding Theorem.

- (a) Find a C^{∞} function λ on \mathbb{R}^n with values in [0,1] such that λ takes the value 1 on the closed ball B(0,1), and vanishes outside the closed ball B(0,2).
- (b) Suppose M is a compact C^k manifold of dimension n. Find a C^k atlas $\{(U_i,\phi_i)\}_{i\in I}$ such that $\phi_i(U_i)$ contains B(0,2), and such that M is covered by the union of $\phi_i^{-1}(B(0,1))^\circ$.
- (c) Let λ_i be defined by $\lambda \circ \varphi_i$ on U_i , and 0 outside U_i . Let $f_i \colon M \to \mathbb{R}^n$ be defined by $\lambda_i \cdot \varphi_i$ on U_i and zero otherwise. Use these functions to embed M as a submanifold of some Euclidean space.

Solution:

(a) Consider the function $H: \mathbb{R} \to \mathbb{R}$ given by

$$H(t) = \begin{cases} e^{-1/t} & t > 0\\ 0 & t \le 0, \end{cases}$$

which is a C^{∞} function on \mathbb{R} , as $e^{-1/t}$ is C^{∞} for all t > 0, and the derivative is well-defined at t = 0. Next, we see that the function

$$G(t) = \frac{H(4 - t^2)}{H(4 - t^2) + H(t^2 - 1)}$$

takes on the value 1 whenever $-1 \le t \le 1$ and is supported on [-2,2]. Furthermore, it is a C^{∞} function, as it is a rational function of C^{∞} functions where the denominator never takes the value 0. Therefore, if we replace t with |x|, when $x \in \mathbb{R}^n$, since the norm is a C^{∞} function, we obtain a C^{∞} function that is supported on B(0,2) and is equal to 1 on B(0,1), given by

$$\lambda(x) = \frac{H(4 - |x|^2)}{H(4 - |x|^2) + H(|x|^2 - 1)}.$$

(b) Let M be a compact C^k manifold, and let $\{(V_i,\psi_i)\}_{i\in I}$ be a C^k atlas for M, where $\{V_i\}_{i\in I}$ is an open cover, the $\psi_i\colon V_i\to \mathbb{R}^n$ are homeomorphisms, and the $\psi_j\circ\psi_i^{-1}$ are C^k diffeomorphisms.

Since M is compact, we have a finite subcover $\{V_j\}_{j=1}^n$ and an exhaustion by compact subsets via

$$U_{j} = \bigcup_{k=1}^{j} V_{k}$$

$$M = \bigcup_{j=1}^{n} U_{j},$$

where, without loss of generality, $\overline{U_j} \subseteq U_{j+1}$.

Now, for each $p \in \overline{U_j} \setminus U_{j-1}$ (define $U_0 = U_1 = \emptyset$), we may find i_p with a corresponding C^k chart (V_{i_p}, ψ_p) mapping $\psi_p(V_{i_p}) = \mathbb{R}^n$. Without loss of generality, $\psi_p(p) = 0$ (compose with a

translation if not), and let $W_p = \psi_p^{-1}(U(0,1))$.

Clearly, $B(0,2) \subseteq \psi_{i_p}\left(V_{i_p}\right)$, and by finitely enumerating the elements p_{j_k} in $\overline{U_j} \setminus U_{j-1}$, we have an open cover $\left\{W_{p_{j_k}}\right\}_{k=1}^m = \left\{\psi_{p_{j_k}}^{-1}\left(U(0,1)\right)\right\}_{k=1}^m$ of M, and $\left\{\left(V_{i_{pj_k}}, \psi_{p_{j_k}}\right)\right\}_{k=1}^m$ are C^k charts such that $B(0,2) \subseteq \psi_{p_{j_k}}\left(V_{i_{pj_k}}\right)$.

(c) We rename the finite atlas from part (b), $\left\{\left(V_{i_{\mathfrak{p}_{j_k}}},\psi_{\mathfrak{p}_{j_k}}\right)\right\}_{k=1}^m$, to $\left\{\left(V_k,\psi_k\right)\right\}_{k=1}^m$. Note that the $W_k=\psi_k^{-1}(U(0,1))$ is the open cover we use to define m. We may redefine each W_k to be equal to its closure.

Now, if $f_k = \lambda_k \cdot \psi_k$, then by setting $g_k = (f_k, \lambda_k)$, we find that for any $x \in W_k$, $g_k(x) = (\psi_k(x), 1)$, so $g_k(W_k) = (\psi_k(W_k), 1)$, and if $x \notin W_k$, then $g_k(x) = (\psi_k(x), 0)$. It is clear that $g \colon M \to \mathbb{R}^{m(n+1)}$ given by $g \equiv (g_1, \dots, g_m)$ is continuous. It remains to show that g is injective. To see this, if $x \neq y$, there are two cases:

- if $x, y \in W_k$, then since $\psi_k \colon V_k \to \mathbb{R}^n$ is a bijection, we must have $g_k(x) \neq g_k(y)$;
- if $x \in W_k$ and $y \notin W_k$, then since $\lambda_k(x) = 1$ and $\lambda_k(y) = 0$, we must have $g_k(x) \neq g_k(y)$.

Since the W_k cover M, we must have that g is injective. Thus, $M \hookrightarrow \mathbb{R}^{m(n+1)}$ given by $x \mapsto g(x)$ is our desired embedding.

Problem (Problem 6): Use the ideas of the previous exercise to prove that a C^k manifold admits a C^k partition of unity subordinate to any locally finite cover.

Solution: Let $\{U_i\}_{i\in I}$ be a locally finite open cover of M, and let $\{(U_i, \varphi_i)\}_{i\in I}$ be the corresponding C^k atlas for M where $B(0,2)\subseteq \varphi_i(U_i)$, and M is covered by $\varphi_i^{-1}(U(0,1))$. Then, we may define

$$f_{i} = \begin{cases} G \circ \varphi_{i} & \text{on } U_{i} \\ 0 & \text{on } U_{i}^{c}, \end{cases}$$

where

$$G(x) = \frac{e^{\frac{1}{4-|x|^2}}}{e^{\frac{1}{4-|x|^2}} + e^{\frac{1}{|x|^2-1}}}$$

is a C^{∞} function supported on B(0,2) and equal to 1 on U(0,1). Defining

$$f = \sum_{i \in I} f_i$$

we see that $f \neq 0$ everywhere, as M is covered by the family $\phi_i^{-1}(U(0,1))$, where G is nonzero on U(0,1), and since $\{U_i\}_{i\in I}$ is locally finite, f is also C^k as each f_i is the composition of a C^k diffeomorphism and a C^∞ function. The functions

$$g_i = \frac{f_i}{f}$$

are thus C^k functions, $0 \leqslant g_i \leqslant 1$, and $\sum_{i \in I} g_i = 1.$

Problem (Problem 7): Let X and Y be topological spaces, and let C(X,Y) be the set of continuous maps from X to Y. Equip C(X,Y) with the compact-open topology, where the basic open sets are

$$U_{K,V} = \{f \mid f(K) \subseteq V\},\$$

where $K \subseteq X$ is compact and $V \subseteq Y$ is open.

If Y is a metric space, and if X is compact, prove that this topology is the same as the topology of uniform convergence.

Solution: Let Y be a metric space and let X be compact. We note that a neighborhood basis in the topology of uniform convergence on C(X,Y) consists of sets of the form

$$U_{f,\varepsilon} = \left\{ g \middle| \sup_{x \in X} d(f(x), g(x)) < \varepsilon \right\}.$$

Similarly, a neighborhood basis for the compact open topology consists of sets of the form

$$U_{f,K,\varepsilon} = \left\{ g \middle| \sup_{x \in K} d(f(x), g(x)) < \varepsilon \right\};$$

the fact that Y is a metric space allows us to take this refinement of the compact-open topology.

Thus, to prove that the compact-open topology and the topology of uniform convergence are equivalent, we show that any basis element of the topology of uniform convergence is contained in a basis element of the compact-open topology, and vice versa.

First, we see that almost by definition, if $K \subseteq X$ is any compact subset, then

$$U_{f,\varepsilon} \subseteq U_{f,K,\varepsilon}$$

as any function whose supremum distance is less than ε over X must have that supremum distance hold over $K \subseteq X$.

Now, in the reverse direction, we fix f and ϵ . We wish to show that there is a finite family of subsets U_{K_i,V_i} with $f \in U_{K_i,V_i}$ for each i, and their intersection lies in $U_{f,\epsilon}$. We see that every point $x \in X$ has a pre-compact open neighborhood U_x such that $f(\overline{U_x}) \subseteq U(f(x),\epsilon/3)$, which follows from the fact that compact subsets of Y are bounded. The family $\{U_x \mid x \in X\}$ is an open cover for X, so admits a finite subcover $\{U_{x_i}\}_{i=1}^n$. Since each $\{\overline{U_{x_i}}\}_{i=1}^n$ is compact, and for each i, $f \in U_{\overline{U_{x_i}},U(f(x_i),\epsilon/3)}$, we see that

$$V = \bigcap_{i=1}^{n} U_{\overline{U_{x_i}}, U(f(x_i), \varepsilon/3)}$$

is a nonempty open subset in the compact-open topology on C(X,Y) that contains f. Now, for any $g \in V$ and for any $x \in X$, we see that there is some U_{x_j} such that $x \in U_{x_j}$, and since $g \in U_{\overline{U_{x_j}},U(f(x_j),\epsilon/3)}$, we have that

$$d(g(x), f(x)) \le d(g(x), f(x_j)) + d(f(x_j), f(x))$$

$$< \varepsilon/3 + \varepsilon/3$$

$$< \varepsilon$$

so $V \subseteq U_{f,\epsilon}$, meaning the topologies are equal.