Metody Numeryczne – Zadanie NUM7

Bartosz Bochniak

Wstęp

Polecenie

Rozważmy funkcję $y(x)=\frac{1}{1+10x^2}$, zadaną na przedziale $x\in[-1,1]$. Wygeneruj zbiór punktów $\{(x_i,y_i)\}$, gdzie $x_i=-1+2\frac{i}{n}$ $(i=0,\dots,n)$ jest jednorodną siatką punktów, a $y_i\equiv y(x_i)$. Dla tych danych wygeneruj

- (a) Wielomian interpolacyjny stopnia ≤ n,
- (b) Funkcję sklejaną stopnia trzeciego, s(x), spełniającą warunki $s''(x_1) = s''(x_n) = 0$.

Wyniki porównaj z zaproponowaną funkcją y(x) na wykresie, dla różnej ilości punktów n. W szczególności interesujące są różnice y(x) – $W_n(x)$ oraz y(x) – S(x) pomiędzy węzłami interpolacji. Przeprowadź również podobną analizę dla innych funkcji; czy nasuwają się jakieś wnioski?

UWAGA: Nie można korzystać z procedur bibliotecznych służących do interpolacji (chyba, że do sprawdzenia wyniku). Algorytm należy zaimplementować samodzielnie.

Rozwiązanie

Rozpatrywana jest funkcja y(x) w formie stabelaryzowanej, czyli $y(x_i) = y_i$ $i \in \{0, 1, ..., n\}$, gdzie każdy punkt x_i określony jest węzłem interpolacji. Punkty x_i zadane wzorem z zadania są równoodległe.

Należy znaleźć wielomian interpolacyjny, do czego użyta zostanie interpolacja Lagrange'a, oraz funkcję sklejaną złożoną z wielomianów stopnia trzeciego, wygenerowaną za pomocą metody splajnów kubicznych.

Interpolacja Lagrange'a

Funkcja $y(x_i)$ traktowana jest jako wielomian stopnia $\leq n$, który można zapisać następująco:

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{n-2} x^{n-2} + a_{n-1} x^{n-1} = \sum_{i=0}^{n-1} a_i x^i$$

Z założenia, że dla każdego węzła x_i , wartość tego wielomianu wyniesie $y(x_i) = y_i$, można utworzyć następujący układ równań:

$$\begin{cases} \sum_{i=0}^{n-1} a_i x_1^i = y_1 \\ \sum_{i=0}^{n-1} a_i x_2^i = y_2 \\ \vdots \\ \sum_{i=0}^{n-1} a_i x_n^i = y_n \end{cases}$$

Powyższy układ można ułożyć w formę macierzową (kolejność sumowania została zamieniona pod wygodę zapisu):

$$\begin{pmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & x_1 & 1 \\ x_2^{n-1} & x_2^{n-2} & \cdots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_n^{n-1} & x_n^{n-2} & \cdots & x_n & 1 \end{pmatrix} \begin{bmatrix} a_{n-1} \\ a_{n-2} \\ \vdots \\ a_0 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Oczywistym jest, że wektor rozwiązania tego układu jest wektorem zawierającym współczynniki szukanego wielomianu.

Wiersze oraz kolumny macierzy są niezależne wtedy i tylko wtedy, gdy żadne węzły interpolacyjne się nie pokrywają, co można udowodnić poprzez zauważenie, że macierz ta jest macierzą Vandermonde'a.

Wyznacznik macierzy Vandermonde'a wyliczany jest ze wzoru:

$$\det(V) = \prod_{1 \le i < j \le n} (x_i - x_j)$$

Z powyższego wynika, że wyznacznik tej macierzy będzie równy 0 dla sytuacji, w której $x_i = x_j$, która zachodzi tylko dla wypadku, gdy dwa węzły są takie same. A więc, to oznacza, że rozwiązanie powyższego układu równań musi być jednoznaczne.

Szukanie rozwiązań powyższego równania byłoby niezmiernie kosztowne (O(n³)), dlatego, korzystamy z tzw. wzoru interpolacji Lagrange'a, o postaci:

$$y(x) = \sum_{j=1}^{n} l_{j}(x) * y_{j} + E(x)$$

dla:

$$l_{j}(x) = \frac{\prod_{1 \le i \ne j}^{n} (x - x_{i})}{\prod_{1 \le i \ne j}^{n} (x_{j} - x_{i})}$$

E(x) określane jest mianem błędu interpolacji, oraz dla y(x) będącego wielomianem stopnia co najwyżej n-1'ego, znika tożsamościowo.

Powyższy wzór jest wydajny, gdyż nie wymaga dużej ilości węzłów aby osiągnąć bliskie przybliżenia, aczkolwiek jest podatny na "oscylacje Rungego", które są artefaktem związanym z korzystaniem z wielomianów wysokiego stopnia. Są one podatne na znaczne wahania pomiędzy węzłami, wywołane faktem, że operują one dużą ilością dynamicznie zmieniających się zmiennych.

Kubiczne splajny

Funkcja sklejana trzeciego stopnia określona jest jako funkcja złożona z kubicznych splajnów występujących między węzłami x_i i x_{i+1} . Każdy splajn musi spełniać następujące warunki:

- splajn jest reprezentowany przez wielomian rzędu trzeciego,
- splajn jest dwukrotnie różniczkowalny w węzłach, tzn.: $\exists_{\xi_i}: s''(x_i) = \xi_i$

Dodatkowo:
$$s''(x_1) = s''(x_n) = \xi_1 = \xi_n = 0$$
.

Zatem, wielkości ξ_i będą drugimi pochodnymi splajnów w węzłach. Dla każdego przedziału (x_i , x_{i+1}), gdzie i = 1, 2, ..., n-1; tworzony jest wielomian trzeciego stopnia o postaci:

$$y_i(x) = Ay_i + By_{i+1} + C\xi_i + D\xi_{i+1}$$

dla:

$$A = \frac{x_{j+1} - x}{h}$$
 $B = \frac{x - x_j}{h}$ $C = \frac{h^2}{6}(A^3 - A)$ $D = \frac{h^2}{6}(B^3 - B)$ $h = x_{j+1} - x_j$

...gdzie h jest różnicą między węzłami, która jest stała dla równoodległych węzłów.

Zostało do rozwiązania obliczenie ξ_i , przy którym zostanie użyty wymóg ciągłości pierwszej pochodnej w węzłach. Zatem, wystarczy przyrównać pochodną z funkcji $y_j(x)$ w prawym węźle/krańcu wraz z pochodną $y_{j+1}(x)$ w lewym węźle/krańcu. Po przyrównaniu, ukazuje się równanie:

$$\frac{x_j - x_{j-1}}{6} \xi_{j-1} + \frac{x_{j+1} - x_{j-1}}{3} \xi_j + \frac{x_{j+1} - x_j}{6} \xi_{j+1} = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} - \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$

Po podstawieniu h jako różnicy między węzłami:

$$\frac{h}{6}\xi_{j-1} + \frac{2h}{3}\xi_j + \frac{h}{6}\xi_{j+1} = \frac{y_{j+1} - y_j}{h} - \frac{y_j - y_{j-1}}{h}$$
$$\frac{h}{6}\xi_{j-1} + \frac{2h}{3}\xi_j + \frac{h}{6}\xi_{j+1} = \frac{y_{j+1} - 2y_j + y_{j-1}}{h}$$

Korzystając z faktów że powyższe to układ równań, $\xi_1 = \xi_n = 0$, oraz, że h = const., otrzymujemy równanie macierzowe:

$$\begin{pmatrix} 4 & 1 & & & & \\ 1 & 4 & 1 & & & & \\ & 1 & 4 & \ddots & & & \\ & 1 & \ddots & 1 & & \\ & & \ddots & 4 & 1 & \\ & & & 1 & 4 & 1 \\ & & & & 1 & 4 \end{pmatrix} \begin{bmatrix} \xi_2 \\ \xi_3 \\ \xi_4 \\ \vdots \\ \xi_{n-3} \\ \xi_{n-2} \\ \xi_{n-1} \end{bmatrix} = \frac{6}{h^2} \begin{bmatrix} y_1 - 2y_2 + y_3 \\ y_2 - 2y_3 + y_4 \\ y_3 - 2y_4 + y_5 \\ \vdots \\ y_{n-4} - 2y_{n-3} + y_{n-2} \\ y_{n-3} - 2y_{n-2} + y_{n-1} \\ y_{n-2} - 2y_{n-1} + y_n \end{bmatrix}$$

Powyższa macierz jest macierzą trójdiagonalną, co znacznie upraszcza obliczanie tego układu.

Wynik

$$y = \frac{1}{1 + 10x^2}$$
 $n = 10$

$$y = \frac{1}{1 + 10x^2} \qquad n = 20$$

Dla n = 20 oba wykresy dla obu metod się pokrywają, błąd jest prawie zawsze mniejszy od 0.001.

$$y_g = 8x^3 - 3x \qquad n = 4$$

Dla n = 10 podobny przypadek co dla powyższego przykładu, dlatego wykresy są zbędne.

$$y_h = \sqrt[3]{\frac{x}{2}} \qquad n = 10$$

n = 5

n = 25

Wniosek

Z powyższych wykresów można wywnioskować, że w wielu przypadkach, korzystanie ze splajnów daję wartości bliższe faktycznym wartościom funkcji.

Dwa razy pojawiły się bardzo wyraźne oscylacje Rungego (y_h dla n = 25, oraz y dla n = 35), oraz mniej dominujące w innych rysunkach. Przy obu wspomnianych rysunkach osiągnęły szczytowe wartości powyżej 80, co jest znaczącym błędem.

Ciekawy fenomen pojawił się dla funkcji $y_h = \sqrt[3]{\frac{x}{2}}$ dla x = 0. Wiemy, że $\lim_{x_0 \to 0} \frac{dy_h(x_0)}{dx} = \infty$, co oznacza, że dla niewielkiej ilości węzłów, bardzo ciężko osiągnąć bardzo bliską interpolację w bliskim sąsiedztwie węzła o $x_i = 0$.