ECON 340: Economics of the Family TA Session 2

 ${\sf Vaidehi\ Parameswaran\ (Northwestern\ Economics)}$

September 2025

Today

► The Economics of Dowry and Brideprice

▶ Bride Price and Female Education — Ashraf et al., 2020

Prevalence of Marriage Payments

- ▶ Bride price—dates back to 3000 BCE in Egyptian, Mesopotamian, Hebrew, Aztec, and Inca civilizations.
- ▶ Dowry—dates back to Greco-Roman times.
 - ▶ In contemporary times, it is most extensively documented in India.
- ▶ Payments are often very large relative to income.

Magnitude of Marriage Payments

 $Table \ 3$ Marriage Transfers from the Groom's Side

Society	Time period	Average payments	Magnitude of average payments
Germanic Tribes:			
Visogoths (Spain)	9th century		1/10 husband's wealth (Quale, 1988)
Lombards (Italy)	9th century		1/4 husband's wealth (Quale, 1988)
Franks (France)	9th century		1/3 husband's wealth (Quale, 1988)
Asia:			
Rural interior provinces (China)	1960-2000	538 yuan (1985)	82% of value of household durables (Brown, 2003)
Rural south west (China)	1983-1987	700 yuan (1987)	 1.1 × per capita annual income (Harrell, 1992)
Rural east Szechwan	1966–1981	109 yuan (1980)	1 × per capita annual income (Lavely, 1988)
Middle East:			
Palestine	1920s	£49 (1925)	8 years of income for landless agricultural laborer (Papps, 1983)
Urban Iran	1971–1991	1,807,200 Iranian rials (1980)	\$7059 (Habibi, 1997)
Sub-Saharan Africa:			
Rural Zimbabwe	1940-1995	8–9 cattle	2–4 × gross household annual income (Dekker and Hoogeveen, 2002)
Bantu tribe (southern Africa)	1955	100 goats	Larger than average herd size per household (Gray, 1960)
East African herders	1940–1978	15–50 large stock	12-20 × per capita holdings of large stock (Turton, 1980)
Uganda	1960-2001	872,601 shillings (2000)	14% of household income (Bishai and Grossbard, 2006)

Notes: In the China cases, a proportion of the brideprice is returned to the groom's household in the form of a dowry property for daughters. In the Brown (2003) study, average brideprices are equal to 2.2 times average dowries. Similar proportions follow for Harrell (1992) and Lazelv (1988).

Magnitude of Marriage Payments

Table 4
Marriage Transfers from the Bride's Side

		Average	
Society	Time period	payments	Magnitude of average payments
Historical			
Europe:			
Athens	6 th Century BC		10% bride's father's wealth (Quale, 1988)
Mediterranean Iews	969-1250	150–1500 dinars	800 dinars could maintain a family for 30 years (Goiten, 1978)
Tuscany	1415-1436	125.5 florins	20% bride's household wealth (Botticini, 1999)
Urban Tuscany	1420-1436	1507.7 lire	6× annual wage of skilled worker (Botticini and Siow, 2003)
Florence	1475–1499	1430 florins	3× average fiscal wealth per household (Molho, 1994)
Colonial Latin			
America:			
Mexico	1640-1790	1000-5000 pesos	Equal to the cost of 3–16 slaves (Lavrin and Couturier, 1979)
South Asia:			
Rural	1960-1995	66,322 Rupees	6× annual village male wage
Karnataka		(1995)	(Rahman and Rao, 2004)
(India)			
Rural Uttar	1960-1995	46,096 Rupees	3× annual village male wage
Pradesh		(1995)	(Rahman and Rao, 2004)
(India)			
Rural south-	1920s-1980s	4,792 Rupees	68% of total household assets before
central		(1983)	marriage (Rao, 1993)
India			
Rural Uttar	1970-1994	\$700	7× per capita annual income
Pradesh			(Jejeebhoy and Sathar, 2001)
(India)			
Rural Tamil	1970-1994	\$769	8× per capita annual income
Nadu			(Jejeebhoy and Sathar, 2001)
(India)			
Delhi (India)	1920-1984	>50,000 Rupees (1984)	4× annual male income (Paul, 1986

Today

► The Economics of Dowry and Brideprice

▶ Bride Price and Female Education — Ashraf et al., 2020

Overview

- ▶ Culture is important for economic development.
- Much more needs to be done to understand the role of traditional practices in development policy.
- ► This paper revisits well-studied school construction programs in Indonesia and Zambia.
- ▶ In particular, it aims to understand how bride price impacts the effects of these programs.

Overview of the Model

- ▶ Imperfectly altruistic parents decide on investments in their children's education.
- ▶ After children become adults, there is a matching market for marriage and education is complementary in the marriage market.
- ▶ Bride price is the marital transfer to the bride that is appropriated by the bride's parents.
- ▶ Thus, in equilibrium, the bride price is increasing in the education of the bride.
- ▶ Bride price provides an additional monetary incentive for parents to invest in their daughters' education.
- ▶ When female education rates are low, a decline in the cost of schooling increases education more for girls from bride-price ethnic groups than for girls from non—bride-price ethnic groups.

Bride Price Custom

TABLE 1
DISTRIBUTION OF MARRIAGE CUSTOMS

		Indo	NESIA	Zambia						
	Atlas (Ethnographic Atlas Only (1)		All Sources (2)		Ethnographic Atlas Only (3)		irces		
	Number	Share	Number	Share	Number	Share	Number	Share		
Bride price	14	.48	23	.52	8	.38	11	.37		
Bride service	2	.07	4	.09	7	.33	12	.40		
Token bride price	2	.07	2	.05	6	.29	7	.23		
Gift exchange	3	.10	4	.09	0	.00	0	.00		
Female relative exchange	4	.14	4	.09	0	.00	0	.00		
Absence of	4	.14	4	.09	U	.00	U	.00		
consideration	4	.14	7	.16	0	.00	0	.00		
Dowry	0	.00	0	.00	0	.00	0	.00		
Total	29	1.00	44	1.00	21	1.00	30	1.00		

NOTE.—This table reports the number of ethnicities that practice different traditional marriage customs within Indonesia and Zambia. In cols. 1 and 3, the data on traditional marriage practices are from the *Ethnographic Atlas* (Murdock 1967). In col. 2, the data are from Murdock (1967) and LeBar (1972). In col. 4, the data are from Whiteley and Slaski (1950), Schapera (1953), Willis (1966), and Murdock (1967).

Bride Price Custom

Figure 1: Bride price in Indonesia

Bride Price Custom

Figure 2: Bride price in Zambia

Prediction 1: Is Matching Assortative by Education?

TABLE 3

DEGREE OF ASSORTATIVE MATCHING IN INDONESIA AND ZAMBIA (Dependent Variable:
Indicator Variable for Husband Completed Primary)

		NESIA CENSUS	IF	LS	Zambia Poolei DHS		
	(1)	(2)	(3)	(4)	(5)	(6)	
$I_i^{Wife\ Primary}$.466***	.460***	.445***	.440***	.534***	.510***	
•	(.005)	(.016)	(.021)	(.021)	(.016)	(.018)	
	[.000]	[.000]	[000.]	[.000]	[000.]	[.000]	
$I_i^{\textit{Wife Primary}} \times I_\epsilon^{\textit{BridePrice}}$.022	.022	041	042	006	.004	
	(.024)	(.020)	(.031)	(.030)	(.023)	(.019)	
	[.424]	[.376]	[.204]	[.186]	[.870]	[.850]	
Baseline covariates	Yes	Yes	Yes	Yes	Yes	Yes	
Wife Muslim controls	No	Yes	No	Yes	No	Yes	
Ethnicity interaction							
controls	No	Yes	No	Yes	No	Yes	
Polygynous marriage							
controls	NA	NA	No	Yes	No	Yes	
Mean of dependent							
variable	.653	.653	.655	.659	.565	.571	
Standard deviation of							
dependent variable	.476	.476	.475	.474	.496	.495	
Observations	107,338	107,338	4.847	4,785	22,793	18,574	
Clusters	40	40	17	17	29	29	
Adjusted R^2	.367	.367	.338	.336	.348	.336	

Figure 3: Assortative Matching

Prediction 2: Do Bride Price Amounts Increase with the Bride's Education?

TABLE 4 DETERMINANTS OF BRIDE PRICE PAYMENT AMOUNTS (Dependent Variable: Log Bride Price Amount)											
		Ind	onesia (IFI	LS)		2SLS	Zambia (ZFPS)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Vife's education:											
$I_i^{Primary}$.615***	.579***	.366***	.373***	.285**	2.329**	.002	.023	015	008	027
	(.066)	(.071)	(.077)	(.078)	(.111)	(1.173)	(.137)	(.142)	(.141)	(.141)	(.141)
$I_i^{JuniorSecondary}$.658***	.672***	.471***	.456***	.391***		.134	.258*	.255*	.279**	.289*
	(.066)	(.070)	(.074)	(.074)	(.097)		(.137)	(.137)	(.142)	(.142)	(.143)
$I_i^{SeniorSecondary}$.865***	.857***	.468***	.457***	.306***		.384***	.391***	.398**	.396**	.358
	(.077)	(.078)	(.089)	(.091)	(.115)		(.131)	(.147)	(.153)	(.153)	(.154)
Iusband's education:											
$I_i^{H:Primary}$.237***	.212**	.175				.230	.239	.270
			(.084)	(.084)	(.118)				(.197)	(.197)	(.196)
$I_i^{H:funiorSecondary}$.414***	.439***	.470***				.173	.176	.158
			(.077)	(.079)	(.103)				(.164)	(.164)	(.163)
$I_i^{H:SeniorSecondary}$.532***	.540***	.427***				080	079	070
			(.090)	(.090)	(.114)				(.130)	(.130)	(.129)
test for first stage						3.04					
Saseline covariates	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vife marriage age controls	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Iusband marriage age controls	No	No	No	Yes	Yes	No	No	No	No	Yes	Yes
Vife's premarital wealth	No	No	No	No	Yes	No	No	No	No	No	Yes
Vife Muslim	No	No	No	No	Yes	No	NA	NA	NA	NA	NA
olygynous marriage	No	No	No	No	Yes	No	NA	NA	NA	NA	NA

Prediction 3: Do Bride-Price Groups Have Higher Rates of Female Education?

 $\begin{tabular}{ll} TABLE~5\\ Relationship~between~Bride~Price, Female~Enrollment,~and~Test~Scores~in~Indonesia~and~Zambia\\ \end{tabular}$

	Indonesia						Zambia		
	1995 Intercensal Survey: Currently Enrolled in School		IFLS: Standardized Test Score			ed DHS: Cur rolled in Sch		ZFPS: Primary School Completion	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$I_s^{BridePrice}$.041***	.049**	126**	128	.017	.021***	.012*	.077	.045
	(.014)	(.011)	(.048)	(.061)	(.014)	(.007)	(.006)	(.042)	(.042)
	[.006]	[.026]	[.026]	[.132]	[.260]	[.022]	[.086]	[.146]	[.410]
Age of sample (years)	5-22	5-22	All	All	5-22	5-22	5-22	All	All
Baseline covariates	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Census cluster × survey year fixed effects	NA	NA	NA	NA	No	No	Yes	NA	NA
District fixed effects	Yes	Yes	No	No	Yes	Yes	NA	NA	NA
Ethnicity controls	No	Yes	No	Yes	No	Yes	Yes	No	Yes
Muslim	No	Yes	No	Yes	No	Yes	Yes	NA	NA
Polygynous household	No	Yes	NA	NA	No	Yes	Yes	NA	NA
Mean of dependent variable	.578	.578	.036	.036	.552	.552	.539	.625	.625
Standard deviation of dependent variable	.494	.494	1.023	1.023	.497	.497	.498	.485	.485
Observations	107,994	107,994	2,926	2,926	42,252	42,306	31,212	706	706
Clusters	39	39	17	17	29	29	29	23	23
Adjusted R ²	.405	.407	.088	.086	.349	.393	.412	.028	.028

Prediction 4: Differential Effects of Education Policies

$$y_{iedk} = \beta_1 I_k^{Post} \times Intensity_d \times I_e^{NoBridePrice} + \beta_2 I_k^{Post} \times Intensity_d \times I_e^{BridePrice}$$

$$+ \alpha_k I_e^{NoBridePrice} + \alpha_k I_e^{BridePrice} + \alpha_e + \alpha_e I_k^{Post} + \alpha_e Intensity_d + \alpha_d I_e^{NoBridePrice}$$

$$+ \alpha_d I_e^{BridePrice} + I_e^{NoBridePrice} \sum_j X'_d \mathbf{I}_k^j \mathbf{\Gamma}_j + I_e^{BridePrice} \sum_j X'_d \mathbf{I}_k^j Y_j + \varepsilon_{iedk},$$

$$(8)$$

- ► A difference-in-differences setup (as in Duflo, 2001).
- ► Heterogeneity by the bride-price custom.

Prediction 4: Differential Effects of Education Policies

TABLE 6

Bride Price Status and INPRES School Expansion in 1995 Indonesia Intercensal Survey (Dependent Variable:
Indicator Variable for Completion of Primary School)

	Females (1)	Females (2)	Bride Price Females (3)	Non–Bride Price Females (4)	Females (5)	Female (6)
$\begin{split} I_k^{p_{bd}} \times Intensity_d \\ I_k^{p_{bd}} \times Intensity_d \times I_e^{hridePrice} \end{split}$	002 (.007) {.009}	.025** (.012)	.025** (.013) (.011)	001 (.010) (.008)	.035*** (.011)	.034*** (.011)
$I_k^{Post} imes Intensity_d imes I_\epsilon^{NoBividePrice}$		{.011} 001 (.010) {.008}			{.010} .003 (.009) {.006}	{.010} .004 (.009) {.007}
Baseline covariates	Yes	Yes	Yes	Yes	Yes	Yes
Ethnicity fixed effects	No	Yes	Yes	Yes	Yes	Yes
Ethnicity fixed effects $\times I_k^{Post}$	No	Yes	Yes	Yes	Yes	Yes
Ethnicity fixed effects \times <i>Intensity</i> _d	No	Yes	Yes	Yes	Yes	Yes
District fixed effects $\times I_{\epsilon}^{\textit{BridePrice}}$	No	Yes	No	No	Yes	Yes
$ ext{Duflo controls} imes I_{\epsilon}^{ ext{BridePrice}}$	No	Yes	No	No	Yes	Yes
Cohort fixed effects $\times I_{\epsilon}^{BridePrice}$	No	Yes	No	No	Yes	Yes
Muslim controls	No	No	No	No	Yes	Yes
Ethnicity controls interactions	No	No	No	No	No	Yes

Figure 4: Main Prediction

What the Authors Find

- ▶ Girls belonging to bride-price ethnic groups are more likely to be educated.
- ▶ Bride-price ethnic groups are more responsive to policies aimed at increasing female education.
- ▶ In both Indonesia and Zambia:
 - ▶ For bride-price ethnic groups, the increased supply of schools resulted in a significant increase in female education.
 - ▶ For those without the bride-price custom, the program had no effect on female education.
- ▶ In the context of educational policies, it is not immediately obvious that marriage customs would play a role.
- ▶ A lesson to be learned: culture matters for policy!

See you next time!