Homework 7: Manifolds of Contact Elements

Given any manifold X of dimension n, there is a canonical symplectic manifold of dimension 2n attached to it, namely its cotangent bundle with the standard symplectic structure. The exercises below show that there is also a canonical *contact* manifold of dimension 2n-1 attached to X.

The **manifold of contact elements** of an n-dimensional manifold X is

$$\mathcal{C} = \{(x,\chi_x) \,|\, x \in X \text{ and } \chi_x \text{ is a hyperplane in } T_x X\}$$
 .

On the other hand, the projectivization of the cotangent bundle of X is

$$\mathbb{P}^*X = (T^*X \setminus \mathsf{zero} \; \mathsf{section})/\sim$$

where $(x,\xi)\sim (x,\xi')$ whenever $\xi=\lambda\xi'$ for some $\lambda\in\mathbb{R}\setminus\{0\}$ (here $x\in X$ and $\xi,\xi'\in T_x^*X\setminus\{0\}$). We will denote elements of \mathbb{P}^*X by $(x,[\xi])$, $[\xi]$ being the \sim equivalence class of ξ .

1. Show that $\mathcal C$ is naturally isomorphic to $\mathbb P^*X$ as a bundle over X, i.e., exhibit a diffeomorphism $\varphi:\mathcal C\to\mathbb P^*X$ such that the following diagram commutes:

$$\begin{array}{ccc} \mathcal{C} & \stackrel{\varphi}{\longrightarrow} & \mathbb{P}^*X \\ \pi \downarrow & & \downarrow \pi \\ X & = & X \end{array}$$

where the vertical maps are the natural projections $(x, \chi_x) \mapsto x$ and $(x, \xi) \mapsto x$.

Hint: The kernel of a non-zero $\xi \in T_x^*X$ is a hyperplane $\chi_x \subset T_xX$. What is the relation between ξ and ξ' if $\ker \xi = \ker \xi'$?

2. There is on $\mathcal C$ a canonical field of hyperplanes $\mathcal H$ (that is, a smooth map attaching to each point in $\mathcal C$ a hyperplane in the tangent space to $\mathcal C$ at that point): $\mathcal H$ at the point $p=(x,\chi_x)\in\mathcal C$ is the hyperplane

$$\mathcal{H}_p = (d\pi_p)^{-1} \chi_x \subset T_p \mathcal{C} ,$$

where

$$\begin{array}{cccc} \mathcal{C} & & p = (x,\chi_x) & & T_p \mathcal{C} \\ \downarrow^{\pi} & & \downarrow & & \downarrow^{d\pi_p} \\ X & & x & & T_x X \end{array}$$

are the natural projections, and $(d\pi_p)^{-1}\chi_x$ is the preimage of $\chi_x\subset T_xX$ by $d\pi_p.$

Under the isomorphism $\mathcal{C} \simeq \mathbb{P}^*X$ from exercise 1, \mathcal{H} induces a field of hyperplanes \mathbb{H} on \mathbb{P}^*X . Describe \mathbb{H} .

Hint: If $\xi\in T^*_xX\setminus\{0\}$ has kernel χ_x , what is the kernel of the canonical 1-form $\alpha_{(x,\xi)}=(d\pi_{(x,\xi)})^*\xi$?

3. Check that $(\mathbb{P}^*X, \mathbb{H})$ is a contact manifold, and therefore $(\mathcal{C}, \mathcal{H})$ is a contact manifold.

Hint: Let $(x, [\xi]) \in \mathbb{P}^*X$. For any ξ representing the class $[\xi]$, we have

$$\mathbb{H}_{(x,[\xi])} = \ker ((d\pi_{(x,[\xi])})^* \xi)$$
.

Let x_1,\ldots,x_n be local coordinates on X, and let $x_1,\ldots,x_n,\xi_1,\ldots,\xi_n$ be the associated local coordinates on T^*X . In these coordinates, $(x,[\xi])$ is given by $(x_1,\ldots,x_n,[\xi_1,\ldots,\xi_n])$. Since at least one of the ξ_i 's is nonzero, without loss of generality we may assume that $\xi_1\neq 0$ so that we may divide ξ by ξ_1 to obtain a representative with coordinates $(1,\xi_2,\ldots,\xi_n)$. Hence, by choosing always the representative of $[\xi]$ with $\xi_1=1$, the set $x_1,\ldots,x_n,\xi_2,\ldots,\xi_n$ defines coordinates on some neighborhood $\mathcal U$ of $(x,[\xi])$ in $\mathbb P^*X$. On $\mathcal U$, consider the 1-form

$$\alpha = dx_1 + \sum_{i \ge 2} \xi_i dx_i \ .$$

Show that α is a contact form on \mathcal{U} , i.e., show that $\ker \alpha_{(x,[\xi])} = \mathbb{H}_{(x,[\xi])}$, and that $d\alpha_{(x,[\xi])}$ is nondegenerate on $\mathbb{H}_{(x,[\xi])}$.

4. What is the symplectization of C?

What is the manifold \mathcal{C} when $X = \mathbb{R}^3$ and when $X = S^1 \times S^1$?

Remark. Similarly, we could have defined the manifold of oriented contact elements of X to be

$$\mathcal{C}^o = \left\{ (x, \chi_x^o) \;\middle|\; x \in X \text{ and } \begin{array}{c} \chi_x^o \text{ is a hyperplane in } T_x X \\ \text{equipped with an orientation} \end{array} \right\} \;.$$

The manifold \mathcal{C}^o is isomorphic to the cotangent sphere bundle of X

$$S^*X:=(T^*X\setminus \mathsf{zero}\;\mathsf{section})/\approx$$

where $(x, \xi) \approx (x, \xi')$ whenever $\xi = \lambda \xi'$ for some $\lambda \in \mathbb{R}^+$.

A construction analogous to the above produces a canonical contact structure on C^o . See [3, Appendix 4].

