CS 6301 MACHINE LEARNING

Tutorial 1

26.9.22

Max. Marks: 20

Part - A (8*2 = 16)

- Justify the need for bias input in neural networks?
- 2. What is the activation function used in single layer perceptron? Can it be used as an activation function of a multilayer perceptron? Justify
- Give one similarity and three differences between MLP and RBF network.
- Define four metrics that can be used to evaluate the performance of a classifier. 3. 1
- Consider a single layer perceptron with the initial weight vector (0.3, 0.2,-0.1). What is the output for the input vector (1, 1) with a bias input of -1 and a threshold of 0?
- Prove that a single layer perceptron cannot be used for solving XOR problem.
- Give the equations for the following:
 - a. Pseudo inverse computation method for weight updation
 - b. Learning rule for single layer perceptron
 - Activation of hidden layer in RBF network
 - d. Response of output neuron in RBF network

Part - B (1*4=4)

9. Consider a 3-2-1 multilayer perceptron with the nodes serially numbered from 1 to 6 and the

initial weights as sho		THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO THE PERSON NAMED IN		w34	w35	w46	w56	b4	b5	1
w14	w15	w24	w25	-0.5	113	1	1 1 1		11/1/	
					0.2	-0.3	.0.2	-0.4	0.2	0.1
0.2	-0.3	0.4	0.1							

Consider the initial training sample as X = (1,0,1) whose class label is 1. Illustrate one iteration of MLP training. $\eta = 0.9$

Anna University: CEG Campus

Department of Computer Science and Engineering

Semester V

CS 6301 MACHINE LEARNING

Mid-Semester Examination

Max. Duration: 1 1/2 hours Date: 07.11.2022

Max. Marks: 50

Part – A (5 x 2 = 10 marks)

Justify the need for bias input in neural network.

2. Define any one performance evaluation metric for classification and one for regression.

3. Define early stopping.

4. What is the principle behind SVM? Give an advantage of using the SVM.

5. How is overfitting handled in decision trees?

Part – B (4 x 8 = 32 marks)

Answer any FOUR questions

6. i) Explain the steps in designing a learning system

ii) Apply candidate elimination algorithm on the following dataset to learn the concept of "Japanese Economy Car":

Origin	Manufactu	Color	Decade	Type	Example
Origin	rer				Туре
Japan	Honda	Blue	1980	Economy	Positive
Japan	Toyota	Green	1970	Medalive	Negative
Japan	Toyota	Blue	1990	Economy	Positive
USA	Chrysler	Red	1980	Economy	Negative
Japan	Honda	White	1980	Economy	Positive
Japan	Toyota	Green	1980	Economy	Positive
Japan	Honda	Red	1990	Economy	Negative

- 7. i) Design a single layer perceptron to model AND logic function. Show one iteration of the design process.
 - ii) Substantiate the drawback of single layer perceptron
- 8. i) Derive the error equation for the error at the output layer that has a single hidden layer and uses the activation function $g(h) = \frac{1}{1 + \exp(-\beta h)}$.
 - ii) Brief on the design considerations when developing a MLP for a practical application.
- 9. i) Compare and contrast RBF network and multilayer perceptron. Give one similarity and three differences.
 - ii) Write the algorithm for training an RBF network.

10. i) Consider the following dataset:

	Temperature	Temperature	Humidity Numeric	Humidity Nominal		Play
Outlook	Numeric	Nominal	86	high		yes
overcast	83	hot	-	normal		yes
overcast	64	cool	65	high	TRUE	yes
overcast	72	mild	90	normal	FALSE	yes
vercast	81	hot	75	high	FALSE	yes
ainy	70	mild	96	normal	FALSE	yes
ainy	68	cool	80	normal	TRUE	no
ainy	65	cool	70	normal	FALSE	yes
ainy	75	mild	80	high	TRUE	no
ainy	71	mild	91		FALSE	no
unny	85	hot	85	high	TRUE	no
unny	80	hot	90	high	FALSE	
unny	72	mild	95	high	FALSE	
	69	cool	70	normal		yes
unny unny	75	mild	70	normal	TRUE	lycs

[&]quot;Players will play if weather is sunny. Is this statement correct? Justify using Naïve

ii) Identify an example of Gaussian mixture model and explain the algorithm.

11. i) Construct a decision tree by applying C4.5 algorithm on the following dataset:

. 1) 0011311		and the second second		
		Doors	Tires	Class
Color	Type	2	Whitewall	+
Red	SUV		Whitewall	_
Slue	Miniva	n 4		
Green	Car	4	Whitewall	
	Miniva	1 4	Blackwall	- , [
Red		2	Blackwall	+
Green	Car			
Green	SUV	4	Blackwall	
Blue	SUV	21	Blackwall	
Blue	Car	2	Whitewall	+
		2	Blackwall	_
Red	SUV			
Blue	Car	4	Blackwall	_
-Green	SUV	4	Whitewall	+
Red	Car	2 2	Blackwall	rt 🚐
		1 .5 1-0 .	Blackwall	
Green	SUV	2		
Green	Miniva	n 4 🏥 🐣	Whitewall	. 7

ii) Write the Random Forest Training algorithm. Compare and contrast with boosting.