

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 6: Model structure 6.1: Overview and objectives

Course structure – where are we up to?

Overview

- Decision models are essential analytic tools for HTA and policy making
 - Represent a systematic approach to decision making under uncertainty
- Provides a formal framework to ensure key objectives for economic evaluation are met:
 - Structure to characterise natural history and impact of alternative treatments
 - Analytical framework to combine all relevant evidence (structure and parameter estimates)
 - Means to translate relevant evidence into estimates of cost and effect
 - Facilitates assessment of uncertainty, heterogeneity and the value of further research

Objectives

- Understand the main modelling approaches and structures commonly used in economic evaluation
- Understand key concepts in decision analysis
- Identify the strengths and limitations of alternative modelling approaches
- Understand how alternative model structures are implemented and used in CEA

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 6: Model structure 6.2: Introduction to decision models and alternative types

Objectives

- Understand the key features of decision models
- Identify circumstances where decision models are required
- Explore key factors which determine the type of model
- Recognise trade-offs between flexibility and computational burden

What is a decision model?

- A mathematical prediction of health-related events
 - Usually for specific groups of patients
 - Events are linked to costs and health outcomes
 - Synthesise data from various sources
 - Uncertainty in data inputs
- Systematic approach to decision making under conditions of uncertainty

When is a decision model required?

- All the relevant evidence is not contained in a single trial
- Patients participating in trials do not match the typical patients likely to use the technology
- Intermediate outcome measures are used in trials rather than effect on health-related quality of life and survival
- Relevant comparators have not been used, or trials do not include evidence on relevant subgroups
- Clinical trial design includes crossover (treatment switching) that would not occur in clinical practice
- Costs and benefits of the technologies extend beyond the trial follow-up period

Factors determining choice of model structure

- Natural history and care pathway
 - Do relevant health events occur over time?
 - Does the risk of these events alter over time?
 - Does the risk of these events depend on patient history?
- Impact of intervention
 - Is the intervention equally effective over time?
 - Does the initial health change persist when treatment stops?
- Data availability and computational burden
 - Is sufficient data available to inform the required parameters?
 - Can uncertainty be appropriately reflected?
- Transparency and communication

Modelling approaches commonly used in economic evaluation

Summary

- Decision models provide a formal framework to inform decision making in presence of uncertainty
- Models are required in most circumstances to meet the requirements of cost-effectiveness analyses
- A range of factors will influence model choices and alternative structures
- Model types differ in terms of flexibility and computational burden

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 6: Model structure

6.3: Decision trees and Markov models

Objectives

- Understand key features of the most common model types
 - Decision trees
 - Markov models
- Appreciate how to evaluate models and the use of cohort simulation
- Explore alternatives ways that Markov models can be used

Example of prevention of vertical transmission of HIV

Adapted from Ratcliffe et al. AIDS 1998; 12: 1381-1388

Incremental cost per HIV-infected child avoided

Intervention: Expected cost: $0.95 \times £800 = £760$

Risk of vertical transmission:

 $0.0665 (0.95 \times 0.07) + 0.013 (0.05 \times 0.26) = 0.0795$

= £4,211

No intervention: Expected cost: £0

Risk of vertical transmission: 0.26

Incremental cost of interventions per HIV-infected child avoided:

Differential cost: 760 - 0 = 760

Differential risk: 0.26 - 0.0795 = 0.1805

Limitations of the decision tree

- Frequent need to model prognosis
- Decision trees: sequence of events over a particular time period
- Inflexible when events recur over time
- Particular difficulty in modelling chronic diseases: complications, recurrence, remission, mortality
- Decision trees may become excessively 'bushy'

State-Transition Models - Key Features

- Simplification of 'bushy' decision trees
- Organised around states rather than pathways
 - How individuals move among states (transitions)
 - How likely such moves are (transition probabilities)
- States are mutually exclusive and exhaustive
- Cycle length specifies transition intervals
- State values (costs and health outcomes) assigned
- Most common types:
 - Markov models
 - Area under the curve (AUC) models

The basic Markov chain

	Transition to:			
Transition from:	Asymptomatic	Progressive	Dead	
Asymptomatic	0.6	0.3	0.1	
Progressive	0	0.8	0.2	
Dead	0	0	1	

The Markov assumption

Evaluating Markov chains

- Matrix solution
 - Not possible with discounting
- Cohort simulation
- Individual patient simulation (1st order Monte-Carlo simulation)

Cohort simulation

- Simulates a cohort moving through a model
- A proportion of the cohort in each state/passing down a pathway at a given point in time
- Expected values worked out by weighting these proportions by costs/outcome values
- Focus on expected values: size of cohort irrelevant

Cohort simulation

The concept

Cohort simulation

Calculating expected costs

Asymptomatic	Cycle no.	Numbers in state (total 1000)		Costs		
1 600 300 100 £30,000 £30,000 2 360 420 220 £42,000 £72,000 3 216 444 340 £44,400 £116,400 4 130 420 450 £42,000 £158,400 5 78 375 547 £37,488 £195,888 6 47 323 630 £32,323 £228,211 7 28 273 699 £27,258 £255,469 8 17 226 757 £22,646 £278,116 9 10 186 804 £18,621 £296,737 10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £3342,309 14 1 65 934 £6,480 £348,788 15 0 52 9		Asymptomatic	Progressive	Dead	Per cycle	Cumulative
2 360 420 220 £42,000 £72,000 3 216 444 340 £44,400 £116,400 4 130 420 450 £42,000 £158,400 5 78 375 547 £37,488 £195,888 6 47 323 630 £32,323 £228,211 7 28 273 699 £27,258 £255,469 8 17 226 757 £22,646 £278,116 9 10 186 804 £18,621 £296,737 10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	0	1000				
3 216 444 340 £44,400 £116,400 4 130 420 450 £42,000 £158,400 5 78 375 547 £37,488 £195,888 6 47 323 630 £32,323 £228,211 7 28 273 699 £27,258 £255,469 8 17 226 757 £22,646 £278,116 9 10 186 804 £18,621 £296,737 10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 <td>1</td> <td>600</td> <td>300</td> <td>100</td> <td>£30,000</td> <td>£30,000</td>	1	600	300	100	£30,000	£30,000
4 130 420 450 £42,000 £158,400 5 78 375 547 £37,488 £195,888 6 47 323 630 £32,323 £228,211 7 28 273 699 £27,258 £255,469 8 17 226 757 £22,646 £278,116 9 10 186 804 £18,621 £296,737 10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966	2	360	420	220	£42,000	£72,000
5 78 375 547 £37,488 £195,888 6 47 323 630 £32,323 £228,211 7 28 273 699 £27,258 £255,469 8 17 226 757 £22,646 £278,116 9 10 186 804 £18,621 £296,737 10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973	3	216	444	340	£44,400	£116,400
6 47 323 630 £32,323 £228,211 7 28 273 699 £27,258 £255,469 8 17 226 757 £22,646 £278,116 9 10 186 804 £18,621 £296,737 10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978	4	130	420	450	£42,000	£158,400
7 28 273 699 £27,258 £255,469 8 17 226 757 £22,646 £278,116 9 10 186 804 £18,621 £296,737 10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983	5	78	375	547	£37,488	£195,888
8 17 226 757 £22,646 £278,116 9 10 186 804 £18,621 £296,737 10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 <		47	323	630	£32,323	£228,211
9 10 186 804 £18,621 £296,737 10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 <td< td=""><td>7</td><td>28</td><td>273</td><td>699</td><td>£27,258</td><td>£255,469</td></td<>	7	28	273	699	£27,258	£255,469
10 6 152 842 £15,199 £311,936 11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £8	8	17	226	757	£22,646	£278,116
11 4 123 873 £12,341 £324,277 12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 <td>9</td> <td>10</td> <td>186</td> <td>804</td> <td>£18,621</td> <td>£296,737</td>	9	10	186	804	£18,621	£296,737
12 2 100 898 £9,981 £334,258 13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	10	6	152	842	£15,199	£311,936
13 1 81 918 £8,050 £342,309 14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	11	4	123	873	£12,341	£324,277
14 1 65 934 £6,480 £348,788 15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	12	2	100	898	£9,981	£334,258
15 0 52 947 £5,207 £353,995 16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	13	1	81	918	£8,050	£342,309
16 0 42 958 £4,180 £358,175 17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	14	1	65	934	£6,480	£348,788
17 0 34 966 £3,352 £361,527 18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	15	0	52	947	£5,207	£353,995
18 0 27 973 £2,687 £364,214 19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	16	0	42	958	£4,180	£358,175
19 0 22 978 £2,153 £366,367 20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	17	0	34	966	£3,352	£361,527
20 0 17 983 £1,724 £368,091 21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	18	0	27	973	£2,687	£364,214
21 0 14 986 £1,380 £369,471 22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	19	0	22	978	£2,153	£366,367
22 0 11 989 £1,105 £370,576 23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	20	0	17	983	£1,724	£368,091
23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	21	0	14	986	£1,380	£369,471
23 0 9 991 £884 £371,460 24 0 7 993 £708 £372,168	22	0	11	989	£1,105	£370,576
24 0 7 993 £708 £372,168	23	0	9	991	£884	£371,460
Expected cost/patient over 24 cycles = £372,168 /1000 = £372.17	24	0	7	993	£708	
, , , , , , , , , , , , , , , , , , , ,						

Cost assumptions/cycle

Asymptomatic: £0

Progressive: £100

Dead: £0

Correctly estimating transition probabilities (TPs)

- TPs should be estimated to reflect the cycle length. This can be estimated using the rate (r) of the event
- Conversion of probability (p) to r when p is reported for time t_{rep}

$$r = -\frac{\ln(1-p)}{t_{rep}}$$

- Conversion of resulting rate to probability for cycle length, l $p = 1 \exp(-r \cdot l)$
- Example: convert 5 year probability of 20% to a 1 year probability

- Rate =
$$-\frac{\ln(1-0.20)}{5}$$
 = 0.04463

- 1-year probability = $1 - \exp(-0.04463 \times 1) = 0.043648$

Uses of Markov models

- Estimating costs and effects for comparative interventions
 - Two sets of transition probabilities
 - Often applying a relative treatment effect to baseline transitions
- Extrapolation from trial results assuming no continued treatment effect
 - Trial estimate of treatment effect, Markov estimates the implications
 - Could be decision tree to estimate the effect (e.g. screening)

Example of Markov used for direct comparisonModel structure

Source: Chancellor et al. PharmacoEconomics 1997; 12: 54-66

Example of Markov used for direct comparisonBaseline transition probabilities

(a) Transition probabilities - monotherapy

Transition to:

Transition from:	State A	State B	State C	State D
State A	0.721	0.202	0.067	0.01
State B	0	0.581	0.407	0.012
State C	0	0	0.75	0.25
State D	0	0	0	1

Assumed a relative effect of combination therapy of 0.509. This was assumed to slow progression between all states. It was applied by reducing the yearly transitions to all worse states

Source: Chancellor et al. PharmacoEconomics 1997; 12: 54-66

Example of Markov used for direct comparisonApplying the treatment effect

(b) Transition probabilities - combination therapy

Transition to:

Transition from:	State A	State B	State C	State D
State A	0.858	0.103	0.034	0.005
	(1-sum)	(0.202 x RR)	(0.067 x RR)	(0.01 x RR)
State B	0	0.787	0.207	0.006
		(1-sum)	(0.407 x RR)	(0.012 x RR)
State C	0	0	0.873	0.127
			(1-sum)	(0.25 x RR)
State D	0	0	0	1

Source: Chancellor et al. PharmacoEconomics 1997; 12: 54-66

Markov models for extrapolation

Part 1: Baseline event rates

- Observational data from PRAIS-UK (n=1046) and Leeds (n=112)
- Costs of drugs, hospitalisation and procedures

Part 2: GPA effects

 Data from metaanalysis of RCTs

Part 3: lifetime extrapolation

- Observational data from Nottingham Heart Attack Register (n=1279)
- Costs of hospitalisation and procedures

Source: Palmer et al. Technology Assessment Report for NICE, 2002

Summary

- Decision trees simplest but least flexible approach
 - Useful in specific circumstances e.g. acute one-off treatments
 - Can be combined with other model types
- Markov models most common approach
 - Increased flexibility
 - Basic Markov chain can be limiting in some circumstances
 - Some forms of time dependency can be incorporated
- Markov models can be used in different ways
 - Direct comparisons
 - Extrapolation

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 6: Model structure 6.4: Area under the curve (AUC) models and cycle length

Objectives

- Understand alternative state-transition approaches based on area under the curve (AUC) models
- Explore how to evaluate AUC models and determine state membership
- Understand importance of cycle length and use of corrections

Area under the curve (AUC) models

- Transitions probabilities not explicitly modelled
- Proportion in each health state over time is derived directly from survival curves
- Increasingly used in oncology based on progression-free survival (PFS) and overall survival (OS) curves
 - 3 states: (i) progression-free, (ii) progressed; (iii) death
 - Approach also referred to as partitioned survival analysis models
- As survival curves are used directly any time-dependency in the rate of events is captured

Evaluating AUC models

- 3 states: (i) progression free, (ii) progressed, (iii) dead
- Proportions derived from time to progression (PFS curve) and time to death (OS curve)

At t=5 years

- 13% patients have not yet progressed
- 23% of patients have not yet died
 State membership is therefore
 - Progression free: 0.13
 - Progressed: 0.23-0.13 = 0.10
 - Dead: 1-0.23 = 0.77
 - Check: 0.13+0.10+0.77=1.0

Determining state membership in an AUC model

PSM = Progressive state membership – derived from OS and PFS curves

Issues with AUC models

- Simple to implement, consistent with published survival data and readily captures time dependency
- Not underpinned by explicit model of disease process
- May not provide robust predictions if data are incomplete (e.g. if a significant proportion of patients have not died)
- OS and PFS modelled independently
- Logical issues may arise in extrapolations/probabilistic analysis
- Less transparent/flexible than Markov model (e.g. impact of alternative assumptions in pre and post-progression periods)

Extensions to AUC model – More explicit assessment of heterogeneity

- AUC based approaches
 - Splines/fractional polynomials
 - Landmark approach (e.g. responders, non-responders)
 - Independence still assumed between endpoints
 - Extrapolations still driven by time
- Mixture cure models
 - Study population includes 'cured' and 'uncured' patients
 - Estimate probability that a patient is cured
 - Predict survival of patients who are not cured
 - Avoids grouping heterogeneous populations and using single mean value
 - Extrapolation and assumptions for 'cured' patients still required

Choice of cycle length and half-cycle correction

- Using discrete cycle lengths introduces bias in to estimates of time in state (and therefore costs and QALYs)
- To minimise reduce cycle length and apply a half-cycle correction (HCC)

• The **HCC** subtracts (or adds) one half cycle's worth of cost and outcomes from first (or last) cycle – *transitions assumed at end (beginning) of cycle*

Alternative correction methods - Life-table

 Life-table method: average of the start and end state membership

- Implemented at each cycle (within-cycle correction)
- Within-cycle approach now recommended

ICER with different correction methods and cycle length

	ICER						
Method	Annual cycle (n=1)	Semiannual cycle (n=2)	Monthly cycle (n=12)	Weekly cycle (n=52)	Daily cycle (n=365)		
Right Riemann	60,333	51,042	47,881	47,795	47,790		
Trapezoidal rule	60,333	51,042	47,881	47,795	47,790		
Simpson's 1/3 rule	51,224	48,075	47,790	47,790	47,790		
Simpson's 3/8 rule	53,594	48,371	47,791	47,790	47,790		
Gold standard	47,790	47,790	47,790	47,790	47,790		

Source: Elbasha and Chhatwal (2016)

Summary

- AUC approach increasingly common in oncology
 - Important differences compared with other state-transition approaches
- Various extensions proposed to AUC model
 - Novel mechanisms
 - Heterogeneity in survival
- Use of discrete cycles introduces bias
 - Minimise cycle length
 - Half-cycle correction

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 6: Model structure

6.5: Extensions to the Markov chain and alternatives to cohort modelling

Objectives

- Explore extensions to Markov chain and use of time dependent probabilities
- Understand constraints on implementing time dependency
- Appreciate how constraints can be overcome
 - Tunnel states
 - Individual patient level simulation (PLS)
- Identify potential trade-offs with increased model complexity

Extensions to the Markov chain Time-dependent probabilities

- Standard Markov chain has fixed probabilities with respect to time
- May be a reasonable approximation in many instances, less so in others
- Can relax this assumption using time dependent probabilities (with standard software)
 - Tabular form
 - Functional form

Constraints on implementing time dependency

- If all patients start in the 'Asymptomatic' state and no return is possible, then time dependent probabilities between that state and the others is possible
- When 'time' relates to time in state, time dependent probabilities from 'Progressive' to 'Death' is not feasible
- When 'time' relates to cycles that have elapsed independent of the state occupied (age), time dependency is possible between 'Progressive' and 'Death'

Time dependency using tables

Probability as a function of time in state

(a) Fixed probabi	<u>Time</u>	<u>P(t)</u>			
	Т	1	0.19		
Transition from:	Asymptomatic	Progressive	Dead	2	0.21
				3	0.24
Asymptomatic	0.6	0.3	0.1	4	0.25
Progressive	0	0.8	0.2	5	0.28
Dead	0	0	1	6	0.31
				7	0.32
				8	0.34
(b) Time depende					
•	ency for one transit	tion probability		9	0.35
•	•	• •		9	0.35 0.37
	•	ransition to:		_	
Transition from:	•	• •	Dead	10	0.37
Transition from:	Asymptomatic	ransition to: Progressive	Dead	10 11	0.37 0.39
Transition from:	Asymptomatic 1-0.1-P(t)	ransition to: Progressive P(t)	Dead 0.1	10 11 12	0.37 0.39 0.40
Transition from:	Asymptomatic	ransition to: Progressive	Dead	10 11 12 13	0.37 0.39 0.40 0.42

Time dependency using tables

Probability as a function of cycle number

	5		J		
(a) Fixed probabi	lities				<u>P(c)</u>
	T	1	0.072		
Transition from:	Asymptomatic	Progressive	Dead	2	0.076
				3	0.079
Asymptomatic	0.6	0.3	0.1	4	0.071
Progressive	0	0.8	0.2	5	0.083
Dead	0	0	1	6	0.086
				7	0.089
				8	0.092
(b) Time depende	9	0.095			
				10	0.098
	T	11	0.102		
Transition from:	Asymptomatic	Progressive	Dead	12	0.106
• • • • • • • • • • • • • • • • • • • •	4.5(1).5(1)	5(1)	5()	13	0.108
Asymptomatic	1-P(t)- <mark>P(c)</mark>	P(t)	P(c)	14	0.115
Progressive	0	1-[0.1+P(c)]	[0.1+P(c)]	15	0 118

Dead

15

16

0.118

0.122

Time dependency using functions

- If patient-level data available on time to a given event, can estimate a transition probability as a function of time
- Models used to fit parametric distributions to hazard functions
- Most common distributions used to model survival data are exponential and Weibull distributions
- Exponential distribution assumes hazards are constant over time
- If constancy of hazard is not appropriate, a Weibull distribution may be more appropriate

Loosening the Markov assumption

Tunnel states – adding memory

Alternatives to cohort simulation The additional flexibility of patient level simulation (PLS)

- For simple models (e.g. small number of states) no real advantage in using PLS vs cohort Markov
- IPS has potential value to model more complex prognoses:
 - Where important time dependencies
 - Where patient history determines future prognosis
 - Where adding memory to Markov model results in large/unmanageable models ('state explosion')

What are PLS models?

- Individual patients are simulated one at a time
- Large number sent through sequentially
- Expected values based on averaging across these patients
- Number of simulations important for 'stability' of mean
- Advantages:
 - Not restricted by Markov assumption
 - Can easily keep track of individual's history (tracker variables)
 - Can greatly reduce number of states

Examples of PLS models UKPDS model

Source: Clarke et al. Diabetologia 2004; 47: 1747-59

Trade-offs with PLS models

- Less transparent, less efficient and harder to debug
- Two levels of simulation for PSA
 - Patient level with a given set of parameters (e.g. 10,000)
 - Parameter level with different sets of parameters (e.g. 1000)
 - Total simulations: 10,000 x 1000 = 10,000,000
- Further simulations for value of information analysis
- Therefore PSA often not done with PLS
- Can short cut using emulators (see Stevenson et al. Medical Decision Making 2004; 24: 89-100)
 - Little practical use
 - Small number of parameters

Elements of good practice

- Structural assumptions
 - Transparent and adequately justified
 - Data inputs clearly documented and justified in context of valid review of alternatives
- Alternative scenarios for extrapolation
 - e.g. nil, same as treatment phase, reducing in long term
- Results presented separately for alternative assumptions
 - LYG, QALYs and frequency of clinical events
 - At alternative time points
- Use of structures which limit feasibility of PSA need to be clearly justified
- Choice should not result in failure to express uncertainty

Summary

- Possible to extend basic Markov chain to incorporate some forms of time dependency
 - Increases flexibility
- PLS may be more appropriate in particular circumstances
 - Possible trade-offs with additional complexity
- Choice of model structure should not limit analyses
 - Alternative assumptions
 - Uncertainty analyses

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 6: Model structure 6.7: Summary and conclusions

Conclusions

- Models need to be 'fit for purpose'
 - Expected 'mean' cost-effectiveness
 - Uncertainty
- Models are inevitably a simplification of reality
 - Approximation of cohort models will be reasonable in many circumstances
- But PLS models may be considered necessary
 - Complex history/time dependencies
 - Treatment sequences
- Need to accept 'trade-offs' with PLS
 - Computational burden
 - Evidence requirements

Further reading

Good practice and state-transition modelling approaches

- Caro J et al. Modeling good research practices overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-1. Value Health. 2012;15:796-803.
- Siebert *et al.* State-transition modeling: a report of the ISPOR-SMDM modeling good research practices task force-3. *Value Health.* 2012; 15: 812-820.

AUC modelling

• Woods B et al. NICE DSU Technical Support Document 19. Partitioned Survival Analysis for Decision Modelling in Health Care: A Critical Review. 2017 [Available from http://www.nicedsu.org.uk]

Patient-level simulation

• Davis S et al. NICE DSU Technical Support Document 15: Cost-effectiveness modelling using patient-level simulation. 2014. [Available from http://www.nicedsu.org.uk]