

Diaporthe species in south-western China

Hui Long¹, Qian Zhang¹, Yuan-Yuan Hao⁴, Xian-Qiang Shao⁵, Xiao-Xing Wei⁶, Kevin D. Hyde⁷, Yong Wang^{1,2}, De-Gang Zhao^{2,3}

I Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China 2 Guizhou Key Laboratory Agro-Bioengineering, Guizhou University Guiyang, Guizhou, 550025, China 3 Guizhou Academy of Agricultural Sciences, Guiyang 550006, China 4 Administration Center of the Yellow River Delta Sustainable Development Institute of Sandong Province, Dongying, 257091, China 5 Dejiang County Chinese herbal medicine industry development office, Tongren, 565200, China 6 Academy of Animal and Veterinary Sciences, Qinghai University (Qinghai Academy of Animal and Veterinary Sciences), Xining, China 7 Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand

Corresponding author: Yong Wang (yongwangbis@aliyun.com); De-Gang Zhao (dgzhao@gzu.edu.cn)

Academic editor: Andrew Miller | Received 15 April 2019 | Accepted 15 July 2019 | Published 23 August 2019

Citation: Long H, Zhang Q, Hao Y-Y, Shao X-Q, Wei X-X, Hyde KD, Wang Y, Zhao D-G (2019) *Diaporthe* species in south-western China. MycoKeys 57: 113–127. https://doi.org/10.3897/mycokeys.57.35448

Abstract

Three strains of the genus Diaporthe were isolated from different plant hosts in south-western China. Phylogenetic analyses of the combined ITS, β -tubulin, tefl and calmoudulin dataset indicated that these strains represented three independent lineages in Diaporthe. Diaporthe millettiae **sp. nov.** clustered with D. hongkongensis and D. arecae, Diaporthe osmanthi **sp. nov.** grouped with D. arengae, D. pseudomangiferae and D. perseae and Diaporthe strain GUCC9146, isolated from Camellia sinensis, was grouped in the D. eres species complex with a close relationship to D. longicicola. These species are reported with taxonomic descriptions and illustrations.

Keywords

Diaporthe, phylogeny, taxonomy, 2 new taxa

Introduction

Genus *Diaporthe* has been well-studied in recent years by Udayanga et al. (2011, 2012), incorporating morphological and molecular data and recommending appropriate genes to resolve species limitations in the genus. Since these revolutionary papers, 43 novel *Diaporthe* species have been described from China with morphological and

phylogenetic evidence (Huang et al. 2013, 2015; Fan et al. 2016; Gao et al. 2014, 2015, 2016, 2017; Yang et al. 2017a,b, 2018; Yang et al. 2016; Du et al. 2016; Dissanayake et al. 2017a). Dissanayake et al. (2017b) provided an update of the genus with additional 15 species (7 new and 8 known species) from Italy based on molecular evidence. New records and species have also been reported by Hyde et al. (2016), Rossman et al. (2016), Chen and Kirschner (2017), Guarnaccia et al. (2018), Perera et al. (2018), Tibpromma et al. (2018) and Wanasinghe et al. (2018).

Three strains of *Diaporthe* were isolated from different medicinal plants collected in Guizhou and Guangxi during a survey of fungal diversity in south-western China. All the strains produced conidiomata containing alpha- and beta-conidia, typical of *Diaporthe*. This paper describes these three collections using molecular evidence, based on the analysis of combined ITS, β -tubulin, *tef*1 and calmoudulin datasets, as *Diaporthe millettiae* sp. nov. and *D. osmanthi* sp. nov. and *D. longicicola* with a new host record from *Camellia sinensis*.

Materials and methods

Isolation and morphological studies

The samples were collected from Guizhou and Guangxi provinces. The *Diaporthe* strains were isolated using the single-spore method (Chomnunti et al. 2014). Colonies, growing from single spores, were transferred to potato-dextrose agar (PDA) and incubated at room temperature (28 °C). Following 2–3 weeks of incubation, morphological characters were recorded as in Udayanga et al. (2011, 2015). Conidia and conidiophores were observed using a compound microscope (Olympus BX53). The holotype specimens are deposited in the Herbarium of Department of Plant Pathology, Agricultural College, Guizhou University (HGUP). Ex-type cultures are deposited in the Culture Collection at the Department of Plant Pathology, Agriculture College, Guizhou University, China (GUCC). Taxonomic information of the new taxa was submitted to MycoBank (http://www.mycobank.org) and Facesoffungi (http://www.facesoffungi.org).

DNA extraction and sequencing

Fungal cultures were grown on PDA medium until they nearly covered the whole Petri-dish (90 mm diam.) at 28 °C. Fresh fungal mycelia were scraped from the surface with sterilised scalpels. A BIOMIGA Fungus Genomic DNA Extraction Kit (GD2416) was used to extract fungal genome DNA. DNA amplification was performed in a 25 μ l reaction volume system which contained 2.5 μ l 10 × PCR buffer, 1 μ l of each primer (10 μ M), 1 μ l template DNA and 0.25 μ l Taq DNA polymerase (Promega, Madison, WI, USA). Primers ITS4 and ITS5 (White et al. 1990) were used to amplify the ITS region. Three protein-coding gene fragments (β -tubulin, *tef*1 and

calmoudulin) were amplified by the primers Bt2a/Bt2b (Glass and Donaldson 1995), CAL228F/CAL737R and EF1-728F/EF1-986R (Carbone and Kohn 1999). Gene sequencing was performed with an ABI PRISM 3730 DNA autosequencer using either a dRhodamine terminator or Big Dye Terminator (Applied Biosystems Inc., Foster 19 City, California). The sequences of both strands of each fragment were determined for sequence confirmation. The DNA sequences were submitted to GenBank and their accession numbers were provided in Table 1.

Table 1. GenBank accession numbers of isolates include in this study.

Species	Culture no.	GenBank no.			
•		ITS	tef1	eta-tubulin	calmoudulin
Diaporthe alleghaniensis	CBS 495.72	KC343007	KC343733	KC343975	KC343249
D. ambigua	CBS 114015	AF230767	GQ250299	KC343978	KC343252
D. anacardii	CBS 720.97*	KC343024	KC343750	KC343992	KC343266
D. arecae	CBS 161.64	KC343032	KC343758	KC344000	KC343274
D. arengae	CBS 114979	KC343034	KC343760	KC344002	KC343276
D. baccae	CBS 136972	KJ160565	KJ160597	MF418509	MG281695
D. beilharziae	BRIP 54792	JX862529	JX862535	KF170921	_
D. betulae	CFCC 50470	KT732951	KT733017	KT733021	KT732998
D. bicincta	CBS 121004	KC343134	KC343860	KC344102	KC343376
D. biguttusis	CGMCC 3.17081	KF576282	KF576257	KF576306	_
D. celastrina	CBS 139.27	KC343047	KC343773	KC344015	KC343289
D. celeris	CBS 143349	MG281017	MG281538	MG281190	MG281712
D. charlesworthii	BRIP 54884m*	KJ197288	KJ197250	KJ197268	_
D. cinerascens	CBS 719.96	KC343050	KC343776	KC344018	KC343292
D. cotoneastri	CBS 439.82	FJ889450	GQ250341	JX275437	JX197429
D. decedens	CBS 109772	KC343059	KC343785	KC344027	KC343301
D. elaeagni	CBS 504.72	KC343064	KC343790	KC344032	KC343306
D. ellipicola	CGMCC 3.17084	KF576270	KF576245	KF576291	_
D. eres	CBS 138594	KJ210529	KJ210550	KJ420799	KJ434999
D. foeniculina	CBS 187.27	KC343107	KC343833	KC344075	KC343349
D. goulteri	BRIP 55657a	KJ197289	KJ197252	KJ197270	_
D. helianthi	CBS 592.81	KC343115	GQ250308	KC343841	JX197454
D. hongkongensis	CBS 115448	KC343119	KC343845	KC344087	KC343361
D. inconspicua	CBS 133813	KC343123	KC343849	KC344091	KC343365
D. longicicola	GUCC9146	MK398676	MK480611	MK502091	MK502088
D. longicicola	CGMCC 3.17091	KF576267	KF576242	KF576291	_
D. macinthoshii	BRIP 55064a*	KJ197290	KJ197251	KJ197269	_
D. millettia	GUCC9167	MK398674	MK480609	MK502089	MK502086
D. oncostoma	CBS 589.78	KC343162	KC343888	KC344130	KC343404
D. osmanthusis	GUCC9165	MK398675	MK480610	MK502090	MK502087
D. perseae	CBS 151.73	KC343173	KC343899	KC344141	KC343415
D. phragmitis	CBS 138897	KP004445	_	KP004507	_
D. pseudomangiferae	CBS 101339	KC343181	KC343907	KC344149	KC343423
D. pseudophoenicicola	CBS 462.69	KC343184	KC343910	KC344152	KC343426
D. rosicola	MFLU 17.0646	NR157515	MG829270	MG843877	MG829274
D. saccarata	CBS 116311	KC343190	KC343916	KC344158	KC343432
D. stitica	CBS 370.54	KC343212	KC343938	KC344180	KC343454
D. vaccinii	CBS 160.32	AF317578	GQ250326	KC344196	KC343470
Valsa ambiens	CFCC 89894	KR045617	KU710912	KR045658	_

Ex-type isolates were labeled with bold.

Phylogenetic analyses

DNA sequences from our three strains and reference sequences downloaded from GenBank (Dissanayake et al. 2017a, b), Guarnaccia et al. (2018) and Wanasinghe et al. (2018) were analysed by maximum parsimony (MP) and maximum likelihood (ML). Sequences were optimised manually to allow maximum alignment and maximum sequence similarity, as detailed in Manamgoda et al. (2012). MP analyses were performed in PAUP v. 4.0b10 (Swofford 2003), using the heuristic search option with 1,000 random taxa additions and tree bisection and re-connection (TBR) as the branch swapping algorithm. Maxtrees = 5000 was set to build the phylogenetic tree. The characters of the alignment document were ordered according to ITS+tef1+ β -tubulin+CAL for GUCC9165 and GUCC9167 and tef1+ β -tubulin for GUCC9146 with equal weight and gaps were treated as missing data. The Tree Length (TL), Consistency Indices (CI), Retention Indices (RI), Rescaled Consistency Indices (RC) and Homoplasy Index (HI) were calculated for each tree generated. The resulting Phylip file was used to make ML and Bayesian trees by the CIPRES Science Gateway (https://www.phylo.org/portal2/login.action) and RAxML-XSEDE with 1000 bootstrap inferences.

Results

Phylogenetic analyses

Three *Diaporthe* strains isolated from different plant hosts were sequenced. PCR products of 456–465 bp (ITS), 292–303 bp (tef1), 666–690 bp (β -tubulin) and 336–345 bp (CAL) were obtained. By alignment with the single gene region and then combination according to the order of ITS, tef1, β -tubulin and CAL with Valsa ambiens (CFCC 89894), only 1833 characters were obtained, viz. ITS: 1–492, tefl: 493–801, β -tubulin: 802–1469, CAL: 1470–1833, with 500 parsimony-informative characters. This procedure yielded eleven parsimonious trees (TL = 2169, CI = 0.58, RI = 0.71, RC = 0.41 and HI = 0.42), the first one being shown in Figure 1. All *Diaporthe* species clustered together, although without credible support for bootstrap and BPP values (Figure 1). Phylogenetic analysis of strains GUCC9165 and GUCC9167, using the four gene loci, confirmed them as well-resolved species (Figure 1). Strain GUCC 9165 formed an independent branch adjacent to *D. arecae* and *D. hongkongensis* (MP: 100%, ML: 94% and BPP: 1). Strain GUCC 9167 grouped with the branch which included D. arengae, D. perseae and D. pseudomangiferae (MP: 92%, ML: 98% and BPP: 1). Strain GUCC 9146 was aligned to the branch having *D. longicicola* and *D.* rosicola in the Diaporthe eres species-complex (Figure 2), with high statistical support (MP: 84%, ML: 93% and BPP: 1). This strain also showed a close relationship to D. eres and D. cotoneastri. In addition, we also compared the DNA base pair differences between our strains and related species in different gene regions (Suppl. material 1: Table S1). In *Diaporthe* strain GUCC9165, the four genes had 64 base pair differ-

Figure 1. Parsimonious tree obtained from a combined analyses of an ITS, β -tubulin, calmoudulin and *tef*1 sequence dataset. MP, ML above 50% and BPP values above 0.90 were placed close to topological nodes and separated by "/". The bootstrap values below 50% and BPP values below 0.90 were labelled with "-". The tree is rooted with *Valsa ambiens* (CFCC89894). The branch of our new *Diaporthe* species is in pink.

Figure 2. Parsimonious tree obtained from a combined analyses of a β -tubulin and *tef*1 sequence dataset (TL = 265, CI = 0.89, RI = 0.76, RC = 0.68 and HI = 0.11). MP, ML above 50% and BPP values above 0.90 were placed close to topological nodes and separated by "/". The bootstrap values below 50% and BPP values below 0.90 were labelled with "-". The tree is rooted with *Diaporthe decedens* (CBS 109772).

ences with D. arecae and 119 with D. hongkongensis, the main differences being with β -tubulin and tef1. Strain GUCC9167 had 52 base pair differences with D. arengae, 61 with D. perseae and 64 with D. pseudomangiferae, wherein the base distinction was

primarily in the β -tubulin and tef1 gene region. The β -tubulin sequences of D. eres and D. longicicola were apparently shorter than in strain GUCC 9146. The CAL sequences of D. rosicola were shorter than GUCC 9146. The DNA sequence of CAL for $Diaporthe\ longicicola$ was not available (Gao et al. 2015). Integrating available DNA information, we discovered that 28 base pair differences were shown between GUCC 9146 and D. eres, 51 between GUCC 9146 and D. eres, 51 between GUCC 9146 and eres D. eres and 22 (only three genes) between GUCC 9146 and eres longicicola. Meanwhile, the phylogenetic analysis, based on only eres and eres species-complex (Figure 2), also indicated that GUCC 9146 clustered with eres eres species-complex (Figure 2), also indicated that GUCC 9146 clustered with eres eres species-complex (Figure 2), also indicated that GUCC 9146 clustered with eres eres species-complex (Figure 2), also indicated that GUCC 9146 clustered with eres eres eres species-complex (Figure 2), also indicated that GUCC 9146 clustered with eres e

Taxonomy

Diaporthe millettiae H. Long, K.D. Hyde & Yong Wang bis, sp. nov. MycoBank MB 829563
Figure 3

Diagnosis. Characterised by larger J-shaped β-conidia.

Type. China, Guangxi Province, Nanning City, from leaves of *Millettia reticulata*, 20 September 2016, Y. Wang, HGUP 9167, holotype, ex-type living culture GUCC 9167.

Description. Colonies on PDA attaining 9 cm diam. after 10 days; coralloid with feathery branches at margin, adpressed, with apparent aerial mycelium, with numerous irregularly zonate dark stromata, isabelline becoming lighter towards the margin; reverse similar to surface, with zonations. Conidiomata pycnidial, multilocular, scattered, abundant on PDA after 3 wks, subglobose to irregular, 1.5–1.8 mm diam., ostiolate, with up to 1 mm necks when present. Conidiophores formed from the inner layer of the locular wall, sometimes reduced to conidiogenous cells, when present 1-septate, hyaline to pale yellowish-brown, cylindrical, $10-23 \times 1-2.5$ μm. Conidiogenous cells cylindrical to flexuous, tapered towards apex, hyaline, 8–18 × 1.5–3 μm. Alpha conidia abundant, fusiform, narrowed towards apex and base, mostly biguttulate, hyaline, 4.5–9 × 2–3.5 μm. Beta conidia scarce to abundant, flexuous to J-shaped, hyaline, 17.5–32 × 1–2 μm. Perithecia not seen.

Habitat and distribution. Isolated from leaves of *Millettia reticulata* in China **Etymology.** Species epithet *millettiae*, referring to the host, *Millettia reticulata* from which the strain was isolated.

Notes. Phylogenetic analysis combining four gene loci showed that *Diaporthe millettiae* (strain GUCC 9167) displayed a close relationship with *D. arengae*, *D. pseudomangiferae* and *D. perseae* with high bootstrap values (Figure 1). We compared the DNA base pair differences of the four gene regions, the main differences being in the β -tubulin and *tef*1 genes, especially *tef*1. *Diaporthe millettiae* produced two types of conidia (α , β), whereas *D. pseudomangiferae* only produced *alpha conidia* and *D. perseae*

Figure 3. Diaporthe millettiae (GUCC9167). **a–b** upper (**a**) and lower (**b**) surface of colony on PDA **c–d** conidiomata **e–f** conidiophores, conidiogenous loci and conidia **g** β-conidia **h** α-conidia. Scale bars: $20 \mu m$ (**e, f**), $10 \mu m$ (**g, h**).

produced three types of conidia (α, β, γ). The β-conidia of *D. arengae* were smaller $(20-25 \times 1.5 \ \mu m)$ than those of *Diaporthe millettiae* $(17.5-32 \times 1-2 \ \mu m)$. The shape of β-conidia was also different. Conidiophores of *D. arengae* $(10-60 \ \mu m)$ with more septa (0-6), were longer than those of *D. millettiae* $(10-23 \times 1-2.5 \ \mu m; 0-1-septate)$ (Gomes et al. 2013).

Diaporthe osmanthi H. Long, K.D. Hyde & Yong Wang bis, sp. nov. MycoBank MB 829564 Figure 4

Diagnosis. Characterised by size of α -conidia and β -conidia.

Type. China, Guangxi province, Nanning City, from leaves of *Osmanthus fragrans*, 20 September, 2016, Y. Wang, HGUP 9165, holotype, ex-type living culture GUCC 9165.

Description. Colonies on PDA attaining 9 cm diam. after 10 days; coralloid with feathery branches at margin, adpressed, without aerial mycelium, with numerous irregularly zonated dark stromata, isabelline becoming lighter towards the margin; re-

Figure 4. Diaporthe osmanthi (GUCC9165). **a–b** upper (**a**) and lower (**b**) surface of colony on PDA **c–d** conidiomata **e** conidiophores, conidiogenous loci and conidia **f** α-conidia **g** two types of conidia **h** β-conidia. Scale bars: 10 μm (**e**, **f**, **g**, **h**).

verse similar to the surface with zonations more apparent. *Conidiomata* pycnidial and multilocular, scattered, abundant on PDA after 3 wks, globose, subglobose or irregular, up to 1–1.5 mm diam., ostiolate, necks absent or up to 1 mm. *Conidiophores* formed from the inner layer of the locular wall, reduced to conidiogenous cells or 1-septate, hyaline to pale yellowish-brown, cylindrical, $20.5-61 \times 1-3 \mu m$. *Conidiogenous cells* cylindrical to flexuous, tapered towards apex, hyaline, $10-15 \times 1.5-3 \mu m$. *Alpha conidia* abundant, fusiform, narrowed towards the apex and base, apparently biguttulate, hyaline, $5.5-8.5 \times 2-3 \mu m$. *Beta conidia* scarce to abundant, flexuous to J-shaped, hyaline, $20-31.5 \times 1-2.5 \mu m$. *Perithecia* not seen.

Habitat and distribution. Isolated from leaves of *Osmanthus fragrans* in China. **Etymology.** Species epithet *osmanthi*, referring to the host, *Osmanthus fragrans*

from which our strain was isolated.

Notes. Diaporthe osmanthi (strain GUCC9165) formed an independent lineage, but was also related to D. arecae and D. hongkongensis (Figure 1). The sequences of β -tubulin and tefl included about two-three differences between D. osmanthi (GUCC9165) and D. arecae (42) and D. hongkongensis (78) and thus they were different species according to the guidelines of Jeewon and Hyde (2016). Additionally, Diaporthe hongkongensis produced three types of conidia, but Diaporthe osmanthi did

not produce γ -conidia. In addition, β -conidia of D. hongkongensis (18–22 μ m) were shorter than those of Diaporthe osmanthi (Gomes et al. 2013). According to original description Srivastava et al. (1962), D. arecae also produced two types of conidia. The α -conidia (7.2–9.6 × 2.4 μ m) were longer than in Diaporthe osmanthi, but its β -conidia (14.4–24 × 1.2 μ m) were shorter and their shape also had some differences.

Diaporthe longicicola Y.H. Gao & L. Cai, Fungal Biology 119(5): 303 (2015) Figure 5

Description. Colonies on PDA attaining 9 cm diam. in 10 days; coralloid with feathery branches at margin, adpressed, without aerial mycelium, without numerous irregularly zonated dark stromata, isabelline becoming lighter towards the margin; reverse similar to the surface with zonations more apparent. Conidiomata pycnidial and multilocular, scattered, abundant on PDA after 20 d, subglobose or irregular, 1.5–1.8 mm diam., ostiolate and up to 1 mm long. Conidiophores formed from the inner layer of the locular wall, densely aggregated, hyaline to pale yellowish-brown, cylindrical, tapering towards the apex, $15-25 \times 1.5-2$ μm. Alpha conidia abundant, ellipsoid to fusiform, apparently biguttulate, hyaline, $6-9 \times 2-3$ μm. Beta conidia scarce to abundant, flexuous to J-shaped, hyaline, $25.5-35.5 \times 1-2.5$ μm.

Habitat and distribution. Isolated from leaves of Camellia sinensis in Duyun, Guizhou Province, China

Figure 5. Diaporthe longicicola (GUCC9146). **a–b** upper (**a**) and lower (**b**) surface of colony on PDA **c–d** conidiomata **e** two types of conidia **f** conidiophores, conidiogenous loci and conidia **g** α-conidia **h** β-conidia. Scale bars: 10 μm (**e, f, g, h**).

Notes. Phylogenetic analyses (Figures 1, 2) indicated that GUCC 9146 has a close relationship with *D. longicicola*, *D. rosicola*, *D. eres* and *D. cotoneastri*. Morphological comparison indicated that this strain was most similar to *D. longicicola* but not a related species by the width of alpha conidia and length of beta conidia (Udayanga et al. 2014; Gao et al. 2015).

Discussion

Phylogenetic analysis and morphology provide evidence for the introduction of *Diaporthe millettiae* and *D. osmanthi* as new species. In order to support the validity of these new species, we followed the guidelines of Jeewon and Hyde (2016) in comparing base pair differences (Suppl. material 1: Table S1). In accordance with Udayanga et al. (2014), we also believed that the ITS fragment was problematic for the *D. eres* species-complex. When not considering ITS, integration with morphological comparison was helpful and we concluded that GUCC 9146 is *D. longicicola. Diaporthe longicicola* was firstly reported on *Lithocarpus glabra* in Zhejiang Province, but our strain (GUCC 9146) was recovered from *Camellia sinensis* in Guizhou Province. Thus, this is the report of a new host and new location in China for *D. longicicola*.

Acknowledgements

This research is supported by the project funding of National Natural Science Foundation of China (No. 31560489), Genetically Modified Organisms Breeding Major Projects of China [2016ZX08010-003-009], Agriculture Animal and Plant Breeding Projects of Guizhou Province [QNYZZ2013-009], Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau (2017-ZJ-Y12), Talent project of Guizhou science and technology cooperation platform ([2017]5788-5 and [2019]5641) and Guizhou science, technology department international cooperation base project ([2018]5806) and post-graduate education innovation programme of Guizhou Province (ZYRC[2014]004). Dr Kevin D. Hyde would like to thank "the future of specialist fungi in a changing climate: baseline data for generalist and specialist fungi associated with ants, *Rhododendron* species and *Dracaena* species (DBG6080013)" and "Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion (RDG6130001)".

References

Carbone I, Kohn LMA (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3): 553–556. https://doi.org/10.2307/3761358 Chen KL, Kirschner R (2017) Fungi from leaves of lotus (*Nelumbo nucifera*). Mycological Progress 17: 275–293. https://doi.org/10.1007/s11557-017-1324-y

- Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Persoh D, Dhami MK, Alias AS, Xu JC, Liu XZ, Stadler M (2014) The sooty moulds. Fungal Diversity 66: 1–36. https://doi.org/10.1007/s13225-014-0278-5
- Dissanayake AJ, Zhang W, Liu M, Hyde KD, Zhang W, Yan JY, Li XH (2017a) *Diaporthe* species associated with peach tree dieback in Hubei, China. Mycosphere 8, 533–549. https://doi.org/10.5943/mycosphere/8/5/4
- Dissanayake AJ, Phillips AJL, Hyde KD, Yan JY, Li XH (2017b) The current status of species in *Diaporthe*. Mycosphere 8: 1106–1156. https://doi.org/10.5943/mycosphere/8/5/5
- Du Z, Fan XL, Hyde KD, Yang Q, Liang YM, Tian CM (2016) Phylogeny and morphology reveal two new species of *Diaporthe* from *Betula* spp. in China. Phytotaxa 269: 90–102. https://doi.org/10.11646/phytotaxa.269.2.2
- Fan XL, Hyde KD, Udayanga D, Wu XY, Tian CM (2016) *Diaporthe rostrata*, a novel ascomycete from *Juglans mandshurica* associated with walnut dieback. Mycological Progress 14: 82. https://doi.org/10.1007/s11557-015-1104-5
- Gao YH, Sun W, Su YY, Cai L (2014) Three new species of *Phomopsis* in Gutianshan Nature Reserve in China. Mycological Progress 13: 111–121. https://doi.org/10.1007/s11557-013-0898-2
- Gao YH, Su YY, Sun W (2015) *Diaporthe* species occurring on *Lithocarpus glabra* in China, with descriptions of five new species. Fungal Biology 119: 295–309. https://doi.org/10.1016/j. funbio.2014.06.006
- Gao YH, Liu F, Cai L (2016) Unravelling *Diaporthe* species associated with *Camellia*. Systematics and Biodiversity 14: 102–117. https://doi.org/10.1080/14772000.2015.1101027
- Gao YH, Liu F, Duan W, Crous PW, Cai L (2017) *Diaporthe* is paraphyletic. IMA fungus 8: 153–187. https://doi.org/10.5598/imafungus.2017.08.01.11
- Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330.
- Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) *Diaporthe*: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia- Molecular Phylogeny and Evolution of Fungi 31: 1–41. https://doi.org/10.3767/003158513X666844
- Guarnaccia V, Groenewald JZ, Woodhall J, Armengol J, Cinelli T, Eichmeier A, Ezra D, Fontaine F, Gramaje D, Gutierrez-Aguirregabiria A, Kaliterna J, Kiss L, Larigno P (2018) Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia - Molecular Phylogeny and Evolution of Fungi 40: 135–153. https://doi.org/10.3767/persoonia.2018.40.06
- Huang F, Hou X, Dewdney MM, Fu YS, Chen GQ, Hyde KD, Li HY (2013) *Diaporthe* species occurring on citrus in China. Fungal Diversity 61: 237–250. https://doi.org/10.1007/s13225-013-0245-6
- Huang F, Udayanga D, Wang XH, Hou X, Mei XF, Fu YS, Hyde KD, Li HY (2015) Endophytic *Diaporthe*, associated with citrus: a phylogenetic reassessment with seven new species from China. Fungal Biology,119: 331–347. https://doi.org/10.1016/j.funbio.2015.02.006
- Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti P, Cui BK, Daranagama DA, Das K, Dayarathne MC, de Silva NI, Dis-

- sanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Goes-Neto A, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li WJ, Lin CG, Liu JK, Lu YZ, Luo ZL, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphoun C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, Santiago ALCM de A, Ricardo DS, Senanayake IC, Tanaka K, Tennakoon TMDS, Thambugala KM, Tian Q, Tibpromma S, Thongbai B, Vizzini A, Wanasinghe D, Wijayawardene NN, Wu HX, Yang J, Zeng XY, Zhang, H, Zhang JF, Bulgakov T, Camporesi E, Bahkali AH, Amoozegar M, Araujo-Neta LS, Ammirati JF, Baghela A, Bhatt RP, Bojantchev D, Buyck B, da Silva GA, Ferreira de Lima, Catarina Leticia, Vilela de Oliveira RJ, Fragoso de Souza CA, Dai YC, Dima B, Duong TT, Ercole E, Mafalda-Freire F, Ghosh A, Hashimoto A, Kamolhan S, Kang, JC, Karunarathna, Samantha C, Kirk PM, Kytovuori I, Lantieri A, Liimatainen K, Liu ZY, Liu XZ, Lucking R, Medardi G, Mortimer PE, Thi TTN, Promputtha I, Raj KNA, Reck MA, Lumyong S, Shahzadeh-Fazeli SA, Stadler M, Soudi MR, Su HY, Takahashi T, Tangthirasunun N, Uniyal P, Wang Y, Wen TC, Xu JC, Zhang ZK, Zhao YC, Zhou JL, Zhu L (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270. https://doi.org/10.1007/ s13225-016-0366-9
- Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7: 1669–1677. https://doi.org/10.5943/mycosphere/7/11/4
- Manamgoda DS, Cai L, Bahkali AH, Chukeatirote E, Hyde KD (2011) *Cochliobolus*: an overview and current status of species. Fungal Diversity 51: 3–42. https://doi.org/10.1007/s13225-011-0139-4
- Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD (2012) A phylogenetic and taxonomic re-evaluation of the *Bipolaris-Cochliobolus-Curvularia* complex. Fungal Diversity 56: 131–144. https://doi.org/10.1007/s13225-012-0189-2
- Nilsson RH, Hyde KD, Pawlowska J, Ryberg M, et al. (2014) Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity 67: 11–19. https://doi.org/10.1007/s13225-014-0291-8
- Perera RH, Hyde KD, Dissanayake AJ, Jones EBG, Liu JK, Wei D, Liu ZY (2018) *Diaporthe collariana* sp. nov., with prominent collarettes associated with *Magnolia champaca* fruits in Thailand. Studies in Fungi 3: 141–151. https://doi.org/10.5943/sif/3/1/16
- Rossman AY, Allen WC, Braun U, Castlebury LA, Chaverri P, Crous PW, Hawksworth DL, Hyde KD, Johnston P, Lombard L, Romberg M, Samson RA, Seifert KA, Stone JK, Udayanga D, White JF (2016) Overlooked competing asexual and sexually typified generic names of Ascomycota with recommendations for their use or protection. IMA Fungus 7: 289–308. https://doi.org/10.5598/imafungus.2016.07.02.09
- Srivastava HC, Zakia B, Govindarajan VS (1962) Fruit rot of areca nut caused by a new fungus. Mycologia 54: 5–11. https://doi.org/10.1080/00275514.1962.12024974
- Swofford D (2003) PAUP* Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland.
- Tibpromma S, Hyde KD, Bhat JD, Mortimer PE, Xu JC, Promputtha I, Doilom M, Yang JB, Tang AMC, Karunarathna SC (2018) Identification of endophytic fungi from leaves of

- Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. Mycokeys 33: 25–67. https://doi.org/10.3897/mycokeys.32.23670
- Udayanga D, Liu XZ, McKenzie EHC, Chukeatirote E, Bahkali AH, Hyde KD (2011) The genus *Phomopsis*: biology, applications, species concepts and names of common phytopathogens. Fungal Diversity 50: 189–225. https://doi.org/10.1007/s13225-011-0126-9
- Udayanga D, Liu XZ, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD (2012) A multi-locus phylogenetic evaluation of *Diaporthe (Phomopsis*). Fungal Diversity 56: 157–171. https://doi.org/10.1007/s13225-012-0190-9
- Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2014) Insights into the genus *Diaporthe*: phylogenetic species delimitation in the *D. eres* species complex. Fungal Diversity 67: 203–229. https://doi.org/10.1007/s13225-014-0297-2
- Udayanga D, Castlebury LA, Rossman AY, Hyde KD (2015) Species limits in *Diaporthe*: molecular re-assessment of *D. citri*, *D. cytosporella*, *D. foeniculina* and *D. rudis*. Persoonia 32: 83–101. https://doi.org/10.3767/003158514X679984
- Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Jones EBG, Tibpromma S, Tennakoon DS, Dissanayake AJ, Jayasiri SC, Gafforov Y, Camporesi E, Bulgakov TS, Ekanayake AH, Perera RH, Samarakoon MC, Goonasekara ID, Mapook A, Li WJ, Senanayake IC, Li JF, Norphanphoun C, Doilom M, Bahkali AH, Xu JC, Mortimer PE, Tibell L, Tibell S, Karunarathna SC (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on *Rosaceae*. Fungal Diversity 89: 1–236. https://doi.org/10.1007/s13225-018-0395-7
- White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Gelfand M, Sninsky JI, White TJ (Eds) PCR protocols: a guide to methods and applications, Academic Press, USA, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Yang Q, Fan X, Du Z, Liang Y, Tian C (2017a). *Diaporthe camptothecicola* sp. nov. on *Camptotheca acuminata* in China. Mycotaxon 132: 591–601. https://doi.org/10.5248/132.591
- Yang Q, Fan XL, Du Z, Tian CM (2017b) *Diaporthe juglandicola* sp. nov. (*Diaporthales*, Ascomycetes) evidenced by morphological characters and phylogenetic analysis. Mycosphere 8: 817–826. https://doi.org/10.5943/mycosphere/8/5/3
- Yang Q, Du Z, Tian CM (2018) Phylogeny and morphology reveal two new species of *Dia*porthe from Traditional Chinese Medicine in Northeast China. Phytotaxa 336: 159–170. https://doi.org/10.11646/phytotaxa.336.2.3
- Yang Y, Guo YX, Zhang YK, WuH, Zhang M (2016) *Diaporthe henanensis* sp. nov. an endophytic fungus in *Ziziphus jujuba* from China. Mycotaxon 131: 645–652. https://doi.org/10.5248/131.645

Supplementary material I

The DNA bases difference between our strains and related taxa on four gene regions

Authors: Hui Long, Qian Zhang, Yuan-Yuan Hao, Xian-Qiang Shao, Xiao-Xing Wei, Kevin D. Hyde, Yong Wang, De-Gang Zhao

Data type: molecular data

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.57.35448.suppl1