Problem Solving with AI Techniques Sequential Decision-Making under Uncertainty

Paul Weng

UM-SJTU Joint Institute

VE593, Fall 2018

- Introduction
- Markov Decision Process
- 3 Dynamic Programming

Decision-making

- Goal: design adaptive autonomous systems that can act on our behalf
- Examples:
 - Robotics
 - Traffic light controller
 - Data center control
 - Streaming video player
 - Intelligent tutoring system
- Interaction loop

Example: Autonomous Navigation

Goal: move autonomously from point A to point B

- Repeat: choose an action, observe new state, check if goal state
- Optimize travel time, power consumption...
- Search problem if effects of actions are deterministic
- Stochastic model: exogenous events, imperfect sensors/actuators, model error...

Introduction

Markov Decision Process

3 Dynamic Programming

Markov Decision Process

Markov Decision Process (MDP) defined as a quadruplet (S, A, T, R)

- S is a set of states
- A is a set of actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ is a transition function, $T(s, a, s') = \mathbb{P}(s' \mid s, a)$
- $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function

An MDP is defined by:

- S set of states
- A set of actions
- T(s, a, s') transition function
- R(s, a) reward function

An MDP is defined by:

- S set of states
- A set of actions
- T(s, a, s') transition function
- R(s, a) reward function

Example: Navigation of a robot

- Positions of the robot
- Possible moves
- Probabilistic effects of a move
- Reward encoding a certain task

An MDP is defined by:

- S set of states
- \mathcal{A} set of actions
- T(s, a, s') transition function
- R(s, a) reward function

Example: Inventory control

- Stock levels
- Orders
- Stochastic demand
- Earnings costs

An MDP is defined by:

- S set of states
- A set of actions
- T(s, a, s') transition function
- R(s, a) reward function

Example: Video games

- Resources, Units, Structures
- Explore, Exploit, Build...
- Uncertain consequences
- Utility

An MDP is defined by:

- S set of states
- A set of actions
- T(s, a, s') transition function
- R(s, a) reward function

Generally, T and R are not known \Rightarrow Reinforcement learning Moreover, if there is only one state with random rewards \Rightarrow Multi-armed bandit

Goal in an MDP

- High-level goal: determine which action to choose in every state at every time step
- Important notions:
 - Trajectory $s_0, s_1, s_2...$: sequence of states
 - History $s_0, a_0, s_1, a_1, s_2...$: sequence of state/action
 - Policy π : stationary or not, Markov/history-dependent, deterministic/randomized
 - Horizon: finite or infinite
- Problem: find "best" policy for a given MDP

Discussions

- Assumptions
 - Stationary (time-homogeneous) model
 - Markov property
 - Discrete time
 - States are observable (MDP can be generalized to Partially Observable MDP or POMDP)
- MDP can be seen as an extension of
 - a deterministic state-space where actions have stochastic effects
 - a Markov chain where in every state we can choose the distribution over next states

How to Define "Best"?

- Value of a history = sum of rewards (possibly discounted by $\gamma \in (0,1)$)
- A policy induces a probability distribution over histories
- Value $v^{\pi}(s)$ of a policy in a state = expectation of the value of histories it can generate
- This defines the value function v^{π} of a policy π
- Optimal value function $v^*(s) = \max_{\pi} \mathbb{E}_{\pi}[\sum_t \gamma^t R(S_t, A_t) | S_0 = s]$
- Theorem: For **finite** horizon problems, finite MDP admits an optimal policy that is Markov and deterministic
- Theorem: For **infinite** horizon problems, finite MDP admits an optimal policy that is stationary, Markov, and deterministic

Introduction

2 Markov Decision Process

3 Dynamic Programming

Induction for Value Function of Fixed Policy

Induction for π:

$$v_0^{\pi}(s) = 0$$

 $v_t^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') v_{t-1}^{\pi}(s')$

- v_T^{π} provides the value function of π for finite horizon T
- v_t^{π} converges to value function v^{π} of π for infinite horizon
- value function of π for infinite horizon satisfies:

$$v^{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') v^{\pi}(s')$$

Backward Induction and Value Iteration

Induction:

$$v_0^*(s) = 0$$

 $v_t^*(s) = \max_{a} R(s, a) + \gamma \sum_{s'} T(s, a, s') v_{t-1}^*(s')$

- v_T^* provides optimal value function for finite horizon T
- v_t^* converges to optimal value function v^* for infinite horizon
- Optimal value function for infinite horizon satisfies:

$$v^*(s) = \max_{a} R(s, a) + \gamma \sum_{s'} T(s, a, s') v^*(s')$$

Value Iteration: Algorithm

```
1 Valuelteration (MDP, \varepsilon)
2 \forall s, v^*(s) = 0
3 repeat
       for s \in \mathcal{S} do
            for a \in \mathcal{A} do
           Q^*(s, a) = R(s, a) + \gamma \sum_{s'} T(s, a, s') v^*(s')
    nv(s) \leftarrow \max_a Q^*(s, a)
       v^* \leftarrow nv
9 until ||v^* - nv|| < \varepsilon;
.0 return Q^*
```

- Computational complexity for one step: $O(|\mathcal{S}|^2|\mathcal{A}|)$
- Computational complexity: $O(\text{poly}(|\mathcal{S}|, |\mathcal{A}|, \frac{1}{1-\gamma}))$

Policy Iteration: Principle

- Given current policy π , improve it with one-step look-ahead
- Alternate between
 - Policy evaluation of current policy $v_t^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') v_{t-1}^{\pi}(s')$
 - Policy improvement of current policy: $\pi'(s) = \arg\max_{a} R(s, a) + \gamma \sum_{s'} T(s, a, s') v^{\pi}(s')$

Policy Iteration

```
1 Policylteration (MDP)
2 initialize \pi
3 repeat
       \pi' \leftarrow \pi
       compute v^{\pi} (possibly approximately)
        for s \in \mathcal{S} do
             for a \in \mathcal{A} do
              Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} T(s, a, s') v^{\pi}(s')
          \pi(s) \leftarrow \operatorname{arg\,max}_{a} Q^{\pi}(s, a)
.0 until \pi 
eq \pi';
1 return \pi
```

• Computational complexity: $O(\operatorname{poly}(|\mathcal{S}|,|\mathcal{A}|,\frac{1}{1-\gamma})$