Лабораторные задачи по теме: Итерационные циклы

Найти корень уравнения на отрезке [a,b] с точностью ε указанным в варианте методом и указанным способом контроля:

Таблица 1: Таблица заданий к лабораторной работе

№ π/π	Уравнение	Метод	Отрезок $[a,b]$	Контроль за окончанием просчетов
1	$3\sin\sqrt{x} + 0.35x - 3.8 = 0$	Ньютона	[2,3]	по малости невязки ¹
2	$tg x + \frac{1}{3}tg^3 x + \frac{1}{5}tg^5 x - \frac{1}{3} = 0$	секущих	[0, 0.8]	по близости соседних приближений ²
3	$\cos\frac{2}{x} - 2\sin\frac{1}{x} + \frac{1}{x} = 0$	модификация Ньютона	[1,2]	по малости невязки
4	$x - 2\sin\frac{1}{x} = 0$	дихотомии	[1.2, 2]	по близости соседних приближений
5	$x + \cos(x^{0.52} + 2) = 0$	Ньютона	[0.5, 1]	по близости соседних приближений
6	$\sqrt{1-x} - \operatorname{tg} x = 0$	секущих	[0, 1]	по малости невязки
7	$x + \sqrt{x} + \sqrt[3]{x} - 2.5 = 0$	модификация Ньютона	$\boxed{[0.4, 1]}$	по близости соседних приближений
8	$x - \frac{1}{3 + \sin(3.6x)} = 0$	дихотомии	[0, 0.8]	по малости невязки
9	$\arccos x - \sqrt{1 - 0.3x^3} = 0$	Ньютона	[0.3, 0.9]	по малости невязки
10	$2x\sin x - \cos x = 0$	секущих	[0.4, 1]	по близости соседних приближений
11	$\sin^2 x + 0.99\cos^2 x - 10x = 0$	модификация Ньютона	[0, 1]	по малости невязки
12	$(4+x)(e^x - e^{-x}) = 18$	дихотомии	[-4.5, -3.5]	по близости соседних приближений

 $[|]f(x_i)|<arepsilon,$ где arepsilon – точность вычислений $|f(x_i)|<arepsilon,$ где arepsilon – точность вычислений

Таблица 1 (продолжение)

№ п/п	Уравнение	Метод	Отрезок $[a,b]$	Контроль
13	$x^4 - 3x^2 + 75x - 10000 = 0$	Ньютона	[-11, -9]	по близости соседних приближений
14	$\sqrt{1 - 0.4x^2} - \arcsin x = 0$	секущих	[0.2, 0.9]	по малости невязки
15	$\sin(\ln x) - \cos(\ln x) + 2\ln x = 0$	модификация Ньютона	[1,3]	по близости соседних приближений
16	$0.25x^3 + x - 1.2502 = 0$	дихотомии	[0,2]	по малости невязки
17	$x^2 - 1.3\ln(x + 0.5) - 2.8x + 1.15 = 0$	Ньютона	$\boxed{[0,1]}$	по малости невязки
18	$5x - 8\ln x - 8 = 0$	секущих	[0.4, 0.6]	по близости соседних приближений
19	$x2^x - 1 = 0$	модификация Ньютона	[0.2, 1.2]	по малости невязки
20	$x^3 - 2x^2 - 0.2x + 0.5 = 0$	дихотомии	[-2, 0]	по близости соседних приближений

Таблица 2: Таблица расчетных формул методов и способов определения начальных приближений и неподвижной точки

Метод	Расчетная формула мето- да	Условие определения начального приближения
Ньютона	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$	$x_0 = \begin{cases} a, & \text{если } f(a)f''(a) > 0; \\ b, & \text{если } f(b)f''(b) > 0. \end{cases}$

Таблица 2 (продолжение)

Метод	Расчетная формула мето- да	Условие определения начального приближения (неподвижной точки)
Модификация Ньютона	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_0)}$	$x_0 = \begin{cases} a, & \text{если } f(a)f''(a) > 0; \\ b, & \text{если } f(b)f''(b) > 0. \end{cases}$
Секущих	$x_{i+1} = x_i - \frac{f(x_i)(x_i - c)}{f(x_i) - f(c)}$	$x_0 = \begin{cases} b, & \text{если } f(a)f''(a) > 0; \\ a, & \text{если } f(b)f''(b) > 0. \end{cases}$ $c = \begin{cases} a, & \text{если } f(a)f''(a) > 0; \\ b, & \text{если } f(b)f''(b) > 0. \end{cases}$

Спецификация ввода : $a\ b\ moчность$

Спецификация вывода: значение решения