

COE718: Embedded Systems Design

Lecture 3:

Cortex-M3 CPU Architecture

Recapping ARM and Thumb

ARM now called AArch32

32-bit	32-bit 32-bit	32-bit	32-bit
--------	---------------	--------	--------

Thumb (actually includes all ARM 32 bit instructions)

16-bit 16-bit 16-bit	16-bit 16-bit 16-bit	16-bit 16-bit 16-l	oit 16-bit
----------------------	----------------------	--------------------	------------

Thumb-2

32-bit	32-bit 16-bit	16-bit	16-bit	32-bit	16-bit
--------	---------------	--------	--------	--------	--------

A64 AArch64

bit 32-bit 32-bit 32-bit 32-bit

Recapping ARM and Thumb

	ARM	Thumb*
Instruction Size	32 bits	16 bits
Core instructions	58	16bits/32bits 30
Conditional Execution	most	Only branch instructions or in an IT block
Data processing instructions	Access to barrel shifter and ALU	Separate barrel shifter and ALU instructions
Program status register	Read/write in privileged mode	No direct access
Registerusage	15 general purpose registers + pc	8 general purpose registers + 7 high registers + pc

Bit Banding – allows for performance improvement and code compaction (especially depending on the application)

Harvard and Von Neumann

ARM Cortex-M optional components^{[6][7]}

ARM	SysTick	Bit-	Memory Protection	Tightly-Coupled	CPU	Memory	ARM
Cortex-M	Timer	banding	Unit (MPU)	Memory (TCM)	cache	architecture	architecture
Cortex-M0 ^[1]	Optional*	Optional ^[9]	No	No	No ^[10]	Von Neumann	ARMv6-M
Cortex-M0+[2]	Optional*	Optional ^[9]	Optional (8)	No	No	Von Neumann	ARMv6-M
Cortex-M1 ^[3]	Optional	Optional	No	Optional	No	Von Neumann	ARMv6-M
Cortex-M3 ^[4]	Yes	Optional*	Optional (8)	No	No	Harvard	ARMv7-M
Cortex-M4 ^[5]	Yes	Optional*	Optional (8)	No	O Possible[11]	Harvard	ARMv7E-M
Cortex-M7	Yes	No	Optional (8 or 16)	Optional	Optional	Harvard	ARMv7E-M

Example 5 Stage Pipeline CPU

Example 5 Stage Pipeline CPU

CISC vs RISC

$$\frac{\text{time}}{\text{program}} = \frac{\text{time}}{\text{cycle}} \times \frac{\text{cycles}}{\text{instruction}} \times \frac{\text{instructions}}{\text{program}}$$
Execution Time

CISC vs RISC

Cortex-M3 Core Overview

Cortex-M3 Backend

Cortex-M3 CPU Overview

101

Cortex-M3 Bus System

107

Tail Chaining

Back-to-Back

Later Arrival (During Pop)

Late Arrival

DESIGN THIS!

DESIGN THIS!

Intelligent Hanger (Fashion & Engineering project)

