Proposal Requirement

Problem Statement and Task Definition

In speech recognition and transcription, the resulting text often lacks punctuation, leading to blocks of text that are difficult to read and understand. This poses a significant challenge in scenarios where accurate and comprehensible transcriptions are needed, such as in legal documentation, medical records, and educational materials. The task at hand is to develop a system that can accurately insert punctuation into such unpunctuated text, enhancing readability and maintaining the original spoken content's integrity.

· Description of the challenges

- Speech recognition systems convert speech to unpunctuated text, which is difficult to read and comprehend.
- The punctuation restoration process is complex, involving understanding context, grammar, and the nuances of spoken language.

• Input/Output Behavior with Concrete Examples

- Input

Text without punctuation, like transcribed speech from open data platforms.

```
1 hello how are you I'm fine thank you and you I'm doing well too
```

- Output

The same text with appropriate punctuation is restored.

```
Hello, how are you? I'm fine, thank you. And you? I'm doing well too.
```

· Related works

- Yi, J., Tao, J., Bai, Y., Tian, Z., & Fan, C. (2020). Adversarial transfer learning for punctuation restoration. arXiv preprint arXiv:2004.00248.
- Cho, E., Niehues, J., & Waibel, A. (2012). Segmentation and punctuation prediction in speech language translation using a monolingual translation system. In Proceedings of the 9th International Workshop on Spoken Language Translation: Papers (pp. 252-259).
- Tilk, O., & Alumäe, T. (2016, September). Bidirectional Recurrent Neural Network with Attention Mechanism for Punctuation Restoration. In Interspeech (Vol. 3, p. 9).

Methodology

- Approach

1. RT-Based Approach

Employing the BERT model as a foundational method for punctuation restoration.

BERT's strong suit in understanding context and sentence structures makes it ideal for predicting punctuation in unpunctuated text.

2. T5 and BART Models

In parallel, using T5 and BART models is known for their effectiveness in text-to-text tasks like punctuation restoration.

Fine-tuning these models on specific datasets like BNC-corpus, adjusting for sentence length and contextual cues.

- Why This Method

These models have shown promising results in NLP tasks, including punctuation restoration.

Challenges and Phenomena

Balancing training data quantity and quality, sentence boundary detection.

Algorithms and Trade-offs

Exploring the trade-off between the accuracy of punctuation prediction and the model 's efficiency.

• Evaluation Metrics

- Mainly using the F1-score to measure the performance of the restored punctuation against a ground truth set.
- Considering the balance of precision and recall in the model's predictions.

Baselines

- Simple rule-based methods or classifiers.
- Compared with existing models like a non-fine-tuned T5 or BERT model.

Work Plan

• Time Schedule

- Literature review and baseline model setup.
- Data collection and preprocessing from selected datasets.
- Model fine-tuning and initial testing.
- Further model refinement and evaluation.
- Final testing, analysis, and report writing.

• Discussion

https://hackmd.io/@userwei/BJteGHBlR

· Repo

https://github.com/chou-ting-wei/NYCU_AI-Final-Project