Factor analysis

ZIH-SYUAN, JIAN

National Central University

September 24, 2018

- Introduction
 - Motivation
 - Purpose of factor analysis
- 2 Modeling
 - The Orthogonal Factor Model
- Method
 - Principlal Component
 - MLE
- 4 Rotation
- Factor Score
- 6 Factor Analysis in R(Python)
- Extended reading
- 8 Conclusion

Motivation example (Using a Regression example)

For children in elementrays school **Observed variable**: Shoe size and reading ability

Purpose of factor analysis

- Dimension reduction (it is not the most important in factor analysis)
- Describe the covariance relationship among many observable vaiables in terms of a few underlying, but unobservable (latent) variable.

- Introduction
 - Motivation
 - Purpose of factor analysis
- Modeling
 - The Orthogonal Factor Model
- Method
 - Principlal Component
 - MLE
- 4 Rotation
- Factor Score
- 6 Factor Analysis in R(Python)
- Extended reading
- Conclusion

The Orthogonal Factor Model

The observable random vector \mathbf{X} , with components has mean μ and covariance matrix Σ . \mathbf{X} is linearly dependent upon a few unobservable random variables F_1, F_2, \ldots, F_m called common factor, $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_p$ called specific factors, L called specific loading

$$X_{1} - \mu_{1} = \ell_{11}F_{1} + \ell_{12}F_{2} + \dots + \ell_{1m}F_{m} + \varepsilon_{1}$$

$$X_{2} - \mu_{2} = \ell_{21}F_{1} + \ell_{22}F_{2} + \dots + \ell_{2m}F_{m} + \varepsilon_{2}$$

$$\vdots$$

$$X_{p} - \mu_{p} = \ell_{p1}F_{1} + \ell_{p2}F_{2} + \dots + \ell_{pm}F_{m} + \varepsilon_{p}$$

in matrix notation

$$\mathsf{X} - \pmb{\mu} = \mathsf{LF} + \pmb{arepsilon}$$

Assume that

$$\mathrm{E}(\mathbf{F}) = \mathbf{0}_{(m \times 1)}, \mathrm{Cov}(\mathbf{F}) = \mathrm{E}(\mathbf{F}\mathbf{F'}) = \mathrm{I}_{(m \times m)}, \mathrm{Cov}(\varepsilon, \mathbf{F}) = \mathbf{0}_{(p \times m)}$$

 $\mathrm{E}(\varepsilon) = \mathbf{0}_{(p \times 1)}, \mathrm{Cov}(\varepsilon) = \mathrm{E}(\varepsilon \varepsilon') = \varPsi_{(p \times p)}$

where Ψ is a diagonal matrix.

So the covariance structure for **X** From this model

$$\Sigma = \text{Cov}(\mathbf{X}) = \mathrm{E}\left((\mathbf{X} - \mu)(\mathbf{X} - \mu)'\right)$$

$$= \mathrm{LE}(\mathbf{F}\mathbf{F}')\mathbf{L}' + \underline{\mathrm{LE}}(\mathbf{F}\boldsymbol{\varepsilon}') + \mathrm{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}')$$

$$= \mathrm{LL}' + \Psi$$

$$\mathsf{Cov}(arepsilon, \mathbf{F}) = \mathsf{E}(arepsilon \mathbf{F}') = 0,$$

 $\mathsf{Cov}(\mathbf{X}, \mathbf{F}) = \mathsf{E}(\mathbf{X} - \mu \mathbf{F}') = \mathsf{L}\mathsf{E}(\mathbf{F}\mathbf{F}') + \mathsf{E}\left(arepsilon \mathbf{F}'\right) = \mathsf{L}.$

- Communality h_i^2 : portion of $Var(X_i)$ contributed by the m common factors.
- Specific variance Ψ_i :portion of $Var(X_i)$ due to specific factor.

$$\underbrace{\sigma_{ii}}_{\mathsf{Var}(X_i)} = \underbrace{\ell_{i1}^2 + \ell_{i2}^2 + \dots + \ell_{im}^2}_{\mathsf{Communality}} + \underbrace{\psi_i}_{\mathsf{Specific variance}} = h_i^2 + \psi_i$$

- Introduction
 - Motivation
 - Purpose of factor analysis
- 2 Modeling
 - The Orthogonal Factor Model
- Method
 - Principlal Component
 - MLE
- 4 Rotation
- Factor Score
- Factor Analysis in R(Python)
- Extended reading
- 8 Conclusion

Principlal Component

The spectral decompostion of provides is with one factoring of the covariance matrix Σ . Let Σ have eigenvalue-eigenvector pairs (λ_i, e_i) with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$. Then

$$egin{aligned} oldsymbol{\Sigma} &= \lambda_1 e_1 e_1' + \lambda_2 e_2 e_2' + \dots + \lambda_p e_p e_p' \ &= \left[\sqrt{\lambda_1} e_1 \ \sqrt{\lambda_2} e_2 \ \dots \ \sqrt{\lambda_p} e_p
ight] \left[egin{aligned} rac{\sqrt{\lambda_1} e_1'}{\sqrt{\lambda_2} e_2'} \ dots \ \sqrt{\lambda_p} e_p' \end{aligned}
ight] \end{aligned}$$

The above form is not useful since m = p. Most covariance matrices cannot be factored as **LL**' when m is much less than p; So allowing for specific factors, we find that the approximation becomes

$$\Sigma \doteq \mathbf{L}\mathbf{L}' + \psi$$

$$= \begin{bmatrix} \sqrt{\lambda_1}e_1 & \sqrt{\lambda_2}e_2 & \cdots & \sqrt{\lambda_m}e_m \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1}e_1' \\ \sqrt{\lambda_2}e_2' \\ \vdots \\ \sqrt{\lambda_p}e_m' \end{bmatrix}$$

$$+ \begin{bmatrix} \psi_1 & 0 & \cdots & 0 \\ 0 & \psi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \psi_p \end{bmatrix}$$

Use **S** or **R** in place of Σ

How to choose *m*?

The m is chosen such that a "suitable proportion" of the total sample variance is explained

$$\begin{pmatrix}
\text{Proportion of total} \\
\text{sample variance} \\
\text{due to } \text{jth factor}
\end{pmatrix} = \begin{cases}
\frac{\hat{\lambda}_j}{s_{11} + s_{22} + \dots + s_{pp}} & \text{for a factor analysis of } \mathbf{S} \\
\frac{\hat{\lambda}_j}{p} & \text{for a factor analysis of } \mathbf{R}
\end{cases} \tag{9-20}$$

Estimation by MLE

The common factors \mathbf{F} and specific factors ε are assumed to be normally distributed: $\mathbf{F} \sim \mathcal{N}_m(\mathbf{0}, \mathbf{I}_m)$ and $\varepsilon \sim \mathcal{N}_p(\mathbf{0}, \Psi)$

The maximum likelihood estimates of the communalities are

$$\hat{h}_{i}^{2} = \hat{\ell}_{i1}^{2} + \hat{\ell}_{i2}^{2} + \dots + \hat{\ell}_{im}^{2}$$
 for $i = 1, 2, \dots, p$

so

$$\left(\begin{array}{c}
\text{Proportion of total sample} \\
\text{variance due to } j \text{th factor} \end{array} \right) = \frac{\hat{\ell}_{1j}^2 + \hat{\ell}_{2j}^2 + \dots + \hat{\ell}_{pj}^2}{s_{11} + s_{22} + \dots + s_{np}}$$

- Introduction
 - Motivation
 - Purpose of factor analysis
- 2 Modeling
 - The Orthogonal Factor Model
- Method
 - Principlal Component
 - MLE
- 4 Rotation
- Factor Score
- Factor Analysis in R(Python)
- Extended reading
- 8 Conclusion

Rotation

- Factor rotation = Orthogonal transformation of the factors
- Different orthogonal transformation lead to the same estimated covariance matrix, residual matrix, specific variances, and communalities

$$L^* = LT$$
 then $LL' + \Psi = LTT'L' + \Psi = L^*L^{*'} + \Psi$

- Different orthogonal transformation lead to different meanings/interpretations of factors
- Select the one with most meaningful interpretation

· Varimax rotation

Kaiser [9] has suggested an analytical measure of simple structure known as the varimax (or normal varimax) criterion. Define $\underbrace{\widetilde{\ell}_{j,i}^*}_{j,i} = \widehat{\ell}_{ij}/\widehat{h}_{i}$ to be the rotated coefficients scaled by the square root of the communalities. Then the (normal) varimax procedure selects the orthogonal transformation T that makes

$$V = \frac{1}{p} \sum_{j=1}^{m} \left[\sum_{i=1}^{p} \tilde{\ell}_{ij}^{*4} - \left(\sum_{i=1}^{p} \tilde{\ell}_{ij}^{*2} \right)^{2} / p \right]$$
(9-45)

as large as possible.

$$V \propto \sum_{j=1}^{m} \left(\text{variance of squares of (scaled) loadings for } \atop j \text{th factor} \right)$$
 (9-46)

$$V = \sum_{j=1}^{m} \left\{ \frac{1}{P} \sum_{i=1}^{P} \left(\widetilde{\mathcal{C}}_{i,j}^{(k)} \right)^{2} - \left(\frac{1}{P} \sum_{j=1}^{P} \widetilde{\mathcal{C}}_{i,j}^{(k)} \right)^{2} \right\}$$

- Introduction
 - Motivation
 - Purpose of factor analysis
- 2 Modeling
 - The Orthogonal Factor Model
- Method
 - Principlal Component
 - MLE
- 4 Rotation
- Factor Score
- 6 Factor Analysis in R(Python)
- Extended reading
- Conclusion

Factor Score

Q: What is factor Score?

Ans: the estimated values of the common factors. (not real values)

Suppose first that the mean vector μ, \mathbf{L}, Ψ are known for the factor model

Model:
$$\mathbf{X} - \mathbf{\mu} = \mathbf{L} \underbrace{\mathbf{F}}_{Random} + \varepsilon$$

Data: Further, regard the specific factors $\varepsilon = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_p]$ as errors. Since $\text{Var}(\varepsilon_i) = \Psi_i, i = 1, 2, \dots, p$, need not be equal.

Solve:

• WLSE:
$$\hat{\mathbf{f}}_j = \mathbf{L}' \Psi^{-1} \mathbf{L}^{-1} \mathbf{L}' \Psi^{-1} (\mathbf{x} - \mu)$$
.

- OLSE: (Principal component) $\hat{\mathbf{f}}_j = \mathbf{L'L}^{-1}\mathbf{L'}(\mathbf{x} \mu)$
- Regression: $\hat{\mathbf{f}} = \hat{\mathbf{L}}' \mathbf{S}^{-1} (\mathbf{x}_{j} \overline{\mathbf{x}}), j = 1, 2, \dots, n$, where **S** (the original sample covariance matrix)

- Introduction
 - Motivation
 - Purpose of factor analysis
- 2 Modeling
 - The Orthogonal Factor Model
- Method
 - Principlal Component
 - MLE
- 4 Rotation
- Factor Score
- 6 Factor Analysis in R(Python)
- Extended reading
- 8 Conclusion

Example (Stock price data)

Table 9.3						
	Maximum likelihood			Principal components		
	Estimated factor loadings		Specific variances	Estimated factor loadings		Specific variances
Variable	F_1	F ₂	$\hat{\psi}_i = 1 - \hat{h}_i^2$	F_1	F ₂	$\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$
 J P Morgan Citibank Wells Fargo Royal Dutch Shell Texaco 	.115 .322 .182 1.000 .683	.755 .788 .652 000 032	.42 .27 .54 .00 .53	.732 .831 .726 .605 .563	437 280 374 .694 .719	.27 .23 .33 .15 .17
Cumulative proportion of total (standardized) sample variance explained	.323	Anogonal .		orth	ogonal .769	

Python & R

- Introduction
 - Motivation
 - Purpose of factor analysis
- 2 Modeling
 - The Orthogonal Factor Model
- Method
 - Principlal Component
 - MLE
- 4 Rotation
- Factor Score
- 6 Factor Analysis in R(Python)
- Extended reading
- 8 Conclusion

Mixed data type
 R:FAMD - Factor Analysis of Mixed Data
 Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

- Introduction
 - Motivation
 - Purpose of factor analysis
- 2 Modeling
 - The Orthogonal Factor Model
- Method
 - Principlal Component
 - MLE
- 4 Rotation
- Factor Score
- 6 Factor Analysis in R(Python)
- Extended reading
- 8 Conclusion

Conclusion

- Principal component analysis (PCA) is to summarize a set of variables with a few components by using their linear combinations.
- Factor analysis (FA) is to find latent variables behind a set of variables.
- Both methods deal with the covariance structure of variables
 - PCA focuses on the variances
 - FA focuses on the correlations

Thank you for your kind attention.