Preguntas relacionadas con la tesis títulada "Un enfoque computacional a la representación del grupo simétrico en homologías"

Manuel Campero Jurado en colaboración con el Dr. Rafel Villarroel Flores
5 de agosto de 2020

1. Preguntas

En el artículo Equivariant collapses and the homotopy type of iterated clique graphs en la segunda página se dice que si G es una gráfica y x es un vértice, entonces se denota por $N_G(x)$ al conjunto de todos los vecinos de x en G. La vecindad cerrada de x es $N_G[x] = N_G(x) \cup \{x\}$ y si G es una gráfica y $X \subseteq G$, se denota la vecindad común cerrada de X en G como $N_G[X] = \bigcap_{x \in X} N_G[x]$ y posteriormente en la proposición 2.2 se utiliza $N_G[\sigma]$ donde σ es una cara de un subcomplejo, así que mi pregunta es ¿Cómo se define $N_G[\sigma]$ (ya que una cara no necesariamente es un subconjunto del 1-esqueleto de un complejo simplicial)? y posteriormente se habla sobre $N_G[e]$ donde e es una arista ¿ $N_G[e]$ denota a los al conjunto cerrado de vecinos de los vértices de G que están conectados por e? o ¿cómo sería la definición general del conjunto cerrado de vecinos de e en ese caso?

Posteriormente se dice que si \mathcal{F} es una familia de caras libres de un complejo simplicial Δ diremos que es independientemente libre si simpre que σ , $\sigma' \in F$ (por cierto ¿la contención es propia?) y $\tau \in \Delta$ son tal que $\sigma \subseteq \tau$ y $\sigma' \subseteq \tau$, entonces $\sigma' = \sigma$. Y se denota $[\mathcal{F}, \infty) = \bigcup_{\sigma \in \mathcal{F}} [\sigma, \infty)$

Luego (4) de la proposición 2.4 dice que si \mathcal{F} es finito y independientemente libre, entonces Δ se colapsa en $\Delta \setminus [\mathcal{F}, \infty)$.

Luego vienen dos condiciones para decir que un grupo Γ actúa simplicialmente en un complejo simplicial Δ :

- 1. Si $x, gx \in \varphi$ para algún $g \in \Gamma$, $\varphi \in \Delta$, entonces x = gx.
- 2. Si $g_0, g_1, \dots, g_n \in \Gamma$ y $\{x_0, x_1, \dots, x_n\}$, $\{g_0x_0, g_1x_1, \dots, g_nx_n\} \in \Delta$, entonces existe un $g \in \Gamma$ tal que $gx_i = g_ix_i$ para todo i.

La proposición 2.5 dice que sea Δ un $\Gamma-$ complejo que satisface 1. Sean $\sigma, \phi \in \Delta$ tales que $\sigma, g\sigma \subset \phi$ para algún $g \in \Gamma$. Entonces $\sigma = g\sigma$. En particular,

siempre que σ es una cara libre de Δ , la Γ - órbita de σ , $\Gamma \sigma = \{g\sigma \mid g \in \Gamma\}$ es independientemente libre.

Además dado Δ un Γ — complejo. Para un vértice x de Δ sea $\Gamma x = \{gx \mid g \in \Gamma\}$. La órbita compleja Δ/Γ tiene como conjunto de vértices $\Gamma x = \{gx \mid g \in V(\Delta)\}$ y simplejos $\Delta/\Gamma = \{p(\sigma) \mid \sigma \in \Delta\}$ donde $p: V(\Delta) \to V(\Delta/\Gamma)$ está dado por $x \mapsto \Gamma x$.

Y la proposición 2.6 dice que dada σ una cara libre de algún Γ — complejo Δ con la propiedad 2, entonces $p(\sigma)$ es una cara libre de Δ/Γ y $(\Delta \setminus [\Gamma\sigma,\infty)/\Gamma = (\Delta/\Gamma)[p(\sigma),\infty)$.

En el segundo parráfo de la página 4 dice que si σ es una cara libre del Γ — complejo Δ y su Γ —órbita $\{g\sigma \mid g\Gamma\}$ es independientemente libre, se dirá que $(\Delta \setminus [\Gamma\sigma,\infty)$ se obtiene de Δ por un elemental Γ — colapso. Con lo anterior, no sé si estoy entendiendo bien, en mi caso ¿estoy buscando $(\Delta \setminus [\Gamma\sigma,\infty)$?, es decir ¿ $(\Delta \setminus [\Gamma\sigma,\infty)$ tiene la misma información (por así decirlo) que Δ al actuar simplicialmente Γ sobre ellos?.