Altium Designer 入门教程

注: 使用了引用语法但不是引用:

以下内容有部分来源于网络、博客等等,结尾会给出参考链接。(๑೬೮೮)

希望大家可以自觉的在**转载、转发时著名出处**。(๑•.•๑)

预防侵权,支持原创,支持开源,从你我做起。= ω =

```
/**
* Copyright(C),2019-2020,xudongpo.cn
* Author: 许东坡
* Email: aelousdp@163.com
* Date: 2019.11.26
* Version: 1.0.0
* Description: Altium Designer入门
* Function List:
   前言
   安装软件
   新建工程
   绘制库
   绘制原理图
   生成PCB
   绘制PCB
   结束语
   引用致谢
   附录
* History: NULL
* Others: NULL
**/
```

1. 前言

我本身是硬件出身的,最开始接触的是**protel 99SE**,非常轻量,用来画一些简单的电路图作为入门是可以的,之后做比赛接触到了**Altium Designer**(以下简称 AD),其实 AD 对于我们现阶段的使用其实是够用了,网上很多人说**Candence**很厉害,包括我身边以前实验室的朋友都夸它好,有人夸说明肯定又优势,但是都是一门工具,要我说,武功再好,也怕菜刀,工具趁手,就是好工具。

而且现在大家也没有太多的时间去接触这么多,我就直接的讲一讲 AD 的一些基本入门。

文中,采用引用样式(这段话这个样子的)均为作者有话说,必须一看,根据自己的实际情况选择是否要学。

话不多说,开始正题:

测试分页, 请忽略。

12/3/2019

2. 安装软件

AD入门.md

工欲善其事,必先利其器。以下是我常用的软件版本。

个人分享的文件链接: <链接: https://pan.baidu.com/s/1mbmtB4Sn6gOg9iWDayEzcg 提取码: yxfi>

个人分享的替换文件: <链接: https://pan.baidu.com/s/1uQ2w2YVgq93rg31SAk3FTQ 提取码: dxu9>

文件具体内容如下:

因为个人原因,电脑存储不够,先不进行下载安装,具体详细的安装过程找时间补齐。

文件链接中,有详细的安装教程,**破解** 只需要将替换文件进行替换即可。如果您已经完成了软件的安装,可以直接跳过此步骤。

最开始一直使用的是 09 版本,由于 09 和 10 的中文在 PCB 打印丝印层的时候会有字体错误,遂选用了 15 版本。如有其他版本,不用担心,再次强调,软件只是工具,工具不重要,知道怎么用才重要。

剑客有云,心中有剑,手中无剑。

3. 新建工程

下面以个人电脑做示范,开始新建一个工程,完成一个**小工程的绘制**:具体内容暂时选定为简单的**光控灯实 例**,毕竟**授人以鱼不如授人以渔**本教程目的在于带领大家熟悉软件,告诉大家一些我可能遇到的问题。如有补充可以联系作者:*aelousdp@163.com*

3.1 新建

点击 File -> New -> Project 新建一个工程

3.2 选择

选择默认即可,根据个人工程位置修改 Name(文件名) 和 Location(路径)

注:希望大家在新建工程的时候,养成一个良好的习惯,严禁用 a、aa、bbb 等命名,实在是太业余了,还有工程路径,一定要定义一个合理的文件夹,方便自己找得到的那种,每个工程文件都是自己知识的结晶,是自己努力的成果,不可懈怠。

Repository(仓库)和对应的 Folder(文件夹)不需要选择,进入工程之后我们再导入。

3.3 建立完成

建好的工程如下所示:诺,一片空白,不要慌,一步一步来。

3.4 额外补充:设置中文方式:

DXP -> Preferences -> System -> General

点选Use localized resources, 弹窗点击 OK, 然后点击 Apply。重启 AD 即可。

不过不建议使用中文,如果连这点英文都不懂,英文芯片手册看不了,不适合做硬件了。

重启后中文界面如下所示:

3.5 创建文件

注:本步骤本来在绘制库中,二次修改做出调整。

3.6 新建原理图库

打开刚才我们建立好的工程,点击 File -> New -> Library -> Schematic Library 具体操作如下,新建原理图库:

建好的库如下所示:

什么都没有,还是不要慌,我们先操作以下界面,鼠标点击界面一次,按下键盘 shift 键,滚动鼠标滚轮(没有鼠标请淘宝购买),屏幕会左右滚动,按下 ctrl 滚动鼠标滚轮,屏幕会放大缩小,右键长按,可以进行拖拽。

保存文件, 自己重新命名。

具体的快捷键请见附录。

3.7 新建封装库

我们建立好原理图库之后,要给对应的原理图库建立对应的封装库。

点击 File -> New -> Library -> PCB Library 具体操作如下,新建封装库:

快捷键与原理图库类似,自己保存。

3.8 创建原理图文件

接下来我们创建原理图文件点击 File -> New -> Schematic 具体操作如下,新建封装库:

自己保存并重命名。

3.9 创建 PCB 文件

接下来我们创建PCB 文件 点击 File -> New -> PCB 具体操作如下,新建封装库:

自己保存并重命名。

4. 绘制库

现在我们的文件结构如下所示:

- Project
 - Source Documents
 - TEST SCH.SchDoc (原理图文件)
 - TEST_PCB.PcbDoc (PCB 文件)
 - Libraies
 - PCB Lib
 - TEST_PCB.PcbLib (PCB 库)
 - o Schematic Lib
 - TEST_SCHLIB.SchLib (原理图库)

接下来, 我们由"0"开始生"1"。

4.1 确定器件

说明:很多时候,我们参与一个项目,项目的库什么的并不需要我们自己去完成,很多实验室/公司/团体的前辈们已经完成了,我们需要尽快去熟悉查看被人绘制完毕的库即可。但是!!!这些都是基本功,还是得懂,因为总有些东西是你没有接触到的,是新的元器件,新的封装,所以深学必须掌握,工作可以选学。

首先,我们要知道,我们要完成的是一个光控灯,光控灯的原理图如下图所示:

其实稍微懂点硬件的朋友一看就知道,电阻 R2 既是光敏电阻, Q1 为 NPN 三极管, 由 R1 和 R2 进行分压, 控制 Q1 开关, 实现 LED1 的亮灭。

我们对以上的几个器件进行绘制,个人原因,具体物件图均来源于百度图片: 选择器件有: 碳膜电阻 | 光敏电阻 | Φ5 直插 LED | 2N3904

电池部分就不画了,直接留开窗接稳压电源即可。

现在我们已经确定了我们需要的东西(现实中的物件),有了软件创建的工程以及对应的原理图库和封装库。

4.2 绘制原理图库

碳膜电阻原理图

我们这里并不绘制集成封装,所以每个元件都是先绘制原理图库,再绘制封装库,首先绘制碳膜电阻原理图库,原理图库,顾名思义,是在我们绘制原理图时为我们提供方便的库,软件安装时,系统就已经提供了一些常用的库,其实已经有了电阻等元件。我们先不管官方提供的,我们自己从头开始画,学习永远是一个痛苦的过程,从无到有。

打开我们建立的原理图库。一片空白。

点击如下位置(或者按下快捷键 P + L):

点击空白处,熟悉以下画线,然后画出一个矩形如下:

当然如果你有多的时间,也可以逐一实验绘制区域的每一个功能。希望大家有兴趣可以尝试。

接下来双击矩形,在弹窗中双击 color,选择一种蓝色,看起来好看点的其他颜色其实也行。点击确认,矩形颜色变蓝。

点击如下位置(或者按下快捷键 P+P):

此时鼠标点击空白处,会有一根引脚出现,按下**空格键**可以**旋转 90 度**,点击两次出现两个引脚,右键取消点选。

所有的快捷键都需要自己一遍一遍的去熟悉。只要功夫深,铁杵磨成针,都是熟练的事。

大家可能绘制的时候,遇到我现在遇到的尴尬境地:

引脚怎么都移动不到蓝色的纵轴中间去。这时候点击栅格:

在弹窗中将 10 改为 1, 这是你可以移动的最小单位就变小了。

我们将引脚位置摆放如下:注意方向,仔细看**引脚有一端是有个小白点**,表示这一端是有电气连接的,一定要朝外。

双击引脚,可以对 Display Name(显示名)和 Designator(指示器)以及长度,大小进行修改。

注:显示名可以随意,但是指示器一定要从 1 开始,1.2.3... 这样。根据元件自身封装引脚顺序定义来绘制。

自己琢磨琢磨, 把元件绘制成如下样式:

这样我们的一个电阻原理图封装,就绘制完毕了。点击 Tools -> Rename Compontent 对元件进行重命名为 TEST RES 即可。

此时回到原理图文件,在右侧 Libraries 中找到我们的原理图库:

点击,即可看到对应的元件,双击,在空白处即可放置。

其他元件

- 光敏电阻,很简单,在这个电阻的基础上,加几个箭头表示光敏即可。回到原理图库,点击 Tools -> New Component, 新建一个元件。将之前的复制粘贴过来,然后画个箭头即可。就不做详细示范了。
- 绘制直插 LED, emmmm, 我相信这个大家摸索摸索都可以画出来, 就是画画。原理图主要是为了方便 人类看得懂。
- 绘制 2N3904, 同理, 不详细说明, 如果有问题可以联系作者。

4.3 绘制封装库

碳膜电阻封装

同理也只绘制简单的碳膜电阻封装,原理都是一样的,如果学习过程中遇到问题,可以联系作者。

大家要合理的培养自己解决问题的能力。

打开原理图库,直接使用快捷键(P+P)或者上方工具栏。就会出现一个焊盘,根据栅格作为基准,放置第一个焊盘如下:

我们根据实物图可以看出,碳膜电阻共有两个引脚。我们选用的是直插电阻,在 PCB 上的封装是单列直插风格,就是两个焊盘在一条线上,具体间隔根据具体封装决定。

mil (中文译音: 密耳), 即千分之一英寸, 等于0.0254mm (毫米)

常用直径尺寸的密尔与毫米换算如下:

- -1.0mil = 0.025mm
- -1.2mil = 0.030mm
- -1.25mil = 0.032mm
- -100mil = 2.54mm

我们一般用的排阵尺寸间距为 2.54mm,也就是 100mil。水平间隔 100mil 放置第二个焊盘。左上角有对应的做标尺,如果并不确定。放置之后按下快捷键(R + M)进行测量。然后进行微调即可。

测量图如下:

由于我们要将电阻放倒焊接,经过测量,距离应该是 300mil,再次调整至 300mil。

接下来,我们给固定好的焊盘绘制外边框,就是在 PCB 上显示的出的白色线条。点击选择 Top Overlay 层,按下 P + L 进行绘制。结果如下:

保存即可,这样一个电阻元件的封装就绘制完成了,如果是其他元器件同理。

5. 绘制原理图

点开原理图文件,我们将我们自己绘制的电阻放入原理图中,然后再加入光敏电阻,LED 灯以及 NPN 三极管。连线并完成原理图绘制。

5.1 添加封装

接下来,给每个元器件添加封装,双击元件。

在 Models 中点击 Add,选择 Footprint 模型,Browse 浏览文件,会看到我们之前绘制的封装。

选择点击 OK 即可。其他对应的元件也选择对应的封装即可。

6. 生成 PCB

原理图界面点击: Design -> Update PCB Document。

在弹出界面,点击, Validate Changes 以及 Execute Changes。

Close 即可。

7. 绘制 PCB

这时候自动跳转到了 PCB 绘制界面,一片漆黑,不要怕,其实元件已经被摆放在一边了,只是在界面之外。 ctrl 滚轮,缩小界面。

将元件先摆放好。

摆放的时候会发现有白色的指示线,目的就是,避免白色指示线交叉过多。白色指示线表示电气连接,就是最后要将他们连接在一起的。

摆放结束,切换层到 Top Layer 层,按下快捷键 P+T 进行连接。绘制完毕,如图所示。

切换到 Keep-Out Layer 层,绘制板子大小。绘制过程中,按下 shift + 空格 可以切换线型。

丝印层(Top Overlay)自行调节摆放位置。

绘制结果如下:

选中边框,点击 Design -> Board Shape -> Define from selected objects。 重新定义板子外形。最终如下。

按下3,观察3D视图如下:

12/3/2019

8. 结束语

其实这个案例非常简单,但是本文目的就是带大家走一遍过程,所谓入门,就是你知道一件事情的流程,知道如何实现。所谓进阶,就是一遍一遍的走这个流程,直到你闭着眼也知道怎么走。

这个工具我也很多年没用了。可是上手的一瞬间,各种快捷键,当年画板子的技巧,全都在心里了。这些教没用,要大家自己画然后去摸索。

对我个人而言,任何一件事都是熟能生巧,大家在学习的过程中,学什么板子就画什么板子,学 8051 单片机,那就画几个 51 板子,学 STM32,那就画几个 32 板子。不同的封装,不同的型号,不同的功能。画的多了,就什么都会了。

之后会持续更新, 敬请期待。

9. 引用致谢

非常感谢如下链接:

聚优致成的博客: http://blog.csdn.net/qq_29350001/article/details/52199356感谢您的博客让我受益匪浅。

单位换算: https://blog.csdn.net/yanchuan23/article/details/88649771

强烈推荐:上述博客推荐大家有时间看看,有些非常好,写的很详细,包括很多规则定义的进阶部分。

12/3/2019

附录一: 快捷键

原理图 && PCB 通用

快捷键	相关操作
Shift	当自动平移时,加速平移
Y	放置元件时,上下翻转
X	放置元件时,左右翻转
Shift+ \uparrow (\downarrow , \leftarrow , \rightarrow)	在箭头方向以10个栅格为增量移动光标
\uparrow , \downarrow , \leftarrow , \rightarrow	在箭头方向以1个栅格为增量移动光标
Esc	退出当前命令
End	刷新屏幕
Home	以光标为中心刷新屏幕
PageDown或Ctrl+鼠标滑轮	以光标为中心缩小画面
PageUp或Ctrl+鼠标滑轮	以光标为中心放大画面
鼠标滑轮	上下移动画面
Shift+鼠标滑轮	左右移动画面
Ctrl+Z	撤销上一次操作
I	ı

Ctrl+Y	重复上一次操作
Ctrl+A	选择全部
Ctrl+S	存储当前文件
Ctrl+C	复制
Ctrl+X	剪切
Ctrl+V	粘贴
Ctrl+R	复制并重复粘贴选中的对象
Delete	删除
V+D	显示整个文档
V+F	显示所有选中
Tab	编辑正在放置的元件属性
Shift+C	取消过滤
Shift+F	查找相似对象
Y	Filter选单
F11	打开或关闭Inspector面板
F12	打开或关闭Sch Filter面板

Н	打开Help菜单
F1	打开Knowledge center菜单
W	打开Window菜单
R	打开Report菜单
Т	打开Tools菜单
P	打开Place菜单
D	打开Design菜单
С	打开Project菜单
Shift+F4	将所有打开的窗口平均平铺在工作区内
Ctrl+Alt+O	选择需要打开的文件
Alt+F5	全屏显示工作区
Ctrl+Home	跳转到绝对坐标原点
Ctrl+End	跳转到当前坐标原点

鼠标左击	选择鼠标位置的文档
鼠标双击	编辑鼠标位置的文档
鼠标右击	显示相关的弹出菜单
Ctrl + F4	关闭当前文档
Ctrl + Tab	循环切换所打开的文档
Alt + F4	关闭设计浏览器DXP

原理图编辑器快捷键

快捷键	相关操作
Alt	在水平和垂直线上限制
Spacebar	将正在移动的物体旋转90°
Shift+Spacebar	在放置导线、总线和多边形填充时,设置放置模式
Backspace	在放置导线、总线和多边形填充时,移除最后一个顶点
鼠标左键单击对象的顶点不放, 按"Delete"键不放	删除选中线的顶点
鼠标左键单击对象上任意点不	在选中线处添加顶点

放,	
按"Insert"键不放	

Ctrl+F	查询
T+C	查询原理图对应PCB元器件位置
T+O	查找元件
P+P	放置元件
P+W	放置导线
P+B	放置总线
P+U	绘制总线分支线
P+M	放置电气节点
P+Power	放置电源和接地符号
D+O	放置网络标签
P+N	放置网络标签

PCB 编辑器快捷键

快捷键	相关操作
Shift+R	切换3种布线模式
Shift+E	打开或关闭捕获电气栅格功能
Ctrl+G	弹出捕获栅格对话框

G	弹出捕获栅格选单
Backspace	在放置导线时,删除最后一个拐角
Shift+Spacebar	旋转导线时设置拐角模式
Shift+S	打开或关闭单层模式
O+D	显示或隐藏Preference对话框
L	浏览Board Layers对话框
Ctrl+H	选择连接层
Ctrl+Shift+Left_Click	切断线
+	切换工作层面为下一层
_	切换工作层面为上一层
Ctrl	暂时不显示电气栅格
Ctrl+M	测量距离
Shift+Spacebar	旋转移动的物体(顺时针)
Spacebar	旋转移动的物体(逆时针)
Q	单位切换
I	打开Component placement菜单

1	
U	打开Un-Route菜单
L	打开Board layer&Colors菜单
F2	打开Insight菜单
Ctrl+PgUp	将工作区放大400%
Ctrl+PgDn	将工作区缩小400%
Shift+PgUp	以很小的增量放大整张图纸
Shift+PgDn	以很小的增量缩小整张图纸

S+A	全选
E+O+S	设置参考点
shift+F	点击器件查询器件信息
选中元器件+L	元器件换层
E+S+N	选择网络线
E+D	删除信号线
V+S	最底层出现
T+P	显示preferences窗口
T+C	查询PCB元器件对应原理图位置
[]	调节PCB亮度
V+C+S	显示网络连接
V+C+H	隐藏网络连接
ctrl+tab	打开的各个文件之间的切换
P+V	放置过孔
P+L	画线
P+S	放置文字

P+P	放置圆盘
P+V	放置过孔
P+T	布线
P+I	差分布线
P+G	铺铜
CTRL+A	选择所有信号
CTRL+B	选择网络信号
E+S+Y	选择单层上的所有信号
V+C+S	显示网络连接
V+C+H	隐藏网络连接
CTRL+D	试图配置显示和隐藏
T+E	加泪滴
P+C	放置元器件
M+M	移动元器件
R+B	查看PCB信息
CTRL+R	一次复制,连续多次粘贴
J+L	定位到指定的坐标位置

J+C	定位到指定的元件处
R+L	查看信号线长度
SHIFT+M	放大镜
D+O	板卡选项
G+G	设置网格距离