Math 525, Spring 2018. Second Midterm Practice

Choose three out of the following four problems.

- (1) Find a Δ -complex structure for, and compute the associated homology groups of, the space X obtained from the annulus $A = \mathbb{S}^1 \times [0, 1]$ by gluing $\mathbb{S}^1 \times \{1\}$ to $\mathbb{S}^1 \times \{0\}$ by a map representing 2 times the generator of $\pi_1(\mathbb{S}^1)$.
- (2) Show that $X = \mathbb{S}^1 \times \mathbb{S}^1$ and $Y = \mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^2$ have isomorphic homology groups in all degrees, but their universal covering spaces do not.
- (3) Suppose that A, B, and C are Abelian groups and we are given homomorphisms $f: A \longrightarrow B, g: B \longrightarrow C$. Show that there are induced homomorphisms making an exact sequence
- $0 \longrightarrow \ker f \stackrel{\alpha}{\longrightarrow} \ker(gf) \stackrel{\beta}{\longrightarrow} \ker g \stackrel{\gamma}{\longrightarrow} \operatorname{coker}(f) \stackrel{\zeta}{\longrightarrow} \operatorname{coker}(gf) \stackrel{\eta}{\longrightarrow} \operatorname{coker}(g) \longrightarrow 0 \ .$ (Recall that the cokernel of a homomorphism between Abelian groups $h: X \longrightarrow Y \text{ is the group } Y/h(X).)$ Hint: α is an inclusion, γ and η are projections onto quotient groups.
 - (4) Let X be a cell complex and $p: Y \longrightarrow X$ a two-fold covering. We know from earlier in the semester that $p_*: \pi_1(Y) \longrightarrow \pi_1(X)$ is injective. Is it true that $p_*: H_n(Y) \longrightarrow H_n(X)$ is injective for all n? Justify your answer.