Lab 1 data structure

Topic:time complexity of various sorting algorithm

Grp 4 section 1

student name-ID:

peter anton-7406

zeyad ahmed-7621

Abdelrahman ahmed reefat-7433

We have implement the following algorithm so we will clarify it and it worst case time complexity:

1-heap sort → O(nlogn)

2-merge sort → O(nlogn)

3-quick-sort \rightarrow O(nlogn)

3-insertion sort \rightarrow O(n²)

4-hybrid sort(merge sort then selection sort)→O(nlogn)

5-selection sort \rightarrow O(n²)

Sort/array Size	1 k	25K	50K	100K	250K
Неар	2999.30	0.001990	0.00476	0.01276	0.02729
sort	μs	473 min	166 min	844 min	607 min
Merge	1537.79	0.001100	0.00342	0.00543	0.01292
sort	98 μs	973 min	32min	737 min	334 min
Selectio	0.00030	0.206332	0.87488	3.88382	20.4343
n sort	580 min	958 min	481 min	101min	759 min

Insertio	0.00038	0.265140	2.11231	6.55918	46.3467
n sort	20 min	037 min	362 min	86 min	40 min
Hybrid	0.00063	0.416653	1.83310	7.90095	79.2041
sort	316 min	061 min	277min	18 min	628 min
Quick	2002.95	0.000990	0.00216	0.00533	0.01072
sort	448 μs	673 min	920 min	867 min	79
					min

as we see in the previous graph and table the insertion and selection sort are so bad in worst time complexity also we notice that merge, heap and quick sort are all O(n log n) but they differ in time (according to the table) that's because of the difference in their best cases and the condition of the array

also the quick sort look like it will be the fastest one and work efficiently but we forget that it is unstable and can break down some cases with complexity of O(n²)

So finally the sorting algorithm are efficient in their own way and we should know where and when we use it