

Prof. Dr. I. F. Sbalzarini TU Dresden, 01187 Dresden, Germany

Exercise 7

Release: 07.12.2020 Due: 14.12.2020

Question 1: Interpolation

Below are the function values of a function f at nodes x_i , i = 0, 1, 2, 3

x_i	1	2	4	8
f_i	0	-2	-1	2

- a) Determine the Lagrange interpolation polynomial for the above data points and evaluate the polynomial at x = 3.
- b) Evaluate the interpolation polynomial at x=3 using the Barycentric formula.
- c) Evaluate the interpolation polynomial at x = 5 using the algorithm for Aitken-Neville interpolation.

Question 2: Lagrange Interpolation

The following table of values is given by the function $f: x \mapsto y = f(x)$

x_i	1.9	2.3	3.2	4.0
$y_i = f(x_i)$	-3.0	-1.0	2.0	4.0

Find the approximate root $x^* \in [0,3]$ of the function f(x), i.e. $f(x^*) = 0$ using the following procedure: use the y_i points as the reference points and x_i as reference values to construct the Lagrange polynomial $P_n(y)$. Evaluate the polynomial $P_n(y = 0)$ to obtain x^* .

Question 3: Spline Interpolation

Set-up a periodic spline interpolator through the data points

x_i	0	1/2	1	3/2	2
x_i	0	1	0	-1	0

Evaluate them at x = 1/4

Question 4: Programming task

- a) Write a program to evaluate the Spline interpolation function.
- b) Apply the program to the data $(x_j = -5 + 2(j-1), f(x_j))$ j = 1, 2, ...6 for $f(x) = 1/(1+x^2)$. Evaluate the spline function for the x values -4, -2, 0, 2, 4
- c) solve b) again using the MATLAB function spline.