Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №7 Помехоустойчивое кодирование

> Работу выполнил:

Волкова М.Д. Группа: 33501/3 **Преподаватель:**

Богач Н.В.

Содержание

1.	Цель	и задачи
	1.1.	Цель работы
		Тостановка задачи
2.	Teop	етическая информация
	2.1.	Кодирование
		Гипы помехоустойчивого кодирования
		2.2.1. Кодирование Хэмминга
		2.2.2. Циклические коды
		2.2.3. Коды БЧХ
		2.2.4. Коды Рида-Соломона
3.	Ход	работы
		Ходы Хэмминга
		Циклические коды
		Коды БЧХ
		Коды Рида-Соломона
4.	Выво	олы

1. Цель и задачи

1.1. Цель работы

Изучение методов помехоустойчивого кодирования и сравнения их свойств.

1.2. Постановка задачи

Провести кодирование/декодирование сигнала, полученного с помощью функции randerr кодом Хэмминга 2-мя способами: с помощью встроенных функций encode/decode, а также через создание проверочной и генераторной матриц и вычисление синдрома. Оценить корректирующую способность кода.

Выполнить кодирование/декодирование циклическим кодом, кодом ВЧХ, кодом Рида-Соломона. Оценить корректирующую способность кода.

2. Теоретическая информация

2.1. Кодирование

Физическое кодирование — преобразование двоичных данных, осуществляемое для их передачи по физическому каналу. Физическое кодирование может менять форму, ширину полосы частот и гармонический состав сигнала в целях осуществления синхронизации приёмника и передатчика, устранения постоянной составляющей или уменьшения аппаратных затрат передачи сигнала.

Обнаружение ошибок в технике связи — действие, направленное на контроль целостности данных при записи/воспроизведении информации или при её передаче по линиям связи. Исправление ошибок — процедура восстановления информации после чтения её из устройства хранения или канала связи.

Для обнаружения ошибок используют коды обнаружения ошибок, для исправления — корректирующие коды (коды, исправляющие ошибки, коды с коррекцией ошибок, помехоустойчивые коды).

2.2. Типы помехоустойчивого кодирования

2.2.1. Кодирование Хэмминга

Коды Хемминга — линейные коды с минимальным расстоянием 3, то есть способные исправить одну ошибку. При кодировании используется порождающая матрица G

$$code = msg * G \tag{1}$$

При декодировании используется проверочная матрица H, которая позволяет определить синдром S.

$$S = code * H^T$$
 (2)

Синдром позволяет определить в какой позиции произошла ошибка.

Коды Хэмминга являются самокорректирующимися кодами, то есть кодами, позволяющими автоматически обнаруживать ошибки при передаче данных и исправлять их.

Для построения самокорректирующегося кода, рассчитанного на исправление одиночных ошибок, одного контрольного разряда недостаточно. Как видно из дальнейшего, количество контрольных разрядов k должно быть выбрано так, чтобы удовлетворялось неравенство

$$2^k \ge k + m + 1 \tag{3}$$

или

$$k \ge \log_2(k + m + 1) \tag{4}$$

где т — количество основных двоичных разрядов кодового слова.

Построение кодов Хэмминга основано на принципе проверки на четность числа единичных символов: к последовательности добавляется такой элемент, чтобы число единичных символов в получившейся последовательности было четным.

$$r_1 = i_1 \oplus i_2 \oplus \dots \oplus i_k \tag{5}$$

$$S = i_1 \oplus i_2 \oplus \dots \oplus i_n \oplus r_1 \tag{6}$$

Тогда если S=0 - ошибки нет, иначе есть однократная ошибка.

Такой код называется (k+1,k). Первое число — количество элементов последовательности, второе — количество информационных символов.

Получение кодового слова выглядит следующим образом:

$$\begin{pmatrix}
i_1 & i_2 & i_3 & i_4
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{pmatrix} = (i_1 & i_2 & i_3 & i_4 & r_1 & r_2 & r_3)$$
(7)

Получение синдрома выглядит следующим образом:

$$\begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
S_1 & S_2 & S_3
\end{pmatrix}$$
(8)

2.2.2. Циклические коды

Циклический код — линейный код, обладающий свойством цикличности, то есть каждая циклическая перестановка кодового слова также является кодовым словом. Используется для преобразования информации для защиты её от ошибок.

2.2.3. Коды БЧХ

Коды Боуза — Чоудхури — Хоквингема (БЧХ-коды) — в теории кодирования это широкий класс циклических кодов, применяемых для защиты информации от ошибок. Отличается возможностью построения кода с заранее определёнными корректирующими свойствами, а именно, минимальным кодовым расстоянием. Частным случаем БЧХ-кодов является код Рида — Соломона.

2.2.4. Коды Рида-Соломона

Коды Рида—Соломона (англ. Reed–Solomon codes) — недвоичные циклические коды, позволяющие исправлять ошибки в блоках данных. Элементами кодового вектора являются не биты, а группы битов (блоки). Код Рида—Соломона является частным случаем БЧХ-кода.

3. Ход работы

Листинг 1: Код MatLab

```
1 % hamming
  out = randerr (1,4) + randerr (1,4);
3 | disp ( out ) ;
4 code = encode (out, 7, 4, 'hamming/binary');
5 disp (code);
  dcode = decode (code, 7, 4, 'hamming/binary');
  if (dcode = out)
8
  end;
9
10 \mid \% \quad cyclic
|11| \text{ out } = \text{ randerr } (1,4) + \text{ randerr } (1,4);
12 disp (out);
13 code = encode (out, 7, 4, 'cyclic/binary');
14 disp (code);
15 dcode = decode (code, 7, 4, 'cyclic/binary');
16 | \mathbf{if}  (dcode = out)
17 end;
18
19 | %% BCH
20|m = 4;
21 \mid n = 2^m-1;
22 | k = 5;
23 | \text{nwords} = 10;
24 \mid \text{code} = \text{gf}(\text{randi}([0 \ 1], \text{nwords}, k));
25|[\tilde{r},t]| = bchgenpoly(n,k);
26 | enc = bchenc(code, n, k);
27 noisycode = enc + randerr (nwords, n, 1:t);
28 dcode = bchdec (noisycode, n, k);
29 | if (code = dcode) end;
30
31 \mid \text{msg} = \text{gf}([4 \ 6 \ 4 \ ; \ 2 \ 0 \ 6 \ ; \ 1 \ 0 \ 3], 3);
  code = rsenc(msg, 5, 3);
32
33
   errors = gf([2 \ 0 \ 0 \ 0 \ 0 \ 0; 3 \ 4 \ 0 \ 0 \ 0; 5 \ 6 \ 7 \ 0 \ 0 \ 0], 3);
34
35
  noisycode = code + errors;
36
37 \mid [dcode, cnumerr] = rsdec(noisycode, 5, 3);
38 cnumerr
```

3.1. Коды Хэмминга

Результат кодирования и декодирования сигнала кодом Хэмминга (7, 4) представлены ниже ??. Декодированное сообщение совпадает с исходным.

При кодировании сообщений с кодовым расстоянием 1, получаются закодированные сообщения с кодовым расстоянием 3.

Текст 1 Исходное сообщение Исходное сообщение Текст 2 Кодированное сообщение Текст 3 Декодированное сообщение

3.2. Циклические коды

Результат кодирования циклическим кодом приведён в тексте ??.

Текст 4	Исходно	ре сообі	цение						
Исходное	сообще	ение							
1	0	0	0						
Текст 5	Кодиро	ванное	сообще	ние					
1	0	1	1	0	0	0			
Текст 6	Декодиј	рованно	ре сообі	цение					
1	0	0	0						

При кодировании сообщений с кодовым расстоянием 1, получаются закодированные сообщения с кодовым расстоянием 3.

3.3. Коды БЧХ

Текст 7	Исходн	ое сооб	щение	
0	1	1	1	0
0	0	1	1	1
1	1	1	0	1
0	0	0	0	1
1	0	0	1	0

При кодировании сообщений с кодовым расстоянием 1, получаются закодированные сообщения с кодовым расстоянием 3 или 4.

Гекст	8 I	кодо	кдаю	ощий	пол	ином	A.								
1 (0	1 (0	0	1	1	0	1	1	1					
Гекст	9 K	Содир	ован	ное (сообі	щені	ие								
0	1	1	1	0	0	0	0	1	0	1	0	0	1	1	
0	0	1	1	1	1	0	1	0	1	1	0	0	1	0	
1	1	1	0	1	0	1	1	0	0	1	0	0	0	1	
0	0	0	0	1	0	1	0	0	1	1	0	1	1	1	
1	0	0	1	0	0	0	1	1	1	1	0	1	0	1	
Гекст	10	Деко	диро	ванн	ioe c	ообп	цени	e							
0	1	1	1	0											
0	0	1	1	1											
1	1	1	0	1											
0	0	0	0	1											
1	0	^	1	0											
3.4.		0 оды			Сол	ОМ	она								
	Ko	оды	Ри	да-(
3.4.	Ko	оды Резу.	Ри	да-(г код											
3.4. Гекст Исходя 4	Ko	Эды Резу. сообі	Ри	да-(г код											
Гекст Исходя 4 2	К о 2.11 ное 6	Р езу. сообі 4 6	Ри	да-(г код											
3.4. Гекст Исходя 4	11 Hoe 6	Эды Резу. сообі	Ри	да-(г код											
Гекст 4 2 4 Кодире	К о 2 11 ное 6 0 6	Резу. сообі 4 6 4	Ри льтал щени	да-(г код е	ирон	зани									
Гекст Асходя 4 2 4 Кодира	К о 2.11 ное 6 0 6	Резу. сооб 4 6 4 ное 4	Ри льтал щени	да-(г код е	ирон е 5	зани									
Гекст Исходя 4 2 4 (одире 4 2	Ко 2 11 ное 6 0 6 0 6	Резу. сооб 4 6 4 ное 4 6	Ри ———————————————————————————————————	да-(г код е е щени 6 4	ирон е 5 0	зани 5 4									
Гекст Асходя 4 2 4 Кодира	Ко 2 11 ное 6 0 6 0 6	Резу. сооб 4 6 4 ное 4	Ри ———————————————————————————————————	да-(г код е е щени 6 4	ирон е 5 0	зани 5 4									
Гекст Исходя 4 2 4 (одире 4 2	Ко 2 11 ное 6 0 6 0 6	Резу. сообл 4 6 4 ное 4 6 4	Ри льтал щени сооб: 7 6 7	да-(г код е щени 6 4 6	е 5 0 5	зани 5 4									
Гекст Исходя 4 2 4 Кодиро 4 2 4	Ко 2 11 ное 6 0 6 0 6	Резу. сообл 4 6 4 ное 4 6 4	Ри льтал щени сооб: 7 6 7	да-(г код е щени 6 4 6	е 5 0 5	зани 5 4									
Гекст 4 2 4 Кодир 4 2 4	Ко 2 11 ное 6 0 6 0 6 0 6	Резу. сообі 4 6 4 ное 4 6 4	Ри льтал щени сооб: 7 6 7	да-(г код е щени 6 4 6	е 5 0 5	зани 5 4									
Гекст 4 2 4 Кодире	К о 2 11 ное 6 0 6	Резу. сообі 4 6 4	Ри льтал щени	да-(г код е	ирон	зани									
В.4. Гекст Кодиро 4 2 4 2 4 2 4 Цекод	Ко 2.11 ное 6 0 6 0 6 0 6	Резу. сообі 4 6 4 ное 4 6 4	Ри льтал щени сооб: 7 6 7	да-(г код е щени 6 4 6	е 5 0 5	зани 5 4									
Пекст Исходя 4 2 4 (Одиро 4 2 4 Цекодя 4 2	Ко 2 11 ное 6 0 6 0 6 0 6 0 6	Резу. сообі 4 6 4 ное 4 6 4 анное 4 6	Ри льтал щени сооб: 7 6 7	да-(г код е щени 6 4 6	е 5 0 5	зани 5 4									
В.4. Гекст Кодиро 4 2 4 2 4 2 4 Цекод	Ко 2.11 ное 6 0 6 0 6 0 6	Резу. сообі 4 6 4 ное 4 6 4 анное 4 6	Ри льтал щени сооб: 7 6 7	да-(г код е щени 6 4 6	е 5 0 5	зани 5 4									
Пекст Исходя 4 2 4 (Одиро 4 2 4 Цекодя 4 2	Ко 2.11 ное 6 0 6 0 6 иров 6 0	Резу. сооб 4 6 4 ное 4 6 4 анное 4 6 3	Ри льтал щени сооб: 7 6 7 е со	да-(г код е 6 4 6	е 5 0 5 ние	зани 5 4 5									
3.4. Гекст 4 2 4 2 4 2 4 2 4 2 1 Нисло	Ко 2.11 ное 6 0 6 0 6 иров 6 0	Резу. сооб 4 6 4 ное 4 6 4 анное 4 6 3	Ри льтал щени сооб: 7 6 7 е со	да-(г код е 6 4 6	е 5 0 5 ние	зани 5 4 5									

При кодировании сообщений с кодовым расстоянием 1, получаются закодированные сообщения с кодовым расстоянием 3 или 4.

-1

4. Выводы

В данной работы мы исследовали методов помехоустойчивого кодирования и сравнили их свойства.

Все коды рассмотренные в работе являются самокорректирующимися, то есть позволяют устранять ошибки.

Коды БЧХ и Рида-Саламона лучше проявили себя в нашем скромном тесте, так как устранили более одной ошибки нежели коды Хэмминга и циклические.