Redes Neuronales Artificiales (ANN) y Redes Neuronales Convolucionales (CNN)

Redes Neuronales Artificiales (ANN)

¿Qué son?

Son modelos computacionales inspirados en la estructura y funcionamiento del cerebro humano. Consisten en capas de unidades llamadas neuronas artificiales que procesan información.

Estructura básica

- Capa de entrada: recibe los datos (por ejemplo, vectores numéricos).
- Capas ocultas: realizan cálculos y transformaciones no lineales.
- Capa de salida: produce el resultado (clasificación, regresión, etc.).

Cada neurona de una capa está conectada a las neuronas de la siguiente capa con pesos ajustables, que se entrenan para minimizar el error entre salida esperada y salida obtenida.

Funcionamiento

1. Cada neurona calcula una suma ponderada de sus entradas:

$$z = \sum w_i x_i + b$$

donde w i son los pesos, x i las entradas y b el sesgo.

- 2. Luego se aplica una función no lineal llamada función de activación (ReLU, sigmoid, tanh, etc.) a z para obtener la salida de la neurona.
- 3. El proceso se repite a través de las capas hasta producir la salida final.

Aplicaciones

- Predicción y clasificación en datos tabulares.
- Reconocimiento de patrones.
- Series temporales, procesamiento de lenguaje natural, entre otros.

Limitaciones

- No son eficientes para datos con estructura espacial o temporal clara, como imágenes o secuencias largas, porque no explotan la correlación local.

Redes Neuronales Convolucionales (CNN)

¿Qué son?

Son un tipo especial de redes neuronales diseñadas para procesar datos con estructura espacial, como imágenes o señales temporales. Incorporan capas de convolución que extraen características locales.

Diferencias clave con ANN

- En lugar de conexiones densas (fully connected), usan filtros (kernels) que se deslizan sobre la entrada para detectar patrones locales (bordes, texturas).
- Las conexiones locales reducen la cantidad de parámetros, mejorando la eficiencia y capacidad de generalización en datos estructurados.

Arquitectura básica

- 1. Capas convolucionales: aplican filtros para extraer características. Cada filtro responde a un patrón local.
- 2. Capas de pooling: reducen la dimensionalidad (ej. max pooling), preservando características importantes y bajando el costo computacional.

3. Capas totalmente conectadas: al final, para combinar las características extraídas y realizar la clasificación o regresión.

Funcionamiento de la convolución

- Cada filtro (una matriz pequeña, por ejemplo 3x3) se multiplica elemento a elemento con una región de la imagen y se suman los resultados para obtener un valor único.
- El filtro se desliza (stride) por toda la imagen para crear un mapa de activación que refleja la presencia del patrón detectado.

Ventajas

- Explota la invarianza espacial (la característica puede aparecer en cualquier lugar).
- Menos parámetros que una ANN densa para imágenes grandes.
- Mejor desempeño en tareas como reconocimiento de imágenes, video, voz, etc.

Aplicaciones

- Reconocimiento facial, detección de objetos.
- Diagnóstico médico por imagen.
- Sistemas de visión para vehículos autónomos.
- Procesamiento de señales y audio.

Resumen comparativo

Aspecto	Redes Neuronales Artificiales (ANN)	Redes Neuronales
Convolucionales (CNN)		
Entrada	Vectores planos	Imágenes, datos con
estructura espacial		

Conexiones	Densas (fully connected)	Locales (convolucionales)	
Parámetros	Muchos (por la densidad)	Menos, gracias a filtros	
compartidos			
Captura de características Globales		Locales y jerárquicas	
Uso típico	Datos tabulares, secuencias cortas	Imágenes, video, audio,	
señales temporales largas			
Eficiencia computacional Menor para datos espaciales grandes Mayor para			
datos espaciales			
¿Quieres que te explique cómo se entrenan (backpropagation) o ejemplos prácticos con			

código?