

VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY UNIVERSITY OF INFORMATION TECHNOLOGY

${\rm CS112.P11.CTTN} \\ {\rm PHÂN~TÍCH~V\grave{A}~THI\r{E}T~K\r{E}~THU\r{A}T~TO\'{A}N} \\$

BTVN NHÓM 9

Sinh Viên: Nguyễn Văn Minh Đồng Quốc Thắng

Giảng viên : Nguyễn Thanh Sơn

Mục lục

1	Lý 1	thuyết		2
	1.1	Bài 1 .		2
		1.1.1	Có phải mọi bài toán đều có thể giải quyết bằng quy hoạch động	
			không? Tại sao?	2
		1.1.2	Trong thực tế, bạn đã gặp bài toán nào có thể áp dụng quy hoạch	
			động? Hãy chia sẻ cách tiếp cận	2
		1.1.3	Hãy phân tích và làm rõ ưu, nhược điểm của 2 phương pháp Top	
			down và Bottom up. Bạn sẽ ưu tiên phương pháp nào? Vì sao?	2
	1.2	Source	Code	3

Chương 1

Lý thuyết

1.1 Bài 1

1.1.1 Có phải mọi bài toán đều có thể giải quyết bằng quy hoạch động không? Tại sao?

Trả lời: không phải mọi bài toán đều có thể sử dụng quy hoạch động để giải quyết. Những không thể giải quyết bằng quy hoạch động có đặc điểm như sau:

- Các bài toán không có cấu trúc con tối ưu
- Các bài toán yêu cầu sinh ra tất cả các khả năng (như một số bài toán sinh tổ hợp)
- Các bài toán thực thi tuần tự không có giai đoạn tối ưu hóa
- Các bài toán con được giải lặp đi lặp lại nhiều lần.

1.1.2 Trong thực tế, bạn đã gặp bài toán nào có thể áp dụng quy hoạch động? Hãy chia sẻ cách tiếp cận.

Trả lời: một số ứng dụng của quy hoạch động vào thực tế như:

- Tìm đường đi ngắn nhất (thuật toán Dijkstra và Floyd-Warshall)
- Trong mạng máy tính, có thể sử dụng quy hoạch động để hỗ trợ tạo các routing table, dijkstra và biến thể có thể được sử dụng trong intradomain routing
- Sử dụng trong nén(huffman coding): Khi xây dựng cây Huffman, có thể sử dụng DP để lưu trữ và tối ưu hóa thông tin về tần suất xuất hiện của các mẫu.

1.1.3 Hãy phân tích và làm rõ ưu, nhược điểm của 2 phương pháp Top down và Bottom up. Bạn sẽ ưu tiên phương pháp nào? Vì sao?

Phương pháp Top-down

Ưu điểm của Top-down:

- Dễ hiểu và triển khai: vì cách cài đặt giống với cách giải đệ quy truyền thống nên sẽ quen thuộc và dễ hiểu hơn
- Linh hoạt: dễ dàng mở rộng và điều chỉnh, phù hợp với các bài toán có cấu trúc đệ quy phức tạp

Nhược điểm của Top-down:

- Hiệu năng kém hơn Bottom-up: tăng thêm chi phí từ việc gọi đệ quy(chi phí quản lý stack cao) và chậm hơn so với phương pháp lặp
- Phụ thuộc nhiều vào bộ nhớ để đệ quy, khó kiểm soát bộ nhớ chi tiết

Phương pháp Bottom-Up

Ưu điểm của Bottom-up:

- Hiệu năng cao vì không có chi phí gọi đệ quy
- Quản lý bộ nhớ tối ưu: Sử dụng ít bộ nhớ hơn vì không lo vấn đề tràn stack
- Trình tự tính toán rõ ràng: Thứ tự tính toán dễ dàng theo dõi vì sử dụng vòng lặp Nhược điểm của Bottom-up:
- Cài đặt phức tạp
- Tính linh hoạt hạn chế vì phải tính toán tất cả các bài toán con từ đầu
- Khó áp dụng với các bài toán không có thứ tự rõ ràng

1.2 Source Code

Source Code có ở đây