1. Learning curve of the training:

- 2. MSE = 0.06870297339333518
- 3. Fitting Line: Y = 0.8179703746689468X + 0.7845650803186925 (weight $\sim = 0.818$, intercept $\sim = 0.785$)

4. What's the difference between Gradient Descent,(GD) Mini-Batch Gradient Descent(Mini-BGD), and Stochastic Gradient Descent(SGD)?

	GD	Mini-BGD	SGD
Method	Parameters are updated	Parameters are updated after	Parameters are updated
	after computing the	computing the gradient of error	after computing the
	gradient of error with	with respect to a subset of the	gradient of error with
	respect to the entire	dataset.	respect to only a single
	dataset.		data.
Noise	make smooth updates	Make less noisy updates than	make very noisy updates
		SGD (depend on the batch size)	
Time	Take the most time	Balance between GD and SGD in	Converges quickly for huge
		terms of efficiency	datasets.
convergence	quick convergence ratio	Worse than GD	The worst (needs more
ratio	to a global minimum if		iterations)
	the loss function is		
	convex (and to local		
	minimum one for non-		
	convex functions)		
tolerance		Can "bounce around" global	Can "bounce around"
		optimum — may require the	global optimum — may
		bigger tolerance.	require the biggest
			tolerance.

10

$$(1) \ 0.2 \left(\frac{3}{10}\right) + 0.4 \left(\frac{2}{4}\right) + 0.4 \left(\frac{4}{20}\right) = 0.06 + 0.2 + 0.08$$
$$= 0.34$$

(2) P(⑤nB/⑤)

$$=\frac{0.4(0.5)}{0.7(0.3)+0.4(0.5)+0.4(0.6)}=\frac{0.2}{0.5}$$

2. Let R1 be the distribution area of class C1, and R2 be the area of class C2, we know

In the error made in R1:

we always have
$$P(C_1|X) \ge P(C_2|X)$$
,
which implies $P(C_2|X) \le \left\{P(C_1|X)P(C_2|X)\right\}^{\frac{1}{2}}$

$$\int_{R_1} P(X, C_2) dX = \int_{R_1} P(C_2|X)P(X)$$

$$\leq \int_{R_1} \left\{P(C_1|X)P(C_2|X)\right\}^{\frac{1}{2}}P(X) dX$$

$$= \int_{R_1} \left\{P(X, C_1)P(X, C_2)\right\}^{\frac{1}{2}} dX$$

3 In the error made in R2:

we always have
$$P(c_2|x) \ge P(c_1|x)$$
,
which implies $P(c_1|x) \le \{P(c_1|x)P(c_2|x)\}^{\frac{1}{2}}$

$$\int_{R_2} P(x,c_1) dx = \int_{R_2} P(c_1|x)P(x) dx$$

$$\le \int_{R_2} \{P(c_1|x)P(c_2|x)\}^{\frac{1}{2}}P(x) dx$$

$$= \int_{R_2} \{P(x,c_1)P(x,c_2)\}^{\frac{1}{2}}dx$$

Substitute \bigcirc 3 back to \bigcirc , we have $P(mistake) = \int_{R_1} P(x, C_2) dx + \int_{R_2} P(x, C_1) dx$

$$\leq \int_{R_{1}} \left\{ P(x,c_{1})P(x,c_{2}) \right\}^{\frac{1}{2}} dx + \int_{R_{2}} \left\{ P(x,c_{1})P(x,c_{2}) \right\}^{\frac{1}{2}} dx$$

$$= \int_{R_{1}} \left\{ P(x,c_{1})P(x,c_{2}) \right\}^{\frac{1}{2}} dx$$

3,

$$\Rightarrow g(Y) = \sum_{x \in X} E[X = x | Y] P(x)$$

$$= \sum_{y \in Y} g(y) p(y)$$

$$= E[E[x|y]]$$

$$\Rightarrow \ \, \xi[v_{xy}(x|y)] = \frac{\xi[\xi[x^2|y]]}{\xi[\xi[x^2|y]]} - \xi[(\xi[x|y])^2]$$

Var(ξ[x|y]) = ξ[(ξ[x|y])²] -(ξ[ξ[x|y])²

$$= E[x^{2}] - E[(E[x])^{2}] + E[(E[x]y])^{2}] - \frac{(E[x])^{2}}{(E[E[x]y])^{2}}$$

$$= E[x^{2}] - (E[x])^{2} = Var(x)$$