

Report Title:	Analog Signal quantization using MATLAB		
Lab Report No:	03	Date of Submission:	08-06-2022
Submitted by:	Samira Kabir Rima	ID:	20-42406-1
Semester:	Summer 21-22	Program:	BSc. CSE
Course Code:	COE3103	Course Title:	Data Communication
Course Instructor:	Afsah Sharmin	Section:	В

Problem:

Performance Task for Lab Report: (your ID = AB-CDEFG-H)

**Generate aN analog signal using the following equation,

$$x_1(t) = A_1 \cos(2\pi(CDE*100)t)$$

- (a) Select the value of the amplitudes as follows: let $A_1 = GD$ and $A_2 = AF$.
- (b) Assuming that a 4-bit ADC channel accepts analog input ranging from 0 to 5 volts, determine
 - I. the number of quantization levels;
 - II. the step size of the quantizer or resolution;
- III. the quantization level when the analog voltage is 3.2 volts;
- IV. Implement it in MATLAB

Solution:

		MATLAB Code	Output
a		%AB-CDEFG-H %20-42406-1 %A1=GD;A2=AF A1=62 A2=20 CDE=424	A1 = 62 A2 = 20 CDE = 424
b	Ι	A1=62; A2=20; CDE=424; fs=40000; t=0:1/fs:1-1/fs; x1=A1*cos(2*pi*(CDE*100)*t); n=4;%4-bit channel Levels=(2^n)-1	Levels = 15
	II	A1=62; A2=20; CDE=424; fs=40000; t=0:1/fs:1-1/fs; x1=A1*cos(2*pi*(CDE*100)*t); n=4;%4-bit channel Levels=(2^n)-1; delta=(max(x1)-min(x1))/Levels	delta = 8.2667
	Ш	A1=62; A2=20; CDE=424; fs=40000; t=0:1/fs:1-1/fs; x1=A1*cos(2*pi*(CDE*100)*t); n=4; %4-bit channel x=3.2; %3.2V voltage Levels=(2^n)-1; delta=(max(x1)-min(x1))/Levels; i=round((x-min(x1))/delta); Xq=min(x1)+i.*delta	Xq = 4.1333

```
A1=62;
     A2=20;
     CDE=424;
     fs=20000;
     t=0:1/fs:0.003;
     x1=A1*cos(2*pi*(CDE*100)*t);
     n=4; %4-bit channel
     Levels=(2^n)-1;
     delta=(max(x1)-min(x1))/Levels;
     i=round((x1-min(x1))/delta);
     Xq=min(x1)+i.*delta;
     subplot(3,1,1)
IV
     plot(t,x1,'R');
     xlabel('Time')
     ylabel('X[n]')
     subplot(3,1,2)
     stem(t,x1,'b');
     xlabel('Time')
ylabel('X[n]')
     subplot(3,1,3)
     stairs(t,Xq,'b');
     title('Quantized Signal')
     xlabel('Time')
     ylabel('Amplitude')
```