装订线

山东建筑大学试卷										
<u>2019</u> 至 <u>2020</u> 学年第 <u>1</u> 学期 考试时间: <u>120</u> 分钟										
课程名称: <u>概率论与数理统计 C</u> (A)卷 考试形式: <u>闭卷</u>										
年级: 2018级 专业: 全校开设本课程专业 层次: 本科										
一二三三总分										
(说明:本考试不需要使用计算器)										
一、填空题(每题 3 分,共 21 分)										
1、设 $P(AB) = P(\overline{A} \ \overline{B})$,且 $P(A) = 0.2$,则 $P(B) =$										
2、设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则										
至少取到一个黑球的概率是										
3、设随机变量 X, Y 的期望方差为 $E(X) = 0.5, E(Y) = -0.5, D(X) = D(Y)$										
= 0.75 , $E(XY) = 0$,则 X, Y 的相关系数 $R(X, Y) =$										
4、设随机变量 X 服从参数为 0.5 的指数分布,用切比雪夫不等式估计										
$P(X-2 \geq 3) \leq \underline{\hspace{1cm}}.$										
5 、 设 随 机 变 量 $X \sim N(10, \sigma^2)$, 已 知 $P(10 < X < 20) = 0.3$,则										
P(0 < X < 10) =										
6、设 X_1 , X_2 , X_3 , X_4 相互独立且服从相同分布 $\chi^2(n)$,则 $\dfrac{X_1+X_2+X_3}{3X_4}$ \sim										

7、由来自正态总体 $X \sim N(\mu, 4)$ 容量为 400 的简单随机样本,计算得样本均 值为45,则未知参数 μ 的置信度为95%的置信区间 ______. (已知($u_{0.025}$ = 1.96, $u_{0.05}$ = 1.645)

二、选择题(每题3分,共21分)

- 1、假设事件 A, B 满足 P(B|A) = 1 ,则 () .
 - (A) B 是必然事件; (B) P(B) = 1;
 - (C) P(A-B)=0; (D) $A \subset B$.
- 2、设A、B、C为三个事件,P(AB) > 0且P(C|AB) = 1,则有(
 - (A) $P(C) \le P(A) + P(B) 1$. (B) $P(C) \le P(A \cup B)$.
 - (C) $P(C) \ge P(A) + P(B) 1$. (D) $P(C) \ge P(A \cup B)$.
- 3、设每次试验成功的概率为p(0 ,现进行独立重复试验,则直到第10 次试验才取得第 4 次成功的概率为(
 - (A) $C_{10}^4 p^4 (1-p)^6$; (B) $C_0^3 p^4 (1-p)^6$;
 - (C) $C_9^4 p^4 (1-p)^5$; (D) $C_9^3 p^3 (1-p)^6$.
- 4、设两个独立的随机变量 X, Y 分别服从正态分布 N(0,1) 和 N(1,1) ,则().

 - (A) $P\{X + Y \le 0\} = 0.5$; (B) $P\{X + Y \le 1\} = 0.5$;
 - (C) $P\{X Y \le 0\} = 0.5$; (D) $P\{X Y \le 1\} = 0.5$.
- 5、设随机变量 X, Y 相互独立,且都服从 N(0,1),则 $2X Y + 1 \sim$ (
 - (A) N(0,1);
- (B) N(1,1);
- (C) N(0,5);
- (D) N(1,5).
- 6、设二维随机向量(X,Y)服从二维正态分布,则随机变量 $\xi = X + Y$ 与 $\eta = X - Y$ 不相关的充要条件为(
 - (A) E(X) = E(Y);
- (B) $E(X^2) [E(X)]^2 = E(Y^2) [E(Y)]^2$;
 - (C) $E(X^2) + [E(X)]^2 = E(Y^2) + [E(Y)]^2$; (D) $E(X^2) = E(Y^2)$.
- 7、设随机变量 X 的分布函数为 $F_{x}(x)$,则 Y = 3 5X 的分布函数 $F_{y}(y)$ 为 ().
 - (A) $F_{y}(5y-3)$.
- (B) $5F_{y}(y)-3$.

- (C) $F_X(\frac{y+3}{5})$.
- (D) $1 F_X(\frac{3-y}{5})$.

	1,	(8分)	装有	10	件某产品	(其中-	一等品5件,	二等品3	件,	三等品2件)	
ı											

的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都 是一等品, 求丢失的也是一等品的概率.

3、(8分) 设 $X \sim N(0,1)$, 求 Y = |X|的概率密度.

2、(12分)设随机变量 X的概率密度为 $f(x) = Ae^{-|x|}(-\infty < x < +\infty)$,

三、计算应用题(共58分)

求: (1) 系数 A; (2) X 的分布函数; (3) D(X).

4、(10分)设二维随机变量(X, Y)的联合概率密度为:

$$f(x,y) = \begin{cases} Axy^2 & 0 < x < 2, \ 0 < y < 1 \\ 0 & \text{ 其他} \end{cases}$$

求: (1) 参数 A; (2) X 和 Y 的边缘概率密度并判断 X 和 Y 是否独立;

(3)
$$P(X \ge 1, Y \le 0.5)$$
.

6、(8分)设总体
$$X$$
 的概率密度为 $f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1, \\ 0, & 其它. \end{cases}$ $(\theta > 0).$

 x_1, x_2, \dots, x_n 是 X 的简单样本观测值,试求(1)参数 θ 的矩估计值;(2)参数 θ 的极大似然估计值.

5、(12 分) 设随机变量 X和 Y的联合分布在点(0, 1),(1, 0)及(1, 1) 为顶点的三角形区域 G 上服从均匀分布,试求 Cov(X,Y).