Software package for structured total least squares problems

Sabine Van Huffel K.U.Leuven, ESAT/SCD (SISTA)

Joint work with Ivan Markovsky

5th ERCIM workshop, 27-29 August 2004, Prague

Structured total least squares

 $\min_{\Delta A, \Delta B, X} \left\| \begin{bmatrix} \Delta A & \Delta B \end{bmatrix} \right\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad (A - \Delta A)X = B - \Delta B \quad \text{and} \quad \begin{bmatrix} \Delta A & \Delta B \end{bmatrix} \quad \text{has the same structure as} \quad \begin{bmatrix} A & B \end{bmatrix}$

a typical example how structure in the data matrix $\begin{bmatrix} A & B \end{bmatrix}$ occurs

$$R_0w(t) + R_1w(t+1) + \cdots + R_lw(t+l) = 0$$
, for $t = 1, \dots, T-l$

is equivalent to the structured system of equations $R\mathcal{H}_{l+1}(w)=0$, where $R:=\begin{bmatrix}R_0&R_1&\cdots&R_l\end{bmatrix}$ and $\mathcal{H}_{l+1}(w)$ is the block-Hankel matrix

$$\mathcal{H}_{l+1}(w) := \begin{bmatrix} w(1) & w(2) & \cdots & w(T-l) \\ w(2) & w(3) & \cdots & w(T-l+1) \\ \vdots & \vdots & & \vdots \\ w(l+1) & w(l+2) & \cdots & w(T) \end{bmatrix}$$

Outline

- Motivation
- Solution method
- Implementation
- Six standard examples
- Application for system identification
- Conclusions

5th ERCIM workshop, 27-29 August 2004, Prague

History of the problem

- [Aoki and Yue, 1970] errors-in-variables identification → STLS
- [Cadzow, 1988], [Bresler and Macovski, 1986] suboptimal
- [Abatzoglou et al., 1991]—often cited as the original paper on STLS
- [De Moor, 1993] Riemannian singular value decomposition
- [Rosen et al., 1996] structured total least norm approach
- [Lemmerling et al., 2000, Mastronardi et al., 2000] fast algorithms

2

Issues

- structure: varies from general affine to specific Hankel/Toeplitz
- rank reduction: for all methods, except [Van Huffel et al., 1996], one
- efficiency: varies from $O(m^3)$ to O(m), where $m:=\operatorname{row}\operatorname{dim}(A)$

no efficient algorithms for multivariate problems no robust software implementation

⇒ up to now STLS was not used in real-life applications

5th ERCIM workshop, 27-29 August 2004, Prague

4

Motivation

make the STLS method practically useful by:

- 1. algorithms that are general enough for various applications and efficient enough for non-toy examples
- 2. robust software implementation
- 3. practical problems where the STLS method and software give advantage over the alternative methods

Problem formulation

$$\min_{X, \ \Delta p} \left\| \Delta p \right\|_2^2 \quad \text{s.t.} \quad \mathcal{S}(p - \Delta p) \left[\begin{matrix} X \\ -I_d \end{matrix} \right] = 0$$

 $X \in \mathbb{R}^{n \times d}$ — parameter, $p \in \mathbb{R}^{n_p}$ — data vector, Δp — correction

$$\mathcal{S}(p) = \begin{bmatrix} C^{(1)} & \cdots & C^{(q)} \end{bmatrix}, \text{ with } C^{(l)} \begin{cases} \mathbf{T} & \text{block-Toeplitz,} \\ \mathbf{H} & \text{block-Hankel,} \\ \mathbf{U} & \text{unstructured, or} \\ \mathbf{F} & \text{exact.} \end{cases}$$

all block-Toeplitz/Hankel $C^{(l)}$ have blocks of the same row dimension K and of column dimensions t_l

5th ERCIM workshop, 27–29 August 2004, Prague

Structure specification

 \mathcal{S} is specified by the array $\mathcal{D} \in \{(\mathtt{T},\mathtt{H},\mathtt{U},\mathtt{F}) \times \mathbb{N} \times \mathbb{N}\}^q$

 \mathcal{D}_l describes the block $C^{(l)}$ as follows:

- ullet $\mathcal{D}_l(1)$ is the type of structure,
- ullet $\mathcal{D}_l(2)=n_l:=\operatorname{col}\operatorname{dim}(C^{(l)})$, and
- $\mathcal{D}_l(3) = t_l$

example: $\mathcal{S}(p) = \begin{bmatrix} A & b \end{bmatrix}$, $A \in \mathbb{R}^{m \times n}$ Toeplitz, $b \in \mathbb{R}^m$ unstructured

$$\mathcal{D} = \begin{bmatrix} \begin{bmatrix} \mathbf{T} & n & 1 \end{bmatrix} & \begin{bmatrix} \mathbf{U} & 1 & 1 \end{bmatrix} \end{bmatrix}$$

Equivalent problem

$$\min_{X} r^{\top}(X) \Gamma^{-1}(X) r(X), \qquad r(X) := \mathrm{vec}\Big(\left(\mathcal{S}(p) \left[\begin{smallmatrix} X \\ -I_d \end{smallmatrix} \right] \right)^{\top} \Big)$$

 $\Gamma(X)$ has block-Toeplitz and block-banded structure,

$$\Gamma(X) = \begin{bmatrix} \Gamma_0 & \Gamma_{-1} & \cdots & \Gamma_{-s} & & 0 \\ \Gamma_1 & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \Gamma_{-s} \\ \Gamma_s & \cdots & \cdots & \cdots & \cdots & \vdots \\ & \cdots & \cdots & \cdots & \cdots & \Gamma_{-1} \\ 0 & & \Gamma_s & \cdots & \Gamma_1 & \Gamma_0 \end{bmatrix} \in \mathbb{R}^{md \times md}$$

block size dK, $s = \max_{l=1,...,q} n_l/t_l$

this structure is exploited for efficient O(m) computation of the cost function and its first derivative

5th ERCIM workshop, 27-29 August 2004, Prague

8

10

Implementation

the software is written in ANSI C with calls to BLAS and LAPACK

we use the GNU scientific library (GSL) and a C version of MINPACK's Levenberg–Marquardt algorithm

the Cholesky decomposition of $\Gamma(X)$ is done via the subroutine MB02GD from the <code>SLICOT</code> library

the software is callable from MATLAB via a mex file interface:

>> [xh, info, v] = stls(a, b, s, x0, opt);
$$a \leftrightarrow A$$
, $b \leftrightarrow B$, $s \leftrightarrow \mathcal{D}$, $xh \leftrightarrow \hat{X}$, $v \leftrightarrow cov(vec(\hat{X}))$

x0, opt, info — initial approximation, convergence options, and convergence information for the optimization algorithm

5th ERCIM workshop, 27-29 August 2004, Prague

g

Simulation examples

illustrate application of the package on standard estimation problems

the problems listed below are special cases of the block-Toeplitz/Hankel STLS problem, for particular choices of the structure specification K, \mathcal{D}

if not given, K and the third element of \mathcal{D}_l are by default equal to ones

all examples are performed in MATLAB 6.0, running on a Linux i686 PC

the Matlab scripts are included in the package as a demo file $\mathtt{demo.m}$

Least squares

 $AX \approx B$, $A \in \mathbb{R}^{m \times n}$ exact unstr., $B \in \mathbb{R}^{m \times d}$ perturbed unstr.

STLS problem with structure specification $\mathcal{D} = [[F \ n], [U \ d]]$

Total least squares

5th ERCIM workshop, 27-29 August 2004, Prague

12

14

Hankel low-rank approximation

```
\min_{\Delta p} \|\Delta p\|_2^2 \quad \text{s.t.} \quad \mathcal{H}(p-\Delta p) \text{ has given rank } n. \mathcal{H}: \mathbb{R}^{n_p} \to \big\{ m \times (n+d) \text{ block-Hankel matrices, block size } n_y \times n_u STLS problem with K=n_y and \mathcal{D}=[\text{H } n+d \ n_u] the case n_y=n_u=1 is treated in [Lemmerling et al., 2000] faststln2 — MATLAB implementation  >> \text{\% Generate data} \\ >> n_p=12; \ p_0=(1:n_p)'; \ p=p_0+[5; \ zeros(n_p-1,1)]; \\ >> c=\text{hankel}(p(1:10),p(10:n_p)); \ a=c(:,1:2); \ b=c(:,3); \\ >> \text{\% Define the structure and solve the problem via STLS} \\ >> s=[2\ 3\ 1]; \\ >> \text{tic, } [\text{xh\_stls,i\_stls}]=\text{stls}(a,b,s); \ t\_\text{stls}=\text{toc} \\ \textbf{t\_stls}=0.003950000000000}
```

Mixed least squares total least squares

 $AX \approx B$, $A = [A_f \ A_p]$, $A_p \in \mathbb{R}^{m \times n_1}$, $B \in \mathbb{R}^{m \times d}$ perturbed unstructured, and $A_f \in \mathbb{R}^{m \times n_2}$ exact unstructured STLS problem with structure specification $\mathcal{D} = [[U \ n_1], [F \ n_2], [U \ d]]$ lstls.m — MATLAB implementation of an (exact) SVD based method $\Rightarrow n_1 = 5$; % The data is a,b used above. $\Rightarrow n_1 = 5$; % The data is a,b used a

5th ERCIM workshop, 27-29 August 2004, Prague

```
13
```

Deconvolution problem $b_i = \sum_{j=-\infty}^{\infty} x_j a_{i-j}$

if $x_j = 0$ for all j < 1 and j > n, then b_i , i = 1, ..., m is given by

$$\underbrace{\begin{bmatrix} a_0 & a_{-1} & \cdots & a_{1-n} \\ a_1 & a_0 & \cdots & a_{2-n} \\ \vdots & \vdots & & \vdots \\ a_{m-1} & a_{m+n-2} & \cdots & a_{m-n} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{b}$$

A Toeplitz structured, parameterized by $a=\operatorname{col}(a_{1-n},\ldots,a_{m-1})$ deconvolution problem: find x, given a and b with a,b perturbed, an STLS problem with $\mathcal{D}=[[\mathtt{T}\ n],[\mathtt{U}\ 1]]$ this STLS problem is studied in [Mastronardi et al., 2000] faststln1 — MATLAB implementation

5th ERCIM workshop, 27-29 August 2004, Prague

16

18

\rightarrow m = 200; n = 2; % m = length(x), n = length(b) >> % Generate true data: a0, b0, and x0 \Rightarrow a0 = rand(n+m-1); A0 = toeplitz(a0(n:n+m-1),a0(n:-1:1)); >> x0 = rand(n.1): b0 = A0*x0: >> % Add noise: a = a0 + noise. b = b0 + noise \Rightarrow a = a0 + 0.25 * randn(n+m-1); b = b0 + 0.25 * randn(m,1); \Rightarrow A = toeplitz(a(n:n+m-1),a(n:-1:1)); >> % Define the structure and solve the problem via STLS >> s = [1 n 1; 3 1 1]; tic, [xh_stls,i_stls] = stls(A,b,s); t_stls = toc t stls = 0.08655400000000>> disp(xh_stls(1:2)') 0.26594446871296 0.31420369470136 >> disp(i_stls.fmin) % value of the cost function at xh_stls 15.23654290180259 >> % Solve via an alternative STLS method >> tic, xh_stln = faststln1(A,b); t_stln = toc t_stls = 16.09171600000000 >> disp(xh_stln(1:2)') 0.26594792311858 0.31420021871824 >> disp(cost1(xh_stln,a,b,s)) % value of the cost function at xh_stln 15.23654290217436

Transfer function estimation

consider a dynamical system described by the difference equation

$$y_t + \sum_{\tau=1}^n a_{\tau} y_{t+\tau} = \sum_{\tau=0}^n b_{\tau} u_{t+\tau}$$

parameter vector $x:=\operatorname{col}(b_0,\ldots,b_n,-a_0,\ldots,-a_{n-1})\in\mathbb{R}^{2n+1}$ problem: find x, given $(u_t,y_t)_{t=1}^T$ and the order n for $t=1,\ldots,T$, () can be written as

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_{n+1} & y_1 & y_2 & \cdots & y_n \\ u_2 & u_3 & \cdots & u_{n+2} & y_2 & y_3 & \cdots & y_{n+1} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ u_m & u_{m+1} & \cdots & u_T & y_m & y_{m+1} & \cdots & y_{T-1} \end{bmatrix} x = \begin{bmatrix} y_{n+1} \\ y_{n+2} \\ \vdots \\ y_T \end{bmatrix}$$

STLS problem with structure specification $\mathcal{D} = [[H \ n+1], [H \ n+1]]$

```
\Rightarrow n = 3; num = 0.151*[1 0.9 0.49 0.145]; den = [1 -1.2 0.81 -0.27];
>> % True data
>> T = 1000; u0 = randn(T,1); [y0,x0] = dlsim(num,den,u0);
>> % Noisy data
>> v_n = .1; y = y0 + v_n * randn(T,1); u = u0 + v_n * randn(T,1);
>> % Define the system of equations
>> m = length(y) - n;
\Rightarrow a = [ hankel(u(1:m),u(m:end)) hankel(y(1:m),y(m:end)) ];
>> b = a(:,end); a(:,end) = [];
>> % Ignore the structure and solve the problem via LS and TLS
>> tic, xh_ls = a; t_ls = toc
t_1s = 0.00329800000000
>> tic, xh_tls = tls(a,b); t_tls = toc
t tls = 0.00638900000001
>> % Define the structure and solve the problem via STLS
>> s = [2 n+1 1; 2 n+1 1];
>> tic, [xh_stls,i_stls] = stls(a,b,s); t_stls = toc
t stls = 1.27913800000000
>> % Extract the estimates
```

5th ERCIM workshop, 27-29 August 2004, Prague

17

```
>> num_ls = fliplr(xh_ls(1:n+1)');
>> den ls = [1 fliplr(-xh ls(n+2:end)')]:
>> num_tls = fliplr(xh_tls(1:n+1)');
>> den_tls = [1 fliplr(-xh_tls(n+2:end)')];
>> num_stls = fliplr(xh_stls(1:n+1)');
>> den_stls = [1 fliplr(-xh_stls(n+2:end)')];
>> % Compare the relative errors of estimation
>> e_ls = norm([num-num_ls,den-den_ls]) / norm([num,den]);
   0.74534028390667
>> e_tls = norm([num-num_tls,den-den_tls]) / norm([num,den]);
   0.02825246589733
>> e_stls = norm([num-num_stls,den-den_stls]) / norm([num,den]);
   0.02381490382674
```

the example shows an application of STLS for system identification the method is extended for multivariable systems next we shows simulation results with more realistic problems

5th ERCIM workshop, 27-29 August 2004, Prague

comparison is in the misfit $M(w, \hat{\mathcal{B}})$ scaled by $M(w, \hat{\mathcal{B}}_{stls})$

		parameters			scaled misfit			
#	Data set name	T	m	p	l	subid	detss	pem
1	Destillation column	90	5	3	1	2.8	9.6	15.9
2	Destillation column n10	90	5	3	1	2.8	9.6	15.9
3	Destillation column n20	90	5	3	1	8.3	2.3	36.1
4	Destillation column n30	90	5	3	1	7.8	3.3	132
5	Glass furnace (Philips)	1247	3	6	1	2.9	2.5	2.7
6	120 MW power plant	200	5	3	2	7.2	3.4	28
7	pH process	2001	2	1	6	1.3	1.3	3.0
8	Hair dryer	1000	1	1	5	1.2	1.2	1.0
9	Winding process	2500	5	2	2	1.5	1.4	2.8
10	Ball-and-beam setup	1000	1	1	2	1.0	10	1.0
11	Industrial dryer	867	3	3	1	1.2	1.1	1.1

Results on data sets from DAISY

DAISY — data base for system identification, available from http://www.esat.kuleuven.ac.be/~tokka/daisydata.html real-life and simulated data for verification and comparison of ident. alg. the estimates obtained by the following methods are compared:

subid — robust combined subspace algorithm

detss — deterministic balanced subspace algorithm

— the prediction error method of the Identification Toolbox pem

 an identification method based on STLS stls

5th ERCIM workshop, 27-29 August 2004, Prague

21

		parameters				scaled misfit		
#	Data set name	T	m	p	l	subid	detss	pem
12	CD-player arm	2048	2	2	1	1.2	1.1	1.4
13	Wing flutter	1024	1	1	5	1.6	1.7	2.8
14	Robot arm	1024	1	1	4	2.7	18.7	26.0
15	Lake Erie	57	5	2	1	1.5	2.3	23.1
16	Lake Erie n10	57	5	2	1	2.1	2.2	8.4
17	Lake Erie n20	57	5	2	1	2.2	2.4	9.8
18	Lake Erie n30	57	5	2	1	2.4	1.6	5.6
19	Heat flow density	1680	2	1	2	1.8	1.3	9.8
20	Heating system	801	1	1	2	1.3	1.2	1.3
21	Steam heat exchanger	4000	1	1	2	1.8	1.8	8.1
22	Industrial evaporator	6305	3	3	1	1.5	1.1	1.6
23	Tank reactor	7500	1	2	1	2.3	2.1	52.9
24	Steam generator	9600	4	4	1	2.4	3.1	3.3

5th ERCIM workshop, 27-29 August 2004, Prague 22 5th ERCIM workshop, 27-29 August 2004, Prague

20

comparison in the execution time scaled by $M(w, \hat{\mathcal{B}}_{\text{subid}})$

		parameters			scaled exec. time			
#	Data set name	T	m	p	l	detss	stls	pem
1	Destillation column	90	5	3	1	3.3	6.4	11.1
2	Destillation column n10	90	5	3	1	7.3	12.5	23.1
3	Destillation column n20	90	5	3	1	7.2	12.8	7.2
4	Destillation column n30	90	5	3	1	7.0	12.1	7.2
5	Glass furnace (Philips)	1247	3	6	1	13	361	373
6	120 MW power plant	200	5	3	2	6.3	15.5	27.3
7	pH process	2001	2	1	6	2.9	7.4	32.3
8	Hair dryer	1000	1	1	5	1.5	5.8	36.4
9	Winding process	2500	5	2	2	4.4	37.1	74.8
10	Ball-and-beam setup	1000	1	1	2	1.9	4.1	7.2
11	Industrial dryer	867	3	3	1	6.6	25.5	27.3

5th ERCIM workshop, 27-29 August 2004, Prague

24

26

		parameters				scaled exec. time		
#	Data set name	T	m	p	l	subid	stls	pem
12	CD-player arm	2048	2	2	1	6.4	19.5	49.4
13	Wing flutter	1024	1	1	5	1.7	4.7	33.5
14	Robot arm	1024	1	1	4	1.8	3.8	30.7
15	Lake Erie	57	5	2	1	1.4	4.6	7.0
16	Lake Erie n10	57	5	2	1	1.4	4.6	11.4
17	Lake Erie n20	57	5	2	1	1.6	4.8	9.1
18	Lake Erie n30	57	5	2	1	1.7	4.8	7.0
19	Heat flow density	1680	2	1	2	2.6	6.3	39.7
20	Heating system	801	1	1	2	1.7	3.7	12.4
21	Steam heat exchanger	4000	1	1	2	4.3	8.4	31.1
22	Industrial evaporator	6305	3	3	1	10.5	59.9	134.4
23	Tank reactor	7500	1	2	1	11.0	25.2	146.0
24	Steam generator	9600	4	4	1	13.6	192.0	220.1

5th ERCIM workshop, 27-29 August 2004, Prague

Conclusions

- we reviewed the origin and development of the STLS problem
- flexible formulation was proposed that covers various applications e.g., Hankel low rank approx., deconvolution, transfer function estim.
- an efficient computational method for the new formulation was described
- a software implementation of the new method is developed
- the STLS problem is used for MIMO system identification
- simulation results with real and simulated data sets show that the STLS software is fast and reliable

References

[Abatzoglou et al., 1991] Abatzoglou, T., Mendel, J., and Harada, G. (1991). The constrained total least squares technique and its application to harmonic superresolution. IEEE Trans. on Signal Proc., 39:1070-1087.

[Aoki and Yue, 1970] Aoki, M. and Yue, P. C. (1970). On a priori error estimates of some identification methods. IEEE Trans. on Aut. Control, 15(5):541-548.

[Bresler and Macovski, 1986] Bresler, Y. and Macovski, A. (1986). Exact maximum liklihood parameter estimation of superimposed exponential signals in noise. IEEE Trans. on Acoustics, speech, and Signal Proc., 34:1081-1089.

- [Cadzow, 1988] Cadzow, J. (1988). Signal enhancement—a composite property mapping algorithm. *IEEE Trans. on Signal Proc.*, 36:49–62.
- [De Moor, 1993] De Moor, B. (1993). Structured total least squares and L_2 approximation problems. Lin. Alg. and Its Appl., 188–189:163–207.
- [Lemmerling et al., 2000] Lemmerling, P., Mastronardi, N., and Huffel, S. V. (2000). Fast algorithm for solving the Hankel/Toeplitz structured total least squares problem. *Numerical Algorithms*, 23:371–392.
- [Mastronardi et al., 2000] Mastronardi, N., Lemmerling, P., and Huffel, S. V. (2000). Fast structured total least squares algorithm for solving the basic deconvolution problem. *SIAM J. Matrix Anal.*, 22:533–553.

[Rosen et al., 1996] Rosen, J. B., Park, H., and Glick, J. (1996). Total least norm formulation and solution of structured problems. *SIAM J. Matrix Anal.*, 17:110–128.

[Van Huffel et al., 1996] Van Huffel, S., Park, H., and Rosen, J. B. (1996). Formulation and solution of structured total least norm problems for parameter estimation. *IEEE Trans. on Signal Proc.*, 44(10):2464–2474.

5th ERCIM workshop, 27-29 August 2004, Prague

28

5th ERCIM workshop, 27-29 August 2004, Prague