CZ2003: Tutorial 5

Due on February 16, 2021 at 10:30am

 $Assoc\ Prof\ Alexei\ Sourin\ -\ SS3$

Pang Yu Shao U1721680D

15/02/2021

Problem 1

Using rotational sweeping **clockwise**, define by parametric functions x(u, v), y(u, v), z(u, v), $u, v \in [0, 1]$ the surface displayed in Figure Q1.

Solution

First, get the curve to be swept, curve is a circle with radius **0.4**, with origin at **(2,0,0)**. This curve can be parametrically defined as:

$$x(u, v) = 2 + 0.4cos(2\pi u)$$

$$x(u, v) = 0.4sin(2\pi u)$$

$$z(u, v) = 0$$

Next, to sweep the curve along the X-Z plane, we copy the defined function x(u, v) to z(u, v) and multiply the function of x by sin(0) and the function of z by cos(0), and we obtain the following functions and curve:

$$x(u,v) = (2 + 0.4\cos(2\pi u))\sin(0)$$

$$x(u,v) = 0.4sin(2\pi u)$$

$$z(u, v) = (2 + 0.4cos(2\pi u))cos(0)$$

We can see from the figure above that the curve is lying on the Z-axis, however it needs to begin from the negative X-axis and swept clockwise, In order to get the correct starting location for sweeping to begin, we introduce an offset of $-\frac{\pi}{2}$ to the sin/cos functions:

$$x(u,v)=(2+0.4cos(2\pi u))sin(-\tfrac{\pi}{2})$$

$$x(u,v) = 0.4sin(2\pi u)$$

$$z(u, v) = (2 + 0.4\cos(2\pi u))\cos(-\frac{\pi}{2})$$

Lastly, we perform the sweeping to produce the surface. This is done by introducing the variable \mathbf{v} into the \sin/\cos functions, multiplied by $-\pi$ for the clockwise sweeping from negative x-axis to positive x-axis.

$$\mathbf{x}(\mathbf{u},\mathbf{v}) = (\mathbf{2} + \mathbf{0.4cos}(\mathbf{2}\pi\mathbf{u}))\mathbf{sin}(-\frac{\pi}{\mathbf{2}} - \pi\mathbf{v})$$

$$\mathbf{x}(\mathbf{u},\mathbf{v}) = \mathbf{0.4sin}(\mathbf{2}\pi\mathbf{u})$$

$$\mathbf{z}(\mathbf{u}, \mathbf{v}) = (\mathbf{2} + \mathbf{0.4}\mathbf{cos}(\mathbf{2}\pi\mathbf{u}))\mathbf{cos}(-\frac{\pi}{\mathbf{2}} - \pi\mathbf{v})$$

$$u, v \in [0, 1]$$

Problem 2

Write parametric equations x(u,v), y(u,v), z(u,v), $u,v \in [0,1]$ defining the surface created by sweeping (clockwise rotation by $3\pi/2$ and vertical displacement by -2) of the curve which is defined in polar coordinates by $r = 0.5sin(4\alpha), \alpha \in [0, 2\pi]$ (Figure Q2).

Figure Q2

Solution

First, convert definition of curve from polar coordinates to cartesian coordinates.

 $x = r \cos(\alpha)$

 $y = r \sin(\alpha)$

 $x(u,v) = 0.5sin(8\pi u)cos(2\pi u)$

 $y(u,v) = 0.5sin(8\pi u)sin(2\pi u)$

z(u,v) = 0

Next, we add x and y offsets of 1, which is needed for to shift the curve to the start position of the sweeping $x(u,v) = 1 + 0.5sin(8\pi u)cos(2\pi u)$

 $y(u,v) = 1 + 0.5sin(8\pi u)sin(2\pi u)$

z(u,v) = 0

Next, to sweep the curve along the X-Z plane, we copy the defined function x(u,v) to z(u,v) and multiply the function of x by sin(0) and the function of z by cos(0), and we obtain the following functions and curve: $x(u,v) = (1 + 0.5sin(8\pi u)cos(2\pi u))sin(0)$

 $y(u,v) = 1 + 0.5sin(8\pi u)sin(2\pi u)$

 $z(u, v) = (1 + 0.5sin(8\pi u)cos(2\pi u))cos(0)$

Lastly, to perform the clockwise sweep, we add $(-3\pi/2)v$ as the argument of the sin/cos functions of the X and Z functions. The vertical sweep component can be done by adding -2v to the Y function. We thus end up with the following:

 $\mathbf{x}(\mathbf{u},\mathbf{v}) = (\mathbf{1} + \mathbf{0.5} \mathbf{sin}(\mathbf{8}\pi\mathbf{u})\mathbf{cos}(\mathbf{2}\pi\mathbf{u}))\mathbf{sin}((-\mathbf{3}\pi/\mathbf{2})\mathbf{v})$

 $\mathbf{y}(\mathbf{u},\mathbf{v}) = \mathbf{1} + \mathbf{0.5} \mathbf{sin}(\mathbf{8}\pi\mathbf{u}) \mathbf{sin}(\mathbf{2}\pi\mathbf{u}) - \mathbf{2}\mathbf{v}$

 $\mathbf{z}(\mathbf{u}, \mathbf{v}) = (1 + 0.5 sin(8\pi \mathbf{u}) cos(2\pi \mathbf{u})) cos((-3\pi/2)\mathbf{v})$

 $u, v \in [0, 1]$

