ECE 661: Nonlinear Systems Spring 2021 | Homework #5

Solution:

$$m\ddot{x} = -\phi'(x) =: f(x),$$

where the prime denotes differentiation with respect to x. Show that every local minimum of the function ϕ is a stable equilibrium.

Solution:

Let x_0 be a local minimum of the function ϕ . Notice that this is an equilibrium point since $\phi'(x_0) = 0$. Consider the Lyapunov function candidate

$$V(x) = \frac{1}{m} (\phi(x) - \phi(x_0)) + \frac{1}{2} \dot{x}^2.$$

Computing the time derivative of V along the trajectories of the system gives

$$\dot{V}(x) = \frac{1}{m}\phi'(x)\dot{x} + \dot{x}\ddot{x} = \frac{1}{m}\phi'(x)\dot{x} + \dot{x}\left(-\frac{\phi'(x)}{m}\right) = 0.$$

Hence, the equilibrium point x_0 is stable.

$$\dot{x}(t) = f(x(t)),$$

and suppose f is a C^1 function such that f(0) = 0. Then there exists a C^1 matrix-valued function A such that

$$f(x) = A(x)x, \ \forall x \in \mathbb{R}^n.$$

(a) [15 points] Show that if the matrix $A^{\top}(0) + A(0)$ is negative definite, then the origin is an exponentially stable equilibrium. More generally, show that if there exists a positive definite matrix P such that $A^{\top}(0)P + PA(0)$ is negative definite, then the origin is an exponentially stable equilibrium. (Hint: Consider the Lyapunov function candidate $V(x) = ||x||^2$.)

Solution:

Let $V(x) = x^{\top}x$ so that

$$\dot{V}(x) = x^{\top} \left(A(x)^{\top} + A(x) \right) x.$$

Since \dot{V} is a continuous function $\dot{V}(x) < 0$ in a suitable neighborhood of the origin whenever $A(0)^{\top} + A(0)$ is negative definite.

More generally, let $V(x) = x^{\top} P x$ so that

$$\dot{V}(x) = x^{\top} \left(A(x)^{\top} P + P A(x) \right) x.$$

By the same reasoning above, \dot{V} is negative in a neighborhood of the origin whenever $A^{\top}(0)P + PA(0)$ is negative definite.

(b) [5 points] Extend the results in (a) to global stability.

Solution: If the matrix $A(x)^{\top}P + PA(x)$ is negative definite for all x, then \dot{V} is negative over all of \mathbb{R}^n and hence the origin is globally asymptotically stable.

$$\dot{x}_1 = x_1 + 2x_2^2, \ \dot{x}_2 = 2x_1x_2 + x_2^2.$$

Using the Lyapunov function candidate

$$V(x) = x_1^2 - x_2^2,$$

show that 0 is an unstable equilibrium.

Solution:

Let r = 1 and $U = \{x \in B_r(0) : x_1^2 - x_2^2 \ge 0\}$. Notice that V(y) > 0 for arbitrarily small y and hence $U \ne \emptyset$. Indeed, U contains all points of the form (x_1, x_2) with $|x_1| > |x_2|$. Computing the Lie derivative of V along trajectories gives

$$\dot{V} = 2x_1(x_1 + 2x_2^2) - 2x_2(2x_1x_2 + x_2^2) = 2(x_1^2 - x_2^3) > 0, \ \forall (x_1, x_2) \in U.$$

$$S = \{ A = \sum_{i=1}^{k} \lambda_i A_i : \lambda_i \ge 0, \ \forall i, \sum_{i=1}^{k} \lambda_i = 1 \}.$$

(a) Suppose there exists a positive definite matrix P such that $A_i^{\top}P + PA_i$ is negative definite for each i between 1 and k. Show that every matrix in the set S is Hurwitz.

Solution:

<u>Claim:</u> A convex combination of positive definite matrices is positive definite. <u>Proof.</u> Let $\{Q_i\}_{i=1}^k$ be a set of positive definite matrices and let $\{\lambda_i\}_{i=1}^k$ be nonnegative with $\sum_{i=1}^k \lambda_i = 1$. Let $x \in \mathbb{R}^n$ be arbitrary and consider the quadratic form

$$x^{\top} \left(\sum_{i=1}^{k} \lambda_i Q_i \right) x = \sum_{i=1}^{k} \lambda_i \left(x^{\top} Q_i x \right) > 0, \quad \forall x \neq 0.$$

Let $A = \sum_{i=1}^{k} \lambda_i A_i$ be a convex combination of A_i 's. We have

$$A^{\top}P + PA = \sum_{i=1}^{k} \lambda_i \left(A_i^{\top}P + PA_i \right) =: -\sum_{i=1}^{k} \lambda_i Q_i =: Q < 0.$$

(b) Consider the differential equation

$$\dot{x}(t) = A(t)x(t)$$
, where $A(t) \in S$, $\forall t \ge 0$.

Show that 0 is an exponentially stable equilibrium of this system.

Solution:

Let $V(x) = x^{\top} P x$. We have

$$\dot{V} = x^{\mathsf{T}} (A(t)^{\mathsf{T}} P + P A(t)) \le -x^{\mathsf{T}} Q x < 0,$$

where

$$Q = \arg\inf_{t} \left\{ \lambda_{\min}(Q(t)) : A(t)^{\top} P + PA(t) = -Q(t) \right\}.$$

Solution:

"(\Rightarrow)" Assume that $f(x) \xrightarrow{\|x\| \to \infty} \infty$. We want to show that for all compact $K \subseteq \mathbb{R}$, $f^{-1}(K) \subseteq \mathbb{R}^n$ is compact. Since f is continuous, the inverse images of closed sets under f are closed sets. It remains to show that if K is (closed and) bounded in \mathbb{R} then $f^{-1}(K)$ is bounded on \mathbb{R}^n . Let $c = \max\{x \in K \subseteq \mathbb{R}\}$ and consider the set $f^{-1}([0,c])$. Notice that $f^{-1}(K) \subseteq f^{-1}([0,c]) = \{x \in \mathbb{R}^n : f(x) \le c\}$. But since f is radially unbounded, there exists a $\delta \in \mathbb{R}$ such that whenever $x \in B_{\delta}(0)$, f(x) > c. That is to say, $f^{-1}(K) \subseteq f^{-1}([0,c]) \subseteq B_{\delta}(0)$. Hence $f^{-1}(K)$ is closed and bounded, i.e., compact, showing that f is proper.

"(\Leftarrow)" Assume that f is proper so that $f^{-1}(K)$ is compact whenever $K \subseteq \mathbb{R}$ is. We want to show that $f(x) \xrightarrow{\|x\| \to \infty} \infty$. Argue ad absurdum. Suppose f(x) does not approach ∞ as $\|x\| \to \infty$. This means that there exists $c \in \mathbb{R}$ such that f(x) < c for all $x \in \mathbb{R}^n$. But then $f^{-1}([0,c]) = \mathbb{R}^n$, which is not compact. This contradicts the fact that f is proper.