Chapter 6

Spin Caloritronics

韩伟 量子材料科学中心 2015年11月22日

Review of last class

1. Spin transfer torque

2. Spin orbit torque and spin Hall effect

3. Spin orbit torque and Rashba-Edestein effect

Review of last class

John Slonczewski

Luc Berger

Summary of this class

1. Spin orbit torque

$$\tau_{ST} = \frac{\hbar}{2} \widehat{m} \times (\widehat{\sigma} \times \widehat{m})$$

Summary of this class

2. Spin Hall effect

Summary of this class

3. Rashba-Edelstein effect

(e) Inverse Edelstein Effect (IEE) (f)

Outline

- 1. Seebeck and Peltier effect
- 2. Spin Seebeck effect
- 3. Spin Peltier effect
- 4. Thermal spin injection
- 5. Thermal spin torque
- 6. Spin energy

Outline

Goennenwein & Bauer, Nature Nanotech. (2012)

Outline |

1. Seebeck and Peltier effect

Seebeck Coefficient(
$$\alpha$$
) = $-\frac{\Delta V}{\Delta T}$

Thermocouple

Peltier effect

Peltier effect

Peltier effect

Thermoelectric cooling, such as refrigerators

Outline |

2. Spin Seebeck effect

Seebeck Coefficient(
$$\alpha$$
) = $-\frac{\Delta V}{\Delta T}$

Eiji Saitoh

Uchida, et al, Nature (2008)

SSE in FM Semiconductor

Jaworski, et al, Nature Materials (2010)

SSE in FM Semiconductor

Magnon-phonon interaction

Magnon-phonon interaction

SSE in FM Semiconductor

Argument: SSE vs ANE

(b) Anomalous Nernst effect

Argument: SSE vs ANE

Huang, et al, PRL (2010)

Argument: SSE vs ANE

Chia-Ling Chien

Huang, et al, PRL (2010)

ANE generated in conducting FM?

How about insulating FM?

Output Material	Electricity	Magnetism
	a Seebeck effect	b Spin Seebeck effect
Conductor	Metal or semiconductor	V_s ∇T Ferromagnetic metal
Insulator		Spin Seebeck effect V _s V _s Magnetic insulator

Uchida, et al, Nature Materials (2010)

Is this the key to solve the issue between SSE and ANE?

Proximity effect

SSE in FM insulator

Huang, et al, PRL (2012)

Longitudinal vs. Transverse

d Longitudinal configuration

e Transverse configuration

How to solve this issue?

(c) Cross-sectional TEM image of Pt/Cu/YIG sample

→ Homework

Kikkawa, et al, PRL (2013)

SSE in compensated ferrimagnets

SSE in compensated ferrimagnets

S Geprägs, et al, Nature Comm. (2016)

SSE in compensated ferrimagnets

SSE in Antiferromagnets

SSE in Antiferromagnets

Giant SSE in InSb

Giant SSE in InSb

Giant SSE in InSb

Enhanced SSE at YIG-TI

Enhanced SSE at YIG-TI

Enhanced SSE at YIG-TI

休息10分钟

Walter, et al, Nature Materials (2011)

Table 1 | The Seebeck coefficients for parallel S_P and antiparallel S_{AP} configurations and the magneto-Seebeck effects calculated for different supercells at a temperature of 300 K.

FeCo/MgO/FeCo with a ten-monolayer MgO barrier

	S _P (μV K ⁻¹)	S _{AP} (μV K ⁻¹)	$S_P - S_{AP} (\mu V K^{-1})$	S _{MS} (%)
CoFe	- 19.7	-32.4	12.7	64.1
FeCo	45.9	-50.0	95.9	209.0
CFFC	9.4	-44.6	54.0	573.2
Co _{0.5} Fe _{0.5}	-34.0	- 21.9	-12.1	-55.2
Experimental value	-107.9 (-1,300)	- 99.2 (- 1,195)	-8.7 (-105)	-8.8 (-8.8

The results show the sensitivity to the interface composition. S_{MS} defines the relative change and can be negative or positive. Abbreviations: CoFe—Co_{0.5}Fe_{0.5} layers with Co at the MgO interface. FeCo—Co_{0.5}Fe_{0.5} layers with Fe at one of the MgO interfaces and Co at the other. Co_{0.5}Fe_{0.5}—supercell in plane with Co:Fe 1:1 at the interface. The values derived from the experiment are given for a temperature difference at the MgO barrier of 53 mK (4.4 mK) respectively. The temperature difference ΔT is taken from the numerical simulation of the temperature gradients using the thin-film value (bulk value) of the thermal conductivity of MgO.

Outline |

Peltier effect

Spin Peltier vs. Spin Seebeck

Outline |

3. Thermal spin injection

Slachter, et al, Nature Physics (2010)

$$\begin{pmatrix} \mathbf{J}_{\uparrow} \\ \mathbf{J}_{\downarrow} \\ \mathbf{Q} \end{pmatrix} = -\begin{pmatrix} \sigma_{\uparrow} & 0 & \sigma_{\uparrow} S_{\uparrow} \\ 0 & \sigma_{\downarrow} & \sigma_{\downarrow} S_{\downarrow} \\ \sigma_{\uparrow} \Pi_{\uparrow} & \sigma_{\downarrow} \Pi_{\downarrow} & k \end{pmatrix} \cdot \begin{pmatrix} \nabla \mu_{\uparrow} / e \\ \nabla \mu_{\downarrow} / e \\ \nabla T \end{pmatrix}$$

Metal

Semiconductor

Breton, et al, Nature (2011)

Electrical spin injection

Dash, et al, Nature (2009)

Jeon, et al, Nature Materials (2013)

Outline |

4. Thermal spin torque

$$\tau \propto P\Delta V + P'S\Delta T$$

Outline

5. Spin energy

Kirihara, et al, Nature Materials (2012)

- 1. Seebeck and Peltier effect
- 2. Spin Seebeck effect
- 3. Spin Peltier effect
- 4. Thermal spin injection
- 5. Thermal spin torque
- 6. Spin energy

Goennenwein & Bauer, Nature Nanotech. (2012)

2. Spin Seebeck effect

3. Spin Peltier effect

4. Thermal spin injection

5. Thermal spin torque

6. Spin energy

下一节课: Nov.29th

Chapter 7: Topological Spintronics

课件下载:

http://www.phy.pku.edu.cn/~LabSpin/teaching.html

谢谢!