Q.No. Sub. Sec.

### **Question Description**

Marks

- 1. Expand  $f(x, y) = e^x \sin y$  in Taylor Series about  $\left(1, \frac{\pi}{2}\right)$  up to third degree terms and hence find the approximate value of  $e^{0.5} \sin\left(\frac{\pi+2}{2}\right)$ . [10]
- 2. Find the absolute extrema of  $z = 2x^2 + y 3xy$  in the plane region D bounded by the lines y = 1 x, y = 1 + x, y = -1 x and y = -1 + x. [10]
- Sketch the region of integration and evaluate  $\int_{0}^{3} \int_{4y/3}^{\sqrt{(25-y^2)}} x \, dx \, dy$  after changing the order of integration. [10]
- 4. [a] Using spherical coordinates, evaluate  $\iiint_E (x^2 + y^2) dv$  where E lies between the spheres  $x^2 + y^2 + z^2 = 4$  and  $x^2 + y^2 + z^2 = 9$ . [7]
  - [b] Evaluate  $\iiint\limits_R (x-y-z) \, dx \, dy \, dz$ , where  $R: 1 \le x \le 2; 2 \le y \le 3; 1 \le z \le 3$ .
- If n is positive integer and m > -1, then prove that  $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{m} n!}{(m+1)^{m+1}}$  [5]
  - [b] Using Beta and Gamma function, evaluate  $\int_{0}^{a} y^{4} \sqrt{a^{2} y^{2}} dy$ . [5]

### Answer all the Questions

| 1. | <ul> <li>(i) Find all critical points of the function f(x, y) = x<sup>4</sup> + y<sup>4</sup> - 2x<sup>2</sup> - 2y<sup>2</sup> + 4xy and check whether the function attains maximum or minimum at each of these points.</li> <li>(ii) Show that point (0,0) is neither a point of local minimum nor a point of local maximum for the function given by f(x,y) = 3x<sup>4</sup> - 4x<sup>2</sup>y + y<sup>2</sup> for (x,y) ∈ R<sup>2</sup>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 2. | (i) If $x, y$ and $z$ are positive real numbers, then find the minimum value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |
|    | function $x^2 + 8y^2 + 27z^2$ , where $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 |  |
|    | (ii) Find the Taylor series expansion of $f(x,y) = \sin xy + x^2y + e^x$ in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 |  |
|    | power of $(x-1)$ and $(y-\pi)$ up to second degree terms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| _  | TAKEN TO THE TAKEN THE TAK |    |  |

|     | 3. | 4   | (i) Find the value of integral by using the polar coordinates.                                                                                                                  |    |
|-----|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| * - |    | 1.5 | $I = \iint_{D} \sqrt{x^2 + y^2}  dy dx  \text{where } D = \{(x, y) \in \mathbb{R}^2 : x \le x^2 + y^2 \le 2x\}$                                                                 | -  |
|     |    |     | (ii) Find the value of integral by changing the order of integration                                                                                                            | 10 |
|     |    |     | $I = \int_0^4 \int_{(4-x)^{\frac{1}{2}}}^2 e^{y^3} dy dx$                                                                                                                       |    |
|     | 4. |     | Using multiple integrals, find the volume of the solid region bounded above by hemisphere $z = 1 + \sqrt{1 - x^2 - y^2}$ and bounded below by the cone $z = \sqrt{x^2 + y^2}$ . | 10 |
|     | 5. |     | Solve the following integrals by using Beta and Gamma Function:                                                                                                                 |    |
|     |    |     | (i) $I = \int_{0}^{\infty} \frac{e^{-\frac{k}{x^{2}}}}{x^{6}} dx  \text{where } k \neq 0$ (ii) $I = \int_{0}^{1} x^{4} \sqrt{1 - x^{2}} dx$                                     | 10 |
|     |    |     | $(ii) 	 I = \int_0^1 x^4 \sqrt{1 - x^2} dx$                                                                                                                                     |    |
|     |    | •   |                                                                                                                                                                                 |    |
|     |    |     |                                                                                                                                                                                 |    |
|     |    |     |                                                                                                                                                                                 |    |
|     |    |     |                                                                                                                                                                                 |    |



#### Continuous Assessment Test (CAT)- 11- December 2022

| Programme    | :  | B.Tech.                                                                                                                               | Semester : | Fall Semester Year<br>I 2022-2023              |
|--------------|----|---------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------|
| Course Title | 1. | Calculus                                                                                                                              | Code :     | BMAT101L                                       |
| course time  |    | Calculus                                                                                                                              | Slot       | E2+TE2                                         |
| Faculty      |    | Dr. Berin Greeni A., Dr. Prosenjit Paul, Dr. Srutha<br>Keerthi B, Dr. Dhivya P, Dr. Saurabh Chandra Maury,<br>Dr. Karan Kumar Pradhan | Class No.  | CH2022231700201,<br>197, 199, 202, 198,<br>200 |
| Duration     | :  | 1 ½ Hours                                                                                                                             | Max. Marks | 50                                             |

### Answer all the Questions (50 marks)

| Q. No.     | Question Description                                                                                                                                        | Marks             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (b) Obtain | the Taylor series expansion of $x^y$ about $(1, 1)$ up to second degree terms.<br>In the critical points of $(x^2 + 3y^2)e^{-(x^2+y^2)}$ .                  | [5+5]             |
| A wire o   | f length L is cut into two parts (not necessarily equal) which are bent to in the a circle respectively. Find the least value of the sum of areas so found. | he form of a [10] |

If  $f(x,y) = (x^2 + y^2)$  represents the population density of a planar region on the Earth, where x and y are measured in miles, find the number of people in the region shown below.



[10]





# Continuous Assessment Test (CAT)- II- December, 2022

| ogramme     | : | B.Tech.                                                                                                                                                             |            |             | Fall Semester<br>I 2022-2023                    |
|-------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------------------------------------------|
| <b></b>     | + |                                                                                                                                                                     | Code       |             | BMAT101L                                        |
| ourse Title | ; | Calculus                                                                                                                                                            | Slot       |             | E1+TE1                                          |
| aculty      |   | Dr. Saroj Kumar Dash, Dr. Manivannan A, Dr. C.<br>Rajivganthi, Dr. Harshavarthini, Dr. Parajik, Dr. Ashis<br>Berg, Dr. Ankit Kumar, Dr. Sandin Saha, Dr. Kriti Arya | Class Nbr  | 1           | CH202223170<br>189, 191, 192,<br>194, 257, 323, |
| uration     | _ | 1 1/2 Hours                                                                                                                                                         | Max. Marks | <u>نا</u> ' | 50                                              |

## Answer all the Questions (50 marks)

| O.No. | Question Description                                                                                                                                                                                                                                                                 | Marks |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1,    | A space probe in the shape of the ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters Earth's atmosphere and its surface begins to heat. After 1 hour, the temperature at the point $(x, y, z)$ on the probe's surface is $T = 8x^2 + 4yz - 16z + 600$ . Find the hottest point on the probe's | [10]  |
| 2.    | Find the absolute maximum and minimum of $f(x, y) = x + y - xy$ on the triangle ABC with vertices A (0.50), B(50.0) and C(-50,-50).                                                                                                                                                  | [10]  |
| 3.    | a) Change the order of integration, evaluate $\int_0^2 \int_0^{9-x^2} x  dy  dx$ .                                                                                                                                                                                                   | [7]   |
|       | b) Find the area of $r = \sin \theta$ in polar coordinates.                                                                                                                                                                                                                          | [3]   |
| 4.    | A spherical tank of radius 3 meters is filled with water to a height of 2 meters. Find the volume of the water using the cylindrical coordinates.                                                                                                                                    | [10]  |
|       | Part of Miles                                                                                                                                                                                                                                                                        | [5]   |
| ٠,٠   | a) Evaluate $\int_0^\infty \sqrt{x} e^{-x^5} dx$ .<br>b) Evaluate $\int_0^1 x^7 (1-x^2)^6 dx$ .                                                                                                                                                                                      | [5]   |





## Continuous Assessment Test (CAT)- II- December 2022

| Programme    | : B.Tech.                                                                                                                                         | Semester   | : Fall 2022-2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Title |                                                                                                                                                   |            | : BMAT101L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                   |            | : A2+TA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Faculty      | : Dr. Balamurugan, Dr. Saroj Kumar Dash, Dr. Mini<br>Ghosh, Dr. Manimaran, Dr. Sowndarrajan, Dr.<br>Prabhakar, Dr. Rajesh Kumar, Dr. Soumendu Roy | Class ID   | : CH2022231700410,<br>416,429,440,443,57<br>3,604,610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Duration     | : 1 1/2 Hours                                                                                                                                     | Max. Marks | and the same of th |

## Answer all the Questions (50 marks)

| Q.No. | 2 months as essent person                                                                                                                                                                                                                                                                          | Marks |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. •  | (a). Find the absolute maximum and minimum values of $f(x, y)$ on the region R where $f(x, y) = x^2 + xy + y^2 - 3x + 3y$ and R is the triangular region cut from the first quadrant by the line $x + y = 4$ .                                                                                     | [5]   |
|       | (b). For what values of the constant $k$ does the second derivative test guarantee that $f(x,y) = x^2 + kxy + y^2$ will have a saddle point at $(0,0)$ ? A local minimum at $(0,0)$ ? For what values of $k$ is the second derivative test inconclusive? Give reasons of your results.             | [5]   |
|       | (a). Find three positive numbers whose sum is 50 and whose product is maximum.                                                                                                                                                                                                                     | [5]   |
|       | (b). A flat circular plate has the shape of the region $x^2 + y^2 \le 4$ . The plate, including the boundary where $x^2 + y^2 = 4$ , is heated so that the temperature at the point $(x, y)$ is $T(x, y) = x^2 + 2y^2 - x$ . Find the temperatures at the hottest and coldest points on the plate. | [5]   |
| 3.    | Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{e^y}{(1+e^y)\sqrt{1-x^2-y^2}} dy dx$ .                                                                                                                                                                                                              | [10]  |
| 14/   | Find the volume of the solid bounded by the $xy$ -plane, the paraboloid $2z = x^2 + y^2$ and cylinder $x^2 + y^2 = 4$ .                                                                                                                                                                            | [10]  |
| 5.    | (a). Find the value of $\int_0^{\pi} \sin^2 x (1 + \cos x)^4 dx$ in terms of gamma function.                                                                                                                                                                                                       | [5]   |
|       | (b). Evaluate the integral $\int_0^\infty x^4 e^{(-x^8)} dx$ .                                                                                                                                                                                                                                     | [5]   |



### Continuous Assessment Test II - December 2022

| Programme        | : B.Tech                     | Semester       | :  | <b>FALLSEM 2022-23</b> |
|------------------|------------------------------|----------------|----|------------------------|
| Carlotta Manager | Calculus                     | Code           | :  | BMAT1011               |
| Course           | Calculus                     | Slot           | i: | A1+TA1                 |
| Faculty          | : Dr. S. Radha               | · Class Number | :  | CH2022231700297        |
|                  | Dr. N. Nathiya               |                | İ  | CH2022231700423        |
|                  | Dr. Sowndarrajan P T         |                |    | CH2022231700424        |
|                  | Dr. Manoj Kumar Singh        |                |    | CH2022231700298        |
|                  | Dr. Harshavarthini Shanmugam |                |    | CH2022231700617        |
|                  | Dr. Manimaran J              |                |    | CH2022231700608        |
| Time             | : 1½ hours                   | Max. Marks     | 1  | 50                     |

## Answer ALL the Questions ( $5 \times 10 = 50 \text{ marks}$ )

| Q.No. Sec    | Question Description                                                                                                                                                | Marks |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. 9.        | Find the critical points of the function $f(x, y) = x^3 + y^3 - 12x - 6y + 40$ .<br>Test each of these for maximum and minimum.                                     | 5     |
| <i>ک</i> وار | Use Taylor's formula to find a quadratic approximation of $f(x, y) = xe^y + 1$ at $(1, 4)$ .                                                                        | 5     |
| 12.          | The temperature T at any point $(x, y, z)$ in space is $T = 625xzy^2$ . Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$ .      | 10    |
| X,           | Find the volume of the region using double integration which lies under the paraboloid $z = 4 - x^2 - y^2$ and above the disk $(x - 1)^2 + y^2 = 1$ on the xyplane. | 10    |
| 4/           | Evaluate $\iiint e^{-x^2-z^2} dV$ where R is the region between the two cylinders $x^2 + z^2 = 4$ and $x^2 + z^2 = 9$ with $1 \le y \le 5$ and $z \le 0$ .          | 10    |
| 5. g.        | Evaluate $\int_0^1 x^{\frac{7}{2}} \left(1 - x^{\frac{3}{2}}\right)^{11} dx$ .                                                                                      | 5     |
|              | Evaluate $I = \int_0^\infty x^4 e^{-x^4} dx$ .                                                                                                                      | 5     |