PERSONAL ASSISTANCE FOR SENIORS

WHO ARE SELF-RELIANT

A PROJECT REPORT

Submitted by

HEMALATHA.K - 210519106026

KARTHIKA.B - 210519106036

PRADEESHA.E - 210519106051

ZIBIAH NATHASHA.G.J - 210519106074

KIRUTHIGA.S - 210519106039

for the course

HX8001 – Professional Readiness for Innovation, Employability and Entrepreneurship

in

BACHELOR OF ENGINEERING

ELECTRONICS AND COMMUNICATION ENGINEERING

DMI COLLEGE OF ENGINEERING

ANNA UNIVERSITY: CHENNAI 600 025

NOVEMBER 2022

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "PERSONAL ASSISTANCE FOR SENIORS WHO ARE SELF -RELIANT" is the bonafide work of "HEMALATHA.K, KARTHIKA.B,PRADEESHA.E,ZIBIAHNATHASHA.G.J,KIRUTHIGA.S" Who carried out the project work under my supervision.

SIGNATURE SIGNATURE

Dr. M. Latha Mrs.J. Lurdhumary, M. Tech

HEAD OF THE DEPARTMENT MENTOR

Department of ECE, Department of ECE

DMI college of Engineering, DMI college of Engineering

Palanchur, chennai-600123 Palanchur, chennai-600123

ABSTRACT

In the contemporary day life style people have no time to spend with their Tamil. In such a busy life it's difficult to keep an isolated day out of their busy schedule for the doctor for consistent medical checkup and taking medicines at time. Their is a necessity for new idea and technology which helps in saving their time.

The proposed model enables users to improve health related risks and reduce healthcare costs by reminding to take medicines at time, collecting, recording and analyzing data in real time efficiently. With the help of this proposal the time of both patients and doctors are saved and doctors can also help in emergency scenario as much as possible. The proposed outcome of the project is to give proper and efficient medical services to patients by reminding them when to take medicines and collecting data information through health status monitors which would include patient's Heart rate

The user can feed the type of medicine as a tablet, capsule or Syrup, dosage as half, one or two capsule/tablet/spoon, After food or before food setting, doctor name as doc-A, doc-B, doc-C and so on and dosage timing as Morning, Afternoon and Night. The morning time is assumed to be 9 AM, Afternoon time is assumed to be 12 PM and Night time is assumed to be 9 PM.

The project is built on Arduino Mega and has an RTC interfaced to keep track of time without fail. The medicine information is saved in the internal EEPROM of the Arduino board

TABLE OF CONTENTS

1. INTRODUCTION	
1.1 Project Overview	07
1.2 Purpose	08
2. LITERATURE SURVEY	
2.1 Existing problem	09
2.2 References	09
2.3 Problem Statement Definition	10
3. IDEATION & PROPOSED SOLUTION	
3.1 Empathy Map Canvas	10
3.2 Ideation & Brainstorming	11
3.3 Proposed Solution	12
3.4 Problem Solution fit	13
4. REQUIREMENT ANALYSIS	
4.1 Functional requirement	17
4.2 Non-Functional requirements	18

5.1 Data Flow Diagrams	19		
5.2 Solution & Technical Architecture	20		
5.3 User stories	22		
6. PROJECT PLANNING & SCHEDULING			
6.1 Sprint Planning & Estimation	25		
6.2 Sprint Delivery Schedule	30		
6.3 Reports from JIRA	32		
7. CODING & SOLUTIONING (Explain th	ne features	added ii	n the
project along with code)			
7.1 Feature 1	34		
7.2 Feature 2	35		
8. TESTING			
8.1 Test Cases	37		
8.1 Test Cases8.2 User Acceptance Testing	37 38		

5. PROJECT DESIGN

10. ADVANTAGES & DISADVANTAGES	40
11. CONCLUSION	41
12. FUTURE SCOPE	41
13. APPENDIX	
Source Code	42
GitHub & Project Demo Link	43

INDRODUCTION

In modern society, busy life has made people forget many things in day to day life. The elderly people and the people victims of chronical diseases who need to take the medicines timely without missing are suffering from dementia, which is forgetting things in their daily routine. Considering this situation study has been done in this. Paper reviewing the technologies of home healthcare which are currently used for improving this situation by reminding the scheduled of medicine, remote monitoring and update new medicine data of patients, which can be done by prescriber through web. If the patient sufferings from the disease where it is compulsory to take medicine at proper time, in this paper we have review the technology of home health care system among them a medicine reminder system and some improvement regarding authentication have well focused. Internet of Things (IoT) network will provide active and real-time appointment of patient, hospitals, caretaker and doctors apart from this the secured data transmission from source point to destination for the purpose of remote monitoring there is need of the architecture of a low cost embedded platform for Web-based monitoring .The distant monitoring is made possible by using various biomedical devices, they measure and transmit data via Bluetooth or ZigBee to a unit that manages them (PC, tv). The collected information may be stored on the device or sent to a collection center that provides a complete monitoring, for both health professionals and patients. Access to the medical center can be allowed, via web, from mobile device or PC 2 The IOT and RFID combination also play a vital role in object detection and personal identification which can be use categorized the person while remote monitoring when number of people information have observed which will helpful to unique identity to each patient and their respective data will be stored.

1.1PROJECT OVERVIEW:

When it comes to our loved ones, we always want to stay them healthy and fit. But what will happen if they get ill and forget to take medicine on time. We would be worried, right? At hospitals, there are many patients and it is difficult to remind every patient to take medicine on time. The traditional ways require human efforts to remind them to take medicines on time. The digital era doesn't follow that and we can use machines to do that. The application of **Smart Medicine Reminder** is very wide and can be used by patients at home, doctors at hospitals, and at many other places. When it comes to reminding, there can be many ways to remind it:

- 1. Show it on a display
- 2. Send notification on email or Phone
- 3. Using mobile apps
- 4. Buzz alarm
- 5. Using Bluetooth/Wi-Fi
- 6. Get a call
- 7. Remind for next medicine time while reminding current time

We can combine ways depending upon the need. To keep things simple here we made a **simple Medicine Reminder using Arduino** which reminds us to take medicines 1 or 2 or 3 times a day. The time slot can be selected using push buttons. Also, it shows the current Date and Time. We will further extend it to an IoT project incoming articles where an email or SMS notification will be sent to the

user. This medication reminder can also be integrated with <u>Patient Monitoring</u>

System

1.2 PURPOSE:

The goals of medicine encompass the relief of pain and suffering, the promotion of health and the prevention of disease, the forestalling of death and the promoting of a peaceful death, and the cure of disease when possible and the care of those who can not be cured. By analyzing the data, an internet of things (IoT) based reminder system has been developed. It is designed to assist the patient who forgets to take medicine. The proposed system consists of an IoT enabled device and an android application. It mainly focuses on dementia patient.

2.LITERATURE SURVEY:

Most patients don't recollect their whole drug routine and they additionally sometimes neglect to take their prescription [1]. Outpatients with interminable sicknesses, especially the individuals who must oversee more than one prescription or take drug more than once per day, may not take their meds appropriately. The pace of drug adherence, characterized as "the degree to which the patient adheres to restorative guidelines", has been accounted for to be around 50–80% [2-4]. Quiet adherence to prescription is clinically critical in lessening mortality of genuine infection and complete medicinal services costs. By and by, the above depicted issues have opposed an answer for quite a while [5, 6].

Now days there are large number of mobile phone/smart phone users in the world. The bulky number of variety of applications available in the mobile phone made the luxurious life. Mobile phone companies are providing such a wonderful

application for their users then question arises in mind that why not to use those applications when company is providing them? Out of those applications, Reminder facility in the mobile phone is the most commonly used application which is used for preventing to remember each and every small thing.

2.1 EXISTING PROBLEM:

Patients may often fail to comply with their medication whether it was from forgetting to take the medicine, from taking medicine at the wrong time or even from taking too much medicine. Therefore, there are many systems such as reminder, alarm, and so on to remind patient. We have focus on those patients who having difficulty to take medication on time, we tried to design and to aid patients with managing their medical prescriptions, through a reminder app they will use to look at and manage their medications. The Pill Reminder will facilitate users to require the right medication on time. This system provides a real time monitoring system that allow related people to monitor the patient's activity remote.

2.2 REFERENCE:

Andreas Handojo, Tioe Julio Adrian Sutiono, Anita Nathania Purbowo,Metin Berke Yelaldı, Veliyullah Öztürk, Anıl Gün, Berke Küçüksağır, Alim Kerem

Erdoğmuş, Uğur Yayan, Rifat Edizkan, Sawsan M. Mahmoud, Hesham A. Alabbasi, Tawfiq

E. Abdulabbas, Rainer Lutze, Klemens Waldhör

2.3 PROBLEM STATEMENT DEFINITION:

Patients may often fail to comply with their medication whether it was from forgetting to take the medicine, from taking medicine at the wrong time or even from taking too much medicine. Therefore, there are many systems such as reminder, alarm, and so on to remind patient. We have focus on those patients who having difficulty to take medication on time, we tried to design and to aid patients with managing their medical prescriptions, through a reminder app they will use to look at and manage their medications. The Pill Reminder will facilitate users to require the right medication on time. This system provides a real time monitoring system that allow related people to monitor the patient's activity remote.

3.IDEATION & PROPOSED SOLUTION:

3.1 EMPATHY MAP CANVAS:

Figure 3.1 Empathy map

3.2 IDEATION & BRAINSTROMING:

SOLUTION ARCHITECTURE:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

❖ Medicine Remainders serve as good way to stay on track and uphold appropriate schedule.

SOLUTION ARCHITECTURE DIAGRAM:

3.3

PROPOSED SOLUTION:

TABLE: 3.3 Proposed solution

S. No.	Parameter	Description
1	Problem Statement	Aging cannot be
	(Problem to be solved)	prevented and old age is
		a sensitive phase.
		Sometimes elderly
		people forget to take
		their medicine at the
		correct time. They also
		forget which medicine
		He / She should take at
		that particular time.
		And it is difficult for
		doctors/caretakers to
		monitor the patients
		around the clock. An
		application need to be
		built for the users which
		enables them to set the
		desired time to take
		medicines.

2	Idea / Solution	The user details will be
	description	stored in the cloud
		database. If the
		medicine time arrives
		the web application will
		send the medicine name
		to the IoT Device
		through the IoT
		platform. The device
		will receive the
		medicine name and
		notify the user with
		voice commands.
3	Novelty / Uniqueness	The use of Text To
		Speech service to speak
		out the medicine name
		through the IoT device
		after receiving it from
		the web application
		makes this app unique
		from other existing
		apps.
4	Social Impact /	This app is a medication
	Customer Satisfaction	intake remainder system
		for people who are
		self-reliant. Using this

		ann the user can avoid
		app the user can avoid
		health issues that arise
		due to improper
		consumption of
		medications. This app is
		flexible for illiterates
		too as it provides voice
		services.
5	Business Model	The app revenue model
	(Revenue Model)	is an integral part of a
		business concept. Many
		users may show
		willingness to this app
		as it replace the role of
		high paid caretakers.
		And also it can be easily
		used.
6	Scalability of the	Since it is a cloud based
	Solution	IoT application, it
		serves a large number
		of users which makes
		the application to be
		highly reliable. Hence,
		it will have high
		scalability.

3.4 PROBLEM SOLUTION FIT:

TABLE: 3.4 Problem solution fit

4.REQUIREMENT ANALYSIS:

4.1 FUNCTIONAL REQUIREMENTS:

Following are the functional requirements of the proposed solution.

Table: 4.1 Functional requirements

FR No.	Functional	Sub Requirement
	Requirement (Epic)	(Story / Sub-Task)
ED 1	II D :	D :
FR-1	User Registration	Registration through
		Form
		Registration through
		Gmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Access Cloud services	Access the cloud
		service with correct
		credentials
		Store the details in the
		database
		Retrieve needed
		information for the
		user's operation
FR-4	IOT configuration	Fine Tuning the IOT
		device based on
		preference

	Access the Cloud DB
	via device
	Manage the request and
	response effectively

4.2 NON-FUNCTIONAL REQUIREMENTS:

Following are the non-functional requirements of the proposed solution.

Table: 4.2 Non-Functional requirements

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	App can be used by
	Csucincy	anyone who has
		operational knowledge
		about internet and
		computer.
NFR-2	Security	For security, TFA is
		enabled and biometrics
		are also added for user
		safety.
NFR-3	Reliability	Highly reliable since, It
		uses Trusted cloud
		services like IBM
NFR-4	Performance	Performance is better

		compared to other
		market products.
NFR-5	Availability	Available on mobile app. Web version is getting ready for next
1177	~ 1.111	release.
NFR-6	Scalability	Using Cloud services, makes the scalability higher the using traditional database.

5. PROJECT DESIGN:

5.1 DATA FLOW DIAGRAMS:

Data flow diagram:

5.2 SOLUTION & TECHNICAL ARCHITECTURE:

SOLUTION ARCHITECTURE:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are

to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Example - Solution Architecture Diagram:

TECHNICAL ARCHITECTURE:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

REFERENCE

 $\underline{https://ieeexplore.ieee.org/document/9640866}$

5.3 USER STORIES

Table-1: Components & Technologies:

S.	Component	Description	Technology
No			
1.	User Interface	Mobile App	HTML, CSS, JavaScript /
			Angular Js / React Js etc.
2.	Application Logic-1	Logic for a process in	Python
		the application	
3.	Application Logic-2	Logic for a process in	IBM Watson STT service
		the application	
4.	Application Logic-3	Logic for a process in	IBM Watson Assistant
		the application	
5.	Database	Data Type,	Mango DB
		Configurations etc.	
6.	Cloud Database	Database Service on	IBM Cloudant
		Cloud	

7.	File Storage	File storage	IBM Block Storage
		requirements	
8.	External API-1	Getting latest medical	Rapid API
		tips	
9.	Infrastructure	Application	Local, Cloud Foundry.
	(Server / Cloud)	Deployment on Local	
		System / Cloud	

S.	Characteristics	Description	Technology
No			
1.	Open-Source	List the open-source	Open Cloud, Angular JS.
	Frameworks	frameworks used	
2.	Security	List all the security /	Discretionary Access
	Implementations	access controls	Control (DAC)
		implemented, use of	
		firewalls etc.	
3.	Scalable	Justify the scalability	SOA + EDA
	Architecture	of architecture (3 –	
		tier, Micro-services)	
4.	Availability	Justify the availability	Classic and VPC Load
		of application (e.g. use	balancers
		of load balancers,	
		distributed servers	
		etc.)	
5.	Performance	Design consideration	We are now using Lite
		for the performance of	plan, 5 request per
		the application	second.
		(number of requests	
		per sec, use of Cache,	
		use of CDN's) etc.	

6.PROJECT PLANNING & SCHEDULING:

- 6.1 Sprint planning and estimation
- 6.2 Sprint delivery schedule
- 6.3 Reports from JIRA

6.1 SPRINT & PLANNING ESTIMATION:

Product Backlog, Sprint Schedule, and Estimation

Use the below template to create product backlog and sprint schedule

Table: 6.1 sprint & planning estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1		US-1	Create the IBM Cloud services which are being used in this project.	6	High	Hemalatha. K Karthika. B Pradeesha. E, Zibiah Nathasha. G. J Kiruthiga. S

Sprint-1	US-2	Configure the IBM Cloud services which are being used in completing this project.	4	Medium	Hemalatha. K Karthika. B Pradeesha. E, Zibiah Nathasha. G. J Kiruthiga. S
Sprint-1	US-3	IBM Watson IoT platform acts as the mediator to connect the web application to IoT devices, so create the IBM Watson IoT platform.	5	Medium	Hemalatha. K Karthika. B Pradeesha. E, Zibiah Nathasha. G. J Kiruthiga. S
Sprint-1	US-4	In order to connect the IoT device to the IBM cloud, create a device in the IBM Watson IoT platform and get the device credentials.	5	High	Hemalatha. K Karthika. B Pradeesha. E, Zibiah Nathasha. G. J

					Kiruthiga. S
Sprint-2	US-1	Configure the connection security and create API keys that are used in the Node-RED service for accessing the IBM IoT Platform.	10	High	Hemalatha. K Karthika. B Pradeesha. E, Zibiah Nathasha. G. J Kiruthiga. S
Sprint-2	US-2	Create a Node-RED service.	10	High	Hemalatha. K Karthika. B Pradeesha. E, Zibiah Nathasha. G. J Kiruthiga. S
Sprint-3	US-1	Develop a APPLICATION that reminds elders to take their medicines.	7	High	Hemalatha. K Karthika. B Pradeesha.

					E, Zibiah Nathasha. G. J Kiruthiga. S
Sprint-3	US-2	After that upload the information to the device that reminds them to take their medicine	5	Medium	Hemalatha. K Karthika. B Pradeesha. E, Zibiah Nathasha. G. J Kiruthiga. S
Sprint-3	US-3	Publish Data to The IBM Cloud	8	High	Hemalatha. K Karthika. B Pradeesha. E, Zibiah Nathasha. G. J Kiruthiga. S

Sprint-4	US-1	Create Web UI in Node- Red	10	High	Hemalatha. K
					Karthika. B
					Pradeesha. E,
					Zibiah Nathasha. G. J
					Kiruthiga. S
Sprint-4	US-2	Configure the NodeRED flow to receive data from the IBM IoT platform and also use Cloudant DB nodes to store the received sensor data in the cloudant DB	10	High	Hemalatha. K Karthika. B Pradeesha. E, Zibiah Nathasha. G. J
					Kiruthiga. S

6.2 SPRINT DELIVERY SCHEDULE:

Table: sprint delivery schedule

ease
e
tual)
Oct
2
t

Sprint-2	20	6 Days	31	Oct	05	Nov	20	31	Oct
			2022		2022			2022	
Sprint-3	20	6 Days	07	Nov	12	Nov	20	07	Nov
			2022		2022			2022	
Sprint-4	20	6 Days	14	Nov	19	Nov	20	14	Nov
			2022		2022			2022	

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

6.3 Report from JIRA:

7.CODING & SCHEDULING:

7.1 FEATURES 1

7.2 FEATURES 2

PYTHON OUTPUT:

```
## Python 3.70 Shell*

File Edit Shell Debug Options Window Help

Fython 3.7.0 (v3.7.0 silbfoco5098, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on min32

Type "copyright", "credites" or "license()" for more information.

**DELTAIL ("Uters/Laken/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta/Delta
```

```
import json
import wiotp.sdk.device
import time
import random
myConfig = {
 "identity": {
 "orgId": "qq2hy2",
 "typeId": "VSVS_DEVICETYPE",
 "deviceId": "vsvs7501"
 },
 "auth": {
 "token": "UHBu-JRqfLL_pqOb4r"
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
for i in range(0,20):
tablet=["Paracetamol","Aspirine","Dolo 650","Insulin","Vicks"]
medicinetime=[12.00,1.00,2.00,3.00,5.00,18.00,20.00,7.00]
name = "Madhu"
medicine=random.choice(tablet)
 medicinetime=random.choice(medicinetime)
mydata = {'Patient Name': name, 'Medicine Name': medicine, 'Time':
medicinetime}
client.publishEvent("MEDICINE REMINDER", "json", data=mydata, qos=0,
onPublish=None)
print("Data published to IBM IOT platform :", mydata)
```

time.sleep(5)
client.disconnect()

8.TESTING

8.1 TEST CASES:

Table: 8.1 Test cases

This report	Total Cases	Not Tested	Fail	Pass
shows the				
number of test				
cases that				
have passed,				
failed, and				
untested				
Section				
Print Engine	7	0	0	7
Client	51	0	0	51
Application				
Security	2	0	0	2
Outsource	3	0	0	3
Shipping				
Exception	9	0	0	9
Reporting				
Final Report	4	0	0	4
Output				
Version	2	0	0	2
Control				

8.2 USER ACCEPTANCE TESTING:

1.Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the project-personal assistance for senior citizen who are self-reliant at the time of the release to User Acceptance Testing (UAT)

.

2.Defect Analysis

This report shows the number	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
of resolved or closed bugs at					
each severity level, and how					
they were resolved. Resolution					
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	a.

9.RESULTS:

The medicine reminder system serves reliable reminders, has a good and easy to use user interface and supports a lot of features adhering to medicines. The details are not at all confusing and can be easily understood by the user. The best part of the application is that the details only have to be entered one time. On submitting the details once, the data is synced on all the user's devices on which he/she is logged in. This allows for easy reminders no matter what device the user is using. The reviews on the system are overall positive and it addresses most of the flaws in the current reminder systems. However, there are a few issues which we intend to address further:

- we can only remind the person but not make him take the medicine forcefully
- we are not on alarms so if the user skips the alarm, we don't bug him continuously

9.1 PERFORMANCE METRICES

Table: 9.1 Performance metrices

S	.No	Project Name	Scope/feature	Functional Changes	Hardware Changes	Software Changes	Impact of Downtime	Load/Volume Changes	Risk Score
1		Personal Assistance For Seniors who are Self-Reliant	Existing	Low	Moderate	No Changes	Causes delay in runtime	>10 to 30%	ORANGE

10.ADVANTAGES & DISADVANTAGES:

ADVANTAGES:

- 1.It Alerts patients to take medicine.
- 2. Effortless functions.
- 3.Backup supply.

DISADVANTAGES:

- 1. Arduino is costly.
- 2. Possibilities of technical problems.
- 3. Need additional skill to operate the reminder system.

11. CONCLUSION:

Hence an attempt was made to build a medicine reminder kit which gives indication at proper time and also an alert to pre-guardian about tablet consumption status. In addition to it we also have heart rate monitor which calculates our heart rate and upload it to online website. The medicine reminder system is a useful resource for those who need technological help in completing or need help in working through day-to-day tasks and taking care of their health. It is a smart and organized system that is designed with helping the elderly people in our homes, but we have not put any restrictions that stop an everyday user from using the system. Anyone can need medical attention and normal people forget taking their prescriptions as well. The feature will help them out in regulating their medications. It can also help a working person with a busy schedule by sending him a notification on the device he uses full day, his laptop. Thus there is no restriction on the user base for our system.

12. FUTURE SCOPE:

For the future work we have decided to add a confirmation from the user whether they have taken the medicine or not. If they haven't taken the medicine the information will be send to the doctor and he can they reschedule the further medicine reminders according to the new schedule. Overall, It is a much needed system by the elderly people in our homes. It helps them in taking their medications in the prescribed quantity and at the prescribed time

1. This project would help to decrease the number of deaths due to human error.

2.It is specially designed for old age patients who suffer from diseases like Alzheimer's, Diabetes etc..

13. APPENDIX:

Source code

GitHub & Project demo link

SOURCE CODE:

https://github.com/IBM-EPBL/IBM-Project-53806-1661497682

```
import json
import wiotp.sdk.device
import time
import random
myConfig = {
  "identity": {
  "orgId": "qq2hy2",
  "typeId": "VSVS_DEVICETYPE",
```

```
"deviceId": "vsvs7501"
 },
 "auth": {
 "token": "UHBu-JRqfLL_pqOb4r"
 }
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
for i in range(0,20):
tablet=["Paracetamol","Aspirine","Dolo 650","Insulin","Vicks"]
 medicinetime = [12.00, 1.00, 2.00, 3.00, 5.00, 18.00, 20.00, 7.00]
 name = "Madhu"
medicine=random.choice(tablet)
 medicinetime=random.choice(medicinetime)
 mydata = {'Patient Name': name, 'Medicine Name': medicine,
                                                                       'Time':
medicinetime}
 client.publishEvent("MEDICINE REMINDER", "json", data=mydata, qos=0,
onPublish=None)
print("Data published to IBM IOT platform :", mydata)
 time.sleep(5)
client.disconnect()
```

GITHUB & PROJECT DEMO LINK:

https://drive.google.com/file/d/1aT-IAGnMcRFQ2MxAvw8MPLBXhLxeOwjs/vie w?usp=share link