Travail noté #4 : Construisez un modèle de langage

Un modèle de langage est un outil mathématique qui permet d'établir la distribution statistique des mots : en présence (ou dans le contexte) de certains mots, quel mot a tendance à suivre, et dans quelle proportion des cas (c'est-à-dire avec quelle probabilité). Un modèle de langage n'est pas un objet abstrait qui décrit une réalité théorique : il s'agit d'un modèle statistique entraîné sur des données particulières. De la même manière qu'un modèle de prédiction de la température pour la ville de Montréal est différent d'un modèle pour la ville de Québec, un modèle de langage créé par exemple à partir des données de 100 livres écrits au 19ième siècle, et un autre à partir de 100 livres écrits au 20ième siècles, seront deux modèles distincts, et auront des propriétés statistiques très différentes.

Tout comme le modèle de classification du travail noté #2, il est encore ici question de probabilité conditionnelle. Étant donné que nous allons construire un modèle bigramme, il s'agit donc de la probabilité d'un mot, étant donné le mot qui le précède (la barre verticale dans l'équation signifie "étant donné", ou "en présence de", ou "dans le contexte de") :

Prob(mot à prédire | mot qui précède)

La tâche de notre modèle de classification pour les courriels était de discriminer (répondre oui ou non à la question : est-ce un pourriel?) tandis que la tâche de notre modèle bigramme sera ici de générer du nouveau texte, une fois le modèle entraîné, en faisant de l'échantillonnage. La génération de nouveau texte à l'aide de l'échantillonnage est précisément ce qui permet à ChatGPT de répondre à une question, ou de composer un poème.

Entraînement du modèle

Voyons maintenant comment il est possible de calculer ces probabilités en entraînant un modèle bigramme génératif sur un texte très simple.

Nous allons encore une fois utiliser le tableur Google Sheets au lieu de Excel, car Google Sheets est plus accessible, et le langage de ses formules est plus facile à gérer (celui d'Excel dépend de la langue et des paramètres régionaux de votre système d'exploitation). Pour éviter la confusion dans le contexte de ce travail, nous devons tout d'abord nous assurer que la langue des fonctions et des paramètres régionaux est l'anglais :

Assurez-vous ensuite que la "barre de formules" soit bien visible :

Copiez tout d'abord les mots de ce texte dans la colonne A d'une nouvelle "feuille" Google Sheets, un mot par rangée :

le

chat

dort

le

chien

mange

le

chat

mange

une

souris

le

chien

dort

la

souris

court

la

souris

mange

le

fromage

le

chat

court

le

chien

voit

le

chat

le

chat

voit

la

souris

le

chien

court

Notez tout d'abord que la colonne A (son contenu) est très souvent nommée le "corpus d'entraînement". Il s'agit du texte brut à partir duquel nous allons calculer les paramètres du modèle. Pour les vrais modèles de langage, ce texte peut être extrêmement volumineux ! (Il peut comprendre des millions de livres, par exemple).

Dans la première cellule de la colonne B (donc B1), entrez maintenant cette formule :

=A2

La colonne B devrait être étendue jusqu'à la cellule B37, en double-cliquant sur le petit "+" qui apparaît quand votre curseur est placé au-dessus du coin inférieur droit de la cellule B1 (il est possible que Google Sheets offre de le faire pour vous, automatiquement).

Dans la cellule C1, entrez maintenant cette formule :

=A1 & " " & B1

Encore une fois, la colonne C doit s'étendre jusqu'à la cellule C37). À ce stade, votre feuille devrait ressembler à ceci :

	A	В	С	D	E	F	G
1	le	chat	le chat				
2	chat	dort	chat dort				
3	dort	le	dort le				
4	le	chien	le chien				
5	chien	mange	chien mange				
6	mange	le	mange le				
7	le	chat	le chat				
8	chat	mange	chat mange				
9	mange	une	mange une				
10	une	souris	une souris				
11	souris	le	souris le				
12	le	chien	le chien				
13	chien	dort	chien dort				
14	dort	la	dort la				
15	la	souris	la souris				
16	souris	court	souris court				
17	court	la	court la				
18	la	souris	la souris				
19	souris	mange	souris mange				
20	mange	le	mange le				
21	le	fromage	le fromage				
22	fromage	le	fromage le				
23	le	chat	le chat				
24	chat	court	chat court				
25	court	le	court le				
26	le	chien	le chien				
27	chien	voit	chien voit				
28	voit	le	voit le				
29	le	chat	le chat				
30	chat	le	chat le				
31	le	chat	le chat				
32	chat	voit	chat voit				
33	voit	la	voit la				
34	la	souris	la souris				
35	souris	le	souris le				
36	le	chien	le chien				
37	chien	court	chien court				
38	court						
39							

À ce stade, il devrait être clair pour vous que la colonne C contient tous les bigrammes extraits du texte de la colonne A (la colonne B n'est qu'un mécanisme intermédiaire pour les obtenir facilement).

Nous allons maintenant compter, dans la colonne D, le nombre de fois où un bigramme particulier (une séquence particulière de deux mots) apparaît dans le corpus d'entraînement de la colonne A (la colonne D doit être étendue pour avoir le même nombre d'éléments que la colonne C) :

=COUNTIF(C:C, C1)

On constate par exemple que le bigramme "le chien" apparaît 4 fois, tandis que le bigramme "fromage le", apparaît seulement une fois.

Dans la colonne E, nous allons maintenant calculer les paramètres de notre modèle, soit la probabilité d'un mot, étant donné le mot qui le précède :

Prob(mot de la col B | mot de la col A) =
$$\frac{\#(\text{mots A et B})}{\#(\text{mot A})}$$

Pour ce faire, entrez dans la cellule E1 (la formule est un peu complexifiée par le fait qu'on veut considérer tous les mots de la colonne A sauf le dernier, car sa présence fausserait légèrement les probabilités) :

```
=D1 / COUNTIF(A$1:INDEX(A:A, COUNTA(A:A)-1), A1)
```

La probabilité d'un mot étant donné le mot qui le précède est donc simplement le nombre de fois où ce bigramme particulier apparaît dans le texte, divisée par le nombre de fois où le premier mot du bigramme apparaît (le dénominateur est nécessairement plus grand ou égal que le numérateur, prenez un moment pour vous en convaincre). Étant donné que cette valeur est une probabilité, elle doit nécessairement être contenue entre 0 et 1.

Dans la colonne F nous allons filtrer la colonne C (tous les bigrammes, qui comprennent donc des bigrammes répétés) pour ne retenir que les bigrammes uniques :

=SORT(UNIQUE(C:C))

Nous devons ensuite séparer les mots des bigrammes uniques, les premiers mots dans la colonne G :

```
=INDEX(SPLIT(F1, " "), 1)
```

suivis des deuxièmes mots (des bigrammes uniques de la colonne F) dans la colonne H :

```
=INDEX(SPLIT(F1, " "), 2)
```

Et dans la colonne I nous allons ajouter les probabilités correspondantes (provenant de la colonne E):

```
=INDEX(E:E, MATCH(F1, C:C, 0))
```

On peut maintenant constater que le mot "souris" suit nécessairement (avec certitude, soit une probabilité de 1) le mot "la", tandis que le mot "le" peut être suivi des mots "chat", "chien" et "fromage" avec des probabilités de 0.5, 0.4 et 0.1, respectivement.

À ce stade, votre feuille devrait ressembler à ceci :

	A	В	С	D	Е	F	G	н	1	
1	le	chat	le chat	5	0.5	chat court	chat	court	0.2	
2	chat	dort	chat dort	1		chat dort	chat	dort	0.2	
3	dort	le	dort le	1		chat le	chat	le	0.2	
1	le	chien	le chien	4		chat mange	chat	mange	0.2	
5	chien	mange	chien mange	1		chat voit	chat	voit	0.2	
;	mange	le	mange le	2	0.6666666667		chien	court	0.25	
	le	chat	le chat	5		chien dort	chien	dort	0.25	
	chat	mange	chat mange	1		chien mange	chien	mange	0.25	
	mange	une	mange une	1	0.3333333333		chien	voit	0.25	
0	une	souris	une souris	1		court la	court	la	0.5	
1	souris	le	souris le	2		court le	court	le	0.5	
2	le	chien	le chien	4		dort la	dort	la	0.5	
3	chien	dort	chien dort	1		dort le	dort	le	0.5	
4	dort	la	dort la	1		fromage le	fromage	le	1	
5	la	souris	la souris	3		la souris	la	souris	1	
3	souris	court	souris court	1		le chat	le	chat	0.5	
7	court	la	court la	1	0.5	le chien	le	chien	0.4	
3	la	souris	la souris	3	1	le fromage	le	fromage	0.1	
9	souris	mange	souris mange	1		mange le	mange	le	0.6666666667	
)	mange	le	mange le	2	0.666666667	-	mange	une	0.3333333333	
1	le	fromage	le fromage	1		souris court	souris	court	0.25	
2	fromage	le	fromage le	1	1	souris le	souris	le	0.5	
3	le	chat	le chat	5	0.5	souris mange	souris	mange	0.25	
4	chat	court	chat court	1	0.2	une souris	une	souris	1	
5	court	le	court le	1	0.5	voit la	voit	la	0.5	
6	le	chien	le chien	4	0.4	voit le	voit	le	0.5	
7	chien	voit	chien voit	1	0.25					
3	voit	le	voit le	1	0.5					
9	le	chat	le chat	5	0.5					
)	chat	le	chat le	1	0.2					
1	le	chat	le chat	5	0.5					
2	chat	voit	chat voit	1	0.2					
3	voit	la	voit la	1	0.5					
4	la	souris	la souris	3	1					
5	souris	le	souris le	2	0.5					
6	le	chien	le chien	4	0.4					
7	chien	court	chien court	1	0.25					

Utilisation du modèle (inférence)

Maintenant que notre modèle de langage est "entraîné" (c'est-à-dire que les probabilités pour les différents bigrammes, les paramètres donc, sont calculées), on peut l'utiliser pour générer un nouveau texte, différent du corpus d'entraînement.

Pour démarrer le mécanisme de génération, on peut entrer un premier mot dans la cellule J1, par exemple le mot "le" (ce mot doit faire partie du vocabulaire du modèle).

Ensuite, la génération peut être effectuée de manière itérative avec cette formule plus complexe, à partir de la cellule K1 si vous désirez que les mots soient générés à la verticale, ou J2 si vous désirez qu'ils le soient à l'horizontale (attention étant donné que cette formule contient plusieurs lignes elle doit être entrée dans l'espace de la formule, en haut des colonnes)

```
=LET(
  next_word_mask, ARRAYFORMULA($G:$G = J1),
  next_words, FILTER($H:$H, next_word_mask),
  probs, FILTER($I:$I, next_word_mask),
  probs_cumul, SCAN(0, probs, LAMBDA(a, b, a + b)),
  sampled_word_idx, MATCH(RAND(), {0; probs_cumul}, 1),
  INDEX(next_words, sampled_word_idx)
)
```


Cette formule détermine tout d'abord quels sont les prochains mots possibles (suivant le mot "le", dans ce cas particulier), ainsi que leur probabilité associée. Elle détermine ensuite le mot suivant en choisissant un nombre aléatoire qui est utilisé en tant qu'index dans la liste des probabilités cumulatives (cette procédure est appelée échantillonnage).

Si votre deuxième mot généré se trouve dans la cellule K2, vous pouvez continuer la génération en glissant la cellule vers la droite. Si votre deuxième mot se trouve plutôt dans la cellule J2, vous pouvez poursuivre la génération en glissant la cellule J2 vers le bas.

Questions

- 1. Quels sont les paramètres du modèle (quelles colonnes exactement)?
- 2. Expliquez en vos mots comment ces paramètres sont calculés.
- 3. En quoi la colonne B de ce modèle diffère de la colonne B du modèle de classification des courriels du travail noté #2?
- 4. Expliquez en quoi le modèle de classification du travail #2 était un modèle discriminatif, alors que ce modèle de langage est un modèle

génératif?

- 5. Quelle est la conséquence du fait que le bigramme "le chat" apparaisse 5 fois dans le corpus d'entraînement (colonne A)?
- 6. Quelle est la conséquence du fait que le bigramme "la souris" apparaisse 3 fois, et en quoi cela diffère du bigramme de la question (4)?
- 7. Est-ce que la présence de certains bigrammes fait en sorte qu'il est possible de générer des séquences moins grammaticales? Lesquels en particulier?
- 8. Est-ce que la présence de certains bigrammes fait en sorte qu'il est possible de générer des séquences sémantiquement plus étranges? Lesquels en particulier?
- 9. De quel type d'apprentissage s'agit-il ici : supervisé, non-supervisé ou semi-supervisé? Expliquez en quoi ça l'est.
- 10. Si on utilisait un modèle trigramme au lieu d'un bigramme, qu'est-ce qui changerait? Quelles seraient les contraintes entraînées par l'utilisation d'un modèle trigramme au lieu d'un modèle bigramme?
- 11. Supposons que le modèle ait généré le mot "voit", expliquez la conséquence que le choix du prochain mot (celui suivant immédiatement "voit") va avoir sur la suite de la phrase générée.
- 12. Est-ce qu'il y a une limite à la longueur de la phrase pouvant être générée par le modèle?
- 13. Est-ce qu'il est possible que le modèle génère un bigramme qui ne fait pas partie des exemples qui ont servis à son entraînement?
- 14. Expliquez quelles sont les limites au niveau de la capacité de généralisation de ce modèle. À quoi sont dues ces limites?
- 15. Expliquez comment on pourrait faire en sorte que le modèle puisse modéliser et générer des phrases complètes (avec une majuscule et un point final).