Students' union of Southeast University

2009 级高等数学 (A、B) (上) 期中试卷

一. 填空题 (每小题 4 分, 本题满分 24 分)

- 2. 己知 $y = \arctan e^x x + \frac{1}{2} \ln \left(e^{2x} + 1 \right)$,则 $\frac{dy}{dx} \Big|_{x=1} =$ _______;

- 5. $f(x) = \arcsin x$ 带 Peano 余项的 3 阶 Maclaurin 公式是
- 6. 当 $x \to 0$ 时, $f(x) = \sin x 2\sin 3x + \sin 5x$ 是x 的______(用数字作答) 阶无穷小量.

二. 单项选择题 (每小题 4 分, 本题满分 12 分)

7. 若
$$\lim_{x \to a} f(x) = \infty$$
, $\lim_{x \to a} g(x) = \infty$, 则必有

(A)
$$\lim_{x\to a} [f(x) + g(x)] = \infty$$

(B)
$$\lim_{x \to a} [f(x) - g(x)] = \infty$$

(C)
$$\lim_{x \to a} \frac{1}{f(x) + g(x)} = 0$$

(D)
$$\lim_{x \to a} hf(x) \neq \infty$$
 (k 为非零常数)

8. 设f在区间[0,1]上二阶可导,且f''(x) > 0,则有

]

(A)
$$f'(1) > f'(0) > f(1) - f(0)$$

(B)
$$f'(1) > f(1) - f(0) > f'(0)$$

(C)
$$f(1) - f(0) > f'(1) > f'(0)$$

(D)
$$f'(1) > f(0) - f(1) > f'(0)$$

9. 下列命题中正确的命题是

- (A) 若f 在点 x_0 处可导,则f 在点 x_0 处也可导。
- (B) 若f在点 x_0 处可导,则f在点 x_0 的某个邻域内连续。

(C) 设
$$f \in C[a,b)$$
, f 在 (a,b) 内可导,且 $\lim_{x\to a^+} f'(x) = k$ (k 为有限数),则 f 在点 a 处

存在右导数
$$f'_{+}(a)$$
, 且 $f'_{+}(a) = \lim_{x \to a^{+}} f'(x) = k$ 。

(D) 设函数 $y = f \circ g$ 是由 y = f(u), u = g(x) 复合而成,如果 g 在点 x_0 处间断, f 在 点 $u_0 = g(x_0)$ 处间断,则复合函数 $y = f \circ g$ 在点 x_0 处也间断。

Students' union of Southeast University

三. 计算题 (每小题 9 分, 本题满分 36 分)

10. 计算极限
$$\lim_{n\to\infty} \left(1 + \frac{1}{n} + \frac{1}{n^2} \sin^2 n\right)^n$$
.

12. 设
$$f$$
 二阶可导, $f'(0) = 3$, $f''(0) = 1$, 且 $\begin{cases} x = f(t) - \pi \\ y = f(e^{3t} - 1) \end{cases}$, 求 $\frac{dy}{dx}\Big|_{t=0}$ 及 $\frac{d^2y}{dx^2}\Big|_{t=0}$.

四(14). (本题满分 8 分) 求函数
$$F(x) = \frac{1 + e^{\frac{1}{x}}}{2 - 3e^{\frac{1}{x}}}$$
 的间断点,并指出间断点的类型(需

说明理由).

五(15). (本题满分 8 分) 证明: 当
$$0 < x < \frac{\pi}{2}$$
时, $2\sin x + \tan x > 3x$.

六(16). (本题满分 6 分) 设
$$f(x) = ax^2 + bx + c$$
 (a, b, c 为常数),且当 $|x| \le 1$ 时, $|f(x)| \le 1$,证明:当 $|x| \le 1$ 时, $|f'(x)| \le 4$.

七(17). (本题满分 6 分) 设
$$f \in C[0,1]$$
, 在 $(0,1)$ 内可导,且 $f(0) = f(1) = 0$,

$$\max_{\mathbf{x} \in [0,1]} f(\mathbf{x}) = M > 0$$
,证明: 对于大于1 的任意正整数 n , 存在互异的两点 $\xi_1, \xi_2 \in (0,1)$,

使得
$$\frac{1}{f'(\xi_1)} \frac{1}{f'(\xi_2)} = \frac{n}{M}$$
.