

SME0803 Visualização e Exploração de Dados

Associação entre variáveis qualitativas

Prof. Cibele Russo

cibele@icmc.usp.br

Baseado em

Murteira, B. J. F., Análise Exploratória de Dados. McGraw-Hill, Lisboa, 1993. Notas de aula de Análise Exploratória de Dados do Mário de Castro, ICMC-USP, 2010.

Tabelas de contingência (frequências absolutas)

Sejam
$$x \in x_1, ..., x_k$$
 e $y \in y_1, ..., y_m, 1 < k \le n$ e $1 < m \le n$.

Seja f_{ij} a frequência absoluta do par (x_i, y_j) , i = 1, ..., k, j = 1, ..., m.

Tabelas de contingência (frequências absolutas)

Sejam
$$x \in x_1, ..., x_k$$
 e $y \in y_1, ..., y_m, 1 < k \le n$ e $1 < m \le n$.

Seja f_{ij} a frequência absoluta do par (x_i, y_j) , i = 1, ..., k, j = 1, ..., m.

Tabela de contingência (contingency table) ou tabela de dupla entrada: tabela com os diferentes pares (x_i, y_j) e suas frequências f_{ij} .

ودا الكماؤمة فقارا	arita	ao	, quoi	ioiao	abcon	aldo A O
x y	<i>y</i> ₁		Уј		Уm	Total
<i>X</i> ₁	f ₁₁		f_{1j}		f_{1m}	f _{1•}
÷	:		÷		:	:
Xi	f_{i1}		f_{ij}		f _{im}	$f_{i\bullet}$
:	:		÷		÷	÷
X _k	f_{k1}		f_{kj}		f_{km}	$f_{k\bullet}$
Total	$f_{\bullet 1}$		$f_{\bullet i}$		f _{•m}	n

اناحا	ibuição corij	unta	uc iic	quei	icias	abson	
>	у	<i>y</i> ₁		<i>y_j</i>		Уm	Total
	<i>X</i> ₁	f ₁₁		f_{1j}		f_{1m}	f _{1•}
	:	:		÷		÷	:
	X_i	f_{i1}		f_{ij}		f _{im}	f _i ●
	:	:		:		÷	:
	X_k	f_{k1}		f_{kj}		f_{km}	$f_{k\bullet}$
	Total	<i>f</i> _{●1}		$f_{ullet j}$		$f_{\bullet m}$	n

em que
$$f_{i\bullet} = \sum_{j=1}^{m} f_{ij}$$
 para $i = 1, \dots, k$

٠,	otribulgao conjunta ao moquenciao aboolatao x o								
	x	<i>y</i> ₁		<i>y_j</i>		Уm	Total		
	<i>X</i> ₁	f ₁₁		f_{1j}		f_{1m}	f _{1•}		
	:	:		÷		÷	:		
	X_i	f _{i1}		f_{ij}		f_{im}	f _i ●		
	:	:		÷		÷	:		
	X_k	f_{k1}		f_{kj}		f_{km}	$f_{k\bullet}$		
	Total	<i>f</i> _{●1}		$f_{ullet j}$		$f_{\bullet m}$	n		

em que
$$f_{i\bullet} = \sum_{i=1}^m f_{ij}$$
 para $i = 1, \dots, k$ e $\sum_{i=1}^k f_{i\bullet} = n$,

otribargae corri	unta	ac iic	quoi	ioiao	aboon	dias x c
х	<i>y</i> ₁		<i>y_j</i>		Уm	Total
<i>X</i> ₁	f ₁₁		f_{1j}		f_{1m}	f _{1•}
:	:		÷		÷	:
Xi	f_{i1}		f_{ij}		f _{im}	f _i ●
:	:		:		÷	:
X_k	f_{k1}		f_{kj}		f_{km}	$f_{k\bullet}$
Total	$f_{\bullet 1}$		$f_{\bullet j}$		f _{•m}	n

em que
$$f_{i\bullet} = \sum_{j=1}^m f_{ij}$$
 para $i = 1, \dots, k$ e $\sum_{i=1}^k f_{i\bullet} = n$,

$$f_{\bullet j} = \sum_{i=1}^{k} f_{ij}$$
 para $j = 1, \dots, m$

Ų	otribulção conjunta de frequencias associatas x e								
	y x	<i>y</i> ₁		<i>y_j</i>		Уm	Total		
	<i>X</i> ₁	f ₁₁		f_{1j}		f_{1m}	f _{1•}		
	:	:		:		÷	÷		
	Xi	f_{i1}		f_{ij}		f _{im}	$f_{i\bullet}$		
	:	:		:		:	÷		
	X_k	f_{k1}		f_{kj}		f_{km}	$f_{k\bullet}$		
	Total	<i>f</i> _{●1}		$f_{\bullet j}$		f _{•m}	n		

em que
$$f_{i\bullet} = \sum_{j=1}^m f_{ij}$$
 para $i = 1, \dots, k$ e $\sum_{i=1}^k f_{i\bullet} = n$,

$$f_{\bullet j} = \sum_{i=1}^k f_{ij}$$
 para $j = 1, \dots, m$ e $\sum_{j=1}^m f_{\bullet j} = n$

Ų	otribulção conjunta de frequencias associatas x e								
	y x	<i>y</i> ₁		<i>y_j</i>		Уm	Total		
	<i>X</i> ₁	f ₁₁		f_{1j}		f_{1m}	f _{1•}		
	:	:		:		÷	÷		
	Xi	f_{i1}		f_{ij}		f _{im}	$f_{i\bullet}$		
	:	:		:		:	÷		
	X_k	f_{k1}		f_{kj}		f_{km}	$f_{k\bullet}$		
	Total	<i>f</i> _{●1}		$f_{\bullet j}$		f _{•m}	n		

em que
$$f_{i\bullet} = \sum_{j=1}^m f_{ij}$$
 para $i = 1, \dots, k$ e $\sum_{i=1}^k f_{i\bullet} = n$,

$$f_{\bullet j} = \sum_{i=1}^{k} f_{ij} \text{ para } j = 1, \dots, m \text{ e } \sum_{j=1}^{m} f_{\bullet j} = n \text{ e } \sum_{i=1}^{k} \sum_{j=1}^{m} f_{ij} = n.$$

Tabelas de contingência (frequências absolutas)

Distribuição marginal de *x* (em destaque)

y x	<i>y</i> ₁	 Уј	 Уm	Total
<i>X</i> ₁	f ₁₁	 f_{1j}	 f_{1m}	<i>f</i> _{1•}
:	:	 :	 :	:
x_i	<i>f</i> _{i1}	 f_{ij}	 f _{im}	$f_{i\bullet}$
:	:	 :	 ÷	:
X _k	<i>f</i> _{<i>k</i>1}	 f_{kj}	 f_{km}	$f_{k\bullet}$
Total	<i>f</i> _{●1}	 $f_{\bullet j}$	 $f_{\bullet m}$	n

Tabelas de contingência (frequências absolutas)

Distribuição marginal de y (em destaque)

y x	<i>y</i> ₁	 Уј	 y m	Total
<i>X</i> ₁	f ₁₁	 f_{1j}	 f_{1m}	f _{1•}
:	:	 ÷	 ÷	:
Xi	<i>f</i> _{i1}	 f_{ij}	 f _{im}	f _i ●
:	:	 :	 ÷	:
X_k	f_{k1}	 f_{kj}	 f _{km}	$f_{k\bullet}$
Total	<i>f</i> _{●1}	 $f_{\bullet j}$	 f _{•m}	n

Seja f_{ij}^{\star} a frequência relativa do par (x_i, y_j) , $i = 1, \dots, k, j = 1, \dots, m$.

Seja f_{ij}^{\star} a frequência relativa do par (x_i, y_j) , $i = 1, \dots, k, j = 1, \dots, m$.

Distribuição conjunta de frequências relativas (contingency table) ou tabela de dupla entrada de frequências relativas: tabela com os diferentes pares (x_i, y_j) e suas frequências relativas f_{ij}^{\star} .

ti louiguo conju	i bargas sorijarna as noquerisias relativas as x v								
y x	<i>y</i> ₁		y _j		Уm	Total			
<i>X</i> ₁	f* ₁₁		f_{1j}^{\star}		f ₁ *	<i>f</i> _{1•}			
:	:		÷		÷	:			
Xi	f_{i1}^{\star}		f_{ij}^{\star}		f_{im}^{\star}	f_{iullet}^{\star}			
:	:		÷		:	:			
X _k	f_{k1}^{\star}		f_{kj}^{\star}		f_{km}^{\star}	$f_{k\bullet}^{\star}$			
Total	$f_{\bullet 1}^{\star}$		$f_{\bullet i}^{\star}$		$f_{\bullet m}^{\star}$	1			

iti ibaição coriji	ijurita de irequericias relativas de x c								
х	<i>y</i> ₁		Уj		Уm	Total			
<i>X</i> ₁	f* ₁₁		f* _{1j}		f ₁ *	<i>f</i> _{1•}			
:	:		÷		÷	:			
X_i	f_{i1}^{\star}		f_{ij}^{\star}		f_{im}^{\star}	f_{iullet}^{\star}			
:	:		÷		:	:			
X _k	f_{k1}^{\star}		f_{kj}^{\star}		f_{km}^{\star}	$f_{k\bullet}^{\star}$			
Total	<i>f</i> * _{●1}		$f_{ullet i}^{\star}$		$f_{ullet m}^{\star}$	1			

em que
$$f_{iullet}^{\star}=\sum_{j=1}^m f_{ij}^{\star}$$
 para $i=1,\ldots,k$

inbuição conje	iiiia c	 14011	oido i	oiative	
х	<i>y</i> ₁	 Уj		Уm	Total
<i>X</i> ₁	f* ₁₁	 f_{1j}^{\star}		f ₁ *	<i>f</i> _{1•}
:	:	 ÷		÷	:
Xi	f_{i1}^{\star}	 f_{ij}^{\star}		f_{im}^{\star}	f_{iullet}^{\star}
:	:	 ÷		÷	:
X_k	f_{k1}^{\star}	 f_{kj}^{\star}		f_{km}^{\star}	f_{kullet}^{\star}
Total	<i>f</i> _{•1} *	 f* •j		$f_{ullet m}^{\star}$	1

em que
$$f_{i\bullet}^{\star} = \sum_{j=1}^{m} f_{ij}^{\star}$$
 para $i = 1, \dots, k$ e $\sum_{i=1}^{k} f_{i\bullet^{\star}} = 1$,

ilibulção conju	unta de nequencias relativas de x c								
х	<i>y</i> ₁		<i>y_j</i>		Уm	Total			
<i>x</i> ₁	f* ₁₁		f_{1j}^{\star}		f_{1m}^{\star}	<i>f</i> _{1•}			
:	:		:		÷	:			
X_i	f_{i1}^{\star}		f_{ij}^{\star}		f_{im}^{\star}	f_{iullet}^{\star}			
:	:		:		÷	:			
X_k	f_{k1}^{\star}		f_{kj}^{\star}		f_{km}^{\star}	$f_{k\bullet}^{\star}$			
Total	<i>f</i> * _{●1}		$f_{ullet i}^{\star}$		$f_{\bullet m}^{\star}$	1			

em que
$$f_{iullet}^{\star}=\sum_{j=1}^m f_{ij}^{\star}$$
 para $i=1,\ldots,k$ e $\sum_{i=1}^k f_{iullet^{\star}}=1,$

$$f_{\bullet j}^{\star} = \sum_{i=1}^{k} f_{ij}^{\star} \text{ para } j = 1, \dots, m$$

ti ibaição conju	orijanta de irequencias relativas de x (
y x	<i>y</i> ₁		<i>y_j</i>		Уm	Total			
<i>X</i> ₁	f* ₁₁		f_{1j}^{\star}		f ₁ *	<i>f</i> _{1•}			
:	:		÷		÷	:			
Xi	f_{i1}^{\star}		f_{ij}^{\star}		f_{im}^{\star}	f_{iullet}^{\star}			
:	:		÷		:	:			
X_k	f_{k1}^{\star}		f_{kj}^{\star}		f_{km}^{\star}	$f_{k\bullet}^{\star}$			
Total	<i>f</i> * _{●1}		$f_{ullet i}^{\star}$		$f_{\bullet m}^{\star}$	1			

em que
$$f_{iullet}^{\star}=\sum_{j=1}^m f_{ij}^{\star}$$
 para $i=1,\ldots,k$ e $\sum_{i=1}^k f_{iullet^{\star}}=1,$

$$f_{\bullet j}^{\star} = \sum_{i=1}^{k} f_{ij}^{\star} \text{ para } j = 1, \dots, m \text{ e } \sum_{j=1}^{m} f_{\bullet j}^{\star} = 1$$

ibaição oorije	iiiia	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14011	oiao i	o iati v c	LO GO X .
x	<i>y</i> ₁		<i>y_j</i>		Уm	Total
<i>X</i> ₁	f* ₁₁		f* _{1j}		f ₁ *	<i>f</i> _{1•}
:	:		÷		÷	:
X_i	f_{i1}^{\star}		f_{ij}^{\star}		f_{im}^{\star}	f_{iullet}^{\star}
:	:		÷		÷	:
X _k	f_{k1}^{\star}		f_{kj}^{\star}		f_{km}^{\star}	$f_{k\bullet}^{\star}$
Total	<i>f</i> * _{●1}		$f_{\bullet i}^{\star}$		$f_{\bullet m}^{\star}$	1

em que
$$f_{iullet}^\star=\sum_{j=1}^m f_{ij}^\star$$
 para $i=1,\ldots,k$ e $\sum_{i=1}^k f_{iullet^\star}=1,$

em que
$$f_{i \bullet}^{\star} = \sum_{j=1}^{m} f_{ij}^{\star}$$
 para $i = 1, ..., k$ e $\sum_{i=1}^{k} f_{i \bullet \star} = 1$,
$$f_{\bullet j}^{\star} = \sum_{i=1}^{k} f_{ij}^{\star} \text{ para } j = 1, ..., m \text{ e } \sum_{j=1}^{m} f_{\bullet j}^{\star} = 1 \text{ e } \sum_{i=1}^{k} \sum_{j=1}^{m} f_{ij}^{\star} = 1.$$

,		•		1
х	<i>y</i> ₁	 y_j	 Уm	Total
<i>X</i> ₁	f ₁₁ /n	 f_{1j}/n	 f_{1m}/n	$f_{1\bullet}/n$
:	:	 :	 :	:
Xi	<i>f_{i1}/n</i>	 f_{ij}/n	 f_{im}/n	$f_{i\bullet}/n$
:	:	 :	 :	i
x_k	f_{k1}/n	 f_{kj}/n	 f_{km}/n	$f_{k\bullet}/n$
Total	$f_{\bullet 1}/n$	 $f_{\bullet j}/n$	 $f_{\bullet m}/n$	1

\	,	, ,	•			
	x y	<i>y</i> ₁	 y_j	 Уm	Total	
	<i>X</i> ₁	f ₁₁ /n	 f_{1j}/n	 f_{1m}/n	$f_{1\bullet}/n$	
	:	:	 :	 :	÷	
	x_i	<i>f</i> _{i1} / <i>n</i>	 f_{ij}/n	 f_{im}/n	$f_{i\bullet}/n$	
	÷	:	 :	 :	÷	
	x_k	f_{k1}/n	 f_{kj}/n	 f_{km}/n	$f_{k\bullet}/n$	
	Total	$f_{\bullet 1}/n$	 $f_{\bullet i}/n$	 $f_{\bullet m}/n$	1	

Distribuição marginal de *x* (em destaque)

y x	<i>y</i> ₁	 Уј	 Ут	Total
<i>X</i> ₁	f ₁₁ /n	 f_{1j}/n	 f_{1m}/n	$f_{1\bullet}/n$
:	:	 Ė	 ÷	:
x_i	<i>f</i> _{i1} / <i>n</i>	 f_{ij}/n	 f_{im}/n	$f_{i\bullet}/n$
:			:	:
x_k	f_{k1}/n	 f_{kj}/n	 f_{km}/n	$f_{k\bullet}/n$
Total			$f_{\bullet m}/n$	1

Distribuição marginal de y (em destaque)

y x	<i>y</i> 1	 <i>y_j</i>	 y m	Total
<i>X</i> ₁	f_{11}/n	 f_{1j}/n	 f_{1m}/n	$f_{1\bullet}/n$
:	:	 :	 :	:
Xi	<i>f</i> _{i1} / <i>n</i>	 f_{ij}/n	 f_{im}/n	$f_{i\bullet}/n$
:	:	 :	 :	:
X_k	f_{k1}/n	 f_{kj}/n	 f_{km}/n	$f_{k\bullet}/n$
Total	<i>f</i> _{•1} / <i>n</i>	 $f_{\bullet j}/n$	 $f_{\bullet m}/n$	1

Distribuição **condicional** de y dado $x = x_i$ (em destaque)

y x	<i>y</i> ₁	 y j	 y m	Total
X ₁	$f_{11}/f_{1\bullet}$	 $f_{1j}/f_{1\bullet}$	 $f_{1m}/f_{1\bullet}$	1
:	:	 :	 :	:
X_i	$f_{i1}/f_{i\bullet}$	 f_{ij}/f_{iullet}	 f_{im}/f_{iullet}	1
:	:	 :	 ÷	:
X_k	$f_{k1}/f_{k\bullet}$	 $f_{kj}/f_{k\bullet}$	 $f_{km}/f_{k\bullet}$	1

Distribuição **condicional** de x dado $y = y_i$ (em destaque)

y x	<i>y</i> ₁	 <i>Y</i> _j	 Ут
<i>X</i> ₁	$f_{11}/f_{\bullet 1}$	 $f_{1j}/f_{ullet j}$	 $f_{1m}/f_{\bullet m}$
:	:	 :	 :
x_i	$f_{i1}/f_{\bullet 1}$	 $f_{ij}/f_{ullet j}$	 $f_{im}/f_{ullet m}$
:	:	 ÷	 :
x_k	$f_{k1}/f_{\bullet 1}$	 $f_{kj}/f_{ullet j}$	 $f_{km}/f_{\bullet m}$
Total	1	 1	 1

As tabelas de distribuição condicional também são tabelas de frequências relativas. Qual usar?

(a) Relação causal bilateral ($x \leftrightarrow y$): Tabela de frequências relativas (dividido por n).

As tabelas de distribuição condicional também são tabelas de frequências relativas. Qual usar?

- (a) Relação causal bilateral ($x \leftrightarrow y$): Tabela de frequências relativas (dividido por n).
- (b) Relação causal unilateral $(x \to y)$: Distribuição condicional de y dado x.

As tabelas de distribuição condicional também são tabelas de frequências relativas. Qual usar?

- (a) Relação causal bilateral ($x \leftrightarrow y$): Tabela de frequências relativas (dividido por n).
- (b) Relação causal unilateral $(x \to y)$: Distribuição condicional de y dado x.
- (b) Relação causal unilateral ($y \rightarrow x$) Distribuição condicional de x dado y.

Obs 1: Em (b) temos k distribuições condicionais de y. Quanto mais semelhantes forem estas distribuições, mais fraca é a associação entre x e y.

Obs 1: Em (b) temos k distribuições condicionais de y. Quanto mais semelhantes forem estas distribuições, mais fraca é a associação entre x e y.

Obs 2: Em (c) é usual trocar os nomes, de modo que x ocupe as linhas e y ocupe as colunas da tabela de contingências.

Adaptação do conceito de independência

Para avaliar a associação entre duas variáveis qualitativas, precisamos entender a ideia de independência.

x e y são independentes se, e somente se,

$$f_{ij}=rac{f_{iullet}f_{ullet j}}{n}, j=1,\ldots,m \ \mathrm{e} \ i=1,\ldots,k.$$

De forma equivalente,

$$\frac{f_{ij}}{n} = \frac{f_{i\bullet}}{n} \frac{f_{\bullet j}}{n}, j = 1, \dots, m \text{ e } i = 1, \dots, k.$$

Obs: Adaptação do conceito de independência entre as variáveis aleatórias discretas X e Y: P(X = a, Y = b) = P(X = a)P(Y = b).

Considere novamente os dados da CompanhiaMB, especificamente as variáveis grau de instrução e estado civil. Como avaliar se existe associação entre elas? Considere a tabela de contingência.

estado civil grau de instrução	casado	solteiro
ensino_fundamental	5	7
ensino_medio	12	6
superior	3	3

Como seria essa tabela sob independência? Primeiro obtemos os totais por linhas e colunas:

estado civil grau de instrução	casado	solteiro	Total
ensino_fundamental	5	7	12
ensino_medio	12	6	18
superior	3	3	6
Total	20	16	36

E então fazemos
$$f_{ij}^{ind} = \frac{f_{i\bullet}f_{\bullet j}}{n}, j = 1, \dots, m$$
 e $i = 1, \dots, k$.

estado civil grau de instrução	casado	solteiro	Total
ensino_fundamental	6,7	5,3	12
ensino_medio	10	8	18
superior	3,3	2,7	6
Total	20	16	36

Medidas de associação: Qui-quadrado de Pearson

Baseado nas diferenças entre as frequências absolutas observadas (f_{ij}) e as frequências calculadas supondo independência entre x e y $(f_{ij}^{ind} = f_{i \bullet} f_{\bullet j} / n)$:

$$Q^{2} = \sum_{i=1}^{k} \sum_{j=1}^{m} \frac{(f_{ij} - f_{ij}^{ind})^{2}}{f_{ij}^{ind}}$$

 $Q^2=0 \implies$ ausência de associação entre x e y $Q^2>0 \implies$ comparar com o quantil de uma v.a. com distribuição $\chi^2_{(k-1)(m-1)}$

Coeficientes de associação

Coeficiente de Contingência:

$$C=\sqrt{\frac{Q^2}{Q^2+n}}.$$

O valor máximo de C depende de k e m.

Coeficiente de Tschuprow: (ver

https://en.wikipedia.org/wiki/Tschuprow%27s_T)

$$T = \sqrt{\frac{Q^2}{n\sqrt{(k-1)(m-1)}}}$$

Obs: $0 \le T \le 1$. T = 0 indica independência.

Considere o caso particular em que

y y	<i>y</i> ₁	 Уі	 Уk	Total
X ₁	f ₁₁	 0	 0	f ₁₁
:	:	 :	 :	i
X_i	0	 f_{ii}	 0	f _{ii}
:	:	 :	 ÷	:
x_k	0	 0	 f_{kk}	f _{kk}
Total	f ₁₁	 f _{ii}	 f _{kk}	n

Considere o caso particular em que

Distribuição conjunta de frequências absolutas *x* e *y*.

y y	<i>y</i> ₁	 Уі	 Уk	Total
X ₁	f ₁₁	 0	 0	f ₁₁
:	:	 ÷	 :	:
x_i	0	 f_{ii}	 0	f _{ii}
:	:	 :	 ÷	:
x_k	0	 0	 f_{kk}	f _{kk}
Total	f ₁₁	 f _{ii}	 f _{kk}	n

Exercício: Provar que, neste caso, $Q^2 = n(k-1)$. Logo, T=1.

Apresente outros exemplos nos quais T = 1.

Exemplo: estado civil x grau de instrução

 $Q^2 = 1.91$ (exercício: desenvolva os cálculos ou use o R).

Comparar com o quantil da $Q^2_{(3-1)(2-1)}$, supondo $\alpha=0.05$ temos $q_c=5.99 \implies$ Não existe associação entre estado civil e grau de instrução. Obs: Um teste mais adequado nesse caso seria o Teste Exato de Fisher.

$$C=\sqrt{\frac{Q^2}{Q^2+n}}=0.22$$

 $T = \sqrt{\frac{Q^2}{n\sqrt{(k-1)(m-1)}}} = 0.19$, que também indica associação fraca entre estado civil e instrução.

Figura: Gráfico de barras empilhadas de estado civil e grau de instrução para os dados da Companhia MB. Fonte: Elaborado pela autora.

Figura: Gráfico de barras adjacentes de estado civil e grau de instrução para os dados da Companhia MB. Fonte: Elaborado pela autora.

Figura: Gráfico de mosaico de estado civil e grau de instrução para os dados da Companhia MB. Fonte: Elaborado pela autora.

Figura: Gráfico de mosaico de estado civil e grau de instrução sob independência. Fonte: Elaborado pela autora.