Project Design Phase-I Proposed Solution

Date	24 September 2022
Team ID	PNT2022TMID39908
Project Name	Predicting the wind turbine energy output
vel	based on weather conditons

Proposed Solution:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The number of wind farms is increasing every year because many countries are turning their attention to renewable energy sources. Wind turbines are considered one of the best alternatives to produce clean energy. Most of the wind farms installed supervisory control and data acquisition (SCADA) system in their turbines to monitor wind turbines and logged the information as time-series data. It demands a powerful information extraction process for analysis and prediction. In this research, we present a data analysis framework to visualize the collected data from the SCADA system and recurrent neural network-based variant long short-term memory (LSTM) based prediction. The data analysis is presented in cartesian, polar, and cylindrical coordinates to understand the wind and energy generation relationship. The four features: wind speed, direction, generated active power, and theoretical power are predicted and compared with state-of-theart methods. The obtained results confirm the applicability of our model in real-life scenarios that can assist the management team to
2.	Idea / Solution description	manage the generated energy of wind turbines. Idea: Integration with grid, Integration with electricity markets. Solution description: Kalman filter is an appropriate solution to various problems such as: complexity in data, over-fitting and outliers of input data generated during learning process. As Unscented Kalman Filter (UKF) achieves higher efficiency in handling random fluctuations, so it is an economical and adequate choice for non-linear estimation of wind speed
3.	Novelty / Uniqueness	Wind energy provides more than 20% of total electricity generation in 11 states, with more than 50% in Iowa and South Dakota, and more

		than 30% in Kansas, Oklahoma, and North
		Dakota. Overall, wind energy supplied more
		than 9% of total U.S. electricity generation in
		2021.
		Wind turbines are big. Wind turbine blades
		average 200 feet long, and turbine towers
		average over 300 feet tall—about the height of
		the Statue of Liberty.
4.	Social Impact / Customer Satisfaction	Social Impact: Wind energy projects provide
		many economic benefits to neighboring
		communities: jobs, a new source of revenue for
		farmers and ranchers in the form of land lease
		payments, and an increased local tax base.
		Customer satisfaction: Wind turbines do not
		release emissions that can pollute the air or
		water (with rare exceptions), and they do not
		require water for cooling. Windmills provided
		medieval society with a reliable source of
		energy that helped initiate a thirteenth-century
		Industrial Revolution.
5.	Business Model (Revenue Model)	To identify the minimal subset of driving
J.	Business Woder (Nevenue Woder)	weather features that are significantly related
		to the wind energy output of the wind farm.
		To let genetic programming express these
		relationships in the form of explicit input-
		output regression models, and
		To select model ensembles for improved
		•
		generalization capabilities of energy predictions
		and to analyze the quality of produced model
	Coolobility of the Columbia	ensembles using an unseen test set.
6.	Scalability of the Solution	The scalability concept refers to the ability of a
		system to increase the capacity or dimensions
		of its design parameters in order to supply or
		withstand a larger demand. A system is scalable
		when its design parameters increase the size of
		the system by keeping its performance and
		function and retaining all its desired properties
		without a corresponding increase in its internal
		complexity.