Géométrie différentielle et théorie de jauge, 07/01/2020

- **1.** For the sphere $S^n \subset \mathbb{R}^{n+1}$ write explicitly the two stereographic projections, and check that the transition between the two charts is the inversion $x \mapsto \frac{x}{|x|^2}$.
- **2.** Prove that $\mathbb{C}P^1$ is diffeomorphic to S^2 : denote by p_N the stereographic projection from the north pole, then consider the map $f: \mathbb{C}P^1 \to S^2$ defined by

$$\begin{cases} f([1:z]) &= p_N^{-1}(z), \\ f([0:1]) &= N. \end{cases}$$

Hint: prove that $f([z:1]) = p_s^{-1}(\bar{z})$.

- **3.** Define the open set $U_i \subset \mathbb{R}P^n$ or $\mathbb{C}P^n$ (i = 0, ..., n) by $U_i = \{[x^0 : \cdots : x^n], x^i \neq 0\}$, and the charts $\phi_i : U_i \to \mathbb{R}^n$ or \mathbb{C}^n by $\phi_i[x^0 : \cdots : x^n] = (\frac{x^0}{x^i}, ..., \hat{1}, ..., \frac{x^n}{x^i})$. Prove that these charts give a manifold structure on $\mathbb{R}P^n$ and $\mathbb{C}P^n$, of respective (real) dimensions n and 2n.
- **4.** Prove the **theorem of submersions** : if $f:U\subset\mathbb{R}^n\to\mathbb{R}^k$ satisfies d_xf surjective, then there exists an open neighbourhood V of x and a diffeomorphism $\phi:V\to W\subset\mathbb{R}^n$ such that

$$f \circ \phi^{-1}(x^1, \dots, x^n) = (x^1, \dots, x^k).$$

(Take a basis of \mathbb{R}^n such that $\ker d_x f = \langle e_{k+1}, \dots, e_n \rangle$ and apply the inverse function theorem to the map $y \mapsto (f(y), y^{k+1}, \dots, y^n)$.

Deduce that if f is a submersion at any point of $f^{-1}(c)$, then $f^{-1}(c)$ is a submanifold of \mathbb{R}^n of dimension n-k, with tangent space at x equal to $\ker d_x f$.

5. The example of the torus $T^n = \mathbb{R}^n/\mathbb{Z}^n$ can be generalized in the following way. A discrete group Γ acts freely on M^n if for any $x \in M$, the isotropy group $\Gamma_x = \{g \in \Gamma, g \cdot x = x\}$ is trivial; Γ acts properly if for any compact $K \subset M$, the set $\{g \in \Gamma, g(K) \cap K \neq \emptyset\}$ is finite. Suppose Γ acts freely and properly on M, and let $p: M \to M/\Gamma$ denote the projection. Prove that for each $x \in M$ there exists a small open set $U_x \ni x$ inside the domain of a chart ϕ_x such that $p|_{U_x}$ is injective. Deduce that the charts $(p(U_x), \phi_x \circ (p|_{U_x})^{-1})$ give the structure of a n-dimensional manifold on the quotient M/Γ , such that p is a local diffeomorphism.