Bonferroni Correction/Adjustment

Math 699: Design and Analysis of Experiments

Spring 2018

Kevin Rodriguez

Multiple Comparisons

- Consider Fixed Effect Model: $Y_i = \mu_i + \epsilon_{ij} \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, n \end{cases}$; where $\mu_i = \mu + \tau_i$
- H_0 : $\mu_1 = \mu_2 = \cdots = \mu_a \ versus \ H_a$: H_0 is false
- Say we reject the null, now we want to find out which treatments means are different.
- We begin conducting n different tests; but we are concerned with the familywise error rate.
- Family-wise error rate = $P(reject \ at \ least \ one \ H_0 \ | \ all \ H_0 \ are \ true)$

• =
$$\begin{cases} 1 - [1 - P(reject H_0 \mid H_0 \text{ is true})]^n, & \text{if independent} \\ \leq nP(reject H_0 \mid H_0 \text{ is true}), & \text{generally} \end{cases}$$

Multiple Comparison (Continued)

- In a single test the chances of making an error is α
- Therefore, the probability of making one or more error is approximately $n\alpha$
- If n is large, then the chance of making an error will be nearly 100%
- Therefore, we need to either adjust the p-values for the number of hypotheses or control the Type I error rate

What is the Bonferroni Correction?

- The Bonferroni correction addresses the problem with multiple comparisons
- It was introduced and developed by Carlo Emilio Bonferroni.
- The correction is based on the idea if an experimenter is testing n independent or dependent hypotheses, than one way of maintaining or controlling the familywise error rate is to test each individual hypothesis at a statistical significance level of 1/n times.
- The method simply divides α by n

Bonferroni Inequality

- Consider simple linear regression: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$
- $(1 \alpha)100\%$ Confidence intervals for β_0 and β_1 :

•
$$b_0 \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{b_0\}$$

•
$$b_1 \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{b_0\}$$

- Let A_1 denote the event that the first confidence interval does not cover eta_0
- Let A_2 denote the event that the second confidence interval does not cover β_1
- $P(A_1) = \alpha$ and $P(A_2) = \alpha$

Bonferroni Inequality (Continued)

•
$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

• $P(both\ intervals\ are\ correct) = P(\overline{A_1} \cap \overline{A_2}) = 1 - P(A_1 \cup A_2)$

$$\bullet = 1 - P(A_1) - P(A_2) + P(A_1 \cap A_2)$$

- Therefore, $P(\overline{A_1} \cap \overline{A_2}) \ge 1 P(A_1) P(A_2)$; since $P(A_1 \cap A_2) \ge 0$
- $P(\overline{A_1} \cap \overline{A_2}) \ge 1 \alpha \alpha = 1 2\alpha$

• Thus, if β_0 and β_1 are separately estimated with 95% Confidence intervals, the Bonferroni inequality guarantees us a family confidence coefficient of at least 90% that both intervals are correct

Bonferroni Inequality (Continued)

- What if we wanted to obtain a family confidence coefficient of at least (1α) for estimating β_o and β_1 ?
- We can do this simply by estimating β_o and β_1 separatly with statement confidence coefficients of $1 \frac{\alpha}{2}$ each.
- Therefore, the Bonferroni inequality will equal $1 \frac{\alpha}{2} \frac{\alpha}{2} = 1 \alpha$
- The Bonferroni Inequality for n simultaneous confidence intervals:
- $P(\bigcap_{i=1}^n \overline{A_i}) \ge 1 n\alpha$

Comparison of two formula

Number of Tests	$1-(1-\alpha)^{\frac{1}{n}}$	α/n
1	.05	.05
2	.02532	.025
3	.01695	.0166
5	.01021	.01
10	.00521	.005
20	.00256	.0025
100	.000513	.0005

Holm Bonferroni (HB) Method

- Method is based on ordered p-values and the corresponding hypotheses are rejected one at a time
- It is considered as a stepwise (step down) procedure
- The method starts with the smallest p-value and continues with next smallest p-value
- This method was proposed by Holm (1979)
- Let $p_{(1)} < p_{(2)} < \cdots < p_{(n)}$ be the order p values
- Let $H_{(1)}$, $H_{(2)}$, ..., $H_{(n)}$ be the corresponding null hypotheses

Steps for HB Method

- Step 1: Look at smallest p-value $p_{(1)}$
 - If it is $\leq \frac{\alpha}{n}$ then reject $H_{(1)}$ and go on to step 2.
 - If it is $> \frac{\alpha}{n}$ then fail to reject $H_{(1)}$, $H_{(2)}$, ..., $H_{(n)}$ and stop
- Step k: Look at the smallest p-value $p_{(k)}$
 - If it is $\leq \frac{\alpha}{n-k+1}$ then reject $H_{(k)}$ and go on to step k+1.
 - If it is $> \frac{\alpha}{n-k+1}$ then fail to reject $H_{(k)}, H_{(k+1)}, ..., H_{(n)}$ and stop
- Step n: Look at the largest p-value $p_{(n)}$
 - If it is $\leq \alpha$ then reject $H_{(n)}$ and stop.
 - If it is $> \alpha$ then fail to reject $H_{(n)}$ and stop

References

- Abdi, Hervé. "Holm's sequential Bonferroni procedure." *Encyclopedia of research design* 1.8 (2010): 1-8.
- Aickin, M., and H. Gensler. "Adjusting for Multiple Testing When Reporting Research Results: The Bonferroni vs Holm Methods." *American Journal of Public Health* 86.5 (1996): 726-28. Web.
- Armstrong RA. When to use the Bonferroni correction. *Ophthalmic Physiol Opt* 2014; 34: 502–508. doi: 10.1111/opo.12131
- Kutner, Michael H., Chris Nachtsheim, and John Neter. "Chapter 4, Section 4.1." *Applied Linear Regression Models*. N.p.: McGraw-Hill, 2008. N. pag. Print.