Math185_HW1

2024-04-11

Q1

```
dataset <- read.table("natality-california-2022.txt", header = TRUE)
# Save the dataset as an RDA file
save(dataset, file = "natality-california-2022.rda")
# load the data
load('natality-california-2022.rda')</pre>
```

Null hypothesis:

The chance of a baby being born a girl is the same across counties in California. Let A_i be the probability of the baby is a girl where i represent all possible counties in California. Such that A_i are the same for all i.

Hypothesis:

The chance of a baby being born a girl are the same acroos counties in California.

```
# load all the girls / boys
girl <- subset(dataset, Gender.Code == "F")
boy <- subset(dataset, Gender.Code == "M")

# order them by their county
girls <- girl[order(girl$County),]
head(girls)</pre>
```

```
##
     Gender Gender.Code
                                           County County. Code Births
## 1 Female
                              Alameda County, CA
                                                          6001
                                                                 7966
## 2 Female
                                Butte County, CA
                                                          6007
                                                                  906
## 3 Female
                      F Contra Costa County, CA
                                                          6013
                                                                 5666
## 4 Female
                       F
                            El Dorado County, CA
                                                                  792
                                                          6017
## 5 Female
                       F
                               Fresno County, CA
                                                          6019
                                                                 6932
## 6 Female
                       F
                             Humboldt County, CA
                                                          6023
                                                                  590
```

```
boys <- boy[order(girl$County),]
head(boys)</pre>
```

```
##
      Gender Gender.Code
                                             County County. Code Births
## 37
        Male
                                Alameda County, CA
                                                            6001
                                                                   8647
## 38
        Male
                                  Butte County, CA
                                                            6007
                                                                   1040
                        Μ
## 39
                                                                   5904
        Male
                        M Contra Costa County, CA
                                                            6013
## 40
        Male
                              El Dorado County, CA
                                                            6017
                                                                    778
## 41
        Male
                        М
                                 Fresno County, CA
                                                            6019
                                                                   7018
        Male
                               Humboldt County, CA
## 42
                        Μ
                                                            6023
                                                                     611
```

```
total <- girls$Births +boys$Births
total</pre>
```

```
1946 11570 1570 13950 1201 2563 12494
                                                          2040 95824
                                                                             2224
##
    [1] 16613
                                                                       2150
## [13]
                     1150 30929
                                 3766 27878 18205 26212 37587
                                                                             2411
         3849
               5691
                                                                7115 10091
## [25]
         7497
               5670 19080
                           2305
                                 1776
                                        4851
                                              4468
                                                    7071
                                                          6801
                                                                9987
                                                                             1927
```

```
# calculate the probability that girl will born for each county
girlProb = girls$Births / total
# run chisq
chisq.test(girlProb)
```

```
## Warning in chisq.test(girlProb): Chi-squared approximation may be incorrect
```

```
##
## Chi-squared test for given probabilities
##
## data: girlProb
## X-squared = 0.0071707, df = 35, p-value = 1
```

Conclusion:

Since p-value = 1 > 0.05, we does not reject null hypothesis. Hence the chance of a baby being born a girl are the same across counties in California.

Q2 A & B

```
chisq.power <- function(k,t,n,B=2000) {</pre>
  R <- numeric(B)</pre>
  # Simulate data from Pt
  Pt <- c(rep(1/(2*k)+t, k), rep(1/(2*k)-t, k))
  for (b in 1:B) {
      # Random get n value from 1 to 2k with prob = Pt
      X <- sample(1: (2*k), n, replace = TRUE, prob = Pt)</pre>
      # Perform chi-squared test
      chisq <-chisq.test(table(factor(X, levels=1:(2*k))))</pre>
      # Check if test rejects null hypothesis
      R[b] <- as.numeric(chisq$p.value < 0.05)</pre>
  }
  # Compute proportion of rejections
  power <- mean(R)</pre>
  return(power)
# Part B: Plot the power curve
\# Fix k = 6
# Define a range of t values
t values <- seq(0, 1/12, length.out=20)
# Compute power for each t value
powers <- sapply(t_values, function(t) chisq.power(k=6, t=t, n=100))</pre>
# Plot
plot(t_values, powers, type = "l", xlab = "t", ylab = "Power", main = "Power Curve of
Chi-Squared Test")
```

Power Curve of Chi-Squared Test

Q3

Read csv file

Count of Schools by Selected Model & State


```
library(ggplot2)
```

```
## Warning: package 'ggplot2' was built under R version 4.3.2
```

```
# Create a horizontal bar plot
ggplot(dataset3, aes(x = Model.Selected, fill = State)) +
  geom_bar() +
  facet_wrap(~ State, scales = "free_y", ncol = 7) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(title = "Distribution of Selected Models by State", x = "Selected Model", y =
"Count")
```


See pattern:

Thus, we can see that each state tend to have a different pattern in terms of school selection model. There seems to have some association between the model that each school selected and the state where the school was located.

Null hypothesis:

There is no association between the model that each school selected and the state of the school.

Hypothesis:

There is association between the model that each school selected and the state of the school.

```
# chisq test
chisq.test(counts)
```

```
## Warning in chisq.test(counts): Chi-squared approximation may be incorrect
```

```
##
## Pearson's Chi-squared test
##
## data: counts
## X-squared = 378.37, df = 144, p-value < 2.2e-16</pre>
```

Conclusion:

Since p value < 2.2e-16, which means p-value < 0.05, we reject the null hypothesis. Therefore, there is association between the model that each school selected and the states of the schools.