

Métodos hierárquicos de agrupamento

Tipos de ligação

O tipo de ligação é a forma como vamos conectar um elemento a um conjunto de pontos já agrupados. Este elemento pode ser um ponto ou outro agrupamento de pontos. Há várias formas de se definir este critério, vamos discutir algumas e suas características.

In [5]: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.cluster import AgglomerativeClustering from sklearn.preprocessing import StandardScaler import scipy.cluster.hierarchy as shc from sklearn.cluster import KMeans

Parâmetros do algoritmo - Tipos de ligação

Single linkage (ligação simples): a distância de um ponto ao cluster é o mínimo entre todas as distâncias do ponto a cada ponto do grupo.

Complete linkage (ligação completa): A distância de um ponto ao cluste é o máximo entre todas as distâncias do ponto a cada ponto do grupo.

No description has been provided for this image

Average linkage (Ligação média): A distância de um ponto ao cluster é a média entre todas as distâncias do ponto ao grupo

Ward linkage (ligação Ward): Esse método se baseia na soma de quadrados das distâncias (SQD) de cada ponto ao centróide do seu respectivo grupo. A distância entre dois clusters se define como o aumento na SQD se juntarmos esses dois grupos.

No description has been provided for this image

No description has been provided for this image

Dados sintéticos

https://coderzcolumn.com/tutorials/machine-learning/scikit-learn-sklearn-hierarchical-clustering

```
In [6]: from sklearn import datasets
In [7]: X1, Y1 = datasets.make moons(n samples=400,
                            noise=0.05,
                            random_state=2360873)
         X2, Y2 = datasets.make_circles(n_samples=390, noise=0.01,factor=0.5)
         X3, Y3 = datasets.make blobs(n samples=380, random state=12345)
         X4, Y4 = datasets.make_blobs(n_samples=450, random_state=12345)
         X4 = np.dot(X4, [[1, 2], [2, 2]])
         X = [X1, X2, X3, X4]
         Y = [Y1, Y2, Y3, Y4]
In [8]: fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(10,10))
         for i in range(4):
             ax[i%2,i//2].scatter(X[i][:,0],X[i][:,1], c = Y[i], marker="o", s=50);
         # ax[0,0].set_title("Original Data");
        1.00
        0.75
                                                       0
        0.50
                                                      -2
        0.25
        0.00
       -0.25
       -0.50
                                                                                 5
              -1.0
                  -0.5
                                    10
                                                                         ó
                                                                                        10
                         0.0
                              0.5
                                         1.5
                                              2.0
        1.00
                                                      10
        0.75
        0.50
                                                       0
        0.25
        0.00
                                                     -10
       -0.25
                                                     -20
       -0.50
       -0.75
                                                     -30
       -1.00
             -1.0
                     -0.5
                              0.0
                                                             -20 -15 -10
                                      0.5
                                               1.0
                                                                                           10
```

```
In [12]: ls = []
         1c = []
         lm = []
         wd = []
         km = []
         mt = [1s, 1c, 1m, wd, km]
         metodos = ['single', 'complete', 'average', 'ward', 'k-means']
         for i in range(4):
             for j in range(4):
                 mt[j].append(AgglomerativeClustering(n_clusters=len(np.unique(Y[i])), li
         for i in range(4):
             mt[4].append(KMeans(n clusters=len(np.unique(Y[i]))).fit(X[i]))
In [13]: mt
Out[13]: [[AgglomerativeClustering(linkage='single'),
            AgglomerativeClustering(linkage='single'),
            AgglomerativeClustering(linkage='single', n_clusters=3),
            AgglomerativeClustering(linkage='single', n_clusters=3)],
           [AgglomerativeClustering(linkage='complete'),
            AgglomerativeClustering(linkage='complete'),
            AgglomerativeClustering(linkage='complete', n_clusters=3),
            AgglomerativeClustering(linkage='complete', n_clusters=3)],
           [AgglomerativeClustering(linkage='average'),
            AgglomerativeClustering(linkage='average'),
            AgglomerativeClustering(linkage='average', n_clusters=3),
            AgglomerativeClustering(linkage='average', n_clusters=3)],
           [AgglomerativeClustering(),
            AgglomerativeClustering(),
            AgglomerativeClustering(n_clusters=3),
            AgglomerativeClustering(n_clusters=3)],
           [KMeans(n_clusters=2),
           KMeans(n_clusters=2),
           KMeans(n_clusters=3),
           KMeans(n_clusters=3)]]
In [14]: fig, ax = plt.subplots(nrows=5, ncols=4, figsize=(15,15))
         for i in range(4):
             # Desativar rótulos dos eixos
             for j in range(5):
                 ax[j,i].scatter(X[i][:,0],X[i][:,1], c = mt[j][i].labels_, marker="o", s
                 ax[j,i].set_yticklabels([])
                 ax[j,i].set_xticklabels([])
                 if i==0:
                      ax[j,i].set_ylabel(metodos[j], fontsize='large')
         plt.subplots adjust(wspace=0, hspace=0)
```


 $localhost: 8888/lab/tree/Exercicio\ Para\ Trabalho/mod 30_aula_04_tipos_de_ligacao.ipynb?$