2.2 收敛数列的性质

一、唯一性

性质1: 若 $\lim_{n\to\infty} a_n$ 存在,则它是唯一的.

二、有界性

性质2: 若 $\lim_{n\to\infty} a_n$ 存在,则 $\{a_n\}$ 有界.即 $\exists M>0$,

使得 $\forall n \in \mathbb{Z}^+$, $f(a_n) \leq M$.

推论: 无界数列必发散。

三、保号性

性质3: 设 $\lim_{n\to\infty} a_n = a$,则 $\forall b, c \in R$ 且 b < a < c, $\exists N \in \mathbb{Z}^+$,当n > N时, $b < a_n < c$.

推论1: (1) 若
$$\lim_{n\to\infty} a_n = a \perp 1 = a \geq 0$$
 ,则 $\exists N \in \mathbb{Z}^+$, $\exists n > N$ 时 $\exists n > 0$.

$$(2) 若 \lim_{n \to \infty} a_n = a \perp a < 0, \quad \text{则} \exists N \in \mathbb{Z}^+,$$

$$\exists n > N \text{ 时}, a_n < 0.$$

例1、证明 $\lim_{n\to\infty}\frac{1}{\sqrt[n]}=0$.

四、保不等式性

性质4: 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. 若 $\exists N \in \mathbb{Z}^+$, 当 n > N 时,有 $a_n \le b_n$,则 $a \le b$.

思考: 若将条件中的 $a_n \le b_n$ 改为 $a_n < b_n$, 是否 fa < b?

例2、设 $a_n \ge 0$ $(n = 1, 2, \dots)$ 且 $\lim_{n \to \infty} a_n = a$.证明:

$$\lim_{n\to\infty}\sqrt{a_n}=\sqrt{a}.$$

五、迫敛性

性质5: 设 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = a$. 数列 $\{c_n\}$ 满足:

存在 $N \in \mathbb{Z}_+$, 当n > N 时有

$$a_n \le c_n \le b_n ,$$

则 $\lim_{n\to\infty} c_n = a$.

例3、设
$$\lim_{n\to\infty} a_n = a > 0$$
,求证 $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$.

例4、求极限 $\lim_{n\to\infty} \sqrt[n]{n}$.

$$\frac{1}{n}(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k ,$$

其中
$$C_n^k = \frac{n(n-1)\cdots(n-k+1)}{k!}$$
.

六、四则运算

性质6: 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 则

- (1) $\lim_{n\to\infty}(a_n\pm b_n)=a\pm b.$
- (2) $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$.
- (3) 若 $b \neq 0$,则 $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$.

例5、设|q|<1,求极限

$$\lim_{n\to\infty} (1+q+q^2+\cdots+q^{n-1}).$$

例6、设 a_1, a_2, \dots, a_m 为m个正数,证明:

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max\{a_1, a_2, \dots, a_m\}.$$

例7、用极限的四则运算法则计算

$$\lim_{n\to\infty} \frac{a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0}{b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0},$$

$$\sharp \, \psi \, m \le k, a_m b_k \ne 0.$$

• 利用 $\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0\ (\alpha>0)$.

七、收敛数列与其子数列的关系

定义:设 $\{a_n\}$ 为数列, $\{n_k\}$ 为 Z_+ 的无限子集,且

$$n_1 < n_2 < \cdots < n_k < \cdots,$$

则数列

 $a_{n_1}, a_{n_2}, \cdots, a_{n_k}, \cdots$

总有:

 $n_k \geq k$.

称为 $\{a_n\}$ 的子列,记为 $\{a_{n_k}\}$.

性质7: 若 $\lim_{n\to\infty} a_n = a$,则对数列 $\{a_n\}$ 的任一子数列 $\{a_{n_k}\}$,有 $\lim_{n\to\infty} a_{n_k} = a$.

注: 若数列有两个子数列收敛于不同的极限,则原数列一定发散。

如: $a_n = (-1)^{n-1}$.

思考:证明数列 $\{\sin n\}$ 发散.

作 业

习题2-2: 1(3)(4)(5)(6)、4(1)(2)(4)(5)、6(3)