Space-time tradeoff for the shortest unique substring problem

1 Problem Formulation

The shortest unique substring (SUS) is defined as the shortest substring U of text T such that there is only one occurrence of U in T.

2 Lemma 1

There is an algorithm that given integer parameters ℓ , r runs in $\mathcal{O}(\frac{n^2}{r-\ell})$ time and $\mathcal{O}(r-\ell)$ space and returns YES if the length of the shortest unique substring is less than ℓ , NO if the length of the shortest unique substring is greater than r, and an arbitrary answer otherwise.

Proof:

Let $\delta = r - \ell$. Consider the substrings $S_k = T[k\delta + 1..k\delta + r]$ for $k = 0, 1, ..., \left\lfloor \frac{|T|}{\delta} \right\rfloor$. We determine the uniqueness of each S_k in text T using a constant space, linear time pattern matching algorithm. If no S_k are found to be unique, then the algorithm returns NO. If one or more S_k are found to be unique, then the algorithm returns YES.

Case |SUS| > r:

If |SUS| > r, then by the definition of the shortest unique substring, no substring of T of length less than or equal to r will be unique in T. It follows that no S_k will be unique in T. In this case our algorithm returns NO, correctly.

Case $|SUS| < \ell$:

If $|SUS| < \ell$, then the shortest unique substring must be a substring of some S_k . This is because for all S_i such that S_{i+1} exists, the starting position of S_{i+1} minus the ending position of S_i equals $\ell - 1$. In other words, all S_k overlap by $\ell - 1$ characters, so if $|SUS| < \ell$, then the SUS must be a substring of some S_k . If the shortest unique substring is a substring of some S_k , then that S_k will be unique in T. Therefore, if $|SUS| < \ell$, then some S_k will be unique in T. In this case our algorithm returns YES, correctly. \square

3 Theorem 1

There is an algorithm that given a parameter τ , $1 \le \tau \le n$, runs in $\mathcal{O}(\frac{n^2}{\tau})$ time and $\mathcal{O}(1)$ space and returns a substring that is unique in T with length at most $|SUS| + \tau - 1$.

Proof:

We now use Lemma 1 to perform ternary search over the range R of possible values of |SUS|. We initialize R to be [1,n]. During each iteration of the ternary search we execute the algorithm in Lemma 1 setting ℓ and r approximately to 1/3 and 2/3 of R, to reduce the range by one third. We continue this until $|R| \leq \tau$. The final iteration of the ternary search will produce a unique substring of T with length at most $|SUS| + \tau - 1$. The time complexity is a geometric progression dominated by the final term $\mathcal{O}(\frac{n^2}{\tau})$. The space remains $\mathcal{O}(1)$. \square

4 Theorem 2

There is an algorithm that given a parameter τ , $1 \le \tau \le n$, computes SUS in $\mathcal{O}(\frac{n^2}{\tau})$ time and $\mathcal{O}(\tau)$ space.

Proof:

Theorem 1 yields a range [a, b] such that $a \leq |SUS| \leq b$ and $b - a \leq \tau$.

Case a = 1:

Let $\delta = b - a$. Consider the substrings $S_k = T[k\delta + 1..k\delta + b]$ for $k = 0, 1, ..., \lfloor \frac{|T|}{\delta} \rfloor$. Note that there are $\mathcal{O}(n/\tau)$ substrings S_k , and $|S_k| = \mathcal{O}(\tau)$ for all k. The SUS must be a substring of some S_k . We can find the SUS by finding the shortest substring of some S_k that has exactly one occurrence in the entire list of substrings S_k .

For each substring S_k construct the suffix tree of S_k in $\mathcal{O}(\tau)$ space and $\mathcal{O}(\tau)$ time. Make $\mathcal{O}(\tau)$ counters for the $\mathcal{O}(\tau)$ leaves of S_k 's suffix tree, using $\mathcal{O}(\tau)$ space. Set each counter to zero initially. Sequentially for every S_i such that $i \neq k$ construct the generalized suffix tree (gst) of S_k and S_i in $\mathcal{O}(\tau)$ time and $\mathcal{O}(\tau)$ space. For each leaf of S_k in the gst, set the corresponding counter to the string depth of the parent node + 1. If the string depth of the parent node + 1 is greater than the current value of the counter, set the counter to this new value. After constructing The gst of S_k and S_i , we construct the gst of S_{i+1} by removing S_i from the gst and replacing it with S_{i+1} . After comparing S_k to every S_i we take the smallest counter value as the shortest substring of S_k that has only one occurrence in the entirety of substrings S_i . By performing this search over all k we can find the shortest unique substring.

We are constructing $\mathcal{O}(\frac{n^2}{\tau^2})$ generalized suffix trees since we are comparing every S_k to every other substring of which there are $\mathcal{O}(\frac{n}{\tau})$. Each generalized suffix tree can be constructed in $\mathcal{O}(\tau)$ time. Therefore the time bound of this algorithm is

 $\mathcal{O}(\frac{n^2}{\tau})$, and the space bound is $\mathcal{O}(\tau)$.

General Case:

If $a \le 10\tau$ we can use the technique described above and adjust the multiplicative constants to preserve the time and space bounds.

If $a>10\tau$, the solution is the exact same as this paper https://arxiv.org/pdf/1407.0522.pdf. \sqcap

5 Theorem 3

Given a text T of length n from an alphabet Σ of size at least n^2 , any deterministic RAM algorithm, which uses $\tau \leq \frac{n}{\log n}$ space to compute the shortest unique substring of some document must use time $\Omega(n\sqrt{\log(n/(\tau\log n))}/\log\log(n/(\tau\log n))})$.

Proof:

The Element Distinctness Problem has the bound $\Omega(n\sqrt{\log(n/(\tau\log n))}/\log\log(n/(\tau\log n)))$. We will now demonstrate that a similar problem, the Element Non-distinctness Problem has the same bound. The ENP takes n elements and decides if all the elements are non-distinct. If we let the elements considered in ENP be T[i] for i=1,...,n, then deciding ENP is equivalent to deciding if SUS(T)=1.

(This proof is unfinished)