模块二 三角恒等变换

第1节 和差角、辅助角、二倍角公式(★★☆)

强化训练

- 1. (2023 江苏南京模拟 ★) 已知 $\cos \alpha = \frac{1}{3}$, 则 $\sin \alpha \sin 2\alpha =$ ()

- (A) $\frac{1}{27}$ (B) $\frac{2}{27}$ (C) $\frac{8}{27}$ (D) $\frac{16}{27}$

答案: D

解析:已知 $\cos \alpha$,故将 $\sin 2\alpha$ 用二倍角公式化单倍角,

由题意, $\sin \alpha \sin 2\alpha = \sin \alpha \cdot 2\sin \alpha \cos \alpha = 2\sin^2 \alpha \cos \alpha = 2(1-\cos^2 \alpha)\cos \alpha = 2\times[1-(\frac{1}{2})^2]\times \frac{1}{2} = \frac{16}{27}$.

2. $(2022 \cdot 安徽模拟 \cdot ★★) 若 α 是第二象限的角,且 <math>\sin(\pi - \alpha) = \frac{3}{5}$,则 $\tan 2\alpha =$ ____.

解析:由题意, $\sin(\pi-\alpha)=\sin\alpha=\frac{3}{5}$,又 α 是第二象限的角,所以 $\cos\alpha=-\sqrt{1-\sin^2\alpha}=-\frac{4}{5}$,

从而 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{3}{4}$,故 $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = -\frac{24}{7}$.

3. $(2023 \cdot 新高考 II 卷 \cdot \star \star)$ 已知 α 为锐角, $\cos \alpha = \frac{1+\sqrt{5}}{4}$,则 $\sin \frac{\alpha}{2} = ($)

$$(A) \frac{3-\sqrt{5}}{8}$$

(B)
$$\frac{-1+\sqrt{5}}{8}$$

(C)
$$\frac{3-\sqrt{5}}{4}$$

(A)
$$\frac{3-\sqrt{5}}{8}$$
 (B) $\frac{-1+\sqrt{5}}{8}$ (C) $\frac{3-\sqrt{5}}{4}$ (D) $\frac{-1+\sqrt{5}}{4}$

答案: D

解析: $\cos \alpha = 1 - 2\sin^2 \frac{\alpha}{2} = \frac{1 + \sqrt{5}}{4} \Rightarrow \sin^2 \frac{\alpha}{2} = \frac{3 - \sqrt{5}}{2}$,

接下来开根号, 若不会开, 可将选项平方, 进行对比; 若直接开,则需上下同乘以2,将分子化为完全平方,

所以 $\sin^2 \frac{\alpha}{2} = \frac{6 - 2\sqrt{5}}{16} = \frac{(\sqrt{5} - 1)^2}{4^2}$, 故 $\sin \frac{\alpha}{2} = \pm \frac{\sqrt{5} - 1}{4}$,

又 α 为锐角,所以 $\frac{\alpha}{2} \in (0, \frac{\pi}{4})$,故 $\sin \frac{\alpha}{2} = \frac{\sqrt{5} - 1}{4}$.

4. (2023 · 重庆模拟 · ★★) sin 20° sin 10° - cos 20° sin 80° =____.

答案:
$$-\frac{\sqrt{3}}{2}$$

解析:目标式与和差角公式比较接近,可朝此方向变形,不妨凑成正弦的差角公式,换掉 sin 10°即可,

 $\sin 20^{\circ} \sin 10^{\circ} - \cos 20^{\circ} \sin 80^{\circ} = \sin 20^{\circ} \sin (90^{\circ} - 80^{\circ}) - \cos 20^{\circ} \sin 80^{\circ} = \sin 20^{\circ} \cos 80^{\circ} - \cos 20^{\circ} \sin 80^{\circ}$

$$= \sin(20^{\circ} - 80^{\circ}) = \sin(-60^{\circ}) = -\sin 60^{\circ} = -\frac{\sqrt{3}}{2}.$$

5.
$$(2021 \cdot 全国乙卷 \cdot *****) \cos^2 \frac{\pi}{12} - \cos^2 \frac{5\pi}{12} = ($$
)

(A)
$$\frac{1}{2}$$
 (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

答案: D

解法 1: 两项都有平方,可降次,且降次后恰好都化为特殊角,

曲题意,
$$\cos^2\frac{\pi}{12} - \cos^2\frac{5\pi}{12} = \frac{1 + \cos\frac{\pi}{6}}{2} - \frac{1 + \cos\frac{5\pi}{6}}{2} = \frac{1 + \frac{\sqrt{3}}{2}}{2} - \frac{1 + (-\frac{\sqrt{3}}{2})}{2} = \frac{\sqrt{3}}{2}.$$

解法 2: 注意到 $\frac{\pi}{12} + \frac{5\pi}{12} = \frac{\pi}{2}$, 故用诱导公式将角统一成 $\frac{\pi}{12}$, 可利用倍角公式求值,

曲题意,
$$\cos^2\frac{\pi}{12} - \cos^2\frac{5\pi}{12} = \cos^2\frac{\pi}{12} - \cos^2(\frac{\pi}{2} - \frac{\pi}{12}) = \cos^2\frac{\pi}{12} - \sin^2\frac{\pi}{12} = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$
.

6. (2022·黑龙江模拟·★★) 数学家华罗庚倡导的"0.618 优选法"在各领域都有广泛应用,0.618 就是

黄金分割比
$$m = \frac{\sqrt{5}-1}{2}$$
 的近似值,黄金分割比还可以表示成 $2\sin 18^{\circ}$,则 $\frac{2m\sqrt{4-m^2}}{2\cos^2 27^{\circ}-1} = ($)

(B)
$$\sqrt{5} + 1$$

$$(C)$$
 2

(A) 4 (B)
$$\sqrt{5}+1$$
 (C) 2 (D) $\sqrt{5}-1$

答案: A

解析: 由题意,
$$\frac{2m\sqrt{4-m^2}}{2\cos^2 27^\circ - 1} = \frac{4\sin 18^\circ \sqrt{4-4\sin^2 18^\circ}}{\cos 54^\circ} = \frac{4\sin 18^\circ \sqrt{4\cos^2 18}}{\cos 54^\circ} = \frac{8\sin 18^\circ \cos 18^\circ}{\cos 54^\circ}$$
$$= \frac{4\sin 36^\circ}{\cos 54^\circ} = \frac{4\sin (90^\circ - 54^\circ)}{\cos 54^\circ} = \frac{4\cos 54^\circ}{\cos 54^\circ} = 4.$$

7.
$$(2022 \cdot 北京模拟 \cdot \star \star \star \star)$$
 若 $\cos(\pi - \alpha) = -\frac{\sqrt{10}}{10}$, $\alpha \in (0, \frac{\pi}{2})$, $\tan(\alpha + \beta) = \frac{1}{2}$, 则 β 可以为_____. (写出一个满足条件的 β)

答案:
$$-\frac{\pi}{4}$$
 (答案不唯一,满足 $\beta = k\pi - \frac{\pi}{4} (k \in \mathbb{Z})$ 的 β 均可)

解析: 先用诱导公式把
$$\cos(\pi - \alpha)$$
 化简, $\cos(\pi - \alpha) = -\cos\alpha = -\frac{\sqrt{10}}{10}$ $\Rightarrow \cos\alpha = \frac{\sqrt{10}}{10}$,

又
$$\alpha \in (0, \frac{\pi}{2})$$
,所以 $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{3\sqrt{10}}{10}$,故 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = 3$,

我们要写出一个 β ,可以先计算 $\tan \beta$,直接把已知的 $\tan(\alpha + \beta)$ 展开即可,

由题意,
$$\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1-\tan\alpha\tan\beta} = \frac{3+\tan\beta}{1-3\tan\beta} = \frac{1}{2}$$
,解得: $\tan\beta = -1$,所以 $\beta = k\pi - \frac{\pi}{4}(k \in \mathbf{Z})$.

8.
$$(2023 \cdot 江苏常州模拟 \cdot \star \star \star)$$
 已知 $\cos(\alpha + \beta) = \frac{1}{3}$, $\tan \alpha \tan \beta = -\frac{1}{4}$, 则 $\cos(\alpha - \beta) = ____.$

答案: $\frac{1}{5}$

解析: 涉及 $\cos(\alpha - \beta)$ 和 $\cos(\alpha + \beta)$,不外乎探究角的关系,或全部展开. 经尝试,按前者处理不易,故展 开,

由题意, $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta = \frac{1}{3}$ ①,

$$\tan \alpha \tan \beta = \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta} = -\frac{1}{4}$$
 ②,联立①②解得:
$$\begin{cases}
\cos \alpha \cos \beta = \frac{4}{15} \\
\sin \alpha \sin \beta = -\frac{1}{15}
\end{cases}$$

所以 $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta = \frac{4}{15} + (-\frac{1}{15}) = \frac{1}{5}$.

9. (2022 • 江苏常州模拟 • ★ ★) 已知
$$a = \frac{\sqrt{2}}{2}(\cos 1^{\circ} - \sin 1^{\circ})$$
, $b = \frac{1 - \tan^{2} 22.5^{\circ}}{1 + \tan^{2} 22.5^{\circ}}$,

 $c = \sin 22^{\circ} \cos 24^{\circ} + \cos 22^{\circ} \sin 24^{\circ}$,则 a, b, c 的大小关系为(

(A)
$$b > a > c$$
 (B) $c > b > a$ (C) $c > a > b$ (D) $b > c > a$

(B)
$$c > b > a$$

$$(C)$$
 $c > a > b$

(D)
$$b > c > a$$

答案: B

解析:观察发现a,b,c的式子都可化简,故先化简,

由题意,
$$a = \frac{\sqrt{2}}{2}(\cos 1^{\circ} - \sin 1^{\circ}) = \sin 45^{\circ} \cos 1^{\circ} - \cos 45^{\circ} \sin 1^{\circ} = \sin(45^{\circ} - 1^{\circ}) = \sin 44^{\circ}$$
,

$$b = \frac{1 - \tan^2 22.5^{\circ}}{1 + \tan^2 22.5^{\circ}} = \frac{1 - \frac{\sin^2 22.5^{\circ}}{\cos^2 22.5^{\circ}}}{1 + \frac{\sin^2 22.5^{\circ}}{\cos^2 22.5^{\circ}}} = \frac{\cos^2 22.5^{\circ} - \sin^2 22.5^{\circ}}{\cos^2 22.5^{\circ} + \sin^2 22.5^{\circ}} = \cos^2 22.5^{\circ} - \sin^2 22.5^{\circ} = \cos 45^{\circ} = \sin 45^{\circ},$$

 $c = \sin 22^{\circ} \cos 24^{\circ} + \cos 22^{\circ} \sin 24^{\circ} = \sin(22^{\circ} + 24^{\circ}) = \sin 46^{\circ}$,

因为 $y = \sin x$ 在 $(0, \frac{\pi}{2})$ 上之,所以 $\sin 46^{\circ} > \sin 45^{\circ} > \sin 44^{\circ}$,故 c > b > a.

10. (★★★) 设当 $x = \theta$ 时,函数 $f(x) = \sin x - 2\cos x$ 取得最大值,则 cos $\theta =$ ____.

答案: -^{2√5}/₅

解析: 先用辅助角公式,将 f(x)合并,求出其最大值, $f(x) = \sqrt{5}\sin(x+\varphi)$,所以 $f(x)_{max} = \sqrt{5}$,

由题意, $f(\theta) = \sqrt{5}\sin(\theta + \varphi) = \sqrt{5}$, 所以 $\sin(\theta + \varphi) = 1$, 要求 $\cos\theta$, 可先由此式将 θ 求出来,

从而
$$\theta + \varphi = 2k\pi + \frac{\pi}{2}$$
, 故 $\theta = 2k\pi + \frac{\pi}{2} - \varphi(k \in \mathbf{Z})$, 所以 $\cos \theta = \cos(2k\pi + \frac{\pi}{2} - \varphi) = \sin \varphi$,

由辅助角公式, $\sin \varphi = \frac{-2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$, 故 $\cos \theta = -\frac{2\sqrt{5}}{5}$.

《一数•高考数学核心方法》