CKOO48- MÉTODOS NUMÉRICOS 11
TAREFA 05
GRUPO 02
4 pontos de intenpolação
1) Descobnin Ls,, d4
Pu(1) = 1 . d4 [(2-1)4)
24.41 day
= 1. 14 (1000 200 10 2 - 42 - 42 + 1)
384 Jd4
= 1 . (1680 24 - 1440 22 + 144)
384
$= 1 (35 2^4 - 30 x^2 + 3)$
8
Resolvendo a equação, encontramos as raízes:
$d3 = \sqrt{15 - 2\sqrt{30}}$, $d4 = -\sqrt{15 - 2\sqrt{30}}$
V 35 √ 35
213115
d1 = 0,8611363115 d2 = -0,8611363115 d3 = 0,3399810435

a) descobrin x (de),, x(d4)
$x(dx) = \frac{x_i + x_i}{2} - \left(\frac{x_i - x_i}{2}\right) \cdot 0.8611363115$
x(da) = xi + xi + (xi - xi)0,8611363115
$x(23) = \frac{x_{i+x}}{2} - \left(\frac{x_{i-x_{i}}}{2}\right)0,3399810435$
X (24) = Xi+XI + (x1-xi)0,3399810435

3) Descobrin W1, W2, W3, W4
Salvemes que a área La(d) = L1(d) e L4(d) é igual a L3(d), portante não precisames calcular wa e m4.
Ls(d): (d-d2). (d-d3). (d-d4) (d1-d2)(d1-d3)(d1-d4)
$\frac{13(1) - (1 - 1)(1 - 1)(1 - 1)(1 - 1)}{(1 - 1)(1 - 1)(1 - 1)(1 - 1)(1 - 1)}$
Substituinder es 2 non equações:
L1(2) = (2.0,8611363115) (2-0,3399810435) (2+0,1399810435)
$L_3(d) = (d - 0,8611363115)(d + 0,8611363115)(d + 0,1399810435)$ $-0,4256349408$
Aplicando na fórmula do m:
W1 = W2 = 5 L1(1) dd = 0,3478548451
w3 = w4 - J L3(2)d2 = 0,6521451548

4) Solucio - 5 (m/2x) + 4x2 + 3x) dx
' 0
2x (xx)=1/2+ 9x/2 f(x(xx))
LI: 0,8611363115 X(LI) = 0,93056815 F(XLI)) = 52,03717103
22: -21 x(22):0,06943184 F(x(22)):0,13395342
23:0,3399810435 X(23)=0,66999052 F(x(23))=22,83885025
24 = - 23 x(24) = 0,33000947 f(x(24)) = 4,15664543
\mathcal{L}_{WK} $f(x(\langle x \rangle)) WK$
W1 = 0,3478548451 18,10138207
wz: w1 0,04659634
W3: 0,6521451548 14,89424553
W4 - W3 2,71073618
TOTAL: 35,75296013
$I = \int (sin(2x)) (4x^2 + 3x)^2 dx$
$= x - x i \left[\frac{d}{2} l(x(\alpha x)) w x \right]$
$\frac{1}{2}$ $\left[\begin{array}{c} Z \\ K=1 \end{array}\right]$
= 1 (35,75296013) = 17,87648007
2