Introduction to Electrical Engg. EE 103 Assignment – 4

Q1. Consider the circuit shown in Figure 1. Perform nodal analysis and hence determine V_A , V_B , V_C . Also determine the power delivered by the current source.

Figure 1

Q2. In the circuit shown in Figure 2, V_{s1} = -10 V, I_{s2} = 1 A, and all resistors are 10 Ω . Apply nodal analysis to determine V_A , V_B , V_C .

Figure 2

Q3. Consider the circuit shown in Figure 3 along with the defined loops 1, 2 and 3. Determine I_1 , I_2 , I_3 and hence determine, v.

Figure 3

Q4. Consider the circuit shown in Figure 4, wherein $V_{s1} = 250$ V and $I_{s2} = 0.75$ A. Write two mesh equations and hence determine V_B .

Figure 4

Q5. Consider the linear network of Figure 5. Two separate dc measurements are taken. In the first experiment it is found that when $V_a = 7$ V and $I_b = 3$ A, the load current is $I_{load} = 3$ A. In the second experiment it found that when $V_a = 7$ V and $I_b = 1$ A, then $I_{load} = 3$ A. Compute I_{load} when $V_a = 15$ V and $I_b = 9$ A.

Figure 5

Q6. Find the Thevenin equivalent circuit of the network shown in Figure 6 as viewed from A - B

Figure 6

Q7. Find Thevenin equivalent of the circuit shown in Figure 7 as viewed from A - B. What is the Norton's equivalent?

Figure 7

Q8. Find the Norton and Thevenin equivalent of the circuit shown in Figure 8.

Figure 8

Q9. For the circuit shown in Figure 9, find the load resistance, R_L needed for maximum power transfer. Also determine the maximum power delivered to the load resistor, R_L .

Figure 9

10) In the Figure the 12 V source has been applied for a long time before the switch opens at t = 0. Find $i_L(0^+)$ and $i_L(t)$ for t > 0. Sketch $i_L(t)$ for $0 \le t \le 5\tau$, where τ is the circuit time constant for t > 0.

- 11) In the figure the 30 V source has been applied for a long time, and the switch is opened at t=1 ms.
 - (a) Find $v_c(0^+)$ and $v_c(t)$ for 0 < t < 1 ms.
 - (b) Find $v_c(1^+ ms)$ and $v_c(t)$ for $t \le 1 ms$.
 - (c) Find $\mathbf{v}_{\mathbf{c}}(\mathbf{t})$ for $0 \le \mathbf{t} \le 25$ ms.

- 12) (a) For the circuit of Figure A find $\mathbf{v_c}(t)$ for t > 0, assuming that the 80 V source has been applied for a very long time. Plot the response $\mathbf{v_c}(t)$ for $0 \le t \le 0.25$ s.
- (b) Consider now the circuit of Figure B. Find $\mathbf{v_c}(t)$ for t > 0. Plot the response $\mathbf{v_c}(t)$ for $0 \le t \le 0.25$ s.
- (c) Compare the time constants of the circuit of part (a) and (b) for the intervals $0 \le t \le 60$ ms and 60ms $\le t$.

Figure **B**