RAON Control-Document Series Revision: v0.1. Release: Mar. 12, 2015

EPICS와 SNMP 통합

박미정*

Rare Isotope Science Project Institute for Basic Science, Daejeon, South Korea

March 17, 2015

Abstract

본 문서는 중이온가속기 제어의 기본 Framework이 되는 EPICS와 SNMP통합에 관한 문서이다. 가속기 제어 시스템에 사용되는 다양한 장비를 모니터링 및 제어하는 EPICS와 SNMP 통합 모니터링 시스템의 구현에 대해 논한다.

1 중이온가속기 제어 시스템

가속기 제어 시스템은 사용자가 원하는 빔을 사용자가 원하는 장소로 효율적으로 보낼수 있도록 가속기를 구성하는 모든 요소를 감시하며 원격으로 제어하는 장치 조직망이다. EPICS는 실시간 분산 제어 시스템이자 중이온가속기 제어의 기본 Framework으로, 중이온가속기 제어 시스템 개발에 사용된다.

1.1 중이온가속기

한국의 기초과학연구원(Institute for Basic Science) 산하 중이온가속기구축사업단(Rare Isotope Science Project)은 빔에너지 200Mev/u, 빔출력 400KW급 희귀동위원소가속기시설을 구축하고 있다[1]. 중이온가속기구축사업단은 수소, 헬륨보다 무거운 지구상의모든 원소의 이온을 빛의 속도에 가깝게 가속하는 가속기 구축 연구시설로, 중이온가속기는 전기장을 이용해 중이온(탄소, 우라늄 등)을 빠른 속도로 가속하며, 이렇게 가속된 입자들은 표적 물질에 충동시켜 자연 상태에 존재하지 않는 다양한 희귀동위원소생성에 이용되거나, 원자핵 등의 관찰, 물질의 성질 연구에 이용된다.

^{*}mijov0909@ibs.re.kr

1.2 EPICS

EPICS (Experimental Physics and Industrial Control System)는 Los Alamos국립 연구소와, Argonne국립 연구소에서 공동개발 되었으며, 오픈 라이센스로 제공되는 실시간 분산 제어 시스템으로 네트워크로 연결된 다양한 장비들의 모니터링 및 제어를 위해 사용되며, 현재 전 세계 과학시설의 개발자들에 의해 개발이 진행되고 있다. EPICS는 그림 1의 EPICS 로고와 같이 네트워크 기반의 클라이언트/서버 구조이며, TCP/UDP 프로토콜을 사용하는 CA (Channel Access) 통신 프로토콜을 사용하여 IOC (Input Output Controllers)를 통해 PV (Process Variable) 데이터를 주고 받는다. 클라이언트는 PV에 접근하며, 서버는 PV에 대한 접근을 제공한다. CA는 특히 높은 대역폭, soft real-time networking 제어가 요구되는 응용프로그램들에 맞춰 설계되었고, 이는 엄청난 수의 컴퓨터와 장비들을 포함한 제어시스템 구축에 EPICS가 사용될 수 있는 이유이다. 또한 EPICS는 신뢰성 레벨을 제공하며, 이미 구축된 시스템의 유지보수가 용이하다는 장점이 있다[2].

Figure 1 Channel Access 구조

1.3 SNMP

SNMP (Simple Network Management Protocol)¹는 IP네트워크 상의 장치 및 장비들을 관리하고 모니터링하기 위한 인터넷 표준 프로토콜이다[3]. SNMP는 인증과 암호화에 따른 차이점으로 v1/2c/3 세 가지로 나뉘며, 그림2와 같이 Manager와 Agent로 구성되어있다[4]. Manager는 Agent에게 원하는 장비의 정보를 요청하며, 장비의 설정을 변경한다. Agent는 Manager가 요청한 장비의 정보를 제공하고, 시스템 충돌이나 재부팅등의 장비에 영향을 미치거나 발생한 Event를 비동기적으로 알리기 위해 Trap 메세지를 보낸다. 장비의 정보들은 OID (Object Identifiers)객체라 하며, MIB (Management Information Base)내에 계층구조를 이룬다. 일반적인 TCP/IP관리정보는 MIB-2(RFC 1213)에 포함돼있고, 특정 장비들의 정보는 장비제조업체에서 제공한다.

 $^{^{1*}}$ SNMP에 관한 자세한 설명은 SNMP 이해 및 응답시간 테스트 문서를 참조 바란다.

Figure 2 Manager와 Agent의 관계

1.4 EPICS와 SNMP의 통합

EPICS와 통합된 네트워크 기반의 제어 시스템 구축에 SNMP가 용이한 이유는 가속기 제어 시스템에 사용 될 장비와 장치들은 Ethernet환경을 통해 연결되며, 대부분 SNMP를 지원하기 때문이다. EPICS와 SNMP의 통합은 중이온가속기 중앙 제어 시스템의일관성, 유지관리의 용이성, 그리고 최적화 기술의 습득 및 축적의 관점에서 중요하다. 그림 3은 EPICS와 SNMP 통합 시스템의 구조이다[5]. 통합 시스템에서 모니터링 및제어 될 장비는 SNMP MIB를 통해 EPICS와 연결되고, 이는 IOC로 개발되어 CA를통해 PV와 장비의 통신을 가능하게 한다. PV는 MIB가 가진 장비의 정보로 모니터링및 제어에 사용된다.

Figure 3 EPICS와 SNMP 통합 시스템 아키텍쳐

2 FRIB SNMP Device Support Module

2.1 개발 목적

EPICS의 SNMP Device Support Module은 EPICS와 SNMP를 통한 하드웨어 장비와의 통신을 위해 2004년 LANL (Los Alamos National Laboratory)의 Richard Dubney에 의해 최초 개발된 이후 DESY (Deutsches Elektronen-Synchrotron)의 Albert Kagarmanov에 의해 개발되었고, 2006년까지 이 모듈은 장비의 모니터링만 지원하였다. 이 후, Sheng Peng이 모니터링 및 제어가 가능한 Support Module을 개발하였고, 또한 NSCL (National Superconducting Cyclotron Laboratory)/FRIB (Facility for Rare Isotope Beams)의 John Priller에 의해 현재 모니터링 및 제어가 가능한 RC9버전까지 개발이 진행되고 있다. NSCL/FRIB의 Support Module은 Wiener/ISEG/MPOD 시스템에 초점을 두고 개발되었으며, SNMPv2에 최적화 되어있다.

2.2 사용 방법

Support Module는 Input(ai, longin, stringin, waveform)과 Output(ao, longout, stringout) 에 따라 Record 타입을 지원하며, Record의 포맷은 다음과 같다[6].

```
record(ai, "$(DEV):VoltageRead")
{
    field(DESC, "SNMP channel")
    field(DTYP, "Snmp")
    field(SCAN, ".2 second")
    field(PREC, "3")
    field(INP, "@$(HOST) guru WIENER-CRATE-MIB::outputMeasurementSenseVoltage.$(CHAN) Float:
    100")
}

record(ao, "$(DEV):VoltageSet")
{
    field(DESC, "SNMP channel")
    field(DTYP, "Snmp")
    field(SCAN, "Passive")
    field(PREC, "3")
    field(PREC, "3")
    field(OUT, "@$(HOST) guru WIENER-CRATE-MIB::outputVoltage.$(CHAN) Float: 100 F")
}
```

따라서 INP/OUT 필드에 아래와 같이 snmpget 명령어와 유사한 포맷으로 Community String과 원하는 장비의 정보 값인 MIB파일 내 객체 이름, 데이터 타입의 정보 등의 값을 넣어야한다. 이 때, mask는 모니터링 되는 정보 값의 타입에 따라 정의되며, 제어시에는 set_type을 지정해 주어야하는데 이는 snmpset 명령어의 datatype과 유사하다는 것을 알 수 있다.

@host community OIDname mask dataLength [set_type[special_flags]]

2.3 장점 및 단점

코드분석하고 쓸 것 코드분석하고 쓸 것

2.4 Device Support Module을 이용한 통합 시스템 구축

본 문서에서는 SNMPv1/2c를 지원하는 Support Module RC8버전을 사용하여 중이온 가속기 제어 시스템 개발 환경에 맞춘 통합 모니터링 시스템 초기버전을 구축하였다. 구축된 모니터링 시스템은 가속기 제어 시스템에 사용되는 다양한 장비 적용에 앞서 사무실 내의 프린터기에 적용되었다. 프린터 모니터링 시스템 구축에 사용된 소프트웨어와 하드웨어는 다음과 같다.

- Debian Linux 7 Wheezy
- NET-SNMP v5.4.3
- EPICS v3.14.12.4
- FRIB SNMP Device Support Module RC8
- EPICS CSS (Control System Studio)
- Printers (XEROX ApeosPort-IV C3375, KYOCERA FS-9530DN)

중이온가속기 제어 환경은 각 시스템의 원활한 개발을 위하여 EPICS 개발 환경이 표준화 되어있으며[7], 표준화된 EPICS 기본 구조는 그림 4와 같다.

Figure 4 중이온가속기 제어 환경의 EPICS 기본 구조

따라서 그림 5의 Support Module의 구조를 중이온가속기 제어 개발 환경과 프린터 모니터링에 최적화 하기 위해 Support Module은 아래와 같은 사항들이 수정되었다.

- 1. 표준화된 중이온가속기 제어 환경에 맞춰 Library (SiteLibs)와 Application (SiteApps) 으로 부리
- 2. 기존의 여러 종류의 Support Module에서 제공하는 Record를 대신하여 통합 시스템에서 사용 될 snmpRecord, snmpstrRecord 생성
- 3. 가독성 측면에서 프린터의 종이, 잉크의 잔량은 퍼센트로 나타내기 위해 Library 내 소스코드에 사칙연산 코드 추가 및 Record내 MJP필드 생성

Figure 5 FRIB SNMP Device Support Module의 구조

이렇게 그림 6과 같이 수정된 SNMP Device Support Module을 사용하여 통합 장비모니터링 시스템 구축을 위해서는 SiteApps내에 DB파일이 생성되어야 한다. 그림 7과 같이 DB파일은 Support Module의 필드 포맷에 맞춰 추가하면, 각 Record는 EPICS IOC내 PV (Process Variable)가 되어 CA (Channel Access)를 통한 모니터링이 가능해진다.

Figure 6 중이온가속기 제어 개발 환경에 맞춰 수정된 SNMP Device Support Module

Figure 7 EPICS DB파일

각각의 PV들은 EPICS의 UI (User Interface)프로그램인 CSS (Control System Studio)를 사용하여 프린터 모니터링 시스템의 OPI (Operator Interface)로 구현되고, 이 OPI는 현재 그림 8과 같이 프린터의 상태, 종이량 등의 정보 및 사무실 환경 모니터링에 사용되고 있다.

Figure 8 EPICS DB파일

- 3 Legacy SNMP Code
- 3.1 Net-snmp tutorial

Bibliography

- [1] Rare Isotope Science Project, 2013. Y.K.Kwon et al, "Status of Rare Isotope Science Project in Korea", Few Body Syst. 54, 961.
- [2] Experimental Physics and Industrial Control System, 2011. http://www.aps.anl.gov/epics/about.php.
- [3] Official Internet Standards Protocol, 2002. http://www.rfc-editor.org/search/standards.php.
- [4] Relationship between an Manager and an Agent, 2005. Douglas R. Mauro, Kevin J. Schmidt, "Essential SNMP. O'Reilly", 2nd ed.
- [5] Integrate SNMP into EPICS, 2006. http://www-mks2.desy.de/content/e4/e40/e41/e12212/index_ger.html.
- [6] EPICS SNMP Device Support Module (NSCL/FRIB), 2014. https://groups.nscl.msu.edu/controls/files/devSnmp.html.
- [7] EPICS Environment Tree, 2015. 4th report....