

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar **Irányítástechnika és Informatika Tanszék** http://www.iit.bme.hu

MSC felvételi előkészítő tanfolyam

Digitális technika mintafeladatok és megoldásuk

Tárgyfelelős oktató: dr. Arató Péter egyetemi tanár

A mintafeladatokat összeállították: dr. Horváth Tamás és Pilászy György

Tanfolyam időtartama: 3 x 55perc

Tematika:

1. alkalom: Kombinációs hálózatok

- Igazságtábla felvétel, karaugh tábla felvétel szöveges feladat alapján
- Boole algebai alakok (kanonikus algebrai alak, számjegyes alakok)
- Legegyszerűbb diszjunktív alakok, prímimplikánsok
- Legegyszerűbb konjunktív alakok, prímimplikánsok
- Hazárdok, hazárdmentes alakok előállítása
- Hazárd keresése logikai rajzzal adott hálózatokban
- Logikai függvény megvalósítása adott építőelemmel

2.alkalom: Sorrendi tervezés

- aszinkron állapottábla felvétel (szöveges feladatból / idődiagramból)
- szinkron állapottábla felvétel (szöveges feladatból / idődiagramból)
- szinkron hálózat analízise rajz alapján
- aszinkron analízis, hazárdok (kritikus versenyhelyzet, lényeges hazárd)

3. alkalom MSI alkalmazás technika

- aritmetikai egység (összeadás, kivonás), elemi műveletvégző tervezése
- számláló (adott számsor előállítása, adott kapcsolás vizsgálata)
- memória bővítés (dekóder)

Ajánlott irodalom:

Arató Péter: Logikai rendszerek tervezése (Műegyetemi kiadó) 55013 http://www.iit.bme.hu/~tom/digit_1.htm

Budapest, 2008. április

Tartalomjegyzék

Tartalomjegyzék	
7·87	
I. Kombinációs hálózatok	
1. Logikai függvények megadása	
2. Logikai függvények grafikus minimalizálása	4
3. Hazárdok	
4. Logikai függvény megvalósítása építőelemmel	
H. C P. k. Zi 4. L	7
II. Sorrendi hálózatok	
1. Állapottábla felvétele	
2. Szinkron hálózatok analízise	8
3. Aszinkron hálózatok analízise	9
III MSI alkalmazás technika	11
1. Aritmetikai egységek tervezése	
2. Számlálóegységek tervezése	
3. Memória áramkörök használata	
Megoldások	13
I. Kombinációs hálózatok	13
II. Sorrendi hálózatok	
III MSI alkalmazás technika	

I. Kombinációs hálózatok

1. Logikai függvények megadása

Igazságtábla

- **1.a.** Adja meg annak a 4 bemenetű (ABCD), 1 kimenetű (F) kombinációs hálózatnak az igazság táblázatát, amelynek kimenete 1, ha
 - pontosan két bemenete 1-es értékű, vagy
 - az A és B bemenet 1-es értéke mellett a C és D bemenetből csak az egyik 1-es.

A táblázat felírásakor vegye figyelembe, hogy a bemeneten azok a kombinációk nem fordulhatnak elő, ahol az összes bemenet azonos értékű!

Karnaugh tábla

- **1.b.** Adja meg annak a 4 bemenetű (ABCD), 1 kimenetű (F) kombinációs hálózatnak a Karnaugh táblázatát, amelynek kimenete 1, ha:
 - A és B bemenete különböző értékű amikor a C és D bemenet azonos értékű, vagy
 - a B bemenete megegyezik a D bemenetével amikor az A bemenete különbözik a C bemenettől.

A táblázat felírásakor vegye figyelembe, hogy a bemeneten azok a kombinációk nem fordulhatnak elő, ahol az összes bemenet azonos értékű!

Boole-algebrai alak, kanonikus (normál) alak

1.c. Adja meg az F(ABC)=AB+AC logikai függvény kanonikus algebrai alakjait!

Mintem/maxterm index

1.d. Adja meg a **maxterm** és **minterm indexeit** az alábbi logikai függvénynek!

$$F(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC}$$

2. Logikai függvények grafikus minimalizálása

Legegyszerűbb diszjunktív alak, prímimplikánsok

2.a. A mellékelt Karnaugh táblával adott az F(ABCD) függvény. Jelölje be a Karnaugh táblán az összes, mintermből képezhető prímimplikánsát, adja meg a prímimplikánsok algebrai alakját, jelölje meg a lényeges prímimplikánsokat.
2.b. A dellékelt Karnaugh táblával adott az belőlje be a kepezhető prímimplikánsát, adja meg a kepezhető prímimplikánsokat.

				1	_
	0	0	0	0	
	0	0	1	1	
$_{\rm A}$	1	1	1	0	B
A	1	1	0	0	
-			D	•	-

2.b. Adott az alábbi logikai függvény. Adja meg algebrai alakban a legegyszerűbb kétszintű diszjunktív realizációt, és rajzolja fel kizárólag NAND kapuk felhasználásával

F			C	1	
I.	-	1	1	-	
	0	1	1	0	
٨	0	0	1	0	В
$^{A} $	-	0	0	0	
			D		

Legegyszerűbb konjunktív alak, prímimplikánsok

2.c. A mellékelt Karnaugh táblával adott az F(ABCD) függvény. Jelölje be a Karnaugh táblán az összes, **maxtermből** képezhető **prímimplikánsát**, adja meg a prímimplikánsok *algebrai* alakját, és jelölje meg a lényeges prímimplikánsokat!

2.d. Adott az alábbi logikai függvény. Adja meg algebrai alakban a legegyszerűbb kétszintű **konjunktív** realizációt, és rajzolja fel kizárólag **NOR** kapuk felhasználásával

3. Hazárdok

3.a. Jelölje meg, hogy az alábbi hazárdok közül melyek fordulhatnak elő és melyek nem egy kétszintű kombinációs hálózatban!

	igen	nem
Funkcionális hazárd		
Dinamikus hazárd		
Lényeges hazárd		
Statikus hazárd		

3.b. Jelölje meg, hogy a felsorolt hazárdok közül melyek fordulhatnak elő és melyek nem az alábbi kombinációs hálózatban!

Funkcionális hazárd
Dinamikus hazárd
Lényeges hazárd
Statikus hazárd

3.c. Adott az alábbi logikai függvény (F). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a **legegyszerűbb** kétszintű, **hazárdmentes diszjunktív** realizációt!

A közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő.

3.d. Adott az alábbi logikai függvény (F). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes **konjunktív** realizációt!

A közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő.

F			C	1	_
1	-	0	0	-	
	1	0	-	1	
	-	0	1	1	В
A	0	1	1	-	
			D		-

3.e. Adott az alábbi logikai függvény (F).
Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes diszjunktív realizációt, ha a megvalósítás nem tartalmazhat statikus hazárdot!

F				1	
I.	-	1	1	-	
	0	1	1	0	
٨	0	0	1	1	В
A	1	0	0	-	
			D		-

3.f. Tartalmaz-e **dinamikus hazárdot** az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő.

3.g. Tartalmaz-e **dinamikus hazárdot** az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő.

4. Logikai függvény megvalósítása építőelemmel

- **4.a.** Valósítsa meg az $\mathbf{F}(A,B,C) = \sum (0,1,5,6)$ logikai függvényt a $\mathbf{G}(A,B,C) = \sum (0,1,3,5)$ logikai függvény mint építőelem, és minimális kiegészítő hálózat felhasználásával oly módon, hogy az eredő hálózat kimenetén **VAGY** kapu szerepeljen! Rajzolja fel a hálózatot!
- **4.b.** Valósítsa meg az $\mathbf{F}(A,B,C) = \sum (0,1,3,4)$ logikai függvényt a $\mathbf{G}(A,B,C) = \sum (0,1,4,6)$ logikai függvény mint építőelem, és minimális kiegészítő hálózat felhasználásával oly módon, hogy az eredő hálózat kimenetén **ÉS** kapu szerepeljen! Rajzolja fel a hálózatot!

II. Sorrendi hálózatok

1. Állapottábla felvétele

1.a. Vegye fel annak a kétbemenetű (TC), egykimenetű (Z) aszinkron sorrendi hálózatnak az előzetes állapottábláját, amely egy lefutó él vezérelt szinkron T flip-flopot valósít meg. (Azaz amennyiben a C bemeneten érkező 1→0 átmenet pillanatában a T bemenet 1-es értékű, a hálózat kimenete ellenkező értékűre vált, minden más esetben a kimenet változatlan.)

1.b. Adja meg annak a **Moore** modell szerint működő szinkron sorrendi hálózatnak az előzetes állapottábláját, amelynek 2 bemenete (R és D) és 3 kimenete (z₂,z₁,z₀) van. Az áramkör működése a következő:

R=1 bemenet esetén álljon alaphelyzetbe ($z_2,z_1,z_0=000$).

R=0 esetén az áramkör 3 bites léptető regiszterként működik. A D bemeneten lévő érték léptetésre (órajelre) először a z₂ kimeneten jelenik meg.

1.c. Írja fel annak a kétbemenetű (X1, X2) egykimenetű (Z) szinkron sorrendi hálózatnak az előzetes állapottábláját, amelynek működését alábbi idődiagram definiálja. A megadott bemeneti változás sorozat ciklikusan ismétlődik és feltételezhetjük, hogy más bemeneti változások fizikailag nem fordulhatnak elő. Mealy, vagy Moore modell szerint definiált a működés? Indokolja a választ!

- **1.d.** Egy kétbemenetű (**X1,X2**), egy kimenetű (**Z**) sorrendi hálózat kimenete 0, ha X1 bemenete 0. A kimenet 1-re változik, ha X1 = 1 alatt X2 bemenet 0-ról 1-re vált. Minden más esetben a kimenet változatlan.
 - Adja meg a fenti leírásnak megfelelően működő aszinkron sorrendi hálózat előzetes állapottábláját!

- Adja meg a fenti leírásnak megfelelően működő szinkron Mealy sorrendi hálózat előzetes állapottábláját!
- Adja meg a fenti leírásnak megfelelően működő szinkron Moore sorrendi hálózat előzetes állapottábláját!

2. Szinkron hálózatok analízise

2.a. Adja meg az alábbi szinkron sorrendi hálózat kódolt állapottáblát és rajzolja be a mellékelt ábrába a Z1, Z2 kimeneti jelsorozatot.

2.b. J-K flip-flopokból a mellékelt sorrendi hálózatot építettük.

Jelölje meg, hogy X=1 esetén mit valósít meg a hálózat

- ☐ kétbites szinkron számláló
 - kétbites aszinkron számláló
- ☐ kétbites léptető regiszter
- □ egyik sem

- Rajzolja be a mellékelt ábrába a Z1, Z2 kimeneti jelsorozatot, ha a flip-flop élvezérelt működésű
- Rajzolja be a mellékelt ábrába a Z1, Z2 kimeneti jelsorozatot, ha a flip-flop master-slave működésű

- **2.c.** Analizálja az ábrán kapcsolási rajzzal adott szinkron sorrendi hálózatot.
- Felléphetne-e a hálózatban rendszerhazárd (az órajel elcsúszásból származó hazárdjelenség), ha mindkét flip-flop egyszerű élvezérelt működésű lenne? Indokolja a választ!
- Rajzolja be az áramkör kimenő jelalakjait ha mindkét flip-flop datalock-out működésű.
- Milyen feladatot valósít meg a hálózat?

3. Aszinkron hálózatok analízise

3.a. Helyesen valósították-e meg az alábbi aszinkron sorrendi hálózatban az Y1, Y2 és Z függvényeket? Indokolja a válaszát!

3.b. Normál működésű-e az alábbi állapottáblával adott aszinkron sorrendi hálózat?

Tartalmaz-e kritikus versenyhelyzetet? Ha igen, jelölje meg az érintett állapotátmeneteket, és adjon meg kritikus versenyhelyzet mentes állapotkódot!

Tartalmaz-e lényeges hazárdot? Ha igen, jelölje meg az érintett állapot-átmeneteket, és adja meg, hogy hogyan lehet kiküszöbölni!

$y \setminus x_1, x_2$	00	01	11	10
00	00, 0	00, 0	11,0	00, 0
01	00,0	01 ,0	11,0	11,0
11	11 ,1	01,1	11 ,1	10,1
10	0,00	01,0	11,0	10 ,0

3.c. Jelölje meg, hogy hol tartalmaz lényeges hazárdot a következő állapottábla!

X1,X 2:	00	01	11	10
Α	A , 0	B , 0	A , 0	B,0
В	D,0	B ,0	C,0	B ,0
С	C , 1	B,0	C , 1	C , 1
D	D , 0	B,0	D , 0	C,0

3.d. Szüntesse meg a kritikus versenyhelyzetet az alábbi állapottáblával megadott aszinkron hálózatban az instabil állapotok módosításának módszerével és írja fel a kritikus versenyhelyzet mentes kódolt állapottáblát!.

y1y2\x1x2	00	01	11	10
00	0,00	01,0	11,0	0,00
01	00,1	01,1	11,1	01,1
11	11,0	10,0	11,0	01,0
10	11,1	10,1	10,1	00,1

III MSI alkalmazás technika

1. Aritmetikai egységek tervezése

- **1.a.** Négybites teljesösszeadó áramkörök és minimális kiegészítő hálózat felhasználásával tervezzen aritmetikai egységet a Z = 6X-2Y művelet végrehajtására, ahol az X és Y 4bites előjel nélküli operandusok (X: x₃,..x₀ és y₃..y₀, ahol x₀ és y₀ a legalacsonyabb helyértékek). Az eredményt (Z) 8 bites kettes komplemens számábrázolás szerint képezze.
- **1.b.** Négybites teljesösszeadó és négybites komparátor áramkörök és minimális kiegészítő hálózat felhasználásával tervezzen aritmetikai egységet, mely a következő műveleteket hajtja végre:

Z = 2X+Y ha X>Y

Z = 2X-Y ha X < Y

Z = 2Y + X ha X = Y.

X és Y 6bites előjel nélküli operandusok (X: $x_5,...x_0$ és $y_5...y_0$, ahol x_0 és y_0 a legalacsonyabb helyértékek). Az eredményt 8 bites kettes komplemens számábrázolás szerint képezze.

Az áramkör egy OVF kimeneten jelezze a műveletvégzés során keletkezett túlcsordulást.

1.c. Rajzoljon fel a mellékelt 4 bites komparátorok felhasználásával 8 bites kettes komplemens kódban ábrázolt számok ($\mathbf{P_{0..7}}$, $\mathbf{Q_{0..7}}$) összehasonlítására alkalmas kapcsolást.

1.d. A és B két négybites 2-es komplemens kódban ábrázolt szám. Rajzolja fel az A=B, A<B, A>B kimeneteket előállító áramkört 74LS85 komparátor felhasználásával.

2. Számlálóegységek tervezése

- **2.a.** Tervezzen számláló egységet 74163 (4 bites bináris, szinkron -LOAD, szinkron CLEAR) áramkörök felhasználásával. A számláló kimenetén előállítandó kombinációsorozat: 0,1,...,19,20→55,56,...,88,89→111,...,255→0,1,...
- 2.b. Analizálja a következő kapcsolást. A kapcsolásban alkalmazott számláló 4 bites bináris számláló, mely szinkron –LOAD és aszinkron –CLEAR bemenettel rendelkezik. Adja meg, hogy mikor és milyen bináris értékek töltődnek a számlálóba? Adja meg decimálisan, hogy milyen kimeneti számsorozatot állít elő az áramkör az N₀...N₃ kimenetein (N₀ a legalacsonyabb helyiérték) egy alaphelyzetbe állító RESET pulzust követően.

$Q_DQ_CQ_BQ_A$	Betöltött érték	

3. Memória áramkörök használata

3. Illesszen 8 bites mikroprocesszoron alapuló sínre ($\overline{RD},\overline{WR},A15..A0,D7..D0$) i2764 (8 KB) típusú EPROM, illetve TC5565 típusú RAM (8 KB) memóriák felhasználásával memóriamodult, mely összesen 8KB EPROM-ot és 8 KB RAM-ot tartalmaz. A memóriák a következő címtartományokat foglalják el:

EPROM:0000h-0FFFh és 2000h-2FFFh, *RAM*:9000h-AFFFh (Felhasználható áramkörök: TC5565, i2764, 74LS245, 74LS138, kapuk és inverterek)

- **3.a.** Adja meg az RAM címdekódoló áramkörének legegyszerűbb, kapuból kialakított realizációját, ha tudjuk, hogy a 8000h-BFFFh tartományban nincs és nem is lesz más memória áramkör (nem teljes címdekódolás).
- **3.b.** Adja meg a EPROM címdekódoló áramkörének legegyszerűbb realizációját 74LS138 áramkör felhasználásával (teljes címdekódolás)!
- **3.c.** Rajzolja fel a memóriák buszmeghajtó áramkörének vezérlését. Adja meg a memória áramkörök bekötését!

Ügyeljen az egyes jelek elnevezésére (az azonos nevű jelek összekötöttnek tekinthetők) és a lefedett címtartományokra!

Megoldások

I. Kombinációs hálózatok

1.a.

A	В	C	D	F
0	0	0	0	-
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	-

1.b.

1.c.

$$F = ABC + AB\overline{C} + A\overline{B}C$$

$$F = (A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+B+C)$$

1.d.

$$F(A,B,C) = \sum_{i=1}^{3} [0,1,2,5] \Rightarrow \overline{F} = \sum_{i=1}^{3} (3,4,6,7) \Rightarrow F = \prod_{i=1}^{3} (0,1,3,4)$$

2.a.

Lényeges prímimplikáns

$A\overline{C}$	 X
ABD	
BCD	
$\overline{A}BC$	 X

2.b.

$$F = \overline{AD} + BCD$$

$$\overline{A}$$

$$D$$

$$C$$

$$D$$

$$F$$

2.c.

Lényeges prímimplikáns

2.d.

$$F = B(\overline{C} + D)(A + \overline{C})$$

3.a.

Funkcionális hazárd Dinamikus hazárd Lényeges hazárd Statikus hazárd igen nem

X □ X

□ X X □

3.b.

Funkcionális hazárd Dinamikus hazárd Lényeges hazárd Statikus hazárd igen nem

 \square X

 \mathbf{X}

3.c.

$$F = \overline{AD} + \overline{BD} + BCD + ABC$$

3.d.

$$F = (A + \overline{D})(B + D)(\overline{B} + C + \overline{D})$$

3.e.

$$F = \overline{A} \cdot D + B \cdot C \cdot D + A \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

3.f.

$$f1 = \overline{D}(\overline{A} + D)$$

$$f2 = \overline{AC} + AB$$

$$F = f_1 \cdot f_2$$

3.g.

$$f1 = \overline{A}(A + \overline{D})$$

$$f2 = B\overline{D} + CD$$
 $F = f_1 + f_2$

$$F = f_1 + f_2$$

Nincs

4.a.

$$H = AB\overline{C}$$

$$E = B$$

4.b.

$$E = B\overline{C}$$

$$H = \overline{A}$$

II. Sorrendi hálózatok

1.a.

TC y	00	01	11	10
a	a,0	b,0	-,-	c,0
b	a,0	b,0	d,0	-,-
c	a,0	-,-	d,0	с,0
d	-,-	b,0	d,0	e,-
e	f,1	-,-	g,1	e,1
f	f,1	h,1	-,-	e,1
g	-,-	h,1	g,1	с,-
h	f,1	h,1	g,1	-,-

1.b.

y\RD	00	01	11	10
a	a, 000	b, 000	a, 000	a, 000
b	e, 100	c, 100	a, 100	a, 100
С	f, 110	d, 110	a, 110	a, 110
d	f, 111	d, 111	a, 111	a, 111
e	g, 010	h, 010	a, 010	a, 010
f	g, 011	h, 011	a, 011	a, 011
g	a, 001	b, 001	a, 001	a, 001
h	e, 101	c, 101	a, 101	a, 101

1.c.

X y	00	01	11	10
a	-,0	-	-	b,1
b	-	c,1	-	-,1
С	d,0	-,1	-	-
d	-,0	-	-	e,0
e	-	-	f,1	-,0
f	a,0	-	,1	-

		vagy		
A	A,0	B1	A,1	A,1
В	В,0	-	-	A,0

1.d.

aszinkron

X1,X2 y	00	01	11	10
a	a ,0	b,0	-	c,0
b	a,0	b ,0	f,0	-
c	a,0	-	d,-	c ,0
d	-	b,-	d ,1	e,1
e	a,-	-	d,1	e ,1
f	_	b,0	f ,0	c,0

szinkron Mealy

SZIIIKI OII WICHIY					
X1,X2 y	00	01	11	10	
a	a,0	a,0	a,0	c,0	
b	a,0	a,0	b,1	b,1	
c	a,0	a,0	b,1	c,0	

szinkron Moore

X1,X2 y	00	01	11	10
a	a,0	a,0	a,0	c,0
b	a,1	a,1	b,1	b,1
c	a,0	a,0	b,0	c,0

2.a.

y1y2\X	0	1
00	00,00	10,00
01	10,01	00,01
11	11,11	01,11
10	01,10	11,10

2.b.

- ☐ kétbites szinkron számláló
- X kétbites aszinkron számláló
- ☐ kétbites léptető regiszter
- □ egyik sem

2.c.

$y_2,y_1 \setminus X$	0	1
00 (A)	00,00	01, 00
01 (B)	01, 01	10, 01
11 (C)	11, 11	00, 11
10 (D)	10, 10	11, 10

Igen. Ha C2 később vált, akkor a már megváltozott y1 érték alapján működik a második flip-flop, hibásan.

2 bites szinkron számláló, engedélyező bemenettel

3.a.

$$Y_{1} = x_{1}\overline{x_{2}} + x_{1}y_{1} + x_{2}\overline{x_{1}}$$

$$Y_{2} = y_{2}\overline{y_{1}} + y_{2}\overline{x_{2}} + x_{1}\overline{x_{2}}\overline{y_{1}}$$

$$Z = Y_{2} = y_{2}\overline{y_{1}} + y_{2}\overline{x_{2}} + x_{1}\overline{x_{2}}\overline{y_{1}}$$

Y1 függvény statikus hazárdot tartalmaz!

3.b.

Normál mert legfeljebb csak egy instabil van , két stabil állapot között.

$y_1,y_2 \setminus x_1,x_2$	00	01	11	10
00	00, 0	00,0	11,	00, 0
01	00,0	01 ,0	11,0	11,0
11	11,1	01,1	11 ,1	\10,1
10	00,0	01,0	11,0	10,0

Lényeges hazárd : y1 szekunder változót kell késleltetni.

Versenyhelyzet van ; de az nem kritikus ;

3.c.

X1,X2:	00	01	11	10	
A	A , 0	B, 0	A , 0	B, 0	-
В	D,0	B , 0	C,0	B , 0	→ \
С	C , 1	B,0	C , 1	C , 1	
D	D , 0	B,0	D , 0	C,0	

lényeges hazárdok

3.d.

y1y2\x1x2	00	01	11	10
00	00,0	01,0	01 ,0	00,0
01	00,1	01,1	11, 0	01,1
11	11,0	10,0	11,0	01,0
10	11,1	10,1	10,1	00,1

III MSI alkalmazás technika

1.a.

1.b.

1.c.

1.d. három lehetséges megoldás

2.a.

	n ₀ n ₁ n ₂ n ₃	n ₄ n ₅ n ₆ n ₇
N	Q _A Q _B Q _C Q _D	$Q_A Q_B Q_C Q_D$
0	0 0 0 0	0 0 0 0
20	0 0 1 0	1 0 0 0
55	1 1 1 0	1 1 0 0
89	1 0 0 1	1 0 1 0
111	1 1 1 1	0 1 1 0
255	1 1 1 1	1 1 1 1

7	h
∠.	v

$Q_DQ_CQ_BQ_A$			Betöltött érték	
	0 1 1 0	6	1000	8
	1 1 1 0	14	0000	0

 $0, 1, 2, 3, 4, 5, 6 \rightarrow 15, 14, 13, 12, 11, 10, 9 \rightarrow 0, 1, 2, \dots$

RAM

/OE ← RD

 $/CE1 \leftarrow \overline{CS_R}$

 $R/\overline{W} \leftarrow \overline{WR}$

CE2 ← 1

3.c.

2. Jelölje meg, hogy az alábbi hazárdok közül melyek fordulhatnak elő és melyek nem egy **kétszintű** kombinációs hálózatban! (1 pont)

	igen	nem
Dinamikus hazárd		X
Funkcionális hazárd	X	
Lényeges hazárd		X
Rendszer hazárd		X
Statikus hazárd	X	

3. Adott az alábbi állapottábla

X1,X	2:	00	01	11	10
Α		Ą0	C,0	Ą0	B,1
В		A,1	B,1	D,1	B,1
С		C,0	C,0	C,0	D,0
D		C,1	B,1	D,1	D,1

Szinkron működést feltételezve adja meg a megadott bemeneti kombináció-sorozathoz tartozó állapot (y) és kimeneti kombináció sorozatot (Z). A hálózat a C állapotból indul! (1 pont)

x1,x2	00	10	11	01	00	10
y	C	D	D	В	A	В
Z	0	1	1	1	0	1

4. J-K flip-flopokból a mellékelt sorrendi hálózatot építettük:

Jelölje meg, hogy X=1 esetén mit valósít meg a hálózat (1 pont):

- ☐ kétbites aszinkron módon törölhető szinkron számláló
- X kétbites aszinkron módon törölhető aszinkron számláló
- ☐ kétbites aszinkron módon törölhető léptető regiszter
- ☐ kétbites aszinkron módon törölhető tároló regiszter
- □ egyik sem

5. 4 bites teljes összeadó és minimális kiegészítő áramkör felhasználásával rajzoljon fel egy összeadó/kivonó áramkört, amely X(x2,x1,x0), Y(y2,y1,y0) 3 bites pozitív számokon (ahol x0, y0 a legkisebb helyérték) hajtja végre a műveletet. A műveletvégzést az M vezérlő bemenet értéke határozza meg.

Ha M=0, akkor
$$Z = X+Y$$
.
Ha M=1, akkor $Z=X-Y$.

Z(z3,z2,z1,z0) négybites kettes komplemens kódban ábrázolt szám (z0 a legkisebb helyérték). (1pont)

