CHAPTER 1

Continuous Functions in Euclidean Spaces

1. Continuous Functions

DEFINITION 1.1. Let $(X; \rho)$ and $(Y; \eta)$ be two metric spaces, $f: X \to Y$ and $x_0 \in X$.

- f is continuous at x_0 if $\forall \epsilon > 0 \; \exists \delta > 0$ such that $\forall x \in X$, if $\rho(x, x_0) < \delta$ then $\eta(f(x), f(x_0) < \epsilon)$
 - f is continuous if f is continuous at all $x_0 \in X$.

Remark 1.2. We may consider the "more general" setting

$$f: D \subseteq X \to Y, x_0 \in D.$$

f is continuous at x_0 if $\forall \epsilon > 0 \; \exists \delta > 0$ such that $\forall x \in D$, if $\rho(x, x_0) < \delta$ then $\eta(f(x), f(x_0) < \epsilon$.

But this is not more general than the definition since it coincides with the case when D is considered as a metric space with the metric $\rho|_{D\times D}$.

FACT 1.3. Let $(X; \rho)$ and $(Y; \eta)$ be two metric spaces, $f: X \to Y$ and $x_0 \in X$. TFAE:

- (i) f is continuous at x_0
- (ii) $\forall \epsilon > 0 \; \exists \delta > 0 \; such \; that \; f(B_{\delta}(x_0)) \subseteq B_{\epsilon}(f(x_0))$
- (iii) $\forall U \in \mathcal{V}(f(x_0)) \exists V \in \mathcal{V}(x_0) \text{ such that } f(V) \subseteq U.$
- (iv) $\forall U$ open in Y such that $f(x_0) \in U \exists V$ open in X such that $x_0 \in V$ and $f(V) \subseteq U$.

The last characterization shows that continuity is a topological concept.

DEFINITION 1.4. Let $(X; \mathcal{T})$ and $(Y; \mathcal{Y})$ be topological spaces. Let $f: X \to Y$ be a function and $x_0 \in X$.

f is continuous at x_0 if $\forall U \in \mathcal{Y}$ such that $f(x_0) \in U \; \exists V \in \mathcal{T}$ such that $x_0 \in V$ and $f(V) \subseteq U$.

Continuity is related to the more general concept of limit.

DEFINITION 1.5. Let $(X; \rho)$ and $(Y; \eta)$ be topological spaces, $D \subseteq X$. Let $f: D \to Y$ be a function and $x_0 \in X, y_0 \in Y$.

f has limit y_0 at x_0 if:

- x_0 is an accumulation point for D
- $\forall \epsilon > 0 \; \exists \delta > 0 \; \text{such that} \; \forall x \in D \setminus \{x_0\}, \; \text{if} \; \rho(x, x_0) < \delta \; \text{then} \; \eta(f(x), y_0) < \epsilon.$

REMARK 1.6. If f has limit y_0 at x_0 then y_0 is unique, hence we can denote:

$$\lim_{x \to x_0} f(x) = y_0.$$

FACT 1.7.

- (1) $f: D \subseteq X \to Y$, metric spaces, $x_0 \in X$.
 - (i) if x_0 is isolated in D then f is continuous at x_0
 - (ii) if x_0 is an accum. point for D then f is cont. at x_0 iff

$$\lim_{x \to x_0} f(x) = f(x_0).$$

(2)

(3) $f: D \to Y$ function, $x_0 \in D$ accumulation point and $y_0 \in Y$. Then

$$\lim_{x \to x_0} f(x) = y_0 \iff \forall (x_n)_{n \ge 1} \text{ with all } x_n \in D$$

$$and \ x_n \ne x_0 \ \forall n$$

$$and \ \lim_{n \to \infty} x_n = x_0$$

$$we \ have \ \lim_{n \to \infty} f(x_n) = y_0.$$

"\Rightarrow" $\forall \epsilon > 0 \; \exists \delta > 0 \; \text{such that} \; \forall x \in D \setminus \{x_0\}, \; \text{if} \; \rho(x, x_0) < \delta \; \text{then}$ Proof. $\eta(f(x), y_0) < \epsilon$.

Take $(x_n)_{n\geq 1}$ a sequence in X, $x_n \neq x_0 \ \forall n$ and $\lim_{n\to\infty} x_n = x_0$.

Then $\exists N_{\delta} \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$, if $n \geq N_{\delta}$ then $\rho(x_n, x_0) < \delta$ hence: $\eta(f(x_n), y_0) < \epsilon.$

"\(\infty\)" Assume that $\forall (x_n)_{n\geq 1}$ seq. with all elements in D such that $x_n\neq x_0 \ \forall n\in\mathbb{N}$ and $\lim_{n\to\infty} x_n = x_0$ we have $\lim_{n\to\infty} f(x_n) = y_0$.

By contradiction assume that f(x) does not converge to y_0 as x approaches x_0 .

Then $\exists \epsilon_0 > 0$ such that $\forall \delta > 0 \ \exists x \in D \setminus \{x_0\}$ with $\rho(x, x_0) < \delta$ and $\eta(f(x), y_0) \ge \epsilon_0.$

 $\forall n \in \mathbb{N}$, take $\delta = \frac{1}{n} > 0$ hence $\exists x_n \in D \setminus \{x_0\}$ with $\rho(x_n, x_0) < \delta = \frac{1}{n}$ and

$$\eta(f(x_n), y_0) \ge \epsilon_0$$
hence $x_n \xrightarrow{\rho} x_0$ but $f(x_n) \not\xrightarrow[n \to \infty]{\eta} y_0$.

(4) (Sequential Characterization of Continuity) Let $f: X \to Y$ function and $x_0 \in X$.

Then f is continuous at
$$x_0 \Leftrightarrow \forall (x_n)_{n\geq 1}$$
 seq. in X

such that
$$x_n \xrightarrow[n]{\rho} x_0$$

we have
$$f(x_n) \xrightarrow[n]{\eta} y_0$$
.

(5) (Composition of Functions) Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ functions between metric spaces.

(i)

(ii)

Assume that $x_0 \in X$

f is cont. at x_0 g is cont. at $f(x_0)$

Then $g \circ f$ is continuous at x_0 .

(6) (Functions Between Euclidean Spaces) Let $D \subseteq \mathbb{R}^p$ and $f: D \to \mathbb{R}^q$ be a function, hence $f(x) = (f_1(x), \dots, f_q(x)), \forall x \in D$ where $f_j: D \to \mathbb{R}$ function $\forall j = 1, \dots, q$.

(i) Let
$$x_0 \in D'$$
, i.e. x_0 is an accumulation point for D and $y^{(0)} = (y_1^{(0)}, \dots, y_q^{(0)}) \in \mathbb{R}^q$. Then

$$\lim_{x \to x_0} f(x) = y^{(0)} \Leftrightarrow \forall j = 1, \dots, q \lim_{x \to x_0} f_j(x) = y_j^{(0)}.$$

(ii) Let $x_0 \in D$. Then

f is cont. at $x_0 \Leftrightarrow \forall j = 1, \dots, q$, f_i is cont. at x_0 .

Proof.

(i) "\Rightarrow". Assume that $\lim_{x\to x_0} f(x) = y^{(0)}$ and use the $\|\cdot\|_{\infty}$. $\forall \epsilon>0 \ \exists \delta>0$ such that $\forall x\in D\setminus \{x_0\}$, if $\|x-x_0\|<\delta$ then $\|f(x)-y^{(0)}\|_{\infty}<\epsilon$. Let $j\in\{1,\ldots,q\}$, then

$$|f_j(x) - y_j^{(0)}| \le ||f(x) - y^{(0)}||_{\infty} < \epsilon.$$

"\(= \)". Assume that $\forall j = 1, \ldots, q$

$$\lim_{x \to x_0} f_j(x) = y_j^{(0)}.$$

Then $\forall \epsilon > 0 \ \exists \delta_j > 0$ such that $\forall x \in D \setminus \{x_0\}$, if $\|x - x_0\|_{\infty} < \delta_j$ then $|f_j(x) - y_j^{(0)}| < \epsilon$.

Take $\delta := \min\{\delta_1, \dots, \delta_q\} > 0$.

Then $\forall j = 1, ..., q$, if $||x - x_0||_{\infty} < \delta \le \delta_j$ then $|f_j(x) - y_j^{(0)}| < \epsilon$ hence

$$||f(x) - y^{(0)}||_{\infty} = \max_{j=1}^{q} \{|f_j(x) - y_j^{(0)}|\} < \epsilon.$$

- (ii) if x_0 isolated, nothing to prove.
 - if x_0 accum. point for D, we use (i).

(1)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- f continuous on $\mathbb{R}^2 \setminus \{(0,0)\}$
- (0,0) is an accum. point for \mathbb{R}^2 and f does not have a limit $(x,y) \to (0,0)$

$$x = 0, y \to 0 \Rightarrow f(0, y) = 0 \to 0$$
$$y = 0, x \to 0 \Rightarrow f(x, 0) = 0 \to 0$$
$$x = y \to 0 \Rightarrow f(x, y) = \frac{1}{2} \to \frac{1}{2}$$

$$(2) f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- f continuous on \mathbb{R}^2
- at $(x_0, y_0) \neq (0, 0)$, clear
- at (0,0)

$$|f(x,y)| = \frac{|xy|}{\sqrt{x^2 + y^2}} \le \frac{\sqrt{x^2 + y^2}}{2} = \frac{\|(x,y)\|_2}{2}$$

DEFINITION 1.9. • A curve in \mathbb{R}^2 is a continuous function $\gamma: I \to \mathbb{R}^q, q \geq 1$ where I is an interval.

- If the interval I = [a, b] is compact, then the curve has *endpoints* $x = \gamma(a)$ and $y = \gamma(b)$. In this case we say that γ is a *path* joining x and y.
 - A curve with endpoints x and y is called *closed* if x = y.

EXAMPLE 1.10. (1) $\gamma(t) = (\cos t, \sin t), \gamma : [0, 2\pi] \to \mathbb{R}^2$ $\gamma(0) = \gamma(2\pi)$ so γ is a closed curve.

(2) $\gamma(t) = (t^2, t^3), \dot{\gamma} : [0, 1] \to \mathbb{R}^2$

 $\gamma(0) = (0,0) \ \gamma(1) = (1,1)$ a curve with endpoints but not closed.

(3) $\gamma(t) = (t\cos t, t\sin t, t), \gamma : \mathbb{R} \to \mathbb{R}^3$

is a curve with no endpoints

a spiral inside $\{(x, y, z)|x^2 + y^2 = |z|\}$ a cone

DEFINITION 1.11. A surface in \mathbb{R}^q $(q \geq 2)$ is a continuous function $F: A \to \mathbb{R}^q$, D open, nonempty in \mathbb{R}^2 , $D \subseteq A \subseteq \bar{D}$.

Example 1.12.

(1) 2-dimensional sphere in \mathbb{R}^3

$$F: [0, 2\pi) \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \mathbb{R}^3$$

 $F(\theta, \phi) = (\cos \theta \cos \phi, \sin \theta \cos \phi, \sin \phi)$

$$G: B \to \mathbb{R}^3$$

$$G(x, y, z) = \left(x, y, \sqrt{1 - x^2 - y^2}\right)$$

$$B = \left\{(x, y) | x^2 + y^2 \le 1\right\}$$

2. Continuity and Topology

THEOREM 2.1. (Topological Characterization of Continuity) Let $(X; \rho)$, $(Y; \eta)$ be metric spaces. $f: X \to Y$ a function. TFAE:

- (i) f is continuous.
- (ii) For all U open in Y, $f^{-1}(U)$ is open in X.
- (iii) For all F closed in Y, $f^{-1}(F)$ is closed in X.

Proof.

(i)
$$\Rightarrow$$
 (ii). Let U open in Y and $x \in f^{-1}(U)$, i.e. $f(x) \in U$.
Then $\exists \epsilon > 0$ s.t. $B_{\epsilon}(f(x)) \subseteq U$.
Since f is cont. at $x \exists \delta > 0$ s.t. $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x)) \subseteq U$
hence $B_{\delta}(x) \subseteq f^{-1}(B_{\epsilon}(f(x))) \subseteq f^{-1}(U)$, i.e. $f^{-1}(U)$ is open.

(ii) \Rightarrow (i). Let $x \in X$ and $\epsilon > 0$. Then $B_{\epsilon}(f(x))$ is open in Y hence $f^{-1}(B_{\epsilon}(f(x)))$ is open in X. Since $x \in f^{-1}(B_{\epsilon}(f(x)))$ it follows that $\exists \delta > 0$ s.t. $B_{\delta}(x) \subseteq f^{-1}(B_{\epsilon}(f(x)))$, i.e. $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$. Hence f is cont. at each $x \in X$.

(ii) \Leftrightarrow (iii). Since $f^{-1}(Y \setminus A) = f^{-1}(Y) \setminus f^{-1}(A) = X \setminus f^{-1}(A)$.

COROLLARY 2.2. Let $\emptyset \neq D \subseteq \mathbb{R}^p$, $f: D \to \mathbb{R}^q$ a function. TFAE:

- (i) f is continuous.
- (ii) For all U open in \mathbb{R}^q , $f^{-1}(U)$ is relatively open in D.
- (iii) For all F closed in \mathbb{R}^q , $f^{-1}(F)$ is relatively closed in D.

COROLLARY 2.3. Let $\emptyset \neq D \subseteq \mathbb{R}^p$ open, $f: D \to \mathbb{R}^q$ a function. TFAE:

- (i) f is continuous.
- (ii) For all U open in \mathbb{R}^q , $f^{-1}(U)$ is open in \mathbb{R}^p .
- (iii) For all F closed in \mathbb{R}^q , $f^{-1}(F)$ is closed in \mathbb{R}^p .

3. Continuity and Compactness

THEOREM 3.1. Let $(X; \rho)$, $(Y; \eta)$ be metric spaces, $f: X \to Y$ a continuous function and K compact in X. Then f(K) is compact.

PROOF. Let $\{U_i | i \in \mathcal{J}\}$ be an open (in Y) covering of f(K):

- $\forall i \in \mathcal{J}, U_i$ is open in Y;
- $f(K) \subseteq \bigcup_{i \in \mathcal{I}} U_i$.

Then $\forall i \in \mathcal{J}, f^{-1}(U_i)$ is open in X and

$$K \subseteq f^{-1}(f(K)) \subseteq f^{-1}(\bigcup_{i \in \mathcal{J}} U_i) = \bigcup_{i \in \mathcal{J}} f^{-1}(U_i)$$

hence $\{f^{-1}(U_i)|i\in\mathcal{J}\}$ is an open covering of K.

Since K is compact $\exists i_1, \ldots, i_n \in \mathcal{J}$ such that

$$K \subseteq \bigcup_{k=1}^{n} f^{-1}(U_{i_k}) = f^{-1}(\bigcup_{k=1}^{n} U_{i_k})$$

hence $f(K) \subseteq f(f^{-1}(\bigcup_{k=1}^n U_{i_k})) \subseteq \bigcup_{k=1}^n U_{i_k}$.

COROLLARY 3.2. Let $f: X \to \mathbb{R}$ a continuous function and K compact, nonempty in X. Then:

- f is bounded on K, i.e. f(K) is bounded in \mathbb{R} .
- The extreme values of f on K are attained, i.e. $\exists x_m, x_M \in K$ such that

$$f(x_m) = \inf_K f, \ f(x_M) = \sup_K f.$$

PROOF. f(K) is compact in \mathbb{R} , hence closed and bounded.

- f(K) bounded $\Rightarrow \inf_K f, \sup_K f \in \mathbb{R}$.
- $\inf_K f \in f(K) = f(K)$, hence $\exists x_m \in K$ such that $\inf_K f = f(x_m)$.
- $\sup_K f \in f(K) = f(K)$, hence $\exists x_M \in K$ such that $\sup_K f = f(x_M)$.

COROLLARY 3.3. Let $f: X \to \mathbb{R}^q$ a continuous function. Then for all K nonempty and compact in $X \exists x_m, x_M \in K$ such that

$$||f(x_m)|| = \inf_K ||f||, ||f(x_M)|| = \sup_K ||f||.$$

Proof.

$$||f|| = ||\cdot|| \circ f : X \to \mathbb{R}^q \to \mathbb{R}.$$

4. Continuity and Connectedness

THEOREM 4.1. Let $(X; \rho)$, $(Y; \eta)$ be metric spaces, $f: X \to Y$ a continuous function, C connected in X. Then f(C) is connected in Y.

PROOF. By contrapositive, assume that f(C) is separated, hence: there exist U, V open in Y such that

- $f(C) \subset U \cup V$
- $f(C) \cap U \neq \emptyset$
- $f(C) \cap V \neq \emptyset$
- $f(C) \cap U \cap V = \emptyset$

Then $f^{-1}(U)$, $f^{-1}(V)$ are open in X.

- $C \subseteq f^{-1}(f(C)) \subseteq f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$
- $\emptyset \neq f^{-1}(f(C) \cap U) = f^{-1}(f(C)) \cap f^{-1}(U)$
- We prove $C \cap f^{-1}(U) \neq \emptyset$.

Since $f(C) \cap U \neq \emptyset$, $\exists y \in f(C)$ and $y \in U$ hence $\exists x \in C$ such that $f(x) \in U$, hence $x \in f^{-1}(U)$, i.e. $x \in C \cap f^{-1}(U)$.

- Similarly $C \cap f^{-1}(V) \neq \emptyset$.
- Similarly $C \cap f^{-1}(U) \cap f^{-1}(V) = \emptyset$

Assume $C \cap f^{-1}(U) \cap f^{-1}(V) \neq \emptyset$, then $\exists x \in C$ such that $x \in f^{-1}(U) \cap f^{-1}(V)$ hence $f(x) \in f(C)$ and $f(x) \in f(f^{-1}(U)) \subseteq U$, $f(x) \in f(f^{-1}(V)) \subseteq V$ i.e. $f(x) \in f(C) \cap U \cap V$, contradiction!

Thus, $f^{-1}(U)$ and $f^{-1}(V)$ separate C, contradiction!

- COROLLARY 4.2. (1) Let $f:(X;\rho)\to\mathbb{R}$ continuous, C connected in X. Then f(C) is an interval.
 - (2) Let I be an interval in \mathbb{R} and $\gamma: I \to \mathbb{R}^d$ continuous (a curve). Then $\gamma(I)$ is connected.

DEFINITION 4.3. A subset $S \subseteq (X; \rho)$ is called *pathwise connected* if for all $a, b \in S$ there exists a (continuous) path $\gamma : [0, 1] \to S$ such that $a = \gamma(0)$ and $b = \gamma(1)$.

(3) If S is pathwise connected, then it is connected.

PROOF. Assume S is not connected, let U, V open in X and separating S. Then there exist $a \in S \cap U$ and $b \in S \cap V$. Since S is pathwise connected, there exists $\gamma : [0,1] \to S$ continuous such that $\gamma(0) = a$ and $\gamma(1) = b$. But then U and V separate $\gamma([0,1])$, contradiction!

EXAMPLE 4.4. A set in \mathbb{R}^2 that is connected but not pathwise connected.

$$S = \{(0, y) | -1 \le y \le 1\} \cap \{(x, \sin\frac{1}{x}) | -\frac{1}{\pi} < x < \frac{1}{\pi}, x \ne 0\}$$

(4) Assume that D is open in \mathbb{R}^d . Then D is connected iff D is pathwise connected.

Proof."

←" Holds in general.

"\Rightarrow" On D we define a relation: $x \stackrel{p}{\sim} y$ if $\exists \gamma : [0,1] \to D$ continuous such that $\gamma(0) = x$ and $\gamma(1) = y$.

- $\stackrel{p}{\sim}$ is an equivalence relation on D.
- $\forall x \in D$ its equivalence class $[x]_p$ is an open set.
- If D is not pathwise connected then there exist at least two different cosets w.r.t. $\stackrel{p}{\sim}$, hence D is disconnected.

5. Uniform Continuity

DEFINITION 5.1. Let $(X; \rho)$ and $(Y; \eta)$ be two metric spaces. A function $f: X \to Y$ is uniformly continuous if $\forall \epsilon > 0 \ \exists \delta > 0$ such that $\forall x_1, x_2 \in X$, if $\rho(x_1, x_2) < \delta$ then $\eta(f(x_1), f(x_2)) < \epsilon$.

Theorem 5.2. If $f: X \to Y$ is continuous and X is compact, then f is uniformly continuous.

PROOF. Let $\epsilon > 0$. Since f is continuous on X, $\forall x \in X \ \exists \delta_x > 0$ such that $\forall z \in X$ with $\rho(x,z) < \delta_x \Rightarrow \eta(f(x),f(z)) < \epsilon/2$.

Since $\{B_{\delta_x/2}(x)|x\in X\}$ is an open covering of X compact, it follows that there exist $x_1,\ldots,x_n\in X$ such that

$$X \subseteq \bigcup_{i=1}^{n} B_{\delta_{x_i}/2}(x_i)$$

Let $\delta:=\min\{\frac{\delta_{x_i}}{2}|i=1,\ldots,n\}>0$ and let $x,z\in X$ such that $\rho(x,z)<\delta$. Then $\exists j\in\{1,\ldots,n\}$ such that $x\in B_{\delta_{x_j}/2}(x_j)$ i.e. $\rho(x,x_j)<\frac{\delta_{x_j}}{2}$. Then

$$\rho(z, x_j) \le \rho(z, x) + \rho(x, x_j) < \delta + \frac{\delta_{x_j}}{2} \le \frac{\delta_{x_j}}{2} + \frac{\delta_{x_j}}{2} = \delta_{x_j}$$

hence $\eta(f(x), f(x_j)) < \frac{\epsilon}{2}$ and $\eta(f(z), f(x_j)) < \frac{\epsilon}{2}$. Then

$$\eta(f(x), f(z)) \le \eta(f(x), f(x_j)) + \eta(f(z), f(x_j)) < \epsilon$$

Theorem 5.3. Let $(X; \rho)$ be a compact metric space, $(Y; \eta)$ be a complete metric space, $\emptyset \neq D \subseteq X$ and $f: D \to Y$ a function. TFAE:

- (i) f is uniformly continuous on D
- (ii) $\exists \bar{f}: \bar{D} \to Y \text{ such that } \bar{f}|_{D} = f \text{ and } \bar{f} \text{ is continuous on } \bar{D}.$

PROOF(ii) \Rightarrow (i) \bar{D} closed in X compact hence \bar{D} is compact $\Rightarrow \bar{f}$ unif. cont. on $\bar{D} \Rightarrow f = \bar{f}|_{D}$ unif. cont. on D.

- (i) \Rightarrow (ii) Assume that f is uniformly continuous.
 - f maps Cauchy sequences from D to Cauchy sequences in Y: Let $\epsilon > 0$. Then $\exists \delta > 0$ such that $\forall x, z \in D$, if $\rho(x, z) < \delta$ then $\eta(f(x), f(z)) < \epsilon$. Let $(x_n)_{n \geq 1}$ be a ρ -Cauchy sequence in D. $\forall \epsilon > 0$, with $\delta > 0$ as before, $\exists N \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$ if $m, n \geq \mathbb{N}$ then $\rho(x_m, x_n) < \delta$ hence $\eta(f(x_m), f(x_n)) < \epsilon$.
 - Let $x \in \bar{D}$. Then $\exists (x_n)_{n\geq 1}$ in D such that $x_n \xrightarrow{\rho} x$ hence $(x_n)_{n\geq 1}$ is ρ -Cauchy, hence $(f(x_n))_{n\geq 1}$ is η -Cauchy hence, since $(Y;\eta)$ is complete, $\exists y_x \in Y$ such that $f(x_n) \xrightarrow{\bar{\eta}} y_x$. Define $\bar{f}(x) := y_x$. The definition of \bar{f} is correct:

We use the interlacing method.

If
$$(x_n)_{n\geq 1}$$
 is a seq. in D, $x_n \stackrel{\rho}{\underset{n}{\longrightarrow}} x$
 $(z_n)_{n\geq 1}$ is a seq. in D, $z_n \stackrel{\rho}{\underset{n}{\longrightarrow}} x$

Then $(t_n)_{n\geq 1}$ defined by

$$t_n = \begin{cases} x_{\frac{n}{2}}, & \text{if } n = 2k \\ z_{\frac{n-1}{2}}, & \text{if } n = 2k+1 \end{cases}$$

is a sequence in D and $t_n \xrightarrow{\rho} x$.

Then $f(x_n) \xrightarrow{\eta} y_x$, $f(z_n) \xrightarrow{\eta} z_x$, $f(t_n) \xrightarrow{\eta} t_x$. Since $(f(x_n))_{n\geq 1}$ and $(f(z_n))_{n\geq 1}$ are subsequences of $(f(t_n))_{n\geq 1}$, it follows that $y_x = t_x = z_x$.

• \bar{f} is continuous on \bar{D} :

We use the sequential characterization of continuity. Let $\bar{x} \in \bar{D}$ and $(\bar{x}_n)_{n\geq 1}$ a sequence in \bar{D} such that $\bar{x}_n \stackrel{\rho}{\to} \bar{x}$.

Then $\forall n \geq 1 \ \exists x_n \in D \ \text{such that} \ \rho(\bar{x}_n, x_n) < \frac{1}{n} \ \text{and} \ \rho(\bar{f}(\bar{x}_n), f(x_n)) < \frac{1}{n}$. Then

$$\rho(x_n, \bar{x}) \le \rho(x_n, \bar{x}_n) + \rho(\bar{x}_n, \bar{x}) < \frac{1}{n} + \rho(\bar{x}_n, \bar{x}) \xrightarrow{n} 0$$

hence $x_n \xrightarrow{\rho} \bar{x}$, and then by def. of \bar{f} we have $f(x_n) \xrightarrow{\rho} \bar{f}(\bar{x})$, and then

$$\eta(\bar{f}(\bar{x}_n), \bar{f}(\bar{x})) \leq \eta(\bar{f}(\bar{x}_n), f(x_n)) + \eta(f(x_n), \bar{f}(\bar{x})) < \frac{1}{n} + \eta(f(x_n), \bar{f}(\bar{x})) \xrightarrow[n]{} 0$$
hence $\bar{f}(\bar{x}_n) \xrightarrow[n]{} \bar{f}(\bar{x})$.

- ${\bf 6. \ \, Sequences \, \, of \, \, Functions}$
 - 7. Series of Functions