Ôn tập NT531 - Đánh giá hiệu năng hệ thống mạng máy tính

1. Phân loại mô hình hàng đợi

Queuing models: A/B/n

- A: số lượng process đến
- B: số lượng proccess phục vụ
- n: số lượng server

Các tiêu chuẩn notation: tra cứu trong tài liệu

Ví dụ:

- M/M/n: hệ thống thuần với Poisson arrival process với n server
- G1/G/1: hệ thống thông thường (General) với 1 server

Queing models: A/B/n/K/NX

- tương tự như trên
- K: capacity của hệ thống
- N: số lượng khách hàng
- X: các quy tắc xử lý hàng đợi

Note: nếu K = n, tức là hệ thống bị đầy/quá tải, thường được note là A/B/n-Loss

Queuing disciplines (Quy tắc xử lý hàng đợi)

- FIFO First In First Out: là một hàng đợi công bằng hoặc một hàng đợi có thứ tự, thường được gọi là FCFS - First Come First Serve
- LIFO Last Come First Out: giống với Stack, được sử dụng trong hệ thống lưu trữ, tên gọi khác là LCFS - Last Come First Serve

Phân loại hàng đợi

- SIRO Service In Random Order
- SJF Shortest Job First (SJN Shortest Job Next, SPF Shortest Processing time First, etc.)
- RR Round Robin
- PS Processor Sharing
- NON-PREEMEPTIVE: HOL Head-of-the-line

 PREEMPTIVE: Resume, Without Resampling, With Resampling, GD - General Discipline

2. Arrival and Service Process

Exponential Model

- Probability density function Hàm mật độ xác xuất (pdf): $f(t) = \lambda . e^{-\lambda t}$
- Cumulative function Hàm phân phối tích luỹ : $F(t) = 1 e^{-\lambda t}$ = Probability{inter-arrival time \leq t}
- Mean value Giá trị trung bình: $E[x] = 1/\lambda$
- Variance Phương sai: $Var[x] = 1/\lambda^2$
- Conditional Probability Xác xuất có điều kiện: $P=1-e^{-\lambda\times dt}$ với thời điểm tới kế tiếp trong khoảng (t,t+dt)
- Mô hình này còn được gọi là memory less system vì xác xuất của arrival mới phụ thuộc vào xác xuất của arrival trước nó
- Trường hợp sử dụng: Khi đề bài nói đến thời gian arrival giữa các lần (inter-arrival times)

Ví dụ: Let us assume that engineering personnel use an online terminal to make routine calculations. If the time each engineer spends in a session at the terminal has an exponential distribution with an average value of 36 minutes, find:

- a. The probability that an engineer spends less than 30 minutes at the terminal
- b. More than an hour
- c. 90% of the session end in less than t minutes. What is the value of t?

Tóm tắt:

- $\lambda = \frac{1}{36}$ (1 phút có 1/36 session trên terminal)
- a. Xác xuất người kỹ sư dành ít hơn 30 phút sử dụng terminal

$$P_{x<30} = 1 - e^{-\frac{1}{36} \times 30} = 0.565$$

b. Nhiều hơn 1 giờ => lấy phần bù

$$P_{x>60} = 1 - P_{x<60} = e^{-\frac{1}{36} \times 60} = 0.189$$

c. Xác xuất 90% session kết thúc ít hơn t phút => tìm t

$$P_{x < t} = 1 - e^{-\frac{1}{36} \times t} = 0.9 \Rightarrow t = 82,893$$

Poison Model

- Mean arrival rate Tỉ lệ trung bình: λ
- Observation period Chu kỳ quan sát: T
- Poisson distributed Phân phối Poisson: $P_x(T) = rac{(\lambda imes T)^x}{x!} imes e^{-\lambda imes T}$
- Mean value Giá trị trung bình: $E[x] = \lambda \times T$
- Variance Phương sai: $Var[x] = \lambda \times T$
- Trường hợp sử dụng: Khi đề bài cho khoảng thời gian cố định.

Ví dụ: On average, 1 call arrives every 5 seconds. Assume that inter-arrival time distribution is exponential. During a period of 10 seconds, what is the probability that:

- a. No call arrives
- b. One call arrives
- c. Two calls arrive
- d. More two calls arrive

Tóm tắt:

- $\lambda=rac{1}{5}$ (1 giây có 1/5 cuộc gọi)
- T = 10 giây
- a. Không cuộc gọi => x = 0 => $P_0=0.135$
- b. 1 cuộc gọi => x = 1 => $P_1 = 0.271$
- c. 2 cuộc gọi => x = 2 => $P_2=0.271$
- d. >2 cuộc gọi => $P_{x>2} = 1 \sum_{i=0}^2 P_i = 0.323$

Binominal Model

- Independence slots Số slot độc lập: T
- Arrival in 1 slot Xác xuất arrival trong 1 slot: p = P
- No arrival in 1 slot Xác xuất không có arrival trong 1 slot: 1-p=P
- Binomial probability distribution Phân phối Binominal: $P(x) = {T \choose x} p^x (1-p)^{T-x}$
- Trường hợp sử dụng: Khi đề bài nói tới số lượng arrival thành công trong một slot và có 2 trường hợp xảy ra (arrival - thành công, no arrival - không thành công)

Ví dụ: At time 0, there are 5 conversations in progress on a trunk group. Assume that the conversation times are **exponentially distributed** with mean 3 minutes. Calculate the probability that after 1 minute exactly 2 of those conversations are still in progress!

Tóm tắt:

- T = 5 (có 5 cuộc hội thoại trong 1 nhóm)
- $E[x] = 1/\lambda = 3$ (thời gian trung bình là 3 phút cho 1 cuộc hội thoại)
- t = 1, x = 2 (trong 1 phút có đúng 2 cuộc hội thoại đang diễn ra)

Áp dung Exponentail Model:

•
$$P_{x \le 1} = 1 - e^{-\lambda \times t} = 0.283$$

•
$$P_{x>1} = 1 - P_{x \le 1} = 0.717$$

Chọn 2 cuộc hội thoại ngẫu nhiên, không quan tâm thứ tự từ 5 cuộc hội thoại: C_5^2

Xác xuất sau 1 phút có đúng 2 cuộc hội thoại: $P_1=C_5^2 imes(P_{x>1})^2 imes(P_{x\leq 1})^{5-2}=0.117$

Bernouli Model

p=P{arrival in slot}

1-p=P{no arrival in slot}

Geometric Model

p=P{arrival in slot}
1-p=P{no arrival in slot}

3. Erlang's Delay System (M/M/n - System)

Giả thiết đặt ra

- Số lượng server có hạn $(n<\infty)$
- Số lượng vị trí trong hàng đợi vô hạn $(Q=\infty)$
- Thời gian giữa các lần đến và thời gian được đáp ứng được phân phối Exponential
- Các nguồn giống hệt nhau và độc lập với nhau
- Người dùng không rời hàng đợi, và tất cả yêu cầu đều được đáp ứng
- Thuận theo nguyên tắc FIFO First In First Out

- Phân phối thời gian giữa các lần đến là phân phối Exponential với tỷ lệ đến trung bình, gọi là λ
- Phân phối xác suất của thời gian chiếm dụng cá nhân là phân phối Exponentail với giá trị trung bình là $t_m=\frac{1}{\mu}$, với μ là tỉ lệ đáp ứng
- Số lần tới trong t_m là $A=\lambda imes t_m$
- Hệ thống hoàn toàn sẵn để các yêu cầu có thể đến bất kỳ máy chủ nào, với số lượng người dùng trong hệ thống tại thời điểm $t=(0,\infty)$ là x(t)
- Số lượng người dùng đang chờ trong hệ thống tại thời điểm $t=(0,\infty)$ là q(t)
- Số lượng người dùng được phục vụ trong hệ thống tại thời điểm $t=(0,\infty)$ là x(t)-q(t)

Erlang's Delay Formular, trong trường hợp bình thường:

$$\begin{array}{l} \bullet \ \ P_0 = \frac{1}{\sum_{i=0}^{n-1} \frac{A^i}{i!} + \frac{n}{n-A} \cdot \frac{A^n}{n!}} \\ \bullet \ \ P_x = \frac{\frac{A^x}{x!}}{\sum_{i=0}^{n-1} \frac{A^i}{i!} + \frac{n}{n-A} \times \frac{A^n}{n!}}, \ \text{khi q = 0, x = (1, n-1)} \\ \bullet \ \ P_x = \frac{(\frac{A}{n})^q \times \frac{A^n}{n!}}{\sum_{i=0}^{n} \frac{A^i}{i!} + \frac{n}{n-A} \times \frac{A^n}{n!}}, \ \text{khi } x \geq n \ \text{và q = x - n = } (0, \infty) \end{array}$$

Erlang's Delay Formular, trong trường hợp không có delay

$$egin{align} m{\Phi}_n(A) &= rac{rac{n}{n-A} \cdot rac{A^n}{n!}}{\sum_{i=0}^{n-1} rac{A^i}{i!} + rac{n}{n-A} \cdot rac{A^n}{n!}} \ m{\Phi}_{
m no\ delay} &= 1 - D_n(A) \ \end{pmatrix}$$

Ví dụ: Một hệ thống hàng đợi M/M/8 có tốc độ đến của gói tin là λ=135 packets/hour (135 gói tin/1 giờ). Thời gian phục vụ/xử lý gói tin trung bình là tm=2 phút (minutes). Hãy tính toán:

Xác suất gói tin đến hệ thống và được phục vụ ngay lập tức (no delay)?

Xác suất tất cả các server đều bận và hàng đợi trống (empty)?

Tóm tắt:

- n = 8 (ghi chú trong M/M/8)
- $\lambda = 135$ (135 packets/hour)
- $t_m = \frac{2}{60}$ (tm=2 phút)
- ullet $A=\lambda imes t_m=4.5$
- a. Không có độ trễ (no delay)

$$D_n(A) = rac{rac{n}{n-A} \cdot rac{A^n}{n!}}{\sum_{i=0}^{n-1} rac{A^i}{i!} + rac{n}{n-A} \cdot rac{A^n}{n!}} = 0.104$$

$$P_{
m no\ delay}=1-D_n(A)=0.896$$

b. Tất cả server đều bận và hàng đợi trống:

x=n (tất cả 8 server đều bận), q=0 (hàng đợi trống)

$$P_0 = rac{1}{\sum_{i=0}^{n-1}rac{A^i}{i!}+rac{n}{n-A} imesrac{A^n}{n!}} = 0.011$$

$$P_8 = (\frac{A}{n})^q imes \frac{A^n}{n!} imes P_0 = 0.046$$