Regression Analysis:

Predicting the International vs.
Domestic Share of Box
Office Revenue

ANALYSIS BY: Olivia Offutt, Metis Regression

INTRODUCTION

OVERVIEW

- Global markets: significant source of revenue for US made movies
- Predicting if a movie will produce a high international response would be helpful for a movie distributor to have in its business decision making toolkit

PROJECT GOAL:

Using data from Box Office Mojo, build a predictive model for international percentage (%) of revenue for domestic made movies

DATA

Sample Frame: 1000 domestic movie web pages from Box Office Mojo Top Lifetime Grosses page

Variables:

- Target Variable (1): International Revenue %
- Feature Variables (95):
 - Numeric Vars: [Year, Run Time, Budget (adjusted for inflation)]
 - Categorical Vars: [Distributor, Rating, Genres, Directors,
 Actors, Release Month]

TOOLS

- Web Scraping: Beautiful Soup, Pickle
- Regression Analysis: SciKitLearn, statsmodels

METRICS

- Feature Engineering:
 - Pairplots, heatmaps, and VIF analysis to ID/address collinearity
 - Residuals scatter plot to ID/address heteroskedasticity

METRICS

- Feature Engineering:
 - Pairplots, heatmaps, and VIF analysis to ID/address collinearity
 - Residuals scatter plot to ID/address heteroskedasticity*

*Future Improvement: Was unable to ID target transformation to improve baseline in this project

METRICS

- Model Training and Testing:
 - 4 regression models
 - Scored for explanation power (R² value) and magnitude of error value (MAE):

Model	R ²	MAE
Standard OLS - KFold CV	0.33 ± 0.11	0.1 ± 0.01
Polynomial OLS - KFold CV	- 0.21 ± 0.36	0.13 ± 0.02
Ridge Regression - RidgeCV	.29	0.09
Lasso Regression - LassoCV	.33	0.09

RESULTS

Final Model:

Lasso Regression, cross validated (LassoCV)

$$R^2 = .33$$

MAE = 0.09

RESULTS

Variables with highest coefficient (standardized)

'budget_adj' 0.034

• 'year' 0.032

• 'Adventure' 0.022

• 'Will Ferrell' - 0.016

• 'Comedy' - 0.015

'Animation' 0.012

• 'Thriller' 0.011

Variables that were dropped to zero during Lasso Regression:

- Run Time
- All Directors
- All Distributors
- Al Months Released
- Most Actors
- Many Genres

cv tuned alpha = .01

CONCLUSIONS

Unfortunately, the model in its current form is not very predictive or useful for a business case.

Ways to improve the model

- Better sample Frame:
 - Use a much larger data set
 - Use a data set within a more recent time frame (last 10 years for example)
- More specific target:
 - International % may be too broad and capturing too many variables
 - Model can be refined to predict more specific targets, e.g.
 Chinese box office revenue

Better features:

 Search for another movie data website that has data that promises to be more explanatory for predicting international market targets

