CPE301 - SPRING 2019

Design Assignment 3A

Student Name: Allis Hierholzer

Student #: 2000160356

Student Email: hierholz@unlv.nevada.edu

Primary Github address: https://github.com/acexhp/submission_da.git

Directory: Repository/cpe301/DesignAssignment/DA3A

Task:

The goal of the assignment is to modify the above codes to do the following:

1. Write a C AVR program that will display a string, random integer and floating point values on the serial terminal every 1 sec. Use a timer with interrupt for the 1 sec delay. Use a FTDI chip for serial to USB conversion.

Submission:

The following are required for successful completion of the design assignment:

- a. AVR C code that has been compiled and working.
- b. The C code should be well documented with explanation of every instruction.
- c. A word document that contains the flow chart of the assembly code along with the snapshots of the schematics, components connected on the breadboard and screen shoots.

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- Breadboard
- Wires
- USB Cables
- ATMEGA328P XPLAINED MINI
- ATMEL STUDIO 7.0

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
* DA3A.c
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <stdio.h>
#define F CPU 16000000UL
#define BAUDRATE 9600
#define BAUD PRESCALLER (((F CPU / (BAUDRATE * 16UL)))-1)
//Function declarations
volatile int Count:
void USART_init( unsigned int ubrr );
                                                       //calls integere
void USART_TX_string(char *data);
                                                       //calls string
char outs[30];
int random num;
                                                       //creates variables
float AVOGADRO NUM;
char string[] = "x 10^23 is Avogadro's number :)";
                                                       //creates string
char space[] = " ";
                                                       //creates space
int main(void)
{
      Count = 0;
      TIMSK0 |= (1<<TOIE0);
                                                       //sets interrupt when overflow
                                                       occurs
      sei ();
      TCCR0A = 0;
                                                       //normal mode
      TCCR0B = (1 << CS02) | (1 << CS00);
                                                       //prescaler = 1024
      USART_init(BAUD_PRESCALLER);
                                                       //baud prescaler
      USART_TX_string("Printing...\r\n");
                                                       //shows succesful connection
   while (1);
}
//int USART (RS-232)
void USART init( unsigned int ubrr ){
      UBRR0H = (unsigned char)(ubrr>>8);
      UBRR0L = (unsigned char)ubrr;
      UCSR0B = (1 << TXEN0);
      UCSROC = (3 << UCSZOO);
}
//send string to RS-232
void USART_TX_string(char *data) {
      while (*data != '\0') {
             while (!(UCSR0A & (1<<UDRE0)));</pre>
             UDR0 = *data;
```

```
data++;
       }
}
ISR (TIMER0_OVF_vect){
                                                        //timer0 overlfow interrupt
       while (Count < 61){</pre>
                                                        //waiting
              if ((TIFR0 & 0x01) == 1){
                                                        //detects overflow
                     TIFR0 = 0X01;
                                                        //reset overlfow flag
                     Count++;
              }
       if (Count > 60){
              USART_TX_string(string);
                                                        //prints string
              USART_TX_string(space);
                                                        //prints space
              random_num = rand();
                                                        //creates random number
              AVOGADRO_NUM = 6.022141;
                                                        //creates and store float value
              snprintf(outs, sizeof(outs), "%3d\r\n", random_num);
              USART_TX_string(outs);
              USART_TX_string(space);
              sprintf(outs, "%f", AVOGADRO_NUM);
              USART_TX_string(outs);
              USART_TX_string(space);
              Count = 0;
       }
}
```

3. SCHEMATICS

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO

https://youtu.be/de81e pFMLY

7. GITHUB LINK OF THIS DA

https://github.com/acexhp/submission_da.git

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Allis Hierholzer