UNIT-V: Continuous Distributions

Probability

Author: Generated by Al Date: 2025

Continuous Probability Distributions

A probability distribution where the random variable can take any value within a given range.

Uniform Distribution

A distribution where all outcomes are equally likely.

Formula: f(x) = 1 / (b - a), for $a \le x \le b$.

Exponential Distribution

Used to model time between events in a Poisson process.

Formula: $f(x) = \lambda e^{-(-\lambda x)}$, for $x \ge 0$.

Gamma Distribution

Generalizes the exponential distribution to model waiting times for multiple events. Formula: $f(x) = (\lambda^k * x^k + \lambda^k * x^k$

Weibull Distribution

Used in reliability analysis and failure modeling. Formula: $f(x) = (\beta/\alpha) * (x/\alpha)^{(\beta-1)} * e^{(-(x/\alpha)^\beta)}$.

Normal Distribution

A symmetric, bell-shaped distribution describing many natural phenomena. Formula: $f(x) = (1 / (\sigma \sqrt{(2\pi)})) * e^{-(-(x - \mu)^2 / (2\sigma^2))}$.

Functions of a Random Variable

Transformations of random variables to derive new distributions and probabilities.