Halteproblem und Reduzierbarkeit von Problemen

- Einführendes Beispiel
- Definitionen
- Beweis einer nichtberechenbaren Funktion
- Reduzierbarkeit von Problemen
- Rekursivität von Sprachen
- Zusammenfassung/ Ausblick

Funktionen ...

Mathematik

■ BEISPIELE ??

- Informatik
 - ightharpoonup Sort(x), Sum(x), etc.

... und ihre Berechenbarkeit

- Alle Funktionen werden auf
 - **■** f: {0,1}* -> {0,1}* oder
 - **■** g: N -> N
- abgebildet.
- **Achtung:** R kann nicht berechnet werden!

Was sind Probleme und welche sind in P??

- Zusammenhang Mengen und Prädikate
 - Entscheidungs-Problem: $x \in A$
 - Charakteristische Funktion zu A:

$$\chi_A(x) = \begin{cases} 1 & \text{falls } x \in A \\ 0 & \text{sonst} \end{cases}$$

- lacktriangle A entscheidbar genau dann, wenn χ_A berechenbar
- lacktriangle A in lacktriangle genau dann, wenn χ_A in **polynomialer Zeit** berechenbar

Beispiele

```
    A₁= Menge der Primzahlen = { x∈|N | x ist prim}
    A₂= Menge der Quadratzahlen = { x ∈|N | es gibt n∈ |N : x=n²}
    A₃= Graph der Quadratfunktion = { (x, y) | y= x² }
    A₄= Graph sortierte Listen = { (L, L') | L' = L sortiert }
```

Heinrich Braun; Informatik I

Halteproblem

- einführendes Beispiel

```
void Test() {
    while (true) {
        int i = 1;
    }
}
```

- → terminiert nicht
- void CollatzProblem (int n) {
 while (n > 1) {
 if (n%2 == 0) {n = n/2;}
 else {n = n*3+1;}
 }
 }
 - → terminiert wahrscheinlich immer (geprüft bis ~20*2⁵⁵)
 - → Ein ungelöstes mathematisches Problem

- Kann man formal überprüfen, ob ein Programm terminiert oder nicht?
- Welche Folgen hat dies auf unsere Programme?

Definitionen (I)

Kodierung der Programme bzw. Eingaben:

Kodierung hier als Dualzahl

<u>Sprachabhängigkeit</u>

- ightharpoonup $H_{iava} = \{(i, x) \mid Java-Programm P_i hält bei Eingabe E_x\}$
- \blacksquare H_c = {(i, x) | C-Programm P_i hält bei Eingabe E_x}
- ABER: Anwendbarkeit des Beweises eines Problems auf andere Probleme

<u>Mengendefinition</u>

■ Für jedes Problem muss die Menge definiert werden, auf der sie angewandt werden soll

Definitionen (II)

- <u>berechenbare Funktion</u> f: M → N
 Es existiert ein Algorithmus in irgendeiner Programmiersprache (Turingmaschine, Java, C, C++, Haskell, Prolog), der f(x) für jeden Eingabewert x ∈ M berechnet, andernfalls terminiert der Algorithmus nicht.
- Entscheidbare Menge

 $\chi_{M}(x) = 1$ falls $x \in M$ 0 sonst charakteristische Funktion χ_{M} is

charakteristische Funktion χ_M ist berechenbar \rightarrow rekursive Menge

Rekursiv aufzählbare Menge

 $\overline{\chi_{M}(x)} = 1$ falls $x \in M$ undefiniert sonst

charakteristische Funktion χ_M ist im positiven Fall berechenbar \rightarrow die Menge heißt auch semi-entscheidbar

Definitionen (III)

Halteproblem:

Algorithmus, der für ein beliebiges Programm mit beliebiger Eingabe erkennt, ob dieses terminiert oder nicht

→ Programmiersprache sowie Kodierung des Programmes und der Eingabe müssen eindeutig definiert sein

■ <u>Totalitätsproblem</u>:

Ein Programm heißt total, falls das Programm für alle Eingaben terminiert.

Kann dies durch ein Programm bestimmbar sein?

Äquivalenzproblem:

Ist es durch ein Programm berechenbar, ob zwei Programme P1 und P2 verhaltensgleich sind?

2.16 Grenzen endlicher Akzeptoren

Es gibt eine formale Sprache, die von keinem endlichen Akzeptor erkannt werden kann. Selbst dann, wenn man nur $X = \{0\}$ erlaubt. Verschiedene Beweise; z. B.:

- 1. Es gibt abzählbar unendlich viele ("N viele") endliche Akzeptoren. TURING MASCHINEN
- Es gibt überabzählbar unendlich viele ("ℝ viele") formale
 Sprachen über {0}. TEILMENGEN von |N => Entscheidungsprobleme
- 3. Es gibt keine surjektive Abbildung von \mathbb{N} auf \mathbb{R} (Cantor).

Man lernt aber auch etwas an konkreten Beispielen . . .

Nichtberechenbare Funktion **Einführung**

- Unentscheidbares Problem = Problem mit einer nichtberechenbaren charakteristischen Funktion
- Bekanntestes unentscheidbares Problem: Halteproblem
- Beweis erfolgt in einem Widerspruchsbeweis

Nichtberechenbare Funktion Diagonalisierung

- Aufstellen einer unendlichen Matrix
 - X-Achse: alle möglichen Eingaben E
 - Y-Achse: alle möglichen Programme P
 - Die Elemente auf den Achsen sind sortiert nach ihrer Kodierung
- Elemente der Matrix:

$$f(i, x) = P_i(x)$$
 wenn $Sim(i, x)$ terminiert undefiniert sonst

PE	1	2	3	4
1	3	0	5	2
2	1	0	U	1
3	U	0	2	2
4	U	3	0	0

- Idee: Nehme eine Funktion, die sich von jeder berechenbaren Funktion unterscheidet
- Definiere Diag(i) = $P_i(i) + 1$ wenn Sim(i,i) terminiert 0 sonst

Nichtberechenbare Funktion Beweis (I)

- Betrachten einer beliebigen Programmiersprache, hier Java
- Halteproblem H_{Java} mit charakteristischer Funktion $\chi_H(i, x) = 1$ wenn Java-Programm P_i bei Eingabe E_x terminiert 0 sonst
- Annahme Halteproblem ist entscheidbar
 - → es gibt ein Java-Programm JavaStop mit der folgenden charakteristischen Funktion:

```
JavaStop(i, x) = 1 wenn JavaSim(i, x) terminiert 0 sonst
```

Nichtberechenbare Funktion Beweis (II)

■ Diag(î) = JavaSim(î, î) + 1 da Diag total

 \rightarrow $\forall i : Diag(i) = JavaSim(î, i)$

→ Diag(î) = Diag(î)+1

→ WIDERSPRUCH

Nichtberechenbare Funktion Folgerungen

- Praktische Konsequenz:
 - Es wird kein Programm geben, welches prüft, ob ein gegebenes Programm auf einer Eingabe terminiert.
 - Es wird niemals ein Programm geben, welches die semantische Korrektheit von Programmen prüft
- → partielle Korrektheit von Programmen = ein Programm berechnet das Gewünschte für alle Eingaben, für die sie stoppen

Reduzierbarkeit **Definition**

- A ist auf B reduzierbar, wenn es eine totale und berechenbare Funktion f: A → B gibt, so dass für alle x ∈ A gilt: x ∈ A ⇔ f(x) ∈ B
- Schreibweise: $A \leq_m B$
- wenn B entscheidbar ist, so ist dies auch A $\chi_A(x) = \chi_B(f(x))$
- Umkehrung:
 Wenn A unentscheidbar ist, dann ist B auch unentscheidbar
- $\begin{array}{ccc} \bullet & H_{Java} & \leq_m & H_C \\ & H_C & \leq_m & H_{java} \end{array}$
 - → f(x) ist hierbei ein Compiler zwischen den Sprachen Java und C
 - → alle Halteprobleme sind gleich schwer

Reduzierbarkeit Totalitätsproblem

Reduktion Halteproblem auf Totalitätsproblem

- Konstruktion der Reduktionsfunktion ReduktionTotal mit (i, x) ∈ H_{java} ⇔ ReduktionTotal(i,x) ∈ Total_{java}
- ReduktionTotal(i, x) ist Programm Nr von folgendem Java Programm

```
int JavaSim(int P, int x) { ... }
{
    JavaSim(i, x);
    return 0
}
```

- Offensichtlich gilt: Reduktionsfunktion ist berechenbar
- $H_{java} \leq_m Total_{java} \Leftrightarrow \chi_H(i,x) = \chi_{Total}(ReduktionTotal(i, x))$
- Totalitätsproblem nicht entscheidbar, da Halteproblem nicht entscheidbar

Reduzierbarkeit Äquivalenzproblem

Reduktion Halteproblem auf Äquivalenzproblem

- Konstruktion der Reduktionsfunktion ReduktionÄquival mit (i, x) ∈ H_{java} ⇔ ReduktionÄquival(i, x) ∈ Äquival_{java}
- ReduktionÄquival(i, x) = (P₁, P₂) mit P₁ und P₂ Programm Nr von folgenden Java Programmen int JavaSim(int P, int x) { ... } int P₁() { return 1; JavaSim(i, x); return 1; }
- Offensichtlich gilt: Reduktionsfunktion ist berechenbar
- $H_{java} \leq_m \ddot{A}quival_{java} \Leftrightarrow \chi_H(i,x) = \chi_{\ddot{A}quival}(Reduktion\ddot{A}quival(i,x))$
- Äquivalenzproblem nicht entscheidbar, da Halteproblem nicht entscheidbar

Rekursivität von Sprachen Rekursive Sprache

- Charakteristische Funktion ist berechenbar
 - → Entscheidbarkeit

$$\chi_{M}(x) = 1$$
 falls $x \in M$
0 sonst

- ► M_2 ist rekursiv und M_1 auf M_2 mit Reduktionsfunktion f reduzierbar $(M_1 \le_m M_2)$, dann ist M_1 rekursiv, da $\chi_{M1}(x) = \chi_{M2}(f(x)) = 1$
- Abgeschlossen gegenüber Vereinigung, Durchschnitt und Komplement

Abgeschlossen gegen Durchschnitt, Komplement, Vereinigung

- Seien die Mengen M₁ und M₂ rekursiv
- Es existieren zwei funktionale Programme $f_i(x) = \chi_{M_i}(x)$

$$\sum_{M_1 \cap M_2} (x) = f_1(x)^* f_2(x)$$

$$\sum_{M_1 \cup M_1} (x) = \min(f_1(x) + f_2(x), 1)$$

Rekursiv aufzählbare Sprache

Charakteristische Funktion ist im positiven Fall berechenbar
 → Semi-Entscheidbarkeit

$$\chi_M(x) = 1$$
 falls $x \in M$ undefiniert sonst

- Wenn M_2 rekursiv aufzählbar und M_1 auf M_2 mit Reduktionsfunktion f reduzierbar ($M_1 \le_m M_2$), dann M_1 rekursiv aufzählbar, da $\chi_{M1}(x) = \chi_{M2}(f(x)) = 1$
 - Umkehrung:

 M_1 ist nicht rekursiv aufzählbar und M_1 auf M_2 mit Reduktionsfunktion r reduzierbar ($M_1 \leq_m M_2$), dann ist M_2 nicht rekursiv aufzählbar.

- Abgeschlossen gegenüber Vereinigung und Durchschnitt
- Nicht abgeschlossen gegenüber Komplement

Lemma: M und M^c rekursiv aufzählbar => M rekursiv

→ Halteproblem rekursiv aufzählbar, sein Komplement aber nicht

Abgeschlossen gegen Durchschnitt, Komplement, Vereinigung

- \blacksquare Seien die Mengen M_1 und M_2 rekursiv aufzählbar
- Es existieren zwei funktionale Programme $f_i(x) = \chi_{M_i}(x)$
- $\sum_{M_1 \cap M_2} (x) = f_1(x)^* f_2(x)$
- $= \chi_{M_1^{\circ}}(x) = 1-f_1(x)$ terminiert nicht !!
- $\chi_{M_1 \cup M_1}(x) = \text{Simuliere parallel } f_1(x) \text{ und } f_2(x),$ Gib 1 aus, sofern $f_1(x)$ oder $f_2(x)$, anhält

Rekursivität von Sprachen **Zusammenhang Prädikatenlogik (I)**

Voraussetzung: berechenbare Prädikate

$$\chi_{M}(x) = 1$$
 falls $x \in M$
0 sonst

- Quantoren für Vereinigung, Durchschnitt, Komplement von rekursiven Sprachen sind anwendbar
- Wie sieht es mit Existenzquantor und Allquantor aus?

Rekursivität von Sprachen Zusammenhang Prädikatenlogik (II)

- Existenzquantor und Allquantor gelten nur bedingt
- Voraussetzung:
 - T(P, x, t) = 1 ⇔ Programm P hält bei Eingabe x nach spätestens t Schritten
 - $H(P, x) = 1 \Leftrightarrow Programm P hält bei Eingabe x$
- Dann ist
 - ightharpoonup T(P, x, t) berechenbar
 - ► $H(P, x) = \exists t T(P, x, t)$ nur semi-berechenbar, aber nicht berechenbar
 - 1-H(P, x) = \neg ∃ † T(P, x, †) = \forall † \neg T(P, x, †) nicht semi-berechenbar
 - Total(p) = ∀x∃ † T(P, x, †) weder entscheidbar noch rekursiv aufzählbar noch Komplement rekursiv aufzählbar

Chomsky Hierarchie

Zusammenfassung/Ausblick

- Es kann keinen Algorithmus geben, mit dem überprüft werden kann, ob ein beliebiges Programm terminiert,
- für eigene Programme sollte das gehen! Wie??
- Verschiedene Probleme sind ineinander überführbar
 - → Reduktion von Problemen
- In der Berechenbarkeitstheorie gibt es eine Hierarchie von Sprachen und ihren Eigenschaften
- Weiterhin kann es keinen Algorithmus geben, der für eine beliebiges Programm prüft, ob dieses eine Nicht-Triviale Eigenschaft besitzt.
 - → Satz vom Rice