

Beamforming and Quantized Feedback in Spatially Correlated Multi-User MIMO Systems

Emil Björnson

PhD Student in Telecommunications

Royal Institute of Technology (KTH)

Sweden

Biography

- Born 1983 in Malmö, Sweden.
- Master of Science in Engineering Mathematics,
 Lund University, Sweden, Sept 2002 Jan 2007.
- Master Thesis: "Beamforming Utilizing Channel Norm Feedback in Multiuser MIMO Systems"
- PhD Student in Telecommunications at Royal Institute of Technology (KTH), since Feb 2007.
- Two publications: SPAWC'07, ICASSP'08.

Outline

- Introduction to a Multi-user System
- How To Choose Performance Measure?
- Receive Beamforming with Subspace Cancellation
- Quantization of the Channel Norm
- Performance Evaluation
- Conclusions

Institut Eurécom 2008-04-15

INTRODUCTION TO A MULTI-USER SYSTEM

Downlink multi-user system

- Downlink of multi-antenna system
 - Elevated base station, n_T antennas.
 - Multiple users, n_R antennas.

Spatial Correlation

 Some spatial directions are statistically more favorable for a given user:

• Excellent for simultaneous transmission to several users (beamforming, SDMA).

System Model

- Urban environment, elevated base station
 - Spatially correlated transmitter.
 - Independent receive antennas.
- Channel model:
 - ullet Rayleigh fading multi-antenna channel to user k

$$\mathbf{H}_k = [\mathbf{h}_{k,1}, \dots, \mathbf{h}_{k,n_R}]^H \in \mathbb{C}^{n_R \times n_T}$$
,

with independent rows $\mathbf{h}_{k,i} \in \mathcal{CN}(\mathbf{0},\mathbf{R}_k)$.

Received signal

• Transmission of s_k to user k.

$$y_k(t) = \mathbf{v}_k^H \mathbf{H}_k \bigg(\underbrace{\sqrt{p_k} \mathbf{w}_k s_k(t)}_{\text{signal}} + \underbrace{\sum_{j \neq k} \sqrt{p_j} \mathbf{w}_j s_j(t)}_{\text{interference}} \bigg) + \underbrace{\mathbf{n}_k(t)}_{\text{noise}, \sigma_k^2}$$

- Transmit beamformer: $\mathbf{w}_k \in \mathbb{C}^{n_T}$
- Receive beamformer: $\mathbf{v}_k \in \mathbb{C}^{n_R}$
- Transmitter knows statistics.
- Receiver k knows H_k and the statistics.

Institut Eurécom 2008-04-15

HOW TO CHOOSE PERFORMANCE MEASURE?

How to optimize performance?

- We need a performance measure:
 - Maximize sum of data rates of all users?
 - Maximize the minimal rate among all users?
- What about fairness?
- The measure depend on the application:
 - Balance between throughput and fairness.

Signal-to-interference/noise ratio

Achievable rate depends on the SINR:

$$SINR_k = \frac{p_k \|\mathbf{v}_k^H \mathbf{H}_k \mathbf{w}_k\|^2}{\sum_{i \neq k} p_i \|\mathbf{v}_k^H \mathbf{H}_k \mathbf{w}_i\|^2 + \sigma_k^2}.$$

- Tricky to maximize the SINR:
 - Transmit beamformer w_k affects all users.
 - Transmitter only knows the channel statistics.
 - Receiver is unaware of the other users' channels.

A suboptimal approach

- It's not enough to maximize the SINR
 - Robust estimation necessary at transmitter
- The effect of the receive beamformer should be predictable at transmitter.
- Next, a suboptimal approach is proposed
 - Clear framework for interference suppression.
 - Based on my paper from ICASSP'08.

RECEIVE BEAMFORMING WITH SUBSPACE CANCELLATION

Subspace Partitioning

• Partitioning of covariance matrix \mathbf{R}_k :

$$\mathbf{R}_k = \begin{bmatrix} \mathbf{u}_k^{(D)} \, \mathbf{U}_k^{(I)} \, \mathbf{U}_k^{(0)} \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \ddots \\ \lambda_{n_T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_k^{(D)} \, \mathbf{U}_k^{(I)} \, \mathbf{U}_k^{(0)} \end{bmatrix}^H$$

- $\mathbf{u}_k^{(D)}$ dominating eigenvector (largest eigenvalue).
- $\mathbf{U}_k^{(I)}$ eigenvector subspace of non-negligible eigenvalues.
- $\mathbf{U}_k^{(0)}$ eigenvector subspace with eigenvalues close to zero.

Proposed Transmission Strategy

 Signal power should be received along the dominating eigenvector:

$$\mathbf{w}_k = \mathbf{u}_k^{(D)}$$

- Interference in $\mathbf{U}_k^{(I)}$ can be mitigated without loss of signal power.
 - Receiver can cancel out the n_R-1 strongest eigenvalues in $\mathbf{U}_k^{(I)}$.

Illustration of Receive Beamforming

How can it be done in practice?

• We cancel out transmissions within $\mathbf{U}_k^{(I)}$ by choosing

$$\mathbf{v}_k \in \text{null}\left((\mathbf{H}_k \mathbf{U}_k^{(I)})^H\right).$$

This will make

$$\mathbf{v}_k^H \mathbf{H}_k \mathbf{U}_k^{(I)} = 0.$$

- To make the nullspace one-dimensional:
 - Let $\mathbf{U}_k^{(I)}$ contain exactly n_R-1 eigenvectors.

The Effective Channel

 With the proposed receive beamforming, the effective channel is

$$\widetilde{\mathbf{h}}_k^H = \mathbf{v}_k^H \mathbf{H}_k \in \mathcal{CN}(\mathbf{0}, \mathbf{Q}_k).$$

- Same eigenvectors in \mathbf{Q}_k as in the original \mathbf{R}_k .
- The eigenvalues of Q_k will be

$$[\lambda_1,0,\ldots,0,\lambda_{n_R+1},\ldots,\lambda_{n_T}].$$

The distribution is known at the transmitter!

Estimation of the SINR

 With the proposed receive beamforming, the SINR becomes

$$SINR_k = \frac{p_k \|\widetilde{\mathbf{h}}_k \mathbf{w}_k\|^2}{\sum_{i \neq k} p_i \|\widetilde{\mathbf{h}}_k \mathbf{w}_i\|^2 + \sigma_k^2}.$$

- Estimation of signal/interference power can be improved by feedback of $\|\widetilde{\mathbf{h}}_k\|^2$
 - For large n_R , the channel is almost rank one.
 - Statistics tell how $\|\widetilde{\mathbf{h}}_k\|^2$ is distributed spatially.

Illustration of norm and statistics

- Assume that v_1 has larger variance than v_2 .
- Each circle represents a value of $\sqrt{v_1^2 + v_2^2}$.
- The statistics tell how the power is distributed between v_1 and v_2 .
- The uncertainty reduces with increasing norm.

Institut Eurécom 2008-04-15

QUANTIZATION OF THE CHANNEL NORM

Feedback of the channel norm

- Feedback $\|\widetilde{\mathbf{h}}_k\|^2$ improves SINR estimation.
 - Formulas for MMSE estimation of signal/ interference powers in my ICASSP'08 paper.
- Example (power in one eigendirection):

$$E\{|v_l|^2|\rho\} = \frac{1}{g_\rho} \left[\frac{(A_\rho + \lambda_l)e^{-\frac{A_\rho}{\lambda_l}} - (B_\rho + \lambda_l)e^{-\frac{B_\rho}{\lambda_l}}}{\prod_{i \neq l} \left(1 - \frac{\lambda_i}{\lambda_l}\right)} + \sum_{k \neq l} \frac{\lambda_l \left(e^{-\frac{A_\rho}{\lambda_l}} - e^{-\frac{B_\rho}{\lambda_l}}\right) - \lambda_k \left(e^{-\frac{A_\rho}{\lambda_k}} - e^{-\frac{B_\rho}{\lambda_k}}\right)}{\left(1 - \frac{\lambda_k}{\lambda_l}\right) \prod_{i \neq k} \left(1 - \frac{\lambda_i}{\lambda_k}\right)} \right]$$

How to quantize the norm?

- Limited feedback capacity:
 - Only a few bits of feedback available per user.
- Maximum entropy quantization:
 - Divide probability density of the norm into interval of equal probability.
- When do we use the norm information?
 - SINR estimation after user selection.
 - Should use the post-user-selection distribution!

Post-User-Selection Distribution

- Users with strong values of $\|\widetilde{\mathbf{h}}_k\|^2$ are more probable to be selected.
 - The behavior depends on the scheduler.
 - Hard to derive post-user-selection probability since each user is unaware of other users.
- Possible to derive analytically for:
 - Select the M users (out of N) that have the largest CDF values.

Heuristic post-user-selection PDF

- Idea of the heuristic quantization:
 - One interval for really poor channel norms.
 - The rest of the probability mass divided equally.

Institut Eurécom 2008-04-15

PERFORMANCE EVALUATION

Simulation System

- Base Station
 - 8 antennas in a uniform circular array (UCA).
 - 15 degrees of angular spread.
- Mobile users
 - 4 antennas at each user.
 - Uniformly distributed in the cell.

Simulation Model

- Resource Allocation
 - Several users are selected in each time slot (greedily to maximize proportional fairness).
 - Transmit beamformers used to maximize the signal power, under the condition:
 - No interference allowed in other users dominating eigenmodes.
 - Equal power allocation, 10 dB at cell boundary.

Simulation Results

CDF of the cell throughput with 8 users:

Simulation Results

CDF of the cell throughput with 32 users:

Observations

- I bit gives 50% of the performance gain,
 3 bits gives 90%, 5 bits gives 99%.
- Multi-user opportunistic beamforming needs 3 bits just to choose a beamformer.
 It is clearly outperformed, even with exact feedback.

Institut Eurécom 2008-04-15

CONCLUSIONS

Conclusions

- When statistics are known at base station, transmission should take place along the strongest eigenvector.
- Receiver can cancel out interference in other eigenvector subspaces.
- Feedback of the channel norm makes reliable SINR estimation possible.
- Only a few bits are needed per user.

Some references

References

E. Björnson and B. Ottersten, "Exploiting Long-Term Statistics in Spatially Correlated Multi-User MIMO Systems with Quantized Channel Norm Feedback."

D. Hammarwall, "Resource Allocation in Multi-Antenna Communication Systems with Limited Feedback," PhD Thesis.

 Even more details are given in an upcoming journal paper.