eGaN® FET DATASHEET EPC2045

EPC2045 – Enhancement Mode Power Transistor

 V_{DS} , $100\,V$ $R_{DS(on)}$, $7\,m\Omega$ I_D , $16\,A$

Revised February 4, 2025

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low ontime are beneficial as well as those where on-state losses dominate.

Application Notes:

 Easy-to-use and reliable gate, Gate Drive ON = 5 V typical, OFF = 0 V (negative voltage not needed)

• Top of FET is electrically connected to source

Questions:
Ask a GaN
Expert

Maximum Ratings							
PARAMETER VALUE UNIT							
V	Drain-to-Source Voltage (Continuous)	100	V				
V_{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	120					
	Continuous (T _A = 25°C)	16	^				
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	130	A				
V	Gate-to-Source Voltage	6	V				
V _G s	Gate-to-Source Voltage	-4	V				
T	Operating Temperature	-40 to 150	°C				
T _{STG}	Storage Temperature	-40 to 150	C				

Thermal Characteristics						
	PARAMETER TYP UNIT					
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	1.4				
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	8.5	°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	64				

 $Note 1: R_{\theta,A} \ is \ determined \ with \ the \ device \ mounted \ on \ one \ square \ inch \ of \ copper \ pad, \ single \ layer \ 2 \ oz \ copper \ on \ FR4 \ board. \\ See \ https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf \ for \ details.$

Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 300 \mu\text{A}$	100			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$		40	250	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.01	1.3	mA
I _{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V}, T_J = 125^{\circ}\text{C}$		0.1	5	mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		40	500	μΑ
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 5 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 16 \text{ A}$		5.6	7	mΩ
V_{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 A, V_{GS} = 0 V$		1.7		V

[#] Defined by design. Not subject to production test.

Die size: 2.5 x 1.5 mm

EPC2045 eGaN® FETs are supplied passivated die form with solder bumps

Applications

- Open rack server architectures
- · Lidar/pulsed power applications
- USB-C
- · Isolated power supplies
- · Point of load converters
- · Class D audio
- Led lighting
- Low inductance motor drive

Benefits

- Ultra high efficiency
- No reverse recovery
- Ultra low Q_G
- · Ultra small footprint

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2045

eGaN® FET DATASHEET EPC2045

Dynamic Characteristics# $(T_j = 25^{\circ}C \text{ unless otherwise stated})$						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance			767	1016	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		3		
Coss	Output Capacitance			295	443	pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0+= F0VV 0V		383		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		500		
R_{G}	Gate Resistance			0.6		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 16 \text{ A}$	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 16 \text{ A}$ 6	7.8		
Q_GS	Gate-to-Source Charge			1.9		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V}, I_D = 16 \text{ A}$		0.8		
$Q_{G(TH)}$	Gate Charge at Threshold			1.3		nC
Q _{OSS}	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		25	38	
Q_{RR}	Source-Drain Recovery Charge			0		

 $[\]mbox{\#}$ Defined by design. Not subject to production test.

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Typical Transfer Characteristics

Figure 3: Typical $R_{DS(on)} \, vs. \, V_{GS}$ for Various Drain Currents

Figure 4: Typical $R_{DS(on)} \, vs. \, V_{GS} \, for \, Various \, Temperatures$

All measurements were done with substrate connected to source.

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} . Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} .

EPC2045 eGaN® FET DATASHEET

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Output Charge and Coss Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Typical Reverse Drain-Source Characteristics

Figure 9: Typical Normalized On-State Resistance vs. Temp.

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

eGaN® FET DATASHEET EPC2045

Figure 12: Typical Transient Thermal Response Curves

EPC2045 eGaN® FET DATASHEET

TAPE AND REEL CONFIGURATION

	Dimension (mm)			
EPC2045 (Note 1)	Target	MIN	MAX	
a	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (Note 2)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (Note 2)	2.00	1.95	2.05	
g	1.50	1.50	1.60	

Die is placed into pocket solder bar side down (face side down)

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Dout		Laser Markings	
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC2045	2045	YYYY	ZZZZ

Dout		Laser Markings	
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC2045	0B31	YYYY	ZZZZ

eGaN® FET DATASHEET EPC2045

DIE OUTLINE

Solder Bar View

DIM		MICROMETERS	;
DIM	MIN	Nominal	MAX
Α	2470	2500	2530
В	1470	1500	1530
C		450	
d		500	
е	238	264	290

Pads 1 is Gate;

Pads 2, 3, 7, 8, 9, 13, 14, 15 are Source;

Pads 4, 5, 6, 10, 11, 12 are Drain;

Side View

Solder bump material: Solder Alloy Sn/1.8Ag: IPC/JEDEC J-STD-609 solder alloy e-code: e2

RECOMMENDED **LAND PATTERN**

The land pattern is solder mask defined. Copper is larger than the solder mask opening.

Pads 1 is Gate;

Pads 2, 3, 7, 8, 9, 13, 14, 15 are Source; Pads 4, 5, 6, 10, 11, 12 are Drain;

RECOMMENDED STENCIL DRAWING

(measurements in μ m)

Recommended stencil should be 4 mil (100 µm) thick, laser cut. The corner has a radius of R60.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at https://epc-co.com/epc/design-support

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.