ECE 340: PROBABILISTIC METHODS IN ENGINEERING

SOLUTIONS TO HOMEWORK #8

4.54

a) Solution:

$$E[Y] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$= -a \int_{-\infty}^{-a} f_X(x) dx + \int_{-a}^{a} x f_X(x) dx + a \int_{a}^{\infty} f_X(x) dx$$

$$= -a F_X(-a) + \int_{-a}^{a} x f_X(x) dx + a (1 - F_X(a))$$

$$E[Y^2] = a^2 F_X(-a) + \int_{-a}^{a} x^2 f_X(x) dx + a^2 (1 - F_X(a))$$

$$VAR[Y] = E[Y^2] - E[Y]^2$$

d) Solution:

First, we need to obtain the pdf of X. We do so by first obtaining the cdf of X. Notice that $X=U^3$ and U is uniformly distributed in [-1,1]. Since U is a random variable, X will also be a random variable.

Also, $P\{X \le x\} = P\{U^3 \le x\} = P\{U \le \sqrt[3]{x}\}$. Note that the range of X is also [-1,1].

Now, for x < -1,

$$F_X(x) = P\{X \le x\} = P\{U \le \sqrt[3]{x}\} = 0$$
.

For $-1 \le x \le 1$,

$$F_X(x) = P\{X \le x\} = P\{U^3 \le x\} = P\{U \le \sqrt[3]{x}\} = F_U(\sqrt[3]{x})$$

We know that the cdf of *U* in the range between -1 and 1 is

$$F_U(u) = \frac{1}{2}u + \frac{1}{2}$$
. Thus,

$$F_X(x) = F_U(\sqrt[3]{x}) = \frac{1}{2}\sqrt[3]{x} + \frac{1}{2},$$
 for $-1 \le x \le 1$.

And, for x>1, $F_X(x) = 1$.

Now we have completed calculating the cdf of X. To obtain the pdf of X, we differentiate $F_X(x)$ with respect to x. For the range of [-1, 1],

$$f_X(x) = \frac{dF_X(x)}{dx} = \frac{1}{6}x^{-\frac{2}{3}}$$

Note that the $f_X(x)=0$ otherwise.

From part a) and by using a=1/2 we have:

$$E[Y] = -\frac{1}{2}F_X\left(-\frac{1}{2}\right) + \int_{-\frac{1}{2}}^{\frac{1}{2}} x f_X(x) dx + \frac{1}{2}\left(1 - F_X\left(\frac{1}{2}\right)\right)$$

$$= -\frac{1}{2}F_U\left(\sqrt[3]{-\frac{1}{2}}\right) + \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x}{\left(6 * x^{\frac{2}{3}}\right)} dx + \frac{1}{2}\left(1 - F_U\left(\sqrt[3]{\frac{1}{2}}\right)\right)$$

$$= -\frac{1}{2} * \left(\frac{1}{2} * \sqrt[3]{-\frac{1}{2}} + \frac{1}{2}\right) + \frac{1}{6} * \frac{3}{4} * x^{\frac{4}{3}} \Big|_{-\frac{1}{2}}^{\frac{1}{2}} + \frac{1}{2} * \left(1 - \left(\frac{1}{2} * \sqrt[3]{\frac{1}{2}} + \frac{1}{2}\right)\right)$$

$$= -0.0516 + \frac{1}{8} * (0) + 0.0516$$

$$= 0$$

$$E[Y^{2}] = \frac{1}{4}F_{X}\left(-\frac{1}{2}\right) + \int_{-\frac{1}{2}}^{\frac{1}{2}} x^{2} f_{X}(x) dx + \frac{1}{4}\left(1 - F_{X}\left(\frac{1}{2}\right)\right)$$

$$= \frac{1}{4}F_{U}\left(\sqrt[3]{-\frac{1}{2}}\right) + \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x^{2}}{\left(6 * x^{\frac{2}{3}}\right)} dx + \frac{1}{4}\left(1 - F_{U}\left(\sqrt[3]{\frac{1}{2}}\right)\right)$$

$$= 0.02578 + \frac{1}{6}\left(\frac{3}{7} * x^{\frac{7}{3}}\Big|_{-\frac{1}{2}}^{\frac{1}{2}}\right) + 0.02578$$

$$= 0.05156 + \frac{1}{14}(0.198 + 0.198)$$

$$= 0.0798$$

 $VAR[Y] = E[Y^2] - E[Y]^2 = 0.0798$

2 ECE 340

4.59 Solution

Assuming that we define the random variable Y=|X|.

$$P\{|X| > x\} = P\{Y > x\} = 1 - P\{Y \le x\} = 1 - F_Y(x)$$

Since X is uniform between [-2,2], its pdf is:

The random variable Y=|X| is then uniformly distributed in the range from 0 to 2. Consequently, the pdf of the random variable Y=|X| is:

From that, we can get $F_{|X|}(x)$ by integrating the pdf of Y or |X|

$$F_{|X|}(x) = \int_{-\infty}^{x} f_{|X|}(t) dt = \begin{cases} 0, & \text{if } x < 0 \\ \frac{x}{2}, & \text{if } 0 \le x < 2 \\ 1, & \text{if } x \ge 2 \end{cases}$$

So

3

$$P\{|X| > x\} = 1 - F_Y(x) = 1 - F_{|X|}(x) = \begin{cases} 1, & \text{if } x < 0 \\ 1 - \frac{x}{2}, & \text{if } 0 \le x < 2 \\ 0, & \text{if } x \ge 2 \end{cases}$$

and we can draw the CDF of |X| in the following figure

 $P\{(|X|>x)\}= 1-P\{(|X|<=x)\}=1-F_{|X|}(x)$ is shown here:

4.62

a) Since X is exponential with parameter λ , its cdf is: $F_X(x) = 1 - e^{-\lambda x}$ $x \ge 0$

$$F_X(x)=1-e^{-\lambda x}$$
 $x \ge 0$
$$P\{X \le \pi(r)\} = 1 - e^{-\lambda \pi(r)} = \frac{r}{100}$$

$$1 - \frac{r}{100} = e^{-\lambda \pi(r)}$$
 So,

So,

$$\pi(r) = -\frac{1}{\lambda} \ln\left(1 - \frac{r}{100}\right)$$
$$= \frac{1}{\lambda} \ln\left(\frac{100}{100 - r}\right)$$

We can compute the percentiles by plugging in r in the above expression, so:

$$\pi(90) = \frac{2.3026}{\lambda}$$

$$\pi(95) = \frac{2.9957}{\lambda}$$
$$\pi(99) = \frac{4.6025}{\lambda}$$

b) Since *X* is Gaussian random variable with m=0 and σ

$$F_{X}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{r^{2}}{2\sigma^{2}}} dr = \phi(\frac{x-m}{\sigma}) = \phi(\frac{x}{\sigma})$$

Note that we also have $\phi(x) = 1 - Q(x)$.

Thus we can solve the value of x with the help of **table 4.2**, or use the '**qfuncinv**' in matlab. We know $F_x(\pi(90)) = 1 - Q(\pi(90)/\sigma) = 90/100$ then

$$Q(\frac{\pi(90)}{\sigma}) = 1 - 0.90 = 0.1$$

By using 'qfuncinv(0.1)' in matlab, we have

$$\frac{\pi(90)}{\sigma}$$
 = 1.2816 so $\pi(90)$ = 1.2816 σ

Similarly, we obtain

$$\pi(95) = 1.6449\sigma$$

$$\pi(99) = 2.3263\sigma$$

4.63 X is Gaussian r.v. with m=5 and $\sigma^2=16$

a)
$$P\{X > 4\} = Q\left(\frac{4-m}{\sigma}\right) = Q\left(-\frac{1}{4}\right) = 1 - Q\left(\frac{1}{4}\right) \approx 0.5987$$

You can use either matlab function 'qfunc(.25)' or Talbe 4.2, when using the table, using linear interpolation is recommended. For example, in table 4.2 you have Q(.2) \approx 0.421, and Q(.3) \approx 0.382, but Q(.25) is not given, then you can do the following linear interpolation

$$Q(.25)\approx 0.421 + (0.382 - 0.421)^*[(0.25 - 0.2)/(0.3 - 0.2)] = 0.4015.)$$

$$P\{X \ge 7\} = Q\left(\frac{7-m}{\sigma}\right) = Q\left(\frac{2}{4}\right) = Q(0.5) \approx 0.3085$$

5 ECE 340

$$P\{6.72 < X < 10.16\} = P\{X < 10.16\} - P\{X < 6.72\} = \Phi\left(\frac{10.16 - 5}{4}\right) - \Phi\left(\frac{6.72 - 5}{4}\right)$$

$$= (1 - Q(1.29)) - (1 - Q(0.43)) \approx 0.2351$$

$$P\{2 < X < 7\} = \Phi\left(\frac{7 - 5}{4}\right) - \Phi\left(\frac{2 - 5}{4}\right) = (1 - Q(0.5)) - (1 - Q(-0.75)) \approx 0.4648$$

$$P\{6 \le X \le 8\} = \Phi\left(\frac{8 - 5}{4}\right) - \Phi\left(\frac{6 - 5}{4}\right) = (1 - Q(0.75)) - (1 - Q(0.25)) \approx 0.1747$$
b)

$$P\{X < a\} = 0.8869$$

$$0.8869 = 1 - P\{X \ge a\}$$

$$0.8869 = 1 - Q\left(\frac{a - m}{\sigma}\right)$$

$$Q\left(\frac{a - m}{\sigma}\right) = 0.1131$$

Using 'qfuncinv(0.1131)',

$$\frac{a - m}{\sigma} \approx 1.2102$$

$$a \approx 1.2102 * 4 + 5 = 9.8408$$

c)

$$P{X > b} = 0.11131$$

 $Q\left(\frac{b-m}{\sigma}\right) = 0.1131$

Using 'qfuncinv(0.1131)',

$$\frac{b-m}{\sigma} = 1.2102$$
$$b = 9.8408$$

d)

$$P\{13 < X \le c\} = 0.0123$$

$$0.0123 = P\{X > 13\} - P\{X > c\}$$

$$0.0123 = Q\left(\frac{13 - 5}{4}\right) - Q\left(\frac{c - 5}{4}\right)$$

$$0.0123 = 0.0228 - Q\left(\frac{c - 5}{4}\right)$$

$$Q\left(\frac{c - 5}{4}\right) = 0.0228 - 0.0123 = 0.0105$$

$$\frac{c - 5}{4} = 2.3080$$

$$c = 14.2319$$

$$Q(-x) = \frac{1}{\sqrt{2\pi}} \int_{-x}^{\infty} e^{\frac{t^2}{2}} dt = 1 - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-x} e^{\frac{t^2}{2}} dt$$

$$= 1 - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{t^2}{2}} (-dt') \quad \text{where } t' = -t$$

$$= 1 - \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt' = 1 - Q(x)$$

4.66

a)
$$P\{X \le m\} = 1 - P\{X > m\} = 1 - Q\left(\frac{m-m}{\sigma}\right) = 1 - Q(0) = \frac{1}{2}$$

b)
$$P\{|X - m| \le k\sigma\} = P\{-k\sigma \le X - m \le k\sigma\} = P\{-k\sigma + m \le X \le k\sigma + m\}$$

= $P\{X \le k\sigma + m\} - P\{X \le -k\sigma + m\}$
= $1 - P\{X > k\sigma + m\} - (1 - P\{X > -k\sigma + m\})$
= $Q(-k) - Q(k)$
= $1 - Q(k) - Q(k) = 1 - 2Q(k)$

k	1	2	3	4	5	6
$P\{ X-m \leq k\sigma\}$	0.6827	0.9545	0.9973	0.9999	≈1	≈1

c) Find k such that,

$$Q(k)=P\{X>m+k\sigma\}=10^{-j}$$

Using table 4.3:

j	1	2	3	4	5	6
k	1.2815	2.3263	3.0902	3.7190	4.2649	4.7535

7 ECE 340