On the Constructions of Implicitly Authenticated Key Exchange

Haiyang Xue 2019.10.12

Roadmap

Outline

- > Authenticated key exchange
- > Motivations & our contributions

- \triangleright AKE \leftarrow 2-key KEM \leftarrow
- ➤ Post-quantum AKE

Diffie-Hellman Key Exchange [DH76]

$$U_A$$
 U_B
$$x \to g^x = X$$

$$X$$

$$Y \to g^y = Y$$

$$K = Y^x$$

$$Y$$

$$K = X^y$$

- Passive secure under DDH assumption
- Adaptive attacks: Man-in-the-middle attack etc.
- Basic and general idea: Authenticated Key Exchange (AKE)

Authenticated Key Exchange

• Authenticated Key Exchange (AKE). Binding id with static public key using PKI etc.

- Security models
 BR model, CK model, HMQV-CK, eCK model, CK+ model
- 2. Constructions
 - Explicit: BR, CK01,IKE, Krawczyk03(SIGMA), ..., Peikert14 etc.
 - Implicit: MTI, MQV, HMQV, OAKE, Okamoto07,NAXOS, BCNP+09, FSXY12-13 etc

General Structure of AKE

Challenges of AKE

• The models are tedious to describe and difficult to get right;

• just describing a concrete protocol itself can be hard enough;

• the security proofs and checking even more so.

Security of AKE

- Bellare-Rogaway 93 (BR93) indistinguishable type definition
- Canetti-Krawczyk 01(CK01) stronger security (session key, session state)
- LaMacchia-Lauter-Mityagin 07 (eCK) stronger (session key, ephemeral randomness,wPFS+KCI+MEX)
- Fujioka-Suzuki-Xagawa-Yoneyama 12 (CK+) reform the security of HMQV: CK01+wPFS+KCI+MEX

Event	Case	sid*	sid*	ssk_A	esk_A	esk_B	ssk_B	Security
E_1	1	A	No		×	-	×	KCI
E_2	2	A	No	×	$\sqrt{}$	_	×	MEX
E_3	2	B	No	×	_		×	MEX
E_4	1	B	No	×	_	×		KCI
E_5	5	A or B	Yes		×	×		wPFS
E_6	4	A or B	Yes	×			×	MEX
E_{7-1}	3	A	Yes		×		×	KCI
E_{7-2}	3	B	Yes	×		×		KCI
E_{8-1}	6	A	Yes	×	$\sqrt{}$	×	$\sqrt{}$	KCI
E_{8-2}	6	B	Yes		×		×	KCI

 $[\]sqrt{}$ it may be leaked to adversary; \times it is secure; - means it does not exists

Outline

- > Authenticated key exchange
- ➤ Motivations & our contributions

- \triangleright AKE \leftarrow 2-key KEM \leftarrow
- ➤ Post-quantum AKE

Constructions of AKE

• Explicit AKE: using additional primitives i.e., signature or MAC

1. IKE, Canetti-Krawczyk 02

2. SIGMA, Krawczyk 03, Peikert 14

3. TLS, Krawczyk 02

Constructions of AKE

- Implicit AKE: unique ability so as to compute the resulted session key
 - 1. MTI 86: the first one
 - 2. MQV 95: various attacks
 - 3. HMQV 05: the first provable secure implicit-AKE via gap-DH and KEA
 - **4. YZ13:** OAKE
 - 5. Okamoto 07: in standard model from DDH (Hashing Proof Sys.)
 - **6.** LLM 07: NAXOS scheme from gap-DBDH
 - 7. Boyd et al. 08: Diffie-Hellman+KEM
 - **8. FSXY 12** (2CCA+CPA-KEM, std.), **FSXY 13** (2CCAKEM,RO)
 - 9. ZZD+15 HMQV-type based on RLWE with weaker aim

Motivation

Motivations

• What is the (non-interactive) core building block of implicit AKE?

• How to grasp and simplify the construction and analysis of implicit AKE?

Our Works

- What is the (non-interactive) core building block of implicit AKE?
- propose a new primitive 2-key PKE/KEM

- How to grasp and simplify the construction and analysis of AKE?
- give frames of AKE to understand several well-know AKEs
- construct new AKEs from 2-key PKE/KEM

Outline

- ➤ Authenticated key exchange
- ➤ Motivations & our contributions

- \triangleright AKE \leftarrow 2-key KEM \leftarrow
- ➤ Post-quantum AKE

Key Encapsulation Mechanism(KEM)

$$R' = K \qquad \longleftarrow \qquad \begin{array}{c} pk & \xrightarrow{Enc} & (C, K) \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ KGen \end{array}$$

Key Exchange (transport) and KEM

$$U_{A}$$

$$U_{B}$$

$$pk$$

$$C \qquad (C,K) = Enc(pk,r)$$

$$Dec(sk, C) = K = Enc(pk, r)$$

Our 2-key KEM

It is simple, not a big deal

One-side AKE from 2-key KEM?

$$U_{A}$$

$$pk_{0}$$

$$C$$

$$C$$

$$(C,K) = Enc(pk_{1}, pk_{0}, R_{B})$$

$$Dec(sk_1, sk_0, C) = K$$

The key point is how to define its security to fit the requirement of AKE

CK+ security

sid*	sid*	ssk_A	esk_A	esk_{B}	ssk_B	Bounds
A	No		×	-	×	$Adv_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_B, pk_0^* = cpk_0$
A	No	×		_	×	$Adv_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_B, pk_0^* = cpk_0$
В	No	×	_		×	$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]},\ pk_1 = pk_A,\ pk_0^* \leftarrow \mathcal{A}$
В	No	×	_	×		$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, \ pk_1 = pk_A, \ pk_0^* \leftarrow \mathcal{A}$
A/B	Yes		×	×		$\operatorname{Adv}_{2KEM}^{[\cdot,OW-CPA]},\ pk_0 = pk_0(sid^*)\ pk_1^* \in [L_1]_1$
A/B	Yes	×			×	$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, \ pk_1 = pk_A, pk_0^* \in [L_0]_1$
A	Yes		×		×	$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, \ pk_1 = pk_B \ pk_0^* = cpk_0$
B	Yes	×		×		$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_A, pk_0^* \in [L_0]_1$
A	Yes	×		×		$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, \ pk_1 = pk_A, \ pk_0^* \in [L_0]_1$
В	Yes		×		×	$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_B, pk_0^* = cpk_0$

Send Adv

$[CPA,\cdot]$

Send Adv + Session Key/State Reveal

$pk_1 \leftarrow KGen1$, pk_1, L $pk_1 \leftarrow KGen1$ Send pk_0^* DecO pk'_0, C' If $pk_0' \in L$ pk_0^i pk_0^* pk_0^i, sk_0^i C^* $K^*???$

 $SK = H(sid, K_A, K^*)$

K′???????

SK' = H(sid, K')

$[CCA,\cdot]$

Case 6-10

K′???????

SK' = H(sid, K')

C $pk_{1} \leftarrow KGen1$ pk_{0}^{i}, sk_{0}^{i} pk_{0}^{i}, sk_{0}^{i} C^{*} C^{*} C^{*} C^{*} C^{*}

 $SK = H(sid, K_A, K^*)$

$[CCA,\cdot]$

[CCA,·] Security of 2-key KEM

[CCA,·] Security of 2-key KEM

One-side AKE from [CCA, CPA] 2-key KEM

 $U_{\rm A}$ pk_{A1} $U_{\rm B}$

$$C \qquad (C,K) = Enc(pk_{A1}, pk_{A0}, r_B)$$

 $K = Dec(sk_{A1}, sk_{A0}, C)$

The other side AKE from [CCA, CPA] 2-key KEM

Main AKE frame? \leftarrow [CCA, CPA] 2-key KEM

$$K = Hash(sid, K_A, K_B) or PRF(K_B) \oplus PRF(K_A)$$

Several AKE frames with Tricks

$$U_{A} \quad pk_{A1}$$

$$U_{B} \quad pk_{B1}$$

$$(C_{B}, K_{B}) = Enc(pk_{B1}, pk_{B0}) \qquad pk_{A0} \quad C_{B} \qquad K_{B} = Dec(sk_{B1}, sk_{B0}, C_{A})$$

$$K_{A} = Dec(sk_{A1}, sk_{B0}) \qquad All \text{ the randomness for } Enc \text{ and } KGen0 \text{ is generated from both } ephemeral secret } r_{A0}$$

$$Trick 1 \qquad and \textit{static secret key } sk_{A}$$

 $K = Hash(sid, K_A, K_B) or PRF(K_B) \oplus PRF(K_A)$

Several AKE frames with Tricks

$$U_A \quad pk_{A1} \qquad 2\text{-key KEM is public key } pk_{B0} \text{ independent}$$

$$(C_B, -) = Enc1(pk_{B1}, -) \qquad \text{Trick } 2^{k_{A0}} \qquad C_B \qquad K_B = Dec(sk_{B1}, sk_{B0}, C_A)$$

$$K_A = Dec(sk_{A1}, sk_{A0}, C_A) \qquad C_A \qquad pk_{B0} \qquad (C_A, K_A) = Enc(pk_{A1}, pk_{A0})$$

$$K = Hash(sid, K_A, K_B) or PRF(K_B) \oplus PRF(K_A)$$

Several AKE frames with Tricks

$$U_{A} \quad pk_{A1}$$

$$U_{B} \quad pk_{B1}$$

$$(C_{B}, K_{B}) = Enc(pk_{B1}, pk_{B0})$$

$$K_{A} = Dec(sk_{A1}, sk_{A0}, C_{A})$$

$$V_{B} \quad pk_{B1}$$

$$K_{B} = Dec(sk_{B1}, sk_{B0}, C_{A})$$

$$V_{B} \quad pk_{B1}$$

Understanding HMQV-A based on 2-key KEM

$$U_A$$
 $A = g^a$ U_B

$$X = g^x$$
 $Y = g^y, C_A = YB^e$

$$d = h(X, B)$$
 $Y = g^y, C_A = YB^e$

$$E = h(Y, A)$$

$$K_A = (YB^e)^{x+ad}$$
 $K_B = (XA^d)^{y+be}$

Understanding HMQV-B based on 2-key KEM

$$egin{aligned} oldsymbol{U}_A & oldsymbol{U}_B & B = g^b \ egin{aligned} X &= g^x, C_B = XA^d & XA^d & Y &= g^y \ d &= h(X,B) & Y & e &= h(Y,A) \ K_A &= (YB^e)^{x+ad} & K_B &= (XA^d)^{y+be} \end{aligned}$$

Understanding HMQV based on 2-key KEM

$$U_A \quad A = g^a$$

$$V_B \quad B = g^b$$

$$X = g^x, C_B = XA^d \qquad X \qquad XA^{d} \qquad Y = g^y, C_A = YB^e$$

$$d = h(X, B) \qquad Y = g^y, C_A = YB^e$$

$$K_A = (YB^e)^{x+ad} \qquad K_B = (XA^d)^{y+be}$$

$$K = Hash(A, B, X, Y, K_A, K_B)$$

HMQV-2KEM

- $(a, A) \leftarrow KGen1$
- $(x,X) \leftarrow KGen0$

•
$$\left(K = \left(XA^d\right)^{(y+be)}, C = YB^e\right) \leftarrow Enc\left(A, X; y, b; B\right)$$

where $e = h(X, B), d = h(Y, A)$

Understanding AKE

- Every well-known implicit AKE implies a 2-key KEM
 - HMQV(&OAKE): 2-key KEM from gap-DH and KEA
 - LLM07: (aka. NAXOS) 2-key KEM from gap-DH
 - Okamoto 07: 2-key KEM from DDH (modified Cramer-Shoup)
 - FSXY12, improved KEM combiner in std. model
 - FSXY13, improved KEM combiner in RO model

• CCA secure $(C_1, K_1) = Enc(pk_1)$, and $(C_0, K_0) = Enc(pk_0)$

$$C = C_1 | C_0, K = f(K_1, K_0, C)$$

• GHP18, CCA secure when f is a hash (in RO) or PRF function (in std.).

• [CCA, .]secure

•
$$C = C_1 | C_0, K = f(pk_0, K_1, K_0, C)$$

• Fujioka-Okamoto?

[CPA,·] Security of 2-key PKE

Challenger
$$pk_{1}, L \qquad pk_{1} \leftarrow KGen1, L = \{pk_{0}^{i}/sk_{0}^{i}\} \leftarrow KGen0$$

$$pk_{0}^{*} \qquad C^{*} = Enc(pk_{1}, pk_{0}^{*}, m^{*})$$

$$m' \qquad m^{*}? = m'$$

- Fujioka-Okamoto?
 - For CPA secure 2PKE
 - $(pk_1, sk_1) \leftarrow Gen1$,
 - $C = Encrypt(pk_1, m, r)$;

• $m = Decrypt(sk_1, C);$

- Is FO secure?
- $(pk_1, sk_1) \leftarrow Gen1$,

• $C = Encrypt(pk_1, m, r);$ r = G(m)

• $m = Decrypt(sk_1, C)$ If $C = Encrypt(pk_0, m, G(m))$ K = H(m) else \bot

• Classical Fujioka-Okamoto transformation does not work for $[CCA,\cdot]$ seurity

• Improved FO transformation by putting public key in hashing step to generate *K*

• Improved FO transformation by putting public key in hashing step to generate *K*

Roadmap

2-key PKE

$$g^{r_1}$$
, $h_1^{r_1} \oplus m_1 \mid g^{r_2}$, $h_2^{r_2} \oplus m_2$

$$g^{r_1}$$
, g^{r_2} , $h_1^{r_1} \oplus h_2^{r_2} \oplus m_2$

2Kyber18

$$g^r$$
, $H(h_1^r) \oplus m_1$, $H(h_1^r) \oplus m_1$

SIAKE19

Outline

- > Authenticated key exchange
- > Motivations & our contributions

- \triangleright AKE \leftarrow 2-key KEM \leftarrow
- ➤ Post-quantum AKE

Roadmap

SIDH Key Exchange

[JAC+18] Jao, D., Azarderakhsh, R., Campagna, M., et al: Supersingular Isogeny Key Encapsulation. NIST Round 2.

2-key PKE from SIDH

$$g^r, H \circ j(h_1^r) \oplus m_1, H \circ j(h_0^r) \oplus m_0$$

18 1

国内算法竞赛,SIAKE

Roadmap

Conclusion

• [CCA, CPA] secure 2-key KEM and its (generic) constructions

• Understand HMQV, NAXOS, Okamoto, FSXY12-3 etc. via 2-key KEM

New Constructions based on lattice and SIDH

Haiyang Xue, Xianhui Lu, Bao Li, Bei Liang, Jingnan He, Understanding and Constructing AKE via Double-key Key Encapsulation Mechanism, ASIACRYPT 2018

Xiu Xu, Haiyang Xue, Kunpeng Wang, Man Ho Au, Song Tian, Strongly Secure Authenticated Key Exchange from Supersingular Isogenies, ASIACRYPT 2019

Future Work

• The security in the Quantum Random Oracle Model???

FO Transformation

- For CPA secure 2PKE
- $(pk_1, sk_1) \leftarrow Gen1$,
- $C = Encrypt(pk_1, m, r)$;

• $m = Decrypt(sk_1, C);$

- Is FO secure?
- $(pk_1, sk_1) \leftarrow Gen1$,
- $C = Encrypt(pk_1, m, r);$ r = G(m)

• $m = Decrypt(sk_1, C)$ If $C = Encrypt(pk_0, m, G(m))$ K = H(m) else \bot

Without sk_1 or sk_0 , how to answer DecO?

DecO(C)

1.
$$m = Decrypt(sk_1, C)$$

- 2. If $C \neq Encrypt(pk_1, m, G(m)), \perp$
- 3. else K = H(m)

$$C^*$$
; $K^* = H(m^*)$

If there is decryption failure?

$$C = Encrypt(pk_1, pk_0, m, G(m))$$

But $m \neq Decrypt(sk_1, sk_0, C)$

$$+q_G \epsilon$$

Search the G Hash list $C = Encrypt(pk_1, pk_0, m, G(m))$

Else ⊥

$$\exists (m,\cdot) \in L_G$$

$$\not\exists (m,\cdot) \in L_G$$

$$m = Decrypt(sk_1, sk_0, C)$$
$$C = Encrypt(pk_1, pk_0, m, G(m))$$

$$\perp \frac{1}{|C|}$$

$$\exists (m,C,K) \in \mathcal{L}_H$$

$$\not\exists (m, C, \cdot) \in L_H$$

$$C^*$$
; $K^* = H(m^*)$

Return
$$DecO(C) = K$$

Random K add to L_H Return DecO(C) = K

Improved FO Transformation

- For [CPA, CPA] secure 2PKE
- $(pk_1, sk_1) \leftarrow Gen1$,
- $(pk_0, sk_0) \leftarrow Gen0$;
- $C = Encrypt(pk_1, pk_0, m, r);$

• $m = Decrypt(sk_1, sk_0, C);$

- Is FO [CCA, CCA] secure?
- $(pk_1, sk_1) \leftarrow Gen1$,
- $(pk_0, sk_0) \leftarrow Gen0$;

• $C = Encrypt(pk_1, pk_0, m, r);$ r = G(m)

• $m = Decrypt(sk_1, sk_0, C)$ If $C = Encrypt(pk_1, pk_0, m, G(m))$ $K = H(pk_1, pk_0, m, C)$

How about $DecO(pk'_0, C')$

 $DecO(pk'_0, C)$ and $DecO(pk''_0, C)$ will get the same answer.

How about $DecO(pk'_0, C')$

Since
$$K = H(pk_0, m, C)$$

If $pk'_0 \notin L \perp$ else

Challenges in Quantum RO

 We can not Search the Hash list

• Even m^* is in the hash H list the challenger may not detect

$$C^*$$
; $K^* = H(m^*)$

FO-QROM

Schemes	Inj. map.	PKE	Additional Hash	Security Bound	DecError
[TU16,HHK17]	-	IND/OW-CPA	lenpre	$q\sqrt[4]{arepsilon}$	✓
[SXY18]-1	✓	IND-CPA	×	$q\sqrt{\varepsilon}$	×
[SXY18]-2	✓	OW-CPA	no lenpre,	$q\sqrt[4]{arepsilon}$	×
[HKS+18]	✓	IND-CPA	×	$q\sqrt{\varepsilon}$	✓
[JZC+18]	✓	OW-CPA	×	$q\sqrt{\varepsilon}$	✓

Table 2. Comparison of existing PKE-to-KEM proofs in QROM. Inj. map. indicates the injective mapping with meet-in-the-end. len.-pre means the additional hash should be length preserving. q is the number of random oracle queries. ε is the the advantage of the reduced adversary against the OW/IND-CPA security of PKE.