$$(Y_1, ..., Y_n \sim N(M, \sigma^2), \sigma^2 \text{ is known.}$$
 $M \sim N(M_0, \frac{\sigma^2}{K_0})$ (Prior)

 $(Prior \text{ prameters})$

Bayes Estimators

$$P(ul_{1},...,n_{n},\sigma^{2}) \sim N(ul_{n},\sigma^{2})$$

$$u_{1} = wy + (1-w)u_{0}, \quad w = \frac{n}{n+k},$$

$$\sigma^{2} = w\sigma^{2}$$

$$n+k_{0} = w\sigma^{2}$$

E[$M|y_1, y_1, \sigma^2$] = $W\overline{y} + (1-w)M_0$ (estimate)

What are the frequentist properties

of $E[M|Y_1, Y_1, \sigma^2]$ estimator...

Capital =

FIRE By Say 15

Estimators: Bayes / Frequentist Unification

- Bayesian inference provides a straightforward procedure for producing estimators given your prior beliefs.
 - 1. Compute posterior distribution
 - 2. Summarize the posterior distribution with a point estimator (e.g. posterior mean or posterior mode) and a probability interval
- Frequentists provide tools for evaluating the sampling properties of an estimator.
 - Bias, variance and MSE of an estimator
 - Well-calibrated probability intervals
- Both are useful!

The Bias-Variance Tradeoff

Reminder: an estimator is a random variable, an estimate is a constant

- *Bias*: systematic sampling error of the estimator
- *Variance*: variance of the estimator (from sampling & measurement error)
- Often we evaluate an estimator in terms of mean square error: $MSE(\hat{\theta}) = E_Y(\hat{\theta} \theta)^2$
- The Bias-Variance tradeoff: $MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias(\hat{\theta})^2$

The Bias-Variance Tradeoff

- Variance of an estimator comes sampling from a population
 - If you were to repeatedly draw new samples of the same size how much would your estimates vary?
 - $\circ \,\,$ e.g. if $y_i \sim N(\mu, \sigma^2)$ then $\mathrm{Var}(ar{Y}) = \sigma^2/n$

$$\mathcal{J}_{MLE} = \vec{Y}$$

$$\mathcal{E}[\vec{Y}] = \mathcal{U} \quad (unbiased)$$

$$Var(\vec{Y}) = Var(\vec{X}) = \frac{1}{N} \mathcal{E} Var(\vec{Y})$$

$$\mathcal{E}(\vec{Y}) = \frac{1}{N} \mathcal{E} Var(\vec{Y})$$

$$\mathcal{E}(\vec{Y}) = \frac{1}{N} \mathcal{E} Var(\vec{Y})$$

$$\mathcal{E}(\vec{Y}) = \frac{1}{N} \mathcal{E} Var(\vec{Y})$$

Bias

The expected difference between the estimate and the response

Statistical definition of bias:

$$E_Y[\hat{ heta}- heta]$$

Variance

How variable is the prediction about its mean?

Statistical definition of variance:

$$E_Y[\hat{ heta}-E_Y[\hat{ heta}]]^2$$

Bias and Variance

The Bias-Variance Tradeoff

- The prior distribution (usually) makes your estimator biased...
- But the prior distribution also (usually) reduces the variance!
- Example: compute the frequentist mean and variance of the posterior mean.

$$E[\mathcal{M}|Y_{i,1}, Y_{i,n}, \sigma^{2}] = \mathcal{M}_{PM} = \mathcal{W}\overline{Y} + (1-\mathcal{W})\mathcal{M}_{0}$$

$$Bias: E[\mathcal{W}\overline{Y} + (1-\mathcal{W})\mathcal{M}_{0} - \mathcal{M}] = \mathcal{W}E[\overline{Y}] + (1-\mathcal{W})E[\mathcal{M}_{0}] - \mathcal{M}$$

$$= \mathcal{W}\mathcal{M} + (1-\mathcal{W})\mathcal{M}_{0} - \mathcal{M} = (1-\mathcal{W})(\mathcal{M}_{0} - \mathcal{M})$$

$$\frac{V\omega}{v}: V\omega(u)/(v,v_0) = V\omega(w) + (1-w)M_0 = \frac{v^2 V\omega(v)}{v^2 + (1-w)^2 V\omega(v)} = 0 \quad (const)$$

$$= W^2 Var(\overline{Y}) \leq Var(\overline{X}) = Var(\widehat{\mathcal{U}}_{MLE})$$

Example: IQ scores

- Scoring on IQ tests is designed to yield a N(100, 15) distribution for the general population
- We observe IQ scores for a sample of n individuals from a particular town and estimate μ , the town-specific IQ score
- If we lacked knowledge about the town, a natural choice would be $\mu_0=100$
- Suppose the true parameters for this town are $\mu=112$ and $\sigma=13$
 - The town is smarter on average than the general population

Example: IQ scores

- What is the mean squared error of the MLE? MSE of the posterior mean?
- ullet $ext{MSE}[\hat{\mu}_{MLE}] = ext{Var}[\hat{\mu}_{MLE}] = rac{\sigma^2}{n} = rac{169}{n}$
- ullet MSE $[\hat{\mu}_{PM}| heta_0]=w^2rac{169}{n}+(1-w)^2144$
- Reminder: $w = \frac{n}{\kappa_0 + n}$. For what values of n and κ_0 is the MSE smaller for the posterior mean estimator than the maximum likelihood?

$$\frac{7}{169} > \frac{169}{194} + (1-w)^{2}144 = 78\pi s^{2} = (1-w)^{2}144$$

MSE ($\frac{1}{2}$ MSE ($\frac{1}{2}$ MSE ($\frac{1}{2}$ MSE)

MSE ($\frac{1}{2}$ MSE)

Example: IQ scores

0 10 20 30 40 sample size

MSE PM

N-90, W-71 eg. Dem-).

Strength of
prior knowledge
(# of pseudo - obs,
tetermines w)

Decision Theory

Why the posterior mean?

- Often times we need to make a "decision" by providing a single estimate
- The posterior provides a full distribution over θ , which can be summarized in infinitely many ways
- Specify a *loss function* which describes the cost of estimating $\hat{\theta}$ when the truth is θ

Bayes Estimators

penalize the difference Letween estimate of truth

- The loss function: $L(\hat{\theta}, \theta)$
 - Squared error: $L(\hat{\theta}, \theta) = (\hat{\theta} \theta)^2$ Absolute error: $L(\hat{\theta}, \theta) = |\hat{\theta} \theta|$
- The **Bayes risk** is the posterior expected loss:

Squared error:
$$L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$$
• Absolute error: $L(\hat{\theta}, \theta) = |\hat{\theta} - \theta|$
• The **Bayes risk** is the posterior expected loss:
$$E_{\theta|y}[L(\hat{\theta}, \theta)] = \int L(\hat{\theta}, \theta)p(\theta \mid y)d\theta$$

$$E_{\theta|y}[L(\hat{\theta}, \theta)] = \int L(\hat{\theta}, \theta)p(\theta \mid y)d\theta$$
Choose an estimator of θ based on minimizing the Bayes risk.

- Choose an estimator of θ based on minimizing the Bayes risk.
- An estimator θ is said to be a **Bayes estimator** if it minimizes the Bayes risk among all estimators.

$$\min_{\hat{ heta}} E_{ heta \mid y} (\hat{ heta} - heta)^2 = \min_{\hat{ heta}} \ \int (\hat{ heta} - heta)^2 p(heta \mid y) d heta$$

Differențiate with respect to $\hat{\theta}$ and set equal to zero:

Tentrate with respect to
$$\theta$$
 and set equal to zero.

$$\frac{d}{d\theta} \int_{0}^{\infty} \frac{(\partial - \theta)^{2} P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta)^{2} P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty} \frac{d\theta}{d\theta}} = \frac{(\partial - \theta) P(\theta | y) d\theta}{\int_{0}^{\infty$$

Absolute loss

$$\min_{\hat{ heta}} E_{ heta \mid y} |\hat{ heta} - heta | = \min_{\hat{ heta}} \ \int |\hat{ heta} - heta | p(heta \mid y) d heta$$

Differentiate with respect to $\hat{\theta}$ and set equal to zero:

$$\frac{d}{d\hat{\theta}} \int |\hat{\partial} - \theta| P(\theta|y) d\theta =$$

$$\int \frac{d}{d\hat{\theta}} |\hat{\partial} - \theta| P(\theta|y) d\theta =$$

 $\begin{array}{l}
9 = \hat{\vartheta} \\
5 + 1 P(\vartheta | y) d\vartheta + 5 P(\vartheta | y) d\vartheta \\
9 = \hat{\vartheta} \\
\hline
P(\vartheta \angle \hat{\vartheta} | y) - (1 - P(\vartheta \angle \hat{\vartheta} | y)) = 0 \\
2 P(\vartheta \angle \hat{\vartheta} | y) = 1 \\
P(\vartheta \angle \hat{\vartheta} | y) = 1/2 \\
\vec{\vartheta} \text{ is the posterior median} \\
Buyes Estimator for absolute loss.}$

Loss functions in practice

- Squared error and absolute error are good default loss functions
 - Motivated largely by mathematical considerations
- In practice we should define a loss function specific to our problem
- Loss in dollars? Loss in "quality of life"?

Decision making: flu example

• The CDC produces estimates of the expected prevalance and severity of flu during flu season

• Assume θ represents severity of the flu

• $p(\theta \mid y)$ is CDC posterior distribution based on initial data about the upcoming flu season

• $\hat{\theta}$ determines how much flu vaccine to make. How do we determine

 $L(\hat{\theta}, \theta)$?

+ Shelf life of vaccine

+ Too little = death

+ Too much is wasted money