Econometrics A (Econ 210)

Virtual Midterm

Mohsen Mirtaher - Fall 2015

1. (15 Points) Consider the following discrete joint distribution in which X takes values on $\{-1,0,1\}$, Y takes values on $\{1,2,3\}$, and Z takes on values on $\{0,1\}$.

- (a) Find $\mathbb{E}[X]$ (5 Points).
- (b) Find Cov[X, Y] (5 Points).
- (c) Verify that $\mathbb{E}\left[\mathbb{E}\left[Y|X,Z=1\right]|Z=1\right]=\mathbb{E}\left[Y|Z=1\right]$ (5 Points).

2. (25 Points) We are going to estimate the true area of a square. To do so, we measure X_i , the length of the square's edge, n times, i.e. i = 1..n. Assume that $\{X_i\}_{i=1}^n$ are i.i.d. draws from a distribution with mean μ and variance σ^2 . Consider the following two estimators for the unknown area

$$A_n^1 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$A_n^2 = \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2$$

- (a) Show that for $\forall i = 1..n$, $\mathbb{E}[X_i^2] = \mu^2 + \sigma^2$ (5 Points).
- (b) Is A_n^1 an unbiased estimator for the true area, i.e. μ^2 ? Prove your answer (5 Points).
- (c) Is A_n^2 an unbiased estimator for the true area, i.e. μ^2 ? Prove your answer (5 **Points**).
- (d) Is A_n^1 a consistent estimator for the true area, i.e. μ^2 ? Prove your answer (5 **Points**).
- (e) Is A_n^2 a consistent estimator for the true area, i.e. μ^2 ? Prove your answer (5 **Points**).
- 3. (15 Points) Consider the model $y_i = \beta x_i + U_i$ where $\mathbb{E}[U_i|x_i] = 0$. A researcher has proposed the following estimator for β ,

$$\tilde{\beta}_n = \frac{\sum_{i=1}^n x_i^3 y_i}{\sum_{i=1}^n x_i^4}$$

The researcher is asking you to derive the asymptotic distribution of $\tilde{\beta}_n$. Follow the following steps to do so.

(a) Show that
$$\sqrt{n}(\tilde{\beta}_n - \beta) = \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^n x_i^3 U_i}{\frac{1}{n} \sum_{i=1}^n x_i^4}$$
 (2.5 Points). (Hint: plug in y_i in the

expression for $\tilde{\beta}_n$).

- (b) Find the probability limit of $\frac{1}{n} \sum_{i=1}^{n} x_i^4$ (2.5 Points).
- (c) Show that $\mathbb{E}\left[x_i^3 U_i\right] = 0$ (2.5 Points).
- (d) Find the asymptotic distribution of $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i^3 U_i$ (2.5 Points).
- (e) Put parts (a) through (d) together to conclude that $\sqrt{n}(\tilde{\beta}_n \beta) \xrightarrow{d} N\left(0, \frac{\mathbb{E}\left[x_i^6 U_i^2\right]}{(\mathbb{E}\left[x_i^4\right])^2}\right)$ (2.5 Points).
- (f) Consider the following hypothesis testing,

$$\begin{cases} H_0: & \beta = 0 \\ H_1: & \beta \neq 0 \end{cases}$$

Remember to run any hypothesis testing, we need two ingredients: A test statistics and a critical value (cutoff). Use the part (e) result to propose the appropriate test statistics and critical value at α significance level for the test (2.5 Points).

4. (45 Points) Consider the following linear regression model estimated using an i.i.d sample of n = 20 observations. We are going to interpret the model as a linear conditional expectation

$$Y = \alpha + \beta X + U$$

Assume that Var[U|X] = Var[U]. We have observed the following data,

$$\sum_{i=1}^{n} Y_i = 20 \qquad \sum_{i=1}^{n} X_i = 10$$

$$\sum_{i=1}^{n} X_i Y_i = 100$$

$$\sum_{i=1}^{n} X_i^2 = 20 \qquad \sum_{i=1}^{n} Y_i^2 = 700$$

$$SSR = 170$$

- (a) Interpret the coefficient β (2.5 Points).
- (b) Does β capture the causal effect of X on Y (2.5 Points)?
- (c) Show that Cov[X, U] = 0 (5 Points).
- (d) Derive, $\hat{\beta}$, the OLS estimate of β (2.5 Points).
- (e) Derive, $\hat{\alpha}$, the OLS estimate of α (2.5 Points).
- (f) Estimate the variance of U (2.5 Points).
- (g) Calculate the standard error of $\hat{\beta}$ (2.5 Points).
- (h) Calculate the standard error of $\hat{\alpha}$ (5 Points).
- (i) Estimate the conditional mean value of Y corresponding to X = 10 (5 Points).
- (j) Compute the R^2 of the regression (5 Points).
- (k) Is the coefficient β significant at 95% significance level (5 Points)?
- (l) Find a 95% confidence interval for $\hat{\alpha}$ (5 Points).
- 5. (15 Points) Consider the model $y_i = \beta x_i + U_i$ where $\mathbb{E}[U_i|x_i] = 0$. A researcher has proposed the following estimator for β ,

$$\tilde{\beta}_n = \frac{\sum_{i=1}^n x_i^3 y_i}{\sum_{i=1}^n x_i^4}$$

The researcher is asking you to derive the asymptotic distribution of $\tilde{\beta}_n$. Follow the following steps to do so.

- (a) Show that $\sqrt{n}(\tilde{\beta}_n \beta) = \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^n x_i^3 U_i}{\frac{1}{n} \sum_{i=1}^n x_i^4}$ (2.5 Points). (Hint: plug in y_i in the expression for $\tilde{\beta}_n$).
- (b) Find the probability limit of $\frac{1}{n} \sum_{i=1}^{n} x_i^4$ (2.5 Points).
- (c) Show that $\mathbb{E}[x_i^3 U_i] = 0$ (2.5 Points).
- (d) Find the asymptotic distribution of $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i^3 U_i$ (2.5 Points).
- (e) Put parts (a) through (d) together to conclude that $\sqrt{n}(\tilde{\beta}_n \beta) \xrightarrow{d} N\left(0, \frac{\mathbb{E}\left[x_i^6 U_i^2\right]}{(\mathbb{E}\left[x_i^4\right])^2}\right)$ (2.5 Points).
- (f) Consider the following hypothesis testing,

$$\begin{cases} H_0: & \beta = 0 \\ H_1: & \beta \neq 0 \end{cases}$$

Remember to run any hypothesis testing, we need two ingredients: A test statistics and a critical value (cutoff). Use the part (e) result to propose the appropriate test statistics and critical value at α significance level for the test (2.5 Points).