Languages and machines

The meaning of language and limits of computation

Samuel Grayson

April 11, 2019

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Goals

- 1. Give you an overview of language classes and machine types
- 2. Don't just think about computable/non-computable; Think about computable with what
- Subsets of Turing Complete; next week, supersets

Concatenation

Concatenation
$$a(bc) = abc = (ab)c$$

Concatenation
$$a(bc) = abc = (ab)c$$
, $\varepsilon a = a = a\varepsilon$

Concatenation a(bc) = abc = (ab)c, $\varepsilon a = a = a\varepsilon$ Concatenation of sets $\Sigma \Gamma := \{\sigma \gamma : \sigma \in \Sigma, \gamma \in \Gamma\}$

```
Concatenation a(bc) = abc = (ab)c, \varepsilon a = a = a\varepsilon
Concatenation of sets \Sigma \Gamma := \{\sigma \gamma : \sigma \in \Sigma, \gamma \in \Gamma\}
Kleene star \Sigma^* := \{\varepsilon\} \cup \Sigma \cup \Sigma^2 \cup \cdots
where \Sigma^2 = \Sigma \Sigma (Star means arbitrary repetitions)
```

Concatenation a(bc) = abc = (ab)c, $\varepsilon a = a = a\varepsilon$ Concatenation of sets $\Sigma \Gamma := \{\sigma \gamma : \sigma \in \Sigma, \gamma \in \Gamma\}$ Kleene star $\Sigma^* := \{\varepsilon\} \cup \Sigma \cup \Sigma^2 \cup \cdots$ where $\Sigma^2 = \Sigma \Sigma$ (Star means arbitrary repetitions) Language over alphabet $\Sigma :=$ subset of Σ^* The strings are considered 'valid words' of the language.

Definitions

Formal Grammar :=

- finite set of terminals (convention: lowercase)
- finite set of nonterminals (convention: uppercase)
- start symbol (convention: S)
- finite set of rules (pair of strings)

Grammars generate languages.

Abstract Machine := ?

Machines can decide if a string is in a language.

- ightharpoonup G := (a-z, A-Z, S, the following rules)
 - 1. $S \rightarrow aSb$
 - $\mathbf{2.}\ \mathsf{S}\rightarrow\varepsilon$

- ► G := (a-z, A-Z, S, the following rules)
 - 1. $S \rightarrow aSb$
 - 2. $S \rightarrow \varepsilon$
- S

- ightharpoonup G := (a-z, A-Z, S, the following rules)
 - 1. $S \rightarrow aSb$
 - 2. $S \rightarrow \varepsilon$
- ightharpoonup S ightharpoonup aSb

- ightharpoonup G := (a-z, A-Z, S, the following rules)
 - 1. $S \rightarrow aSb$
 - 2. $S \rightarrow \varepsilon$
- ightharpoonup S ightarrow aSb ightarrow aaSbb

- ► G := (a-z, A-Z, S, the following rules)
 - 1. $S \rightarrow aSb$
 - 2. $S \rightarrow \varepsilon$
- ightharpoonup S
 ightarrow aSb
 ightarrow aaaSbbb

- ightharpoonup G := (a-z, A-Z, S, the following rules)
 - 1. $S \rightarrow aSb$
 - 2. $S \rightarrow \varepsilon$
- $ightharpoonup extsf{S}
 ightarrow ext{aaSbb}
 ightarrow ext{aaaSbbb}
 ightarrow ext{aaabbb}$

- ightharpoonup G := (a-z, A-Z, S, the following rules)
 - 1. $S \rightarrow aSb$
 - 2. $S \rightarrow \varepsilon$
- ightharpoonup
 igh
- \triangleright The language generated by G is

- ightharpoonup G := (a-z, A-Z, S, the following rules)
 - 1. $S \rightarrow aSb$
 - 2. $S \rightarrow \varepsilon$
- ightharpoonup
 igh
- ▶ The language generated by G is $\{a^nb^n|n\in\mathbb{N}\}$.

Lindenmayer system

Lindenmayer system

Grammar \iff machine

Grammar generates string in the language Machine recognizes a string that is in the language

Language relates to computing

Consider language L consisting of factorials $\{"1", "1", "2", "6", "24", ...\}$

Language relates to computing

- Consider language L consisting of factorials $\{"1", "1", "2", "6", "24", ...\}$
- ► A generator/recognizer would have to compute the factorial.

Language hierarchy

Language hierarchy

Chomsky Hierarchy (1956):

Language class	Grammar	Type of machine
Regular	A o Yz	deterministic finite-state automata
Context-free	$A o \gamma$	deterministic pushdown automata
Context-sensitive	$\alpha A\beta \to \alpha \gamma \beta$	linear-bounded non-deterministic
		Turing machine
Recursively Enumerable	$\alpha \to \beta$	Turing machine

where α, β, γ : strings of terminals and non-terminals

Language hierarchy

Example language: Multiples of 3 in binary notation

Example language: Multiples of 3 in binary notation

Note that remainder can be computed if you slap on another digit.

remainder	after appending 0 \times 0 (mod 3)	after appending 1
x (mod 3)	x.0 (mod 3)	x.1 (mod 3)
-		

Example language: Multiples of 3 in binary notation

Note that remainder can be computed if you slap on another digit.

remainder	after appending 0	after appending 1
x (mod 3)	after appending 0 $x.0 \pmod{3}$	x.1 (mod 3)
0	0	1
1	2	0
2	1	2

Deterministic finite-state automata

110

Deterministic finite-state automata

110

Deterministic Finite-state Automata

Definition

Deterministic finite state automata :=

- S: a finite set of states
- $ightharpoonup A \subseteq S$: a set of accepting states
- ▶ $S_0 \in S$: an intial state
- Σ: a finite alphabet
- ▶ $f: S \times \Sigma \rightarrow S$: state-transition function

Nondeterministic Finite-state Automata

Definition

Nondeterministic finite state automata :=

- ► S: a finite set of states
- $ightharpoonup A \subseteq S$: a set of accepting states
- $ightharpoonup S_0 \in S$: an intial state
- Σ: a finite alphabet
- ▶ $f: S \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(S)$: state-transition function

NFA

Figure from WikiMedia

NFA \iff DFA

$\mathsf{NFA} \iff \mathsf{DFA}$

possibly n states $\rightarrow 2^n$ states, worst-case.

Figure 2 from WikiMedia

Definition

Regular grammar := Languages where every rule is of the form $A \to \varepsilon$, $A \to aB$ (right-regular).

Definition

Regular grammar := Languages where every rule is of the form $A \rightarrow \varepsilon$, $A \rightarrow aB$ (right-regular).

Note: more than one rule could apply. A string is generated if any of these are valid.

We can construct $A \rightarrow a$ by

Definition

Regular grammar := Languages where every rule is of the form $A \rightarrow \varepsilon$, $A \rightarrow aB$ (right-regular).

Note: more than one rule could apply. A string is generated if any of these are valid.

We can construct $A \to a$ by $A \to aB$ and $B \to \varepsilon$ Likewise $A \to a_1 a_2 \cdots a_n B$ by

Definition

Regular grammar := Languages where every rule is of the form $A \rightarrow \varepsilon$, $A \rightarrow aB$ (right-regular).

Note: more than one rule could apply. A string is generated if any of these are valid.

We can construct $A \to a$ by $A \to aB$ and $B \to \varepsilon$ Likewise $A \to a_1 a_2 \cdots a_n B$ by $A \to a_1 A_1$, $A_1 \to a_2 A_2, \cdots, A_n \to a_n B$.

Regular Grammar example

Example language: Multiples of 3 in binary notation

remainder	after appending 0	after appending 1
x (mod 3)	x.0 (mod 3)	x.1 (mod 3)
0	0	1
1	2	0
2	1	2

 $\mathsf{A}\to \mathsf{0}\mathsf{A}$

 $\mathsf{A} \to \mathsf{1B}$

 $B \rightarrow 0C$

 $\mathsf{B} \to \mathsf{1}\mathsf{A}$

 $C \rightarrow 0B$

 $\mathsf{C}\to \mathsf{1C}$

Regular Grammar example

Example language: Multiples of 3 in binary notation				
	remainder	after appending 0	after appending 1	
	x (mod 3)	x.0 (mod 3)	x.1 (mod 3)	
	0	0	1	
	1	2	0	
	2	1	2	

 $\mathsf{A}\to \mathsf{0}\mathsf{A}$

 $\mathsf{A} \to \mathsf{1B}$

 $B \rightarrow 0C$

 $\mathsf{B} \to \mathsf{1A}$

 $C \rightarrow 0B$

 $\mathsf{C} o \mathsf{1}\mathsf{C}$

 $\mathsf{A}\to\varepsilon$

 $\mathsf{S}\to\mathsf{A}$

TODO: redraw DFA

$\overline{\mathsf{NFA}} \iff \mathsf{Regular}\; \mathsf{Grammar}$

Languages with arbitrary repetition and optional elements.

Languages with arbitrary repetition and optional elements.

Closed under complementation.

Languages with arbitrary repetition and optional elements.

Closed under complementation. Proof: switch accepting and non-accepting states in DFA.

Languages with arbitrary repetition and optional elements.

Closed under complementation. Proof: switch accepting and non-accepting states in DFA. Closed under dis/conjunction.

Languages with arbitrary repetition and optional elements.

Closed under complementation. Proof: switch accepting and non-accepting states in DFA. Closed under dis/conjunction. Proof: consider cartesian product of two machines.

Languages with arbitrary repetition and optional elements.

Closed under complementation. Proof: switch accepting and non-accepting states in DFA. Closed under dis/conjunction. Proof: consider cartesian product of two machines.

Closed under Kleene-*.

Languages with arbitrary repetition and optional elements.

Closed under complementation. Proof: switch accepting and non-accepting states in DFA.

Closed under dis/conjunction. Proof: consider cartesian product of two machines.

Closed under Kleene-*. Proof: accepting state to start state with ε transition

always halts; linear time

Languages with arbitrary repetition and optional elements.

Closed under complementation. Proof: switch accepting and non-accepting states in DFA. Closed under dis/conjunction. Proof: consider cartesian product of two machines. Closed under Kleene-*. Proof: accepting state to start state with ε transition Algorithm to minimize (1979)

4 D > 4 A > 4 B > 4 B > B = 900

Lemma: For all DFA with n states, for all strings, $x \in L$ longer than n, \ldots

Lemma: For all DFA with n states, for all strings, $x \in L$ longer than n, \ldots

Proof: |x| > n, so visits a state twice (pigeon-hole).

Lemma: For all DFA with n states, for all strings, $x \in L$ longer than n, \ldots

Proof: |x| > n, so visits a state twice (pigeon-hole).

Now x can be decomposed into uvw where v can be repeated, so $uv^iw \in L$ also.

Note that v is non-empty and $|uv| \le n$.

Figure from "Introduction to Languages and the Theory of Computation" by John C. Martin

Given a regular language, L, There exists $n \in \mathbb{N}$ such that

- ▶ For all $x \in L$ and |x| > n
 - ightharpoonup There exists u, v, w where
 - 1. x = uvw
 - 2. $\mathbf{v} \neq \varepsilon$
 - 3. $|uv| \leq n$
 - 4. $uv^iw \in L$ for all $i \in N$

Pumping lemma example

Let's try divisble-by-3 DFA for 9 = 1001.

Pumping lemma example

- ▶ Let's try divisble-by-3 DFA for 9 = 1001.
- We can pump the double-zeros. $1(00)^n1$ is divisible by three.

Pumping lemma example

- ► Let's try divisble-by-3 DFA for 9 = 1001.
- We can pump the double-zeros. $1(00)^n1$ is divisible by three.
- ▶ Indeed $1 + 2^{1+2n} \pmod{3} = 1 + (-1) = 0$.

 $\blacktriangleright L = \{a^n b^n : n \in \mathbb{N}\}.$

▶ $L = \{a^n b^n : n \in \mathbb{N}\}$. No substring can be pumped up.

- ▶ $L = \{a^n b^n : n \in \mathbb{N}\}$. No substring can be pumped up.
- ▶ Language of matched brackets (e.g. "(())()").

- ► $L = \{a^n b^n : n \in \mathbb{N}\}$. No substring can be pumped up.
- Language of matched brackets (e.g. "(())()"). For every n, no less than n-long substring of $\binom{n}{n}$ can be pumped up.

- ▶ $L = \{a^n b^n : n \in \mathbb{N}\}$. No substring can be pumped up.
- Language of matched brackets (e.g. "(())()"). For every n, no less than n-long substring of $\binom{n}{n}$ can be pumped up.
- Palindromes

- ▶ $L = \{a^n b^n : n \in \mathbb{N}\}$. No substring can be pumped up.
- Language of matched brackets (e.g. "(())()"). For every n, no less than n-long substring of $\binom{n}{n}$ can be pumped up.
- Palindromes For every n, no less than n-long substring of $a^n b^n$ can be pumped up.

- ▶ $L = \{a^n b^n : n \in \mathbb{N}\}$. No substring can be pumped up.
- Language of matched brackets (e.g. "(())()"). For every n, no less than n-long substring of $\binom{n}{n}$ can be pumped up.
- Palindromes For every n, no less than n-long substring of aⁿbⁿ can be pumped up.
- Language where length of strings is not "eventually linear"
- ▶ Challenge: L is not regular, but L^2 is.

Definition

Non-/Deterministic pushdown automata :=

- ► S: a finite set of states
- ▶ $A \subseteq S$: a set of accepting states
- ▶ $S_0 \in S$: an initial state
- Σ: a finite alphabet for words
- Γ: a stack alphabet
- ightharpoonup Γ_0 : an initial stack symbol
- ▶ $f: S \times \Sigma \times \Gamma \rightarrow S \times \Gamma^*$: a transition function

Definition

Non-/Deterministic pushdown automata :=

- ► S: a finite set of states
- ▶ $A \subseteq S$: a set of accepting states
- ► $S_0 \in S$: an initial state
- Σ: a finite alphabet for words
- Γ: a stack alphabet
- ightharpoonup Γ_0 : an initial stack symbol
- ▶ $f: S \times \Sigma \times \Gamma \rightarrow S \times \Gamma^*$: a transition function
- ► $f: S \times \Sigma \times (\Gamma \cup \{\varepsilon\}) \to S \times \Gamma^*$: a transition function

Definition

Non-/Deterministic pushdown automata :=

- ► S: a finite set of states
- ▶ $A \subseteq S$: a set of accepting states
- $ightharpoonup S_0 \in S$: an initial state
- Σ: a finite alphabet for words
- Γ: a stack alphabet
- ightharpoonup Γ_0 : an initial stack symbol
- ▶ $f: S \times \Sigma \times \Gamma \rightarrow S \times \Gamma^*$: a transition function
- ► $f: S \times \Sigma \times (\Gamma \cup \{\varepsilon\}) \to S \times \Gamma^*$: a transition function

Input: abba

Stack: H

Input: abba Stack: Ha

Input: a<mark>b</mark>ba Stack: Ha

Input: abba Stack: Hab

Input: abba Stack: Hab

Input: abba Stack: Hab

Input: ab<mark>b</mark>a Stack: Hab

Input: ab<mark>b</mark>a Stack: Hab

Input: abba Stack: Ha

Input: abba Stack: Ha

Input: abba Stack: H

Examples

Matched named brackets

Examples

Matched named brackets State: If left bracket, push bracket-type to stack. If right bracket and correct bracket-type on stack, pop from stack.

CFG

Definition

Context-free grammar := Grammar where all rules are of the form $A \to \alpha$, where $\alpha \in (\Sigma \cup \Gamma)^*$. Encodes everything a regular grammar can (repetition, optionals) + "arbitrary nestedness"

Matched-brackets

CFG

Definition

Context-free grammar := Grammar where all rules are of the form $A \to \alpha$, where $\alpha \in (\Sigma \cup \Gamma)^*$. Encodes everything a regular grammar can (repetition, optionals) + "arbitrary nestedness"

- Matched-brackets
 - 1. $S \rightarrow [S]$
 - $2. \ S \to S \ S$
 - 3. $S \rightarrow \varepsilon$
- $\qquad \qquad \{a^nb^n:n\in\mathbb{N}\}$

CFG

Definition

Context-free grammar := Grammar where all rules are of the form $A \to \alpha$, where $\alpha \in (\Sigma \cup \Gamma)^*$. Encodes everything a regular grammar can (repetition, optionals) + "arbitrary nestedness"

- Matched-brackets
 - 1. $S \rightarrow [S]$
 - $2. \ S \to S \ S$
 - 3. $S \rightarrow \varepsilon$
- $ightharpoonup \{a^nb^n:n\in\mathbb{N}\}$
 - 1. $S \rightarrow aSb$
 - 2. $S \rightarrow \varepsilon$
- Palindromes similar

Named brackets

Named brackets

```
<html>
    <br/>
        <br/>
        <h1>This is the tile</h1>
        This is a paragraph.
        </body>
</html>
```

Named brackets

```
<html>
    <br/>
        <br/>
        <h1>This is the tile</h1>
        This is a paragraph.
        </body>
</html>
```

Programming languages

Named brackets

```
<html>
    <br/>
        <br/>
        <h1>This is the tile</h1>
        This is a paragraph.
        </body>
</html>
```

Programming languages

95% of natural languages

Parse trees

- $1. \ \mathsf{S} \to [\ \mathsf{S}\]$
- 2. $S \rightarrow S S$
- 3. $S \rightarrow \varepsilon$

[[]][]

Parse trees

- $1. \ \mathsf{S} \to [\ \mathsf{S}\]$
- 2. $S \rightarrow S S$
- 3. $S \rightarrow \varepsilon$

[[]][]

Parse trees

1.
$$S \rightarrow [S]$$

2.
$$S \rightarrow S S$$

3.
$$S \rightarrow \varepsilon$$

Parse trees for regular languages?

Ex. Natural language

- \triangleright S \rightarrow NP VP
- ightharpoonup NP o ADJ N
- ightharpoonup VP o V
- ightharpoonup VP o VNP

Example

```
\mathsf{EXPR} \to \mathsf{EXPR} + \mathsf{EXPR}

\mathsf{EXPR} \to \mathsf{EXPR} * \mathsf{EXPR}

\mathsf{EXPR} \to \mathsf{NUMBER}
```

Example

```
\mathsf{EXPR} \to \mathsf{EXPR} + \mathsf{EXPR} \mathsf{EXPR} \to \mathsf{EXPR} * \mathsf{EXPR} \mathsf{EXPR} \to \mathsf{NUMBER} 1+3*4
```

Example

$$\begin{array}{c} \mathsf{EXPR} \to \mathsf{EXPR} + \mathsf{EXPR} \\ \mathsf{EXPR} \to \mathsf{EXPR} * \mathsf{EXPR} \\ \mathsf{EXPR} \to \mathsf{NUMBER} \\ 1 + 3 * 4 \\ \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} &$$

Resolution: order rules,

Example

$$\begin{array}{c} \mathsf{EXPR} \to \mathsf{EXPR} + \mathsf{EXPR} \\ \mathsf{EXPR} \to \mathsf{EXPR} * \mathsf{EXPR} \\ \mathsf{EXPR} \to \mathsf{NUMBER} \\ 1 + 3 * 4 \\ \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} \\$$

Resolution: order rules, order tokens,

Example

$$\begin{array}{c} \mathsf{EXPR} \to \mathsf{EXPR} + \mathsf{EXPR} \\ \mathsf{EXPR} \to \mathsf{EXPR} * \mathsf{EXPR} \\ \mathsf{EXPR} \to \mathsf{NUMBER} \\ 1 + 3 * 4 \\ \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} & \mathsf{EXPR} \\ 1 + \mathsf{EXPR} & \mathsf$$

Resolution: order rules, order tokens, don't.

Example

```
\begin{array}{l} \mathsf{SUM} \to \mathsf{SUM} + \mathsf{PROD} \\ \mathsf{SUM} \to \mathsf{PROD} \\ \mathsf{PROD} \to \mathsf{PROD} * \mathsf{NUMBER} \\ \mathsf{PROD} \to \mathsf{NUMBER} \end{array}
```

Example

```
SUM \rightarrow SUM + PROD
SUM \rightarrow PROD
PROD → PROD * NUMBER
PROD → NUMBER
   SUM
       PROD
   PROD
```

Ambiguity

Is a CFG ambiguous?

Ambiguity

Is a CFG ambiguous? Undecidable

It happens in the wild all the time!

Ambiguity in natural language

British left waffles on Falklands

Ambiguity in natural language

"My parents, Jack and Jill" refers to 2 or 4 people.

Ambiguity in natural language

"My father, Jack, and Jill" refers to 2 or 3 people.

Lojban

Ambiguity in constructed languages

```
class1 obj (class2 ());
```

Ambiguity in constructed languages

```
class1 obj (class2 ());
        STMT
       OBJ-DECL
TYPE NAME ( ARGS )
             FXPR
        CALLABLE ( )
```

Ambiguity in constructed languages

```
class1 obj (class2 ());
        STMT
                             STMT
       OBJ-DECL
                            FN-PTR
TYPE NAME ( ARGS ) TYPE NAME ( ARGS )
             FXPR
                                 FN-PTR
        CALLABLE
                               TYPE
```

Public Service Announcement

```
// class1 constructed from class2
class1 obj ((class2 ()));
class1 obj {class2 {}}; // C++11
// Function pointer
class1 obj (class2 name ());
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack:

Input: (())()
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: (

Input: ())()
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: ((Input: ))()
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: ((S

Input: ))()
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: ((S)

Input: )()
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: (S

Input: )()
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: (S)

Input: ()
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: S

Input: ()
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: S(Input: )
```

```
\begin{array}{l} S \rightarrow (\ S\ ) \\ S \rightarrow \varepsilon \\ \text{Stack: S(S} \\ \text{Input: }) \end{array}
```

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: S(S)

Input:
```

$$S \rightarrow (S)$$

 $S \rightarrow \varepsilon$

Stack: SS

Input:

```
S \rightarrow (S)

S \rightarrow \varepsilon

Stack: S

Input:
```

Closed under disjunction (prove using PDAs)

▶ Closed under disjunction (prove using PDAs) ε transitions to start state of machine 1 OR 2.

- ▶ Closed under disjunction (prove using PDAs) ε transitions to start state of machine 1 OR 2.
- Closed under Kleene-* (prove using empty-stack PDAs)

- ▶ Closed under disjunction (prove using PDAs) ε transitions to start state of machine 1 OR 2.
- ▶ Closed under Kleene-* (prove using empty-stack PDAs) ε transition from accepting state to start state.

- ▶ Closed under disjunction (prove using PDAs) ε transitions to start state of machine 1 OR 2.
- ▶ Closed under Kleene-* (prove using empty-stack PDAs) ε transition from accepting state to start state.
- Closed under conjunction

- ▶ Closed under disjunction (prove using PDAs) ε transitions to start state of machine 1 OR 2.
- ▶ Closed under Kleene-* (prove using empty-stack PDAs) ε transition from accepting state to start state.
- Closed under conjunction NOT

- ▶ Closed under disjunction (prove using PDAs) ε transitions to start state of machine 1 OR 2.
- ▶ Closed under Kleene-* (prove using empty-stack PDAs) ε transition from accepting state to start state.
- Closed under conjunction NOT
- ► Chomsky Normal Form $(A \rightarrow BC, A \rightarrow a,$ exception for $\varepsilon \in L$) (algorithm 1959)

- ▶ Closed under disjunction (prove using PDAs) ε transitions to start state of machine 1 OR 2.
- ▶ Closed under Kleene-* (prove using empty-stack PDAs) ε transition from accepting state to start state.
- Closed under conjunction NOT
- ► Chomsky Normal Form $(A \rightarrow BC, A \rightarrow a,$ exception for $\varepsilon \in L$) (algorithm 1959)
- ► Chomsky–Schützenberger Theorem (1963): $CFG = named-bracket \cap regular$

Pumping lemma for CFG

For all $s \in L$ and $|s| \ge n$,

- ightharpoonup s = uvwxy
- $\triangleright uv^iwx^iy \in L$
- $|vx| \ge 1$
- $|vwx| \leq p$.

Pumping lemma for CFG

For all $s \in L$ and $|s| \ge n$,

- \triangleright s = uvwxy
- $ightharpoonup uv^iwx^iy \in L$
- $|vx| \ge 1$
- $|vwx| \leq p$.

Figure from WikiMedia

▶ $\{a^nb^nc^n : n \in \mathbb{N}\}$. No 'pumpable' substrings within n.

- ► $\{a^nb^nc^n : n \in \mathbb{N}\}$. No 'pumpable' substrings within n.
 - Note that $\{a^nb^nc^n\} = \{a^nb^nc^k\} \cup \{a^nb^kc^k\} \implies$ CFLs **are not closed** under conjunction.
 - But they are closed under disjunction, so they are not closed under complementation.

- ▶ $\{a^nb^nc^n : n \in \mathbb{N}\}$. No 'pumpable' substrings within n.
 - Note that $\{a^nb^nc^n\} = \{a^nb^nc^k\} \cup \{a^nb^kc^k\} \implies$ CFLs **are not closed** under conjunction.
 - But they are closed under disjunction, so they are not closed under complementation.
- $\{w^2: w \in \Sigma^*\}$ ("stutters")

- ► $\{a^nb^nc^n : n \in \mathbb{N}\}$. No 'pumpable' substrings within n.
 - Note that $\{a^nb^nc^n\} = \{a^nb^nc^k\} \cup \{a^nb^kc^k\} \implies$ CFLs **are not closed** under conjunction.
 - But they are closed under disjunction, so they are not closed under complementation.
- ▶ $\{w^2 : w \in \Sigma^*\}$ ("stutters")
- ► Challenge: prove $x : n_a(x) = kn_b(x)$ is not a CFL where $n_a(x)$ is the number of "a" in x.

Harder languages

- ► $\{a^nb^nc^n : n \in \mathbb{N}\}$. No 'pumpable' substrings within n.
 - Note that $\{a^nb^nc^n\} = \{a^nb^nc^k\} \cup \{a^nb^kc^k\} \implies$ CFLs **are not closed** under conjunction.
 - But they are closed under disjunction, so they are not closed under complementation.
- ▶ $\{w^2 : w \in \Sigma^*\}$ ("stutters")
- ► Challenge: prove $x : n_a(x) = kn_b(x)$ is not a CFL where $n_a(x)$ is the number of "a" in x.
- Swiss-German cross-serial dependencies $\operatorname{adj}_1 \operatorname{adj}_2 \cdots \operatorname{adj}_n \operatorname{noun}_1 \operatorname{noun}_2 \cdots \operatorname{noun}_n$

Harder languages

- ► $\{a^nb^nc^n : n \in \mathbb{N}\}$. No 'pumpable' substrings within n.
 - Note that $\{a^nb^nc^n\} = \{a^nb^nc^k\} \cup \{a^nb^kc^k\} \implies$ CFLs **are not closed** under conjunction.
 - But they are closed under disjunction, so they are not closed under complementation.
- $\qquad \qquad \{ w^2 : w \in \Sigma^* \} \text{ ("stutters")}$
- ► Challenge: prove $x : n_a(x) = kn_b(x)$ is not a CFL where $n_a(x)$ is the number of "a" in x.
- Swiss-German cross-serial dependencies $\operatorname{adj}_1 \operatorname{adj}_2 \cdots \operatorname{adj}_n \operatorname{noun}_1 \operatorname{noun}_2 \cdots \operatorname{noun}_n$
- Programming language with no undefined terms

Turing Machine

Definition

Non-/Deterministic Turing Machine :=

- ▶ *S*: set of states
- ► $S_0 \in S$: initial state
- ▶ $S_r, S_a \in S$: halt reject, halt accept state
- Γ: tape alphabet
- $ightharpoonup b \in \Gamma$: blank symbol
- ▶ $\Sigma \subseteq \Gamma \setminus \{b\}$: input alphabet
- ▶ $f: S \times \Sigma \rightarrow S \times \Sigma \times \{R, L\}$: deterministic transition function
- ► $f: S \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(S \times \Sigma \times \{R, L\})$: non-deterministic transition function

Turing Machine

Figure from WikiMedia

Count possible 'complete-states' $|Q||n||\Sigma|^{k|n|}$.

Count possible 'complete-states' $|Q||n||\Sigma|^{k|n|}$. Finite number of complete-states, pigeon hole. If we hit the same complete-state twice, inf. loop.

Count possible 'complete-states' $|Q||n||\Sigma|^{k|n|}$. Finite number of complete-states, pigeon hole. If we hit the same complete-state twice, inf. loop. Therefore inf. loops are detectable. Halting problem for LBTM is decidable.

Count possible 'complete-states' $|Q||n||\Sigma|^{k|n|}$. Finite number of complete-states, pigeon hole. If we hit the same complete-state twice, inf. loop. Therefore inf. loops are detectable. Halting problem for LBTM is decidable. Nobody knows if LBNTM \iff LB(D)TM

CFG: $A \rightarrow \alpha$

CFG: $A \rightarrow \alpha$

CSG: $\beta A \gamma \rightarrow \beta \alpha \gamma$ where $\alpha \neq \varepsilon$

CFG: $A \rightarrow \alpha$ CSG: $\beta A \gamma \rightarrow \beta \alpha \gamma$ where $\alpha \neq \varepsilon$ $\beta \ _{\gamma}$ is the "context" Repetition, optionals, nestedness

```
CFG: A \rightarrow \alpha
CSG: \beta A \gamma \rightarrow \beta \alpha \gamma where \alpha \neq \varepsilon
\beta<sub>-</sub> \gamma is the "context"
Repetition, optionals, nestedness, with some memory
```

CFG: $A \rightarrow \alpha$

CSG: $\beta A \gamma \rightarrow \beta \alpha \gamma$ where $\alpha \neq \varepsilon$

 β _ γ is the "context"

Repetition, optionals, nestedness, with some

memory

Note: Non-decreasing

Suppose $\alpha \to \beta$ in a CSL with terminals Σ and non-terminals Γ .

Suppose $\alpha \to \beta$ in a CSL with terminals Σ and non-terminals Γ .

Let the tape alphabet be, $\Gamma' = \Sigma \times (\Gamma \cup \{\Delta\})$.

LBNTM \iff CSL

Suppose $\alpha \to \beta$ in a CSL with terminals Σ and non-terminals Γ .

Let the tape alphabet be, $\Gamma' = \Sigma \times (\Gamma \cup \{\Delta\})$. Initially, tape has $x_0x_1 \cdots x_n$. Convert to $(x_0, S), (x_1, \Delta) \cdots (x_n, \Delta)$.

LBNTM \iff CSL

Suppose $\alpha \to \beta$ in a CSL with terminals Σ and non-terminals Γ .

Let the tape alphabet be, $\Gamma' = \Sigma \times (\Gamma \cup \{\Delta\})$. Initially, tape has $x_0x_1 \cdots x_n$. Convert to $(x_0, S), (x_1, \Delta) \cdots (x_n, \Delta)$.

Simulate a CSG parse

 $S \to \alpha \to \beta \to \cdots \to x_0 x_1 \cdots x_n$ in the second coordinate in each cell.

Accept if the first coordinate matches the second.

$\mathsf{LBNTM} \iff \mathsf{CSL}$

Suppose $\alpha \to \beta$ in a CSL with terminals Σ and non-terminals Γ .

Let the tape alphabet be, $\Gamma' = \Sigma \times (\Gamma \cup \{\Delta\})$. Initially, tape has $x_0x_1 \cdots x_n$. Convert to $(x_0, S), (x_1, \Delta) \cdots (x_n, \Delta)$.

Simulate a CSG parse

 $S \to \alpha \to \beta \to \cdots \to x_0 x_1 \cdots x_n$ in the second coordinate in each cell.

Accept if the first coordinate matches the second. CSL's are non-decreasing, so linear bounded.

Construct CSG for given LBNTM: Let configuration := $x_0x_1 \cdots x_{n-1}S_ix_n \cdots x_k$

Construct CSG for given LBNTM: Let configuration := $x_0x_1 \cdots x_{n-1}S_ix_n \cdots x_k$ Suppose $(S'_i, x'_n, L) \in f(S_i, x_n)$. Then $S'_ix_{n-1}x'_n \to x_{n-1}S_ix_n$.

Construct CSG for given LBNTM: Let configuration := $x_0x_1 \cdots x_{n-1}S_ix_n \cdots x_k$ Suppose $(S'_i, x'_n, L) \in f(S_i, x_n)$. Then $S'_ix_{n-1}x'_n \to x_{n-1}S_ix_n$.

This rule maps a configuration to the one configuration immediately prior. Example:

$$x_0x_1\cdots S_i'x_{n-1}x_n'\cdots x_k$$

Construct CSG for given LBNTM:

Let configuration :=
$$x_0x_1 \cdots x_{n-1}S_ix_n \cdots x_k$$

Suppose
$$(S'_i, x'_n, L) \in f(S_i, x_n)$$
. Then

$$S_i'x_{n-1}x_n' \to x_{n-1}S_ix_n.$$

This rule maps a configuration to the one configuration immediately prior. Example:

$$x_0x_1\cdots S_i'x_{n-1}x_n'\cdots x_k$$

$$x_0x_1\cdots x_{n-1}S_ix_n\cdots x_k$$

$\mathsf{LBNTM} \iff \mathsf{CSG}$

Construct CSG for given LBNTM:

Let configuration :=
$$x_0x_1 \cdots x_{n-1}S_ix_n \cdots x_k$$

Suppose
$$(S'_i, x'_n, L) \in f(S_i, x_n)$$
. Then

$$S_i'x_{n-1}x_n' \to x_{n-1}S_ix_n$$
.

This rule maps a configuration to the one configuration immediately prior. Example:

$$x_0x_1\cdots S_i'x_{n-1}x_n'\cdots x_k$$

$$x_0x_1\cdots x_{n-1}S_ix_n\cdots x_k$$

We can work 'backwards' to starting-tapes that the machine would accept!

We will start with a rule that generates arbitrary finishing-tapes: $b \to x_i b$ for $x_i \in \Gamma$, in an accepting state $S \to S_a b$.

CSL equivalents

Primitive recursive (composition, recursion counting down from n)

CSL equivalents

- Primitive recursive (composition, recursion counting down from n)
- Programming with only bounded for-loops and no recursion (see BlooP)

CSL equivalents

- Primitive recursive (composition, recursion counting down from n)
- Programming with only bounded for-loops and no recursion (see BlooP)
- ► Kuroda Normal Form $(AB \to CD, A \to BC, A \to B, A \to a)$ (exception for $\varepsilon \in L$)

Modern computers (within memory limitations)

- Modern computers (within memory limitations)
- Arbitrary grammar

- Modern computers (within memory limitations)
- Arbitrary grammar
- Recursively enumerable (composition, recursion, 'count-up')

- Modern computers (within memory limitations)
- Arbitrary grammar
- Recursively enumerable (composition, recursion, 'count-up')
- ► FRACTRAN

- Modern computers (within memory limitations)
- Arbitrary grammar
- Recursively enumerable (composition, recursion, 'count-up')
- ► FRACTRAN
- Lambda Calculus

- Modern computers (within memory limitations)
- Arbitrary grammar
- Recursively enumerable (composition, recursion, 'count-up')
- ► FRACTRAN
- Lambda Calculus
- ► FlooP

None of these are guaranteed to halt!

P = NP

Deterministic TM Polynomial-time algorithm ←⇒ Non-deterministic TM Polynomial-time algorithm?

$P \neq NP$

Deterministic TM Polynomial-time algorithm ← Non-deterministic TM Polynomial-time algorithm?

Universal Turing Program

Turing Machine takes encoding of a machine and its input, separated by a marker symbol. Decides if machine accepts given input.

Unrestricted Grammars

 $\alpha \to \beta$ α and β can be anything in $(\Gamma \cup \Sigma)^*!$

Task: construct NTM that recognizes strings genreated by an unrestricted grammar $x_0x_1 \cdots x_n$ on tape.

Task: construct NTM that recognizes strings genreated by an unrestricted grammar $x_0x_1\cdots x_n$ on tape. Append #S.

$\overline{\mathsf{Unrestricted}}$ $\mathsf{Grammars} \iff \mathsf{NTM}$

Task: construct NTM that recognizes strings genreated by an unrestricted grammar $x_0x_1\cdots x_n$ on tape.

Append #S.

Start simulating a derivation, replacing α with β according to grammar. Result is unbounded, but so is tape.

Task: construct NTM that recognizes strings genreated by an unrestricted grammar $x_0x_1\cdots x_n$ on tape.

Append #S.

Start simulating a derivation, replacing α with β according to grammar. Result is unbounded, but so is tape.

If string before # matches that after, accept.

$\overline{\mathsf{Unrestricted}}$ $\mathsf{Grammars} \iff \mathsf{NTM}$

Task: construct NTM that recognizes strings genreated by an unrestricted grammar $x_0x_1\cdots x_n$ on tape.

Append #S.

Start simulating a derivation, replacing α with β according to grammar. Result is unbounded, but so is tape.

If string before # matches that after, accept.

Could take forever

$$x_0x_1\cdots x_n$$

$$x_0x_1\cdots x_n$$

 $x_0x_1\cdots x_n\#S$

$$x_0x_1\cdots x_n$$

 $x_0x_1\cdots x_n\#S$
 $x_0x_1\cdots x_n\#\alpha\gamma$

$$x_0x_1 \cdots x_n \\ x_0x_1 \cdots x_n \# S \\ x_0x_1 \cdots x_n \# \alpha \gamma \\ x_0x_1 \cdots x_n \# \beta \theta \gamma \alpha$$

```
x_0x_1 \cdots x_n \\ x_0x_1 \cdots x_n \# S \\ x_0x_1 \cdots x_n \# \alpha \gamma \\ x_0x_1 \cdots x_n \# \beta \theta \gamma \alpha \\ \vdots
```

```
x_0x_1 \cdots x_n

x_0x_1 \cdots x_n \# S

x_0x_1 \cdots x_n \# \alpha \gamma

x_0x_1 \cdots x_n \# \beta \theta \gamma \alpha

\vdots

x_0x_1 \cdots x_n \# x_1x_2 \cdots x_n
```

```
x_0x_1\cdots x_n

x_0x_1\cdots x_n\#S

x_0x_1\cdots x_n\#\alpha\gamma

x_0x_1\cdots x_n\#\beta\theta\gamma\alpha

\vdots

x_0x_1\cdots x_n\#x_1x_2\cdots x_n

accept
```

Suppose
$$(S'_i, x'_n, L) \in f(S_i, x_n)$$
, then $S'_i x_{n-1} x'_n \to x_{n-1} S_i x_n$.