Fault Modeling

- Introduction
- Fault Models
 - Stuck-at fault (1961)
 - Bridging fault (1973)
 - Delay fault (1974)
 - Transistor level fault
- Fault Detection
- Fault Coverage
- Conclusion

Classification of Fault Models

Single Stuck-at Fault Model

- Single Stuck-at Fault (SSF) model [Galey 61]
 - One signal line in Boolean network of logic gates is fixed to logic 0 or 1, independent of logic values on other signal lines
- Notations: node x stuck-at fault

```
* x/0, x/1,* x s@0, x s@1* x SA0, x SA1
```

- Number of faults is linear to circuit size
 - 2 faults (stuck-at one, stuck-at zero) per node
 - 2n SSF in a circuit of n nodes
- Most commonly studied fault model

SSF is Scalable for Large Circuits

Single Stuck-at Fault Example

- Example: SSF table of two input AND gate
 - Total six faults: a/0, a/1, b/0, b/1, c/0, c/1
- Test set ab = {01,11,10}
 - 100% SSF fault coverage, detects all SSF
- Minimum test length =3 for 100% SSF fault coverage

Input	Fault-free	Faulty Output Value with SSF										
a b	Output	<i>a</i> /0	a/1	<i>b</i> /0	<i>b</i> /1	<i>c</i> /0	<i>c</i> /1					
0 0	0	0	0	0	0	0	<u>1</u>					
0 1	0	0	1	0	0	0	<u>1</u>					
11	1	<u>0</u>	1	<u>0</u>	1	<u>0</u>	1					
10	0	0	0	0	1	0	1					

^{*}erroneous output values highlighted

Quiz (Revisited)

(Cont'd from P.3) Manger asked you to pick 2 patterns...

Q: Based on SSF model, which patterns do you pick? What is maximum fault coverage?

A:

Input	Fault-free	Faulty Output Value with SSF										
a b	Output	<i>a</i> /0	a/1	<i>b</i> /0	<i>b</i> /1	<i>c</i> /0	<i>c</i> /1					
0 0	0	0	0	0	0	0	<u>1</u>					
0 1	0	0	1	0	0	0	<u>1</u>					
11	1	<u>0</u>	1	<u>0</u>	1	0	1					
10	0	0	0	0	1	0	<u>1</u>					

Fanout Stems and Branches

- SSF on fanout stem not equivalent to SSF on fanout branches
 - Faults on stems and faults on branches are counted separately
- Example: *E* is fanout stem; *L,F* are fanout branches
 - 6 faults are not equivalent

Inp	out		Outpu						
A	В	С	good	E/0	F/0	L/0	E/1	F/1	L/1
0	0	0	0	0	0	0	1	1	0
0	0	1	1	0	0	1	1	1	1
0	1	0	1	0	0	1	1	1	1
0	1	1	1	0	0	1	1	1	1
1	0	0	0	0	0	0	0	1	0
1	0	1	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0	0
1	1	1	0	0	0	1	0 917	0 , 3, 2	Q _{Nat}

Stem Faults ≠ Branch Faults

Quiz

Q: How many single stuck-at at faults in this circuit?

- A. 8 fault
- B. 14 faults
- C. 18 faults

Multiple Stuck-at Faults

- Multiple stuck-at fault (MSF) model
 - More than one stuck fault in a circuit
- Quiz

Q: how many multiple stuck-at faults in a circuit of *n* nodes? (do not include single stuck-at fault)

A:

- Too may MSF, not scalable for large circuits
 - Fortunately, SSF test set can detect many MSF

MSF Not Considered in Practice

Simulation Results [Hughes 86]

- How effective is SSF test sets for multiple stuck-at faults?
 - 14-input ALU 74LS181 circuit
 - 400 single stuck-at faults
 - 79,600 double stuck-at faults
 - 16 different test sets

Test Set	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Length	12	12	12	12	12	12	12	14	14	14	14	17	35	124	135	352
Undetected	9	8	1	9	28	13	19	4	14	11	3	30	0	0	0	0
Double-																
stuck faults																

- Observation #1: Some shorter tests are better than longer tests
 - Smart test generation/selection is important
- Observation #2: Most double SA faults are detected by SSF test sets
 - But some exceptions (see next slide)

Why DSF NOT Detected?

Example: double stuck-at fault not detected by 100% SSF test set

Fault Masking

- Fault f₂ masks fault f₁ if
 - A test for f₁ fails to detect f₁ in the presence of f₂
- When a test fails to detect a fault it is supposed to detect
 - We call it test invalidation
- Fault masking rarely happens in practice
 - Trouble more for diagnosis than for testing

Fault Masking Invalidates Tests
Fault Masking Makes Diagnosis Difficult

Fault Modeling

Fault Models

- Stuck-at fault
 - * Number of single stuck-at faults is linear to circuit size : 2n
 - Multiple stuck-at faults are exponential in number
 - Fault masking means two faults cancel each other

FFT

- Fault masking degrades test effectiveness
 - does fault masking degrade SSF coverage?

