Table 1: Models of infiltration

	Model description		Equation
1	Distributed Lag	Regression:	$PM_{ihdt}^{in} = \sum_{k=0}^{12} \alpha_k PM_{i,h-k,dt}^{out} + \gamma_i + \delta_h + \eta_d + \theta_t + \varepsilon_{ihdt}$
		Infiltration measure:	$\sum_{k=0}^{12} \alpha_k$
2	Lagged Dependent Variable	Regression:	$PM_{ihdt}^{in} = \alpha PM_{ihdt}^{out} + \beta PM_{i,h-1,dt}^{in} + \gamma_i + \delta_h + \eta_d + \theta_t + \varepsilon_{ihdt}$
		Infiltration measure:	$\alpha \cdot \left(\sum_{k=0}^{\infty} \beta^k \right)$
3	No Lags	Regression:	$PM_{ihdt}^{in} = \alpha PM_{ihdt}^{out} + \gamma_i + \delta_h + \eta_d + \theta_t + \varepsilon_{ihdt}$
		Infiltration measure:	α
4	All Lags	Regression:	$PM_{ihdt}^{in} = \sum_{k=0}^{12} \alpha_k PM_{i,h-k,dt}^{out} + \beta PM_{i,h-1,dt}^{in} + \gamma_i + \delta_h + \eta_d + \theta_t + \varepsilon_{ihdt}$
		Infiltration measure:	$\left(\sum_{k=0}^{12} \alpha_k\right) \cdot \left(\sum_{k=0}^{\infty} \beta^k\right)$