Safety-Critical Example

- SDS1 & SDS2: Real-Time Monitoring & Shutdown at a Nuclear Power Plant
 - These computer systems have hard deadlines in which they have to detect potential accident scenarios.
 - They also have hard deadlines in which they have to initiate alarms, and, if necessary, initiate shutdown of the reactor.

207

207

System Requirements

- TCDR
 - Context diagrams
 - Stimuli & Responses
 - Constants
 - Main function tables with rationale
 - Natural language expressions
 - Tolerances, PTRs and FTRs
 - Anticipated changes
 - Changes from previous freezes rationale

213

213

Black-Box Requirements

- We expect that all responses are described in terms of stimuli and stimuli history only.
- It is sometimes advantageous to allow response history to appear in functional descriptions.
- In deterministic systems, response history is always a representation of stimuli history.

Notation - 1

- We refer to stimuli as monitored variables, and responses as controlled variables.
- We prefix identifiers by a suitable character followed by _ to help identify the role of the identifier.
- m_ name is a monitored variable, c_name is a controlled variable, k_name is a constant, etc.

215

215

Notation - 2

- m_name represents value of the current instance of m_name.
- m_name₋₁ represents value of the previous instance of m name.
- If m_name is time-continuous, there's an arbitrarily small time, δt, between m_name and m_name₋₁.
- t_{now} represents current time.

216

Notation - 3

- If m_name is time-discrete, time between m_name and m_name₋₁ is t(m_name) t(m_name₋₁). In general, t(var) returns time stamp of the instance of var.
- In a real system it will not be possible to represent R = f(S,Sh) by a single function or function table
 - So we decompose the function f into a network of sub-functions

217

217

Anticipated Changes - 1

- Information Hiding is a software design paradigm that was introduced by Parnas in a famous paper in the early 1970s.
- The original version of Information Hiding used anticipated design changes to drive the software decomposition.
- It turns out that requirement changes are an even greater source of "secrets".

Parnas, D.: On the criteria to be used in decomposing systems into modules.

Communications of the ACM December (1972) 1053-1058

219

219

Anticipated Changes - 2

Table 9.1-1 - Anticipated Changes

Id	Anticipated Change
AC-1	Provisions shall be made in the software coding to give all power dependent setpoints the ability to handle arbitrary setpoint functions (instead of the current step functions). As a minimum requirement, facilities to accommodate a setpoint value for each 1% power change shall be provided up to an upper limit of 110% Full Power (FP).
AC-2	Ranges as specified in the table that defines values of constants, see [27], shall be pre-verified so that the application can use any trip setpoint in the relevant range.
AC-3	New parameter trips may be added.
AC-4	The algorithm and number of detectors used for the estimated power calculation may change from the current specification.
AC-5	Individual deadbands may be revised, HTLF in particular.
AC-6	The processing time for the HTLF analog inputs may be reduced by 100 ms to make provisions to reallocate delay external to the trip computer, see [47], 2.2.2.

220

System Design (includes software requirements)

- Trip Computer Design Description
 - Uses TCDR as a basis
 - Adds design information, e.g. pushbutton debouncing
 - Model changes to a Finite State Machine with an arbitrarily small clock-tick
 - SRS contained within TCDD

221

221

Finite State Machine Model

- C(t) set of controlled vars at time t
- M(t) set of monitored vars at time t
- S(t) set of state vars at time t
- t₀ time of initialisation
- S(t₀) must be known

$$C(t_k) = REQ(M(t_k), S(t_k))$$

 $S(t_{k+1}) = NS(M(t_k), S(t_k)), k=0,1,2,3,...$

222

TCDD Documentation

- Context diagrams
- Monitored & Controlled Variables
- Constants
- Main function tables
- Natural language expressions
- M-I mappings, transfer events
- C-O mappings, transfer events
- Tolerances, PTRs and FTRs
- Anticipated changes
- Changes from previous freezes

224

TCDD Documentation

- Context diagrams
- Monitored & Controlled Variables
- Constants
- Main function tables
- Natural language expressions
- M-I mappings, transfer events
- C-O mappings, transfer events
- Tolerances, PTRs and FTRs
- Anticipated changes
- Changes from previous freezes

We'll find out what these are later

225

225

Design Details in TCDD

- We can see how debouncing pushbuttons affects the behaviour specified in the TCDR.
- In particular, "NOP Abnormal 1 setpoint is requested or cancelled" is specified in the TCDR without debouncing and then re-specified in the TCDD with debouncing.

226

Debounce Pushbuttons - 1 Pushbuttons in the TCDD f_NOPspAbn1OFF f_StuckNOPspAbn1OFF $m_NOPspAbn1OFF = e_NotPressed$ e pbNotDebounced False [m NOPspAbn1OFF = e Pressed] False e pbNotDebounced NOT [(m_NOPspAbn1OFF = e_Pressed) Held for k_Debounce] [(m_NOPspAbn1OFF = e Pressed) Held for k Debounce & e pbDebounced False NOT [(m NOPspAbn1OFF = e_Pressed) Held for k_pbStuck] (m_NOPspAbn1OFF = e_Pressed) Held for k_pbStuck e_pbStuck True

Debounce Pushbuttons - 2

 So, NOP Abnormal 1 setpoint is requested or cancelled is now defined in terms of f_NOPspAbn1ON/OFF

Condition	setpoint is requested or cancelled
f_NOPspAbn1ON = e_pbStuck OR f_NOPspAbn1OFF = e_pbStuck	requested
f_NOPspAbn1ON = e_pbNotDebounced & f_NOPspAbn1OFF = e_pbNotDebounced	No Change
f_NOPspAbn1ON = e_pbNotDebounced & f_NOPspAbn1OFF = e_pbDebounced	cancelled
f_NOPspAbn1ON = e_pbDebounced & f_NOPspAbn1OFF = e_pbNotDebounced	requested
f_NOPspAbn1ON = e_pbDebounced & f_NOPspAbn1OFF = e_pbDebounced	requested

229

229

Input and Output Variables

- The TCDD specifies "transfer events" (what the software must do to trigger getting a software input, I, or emitting a software output, O).
- The TCDD also specifies the "M-I mappings", and "C-O mappings" (what the hardware does).

231

231

Performance Timing Reqs & Anticipated Changes

- The TCDD specifies a modified list of performance timing requirements that takes into account the design aspects added in the TCDD.
- The TCDD also lists a (potentially modified) list of anticipated changes.

Performance Timing Reqs Table 2.2.2 - Timing Requirements									
	Controlled Variable	Governing Variables	PTR	TR	Reference				
	c_NOPparmtrip	m_NOPai, i=1,,18	160 ms	Default	TCDR				
				(Already more restrictive than required to meet seal- in)					
		m_NOPspAbn1OFF	850 ms (Held for	350 ms	TCDR and [13], #1 and				
		m_NOPspAbn1ON	k_Debounce) / 500 ms		[23]				
		m_NOPspAbn2OFF m_NOPspAbn2ON							
		m NOPspLPOFF							
		m_NOPspLPON							
		m_CalibrateEnable	N/A	1000 ms	TCDR				
		M_RxFnType	2000 ms	Default	TCDR				
Example for c NOPparmtrip		M_RxNOPGain _i , i=1,,18	N/A	2000 ms	TCDR	233			

