TD M4 – Mouvement d'une particule chargée dans un champ électromagnétique

Exercice 1 – Opérations vectorielles

1. Les vecteurs sont tous exprimés dans une base orthonormée directe. Calculer les expressions suivantes.

1.a.
$$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \land \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$
1.c. $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$
1.b. $\begin{pmatrix} -3 \\ 1 \\ -2 \end{pmatrix} \land \begin{pmatrix} 6 \\ -2 \\ 4 \end{pmatrix}$
1.d. $\begin{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \land \begin{pmatrix} -2 \\ 1 \\ -3 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$

2. On note $(\vec{e_x}, \vec{e_y}, \vec{e_z})$, $(\vec{e_r}, \vec{e_\theta}, \vec{e_z})$ et $(\vec{e_r}, \vec{e_\theta}, \vec{e_\phi})$ les vecteurs unitaires des bases orthonormées directes cartésienne, cylindrique et sphérique. Calculer les expressions suivantes.

En cartésien:

2.a.
$$\overrightarrow{e_x} \wedge (2\overrightarrow{e_x} + 3\overrightarrow{e_y})$$

2.b.
$$(5\vec{e_y} \wedge 2\vec{e_z}) \wedge \vec{e_z}$$

2.c.
$$(2\overrightarrow{e_z} \wedge \overrightarrow{e_x}) \cdot \overrightarrow{e_x}$$

En cylindrique:

2.d.
$$3\vec{e_{\theta}} \wedge (\vec{e_z} + 3\vec{e_r})$$

2.e.
$$\overrightarrow{e_z} \cdot (\overrightarrow{e_r} \cdot \overrightarrow{e_\theta})$$

2.f.
$$(2\vec{e_z} \wedge \vec{e_\theta}) \wedge (\vec{e_r} + 3\vec{e_\theta})$$
 2.i. $\vec{e_r} \cdot (-\vec{e_r} \wedge 2\vec{e_\varphi})$

En sphérique:

2.g.
$$\overrightarrow{e_{\theta}} \wedge 2\overrightarrow{e_r}$$

2.a.
$$\overrightarrow{e_x} \wedge (2\overrightarrow{e_x} + 3\overrightarrow{e_y})$$
 2.d. $3\overrightarrow{e_\theta} \wedge (\overrightarrow{e_z} + 3\overrightarrow{e_r})$ 2.g. $\overrightarrow{e_\theta} \wedge 2\overrightarrow{e_r}$ 2.b. $(5\overrightarrow{e_y} \wedge 2\overrightarrow{e_z}) \wedge \overrightarrow{e_x}$ 2.e. $\overrightarrow{e_z} \cdot (\overrightarrow{e_r} \cdot \overrightarrow{e_\theta})$ 2.h. $(3\overrightarrow{e_\theta} + \overrightarrow{e_\varphi}) \wedge (2\overrightarrow{e_r} - \overrightarrow{e_\theta})$

2.i.
$$\overrightarrow{e_r} \cdot (-\overrightarrow{e_r} \wedge 2\overrightarrow{e_\varphi})$$

Exercice 2 – Chambre à bulles

Pour visualiser les trajectoires des particules chargées, les premiers détecteurs étaient des « chambres à bulles » dans lesquelles les particules (électrons, neutrons, protons, etc.) déclenchaient la formation de bulles dans un liquide et marquaient ainsi leur passage par une trainée de bulles. La figure ci-dessous représente un cliché typique des traces observées lors d'une collision à haute énergie de particules au CERN.

Dans ces chambres à bulles, il règne un champ magnétique uniforme \vec{B} . Par ailleurs, le passage dans le liquide conduit à une lente décélération des particules.

- 1. Déterminer le signe de la charge des particules associées aux trois types de trajectoires observées.
- 2. Expliquer qualitativement pourquoi les trajectoires observées ne sont pas circulaires mais s'enroulent en spirales dont le rayon diminue.

★★★ Exercice 3 – Sélecteur de vitesse

Une particule de masse m et charge q pénètre avec une vitesse $\overrightarrow{v_0} = v_0 \overrightarrow{e_x}$ dans une zone où règne un champ électromagnétique $(\overrightarrow{E}, \overrightarrow{B})$, avec $\overrightarrow{E} = E_0 \overrightarrow{e_y}$ et $\overrightarrow{B} = B_0 \overrightarrow{e_z}$ uniformes et stationnaires.

- 1. À quelle condition le vecteur vitesse de la particule reste-t-il inchangé?
- 2. Proposer le schéma d'un montage expérimental permettant de sélectionner des particules chargées ayant une vitesse donnée.

*** Exercice 4 – Expérience de Millikan

On disperse un brouillard de fines gouttelettes sphériques d'huile, de masse volumique $\rho = 1.3 \times 10^3 \,\mathrm{kg\cdot m^{-3}}$, dans l'espace séparant les deux plaques horizontales d'un condensateur plan, distantes de $d = 2 \times 10^{-2} \,\mathrm{m}$. La tension $U = V_1 - V_2$ aux bornes du condensateur est de l'ordre de quelques kV. Les gouttelettes sont chargées négativement et ont une vitesse initiale nulle.

Toutes les gouttelettes ont le même rayon R de l'ordre du micron, mais pas forcément la même charge q < 0, avec |q| de l'ordre de quelques $e = 1.6 \times 10^{-19} \,\mathrm{C}$. Les frottements de l'air, de masse volumique $\rho_a = 1.3 \,\mathrm{kg} \cdot \mathrm{m}^{-3}$, sont modélisés par une force de frottements visqueux $\vec{f} = -k \,\vec{v}$, avec $k = \alpha R$ et $\alpha = 3.4 \times 10^{-4} \,\mathrm{SI}$.

- 1. Effectuer un bilan des forces s'exerçant sur une gouttelette. Peut-on en négliger? On impose dans cette partie seulement $U=0\,\mathrm{V}$.
 - 2. Déterminer la vitesse limite $\vec{v_0}$.
 - 3. On mesure $v_0 = 2.0 \times 10^{-4} \,\mathrm{m \cdot s^{-1}}$. Déterminer la valeur de R.
 - 4. Déterminer l'expression de la vitesse des gouttes $\vec{v}(t)$. On fera apparaitre un temps caractéristique τ que l'on exprimera en fonction des données du problème.

On applique une différence de potentiel U de manière à ralentir la chute des gouttelettes.

- 5. Donner le sens et la direction du champ \vec{E} . En déduire la plaque dont le potentiel électrique est le plus élevé, en déduire le signe de U et donner l'expression du champ \vec{E} .
- 6. Une partie des gouttelettes s'immobilise pour $U_1 = 3.2 \,\mathrm{kV}$, une autre pour $U_2 = 4.8 \,\mathrm{kV}$, etc. Exprimer puis calculer les charges q_1 et q_2 de ces deux groupes de gouttelettes.
- 7. Que remarque-t-on?

$\star\star\star$ Exercice 5 – Cyclotron

Un cyclotron est formé de deux enceintes demi-cylindriques D_1 et D_2 , appelées « dees » en anglais, séparées d'une zone étroite d'épaisseur a. Les « dees » sont situés dans l'entrefer d'un électroaimant qui produit un champ magnétique uniforme $\vec{B} = B\vec{e_z}$, de norme $B = 1,5\,\mathrm{T}$. Une tension sinusoïdale u d'amplitude $U_m = 200\,\mathrm{kV}$ est appliquée entre les deux extrémités de la bande intermédiaire, si bien qu'il y règne un champ électrique uniforme orienté selon $\vec{e_x}$.

On injecte des protons au sein de la zone intermédiaire avec une vitesse initiale négligeable.

sciences.univ-nantes.fr

- 1. Montrer qu'à l'intérieur d'un dee, la norme de la vitesse des protons est constante.
- 2. En déduire le rayon de courbure R de la trajectoire des protons ayant une vitesse v ainsi que le temps que passe un proton dans un dee. Commenter.
- 3. On suppose $a \ll R$. Quelle doit être la fréquence f de la tension pour que le proton soit accéléré de façon optimale à chaque passage entre les dees?
- 4. Exprimer la vitesse v_n puis le rayon R_n de la trajectoire d'un proton après n passages dans la zone d'accélération. Le demi-cercle n=1 est celui qui suit la première phase d'accélération.
- 5. Calculer numériquement le rayon de la trajectoire après un tour (donc un passage dans chaque dee), puis après dix tours.
- 6. Le rayon de la dernière trajectoire décrite par les protons accélérés avant de bombarder une cible est $R_N = 35$ cm. Déterminer l'énergie cinétique du proton avant le choc contre la cible et l'exprimer en électronvolts (eV).
- 7. Exprimer puis calculer le nombre de tours parcourus par le proton, ainsi que la durée totale de l'accélération.

Donnée : masse d'un proton $m=1,67\times 10^{-27}\,\mathrm{kg}$; électronvolt $1\,\mathrm{eV}=1,6\times 10^{-19}\,\mathrm{J}$.

*** Exercice 6 – Oscilloscope analogique

Dans tout l'exercice, on se place dans un référentiel galiléen associé au repère cartésien $(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$. Une zone de champ électrique est établie entre les plaques P_1 et P_2 . Le champ est supposé nul en dehors. La distance entre les plaques est d, leur longueur est D et la différence de potentiel $U = V_2 - V_1$ est positive. Des électrons accélérés, de charge q = -e et de masse m, pénètrent en O dans la zone de champ uniforme avec une vitesse $\overrightarrow{v_0} = v_0 \overrightarrow{e_z}$.

- 1. Établir l'expression de la force subie par les électrons en fonction de U, q, d, et $\overrightarrow{e_x}$.
- 2. Déterminer l'expression de la trajectoire x = f(z) de l'électron dans la zone du champ en fonction de d, U et v_0 .

- 3. Déterminer le point de sortie K de la zone de champ ainsi que les composantes du vecteur vitesse en ce point.
- 4. Montrer que le mouvement est rectiligne et uniforme dans la zone en dehors des plaques.
- 5. On note L la distance O_1O_e . Déterminer l'abscisse X_P du point d'impact P de l'électron sur l'écran en fonction de U, v_0 , D, d, L, m et e.

Coups de pouce

Ex. 2 1. Que peut-on dire du vecteur accélération pour un mouvement circulaire? Pour une trajectoire donnée, représenter le vecteur vitesse et la force subie par la particule à un instant quelconque.

Ex. 3 1. Principe d'inertie? 2. Un écran perforé sera

Ex. 4 1. Comparer notamment la poussée d'Archimède et le poids. 2. Que devient le PFD en régime permanent? 4.. EDL1: souvenir souvenir... 5. Attention au signe de la charge des gouttelettes. 7. Prix Nobel de physique 1923.

Ex. 5 3. Quelle est la durée nécessaire pour qu'un proton fasse un tour? Combien de changement du sens de \acute{E} pour accélérer le proton convenablement?

Ex. 6 2. Mouvement à vecteur accélération constant, comme un air de déjà-vu... 3. Que vaut z en K? 5. Intégrer l'équation du mouvement et/ou faire un schéma.

√ Éléments de correction

Ex. 1 1.a.
$$\begin{pmatrix} 4 \\ -2 \\ -5 \end{pmatrix}$$
; 1.b. $\vec{0}$; 1.c. 5; $\vec{f} = -\alpha R \vec{v}$ et $\vec{F}_E = q \vec{E}$; $P \gg \Pi_A$; $2 \cdot \vec{v} = \frac{R^2 e^2 B^2}{4\pi \rho g} = 1$.d. -5 ; 2.a. $3\vec{e}_z$; 2.b. $\vec{0}$; 2.c. 0; $2 \cdot \vec{v} = \frac{m}{\alpha R} \vec{g}$; 3. $R = \sqrt{\frac{3\alpha v_0}{4\pi \rho g}} = 1$. $2 \cdot \vec{v} = \frac{R^2 e^2 B^2}{2m} = 1$. $2 \cdot \vec{v} = \frac{R^$

$$\vec{f} = -\alpha R \vec{v} \text{ et } \overrightarrow{F_E} = q \vec{E} ; P \gg \Pi_A;$$
2. $\vec{v_0} = \frac{m}{\alpha R} \vec{g} ; 3. R = \sqrt{\frac{3\alpha v_0}{4\pi \rho g}} =$
1,1 µm; 4. $\vec{v}(t) = \vec{v_0} \left(1 - e^{-t/\tau}\right); 5.$

$$U > 0, \vec{E} = -\frac{U}{d} \vec{e_z}; 6. q = \frac{4\pi R^3 \rho g d}{3U},$$

$$q_1 = 4.8 \times 10^{-19} \text{ C et } q_2 = 3.2 \times 10^{-19} \text{ C}; 7. q_1 = 3e, q_2 = 2e.$$

$$\begin{array}{l} \mathbf{Ex.\,5}\,2.\;R = \frac{mv}{eB},\, \tau = \pi R/v\,;\,3.\;f = \\ \frac{eB}{2\pi m} \,=\,23\,\mathrm{MHz}\,;\,\,4.\;\,v_n \,=\,\sqrt{\frac{2neU_m}{m}}, \end{array}$$

$$R_{n} = \sqrt{\frac{2nmU_{m}}{eB^{2}}}; 5. R_{2} = 6.1 \,\mathrm{cm},$$

$$R_{20} = 19 \,\mathrm{cm}; 6. \mathcal{E}_{c,N} = \frac{R_{N}^{2}e^{2}B^{2}}{2m} = 2.1 \times 10^{-12} \,\mathrm{J} = 13 \,\mathrm{MeV}; 7. N = \frac{eB^{2}R_{N}^{2}}{2mU_{m}} \approx 66:33 \,\mathrm{tours}, N\tau = 1.4 \,\mathrm{\mu s}.$$

$$\mathbf{Ex. 6} \ 1. \ \overrightarrow{F_{E}} = \frac{eU}{d} \overrightarrow{e_{x}}; \ 2. \ x(z) = \frac{eU}{2mdv_{0}^{2}}z^{2}; 3. \ x_{K} = \frac{eUD^{2}}{2mdv_{0}^{2}}, \ z_{K} = D,$$

$$\dot{x}_{K} = \frac{eUD}{mdv_{0}}, \ \dot{z}_{K} = v_{0}; \ 5. \ X_{P} = \frac{eUD}{2mdv_{0}^{2}}(2L + D).$$

Exercice 7 – Détermination d'un champ électrique – oral banque PT

Un électron de masse m, d'énergie cinétique $\mathcal{E}_{c,0} = 80 \text{ keV}$ pénètre avec une vitesse $\overrightarrow{v_0}$ horizontale dans une cavité de longueur L = 1 m où règne un champ électrique uniforme de norme E_0 constante.

1. Déterminer la direction et le sens du champ électrostatique $\overrightarrow{E_0}$, sachant qu'il ne s'exprime qu'en fonction de $\overrightarrow{e_x}$ ou $\overrightarrow{e_y}$.

- 2. Lors de sa traversée, l'énergie cinétique de l'électron varie de $|\Delta \mathcal{E}_c| = 10 \,\mathrm{keV}$. Quel est le signe de $\Delta \mathcal{E}_{c}$?
- 3. Déterminer la norme E_0 .
- 4. Evaluer l'angle de déviation de la trajectoire en sortie de la zone de champ.

Données :
$$m = 9.11 \times 10^{-31} \,\mathrm{kg}$$
 ; $1 \,\mathrm{eV} = 1.6 \times 10^{-19} \,\mathrm{J}$.