

💠 فركانس الكتريكي رتور

$$f_{re} = \frac{P \times n}{120}$$
 سرعت رتور نسبت به میدان گردان استاتور

$$\mathbf{f}_{re} = \frac{\mathbf{P} \times (\mathbf{n}_s - \mathbf{n}_m)}{120} = \frac{\mathbf{P} \times (\mathbf{sn}_s)}{120}$$

$$f_{re} = sf_{se}$$

💠 فركانس الكتريكي رتور

$$f_{re} = sf_{se}$$

$$f_{re} = \frac{n_{sync} - n_m}{n_{sync}} f_{se}$$
 , $n_{sync} = \frac{120 f_{se}}{P}$

$$f_{re} = \frac{n_{sync} - n_m}{\frac{120f_{se}}{P}} f_{se} \implies f_{re} = \frac{P}{120} (n_{sync} - n_m)$$

Example:

- A 3-phase, 460 V, 100 hp, 60 Hz, four-pole induction machine delivers rated output power at a slip of 0.05. Determine the:
- (a) Synchronous speed and motor speed.
- (b) Speed of the rotating air gap field.
- (c) Frequency of the rotor circuit.
- (d) Slip rpm.
- (e) Speed of the rotor field relative to the
 - (i) rotor structure.
 - (ii) Stator structure.
 - (iii) Stator rotating field.

Solution:

$$n_s = \frac{120f}{p} = \frac{120*60}{4} = 1800 \ rpm$$
$$n = (1-s)n_s = (1-0.05)*1800 = 1710 \ rpm$$

(b) 1800 (same as synchronous speed)

$$(c) f_2 - s f_1 - 0.05 \times 60 - 3 \text{ Hz}.$$

(d) slip
$$rpm = s n_s = 0.05 * 1800 = 90 rpm$$

Example

- A 208-V, 10hp, four pole, 60 Hz, Y-connected induction motor has a full-load slip of 5 percent
 - 1. What is the synchronous speed of this motor?
 - 2. What is the rotor speed of this motor at rated load?
 - 3. What is the rotor frequency of this motor at rated load?
 - 4. What is the shaft torque of this motor at rated load?

Solution

1.
$$n_{sync} = \frac{120 f_e}{P} = \frac{120(60)}{4} = 1800 \ rpm$$

2.
$$n_m = (1-s)n_s$$

= $(1-0.05) \times 1800 = 1710 \ rpm$

$$f_r = sf_e = 0.05 \times 60 = 3Hz$$

3.

$$\tau_{load} = \frac{P_{out}}{\omega_m} = \frac{P_{out}}{2\pi \frac{n_m}{60}}$$

$$= \frac{10 \, hp \times 746 \, watt \, / \, hp}{1710 \times 2\pi \times (1/60)} = 41.7 \, N.m$$

💠 مدار معادل موتور القایی

- ♦ اساس کار موتور القایی بر اساس القای ولتاژ از استاتور (اولیه) روی رتور (ثانویه) است که
 اساس کار ترانسفورماتور است. یعنی موتور القایی شبیه ترانسفورماتور است با این تفاوت که
 سیم پیچی ثانویه آن می تواند حرکت کند.
 - **❖ بنابراین در حالت سکون مدار معادل آن باید شبیه ترانسفورماتور باشد:**

❖ مثل ترانسفورماتور شار در ماشین با انتگرال ولتاژ اعمال شده בمتناسب است.

- ♦ رلاکتانس زیاد تولیدی به وسیله فاصله هوایی به معنی جریان مغناطیس سازی بیشتر به ازای شار مشخص
 است.
 - ♦ راکتانس مغناطیس کننده X_M در موتور القایی خیلی کمتر از ترانسفورماتور معمولی است.

💠 مدار معادل موتور القایی

مدل رتور:

- پ هر چقدر سرعت نسبی بین میدان مغناطیسی استاتور و رتور زیادتر شود؛ ولتاژ و فرکانس رتور بیشتر خواهد بود:
- خ وقتی رسور ساکن است (حالت رتور قفل شده یا بلوکه شده): بزرگترین ولتاژ و فرکانس در رتور القا می شود.
- خ وقتی رتور هم سرعت با میدان گردان استاتور است: کوچکترین ولتاژ و فرکانس (صفر) در مدار رتور القا می شود زیرا سرعت نسبی صفر است.
- است. و هر سرعتی بین این دو حد، ولتاژ و فرکانس مستقیما متناسب با لغزش رتور است.

💠 مدار معادل موتور القایی

مدل رتور:

با فرض ولتاثر القایی در حالت رتور قفل برابر E_{RO}، اندازه ولتاثر القایی در هر لغزشی برابر است با:

$$\mathbf{E}_{\mathbf{R}} = \mathbf{s}\mathbf{E}_{\mathbf{RO}}$$

و فركانس ولتاژ القایی در هر لغزشی:

$$f_r = sf_s = sf_e$$

🌣 مدار معادل موتور القایی

☆ R_R: بجز اثر پوسته ای مستقل از فرکانس است.

$$X_R=\omega_r L_R=2\pi f_r L_R$$
 متناسب با فرکانس است: X_R* $X_R=X_R=2\pi s_s L_R=s_s X_R$ متناسب با فرکانس رتور در حالت رتور قفل شده

💠 مدار معادل موتور القايي

به این ترتیب مدار معادل رتور به صورت زیر رسم می شود:

💠 جریان جاری در رتور:

$$I_{R} = \frac{E_{R}}{R_{R} + jX_{R}} = \frac{sE_{Ro}}{R_{R} + jsX_{Ro}}$$

$$I_{R} = \frac{E_{Ro}}{\frac{R_{R}}{S} + jX_{Ro}}$$

💠 جریان جاری در رتور:

در لغزش كم: مقاومت رتور تاثیر بیشتری دارد و جریان رتور به صورت خطی با لغزش تغيير مي كند

$$\frac{R_R}{\epsilon} >> X_{Ro}$$

در لغزش زیاد: راکتانس رتور تاثیر بیشتری دارد و جریان رتور به سمت مقدار ثابتی میل می کند

$$\frac{R_R}{s} << X_{Ro}$$

💠 مدار معادل موتور القایی

اثر تغییر سرعت را روی مدار معادل رتور دیدیم، می توانیم 🛠 مدار معادل كامل موتور القايي را رسم كنيم:

$$X_2 = a_{eff}^2 X_{R0}$$
 $R_2 = a_{eff}^2 R_R$
 $I_2 = \frac{I_R}{a_{eff}}$
 $E_1 = a_{eff} E_{R0}$
 N_S

موتور القایی

💠 تلفات توان در موتور القایی

- 🜣 تلفات مسى:
- $P_{SCL} = I_1^2 R_1$: تلفات مسى در استاتور $P_{RCL} = I_2^2 R_2$: تلفات مسى در رتور
 - P_{core} تلفات هسته riangleright
 - ❖ تلفات مکانیکی ناشی از اصطکاک و بادخوری

موتور القایی

💠 تلفات توان در موتور القایی

چرا تلفات هسته را در سمت استاتور در نظر گرفتیم؟

💠 تلفات توان در موتور القایی

 P_{core} تلفات هسته riangleright

بخشی در سمت استاتور و بخشی در سمت رتور است. چون موتور القایی در سرعتی نزدیک به سرعت سنکرون کار می کند فرکانس رتور تقریبا صفر است و در نتیجه تلفات هسته رتور بسیار ناچیز است:

$$\mathbf{P_{Core}} = \mathbf{P_h} + \mathbf{P_e} = \mathbf{K_h} \mathbf{B_{max}^n} \mathbf{f} + \mathbf{K_e} \mathbf{B_{max}^2} \mathbf{f}^2$$

$$f_r = sf_s$$

 $s \approx 0 \Rightarrow f_r \approx 0 \Rightarrow P_{Core,R} \approx 0$

💠 تلفات توان در موتور القایی

- با افزایش سرعت موتور القایی:
- \checkmark تلفات اصطکاک، بادخوری و متفرقه بیشتر می شود.
 - √ تلفات هسته کمتر می شود
- این سه دسته تلفات گاهی تلفات چرخشی نامیده می شود.
- ❖ معمولا تلفات چرخشی با تغییر سرعت ثابت در نظر گرفته می شود زیرا اجزای این تلفات با تغییر سرعت، در جهت های مخالف هم تغییر می کنند.

💠 تلفات توان در موتور القایی

- با افزایش سرعت موتور القایی:
- \checkmark تلفات اصطکاک، بادخوری و متفرقه بیشتر می شود.
 - √ تلفات هسته کمتر می شود
- این سه دسته تلفات گاهی تلفات چرخشی نامیده می شود.
- ❖ معمولا تلفات چرخشی با تغییر سرعت ثابت در نظر گرفته می شود زیرا اجزای این تلفات با تغییر سرعت، در جهت های مخالف هم تغییر می کنند.

القایی پروابط تلفات توان در موتور القایی

$$P_{in} = \sqrt{3} V_L I_L \cos \theta = 3 V_{ph} I_{ph} \cos \theta$$

$$P_{SCL} = 3 I_1^2 R_1$$

$$P_{\text{Core}} = 3E_1^2G_C$$

loss)

$$P_{AG} = P_{in} - (P_{SCL} + P_{core})$$

موتور القایی

💠 روابط تلفات توان در موتور القایی

با توجه به مدار معادل، تنها عنصری در مدار معادل که توان فاصله هوایی می تواند در آن مصرف شود مقاومت معادل رتور است:

$$P_{AG} = P_{in} - (P_{SCL} + P_{core})$$

$$P_{AG} = 3I_2^2 \frac{R_2}{s}$$

$$P_{RCL} = 3I_2^2 R_2 \qquad \mathbf{P_{RCL}} = \mathbf{sP_{AG}}$$

$$P_{conv} = P_{AG} - P_{RCL}$$

$$P_{conv} = 3I_2^2 \frac{R_2}{s} - 3I_2^2 R_2 = 3I_2^2 R_2 (\frac{1}{s} - 1) = 3I_2^2 R_2 (\frac{1 - s}{s})$$

$$\mathbf{P_{conv}} = (1 - \mathbf{s})\mathbf{P_{AG}}$$

💠 روابط تلفات توان در موتور القایی

$$P_{AG}:P_{RCL}:P_{conv}$$
 $1:s:1-s$

Example

A 480-V, 60 Hz, 50-hp, three phase induction motor is drawing 60A at 0.85 PF lagging. The stator copper losses are 2 kW, and the rotor copper losses are 700 W. The friction and windage losses are 600 W, the core losses are 1800 W, and the stray losses are negligible. Find the following quantities:

- 1. The air-gap power P_{AG}
- 2. The power converted P_{conv}
- 3. The output power P_{out}
- 4. The efficiency of the motor.

1.
$$P_{in} = \sqrt{3}V_L I_L \cos \theta$$

= $\sqrt{3} \times 480 \times 60 \times 0.85 = 42.4 \text{ kW}$
 $P_{AG} = P_{in} - P_{SCL} - P_{core}$

$$= 42.4 - 2 - 1.8 = 38.6 \text{ kW}$$

$$P_{conv} = P_{AG} - P_{RCL}$$

2.
$$= 38.6 - \frac{700}{1000} = 37.9 \text{ kW}$$

$$P_{out} = P_{conv} - P_{F\&W}$$

$$= 37.9 - \frac{600}{1000} = 37.3 \text{ kW}$$

$$P_{out} = \frac{37.3}{0.746} = 50 \text{ hp}$$

4.
$$\eta = \frac{P_{out}}{P_{in}} \times 100\%$$

$$= \frac{37.3}{42.4} \times 100 = 88\%$$

Example

A 460-V, 25-hp, 60 Hz, four-pole, Y-connected induction motor has the following impedances in ohms per phase referred to the stator circuit:

$$R_1 = 0.641\Omega$$
 $R_2 = 0.332\Omega$

$$X_1 = 1.106 \Omega X_2 = 0.464 \Omega X_M = 26.3 \Omega$$

The total rotational losses are 1100 W and are assumed to be constant. The core loss is lumped in with the rotational losses. For a rotor slip of 2.2 percent at the rated voltage and rated frequency, find the motor's

- 1. Speed
- 2. Stator current
- 3. Power factor
- $4. \quad P_{AG}, P_{conv}, P_{out}$
- 5. $\tau_{\rm ind}$, $\tau_{\rm load}$
- 6. Efficiency

1.
$$n_{sync} = \frac{120 f_e}{P} = \frac{120 \times 60}{4} = 1800 \text{ rpm}$$

$$n_m = (1-s)n_{sync} = (1-0.022) \times 1800 = 1760 \text{ rpm}$$
2. $Z_2 = \frac{R_2}{s} + jX_2 = \frac{0.332}{0.022} + j0.464$

$$= 15.09 + j0.464 = 15.1 \angle 1.76^{\circ} \Omega$$

$$Z_f = \frac{1}{1/jX_M + 1/Z_2} = \frac{1}{-j0.038 + 0.0662 \angle -1.76^{\circ}}$$

$$= \frac{1}{0.0773 \angle -31.1^{\circ}} = 12.94 \angle 31.1^{\circ} \Omega$$

$$Z_{tot} = Z_{stat} + Z_{f}$$

$$= 0.641 + j1.106 + 12.94 \angle 31.1^{\circ} \Omega$$

$$= 11.72 + j7.79 = 14.07 \angle 33.6^{\circ} \Omega$$

$$I_{1} = \frac{V_{\phi}}{Z_{tot}} = \frac{\frac{460 \angle 0^{\circ}}{\sqrt{3}}}{14.07 \angle 33.6^{\circ}} = 18.88 \angle -33.6^{\circ} \text{ A}$$
3. $PF = \cos 33.6^{\circ} = 0.833$ lagging
4. $P_{in} = \sqrt{3}V_{L}I_{L}\cos\theta = \sqrt{3} \times 460 \times 18.88 \times 0.833 = 12530 \text{ W}$

$$P_{SCL} = 3I_{1}^{2}R_{1} = 3(18.88)^{2} \times 0.641 = 685 \text{ W}$$

$$P_{AG} = P_{in} - P_{SCL} = 12530 - 685 = 11845 \text{ W}$$

موتور القایی

$$P_{conv} = (1 - s)P_{AG} = (1 - 0.022)(11845) = 11585 \text{ W}$$

$$P_{out} = P_{conv} - P_{F\&W} = 11585 - 1100 = 10485 \text{ W}$$

$$= \frac{10485}{746} = 14.1 \text{ hp}$$
5.
$$\tau_{ind} = \frac{P_{AG}}{\omega_{sync}} = \frac{11845}{2\pi \times 1800/60} = 62.8 \text{ N.m}$$

$$\tau_{load} = \frac{P_{out}}{\omega_m} = \frac{10485}{2\pi \times 1760/60} = 56.9 \text{ N.m}$$
6.
$$\eta = \frac{P_{out}}{P_{in}} \times 100\% = \frac{10485}{12530} \times 100 = 83.7\%$$

استخراج رابطه گشتاور - سرعت در موتور القایی

$$\tau_{ind} = \frac{P_{conv}}{\omega_m} = \frac{P_{AG}}{\omega_{sync}} \qquad \qquad P_{AG} = 3I_2^2 \frac{R_2}{s}$$

استخراج رابطه گشتاور - سرعت در موتور القایی

$$V_{TH} = V_{\phi} \frac{jX_{M}}{R_{1} + j(X_{1} + X_{M})} \qquad |V_{TH}| = |V_{\phi}| \frac{X_{M}}{\sqrt{R_{1}^{2} + (X_{1} + X_{M})^{2}}}$$

$$R_{TH} + jX_{TH} = (R_1 + jX_1) // jX_M$$
 $Z_{TH} = \frac{jX_M(R_1 + jX_1)}{R_1 + j(X_1 + X_M)}$

استخراج رابطه گشتاور – سرعت در موتور القایی

$$X_M>>X_I$$
 and $X_M>>R_I$

$$V_{TH} \approx V_{\phi} \frac{X_{M}}{X_{1} + X_{M}}$$

$$X_M>>X_1$$
 and $X_M+X_1>>R_1$

$$R_{TH} \approx R_1 \left(\frac{X_M}{X_1 + X_M} \right)^2$$

$$X_{TH} \approx X_1$$

استخراج رابطه گشتاور – سرعت در موتور القایی

$$\vec{I}_{2} = \frac{\vec{V}_{TH}}{Z_{TH} + Z_{2}} = \frac{\vec{V}_{TH}}{R_{TH} + R_{2}/s + jX_{TH} + jX_{2}}$$

$$I_{2} = \frac{V_{TH}}{\sqrt{(R_{TH} + R_{2}/s)^{2} + (X_{TH} + X_{2})^{2}}}$$

استخراج رابطه گشتاور - سرعت در موتور القایی

$$P_{AG} = 3I_{2}^{2} \frac{R_{2}}{s} = \frac{3V_{TH}^{2} \frac{R_{2}}{s}}{(R_{TH} + R_{2}/s)^{2} + (X_{TH} + X_{2})^{2}}$$

$$\tau_{ind} = \frac{P_{AG}}{\omega_{sync}} = \frac{3V_{TH}^{2} \frac{R_{2}}{s}}{\omega_{sync} [(R_{TH} + R_{2}/s)^{2} + (X_{TH} + X_{2})^{2}]}$$

القايي څشتاور – سرعت موتور القايي

القایی گشتاور – سرعت موتور القایی

❖گشتاور القا شده موتور در سرعت سنکرون صفر است.

❖مشخصه گشتاور — سرعت بین حالت بی باری تا بار گامل تقریبا خطی است. در این محدوده، مقاومت رتور خیلی بیشتر از راکتانس رتور است. لذا جریان رتور، میدان مغناطیسی رتور و گشتاور القایی با افزایش لغزش، به طور خطی اضافه می شوند.

*گشتاور ماگزیممی وجود دارد که نمی توان از آن عبور کرد. این گشتاور را گشتاور شکست یا برون گش می نامند. مقدار این گشتاور ۲ تا ۳ برابر گشتاور نامی با بار کامل موتور است و مقدار آن در ادامه محاسبه می شود.

القایی گشتاور – سرعت موتور القایی

اندازی شود. بیشتر از گشتاور بار نامی است، لذا این موتور می تواند تحت بار نامی، راه اندازی شود.

❖گشتاور موتور به ازای یک لغزش مفروض، متناسب با مجدور ولتاژ اعمال شده تغییر می کند. از این موضوع در ادامه برای کنترل سرعت موتور القایی استفاده می کنیم.

القایی گشتاور – سرعت موتور القایی

♦اگر رتور موتور القایی با سرعتی بیش از سرعت سنگرون چرخانده شود، گشتاور القایی در ماشین معکوس می شود و ماشین تبدیل به ژنراتور می شود و انرژی مکانیکی را به الکتریکی تبدیل می کند (تمرین: مکانیزم تولید ولتاژ در ژنراتور القایی را توضیح دهید).

اگر موتور نسبت به جهت میدان مغناطیسی معکوس بگردد، گشتاور القایی، ماشین را به سرعت متوقف نموده و سعی در گرداندن موتور در جهت مخالف می کند.

Pullout torque

300%

Starting torque

100%

Full-load torque

n_{sync}

برای معکوس کردن جهت چرخش میدان مغناطیسی فقط کافیست جای دو فاز عوض شود. به تعویض دو فاز برای توقف سریع موتور، معکوس گردن می گویند.

القایی گشتاور – سرعت موتور القایی

