

PHYSICS

Chapter 15

5th SECONDARY

ELECTROSTÁTICA II

EXPOSICIÓN A CAMPOS ELÉCTRICOS Y MAGNÉTICOS

Estudios sobre voluntarios han determinado que algunas personas pueden percibir campos eléctricos de entre 2 y 10 kV/m. Estas personas describen una sensación de "cosquilleo" que se produce porque el campo eléctrico hace vibrar el pelo de la cabeza y del cuerpo. En el

CAMPO ELÉCTRICO

Es el intermediario para que se lleve a cabo las interacciones eléctricas, es decir, gracias a él los cuerpos electrizados se pueden atraer o repeler.

Representación

Las líneas de campo de fuerza salen del cuerpo electrizado positivamente

Las líneas de campo de fuerza entran del cuerpo electrizado negativamente

INTENSIDAD DE CAMPO ELÉCTRICO

Q: cuerpo electrizado (C)

E: módulo de la intensidad de campo eléctrico (N/C)

d: distancia (m)

En el aire o vacío, $\mathbf{K} = 9 \times 10^9 \, Nm^2/C^2$

HELICO | THEORY

PARTÍCULA ELECTRIZADA (q+) EN UN CAMPO ELÉCTRICO ASOCIADO A Q+

PARTÍCULA ELECTRIZADA (q-) EN UN CAMPO ELÉCTRICO ASOCIADO A Q+

HELICO | PRACTICE

Dipolo eléctrico

Determine el módulo de la intensidad de campo eléctrico a 5 m de una partícula electrizada con $q = 20\mu\text{C}$.

RESOLUCIÓN

Módulo de la

intensidad del campo

eléctrico en p:

$$\mathsf{E} = \frac{\mathsf{K}|\mathsf{q}|}{d^2}$$

$$\mathsf{E} = \frac{9(10)^9 x 20 (10)^{-6}}{5^2}$$

$$\mathsf{E} = \frac{180(10)^3}{5^2}$$

$$E = 7.2 \text{ KN/C}$$

0

Se sabe que la intensidad de campo eléctrico a 3 m de una partícula electrizada es 160 N/C. Determine dicha intensidad de campo eléctrico en otro punto a 12 m de la partícula.

Módulo de la intensidad del campo eléctrico

$$\mathsf{E} = \frac{\mathsf{K}[\mathsf{q}]}{\mathsf{d}^2}$$

$$K.q = E.d^2$$

$$kq = cte$$

$$\mathbf{E}_{\mathbf{A}} \cdot \mathbf{d}_{\mathbf{A}}^2 = \mathbf{E}_{\mathbf{B}} \cdot \mathbf{d}_{\mathbf{B}}^2$$

$$160.3^2 = E_B.12^2$$

$$4x4x10x3x3 = E_Bx12x12$$

$$E_B = 10 \text{ N/C}$$

Si las intensidades de campo eléctrico en el punto P, alrededor de las esferas electrizadas (1) y (2), son de módulo 200 N/C y 370 N/C, respectivamente, determine el módulo de la intensidad resultante en dicho punto.

OBS: Si las intensidades de campo eléctrico son colineales y de direcciones puestas, entonces la resultante será la diferencia.

<u>Módulo (E_R):</u>

$$E_R = 370 \text{ N/C} - 200 \text{ N/C}$$

$$E_{R} = 170 \text{ N/C}$$

RESOLUCIÓN

En el esquema se muestran dos cargas puntuales. Determine el módulo de la intensidad de campo eléctrico resultante en el punto P.

RESOLUCIÓN

Módulo de la intensidad del campo eléctrico

$$\mathsf{E} = \frac{\mathsf{K}[\mathsf{Q}]}{\mathsf{d}^2}$$

$$\mathsf{E}_6 = \frac{9x10^9 \, x6x10^{-6}}{1^2}$$

$$E_6 = 54 \text{ KN/C}$$

$$\mathsf{E_4} = \frac{9x10^9 \, x4x10^{-6}}{2^2}$$

$$E_4 = 9 \text{ KN/C}$$

$$E_R = 54KN/C-9KN/C$$

 $E_R = 45 \text{ KN/C}$

CAMPO ELÉCTRICO HOMOGENEO

F_E EN UN CAMPO

ELÉCTRICO HOMÓGENEO

Se muestra un campo eléctrico homogéneo de 80 kN/C de intensidad. Si la esfera de 2×10⁻⁴ C está en reposo en la posición que se indica, ¿qué masa tiene la esfera? (g=10 m/s²)

RESOLUCIÓN

E = 80 kN/C

Por equilibrio:

 \rightarrow mg = F_E α

Sabemos:

$$F_E = q \cdot E$$

Reemplazamos:

$$F_E = 2 \cdot 10^{-4} \cdot 80 \cdot 10^3 N$$

$$F_E = 16N$$

$$En \alpha$$
: m-10 = 16

$$m = 1,6Kg$$

Se sabe que quien actúa realmente sobre las partículas electrizadas es el "campo eléctrico" cuya línea de acción será radial para una sola carga puntual y con dirección variable para varias cargas puntuales. En la figura se observa las líneas de fuerza que representa el campo eléctrico asociada a las partículas electrizadas A y B

Determine la veracidad (V) o falsedad (F) de las siguientes proposiciones:

- i. La partícula A está electrizada negativamente.
- ii. La partícula B está electrizada positivamente.
- iii. Las partículas A y B se repelen.

RESOLUCIÓN

i. (V).

ii. (V).

iii. (F)

En el laboratorio de Física de la Universidad Nacional de Ingeniería, los estudiantes realizan sus experiencias en un campo eléctrico homogéneo colocando en su interior una partícula electrizada. Las partículas A y B son utilizadas para la experiencia y para ello son frotadas con un paño; tal que, luego adquieren las siguientes características:

Partícula	electrones	Magnitud de la cantidad de carga eléctrica
Α	Gana	1 <i>m</i> C
В	Pierde	2 mC

El campo eléctrico utilizado en la experiencia tiene una intensidad E=4 kN/C, tal como se muestra:

Determine la veracidad (V) o falsedad (F) de las siguientes proposiciones:

- i. Si la experiencia se realiza con la partícula A, la dirección de fuerza eléctrica es ↑.
- ii. Si la experiencia se realiza con la partícula B, la fuerza eléctrica es 8 N (↓).

