1 Basic definitions

My first attempt at providing a coherent mathematical definition of a repeat element family in the context of a spaced seed.

Definition 1 An L-mer is a string of length l.

Definition 2 Given a spaced seed s of length l and an l-mer x, the seeded l-mer s' is created by removing all characters of x corresponding to 0's in s. Let $\sigma_s(x)$ denote the seeded l-mer for s.

Example: for s = 11011 and x = AACGG, $\sigma_s(x) = AACC$.

Definition 3 A repeat element family descriptor (refd) is a string over the alphabet $\{A, C, G, T, *\}$, describing the contents of any string in the family.

Definition 4 Given refds r and r', we will say r' is a slack substring of r (denoted $r' \prec r$) if there is a substring r'' of r such that (1) |r'| = |r''|, and (2) for all $0 \le i < |r'|$, either $r'_i = r''_i$, $r'_i = *$, or $r''_i = *$.

(In otherwords, its a substring, with a potentially different * pattern.) Note: I'm not sure if we should be allowing $r_i'' = *$.

Definition 5 We say an refd r matches a genome G at position i if, for all j such that $r_j \neq *, r_j = G_{i+j}$.

Example: If r = AA * TT, and G = AACTTGGAAGTT, then r matches G at positions i = 0 and i = 7. If G = AAATTT, then r matches G at positions i = 0 and i = 1.

Definition 6 A spaced seed s matches an refd r at position i if, for every $0 \le j < |s|$, $s_j = 0$ whenever $r_{i+j} = *$.

Example: If s = 11011 and r = AAAAA * GGG, then s matches r at positions i = 0 and i = 3, but not at any other i.

Observation 1 s matches r at i if $\sigma_s(r[i:i+|s|])$ does not contain any * symbols.

 $\sigma(r[3:8]) = AAGG$ (hence a match at i=3), but $\sigma(r[2:7]) = AA*G$ (hence no match at i=2).

Definition 7 Given a seed s and refd r, let $M_s(r)$ be the set of values i such that s matches r at i.

Let s = 11011 and r = AA * CC * GGGGGG. Then $M_s(r) = [0, 3, 6, 7]$.

Definition 8 A spaced seed s is consistent with an refd r if for every i, $0 \le i < |r|$, there is some $i - |s| \le j \le i$ such that s matches r at position j.

In other words: for any position i of the refd, we must be able to match the seed to a position of r such that it then covers position i.

Example: The seed 11011 is compatible with r = AA * AA * AA. (The seed matches at positions 0 and 3, and all positions are covered by these two.) But it is not consistent with AAAAA * *AAAAA, and there is no seed that can match this string at any position that can cover i = 5 or i = 6.

Observation 2 Let L be the sortest sequence of the values in $M_s(r)$. Then s is consistent with r if and only if $\max_{0 \le j \le |s|-1} L[j+1] - L[j] \le |s|$.

That is, in the sorted list, every pair of adjacent elements must be within |s| of each other.

Definition 9 Given a fixed genome G, and fixed spaced seed s, and a fixed value f, we define a elementary repeat family as a set S of genome coordinates, $|S| \ge f$, such that there exists an refd r where:

- r matches the sequence of length |r| starting at each element of S. (S is the set of all instances.)
- s is consistent with r. (r corresponds to the seed.)
- There does not exist an refd r', $r' \prec r$, such that r' is consistent with s and $M_s(r') M_s(r) \neq \emptyset$. (You cannot have a proper substring of r that describes sequences outside of the instances described by r minimality.)
- There does not exist an refd r', $r \prec r'$, such that s is consistent with r', such that the instances defined by $M_s(r')$ contain all the instances of $M_s(r)$. (Maximality.)

Comment: I'm not sure if the $r \prec r'$ is the right relationship. Maybe just straight substring? Or perhaps the definition of \prec isn't quite right?

Definition 10 Given the refd r of an elementary repeat family with set S, we say that r is tight if, for each i such that $r_i = *$, there exists two sequences defined by S that have different bases in position i.

In other words: r is tight if it only uses * symbols where it must to match everything sequence defined by S.

Comments: I had it in mind that the algorithm would always return a tight refd. But in Carly's defense she gave the example: s=11011, AAAAATCCCCC, AAGAATCCGCC, where ends up with AA*AA*AA, which is not tight. Interestingly, if we have AAAAATTCCCCC and AAGAATTCCGCC, then we get AA*AATTCC*CC – to that extra T makes it tight. Not sure if this is significant.

2 From Thesis

In the following I'm going through definitions / parallels from Nate's thesis and seeing if I can create an analyy for spaced seeds.

The following are things I wanted to try to prove that may or may not be useful. In all of these I'm assuming a fixed genome G, a fixed frequence requriement f, and a fixed seed s with length l and weight w.

Lemma 1 For any l-mer x, the seeded l-mer $\sigma_s(x)$ can be a member of at most l different families.

My gut is that this is true, but not necessarily tight. Maybe its w, or l-w?

Definition 11 Let x and y be two strings such that $x = a\dot{b}$, $y = b\dot{c}$, and |b| = i. Then $x \circ_i y = a\dot{b}\dot{c}$.

 $AAACC \circ_2 CCGGG = AAACCGGG$. $AAACC \circ_3 CCGGG$ is undefined.

This is a modification of Nate's $x\circ y$ operator. May need to be adapted for seeds.

3 Random Lemmas