

Laptop Price Prediction for SmartTech Co.

ML capstone Project

Prashantsagar Uppara

Contents

Project Charter

Data Understanding

Process Flow

Technical Stacks

Insights

Model Evaluation

Model Deployment

Appendices

Project Charter

Project Overview: Project Goal: SmartTech Co. has partnered with our data science team * Accurate Pricing: Develop a model that can accurately to develop a robust machine learning model that predict laptop prices based on various features, helping predicts laptop prices accurately our clients stay competitive in the market As the market for laptops continues to expand with a * Market Positioning: Understand how different features myriad of brands and specifications, having a precise pricing model becomes crucial for both consumers and contribute to pricing, enabling SmartTech Co. to manufacturers strategically position its laptops in the market **Brand Influence:** Assess the impact of brand reputation on pricing, providing insights into brand perception and market demand

Data Understanding

- Data received in csv file
- * Had 13 columns
- Had 1303 records

Sr	Column Labels	Description	Unit of Measurement
1		Sr No without label	No
2	Unnamed: 0	Sr No	No
3	Company	Laptop Brand	-
4	TypeName	Laptop Category (or Family)	-
5	Inches	Screen size	Inches
6	ScreenResolution	Screen resolution	Pixels
7	Сри	Type of Processor	Generation
8	Ram	Ram Size	GB
9	Memory	Storage Capacity	GB
10	Gpu	Graphics	GB
11	OpSys	Operating System of Laptop	-
12	Weight	Laptop Weight	Kgs
13	Price	Laptop Price	Rs

Process Flow

Technical Stacks

Insights

COMMONLY SOLD LAPTOP SPECIFICATIONS

- Lenovo is the most widely sold brand of laptop, which is followed by Dell
- ☆ 55% of laptops are Notebook, 8 GB RAM is the widely used configuration
- ☆ Windows 10 is the widely used operating system
- Full HD 1920 * 1080 is the widely used screen resolution
- 256 GB SSD is the widely used memory
- Intel HD Graphics 620 is widely used Gpu
- Intel core i5 7200U 2.5 GHz is widely used Cpu
- ☆ 55% of graphics card (Gpu) are of intel, 95% of processors (Cpu) are of intel

Model Evaluation

Metrics	Linear Regression	Ridge Regression	Lasso Regression	Random Forest	XG Boost
R2 Score %	55.8	55.8	55.8	75.4	76.1
RMSE	23227	23223	23227	17314	17048
Training Score %	60	60	60	93	98
Test Score %	56	56	56	75	76

Model Deployment

Click here to access the form

Appendices

Missing Values & Duplicate Records (29 Nos) Removed:

Company	30	TypeName	30	Inches	31	ScreenResolution	30	Cpu	30
Ram_in_GB	30	Memory	31	Gpu	30	OpSys	30	Weight_in_Kg	31
Price	30								

After removing null values

After removing duplicates

```
df1.isnull().sum()
Company
TypeName
                     30
Inches
                     31
ScreenResolution
                     30
                     30
Cpu
Ram in GB
                     30
Memory
                     31
                     30
Gpu
OpSys
                     30
Weight in Kg
                     31
Price
dtype: int64
```

```
df1.info()
<class 'pandas.core.frame.DataFrame'>
Index: 1270 entries, 0 to 1302
Data columns (total 11 columns):
    Column
                       Non-Null Count
                                      Dtype
                      1270 non-null
                                       object
    Company
                      1270 non-null
                                       object
    TypeName
    Inches
                      1270 non-null
                                       float64
    ScreenResolution 1270 non-null
                                       object
                                      object
    Cpu
                       1270 non-null
    Ram in GB
                      1270 non-null
                                      object
                                      obiect
                      1270 non-null
    Memory
                      1270 non-null
                                      object
    Gpu
                      1270 non-null
                                       object
    OpSys
                                       object
    Weight in Kg
                      1270 non-null
    Price
                      1270 non-null
                                       float64
dtypes: float64(2), object(9)
memory usage: 119.1+ KB
```

```
df1.info()
<class 'pandas.core.frame.DataFrame'>
Index: 1241 entries, 0 to 1273
Data columns (total 11 columns):
                      Non-Null Count Dtype
    Column
    Company
                      1241 non-null
                                      object
                      1241 non-null
                                      object
    TypeName
                      1241 non-null
                                      float64
    Inches
    ScreenResolution 1241 non-null
                                      object
                      1241 non-null
                                      object
    Cpu
    Ram in GB
                      1241 non-null
                                      object
    Memory
                      1241 non-null
                                      object
                                      object
                      1241 non-null
    Gpu
                      1241 non-null
                                      object
    OpSys
    Weight in Kg
                      1241 non-null
                                      object
10 Price
                      1241 non-null
                                      float64
dtypes: float64(2), object(9)
memory usage: 116.3+ KB
```

Missing Values & Duplicate Records (29 Nos) Removed:

Company	30	TypeName	30	Inches	31	ScreenResolution	30
Ram_in_GB	30	Memory	31	Gpu	30	OpSys	30
Price	30						

Cpu 30 Weight_in_Kg 31

Laptop Brand (Company) Distribution

Laptop Type In GB Distribution

Laptop RAM In GB Distribution

Laptop Operating System Distribution

Feature Engineering

Laptop Processor Brand Distribution

Laptop Graphics Brand Distribution

Feature Engineering

Laptop Touch Distribution

Multicollinearity Check

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
X = df2
# VIF dataframe
vif_data = pd.DataFrame()
vif_data["feature"] = X.columns
vif_data["VIF"] = [variance_inflation_factor(X.values, i)
for i in range(len(X.columns))]
vif_data.sort_values(by='VIF')
```

	feature	VIF
11	Hybrid	1.135975
12	Flash_Storage	1.465751
4	Ram_in_GB	1.903230
14	Touchscreen	2.168878
2	Inches	2.749356
7	Weight_in_Kg	3.322219
3	ScreenResolution	3.572620
0	Company	3.676908
9	HDD	4.645731
1	TypeName	7.932320
10	SSD	9.258231
6	OpSys	20.359838
8	Processor	20.615053
13	Graphics	33.966672
5	Gpu	56.719392

Correlation Among Features

Feature Importance

Feature Index	Feature
0	Company
1	Inches
2	ScreenResolution
3	Ram_in_GB
4	Weight_in_Kg
5	HDD
6	Hybrid
7	Flash_Storage
8	Touchscreen
9	TypeName
10	SSD

Feature Importance

Hyper Parameter Tuning

For max depth of 40,

100 n_estimators produce optimized results

Hyper Parmeter Tuning - Grid Search

```
1 from sklearn.model selection import GridSearchCV
    param grid = {
        'bootstrap': [True],
        'max depth': [10,20,40,60,80, 90, 100, 110],
        'max features': [1,2, 3],
        'min samples leaf': [1,3, 4, 5],
        'min samples split': [1,2,4,8, 10, 12],
 9
        'n estimators': [20,50,100, 200, 300,500,600]
10 }
11
12 # Creating the base model
13 rf = RandomForestRegressor(random state = 42)
15 grid search = GridSearchCV(estimator = rf, param grid = param grid,
                              cv = 5, n jobs = -1, verbose = 2, return train score=True)
16
 1 # Fit the grid search to the data
 grid search.fit(xtrain, ytrain);
Fitting 5 folds for each of 4032 candidates, totalling 20160 fits
 1 grid search.best params
 'bootstrap': True,
 'max depth': 40,
 'max features': 1,
 'min samples leaf': 1,
 'min_samples_split': 2,
 'n estimators': 100}
```


Questions

Thankyou