## **Lesson 10. Projectile Motion**

## 1 In this lesson...

• Describing the trajectory of a projectile with parametric equations

## 2 Trajectory of a projectile

- A projectile with mass *m* is fired
  - $\circ$  initial point  $(x_0, y_0)$
  - $\circ$  angle of elevation  $\alpha$
  - initial velocity  $\vec{v}_0$
- Assume:
  - Air resistance is negligible
  - The only external force is due to gravity



- Let's derive parametric equations that describe the trajectory of this projectile
- 1. Let's define  $v_0 = |\vec{v}_0|$  (we're just renaming the initial speed, or the magnitude of the initial velocity). Using this new notation, write  $\vec{v}_0$  in terms of  $v_0$  and  $\alpha$ . *Hint*. We'll need to use trigonometry.

2. We need an expression for the acceleration  $\vec{a}(t)$  of the projectile.

Recall Newton's second law of motion: if at any time t, a force F(t) acts on an object of mass m producing an acceleration  $\vec{a}(t)$ , then  $\vec{F}(t) = m\vec{a}(t)$ .

Since the only external force is due to gravity, which acts downward, we have that  $\vec{F}(t) = m\vec{a}(t) = \langle 0, -mg \rangle$ . Solve for  $\vec{a}(t)$ .

|    | <i>Hint 1.</i> Recall that $\vec{a}(t) = \vec{v}'(t)$ . <i>Hint 2.</i> Don't forget the constant vector of integration. <i>Hint 3.</i> Since the initial velocity is $\vec{v}_0$ , we have $\vec{v}(0) = \vec{v}_0$ . Use the expression for $\vec{v}_0$ we obtained in part 1. |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    | <i>Hint 1.</i> Recall that $\vec{v}(t) = \vec{r}'(t)$ . <i>Hint 2.</i> Don't forget the constant vector of integration. <i>Hint 3.</i> Since the initial point is $(x_0, y_0)$ , we have $\vec{r}(0) = \langle x_0, y_0 \rangle$ .                                              |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                 |
| 5. | Expand the vector equation we obtained in part 4 to write parametric equations (i.e. $x =, y =$ ) for the trajectory of the projectile.                                                                                                                                         |
| 5. |                                                                                                                                                                                                                                                                                 |

## 3 Problems

In each of these problems, ignore the possibility of air resistance. Assume that acceleration due to gravity is downward and equal to *g*.

**Problem 1.** A cannon sitting atop of a 200 m cliff shoots a projectile at a speed of 50 m/s and at an angle of 30° above the horizontal. A building 50 m tall sits 300 m from the base of the cliff. Does the projectile strike the building? (Ignore the width of the building).

**Problem 2.** A lacrosse player 80 m from an open goal throws a ball at an angle of 25° above the horizontal with a speed of 20 m/s. Does the ball enter the goal in the air? Assume that the ball leaves the stick 3 m above the ground and that a lacrosse goal is 2 m high.

