Begin with clicker questions

We Know how to Find III

What is 2?

I'll give you the answer and then explain it!

If: $\vec{r} = \langle x, y, z \rangle$ $\vec{p} = \langle p_x, p_y, p_z \rangle$

= (YP=-ZPy) ZPx-XPz) XPy-YPx)

Where did this come from??

This is a new vector multiplication operation called the cross product

Direction: perpendicular to the plane formed by A+B

What does this mean?

Two vectors define a surface

$$_{0}^{\Lambda}=\langle 0,1,0\rangle$$

Define the X-y

An infinite Sheet with 2=0 everywhere

Any two vectors form a plane, not just $\hat{x}, \hat{y}, \hat{z}$

Draw the vectors from the Same Origin t the imagine Stretching a Sheet From one to the Other So: vectors $\overrightarrow{A} + \overrightarrow{B}$ form a surface, the direction of $\overrightarrow{A} \times \overrightarrow{B}$ is directly away from the surface (perpendicular)

Two possibilities up or down

Solution: Right hand rule

-Lay hand along A

-Curl Fingers in direction of B

- Thumb is direction of A x B

$$\vec{u} = 5 \times + 3 \times$$

$$\vec{v} = 4 \times - 2 \times$$

What is $\vec{u} \times \vec{v}$

Direction? $\left(-\frac{2}{2}\right)$

Side note:

$$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$$

$$\vec{u} = 5 \times + 3 \hat{y}$$

$$\vec{v} = 4 \times - 2 \hat{y}$$

$$|\vec{u}| = \sqrt{5^2 + 3^2} = 5.8$$

$$|\vec{v}| = \sqrt{4^2 + 2^2} = 4.5$$
What is θ ?

To find
$$\Theta$$
, find \hat{U} then use to find $\Theta_{\times U}$

$$\hat{V} \qquad \qquad \Theta_{\times V}$$

$$\Theta = \Theta_{\times V} + \Theta_{\times U}$$

An easier way:

Recall:

$$\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z = |\vec{u}||\vec{v}| \cos \Theta$$

$$Cos\theta = \frac{\vec{U} \cdot \vec{V}}{|\vec{u}| |\vec{v}|}$$

$$\triangle = \cos^{-1}\left(\frac{\vec{U} \cdot \vec{V}}{|\vec{U}||\vec{V}|}\right)$$

$$\vec{u} = 5 \times 4 \times 3 \times 4 \times 3 \times 4 \times 3 \times 4 \times 10^{-1}$$

$$\overrightarrow{V} = 4\overrightarrow{x} - 2\overrightarrow{y}$$

$$\vec{U} \cdot \vec{v} = 5 \cdot 4 + 3 \cdot (-2) = 14$$

$$G = \cos^{-1}\left(\frac{14}{5.8 \cdot 4.5}\right) = 57.6^{\circ}$$

$$\left| \vec{U} \times \vec{V} \right| = (5.8)(4.5) \sin 57.6^{\circ}$$

= 21.9

$$\hat{\vec{y}} \times \hat{\vec{v}} = (0, 0, -21.9) = -21.9 \hat{\vec{z}}$$

$$(\hat{\vec{v}} \times \hat{\vec{u}}) = 21.9 \hat{\vec{z}}$$

In general:

What is
$$\stackrel{1}{\times} \times \stackrel{1}{y}$$
? $\langle 1,0,0 \rangle \times \langle 0,1,0 \rangle$

$$\left| \frac{1}{x} \times \frac{2}{y} \right| = 1 \cdot 1 \cdot \text{Sing0}^{\circ}$$

$$\chi \times \dot{\lambda} = \xi$$

$$\chi \times \dot{\lambda} = 5$$

$$^{\wedge}$$
 \times $^{\wedge}$ = ?

$$\hat{x} \times \hat{z} = -\hat{y}$$

$$^{\prime}_{2}$$
 \times $^{\prime}_{X}$ = $^{\prime}_{Y}$

The cross product of any two of $(\hat{x}, \hat{y}, \hat{z})$ gives \pm the third

- Cyclical

$$\overrightarrow{A} = (A_{\times}, A_{y})$$

$$\overrightarrow{B} = \langle B_{\times}, B_{y} \rangle$$

$$\overrightarrow{A} \times \overrightarrow{B} = (A_{\times} \widehat{A} + A_{y} \widehat{y}) \times (B_{\times} \widehat{A} + B_{y} \widehat{y})$$

$$= A_{\times} \widehat{A} \times B_{\times} \widehat{A} + A_{\times} \widehat{A} + B_{y} \widehat{y}$$

$$+ A_{y} \widehat{y} \times B_{\times} \widehat{A} + A_{y} \widehat{y} \times B_{y} \widehat{y}$$

$$= A_{\times} B_{\times} (\widehat{A} \times \widehat{A}) + A_{\times} B_{y} (\widehat{A} \times \widehat{y})$$

$$+ A_{y} B_{\times} (\widehat{y} \times \widehat{A}) + A_{y} B_{y} (\widehat{y} \times \widehat{y})$$

$$+ A_{y} B_{\times} (\widehat{y} \times \widehat{A}) + A_{y} B_{y} (\widehat{y} \times \widehat{y})$$

$$= 0 + A_{\times}B_{y} \stackrel{?}{2} - A_{y}B_{x} \stackrel{?}{2} + 0$$

$$= (A_{\times}B_{y} - A_{y}B_{x}) \stackrel{?}{2}$$

$$\overrightarrow{A} = (A_x, A_y, A_z)$$

 $\overrightarrow{B} = \langle B_x, B_x, B_z \rangle$

Geometry:

