Isometrías

Román Contreras y Santiago Martínez

*

Definicion 0.1. Una difeomorfismo $f: M \to N$ entre variedades riemannianas (M, g^M) y (N, g^N) es una isometría si para todo $p \in M$ y todo par de vectores tangentes $v, w \in T_pM$ se satisface

$$g^N(Df_p(v), Df_p(w)) = g^M(v, w)$$

Definicion 0.2. Si $f: M \to N$ es un difeomorfismo $y X \in \mathfrak{X}(M)$ es un campo vectorial, entonces f induce un campo en N llamado el push-foward de X, denotado por $f_*(X)$ y definido por

$$f_*(X)_{f(p)} = Df_p(X_p)$$

Ejercicio 0.1. Demuestra que si $X \in \mathfrak{X}(M)$ entonces $f_*(X) \in \mathfrak{X}(N)$.

Ejercicio 0.2. Demuestra que si $X, Y \in \mathfrak{X}(M)$ entonces

$$f_*([X,Y]) = [f_*(X), f_*(Y)]$$

En los ejercicios que siguen vamos ver que efecto tienen las isometrías en la derivada de los campos. En todo lo que sigue $f:M\to N$ es un difeomorfismo y ∇^N es una conexión en N.

Ejercicio 0.3. Define $\nabla^M : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ como

$$\nabla_X^M Y = \nabla_{f_*(X)}^N f_*(Y)$$

Demuestra que ∇^M es una conexión en M. Esta llamada el pull-back de ∇^N a lo largo de f.

Ejercicio 0.4. Demuestra que si ∇^N es una conexión libre de torsión entonces ∇^M es libre de torsión.

Ejercicio 0.5. Demuestra que si f es una isometría y ∇^N es compatible con la métrica, entonces ∇^M es compatible con la métrica.

Ejercicio 0.6. Demuestra que si f es una isometría y ∇^N es la conexión de Levi-Civita de N entonces ∇^M es la conexión de Levi-Civita de M.

Ejercicio 0.7. Concluye que si $f:M\to M$ es una isometría y $X,Y\in\mathfrak{X}(M)$ entonces

$$f_*(\nabla_X Y) = \nabla_{f_*(X)} f_*(Y)$$

Ejercicio 0.8. Sea $\alpha: I \to M$ una curva diferenciable $y \beta = f \circ \alpha$ la curva imagen. Sea $X \in \mathfrak{X}(M)$ un campo a lo largo de α y $f_*(X)$ el campo a lo largo de β definido por $f_*(X)(t) = Df_{\alpha(t)}(X(t))$. Si D^{α} y D^{β} denotan las derivadas covariantes a lo largo de α y β , respectivamente, y f es una isometría, demuestra que

 $f_*(D^{\alpha}X) = D^{\beta}f_*(X)$

Ejercicio 0.9. Demuestra que si f es una isometría y $\gamma:I\to M$ es una geodésica entonces $f\circ\gamma$ es una geodésica.

Ejercicio 0.10. Demuestra que si $p \in M$, $v \in T_pM$ y f es una isometría entonces $f(exp_p(v)) = exp_{f(p)}(Df_p(v))$.

Ejercicio 0.11 (2 pts). Demuestra que si M es conexo y $f,g: M \to N$ son un par de isometrías tales que f(p) = g(p) y $Df_p = Dg_p$ entonces f = g. Es decir que las isometrías están determinadas por su valor y su diferencial en un punto.