

Progetto ML

Classificazione binaria di flussi di rete per Intrusion Detection

Torroni Alessio 0365661

INTRODUZIONE

OBIETTIVO

Classificare i flussi di rete in due categorie:-

NORMALE

DATASET

NSL-KDD, benchmark per sistemi di Intrusion Detection.

CARATTERISTICHE

Contiene flussi di traffico etichettati con informazioni dettagliate.

PRE-PROCESSAMENTO DEI DATI

OBIETTIVO

Ottimizzare il dataset, migliorando velocità e stabilità dei modelli

RIMOZIONE DELLE FEATURE ALTAMENTE CORRELATE

Vengono rimosse le feature con coefficiente di correlazione > 0.95

ELIMINAZIONE DELLE COLONNE A VALORI COSTANTI

Le feature a valori costanti non aggiungono variabilità ai dati

DIVISIONE DEL DATASET

DIVISIONE IN TRAINING, VALIDATION E TEST SET

Il dataset è stato diviso in: 60% training 20% validation e 20% test

DIVISIONE DEL DATASET PRIMA DELLA NORMALIZZAZIONE

Il dataset è stato splittato prima della normalizzazione per evitare il Data Leakage

CONTROLLO DELLA DISTRIBUZIONE DELLE CLASSI

Viene controllato se le due classi sono bilanciate

PIPELINE

MOTIVO DELLA SCELTA

Consente di suddividere il pre-processing in fasi distinte, adattando le trasformazioni alle diverse tipologie di feature secondo il modello.

NORMALIZZAZIONE DELLE FEATURE NUMERICHE

Le feature numeriche vengono normalizzate utilizzando MinMaxScaler

ENCODING DELLE FEATURE CATEGORICHE

- Feature a <u>bαssα</u> dimensionalità: → One Hot Encoding
- Feature ad <u>alta</u> dimensionalità:———— Target Encoding

NORMALIZZAZIONE DIVERSA IN BASE AL MODELLO

- Modelli sensibili alle scale: tutte le feature vengono normalizzate
- Modelli NON sensibili alle scale: vengono normalizzate solo le feature categoriche e le feature numeriche a valori troppo elevati

NEURAL NETWORK

ARCHITETTURA

- 2 Hidden Layers
- Funzione di attivazione ReLu per gli hidden layers e sigmoid per l'output layer
- Dropout e Early Stopping per ridurre il rischio di overfitting

OTTIMIZZAZIONE DEGLI IPERPARAMETRI

Ricerca dei migliori parametri attraverso RandomizedSearchCV

METRIC	VALUE
Accuracy	0.995594
Precision	0.995594
Recall	0.995594
F1-Score	0.995594

K-NEAREST NEIGHBORS

ARCHITETTURA

- Numero di vicini k=4
- Tipo di peso dei vicini è determinato dalla distanza
- Metrica di distanza Manhattan

OTTIMIZZAZIONE DEGLI IPERPARAMETRI

Ricerca dei parametri è avvenuta attraverso RandomizedSearchCV

METRIC	VALUE
Accuracy	0.996706
Precision	0.996706
Recall	0.996706
F1-Score	0.996706

LOGISTIC REGRESSION

REGOLARIZZAZIONE

Viene effettuata una regolarizzazione L2 con parametro C ottimizzato

OTTIMIZZAZIONE DEGLI IPERPARAMETRI

Ricerca dei parametri è avvenuta attraverso *GridSearchCV*

LATI NEGATIVI

Numero elevato di Falsi Negativi, buoni risultai ma è il modello meno performante

METRIC	VALUE
Accuracy	0.972653
Precision	0.972771
Recall	0.972653
F1-Score	0.972634

ARCHITETTURA

- 100 alberi decisionali
- La profondità massima è 20 livelli
- Il criterio di suddivisione scelto è Gini

OTTIMIZZAZIONE DEGLI IPERPARAMETRI

Ricerca dei migliori parametri attraverso HalvingSearchCV

METRIC	VALUE
Accuracy	0.998651
Precision	0.998652
Recall	0.998651
F1-Score	0.998650

ADA BOOST

ARCHITETTURA

- Boosting sequenziale: ogni nuovo albero corregge gli errori dei modelli precedenti.
- Base estimator: Decision Trees con max_depth=1
- Learning rate = 1.0

OTTIMIZZAZIONE DEGLI IPERPARAMETRI

Ricerca dei migliori parametri attraverso *GridSearchCV*

METRIC	VALUE
Accuracy	0.998611
Precision	0.998611
Recall	0.998611
F1-Score	0.998611

CONCLUSIONI

CONCLUSIONI MIGLIOR MODELLO

RANDOM FOREST

Ha dimostrato di ottenere le migliori prestazioni su tutte le metriche.

PRESTAZIONI SUL TEST SET

GRAZIE DELL'ATTENZIONE