

مجاناً ومحظياً

حمل الان

المطاعنة رمضان

الشـمـاءـولـ

RaNia SaYed

نموذج الأول

نماذج التوجيه ٢٠٢٥

السؤال الأول: ظلل الرمز الدال على الإجابة الصحيحة تظليلاً تماماً:

١) إذا كان: l, m جذراً المعادلة: $s^2 + 3s + 8 = 0$, فإن: $(\frac{l+1}{l})(\frac{1+m}{m}) = \dots$

١٦

٨ ح

٣ ٤

١ ١

٢) إذا كان: l, m جذراً المعادلة: $s^2 + ls + l = 0$, فإن: $l = \dots - m$

٦ - ٥

٢ - ح

٦ ٦

٢ ١

٣) إذا كان: l أحد جذري المعادلة: $3s^2 - 5s + 1 = 0$, فإن: $3l - 2m - 4 = \dots$

٧ ٥

٥ ح

٣ ٣

١ صفر

٤) إذا كان: l, m جذراً المعادلة: $s^2 + s + m = 0$, حيث $l > m$ وكان: $s = 4m + 3l$, فإن: $l - m = \dots$

٦ ٦

٩ ح

١٢ ١٢

٣٦ ١

٥) إذا كانت النقطة $(2, -1)$ هي نقطة رأس منحني الدالة التربيعية $D(s)$ وكان l, m جذراً المعادلة: $D(s) = \dots$ صفر فإن: $l + m = \dots$

٤ - ٥

٤ ح

٤ ٤

٢ ١

٦) إذا كان $9, s$ عددين نسبياً فإن جذراً المعادلة: $s^2 + (s+9)s + 9 = 0$, هما عددان.....

١) صحيحان ٢) نسبيان ٣) مركبان وغير نسبيان ٤) حقيقيان وغير حقيقيان

٧) أي من الآتي يعتبر تحليلأً للمقدار: $s^2 + 9 = \dots$

٥) $(s+3)(s+3)$ ١) $(s-3)(s+3)$ ٦) $(s-3t)(s+3t)$ ٢) $(s-3t)^2$

السؤال الثاني: ظلل الرمز الدال على الإجابة الصحيحة تظليلاً تماماً:

١) الشكل المقابل يمثل منحني الدالة التربيعية

$D(s) = s^2 + s + m$

فإن: $\frac{s+m}{2} = \dots$

١ - ٦

٥

٤ ١

٤ - ٤

الحل العام للمعادلة: $\operatorname{ctg} \theta = \operatorname{ctg} \alpha$ حيث α

$$\frac{\pi}{12}$$

$$\frac{\pi}{9}$$

$$\frac{\pi}{6}$$

$$\frac{\pi}{3}$$

في الشكل المقابل:

يمثل منحني الدالة المثلثية

$$d: d(s) = s^3$$

$$⑤ 2\sqrt{3}$$

$$① 3\sqrt{3}$$

$$⑥ 3\sqrt{2}$$

$$② 2\sqrt{2}$$

إذا كان: $\exists \theta \in [0, \pi]$ وكان: $\operatorname{ctg}(\theta - \alpha) + \operatorname{ctg}\theta = 0$ فإن: $\operatorname{ctg}\theta = \frac{\pi}{12}$

$$\frac{5}{12}$$

$$2\sqrt{3}$$

$$\frac{9}{5}$$

$$\frac{8}{5}$$

إذا كان: θ قياساً متكافئتين فأى القيم التالية هو احدى قيم θ ؟

$$270^\circ$$

$$180^\circ$$

$$150^\circ$$

$$90^\circ$$

إذا كان: θ زاوية موجهة في الوضع القياسي وكان ضلعها النهائي يقطع دائرة الوحدة في النقطة (s, c) فإن: $\operatorname{ctg}\theta + \operatorname{ctg}\alpha = s$

$$⑤ s+c$$

$$④ \frac{s+c}{s}$$

$$③ \frac{s+c}{c}$$

$$① \frac{s+c}{s}$$

إذا كان: $\operatorname{ctg}\theta = \frac{3}{4}$, $\operatorname{ctg}\alpha = -\frac{1}{3}$ فإن الزاوية التي قياسها θ تقع في الربع

$$⑤ \text{ الرابع}$$

$$④ \text{ الثالث}$$

$$③ \text{ الثاني}$$

$$① \text{ الأول}$$

السؤال الثالث: ظلل الرمز الدال على الإجابة الصحيحة تظليلأ تماماً:

إذا كان: $\operatorname{ctg}(\theta - 25^\circ) = 1$ حيث $\theta \in [0^\circ, 180^\circ]$ فإن: $\operatorname{ctg}(\theta - 72^\circ) + \operatorname{ctg}(180^\circ - \theta) =$

$$\frac{5}{3}$$

$$2\sqrt{3}$$

$$\frac{3}{2}$$

$$1\sqrt{3}$$

إذا كان: $\frac{DE}{BC} = \frac{5}{7}$ هو معامل تشابه المثلثين $\triangle ABC$ و $\triangle AED$ فإن
معامل التشابه لمثلثين $\triangle ABC$ و $\triangle AED$ هو
فإن: $x + 3 =$

في الشكل المقابل:

$\triangle ABC$ و منتصف BC

فإن: $x + 3 =$

٦٠ ١٣

٥٥ ١٢

$\frac{DE}{BC} = \frac{5}{7}$

٥٧ ٤٩

٢٥+١٧ ١

في الشكل المقابل:

$\triangle ABC$ ينصف (BC)

فإن: $x =$

٦٣ ١١

٣٤

في الشكل الم مقابل:

$\triangle ABC$ ينصف (BC)

فإن: $x =$

١٢ ١٠

٣٥

في الشكل الم مقابل:

$\triangle ABC$ // $\triangle PQR$. PQ منتصف QR

و $PQ = 2x + 3$, $QR = 5x + 1$

$2x + 3 = 5x + 1$

فإن: $x - 3 =$

٦٥ ١٣

١١

٧ مثلثان متباينان النسبة بين محياطيهما $3 : 2$ و مجموع مساحتيهما 130 cm^2 فإن الفرق بين مساحتيهما = cm^2

٨٠ ٥

٧٠ ٤

٦٠ ٣

٥٠ ١

السؤال الرابع: ظلل الرمز الدال على الإجابة الصحيحة تظليلاً تماماً:

١ في الشكل المقابل:

قطعة مماسة للدائرة عند $\angle صس = 45^\circ$

فإن: مساحة الدائرة = πr^2

$$\pi 40 \quad ①$$

$$\pi 10 \quad ②$$

$$\pi 20 \quad ③$$

٢ في الشكل المقابل:

قطعة مماسة للدائرة $\angle صس = 120^\circ$

فإن محيط الدائرة = 312π

$$\pi 3716 \quad ④$$

$$\pi 3780 \quad ⑤$$

$$\pi 192 \quad ⑥$$

$$\pi 48 \quad ⑦$$

٣ في الشكل المقابل:

ف($\widehat{مه}$) = $(3s + 5)^\circ$, ف($\widehat{هـ}$) = 20° ,

ف($\widehat{هـ}$) = 40°

فإن: $s = 10$

$$20 \quad ①$$

$$30 \quad ②$$

٤ في الشكل المقابل:

$اه \parallel بـ$, $اه$ ينصف ($لـ$)

فإذا كان: $اه = 23$ و فإن: $لـ = \frac{29}{ah}$

$$\frac{4}{3} \quad ①$$

$$\frac{1}{2} \quad ②$$

$$25 \quad ③$$

٥ في الشكل المقابل:

ـــ يمس الدائرة m عند $\angle بـ = 33^\circ$

ـــ = 39° فإن: $m(\angle) =$

$$6 \quad ①$$

$$27 \quad ②$$

١ في الشكل المقابل:

م دائرة طول نصف قطرها يساوي ٣، ن دائرة
طول نصف قطرها يساوي ٣، م = ٣
م = ٣ فإن: و = ٣

٧٦

١٢١
٥٤

٦٤

السؤال الخامس:

إذا كان: $(t + 2)$ هو أحد جذري المعادلة: $s^2 - 4s + p = 0$, حيث $t \in \mathbb{Z}$ أوجد الجذر الآخر
وقيمة p

السؤال السادس:

$\triangle MNP$ مثلث فيه: $\overline{OP} \perp \overline{MN}$ بحيث: $OP = 3\sqrt{5}$, $MN = 4$, إذا كان: $PM = 3\sqrt{6}$ أثبت أن:
 ١) \overline{OP} مماسة للدائرة الماء برأوس المثلث $\triangle MNP$
 ٢) $MR(\triangle MNP) : MR(\triangle OPM) = 9 : 5$ ٣) $\triangle OPM \sim \triangle MNP$

النموذج الثاني

نماذج التوجيه ٢٠٢٥

السؤال الأول: ظلل الرمز الدال على الإجابة الصحيحة تظليلاً تماماً:

السؤال الثاني: ظلل الرمز الدال على الإجابة الصحيحة تظللاً تماماً:

١ الدالة $D(s) = 4 - 2s$ تكون موجبة في الفترة
 $\cup - \infty - [5]$ $] \infty, 2 - [$ $] 2, \infty - [$ $] \infty, 2 [\{$

٢ إذا كان: $s + t = 3t - 2s$ صت فإن $s - s =$
 $1 \cup$ $1 - \cup$ $3 - \cup$ $3 [\{$

٣ مدى الدالة $D(\theta) = 3 + 2\sin\theta$ هو
 $[8, 2 - \cup$ $] 4, 2 [\cup$ $] 3, 2 - \cup$ $] 8, 8 - [\{$

٤ الزاوية المركزية التي قياسها 30° في دائرة طول قطرها ٢٤ يقابلها قوساً طوله يساوي
 $\pi \frac{1}{6} \cup$ $\pi \frac{1}{6} \cup$ $\pi 2 \cup$ $\pi \{ \cup$

٥ إذا كان: $\theta = -\frac{3}{5}$ حيث $180^\circ < \theta < 90^\circ$ فإن: $\sin(\theta) = \frac{4}{5}$

٤-٥

٤-٦

٤-٧

٣-١

٦ إذا كان: $\theta = 1 + (\theta + 90^\circ)$ حيث $90^\circ < \theta < 180^\circ$ فإن: $\cos(\theta) = -\frac{1}{2}$

٥ صفر

١-٦

١-٧

١-١

٧ إذا كان قياساً زاويتين في مثلث هما $\frac{5}{13}\pi$ ، 45° فإن قياس الزاوية الثالثة يساوي.....

 $\pi \frac{2}{3}$ -٥ $\pi \frac{1}{3}$ -٦

٣٠-٧

٩٠-١

السؤال الثالث: ضلل الرمز الدال على الإجابة الصحيحة تظليلاً تماماً:

١ إذا كان: $D(\theta) = \sin(\theta)$ حيث $\theta \in [0, \pi]$ فإن أصغر قيمة ممكنة للدالة D هي.....

٣-٥

١-٦

١-٧

١-١

٢ في الشكل المقابل:

م مماس للدائرة M عند P فإذا كانت: M منتصف PM فإن طول نصف قطر الدائرة M = m

 $\frac{10}{6}m$ -٥ $\frac{5}{3}m$ -٦

٣ في الشكل المقابل:

M مثلث فيه $P = (3, 8)$ ، $Q = (3, 7)$ ، $R = (2, 4)$ ينصف (QR) و يقطع PR في S فإن طول PS = m

 $\frac{6}{15}m$ -٥

٩-١

١٠-٦

٤ في الشكل المقابل:

المستقيمان l ، m قاطعان للمستقيمات المتوازية L ، M ، N فإن: $s =m$

 $\frac{2}{1}m$ -٥

١٠-١

١٩٥-٥

٥ إذا كان: $\Delta ABC \sim \Delta PQR$ مم صع ، فإن: $\angle P = \angle Q = 80^\circ$ ٨٠

١٠١

٨٠

٥٠

١٠١

٦ إذا كانت ٤ نقاط في مستوى الدائرة م بحيث $MQ = PR = 38$ ، فإن طول نصف قطر الدائرة م ٣

٣٦

٥٢

٢٠

٢٤

١٤

١٢

٧ في الشكل المقابل:

٤ ينصف (٤١) الخارجة $\angle = ٣٦$ ، $S = ٣٤$ ، $P = ٣٣$ ، فإن: $(P) = ٤٣$ ٤٣

٤

١٨

١٢

السؤال الرابع: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تماماً:

١ في الشكل المقابل: م دائرة طول نصف قطرها ٣٦ ،

$P(DM) = P(41)$ ، $P = ٣٣$ ، $S = (S)$ م فإن: $S =$ ٣

٦

٤

٣

٢ في الشكل المقابل:

٤ مماس للدائرة عند ب ، $P(41) = ٤٢$ ،

$P(B) = ١٥٤$ ، $P(S) = (S)$ ١٥٤

فإن: $S =$ ١٥٤

٦

٦١

٧٣

٨٤

٣ في الشكل المقابل:

٤ قطر في الدائرة م ، $P(41) = ٥٩$ حيث $P = ٥٩$ ،

$P = ٤٣$ ، $P = ٣٣$ فإن: محيط الدائرة م ٣

٣٢٠

٣١٦

٣٨

٣٤

٤ في الشكل المقابل:

إذا كان: $P(41) = P(LM)$

فإن العبارة الخاطئة مما يأتي هي ٤

١ الشكل ب هو رباعي دائري

٢

٣

٤

٤ $P(41) = ٩٠$

$\frac{٥٩}{٤} = ٩٠$

٥ في الشكل المقابل:
إذا كان: $m \parallel BC$, $n \parallel AC$
فإن: $m \times n = BC \times AC$

٦ $m \times n = BC^2$
 $m \times n = AC^2$

٧ في الشكل المقابل:
إذا كان قطر في الدائرة م فإذا كان:
 $m + n = 120^\circ$
فإن: $m = 120 - n$

٨ $m = 60^\circ$
 $m = 150^\circ$

السؤال الخامس: في الشكل المقابل:
 $m \parallel BC$, $n \parallel AC$, $m = s^2$, $n = (s-1)^2$, $m = (s+4)^2$,
 $m = s^2 - 2s + 1 + 16s + 16 = s^2 + 14s + 17$
فإن: $s = 10$

٩ $m = 10$

السؤال السادس:

إذا كان جذراً المعادلة التربيعية: $s^2 + 2s - 1 = 0$ ينتميان للفترة [] - [] أوجد الفترة الحقيقية التي ينتمي إليها العدد م

النموذج الثالث

نماذج التوجيه ٢٠٢٥

السؤال الأول: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تماماً:

١ إذا كان مجموع جذري المعادلة: $s^2 + 3s - 4 = 0$ صفر يساوي فإن: $s =$

٤ m
٥ -4
٦ -3
٧ 1

٢٦- ٣٢ أبسط صورة للمقدار: $(1+t)^{10}$ هو ٣٢- ٣٢

٣- ٣٢ إذا كان العدد t هو مرافق العدد المركب z فإن: $z + \bar{z} + z\bar{z}$ هو ٣

٤- ٣ إذا كان: t م جذراً للمعادلة: $s^3 + ts + t = 0$ صفر فإن المعادلة التي جذراها $\frac{1}{t}, s$ ٤

٥- ٣ المعطيات غير كافية ٥

٦- ٣ إذا كان العدد t أحد جذري المعادلة التربيعية: $s^2 + ts + t = 0$ صفر حيث معاملات حدودها أعداد حقيقية فإن جميع العبارات الآتية صحيحة ماعدا ٦

٧- ٣ الجذر الآخر هو $(-t)$ ٧

٨- ٣ حاصل ضرب جذري المعادلة ٨

٩- ٣ المعادلة التربيعية التي جذراها $\frac{-1+t}{t}, \frac{2}{1+t}$ هي ٩

١٠- ٣ $s^2 - 2s - 2 = 0$ صفر ١٠

١١- ٣ $s^2 + 2s - 2 = 0$ صفر ١١

١٢- ٣ إذا كان t م جذراً للمعادلة $D(s) = 0$ فإن جذراً للمعادلة $D(s-1) = 0$ هما ١٢

١٣- ٣ $L+1, 1-M, M-L, 1-M$ ١٣

١٤- ٣ السؤال الثاني: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تاماً:

١- ٣ إذا قطع منحني الدالة التربيعية $D(s)$ محور السينات في نقطتين $(-3, 0), (0, 4)$ فإن مجموعة حل المعادلة: $D(s) = 0$ في \mathbb{R} هي ١

٢- ٣ \emptyset ٢

٦- ٥

٦- ٣

٢- في الشكل المقابل:

هو التمثيل البياني للدالة $D(s)$
فإن الدالة تكون موجبة عندما $s \in \mathbb{R}$

١- ٣ $[1, 3] \cup [1, 3]$ ١

٢- ٣ $[1, 3] \cup [-5, 1]$ ٢

٣- ٣ $= \overline{2-1} \times \overline{18-1}$ ٣

٤) إذا كان طول قوس من دائرة يساوي $\frac{4}{9}$ محيطها فإن قياس الزاوية المركزية المقابلة لهذا القوس

يساوي $^{\circ}$

١٦٠ ٥

١٠٠ ٣

٨٠ ٣

٤٠ ١

٥) إذا كان: $\theta = \frac{8}{5}\pi$, $\cot \theta = \frac{12}{13}$ فإن: $\tan \theta + \cot \theta = ?$

$\frac{12}{13} - 5$

$\frac{5}{13} - 3$

$\frac{5}{13} 3$

$\frac{12}{13} 1$

٦) إذا كان: $\cot \theta = \frac{5}{12}$ حيث $\theta \in [0, \pi]$ فإن: $\tan(\theta + 90^\circ) = ?$

$\frac{5}{13} - 5$

$\frac{5}{13} 3$

$\frac{12}{13} - 3$

$\frac{12}{13} 1$

السؤال الثالث: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تاماً:

١) مدى الدالة $D(\theta) = 1 + \cot \theta$ هو $^{\circ}$

[٤٠] ٥

[٣١] ٣

[٢٠] ٣

[١٦] ١

٢) في الشكل المقابل:

م مثلث، $\overline{BC} \parallel \overline{AD}$. $\angle B = ?$

٣ ٣

٣٣٧٥ ١

٤ ٤

٣) في الشكل المقابل:

محيط المثلث $A B C = ?$

٤٥ ٣

٣٥ ١

٦٠ ٥

٤٠ ٣

٤) في الشكل المقابل:

$\overline{AD} \parallel \overline{BC} \parallel \overline{EF}$

$\frac{AD}{CD} = ?$

١٩٥ ٥

١٣٠٢ ١

١٣٠٨ ٣

في الشكل المقابل:

$$\text{م}(\Delta \text{م} \text{م}) = \{ \text{م} \}, \text{م}(\Delta \text{م} \text{م}) = \text{م} \text{م}$$

فإن: $\text{م}(\Delta \text{م} \text{م}) =$

- ٥٠ ①
- ٤٠ ②

٢٥ ④

١٤٤ ⑤

٦ إذا كان المضلع $\text{م} \text{م} \text{م} \text{م}$ المضلع $\text{م} \text{م} \text{م} \text{م}$ فإن:

$$\frac{\text{م}(\text{المضلع } \text{م} \text{م} \text{م} \text{م})}{\text{م}(\text{المضلع } \text{م} \text{م} \text{م} \text{م})} =$$

$\frac{1}{3}$ ①

٣٥ ⑤

٩ ④

٧ إذا كانت م دائرة طول نصف قطرها م وكانت م نقطة في مستوى الدائرة بحيث $\text{م} \text{م} = ٢٥$ وكان: $\text{م}(\text{م}) = ١٠٠$ فإن: $\text{م} =$

٨٠ ⑤

٧٠ ④

٦٠ ③

٥٠ ①

السؤال الرابع: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تاماً:

١ في الشكل المقابل:

$\text{م} =$

- ٢٨ ⑤
- ٢٥ ①
- ٧٥ ②
- ٣٠ ④

٢ في الشكل المقابل:

٣ قطعة مماسة للدائرة م عند م ,

$\text{م} = ٣٤, ٣٦, ٤٢$

فإن محيط الدائرة =

$\frac{٥}{٦}$ ①

٤, ٨ ④

٣ في الشكل المقابل:

$\text{م} =$

١٤ ①

٨ ④

٤) في الشكل المقابل:

..... س =

٣٥
٥

٢٩
٤

٥) في الشكل المقابل:

..... س =

$\frac{7}{7} ٤٥$
٧٣٥

$\frac{11}{7} ١٢١$
٧١٦

٦) في الشكل المقابل:

..... س =

٥٥
٢٥

٦١
٤

السؤال الخامس:

هي مثلث $\triangle ABC$ بحيث $C = 2B$ و $B = 4A$ بحيث $BC \parallel AH$
إذا كانت مساحة $\Delta ABC = 60 \text{ سم}^2$ أوجد مساحة شبه المنحرف $ABCD$

السؤال السادس:

عين إشارة الدالة $D : D(s) = s^2 - 12 - s$ ومن ذلك عين في مجموعه حل المتباينة
 $s^2 - 12 > s$ موضحا الحال على خط الأعداد

النموذج الرابع

نهادج التوجیه ٢٠٢٥

السؤال الأول: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تاماً:

١ إذا كان جذراً المعادلة $s^3 - 4s^2 + 4s - 4 = 0$ مختلفين في الإشاره فإن \exists

١-١

$[4, \infty) - \{5\}$ \oplus $[4, \infty) - \{5\}$ \oplus $[\infty, 4]$ \oplus

..... $= (1+t)(1+t^2)(1+t^3)(1+t^4)$ $(1+t)(1+t^2)(1+t^3)(1+t^4)$ \oplus 1 \oplus

١-١

5 \oplus صفر \oplus 2 \oplus 1 \oplus

..... $= s^4 + s^2 + s + 1 = 0$ عددان فردان متتاليان فإن: $s^4 + s^2 + s + 1 = 0$

١-١

4 \oplus 3 \oplus 2 \oplus 1 \oplus

إذا كان L ، L' هما جذري المعادلة: $s^3 + 7s^2 + 16s + 16 = 0$ فإن $L = L'$

٦-١

12 \oplus $12 - \oplus$ 6 \oplus 6 \oplus

إذا كان: $(s-3)(s-2)$ أحد جذري المعادلة: $s^3 + s^2 + s + 1 = 0$ حيث $s \neq 0$

٤-١

فإن: $s + 1 = 0$

٤

16 \oplus 14 \oplus 10 \oplus

مجموعة حل المتباعدة: $(s-3)(s-2) \leq 0$ في هي

١

$[3, \infty) - \{5\}$ \oplus $[-5, 2]$ \oplus $[-2, 3]$ \oplus $[-3, 2]$ \oplus

إذا كان $3s - 2s = 5 - t$ فإن $s - t = 5 - 3s$

٧

5 \oplus 17 \oplus 2 \oplus 3 \oplus

السؤال الثاني: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تاماً:

١ إذا كان أحد جزري المعادلة: $s^2 - 3s + 2 = 0$ معكوساً ضربياً للآخر فإن: ①

- ١- ⑤
- ٢ ④
- ٣ ⑥
- ٤ ①

٢ إذا كان: m هما جذراً للمعادلة: $s^2 - 3s + 2 = 0$ فإن المعادلة التي جذراها $2m$ هي.....

$(\frac{1}{m}s)^2 - (\frac{1}{m})2s + \frac{1}{m} = 0$ صفر ①

٥ جميع ما سبق ④ $s^2 - 4s + 12 = 0$ صفر

٦ إذا كان: $\theta = \pi \frac{2}{3}$ فإن: $\cos(\theta) =$ ②

- ٧ ⑤
- ٨ ④
- ٩ ⑥
- ١٠ ①

٤ إذا كان $\frac{\text{جتا} ١١٥^\circ}{\text{جتا} ٦٥^\circ} + \frac{\text{قتا} ٣٧^\circ}{\text{قتا} ٥٣^\circ} =$

١٥

٢ - ٤

٣ صفر

٢١

٥ إذا كان: $D(s) = \pi s^2$ فإن مدى الدالة هو.....

٥

[٠، ١] - [١، ٠]

[١، ٠] - [٠، ١]

١١

٦ جتا $\frac{\pi}{4}$ - جا $\frac{\pi}{4}$ =

$\frac{\pi}{3}$ جا

٧ جتا π

٨ جتا π

٩ جتا $\frac{\pi}{3}$

٧ لأي زاوية θ يكون: جتا θ قتا $(90^\circ - \theta)$ + ظا $(180^\circ - \theta)$ - ظا $(270^\circ - \theta)$

٨ صفر

٩ صفر

١١

السؤال الثالث: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تماماً:

١ مضلعين متشابهان مساحتاهما $٦٤ \text{ سم}^٢$ ، $٣٦ \text{ سم}^٢$ فإذا كان محيط الأول ٦٠ سم فإن محيط الثاني يساوي.....

٧٥

٤٨

٣٦

٢٤

٢ إذا كان معامل تشابه المضلعين $٦,٣$ هو $\frac{٥}{٧}$ فإن معامل التشابه لمضلعين $٦,٣$ هو.....

$\frac{٧}{٩}$

$\frac{٥}{٤١}$

$\frac{١٠}{٢١}$

$\frac{٥}{٩}$

٣ في الشكل المقابل:

٤ قطر في دائرة طوله ٣٦ سم طوله ١٠ سم مماس للدائرة عند M و T فإن: $TM =$

٤٨

٨

٢٤

٣٦

٤ في الشكل المقابل:

٥ $٣٤ = ٥٩$ ، $٣٣ = ٥٩$ ، $٣٣ = ٣٤$ ، $٣٥ = ٣١٢$ فإن: $٥٩ =$

٥

٤

٨

٦

٢٠ ⑤

٥ في الشكل المقابل:
م مماسة للدائرة عند ح،
 $m = 15^\circ$, $m = 10^\circ$,
فإن: $m = 5^\circ$

٨٥

٥ ①

١٥ ٤

٣٤

٨٥

٦ في الشكل المقابل:
ح ينصف (لـ ح)،
إذا كان: $m = 6^\circ$, $m = 4^\circ$,
 $m = 5^\circ$ فإن: $m = 4^\circ$

٢٧

١١ ①

٤ ٤

٣٤

٧ في الشكل المقابل:
م ينصف (لـ ح), م ينصف (ح)،
 $m = \{m\}$, $m = 6^\circ$, $m = 4^\circ$,
 $m = 8^\circ$ فإن: $m = 3^\circ$

٢٧

١٩٥ ①

٤ ٤

٣٤

السؤال الرابع: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تماماً:

(٢٦، ١٠) ٥

(١٩، ١٠) ٤

(٢٦، ١٥١٦) ١ (١٩، ١٥١٦)

١ في الشكل المقابل:

ح ينصف (لـ ح)، $m = 8^\circ$,
 $m = 7^\circ$, $m = 9^\circ = s^\circ$,

$(s+2)^\circ$ فإن $(s, s) =$

٧٥ ٥

٦٠ ٤

٢ في الشكل المقابل:

ح مماس للدائرة م عند ب،

ح يقطع الدائرة في ح، و على الترتيب

حيث $m = 30^\circ$, $m = 21^\circ = s^\circ$,

$s = 30^\circ$ فإن: $s = 21^\circ$

٣٠ ١

٣) في الشكل المقابل:

$$\text{د}(\text{ل}) = (3s + 10)^{\circ}$$

$$\text{د}(\text{ل}) = (s + 30)^{\circ} \quad \text{فإن: } s =$$

$$20 \quad ①$$

$$40 \quad ②$$

$$30 \quad ③$$

٤) مثلثان متشابهان النسبة بين مساحتيهما $8:1$ ومجموع محیطيهما 55 سم فإن محیط المثلث الأصغر =

$$45 \quad ④$$

$$35 \quad ⑤$$

$$20 \quad ⑥$$

$$10 \quad ⑦$$

٥) في الشكل المقابل:

$$\text{ل}_1 \parallel \text{ل}_2 \parallel \text{ل}_3 \Rightarrow 3\text{ل} = 4\text{ص}$$

$$3\text{ل} = 21 \Rightarrow \text{ص} = 7$$

$$\text{فإن: } \text{ص} = 7$$

$$12 \quad ①$$

$$18 \quad ②$$

$$15 \quad ③$$

٦) في الشكل المقابل:

$$\Delta \text{ABC} \text{ قائم الزاوية في } \text{C}$$

$$\text{أي } \angle \text{B} = 90^{\circ}$$

$$\text{فإن: } \text{B} = 30^{\circ}$$

$$24 \quad ④$$

$$18 \quad ⑤$$

$$30 \quad ⑥$$

٧) في الشكل المقابل:

$$\Delta \text{ABC} \text{ قائم الزاوية في } \text{C}$$

$$\text{أي } \angle \text{B} = 90^{\circ}$$

$$\text{فإن: } \text{B} = 30^{\circ}$$

$$24 \quad ④$$

$$18 \quad ⑤$$

$$30 \quad ⑥$$

السؤال الخامس: في الشكل المقابل:

يقطع الدائرة في بـ $\overline{OC} \perp \overline{AB}$ = {و}، بحيث:

$م = س = 9$ ، كـ مماساً للدائرة عند دـ فإذا كان: دـ

وـ $= 2$ ، وـ $م = 8$ أوجد طول مـ

السؤال السادس:

إذا كان: لـ مـ جذراً المعادلة $s^2 + s - 5 = 0$ ، أوجد المعادلة التي جذراها: لـ ، مـ

نموذج الخامس

نماذج التوجيه ٢٠٢٥

السؤال الأول: ظلل الرمز الدال على الإجابة الصحيحة تظليلاً تماماً:

١) إذا كان أحد جذري المعادلة: $s^2 - (2k+6)s + k = 0$ معكوساً جمعياً للآخر فإن: $k = \dots$

١ صفر ٢ ± 2 ٣ -2 ٤ 0 ٥ 3

٢) إذا كانت د: $D = \{s \mid s \neq 4\}$ فإن الدالة د تكون غير سالبة عندما $s \in \dots$

١ $[0, 4]$ ٢ $[0, \infty)$ ٣ $[4, \infty)$ ٤ $[4, 5]$ ٥ $[5, \infty)$

في الشكل المقابل:
يمثل منحنيي الدالتين $D(s)$ ، $S(s)$ فإن: الدالتان D ، S تكونان موجبتين معاً عندما $s = \dots$

١ $[0, 3]$ ٢ $[0, 2]$ ٣ $[1, \infty)$ ٤ $[1, 2]$ ٥ $[2, \infty)$

٤) إذا كان: العدد $(3+5t)$ أحد جذري المعادلة: $s^2 + ps + q = 0$ حيث p, q عددين حقيقيين فإن الجذر الآخر لهذه المعادلة هو

١ $5+3t$ ٢ $-3-5t$ ٣ $-3-5t$ ٤ $3-5t$ ٥ لا يمكن تحديده

٥) مجموعة حل المتباينة: $s^2 + 4s < 0$ صفر في $\{s\}$ هي

١ $[-2, 2]$ ٢ $[-2, 0]$ ٣ $[-2, 0]$ ٤ $[-2, 0]$ ٥ \emptyset

٦) إذا كان L ، M جذراً للمعادلة: $s^2 - 5s - 7 = 0$ فإن: $L + M = \dots$

١ 125 ٢ 343 ٣ 230 ٤ 238 ٥ -3

٧) إذا كان: L ، M حيث $L < M$ جذراً للمعادلة: $3s^2 + ps + q = 0$ فإن: $L - M = \dots$

١ 125 ٢ 343 ٣ 230 ٤ 238 ٥ -3

السؤال الثاني: ظلل الرمز الدال على الإجابة الصحيحة تظليلاً تماماً:

١) إذا كان جذراً للمعادلة: $Ls^2 + (L+1)s + 1 = 0$ حقيقيين متساوين فإن: $L = \dots$

١ 1 ٢ 2 ٣ 4 ٤ 5 ٥ 6

٢) إذا كان جذراً للمعادلة: $s^2 + ps + q = 0$ هما 3 ، -2 فإن: $\frac{p+q}{2} = \dots$

١ 10 ٢ 6 ٣ 7 ٤ 5 ٥ -5

...

إذا كانت: $\text{جا} \theta = \frac{1}{3}$, $\text{ظا} \theta = \frac{\sqrt{3}}{3}$ فإن: $\theta =$ ③

$\frac{\pi}{6}$ ④

$\frac{\pi}{5}$ ⑤

$\frac{\pi}{11}$ ①

في الشكل المقابل:

يمثل منحني الدالة المثلثية

$d: d(s) = s^3$

جاس ②

جاس ⑤

جاس ①

جاس ④

إذا قطع الضلع النهائي للزاوية الموجهة ($90^\circ - \theta$) في وضعها القياسي دائرة الوحدة في النقطة ($6, 0$ ، ص) حيث ص > 0، فإن: $\text{قا} \theta + \text{ظا} \theta =$ ⑤

$\frac{32}{15}$ ⑤

$\frac{59}{24}$ ④

٣٥

٢١

[٥٦] ⑤

[٣٦] ④

[٣٦٣] ①

في الشكل المقابل:

أ هو مربع، بـ جـ هـ بـ حيث

وـ هـ : هـ = ١: ٣ فإن: ظا θ =

$\frac{1}{4}$ ④

$\frac{1}{3}$ ①

٤ ⑤

٣ ④

السؤال الثالث: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تاماً:

إذا كانت θ زاوية حادة سالبة حيث $\text{جا} \theta = \sqrt{3}$ فإن: $\text{جا} \theta =$ ①

١ - ⑤

صفر ④

$-\frac{1}{4}$ ④

١ ①

إذا كانت النسبة بين محيطي مضلعين متباينين كنسبة ٤: ٩ فإن النسبة بين مساحتيهما تساوي.....

٣٦: ١٣ ⑤

٨١: ١٦ ④

٩: ٤ ④

٣: ٢ ①

في الشكل المقابل:

...

$\overrightarrow{AB} = \{x\}, \overrightarrow{BC} = \{y\}, \overrightarrow{CA} = \{z\}$
فإن طول: $\overline{AB} = 3$

٤١) ٦
٤٢) ١٠

٤) إذا كان المضلع $A B C D$ المضلع مصنع وكان: $AB = 3, BC = 4, CD = 3, DA = 4$
 $..... = 1, DC = 3 + 1$ فإن: $m =$

٤٣) ٦
٤٤) ٥

٤٥) ٦
٤٦) ٥

٤٧) في الشكل المقابل:
 $m = 3$

٤٨) ٤
٤٩) ١٩٥

٤١) في الشكل المقابل:
مجموع قيم m الممكنة يساوي

٤٢) ١٠٠
٤٣) ٢٠٧٦٣٦
٤٤) ١٧٦٩٨

٤٥) في الشكل المقابل:
طول: $\overline{AC} = 3$

٤٦) ٥
٤٧) ٣

السؤال الرابع: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تماماً:

٤٨) في الشكل المقابل:

إذا كان: $\frac{m}{5} = \frac{6}{3}$ فإن: $\overline{AB} =$

٤٩) $\frac{5}{8}$
٤٥) $\frac{8}{5}$

٤٦) $\frac{5}{3}$
٤٧) $\frac{3}{5}$

٤٨) في الشكل المقابل:

...

$s = \underline{\hspace{2cm}}$

١٥ ١
٤ ٢

٣ في الشكل المقابل:

$s = \underline{\hspace{2cm}}$

١٥ ١
٤ ٢

٤ في الشكل المقابل:

$s = \underline{\hspace{2cm}}$

٢ ١
٥ ٤

٥ في الشكل المقابل:

$\frac{s}{h} = \underline{\hspace{2cm}}$

$\frac{2}{3}$ ١ ١

٦ في الشكل الم مقابل:

$\frac{s}{h} = \underline{\hspace{2cm}}$

٦ ١
٣ ٥

السؤال الخامس:

أ) متوسط في ΔABC , \overleftrightarrow{AD} ينصف $\angle A$ و \overleftrightarrow{BC} في S , \overleftrightarrow{AS} ينصف $\angle BAC$ ويقطع \overleftrightarrow{BC} في M في ص أثبت أن: $SM \parallel AB$

.....
.....
.....
.....
.....
.....
.....

السؤال السادس:

أوجد في ح مجموع حل المتباعدة: $(س - 1)(س - 2) \geq 6$

نماذج التوجيه السادس

٢٠٢٥

السؤال الأول: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تاماً:

$$\dots = \frac{4 - 3x - x^2}{x - 4} \quad ①$$

٦٣

٦٤

٦٥

٦٦

إذا كان: $(2 - t)$ أحد جذري المعادلة: $x^2 - xs + 1 = 0$
فإن: $t + s = ?$ حيث $s > 0$.

٦٧

٦٨

٦٩

في الشكل المقابل:

يمثل منحني دالة تربيعية $ص = k(x^2 - xs + r)$
وكان المنحني يقطع محور السينات في النقطتين $2, r$
حيث $r < 0$ فإذا كان: $r = ?$

فإن: $r = ?$

٦١

٦٢

٦٣

٦٤

إذا كان: l, m جذرا المعادلة: $3x^2 - 9xs + m = 0$ وكان $(2l - 1)(2m - 1) = 5$
فإن: $m = ?$

٦٥

٦٦

٦٧

٦٨

$t + t^2 + t^3 + t^4 = ?$

٦٩

٦٧

٦٨

٦٩

٦١٠

٦١

مرافق العدد المركب $= \frac{1}{1+i}$

٦١١

٦١٢

٦١٣

٦١٤

إذا كانت $D: [-4, 2] \rightarrow \mathbb{R}$ حيث $D(s) = -s$ فإن إشارة الدالة سالبة في الفترة.....

.....س=

٢٥

١٩

٦

٤

٤ في الشكل المقابل:

.....س=

٥

٣

١١

٨

٥ في الشكل المقابل:

.....س=

٣

٢٩

٦

٥

٦ مضلعان متشابهان النسبة بين طولي ضلعين متناظرين فيهما ٣ : ٤ فإذا كان محيط الأصغر ١٥ سم فإن محيط الأكبر ٣

٢٨

٢٧

١١، ٥

٢٠

٧ في الشكل المقابل:

م نقطة تلاقى متواسطات المثلث ٤ س م

م // و م // د م ، م د = ٣١٨

فإن: و م = ٣

٥

٣

٢٩

٦

السؤال الرابع: ظلل الرمز الدال على الإجابة الصحيحة تظلليلاً تماماً:

$\frac{16}{9}$

٢٥

$\frac{3}{4}$

$\frac{4}{3}$

٨ في الشكل المقابل:

٢٥

الإسناد / أحمد زياده

...

إذا كان: محيط المثلث $\triangle ABC = 38$

فإن: محيط المثلث $\triangle DEF = ?$

٢٠ ١٥

٤٠ ٣٠

إذا كان: $\triangle ABC \sim \triangle PQR$ وكان: $SP = 10$ و كانت مساحة $\triangle PQR = 43$ فإن مساحة $\triangle ABC = ?$

٦٠ ٣٠

١٥ ١٥

في الشكل المقابل:

إذا كان: $PQ = ?$

٤٥ ٣٩

٥٢٥ ٥

في الشكل المقابل:

إذا كان: $SP = ?$

٤٥ ٣٩

٦٥ ٥

السؤال الخامس:
أوجد المعادلة التي يزيد كلا من جذريها بمقدار 2 عن احد جذري المعادلة: $x^2 - 7x - 10 = 0$

السؤال السادس: في الشكل المقابل:

م هو قطر في الدائرة ،
م منتصف \widehat{AC}

أثبت أن: $\frac{AC}{SC} = \frac{SC}{DC}$

النموذج السابع

نماذج التوجيه ٢٠٢٥

السؤال الأول: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تماماً:

١) مجموعة حل المعادلة: $s^2 + 4 = 0$ هي ١) ذ {٢،٢٠،٢٠} ٢) م {٤} ٣) س {٤} - ٤

٢) إذا كان أحد جذري المعادلة: $s^2 + (k-4)s + 15 = 0$ معكوساً جميعاً للآخر فإن: $k =$ ١٩ ١) ٥ ٢) ٤ ٣) س - ٤

٣) أبسط صورة للعدد التخيلي i^{39} هي ١) س - ١ ٢) س ٣) س + ١

٤) إذا كان حاصل ضرب جذري المعادلة: $s^2 + s + m = 0$ يساوي مجموعهما فإن: ١) س = ٢ ٢) س = -٢ ٣) س = ٤

٥) مجموعة حل المتباعدة: $s(s-1) < 0$ صفر في هي ١) ١٠،٠ {١٠} ٢) س - ١٠ ٣) س + ١٠

٦) إذا كان كلاً من جذري المعادلة: $s^2 - ms + 4 = 0$ يقعان في الفترة [١،٥] فإن: ١) س = ٥،٨،٤،٥ {٥،٨،٤،٥} ٢) س = ٤،٥ ٣) س = ١،٥

٧) إذا كانت: $D(s) = s^2 + s + m$ وكان العدد (-1) أحد جذري المعادلة $D(s) = 0$ صفر بحيث $D(1) + D(-2) = 0$ فإن: الجذر الآخر هو ١) $\frac{8}{5}$ ٢) $\frac{5}{8}$ ٣) $\frac{5}{2}$

السؤال الثاني:

إذا كان: $s = \frac{31+31}{5+5} , t = \frac{5+5}{1+1}$ أوجد $s+t$

السؤال الثالث: ظلل الرمز الدال على الإجابة الصحيحة تظليلًا تماماً:

① قياس الزاوية المحيطية التي تقابل قوساً طوله π في دائرة طول قطرها ٦ يساوي.....

$$\textcircled{5} \quad \pi/6$$

$$\textcircled{4} \quad \frac{\pi}{3}$$

$$\textcircled{3} \quad \frac{\pi}{6}$$

$$\textcircled{1} \quad \frac{\pi}{3}$$

إذا كان: $l + m + n + p = 0$ فإن المعادلة التي جذراها l, m هي.....

$$\textcircled{5} \quad s^2 - 6s - 24 = 0$$

$$\textcircled{1} \quad s^2 + 6s - 24 = 0$$

$$\textcircled{4} \quad s^2 + 6s + 24 = 0$$

$$\textcircled{2} \quad s^2 - 6s + 24 = 0$$

إذا كان: $s+t = \frac{(2+t)(2-t)}{4+3}$ فإن: $s-t =$

$$\textcircled{5} \quad \frac{7}{5}$$

$$\textcircled{4} \quad \frac{7}{5}$$

$$\textcircled{3} \quad -\frac{1}{5}$$

$$\textcircled{1} \quad \frac{1}{5}$$

④ القيمة العظمى للدالة $D(\theta) = 2\sin(\theta) - \theta$ تساوي.....

$$\textcircled{5} \quad 1$$

$$\textcircled{4} \quad 2$$

$$\textcircled{3} \quad -2$$

$$\textcircled{1} \quad -1$$

$$\textcircled{5} \quad \frac{\text{جاه}^{\circ}}{\text{جاه}^{\circ}} - \frac{\text{ظاه}^{\circ}}{\text{ظاه}^{\circ}} = \frac{165^{\circ}}{165^{\circ}} - \frac{25^{\circ}}{25^{\circ}}$$

$$\textcircled{5} \quad \text{صفر}$$

$$\textcircled{4} \quad 2$$

$$\textcircled{3} \quad 2$$

$$\textcircled{1} \quad 1$$

إذا كان: $2\sin\theta - 1 = 0$ صفر حيث $\theta \in [0, \pi]$ فإن: $\theta =$

$$\textcircled{5} \quad \frac{\pi}{6}$$

$$\textcircled{4} \quad \frac{\pi}{6}$$

$$\textcircled{3} \quad \frac{\pi}{4}$$

$$\textcircled{1} \quad \frac{\pi}{3}$$

الزاوية التي قياسها (-135°) تقع في الربع.....

$$\textcircled{5} \quad \text{الرابع}$$

$$\textcircled{4} \quad \text{الثالث}$$

$$\textcircled{3} \quad \text{الثاني}$$

$$\textcircled{1} \quad \text{الأول}$$

السؤال الرابع:

إذا كانت الزاوية التي قياسها θ والمرسومة في الوضع القياسي ضلعها النهائي يقطع دائرة الوحدة في النقطة $(\frac{\sqrt{5}}{3}, -\frac{2}{3})$ أوجد قيمة المقدار: $\sin(\theta - \pi) + \cos(\theta - \pi)$

السؤال الخامس:

أوجد المعادلة التي يزيد كلا من جذريها بمقدار 2 عن احد جذري المعادلة: $x^2 - 2x - 7 = 0$

السؤال السادس:

أ^ن هـ مثلث قائم الزاوية في A، رسم \overline{AO} تـ هـ يقطعه في O أثبت أن: $\frac{1}{AO} = \frac{1}{AB} + \frac{1}{AC}$

نموذج استرشادي للصف الأول الثانوى للعام الدراسى ٢٠٢٣ / ٢٠٢٤ م

الزمن : ٣ ساعات

الفصل الدراسي الأول

أولاً : اختر الإجابة الصحيحة من بين الإجابات المعطاة :

١. مجموعة حل المتباعدة : $s^2 + 4 < 1$ فـ s هي
(١) $\{ 7 \}$ (٢) $\{ 0 \}$ (٣) $\{ -7 \}$ (٤) $\{ 4 \}$ (٥) $\{ 1 \}$

٢. إذا كان : $s + t = 5 + t$ فإن : $s = t$
(١) 6 (٢) 5 (٣) 4 (٤) 3 (٥) 2

٣. مجموعة حل المعادلة : $s^2 + 25 = 0$ في مجموعة الأعداد المركبة هي
(١) $\{ -5t, 5t \}$ (٢) $\{ 5t \}$ (٣) $\{ 0 \}$ (٤) $\{ -5t \}$

٤. إذا كان أحد جذري المعادلة : $s^2 + (k+5)s - 9 = 0$ هو المعكوس الجمعى للجذر الآخر
فـ $k =$
(١) -5 (٢) 3 (٣) 5 (٤) 2 (٥) -3

٥. إذا كان L, M هما جذراً للمعادلة : $s^2 + 4s + 1 = 0$ فإن : $L^2 + 4L + 1 =$
(١) 1 (٢) -4 (٣) 1 (٤) -1 (٥) صفر

٦. $t^{24} + t^3 =$
(١) -1 (٢) صفر (٣) $-t$ (٤) t (٥) 1

٧. إذا كان : $s - 2t = 3 + st$ فإن : مراافق العدد : $s + st$ هو
(١) $3 - 2t + st$ (٢) $3 - 2t$ (٣) $3 + st$ (٤) $st + 3$ (٥) $st - 3$

٨. إذا كان جذراً للمعادلة : $3s^2 - 6s + m =$ صفر حقيقيين فإن : قيمة m هي
(١) $[-\infty, 3]$ (٢) $(-\infty, 3)$ (٣) $(3, \infty)$ (٤) $4 \{ \}$ (٥) $9 \{ \}$

٩. إذا كان الضلع النهائي لزاوية قياسها θ في الوضع القياسي يقطع دائرة الوحدة في النقطة
 $(\frac{3}{5}, \frac{4}{5})$ فإن : ظـ $\theta =$
(١) $\frac{3}{4}$ (٢) $\frac{4}{3}$ (٣) $\frac{3}{5}$ (٤) $\frac{4}{5}$

١٠. جتا $(\theta - 90^\circ) \times \text{قتا } \theta = \dots$

(٥) ظا θ

(٢) صفر

(٣) ١

(٤) ١

١١. الزاوية التي قياسها $\frac{\pi}{4}$ تقع في الربع

(٥) الأول

(٢) الثاني

(٣) الرابع

(٤) الثالث

١٢. طول القوس المقابل لزاوية مركبة قياسها 135° في دائرة طول قطرها ١٦ سم يساوى سم

(٥) ٦

(٢) $\pi/6$

(٣) $\pi/12$

(٤) ١٢

١٣. إذا كانت : قتا $\theta = 2$ حيث θ زاوية حادة موجبة فإن : $\theta = \dots$

(٥) 45°

(٢) 15°

(٣) 30°

(٤) 60°

١٤. جا $\theta +$ جتا $(\theta + 270^\circ) = \dots$

(٥) ١

(٢) صفر

(٣) جا θ

(٤) جا 2θ

١٥. إذا كان : $\Delta ABC \sim \Delta PQR$ ، $PS = 3$ سم ، $AB = 6$ سم ، $BQ = 8$ سم فإن : $CR = \dots$ سم

(٥) ٢

(٢) ٣

(٣) ٤

(٤) ٢٥

١٦. مضلعين متتشابهان النسبة بين محياطيهما ٣ : ٤ ومجموع مساحتيهما ١٥٠ سـ² فإن مساحة المضلع

الأكبر = سم²

(٥) ٥٤

(٢) ٩٦

(٣) ٥٢

(٤) ٧٣

١٧. إذا كان : $\frac{AB}{BC} = \frac{5}{4}$ بحيث :

$AH = 6$ سم ، $CH = 3$ سم ، $BC = 6$ سم ،

$CH = 18$ سم ، $BC = 3$ سم ، $AB = 4$ سم

فإن : $CH = \dots$ سم

(٥) ٦

(٢) ١٨

(٣) ٩

(٤) ٢١

١٨. في الشكل المقابل :

$$ق (د ب اح) = \dots\dots\dots$$

(١) (د ب اح) (٢) (د ب اه)

(٣) (د ب اه) (٤) (د ب اه)

١٩. في الشكل المقابل :

أ ب ح مثلث فيه د ب ح بحيث :

$$د (د ب اه) = د (د ح)$$

$$أ ب = 6 \text{ سم} , د ح = 5 \text{ سم}$$

$$\text{فإن : } د ح = \dots\dots\dots \text{ سم}$$

(٤) (د)

(٥) (د)

(٦) (د)

٢٠. أ ب ح مثلث ، ه اح ، د ب ا ب بحيث :

$$د ه // ب ح ، د ا ه = 4 \text{ سم} , د ح = 6 \text{ سم} ,$$

$$د ه = 5 \text{ سم}$$

$$\text{فإن : } د ح = \dots\dots\dots \text{ سم}$$

(١٥) (د)

(١٢,٥) (د)

(١٠,٥) (د)

(١٠) (د)

٢١. في الشكل المقابل :

$$د (د ا ب ح) = \dots\dots\dots$$

(١) (د ب س ص) (٢) (د ب ا ح)

(٣) (د ب ح) (٤) (د ب س ص)

٢٢. إذا كانت م دائرة طول نصف قطرها ٣ سم ، أ نقطة في مستوى الدائرة بحيث :

$$أ م = 4 \text{ سم} \text{ فإن : } ق م (أ) = \dots\dots\dots$$

(١٠) (د)

(٩) (د)

(٧) (د)

(٧) (د)

٢٣. في الشكل المقابل :
 $حـ = سم$

(أ) ١٠ (ب) ٦
(ج) ١٥ (د) ٥

٢٤. في الشكل المقابل :
 $س = سم$

(أ) ١٦ (ب) ٨
(ج) ١٢ (د) ٧

٢٥. في الشكل المقابل :
 $ن (دـ) = سم$

(أ) ٩٠ (ب) ٤٥
(ج) ٣٥ (د) ٦٠

٢٦. في الشكل المقابل :
 $س = سم$

(أ) ١ (ب) ١,٢٥
(ج) ١,٥ (د) ٢

٢٧. في الشكل الم مقابل :
 $بـ هـ = سم$

(أ) ٦ (ب) ٨
(ج) ٤ (د) ٢

ثانياً : أجب عن الأسئلة الآتية :

(١) في الشكل المقابل :

$$AB = (5 + 2) \text{ سم} , \quad AD = 9 \text{ سم} ,$$

$$AD = 5 \text{ سم} , \quad DC = 15 \text{ سم} ,$$

أ) ينصف زاوية $\angle A$ الخارجة

أوجد طول : \overline{AD}

الخ

(٢) إذا كان L ، M هما جذرا المعادلة : $s^2 - 5s + 7 = 0$ صفر

فأوجد المعادلة التي جذراها L^2 ، M^2

الخ

إجابة النموذج الاسترشادي للصف الأول الثانوي للعام الدراسي ٢٠٢٣ / ٢٠٢٤ م

أولاً :

الدرجة	الإجابة	م	الدرجة	الإجابة	م
١	ب	١٥	١	د	١
١	ح	١٦	١	ب	٢
١	ا	١٧	١	ح	٣
١	ح	١٨	١	ا	٤
١	د	١٩	١	د	٥
١	ح	٢٠	١	ب	٦
١	د	٢١	١	ح	٧
١	ا	٢٢	١	ا	٨
١	ب	٢٣	١	ا	٩
١	ح	٢٤	١	ا	١٠
١	د	٢٥	١	ب	١١
١	ب	٢٦	١	ح	١٢
١	د	٢٧	١	ب	١٣
			١	ا	١٤

ثانياً :

$$\frac{٢٠}{١٥} = \frac{٢+٥}{٩} \quad \leftarrow \quad (١) \quad \text{أ} \text{ ينصف زاوية } \alpha \text{ الخارجة}$$

$$\boxed{\text{درجة}} \quad \alpha = ١٢ \text{ سم} \quad \leftarrow \quad \therefore s = ٢ \text{ سم}$$

$$\boxed{\text{درجة}} \quad \alpha = \sqrt{ب \times د - أ \times ح}$$

$$\boxed{\text{درجة}} \quad ٣٧٨ = \sqrt{٩ \times ١٢ - ١٥ \times ٢٠} =$$

نصف

$$l + m = 5 \quad (2)$$

$$l^2 + m^2 = (l + m)^2 - 2lm$$

نصف

$$11 = 14 - 25 =$$

نصف

$$l^2 m^2 = 49$$

نصف

$$s^2 - 11s + 49 = 0$$

المعادلة هي :

كيفية طباعة صفحات معينة من ملف معين مثل ازاي نطبع الصفحات من صفحة 4 الى صفحة 9

حمل الان

مجاناً وقطبياً

المطاعات رمادي (2)

الشـرم العـلـوـي

RaNia-Sayed

الصف الأول الثانوي رياضيات

الأمتحان ٥ ورقات

الزمن ٣ ساعات

اختبار الفصل الدراسي الأول

(٢٠٢٤/٢٠٢٣)

الرقم السري

رقم الجلوس

----- ----- ----- ----- ----- -----

الرقم السري

اختر الإجابة الصحيحة من بين الإجابات المعطاة① اذا كانت $(1+t^4)(1-t^3) = s+tc$ فإن $s+c = \dots$

٤

٣

٢

١

١

② إذا كان طول قوس في دائرة يساوي $\frac{3}{8}$ محيطها فإن قياس الزاوية المركزية التي تقابلها

٥٦٠

٤

٥١٣٥

٣

٥٦٧'٣٠

١

٥٣٠

١

③ جذرا المعادلة: $3s^2 - 6s + 5 = 0$ جذران غير حقيقيان فإن s يمكن أن تساوي ..

٤

٤

٣-

٣

٢

١

١

④ في الشكل المقابل:

 $s = 1000$ سم

٧

٤

١٠

٣

٩

٢

١

٥ في الشكل المقابل:

أ- ح مثلث متساوي الساقين

حيث $AD = BD$ ، $SD = 48$ سم

$$\frac{SD}{BD} = \frac{5}{7}$$

فإن: $s = 20$

٤

٣

١٢

٢

١

٦ ل ، ل أ هما جذرا المعادلة $2s^2 + 5s + 16 = 0$ فإن $s =$

١٢-

٤

١٢

٣

٦

٢

٦-

٧ مضلعين متاشابهين النسبة بين ضلعين متناظران ٣ : ٥ ومجموع مساحتهم ٦٣ سـ² فإن مساحة المضلع الأصغر = ... سـ²

١٣٦

٤

١٠٠

٣

٣٦

٢

٢٥

١

٨ الزاوية التي قياسها $60^\circ + n \cdot 180^\circ$ حيث $n \in \mathbb{Z}$ يكون قياسها الدائري

$\frac{\pi\sqrt{3}}{3}$	٤	$\frac{\pi}{3}$	٣	$\frac{\pi\sqrt{4}}{3}$	٢	π	١
-------------------------	---	-----------------	---	-------------------------	---	-------	---

إذا كان $s = 5$ أحد جذري المعادلة: $s^2 + s = 3s + 4$ فإن $s =$

$\frac{29}{3}$	٤	$\frac{29}{3}$	٣	٧	٢	٧	١
----------------	---	----------------	---	---	---	---	---

٩ لأي زاوية θ يكون $\tan \theta = \tan(\theta - 90^\circ) + \tan(180^\circ - \theta)$

٢	٤	صفر	٣	٢	٢	١	١
---	---	-----	---	---	---	---	---

١٠ مماس للدائرة \overline{AB} في الشكل المقابل:

$$\text{فإن طول } \overline{AB} = 000000$$

٣	٣٦	٣	٢	٢	٤	١
---	----	---	---	---	---	---

١١ في الشكل المقابل:

$\triangle ABC$ فيه $\angle A$ ، $\angle B$ المنصفان الداخلي والخارجي

للزاوية عند الرأس C على الترتيب ، و $\angle C = 15^\circ$

فإن: $\angle A = 25^\circ$

١٠٨	٤	٥٤	٣	٤٠	٢	٣٦	١
-----	---	----	---	----	---	----	---

١٢ في الشكل المقابل

$$\text{س ع} = 0000$$

صل	٤	٤	٣	٣٤	٢	١٤	١
----	---	---	---	----	---	----	---

في الشكل المقابل: ١٤

$$\frac{م(\Delta ١٥)}{م(\Delta ٢٥)} =$$

٣ $\frac{16}{49}$

٥ $\frac{25}{49}$

١

٣ ٦

٥ ٤

١

إذا كان $x + t$ إحدى جذري المعادلة: $5x^2 - 7x + k + 1 = 0$ فإن $k + t =$ ١٧

حيث $k = 5$ ، $t = 4$

٨ ٤ ٤

٣ ٥

٥ ٣

١

في الشكل المقابل ١٦

$$س + ع = ٤٠٠$$

٣ ٦٠

٥ ٢٥٠

١

إذا كان مدي الدالة $d(\theta) = \pi \sin \theta$ ودورتها $٣ - ٣$ فإن $k + m =$ ١٨

٣ ٤ ٥

٣ ١٣

٥ ١٠

١

في الشكل المقابل: ١٩

$$\frac{و}{وه} = \frac{٥٥}{٥٠}$$

$\frac{4}{3}$ ٤

$\frac{8}{7}$

٣

$\frac{2}{3}$

٥

$\frac{3}{4}$ ١

أ نقطة في مستوى دائرة M بحيث $M = ١٣$ فان مساحة الدائرة = ٢٠

$\pi ٤٩$

٤

$\pi ٣٦$

٣

$\pi ٣٢$

٥

$\pi ٤$

١

٤١ مجموعه حل المتباينة $(3s + 2) < 0$ هي ...

٤ $[-\infty, -\frac{3}{2})$ ٢ $(-\infty, 0)$ ١ $(-\frac{3}{2}, \infty)$

٤٢ إذا كانت دائرة الوحدة تقطع الجزء الموجب من محور الصادات في النقطة $(2s + 3, 0)$

فإن $s = ?$

٤ $s = -\frac{3}{2}$ ٢ $s = -1$ ١ $s = 3$

٤٣ إذا كان $D(s) = 3 - s$ فإن $D(s)$ غير سالبة في

٤ $(-\infty, 3)$ ٢ $(-\infty, 0)$ ١ $(-\infty, 1)$

٤٤ إذا كان L جذراً للمعادلة: $D(s) = 0$ فإن المعادله التي جذراها $L - 3 - 1$ هي

٤ $D(s-1) = 0$ ٢ $D(s+1) = 0$ ١ $D(s-1) = 0$

٤٥ في الشكل المقابل:

إذا كانت M نقطة تقاطع متواسطات

المثلث HAB فإن $AM + BM = ?$

٤ 5 ٣ 4 ٢ 2 ١ 3

٤٦ الحل العام للمعادلة $\tan(\theta + 30^\circ) = \tan(30^\circ + \theta)$

٤ $\frac{\pi}{2} - \frac{\pi}{18}$ ٢ $\frac{\pi}{4} - \frac{\pi}{18}$ ١ $\frac{\pi}{3} + \frac{\pi}{18}$ ٣ $\frac{\pi}{4} + \frac{\pi}{18}$

٤٧ إذا كان معامل التشابه بين المضلعين $A_1B_1C_1$ هو 3 : 2 ومعامل التشابه بين

المضلعين $A_2B_2C_2$ هو 5 : 7 فإن معامل التشابه بين $A_1B_1C_1$ و $A_2B_2C_2$ هو

٤ $14:5$ ٢ $21:10$ ٣ $9:7$ ١ $9:5$

الرقم المترى

١) اذا كان l, m جذري المعادلة: $s^2 - 5s + 3 = 0$
كون المعادلة التي جذراها $(m-l), (l-m)$

في الشكل المقابل:

$$h_1 \parallel s \parallel h_2$$

$$AD \times s = AH \times h_2$$

أثبت أن: \overline{AC} ينصف دخ AD

انتهت الأسئلة

اختبار الفصل الدراسي الأول ٢٠٢٤ / ٢٠٢٢ الزمن / ثلاث ساعات

السؤال الأول ، اختر الإجابات الصحيحة من بين الإجابات المعلقة

<p>١ مرفق العدد $t^3 - 3t^2$ هو <input type="radio"/> ٥ $-3t^2$ <input checked="" type="radio"/> ح $t^2 - 3t$ <input type="radio"/> ب $3t^2 + t$ <input type="radio"/> د $3t^2 - t$</p>
<p>٢ اشارة الدالة $d(s) = \ln s + 3$ تكون موجبة على s إذا كانت $k =$ <input type="radio"/> ٥ $k > 0$ <input checked="" type="radio"/> ح $k < 0$ <input type="radio"/> ب $k > 3$ <input type="radio"/> د $k < 3$</p>
<p>٣ مجموعة حل المتباينة $s-3 \geq 0$ في s هي <input type="radio"/> ١ $\{s s \neq 3\}$ <input checked="" type="radio"/> ح $s \geq 3$ <input type="radio"/> ب $s < 3$ <input type="radio"/> د $s > 3$</p>
<p>٤ إذا كان s, m عددين حقيقيين، $s+m = \sqrt{s+t}$ فإن $s+m =$ <input type="radio"/> ١ 0 <input checked="" type="radio"/> ح 0 <input type="radio"/> ب 2 <input type="radio"/> د 2</p>
<p>٥ إذا كان حاصل ضرب جذري المعادلة $s^2 - 2s + 10 = 0$ يساوي <input type="radio"/> ١ 10 <input checked="" type="radio"/> ح 8 <input type="radio"/> ب 5 <input type="radio"/> د 1</p>
<p>٦ إذا كان $\frac{1}{l} = \frac{1}{m}$ مما جذرا المعادلة $4s^2 - 8s + 1 = 0$ فإن $l+m =$ <input type="radio"/> ١ 16 <input checked="" type="radio"/> ح 8 <input type="radio"/> ب 4 <input type="radio"/> د 1</p>
<p>٧ الشكل المقابل يمثل منحنى الدالة التربيعية $d(s)$ إذا كان l, m مما جذرا المعادلة $d(s) = 0$، حيث $l > m$، فإن المعادلة التي جذراها $l + 2m - 1$ هي <input type="radio"/> ١ $s^2 + 4s + 3 = 0$ <input checked="" type="radio"/> ح $s^2 - 4s + 3 = 0$ <input type="radio"/> ب $s^2 - 4s - 3 = 0$ <input type="radio"/> د $s^2 - 5s + 3 = 0$</p>

السؤال الثاني ، اختر الإجابات الصحيحة من بين الإجابات المعلقة

<p>١ إذا كان جذرا المعادلة $s^2 - 4s + k = 0$ غير حقيقيين فإن k يمكن أن تساوي <input type="radio"/> ١ 4 <input checked="" type="radio"/> ح 5 <input type="radio"/> ب 2 <input type="radio"/> د 0</p>
<p>٢ طول القوس المقابل لزاوية محبطية قياسها 30° في دائرة طول قطرها 12 سم يساوي <input type="radio"/> ١ $\pi/4$ <input checked="" type="radio"/> ح $\pi/2$ <input type="radio"/> ب $\pi/6$ <input type="radio"/> د $\pi/3$</p>
<p>٣ مدى الدالة $d(s) = 2 \cos \theta$ حاس على الفتره $[0, \pi]$ هو <input type="radio"/> ١ $[\pi, 0]$ <input checked="" type="radio"/> ح $[2\pi, 0]$ <input type="radio"/> ب $[4\pi, 0]$ <input type="radio"/> د $[2\pi, 2\pi]$</p>

إذا كان: $3\theta + 5 = 0$ حيث θ قياس أصغر زاوية موجبة فإن $\theta = 270 - \theta$ =

$0,75 - 5$

$0,75$

$0,5 - 5$

$0,5$

إذا كان: $\sin(\theta) = \cos(\theta)$ حيث θ قياس زاوية حادة فإن $\theta = \dots$:

{ $30, 15$ }

{ $30, 18$ }

{ 30 }

{ 18 }

30

45

60

120

في الشكل المقابل : AB تمس دائرة الوحدة M عند A حيث $\angle A = 60^\circ$ فإن $BC = \dots$ وحدة طول

5

1

2

1

السؤال الثالث ، اختر الإجابات الصحيحة من بين الإجابات المعطاة

مضلعان متباينان طولاً ضلعان متساوين متباينان فيهما $9,5$ سم والفرق بين محبيطيهما 20 سم ، فإن محيط المضلع الأصغر = سم

50

20

25

20

إذا كانت $CM = 1$ نق حيث نصف طول قطر الدائرة M ، فإن A تقع

5 على مركز الدائرة

4 خارج الدائرة

3 على الدائرة

2 داخل الدائرة

في الشكل المقابل : $AD = \dots$ سم

5

4

3

1

في الشكل المقابل : AB تمس دائرة M عند B ، $CM = 36$ فإن $BD = \dots$ سم

6

5

4

1

في الشكل المقابل : $\angle A = \angle C = 60^\circ$ ، $\angle B = \angle D = \dots$

فإن $\angle B = \angle D = \dots$

45

25

30

1

إذا كان : $\angle A + \angle C = 5$ ، $BC = 20$ سم فإن $\angle A = \dots$ سم

10

8

5

1

في الشكل المقابل : إذا كان : مساحة المثلث $A B C = 40 \text{ سم}^2$
فإن : مساحة المثلث $A C B = \dots \text{ سم}^2$

٢٠ ٥

١٥ ٤

١٠ ٣

٧

السؤال الرابع ، اختر الإجابة الصحيحة من بين الإجابات المعطاة

في الشكل المقابل : $m = \dots \text{ سم}$

٦ ٥

٥ ٤

٤ ٣

١

إذا كان : ك معامل تشابه المثلث M ، بالنسبة للمثلث M' ، وكان M' تكبير للمثلث M .

فإن : ك يمكن أن تساوي

٥ صفر

١ ٤

١,٢٥ ٣

٠,٧٥ ١

٢

في الشكل المقابل : إذا كان الشكل $A B C$ رباعي دائري فإن : $B H = \dots \text{ سم}$

٦ ٥

٥ ٤

٤ ٣

٣

$\triangle A B C \sim \triangle S C B$ صـع ، وكان $S(12) = 50^\circ$ ، $S(2) = 70^\circ$ فإن : $C A G = \dots$

٠,٥ ٥

١ ٤

٢ صفر

٢ ١

٤

في الشكل المقابل : $A H = \dots \text{ سم}$

٨ ٥

٦ ٤

٤ ٣

٢ ١

٥

في الشكل الم مقابل : إذا كان $A D = 3 \text{ سم}$ ، $A H = 4 \text{ سم}$ ، $G H = 3 \text{ سم}$

فإن $D G = \dots \text{ سم}$

٣ ٥

١ ٤

٢ ٣

٤ ١

٦

تابع الأسئلة المقالية ٥

السؤال الأول :

إذا كان : $L = M$ هما جذراً للمعادلة : $s^2 + 3s - 5 = 0$ مكون المعادلة التربيعية التي جذراها $L = M$ ، $M = L$

السؤال الثاني : في الشكل المقابل : أجب عنها يأتي :

① برهن أن \overrightarrow{JM} ينصف $\angle J$ ② اوجد طول JM

رقم المراقبة:

أجب عن السائلين الآتيين:

السؤال الأول: ابحث إشارة الدالة $D: D(s) = s^2 - s - 12$

.....
.....
.....
.....

السؤال الثاني:

في الشكل المقابل، $A B C$ مثلث. فيه \overline{AD} متواسط
 \overline{BC} ينصف (ΔABC) . وقطع \overline{AD} في S
 \overline{CS} ينصف (ΔABD) . وقطع \overline{AH} في C
برهنان، $MS \parallel AH$

امتحان الفصل الدراسي الأول ٢٠٢٢-٢٠٢٣

رقم المراقبة

رقم الطالب

اسم الطالب

الصف

المدرسة

التاريخ

المادة

توقيع الملاحظان: (١) (٢)

❶ إذا قطع منحنى الدالة التربيعية $D(s)$ محوري الإحداثيات في النقط $(0, 7)$ ، $(0, 5)$ ، $(1, 0)$ فإن مجموعة حل المعادلة $D(s) = 0$ هي
 ① $\{7, 5, 1\}$ ② $\{5\}$ ③ $\{1\}$ ④ $\{5, 1\}$

❷ معادلة الدرجة الثانية التي جذراها $-2, 5$ هي
 ① $s^2 - 9s + 15 = 0$ ② $s^2 - 9s - 15 = 0$
 ③ $s^2 + 9s + 15 = 0$ ④ $s^2 + 9s - 15 = 0$
 = ⑤ إذا كان أحد جذري المعادلة $s^2 - 9s + 15 = 0$ معيوساً ضريباً للأخر فإن : ⑥
 ① 2 ② $\frac{1}{2}$ ③ 5 ④ -1

❸ إذا كان $3s - 5$ صرت $= (5 - 2t)^2$ فإن : ص - س =
 ① $2 - 9t$ ② $2 - t$ ③ $t - 2$ ④ $2t - 9$

❹ الدالة $D(s) = 4 - 9s$ تكون موجبة في الفترة
 ① $[0, \infty) - [5, \infty)$ ② $[0, \infty) - [\infty, 9)$ ③ $[0, \infty) - [\infty, 5)$

❺ إذا كان جذراً للمعادلة $s^2 + 6s + 7 = 0$ حقيلين متساوين فإن : ⑦
 ① 2 ② 6 ③ 9 ④ 2

❻ إذا كان ل، م جذراً للمعادلة $s^2 - 7s + 6 = 0$ فإن :
 = ⑤ $+ m^2$
 ① $5 - 6$ ② $6 - 5$ ③ $9 - 6$ ④ $6 - 9$

❽ مجموعة حل المتباينة $s^2 + 4 < 0$ صفر في ع هي
 ① $[\infty, 4] - [4, \infty)$ ② $[-4, 4]$ ③ $(-\infty, 4) \cup (4, \infty)$ ④ \emptyset

❾ لاي زاوية θ يكون جتا θ قتا $90^\circ - (\theta - \alpha)$
 ① $1 - 5$ ② $5 - 1$ ③ $0 - 5$ ④ $5 - 0$

١٠ أصغر قياس موجب للزاوية التي قياسها 900° يساوي.....

$\frac{\pi}{4}$	⑤	π	⊖	$\frac{\pi}{2}$	⊖	$\frac{\pi}{2}$	⊕
-----------------	---	-------	---	-----------------	---	-----------------	---

١١ المسافة $D(s)$ = جا s هي دالة دورية دورتها.....

$\frac{\pi}{4}$	⑤	$\frac{\pi}{2}$	⊖	$\frac{\pi}{2}$	⊖	$\frac{\pi}{2}$	⊕
-----------------	---	-----------------	---	-----------------	---	-----------------	---

١٢ الحل العام للمعادلة، ظاء $\theta = \theta_0 + \dots$ حيث θ_0 ص

$\frac{\pi}{12}$	⑤	$\frac{\pi}{4}$	⊖	$\frac{\pi}{6}$	⊖	$\frac{\pi}{2}$	⊕
------------------	---	-----------------	---	-----------------	---	-----------------	---

١٣ إذا كان، جتا $\theta = -\frac{1}{3}$ ، فإن الزاوية التي قياسها θ تقع في الربع.....

① الأول	⊕ الثاني	⊖ الثالث	⊖ الرابع	⑤
---------	----------	----------	----------	---

١٤ إذا كان، جا $\theta - 1 = \cos \theta$ فإن θ [.....]

$\frac{\pi}{6}$	⑤	$\frac{\pi}{6}$	⊖	$\frac{\pi}{4}$	⊖	$\frac{\pi}{3}$	⊕
-----------------	---	-----------------	---	-----------------	---	-----------------	---

١٥ مطلعان متباينان مساحتاهما 100 سم^2 ، 64 سم^2 ، فإذا كان محيط الأول 60 سم فإن محيط الثاني يساوي..... سم .

٧٥	⑤	٤٨	⊖	٣٦	⊖	٤٤	⊕
----	---	----	---	----	---	----	---

١٦ إذا كان معامل تشابه المثلثين m_1, m_2 هو $\frac{2}{3}$ ، معامل تشابه المثلثين m_2, m_3 هو $\frac{5}{7}$ فإن معامل التشابه للمثلثين m_1, m_3 هو.....

$\frac{7}{9}$	⑤	$\frac{5}{14}$	⊖	$\frac{10}{21}$	⊖	$\frac{5}{9}$	⊕
---------------	---	----------------	---	-----------------	---	---------------	---

١٧ إذا كان، $\Delta ABC \sim \Delta PQR$ وكان، $PS = 12$

وكان مساحة $\Delta ABC = 10\text{ سم}^2$ فإن مساحة ΔPQR = سم².

٩٠	⑤	٦٠	⊖	٢٠	⊖	١٥	⊕
----	---	----	---	----	---	----	---

٦٣ في الشكل المقابل :

$$أه = 4 \text{ سم} , ده = 6 \text{ سم}$$

$$أو = 2 \text{ سم} , دو = 5 \text{ سم}$$

$$سـه = 12 \text{ سم} \text{ فإن } دـه = \text{ سم}$$

٨ ٥

٦ ٤

٧ ٣

٨ ١

٢٠ ٥

١٥ ٤

٨ ٣

٥ ١

$\pi ٢٠$ ٥

$\pi ١٦$ ٤

$\pi ٨$ ٣

$\pi ٤$ ١

٦٤ في الشكل المقابل :

أـه مثلث قائم الزاوية في (أ)، أو \perp سـه

$$سو = 16 \text{ سم} , هـو = 9 \text{ سم}$$

$$\text{فـإن } \frac{أـه}{هـو} = = \frac{أـه}{سو}$$

$\frac{١٦}{٩}$ ٥

٦ ٤

$\frac{٢}{٣}$ ٣

$\frac{٤}{٣}$ ١

١٧- في الشكل المقابل :
 ل_١ // ل_٢ ، أ ب = ١ سم
 ، ب ج = ٢ سم ، ج ع = ٣ سم
 فبان : س ص = سم .

١٨ ٥ ١٩ ٦ ١٥ ٧ ١٦ ٨ ١ ٩

١٢- دائرة م، نقطه في مستويها بعيت م = 6 سم ، فم (أ) = سم
 تكون مساحة هذه الدائرة تساوي سم^٢

$\pi 49$ ٥ $\pi 36$ ٧ $\pi 6$ ٨ $\pi 4$ ٩

١٨- في الشكل المقابل :
 أ ب ممسان للدائرة م عند ب ، أ ب يقطع الدائرة في
 جه ، ج على الترتيب حيث م ج = ٣٠
 $\angle (ب ج) = \angle (س ج) = ٣٠$
 فان : س =

٧٥ ٥ ٦٠ ٧ ٤٠ ٨ ٢٠ ٩

٣٦) في الشكل المقابل :

إذا كان \overline{HM} يُنصف $\triangle ABC$

فإن طول $HM = \dots \text{ سم}$

$\sqrt{1576}$ ٥

٦٠ ٧

$\sqrt{157}$ ٨

١٠ ١

٣٧) في الشكل المقابل :

$s = \dots$

٦ ٥

٤ ٧

٥ ٩

٦ ١

٣٨) في الشكل المقابل :

AD يُنصف $\triangle ABC$

فإذا كان $AB = 6 \text{ سم}$, $AC = 4 \text{ سم}$

$BC = 5 \text{ سم}$

فإن $CD = \dots$

٤ ٥

٣ ٧

٢ ٩

١ ١

انتهت الأسئلة

المحافظة: الدقهلية	امتحانات النقل ٢٠٢٢/٢٠٢٢ م	المادة: الرياضيات
إدارة أجا التعليمية	الصف الأول الثانوي	الزمن: ثلاثة ساعات مع الإلكتروني
توجيه الرياضيات	الفصل الدراسي الأول يناير ٢٠٢٣ م	أسئلة المقال
الرقم السري	المدرسة: اسم الطالب: رقم الجلوس:

الرقم السري

.....
.....

م١ : إذا كان L, M هما جذراً المعادلة $x^3 - 1 = 0$. كون المعادلة التربيعية التي جذراها $\frac{L}{M}, \frac{M}{L}$

م٢ : في الشكل المقابل

$$ABCD = \{M\} , DCM , \text{ و } MDC$$

$AM // BC // DC$ أوجد طول كل من : MN ، AM

العادة : الرياضيات

الامتحان : ورقي

الزمن : ثلاثة ساعات مع أسللة العقال

امتحان النقل للصف الأول الثانوي

الفصل الدراسي الأول يناير ٢٠٢٣ م

لعام الدراسي ٢٠٢٢ / ٢٠٢٣ م

محافظة المغربية

ادارة اجا التعليمية

توجيه الرياضيات

أجب عن جميع الأسئلة التالية

$t = -1$

يسمح باستخدام الآلة الحاسبة

اختر الإجابة الصحيحة من بين الإجابات المعلوطة في كل معايير:

١- اذا كانت $s + t = t^2 + s^2 - 4$ فلن $s + s$ { ٠ ٢ ٢ ٠ }

٢- اذا كانت احد جذري المعادلة $s^2 + s + k + l = 1$ معكوسا ضربا لجذر الآخر فلن $k =$ { ١ ± ١ - ١ }

٣- إذا كان احد جذري المعادلة $(1-s)s + (s-m)s + (m-1) = 0$ معكوسا جمعيا لجذر الآخر فلن: $\frac{1}{1-s} = \frac{1}{m-1}$ { ١ ٠ ١ - ١ }

٤- الزاوية التي قياسها 85° تكافي في الوضع القياسى الزاوية التي قياسها:

$\frac{1}{4}\pi$ $\frac{5}{4}\pi$ $\frac{2}{4}\pi$ $\frac{7}{4}\pi$ { }

٥- إذا كان قياس الزاوية المركزية في دائرة يساوي 105° وتحصر قوسا طوله $\frac{7}{3}\pi$ سم فلن طول قطرها يساوي .. سم { ٨ ٢ ١٠ }

٦- مضلعان متشابهان النسبة بين طولي ضلعين متناظرين فيما بينهما ٢؛ وكان محيط الأصغر ١٥ سم فلن محيط الأكبر = ... سم { ٨٠ ٢٠ ٤٠ }

٧- في الشكل المقابل :-

$ق(\hat{C}) = ق(\omega \hat{H}M) = 90^\circ$ $س = س = 2 = س = 5$ سم $م = 5$ سم

فلن $م =$ سم { ٨ ٧ ٦ }

٨- في الشكل المقابل ω قطعة مماسة للدائرة $AB = 4$ سم ، نق = 6 سم

فلن $م =$ سم { ٦ ٤ ٨ }

١٩- إذا كان L, M هما جذراً المعادلة $S^2 - 5S + 4 = 0$ ، فلن $L + M = \{ 24, 19, 9, 20 \}$

١٠- أبسط صورة للعدد التخليلي T^4 هي { ١ - ١ - ت - ت }

١١- جذراً المعادلة $S(N - 2) = 0$ يكونان { ٢٠٠ - ٥ } حقيقيان متساويان حقيقيان مختلفان مركبان غير حقيقيان

١٢- قيمة المقدار: حتا $120^\circ + 150^\circ + 220^\circ + 140^\circ = 610^\circ$ [٢ - ١ - ١ - ٢]

١٣- إذا كانت: حتا $\left(\frac{10 + \theta}{2} \right) = \left(\frac{20 + \theta}{2} \right)$ حيث $90^\circ > \theta \geq 0^\circ$ فلن $\theta =$

{ ٦٠ ٤٥ ٤٥ ٦٠ ٢٠ ١٥ ١٥ ٥ ٥ }

١٤- مُضلعان متشابهان مساحتاهما 100 سم^2 ، 64 سم^2 فإذا كان محيط الأول 10 سم فلن محيط الثاني = سم.

{ ٥٤ ٤٨ ٤٢ ٤٠ }

١٥- في الشكل المقابل: سأ معاشرة للدائرة عند أحیث سأ - ١٥ اسم فإذا كان سب - ٩ سم فلن طول نصف

قطر الدائرة = { ١٥ ١٠ ٩ ٨ }

١٦- في الشكل المقابل أو ينصف سأ، سأ = ١٥ سم، أه = ٩ سم، ده = ٦ سم

يكون طول آه = { ٦٧٦ ٦٧٥ ٦٧٤ ٦٧٣ }

١٧- في الشكل المقابل إذا كان أو \parallel سص \parallel ده فلن اس = سم

{ ٤ ١٦ ٢ ٢٢ }

١٨- في الشكل المقابل إذا كان $\angle A = 70^\circ$ ، $\angle B = 120^\circ$ فلنجد $\angle C$

$$11 - \text{الدالة } D(D(s)) = s^2 - 5s + 6 \text{ تكون موجبة في الفترة } (4 - \sqrt{5}, 4 + \sqrt{5}).$$

٢٠- مجموعة حل المباينة $s \geq 11s + 2$ في \mathbb{Z} هي []

٢١- إذا كان $\theta = \frac{1}{\sqrt{2}}$ فإن θ ينتمي إلى $\circ < \theta < \dots$

٢٢. مدى الدالة D : $D(\theta) = \theta$ هو حاصل ضرب θ في $[1, \infty)$ ، أي $[1, \infty) \subset D(\theta)$.

٢٢- في الشكل المقابل \overline{AB} ، \overline{CD} وتران متقاطعان في الدائرة في نقطته هـ و كان $\angle A = \alpha$ ، $\angle C = \beta$ ، $\angle D = \gamma$

٤- في الشكل المقابل، $\text{أو} = 4\text{ سم}$ ، $\text{أو} = 6\text{ سم}$ ، تكون مساحة $\Delta(\text{أوأه}) = 6\text{ سم}^2$ تساوي سم^2

٤٥) إذا كان $\triangle ABC \sim \triangle PQR$ وكان $AB = 3\text{ سم}$ ، $PQ = 6\text{ سم}$ ، $QR = 8\text{ سم}$ فلن $BC =$... سم

٢٦- في الشكل المقابل اذا كان $\angle A$ ، $\angle B$ قطعان مماسان للدائرة ، $\angle A = 60^\circ$ فلن $\angle B$ (م) الاكبر = ... ن

٢٧- إذا كان بعد نقطة عن مركز دائرة يساوي ٦ سم وقوع هذه النقطة بالنسبة للدائرة تساوي ١١٢ . يكون طول نصف قطر الدائرة هو سم (١٥) ٨ ١٢ ١٠

انتهت الأسئلة

إذاعة طهطا

محافظة سوهاج

١

أولاً : اختر الإجابة الصحيحة من بين الإجابات المعلقة :

إذا كان جذراً للمعادلة : $s^2 - (k + 8)s - 9 = 0$ كل منها معكوس جمعي للأخر فان : $k =$

(ج) ٩

(د) ٨

(هـ) ٩

(ز) ٨

 $= \frac{1}{(t+2)(t+3)}$ (ج) $16 - t$ (د) $t + 4 + 16$ (هـ) $16t$

(ز) ١٦

إذا كان : L^2 ل مما جذراً للمعادلة : $s^2 + s + s + 27 = 0$ فإن : $s =$

(ج) ٦

(د) ٩

(هـ) ١٢

(ز) $12 - t$ إشارة الدالة : $D(s) = 3 - s$ تكون سالبة عندما $s \in$] $\infty, 3$ [] $3, \infty$ [] $3, \infty$ [(ز)] $3, \infty$ [إذا كان جذراً للمعادلة : $s^2 - ks + 25 = 0$ مما م، م فإن : $k =$ (ج) $5 \pm$

(د) ١٠

(هـ) $10 \pm$ (ز) $10 -$ إذا كان : $s^2 + s + s + s = 0$ ، s م مع و كان الجذران متراافقان

فإن :

(ج) $s^2 - 14 < 0$ (د) $s^2 - 14 > 0$ مجموعة حل المتباينة : $s^2 - 9 > 0$ في مع هي] $3 - , \infty$ [] $9 - , \infty$ [] $3, 3 -$ [(ز)] $3, 3 -$ [$\therefore s = \frac{1+s}{1+s} = 1 - 3t$ فإن : $1 + s =$

(ج) ٢٥

(د) ٧

(هـ) ٧

(ز) ٧

أصغر قياس موجب للزاوية التي قياسها 520°

(ج) ١٧٠

(د) ١٩٠

(هـ) ١٠

(ز) $170 -$ الحل العام للمعادلة : $\text{ظا } 04 = \text{ظتا } 02$ هو(ج) $760 + 90$ (د) $730 + 15$ (هـ) $730 - 15$ (ز) $760 + 15$

١٨ في الشكل المقابل :

قيمة $s =$

(٤) ٥
(٥) ٦

١٩ إذا كان بعد نقطة عن مركز دائرة يساوى ٢٥ سم وقوه هذه النقطة بالنسبة إلى الدائرة يساوى ٤٠٠
فإن طول نصف قطر هذه الدائرة = سم

(٤) ١٥

(٥) ٢٥

(٦) ٣٠

(٧) ٤٠

٢٠ في الشكل المقابل :

قيمة $s =$

(٤) ٥
(٥) ٦

٢١ في الشكل المقابل :

إذا كان : $A = 13^\circ$ ، مساحة ($\triangle ADE$) = ١٢ سم^٢

فإن : مساحة الجزء المظلل = سم^٢

(٤) ١٢
(٥) ٤٨

(٦) ٩٦

٢٢ في الشكل المقابل :

٢٣ معان للدائرة عدد

فإن : طول $\overline{CD} =$ سم

(٤) ٥
(٥) ٧

(٦) ٩

٢٤ في الشكل المقابل :

$A \parallel CD$ و $A = ١٢٦^\circ$

، $B = ١٥$ سم

فإن : $C =$ سم

(٤) ٦
(٥) ٩

(٦) ١٠

١٤ في الشكل المقابل :

$$\text{م} + \text{م} = \dots \dots \dots$$

$$12 (ج) 5$$

$$14 (ج) 7$$

١٥ في الشكل المقابل :

$$\text{م} = \dots \dots \dots$$

$$6 (ج) 6$$

$$346 (ج) 3$$

١٦ في الشكل المقابل :

$$25^\circ =$$

$$\text{فإن} : (\text{م}, \text{م}) = \dots \dots \dots$$

$$6 (ج) 60$$

$$115 (ج) 65$$

١٧ في الشكل المقابل :

$$\overline{هـ} \parallel \overline{وـ} \text{ ، مساحة } (\triangle \text{ هـ وـ}) = 4 \text{ سم}^2$$

$$\text{، مساحة } (\triangle \text{ مـ هـ}) = 9 \text{ سم}^2 \text{ ، وـ} = 4 \cdot 5 =$$

$$\text{فإن} : 5 =$$

$$12 (ج) 12$$

$$6 (ج) 8$$

١٨ : الأسئلة المقابلة : أجب عن السؤالين الآتيين :

١ إذا كان لـ ٦ مـ هـ جذراً المعادلة : $\text{م}^2 - 5\text{م} + 3 = 0$ كون المعادلة التي جذراها : ٢٦

٢ في الشكل المقابل : ٤ بـ هـ مثلث فيه :

$$\text{أ} = 8 \text{ سم}^2, \text{ بـ} = 6 \text{ سم}^2, \text{ بـ} = 7 \text{ سم}$$

، $\overline{أـ بـ}$ ينصف $\angle \text{ بـ هـ}$ ويقطع $\overline{\text{بـ هـ}}$ في دـ

أوجد : طول كل من $\overline{\text{بـ دـ}}$ ، $\overline{\text{بـ هـ}}$

إذاعة أبو طبع

محافظة أسيوط

١

أولاً : اختر الإجابة الصحيحة من بين الإجابات المعلقة :

(٤) $\frac{45}{4}$

(٢) ٢٧

(٣) $\frac{8}{3}$

(٤) ٤٠

١ مضلعين متشابهان النسبة بين طول ضلعين متناظرين فيما ٣ : ٤ فإذا كان محيط المضلع الأصغر ١٥ سم فإن محيط المضلع الأكبر = سم

(٥) ٦٠

(٦) ٩٠

(٧) ١٨٠

(٨) ٣٦٠

نـ (١) ١٥ هـ = نـ (٢) ١٦ هـ = ٤ سم

٦ هـ = ٥ سم ، هـ = ٣ سم

فـ ان : سـ = سم

(٩) ٥ (١٠) ٦

(١١) ٧ (١٢) ٤

ـ موافق العدد : (٨-) هو

(٥) ٨

(٦) ٨ -

(٧) -٨٨ تـ

(٨) ٨ تـ

ـ في الشكل المقابل :

ـ هـ // سـ

ـ فـ ان : $\frac{ـ هـ}{ـ سـ} = \frac{ـ دـ (١٤ هـ)}{ـ سـ (٥ اسـ)}$

(٩) $\frac{16}{81}$ (١٠) $\frac{16}{65}$

(١١) $\frac{16}{11}$ (١٢) $\frac{81}{16}$

٦) إذا كان : $\sin \theta = \frac{3}{5}$ فإن : جتا $(\theta - 270^\circ)$ = ٧

(ج) $-\frac{4}{5}$

(د) $-\frac{3}{5}$

(ه) $\frac{2}{5}$

(ب) $\frac{3}{5}$

(ج) ١٢ ت

(د) ١٢

(ه) ٣

(ب) صفر

٩) في الشكل المقابل :

$\overline{AB} \parallel \overline{CD} = \{و\}$

١٠) $\alpha = \text{ظاهر ظا}\theta$, $\beta = \text{ظبا}\theta$, $\gamma = \text{مساء}\theta$, $\delta = \text{مس}\theta$

س = س

فإن : س = س

(ج) ١٠

(ب) ٥

(ه) $\frac{27}{210}$

(د) $\frac{27}{4}$

١١) إذا كان الضلع النهائي للزاوية θ (في وضعها القياسى) يقطع دائرة الوحدة في النقطة $(-\frac{4}{5}, \frac{3}{5})$

فإن : $\text{ظبا}\theta =$

(ج) -75°

(د) $-\frac{4}{3}$

(ه) $-\frac{5}{3}$

(ب) $\frac{5}{4}$

١٢) إذا كان جذرا المعادلة : $s^2 - 7s + 12 = 0$ حقيقيان متساويان

فإن $s =$

(ج) $100 \pm$

(د) $10 \pm$

(ه) -10

(ب) ١٠

١٣) في الشكل المقابل :

$a(12ab) = a(12ab)$, $12ab = 12ab$

$b^2a = 8a$

$ab^2 = 6b$, $ab^2 = 6b$

فإن : $a =$

(ج) ٢٠

(د) ١٨

(ه) ١٦

(ب) ١٢

١٤) إذا كان حاصل ضرب جذري المعادلة : $(k-2)s^2 - 6s + 12 = 0$ يساوى ٣

فإن : $k =$

(ج) ٣

(د) ٦

(ه) ٤

(ب) صفر

٢١ في الشكل المقابل :

$$\text{أ) ينصف د من امتداده ، ب) } 8 = 4 + 6 \text{ ، ج) } 6 = 4 + 8 \text{ ، د) } 6 = 4 + 6$$

$$\text{ب) } 6 = 6 \text{ فلان : ج) } 6 = 6 \text{ ، د) } 6 = 6$$

(ج)

(د)

(ج)

(د)

٢٢ إذا كان عدد مرات تقاطع منعطف الدالة د مع محور السينات حيث د(س) = جهاز

$$\text{يساوي ٩ مرات في الفترة } [\pi/2, 0] \text{ فلان : ج) } 1 = 1 \text{ ، د) } 1 = 1$$

(ج)

(د)

(ج)

(د)

٢٣ في الشكل المقابل :

$$\text{أ) } DE // BC \text{ ، ج) } 6 = 3 + 3 \text{ ، د) } 6 = 6 + 0 \text{ ، ب) } 6 = 6 + 6$$

$$\text{ف LAN : ج) } 6 = (6+6) \text{ ، د) } 6 = 6 + 6$$

(ج)

(د)

(ج)

(د)

٢٤ إذا كان : ج) ل ، د) ل - ل مما جذرا المعادلة : س^٢ + ك - س = ٦ ، فلان : ك =

(ج)

(د)

(ج)

(د)

٢٥ في الشكل المقابل :

$$\text{أ) } DE // BC \text{ ، ج) } 6 = 3 + 3 \text{ ، د) } 6 = 6 + 0 \text{ ، ب) } 6 = 6 + 6$$

$$\text{ف LAN : ج) } 6 = (6+6) \text{ ، د) } 6 = 6 + 6$$

(ج)

(د)

(ج)

(د)

٢٦ مجموعة حل المعادلة : جهاز + جهاز $\theta = ٢٧٠^\circ - \theta$ حيث $\theta \in [0, \pi]$ هي

(ج)

(د)

(ج)

(د)

٤٧

$$f(1-x) = f(1-x), \quad x = 1$$

فَإِنْ : صَلَوةً = سُمْ

۴ (۱)
۱۰ (۲)

نادي : الأستاذة المقالة

أجب عن المسؤولين الآتيين :

١ في الشكل المقابل :

$$\sqrt{1} = \pm 1, \sqrt{-1} = \pm i, \sqrt{-9} = \pm 3i$$

١٦٤، نصف آن، ١٥

ایشت ان : محمد یا صد لام بعده

٢ إذا كان $L^2 M$ هما جذراً المعادلة : $s^2 - 7s + 12 = 0$. كون المعادلة التي جذراها : $L^2 M$

١١ إذا كان الضلع البهان لزاوية قياسها θ والمرسمة في الوضع الغيابي يقطع دائرة الوحدة في

النقطة $(\frac{4}{5}, \frac{3}{5})$ فإن قيمة $\theta =$

(ج) $\frac{4}{3}$

(د) $\frac{3}{4}$

(هـ) $\frac{2}{5}$

(ز) $\frac{4}{5}$

١٢ إذا كان: $\sin \alpha = \cos \beta$ فإن: $\alpha =$

(ج) ٢

(د) -١

(هـ) ٢

(ز) ١

$\tan \alpha =$

(د) $\tan 73^\circ$

(د) $\tan 73^\circ$

(د) $\tan 73^\circ$

(د) $\tan 73^\circ$

١٣ مدى الدالة $d(s) = \sin s$ هو

[١، ٥]

[٥، ١]

[١، ٥]

[١، ٥]

١٤ إذا كان: k معامل نشابة المضلع s فإن المضلع s هو نكير للمضلع s

إذا كانت: قيمة $k =$

(ج) صفر

(د) ٠٦٧

(د) ١

(د) ١٩٧

١٥ إذا كان المضلع L من s من نوع وكان: $m = 8$, $n = 6$, $p = 7$ و كان محبيط

المضلع L $m = 48$ سم فإن محبيط المضلع s من نوع =

(ج) ١٨

(د) ٢٤

(د) ١٢

(د) ٣٦

١٦ مثلثان متاشابيان النسبة بين طول ارتفاعين متناظرين فيما $7 : 11$: $11 : 7$ فإن النسبة بين مساحتهما =

(ج) $121 : 49$

(د) $7 : 11$

(د) $121 : 49$

(د) $11 : 7$

١٧ في الشكل المقابل:

$\Delta ABC \sim \Delta AED$

قيمة $s =$

(ج) ٢

(د) ٣

(د) ٤

(د) ٥

١٦ إذا كان المضلع $A B C D$ به المضلع $S M N L$ فإن : $A B \times C D = S M \times N L$

(٤) صع

(٥) بسي

(٦) سهل

(٧) سهل

١٧ في الشكل المقابل :

 $\overline{A B}$ مماس للدائرةإذا كان : $A B = 6 \text{ سم}$, $C D = 4 \text{ سم}$ أوجد : $S M = \dots \text{ سم}$

٨(٥)

٩(٥)

١٠(٦)

١١(٧)

١٢ في الشكل المقابل :

المضلع $A B C D$ به المضلع $H G F E$ $B M = 6 \text{ سم}$, $E N = 9 \text{ سم}$, $H O = 5 \text{ سم}$ فإن : قيمة $S = \dots$

٦(٥)

٧(٥)

٣(٦)

١٣(٧)

١٤ في الشكل المقابل :

إذا كان : $A D \parallel H O \parallel B M$ $H O = 6 \text{ سم}$, $M D = 4 \text{ سم}$ فإن : $S = \dots$

٢٩٥(٤)

٣(٤)

٢٩٥(٥)

١٥(٦)

١٦ في الشكل الم مقابل :

 $D H \parallel B M$ فإن : $S = \dots$

٦(٤)

٧(٥)

٨(٥)

١٤ في الشكل المقابل :

أ) مم مثلث فيه \overline{AD} منصف زاوية $\angle B$ فإن : طول $\overline{AD} = \dots \dots \dots \text{سم}$

(أ) ٩ (ب) ٨

(ج) ١١ (د) ١٠

١٥ دائرة طول نصف قطرها ١٢ سم ، ب) نقطة تبعد عن مركز الدائرة ١٣ سم

فإن : $r = \dots \dots \dots \text{سم}$

٢٥ (ج)

٢٥ - (د)

١ - (ج)

١٢ (د)

١٦ في الشكل المقابل :

أ) \overline{AD} منصف $\angle A$ الخارجية للمثلث ABC فإن : قيمة $x = \dots \dots \dots$

١٥ (ج) ٢٠ (د)

١٠ (ه) ١٢ (د)

١٧ في الشكل المقابل :

إذا كان : $m(\angle H) = 40^\circ$ ، $m(\widehat{MS}) = 50^\circ$ فإن : قياس القوس $\overline{AS} = \dots \dots \dots$ (أ) 100° (ب) 120° (ج) 130° (د) 110°

مقابل

١ كون المعادلة التربيعية التي جذريها $\frac{2}{3}$ ، $\frac{2}{3}$ ، $\frac{2}{3}$ ٢ في الشكل المقابل : \overline{AB} ، \overline{CD} وتران في الدائرة بحيث $m(\overline{AB}) = \{x\}$ ، $m(\widehat{CD}) = 75^\circ$ ، $m(\widehat{CB}) = 95^\circ$ أوجد : $m(\angle ACD)$

إذاعة يا

محافظة بنى سويف

٤

اختر الإجابة الصحيحة من بين الإجابات المعلقة :

..... إشارة : $D(S) = 6S$ تكون سالبة في الفترة

[١] [٦٠٠ - ٦٠٠] (٢) [٦٠٠ - ٦٠٠] (٣) [٦٠٠ - ٦٠٠] (٤)

[٥] في الشكل المقابل : $r(ADE) = r(ADC)$ فإن : $A = \dots \text{ سم}$

(١) ٨ (٢) ٥
(٣) ٦ (٤) ١٠

[٦] إذا كانت : θ قياس زاوية رباعية في الوضع القباسي ، $180^\circ < \theta < 360^\circ$

فإن الضلع النهائي يقع

(١) في الربع الأول (٢) على محور الصداقات

(٣) في الربع الثاني (٤) على محور المسينات

[٧] في الشكل المقابل :

 $BC = 5 \text{ سم} , AL = 4 \text{ سم}$ فإن : $BL = \dots$

(١) ٤٠ (٢) ٥ (٣) ٣٦ (٤) ٦

[٨] إشارة الدالة : $D(S) = S^2 - 6S + 9$ موجبة لكل $S \in \dots$

(١) $\{x - 6\}$ (٢) $\{x - 3\}$ (٣) $\{x - 2\}$ (٤) $\{x - 1\}$

[٩] دائريتان النسبة بين طول نصف قطريهما $3 : 5$ ومساحة سطح الصغرى = 27 سم^2

فإن مساحة سطح الدائرة الكبرى =

(١) ٥٠ (٢) ٧٥ (٣) ٤٥ (٤) ٣٠

[١٠] $34S + T = T^2 + 64$ حيث $T = 1$ فإن : $S - T = \dots$

(١) $2 + 3T$ (٢) $5T$ (٣) 5 (٤) 3

٨ في الشكل المقابل :

$$\text{أـل} = 4 \text{ سم} , \text{ لـع} = 6 \text{ سم} , \text{ اـع} = 8 \text{ سم}$$

فإن : س = سم

$$10 \quad 9 \quad (ج)$$

$$14 \quad 6 \quad (د)$$

٩ في الشكل المقابل :

عـل معاـسـة لـدـائـرـة عـنـدـ لـفـان فـان

$$(ج) \Delta \text{ عـلـل} \sim \Delta \text{ عـلـس}$$

$$(د) \Delta \text{ عـلـل} \sim \Delta \text{ عـلـع}$$

$$(هـ) \Delta \text{ عـلـل} \sim \Delta \text{ سـلـل}$$

$$(وـ) \Delta \text{ عـلـل} \sim \Delta \text{ حـلـلـصـلـل}$$

١٠ في الشكل المقابل

$$\text{إذا كان : سـص} = 4 \text{ سم} , \text{ صـع} = 2 \text{ سم}$$

$$\text{هـل} = 5 \text{ سم} , \text{ لـس} = 3 \text{ سم}$$

$$\text{فـان} : 3 = \text{.....}$$

$$(ج) 15$$

$$(د) 5$$

$$(هـ) 4$$

$$(وـ) 3$$

١١ إذا كان العدد التخيلي t حيث $t^2 = -1$ فإن(ج) المعکوس الجمعي للعدد t هو $-t$ فقط

(د) كل ما سبق صحيح

١٢ القياس الدائري لزاوية مركزية تحصر قوساً طوله 6 سم في دائرة محاطها 4 π سم هو

$$(ج) 12$$

$$(د) 24$$

$$(هـ) 3$$

$$\frac{3}{2} (وـ)$$

١٣ كل مما يلى صحيحًا ماعدا

(أ) جميع المثلثات المتطابقة منتشاية فيما بينها .
 (ب) جميع المستويات منتشاية فيما بينها .
 (ج) جميع المثلثات المتساوية الأضلاع منتشاية فيما بينها .

١٤ القوس الذى قياسها $\frac{3}{4}\pi$ تقع في الربع

(أ) الأول (ب) الثاني (ج) الثالث (د) الرابع

١٥ القوس الذى طوله 5π سم في دائرة طول نصف قطرها ١٥ سم يقابل زاوية مركبة قياسها

(أ) ١٨٠ (ب) ٩٠ (ج) ٣٠ (د) ٦٠

١٦ في الشكل المقابل

طول $\widehat{صb}$ = طول $\widehat{غd}$

$$6 \text{ سم} = ٢ \text{ سم} , ١٥ = ٦ \text{ سم}$$

فإن : $s = \dots \text{ سم}$

(أ) ٦ (ب) ٥ (ج) ٤ (د) ٣

١٧ يكون للمعادلة : $2s^2 - 4s + m = 0$ جذرين حقيقيين مختلفين إذا كانت

(أ) $m = 2$ (ب) $2 > m$ (ج) $2 < m$ (د) $m = 8$

١٨ في الشكل المقابل :

إذا كان مساحة $\triangle ab$ = ١٥ سمفإن : مساحة الشكل $abcd$ = ... سم

(أ) ٣٠ (ب) ٤٠ (ج) ٥٠ (د) ٦٠

١٩ إذا كان m جذراً للمعادلة : $s^2 - 5s + 7 = 0$ فإن قيمة المقدار : $m^2 - 7 + 5m =$

(أ) ٥ (ب) ٧ (ج) ١٠ (د) صفر

٢٠ إذا كان المثلثان المتشابهان متطابقين فإن معامل التشابه بينهما =

(أ) ١٢٥٪ (ب) ١٠٠٪ (ج) ٥٠٪ (د) صفر

١٦) قيمة $\frac{3}{t+1} + \frac{3}{1-t}$ في أبسط صورة ٣٢

(أ) t (ب) $1-t$ (ج) t (د) $1-t$

٢٢) في الشكل المقابل :

إذا كان : $MC = 3 \text{ سم} , CM = 4 \text{ سم}$

فإن : $CM(s) =$

٤٩) (أ)

٦٥) (ب)

١٦) (ج)

٣٣) (د)

إذا كان : $\sin \theta = \cos(90^\circ - \theta)$ حيث θ زاوية حادة فإن $\theta =$ ٣٣

٩٠) (أ)

٣٠) (ب)

٤٥) (ج)

٤٠) (د)

إذا كان أحد جذري المعادلة : $(s-l)^2 + 4s = 0$ معكوس جمعى للأخر فإن : $l =$ ٤٤

٦) (أ)

٤) (ب)

٣) (ج)

٢) (د)

٢٥) في الشكل المقابل :

١٧) مثلث فيه \overline{AC} ينصف $\angle B$ ٢١

$SC = 5 \text{ سم} , BC = 10 \text{ سم} , AC = 4 \text{ سم}$

فإن : $AS =$ ٣

١٥) (أ)

١٣) (ب)

١٢) (ج)

١٠) (د)

إذا كانت : $\angle SAS = \frac{3}{5}$ حيث s أكبر زاوية موجبة فإن : $\sin(180^\circ + s) + \cos(150^\circ) =$ ٣١

١٣) (أ)

١١) (ب)

١) - (ج)

٣) - (د)

٢٧) في الشكل المقابل :

إذا كان : $\angle AOB = 145^\circ$ ، $\angle ACB = s$ ٥

فإن : $\angle ADB = 10^\circ$ فإن : قيمة $s =$ ٨

٧٠) (أ)

٢٠٥) (ب)

١٥) (ج)

٣٠) (د)

مقالات

أجب عن السؤالين الآتيين

١) بـ $\overline{م}$ شكل رباعي دائري تقاطع قطراء في $\overline{هـ}$ ، $\overline{هـ} // \overline{مـ}$ ويقطع $\overline{بـ}$

$\overline{فـ} // \overline{مـ}$ ويقطع $\overline{أـ}$ في $\overline{مـ}$ أثبت أن : $\overline{وـ} // \overline{سـ}$

٢) كون المعادلة التربيعية التي جذراها : $5 + t$ ، $5 - t$ حيث $t = -1$

توجيه الرياضيات

محافظة البحيرة

٥

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

١ إذا كان $\Delta ABC \sim \Delta EDF$ ، وكان : $AB = 5\text{ cm}$ ، $DE = (s+1)\text{ cm}$ ، مساحة $\Delta ABC = (s+2)^2\text{ cm}^2$ ، مساحة $\Delta EDF = (s+7)^2\text{ cm}^2$ فإن : $s = \dots \text{ cm}$

(١) ٤ (٢) ٣ (٣) ٢ (٤) ١

٥ إذا كان : $(1+t)^3(1-t)^3 = s + st$ فإن : $s + st = \dots$

(١) ٤ (٢) ٣ (٣) ٢ (٤) ١

٦ إذا كان النسبة بين قياسات زوايا شكل رباعي هي $6:9:4:5$ فإن قياس أصغر زواياه

يساوي

(١) $\frac{\pi}{3}$ (٢) $\frac{\pi}{12}$ (٣) $\frac{\pi}{3}$ (٤) $\frac{\pi}{6}$

٧ في الشكل المقابل

: $\angle (2s) = \dots^\circ$

(١) ٣٠ (٢) ٤٥ (٣) ٦٠ (٤) ٥٠

٨ مُضلعان متشابهان النسبة بين محبيطهما $3:5$ ، ومجموع مساحتيهما 136 cm^2 فإن مساحة المضلع الأكبر cm^2

(١) ١٣٦ (٢) ١٠٠ (٣) ٣٦ (٤) ٢٥

٩ إذا كانت مجموعة حل المتباينة : $s^2 - 5s < 10$ هيفإن $s = \dots$

(١) ١٠ - (٢) -٢ (٣) ٢ (٤) ٥

إذا كان : $\text{جـا} \theta = \frac{4}{5}$ حيث $\theta \in [0^\circ, 90^\circ]$ فإن : $\text{ظـا}(\theta + 180^\circ) = ?$ ٦

(ج) $-\frac{4}{3}$

(ح) $\frac{4}{3}$

(ث) $-\frac{3}{4}$

(د) $\frac{3}{4}$

إذا كان طول نصف قطر الدائرة م يساوى ٣ سم ، وكانت النقطة A تقع في مستوى الدائرة

$$\text{حيث } M = 4 \text{ سم فإن : قـم}(A) = ?$$

٢٥-(ج)

٢٥-(ح)

٧-(ث)

٧-(د)

في الشكل المقابل : ٧

جميع العلاقات التالية صحيحة ماعدا

(ج) $\frac{AD}{AB} = \frac{AD}{BC}$

(د) $\frac{AD}{BC} = \frac{AD}{AC}$

(ح) $\frac{AD}{AC} = \frac{BC}{AC}$

(ث) $\frac{BC}{AC} = \frac{BC}{AD}$

إذا كان : $\text{جـا} \theta = \frac{9}{40}$ حيث $\theta \in [0^\circ, 180^\circ]$ ٨

$$\text{فإن قيمة المقدار : } = -\frac{(0^\circ - 90^\circ) + \text{جـا}(180^\circ - \theta)}{4 \cdot \text{قـتا}(270^\circ - \theta)}$$

(ج) $-\frac{7}{5}$

(ح) $-\frac{1}{5}$

(ث) $\frac{7}{5}$

(د) $\frac{1}{5}$

الدالة : $D(x) = 3 - 2x - \sin x$ تكون موجبة في الفترة ٩

$$[1, 2] - [2, 4] \quad (ج) \quad [1, 2] - [2, 4] \quad (ح) \quad [1, 2] - [2, 4] \quad (ث) \quad [1, 2] - [2, 4] \quad (د)$$

في الشكل المقابل ١٠

$\Delta ABC \sim \Delta AED$

$$\text{فإن : } \sin x = ?$$

(ج) $\frac{9}{2}$

(ح) $\frac{7}{2}$

(ث) $\frac{13}{2}$

(د) $\frac{11}{2}$

١٣ في الشكل المقابل :

$s = \dots$

١ (ج)
٢ (د)
٣ (ه)
٤ (ب)

إذا كان $s = 5$ أحد جذري المعادلة : $s^2 + bs = 4 + 2s$ ١٤

$b = \dots$

$\frac{29}{2} - (ج)$

$\frac{29}{2} - (د)$

٧ - (ج)

٧ (ج)

إذا كانت : $d(\theta) = 3$ حيث $\theta > 0$ فإن مدى الدالة d هو ١٥

[١، ١] - (ج)

[٣، ٠] - (د)

[٠، ٣] - (ج)

[٣، ٣] - (ج)

١٦ في الشكل المقابل :

$s - s = \dots$

٩ (ج)
٢٥ (د)
٤٥ (ج)

إذا كان L ، M جذري المعادلة : $s^2 + 10s + 20 = 0$ فإن $L - M = \dots$ ١٧

(ج) ٢٤

٢ - (د)

٢ (ج)

٢ صفر

١٨ في الشكل المقابل :

$s = \dots$

٥ (ج)
٨ (د)
٧ (ج)

١٩ في الشكل المقابل :

$s - s = \dots$

٤ (ج)
٧ (د)
٦ (ج)

م

٦ إذا كان قياس زاوية مركبة في دائرة يساوى 105° ، تحيصر قوساً طوله $\frac{\pi r}{3}$

فإن طول قطر الدائرة يساوى سم

١٠ (ج)

٨ (ج)

٦ (ج)

٤ (ج)

٧ إذا كان L^2 ، ل جذرى المعادلة : $s^2 + s - 8 = 0$

٢ (ج)

٢ (ج)

٦ (ج)

٦ (ج)

٩ في الشكل المقابل :

$$10h = \dots \text{ سم}$$

٥ (ج) ٦

٧ (ج) ٨

٩ إذا كان L^2 جذرى المعادلة : $s^2 - 11s + 9 = 0$

فإن القيمة المقدار : $2L^2 - 22L + 29$ تساوى

٦ (ج)

١١ (ج)

٨ (ج)

٨ (ج)

١٤ إذا كان : $2\sin\theta + 1 = 0$ حيث θ أكبر زاوية موجبة ، $\theta = 0$

$$\theta = \theta \dots$$

٣٠ (ج)

٤٤٠ (ج)

١٢٠ (ج)

٦٠ (ج)

١٥ في الشكل المقابل :

$$dh // \overline{BC} \quad \text{فإن : } s = \dots \text{ سم}$$

٣ (ج) ٤

٥ (ج) ٦

١٦ الدالة $d(s) = -8s - 4$ تكون سالبة في الفترة

$[4, 6] - [6, 8]$ (ج)

١٧ في الشكل المقابل :

$$\text{أ } \angle A = 60^\circ$$

$$\text{فإن } : \angle A = \dots \dots \dots \text{ م }$$

$$14) (ج) 13$$

$$15) (د) 16$$

مقالى

أجب عن السؤالين الآتيين

١) س صع مثلث قبه : س ص = ١٢ م ، س ع = ١٥ م ، ل ئ س ص

$$\text{بحيث } س ل = ٥ \text{ م} ، ئ س ع \text{ بحيث } س م = ٤ \text{ م}$$

أثبت أن $\Delta ABC \sim \Delta CBL$ لم أوجد النسبة بين مساحة سطح ΔABC إلى مساحة سطح
الشكل الرباعي $CLSU$

٢) إذا كان $L = 3$ م مما جذري المعادلة : $2s^2 - 7s + 6 = 0$ صفر

$$\text{فاوجد المعادلة التي جذراها } L = 4 \text{ ، } 4$$

إدارة تدرس دنهور

محافظة البحيرة

١

اختر الإجابة الصحيحة من بين الإجابات المعلقة :

١ أبسط صورة للعدد التخليلي -4^2 هي

(١) ت $(\text{ج}) -4$ $(\text{د}) -16$ $(\text{ه}) -1$ $(\text{ب}) 16$

إذا كان جذري المعادلة : $m s^2 - 5 = -3$ معكوس ضري لبعضهما البعضفإن : $m =$

(٢) ه $(\text{ج}) 5$ $(\text{د}) 2$ $(\text{ه}) -2$ $(\text{ب}) 5$

إذا كان جذري المعادلة : $s^2 - 4s + l = 0$ حقيقيان فإن $l =$

(٣) ب $[4, \infty)$ $(\text{ج}) [4, \infty)$ $(\text{ه}) [-4, \infty)$ $(\text{د}) (-4, \infty)$

إذا كان l ، m جذري المعادلة : $s^2 - 5s + 6 = 0$ حقيقيان فإن المعادلة التي جذرها $(l-m), (m-l)$ هي

(٤) ج $(\text{ج}) s^2 + 1 = 0$ $(\text{د}) s^2 - 1 = 0$ $(\text{ه}) s^2 - s = 0$ $(\text{ب}) s^2 + 2s + 25 = 0$

إذا كان : $a + b = t$ فإن : $a^2 + b^2 =$ t^2

(٥) ت $(\text{ج}) 1$ $(\text{د}) -1$ $(\text{ه}) 1$ $(\text{ب}) -t$

مجموعة حل المعادلة : $s^2 - 5s + 4 = 0$ في \mathbb{R} هي

(٦) ب $\{5, 0\}$ $(\text{ج}) \{0\}$ $(\text{ه}) \{5\}$ $(\text{د}) \{0, 5\}$

الدالة d حيث : $d(s) = (s-1)(s+3)$ تكون سالبة عند

(٧) ب $[1, 3]$ $(\text{ج}) [-1, 3]$ $(\text{ه}) [0, 3]$ $(\text{د}) [-3, 1]$

مجموعة حل المتباينة : $-s(s+3) > 0$ في \mathbb{R} هي

(٨) ج $\{3, 0\}$ $(\text{ج}) \{0, 3\}$ $(\text{ه}) \{0, 3\}$ $(\text{د}) \{0, 3\}$

الزاوية التي قياسها (-850°) تقع في الربع(٩) الأول (ج) الرابع (د) الثالث (ه) الثاني (ب) الرابع

١٤ في الدائرة التي طول قطرها ٤٤ سم يكون طول القوس المقابل للزاوية المحيطية التي قياسها 30° = سم

(٥) $\pi/4$

(٦) $\pi/3$

(٧) $\pi/2$

(٨) π

إذا كان : $\theta = 60^\circ$ جتا $\theta = 30^\circ$ حيث $0 < \theta < 90^\circ$ فإن $\theta =$

(٩) ٤٥

(٩) ٣٠

(١٠) ١٨

(١١) ١٥

أبسط صورة للمقدار : جتا $(180^\circ - \theta) + \text{جتا} (\theta + 90^\circ)$ =

(١٢) $2\sin\theta$

(١٣) $2\cos\theta$

(١٤) ٢

(١٥) صفر

إذا كان : $\theta = 120^\circ$ حيث θ أصغر قياس زاوية موجبة فإن $\theta =$

(١٦) 40°

(١٧) 126°

(١٨) 52°

(١٩) 36°

إذا كان الضلع النهائي للزاوية الموجبة θ في وضعها القيامي يقطع دائرة الوحدة في النقطة (-س، س) حيث س > 0 فإن ظا س =

(٢٠) ١

(٢١) $-\frac{1}{2\sqrt{2}}$

(٢٢) $\frac{1}{2\sqrt{2}}$

(٢٣) $\sqrt{\frac{1}{2}}$

١٥ في الشكل المقابل :

إذا كان $\text{لـ } ١ = \text{لـ } ٢ = \text{لـ } ٣ = ٦$ سم فإن $\text{سـ } ٤ =$ سم

$6 \times 5 = 30$ سم فإن $\text{سـ } ٥ =$ سم

(٢٤) ٩

(٢٥) ٦

(٢٦) ٤

إذا كان المضلع $A-B-C$ المضلع سـ صـ عـ لـ فإن : $أ \times ب \times ج = س \times ص \times ع \times ل$ = سـ مـ

(٢٧) 45°

(٢٨) 45°

(٢٩) 45°

(٣٠) ٧

(٣١) ٨

(٣٢) ٩

١٦ في الشكل المقابل : إذا كان : $\text{لـ } ١ = \text{لـ } ٢ = \text{لـ } ٣ = ٦$ سم فإن $\text{سـ } ٤ =$ سم

(٣٣) ٦

(٣٤) ٥

(٣٥) ٤

(٣٦) ٥

(٣٧) ٤

(٣٨) ٣

١٧ في الشكل المقابل :

إذا كان : $\overline{BC} \parallel \overline{DE}$ ، $BC = 6$ سم

، $BD = 4$ سم ، مساحة المثلث $\triangle BDC = 48$ سم^٢

فإن : مساحة $\triangle ABC = \dots\dots\dots\dots$ سم^٢

(٥) ٢٠

(٦) ٨

(٧) ١٠

(٨) ١٦

إذا كانت النسبة بين محيط مثلثين متشابهين هي $1:4$ فإن النسبة بين مساحتيهما =

(٩) ١٦:١

(١٠) ٨:١

(١١) ٤:١

(١٢) ٤:١

في الشكل المقابل :

إذا كان طول نصف قطر الدائرة ٣ = ٦ سم

، $CD = 3$ سم $\angle C = 60^\circ$

، $AB = 12$ = $2(AC)$ فإن : $AC = \dots\dots\dots\dots$ سم

(٩) ٦

(١٠) ٥

(١١) ٤

(١٢) ٣

إذا كان طول نصف قطر الدائرة ٣ = ٦ سم ، A نقطة في نفس المستوى حيث

$..... = 5$ سم فإن : $AC = (m) =$

(١٣) ١٦

(١٤) ٥

(١٥) ٤

(١٦) ٣

في الشكل المقابل :

$AD = 13$ سم ، $DB = 13$ سم حيث $AD = 3$ سم

، $AB = 9$ سم ، $AC = 6$ سم ، $CD = 5$ سم

، $CE = 4$ سم ، فإن : $AE = \dots\dots\dots\dots$ سم

(١٧) ٤

(١٨) ٦

(١٩) ٣

(٢٠) ٢

(٥)

(٣)

(٤)

(٦)

في الشكل المقابل :

إذا كان : $\overline{س} \parallel \overline{م}$ ، $\overline{س} \cap \overline{ب} = \{ن\}$ $س = ٩$ مم ، $س = ٨$ مم $س = ٩$ مم ، $س = ٨$ ممفإن $س =$ مم

(٩)

في الشكل المقابل :

إذا كان : $س = ٥$ مم ، $س = ٩$ مم

بنصف الزاوية الخارجية عند A

فإن : $س =$ مم

(٨)

(٧)

(٥)

(٤)

(٦)

(٩)

في الشكل المقابل :

إذا كان : $س = ٤$ ، $س = ٦$ فطعنان مماستان للدائرة $س =$ ° فإن : $س = ١٤٠$ °

٤٧ إذا كانت المسافة بين النقطة A ومركز الدائرة $M = 10$ سم وكانت قوة النقطة A بالنسبة للدائرة

تساوي ٦٤ سم فإن طول نصف قطر الدائرة = سم

(٥)

(٦)

(٧)

(٨)

مقالات

أجب عن السؤالين الآتيين

١) إذا كان : A ممكلاً رباعي فيه : $A = 6$ سم ، $B = 9$ سم ، $C = 6$ سم

$D = 4$ سم ، \overline{AC} ينصف $\angle A$ ، ويقطع \overline{BD} عند س

أثبت أن : \overline{HS} ينصف $\angle B$ و

٢) حدد الفترة التي فيها الدالة D حيث $D(s) = s^2 - 3s - 10$ موجية

إدارة فو

محافظة كفر الشيخ

اختر الإجابة الصحيحة من بين الإجابات المعلقة :

١ أبسط صورة للعدد التخليل t^4 هي

(١) t (٢) $-t$ (٣) t (٤) $-t$

٢ الزاوية التي قياسها 60° في الوضع القياسي تكالى، زاوية قياسها

(١) 420° (٢) 300° (٣) 240° (٤) 120°

٣ إذا كانت النسبة بين مساحتي مثلثين متشابهين $4 : 9$ وكان محيط المثلث الأكبر = 90 سم فإن محيط الأصغر = سم

(١) 30 (٢) 125 (٣) 180 (٤) 60

٤ إذا كان جذر المعادلة: $s^2 + 4s + k = 0$ حقيقين فإن :

(١) $k > 0$ (٢) $k < 0$ (٣) $k > 4$ (٤) $k = 0$

٥ قياس القوس الذي طوله $\pi/5$ في دائرة طول نصف قطرها 15 سم يكافئ زاوية مرکبة قياسها

(١) 12 (٢) 17 (٣) 16 (٤) 15

٦ إذا كان أحد جذري المعادلة: $s^2 - 3s + m = 0$ ضعف الجذر الآخر فإن : $m =$

فإن : $m =$

(١) 4 (٢) 2 (٣) -2 (٤) -4

٧ إذا كان : $\cot \theta = 2$ حيث θ قياس زاوية حادة موجبة فإن : قياس $\theta =$

(١) 60° (٢) 45° (٣) 30° (٤) 15°

٩ في الشكل المقابل :

$$\text{و } \angle = \angle = 3^{\circ} \text{ و } \angle = 5^{\circ} \\ \text{، } \angle (\text{لـ}) = \angle (\text{لـ}) = 90^{\circ}$$

فإن : $\angle = 10^{\circ}$

(٥)

(٦)

(٧)

١٠ المعادلة التربيعية التي جذراها : $2t - 4 = 0$ هي

(٨) $t = 4 + 0$

(٩) $t = 4 - 0$

(١٠) $t = 4 + 0$

(١١) $t = 4 - 0$

١١ الفيجة العظمى للدالة $d = 4t - 2$ هي

(١٢) $t > 0$

(١٣) $t < 1$

(١٤) $t > 1$

(١٥)

١٢ المضلعان المشابهان يكونان متطابقان إذا كان معامل التشابه k يحقق

(١٦) $k > 1$

(١٧) $k = 1$

(١٨) $k < 1$

(١٩) $k = \frac{1}{2}$

١٣ إشارة الدالة : $d(s) = 6 - 2s$ تكون موجبة عندما

(٢٠) $s > 3$

(٢١) $s < 3$

(٢٢) $s > 3$

(٢٣) $s < 3$

١٤ الحل العام للمعادلة : $5x^2 - 20 = 0$ هو حيث $x \in \mathbb{R}$

(٢٤) $\pi + \frac{\pi}{6}$

(٢٥) $\pi + \frac{\pi}{6}$

(٢٦) $\frac{\pi}{3} + \frac{\pi}{6}$

(٢٧) $\pi + \frac{\pi}{3}$

١٥ في الشكل المقابل :

(٢٨) $s + m + u =$

(٢٩) m

(٣٠) s

١٦ إذا كان : $s = -1$ أحد جذري المعادلة : $s^2 - 5s + k = 0$ فإن : $k =$

(٣١) ٣٦

(٣٢) -6

(٣٣) -36

(٣٤) ٦

١٧ في الشكل المقابل :

$\text{فم}(1) =$

$(1)(c) ٩$

$(2)(d) ٣٦$

١٨ في الشكل المقابل :

١٩ مماس للدائرة عند ب

$\text{فم}(\widehat{BO}) = ٣٠^\circ, \text{فم}(15) =$

$٣٠^\circ - \text{فان} : ٣ =$

٧٥ (٥)

٦٠ (٢)

٤٠ (٣)

٣٠ (١)

٢٩ في الشكل المقابل :

$\text{وه} // \text{بـ} \Rightarrow \text{بـ} = ٨ \text{ سم}, \text{وه} = ١٠ \text{ سم}$

$١٥ = ١٢ = ١٥ \text{ سم}, ٥ + (٥ + ٥) \text{ سم}$

$\text{فإن} : ٣ =$

١٢ (٥)

٧ (٢)

٥ (٣)

٤ (١)

٢٦ إذا كان أحد جذري المعادلة : $s^2 - (s-5)s + 5 = 0$ معكوساً جمعياً للأخر

$\text{فإن} : s =$

٥ (٥)

٣ (٢)

٣- (٣)

٥- (٤)

٢٧ إذا كانت θ في وضعها القياسي ، جما $\theta = \frac{3}{5}\pi$ حيث $\theta \in [\pi, \frac{\pi}{2}]$

$\text{فإن} : \text{ظا}(\theta + 90^\circ) =$

(٥) - $\frac{4}{3}$

(٢) - $\frac{3}{4}$

(٣) - $\frac{4}{3}$

(٤) - $\frac{3}{4}$

$$\text{أ) مماس } PA = \text{..... سم}$$

فإن: $PA = \text{..... سم}$

$$144 (ج) 63$$

$$\frac{9}{16} (د) 12$$

22 في الشكل المقابل :

أ) منصف خارجي لزاوية (١٥), $AD = \text{..... سم}$

فإن $AD = \text{..... سم}$

$$4 (ج) 3$$

$$8 (د) 6$$

٢٣ المنصف الخارجي لزاوية رأس المثلث المتساوي الساقين القاعدة

(ج) عمودي على

(د) يوازي

(ج) ينطبق على

(ه) ينصف

٤ مجموعة حل المتباينة: $x^2 + 16 < 8x$ هي **١٥**

$$(ج) x - [4, 4]$$

$$(د) [4, 4 -]$$

$$(ج) x - \{4\}$$

$$(ه) x$$

٢٤ في الشكل المقابل :

$$L_1 // L_2 // L_3, AB = 8 \text{ cm}, BC = 5 \text{ cm}, AC = 12 \text{ cm}$$

فإن: $\angle O = \text{..... }$

$$12 (ج) 3$$

$$10 (د) 4$$

١٧ في الشكل المقابل :

$$AB = 3x \text{ cm}, BC = 5x \text{ cm}, AC = 8x \text{ cm}$$

$$5x = 8x$$

$$\text{فإن: } x = \dots \text{ cm}$$

٥(٢)

٣(٢)

٦(٣)

مُقاول

أجب عن السؤالين الآتيين

١) إذا كان : L ، M جذري المعادلة : $x^2 - 5x + 7 = 0$

أوجد قيمة : $L^2 + M^2$

٢) في الشكل المقابل :

١) في مثلث فيه M نقطة تقاطع المتوسطات

$$MD \parallel BC \text{ و } MD = 44 \text{ cm}$$

أوجد : طول BC

إجابات محافظة سوهاج

١٤	٢٣	١٩	١١	٣٠	٩	٨	٧	٦	٥	٤	٣	٢	١
(٢)	(٣)	(٤)	(٥)	(٦)	(٧)	(٨)	(٩)	(٩)	(١٠)	(١١)	(١٢)	(١٣)	(١٤)
٢٧	٢٦	٢٥	٢٤	٢٣	٢٢	٢١	٢٠	١٩	١٨	١٧	١٦	١٥	١٤
(٣)	(٤)	(٥)	(٦)	(٧)	(٨)	(٩)	(٩)	(١٠)	(١١)	(١٢)	(١٣)	(١٤)	(١٥)

إجابة السؤال الثاني:

$$\boxed{1} \quad ٣ = م + ل \quad ، \quad ل = م - ٣$$

مجموع جذري المعادلة المطلوبة = $١٠ = ٥ \times ٢ = (م + ل) ٢ = ٣٢$ حاصل ضرب جذري المعادلة المطلوبة = $١٢ = ٣ \times ٤ = ٣٢ \times ل = ٣٤$ المعادلة هي $س - ١٠ = ١٢ + س$

$$\boxed{2} \quad \therefore ١٢ \leftarrow \text{ينصف } ل \quad \therefore \frac{١٢}{٢} = \frac{س - ٧}{٢}$$

$$\therefore ٥٦ = س - ٨ + س - ٦ \quad \therefore ٦٨ - ٥٦ = س - ٦ \quad \therefore \frac{٦}{٦} = \frac{س - ٧}{٦}$$

$$\therefore س - ٤ = ٤ - ٧ = س - ١٤ \quad \therefore س - ٤ = \frac{٥٦}{١٤} = ٤ \quad \therefore س = ٥٦$$

إجابات محافظة أسيوط

١٤	٢٣	٢٥	٣٠	٣٦	٤٩	٨	٧	١	٥	٤	٣	٢	١
(د)	(د)	(ب)	(د)										
٢٧	٢٦	٢٥	٢٤	٢٣	٢٢	٢١	٢٠	١٩	١٨	١٧	١٦	١٥	١٤
(س)	(س)	(د)	(د)	(د)	(د)	(س)	(س)	(س)	(س)	(س)	(د)	(د)	(د)

إجابة السؤال الثاني :

$$\text{ل} + \text{م} = \frac{3}{2} \quad \text{ل} - \text{م} = \frac{1}{4} \quad \therefore \text{ل} = \frac{\text{م}}{2}$$

$$\therefore \frac{\text{س}}{\text{م}} = \frac{\text{س}}{\text{ل}} = \frac{2}{3} \quad \therefore \text{س} = \frac{2\text{م}}{3} \quad \therefore \frac{3}{2} = \frac{9}{6} = \frac{3}{2} \quad \therefore \text{س} = \text{ل}$$

$$\text{ل} + \text{م} = 12 \quad , \quad \text{س} = 3 + 7 = 10$$

$$\begin{aligned} \text{مجموع جذري المعادلة المطلوبة} &= \text{ل}^2 + \text{م}^2 = (\text{ل} + \text{م})^2 - 2\text{ل}\text{م} = 12 \times 2 - 10 = 144 \\ \text{حاصل ضرب جذري المعادلة المطلوبة} &= \text{ل}^2 \times \text{م}^2 = (\text{ل} \times \text{م})^2 = 12 \times 2 = 144 \\ \text{المعادلة هي} \quad \text{س}^2 - 20\text{س} + 144 &= 0 \end{aligned}$$

مجاناً و ج未必اً

حمل الان

(3) ملائكة رمضان

الشـرم العـول

RaNia-Sayed

الامتحان التدريسي الأول

(٦ درجات)

السؤال الأول : اختر الاجابة الصحيحة من بين الاجابات المعلقة :

فإن : $k = \dots \dots$

٩ ٥

(١) إذا كان جذراً للمعادلة : $3s^2 - 6s + k = 0$ متساوين

٦ ٤

٢ ٣

٢ ١

(٢) الدالة $D: D(\theta) = 4\sin\theta$ دالة دورية ودورتها تساوي $\frac{\pi}{2}$ ٥ $\frac{\pi}{3}$ ٤ $\frac{\pi}{2}$ ٣ $\frac{\pi}{3}$ ١

(٣) في الشكل المقابل :

س = سم

٦ ٥

٤ ١

٧ ٥

٨ ٣

(٤) إشارة الدالة D حيث $D(s) = -\frac{1}{3}s$ تكون غير موجبة عندما $s \in \dots \dots$

]٥٠, ٦[٥

]٦, ٥٠[- ٤

]٦, ٥٠[٣

]٥٠, ٦[١

فإن : $\theta = \dots \dots$ (٥) إذا كان : $\sin\theta = 1$ ، $\cos\theta = 0$ صفر $\frac{\pi}{2}$ ٥ π ٤ $\frac{\pi}{2}$ ٣ $\frac{\pi}{2}$ ١

(٦ درجات)

السؤال الثاني : اختر الاجابة الصحيحة من بين الاجابات المعلقة :

(١) إذا كان : $2s - 3t - 10 = 7 - 3st + 2t$ فإن : $s - t = \dots \dots$

٤ ٥

١ ٤

١ ٣

٤ ١

(٢) إذا كانت : $\cot\theta = \frac{16}{9}$ ، $90^\circ < \theta < 180^\circ$ فإن قيمة المقدار : $25\sin\theta - 4\cos\theta$

١٧ ٥

٢٣ ٤

١٧ ٣

٢٣ ١

(٣) إذا كان المعين $\triangle ABC$ يشابه المعين $\triangle DEF$ وكان $\angle D = 60^\circ$ وكان معامل التشابه $= \frac{1}{2}$ فإن: $\angle E = \dots$

٥ ١٢٠

٦ ١٥٠

٧ ٦٠

٨ ٣٠

..... فإن: $b = \dots$

٩ ٥

١٠ ٧

١١ ٧

١٢ ٥

(٤) إذا كان $C = 7 - k$ هما جذراً للمعادلة: $s^2 + bs - 5 = 0$ فإن: $b = \dots$

١٣ ١

١٤ $\frac{1}{2}$

١٥ صفر

١٦ ١

(٥) إذا كان: ظتا $(\theta + 90^\circ) = 1 + \tan \theta$ حيث θ زاوية حادة فإن: جناء $\theta = \dots$

١٧ ٥

(٦) في الشكل المقابل:

\overleftrightarrow{AD} ينصف $\angle B$, \overleftrightarrow{CD} ينصف $\angle A$

$\therefore \angle ACD = (2s + 45)^\circ$, $\angle ADB = 2s^\circ$

فإن: $s = \dots$

(٦ درجات)

السؤال الثالث: اختر الاجابة الصحيحة من بين الاجابات المعلقة:

(١) المعادلة التربيعية التي معاملات حدودها أعداد حقيقية وأحد جذريها $(3-t)$ هي

١١ $s^2 - 6s + 10 = 0$

١٢ $s^2 + 6s + 10 = 0$

١٣ $s^2 - 6s - 10 = 0$

١٤ $s^2 + 6s - 10 = 0$

(٧) في الشكل المقابل:

إذا كان: $AG = 3$ سم، $GD = 9$ سم

فإن: $AB = \dots$ سم

٢٦ ٣٦

٢٧ ٢٧

٢٨ ٦

٢٩ ٩

(٨) في الشكل المقابل:

إذا كانت: م($\triangle ABC$) = ٦ سم^٢ فإن: م($\triangle ABD$) = سم^٢

٣٢ ٣٢

٣٣ ١٢٨

٣٤ ٦٤

٣٥ ١٦

المراجعة النهائية والامتحانات

الملانهاية في الرياضيات

(٤) إذا كان: $\sin \theta = \frac{3}{5}$ حيث θ زاوية حادة موجبة فإن: $\tan \theta = \dots$

١ - ٥

$$\frac{1}{3} \text{ ج}$$

٣٧ - ٦

١ ١

(٥) في الشكل المقابل :

$$س = \dots$$

١٢ ١

$$2,5 \text{ ج}$$

(٦) في الشكل المقابل :

$$س = \dots \text{ سم}$$

٨ ١

$$2,2 \pm \text{ ج}$$

(٧ درجات)

السؤال الرابع : اختر الاجابة الصحيحة من بين الاجابات المعلقة :

(١) إذا كان L ، M هما جذراً المعادلة : $s^2 - 8s + 15 = 0$ فإن: $L + M = \dots$

٨ - ٥

١٥ ج

٨ ١

١١ ١

(٢) قوس طوله πs سم في دائرة طول نصف قطرها ١٠ سم يقابل زاوية محيطية قياسها

180° ٥

90° ج

45° ٦

30° ١

(٣) في الشكل المقابل :

$$\frac{\text{مر}(\Delta ABC)}{\text{مر}(\Delta ABD)} = \dots$$

$$\frac{5}{3} \text{ ج} \quad \frac{5}{8} ١$$

(٤) في الشكل المقابل :

إذا كان: \overleftrightarrow{AD} ينصف BC ، مساحة $(\Delta ABC) = 20 \text{ سم}^2$

فإن: مساحة $(\Delta ABD) = \dots \text{ سم}^2$

٦٠ ٦

٥٠ ١

(٥) مجموعة حل المتباينة: $s^2 < 3s$ في s هي

ج - [٣، ٠]

[٣، ٠] ج

[٣، ٠] ٦

[٣، ٠] ١

المراجعة النهائية والامتحانات

الملانهاية في الرياضيات

(١) في الشكل المقابل :

$$م = 0 \dots \dots \text{سم}$$

$$\frac{1}{2} م = 1 \text{ سم}$$

$$م = 4 \text{ سم}$$

$$\frac{1}{2} م = 5$$

$$م = 2$$

$$م = 4$$

$$م = 6$$

(درجتان)

السؤال الخامس :

ابحث اشارة الدالة $d : d(s) = s^2 - 3s + 2$ ثم أوجد الفترة التي تنتهي إليها س والتي تجعل

$$s^2 - 3s + 2 < 0$$

(٢ درجات)

السؤال السادس :

في الشكل المقابل :

$$\overline{AB} \cap \overline{CD} = \{M\}$$

$M \in \overline{AB}$ ، $M \in \overline{CD}$ ، $\overline{AC} \parallel \overline{BD}$

أوجد طول كلًّا من : AM ، MC

أولاً: اختر الإجابة الصحيحة من بين الإجابات المعطاة

(١) عدد مركب جزئه الحقيقي ٤ وجزئه التخييلي -٣ فإن العدد هو

(٥) $-3 + 4i$

(٢) $4 - 3i$

(٣) $4 + 3i$

(٤) $3 - 4i$

(٢) إذا كان مجموع جذري المعادلة $s^2 + bs + c = 0$ يساوي ٤ فإن ...

(٥) $b = -4$

(٦) $b = 4$

(٧) $b = -4$

(٨) $b = 4$

(٣) المعادلة التربيعية التي جذراها ٣، ٥ هي ...

(٩) $s^2 + 8s - 15 = 0$

(١) $s^2 + 15s - 8 = 0$

(٥) $s^2 - 8s - 15 = 0$

(٢) $s^2 - 15s + 8 = 0$

(٤) إذا كانت $r(s) = s^2 + bs$ وكان أحد جذور المعادلة $r(s) = 0$ هو ٤ فإن الجذر الآخر للمعادلة هو ...

(٥) $2 - s$

(٦) صفر

(٧) ٢

(٨) ٣

(٥) إذا كانت $t = \sqrt{-1}$ وكان $t^2 = t$ فإن باقي قسمة t على ٤ هو

(٥) ٣

(٦) ٢

(٧) ١

(٨) صفر

(٦) الدالة $r(s) = s^2 - 2s - 6$ موجبة عندما $s > ...$

(٥) $[-\infty, 3]$

(٦) $[-\infty, 3)$

(٧) $(-\infty, 3]$

(٨) $(-\infty, 3)$

(٧) مجموعة حل المتباينة $s^2 - 3s + 2 \leq 0$ هي ...

(٥) $[2, 1]$

(٦) $[1, 2]$

(٧) $[2, 1]$

(٨) $[1, 2]$

(٨) إذا كانت الدالة $r(s) = s^2 + bs + c$ موجبة لجميع قيم s فإن ...

(٥) $b^2 < 4c$

(٦) $b^2 > 4c$

(٧) $b^2 = 4c$

(٨) $b^2 > 4c$

(٩) إذا كانت θ قياس زاوية حادة فإن الزاوية التي قياسها $-\theta$ تقع في الربع ...

(٥) الأول

(٦) الثاني

(٧) الثالث

(٨) الرابع

(١٠) الزاوية الموجبة التي قياسها 320° في الوضع القياسي تكافىء الزاوية التي قياسها ...

(٥) 40°

(٦) 320°

(٧) 140°

(٨) 40°

(١١) القياس الدائري لاي زاوية تقع في الربع الثاني ينتمي إلى ...

(٥) $\pi \in \left[\frac{\pi}{2}, \pi \right]$

(٦) $\pi \in \left[\frac{\pi}{2}, \pi \right]$

(٧) $\pi \in \left[\frac{\pi}{2}, \pi \right]$

(٨) $\pi \in \left[\frac{\pi}{2}, \pi \right]$

(١٢) إذا كان $\text{ج}\theta = \frac{1}{3}$ ، $\text{جا}\theta = -\frac{\sqrt{2}}{3}$. فإن $\theta = ...$

(٥) 30°

(٦) 240°

(٧) 120°

(٨) 60°

(١٣) أي من الأشكال الآتية يمثل زاوية مركزية قياسها 15°

(١٤) منحني الدالة $y = \frac{1}{x}$ يقطع محور الصادات في النقطة ...

(١) (٢٠٠)

(٢) (٢٠٠)

(٣) (٢٠٠)

(١٥) إذا كان معامل تشابه المضلع $A'B'C'D'$ مربع k هو ... فأي مما يأتي غير صحيح

$$\frac{1}{k} = \frac{ج}{ج} \quad (١) \quad \frac{ج}{ج} = k \quad (٢) \quad \frac{ج}{ج} = \frac{ج}{ج} \quad (٣) \quad \frac{ج}{ج} = \frac{ج}{ج} \quad (٤)$$

(١٦) في الشكل المقابل: $س = \dots$ سم

(٤) ٩

(٥) ٦

(٦) ٤٥

(٧) ٣

(١٧) في المثلثين $\triangle ABC$ و $\triangle A'B'C'$ إذا كان $ج = ٤$ سم، $س = ٥$ سم، $هـ = ٨$ سم، $ج' = ٦$ سم فإن المثلثين متشابهان إذا تحقق ...

$$(١) ج = ج' \quad (٢) ج (ج') = ج (ج') \quad (٣) ج (ج') = ج (ج') \quad (٤) ج (ج') = ج (ج')$$

(١٨) المثلث الذي أطوال اضلاعه L ، M ، N يشابه المثلث الذي أطوال اضلاعه ...

(١) $L + M + N$

(٢) $L - M - N$

(٣) $M^2 - L^2 - N^2$

(٤) $L + M + N$

(١٩) إذا كانت النسبة بين محيطي مثلثين متشابهين تساوي $1 : ٩$ فإن النسبة بين مساحتيهما تساوي

(١) ٨١ : ١

(٢) ٢٧ : ١

(٣) ٣ : ١

(٤) ٣ : ٢

(٥) ٢١ : ٤

(٦) ٥ : ٤

(٧) ٩ : ٤

(٨) ٣ : ٢

(٢٠) في الشكل المقابل:

إذا كان $ج : ج' = ٣ : ٢$ فإن

مساحة $\triangle ABC$: مساحة الشكل ABC =

(٩) ٤

(١٠) ٥

(١١) ٦

(١٢) ٨

(٢١) في الشكل المقابل:
أهـ = ٨ سم، بـ = ٣ سم، جـ = ٦ سم

فإن $جـ = \dots$

ثانياً: اجب عن الأسئلة الآتية:

[١] إذا كان جذري المعادلة $x^2 - ax + b = 0$ غير حقيقيان فلوجد قيم a و b الحقيقة.

[٢] في الشكل المقابل

\overline{AD} ينصف \overline{BC} ، $\overline{DE} \parallel \overline{BC}$. اوجد طول كل من

\overline{ED} ، \overline{DC}

انتهت الاسئلة

ثانياً: اجب عن الأسئلة الآتية:

[١] إذا كان جذري المعادلة $s^2 - 6s + k = 0$ غير حقيقيان فأوجد قيم لـ k الحقيقة.

[٢] في الشكل المقابل

\overline{AD} ينصف \overline{BC} ، $\overline{DE} \parallel \overline{BC}$. اوجد طول كل من

\overline{DE} ، \overline{BC}

رقم الجلوس:

اسم الطالب:

الفصل:

اسم المدرسة:

التاريخ:

المادة:

أولاً الأسئلة الموضوعية (درجة لكل مفردة)

رقم السؤال	١٤	١٣	١٢	١١	١٠	٩	٨	٧	٦	٥	٤	٣	٢	١
الإجابة الصحيحة	ب	ب	د	ب	د	د	ب	ب	د	ب	د	ب	ب	ب
رقم السؤال	٢٧	٢٦	٢٥	٢٤	٢٣	٢٢	٢١	٢٠	١٩	١٨	١٧	١٦	١٥	١٥
الإجابة الصحيحة	ب	د	د	ب	د	ب	ب	د	د	د	ب	ب	ب	ح

ثانياً: الأسئلة المقالية:

السؤال الأول (درجتان)

[١] الجذران غير حقيقيان

$$0 > 36 - 4(k+1)$$

١

$$b^2 - 4ac < 0$$

١

$$k < 8$$

السؤال الثاني (٣ درجات)

دها // بيج!

١ إذا كان أحد جذري المعادلة $(s + k)^2 - 6s = 0$ معكوساً جمعياً للآخر فإن $k = \dots$

٣- ⑤

٥ ⑥

٤ ⑦

٣ ⑧

٢ إذا كان $\frac{1}{s} = 2$ حيث s قياس زاوية حادة فإن $s = \dots$

٢٠ ⑨

٢٠ ⑩

١٥ ⑪

١٠ ⑫

٣ إذا كان L أحد جذري المعادلة $s^2 - 5s + 4 = 0$ فإن $L = \dots$

٦ ⑬

٧ ⑭

٦- ⑮

٢- ⑯

٤ مدى الدالة $y = 2s^2$ هو \dots

[٥، ٥] ⑰

[٢، ٢] ⑱

[٣، ٣] ⑲

[٣، ٣] ⑳

٥ إذا كان $\theta = 2\alpha$ حيث θ قياس زاوية حادة موجبة فإن $\alpha = \dots$

١/٢ ⑳

٤ ⑵

١٥ ⑶

١- ⑷

٦ إذا كان m جذراً للمعادلة $s^2 - 6s + 4 = 0$ فإن المعاadleة التي جذراها m^2 هي \dots

 $s^2 - 2s + 4 = 0$ $s^2 + 2s - 4 = 0$ $s^2 - 2s + 16 = 0$ $s^2 - 2s - 16 = 0$

٧ أحدي قيم θ حيث $0 < \theta < 90^\circ$ التي تحقق أن $\alpha = (\theta + 20^\circ) - \beta$ هي \dots

٤٥ ⑸

٢٠ ⑹

١٥ ⑺

١٠ ⑻

٨ قيمة المقدار $(1-t)^4$ في أبسط صورة هي \dots

٥ - ٤٣

٤٤ ٦

٤ ⑼

٤- ⑽

٩	مجموعة حل المقابلة $s^2 - 14s + 45 > 0$ هي [٧، ٢-] ⚡ [٧، ٢-] ⚡ [٧، ٢-] ⚡ [٧، ٢-] ⚡
---	---

١٠	إذا كان جذراً المعادلة $s^2 + ms + m = 0$ مركبان متافقان فإن [٥] ⚡ [٦] ⚡ [٧] ⚡ [٨] ⚡
----	---

١١	أبسط صورة للعدد التخيلي i^3 هي ١- [٥] ⚡ ١ [٦] ⚡ [٧] ⚡ [٨] ⚡ ت [٩] ⚡
----	--

١٢	إذا كان $\cos \theta = -\frac{1}{3}$ ، $\sin \theta = \frac{\sqrt{2}}{3}$ فإن θ ٠٣٣٠ ⚡ ٠٢١٠ ⚡ ٠١٥٠ ⚡ ٠٣٠ [٩] ⚡
----	--

١٣	مجموعة حل المعادلة $(s+1)^2 = 0$ هي Ø ⚡ {١، -١} ⚡ {-١} ⚡ {١} [٩] ⚡
----	---

١٤	إذا كان u_1, u_2 عددين مركبان متافقان فإن المقدار $(u_1^2 + u_2^2 + u_1u_2)^2$ يكون عدد صحيح [٥] ⚡ حقيقي بحث [٦] ⚡ مركب [٧] ⚡ تخيلي بحث [٨] ⚡
----	--

١٥	إذا كان $t = \sqrt{b+3} - \sqrt{b-3}$ فإن $(1-t)^2 =$ ٨- [٥] ⚡ صفر [٦] ⚡ ٣٦ [٧] ⚡ ٨ [٩] ⚡
----	--

١٦	الدالة $D(s) = 4 - 2s$ تكون غير سالبة في الفترة [٠٠، ٥-] ⚡ [٢٠، ١٥] ⚡ [٩٠، ٤] ⚡ [٥٥، ٢] ⚡
----	--

١٧) القياس الستيني لزاوية مركبة تحصر قوساً طوله $\pi/2$ سم من دائرة طول نصف قطرها 4 سم هو.....

٥) $(\pi/4)^{\circ}$

٦) 270°

٧) 120°

٨) 45°

١٨) الزاوية التي قياسها 45° تكافئ زاوية موجبة قياسها

٩) -45°

١٠) 210°

١١) 405°

١٢) 504°

١٩) إذا كان $s = 1 - \sqrt{2}$ أحد جذري المعادلة $s^2 - 4s + 2 = 0$ فإن $\theta =$

١٣) 2°

١٤) 1°

١٥) 2°

١٦) 1°

٢٠) إذا كان $\cos \theta > 0$ ، فإن θ تقع في الربع

١٧) الرابع

١٨) الثالث

١٩) الثاني

٢٠) الأول

٢١) في الشكل المقابل $s =$ سم

٢٢) ٦

٢٣) ٥

٢٤) ٤

٢٥) ٢

٢٦) في الشكل المقابل $s =$ سم

٢٧) ١٠

٢٨) ٩

٢٩) ٨

٣٠) ٦

٢٣ مضلعين متشابهان النسبة بين طولي ضلعين متناظرين فيما ٣ : ٥ وكانت مساحة أكبرهما - ٣٠ سم^٢
فإن مساحة أصغرهما = سم^٢

١٢ ⑤

١٠,٨ ⑥

٩,٨ ⑦

٨,٨ ⑧

٢٤ في الشكل المقابل \overline{AB} مماسه للدائرة عند S
فإن $HS = \dots$ سم

٥ الرابع

٦ الثالث

٧ الثاني

٨ الأول

٢٥ في الشكل إذا كانت مساحة $\Delta ABC = 20$ سم^٢ فإن
مساحة الشكل الرباعي ABC = سم^٢

٦٠ ⑤

٥٠ ⑥

٤٠ ⑦

٣٠ ⑧

٢٦ المنصف الخارجي لزاوية رأس المثلث المتساوي الساقين قاعدة المثلث

٥ غير ذلك

٦ عمودي على

٧ ينصف

٨ يوازي

٢٧ إذا كان $R(m)(A) =$ صفر فإن A تقع

٥ على مركز الدائرة

٦ خارج الدائرة

٧ داخل الدائرة

٨ على الدائرة

٢٨ سادسيان منتظمان طول ضلع الأول ٦ سم ومحيط الثاني ٤٨ سم فإن النسبة بين طول ضلع الأول وطول
ضلع الثاني

٥ : ٣

٢ : ١ ٦

٢٤ : ٣ ٧

٨ : ١ ٨

(٣٩) المثلث الذي قياسا زاويتين فيه 65° ، 70° يشابه المثلث الذي قياسا زاويتين فيه 70° ، 70°

١٣٥ ⚡

٤٥ ⚡

٧٠ ⚡

٢٥ ⚡

(٤٠) من الشكل المقابل $s =$ $^\circ$

١٠٠ ⚡

٥٠ ⚡

٤٠ ⚡

٣٠ ⚡

(٤١) من الشكل المقابل $s + ص =$ $^\circ$

٧٠ ⚡

٢٢٠ ⚡

١٨٠ ⚡

١١٠ ⚡

(٤٢) من الشكل المقابل $s =$ $^\circ$

 $\frac{11}{5}$ ⚡ $\frac{55}{20}$ ⚡ $\frac{55}{12}$ ⚡ $\frac{55}{12}$ ⚡

(٣٣) من الشكل $\odot M = \dots \text{ سم}$

١٦ ⑤

٤٠ ⑥

٨ ⑦

٢ ⑧

(٣٤) من الشكل $\triangle ABC = \dots \text{ سم}$

٥ ⑤

٤ ⑥

٢ ⑦

١ ⑧

(٣٥) في الشكل $DE // BC$ ، $AE = 6 \text{ سم}$ ، $EB = 3 \text{ سم}$ ،

$$\frac{AS + ACS}{AB + AE} = \frac{2}{5} \quad \text{فإن } AS + ACS = \dots \text{ سم}$$

٤,٦ ⑤

٨,٥ ⑥

٩ ⑦

٧ ⑧

(٣٦) في الشكل المقابل إذا كان $\overline{AB} \cap \overline{ED} = \{H\}$ ، $AH = 5 \text{ سم}$ $HE = 2 \text{ سم}$ ، $EH = 4 \text{ سم}$ ، $EO = 1 \text{ سم}$ النقط A ، B ، C ، D تقع على محيط دائرة فإن $BO = \dots \text{ سم}$

٢ ⑤

١,٥ ⑥

٠,٥ ⑦

١ ⑧

٣٧ إذا كان $s^2 - 4m > 0$ في المعادلة $m^2 + sm + m = 0$ فإن مجموعة حل المتباعدة

$m^2 + sm + m > 0$ حيث m عدد سالب هي

∅ ⑤

- ⑥ ع

+ ⑦ ع

ع ⑧

٣٨ من الشكل $m + m = \dots$ سم

١٤ ⑤

١٦ ⑥

١٢ ⑦

٤ ⑧

٣٩ في الشكل إذا كان محيط $\triangle ABC = 80$ سم فإن

$m + m = \dots$ سم

٦٨ ⑤

٧٨+٣٠ ⑥

٣٨ ⑦

٣٠ ⑧

٤٠ في الدائرة م إذا تقاطع وتران \overline{AB} ، \overline{CD} في نقطة D فإن

$$\text{م}(D) = (A)^2 - \text{نق}^2$$

$$A \times D = M \times B$$

$$M(D) = M \times D$$

$$M(D) + A \times D = صفر$$

كيفية طباعة صفحات معينة من ملف معين مثل ازاي نطبع الصفحات من صفحة 4 الى صفحة 9

خطوة 1

خطوة 2 اختيار اسم الطابعة بناataka

خطوة 3 كتابة الصفحات المراد طباعتها

خطوة 4 اختيار نوع الورق

خطوة 5 اختيار A4

خطوة 6