Description matricielle des nombres algébriques

Alexandre

2023/2024

1 Avant-Propos

Ce document a pour objet de donner quelques preuves de propriétés importantes en théorie algébrique des nombres.

2 Introduction

Définition 2.1. Pour $n \in \mathbb{N}^*$ et K un corps, on notera $\mathbf{M}_n(K)$ l'ensemble des matrices à coefficients dans K.

Définition 2.2. Soit $x \in \mathbb{C}$. On dit que x est algébrique s'il est annulé par un polynôme à coefficients dans \mathbb{Q} . On note \mathbb{Q} l'ensemble des nombres algébriques.

Définition 2.3. Si de plus x est annulé par un polynôme unitaire à coeffecients entiers, on dit que x est un entier algébrique. On note $\bar{\mathbb{Z}}$ l'ensemble des entiers algébriques.

Définition 2.4. Pour A et B deux matrices de $\mathbf{M}_n(\mathbb{C})$, on définit le produit tensoriel :

$$A \otimes B = \begin{bmatrix} a_{1,1}B & a_{1,2}B & \cdots & a_{1,n}B \\ a_{2,1}B & a_{2,2}B & \cdots & a_{2,n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}B & a_{n,2}B & \cdots & a_{n,n}B \end{bmatrix}$$

Théorème 2.1. $\bar{\mathbb{Q}}$ est un sous-corps de \mathbb{C}

Preuve. $\bar{\mathbb{Q}}$ est bien inclus dans \mathbb{C} et n'est pas vide. Soit x et y deux nombres algébriques. Soit P et Q deux polynômes annulateurs annulant respectivement x et y. Soit A et B les matrices compagnons respectivement de P et de Q.