LSDesign

Design and Make Project

Group Members:

Ritesh Hans, 220893

Gottupulla Venkata Aman,

Dhananjay Dixit,

Yash Kumar Meena,

Himanshu Yadav,

Smarter Cooling for Hot Days

Temperature-Adaptive USB Fans

The Problem: Inefficient Cooling

Rising Summer Heat

Extreme heat waves are becoming more frequent and intense.

Constant Fan Speed

Traditional USB fans operate at a fixed speed, wasting energy.

Lack of Comfort

No temperature adjustment for optimal personal comfort.

Our Solution: Adaptive Cooling

Temperature-Based Adjustment

Fan speed automatically adjusts to the surrounding temperature.

Temperature Sensor

Embedded to read the ambient temperature.

Maintains Portability

Compact and easy to use, just like a standard USB fan.

Design Evaluation & Justification

We are considering the following improvement directions before choosing this one:

Idea	Benefits	Drawbacks
USB Fan with Cooling Gel Inserts	Temporary relief, passive cooling	Bulky, messy, not reusable, not feasible
Solar-powered USB Fan	Eco-friendly, uses sunlight	Not usable indoors/night, not feasible
Temperature-controlled USB Fan	Energy saving, user comfort, responsive	Slight increase in circuit complexity

- Selected Idea Temperature-controlled fan, offers high impact for low cost and technical feasibility
- Reason The only financially feasible option, that would not increase the price of the product significantly and saves energy

How It Works: Temperature Control

1

7

Temperature Sensor

Sensor accurately reads the surrounding temperature.

Microcontroller

Adjusts the fan speed by changing the PWM signal.

Fan Motor

Fan speed increases in heat and decreases in cooler conditions.

BOM (Bills of Material)

Component	Function	Material	Process	Qty	Notes
Fan Blade	Airflow	Polypropylene	Injection molded	1	Flimsy
Motor	Spins blade	Copper/metal	Assembled unit	1	5V DC motor
USB Cable	Power input	PVC + copper	Extrusion	1	Reusable
Arduino Uno	Control system	PCB + plastic	Assembled	1	External chip
DST Temp Sensor	Temp sensing	PCB + metal	Assembled	1	DHT11 or similar

Prototype Showcase

Modified Components

- Temperature sensor added
- Microcontroller integrated
- PWM circuit implemented

The prototype showcases the integration of a temperature sensor and a microcontroller into a standard USB fan. These modifications enable the fan to adapt its speed based on the ambient temperature. At 25°C, the fan runs at low speed. Above 30°C, speed ramps up linearly.

Key Benefits: Comfort and Efficiency

Adaptive Comfort

No more reaching for the switch – automatic speed scaling enhances convenience.

Rechargeable Battery

Reduced Noise

Eco-Friendly

Optional – can add a 18650 battery for off-grid operation. when temperature is lower - 30-40% compared to always-on great for night use.

Runs quieter at lower speeds Lowers average energy use by fans.

Future Innovations

Thank You!