Experiments....

Performance Comparison: Twitter Dataset

- att-RNN performs better than VQA and NeuralTalk
 - Shows that applying attention mechanism can improve
- EANN- tend to capture the event-specific features
 - Would lead failure of learning enough shared features among events
- EANN significantly improves the performance in terms of all the measures

Method	Accuracy	Precision	Recall	F1
Text	0.532	0.598	0.541	0.568
Vis	0.596	0.695	0.518	0.593
VQA	0.631	<u>0.765</u>	0.509	0.611
NeuralTalk	0.610	0.728	0.504	0.595
att-RNN	<u>0.664</u>	0.749	<u>0.615</u>	0.676
EANN-	0.648	0.810	0.498	0.617
EANN	0.715	0.822	0.638	0.719

Experiments....

Performance Comparison: Weibo Dataset

Method	Accuracy	Precision	Recall	F1
Text	0.763	0.827	0.683	0.748
Vis	0.615	0.615	0.677	0.645
VQA	0.773	0.780	0.782	0.781
NeuralTalk	0.717	0.683	0.843	0.754
att-RNN	0.779	0.778	0.799	0.789
EANN-	<u>0.795</u>	0.806	0.795	0.800
EANN	0.827	0.847	<u>0.812</u>	0.829

- Similar result can be observed as those on Twitter dataset.
- However, we can see that Text is greatly higher than that of Vis
 - Because Weibo dataset doesn't have imbalanced issue, and with sufficient diversity, useful linguistic patterns can be extracted.
 - Images of Weibo dataset are more complicated in semantic meaning than Twitter.
 - Vis can't learn meaningful representations, although use VGG19 (But MVNN can?)