Dentro de una compleja máquina como una línea de ensamblado robótico, suponga que una parte se desliza a lo largo de una pista recta. Un sistema de control mide la velocidad promedio de la parte durante cada intervalo de tiempo sucesivo Δ $t_0 = t_0 - 0$, lo compara con el valor v_c que debe ser y enciende y apaga un servomotor para dar a la parte un pulso corrector de aceleración. El pulso consiste de una aceleración constante am aplicada durante el intervalo de tiempo $\Delta t_m = \Delta t_m - 0$ dentro del siguiente intervalo de tiempo de control Δt_0 . Como se muestra en la siguiente figura

Figura P2.30

la parte se puede modelar con una aceleración cero cuando el motor se apaga (entre t_m y t_0). Una computadora en el sistema de control elige el tamaño de la aceleración de modo que la velocidad final de la parte tendrá el valor correcto v_c . Suponga que la parte inicialmente está en reposo y tendrá velocidad instantánea v_c en el tiempo t_0 .

- a) Encuentre el valor requerido de a_m en términos de v_c y t_m .
- b) Muestre que el desplazamiento Δx de la parte durante el intervalo de tiempo Δt_0 está dado por $\Delta x = v_c(t_0 \frac{1}{2}t_m)$.
- c) Para los valores específicos de v_c y t_0 ¿cuál es el desplazamiento mínimo del inciso?
- d) ¿Cuál es el desplazamiento máximo del inciso?
- e) ¿Son físicamente obtenibles los desplazamientos mínimo y máximo?