EXERCÍCIOS PARA 17/JUNHO/2021

Moodle —> material de apoio —> Exercícios 17/junho

1. Considere o circuito representado abaixo

- a) Desenho o circuito equivalente para os níveis de CLK='0' e CLK='1', explicando o comportamento do circuito.
- b) O circuito, para armazenamento da entrada D, é sensível ao <u>nível</u> ou à <u>borda</u> do sinal clock (CLK)? Se for sensível ao nível do sinal clock, para qual nível o circuito é transparente, ou se for sensível à borda, para qual borda o circuito armazena a informação.
- c) Explique o comportamento do circuito quando acontecer *clock overlap* em '1' ou seja, *CLK*='1' e *CLK*='1'. Para a explicação desenhe também o circuito equivalente.

2. Considere o circuito abaixo, composto por 2 entradas de <u>32 bits</u> (A e B), e duas saídas (soma_out de 32 bits, e carry out). Pede-se:

- a) para garantir que dados espúrios/transientes não entrem nem saiam do circuito, os flip-flops internos (FF) devem ter uma implementação do tipo latch ou mestre-escravo? Argumente sua resposta.
- b) considerar que o FF tenha tempo de propagação D→Q igual a 1 ns e o tempo de setup igual a 0,2 ns, e o somador tenha uma implementação ripple carry com tempo do full adder igual a 1,5 ns. Qual a frequência máxima de operação deste circuito (em MHz)? Apresente e explique o cálculo para a obtenção da frequência.
- c) Considere agora que o projetista possa utilizar um somador carry-select, com estágios de 4 bits. O tempo do FA é o mesmo, <u>1,5 ns</u>, e o tempo do multiplexador igual a <u>0,5 ns</u>. Qual a frequência máxima de operação deste circuito (em MHz), agora com o somador rápido?

1 estágio de 4 bits do somador carry-select

d) Considerando que o FA necessita de <u>28</u> transistores para ser implementado, e um FF mestre-escravo <u>18</u> transistores, qual o número total de transistores para ambas configurações do circuito?

Transcreva as respostas de 2.b, 2.c e 2.d para a tabela abaixo:

Tunisoreva as respostas de E.B, E.O e E.a para a tabela abaixo.						
	FF	Tempo Setup	Atraso do somador de 32 bits (ns)	Atraso do circuito (ns)	Frequência MHz	N# Total de transistores
Circuito original	1 ns	0,2 ns				
Circuito com somador carry-select	1 ns	0,2 ns				

3. Multiplicação. Apresenta-se abaixo o diagrama lógico de um multiplicador de 4 bits.

- a) explique como o carry é propagado no interior do circuito.
- b) considere: A=1101 e B=1011. Desenhe sobre o circuito os valores booleanos correspondentes, verificando se o valor obtido pela multiplicação é o correto.

4. Circuitos aritméticos. Operações muito comuns em processadores são os deslocamentos e as rotações. Pede-se:

- a) Qual a diferença entre deslocamento lógico de deslocamento aritmético? Dê um exemplo numérico para cada caso de deslocamento para direita, tanto lógico quanto aritmético.
- b) Apresentar uma matriz de transistores capaz de realizar deslocamentos aritméticos para a direita (operação equivalente à divisão), para palavras de 4 bits. Explique o circuito.,

5. O projeto de circuitos eletrônicos pode ser feito utilizando diferentes métodos de projeto. Avalie estes métodos de projetos quantos aos requisitos abaixo:

ESTILO DE PROJETO:	Full custom	Standard cell	Gate array (pré-difundido)	FPGA
Camadas que devem ser fabricadas na foundry. Respostas possíveis: T: todas / algumas (dizer quais) / N: nenhuma				
Tamanho da célula. Respostas possíveis: F: fixo / L: livre / H: variável, mas com altura constante				
Interconexão entre as células. Respostas possíveis: M: apenas por metalização / Q: qualquer camada / C: configurável				
Tempo de projeto. Respostas possíveis: 1 mais alto, 4 mais baixo				

Q1

Other Latches/Registers: C2MOS

"Keepers" can be added to make circuit pseudo-static

Insensitive to Clock-Overlap

Q2

Transistores:

66 FFs → 66 flops * 18 = 1188 xtores

Ripple carry:

32 bits * 28 = 896 xtores

CS

8*(28*8+5*5) = 2032 transistores

Transistores

	FF	Somador	Total
com	1746	896	
ripple	=(32*3+1)*18	=28*32	2642
		2032	
com CS	1746	=8*(8*28+5*6)	3778

	FF	Tempo Setup	Atraso do somador de 32 bits (ns)	Atraso do circuito (ns)	Frequência MHz	N# Total de transistores
Circuito original	1 ns	0,2 ns	48	49,2	20,33	2084
Circuito com somador carry-select	1 ns	0,2 ns	10	11,2	89,26	3220

Q3

Somador com carry-save

A=1101 B=1011

Deslocamento Aritmético

Deslocamento lógico

```
10001 → 1 bit para a direita 01000
1 bit para a esquerda 00010
```

Deslocamento aritmético

```
00100 → 1 bit para a direita 00010 (de 4 para 2)
10100 → 1 bit para a direita 11010 (de -12 para -6)
```

SH1 ← 1

SH2 ← 1

ESTILO DE PROJETO:	Full custom	Standard cell	Gate array	FPGA
Camadas que devem ser fabricadas na foundry Respostas possíveis: T: todas / algumas (dizer quais) / N: nenhuma	Т	Т	Metais vias	N
Tamanho da célula Respostas possíveis: F: fixo / L: livre / H: variável, mas com altura constante	Livre	H Altura fixa Largura Variável	F	F
Interconexão entre as células Respostas possíveis: M: apenas por metalização / Q: qualquer camada / C: configurável	Q	Q	M	С
Tempo de projeto Respostas possíveis: 1 mais alto, 4 mais baixo	1	2	3	4