Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001726

International filing date: 04 February 2005 (04.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-029562

Filing date: 05 February 2004 (05.02.2004)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

09.02.2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 2月 5日

出 願 番 号 Application Number:

特願2004-029562

[ST, 10/C]:

[JP2004-029562]

出 願 人
Applicant(s):

独立行政法人科学技術振興機構 国立大学法人 鹿児島大学

特許庁長官 Commissioner, Japan Patent Office 2005年 1月28日


```
特許願
【書類名】
              P028P07
【整理番号】
              平成16年 2月 5日
【提出日】
              特許庁長官 殿
【あて先】
              C07C211/00
【国際特許分類】
              CO7K 1/107
【発明者】
              鹿児島県鹿児島市下伊敷1-13-1-106
   【住所又は居所】
              隅田 泰生
   【氏名】
【発明者】
              鹿児島県鹿児島市唐湊1-15-11-801
   【住所又は居所】
              荒野 明男
   【氏名】
【発明者】
              大阪府箕面市半町3-5, C-114
   【住所又は居所】
              楠本 正一
   【氏名】
               アメリカ合衆国、ワシントン州 98112,シアトル、ビーチ
【発明者】
   【住所又は居所】
               コートイースト 1624
               マイケル ソベール
   【氏名】
 【特許出願人】
               60/100
   【持分】
               503360115
   【識別番号】
               独立行政法人科学技術振興機構
   【氏名又は名称】
 【特許出願人】
               40/100
    【持分】
               391012523
    【識別番号】
               鹿児島大学長
    【氏名又は名称】
 【代理人】
               100080034
    【識別番号】
    【弁理士】
    【氏名又は名称】
               原 謙三
               06-6351-4384
    【電話番号】
               60/100
 【持分の割合】
 【手数料の表示】
    【予納台帳番号】
                003229
                12,600円
    【納付金額】
 【提出物件の目録】
                特許請求の範囲 1
    【物件名】
                明細書 1
    【物件名】
                図面 1
    【物件名】
                要約書 1
    【物件名】
                 0316432
     【包括委任状番号】
```

【書類名】特許請求の範囲

【請求項1】

一般式(1)

【化1】

$$S \longrightarrow HN - (CH_2CH_2O)_n CH_2C - X \cdots (1)$$

(式中、nは1以上6以下の整数) にて表される構造を備え、

上記Xが、末端に芳香族アミノ基を有するとともに主鎖に炭素-窒素結合を有していて もよい炭化水素誘導鎖を、4鎖含んでなる多分岐構造部位である構造を備えていることを 特徴とするリンカー化合物。

【請求項2】

上記 X は、一般式 (2)

【化2】

$$(CH_{2})_{p1} = C - N$$

$$(CH_{2})_{m1} = N$$

$$(CH_{2})_{m2} = N$$

$$(CH_{2})_{m2} = N$$

$$(CH_{2})_{m3} = N$$

$$(CH_{2})_{m3} = N$$

$$(CH_{2})_{m3} = N$$

$$(CH_{2})_{m4} = N$$

(式中、 m^1 , m^2 , m^3 , m^4 , p^1 , p^2 は、それぞれ独立して、1以上6以下の整数)に て表される構造を備えていることを特徴とする請求項1に記載のリンカー化合物。

【請求項3】

請求項1または2に記載のリンカー化合物の芳香族アミノ基に、糖分子を導入してなる ことを特徴とするリガンド。

【請求項4】

一般式(3)

【化3】

(式中、 \mathbf{m}^1 , \mathbf{m}^2 , \mathbf{m}^3 , \mathbf{m}^4 , \mathbf{n} , \mathbf{p}^1 , \mathbf{p}^2 は、それぞれ独立して、 1 以上 6 以下の 整数)にて表される構造を備えていることを特徴とするリガンド。

【請求項5】

請求項1または2に記載のリンカー化合物の製造方法であって、

チオクト酸と、芳香族アミノ基末端が保護基によって保護された分岐鎖を4鎖有するア ミン化合物との縮合反応を行うステップと、

上記芳香族アミノ基末端の保護基を脱保護するステップとを含んでいることを特徴とす るリンカー化合物の製造方法。

【請求項6】

請求項1または2に記載のリンカー化合物と、糖分子とを用いて、還元アミノ化反応を 行うことを特徴とするリガンドの製造方法。

【請求項7】

上記糖分子として、一般式 (4)

【化4】

$$\begin{array}{c} \text{CH}_2\text{OSO}_3^-\\ \text{OH} \\ \text{OH} \\ \text{OH} \\ \text{NHSO}_3^- \\ \text{OSO}_3^- \\ \end{array} \\ \dots (4)$$

にて表されるヘパリン部分二糖構造を有する硫酸化オリゴ糖を用いることを特徴とする請 求項6に記載のリガンドの製造方法。

【請求項8】

糖分子を支持体の表面に配列させる糖分子の導入方法であって、

請求項3または4に記載のリガンドを含む溶液と表面に金属を有する支持体とを接触さ せることを特徴とする糖分子の導入方法。

【請求項9】

請求項3または4に記載のリガンドを、表面に金属を有する支持体上に固定化させてな ることを特徴とするリガンド担持体。

【書類名】明細書

【発明の名称】リンカー化合物及びリガンド、並びにそれらの製造方法

本発明は、表面プラズモン共鳴のセンサチップ等のタンパク質分析用の支持体にオリゴ 糖等の糖を固定することが可能なリンカー化合物、及び該リンカー化合物に糖を導入して なるリガンド、リガンド担持体、並びにこれらの製造方法に関するものである。

【背景技術】

[0002]

生体内に存在する種々の糖は、生物の活動や生命を維持するためのメカニズムの中で重 要な役割を果たしている。このような糖の機能を精密に解明するためには、糖の複雑な構 造に基づいてそれらの機能を解析する必要がある。糖の機能解析には、構造が解明されて いるオリゴ糖を用いて、糖の構造を一部ずつ再現し、これによって糖全体の構造と機能と の関係を明らかにする手法が用いられる。

上記糖の機能解析の手法としては、例えば、表面プラズモン共鳴(以下、SPRと記載 する)が知られている。すなわち、糖の一部を模擬したオリゴ糖を含んでなるリガンドを センサチップ表面上に導入し、このリガンドが導入されてなるセンサチップを用いて、オ リゴ糖と特異的に相互作用するタンパク質等の物質を特定する。これにより、オリゴ糖の 構造に基づく生物活性の正しい評価を行うことができる。

ところが、オリゴ糖は、1分子だけでは活性がそれほど高くないため、オリゴ糖の生物 活性を評価する場合には、オリゴ糖をセンサチップ上に集合化させることが必要となる。 つまり、集合化したオリゴ糖を用いて、タンパク質との相互作用を解析することにより、 オリゴ糖の生物活性の評価を行うことが可能になる。

そこで、本発明者らは、これまでに、センサチップ表面に固定可能な部位及びオリゴ糖 を導入可能な部位を分子内に有するリンカー化合物を得、このリンカー化合物に1単位又 は2単位のオリゴ糖を導入してなるリガンドを得ている。そして、このリガンドを用いる ことによって、センサチップ上に、オリゴ糖を集合化して導入することができることを見 出している (例えば、特許文献1、非特許文献1等を参照)。

【特許文献1】特開2003-836969号公報(2003年3月19日公開)

【非特許文献1】「日本化学会第79回春季年会-講演予稿集II」、社団法人日本化 学会、2001年3月15日、p. 1042

【発明の開示】

【発明が解決しようとする課題】

しかしながら、上記特許文献1や非特許文献1に記載のリガンドでは、オリゴ糖の糖鎖 をセンサチップ表面に2次元的に配列させることは可能であるが、その配列を再現性よく 得ることが困難であるという技術的課題が残されている。

すなわち、上記のように、センサチップ表面に複数分子のオリゴ糖を集合化させ、オリ ゴ糖の生物活性を解析する場合には、オリゴ糖の糖鎖の集合化状態を同一にし、オリゴ糖 とタンパク質との間の相互作用を再現性よく観測することが求められる。特に、オリゴ糖 の生物活性を観測するためには、センサチップ表面に3単位以上のオリゴ糖を集合化し、 これらのセンサチップ上にて再現性よく2次元的に配列させることによって、オリゴ糖の 生物活性を再現性よく評価することが重要になる。

ところが、上記非特許文献1に記載のリガンドでは、1つのリガンドが有するオリゴ糖 は1単位又は2単位となっている。言い換えれば、上記のリガンドは、1つのリンカー化

このような手法によってオリゴ糖を集合化させた場合、オリゴ糖の糖鎖間を所定の間隔 にて制御してオリゴ糖の配列を再現性よく得ることは困難である。それゆえ、上記従来の リガンドでは、オリゴ糖の生物活性を再現性よく観測することができず、糖の構造の解明 や、オリゴ糖の生物活性の評価を行う場合に困難を伴う可能性がある。

本発明は、上記の課題を解決するためになされたものであって、その目的は、センサチ ップ表面上の糖鎖間距離を制御し、オリゴ糖を再現性よく2次元的に配列し得る新規なリ ンカー化合物、及び、該リンカー化合物に糖分子が導入されてなる新規なリガンド、リガ ンド担持体、並びにこれらの製造方法を提供することにある。

【課題を解決するための手段】

本発明者らは、上記課題を解決するために鋭意検討を行った結果、4単位の糖分子を導 入可能な部位を有し、かつ、表面プラズモン共鳴(SPR)のセンサチップやアフィニテ ィクロマトグラフィの担体等のタンパク質分析用の支持体に結合可能な部位を有する新規 なリンカー化合物を用いることによって、上記支持体に4単位の糖分子を再現性よく2次 元的に配列させることができることを見出した。

なお、本願発明者らは、先出願(特願2003-190568:本願の出願前の確認時 点で未公開)において、上記の問題点を解決することを目的として見出された他のリンカ ー化合物を開示している。しかしながら、この他のリンカー化合物は、疎水性が非常に強 いタンパク質などを分析する際に、リンカー部のアルキル基と非特異的に結合相互作用し てしまうという問題点がある。また、この他のリンカー化合物は、リンカー部を形成して いるアルキル基の長さが十分ではなく、固定化するオリゴ糖鎖が大きい場合には、オリゴ 糖類の立体障害のために効率よく金属ー硫黄結合が形成しないという問題点を有している

そこで、本願発明者らは、さらに、リンカー部にオリゴエチレンオキシド基を導入し、 非特異的な疎水性相互作用を極力抑え、かつ、金属結合に供されるジスルフィド基までの 長さを容易に調整可能にして、効率よく金属ー硫黄結合を形成することができることを見 出し、本発明を完成させるに至った。

すなわち、本発明にかかるリンカー化合物は、上記の課題を解決するために、一般式(1)

[0015]【化5】

$$S \longrightarrow HN - (CH_2CH_2O)_n CH_2C - X \cdots (1)$$

(式中、nは1以上6以下の整数) にて表される構造を備え、上記Xが、末端に芳香族ア ミノ基を有するとともに主鎖に炭素-窒素結合を有していてもよい炭化水素誘導鎖を、4 鎖含んでなる多分岐構造部位である構造を備えていることを特徴としている。

[0017]

ここで上記炭化水素誘導鎖とは、炭素及び水素からなる炭化水素鎖にて、一部の炭素や水素が、他の原子や置換基に置き換わっていてもよいものを指すものとする。すなわち、上記炭化水素誘導鎖とは、末端に芳香族アミノ基を有し、炭化水素鎖の主鎖構造である炭素一炭素結合(C-C結合)の一部が、炭素一窒素結合(C-N結合)、炭素一酸素結合(C-O結合)、アミド結合(CO-NH結合)に置き換わっていてもよいものを指す。

[0018]

上記の構成によれば、上記リンカー化合物は、糖分子を簡便に導入できる部位として、 芳香族アミノ基を有している。上記芳香族アミノ基は、各炭化水素誘導鎖に含まれている ので、上記リンカー化合物には、4単位の糖分子を導入することができる。また、上記タ ンパク質分析用の支持体に固定可能な部位として、S-S結合を有している。

[0019]

従って、上記リンカー化合物を介して、上記支持体に4単位の糖分子を集合化させて導入することができる。また、4単位の糖分子が1つのリンカー化合物に導入されているので、上記支持体表面に、4単位の糖分子を再現性よく配列させることができる。これにより、上記支持体表面上にて、糖分子とタンパク質との相互作用の観測が可能になるとともに、糖分子の生物活性を再現性よく評価することが可能になる。

[0020]

さらに、上記リンカー化合物は、リンカー部にオリゴエチレンジオキシド基を有しているため、リンカー部にアルキル基を有している場合に比べ、疎水性の高い分析対象物と非特異的な相互作用を起こす可能性を大幅に低下させることができる。また、上記リンカー部がオリゴエチレンジオキシドで構成されていることによって、金属結合に供されるジスルフィド基からアミノ末端に結合するオリゴ糖鎖までの長さを容易に調節することができる。これによって、ジスルフィド基がオリゴ糖鎖の影響を受けることなく、効率よく金属ー硫黄結合を形成することができる。

[0021]

上記一般式(1)で表される構造を備えているリンカー化合物において、上記Xは、一般式(2)

[0022]

【化6】

$$(CH_{2})_{p\overline{1}} \stackrel{O}{\longrightarrow} C - N$$

$$(CH_{2})_{m\overline{1}} \stackrel{H}{\longrightarrow} N \stackrel{O}{\longrightarrow} NH_{2}$$

$$(CH_{2})_{m\overline{2}} \stackrel{N}{\longrightarrow} NH_{2}$$

$$(CH_{2})_{p\overline{2}} \stackrel{C}{\longrightarrow} NH_{2}$$

$$(CH_{2})_{p\overline{2}} \stackrel{C}{\longrightarrow} NH_{2}$$

$$(CH_{2})_{m\overline{4}} \stackrel{N}{\longrightarrow} NH_{2}$$

$$(CH_{2})_{m\overline{4}} \stackrel{N}{\longrightarrow} NH_{2}$$

[0023]

(式中、 m^1 , m^2 , m^3 , m^4 , p^1 , p^2 は、それぞれ独立して、1以上6以下の整数)にて表される構造を備えていることが好ましい。

[0024]

[0025]

また、本発明のリガンドは、上記の課題を解決するために、上記したいずれかのリンカー化合物の芳香族アミノ基に、糖分子を導入してなるものであることを特徴としている。

[0026]

そして、上記リガンドが、具体的には、一般式(3)

[0027]

【化7】

[0028]

(式中、 m^1 , m^2 , m^3 , m^4 , n, p^1 , p^2 は、それぞれ独立して、1以上6以下の整数)にて表される構造を備えていることが好ましい。

[0029]

上記リガンドを用いることにより、上記タンパク質分析用の支持体表面に4単位(一般式(3)に示される構造を備えているリガンドを用いた場合)の糖分子を集合化して固定化することができる。このように、一つのリガンドが4単位の糖分子を有しているので、上記リガンド同士を上記支持体表面に集合化することなく、一つのリガンドを用いることで、4単位の糖分子を集合化させることができる。そのため、糖分子の生物活性を再現性よく測定することが可能になる。また、上記支持体表面に2次元的に複数の糖分子を再現性よく配列することができる。従って、本発明のリガンドが固定されてなるタンパク質分析用の支持体を用いることによって、糖分子の生物活性を再現性よく評価することが可能になる。

[0030]

また、本発明のリンカー化合物の製造方法は、上記の課題を解決するために、チオクト酸と、芳香族アミノ基末端が保護基によって保護された分岐鎖を4鎖有するアミン化合物との縮合反応を行うステップと、上記芳香族アミノ基末端の保護基を脱保護するステップとを含んでいることを特徴としている。

[0031]

上記の方法によれば、上記タンパク質分析用の支持体に固定可能な部位としてのS-S 結合と、糖分子を簡便に導入できる部位としての芳香族アミノ基とを有している、本発明 のリンカー化合物を得ることができる。

[0032]

また、本発明のリガンドの製造方法は、上記の課題を解決するために、上記のリンカー 出証特2005-3004475

化合物と、糖分子とを用いて、還元アミノ化反応を行うことを特徴としている。

上記の方法によれば、還元アミノ化反応により、リンカー化合物に簡便に糖分子を導入 して、本発明のリガンドを得ることができる。

なお、上記糖分子としては、還元末端を有するあらゆる種類の糖分子を用いることがで きる。

[0035]

上記糖分子として、具体的には、一般式(4)

[0036]

【化8】

$$\begin{array}{c} \text{CH}_2\text{OSO}_3^-\\ \text{OH} \\ \text{OH} \\ \text{OHSO}_3^- \\ \text{OSO}_3^- \\ \end{array} \\ \cdots (4)$$

[0037]

にて表されるヘパリン部分二糖構造を有する硫酸化オリゴ糖を用いることが好ましい。

また、本発明の糖分子の導入方法は、上記の課題を解決するために、上記リガンドを含 む溶液と、支持体表面の金属とを接触させることを特徴としている。

上記の方法によれば、上記リガンド(リガンドに含まれるリンカー化合物)のS-S結 合を、上記支持体表面の金属との結合に変換し、支持体表面に上記リガンドを固定するこ とができる。従って、リガンドを含む溶液と支持体とを接触させるという簡便な方法で、 リンカー化合物に結合した糖分子を支持体の表面に配列させることができる。

また、本発明のリガンド担持体は、上記の課題を解決するために、上記リガンドを、表 面に金属を有する支持体上に、固定化させてなることを特徴としている。

上記の構成によれば、金属ー硫黄結合を介して、支持体表面にリガンドを強固に固定す ることができるので、支持体表面に複数の糖分子を再現性よく配列させてなるリガンド担 持体を提供することができる。従って、上記リガンド担持体を用いれば、リガンドに含ま れる糖分子と、該糖分子と相互作用するタンパク質等の物質との相互作用を再現性よく観 測することができるので、糖分子の生物活性の定量的な評価が可能になる。

【発明の効果】

[0042]

本発明のリンカー化合物は、以上のように、4単位の糖分子を導入可能な部位として、 芳香族アミノ基末端を有している。また、表面プラズモン共鳴(SPR)のセンサチップ やアフィニティクロマトグラフィの担体等のタンパク質分析用の支持体に結合可能な部位 として、S-S結合を有している。さらに、非特異的な疎水性相互作用を極力抑えること ができ、かつ、金属結合に供されるジスルフィド基までの長さを容易に調整することがで きるように、ジスルフィド基と芳香族アミノ基との間にオリゴエチレンオキシドを有して いる。

それゆえ、上記リンカー化合物を用いることによって、上記支持体表面上に、4単位の 糖分子を再現性よく2次元的に配列させることができるという効果を奏する。また、上記

[0044]

また、本発明のリガンドは、上記リンカー化合物に糖分子を導入してなるものである。

[0045]

それゆえ、上記リガンドをタンパク質分析用の支持体表面に導入することにより、2次元的に複数の糖分子を再現性よく配列することができるので、糖分子の生物活性を再現性よく評価することが可能になるという効果を奏する。さらに、効率よく金属 - 硫黄結合を形成することができるという効果を奏する。

【発明を実施するための最良の形態】

[0046]

以下、本発明について詳細に説明する。

[0047]

本発明のリンカー化合物は、表面プラズモン共鳴(SPR)のセンサチップやアフィニティクロマトグラフィの担体等のタンパク質分析用の支持体とオリゴ糖等の糖(以下、糖分子と記載する)との間に介在して、上記支持体上に糖分子を固定化するために用いられる。そのため、上記リンカー化合物は、上記支持体に固定可能な部位、及び、糖分子を簡便に導入できる部位を分子内に有している必要がある。

[0048]

また、上記SPRやアフィニティクロマトグラフィでは、糖分子と特異的に相互作用するタンパク質等の物質を特定することや分離することを目的としている。そのため、上記リンカー化合物は、タンパク質等の物質との非特異的な相互作用を有していないものでなければならない。

[0049]

そこで、本発明のリンカー化合物は、上記支持体に固定可能な部位として、前記一般式(1)にて示すように、ジスルフィド結合(S-S結合)を有している。このジスルフィド結合の硫黄(S)は、例えば、タンパク質分析用の支持体表面にコートされた金(Au)などの金属と、金属-硫黄結合を形成し、上記支持体に強固に結合することができる。

[0050]

また、上記リンカー化合物は、タンパク質分析用の支持体表面に 2 次元的に複数の糖分子を配列するとともに、個々の糖分子の糖鎖間の距離を制御するために、糖分子を簡便に導入できる部位として、複数のアミノ基を含んでなる多分岐部位を有している。すなわち、本発明のリンカー化合物の多分岐部位は、前記一般式(1)の X で表される構造を備えている部位であり、該 X は、前記したように、末端に芳香族アミノ基を有するとともに主鎖に炭素一窒素結合やアミド結合を有していてもよい炭化水素誘導鎖を 4 鎖含んでいる構造を備えている。

[0051]

上記芳香族アミノ基のアミノ基($-NH_2$ 基)は、オリゴ糖等の糖分子との還元アミノ化反応により、上記リンカー化合物に糖分子を導入するための反応基となる。つまり、糖分子中の平衡によって生じるアルデヒド基(-CHO基)又はケトン基(-CRO基、Rは炭化水素基)と、上記リンカー化合物が有するアミノ基とが反応する。そして、この反応によって形成されたシッフ塩基を引き続き還元することによって、芳香族アミノ基に容易に糖分子を導入することができる。

[0052]

従って、前記一般式(1)のXは、上記のような炭化水素誘導鎖を4鎖含むことにより、糖分子を導入可能な芳香族アミノ基を複数併せ持った多分岐型部位である構造を備えている。この多分岐型部位に含まれる各芳香族アミノ基に、オリゴ糖等の糖分子が導入されるので、前記一般式(1)にて表される構造を備えているリンカー化合物を介して、タン

[0053]

さらに、本発明のリンカー化合物は、前記一般式 (1) に示すように、ジスルフィド基と、芳香族アミノ基との間にオリゴエチレンオキシドを有している。これにより、非特異的な疎水性相互作用を極力抑え、かつ、金属結合に供されるジスルフィド基までの長さを容易に調整可能にして、効率よく金属一硫黄結合を形成することができる。なお、上記一般式 (1) において、nは、1以上6以下の整数であれば限定されない。

[0054]

具体的には、上記 X は、前記 - 般式(2)にて示すように、2鎖の炭化水素誘導鎖が、 芳香族アミノ基とは反対側の末端にて、1 つの窒素(N)に結合した 2 分岐構造を 2 つ有している構造を備えていてもよい。この場合、2 つの 2 分岐構造の上記窒素が、例えばって 0 とことによって分岐構造を形成する。これにより、上記 0 と記 0 において、0 に結合することによって分岐構造を形成する。これにより、上記 0 において、0 において、0 において、0 において、0 において、0 において、0 において、0 において、0 において、0 の整数であれば限定されず、互いに異なる整数であってもよく、0 においてもよい。このうち、上記多分岐部位を有する化合物の製造時の簡便さの点から、上記 0 に対しての主数であることが好ましく、特に 0 であることが好ましい。また、0 に以上 0 以上 0 以下の整数であれば特に限定されず、互いに異なる整数であってもよく、互いに同じ整数であってもよい。このうち、製造の簡便性の点から、0 によってもよく、互いに同じ整数であってもよい。このうち、製造の簡便性の点から、0 によってもよい。

[0055]

このように、上記Xは、炭素や窒素等の原子にて、上記炭化水素誘導鎖を複数結合して 分岐構造を形成している多分岐型部位である構造を備えている。なお、上記Xに含まれる 複数の炭化水素誘導鎖は、すべて同じであることが好ましいが、末端に芳香族アミノ基を 有していれば、互いに異なる構造であってもよい。

[0056]

以上のように、一般式(1)にて表される構造を備えているリンカー化合物は、タンパク質分析用の支持体に結合可能なS-S結合と、オリゴ糖鎖等の糖分子に結合可能なアミノ基とを有している。従って、例えばAu-S結合などの金属-硫黄結合により上記リンカー化合物が、タンパク質分析用の支持体上に固定されるので、上記リンカー化合物を介して、上記支持体上に糖分子を強固にかつ簡単に結合させることができる。

[0057]

また、上記リンカー化合物は、多分岐型部位を有し、該多分岐型部位の各末端に芳香族アミノ基を有している。そのため、上記リンカー化合物に糖分子を導入してなるリガンド(後述)を用いることにより、上記支持体表面に効率よく糖分子を集合化させることができる。また、多分岐型部位を有しているので、リンカー化合物を含んでなるリガンドを支持体表面に結合させた場合に、2次元的に複数の糖分子を再現性よく配列させることができる。

[0058]

さらに、上記リンカー化合物は、タンパク質との非特異的な相互作用の影響をほぼ無視することができる。それゆえ、本発明のリンカー化合物を用いることによって、糖分子の生物活性を再現性よく評価することが可能になる。

[0059]

また、上記リンカー化合物は、前記一般式(1)に示すように、ジスルフィド基と、芳香族アミノ基との間にオリゴエチレンオキシドを有している。これによって、非特異的な疎水性相互作用を極力抑え、かつ、金属結合に供されるジスルフィド基までの長さを容易に調整可能にして、効率よく金属一硫黄結合を形成することができる。

[0060]

上記リンカー化合物は、以下に示す製造方法によって製造される。すなわち、上記リン 出証特2005-3004475

カー化合物は、チオクト酸と、芳香族アミノ基末端が保護基によって保護された分岐鎖を 4 鎖有する多分岐構造を含んでなるアミン化合物との縮合反応を行い、上記芳香族アミノ 基末端の保護基を脱保護することによって製造される。

[0061]

上記チオクト酸は、下記一般式(5)

[0062]

【化9】

[0063]

にて表される構造を備えている。

また、上記アミン化合物は、保護基によって保護された芳香族アミノ基末端を有する分 岐鎖を含んでいれば特に限定されるものではなく、上記したリンカー化合物の多分岐部位 に相当する構造を含んでいればよい。

[0065]

従って、上記分岐鎖は、上記した炭化水素誘導鎖に含まれる芳香族アミノ基の代わりに 、保護基によって保護された芳香族アミノ基末端を有する以外は、上記炭化水素誘導鎖に 含まれる構造を有していればよい。つまり、上記分岐鎖は、炭素及び水素からなる炭化水 素鎖にて、一部の炭素や水素が他の原子や置換基に置き換わっていてもよいものである。 より具体的には、上記分岐鎖は、保護基によって保護された芳香族アミノ基末端を有する とともに、炭化水素鎖の主鎖構造である炭素-炭素結合(C-C結合)の一部が炭素-窒 素結合(C-N結合)、また炭素-酸素結合(C-O結合)に置き換わっていてもよいも のである。

[0066]

また、上記保護基とは、芳香族アミノ基のアミノ基が上記縮合反応によって反応しない ように導入される置換基である。このような保護基は、二級アミノ基の保護基を脱保護す る際に影響を受けないものであれば、特に限定されるものではない。上記保護基としては 、例えば、t-ブトキシカルボニル基(-COOC(CH3)3基;Boc基と記載する)、ベンジル基、アリルカルバメート基(-СООСН2СН2СН2、Alloc基) 等を挙げることができる。

[0067]

上記アミン化合物としては、例えば、下記一般式(6)

[0068]

【化10】

にて表される構造を備えている化合物を挙げることができる。なお、上記一般式(6)中 のn, $m^1 \sim m^4$, p^1 , p^2 は、それぞれ独立して、1以上6以下の整数である。これらの アミン化合物の合成方法については、後の実施例にて詳述する。

上記チオクト酸とアミン化合物との縮合反応により、チオクト酸のカルボキシル基(-COOH基)と、アミン化合物のアミノ基 (-NH2基)とが縮合して、アミド結合が形 成される。その後、芳香族アミノ基末端の保護基を脱保護して、保護基を取り外し、芳香 族アミノ基にすることによって、上記したリンカー化合物を得ることができる。

なお、上記リンカー化合物は、上述のようにリンカー部分にオリゴエチレンオキシドを 備えた構造となっているため、その製造方法においてはオリゴエチレンオキシド構造を含 んでなる物質を原料として用いることが好ましい。この原料としては、例えば、ビス[2 - (2-ヒドロキシエトキシ) エチル]エーテル (実施例の化合物1)、分子量の異なる 市販のポリエチレングリコール (Mw:200、300、400、600、1000) (Sigma社製) など を挙げることができ、この中でも特に、重合度が完全に制御された、すなわち、長さが制 御された構造を有するという理由で、ビス[2-(2-ヒドロキシエトキシ)エチル]エー テル (実施例の化合物1) を用いることが好ましい。

次に、上記リンカー化合物の芳香族アミノ基に、糖分子が導入されてなるリガンドにつ いて説明する。本発明のリガンドにおいては、リンカー化合物のアミノ基が、糖分子中の 平衡によって生じるアルデヒド基又はケトン基と反応し、この反応によって形成されたシ ッフ塩基を引き続き還元することによって、芳香族アミノ基に糖分子を導入することがで きる。すなわち、この還元アミノ化反応により、上記リンカー化合物と糖分子とが結合す

本発明のリガンドに含まれる糖分子としては、還元末端を有する還元糖であれば、特に 限定されることなくあらゆる種類のものを用いることができる。上記糖分子として具体的 には、例えば、グルコース、ガラクトース、マンノース等の単糖類、結合している糖の数 が2糖~10糖であるマルトース、ラクトース、後述する硫酸化オリゴ糖等のオリゴ糖類 、単糖類やオリゴ糖類が組み合わされて糖数が11以上であるヘパリン、コンドロイチン 硫酸、ヘパラン硫酸等の多糖類を挙げることができる。

また、上記オリゴ糖類として、抗血液凝固活性を有することで知られている硫酸化多糖 出証特2005-3004475 ヘパリン中の下記一般式(4)

[0075]【化11】

にて表される特定の部分二糖構造(「G1cNS6S-IdoA2S」と呼ぶ)を有する 硫酸化オリゴ糖、該硫酸化オリゴ糖の還元末端である水酸基にグルコースを導入してなる 下記一般式(7)

[0077] 【化12】

[0078] にて表される構造を備えているオリゴ糖を挙げることができる。

なお、上記オリゴ糖類や多糖類は、同一の単糖分子からなる単一オリゴ糖や単一多糖で あってもよく、種々の単糖分子やその誘導体からなる複合糖質や、種々の単糖分子やその 誘導体、オリゴ糖類を含んでなる複合多糖類であってもよい。また、上記糖分子は、いず れも、自然界から単離・精製して得られる種々の天然の糖であってもよく、人工的に合成 された糖であってもよい。

具体的には、本発明のリガンドは、前記一般式(3)にて表される構造を備えているも のである。この一般式(3)にて表される構造を備えているリガンドは、前記一般式(1) にて表され、Xが前記一般式 (2) にて表される構造を備えているリンカー化合物に、 上記一般式(7)にて表される構造を備えている糖分子を導入してなるものである。一般 式(2)にて表されるXは、4鎖の炭化水素誘導鎖を有している構造を備えているので、 一般式(3)にて表される構造を備えているリガンドは、上記リンカー化合物に4単位の 糖分子が結合したものである。なお、上記一般式(3) において、 $\mathbf{m}^1 \sim \mathbf{m}^4$ は、一般式(2)中の $m^1 \sim m^4$ と同様に、1以上6以下の整数であれば限定されず、互いに異なる整数 であってもよく、一部あるいは全てが同じ整数であってもよい。また、nは1以上6以下 の整数であれば特に限定されない。

上記のリガンドは、いずれもリンカー化合物と糖分子とを含んでなっているので、リン カー化合物内のS-S結合にて、タンパク質分析用の支持体表面の金属と、金属ー硫黄(S)結合、例えば金-硫黄(Au-S)結合により結合することができる。これにより、 このAu-S結合を介して、上記支持体表面に4単位の糖分子を集合化して固定化されて なるリガンド担持体を提供することができる。それゆえ、上記リガンドを用いることによ って、例えばタンパク質分析用の支持体表面に2次元的に複数の糖分子を再現性よく配列 してリガンド担持体を得、該リガンド担持体を用いることによって、糖分子の生物活性を 再現性よく評価することが可能になる。なお、上記支持体表面の金属としては、上記Au

[0082]

さらに、上記のリガンドは、リンカー部にオリゴエチレンオキシドを有している。これにより、非特異的な疎水性相互作用を極力抑え、かつ、金属結合に供されるジスルフィド基までの長さを容易に調整可能にして、効率よく金属-硫黄結合を形成することができる

[0083]

このように、本発明のリガンドを、金属ー硫黄結合を介して支持体の表面に固定化させてなるリガンド担持体も本発明に含まれる。このリガンド担持体はタンパク質分析の用途に限定されず、糖分子との相互作用を調べるために、タンパク質以外の物質の分析用として用いることもできる。

[0084]

上記リガンド担持体は、該リガンドを含むリガンド溶液と表面に金属膜を有する支持体とを接触させることにより、リガンドのS-S結合の各S原子が、支持体表面の金属と金属-硫黄結合によって結合して、支持体表面に上記リガンドが導入される。具体的には、上記リガンド溶液に、タンパク質分析用の支持体を所定時間浸漬する、あるいは、上記支持体にリガンド溶液を注入する(支持体表面にリガンド溶液を流す)ことによって、上記リガンド(リガンドに含まれるリンカー化合物)のS-S結合を、上記支持体表面の金等とのAu-S結合に変換して、支持体表面に上記リガンドを固定することができる。

[0085]

リガンド溶液に用いる溶媒としては、特に限定されるものではないが、例えば、メタノール、水、ジメチルアセトアミド(DMAc)や、これらの混合溶媒等を挙げることができる。また、浸漬時間は、0.5時間~12時間程度であればよく、注入濃度は、 1_{μ} M~1 mM程度であればよい。

[0086]

このように、本発明のリガンドは、S-S結合を有しているので、タンパク質分析用の 支持体表面に簡単に固定化することができ、上記支持体上に糖分子を簡単に導入すること ができる。

[0087]

なお、上記のように支持体に糖分子を導入する方法も本発明に含まれる。

[0088]

本発明のリガンド担持体は、糖分子と、例えばタンパク質等の他の物質との相互作用の分析に、利用可能である。具体的には、上記リガンド担持体は、SPR測定、アフィニティクロマトグラフィ等に適用することができる。

[0089]

例えば、タンパク質分析として、SPR測定を行うには、以下のようにすればよい。すなわち、金薄膜等の金属薄膜を蒸着した支持体に、本発明のリガンドを固定化してなるリガンド担持体を用い、該リガンド担持体とタンパク質とを接触させ、常法に従って、表面プラズモン共鳴装置を用いて共鳴角度を測定すれば、該リガンド担持体とタンパク質との結合挙動を観測することができる。なお、SPR測定に用いる上記支持体(センサチップ)としては、例えば、ガラス、プラスチック等を用いることができ、特にガラスが好適に用いられる。また、リガンド担持体とタンパク質の接触は、例えば、タンパク質をランニングバッファーに溶解した溶液を、該リガンド担持体の表面に流入することにより行えばよい。このランニングバッファーとしては、例えば、リン酸緩衝溶液等を挙げることができる。

[0090]

本発明のリガンド担持体は、上記リガンドを有しているので、支持体表面に 2 次元的に 複数の糖分子を再現性よく配列することができる。それゆえ、糖分子の生物活性を再現性 よく観測でき、糖分子の構造の解明や、糖分子の生物活性について定量的な評価を行うこ

[0091]

また、本発明のリガンド担持体として、リガンドを導入したセンサチップは、例えば、以下のようなSPR測定に使用することができる。すなわち、第1の糖分子が支持体表面に固定化されてなる第1のセンサチップと、上記第1の糖分子とは末端構造が異なる第2の糖分子が支持体表面に固定化されてなる第2のセンサチップとを用いて、第1のセンサチップを用いて得られたSPR測定の検出結果と、第2のセンサチップを用いて得られたSPR測定の検出結果と、第2のセンサチップを用いて得られたSPR測定の検出は果との差を検出し、糖分子の相互作用を観測することができる。これらのセンサチップは、固定化される糖分子が異なっているリガンドを用いればよい。比較する糖分子には、例えば、ラクトースとグルコース、マルトースとグルコース、コージビオースとグルコース等が挙げられる。ここでは、2つのセンサチップを用いたが、これ以上の数の、導入される糖分子の種類が異なるセンサチップを用いてもよい。なお、糖分子の末端とは、センサチップに固定されていない側のことである。

[0092]

上記SPR測定では、第1の糖分子に特異的に作用するタンパク質等を用いて、測定条件を一定にして、上記2つのセンサチップに作用させ、両者の共鳴角度を観測する。この両者の共鳴角度の差を検出することで、糖分子とタンパク質等との特異的な相互作用として測定することができる。

[0093]

また、糖分子との相互作用を観測する物質は、タンパク質に限定はされない。

[0094]

上記では、2つの種類のセンサチップ同時に測定したが、これに限定されることはなく、2種類以上のセンサチップを測定してもかまわないし、同時に測定しなくてもかまわない。また、少なくとも1つのセンサチップに糖分子を導入していないものを用いてもよい。例えば、リンカー化合物のみを固定化したものを用いてもよい。

[0095]

上記のようなSPR測定を行うと、糖分子以外は同じ構造のリガンドを有する少なくとも2つのセンサチップを用いて、測定をすることができるため、少なくとも2つのセンサチップ相互作用の差は、糖分子に起因したものとして観測される。従って、上記測定方法を用いれば、糖分子以外の部分と、他の物質との非特異的な相互作用を低減させ、糖分子と他の物質との特異的な相互作用を観測することができる。

[0096]

本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。

【実施例】

[0097]

以下、本発明のリンカー化合物およびリガンドの合成について、より詳細に説明する。 また、本実施例では、合成した当該リガンドと他のリガンドとを用いて、その特性を比較 検討するという実験も行った。それについても併せて説明する。

[0098]

[実施例1:リンカー化合物の合成]

本発明にかかるリンカー化合物の一つ、すなわち、前記一般式(1)にて、nが4であり、Xが前記一般式(2)にて表され、 p^1 , p^2 が1であり、 m^1 , m^2 , m^3 , m^4 が2である構造を有するリンカー化合物は以下の手順で合成した。図1には、このリンカー化合物を合成する過程を示す。以下の説明において、各化合物に付記している番号は図1の記載の番号に相当する。

[0099]

図 1 に示すように、先ず、原料として、ビス [2-(2-ヒドロキシエトキシ) エチル] エーテル (化合物 1) を用いて、 CH_2 Cl_2 中で BF_3 ・ Et_2 0 存在下ジアゾ酢酸エチル (化合物 2)

出証特2005-3004475

を反応させて、エステル体(化合物3)を収率 40% で合成した。次に、化合物3を CH2C 1_2 中で DMAP 、ピリジン存在下 p-トルエンスルホニルクロリドと反応させ、トシル体(化合物4)を 78% の収率で得た。化合物4に DMF 中アジ化ナトリウムを作用させ、収率 90% でアジド体(化合物 5) を得た。

[0100]

これを MeOH 中 1N NaOH で加水分解し、カルボン酸誘導体(化合物 6)を収率 98%で 得た。CH₂Cl₂ 中で上記化合物 6 と化合物 7 を、HOBt とWSCI・HCl を用いて縮合し、ジエ ステル誘導体(化合物 8) を80%の収率で得た。この化合物 8 をMeOH 中0.6 N NaOH で加 水分解することにより、ジカルボン酸誘導体(化合物 9) を収率93%で得た。上記化合物 9とジアミン誘導体(化合物 10)を FDPP と DIPEA を用いて縮合し、化合物 11を収 率 40% で得た。この化合物 1 1 のアジド基を接触水素還元して、収率80%でアミン体(化 合物12)へと導いた。

[0101]

その後、チオクト酸(化合物 13)と縮合させ、化合物 14を収率59%で得た。最後に 、この化合物14にTFA を作用させることによって、Boc基を脱保護し、目的の芳香族ア ミノ基を4単位有するリンカー化合物(化合物15)を収率91%で得た。

以下、上述の合成過程で得られる各化合物の合成方法についてより具体的に示すととも に、合成された各化合物について 1 $\mathrm{H-NMR}$ スペクトルの測定を行った結果を示す。 1 H-NMRスペクトルの測定については、以下のような手順で行った。

[0103]

[1 H-NMRスペクトルの測定]

¹ H-NMRスペクトルの測定には、JEOL-JNM-Lambda500 NMR spectrometer とJEOLJN M-GSX400 NMR spectrometer とJEOL EX 270 NMR spectrometer を用いた。化学シフトは 、CDCl3 の場合テトラメチルシランを基準物質としてβ値で表した。CD3 OD およびd6-DM SO は残存する溶媒のプロトンの化学シフトを基準にδ値で表した。質量分析はApplied B iosystems, Mariner™を用いて測定した。FT-IR-ATR 測定には、Shimadzu, IRPrestige-2 1 に1回反射ATR 付属装置(MIRacle Ge プリズム)を搭載したものを用いた。FT-IR-ATR 測定のためのセンサチップはSPR 測定の時と同じものを使用した。中圧カラムシリカゲル クロマトグラフィはSilica gel 60 No. 9385 (Merck) を使用し、薄層シリカゲルクロマ トグラフィはSilica gel 60 F254 (Merck) を使用した。無水ジクロロメタンは水素化カ ルシウムを乾燥剤に用いて窒素気流下蒸留したものを使用した。その他の脱水溶媒は、関 東化学株式会社製のものを購入して使用した。それ以外の試薬及び溶媒は、基本的に特級 のものを使用した。

[0104]

(1) 化合物7の合成

イミノ二酢酸(10.0 g, 75.1 mmol) と BF3・OEt2 (22 ml, 173 mmol) を無水メタノー ル (50 ml)に溶解し、アルゴン雰囲気下にて5時間還流した後、飽和炭酸水素ナトリウム 水溶液を加えて中和し、クロロホルムで抽出した。pHが9になるまで水層にトリエチル アミンを加え、さらにクロロホルムで抽出し、乾燥剤として無水硫酸ナトリウムを用いて 乾燥させた後、乾燥剤を濾去して減圧濃縮し、化合物 7 (9.61g, 79%) を黄色油状物として 得た。

[0105]

この化合物 7 について 1 H - NMR (400MHz, CD₃ C1) 測定を行ったところ 、 δ = 3.74 (6H, s, OMe), 3.48(4H, s, CH₂ N), 2.00 (1H, s, NH)であった。また、上 記化合物 7 のESI-MS (positive) 測定を行ったところ、m/z 162.1 [(M+H)+]であっ た。これによって、化合物7の構造を確認することができた。

[0106]

(2) 化合物 16 (図示せず) の合成

化合物 7 (1.00 g, 6.21 mmol) とジシクロヘキシルカルボジイミド(1.41 g, 6.83 mmol

)とHOBt(0.92 g, 6.83 mmol)を無水ジクロロメタン 25 ml に溶解し、アルゴン雰囲気 下、0℃ で0.5時間攪拌した後、Z ーグリシン (1.42 g, 6.83 mmo1)を加えて、室温 で5日間攪拌した。該撹拌によって析出した沈殿物を濾別し、濾液をクロロホルムで抽出 し、有機層を1 N 塩酸と、飽和炭酸水素ナトリウム水溶液とで2回ずつ洗浄し、さらに水 で1回洗浄して、乾燥剤として無水硫酸ナトリウムを用いて乾燥させた後、乾燥剤を濾去 して減圧濃縮を行った。濃縮残渣を分取シリカゲルクロマトグラフィ(300 g 、クロロホ ルム:アセトン = 2:1)で精製して、化合物 16(2.05 g, 94%) を白色固体として得た

[0107]

この化合物 16 について 1 H-NMR (400 MHz, CD₃ C1) 測定を行ったとこ δ , δ = 7.36 (5H, m, Ph), 5.69 (1H, br t, Gly-NH), 5.12 (2H, s, CH₂Ph), 4.22, 4.1 2 (4H, s, s, CH₂ N), 4.06 (2H, d, Gly-CH₂), 3.78, 3.73 (4H, s, s, OMe)であった。 また、上記化合物 16のESI-MS (positive) 測定を行ったところ、m/z 375.1 [(M+ Na)+]であった。これによって化合物 1 6 の構造を確認することができた。

[0108]

(3) 化合物 17 (図示せず) の合成

化合物 1 6 (1.50 g, 4.26 mmol) をメタノール (20 ml) に溶解し、2 Nの NaOH (9ml) を加えて、0℃で2. 5時間攪拌した後、Dowex 50WX-8 (H+ form) を pH = 6 になる まで加えて中和し、該 Dowex 50WX-8 を濾別して減圧濃縮を行った。減圧濃縮によって得 られた濃縮残渣に水を加えて不溶物を濾別した後、減圧濃縮及び凍結乾燥を行って、化合 物 1 7(1.30 g, 98%) を白色固体として得た。

[0109]

この化合物 1 7 について 1 H - N M R (4 0 0 M H z , C D $_3$ C 1)測定を行ったとこ δ , δ =7.32 (5H, m, aromatic), 7.21 (1H, m, CONH), 5.01 (2H, s, CH₂Ph), 3.93, 3. 84(4H, s, s, CH₂ N), 3.72 (2H, d, J = 5.4 Hz, G1y-CH₂)であった。また、上記化合物 16のESI-MS (negative) 測定を行ったところ、m/z 321.1[(M-2H+Na)-]であった 。これによって化合物16の構造を確認することができた。

[0110]

(4) 化合物 10の合成

N-Boc アミノ安息香酸誘導体(3.33 g, 14.0 mmol) と、HOBt (1.93 g, 14.3 mmol)とを 無水ジクロロメタン(60 ml)に懸濁させ、アルゴン雰囲気下、0℃で15分撹拌し、WSC I・HC1 (2.87 g, 15.0 mmol) を無水ジクロロメタン (30 ml) に溶解させた溶液を加えて 、50 分撹拌した。この溶液にジエチレントリアミン(0.79 m, 7.00 mmol)を加え、遮光下 、室温で終夜撹拌し、白色結晶を得た。この白色結晶を濾取した後、メタノールから再結 晶して、化合物 1 0 (3.53 g, 92.9%) を白色結晶として得た。

この化合物 10 について 1 H - N M R (400 M H z , C D $_3$ C $_1$)測定を行ったとこ ろ、 δ = 7.77-7.74 (4H, d, J = 8.67 Hz, aromatic),7.50-7.48(4H, d, J = 8.57 Hz, aromatic) omatic), 3.70-3.66 (4H,m, J = 5.19 Hz CONHCH2), 3.34-3.28 (4H,m, J = 5.61 Hz CH $_2$ CH $_2$ ONH), 1.53 (18H, s, CH $_3$ ×6)であった。また、上記化合物 1 0 のESI-MS(pos itive) 測定を行ったところ、m/z 542.4 $\left[(M+H)^+ \right]$ であった。これによって化合物 1 0 の構造を確認することができた。

[0112]

ビス[2-(2-ヒドロキシエトキシ)エチル]エーテル (化合物 1) (14.57 ml, 80 mmol) と BF₃・Et₂O(252 ml, 2 mmol) を無水ジクロロメタン 50 ml に溶解し、0℃でジアゾ酢酸 エチル (化合物 2) (1.8 ml, 17.35 mmol) を滴下した後、室温で70 分間攪拌した。反応 溶液に飽和塩化アンモニウム水溶液 20 ml を加え、ジクロロメタンで抽出し、無水硫酸 マグネシウムで乾燥した。乾燥剤を濾去して減圧濃縮し、濃縮残渣を中圧分取クロマトグ ラフィー(600g 、ヘキサン:酢酸エチル = 1:3)で精製して化合物 3(2.26~g,~47%)

を無色液体として得た。

[0113]

この化合物 3 について 1 H - N M R (4 0 0 M H $_Z$, C D $_3$ C $_1$)測定を行ったところ、 δ = 4.22 ($_q$, $_2$ H, $_3$ J = 7.0, 14.2 Hz, $_2$ CO $_2$ CH $_2$), 4.14 ($_3$, $_3$ H, OCH $_3$ CO), 3.75–3.62 ($_4$ M, CH $_3$ CH $_4$ CH $_5$ O \times 3, HOCH $_4$ CH $_5$ D, 3.61, ($_4$ CH $_5$ D, 3.61, ($_4$ CH $_5$ D), 3.61, ($_4$ CH $_5$ D) であった。また、上記化合物 3 の E S I $_4$ D S (positive) 測定を行ったところ、 $_4$ D/ $_2$ CD $_3$ D) であった。これによって化合物 3 の構造を確認することができた。なお、この化合物 3 の分子量は3C1 3C1 3C1 3C2 3C3 3C3 3C1 3C1 3C3 3C3 3C3 3C3 3C3 3C3 3C3 3C4 3C4 3C5 3C6 3C6 3C6 3C6 3C7 3C7 3C7 3C8 3C7 3C8 3C9 3C9 3C9 3C1 3C2 3C2 3C1 3C1

[0114]

(6) 化合物 4 の合成

上記のエチル体化合物 3 (2.15 g, 7.66 mmol) と DMAP (41.7 mg, 337 mmol) を無水ピリジン 8ml に溶解した。この溶液に 0 \mathbb{C} で p-トルエンスルホン酸クロリド (1.75 g, 9.19mmol) を無水ジクロロメタン 8 ml に溶解した溶液を滴下し、室温で 3 時間攪拌した。反応溶液にジクロロメタンと氷水を加えてジクロロメタンに抽出した。有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で 1 回ずつ洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾去して減圧濃縮し、濃縮残渣を中圧分取クロマトグラフィー (100 g、クロロホルム:アセトン = 4 : 1) で精製して化合物 4 (2.59 g, 78%)を黄色液体として得た。

[0115]

この化合物 4 について 1 H - N M R (4 0 0 M H $_Z$, C D $_3$ C $_1$) 測定を行ったところ、 $\delta=7.80$ (d, 2H, J=8.4 Hz, aromatic), 7.35 (d, 2H, J=8.4 Hz, aromatic), 4.2 1 (q, 2H, CO_2 CH $_2$), 4.16 (t, 2H, J=4.8 Hz, $TsOCH_2$), 4.14 (s, 2H, OCH_2 CO), 3.76 -3.59 (m, 14H, CH_2 CH $_2$ 0 \times 3, $TsOCH_2$ CH $_2$), 2.45 (s, 3H, CH_3 Ar), 1.28 (t, 3H, J=7 0.0 Hz, CH_2 CH $_3$) CH_2 CH $_3$) CH_2 CH $_4$) CH_2 CH $_5$ (CH_4 CH $_5$) CH_5 CH $_5$ CH

[0116]

(7) 化合物 5 の合成

上記のトシル体化合物 4 (1.01g, 2.31 mmol) とアジ化ナトリウム (1.53g, 2.31 mmol) を無水ジメチルホルムアミド 50 ml に溶解し、遮光して 120 ℃で窒素雰囲気下 10 時間攪拌した。反応溶液をクロロホルムで抽出し、水、飽和食塩水で有機層を 1 回ずつ洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾去して減圧濃縮し、濃縮残渣を中圧分取クロマトグラフィー (10 g、クロロホルム:アセトン = 2 : 1) で精製して化合物 5 (638mg, 90%) を黄色液体として得た。

[0117]

[0118]

(8) 化合物 6 の合成

上記のアジド体化合物 5 (614 mg, 2.01 mmol) をメタノール24 ml に溶解し、遮光下 0 $\mathbb C$ で 1N NaOH 4.3 ml を加えた後、室温で 2 1 時間攪拌した。反応溶液を減圧濃縮し、濃縮残渣にクロロホルムを加えた後、1 N HCl を pH = 2 になるまで加え、クロロホルムで抽出した。有機層を飽和食塩水で 1 回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾去して減圧濃縮し、化合物 6 (549 mg, 90%) を無色液体として得た。

[0119]

この化合物 6 について 1 H – N M R (4 0 0 M H z, C D $_3$ C $_1$) 測定を行ったところ、 δ = 6.19 (bs, 1H, CO $_2$ H), 4.16 (s, 2H, OCH $_2$ CO $_2$ H), 3.75–3.64 (m, 12H, OCH $_2$ CH $_2$ 0 × 3), 3.68 (m, 2H, N $_3$ CH $_2$ CH $_2$), 3.41 (t, 2H, J = 5.1 Hz, N $_3$ CH $_2$) であった。また、上記化合物 6 の E S I – M S (negative) 測定を行ったところ、m/z 328.14 [(M+N $_3$)+]であった。これによって化合物 6 の構造を確認することができた。なお、この化合物 6 の分子量は C_{10} H $_{19}$ N $_3$ O $_6$: 2 7 7 . 1 3 である。

[0120]

(9) 化合物 8 の合成

上記化合物 6 (0.35 g, 1.26 mmol) と WSCI・HC1 (0.27 g, 1.39 mmol) とHOBt (0.19 g, 1.39 mmol) を無水ジクロロメタン 2 ml に溶解し、アルゴン雰囲気下、遮光して 0 $^{\circ}$ で 8 0 分間攪拌した後、上記化合物 7 (1.42 g, 6.83 mmol)を無水ジクロロメタン 1 ml に溶解した溶液を加えて、室温で 1 7 時間攪拌した。反応容液をクロロホルムで抽出し、有機層を 10% クエン酸と、飽和炭酸水素ナトリウム水溶液とで 1 回ずつ洗浄した。乾燥剤として無水硫酸ナトリウムを用いて乾燥させた後、乾燥剤を濾去して減圧濃縮を行った。濃縮残渣を分取シリカゲルクロマトグラフィ(50 g、クロロホルム:アセトン = 10:1)で精製して、化合物 8 (0.42 g, 80%)を白色固体として得た。

[0121]

この化合物 8 について 1 H - N M R (4 0 0 M H $_Z$, C D $_3$ C 1) 測定を行ったところ、 δ = 4.23, 4.11 (s, s, 4H, CONCH $_2$), 4.18 (s, 2H, OCH $_2$ CON), 3.69,3.66 (s, s, 4H, CO $_2$ CH $_3$), 3.69 $_-$ 3.56 (m, 12H, OCH $_2$ CH $_2$ O \times 3), 3.61 (t, 2H, J = 5.1 Hz, N $_3$ CH $_2$ CH $_2$), 3.32 (t, 3H, J = 5.0 Hz, N3 CH $_2$)であった。また、上記化合物 8 のESI-MS(positive)測定を行ったところ、m/z 443.17 [(M+Na)+]であった。これによって化合物 8 の構造を確認することができた。なお、この化合物 8 の分子量は C_1 6 H $_2$ 8 N $_4$ O9:4 2 0 . 1 8 である。

[0122]

(10) 化合物 9の合成

上記化合物 8 (398 mg, 947 mmo1) をメタノール (5 ml) に溶解し、2 N の NaOH (2.1 ml)を加えて、0 $\mathbb C$ で2. 5 時間攪拌した後、Dowex 50WX-8 ($\mathbb H^+$ form) を $\mathbb H$ = 2 になるまで加えて中和し、Dowex 50WX-8 を濾別して減圧濃縮を行った。減圧濃縮によって得られた濃縮残渣に水を加えて不溶物を濾別した後、減圧濃縮及び凍結乾燥を行って、化合物 9 (346 mg, 93%) を白色固体として得た。

[0123]

この化合物 9 について 1 H - N M R (4 O O M H $_Z$, C D $_3$ C 1)測定を行ったところ、 $\delta=5.66$ (bs, 2H, CO₂H \times 2), $^4.24$, $^4.18$ (s, s, 4H, CONCH₂), $^4.26$ (s, 2H, OCH₂ CON), $^3.71$ – $^3.63$ (m, 12H, OCH₂ CH₂ O \times 3), $^3.67$ (m, 2H, 3 = 5.1 Hz , 3 CH₂ CH₂), 3 40 (t, 3H, 3 = 4.9 Hz, 3 CH₂)であった。また、上記化合物 9 の E S I 3 M S (negative) 測定を行ったところ、 3 M/z 3 391.15 3 [(M-H) 3]であった。これによって化合物 9 の構造を確認することができた。なお、この化合物 9 の分子量は 3 C 3 9 2 . 15 である

[0124]

(11) 化合物 11の合成

上記化合物 9 (333 mg, 847 mmo1) とジイソプロピルエチルアミン (435 ml, 2.54 mmo1)、とFDPP (1.00 g, 2.60 mmo1) とを無水ジメチルホルムアミド (5 ml) に溶解して遮光してアルゴン雰囲気下 0 \mathbb{C} で 3 0 分間攪拌した後、上記化合物 1 0 (1.15 g, 2.11 mmo1)を無水ジメチルホルムアミド (11 ml) に溶解して加え、室温で20 時間攪拌した。この反応溶液を減圧濃縮して得られた濃縮残渣をクロロホルムで抽出し、水、有機層を10% クエン酸、飽和炭酸水素ナトリウム水溶液で 1 回ずつ洗浄して、乾燥剤として無水硫酸マグネシウムを用いて乾燥させた後、乾燥剤を濾去して減圧濃縮を行った。減圧濃縮によって得られた濃縮残渣を分取シリカゲルクロマトグラフィ (80 g, クロロホルム:メタノール =

[0125]

この化合物 1 1 について 1 H - NMR(4 0 0 MH z, CD $_3$ C $_1$)測定を行ったところ、 $\delta=7.88$ (1H, bs), 7.73–7.66(10H, m), 7.56(1H, bs), 7.38(4H, d, J=8.4 Hz), 7.34–7.29(6H, m), 7.17, 7.05(2H, bs, bs), 5.35(1H, bs), 5.00(2H, s), 3.96(2H, bs), 3.64 (4H, band), 3.55 (4H, band), 3.51 (6H, band), 3.43, 3.27, 3.17(6H, bs, bs, bs), 1.50, 1.49 (36H, s, s) であった。また、上記化合物 1 1 のESI-MS(positive)測定を行ったところ、m/z 1461.72 [(M+Na) $^+$] であった。これによって化合物 1 1 の構造を確認することができた。なお、この化合物 1 1 の分子量は C_{70} H9 $_8$ N $_{14}$ O $_{19}$:1 4 3 8 . 7 1 である。

[0126]

(12) 化合物12の合成

上記化合物 1 1 (165 mg, 114 mmol) をメタノール (12 ml) に溶解し、5% Pd/C (55 mg) を加え、水素雰囲気下、室温で 5 時間攪拌した後、上記 Pd/C を濾去して減圧濃縮し、得られた濃縮残渣を分取シリカゲルクロマトグラフィ (10 g, クロロホルム:メタノール = 7:1) で精製して、化合物 1 2 (128 mg, 79%) を白色固体として得た。

[0127]

この化合物 12 について、ESI-MS(positive)測定を行ったところ、m/z 1413.7 $4[(M+H)^+]$ であった。なお、この化合物 12 の分子量は C_{70} H $_{100}$ N $_{12}$ O $_{19}$: 1412.72 である。

[0128]

[0129]

(13) 化合物 14 の合成

上記化合物 13 (チオクト酸) (3.4 mg, 16.6 mmol) と HOBt (1.6 mg, 16.6 mmol) WS CI・HC1 (3.2 mg, 1.66mmol) とを無水ジメチルホルムアミド (2 ml) に溶解し、アルゴン雰囲気下、0 ℃で遮光して攪拌した。次いで、上記化合物 12 (23.5 mg, 16.6 mmol) を無水ジメチルホルムアミド (2 ml) に溶解して加え、室温で 2 2 時間攪拌した。この反応溶液を減圧濃縮して得られた濃縮残渣をジクロロメタンで抽出し、有機層を 10% クエン酸、飽和炭酸水素ナトリウム水溶液で 1 回ずつ洗浄した。乾燥剤として無水硫酸ナトリウムを用いて乾燥させた後、乾燥剤を濾去して減圧濃縮を行った。濃縮残渣を分取シリカゲルクロマトグラフィ(7 g、クロロホルム:メタノール = 10 : 1) で精製して、化合物 1 4 (15.7 mg, 59%) を白色固体として得た。

[0130]

この化合物 1.4 について 1 H - N M R (4.0.0 M H $_Z$, C D $_3$ C $_1$)測定を行ったところ、 $\delta=7.76$ - $_7.69$ ($_1$ H, m, NHCOPh, aromatic), $_7.55$ ($_1$ H, bs, NHCOPh), $_7.45$ - $_7.35$ ($_2$ 9H, m, aromatic, COPhNH), $_7.13$, $_7.00$, $_6.97$ ($_3$ H, bs, bs, bs, COPhNH), $_5.83$ ($_1$ H, bs, G1y-NH), $_4.04$ ($_2$ H, bs, G1y-CH $_2$), $_3.73$ - $_3.66$ ($_4$ H, m, CONCH $_2$), $_3.54$ - $_3.46$ ($_1$ 1H, m, NCH $_2$ CH $_2$ NH, NCH $_2$ CH $_2$ NH, SSCHCH $_2$), $_3.41$, $_3.29$, $_3.22$ ($_4$ H, bs, bs, bs, NCH $_2$ CH $_2$ NH), $_3.17$ - $_3.04$ ($_2$ 2H, m, CH $_2$ SSCH), $_3.41$, $_3.29$, $_3.22$ ($_4$ 4H, bs, bs, bs, NCH $_4$ 2CH $_4$ 2NH), $_3.17$ - $_3.04$ ($_4$ 2H, m, CH $_4$ 2SSCH), $_4$ 3H, $_4$ 4H, $_4$ 5H, m, CH $_4$ 4CH $_4$ 5SOH, $_4$ 5H, $_4$ 7H, $_4$ 8H, $_4$ 9H, $_4$ 9

[0131]

(14)リンカー化合物(化合物15)の合成

上記化合物 1 4 (60.3 mg, 31.2 mmol) をジクロロメタン (1 ml) に溶解し、TFA (3 ml)を加えて遮光下 0 ℃で 1 時間攪拌した後、減圧濃縮を行い、得られた残渣をメタノール

[0132]

この化合物 15 について、ESI-MS(positive)測定を行ったところ、m/z 623.27 $[(M+2Na)^2+]$ であった。なお、この化合物 15 の分子量は C_{58} H_{80} N_{12} O_{12} S_2 : 1200.55 である。

[0133]

[0134]

[実施例2:リガンドの合成]

実施例1で得られたリンカー化合物 15を用いて、前記一般式(3)にて、n が 4 であり、 p^1 , p^2 が 1 であり、 m^1 , m^2 , m^3 , m^4 が 2 である構造を有するリガンドを以下の手順で合成した。図 2 には、この合成の化学反応式を示す。

[0135]

図2に示すように、実施例1にて得られたリンカー化合物15と、前記一般式(7)にて表される糖分子である化合物18(7当量)とを用いて還元アミノ化反応を行った。これによって、本発明のリガンドの一例である化合物19を収率22%で得た。

[0136]

具体的には、上記リンカー化合物 15(2.0 mg, 1.67 mmol) と化合物 18(10 mg, 11.7 mmol) とを、水 100 ml とジメチルアセトアミド 400 ml と酢酸 10 ml との混合溶媒に溶解し、遮光下、封管中 37 Cで 25 時間加熱した。 NaBH3 CN (3.51 mg, 50.2 mmol) を酢酸 15 ml に溶解して反応溶液に加え、37 Cで 6 日間加熱した後、減圧濃縮して、Sephadex G-50 ($1.6 \times 80 \text{ cm}$ 、PBS-0.3N NaCl) を用いて精製した。精製によって得られた目的画分を減圧濃縮し、濃縮残渣をSephadex G-25 ($1.6 \times 40 \text{ cm}$ 、水)を用いて脱塩した。脱塩により得られた目的画分を減圧濃縮し、水に溶かして凍結乾燥を行い、化合物 19(1.7 mg, 22%)を白色粉体として得た。

[0137]

この化合物 1 9 について、実施例 1 に記載の方法で 1 H - N M R (4 0 0 M H z, D $_2$ O) 測定を行ったところ、 δ = 7.70-7.55 (8H, m), 6.78-6.64 (8H, m), 5.34 (4H, s), 5.20 (8H, d, J = 3.3 Hz), 5.15 (4H, bs), 4.52 (4H, bs), 4.29 (8H, m), 4.19 (8H, m), 4.05 (4H, m), 3.99 (4H, band), 3.87-3.80 (16H, band), 3.73-3.66 (24H, m), 3.87 (3H, m), 3.57 (12H, s), 3.49 (4H, dd, J = 3.8, 9.7), 3.39-3.34 (14H, m), 3.26-3.19 (12H, m), 2.60 (1H, m), 2.21-2.13 (2H, m), 1.77 (1H, m), 1.50-1.13 (4H, m)であった。また、上記化合物 1 9 のE S I - M S (negative) 測定を行ったところ、m/z 1449.93 [(M-10Na+7H) $^3-$]であった。これによって化合物 1 9 の構造を確認することができた。なお、この化合物 1 9 の分子量は C_{134} H₁₉₆N₁₆Na₁₆O₁₀₈S₁₄: 4 5 7 2.48 である。

[0138]

この化合物 19 が、前記一般式(3)にて、n が 4 であり、 p^1 , p^2 が 1 であり、 m^1 , m^2 , m^3 , m^4 が 2 である構造を有するリガンドである。

[0139]

[実施例3:リガンドとタンパク質との相互作用の検証]

本実施例では、実施例 2 において得られた、前記一般式(3)にて、n が 4 であり、 p^1 , p^2 が 1 であり、 m^1 , m^2 , m^3 , m^4 が 2 である構造を有するリガンド(以下、このリガンドについては、「Tetra-GlcNS6S-IdoA2S-Glc」と記載する)を用いて、タンパク質との分子間相互作用について検証した。

[0140]

本実施例においては、比較のために本願発明者らが以前に見出した他の2種類のリガン

ドについても同様の実験を行い、その相互作用について比較検討した。上記他の2種類の リガンドとは、具体的には、上記特許文献1に記載のリガンドであって、以下の一般式(8) で表されるリガンドである。以下、このリガンドについては、「Mono-GlcNS6S-IdoA2 S-Glc」と記載する。

[0141]【化13】

[0142]

また、他のリガンドのもう一つは、特願2003-190568に記載のリガンドであ って、以下の一般式 (9) で表されるリガンドである。以下、このリガンドについては、 「Tri-GlcNS6S-IdoA2S-Glc」と記載する。なお、上記特願2003-19058は、本願 の出願前の確認時点で未公開である。

[0143]【化14】

 \cdots (9)

[0144]

[実施例3-1:特異的相互作用の確認]

先ず、実施例 3-1 として、前記一般式(4)にて表される二糖構造(G1cNS6S-IdoA2S)を固定化したチップと、ヘパリン結合性タンパク質との特異的相互作用を確認するため 、阻害実験を行った。すなわち、ヘパリン結合性タンパク質とGlcNS6S-IdoA2S構造との結 合を阻害するインヒビターを共存させて、ヘパリン結合性タンパク質のチップへの結合が 阻害されるかどうかについて検討した。

[0145]

本実験では、インヒビターとしてヘパリン (豚小腸由来、Mw=18600) を、ヘパリン結 合性タンパク質としてbFGFを用いた。bFGFは、FGF-2とも呼ばれ、血管内皮細胞や線維芽 細胞に働いて、血管新生作用、肉芽形成促進作用を発揮することにより創傷治癒を促進す ることが知られている。生体内では、細胞表面上にあるヘパリン類似物質であるヘパラン 硫酸と相互作用し、生物活性を発現させている。bFGFとの結合に必要な最小結合単位は、 以下の一般式(10)にて表される5糖であるということが報告されている(参考文献: M. Maccarana, B. Casu & U. Lineahl, J. Biol. Chem. 268巻、8857頁、1993年)。

[0146]

上記の構造には、グルコサミンの6位が硫酸化されている構造が含まれていない。しか し、ヘパラン硫酸中のIdoA2S-GlcNS構造とbFGFとの会合において、不特定多数の6位硫酸 化は必要ないもの、活性部位の形成には必要であることが確認されている。そのため、bF GFを、GlcNS6S-IdoA2S構造との相互作用を観測するためのタンパク質として選択した。

次に、上述のMono-GlcNS6S-IdoA2S-Glc、Tri-GlcNS6S-IdoA2S-Glc、Tetra-GlcNS6S-Ido A2S-Glcをそれぞれ固定化したチップを用いて、ヘパリン共存下bFGFとの結合阻害実験を 行った。すなわち、200nMbFGFにヘパリンを、3,10,100,300,1000 nMと濃度を変えて混合し、チップへ注入した。

図3には、Mono-GlcNS6S-IdoA2S-Glcを固定化したチップへのbFGFの結合挙動を示す。 この図から、Mono-GlcNS6S-IdoA2S-Glcを固定化したチップへのbFGFの結合は、ヘパリン の濃度依存的に低下することが確認された。すなわち、Mono-GlcNS6S-IdoA2S-Glcを固定 化したチップへのbFGFの結合は、ヘパリンによって阻害されることが確認された。

上記実験によって得られた3種類のチップそれぞれのデータから、各チップにおけるbF GFの結合の阻害率を算出した。その結果を図4に示す。なお、上記阻害率は、異なった濃 度のヘパリン共存下での最大角度変化量を、ヘパリンを共存させない場合の最大角度変化 量で割った値の百分率で示したものである。

図4に示すグラフから、bFGFのチップへの結合阻害率が50%の所をICsoとして定 義した。その結果、Mono-GlcNS6S-IdoA2S-Glcを固定化したチップではICso=2.5 nM、Tri-GlcNS6S-IdoA2S-Glcを固定化したチップではIC5 0 = 9 4 nM、Tetra-GlcN S6S-IdoA2S-G1cを固定化したチップではIC5ο = 7 1 n Mとなり、Mono-G1cNS6S-IdoA2 S-Glcを固定化したチップのIC50値は、他の2種類のチップの値と比較して、1オー ダー低く、ヘパリンによる阻害効果を強く受けていることが確認された。何れのチップに おいても阻害率がヘパリンの濃度依存的に変化していることから、これらのチップはヘパ リン結合性タンパク質であるbFGFを特異的に認識していると結論できる。

[0152]

[実施例3-2:チップ表面の糖鎖の相対密度の検討]

先ず、Tri-GlcNS6S-IdoA2S-GlcあるいはTetra-GlcNS6S-IdoA2S-Glcと、糖鎖を有してい ない分子が結合したリンカー化合物(非糖鎖ーリンカー結合化合物、以下、Mono-Glcと呼 ぶ)とを溶液中で混合してチップへの固定化を行い、その混合比(仕込み比)によるチッ プ上のリガンド(糖鎖-リンカー結合化合物)の密度の変化について、FT-IR-ATR法を用 いて検討した。溶液中のTri-GlcNS6S-IdoA2S-GlcあるいはTetra-GlcNS6S-IdoA2S-Glcの割 合は、0, 25, 50, 75, 100%と変化させた。その結果を図5(a)、(b)に 示す。図5 (a)が、溶液中の混合比を変えたTri-GlcNS6S-IdoA2S-Glcの全反射スペクト ルであり、図5 (b) が、溶液中の混合比を変えたTetra-GlcNS6S-IdoA2S-Glcの全反射ス ペクトルである。

[0153]

[0154]

〔実施例3-3:糖鎖の相対密度が、h-vWFとの相互作用に与える影響の検討〕 続いて、チップ表面の糖鎖の相対密度が、タンパク質との相互作用に与える影響につい て検討した。ここでは、ヒト血漿由来vWF(以下、h-vWFと呼ぶ)との相互作用について解 析を行った。

[0155]

上記3種の各リガンド (Mono-GlcNS6S-IdoA2S-Glc、Tri-GlcNS6S-IdoA2S-Glc、Tetra-GlcNS6S-IdoA2S-Glc) とMono-Glcとの混合比を、それぞれ100/0、および、20/80に変えて、6種のチップを作成し、h-vWFとの相互作用をSPR法で観測した。ここで、SPR法による測定の手順について説明する。

[0156]

測定には、SPR670(日本レーザー電子株式会社製)を用いた。また、センサチップには、 $13\times20\times0$. 7mmのガラス基盤に接着層として2nmのクロムを蒸着し、さらにその上に50nmの金薄膜を蒸着したもの(日本レーザー電子株式会社製)を用い、UVオゾンクリーナー(日本レーザー電子株式会社製NL-UV253)に入れて紫外線を30分間照射し、オゾンでチップ表面を洗浄した。

[0157]

次に、センサチップを専用のPTFEセル(日本レーザー電子株式会社製)に装着した後、上記 6 種の各チップをメタノール/水= 1/1 の混合溶液(但し、Mono-GlcNS6S-Ido A2S-Glc/Mono-Glc混合の場合はメタノール溶液)に溶解し($0.1\,\mathrm{mM}$)、この溶液を $50\,\mu$ 1取ってPTFEセルに入れ、パラフィルムで密封した。このチップを装着したPTFEセルを、室温でBio Dancer(New Brunswick Scientific 社製)上で終夜緩やかに振とうした。

[0158]

このチップをメタノールで 6 回洗浄し、水で 1 回洗浄した後、もう一度メタノール、水の順で 1 回ずつ洗浄した。風乾後、SPR670のセンサーチップカートリッジに取り付けた。ランニングバッファーでチップ表面を十分平衡化した後、レーザー光を金膜に照射し、その時観測される表面プラズモン共鳴角度変化を観察した。ランニングバッファーは、pH7.40りン酸緩衝溶液(PBS)を用いた。また、SPR測定はすべて 25 Color Col

[0159]

このSPR測定を行う際に、h-vWFの濃度を10, 20, 40, 80, 160 n Mと変えながら、各チップ上に注入すると、結合相互作用が観測され、h-vWFがチップ上に固定化されている様子が観察された。この際、リガンドを変性させずにh-vWFをチップから完全に解離させる解離剤が見つからなかったため、解離定数(K_D)の算出はチップ上のh-vWFの固定化量から求めた。h-vWFの固定化量は、リガンドが固定化された状態をベースとし、濃度を変えて注入したh-vWFのセンサーグラムのカーブがほぼ一定になったところの差を用いた。

[0160]

図7 (a) ~ (c) には、上記3種の各リガンド(Mono-GlcNS6S-IdoA2S-Glc、Tri-Glc NS6S-IdoA2S-Glc、Tetra-GlcNS6S-IdoA2S-Glc)とMono-Glcとの混合比が100/0の場合の結合相互作用を示す。(a)はMono-GlcNS6S-IdoA2S-Glcの場合、(b)はTri-GlcNS6S-IdoA2S-Glcの場合である。また、図8(a)~ (c)には、上記3種の各リガンド(Mono-GlcNS6S-IdoA2S-Glc、Tri-GlcNS6S-IdoA2S-Glc、Tetra-GlcNS6S-IdoA2S-Glc)とMono-GlcNS6S-IdoA2S-Glc、Tri-GlcNS6S-IdoA2S-Glc、Tetra-GlcNS6S-IdoA2S-Glc)とMono-GlcNS6S-IdoA2S-Glc の場合の結合相互作用を示す。(a)はMono-GlcNS6S-IdoA2S-Glcの場合、(b)はTri-GlcNS6S-IdoA2S-Glcの場合、(c)はTetra-GlcNS6S-IdoA2S-Glcの場合である。

[0161]

この結果から得られた結合量を、h-vWFの濃度ごとにプロットしたものを図9 (a) ~ (c) に示す。 (a) はMono-GlcNS6S-IdoA2S-Glcの場合、 (b) はTri-GlcNS6S-IdoA2S-Glcの場合、 (c) はTetra-GlcNS6S-IdoA2S-Glcの場合である。この図9には、各グラフのカーブから解離定数 (KD) を算出した結果も示している。

[0162]

図 9 (a) に示すように、Mono-GlcNS6S-IdoA2S-Glc/Mono-Glc =100/0,20/80となるようにリガンドを固定化したチップを用いた場合には、解離定数はそれぞれ K_D = 3 5 , 4 1 n Mとなった。図 9 (b) に示すように、Tri-GlcNS6S-IdoA2S-Glc/Mono-Glc=100/0、および、Tri-GlcNS6S-IdoA2S-Glc/Mono-Glc=20/80となるようにリガンドを固定化したチップを用いた場合には、解離定数はそれぞれ K_D = 2 7 , 2 4 n Mとなった。さらに、Te tra-GlcNS6S-IdoA2S-Glcto/Mono-Glc=100/0、および、Tetra-GlcNS6S-IdoA2S-Glcto/Mono-Glc=20/80となるようにリガンドを固定化したチップを用いた場合には、解離定数はそれぞれ K_D = 3 2 , 3 5 n Mとなった。

[0163]

これらの結果から、アナライトとしてh-vWFを用いた場合、リガンドのチップ上の存在 比を変化させても親和性に与える影響は殆ど無いことがわかった。また、糖鎖間距離が異 なるリガンドを固定化したチップを用いても、h-vWFとの相互作用において糖鎖間距離の 差が解離定数の値に影響を与えなかった。これはh-vWFが多量体構造をとっているために 複数のヘパリン結合性ドメインが存在し、その影響により解離速度が著しく遅くなり、糖 鎖間距離の差が解離定数に反映されなかったものと考えられた。

[0164]

[実施例3-4:糖鎖の相対密度が、rvWFとの相互作用に与える影響の検討]

そこで、1つのヘパリン結合性ドメインを有するA1ループ部分のみを有する大腸菌由来のリコンビナントvWF(以下、rvWFと呼ぶ)を用いれば、チップ上にクラスター化した糖鎖とタンパク質間の相互作用において、糖鎖間距離の差が糖鎖ー糖鎖結合性タンパク質間の相互作用に与える影響を検討できると考えて、以下のような実験を行った。

[0165]

ここでは、リガンドとして上述の上記3種の各リガンド(Mono-GlcNS6S-IdoA2S-Glc、Tri-GlcNS6S-IdoA2S-Glc、Tetra-GlcNS6S-IdoA2S-Glc)、および、Mono-Glcを用いて、上記3種の各リガンド/Mono-Glcの存在比を、それぞれ100/0,50/50と変えたチップを作成した。rvWF濃度を変化させてチップとの結合相互作用を測定した結果を図10~図12に示す。なお、図10(a)は、Mono-GlcNS6S-IdoA2S-Glc/Mono-Glc=100/0の場合であり、図10(b)は、Mono-GlcNS6S-IdoA2S-Glc/Mono-Glc=50/50の場合である。また、図11(a)は、Tri-GlcNS6S-IdoA2S-Glc/Mono-Glc=100/0の場合であり、図11(b)は、Tri-GlcNS6S-IdoA2S-Glc/Mono-Glc=50/50の場合である。また、図12(a)は、Tetra-GlcNS6S-IdoA2S-Glc/Mono-Glc=100/0の場合であり、図12(b)は、Tetra-GlcNS6S-IdoA2S-Glc/Mono-Glc=50/50の場合である。

[0166]

これらの結果から算出した解離定数、結合定数、結合速度定数、解離速度定数を表1にまとめて示す。なお、表1において、解離定数: K_D (k_a / k_a)、結合定数: K_A (

【表1】

No.	リガンドの種類	チップ上	K_D	KA	k a	k d
		の組成比	(M)	$(M^{-1} \times 10^{-5})$	$(M^{-1}s^{-1}\times 10^3)$	(s-1×10-3)
1	Mono-GlcNS6S-IdoA2A	100/0	2.60	3.85	8.38	21.9
2	-Glc/Mono-Glc	50/50	3.79	2.64	14.6	55.2
3	Tri-GlcNS6S-IdoA2A-	100/0	1.20	8.33	6.60	8.05
4	Glc/Mono-Glc	50/50	1.50	6.65	4.52	6.83
5	Tetra-GlcNS6S-IdoA2A	100/0	0.99	10.1	6.50	6.44
6	-Glc/Mono-Glc	50/50	1.00	9.96	5.24	5.26

[0168]

表 1 に示すように、Mono-GlcNS6S-IdoA2S-Glcを固定化したチップの場合は、Tri-GlcNS 6S-IdoA2S-GlcやTetra-GlcNS6S-IdoA2S-Glcを固定化したチップと比べて、解離定数の値は大きくなった($K_D=2$. 6 0 M)。また、チップ上の糖鎖の固定化密度を相対的に小さくすると解離定数の値はさらに大きくなった($K_D=3$. 7 9 M)。一方、Tri-GlcNS6 S-IdoA2S-Glcを固定化したチップでは、チップ上の固定化密度を相対的に小さくした場合、若干の解離定数の値の増加が見られた($K_D=1$. 2 0 M \rightarrow 1. 5 0 M)。また、Tetra-GlcNS6S-IdoA2S-Glcを固定化したチップでは、チップ上の固定化密度を変化させても、解離定数はほとんど変わらなかった($K_D=0$. 9 9 M \rightarrow 1. 0 0 M)。

[0169]

また、表 1 に示すように、Mono-GlcNS6S-IdoA2S-Glcを固定化したチップの場合は、他の2つのリガンドと固定したチップと比べて、<math>1 オーダー高い解離速度定数(k a)を有することが確認された。このことから、Tri-GlcNS6S-IdoA2S-GlcおよびTetra-GlcNS6S-IdoA2S-Glcは、分子内で硫酸化オリゴ糖鎖間距離が制御された糖鎖クラスター構造を有しているため、チップ上の糖鎖の固定化密度を相対的に低下させてもその影響を受けにくいもとの考えられる。

[0170]

つまり、rvWFとの相互作用においては、Mono-G1cNS6S-IdoA2S-G1cを固定化したチップでは、チップ上の相対的な糖鎖固定化密度を低下させると、結合力が低下してしまうことが確認された。これに対し、Tri-G1cNS6S-IdoA2S-G1cやTetra-G1cNS6S-IdoA2S-G1cを固定化したチップでは、チップ上の相対的な糖鎖固定化密度を低下させても、その結合力はあまり変化しないことが確認された。

[0171]

以上の結果から、硫酸化オリゴ糖鎖ー糖鎖結合タンパク質間の相互作用において、結合力を増大させるには、Mono-GlcNS6S-IdoA2S-Glcを固定化したチップのように、同じリガンド構造を有する硫酸化オリゴ糖鎖をチップ上に<math>2次元的にクラスター化させるだけでは不十分であり、Tri-GlcNS6S-IdoA2S-GlcやTetra-GlcNS6S-IdoA2S-Glcのように、分子レベルで糖鎖間距離が制御されたクラスター構造が必要であることが裏付けられた。

【産業上の利用可能性】

[0172]

本発明によれば、センサチップ表面上の糖鎖間距離を制御し、オリゴ糖を再現性よく2次元的に配列し得るリンカー化合物、及び、該リンカー化合物に糖分子が導入されてなるリガンドを得ることができる。このリンカー化合物およびリガンドは、オリゴ糖鎖チップの実用化と一般化のために非常に有用である。

[0173]

オリゴ糖鎖を固定化したチップが糖鎖やタンパク質の機能解析のツールとして発展すれ 出証特2005-3004475

【図面の簡単な説明】

[0174]

- 【図1】本発明にかかるリンカー化合物の合成経路の一例を示す模式図である。
- 【図2】本発明にかかるリガンドの合成経路の一例を示す模式図である。
- 【図3】へパリン共存下において、Mono-GlcNS6S-IdoA2S-Glcを固定化したチップへ のbFGFの結合挙動を示すグラフである。
- 【図4】 Mono-GlcNS6S-IdoA2S-Glc、Tri-GlcNS6S-IdoA2S-Glc、Tetra-GlcNS6S-IdoA2 S-Glcをそれぞれ固定化したチップへのbFGFの結合相互作用に対するヘパリンの阻害 率を示すグラフである。
- 【図5】(a)は、溶液中の混合比を変えたTri-GlcNS6S-IdoA2S-Glcの全反射スペク トルを示すグラフであり、(b)は、溶液中の混合比を変えたTetra-GlcNS6S-IdoA2S -Glcの全反射スペクトルを示すグラフである。
- 【図6】(a)は、溶液中のTri-GlcNS6S-IdoA2S-Glcの混合比に対するチップ上の硫 酸基の相対強度を示すグラフであり、(b)は、溶液中のTetra-GlcNS6S-IdoA2S-Glc の混合比に対するチップ上の硫酸基の相対強度を示すグラフである。
- 【図7】 3種の各リガンド(Mono-GlcNS6S-IdoA2S-Glc、Tri-GlcNS6S-IdoA2S-Glc、T etra-GlcNS6S-IdoA2S-Glc) とMono-Glcとの混合比が100/0の場合の結合相互作 用を、SPR法によって観測した結果を示すグラフである。(a)はMono-G1cNS6S-IdoA 2S-Glcの場合、(b)はTri-GlcNS6S-IdoA2S-Glcの場合、(c)はTetra-GlcNS6S-Id oA2S-Glcの場合である。
- 【図8】3種の各リガンド(Mono-GlcNS6S-IdoA2S-Glc、Tri-GlcNS6S-IdoA2S-Glc、T etra-GlcNS6S-IdoA2S-Glc)とMono-Glcとの混合比が20/80の場合の結合相互作 用を、SPR法によって観測した結果を示すグラフである。(a)はMono-GlcNS6S-IdoA 2S-Glcの場合、(b)はTri-GlcNS6S-IdoA2S-Glcの場合、(c)はTetra-GlcNS6S-Id oA2S-G1cの場合である。
- 【図9】図7および図8に示す結果から得られた結合量を、h-vWFの濃度ごとにプロ ットしたグラフである。 (a) はMono-GlcNS6S-IdoA2S-Glcの場合、 (b) はTri-Glc NS6S-IdoA2S-Glcの場合、(c)はTetra-GlcNS6S-IdoA2S-Glcの場合である。
- 【図10】Mono-GlcNS6S-IdoA2S-Glcを固定化したチップとrvWFとの相互作用を測定 した結果を示すグラフである。なお、(a)は、Mono-GlcNS6S-IdoA2S-Glc/Mono-Gl c=100/0の場合であり、(b)は、Mono-GlcNS6S-IdoA2S-Glc/Mono-Glc=50/50の場 合である。
- 【図11】Tri-GlcNS6S-IdoA2S-Glcを固定化したチップとrvWFとの相互作用を測定し た結果を示すグラフである。なお、(a)は、Tri-GlcNS6S-IdoA2S-Glc/Mono-Glc= 100/0の場合であり、(b)は、Tri-GlcNS6S-IdoA2S-Glc/Mono-Glc=50/50の場合で ある。
- 【図12】Tetra-GlcNS6S-IdoA2S-Glcを固定化したチップとrvWFとの相互作用を測定 した結果を示すグラフである。なお、(a)は、Tetra-GlcNS6S-IdoA2S-Glc/Mono-G lc=100/0の場合であり、(b)は、Tetra-GlcNS6S-IdoA2S-Glc/Mono-Glc=50/50の 場合である。

【書類名】図面【図1】

$$\begin{array}{c} \text{HO}(\text{CH}_2\text{CH}_2\text{O})_3\text{CH}_2\text{CH}_2\text{OH}} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{3} \\ \text{1} \\ \text{3} \\ \text{3} \\ \text{1} \\ \text{3} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{3} \\ \text{3} \\ \text{3} \\ \text{3} \\ \text{1} \\ \text{3} \\ \text{3} \\ \text{1} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{5} \\ \text{4} \\ \text{5} \\ \text{5} \\ \text{5} \\ \text{4} \\ \text{5} \\ \text{5} \\ \text{5} \\ \text{5} \\ \text{4} \\ \text{3} \\ \text{5} \\ \text{5} \\ \text{5} \\ \text{5} \\ \text{5} \\ \text{5} \\ \text{4} \\ \text{5} \\ \text{5} \\ \text{5} \\ \text{5} \\ \text{6} \\ \text{6} \\ \text{6} \\ \text{8} \\ \text{3} \\ \text{6} \\ \text{7} \\ \text{6} \\ \text{7} \\ \text{6} \\ \text{7} \\ \text{7} \\ \text{6} \\ \text{7} \\ \text$$

【図2】

Mono; Mono-GlcNS6S-IdoA2S-Glc, Tri; Tri-GlcNS6S-IdoA2S-Glc,

Tetra; Tetra-GlcNS6S-IdoA2S-Glc

【図5】

【図6】

(a)

【図9】

【図10】

【図11】

【図12】

【書類名】要約書

【要約】

【課題】 非特異的な疎水性相互作用を極力抑え、かつ、金属結合に供されるジスルフィド基までの長さを容易に調整可能にして、効率よく金属ー硫黄結合を形成することができる新規なリンカー化合物、および、新規なリガンド、リガンド担持体、ならびにこれらの製造方法を提供する。

【解決手段】 リンカー化合物は、下記一般式 (1) 【化16】

$$\begin{array}{c} S \\ S \\ \end{array}$$

$$\begin{array}{c} HN - (CH_2CH_2O)_n CH_2C - X \\ \end{array}$$

$$\cdots (1)$$

(式中、nは1以上6以下の整数)にて表される構造を備えている。上記Xは、末端に芳香族アミノ基を有するとともに主鎖に炭素-窒素結合を有していてもよい炭化水素誘導鎖を、4鎖含んでなる多分岐構造部位である構造を備えている。また、リガンドは、上記リンカー化合物に糖分子が導入されてなるものである。

【選択図】 なし

【書類名】

出願人名義変更届 (一般承継)

【整理番号】

VP16029562

【提出日】

平成16年 7月 6日

【あて先】

特許庁長官 殿

【事件の表示】

【出願番号】

特願2004- 29562

【承継人】

【住所又は居所】 【氏名又は名称】 鹿児島県鹿児島市郡元1丁目21番24号

国立大学法人鹿児島大学

【承継人代理人】

【識別番号】

100080034

【弁理士】

【氏名又は名称】

原 謙三

【電話番号】 【その他】

06-6351-4384 15文科会第1999号に基づく承継

出証特2005-3004475

認定・付加情報

特許出願の番号

特願2004-029562

受付番号

5 0 4 0 1 1 3 8 7 4 9

書類名

出願人名義変更届 (一般承継)

担当官

岩谷 貴志郎

作成日

平成16年 8月11日

<認定情報・付加情報>

【承継人】

【識別番号】

504258527

【住所又は居所】

鹿児島県鹿児島市郡元一丁目21番24号

【氏名又は名称】

国立大学法人 鹿児島大学

【承継人代理人】

申請人

【識別番号】

100080034

【住所又は居所】

大阪府大阪市北区天神橋2丁目北2番6号 大和

7 7 4 6

南森町ビル 原謙三国際特許事務所

【氏名又は名称】

原 謙三

出願人履歴情報

識別番号

[503360115]

1. 変更年月日 [変更理由] 住 所 氏 名

2003年10月 1日 新規登録 埼玉県川口市本町4丁目1番8号 独立行政法人 科学技術振興機構

2. 変更年月日 [変更理由] 住 所 氏 名

2004年 4月 1日 名称変更 埼玉県川口市本町4丁目1番8号 独立行政法人科学技術振興機構 特願2004-029562

出願人履歴情報

識別番号

[391012523]

1. 変更年月日 [変更理由] 住 所 1991年 1月22日

新規登録

鹿児島県鹿児島市郡元1丁目21番24号

鹿児島大学長 氏 名

特願2004-029562

出願人履歴情報

識別番号

[504258527]

1. 変更年月日 [変更理由] 住 所 氏 名 2004年 7月 5日

新規登録 鹿児島県鹿児島市郡元一丁目21番24号

国立大学法人 鹿児島大学