<u>: 3 רגרסיה- תרגול</u>

מטריצת הטלה, המודל הלינארי והתפלגויות משותפות:

מטריצת הטלה אורתוגונלית

 $A=A^2$ המקיימת r שדרגתה של שדרגתה מטריצה אייד מטריצה מטריצה מטריצה אייד מטריצה מט

מטריצה סימטרית ואיידמפוטנטית נקראת מטריצה הטלה אורתוגונלית.

טענה- העייע של מטריצת הטלה הם 1, בריבוי כדרגת המטריצה, ו-0 בריבוי השווה למימד של גרעין המטריצה.

: הוכחה

מטריצת הטלה למרחב הנפרש על ידי עמודות X:

תהי תאו מטריצה מדרגה מלאה ונגדיר $P_X=X(X^TX)^{-1}X^T$ היא מטריצה מדרגה מטריצה איז מטריצה מריצה מטריצה אונגדיר למרחב הנפרש על ידי העמודות של X. כלומר ב

- .סימטרית P_X (1)
- . איידמפוטנטית P_X (2)
- $P_X v \in IM(X) : v \in \mathbb{R}^n$ מתקיים שלכל (3)

: הוכחה

תכונות חשובות-אולי הכי חשובות בקורס(!!!)-של מטריצת הטלה:

Proposition 4. Let X be an $n \times m$ matrix and assume that it has linearly independent columns (i.e., full column rank; remember that this implies $m \leq n$). Then the projection matrix P_X has the following properties.

- 1. P_X is symmetric
- 2. P_X is idempotent, $P_X^2 = P_X$
- 3. $P_X X = X$
- 4. $X^{\top} (I P_X) = 0 \in \mathbb{R}^{m \times n}$
- 5. $P_X v \in \text{Im}(X)$ for all $v \in \mathbb{R}^n$
- 6. If m = n and X is invertible, then $P_X = I$
- 7. $(\boldsymbol{I} \boldsymbol{P}_{\boldsymbol{X}}) \boldsymbol{v} \in \operatorname{Im}(\boldsymbol{X})^{\perp}$ for all $\boldsymbol{v} \in \mathbb{R}^n$
- 8. If $w \in lm(X)$, then $P_X w = w$
- 9. If $w \in \text{Im}(X)^{\perp}$, then $P_X w = 0$
- 10. If Z is another $n \times m$ matrix s.t. $\operatorname{Im}(Z) = \operatorname{Im}(X)$, then $P_Z = P_X$. This means that P_X depends on X only through the span of its columns. Hence, for an arbitrary linear space M, we can define the projection matrix P_M onto M (an explicit form for P_M can be obtained by taking any basis of M and stacking its elements as columns in a matrix X, then forming $P_X := X \left(X^\top X \right)^{-1} X^\top \right)$
- 11. If L and M are two subspaces with $L \subseteq M$, then $P_M P_L = P_L P_M = P_L$.

Proposition 6. We have

- 1. $I P_X = P_{Im(X)^{\perp}}$
- 2. if L and M are two subspaces of \mathbb{R}^n with $L \subseteq M$, then $P_M P_L = P_{M \cap L^{\perp}}$

Proposition 7. Let Q be an $n \times n$ matrix of rank $m \le n$ which is symmetric and idempotent, $Q^{\top} = Q$, $Q^2 = Q$. Then $Q = P_M$ where $M := \operatorname{Im}(Q)$.

Proof. Exercise.

הוכחות ברשימות השיעור.

U תת מרחב המשלים האורתוגונלי: יהי עובר תת מרחב. נגדיר את תת המרחב המשלים האורתוגונלי של $U\subseteq V$ תת מרחב המשלים האורתוגונלי: יהי באופן הבא

$$U^{\perp} = \{ v \in V | u^t v = 0, \forall u \in U \}$$

 $U \oplus U^{\perp} = V$: טענה

: הוכחה

שאלה

- $IM(A^T) = Ker(A)^\perp$ כי הוכיחו ריבועית. מטריצה מטריצה מטריצה .1
- עבורו λ_i , A אינה לכסינה אםיים קיים לפחות עייע אחד של A אינה לכסינה אטיים קיים לפחות עייע אחד של A עבורו A אינה לכסינה או והראו כי אם A והעתמשו בטענה או והראו כי אם A מטריצה סימטרית או היא ניתנת ללכסון.
- מטריפת הטלה למרחב המשלים $Q=I-P_X$ כדי להראות כדי להראות כלי השתמשו בתוצאות אלו כדי להראות כלי colspace(X) האורתוגונלי של במונחי הו"ע של P_X
- וכן שככל שדרגת X גדולה יותר, נורמה זו $\left| |Y-X\beta| \right|^2$ הוא הממזער של $\hat{\beta}_{OLS}$. 4 הסיקו מכך הממזער של הממזער של הממזער של הממזער של החלכת וקטנה.

פתרון:

1

התפלגויות רב מימדיות:

יהיו
$$Z_1,\dots,Z_n$$
 משתנים מקריים המפולגים במשותף (ללא שום הנחות נוספות) בהתפלגות $E(Z)=(E[Z_1],\dots,E[Z_n])$ ונגדיר ונגדיר $Z\in R^n=(Z_1,\dots Z_n)$. נגדיר $f_{Z_1,\dots,Z_n}(z_1,\dots,z_n)$ נגדיר $E[A_{11}]$... $E[A_{1m}]$... $E[A_{1m}]$ באותו האופן, אם $E[A_{11}]$... $E[A_{1n}]$... $E[A_{nm}]$

תכונות של תוחלות של מטריצות (ובפרט וקטורים) מקריים:

: עבור (דטרמיניסטיות (דטרמיניסטיות) מטריצות אמריצות מסריצות מסריצות מקריות אמריצות מסריצות מסריצות מסריצות אור מטריצות מסריצות מסריצ

- 1. $\mathbb{E}[Z+W] = \mathbb{E}[Z] + \mathbb{E}[W]$
- 2. $\mathbb{E}[AZB] = A\mathbb{E}[Z]B$
- 3. $\mathbb{E}[AU+C] = A\mathbb{E}[U] + C$ (from 1+2)

Z,W עבור זוג וקטורים מקריים Z,W נגדיר את מטריצת שונות עבור זוג וקטורים מקריים עבור Z,W עבור זוג וקטורים מקריים Z,W

 $\cdot Z$ ובאופן דומה את מטריצת השונויות של הוקטור

$$Var(Z):=Cov(Z,Z)\coloneqq E([Z-E(Z)][Z-E(Z)]^T)$$

$$Var(Z)_{ij}=cov\big(Z_i,Z_j\big)=cov\big(Z_j,Z_i\big)=Var(Z)_{ji}:$$
 טענה

ייהוכחהיי:

בתרגיל תוכיחו את התכונות הבאות:

Properties of covariance matrix. Z, W, R random vectors; a fixed vector. Then the following properties hold:

- 1. $\operatorname{cov}(\boldsymbol{Z}, \boldsymbol{W}) = \operatorname{cov}(\boldsymbol{W}, \boldsymbol{Z})^{\top}$
- 2. $\operatorname{cov}(\mathbf{Z} + \mathbf{R}, \mathbf{W}) = \operatorname{cov}(\mathbf{Z}, \mathbf{W}) + \operatorname{cov}(\mathbf{R}, \mathbf{W})$
- 3. $cov(\boldsymbol{A}\boldsymbol{Z}, \boldsymbol{B}\boldsymbol{W}) = Acov(\boldsymbol{Z}, \boldsymbol{W})\boldsymbol{B}^{\top}$
- 4. $cov(AZ) = Acov(Z)A^{\top}$ (from 3)
- 5. $V(\boldsymbol{a}^{\mathsf{T}}\boldsymbol{Z}) = \boldsymbol{a}^{\mathsf{T}}\mathsf{cov}(\boldsymbol{Z})\boldsymbol{a}$ (from 4)
- 6. cov(Z) is a nonnegative definite matrix (from 5)

<u>שאלה:</u>

 $M:=XY\sim Ber(r)$ כך שמתקיים: $X\sim Ber(p), Y\sim Ber(q)$ ביהיו המשתנים המקריים הבאים: $Z=(X,Y,M)^T$ א. מצאו את וקטור התוחלות ומטריצת השונויות של הוקטור המקרי $A(v)=2v_1-3v_2+4v_3+7$ בינגדיר את ההעתקה: A(Z) התוחלות ומטריצת השונויות של A(Z).

P(X=1,Y=1,M=1) ג. כעת הניחו ש-X,Y=1,M=1 את ההסתברות ביית.

: פתרון

: יהיו $Z,W\in R^p$ וקטורים מקריים הראו שהבאים שקולים

 $\forall v \in R^p, Var(v^T Z) \ge Var(v^T W)$ (1)

. היא מטריצה חיובית מטריצה $B \coloneqq Var(Z) - Var(W)$ (2)

 $.B^{\frac{1}{2}}$ קיימת המטריצה (3)

המודל הלינארי:

$$(X_i, Y_i), i = 1,...,n$$
 מתונים:

מודל ליניארי:

$$Y_i = \sum_{i=0}^p \beta_j X_{ij} + \epsilon_i, \qquad \operatorname{Cov}(\epsilon_i, \epsilon_{i'}) = \begin{cases} \sigma^2, & i = i' \\ 0, & i \neq i' \end{cases}$$

$$,p+1$$
 הם ממימד $X_i=(1,\!X_{i1},\dots,X_{ip})^ op$ כאשר הוא הם $m{eta}=(eta_0,eta_1,\dots,eta_p)^ op$ וכאשר $m{eta}=(eta_0,eta_1,\dots,eta_p)^ op$ וכאשר

אפשר לקבל ייצוג קומפקטי בעזרת כתיב מטריצות. נסמן:

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}, \qquad \mathbf{X} = \begin{bmatrix} 1 & X_{11} & \cdots & X_{1p} \\ 1 & X_{21} & \cdots & X_{2p} \\ \vdots & \vdots & & \vdots \\ 1 & X_{n1} & \cdots & X_{np} \end{bmatrix}, \qquad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}, \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}$$

אז את המודל הליניארי אפשר לכתוב:

$$Y = X\beta + \epsilon$$
, $\mathbb{E}[\epsilon] = 0$, $\operatorname{cov}[\epsilon] = \sigma^2 I$

$$\hat{Y} = X\hat{eta}, \qquad e = Y - \hat{Y}$$
 כמו כן:

(הערה: אם לא נציין אחרת, $\hat{oldsymbol{eta}}$ זה אומד הריבועים הפחותים)

<u>שאלה</u>

: לפניכם מספר טענות. התאימו לכל טענה האם מדובר בהנחה או בתוצאה מתמטית

$$\hat{\beta} = argmin_{\beta} ||Y - X\beta||^{2} .1$$

$$X\beta = E(Y|X) .2$$

$$0 = E(e_i) \quad .3$$

$$0 = E(\bar{e}) \quad .4$$

$$X^T e = 0$$
 .5

$$Cov(Y) = \sigma^2 I$$
 .6

פתרון:

1

שאלה:

לפניכם מתוארים מספר מקרים. עבור כל אחד מהם פרטו את ההתפלגויות של $X,Y,Y|X,\epsilon$ וכתבו אילו הנחות של המודל הלינארי כל אחד מהם מקיים :

ביית.
$$\epsilon_i \sim N(0,1)$$
 כאשר $Y_i = X_i^T \beta + \epsilon_i$ ביית. $X_i \in R^p$.1

ביית.
$$\epsilon_i \sim N(0,1)$$
 כאשר איים פטנרדטיים וביית, וביית איים אור פורמליים טטנרדטיים וביית. אור מיימ צ $X_i \in R^p$. 2

. ביית.
$$\epsilon_i \sim U(-1{,}1)$$
 כאשר א $Y_i = X_i^2\beta + \epsilon_i$ הביית וביית סטנרדטיים מיימ גורמליים אות מיימ א $X_i \in R^1$.3

פתרון:

1

שאלה

- יהיא המטריצה: מה דרגת מה אורתוגונלית. מי $\frac{vv^T}{\left||v|\right|^2}$ היא כי הראו כי $0 \neq v \in R^n$ יהי .1
 - יה לא ידועים. הראו כי $Y_1,\dots,Y_n\sim(\mu,\sigma^2)$ יהיו כי אייה, אומד חייה ביית שייה, כאשר שני הפרמטרים לא ידועים. הראו כי .3 $S_n^2=\frac{1}{n-1}\sum_{i=1}^n(Y_i-\bar{Y})^2$

<u>שאלה</u>

נתון $Z \in \mathbb{R}^m$ וקטור מקרי. הראו כי מתקיים ש

$$\mathbb{E}\left(\left|\left|Z\right|\right|^{2}\right)=tr(\mathbb{E}[ZZ^{T}])$$

הסיקו מכך כי אם $\mathbb{E}[Z]=0$ אזי מתקיים כי

$$\mathbb{E}\left(\left|\left|Z\right|\right|^{2}\right)=tr(cov[Z])$$

פרטו והצדיקו כל שלב בהוכחה.

: הוכחה