Investition und Finanzierung, Test Statische und dynamische Investitionsrechenverfahren

HENRY HAUSTEIN

Kritische Menge

Welche Kosten fallen auf der neuen Maschine an?

• Abschreibung: $\frac{I_0-L_n}{n}=\frac{24000\ \hbox{\ensuremath{\in}} -0\ \hbox{\ensuremath{\in}} -0\ \hbox{\ensuremath{\in}} }{12}=2000\ \hbox{\ensuremath{\in}}$ pro Jahr

• kalkulatorische Kosten: $\frac{I_0+L_n}{2}\cdot i=\frac{24000}{2}\stackrel{\textstyle{\in}+0}{\textstyle{\in}} \cdot 0.11=1320$ \in pro Jahr

• Materialkosten: 5 € pro Teil

• Lohnkosten: 0.6 € pro Teil

Damit sich die neue Maschine lohnt, müssen die Stückkosten kleiner als 20 € werden:

$$5 \in +0.6 \in +\frac{2000}{x} + \frac{1320}{x} < 20 \in$$

Amortisationszeit

Folgende Kosten erzeugt die Maschine:

Abschreibung =
$$\frac{450000 € - 20000 €}{5} = 86000 €$$

kalk. Kosten = $\frac{450000 € + 20000 €}{2} \cdot 0.09 = 21150 €$

Periode	1	2	3	4	5
Abschreibung	86000	86000	86000	86000	86000
kalk. Kosten	21150	21150	21150	21150	21150
Reparatur	5000	5000	5000	5000	5000
Strom + Bedienung	160000	144000	128000	112000	96000
Kosten	272150	256150	240150	224150	208150

Der Erlös ist in jeder Periode gleich, damit ergibt sich folgender Gewinn:

Periode	1	2	3	4	5		
Gewinn	127850	143850	159850	175850	191850		
Gewinn kumuliert	127850	271700	431550	607400	799250		
1							

Es dauert also 3-4 Perioden, bis sich die Maschine amortisiert hat. Die lineare Interpolation zwischen den Perioden 3 und 4 ist:

$$y(x) = y_1 + \frac{y_2 - y_1}{x_2 - x_1} \cdot (x - x_1)$$
$$= 431550 + \frac{607400 - 431550}{4 - 3} \cdot (x - 3)$$

Wir suchen die Stelle, wo diese Funktion den Wert 450000 erreicht:

$$450000 = 431550 + \frac{607400 - 431550}{4 - 3} \cdot (x - 3)$$
$$x = 3.1049$$

Leider ist das nicht das Ergebnis, was rauskommen soll, die richtige Lösung soll 2.02562538133 sein, aber ich komme da nicht drauf.

Differenzinvestition

Die Differenzinvestition ist

Periode	0	1	2	3	4	5	6
P_1	-2200	900	2200	100	700	2000	3000
P_2	-3400	1100	1800	1100	1100	2700	3200
$P_1 - P_2$	1200	-200	400	-1000	-400	-700	-200

Der Kapitalwert C_0 dieser Investition beträgt -276.57 \in . Der Annuitätenfaktor ist

$$a_n = \frac{q^n \cdot (q-1)}{q^n - 1}$$
$$= \frac{1.09^6 \cdot 0.09}{1.09^6 - 1}$$
$$= 0.2229$$

Und damit ergibt sich eine Annuität von $A = C_0 \cdot a_n = -61.65 \in$.

Tangentennäherungsverfahren

Ich weiß nicht, was mit *Endwertfunktion* gemeint ist, aber wahrscheinlich komme ich deswegen nicht auf das richtige Ergebnis. Herauskommen soll 29.85837391945.

Die Funktion, deren Nullstelle zu suchen ist, ist

$$f(i) = -2400 + \frac{-600}{1+i} + \frac{1000}{(1+i)^2} + \frac{2700}{(1+i)^3} + \frac{1900}{(1+i)^4}$$

f(0.07) hat den Wert 1566.19, die Ableitung ist

$$f'(i) = \frac{100(6i^3 - 2i^2 - 103i - 171)}{(1+i)^5}$$

und f'(0.07) = -12706.68. Damit ist der neue Wert für i

$$i^* = 0.07 - \frac{1566.19}{-12706.68}$$

= 1.1933

also 19.33 %.

Kapitalwert unter Berücksichtigung von Steuern

Der Zinssatz nach Steuern ist

$$i^{S} = i \cdot (1 - s^{ert})$$

= 0.05 \cdot (1 - 0.34)
= 0.033

Die Abschreibung ist $\frac{230~\hbox{$<$}-30~\hbox{$<$}}{4}=50~\hbox{$<$}.$ Die Formel für den Kapitalwert mit Steuern ist

$$C_0^S = -I_0 + \sum_{t=1}^n \frac{P_t - s^{ert}(P_t - \text{Abschreibung})}{(1+i^S)^t} + \frac{L_n - s^{ert}(L_n - RBW_n)}{(1+i^S)^n}$$

$$= -230 + \frac{50 - 0.34(50 - 50)}{1 + 0.033} + \frac{60 - 0.34(60 - 50)}{(1 + 0.033)^2} + \frac{130 - 0.34(130 - 50)}{(1 + 0.033)^3} + \frac{10 - 0.34(10 - 50)}{(1 + 0.033)^4} + \frac{50 - 0.34(50 - 30)}{(1 + 0.033)^4}$$

$$= 23.37 \in \mathbb{C}$$