Regularisation Eltecon Data Science Course by Emarsys

Holler Zsuzsa

October 6, 2021

Goal of the lesson

- introduce the concept of **regularisation**
- define and try out ridge and LASSO regression
- conduct model selection on a real world example

Section 1

Regularisation

Recap

Recap

	train RMSE	test RMSE	CV RMSE
k_0	0.71	0.54	0.68
k_1	0.45	0.51	0.45
k_5	0.11	0.08	0.11
k_30	0.09	1.49	0.34

Quiz

- The test error is always larger than the train error.
- The overfitting error tends to increase with model complexity.
- The smaller the overfitting error the better the fitted model.
- If the fitted model parameters vary a lot across different samples of the same data one should check for overfitting.

Share your results in Socrative!

What is Regularisation

Idea: Use a different estimator to estimate the linear regression model. Add a **penalty term** to the error function to discourage the coefficients from reaching large values and to prevent overfitting.

$$E(w) = E_D(w) + \lambda E_W(w)$$

where $E_D(w)$ is the data-dependent error, $E_W(w)$ regularisation term and λ is the regularisation parameter that controls the relative importance of these two terms.

The Bias-Variance trade-off

$$MSE(\hat{w}) = E[(\hat{w} - w)^2] = \underbrace{E[(\hat{w} - w)]^2}_{\text{bias}} + \underbrace{E[(\hat{w} - E\hat{w})^2]}_{\text{variance}}$$

- OLS is unbiased estimator
- ridge and LASSO are biased but have a smaller variance than least squares
- by optimally choosing λ it is possible to obtain an estimator with smaller MSE

Parameter vs. Hyperparameter

Parameter:

- learned from the data during model training process
- required to make predictions from the model

Hyperparameter:

- need to be set before model training
- define specific properties of the model training process

How to set hyperparameters?

- 1 rule of thumb
- grid search Use cross-validation!

The Ridge

Minimise the following loss function:

$$L(w) = \sum_{i}^{N} (w^{T}x_{i} - y_{i})^{2} + \lambda \sum_{j}^{k} (w_{j})^{2}$$

Luckily, it has a **closed form solution**.

The Ridge

The LASSO

Minimise the following loss function:

$$L(w) = \sum_{i}^{N} (w^{T} x_{i} - y_{i})^{2} + \lambda \sum_{j}^{k} |w_{j}|$$

Unfortunately, it has **no closed form solution**. One has to use a clever algorithm to find the solution (shooting algorithm).

The LASSO

Ridge vs. Lasso

Ridge vs. Lasso

- ullet both are useful when k is large relative to N
- ridge is useful when regressors are highly collinear
- LASSO when true regression parameter vector is sparse and regressors are not highly collinear
- one can use LASSO as variable selection method

SMS Spam Prediction

Let's see how it works in practice! spam_pred_reg.R

Practice Time

- Task: Implement the same model with Lasso penalty! Use the function documentation!
- You have 10 minutes.

How to choose lambda?

Cross-validate!

How to choose lambda?

	train MSE	test MSE	CV MSE
k_0	0.51	0.30	0.46
k_1	0.20	0.26	0.20
k_5	0.01	0.01	0.01
k_30	0.01	2.23	0.11
ridge_best	0.02	0.02	0.02
lasso_best	0.01	0.01	0.02

SMS Spam Prediction

Let's see how it works in practice! spam_pred_reg.R

Practice Time

- Task: Find the optimal lambda value with Lasso penalty!
- You have 10 minutes.

Regularisation

Advantages:

- allows to train complex models on limited size data
- computationally cheap (not always true)

Disadvantages:

• not clear how to choose λ

Section 2

Model Selection Example

Online News Popularity

- Articles published from January 7 2013 to January 7 2015 on Mashable: http://archive.ics.uci.edu/ml/datasets/Online+News+Popularity
- Target: number of shares in social networks
- Predictors: different summary measures of article content (e.g.: links, images, videos, keywords)

Homework

- Implement cross-validation to find the optimal lambda parameter for the ridge regression on the Spam prediction example.
- Use any library/function for cross-validation except the one used in the class (you might check the caret package or use your own implementation)
- Choose at least 2 potential lamdba values and report their cross-validated accuracy.

Resources

- Bishop, Christopher: Pattern Recognition and Machine Learning
- Gareth J., Witten D., Hastie T. and Tibshirani R.: An Introduction to Statistical Learning