STIR: Shift To Improve Rate (Part 1)

rate \Rightarrow proportion of true info Contained in Codeword

rate \downarrow \Rightarrow true infor. \downarrow \Rightarrow redundancy increases

| J|
| verifier's testing ability \uparrow | J|
| verifier meals ferrer queries
| to achieve target security

FRI V STIR

Let be the evaluation domain, $|\mathcal{U}| = n$ $d \Rightarrow degree \ \, \text{bound} \ \, \left(\text{assume both} \right. \\ n = 2^{\kappa} \\ d = 2^{\ell} \, \right)$

RS encoding space RS[F,L,d] contains all functions $f:L\to F$ such that f is consistent with the evaluation of degree strictly less than d on L.

The roote $\beta = \frac{d}{14}$

Goal: Vocifier can obtain a function $f: L \to F$ through queeles. Verifier's goal is to quory the values of f at as few locations as possible to distinguish which following losses f belongs to:

1 f e RS[F,L,d]
2 f is 8-four from all codewords in RS[F,L,d] in relative Hamming distance, r.e. $\Delta(f,RS[F,L,d]) > 8$

$$\frac{FRI}{g! \in RS[F, L^{k}, d/k]}$$

$$g! \in RS[F, L^{k}, d/k]$$

$$g! = \frac{d/k!}{|L_{\ell}|} = \frac{d}{k!} \cdot \frac{k!}{n} = \frac{d}{n}$$

$$g! = \int_{R} \frac{d}{k!} \int_{R} \frac{d}{k!} dk$$

STIR

$$g_{i}' \in RS[F, \lambda', d_{i}K]$$

$$g_{i}' \in RS[F, \lambda'_{i}, d_{i}K']$$

$$p_{i} = \frac{d_{i}K'}{|L_{i}|} = \frac{d}{|K_{i}|} \cdot \frac{2^{i}}{|K_{i}|} = \frac{2^{i}}{|K_{i}|} \cdot p$$

$$p_{i} = \frac{d_{i}K'}{|L_{i}|} = \frac{d}{|K_{i}|} \cdot \frac{2^{i}}{|K_{i}|} = \frac{2^{i}}{|K_{i}|} \cdot p$$

$$p_{i} = \frac{d_{i}K'}{|K_{i}|} = \frac{d}{|K_{i}|} \cdot \frac{2^{i}}{|K_{i}|} = \frac{2^{i}}{|K_{i}|} \cdot p$$

$$p_{i} = \frac{d_{i}K'}{|K_{i}|} \cdot \frac{2^{i}}{|K_{i}|} = \frac{2^{i}}{|K_{i}|} \cdot p$$

$$p_{i} = \frac{d_{i}K'}{|K_{i}|} \cdot \frac{2^{i}}{|K_{i}|} = \frac{2^{i}}{|K_{i}|} \cdot p$$

$$p_{i} = \frac{d_{i}K'}{|K_{i}|} \cdot \frac{2^{i}}{|K_{i}|} = \frac{2^{i}}{|K_{i}|} \cdot p$$

$$p_{i} = \frac{d_{i}K'}{|K_{i}|} \cdot p$$

When compling this IOPP into a SNARK, we use BCS transformation,

- (1) Merkle Commit the Proven's messages and when the Verified wants to guess, open these commitments.

 Transforming IOPP into a succent interactive argument.
- De Vse Frat-Shamir Transform to convert the sucunit interactive argument of first-top into non-interactive one.

Now in BCS transformation IOPP needs to have strong soundness called round-by-round Soundness

oreguires IOPP to have a well-treby small soundness error in each round

- · let's assume the bound for round-by-round soundness errors is 2->
- · Each round can be queued to times repeatedly, and entire IOPP protocol goes through M rounds, so total query complexity of entire proof is

te te

For S reaching the jointon bound, 8.e. S = 1 - Jp, we can calculate

1) query complexity of FRI is:

$$0\left(\lambda, \frac{\log d}{-\log \sqrt{\rho}}\right)$$

@ quory complexity of STIR is:

$$O\left(\lambda, \log\left(\frac{\log d}{-\log \sqrt{p}}\right) + \log d\right)$$

Powerful Tools for RS-Encoding

Foldling $f: A \to F \text{ , given } Y \in F, \text{ the } K\text{- fold function } is$ $f_T := Fold \left(f, \sigma\right) : L^K \to F$

. It's defined as $f \approx K$, we can find K y in K satisfying $y^k = \infty$ from K pairs (y, f(y)), we create polynomial \hat{p} of degree less than K satisfying $\hat{p}(y) = f(y)$, then $\hat{p}(r)$ is the value of the function $f_r(\hat{x})$

 $\Rightarrow \text{ for } S \in \{0, 1-Jp\}, \quad \text{f is } S \text{-far from } RS[F, L, d] \\ \Rightarrow \text{ fr is } S \text{-fan from } RS[F, L^K, d/K] \text{ with prob. at least} \\ 1 - \text{poly}(1L1)/F$

How I understand $f_{\sigma}(x)$ for any $x \in L^{\kappa}$, take its κ roots, interpolate a curve through the κ points (y, f(y)), then evaluate that curve at $f_{\sigma}(x)$ "

Quotienting

f: LeF p: S > F 8 = F

Quotient
$$(f, S, p)(x) := \frac{f(x) - \hat{p}(x)}{\prod_{a \in S} (x-a)}$$

p is the unique polynomial of degree less than |S| satisfying $\hat{p}(\hat{a}) = p(a) \quad \forall \quad a \in S$

We can see Consistency, Assuming S and have disjoint, then

O if $f \in RS[F, L, d]$ is constitute with p on S, then Quotient $(f, S, p) \in RS[F, L, d-1S1]$ Of for any \hat{u} is δ -close to f, \hat{u} is not constitute with p on S, then $(\deg cd)$

Questions (f, S,p) is S-far from RS[F, L, d-IS]

Out of Domain Sampling

List devoting -> unique decoting

for a function $f: h \to F$, Venifier randomly selects $\alpha \in F \setminus h$, and prover vectors a value β .

Then in list of codewoods list (f, d, 8) within 8 range of f, with high probability, there is at most one codeword \hat{u} satisfying

$$\hat{q}(\alpha) = \beta$$

Say \hat{u}' and \hat{u} are two different codenards with degree less than d, we have

$$\Pr \left[\hat{u}'(\alpha) = \hat{u}(\alpha) \right] \leq \frac{a-1}{|F|-|L|}$$

Suppose RS [F, A, a] $^{1/2}$ (6, l) list-decodable, meaning there are at most l combinations

$$\Rightarrow$$
 Total prob. for $\hat{u}'(\alpha) = \hat{u}(\alpha) \leq \binom{\ell}{2} \frac{d-1}{|F|-|L|}$

HOW TO Check $f(x) = \beta$? — we Quotienting

One Iteration of the STIR protocol

Objective: • given a function f, we want to prove that it is in RS[F,L,d], where $R = \langle w \rangle$

why do we choose $L' = \omega \cdot (\omega^2)$ as (ω^2) is also half the size?

Suppose $K = A \Rightarrow L^4 = \{\omega^4, \omega^8\}$ $L' = \{\omega^1, \omega^3, \omega^5, \omega^7\}$ Ne went to avoid Fill function which contains the intersect of pts.