Gestion dynamique de la mémoire

Nour-Eddine Oussous, Éric Wegrzynowski

Licence ST-A, USTL - API2

19 octobre 2009

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

Occupation mémoire de différents types de données

▶ Déclaration d'une variable = réservation d'un espace mémoire qui est fonction du type de la variable.

Exemples avec Free Pascal (avec l'option -Mobjfpc) sur architecture i386

Déclaration	Mémoire réservée	
var somme : INTEGER ;	4 octets	
var n : CARDINAL ;	4 octets	
var trouve : BOOLEAN ;	1 octet	
var moyenne : REAL ;	8 octets	
<pre>var tableau : Array[1100] of REAL ;</pre>	$100 \cdot 8 = 800$ octets	
<pre>var nom : STRING[20] ;</pre>	21 octets	

Plan Introduction Les pointeurs Les pointeurs en PASCAL Affectation d'une valeur à un pointeur Gestion dynamique de mémoir

Introduction

Les pointeurs

Définition

Les pointeurs en Pascal

Déclaration

Accès à la zone pointée

Affectation d'une valeur à un pointeur

La constante NIL

Affectation de pointeurs

Adresse d'une variable

Gestion dynamique de mémoire

Allocation

Désallocation

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

Plan Introduction Les pointeurs Les pointeurs en PASCAL Affectation d'une valeur à un pointeur Gestion dynamique de mémoire 00 00 0000 00000

Variables et mémoires

Gestion dynamique de la mémoire Licence ST-A, USTL - API2

Gestion dynamique de la mémoire Fig.: Variables en mémoire

Licence ST-A, USTL - API2

Plan	Introduction	Les pointeurs	Les pointeurs en PASCAL	Affectation d'une valeur à un pointeur	Gestion dynamique de mémoire
		00	0	00	0000
			00	0	00000
				00	

Allocation statique/dynamique de mémoire

- ▶ Déclaration d'une variable d'un type T = allocation statique d'une zone mémoire
- ▶ Possibilité d'allocation dynamique de mémoire

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

Définition

Pointeur en mémoire

Fig.: Pointeur vers un REAL

Gestion dynamique de la mémoire Licence ST-A, USTL - API2

Définition

Les pointeurs

Définition

Un <u>pointeur</u> est une variable qui contient <u>l'adresse</u> d'une donnée contenue en mémoire.

- ► La déclaration d'une variable pointeur
 - réserve 4 octets nécessaires au codage de l'adresse mémoire de la donnée pointée
 - mais ne réserve aucune mémoire pour la donnée pointée
- ▶ Quel que soit le type de la donnée pointée, la taille mémoire du pointeur est toujours la même : 4 octets

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

```
Plan Introduction Les pointeurs Les pointeurs en PASCAL Affectation d'une valeur à un pointeur Gestion dynamique de mémoire
```

Déclaration

Déclaration d'un pointeur

En ${\it Pascal}$, les pointeurs sont des variables dont le type est celui de la donnée pointée précédé d'un $\hat{\ }$

```
var P : ^<\underline{type}> ;
```

Exemples de variables pointeurs

```
var
P : ^CARDINAL ; // pointeur vers CARDINAL
R : ^REAL ; // pointeur vers REAL
```

Gestion dynamique de la mémoire Licence ST-A, USTL - API2

Plan Introduction Les pointeurs Les pointeurs en PASCAL Affectation d'une valeur à un pointeur Gestion dynamique de mémoire

Accès à la zone pointée

L'opérateur ^

L'opérateur ^ permet d'obtenir la zone pointée par un pointeur. P^ peut être considéré comme une variable du type de la zone pointée.

Exemple

```
// affectation a Y de la valeur pointee par P
Y := P^;
// affichage de la valeur pointee par P
writeln(P^);
```

Y doit avoir le type des valeurs pointées par P

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

La constante NIL

La constante NIL

La constante NIL est un pointeur (de tout type) particulier qui ne pointe sur rien.

Exemple

```
P := NIL; // P ne pointe sur rien
```

Gestion dynamique de la mémoire Licence ST-A, USTL - API2

Accès à la zone pointée

Autre exemple

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

```
Plan Introduction Les pointeurs Coo Affectation d'une valeur à un pointeur Gestion dynamique de mémoire
```

La constante NIL

Attention

Lorqu'un pointeur vaut NIL, il n'y a aucun sens de tenter d'accéder à la zone pointée

Exemple

```
Si P vaut NIL, à l'exécution l'instruction
```

```
X := P^;
```

produira un comportement imprévisible.

Gestion dynamique de la mémoire Licence ST-A, USTL - API2

Plan Introduction Les pointeurs Les pointeurs en PASCAL Affectation d'une valeur à un pointeur Gestion dynamique de mémoire

Affectation de pointeurs

Affectation de pointeurs

Il est possible d'affecter la valeur d'un pointeur à un autre pointeur du même type.

Exemple

P := Q; // P pointe vers la meme zone que Q

CU : P et Q pointent tous deux vers le même type de données.

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

Plan Introduction Les pointeurs Les pointeurs en PASCAL Affectation d'une valeur à un pointeur Gestion dynamique de mémoire

Adresse d'une variable

Affectation de pointeurs

Attention

Aucune différence entre une adresse et une adresse!

- \Rightarrow possibilité d'affecter à un pointeur vers une donnée d'un certain type l'adresse d'une variable d'un autre type!!
- ⇒ résultats imprévisibles!!!

Exemple

```
var
   X : REAL;
   P : ^CARDINAL;
begin
   X := 3.141592 ;
   P := @X; // autorise, mais que pointe P ???
end
```

Plan Introduction Les pointeurs Les pointeurs en PASCAL Affectation d'une valeur à un pointeur Gestion dynamique de mémoire company de la comp

Adresse d'une variable

L'opérateur @

L'opérateur @ appliqué à une variable donne l'adresse de cette variable. Cette adresse peut être affectée à un pointeur.

Exemple

```
var
  X : CARDINAL ;
  P : ^CARDINAL ;
begin
  X := 3 ;
  P := @X ; // P pointe vers X
end
```

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

```
Plan Introduction Les pointeurs Les pointeurs en PASCAL Affectation d'une valeur à un pointeur Gestion dynamique de mémoire
```

Allocation

Allocation dynamique de mémoire

Définition

L'allocation dynamique de mémoire est la possibilité de réserver une zone mémoire à l'exécution d'un programme.

⇒ nécessité de disposer d'un espace mémoire dans lequel faire l'allocation : cette zone est nommée TAS.

Gestion dynamique de la mémoire Licence ST-A, USTL - API2 Gestion dynamique de la mémoire Licence ST-A, USTL - API2

Allocation

La procédure new

La procédure new, appliquée à un pointeur P,

- 1. réserve une zone mémoire dans le TAS d'une taille correspondant à la taille des données pointées par P,
- 2. et attribue à P l'adresse de cette zone.

Exemple

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

Allocation

Attention

L'affectation d'une zone mémoire par une instruction du type

```
P^ := ...
```

peut avoir des effets de bord.

Exemple

```
{ X =?? }
X := 5;
{ X = 5}
P := @X;
{ X = 5, P = adresse de X}

P^ := 6;
{ X = 6, P = adresse de X }
writeln(X); // affiche 6 !!
```

Plan Introduction Les pointeurs | Les pointeurs en PASCAL | Affectation d'une valeur à un pointeur | Gestion dynamique de mémoire | OO OO OOO OOO

Allocatio

Allocation de mémoire \neq affectation d'une valeur.

⇒ nécessité après allocation, d'attribuer une valeur à la zone allouée

Exemple

```
(...suite)

P^ := 4;
R^ := 3.141592;
```

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

```
Plan Introduction Les pointeurs Les pointeurs en PASCAL Affectation d'une valeur à un pointeur Gestion dynamique de mémoire
```

Désallocation

Allocation dynamique de mémoire

Définition

La <u>désallocation</u> de mémoire est l'opération inverse de l'allocation : elle libère une zone du TAS qui a été allouée.

- ▶ opération nécessaire pour ne pas épuiser le TAS,
- ▶ à réaliser dès qu'une zone n'a plus d'utilité.

Gestion dynamique de la mémoire Licence ST-A, USTL - API2 Gestion dynamique de la mémoire Licence ST-A, USTL - API2

Désallocation

La procédure dispose

La procédure dispose, appliquée à un pointeur P,

- 1. libère la zone mémoire du TAS pointée par P
- 2. et rend indéterminée la valeur de P.

Exemple

```
var
  P : ^CARDINAL;
begin
  new(P) ; // allocation de 4 octets
  P^ := 6 ; // attribution d'une valeur
  dispose(P); // desallocation de la zone
end
```

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

Désallocation

Attention

La désallocation d'une zone pointée peut avoir un effet de bord lorsque cette zone est pointée par d'autres pointeurs, ou correspond à une variable.

Exemple

Attention

Désallocation

La procédure dispose ne doit être appliquée qu'à des pointeurs pointant sur une zone allouée dynamiquement (par un new).

Gestion dynamique de la mémoire

Licence ST-A, USTL - API2

Désallocation

La désallocation n'est pas simple

- ▶ Gérer la désallocation n'est pas une opération simple.
- ► Certains langages de programmation (Lisp, Java,...) la gèrent automatiquement.
- La gestion automatique de récupération de mémoire est nommée ramasse-miettes (garbage collector en anglais).

Gestion dynamique de la mémoire Licence ST-A, USTL - API2 Gestion dynamique de la mémoire Licence ST-A, USTL - API2