PRÁCTICA 1: Soluciones

Pablo Verdes

Dante Zanarini

Pamela Viale

Alejandro Hernandez

Mauro Lucci

1.

- a) Sea $f: \mathbb{N} \to P$ definida por f(x) = 2x:
 - f es inyectiva: $f(x_1) = f(x_2) \iff 2x_1 = 2x_2 \iff x_1 = x_2$.
 - f es sobreyectiva: Sea $y \in P$ luego y = 2k. Para x = k resultará f(x) = 2k = y.
- b) Sea $f: A \to B$. Puesto que B es un conjunto unitario resultara necesariamente f(x) = 7 para cualquier $x \in A$. Luego f(1) = f(2) = 7 pero $1 \neq 2$ (f no es inyectiva).
- c) Sean C = [a, b] y D = [c, d], definiremos una función lineal $f : [a, b] \to [c, d]$ que pase por los puntos (a, c) y (b, d). Sea f(x) = mx + h, luego $m = \frac{d-c}{b-a}$. Ahora como f(a) = c resulta:

$$c = \left(\frac{d-c}{b-a}\right)a + h \iff c - \left(\frac{d-c}{b-a}\right)a = h$$

es decir,

$$f\left(x\right) = \left(\frac{d-c}{b-a}\right)x + c - \left(\frac{d-c}{b-a}\right)a = \left(\frac{d-c}{b-a}\right)\left(x-a\right) + c$$

 \bullet f es inyectiva:

$$f(x_1) = f(x_2) \iff mx_1 + h = mx_2 + h \iff mx_1 = mx_2 \iff x_1 = x_2$$

• f es sobreyectiva: Sea $y \in D$ definimos $x = (y - c) \left(\frac{b-a}{d-c}\right) + a$. Luego:

$$f(x) = \left(\frac{d-c}{b-a}\right) \left[(y-c)\left(\frac{b-a}{d-c}\right) + a - a \right] + c =$$

$$= \left(\frac{d-c}{b-a}\right) (y-c)\left(\frac{b-a}{d-c}\right) + c = y - c + c = y$$

Ademas $x \in C$ pues:

$$\begin{array}{cccccc} c & \leq & y & \leq & d \\ 0 & \leq & y-c & \leq & d-c \\ 0 & \leq & (y-c)\left(\frac{b-a}{d-c}\right) & \leq & (d-c)\left(\frac{b-a}{d-c}\right) = b-a \\ a & \leq & x & \leq & b \end{array}$$

d) La función biyectiva $f: \mathbb{R} \to (0, \infty)$ definida por $f(x) = e^x$ prueba que $(-\infty, \infty) \sim (0, \infty)$. Consideremos ahora la función biyectiva $g: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ definida por $g(x) = \tan(x)$. La función $g(\pi x)$ tiene como dominio el intervalo $\left(-\frac{1}{2}, \frac{1}{2}\right)$ mientras que la función biyectiva $g\left(\pi x - \frac{\pi}{2}\right)$ tendrá el dominio (0, 1), por lo que podemos concluir que $(0, 1) \sim (-\infty, \infty)$.

2.

- a) Sea $f: A \to B$ $x \in A \to f(x) = x$ luego f es inyectiva pues $f(x_1) \neq f(x_2) \iff x_1 \neq x_2$.
- b) Observemos que $A B \subseteq A$ luego por el ítem anterior $A B \preceq A$.
- c) Sea $f: A \rightarrow A \times \{b\}$ $x \in A \rightarrow f(x) = (x, b)$ entonces:
 - f es inyectiva: $f(x_1) \neq f(x_2) \iff (x_1, b) \neq (x_2, b) \iff x_1 \neq x_2$.
 - f es biyectiva: Sea $y = (x, b) \in A \times \{b\}$, luego para $x \in A$ resulta f(x) = y.
- $d) \ \ \text{Sea} \quad \begin{array}{ccc} f: A \times B \times C & \to & A \times (B \times C) \\ (x,y,z) \in A \times B \times C & \to & f\left(x,y,z\right) = (x,(y,z)) \end{array} \ \ \text{entonces:}$
 - f es inyectiva: $(x, (y, z)) = (a, (b, c)) \iff x = a \land y = b \land z = c \iff (x, y, z) = (a, b, c)$.
 - f es biyectiva: Sea $y = (a, (b, c)) \in A \times (B \times C)$, luego para $x = (a, b, c) \in A \times B \times C$ resulta f(x) = y.
- e) Sea $f: A \times B \rightarrow B \times A$ entonces: $(x,y) \in A \times B \rightarrow f(x,y) = (y,x)$
 - f es inyectiva: $(y_1, x_1) = (y_2, x_2) \iff y_1 = y_2 \land x_1 = y_2 \iff (x_1, y_1) = (x_2, y_2)$.
 - f es biyectiva: Sea $y = (a, (b, c)) \in A \times (B \times C)$, luego para $x = (a, b, c) \in A \times B \times C$ resulta f(x) = y.
- f) Sabemos que existe una función inyectiva $f: B \to C$ luego la función

$$\begin{array}{ccc} g:A\times B & \rightarrow & A\times C \\ (x,y)\in A\times B & \rightarrow & g\left(x,y\right)=\left(x,f\left(y\right)\right) \end{array}$$

resulta inyectiva pues:

$$(x_1, y_1) \neq (x_2, y_2) \Rightarrow x_1 \neq x_2 \lor y_1 \neq y_2$$

- Si $x_1 \neq x_2$ entonces $g(x_1, y_1) = (x_1, f(y_1)) \neq (x_2, f(y_2)) = g(x_2, y_2)$.
- Si $y_1 \neq y_2$ entonces $g(x_1, y_1) = (x_1, f(y_1)) \neq (x_2, f(y_2)) = g(x_2, y_2)$ pues como f es inyectiva resulta $f(y_1) \neq f(y_2)$.

g) Para cada $H \subseteq A$ definimos $\chi_H : A \to B = \{0,1\}$ tal que:

$$\chi_H = \begin{cases} 0 & x \notin H \\ 1 & x \in H \end{cases}$$

Cada subconjunto H de A determina una única función χ_H (y viceversa), de manera tal de que el problema de determinar cuantos subconjuntos tiene A (card ($\mathcal{P}(A)$)) es equivalente al de determinar cuantas funciones hay de A en B.

Sea $A = \{a_1, a_2, \dots, a_n\}$ luego cada función $\chi : A \to B$ se identifica con la tupla $(\chi(a_1), \chi(a_2), \dots, \chi(a_n)) \in \underbrace{B \times B \times \dots \times B}_{n}$.

Luego $card(\mathcal{P}(A)) = card(B \times B \times ... \times B) = 2^{n}$.

Argumento combinatorio

- Subconjuntos de 0 elementos hay: $\binom{n}{0}$.
- Subconjuntos de 1 elementos hay: $\binom{n}{1}$.
- Subconjuntos de 2 elementos hay: $\binom{n}{2}$.
- .
- Subconjuntos de n elementos hay: $\binom{n}{n}$.

Puede probarse por inducción que $\sum_{i=0}^{n} {n \choose i} = 2^n = card\left(\mathcal{P}\left(A\right)\right).$

3.

a)

- Reflexividad: Para todo conjunto A, la función identidad es biyectiva, luego $A \sim A$.
- Transitividad: Si $A \sim B$ y $B \sim C$ entonces existen funciones biyectivas f y g, luego la función $f \circ g$ es una biyección de A a C. Por lo tanto $A \sim C$.
- Simetria: Si $A \sim B$ entonces existe una función biyectiva f, luego la función f^{-1} es una biyección de B a A. Por lo tanto $B \sim A$.

b)

- Reflexividad: Análogo.
- Transitividad: Análogo.
- Antisimetria: Si $A \leq B$ y $B \leq A$ entonces existen funciones inyectivas de A a B y de B a A y por el teorema de Cantor-Schroder-Bernstein existe una biyeccion de A a B por lo que $A \sim B$.

4. Sabemos existen $f:A\to B$ y $g:C\to D$ biyectivas, luego la función

$$\begin{array}{ccc} h: A \times C & \rightarrow & B \times D \\ (x,y) \in A \times C & \rightarrow & h\left(x,y\right) = \left(f\left(x\right),g\left(y\right)\right) \end{array}$$

es biyectiva pues:

$$(x_1, y_1) \neq (x_2, y_2) \Rightarrow x_1 \neq x_2 \lor y_1 \neq y_2$$

- Si $x_1 \neq x_2$ entonces $h(x_1, y_1) = (f(x_1), g(y_1)) \neq (f(x_2), g(y_2)) = h(x_2, y_2)$ por ser f biyectiva.
- Si $y_1 \neq y_2$ entonces $h(x_1, y_1) = (f(x_1), g(y_1)) \neq (f(x_2), g(y_2)) = h(x_2, y_2)$ por ser g biyectiva.

La afirmación reciproca no vale pues basta considerar $A = D = \{1\}$ y $B = C = \{1,2\}$. De esta manera $A \times C = \{(1,1),(1,2)\}$ y $B \times D = \{(1,1),(2,1)\}$ de donde $A \times C \sim B \times D$ pero claramente $A \sim B$ ni $C \sim D$.

5. Sabemos que existen $f: A \to B$ y $g: C \to D$ inyectivas, luego la funcion

$$h: A \cup C \rightarrow B \cup D$$

 $x \in A \cup C \rightarrow h(x) = \begin{cases} f(x) & x \in A \\ g(x) & x \in C - A \end{cases}$

es inyectiva. En efecto sean $x_1, x_2 \in A \cup B/x_1 \neq x_2$ luego:

- Si $x_1, x_2 \in A$: $x_1 \neq x_2 \Rightarrow h(x_1) = f(x_1) \neq f(x_2) = h(x_2)$ pues f es inyectiva.
- Si $x_1, x_2 \in C \land x_1, x_2 \notin C$: $x_1 \neq x_2 \Rightarrow h(x_1) = g(x_1) \neq g(x_2) = h(x_2)$ pues g es inyectiva.
- Si $x_1 \in A \land x_2 \notin A \land x_2 \in C : h(x_1) = f(x_1) \in B \text{ y } h(x_2) = g(x_2) \in D$ luego debera ser $h(x_1) \neq h(x_2)$ pues de lo contrario resultaria $B \cap D \neq \emptyset$.
- 6. Las funciones $f(x) = \frac{1}{2}x$ y g(x) = x son inyectivas y por el teorema citado, existe una biyección entre dichos conjuntos, por lo tanto son equipotentes.

7.

a)

- $P_0 = \mathbb{N}$.
- $P_3 = \{ \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 / \alpha_0, \alpha_1, \alpha_2, \alpha_3 \in \mathbb{Z} \}.$
- $P_n = \{ \alpha_0 + \alpha_1 x^1 + \ldots + \alpha_n x^n / \alpha_i \in \mathbb{Z} \}.$
- b) $P = P_0 \cup P_1 \cup P_2 \cup \ldots = \bigcup_{i \in \mathbb{N}} P_i.$
- c) Sea $f: P_i \to \mathbb{Z}^{i+1}$ $p \in P_i \to f(p) = (\alpha_0, \dots, \alpha_i)$. Puesto que en P_i todos los polinomios tienen el mismo grado, dos polinomios serán diferentes si alguno de sus coeficientes es diferentes y en consecuencia también lo serán sus imágenes.
- $d) D_i \leq \mathbb{Z}^{i+1} \sim \mathbb{N}^{i+1} \sim \mathbb{N}.$

8.

- a) Observemos que $A\subseteq X=\left\{\frac{\sqrt[m]{n}}{n}:m,n\in\mathbb{N}\right\}$. Ademas podemos escribir a X como $\bigcup_{i\in\mathbb{N}}\left\{\frac{\sqrt[m]{n}}{i}:m\in\mathbb{N}\right\},$ luego $A\preceq X\preceq\mathbb{N}.$
- b) Podemos escribir a B como $\bigcup_{i \in \mathbb{Z}} \{\langle i, i+r, i+2r, \ldots, i+nr, \ldots \rangle / r \in \mathbb{Z} \}$ y por ser unión numerable de conjuntos numerables resulta $B \sim \mathbb{N}$.
- c) Sea $f: C \to \mathbb{Z} \times \mathbb{Z}$ dada por f([a,b]) = (a,b), es fácil ver que esta función es inyectiva. Luego $C \preceq \mathbb{Z} \times \mathbb{Z} \sim \mathbb{N} \times \mathbb{N} \sim \mathbb{N}$.

9.

- a) Sea $\frac{p}{q} \in \mathbb{Q}$ luego para P(x) = qx p resulta $P\left(\frac{p}{q}\right) = q\frac{p}{q} p = 0$.
- $b) \mathbb{Q} \preceq \mathbb{A}.$
- c) En efecto para $P(x) = x^2 2$ resulta $P(\sqrt{2}) = \sqrt{2}^2 2 = 0$.
- d) En efecto para $P(x) = x^2 + 1$ resulta $P(i) = \sqrt{-1}^2 + 1 = 0$.
- e) Observemos que $\mathbb{A} = \bigcup_{p \in P} \{x \in \mathbb{C} : p(x) = 0\}$. Cada uno de estos conjuntos es numerables pues cada polinomio tiene una cantidad finita de raíces. Luego, por ser unión numerable de conjuntos numerables, resulta $\mathbb{A} \sim \mathbb{N}$.

10.

- a) Supongamos lo contrario, luego $\mathbb{A} = \mathbb{C} \sim \mathbb{N}$. Contradicción.
- b) Supongamos lo contrario, es decir $\mathbb{T} \sim \mathbb{N}$ luego como $\mathbb{C} = \mathbb{A} \cup \mathbb{T}$ resulta ser unión numerable de conjuntos numerables por lo que $\mathbb{R} \sim \mathbb{N}$. Contradicción.
- 11. Claramente B no es numerable $(B \succeq \aleph_1)$ pues si lo fuera, $B \cup A$ sería unión numerable de conjuntos numerables y resultaría $card(B \cup A) = \aleph_0$. Luego como $B \subseteq A \cup B$ debe ser $B \preceq A \cup B$, es decir $B \preceq \aleph_1$ por lo que $card(B) = \aleph_1$.

12.

- a) Sean Σ_i los conjuntos de cadenas de longitud exactamente i, luego $card (\Sigma_i) = card (\Sigma)^i \in \mathbb{N}$. Luego el conjunto de todas las cadenas sobre el alfabeto es $\Sigma^* = \bigcup_{i \in \mathbb{N}} \Sigma_i$ que por ser unión numerable de conjuntos numerables, resulta también ser numerable.
- b) Como $card(\Sigma^*) = \aleph_0$ y un lenguaje es un elemento de $\mathcal{P}(\Sigma^*)$ entonces existen \aleph_1 lenguajes sobre Σ .

13.

a) Sean $B = \{0, 1\}$, $\mathcal{F}(A, B)$ el conjunto de todas las funciones de A en B y para cada $S \in P(A)$ consideremos la función:

$$\chi_S: A \to B$$

$$x \to \chi_S(x) = \begin{cases} 1 & x \in S \\ 0 & x \notin S \end{cases}$$

Definimos:

$$f: \mathcal{P}(A) \to \mathcal{F}(A, B)$$

$$S \to f(S) = \chi_S$$

$$g: \mathcal{F}(A, B) \to \mathcal{P}(A)$$

$$F \to g(F) = F^{-1}\left(\{1\}\right)$$

(donde $F^{-1}(\{1\})$ es el conjunto de todas las preimagenes de 1 a través de F)

Demostración Analicemos la función $\chi_{F^{-1}(\{1\})}$. Tenemos:

$$\chi_{F^{-1}(\{1\})}(x) = \begin{cases} 1 & x \in F^{-1}(\{1\}) \\ 0 & x \notin F^{-1}(\{1\}) \end{cases} = \begin{cases} 1 & F(x) = 1 \\ 0 & F(x) = 0 \end{cases} = F(x)$$

Ahora $(f \circ g)(F) = f[F^{-1}(\{1\})] = \chi_{F^{-1}(\{1\})} = F$ es decir: $(f \circ g)$ es la identidad en $\mathcal{F}(A, B)$. (*)

Sabemos que la preimagen de $\{1\}$ a través de χ_S es justamente S. Por lo tanto:

$$\forall S \in \mathcal{P}(A) : (g \circ f)(S) = g[f(S)] = g(\chi_S) = \chi_S^{-1}(\{1\}) = S$$

luego $(g \circ f)$ es la identidad en $\mathcal{P}(A)$. (**)

De (*) y (**) resulta que f y g son biyectivas, es decir, existen la misma cantidad de subconjuntos de A que de funciones de A en B.

b) Resulta trivial de definir una invección de $\{f/f: \mathbb{N} \to \{0,1\}\}$ en $\{f/f: \mathbb{N} \to \mathbb{N}\}$ que extienda el dominio de las primeras.

c)

- Por el ítem $a: card(\{f/f : \mathbb{N} \to \{0,1\}\}) = card(\mathcal{P}(\mathbb{N})) = \aleph_1.$
- Tenemos entonces: $\aleph_0 \prec \mathcal{P}(\mathbb{N}) \sim \aleph_1 \sim card(\{f/f : \mathbb{N} \to \{0,1\}\}) \leq card(\{f/f : \mathbb{N} \to \mathbb{N}\}).$
- d) Del ejercicio 9 sabemos que para cualquier alfabeto, existen \aleph_0 cadenas (programas) sobre dicho alfabeto.
- e) Podemos concluir que puesto que existen mas funciones naturales que programas, existen funciones que ningún programa puede calcular.