Parametric Coding of High-Quality Audio

Prof. Dr. Gerald Schuller
Fraunhofer IDMT & Ilmenau Technical University
Ilmenau, Germany

Waveform vs Parametric

- Waveform
 - Filter-bank approach
 - Mainly exploits limitations of human auditory system
 - Mature technology
- Parametric
 - Source model approach
 - Exploits both source model as well as limitations of human auditory system

most audio coders use a combination of both

1. Perceptual Noise Substitution (PNS)

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

ILMENAU

Perceptual Noise Substitution (1)

Background:

- Parametric coding of signals gives a very compact signal representation
- Parametric coding of noise-like signal components has been used widely e.g. in speech coding
- Can similar techniques be used in perceptual audio coding?

MPEG-4:

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

 Perceptual Noise Substitution (PNS) permits a frequency selective parametric coding of noise-like signal components

Perceptual Noise Substitution (2)

"Perceptual Noise Substitution" (PNS): Perceptual coder + parametric represent. of noise-like signals

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Perceptual Noise Substitution (3)

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Principle:

- Noise-like signal components are detected on a scalefactor band basis
- Corresponding groups of spectral coefficients are excluded from quantization/coding
- Instead, only a "noise substitution flag" plus total power of the substituted band is transmitted in the bitstream
- Decoder inserts pseudo random vectors with desired target power as spectral coefficients
- Highly compact representation for noise-like spectral components

2. Spectral Band Replication

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Bandwidth Extension (1)

Background

- Audio coding at very low bitrates ⇒ artifacts
- To avoid excessive artifacts, bandwidth is usually sacrificed at low bitrates (<40kbit/s/ch)
 ⇒ Signal sounds unattractive (muffled)

Concept

 "re-generate" HF signal content at decoder end from LF part (and some helper information)

Bandwidth Extension (2)

Idea of Spectral Band Replication (SBR)

- Re-generate HF-part of signal spectrum by means of transposition of transmitted spectrum ⇒ ensures preservation of harmonic structure
- Subsequent shaping of signal towards original time/spectral envelope by an adaptive filter (envelope adjuster)
- Some more provisions for handling special situations
- SBR bitstream elements (ca. 2 kbit/s/ch) can be stored in AAC bitstream in a compatible way
 - Standard AAC decoders decode AAC part only
- "MPEG-4 Audio Extension #1"
- SBR is used e.g. in High-Efficiency AAC (aacPlus) and MP3Pro

Compatibility

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Bandwidth Extension (3)

Spectral Band Replication Scheme (Principle)

AAC-SBR Bitstream

Bandwidth Extension (4)

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Figure 1: Spectrum and Masking Threshold

Dietz e.a, "Spectral Band Replication, a novel aproach in audio coding"

Bandwidth Extension (5)

Figure 2: Ideal Perceptual Coding

Dietz e.a, "Spectral Band Replication, a novel aproach in audio coding"

11

TECHNISCHE UNIVERSITÄT
ILMENAU

Bandwidth Extension (6)

Figure 4: Waveform coding beyond its limits

Dietz e.a, "Spectral Band Replication, a novel aproach in audio coding"

Bandwidth Extension (7)

Figure 5: Limiting the audio bandwidth

Dietz e.a, "Spectral Band Replication, a novel aproach in audio coding"

Bandwidth Extension (8)

Figure 6: High frequency generation based on the waveform coded low frequency part

Dietz e.a, "Spectral Band Replication, a novel aproach in audio coding"

Bandwidth Extension (9)

Figure 7: Spectrum after high frequency adjustment

Dietz e.a, "Spectral Band Replication, a novel aproach in audio coding"

Audio Coding for Communication Applications

Prof. Dr. Gerald Schuller

Fraunhofer IDMT & Ilmenau University of Technology

Introduction (1)

- Audio coding/compression is used in:
 - Multimedia applications
 - Storage
 - Digital broadcast: Digital radio
 - Sirius, XM-Radio, iBiquity, DAB
- Examples:
 - MP3 (MPEG-1 Layer 3)
 - MPEG-2/4
 - AAC
 - AC-3
 - PAC

17

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Introduction (2)

- New networks:
 - Higher rate wireless services (for instance with
 - space-time block coding)
 - Quality of service (->low delay)
 - In-home or local networks

New Communication Applications

- High quality teleconferencing
- Reporting for radio or TV stations, using wireless networks
- → Delay wise most critical:
 - Virtual presence (for instance musicians playing together over long distance)
 - Concerts with wireless microphones and speakers (data compression for transmitted power and bandwidth)
 - Desired delay < 10 ms (Ultra Low Delay)

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Goals

- Audio coding for communications:
 - Ultra low encoding/decoding delay (<10ms)
 - High quality for music and speech
 - Bit-rates about 50-100 kb/s

Problems

- Conventional audio coders:
 - Good audio quality
 - But very high encoding/decoding delay (>100 ms)
- Speech coders:

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

- Low encoding/decoding delay (order of 10...50ms), suitable for communications applications
- But not high quality audio, don't perform well on non-speech signals like music or room noise

Conventional Audio Coders

Compression

- Irrelevance (Psycho Acoustics)
 - What the receiver (ear) cannot detect
 - Sound below the threshold of hearing
 - In general sound below the psychoacoustic "masking threshold"
- Redundancy
 - The predictability or statistical dependencies in a signal

Basics of Psychoacoustics (Irrelevance)

Temporal masking threshold

Spectral masking threshold

Major Sources of Delay

- System delay of analysis and synthesis filter bank
- Buffering for bit-rate smoothing
- Previous Approaches:
 - Low delay filter banks
 - MPEG-4 low delay coder: reduced number of subbands

Limitations of previous Approaches

- High coding gain requires high numbers of subbands
 - Low delay filter banks: delay lower bounded by downsampling factor (= number of bands)
 - MPEG 4 low delay coder: reduced coding efficiency (higher bit-rate), not very low delay (ca. 30 ms at 32 kHz sampling).
 - Reason: subband coding leads to trade-off between coding efficiency and delay.

New Approach

- Subband coding has same asymptotic gain as predictive coding (Jayant, Noll, 1984; Nitadori, 1970).
- But predictive coding has lower delay
 - \rightarrow Replace filter bank by predictor

How to apply predictive Coding

 Problem: output of psycho-acoustic model is a time/frequency description.

Approach:

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

- Separate stages for application of irrelevance (psycho-acoustics) and redundancy reduction
- Apply psycho-acoustic quantization noise shaping with linear filters (irrelevance red.)
- Use lossless predictive coding after quantization (redundancy reduction)

Pre- and Post-Filter Approach

Function

- Pre- and post-filters form the quantization noise over frequency and time
- Post-filter is inverse of pre-filter
- Pre-filter normalizes the signal to its psychoacoustic masking threshold
- Simple uniform constant step size quantizer is used (rounding operation)
- Added benefit: more precise control over quantization noise shape than conventional approach

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Pre-Filter Structure

Short delay for synchronization with psycho-acoustic model

(our implementation: 128 samples + 128 samples blocking delay)

Properties

- Disadvantage:
 - Computationally complex structure
- But advantage:
 - No inherent delay, suitable for communications applications

Example Frequency Response

Spectrum of the signal (i) compared to masking threshold (ii) and freq. resp. of post-filter (iii)

Redundancy Reduction

- Irrelevance removed after pre-filter and quantizer
 - Lossless compression needed for perceptual lossless coding

TECHNISCHE UNIVERSITÄT

ILMENAU

Lossless Coding Unit

- Goals:
 - high compression ratios
 - low delay
- Previous approaches:
 - General purpose or text: Lempel-Ziv, PPM7
 - Audio: Shorten (Softsound, GB), LPAC, LTAC

(TU-Berlin, Germany), WaveZip (Soundspace,

CA), MLP (Meridian, GB, for DVD)

Lossless Coding

- Previous approaches:
 - Made for file compression
 - Based on forward (block based) prediction, or transforms
- Problems:

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

- High encoding/decoding delay
- Compression ratio can be improved
- New approach:
 - Backward adaptation (based on past) for low delay
 - Cascading predictors for improved compression

Lossless Predictive Coding - Encoder

For backward adaptation: Predictor coefficient vector **h** updated with LMS algorithm.

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Lossless Predictive Coding - Decoder

Observe: Quantization / rounding of predicted value does not affect lossless property

Low Coding Delay

- Backward adaptation with LMS algorithm
 - Define a vector of input samples:

$$\mathbf{x}^{T}(n) = [x(n-L+1),...,x(n)]$$

The predicted value

$$[P(n)] = round(\mathbf{x}^{T}(n-1)\mathbf{h}(n))$$

 Update of the predictor coefficient vector h with normalized LMS (Widrow, Hoff, 1960).
 Prediction error:

$$e(n) = x(n) - [P(n)]$$

$$\mathbf{h}(n+1) = \mathbf{h}(n) + \frac{e(n)}{1 + \lambda \|\mathbf{x}(n)\|^2} \mathbf{x}(n)$$

TECHNISCHE UNIVERSITÄT
ILMENAU

Increased Compression Ratio

Cascading LMS predictors, using the final output,

has advantages:

- Increased adaptation speed
- Improved prediction accuracy
- Better numerical stability (see Prandoni, Vetterli,

40

1998, for a special case)

Cascading and Combining Predictors

- For us important: Availability of predictors of different orders as additional outputs.
 Reasons:
 - Very non-stationary signals (attacks) require fast adaptation/ short filters
 - Stationary signals require long filters
- Approach:

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

 Combine predictors of different orders adaptively (analog to block switching)

Combination of Predictors (1)

- Assume predictors P₁, P₂, P₃ with different orders for different signal statistics. How can they be combined?
- Use predictive minimum description length principle for the "optimal" combination of predictors

$$P = \sum_{i=1}^{3} w_i P_i$$

 W_i : probability of P_i being "correct" on past signal.

Combination of Predictors (2)

• Assume that the prediction error has a Laplacian distribution ($p(x)=e^{-c\cdot|x|}$), with the prediction error $e(n)=\sum\limits_{n}|x(n)-P_i(n)|$ and the weights \mathbf{w}_i we get:

$$-c\sum_{n} \left| x(n) - P_{i}(n) \right|$$
 $w_{i} \propto e$

- Weights "reward" predictors with good past performance
- The weights are normalised such that they add up to 1.

Weighted Cascaded LMS (WCLMS) Prediction

The w's are adapted based on previous prediction errors, 0<w<1, to adapt to signal statistics (orders, number of coefficients: 120, 80, 40)

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Entropy Coding of Residuals

- Take known algorithms, e.g.:
 - Adaptive Golomb-Rice Codes
 - Adaptive Arithmetic Coding
 - Block based Huffman using pre-calculated code books
- No additional delay introduced, because ULD implementation already is block-based (128 samples)
- Inherently variable bit rate

Comparison of different lossless compression schemes

 Signals are at 32 khz sampling rate, bit-rate in bit/sample. Application after pre-filter and quantization.

Signal	Cascaded LMS	Shorten	Wavezip	LPAC
Pop	1.94	2.52	3.22	2.23
Jazz	1.99	2.67	3.35	2.48
mixed	2.16	2.58	3.19	2.35
Speech	1.96	2.48	3.09	2.12

Controlling the Bit-Rate: constant bit rate mode

- A factor of less than 1 leads to quantization noise above threshold of audibility, but a reduced bit-rate
- By adapting the attenuation factor and iterating the lossless coder a target bit rate can be approximated

Alternative Predictor Structure

- Closed-Loop Predictor instead of Open-Loop Predictor
- Advantage: only one quantizer
- Disadvantage: Quantization and Prediction not separated anymore (Irrelevance and Redundancy Reduction)

Conclusions

- Predictive coding can be used to obtain Ultra Low Delay audio coders
- Obtained delay: 6 ms (<10 ms)
- Subjective audio quality comparable to conventional high delay coder at same bitrate
- Price: higher complexity
- Can also be used to obtain high audio quality (unlike speech coders)

