RECITATION 5 NEURAL NETWORKS

10-601: Introduction to Machine Learning 03/01/2019

1 Neural Network Example

Figure 1: A One Hidden Layer Neural Network

Network Overview Consider the neural network with one hidden layer shown in Figure 1. The input layer consists of 2 features $\mathbf{x} = [x_1, x_2]^T$, the hidden layer has 3 nodes $\mathbf{z} = [z_1, z_2, z_3]^T$, and the output layer is a scalar distribution y. We also add a bias to the input, $x_0 = 1$ and the hidden layer $z_0 = 1$, both of which are fixed to 1.

 α is the matrix of weights from the inputs to the hidden layer and β is the matrix of weights from the hidden layer to the output layer. $\alpha_{j,i}$ represents the weight going to the node z_j in the hidden layer from the node x_i in the input layer (e.g. $\alpha_{1,2}$ is the weight from x_2 to z_1), and β is defined similarly. We will use a **tanh** activation function for the hidden layer and no activation for the output layer.

Network Details Equivalently, we define each of the following.

The input:

$$\mathbf{x} = [x_0, x_1, x_2]^T \tag{1}$$

Linear combination at the first (hidden) layer:

$$a_j = \sum_{i=0}^{2} \alpha_{j,i} * x_i, \ \forall j \in \{1, \dots, 3\}$$
 (2)

Activation at the first (hidden) layer:

$$z_j = tanh(a_j) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \ \forall j \in \{1, \dots, 3\}$$
 (3)

Linear combination at the second (output) layer:

$$\hat{y} = \sum_{i=0}^{3} \beta_j \times z_j,\tag{4}$$

Here we fold in the bias term $\alpha_{j,0}$ by thinking of $x_0 = 1$, and fold in β_0 by thinking of $z_0 = 1$.

Loss We will use quadratic loss, $\ell(\hat{y}, y)$:

$$\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2 \tag{5}$$

We initialize the network weights as:

$$\alpha = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

$$\boldsymbol{\beta} = \begin{bmatrix} \mathbf{0} & 1 & 2 & 2 \end{bmatrix}$$

For the following questions, we use y = 3.

- 1. Scalar Form: Given $x_1 = 1, x_2 = 2,$
 - Forward: What are the values of a_1 , ℓ ?

• Backward: What are the values of $\frac{d\ell}{d\alpha_{1,1}}$, $\frac{d\ell}{d\beta_1}$ Hint: $\frac{d\tanh(x)}{d\mathbf{x}} = 1 - \tanh(x)^2$

Table 1: tanh values

X	1	2	3	4	5	6	7	8	9
tanh(x)	0.76159	0.96403	0.99505	0.99933	0.99991	0.99999	0.99999	0.99999	0.99999

2. **Vector Form:** The vector form of forward computation is:

$$\mathbf{a} = \alpha \mathbf{x}$$

$$\mathbf{z} = tanh(\mathbf{a})$$

$$y = \beta \mathbf{z}$$
(6)

Given $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$,

• Forward: Find ℓ ?

• Backward: What are the values of $\nabla \alpha$, $\nabla \beta$?

Given
$$\mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
,

• Forward: Find ℓ ?

 \bullet Backward: What are the values of $\nabla \pmb{\alpha},\, \nabla \pmb{\beta}?$