To be determined

Cécile Della Valle

26 février 2019

1 Introduction

Soit $\tau > 0$, soit v une fonction continue, $v \in C^0([0,\tau])$ strictement négative. On souhaite démontrer l'existence d'une solution dans $C^0([0,\tau],\mathscr{Y})$ du problème de Cauchy par la théorie des semi-groupes :

$$\begin{cases} \frac{\partial y}{\partial t} + v(t) \frac{\partial y}{\partial x} - \epsilon \frac{\partial^2 y}{\partial x^2} = 0 & \forall (x, t) \in [0, L] \times [0, \tau] \\ y(x, 0) = y_0(x) & \forall x \in [0, L] \\ \frac{\partial y}{\partial t}|_{x=0} + v(t) \frac{\partial y}{\partial x}|_{x=0} = 0 & \forall t \in [0, \tau] \\ y(L, t) = 0 & \forall t \in [0, \tau] \end{cases}$$

$$(1)$$

Dans une première partie, on s'intéresse aux cas particuliers (v est une fonction constante négative, et ϵ est nul), pour progressivement revenir sur ces hypothèses.

On s'intéresse ensuite au problème d'observabilité lié à la mesure d'un moment d'ordre n d'une solution y:

$$\begin{array}{cccc} C_n & : & \mathscr{Y} & \to & \mathscr{Z} \\ y_0 & \mapsto & t \to \int_0^L x^n y(x,t) dx \end{array} \tag{2}$$

Par la suite on supposera n fixé et on notera simplement C l'observateur.

Dans une deuxième partie, on cherche démontrer l'existence et l'unicité de solutions de l'équation de Riccati associée à l'observateur C de moments de la solution. Ce problème mal posé sera régularisé par une méthode de Tikhonov.

Enfin la dernière partie portera sur l'étude de la résolution numérique du filtre de Kalman.

2 Existence de solution pour le problème direct

2.1. $v = \mathsf{cste}, \ \epsilon = 0$

On suppose dans un premier temps que v est une constante, et on suppose, sans perte de généralité, que cette constante est négative v<0. De plus on suppose que la constante ϵ est nulle.

L'équation (1) devient :

$$\begin{cases} \frac{\partial y}{\partial t} + v \frac{\partial y}{\partial x} = 0 & \forall (x, t) \in [0, L] \times [0, \tau] \\ y(x, 0) = y_0(x) & \forall x \in [0, L] \\ y(L, t) = 0 & \forall t \in [0, \tau] \end{cases}$$
(3)

Soit $\mathscr{Y}=L^2([0,L])$ l'espace de Banach et l'opérateur A sur D(A) tel que :

$$\forall y \in D(A), \ Ay = -v\partial_x y \tag{4}$$

$$D(A) = \{ y \mid \partial_x y \in L^2([0, L]), \ y(L) = 0 | \} = H^1_R([0, L])$$

Proposition 2.1

L'opérateur $A:D(A)\to \mathscr{Y}$ défini par (4) est générateur d'un semi-groupe C_0 de contraction dans \mathscr{Y} .

- ightharpoonup On souhaite appliquer le théorème de Lumer-Phillips, il nous faut donc démontrer que A possède les trois propriétés suivantes :
 - (i) A est un opérateur fermé et $\overline{D(A)}=\mathscr{Y}$;
 - (ii) A est dissipatif;
 - (iii) il existe λ_0 tel que $\lambda_0 A : D(A) \to \mathscr{Y}$ est surjectif.

(i)

L'opérateur A est défini sur l'ensemble D(A) des fonctions de H^1 sur [0, L] qui s'annulent en L. Sur cet ensemble, l'opérateur dérivation est fermée, densément défini. (REF??)

(ii) Montrons que A est dissipatif. Soit $y \in D(A) \subset \mathcal{Y}$, calculons la quantité :

$$\begin{split} \langle Ay, y \rangle_{\mathscr{Y}} &= \langle v \partial_x y, y \rangle_{\mathscr{Y}} \\ &= v \int_0^L y(z) \partial_x y(z) d(z) \\ &= v [y(z)^2]_{z=0}^L - v \int_0^\infty y(z) \partial_x y(z) d(z) \end{split}$$

Soit:

$$\langle Ay, y \rangle_{\mathscr{Y}} = -\frac{1}{2}vy(0)^2 \le 0$$

Donc $\forall y \in \mathscr{Y}, \langle Ay, y \rangle_{\mathscr{Y}} \leq 0.$

(iii)

Soit $y_1 \in \mathscr{Y}$ et $\lambda > 0$.

On cherche une solution y tel que $(\lambda - A)y = y_1$.

Alors on a de façon équivalente que y est solution de :

$$\begin{cases} \lambda y - vy' = y_1 \\ y(L) = 0 \end{cases}$$

donc, pour tout $y_1 \in \mathcal{Y}$, cette équation possède une unique solution donnée par la formule de Duhamel :

$$y(x) = \int_x^L e^{\lambda/v(x-x')} y_1(x') dx'$$

(On peut par ailleurs vérifier que $||y||_{\mathscr{Y}} \leq 1/\lambda ||y_1||_{\mathscr{Y}}$).

Donc d'après (i), (ii) et (iii), on peut appliquer le théorème de Lumer-Phillips, et A est le générateur infinitésimal d'un semi-group C_0 . On a donc l'existence d'une solution de (3) dans $C^0([0,\tau],L^2([0,L])$.

Dans ce cas simple, on peut donner une formule explicite de l'opérateur de semi-group C_0 :

Lemme 2.2

Pour tout $t \in [0,\tau]$, le semi-groupe C_0 généré par A l'opérateur infinitésimal associé à l'équation (3) est la translation :

$$\forall y \in D(A(t)), \ S(s)y = y(x - vs)\chi_{0 \le x - vs \le L}$$

Théorème 2.3 (Existence et unicité)

Soit soit $\tau > 0$ et v < 0, soit $\mathscr Y$ un espace de Banach, et le de générateur infinitésimal du semi-groupe C_0 sur $\mathscr Y$ défini par (4). Alors le problème de Cauchy (3) a une unique solution dans $C^0([0,tau],\mathscr Y)$ qui s'écrit :

$$\forall s \in [0, \tau] \ y(s) = S(s)y_0$$

où S est le semi-groupe d'évolution donné par lemme 2.2.

2.2. $v \in C^0$, $\epsilon = 0$

On suppose cette fois que $v \in C^0$ est une fonction donnée, et de plus que v ne s'annule pas. Sans perdre de généralité on suppose que $\forall t \in [0, \tau]$ on a v(t) < 0.

$$\begin{cases} \frac{\partial y}{\partial t} + v(t) \frac{\partial y}{\partial x} = 0 & \forall (x, t) \in [0, L] \times [0, \tau] \\ y(x, 0) = y_0(x) & \forall x \in [0, L] \\ y(L, 0) = 0 & \forall t \in [0, \tau] \end{cases}$$
(5)

Soit $\mathscr{Y}=L^2([0,\infty))$ l'espace de Banach et l'opérateur d'évolution A(t) définit sur D(A(t)) tel que :

$$\forall y \in D(A(t)), \ A(t)y = -v(t)\partial_x y \tag{6}$$

Avec

$$\forall t \in [0, \tau], \ D(A(t)) = \{ y \mid \partial_x y \in L^2([0, L]), \ y(L) = 0 | \} = H_R^1$$

Proposition 2.4

Soit \mathscr{Y} un espace de Banach, pour t > 0, l'opérateur A(t) est le générateur infinitésimal de semi-groupe C_0 , noté S_t .

ightharpoonup Pour t > 0 fixé, on est ramené au cas de la proposition 2.1.

Proposition 2.5

Soit soit $\tau > 0$, soit $v \in C^0([0,\tau])$ telle que $\forall t \in [0,\tau]$ on a v(t) < 0. Soit $\mathscr Y$ un espace de Banach, la famille $(A(t))_{t \in [0,\tau]}$ définie par (6) de générateurs infinitésimals de semi-groupes C_0 sur $\mathscr Y$ est stable.

ightharpoonup Rappelons les conditions nécessaires pour que $(A(t))_{t\in[0,\tau]}$ soit une famille stable : il existe M>1 et $\omega>0$ tels que pout tout $t\in[0,\tau]$

$$\begin{cases} (i) \quad]\omega; +\infty [\subset \rho(A(t)) \\ (ii) \quad \| \prod_{j=1}^k R(\lambda : A(t_j)) \| \le M(\lambda - \omega)^{-k} \quad \forall \ t_0 < .. < t_j < .. < t_k \end{cases}$$

La condition (i) est immédiatement vérifée. En effet, puisque pour tout t>0 chaque générateur infinitésimal A(t) vérifie $\mathbb{R}^{+*}\subset \rho(A(t))$ (en particulier, dans notre cas puisque pour tout t>0, pour tout $\lambda>0$, on a que $\lambda-A$ est un opérateur surjectif, donc $\mathbb{R}\subset \rho(A(t))$).

Pour la condition (ii) calculons explicitement la norme d'un opérateur $R(\lambda : A(t_i))$:

$$||R(\lambda : A(t_{j}))y_{1}||^{2} = \int_{0}^{L} |\int_{x}^{L} e^{\lambda/v(t_{j})(x-x')}y_{1}(x')dx'|^{2}dx$$

$$\leq \int_{0}^{L} (\int_{x}^{L} e^{2\lambda/v(t_{j})(x-x')}dx')(\int_{x}^{L} y_{1}(x')^{2}dx')dx$$

$$\leq ||y_{1}||^{2} \int_{0}^{L} (\int_{x}^{L} e^{2\lambda/v(t_{j})(x-x')}dx')dx$$

$$\leq ||y_{1}||^{2} \int_{0}^{L} \frac{-v(t_{j})}{2\lambda} [e^{2\lambda/v(t_{j})(x-x')}]_{x}^{L}dx$$

$$\leq ||y_{1}||^{2} \frac{-v(t_{j})}{2\lambda} \int_{0}^{L} (e^{2\lambda/v(t_{j})(x-L)} - e^{2\lambda/v(t_{j})x})dx$$

$$\leq ||y_{1}||^{2} |\frac{v(t_{j})}{2\lambda}|^{2} (2e^{2\lambda/v(t_{j})L} - 1)$$

Sachant que v est une fonction continue donnée, on pose $V = \|v\|_{\infty}$ et on choisit les constantes de stabilité:

$$\begin{cases} M = 1\\ \omega = \frac{2}{V}e^{-\lambda/v(t_j)L} \end{cases}$$
 (7)

Alors:

$$||R(\lambda : A(t_j))|| \le \frac{V}{2\lambda} e^{\lambda/v(t_j)L}$$

$$\le \frac{V e^{\lambda/v(t_j)L}\omega}{2\lambda\omega}$$

$$\le M \frac{1}{|\lambda - \omega|}$$

Donc pour tout j > 0 on a l'inégalité :

$$||R(\lambda : A(t_j))||^2 \le M \frac{1}{|\lambda - \omega|}$$
(8)

Ce qui donne l'inégalité (ii).

Proposition 2.6

Soit soit $\tau > 0$, soit $v \in C^0([0,\tau])$ telle que $\forall t \in [0,\tau]$ on a v(t) < 0. Soit $\mathscr Y$ un espace de Banach, la famille $(A(t))_{t\in[0,\tau]}$ définie par (6) de générateurs infinitésimals de semi-groupes C_0 sur \mathscr{Y} . Il existe une unique solution U(t,s), $0 \le s \le t \le \tau$, qui satisfait : $- \|U(t,s)\| \le Me^{\omega(t-s)} \text{ pour tout } 0 \le s \le t \le \tau; \\ - \partial_t^+ U(t,s)v|_{t=s} = A(sv) \text{ pour } v \in \mathscr{Y}, 0 \le s \le \tau; \\ - \partial_s U(t,s)v = -U(t,s)A(s)v \text{ pour } v \in \mathscr{Y}, 0 \le s \le t \le \tau.$

- Don souhaite appliquer le théorème du chap.5 de Pazy. On rappelle les hypothèses que doit vérifier la famille $(A(t))_{t\in[0,\tau]}$ pour appliquer le théorème 3.1 page 135 livre de Pazy [1].
 - (i) (A(t)) est une famille d'opérateurs stables pour les constantes M et ω ;
 - (ii) \mathcal{H} est A(t)-admissible pour $t \in [0, \tau]$ et la famille $(\hat{A}(t))$ de A(t) dans \mathcal{H} est une famille stable de \mathscr{H} pour les constantes \tilde{M} et $\tilde{\omega}$;
 - $--(iii) \text{ Pour tout } t \in [0,\tau], \mathscr{H} \subset D(A(t)), \, A(t) \text{ est un opérateur borné de } \mathscr{H} \text{ dans } \mathscr{Y} \text{ et } t \to A(t)$ est continue pour la norme des opéraeurs bornés $\|\|_{\mathcal{H} \to \mathcal{Y}}$.

La condition (i) a été démontrée par la proposition 2.5.

Démontrons maintenant la condition (ii). On pose :

$$\mathcal{H} = \{ y \mid y \in H^1([0, L]), \ y(L) = 0 \}$$

et la norme associée à cet espace $\|\cdot\|_{\mathscr{H}}$ est définie de la façon suivante :

$$\forall y \in \mathcal{H}, \ \|y\|_{\mathcal{H}} = \|y\|_{\mathscr{Y}} + \|y'\|_{\mathscr{Y}}$$

Et de plus on définit la norme des applications bornées de ${\mathscr H}$ dans ${\mathscr Y}$:

$$\forall A \in B(\mathcal{H}, \mathcal{Y}), \ \|A\|_{\mathcal{H} \to \mathcal{Y}} = \sup_{y \in \mathcal{H}} \frac{\|Ay\|_{\mathcal{H}}}{\|y\|_{\mathcal{H}}}$$

Alors \mathscr{H} est fermé dans \mathscr{Y} pour la norme $\|\cdot\|_{\mathscr{H}}$. On a de plus une formule explicite pour tout $t \in [0, \tau]$:

Lemme 2.7

Pour tout $t \in [0, \tau]$, le semi-groupe C_0 généré par $(A(t) = -v(t)\partial_x)_{t \in [0, \tau]}$ avec $v \in C^0([0, \tau])$ est la translation :

$$\forall y \in D(A(t)), \ U_t(s)y = y(x - v(t)s)\chi_{0 \le x - v(t)s \le L}$$

Donc \mathscr{H} sous-espace de \mathscr{Y} est A(t)-admissible puisque \mathscr{H} est un espace invariant par la translation U_t et la restrinction de U_t à \mathscr{H} est un semi-groupe C^0 de \mathscr{H} .

Enfin, chaque opérateur A(t) est borné sur \mathscr{H} ce qui achève la démonstration puisque (iii) est également vérifiée.

Théorème 2.8

Soit soit $\tau > 0$, soit $v \in C^0([0,\tau])$ telle que $\forall t \in [0,\tau]$ on a v(t) < 0. Soit $\mathscr Y$ un espace de Banach, la famille $(A(t))_{t \in [0,\tau]}$ définie par (6) de générateurs infinitésimals de semi-groupes C_0 sur $\mathscr Y$. Alors le problème de Cauchy (5) a une unique solution dans $C^0([0,tau],\mathscr Y)$ qui s'écrit :

$$\forall t \in [0, \tau] \ y(t) = U(t, 0)y_0$$

où U est le semi-groupe d'évolution donné par 2.6.

2.3. v =cste, $\epsilon \neq 0$

Supposons v= cste et v<0, supposons $\epsilon>0$. On s'intéresse à l'équation :

$$\begin{cases} \frac{\partial y}{\partial t} + v \frac{\partial y}{\partial x} - \epsilon \frac{\partial^2 y}{\partial x^2} = 0 & \forall (x, t) \in [0, L] \times [0, \tau] \\ y(x, 0) = y_0(x) & \forall x \in [0, L] \\ \frac{\partial y}{\partial t}|_{x=0} + v \frac{\partial y}{\partial x}|_{x=0} = 0 & \forall t \in [0, \tau] \\ y(L, t) = 0 & \forall t \in [0, \tau] \end{cases}$$

$$(9)$$

Puisque v < 0, pour faciliter la lecture, on pose b = -v > 0.

On remarque que la principale difficulté par rapport à ce qui a été développé précédemment est la condition au bord en x=0. Pour gérer cette condition, on introduit l'espace :

$$D(A(t)) = \{ y \mid y = (u, m) \in H^1([0, L]) \times \mathbb{R}, \ u(0) = m, \ u(L) = 0 \}$$

Et $\mathscr{Y}=L^2(0,L)\times\mathbb{R}$ avec la normne associée (on rappelle que $\forall t>0,\ b=|v|$):

$$||y||_{\mathscr{Y}}^2 = \int_0^L u^2 + \frac{\epsilon}{b} m^2$$

On cherche à définir l'opérateur A tel que :

$$\forall y \in D(A) \subset \mathscr{Y}, \quad \left(\begin{array}{c} \dot{u} \\ \dot{m} \end{array} \right) = A \left(\begin{array}{c} u \\ m \end{array} \right) = \left(\begin{array}{c} b\partial_x u + \epsilon \partial_{xx} u \\ b\partial_x u(0) \end{array} \right)$$

Soit a une forme bilinéaire telle que :

$$\forall (y_1, y_2) \in D(A), \ a(y_1, y_2) \equiv -\langle Ay_1, y_2 \rangle_{\mathscr{Y}}$$

Il vient donc pour tout $(y_1, y_2) \in \mathscr{Y}$:

$$\begin{split} \langle Ay_1,y_2\rangle_{\mathscr{Y}} &= \langle b\partial_x u_1 + \epsilon\partial_{xx}u_1,u_2\rangle + \frac{\epsilon}{b}\langle b\partial_x u_1(0),m_2\rangle \\ &= \int_0^L b(\partial_x u_1)u_2 + \int_0^L \epsilon(\partial_{xx}u_1)u_2 + \frac{\epsilon}{b}b\partial_x u_1(0)m_2 \\ &= \int_0^L b(\partial_x u_1)u_2 + [\epsilon(\partial_x u_1)u_2]_0^L - \int_0^L \partial_x u_1\partial_x u_2 + \epsilon\partial_x u_1(0)m_2 \\ &= \int_0^L b(\partial_x u_1)u_2 - \epsilon m_2\partial_x u_1(0) - \int_0^L \epsilon\partial_x u_1\partial_x u_2 + \epsilon\partial_x u_1(0)m_2 \\ &= \int_0^L b(\partial_x u_1)u_2 - \int_0^L \epsilon\partial_x u_1\partial_x u_2 \end{split}$$

Proposition 2.9

L'opérateur $A:D(A)\to \mathscr{Y}$ défini par :

$$\forall (y_1, y_2) \in D(A), \ \langle Ay_1, y_2 \rangle_{\mathscr{Y}} = \int_0^L b(\partial_x u_1) u_2 - \int_0^L \epsilon \partial_x u_1 \partial_x u_2 \tag{10}$$

est générateur d'un semi-groupe C_0 de contraction dans \mathcal{Y} .

- ▷ On souhaite appliquer le théorème de Lumer-Philipps, on reprend les étapes de la preuve de la propriété 2.1.
 - (i) L'opérateur A est défini sur l'ensemble D(A) des fonctions $H^1[0,L] \cap \mathscr{Y}$.
 - (ii) Montrons que A est dissipatif. Soit $y \in \mathcal{Y}$, calculons la quantité :

$$\langle Ay, y \rangle_{\mathscr{Y}} = \int_0^L b(\partial_x u)u - \epsilon \int_0^L (\partial_x u)^2$$

$$= \int_0^L \frac{b}{2} \partial_x u^2 - \epsilon \int_0^L (\partial_x u)^2$$

$$= \frac{b}{2} [u^2]_0^L - \epsilon \int_0^L (\partial_x u)^2$$

$$= -\frac{b}{2} u(0)^2 - \int_0^L \epsilon (\partial_x u)^2$$

Soit:

$$\langle Ay, y \rangle_{\mathscr{Y}} = -\frac{b}{2}m^2 - \epsilon \int_0^L (\partial_x u)^2$$

 $\mathrm{Donc}\ \forall\ y\in\mathscr{Y}, \langle Ay,y\rangle_{\mathscr{Y}}\leq 0.$

(iii)

Soit $y_1 = (u_1, m_1) \in \mathscr{Y}$ et $\lambda > 0$.

On cherche une solution y tel que $(\lambda - A)y = y_1$.

Alors pour tout $y_2 = (u_2, m_2)$, y est solution de :

$$\langle \lambda y - Ay, y_2 \rangle_{\mathscr{Y}} = \langle y_1, y_2 \rangle_{\mathscr{Y}} \tag{11}$$

Soit:

$$\lambda \left(\int_0^L u u_2 + \frac{\epsilon}{b} m m_2 \right) - \int_0^L b(\partial_x u) u_2 + \int_0^L \epsilon \partial_x u \partial_x u_2 = \int_0^L u_1 u_2 + \frac{\epsilon}{b} m_1 m_2$$

On choisit $u_2 \in H^1_0([0,L])$, donc $m_2=0$, et on cherche u solution du problème variationnel :

$$\forall u_2 \in H_0^1([0,L]), \ \lambda \int_0^L u u_2 - \int_0^L b(\partial_x u) u_2 + \int_0^L \epsilon \partial_x u \partial_x u_2 = \int_0^L u_1 u_2$$

On montre que

$$\tilde{a}(u, u_2) = \lambda \int_0^L u u_2 - \int_0^L b(\partial_x u) u_2 + \int_0^L \epsilon \partial_x u \partial_x u_2$$

est bilinéaire, continue, coercive sur H_0^1 . Et $L(u_2)=\int_0^L u_1u_2$ est une forme linéaire continue sur H_0^1 . Donc d'après le théorème de Lax-Milgram il existe une unique fonction u_0 de $H_0^1(0,L)$ solution.

Alors pour $m_2 \neq 0$, il vient par ailleurs :

$$\lambda \frac{\epsilon}{b} m m_2 = \frac{\epsilon}{b} m_1 m_2$$

Ce qui définit un unique m pour $\lambda \neq 0$.

On pose alors $y=(u_0+m_1/\lambda,m_1/\lambda)$ qui nous donne l'unique élément de $\mathscr Y$ tel que (11) soit vérifiée. donc, pour tout $y_1\in\mathscr Y$, cette équation possède une unique solution

Donc d'après (i),(ii) et (ii), on peut appliquer le théorème de Lumer-Phillips, et A est le générateur infinitésimal d'un semi-group C_0 . On a donc l'existence d'une solution de (9) dans $L^2([0,+\infty)\times[0,\tau])$.

Remarque 2.10. Le caractère dissipatif peut être démontré par une égalité d'énergie. En effet, on multiplie par y la solution forte de l'équation (1) et on intègre entre 0 et L, et il vient :

$$\int_{0}^{L} y \partial_{t} y + \int_{0}^{L} -by \partial_{x} y + \int_{0}^{L} -\epsilon \partial_{xx} y = 0$$
 (12)

Or,

$$\int_0^L -by\partial_x y = \frac{-b}{2} \int_0^L \partial_x y^2$$
$$= \frac{b}{2} y(0,\cdot)^2$$

Et,

$$\int_0^L -\epsilon \partial_{xx} y = -\epsilon [y \partial_x y]_0^L + \epsilon \int_0^L (\partial_x y)^2$$

$$= +\epsilon y(0, \cdot) \partial_x y|_{x=0} + \epsilon \int_0^L (\partial_x y)^2$$

$$= (\epsilon / -b) y(0, \cdot) \partial_t y|_{x=0} + \epsilon \int_0^L (\partial_x y)^2$$

$$= (\epsilon / 2b) \frac{\mathrm{d}}{\mathrm{d}t} y(0, \cdot)^2 + \epsilon \int_0^L (\partial_x y)^2$$

Alors l'équation (12) devient :

$$\int_0^L \frac{1}{2} \partial_t y^2 + \frac{b}{2} y(0, \cdot)^2 + (\epsilon/2b) \frac{\mathrm{d}}{\mathrm{d}t} y(0, \cdot)^2 + \epsilon \int_0^L (\partial_x y)^2 = 0$$

Donc:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\int_0^L y^2 + (\epsilon/b)y(0,\cdot)^2 \right] = -2\epsilon \int_0^L (\partial_x y)^2 - by(0,\cdot)^2 \tag{13}$$

On constate donc que la solution y de (9) est également solution d'une équation de dissipation d'énergie.

Théorème 2.11 (Existence et unicité)

Soit soit $\tau > 0$ et v < 0, soit $\mathscr Y$ un espace de Banach, et le de générateur infinitésimal du semi-groupe C_0 sur $\mathscr Y$ défini par (10). Alors le problème de Cauchy (9) a une unique solution dans $C^0([0,tau],\mathscr Y)$ qui s'écrit :

$$\forall s \in [0, \tau] \ y(s) = S(s)y_0$$

où S est le semi-groupe d'évolution donné par 2.2.

2.4. $v \in C^0$, $\epsilon \neq 0$

Supposons v une fonction connue, négative strictement (ce qui correspond pqr exemple au cas dans Lifschitz-Slyozov où 0 < b - M), et supposons $\epsilon > 0$.

On suppose que v est bornée, et pout tout $t\in[0,\tau],$ $b\leq|v(t)|\leq v_{\infty}$ On s'intéresse à l'équation :

$$\begin{cases} \frac{\partial y}{\partial t} + v(t) \frac{\partial y}{\partial x} - \epsilon \frac{\partial^2 y}{\partial x^2} = 0 & \forall (x, t) \in [0, L] \times [0, \tau] \\ y(x, 0) = y_0(x) & \forall x \in [0, L] \\ \frac{\partial y}{\partial t}|_{x=0} + v(t) \frac{\partial y}{\partial x}|_{x=0} = 0 & \forall t \in [0, \tau] \\ y(L, t) = 0 & \forall t \in [0, \tau] \end{cases}$$
(14)

Puisque v<0, pour faciliter la lecture, on pose b(t)=-v(t)>0. Par analogie avec ce qui a été fait dans la section précédente, on pose :

$$D(A(t)) = \left\{ y \mid y = (u, m) \in H^1([0, L]) \times \mathbb{R}, \ u(0) = \sqrt{b(t)}m, \ u(L) = 0 \right\}$$

Et $\mathscr{Y} = L^2(0,L) \times \mathbb{R}$ avec la normne associée (on rappelle que $\forall t > 0, \ b(t) = |v(t)|$):

$$||y||_{\mathscr{Y}}^2 = \int_0^L u^2 + \epsilon m^2$$

On cherche à définir l'opérateur A(t) tel que :

$$\forall y \in D(A(t)) \subset \mathscr{Y}, \quad \begin{pmatrix} \dot{u} \\ \dot{m} \end{pmatrix} = A(t) \begin{pmatrix} u \\ m \end{pmatrix} = \begin{pmatrix} b(t)\partial_x u + \epsilon \partial_{xx} u \\ \sqrt{b(t)}\partial_x u(0) - \frac{\dot{b}(t)}{b(t)} m \end{pmatrix}$$

Soit a_t une forme bilinéaire telle que :

$$\forall (y_1, y_2) \in D(A), \ a(t, y_1, y_2) \equiv -\langle A(t)y_1, y_2 \rangle_{\mathscr{Y}}$$

Il vient donc pour tout $(y_1, y_2) \in \mathscr{Y}$:

$$\begin{split} \langle A(t)y_1,y_2\rangle_{\mathscr{Y}} &= \langle b(t)\partial_x u_1 + \epsilon \partial_{xx} u_1, u_2\rangle + \epsilon \langle \sqrt{b(t)}\partial_x u_1(0) - \frac{\dot{b}(t)}{b(t)}m_1, m_2\rangle \\ &= \int_0^L b(t)(\partial_x u_1)u_2 + \int_0^L \epsilon(\partial_{xx} u_1)u_2 + \epsilon \sqrt{b(t)}\partial_x u_1(0)m_2 - \epsilon \frac{\dot{b}(t)}{b(t)}m_1m_2 \\ &= \int_0^L b(t)(\partial_x u_1)u_2 + [\epsilon(\partial_x u_1)u_2]_0^L - \epsilon \int_0^L \partial_x u_1\partial_x u_2 + \epsilon [\sqrt{b(t)}m_2]\partial_x u_1(0) - \epsilon \frac{\dot{b}(t)}{b(t)}m_1m_2 \\ &= \int_0^L b(t)(\partial_x u_1)u_2 - \epsilon \partial_x u_1(0)u_2(0) - \epsilon \int_0^L \partial_x u_1\partial_x u_2 + \epsilon \partial_x u_1(0)u_2(0) - \epsilon \frac{\dot{b}(t)}{b(t)}m_1m_2 \\ &= \int_0^L b(t)(\partial_x u_1)u_2 - \epsilon \int_0^L \partial_x u_1\partial_x u_2 - \epsilon \frac{\dot{b}(t)}{b(t)}m_1m_2 \end{split}$$

Lemme 2.12

Soit $b \in C^1([0,\tau])$, tel que $\dot(b) > 0$. On définit la famille, $a(t,\cdot,\cdot):D(A(t)) \times D(A(t)) \to \mathbb{R}$ par :

$$\forall (y_1, y_2) \in D(A(t)) \times D(A(t))$$

$$a(t, y_1, y_2) = \epsilon \int_0^L \partial_x u_1 \partial_x u_2 - \int_0^L b(t)(\partial_x u_1) u_2 + \epsilon \frac{\dot{b}(t)}{b(t)} m_1 m_2$$
 (15)

Alors, pour tout t > 0, la forme bilinéaire $a(t, \cdot, \cdot)$ est coercive sur D(A(t)).

ightharpoonup Soient y=(u,m) dans $D(A(t))\subset \mathscr{Y}$, calculons la quantité :

$$\begin{split} a(t,y,y) &= \int_0^L \epsilon(\partial_x u)^2 - \int_0^L b(t)(\partial_x u)u + \epsilon \frac{\dot{b}(t)}{b(t)} m^2 \\ &= \int_0^L \epsilon(\partial_x u)^2 - \int_0^L b(t) \frac{1}{2} (\partial_x u^2) + \epsilon \frac{\dot{b}(t)}{b(t)} m^2 \\ &= \int_0^L \epsilon(\partial_x u)^2 - b(t) \frac{1}{2} [u^2]_0^L + \epsilon \frac{\dot{b}(t)}{b(t)} m^2 \\ &= \int_0^L \epsilon(\partial_x u)^2 + \sqrt{b(t)} \frac{1}{2} m^2 + \epsilon \frac{\dot{b}(t)}{b(t)} m^2 \end{split}$$

On obtient donc pour $\dot{b} > 0$ qu'il existe une constante $C_0 > 0$ telle que :

$$|a(t,y,y)| \ge C_0 \left(\int_0^L (\partial_x u)^2 + \epsilon m^2 \right)$$

Or, $u \in H^1(0,L)$ et par inégalité de Poincarré puisque u s'annule sur le pord x=L Alors il existe une constante C_1 telle que :

$$\int_{0}^{L} u(x)^{2} \le C_{1} \left(\int_{0}^{L} (\partial_{x} u)^{2} + u(0)^{2} \right)$$

Et donc a est bien coercive :

$$|a(t, y, y)| \ge C_2 ||y||_{\mathscr{Y}}$$

Proposition 2.13

Soit $b \in C^1([0,\tau])$, tel que $\dot(b)>0$. La famille d'opérateurs définie par :

$$\langle A(t)y_1, y_2 \rangle_{\mathscr{Y}} = \epsilon \int_0^L \partial_x u_1 \partial_x u_2 - \int_0^L b(t)(\partial_x u_1) u_2 + \epsilon \frac{\dot{b}(t)}{b(t)} m_1 m_2$$
 (16)

définie sur

$$D(A(t))\left\{y \mid y = (u, m) \in H^1([0, L]) \times \mathbb{R}, \ u(0) = \sqrt{b(t)}m, \ u(L) = 0\right\}$$

est une famille de générateurs infinitésimal d'un semi-groupe C_0 de contraction dans $\mathcal Y$.

3 Existence Riccati et estimateur de Kalman

3.1. v =cste, $\epsilon \neq 0$

Approche variationnelle, on souhaite minimiser la fonctionnelle :

$$\min_{\xi} = J(\xi, t) = \frac{\alpha}{2} \|\xi\|_{\mathscr{Y}} + \frac{\gamma}{2} \int_{0}^{t} (\|z(s) - C(s)y_{|\xi}\|_{\mathscr{Z}}) ds \tag{17}$$

On définit l'observateur de Kalman sur pour tout temps sur l'intervalle d'observation $[0, \tau]$ comme l'optimum de la fonctionnelle (17).

$$\forall t > 0, \ t \in (0, \tau], \ \hat{y}(t) = \bar{y}_{|t}(t)$$

On cherche l'équation vérifiée par \hat{y} et P et $\bar{q}_{|t}$ tel que \hat{y} soit l'estimateur associé au modèle et aux mesures et qu'on ait la relation pour 0 < s < t, $\hat{y}(s) + P(s)\bar{q}_{|t} = \bar{y}_{|t}(s)$

Soit q l'adjoint au Lagrangien (qui vérifie la condition d'optimalité du point selle) :

$$\mathscr{L}(y,q) = J(\xi,t) + \int_0^t \langle \dot{y} - Ay, q \rangle_{\mathscr{Y}}$$

Alors au point optimal q, pour tout δy de \mathscr{Y} :

$$\begin{split} \langle \partial_y \mathcal{L}, \delta y \rangle_{\mathscr{Y}} &= 0 \\ &= \int_0^t \langle z(s) - Cy(s), C\delta y(s) \rangle_{\mathscr{Z}} ds - \int_0^t \langle \dot{q}(s), \delta y(s) \rangle_{\mathscr{Y}} ds - \int_0^t \langle A\delta y(s), q(s) \rangle_{\mathscr{Y}} ds \\ &= \int_0^t \langle C^*(z(s) - Cy(s)) - \dot{q}(s) - A^*q(s), \delta y(s) \rangle_{\mathscr{Y}} ds \end{split}$$

Soit l'équation adjointe associée au Lagrangien pour la fonctionnelle $J(\xi,t)$:

$$\begin{cases} \dot{q}_{\xi,t} + A^* q_{\xi,t} = -C^* (z - C y_{\xi}) \\ q_{\xi,t}(t) = 0 \end{cases}$$
 (18)

Remarque 3.1. Le changement de produit vectoriel, de norme, n'induit pas de différence dans l'équation vérifiée par l'adjoint au sens du multiplicateur de Lagrande. De même, l'équation de Riccati n'est pas modifiée.

Dynamique

$$\begin{cases} \frac{\mathrm{d}\hat{y}}{\mathrm{d}t} = A\hat{y}(t) + P(t)C^*(z(t) - C(t)\hat{y}(t)) \\ y(0) = y_{\diamond} \end{cases}$$
 (19)

<u>Riccati</u>

$$\begin{cases} \frac{\mathrm{d}P}{\mathrm{d}t} = P(t)A^* + AP(t) - P(t)C^*CP(t) \\ P(0) = P_{\diamond} \end{cases}$$
 (20)

On cherche une expression explicite pour l'adjoint de l'opérateur A sur $\mathscr Y$ tel que :

$$\begin{cases}
D(A) = \left\{ y \mid y = (u, m) \in H^1([0, L]) \times \mathbb{R}, \ u(0) = m, \ u(L) = 0 \right\} \\
\forall y \in D(A^*), \quad \begin{pmatrix} \dot{u} \\ \dot{m} \end{pmatrix} = A \begin{pmatrix} u \\ m \end{pmatrix} = \begin{pmatrix} b\partial_x u + \epsilon \partial_{xx} u \\ b\partial_x u(0) \end{pmatrix}
\end{cases}$$
(21)

Donc pour tout y_1 et y_2 de $\mathcal{D}(A)$ on calcule la quantité suivante :

$$\begin{split} \langle Ay_1,y_2\rangle_{\mathscr{Y}} &= \int_0^L b(\partial_x u_1)u_2 - \int_0^L \epsilon(\partial_x u_1)(\partial_x u_2) \\ &= [bu_1u_2]_0^L - \int_0^L bu_1(\partial_x u_2) - [\epsilon u_1(\partial_x u_2)]_0^L + \int_0^L \epsilon u_1(\partial_x x u_2) \\ &= -bm_1m_2 - \int_0^L bu_1(\partial_x u_2) + \epsilon m_1\partial_x u_2(0) + \int_0^L \epsilon u_1(\partial_x x u_2) \\ &= \int_0^L u_1[-b\partial_x u_2 + \epsilon\partial_x x u_2] + \frac{\epsilon}{b}m_1[-\frac{b^2}{\epsilon}m_2 + b\partial_x u_2(0)] \\ &= \langle y_1, A^*y_2 \rangle_{\mathscr{Y}} \end{split}$$

On en déduit l'adjoint A^* sur ${\mathscr Y}$ associé à la norme $\|\cdot\|_{\mathscr Y}$:

$$\begin{cases}
D(A^*) = \left\{ y \mid y = (u, m) \in H^1([0, L]) \times \mathbb{R}, \ u(0) = m, \ u(L) = 0 \right\} \\
\forall y \in D(A^*), \ A^* \begin{pmatrix} u \\ m \end{pmatrix} = \begin{pmatrix} -b\partial_x u + \epsilon \partial_x x u \\ -\frac{b^2}{\epsilon} m + b\partial_x u(0) \end{pmatrix}
\end{cases}$$
(22)

On cherche une expression explicite pour l'adjoint C^* de l'opérateur de mesure C. Donc pour tout y_1 de $\mathscr Y$ et z_2 de $\mathscr Z$, on calcule la quantité suivante :

$$\langle Cy_1, z_2 \rangle_{\mathscr{Z}} = \int_0^L z_2 x^n u_1(x) dx$$
$$= \int_0^L (x^n z_2) u_1(x) dx + \frac{\epsilon}{b} m_1 \times 0$$
$$= \langle y_1, (x^n z_2, 0) \rangle_{\mathscr{Y}}$$

$$\begin{cases} D(C^*) = \mathcal{Z} \\ \forall z \in D(C^*), \quad C^*z = \begin{pmatrix} x^n z \\ 0 \end{pmatrix} \end{cases}$$
 (23)

3.1.1 Opérateur à noyau

4 Discrétisation

5 Analyse numérique

Références

[1] A. Pazy. <u>Semigroups of Linear Operators and Applications to Partial Differential Equations</u>. Applied Mathematical Sciences 44 - Springer Verlag.