NASA TECHNICAL MEMORANDUM

NASA TM X-3052

PERFORMANCE OF A 1.15-PRESSURE-RATIO AXIAL-FLOW FAN STAGE WITH A BLADE TIP SOLIDITY OF 0.5

by Walter M. Osborn and Ronald J. Steinke Lewis Research Center Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . AUGUST 1974

1. Report No. NASA TM X-3052	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Schole PERFORMANCE OF A 1. 15-PI FAN STAGE WITH A BLADE T		<u>. </u>	5. Report Date August 1974 6. Performing Organization	ation Code
7. Author(s) Walter M. Osborn and Ronald S	J. Steinke		8. Performing Organiza E-7433 10. Work Unit No.	stion Report No.
Performing Organization Name and Address Lewis Research Center			501-24	No.
National Aeronautics and Space Cleveland, Ohio 44135	Administration	<u> </u>	13. Type of Report an	d Period Covered
12. Sponsoring Agency Name and Address			Technical Me	
National Aeronautics and Space Washington, D.C. 20546	Administration		14. Sponsoring Agency	Code
15. Supplementary Notes				
The overall and blade-element speed fan stage is presented ov 120 percent of design stred. As at a weight flow of 30, 27 kilogr pressure ratio of 1, 111. The presign energy input into the rot blade elements resulted due to	er the stable open At design speed a cams per second (pressure ratio wa cor was not achiev	rating range at rota stage peak efficiend 177.80 (kg/sec)/m ² s less than design p red. A mismatch of	tive speeds from by of 0.836 was of control of annulus area bressure ratio, a the rotor and s	n 90 to obtained n) and a and the
:7 Key Words (Suggested by Author(s)) Turbomachinery	· · · · · · · · · · · · · · · · · · ·	18 Distribution Statement Unclassified - 1		
Compressor		Category 01		
Axial flow				
Turbofans				
19 Security Classif. (of this report) Unclassified	20. Security Classif. (c Unclass	· ·	21. No. of Pages 95	22 Price* \$4.00

PERFORMANCE OF A 1.15-PRESSURE-RATIO AXIAL-FLOW FAN STAGE WITH A BLADE TIP SOLIDITY OF 0.5

by Walter M. Osborn and Ronald J. Steinke Lewis Research Center

SUMMARY

The overall and blade-element performance of a low-solidity, low-pressure-ratio, low-tip-speed fan stage is presented. Detailed radial and circumferential (behind stators) surveys of the flow conditions were made over the stable operating range at rotative speeds from 90 to 120 percent of design speed. At design speed a stage peak efficiency of 0.836 was obtained at a pressure ratio of 1.111 and a weight flow of 30.27 kilograms per second (177.80 (kg/sec)/m² of annulus area). The design weight flow was 29.94 kilograms per second, the design efficiency was 0.863, and the pressure ratio was 1.151. The rotor peak efficiency of 0.891 was also less than design efficiency of 0.909. Stall margin, for this stage at design speed was approximately 13 percent, based on weight flow and total-pressure ratio at peak efficiency and near stall.

The lower than design total pressure ratio was attributed to the failure to obtain the design energy input into the rotor. A mismatch of the rotor and stator blade elements is indicated and probably results from the lower than design pressure ratio over the entire blade span of the rotor blades.

INTRODUCTION

The Lewis research program on axial-flow fans and compressors for advanced airbreathing engines is directed primarily toward providing the technology to permit the reduction of the size and weight of the fans and compressors while maintaining a high level of performance.

Within the overall program, a series of fans has been designed to obtain definitive information for the selection of fans for propulsion systems for short-haul aircraft using the externally blown flap (EBF) as the powered lift system. The externally blown flap concept will require a large flow of low-velocity air for effective lift and low noise during

takeoff and landing (ref. 1). Thus, fans with high air bypass ratios, low pressure ratios, and low tip speeds are indicated. The choice of fan pressure-ratio and other parameters may depend on compromises between fan aerodynamic performance and low noise considerations. Performance data must be obtained on suitable fans over a range of pressure-ratios and speeds to optimize propulsion systems for the EBF short-haul aircraft.

The experimental performance for one of the fans in this series is presented in reference 2. The fan stage was designed for a tip speed of 213.3 meters per second with a pressure ratio of 1.2 at a weight flow of 31.2 kilograms per second. The rotor was designed with a mechanism that allowed manual adjustment of the rotor blade angle. Performance data are presented for several rotor blade setting angles. Such adjustable rotor blades could be used for better performance matching from takeoff to cruise conditions and also for obtaining reverse thrust for reducing the landing roll.

This report presents the experimental performance for a fan in the series, designated fan stage 51A. The 12-bladed, 50.8-centimeter-diameter fan was designed for a tip-speed of 243.8 meters per second. The design stage pressure ratio was 1.15 at a weight flow of 29.9 kilograms per second. The fan blade angles can be manually reset. Overall performance for both the rotor and the stage along with the blade-element performances of both rotor and stator are presented for the design rotor blade setting angle. The data are presented over the stable operating flow range of the stage at rotative speeds that varied from 90 to 120 percent of design speed. Blade-element survey data were obtained at nine radial positions. The data are presented in machine tabulated and plotted form. The symbols and equations are defined in appendixes A and B. The abbreviations and units used in the tables are defined in appendix C.

FAN STAGE DESIGN

The design objectives for fan stage 51A were to obtain at a tip speed of 243.8 meters per second (1) a weight flow of 29.9 kilograms per second (175.8 (kg/sec)/m² of annulus area), (2) an overall pressure ratio of 1.15 with high efficiency, (3) quiet operation, (4) reverse fan thrust by rotating the rotor blades through either the ''feathered'' pitch position (trailing edge becomes leading edge) or the ''flat'' pitch position (leading edge remains leading edge), and (5) a mechanically sound stage at speeds as high as 20 percent above design speed. To meet the last three objectives, compromises had to be made to the aerodynamic parameters. The final fan stage design evolved from an iteration of the mechanical, aerodynamic, and acoustic parameters. A discussion of some aspects of the stage design is given in this section.

Mechanical and General Design Considerations

The overall design parameters for fan stage 51A are listed in table I, and the flow path is shown in figure 1. The low hub to tip radius ratio value of 0.4 (rotor and stator) was chosen to obtain a low loss flow path (hub streamline) into the core compressor and to increase weight flow per unit frontal area.

A low number of rotor blades (12) was selected to facilitate the design of a mechanism for obtaining variable pitch blading. A rotor hub solidity of less than 1.0 was necessary to rotate the blades through the ''flat'' pitch position to obtain reverse fan thrust. A hub solidity of 0.96 was chosen, and the tip solidity was set at 0.50. The aspect ratio based on the chord at the hub was 2.9. Thick blade sections at the hub were necessary to satisfy stress and vibration requirements as the blade camber at the hub was relatively low, and midspan blade vibration dampers could not be used with variable pitch blading. A cubic (with inflection point at 50 percent blade span) distribution of thickness to chord ratio from 0.20 at the blade hub to 0.05 at the blade tip was necessary to obtain the required mechanical and vibrational frequency margin.

Thirty-two stator blades were selected, and the stator blade row was located four rotor blade chord lengths downstream of the rotor (fig. 1). The stator tip solidity is 0.99 and the aspect ratio is 3.08.

Aerodynamic Design

A composite computer design program, which consists of a streamline analysis subprogram, a blade geometry subprogram, and a blade coordinate subprogram, was used in the design of fan stage 51A. Details of each subprogram are presented in references 3 to 5; thus only a brief description of each is presented in this report.

The streamline analysis subprogram (ref. 3) calculates the velocity vector diagrams at several axial locations, including planes approximating the blade leading and trailing edges. This program accounts for streamline curvatures, entropy gradients, and boundary-layer blockage. Weight flow, rotor speed, flow path geometry, and radial distribution of total pressure and temperature are the inputs to this program.

The results from the streamline analysis subprogram are then used in the blade geometry subprogram (ref. 3). This program calculates the blade geometry that will satisfy the vector diagrams.

After the blade geometry is defined for both the rotor and stator, the blade coordinate subprogram presented in reference 5 is used to compute the blade elements on conical surfaces approximating the stream surfaces passing through the blade. The program then stacks these blade elements on a radial line about their center of gravity and computes the Cartesian blade coordinates for fabrication.

The blade-element design parameters for rotor 51A and stator 51 are presented in tables II and III, respectively. The blade geometry is presented in table IV for the rotor and table V for the stator. Double circular arc blade sections were used for both the rotor and stator.

Acoustic Design

For fans in general, the blade passing frequency noise appears to dominate because of its high sound pressure level and because it usually occurs in the audible noise region. The chief cause of this blade noise and its harmonics appears to be an interaction of the rotor wakes with the downstream stator blades, rather than rotor-alone noise. A model of this noise generation mechanism is presented in reference 6 and was used in the design of fan stage 51A to reduce its blade passing frequency noise. The model includes a description of the rotor wakes and the response of the stator blades to these wakes. At the present time the model gives only relative numbers between two fans. Thus, a previously tested fan stage (ref. 7) was chosen as a base. Although absolute levels for the blade passing frequency noise are not obtained, comparisons between different fans may be made. Some of the aerodynamic design parameters for which values were selected in order to lower the theoretical noise level of fan stage 51A are as follows: (1) a low tip speed was chosen to reduce broad band noise (negligible shock losses), (2) the stator blades were spaced four rotor blade chord lengths downstream of the rotor to reduce the velocity gradients in the rotor blade wakes as they impinge on the stator blades. (3) the theoretical pressure ratio was reduced quadratically from the rotor tip to the rotor hub to reduce the blade loadings near the hub and, thus, reduce the size of the rotor wakes where the rotor blades are thickest, and (4) the stator incidence angles were chosen to cancel the lift fluctuating components and thus minimize the fluctuating lift experienced by the stator blades due to the rotor wakes.

Some of the mechanical considerations that were necessary but that tended to increase the noise level of fan stage 51A are as follows: (1) a low number of rotor blades, which tends to increase the rotor alone generated blade-passing-frequency noise and lowers the frequency of the blade passing tone, which results in more harmonics of this tone falling in the audible noise range, (2) the low rotor solidity, (3) the large blade tip clearance required for resetting the blades for reverse thrust, and (4) the thick rotor blade hub sections required to reduce stress and vibration.

The iterations of the aerodynamic, acoustic, and mechanical parameters in the design procedure resulted in a final design for fan stage 51A that was theoretically 4 decibels quieter than the base fan of reference 7.

APPARATUS AND PROCEDURE

Compressor Test Facility

The compressor stage was tested in the Lewis single-stage compressor facility (ref. 3). Atmospheric air enters the test facility (fig. 2) at an inlet located on the roof of the building and flows through the flow measuring orifice and into the plenum chamber upstream of the test stage. The air then passes through the experimental compressor stage into the collector and is exhausted to the vacuum exhaust system.

Test Stage

Photographs of the rotor and stator are shown ir figures 3 and 4, respectively. The rotor blades are mounted in a split disk, which enables the blades to be rotated to obtain the blade setting angle desired for testing. Friction pins in each half of the disk were compressed against the blade bases preventing the blades from turning. The compression of the friction pins is adjustable from the upstream (front) side of the rotor disk. Thus, the blade angle can be reset without disassembling the rotor.

With the rotor blades in the flat pitch position, the blade tips were machined 0.050 centimeter less than the contour of the outer casing. This enables the blades to be rotated in all directions. With the blades at their design setting angle, the nonrotating radial tip clearance at the stacking plane of the blade was a nominal 0.050 centimeter at ambient conditions. However, the tip clearance at the leading and trailing edges of the blades was approximately three times greater due to the convex contour of the blade tip.

Instrumentation

The compressor weight flow was determined from measurements on a calibrated thin-plate orifice. The temperature at the orifice was measured with two chromel-constantan thermocouples. Pressures at the orifice were measured by calibrated transducers.

Radial surveys of the flow were made upstream of the rotor, between the rotor and stator, and downstream of the stator (fig. 1). Photographs of the survey probes are shown in figure 5. Total pressure, total temperature, and flow angle were measured with a combination probe (fig. 5(a)). The thermocouple material was chromel-constantan. The static pressure was measured with an 8° C-shaped wedge probe (fig. 5(b)). Each probe was positioned with a null-balancing, stream-direction-sensitive control system that automatically alined the probe to the direction of flow. The probes

were angularly alined in an air tunnel. Two combination probes and two wedge static probes were used at each of the three measuring stations. The temperatures at stations 2 and 3 were recorded as temperature differences referenced to the temperature at station 1.

Inner and outer wall static-pressure taps were located at the same axial stations as the survey probes. The circumferential locations of both types of survey probes along with inner and outer wall static pressure taps are shown in figure 6. The combination probe downstream of the stator (station 3) was circumferentially traversed one stator blade passage (11.2°) counterclockwise from the nominal value shown.

For monitoring the fan performance during the run, four six-element total-pressure and temperature rakes were located downstream of the stator (station 4, fig. 1). The circumferential locations of the rakes are shown in figure 6. The data from these rakes were used in conjunction with an on-line computer located in the facility. Ar electronic speed counter, in conjunction with a magnetic pickup, was used to measure rotative speed (rpm). The estimated errors of the data based on inherent accuracies of the instrumentation and recording system are as follows:

Weight flow, kg/sec	•			•	•		•	•	•	•	•	•	•		•		•	•	. ±0.3
Rotative speed, rpm				•					•	•	•		•		•	•	•	•	. ±30
Flow angle, deg				•		•		•	•	•	•	•	•		•	•	•	•	±1
Temperature, K																			
Rotor-inlet total pressure, N/cm ² .																			
Rotor-outlet total pressure, N/cm ² .																			
Stator-outlet total pressure, N/cm^2 .																			
Rotor-inlet static pressure, N/cm ² .																			
Rotor-outlet static pressure, 1./cm ²																			
Stator-outlet static pressure, N/cm ²			•		•		•						•	•	٠	•			±0.07

An indication of the consistency of the data can be observed by comparing the integrated weight flow at each measuring station to the orifice weight flow.

Test Procedure

The stage survey data were taken over a range of weight flows from maximum flow to the near-stall conditions at 90, 100, 110, and 120 percent of design speed. Data were recorded at nine radial positions for each speed and weight flow. At each radial position the two combination probes behind the stator were circumferentially traversed to nine different locations across the stator gap. The two wedge probes were set at midgap because previous studies showed that the static pressure across the stator gap was

constant. Values of pressure, temperature, and flow angle were recorded at each circumferential position. At the last circumferential position values of pressure, temperature, and flow angle were also recorded at stations 1 and 2. All probes were then traversed to the next radial position, and the circumferential traverse procedure repeated.

At each of the four rotative speeds, the back pressure on the stage was increased by closing the sleeve valve in the collector until a drop in total pressure at the blade tip was detected. This was accomplished by comparing the radial distribution of discharge total pressure between succeeding computer (on-line) printouts obtained as the valve was closed. This point was arbitrarily taken as the limit of stable operation at the low end of the weight flow range and usually occurred before any definite indications of stall were observed such as change in noise level or increase in blade stress.

Calculation Procedure

Measured total temperatures and total pressures were corrected for Mach number and streamline slope. These corrections were based on instrument probe calibrations given in reference 8. The stream static pressure was corrected for Mach number and streamline slope based on an average calibration for the type of probe used.

Due to the physical size of the C-shaped static pressure wedges, it was not possible to obtain static-pressure measurements at 5, 10, and 95 percent of span. The static pressure at 95 percent span was obtained by assuming a linear variation in static pressure between the values at the inner wall and the probe measurement at 90 percent span. A similar variation was assumed between measurements at the outer wall and the 15 percent span to obtain the static pressure at 5 and 10 percent span.

At each radial position, averaged values of the nine circumferential measurements of pressure, temperature, and flow angle downstream of the stator (station 3) were obtained. The nine values of total temperature were mass averaged to obtain the stator outlet total temperature. The nine values of total pressure were energy averaged. The measured values of pressure, temperature, and flow angle were used to calculate axial and tangential velocities at each circumferential position. The flow angles presented for each radial position are calculated based on these mass-averaged axial and tangential velocities. To obtain the overall performance, the radial values of total temperature were mass averaged and the values of total pressure were energy averaged. At each measuring station, the integrated weight flow was computed based on the radial survey data.

The data, measured at the three measuring stations, were translated to the rotor and stater blade leading and trailing edges by the method presented in reference 5. Orifice weight flow, total pressures, static pressures, and temperatures were all corrected to sea-level conditions based on the rotor inlet conditions.

RESULTS AND DISCUSSION

The overall performances for the rotor and the stage are presented first. Radial distributions of several performance parameters are then presented for both the rotor and the stator, followed by blade-element data. Finally, a brief discussion of the data is given.

All the plotted data, together with some additional performance parameters, are listed in tabular form. The overall performance data are presented in table VI. The blade-element data are given first for the rotor and then for the stator in tables VII to XIV. The abbreviations and units for the tabular data are defined in appendix C.

Overall Performance

The overall performance for rotor 51A is presented in figure 7, and the overall performance for stage 51A is presented in figure 8. For both machine-plotted figures, data are presented for specus from 90 to 120 percent of design speed. Data are presented at several weight flows from choke to the near-stall conditions. Stall conditions occurred gradually with only a small drop off in pressure rise and no indication of operational instability particularly at 90 and 100 percent speeds. Thus, it would be difficult to establish a specific stall line for this stage and none are shown in figures 7 and 8. The stall condition (minimum flow point) was arbitrarily taken as the point where a drop off in total pressure at the blade tip was first detected downstream of the stator. Data for the minimum flow points (near stall) shown in figures 7 and 8 were taken at flow rates just slightly greater than the point of drop-off in total pressure in the blade tip region. Design-point values are shown as solid symbols in both figures.

The peak efficiency for rotor 51A at design speed was 0.891 (design peak efficiency, 0.909), and it occurred at a weight flow of 32.3 kilograms per second (189.3 (kg/sec)/m² of annulus area). Design weight flow was 29.94 kilograms per second (175.8 (kg/sec)/m² of annulus area). The measured total-pressure ratio was 1.104 and the temperature ratio was 1.032; the design values were 1.159 and 1.047, respectively. At 90 percent of design speed, a peak efficiency of J.952 was measured.

The stage overall performance trends with respect to design values were similar to those for the rotor. The stage peak efficiency was 0.836 (design stage efficiency, 0.863). At peak efficiency the weight flow was 30.27 kilograms per second (the design value was 29.94 kilograms per second). The measured pressure ratio of 1.111 was less than the design value of 1.151; and the temperature ratio of 1.037 was also lower than the design value of 1.047. At 90 percent of design speed, a peak efficiency of 0.850 was measured.

The peak efficiency for the rotor occurred at a weight flow that was 2 kilograms per second greater than that for the stage. This difference indicates a mismatch of the rotor and stator.

Radial Distributions

The radial distributions of several parameters for 100 percent of design speed are presented in figure 9 for rotor 51A and in figure 10 for stator 51. In each figure data are presented for three weight flows: near choke, stage peak efficiency, and near stall. The design values are shown by the solid symbols. Temperature-rise efficiency, temperature ratio, pressure ratio, suction-surface incidence angle, meridional velocity ratio, deviation angle, total-loss parameter, total-loss coefficient, and diffusion factor are presented as functions of percent span from the blade tip.

Rotor. - In general, as the weight flow was reduced, the pressure ratio, temperature ratio, and blade loading (diffusion factor) increased across blade span but remained lower than design values. However, at the lowest weight flow point (26.4 kg/sec), a decrease in pressure ratio and an increase in diffusion factor in the blade tip region indicate that the rotor is partially stalled (by definition). Operation at this weight flow was stable during the tests, and the near stall weight flow is probably only slightly greater. If the near stall weight flow were say 26.9 kilograms per second (instead of 26.4 kg/sec), the stall margin for stage 51A would happroximately 13 percent. The deviation angles were greater than design values except near the rotor tip for the choke weight flow. The rotor losses were close to design values for choke and peak efficiency weight flows but were higher than design values for the lowest weight flow, which appears to be partially in stall.

At the stage peak efficiency weight flow (30.3 kg/sec), the efficiency was less than design values in the midportion of the blade span and near the end walls (hub and tip). The suction-surface incidence angles agreed with design values at the peak efficiency weight flow. The diffusion factor was lower than design values but the rotor losses agreed closely with design values. Thus, the loss-diffusion factor relation used in the rotor design was not achieved.

Stator. - At the stage peak efficiency weight flow of 30.3 kilograms per second, the stator blade loading (diffusion factor) was lower than design values over the entire blade span. The measured losses were lower than design values from 15 to 85 percent span from tip but higher than design near the blade hub and tip. The suction-surface incidence angles were approximately 5° to 7° lower than design values. The deviation angles agreed well with design values from 30 to 70 percent blade span but were higher than design for the remainder of the blade.

Variations with Incidence Angle

The variations of selected blade-element parameters with suction-surface incidence angle are presented for the rotor and the stator in figures 11 and 12. The data are presented for 90, 100, and 120 percent of design speed for blade-element locations of 5, 10, 30, 50, 70, 90, and 95 percent of span from the blade tip. Design values are shown by solid symbols. In addition to the parameters shown in the radial distribution plots, inlet relative Mach number is presented. The various curves as a function of incidence angle are presented primarily for future correlation in comparing the performance of these blades with other blade designs. Thus, only a few brief observations will be made from the curves.

Rotor. - The rotor blades were designed for minimage loss to occur at a varying incidence angle (table II) from blade tip (-1.5°) to huo (-13.0°). At design speed the measured incidence angle associated with minimum loss was defined at all spans except the 95 percent span. At this span the losses continued to decrease as the flow was increased (decreasing incidence angle) to the maximum flow condition. At the other blade spans the measured suction-surface incidence angle corresponding to minimum loss varied from -4.5° from the design value at the 5-percent span to being equal to the design value at the 70 and 90 percent blade spans. The experimental minimum loss values were less than or equal to the design loss values. In general, the pressure ratio, efficiency, temperature ratio, and D-factor were less than design values. The deviation angles were greater than design values.

The high loss values shown at 120-percent speed are probably as d with shock losses as the injet relative Mach number is above 1.0 at this speed for 5- and 10-percent blade spans.

Stator. - The incidence angle associated with minimum loss was defined at all stator blade spans except 5 percent. At the 5-percent span the minimum loss value was nearly constant for all test points except the choke point and thus covered a grange of incidence angles. At the 95-percent span the minimum loss incidence as within 2^0 of the design incidence angle (0^0) . However, at the other spans the angle area from -6^0 to -14^0 from the design incidence angle. The experimental loss values were greater than design for the 5-, 10-, 90-, and 95-percent spans but were lower than design values in the midspan portions of the blade. The deviation angle agreed well with the design value except at the 90- and 95-percent blade span positions.

Discussion of Performance

At design speed the stage peak efficiency weight flow is 30.27 kilograms per second, which is close to the design value of 29.94 kilograms per second. The peak efficiency of the rotor occurred at a higher weight flow (32.3 kg/sec) than for the stage and indicates a mismatch of the rotor and stator. The rotor and stage peak efficiencies are only 3 percentage points lower than the design values. However, both the rotor and stage total-pressure ratios are much lower than design values.

The radial distribution of efficiency for the rotor agrees well with the design distribution except in the hub and tip regions. However, the spanwise distribution of total-pressure ratio is considerably lower than design values over the entire blade span. The design energy input for the rotor has not been achieved as is shown by the lower than design spanwise distribution of total-temperature ratio. The spanwise experimental losses agree well with design values but the diffusion factors are lower than design values. The deviation angles are much greater than design values. Thus, the rotor blade-element data indicate that rotor 51A should have a higher blade camber, a redistribution of deviation angle, and a reappraisal of the loss-diffusion factor relation in order to improve its performance. However, even with these changes, better performance might not be obtained because of the low solidity of the rotor (poor flow guidance). Although this rotor is restricted to a solidity of less than 1 at the blade hub, the aerodynamic blade chords could be increased toward the tip to obtain better flow guidance and the input design conditions.

The stator incidence angles associated with minimum loss are considerably different from the design values in the midspan portions of the stator blades. This difference probably results from the much lower than design pressure ratio of the rotor over the entire blade span and inductes a mismatch of the rotor and stator. This stage probably wou, benefit some by opening the stator blades approximately 5° . However, it was considered that a change in stator setting angle alone would not be sufficient to enable the stage to meet its design pressure ratio since the rotor pressure ratio was considerably less than the design stage pressure ratio.

SUMMARY OF RESULTS

This report presents both the aerodynamic design parameters and the overall and blade-element performance of a low-pressure-ratio, low-tip-speed fan stage suitable for short-haul aircraft using the externally blown flap as a powered lift system. The fan was designed for low blade passing frequency noise, which resulted in some compromises in the aerodynamic design. Detailed radial surveys of the flow conditions in front of and behind the rotor and behind the stator were made over the stable operating flow range of

the stage at rotative speeds from 90 to 120 percent of design speed. Flow and performance parameters were calculated across nine blade elements. The following principal results were obtained from this investigation:

- 1. For the rotor at design speed, the peak efficiency was 0.891, the pressure ratio 1.104, and the weight flow 32.2 kilograms per second. Design pressure ratio was 1.159, and the weight flow was 29.94 kilograms per second. Design energy input into the rotor was not achieved.
- 2. For the stage at design speed, the peak efficiency was 0.836, the pressure ratio 1.111, and the weight flow 30.27 kilograms per second. Design pressure ratio was 1.151, and the weight flow was 29.94 kilograms per second. A mismatch of the rotor and stator is indicated.
- 3. Stall margin for this stage at design speed is approximately 13 percent, based on weight flow and total pressure at peak efficiency and near stall.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, April 1, 1974, 501-24.

APPENDIX A

SYMEOLS

- A_{an} annulus area at rotor leading edge, 0.171 m²
- A_f frontal area at rotor leading edge, 0.203 m²
- $C_{\rm p}$ specific heat at constant pressure, 1004 (J/kg) K
- c aerodynamic chord, cm
- D diffusion factor
- g acceleration of gravity, 9.81 m/sec²
- imc mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
- i suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
- J mechanical equivalent of heat
- N rotative speed, rpm
- P total pressure, N/cm²
- p static pressure, N/cm²
- r radius, cm
- SM stall margin
- T total temperature, K
- U wheel speed, m/sec
- V air velocity, m/sec
- W weight flow, kg/sec
- Z axial distance referenced from rotor blade hub leading edge, cm
- $\alpha_{
 m c}$ cone angle, deg
- α_{s} slope of streamline, deg
- β air angle, angle between air velocity and axial direction, deg
- $eta_{
 m c}^{'}$ relative meridional air angle based on con, angle, arctan (tan $eta_{
 m m}^{'}$ cos $lpha_{
 m c}/{\cos{lpha_{
 m S}}}$), deg
- γ ratio of specific heats (1.40)

```
\gamma_{\rm b} blade setting angle, deg
```

- δ ratio of rotor inlet total pressure to standard pressure of 10.13 N/cm²
- δ^{O} deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg
- η efficiency
- θ ratio of rotor inlet total temperature to standard temperature of 288.2 K
- $\kappa_{
 m mc}$ angle between blade mean camber line and meridional plane, deg
- $\kappa_{\rm SS}$ angle between blade suction-surface camber line at leading edge and meridional plane, deg
- σ solidity, ratio of chord to spacing
- $\overline{\omega}$ total loss coefficient
- $\overline{\omega}_{\mathbf{p}}$ profile loss coefficient
- $\overline{\omega}_{s}$ shock loss coefficient

Subscripts:

- ad adiabatic (temperature rise)
- id ideal
- LE blade leading edge
- m meridional direction
- mom momentum-rise
- p polytropic
- r radial direction
- ref reference
- TE blade trailing edge
- z axial direction
- θ tangential direction
- 1 instrumentation plane upstream of rotor
- 2 instrumentation plane between rotor and stator
- instrumentation plane downstream of stator

Superscript:

^{&#}x27; relative to blade

APPENDIX B

EQUATIONS

Suction-surface incidence angle:

$$i_{ss} = (\beta'_c)_{LE} - \kappa_{ss}$$
 (B1)

Mean incidence angle:

$$i_{mc} = (\beta_c')_{LE} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle:

$$\delta^{O} = (\beta_{C}')_{TE} - (\kappa_{mc})_{TE}$$
 (B3)

Diffusion factor:

$$D = 1 - \frac{V_{TE}^{'}}{V_{LE}^{'}} + \left| \frac{(rV_{\theta})_{TE} - (rV_{\theta})_{LE}}{(r_{TE} + r_{LE})\sigma(V_{LE}^{'})} \right|$$
(B4)

Total loss coefficient:

$$\overline{b} = \frac{(P'_{id})_{TE} - P'_{TE}}{P'_{LE} - P_{LE}}$$
(B5)

Profile loss coefficient:

$$\overline{\omega}_{p} = \overline{\omega} - \overline{\omega}_{s}$$
 (B6)

Total loss parameter:

$$\frac{\overline{\omega}\cos\left(\beta_{\mathrm{m}}^{'}\right)_{\mathrm{TE}}}{2\sigma}\tag{B7}$$

Profile loss parameter:

$$\frac{\overline{\omega}_{\mathbf{p}} \cos (\beta_{\mathbf{m}}')_{\mathbf{TE}}}{2\sigma}$$
 (B8)

Adiabatic (temperature rise) efficiency:

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1}$$
(B9)

Momentum-rise efficiency:

$$\eta_{\text{mom}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{(UV_{\theta})_{\text{TE}} - (UV_{\theta})_{\text{LE}}}{T_{\text{LE}}gJC_{p}}}$$
(B10)

Equivalent weight flow:

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta} \tag{B11}$$

Equivalent rotative speed:

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area:

$$\frac{\mathbf{w}\sqrt{\theta}}{\frac{\delta}{\mathbf{A}_{\mathbf{a}\mathbf{p}}}} \tag{B13}$$

Weight flow per unit frontal area:

$$\frac{\mathbf{W}\sqrt{\theta}}{\frac{\delta}{\mathbf{A_f}}} \tag{B14}$$

Head-rise coefficient:

$$\frac{gJC_{p}T_{LE}}{U_{tip}^{2}}\left[\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}-1\right]$$
(B15)

Flow coefficient:

$$\left(\frac{\mathbf{v}_{z}}{\mathbf{v}_{\mathrm{tip}}}\right)_{\mathrm{LE}} \tag{B16}$$

Stall margin:

$$SM = \left[\frac{\left(\frac{P_{TE}}{P_{LE}}\right)_{stall}}{\left(\frac{P_{TE}}{P_{LE}}\right)_{ref}} \times \frac{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{ref}}{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{stall}} - 1 \right] \times 100$$
(B17)

Polytropic efficiency:

$$\eta_{p} = \frac{\ln\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}}{\ln\left(\frac{T_{TE}}{T_{LE}}\right)}$$
(B18)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

BETAM meridional air angle, deg

CHOKE MARGIN ratio of actual flow area minus critical area to critical area

(where local Mach number is 1)

CONE ANGLE angle between axial direction and conical surface representing

blade element, deg

DELTA INC difference between mean camber blade angle and suction surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean

surface by eq. (B2))

KIC angle between blade mean camber line at leading edge and

meridional plane, deg

KOC angle between blade mean camber line at trailing edge and

meridional plane, deg

KTC angle between blade mean camber line at transition point and

meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile by eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile by eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE

slope of streamline, deg

SLOPE

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines, deg

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction-surface camber ahead of assumed shock location

of multiple-circular-arc blade section to that of double-circular-

arc blade section

ZIC axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum thickness point from inlet, cm

ZOC axial distance to blade trailing edge from inlet, cm

ZTC axial distance to transition point from inlet, cm

REFERENCES

- 1. Rosen, George: An Engine for Quiet STOL Propulsion. Astronautics and Aeronautics, vol. 9, no. 12, Dec. 1971, pp. 50-55.
- Lewis, George W., Jr.; Moore, Royce D.; and Kovich, George: Performance of a 1.20-Pressure-Ratio STOL Fan Stage at Three Rotor Blade Setting Angles. NASA TM X-2837, July 1973.
- 3. Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet Per Second. NASA TM X-2484, 1972.
- 4. Ball, Calvin L.; Janetzke, David C.; and Reid, Lonnie: Performance of 1380-Foot-Per-Second-Tip-Speed Axial-Flow Compressor Rotor with Blade Tip Solidity of 1.5. NASA TM X-2379, 1972.
- 5. Crouse, James E.; Janetzke, David C.; and Schwirian, Richard E.: A Computer Program for Composing Compressor Blading from Simulated Circular-Arc Elements on Conical Surfaces. NASA TN D-543., 1969.
- 6. Dittmar, James H.: Methods for Reducing Blade Passing Frequency Noise Generated by Rotor-Wake-Stator Interaction. NASA TM X-2669, 1972.
- Goldstein, Arthur W.; Lucas, James G.; and Balombin, Joseph R.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines.
 II - Performance of QF-1 Fan in Nacelle Without Acoustic Suppression.
 NASA TN D-6080, 1970.
- 8. Glawe, George E.; Krause, Lloyd N.; and Dudzinski, Thomas J.: A Small Combination Sensing Probe for Measurement of Temperature, Pressure, and Flow Direction. NASA TN D-4816, 1968.

TABLE I. - DESIGN OVERALL PARAMETERS

FOR STOL FAN 51A

ROTOR TOTAL PRESSURE RATIO	1.159
STAGE TOTAL PRESSURE RATIO	
ROTOR TOTAL TEMPERATURE RATIO	1.047
STAGE TOTAL TEMPERATURE RATIO	1.047
ROTOR ADIABATIC EFFICIENCY	0.909
STAGE ADIABATIC EFFICIENCY	0.863
ROTOR POLYTROPIC EFFICIENCY	0.911
STAGE POLYTROPIC EFFICIENCY	0.866
ROTOR HEAD RISE COEFFICIENT	0.210
STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT	0.133
	147.704
	175.838
NT FLOW	29.937
-RPM	167.300
IP SPEED	243.839

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 51A

RP TIP 1 2 3 4 5 6 7 8 9 HUB	RAD IN 25.400 24.648 23.872 23.093 20.744 17.623 14.545 12.300 11.569 10.847	OUT 25.400 24.638 23.876 23.114 20.828 17.780 14.732 12.446 11.684 10.922	ABS IN 00. 0. 0. 0. 0. 0. 00.	BETAM CUT 24.5 24.6 24.7 24.9 25.6 27.2 29.0 30.1 30.3 30.4	REL [N 55.2 54.4 53.6 52.7 49.8 45.6 40.6 36.3 34.7 33.0	BETAM 0UT 48.9 47.5 46.0 44.5 39.5 31.6 22.0 14.1 11.5 8.9 6.3	TOTA IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	L TEMP RATIO 1.058 1.057 1.056 1.055 1.051 1.046 2.040 1.034 1.032	TOTAL IN 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.184 1.183 1.183 1.182 1.175 1.159 1.134 1.111 1.102 1.092
RP P 1254561-898	ABS IN 169.2 169.3 169.2 169.1 168.3 166.0 162.9 160.0	VEL OUT 167.4 168.0 168.6 169.1 170.0 168.6 165.0 163.6 163.2	REL IN 296.8 290.9 284.9 278.8 260.7 237.0 214.5 199.6 195.2 191.1 187.4	VEL 0UT 231.6 226.1 220.6 215.1 198.6 177.5 159.0 148.2 145.4 142.8 140.6	MERI. 189.2 169.3 169.2 169.1 168.3 166.0 162.9 160.5 160.2	D VEL 0UT 152.3 152.8 153.2 153.4 153.2 151.2 147.4 143.7 142.4 141.1	TAN IN 00. 0. 0. 0. 0. 0. 00.	G VEL 0UT 69.4 69.9 70.5 71.1 73.6 77.7 81.8 83.4 83.2 82.7 82.2	WHEEL IN 243.8 236.6 229.2 221.7 199.1 169.2 139.6 118.1 111.1 104.1 97.5	SPEED OUT 243.6 236.5 229.2 221.9 199.9 170.7 141.4 119.5 112.2 104.9 97.5
RP P 1 234 5 67 8 9 B	ABS MA IN C.510 O.510 O.510 O.507 O.507 O.500 O.484 O.483 O.482 O.481	OUT 0.489 0.492 0.494 0.496 0.499 0.500 0.498 0.498 0.485 0.481	REL M 1N 0.895 0.877 0.859 0.840 0.714 0.645 0.600 0.587 0.574 0.563	ACH NO OUT 0.677 0.662 0.646 0.630 0.583 0.523 0.469 0.438 0.430 0.423	MERID M IN 0.510 0.510 0.510 0.510 0.507 0.500 0.490 0.484 0.483 0.482	0.445 0.445 0.445 0.450 0.450 0.450 0.455 0.425 0.425 0.422 0.414	STREAML I IN -0.26 -0.10 0.07 0.27 0.89 1.56 1.76 1.35 1.06 0.71 0.36	NE SLOPE OUT -0.32 -0.16 0.02 0.22 0.85 1.57 1.86 1.52 1.23 0.47		PEAK SS MACH NO 1.202 1.190 1.178 1.165 1.129 1.083 1.041 1.007 0.994 0.981 0.968
RP 1 23 4 5 6 7 8 9 B	PERCENT SPAN 0. 5.00 10.00 15.00 50.00 50.00 90.00 95.00 100.00	INCI MEAN 3.1 3.2 3.3 3.4 3.7 4.7 5.2 5.4 5.5	DENCE SS -1.5 -1.7 -2.0 -4.0 -7.7 -11.2 -12.7 -12.9 -13.0	DE 555566776663	D-FACT 3.454 0.459 0.464 0.486 0.508 0.519 0.497 0.485 0.471	0.845 0.864 0.881 0.895 0.939 0.918 0.684 0.869 0.852 0.830	LCSS C TOT 0.073 0.065 0.057 0.051 0.037 0.032 0.045 0.062 0.069 0.075	OEFF PROF 0.073 0.065 0.057 0.051 0.037 0.032 0.045 0.062 0.069 0.075 0.082	LOSS F TOT 0.048 0.043 0.038 0.025 0.021 0.028 0.036 0.038 0.040	PROF 0.048 0.043 0.038 0.034 0.025 0.021 0.028 0.036 0.038 0.040

TABLE III. - DESIGN BLADE-ELEMENT PARAMETERS FOR STATOR 51

RP 1 2 5 4 5 6 7 8 9 HUB	RAD IN 25.400 24.595 23.861 23.130 220.924 17.964 14.953 12.651 11.873 11.090 10.160	OUT 25.400 24.607 23.887 23.169 21.000 18.089 15.117 12.792 11.971	ABS !N 23.4 23.5 23.7 25.9 24.7 26.6 29.1 30.8 31.1 31.4	BETAM OUT -0. -0. -0. -0. -0. -0.	REL 1N 23.4 23.5 23.7 23.9 24.7 26.6 29.1 30.9 31.1 31.4	BETAM OUT -0. 000000000.	IN 305.1 304.6 304.3 303.9 302.8 301.4 299.7 298.1	TEMP RAT 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 12.00 11.99 11.99 11.98 11.91 11.74 11.50 11.26 11.17 10.96	0.987
RP T 1 2 3 4 5 6 7 8 9 B	ABS IN 174.7 175.3 175.7 175.8 175.2 171.7 165.8 160.2 158.4 156.5 154.3	VEL OUT 161.8 161.7 161.5 161.2 158.4 151.7 142.8 128.1 122.3 115.6 107.8	REL IN 174.7 175.3 175.8 175.2 175.8 175.2 171.7 165.8 160.2 158.4 156.5 154.3	VEL OUT 161.8 161.7 161.5 161.0 158.4 151.7 140.8 128.1 122.3 115.6 107.8	MER II 160.3 160.7 160.9 160.8 159.1 153.6 144.9 137.6 135.5 135.6	0 VEL 0UT 161.8 161.7 161.5 161.0 158.4 151.7 140.8 128.1 122.3 115.6 107.8	TAN: IN 69.5 70.0 70.5 71.1 73.2 76.9 80.6 82.1 81.9 81.5	OVEL OUT -0.	HHEEL IN 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
P 1 23 4 5 6 7 8 9 B	ABS M. IN 0.512 0.514 0.515 0.516 0.515 0.485 0.463 0.463	ACH NO OUT 0.472 0.472 0.471 0.471 0.464 0.412 0.375 0.358 0.358	REL M IN 0.512 0.514 0.515 0.516 0.515 0.489 0.473 0.468 0.463 0.457	ACH NO 0.472 0.472 0.472 0.471 0.464 0.412 0.375 0.358 0.338 0.316	MERID M IN 0.470 0.471 0.472 0.472 0.468 0.452 0.427 0.401 0.395 0.389	ACH NO OUT 0.472 0.472 0.471 0.471 0.471 0.412 0.375 0.338 0.338	SIREAMLI IN -0.07 0.09 0.24 0.38 0.78 1.67 1.44 1.02 0.44 -0.26	NE SLOPE OUT -0.03 0.13 0.27 0.40 0.60 1.28 1.60 1.31 0.91 0.35 -0.31		MACH NO
P. CANADION	PERCENT SPAN 0. 5.00 10.00 15.00 30.00	INCI MEAN 9.2 9.2 9.2 9.2 9.2	DENCE SS 0.0 -0.0 -0.0 -0.0 -0.0	DEV 4.1 4.1 4.0 4.0	0.274 0.272 0.271 0.270 0.269	2. 3. 3.	LOSS C TOT 0.040 0.038 0.038 0.037 0.038	OEFF PROF 0.040 0.038 0.038 0.037 0.038	LOSS F TOT 0.020 0.019 0.018 0.017 0.016	PARAM PROF 0.020 0.019 0.018 0.017 0.016

TABLE IV. - BLADE GEOMETRY FOR ROTOR 51A

The and the area of a	0. 25.400 25.400 5. 24.648 24.638 11. 23.872 23.876 15. 23.093 23.114 30. 20.744 20 828 50. 17.623 17.780 70. 14.545 14.732 85. 12.300 12.446	29.46 17 4.63 27.65 14.98 2.31	4.59 0.05T 4.69 -0.130 4.96 0.05T 5.43 0.258 T.T2 0.99T 11.89 1.805 15.84 2.090 17.75 1.619 18.09 1.274 18.29 0.834
U. C. C. LOW A ROUGH OF U. U.	BLACE THICKNESSES TI TM TO 0.066 0.330 0.066 0.064 0.330 0.064 0.068 0.348 0.068 0.077 0.380 0.077 0.099 0.501 0.099 0.151 0.765 0.149 0.195 0.978 0.196 0.211 1.067 0.211 0.013 1.064 0.213 0.010 1.062 0.213 0.012 1.060 0.212	AXIAL DIMENSION ZI ZMC ZTC 0.353 2.496 2.496 0.330 2.496 2.496 0.304 2.495 2.496 0.277 2.494 0.494 0.197 2.488 2.488 0.102 2.485 2.485 0.030 2.495 2.495 -0.001 2.504 2.504	ze
CA CAMPAGATAGE	AERO SETTING TOTAL CHORD ANGLE CAMBER 6.627 47.87 8.53 6.559 46.66 9.15 6.489 45.38 9.76 6.419 44.06 10.40 6.211 39.75 12.63 5.937 33.11 16.46 5.665 25.40 21.09 5.460 19.14 24.17 5.393 17.06 24.83 5.326 14.99 25.33	X SOLIDITY FACTOR PHISS 0.498 1.000 8.88 0.508 1.000 9.26 0.519 1.000 9.84 0.531 1.000 10.63 0.571 1.000 14.03 0.641 1.000 20.12 0.739 1.000 26.39	CHOKE MARGIN 0. 0. 0.210 0.206 0.196 0.182 0.172 0.160

TABLE V. - BLADE GEOMETRY FOR STATOR 51

P. P. CARABOR BONDE	5.724.595 24.607 10.23.861 23.887 15.23.130 23.169 30.20.924 21.000 50.17.964 18.089 70.14.953 15.117 85.12.651 12.792	15.52 5.76 -4.01 17.43 6.65 -4.12 19.96 7.85 -4.26 21.69 8.74 -4.21 22.02 8.95 -4.13 22.24 9.12 -4.00	9.21 0.144 9.21 0.306 9.21 0.448 9.19 0.885 9.17 1.459 9.13 1.913 9.11 1.644 9.11 1.143 9.12 0.442
The and the state of a		25.469 27.914 27.914 25.470 27.914 27.914 25.469 27.913 27.913 25.472 27.911 27.911 25.480 27.910 27.910 25.493 27.908 27.908 25.504 27.907 27.907 25.507 27.907 27.907	Z0 30.395 30.395 30.395 50.394 50.392 50.392 50.393 30.393 30.393
R P P P P P P P P P P P P P P P P P P P	4,945 5,05 18.37 4,945 5,12 18.40 4,945 5,21 18.50 4,945 5,32 18.66 4,945 5,76 19.53 4,946 6,67 21,55 4,948 7,87 24,22	1.055 1.0 0 18.46 1.088 1.000 18.54 1.202 000 18.96 1.397 1.000 19.94 1.676 1.000 21.24 1.981 1.000 22.06 2.113 1.000 22.19 2.267 1.000 22.24	0.270 0.260 0.267 0.252 0.259 0.259 0.305 0.305

TABLE VI. - OVERALL PERFORM. CE FOR STAGE 51A

(a) Percent of design speed, 100

]	Reading		
	1532	1400	1402	1404	1405
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE ETFICIENCY STAGE TEMP. RISE ETFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR MEAD RISE COEFFICIENT FLOM COEFFICIENT HT FLOM PER UNIT FRONTAL AREA HT FLOM PER UNIT ANNULUS AREA HT FLOM AT ROTOR INLET HT FLOM AT ROTOR OUTLET HT FLOM AT STATOR OUTLET	1.058 1.040 1.022 1.021 0.749 0.529 0.770 0.079 0.055 0.857 171.66 204.36 34.79 35.00	1,104 1,096 1,032 1,032 0,891 0,828 0,877 0,139 0,128 1,740 159,04 159,04 189,33 32,23 31,89 32,16	1.119 1.111 1.037 1.037 0.881 0.859 0.157 0.147 0.677 149.35 177.80 30.27 29.97 30.20 30.32	1.127 1.117 1.040 0.848 0.802 0.168 0.156 0.621 139.07 139.07 28.19 27.91 28.22 28.24	1.125 1.114 1.044 1.042 0.779 0.741 0.767 0.151 0.572 130.25 155.06 26.40 26.56 26.56
ROTATIVE SPEED PERCENT OF DESIGN SPEED	9174.4 100.1	9213.9 100.5	9233.3	9198.1	9186.3

(b) Percent of design speed, 90

			Readin	g	
	1540	1411	1412	1413	1415
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR MEAD RISE COEFFICIENT FLOM COEFFICIENT HT FLOM PER UNIT FRONTAL AREA HT FLOM PER UNIT ANNULUS AREA HT FLOM AT ROTOR INLET HT FLOM AT ROTOR QUILET HT FLOM AT STATOR OUTLET ROTATIVE SPEED	1 052 1 039 1 017 1 014 0 842 0 775 0 808 0 065 0 917 167.61 199.54 33.97 34.18 34.04 34.05 8245.7	1.080 1.072 1.023 1.024 0.952 0.847 0.902 0.133 0.121 0.754 149.12 29.87 30.12 30.12 30.12	1.090 1.084 1.027 1.027 0.930 0.850 0.150 0.140 0.697 140.22 166.93 28.42 28.08 28.38 28.44	1.093 1.031 0.886 0.817 0.857 0.165 0.153 0.632 129.86 154.60 26.32 25.98	1.102 1.094 1.035 1.035 0.798 0.745 0.751 0.169 0.155 0.556 116.52 138.71 23.62 23.32 23.73 23.80
PERCENT OF DESIGN SPEED	89.9	90.1	89.9	90.1	∌0.2

TABLE VI. - Concluded. OVERALL PERFORMANCE FOR STAGE 51A

(c) Percent of design speed, 110

		F	Reading		
	1533	1534	1418	1420	1421
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HT FLOM PER UNIT FRONTAL AREA HT FLOM PER UNIT ANNULUS AREA HT FLOM AT ROTOR INLET HT FLOM AT ROTOR OUTLET HT FLOM AT STATUR OUTLET HT FLOM AT STATUR OUTLET ROTATIVE SPEED	1.069 1.046 1.027 1.028 0.702 0.466 0.693 0.077 0.052 0.803 174.36 207.57 35.54 35.59 35.66	1.107 1.039 1.036 0.829 0.816 0.130 0.118 0.744 166.59 198.32 33.76 34.03 34.14	1.128 1.044 1.044 0.075 0.796 0.153 0.153 0.151 0.694 161.68 192.48 32.77 32.55 33.05 52.89	1.051 1.051 0.852 0.788 0.823 0.174 0.160 0.631 151.19 179.99 30.64 30.44	1.161 1.146 1.052 1.052 0.336 0.769 0.800 0.174 0.159 0.605 146.56 174.48 29.71 29.50 29.98 29.81
PERCENT OF DESIGN SPEED	109.9	110.1	1:0.3	110.4	110.5

(d) Percent of design speed, 120

		Rea	ding	
	1538	1537	1536	1535
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOME.IUM RISE EFFICIENCY ROTOR ME.AD RISE COEFFICIENT STAGE MEAD RISE COEFFICIENT FLOM COEFFICIENT HAT FLOM PER UNIT FRONTAL AREA HAT FLOM PER UNIT ANNULUS AREA HAT FLOM AT ORIFICE HAT FLOM AT ROTOR OUTLET HAT FLOM AT ROTOR OUTLET HAT FLOM AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.084 1.069 1.036 1.032 0.640 0.593 0.612 0.079 0.065 0.760 176.98 210.70 35.87 36.16 36.15	1.050 1.045 0.754 0.751 0.735 0.128 0.116 0.706 168.98 201.17 34.25 34.60	1.172 1.155 1.061 1.055 0.761 0.759 0.743 0.157 0.142 0.649 159.97 190.44 32.42 32.49 32.79 1096.3	1.190 1.169 1.067 1.062 0.761 0.735 0.1735 0.155 0.599 151.10 179.88 30.63 31.11 31.19 31.31

TABLE VII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

ROTOR 51A. 100 PERCENT DESIGN SPEED

(a) Reading 1532

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.648 2 23.871 2 20.744 1 17.623 14.544 12.299 11.570 10.846	OUT 24.638 23.876 23.114 20.828 17.780 14.732 12.446 11.684	ABS IN 0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM OUT 8.2 8.0 7.5 8.4 10.4 12.0 13.4 14.0	REL IN 49.0 47.5 46.4 43.0 38.7 34.0 30.0 28.6 27.6	BETAM OUT 46.9 45.4 44.6 40.4 33.5 26.1 20.4 17.9 14.3	TOTAL IN 288.9 288.7 288.5 287.9 287.8 287.8 287.8	TEMP RAT 10 1.023 1.023 1.022 1.021 1.023 1.022 1.018 1.018 1.019	TOTAL IN 10.05 10.13 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.061 1.061 1.061 1.059 1.061 1.058 1.042 1.041 1.048
RP 1 2 3 4 5 6 7 8 9	ABS IN 206.4 210.1 211.0 213.9 211.3 207.4 205.3 203.6 199.1	VEL 0UT 197.7 200.7 200.4 202.6 205.4 206.5 201.8 202.0 203.0	REL IN 314.3 311.1 306.0 292.3 270.7 250.2 237.0 231.9 224.7	VEL 0UT 286.1 283.1 279.0 263.2 242.2 224.9 209.4 205.9 201.7	MERI. 206.4 210.1 211.0 213.9 211.3 207.4 205.3 203.6 199.1	D VEL OUT 195.7 198.8 198.7 200.4 202.0 202.0 196.3 196.0 195.4	TAN' IN 0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	G VEL OUT 28.2 27.8 26.0 29.5 37.2 42.8 46.9 48.9 54.9	MHEEL 237.0 229.4 221.6 199.3 169.3 139.9 118.3 111.1 104.0	SPEED 00T 236.9 229.4 221.8 200.1 170.8 141.7 119.8 112.2 104.7
RP 1 2 3 4 5 6 7 8 9	ABS M IN 0.629 0.642 0.645 0.647 0.634 0.627 0.621 0.607	ACH NO OUT 0.594 0.604 0.603 0.611 0.620 0.624 0.610 0.610	REL M IN 0.958 0.950 0.936 0.895 0.765 0.724 0.708 0.684	ACH NO OUT 0.859 0.851 0.839 0.793 0.731 0.679 0.632 0.632 0.622	MERID M IN 0.629 0.642 0.655 0.655 0.647 0.634 0.627 0.621	OLT NO OUT 0.588 0.598 0.598 0.604 0.610 0.610 0.593 0.592 0.590				PEAK SS MACH NO 1.098 1.082 1.074 1.062 1.060 1.061 1.059 1.054 1.043
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 50.00 70.00 85.00 90.00	INCI MEAN -2.3 -2.8 -2.9 -3.1 -2.6 -1.9 -1.2 -0.8	DENCE SS -7.0 -7.7 -8.3 -10.8 -14.5 -17.8 -19.0 -18.9 -18.4	DEV 4.8 4.9 5.7 7.0 8.6 11.2 13.3 13.3	D-FACT 0.178 0.176 0.169 0.188 0.213 0.218 0.235 0.232	0.750 0.758 0.757 0.76 0.760 0.748 0.648 0.629 0.698	LOSS C TOT 0.043 0.042 0.043 0.051 0.058 0.074 0.081	0EFF PROF 0.043 0.042 0.043 0.040 0.051 0.058 0.074 0.081	LOSS F TOT 0.029 0.029 0.027 0.033 0.035 0.041 0.044 0.038	PARAM PROF 0.029 0.028 0.027 0.033 0.035 0.041 0.044 0.038

TABLE VII. - Continued. BLADE-ELEMENT DATA AT FLADE EDGES FOR ROTOR 51A. 100 PERCENT DESIGN SPEED

(b) Reading 1400

RP 1 2 3 4 5 6 7 8 9	RAD: IN 24.648 2 23.871 2 20.744 2 17.623 1 14.544 1 12.299 1 11.570 1 10.846 1	0UT 24.639 23.876 23.114 20.828 17.780 14.732 12.446	ABS IN 0.0 -0.0 -0.0 0.0 -0.0 0.0 -0.0	BETAM OUT 16.9 15.6 16.0 16.4 16.7 17.4 19.6 20.5 24.2	REL IN 52.5 51.3 50.4 47.2 42.9 38.2 34.1 32.6 31.2	BETAM OUT 47.4 45.7 44.5 40.6 35.3 28.8 21.1 17.6 13.0	TOTAL IN 289.1 289.0 298.7 287.9 287.8 287.7 287.9 288.3 287.9	TEMP RAT I 0 1 . 040 1 . 039 1 . 038 1 . 035 1 . 030 1 . 026 1 . 024 1 . 024 1 . 026	TOTAL IN 10.07 10.13 10.14 10.14 10.14 10.14 10.14	PHESS RATIO 1.126 1.128 1.115 1.096 1.079 1.078 1.066
8P 1 2 3 4 5 6 7 8 9	ABS IN 181.7 184.1 183.7 184.7 182.2 178.3 175.8 175.6 173.9	VEL 0UT 178.1 182.9 182.4 181.3 177.3 172.8 172.0 175.2 170.9	REL IN 298.9 294.3 288.3 271.7 248.9 226.9 212.2 208.5 203.4	VEL 0UT 251.8 252.2 245.8 229.1 208.1 188.1 173.8 172.1 159.9	MER II 181.7 184.1 183.7 184.7 182.2 178.3 175.8 175.6 173.9	D VEL OUT 170.4 176.2 175.3 174.0 169.8 164.9 162.1 164.0 155.8	TAN(IN 0.0 -0.0 0.0 0.0 0.0 -0.0 0.0	VEL OUT 51.9 49.1 50.2 51.1 50.9 51.7 57.6 61.4 70.2	IN 237.3 229.5 222.2 199.3 169.5 140.4 118.8 112.4 105.5	SPEED OUT 237.2 229.6 222.4 200.1 171.1 142.2 120.2 113.5 106.2
RP 1 2 3 4 5 6 7 8 9	ABS M. IN 0.549 0.557 0.560 0.552 0.540 0.531 0.530 0.525	ACH NO OUT 0.526 0.542 0.559 0.528 0.515 0.513 0.522 0.509	REL M IN 0.903 0.872 0.824 0.754 0.687 0.641 0.630 0.014	ACH NO OUT 0.744 0.747 0.729 0.681 0.620 0.560 0.518 0.513	MERID M IN 0.549 0.557 0.556 0.560 0.552 0.540 0.531 0.530 0.525	0.504 0.522 0.520 0.517 0.506 0.491 0.483 0.464				PEAK SS MACH NO 1.164 1.148 1.140 1.108 1.077 1.051 1.028 1.022 1.012
6P 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 1.3 1.0 1.2 1.1 1.6 2.3 2.8 3.2	DENCE SS -3.4 -4.0 -4.3 -6.6 -10.3 -13.6 -14.9 -14.7	DEV 5.3 5.2 5.6 7.2 10.4 13.9 14.1 13.0	D-FACT 0.328 0.304 0.312 0.322 0.324 0.326 0.343 0.342 0.399	0.856 0.921 0.935 0.910 0.893 0.852 0.872 0.890 0.707	LOSS COTOT 0.047 0.025 0.022 0.029 0.034 0.048 0.043 0.039 0.116	OEFF PROF 0.047 0.025 0.022 0.029 0.034 0.048 0.043 0.039 0.116	LOSS F TOT 0.031 0.017 0.015 0.020 0.022 0.029 0.024 0.021	PARAM PROF 0.031 0.017 0.015 0.020 0.022 0.022 0.024 0.021

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 100 PERCENT DESIGN SPEED

(c) Reading 1402

	7 211		ABS	BETAM	REL	BETAM	TOTA	l temp	TOTAL	PRESS
RP	IN O	UT	[N	UJT	IN	OUT	[N	RATIO	IN	RATIO
1	24,648 24.0	638	0.0	22.2	33. ≥	48.8	٠ 2	1.048	10.07	1.140
2	23.871 23.8	876	0.0	19.7	53.9	46.7	288.9	1.045	10.13	1.149
2 3	23.094 23.	114	0.0	19.3	52.9	45.5	288.6	1.044	10.14	.146
4	20.744 20.1	828	0.0	20.1	49.7	41.7	287.9	1.040	10.14	1.131
5	17,623 17.	780	0.0	20.5	45.5	36.2	287.8	1.034	10.14	1.110
6	14,544 14,	732	0.0	21.8	40.7	28.8	287.8	1.029	10.14	1.093
7	12.299 12.4		0.0	23.4	36.4	20.7	287.9	1.027	10.14	1.088
8	11.570 11.0		0.0	24.2	34.8	17,1	287.9	1.026	10.14	1.088
9	10.846 10.9		0.0	28.5	33.4	13.0	287.9	1.027	10.10	1.068
•				40.0						
	ABS VE	L	REI.	VEL	MERI	D VEL	TAN	G VEL	WHEEL	SPEED
₩		บั	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	165.9 160	6.2	290.7	233.7	165.9	153.9	0.0	62.7	238.7	238.6
2	168.6 17	2.9	285.9	237.5	168.6	162.9	0.0	58.2	231.0	231.0
2 3 4		2.2	279.9	231.4	168.8	162.1	0.0	58.2	223.2	223.4
4		0.6	262.9	214.6	170.0	160.2	0.0	58.6	200.6	201.4
5		5.9	238.9	192.5	167.5	155.3	0.0	58.2	170.4	171.9
6		1.8	215.6	171.4	163.4	150.3	0.0	60.0	140,7	142.5
5 6 7		1.8	200.0	158.7	160.9	148 5	0.0	64.3	118.8	120.2
8		3.5	195.5	156.0	160.5	149.1	0.0	67.1	111,7	112.8
9		5.0	190.5	139.8	159.1	136.2	0.0	74.1	104.8	105.6
	15531					. 30.2	•.•			14310
	ARS MACH	NO	REL M	ACH NO	MERID M	ACH NO			MERID	PEAR SS
8	ABS MACH			ACH NO	MERID M	-				PEAK SS MACH NO
8 P	IN 0	UT	IN	OUT	IN	OUT			VEL R	MACH NO
1	IN 00	UT 487	IN 0.874	0UT	IN 0.499	0UT 0.451			VEL R 0.928	MACH NO 1.210
1 2	IN 00 0.499 0.4 0.508 0.9	UT 487 509	IN 0.874 0.861	0UT 3.686 0.699	IN 0.499 0.508	0.451 0.480			VEL R 0.928 0.966	MACH NO 1.210 1.190
1 2	IN 09 0.499 0.4 0.508 0.9	UT 487 509 508	IN 0.874 0.861 0.843	0.686 0.699 0.682	IN 0.499 0.508 0.508	0UT 0.451 0.480 0.478			VEL R 0.928 0.966 0.960	MACH NO 1.210 1.190 1.176
1 2 3 4	IN 00 0.499 0.4 0.508 0.9 0.508 0.9	UT 487 509 508 504	IN 0.874 0.861 0.845 0.795	0UT 2.686 0.699 0.682 0.634	(N 0.499 0.508 0.508 0.513	OUT 0.451 0.480 0.478 0.473			VEL R 0.928 0.966 0.960 0.942	MACH NO 1.210 1.190 1.176 1.137
1 2 3 4	IN 00 0.499 0.4 0.508 0.5 0.508 0.5 0.515 0.5	UT 487 509 508 504 491	IN 0.874 0.861 0.845 0.795 0.720	0UT 3.686 0.699 0.682 0.634 0.570	(N 0.499 0.508 0.508 0.513 0.505	0.451 0.480 0.478 0.473 0.460			VEL R 0.928 0.966 0.960 0.942 0.927	MACH NO 1.210 1.190 1.176 1.137 1.092
1 2 3 4 5 6	IN 00 0.499 0.4 0.508 0.5 0.508 0.5 0.515 0.5 0.505 0.4	UT 487 509 508 504 491	IN 0.874 0.861 0.845 0.793 0.720 0.649	0UT 3.686 0.699 0.682 0.634 0.570 0.508	IN 0.499 0.508 0.508 0.513 0.505 0.492	OUT 0.451 0.480 0.478 0.473 0.460 0.446			VEL R 0.928 0.966 0.960 0.942 0.927 0.919	MACH NO 1.210 1.190 1.176 1.137 1.092 1.049
1 2 5 4 5 6 7	IN 00 0.499 0. 0.508 0. 0.508 0. 0.515 0. 0.505 0. 0.492 0.	UT 487 509 508 504 491 480	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.602	0UT 2.686 0.699 0.682 0.634 0.570 0.508 0.471	(N 0.499 0.508 0.508 0.513 0.505 0.492 0.484	OUT 0.451 0.480 0.478 0.473 0.460 0.446 0.441			VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923	MACH NO 1.210 1.190 1.176 1.137 1.092 1.049 1.013
1 2 3 4 5 6 7	IN 00.499 0.400 0.508 0.508 0.505 0.505 0.600 0.515 0.600 0.492 0.492 0.492 0.493 0.	UT 487 509 508 504 491 480 480	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.602 0.588	0UT 2.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463	(N 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483	OUT 0.451 0.480 0.478 0.473 0.460 0.446 0.441			VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923	MACH NO 1.210 1.190 1.176 1.137 1.092 1.049 1.013
1 2 5 4 5 6 7	IN 00.499 0.400 0.508 0.508 0.505 0.505 0.600 0.515 0.600 0.492 0.492 0.492 0.493 0.	UT 487 509 508 504 491 480	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.602	0UT 2.686 0.699 0.682 0.634 0.570 0.508 0.471	(N 0.499 0.508 0.508 0.513 0.505 0.492 0.484	OUT 0.451 0.480 0.478 0.473 0.460 0.446 0.441			VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923	MACH NO 1.210 1.190 1.176 1.137 1.092 1.049 1.013
1 2 3 4 5 6 7	IN 00.499 0.400 0.508 0.508 0.505 0.505 0.600 0.515 0.600 0.492 0.492 0.492 0.493 0.	UT 487 509 508 504 491 480 480	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.602 0.588	0UT 2.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463	(N 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483	OUT 0.451 0.480 0.478 0.473 0.460 0.446 0.441			VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923	MACH NO 1.210 1.190 1.176 1.137 1.092 1.049 1.013
1 2 3 4 5 6 7	IN 00 0.499 0.4 0.508 0.5 0.508 0.5 0.555 0.6 0.492 0.4 0.484 0.6 0.485 0.6	UT 487 509 508 504 491 480 486 459	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.602 0.588 0.573	0UT 3.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463 0.414	(N 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483	0UT 0.451 0.480 0.478 0.473 0.460 0.446 0.441 0.443 0.403	LOSS C	OFFF	VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923 0.929 0.856	MACH NO 1.210 1.190 1.176 1.137 1.092 1.049 1.013 1.000 0.985
1 2 5 4 5 6 7 8 9	IN 00 0.499 0.4 0.508 0.5 0.508 0.5 0.505 0.4 0.492 0.4 0.483 0.4 0.478 0.4	UT 487 509 508 504 491 480 486 459	IN 0.874 0.861 0.843 0.795 0.720 0.649 0.602 0.588 0.573	0UT 2.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463	(N 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483	0UT 0.451 0.480 0.478 0.473 0.460 0.446 0.441 0.443 0.403	LOSS C		VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923 0.929 0.856	MACH NO 1.210 1.190 1.176 1.137 1.092 1.049 1.013 1.000 0.985
1 2 3 4 5 6 7 8 9	IN 00 0.499 0.4 0.508 0.5 0.508 0.5 0.555 0.6 0.492 0.6 0.483 0.6 0.478 0.6	UT 487 509 508 504 491 480 486 459 INC I MEAN	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.502 0.588 0.573	OUT 3.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463 0.414	IN 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483 0.478	0UT 0.451 0.480 0.478 0.473 0.460 0.446 0.441 0.443 0.403	TOT	PROF	VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923 0.929 0.856	MACH NO 1.210 1.190 1.176 1.137 1.092 1.049 1.013 1.000 0.985
1 2 3 4 5 6 7 8 9	IN 00 0.499 0.4 0.508 0.508 0.508 0.6 0.515 0.6 0.492 0.6 0.483 0.6 0.478 0.6 PERCENT SPAN 1 5.00	UT 487 509 508 504 491 480 486 459 INCI MEAN 4.0	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.602 0.588 0.573	0UT 2.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463 0.414	IN 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483 0.478	0UT 0.451 0.480 0.478 0.475 0.460 0.446 0.441 0.443 0.403	TOT 0.087	PROF 0.087	VEL R 0.928 0.966 0.966 0.942 0.942 0.919 0.923 0.929 0.856 LOSS P TOT 0.056	MACH NO 1.210 1.190 1.176 1.177 1.092 1.049 1.013 1.000 0.985 ARAM PROF 0.056
1 2 3 4 5 6 7 8 9 P 1 2	IN 00 0.499 0.4 0.508 0.508 0.508 0.505 0.6 0.505 0.6 0.492 0.6 0.483 0.6 0.478 0.6 PERCENT SPAN 1 5.00 10.00	UT 487 509 508 504 491 480 486 459 INCI MEAN 4.0 3.6	IN 0.874 0.861 0.845 0.720 0.649 0.602 0.588 0.573 DENCE SS -0.7	0UT 2.686 0.699 0.682 0.634 0.570 0.471 0.463 0.414 DEV 6.7 6.2	IN 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483 0.478 D-FACT	0UT 0.451 0.480 0.478 0.460 0.446 0.441 0.443 0.403 EFF	TOT 0.087 0.042	PROF 0.087 0.042	VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923 0.929 0.856 LOSS P TOT 0.056 0.028	MACH NO 1.210 1.190 1.176 1.177 1.092 1.049 1.013 1.000 0.985 ARAM PROF 0.056 0.028
1 2 3 4 5 6 7 8 9 P 1 2	IN 00 0.499 0.4 0.508 0.508 0.508 0.515 0.6 0.515 0.6 0.492 0.6 0.483 0.6 0.478 0.6 PERCENT SPAN 1 5.00 10.00	UT 487 509 508 504 491 480 486 459 INCI MEAN 4.0 3.6 3.6	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.588 0.573 DENCE SS -0.7 -1.4 -1.8	OUT 3.686 0.699 0.682 0.634 0.508 0.471 0.463 0.414 DEV 6.7 6.2 6.7	IN 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483 0.478 D-FACT 0.408 0.365 0.365	0UT 0.451 0.480 0.478 0.473 0.460 0.446 0.443 0.403 EFF 0.787 0.894 0.902	TOT 0.087 0.042 0.039	PROF 0.087 0.042 0.039	VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923 0.929 0.856 LOSS P TOT 0.056 0.028 0.025	MACH NO 1.210 1.190 1.176 1.137 1.092 1.049 1.013 1.000 0.985 ARAM PROF 0.056 0.028 0.025
1 2 3 4 5 6 7 8 9 P 1 2 3 4	IN 00 0.499 0.4 0.508 0.508 0.508 0.515 0.6 0.515 0.6 0.492 0.6 0.483 0.6 0.478 0.6 PERCENT SPAN 1 5.00 10.00 15.00 30.00	UT 487 509 508 504 491 480 486 459 INCI MEAN 4.0 3.6 3.6 3.7	IN 0.874 0.861 0.843 0.793 0.723 0.649 0.602 0.588 0.573 DENCE SS -0.7 -1.4 -1.8 -4.1	0UT 3.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463 0.414 DEV 6.7 6.2 6.7 8.3	IN 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483 0.478 D-FACT 0.408 0.365 0.369 0.379	0UT 0.451 0.480 0.478 0.473 0.460 0.446 0.443 0.403 EFF 0.787 0.894 0.902 0.905	TOT 0.087 0.042 0.039 0.037	PROF 0.087 0.042 0.039 0.037	VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.929 0.856 LOSS P TOT 0.056 0.028 0.025 0.024	MACH NO 1.210 1.190 1.176 1.177 1.092 1.049 1.013 1.000 0.985 ARAM PROF 0.056 0.028 0.025 0.024
1 2 3 4 5 6 7 8 9 P 1 2 3 4	IN 00 0.499 0.4 0.508 0.508 0.505 0.4 0.515 0.6 0.492 0.4 0.484 0.6 0.483 0.6 0.478 0.6 PERCENT SPAN I 5.00 10.00 15.00 30.00 50.00	UT 487 509 508 504 491 480 486 459 [NCI MEAN 4.0 3.6 3.7 4.1	IN 0.874 0.861 0.843 0.793 0.793 0.649 0.602 0.588 0.573 DENCE SS -0.7 -1.4 -1.8 -4.1 -7.7	0UT 3.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463 0.414	IN 0.499 0.508 0.508 0.513 0.505 0.492 0.483 0.478 D-FACT 0.408 0.365 0.369 0.379 0.385	0UT 0.451 0.480 0.478 0.473 0.460 0.446 0.441 0.443 0.403 EFF 0.797 0.894 0.902 0.905 0.888	TOT 0.087 0.042 0.039 0.037 0.044	PROF 0.087 0.042 0.039 0.037 0.044	VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923 0.929 0.856 LOSS P TOT 0.056 0.028 0.024 0.028	MACH NO 1.210 1.190 1.176 1.137 1.032 1.049 1.013 1.000 0.985 ARAM PROF 0.056 0.028 0.025 0.024
1 2 3 4 5 6 7 8 9 P 1 2 3 4	IN 00 0.499 0.4 0.508 0.508 0.505 0.4 0.515 0.6 0.492 0.4 0.484 0.4 0.478 0.4 PERCENT SPAN 1 5.00 10.00 15.00 30.00 70.00	UT 487 509 508 504 491 480 486 459 INCI MEAN 4.0 3.6 3.7 4.8	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.573 DENCE SS -0.7 -1.4 -1.8 -4.1 -7.7	OUT 3.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463 0.414 DEV 6.7 6.2 6.7 6.3 11.3	IN 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483 0.478 D-FACT 0.408 0.365 0.369 0.379 0.385 0.394	0UT 0.451 0.480 0.478 0.473 0.460 0.446 0.441 0.443 0.403 EFF 0.787 0.894 0.902 0.905 0.988 0.894	TOT 0.087 0.042 0.039 0.037 0.044 0.042	PROF 0.087 0.042 0.039 0.037 0.044 0.042	VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923 0.856 LOSS P TOT 0.056 0.028 0.025 0.024	MACH NO 1.210 1.190 1.176 1.137 1.049 1.013 1.000 0.985 ARAM PROF 0.056 0.028 0.028 0.028 0.028
125456789 P1254567	IN 00 0.499 0.4 0.508 0.508 0.505 0.6 0.505 0.4 0.492 0.4 0.484 0.4 0.478 0.4 PERCENT SPAN 1 5.00 10.00 15.00 30.00 50.00 70.00 85.00	UT 487 509 508 504 490 480 486 489 [NCI MEAN 4.0 3.6 3.1 4.9 5.2	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.602 0.573 DENCE SS -0.7 -1.4 -1.8 -4.1 -7.7 -11.1	OUT 3.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463 0.414 DEV 6.7 6.2 6.7 8.3 11.3 13.9	IN 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483 0.478 D-FACT 0.408 0.365 0.369 0.379 0.385 0.394 0.398	0UT 0.451 0.480 0.478 0.473 0.460 0.446 0.441 0.443 0.403 EFF 0.787 0.894 0.905 0.894 0.912	TOT 0.087 0.042 0.059 0.037 0.044 0.042 0.037	PROF 0.087 0.042 0.039 0.037 0.044 0.042 0.037	VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923 0.929 0.856 LOSS P TOT 0.056 0.028 0.025 0.025 0.025	MACH NO 1.210 1.190 1.176 1.137 1.092 1.013 1.013 1.013 0.985 ARAM PROF 0.056 0.028 0.028 0.025 0.028
1 2 3 4 5 6 7 8 9 P 1 2 3 4	IN 00 0.499 0.4 0.508 0.508 0.505 0.4 0.515 0.6 0.492 0.4 0.484 0.4 0.478 0.4 PERCENT SPAN 1 5.00 10.00 15.00 30.00 70.00	UT 487 509 508 504 491 480 486 459 INCI MEAN 4.0 3.6 3.7 4.8	IN 0.874 0.861 0.843 0.793 0.720 0.649 0.573 DENCE SS -0.7 -1.4 -1.8 -4.1 -7.7	OUT 3.686 0.699 0.682 0.634 0.570 0.508 0.471 0.463 0.414 DEV 6.7 6.2 6.7 6.3 11.3	IN 0.499 0.508 0.508 0.513 0.505 0.492 0.484 0.483 0.478 D-FACT 0.408 0.365 0.369 0.379 0.385 0.394	0UT 0.451 0.480 0.478 0.473 0.460 0.446 0.441 0.443 0.403 EFF 0.787 0.894 0.902 0.905 0.988 0.894	TOT 0.087 0.042 0.039 0.037 0.044 0.042	PROF 0.087 0.042 0.039 0.037 0.044 0.042	VEL R 0.928 0.966 0.960 0.942 0.927 0.919 0.923 0.856 LOSS P TOT 0.056 0.028 0.025 0.024	MACH NO 1.210 1.190 1.176 1.137 1.049 1.013 1.000 0.985 ARAM PROF 0.056 0.028 0.028 0.028 0.028

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 100 PERCENT DESIGN SPEED

(d) Reading 1404

123456789	RADI IN 24.648 2 23.871 2 23.094 2 20.744 2 17.623 1 14.544 1 12.294 1 11.570 1	OUT 24.638 25.876 25.114 20.828 17.780 14.732 12.446	ABS IN 0.0 0.0 -0.0 -0.0 -0.0 0.0 0.0	BETAM OUT 28.7 23.8 23.2 23.4 24.0 24.9 26.5 27.3 32.0	REL IN 57.8 56.3 55.3 52.2 47.9 43.1 38.8 37.1 35.6	BETAM OUT 50.7 47.8 46.2 42.4 36.7 29.2 20.7 17.1. 13.0	TOTAL IN 288.9 288.8 288.4 288.0 287.9 287.9 287.9 288.0 288.0	TEMP RAT10 1.056 1.051 1.049 1.044 1.037 1.031 1.028 1.027	TOTAL IN 10.08 10.13 10.13 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.141 1.153 1.154 1.140 1.120 1.100 1.095 1.092 1.074
	ABS			VEL		D VEL		G VEL	WHEEL	
89	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	149.8	153.1	280.9	212.0	149.8	134.3	0.0	73.5	237.6	237.5
2	153.0	162.5	276.1	221.5	153.0	148.7	0.0	65.6	229.8	229.8
2 3 4	153.6 155.0	164.4 162.2	269.9 252.8	218.2 201.6	153.6 155.0	151.1 148.8	0.0	64.7	222.0	222.2 200.6
•	153.1	157.4	228.4	179.2	153.1	143.8	-0.0 -0.0	64.5 64.0	199.8 169.5	171.0
5 6	149.4	152.5	204.5	158.4	149.4	138.3	-0.0	64.3	139.7	141.5
7	147.4	152.8	189.0	146.2	147.4	136.8	0.0	68.1	118.4	119.8
8	147.2	153.3	184.6	142.6	147.2	136.2	0.0	70.4	111.3	112.4
9	145.6	144.8	179.1	126.1	145.6	122.9	0.0	76.6	104.3	105.1
RP 1 2 5 4 5 6 7 8 9	ABS M/IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436	ACH NO OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427	REL M IN 0.841 0.827 0.810 0.759 0.686 0.613 0.567 0.553	0.648 0.648 0.640 0.593 0.529 0.468 0.433 0.422 0.372	MERID M IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441	0.435 0.435 0.443 0.438 0.424 0.409 0.405 0.403 0.363				PEAK SS MACH NO 1.238 1.214 1.197 1.153 1.096 1.040 0.999 0.982
1 2 3 4 5 6 7 8 9	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436	OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427	IN 0.841 0.827 0.810 0.759 0.686 0.613 0.567 0.553 0.537	0UT 0.618 0.648 0.640 0.593 0.529 0.468 0.433 0.422	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442	OUT 0.391 0.435 0.443 0.438 0.424 0.409 0.405 0.403 0.363	LOSS C		VEL R 1 0.897 0.972 0.984 0.960 0.939 0.926 0.928 0.925 0.844	1.238 1.214 1.197 1.153 1.096 1.040 0.999 0.982 0.964
1 2 3 4 5 6 7 8 9	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436 PERCENT SPAN	OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427 INCI MEAN	IN 0.841 0.927 0.810 0.759 0.686 0.613 0.567 0.553 0.537	OUT 0.618 0.648 0.640 0.593 0.529 0.468 0.433 0.422 0.372	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436	OUT 0.391 0.435 0.443 0.438 0.424 0.409 0.405 0.403 0.363	TOT	PROF	VEL R 1 0.897 0.972 0.984 0.960 0.939 0.926 0.928 0.925 0.844	1.238 1.214 1.197 1.197 1.195 1.096 1.040 0.999 0.982 0.964
1 2 3 4 5 6 7 8 9	IN 0.448 0.459 0.461 0.465 0.448 0.442 0.441 0.436 PERCENT SPAN 5.00	OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427 INCI MEAN 6.5	IN 0.841 0.827 0.810 0.759 0.686 0.613 0.567 0.553 0.537	OUT 0.618 0.648 0.640 0.593 0.529 0.468 0.433 0.422 0.372	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436 D-FACT	OUT 0.391 0.435 0.443 0.424 0.409 0.405 0.403 0.363	TOT 0.154	PR0F 0.154	VEL R 1 0.897 0.972 0.984 0.960 0.939 0.926 0.928 0.925 0.844 LOSS P/ TOT 0.096	1.238 1.214 1.197 1.197 1.195 1.096 1.040 0.999 0.982 0.964 RAM PROF 0.096
1 2 3 4 5 6 7 8 9	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436 PERCENT SPAN 5.00	OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427 INCI MEAN 6.5 6.1	IN 0.841 0.827 0.810 0.759 0.686 0.613 0.567 0.553 0.537	OUT 0.618 0.648 0.640 0.593 0.529 0.468 0.433 0.422 0.372 DEV 8.6 7.3	IN 0.448 0.459 0.461 0.465 0.448 0.442 0.441 0.436 D-FACT 0.503 0.427	OUT 0.391 0.435 0.443 0.424 0.409 0.405 0.403 0.363 EFF	TOT 0.154 0.091	PROF 0.154 0.091	VEL R 1 0.897 0.972 0.984 0.960 0.939 0.926 0.928 0.925 0.844 LOSS P/ TOT 0.096 0.059	1.238 1.214 1.197 1.197 1.196 1.040 0.999 0.982 0.964 ARAM PROF 0.096 0.059
1 2 3 4 5 6 7 8 9	IN 0.448 0.459 0.461 0.465 0.460 0.442 0.441 0.436 PERCENT SPAN 5.00 10.00 15.00	OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427 INCI MEAN 6.5 6.1 6.1	IN 0.841 0.827 0.810 0.759 0.686 0.613 0.567 0.553 0.537	OUT 0.618 0.648 0.640 0.593 0.529 0.468 0.433 0.422 0.372 DEV 8.6 7.3 7.3	IN 0.448 0.459 0.461 0.465 0.460 0.442 0.441 0.436 D-FACT 0.503 0.427 0.417	OUT 0.391 0.435 0.443 0.424 0.409 0.405 0.403 0.363 EFF 0.686 0.806 0.856	TOT 0.154 0.091 0.067	PROF 0.154 0.091 0.067	VEL R 1 0.897 0.972 0.984 0.960 0.939 0.926 0.928 0.925 0.844 LOSS P/ TOT 0.096 0.059 0.044	1.238 1.214 1.197 1.153 1.096 1.040 0.999 0.982 0.964 NRAM PROF 0.096 0.059
123456789 8P1234	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436 PERCENT SPAN 5.00 10.00 15.00	OUT 0.446 0.476 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427 INCI MEAN 6.5 6.1 6.1	IN 0.841 0.827 0.810 0.759 0.663 0.567 0.553 0.553 DENCE SS 1.9 1.1 0.6 -1.6	OUT 0.618 0.648 0.640 0.593 0.529 0.468 0.433 0.422 0.372 DEV 8.6 7.3 7.3 9.0	IN 0.448 0.459 0.461 0.465 0.448 0.442 0.441 0.436 D-FACT 0.503 0.427 0.417 0.426	OUT 0.391 0.435 0.443 0.424 0.409 0.405 0.403 0.363 EFF 0.686 0.806 0.856 0.866	TOT 0.154 0.091 0.067 0.062	PROF 0.154 0.091 0.067 0.062	VEL R 1 0.897 0.972 0.984 0.960 0.939 0.926 0.928 0.925 0.844 LOSS P TOT 0.096 0.059 0.044 0.040	1.238 1.214 1.197 1.193 1.096 1.040 0.999 0.982 0.964 RAM PROF 0.059 0.044
1 2 3 4 5 6 7 8 9 RP 1 2 3 4 5 6	IN 0.448 0.459 0.461 0.465 0.460 0.442 0.441 0.436 PERCENT SPAN 5.00 10.00 15.00	OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427 INCI MEAN 6.5 6.1 6.1	IN 0.841 0.827 0.810 0.759 0.663 0.557 0.553 0.537 DENCE SS 1.9 1.1 0.6 -1.6 -5.3	OUT 0.618 0.648 0.640 0.593 0.529 0.468 0.433 0.422 0.372 DEV 8.6 7.3 7.3 9.0	IN 0.448 0.459 0.461 0.465 0.460 0.442 0.441 0.436 D-FACT 0.503 0.427 0.417	OUT 0.391 0.435 0.443 0.424 0.409 0.405 0.403 0.363 EFF 0.686 0.806 0.856	TOT 0.154 0.091 0.067	PROF 0.154 0.091 0.067	VEL R 1 0.897 0.972 0.984 0.960 0.939 0.926 0.928 0.925 0.844 LOSS P/ TOT 0.096 0.059 0.044	1.238 1.214 1.197 1.153 1.096 1.040 0.999 0.982 0.964 NRAM PROF 0.096 0.059
1 2 3 4 5 6 7 8 9	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436 PERCENT SPAN 5.00 10.00 15.00 50.00	OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427 INCI MEAN 6.5 6.1 6.1 6.1 6.1	IN 0.841 0.827 0.810 0.759 0.663 0.567 0.553 0.553 DENCE SS 1.9 1.1 0.6 -1.6	OUT 0.618 0.648 0.640 0.593 0.529 0.468 0.435 0.422 0.372 DEV 8.6 7.3 7.3 9.0	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.441 0.436 D-FACT 0.503 0.427 0.426 0.435	OUT 0.391 0.435 0.443 0.438 0.424 0.409 0.405 0.363 EFF 0.686 0.856 0.856 0.856 0.856	TOT 0.154 0.091 0.067 0.062 0.050	PROF 0.154 0.091 0.067 0.062 0.050	VEL R 1 0.897 0.972 0.984 0.960 0.939 0.926 0.928 0.925 0.844 LOSS P/ TOT 0.096 0.059 0.044 0.040 0.031	1.238 1.214 1.197 1.153 1.040 0.999 0.982 0.964 RAM PROF 0.059 0.044 0.040 0.031
1 2 3 4 5 6 7 8 9 RP 1 2 3 4 5 6	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436 PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 90.00	OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427 INCI MEAN 6.5 6.1 6.1 6.1 6.1 6.6	IN 0.841 0.827 0.810 0.759 0.663 0.557 0.553 0.5537 DENCE SS 1.9 1.1 0.6 -1.6 -5.3 -8.7	OUT 0.618 0.648 0.640 0.593 0.529 0.468 0.433 0.422 0.372 DEV 8.6 7.3 7.3 9.0	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.441 0.436 D-FACT 0.503 0.427 0.417 0.426 0.435	OUT 0.391 0.435 0.443 0.424 0.409 0.405 0.403 0.363 EFF 0.686 0.856 0.856 0.866 0.892 0.899	TOT 0.154 0.091 0.067 0.062 0.050 0.047	PROF 0.154 0.091 0.067 0.062 0.050 0.047	VEL R 1 0.897 0.972 0.984 0.960 0.939 0.926 0.925 0.844 LOSS P/TOT 0.096 0.059 0.044 0.040 0.051 0.028	1.238 1.214 1.197 1.153 1.096 1.040 0.999 0.964 RAM PROF 0.096 0.059 0.044 0.040 0.031
123456789 8P1234567	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436 PERCENT SPAN 5.00 10.00 15.00 50.00 70.00 85.00	OUT 0.446 0.476 0.482 0.477 0.464 0.451 0.452 0.454 0.427 INCI MEAN 6.5 6.1 6.1 6.1 6.2 7.6	IN 0.841 0.827 0.810 0.759 0.686 0.613 0.567 0.553 0.537 DENCE SS 1.9 1.1 0.6 -1.6 -5.3 -1.0	OUT 0.618 0.648 0.640 0.593 0.529 0.468 0.433 0.422 0.372 DEV 8.6 7.3 7.3 9.0 11.8 14.3 13.7	IN 0.448 0.459 0.461 0.465 0.460 0.448 0.442 0.441 0.436 D-FACT 0.503 0.427 0.417 0.426 0.440 0.441	OUT 0.391 0.435 0.443 0.424 0.409 0.405 0.403 0.363 EFF 0.686 0.806 0.856 0.856 0.856 0.856	TOT 0.154 0.091 0.067 0.062 0.050 0.047 0.026	PROF 0.154 0.091 0.067 0.062 0.050 0.047 0.26	VEL R 9 0.897 0.972 0.984 0.960 0.928 0.925 0.844 LOSS P/TOT 0.096 0.059 0.044 0.040 0.051 0.028 0.014	TACH NO 1.238 1.214 1.197 1.195 1.096 1.040 0.999 0.982 0.964 RAM PROF 0.059 0.059 0.044 0.040 0.031 0.031

TABLE VII. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 100 PERCENT DESIGN SPEED

(e) READING 1405

TP 1 2 3 4 5 6 7 8	RAD IN 24.648: 23.871: 23.094: 20.744: 17.625: 14.544: 12.299: 11.570	OUT 24.638 23.876 23.114 20.828 17.780 14.732 12.446	ABS IN -0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 43.5 33.8 27.6 25.7 25.7 26.5 28.1 29.1	REL IN 60.2 58.9 58.0 54.6 50.0 44.9 40.5 38.9	BETAM OUT 53.0 49.9 46.9 41.8 36.3 28.8 20.5 16.6	288.8 1. 288.7 1. 288.5 1. 288.0 1. 287.9 1. 287.9 1.	ENP T10 369 060 055 048 039 032 029	TOTAL IN 10.09 10.13 10.13 10.14 10.14 10.14	PRESS RATIO 1.122 1.125 1.140 1.147 1.128 1.107 1.099 1.097
9	10.846		0.0	33.7	37.4	12.5		029	10.11	1.079
8P 1 2 3 4 5 6 7 6	ABS IN 135.8 138.4 138.5 141.6 141.9 140.1 138.4 138.2	VEL OUT 143.7 149.1 157.7 161.3 156.2 150.7 149.3 150.5	REL IN 273.5 268.4 261.6 244.5 221.0 197.8 182.1 177.5	VEL OUT 173.3 192.4 204.4 194.9 153.9 140.6 137.2	MERI IN 135.8 138.4 138.5 141.6 141.9 140.1 138.4 138.2	D VEL OUT 104.3 124.0 139.8 145.3 140.8 134.8 131.7 131.5	-0.0 9 0.0 8 0.0 7 0.0 7 0.0 6 0.0 6	EL 9 2.9 2.9 7.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	IN 237.5 229.9 221.9 199.3 169.5 139.7 118.4 111.4	SPEED OUT 257.4 230.0 222.1 200.1 171.0 141.5 119.8 112.5
9	136.8	142.1	172.0	121.1	136.8	118.3		8.8	104.4	105.1
FP 1 2 3 4 5 6 7 8 9	IN 0.405 0.413 0.414 0.424 0.425	ACH NO OUT 0.415 0.435 0.460 0.473 0.460 0.444 0.441 0.445	REL N IN 0.816 0.801 0.781 0.661 0.592 0.545 0.514	ACH NO OUT 0.500 0.559 0.572 0.514 0.454 0.415 0.406 0.357	MERID M IN 0.405 0.413 0.414 0.424 0.425 0.419 0.414 0.413	0.301 0.301 0.360 0.408 0.426 0.415 0.398 0.389 0.389				PEAK SS MACH NO 1.270 1.247 1.227 1.170 1.105 1.041 0.993 0.975

TABLE VIII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

ROTOR 51A. 90 PERCENT DESIGN SPEED

(a) Reading 1540

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.648 24.638 23.871 23.876 23.094 25.114 20.744 20.828 17.623 17.780 14.544 14.752 12.299 12.446 11.570 11.684 10.846 10.922	ABS BETAM IN OUT -0.0 7.1 -0.0 7.5 -0.0 7.3 -0.0 8.5 -0.0 10.7 -0.0 12.8 -0.0 13.3 -0.0 13.4 -0.0 14.2	REL BETAM IN OUT 46.9 45.6 45.6 43.8 44.5 42.8 41.1 38.1 36.9 31.0 32.2 22.9 28.3 17.9 27.0 16.3 26.1 14.1	TOTAL TEMP- IN RATIO 288.9 1.016 288.7 1.016 288.6 1.016 288.0 1.017 287.9 1.019 287.8 1.019 287.9 1.017 287.9 1.016 287.9 1.015	TOTAL PRESS IN RATIO 10.08 1.042 10.13 1.048 10.14 1.049 10.14 1.053 10.14 1.059 10.14 1.060 10.14 1.044 10.14 1.036 10.04 1.039
87 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 198.8 186.7 202.2 190.7 202.9 195.2 202.8 198.1 199.4 200.7 197.8 197.4 196.4 195.1 190.7 192.4	REL VEL IN OUT 290.9 264.8 288.8 262.1 284.5 257.9 272.7 245.2 253.6 227.0 235.7 212.5 224.6 201.8 220.4 197.7 212.4 192.3	MERID VEL IN OUT 198.6 185.3 202.2 189.1 202.9 189.3 205.5 193.1 202.8 194.7 199.4 195.7 197.8 192.0 196.4 189.7 190.7 186.5	TANG VEL IN OUT -0.0 23.1 -0.0 24.8 -0.1 24.4 -0.0 28.9 -0.0 36.7 -0.0 44.5 -0.0 45.6 -0.0 45.4 -0.0 47.2	WHEEL SPEED IN OUT 212.5 212.2 206.3 206.3 199.4 199.6 179.3 153.5 125.6 127.2 106.3 107.6 100.0 101.0 93.5 94.2
8P 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.605 0.561 0.616 0.573 0.618 0.574 0.627 0.588 0.619 0.597 0.606 0.602 0.596 0.598 0.599 0.579 0.580	REL MACH NO IN OUT 0.885 0.795 0.880 0.788 0.867 0.776 0.835 0.739 0.774 0.684 0.604 0.684 0.609 0.671 0.597 0.645 0.580	MERID MACH NO IN OUT 0.605 0.556 0.616 0.569 0.618 0.569 0.627 0.582 0.619 0.587 0.608 0.591 0.602 0.579 0.598 0.572 0.579 0.562		MERID PEAK SS VEL R MACH NO 0.932 0.910 0.935 0.904 0.933 0.908 0.940 0.917 0.960 0.935 0.981 0.951 0.971 0.961 0.966 0.961 0.978 0.951
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN MEAN 5.00 -4.4 10.00 -4.7 15.00 -4.8 30.00 -4.9 50.00 -4.5 70.00 -3.7 85.00 -2.9 90.00 -2.5 95.00 -1.5	-9.0 3.5 -9.6 3.3 -10.2 3.9 -12.7 4.6 -16.4 6.1 -19.6 8.1 -20.7 10.9 -20.6 11.7	D-FACT EFF 0.168 0.748 0.175 0.861 0.175 0.863 0.194 0.868 0.218 0.874 0.227 0.880 0.223 0.736 0.220 0.653 0.214 0.710	LOSS COEFF TOT PROF 0.034 0.034 0.019 0.019 0.020 0.020 0.021 0.021 0.025 0.025 0.027 0.027 0.056 0.056 0.071 0.071 0.062 0.062	LOSS PARAM TOT PROF 0.023 0.023 0.013 0.013 0.014 0.014 0.015 0.015 0.017 0.017 0.017 0.017 0.032 0.032 0.039 0.032 0.032 0.032

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 90 PERCENT DESIGN SPEED

(b) Reading 1411

87 1 2 3 4 5 6 7 8 9	RAD IN 24.648 23.871 23.094 20.744 17.623 14.544 12.299 11.570 10.846	0UT 24.638 23.876 23.114 20.828 17.780 14.732 12.446 11.684	ABS IN 0.0 0.0 0.0 -0.0 -0.0 -0.0	BETAM OUT 13.9 13.3 15.0 15.1 16.3 16.8 18.7 19.7 21.8	REL IN 52.2 50.9 50.0 46.7 42.5 37.6 33.5 31.9 30.8	BETAM OUT 47.7 45.8 44.7 39.9 34.4 27.8 20.8 17.3 13.1	TOTA IN 289.0 288.8 288.7 287.8 287.9 287.9 287.9 287.8	L TEMP RAT10 1.030 1.028 1.028 1.025 1.022 1.018 1.016 1.017	TOTAL IN 10.08 10.13 10.14 10.14 10.14 10.14 10.14 10.17	PRESS RATIO 1.094 1.098 1.100 1.090 1.074 1.060 1.052 1.054 1.059
	ABS	VEL	REL	VEL	MERI	D VEL	TAN	G VEL	WHEEL	
₩	IN	OUT	IN	TUO	IN	DUT	IN	OUT	IN	TUO
1	165.5	163.4	270.1	235.6	165.5	158.7	0.0	39.2	213.5	213.4
2	167.9	167.8	266.2	234.3	167.9	163.3	0.0	38.6	206.6	206.7
4	167.4 168.6	168.3 168.4	260.7 245.9	230.7 212.0	167.4 168.6	164.0 162.6	0.0	37.8 43.7	199.9 179.0	200.0 179.8
5	166.8	164.3	226.2	191.2	166.8	157.7	0.0 -0.0	46.1	152.8	154.2
6	163.4	160.4	206.2	173.5	163.4	153.5	0.0	46.5	125.7	127.3
7	161.1	158.1	193.0	160.2	161.1	149.7	-0.0	50.8	106.4	107.7
8	160.8	160.0	189.3	157.8	160.8	150.7	0.0	53.9	99.9	100.9
9	157.3	160.6	183.1	153.1	157.3	149.1	0.0	59.6	93.7	94,4
RP 1 2 3 4 5 6 7 8 9	ABS M IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484	ACH NO OUT 0.484 0.498 0.499 0.501 0.489 0.478 0.471 0.477	REL M IN 0.812 0.801 0.785 0.742 0.682 0.621 0.581 0.569 0.550	ACH NO OUT 0.697 0.695 0.685 0.631 0.569 0.517 0.477 0.471	MERID M (N 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484	ACH NO OUT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.449			MERID VEL R 0.958 0.972 0.979 0.964 0.939 0.930 0.937	PEAK SS MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897
1 2 3 4 5 6 7 8 9	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473	0UT 0.484 0.498 0.499 0.501 0.489 0.478 0.471 0.477 0.478	IN 0.812 0.801 0.785 0.742 0.682 0.621 0.581 0.569 0.550	0UT 0.697 0.695 0.685 0.631 0.569 0.517 0.477	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485	OUT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.449	LOSS C		VEL R 0.958 0.972 0.979 0.964 0.946 0.939 0.937 0.947	MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897
1 2 3 4 5 6 7 8 9	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473 PERCENT SPAN	OUT 0.484 0.498 0.499 0.501 0.489 0.478 0.471 0.477 0.478	IN 0.812 0.801 0.785 0.742 0.682 0.621 0.581 0.569 0.550 DENCE SS	OUT 0.697 0.695 0.685 0.631 0.569 0.517 0.477 0.471 0.456	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473	OUT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.449 0.444	TOT	PROF	VEL R 0.958 0.972 0.964 0.964 0.939 0.930 0.937 0.947	MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897
1 2 3 4 5 6 7 8 9	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473 PERCENT SPAN 5.00	OUT 0.484 0.498 0.499 0.501 0.489 0.478 0.471 0.477 0.478 INCI MEAN 1.0	IN 0.812 0.801 0.785 0.742 0.682 0.621 0.581 0.569 0.550 DENCE SS -3.7	OUT 0.697 0.695 0.685 0.631 0.569 0.517 0.477 0.471 0.456	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473	OUT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.449 0.444 EFF	TOT 0.036	PROF 0.036	VEL R 0.958 0.972 0.964 0.946 0.939 0.937 0.947 LOSS F TOT 0.024	MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897 PROF 0.024
1 2 3 4 5 6 7 8 9 EP 1 2	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473 PERCENT SPAN 5.00	OUT 0.484 0.498 0.499 0.501 0.489 0.478 0.477 0.478 INCI MEAN 1.0 0.6	IN 0.812 0.801 0.785 0.742 0.621 0.581 0.569 0.550 DENCE SS -3.7 -4.3	OUT 0.697 0.695 0.685 0.631 0.569 0.517 0.477 0.471 0.456	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473 D-FACT 0.270	OUT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.449 0.444 EFF	TOT 0.036 0.014	PROF 0.036 0.014	VEL R 0.958 0.972 0.979 0.964 0.939 0.937 0.937 0.947 LOSS F TOT 0.024 0.009	MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897 ARAM PROF 0.024 0.009
1 2 3 4 5 6 7 8 9 EP 1 2	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.484 0.473 PERCENT SPAN 5.00 15.00	OUT 0.484 0.498 0.499 0.501 0.478 0.471 0.477 0.478 INCI MEAN 1.0 0.6 0.8	IN 0.812 0.801 0.785 0.742 0.682 0.621 0.581 0.569 0.550 DENCE SS -3.7	OUT 0.697 0.695 0.685 0.631 0.569 0.517 0.477 0.471 0.456	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473 D-FACT 0.270 0.260 0.252	OUT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.449 0.444 EFF	TOT 0.036	PROF 0.036	VEL R 0.958 0.972 0.979 0.964 0.946 0.939 0.937 0.947 LOSS F TOT 0.024 0.009	MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897 PROF 0.024
123456789 RP1234	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473 PERCENT SPAN 5.00	OUT 0.484 0.498 0.499 0.501 0.489 0.478 0.477 0.478 INCI MEAN 1.0 0.6	IN 0.812 0.801 0.785 0.742 0.621 0.581 0.569 0.550 DENCE SS -3.7 -4.3 -4.6	OUT 0.697 0.695 0.685 0.531 0.569 0.517 0.477 0.471 0.456 DEV 5.6 5.3 5.8	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473 D-FACT 0.270	0UT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.449 0.444 EFF 0.874 0.950 0.994	TOT 0.036 0.014 0.002	PROF 0.036 0.014 0.002	VEL R 0.958 0.972 0.979 0.964 0.939 0.937 0.937 0.947 LOSS F TOT 0.024 0.009	MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897 ARAM PROF 0.024 0.009 0.001
123456789 RP123456	IN 0.498 0.505 0.504 0.508 0.508 0.492 0.485 0.473 PERCENT SPAN 5.00 10.00 15.00 30.00 70.00	OUT 0.484 0.498 0.499 0.501 0.489 0.478 0.477 0.478 INCI MEAN 1.0 0.6 0.8 0.7 1.2	IN 0.812 0.801 0.785 0.742 0.682 0.621 0.581 0.569 0.550 DENCE SS -3.7 -4.3 -4.6 -7.1 -10.7 -14.2	OUT 0.697 0.695 0.685 0.631 0.569 0.517 0.471 0.476 0.456	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.473 D-FACT 0.270 0.260 0.252 0.294 0.315 0.312	0UT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.444 EFF 0.874 0.950 0.994 0.989 0.952 0.934	TOT 0.036 0.014 0.002 0.003 0.013 0.018	PROF 0.036 0.014 0.002 0.003 0.013 0.018	VEL R 0.958 0.972 0.979 0.964 0.939 0.937 0.947 LOSS F TOT 0.024 0.001 0.002 0.009	MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897 ARAM PROF 0.024 0.009 0.001 0.002 0.009
1 2 3 4 5 6 7 8 9 RP 1 2 3 4 5 6 7	IN 0.498 0.505 0.504 0.508 0.508 0.492 0.485 0.473 PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 85.00	OUT 0.484 0.498 0.499 0.501 0.478 0.471 0.477 0.478 INCI MEAN 1.0 0.6 0.8 0.7 1.2	IN 0.812 0.801 0.785 0.742 0.682 0.621 0.581 0.569 0.550 DENCE SS -3.7 -4.3 -4.6 -7.1	OUT 0.697 0.695 0.685 0.631 0.569 0.517 0.477 0.471 0.456 DEV 5.6 5.3 5.8 6.5 9.5 12.9 13.8	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.484 0.473 D-FACT 0.270 0.260 0.252 0.294 0.315 0.327	0UT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.444 EFF 0.874 0.950 0.994 0.952 0.934 0.955	TOT 0.036 0.014 0.002 0.003 0.013 0.018 0.029	PROF 0.036 0.014 0.002 0.003 0.013 0.018 0.029	VEL R 0.958 0.972 0.964 0.939 0.930 0.937 0.947 LOSS F TOT 0.024 0.009 0.001 0.002 0.001	MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897 ARAM PROF 0.024 0.009 0.001 0.002 0.001
123456789 RP123456	IN 0.498 0.505 0.504 0.508 0.508 0.492 0.485 0.473 PERCENT SPAN 5.00 10.00 15.00 30.00 70.00	OUT 0.484 0.498 0.499 0.501 0.489 0.478 0.477 0.478 INCI MEAN 1.0 0.6 0.8 0.7 1.2	IN 0.812 0.801 0.785 0.742 0.682 0.621 0.581 0.569 0.550 DENCE SS -3.7 -4.3 -4.6 -7.1 -10.7 -14.2	OUT 0.697 0.695 0.685 0.631 0.569 0.517 0.471 0.476 0.456	IN 0.498 0.505 0.504 0.508 0.503 0.492 0.485 0.473 D-FACT 0.270 0.260 0.252 0.294 0.315 0.312	0UT 0.469 0.484 0.487 0.484 0.470 0.457 0.446 0.444 EFF 0.874 0.950 0.994 0.989 0.952 0.934	TOT 0.036 0.014 0.002 0.003 0.013 0.018	PROF 0.036 0.014 0.002 0.003 0.013 0.018	VEL R 0.958 0.972 0.979 0.964 0.939 0.937 0.947 LOSS F TOT 0.024 0.001 0.002 0.009	MACH NO 1.037 1.022 1.015 0.985 0.964 0.937 0.919 0.910 0.897 ARAM PROF 0.024 0.009 0.001 0.002 0.009

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 90 PERCENT DESIGN SPEED

			(6)	reautiig	1712		
RP 1 2 3 4 5 6 7 8 9	RADII IN 01 24.648 24.4 23.871 23.1 23.094 23. 20.744 20.1 17.623 17. 14.544 14. 12.299 12. 11.570 11. 10.846 10.5	UT IN 638 0. 876 0. 114 0. 828 0. 780 0. 732 0. 446 0. 684 0.	0 17.2 0 16.1 0 16.4 0 18.3 0 19.5 0 19.9 0 21.8 0 23.0	REL IN 54.4 53.0 52.2 49.0 44.7 39.8 35.6 34.1 32.7	BETAM OUT 48.7 46.5 45.4 40.6 35.2 28.8 20.6 16.9 12.9	TOTAL TEMP [N RAT10 288.9 1.036 288.8 1.033 288.3 1.032 288.0 1.029 287.9 1.024 287.9 1.020 287.9 1.019 287.8 1.019	TOTAL PRESS IN RATIO 10.07 1.106 10.13 1.113 10.14 1.110 10.14 1.004 10.14 1.003 10.14 1.065 10.14 1.062 10.14 1.063
6P 1 2 3 4 5 6 7 8 9	152.2 15: 154.9 15: 154.6 15: 156.0 15: 153.9 15: 150.7 14: 148.5 14:	L R UT IN 3.5 261. 9.5 257. 8.8 252. 9.7 237. 3.7 216. 8.2 196. 9.2 182. 0.6 178. 8.4 173.	2 222.1 4 222.5 1 216.8 8 199.7 5 177.4 2 159.1 6 147.9 7 144.9	MERII 1N 152.2 154.9 154.6 156.0 153.9 150.7 148.5 148.0 145.7	D VEL 0UT 146.6 153.2 152.3 151.6 144.9 139.4 138.5 138.6 134.0	TANG VEL IN OUT 0.0 45.4 0.0 44.2 0.0 50.2 0.0 51.5 0.0 55.5 0.0 58.9 0.0 63.7	IN OUT 212.3 212.2 205.5 205.6 199.1 199.3 179.5 180.2 152.3 153.7 125.6 127.2 106.2 107.5 100.1 101.1 93.7 94.4
RP 1 2 3 4 5 6 7 8 9	0,456 0. 0,465 0. 0,464 0. 0,468 0. 0,462 0. 0,452 0. 0,445 0.	NO REL UT IN 452 C.78 471 0.77 469 0.75 473 0.71 456 0.65 440 0.58 443 0.54 448 0.51	2 0.657 6 0.641 4 0.591 0 0.526 8 0.472 7 0.439 6 0.431	MERID M IN 0.456 0.465 0.464 0.468 0.452 0.445 0.445 0.444	ACH NO OUT 0.43: 0.452 0.450 0.449 0.430 0.413 0.411 0.412 0.398		MERID PEAK SS VEL R MACH NO 0.964 1.060 0.989 1.043 0.986 1.036 0.972 1.007 0.942 0.968 0.925 0.933 0.932 0.933 0.932 0.891
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCIDENCE MEAN SS 3.1 -1. 2.7 -2. 2.9 -2. 3.0 -4. 3.4 -8. 3.9 -12. 4.4 -13. 4.6 -13. 5.1 -13.	5 6.6 2 6.0 5 6.5 8 7.2 5 10.4 0 14.0 4 13.5 5 12.3	D-FACT 0.321 0.301 0.308 0.345 0.366 0.364 0.371 0.376	0.821 0.939 0.943 0.973 0.939 0.922 0.934 0.945 0.905	LOSS COEFF TOT PROF 0.065 0.065 0.021 0.021 0.020 0.009 0.009 0.009 0.021 0.021 0.025 0.025 0.023 0.023 0.020 0.020 0.037 0.037	LOSS PARAM TOT PROF 0.042 0.042 0.014 0.014 0.013 0.013 0.006 0.006 0.013 0.013 0.015 0.015 0.013 0.013 0.011 0.011 0.019 0.019

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 90 PERCENT DES. IN SPEED

~	RAD			BETAM		BETAM		TEMP		PRESS
₹6° 1	IN 24.648 2	OUT	IN -0.0	0UT 25.3	IN 57.3	0UT 50.5	IN 288.9	RATIO 1.043	IN 10.08	RATIO 1,110
	23.871		-0.0	21.0	55.9	47.6	288.7	1.040	10.13	1.123
2	23.094		0.0	20.7	55.1	46.2	288.3	1.038	10.14	1.125
4	20.744		-0.0	22.1	51.7	41.5	287.9	1.034	10.14	1,113
Ē	17.623		0.0	23.0	47.3	36.1	288.0	1.028	10.14	1.092
2	14,544		0.0	23.2	42.4	29.7	288.0	1.022	10.14	1.075
4 5 6 7	12.299	2 446	. 0.0	25.5	38.1	21.1	288.0	1.021	10.14	1.069
8	11,570		0.0	26.3	36.5	17.4	288.0	1.020	10.14	1.070
ğ	10.846		-0.0	29.0	35.3	12.8	288.0	1.021	10.09	1.069
•	10.040		•.•		00.0		200.0			
		. 100.								
200	ABS			VEL		D VEL		G VEL		SPEED
₹₽ 1	IN 136.8	0UT 139.9	IN 253.5	0UT 198.8	!N 136.8	0UT 126.4	IN	0UT 59.9	IN	DUT
	139.8	149.6	249.3	207.1	139.8	139.7	-0.0	53.5	213.4	213.3
2 3 4 5 6 7	139.7	151.0	244.2	204.0	139.8		-0.0		206.4	206.4
4	141.5	150.5	228.4	186.2	141.5	141.2 139.5	0.0 -0.0	53.4 56.6	200.4 179.3	200.6 180.0
=	140.6	144.7	207.2	164.7	140.6	133.2	0.0	56.6	152.2	153.6
ž	137.7	138.7	186.5	146.7	137.7	127.4	0.0	54.7	125.8	127.4
7	35.7	138.0	172.4	133.5	135.7	124.5	0.0	59.5	106.4	107.6
8	135.4	139.8	168.5	131.3	135.4	125.3	0.0	61.9	100.2	101.2
ğ	132.5	138.3	162.4	124.0	132.5	120.9	-0.0	67.1	93.9	94.6
•				.6410			*.*	0	3317	34.0
	ADC M	LEU MA	מבי א	ACU NO	MEDIA M	APU NA			MEGIA	051v ce
80		ACH NO		ACH NO	MERID M					PEAK SS
6	IN	OUT	IN	OUT	IN	OUT			VEL R	MACH NO
1	IN 0.408	0UT 0.409	IN 0.756	0UT 0.581	IN 0.408	0UT 0.369			VEL R 0.924	MACH NO
1	IN 0.408 0.418	OUT 0.409 0.439	IN 0.756 0.744	0UT 0.581 0.608	(N 0.408 0.418	0.369 0.410			VEL R 0.924 0.999	MACH NO 1,103 1,081
1	IN 0.408 0.418 0.417	OUT 0.409 0.439 0.444	IN 0.756 0.744 0.750	0.581 0.608 0.600	IN 0.408 0.418 0.417	0.369 0.410 0.415			VEL R 0.924 0.999 1.011	MACH NO 1,103 1,081 1,074
1 2 3 4	IN 0.408 0.418 0.417 0.424	OUT 0.409 0.439 0.444 0.444	IN 0.756 0.744 0.730 0.684	0UT 0.581 0.608 0.600 0.549	(N 0.408 0.418 0.417 0.424	0.369 0.410 0.415 0.411			VEL R 0.924 0.999 1.011 0.985	MACH NO 1,103 1,081 1,074 1,027
1 2 3 4	IN 0.408 0.418 0.417 0.424 0.421	OUT 0.409 0.439 0.444 0.427	IN 0.756 0.744 0.750 0.684 0.620	0.581 0.581 0.608 0.600 0.549 0.486	(N 0.408 0.418 0.417 0.424 0.421	OUT 0.369 0.410 0.415 0.411 0.393			VEL R 0.924 0.999 1.011 0.985 0.947	MACH NO 1,103 1,081 1,074 1,027 0,977
1 2 3 4 5 6	IN 0.408 0.418 0.417 0.424 0.421 0.412	OUT 0.409 0.439 0.444 0.427 0.410	IN 0.756 0.744 0.730 0.684 0.620 0.557	OUT 0.581 0.608 0.600 0.549 0.486 0.434	(N 0.408 0.418 0.417 0.424 0.421 0.412	0.369 0.410 0.415 0.411 0.393 0.377			VEL R 0.924 0.999 1.011 0.985 0.947 0.925	MACH NO 1.103 1.081 1.074 1.027 0.977 0.953
1 2 3 4 5 6 7	IN 0.408 0.418 0.417 0.424 0.421 0.412 0.405	OUT 0.409 0.439 0.444 0.427 0.410 0.408	IN 0.756 0.744 0.730 0.684 0.620 0.557 0.515	OUT 0.581 0.608 0.600 0.549 0.486 0.434 0.395	(N 0.408 0.418 0.417 0.424 0.421 0.412 0.405	OUT 0.369 0.410 0.415 0.411 0.393 0.377 0.368			VEL R 0.924 0.999 1.011 0.985 0.947 0.925 0.918	MACH NO 1.103 1.081 1.074 1.027 0.977 0.953 0.896
1 2 3 4 5 6	IN 0.408 0.418 0.417 0.424 0.421 0.412 0.405 0.405	OUT 0.409 0.439 0.444 0.427 0.410	IN 0.756 0.744 0.730 0.684 0.620 0.557	OUT 0.581 0.608 0.600 0.549 0.486 0.434	(N 0.408 0.418 0.417 0.424 0.421 0.412	0.369 0.410 0.415 0.411 0.393 0.377			VEL R 0.924 0.999 1.011 0.985 0.947 0.925 0.918	MACH NO 1.103 1.081 1.074 1.027 0.977 0.953
1 2 3 4 5 6 7 8	IN 0.408 0.418 0.417 0.424 0.421 0.412 0.405	0UT 0.409 0.439 0.444 0.427 0.410 0.408 0.414	IN 0.756 0.744 0.730 0.684 0.620 0.557 0.515 0.503	OUT 0.581 0.608 0.600 0.549 0.486 0.434 0.395 0.389	IN 0.408 0.418 0.417 0.424 0.421 0.412 0.405	OUT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371			VEL R 0.924 0.999 1.011 0.985 0.947 0.925 0.918	MACH NO 1.103 1.081 1.074 1.027 0.977 0.953 0.896 0.884
1 2 3 4 5 6 7 8	IN 0.408 0.418 0.417 0.424 0.421 0.412 0.405 0,405 0,596	0UT 0.409 0.439 0.444 0.427 0.410 0.408 0.414 0.409	IN 0.756 0.744 0.730 0.684 0.620 0.557 0.515 0.503 0.485	OUT 0.581 0.608 0.600 0.549 0.486 0.434 0.395 0.389 0.367	(N 0.408 0.418 0.417 0.424 0.421 0.412 0.405 0.405	0UT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358	+ 055 C	OFFF	VEL R 0.924 0.999 1.011 0.985 0.947 0.925 0.918 0.925	MACH NO 1,103 1,081 1,074 1,027 0,977 0,953 0,896 0,884 0,866
1 2 3 4 5 6 7 8 9	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.396	OUT 0.409 0.439 0.444 0.427 0.410 0.408 0.414 0.409	IN 0.756 0.744 0.730 0.684 0.620 0.557 0.515 0.503 0.485	OUT 0.581 0.608 0.600 0.549 0.486 0.434 0.395 0.389	N 0.408 0.418 0.417 0.424 0.421 0.412 0.405	0UT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358	LOSS C		VEL R 0.924 0.999 1.011 0.985 0.947 0.925 0.918 0.925	MACH NO 1,103 1,081 1,074 1,027 0,977 0,933 0,896 0,884 0,866
1 2 3 4 5 6 7 8 9	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.396 PERCENT SPAN	OUT 0.409 0.439 0.444 0.427 0.410 0.408 0.414 0.409	IN 0.756 0.744 0.730 0.684 0.620 0.557 0.515 0.503 0.485	OUT 0.581 0.608 0.600 0.549 0.486 0.434 0.395 0.389 0.367	IN 0.408 0.418 0.417 0.424 0.421 0.412 0.405 0.405 0.396	OUT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358	TOT	PROF	VEL R 0.924 0.999 1.011 0.985 0.925 0.918 0.925 0.912 LOSS F	MACH NO 1,103 1,081 1,074 1,027 0,977 0,933 0,896 0,884 0,866
1 2 3 4 5 6 7 8 9	IN 0.408 0.418 0.417 0.424 0.412 0.405 0.405 0.405 0.596 PERCENT SPAN 5.00	OUT 0.409 0.439 0.444 0.427 0.410 0.408 0.414 0.409 INCI MEAN 6.1	IN 0.756 0.744 0.730 0.684 0.624 0.557 0.515 0.503 0.485	OUT 0.581 0.608 0.600 0.549 0.434 0.395 0.389 0.367	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.596 D-FACT	OUT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358	TOT 0.139	PROF 0.139	VEL R 0.924 0.999 1.011 0.985 0.918 0.925 0.912 LOSS F TOT 0.087	MACH NO 1,103 1,081 1,074 1,077 0,977 0,953 0,896 0,884 0,866 PARAM PROF 0,087
1 2 3 4 5 6 7 8 9 RP 1 2	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.405 0.596 PERCENT SPAN 5.00 10.00	OUT 0.409 0.439 0.444 0.427 0.410 0.408 0.414 0.409 INCI MEAN 6.1 5.6	IN 0.756 0.744 0.730 0.684 0.624 0.557 0.515 0.503 0.485 DENCE SS 1.4 0.7	OUT 0.581 0.608 0.600 0.549 0.486 0.434 0.395 0.389 0.367	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.396 D-FACT	OUT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358 EFF	TOT 0.139 0.069	PROF 0.139 0.069	VEL R 0.924 0.999 1.011 0.985 0.925 0.918 0.925 0.912 LOSS F TOT 0.087 0.045	MACH NO 1,103 1,081 1,074 1,077 0,977 0,933 0,896 0,884 0,866 PARAM PROF 0,087 0,045
1 2 3 4 5 6 7 8 9 RP 1 2	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.596 PERCENT SPAN 5.00 10.00 15.00	OUT 0.409 0.439 0.444 0.427 0.410 0.408 0.414 0.409 INCI MEAN 6.1 5.6 5.9	IN 0.756 0.744 0.730 0.684 0.620 0.557 0.515 0.503 0.485 DENCE SS 1.4 0.7 0.4	OUT 0.581 0.608 0.600 0.549 0.434 0.395 0.389 0.367 DEV 8.4 7.1 7.3	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.396 D-FACT 0.448 0.376 0.371	OUT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358 EFF	TOT 0.139 0.069 0.048	PROF 0.139 0.069 0.048	VEL R 0.924 0.999 1.011 0.985 0.925 0.918 0.925 0.912 LOSS F TOT 0.087 0.045 0.031	MACH NO 1,103 1,081 1,074 1,027 0,977 0,933 0,896 0,884 0,866 PARAM PROF 0,087 0,045 0,031
1 2 3 4 5 6 7 8 9 RP 1 2 3 4	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.396 PERCENT SPAN 5.00 10.00 15.00 30.00	OUT 0.409 0.439 0.444 0.427 0.410 0.408 0.414 0.409 !NCI MEAN 6.1 5.6 5.9	IN 0.756 0.744 0.730 0.684 0.620 0.557 0.515 0.503 0.485 DENCE 55 1.4 0.7 0.7	OUT 0.581 0.608 0.600 0.549 0.434 0.395 0.389 0.367 DEV 8.4 7.1 7.3 8.1	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.396 D-FACT 0.448 0.376 0.371 0.402	0UT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358 EFF 0.695 0.841 0.888 0.928	TOT 0.139 0.069 0.048 0.030	PROF 0.139 0.069 0.048 0.030	VEL R 0.924 0.999 1.011 0.985 0.925 0.918 0.925 0.912 LOSS F TOT 0.087 0.045 0.031	MACH NO 1,103 1,081 1,074 1,027 0,977 0,953 0,896 0,884 0,866 PARAM PROF 0,087 0,045 0,031 0,020
1 2 3 4 5 6 7 8 9 RP 1 2 3 4	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.596 PERCENT SPAN 5.00 15.00 50.00 50.00	OUT 0.409 0.439 0.444 0.427 0.410 0.414 0.409 !NCI MEAN 6.1 5.6 5.9	IN 0.756 0.744 0.730 0.684 0.620 0.557 0.515 0.485 DENCE SS 1.4 0.7 0.7	OUT 0.581 0.608 0.600 0.549 0.434 0.395 0.367 DEV 8.4 7.1 7.3 8.1	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.396 D-FACT 0.448 0.376 0.371 0.402 0.419	OUT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358 EFF 0.695 0.841 0.888 0.928 0.928	TOT 0.139 0.069 0.048 0.030 0.030	PROF 0.139 0.069 0.048 0.030 0.030	VEL R 0.924 0.999 1.011 0.985 0.947 0.925 0.912 LOSS F TOT 0.087 0.045 0.031 0.020 0.019	MACH NO 1,103 1,081 1,074 1,027 0,977 0,953 0,896 0,884 0,866 PARAM PROF 0,087 0,031 0,020 0,019
1 2 3 4 5 6 7 8 9 RP 1 2 3 4 5 6	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.396 PERCENT SPAN 5.00 10.00 15.00 30.00	OUT 0.409 0.439 0.444 0.427 0.410 0.408 0.414 0.409 !NCI MEAN 6.1 5.6 5.9	IN 0.756 0.744 0.730 0.684 0.620 0.557 0.515 0.503 0.485 DENCE 55 1.4 0.7 0.7	OUT 0.581 0.608 0.600 0.549 0.434 0.395 0.389 0.367 DEV 8.4 7.1 7.3 8.1	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.396 D-FACT 0.448 0.376 0.371 0.402	0UT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358 EFF 0.695 0.841 0.888 0.928	TOT 0.139 0.069 0.048 0.030	PROF 0.139 0.069 0.048 0.030	VEL R 0.924 0.999 1.011 0.985 0.925 0.918 0.925 0.912 LOSS F TOT 0.087 0.045 0.031	MACH NO 1,103 1,081 1,074 1,027 0,977 0,953 0,896 0,884 0,866 PARAM PROF 0,087 0,045 0,031 0,020
123456789	IN 0.408 0.418 0.417 0.424 0.412 0.405 0.405 0.596 PERCENT 5PAN 5.00 15.00 50.00 50.00 85.00	OUT 0.409 0.439 0.444 0.447 0.410 0.408 0.414 0.409 INCI MEAN 6.1 5.6 5.9 5.6 5.9 6.5	IN 0.756 0.744 0.730 0.684 0.657 0.557 0.553 0.485 DENCE 55 1.4 0.7 0.7 0.7	OUT 0.581 0.608 0.600 0.549 0.486 0.434 0.395 0.367 DEV 8.4 7.1 7.3 8.1 11.2 14.9	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.396 D-FACT 0.448 0.376 0.376 0.402 0.419 0.413	OUT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358 EFF 0.695 0.841 0.888 0.928 0.928 0.928	TOT 0.139 0.069 0.048 0.030 0.030 0.030	PROF 0.139 0.069 0.048 0.030 0.030 0.032	VEL R 0.924 0.999 1.011 0.985 0.925 0.918 0.925 0.912 LOSS F TOT 0.087 0.045 0.020 0.019 0.016	MACH NO 1,103 1,081 1,074 1,027 0,977 0,953 0,884 0,866 PARAM PROF 0,087 0,045 0,031 0,020 0,019 0,016
1 2 3 4 5 6 7 8 9 RP 1 2 3 4 5 6	IN 0.408 0.418 0.417 0.424 0.421 0.412 0.405 0.596 PERCENT SPAN 5.00 15.00 50.00 70.00	OUT 0.409 0.439 0.444 0.427 0.410 0.408 0.409 !NCI MEAN 6.1 5.6 5.9 6.5	IN 0.756 0.744 0.750 0.684 0.620 0.557 0.515 0.503 0.485 DENCE 55 1.4 0.7 0.4 -2.1 -6.0 -6.0 -6.0	OUT 0.581 0.608 0.600 0.549 0.434 0.395 0.389 0.367 DEV 8.4 7.1 7.3 8.1 11.2 14.9	IN 0.408 0.418 0.417 0.424 0.421 0.405 0.405 0.376 0.376 0.371 0.402 0.419 0.419	OUT 0.369 0.410 0.415 0.411 0.393 0.377 0.368 0.371 0.358 EFF 0.695 0.841 0.888 0.928 0.928 0.928	TOT 0.139 0.069 0.048 0.030 0.030 0.027 0.027	PROF 0.139 0.069 0.048 0.030 0.030 0.027	VEL R 0.924 0.999 1.011 0.985 0.918 0.925 0.918 0.925 0.912 LOSS F TOT 0.087 0.045 0.031 0.020 0.019 0.015	MACH NO 1,103 1,081 1,074 1,077 0,977 0,933 0,896 0,884 0,866 PARAM PROF 0,087 0,045 0,031 0,020 0,016 0,015

TABLE VIII. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 90 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.648 24.638 23.871 23.876 23.094 23.114 20.744 20.828 17.623 17.790 14.544 14.732 12.299 12.446 11.570 11.684 10.846 10.922	ABS BETAM IN OUT 0.0 44.0 0.0 34.2 -0.0 27.3 0.0 26.0 -0.0 27.0 0.0 27.2 -0.0 29.0 0.0 32.8	REL BETAM IN OUT 61.1 53.4 59.7 50.8 58.8 47.5 55.4 41.8 50.8 36.1 45.7 29.9 41.2 20.8 39.4 16.9 38.2 12.2	TOTAL TEMP IN RATIO 288.8 1.056 288.6 1.050 288.3 1.045 288.0 1.038 288.0 1.035 288.0 1.025 287.9 1.023 288.0 1.023	TOTAL PRESS IN RATIO 10.09 1.103 10.13 1.100 10.14 1.113 10.14 1.122 10.14 1.083 10.14 1.076 10.15 1.077 10.10 1.074
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 117.7 128.1 121.0 131.2 121.1 140.0 125.9 145.3 124.5 139.6 123.1 132.0 121.6 131.8 121.4 133.1 119.3 130.9	REL VEL IN OUT 243.6 154.7 239.7 171.9 233.8 184.2 218.1 175.2 197.0 153.9 176.2 135.4 161.6 123.4 157.2 120.9 151.8 112.6	MERID VEL IN OUT 117.7 92.2 121.0 108.6 121.1 124.3 123.9 130.7 124.5 124.4 123.1 117.4 121.6 115.3 121.4 115.7 119.3 110.0	TANG VEL IN OUT 0.0 89.0 0.0 73.8 -0.0 64.3 0.0 63.6 -0.0 63.4 0.0 60.3 -0.0 63.8 0.0 65.8 0.0 70.9	HHEEL SPEED IN OUT 213.3 213.2 206.9 207.0 200.0 200.2 179.5 180.3 152.7 154.0 126.1 127.7 106.5 107.7 99.9 100.9 93.9 94.6
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.350 0.371 0.360 0.409 0.369 0.427 0.371 0.411 0.367 0.389 0.362 0.393 0.355 0.386	REL MACH NO 1N OUT 0.724 0.448 0.713 0.500 0.696 0.538 0.650 0.514 0.587 0.453 0.525 0.399 0.481 0.364 0.468 0.357 0.452 0.332	MERID MACH NO IN OUT 0.350 0.267 0.360 0.365 0.369 0.384 0.371 0.366 0.367 0.346 0.362 0.342 0.355 0.362 0.342		MERID PEAK SS VEL R MACH NO 0.785 1.148 0.897 1.127 1.027 1.111 1.054 1.057 0.999 0.996 0.954 0.937 0.948 0.889 0.953 0.870 0.923 0.853

TABLE IX. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

ROTOR 51A. 110 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.648 24.638 23.871 23.876 23.094 23.114 20.744 20.828 17.625 17.780 14.544 14.732 12.299 12.446 11.570 11.684 10.846 10.922	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM OUT 10.1 10.0 9.9 10.3 11.4 13.5 14.5 15.5	REL IN 50.6 49.3 48.2 44.8 40.5 35.8 31.6 30.3 29.5	BETAM OUT 47.7 46.1 45.2 41.3 35.7 27.5 22.0 18.4 14.1	TOTAL TEMP IN RATIO 288.8 1.032 288.7 1.032 288.3 1.031 288.1 1.028 287.9 1.025 287.8 1.024 287.9 1.022 287.6 1.025 287.9 1.026	TOTAL PRESS IN RATIO 10.07 1.075 10.14 1.079 10.14 1.078 10.14 1.063 10.14 1.065 10.14 1.065 10.14 1.056 10.14 1.056 10.04 1.074
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 213.0 206.5 216.4 209.9 217.7 209.6 220.3 210.5 217.3 207.8 213.2 210.5 210.9 204.4 208.8 209.5 207. 2 213.9	REL IN 335.9 331.8 326.8 310.5 285.8 262.7 247.6 241.8 253.5	VEL OUT 302.1 298.3 293.2 275.8 250.7 230.7 213.4 212.8 210.:	MERI IN 213.0 216.4 217.7 220.5 217.3 213.2 210.9 208.8 203.2	D VEL 0UT 203.3 206.7 206.5 207.1 203.7 204.7 197.9 201.9 203.8	TANG VEL IN OUT -0.1 36.0 -0.1 35.4 0.0 35.9 -0.0 37.6 -0.1 41.2 -0.0 49.1 -0.0 51.3 -0.1 56.0 -0.0 64.7	HHEEL SPEED IN OUT 259.7 259.6 251.5 251.5 243.8 244.0 218.8 219.7 185.7 187.3 153.5 155.5 1_9.7 131.2 122.0 123.2 115.1 115.9
8P 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.651 0.619 0.663 0.630 0.667 0.634 0.667 0.634 0.667 0.627 0.653 0.636 0.645 0.617 0.639 0.633 0.620 0.646	REL M IN 1.027 1.016 1.002 C.954 0.877 0.805 0.758 0.740	0.906 0.896 0.881 0.756 0.697 0.644 0.643 0.635	MERID M 1N 0.651 0.663 0.667 0.667 0.663 0.645 0.639 0.620	OUT 0.609 0.621 0.621 0.621 0.624 0.614 0.618 0.597 0.610		MERID PEAK SS VEL R MACH NO 0.955 1.225 0.955 1.218 0.949 1.224 0.940 1.200 0.937 1.179 0.961 1.165 0.938 1.151 0.967 1.144 1.003 1.132
RP 1 2	PERCENT IN	CIDENCE N SS	DEV	D-FACT	EFF	LOSS COEFF	LOSS PARAM TOT PROF

TABLE DX. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 110 PERCENT DESIGN SPEED

	RAD	11	ABS	BETAM	REL	BETAM	TOTA	LTEMP	LATOT	PRESS
₽₽	IN	OUT	IN	0UT	IN	OUT	IN	RATIO	IN	RATIO
1	24.648	24.638	-0.0	18.2	53.0	49.	288.8	1.043	10.06	1.115
2	23.871	23.876	-0.0	15.9	51.5	46.8	288.7	1.046	10.14	1.154
2 3	23.094	23.114	-0.0	15.9	50.3	45.6	288.7	1.045	10.1-	1.136
Ă	20.74		-0.1	16.7	47.0	40.8	281.1	1.043	10.14	1.135
4 5 6 7	17,623		-0.0	17.8	42.7	34.7	287.9	1.037	10.14	1.118
š	1.544		-0.0	18.6	37.9	28.0	287.8	1.030	10.14	1.096
7	i2.299		-0.0	20.1	33.6	20.6	287.3	1.028	10.14	1.088
8	11.570		-0.0	20.7	32.3	17.3	287.8	1.028	10.14	1.090
9	10.846		-0.0	24.1	31.3	15 ?	287.3	1.029	10.06	1.079
9	10.040	· V . 3LL	0.0	24.1	31.3	13 1.	201.3	1.043	10.00	1.0.5
	APC	VEL	UCI	VEL	MCDI	D VEL	TAN	G VEL	HILLEGE	SPEED
8 P	IN	OUT	IN	סטד	IN	OUT	in	OUT	IN	OUT
	196.1	184,1	326.1	267.8	196.1	174.9	-0.0	57.5	260.5	260.4
1	201.1	194.4	322.8		201.1					
-	202.4	194.4	317.1	273.3 _67.2	202.4	187.0	-0.0	23.2	252.5	252.5
2 3 4		194.4				187.0	-6.0	53.4	244.1	244.5
4	204.4	197.3	299.7	249.7	204 4	188.9	-0.0	5€.8	219.2	230.0
5 6 7	202.0	95.2	274.9	226.0	202.6	185.9	-0.0	59.6	186.5	188.1
6	197.6	189.0	250.3	202.9	197.6	179.1	-0.0	60.2	153.6	155.6
7	195.4	188.9	234.7	189.5	155.4	177.4	0.0	64.9	129.9	131.5
8	193.7	191.2	229.0	187.3	193.7	178.8	-C.G	67.7	122.2	123.4
9	188.6	185.2	220.6	173.ö	188.8	169.0	-0.0	75.7	114.4	115.2
			DC: N		WEG 15 N	1161 110				
_		ACH NO		ACH NO	MERID M					PEAK SS
₩	IN	TLO	IN	OUT	IN	OUT			VEL R	MACH NO
1	IN 0.596	0JT 0.543	IN 0.991	0UT 0.790	IN 0.596	0.516			VEL R 0.892	MACH NO
1	IN 0.596 0.612	0.543 0.576	IN 0.991 0.983	0UT 0.790 0.810	IN 0.596 0.612	0.516 0.554			VEL R 0.892 0.930	MACH NO 295 1,275
1 2 3	IN 0.596 0.612 0.616	0.543 0.576 0.577	IN 0.991 0.983 0.966	0UT 0.790 0.810 0.793	0.596 0.612 0.616	0UT 0.516 0.554 0.555			VEL R 0.892 0.930 0.924	MACH NO - 295 1.275 1.259
1 2 3 4	IN 0.596 0.612 0.616 0.624	0JT 0.545 0.576 0.577 0.587	IN 0.991 0.983 0.966 0.914	0UT 0.790 0.810 0.793 0.743	1N 0.596 0.612 0.616 0.624	0UT 0.516 0.554 0.555 0.562			VEL R 0.892 0.930 0.924 0.925	MACH NO : .295 1.275 1.259 1.225
1 2 3 4 5	IN 0.596 0.612 0.616 0.624 0.616	0JT 0.543 0.576 0.577 0.587 0.582	IN 0.991 0.983 0.966 0.914 0.838	OUT 0.790 0.810 0.793 0.743 0.674	0.596 0.612 0.616 0.624 0.616	0UT 0.516 0.554 0.555 0.562 0.555			VEL R 0.892 0.930 0.924 0.925 0.920	MACH NO :.295 1.275 1.259 1.225 1.192
1 2 3 4 5 6	IN 0.596 0.612 0.616 0.624 0.616 0.602	0JT 0.543 0.576 0.577 0.587 0.582 0.565	IN 0.991 0.983 0.966 0.914 0.838 0.762	OUT 0.790 0.810 0.793 0.743 0.674 0.606	0.596 0.612 0.616 0.624 0.616 0.602	0UT 0.516 0.554 0.555 0.562 0.555 0.535			VEL R 0.892 0.930 0.924 0.925 0.920 0.907	MACH NO :.295 1.275 1.259 1.225 1.192 1.158
1 2 3 4 5 6 7	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595	0.545 0.545 0.576 0.577 0.587 0.582 0.565 0.565	IN 0.991 0.983 0.966 0.914 0.838 0.762 0.714	OUT 0.790 0.810 0.793 0.743 0.674 0.606 0.567	0.596 0.612 0.616 0.624 0.616 0.602 0.595	0UT 0.516 0.554 0.555 0.562 0.555 0.535 0.531			VEL R 0.892 0.930 0.924 0.925 0.920 0.907 0.908	MACH NO :.295 1.275 1.259 1.225 1.192 1.158 1.137
1 2 3 4 5 6 7 8	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.572	IN 0.991 0.983 0.966 0.914 0.838 0.762 0.714 0.697	OUT 0.790 0.810 0.793 0.743 0.674 0.606 0.567 0.561	1N 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589	OUT 0.516 0.554 0.555 0.562 0.555 0.535 0.535			VEL R 0.892 0.930 0.924 0.925 0.920 0.907 0.908	MACH NO :.295 1.275 1.259 1.225 1.192 1.158
1 2 3 4 5 6 7	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595	0.545 0.545 0.576 0.577 0.587 0.582 0.565 0.565	IN 0.991 0.983 0.966 0.914 0.838 0.762 0.714	OUT 0.790 0.810 0.793 0.743 0.674 0.606 0.567	0.596 0.612 0.616 0.624 0.616 0.602 0.595	0UT 0.516 0.554 0.555 0.562 0.555 0.535 0.531			VEL R 0.892 0.930 0.924 0.925 0.920 0.907 0.908	MACH NO :.295 1.275 1.259 1.225 1.192 1.158 1.137
1 2 3 4 5 6 7 8	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.572	IN 0.991 0.983 0.966 0.914 0.838 0.762 0.714 0.697	OUT 0.790 0.810 0.793 0.743 0.674 0.606 0.567 0.561	1N 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589	OUT 0.516 0.554 0.555 0.562 0.555 0.535 0.535			VEL R 0.892 0.930 0.924 0.925 0.920 0.907 0.908	MACH NO :.295 1.275 1.259 1.225 1.192 1.158 1.137 1.123
1 2 3 4 5 6 7 8	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589 0.573	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.572 0.553	IN 0.991 0.983 0.966 0.914 0.838 0.762 0.714 0.697 0.670	OUT 0.790 0.810 0.793 0.743 0.674 0.606 0.567 0.561 0.518	1N 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589	0UT 0.516 0.554 0.555 0.562 0.555 0.535 0.535 0.535	1055	OFFF	VEL R 0.892 0.930 0.924 0.925 0.920 0.907 0.908 0.923	MACH NO :.295 1.275 1.259 1.225 1.192 1.158 1.137 1.123
1 2 3 4 5 6 7 8	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589 0.573	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.572 0.553	IN 0.991 0.983 0.966 0.914 0.838 0.762 0.714 0.697 0.673	OUT 0.790 0.810 0.793 0.743 0.674 0.606 0.567 0.561	1N 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589	0UT 0.516 0.554 0.555 0.562 0.555 0.535 0.535 0.535	LOSS 3		VEL R 0.892 0.930 0.924 0.925 0.920 0.907 0.908 0.923 0.896	MACH NO : .295 1.275 1.259 1.225 1.192 1.159 1.137 1.123 1.103
1 23 4 5 6 7 8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589 0.573 PERCENT SPAN	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.572 0.553	IN 0.991 0.983 0.966 0.914 0.838 0.762 0.714 0.697 0.673	0UT 0.790 0.810 0.793 0.743 0.674 0.606 0.567 0.561 0.518	1N 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589 0.573	OUT 0.516 0.554 0.555 0.562 0.555 0.535 0.535 0.535	TOT	PROF	VEL R 0.892 0.930 0.924 0.925 0.927 0.908 0.923 0.896 LOSS F TOT	MACH NO : 295 1.275 1.259 1.259 1.259 1.158 1.13, 1.123 1.105
1 2 3 4 5 6 7 8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589 0.573 PERCENT SPAN 5.00	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.572 0.553 INCI MEAN 1.8	IN 0.991 0.983 0.966 0.914 0.838 0.762 0.714 0.697 0.673 DENCE SS -2.9	OUT 0.790 0.810 0.793 0.743 0.674 0.606 0.567 0.561 0.518	1N 0.596 0.612 0.616 0.624 0.616 0.595 0.595 0.573 D-FACT	OUT 0.516 0.554 0.555 0.562 0.555 0.535 0.535 0.535 0.505	TOT 0.115	PROF G.108	VEL R 0.892 0.930 0.924 0.925 0.925 0.907 0.908 0.923 0.896 LOSS P TOT 0.074	MACH NO : 295 1,275 1,259 1,259 1,259 1,158 1,13 1,123 1,103
1 2 3 4 5 6 7 8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.589 0.573 PERCENT SPAN 5.00 10.00	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.572 0.553 INCI MEAN 1.8	IN 0.991 0.983 0.966 0.914 0.839 0.762 0.714 0.697 0.673 DENCE SS -2.9 -3.7	OUT 0.790 0.810 0.793 0.743 0.606 0.567 0.561 0.518 DEV 7.:	1N 0.596 0.612 0.616 0.624 0.616 0.595 0.595 0.573 D-FACT 0.352 0.312	0UT 0.516 0.554 0.555 0.562 0.535 0.535 0.535 0.505 EFF 0.660 0.789	TOT 0.115 0.070	PROF 0.108 0.066	VEL R 0.892 0.930 0.924 0.925 0.920 0.907 0.908 0.923 0.896 LOSS F TOT 0.074 0.046	MACH NO : 295 1,275 1,259 1,259 1,259 1,158 1,133 1,123 1,103 PARAM PROF 0,070 0,043
1 2 3 4 5 6 7 8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.573 PERCENT SPAN 5.00 10.00 15.00	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.572 0.553 INCI MEAN 1.8	IN 0.991 0.983 0.966 0.914 0.878 0.762 0.714 0.697 0.673 DENCE SS -2.9 -3.7 -4.3	OUT 0.790 0.810 0.793 0.743 0.606 0.567 0.561 0.518 DEV 7.: 6.3 6.7	1N 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.573 D-FACT 0.352 0.312	0UT 0.516 0.554 0.555 0.562 0.535 0.535 0.535 0.505 EFF 0.660 0.789 0.819	TOT 0.115 0.070 0.060	PROF 0.108 0.066 0.057	VEL R 0.892 0.930 0.924 0.925 0.925 0.907 0.908 0.923 0.896 LOSS F TOT 0.074 0.046	MACH NO : .295 1.275 1.259 1.225 1.192 1.158 1.123 1.103 ARAM PROF 0.070 0.043 0.038
1 2 3 4 5 6 7 8 c 8 P 1 2 3 4	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.573 PERCENT SPAN 5.00 15.00 30.00	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.553 INCI MEAN 1.8 1.2 1.1	IN 0.991 0.983 0.966 0.914 0.878 0.762 0.714 0.697 0.673 DENCE SS -2.9 -3.7 -4.3 -6.8	OUT 0.790 0.810 0.793 0.743 0.674 0.567 0.561 0.518 DEV 7.: 6.3 6.7 7.4	0.596 0.612 0.616 0.624 0.616 0.595 0.573 D-FACT 0.352 0.316 0.333	0UT 0.516 0.554 0.555 0.562 0.555 0.535 0.535 0.505 EFF 0.660 0.789 0.819 0.867	TOT 0.115 0.070 0.060 0.045	PROF 0.108 0.066 0.057 0.044	VEL R 0.892 0.930 0.924 0.925 0.925 0.907 0.908 0.923 0.896 LOSS P TOT 0.074 0.046 0.040 0.030	MACH NO : .295 1.275 1.259 1.225 1.192 1.158 1.123 1.103 ARAM PROF 0.070 0.043 0.029
1 2 3 4 5 6 7 8 c 8 P 1 2 3 4	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.573 PERCENT SPAN 5.00 10.00 15.00 50.00	OJT 0.543 0.576 0.577 0.587 0.582 0.565 0.565 0.553 INCI MEAN 1.8 1.2 1.1	IN 0.991 0.983 0.966 0.914 0.878 0.762 0.714 0.697 0.673 DENCE SS -2.9 -3.7 -4.3 -6.8 -10.5	OUT 0.790 0.810 0.793 0.743 0.674 0.567 0.561 0.518 DEV 7.: 6.3 6.7 7.4 9.8	0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.573 D-FACT 0.352 0.316 0.333 0.348	0UT 0.516 0.554 0.555 0.562 0.555 0.535 0.535 0.535 0.505 EFF 0.660 0.789 0.867 0.869	TOT 0.115 0.070 0.060 0.045 0.045	PROF 0.108 0.066 0.057 0.044 0.045	VEL R 0.892 0.930 0.924 0.925 0.925 0.907 0.908 0.923 0.896 LOSS F TOT 0.074 0.046 0.040 0.030 0.029	MACH NO : .295 1.275 1.259 1.259 1.159 1.158 1.137 1.103 1.103 1.103 1.103 1.105 0.070 0.043 0.029 0.029
1 2 3 4 5 6 7 8 c 8 P 1 2 3 4	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.573 PERCENT 5PAN 5.00 15.00 15.00 50.00 70.00	OJT 0.543 0.576 0.577 0.587 0.565 0.565 0.553 INCI MEAN 1.8 1.2 1.1	IN 0.991 0.985 0.966 0.914 0.838 0.762 0.714 0.697 0.673 DENCE SS -2.9 -3.7 -4.3 -6.8 -10.5 -13.9	OUT 0.790 0.810 0.793 0.644 0.606 0.567 0.561 0.518 DEV 7.: 6.3 6.7 7.4 9.8	0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.573 0.573 0.573 0.352 0.312 0.316 0.353 0.348	0UT 0.516 0.554 0.555 0.562 0.555 0.535 0.535 0.535 0.505 EFF 0.660 0.789 0.867 0.867 0.869 0.871	TOT 0.115 0.070 0.060 0.045 0.045 0.042	PROF 0.108 0.066 0.057 0.044 0.045 0.042	VEL R 0.892 0.930 0.924 0.925 0.925 0.907 0.908 0.923 0.896 LOSS P TOT 0.074 0.046 0.040 0.029 0.025	MACH NO : .295 1.275 1.259 1.259 1.158 1.13, 1.123 1.103 ARAM PNOF 0.070 0.043 0.039 0.029 0.029
123456780 P1234567	IN 0.596 0.612 0.616 0.624 0.602 0.595 0.589 0.573 PERCENT 5PAN 5.00 10.00 15.00 50.00 70.00 85.00	OJT 0.543 0.576 0.577 0.587 0.565 0.565 0.565 0.572 0.553 INCI MEAN 1.8 1.2 1.1 0.9 1.4	IN 0.991 0.983 0.966 0.914 0.838 0.762 0.714 0.697 0.673 DENCE SS -2.9 -3.7 -4.3 -6.8 -10.5 -13.9 -15.3	OUT 0.790 0.810 0.793 0.743 0.606 0.567 0.561 0.518 DEV 7.: 6.3 6.7 7.4 93.2	0.596 0.612 0.616 0.616 0.616 0.595 0.589 0.573 D-FACT 0.352 0.312 0.316 0.353 0.358	0UT 0.516 0.554 0.555 0.562 0.535 0.535 0.535 0.505 EFF 0.660 0.789 0.819 0.867 0.869 0.871 0.860	TOT 0.115 0.070 0.060 0.045 0.045 0.042 .047	PROF 0.108 0.066 0.057 0.044 0.045 0.042 0.047	VEL R 0.892 0.930 0.924 0.925 0.927 0.908 0.923 0.896 LOSS F TOT 0.074 0.046 0.040 0.030 0.029 0.025	MACH NO : .295 1.275 1.259 1.259 1.158 1.158 1.103 1.003 1.0
1 2 3 4 5 6 7 8 c 8 P 1 2 3 4	IN 0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.573 PERCENT 5PAN 5.00 15.00 15.00 50.00 70.00	OJT 0.543 0.576 0.577 0.587 0.565 0.565 0.565 0.553 INCI MEAN 1.8 1.2 1.1	IN 0.991 0.985 0.966 0.914 0.838 0.762 0.714 0.697 0.673 DENCE SS -2.9 -3.7 -4.3 -6.8 -10.5 -13.9	OUT 0.790 0.810 0.793 0.644 0.606 0.567 0.561 0.518 DEV 7.: 6.3 6.7 7.4 9.8	0.596 0.612 0.616 0.624 0.616 0.602 0.595 0.573 0.573 0.573 0.352 0.312 0.316 0.353 0.348	0UT 0.516 0.554 0.555 0.562 0.555 0.535 0.535 0.535 0.505 EFF 0.660 0.789 0.867 0.867 0.869 0.871	TOT 0.115 0.070 0.060 0.045 0.045 0.042	PROF 0.108 0.066 0.057 0.044 0.045 0.042	VEL R 0.892 0.930 0.924 0.925 0.925 0.907 0.908 0.923 0.896 LOSS P TOT 0.074 0.046 0.040 0.029 0.025	MACH NO : .295 1.275 1.259 1.259 1.158 1.13, 1.123 1.103 ARAM PNOF 0.070 0.043 0.039 0.029 0.029

TABLE IX. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 110 PERCENT DESIGN SPEED

(c) Reading 14.8

RP 1 2 3 4 5 6 7 8	RAD I I IN OUT 24.648 24.638 23.871 23.876 25.094 23.174 20.744 20.828 17.623 17.780 14.544 14.732 12.299 12.446 11.570 11.684 10.846 10.922	ABS B IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	ETAM RE OUT IN 22.7 54.7 17.9 53.3 18.3 52.2 19.7 49.0 21.2 44.8 21.5 39.9 23.4 35.7 24.2 34.0 27.0 32.9	46.9 45.4 40.5 35.1 29.0 20.4 16.7	TOTAL TEMP IN RATIO 289.2 1.05 289.0 1.05 288.0 1.048 287.8 1.040 287.7 1.032 287.7 1.030 287.7 1.030 287.7 1.030	TOTAL PRESS IN RATIO 10.06 1.139 10.14 1.173 10.14 1.172 10.14 1.167 10.14 1.132 10.14 1.102 10.14 1.099 10.14 1.099 10.14 1.099
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 184.3 175.3 188.5 191.4 191.2 193.3 188.4 185.3 184.2 176.9 181.3 178.7 181.0 180.5 177.5 176.9	319.1 2 315.8 2 308.8 2 291.4 2 265.5 2 240.1 1 223.2 1 218.4 1	EL MER 51.5 184.3 66.5 188.5 58.7 189.2 39.3 191.2 11.2 188.4 88.3 184.2 75.0 181.3 71.9 181.0 61.5 177.5	182.1 181.7 181.9 172.7 164.6 164.0	TANG VEL IN OUT -0.0 67.7 -0.0 58.9 -0.0 60.0 -0.0 65.3 -0.0 64.7 0.0 70.8 -0.0 74.0 0.0 80.4	NHEEL SPEED IN OUT 260.4 263 253.3 253.4 243.9 24 2 219.9 220.8 187.0 188.7 154.1 156.0 130.3 131.9 122.2 123.4 114.9 115.8
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO 1N OUT 0.557 0.513 0.571 0.564 0.574 0.565 0.581 0.573 0.572 0.550 0.558 0.526 0.549 0.532 0.548 0.538 0.537 0.527	IN 0.965 0 0.956 0 0.936 0 0.885 0 0.886 0 0.728 0 0.676 0	H NO MERID OUT IN .736 0.557 .785 0.571 .764 0.574 .709 0.581 .627 0.558 .560 0.558 .521 0.549 .512 0.548 .481 0.537	0.537 0.537 0.539 0.513 0.490 0.489 0.491		MERID PEAK SS VEL R MACH NO 0.877 1.319 0.966 1.305 0.960 1.283 0.952 1.247 0.916 1.202 0.894 1.157 0.905 1.121 0.910 1.105 0.888 1.090
RP 1	PERCENT IN	CIDENCE N SS	DEV D-FAC	T EFF	LOSS COEFF	LOSS PARAM

TABLE IX. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 110 PERCENT DESIGN SPEED

RP 1 23 4 5 6 7 8 9	RADI IN 24.648 2 23.871 2 23.094 2 20.744 2 17.623 1 14.544 1 12.299 1 11.570 1	0UT 24.638 23.876 23.114 20.828 7.780 4.732 2.446 1.684	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM 0VT 32.7 23.7 23.3 24.3 25.1 25.6 27.0 27.7 31.5	REL IN 57.4 56.0 55.0 51.7 47.5 42.6 38.2 36.5 35.4	BETAM OUT 50.8 47.3 45.4 1.0 36.5 .C.2 29.6 17.0 12.2	TOTAL TEMP IN RATIO 289.0 1.077 288.9 1.068 288.5 1.062 288.6 1.055 287.8 1.037 287.8 1.032 287.8 1.332 287.9 1.033	TOTAL PRESS IN RATIO 10.08 1.166 10.14 1.196 10.14 1.203 10.14 1.188 10.14 1.148 10.14 1.121 10.14 1.112 10.14 1.112
RP 1 2 3 4 5 6 7 8 9	ABS IN 166.9 170.6 171.9 174.0 171.6 167.6 165.4 165.0 161.8	VEL 0UT 166.3 181.0 184.6 183.9 172.8 166.7 166.6 168.1 163.8	REL. IN 310.3 304.9 299.4 280.9 254.0 227.6 210.4 205.4 198.5	VEL 0UT 221.5 244.6 241.6 221.9 194.6 172.3 158.5 155.6 143.0	ME. 1 IN 166.9 170.6 171.9 174.0 171.6 167.6 165.4 165.0 161.8	NEL OUT 140.0 165.8 169.5 167.6 156.5 150.4 148.3 148.8 139.7	TANG VEL IN OUT -0.0 89.8 -0.0 72.8 -0.0 75.8 -0.0 75.2 -0.0 71.9 -0.0 75.7 -0.0 78.0 -0.0 85.5	HHEEL SPEED IN OUT 261.5 261.4 252.6 252.7 245.1 245.3 220.4 221.3 187.3 188.9 154.0 155.9 129.9 131.5 122.3 123.5 115.0 115.8
RP 1 2 3 4 5 6 7 8 9	ABS M/ IN 0.502 0.514 0.518 0.525 0.518 0.505 0.498 0.497 0.487	0.481 0.528 0.541 0.541 0.510 0.493 0.494 0.498 0.485	REL M IN 0.933 0.918 0.903 0.848 0.767 0.686 0.634 0.619 0.597	ACH NO OUT 0.641 0.714 0.708 0.653 0.574 0.510 0.470 0.462 0.423	MERID M IN 0.502 0.514 0.518 0.525 0.518 0.505 0.498 0.497 0.487	ACH NO 0UT 0.405 0.484 0.497 0.493 0.462 0.445 0.440 0.441 0.414		MERID PEAK SS VEL R MACH NO 0.839 1.364 0.971 1.336 0.986 1.323 0.963 1.274 0.912 1.214 0.897 1.152 0.897 1.104 0.902 1.087 0.864 1.068
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 6.2 5.7 5.7 6.2 6.6 7.0	DENCE 5S 1.5 0.7 0.3 -2.1 -5.7 -9.2 -10.8 -11.0	8.7 6.8 6.6 7.5 11.6 14.3 13.6	D-FACT 0.571 0.428 0.423 0.447 0.450 0.458 0.461	0.585 0.775 0.868 0.912 0.912 0.908 0.953 0.953	LOSS COEFF TOT PROF 0.232 0.225 0.117 0.112 0.065 0.062 0.043 0.042 0.040 0.040 0.042 0.042 0.022 0.022	LOSS PARAM TOT PROF 0.144 0.140 0.076 0.073 0.043 0.041 0.028 0.028 0.025 0.025 0.025 0.025 0.012 0.012 0.012 0.012

TABLE IX. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 110 PERCENT DESIGN SPEED

8P 1 2 3 4 5 6 7 8 9	RAD: IN 24.648 2 23.871 2 23.094 2 20.744 2 17.623 1 14.544 1 12.299 1 11.570 1 10.846 1	0UT 24.638 23.876 23.114 20.828 17.780 14.732 12.446 11.684	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 0.0	BETAM OUT 37.0 26.7 24.2 25.0 26.4 27.2 28.5 29.2 33.3	REL IN 58.6 57.3 56.1 52.8 48.5 43.6 39.3 37.8 36.7	BETAM OUT 51.4 48.4 46.0 41.6 36.6 29.3 20.7 16.7 11.6	TOTAL TEI IN RAT 289.0 1.00 288.8 1.00 288.5 1.00 287.8 1.00 287.8 1.00 287.8 1.00 287.9 1.00 287.9 1.00	IN RATIO 10.08 1.168 69 10.14 1.187 64 10.14 1.199 66 10.14 1.151 57 10.14 1.151 54 10.14 1.155 54 10.14 1.117
8P 1 2 3 4 5 6 7 8 9	ABS 1N 159.0 162.7 164.1 166.9 165.1 161.7 158.9 158.6 154.9	VEL 0UT 162.5 174.2 180.5 180.0 169.9 163.3 162.7 165.9 161.4	REL IN 305.4 301.1 294.3 276.3 249.4 223.5 205.5 200.7 193.3	VEL 0UT 208.1 234.2 237.1 218.4 189.5 166.6 152.8 151.2 137.8	MERII IN 159.0 162.7 164.1 166.9 165.1 161.7 158.9 158.6 154.9	0 VEL 0UT 129.7 155.6 164.6 163.2 152.2 145.3 142.9 144.9 135.0	TANG VEI IN 0U -0.0 97. -0.0 74 -0.0 76 -0.0 75 -0.0 77 0.0 80 0.0 88	IN OUT 9 260.8 260.7 3 253.3 253.4 0 244.3 244.6 0 220.2 221.1 6 186.9 188.6 6 154.2 156.2 7 130.2 131.8 9 123.1 124.3
89 1 2 3 4 5 6 7 8 9	ABS M/IN 0.477 0.489 0.494 0.503 0.497 0.487 0.478 0.477 0.465	ACH NO OUT 0.469 0.507 0.528 0.529 0.501 0.482 J.481 0.491 0.477	REL M (N 0.916 0.905 0.885 0.832 0.751 0.673 0.618 0.603	0.600 0.682 0.694 0.642 0.559 0.492 0.452 0.448 0.408	MERID M [N 0.477 0.489 0.494 0.503 0.497 0.487 0.478 0.477 0.465	0.453 0.453 0.482 0.480 0.449 0.429 0.423 0.429 0.399		MERID PEAK SS VEL R MACH NO 0.816 1.377 0.956 1.357 1.003 1.332 0.978 1.282 0.922 1.217 0.898 1.154 0.899 1.101 0.914 1.087 0.871 1.065
8P 1 2 3 4 5 6 7	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00	INCI MEAN 7.4 7.0 6.9 6.8 7.2 7.7	DENCE SS 2.7 2.1 1.4 -0.9 -4.7 -8.1	9.4 7.9 7.2 8.2 11.7	D-FACT 0.634 0.473 0.431 0.451 0.478 0.482	0.569 0.725 0.833 0.889 0.910 0.920	LGSS COEFF TOT PROI 0.256 0.2 0.147 0.1 0.087 0.0 0.056 0.0 0.044 0.0 0.038 0.0	TOT PROF 48 0.157 0.152 42 0.094 0.091 84 0.057 0.055 56 0.037 0.037 44 0.027 0.627

TABLE X. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

ROTOR 51A. 120 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN 04 24.648 24.6 23.871 23.6 23.094 23. 20.744 20.6 17.623 17. 14.544 14. 12.299 12.6 11.570 11.6 10.846 10.5	UT IN 638 -0.0 876 0.0 114 -0.0 928 -0.0 780 -0.0 732 -0.0 446 -0.0 684 -0.0	13.1 12.8 12.7 13.1 14.6 16.2	REL IN 52.2 50.8 49.8 46.4 42.1 37.4 33.0 31.7 30.8	BETAM 0UT 47.9 46.7 45.8 42.2 37.1 29.9 22.5 18.4 13.0	TCTAL TEMP IN RATIO 288.8 1.047 288.7 1.045 288.4 1.043 288.1 1.037 287.9 1.033 287.8 1.029 287.8 1.027 288.0 1.029 287.9 1.034	TOTAL PRESS IN RATIO 10.04 1.107 10.13 1.102 10.14 1.101 10.14 1.090 10.15 1.070 10.15 1.064 10.15 1.062 10.14 1.079 10.04 1.098
RP 1 2 3 4 5 6 7 8 9	219.5 216 223.1 21 224.2 21 227.1 216 224.1 212 219.2 200 217.5 21 215.4 218	UT IN 6.3 358.4 7.5 353.4 7.1 347.3 6.4 329.2 2.3 302.0 9.7 275.7 1.7 259.4	308.9 303.5 285.1 259.2 234.0 220.0 220.3	MERI (N 219 5 223.1 224.2 227.1 224.1 2:9.2 217.5 215.4 209.1	D VEL OUT 210.3 211.9 211.7 21.1 216.8 202.9 203.3 209.1 210.2	TANG VEL IN OUT -0.1 50.8 0.0 49.4 -0.0 48.0 -0.0 48.1 -0.1 52.9 -0.0 59.1 -0.0 64.9 0.0 76.9	NOTECL SPEED IN OUT 283.3 283.2 274.1 265.5 265.5 238.3 239.2 702.5 204.3 167.2 169.4 141.5 143.1 133.1 134.4 124.8 125.6
₹6	ABS MACH	UT IN	MACH NO OUT	MERID M	OUT		MERID PEAK 5S VEL R MACH NO
1 2 3 4 5 6 7 8 9	0.689 0.0 0.699 0.0 0.689 0.0 0.673 0.0 0.667 0.0	646 1.099 651 1.085 650 1.068 650 1.014 639 0.929 632 0.876 639 0.796 662 0.776 676 0.745	0.924 0.909 0.857 0.780 0.705 0.664 0.666	0.673 0.685 0.689 0.699 0.673 0.667 0.660 0.640	0.628 0.634 0.634 0.622 0.611 0.613 0.632 0.635		0.958 1.326 0.949 1.313 0.944 1.312 0.929 1.319 0.923 1.301 0.926 1.272 0.935 1.248 0.971 1.237 1.005 1.216

TABLE X. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 120 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RAD I IN 24.648 2 23.871 2 23.094 2 20.744 2 17.623 1 14.544 1 12.299 1 11.570 1	0UT 24.638 23.876 23.114 20.828 7.780 4.732 2.446 1.684	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM 0UT 22.4 18.2 18.3 19.8 21.0 22.1 22.7 26.8	REL. IN 54.4 53.0 51.9 48.5 44.2 39.4 35.0 33.6 32.6	BETAM OUT 49.5 47.3 46.4 42.7 35.5 27.9 20.0 16.6 12.8	TOTAL TEMP IN RATIO 289.0 1.066 288.9 1.069 288.5 1.058 288.1 1.051 287.8 1.048 287.8 1.040 287.7 1.038 287.7 1.037 287.8 1.037	TOTAL PRESS IN RATIO 10.06 1.131 10.13 1.161 10.14 1.155 10.14 1.146 10.14 1.123 10.14 1.123 10.14 1.117 10.14 1.119 10.06 1.093
8P 1 2 3 4 5 6 7 8	ABS IN 202.3 206.6 208.6 211.2 208.3 204.0 202.0 200.3 195.2	VEL 0UT 193.0 204.4 202.3 201.3 202.5 199.2 200.7 265.0 191.7	REL IN 347.8 343.3 337.9 318.7 290.7 264.0 246.6 240.4 231.6	VEL 0UT 274.9 286.4 278.1 260.0 234.0 210.3 197.8 195.4 175.5	MERI IN 202.3 206.6 208.6 211.2 208.3 204.0 202.0 200.3 195.2	0 VEL 0UT 178.4 194.2 191.8 191.1 190.5 185.9 185.9 187.2 171.1	TANG VEL IN OUT -0.1 73.6 -0.0 63.7 -0.1 64.5 -0.0 63.3 -0.0 68.7 -0.0 71.4 -0.0 75.5 -0.0 86.6	HHEEL SPEED IN OUT 282.9 282.8 274.1 274.1 265.7 265.9 238.6 239.6 202.8 204.6 167.6 169.8 141.3 143.0 133.0 134.3 124.7 125.6
RP 1 2 3 4 5 6 7 8 9	ABS M/ IN 0.616 0.630 0.637 0.646 0.637 0.623 0.616 0.611	OUT 0.566 0.603 0.598 0.597 0.602 0.594 0.600 0.607	REL M IN 1.059 1.047 1.032 0.975 0.889 0.806 0.752 9.733 0.705	ACH NO OUT 0.806 0.846 0.822 0.771 0.696 0.627 0.591 0.585 0.523	MERID M IN 0.616 0.630 0.637 0.646 0.637 0.623 0.616 0.611	NACH NO OUT 0.523 0.573 0.567 0.567 0.567 0.555 0.556 0.560 0.510		MERID PEAK SS VEL R MACH NO 0.882 1.379 0.940 1.367 0.919 1.368 0.905 1.357 0.914 1.310 0.911 1.267 0.920 1.229 0.935 1.214 0.877 1.193
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 50.00 90.00 95.00	INCI MEAN 3.2 2.7 2.6 2.4 2.9 3.5 3.8 4.1	DENCE SS -1.5 -2.2 -2.8 -5.3 -9.0 -12.4 -14.0 -14.0 -13.4	7.5 6.8 7.5 9.3 10.6 13.0 12.9 12.0	D-FACT 0.418 0.345 0.357 0.358 0.381 0.388 0.381 0.372 0.443	0.540 0.725 0.728 0.770 0.800 0.843 0.845 0.877 0.703	LOSS COEFF TOT PROF 0.190 0.172 0.107 0.091 0.104 0.089 0.085 0.076 0.079 0.077 0.061 0.061 0.063 0.063 0.051 0.051 0.129 0.129	LOSS PARAM TOT PROF 0.121 0.110 0.070 0.060 0.068 0.058 0.055 0.049 0.050 0.036 0.035 0.035 0.035 0.035 0.028 0.028

TABLE X. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES

FOR ROTOR 51A. 120 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.648 24.638 23.871 23.876 23.094 23.114 20.744 20.828 17.623 17.780 14.544 14.732 12.299 12.446 11.570 11.684 10.846 10.922	ABS BETAM IN OUT -0.0 38.6 -0.0 26.5 -0.0 23.2 -0.0 25.3 -0.0 24.6 -0.0 24.8 -0.0 25.9 -0.0 31.5	REL BETAM IN OUT 57.3 52.1 55.7 48.9 54.4 47.0 50.9 41.3 46.5 34.0 41.5 28.2 37.0 19.6 35.6 16.1 34.5 12.5	TOTAL TEMP IN RATIO 288.9 1.093 288.8 1.078 288.6 1.071 288.1 1.066 287.9 1.058 287.7 1.044 287.8 1.040 287.6 1.040 287.7 1.040	TOTAL PRESS IN RATIO 10.08 1.140 10.13 1.169 10.14 1.187 10.14 1.188 10.14 1.142 10.14 1.134 10.13 1.133 10.08 1.100
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 182.3 174.5 187.4 186.9 190.9 193.4 194.2 199.9 192.7 199.1 189.3 187.1 187.5 188.8 185.8 190.0 181.7 176.6	REL VEL IN OUT 337.3 221.6 332.7 254.2 327.8 260.6 308.2 244.1 280.0 218.4 252.8 192.8 254.9 180.2 228.5 176.6 220.4 154.2	MERID VEL IN OUT 182.3 136.3 187.4 167.3 190.9 183.5 192.7 181.1 189.3 169.9 187.5 169.7 185.8 169.7 181.7 150.5	TANG VEL IN OUT -0.0 108.9 -0.0 83.5 -0.1 76.1 -0.0 79.2 -0.0 82.9 -0.1 78.4 -0.0 82.6 -0.0 85.5 -0.0 92.4	NHEEL SPEED IN OUT 283.8 283.7 274.9 274.9 266.4 266.6 239.2 240.2 203.1 204.9 167.4 169.6 141.4 143.1 133.0 134.4 124.8 125.7
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.551 0.502 0.568 0.544 0.579 0.566 0.590 0.588 0.566 0.575 0.555 0.569 0.561 0.564 0.565 0.550 0.523	REL MACH NO IN OUT 1.020 0.638 1.008 0.740 0.994 0.763 0.937 0.719 0.851 0.646 0.768 0.572 0.713 0.536 0.693 0.525 0.668 0.457	MERID MACH NO iN OUT 0.551 0.392 0.568 0.579 0.521 0.590 0.540 0.586 0.535 0.575 0.504 0.564 0.505 0.550 0.446		MERID PEAK SS VEL R MACH NO 0.748 1.461 0.893 1.443 0.931 1.438 0.945 1.382 0.939 1.319 0.897 1.261 0.905 1.214 0.913 1.196 0.828 1.173
₹P12345€789	PERCENT INC SPAN MEAN 5.00 6.1 10.00 5.5 15.00 5.1 30.00 4.9 50.00 5.2 70.00 5.6 85.00 5.8 90.00 6.2 95.00 6.8	1.4 10.0 0.5 8.4 -0.3 8.1 -2.9 7.8 -6.7 9.1 -10.3 13.4 -11.9 12.6 -11.9 11.4	D-FACT EFF 0.661 0.411 0.478 0.586 0.424 0.711 0.433 0.825 0.452 0.873 0.449 0.876 0.443 0.904 0.439 0.903 0.526 0.697	LOSS COEFF TOT PROF 0.340 0.316 0.212 0.191 0.140 0.121 0.087 0.078 0.064 0.062 0.057 0.057 0.046 0.046 0.048 0.048 0.154 0.154	LOSS PARAM TOT PROF 0.206 0.191 0.135 0.121 0.090 0.078 0.057 0.051 0.041 0.040 0.034 0.034 0.025 0.025 0.026 0.026 0.081 0.081

TABLE X. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51A. 120 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.648 24.638 25.871 25.876 25.094 25.114 20.744 20.828 17.623 17.780 14.544 14.732 12.299 12.446 11.570 11.684 10.846 10.922	ABS BETAM IN OUT -0.0 48.0 -0.0 35.5 0.0 27.6 -0.0 27.7 -0.0 27.6 -0.0 28.6 -0.0 30.1 -0.0 34.6	5 58.0 50.1 9 56.5 47.1 2 53.0 39.9 4 48.7 35.3 8 43.7 28.4 9 39.2 19.3 1 37.8 15.4	TOTAL TEMP IN RATIO 288.8 1.105 288.5 1.091 288.5 1.082 283.1 1.075 287.9 1.059 287.9 1.048 287.8 1.043 287.8 1.043	TOTAL PRESS IN RATIO 10.08 1.175 10.14 1.203 10.14 1.239 10.14 1.192 10.13 1.157 10.13 1.147 10.13 1.144 10.08 1.117
8P 1 2 3 4 5 6 7 8	ABS VEL IN OUT 164.5 170.8 171.5 176.3 175.7 187.7 180.1 199.6 178.6 188.1 175.6 179.7 173.7 181.1 172.1 181.9 168.0 170.8	REL VEL IN OUT 328.1 194.0 323.5 223.9 318.7 243.6 299.0 231.3 270.4 204.6 242.8 180.7 224.0 167.9 217.7 163.3 209.4 142.8	MERID VEL IN OUT 164.5 114.2 171.5 143.5 175.7 165.9 180.1 177.5 178.6 167.0 175.6 158.9 173.7 158.5 172.1 157.4 168.0 140.1	TANG VEL IN OUT -0.0 127.0 -0.0 102.5 0.0 87.7 -0.0 91.3 -0.0 86.6 -0.0 83.9 -0.0 87.6 -0.0 97.8	HHEEL SPEED IN OUT 283.9 283.8 274.3 274.3 265.9 266.1 238.6 233.0 204.9 167.7 169.9 141.6 143.3 153.4 134.7 125.0 125.9
RP 1 2 5 4 5 6 7 8 9	ABS MACH NO IN OUT 0.495 0.488 0.517 0.508 0.546 0.545 0.554 0.554 0.554 0.551 0.525 0.536 0.520 0.539 0.506 0.504	REL MACH NO IN OUT 0.987 0.555 0.975 0.646 0.962 0.708 0.904 0.678 0.818 0.602 0.734 0.533 0.677 0.497 0.657 0.484 0.631 0.422	MERID MACH NO IN CUT 0.495 0.326 0.517 0.414 0.530 0.482 0.545 0.520 0.540 0.491 0.531 0.469 0.525 0.469 0.520 0.466 0.506 0.413		MERID PEAK SS VEL R MACH NO 0.694 1.525 0.837 1.463 0.944 1.462 0.936 1.397 0.935 1.328 0.905 1.260 0.912 1.203 0.914 1.183 0.834 1.157
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN MEAN 5.00 8.7 10.00 7.7 15.00 7.3 30.00 6.9 50.00 7.3 70.00 7.8 85.00 8.0 90.00 8.3 95.00 9.0	IDENCE SS 4.0 11.8 2.8 9.6 1.9 8.2 -0.8 6.4 -4.6 10.4 -8.1 10.4 -9.8 12.3 -9.8 10.8 -9.3 9.0	D-FACT EFF 0.790 0.448 0.613 0.526 0.495 0.665 0.494 0.840 0.494 0.866 0.494 0.897 0.484 0.934 0.488 0.921 0.569 0.752	LOSS COEFF TOT PROF 0.372 0.342 0.290 0.267 0.191 0.172 0.094 0.086 0.074 0.073 0.054 0.054 0.036 0.036 0.045 0.045 0.150 0.150	LOSS PARAM TOT PROF 0.215 0.198 0.179 0.165 0.123 0.111 0.063 0.058 0.047 0.046 0.032 0.032 0.020 0.020 0.024 0.024 0.079 0.079

TABLE XI. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

STATOR 51. 100 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.595 2 25.861 2 25.129 2 20.925 1 17.963 14.953 12.652 11.874 11.090 1	OUT 24.608 23.886 23.167 21.001 18.090 15.118 12.791	ABS IN 7.7 7.5 7.0 7.9 10.1 12.0 13.9 14.6 16.5	BETAM OUT -1.4 -2.0 -2.6 -2.9 -2.2 -2.2 -1.4 -0.2 4.7	REL IN 7.7 7.5 7.0 7.9 10.1 12.0 13.9 14.6 16.5	BETAM OUT -1.4 -2.0 -2.5 -2.9 -2.2 -1.4 -0.2 4.7	IN 295.4 295.3 295.0 294.3 294.4 294.0 293.0 292.9	TEMP RATIO 1.000 0.999 0.999 1.000 0.999 1.000 1.002	TOTAL IN 10.66 10.75 10.75 10.77 10.73 10.57 10.55	PRESS RAT10 0.968 0.985 0.989 0.989 0.986 0.987 0.983 0.978 0.945
27 1 23 4 5 6 7 8 9	ABS IN 210.2 213.4 212.5 212.4 209.5 202.3 191.8 190.6 190.7	VEL 0UT 199.4 208.4 208.9 210.4 211.6 212.5 209.0 208.1 196.4	REL [N 210.2 213.4 212.5 212.4 209.5 202.3 191.8 190.6 190.7	VEL 0UT 199.4 208.4 208.9 210.4 211.6 212.5 209.0 208.1 196.4	MERI IN 208.3 211.6 210.9 210.4 206.3 197.9 186.2 184.5 182.8	0 VEL 0UT 199.3 208.3 208.7 210.1 211.4 212.3 208.9 208.1 195.7	IN 28.2 27.8 26.0	VEL 0UT -4.7 -7.1 -9.4 -10.7 -8.2 -8.1 -5.0 -0.6 16.2	HHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 5 4 5 6	IN 0.634 0.645 0.642 0.643	ACH NO OUT 0.599 0.629 0.631 0.636	REL M IN 0.634 0.645 0.642 0.643	ACH NO OUT 0.599 0.629 0.631	MERID M IN 0.629 0.639 0.637	0UT 0.599 0.628 0.630				PEAK SS MACH NO 0.735 0.739 0.719
6 7 8 9	0.633 0.610 0.577 0.574 0.573	0.640 0.643 0.632 0.630 0.592	0.633 0.610 0.577 0.574 0.573	0.640 0.643 0.632 0.630 0.592	0.637 0.623 0.597 0.560 0.555	0.635 0.640 0.643 0.632 0.630 0.590			0.999 1.025 1.073 1.122 1.128 1.070	0.754 0.757 0.747 0.730 0.735 0.770

TABLE XI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51. 100 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.595 24.608 23.861 23.886 23.129 23.167 20.925 21.001 17.963 18.090 14.953 15.118 12.652 12.791 11.874 11.971 11.090 11.128	14.8 15.2 15.7 16.2 17.4 20.1 21.2	OUT 1.0 0.5 -0.1 -0.6 -1.3 -0.5 1.2 5.4	REL IN 16.1 14.8 15.2 15.7 16.2 17.4 20.1 21.2 25.1	BETAM OUT 1.0 0.6 0.3 -0.1 -0.6 -1.3 -0.3 1.2 5.4	TOTAL TEMP IN RATIO 300.8 1.000 300.1 1.000 299.5 1.000 297.9 1.000 296.3 1.000 295.1 1.000 294.7 1.000 295.3 1.000 295.4 1.000	TOTAL PRESS IN RATIO 11.34 0.979 11.45 0.986 11.44 0.992 11.31 0.998 11.11 1.000 10.94 0.998 10.90 0.998 10.95 0.983 10.77 0.971
12 3 4 5 6 7 8 9	ABS VEL IN OUT 187.2 172.9 192.4 179.5 191.3 180.9 188.5 179.8 180.0 174.1 169.9 166.8 164.9 162.5 166.9 161.7 162.6 148.7	192.4 1 191.3 1 188.3 1 180.0 1 169.9 1 164.9 1	EL OUT 72.9 79.5 80.9 79.8 74.1 66.8 62.5 61.7 48.7	186.0 184.6 181.3 172.8 162.0 154.8 155.6	VEL 0UT 172.9 179.4 180.9 179.8 174.1 166.8 162.5 161.7	TANG VEL IN OUT 51.9 3.0 49.2 2.0 50.1 0.8 50.9 -0.3 50.3 -1.9 50.9 -3.9 56.6 -0.9 60.4 3.4 69.1 14.0	IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
_	ABS MACH NO		H NO P	ERID MA	CH NO		MERID PEAK SS
1 2 3 4 5 6 7 8 9	IN OUT 0.555 0.510 0.572 0.551 0.569 0.536 0.554 0.556 0.556 0.556 0.496 0.496 0.496 0.495 0.440	0.572 0 0.569 0 0.561 0 0.536 0 0.506 0 0.490 0	0UT 0.510 0.531 0.536 0.534 0.518 0.496 0.483 0.480	0.553 0.549 0.540 0.515 0.482 0.461 0.463	0.510 0.510 0.531 0.536 0.534 0.518 0.405 0.483 0.480 0.438		VEL R MACH NO 0.961 0.815 0.965 0.813 0.980 0.814 0.992 0.804 1.007 0.762 1.029 0.719 1.049 0.726 1.039 0.751 1.006 0.792

TABLE XI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51. 100 PERCENT DESIGN SPEED

8P 1 2 3 4 5 6 7 8 9	RAD IN 24.595 23.861 23.129 20.925 17.963 14.953 12.652 11.874 11.090	0UT 24.608 23.886 23.167 21.001 18.090 15.118 12.791	ABS IN 21.2 18.8 18.9 19.3 20.1 21.8 24.0 25.0 29.5	BETAM OUT 1.6 1.4 0.9 0.1 -0.0 -0.5 0.6 2.3 6.1	REL IN 21.2 18.8 18.9 19.3 20.1 21.8 24.0 25.0 29.5	BETAM OUT 1.6 1.4 0.9 0.1 -0.0 -0.5 0.6 2.3 6.1	TOTA IN 303.0 301.2 299.4 297.6 296.1 295.5 295.6	RATIO 1.000 1.000 1.001 1.000 1.000 0.999 0.999 0.999	TOTAL IN 11.48 11.65 11.61 11.47 11.25 11.08 11.03 11.03	PRESS RATIO 0.983 0.984 0.993 0.999 1.000 0.994 0.988 0.983 0.982
RP 1 2 3 4 5 6 7 8 9	ABS IN 173.6 181.0 179.8 176.4 168.0 159.2 155.6 156.4 148.3	VEL 0UT 158.9 165.3 168.1 166.4 158.4 147.6 143.8 141.6 129.1	REL. IN 173.6 181.0 179.8 176.4 168.0 159.2 155.6 156.4 148.3	VEL OUT 158.9 165.3 168.1 166.4 158.4 147.6 143.8 141.6	MERII IN 161.9 171.4 170.1 166.5 157.8 147.8 142.2 141.8 129.1	D VEL 0UT 158.9 168.1 166.4 158.4 147.6 143.8 141.5 128.3	TAN IN 62.8 58.2 58.3 57.6 59.1 63.2 66.0 72.9	G VEL OUT 4.4 4.0 2.6 0.2 -0.0 -1.2 1.5 5.7	HEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	N 0.510 0.534 0.531 0.522 0.498 0.472 0.461 0.464 0.438	ACH NO OUT 0.465 0.485 0.495 0.491 0.468 0.436 0.425 0.418 0.380	REL M IN 0.510 C.534 0.531 0.522 0.498 0.472 0.461 0.464 0.438	0.465 0.465 0.485 0.495 0.491 0.468 0.436 0.425 0.418 0.380	MERID M IN 0.476 0.506 0.503 0.493 0.468 0.438 0.421 0.420	ACH NO OUT 0.465 0.485 0.495 0.491 0.468 0.436 0.425 0.418 0.577				PEAK SS MACH NO 0.838 0.831 0.827 0.813 0.772 0.740 0.743 0.760 0.783

TABLE XI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51. 100 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN 0U1 24.595 24.60 23.861 23.86 23.129 23.16 20.925 21.00 17.963 18.09 14.953 12.79 11.874 11.97 11.090 11.12	IN 27.6 36 22.8 57 22.2 50 22.6 50 23.5 18 25.0 10 27.1 71 28.1	BETAM OUT 3.3 2.5 1.5 0.2 0.4 0.2 1.3 3.2 6.7	RCL IN 27.6 22.8 22.2 22.6 23.5 25.0 27.1 28.1 32.9	BETAM OUT 3.3 2.5 1.5 0.2 0.4 0.2 1.3 3.2 6.7	TOTAL TEM IN RATI 305.0 1.00 303.6 1.00 302.5 1.00 300.7 0.99 298.5 0.99 295.9 1.00 296.1 1.00	0 IN RATIO 0 11.50 0.985 2 11.68 0.980 1 11.70 0.987 8 11.56 0.997 9 11.16 0.993 9 11.10 0.987 0 11.08 0.984
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 158.9 145. 169.3 150. 171.0 154. 167.3 154. 159.2 145. 150.1 133. 147.2 128. 147.1 126. 138.9 113.	IN 5 158.9 4 169.3 7 171.0 8 167.3 .0 159.2 4 150.1 7 147.2 147.1	VEL OUT 145.3 150.4 154.7 154.8 145.0 133.4 128.7 126.4 113.9	MERII IN 140.8 156.0 158.3 154.4 146.0 136.1 131.1 129.8 116.7	VEL OUT 145.1 150.2 154.6 154.8 145.0 133.4 128.7 126.2 113.1	TANG VEL IN OUT 73.6 8.65.7 6.6 64.7 4.663.4 0.67.0 2.69.3 7.75.5 13.5	4 0. 0. 5. 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH N IN OUT 0.464 0.42 0.496 0.43 0.503 0.45 0.493 0.45 0.470 0.42 0.443 0.39 0.435 0.37 0.435 0.33	IN 22 0.464 58 0.496 52 0.503 55 0.493 26 0.470 02 0.443 79 0.435 72 0.435	ACH NO OUT 0.422 0.438 0.455 0.455 0.426 0.392 0.379 0.372	MERID M. IN 0.411 0.458 0.465 0.455 0.431 0.402 0.387 0.383 0.344	ACH NO OUT 0.422 0.438 0.455 0.455 0.426 0.392 0.379 0.371		MERID PEAK SS VEL R MACH NO 1.030 0.863 0.963 0.841 0.977 0.839 1.002 0.821 0.993 0.782 0.980 0.743 0.982 0.747 0.972 0.759 0.970 0.781

TABLE XI. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES
FOR STATOR 51. 100 PERCENT DESIGN SPEED

8P 1 2 3 4 5 6 7 8	RAD IN 24.595 23.861 23.129 20.925 17.963 14.953 12.652 11.874 11.090 1	0UT 24.608 23.886 23.167 21.001 18.090 15.118 12.791	ABS 1N 42.5 32.6 26.5 24.8 25.1 26.5 28.8 29.9 34.6	BETAM OUT 5.5 4.1 2.6 0.9 0.4 0.5 1.7 3.7	REL IN 42.3 32.6 26.5 24.8 25.1 26.5 28.8 29.9 34.6	BETAM OUT 5.5 4.1 2.6 0.9 0.4 0.5 1.7 3.7 7.1	TOTAL 1N 308.9 306.0 304.3 301.7 299.0 297.2 296.2 296.1 296.2	TEMP RAT 10 0.990 0.996 0.999 0.998 0.998 0.998 1.000	TOTAL IN 11.32 11.40 11.56 11.62 11.45 11.22 11.14 11.12	PRESS RATIO 0.988 0.986 0.980 0.994 0.994 0.991 0.988 0.988
8P 1 2 3 4 5 6 7 8 9	ABS !N 147.3 153.9 163.3 166.0 157.8 148.3 144.1 144.6 136.5	VEL 0UT 130.3 132.8 137.1 148.4 138.9 126.8 121.7 118.8 106.3	REL IN 147.3 153.3 163.3 157.8 148.3 144.1 144.6 136.5	VEL OUT 130.3 132.8 137.1 148.4 138.9 126.8 121.7 118.8 106.3	MERI IN 108.9 129.6 146.2 150.7 143.0 132.7 126.3 125.3	0 VEL 0UT 129.7 132.5 137.0 148.4 138.9 126.8 121.7 118.6 105.5	TANG IN 99.1 82.9 72.9 69.7 66.9 66.3 69.3 72.0 77.6	VEL OUT 12.4 9.5 6.2 2.4 1.0 1.2 3.6 7.6	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M. IN 0.426 0.448 0.478 0.488 0.465 0.437 0.425 0.427	ACH NO OUT 0.377 0.585 0.399 0.454 0.408 0.372 0.358 0.349	REL M IN 0.426 0.448 0.478 0.488 0.465 0.437 0.425 0.427	ACH NO 0.377 0.385 0.399 0.434 0.408 0.372 0.358 0.349	MERID M IN 0.315 0.377 0.427 0.443 0.421 0.591 0.373 0.370 0.331	ACH NO OUT 0.375 0.384 0.398 0.434 0.408 0.372 0.357 0.348 0.309				PEAK SS MACH NO 1.029 0.912 0.868 0.851 0.800 0.756 0.755 0.771 0.792
RP 1 2 3 4 5 6	PERCENT SPAN 5.00 10.00 15.00 30.00	INCI MEAN 28.0 18.1 11.9 9.3	DENCE \$\$ 18.8 8.9 2.7	9.5 8.1 6.6 4.9	D-FACT 0.403 0.363 0.348 0.274	EFF 0. 0. 0.	LOSS C TOT 0.099 0.111 0.141	0EFF PROF 2.099 0.111 0.141	LOSS P TOT 0.048 0.053 0.065 0.017	PROF 0.048 0.053 0.065 0.017

TABLE XII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

STATOR 51. 90 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN 0 24.595 24. 23.861 23. 23.129 23. 20.925 21. 17.963 18. 14.953 15. 12.652 12. 11.874 11.	608 886 167 001 090 1 118 1 791 1	6.7 7.0 6.9 8.1 0.4 2.9 3.8	OUT -2.0 -2.0 -2.5 -3.2 -2.6 -2.6 -1.7	REL IN 6.7 7.0 6.9 8.1 10.4 12.9 13.8 14.0 14.9	-2.5 -3.2 -2.6		TEMP RATIO 0.998 0.998 0.997 0.995 0.995 0.996 0.996 0.997	TOTAL IN 10.50 10.62 10.64 10.68 10.75 10.75 10.58 10.51	PRESS RATIO 0.975 0.988 0.992 0.992 0.988 0.987 0.985 0.983
8P 1 2 3 4 5 6 7 8 9	197.9 18 202.0 19 201.7 19 204.3 20 201.9 20 196.8 20 187.8 19 184.4 19	UT 6.1 19 5.4 20 7.0 20 0.0 20 0.8 20 1.5 19 8.1 18 5.7 18	7.9 18 2.0 19 1.7 19 4.3 20 1.9 20 6.8 20 17.8 19 14.4 19	UT 6.1 1 5.4 2 7.0 2 0.0 2 0.8 1 1.5 1 18.1 1	00.5 00.2 02.2 98.6 91.8 82.3 78.9	VEL 0UT 186. C 195. 3 196. 8 199. 7 200. 6 201. 3 198. 0 195. 6 182. 9	TANG IN 23.2 24.8 24.4 28.7 36.4 43.8 44.8 44.6	VEL OUT -6.6 -6.7 -8.5 -11.1 -9.1 -9.2 -6.0 -1.8 12.9	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED GJT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	0.597 0. 0.610 0. 0.609 0. 0.618 0. 0.610 0. 0.593 0. 0.565 0. 0.554 0.	UT	597 0. 610 0. 609 0. 618 0. 610 0. 593 0. 565 0. 554 0.	559 0 589 0 595 0 605 0 607 0 610 0 599 0	.605 .605 .611 .600 .578 .548	CH NG OUT 0.559 0.589 0.594 0.604 0.607 0.609 0.599 0.591 0.551				PEAK SS MACH NO 0.664 0.686 0.679 0.709 0.735 0.745 0.711 0.698 0.699

TABLE XII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51. 90 PERCENT DESIGN SPEED

12 3 4 5 6 7 8	RAD1: 1N OUT 24.595 24.608 23.861 23.886 23.129 23.167 20.925 21.001 17.963 18.090 14.953 15.118 12.652 12.791 11.874 11.971 11.090 11.128	ABS BETAM IN OUT 13.2 0.3 12.7 0.3 12.4 -0.2 14.4 -0.7 15.9 -1.1 16.9 -1.6 19.2 -0.9 20.3 0.5 22.6 4.9	REL BETAM IN OUT 13.2 0.3 12.7 0.3 12.4 -0.2 14.4 -0.7 15.9 -1.1 16.9 -1.6 13.2 -0.9 20.3 0.5 22.6 4.9	TOTAL TEMP IN RATIO 297.6 0.999 297.0 1.000 296.7 1.000 295.1 1.001 294.0 1.000 293.0 1.002 292.6 1.301 292.7 1.001 293.1 1.002	TOTAL PRESS IN PATIO 11.02 0.983 11.12 0.988 11.15 0.996 10.89 0.998 10.75 1.100 10.68 0.995 10.69 0.991 10.66 0.974
5P 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 171.6 159.0 176.1 165.7 176.3 167.2 174.7 167.0 166.7 162.6 157.8 157.4 151.8 152.8 152.8 152.8 142.3	REL VEL IN OUT 171.6 159.0 176.1 165.7 176.3 167.2 174.7 167.0 166.7 162.6 157.8 157.4 151.8 152.8 152.8 151.6 152.8 172.3	MERID VEL IN OUT 167.1 159.0 171.8 165.7 172.2 167.2 169.2 167.0 160.4 162.5 151.0 157.4 143.3 152.8 143.3 151.6 141.0 141.8	TANG VEL IN OUT 39.2 0.9 38.7 0.7 37.7 -0.5 43.5 -2.0 45.6 -3.2 45.8 -4.4 49.9 -2.4 53.0 1.2 58.7 12.2	HOFEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1 2 3 4 5 6 7 8 (ABS MACH NO IN OUT 0.509 0.470 0.524 0.491 0.525 0.496 0.521 0.496 0.497 0.484 0.470 0.468 0.452 0.454 0.454 458.4224510	REL MACH NO IN OUT 0.509 0.470 0.524 0.491 0.525 0.496 0.521 0.496 0.497 0.484 0.470 0.468 0.452 0.454 494 456.422 4510.	MERID MACH NO IN OUT 0.496 0.470 0.511 0.491 0.512 0.496 0.501 0.496 0.477 0.484 0.450 0.454 40426 0.454 40428,420451	1,	MERID PEAK SS VEL R MACH NO 0.952 0.697 0.964 0.705 9.971 0.699 0.987 0.724 1.014 0.700 1.042 0.658 1.066 0.655 .305 050.785 674
25 4 5 6 7 8	PERCENT INC SPAN MEAN 5.00 -1.1 10.00 -1.8 15.00 -2.3 30.00 -1.1 50.00 -1.5 70.00 -3.1 85.00 -2.5	-10.5 4.4 -11.0 4.3 -11.5 3.8 -10.5 3.3 -10.7 3.0 -12.2 2.7	D-FACT EFF 0.183 0. 0.161 0. 0.151 0. 0.152 0. 0.129 0. 0.097 0. 0.080 0.	LOSS COEFF TOT PROF 0.105 0.105 0.068 0.068 0.052 0.052 0.026 0.026 0.010 0.010 0.003 0.003 0.036 0.036	LOSS PARAM TOT PROF 0.051 0.0.1 0.052 0.032 0.024 0.074 0.011 0.011 0.004 0.7 4 0.001 3. 21 0.009 0.009

TABLE XII. - Continued. BLADE-ELEMENT DATA AT BLAPE EDGES FOR STATOR 51. 90 PERCENT DESIGN SPEED

8P 1 2 3 4 5 7 8 9	RAD IN 24.595 23.861 23.129 20.925 17.963 14.953 12.652 11.874 11.090	OUT 24.608 23.886 23.167 21.001 18.090 15.118 12.791 11.971	ABS IN 16.4 15.4 15.7 17.6 19.0 19.9 22.4 23.7 26.3	BETAM OUT 1.1 0.9 0.5 -0.2 -0.3 -1.1 -0.1 1.5 5.7	REL IN 16.4 15.7 17.6 19.0 19.9 22.4 23.7 26.3	BETAM OUT 1.1 0.9 0.5 -0.2 -0.3 -1.1 -0.1 1.5 5.7	TOTAL TEMP IN RATIO 299.2 0.998 298.4 1.000 297.6 1.001 296.4 1.000 294.9 1.001 293.6 1.002 293.3 1.001 293.5 1.002	TOTAL PRESS IN RATIO 11.14 0.986 11.27 0.986 11.26 0.993 11.19 0.995 10.98 1.000 10.81 1.001 10.77 0.994 10.77 0.991 10.70 0.979
89° 1 2 3 4 5 6 7 8 9	IN 160.6 166.9 165.9 165.1 155.7 145.9 143.5 144.2	VEL 0UT 148.4 153.9 156.1 155.5 149.5 141.5 137.1 135.9 124.5	REL IN 160.6 166.9 165.9 165.1 155.7 145.9 143.5 144.2 141.8	VEL 0UT 148.4 153.9 156.1 155.5 149.5 141.5 137.1 135.9 124.5	MERI IN 154.0 160.9 159.7 157.4 147.2 137.2 132.7 132.0 127.1	0 VEL 0UT 148.4 153.8 156.1 155.5 149.5 141.5 137.1 135.9 123.9	TANG VEL IN OUT 45.5 2.9 44.2 2.4 44.9 1.2 50.0 -0.5 50.8 -0.8 49.8 -2.6 54.6 -0.3 58.0 3.5 62.7 12.5	NOTEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1	IN 0.475	ACH NO OUT 0.436	REL M IN 0.473	OUT	MERID M	OUT		MERID PEAK SS VEL R MACH NO
254 567 89	0.494 0.491 0.490 0.462 0.433 0.426 0.428	0.453 0.461 0.460 0.442 0.419 0.406 0.402 0.567	0.494 0.491 0.490 0.462 0.433 0.426 0.428	0.436 0.453 0.461 0.460 0.442 0.419 0.406 0.402 0.367	0.454 0.476 0.473 0.467 0.437 0.407 0.394 0.392 0.377	0.436 0.453 0.461 0.460 0.442 0.419 0.406 0.402		0.963 0.701 0.956 0.711 0.978 0.711 0.988 0.734 1.015 0.652 1.033 0.663 1.029 0.683 0.974 0.705

TABLE XII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51. 90 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII 1N 0UT 24.595 24.608 23.861 23.886 23.129 23.167 20.925 21.001 17.963 18.090 14.953 15.118 12.652 12.791 11.874 11.971 11.090 11.128	24.4 20.1 19.8 21.3 22.5 - 23.3 - 26.1 27.0	AM REL UT IN 2.7 24.4 1.8 20.1 0.9 19.8 0.3 21.3 1.0 22.5 0.2 23.3 0.9 26.1 2.7 27.0 5.3 29.9	1.8 3 0.9 2 0.3 2 -0.0 2 -0.2 2 0.9 2 2.7 2	TOTAL TEMP IN RATIO 01.4 0.999 00.3 1.001 99.3 1.001 97.6 1.000 95.9 1.000 94.4 1.001 93.9 1.000 93.8 1.001 94.0 1.002	TOTAL PRESS IN RATIO 11.19 0.988 11.38 0.980 11.40 0.989 11.29 0.998 11.08 0.999 10.90 0.998 10.84 0.995 10.84 0.991 10.78 0.980
RP 1 2 3 4 5 6 7 8 9	ABS VEL [N OUT 145.4 132.8 155.9 137.9 157.1 142.9 155.2 144.0 146.3 135.8 136.6 125.8 133.1 121.8 134.2 119.9 132.5 108.1	REL VEL IN 0U' 145.4 132 155.9 137 157.1 142 155.2 144 146.3 135 136.6 125 133.1 121 134.2 119 132.5 108	.8 132.4 .9 146.4 .9 147.7 .0 144.6 .8 135.2 .8 125.5 .8 119.6	OUT 132.7 137.8 142.9 144.0 135.8 125.8 121.8	TANG VEL IN OUT 60.0 6.2 63.5 4.3 65.3 2.2 66.3 0.9 66.0 -C.1 68.5 1.8 60.9 5.7 66.1 11.8	NOTEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 7 8 9	ABS MACH NO IN OUT 0.425 0.388 0.403 0.419 0.458 0.424 0.432 0.400 0.403 0.371 0.393 0.359 0.359 0.351 0.317	REL MACH IN OU 0.425 0.3 0.458 0.4 0.463 0.4 0.458 0.4 0.432 0.4 0.403 0.3 0.393 0.3 0.397 0.3 0.391 0.3	T IN 88 0.387 03 0.430 19 0.435 24 0.427 00 0.399 71 0.371 59 0.353	OCH NO OUT 0.387 0.403 0.419 0.424 0.400 0.371 0.359 0.353 0.315		MERID PEAK SS VEL R MACH NO 1.002 0.744 0.941 0.733 0.967 0.735 0.996 0.743 1.005 0.706 1.003 0.653 1.018 0.662 1.002 0.678 0.936 0.705

TABLE XII. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES

FOR STATOR 51. 90 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.595 23.861 23.129 20.925 17.963 14.953 12.652 11.874 11.090 1	0UT 24.608 23.886 23.167 21.001 18.090 15.118 12.791	ABS IN 42.8 33.1 26.3 25.1 26.4 27.2 29.6 30.4 33.7	BETAM OUT 5.5 4.3 2.7 1.3 0.4 0.5 1.8 3.8 7.2	RELL IN 42.8 33.1 26.3 25.1 26.4 27.2 29.6 30.4 33.7	BETAM CUT 5.5 4.3 2.7 1.3 0.4 0.5 1.8 3.8 7.2	TOTA IN 305.0 302.9 301.1 299.0 296.9 295.1 294.4 294.2	TEMP RATIO G.992 0.996 1.000 1.000 0.999 1.000 1.000 1.001	IN 11.12 11.14 11.28 11.37 11.19 10.98 10.93	PRESS RATIO 0.991 0.991 0.985 0.993 0.995 0.996 0.993 0.989
1 2 3 4 5 6 7 8 9	ABS IN 131.2 135.2 144.8 149.4 140.9 130.0 127.3 128.1 125.8	VEL 0UT 117.0 118.8 122.7 133.1 123.8 112.9 108.0 104.8 94.0	REL IN 131.2 135.2 144.8 149.4 140.9 130.0 127.3 128.1 125.8	VEL OUT 117.0 118.8 122.7 135.1 123.8 112.9 108.0 104.8 94.0	MERI. [N 96.2 113.3 129.8 135.3 126.2 115.7 110.8 110.5	D VEL 0UT 116.5 118.4 122.6 133.1 123.8 112.9 108.0 104.6 93.3	TAN IN 89.1 73.8 64.2 63.3 62.7 59.4 62.8 64.8 69.8	VEL OUT 11.3 8.8 5.8 2.9 0.8 1.0 3.3 6.9	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M IN 0.380 0.394 0.424 0.439 0.415 0.383 0.375 0.378 0.371	ACH NO OUT 0.339 0.345 0.357 0.390 0.363 0.331 0.317 0.307	REL M IN 0.380 0.394 0.424 0.439 0.415 0.383 0.375 0.378	ACH NO OUT 0.339 0.345 0.357 0.390 0.363 0.331 0.317 0.307	MERID M IN 0.279 0.330 0.380 0.398 0.372 0.341 0.327 0.326 0.308	ACH NO OUT 0.338 0.344 0.357 0.390 0.363 0.331 0.317 0.307				PEAK SS MACH NO 0.927 0.808 0.767 0.769 0.733 0.671 0.677 0.689 0.717

TABLE XIII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

STATOR 51. 110 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RAD I IN 24.595 2: 23.861 2: 23.129 2: 20.925 2: 17.963 1: 14.953 1: 12.652 1: 11.874 1: 11.090 1:	0UT 4.608 3.886 3.167 1.001 8.090 5.118 2.791 1.971	ABS IN 9.4 9.3 9.7 11.1 13.6 15.1 16.2 18.5	BETAM OUT -0.5 -0.9 -1.5 -2.3 -2.1 -1.6 -0.9 0.5 5.3	REL IN 9.4 9.3 9.7 11.1 13.6 15.1 16.2 18.5	BETAM OUT -0.5 -0.9 -1.5 -2.3 -2.1 -1.6 -0.9 0.5 5.3	TOTAL IN 298.2 297.4 296.2 295.2 294.8 294.1 294.4 295.3	TEMP RATIO 0.999 1.000 1.000 1.001 1.002 1.004 1.002 0.998	TOTAL IN 10.83 10.94 10.93 10.89 10.79 10.79 10.79	PRESS RAT10 0.962 0.976 0.983 0.984 0.987 0.982 0.984 0.970 0.927
RP 1 2 3 4 5 6 7 8 9	223.8 222.9 221.1 211.9 206.2 194.3	VEL 0UT 206.2 214.6 216.5 216.6 215.7 215.9 212.7 213.3 200.4	REL IN 220.1 223.8 222.9 221.1 211.9 206.2 194.3 197.5 200.5	VEL 0UT 206.2 214.6 216.5 216.6 215.7 215.9 212.7 213.3 200.4	MERI IN 217.1 220.8 219.9 217.9 208.0 200.5 187.6 189.7 190.1	0 VEL 0UT 206.2 214.5 216.4 215.5 215.8 212.7 213.3 199.5	TAN IN 36.1 36.4 35.9 37.4 40.8 48.4 50.5 55.1 63.7	G VEL OUT -1.9 -3.5 -5.8 -8.7 -7.7 -6.2 -3.2 1.8 18.6	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	0.676 0.673 0.669 0.640 0.622 0.584 0.594	CH NO OUT 0.618 0.646 0.652 0.654 0.652 0.653 0.643 0.645	REL M 1N 0.663 0.676 0.669 0.640 0.622 0.584 0.594 0.603	ACH NO OUT 0.618 0.646 0.652 0.654 0.652 0.653 0.643 0.645	MERID M IN 0.654 0.667 0.664 0.659 0.628 0.605 0.564 0.571	0.618 0.618 0.646 0.652 0.654 0.651 0.653 0.643 0.645				PEAK SS MACH NO 0.816 0.827 0.819 0.814 0.790 0.798 0.762 0.796 0.853

TABLE XIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51. 110 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN 0 24.595 24. 23.861 23. 23.129 23. 20.925 21. 17.963 18. 14.953 15. 12.652 12. 11.874 11. 11.090 11.	DUT IN 608 17.3 886 15.0 167 15.1 001 16.0 090 17.3 118 18.6 791 20.7 971 21.5	0.2 -0.5 -0.3 -0.5 -1.5 -0.5	REL IN 17.3 15.0 15.1 16.0 17.3 18.6 20.7 21.5 25.1	BETAM OUT 0.7 0.2 -0.5 -0.5 -1.5 -0.5 0.9 5.5	302.6 0 302.1 0 301.7 0 300.3 0 298.6 0 296.5 0 295.9 0 295.8 0	TEMP AT10 .997 .998 .998 .997 .997 .999 .998 .998	TOTAL IN 11.22 11.50 11.51 11.52 11.34 11.11 11.03 11.06 10.86	PRESS RAT10 0.977 0.974 0.988 0.992 0.997 1.005 0.990 0.984 0.971
RP 1 2 3 4 5 6 7 8 9	193.6 17 205.1 18 204.6 18 205.5 19 198.3 18 185.5 19 180.6 17 181.7 17	L REDUT IN 193.6 22.6 205.1 88.2 204.6 80.9 205.5 88.9 198.3 101.0 185.5 76.0 180.6 175.6	182.6 188.2 190.9 188.9 191.9 176.0 7 174.2	MERID IN 184.8 198.0 197.5 197.5 189.4 175.8 169.0 169.0 159.2	VEL OUT 174.0 182.6 188.2 190.9 188.9 190.9 176.0 174.2 158.9	57.6 53.2 53.3 56.5 58.9 59.3	VEL OUT 2.2 0.6 -1.5 -1.0 -1.5 -4.9 -1.4 2.6	HHEEL IN 0. 0. 0. 0. 0.	SPEED OUT Q. Q. Q. Q.
RP 1 2 3 4	0.573 0. 0.610 0.	1 NO REL DUT IN .513 0.573 .540 0.610 .558 0.609	0.540	MERID MA IN 0.547 0.589 0.588	OUT 0.513 0.540 0.558				PEAK SS MACH NO 0.865 0.872
4 5 6 7 8 9	0.613 0. 0.592 0. 0.554 0. 0.539 0. 0.542 0.	568 0.613 563 0.592 571 0.554 525 0.539 519 0.542 473 0.523	0.568 0.563 0.571 0.525 0.519	0.590 0.566 0.525 0.504 0.505	0.568 0.563 0.571 0.525 0.519 0.471			0.953 0.966 0.997 1.086 1.041 1.031 0.998	0.870 0.885 0.863 0.810 0.809 0.825 0.857

TABLE XIII. - Continued. BLADE-FLEMENT DATA AT BLADE EDGES

FOR STATOR 51. 110 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.595 23.861 23.129 20.925 17.963 14.953 12.652 11.874 11.090	0UT 24.608 23.886 23.167 21.001 18.090 15.118 12.791	ABS IN 21.7 17.0 17.4 18.9 20.7 21.5 24.0 25.0 28.0	BETAM OUT 1.7 1.1 0.4 0.6 0.0 -0.3 0.8 2.5 6.5	REL IN 21.7 17.0 17.4 18.9 20.7 21.5 24.0 25.0 28.0	BETAM OUT 1.7 1.1 0.4 0.6 0.0 -0.3 0.8 2.5 6.5	TOTA IN 306.0 304.9 303.5 301.9 299.3 296.9 296.2 296.3 296.3	L TEMP RAT[0 0.999 1.000 1.001 1.001 1.001 1.002 1.000 1.000	TOTAL IN 11.46 11.89 11.83 11.48 11.18 11.15 11.14	PRESS RAT10 0.985 0.984 0.995 0.999 0.999 0.989 0.983 0.964
RP 1 23 4 5 6 7 8 9	ABS IN 183.4 201.4 200.8 200.7 187.8 173.9 171.4 172.3 168.5	VEL 0UT 167.4 175.5 182.3 186.1 176.1 164.1 159.7 157.6 142.1	REL IN 183.4 201.4 200.8 200.7 187.8 173.9 171.4 172.3 168.5	VEL 0UT 167.4 175.5 182.3 186.1 176.1 164.1 159.7 157.6 142.1	MER II !N 170.3 192.5 191.7 189.9 175.7 161.8 156.6 156.1 148.8	VEL 0UT 167.4 175.5 182.3 186.0 176.1 164.1 159.7 157.5 141.2	TAN IN 67.8 59.0 60.0 65.0 66.5 63.8 69.7 72.8 79.2	G VEL OUT 5.0 3.3 1.4 2.0 0.1 -0.9 2.1 6.9 16.2	MHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2	IN 0.538 6.595	ACH NO OUT 0.489 0.515	IN 0.538 0.595	ACH NO OUT 0.489 0.515	MERID M. IN 0.500 0.569	ACH NO OUT 0.489 0.514			VEL R 0.982	PEAK SS MACH NO 0.892
3 4 5 6 7 8 9	0.595 0.596 0.558 0.517 0.510 0.512 0.500	0.536 0.550 0.521 0.486 0.473 0.467 0.418	0.595 0.596 0.558 0.517 0.510 0.512 0.500	0.536 0.550 0.521 0.486 0.473 0.467	0.568 0.564 0.522 0.481 0.466 0.464 0.442	0.536 0.550 0.521 0.486 0.473 0.466 0.416			0.912 0.951 0.980 1.002 1.014 1.020 1.009 0.949	0.891 0.896 0.920 0.878 0.806 0.822 0.840 0.869

TABLE XIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51. 110 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.595 2 23.861 2 23.129 2 20.925 2 17.963 1 14.953 1 12.652 1 11.874 1	0UT 24.608 23.886 23.167 21.001 18.090 15.118 12.791	ABS IN 31.5 22.7 22.3 23.4 24.5 25.6 27.7 28.5 32.5	BETAM OUT 3.3 2.8 2.1 0.8 0.5 0.6 1.7 7.0	REL IN 31.5 22.7 22.3 23.4 24.5 25.6 27.7 28.5 32.5	BETAM OUT 3.3 2.8 2.1 0.8 0.5 0.6 1.7 3.7 7.0	TOTA IN 311.2 308.4 306.5 504.0 300.5 298.3 297.0 297.4	RATIO 0.994 1.000 1.002 1.000 1.000 1.000 1.000 1.000	TOTAL IN 11.76 12.13 12.20 12.05 11.63 11.36 11.28 11.26 11.12	PRESS RAT10 0.993 0.972 0.978 0.993 0.995 0.992 0.987 0.982 0.973
8P 1 2 3 4 5 6 7 8 9	ABS IN 172.2 189.1 192.6 190.0 174.7 164.0 160.3 161.0 156.9	VEL 0UT 160.1 164.0 169.3 171.3 156.2 143.6 138.5 135.4 121.8	IN 172.2 189.1 192.6 190.0 171.7	VEL 0UT 160.1 164.0 169.3 171.3 156.2 143.6 138.5 135.4 121.8	MERI IN 146.9 174.5 178.2 174.4 159.0 147.9 142.0 141.5 132.4	D VEL OUT 159.9 163.8 169.2 171.3 156.2 143.6 138.4 135.1	TAN IN 89.9 72.8 73.1 75.5 72.5 70.9 74.5 76.8 84.2	VEL OUT 9.2 7.9 6.1 2.4 0.7 1.5 4.1 8.6 14.9	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M/ IN 0.499 0.553 0.566 0.560 0.516 0.485 0.474 0.477	ACH NO OUT 0.464 0.476 0.493 0.503 0.459 0.422 0.407 0.398 0.356	RC 11 0.499 0.553 0.566 0.560 0.516 0.485 0.474 0.477	CH NO OUT 0.464 0.476 0.493 0.503 0.459 0.459 0.407 0.398 0.356	MERID M IN 0.426 0.511 0.524 0.514 0.470 0.437 0.420 0.419 0.391	ACH NO OUT 0.463 0.476 0.493 0.503 0.459 0.422 0.407 0.397				PEAK SS MACH NO 0.997 0.934 0.946 0.950 0.878 0.823 0.825 0.838 0.876

TABLE XIII. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES

FOR STATOR 51. 110 PERCENT DESIGN SPEED

\$P 1 2 3 4 5 6 7 8 9	RAD IN 24.595 23.861 25.129 20.925 17.963 14.953 12.652 11.874 11.090	OUT 24.608 23.886 23.167 21.001 18.090 15.118 12.791 11.971	ABS IN 35.8 25.6 23.1 24.0 25.8 27.2 29.2 39.0 34.3	BETAM OUT 4.1 3.3 2.2 0.9 0.3 0.7 1.9 4.0 7.1	REI IN 35.8 25.6 23.1 24.0 25.8 27.2 29.2 30.0 34.3	GETAM OUT 4.1 3.3 2.2 0.9 0.3 0.7 1.9 4.0 7.1	TOTA IN 312.1 308.7 307.0 304.2 300.8 298.5 297.5 297.6	TEMP RATIO 0.993 1.000 1.002 0.999 0.999 1.000 1.000 1.001	TOTAL IN 11.78 12.03 12.16 12.03 11.67 11.40 11.30 11.33	PRESS RATIO 0.991 0.975 0.975 0.991 0.993 0.994 0.989 0.981
RP 1 2 3 4 5 6 7 8 9	ABS IN 167.6 181.2 188.0 185.8 171.8 160.7 156.8 159.1	VEL 0UT 154.3 156.9 161.6 165.4 151.2 139.3 133.3 130.0 116.0	REL 1N 167.6 181.2 188.0 185.8 171.8 160.7 156.8 159.1	VEL 0UT 154.3 156.9 161.6 165.4 151.2 139.3 133.3 130.0 116.0	MERI IN 135.9 163.4 172.9 169.7 154.6 142.9 136.9 137.8 127.9	D VEL OUT 153.9 156.6 161.4 165.3 151.2 139.3 133.2 129.7	TAN IN 98.1 78.3 73.9 75.6 74.9 73.5 76.5 79.6	G VEL OUT 11.0 8.9 6.2 2.6 0.9 1.7 4.4 9.1	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9	ABS M IN 0.484 0.529 0.551 0.547 0.507 0.474 0.463 0.470	ACH NO OUT 0.446 0.454 0.470 0.484 0.444 0.409 0.391 0.381 0.359	REL M 1N 0.484 0.529 0.551 0.547 0.474 0.463 0.470 0.457	0.446 0.470 0.484 0.470 0.484 0.444 0.409 0.391 0.381 0.339	MERID M 1N 0.393 0.477 0.507 0.500 0.456 0.422 0.404 0.407	0.444 0.454 0.469 0.484 0.444 0.409 0.391 0.380 0.336				PEAK SS MACH NO 1.046 0.946 0.938 0.938 0.835 0.832 0.829 0.852

TABLE XIV. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

STATOR 51. 120 PERCENT DESIGN SPEED

RP 1 23 4 5 6 7 8 9	RADII IN OUT 24.595 24.60: 23.861 23.88: 23.129 23.16: 20.925 21.00: 17.963 18.09: 14.953 15.11: 12.652 12.79: 11.874 11.97:	IN 8 12.7 5 12.5 7 12.0 1 12.0 0 12.7 B 14.7 1 16.8 1 18.1	BETAM OUT 0.6 -0.0 -0.5 -1.3 -2.3 -1.9 -0.6 0.9	REL 112.7 12.3 12.0 12.0 12.7 14.7 16.8 18.1 21.2	BETAM OUT 0.6 -0.0 -1.3 -2.3 -1.9 -0.6 0.9 5.5	TOTA IN 302.5 301.7 300.7 298.9 297.4 296.1 295.7 296.3 297.7	RATIO 0.995 0.997 0.997 0.997 0.995 0.998 0.998 0.998	TOTAL IN 11.11 11.17 11.16 11.05 10.86 10.80 10.78 10.94	PRESS RATIO 0.958 0.958 0.989 0.996 0.998 0.996 0.991 0.971
50P 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 230.9 204. 232.1 212. 231.0 215. 227.3 216. 216.5 212. 265.4 211. 201.0 212. 206.0 212. 209.7 197.	IN 7 230.9 8 232.1 9 231.0 0 227.3 8 216.5 5 205.4 1 201.0 5 206.0	VEL OUT 204.7 212.8 215.9 216.0 212.8 211.5 212.1 212.3 197.7	MERI IN 225.2 226.7 225.9 222.3 211.2 198.7 192.4 195.9 195.5	D VEL OUT 204.7 212.8 215.9 216.0 212.7 211.4 212.1 212.2 196.8	TAN IN 50.9 49.4 47.4 47.6 52.1 58.1 63.9 75.8	G VEL OUT 2.1 -0.1 -1.9 -5.0 -8.4 -7.1 -2.2 3.3 19.0	UHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0.
RP 1 2 5 4	ABS MACH N IN OUT 0.694 0.61 0.698 0.63 0.696 0.64	IN 0 0.694 5 0.698	0.610 0.636 0.648	MERID M IN 0.676 0.682	0UT 0.610 0.636				PEAK SS MACH NO 0.938 0.931
4 5 6 7 8 9	0.686 0.65 0.653 0.64 0.618 0.63 0.604 0.64 0.620 0.64 0.630 0.59	0.686 2 0.653 8 0.618 0 0.604 1 0.620	0.650 0.642 0.638 0.640 0.641 0.593	0.681 0.671 0.637 0.598 0.578 0.589	0.648 0.650 0.642 0.638 0.640 0.641 0.591			0.955 0.972 1.037 1.064 1.102 1.083	0.917 0.895 0.845 0.818 0.826 0.870 0.948

TABLE XIV. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES

FOR STATOR 51. 120 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.595 2 23.861 2 23.129 2 20.925 2 17.963 1 14.953 1 12.654 1 11.874 1	OUT 24.608 23.886 23.167 21.001 8.090 15.118 12.791	ABS IN 21.3 17.2 17.6 17.5 19.3 21.1 22.8 23.6 27.9	BETAM OUT 1.4 0.8 0.1 -0.7 -0.3 -0.4 0.1 1.5 5.5	REL IN 21.3 17.2 17.6 17.5 19.3 21.1 22.8 23.6 27.9	BETAM OUT 1.4 0.8 0.1 -0.7 -0.3 -0.4 0.1 1.5 5.5	TOTAL IN 308.1 306.2 305.2 302.9 301.7 299.3 298.7 298.4 298.3	RATIO 0.994 0.998 0.998 0.996 0.995 0.997 0.995 0.998	TOTAL IN 11.37 11.76 11.71 11.62 11.58 11.40 11.33 11.35 10.99	PRESS RATIO 0.975 0.961 0.983 0.998 0.998 0.995 0.985 0.978 0.972
1 2 3 4 5 6 7 8 9	ABS IN 202.5 215.7 212.8 209.6 205.6 195.5 191.7 192.7 182.3	VEL OUT 175.1 181.4 187.9 191.7 191.8 185.0 180.0 178.6 161.5	REL IN 202.5 215.7 215.8 209.6 205.6 195.5 191.7 192.7 182.3	VEL 0UT 175.1 181.4 187.9 191.7 191.8 185.0 180.0 178.6 161.5	MER IIN 188.6 206.1 202.8 199.9 194.1 182.3 176.7 176.6 161.1	D VEL OUT 175.0 181.4 187.9 191.7 191.8 185.0 180.0 178.5 160.8	TAN IN 73.7 63.7 64.5 63.0 68.0 70.4 74.3 77.1 85.3	G VEL OUT 4.3 2.4 0.2 -2.3 -1.0 -1.4 0.3 4.6 15.4	NO. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT O. O. O. O. O.
RP 1 2 3 4 5 6 7 8 9	ABS M/IN 0.596 0.640 0.632 0.624 0.612 0.582 0.571 0.575	ACH NO OUT 0.512 0.532 0.554 0.568 0.570 0.550 0.536 0.531	REL M. 1N 0.596 0.640 0.632 0.624 0.582 0.571 0.575 0.542	ACH NO OUT 0.512 0.532 0.554 0.568 0.570 0.550 0.536 0.531	MERID M IN 0.555 0.611 0.602 0.595 0.578 0.543 0.526 0.527	ACH NO OUT 0.512 0.532 0.554 0.568 0.570 0.550 0.536 0.531 0.475				PEAK SS MACH NO 0.981 0.961 0.956 0.932 0.934 0.900 0.898 0.915

TABLE XIV. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51. 120 PERCENT DESIGN SPEED

	RAD	11	ABS	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
RP	IN	OUT	IN	OUT	IN	OUT	IN	RATIO	[N	RATIO
1	24.595	24.608	37.4	3.6	37.4	3.6	315.7	0.984	11.49	0.994
2	23.861		25.4	2.2	25.4	2.2	31.3	0.994	11.85	0.972
3	23.129		22.1	0.8		0.8	303.0	0.997	12.04	0.972
4	20.925		22.4	0.2	22.4	0.2	30'.2	0.996	12.21	0.990
Ē	17.963		24.0	0.5	24.0	0.5	304.5	0.994	12.04	0.990
6	14.953		24.8	-0.2	24.8	-0.2	300.5	0.997	11.58	0.994
5 6 7	12.652		26.7	0.5		0.5	299.4	0.996	11.49	0.986
ģ	11.874		27.6		27.6		299.2	0.997	11.47	0.980
8				2.6		2.6				
9	11.090	11.128	32.6	5.8	32.6	5.8	299.1	0.999	11.09	0.983
			-	= .						
		VEL		VEL		D VEL		G VEL		SPEED
86	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	179.8	159.1	179.8	159.1		158.8	109.1	10.0	٥.	0.
Z	194.9	162.5	194.9	162.5	176.1	162.3	83.5	6.3	0.	0.
2 3 4	202.1	169.3	202.1	169.3	187.2	169.3	76.1	2.5	٥.	٥.
4	207.1	183.7	207.1	183.7	191.5	183.7	78.8	0.5	0.	٥.
5	201.7	178.2	201.7	178.2	184.3	178.2	82.0	1,4	0.	٥.
5 6 7	:83.8	163.2	183.8	163,2	166.8	163.2	77.2	-0.6	0.	0.
	181.1	157.8	181.1	157,8	161.9	157.8	81.2	1,4	٥.	0.
8	181.4	154.7	181.4	154.7	160.7	154,5	84,1	6.9	0.	0.
9	168.9	138.3	168.9	138.3	142.3	137.6	91.0	14.0	0.	0.
										•
		ACH NO		ACH NO	MERID M					PEAK SS
8 P	IN	OUT	IN	OUT	IN	OUT				MACH NO
1	IN 0.518	0UT 0.460	IN 0.518	0UT 0.460	IN 0.412	0UT 0.459			VEL R	MACH NO
1	IN	OUT	IN 0.518 0.569	0.460 0.471	IN 0.412 0.514	OUT			VEL R	MACH NO
1	IN 0.518	0UT 0.460	IN 0.518	0UT 0.460	IN 0.412	0UT 0.459			VEL R	MACH NO
1 2 3 4	IN 0.518 0.569	0.460 0.471	IN 0.518 0.569	0.460 0.471	IN 0.412 0.514	0.459 0.470			VEL R 1,111 0.922	MACH NO 1.150 1.012
3 4 5	IN 0.518 0.569 0.593	0.460 0.471 0.493	IN 0.518 0.569 0.593	0UT 0.460 0.471 0.493	IN 0.412 0.514 0.550	0UT 0.459 0.470 0.493			VEL R 1,111 0.922 0.904	MACH NO 1.150 1.012 0.989
1 2 3 4 5 6	IN 0.518 0.569 0.593 0.611 0.597	0.460 0.471 0.493 0.539 0.525	IN 0.518 0.569 0.593 0.611	0UT 0.460 0.471 0.493 0.539	IN 0.412 0.514 0.550 0.565	0UT 0.459 0.470 0.493 0.539			VEL R 1,111 0.922 0.904 0.959 0.967	MACH NO 1.150 1.012 0.989 1.014 1.005
1 2 3 4 5 6	IN 0.518 0.569 0.593 0.611 0.597 0.544	0.460 0.471 0.493 0.539 0.525 0.481	IN 0.518 0.569 0.593 0.611 0.597 0.544	0UT 0.460 0.471 0.493 0.539 0.525 0.481	IN 0.412 0.514 0.550 0.565 0.545	0UT 0.459 0.470 0.493 0.539 0.525			VEL R 1.111 0.922 0.904 0.959 0.967 0.978	MACH NO 1.150 1.012 0.989 1.014 1.005 0.910
1 2 3 4 5 6 7	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537	0.460 0.471 0.493 0.539 0.525 0.481 0.466	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537	OUT 0.460 0.471 0.493 0.539 0.525 0.481 0.466	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480	0UT 0.459 0.470 0.493 0.539 0.525 0.481 0.466			VEL R 1.111 0.922 0.904 0.959 0.967 0.978 0.975	MACH NO 1.150 1.012 0.989 1.014 1.005 0.910
1 2 3 4 5 6 7 8	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538	0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537	OUT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480	OUT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.456			VEL R 1.111 0.922 0.904 0.959 0.967 0.978 0.975	MACH NO 1.150 1.012 0.989 1.014 1.005 0.910 0.915 0.931
1 2 3 4 5 6 7	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537	0.460 0.471 0.493 0.539 0.525 0.481 0.466	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537	OUT 0.460 0.471 0.493 0.539 0.525 0.481 0.466	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480	0UT 0.459 0.470 0.493 0.539 0.525 0.481 0.466			VEL R 1.111 0.922 0.904 0.959 0.967 0.978 0.975	MACH NO 1.150 1.012 0.989 1.014 1.005 0.910
1 2 3 4 5 6 7 8	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538	0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537	OUT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480	OUT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.456	LOSS C	OEFF	VEL R 1.111 0.922 0.904 0.959 0.967 0.978 0.975	MACH NO 1.150 1.012 0.989 1.014 1.005 0.910 0.915 0.931
1 2 3 4 5 6 7 8	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538 0.499	0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538 0.499	0UT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.406	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480 0.477 0.421	OUT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.456	LOSS C	0EFF PROF	VEL R 1.111 0.922 0.904 0.959 0.967 0.975 0.962 0.967	MACH NO 1.150 1.012 0.989 1.014 1.005 0.910 0.915 0.931
1 2 3 4 5 6 7 8 9	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538 0.499 PERCENT SPAN	OUT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456 0.406 INC I	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538 0.499	0UT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.406	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480 0.477 0.421	0UT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.456 0.404			VEL R 1.111 0.922 0.904 0.959 0.967 0.975 0.962 0.967	MACH NO 1.150 1.012 0.989 1.014 1.005 0.915 0.915 0.931 0.947
1 2 3 4 5 6 7 8 9 8P 1	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538 0.499 PERCENT SPAN 5.00	OUT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456 0.406 INC! MEAN 23.0	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538 0.499 DENCE SS 13.8	0UT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456 0.406	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480 0.477 0.421 D-FACT	0UT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.456 0.404 EFF	TOT 0.037	PROF 0.037	VEL R 1.111 0.922 0.904 0.959 0.967 0.978 0.975 0.962 0.967	MACH NO 1.150 1.012 0.989 1.014 1.005 0.910 0.915 0.931 0.947 ARAM PROF 0.018
1 2 3 4 5 6 7 8 9 8P 1	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538 0.499 PERCENT SPAN 5.00 10.00	OUT 0.460 0.471 0.493 0.539 0.539 0.481 0.466 0.456 0.406 INC! MEAN 23.0 10.9	1N 0.518 0.569 0.593 0.611 0.597 0.537 0.538 0.499 DENCE SS 13.8 1.7	0UT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456 0.406 DEV 7.7 6.3	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480 0.477 0.421 D-FACT 0.384 0.354	0UT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.456 0.404 EFF	TOT 0.037 0.140	PROF 0.037 0.140	VEL R 1.111 0.922 0.904 0.959 0.967 0.975 0.962 0.967 LOSS P TOT 0.018 0.067	MACH NO 1.150 1.012 0.989 1.014 1.005 0.915 0.915 0.947 ARAM PROF 0.018 0.067
123456789	IN 0.518 0.569 0.593 0.611 0.597 0.537 0.538 0.499 PERCENT SPAN 5.00 15.00	0.460 0.471 0.493 0.539 0.539 0.481 0.466 0.406 INC! MEAN 23.0 10.9	IN 0.518 0.569 0.593 0.611 0.597 0.537 0.538 0.499 DENCE SS 13.8 1.7 -1.7	0UT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456 0.406	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480 0.477 0.421 D-FACT 0.384 0.354	0UT 0.459 0.470 0.493 0.539 0.539 0.481 0.466 0.456 0.404 EFF	TOT 0.037 0.140 0.132	PROF 0.037 0.140 0.132	VEL R 1.111 0.922 0.904 0.959 0.967 0.962 0.967 LOSS P TOT 0.018 0.067 0.061	MACH NO 1.150 1.012 0.989 1.014 1.005 0.915 0.915 0.947 ARAM PROF 0.018 0.067
123456789 801234	IN 0.518 0.569 0.593 0.611 0.597 0.537 0.538 0.499 PERCENT SPAN 5.00 10.00 15.00 30.00	0.460 0.471 0.493 0.539 0.539 0.481 0.466 0.406 INCI MEAN 23.0 10.9 7.5 6.8	IN 0.518 0.569 0.593 0.617 0.537 0.537 0.538 0.499 DENCE SS 13.8 1.7 -1.7 -2.3	0UT 0.460 0.471 0.493 0.539 0.525 0.466 0.456 0.406 DEV 7.7 6.3 4.9	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.477 0.421 D-FACT 0.384 0.354 0.329 0.270	0UT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.404 EFF	TOT 0.037 0.140 0.132 0.044	PROF 0.037 0.140 0.132 0.044	VEL R 1.111 0.922 0.904 0.959 0.967 0.962 0.967 LOSS P TOT 0.018 0.067 0.061	MACH NO 1.150 1.012 0.989 1.014 1.005 0.915 0.915 0.947 ARAM PROF 0.018 0.061 0.018
123456789 801234	IN 0.518 0.569 0.593 0.611 0.597 0.534 0.538 0.499 PERCENT SPAN 5.00 10.00 15.00 50.00	0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.406 INCI MEAN 23.0 10.9 7.5 6.8 6.6	IN 0.518 0.569 0.593 0.611 0.537 0.538 0.499 DENCE SS 13.8 1.7 -1.7 -2.3 -2.6	0UT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.406 DEV 7.7 6.3 4.9 4.2 4.6	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.477 0.421 D-FACT 0.384 0.354 0.359 0.270 0.259	OUT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.404 EFF	TOT 0.037 0.140 0.132 0.044 0.048	PROF 0.037 0.140 0.132 0.044 0.048	VEL R 1.111 0.922 0.904 0.959 0.967 0.978 0.967 LOSS P TOT 0.018 0.061 0.017	MACH NO 1.150 1.012 0.989 1.014 1.005 0.915 0.931 0.947 ARAM PROF 0.067 0.067 0.018 0.017
123456789	IN 0.518 0.569 0.593 0.611 0.597 0.534 0.537 0.538 0.499 PERCENT SPAN 5.00 10.00 15.00 30.00 70.00	0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.406 INCI MEAN 23.0 10.9 7.5 6.6 4.9	IN 0.518 0.569 0.593 0.611 0.537 0.538 0.499 DENCE SS 13.8 1.7 -1.7 -2.3 -2.6 -4.2	0UT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.406 DEV 7.7 6.3 4.9 4.2 4.6 4.1	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480 0.421 D-FACT 0.384 0.354 0.329 0.270 0.259 0.238	OUT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.404 EFF	TOT 0.037 0.140 0.132 0.044 0.048 0.034	PROF 0.037 0.140 0.132 0.044 0.048 0.034	VEL R 1.111 0.922 0.904 0.959 0.967 0.978 0.967 LOSS P TOT 0.018 0.067 0.018 0.017 0.010	MACH NO 1.150 1.012 0.989 1.014 1.005 0.915 0.931 0.947 ARAM PROF 0.067 0.067 0.018 0.017
123456789	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538 0.499 PERCENT SPAN 5.00 10.00 15.00 50.00 70.00 85.00	OUT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.456 0.406 INCI MEAN 23.0 10.9 7.5 6.8 4.9 5.0	IN 0.518 0.569 0.593 0.611 0.597 0.544 0.537 0.538 0.499 DENCE SS 13.8 1.7 -1.7 -2.3 -2.6 -4.1	0UT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.406 DEV 7.7 6.3 4.9 4.2 4.6 4.1	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480 0.477 0.421 D-FACT 0.384 0.354 0.359 0.270 0.259 0.238 0.239	OUT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.404 EFF	TOT 0.037 0.140 0.132 0.044 0.048 0.034 0.080	PROF 0.037 0.140 0.132 0.044 0.048 0.034 0.080	VEL R 1.111 0.922 0.904 0.959 0.967 0.978 0.967 LOSS P TOT 0.018 0.061 0.018 0.017 0.010	MACH NO 1.150 1.012 0.989 1.014 1.005 0.910 0.915 0.931 0.947 ARAM PROF 0.018 0.067 0.018 0.017 0.019
123456789	IN 0.518 0.569 0.593 0.611 0.597 0.534 0.537 0.538 0.499 PERCENT SPAN 5.00 10.00 15.00 30.00 70.00	0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.406 INCI MEAN 23.0 10.9 7.5 6.6 4.9	IN 0.518 0.569 0.593 0.611 0.537 0.538 0.499 DENCE SS 13.8 1.7 -1.7 -2.3 -2.6 -4.2	0UT 0.460 0.471 0.493 0.539 0.525 0.481 0.466 0.406 DEV 7.7 6.3 4.9 4.2 4.6 4.1	IN 0.412 0.514 0.550 0.565 0.545 0.494 0.480 0.421 D-FACT 0.384 0.354 0.329 0.270 0.259 0.238	OUT 0.459 0.470 0.493 0.539 0.525 0.481 0.466 0.404 EFF	TOT 0.037 0.140 0.132 0.044 0.048 0.034	PROF 0.037 0.140 0.132 0.044 0.048 0.034	VEL R 1.111 0.922 0.904 0.959 0.967 0.978 0.967 LOSS P TOT 0.018 0.067 0.018 0.017 0.010	MACH NO 1.150 1.012 0.989 1.014 1.005 0.915 0.931 0.947 ARAM PROF 0.067 0.067 0.018 0.017

TABLE XIV. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51. 120 PERCENT DESIGN SPEED

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.595 24.608 25.861 23.886 25.129 25.167 20.925 21.001 17.963 18.090 14.953 15.118 12.652 12.791 11.874 1.971 11.090 11.128	ABS 1N 46.8 34.3 26.7 26.2 26.8 27.9 29.7 31.0	BETAM OUT 4.7 3.0 1.9 2.3 -0.3 0.4 1.3 3.4 6.3	REL IN 46.8 34.3 26.7 26.2 26.8 27.9 29.7 31.0 36.0	BETAM OUT 4.7 3.0 1.9 2.3 -0.3 0.4 1.3 3.4 6.3	TOTAL TEMP IN RATIO 319.2 0.982 314.9 0.992 312.1 0.997 305.0 0.995 301.6 0.996 300.1 0.997 300.0 0.997 300.1 0.997	TOTAL PRESS IN RATIO 11.85 0.985 11.95 0.982 12.20 0.973 12.56 0.981 12.08 0.988 11.73 0.989 11.62 0.983 11.59 0.977 11.26 0.980
8P 1 23 4 5 6 7 8 9	ABS VEL IN OUT 174.5 151.1 182.0 154.5 195.0 157.4 190.2 163.5 176.7 149.9 174.2 143.3 174.3 139.1 163.9 123.1	195.0 206.1 190.2 176.7 174.2	VEL OUT 151.1 154.5 159.9 177.4 163.5 149.9 143.3 139.1 123.1	MER! 1N 119.5 150.4 174.2 185.0 169.8 156.1 151.4 149.4 132.6	D VEL 0UT 150.6 154.5 159.8 177.2 163.5 149.9 143.3 138.8 122.4	TANG VEL IN OUT 127.2 12.3 102.5 8.2 87.7 5.2 90.8 7.0 85.7 1.0 86.2 3.2 89.8 8.3 96.3 13.5	NHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.499 0.434 0.526 0.445 0.568 0.462 0.605 0.517 0.560 0.479 0.521 0.440 0.515 0.421 0.515 0.408 0.483 0.360	REL MA IN 0.499 0.526 0.568 0.605 0.521 0.515 0.515	0.434 0.434 0.445 0.462 0.517 0.479 0.440 0.421 0.408 0.360	MERID M IN 0.342 0.434 0.508 0.543 0.500 0.461 0.447 0.442 0.391	ACH NO OUT 0.432 0.444 0.461 0.516 0.479 0.440 0.421 0.407 0.357		MERID PEAK SS VEL R MACH NO 1.261 1.3ua 1.026 1.103 0.917 1.036 0.958 1.083 0.963 0.996 0.960 0.926 0.947 0.930 0.929 0.951 0.923 0.974

Station 1 Station 2 Station 3 Station 4 1-2.8 cmi (7.7 cmi) (2.2 cmi) (36.0 cm) 32 4 Airflow Airflow Axial distance (referenced from rotor-blade-hub leading edge), 7. cmi Station 3 Station 4 (2.2 cmi) (36.0 cmi) Tip radius, 25. 4 cmi Hub radius, 10. 16 cmi

Figure 1. - Flow path for stage 51A, showing axial location of instrumentation.

Figure 2. - Compressor test facility.

Figure 3. - Rotor 51A.

Figure 4. - Stator 51.

(a) Combination total pressure, total temperature, and flow angle probe idouble barrel probel.

(b) Static pressure probe (8º wedge)

Figure 5. - Sensing probes,

 $\textbf{Figure 6.} \ \, \textbf{-Circumferential location of instrumentation at measuring stations (racing downstream).}$

FIGURE 7. - OVERALL PERFORMANCE FOR ROTOR 51A.

FIGURE 8. - OVERALL PERFORMANCE FOR ROTOR 51A.

FIGURE 9. - RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 51A. 100 PERCENT OF DESIGN SPEED.

FIGURE 1C. - RADIAL DISTRIBUTION OF PERFORMANCE FOR STATOR 51A. 100 FERCENT OF DESIGN SPEED.

WIND BY OF THE ORIGINAL PAGE IS POOR,

FIGURE 11. - BLADE-ELEMENT PERFORMANCE FOR ROTOR 5JA.

FIGURE 11. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 51A.

78

REPORT OF THE ORIGINAL PAGE IS POOR,

FIGURE 11. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 51A.

FIGURE 11. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 51A.

RICHTY OF THE ORIGIN. A

FIGURE 11. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 51A.

FIGURE 11. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 51A.

RINGE STATE ORIGIN, AGE IS THE

FIGURE 11. - CONCLUDED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 51A.

(A) 5.0 PERCENT SPAN,

FIGURE 12. - BLADE-ELEMENT PERFORMANCE FOR STATOR 51.

REPRODUCIBILITY OF THE ORIGINAL PAGE 1911

(B) 10.0 PERCENT SPAN.

FIGURE 12. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR STATOR 51.

FIGURE 12. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR STATOR 51.

FIGURE 12. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR STATOR 51.

REPRODUCIBILITY OF THE PARTY OF

FIGURE 12. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR STATOR 51.

FIGURE 12. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR STATOR 51.

INCIDENCE ANGLE, SUCTION SURFACE, DEG

(G) 95.0 PERCENT SPAN.

FIGURE 12. - CONCLUDED. BLADE-ELEMENT PERFORMANCE FOR STATOR 51.

47.6