Supporting Information for "Bayesian Functional Covariance Regression"

John Shamshoian¹, Damla Şentürk¹, Shafali Jeste², and Donatello Telesca^{1,*}

¹Department of Biostatistics, University of California, Los Angeles, California 90095, U.S.A.

² Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90095, U.S.A.

^{*}email: donatello.telesca@ucla.edu

1. Web Appendix A: Markov-Chain Monte Carlo Sampling Algorithm

In this section we give a detailed Markov-Chain Monte Carlo (MCMC) algorithm to sample from the posterior. Let N be the number of independent functional responses and assume all response functions are observed on a common grid $T = \{t_1, \ldots, t_n\}$. Let B be an $n \times p$ matrix with $B_{ij} = b_j(t_i)$. Let X be an $N \times r(d_1)$ matrix with row i equal to $\tilde{X}(x_i)$. Let Y be an $N \times n$ matrix with $Y_{ij} = y_i(t_j)$, so that each row represents one discretized functional response. Let Γ_j be an $N \times N$ diagonal matrix with rth diagonal element equal to η_{rj} for $j = 1, \ldots, k$.

(1) Update β :

Let
$$\Omega_r = \tau_{1xr}\tilde{K}_r + \tau_{1tr}\tilde{K}$$
 if $p_r > 1$. Otherwise set $\Omega_r = \tau_{1tr}K$. Construct $\Omega = \text{blkdiag}(\Omega_1, \dots, \Omega_R)$.

Let
$$C = \sigma^{-2} X^{\top} X \otimes B^{\top} B + \Omega$$

Let
$$A = \sigma^{-2} \text{vec}[\{B^{\top}Y^{\top} - B^{\top}B(\sum_{j=1}^{k} \Lambda_{j}X^{\top}\Gamma_{j})\}X]$$

Sample $\operatorname{vec}(\beta) \sim N(C^{-1}A, C^{-1})$

(2) Update Λ_i :

Let
$$\Omega_r = \tau_{2xr}\tilde{K}_r + \tau_{2tr}\tilde{K} + \tau_{rj}^*\phi_{rj}$$
 if $p_r > 1$. Otherwise set $\Omega_r = \tau_{2tr}K + \tau_{rj}^*\phi_{rj}$.

Construct $\Omega = \text{blkdiag}(\Omega_1, \dots, \Omega_R)$

Let
$$C = \sigma^{-2} X^{\top} \Gamma_j^2 X \otimes B^{\top} B + \Omega$$

Let
$$A = \sigma^{-2} \text{vec}[\{B^\top Y^\top - B^\top B(\beta + \sum_{j' \neq j} \Lambda_{j'} X^\top \Gamma_{j'})\} \Gamma_j X]$$

Sample $\Lambda_j \sim N(C^{-1}A, C^{-1})$

(3) Update $\eta_{ij}, j = 1, ..., k$:

Let
$$\boldsymbol{\eta}_i = (\eta_{i1}, \dots, \eta_{ik}).$$

Let \ddot{X}_i be a $p \times k$ matrix with column j equal to $\Lambda_j \tilde{X}(x_i)$.

Let $C = \sigma^{-2} \ddot{X}_i^{\top} B^{\top} B \ddot{X}_i + I_k$, where I_k is the $k \times k$ identity matrix.

Let
$$A = \sigma^{-2} \ddot{X}_i^{\top} \{ B^{\top} Y_i - B^{\top} B \beta \tilde{\boldsymbol{X}}(\boldsymbol{x}_i) \}$$

Sample $\boldsymbol{\eta}_i \sim N(C^{-1}A, C^{-1})$