Solusi Persamaan Nirlanjar (Bagian 2)

Bahan Kuliah IF4058 Topik Khusus Informatika I

Oleh; Rinaldi Munir (IF-STEI ITB)

Metode Secant

- Prosedur lelaran metode Newton-Raphson memerlukan perhitungan turunan fungsi, f'(x).
- Sayangnya, tidak semua fungsi mudah dicari turunannya, terutama fungsi yang bentuknya rumit.
- Turunan fungsi dapat dihilangkan dengan cara menggantinya dengan bentuk lain yang ekivalen.
- Modifikasi metode Newton-Raphson ini dinamakan metode secant

Sulihkan ke dalam rumus Newton-Raphson:

$$x_{r+1} = x_r - \frac{f(x_r)(x_r - x_{r-1})}{f(x_r) - f(x_{r-1})}$$

$$x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$$

• Metode Secant memerlukan dua buah tebakan awal akar, yaitu x_0 dan x_1 .

Kondisi berhenti lelaran adalah bila

$$|x_{r+1} - x_r| < \varepsilon$$
 (galat mutlak) atau $\left| \frac{x_{r+1} - x_r}{x_{r+1}} \right| < \delta$

 Sepintas metode secant mirip dengan metode regula-falsi, namun sesungguhnya prinsip dasar keduanya berbeda, seperti yang dirangkum pada tabel di bawah ini:

Metode Secant

- 1. Diperlukan dua buah nilai awal a dan b (ujung-ujung selang) sedemikian sehingga f(a) f(b) < 0.
- 1. Diperlukan dua buah nilai awal x_0 dan x_1 (tebakan awal akar), tetapi tidak harus $f(x_0) f(x_1) < 0$.

2. <u>Lelaran pertama</u>:

2. <u>Lelaran pertama</u>:

Pada lelaran pertama, tidak ada perbedaan antara regula-falsi dan secant.

Perbedaan baru muncul pada lelaran kedua.

Pada lelaran pertama tidak ada perbedaan antara secant dan regula falsi.

Perbedaan baru muncul pada lelaran kedua.

Lelaran kedua:

Perpotongan garis lurus dengan sumbux tetap berada di dalam selang yang mengandung akar.

3. Berdasarkan nomor 2 di atas, lelarannya *selalu* konvergen

Lelaran kedua:

Perpotongan garis lurus dengan sumbu-*x* mungkin menjauhi akar.

3. Berdasarkan nomor 2 di atas, lelarannya *mungkin* divergen.

```
procedure Secant(x0, x1:real);
{ Mencari akar persamaan f(x) = 0 dengan metode secant
  K.Awal: x_0 \ dan \ x_1 \ adalah \ tebakan \ awal \ akar, \ terdefenisi \ nilainya
  K.Akhir: akar persamaan tercetak di layar
const
  epsilon = 0.000001; { toleransi galat akar hampiran }
var
    x_sebelumnya: real;
    function f(x:real):real;
    { mengembalikan nilai f(x). Definisi f(x) bergantung pada persoalan }
begin
  repeat
     x_sebelumnya:=x1;
     x := x - (f(x1) * (x1 - x0) / (f(x1) - f(x0)));
     x0 := x1;
     x1:=x;
  until (ABS(x-x_sebelumnya) < epsilon);</pre>
  { x adalah hampiran akar persamaan }
  write('Hampiran akar x = ', x:10:6);
end;
```

Hitunglah akar $f(x) = e^x - 5x^2$ dengan metode secant. Gunakan $\varepsilon = 0.00001$. Tebakan awal akar $x_0 = 0.5$ dan $x_1 = 1$.

Penyelesaian:

Tabel lelarannya:

i	X _r	$ X_{r+1} - X_r $
0	0.500000	-
1	1.000000	0.500000
3	-0.797042	1.797042
4	10.235035	11.032077
5	-0.795942	11.030977
6	-0.794846	0.001096
7	-0.472759	0.322087
8	-0.400829	0.071930
9	-0.374194	0.026635
10	-0.371501	0.002692
11	-0.371418	0.000083
12	-0.371418	0.000000

Akar x = -0.371418

Sistem Persamaan Nirlanjar

- Dalam dunia nyata, umumnya persamaan matematika dapat lebih dari satu, sehingga membentuk sebuah sistem yang disebut sistem persamaan nirlanjar.
- Bentuk umum sistem persamaan nirlanjar dapat ditulis sebagai

$$f_1(x_1, x_2, ..., x_n) = 0$$

 $f_2(x_1, x_2, ..., x_n) = 0$
...
 $f_n(x_1, x_2, ..., x_n) = 0$

- Solusi sistem ini adalah himpunan nilai x simultan, x_1 , x_2 , ..., x_n , yang memenuhi seluruh persamaan.
- Sistem persamaan dapat diselesaikan secara berlelar dengan metode lelaran titik-tetap atau dengan metode Newton-Raphson.
- Masing-masing dijelaskan pada slide berikut ini

1) Metode Lelaran Titik-Tetap

 Prosedur lelarannya titik-tetap untuk sistem dengan dua persamaan nirlanjar:

$$x_{r+1} = g_1(x_r, y_r)$$

 $y_{r+1} = g_2(x_r, y_r)$
 $r = 0, 1, 2, ...$

- Metode lelaran titik-tetap seperti ini dinamakan metode lelaran Jacobi.
- Kondisi berhenti (konvergen) adalah $|x_{r+1} x_r| < \varepsilon$ dan $|y_{r+1} y_r| < \varepsilon$

• Kecepatan konvergensi lelaran titik-tetap ini dapat ditingkatkan. Nilai x_{r+1} yang baru dihitung langsung dipakai untuk menghitung y_{r+1} . Jadi,

$$x_{r+1} = g_1(x_r, y_r)$$

 $y_{r+1} = g_2(x_{r+1}, y_r)$
 $r = 0, 1, 2, ...$

- Metode lelaran titik-tetap seperti ini dinamakan metode lelaran Seidel.
- Kondisi berhenti (konvergen) adalah

$$|x_{r+1} - x_r| < \varepsilon \operatorname{dan} |y_{r+1} - y_r| < \varepsilon$$

 Untuk fungsi dengan tiga persamaan nirlanjar, lelaran Seidel-nya adalah

$$x_{r+1} = g_1(x_r, y_r, z_r)$$

$$y_{r+1} = g_2(x_{r+1}, y_r, z_r)$$

$$z_{r+1} = g_3(x_{r+1}, y_{r+1}, z_r)$$

$$r = 0, 1, 2, ...$$

Kondisi berhenti (konvergen) adalah

$$|x_{r+1} - x_r| < \varepsilon$$
 dan $|y_{r+1} - y_r| < \varepsilon$ dan $|z_{r+1} - z_r| < \varepsilon$

Contoh: Selesaikan sistem persamaan nirlanjar berikut ini,

$$f_1(x, y) = x^2 + xy - 10 = 0$$

 $f_2(x, y) = y + 3xy^2 - 57 = 0$
(Akar sejatinya adalah $x = 2$ dan $y = 3$)

Penyelesaian:

Prosedur lelaran titik-tetapnya adalah

$$x_{r+1} = \frac{10 - x_r^2}{y_r}$$
 $y_{r+1} = 57 - 3x_{r+1}y_r^2$

Gunakan tebakan awal $x_0 = 1.5$ dan $y_0 = 3.5$ dan $\varepsilon = 0.000001$

Tabel lelarannya:

._____

Ternyata lelarannya divergen!

• Sekarang kita ubah persamaan prosedur lelarannya menjadi

$$x_{r+1} = \sqrt{10 - x_r y_r}$$
 $y_{r+1} = \sqrt{\frac{57 - y_r}{3x_{r+1}}}$
Tebakan awal $x_0 = 1.5$ dan $y_0 = 3.5$ dan $y_0 = 3.5$

Hasilnya,

r	X	у	$ x_{r+1}-x_r $	y _{r+1} - y _r	
0	1.500000	3.500000	-	-	
1	2.179449	2.860506	0.679449	0.639494	
2	1.940534	3.049551	0.238916	0.189045	
3	2.020456	2.983405	0.079922	0.066146	
4	1.993028	3.005704	0.027428	0.022300	
5	2.002385	2.998054	0.009357	0.007650	
6	1.999185	3.000666	0.003200	0.002611	
7	2.000279	2.999773	0.001094	0.000893	
8	1.999905	3.000078	0.000374	0.000305	
9	2.000033	2.999973	0.000128	0.000104	
10	1.999989	3.000009	0.000044	0.000036	
11	2.000004	2.999997	0.000015	0.000012	
12	1.999999	3.000001	0.000005	0.000004	
13	2.000000	3.000000	0.000002	0.000001	
14	2.000000	3.000000	0.000001	0.000000	

Akar x = 2.000000; y = 3.000000

2) Metode Newton-Raphson

- Tinjau fungsi dengan dua peubah, u = f(x, y).
- Deret Taylor orde pertama dapat dituliskan untuk masingmasing persamaan sebagai

$$u_{r+1} = u_r + (x_{r+1} - x_r) \frac{\partial u_r}{\partial x} + (y_{r+1} - y_r) \frac{\partial u_r}{\partial y}$$

dan

$$v_{r+1} = v_r + (x_{r+1} - x_r) \frac{\partial v_r}{\partial x} + (y_{r+1} - y_r) \frac{\partial v_r}{\partial y}$$

• Karena persoalan mencari akar, maka $u_{r+1} = 0$ dan $v_{r+1} = 0$, untuk memberikan

$$\frac{\partial u_r}{\partial x} \ \, \boldsymbol{x}_{r+1} + \frac{\partial u_r}{\partial y} \, \boldsymbol{y}_{r+1} = - \, \boldsymbol{u}_r + \, \boldsymbol{x}_r \frac{\partial u_r}{\partial x} \, + \, \boldsymbol{y}_r \, \frac{\partial u_r}{\partial y}$$

$$\frac{\partial v_r}{\partial x} \quad \boldsymbol{X_{r+1}} + \frac{\partial v_r}{\partial y} \quad \boldsymbol{y_{r+1}} = - \boldsymbol{v_r} + \boldsymbol{X_r} \quad \frac{\partial v_r}{\partial x} + \boldsymbol{y_r} \quad \frac{\partial v_r}{\partial y}$$

 Dengan sedikit manipulasi aljabar, kedua persamaan terakhir ini dapat dipecahkan menjadi:

$$x_{r+1} = x_r - \frac{u_r \frac{\partial v_r}{\partial y} + v_r \frac{\partial u_r}{\partial y}}{\frac{\partial u_r}{\partial x} \frac{\partial v_r}{\partial y} - \frac{\partial u_r}{\partial y} \frac{\partial v_r}{\partial x}}$$

$$y_{r+1} = y_r + \frac{u_r \frac{\partial v_r}{\partial x} - v_r \frac{\partial u_r}{\partial x}}{\frac{\partial u_r}{\partial x} \frac{\partial v_r}{\partial y} - \frac{\partial u_r}{\partial y} \frac{\partial v_r}{\partial x}}$$

Penyebut dari masing-masing persamaan ini diacu sebagai **determinan Jacobi** dari sistem tersebut

 Contoh: Gunakan metode Newton-Raphson untuk mencari akar

$$f_1(x, y) = u = x^2 + xy - 10 = 0$$

 $f_2(x, y) = v = y + 3xy^2 - 57 = 0$

dengan tebakan awal x_0 =1.5 dan y_0 =3.5

Penyelesaian:

$$\frac{\partial u_o}{\partial x}$$
 = 2x + y = 2(1.5) + 3.5 = 6.5

$$\frac{\partial u_o}{\partial v} = x = 1.5$$

$$\frac{\partial v_o}{\partial x} = 3y^2 = 3(3.5)^2 = 36.75$$

$$\frac{\partial v_o}{\partial y}$$
 = 1+ 6xy = 1 + 6(1.5) = 32.5

Determinan Jacobi untuk lelaran pertama adalah

$$6.5(32.5) - 1.5(36.75) = 156.125$$

Nilai-nilai fungsi dapat dihitung dari tebakan awal sebagai

$$u_0 = (1.5)^2 + 1.5(3.5) - 10 = -2.5$$

 $v_0 = (3.5)^2 + 3(1.5)(3.5)^2 - 57 = 1.625$

Nilai x dan y pada lelaran pertama adalah

$$x_1 = 1.5 - \frac{(-2.5)(32.5) - 1.625(1.5)}{156.125} = 2.03603$$

$$y_1 = 3.5 + \frac{(-2.5)(36.75) - 1.625(6.5)}{156.125} = 2.84388$$

Apabila lelarannya diteruskan, ia konvergen ke akar sejati x = 2 dan y = 3.

Contoh Penerapan

Dalam suatu proses Teknik Kimia, campuran karbon monoksida dan oksigen mencapai kesetimbangan pada suhu 300° K dan tekanan 5 atm. Reaksi teoritisnya adalah

$$CO + 1/2 O_2 \leftrightarrow CO_2$$

Reaksi kimia yang sebenarnya terjadi dapat ditulis sebagai

$$CO + O_2 \rightarrow x CO_2 + O_2 + (1 - x) CO_2$$

Persamaan kesetimbangan kimia untuk menentukan fraksi mol CO yang tersisa, yaitu x, ditulis sebagai

$$K_{p} = \frac{(1-x)(3+x)^{\frac{1}{2}}}{x(x+1)^{\frac{1}{2}}p^{\frac{1}{2}}}$$
, $0 < x < 1$

yang dalam hal ini, K_p = 3.06 adalah tetapan kesetimbangan untuk reaksi CO + 1/2 O₂ pada 3000° K dan P = 5 atm. Tentukan nilai x dengan metode regula falsi yang diperbaiki.

Penyelesaian: Persoalan ini memang lebih tepat diselesaikan dengan metode tertutup karena x adalah fraksi mol yang nilainya terletak antara 0 dan 1.

Fungsi yang akan dicari akarnya dapat ditulis sebagai

$$f(x) = \frac{(1-x)(3+x)^{\frac{1}{2}}}{x(x+1)^{\frac{1}{2}}p^{\frac{1}{2}}} - K_p \qquad , 0 < x < 1$$

dengan $K_p = 3.06$ dan P = 5 atm.

Selang yang mengandung akar adalah [0.1, 0.9]. Nilai fungsi di ujungujung selang adalah f(0.1) = 3.696815 dan f(0.9) = -2.988809

yang memenuhi f(0.1) f(0.9) < 0.

Tabel lelarannya adalah:

r	а	С	b	f(a)	<i>f</i> (<i>c</i>)	<i>f</i> (<i>b</i>)	Selang baru	Lebarnya
0	0.100000	0.542360	0.900000	3.696815	-2.488120	-2.988	809 [a, c]	0.442360
1	0.100000	0.288552	0.542360	1.848407	-1.298490	-2.488	120 [a, c]	0.188552
2	0.100000	0.178401	0.288552	0.924204	0.322490	-1.2984	490 [c, b]	0.110151
3	0.178401	0.200315	0.288552	0.322490	-0.144794	-1.298	490 [a, c]	0.021914
4	0.178401	0.193525	0.200315	0.322490	-0.011477	-0.144	794 [a, c]	0.015124
5	0.178401	0.192520	0.193525	0.161242	0.009064	-0.0114	477 [c, b]	0.001005
6	0.192520	0.192963	0.193525	0.009064	-0.000027	-0.011	477 [a, c]	0.000443
7	0.192520	0.192962	0.192963	0.009064	-0.000000	-0.000	027 [a, c]	0.000442

Hampiran akar x = 0.192962

Jadi, setelah reaksi berlangsung, fraksi mol CO yang tersisa adalah 0.192962.