Khôlles de Mathématiques - Semaine 1

George Ober, Félix Rondeau

19 septembre 2024

1 Preuve formelle de la somme des entiers et des termes d'une suite géométrique

Démonstration. \Diamond Soit $n \in \mathbb{N}$ fixé quelconque. Posons

$$S_n = \sum_{k=0}^n k$$

En posant la symétrie d'indice i = n - k, on a aussi

$$S_n = \sum_{i=0}^n (n-i) = \sum_{i=0}^n n - \sum_{i=0}^n i = (n \times \operatorname{card}[0, n]) - \sum_{i=0}^n i$$

Or, puisque $\operatorname{card}[\![0,n]\!]=n+1$ et que $\sum_{i=0}^n i=S_n$

$$S_n = n \times (n+1) + S_n$$

Donc

$$S_n = \frac{n(n+1)}{2}$$

 $\Diamond \ \, \text{Soient} \,\, q \in \mathbb{R} \,\, , \, k \in \mathbb{N} \,\, \text{fix\'es quelconques}.$

 \star Si q=1,

$$\sum_{i=0}^{k} q^{i} = \sum_{i=0}^{k} 1 = k+1$$

 \star Sinon, avec l'identité algébrique, on a

$$q^{k+1} - 1^{k+1} = (q-1) \sum_{i=0}^{k} q^i \times 1^{k-i}$$

Ainsi, puisque $q \neq 1$ on a, par multiplication par $(q-1)^{-1}$

$$\sum_{i=0}^{k} q^{i} = \frac{q^{k+1} - 1}{q - 1}$$

Nous avons donc établi que

$$\sum_{i=0}^{k} q^i = \begin{cases} \frac{1-q^{k+1}}{1-q} & \text{si } q \neq 1\\ k+1 & \text{sinon} \end{cases}$$

2 Preuve de la factorisation de a^n-b^n puis de celle de $a^{2m+1}+b^{2m+1}$

Démonstration. Soient $(a,b) \in \mathbb{C}^2$ et $n \in \mathbb{N}$ fixés quelconques.

$$(a-b)\sum_{k=0}^{m-1} a^k b^{m-1-k} = a\sum_{k=0}^{m-1} a^k b^{m-1-k} - b\sum_{k=0}^{m-1} a^k b^{m-1-k}$$
$$= \sum_{k=0}^{m-1} a^{k+1} b^{m-1-k} - \sum_{k=0}^{m-1} a^k b^{m-k}$$

Si bien qu'en posant le changement d'indice j = k + 1 on reconnait le téléscopage.

$$\sum_{j=1}^{m} a^{j} b^{m-j} - \sum_{k=0}^{m-1} a^{k} b^{m-k} = a^{m} - b^{m}$$

Soit m un entier naturel fixé quelconque. En particularisant la relation pour $n \leftarrow 2m+1$ et $b \leftarrow (-b)$, on obtient

$$a^{2m+1} - (-b)^{2m+1} = a^{2m+1} + b^{2m+1} = (a - (-b)) \sum_{k=0}^{2m} a^k (-b)^{2m-k}$$
$$= (a+b) \sum_{k=0}^{2m} a^k (-1)^{2m} (-1)^{-k} b^{2m-k}$$
$$= (a+b) \sum_{k=0}^{2m} (-1)^k a^k b^{2n-k}$$

3 Preuve de la formule du binôme de Newton

Pour tout $(a,b) \in \mathbb{C}^2$, $n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

 $D\acute{e}monstration$. Soient $(a,b) \in \mathbb{C}^2$ fixés quelconques. Posons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$ par

$$\mathcal{P}(n): (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

* Initialisation, $n \leftarrow 0$ D'une part $(a+b)^0 = 0$, même si les deux sont nuls (par convention $0^0 = 0$) D'autre part

$$\sum_{k=0}^{0} {0 \choose k} a^k b^{n-k} = {0 \choose 0} a^0 b^0 = 0$$

Donc $\mathcal{P}(0)$ est vérifée.

* Soit $n \in \mathbb{N}$ fixé quelconque tel que $\mathcal{P}(n)$ est vraie

$$(a+b)^{n+1} = (a+b) \times (a+b)^n$$

$$= (a+b) \times \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

$$= a \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} + b \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

$$=\sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n+1-k}$$

$$=\sum_{j=1}^{n+1} \binom{n}{j-1} a^{j} b^{n+1-j} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n+1-k}$$
(en posant $j = k+1$) = $a^{n+1} + \sum_{j=1}^{n} \binom{n}{j-1} a^{j} b^{n+1-j} + \sum_{k=1}^{n} \binom{n}{k} a^{k} b^{n+1-k} + b^{n+1}$

$$= a^{n+1} + \left(\sum_{k=1}^{n} \binom{n}{k-1} + \binom{n}{k} a^{k} b^{n+1-k}\right) + b^{n+1}$$
(en utilisant la relation de Pascal) = $a^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} a^{k} b^{n+1-k} + b^{n+1}$

$$= \sum_{k=1}^{n+1} \binom{n+1}{k} a^{k} b^{n+1-k}$$

Donc $\mathcal{P}(n+1)$ est vraie.

4 Développement d'une somme

$$\left(\sum_{k=1}^{n} x_k\right)^2 = \sum_{\substack{1 \le k \le n \\ 1 \le j \le n}} x_k x_j = 2 \sum_{1 \le k < j \le n} x_k x_j + \sum_{k=1}^{n} x_i^2$$

Démonstration.

$$\left(\sum_{k=0}^{n} x_k\right)^2 = \left(\sum_{k=1}^{n} x_k\right) \times \left(\sum_{j=1}^{n} x_j\right)$$

$$= \sum_{k=1}^{n} \left[x_k \times \sum_{j=1}^{n} x_j\right]$$

$$= \sum_{k=1}^{n} \left(\sum_{j=1}^{n} x_k \times x_j\right)$$

$$= \sum_{\substack{1 \le k \le n \\ 1 \le j \le n}} x_k x_j$$

On peut aussi séparer cette somme

$$\sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n}}x_kx_j=\sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k< j}}x_kx_j\\ =\sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k< j}}x_kx_j\\ +\sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k= j}}x_kx_j\\ +\sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k> j}}x_kx_j\\ +\sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k> j}}x_kx_j$$
 somme sur les indices (k,j) tels que $k=j$

On remarque aussi qu'en permutant les indices des deux sommes (les variables sont muettes)

$$\sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k< j}} x_k x_j = \sum_{\substack{1\leqslant j\leqslant n\\1\leqslant k\leqslant n\\j< k}} x_j x_k$$

Qui, par commutativité du produit dans C nous donne cette égalité

$$\sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k< j}} x_k x_j = \sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k> j}} x_k x_j$$

On a donc bien l'identité attendue :

$$\sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n}} x_k x_j = 2 \sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n \\ k < j}} x_k x_j + \sum_{k=1}^n x_k^2$$

5 Montrer que tout entier n > 2 admet un diviseur premier

 $D\acute{e}monstration$. Raisonnons par récurrence forte avec la propriété $\mathcal{P}(\cdot)$ définie pour tout n>2 par

$$\mathcal{P}(n)$$
: « $\forall k \in [2, n], k$ admet un diviseur premier »

- Initialisation : $n \leftarrow 2$
 - Soit $k \in [2, 2]$ fixé quelconque. Nécéssairement, k = 2. or, 2 admet 2 pour diviseur premier. Donc $\forall k \in [2, 2], k$ admet un diviseur premier, ce qui prouve $\mathcal{P}(2)$.
- Hérédité : Soit $n \in \mathbb{N} \setminus \{1,0\}$ fixé quelconque tel que $\mathcal{P}(n)$ est vraie. Pour montrer $\mathcal{P}(n+1)$, il nous faudra montrer que $\forall k \in [\![2,n+1]\!], k$ admet un diviseur premier Soit $k \in [\![2,n+1]\!]$ fixé quelconque.
 - \star Si $k \in [2, n]$, alors la véracité de $\mathcal{P}(n)$ nous permet de conclure, et de dire que k admet un diviseur premier.
 - \star Sinon k = n + 1
 - $\Diamond \ \, \mathrm{Si} \,\, n+1$ est premier, alors il admet k comme diviseur premier
 - \Diamond Sinon, $\exists d \in [2, n] : d \mid n+1$

Mais, puisque $d \in [2, n]$, la véracité de $\mathcal{P}(n)$ nous permet d'affirmer que d admet un diviseur premier p. Donc par transitivité de la relation de divisibilité

$$(p \mid d \text{ et } d \mid n) \implies p \mid n$$

6 Montrer par récurrence qu'une fonction polynomiale à coefficients réels est nulle si et seulement si tous ses coefficients sont nuls

Démonstration. Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$

 $\mathcal{P}(n)$: toute fonction polynômiale identiquement nulle sur \mathbb{R} a tous ses coefficients nuls

Autrement dit

$$\mathcal{P}(n): \forall (a_0, \dots, a_n) \in \mathbb{R}^{n+1} \left(\forall x \in \mathbb{R}, \sum_{k=0}^n a_k x^k = 0 \right) \implies \forall k \in [0, n], a_k = 0$$

- \lozenge Pour $n \leftarrow 0$ Soit $a_0 \in \mathbb{R}$ fixé quel conque tel que $\forall x \in \mathbb{R}, a_0 x^0 = 0$ Alors $a_0 = 0$
- \Diamond Soit $n \in \mathbb{N}$ fixé quelconque tel que $\mathcal{P}(n)$ est vraie Soient $(a_0, \dots, a_{n+1}) \in \mathbb{R}^{n+2}$ Posons $Q(x) = \sum_{k=0}^{n+1} a_k x^k$ tel que $\forall x \in \mathbb{R}, Q(x) = 0$ D'une part

$$\forall x \in \mathbb{R}, \underbrace{Q(2x)}_{=0} - 2^{n+1} \underbrace{Q(x)}_{=0} = 0$$

D'autre part

$$\forall x \in \mathbb{R}, Q(2x) - 2^{n+1}Q(x) = \sum_{k=0}^{n+1} a_k (2x)^k - 2^{n+1} \sum_{k=0}^{n+1} a_k x^k$$
$$= \sum_{k=0}^{n+1} a_k (2^k - 2^{n+1}) x^k$$

Le terme d'indice n+1 s'annule, si bien que l'on peut écrire

$$\forall x \in \mathbb{R}, Q(2x) - 2^{n+1}Q(x) = \sum_{k=0}^{n} a_k (2^k - 2^{n+1}) x^k$$

Qui est une fonction polynômiale de degré $\leq n$, ce qui permet d'appliquer $\mathcal{P}(n)$ pour $(a_k)_{k \in [\![0,n]\!]} \leftarrow (a_k(2^k-2^{n+1}))_{k \in [\![0,n]\!]}.$ Donc $\forall x \in [\![0,n]\!]: a_k(2^k-2^{n+1}) = 0$ et puisque $2^k-2^{n+1} \neq 0$, on en déduit que

$$\forall k \in [0, n], a_k = 0$$

L'expression de Q devient :

$$\forall x \in \mathbb{R}, \underbrace{\sum_{k=0}^{n} a_k x^k}_{=0} + a_{n+1} x^{n+1} = 0$$

Donc en particularisant pour $x \leftarrow 1$, on en déduit que $a_{n+1} = 0$ Donc $\mathcal{P}(n+1)$ est vraie.

7 Montrer par analyse/synthèse qu'une fonction réelle d'une variable réelle s'écrit de manière unique comme somme d'une fonction paire et d'une fonction impaire

Démonstration. Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ fixée quelconque.

 \Diamond Analyse : Supposons que $f:\mathbb{R}\to\mathbb{R}$ se décompose de manière unique en f=g+h avec gpaire et h impaire (i.e. $\forall x \in \mathbb{R}, g(-x) = g(x)$ et h(-x) = -h(x)). Soit $x \in \mathbb{R}$ fixé quelconque Calculons f(-x):

$$f(-x) = g(-x) + h(-x) = g(x) - h(x)$$

Par demi somme, nous avons donc

$$\begin{cases} 2g(x) = f(x) + f(-x) \\ 2h(x) = f(x) - f(-x) \end{cases}$$

Ainsi, si une telle décomposition existe, c'

$$\begin{cases} g: x \mapsto \frac{f(x) + f(-x)}{2} \\ h: x \mapsto \frac{f(x) - f(-x)}{2} \end{cases}$$

♦ Synthèse : Posons

$$g \mid \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{f(x) + f(-x)}{2} \quad \text{et } h \mid \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{f(x) - f(-x)}{2}$$

$$(1)$$

Remarquons, d'une part que :

$$\forall x \in \mathbb{R}, g(x) + h(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} = f(x)$$

Vérifions si les fonctions g et h vérifient les conditions de parité :

$$\forall x \in \mathbb{R}, g(-x) = \frac{f(-x) + f(-(-x))}{2} = \frac{f(x) + f(-x)}{2} = g(x)$$
 ainsi g est paire.

$$\forall x \in \mathbb{R}, h(-x) = \frac{f(-x) - f(-(-x))}{2} = -\frac{f(x) - f(-x)}{2} = -h(x)$$
 ainsi h est impaire

Illustration graphique de certaines identités trigonomé-8 triques

Démonstration.

 $\sin x$ $\sin x$

FIGURE 1 – Illustration de $\sin(\frac{\pi}{2} - x) = \cos x$. FIGURE 2 – Illustration de $\sin(x + \pi) = -\sin x$. On retrouve l'égalité par réflexion sur la première On retrouve l'égalité par symétrie centrale. bissectrice.

On retrouve l'égalité par réflexion sur l'axe des bissectrice. abscisses.

FIGURE 3 – Illustration de $\tan(-x) = -\tan x$. On retrouve l'égalité par réflexion sur la deuxième

П

Technique de résolution des équations trigonométriques 9 du type $A\cos x + B\sin x = C$

 $D\acute{e}monstration$. Étudions l'équation d'inconnue x

$$A\cos x + B\sin x = C$$

- \star Si A=0 et B=0
 - \Diamond Si C=0 l'équation admet $\mathbb R$ pour ensemble de solutions
 - ♦ Sinon, l'équation n'admet pas de solutions

Factorisons par $\sqrt{A^2 + B^2}$ (ce qui a un sens car $(A, B) \neq (0, 0) \implies \sqrt{A^2 + B^2} \neq 0$)

$$\frac{A}{\sqrt{A^2 + B^2}} \cos x + \frac{B}{\sqrt{A^2 + B^2}} \sin x = \frac{C}{\sqrt{A^2 + B^2}}$$

Le nombre complexe $\frac{A}{\sqrt{A^2+B^2}}+i\frac{B}{\sqrt{A^2+B^2}}$ est de module 1, donc $\exists \varphi \in \mathbb{R}$ tel que

$$e^{i\varphi} = \underbrace{\frac{A}{\sqrt{A^2 + B^2}}}_{\cos\varphi} + i\underbrace{\frac{B}{\sqrt{A^2 + B^2}}}_{\sin\varphi}$$

Ainsi,

$$(\cos \varphi \cos x - \sin \varphi \sin x) = \frac{C}{\sqrt{A^2 + B^2}}$$

donc

$$\cos(\varphi + x) = \frac{C}{\sqrt{A^2 + B^2}}$$

$$\diamondsuit$$
 Si $\frac{C}{\sqrt{A^2+B^2}}\leqslant 1$

$$\cos(\varphi + x) = \frac{C}{\sqrt{A^2 + B^2}} \iff \begin{cases} \phi + x \equiv \arccos\frac{C}{\sqrt{A^2 + B^2}}[2\pi] \\ \text{ou} \\ \phi + x \equiv -\arccos\frac{C}{\sqrt{A^2 + B^2}}[2\pi] \end{cases}$$

$$\Leftrightarrow x \in \cup$$

$$\left\{ -\arccos\frac{C}{\sqrt{A^2 + B^2}} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

$$\iff x \in \left\{ \varepsilon \arccos\frac{C}{\sqrt{A^2 + B^2}} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

$$\iff x \in \left\{ \varepsilon \arccos\frac{C}{\sqrt{A^2 + B^2}} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

 $\Diamond\,$ Sinon, l'équation n'admet aucune solution

10 Étude complète de la fonction tangente, tracé du graphe et en déduire celui de cotangente.

 $D\acute{e}monstration.$

11 Expression de $\sin \theta$, $\cos \theta$, $\tan \theta$ en fonction de $\tan \frac{\theta}{2}$

Démonstration. Soit $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$. Posons $u = \tan \frac{\theta}{2}$

$$\Diamond \ \tan \theta = \frac{2u}{1 - u^2}$$

En utilisant la formule classique de trigonométrie

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

On obtient, avec $(a,b) \leftarrow (\frac{\theta}{2},\frac{\theta}{2})$

$$\tan \theta = \frac{2\tan\frac{\theta}{2}}{1 - \tan^2\frac{\theta}{2}} = \frac{2u}{1 - u^2}$$

$$\lozenge \cos \theta = \frac{1 - u^2}{1 + u^2}$$

$$\cos \theta = 2\cos^2 \frac{\theta}{2} - 1$$

$$= \frac{2}{1 + \tan^2 \frac{\theta}{2}} - 1$$

$$= \frac{2}{1 + u^2} - 1$$

$$= \frac{1 - u^2}{1 + u^2}$$

$$\diamondsuit \sin \theta \frac{2u}{1+u^2}$$

$$\sin \theta = \cos \theta \tan \theta$$

$$= \frac{1 - u^2}{1 + u^2} \times \frac{2u}{1 - u^2}$$

$$= \frac{2u}{1 + u^2}$$

12 Preuve des formules du type $\cos p + \cos q = \dots$

Démonstration. Partons des formules d'addition

$$cos(a + b) = cos a cos b - sin a sin b$$
$$cos(a - b) = cos a cos b + sin a sin b$$

$$\cos(a+b) + \cos(a-b) = 2\cos a \cos b \tag{\spadesuit}$$

Si bien qu'en posant

$$\left\{ \begin{array}{ll} p=a+b \\ q=a-b \end{array} \right. \iff \left\{ \begin{array}{ll} a=\frac{p+q}{2} \\ b=\frac{p-q}{2} \end{array} \right.$$

D'où, en injectant dans (??)

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

13 Limite de fonctions monotones sur un segment.

Soit f une fonction croissante définie sur]a,b[avec $(a,b) \in \overline{\mathbb{R}}^2, a < b.$

- Si f est majorée, alors f admet une limite finie en b qui vaut $\lim_{x\to b} f(x) = \sup f(|a,b|)$.
- Si f n'est pas majorée, alors f tend vers $+\infty$ en b.

Démonstration. \star Supposons que f est majorée sur]a,b[. L'ensemble f(]a,b[) est une partie de \mathbb{R} , non vide et majorée, donc admet une borne supérieure $S \in \mathbb{R}$. Montrons que $\lim_{x \to b} f(x) = S$.

Soit $\varepsilon > 0$ fixé que lconque. On veut construire un $\eta > 0$ tel que $\forall x \in]b-\eta, b[, |f(x)-S| \leqslant \varepsilon$. D'après la caractérisation de la borne supérieure par les epsilon appliquée pour ε ,

$$\exists y_{\varepsilon} \in f([a,b[): S - \varepsilon < y_{\varepsilon} \leqslant \varepsilon)$$

Or, $y_{\varepsilon} \in f(]a,b[) \implies \exists x_{\varepsilon} \in]a,b[: y_{\varepsilon} = f(x_{\varepsilon}) \text{ Posons } \eta = b - x_{\varepsilon} > 0 \text{ et vérifions qu'il convient. Soit } x \in]b - \eta,b[\text{ fixé quelconque. on a}$

$$b - \eta < x \implies b - (b - x_{\varepsilon}) < x \implies x_{\varepsilon} < x \implies \underbrace{f(x_{\varepsilon})}_{y_{\varepsilon}} \leqslant f(x)$$

De plus, $f(x) \leq S$ par définition de la borne supérieure, donc

$$S - \varepsilon < y_{\varepsilon} \leqslant f(x) \leqslant S$$

Donc $|f(x) - S| \le \varepsilon$ ce qui prouve la convergence.

 \star Supposons que f n'est pas majorée sur]a,b[. On veut montrer que f tend vers $+\infty,$ autrement dit que

$$\forall A \in \mathbb{R}, \exists \eta > 0 : \forall x \in]b - \eta, b[, f(x) \geqslant A$$

Soit $A \in \mathbb{R}$ fixé quelconque. f n'est pas majorée, donc $\exists x_0 \in]a,b[:f(x_0) \geqslant A$. Posons $\eta = b - x_0 > 0$ Soit $x \in]b - \eta,b[$ fixé quelconque.

$$b - \eta < x \implies b - (b - x_0) < x \implies x_0 < x \implies f(x_0) \leqslant f(x)$$

Donc $f(x) \ge f(x_0) \ge A$ Donc $\forall x \in]b - \eta, b[, f(x) \ge A]$. Donc f tend vers $+\infty$ en b.