$\mathbf{Q1\#}$ Use R built-in data frame named cars. Find the summary of data using two different syntaxes. Find the histogram, rug plot, and fit the normal density to see how much it is deviated from normal (all are shown in one graph for each variable). Interpret your results with graphical representation. Make sure results should brief and clear. Make the boxplot of the data set which show the distribution of each variable.

Solution:

Method 1.

```
car_data_vector<- data("cars")
car_data_vector<- cars
#car_data_vector
summary(car_data_vector)</pre>
```

Result:

```
speed dist
Min.: 4.0 Min.: 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median: 15.0 Median: 36.00
Mean: 15.4 Mean: 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max.: 25.0 Max.: 120.00
```

Method 2.

2.00 26.00 36.00 42.98 56.00 12

R_code:

```
par(mfrow=c(3,1)) \\ hist(car\_data\_vector\$dist,col=c("chartreuse4","bisque2","burlywood2"), main="Histogram of distance", xlab="Distance") \\ plot(car\_data\_vector,col="black") \\ require(stats) \\ with(car\_data\_vector, \{plot(density(dist,bw=0.15)) \\ rug(dist) \\ rug(jitter(dist,amount=0.01), side=3, col="black") \\ \})
```

Result:

R_code:

Q2# Using qualitative or categorical R built-in data frame named painters. Explore it (Graphically and with numbers) using suitable measures with R?

Solution:

```
Part A:

color_data=painters$Colour

color_data.freq <- table(color_data)

expression_data<- painters$Expression

expression_data.freq <- table(expression_data)

school_data <- painters$School

school_data <- painters$School

school_data.freq <- table(school_data)

colorx <- c("Da Udine","Da Vinci","Del Piombo","Del Sarto","Fr. Penni","Guilio
Romano","Michelangelo","Perin del Vaga","Perugino","Raphael","F. Zucarro")

Colors <- c ("azure3","burlywood1","darkgray", "pink", "dodgerblue3")

data <- rbind(composition, drawing, color_data, expression_data, school_data)

barplot(data,main="Multiple Bar Chart",col=Colors,beside=TRUE,ylab="Categories",xlab="Colors",ylim=c(0,20),xlim=c(0,310))

legend("topright",c("Composition","Drawing","Colour","Expression", "School"),fill=Colors,cex=0.75)
```


Part B:

Relative Frequencies:

```
library(MASS)
A)
                                                                  D)
drawing_data <- painters$Drawing
                                                                  composition <- painters$Composition
drawing_data.freq <- table(drawing_data)
                                                                  composition.freq <- table(composition)
drawing_data.relfreq <- drawing_data.freq / nrow(painters)
                                                                  composition.relfreq <- composition.freq / nrow(painters)</pre>
drawing_data.relfreq
                                                                  composition.relfreq
B)
                                                                  E)
color_data <- painters$Colour
                                                                  school_data <- painters$School
color_data.freq <- table(color_data)</pre>
                                                                  school_data.freq <- table(school_data)</pre>
color_data.relfreq <- color_data.freq / nrow(painters)</pre>
                                                                  school_data.relfreq <- school_data.freq / nrow(painters)
color.relfreq
                                                                  school_data.relfreq
C)
expression_data <- painters$Expression
expression_data.freq <-table(expression_data)</pre>
expression_data.relfreq <- expression_data.freq / nrow(painters)
expression_data.relfreq
 F
 #1
 hist(composition, main="Histogram of compositions", col=c("cornsilk2", "darkgray"
 ,"deepskyblue2","darkslateblue","purple"),xlab="Composition",ylab="Values")
 #2
 hist(drawing_data,main="Histogram of drawing",col=c("cornsilk2","darkgray"
 ,"deepskyblue2","darkslateblue","purple"),xlab="Drawing",ylab="Values")
 #3
 hist(color_data,main="Histogram of Colour",col=c("cornsilk2","darkgray"
                                ,"deepskyblue2","darkslateblue","purple"),xlab="Color",ylab="Values")
```

hist(expression_data,main="Histogram of Expression",col=c("cornsilk2","darkgray"

,"deepskyblue2","darkslateblue","purple"),xlab="Expression",ylab="Values")

Result:

A)

6	8	9	10	12	13	14	15	16	17
0.092	0.092	0.037	0.129	0.055	0.092	0.129	0.185	0.092	0.074
59259	59259	03704	62963	55556	59259	62963	18519	59259	07407

18	
0.01851	
852	

B)

0	4	5	6	7	8	9	10	12	13
0.018	0.074	0.018	0.111	0.037	0.092	0.055	0.129	0.055	0.037
51852	07407	51852	11111	03704	59259	55556	62963	5556	03704

14 15		16	17	18
0.05555	0.03703	0.14814	0.09259	0.03703
556	704	815	259	704

C)

0	2	3	4	5	6	7	8	9	10
0.092	0.018	0.037	0.129	0.037	0.222	0.018	0.111	0.018	0.055
59259	51852	03704	62963	03704	22222	51852	11111	51852	55556

12	13	14	15	16	17	18
0.03703	0.07407	0.03703	0.03703	0.01851	0.03703	0.01851
704	407	704	704	852	704	852

D)

	0	4	5	6	8	9	10	11	12	13
Ī	0.018	0.055	0.018	0.055	0.111	0.018	0.111	0.037	0.074	0.092
	51852	55556	51852	55556	11111	51852	11111	03704	07407	59259

14 15 16 17 18

0.05555	0.25925	0.03703	0.01851	0.03703
556	926	704	852	704

E)

Α	В	С	D	E	F	G	Н
0.185	0.111	0.111	0.185	0.129	0.074	0.129	0.074
18519	11111	11111	18519	62963	07407	62963	07407

Mean

> mean(painters\$Composition)

[1] 11.55556

> mean(painters\$Colour)

[1] 10.94444

> mean(painters\$Expression)

[1] 7.666667

> mean(painters\$Drawing)

[1] 12.46296

Median

> median(painters\$Composition)

[1] 12.5

> median(nainters\$Exnression)

[1] 6

> median(painters\$Colour)

[1] 10

> median(painters\$Drawing)

[1] 13.5

Std. Dev

> sd(painters\$Composition)

[1] 4.087102

> sd(nainters\$Expression)

[1] 4.797798

> sd(painters\$Colour)

[1] 4.651706

> sd(painters\$Drawing)

[1] 3.457084

Variance

> var(painters\$Composition)

[1] 16.7044

> var(painters\$Expression)

[1] 23.01887

> var(painters\$Colour)

[1] 21.63836

> var(painters\$Drawing)

[1] 11.95143

Q3# A class of students played computer game which tested how quickly they reached to a visual instruction to press a particular key. The computer measured their reaction times in tenths of a second and stored a record of the sex and reaction times of each student. Finally it displayed the following summary statistics for the whole class.(R-based activity)

- a. Draw two box plots suitable for comparing the reaction times of the boys and girls.
- b. Write a brief comparison of the performance of boys and girls in the game

Solution:

```
#Girls
                    #Boys
median_g <- 10
                    median b <- 10
lowerQ_g<-8
                    lowerQ b<-7
upperQ g<-15
                    upperQ b<-13
min g < -6
                    min_b < -4
max g<-19
                    max b <- 16
data g vector <- c(median g,lowerQ g,upperQ g,min g,max g)
data_b_vector<-c(median_b,lowerQ_b,upperQ_b,min_b,max_b)
boxplot( data_g_vector, main = "Boxplot",
    col = "tan3",
    names=c("Girls"),
    border = "violetred4",xlab="Data set of Girls",
    horizontal = TRUE,
    notch = FALSE)
boxplot( data b vector, main = "Boxplot",
    col = "brown1",
    names=c("Boys"),
    border = "violetred4", xlab = "Data set of Boys",
    horizontal = TRUE,
    notch = FALSE)
```


Boxplot

- (b). Comparison of performance of Boys and Grisl
- 1. No outliers in the data set.
- 2. Lowest measured reaction times in case of Boys is 4 and Girls is 6.
- 3. About 25% of measured reaction times of Boys is more than 13 and of Girls is more than 15.
- 4. About 75% of measured reaction times of Boys is more than 7 and of Girls is more than 8.
- 5. Maximum measured reaction times of Boys is 16 and of Girls is 19.
- 6. Median of measured reaction times of both Boys and Girls is 10.

Q4# In the manufacturing of a certain scientific instrument great importance is attached to the life of a particular critical component. This component is obtained in bulk from two sources, A and B, and in the course of inspection, the lives of 1000 of the components from each source are determined. The following frequency tables are obtained:-

- 1. Find Median and two quartiles for each group.
- 2. Find mean and Standard deviation for each source and compare them.
- 3. Which source do you think providing better quality of components and why? Note: answer this part

by considering results of mean and standard deviation.

4. Calculate absolute and relative measure of skewness for each group and comment on life of the

(a)

components for each source.

Note: Every calculation is carried out using R-lang.

Solution:

Α.

No.of.Components	cumsum	
[1000-1020]	40	40
(1020-1040]	96	136
(1040-1060]	364	500
(1060-1080]	372	872
(1080-1100]	85	957
(1100-1120]	43	1000

#Media A

```
medianA=1040 + (20/364)*(500 - 136)
```

medianA

```
Result:
```

```
[1] 1060
```

(b)

Vector_components <- c(339,136,25,20,130,350)

colnames <- "No. of Components"

rownames <- c("[1030-1040]", "(1040-1050]", "(1050-1060]", "(1060-1070]",

"(1070-1080]", "(1080-1090]")

result_1<- matrix(Vector_components, dimnames=list(rownames, colnames), nrow=length(Vector_components))

data.frame(result_1, "cumsum"=cumsum(result_1))

No.of	.Components	cumsum	
[1030-1040]		339	339
(1040-1050]		136	475
(1050-1060]		25	500
(1060-1070]		20	520
(1070-1080]		130	650
(1080-1090]		350	1000

#MedianB

medianB=1050 + (10/25)*(500-475)

medianB

Result:

[1] 1060

#Quartiles

```
quart_1_Data_A=1040+(20/364)*(250 - 136)
quart_1_Data_A
[1] 1046.264

quart_3_Data_A=1060+(20/372)*(750 - 500)
quart_3_Data_A
[1] 1073.441

quart_1_Data_B=1030+ (10/339) * (250-0)
quart_1_Data_B
[1] 1037.375

quart_3_Data_B=1080 + (10/350)*(750 - 650)
quart_3_Data_B
[1] 1082.857
```

В.

meanA=sum of all(f.x)/sum of all(f).

> meanA=1059900/1000

> meanA

[1] 1059.9

meanA=sum of all(f.x)/sum of all(f).

> meanB=1060160/1000

> meanB

[1] 1060.16

> SD_A= sqrt(444000/1000)

> SD_A

[1] 21.07131

> SD_B= sqrt(491567.84 / 1000)

>SD B

[1] 22.17133

C.

- i. Comparing A with B source A has provided good Quality of Data
- ii. A and B both have almost same mean.
- iii. A has lower Standard Deviation than B.
- iv. Considering above statement, we can say that A is closer to average.
- v. A is less spread than Source B.

Note: Here A and B refers to Source A and Source B respectively

D.

Coefficient of Skewness for Source A:

 $> Sk_A=(3*(meanA-medianA))/(SD_A)$

> Sk_A

[1] -0.01423737

Shape of Graph is Symmetric

Coefficient of Skewness for Source B:

> Sk_B=(3*(meanB-medianB))/(SD_B)

> Sk_B

[1] 0.02164958

Shape of Graph is Symmetric

Note:

If Skewness is 0. The shape of graph will be **Symmetric** and the growth rate of life of Component will be Normal.

- **Q#** 5 The following table shows data about the time taken in seconds to the nearest second, for completing each one of a series of 75 similar chemical experiments.
- a. State the type of the graph appropriate for illustrating.
- b. Calculations using the data in the table give the estimates as follows mean time of the experiments 69.64s, and standard deviation 6.37s. Explain why these are estimates rather than precise values.
- c. Estimate the median and interquartile range of the times taken for completing experiments.
- d. It was subsequently revealed that the four experiments in the 50-60 class had actually taken 57, 59, 59, and 60 seconds respectively. State, without further calculation, what effect (if any) there would be on the estimates of the median, interquartile range and the mean if this information were taken into account.
- e. Does the graph exhibit positive skewness, negative skewness or no skewness and how do you measure it?

Solution:

a).

Histogram would be the most suitable graph for given scenario.

b).

These mean and standard deviation are estimates ,because the time interval for completing each one of series of 75 chemical experiments is different for different number of experiments. Moreover ,class width is also different for some classes as in the 1st 2 classes ,class width is 11 but in the remaining classes ,width is 5.So,rather than saying exact mean and standard deviation ,we would say it estimate.

c).

Median= l + h/f (n/2 - c.f)= 65.5 + 5/26 (37.5 - 17)= 69.44Inter Quartile Range (IQR) = $Q_3 - Q_1$ $Q_1 = l + h/f (n/4 - c.f)$ = 65.5 + 5/26 (18.75 - 17)= 65.83 $Q_3 = l + h/f (3n/4 - c.f)$ = 70.5 + 5/22 (56.25 - 43)

d).

This information will not effect mean. Median or IQR as it is the measure of location and the values will not affect the location as long as they are in the range of given class.

e).

By using Karl's measure of Skewness:

 $S_k = (Mean - Mode) / Std.Dev.$

- \rightarrow Mean = 69.64
- \rightarrow Mode = 69.32
- \rightarrow Std.Dev = 6.365

So,
$$S_k = (69.64 - 69.32) / 6.365$$

= 0.05

Since, $S_k = 0$, the graph has no Skewness.