Analysis Tools for Data Structures and Algorithms

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 16, 2021

What We Have Done

reminder: use forum more; tag your emails properly

- linked list: 'clue mission game' in memory
- trading space (next, prev pointers) for flexibility (memory allocation, operations)
- application: polynomial, sparse vector
- rough notation for complexity

Rough Time Complexity of Matrix Addition

$$P \cdot rows \cdot cols + (Q + S) \cdot rows + T$$

 P, Q, R, S, T hard to keep track and not matter much

```
MATRIX-ADD(A, B, rows, cols)

1 C = \text{CONSTRUCT-MATRIX}(row, col)

2 \textbf{for } i = 1 \text{ to } rows

3 \textbf{for } j = 1 \text{ to } cols

4 C[i,j] = A[i,j] + B[i,j]

5 \textbf{return } C
```

- inner for: $R = P \cdot cols + Q = rough(cols)$
- total: $(S + R) \cdot rows + T = rough(rough(cols) \cdot rows)$

rough time needed: rough(rows · cols)

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

Asymptotic Notation

Representing "Rough" by Asymptotic Notation

- goal: rough rather than exact steps
- why rough? constant not matter much
- —when input size *n* large

compare two complexity functions f(n) and g(n)

growth of functions matters
—when n large, n^3 eventually bigger than 1126n

rough ⇔ asymptotic behavior

Asymptotic Notations: Rough Upper Bound

big-O: rough upper bound

- f(n) grows slower than or similar to g(n) f(n) =
 - *n* grows slower than n^2 : $n = O(n^2)$ 3*n* grows similar to *n*: 3n = O(n)
- asymptotic intuition (rigorous math later):

big-O: arguably the most used "language" for complexity

More Intuitions on Big-O

$$f(n) = O(g(n)) \Leftarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} \triangleq c$$
 (not rigorously, yet)

- "= $O(\cdot)$ " more like " \in " n = O(n) n = O(10n) n = O(0.3n) $n = O(n^5)$ "= $O(\cdot)$ " also like " \leq "

 $n = O(n^2)$ $n^2 = O(n^{2.5})$ $n = O(n^{2.5})$
- 1126n = O(n): coefficient not matter
- $(n + \sqrt{n + \log n}) = O(n)$: lower-order term not matter

intuitions (properties) to be proved later

Formal Definition of Big-O

L 1 Positiva

Consider positive functions f(n) and g(n) on integers n,

$$f(n) = O(g(n))$$
, iff exist positivec, n_0 such that $f(n) \not\subseteq c \cdot g(n)$ for all $n \ge n$

- covers the lim intuition if limit exists
- covers other situations without "limit"
 e.g. |sin(n)| = O(1)

next: prove that lim intuition ⇒ formal definition

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

8/21

lim Intuition \Rightarrow Formal Definition

For positive functions f and g if $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ hen f(n)=O(g(n)).

- with definition of limit, there exists ϵ , n_0 such that for all $n \ge n_0$, $|\frac{f(n)}{g(n)} c| < \epsilon$.
- That is, for all $n \ge n_0$ $c + \epsilon$.
- Let $c = c + \epsilon$, $n'_0 = n_0$, big-O definition satisfied with (c', n'_0) . QED.

important to not just have intuition (building), but know definition (building block)

More on Asymptotic Notations

Asymptotic Notations: Definitions

• f(n) grows slower than or similar to g(n): (" \leq ")

$$f(n) = O(g(n))$$
, iff exist c, n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

• f(n) grows faster than or similar to g(n): (" \geq ")

$$f(n) = \Omega(g(n))$$
, iff exist c, n_0 such that $f(n) \ge g(n)$ for all $n \ge n_0$

• f(n) grows similar to g(n): (" \approx ")

$$f(n) \notin \Theta(g(n))$$
, iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

• also $o(\cdot)$ and $\omega(\cdot)$

let's see how to use them

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

11

The Seven Functions as g

$$g(n) = ?$$
• 1: constant
• $\log n$: logarithmic (does base matter?)
• n : linear

- n²: square
- n^3 : cubic
- 2ⁿ: exponential (does base matter?)

will often encounter them in future classes

Analysis of Sequential Search

```
SEQUENTIAL-SEARCH(A, key)

1 for i = 1 to A. length

2 if A[i] = key

3 return i

4 return FAIL
```

- best case (e.g. key at 0): time $\Theta(1)$
- average case with respect to uniform $key \in A$: time $\Theta(n)$
- worst case (e.g. key at last or not found): time $\Theta(n)$

often just say O(n)-algorithm (linear complexity)

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

13/

Analysis of Binary Search

```
BINARY-SEARCH(A, key)
    left = 1, right = A. length
    while left ≤ right
          mid = floor(\frac{left+right}{2})
 3
          if A[mid] = key
 5
               return mid
 6
          elseif A[mid] < key
               left = mid + 1
 8
          elseif A[mid] > key
               right = mid - 1
 9
10
    return FAIL
```

- best case (e.g. key at first mid): time ⊖(1)
- worst case (e.g. key not found):
 because range (right left)
 halved in each WHILE,
 needs time Θ(log n) terations
 to decrease range to 0

often just say $O(\log n)$ -algorithm (logarithmic complexity)

Sequential and Binary Search

- Input: any integer array A with size n, an integer key
- Output: if key not within list, SUCCEED; otherwise, FAIL

```
DIRECT-SEQ-SEARCH(A, key)

1

2 if SEQ-SEARCH(A, key) = FAIL

3 return FAIL

4 else

5 return SUCCEED

SORT-AND-BINSEARCH(A, key)

1 B = SEL-SORT(A)

2 if BIN-SEARCH(A, key) = FAIL

3 return FAIL

4 else

5 return SUCCEED
```

- DIRECT-SEQ-SEARCH: O(n) time
- SORT-AND-BIN-SEARCH: $O(n^2)$ time for SEL-SORT and $O(\log n)$ time for BIN-SEARCH

next: operations for "combining" asymptotic complexity

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

15/2

Properties of Asymptotic Notations

Some Properties of Big-O I

Theorem (封閉律)

if $f_1(n) = O(g_2(n))$, $f_2(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_2(n))$

Some Properties of Big-O II

Theorem (併吞律)

if
$$f_1(n) = O(g_1(n))$$
, $f_2(n) = O(g_2(n))$ and $g_1(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_2(n))$

Proci - we move - we

Theorem

If
$$f(n) = a_m n^m + \cdots + a_1 n + a_0$$
, then $f(n) = O(n^m)$

Proof: use the theorem above.

similar proof for Ω and Θ

Some More on Big-O

BINARY-SEARCH is $O(\log n)$ time

- by 遞移律, time also O(n)
- time also $O(n \log n)$
- time also $O(n^2)$
- also O(2ⁿ)
- . . .

prefer the tightest Big-O!

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

19/21

Comparison of Complexity

	(consecutive) array	linked list		
index access	O(1) 🗸	O(n) -		
head insertion	O(n) ~	O(1) ~		
tail insertion	O(1)	O(1) after getting tail		
'middle' insertion	O(n) ~	O(1) after getting after <		
wasted space	O(1) for len	O(n) for next		

exercise: how about dynamic array (double after full)?

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

20/21

Practical Complexity

some input sizes are time-wise infeasible for some algorithms

when 1-billion-steps-per-second									
n	n	$n\log_2 n$	n^2	n^3	n^4	n ¹⁰	2 ⁿ		
10	$0.01 \mu s$	$0.03 \mu s$	0.1 <i>μ</i> s	1 μ s	10 <i>μs</i>	10 <i>s</i>	1 <i>μ</i> s		
20	$0.02\mu s$	$0.09\mu s$	0.4 μ s	8 μ s	160 μ s	2.84 <i>h</i>	1 <i>ms</i>		
30	$0.03\mu s$	$0.15\mu s$	0.9 μ s	27 μ s	810 μ s	6.83 <i>d</i>	1 <i>s</i>		
40	$0.04\mu s$	0.21 μ s	1.6 μ s	64 μs	2.56 <i>ms</i>	121 <i>d</i>	18 <i>m</i>		
50	$0.05\mu s$	$0.28\mu s$	2.5 μ s	125 μ s	6.25 <i>ms</i>	3.1 <i>y</i>	13 <i>d</i>		
100	$0.10\mu s$	$0.66\mu s$	10 μ s	1 <i>ms</i>	100 <i>ms</i>	3171 <i>y</i>	4 · 10 ¹³ y		
10 ³	1 μ s	$9.96 \mu s$	1 <i>ms</i>	1 <i>s</i>	16.67 <i>m</i>	3 · 10 ¹³ y	$3 \cdot 10^{284} y$		
10 ⁴	10 μ s	130 μ s	100 <i>ms</i>	1000 <i>s</i>	115.7 <i>d</i>	$3 \cdot 10^{23} y$			
10 ⁵	100 μ s	1.66 <i>ms</i>	10 <i>s</i>	11.57 <i>d</i>	3171 <i>y</i>	$3 \cdot 10^{33} y$			
10 ⁶	1 <i>ms</i>	19.92 <i>ms</i>	16.67 <i>m</i>	32 <i>y</i>	$3 \cdot 10^7 y$	$3\cdot 10^{43}y$	J		

note: similar for space complexity, e.g. store an N by N double matrix when N = 50000?