Taller de diseño de redes de campus

Ingeniería de capa 2 – Spanning Tree

This work is a derivative of work by NSRC – University of Oregon. This work, updated license, footer, add answers to questions, footnote and add link Lab STP last transparency, is too licensed under the Creative Commons Attribution-NonCommercial 4.0 International license

(http://creativecommons.org/licenses/by-nc/4.0/) by Ricardo Feijoo Costa.

Bucle (loop)

- Cuando existe más de un camino entre dos switches cualesquiera
- ¿Cuáles son los posibles problemas?

- Si existe más de un camino entre dos switches:
 - Las tablas de reenvío se vuelven inestables
 - Las mismas direcciones MAC de origen aparecen en múltiples puertos continuamente
 - Los switches reenviarán las tramas broadcast de otros switches
 - El efecto se multiplica
 - Se utiliza todo el ancho de banda disponible
 - Los procesadores de los switches no pueden sostener la carga

Nodo 1 envía una trama de broadcast (ej. petición ARP)

Switch C envía la trama de Nodo 1 como broadcast por todos los demás puertos

Los switches A y B reenvían la trama de Nodo 1 como broadcast por todos sus puertos

Switching Loop

Los switches A y B reenvían la trama de Nodo 1 como broadcast por todos sus puertos

Switch C envía la trama de Nodo 1 como broadcast por todos sus puertos

Bucle - resultado final

Reciben los broadcasts de los demás y los reenvían por todos los puertos

Ahora hay un círculo vicioso de broadcast infinito

Esto se llama una tormenta de broadcast

Múltiples caminos

- Pero podemos sacar provecho de los múltiples caminos sin crear problemas
 - Los caminos redundantes ayudan cuando:
 - Un switch falla
 - El cableado falla
- Cómo podemos aprovechar esta redundancia sin crear situaciones peligrosas?

¿Qué es un "spanning tree"?

- "Dado un grafo sin dirección, un spanning tree o árbol de distribución de dicho grafo es un subgrafo con forma de árbol que conecta todos los vértices".
- Un grafo puede tener múltiples árboles.

Protocolo de Spanning Tree

• El objetivo del protocolo es que los switches determinen automáticamente un sub-grafo que esté libre de bucles (un árbol) y que aún tenga suficiente conectividad para que, dentro de lo físicamente posible, haya un camino entre cada switch y todos los demás.

Protocolo de Spanning Tree

- Hay varios estándares de esta idea:
 - Spanning Tree tradicional (802.1d)
 - Rapid Spanning Tree o RSTP (802.1w)
 - Multiple Spanning Tree o MSTP (802.1s)
- Versiones antiguas y cerradas:
 - Per-VLAN Spanning Tree o PVST (Cisco)

Spanning Tree Tradicional (802.1d)

- Los switches intercambian mensajes que les permiten calcular el árbol
 - Estos mensajes se llaman BPDUs (Bridge Protocol Data Units)
 - Hay dos tipos de BPDUs:
 - Configuración
 - Notificación de cambio de topología (TCN)

Spanning Tree Tradicional (802.1d)

Primer paso

- Determinar un punto de referencia: el **switch raíz**
- El proceso de elección se basa en el identificador del switch, el cual está compuesto por:
 - <u>La prioridad del switch</u>: Un número de dos octetos que es configurable
 - <u>La dirección MAC</u>: Una dirección única que no se puede cambiar.

Elección del switch raíz (802.1d)

- Cada switch comienza enviando BPDUs poniéndose a sí mismo como raíz
 - Yo soy el switch raíz!
- Los BPDUs recibidos se analizan para ver si hay un identificador de switch raíz menor
 - Si es el caso, cada switch sustituye el valor del switch raíz en sus BPDUs con este valor menor
- Al final todos los switches se ponen de acuerdo en cuanto al switch raíz

Selección del switch raíz (802.1d)

- Todos los switches tienen la misma prioridad
- ¿Quién es elegido como switch raíz? Pues como todos los switches tienen la misma prioridad y debido a que el Switch A posee la MAC más pequeña tendremos que el Switch A es el switch raíz ó root switch

- Ahora cada switch tiene que determinar dónde está situado con relación al switch raíz
 - Cada switch debe determinar su *Puerto raíz*
 - La clave es encontrar el puerto con el menor Costo hacia el switch raíz
 - El costo acumulado de todos los enlaces hasta llegar al switch raíz.

- Cada enlace en el switch tiene un "costo"
 - Inversamente proporcional al ancho de banda del enlace
 - e.g. Mientras más rápido el enlace, menor será el "costo"

Velocidad del enlace	Costo de STP
10 Mbps	100
100 Mbps	19
1 Gbps	4
10 Gbps	2

- El Costo del camino hacia el switch raíz es la acumulación del costo del enlace y los costos aprendidos de los otros switches.
 - Responde a la pregunta: cuánto cuesta llegar al switch raíz a través de este puerto?

- 1. El switch raíz envía BPDUs con un costo de "root path cost" de 0
- El switch vecino recibe esta BPDU y agrega el costo del puerto al costo recibido
- El switch vecino reenvía las BPDUs con el costo acumulado
- Otros switches vecinos más adelante repiten el mismo procedimiento

 En cada switch, el puerto con el menor costo para alcanzar al switch raíz se convierte en el puerto raíz.

- ¿Cuál es el costo de camino al raíz en cada puerto?
- ¿Cuál es el puerto raíz en cada switch?

Nota: El costo del camino al raíz es la suma del valor en la BPDU recibida del vecino neighbour más el costo del enlace

- OK, hemos seleccionado los puertos raíz pero no hemos resuelto del problema del bucle, o sí?
 - Los enlaces todavía siguen activados!
- Cada segmento de red debe tener un solo switch reenviando tráfico desde y hacia dicho segmento
- Entonces cada switch debe identificar un *Puerto* designado por segmento de red
 - El que tenga el menor costo acumulativo para llegar al switch raíz

- Es posible tener dos o más puertos en un segmento con costos hacia el switch raíz, lo cual constituye un empate
- Todas las decisiones de STP están basadas en la siguiente lista de propiedades:
 - El identificador de switch¹ raíz menor
 - El costo menor de camino al switch raíz
 - El identificador de switch de envío menor
 - El identificador de puerto de envío menor

 ¿Cuál puerto debería ser el puerto designado en cada segmento?

Bloqueando un puerto

- Cualquier puerto que no haya sido elegido como el puerto raíz, ni como puerto designado se pone en estado bloqueado.
- Este paso rompe con el bucle y completa el Spanning Tree

Puertos designados en cada segmento (802.1d)

 El puerto 2 en el switch C entra en estado bloqueado porque no es ni puerto raíz ni puerto designado

Estados de los puertos en el protocolo STP

- Deshabilitado (Disabled)
 - El puerto se apaga
- Bloqueado (Blocking)
 - No reenvía tramas
 - Recibe BPDUs
- Escuchando (Listening)
 - No reenvía tramas
 - Envía y recibe BPDUs

Estados de los puertos en el protocolo STP

- Aprendiendo (Learning)
 - No reenvía tramas
 - Envía y recibe BPDUs
 - Aprende nuevas direcciones MAC
- Reenviando (Forwarding)
 - Reenvía tramas
 - Envía y recibe BPDUs
 - Aprende nuevas direcciones MAC

Cambios de topología en STP

- Los switches tendrán que re-calcular si:
 - Se introduce un nuevo switch
 - Podría ser un nuevo switch raíz!
 - Un switch falla
 - Un enlace falla

Ubicación del switch raíz

- Si utilizamos los parámetros por defecto de STP podríamos obtener resultados indeseados
 - El flujo del tráfico no será óptimo
 - Un switch inestable o lento puede ser elegido para ser raíz
- Debe tener un plan para asignar las prioridades de sus switches cuidadosamente

Mala ubicación del switch raíz

Buena ubicación del switch raíz

Protección de la topología STP

- Algunos fabricantes han añadido funcionalidades que protegen la topología de STP:
 - Root Guard
 - BPDU Guard
 - Loop Guard
 - UDLD
 - Etc.

Pautas de diseño con STP

- Active STP a
 ún si no tiene enlaces redundantes
- Siempre planifique y configure las prioridades de cada switch
 - Haga que la elección del switch raíz sea determinística
 - Incluya un switch raíz alternativo
- De ser posible, no acepte las BPDUs en los puertos de acceso
 - Aplique BPDU Guard o similar

802.1d Velocidad de convergencia

- Cambiar del estado de bloqueo al estado de reenvío toma al menos 2 x unidades de Forwarding Delay (~ 30 secs.)
 - Esto puede ser molesto al conectar estaciones de usuarios
- Algunos fabricantes han creado opciones como PortFast, que reducen este retardo al mínimo para los puertos de usuarios
 - No utilice PortFast o similar en los enlaces entre switches
- Los cambios de topología toman también hasta 30 segundos
 - Esto es inaceptable en redes en producción actuales

Rapid Spanning Tree (802.1w)

- Compatible con 802.1d
- Provee convergencia mucho más rápida
- Hay que configurar cuáles puertos son los puertos de acceso
 - ej. para usuarios finales, no para conexiones con otros switches

Multiple Spanning Tree (802.1s)

- También compatible con los anteriores
- La misma convergencia rápida de RSTP
- Además, le permite configurar múltiples árboles (con raíces diferentes) para diferentes grupos de VLANs
 - De esta manera se puede balancear la carga entre enlaces
 - Generalmente no vale la pena por la complejidad añadida

Configuración: Cisco

- STP está activado por defecto
- Seleccione el STP estándar (recomendado!)
 - spanning-tree mode mst
- Configure la prioridad del switch:
 - spanning-tree mst 0 priority 12288
- Para switches viejos que sólo aceptan PVST:
 - spanning-tree vlan 1 priority 12288
 - Repetir para todas las vlans!
- Activar portfast en todos los puertos de acceso:
 - spanning-tree portfast default

Configuración: HP

- Es necesario activarlo explícitamente!
 - spanning-tree
- Configure la prioridad del switch:
 - spanning-tree priority 3
 - Actual priority is $3 \times 4096 = 12288$
- Desactive el port fast en cada enlace troncal:
 - no spanning-tree <port> auto-edge-port

Lab de STP