

Semester I Examinations 2022/2023

Exam Codes	3BMS2, 4BMS2, 3BS9, 4BS2, 1OA1, 1HA1
Exam Module Module Code Paper No.	Third and Fourth Science Examination Euclidean and Non-Euclidean Geometry 1 MA3101/MA544 1
External Examiner Internal Examiners	Prof. Colva Roney-Dougal Prof. Graham Ellis Dr. John Burns
$\overline{\text{Instructions}}$	Answer all questions.
Duration No. of Pages School	2 hours 3 pages including this page Mathematics, Statistics & Applied Mathematics
Requirements: Release in Exam venue Release to Library MCQ Statistical / Log Tables	Yes ✓ No ☐ Yes ✓ No ☐ Yes ☐ No ✓ Ves ✓ No ☐

- **Q1.** Let $S^2 \subset \mathbb{R}^3$ be the sphere of radius one centred at the origin.
 - (i) [9 marks] Prove that the shortest path joining any two distinct points of S^2 is an arc of a great circle.
 - (ii) [8 marks] Calculate the geodesic curvature of the curve $\gamma(t) = (\cos t, 0, \sin t)$ on S^2 and the equation of the tangent plane at the point $\gamma(t)$.
 - (iii) [8 marks] A sailor circumnavigates Australia by a route consisting of a geodesic triangle. Prove that at least one interior angle of the triangle is $\geq \pi/3 + 10/169$ radians. (Take the Earth to be a sphere of radius 6,500 km and assume that the area of Australia is 7.5 million square km.)
- **Q2.** Let $H \subset \mathbb{C}$ be the upper half plane with the hyperbolic metric (the Hyperbolic Plane).
 - (i) [6 marks] Prove than every matrix $M \in SL(2,\mathbb{R})$ representing a Möbius transformation is an isometry of H.
 - (ii) [6 marks] Prove that $SL(2,\mathbb{R})$ (representing Möbius transformations of H) acts transitively on H.
 - (iii) [6 marks] Prove that the positive y-axis is a geodesic of the Hyperbolic Plane.
 - (iv) [7 marks] Find the area of the hyperbolic (geodesic) triangle with vertices (0,0),(1,0) and (-1,0).

- Q3. Recall that for a surface patch x(u, v) of an oriented surface M in \mathbb{R}^3 the matrix of the shape operator or Weingarten map with respect to the basis $\{x_u, x_v\}$ is $\Pi_1^{-1}\Pi_2$, where Π_1 and Π_2 are the matrices of the first and second fundamental forms $Edu^2 + 2Fdudv + Gdv^2$ and $Ldu^2 + 2Mdudv + Ndv^2$, respectively.
 - (i) [7 marks] Prove that the Gaussian curvature K of M is given by

$$K = \frac{LN - M^2}{EG - F^2}.$$

(ii) [12 marks] Calculate the Gaussian curvature K of the torus T parametrised by:

$$x(u, v) = ((2 + \cos v)\cos u, (2 + \cos v)\sin u, \sin v).$$

Write down a parametrised geodesic on T.

- (iii) [6 marks] For the torus T in part (ii) calculate $\int_T KdA$, stating clearly any theorem you use.
- **Q4.** (a) (i) [9 marks] Use Hamilton's quaternions to prove that the unit 3-sphere S^3 in \mathbb{R}^4 is a disjoint union of isometric circles, parametrized by S^2 .
 - (ii) [8 marks] Determine the rotation in $\mathbb{R}i + \mathbb{R}j + \mathbb{R}k$ induced by conjugation by the unit quaternion $t = \frac{1}{2} + \frac{i}{2} + \frac{j}{2} + \frac{k}{2}$.
 - (b) Answer (i) OR (ii) below, but NOT both: [8 marks]
 - (i) State the Cayley-Salmon theorem. Give an example of a smooth cubic surface and describe all its lines.
 - (ii) State Synge's theorem. Define the words compact, orientable and simply connected in the statement of the theorem. Give an example of a compact, orientable surface with negative curvature at some point for which the conclusion of the theorem does not hold.