WEST Search History

Hide Items Restore Clear Cancel

DATE: Wednesday, October 11, 2006

Hide?	Set Name	Query	Hit Count		
	DB=PGPB, U	USPT,EPAB,JPAB,DWPI; PLUR=	YES; OP=OR		
	L7	L5 and L3	6		
	L6	L4 and L3	7		
	L5	Quanz-M\$.in.	29		
	L4	Buttcher-V\$.in.	14		
	L3	L1 and L2	35		
	L2	branching adj enzyme	2611		
	L1	neisseria	8491		

END OF SEARCH HISTORY

L1 2 L2 L3 .	'AGRICOLA, BIOSIS, CAPLUS' ENTERED 26961 S NEISSERIA 1784 S BRANCHING ENZYME 5 S L1 AND L2 9 S BUTTCHER V?/AU 21 S QUANZ M?/AU 4 S L3 AND L5 3 S L3 AND L4	
		·

SCORE Search Results Details for Application 1 195-1.rge

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-70 start

```
GenCore version 5.1.9
                 Copyright (c) 1993 - 2006 Biocceleration Ltd.
OM nucleic - nucleic search, using sw model
               August 22, 2006, 19:21:51; Search time 13588 Seconds
Run on:
                                          (without alignments)
                                          11647.768 Million cell updates/sec
               US-10-705-195-1
Title:
Perfect score: 2475
              1 actgtatgccgtgcagctgg.....taaagcggcaccatactgcc 2475
Sequence:
Scoring table: IDENTITY NUC
               Gapop 10.0 , Gapext 1.0
Searched:
               6366136 seqs, 31973710525 residues
Total number of hits satisfying chosen parameters:
                                                       12732272
Minimum DB seq length: 0
Maximum DB seq length: 200000000
Post-processing: Minimum Match 0%
                Maximum Match 100%
                Listing first 45 summaries
                GenEmbl:*
Database :
                1: gb env:*
                2: gb_pat:*
                3: gb_ph:*
                4: gb_pl:*
                5: gb_pr:*
                6: gb_ro:*
                7: gb_sts:*
                8: gb sy:*
                9: gb_un:*
                10: gb vi:*
                11: gb ov:*
                12: gb htg:*
                13: gb_in:*
                14: gb_om:*
               `15: gb_ba:*
      Pred. No. is the number of results predicted by chance to have a
```

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			ફ				
Res	sult		Query				
	No.	Score	Match	Length	DB	ID	Description
	1	2475	100.0	2475		BD236814	BD236814 Nucleic a
	2	2475	100.0	2475	2	AR337816	: AR337816 Sequence
	3	2475	100.0	2475	2	AR479077	AR479077 Sequence
	4	2475	100.0	2475	2	AX055494	AX055494 Sequence
	5	2475	100.0	2475	15	AF102867	AF102867 Neisseria
	6	941.6	38.0	2307	2	AR387231	AR387231 Sequence
	7	894.6	36.1	2520	15	AF434710	AF434710 Pectobact
С	8	877.8		110000	15	AE017220 36	Continuation (37 o
С	9	876.2		110000	15	CP000026 34	Continuation (35 o
С	10	873	35.3	23506	15	AE008863	AE008863 Salmonell
Ŭ	11	871.4		110000	15	AE014613 41	Continuation (42 o
	12	871.4		265050	15	AL627281	AL627281 Salmonell
С	13	858.8		110000	15	AE014075 39	Continuation (40 o
С	14	858.8		110000	15	AE014075 40	Continuation (41 o
С	15	849.2		110000	15	CP000038 38	Continuation (39 o
c	16	846		110000	15	AE005174 43	Continuation (44 o
С	17	846		110000	1.5	U00096 35	Continuation (36 o
	18	846		110000	15	AP009048 40	Continuation (41 o
С	19	846		110000	15	BA000007 42	Continuation (43 o
С	20	846		110000	15	CP000036 34	Continuation (35 o
С	21	845	34.1	72438	15	$ECOUW67\overline{3}$	Continuation (4 of
	22	844.4	34.1	2361	2	BD071178	BD071178 Plant lik
	23	844.4	34.1	2559	15	ECOGLGBA	M13751 Escherichia
С	24	841.2	34.0	110000	15	AE005674_35	Continuation (36 o
	25	841.2	34.0	110000	15	AE014073_42	Continuation (43 o
С	26	839.6	33.9	110000	15	CP000034_33	Continuation (34 o
С	27	837.4	33.8	110000	15	BX950851_46	Continuation (47 o
С	28	789.8	31.9	110000	15	CP000057_16	· Continuation (17 o
С	29	789.8	31.9	349980	2	CQ873160	CQ873160 Sequence
С	30	779.8	31.5	6306	2	CQ872897	CQ872897 Sequence
	31	773.8	31.3	2055	2	CS221362	CS221362 Sequence
	32	768	31.0	12144	15	AE013993	AE013993 Yersinia
С	33	768		199050	15	AJ414159	AJ414159 Yersinia
С	34	768		294253	15	AE017139	AE017139 Yersinia
С	35	763.2		110000	15	BX936398_44	Continuation (45 o
	36	759.6		110000	2	BD426631_14	Continuation (15 o
	37	759.6		110000	2	AR274513_14	Continuation (15 o
	38	759.6		110000	2	AR632719_14	Continuation (15 o
	39	759.6		110000	15	L42023_14	Continuation (15 o
	40	758.2	30.6	12519	15	AE006089	AE006089 Pasteurel
С	41	752		110000	15	AE016827_11	Continuation (12 o
С	42	731.8		110000	15	AP007255_33	Continuation (34 o
С	43	704.6		110000	15	CP000250_21	Continuation (22 o
С	44	704.4		110000	15	BX936398_45	Continuation (46 o
	45	702.6	28.4	110000	15	CP000230_29	Continuation (30 o

ALIGNMENTS

RESULT 1 BD236814

2475 bp linear PAT 17-JUL-2003 BD236814 DNA LOCUS DEFINITION Nucleic acid molecule encoding branching enzyme from Neisseria

bacteria and process for producing alpha-1,6-branched

alpha-1,4-glucane.

```
ACCESSION
          BD236814
          BD236814.1 GI:33046584
VERSION
KEYWORDS
          JP 2002527068-A/1.
SOURCE
          Bergeriella denitrificans
          Bergeriella denitrificans
 ORGANISM
          Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales;
          Neisseriaceae; Bergeriella.
             (bases 1 to 2475)
REFERENCE
 AUTHORS
          Buttcher, V. and Quanz, M.
          Nucleic acid molecule encoding branching enzyme from Neisseria
 TITLE
          bacteria and process for producing alpha-1,6-branched
          Patent: JP 2002527068-A 1 27-AUG-2002;
 JOURNAL'
          PLANTTEC BIOTECHNOLOGIE GMBH FORSCHUNG UND ENTWICKLUNG, MAX PLANCK
          GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV
COMMENT
               Neisseria denitrificans
               JP 2002527068-A/1
          PD
               27-AUG-2002
          PF
               08-OCT-1999 JP 2000576030
               09-OCT-1998 DE 198 46 635.8,27-MAY-1999 DE 199 24 342.5 PI
          PR
          VOLKER BUTTCHER, MARTIN QUANZ
               C12N15/09, A01H5/00, C07K16/40, C12N1/15, C12N1/19, C12N1/21, C12N5/
          PC
               10,C12N9/10,
          PC
               C12P19/04, C12N15/00, C12N5/00
          CC
               Nucleic acid molecule encoding branching
          enzyme from Neisseria
          CC
                       bacteria
          CC
               and process for producing alpha-1,6-branched alpha-1,4-glucane
          FH
                             Location/Qualifiers
               Key
               CDS
                              (170). (2458).
                  Location/Qualifiers
FEATURES
                   1. .2475
    source
                   /organism="Bergeriella denitrificans"
                   /mol type="genomic DNA"
                   /db xref="taxon:494"
ORIGIN
 Query Match
                       100.0%;
                               Score 2475;
                                           DB 2;
                                                 Length 2475;
                               Pred. No. 0; .
 Best Local Similarity
                       100.0%;
                             0;
                                Mismatches
                                                 Indels
                                                              Gaps
                                                                     0:
 Matches 2475; Conservative
          1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Qу
            1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Db
          61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Qу
            61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Db
         121 CCGCCACCGCAAATGGGCAAGCAGCTTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
Qу
            121 CCGCCACCCGCAAATGGGCAAGCATCTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
Db
         181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Qу
            181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Db
         241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Qу
            241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Db
         301 ACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATCATCGACCGCCA 360
Qу
```

		•	
Db	301		360
Qу	361	${\tt CACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTGTTTGCCGCCGT}$	420
Db	361		420
Qу	421	ATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAGGGCGAAGCCGC	480
Db	421		480
Qу	481	CGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACCGATGCCTGGCT	540
Db	481		540
Qу	541	GCTGGGCGAAGGCACGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT	600
Db	541	GCTGGCGAAGGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT	600
Qу	601	GGACGGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGGGGTATCGGT	660
Db	601	GGACGCCTATCCGCCGTTTGCCGTTTGGGCGCCCAACGCGCGGCGGTATCGGT	660
Qу	661	CATCGGCGAATTCAACGGCTGGGACAGCCGCCGCCATGCCATGCGTCCGCACACAGGCAA	720.
Db	661	CATCGGCGAATTCAACGGCTGGGACAGCCGCCGCCATGCCATGCGTCCGCACACAGGCAA	720
Qу	721	000001010001101111100000000000000000000	780
Db	721	CGGCCTGTGGGACATCTTTATCCCCGGCGTCGGCCTCAACGCGCTGTATAAATTCTCCGT	780
Qу	781	ACTCGATGCCAACGGCAACATCCGCGAAAAAGCCGACCCCTACGCATTCGGCGCGGAGCT	840,
Db	781		840
QУ .	841	${\tt GCGCCCGACCACCGCATCCGTGGTGCGCGGCTTGCCGGCCAAAGCCGAAGCGCCCGCTTT}$	900
Db	841		900
Qу	901	$\tt CCGCCGCCGCCCAACTCCGTGGAAGCGCCCATCAGCATTTACGAAGTCCATCTCGGCTC$	960
Db	901	CCGCCGCCGCCCACTCGGAAGCGCCCATCAGCATTTACGAAGTCCATCTCGGCTC	960
QУ	961		1020
Db	961		1020
Qу	1021	${\tt GGTGAACTATGTAAAAGACATGGGCTTCACCCACATCGAGCTGCTGCCCTTGTCCGAATA}$	1080
Db	1021		1080
. QA	1081	${\tt TCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGCCTGTATGCACCGACCAGCCGCTT}$	1140
Db	1081	TCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGCCTGTATGCACCGACCAGCCGCTT	1140
Qу	1141	CGGCTCGCCCGATGAGCTGAAAGCCCTGATTGACGCCGCCCACGCCGCCGGCATCAGCGT	1200
Db	1141	CGGCTCGCCCGATGAGCTGAAAGCCCTGATTGACGCCGCCCACGCCGCCGCCATCAGCGT	1200
Qу	1201	GATTCTCGACTGGGTAGCGGGGCACTTCCCCACCGACGACCACGGCCTCAACACCTTCGA	1260

SCORE Search Results Details for Application 107 Search Result us-10-705-195-1.rng.

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-7(

Go

```
GenCore version 5.1.9
Copyright (c) 1993 - 2006 Biocceleration Ltd.
```

OM nucleic - nucleic search, using sw model

August 22, 2006, 19:15:26; Search time 1535 Seconds Run on:

(without alignments)

11241.899 Million cell updates/sec

Title: US-10-705-195-1

Perfect score: 2475

Sequence: 1 actgtatgccgtgcagctgg.....taaagcggcaccatactgcc 2475

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

5244920 seqs, 3486124231 residues Searched:

Total number of hits satisfying chosen parameters: 10489840

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

N Geneseq 8:* Database :

1: geneseqn1980s:* 2: geneseqn1990s:* 3: geneseqn2000s:*
4: geneseqn2001as:*
5: geneseqn2001bs:*
6: geneseqn2002as:*

7: geneseqn2002bs:* 8: geneseqn2003as:* 9: geneseqn2003bs:* 10: geneseqn2003cs:*

11: geneseqn2003ds:*

12: geneseqn2004as:*

13: geheseqn2004bs:* 14: geneseqn2005s:*

15: geneseqn2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		•	용				•
Res	ult		Query				
	No.	Score	Match	Length	DB	ID	Description
	1	2475	100.0	2475.	3	AAA11731	Aaa11731 N. denitr
	2	941.6	38.0	2307	11	ACH98165	Ach98165 Klebsiell
	3	846	34.2	2187	13	ADT48837 .	Adt48837 Bacterial
			34.2	2361	2	AAV70952	Aav70952 DNA seque
_	4	844.4		349980	13	ADT05737	Adt05737 Haemophil
С	5	789.8	31.5	6306	13	ADT05474	Adt05737 Haemophil
С	6	779.8					Continuation (15 o
	7	759.6		110000	2	AAT42063_14	Aca34445 Prokaryot
	8	757.4	30.6	2193	8	ACA34445	Ads55782 Bacterial
	9	690.2	27.9	2151	13	ADS55782	•
	10	680.6	27.5	2164	13	ADT46098	Adt46098 Bacterial
	11	678.6	27.4	2199	13	ADS14563	Ads14563 Pseudomon
	12	670.6	27.1	2472	11	ABD09593	Abd09593 Pseudomon
	13	663.6	26.8	2154	13	ADS63589	Ads63589 Bacterial
	14	663	26.8	2160	13	ADS63965	Ads63965 Bacterial
	15	663	26.8	2160	13	ADT41565	Adt41565 Bacterial
	16	657	26.5	2079	5	AAS88840	Aas88840 DNA encod
	17	647.8	26.2	2331		ABQ90257	Abq90257 M. capsul
	18	647.4	26.2	2214	13	ADS60312	Ads60312 Bacterial
	19	644.6	26.0	2163	13	ADS62134	Ads62134 Bacterial
	20	627.4	25.3	2142	13	ADS63957	Ads63957 Bacterial
	21	627.4	25.3	2142	13	ADS64325	Ads64325 Bacterial
	22	627.4	25.3	2142	13	ADS63584	Ads63584 Bacterial
	23	617.2	24.9	2172	14	ACL68441	Ac168441 M. xanthu
	24	617.2		2205	13	ADT44556	Adt44556 Bacterial
С	25	617.2	24.9	11276	14	ACL64571	Ac164571 M. xanthu
	26	593.6	24.0	2148	13	ADT46962	Adt46962 Bacterial
	27	567	22.9	2193	8	ACF39411	Acf39411 Mycobacte
С	28	567		110000	4	AAI99682_14	Continuation (15 o
С	29	554.4		110000	4	AAI99683_14	Continuation (15 o
	30	546.8	22.1	2118	13	ADS45889	Ads45889 Bacterial
	31	546	22.1	1884	13	ADS57041	Ads57041 Bacterial
	32	546	22.1	2034	10	ADG18862	Adg18862 DNA encod
	33	537.6	21.7	2178	13	ADT44839	Adt44839 Bacterial
	34	521.2	21.1	1434	5	AAS93435	Aas93435 DNA encod
С	35	521.2	21.1	1434	5	AAS93857	Aas93857 DNA encod
	36	512.2		· 2157	13	ADS58032	Ads58032 Bacterial
	37	510.2		349980	6	ABQ81846	Abq81846 Bifidobac
	38	510.2		349980	6	ABQ81847	Abq81847 Bifidobac
	39	504.8	20.4	22934	4	AAS59613	Aas59613 Propionib
	40	504.8	20.4	22934	8	ACF64542	Acf64542 Propionib
С	41	503.6	20.3	1701	11	ABD09505	Abd09505 Pseudomon
	42	471.4	19.0	2268	13	ADT46200	Adt46200 Bacterial
	43	457	18.5	1866	3	AAC61606	Aac61606 DNA encod
	44	457	18.5	1866	12	ADH01235	Adh01235 cDNA enco
	45	443.4	17.9	2313	13	ADS48037	Ads48037 Bacterial

```
RESULT 1
AAA11731
     AAA11731 standard; DNA; 2475 BP.
XX
AC
     AAA11731;
XX
```

```
21-JUL-2000 (first entry)
DT
XX
     N. denitrificans alpha-1,6-branched alpha-1,4 glucan DNA.
DE
XX
KW
     Alpha-1,6-branched alpha-1,4-glucan; branching enzyme; binder; carrier;
KW
     transgenic plant; flavor; perfume; packaging material; papermaking;
     ultra-violet light adsorber; starch; textile; wetting agent; ds.
KW
XX
os
     Neisseria denitrificans.
XX
FΗ
                     Location/Qualifiers
FT
                     170. .2458
FT
                     /*tag= a
FΤ
                     /product= "alpha-1,6-branched alpha-1,4-glucan"
XX
PN
     WO200022140-A1.
XX
PD
     20-APR-2000.
XX
PF
     08-OCT-1999;
                    99WO-EP007562.
XX
     09-OCT-1998;
                    98DE-01046635.
PR
PR
     27-MAY-1999;
                    99DE-01024342.
XX
     (PLAN-) PLANTTEC BIOTECHNOLOGIE GMBH.
PΑ
     (PLAC ) MAX PLANCK GES FOERDERUNG WISSENSCHAFTEN.
PΑ
XX
PΙ
     Buettcher V, Quanz M;
ХX
DR
     WPI; 2000-317992/27.
DR
     P-PSDB; AAW90977.
XX
PT
     New nucleic acid encoding a branching enzyme, useful for in vitro
PT
     synthesis of branched glucans and to prepare transgenic plants producing
PT
     modified starch.
XX
PS
     Claim 1b; Page 93-96; 115pp; German.
XX
CC
     This invention describes a novel nucleic acid (I) isolated from Neisseria
CC
     which encodes a branching enzyme (II). (I) is used for recombinant
     production of (II) subsequently used in the in vitro production of alpha-
CC
CC
     1,6-branched alpha-1,4-glucans. It is also used to prepare transgenic
CC
     plants that produce starches with modified properties. (III) are used as
CC
     binders for tablets, carriers for pharmaceuticals, flavors and perfumes
CC
     and powdered additives, packaging materials, ultra-violet light adsorbers
CC
     in sunscreens and also for any of the usual applications of starch in
     foods, papermaking, as textile size, in soil stabilization, as wetting
CC
CC
     agent for agricultural chemicals, as polymer additives etc. Fragments of
     (I) are useful as PCR primers and antisense molecules or ribozymes for
CC
     inhibiting expression of (I), and the regulatory region of (II) can be
CC
     used to control expression of heterologous sequences in host cells. (I)
CC
CC
     provides an inexpensive method for producing alpha-1,6-branched alpha-1,4
     -glucans (III), producing products that can be tailored for particular
CC
     applications, particularly by controlling the degree of branching. Starch
CC
     from transgenic plants has increased gel strength; reduced phosphate
CC
     content; reduced peak viscosity; lower pasting temperature and granule
CC
     size and/or altered sidechain distribution. This sequence encodes an
CC
CC
     alpha-1,6-branched alpha-1,4-glucan isolated from Neisseria denitrificans
CC
     which is described in the method of the invention
XX
SQ
     Sequence 2475 BP; 560 A; 827 C; 674 G; 414 T; 0 U; 0 Other;
```

```
DB 3;
                                        Length 2475;
 Query Match
                   100.0%;
                          Score 2475;
                          Pred. No. 0;
 Best Local Similarity
                   100.0%;
                                                0;
                                                         0;
                           Mismatches
                                                   Gaps
 Matches 2475; Conservative
                        0;
                                     0:
                                        Indels
         1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Qу
           1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Db
        61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Qу
          61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Db
       121 CCGCCACCCGCAAATGGGCAAGCAGCTTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
Qу
           Db
       121 CCGCCACCCGCAAATGGGCAAGCAGCTTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
       181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Qу
          181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Db
       241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Qу
           241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Db
       301 ACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATCATCGACCGCCA 360
Qу
           301 ACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATCATCGACCGCCA 360
Db
       361 CACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTGTTTGCCGCCGT 420
· Qy
           361 CACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTGTTTGCCGCCGT 420
Db
Qу
       421 ATTGCCCGAACACGCCCCGACTACGCCCTGCTGGTGACATACCACGAGGGCGAAGCCGC 480
          421 ATTGCCCGAACACGCCCCGACTACGCCCTGCTGGTGACATACCACGAGGGCGAAGCCGC 480
Db
       481 CGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACCGATGCCTGGCT 540
Qу
          481 CGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACCGATGCCTGGCT 540
Db
       541 GCTGGGCGAAGGCACGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT 600
Qу
          541 GCTGGGCGAAGGCACGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT 600
Db
       601 GGACGGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGGCGGGTATCGGT 660
Qy
          601 GGACGGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGGCGGGTATCGGT 660
Db
Qу
       661 CATCGGCGAATTCAACGGCTGGGACAGCCGCCGCCATGCCATGCGTCCGCACACAGGCAA 720
           661 CATCGGCGAATTCAACGGCTGGGACAGCCGCCGCCATGCCATGCGTCCGCACACAGGCAA 720
Db
       721 CGGCCTGTGGGACATCTTTATCCCCGGCGTCGCCTCAACGCGCTGTATAAATTCTCCGT 780
Qу
          721 CGGCCTGTGGGACATCTTTATCCCCGGCGTCGGCCTCAACGCGCTGTATAAATTCTCCGT 780
Db
       781 ACTCGATGCCAACGGCAACATCCGCGAAAAAGCCGACCCCTACGCATTCGGCGCGGAGCT 840
Qу
          Db
       781 ACTCGATGCCAACGGCAACATCCGCGAAAAAGCCGACCCCTACGCATTCGGCGCGGAGCT 840
```

SCORE Search Results Details for Application 107 and Search Result us-10-705-195-1.rni.

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-70 start

Go Back to

```
GenCore version 5.1.9
Copyright (c) 1993 - 2006 Biocceleration Ltd.
```

OM nucleic - nucleic search, using sw model

Run on: August 22, 2006, 19:27:21; Search time 466 Seconds

(without alignments)

9937.756 Million cell updates/sec

Title: US-10-705-195-1

Perfect score: 2475

Sequence: 1 actgtatgccgtgcagctgg.....taaagcggcaccatactgcc 2475

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 1403666 seqs, 935554401 residues

Total number of hits satisfying chosen parameters: 2807332

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

Database : Issued Patents NA:*

1: /EMC_Celerra_SIDS3/ptodata/2/ina/1_COMB.seq:*
2: /EMC_Celerra_SIDS3/ptodata/2/ina/5_COMB.seq:*

3: /EMC_Celerra_SIDS3/ptodata/2/ina/6A_COMB.seq:*
4: /EMC_Celerra_SIDS3/ptodata/2/ina/6B_COMB.seq:*
5: /EMC_Celerra_SIDS3/ptodata/2/ina/7_COMB.seq:*

5: /EMC_Celerra_SIDS3/ptodata/2/ina//_COMB.seq:*
6: /EMC_Celerra_SIDS3/ptodata/2/ina/H_COMB.seq:*
7: /EMC_Celerra_SIDS3/ptodata/2/ina/PCTUS_COMB.seq:*

7: /EMC_Celerra_SIDS3/ptodata/2/ina/PCTUS_COMB.seq:*

8: /EMC_Celerra_SIDS3/ptodata/2/ina/PP_COMB.seq:*
9: /EMC_Celerra_SIDS3/ptodata/2/ina/RE_COMB.seq:*

9: /EMC_Celerra_SIDS3/ptodata/2/ina/RE_COMB.Seq:*
10: /EMC_Celerra_SIDS3/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

No. Score Match Length DB ID Description

```
Sequence 1, Appli Sequence 3960, Ap 30.7 1830121 3 US-09-557-884-1 Sequence 3960, Ap Sequence 1
                                                              2475 100.0
                                                             2475 100.0
                                                       941.6
                                                                                                                                                                                                                                                                                                                                                                                                              Sequence 1, Appli
Sequence 1, Appli
                                                       759.6
                                                       759.6
                                                  759.6 30.7 1830121 3 US-09-643-990A-1 Sequence 1, Appli 759.6 30.7 1830121 3 US-10-158-865-1 Sequence 1, Appli 670.6 27.1 2472 3 US-09-252-991A-8197 Sequence 8197, Ap 617.2 24.9 2172 3 US-09-902-540-4904 Sequence 4904, Ap 617.2 24.9 11276 3 US-09-902-540-1034 Sequence 1034, Ap 567 22.9 4411529 3 US-09-103-840A-1 Sequence 1, Appli 554.4 22.4 4403765 3 US-09-103-840A-2 Sequence 2, Appli 503.6 20.3 1701 3 US-09-252-991A-8109 Sequence 8109, Ap 457 18.5 1866 3 US-09-537-120-1 Sequence 1, Appli 370 14.9 1308 3 US-09-252-991A-8131 Sequence 8131, Ap 324.2 13.1 2426 3 US-08-528-026C-3 Sequence 8131, Ap 324.2 13.1 2426 3 US-08-528-026C-3 Sequence 3, Appli 314.6 12.7 1230025 3 US-09-198-452A-1 Sequence 1, Appli 314.6 12.7 1230230 3 US-09-438-185A-1 Sequence 1, Appli 314.6 12.7 1230230 3 US-09-438-185A-1 Sequence 1, Appli 277.6 11.2 1877 5 US-09-974-300-653 Sequence 1, Appli 277.6 11.2 1877 5 US-09-974-300-653 Sequence 653, App 201.8 8.2 1929 3 US-09-583-110-1148 Sequence 1148, Ap 201.8 8.2 1956 3 US-09-107-433-242 Sequence 242, App 186.6 7.5 11384 3 US-08-961-527-45 Sequence 8108, Ap
                                                                                                               30.7 1830121 3 US-10-158-865-1
                           7
                           8
                       9
                10
c 11
                                               18.5
70 14.9 13u.
1.2 13.1 2426 3
4.6 12.7 36470 3 US-0.
4.6 12.7 1230025 3 US-09-1.
14.6 12.7 1230230 3 US-09-974-300-653
101.8 8.2 1929 3 US-09-583-110-1148
201.8 8.2 1956 3 US-09-107-433-242
186.6 7.5 11384 3 US-08-961-527-45
167 6.7 702 3 US-09-252-991A-8108
161.4 6.5 807 3 US-09-634-238-168
157 6.3 976 3 US-09-634-238-168
157 6.3 976 3 US-09-536-784-79
157 6.3 976 3 US-09-65-271-79
158 3 976 3 US-09-765-271-79
159 6.3 976 3 US-09-765-271-79
150 6.3 976 3 US-09-765-271-79
151 3 US-09-02-540-1586
152 Sequence 79, Appl
153 976 3 US-09-02-540-1586
154 976 3 US-09-02-540-1586
155 976 3 US-09-02-540-1210
155 976 3 US-09-02-540-1210
155 976 3 US-09-02-540-1210
155 976 3 US-09-02-540-1210
157 976 3 US-09-02-540-1210
158 976 3 US-09-02-540-1210
159 976 3 US-09-02-540-1210
150 976 3 US-09-02-5400-1210
150 976 3 US-09-02-5400-1210
150 976 3 US-09-02-5400
150 976 3 US-09-02-5400
150 976 3 US-
                 12
                    1.3
                    14
                     15
                     16
С
                17
                18
                    19
                     20
                     21
c 22
                                              186.6 7.5 11384 3 US-08-961-527-45
c 23
                     24
                     25
                     26
                     27
                     28
                 29
                     30
                     31
                     32
                                              101:2
                                             100.6
                     33
                     34
                     35
                                                                                                                                                                                                                                                                                                                                                                               Sequence 169, App
Sequence 8065, Ap
Sequence 6849, Ap
Sequence 574, App
Sequence 8263, Ap
Sequence 8057, Ap
Sequence 2148, Ap
Sequence 1, Appli
Sequence 1, Appli
Sequence 3, Appli
                 36
                                                           87.6 3.5 4125 3 US-09-232-991A 0003

80.4 3.2 1896 3 US-09-902-540-6849

80.4 3.2 5043 3 US-09-902-540-574

78.8 3.2 1770 3 US-09-252-991A-8263

78.8 3.2 1947 3 US-09-252-991A-8057

73.8 3.0 2955 4 US-09-880-107-2148

69.4 2.8 2307 3 US-09-786-480B-1

67.8 2.7 2554 5 US-10-162-948-1

67.8 2.7 2853 3 US-09-609-040-3

67.2 2.7 2223 3 US-09-297-703C-43
                     37
                   38
                   39
                    4.0
                     41
                     42
                     43
                     44
                                                                                                                                                               2223 3 US-09-297-703C-43
                                                                                                                                                                                                                                                                                                                                                                                                                       Sequence 43, Appl
                                                              67.2
                                                                                                                     2.7
```

```
RESULT 1
US-09-579-365-1
; Sequence 1, Application US/09579365
; Patent No. 6566585
; GENERAL INFORMATION:
 APPLICANT: Martin QUANZ
  TITLE OF INVENTION: GENETICALLY MODIFIED PLANT CELLS AND PLANTS WITH AN
  TITLE OF INVENTION: INCREASED ACTIVITY OF AN AMYLOSUCRASE PROTEIN AND A
  TITLE OF INVENTION: BRANCHING ENZYME
  FILE REFERENCE: 0147-0200P
 CURRENT APPLICATION NUMBER: US/09/579,365
```

```
CURRENT FILING DATE:
                   2000-05-25
  NUMBER OF SEQ ID NOS: 15
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 1
   LENGTH: 2475
   TYPE: DNA
   ORGANISM: Neisseria denitrificans
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (170)..(2458)
US-09-579-365-1
                   100.0%;
                          Score 2475;
                                    DB 3;
                                         Length 2475;
 Query Match
                   100.0%;
                          Pred. No. 0;
 Best Local Similarity
                                                          0;
                            Mismatches
                                      0;
                                          Indels
                                                 0;
                                                    Gaps
 Matches 2475; Conservative
                         0;
         1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Qу
          1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Db
        61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Qу
          61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Db
       121 CCGCCACCGCAAATGGGCAAGCAGCTTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
Qу
          121 CCGCCACCGCAAATGGGCAAGCAGCTTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
       181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Qу
          181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Db
       241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Qу
          241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Db
       301 ACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATCATCGACCGCCA 360
Qу
          301 ACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATCATCGACCGCCA 360
Db
       361 CACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTGTTTGCCGCCGT 420
Qу
          361 CACAGGCGCAGTCATCATGCCGTCTGAAAAAAATCGACGAGCGCGGCCTGTTTGCCGCCGT 420
Db
       421 ATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAGGGCGAAGCCGC 480
Qу
          421 ATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAGGGCGAAGCCGC 480
Db
       481 CGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACCGATGCCTGGCT 540
Qу
          481 CGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACCGATGCCTGGCT 540
Db
       541 GCTGGGCGAAGGCACGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT 600
Qу
          541 GCTGGGCGAAGGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT 600
Db
       601 GGACGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGGGGGGGTATCGGT 660
Qy
          601 GGACGGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGGGGGTATCGGT 660
Db
       661 CATCGGCGAATTCAACGGCTGGGACAGCCGCCGCCATGCCATGCGTCCGCACACAGGCAA 720
Qу
```

Db	661		720
Qу	721	0000010100010111110000000010000010100000	780
Db	721		780
Qу	781	ACTCGATGCCAACGGCAACATCCGCGAAAAAGCCGACCCCTACGCATTCGGCGCGGAGCT	840
Db	781		840
Qу	841	GCGCCCGACCACCGCATCCGTGGTGCGCGGCTTGCCGGCCAAAGCCGAAGCGCCCGCTTT	900
Db	841	GCGCCCGACCACCGCATCCGTGGTGCGCGGCTTGCCGGCCAAAGCCGAAGCGCCCGCTTT	900
Qу	901	CCGCCGCCGCCAACTCCGTGGAAGCGCCCATCAGCATTTACGAAGTCCATCTCGGCTC	960
Db	901		960
Qу	961	GTGGCGGCGCAATCCCGAAAACAACTACTGGCTCACCTACACGCAGCTGGCCGACGAATT	1020
Db	961	GTGGCGGCGCAATCCCGAAAACAACTACTGGCTCACCTACACGCAGCTGGCCGACGAATT	1020
Qу	1021	GGTGAACTATGTAAAAGACATGGGCTTCACCCACATCGAGCTGCTCCCTTGTCCGAATA	1080
Db	1021	GGTGAACTATGTAAAAGACATGGGCTTCACCCACATCGAGCTGCCCCTTGTCCGAATA	1080
Qу	1081	TCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGCCTGTATGCACCGACCAGCCGCTT	1140
Db	1081	TCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGCCTGTATGCACCGACCAGCCGCTT	1140
Qу	1141	CGGCTCGCCCGATGAGCTGAAAGCCCTGATTGACGCCGCCCACGCCGCCGCCATCAGCGT	1200
Db	1141	CGGCTCGCCCGATGAGCTGAAAGCCCTGATTGACGCCGCCCACGCCGCCGCCATCAGCGT	1200
Qу	1201	GATTCTCGACTGGGTAGCGGGGCACTTCCCCACCGACGACCACGGCCTCAACACCTTCGA	1260
Db	1201	GATTCTCGACTGGGTAGCGGGGCACTTCCCCACCGACGACCACGGCCTCAACACCTTCGA	1260
Qу	1261	CGGCACGCGCTTTACGAACACGCCGACCCGCGCGAAGGCTACCATCAGGATTGGAACAC	1320
Db	1261	CGGCACGGCGCTTTACGAACACGCCGACCCGCGCGAAGGCTACCATCAGGATTGGAACAC	1320
Qу	1321	GCTGATTTACAACTTCGGCCGCAACGAAGTCAAAAACTTCCTGCAGGGCAACGCGCTCTA	1380
Db	1321	GCTGATTTACAACTTCGGCCGCAACGAAGTCAAAAACTTCCTGCAGGGCAACGCGCTCTA	1380
Qу	1381	CTGGATTGAGCGTTTCGGCTTCGACGGCATCCGCGTGGACGCCGTGGCCTCGATGATTTA	1440
Db	1381	CTGGATTGAGCGTTCGACGGCATCCGCGTGGACGCCGTGGCCTCGATGATTTA	1440
Qу	1441	CCGCAACTACTCGCGCAAAGACGGCGAGTGGATTCCCAACCGCTACGGCGCAGCGAAAA	1500
Db	1441	CCGCAACTACTCGCGCAAAGACGGCGAGTGGATTCCCAACCGCTACGGCGGCAGCGAAAA	1500
Qу	. 1501	TCTGGAAGCCATCGCCTTTTTGCGCCAAACCAATGCCGTCTTAAAAAGCGAAACACCCGG	1560
Db	1501	TCTGGAAGCCATCGCCTTTTTGCGCCAAACCAATGCCGTCTTAAAAAAGCGAAACACCCGG	1560
Qу	1561	CGCCGGCTCGTTTGCCGAAGAATCGACTTCCTTTGCCGACGTAACCCGCGAAGCCGGCCT	1620

SCORE Search Results Details for Application 107 and Search Result us-10-705-195-1.rni.

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-70 start

Go Back to

```
GenCore version 5.1.9
Copyright (c) 1993 - 2006 Biocceleration Ltd.
```

OM nucleic - nucleic search, using sw model

August 22, 2006, 19:27:21; Search time 466 Seconds

(without alignments)

9937.756 Million cell updates/sec

Title: US-10-705-195-1

Perfect score: 2475

Sequence: 1 actgtatgccgtgcagctgg.....taaagcggcaccatactgcc 2475

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

1403666 segs, 935554401 residues Searched:

2807332 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

Database : Issued Patents NA:*

> . 1: /EMC Celerra_SIDS3/ptodata/2/ina/1_COMB.seq:* 2: /EMC_Celerra_SIDS3/ptodata/2/ina/5_COMB.seq:* 3: /EMC_Celerra_SIDS3/ptodata/2/ina/6A_COMB.seq:* 4: /EMC_Celerra_SIDS3/ptodata/2/ina/6B_COMB.seq:*
> 5: /EMC_Celerra_SIDS3/ptodata/2/ina/7_COMB.seq:*
> 6: /EMC_Celerra_SIDS3/ptodata/2/ina/H_COMB.seq:*
> 7: /EMC_Celerra_SIDS3/ptodata/2/ina/PCTUS_COMB.seq:* 8: /EMC_Celerra_SIDS3/ptodata/2/ina/PP_COMB.seq:* 9: /EMC_Celerra_SIDS3/ptodata/2/ina/RE_COMB.seq:*

10: /EMC Celerra SIDS3/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Query

No. Score Match Length DB ID

```
. Sequence 1, Appli
           2475 100.0
                             2475 3 US-09-579-365-1
     2
           2475 100.0
                             2475 3 US-09-807-063-1
                                                                          Sequence 1, Appli
                                                                       Sequence 3960, Ap
     3
          941.6
                    38.0 2307 3 US-09-489-039A-3960
                                                                         Sequence 1, Appli
          759.6
                    30.7 1830121 3. US-09-557-884-1
                    30.7 1830121 3 US-09-643-990A-1
                                                                          Sequence 1, Appli
     5
          759.6
                    30.7 1830121 3 US-10-158-865-1
                                                                          Sequence 1, Appli
          759.6
                                                                      Sequence 1, Appli
Sequence 8197, Ap
Sequence 4904, Ap
Sequence 1034, Appli
          670.6
                   27.1
                             2472 3 US-09-252-991A-8197
          617.2
                   24.9
                                    3 US-09-902-540-4904
     8
                           2172
    9
          617.2 24.9 11276
                                    3 US-09-902-540-1034
С
                                                                 Sequence 1,
Sequence 1,
Sequence 8131,
Sequence 3, Appli
Sequence 123, App
Sequence 1, Appl
Sequence 1, Appl
The 653, Ap
1148, I
                                                                        Sequence 1, Appli
   10
            567 22.9 4411529 3 US-09-103-840A-1
          554.4 22.4 4403765 3 US-09-103-840A-2
                                                                          Sequence 2, Appli
c 11
          503.6 20.3
                             1701 3 US-09-252-991A-8109
   13
          457 18.5
                             1866 3 US-09-537-120-1
                            1308 3 US-09-252-991A-8131
    14
            370 14.9
          324.2 13.1 2426 3 US-08-528-026C-3
314.6 12.7 36470 3 US-08-311-731A-123
    15
    16
                                                                       Sequence 1, Appli
Sequence 1, Appli
Sequence 653, App
Sequence 1148, Ap
Sequence 242, App
Sequence 45, Appl
                  12.7 1230025 3 US-09-198-452A-1
Ç
   17
          314.6
                  12.7 1230230 3 US-09-438-185A-1
   18
          314.6
         277.6 11.2 1877 5 US-09-974-300-653
    19
    20
          201.8 8.2 1929 3 US-09-583-110-1148
          201.8
                   8.2 1956 3 US-09-107-433-242
    21
                                                                          Sequence 45, Appl
         186.6 7.5 11384 3 US-08-961-527-45
c 22
            167 6.7
                                                                          Sequence 8108, Ap
  23
                              702 3 US-09-252-991A-8108
          161.4 6.5 807 3 US-09-634-238-168
                                                                          Sequence 168, App
    24
                 6.5 807 3 US-09-634-238-168
6.3 976 3 US-08-961-083-79
6.3 976 3 US-09-765-271-79
6.3 976 3 US-09-765-272A-79
4.8 781 3 US-09-902-540-1586
4.8 780 3 US-09-902-540-2210
4.1 290 3 US-08-651-155B-188
4.1 290 3 US-09-194-036B-188
                                                                          Sequence 79, Appl
  . 25
            157
                                                                          Sequence 79, Appl
    26
            157
    27
                                                                          Sequence 79, Appl
            157
                                                                          Sequence 79, Appl
            157
    28
                                                                          Sequence 1586, Ap
   29
          119.2
    30
            119
                                                                          Sequence 2210, Ap
                                                                          Sequence 188, App
    31
         101.2
        101.2
                                                                          Sequence 188, App
    32
                                                                          Sequence 194, App
         100.6
                    4.1 5402 3 US-09-221-017B-194
    33
                     3.8 461 3 US-09-634-238-167
                                                                          Sequence 167, App
           93.4
    34
                            356 3 US-09-634-238-169
                                                                          Sequence 169, App
    35
             93
                     3.8
                                                                      Sequence 105, Ap
Sequence 8065, Ap
Sequence 6849, Ap
Sequence 8263, Ap
Sequence 8057, Ap
Sequence 2148, Ap
Sequence 1, Appli
Sequence 1, Appli
Sequence 3, Appli
           87.6
                     3.5 4125 3 US-09-252-991A-8065 .
   36
                     3.2 1896 3 US-09-902-540-6849
   37
           80.4
                     3.2 5043 3 US-09-902-540-574
           80.4
   38
С
           78.8 3.2
78.8 3.2
73.8 3.0
69.4 2.8
67.8 2.7
                     3.2 1770 3 US-09-252-991A-8263
   39
                            1947 3 US-09-252-991A-8057
2955 4 US-09-880-107-2148
2307 3 US-09-786-480B-1
2554 5 US-10-162-948-1
    40
    41
    42
    43
    44
                            2853 3 US-09-609-040-3
                                                                          Sequence 3, Appli
    45
           67.2
                     2.7
                             2223 3 US-09-297-703C-43
                                                                          Sequence 43, Appl
```

```
RESULT 1
US-09-579-365-1
; Sequence 1, Application US/09579365
; Patent No. 6566585
; GENERAL INFORMATION:
; APPLICANT: Martin QUANZ
  TITLE OF INVENTION: GENETICALLY MODIFIED PLANT CELLS AND PLANTS WITH AN
  TITLE OF INVENTION: INCREASED ACTIVITY OF AN AMYLOSUCRASE PROTEIN AND A
  TITLE OF INVENTION: BRANCHING ENZYME
  FILE REFERENCE: 0147-0200P
 CURRENT APPLICATION NUMBER: US/09/579,365
```

```
CURRENT FILING DATE:
                   2000-05-25
  NUMBER OF SEQ ID NOS: 15
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 1
   LENGTH: 2475
   TYPE: DNA
   ORGANISM: Neisseria denitrificans
   FEATURE:
  NAME/KEY: CDS
  LOCATION: (170)..(2458)
US-09-579-365-1
                    100.0%;
                          Score 2475;
                                    DB. 3;
                                          Length 2475;
 Query Match
 Best Local Similarity
                   100.0%;
                          Pred. No. 0;
                                          Indels
                                                     Gaps
                                                           0;
 Matches 2475; Conservative
                         0;
                            Mismatches
                                       0:
                                                  0:
         1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Qу
           1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Db
        61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Qy
           61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Db
       121 CCGCCACCCGCAAATGGGCAAGCAGCTTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
Qу
           121 CCGCCACCCGCAAATGGGCAAGCAGCTTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
Db
       181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Qу
           181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Db
       241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Qу
           241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Db
       301 ACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATCATCGACCGCCA 360
Qу
          301 ACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATCATCGACCGCCA 360
Db
       361 CACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTGTTTGCCGCCGT 420
Qу
          361 CACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTGTTTGCCGCCGT 420
Db
       421 ATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAGGGCGAAGCCGC 480
Qу
          421 ATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAGGGCGAAGCCGC 480
Db
       481 CGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACCGATGCCTGGCT 540
Qу
           481 CGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACCGATGCCTGGCT 540
Db
       541 GCTGGGCGAAGGCACGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT 600
Qу
           541 GCTGGGCGAAGGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT 600
Db
       601 GGACGGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGGGGGTATCGGT 660
Qу
           601 GGACGGCGTA<u>T</u>CCGGCGTGCGCTTTGCCGTTTGGGCGCCCCAACGCGCGGGGGTATCGGT 660
Db
        661 CATCGGCGAATTCAACGGCTGGGACAGCCGCCGCCATGCCATGCGTCCGCACACAGGCAA 720
Qу
```

Db	661		720
Qу	.721	00000101000	780
Db	721		780
Qу	781	ACTCGATGCCAACGGCAACATCCGCGAAAAAGCCGACCCCTACGCATTCGGCGCGGAGCT	840
Db	781		840
Qу	841	GCGCCCGACCACCGCATCCGTGGTGCGCGGCTTGCCGGCCAAAGCCGAAGCGCCCGCTTT	900
Db	841	GCGCCCGACCACCGCATCCGTGGTGCGCGGCTTGCCGGCCAAAGCCGAAGCGCCCGCTTT	900
Qу	901	CCGCCGCCGCCCAACTCCGTGGAAGCGCCCATCAGCATTTACGAAGTCCATCTCGGCTC	960
Db	901	CCGCCGCCGCCCAACTCCGTGGAAGCGCCCATCAGCATTTACGAAGTCCATCTCGGCTC	960 ,
Qу	961	GTGGCGGCGCAATCCCGAAAACAACTACTGGCTCACCTACACGCAGCTGGCCGACGAATT	1020
Db	961		1020
Qу	1021	GGTGAACTATGTAAAAGACATGGGCTTCACCCACATCGAGCTGCCCCTTGTCCGAATA	1080
Db .	1021		1080
Qу	1081	TCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGCCTGŢATGCACCGACCAGCCGCTT	1140
Db' .	1081	TCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGCCTGTATGCACCGACCAGCCGCTT	1140
Qу	1141	CGGCTCGCCCGATGAGCTGAAAGCCCTGATTGACGCCGCCCACGCCGCCGCCATCAGCGT	1200
Db	1141		1200
Qу	1201	GATTCTCGACTGGGTAGCGGGGCACTTCCCCACCGACGACCACGGCCTCAACACCTTCGA	1260
Db	1201	GATTCTCGACTGGGTAGCGGGGCACTTCCCCACCGACGACCACGGCCTCAACACCTTCGA	1260
Qу	1261	CGGCACGCGCTTTACGAACACGCCGACCCGCGCGAAGGCTACCATCAGGATTGGAACAC	1320
Db	1261	CGGCACGCGCTTTACGAACACGCCGACCCGCGCGAAGGCTACCATCAGGATTGGAACAC	1320
Qу	1321	GCTGATTTACAACTTCGGCCGCAACGAAGTCAAAAACTTCCTGCAGGGCAACGCGCTCTA	1380
Db		GCTGATTTACAACTTCGGCCGCAACGAAGTCAAAAACTTCCTGCAGGGCAACGCGCTCTA	
Qy .	1381	CTGGATTGAGCGTTTCGGCTTCGACGGCATCCGCGTGGACGCCGTGGCCTCGATGATTTA	1440
Dp .		CTGGATTGAGCGTTTCGGCTTCGACGCCATCCGCGTGGACGCCGTGGCCTCGATGATTTA	
Qу		CCGCAACTACTCGCGCAAAGACGGCGAGTGGATTCCCAACCGCTACGGCGGCAGCGAAAA	
Db		CCGCAACTACTCGCGCAAAGACGGCGAGTGGATTCCCAACCGCTACGGCGGCAGCGAAAA	
Qу		TCTGGAAGCCATCGCCTTTTTGCGCCAAACCAATGCCGTCTTAAAAAGCGAAACACCCGG	
Db		TCTGGAAGCCATCGCCTTTTTGCGCCAAACCAATGCCGTCTTAAAAAGCGAAACACCCGG	
QУ	1561	CGCCGGCTCGTTTGCCGAAGAATCGACTTCCTTTGCCGACGTAACCCGCGAAGCCGGCCT	1620

SCORE Search Results Details for Application 10705195 and Search Result us-10-705-195-1.rn

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-7(1.rnpbm.

start

Go Back to pre

```
GenCore version 5.1.9
Copyright (c) 1993 - 2006 Biocceleration Ltd.
```

OM nucleic - nucleic search, using sw model

August 22, 2006, 19:27:25; Search time 2640 Seconds Run on:

(without alignments)

11519.658 Million cell updates/sec

Title: US-10-705-195-1

Perfect score: 2475

1 actgtatgccgtgcagctgg.....taaagcggcaccatactgcc 2475 Sequence:

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

18892170 seqs, 6143817638 residues Searched:

37784340 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Published Applications NA Main:* Database :

1: /EMC Celerra_SIDS3/ptodata/2/pubpna/US07_PUBCOMB.seq:*

2: /EMC Celerra SIDS3/ptodata/2/pubpna/US08 PUBCOMB.seq:* 3: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09A_PUBCOMB.seq:*

4: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09B_PUBCOMB.seq:*
5: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09C_PUBCOMB.seq:*

6: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10A_PUBCOMB.seq:*

7: /EMC Celerra SIDS3/ptodata/2/pubpna/US10B_PUBCOMB.seq:* 8: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10C_PUBCOMB.seq:*

9: /EMC Celerra SIDS3/ptodata/2/pubpna/US10D_PUBCOMB.seq:*

10: /EMC Celerra SIDS3/ptodata/2/pubpna/US10E PUBCOMB.seq:*

11: /EMC Celerra SIDS3/ptodata/2/pubpna/US10F PUBCOMB.seq:*

12: /EMC Celerra SIDS3/ptodata/2/pubpna/US10G PUBCOMB.seq:* 13: /EMC Celerra SIDS3/ptodata/2/pubpna/US11A PUBCOMB.seq:*

14: /EMC Celerra SIDS3/ptodata/2/pubpna/US11B_PUBCOMB.seq:* 15: /EMC Celerra SIDS3/ptodata/2/pubpna/US11C PUBCOMB.seq:*

/EMC Celerra SIDS3/ptodata/2/pubpna/US11D_PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			90				
Res	sult		Query				•
	No.	Score	Match	Length	DB	ID	Description
	- -						
	1	2475	100.0	2475	8	US-10-705-195-1	Sequence 1, Appli
	2	846	34.2	2187	7	US-10-369-493-47275	Sequence 47275, A
	3	844.4	34.1	2361	7	US-10-336-753-35	Sequence 35, Appl
С	4	789.8		908766	10	US-10-795-159-685	Sequence 685, App
С	5	779.8	31.5	6306	10	US-10-795-159-510	Sequence 510, App
	6	759.6		1830121	8	US-10-329-670-1	Sequence 1, Appli
	7	759.6		1830121	9	US-10-158-865-1	Sequence 1, Appli
	8	759.6		1830121	1		Sequence 1, Appli
	9	757.4	30.6	2193	8	US-10-282-122A-22315	Sequence 22315, A
	10	690.2	27.9	2151	7	US-10-369-493-31456	Sequence 31456, A
	11	680.6	27.5	2164	7	US-10-369-493-44536	Sequence 44536, A
	12	678.6	27.4	2199	8	US-10-389-647-118	Sequence 118, App
	13	663.6	26.8	2154	7	US-10-369-493-39263	Sequence 39263, A
	14	663	26.8	2160	7	US-10-369-493-39639	Sequence 39639, A
	15	663	26.8	2160	7	US-10-369-493-40003	Sequence 40003, A
	16	657	26.5	2079	10	US-10-450-763-24644	Sequence 24644, A
	17	647.4	26.2	2214	7	US-10-369-493-35986	Sequence 35986, A
	18	644.6	26.0	2163	7	US-10-369-493-37808	Sequence 37808, A
	19	639.8	25.9	2514	7	US-10-156-761-2792	Sequence 2792, Ap
	20	639.8	25.9	9025608	7	US-10-156-761-1	Sequence 1, Appli
	21	627.4	25.3	2142	7	US-10-369-493-39258	Sequence 39258, A
	22	627.4	25.3	2142	7	US-10-369-493-39631	Sequence 39631, A
	23	627.4	25.3	2142	7	US-10-369-493-39999	Sequence 39999, A
	24	617.2	24.9	2205	7	US-10-369-493-42994 ·	Sequence 42994, A
	25	593.6	24.0	2148	7	US-10-369-493-45400	Sequence 45400, A
	26	591.4	23.9	1776	7	US-10-156-761-7377	Sequence 7377, Ap
	27	546.8	22.1	2118	7	US-10-369-493-24319	Sequence 24319, A
	28	546	22.1	1884	7	US-10-369-493-32715	. Sequence 32715, A
	29	54.6	22.1	2034	7	US-10-200-055-22	Sequence 22, Appl
	30	537.6	21.7	2178	7	US-10-369-493-43277.	Sequence 43277, A
	31	521.2	21.1	1434	10	US-10-450-763-29239	Sequence 29239, A
С	32	521.2	21.1	1434	10	US-10-450-763-29661	Sequence 29661, A
Ū	33	512.2	20.7	2157	7	US-10-369-493-33706	Sequence 33706, A
	34	510.2		2256646	8	US-10-470-565-1	Sequence 1, Appli
	35	471.4	19.0	2268	7	US-10-369-493-44638	Sequence 44638, A
	36	443.4	17.9	2313	7	US-10-369-493-26467	Sequence 26467, A
	37.	431	17.4	1893	7	US-10-369-493-23737	Sequence 23737, A
	38	430.8	17.4	2193	3	US-09-738-626-1354	Sequence 1354, Ap
	39	430.8	17.4	2316	9	US-10-781-014-361	Sequence 361, App
С	40	430.8		3309400	3	US-09-738-626-1	Sequence 1, Appli
C	41	401	16.2	2250	7	US-10-369-493-43535	Sequence 43535, A
	42	348	14.1	1049	10	US-10-450-763-24637	Sequence 24637, A
	43	348	14.1	1049	10	US-10-450-763-29235	Sequence 29235, A
	44	348	14.1	1851	7	US-10-369-493-33578	Sequence 33578, A
	45	346.6	14.1	2340	10	US-10-450-763-4093	Sequence 4093, Ap
	45	340.6	14.0	2340	ΤO	00 10-400 700 4090	bequence 4033, rip

ALIGNMENTS

RESULT 1 US-10-705-195-1

[;] Sequence 1, Application US/10705195

[;] Publication No. US20040110254A1

```
; GENERAL INFORMATION:
  APPLICANT: BUTTCHER, Volker et al.
  TITLE OF INVENTION: Method for producing alpha-1, 6-branched alpha-1, 4-glucans fro
  FILE REFERENCE: 0147-0253P
  CURRENT APPLICATION NUMBER: US/10/705,195
  CURRENT FILING DATE: 2003-11-10
  PRIOR APPLICATION NUMBER: US 09/807,063
  PRIOR FILING DATE: 2001-04-09`
  NUMBER OF SEQ ID NOS: 34
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 1
   LENGTH: 2475
   TYPE: DNA
   ORGANISM: Neisseria denitrificans
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (170)..(2458)
US-10-705-195-1
 Query Match
                    100.0%;
                           Score 2475;
                                     DB 8;
                                          Length 2475;
 Best Local Similarity
                    100.0%;
                           Pred. No. 0;
                         0; Mismatches
                                          Indels
                                                     Gaps
                                                            0;
 Matches 2475; Conservative
         1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Qу
           1 ACTGTATGCCGTGCAGCTGGAAAACCTGCTGGGCGTACGCGACAACCTCAATATTCCCGG 60
Db
        61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Qу
           61 CGTGGCCGAAGGCTATCCGAACTGGGCGCGCAAAATGCCGCAGCCTCTGGAAGCCTTTGC 120
Db
       121 CCGCCACCCGCAAATGGGCAAGCAGCTTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
Qy
           121 CCGCCACCCGCAAATGGGCAAGCAGCTTGCCATGATGGGAGACATCCGCATGAACCGAAA 180
Db
       181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Qу
           181 CCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATCATCGACAGCCT 240
Db
       241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Qу
           241 GTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGTGTCAACGACGA 300
Db
       301 ACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATCATCGACCGCCA 360
Qy
           301 ACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATCATCGACCGCCA 360
Db
       361 CACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTGTTTGCCGCCGT 420
0ν
           361 CACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTGTTTGCCGCCGT 420
       421 ATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAGGGCGAAGCCGC 480
Qу
           421 ATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAGGGCGAAGCCGC 480
Db
       481 CGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACCGATGCCTGGCT 540
Qу
           481 CGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACCGATGCCTGGCT 540
Db
       541 GCTGGGCGAAGGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT 600
Qу
```

Db	541	${\tt GCTGGGCGAAGGCACCTGCGCCCTTATGAAACGCTGGGCGCACATTTCGCCGAAAT}$	600
Qу	601	GGACGGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGGGGGTATCGGT	660
Db .	601	GGACGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGGGGTATCGGT	660
Qу	. 661	CATCGGCGAATTCAACGGCTGGGACAGCCGCCGCCATGCCATGCGTCCGCACACAGGCAA	720
Db	661		720 -
Qу	721	CGGCCTGTGGGACATCTTTATCCCCGGCGTCGGCCTCAACGCGCTGTATAAATTCTCCGT	780
Db	721	CGGCCTGTGGGACATCTTTATCCCCGGCGTCGGCCTCAACGCGCTGTATAAATTCTCCGT	780
Qу	781	ACTCGATGCCAACGGCAACATCCGCGAAAAAGCCGACCCCTACGCATTCGGCGCGGAGCT	840
Db	781	ACTCGATGCCAACGCCAACATCCGCGAAAAAGCCGACCCCTACGCATTCGGCGCGGAGCT	840
Qу	841	GCGCCCGACCACCGCATCCGTGGTGCGCGGCTTGCCGGCCAAAGCCGAAGCGCCCGCTTT	900
Db	841	GCGCCCGACCACCGCATCCGTGGTGCGCGGCTTGCCGGCCAAAGCCGAAGCGCCCGCTTT	900
Qу	901	CCGCCGCCGCCAACTCCGTGGAAGCGCCCATCAGCATTTACGAAGTCCATCTCGGCTC	960
Db	901	CCGCCGCCGCCAACTCCGTGGAAGCGCCCATCAGCATTTACGAAGTCCATCTCGGCTC	960
Qу	961	GTGGCGGCGCAATCCCGAAAACAACTACTGGCTCACCTACACGCAGCTGGCCGACGAATT	1020
Db	961	GTGGCGGCGCAATCCCGAAAACAACTACTGGCTCACCTACACGCAGCTGGCCGACGAATT	1020
Qу	1021	GGTGAACTATGTAAAAGACATGGGCTTCACCCACATCGAGCTGCTGCCCTTGTCCGAATA	1080
Db	1021	GGTGAACTATGTAAAAGACATGGGCTTCACCCACATCGAGCTGCCCCTTGTCCGAATA	1080
Qy .	1081	TCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGCCTGTATGCACCGACCAGCCGCTT	1140
Db	1081	TCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGCCTGTATGCACCGACCAGCCGCTT	1140
Qу	1141	CGGCTCGCCCGATGAGCTGAAAGCCCTGATTGACGCCGCCCACGCCGCCGGCATCAGCGT	1200
Db	1141	CGGCTCGCCCGATGAGCTGAAAGCCCTGATTGACGCCGCCCACGCCGCCGCATCAGCGT	1200
Qу	1201	GATTCTCGACTGGGTAGCGGGGCACTTCCCCACCGACGACCACGGCCTCAACACCTTCGA	1260
Db	1201	GATTCTCGACTGGGTAGCGGGGCACTTCCCCACCGACGACCACGGCCTCAACACCTTCGA	1260
Qу	1261	CGGCACGGCGCTTTACGAACACGCCGACCCGCGCGAAGGCŢACCATCAGGATTGGAACAC	1320
Db	1261	CGGCACGGCGCTTTACGAACACGCCGACCCGCGCGAAGGCTACCATCAGGATTGGAACAC	1320
Qу	1321	GCTGATTTACAACTTCGGCCGCAACGAAGTCAAAAACTTCCTGCAGGGCAACGCGCTCTA	1380
Db	1321	GCTGATTTACAACTTCGGCCGCAACGAAGTCAAAAACTTCCTGCAGGGCAACGCGCTCTA	1380
Qу	1381	CTGGATTGAGCGTTTCGGCTTCGACGGCATCCGCGTGGACGCCGTGGCCTCGATGATTTA	1440
Db	. 1381	CTGGATTGAGCGTTCGACGGCATCCGCGTGGACGCCGTGGCCTCGATGATTTA	1440
QΆ.	1441	CCGCAACTACTCGCGCAAAGACGGCGAGTGGATTCCCAACCGCTACGGCGGCAGCGAAAA	1500
Db	1441	CCGCAACTACTCGCGCAAAGACGGCGAGTGGATTCCCCAACCGCTACGGCGGCAGCGAAAA	1500

SCORE Search Results Details for Application 107 and Search Result us-10-705-195-1.rnpbn

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-70 1.rnpbn.

start

Go Back to

```
GenCore version 5.1.9
Copyright (c) 1993 - 2006 Biocceleration Ltd.
```

OM nucleic - nucleic search, using sw model

August 22, 2006, 19:30:46; Search time 399 Seconds Run on:

(without alignments)

9915.919 Million cell updates/sec

US-10-705-195-1 Title:

Perfect score: 2475

Sequence: $1\ {\tt actgtatgccgtgcagctgg.....taaagcggcaccatactgcc}\ 2475$

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 2226170 seqs, 799283156 residues

Total number of hits satisfying chosen parameters: 4452340

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

Database : Published Applications NA New:*

> 1: /EMC Celerra SIDS3/ptodata/1/pubpna/US09 NEW PUB.seq:* 2: /EMC Celerra SIDS3/ptodata/1/pubpna/US06 NEW_PUB.seq:* 3: /EMC Celerra_SIDS3/ptodata/1/pubpna/US07_NEW_PUB.seq:* 4: /EMC Celerra SIDS3/ptodata/1/pubpna/US08 NEW PUB.seq:* 5: /EMC_Celerra_SIDS3/ptodata/1/pubpna/PCT_NEW_PUB.seq:*
> 6: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US10_NEW_PUB.seq:*
> 7: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US11_NEW_PUB.seq:* 8: /EMC Celerra SIDS3/ptodata/1/pubpna/US11 NEW PUB.seq1:*

> 9: /EMC Celerra SIDS3/ptodata/1/pubpna/US11 NEW PUB.seq2:*

10: /EMC Celerra SIDS3/ptodata/1/pubpna/US60 NEW PUB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

> Score Match Length DB ID Description

	1	846	34.2	2187	9	US-11-275-569-17	Sequence 1	7, Appl
	2	844.4	34.1	2361	9	US-11-330-822-38	Sequence 3	88, Appl
	3	180.8	7.3	1869	9	US-11-348-413-6911	Sequence 6	911, Ap
	4	142	5.7	3553	6	US-10-449-902-12839	Sequence 1	.2839, A
	5	95	3.8	640	8	US-11-266-748A-119619	Sequence 1	19619,
С	6	95	3.8	641	8	US-11-266-748A-81241	Sequence 8	31241, A
	7	95	3.8	641	8	US-11-266-748A-134052	Sequence 1	34052,
	8	75.6	3.1	2668	9	US-11-056-355B-76595	Sequence 7	
	9	75.4	3.0	2891	8	US-11-266-748A-25857	Sequence 2	
	10	74	3.0	2763	9	US-11-056-355B-99154	Sequence 9	
	11	74	3.0	2763	9	US-11-056-355B-110393	Sequence 1	
	12	74	3.0	2764	6	US-10-953-349-4536	Sequence 4	
	13	74	3.0	2764	9	US-11-056-355B-27071	Sequence 2	
	14	74	3.0	2764	9	US-11-056-355B-30239	Sequence 3	
	15	. 74	3.0	2764	9	US-11-056-355B-33829	Sequence 3	•
	16	65.8	2.7	3643	8	US-11-216-545-3261	Sequence 3	· -
	17	65	2.6	2588	9	US-11-056-355B-100250	Sequence 1	•
	18	65	2.6	2588	9	US-11-056-355B-111489	Sequence 1	
	19	62.2	2.5	1350	9	US-11-316-535A-11	Sequence 1	
	20	62.2	2.5	1761	9	US-11-316-535A-176	Sequence 1	
	21	61.8	2.5	2763	9	US-11-056-355B-19641	Sequence 1	•
	22	61.8	2.5	2763	9	US-11-056-355B-19806	Sequence 1	*
	23	61.8	2.5	2826	9	US-11-218-305-12549	Sequence 1	,
	24	60.2	2.4	2115	8	US-11-217-529-698	Sequence 6	
	25	60	2.4	2649	6	US-10-539-723-6	Sequence 6	
	26	58	2.3	1309	6	US-10-449-902-20908	Sequence 2	
	27	57.4	2.3	2115	8	US-11-217-529-76256	Sequence 7	
	28	57	2.3	1338	9	US-11-316-535A-21	Sequence 2	
	29	54.2	2.2	1323	9	US-11-316-535A-39	Sequence 3	
	30	52.6	2.1.	1118	8	US-11-266-748A-228183	Sequence 2	
	31	52.4	2.1	3932	9	US-11-218-305-13556	Sequence 1	
	32	52	2.1	1338	9	US-11-316-535A-130	Sequence 1	
	33	51.2	2.1	1312	6	US-10-449-902-26592	Sequence 2	
	34	51.2	2.1	1365	6	US-10-449-902-7232	Sequence 7	
	35	50.8	2.1	1347	9	US-11-056-355B-12252	Sequence 1	
	36	50.8	2.1	2640	9	US-11-330-822-58	Sequence 5	
	37	50.8	2.1	2759	9	US-11-218-305-12548	Sequence 1	
	38	50.6	2.0	1707	6.	US-10-449-902-23277	Sequence 2	•
	39	50.4	2.0	2226	9	US-11-218-305-13555	Sequence 1	
	40	50	2.0	1616	9	US-11-218-305-3848	.Sequence 3	_
	41	49.6	2.0	1296	6	US-10-449-902-27170	Sequence 2 Sequence 2	
	42	49.6	2.0	1345	6	US-10-449-902-23472	-	-
	43	49.6	2.0	1462	6	US-10-449-902-1135	Sequence 1 Sequence 1	_
	44	49.6	2.0	2127	6	US-10-449-902-10143	Sequence 1	•
	45	48.6	2.0	1436	9	US-11-174-307B-4393	sequence 4	1090, Ap

```
RESULT 1
US-11-275-569-17
```

- ; Sequence 17, Application US/11275569
- ; Publication No. US20060160192A1
- ; GENERAL INFORMATION:
- ; APPLICANT: Ajinomoto Co., Inc.
- TITLE OF INVENTION: METHOD FOR PRODUCING L-AMINO ACID USING BACTERIUM OF THE
- ; TITLE OF INVENTION: ENTEROBACTERIACEAE FAMILY HAVING PATHWAY OF GLYCOGEN BIOSYNTHE
- ; FILE REFERENCE: C440-C5323
- ; CURRENT APPLICATION NUMBER: US/11/275,569

```
CURRENT FILING DATE: 2006-01-17
  PRIOR APPLICATION NUMBER: RU2005101110
  PRIOR FILING DATE: 2005-01-19
  NUMBER OF SEQ ID NOS: 20
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 17
   LENGTH: 2187
   TYPE: DNA
   ORGANISM: Escherichia coli
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (1)..(2187)
US-11-275-569-17
                    34.2%;
                           Score 846; DB 9; Length 2187;
 Query Match
                          Pred. No. 5.9e-206;
 Best Local Similarity
                    62.6%;
 Matches 1358; Conservative
                          0; Mismatches 800;
                                            Indels
                                                   12;
                                                             2;
        218 GAACGCCAAATCATCGACAGCCTGTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTT 277
Qу
           11 1 1 11 11
                           11111 111 11
        16 GATAGAGACGTGATTAACGCGCTAATTGCAGGCCATTTTGCGGATCCTTTTTCCGTACTG 75
Db
        278 GGGCGCATCGTGTCAACGACGAACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCAC 337
Qу
                      76 GGAATGCATAAAACCACCGCGGGACTGGAAG---TCCGTGCCCTTTTACCCGACGCTACC 132
Db
        338 CACATCGACATCATCGACCGCCACACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGAC 397
Qy
                   · 11
            133 GATGTGTGGGTGATTGAACCGAAAACCGGGCGCAAACTCGCAAAACTGGAGTGTCTCGAC 192
Db
        398 GAGCGCGGCCTGTTTGCCGCCGTATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTG 457
Qу
                                   193 TCACGGGGATTCTTTAGCGGCGTCATTCCGCGACGTAAGAATTTTTTCCGCTATCAGTTG 252
Db
Qу
        458 ACATACCACGAGGGCGAAGCCGCCGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCG 517
                                     11 111
                                1
                                            253 GCTGTTGTCTGGCATGGTCAGCAAAACCTGATTGATGATCCTTACCGTTTTGGTCCGCTA 312
Db
        518 CTGCAACATACCGATGCCTGGCTGCTGGGCGAAGGCACCTGCGCCCCTTATGAAACG 577
Qу
                                   313 ATCCAGGAAATGGATGCCTGGCTATTATCTGAAGGTACTCACCTGCGCCCGTATGAAACC 372
Db
        578 CTGGGCGCACATTTCGCCGAAATGGACGGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCG 637
Qу
            Db
        638 CCCAACGCGCGGCGGTATCGGTCATCGGCGAATTCAACGGCTGGGACAGCCGCCGCCAT 697
Qу
           433 CCAAACGCCCGTCGGGTCTCGGTGGTTGGGCAATTCAACTACTGGGACGGTCGCCGTCAC 492
Db
        698 GCCATGCGTCCGCACACAGGCAACGGCCTGTGGGACATCTTTATCCCCGGCGTCGGCCTC 757
Qу
            493 CCGATGCGCCTGCGTAAAGAGCGGCATCTGGGAACTGTTTATCCCTGGGGCGCATAAC 552
Db
        758 AACGCGCTGTATAAATTCTCCGTACTCGATGCCAACGGCAACATCCGCGAAAAAGCCGAC 817
Qу
                            553 GGTCAGCTCTATAAATACGAGATGATTGATGCCAATGGCAACTTGCGTCTGAAGTCCGAC 612
Db
        818 CCCTACGCATTCGGCGCGGAGCTGCGCCCGACCACCGCATCCGTGGTGCGCGGCTTGCCG 877
Qу
           613 CCTTATGCCTTTGAAGCGCAAATGCGCCCGGAAACCGCGTCTCTTATTTGCGGGCTGCCG 672
Db
```

Qу	878	GCCAAAGCCGAAGCGCCCGCTTTCCGCCGCCGCGCCAACTCCGTGGAAGCGCCCATCAGC	937
Db	673	GAAAAGGTTGTACAGACTGAAGAGCGCAAAAAAAGCGAATCAGTTTGATGCGCCAATCTCT	732
Qу	938	ATTTACGAAGTCCATCTCGGCTCGTGGCGGCGCAATCCCGAAAACAACTACTGGCTCACC	997
Db	733	ATTTATGAAGTTCACCTGGGTTCCTGGCGTCGCCACACCGACAACAATTTCTGGTTGAGC	792
Qу	998	TACACGCAGCTGGCCGACGAATTGGTGAACTATGTAAAAGACATGGGCTTCACCCACATC	1057
Db	793	TACCGCGAGCTGGCCGATCAACTGGTGCCTTATGCTAAATGGATGG	852
Qу	1058	GAGCTGCTGCCCTTGTCCGAATATCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGC	1117
Db	853	GAACTACTGCCCATTAACGAGCATCCCTTCGATGGCAGTTGGGGTTATCAGCCAACCGGC	912
Qу	1118	CTGTATGCACCGACCAGCCGCTTCGGCTCGCCCGATGAGCTGAAAGCCCTGATTGACGCC	1177
Db	913	CTGTATGCGCCAACCCGCCGTTTTGGTACTCGCGACGACTTCCGTTATTTCATTGATGCC	972
Qу	1178	GCCCACGCCGCCGCATCAGCGTGATTCTCGACTGGGTAGCGGGGCACTTCCCCACCGAC	1237
Db	973	GCACACGCAGCTGGTCTGAACGTGATTCTCGACTGGGTGCCAGGCCACTTCCCGACTGAT	1032
Qу	1238	GACCACGGCCTCAACACCTTCGACGGCACGGCGCTTTACGAACACGCCGACCCGCGCAA	1297
Db	1033	GACTTTGCGCTTGCCGAATTTGATGGCACGAACTTGTATGAACACAGCGATCCGCGTGAA	1092
Qу	1298	GGCTACCATCAGGATTGGAACACGCTGATTTACAACTTCGGCCGCAACGAAGTCAAAAAC	1357
Db	1093	GGCTATCATCAGGACTGGAACACGCTGATCTACAACTATGGTCGCCGTGAAGTCAGTAAC	1152
Qу	1358	TTCCTGCAGGGCAACGCGCTCTACTGGATTGAGCGTTTCGGCTTCGACGGCATCCGCGTG	1417
Db	1153	TTCCTCGTCGGTAACGCGCTTTACTGGATTGAACGTTTTTGGTATTGATGCGCTGCGCGTC	1212
Qy	1418	GACGCCGTGGCCTCGATGATTTACCGCAACTACTCGCGCAAAGACGGCGAGTGGATTCCC	1477
Db	1213	GATGCGGTGGCGTCAATGATTTATCGCGACTACAGCCGTAAAGAGGGGGAGTGGATCCCG	1272
Qу	1478	AACCGCTACGGCGGCAGCGAAATCTGGAAGCCATCGCCTTTTTGCGCCAAACCAATGCC	1537
Db.	1273	AACGAATTTGGCGGGCGCGAGAATCTTGAAGCGATTGAATTCTTGCGTAATACCAACCGT	1332
Qу	1538	GTCTTAAAAAGCGAAACACCCGGCGCCGGCTCGTTTGCCGAAGAATCGACTTCCTTTGCC	1597
Db	1333	ATTCTTGGTGAGCAGGTTTCCGGTGCGGTGACAATGGCTGAGGAGTCTACCGATTTCCCT	1392
Qу	1598	GACGTAACCCGCGAAGCCGGCCTGAACTTCGATTTCAAATGGAATATGGGC	1648
Db	1393	GGCGTTTCTCGTCCGCAGGATATGGGCGGTCTGGGCTTCTGGTACAAGTGGAACCTCGGC	1452
Qу	1649	TGGATGAACGACACCCTGCGCTATATGCAGGAAGACCCCGTCCACCGCAAATACCACCAC	1708
_Db	1453	TGGATGCATGACACCCTGGACTACATGAAGCTCGACCCGGTTTATCGTCAGTATCATCAC	1512
Qу	1709	GGCAAAATGACATTCGGCATGATGTACCAATACAGCGAAAACTTCGTTCTGCCCCTGTCG	1768
Db	1513	GATAAACTGACCTTCGGGATTCTCTACAACTACACTGAAAACTTCGTCCTGCCGTTGTCG	1572

SCORE Search Results Details for Application 2.p2r

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-70 start

```
GenCore version 5.1.9
                 Copyright (c) 1993 - 2006 Biocceleration Ltd.
OM protein - nucleic search, using frame plus p2n model
               August 22, 2006, 19:34:08; Search time 11195 Seconds
Run on:
                                           (without alignments)
                                           6528.977 Million cell updates/sec
Title:
               US-10-705-195-2
Perfect score: 4112
               1 MNRNRHIRRGYHPEAGERQI.....QTALRADKQPAVKDKQAKAK 762
Sequence:
Scoring table: BLOSUM62
               Xgapop 10.0 , Xgapext 0.5
               Ygapop 10.0 , Ygapext 0.5
                Fgapop 6.0 , Fgapext 7.0
               Delop 6.0 , Delext
               6366136 segs, 31973710525 residues
Searched:
Total number of hits satisfying chosen parameters:
                                                       12732272
Minimum DB seq length: 0
Maximum DB seq length: 2000000000
Post-processing: Minimum Match 0%
                Maximum Match 100%
                Listing first 45 summaries
Command line parameters:
-MODEL=frame+ p2n.model -DEV=xlh
-Q=/abss/ABSSWEB_spool/US10705195/runat_22082006_095549_849/app_query.fasta_1
-DB=GenEmbl -QFMT=fastap -SUFFIX=p2n.rge -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0
-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45
-DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL
-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -HOST=abss04
-USER=US10705195 @CGN_1_1_7218 @runat_22082006 095549 849 -NCPU=6 -ICPU=3
-NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120
-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
               GenEmbl:*
Database :
               1: gb env:*
               2: gb_pat:*
               3: gb_ph:*
               4: gb pl:*
               5: gb pr:*
```

```
6: gb ro:*
7: gb_sts:*
8: gb_sy:*
    gb un:*
10:
    gb_vi:*
11:
     gb_ov:*
12:
     gb htg:*
13:
     gb in:*
14:
     gb om: *
15:
     gb ba:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

_			0					•
	ult		Query		5.5	T.D.		Parameter & Com
	No.	Score	Match	Length	DB	ID		Description
	1	4112	100.0	2475	2	BD236814		BD236814 Nucleic a
	2	4112	100.0	2475	2	AR337816		AR337816 Sequence
	3	4112	100.0	2475	2	AR47.9077		AR479077 Sequence
	4	4112	100.0	2475	2	AX055494		AX055494 Sequence
	5	4112	100.0	2475	15	AF102867		AF102867 Neisseria
С	6	2570	62.5	110000	15	AE016827 11	**	Continuation (12 o
	7	2568.5	62.5	12519	15	AE006089		AE006089 Pasteurel
	8	2533	61.6	2307	2	AR387231		AR387231 Sequence
С	9	2531	61.6	110000	15	CP000057_16		Continuation (17 o
С	10	2531	61.6	349980	2	CQ873160		CQ873160 Sequence
	11	2526	61.4	110000	2	BD426631_14		Continuation (15 o
	12	.2526	61.4	110000	2	AR274513_14		Continuation (15 o
	13	2526	61.4	110000	2	AR632719_14		Continuation (15 o
	14	2525	61.4	110000	15	L42023 14		Continuation (15 o
С	15	2481.5	60.3	6306	2	CQ872897		CQ872897 Sequence
С	16	2475.5	60.2	110000	15	AE017220_36		Continuation (37 o
	17	2472.5	60.1	110000	15	AE014613_41		Continuation (42 o
	18	2472.5	60.1	265050	15	AL627281		AL627281 Salmonell
С	19	2471.5	60.1	23506	15	AE008863		AE008863 Salmonell
Ç	20	2471.5	60.1	110000	15	CP000026_34	•	Continuation (35 o
С	21	2469.5	60.1	110000	15	AE014075_39		Continuation (40 o
С	22	2469.5	60.1	110000	15	AE014075_40		Continuation (41 o
С	23	2467.5	60.0	110000	15	. AE005174_43		Continuation (44 o
С	24	2467.5	60.0	110000	15	BA000007_42		Continuation (43 o
Ç	25	2465.5	60.0	110000	15	AE005674_35		Continuation (36 o
	26	2465.5	60.0	110000	15	AE014073_42		Continuation (43 o
	27	2462.5	59.9	2361	2	BD071178		BD071178 Plant lik
	28	2462.5	59.9	2559	15	ECOGLGBA		M13751 Escherichia
С	29	2462.5	59.9	110000	15	U00096_35		Continuation (36 o
	30	2462.5	59.9	110000	15	AP009048_40	•	Continuation (41 o
С	31	2462.5	59.9	110000	15	CP000038_38		Continuation (39 o
С	32	2457.5	59.8	72438	15	ECOUW67_3		Continuation (4 of
	33	2456.5	59.7	2055	2	CS221362		CS221362 Sequence
С	34	2456.5	59.7	110000	15	CP000034_33		Continuation (34 o
С	35	2454.5		110000	15	CP000036_34		Continuation (35 o
	36	2438	59.3	12144	15	AE013993		AE013993 Yersinia
С	37	2438		110000	15	BX936398_44		Continuation (45 o
С	38	2438		199050	15	AJ414159		AJ414159 Yersinia
С	39	2438		294253	15	AE017139		AE017139 Yersinia
С	40	2435.5		110000	15	BX950851_46		Continuation (47 o
	41	2430	59.1	2520	15	AF434710		AF434710 Pectobact

```
Continuation (46 o
c 42
         2239 54.5 110000 15 BX936398 45
   43 2068.5 50.3 110000 15 CP000230 29
                                                         Continuation (30 o
   44 2040.5 49.6 348068 15 BX572604
                                                         BX572604 Rhodopseu
c 45 2035.5
              49.5 110000 15 AP007255_33
                                                         Continuation (34 o
                                  ALIGNMENTS
RESULT 1
BD236814
                                                     linear PAT 17-JUL-2003
                                  2475 bp
                                             DNA
           BD236814
LOCUS
DEFINITION Nucleic acid molecule encoding branching enzyme from Neisseria
           bacteria and process for producing alpha-1,6-branched
           alpha-1,4-glucane.
ACCESSION BD236814
           BD236814.1 GI:33046584
VERSION
KEYWORDS
           JP 2002527068-A/1.
SOURCE
           Bergeriella denitrificans
 ORGANISM Bergeriella denitrificans
           Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales;
           Neisseriaceae; Bergeriella.
          1 (bases 1 to 2475)
REFERENCE
 AUTHORS Buttcher, V. and Quanz, M.
           Nucleic acid molecule encoding branching enzyme from Neisseria
  TITLE
           bacteria and process for producing alpha-1,6-branched
           Patent: JP 2002527068-A 1 27-AUG-2002;
  JOURNAL
           PLANTTEC BIOTECHNOLOGIE GMBH FORSCHUNG UND ENTWICKLUNG, MAX PLANCK
           GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV
COMMENT
                Neisseria denitrificans
           OS
                JP 2002527068-A/1
           PN
           PD 27-AUG-2002
           PF 08-OCT-1999 JP 2000576030
              09-OCT-1998 DE 198 46 635.8,27-MAY-1999 DE 199 24 342.5 PI
           VOLKER BUTTCHER, MARTIN QUANZ -
               C12N15/09,A01H5/00,C07K16/40,C12N1/15,C12N1/19,C12N1/21,C12N5/
           PC
                10,C12N9/10,
                C12P19/04, C12N15/00, C12N5/00
           PC
                Nucleic acid molecule encoding branching
           enzyme from Neisseria
                     bacteria
                and process for producing alpha-1,6-branched alpha-1,4-glucane
           CC
                         Location/Qualifiers
           FH
                Key
                               (170). .(2458).
           FT
                CDS
                    Location/Qualifiers
FEATURES
                    1. .2475
   · source
                    /organism="Bergeriella denitrificans"
                    /mol_type="genomic DNA"
                    /db xref="taxon:494"
ORIGIN
Alignment Scores:
Pred. No.:
                                                    2475
                                     Length:
                                   Matches:
                       4112.00
                                                    762
Score:
Percent Similarity: 100.0%
                                     Conservative: 0
                                    Mismatches:
                                                  0
Best Local Similarity: 100.0%
                       100.0%
                                    Indels:
                                                    Ω
Query Match:
                       2
                                                    0
                                   . Gaps:
US-10-705-195-2 (1-762) x BD236814 (1-2475)
```

Qy

 ${\tt 1~MetAsnArgAsnArgHisIleArgArgGlyTyrHisProGluAlaGlyGluArgGlnIle~20}\\$

		·		
Db	170		229	
Qу	21	${\tt IleAspSerLeuPheAlaAlaThrHisSerAspProPheAlaTyrLeuGlyArgHisArg}$	40	
Db	. 230		289	
Qу	41	ValAsnAspGluArgGluAlaValArgValLeuArgProAspAlaHisHisIleAspIle	60	
Db	290		349	
Qу	61	<pre>IleAspArgHisThrGlyAlaValIleMetProSerGluLysIleAspGluArgGlyLeu </pre>	80	
Db	350	ATCGACCGCCACACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTG	409	
Qу	81	PheAlaAlaValLeuProGluHisAlaProAspTyrAlaLeuLeuValThrTyrHisGlu	100	١.
Db	410	TTTGCCGCCGTATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAG	469	
Qу	101	GlyGluAlaAlaValArgGluGluAspAspTyrArgPheGlySerAlaLeuGlnHisThr	120	
Db	470	GGCGAAGCCGCCGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACC	529	
Qу	. 121	AspAlaTrpLeuLeuGlyGluGlyThrHisLeuArgProTyrGluThrLeuGlyAlaHis	140	
Db	530	GATGCCTGGCTGCGCGAAGGCACGCACCTGCGCCCTTATGAAACGCTGGGCGCACAT	589	
Qу	141	PheAlaGluMetAspGlyValSerGlyValArgPheAlaValTrpAlaProAsnAlaArg	160	
Db	590	TTCGCCGAAATGGACGGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGG	649	
Qу	161	ArgValSerValIleGlyGluPheAsnGlyTrpAspSerArgArgHisAlaMetArgPro	180	
Db	650	CGGGTATCGGTCATCGGCGAATTCAACGGCTGGGACAGCCGCCGCCATGCCATGCGTCCG	709	
Qу	181	HisThrGlyAsnGlyLeuTrpAspIlePheIleProGlyValGlyLeuAsnAlaLeuTyr	200	
Db	710	CACACAGGCAACGGCCTGTGGGACATCTTTATCCCCGGCGTCGGCCTCAACGCGCTGTAT	769	
Qу	201	LysPheSerValLeuAspAlaAsnGlyAsnIleArgGluLysAlaAspProTyrAlaPhe	220	
Db	770	AAATTCTCCGTACTCGATGCCAACGGCAACATCCGCGAAAAAGCCGACCCCTACGCATTC	829	
Qу	221	GlyAlaGluLeuArgProThrThrAlaSerValValArgGlyLeuProAlaLysAlaGlu	240	
Db	830	GGCGCGGAGCTGCGCCGACCACCGCATCCGTGGTGCGCGGCTTGCCGGCCAAAGCCGAA	889	
Qу	241	AlaProAlaPheArgArgAlaAsnSerValGluAlaProIleSerIleTyrGluVal	260	
Db	890	GCGCCCGCTTTCCGCCGCCGCCCAACTCCGTGGAAGCGCCCATCAGCATTTACGAAGTC	949	
Qу	261	HisLeuGlySerTrpArgAsnProGluAsnAsnTyrTrpLeuThrTyrThrGlnLeu	280	
Db	950	CATCTCGGCTCGTGGCGCCCAATCCCGAAAACAACTACTGGCTCACCTACACGCAGCTG	1009	
Qу	281	AlaAspGluLeuValAsnTyrValLysAspMetGlyPheThrHisIleGluLeuLeuPro	300	
Db	1010	GCCGACGAATTGGTGAACTATGTAAAAGACATGGGCTTCACCCACATCGAGCTGCTCCC	1069	
Qу	301	LeuSerGluTyrProPheAspGlySerTrpGlyTyrGlnAlaThrGlyLeuTyrAlaPro	320	

SCORE Search Results Details for Application 107 Search Result us-10-705-195-2.p2n.rnc

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-70 start

Go

```
GenCore version 5.1.9
                  Copyright (c) 1993 - 2006 Biocceleration Ltd.
OM protein - nucleic search, using frame plus p2n model
                August 22, 2006, 19:33:36; Search time 1177 Seconds
Run on:
                                           (without alignments)
                                           6770.841 Million cell updates/sec
Title:
               US-10-705-195-2
Perfect score: 4112
              1 MNRNRHIRRGYHPEAGERQI......QTALRADKQPAVKDKQAKAK 762
Sequence:
Scoring table: BLOSUM62
                Xgapop 10.0 , Xgapext 0.5
                Ygapop 10.0 , Ygapext 0.5
                Fgapop 6.0 , Fgapext 7.0
                        6.0 , Delext
                Delop
                5244920 segs, 3486124231 residues
Searched:
Total number of hits satisfying chosen parameters:
                                                        10489840
Minimum DB seq length: 0
Maximum DB seq length: 2000000000
Post-processing: Minimum Match 0%
                 Maximum Match 100%
                 Listing first 45 summaries
Command line parameters:
-MODEL=frame+ p2n.model -DEV=x1h
-Q=/abss/ABSSWEB_spool/US10705195/runat_22082006_095547_838/app_query.fasta 1
-DB=N Geneseq -QFMT=fastap -SUFFIX=p2n.rng -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0
-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45
-DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL
-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -HOST=abss08
-USER=US10705195_@CGN_1_1_786_@runat_22082006_095547_838 -NCPU=6 -ICPU=3
-NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120
-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
Database :
             N Geneseq 8:*
                1: geneseqn1980s:*
                2: geneseqn1990s:*
3: geneseqn2000s:*
                4: geneseqn2001as:*
                5: geneseqn2001bs:*
```

```
6: geneseqn2002as:*
7: geneseqn2002bs:*
8: geneseqn2003as:*
9: geneseqn2003bs:*
10: geneseqn2003cs:*
11: geneseqn2003ds:*
12: geneseqn2004as:*
13: geneseqn2004bs:*
14: geneseqn2005s:*
15: geneseqn2006s:*
```

용

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

_	٠.		0				
Res	sult		Query				
	No.	Score	Match	Length	DB .	ID	Description
	1	4112	100.0	2475	3	AAA11731	Aaa11731 N. denitr
	2	2533	61.6	2307	11	ACH98165	Ach98165 Klebsiell
С	3	2531		349980	13	ADT05737	Adt05737 Haemophil
C	4	2526		110000	2	AAT42063 14	Continuation (15 o
	5	2523	61.4	2193	8	ACA34445	Aca34445 Prokaryot
С	6	2481.5	60.3	6306	13	ADT05474	Adt05474 Haemophil
C	7	2462.5	59.9	2361	2	AAV70952	Aav70952 DNA seque
	8	2462	59.9	2187	13	ADT48837	Adt48837 Bacterial
	9	2038.5	49.6	2164	13	ADT46098	Adt46098 Bacterial
	10	1996	48.5	2151	13	ADS55782	· Ads55782 Bacterial
	11	1957.5	47.6	2148	13	ADT46962	Adt46962 Bacterial
	12	1937.3	47.2	2079	5	AAS88840	Aas88840 DNA encod
	13	1925.5	46.8	2154	13	ADS63589	Ads63589 Bacterial
	14	1925.5	46.8	2160	13	ADS63965	Ads63965 Bacterial
	15	1925.5	46.8	2160	13	ADT41565	Adt41565 Bacterial
	16	1923.3	46.4	2163	13	ADS62134	Ads62134 Bacterial
	17	1899.5	46.2	2214	13	ADS60312	Ads60312 Bacterial
	18	1887	45.9	2331	6	ABQ90257	Abq90257 M. capsul
	19	1859	45.2	2199	13	ADS14563	Ads14563 Pseudomon
	20	1840	44.7	2472	. 11	ABD09593	Abd09593 Pseudomon
	21	1828.5	44.5	2142	13	ADS63957	Ads63957 Bacterial
	22	1828.5	44.5	2142	13	ADS64325	Ads64325 Bacterial
	23	1828.5	44.5		13	ADS63584	Ads63584 Bacterial
	24	1812.5	44.1	2178	13	ADT44839	Adt44839 Bacterial
-	25	1808	44.1	11276	14	ACL64571	Ac164571 M. xanthu
С	26	1805	43.9	2172	14	ACL68441	Ac168441 M. xanthu
	2 o 2 7	1805	43.9		13	ACL08441 ADT44556	Adt44556 Bacterial
			43.9	2157	13	ADS58032	Ads58032 Bacterial
	28 29	1791 1766	42.9	2034	10	ADG18862	7-1-100C2 DN7
	30	1760	42.9	1884	13	ADS57041	Ads57041 Bacterial
			42.7	2193	8	ACF39411	Acf39411 Mycobacte
_	31 32	1756 1756		110000	4	AAI99682 14	Continuation (15 o
С			42.7	2313	13	ADS48037	Ads48037 Bacterial
	33	1746.5		2250	.13	ADT45097	Adt45097 Bacterial
_	34 35	1732.5	42.1	110000	.13	AAI99683 14	Continuation (15 o
С	35 36	1727 1700	42.0	1893	10	ADC23310	Adc23310 DNA of Aq
					13	ADS45307	Ads45307 Bacterial
	37	1700	41.3 41.0	1893 2268	13	ADT46200	Adt46200 Bacterial
	38	1684			4	AD146200 AAS59613	Aas59613 Propionib
	39	1657.5	40.3	22934 22934	8	AAS59613 ACF64542	Acf64542 Propionib
	40	1657.5	40.3				AC164542 Proprofits Abq81846 Bifidobac
	41	1649	4U.I	349980	6	ABQ81846	white printer

```
40.1 349980 6 ABQ81847
                                                  Abq81847 Bifidobac
 42
      1649
                                                  Aah66319 C glutami
 43 1626.5
           39.6
                   2193 5 AAH66319
 44 1626.5
            39.6
                   2316 4 AAF71540
                                                  Aaf71540 Corynebac
45 1626.5
            39.6 349980 5 AAH68528
                                                  Aah68528 C glutami
```

```
RESULT 1
AAA11731
     AAA11731 standard; DNA; 2475 BP.
XX
AC
    AAA11731;
XX
DT
     21-JUL-2000 (first entry)
XX
DΕ
    N. denitrificans alpha-1,6-branched alpha-1,4 glucan DNA.
XX
KW
    Alpha-1,6-branched alpha-1,4-glucan; branching enzyme; binder; carrier;
     transgenic plant; flavor; perfume; packaging material; papermaking;
KW
     ultra-violet light adsorber; starch; textile; wetting agent; ds.
KW
XX
OS
     Neisseria denitrificans.
XX
                     Location/Qualifiers
FΗ
     Key
                     170. .2458
FT
     CDS
                     /*tag= a
FT
                     /product= "alpha-1,6-branched alpha-1,4-glucan"
FΤ
XX
PN
     WO200022140-A1.
XX
PD
     20-APR-2000.
XX
     08-OCT-1999; 99WO-EP007562.
PF
XX
PR
     09-OCT-1998;
                    98DE-01046635.
     27-MAY-1999;
                  99DE-01024342.
PR
XX
     (PLAN-) PLANTTEC BIOTECHNOLOGIE GMBH.
PΑ
PA
     (PLAC ) MAX PLANCK GES FOERDERUNG WISSENSCHAFTEN.
XX
ΡI
     Buettcher V, Quanz M;
XX
DR
    WPI; 2000-317992/27.
DR
     P-PSDB; AAW90977.
XX
     New nucleic acid encoding a branching enzyme, useful for in vitro
     synthesis of branched glucans and to prepare transgenic plants producing
PT
PT
    modified starch.
XX
PS
    Claim 1b; Page 93-96; 115pp; German.
XX
     This invention describes a novel nucleic acid (I) isolated from Neisseria
CC
CC
    which encodes a branching enzyme (II). (I) is used for recombinant
CC
    production of (II) subsequently used in the in vitro production of alpha-
    1,6-branched alpha-1,4-glucans. It is also used to prepare transgenic
CC
CC
     plants that produce starches with modified properties. (III) are used as
CC
    binders for tablets, carriers for pharmaceuticals, flavors and perfumes
CC
     and powdered additives, packaging materials, ultra-violet light adsorbers
CC
     in sunscreens and also for any of the usual applications of starch in
CC
     foods, papermaking, as textile size, in soil stabilization, as wetting
```

```
agent for agricultural chemicals, as polymer additives etc. Fragments of
CC
   (I) are useful as PCR primers and antisense molecules or ribozymes for
    inhibiting expression of (I), and the regulatory region of (II) can be
CC
    used to control expression of heterologous sequences in host cells. (I)
CC
    provides an inexpensive method for producing alpha-1,6-branched alpha-1,4
CC
    -glucans (III), producing products that can be tailored for particular
CC
    applications, particularly by controlling the degree of branching. Starch
CC
    from transgenic plants has increased gel strength; reduced phosphate
CC
    content; reduced peak viscosity; lower pasting temperature and granule
CC
    size and/or altered sidechain distribution. This sequence encodes an
CC
    alpha-1,6-branched alpha-1,4-glucan isolated from Neisseria denitrificans
CC
CC
    which is described in the method of the invention
XX
    Sequence 2475 BP; 560 A; 827 C; 674 G; 414 T; 0 U; 0 Other;
SQ
Alignment Scores:
                                             2475
Pred. No.:
                    0
                                Length:
                                Matches:
                                             762
Score:
                    4112.00
Percent Similarity:
                    100.0%
                                Conservative:
                                             0
                   100.0%
                                Mismatches:
                                             Ò
Best Local Similarity:
                                             0
                    100.0%
                                Indels:
Query Match:
                                             0
DB:
                    3
                                Gaps:
US-10-705-195-2 (1-762) x AAA11731 (1-2475)
          1 MetAsnArgAsnArgHisIleArgArgGlyTyrHisProGluAlaGlyGluArgGlnIle 20
Qу
           170 ATGAACCGCAAACCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATC 229
         21 IleAspSerLeuPheAlaAlaThrHisSerAspProPheAlaTyrLeuGlyArgHisArg 40
Qу
           230 ATCGACAGCCTGTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGT 289
Db
         41 ValAsnAspGluArgGluAlaValArgValLeuArgProAspAlaHisHisIleAspIle 60
Qу
           290 GTCAACGACGAACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATC 349
Db
         61 IleAspArgHisThrGlyAlaValIleMetProSerGluLysIleAspGluArgGlyLeu 80
Qy
            350 ATCGACCGCCACACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTG 409
Db
         81 PheAlaAlaValLeuProGluHisAlaProAspTyrAlaLeuLeuValThrTyrHisGlu 100
Qу
           410 TTTGCCGCCGTATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAG 469
Db
Qу
        101 GlyGluAlaAlaValArgGluGluAspAspTyrArgPheGlySerAlaLeuGlnHisThr 120
           470 GGCGAAGCCGCCGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACC 529
Db
        121 AspAlaTrpLeuLeuGlyGluGlyThrHisLeuArgProTyrGluThrLeuGlyAlaHis 140
Qу
           530 GATGCCTGGCTGCTGGGCGAAGGCACGCACCTGCGCCCTTATGAAACGCTGGGCGCACAT 589
        141 PheAlaGluMetAspGlyValSerGlyValArgPheAlaValTrpAlaProAsnAlaArg 160
Qу
           590 TTCGCCGAAATGGACGGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGG 649
Db
        161 ArgValSerValIleGlyGluPheAsnGlyTrpAspSerArgArgHisAlaMetArgPro 180
Qу
           650 CGGGTATCGGTCATCGGCGAATTCAACGGCTGGGACAGCCGCCGTGCCATGCCATGCGTCCG 709
Db
```

SCORE Search Results Details for Application 107 and Search Result us-10-705-195-2.p2n.rn

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-70 2.p2n.rni.

start -

Go Back to

```
GenCore version 5.1.9
                  Copyright (c) 1993 - 2006 Biocceleration Ltd.
OM protein - nucleic search, using frame plus p2n model
                August 22, 2006, 19:40:37; Search time 360 Seconds
Run on:
                                           (without alignments)
                                           5940.770 Million cell updates/sec
Title:
               US-10-705-195-2
Perfect score: 4112
               1 MNRNRHIRRGYHPEAGERQI.....QTALRADKQPAVKDKQAKAK 762
Sequence:
Scoring table: BLOSUM62
               Xgapop 10.0 , Xgapext 0.5
                Ygapop 10.0 , Ygapext 0.5
                Fgapop 6.0 , Fgapext 7.0
                Delop
                       6.0 , Delext
Searched:
                1403666 seqs, 935554401 residues
                                                        2807332
Total number of hits satisfying chosen parameters:
Minimum DB seq length: 0
Maximum DB seq length: 2000000000
Post-processing: Minimum Match 0%
                 Maximum Match 100%
                 Listing first 45 summaries
Command line parameters:
-MODEL=frame+_p2n.model -DEV=xlh
-Q=/abss/ABSSWEB spool/US10705195/runat_22082006_095553_938/app query.fasta_1
-DB=Issued_Patents_NA -QFMT=fastap -SUFFIX=p2n.rni -MINMATCH=0.1 -LOOPCL=0
-LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi
-LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15
-MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000
-HOST=abss05h -USER=US10705195 @CGN 1 1 211 @runat 22082006 095553 938 -NCPU=6
-ICPU=3 -NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120
-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
Database :
                Issued Patents NA:*
                1: /EMC_Celerra_SIDS3/ptodata/2/ina/1_COMB.seq:*
                2: /EMC_Celerra_SIDS3/ptodata/2/ina/5_COMB.seq:*
                3: /EMC_Celerra_SIDS3/ptodata/2/ina/6A_COMB.seq:*
```

4: /EMC Celerra SIDS3/ptodata/2/ina/6B_COMB.seq:*

```
5: /EMC Celerra SIDS3/ptodata/2/ina/7_COMB.seq:*
6: /EMC_Celerra_SIDS3/ptodata/2/ina/H_COMB.seq:*
7: /EMC_Celerra_SIDS3/ptodata/2/ina/PCTUS_COMB.seq:*
8: /EMC Celerra SIDS3/ptodata/2/ina/PP_COMB.seq:*
9: /EMC_Celerra_SIDS3/ptodata/2/ina/RE_COMB.seq:*
10: /EMC Celerra SIDS3/ptodata/2/ina/backfiles1.seq:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Dogult			0				
Result		0	Query	Tanahb I	20	TD	Deceription
No.		Score	Match	Length I		ID	Description
1		4112	100:0	2475	3	US-09-579-365-1	Sequence 1, Appli
	2	4112	100.0	2475	3	US-09-807-063-1	Sequence 1, Appli
	3	2533	61.6	2307	3	US-09-489-039A-3960	Sequence 3960, Ap
	4	2526		1830121	3	US-09-557-884-1	Sequence 1, Appli
	5	2526		1830121	3	US-09-643-990A-1	Sequence 1, Appli
	6	2526		1830121	3	US-10-158-865-1	Sequence 1, Appli
	7	1840	44.7	2472	3	US-09-252-991A-8197	Sequence 8197, Ap
С	8	1808	44.0	11276	3	US-09-902-540-1034	Sequence 1034, Ap
C	9	1805	43.9	2172	3	US-09-902-540-4904	Sequence 4904, Ap
~	10	1756		4411529	3	US-09-103-840A-1	Sequence 1, Appli
С	11	1727		4403765	3	US-09-103-840A-2	Sequence 2, Appli
С	12	1541	37.5	1866	3	US-09-537-120-1	Sequence 1, Appli
_				1230025	3	US-09-198-452A-1	Sequence 1, Appli
С	13	1465		1230023	3	US-09-198-432A-1 US-09-438-185A-1	Sequence 1, Appli
С	14	1465		2426	3	US-08-528-026C-3	Sequence 3, Appli
	15	1422.5					Sequence 8109, Ap
С	16	1387	33.7	1701	3	US-09-252-991A-8109	
	17	1.387	33.7	1877	5	US-09-974-300-653	Sequence 653, App
	18	1216.5	29.6	1956	3	US-09-107-433-242	Sequence 242, App
	19	1216	29.6	1929	3	US-09-583-110-1148	Sequence 1148, Ap
С	20	1179.5	28.7	11384	3	US-08-961-527-45	Sequence 45, Appl
	21	1179	28.7	36470	3	US-08-311-731A-123	Sequence 123, App
	22	1012.5	24.6	1308	3	US-09-252-991A-8131	Sequence 8131, Ap
	23	729.5	17.7	976	3	US-08-961-083-79	Sequence 79, Appl
	24	729.5	17.7	976	3	US-09-536-784-79	Sequence 79, Appl
	25	729.5	17.7	976	3	US-09-765-271 - 79	Sequence 79, Appl
	26	729.5	17.7	976	3	US-09-765-272A-79	Sequence 79, Appl
	27	617	15.0	807.	3	US-09-634-238-168	Sequence 168, App
	28	602.5	14.7	780	3	US-09-902-540-2210	Sequence 2210, Ap
С	29	602.5	14.7	781	3	US-09-902-540-1586	Sequence 1586, Ap
	30	601.5	14.6	2853	3	US-09-609-040-3	Sequence 3, Appli
	31.	596.5	14.5	2665	3	US-09-257-894-1	Sequence 1, Appli
	32	596	14.5	2720	3	US-09-731-166-11	Sequence 11, Appl
	33	595	14.5	2578	3	US-08-945-722-19	Sequence 19, Appl
	34	595	14.5	2578	4	US-10-056-454B-19	Sequence 19, Appl
	35	592.5	14.4	2446	3	US-09-731-166-9	Sequence 9, Appli
	36	592	14.4	2529	3	US-08-945-722-17	Sequence 17, Appl
	37	592	14.4	2529	4	US-10-056-454B-17	Sequence 17, Appl
	38	590	14.3	3128	3	US-08-716-449-1	Sequence 1, Appli
	39	589.5	14.3	2531	4	US-10-056-454B-37	Sequence 37, Appl
	40	588.5	14.3	2554	5	US-10-162-948-1	Sequence 1, Appli
	41	588.5	14.3	2576	3	US-08-945-722-16	Sequence 16, Appl
	42	588.5	14.3	2576	4	US-10-056-454B-16	Sequence 16, Appl
	43	587	14.3	2725	3	US-08-941-445A-14	Sequence 14, Appl
	44	587	14.3	3074	3	US-09-087-277-1	Sequence 1, Appli
	45	587	14.3	3074	3	US-09-658-499-1	Sequence 1, Appli
							*

ALIGNMENTS

```
RESULT 1
US-09-579-365-1
; Sequence 1, Application US/09579365
; Patent No. 6566585
; GENERAL INFORMATION:
  APPLICANT: Martin QUANZ
  TITLE OF INVENTION: GENETICALLY MODIFIED PLANT CELLS AND PLANTS WITH AN
  TITLE OF INVENTION: INCREASED ACTIVITY OF AN AMYLOSUCRASE PROTEIN AND A
  TITLE OF INVENTION: BRANCHING ENZYME
  FILE REFERENCE: 0147-0200P
  CURRENT APPLICATION NUMBER: US/09/579,365
  CURRENT FILING DATE: 2000-05-25
  NUMBER OF SEQ ID NOS: 15 ·
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 1
   LENGTH: 2475
   TYPE: DNA
   ORGANISM: Neisseria denitrificans
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (170)..(2458)
US-09-579-365-1
Alignment Scores:
Pred. No.:
                    0
                                             2475
                                 Length:
                                 Matches:
                                             762
Score:
                    4112.00
                    100.0%
                                             0
Percent Similarity:
                                 Conservative:
                    100.0%
                                             n
Best Local Similarity:
                                 Mismatches:
Query Match:
                    100.0%
                                 Indels:
                                             0
DB:
                    3
                                 Gaps:
                                             0
US-10-705-195-2 (1-762) x US-09-579-365-1 (1-2475)
          1 MetAsnArqAsnArgHisIleArgArgGlyTyrHisProGluAlaGlyGluArgGlnIle 20
Qy
            170 ATGAACCGAAACCGCCATATCCGACGCGGCTACCACCCGGAAGCCGGAGAACGCCAAATC 229
Db
         21 İleAspSerLeuPheAlaAlaThrHisSerAspProPheAlaTyrLeuGlyArgHisArg 40
Qу
           230 ATCGACAGCCTGTTTGCCGCCACCCACAGCGATCCGTTTGCCTATCTTGGGCGGCATCGT 289
Db
         41 ValAsnAspGluArqGluAlaValArqValLeuArqProAspAlaHisHisIleAspIle 60
Qy
           290 GTCAACGACGAACGCGAAGCCGTGCGCGTGCTGCGTCCCGACGCGCACCACATCGACATC 349
Db
         61 IleAspArgHisThrGlyAlaValIleMetProSerGluLysIleAspGluArgGlyLeu 80
Qу
            350 ATCGACCGCCACACAGGCGCAGTCATCATGCCGTCTGAAAAAATCGACGAGCGCGGCCTG 409
Db
         81 PheAlaAlaValLeuProGluHisAlaProAspTyrAlaLeuLeuValThrTyrHisGlu 100
Qу
           410 TTTGCCGCCGTATTGCCCGAACACGCGCCCGACTACGCCCTGCTGGTGACATACCACGAG 469
Db
        101 GlyGluAlaAlaValArqGluGluAspAspTyrArqPheGlySerAlaLeuGlnHisThr 120
QУ
            470 GGCGAAGCCGCCGTACGCGAAGAAGATGACTACCGCTTCGGCAGCGCGCTGCAACATACC 529
Db
```

Qу		AspAlaTrpLeuLeuGlyGluGlyThrHisLeuArgProTyrGluThrLeuGlyAlaHis	
Db	530	GATGCCTGGCTGCGCGAAGGCACGCACCTGCGCCCTTATGAAACGCTGGGCGCACAT	589
Qу	141	PheAlaGluMetAspGlyValSerGlyValArgPheAlaValTrpAlaProAsnAlaArg	160
Db	590	TTCGCCGAAATGGACGCGTATCCGGCGTGCGCTTTGCCGTTTGGGCGCCCAACGCGCGG	649
Qу	161	ArgValSerValIleGlyGluPheAsnGlyTrpAspSerArgArgHisAlaMetArgPro	180
Db	650		709
Qу	. 181	HisThrGlyAsnGlyLeuTrpAspIlePheIleProGlyValGlyLeuAsnAlaLeuTyr	200
Db	710		769
Qу	201	LysPheSerValLeuAspAlaAsnGlyAsnIleArgGluLysAlaAspProTyrAlaPhe	220
Db	. 770		829
Qу	221	${\tt GlyAlaGluLeuArgProThrThrAlaSerValValArgGlyLeuProAlaLysAlaGlu}$	240
Db	830		889
Qу	241	AlaProAlaPheArgArgAlaAsnSerValGluAlaProIleSerIleTyrGluVal	260
Db	890		949
Qу	261	HisLeuGlySerTrpArgArgAsnProGluAsnAsnTyrTrpLeuThrTyrThrGlnLeu	280
Db	950	CATCTCGGCTCGTGGCGGCGCAATCCCGAAAACAACTACTGGCTCACCTACACGCAGCTG	1009
Qу	281	AlaAspGluLeuValAsnTyrValLysAspMetGlyPheThrHisIleGluLeuLeuPro	300
Db	1010		1069
Qу	301	LeuSerGluTyrProPheAspGlySerTrpGlyTyrGlnAlaThrGlyLeuTyrAlaPro	320
Db	1070	TTGTCCGAATATCCGTTCGACGGCTCATGGGGCTACCAAGCCACCGGCCTGTATGCACCG	1129
Qу	321	ThrSerArgPheGlySerProAspGluLeuLysAlaLeuIleAspAlaAlaHisAlaAla	340
Db	1130	ACCAGCCGCTTCGCCCCGATGAGCTGAAAGCCCTGATTGACGCCGCCCACGCCCCC	1189
Qу	341	GlyIleSerValIleLeuAspTrpValAlaGlyHisPheProThrAspAspHisGlyLeu	360
Db	1190		1249
Qу	361	AsnThrPheAspGlyThrAlaLeuTyrGluHisAlaAspProArgGluGlyTyrHisGln	380
Db	1250		1309
ýу	381	AspTrpAsnThrLeuIleTyrAsnPheGlyArgAsnGluValLysAsnPheLeuGlnGly	400
Db	1310		1369
Qy	401	AsnAlaLeuTyrTrpIleGluArgPheGlyPheAspGlyIleArgValAspAlaValAla	420
Db	1370		1429
Qу	. 421	${\tt SerMetIleTyrArgAsnTyrSerArgLysAspGlyGluTrpIleProAsnArgTyrGly}$	440

SCORE Search Results Details for Application 107 and Search Result us-10-705-195-2.p2n.rnpl

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-70 2.p2n.rnpbn.

start

Go Back to

```
GenCore version 5.1.9
                  Copyright (c) 1993 - 2006 Biocceleration Ltd.
OM protein - nucleic search, using frame_plus_p2n model
               August 22, 2006, 19:56:13; Search time 495 Seconds
Run on:
                                           (without alignments)
                                           3691.235 Million cell updates/sec
Title:
               US-10-705-195-2
Perfect score: 4112
              1 MNRNRHIRRGYHPEAGERQI.....QTALRADKQPAVKDKQAKAK 762
Sequence:
Scoring table: BLOSUM62
               Xgapop 10.0 , Xgapext 0.5
               Ygapop 10.0 , Ygapext 0.5
               Fgapop 6.0 , Fgapext 7.0
                       6.0 , Delext
               Delop
               2226170 seqs, 799283156 residues
Searched:
Total number of hits satisfying chosen parameters:
                                                        4452340
Minimum DB seq length: 0
Maximum DB seq length: 200000000
Post-processing: Minimum Match 0%
                Maximum Match 100%
                 Listing first 45 summaries
Command line parameters:
-MODEL=frame+ p2n.model -DEV=xlh
-Q=/abss/ABSSWEB spool/US10705195/runat 22082006_095558_1059/app_query.fasta_1
-DB=Published_Applications_NA_New -QFMT=fastap -SUFFIX=p2n.rnpbn -MINMATCH=0.1
-LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62
-TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100
-THR_MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto +NORM=ext -HEAPSIZE=500 -MINLEN=0
-MAXLEN=200000000 -HOST=abss04
-USER=US10705195_@CGN_1_1_209_@runat_22082006_095558_1059 -NCPU=6 -ICPU=3
-NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120
-WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
Database :
               Published Applications NA New: *
               1: /EMC Celerra SIDS3/ptodata/1/pubpna/US09 NEW PUB.seq:*
                   /EMC_Celerra_SIDS3/ptodata/1/pubpna/US06_NEW_PUB.seq:*
                3: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US07_NEW_PUB.seq:*
```

```
4: /EMC Celerra SIDS3/ptodata/1/pubpna/US08_NEW_PUB.seq:*
5: /EMC Celerra_SIDS3/ptodata/1/pubpna/PCT_NEW_PUB.seq:*
6: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US10_NEW_PUB.seq:*
7: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US11_NEW_PUB.seq:*
8: /EMC Celerra SIDS3/ptodata/1/pubpna/US11_NEW_PUB.seq1:*
    /EMC_Celerra_SIDS3/ptodata/1/pubpna/US11_NEW_PUB.seq2:*
10: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US60_NEW_PUB.seq:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

용

Res	sult		% Query				
	No.	Score	Match	Length	DB	ID	Description
	1	2462.5	59.9	2361	9	US-11-330-822-38	Sequence 38, Appl
	2	2462	59.9	2187	9	US-11-275-569-17	Sequence 17, Appl
	3	1224.5	29.8	1869	9	US-11-348-413-6911	Sequence 6911, Ap
	4	618.5	15.0	2668	9	US-11-056-355B-76595	Sequence 76595, A
	5	614.5	14.9	2763	9	US-11-056-355B-99154	Sequence 99154, A
	6	614.5	14.9	2763	9	US-11-056-355B-110393	Sequence 110393,
	7	614.5	14.9	2764	6	US-10-953-349-4536	Sequence 4536, Ap
	8	614.5	14.9	2764	9	US-11-056-355B-27071	Sequence 27071, A
	9	614.5	14.9	2764	9	US-11-056-355B-30239	Sequence 30239, A
	10	614.5	14.9	2764	9	US-11-056-355B-33829	Sequence 33829, A
	11	604.5	14.7	3643	8	US-11-216-545-3261	Sequence 3261, Ap
	12	598	14.5	2588	9	US-11-056-355B-100250	Sequence 100250,
	13	598	14.5	2588	9	US-11-056-355B-111489	Sequence 111489,
	14	593	14.4	2759	9	US-11-218-305-12548	Sequence 12548, A
	15	592.5	14.4	2763	9	US-11-056-355B-19641	Sequence 19641, A
	16	592.5		2763	9	US-11-056-355B-19806	Sequence 19806, A
	17	592.5	14.4	2826	9	US-11-218-305-12549	Sequence 12549, A
	18	587	14.3	2640	9	US-11-330-822-58	Sequence 58, Appl
	19	569	13.8	3553	6	US-10-449-902-12839	Sequence 12839, A
	20	566	13.8	2649	6	US-10-539-723-6	Sequence 6, Appli
	21	547.5	13.3	2763	9	US-11-330-822-60	Sequence 60, Appl
	22	547.5	13.3	2790	9	US-11-056-355B-11438	Sequence 11438, A
	23	547.5	13.3	3022	9	US-11-218-305-9897	Sequence 9897, Ap
	24	.539	13.1	2891	8	US-11-266-748A-25857	Sequence 25857, A
			12.9	3827	6	US-10-449-902-18529	Sequence 18529, A
	25 26	530.5 528.5	12.9	2729	. 6	US-10-449-902-14548	Sequence 14548, A
	27	511.5	12.4	2115	8	US-11-217-529-698	Sequence 698, App
	28	500	12.4	2115	8	US-11-217-529-76256	Sequence 76256, A
	29	450	10.9	3290	6	US-10-449-902-16439	Sequence 16439, A
	30	442	10.9	1641	6	US-10-539-723-4	Sequence 4, Appli
	31	404	9.8	15294	6	US-10-547-660-15	Sequence 15, Appl
	32	330.5	8.0	640	8	US-11-266-748A-119619	Sequence 119619,
С	33	330.5	8.0	641	8	US-11-266-748A-81241	Sequence 81241, A
C	34		8.0	641	8	US-11-266-748A-134052	Sequence 134052,
	35	330.5	7.8	1118	8	US-11-266-748A-228183	Sequence 228183,
	36	320.5 247	6.0	1338		US-11-316-535A-21	Sequence 21, Appl
		239	5.8	1974	. 9	US-11-275-569-15	Sequence 15, Appl
	37	231.5	5.6	4079	9	US-11-218-305-206	Sequence 206, App
	38				9	US-11-348-413-6910	Sequence 6910, Ap
	39	216	5.3	2301		·	Sequence 39, Appl
	40	213	5.2	1323	9 9	US-11-316-535A-39	Sequence 178, App
	41	209	5.1	1749	9	US-11-316-535A-178	Sequence 122, App
	42	201	4.9	1353	9	US-11-316-535A-122	Sequence 4882, Ap
	43	199	4.8	1704	-	US-11-348-413-4882	Sequence 8695, Ap
	44	198.5	4.8	1202	8	US-11-266-748A-8695	sequence obss, Ap

45 197.5 4.8 3525 9 US-11-348-413-2401 Sequence 2401, Ap

ALIGNMENTS

```
RESULT 1
US-11-330-822-38
; Sequence 38, Application US/11330822
; Publication No. US20060150281A1
; GENERAL INFORMATION:
 APPLICANT: GUAN, HANPING
  APPLICANT: KEELING, PETER L.
  TITLE OF INVENTION: PLANT LIKE STARCHES AND THE METHOD OF MAKING THEM IN
  TITLE OF INVENTION: HOSTS
  FILE REFERENCE: 15053-04
; CURRENT APPLICATION NUMBER: US/11/330,822
; CURRENT FILING DATE: 2006-01-11
; PRIOR APPLICATION NUMBER: PCT/US98/06660
; PRIOR FILING DATE: 1998-04-03
  PRIOR APPLICATION NUMBER: 60/042,939
  PRIOR FILING DATE: 1997-04-04
  NUMBER OF SEQ ID NOS: 86
  SOFTWARE: PatentIn Ver. 3.3
; SEQ ID NO 38
   LENGTH: 2361
   TYPE: DNA
   ORGANISM: Escherichia coli
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (1)..(2184)
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (2188)..(2280)
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (2284)..(2361)
US-11-330-822-38
Alignment Scores:
                       9.77e-233
                                                     2361
Pred. No.:
                                      Length:
                       2462.50
                                      Matches:
Score:
                                      Conservative: 103
                       74.2%
Percent Similarity:
                                                     174
Best Local Similarity: 60.4%
                                      Mismatches:
                       59.9%
                                      Indels:
                                                     19
Query Match:
DB:
                       9
                                      Gaps:
US-10-705-195-2 (1-762) x US-11-330-822-38 (1-2361)
          17 GluArgGlnIleIleAspSerLeuPheAlaAlaThrHisSerAspProPheAlaTyrLeu 36
Qy
                    :::|||::::::||| | | | |
                                                    Db
          16 GATAGAGACGTGATTAACGCGCTAATTGCAGGCCATTTTGCGGATCCTTTTTCCGTACTG 75
          {\tt 37~GlyArgHisArgValAsnAspGluArgGluAlaValArgValLeuArgProAspAlaHis~56}\\
Qу
                   | | | | ; ; ;
                                        111
                                                            76 GGAATGCATAAAACCACCGCGGGACTGGAA---GTCCGTGCCCTTTTACCCGACGCTACC 132
Db
          57 HisIleAspIleIleAspArgHisThrGlyAlaValIleMetProSerGluLysIleAsp 76
Qу
                                     :::|||:::
          133 GATGTGTGGGTGATTGAACCGAAAACCGGGCGCAAACTCGCAAAACTGGAGTGTCTCGAC 192
Db
          77 GluArgGlyLeuPheAlaAlaValLeuProGluHisAlaPro-----AspTyrAlaLeu 94
Qy
```

		·	
Db	193	::: ::: TCACGGGGATTCTTTAGCGGCGTCATTCCGCGACGTAAGAATTTTTTCCGCTATCAGTTG	252
Qу	95	LeuValThrTyrHisGluGlyGluAlaAlaValArgGluGluAspAspTyrArgPheGly	114
Db	253	GCTGTTGTCTGGCATGGTCAGCAAAACCTGATTGATGATCCTTACCGTTTTGGT	306
Qу	115	SerAlaLeuGlnHisThrAspAlaTrpLeuLeuGlyGluGlyThrHisLeuArgProTyr ::: ·	134
Db .	307	CCGCTAATCCAGGAAATGGATGCCTGGCTATTATCTGAAGGTACTCACCTGCGCCCGTAT	366
Qу	135	GluThrLeuGlyAlaHisPheAlaGluMetAspGlyValSerGlyValArgPheAlaVal	154
Db	367	GAAACCTTAGGCGCGCATGCAGATACTATGGATGGCGTCACAGGTACGCGTTTCTCTGTC	426
Qy	155	TrpAlaProAsnAlaArgArgValSerValIleGlyGluPheAsnGlyTrpAspSerArg	174
Db	427	TGGGCTCCAAACGCCCGTCGGGTCTCGGTGGTTGGGCAATTCAACTACTGGGACGGTCGC	486
Qу	1,75	ArgHisAlaMetArgProHisThrGlyAsnGlyLeuTrpAspIlePheIleProGlyVal	194
Db	487	CGTCACCCGATGCGCCTGCGTAAAGAGAGCGGCATCTGGGAACTGTTTATCCCTGGGGCG	546
Qу	195	GlyLeuAsnAlaLeuTyrLysPheSerValLeuAspAl·aAsnGlyAsnIleArgGluLys	214
Db	547	CATAACGGTCAGCTCTATAAATACGAGATGATTGATGCCAATGGCAACTTGCGTCTGAAG	606
Qy	215	AlaAspProTyrAlaPheGlyAlaGluLeuArgProThrThrAlaSerValValArgGly:::	234
Db	607	TCCGACCCTTATGCCTTTGAAGCGCAAATGCGCCCGGAAACCGCGTCTCTTATTTGCGGG	666
Qу	235	LeuProAlaLysAlaGluAlaProAlaPheArgArgAlaAsnSerValGluAlaPro	254
Db	667	CTGCCGGAAAAGGTTGTACAGACTGAAGAGCGCAAAAAAGCGAATCAGTTTGATGCGCCA	726
QУ	255	<pre>IleSerIleTyrGluValHisLeuGlySerTrpArgArgAsnProGluAsnAsnTyrTrp !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</pre>	274
Db .	727	ATCTCTATTTATGAAGTTCACCTGGGTTCCTGGCGTCGCCACACCGACAACAATTTCTGG	786
Qу	275	LeuThrTyrThrGlnLeuAlaAspGluLeuValAsnTyrValLysAspMetGlyPheThr	294
Db	787	TTGAGCTACCGCGAGCTGGCCGATCAACTGGTGCCTTATGCTAAATGGATGG	846
QУ	295	HislleGluLeuLeuProLeuSerGluTyrProPheAspGlySerTrpGlyTyrGlnAla	314
Db	847	CACCTCGAACTACTGCCCATTAACGAGCATCCCTTCGATGGCAGTTGGGGTTATCAGCCA	906
Qy .	315	ThrGlyLeuTyrAlaProThrSerArgPheGlySerProAspGluLeuLysAlaLeuIle	334
Db	907	ACCGGCCTGTATGCGCCAACCCGCCGTTTTGGTACTCGCGACGACTTCCGTTATTTCATT	966
Qу	335	AspAlaAlaHisAlaAlaGlyIleSerValIleLeuAspTrpValAlaGlyHisPhePro	354
Db	967	GATGCCGCACACGCAGCTGGTCTGAACGTGATTCTCGACTGGGTGCCAGGCCACTTCCCG	1026
Qу	355	ThrAspAspHisGlyLeuAsnThrPheAspGlyThrAlaLeuTyrGluHisAlaAspPro	374
Db	1027	ACTGATGACTTTGCGCTTGCCGAATTTGATGGCACGAACTTGTATGAACACAGCGATCCG	1086
Qу	375	<pre>ArgGluGlyTyrHisGlnAspTrpAsnThrLeuIleTyrAsnPheGlyArgAsnGluVal </pre>	394

SCORE Search Results Details for Application 107 and Search Result us-10-705-195-2.p2n.rnpl

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-7(2.p2n.rnpbn.

start

Go Back to

```
GenCore version 5.1.9
                  Copyright (c) 1993 - 2006 Biocceleration Ltd.
OM protein - nucleic search, using frame plus p2n model
               August 22, 2006, 19:56:13; Search time 495 Seconds
Run on:
                                           (without alignments)
                                          3691.235 Million cell updates/sec
Title:
              US-10-705-195-2
Perfect score: 4112
Sequence: 1 MNRNRHIRRGYHPEAGERQI......QTALRADKQPAVKDKQAKAK 762
Scoring table: BLOSUM62
               Xgapop 10.0 , Xgapext 0.5
               Ygapop 10.0 , Ygapext 0.5
               Fgapop 6.0 , Fgapext 7.0
               Delop
                       6.0 , Delext 7.0
               2226170 segs, 799283156 residues
Searched:
                                                      4452340
Total number of hits satisfying chosen parameters:
Minimum DB seq length: 0
Maximum DB seq length: 200000000
Post-processing: Minimum Match 0%
                 Maximum Match 100%
                 Listing first 45 summaries
Command line parameters:
-MODEL=frame+_p2n.model -DEV=x1h
-Q=/abss/ABSSWEB_spool/US10705195/runat_22082006_095558_1059/app query.fasta 1
-DB=Published Applications NA New -QFMT=fastap -SUFFIX=p2n.rnpbn -MINMATCH=0.1
-LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62
-TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR_MAX=100
-THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0
-MAXLEN=2000000000 -HOST=abss04
-USER=US10705195_@CGN_1_1_209_@runat_22082006_095558_1059 -NCPU=6 -ICPU=3
-NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120
-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
               Published_Applications_NA_New:*
Database :
                1: /EMC Celerra SIDS3/ptodata/1/pubpna/US09_NEW_PUB.seq:*
                   /EMC Celerra SIDS3/ptodata/1/pubpna/US06 NEW PUB.seq:*
```

3: /EMC Celerra SIDS3/ptodata/1/pubpna/US07 NEW PUB.seq:*

```
4: /EMC Celerra SIDS3/ptodata/1/pubpna/US08 NEW PUB.seq:*
5: /EMC Celerra_SIDS3/ptodata/1/pubpna/PCT_NEW_PUB.seq:*
6: /EMC Celerra SIDS3/ptodata/1/pubpna/US10_NEW_PUB.seq:*
7: /EMC Celerra_SIDS3/ptodata/1/pubpna/US11_NEW_PUB.seq:*
8: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US11_NEW_PUB.seq1:*
9: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US11_NEW_PUB.seq2:*
10: /EMC Celerra_SIDS3/ptodata/1/pubpna/US60_NEW_PUB.seq:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result		% Query				
No.		_	Length	DB	ID	Description
1		59.9	2361	9	US-11-330-822-38	Sequence 38, Appl
2		59.9	2187	.9	US-11-275-569-17	Sequence 17, Appl
. 3		29.8	1869	9	US-11-348-413-6911	Sequence 6911, Ap
4		15.0	2668	9	US-11-056-355B-76595	Sequence 76595, A
5		14.9	2763	9	US-11-056-355B-99154	Sequence 99154, A
6		14.9	2763	9	US-11-056-355B-110393	Sequence 110393,
7		14.9	2764	6	US-10-953-349-4536	Sequence 4536, Ap
8		14.9	2764	9	US-11-056-355B-27071	Sequence 27071, A
9		14.9	2764	9	US-11-056-355B-30239	Sequence 30239, A
10		14.9	2764	9	US-11-056-355B-33829	Sequence 33829, A
11		14.7	3643	8	US-11-216-545-3261	Sequence 3261, Ap
12		14.5	2588	9	US-11-056-355B-100250	Sequence 100250,
• 13		14.5	2588	9	US-11-056-355B-111489	Sequence 111489,
14		14.4	2759	9	US-11-218-305-12548	Sequence 12548, A
15		14.4	2763	9	US-11-056-355B-19641	Sequence 19641, A
16		14.4	2763	9	US-11-056-355B-19806	Sequence 19806, A
17		14.4	2826	9	US-11-218-305-12549	Sequence 12549, A
18		14.3	2640	9	US-11-330-822-58	Sequence 58, Appl
19		13.8	3553	6	US-10-449-902-12839	Sequence 12839, A
20		13.8	2649	6	US-10-539-723-6	Sequence 6, Appli
21		13.3	2763	9	US-11-330-822-60	Sequence 60, Appl
22		13.3	2790	9	US-11-056-355B-11438	Sequence 11438, A
23		13.3	3022	9	US-11-218-305-9897	Sequence 9897, Ap
24		13.1	2891	8	US-11-266-748A-25857	Sequence 25857, A
25		12.9	3827	6	US-10-449-902-18529	Sequence 18529, A
26		12.9	2729	6	US-10-449-902-14548	Sequence 14548, A
27		12.4	2115	8	US-11-217-529-698	Sequence 698, App
28		12.2	. 2115	8	US-11-217-529-76256	Sequence 76256, A
29		10.9	3290	6	US-10-449-902-16439	Sequence 16439, A
30		10.7	1641	6	US-10-539-723-4	Sequence 4, Appli
31		9.8	15294	6	US-10-547-660-15	Sequence 15, Appl
32		8.0	640	8	US-11-266-748A-119619	Sequence 119619,
c 33		8.0	641	8	US-11-266-748A-81241	Sequence 81241, A
34		8.0	641	8	US-11-266-748A-134052	Sequence 134052,
35		7.8	1118	8	US-11-266-748A-228183	Sequence 228183,
36		6.0	1338	9	US-11-316-535A-21	Sequence 21, Appl
37		5.8	1974	9	US-11-275-569-15	Sequence 15, Appl
. 38		5.6	4079	9	US-11-218-305-206	Sequence 206, App
39		5.3	2301	9	US-11-348-413-6910	Sequence 6910, Ap
40		5.2	1323	9	US-11-316-535A-39	Sequence 39, Appl
41		5.1	1749	. 9	US-11-316-535A-178	Sequence 178, App Sequence 122, App
4 2		4.9	1353	9	US-11-316-535A-122	Sequence 4882, Ap
43		4.8	1704	9	US-11-348-413-4882	-
44	198.5	4.8	1202	8	US-11-266-748A-8695	Sequence 8695, Ap

Sequence 2401, Ap 45 197.5 4.8 3525 9 US-11-348-413-2401

ALIGNMENTS

```
RESULT 1
US-11-330-822-38
; Sequence 38, Application US/11330822
; Publication No. US20060150281A1
; GENERAL INFORMATION:
  APPLICANT: GUAN, HANPING
  APPLICANT: KEELING, PETER L.
  TITLE OF INVENTION: PLANT LIKE STARCHES AND THE METHOD OF MAKING THEM IN
   TITLE OF INVENTION: HOSTS
 FILE REFERENCE: 15053-04
   CURRENT APPLICATION NUMBER: US/11/330,822
   CURRENT FILING DATE: 2006-01-11
  PRIOR APPLICATION NUMBER: PCT/US98/06660
  PRIOR FILING DATE: 1998-04-03
  PRIOR APPLICATION NUMBER: 60/042,939
   PRIOR FILING DATE: 1997-04-04
  NUMBER OF SEQ ID NOS: 86
   SOFTWARE: PatentIn Ver. 3.3
 SEQ ID NO 38
   LENGTH: 2361
   TYPE: DNA
   ORGANISM: Escherichia coli
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (1)..(2184)
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (2188)..(2280)
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (2284)..(2361)
US-11-330-822-38
Alignment Scores:
                       9.77e-233
                                      Length:
                                                     2361
Pred. No.:
Score:
                       2462.50
                                      Matches:
                       74.2%
                                      Conservative:
                                                     103
Percent Similarity:
Best Local Similarity: 60.4%
                                                     174
                                      Mismatches:
                       59.9%
                                                     19
                                      Indels:
Query Match:
                       9
                                                     6
DB:
                                      Gaps:
US-10-705-195-2 (1-762) x US-11-330-822-38 (1-2361)
          17 GluArgGlnIleIleAspSerLeuPheAlaAlaThrHisSerAspProPheAlaTyrLeu 36
Qу
                     :::[||:::::||| ||
                                                   16 GATAGAGACGTGATTAACGCGCTAATTGCAGGCCATTTTGCGGATCCTTTTTCCGTACTG 75
Db
          37 GlyArgHisArgValAsnAspGluArgGluAlaValArgValLeuArgProAspAlaHis 56
Ov
                                        111
                                                             |||:::
          76 GGAATGCATAAAACCACCGCGGGACTGGAA---GTCCGTGCCCTTTTACCCGACGCTACC 132
Db
          57 HisIleAspIleIleAspArgHisThrGlyAlaValIleMetProSerGluLysIleAsp 76
Qу
                                    :::
                     :::|||:::
         133 GATGTGTGGGTGATTGAACCGAAAACCGGGCGCAAACTCGCAAAACTGGAGTGTCTCGAC 192
Db
          77 GluArgGlyLeuPheAlaAlaValLeuProGluHisAlaPro-----AspTyrAlaLeu 94
Qу
```

Db	193		252
Qу	95	LeuValThrTyrHisGluGlyGluAlaAlaValArgGluGluAspAspTyrArgPheGly	114
Db	253	::: ::: ::: :::	306
Qу	115	SerAlaLeuGlnHisThrAspAlaTrpLeuLeuGlyGluGlyThrHisLeuArgProTyr:::	134
Db	307	CCGCTAATCCAGGAAATGGATGCCTGGCTATTATCTGAAGGTACTCACCTGCGCCCGTAT	366
Qу	135	GluThrLeuGlyAlaHisPheAlaGluMetAspGlyValSerGlyValArgPheAlaVal	154
Db	367	GAAACCTTAGGCGCGCATGCAGATACTATGGATGGCGTCACAGGTACGCGTTTCTCTGTC	426
Qу	155	TrpAlaProAsnAlaArgArgValSerValIleGlyGluPheAsnGlyTrpAspSerArg	174
Db	427	TGGGCTCCAAACGCCCGTCGGGTCTCGGTGGTTGGGCAATTCAACTACTGGGACGGTCGC	486
Qу	175	ArgHisAlaMetArgProHisThrGlyAsnGlyLeuTrpAspIlePheIleProGlyVal	194
Db	487	CGTCACCCGATGCGCCTGCGTAAAGAGAGCGGCATCTGGGAACTGTTTATCCCTGGGGCG	546
· Qy	195	GlyLeuAsnAlaLeuTyrLysPheSerValLeuAspAlaAsnGlyAsnIleArgGluLys	214
Db	547	CATAACGGTCAGCTCTATAAATACGAGATGATTGATGCCAATGGCAACTTGCGTCTGAAG	606
Qу	215	AlaAspProTyrAlaPheGlyAlaGluLeuArgProThrThrAlaSerValValArgGly:::	234
Db	607	TCCGACCCTTATGCCTTTGAAGCGCAAATGCGCCCGGAAACCGCGTCTCTTATTTGCGGG	666
Qу	. 235	LeuProAlaLysAlaGluAlaProAlaPheArgArgAlaAsnSerValGluAlaPro	254
Db	667	CTGCCGGAAAAGGTTGTACAGACTGAAGAGCGCAAAAAAAGCGAATCAGTTTGATGCGCCA	726
Qу	255	<pre>IleSerIleTyrGluValHisLeuGlySerTrpArgArgAsnProGluAsnAsnTyrTrp </pre>	274
Db	727	ATCTCTATTTATGAAGTTCACCTGGGTTCCTGGCGTCGCCACACCGACAACAATTTCTGG	786
Qу	275	LeuThrTyrThrGlnLeuAlaAspGluLeuValAsnTyrValLysAspMetGlyPheThr	294
Db	787	TTGAGCTACCGCGAGCTGGCCGATCAACTGGTGCCTTATGCTAAATGGATGG	846
Qу	295	HisIleGluLeuLeuProLeuSerGluTyrProPheAspGlySerTrpGlyTyrGlnAla	314
Db	847	CACCTEGAACTACTGCCCATTAACGAGCATCCCTTCGATGGCAGTTGGGGTTATCAGCCA	906
Qу	315	ThrGlyLeuTyrAlaProThrSerArgPheGlySerProAspGluLeuLysAlaLeuIle	334
Db	907	ACCGGCCTGTATGCGCCAACCCGCCGTTTTGGTACTCGCGACGACTTCCGTTATTTCATT	966
Qу	335	AspAlaAlaHisAlaAlaGlyIleSerValIleLeuAspTrpValAlaGlyHisPhePro	354
Db	. 967	GATGCCGCACACGCAGCTGGTCTGAACGTGATTCTCGACTGGGTGCCAGGCCACTTCCCG	1026
Qу	355	ThrAspAspHisGlyLeuAsnThrPheAspGlyThrAlaLeuTyrGluHisAlaAspPro	374
Db	1027	ACTGATGACTTTGCCGAATTTGATGGCACGAACTTGTATGAACACAGCGATCCG	1086
Qу	375	ArgGluGlyTyrHisGlnAspTrpAsnThrLeuIleTyrAsnPheGlyArgAsnGluVal	394

SCORE Search Results Details for Application 10705195 and Search Result us-10-705-195-2.p2n.rst.

Score Home <u>Page</u>

Retrieve Application

List

SCORE System Overview

SCORE FAO

Comments / Suggestions

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-705-195-2.p2n.rst.

<u>start</u>

Go Back to previous page

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - nucleic search, using frame_plus_p2n model

Run on:

August 22, 2006, 19:37:06; Search time 8926 Seconds

(without alignments)

7160.631 Million cell updates/sec

Title:

US-10-705-195-2

Perfect score: 4112

Sequence:

1 MNRNRHIRRGYHPEAGERQI.....QTALRADKQPAVKDKQAKAK 762

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext Delop 6.0 , Delext

Searched:

48236798 seqs, 27959665780 residues

Total number of hits satisfying chosen parameters:

96473596

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+ p2n.model -DEV=x1h

-Q=/abss/ABSSWEB_spool/US10705195/runat_22082006_095551_883/app_query.fasta_1

-DB=EST -QFMT=fastap -SUFFIX=p2n.rst -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR_SCORE=pct -THR MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=200000000 -HOST=abss08

-USER=US10705195_@CGN_1_1_6323_@runat_22082006_095551_883 -NCPU=6 -ICPU=3

-NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120

-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7

-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

EST:*

Database :

1: gb_est1:*

```
2: gb_est3:*
3: gb_est4:*
4: gb_est5:*
5: gb_est6:*
6: gb_htc:*
7: gb_est2:*
8: gb_est7:*
9: gb_est8:*
10: gb est9:*
11:
    gb gss1:*
    gb_gss2:*
12:
13:
    gb_gss3:*
14:
    gb_gss4:*
```

응

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES '

Res			Query				•
	No.	Score	Match	Length	DB	ID	Description
C	1	1159.5	28.2	1261	12	CG755636	CG755636 P051-1-G0
С	2	1075	26.1	1342	12	CG755637	· CG755637 P051-1-G0
	3	947:5	23.0	1003	14	DU773085	DU773085 APKG3284.
•	4	919	22.3	922	14	DU787945	DU787945 APKH2378.
С	5	881.5	21.4	1008	14	DU785952	DU785952 APKH1378.
	6	756	18.4	1035	14	DU743159	DU743159 ASNC1588.
С	7	738.5	18.0	1161	12	CG752267	CG752267 P046-4-G1
	8	729.5	17.7	1163	12	BZ569819	BZ569819 msh2_1033
	9	715	17.4	634	13	CL675608	CL675608 PRI0115b_
	10	669	16.3	528	13	CL667597	CL667597 PRI0155c_
	11	661	16.1	732	12	CG410928	CG410928 RM1062 Lx
	12	656	16.0	584	1	AJ879817	AJ879817 AJ879817
	13	652	15.9	1060	11	BZ557122	BZ557122 pacs1-60_
С	14	623	15.2	543	11	вн783525	BH783525 fzmb013f0
С	15	613	14.9	755	12	CG410929	CG410929 RM1063 Lx
	16	581.5	14.1	3039	13	CL968925	CL968925 OsIFCC017
С	17	579.5	14.1	605	12	CG411045	.CG411045 RM359 Lxx
	18	555	13.5	2478	13	CL966805	CL966805 OsIFCC014
	19	553	13.4	2766	6	AY109521	AY109521 Zea mays
	20	550	13.4	417	14	DX059445	DX059445 KBrB065F1
	21	547	13.3	2738	, 6	AK009815	AK009815 Mus muscu
	22	547	13.3	2862	6	AK050365	AK050365 Mus muscu
	23	535.5	13.0	3012	6	AY105679	AY105679 Zea mays
	24	532	12.9	443	5	CK339918	CK339918 C0871G07-
	25	514.5	12.5	3305	6	AK050423	AK050423 Mus muscu
	26	504	12.3	2732	6	AY109532	AY109532 Zea mays
	27	495	12.0	2044	14	AY413117	AY413117 Mus muscu
С	28	493	12.0	1569	12	CG755635	CG755635 P051-1-G0
	29	492.5	12.0	717	1	AJ797306	AJ797306 AJ797306
	30	474	11.5	2109	14	AY413115	AY413115 Homo sapi
	31.		11.5	.2109	14	AY413116	AY413116 Pan trogl
	32	470.5	11.4	1275	6	AY811197	AY811197 Schistoso
С	33	470.5	11.4	1482	11	ВН770747	BH770747 LLMGtag49
	34	451	11.0	504	12	CG411053	CG411053 RM367 Lxx
С	35	442.5	10.8	609	12	CG411057	
С	36	429.5	10.4	439	12	CG411069	CG411069 RM384 Lxx
С	37	418	10.2	1317	12	BZ572034	BZ572034 msh2_240.
	38	417.5	10.2	852	5	CD438018	CD438018 EL01N0508

39	401	9.8	316	5	CK339021	CK339021 C0821D11-
40	396.5	9.6	1167	5	CD664476	CD664476 TVEST020.
41	393.5	9.6	825	8	CO467539	CO467539 MZCCL2004
42	388.5	9.4	843	8	CO098553	CO098553 GREa22P
43	379.5	9.2	906	8	CO456486	CO456486 MZCCL2000
44	377	9.2	1411	10	DT989097	DT989097 CLJ241-E0
45	375	9.1	706	5	CF638461	CF638461 D02_H06 F

ALIGNMENTS

```
RESULT 1
CG755636/c
                                     1261 bp
                                                DNA
                                                         linear
                                                                  GSS 24-OCT-2003
            CG755636
LOCUS
DEFINITION P051-1-G03.yb Ppa EcoRI BAC Library Pristionchus pacificus genomic,
            genomic survey sequence.
ACCESSION
            CG755636
VERSION
            CG755636.1 GI:37982332
KEYWORDS
            GSS.
SOURCE
            Pristionchu's pacificus
  ORGANISM Pristionchus pacificus
            Eukaryota; Metazoa; Nematoda; Chromadorea; Diplogasterida;
            Neodiplogasteridae; Pristionchus.
               (bases 1 to 1261)
REFERENCE
            Srinivasan, J., Sinz, W., Jesse, T., Wiggers-Perebolte, L., Jansen, K.,
  AUTHORS
            Buntjer, J., van der Meulen, M. and Sommer, R.J.
            An integrated physical and genetic map of the nematode Pristionchus
  TITLE
            pacificus
            Mol. Genet. Genomics 269 (5), 715-722 (2003)
  JOURNAL
   PUBMED
            12884007
            Contact: Sommer RJ
COMMENT
            Evolutionary Biology
            Max-Planck-Institute for Developmental Biology
            Spemannstr. 37-39, Tuebingen D-72076, Germany
            Tel: 00497071601371
            Fax: 00497071601498
            Email: ralf.sommer@tuebingen.mpg.de
            Class: BAC ends.
FEATURES
                     Location/Qualifiers
                     1. .1261
     source
                     /organism="Pristionchus pacificus"
                     /mol type="genomic DNA"
                     /strain="California"
                     /db_xref="taxon:54126"
                     /clone lib="Ppa EcoRI BAC Library"
                     /note="The library was generated by a partial digest of
                     the genomic DNA with EcoRI and cloning into the BAC
                     vector."
ORIGIN
Alignment Scores:
Pred. No.:
                        3.18e-115
                                        Length:
                                                        1261
                        1159.50
                                        Matches:
                                                        218
Score:
                                                        40
                        79.6%
                                        Conservative:
Percent Similarity:
                                                        60
                        67.3%
                                        Mismatches:
Best Local Similarity:
                                                        6
                                        Indels:
Query Match:
                        28.2%
                                                        2
                                        Gaps:
DB:
                        12
US-10-705-195-2 (1-762) x CG755636 (1-1261)
```

Qу

133 ProTyrGluThrLeuGlyAlaHisPheAlaGlu-----MetAspGlyValSerGlyVal 150

Db	. 1050		991
Qу	151	ArgPheAlaVal-TrpAlaProAsnAlaArg-ArgValSerValIleGlyGluPheA	169
Db	990		931
Qy	169	<pre>snGlyTrpAspSerArgArgHisAlaMetArgProHisThrGlyAsnGlyLeuTrpAspI ::: :::: </pre>	189
Db	930	ACTACTGGGACGGTCGCCGTCACCCGATGCCCCTGCGTAAAGAGAGCGGCATCTGGGAAC	871
Qу	189	<pre>lePheIleProGlyValGlyLeuAsnAlaLeu-TyrLysPheSerValLeuAspAlaAsn :: </pre>	208
Db	870	TGTTTATCCCTGGGGCGCATAACGGTCAGCTCTTATAAATACGAGATGATTGAT	811
Qу	209	GlyAsnIleArgGluLysAlaAspProTyrAlaPheGlyAlaGluLeuArgProThrThr	228
Db	. 810	GGCAACTTGCGTCTGAAGTCCGACCCTTATGCCTTCGAAGCGCAAATGCGCCCGGAAACC	751
Qу	229	AlaSerValValArgGlyLeuProAlaLysAlaGluAlaProAlaPheArgArgAla	248
Db	750	GCGTCTCTTATTTGCGGGCTGCCGGAAAAGGTTGTACAGACTGAAGAGCGCAAAAAAAGCG	691
Qу	249	AsnSerValGluAlaProIleSerIleTyrGluValHisLeuGlySerTrpArgArgAsn ::::	268
Db	. 690	AATCAGTTTGATGCGCCAATCTCTATTTATGAAGTTCACCTGGGTTCCTGGCGTCGCCAC	631
Qу	269	ProGluAsnAsnTyrTrpLeuThrTyrThrGlnLeuAlaAspGluLeuValAsnTyrVal ::: ::: ::: :::	. 288
Db	630	ACCGACAACAATTTCTGGTTGAGCTACCGCGAGCTGGCCGATCAACTGGTGCCTTATGCT	571
Qу	289	LysAspMetGlyPheThrHisIleGluLeuLeuProLeuSerGluTyrProPheAspGly	308
Db	570	AAATGGATGGCCTTTACCCACCTCGAACTACTGCCCATTAACGAGCATCCCTTCGATGGC	511
Qу	309	SerTrpGlyTyrGlnAlaThrGlyLeuTyrAlaProThrSerArgPheGlySerProAsp	328
Db	510	AGTTGGGGTTATCAGCCAACCGGCCTGTATGCACCAACCCGCCGTTTTGGTACTCGCGAC	451
Qу	329	GluLeuLysAlaLeuIleAspAlaAlaHisAlaAlaGlyIleSerValIleLeuAspTrp ::: :::	348
Db	450	GACTTCCGTTATTTCATTGATGCCGCACACGCAGCTGGTCTGAACGTGATTCTCGACTGG	391
Qу	349	ValAlaGlyHisPheProThrAspAspHisGlyLeuAsnThrPheAspGlyThrAlaLeu	368
Db	390	GTGCCAGGCCACTTCCCGACCGATGACTTTGCGCTTGCCGAATTTGATGGCACGAACTTG	331
Qу	369	TyrGluHisAlaAspProArgGluGlyTyrHisGlnAspTrpAsnThrLeuIleTyrAsn	388
Db	330	TATGAACACAGCGATCCGCGTGAAGGCTATCATCAGGACTGGAACACGCTGATCTACAAC	271
Qу	389	PheGlyArgAsnGluValLysAsnPheLeuGlnGlyAsnAlaLeuTyrTrpIleGluArg :::	408
Db	270	TATGGTCGCCGTGAAGTCAGTAACTTCCTCGTCGGTAACGCGCTTTACTGGATTGAACGT	211
Qу	409	PheGlyPheAspGlyIleArgValAspAlaValAlaSerMetIleTyrArgAsnTyrSer	428
Db	210	TTTGGTATTGATGCGCTGCGCGTCGATGCGGTGGCGTCAATGATTTATCGCGACTACAGC	151
Qy	429	ArgLysAspGlyGluTrpIleProAsnArgTyrGlyGlySerGluAsnLeuGluAlaIle	448

SCORE Search Results Details for Application 10705195 and Search Result us-10-705-195-1.rst.

Score Home Page

Retrieve Application

List

SCORE System Overview

SCORE FAQ

Comments / Suggestions

This page gives you Search Results detail for the Application 10705195 and Search Result us-10-705-195-1.rst.

start

Go Back to previous page

```
GenCore version 5.1.9
Copyright (c) 1993 - 2006 Biocceleration Ltd.
```

OM nucleic - nucleic search, using sw model

Run on:

August 22, 2006, 19:25:16; Search time 10532 Seconds

(without alignments)

13140.937 Million cell updates/sec

Title:

US-10-705-195-1

Perfect score: 2475

Sequence:

1 actgtatgccgtgcagctgg.....taaagcggcaccatactgcc 2475

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

48236798 seqs, 27959665780 residues

Total number of hits satisfying chosen parameters:

96473596

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

EST:*

1: gb est1:* 2: gb_est3:* 3: -gb_est4:* 4: gb_est5:* 5: gb_est6:*

6: gb htc:* 7: gb est2:* 8: qb est7:* 9: qb est8:*

10: gb est9:* 11: gb_gss1:* 12: gb gss2:* 13: gb_gss3:*

14: gb gss4:*

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			ક				
Res	sult		Query				
	No.	Score		Length	DB	ID	Description
		421.6	17.0	1261	12	CG755636	CG755636 P051-1-G0
С	1	388.4	15.7	1342	12	CG755637	CG755637 P051-1-G0
С	. 2				14	DU773085	DU773085 APKG3284.
		335.4	13.6	1003 922			DU787945 APKH2378.
_	4	302	12.2		14	DU787945	CG752267 P046-4-G1
С	5	275.2	11.1	1161	12	CG752267	CG752287 P046-4-G1 CL667597 PRIO155c
	6	262	10.6	528	13	CL667597	BZ569819 msh2 1033
	7	260.8	10.5	1163	12	BZ569819	CL675608 PRIO115b
_	8	258.4	10.4	634	13 11	CL675608	BH783525 fzmb013f0
С	9	248.8	10.1	543		BH783525	BZ557122 pacs1-60
	10	238.6	9.6	1060	11	BZ557122	DU785952 APKH1378.
С	11	227.2	9.2	1008	14	DU785952	CG410928 RM1062 Lx
	12	219.6	8.9	732	12	CG410928	DX059445 KBrB065F1
•	13	.210.6	8.5	417	14	DX059445	CK339918 C0871G07-
	14	207.8	8.4	443	5	CK339918	CG411045 RM359 Lxx
С	15	203.4	8.2	605	12	CG411045	AJ879817 AJ879817
	16	203.2	8.2	584	1	AJ879817	DU754880 ASNF4137.
	17	195.4	7.9	971	14	DU754880	CG410929 RM1063 Lx
С	18	194.8	7.9		12	CG410929	CG755635 P051-1-G0
С	19	187.6	7.6	1569	12	CG755635	BZ572034 msh2 240.
С	20	174.2	7.0	1317	. 12	BZ572034	CG411057 RM372 Lxx
С	21	158.2	6.4	609	12	CG411057	CG411057 RM372 LXX CG411069 RM384 LXX
С	22	154.8	6.3	439	12	CG411069	CK339021 C0821D11-
	23	146.8	5.9	316	5	CK339021	CG411053 RM367 Lxx
	24	146.4	5.9	504	12	CG411053	BI719233 1031042C0
	25	144.4	5.8	671	2	BI719233	AJ797306 AJ797306
	26	141.4	5.7	717	1 [.] 14	AJ797306 DU743159	DU743159 ASNC1588.
	27	133.6	5.4	1035 320	8	CV983818	CV983818 UMC-bof 0
С	28	133	5.4	663	5		CF638951 D09 B01 F
	29	130.8	5.3		5 5	CF638951 CF638461	CF638461 D02 H06 F
•	30	130.8	5.3	706 950			DR638327 EST102895
	31	113		361	10 13	DR638327 CZ443531	CZ443531 contig RS
С	32	112.2	4.5	903	11	BZ554984	BZ554984 pacs1-60
C	33	109	4.4	216	5	CK336186	CK336186 C0143B08-
C	34	107.8 106	4.4 4.3		12	BZ572104	BZ572104 msh2 2516
С	35 36	105	4.2	729	2	BF864125	BF864125 963049D02
		104.8	4.2		1	AA203085	AA203085 LD03583.5
	37	104.6	4.2	650	5	CD596575	CD596575 RK102A4B1
	38 . 39 .		4.2	1527	6	CNS0EPGI	. CR635676 Tetraodon
_	39 40	100.4 99.6	4.0	1423	12	BZ572026	BZ572026 msh2 236.
С	41	99.6	4.0	740	8	CO554971	CO554971 AGENCOURT
	41	99.4		740	8	CO568637	CO568637 AGENCOURT
	42	99.4	4.0	993	14	DU745819	DU745819 ASNC2988.
	4.3	99.2	4.0	993 697	8	CV076102	CV076102 AGENCOURT
	44	97.4	3.9	634	2	BI890238	BI890238 ZF637-2-0
	43	21.4	3.9	054	_	21070230	51070230 61037 2 0

ALIGNMENTS

RESULT 1 CG755636/c

LOCUS CG755636

1261 bp DNA

linear GSS 24-OCT-2003

```
P051-1-G03.yb Ppa EcoRI BAC Library Pristionchus pacificus genomic,
DEFINITION
          genomic survey sequence.
ACCESSION
          CG755636
VERSION
          CG755636.1 GI:37982332
KEYWORDS
           GSS.
SOURCE
          Pristionchus pacificus
 ORGANISM
          Pristionchus pacificus
          Eukaryota; Metazoa; Nematoda; Chromadorea; Diplogasterida;
          Neodiplogasteridae; Pristionchus.
             (bases 1 to 1261)
REFERENCE
          Srinivasan, J., Sinz, W., Jesse, T., Wiggers-Perebolte, L., Jansen, K.,
 AUTHORS
          Buntjer, J., van der Meulen, M. and Sommer, R.J.
          An integrated physical and genetic map of the nematode Pristionchus
 TITLE
          pacificus
          Mol. Genet. Genomics 269 (5), 715-722 (2003)
 JOURNAL
          12884007
  PUBMED
COMMENT
          Contact: Sommer RJ
          Evolutionary Biology
          Max-Planck-Institute for Developmental Biology
           Spemannstr. 37-39, Tuebingen D-72076, Germany
          Tel: 00497071601371
           Fax: 00497071601498
          Email: ralf.sommer@tuebingen.mpg.de
          Class: BAC ends.
                  Location/Qualifiers
FEATURES
                   1. .1261
    source
                   /organism="Pristionchus pacificus"
                   /mol type="genomic DNA"
                   /strain="California"
                   /db_xref="taxon:54126"
                  /clone lib="Ppa EcoRI BAC Library"
                   /note="The library was generated by a partial digest of
                   the genomic DNA with EcoRI and cloning into the BAC
                   vector."
ORIGIN
                              Score 421.6; DB 12;
                                                 Length 1261;
 Query Match
                       17.0%;
                       67.4%; Pred. No. 1e-95;
 Best Local Similarity
                                                                     2;
 Matches 623; Conservative
                             0; Mismatches 299;
                                                 Indels
                                                          2; Gaps
         630 TTTGGGCGCCCAACGCGCG-GCGGGTATCGGTCATCGGCGAATTCAACGGCTGGGACAGC 688
Qу
            976 TTTGGGCTCCAAACGCCCGTTCGGGTCTCGGTGGTTGGGCAATTCAACTACTGGGACGGT 917
Db
         689 CGCCGCCATGCCATGCGTCCGCACACAGGCAACGGCCTGTGGGACATCTTTATCCCCGGC 748
Qy
            916 CGCCGTCACCCGATGCCCCTGCGTAAAGAGAGCGGCATCTGGGAACTGTTTATCCCTGGG 857
Db
         749 GTCGGCCTCAACGCGCT-GTATAAATTCTCCGTACTCGATGCCAACGGCAACATCCGCGA 807
Qу
                         111
                            808 AAAAGCCGACCCTACGCATTCGGCGCGGAGCTGCGCCCGACCACCGCATCCGTGGTGCG 867
Qу
                +11111
         796 GAAGTCCGACCCTTATGCCTTCGAAGCGCAAATGCGCCCGGAAACCGCGTCTCTTATTTG 737
Db
         868 CGGCTTGCCGGCCAAAGCCGAAGCGCCCGCTTTCCGCCGCCGCCGCCAACTCCGTGGAAGC 927
Qy
                       111
                            III
                                                   \Pi
                 736 CGGGCTGCCGGAAAAGGTTGTACAGACTGAAGAGCGCAAAAAAAGCGAATCAGTTTGATGC 677
Db
         928 GCCCATCAGCATTTACGAAGTCCATCTCGGCTCGTGGCGCGCAATCCCGAAAACAACTA 987
Qу
```

```
676 GCCAATCTCTATTTATGAAGTTCACCTGGGTTCCTGGCGTCGCCACACCGACAACAATTT 617
Db
       988 CTGGCTCACCTACACGCAGCTGGCCGACGAATTGGTGAACTATGTAAAAGACATGGGCTT 1047
Qу
          1111 : 1 1111
                       1048 CACCCACATCGAGCTGCTCCTTGTCCGAATATCCGTTCGACGGCTCATGGGGCTACCA 1107
Qу
           556 TACCCACCTCGAACTACTGCCCATTAACGAGCATCCCTTCGATGGCAGTTGGGGTTATCA 497
Db
       1108 AGCCACCGGCCTGTATGCACCGACCAGCCGCTTCGGCTCGCCCGATGAGCTGAAAGCCCT 1167
Qу
            496 GCCAACCGGCCTGTATGCACCCAACCCGCCGTTTTGGTACTCGCGACGACTTCCGTTATTT 437
Db
       1168 GATTGACGCCGCCCACGCCGGCATCAGCGTGATTCTCGACTGGGTAGCGGGGCACTT 1227
Qу
           436 CATTGATGCCGCACACGCAGCTGGTCTGAACGTGATTCTCGACTGGGTGCCAGGCCACTT 377
Db
       Qу
          376 CCCGACCGATGACTTTGCGCTTGCCGAATTTGATGGCACGAACTTGTATGAACACAGCGA 317
Db
       1288 CCCGCGCGAAGGCTACCATCAGGATTGGAACACGCTGATTTACAACTTCGGCCGCAACGA 1347
Qу
           316 TCCGCGTGAAGGCTATCATCAGGACTGGAACACGCTGATCTACAACTATGGTCGCCGTGA 257
Db
      1348 AGTCAAAAACTTCCTGCAGGGCAACGCGCTCTACTGGATTGAGCGTTTCGGCTTCGACGG 1407
Qу
          Db
       256 AGTCAGTAACTTCCTCGTCGGTAACGCGCTTTACTGGATTGAACGTTTTTGGTATTGATGC 197
      1408 CATCCGCGTGGACGCCGTGGCCTCGATGATTTACCGCAACTACTCGCGCAAAGACGGCGA 1467
Qу
            196 GCTGCGCGTCGATGCGGTGGCGTCAATGATTTATCGCGACTACAGCCGTAAAGAGGGGGA 137
Db
      1468 GTGGATTCCCAACCGCTACGGCGGCAGCGAAAATCTGGAAGCCATCGCCTTTTTGCGCCA 1527
Qу
          136 GTGGATCCCGAACGAATTTGGCGGGCGCGAGAATCTTGAAGCGATTGAATTCGAGCTCGG 77
Db
      1528 AACCAATGCCGTCTTAAAAAGCGA 1551
Qу
                   76 TACCCGGGGATCCTCTAGAGTCGA 53
Db
RESULT 2
CG755637/c
LOCUS
         CG755637
                           1342 bp
                                   DNA
                                         linear
                                                GSS 24-OCT-2003
         P051-1-G03.yc Ppa EcoRI BAC Library Pristionchus pacificus genomic,
DEFINITION
         genomic survey sequence.
ACCESSION
         CG755637
         CG755637.1 GI:37982334
VERSION
KEYWORDS
         GSS.
SOURCE
         Pristionchus pacificus
         Pristionchus pacificus
 ORGANISM
         Eukaryota; Metazoa; Nematoda; Chromadorea; Diplogasterida;
         Neodiplogasteridae; Pristionchus.
           (bases 1 to 1342)
REFERENCE
         Srinivasan, J., Sinz, W., Jesse, T., Wiggers-Perebolte, L., Jansen, K.,
 AUTHORS
         Buntjer, J., van der Meulen, M. and Sommer, R.J.
         An integrated physical and genetic map of the nematode Pristionchus
 TITLE
         pacificus
```