Лабораторная работа № 4.7.2 Эффект Поккельса

Балдин Виктор

2 апреля 2025 г.

Цель: исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

Оборудование: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

1 Теоретические сведения

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с цетральноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k},\mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.\tag{1}$$

Рис. 1 — Оптическая часть экспериментальной установки

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — результат интерференции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен появляются тёмные и наоборот). В случае, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,\tag{2}$$

где L – расстояние от центра кристалла до экрана, l – длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для

Рис. 2 — Экспериментальная установка

поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

$$I_{\text{вых}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right),\tag{3}$$

где $U_{\lambda/2}=\frac{\lambda}{4A}\frac{d}{l}$ — полуволновое напряжение, d — поперечный размер кристалла. При напряжении $U=E_{\text{эл}}d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

На Рис. 2 представлена схема всей установки (оптическая часть изорбажена на Рис. 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двоякопреломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

2 Ход работы

- 1. Собрали схему согласно рис. 1 и провели юстировку системы.
- 2. Выбрали расстояние от середины кристалла до экрана $L = 70 \pm 0.5$ см, длина волны гелийнеонового лазера $\lambda = 0.63$ в ниобате лития $n_0 = 2.29$, длина кристалла l = 26 мм.
- 3. Сняли зависимость радиуса тёмных колец от их номер:

Построили график $r^2 = f(m)$:

m	r, cm
1	1.8
2	3.3
3	4.1
4	4.9
5	5.7
6	6.4
7	6.8
8	7.2

Рис. 3 — График $r^2 = f(m)$.

Получим $k=7.1\,\pm\,0.3~cm^2,$ тогда из формулы 2 получаем

$$n_o - n_e = \frac{\lambda}{l} \frac{(n_o L)^2}{k} = 0.088 \pm 0.004$$

Табличное значение для двулучепреломления ниобата лития: $n_0-n_e=0.09$. Видим, что в пределах погрешности оно совпадает с полученным.

4. Полуволновое напряжение ниобата лития $U_{\lambda/2} = 450 \pm 30 \; \mathrm{B}.$

5. По фигурам Лиссажу получим $U_{\lambda/2} = 420 \pm 30 \; {\rm B}.$

3 Вывод:

В работе с помощью интерференционной картины было определено двулучепреломления ниобата лития (по угловому коэффициенту зависимости квадрата радиуса тёмного пятна от номера тёмного пятна с помощью формулы 2), которое с хорошей точностью сошлось с табличным значением. Также был исследован эффект Поккельса и двумя способами определено полуволновое напряжение - с помощью наблюдением за изменением интенсивности и с помощью фигур Лиссажу, также полученное значение было проверено с помощью следующего факта: при напряжении $U_{\lambda/4}$ должна получиться круговая поляризация.