

TSUBAME4.0:

Supercomputer for Everybody for collaboration of Computing Science/Data Analysis/Al&Machine Learning

Data Analysis

Computing Schience

AI&Machine Learning

Integrated by Hewlett Packard Enterprise

TSUBAME4.0
Operation is started in Apr 2024!

It will remain an important infrastructure on the unified university (Autumn 2024~)

TSUBAME4.0 Overview

Computing Nodes: 240 HPE Cray XD665 (4x H100 + 2x 96-core EPYC)

Total computation speed:

- **66.8 PFlops** (FP64)
- **952 PFlops** (FP16 for AI)

Storage:

HPE Cray ClusterStor E1000

Total capacity:

- 44 PByte (Hard disk part)
- 327 TByte (SSD part)

System in 30 racks

- Compute: 23 racks
- Storage&mgmt.: 7 racks

Installed in Suzukakedai campus, Tokyo Tech

Integrated by HPE

TSUBAME4.0 Specifications

	TSUBAME3.0(2017-)	TSUBAME4.0(Apr 2024-)	
Computational Performance			
FP64 Matrix	1 2 D E I a m a	66.8PFlops (5.5x)	
• FP64 Vector	12PFlops	34.7PFlops (2.8x)	
Deep Learning (FP16 Matrix)	47PFlops	952PFlops (20x)	
GPU Memory Bandwidth	1.56 PB/s	3.07 PB/s (1.97x)	
Number of Nodes	540 Nodes (homogeneous config)	240 nodes (homogeneous config)	
GPUs	2160 NVIDIA P100	960 NVIDIA H100	
Cooling / Inlet Water Temperature	Free Cooling with Cooling Tower 32°C	Chiller 20℃	
Power Consumption (incl. cooling)	1080kW (Spec. value) 400~600kW(Operation) 3	1820kW (Spec. value) 450~800kW(Expected. Op.) 730kW Today	

TSUBAME4.0 Node – HPE Cray XD665 4U Server

CPU: 2x AMD EPYC 9654

96 cores, 2.4~3.55GHz

Memory: 24 x 32GiB DDR5-4800

768 GiB in total

GPU: 4x NVIDIA H100

SXM5 94GB HBM2e

Network: 4x InfiniBand NDR200

SSD: 1.92TB NVMe

4 GPUs

Cooling Fans

4U height (17.8cm)

SSD

4 Network Interfaces

Power Modules (54V, 12V)

TSUBAME4.0 Node Specifications

	TSUBAME3.0	TSUBAME4.0
CPU	Intel Xeon 2680v4 ×2	AMD EPYC 9654 ×2
 Clock, #cores 	$2.4GHz$, $28 cores(=14\times2)$	2.4GHz, 192 cores (=96×2)
Main Memory	DDR3-2400 4ch×2	DDR5-4800 12ch×2
• Size	256GiB	768GiB
Network	OmniPath 100Gbps×4	InfiniBand NDR 200Gbps×4
OS	SUSE Linux Enterprise 12	RedHat Enterprise Linux 8
GPU	NVIDIA P100 SXM×4	NVIDIA H100 SXM5 94GB HBM2e ×4 *
Specs per GPU:		
• Speed (FP64)	5.3TFlops	66.9TFlops (Matrix), 33.4TFlops(Vector)
 Mem Size 	16GB	94GB
 Mem Speed 	0.73TB/s	2.39TB/s

*: H100 customized variant aka HPC SKU (memory size and speed differ from normal H100)

GPU Model Used in TSUBAME4

NVIDIA H100 SXM5 94GB HBM2e

4GPUs × 240nodes = 960GPUs in total

	H100 PCIe model	H100 94GB Model (TSUBAME4)	H100 SXM5 (Normal Model)
Speed (FP64)	51TFlops (Mat) 26TFlops (Vec)	67TFlops (Mat) 34TFlops (Vec)	
Speed (FP16)	756TFlops (Mat)	990TFlo	ops (Mat)
Mem Size	80GB <	94GB	> 80GB
Mem Speed	2.0TB/s <	2.39TB/s	< 3.35TB/s
	HBM2e (0.4TB/s?) × 5	HBM2e $(0.4TB/s?) \times 6$	$HBM3 (0.67TB/s?) \times 5$

Larger GPU memory size is important for recent AI tasks (LLM models, AlphaFold/OmegaFold...)

⇔ Trade off with lower memory speed → Longer computing time

CPU Model Used in TSUBAME4

AMD EPYC 9654 x 2CPUs per node

- Genoa 96cores with chiplet technology
- 12 DDR5-4800 ch × 2CPUs = 24 ch
- \blacksquare (96 cores x 2CPUs) × 240nodes = 46,080 in total

Largest core counts as the currentgen x86 CPUs

→ Higher throughput in data analysis

Photo by AMD

Dynamic Node Partitioning in TSUBAME4

TSUBAME3.0 vs TSUBAME4.0

• #CPU cores per node: 28 cores vs 192 cores

#Nodes: 540 nodes vs 240 nodes

Since a single node is more precious, node partitioning is even more important

More instance types are defined

current plan, to be changed

- 160cores
- 80cores
- 40cores
- 16cores
- 8cores
- 4cores

A GPU is partitioned by MIG

New Data Center for TSUBAME4.0

Ookayama (TSUBAME1-3)

Suzukakedai (TSUBAME4)

Alimateda Airport (TSUBAME4)

Alimateda Airport

- Renovated old experimental factory for power plant research
- TSUBAME3 room in Ookayama was too small (~100m²)
- Suzukakedai is located in Kanagawa Pref (Yokohama City)
 - Applicable local laws are different

TSUBAME4 Cooling loops

- System is cooled by chillers
 - TSUBAME3 compute nodes was cooled by cooling towers (storage, mgmt.: old chillers)
- Processors are cooled by water, other parts are cooled by air
 - 80~90% by water
 - Same as TSUBAME3
- Air temperature at CDU is not accurate
 - Measured via insulation materials
- Other sensors' accuracy is not verified