Ex: 5.1

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{34.5 \text{ pF/m}}{4 \text{ nm}} = 8.625 \text{ fF/}\mu\text{m}^2$$

$$\mu_n = 450 \text{ cm}^2/\text{V} \cdot \text{S}$$

$$k'_n = \mu_n C_{ox} = 388 \,\mu\text{A/V}^2$$

$$V_{OV} = (v_{GS} - V_t) = 0.5 \text{ V}$$

$$g_{DS} = \frac{1}{1 \text{ k}\Omega} = k'_n \frac{W}{L} V_{OV} \Rightarrow \frac{W}{L} = 5.15$$

$$L = 0.18 \,\mu\text{m}$$
, so $W = 0.93 \,\mu\text{m}$

Ex: 5.2
$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{34.5 \text{ pF/m}}{4 \text{ nm}} = 8.6 \text{ fF/}\mu\text{m}^2$$

$$\mu_n = 450 \text{ cm}^2/\text{V} \cdot \text{s}$$

$$k'_{n} = \mu_{n} C_{ox} = 387 \,\mu\text{A/V}^{2}$$

$$I_D = \frac{1}{2} k'_n \frac{W}{L} V_{OV}^2 = 0.3 \text{ mA}, \ \frac{W}{L} = 20$$

$$V_{OV} = 0.28 \text{ V}$$

 $V_{DS, \text{min}} = V_{OV} = 0.28 \text{ V}$, for saturation

Ex: 5.3
$$I_D = \frac{1}{2} k'_n \frac{W}{L} V_{OV}^2$$
 in saturation

Change in I_D is:

- (a) double L, 0.5
- (b) double W, 2
- (c) double V_{OV} , $2^2 = 4$
- (d) double V_{DS} , no change (ignoring length modulation)
- (e) changes (a)-(d), 4

Case (c) would cause leaving saturation if

$$V_{DS} < 2V_{OV}$$

Ex: 5.4 For saturation $v_{DS} \ge V_{OV}$, so V_{DS} must be changed to $2V_{OV}$

$$I_D = \frac{1}{2} k'_n \frac{W}{L} V_{OV}^2$$
, so I_D increases by a factor of 4.

Ex: 5.5
$$V_{OV} = 0.5 \text{ V}$$

$$g_{DS} = k_n' \frac{W}{L} V_{OV} = \frac{1}{1 \text{ k}\Omega}$$

$$\therefore k_n = k'_n \frac{W}{L} = \frac{1}{1 \times 0.5} = 2 \text{ mA/V}^2$$

For $v_{DS} = 0.5 \text{ V} = V_{OV}$, the transistor operates in saturation, and

$$I_D = \frac{1}{2} k_n' \frac{W}{L} V_{OV}^2 = 0.25 \text{ mA}$$

Similarly, $V_{DS} = 1$ V results in saturation-mode operation and $I_D = 0.25$ mA.

Ex: 5.6
$$V_A = V'_A L = 50 \times 0.8 = 40 \text{ V}$$

$$\lambda = \frac{1}{V_A} = 0.025 \text{ V}^{-1}$$

$$V_{DS} = 1 \text{ V} > V_{OV} = 0.5 \text{ V}$$

$$\Rightarrow$$
 Saturation: $I_D = \frac{1}{2} k'_n \frac{W}{L} V_{OV}^2 (1 + \lambda V_{DS})$

$$I_D = \frac{1}{2} \times 200 \times \frac{16}{0.8} \times 0.5^2 (1 + 0.025 \times 1)$$

$$= 0.51 \text{ mA}$$

$$r_o = \frac{V_A}{I_D} = \frac{40}{0.5} = 80 \text{ k}\Omega$$

where I_D is the value of I_D without channel-length modulation taken into account.

$$r_o = \frac{\Delta V_{DS}}{\Delta I_O} \Rightarrow \Delta I_O = \frac{2 \text{ V}}{80 \text{ k}\Omega} = 0.025 \text{ mA}$$

Ex: 5.7

$$V_{tp} = -1 \text{ V}$$

$$k_n' = 60 \,\mu\text{A/V}^2$$

$$\frac{W}{I} = 10 \Rightarrow k_p = 600 \,\mu\text{A/V}^2$$

(a) Conduction occurs for $V_{SG} \ge |V_{tp}| = 1 \text{ V}$

$$\Rightarrow V_G \le 5 - 1 = 4 \text{ V}$$

(b) Triode region occurs for $V_{DG} \ge |V_{tp}| = 1 \text{ V}$

$$\Rightarrow V_D \ge V_G + 1$$

(c) Conversely, for saturation

$$V_{DG} \leq |V_{tp}| = 1 \text{ V}$$

$$\Rightarrow V_D < V_G + 1$$

(d) Given $\lambda \cong 0$

$$I_D = \frac{1}{2} k_p' \frac{W}{L} |V_{OV}|^2 = 75 \,\mu\text{A}$$

$$|V_{OV}| = 0.5 \text{ V} = V_{SG} - |V_{tp}|$$

$$\Rightarrow V_{SG} = |V_{OV}| + |V_{tp}| = 1.5 \text{ V}$$

$$V_G = 5 - |V_{SG}| = 3.5 \text{ V}$$

$$V_D < V_G + 1 = 4.5 \text{ V}$$

(e) For
$$\lambda = -0.02 \text{ V}^{-1}$$
 and $|V_{OV}| = 0.5 \text{ V}$, $I_D = 75 \text{ }\mu\text{A}$ and $r_o = \frac{1}{|\lambda|I_D} = 667 \text{ }k\Omega$ (f) At $V_D = 3 \text{ V}$, $V_{SD} = 2 \text{ V}$
$$I_D = \frac{1}{2}k'_n \frac{W}{L}|V_{OV}|^2 (1 + |\lambda||V_{SD}|)$$
$$= 75 \text{ }\mu\text{A} (1.04) = 78 \text{ }\mu\text{A}$$
 At $V_D = 0 \text{ V}$, $V_{SD} = 5 \text{ V}$
$$I_D = 75 \text{ }\mu\text{A} (1.10) = 82.5 \text{ }\mu\text{A}$$

$$r_o = \frac{\Delta V_{DS}}{\Delta I_D} = \frac{3 \text{ V}}{4.5 \text{ }\mu\text{A}} = 667 \text{ }k\Omega$$

which is the same value found in (c).

Ex: 5.8

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} V_{OV}^{2} \Rightarrow 0.3 = \frac{1}{2} \times \frac{60}{1000}$$

$$\times \frac{120}{3} V_{OV}^{2} \Rightarrow$$

$$V_{OV} = 0.5 \text{ V} \Rightarrow V_{GS} = V_{OV} + V_{t} = 0.5 + 1$$

$$= 1.5 \text{ V}$$

$$V_{S} = -1.5 \text{ V} \Rightarrow R_{S} = \frac{V_{S} - V_{SS}}{I_{D}}$$

$$= \frac{-1.5 - (-2.5)}{0.3}$$

$$R_{S} = 3.33 \text{ k}\Omega$$

$$R_{D} = \frac{V_{DD} - V_{D}}{I_{D}} = \frac{2.5 - 0.4}{0.3} = 7 \text{ k}\Omega$$

Ex: 5.9

$$V_{tm} = 0.5 \text{ V}$$

 $\mu_n C_{ox} = 0.4 \text{ mA/V}^2$
 $\frac{W}{L} = \frac{0.72 \text{ } \mu\text{m}}{0.18 \text{ } \mu\text{m}} = 4.0$
 $\lambda = 0$

Saturation mode ($v_{GD} = 0 < V_{tn}$):

$$V_D = 0.7 \text{ V} = 1.8 - I_D R_D$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_D - V_{in})^2 = 0.032 \text{ mA}$$

$$\therefore R = \frac{1.8 - 0.7}{0.032 \text{ mA}} = 34.4 \text{ k}\Omega$$

Ex: 5.10

Since Q_2 is identical to Q_1 and their V_{GS} values are the same,

$$I_{D2} = I_{D1} = 0.032 \text{ mA}$$

For Q_2 to operate at the triode–saturation boundary, we must have

$$V_{D2} = V_{OV} = 0.2 \text{ V}$$

$$\therefore R_2 = \frac{1.8 \text{ V} - 0.2 \text{ V}}{0.032 \text{ mA}} = 50 \text{ k}\Omega$$

Ex: 5.11
$$R_D = 12.4 \times 2 = 24.8 \text{ k}\Omega$$

 $V_{GS} = 5 \text{ V}$, assume triode region:

$$I_{D} = k'_{n} \frac{W}{L} \left[(V_{GS} - V_{t}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right]$$

$$I_{D} = \frac{V_{DD} - V_{DS}}{R}$$

$$\frac{5 - V_{DS}}{24.8} = 1 \times \left[(5 - 1) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

$$\Rightarrow V_{DS}^{2} - 8.08 V_{DS} + 0.4 = 0$$

$$\Rightarrow V_{DS} = 0.05 \text{ V} < V_{OV} \Rightarrow \text{triode region}$$

$$I_{D} = \frac{5 - 0.05}{24.8} = 0.2 \text{ mA}$$

Ex: 5.12 As indicated in Example 5.6,

 $V_D \ge V_G - V_t$ for the transistor to be in the saturation region.

$$V_{D\min} = V_G - V_t = 5 - 1 = 4 \text{ V}$$
 $I_D = 0.5 \text{ mA} \Rightarrow R_{D\max} = \frac{V_{DD} - V_{D\min}}{I_D}$
 $= \frac{10 - 4}{0.5} = 12 \text{ k}\Omega$

Ex: 5.13

$$I_D = 0.32 \text{ mA} = \frac{1}{2} k'_n \frac{W}{L} V_{OV}^2 = \frac{1}{2} \times 1 \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.8 \text{ V}$$

$$V_{GS} = 0.8 + 1 = 1.8 \text{ V}$$

$$V_G = V_S + V_{GS} = 1.6 + 1.8 = 3.4 \text{ V}$$

$$R_{G2} = \frac{V_G}{I} = \frac{3.4}{1 \, \mu A} = 3.4 \, \text{M}\Omega$$

$$R_{G1} = \frac{5 - 3.4}{1 \, \mu A} = 1.6 \, \text{M}\Omega$$

$$R_S = \frac{V_S}{0.32} = 5 \text{ k}\Omega$$

$$V_D = 3.4 \text{ V}$$
, then $R_D = \frac{5 - 3.4}{0.32} = 5 \text{ k}\Omega$

Ex: 5.14

$$V_{tp} = -0.4 \text{ V}$$

$$k'_{p} = 0.1 \text{ mA/V}^{2}$$

$$W = 10 \text{ µm}$$

$$\frac{W}{L} = \frac{10 \ \mu \text{m}}{0.18 \ \mu \text{m}} \Rightarrow k_p = 5.56 \ \text{mA/V}^2$$

$$V_{SG} = |V_{tp}| + |V_{OV}|$$

$$= 0.4 + 0.6 = 1 \text{ V}$$

$$V_{\rm S} = +1 {\rm V}$$

Since $V_{DG} = 0$, the transistor is operating in saturation, and

$$I_D = \frac{1}{2} k_p' V_{OV}^2 = 1 \text{ mA}$$

$$\therefore R = \frac{1.8 - 1}{1} = 0.8 \text{ k}\Omega = 800 \Omega$$

Ex: 5.15 $v_I = 0$: since the circuit is perfectly symmetrical, $v_O = 0$ and therefore $V_{GS} = 0$, which implies that the transistors are turned off and $I_{DN} = I_{DP} = 0$.

 $v_I = 2.5 \text{ V}$: if we assume that the NMOS is turned on, then v_O would be less than 2.5 V, and this implies that PMOS is off $(V_{SGP} < 0)$.

$$I_{DN} = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2$$

$$I_{DN} = \frac{1}{2} \times 1(2.5 - V_O - 1)^2$$

$$I_{DN} = 0.5(1.5 - V_O)^2$$
Also: $V_O = R_L I_{DN} = 10 I_{DN}$

$$I_{DN} = 0.5(1.5 - 10 I_{DN})^2$$

$$\Rightarrow 100 I_{DN}^2 - 32 I_{DN} + 2.25 = 0 \Rightarrow I_{DN}$$

$$= 0.104 \text{ mA}$$

 $I_{DP} = 0, V_O = 10 \times 0.104 = 1.04 \text{V}$

$$V_O$$

 $V_I = -2.5 \text{ V}$: Again if we assume that Q_p is turned on, then $V_O > -2.5 \text{ V}$ and $V_{GS1} < 0$, which implies that the NMOS Q_N is turned off.

$$I_{DN}=0$$

Because of the symmetry,

$$I_{DP} = 0.104,$$

$$V_O = -I_{DP} \times 10 \text{ k}\Omega$$

$$= -1.04 \text{ V}$$

Ex: 5.16
$$V_t = 0.8 + 0.4 \left[\sqrt{0.7 + 3} - \sqrt{0.7} \right]$$

= 1.23 V

Ex: 5.17
$$v_{DS\min} = v_{GS} + |V_t|$$

= 1 + 2 = 3 V

$$I_D = \frac{1}{2} \times 2 [1 - (-2)]^2$$

= 9 mA

5.1
$$t_{ox} = 2 \sim 10 \text{ nm}$$

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

$$\epsilon_{ox} = 34.5 \text{ pF/m}$$

$$C_{ox}^{-1} = 58 \sim 290 \text{ m}^2/\text{F} \left(\frac{\mu \text{m}^2}{\text{pF}}\right)$$

For 10 pF:

Area =
$$580 \sim 2900 \; (\mu m^2)$$

so

$$d = 24 \sim 54 \, \mu \text{m}$$

5.2
$$C_{ox} = 9 \text{ fF/}\mu\text{m}^2$$
, $V_{OV} = 0.2 \text{ V}$

$$L = 0.36 \,\mu\text{m}, V_{DS} = 0 \,\text{V}$$

$$W = 3.6 \,\mu\text{m}$$

$$Q = C_{ox}.W.L.V_{OV} = 2.33 \text{ fC}$$

5.3
$$k'_n = \mu_n C_{ox}$$

$$= \frac{m^2}{V \cdot s} \frac{F}{m^2} = \frac{F}{V \cdot s} = \frac{C/V}{V \cdot s} = \frac{C}{s} \frac{1}{V^2}$$
$$= \frac{A}{V^2}$$

Since $k_n = k'_n W/L$ and W/L is dimensionless, k_n has the same dimensions as k'_n ; that is, A/V^2 .

5.4 With v_{DS} small, compared to V_{OV} , Eq. (5.13a) applies:

$$r_{DS} = \frac{1}{(\mu_n C_{ox}) \left(\frac{W}{L}\right) (V_{OV})}$$

- (a) V_{OV} is doubled $\rightarrow r_{DS}$ is halved. factor = 0.5
- (b) W is doubled $\rightarrow r_{DS}$ is halved. factor = 0.5
- (c) W and L are doubled $\rightarrow r_{DS}$ is unchanged. factor = 1.0
- (d) If oxide thickness t_{ox} is halved, and

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

then C_{ox} is doubled. If W and L are also halved, r_{DS} is halved, factor = 0.5.

5.5 The transistor size will be minimized if W/L is minimized. To start with, we minimize L by using the smallest feature size,

$$L = 0.18 \, \mu \text{m}$$

$$r_{DS} = \frac{1}{k'_n (W/L) (v_{GS} - V_t)}$$

$$r_{DS} = \frac{1}{k'_n (W/L) v_{OV}}$$

Two conditions need to met for v_{OV} and r_{DS}

Condition 1:

$$r_{DS,1} = \frac{1}{400 \times 10^{-6} (W/L) v_{OV,1}}$$

$$=250 \Rightarrow (W/L) v_{OV.1} = 10$$

Condition 2:

$$r_{DS,2} = \frac{1}{400 \times 10^{-6} (W/L) v_{OV,2}}$$

$$= 1000 \Rightarrow (W/L) v_{OV,2} = 2.5$$

If condition 1 is met, condition 2 will be met since the over-drive voltage can always be reduced to satisfy this requirement. For condition 1, we want to decrease W/L as much as possible (so long as it is greater than or equal to 1), while still meeting all of the other constraints. This requires our using the largest possible $v_{GS,1}$ voltage.

$$v_{GS,I} = 1.8 \text{ V so } v_{OV,I} = 1.8 - 0.5 = 1.3 \text{ V}, \text{ and}$$

$$W/L = \frac{10}{v_{OV,1}} = \frac{10}{1.3} = 7.69$$

Condition 2 now can be used to find $v_{GS,2}$

$$v_{OV,2} = \frac{2.5}{W/L} = \frac{2.5}{7.69} = 0.325$$

$$\Rightarrow v_{GS,2} = 0.825 \text{ V} \Rightarrow 0.825 \text{ V} \leq v_{GS} \leq 1.8 \text{ V}$$

5.6
$$k_n = 5 \text{ mA/V}^2$$
, $V_{tn} = 0.5 \text{ V}$,

small v_{DS}

$$i_D = k_n (v_{GS} - V_t) v_{DS} = k_n v_{OV} v_{DS}$$

$$g_{DS} = \frac{1}{r_{DS}} = k_n v_{OV}$$

This table belongs to Exercise 5.6.

V_{GS} (V)	(V)	g _{DS} (mA/V)	r_{DS} (Ω)
0.5	0	0	∞
1.0	0.5	2.5	400
1.5	1.0	5.0	200
2.0	1.5	7.5	133
2.5	2.0	10	100

5.7
$$t_{ox} = 4 \text{ nm}, V_t = 0.5 \text{ V}$$

 $L_{\min} = 0.18 \,\mu\text{m}$, small v_{DS} ,

$$k'_n = 400 \,\mu\text{A/V}^2, 0 < v_{GS} < 1.8 \,\text{V}.$$

$$r_{DS}^{-1} = k'_n W/L (v_{GS} - V_t) \le 1 \text{ mA/V} = \frac{1}{1 \text{ k}\Omega}$$

$$W \leq 0.35 \,\mu\text{m}$$

$$5.8 \ r_{ds} = 1/\frac{\partial i_D}{\partial v_{DS}} \Big|_{v_{DS} = v_{DS}}$$

$$= \left[\frac{\partial}{\partial v_{DS}} \left(k_n \left(V_{OV} v_{DS} - \frac{1}{2} v_{DS}^2 \right) \right) \right]^{-1}$$

$$= \left[k_n \left(\frac{\partial}{\partial v_{DS}} \right) (v_{OV} v_{DS}) - 1/2 \frac{\partial}{\partial v_{DS}} (v_{DS}^2) \right]^{-1}$$

$$= \left[k_n \left(V_{OV} - \frac{1}{2} \cdot 2V_{DS} \right) \right]^{-1}$$

$$= \frac{1}{k_n (V_{OV} - V_{DS})}$$
If $V_{DS} = 0 \Rightarrow r_{ds} = \frac{1}{k_n V_{OV}}$
If $V_{DS} = 0.2V_{OV} \Rightarrow r_{ds} = \frac{1.25}{V_{OV}}$
If $V_{DS} = 0.5V_{OV} \Rightarrow r_{ds} = \frac{1}{k_n (V_{OV} - 0.5V_{OV})}$

$$= 1/k_n (0.5V_{OV}) = \frac{2}{k_n V_{OV}}$$
If $V_{DS} = 0.8V_{OV} \Rightarrow r_{ds} = \frac{1}{k_n (V_{OV} - 0.8V_{OV})}$

$$= 1/k_n (0.2V_{OV}) = \frac{5}{k_n V_{OV}}$$
If $V_{DS} = V_{OV}$,
$$r_{ds} = \frac{1}{0} \Rightarrow \infty$$

5.9
$$V_{DS \text{ sat}} = V_{OV}$$

$$V_{OV} = V_{GS} - V_t = 1 - 0.5 = 0.5 \text{ V}$$

$$\Rightarrow V_{DS \text{ sat}} = 0.5 \text{ V}$$

In saturation:

$$i_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) V_{OV}^2 = \frac{1}{2} k_n V_{OV}^2$$

$$i_D = \frac{1}{2} \times \frac{4 \text{ mA}}{V^2} \times (0.5 \text{ V})^2$$

$$i_D = 0.5 \text{ mA}$$

5.10
$$L_{\min} = 0.25 \ \mu \text{m}$$

 $t_{ox} = 6 \text{ nm}$

$$\mu_n = 460 \frac{\text{cm}^2}{\text{V} \cdot \text{s}} = 460 \times 10^{-4} \frac{\text{m}^2}{\text{V} \cdot \text{s}}$$

(a)
$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{34.5 \text{ pF/m}}{6 \text{ nm}}$$

$$= 5.75 \times 10^{-3} \frac{F}{m^2} \left(\frac{pF}{\mu m^2} \right)$$

$$k'_n = \mu_n C_{ox} = 265 \, \mu \text{A/V}^2$$

(b) For
$$\frac{W}{L} = \frac{20}{0.25}$$
, $k_n = 21.2 \text{ mA/V}^2$

∴ 0.5 mA =
$$I_D = \frac{1}{2} k_n V_{OV}^2$$

$$V_{OV} = 0.22 \text{ V}$$

$$V_{GS} = 0.72 \text{ V}$$

$$V_{DS} > 0.22 \text{ V}$$

(c)
$$g_{DS} = \frac{1}{100 \Omega} = k_n V_{OV}$$

$$V_{OV} = 0.47 \text{ V}.$$

$$V_{GS} = 0.97 \text{ V}.$$

5.11
$$V_{to} = -0.7 \text{ V}$$

(a)
$$|V_{SG}| = |V_{tp}| + |V_{OV}|$$

$$= 0.7 + 0.4 = 1.1 \text{ V}$$

$$\Rightarrow V_G = -1.1 \text{ V}$$

(b) For the *p*-channel transistor to operate in saturation, the drain voltage must not exceed the gate voltage by more than $|V_{tp}|$. Thus

$$v_{D\text{max}} = -1.1 + 0.7 = -0.4 \text{ V}$$

Put differently, V_{SD} must be at least equal to $|V_{OV}|$, which in this case is 0.4 V. Thus $v_{Dmax} = -0.4$ V.

(c) In (b), the transistor is operating in saturation, thus

$$I_D = \frac{1}{2} k_p |V_{OV}|^2$$

$$0.5 = \frac{1}{2} \times k_p \times 0.4^2$$

$$\Rightarrow k_p = 6.25 \text{ mA/V}^2$$

For $V_D = -20$ mV, the transistor will be operating in the triode region. Thus

$$I_D = k_p \left[v_{SD} |V_{OV}| - \frac{1}{2} v_{SD}^2 \right]$$
$$= 6.25 \left[0.02 \times 0.4 - \frac{1}{2} (0.02)^2 \right]$$
$$= 0.05 \text{ mA}$$

For $V_D = -2$ V, the transistor will be operating in saturation, thus

$$I_D = \frac{1}{2}k_p|V_{OV}|^2 = \frac{1}{2} \times 6.25 \times 0.4^2 = 0.5 \text{ mA}$$

5.12
$$i_D = \frac{1}{2} k'_n \frac{W}{L} |V_{OV}|^2$$
 $k'_n = \mu_n C_{ox}$

For equal drain currents:

$$\mu_n C_{ox} \frac{W_n}{L} = \mu_p C_{ox} \frac{W_p}{L}$$

$$\frac{W_p}{W_n} = \frac{\mu_n}{\mu_p} = \frac{1}{0.4} = 2.5$$

5.13 For small
$$v_{DS}$$
, $i_D \simeq k'_n \frac{W}{L_1} (V_{GS} - V_t) V_{DS}$,

$$r_{DS} = \frac{V_{DS}}{i_D} = \frac{1}{k_n' \frac{W}{L} (V_{GS} - V_t)}$$
$$= \frac{1}{100 \times 10^{-6} \times 20 \times (5 - 0.7)}$$

$$r_{DS} = 116.3 \ \Omega$$
 $V_{DS} = r_{DS} \times i_D = 116.3 \ \text{mV}$

For the same performance of a *p*-channel device:

$$\frac{W_p}{W_n} = \frac{\mu_n}{\mu_p} = 2.5 \Rightarrow \frac{W_p}{L} = \frac{W_n}{L} \times 2.5$$
$$= 20 \times 2.5 \Rightarrow \frac{W_p}{L} = 50$$

5.14
$$t_{ox} = 6 \text{ nm}, \mu_n = 460 \text{ cm}^2/\text{V} \cdot \text{s}, V_t = 0.5 \text{ V}, \text{ and } W/L = 10.$$

$$k_n = \mu_n C_{ox} \frac{W}{L} = 460 \times 10^{-4} \times \frac{3.45 \times 10^{-11}}{6 \times 10^{-9}} \times 10$$

 $= 2.645 \text{ mA/V}^2$

(a)
$$v_{GS} = 2.5 \text{ V}$$
 and $v_{DS} = 1 \text{ V}$

$$v_{OV} = v_{GS} - V_t = 2 \text{ V}$$

Thus $v_{DS} < v_{OV} \Rightarrow$ triode region,

$$I_D = k_n \left[v_{DS} v_{OV} - \frac{1}{2} v_{DS}^2 \right]$$

= 2.645 $\left[1 \times 2 - \frac{1}{2} \times 1 \right] = 4 \text{ mA}$

(b)
$$v_{GS} = 2 \text{ V}$$
 and $v_{DS} = 1.5 \text{ V}$
 $v_{OV} = v_{GS} - V_t = 2 - 0.5 = 1.5 \text{ V}$

Thus, $v_{DS} = v_{OV} \Rightarrow$ saturation region,

$$i_D = \frac{1}{2}k_n v_{OV}^2 = \frac{1}{2} \times 2.645 \times 1.5^2$$

= 3 mA

(c)
$$v_{GS} = 2.5 \text{ V}$$
 and $v_{DS} = 0.2 \text{ V}$

$$v_{OV} = 2.5 - 0.5 = 2 \text{ V}$$

Thus, $v_{DS} < v_{OV} \Rightarrow$ triode region,

$$i_D = k_n \left[v_{DS} v_{OV} - \frac{1}{2} v_{DS}^2 \right]$$

= 2.645[0.2 × 2 - $\frac{1}{2}$ 0.2²] = 1 mA

(d)
$$v_{GS} = v_{DS} = 2.5 \text{ V}$$

$$v_{OV} = 2.5 - 0.5 = 2 \text{ V}$$

Thus, $v_{DS} > v_{OV} \Rightarrow$ saturation region,

$$i_D = \frac{1}{2} k_n v_{OV}^2$$

= $\frac{1}{2} \times 2.645 \times 2^2 = 5.3 \text{ mA}$

5.15 See Table on next page.

5.16
$$i_D = k_n \left[v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

$$\frac{i_D}{k_B} = v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2$$
 (1)

Figure 1 shows graphs for i_D/k_n versus v_{DS} for various values of v_{OV} . Since the right-hand side of Eq. (1) does not have any MOSFET parameters, these graphs apply for any n-channel MOSFET with the assumption that $\lambda=0$. They also apply to p-channel devices with v_{DS} replaced by v_{SD} , k_n by k_p , and v_{OV} with $|v_{OV}|$. The slope of each graph at $v_{DS}=0$ is found by differentiating Eq. (1) relative to v_{DS} with $v_{OV}=V_{OV}$ and then substituting $v_{DS}=0$. The result is

$$\left. \frac{d(i_D/k_n)}{dv_{DS}} \right|_{v_{DS}=0, \ v_{OV}=V_{OV}} = V_{OV}$$

Figure 1 shows the tangent at $v_{DS} = 0$ for the graph corresponding to $v_{OV} = V_{OV3}$. Observe that it intersects the horizontal line $i_D/k_n = \frac{1}{2}V_{OV3}^2$ at

 $v_{DS} = \frac{1}{2}V_{OV3}$. Finally, observe that the curve representing the boundary between the triode region and the saturation region has the equation

$$i_D/k_n = \frac{1}{2}v_{DS}^2$$

This table belongs to **5.15**.

<i>L</i> (μm)	0.5	0.25	0.18	0.13
t_{ox} (nm)	10	5	3.6	2.6
$C_{ox} \left(\frac{\text{fF}}{\mu \text{m}^2} \right)$ $\epsilon_{ox} = 34.5 \text{pF/m}$	3.45	6.90	9.58	13.3
$\epsilon_{ox} = 34.3 \text{ pr/m}$	3.43	0.90	9.56	13.3
$k'_n \left(\frac{\mu A}{V^2}\right)$ $(\mu_n = 500 \text{ cm}^2/\text{V} \cdot \text{s})$	173	345	479	665
$(\mu_n = 300 \text{ cm} / \text{v·s})$	173	343	4/9	003
$k_n \left(\frac{\text{mA}}{\text{V}^2} \right)$				
$for \frac{W}{L} = 10$	1.73	3.45	4.79	6.65
$A(\mu m^2)$				
$for \frac{W}{L} = 10$	2.50	0.625	0.324	0.169
$V_{DD}({ m V})$	5	2.5	1.8	1.3
$V_t(V)$	0.7	0.5	0.4	0.4
$I_D(mA)$				
for $V_{GS} = V_{DS} = V_{DD}$, $I_D = \frac{1}{2}k_n(V_{DD} - V_t)^2$	16	6.90	4.69	2.69
$P(\text{mW}) \qquad P = V_{DD}I_D$	80	17.3	8.44	3.50
$\frac{P}{A}\left(\frac{\text{mW}}{\mu\text{m}^2}\right)$	32	27.7	26.1	20.7
Devices Chip	n	4 <i>n</i>	7.72n	14.8 <i>n</i>

This figure belongs to **5.16**, part (a).

Figure 2 shows the graph for the relationship

$$i_D/k_n = \frac{1}{2}v_{OV}^2$$

which describes the MOSFETs operation in the saturation region, that is,

$$v_{DS} \geq v_{OV}$$

Here also observe that this relationship (and graph) is universal and represents any MOSFET. The slope at $v_{OV}=V_{OV}$ is

$$\left. \frac{d(i_D/k_n)}{d v_{OV}} \right|_{v_{OV} = V_{OV}} = V_{OV}$$

Fig. 2

Replacing k_n by k_p and v_{OV} by $|v_{OV}|$ adapts this graph to PMOS transistors.

5.17 For triode-region operation with v_{DS} small,

$$i_D \simeq k_n (v_{GS} - V_t) v_{DS}$$

Thus

$$r_{DS} \equiv \frac{v_{DS}}{i_D} = \frac{1}{k_n(v_{GS} - V_t)}$$

$$1 = \frac{1}{k_n(1.2 - 0.8)} = \frac{1}{0.4 k_n}$$

$$\Rightarrow k_n = 2.5 \text{ mA/V}$$

$$r_{DS} = \frac{1}{2.5(V_{GS} - 0.8)} \quad (k\Omega)$$

$$0.2 = \frac{1}{2.5(V_{GS} - 0.8)}$$

$$\Rightarrow V_{GS} = 2.8 \text{ V}$$

For a device with twice the value of W, k_n will be twice as large and the resistance values will be half as large: 500 Ω and 100 Ω , respectively.

5.18
$$V_m = 0.5 \text{ V}, \quad k_n = 1.6 \text{ mA/V}^2$$
 $I_D = 0.05 = \frac{1}{2} \times 1.6 \times V_{OV}^2$
 $\Rightarrow V_{OV} = 0.25 \text{ V} \text{ and } V_{DS} \ge 0.25 \text{ V}$
 $V_{GS} = 0.5 + 0.25 = 0.75 \text{ V}$
 $I_D = 0.2 = \frac{1}{2} \times 1.6 \times V_{OV}^2$
 $\Rightarrow V_{OV} = 0.5 \text{ V} \text{ and } V_{DS} \ge 0.5 \text{ V}$
 $V_{GS} = 0.5 + 0.5 = 1 \text{ V}$

5.19 For $V_{GS} = V_{DS} = 1$ V, the MOSFET is operating in saturation,

$$I_D = \frac{1}{2}k_n(V_{GS} - V_t)^2$$

$$0.4 = \frac{1}{2}k_n(1 - V_t)^2$$
(1)

$$0.1 = \frac{1}{2}k_n(0.8 - V_t)^2 \tag{2}$$

Dividing Eq. (1) by Eq. (2) and taking square roots gives

$$2 = \frac{1 - V_t}{0.8 - V_t}$$

$$\Rightarrow V_t = 0.6 \text{ V}$$

Substituting in Eq. (1), we have

$$0.4 = \frac{1}{2}k_n \times 0.4^2$$

$$\Rightarrow k_n = 5 \text{ mA/V}^2$$

5.20
$$k'_n = 0.4 \text{ mA/V}^2$$
 and $V_t = 0.5 \text{ V}$

For $v_{GS} = v_{DS} = 1.8$ V, the MOSFET is operating in saturation. Thus, to obtain $I_D = 2$ mA, we write

$$2 = \frac{1}{2} \times 0.4 \times \frac{W}{L} \times (1.8 - 0.5)^2$$

$$\Rightarrow \frac{W}{L} = 5.92$$

For
$$L = 0.18 \mu m$$

$$W = 1.07 \, \mu \text{m}$$

5.21
$$i_D = k_n (v_{GS} - V_t) v_{DS}$$

$$25 = k_n(1 - V_t) \times 0.05 \tag{1}$$

$$50 = k_n (1.5 - V_t) \times 0.05 \tag{2}$$

Dividing Eq. (2) by Eq. (1), we have

$$2 = \frac{1.5 - V_t}{1 - V_t}$$

$$\Rightarrow V_t = 0.5 \text{ V}$$

Substituting in Eq. (1) yields

$$25 = k_n \times 0.5 \times 0.05$$

$$\Rightarrow k_n = 1000 \,\mu\text{A/V}^2$$

For
$$k'_n = 50 \,\mu\text{A/V}^2$$

$$\frac{W}{I} = 20$$

For $v_{GS} = 2 \text{ V}$ and $v_{DS} = 0.1 \text{ V}$,

$$i_D = k_n \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

$$= 1 \left[(2 - 0.5) \times 0.1 - \frac{1}{2} \times 0.1^2 \right]$$

$$= 0.145 \text{ mA} = 145 \mu\text{A}$$

For $v_{GS} = 2$ V, pinch-off will occur for

$$v_{DS} = v_{GS} - V_t = 2 - 0.5 = 1.5 \text{ V}$$

and the resulting drain current will be

$$i_D = \frac{1}{2}k_n(v_{GS} - V_t)^2$$

= $\frac{1}{2} \times 1 \times (2 - 0.5)^2$
= 1.125 mA

5.22 For the channel to remain continuous,

$$v_{DS} \leq v_{GS} - V_t$$

Thus for $v_{GS} = 1.0 \text{ V}$ to 1.8 V and $V_t = 0.4$,

$$v_{DS} \le 1 - 0.4$$

That is, $v_{DSmax} = 0.6 \text{ V}.$

5.23
$$\frac{W}{L} = \frac{20}{1} = 20$$
 $k'_n = 100 \text{ } \text{µA/V}^2$
 $k_n = k'_n \left(\frac{W}{L}\right) = 100 \times 20 = 2000 \text{ } \text{µA/V}^2$
 $= 2 \text{ mA/V}^2$

For operation as a linear resistance,

$$i_D = k_n (v_{GS} - V_t) v_{DS}$$

and

$$r_{DS} \equiv \frac{v_{DS}}{i_D} = \frac{1}{k_n(v_{GS} - V_t)}$$

= $\frac{1}{2(v_{GS} - 0.8)}$

At
$$v_{GS} = 1.0 \text{ V}$$
,

$$r_{DS} = \frac{1}{2(1 - 0.8)} = 2.5 \text{ k}\Omega$$

At
$$v_{GS} = 4.8 \text{ V}$$
,

$$r_{DS} = \frac{1}{2(4.8 - 0.8)} = 0.125 \text{ k}\Omega$$

Thus, r_{DS} will vary in the range of 2.5 k Ω to 125 Ω .

- (a) If W is halved, k_n will be halved and r_{DS} will vary in the range of 5 k Ω to 250 Ω .
- (b) If L is halved, k_n will be doubled and r_{DS} will vary in the range of 1.25 k Ω to 62.5 Ω .
- (c) If both W and L are halved, k_n will remain unchanged and r_{DS} will vary in the original range of 2.5 k Ω to 125 Ω .
- **5.24** (a) Refer to Fig. P5.24. For saturation-mode operation of an NMOS transistor, $v_{DG} \ge -V_m$; thus $v_{DG} = 0$ results in saturation-mode operation. Similarly, for a

p-channel MOSFET, saturation-mode operation is obtained for $v_{GD} \ge -|V_{tp}|$, which includes $v_{GD} = 0$. Thus, the diode-connected MOSFETs of Fig. P5.24 have the i-v relationship

$$i = \frac{1}{2}k'\left(\frac{W}{L}\right)(v - |V_t|)^2\tag{1}$$

where k' represents k'_n in the NMOS case and k'_p in the PMOS case.

(b) If either of the MOSFETs in Fig. P5.24 is biased to operate at $v = |V_t| + |V_{OV}|$, then its incremental resistance r at the bias point can be obtained by differentiating Eq. (1) relative to v and then substituting $v = |V_t| + |V_{OV}|$ as follows:

$$\begin{split} \frac{\partial i}{\partial v} &= k' \left(\frac{W}{L} \right) (v - |V_t|) \\ \frac{\partial i}{\partial v} \bigg|_{v = |V_t| + V_{OV}} &= k' \left(\frac{W}{L} \right) V_{OV} \\ r &= 1 / \left[\frac{\partial i}{\partial v} \right] = 1 / \left(k' \frac{W}{L} V_{OV} \right) \end{split} \quad \text{Q.E.D}$$

$$v_{GD} = 0 \Rightarrow \text{saturation}$$

$$i_D = \frac{1}{2} k_n (v_{GS} - V_t)^2$$

$$v_{GS} = V_{DD} - v_S$$

$$\therefore i_D = \frac{1}{2} k_n [(V_{DD} - V_t) - v_S]^2$$

$$0 \le v_S \le (V_{DD} - V_t)$$

$$i_D = 0, v_S \ge (V_{DD} - V_t)$$

$$v_{DS} = v_{GS}$$

$$i_D = \frac{1}{2}k_n(v_{DS} - V_t)^2$$

$$\therefore v_{DS} = \sqrt{\frac{2i_D}{k}} + V_t$$

5.27
$$V_{DS} = V_D - V_S$$
 $V_{GS} = V_G - V_S$
 $V_{OV} = V_{GS} - V_t = V_{GS} - 1.0$

According to Table 5.1, three regions are possible.

Case	V_S	V_G	V_D	V_{GS} V_{OV}		V_{DS}	Region of operation	
a	+1.0	+1.0	+2.0	0	-1.0	+1.0	Cutoff	
b	+1.0	+2.5	+2.0	+1.5	+0.5	+1.0	Sat.	
с	+1.0	+2.5	+1.5	+1.5	+0.5	+0.5	Sat.	
d	+1.0	+1.5	0	+0.5	-0.5	-1.0	Sat.*	
e	0	+2.5	1.0	+2.5	+1.5	+1.0	Triode	
f	+1.0	+1.0	+1.0	0	-1.0	0	Cutoff	
g	-1.0	0	0	+1.0	0	+1.0	Sat.	
h	-1.5	0	0	+1.5	+0.5	+1.5	Sat.	
i	-1.0	0	+1.0	+1.0	0	+2.0	Sat.	
j	+0.5	+2.0	+0.5	+1.5	+0.5	0	Triode	

^{*} With the source and drain interchanged.

5.28 The cutoff–saturation boundary is determined by $v_{GS} = V_t$, thus $v_{GS} = 0.4$ V at the boundary.

The saturation–triode boundary is determined by $v_{GD} = V_t$, and $v_{DS} = V_{DD} = 1$ V, and since $v_{GS} = v_{GD} + v_{DS}$, one has $v_{GS} = 0.4 + 1.0 = 1.4$ V at the boundary.

5.29 (a) Let Q_1 have a ratio (W/L) and Q_2 have a ratio 1.03 (W/L). Thus

$$I_{D1} = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (1 - V_t)^2$$

$$I_{D2} = \frac{1}{2} k'_n \left(\frac{W}{L}\right) \times 1.03 \times (1 - V_t)^2$$

Thus,

$$\frac{I_{D2}}{I_{D1}} = 1.03$$

That is, a 3% mismatch in the W/L ratios results in a 3% mismatch in the drain currents.

(b) Let Q_1 have a threshold voltage $V_t = 0.6$ V and Q_2 have a threshold voltage $V_t + \Delta V_t = 0.6 + 0.01 = 0.61$ V.

Thus

$$I_{D1} = \frac{1}{2}k'_n \left(\frac{W}{L}\right)(1 - 0.6)^2$$

$$I_{D2} = \frac{1}{2}k'_n \left(\frac{W}{L}\right)(1 - 0.61)^2$$

and

$$\frac{I_{D2}}{I_{D1}} = \frac{(1 - 0.61)^2}{(1 - 0.6)^2} = 0.95$$

That is, a 10-mV mismatch in the threshold voltage results in a 5% mismatch in drain currents.

5.30

$$r_o = \frac{\Delta v_{DS}}{\Delta i_D} \bigg|_{v_{GS \text{ const.}}} = \frac{1}{0.02} = 50 \text{ k}\Omega$$

$$V_A \cong I_D r_o = 0.5 \times 50 = 25 \text{ V}$$

$$\lambda = \frac{1}{V_A} = 0.04 \text{ V}^{-1}$$

5.31
$$r_o = \frac{V_A}{i_D} = \frac{20}{i_D}$$
, $0.1 \text{ mA} \le i_D \le 1 \text{ mA}$
 $\Rightarrow 20 \text{ k}\Omega \le r_o \le 200 \text{ k}\Omega$
 $r_o = \frac{\Delta v_{DS}}{\Delta i_D} \Rightarrow \Delta i_D = \frac{\Delta v_{DS}}{r_o} = \frac{1}{r_o}$
At $i_D = 0.1 \text{ mA}$, $\Delta i_D = 5 \text{ }\mu\text{A}$, $\frac{\Delta i_D}{i_D} = 5\%$
At $i_D = 1 \text{ mA}$, $\Delta i_D = 50 \text{ }\mu\text{A}$, $\frac{\Delta i_D}{i_D} = 5\%$

5.32 $V_A = V_A'L$, where V_A' is completely process dependent. Also, $r_o = \frac{V_A}{i_D}$. Therefore, to achieve desired r_o (which is 5 times larger), we should increase L ($L = 5 \times 1 = 5 \mu m$).

To keep I_D unchanged, the $\frac{W}{L}$ ratio must stay unchanged. Therefore:

$$W = 5 \times 10 = 50 \,\mu\text{m}$$
 (so $\frac{W}{L}$ is kept at 10)
 $V_A = r_o i_D = 100 \,\text{k}\Omega \times 0.2 \,\text{mA} = 20 \,\text{V}$ (for the standard device)

$$V_A = 5 \times 20 = 100 \text{ V}$$
 (for the new device)

5.33
$$L = 1.5 \mu m = 3 \times minimum$$
. Thus

$$\lambda = \frac{0.03 \; V^{-1}}{3} = 0.01 \; V^{-1}$$

If v_{DS} is increased from 1 V to 5 V, the drain current will change from

$$I_D = 100 \ \mu A = I'_D(1 + \lambda \times 1) = 1.01 \ I'_D$$

to

$$I_D + \triangle I_D = I'_D(1 + \lambda \times 5) = 1.05 I'_D$$

where I_D^\prime is the drain current without channel-length modulation taken into account. Thus

$$I_D' = \frac{100}{1.01}$$

and

100 +
$$\Delta I_D$$
 = 1.05 I_D' = $\frac{1.05 \times 100}{1.01}$ = 104 μA
 $\Rightarrow \Delta I_D$ = 4 μA or 4%

To reduce $\triangle I_D$ by a factor of 2, we need to reduce λ by a factor of 2, which can be obtained by doubling the channel length to 3 μ m.

5.34
$$V_A = V_A'L = 20 \times 1.5 = 30 \text{ V}$$

$$\lambda = \frac{1}{V_A} = \frac{1}{30} = 0.033 \text{ V}^{-1}$$

$$I_D = \frac{1}{2}k_n'\left(\frac{W}{L}\right)V_{OV}^2(1 + \lambda V_{DS})$$

$$= \frac{1}{2} \times 0.2 \times \left(\frac{15}{1.5}\right) \times 0.5^2(1 + 0.033 \times 2)$$

$$= 0.267 \text{ mA}$$

$$r_o = \frac{V_A}{\frac{1}{2}k_n'\left(\frac{W}{L}\right)V_{OV}^2} = \frac{30}{\frac{1}{2} \times 0.2 \times \left(\frac{15}{1.5}\right) \times 0.5^2}$$

$$= 120 \text{ k}\Omega$$

$$\Delta I_D = \frac{\Delta V_{DS}}{r_o} = \frac{1 \text{ V}}{120 \text{ k}\Omega} = 0.008 \text{ mA}$$

5.35 Quadrupling W and L keeps the current I_D unchanged. However, the quadrupling of L increases V_A by a factor of 4 and hence increases r_o by a factor of 4.

Halving V_{OV} results in decreasing I_D by a factor of 4. Thus, this alone increases r_o by a factor of 4. The overall increase in r_o is by a factor of $4 \times 4 = 16$.

5.36 Refer to the circuit in Fig. P5.29 and let $V_{D1} = 2$ V and $V_{D2} = 2.5$ V. If the two devices are matched.

$$I_{D1} = \frac{1}{2}k_n(1 - V_t)^2 \left(1 + \frac{2}{V_A}\right)$$

$$I_{D2} = \frac{1}{2}k_n(1 - V_t)^2 \left(1 + \frac{2.5}{V_A}\right)$$

$$\Delta I_D = I_{D2} - I_{D1} = \frac{1}{2}k_n(1 - V_t)^2 \left(\frac{0.5}{V_A}\right)$$

$$\frac{\Delta I_D}{\frac{1}{2}k_n(1 - V_t)^2} \simeq 0.01 = \frac{0.5}{V_A}$$

 $\Rightarrow V_A = 50 \text{ V}$ (or larger to limit the mismatch in I_D to 1%).

If $V_A' = 100 \text{ V/}\mu\text{m}$, the minimum required channel length is 0.5 μm .

5.37

NMOS	1	2	3	4
λ	0.05 V^{-1}	$0.02~{ m V}^{-1}$	0.1 V^{-1}	$0.01~{ m V}^{-1}$
V_A	20 V	50 V	10 V	100 V
I_D	0.5 mA	2 mA	0.1 mA	0.2 mA
r_o	40 kΩ	25 kΩ	100 kΩ	500 kΩ

$$k_p = k_p' \left(\frac{W}{L}\right) = 100 \text{ } \mu\text{A/V}^2$$

 $V_{tp} = -1 \text{ V} \quad \lambda = -0.02 \text{ V}^{-1}$
 $V_G = 0, \quad V_S = +5 \text{ V} \Rightarrow V_{SG} = 5 \text{ V}$
 $|V_{OV}| = V_{SG} - |V_{tp}| = 5 - 1 = 4$

• For $v_D = +4$ V, $v_{SD} = 1$ V $< |V_{OV}| \Rightarrow$ triode-region operation,

$$i_D = k_p \left[v_{SD} |V_{OV}| - \frac{1}{2} v_{SD}^2 \right]$$

= $100 \left(1 \times 4 - \frac{1}{2} \times 1 \right) = 350 \ \mu\text{A}$

• For $v_D = +2$ V, $v_{SD} = 3$ V $< |V_{OV}| \Rightarrow$ triode-region operation,

$$i_D = k_p \left[v_{SD} |V_{OV}| - \frac{1}{2} v_{SD}^2 \right]$$

= $100 \left(3 \times 4 - \frac{1}{2} \times 9 \right) = 750 \,\mu\text{A}$

• For $v_D = +1$ V, $v_{SD} = 4$ V = $|V_{OV}| \Rightarrow$ saturation-mode operation,

$$i_D = \frac{1}{2}k_p|V_{OV}|^2(1+|\lambda|v_{SD})$$

= $\frac{1}{2} \times 100 \times 16(1+0.02 \times 4) = 864 \,\mu\text{A}$

• For $v_D = 0$ V, $v_{SD} = 5$ V > $|V_{OV}| \Rightarrow$ saturation-mode operation,

$$i_D = \frac{1}{2} \times 100 \times 16(1 + 0.02 \times 5) = 880 \,\mu\text{A}$$

• For $v_D = -5$ V, $v_{SD} = 10$ V > $|V_{OV}| \Rightarrow$ saturation-mode operation,

$$i_D = \frac{1}{2} \times 100 \times 16(1 + 0.02 \times 10) = 960 \,\mu\text{A}$$

5.39
$$V_{tp} = 0.8 \text{ V}, \quad |V_A| = 40 \text{ V}$$

$$|v_{GS}| = 3 \text{ V}, \quad |v_{DS}| = 4 \text{ V}$$

$$i_D = 3 \text{ mA}$$

$$|V_{OV}| = |v_{GS}| - |V_{tp}| = 2.2 \text{ V}$$

 $|v_{DS}| > |V_{OV}| \Rightarrow \text{ saturation mode}$

$$v_{GS} = -3 \text{ V}$$

$$v_{SG} = +3 \text{ V}$$

$$v_{DS} = -4 \text{ V}$$

$$v_{SD} = 4 \text{ V}$$

$$V_{tp} = -0.8 \text{ V}$$

$$V_A = -40 \text{ V}$$

$$\lambda = -0.025 \text{ V}^{-1}$$

$$i_D = \frac{1}{2} k_p (v_{GS} - V_{tp})^2 (1 + \lambda v_{DS})$$

$$3 = \frac{1}{2} k_p [-3 - (-0.8)]^2 (1 - 0.025 \times -4)$$

$$\Rightarrow k_p = 1.137 \text{ mA/V}^2$$

5.40 PMOS with $V_{tp} = -1 \text{ V}$

Case	V_S	V_G	V_D	V_{SG}	$ V_{OV} $	V_{SD}	Region of operation
a	+2	+2	0	0	0	2	Cutoff
b	+2	+1	0	+1	0	2	Cutoff–Sat.
c	+2	0	0	+2	1	2	Sat.
d	+2	0	+1	+2	1	1	Sat-Triode
e	+2	0	+1.5	+2	1	0.5	Triode
f	+2	0	+2	+2	1	0	Triode

5.41

$$V_{tp} = -0.5 \text{ V}$$

$$v_G = +3 \text{ V} \rightarrow 0 \text{ V}$$

As v_G reaches +2.5 V, the transistor begins to conduct and enters the saturation region, since v_{DG} will be negative. The transistor continues to operate in the saturation region until v_G reaches 0.5 V, at which point v_{DG} will be 0.5 V, which is equal to $|V_{tp}|$, and the transistor enters the triode region. As v_G goes below 0.5 V, the transistor continues to operate in the triode region.

5.42 Case a, assume, sat,

$$\frac{(1 - V_t)^2}{(1.5 - V_t)^2} = \frac{100}{400} \Rightarrow V_t = 0.5,$$

$$V_{GD} \leq V_t$$

∴ sat;

Case b — same procedure, except use V_{SG} and V_{SD} .

This table belongs to **5.42**.

Case	Transistor	V_S	V_G	V_D	I_D	Туре	Mode	$\mu C_{ox} \frac{W}{L}$	V_t
		(V)	(V)	(V)	(μ A)			$(\mu \text{ A/V}^2)$	(V)
a	1	0	1	2.5	100	NMOS	Sat.	800	0.5
		0	1.5	2.5	400		Sat.		
b	2	5	3	-4.5	50	PMOS	Sat.	400	-1.5
		5	2	-0.5	450		Sat.		
c	3	5	3	4	200	PMOS	Sat.	400	-1
		5	2	0	800		Sat.		
d	4	-2	0	0	72	NMOS	Sat.	100	+0.8
		-4	0	-3	270		Triode		

$$\frac{(2-1V_t1)^2}{(3-1V_t1)^2} = \frac{50}{450} \Rightarrow |V_t| = 1.5,$$

$$V_{GD} > -1.5 \text{ V}$$
 : sat

Case
$$c - \frac{(2 - |V_t|)^2}{(3 - |V_t|)^2} = \frac{200}{800} \Rightarrow |V_t| = 1.0,$$

$$V_{GD} \geq -1.0 \text{ V}$$
 : sat

Case d

$$\frac{\text{sat}}{\text{triode}} \frac{\frac{1}{2}k_n(2 - V_t)^2}{k_n \left[(4 - V_t) V_{DS} - \frac{1}{2}V_{DS}^2 \right]} = \frac{72}{270}$$

(after failing assumption that both cases are sat.)

5.43 Refer to the circuits in Fig. P5.43.

(a)
$$V_1 = V_{DS} = V_{GS} = 1 \text{ V}$$

(b)
$$V_2 = +1 - V_{DS} = 1 - 1 = 0 \text{ V}$$

(c)
$$V_3 = V_{SD} = V_{SG} = 1 \text{ V}$$

(d)
$$V_4 = +1.25 - V_{SG} = 1.25 - 1 = 0.25 \text{ V}$$

Now place a resistor R in series with the drain. For the circuits in (a) and (b) to remain in saturation, V_D must not fall below V_G by more than V_t . Thus,

$$IR \leq V_t$$

$$R_{\text{max}} = \frac{V_t}{I} = \frac{0.5}{0.1} = 5 \text{ k}\Omega$$

For the circuits in (c) and (d) to remain in saturation, V_D must not exceed V_G by more than $|V_I|$. Thus

$$IR \leq |V_t|$$

which yields $R_{\text{max}} = 5 \text{ k}\Omega$.

Now place a resistor R_S in series with the MOSFET source. The voltage across the current source becomes

(a)
$$V_{CS} = 2.5 - V_{DS} - IR_S$$
 (1)

To keep V_{CS} at least at 0.5 V, the maximum R_S can be found from

$$0.5 = 2.5 - 1 - 0.1 \times R_{Smax}$$

$$\Rightarrow R_{Smax} = 10 \text{ k}\Omega$$

$$V_1 = 2.5 - 0.5 = 2 \text{ V}$$

(b)
$$V_{CS} = 1 - V_{DS} - IR_S - (-1.5)$$

$$=2.5-V_{DS}-IR_S$$

which is identical to Eq. (1). Thus

$$R_{\rm Smax} = 10 \text{ k}\Omega$$

$$V_2 = -1.5 + 0.5 = -1 \text{ V}$$

(c)
$$V_{CS} = 2.5 - IR_S - V_{SD}$$

which yields

$$R_{Smax} = 10 \text{ k}\Omega$$

$$V_3 = 2.5 - 0.5 = 2 \text{ V}$$

(d)
$$V_{CS} = 1.25 - IR_S - V_{SD} - (-1.25)$$

$$=2.5-V_{SD}-IR_{S}$$

which yields

$$R_{\rm Smax} = 10 \text{ k}\Omega$$

$$V_4 = -1.25 + 0.5 = -0.75 \text{ V}$$

Since $V_{DG} > 0$, the MOSFET is in saturation.

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} V_{OV}^{2}$$

$$0.1 = \frac{1}{2} \times 0.4 \times \frac{5}{0.4} \times V_{OV}^{2}$$

$$\Rightarrow V_{OV} = 0.2 \text{ V}$$

$$V_{GS} = V_{t} + V_{OV} = 0.5 + 0.2 = 0.7$$

$$V_{S} = 0 - V_{GS} = -0.7 \text{ V}$$

$$R_{S} = \frac{V_{S} - (-1)}{I_{D}} = \frac{-0.7 + 1}{0.1} = 3 \text{ k}\Omega$$

$$R_{D} = \frac{1 - V_{D}}{I_{D}} = \frac{1 - 0.3}{0.1} = \frac{0.7}{0.1} = 7 \text{ k}\Omega$$

5.45

Since $V_{DG} > 0$, the MOSFET is operating in saturation. Thus

$$I_D = \frac{1}{2}k_n(V_{GS} - V_t)^2$$

$$= \frac{1}{2} \times 4 \times (0.6 - 0.4)^{2}$$

$$= 0.08 \text{ mA}$$

$$R_{D} = \frac{1 - V_{D}}{I_{D}} = \frac{1 - 0.2}{0.08} = \frac{0.8}{0.08} = 10 \text{ k}\Omega$$

$$R_{S} = \frac{-0.6 - (-1)}{I_{D}} = \frac{-0.6 + 1}{0.08} = 5 \text{ k}\Omega$$

For I_D to remain unchanged from 0.08 mA, the MOSFET must remain in saturation. This in turn can be achieved by ensuring that V_D does not fall below V_G (which is zero) by more than V_t (0.4 V). Thus

$$1 - I_D R_{D\text{max}} = -0.4$$

 $R_{D\text{max}} = \frac{1.4}{0.08} = 17.5 \text{ k}\Omega$

5.46

(a)
$$I_{D1} = 50 \text{ }\mu\text{A}$$

 $0.05 = \frac{1}{2} \times 0.4 \times \frac{1.44}{0.36} V_{OV}^2$
 $\Rightarrow V_{OV} = 0.25 \text{ V}$
 $V_{GS1} = V_t + V_{OV}$
 $= 0.5 + 0.25 = 0.75 \text{ V}$
 $V_{D1} = V_{GS1} = 0.75 \text{ V}$
 $R = \frac{V_{DD} - V_{D1}}{I_{D1}} = \frac{1.8 - 0.75}{0.05} = 21 \text{ }k\Omega$

(b) Note that both transistors operate at the same V_{GS} and V_{OV} , and

$$I_{D2} = 0.5 \text{ mA}$$

But

$$I_{D2} = \frac{1}{2} k_n \left(\frac{W_2}{L_2}\right) V_{OV}^2$$

$$0.5 = \frac{1}{2} \times 0.4 \times \frac{W_2}{0.36} \times 0.25^2$$

$$\Rightarrow W_2 = 14.4 \,\mu\text{m}$$

which is 10 times W_1 , as needed to provide $I_{D2} = 10I_{D1}$. Since Q_2 is to operate at the edge of

$$V_{DS2} = V_{OV}$$

Thus,

$$V_{D2} = 0.25 \text{ V}$$

$$R_2 = \frac{V_{DD} - V_{D2}}{I_{D2}}$$
$$= \frac{1.8 - 0.25}{0.5} = 3.1 \text{ k}\Omega$$

5.47

$$I_D = \frac{1}{2}k'_n \frac{W}{L}(V_{GS} - V_t)^2$$

$$= \frac{1}{2} \times 0.4 \times \frac{W}{L}(1.3 - 0.4)^2$$

$$= 0.162 \left(\frac{W}{L}\right)$$

$$V_D = 1.3 - I_D R_D = 1.3 - 0.162 \left(\frac{W}{L}\right) R_D$$

$$V_D = 1.3 - I_D R_D = 1.3 - 0.162 \left(\frac{L}{L}\right) R_D$$

For the MOSFET to be at the edge of saturation, we must have

$$V_D = V_{OV} = 1.3 - 0.4 = 0.9$$

$$0.9 = 1.3 - 0.162 \left(\frac{W}{L}\right) R_D$$

 $\Rightarrow \left(\frac{W}{L}\right) R_D \simeq 2.5 \text{ k}\Omega$ Q.E.D

5.48

$$V_{OV} = V_{GS} - V_t$$

= 1.3 - 0.4 = 0.9

To operate at the edge of saturation, we must have

$$V_D = V_{OV} = 0.9 \text{ V}$$

$$R_D = \frac{1.3 - 0.9}{0.1} = 4 \text{ k}\Omega$$

5.49

$$I_D = 180 \,\mu\text{A}$$
 and $V_D = 1 \,\text{V}$

$$R = \frac{V_D}{I_D} = \frac{1}{0.18} = 5.6 \text{ k}\Omega$$

Transistor is operating in saturation with

$$|V_{OV}| = 1.8 - V_D - |V_t| = 1.8 - 1 - 0.5 = 0.3 \text{ V}$$
:

$$I_{D} = \frac{1}{2} k_{p}^{\prime} \frac{W}{L} |V_{OV}|^{2}$$

$$180 = \frac{1}{2} \times 100 \times \frac{W}{L} \times 0.3^2$$

$$\Rightarrow \frac{W}{L} = 40$$

$$W = 40 \times 0.18 = 7.2 \,\mu\text{m}$$

5.50 Refer to Fig. P5.50. Both Q_1 and Q_2 are operating in saturation at $I_D = 0.5$ mA. For Q_1 ,

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W_1}{L_1} \ V_{OV1}^2$$

$$0.5 = \frac{1}{2} \times 0.25 \times \frac{W_1}{L_1} (1 - 0.5)^2$$

$$\Rightarrow \frac{W_1}{L_1} = 16$$

$$W_1 = 16 \times 0.25 = 4 \,\mu\text{m}$$

For Q_2 , we have

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W_2}{L_2}\right) V_{OV2}^2$$

$$0.5 = \frac{1}{2} \times 0.25 \times \frac{W_2}{L_2} (1.8 - 1 - 0.5)^2$$

$$\Rightarrow \frac{W_2}{L_2} = 44.4$$

$$W_2 = 44.4 \times 0.25 = 11.1$$

$$R = \frac{2.5 - 1.8}{0.5} = 1.4 \text{ k}\Omega$$

5.51 Refer to the circuit in Fig. P5.51. All three transistors are operating in saturation with $I_D = 90 \, \mu \text{A}$. For Q_1 ,

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W_1}{L_1} (V_{GS1} - V_t)^2$$

$$90 = \frac{1}{2} \times 90 \times \frac{W_1}{L_1} (0.8 - 0.5)^2$$

$$\Rightarrow \frac{W_1}{L_1} = 22.2$$

$$W_1 = 22.2 \times 0.5 = 11.1 \,\mu\text{m}$$

 $W_2 = 50 \times 0.5 = 25 \,\mu\text{m}$

For O_2

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W_2}{L_2} (V_{GS2} - V_t)^2$$

$$90 = \frac{1}{2} \times 90 \times \frac{W_2}{L_2} (1.5 - 0.8 - 0.5)^2$$

$$\Rightarrow \frac{W_2}{L_2} = 50$$

For Q_3 ,

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W_3}{L_3} (V_{GS3} - V_t)^2$$

$$90 = \frac{1}{2} \times 90 \times \frac{W_3}{L_3} (2.5 - 1.5 - 0.5)^2$$

$$\Rightarrow \frac{W_3}{L_3} = 8$$

$$W_3 = 8 \times 0.5 = 4 \ \mu \text{m}$$

5.52 Refer to the circuits in Fig. 5.24 (page 282):

$$V_{GS} = 5 - 6I_D$$

$$I_D = \frac{1}{2}k'_n \frac{W}{L} (V_{GS} - V_t)^2$$

$$= \frac{1}{2} \times 1.5 \times (5 - 6I_D - 1.5)^2$$

which results in the following quadratic equation in I_D :

$$36I_D^2 - 43.33I_D + 12.25 = 0$$

The physically meaningful root is

$$I_D = 0.45 \text{ mA}$$

This should be compared to the value of 0.5 mA found in Example 5.6. The difference of about 10% is relatively small, given the large variations in k_n and V_t (50% increase in each). The new value of V_D is

$$V_D = V_{DD} - R_D I_D = 10 - 6 \times 0.45 = +7.3 \text{ V}$$

as compared to +7 V found in Example 5.6. We conclude that this circuit is quite tolerant to variations in device parameters.

5.53

Refer to the circuit in the figure above,

$$R_{G1} = \frac{V_{DD} - V_G}{1 \,\mu\text{A}}$$

$$= \frac{10 - 6}{1} = 4 \,\text{M}\Omega$$

$$R_{G2} = \frac{6}{1 \,\mu\text{A}} = 6 \,\text{M}\Omega$$

$$R_D = \frac{5 \,\text{V}}{0.5 \,\text{mA}} = 10 \,\text{k}\Omega$$

To determine V_S , we use

$$I_D = \frac{1}{2} k_p' \left(\frac{W}{L}\right) (V_{SG} - |V_t|)^2$$
$$0.5 = \frac{1}{2} \times 4 \times (V_{SG} - 1.5)^2$$
$$\Rightarrow V_{SG} = 2 \text{ V}$$

Thus,

$$V_S = V_G + V_{SG} = 6 + 2 = 8 \text{ V}$$

$$R_S = \frac{10-8}{0.5} = 4 \text{ k}\Omega$$

Assuming linear operation in the triode region, we can write

$$i_D = \frac{v_O}{r_{DS}} = \frac{50 \text{ mV}}{50 \Omega} = 1 \text{ mA}$$

$$i_D = k_n' \left(\frac{W}{L}\right) (v_{GS} - V_t) v_{DS}$$

$$1 = 0.5 \times \frac{W}{L} \times (1.3 - 0.4) \times 0.05$$

$$\Rightarrow \frac{W}{L} = 44.4$$

$$R = \frac{V_{DD} - v_O}{i_D} = \frac{1.3 - 0.05}{1}$$

$$= 1.25 \text{ k}\Omega$$

5.55 (a) Refer to Fig. P5.55(a): Assuming saturation-mode operation, we have

$$I_D = \frac{1}{2} k_n V_{OV}^2$$

$$2 = \frac{1}{2} \times 4 \ V_{OV}^2$$

$$\Rightarrow V_{OV} = 1 \text{ V}$$

$$V_{GS} = |V_t| + V_{OV} = 1 + 1 = 2 \text{ V}$$

$$V_1 = 0 - V_{GS} = -2 \text{ V}$$

$$V_2 = 5 - 2 \times 2 = +1 \text{ V}$$

Since $V_{DG} = +1$ V, the MOSFET is indeed in saturation.

Refer to Fig. P5.55(b): The transistor is operating in saturation, thus

$$I_D = \frac{1}{2} k_n V_{OV}^2$$

$$2 = \frac{1}{2} \times 4 \times V_{OV}^2 \Rightarrow V_{OV} = 1 \text{ V}$$

$$V_{GS} = 2 \text{ V}$$

$$\Rightarrow V_3 = 2 \text{ V}$$

Refer to Fig. P5.55(c): Assuming saturation-mode operation, we have

$$I_D = \frac{1}{2} k_p |V_{OV}|^2$$

$$2 = \frac{1}{2} \times 4 \times |V_{OV}|^2$$

$$\Rightarrow |V_{OV}| = 1 \text{ V}$$

$$V_{SG} = |V_t| + |V_{OV}| = 1 + 1 = 2 \text{ V}$$

$$V_4 = V_{SG} = 2 \text{ V}$$

$$V_5 = -5 + I_D \times 1.5$$

$$= -5 + 2 \times 1.5 = -2 \text{ V}$$

Since $V_{DG} < 0$, the MOSFET is indeed in saturation.

Refer to Fig. P5.55(d): Both transistors are operating in saturation at equal $|V_{OV}|$. Thus

$$2 = \frac{1}{2} \times 4 \times |V_{OV}|^2 \Rightarrow |V_{OV}| = 1 \text{ V}$$

$$V_{SG} = |V_t| + |V_{OV}| = 2 \text{ V}$$

$$V_6 = 5 - V_{SG} = 5 - 2 = 3 \text{ V}$$

$$V_7 = +5 - 2 V_{SG} = 5 - 2 \times 2 = 1 \text{ V}$$

(b) Circuit (a): The 2-mA current source can be replaced with a resistance R connected between the MOSFET source and the -5-V supply with

$$R = \frac{V_1 - (-5)}{2 \text{ mA}} = \frac{-2 + 5}{2} = 1.5 \text{ k}\Omega$$

Circuit (b): The 2-mA current source can be replaced with a resistance R,

$$R = \frac{5 - V_3}{2 \text{ mA}} = \frac{5 - 2}{2} = 1.5 \text{ k}\Omega$$

Circuit (c): The 2-mA current source can be replaced with a resistance *R*,

$$R = \frac{5 - V_4}{2 \text{ mA}} = \frac{5 - 2}{2} = 1.5 \text{ k}\Omega$$

Circuit (d): The 2-mA current source can be replaced with a resistance *R*,

$$R = \frac{V_7}{2 \text{ mA}} = \frac{1}{2} = 0.5 \text{ k}\Omega$$

We use the nearest 1% resistor, which is 499 Ω .

5.56 (a) Refer to Fig. P5.56(a): The MOSFET is operating in saturation. Thus

$$I_D = \frac{1}{2} k_n V_{OV}^2$$

$$10 = \frac{1}{2} \times 500 \times V_{OV}^2 \Rightarrow V_{OV} = 0.2 \text{ V}$$

$$V_{GS} = V_t + V_{OV} = 0.8 + 0.2 = 1 \text{ V}$$

$$V_1 = 0 - V_{GS} = -1 \text{ V}$$

(b) Refer to Fig. P5.56(b): The MOSFET is operating in saturation. Thus

$$100 = \frac{1}{2} \times 500 \times V_{OV}^2 \Rightarrow V_{OV} = 0.63 \text{ V}$$

$$V_{GS} = 0.8 + 0.63 = 1.43 \text{ V}$$

$$V_2 = -1.43 \text{ V}$$

(c) Refer to Fig. P5.56(c). The MOSFET is operating in saturation. Thus

$$1 = \frac{1}{2} \times 0.5 \times V_{OV}^2 \Rightarrow V_{OV} = 2 \text{ V}$$

$$V_{GS} = 0.8 + 2 = 2.8 \text{ V}$$

$$V_3 = -2.8 \text{ V}$$

(d) Refer to Fig. P5.56(d). The MOSFET is operating in saturation. Thus

$$10 = \frac{1}{2} \times 500 \times V_{OV}^2 \Rightarrow V_{OV} = 0.2 \text{ V}$$

$$V_{GS} = 0.8 + 0.2 = 1 \text{ V}$$

$$V_4 = 1 \text{ V}$$

(e) Refer to Fig. P5.56(e). The MOSFET is operating in saturation. Thus

$$1 = \frac{1}{2} \times 0.5 \times V_{OV}^2 \Rightarrow V_{OV} = 2 \text{ V}$$

$$V_{GS} = 0.8 + 2 = 2.8 \text{ V}$$

$$V_5 = V_{GS} = 2.8 \text{ V}$$

- (f) Refer to Fig. P5.56(f). To simplify our solution, we observe that this circuit is that in Fig. P5.56(d) with the 10- μ A current source replaced with a 400- $k\Omega$ resistor. Thus $V_G=V_4=+1$ V and, as a check, $I_D=\frac{5-1}{400}=0.01$ mA = 10 μ A.
- (g) Refer to Fig. P5.56(g). Our work is considerably simplified by observing that this circuit is similar to that in Fig. P5.56(e) with the 1-mA current source replaced with a 2.2-k Ω resistor. Thus $V_7 = V_5 = 2.8$ V and, as a check, $I_D = \frac{5-2.8}{2.2} = 1$ mA.
- (h) Refer to Fig. P5.56(h). Our work is considerably simplified by observing that this circuit is similar to that in Fig. P5.56(a) with the 10- μ A current source replaced with a 400- $k\Omega$ resistor. Thus $V_8 = V_1 = -1$ V and, as a check, $I_D = \frac{-1+5}{400} = 0.01$ mA = 10 μ A.
- **5.57** (a) Refer to the circuit in Fig. P5.57(a). Transistor Q_1 is operating in saturation. Assume that Q_2 also is operating in saturation,

$$V_{GS2} = 0 - V_2 = -V_2$$

and

$$V_2 = -2.5 + I_D \times 1$$

$$\Rightarrow I_D = V_2 + 2.5$$

Now,

$$I_D = \frac{1}{2} k_n (V_{GS2} - V_t)^2$$

Substituting $I_D = V_2 + 2.5$ and $V_{GS2} = -V_2$,

$$V_2 + 2.5 = \frac{1}{2} \times 1.5(-V_2 - 0.9)^2$$

$$\frac{2}{1.5}(V_2 + 2.5) = V_2^2 + 1.8 V_2 + 0.81$$

$$V_2^2 + 0.467 V_2 - 2.523 = 0$$

$$\Rightarrow V_2 = -1.84 \text{ V}$$

Thus.

$$I_D = V_2 + 2.5 = -1.84 + 2.5 = 0.66 \text{ mA}$$

and

$$V_{GS2} = 1.84 \text{ V}$$

Since Q_1 is identical to Q_2 and is conducting the same I_D , then

$$V_{GS1} = 1.84 \text{ V}$$

$$\Rightarrow V_1 = 2.5 - 1.84 = 0.66 \text{ V}$$

which confirms that Q_1 is operating in saturation, as assumed.

(b) Refer to the circuit in Fig. P5.57(b). From symmetry, we see that

$$V_4 = 2.5 \text{ V}$$

Now, compare the part of the circuit consisting of Q_2 and the 1-k Ω resistor. We observe the similarity of this part with the circuit between the gate of Q_2 and ground in Fig. P5.57(a). It follows that for the circuit in Fig. P5.57(b), we can use the solution of part (a) above to write

$$I_{D2} = 0.66 \text{ mA}$$
 and $V_{GS2} = 1.84 \text{ V}$

Thus,

$$V_5 = V_4 - V_{GS2} = 2.5 - 1.84 = 0.66 \text{ V}$$

Since Q_1 is conducting an equal I_D and has the same V_{GS} ,

$$I_{D1} = 0.66 \text{ mA}$$
 and $V_{GS1} = 1.84 \text{ V}$

$$\Rightarrow V_3 = V_4 + V_{GS1} = 2.5 + 1.84 = 3.34 \text{ V}$$

We could, of course, have used the circuit symmetry, observed earlier, to write this final result.

(a) From Fig. 1 we see that

$$V_{DG} = IR$$

Since for the PMOS transistor to operate in saturation,

$$V_{DG} \leq |V_{tp}|$$

It follows the

$$IR \leq |V_{tp}|$$
 Q.E.D

(b) (i) R = 0, the condition above is satisfied and

$$I_D = I = \frac{1}{2} k_p |V_{OV}|^2$$

$$0.1 = \frac{1}{2} \times 0.2 \times |V_{OV}|^2$$

$$\Rightarrow |V_{OV}| = 1 \text{ V}$$

$$V_{SG} = |V_{tp}| + |V_{OV}| = 1 + 1 = 2 \text{ V}$$

$$V_G = 10 - 2 = 8 \text{ V}$$

$$V_D = V_G = 8 \text{ V}$$

$$V_{SD} = 2 \text{ V}$$

(ii)
$$R = 10 \text{ k}\Omega$$

$$IR = 0.1 \times 10 = 1 \text{ V}$$

which just satisfies the condition for saturation-mode operation in (a) above. Obviously I_D and $|V_{OV}|$ will be the same as in (i) above.

$$V_{SG} = 2 \text{ V}$$

$$V_G = 8 \text{ V}$$

$$V_D = V_G + IR = 8 + 1 = 9 \text{ V}$$

$$V_{SD} = 1 \text{ V}$$

(iii)
$$R = 30 \text{ k}\Omega$$

$$IR = 0.1 \times 30 = 3 \text{ V}$$

which is greater than $|V_{tp}|$. Thus the condition in (a) above is not satisfied and the MOSFET is operating in the triode region. From Fig. 2,

From Fig. 2, we see that

$$V_{SD} = V_{SG} - 3$$

Now, for triode-mode operation,

$$I_D = k_p \left[(V_{SG} - |V_{tp}|)V_{SD} - \frac{1}{2}V_{SD}^2 \right]$$

$$0.1 = 0.2 \left[(V_{SG} - 1)(V_{SG} - 3) - \frac{1}{2}(V_{SG} - 3)^2 \right]$$

$$\Rightarrow V_{SG}^2 - 2V_{SG} - 4 = 0$$

$$\Rightarrow V_{SG} = 3.24 \text{ V}$$

$$V_{SD} = V_{SG} - 3 = 0.24 \text{ V}$$

(iv)
$$R = 100 \text{ k}\Omega$$

Here also (see Fig. 3) the MOSFET will be operating in the triode region, and

$$V_{SD} = V_{SG} - 10 \text{ V}$$

Since we expect V_{SD} to be very small, we can neglect the V_{SD}^2 term in the expression for I_D and write

$$I_D \simeq k_p (V_{SG} - |V_t|) V_{SD}$$

$$0.1 = 0.2 (V_{SG} - 1) (V_{SG} - 10)$$

$$\Rightarrow V_{SG}^2 - 11 V_{SG} + 9.5 = 0$$

$$\Rightarrow V_{SG} = 10.055 \text{ V}$$

$$V_{SD} = V_{SG} - 10 = 0.055 \text{ V}$$

5.59 (a) Refer to the circuit in Fig. P5.59(a). Since the two NMOS transistors are identical and have the same I_D , their V_{GS} values will be equal. Thus

$$V_{GS} = \frac{3}{2} = 1.5 \text{ V}$$

$$V_{2} = 1.5 \text{ V}$$

$$V_{OV} = V_{GS} - V_{t} = 1.0 \text{ V}$$

$$I_{1} = I_{D} = \frac{1}{2} \mu_{n} C_{ox} \left(\frac{W}{L}\right) V_{OV}^{2}$$

$$= \frac{1}{2} \times 270 \times \frac{3}{1} \times 1$$

$$= 405 \text{ } \mu\text{A}$$

(b) Refer to the circuit in Fig. P5.59(b). Here Q_N and Q_P have the same $I_D = I_3$. Thus

$$I_3 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OVN}^2 \tag{1}$$

$$I_3 = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right) V_{OVP}^2 \tag{2}$$

Equating Eqs. (1) and (2) and using $\mu_n C_{ox} = 3\mu_p C_{ox}$ gives $3V_{OVN}^2 = V_{OVP}^2$:

$$|V_{OVP}| = \sqrt{3} V_{OVN}$$

Now,

$$V_{GSN} = V_{OVN} + V_t = V_{OVN} + 0.5$$

 $V_{SGP} = |V_{OVP}| + |V_t| = \sqrt{3} V_{OVN} + 0.5$

But

$$V_{SGP} + V_{GSN} = 3$$
$$(\sqrt{3} + 1)V_{OVN} + 1 = 3$$
$$\Rightarrow V_{OVN} = 0.732 \text{ V}$$

$$V_{OVP} = 1.268 \text{ V}$$

$$V_{GSN} = 1.232 \text{ V}$$

$$V_{SGP} = 1.768 \text{ V}$$

$$V_4 = V_{GSN} = 1.232 \text{ V}$$

$$I_3 = \frac{1}{2} \times 270 \times \frac{3}{1} \times 0.732^2 = 217 \ \mu A$$

(c) Refer to Fig. P5.59(c). Here the width of the PMOS transistor is made 3 times larger than that

of the NMOS transistor. This compensates for the factor 3 in the process transconductance parameter, resulting in $k_p = k_n$, and the two transistors are matched. The solution will be identical to that for (a) above with

$$V_5 = \frac{3}{2} = 1.5 \text{ V}$$

$$I_6 = 405 \, \mu A$$

5.60 Refer to the circuit in Fig. P5.60. First consider Q_1 and Q_2 . Both are operating in saturation and since they are identical, they have equal V_{GS} :

$$V_{GS1} = V_{GS2} = \frac{5}{2} = 2.5 \text{ V}$$

Thus

$$I_{D2} = I_{D1} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS1} - V_t)^2$$
$$= \frac{1}{2} \times 50 \times \frac{10}{1} (2.5 - 1)^2$$

$$= 562.5 \mu A$$

Now, Q_3 has the same V_{GS} at Q_1 and is matched to Q_1 . Thus if we assume that Q_3 is operating in saturation, we have

$$I_{D3} = I_{D1} = 562.5 \,\mu\text{A}$$

Thus,

$$I_2 = 562.5 \, \mu A$$

This is the same current that flows through Q_4 , which is operating in saturation and is matched to Q_3 . Thus

$$V_{GS4} = V_{GS3} = V_{GS1} = 2.5 \text{ V}$$

Thus.

$$V_2 = 5 - V_{GS4} = 2.5 \text{ V}$$

This is equal to the voltage at the gate of Q_3 ; thus Q_3 is indeed operating in saturation, as assumed.

If Q_3 and Q_4 have $W = 100 \mu m$, nothing changes for Q_1 and Q_2 . However, Q_3 , which has the same V_{GS} as Q_1 but has 10 times the width, will have a drain current 10 times larger than Q_1 .

Thus

$$I_{D2} = I_{D3} = 10 I_{D1} = 10 \times 562.5 \,\mu\text{A}$$

$$= 5.625 \text{ mA}$$

Transistor Q_4 will carry I_2 but will retain the same V_{GS} as before, thus V_2 remains unchanged at 2.5 V.

5.61 Refer to the circuit in Fig. P5.61.

(a) Q_1 and Q_2 are matched. Thus, from symmetry, we see that the 200- μ A current will split equally between Q_1 and Q_2 :

$$I_{D1} = I_{D2} = 100 \,\mu\text{A}$$

$$V_1 = V_2 = 2.5 - 0.1 \times 20 = 0.5 \text{ V}$$

To find V_3 , we determine V_{GS} of either Q_1 and Q_2 (which, of course, are equal),

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_{GS} - V_t)^2$$

$$100 = \frac{1}{2} \times 125 \times 20 \times (V_{GS} - 0.7)^2$$

$$\Rightarrow V_{GS} = 0.983 \text{ V}$$

Thus,

$$V_3 = -0.983 \text{ V}$$

(b) With $V_{GS1} = V_{GS2}$, but $(W/L)_1 = 1.5(W/L)_2$, transistor Q_1 will carry a current 1.5 times that in Q_2 , that is,

$$I_{D1} = 1.5I_{D2}$$

But,

$$I_{D1} + I_{D2} = 200 \,\mu\text{A}$$

Thus

$$I_{D1} = 120 \, \mu A$$

$$I_{D2} = 80 \, \mu A$$

$$V_1 = 2.5 - 0.12 \times 20 = 0.1 \text{ V}$$

$$V_2 = 2.5 - 0.08 \times 20 = 0.9 \text{ V}$$

To find V_3 , we find V_{GS} from the I_D equation for either Q_1 or Q_2 ,

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_{\perp} (V_{GS} - V_t)^2$$

$$120 = \frac{1}{2} \times 125 \times 20 \times (V_{GS} - 0.7)^2$$

$$\Rightarrow V_{GS} = 1.01 \text{ V}$$

$$V_3 = -1.01 \text{ V}$$

5.62 Using Eq. (5.30), we can write

$$V_t = V_{t0} + \gamma \left[\sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right]$$

where

$$V_{t0} = 1.0 \text{ V}$$

$$\gamma = 0.5 \text{ V}^{1/2}$$

$$2\phi_f = 0.6 \text{ V}$$

and

$$V_{SB} = 0$$
 to 4 V

At

$$V_{SR} = 0$$
, $V_t = V_{t0} = 1.0 \text{ V}$

Αt

$$V_{SB}=4 \text{ V},$$

$$V_t = 1 + 0.5[\sqrt{0.6 + 4} - \sqrt{0.6}]$$

$$= 1.69 \text{ V}$$

If the gate oxide thickness is increased by a factor of 4, C_{ox} will decrease by a factor of 4 and Eq. (5.31) indicates that γ will increase by a factor of 4, becoming 2. Thus at $V_{SB} = 4$ V,

$$V_t = 1 + 2[\sqrt{0.6 + 4} - \sqrt{0.6}]$$

$$= 3.74 \text{ V}$$

5.63
$$|V_t| = |V_{t0}| + \gamma \left[\sqrt{2\phi_f + |V_{SB}|} - \sqrt{2\phi_f} \right]$$

$$= 0.7 + 0.5[\sqrt{0.75 + 3} - \sqrt{0.75}]$$

$$= 1.24 \text{ V}$$

Thus,

$$V_t = -1.24 \text{ V}$$

5.64 (a)
$$i_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (v_{GS} - V_t)^2$$

$$\frac{\partial i_D}{\partial T} = \frac{1}{2} \frac{\partial k_n'}{\partial T} \left(\frac{W}{L} \right) (v_{GS} - V_t)^2$$

$$-k_n'\left(\frac{W}{L}\right)(v_{GS}-V_t)\frac{\partial V_t}{\partial T}$$

$$\frac{\partial i_D/i_D}{\partial T} = \frac{\partial k'_n/k'_n}{\partial T} - \frac{2}{V_{GS} - V_t} \frac{\partial V_t}{\partial T}$$

For

$$\frac{\partial V_t}{\partial T} = -2 \text{ mV/}^{\circ}\text{C} = -0.002 \text{ V/}^{\circ}\text{C}$$

and

$$\frac{\partial i_D/i_D}{\partial T} = -0.002/^{\circ}\text{C}, \ V_{GS} = 5 \text{ V}$$

and

$$V_t = 1 \text{ V}$$

$$-0.002 = \frac{\partial k'_n/k'_n}{\partial T} - \frac{2 \times -0.002}{5 - 1}$$

$$\Rightarrow \frac{\partial k_n'/k_n'}{\partial T} = -0.003/^{\circ}\text{C}$$

or
$$-0.3\%/^{\circ}$$
C

The NMOS depletion-type MOSFET has the same i-v characteristics as the enhancement-type NMOS except that V_{tn} is negative, for the depletion device:

$$\begin{split} i_D &= k_n \bigg[(v_{GS} - V_{tm}) v_{DS} - \frac{1}{2} v_{DS}^2 \bigg], \quad \text{for } v_{DS} \leq \\ v_{GS} - V_{tm} \end{split}$$

$$i_D = \frac{1}{2} k_n (v_{GS} - V_{tn})^2,$$

for
$$v_{DS} \geq v_{GS} - V_{tn}$$

For our case, $v_{GS} = 0$, $V_{tn} = -3$ V, and $k_n = 2$ mA/V². Thus

$$i_D = 2\left(3v_D - \frac{1}{2}v_D^2\right), \text{ for } v_D \le 3 \text{ V}$$

$$i_D = \frac{1}{2} \times 2 \times 9 = 9 \text{ mA}, \text{ for } v_D \ge 3 \text{ V}$$

For

$$v_D = 0.1 \text{ V}, \quad i_D = 2\left(3 \times 0.1 - \frac{1}{2} \times 0.1^2\right)$$

= 0.59 mA (triode)

For

$$v_D = 1 \text{ V}, \quad i_D = 2\left(3 \times 1 - \frac{1}{2} \times 1\right)$$

=5 mA (triode)

For

$$v_D = 3 \text{ V}, \quad i_D = 9 \text{ mA (saturation)}$$

For

$$v_D = 5 \text{ V}, \quad i_D = 9 \text{ mA (saturation)}$$

5.66
$$i_D = k_n \left[(v_{GS} - V_m) v_{DS} - \frac{1}{2} v_{DS}^2 \right],$$
 for $v_{DS} \le v_{GS} - V_m$

$$\begin{split} i_D &= \frac{1}{2} k_n (v_{GS} - V_{tn})^2 (1 + \lambda \ v_{DS}), \\ \text{for } v_{DS} &\geq v_{GS} - V_{tn} \end{split}$$

For our case,

$$V_{tn} = -2 \text{ V}, \ k_n = 0.2 \text{ mA/V}^2, \ \lambda = 0.02 \text{ V}^{-1}$$

and $v_{GS} = 0$. Thus

$$i_D = 0.2 \left(2 v_{DS} - \frac{1}{2} v_{DS}^2 \right), \text{ for } v_{DS} \le 2 \text{ V}$$

$$i_D = 0.4(1 + 0.02 \ v_{DS}), \text{ for } v_{DS} \ge 2 \text{ V}$$

For $v_{DS} = 1 \text{ V}$,

$$i_D = 0.2 \left(2 - \frac{1}{2}\right) = 0.3 \text{ mA}$$

For $v_{DS} = 2 \text{ V}$,

$$i_D = 0.4(1 + 0.02 \times 2) = 0.416 \text{ mA}$$

For $v_{DS} = 3 \text{ V}$,

$$i_D = 0.4(1 + 0.02 \times 3) = 0.424 \text{ mA}$$

For $v_{DS} = 10 \text{ V}$,

$$i_D = 0.4(1 + 0.02 \times 10) = 0.48 \text{ mA}$$

If the device width W is doubled, k_n is doubled, and each of the currents above will be doubled. If both W and L are doubled, k_n remains unchanged. However, λ is divided in half; thus for $v_{DS} = 2$ V, i_D becomes 0.408 mA; for $v_{DS} = 3$ V, i_D becomes 0.412 mA; and for $v_{DS} = 10$ V, i_D becomes 0.44 mA.

5.67

Fig. 1

The depletion-type MOSFET operates in the triode region when $v_{DS} \leq v_{GS} - V_t$: that is, $v_{DG} \leq -V_t$, where V_t is negative. In the case shown in Fig. 1, $v_{DG} = 0$. Thus the condition for triode-mode operation is satisfied, and

$$i_D = k_n \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

which applies when the channel is not depleted, that is, when $v_{GS} > V_t$. For our case,

$$i = k_n \left[(v - V_t)v - \frac{1}{2}v^2 \right], \quad \text{for } v \ge V_t$$

Thus.

$$i = \frac{1}{2}k_n(v^2 - 2V_t v), \quad \text{for } v \ge V_t$$

For $v \le V_t$, the source and the drain exchange roles, as indicated in Fig. 2.

Here $v_{GS} = 0$ and $v_{DS} = -v$; thus $v_{DS} \ge -V_t$. Thus the device is operating in saturation, and

$$i_D = \frac{1}{2} k_n (0 - V_t)^2$$

$$i_D = \frac{1}{2} k_n V_t^2$$

But $i = i_D$; thus

$$i = \frac{1}{2}k_n V_t^2, \quad \text{for } v \le V_t$$

Figure 3 is a sketch of the i-v relationship for the case $V_t = -2$ V and $k_n = 2$ mA/V².

Here

$$i = v(v+4)$$
, for $v \ge -2$ V

and

$$i = -4 \text{ mA}, \text{ for } v \le -2 \text{ V}$$

Fig. 3