	Tipo de Prova Teste 1	Ano lectivo 2015/2016	Data 20-04-2016
ESTGF POLITÉCNICO DO PORTO	Curso Lic. Segurança Informática em Redes de G	Hora 14:10	
3,000 20,000	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____ Nome: ____

Questão	1	2	3	4	5	6	7	8	TOTAL
Cotação	1+2+1,5	2	1,2	1,8	1,5	1,5+1,5	1+1,5+1,5	1+1,5	20

- **1.** Considere o conjunto $Y = \{a, b, \emptyset, \{\emptyset\}, \{a, b\}\}, \text{ com } a, b \in \mathbb{N}.$
 - a) Indique # Y e determine # $\mathcal{P}(Y)$ e # $\mathcal{P}(\mathcal{P}(Y))$.
 - b) Complete os espaço com €, ∉, ⊆, =, ≠ por forma a obter afirmações verdadeiras:

$$\emptyset$$
 ____ Y { \emptyset , a } ____ $\mathcal{P}(Y)$ { a , b } ____ Y { \emptyset , { \emptyset }} ___ $\mathcal{P}(Y)$ { \emptyset , { \emptyset }} ___ Y { a } ___ $\mathcal{P}(Y)$

- **c)** Diga, justificando, se a função $f: \{a, b\} \to \mathcal{P}(X)$, tal que $f(x) = \{x\} \cap \{\emptyset, a\}$ é injetiva, sobrejetiva ou bijetiva.
- **2.** Considere o conjunto universo $U = \{x \in \mathbb{Z}_0^+ : |x| < 10\}$ e os seus subconjuntos $A = \{x \in U : x^3 \le 10\}$, $B = \{x \in U : x \text{ \'e m\'ultiplo de 2}\}$ e $C = \{x : x \text{ \'e positivo e } x \text{ divide 2}\}$. Determine $C \times \overline{A \cup B}$ e $A \oplus (B \cap C)$.
- 3. Determine:

$$\sum_{i=2}^{1501} 1 - \prod_{k=0}^{1} 100^k \times \sum_{i=1}^{3} \sum_{j=0}^{2} (2i \times \lceil 0.5 + j \rceil)$$

4. Utilizando a indução matemática verifique que a seguinte propriedade é verdadeira:

$$P(n): \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}, \quad \forall n \in \mathbb{N}.$$

5. Considere a fórmula de recorrência dada por:

$$\begin{cases}
G(1) = -1 \\
G(n) = 5 G(n-1), & n > 1
\end{cases}$$

Recorrendo ao algoritmo EGV(Expand, Guess, Verify), encontre a fórmula fechada.

Nota: Efetue apenas os passos Expand e Guess.

6. Considere as seguintes relações binárias definidas sobre $\{a, b, c\}$:

$$R = \{(b,b),(c,c),(a,c),(b,c)\} \in S = \{(a,a),(b,b),(c,c),(c,a),(a,c)\}.$$

- a) Determine, caso seja possível $S \circ (R^{-1} \cap S)$ e simetrico(R).
- **b)** Justifique que apenas uma das relações, R ou S, é de equivalência e indique a classe de equivalência do elemento a.

ESTGF-PR05-Mod013V1 Página 1 de2

		Tipo de Prova Teste 1	Data 20-04-2016	
ESTGF POLITÉCNICO DO PORTO		Curso Lic. Segurança Informática em Redes de O	Hora 14:10	
		Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno:	Nomo	
in." de aluno.	Nome:	

- 7. Considere o fragmento de código scilato onde são definidas as matrizes de adjacência de dois grafos e responda às questões seguintes:
 - a) Diga, justificando, se se tratam de grafos não orientados ou grafos orientados e apresente uma representação gráfica de cada um;
 - **b)** Relativamente ao grafo definido na matriz M1, indique, justificando:
 - i) o número de caminhos de comprimento 5 do terceiro para o quarto vértice;
 - ii) o número de caminhos de comprimento 5 do quarto para o terceiro vértice;
 - iii) todos os caminhos de comprimento 5 do primeiro para o último vértice.
 - c) Relativamente ao grafo definido na matriz M2:
 i) indique, justificando, o número de circuitos de comprimento 3, e dê um exemplo de um tal circuito.
 - ii) justifique se se trata de um grafo Euleriano.

```
-->M1=[1 0 0 1 0; 1 0 0 0 0;
 1 1 0 0; 0 0 1 0 1; 0 0 1 0 0];
-->M1^5
ans
    14.
                   8.
                           6.
                                  2.
                           2.
            3.
                   5.
                                  1.
    6.
    16.
            6.
                   14.
                           8.
                                  5.
    13.
            3.
                   8.
                           8.
                                  4.
    8.
            2.
                   6.
                           5.
                                  3.
-->M2=[1 0 2 1; 0 0 1 0;
2 1 1 0; 1 0 0 1];
-->M2^3
 ans
    16
            4.
                   18.
                           8.
            1.
                   6.
                           2.
                   15.
    18.
            6.
                           6.
    8.
            2.
                   6.
                           4.
```

- 8. Relativamente ao grafo apresentado ao lado:
 - **a)** Classifique-o, indique o conjunto dos vértices e das arestas, assim como sua ordem e dimensão;
 - **b)** Determine a matriz de adjacências e, com base nesta matriz, determine o grau de cada vértice.

Bom Trabalho Eliana Costa e Silva

ESTGF-PR05-Mod013V1 Página 2 de2