

RP170x SERIES

300mA 10V INPUT LDO REGULATOR

No.EA-205-200219

OUTLINE

The RP170x is LDO regulator featuring 300mA output current. Because of the 10V maximum input voltage, RP170x can be used in 2 cell lithium-ion battery powered portable appliances and besides a portable equipment. The supply current is Typ. 23µA though an excellent response characteristics.

The output voltage range from 1.2V is possible. The output voltage accuracy and temperature-drift coefficient of output voltage of the RP170x Series are excellent.

RP170x has a fold-back protection circuit and a thermal shutdown circuit. Moreover, a standby mode with ultra low supply current can be realized with the chip enable function.

SC-88A, SOT-23-5 and SOT-89-5 with high power dissipation packages are available.

FEATURES

• Supply Current ····· Typ. 23μA
 Standby Mode ·····Typ. 0.1μA
• Dropout VoltageTyp. 0.20V (lout=100mA, Vout=3.0V)
Тур. 0.77V (Iouт=300mA, Vouт=2.8V)
Ripple Rejection
 Temperature-Drift Coefficient of Output Voltage····· Typ. ±80ppm/°C
Line Regulation Typ. 0.02%/V
Output Voltage Accuracy±1.0%
• Packages ······SC-88A, SOT-23-5, SOT-89-5
Input Voltage Range2.6V to 10.0V
Output Voltage Range1.2V to 6.5V (0.1V steps)
(For other voltages, please refer to
MARK INFORMATIONS.)
Built-in Fold Back Protection CircuitTyp. 40mA (Current at short mode)
Built-in Thermal Shutdown Circuit · · · · · Shutdown Temperature at 165°C
Built-in Constant Slope Circuit (Soft-start Function)
• Ceramic capacitors are recommended to be used with this IC······ 1.0μF or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.
- Power source for home appliances.

No.EA-205-200219

SELECTION GUIDE

The output voltage, auto discharge⁽¹⁾ function, and package for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free	
RP170Qxx2*-TR-FE	SC-88A	3,000 pcs	Yes	Yes	
RP170Nxx1*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes	
RP170Hxx1*-T1-FE	SOT-89-5	1,000 pcs	Yes	Yes	

xx: The output voltage can be designated in the range from 1.2V(12) to 6.5V(65) in 0.1V steps.

The voltage in 0.05 V step is shown as follows.

Example 1.25 V: RP170x12x*5

- * : The auto discharge function at off state are options as follows.
 - (B) without auto discharge function at off state
 - (D) with auto discharge function at off state

BLOCK DIAGRAMS

⁽¹⁾Auto-discharge function quickly lowers the output voltage to 0V by releasing the electrical charge accumulated in the external capacitor when the chip enable signal is switched from the active mode to the standby mode.

No.EA-205-200219

PIN CONFIGURATIONS

3

PIN DESCRIPTIONS

• SC-88A

Pin No	Symbol	Pin Description
1	CE	Chip Enable Pin ("H" Active)
2	NC	No Connection
3	GND	Ground Pin
4	VOUT	Output Pin
5	VDD	Input Pin

• SOT-23-5

Pin No	Symbol	Pin Description
1	VDD	Input Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	NC	No Connection
5	VOUT	Output Pin

• SOT-89-5

Pin No	Symbol	Pin Description
1	VOUT	Output Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	NC	No Connection
5	VDD	Input Pin

No.EA-205-200219

ABSOLUTE MAXIMUM RATINGS

Symbol		Item			
VIN	Input Voltage		12	V	
Vce	Input Voltage (CE Pin)		12	V	
Vouт	Output Voltage		-0.3 to V _{IN} +0.3	V	
louт	Output Current	Output Current			
	P _D Power Dissipation ⁽¹⁾	SC-88A (Our Standard Test Land Pattern)	380		
P_D		SOT-23-5 (JEDEC STD. 51-7)	660	mW	
		SOT-89-5 (JEDEC STD. 51-7)	2600		
Tj	Junction Temperature	-40 to 125	°C		
Tstg	Storage Temperature	Storage Temperature Range			

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECCOMENDED OPERATING CONDITIONS

Symbol	Parameter	Rating	Unit
V _{IN}	Input Voltage	2.6 to 10	V
Та	Operating Temperature Range	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

⁽¹⁾Refer to POWER DISSIPATION for detailed information

No.EA-205-200219

ELECTRICAL CHARACTERISTICS

RP170xxxxB/D

 V_{IN} = Set V_{OUT} + 1V, I_{OUT} = 1mA, unless otherwise noted.

values indicate –40°C ≤ Ta ≤ 85°C, unless otherwise noted.

Ta=25°C

Symbol	Item	С	onditio	าร	Min.	Тур.	Max.	Unit
		Ta=25°C		Vоит > 1.5V	×0.99		×1.01	V
\/	Output Valtage	1a=25 C		V _{OUT} ≤ 1.5V	-15		+15	mV
Vоит	Vout Output Voltage		_40°C ≤ Ta ≤ 85°C Voυτ > 1.5V		×0.974		×1.023	V
		-40 C 3 Ta 3	03 C	V _{OUT} ≤ 1.5V	-40		+35	mV
І оит	Output Current				300			mA
ΔVουτ/ΔΙουτ	Load Regulation	0.1mA ≤ IouT	≤ 300m	4		10	70	mV
			1.2V ≤	Vout < 1.3V		1.400	1.800	
			1.3V ≤	Vout < 1.5V		1.350	1.750	
			1.5V ≤	Vout < 1.8V		1.200	1.550	
V_{DIF}	Dropout Voltage	Іоит= 300mA	1.8V ≤	Vout < 2.3V		0.980	1.300	V
			2.3V ≤	Vout < 3.0V		0.770	1.080	
			3.0V ≤	Vout < 4.0V		0.600	0.850	
			4.0V ≤	V _{OUT} ≤ 6.5V		0.500	0.750	
Iss	Supply Current	Іоит=0mA				23	40	μΑ
Istandby	Standby Current	VIN=10.0V, V	E=GND			0.1	1.0	μΑ
ΔV out $/\Delta V$ in	Line Regulation	Set $V_{OUT}+0.5V \le V_{IN} \le 10.0V$ (In case that $V_{OUT} \le 2.1V$, $2.6V \le V_{IN} \le 10.0V$)				0.02	0.2	%/V
RR	Ripple Rejection	f=1kHz, Ripple 0.2Vp-p, lout=30mA (In case that Vout < 2.0V, Vin=3.0V)			70		dB	
Isc	Short Current Limit	Vоит=0V				40		mA
I PD	CE Pull-down Current					0.30		μΑ
VCEH	CE Input Voltage "H"				1.7			V
VCEL	CE Input Voltage "L"					8.0	V	
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			165		°C	
TTSR	Thermal Shutdown Released Temperature	Junction Temperature			110		°C	
en	Output Noise	BW=10Hz to 100kHz				100		$\mu V rms$
RLOW	Low Output Nch Tr. ON Resistance (of D version)	VIN=7.0V VCE=0V				250		Ω

All of unit are tested and specified under load conditions such that Tj≈Ta=25°C except for Output Noise, Ripple Rejection and Thermal Shutdown.

No.EA-205-200219

Product-specific Electrical Characteristics

The specifications surrounded by \square are guaranteed by design engineering at -40° C \leq Ta \leq 85 $^{\circ}$ C.

RP170xxxxB/D (Ta = 25°C)

Product Name	V _{оит} [V] (Та = 25°С)			(Та	V _{OUT} [V] = -40 to 8		V _D	F [V]
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	TYP.	MAX.
RP170x12xx	1.185	1.2	1.215	1.160	1.2	1.235	4.400	4.000
RP170x12xx5	1.235	1.25	1.265	1.210	1.25	1.285	1.400	1.800
RP170x13xx	1.285	1.3	1.315	1.260	1.3	1.335	4.050	4.750
RP170x14xx	1.385	1.4	1.415	1.360	1.4	1.435	1.350	1.750
RP170x15xx	1.485	1.5	1.515	1.460	1.5	1.535		
RP170x16xx	1.584	1.6	1.616	1.558	1.6	1.637	1.200	1.550
RP170x17xx	1.683	1.7	1.717	1.656	1.7	1.739		
RP170x18xx	1.782	1.8	1.818	1.753	1.8	1.841		
RP170x18xx5	1.832	1.85	1.869	1.802	1.85	1.893		
RP170x19xx	1.881	1.9	1.919	1.851	1.9	1.944	0.000	1 200
RP170x20xx	1.980	2.0	2.020	1.948	2.0	2.046	0.980	1.300
RP170x21xx	2.079	2.1	2.121	2.045	2.1	2.148		
RP170x22xx	2.178	2.2	2.222	2.143	2.2	2.251		
RP170x23xx	2.277	2.3	2.323	2.240	2.3	2.353		
RP170x24xx	2.376	2.4	2.424	2.338	2.4	2.455		1.080
RP170x25xx	2.475	2.5	2.525	2.435	2.5	2.558		
RP170x26xx	2.574	2.6	2.626	2.532	2.6	2.660	0.770	
RP170x27xx	2.673	2.7	2.727	2.630	2.7	2.762	0.770	
RP170x28xx	2.772	2.8	2.828	2.727	2.8	2.864		
RP170x28xx5	2.822	2.85	2.879	2.776	2.85	2.916		
RP170x29xx	2.871	2.9	2.929	2.825	2.9	2.967		
RP170x30xx	2.970	3.0	3.030	2.922	3.0	3.069		
RP170x31xx	3.069	3.1	3.131	3.019	3.1	3.171		
RP170x32xx	3.168	3.2	3.232	3.117	3.2	3.274		
RP170x33xx	3.267	3.3	3.333	3.214	3.3	3.376		
RP170x34xx	3.366	3.4	3.434	3.312	3.4	3.478	0.600	0.850
RP170x35xx	3.465	3.5	3.535	3.409	3.5	3.581		0.650
RP170x36xx	3.564	3.6	3.636	3.506	3.6	3.683		
RP170x37xx	3.663	3.7	3.737	3.604	3.7	3.785		
RP170x38xx	3.762	3.8	3.838	3.701	3.8	3.887		
RP170x39xx	3.861	3.9	3.939	3.799	3.9	3.990		

No.EA-205-200219

The specifications surrounded by \square are guaranteed by design engineering at $-40^{\circ}\text{C} \le \text{Ta} \le 85^{\circ}\text{C}$.

 $RP170xxxxB/D (Ta = 25^{\circ}C)$

							1	(1a - 20 0)
Product Name	V _{оит} [V] (Та = 25°С)				V _{ουτ} [V] : –40 to 8	5°C)	V _{DIF}	[V]
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	TYP.	MAX.
RP170x40xx	3.960	4.0	4.040	3.896	4.0	4.092		
RP170x41xx	4.059	4.1	4.141	3.993	4.1	4.194		
RP170x42xx	4.158	4.2	4.242	4.091	4.2	4.297		
RP170x43xx	4.257	4.3	4.343	4.188	4.3	4.399		
RP170x44xx	4.356	4.4	4.444	4.286	4.4	4.501		
RP170x45xx	4.455	4.5	4.545	4.383	4.5	4.604		
RP170x46xx	4.554	4.6	4.646	4.480	4.6	4.706		
RP170x47xx	4.653	4.7	4.747	4.578	4.7	4.808		
RP170x48xx	4.752	4.8	4.848	4.675	4.8	4.910		
RP170x49xx	4.851	4.9	4.949	4.773	4.9	5.013		
RP170x50xx	4.950	5.0	5.050	4.870	5.0	5.115		
RP170x51xx	5.049	5.1	5.151	4.967	5.1	5.217		
RP170x52xx	5.148	5.2	5.252	5.065	5.2	5.320	0.500	0.750
RP170x53xx	5.247	5.3	5.353	5.162	5.3	5.422	0.500	0.750
RP170x54xx	5.346	5.4	5.454	5.260	5.4	5.524		
RP170x55xx	5.445	5.5	5.555	5.357	5.5	5.627		
RP170x56xx	5.544	5.6	5.656	5.454	5.6	5.729		
RP170x57xx	5.643	5.7	5.757	5.552	5.7	5.831		
RP170x58xx	5.742	5.8	5.858	5.649	5.8	5.933		
RP170x59xx	5.841	5.9	5.959	5.747	5.9	6.036		
RP170x60xx	5.940	6.0	6.060	5.844	6.0	6.138		
RP170x61xx	6.039	6.1	6.161	5.941	6.1	6.240]	
RP170x62xx	6.138	6.2	6.262	6.039	6.2	6.343		
RP170x63xx	6.237	6.3	6.363	6.136	6.3	6.445		
RP170x64xx	6.336	6.4	6.464	6.234	6.4	6.547		
RP170x65xx	6.435	6.5	6.565	6.331	6.5	6.650		

No.EA-205-200219

TYPICAL APPLICATION

(External Components)

C2 1.0μF MURATA: GRM155B31A105KE15

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with $1.0\mu F$ or more and good ESR (Equivalent Series Resistance).

(Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as $1.0\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

No.EA-205-200219

ESR vs. Output Current

Ceramic type output capacitor is recommended for this series; however, the other output capacitors with low ESR also can be used. The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph.

Measurement conditions

Frequency Band: 10Hz to 2MHz Temperature : -40°C to 85°C

C1, C2 : Ceramic 1.0µF (Murata GRM155B31A105KE)

No.EA-205-200219

TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection

Test Circuit for Load Transient Response

No.EA-205-200219

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Output Voltage vs. Output Current (Ta=25°C)

2) Output Voltage vs. Input Voltage (Ta=25°C)

No.EA-205-200219

3) Supply Current vs. Input Voltage (Ta=25°C)

No.EA-205-200219

4) Supply Current vs. Output Current (Ta=25°C)

5) Output Voltage vs. Temperature

No.EA-205-200219

6) Supply Current vs. Temperature

7) Dropout Voltage vs. Output Current

No.EA-205-200219

8) Dropout Voltage vs. Set Output Voltage (Ta=25°C)

RP170x

9) Minimum Operating Voltage

Hatched area is available for 1.2V output

No.EA-205-200219

10) Ripple Rejection vs. Input Bias Voltage (C1=none, C2=Ceramic 1.0μF, Ripple=0.2Vp-p, Ta=25°C)

11) Ripple Rejection vs. Frequency (C1=none, C2=Ceramic 1.0μF, Ta=25°C)

No.EA-205-200219

12) Input Transient Response (C1=none, Ioυτ=30mA, tr=tf=5μs, Ta=25°C)

No.EA-205-200219

13) Load Transient Response (C1=Ceramic 1.0μF, tr=tf=500ns, Ta=25°C)

No.EA-205-200219

No.EA-205-200219

14) Turn On Speed with CE pin (C1=Ceramic 1.0μF, Ta=25°C)

No.EA-205-200219

No.EA-205-200219

No.EA-205-200219

15) Turn Off Speed with CE pin (D Version) (C1=Ceramic 1.0μF, Ta=25°C)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

Item	Standard Test Land Pattern
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	40 mm × 40 mm × 1.6 mm
Copper Ratio	Top Side: Approx. 50%
	Bottom Side: Approx. 50%
Through-holes	φ 0.5 mm × 44 pcs

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

ltem	Standard Test Land Pattern
Power Dissipation	380 mW
Thermal Resistance (θja)	θja = 263°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 75°C/W

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

40

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)
13,000 hours	9 years

ı

UNIT: mm

SC-88A Package Dimensions

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square	
Through-holes	φ 0.3 mm × 7 pcs

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

Item	Measurement Result
Power Dissipation	660 mW
Thermal Resistance (θja)	θja = 150°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 51°C/W

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)
13,000 hours	9 years

I

SOT-23-5 Package Dimensions

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	
	Outer Layer (First Layer): Less than 95% of 50 mm Square	
Copper Ratio	Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square	
	Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square	
Through-holes	φ 0.3 mm × 13 pcs	

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

Item	Measurement Result
Power Dissipation	2600 mW
Thermal Resistance (θja)	θja = 38°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 13°C/W

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)
13,000 hours	9 years

ı

SOT-89-5 Package Dimensions

- The products and the product specifications described in this document are subject to change or discontinuation of
 production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer
 to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information

