Text classification

Luka van der Plas

Centre for Digital Humanities, Utrecht University

This lecture

- Classification basics
- Algorithms
- Evaluating classifiers
- Responsible classification

Classification

Classification

Classification is a form of supervised machine learning:

- Try to predict some output based on input
- Compare the output to a ground truth
- Optimise your algorithm so it best predicts the ground truth

In classification, we try to predict *labels / categories*

Classification in text mining

Select which newspaper articles are about a specific topic

Detect the author of a text

Moderate hate speech in online spaces

Investigate what language characterises positive or negative book reviews

Terminology

Features: information which is used to separate data into classes

Prediction: the output of the model, which can be compared to the correct labels (our ground truth)

Parameters: the data in the model; training = fitting parameters to the data

Hyperparameters: the "settings" of the model; these are choices made by you

Classification

Binary classification: two categories, true/false

Multiclass classification: multiple categories

Text classification algorithms

Classification workflow

Today: bag-of-words classifiers

We will discuss algorithms that can work on a term-document matrix

Deep learning models iterate over sentences instead - we will see those later in the course

Many of the principles here apply for both cases

Logistic regression

Assigns positive/negative weights to input features

- Start with random weights
- Iteratively adjust weights and re-evaluate to optimise accuracy

Weights are normalised to give a probability distribution as output

Support vector machine

Input consists of many dimensions (features)

SVM tries to find a cross-section that provides a clean separation between the classes

Less "fickle" than some other methods 👍

Requires linear separation 👎

K-nearest neighbour (KNN)

To classify a text, find its "nearest neighbour" in the training data and look up the label of that text

Proximity is based on the term-document matrix

Take the average of *k* nearest neighbours

No assumptions about linearity or independence 👍

For large data: quick to train, slow to run 👎

Naive Bayes

Assumes that each feature (i.e. word) is independent

For each feature, estimate the probability distribution of the word given the label

Use this to estimate the likelihood of a label given the words in the text

Scales well to many input features 👍

Decision tree

Generate a decision tree: at each branch, pick the single feature that is most informative (i.e. gives the cleanest separation of the data)

Hyperparameter: *maximum depth* of the tree. More levels means higher granularity

Can capture complex relationships 👍

Ensemble classifiers

We can combine multiple classifiers

Random forest classifier

- fit multiple decision trees, average over predictions
- Less "volatile" than a single decision tree

Voting classifier:

- Fit multiple classifiers and let them "vote" on the result
- Classifiers may be of different classes!

Selecting hyperparameters

A big part of training is selecting *hyperparameters*

This can be automated with a **grid search**: systematically go through your data

Evaluating classifiers

Evaluation metrics

Loss:

- value that is minimised during training.
- Usually includes a degree of "how far off" each prediction was.
- Highly dependent on implementation.

Accuracy: percentage of correct labels

Accuracy may be misleading!

Evaluation metrics: looking deeper

For each label, we can look at:

Recall: of all positive cases, how many are labelled as positive by the model?

Precision: of all cases labelled as positive, how many are actually positive?

F-score: combines precision and recall. **F1** is most commonly used:

(precision * recall) / (precision + recall)

Matthew's correlation coefficient: correlation between true and predicted labels

Evaluation metrics: multiclass classification

Evaluation is less straightforward with multiple classes

Precision/recall/F1 per class

But what if we want a single score?

- **Macro F1**: average of F1 score for each class
- **Micro F1**: uses total number of true/false positives/negatives

What does low performance mean?

Some explanations:

- Noisy data / missing features
- Not enough data
- Underfitting
- Overfitting

Noisy data / missing features

A classifier can only learn from what you provide in the input: *garbage in, garbage out*

- Training labels have mistakes
- Training input has mistakes
- Training features lack essential information

In many cases, the information needed for perfect accuracy is simply not there

Not enough data

Quality of the data is fine, but our classifier has not seen enough training data!

The model is still improving

Underfitting

A classifier is **underfitting** when it is not capturing enough complexity of the data

An underfitting is not improving with more data

A more complex model would give better performance

Overfitting

A classifier is **overfitting** when it is matching the training data, rather than general trends

Performance on the training data is good, performance on new data not so much

Happens when

- The complexity of the model outweighs the amount of training data
- The complexity of the model outweighs the complexity of the problem

Avoiding overfitting

Splitting data into train set / validation set / test set

- Train set: used to optimise the model
- Validation set: used to select the best model (tuning hyperparameters)
- Test set: used to evaluate the model

Notes:

- Validation set may be rotated (cross-validation)
- Validation/test distinction is less relevant in practicals

Variable naming conventions

X: feature matrix

y: vector of labels

X_train, *y_train*: training data

X_val, y_val: validation data

X_test, y_test: test data

Responsible classification

External validity

Let's say we are trying to predict thunderstorms:

- We have trained our model on data from June-August in 2010-2020
- We used a train/test split and found no significant overfitting

Great! Can we use our model to predict thunderstorms in November 2023?

External validity

Even if you avoid overfitting, your model is still trained to a specific training set

It will make good predictions when the new data is sufficiently similar to the training data

For text:

- Applying a model trained on newspapers to classify social media messages
- Applying a model trained on American data to British data
- . . .

Irresponsible classification: fraud detection

2021: benefit scandal in Dutch government

- Thousands of parents on benefits were incorrectly accused of fraud and had to pay huge fines
- Relevant for us: the government used a classifier to select potential cases of fraud (for evaluation)
- The classifier selected parents for having a migration background

Keep in mind

Text data is very rich

Your categorisation may obscure more meaningful differences along other dimensions

Dividing data into categories is often reductive

Classifiers are *always* inaccurate