${\bf Baye suvius},$

a small visual dictionary of Bayesian Networks

Robert R. Tucci www.ar-tiste.xyz

June 24, 2020

Figure 1: View of Mount Vesuvius from Pompeii

Contents

		Foreword	
1	Ger	nerative Adversarial Network (GAN)	6
2	Line	ear and Logistic Regression	11
Bibliography			15

0.1 Foreword

Welcome to Bayesuvius! a proto-book uploaded to github.

A different Bayesian network is discussed in each chapter. Each chapter title is the name of a B net. Chapter titles are in alphabetical order.

This is a volcano in its early stages. First version uploaded to a github repo called Bayesuvius on June 24, 2020. First version only covers 2 B nets (Linear Regression and GAN). I will add more chapters periodically. Remember, this is a moonlighting effort so I can't do it all at once.

For any questions about notation, please go to Notational Conventions section. Requests and advice are welcomed.

Thanks for reading this. Robert R. Tucci www.ar-tiste.xyz

0.2 Notational Conventions

bnet=B net=Bayesian Network

Random Variables will be indicated by underlined letters and their values by non-underlined letters. Each node of a bnet will be labelled by a random variable. Thus, $\underline{x} = x$ means that node \underline{x} is in state x.

 $P_{\underline{x}}(x) = P(\underline{x} = x) = P(x)$ is the probability that random variable \underline{x} equals $x \in S_{\underline{x}}$. $S_{\underline{x}}$ is the set of states (i.e., values) that \underline{x} can assume and $n_{\underline{x}} = |S_{\underline{x}}|$ is the size (aka cardinality) of that set. Hence,

$$\sum_{x \in S_r} P_{\underline{x}}(x) = 1 \tag{1}$$

$$P_{\underline{x},\underline{y}}(x,y) = P(\underline{x} = x, \underline{y} = y) = P(x,y)$$
(2)

$$P_{\underline{x}|\underline{y}}(x|y) = P(\underline{x} = x|\underline{y} = y) = P(x|y) = \frac{P(x,y)}{P(y)}$$
(3)

Kronecker delta function: For x, y in discrete set S,

$$\delta(x,y) = \begin{cases} 1 \text{ if } x = y\\ 0 \text{ if } x \neq y \end{cases} \tag{4}$$

Dirac delta function: For $x, y \in \mathbb{R}$,

$$\int_{-\infty}^{+\infty} dx \, \delta(x - y) f(x) = f(y) \tag{5}$$

Indicator function:

$$\hat{1}(\mathcal{S}) = \begin{cases} 1 \text{ if } \mathcal{S} \text{ is true} \\ 0 \text{ if } \mathcal{S} \text{ is false} \end{cases}$$
 (6)

For example, $\delta(x, y) = \hat{1}(x = y)$.

$$\vec{x} = (x[0], x[1], x[2], \dots, x[nsam(\vec{x}) - 1]) = x[:]$$
 (7)

 $nsam(\vec{x})$ is the number of samples of \vec{x} . $\underline{x}[i]$ are i.d.d. (independent identically distributed) samples with

$$x[i] \sim P_{\underline{x}} \text{ (i.e. } P_{x[i]} = P_{\underline{x}})$$
 (8)

$$P(\underline{x} = x) = \frac{1}{nsam(\vec{x})} \sum_{i} \hat{1}(x[i] = x)$$
(9)

If we use two sampled variables, say \vec{x} and \vec{y} , in a given bnet, their number of samples $nsam(\vec{x})$ and $nsam(\vec{y})$ need not be equal.

$$P(\vec{x}) = \prod_{i} P(x[i]) \tag{10}$$

$$\sum_{\vec{x}} = \prod_{i} \sum_{x[i]} \tag{11}$$

$$\partial_{\vec{x}} = [\partial_{x[0]}, \partial_{x[1]}, \partial_{x[2]}, \dots, \partial_{x[nsam(\vec{x})-1]}]$$

$$\tag{12}$$

$$P(\vec{x}) \approx \left[\prod_{x} P(x)^{P(x)}\right]^{nsam(\vec{x})} \tag{13}$$

$$= e^{nsam(\vec{x})\sum_{x}P(x)\log P(x)}$$
 (14)

$$= e^{-nsam(\vec{x})H(P_{\underline{x}})} \tag{15}$$

$$f^{[1,\partial_x,\partial_y]}(x,y) = [f,\partial_x f,\partial_y f]$$
(16)

$$f^{+} = f^{[1,\partial_x,\partial_y]} \tag{17}$$

For probabilty distributions p(x), q(x) of $x \in S_x$

• Entropy:

$$H(p) = -\sum_{x} p(x) \log p(x) \ge 0 \tag{18}$$

• Kullback-Liebler divergence:

$$D_{KL}(p \parallel q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} \ge 0$$
 (19)

• Cross entropy:

$$CE(p \to q) = -\sum_{x} p(x) \log q(x)$$
 (20)

$$= H(p) + D_{KL}(p \parallel q) \tag{21}$$

Normal Distribution: $x, \mu, \sigma \in \mathbb{R}, \sigma > 0$

$$\mathcal{N}(\mu,\sigma)(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
 (22)

Uniform Distribution: $a < b, x \in [a, b]$

$$\mathcal{U}(a,b)(x) = \frac{1}{b-a} \tag{23}$$

Chapter 1

Generative Adversarial Network (GAN)

Figure 1.1: Generative Adversarial Network (GAN)

Original GAN, Ref.[1](2014).

Generator G (counterfeiter) generates samples \vec{f} of fake money and submits them to Discriminator D (Treasury agent). D also gets samples \vec{r} of real money. D submits veredict $V \in [0,1]$. G depends on parameter θ_G and D on parameter θ_D . Veredict V and initial θ_G, θ_D are used to get new parameters θ_G', θ_D' . Process is repeated (Dynamical Bayesian Network) until saddle point in $V(\theta_G, \theta_D)$ is reached. D makes G better and vice versa. Zero-sum game between D and G.

Figure 1.2: Discriminator node \underline{V} in Fig.1.1 can be split into 3 nodes $\underline{\vec{c}}$, $\underline{\vec{d}}$ and \underline{V} .

Let \mathcal{D} be the domain of $D(\cdot, \theta_D)$. Assume that for any $x \in \mathcal{D}$,

$$0 \le D(x, \theta_D) \le 1. \tag{1.1}$$

For any $S \subset \mathcal{D}$, define

$$\sum_{x \in S} D(x, \theta_D) = \lambda(S, \theta_D) . \tag{1.2}$$

In general, $G(\cdot, \theta_G)$ need not be real valued.

Assume that for every $u \in S_{\underline{u}}$, $G(u, \theta_G) = f \in S_{\underline{f}} \subset \mathcal{D}$. Define

$$\overline{D}(f, \theta_D) = 1 - D(f, \theta_D) . \tag{1.3}$$

Note that

$$0 \le \overline{D}(f, \theta_D) \le 1. \tag{1.4}$$

Define:

$$V(\theta_G, \theta_D) = \sum_r P(r) \log D(r, \theta_D) + \sum_u P(u) \log \overline{D}(G(u, \theta_G), \theta_D) . \tag{1.5}$$

We want the first variation of $V(\theta_G, \theta_D)$ to vanish.

$$\delta V(\theta_G, \theta_D) = 0. (1.6)$$

This implies

$$\partial_{\theta_G} V(\theta_G, \theta_D) = \partial_{\theta_D} V(\theta_G, \theta_D) = 0 \tag{1.7}$$

and

$$V_{opt} = \min_{\theta_G} \max_{\theta_D} V(\theta_G, \theta_D) . \tag{1.8}$$

Node transition probability matrices for Figs. 1.1 and 1.2 are given next in blue:

$$P(\theta_G) = \text{given}$$
 (1.9)

$$P(\theta_D) = \text{given}$$
 (1.10)

$$P(\vec{u}) = \prod_{i} P(u[i]) \text{ (usually uniform distribution)}$$
 (1.11)

$$P(\vec{r}) = \prod_{i} P(r[i]) \tag{1.12}$$

$$P(f[i]|\vec{u}, \theta_G) = \prod_i \delta[f[i], G(u[i], \theta_G)]$$
(1.13)

$$P(c[i]|\vec{f}, \theta_D) = \delta(c[i], \overline{D}(f[i], \theta_D)) \tag{1.14}$$

$$P(d[j]|\vec{r},\theta_D) = \delta(d[j], D(r[j],\theta_D)) \tag{1.15}$$

$$P(V|\vec{d}, \vec{c}) = \delta(V, \frac{1}{N} \log \prod_{i,j} (c[i]d[j]))$$

$$(1.16)$$

where $N = nsam(\vec{r})nsam(\vec{u})$.

Let $\eta_G, \eta_D > 0$. Maximize V wrt θ_D , and minimize it wrt θ_G .

$$P(\theta_G'|V,\theta_G) = \delta(\theta_G',\theta_G - \eta_G \partial_{\theta_G} V)$$
(1.17)

$$P(\theta_D'|V,\theta_D) = \delta(\theta_D',\theta_D + \eta_D \partial_{\theta_D} V)$$
(1.18)

Figure 1.3: GAN, Emulated Bayesian Network

Emulated B net given in Fig.1.3. Node transition probabilities for B net of Fig.1.3 given next in blue:

$$P(\theta_G) = \text{given}$$
 (1.19)

$$P(\theta_D) = \text{given}$$
 (1.20)

$$P(u[i]|\theta_G) = \frac{\overline{D}(G(u[j], \theta_G), \theta_D))}{\overline{\lambda}(\theta_G, \theta_D)}$$
(1.21)

where $\overline{\lambda}(\theta_G, \theta_D) = \sum_u \overline{D}(G(u, \theta_G), \theta_D))$ and $u[i] \sim P_{\underline{u}}$.

$$P(r[i]|\theta_G, \theta_D) = \frac{D(r[i], \theta_D)}{\lambda(\theta_D)}$$
(1.22)

where $\lambda(\theta_D) = \sum_r D(r, \theta_D)$ and $r[i] \sim P_{\underline{r}}$.

$$P(V|\vec{u}, \vec{r}) = \delta(V, \frac{1}{N} \log \prod_{i,j} (P(r[i]|\theta_G, \theta_D) P(u[j]|\theta_G)))$$

$$(1.23)$$

where $N = nsam(\vec{r})nsam(\vec{u})$.

Let $\eta_G, \eta_D > 0$. Maximize V wrt θ_D and minimize it wrt θ_G .

$$P(\theta_G'|V,\theta_G) = \delta(\theta_G',\theta_G - \eta_G \partial_{\theta_G} V)$$
(1.24)

$$P(\theta_D'|V,\theta_D) = \delta(\theta_D',\theta_D + \eta_D \partial_{\theta_D} V)$$
(1.25)

 $\mathcal{L} = likelihood$

$$\mathcal{L} = P(\vec{r}, \vec{u}|\theta_G, \theta_D) \tag{1.26}$$

$$= \prod_{i,j} \left[\frac{D(r[i], \theta_D)}{\lambda(\theta_D)} \frac{\overline{D}(G(u[j], \theta_G), \theta_D))}{\overline{\lambda}(\theta_G, \theta_D)} \right]$$
(1.27)

$$\log \mathcal{L} = N[V(\theta_G, \theta_D) - \log \lambda(\theta_D) - \log \overline{\lambda}(\theta_G, \theta_D)]$$
(1.28)

Chapter 2

Linear and Logistic Regression

Figure 2.1: Linear Regression

Figure 2.2: B net of Fig.2.1 with new $\underline{\vec{Y}}$ node.

Estimators \hat{y} for linear and logistic regression.

• Linear Regression: $y \in \mathbb{R}$. Note $\hat{y} \in \mathbb{R}$. $(x, \hat{y}(x))$ is a straight line with y-intercept b and slope m.

$$\hat{y}(x;b,m) = b + mx \tag{2.1}$$

• Logistic Regression: $y \in \{0,1\}$. Note $\hat{y} \in [0,1]$. $(x, \hat{y}(x))$ is a sigmoid. Often in literature, b, m are replaced by β_0, β_1 .

$$\hat{y}(x;b,m) = \frac{1}{1 + e^{-(b+mx)}} \tag{2.2}$$

Define

$$V(b,m) = \sum_{x,y} P(x,y)|y - \hat{y}(x;b,m)|^2.$$
(2.3)

We want to minimize V(b, m) (called a cost or loss function) wrt b and m. Node transition probabilities of B net of Fig.2.1 given next in blue.

$$P(b,m) = given (2.4)$$

$$P(\vec{x}) = \prod_{i} P(x[i]) \tag{2.5}$$

$$P(\vec{y}|\vec{x}) = \prod_{i} P(y[i]|x[i])$$
 (2.6)

$$P(\hat{y}|\vec{x}, b, m) = \prod_{i} \delta(\hat{y}[i], \hat{y}(x[i], b, m))$$
(2.7)

$$P(V|\vec{\hat{y}}, \vec{y}) = \delta(V, \frac{1}{nsam(\vec{x})} \log \prod_{i} |\hat{y}[i] - y[i]|^2)$$
 (2.8)

Let $\eta_b, \eta_m > 0$. For x = b, m, if $x' - x = \Delta x = -\eta \frac{\partial V}{\partial x}$, then $\Delta V \approx \frac{-1}{\eta} (\Delta x)^2 \leq 0$ for $\eta > 0$. This is called "gradient descent".

$$P(b'|V,b) = \delta(b',b - \eta_b \partial_b V) \tag{2.9}$$

$$P(m'|V,m) = \delta(m', m - \eta_m \partial_m V) \tag{2.10}$$

Generalization to x with multiple components(features)

Suppose that for each sample i, instead of x[i] being a scalar, it has n components called features:

$$x[i] = (x_0[i], x_1[i], x_2[i], \dots x_{n-1}[i]).$$
(2.11)

Slope m is replaced by weights

$$w = (w_0, w_1, w_3, \dots, w_{n-1}), (2.12)$$

and the product of 2 scalars mx[i] is replaced by the inner vector product $w^Tx[i]$.

Alternative V(b, m) for logistic regression

For logistic regression, since $y[i] \in \{0,1\}$ and $\hat{y}[i] \in [0,1]$ are both in the interval [0,1], they can be interpreted as probabilities. Define probability distributions p[i](x) and $\hat{p}[i](x)$ for $x \in \{0,1\}$ by

$$p[i](1) = y[i], \quad p[i](0) = 1 - y[i]$$
 (2.13)

$$\hat{p}[i](1) = \hat{y}[i], \quad \hat{p}[i](0) = 1 - \hat{y}[i]$$
 (2.14)

Then for logistic regression, the following 2 cost functions V(b, m) can be used as alternatives to the cost function Eq.(2.3) previously given.

$$V(b,m) = \frac{1}{nsam(\vec{x})} \sum_{i} D_{KL}(p[i] \parallel \hat{p}[i])$$
 (2.15)

and

$$V(b,m) = \frac{1}{nsam(\vec{x})} \sum_{i} CE(p[i] \to \hat{p}[i])$$
(2.16)

$$= \frac{-1}{nsam(\vec{x})} \sum_{i} \{y[i] \log \hat{y}[i] + (1 - y[i]) \log(1 - \hat{y}[i])\}$$
 (2.17)

$$= \frac{-1}{nsam(\vec{x})} \sum_{i} \log \left\{ \hat{y}[i]^{y[i]} (1 - \hat{y}[i])^{(1-y[i])} \right\}$$
 (2.18)

$$= \frac{-1}{nsam(\vec{x})} \sum_{i} \log P(\underline{Y} = y[i]|\hat{y} = \hat{y}[i])$$
 (2.19)

$$= -\sum_{x,y} P(x,y) \log P(\underline{Y} = y | \hat{y} = \hat{y}(x,b,m))$$
 (2.20)

Above, we used

$$P(\underline{Y} = Y | \hat{y}) = \hat{y}^{Y} [1 - \hat{y}]^{1-Y}$$
(2.21)

for $Y \in S_{\underline{Y}} = \{0, 1\}$. (Bernoulli distribution).

There is no node corresponding to \underline{Y} in the B net of Fig.2.1. Fig.2.2 shows a new B net that has a new node called $\underline{\vec{Y}}$ compared to the B net of Fig.2.1. One defines the transition probabilities for all nodes of Fig.2.2 except $\underline{\vec{Y}}$ and \underline{V} the same as for Fig.2.1. For $\underline{\vec{Y}}$ and \underline{V} , one defines

$$P(Y[i]|\vec{\hat{y}}) = P(\underline{Y} = Y[i]|\hat{y}[i]) \tag{2.22}$$

$$P(V|\vec{Y}, \vec{y}) = \delta(V, \frac{-1}{nsam(\vec{x})} \log \mathcal{L}), \qquad (2.23)$$

where $\mathcal{L} = \prod_i P(\underline{Y} = Y[i]|y[i]) =$ likelihood.

Bibliography

[1] Ian J. Goodfellow et al. *Generative Adversarial Networks*. https://arxiv.org/abs/1406. 2661.