Physic formulary

School

2022.02.16

School	Physic formulary	2022.02.16

Contents

1	Constants	1			
2	Other physical interrelationships	2			
3	Energy	3			
4	Motion	3			
5	Momentum	4			
6	Electricity	4			
7	Fields 7.1 Newtonian gravitation	5 5			
8	Units	6			
Ind	Index				
Bi	Bibliography				

1 Constants[1]

 $a_0 = \frac{4\pi\varepsilon_0\hbar^2}{m_{\rm e}e^2} = \frac{\varepsilon_0h^2}{\pi m_{\rm e}e^2} = \frac{\hbar}{m_{\rm e}c\alpha} = 5.291\,772\,109\,03 \times 10^{-11}\,{\rm m}$ Bohr radius

Velocity of light: $c_0 = 299792458 \frac{m}{s}$

 $e = 1.602176634 \times 10^{-19} \,\mathrm{C}$ Elementary charge: $\varepsilon_0 = 8.8541878128 \times 10^{-12} \frac{F}{m}$ Vacuum permittivity:

Permittivity of air: $\varepsilon_{\mathtt{r}} = 1.00059$

 $F = 96485.3321233\frac{\text{C}}{\text{mol}}$ Faraday constant

Acceleration due to gravity: $g = 9.80665 \frac{\text{m}}{\text{s}^2}$

 $G = 6.67430 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$ Gravitational constant: $h = 6.626\,070\,15 \times 10^{-34}\,\frac{\text{J}}{\text{Hz}}$ Planck constant: $k = 1.280649 \times 10^{-23} \frac{\text{J}}{\text{K}}$ Boltzmann constant:

 $m_{\rm e} = 9.1093837015 \times 10^{-31} \, {\rm kg}$ Electron mass:

 $m_{\rm e}~=~0.510\,998\,950\,00\,{{\rm MeV}\over{{\rm c_0}^2}}$

 $m_{\mu} = 1.883531627 \times 10^{-28} \,\mathrm{kg}$

 $m_{\mu} = 105.6583755 \frac{\text{MeV}}{\text{c}_0^2}$ Muon mass:

 $m_{\mu} = 0.1134289259 \,\mathrm{Da}$

 $m_{\rm n} = 1.674\,927\,498\,04\times10^{-27}\,{\rm kg}$ Neutron mass:

 $m_{\rm n} = 939.56542052 \frac{\rm MeV}{{\rm c_0}^2}$

 $m_{\rm p} = 1.67262192369 \times 10^{-27} \,\mathrm{kg}$ Proton mass:

 $m_{\rm p} = 938.272\,088\,16\,\frac{\rm MeV}{{\rm co}^2}$

 $\mu_0 = 1.25663706212 \times 10^{-6} \frac{H}{m}$ Vacuum permeability:

Permeability of air: $\mu_{\rm r} = 1.000\,000\,37$

2 Other physical interrelationships

Visible spectrum: $380\,\mathrm{nm}$ to $750\,\mathrm{nm}$

Speed of sound under standart conditions: $343\,\frac{m}{s}$

Dalton Da / unified atomic mass unit $\mathrm{u}\colon \ \mathrm{Da/u} =$

 $1.660\,539\,066\,60\times10^{-27}\,\mathrm{kg}$

Hydrogen mass: $m_{
m H} = 1.007\,84\,{
m Da}$

to 1.00811Da

Atomic mass of helium ${}^4\mathrm{He}$ $m_{\mathtt{He}} = 4.002\,603\,254\,\mathrm{Da}$

Kilowatt-hour: $kWh = 3.6 \times 10^6 J$

Kilowatt-hour: $eV = 1.602176634 \times 10^{-19} \,\mathrm{J}$

Pressure: $1\,{\rm Pa} = 1\,\frac{\rm N}{\rm m^2}$ Pressure: $1\,{\rm bar} = 10^5\,{\rm Pa}$ Absolute zero: $-273.15\,{\rm ^\circ C} = 0\,{\rm K}$

2

3 Energy

Kinetic Energy

$$E_{\mathbf{k}} = \frac{1}{2}mv^2$$

Potential Energy

U = mqh(gravitational) $U = \frac{1}{2} \cdot k \cdot x^2$ (elastic)

 $U = \frac{1}{2} \cdot C \cdot V^2$ (electric)

U = -mB(magnetic)

 $U = \int F(r) dr$ (general)

4 Motion

uniform linear motion

 $s(t) = vt \, (+s_0)$

v(t) = const.

a(t) = 0

non-uniform linear motion

 $s(t) = \frac{1}{2}at^2(+v_0t + s_0)$

 $v(t) = at \ (+v_0)$

a(t) = const.

Circular motion

 $F_{\rm Z} = \frac{mv^2}{r} = m\,\omega^2 r$

 $\omega = rac{v}{r} = rac{2\pi}{T} = rac{\Delta arphi}{\Delta t}$ arphi in rad

 $f = \frac{1}{T}$

5 Momentum

momentum itself

$$\begin{array}{ll} \vec{p}=m\vec{v} \\ \\ \vec{p}=\frac{\hbar}{\lambda} & \text{photons} \\ \\ \vec{p}=\sqrt{m_0^2{\rm c_0}^2+\frac{E^2}{{\rm c_0}^2}} & \text{general} \end{array}$$

relations to momentum

$$\sum_{i} m_i \, u_i = \sum_{i} m_i \, v_i$$

conservation of momentum

$$\Delta p = F \Delta t$$
$$E_{\mathbf{k}} = \int p \, dv$$

6 Electricity

General

$$I=rac{\Delta Q}{\Delta t}=rac{\partial Q}{\partial t}=\dot{Q}$$
 in A
$$R=rac{U}{I}=
horac{l}{A}$$
 in Ω
$$E=U\cdot Q$$

$$P=rac{\Delta E}{\Delta t}=UI$$
 in W Energy flow / "Power"

7 Fields

7.1 Newtonian gravitation

Homogeneous field

$$\begin{split} E &= mgh \\ \vec{F}_g &= m\vec{g} \\ \vec{g} &= \frac{\vec{F}_g}{m} \\ \Delta\varphi &= \frac{E}{m} = gh \end{split}$$

Radial symmetric field

$$\begin{split} U &= GMm \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \\ U &= -GMm \frac{1}{r} & \text{for } r_1 \to \infty \\ \vec{F_g} &= -G\frac{Mm}{r^2} \hat{r} \\ \vec{g} &= \frac{\vec{F_g}}{m} = -G\frac{M}{r_2} \hat{r} \\ \Delta \varphi &= \frac{E}{m} = \gamma M \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \end{split}$$

7.2 Electromagnetism

homogenous field

$$E = q\vec{\mathbf{E}}d$$

$$\vec{F} = q\vec{\mathbf{E}}$$

$$\vec{\mathbf{E}} = \frac{\vec{F}}{q}$$

$$\mathbf{E} = \frac{V}{d}$$

$$V = \frac{E}{q} = \vec{\mathbf{E}}d$$

Radial symetric field

$$\begin{split} U &= -\frac{1}{4\pi\varepsilon_0\varepsilon_r}Qq\left(\frac{1}{r_1} - \frac{1}{r_2}\right) \\ U &= \frac{Qq}{4\pi\varepsilon_0}\frac{1}{r} & \text{for } r_1 \to \infty \\ \vec{F} &= \frac{1}{4\pi\varepsilon_0\varepsilon_r}\frac{Qq}{r^2}\hat{r} \\ \mathbf{E} &= \frac{\vec{F}}{q} = \frac{1}{4\pi\varepsilon_0\varepsilon_r}\frac{Q}{r^2}\hat{r} \\ \varepsilon_0 &= \frac{\sigma}{\varepsilon_r\mathbf{E}} & \text{const.} \end{split}$$

8 Units[2]

Derived quantity	Name	In terms of other SI units	Dimensions
electric charge, quantity of electricity	coulomb	C = s A	TI
capacitance	farad	$F = \frac{s^4 A^2}{m^2 kg}$	$T^4 L^{-2} M^{-1} I^2$
inductance	henry	$H = \frac{m^2 \text{ kg}}{s^2 \text{ A}^2}$	$T^{-2} L^2 M I^{-1}$
frequency	hertz	$Hz = \frac{1}{s}$	T^{-1}
energy, work, quantity of heat	joule	$J = \frac{m^2 \text{ kg}}{\text{s}^2}$	T ⁻² L ² M
force	newton	$N = \frac{m kg}{s^2}$	$T^{-2} \ L\ M$
electric resistance	ohm	$\Omega = \frac{\frac{m^2 \log A^2}{s^3}}{s^3}$	$T^{-3} L^2 M I^{-2}$
pressure, stress	pascal	$Pa = \frac{N}{m} = \frac{kg}{s^2 m}$	$T^{-2}\;L^{-1}\;M$
plane angle	radian	$rad = \frac{m}{m}$	
magnetic flux	weber	$T = \frac{Wb}{m^2} = \frac{kg}{s^2 A}$	$T^{-2}\;M\;I^{-1}$
electric potential difference, electromotive force	volt	$V = \frac{W}{A} = \frac{kg m^2}{s^3 A}$	T ⁻³ L ² M I ⁻¹
power, radiant flux	watt	$W = \frac{J}{s} = \frac{m^2 kg}{s^3}$	$T^{-3}\;L^2\;M$

Index

В	F
Bohr radius1	Faraday constant1
Boltzmann constant1	
E Elecromagnetism Electrostatics Radial symetric field5 Electron	G Gravitation
Leptons	L
Muon1	Light1
Energy	
Kinetic Energy3	P
Potential Energy3	Plank constant1

Bibliography

- 1. CODATA Internationally recommended 2018 values of the Fundamental Physical Constants. May 2019. https://physics.nist.gov/cuu/Constants/index.html (2022).
- 2. <u>International System of Units (SI)</u>. https://physics.nist.gov/cuu/Units/units.html (2022).