# Specifying node characteristics by combining social network data and user-generated -content

Mirai Igarashi (D2) Nobuhiko Terui (Co-author)

You can download this slide from https://igarashim.github.io

# 1. Introduction

- Goal for marketing is ... "to know the personality"
  - > Traditionally, we use demographics, questionnaire and purchase behavior data
  - ➤ But people form their social network and post some contents to represent characteristics
  - Such unstructured data is hard to analyze, but rich information
- Goal of our study is to propose a statistical model for estimating "characteristics" by combining social network and user-generated-content



# Table of contents

## Topic Model for Network and Text data

- 1. Introduction
- 2. Literature review
- 3. Model
  - 1. Model specification
  - 2. Estimation
- 4. Empirical analysis
  - 1. Dataset
  - 2. Empirical results
  - 3. Prediction

## Dynamic Topic Model for Network and Text data

- 1. Introduction
- 2. Literature review
- 3. Model
  - 1. Model specification
  - 2. Estimation

# 2. Literature review

- Many marketing researchers use unstructured data
  - ➤ Use some measurements for unstructured data (Text semantics, Ludwig et al 2013; Facial and gestural cues, Singh et al 2018)
  - ➤ Our model measures people's characteristics



## 2. Literature review

## Some topic models for network and text data are proposed

- For network
  - > Stochastic block model (SBM, Wang & Wong 1987)
  - Mixed Membership Stochastic blockmodel (MMSB, Airoldi et al 2008)
- For text
  - Latent Dirichlet allocation (LDA, Blei et al. 2003)
  - Recently, developed in marketing (e.g. Tirunillai & Tellis 2014; Toubia et al 2019)
- For network and text
  - Community user topic model (CUT, Zhou et al 2006)
  - Community author recipient topic-model (CART, Pathak et al 2006)
  - Topic-link LDA (TL-LDA, Liu et al 2009)
  - > Stochastic topic block model (STBM, Bouveyron et al 2018)

#### **Data**

Adjacency matrix A (0: not connected, 1: connected)

$$a_{ij} \in \{0, 1\}, \qquad i, j = 1, \dots, D$$

• Bag of words W (1: baseball, 2: book, ..., V: iPhone)

$$w_{im} \in \{1, \dots, V\}, \qquad m = 1, \dots, M_i$$



$$a_{ij} \in \{0, 1\}$$

#### Network

• For the edge  $i \rightarrow j$ , sender i and recipient j have latent characteristics  $(s_{ij}, r_{ji})$  according to character distribution  $(\eta)$ 

$$s_{ij} \sim Categorical(\eta_i), \qquad r_{ji} \sim Categorical(\eta_j)$$
  
 $s_{ij}, r_{ji} \in \{1, \dots, K\}$   
 $\sum_{k=1}^{K} \eta_{ik} = 1, \ \forall i, \qquad \eta_{ik} \geq 0, \ \forall k$ 

• When  $s_{ij}$ ,  $r_{ji}$  are given, edge  $a_{ij}$  is generated according to edge probability  $(\psi)$ 

$$a_{ij}|s_{ij}, r_{ji} \sim Bernoulli(\psi_{s_{ij}, r_{ji}}),$$
  
 $0 \le \psi_{kk'} \le 1, \ \forall k, k'$ 





#### **Text**

• Node i's m-th word has latent characteristic  $(x_{im})$  and latent topic  $(z_{im})$  according to character distribution  $(\eta)$  and topic distribution  $(\theta)$ 

$$x_{im} \sim Categorical(\eta_i), \qquad x_{im} \in \{1, \dots, K\}$$

$$z_{im} | x_{im} \sim Categorical(\theta_{x_{im}}), \qquad z_{im} \in \{1, \dots, L\}$$

$$\sum_{l=1}^{L} \theta_{kl}, \ \forall k, \qquad \theta_{kl} \geq 0, \ \forall l$$

• When  $z_{im}$  is given, word  $w_{im}$  is generated according to word distribution  $(\phi)$ 

$$w_{im}|z_{im} \sim Categorical(\phi_{z_{im}})$$

$$\sum_{v=1}^{V} \phi_{lv}, \ \forall l, \qquad \phi_{lv} \geq 0, \ \forall v$$



## We set prior distributions according to the conjugacy

| Likelihood                                                                                                                 | Prior distribution                                      | (Full conditional) Posterior distribution                                                            |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| $P(s_{ij} \eta_i) = Categorical(\eta_i)$ $P(r_{ij} \eta_i) = Categorical(\eta_i)$ $P(x_{im} \eta_i) = Categorical(\eta_i)$ | $P(\eta_i \gamma) = Dirichlet(\gamma)$                  | $P(\eta_i s_i, r_i, x_i, \gamma) =$ $Dirichlet(N_i + M_i + \gamma_k)$                                |
| $P(a_{ij} s_{ij},r_{ji},\psi) = Bernoulli(\psi_{s_{ij},r_{ji}})$                                                           | $P(\psi_{kk'} \delta,\epsilon) = Beta(\delta,\epsilon)$ | $P(\psi_{kk'} A, S, R, \delta, \epsilon) =$ $Beta(n_{kk'}^{(p)} + \delta, n_{kk'}^{(m)} + \epsilon)$ |
| $P(z_{im} x_{im},\theta) =$ $Categorical(\theta_{x_{im}})$                                                                 | $P(\theta_k \alpha) = Dirichlet(\alpha)$                | $P(\theta_k X,Z,\alpha) = $ $Dirichlet(M_k + \alpha)$                                                |
| $P(w_{im} z_{im},\phi) = $ $Categorical(\phi_{z_{im}})$                                                                    | $P(\phi_l \beta) = Dirichlet(\beta)$                    | $P(\phi_l W,Z,\beta) = $ $Dirichlet(M_l + \beta)$                                                    |

We use collapsed Gibbs sampling for estimating parameters

By integrating out parameters, conditional posterior distribution of latent variables can be derived as follows (Igarashi & Terui 2019):

$$P(s_{ij} = k, r_{ji} = k' | a_{ij}, A_{\backslash ij}, S_{\backslash ij}, R_{\backslash ji}, X, \gamma, \delta, \epsilon)$$

$$= \frac{N_{ik\backslash ij} + M_{ik} + \gamma_k}{\sum_t \left(N_{it\backslash ij} + M_{it} + \gamma_t\right)} \times \frac{N_{jk'\backslash ji} + M_{jk'} + \gamma_{k'}}{\sum_t \left(N_{jt\backslash ji} + M_{jt} + \gamma_t\right)} \times \frac{\left(n_{kk'\backslash ij}^{(p)} + \delta_{kk'}\right)^{\mathbb{I}(a_{ij} = 1)} \left(n_{kk'\backslash ij}^{(m)} + \epsilon_{kk'}\right)^{\mathbb{I}(a_{ij} = 0)}}{n_{kk'\backslash ij}^{(p)} + n_{kk'\backslash ij}^{(m)} + \delta_{kk'} + \epsilon_{kk'}}$$

$$P(x_{im} = k, z_{im} = l | w_{im} = v, W_{\backslash im}, S, R, X_{\backslash im}, Z_{\backslash im}, \alpha, \beta, \gamma)$$

$$= \frac{M_{lv \backslash im} + \beta_v}{\sum_u \left( M_{lu \backslash im} + \beta_u \right)} \times \frac{M_{kl \backslash im} + \alpha_l}{\sum_q \left( M_{kq \backslash im} + \alpha_q \right)} \times \frac{N_{ik} + M_{ik \backslash im} + \gamma_k}{\sum_t \left( N_{it} + M_{it \backslash im} + \gamma_t \right)}$$

Using Gibbs samples from above equations, parameters are pointestimated as follows:

$$\hat{\eta}_{ik} = \frac{1}{G - b} \sum_{g=b+1}^{G} \frac{N_{ik}^{(g)} + M_{ik}^{(g)} + \gamma_{k}}{\sum_{t} \left(N_{it}^{(g)} + M_{it}^{(g)} + \gamma_{t}\right)}$$

$$\hat{\psi}_{kk'} = \frac{1}{G - b} \sum_{g=b+1}^{G} \frac{n_{kk'}^{(p,g)} + \delta_{kk'}}{n_{kk'}^{(p,g)} + n_{kk'}^{(m,g)} + \delta_{kk'} + \epsilon_{kk'}}$$

$$\hat{\theta}_{kl} = \frac{1}{G - b} \sum_{g=b+1}^{G} \frac{M_{kl}^{(g)} + \alpha_{l}}{\sum_{q} \left(M_{kl}^{(g)} + \alpha_{q}\right)}$$

$$\hat{\phi}_{lv} = \frac{1}{G - b} \sum_{g=b+1}^{G} \frac{M_{lv}^{(g)} + \beta_{v}}{\sum_{u} \left(M_{lu}^{(g)} + \beta_{u}\right)}.$$

Numbers of characteristics (K) and topics (L) is determined by grid search using WAIC (Watanabe 2010)

# 4.1 Dataset

Twitter's network and text collected by authors consist of:

- Ego-network centered on Nintendo account (following relationship at May 1, 2018)
- Users' tweets posted on their timeline (September 1, 2017 – February 28, 2018)



The summary of dataset after sampling and some preprocessing:

| D (nodes) | V (words) | Ave. links (sparsity) | Ave. words (sparsity) |
|-----------|-----------|-----------------------|-----------------------|
| 3,500     | 9,001     | 19.7 links (0.56%)    | 59.3 words (1.69%)    |

# 4.2 Empirical results

## Top 10 words frequently appearing in each topic

| podernfamili         | vgc               | hori                  | vevo               | leed                    | trapadr               | growthhack            | nonfollow                              | zeldathon           |
|----------------------|-------------------|-----------------------|--------------------|-------------------------|-----------------------|-----------------------|----------------------------------------|---------------------|
| gamedesign           | savvi             | mkleosaga             | spinrilla          | cto                     | digitalmarket         | gdpr                  | teamemmmmsi                            | dokkan              |
| criticalrol          | gamedesign        | wnf                   | lube               | momlif                  | ddrive                | socialmediamarket     | twitchkitten                           | htgawm              |
| blackclov            | steinsgat         | mdva                  | suav               | dogsoftwitt             | contentmarket         | iartg                 | roku                                   | orton               |
| hunterxhunter        | nyxl              | hyrulesaga            | drippin            | beck                    | smm                   | smm                   | wizebot                                | oiler               |
| jojosbizarreadventur | xenovers          | cfl                   | ahscult            | austria                 | amread                | gainwithpyewaw        | ryzen                                  | sdlive              |
| fursuitfriday        | acnl              | nood                  | wshh               | hemp                    | bigdata               | asmsg                 | airdrop                                | horford             |
| tfc                  | artstat           | qanba                 | ouija              | tock                    | gdpr                  | ifb                   | dg                                     | herewego            |
| amiga                | firer             | zeku                  | foodporn           | crowdfir                | gainwithxtiandela     | digitalmarket         | freebiefriday                          | rozier              |
| sml                  | tamagotchi        | junedecemb            | sizzl              | monaco                  | fiverr                | CSS                   | streamersconnect                       | earnhistori         |
| Topic 1 (Animation)  | Topic 2<br>(Game) | Topic 3<br>(E-sports) | Topic 4<br>(Music) | Topic 5<br>(Every life) | Topic 6<br>(Business) | Topic 7<br>(Business) | Topic 8<br>(Streaming<br>Broadcasting) | Topic 9<br>(Sports) |

# 4.2 Empirical results



# 4.3 Prediction

## Settings

#### Prediction

$$P(a_{ij} = 1) = \sum_{k=1}^{K} \sum_{k'=1}^{K} \hat{\eta}_{ik} \cdot \hat{\eta}_{jk'} \cdot \hat{\psi}_{kk'}$$

- Evaluation
  - Area Under the Curve (AUC)
  - Matthews Correlation Coefficient (MCC)

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FN)(FN + TN)(TN + FP)(FP + TP)}}$$

# 4.3 Prediction

#### ROC curve & AUC



- AUC: 0.93 (Perfect -> 1.00, At Random -> 0.5)
- Our model has a good predictive performance

# 4.3 Prediction

#### Confusion Matrix

|      |          | Prediction |           |  |
|------|----------|------------|-----------|--|
|      |          | Link       | Non-link  |  |
| Data | Link     | 2,041      | 4,786     |  |
|      | Non-link | 7,079      | 1,211,094 |  |

• Cutoff: 0.08

• MCC: 0.254

• True Positive Rate:  $\frac{2,041}{2,041+4,786} \approx 29.9\%$ 

#### Our model

- predicts link edges with adequate accuracy
- has a room for improvement on predicting task (ex. modeling sparsity, Airoldi et al 2008; Latouche et al 2011)

# Conclusion (STATIC)

- We estimate people's characteristics from network and text data on social media
  - we propose a new topic model
- People generate social networks and text contents according to their characteristics
  - $\triangleright$  character distribution  $(\eta_i)$  reflects the characters
- The proposed model demonstrated
  - > estimating characteristics from network and text data
  - > interpreting the characters by network information and word topics
  - predicting holdout edges with adequate accuracy

#### **Future works**

- Dealing with node heterogeneity by hierarchical structure
- Applying marketing model

# 1. Introduction

Network and text change over time



- "Character" and "topic" evolve over time
- Goal of this study is to extend our model to capture the dynamics of time-evolving network and text data

## 2. Literature review

## Some topic models for network and text evolving over time

- For network
  - > Dynamic Mixed Membership SBM (dMMSB, Xing et al 2010)
  - > Dynamic SBM (dSBM, Yang et al 2011)
- For text
  - > Dynamic Topic model (DTM, Blei & Lafferty 2006)
  - Continuous time DTM (Wang, Blei, & Heckerman 2012)
- For network and text
  - > Dynamic stochastic topic block model (dSTBM, Bouveyron et al 2019)

#### **Data**

Adjacency matrix A (0: not connected, 1: connected)

$$a_{ijt} \in \{0, 1\}, \quad i, j = 1, \dots, D, \quad t = 1, \dots, T$$

• Bag of words W (1: baseball, 2: book, ..., V: iPhone)

$$w_{imt} \in \{1, \dots, V\}, \qquad m = 1, \dots, M_{it}, \quad t = 1, \dots, T$$



## Static proposed model



## **Dynamic proposed model**



#### Network

• Character distribution  $(\eta_t)$  evolves with Gaussian noise

$$\eta_{it}|\eta_{it-1} \sim N_K\left(\eta_{it-1}, \sigma_{\eta}^2 I\right)$$

• For the edge  $i \rightarrow j$  at time t, sender i and recipient j have latent characteristics  $(s_{ijt}, r_{jit})$  according to normalized character distribution

$$s_{ijt} \sim Categorical(\pi(\eta_{it})), \qquad r_{jit} \sim Categorical(\pi(\eta_{jt}))$$

$$\pi(x) = \frac{exp(x_k)}{\sum_{k'} exp(x_{k'})}$$

• When  $s_{ijt}$ ,  $r_{jit}$  are given, edge  $a_{ijt}$  is generated according to edge probability  $(\psi)$ 

$$a_{ijt}|s_{ijt}, r_{jit} \sim Bernoulli\left(\psi_{s_{ijt}, r_{jit}}\right)$$

#### Text

• Node i's m-th word at time t has latent characteristic  $(x_{imt})$  and latent topic  $(z_{imt})$  according to character distribution  $(\eta_t)$  and topic distribution  $(\theta)$ 

$$x_{imt} \sim Categorical(\pi(\eta_{it})), \qquad z_{imt}|x_{imt} \sim Categorical(\theta_{x_{imt}})$$

• word distribution  $(\phi_t)$  evolves with Gaussian noise

$$\phi_{lt}|\phi_{lt-1} \sim N_V\left(\phi_{lt-1}, \sigma_{\phi}^2 I\right)$$

• When  $z_{imt}$  is given, word  $w_{imt}$  is generated according to normalized word distribution

$$w_{imt}|z_{imt} \sim Categorical\left(\pi\left(\phi_{z_{imt}t}\right)\right)$$

 In static model, we set conjugate prior distributions for parameters and derive (collapsed) Gibbs sampling.

```
likelihood: s_{ij}|\eta_i \sim Categorical\left(\eta_i\right) prior: \eta_i \sim Dirichlet\left(\gamma\right) posterior: \eta_i|\cdot \sim Dirichlet\left(\cdot\right)
```

In dynamic model, prior distributions have no conjugacy.

```
likelihood: s_{ijt}|\eta_{it} \sim Categorical\left(\pi\left(\eta_{it}\right)\right) prior: \eta_{it} \sim N\left(\eta_{it-1}, \sigma_{\eta}^{2}I\right) posterior: cannot be derived in the same form of prior
```

#### -> Variational Bayes

 Variational Bayes explore variational posterior which is closest to true posterior in the sense of KL divergence.

$$\beta = \{ \eta_{1:T}, \phi_{1:T}, \psi, \theta, s_{1:T}, r_{1:T}, x_{1:T}, z_{1:T} \}$$

$$q(\beta|data) = \underset{q}{\operatorname{arg min}} KL[q(\beta)||p(\beta|data)]$$
s.t.  $q(\beta)$  is factorizable

#### Mean field assumption

$$q(\beta) = \prod_{i=1}^{D} \{q(\eta_{i1}, \dots, \eta_{iT})\} \times \prod_{l=1}^{L} \{q(\phi_{l1}, \dots, \phi_{lT})\} \times \prod_{k=1}^{K} \left\{q(\theta_{k}) \prod_{k'=1}^{K} q(\psi_{kk'})\right\}$$
$$\times \prod_{t=1}^{T} \left\{\prod_{i=1}^{D} \left[\prod_{j=1}^{D} q(s_{ijt})q(r_{jit})\right] \left[\prod_{m=1}^{M_{it}} q(x_{imt})q(z_{imt})\right]\right\}$$

•  $q(\eta_{i1}, ..., \eta_{iT})$  and  $q(\phi_{l1}, ..., \phi_{lT})$  should not be factorized any more because these joint distributions have time dependence.

Variational Bayes + Kalman filter can be used (Blei & Lafferty 2006).

$$\begin{cases} \eta_{it} | \eta_{it-1} \sim N(\eta_{it-1}, \sigma^2_{\eta} I) \\ s_{ijt} | \eta_{it} \sim Categorical\left(\pi(\eta_{it})\right) \end{cases} \qquad \qquad \begin{cases} \eta_{it} | \eta_{it-1} \sim N(\eta_{it-1}, \sigma^2_{\eta} I) \\ \hat{\eta}_{it} | \eta_{it} \sim N(\eta_{it}, \rho^2_{\eta} I) \end{cases}$$
 Variational observations

- Kalman filter can be the closed form Bayesian solution to the linear Gaussian filtering problem.
- Estimation of  $\eta_{1:T}$  by Kalman filter and estimation of  $\widehat{\eta}_{1:T}$  by VB.

#### **Filtering distribution**

$$\begin{split} q(\eta_{it}|\hat{\eta}_{i1:t}) &= N\left(\mu_{it}, \lambda_{it}^{2} I\right) \\ \mu_{it} &= \left(\frac{\rho_{\eta}^{2}}{\lambda_{it}^{2} + \sigma_{\eta}^{2} + \rho_{\eta}^{2}}\right) \mu_{it-1} + \left(1 - \frac{\rho_{\eta}^{2}}{\lambda_{it}^{2} + \sigma_{\eta}^{2} + \rho_{\eta}^{2}}\right) \hat{\eta}_{it}, \quad \lambda_{it}^{2} &= \left(\frac{\rho_{\eta}^{2}}{\lambda_{it}^{2} + \sigma_{\eta}^{2} + \rho_{\eta}^{2}}\right) (\lambda_{it-1}^{2} + \sigma_{\eta}^{2}) \\ q(\phi_{lt}|\hat{\phi}_{l1:t}) &= N\left(\pi_{lt}, \omega_{lt}^{2} I\right) \\ \pi_{lt} &= \left(\frac{\rho_{\phi}^{2}}{\omega_{lt}^{2} + \sigma_{\phi}^{2} + \rho_{\phi}^{2}}\right) \pi_{lt-1} + \left(1 - \frac{\rho_{\phi}^{2}}{\omega_{lt}^{2} + \sigma_{\phi}^{2} + \rho_{\phi}^{2}}\right) \hat{\phi}_{lt}, \quad \omega_{lt}^{2} &= \left(\frac{\rho_{\phi}^{2}}{\omega_{lt}^{2} + \sigma_{\phi}^{2} + \rho_{\phi}^{2}}\right) (\omega_{lt-1}^{2} + \sigma_{\phi}^{2}) \end{split}$$

#### **Smoothing distribution**

$$q(\eta_{it}|\hat{\eta}_{i1:T}) = N\left(\tilde{\mu}_{it}, \tilde{\lambda}_{it}I\right)$$

$$\tilde{\mu}_{it} = \left(1 - \frac{\lambda_{it}^2}{\lambda_{it}^2 + \sigma_{\eta}^2}\right) \mu_{it} + \left(\frac{\lambda_{it}^2}{\lambda_{it}^2 + \sigma_{\eta}^2}\right) \tilde{\mu}_{it+1}, \quad \tilde{\lambda}_{it}^2 = \lambda_{it}^2 + \left(\frac{\lambda_{it}^2}{\lambda_{it}^2 + \sigma_{\eta}^2}\right)^2 \left(\tilde{\lambda}_{it+1}^2 - (\lambda_{it}^2 + \sigma_{\eta}^2)\right)$$

$$q(\phi_{lt}|\hat{\phi}_{l1:T}) = N\left(\tilde{\pi}_{lt}, \tilde{\omega}_{lt}I\right)$$

$$\tilde{\pi}_{lt} = \left(1 - \frac{\omega_{lt}^2}{\omega_{lt}^2 + \sigma_{\phi}^2}\right) \pi_{lt} + \left(\frac{\omega_{lt}^2}{\omega_{lt}^2 + \sigma_{\phi}^2}\right) \tilde{\pi}_{lt+1}, \quad \tilde{\omega}_{lt}^2 = \omega_{lt}^2 + \left(\frac{\omega_{lt}^2}{\omega_{lt}^2 + \sigma_{\phi}^2}\right)^2 \left(\tilde{\omega}_{lt+1}^2 - (\omega_{lt}^2 + \sigma_{\phi}^2)\right)$$

#### **Evidence Lower Bound (ELBO)**

Minimizing KL divergence is equivalent to maximizing ELBO

$$\underset{q}{\operatorname{arg \; min} \; } KL[q(\beta)||p(\beta|data)]$$



#### Evidence Lower Bound (ELBO)

$$\begin{split} \log(a_{1:T}, w_{1:T}) &\geq \int \sum_{s,r,x,z} q(\beta_{1:T}) \log \frac{p(a_{1:T}, w_{1:T}, \eta_{1:T}, \phi_{1:T}, \psi, \theta)}{q(\eta_{1:T}, \phi_{1:T}, \psi, \theta)} d\eta d\phi d\psi d\theta \\ &= \mathbb{E}_{q(s,r,\psi)} \left[ \log p(a_{1:T} | s_{1:T}, r_{1:T}, \psi) \right] + \mathbb{E}_{q(\psi)} \left[ \log \frac{p(\psi)}{q(\psi)} \right] \\ &+ \mathbb{E}_{q(s,r,x,\eta)} \left[ \log \frac{p(s_{1:T} | \eta_{1:T}) p(r_{1:T} | \eta_{1:T}) p(x_{1:T} | \eta_{1:T})}{q(s_{1:T}) q(r_{1:T}) q(x_{1:T})} \right] + \mathbb{E}_{q(\eta)} \left[ \log \frac{p(\eta_{1:T})}{q(\eta_{1:T})} \right] \\ &+ \mathbb{E}_{q(z,\phi)} \left[ \log p(w_{1:T} | z_{1:T}, \phi_{1:T}) \right] + \mathbb{E}_{q(\phi)} \left[ \log \frac{p(\phi_{1:T})}{q(\phi_{1:T})} \right] \\ &+ \mathbb{E}_{q(x,z,\theta)} \left[ \log \frac{p(z_{1:T} | x_{1:T}, \theta)}{q(z_{1:T})} \right] + \mathbb{E}_{q(\theta)} \left[ \log \frac{p(\theta)}{q(\theta)} \right] \end{split}$$

We find the stationary point by variation of ELBO for each parameter

-> Update variational parameters repeatedly until ELBO converged



We conduct filtering and smoothing for time evolving parameters  $(\eta_t, \phi_t)$  using variational observations  $(\hat{\eta}_t, \hat{\phi}_t)$ 

# Conclusion (DYNAMIC)

- We propose dynamic topic model by combining time-evolving network and text contents.
- Character distribution  $(\eta_t)$  and topic distribution  $(\phi_t)$  change over time with Gaussian noise.
- Estimation using combination of variational Bayes and Kalman filter
  - introduce **variational observations** to construct linear Gaussian state space model and obtain the exact solution by Kalman filtering and smoothing
  - update variational parameters at the stationary points

#### **Future works**

- Empirical analysis
- Apply for marketing model