Álgebra Linear - Lista de Exercícios 6

Luís Felipe Marques

Setembro de 2022

- 1. Seja A uma matriz $m \times n$ com posto r. Suponha que existem b tais que $A\mathbf{x} = \mathbf{b}$ não tenha solução.
 - (a) Escreva todas as desigualdades ($< e \le$) que os números $m, n \in r$ precisam satisfazer.
 - (b) Como podemos concluir que $A^T \mathbf{x} = 0$ tem solução fora $\mathbf{x} = 0$?

Resolução:

- (a) Como $C(A) \subseteq \mathbb{R}^m$, temos que dim $C(A) < \dim \mathbb{R}^m \Rightarrow r < m$. Além disso, como r é também posto (A^T) , temos $r \leq n$.
- (b) Pelo Teorema do Núcleo e da Imagem, $\dim N(A^T) + \dim C(A^T) = m$. Como já vimos que $\dim C(A^T) = r < m$, $\dim N(A^T) > 0$, o que implica que esse núcleo não é trivial.
- **2.** Sem calcular A ache uma bases para os quatro espaços fundamentais:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 6 & 1 & 0 \\ 9 & 8 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Resolução:

Sejam B e C tais que:

$$A = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 6 & 1 & 0 \\ 9 & 8 & 1 \end{bmatrix}}_{B} \underbrace{\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}}_{C}$$

 \bullet N(A)

Para que
$$A\mathbf{x} = \mathbf{0}$$
, $\begin{cases} C\mathbf{x} = \mathbf{b} \\ B\mathbf{b} = \mathbf{0} \end{cases} \Rightarrow \mathbf{b} \in N(B)$. Note que $B \sim I \Rightarrow N(B) = \{\mathbf{0}\} \Rightarrow \mathbf{b} = \mathbf{0} \Rightarrow$

N(A)=N(C). Como é perceptível que posto(C)=3, temos que dim N(C)=1, então basta

achar
$$a$$
, b e c tais que $C\begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, ou
$$\begin{cases} c+2=0 \\ b+2c+3=0 \\ a+2b+3c+4=0 \end{cases} \iff (a,b,c)=(0,1,-2)$$

Portanto, $N(A) = \text{span}\{(0, 1, -2, 1)\}.$

• C(A)

Note que as colunas de BC serão combinações lineares das colunas de B (note também que nenhuma coluna "se perderá", já que nenhuma coluna de C está no núcleo de B). Portanto, o espaço-coluna de BC será constituído por combinações lineares das colunas de B. Assim, $C(A) = \operatorname{span}\{(1,6,9),(0,1,8),(0,0,1)\}.$

1

$$\bullet$$
 $N(A^T)$

$$A^T = C^T B^T = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \\ 4 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 8 \\ 0 & 0 & 1 \end{bmatrix}$$

De forma semelhante ao caso de N(A), temos $\begin{cases} B^T \mathbf{x} = \mathbf{b} \\ C^T \mathbf{b} = \mathbf{0} \end{cases} \iff \mathbf{b} \in N(C^T). \text{ Note que}$

$$C^{T} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{posto}(C^{T}) = 3 \Rightarrow \dim N(C^{T}) = 0 \Rightarrow N(C^{T}) = \{\mathbf{0}\} \Rightarrow \mathbf{b} = \mathbf{0} \Rightarrow N(A^{T}) = \mathbf{0}$$

$$N(B^T)$$
. Como $B^T \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, posto $(B^T) = 3 \Rightarrow \dim N(B^T) = 0 \Rightarrow N(B^T) = \{\mathbf{0}\}$. Daí, $N(A^T) = \{\mathbf{0}\}$.

$$\bullet$$
 $C(A^T)$

Novamente, como $A^T = C^T B^T$, o espaço-coluna de A^T será constituído de combinações lineares de combinações lineares das colunas de C^T (lembrando novamente que as colunas de B^T não "eliminam" nenhuma coluna de C^T).

Portanto, $C(A^T) = \text{span}(1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2).$

3. Explique porque v = (1, 0, -1) não pode ser uma linha de A e estar também no seu núcleo.

Resolução:

Digamos que v seja a primeira linha de A. Perceba que a primeira coordenada de Av será igual a $\langle v, v \rangle = 1^2 + 0^2 + (-1)^2 = 2$. Portanto, Av não poderá ser vetor nulo.

4. A equação $A^T \mathbf{x} = \mathbf{w}$ tem solução quando \mathbf{w} está em qual dos quatro subespaços? Quando a solução é única (condição sobre algum dos quatro subespaços)?

Resolução:

Note que A^T **x** será uma combinação linear das colunas de A^T . Portanto, A^T **x** = **w** $\in C(A^T)$. Assim, **w** está no espaço-linha de A.

Lembre-se que, se $A^T \mathbf{y} = \mathbf{w}$, então $\mathbf{x}_n + \mathbf{y}$ é solução para $A^T \mathbf{x} = \mathbf{w}$ para todo $\mathbf{x}_n \in N(A^T)$. Assim, a solução é única quando $N(A^T)$ é trivial $\iff A^T$ é invertível.

5. Seja M o espaço de todas as matrizes 3×3 . Seja

$$A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

e note que $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

- (a) Quais matrizes $X \in M$ satisfazem AX = 0?
- (b) Quais matrizes $Y \in M$ podem ser escritas como Y = AX, para algum $X \in M$?

Resolução:

(a) Note que $A \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \dim N(A) = 1$. Como já sabemos que A(1,1,1) = (0,0,0), temos que $N(A) = \operatorname{span}\{(1,1,1)\}$. Para que AX = 0, temos que ter as colunas de X no núcleo de A. Assim, X é da forma

$$\begin{bmatrix} a & b & c \\ a & b & c \\ a & b & c \end{bmatrix}$$

para a, b, c reais quaisquer.

(b) Novamente, nos atentamos aos subespaços fundamentais de A. Em Y = AX, as colunas de Y serão combinações lineares das colunas de A. Como já vimos que dim C(A) = 2, e temos que (1, -1, 0) e (0, 1, -1) são linearmente independentes, temos que $C(A) = \text{span}\{(1, -1, 0), (0, 1, -1)\}$. Logo, Y será da forma

$$\begin{bmatrix} (u_1) & (u_2) & (u_3) \\ (-u_1+v_1) & (-u_2+v_2) & (-u_3+v_3) \\ (-v_1) & (-v_2) & (-v_3) \end{bmatrix}$$

para $u_1, v_1, u_2, v_2, u_3, v_3$ reais quaisquer.

6. Sejam A e B matrizes $m \times n$ com os mesmos quatro subespaços fundamentais. Se ambas estão na sua forma escalonada reduzida, prove que F e G são iguais, onde:

$$A = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix} e B = \begin{bmatrix} I & G \\ 0 & 0 \end{bmatrix}.$$

Resolução:

Para que A e B tenham os mesmos espaços fundamentais, suas formas escalonadas reduzidas devem ter blocos de mesmos tamanhos, ou seja, F e G são matrizes $r \times (n-r)$.

Agora, analisemos os núcleos de A e B: $A\mathbf{x}_{n\times 1}=0$ implica que \mathbf{x} é da forma $\begin{bmatrix} y_A \\ z_A \end{bmatrix}$, para $y_A \in \mathbb{R}^r$ e $z_A \in \mathbb{R}^{n-r}$, e $A\mathbf{x} = A \begin{bmatrix} y_A \\ z_A \end{bmatrix} = \begin{bmatrix} y_A + Fz_A \\ 0 \end{bmatrix} = 0 \iff Fz_A = -y_A$. Analogamente, para o núcleo de B, \mathbf{x} deve ser da forma (y_B, z_B) com $Gz_B = -y_B$.

Assim, $F \in G$ são matrizes tais que $F\mathbf{x} = \mathbf{b}$ e $G\mathbf{x} = \mathbf{b}$ possuem as mesmas soluções (completas) para todo \mathbf{b} (já que $F\mathbf{x} = \mathbf{b} \iff \begin{bmatrix} -\mathbf{b} \\ \mathbf{x} \end{bmatrix} \in N(A) \iff \begin{bmatrix} -\mathbf{b} \\ \mathbf{x} \end{bmatrix} \in N(B) \iff G\mathbf{x} = \mathbf{b}$). Como já visto no exercício 3 da lista 5, isso implica que F = G (basta verificar que $F\mathbf{x} = \mathbf{b} = G\mathbf{x}$ para \mathbf{x} qualquer e um certo \mathbf{b} dependente da escolha de \mathbf{x} , o que implica que $(F - G)\mathbf{x} = \mathbf{0}$ para qualquer \mathbf{x} , propriedade exclusiva da matriz nula $\Rightarrow (F - G) = \mathbf{0} \iff F = G$).