Shifting

Let $p_i = a_1 + \cdots + a_i$, with $p_0 = 0$. Note that by Euclid's lemma, we have

$$\gcd(p_0, p_1, \dots, p_{n-1}, p_n) = \gcd(p_0, p_1, \dots, p_{n-1}, p_n - p_{n-1}) = \dots = \gcd(p_0, p_1 - p_0, p_2 - p_1, \dots, p_n - p_{n-1})$$

$$= \gcd(0, a_1, \dots, a_n) = \gcd(a_1, \dots, a_n)$$

Hence, we can shift our focus to the p_i s. Note that when we do the operation, we replace either p_i by p_{i+1} or p_i by p_{i-1} . Hence an operation is equivalent to deleting one of the p_i s, since duplicate p_i s in the expression for gcd don't matter. We can't delete either of p_0 or p_n , and can delete any of the remaining p_i s.

Note that one deletion corresponds to precisely one move as well. Hence the problem reduces to finding the maximum number s of indices $1 \le i \le n$ such that p_i shares a prime factor with p_n . Then the answer will be n-s.

To find this, we simply need to factorize p_n , and for each prime factor p of p_n , find the number of indices i such that p_i is divisible by p. Note that in the case when $p_n = 1$, we have no solution.

Note that there are $O(\log p_n)$ distinct prime divisors of p_n^* , and finding them takes $O(\sqrt{p_n})$ time. Since we do a pass for each prime divisor of p_n , the total time complexity becomes $O(\sqrt{p_n} + n \log p_n)$. Note that the maximum value for p_n is 10^{11} , so this fits within the time limit.

^{*} This bound can be substantially improved, however, it suffices for our purposes.