Física I Apuntes de Clase 2 -MII 2023

La dinámica de la roto-traslación.
Conceptos energéticos relacionados con sistemas en rotación. Condición de rodadura sin deslizamiento. Aspectos dinámicos y energéticos relacionados con la fuerza de roce en la rototraslación. Eje instantáneo de rotación.

Equilibrio Rotacional Equilibrio Estático

Prof. Susana Conconi

Recordamos: Momento de Fuerza respecto de "o" o

Torque (τ) respecto de "o"

Es el producto vectorial entre el vector posición respecto a "o" (r) y la fuerza aplicada

La **dirección** es perpendicular al plano xy.

El **sentido**, la regla de la mano derecha

El módulo es

$$|\tau_o| = |r| |F| . sen \varphi$$

 $|d| = |r| . sen \varphi$

Φ es el ángulo que determinan los dos vectores cuando los aplicamos en un mismo punto.

d es la mínima distancia entre la recta de acción de F y "o": brazo de palanca

$$|\tau_o| = |d| |F|$$

Esta magnitud mide la tendencia de la fuerza a imprimir a la partícula un movimiento de rotación respecto al punto O fijo

La 2da ley de Newton en la rotación

$$\Sigma \tau_{i \text{ ext}} = I. \alpha$$

Para un sistema de partículas

 $I = \sum m_i r_i^2$ Momento de inercia de las partículas respecto a un eje

Para un Sólido Rígido: Pasamos de sistema discreto a **sistema continuo**. Sumatoria a integral:

$$I = \int dm R^2$$

En general se calculan respecto a un eje que pasa por el CM

Teorema de los ejes paralelos o Teorema de Steiner

«El momento de inercia alrededor de cualquier eje que es paralelo y que se encuentra a una distancia D del eje que pasa por el centro de masa es:

Para una barra delgada:

¿Cómo trabajar con las leyes de Newton en la rotacion?

- 1) Definir el sistema de estudio y modelo
- 2) Elegir un sistema de referencia inercial y
- 3) de coordenadas
- 4) Identificar todas las interacciones actuantes (agentes)
- 5) Hacer un diagrama de cuerpo libre (cuerpo rigido)
- 6) Ubicar acciones y reacciones
- 7) Identificar las variables conocidas y las incógnitas
- 8) Utilizar las ecuaciones (2da Ley para traslación y rotacion)

$$\sum \bar{F} = m \ \bar{a}$$

$$\Sigma \vec{\tau_{o}}_{ext} = I. \ \vec{\alpha}$$

Movimiento de rototraslacion

Condición de rodadura

Cuando un sólido rota a la vez que se traslada se hace difícil describir el movimiento con respecto a un SR inercial, pero se simplifica si el sólido realiza lo que se conoce como rodadura, es decir, que rueda sin deslizar.

En este caso, que existe una condición de ligadura que relaciona la velocidad con la que se traslada el CM y la velocidad angular de rotación del sólido.

El punto de apoyo del sólido (por ejemplo, una esfera apoyada en un suelo horizontal) no sufre desplazamiento con respecto al suelo, o lo que es lo mismo, está instantáneamente en reposo.

Para que la esfera ruede sin deslizar, el desplazamiento del CM debe coincidir con el arco s correspondiente al ángulo girado

La velocidad con la que se traslada el CM será la derivada con respecto al tiempo de dicho desplazamiento:

$$\overrightarrow{v_{CM}} = \overrightarrow{\frac{ds}{dt}} = \overrightarrow{\frac{d(R\varphi)}{dt}} = \overrightarrow{R} \cdot \overrightarrow{\frac{d\varphi}{dt}}$$

Como la variación del ángulo girado es la velocidad angular de rotación $\boldsymbol{\omega}$:

$$\vec{v}_{CM} = \vec{R} \vec{\omega}$$

$$v_{CM} = R\omega$$

Esta expresión es la condición de rodadura y nos da la relación que debe haber entre la velocidad de traslación del CM y la velocidad angular de rotación para que el sólido ruede sin deslizar.

Si derivamos, se obtiene la relación entre las aceleraciones:

$$a_{CM} = R\alpha$$

Recordado que se deriva de la condición de que el punto de apoyo tiene velocidad nula.

El movimiento de rodadura de un sólido rígido se puede descomponer en un movimiento de rotación con respecto a un eje que pase por el CM y un movimiento de traslación.

En la **rotación**, las partículas del borde describen un movimiento circular con una rapidez $\mathbf{v} = \mathbf{R}.\boldsymbol{\omega}$ con respecto al **CM**; a su vez el **CM** se traslada con una velocidad

 $v_{CM} = R\omega$ con respecto al suelo (condición de rodadura).

Confirmando que la velocidad del punto de apoyo con repecto al suelo es nula, y no se produce deslizamiento.

Traslación pura

Rotación pura alrededor del centro de masas, eje fijo

Combinación de traslación y rotación

Dinámica de la rototraslación

Tomando la rototraslacion de un solido rigido como una combinación de una rotación alrededor de un eje que pasa por el CM y una traslación del CM, para describir el movimiento son necesarias dos ecuaciones: una que nos permita calcular la aceleración de su centro de masas y otra que nos dé su aceleración angular con respecto a un eje que pasa por el centro de masas.

1- la 2da ley de Newton aplicada a un sistema de partículas:

$$\Sigma \vec{F}_{ext} = M \; \vec{a}_{CM}$$
 Traslación

2- la 2da ley de Newton para el movimiento de rotación respecto al centro de masas del sólido:

$$\sum \vec{r}' \times \vec{F}_{ext} = I \vec{\alpha}'$$
 Rotación

donde la prima (') denota que los momentos de las fuerzas externas están calculados con respecto al centro de masas, y α' es la aceleración angular del sólido con respecto a un eje que pasa por el centro de masas.

Eje instantáneo de rotación

Si P está en reposo se puede pensar al movimiento como una rotación pura con velocidad ω ' alrededor de un eje que pasa por P

2da Ley de Newton

$$\sum \vec{r}_{_{\mathbf{p}}} \times \vec{F}_{_{\!\mathit{ext}}} = I_{_{\!\mathbf{p}}} \vec{\alpha}$$

$$v_{\rm CM} = \omega' \times \mathbf{R}$$

$$v_{\rm CM} = \omega' R$$

$$si v_p = 0$$

$$v_{\rm CM} = \omega R$$

De donde

$$\omega' = \omega$$

$$\alpha$$
, = α

Resumen: Rodadura sin deslizamiento

Modelo 1: rototraslación

Traslación del centro de masas

$$\sum \mathbf{F} = M \, a_{CM}$$

Rotación alrededor de un eje que pasa por el centro de masas

$$\sum \tau_{\rm CM} = I_{\rm CM} \alpha$$

Modelo 2: rotación pura

Rotación alrededor de un eje que pasa por P (eje instantáneo)

$$\sum \tau_{P} = I_{P} \alpha$$

Cuerpo que rueda sobre superficie horizontal:

¿Que fuerzas actuan?

Las fuerzas que actúan sobre el cuerpo son:

- •el Peso
- •la Fuerza de contacto del plano (N)

Si va a v constante no hay fuerza horizontal!!

El roce permite la rodadura pero su modulo es 0 en este caso.

Cuerpo que rueda en un plano inclinado

¿Que fuerzas actúan en la bajada?

¿Y en la subida?

 https://proyectodescartes.org/iCartesiLibri/ materiales_didacticos/Fisica_II/interactivos /rodante/index2.html

Ej. 7 clase 2: Momento d Inercia Cilindro macizo= ½ M R² Momento d Inercia Cilindro hueco= M R²

m g sen
$$\theta - Fr_e = m a_{CM}$$

R. $Fr_e = I_{CM} a_{CM} / R$

$$a_{CM} = \alpha R$$

Condición de Rodadura sin deslizamiento.

$$m$$
 g sen θ – Fr_e = m a_{CM}

$$\operatorname{Fr_e} = I_{CM} a_{CM} / R^2$$

m g sen
$$\theta - I_{CM} a_{CM} / R^2 = m a_{CM}$$

m g sen $\theta = m a_{CM} + I_{CM} a_{CM} / R^2$
m g sen $\theta = a_{CM} (m + I_{CM} / R^2)$

$$a_{CM} = \underline{\text{m g sen } \theta}$$
 $(m + I_{CM}/R^2)$

Icm macizo= ½ M R²

Icm hueco= M R²

$$a_{CMmaciso} = m g sen \theta$$

$$(m + \frac{1}{2} m R^2 / R^2)$$

$$= 2/3g sen \theta$$

$$a_{CMhueco} = m g \operatorname{sen} \theta = 1/2g \operatorname{sen} \theta$$
 $(m+m R^2/R^2)$

Fuerza de roce en la rototraslacion

En una rodadura la fuerza de rozamiento no disipa energía

Aplicando la definición de **trabajo** a la fuerza de rozamiento, se observa que como no hay desplazamiento el trabajo que realiza la fuerza de rozamiento sobre el punto de apoyo es nulo, por lo que:

En una rodadura el módulo de la fuerza de rozamiento no es $\mu_c N$

Otra consecuencia importante es que el módulo de la fuerza de rozamiento debe obtenerse de las ecuaciones del movimento, ya que al no haber desplazamiento relativo entre las superficies en contacto, no toma el valor del coeficiente cinético por la

normal.

Modulo de Fr depende de r/R y de T

Energia cinética de un rígido en rototraslacion

La energía cinética de rotación interna ($\frac{1}{2}I_{cm}\omega^{2}$), está referida a un eje que pasa por el centro de masas. Si éste a su vez se está moviendo con respecto a un origen, la energía cinética total del sólido se calculará sumando la energía cinética de rotación v la de traslación del centro de masas (energía cinética orbital):

 $E_c = \frac{1}{2}M v_{CM}^2 + \frac{1}{2}I_{CM} \omega^2$

Tambien podemos considerar solamente la energía cinética de rotación respecto al eje instanteneo (P). Ya no tenemos que considerar la traslación del CM

$$E_c = \frac{1}{2} I_{\mathbf{p}} \, \omega^2$$

 $E_c = \frac{1}{2}I_{\rm p}\omega^2$ Ojo!!!: Este Momento de inercia es respecto a F

Ejemplo

Un cilindro uniforme de masa m y radio r se encuentra arrollado a una cuerda (un yo-yo!!). Esta cuerda está fuertemente sujeta y el cilindro cae verticalmente como se indica en la figura. a) Demostrar que el módulo de la aceleración del sistema es a=2g/3. b) Calcular la tensión de la cuerda. c) Que velocidad tendrá luego de descender una altura h.

$$\int \mathbf{F_x} = \mathbf{P_x} - \mathbf{T} = m \, \boldsymbol{a_{CM}}$$

$$\sum \tau_{\rm CM} = R.T = I_{\rm CM} \alpha$$

$$R.T = I_{CM} a_{CM}/R$$

$$I_{CM} = \frac{1}{2} m R^2$$

$$a_{CM} = \alpha R$$

Condición de Rodadura sin deslizamiento.

$$R.T = \frac{1}{2} m R^2 a_{CM}/R$$

$$T = \frac{1}{2} m a_{CM}$$

$$m g - \frac{1}{2} m a_{CM} = m a_{CM}$$

$$m g = \frac{1}{2} m a_{CM} + m a_{CM} = (\frac{1}{2} + 1) m a_{CM} = \frac{3}{2} m a_{CM}$$

$$m g = 3/2 m a_{CM}$$

$$a_{CM} = 2/3 \text{ g}$$

Si planteamos el problema como rotacion pura alrededor de p (punto tangente donde sale la soga)

Solo usamos la ecuación de los torques respecto a p

$$\sum \tau_p = R. P = I_p \alpha$$

R. m g =
$$I_p \alpha$$

$$I_{CM}$$
= ${}^{1}\!\!/_{2}$ m R^{2} I_{p} = I_{CM} + m R^{2} Aplicando Steiner

 $a_{CM} = \alpha R$

R. m g =
$$(I_{CM} + m R^2) \alpha$$

R. m g =
$$(\frac{1}{2} m R^2 + m R^2) \alpha = (\frac{3}{2} m R^2) \alpha$$

R. m g =
$$(3/2 m R^2) \alpha$$

Ejemplo: Una bola bowling de masa M y radio R se lanza de tal modo que cuando toca el suelo se mueve horizontalmente con velocidad $v_o = 5$ m/seg., avanzando sin rodar. El coeficiente de fricción cinética entre la bola y el suelo es $\mu_c = 0.2$. Determinar el tiempo durante el cual la bola desliza antes de que se cumpla la condición de rodadura sin deslizamiento.

- La bola adquiere una aceleración negativa por el roce (dinámico).
- La velocidad del centro de masa disminuirá con el tiempo.
- La fuerza de roce dinámico hace torque respecto al centro de masa: hay una aceleración angular.
- Aumenta la velocidad angular y la rapidez tangencial de un punto exterior.

Cuando la rapidez tangencial del punto de contacto alcance a la velocidad del centro de masa, la bola empieza a Rodar sin Deslizar.

En ese mismo momento desaparece la fricción, y por lo tanto se anulan la aceleración del centro de masa y la aceleración angular, continuando la bola con velocidad constante. Como Rueda sin Deslizar con velocidad constante, la fuerza de roce estático también es cero.

$$I_{CM} = 2 / 5 M R^2$$

Rta: $t_{RSD} = 2 v_0 / 7 \mu_c g$.

Para entregar:

Una pieza cilíndrica tiene la forma de la figura con una sección central que sobresale de otra sección mas ancha. El cilindro puede girar libremente alrededor del eje central que se muestra en el dibujo. Una cuerda enrollada alrededor de la sección mayor , de radio R_1 , ejerce una fuerza T_1 hacia la derecha del cilindro. Una cuerda enrollada alrededor de la sección central , de radio R_2 , ejerce una fuerza T_2 hacia abajo.

- •¿Cuál es el momento resultante que actúa sobre el cilindro respecto a su eje de giro?
- •Calcular la aceleración angular de la pieza cilíndrica.
- •Después que ha girado dos vueltas, calcular el valor de la velocidad angular en ese instante.

DATOS:

$$T_1 = 5 \text{ N}$$
 $T_2 = 6 \text{ N}$ $R_1 = 1 \text{ m}$ $R_2 = 0.5 \text{ m}$

Equilibrio estático

La **estática** tiene por objetivo determinar bajo qué condiciones un sistema se encuentra en **reposo**. Su aplicación más importante es al cálculo de estructuras, donde se emplea para determinar las fuerzas soportadas por un puente, un edificio, una viga, un rascacielos, etc.

Para que un cuerpo esté en **equilibrio estático** deben cumplirse simultáneamente dos condiciones:

Que el sólido no esté acelerado: la aceleración de su centro de masas debe ser cero.

Que el sólido no rote: la aceleración angular del sólido debe ser también nula.

Estas dos condiciones se imponen respectivamente a la ecuación del movimiento de traslación del centro de masas (segunda ley de Newton) y a la ecuación de la rotación:

No hay traslación:
$$\Sigma \vec{F}_{ext} = 0$$

No hay rotación:
$$\Sigma \vec{r} \times \vec{F}_{ext} = 0$$

La segunda condición se cumple con independencia del origen que se elija para calcular los momentos de las fuerzas externas sólo si el CM no está acelerado.

Recordando la expresión:

$$\tau_{\text{ext }O} = \mathbf{R}_{\text{CM}} \times \sum \mathbf{F}_{\text{ext}} + \boldsymbol{\tau}_{\text{ext }CM}$$

Si el término
$$\mathbf{R}_{\mathrm{CM}} \times \sum \mathbf{F}_{\mathrm{ext}} = 0$$
 $\mathbf{\tau}_{\mathrm{ext} O} = \mathbf{\tau}_{\mathrm{ext} CM}$

Ej 1: Una persona de 160 N. de peso, camina por un puente plano y se detiene a tres cuartas partes de la distancia de un extremo. El puente es uniforme y pesa 600 N., ¿qué valores tiene las fuerzas verticales que los soportes ejercen sobre los extremos?.

 $\Sigma \vec{F}_{axt} = 0$ No hay traslación:

No hay rotación: $\Sigma \vec{r} \times \vec{F}_{out} = 0$

Sistema: Puente + Hombre

Rta:

F_A: 340 N

F_R: 420N

$$\sum \mathbf{F_y} = \mathbf{F_A} + \mathbf{F_B} - \mathbf{P_{puent}} - \mathbf{P_H} = 0$$

$$\Sigma \tau_{A} = F_{B} \cdot L - P_{puent} L/2 - P_{H} \cdot \frac{3}{4} L = 0$$

$$F_B = (m_{puent}/2 + m_H. \frac{3}{4}) g$$
 $F_A = (m_{puent}/2 + m_H. \frac{1}{4}) g$

Ej. 2 : Un bloque rectangular homogéneo de 50 cm de altura (a) y 20 cm de anchura (b) descansa sobre una tabla AB tal como se muestra en la figura. El coeficiente estático de rozamiento entre el bloque y la tabla es de 0.30. Si se eleva lentamente el extremo B de la tabla ¿Comenzará el bloque a deslizar hacia abajo antes de volcar?.

Si no vuelca ni desliza esta en equilibrio

$$\sum \mathbf{F}_{\mathbf{x}} = \mathbf{P}_{\mathbf{x}} - \mathbf{F}\mathbf{r}_{\mathbf{e}} = 0$$

$$\sum \mathbf{F}_{\mathbf{y}} = \mathbf{N} - \mathbf{P}_{\mathbf{y}} = 0$$

$$\sum \mathbf{\tau}_{0} = \mathbf{P}\mathbf{x} \cdot \mathbf{a}/2 - \mathbf{P}\mathbf{y} \cdot \mathbf{b}/2 = 0$$

¿Que ángulo critico es menor? ¿Para que se traslade o para que vuelque? Para que se traslade, (lo vimos en el Modulo I)

$$tg \ \theta = \mu_e = 0.3 \ \rightarrow \theta = 16,7^{\circ}$$

$$\sum \tau_0 = P \sin \theta$$
. $a/2 - P \cos \theta b/2 = 0$

sen
$$\theta/\cos\theta$$
. = $tg\theta = b/a = 20/50 = 0.4 \rightarrow \theta = 21,8°$

Va a deslizar antes que volcar

Ej 3: Una barra homogénea de longitud *L* y masa *m* está sujeta a una pared mediante una articulación sin rozamiento (en el punto O) y por una cuerda desde el otro extremo, como se ve en la figura.

a) Calcular las componentes de la reacción en la articulación y la tensión en la cuerda.

Datos:
$$\Phi_0 = 30^\circ$$
; $\beta = 45^\circ$; $m = 50$ kg; $L = 4$ m; $I_{CM} = (1/12)$ m L^2 .

- b) En un momento dado se corta la cuerda y la barra cae. Determinar la aceleración angular que adquiere la barra justo después de cortar la cuerda
- c) Determinar la aceleración angular de la barra cuando ésta llega a la posición horizontal

Sistema físico: Barra

Se descomponen las fuerzas en los ejes x e y

$$\sum \mathbf{F_x} = \mathbf{F_{px}} - \mathbf{T_x} = 0$$
$$\sum \mathbf{F_y} = \mathbf{F_{py}} + \mathbf{T_y} - \mathbf{P} = 0$$

$$T_x = T \operatorname{sen} \beta$$

$$T_y = T \cos \beta$$

$$\sum \tau_0 = T_y$$
. Lcos $\phi - P L/2 \cos \phi + T_x L \sin \phi = 0$

$$F_{px}$$
 – T sen $\beta = 0$

$$F_{px} = T \operatorname{sen} \beta$$

$$F_{pv} + T \cos \beta - m g = 0$$

$$F_{py} = m g - T \cos \beta$$

$$T_v$$
. Lcos ϕ – mg L/2 cos ϕ + T_x L sen ϕ =0

T cos β. Lcos ϕ – mg L/2 cos ϕ + T sen β L sen ϕ =0

Despejando T y con $\Phi_0 = 30^\circ$; $\beta = 45^\circ$; m = 50 kg; L = 4 m

T=
$$\frac{\text{mg cos } \phi}{2 (\text{cos } \beta. \text{ cos } \phi + \text{sen } \beta \text{ sen} \phi)}$$
 = 220N

Rta:

Fpx: 155N Fpy: 334N

b) En un momento dado se corta la cuerda y la barra cae. Determinar la aceleración angular que adquiere la barra justo después de cortar la cuerda

$$I_{CM} = (1/12) \text{ m } L^2$$

$$I_0 = (1/3) \text{ m } L^2$$

$$Fpx = 0 \quad \text{y} \quad Fpy - P = 0$$

$$\sum \tau_0 = P L/2 \cos \phi = I_0 \cdot \alpha \qquad \alpha = P L/2 \cos \phi$$

$$\alpha = \frac{\text{mg L } \cos \phi}{2(1/3) m L^2}$$

$$\alpha = \frac{3 \text{ g } \cos \phi}{2 L} = 3.181/\text{seg} 2$$

c) Determinar la aceleración angular de la barra cuando ésta llega a la posición horizontal.

En este caso como ya esta realizando movimiento circular, existe una fuerza neta en sentido radial en el pivote. Debe apuntar hacia la pared, deberíamos dar vuelta el sentido de Fpx, Pero solo planeamos el torque respecto a o para resolver el ejercicio:

$$\sum \tau_0 = P L/2 = I_0 . \alpha$$

$$I_0 = (1/3) m L^2$$

$$\alpha = mgL = 3g = 3,67 \text{ 1/seg}^2$$
 $2(1/3) m L^2 = 2L$

La aceleración angular es mayor que cuando empieza el movimiento

Equilibrio estático en un sistema acelerado

Si no se cumple la primer condición, $a_{CM} \neq 0$ y

$$\Sigma \vec{F}_{ext} = M \vec{a}_{CM}$$

Para plantear el equilibrio rotacional, debemos hacerlo respecto al CM y se debe cumplir que:

$$\mathbf{\tau}_{\mathrm{ext}\ \mathit{CM}} = 0$$

Ej. 4: Un camión trasporta una caja uniforme de masa m y altura h y tiene una sección cuadrada de lado L. ¿Cuál es la máxima aceleración que puede tomar el camión sin que vuelque la caja? Suponer que el coeficiente de roce es suficientemente alto para que la caja no deslice.

$$\sum \mathbf{F_x} = \operatorname{Fr} = m \, \boldsymbol{a_{CM}}$$
$$\sum \mathbf{F_y} = \operatorname{N} - \operatorname{P} = 0$$

Traslación CM

Rotación

Como esta acelerado, al equilibrio rotacional debo plantearlo desde el CM

Cuando esta por volcar hacia atrás la fuerza de contacto se ubica en el borde

 $\sum \tau_{CM} = \text{Fr h/2-N L/2} = 0$

$$Fr_{max} = m a_{CM max}$$

$$N - mg = 0 \rightarrow N = mg$$

$$m a_{CM max} h/2 - mg L/2 = 0$$

$$m a_{CM max} h/2 = mg L/2$$

$$a_{CM max} = g L/h$$

A mayor altura h, menor la aceleración que puede tener el camión para que no vuelque para una base L

Para entregar: Ejercicio equilibrio

Una tabla homogénea de 9m y de 400N se apoya simétricamente sobre dos soportes que están separados por una distancia de 4,8m. Un hombre que pesa 640N parte de A y se dirige hacia la derecha.

¿Hasta que distancia a la derecha de B puede caminar sin que la barra vuelque?

