11.9.3.3

EE23BTECH11065 - prem sagar

Question:

The 5th,8th and 11th terms of a GP are p,q and s respectively .show that $q^2 = ps$

solution:

let r be common ratio

Symbol	Value	Description
x(5)	p	$x(0) r^5$
x (8)	q	$x(0) r^8$
x(11)	S	$x(0) r^{11}$
x(n)		$x(0) r^n u(n)$
TABLE 1		

INPUT PARAMETERS

From Table 1:

$$q^{2} = x(0) r^{8} x(0) r^{8}$$
$$= x(0)^{2} r^{16}$$

$$ps = x(0) r^5 x(0) r^{11}$$
$$= x(0)^2 r^{16}$$

$$\implies q^2 = ps$$

now we will find r and x(0):

$$\frac{s}{p} = \frac{x(0) r^{11}}{x(0) r^5}$$

$$r = \left(\frac{s}{p}\right)^{\frac{1}{6}}$$

$$p = x(0) \left(\frac{s}{p}\right)^{\frac{5}{6}} \tag{8}$$

$$x(0) = \frac{p^{\frac{11}{6}}}{s^{\frac{5}{6}}} \tag{9}$$

$$X(z) = \frac{x(0)}{1 - rz^{-1}}, |z| > |r|$$
 (10)

$$\implies X(z) = \frac{p^3}{p^{\frac{7}{6}} s^{\frac{5}{6}} - q^2 z^{-1}}, |z| > \left| \left(\frac{q}{p} \right)^{\frac{1}{3}} \right| \tag{11}$$

Fig. 1. plot x(n)vs n p = 486, q = 13122, s = 354294, r = 3