Problem:

Assume that the number of cases of tetanus reported in the United States during a single month in 2005 has a Poisson distribution with parameter μ . The number of cases reported in January and February are 1 and 3 respectively.

- (a) Find and plot the likelihood function over the space of potential values for μ .
- (b) What is the maximum likelihood estimate (MLE) of μ ?
- (c) Give an estimate of the probability that there is no case of tetanus reported for a given month.

Solution:

Let Y be the number of cases of tetanus reported in the United States during a single month in 2005. Then Y has a Poisson distribution with unknown parameter μ and the probability mass function of Y is $P(Y = y) = e^{-\mu} \frac{\mu^y}{y!}, y = 0, 1, 2, \cdots$

(a) We have two observations, Y_1 and Y_2 from the above distribution with $Y_1 = 1$ and $Y_2 = 3$.

The likelihood function is then given by

$$L(\mu|Y_1=1,Y_2=3) = P(Y_1=1) \times P(Y_2=3) = e^{-\mu} \frac{\mu^1}{1!} \times e^{-\mu} \frac{\mu^3}{3!} = e^{-2\mu} \frac{\mu^4}{6}$$
. Some simple R codes to make the plot of the likelihood function, $L(\mu)$, are given below:

- > mu < -seq(0,10,by=0.01);
- $> lik < -exp(-2*mu)*(mu^4)/6;$
- > plot(mu,lik,type="l",xlab="Mu",ylab="Likelihood Function");

(b) To find the maximum likelihood estimate, take the derivative of $L(\mu|Y_1=1,Y_2=3)$ with respect to μ , we have $(e^{-2\mu}\frac{\mu^4}{6})' = e^{-2\mu}\frac{4\mu^3}{6} - 2e^{-2\mu}\frac{\mu^4}{6}$. Let $e^{-2\mu}\frac{4\mu^3}{6} - 2e^{-2\mu}\frac{\mu^4}{6} = 0$, $\frac{4\mu^3}{6} = 2\frac{\mu^4}{6}$, one has the root $\mu = 2$. So the maximum likelihood estimate of μ is 2.

(c) The probability that there is no case of tetanus reported for a given month is $P(Y=0) = e^{-\mu}$. The estimated value of this probability using the MLE of μ is $e^{-\mu} = e^{-2} = 0.13534$.