Problema 785

El costat \overline{BC} del triangle \overrightarrow{ABC} s'allarga des de C fins D tal que $\overline{CD} = \overline{BC}$.

El costat \overline{CA} s'allarga des de A fins E tal que $\overline{AE} = 2\overline{CA}$. Demostreu que:

 $\overline{AD} = \overline{BC}$ si només si, el triangle \overrightarrow{ABC} és rectangle.

Solució de Ricard Peiró:

(⇐)

Suposem que el triangle $\stackrel{\triangle}{ABC}$ és rectangle, $A=90^{\circ}$

Aplicant el teorema del cosinus al triangle BAD:

$$\overline{AD}^2 = c^2 + 4a^2 - 2c \cdot 2a \cdot \cos B = c^2 + 4a^2 - 2c \cdot 2a \cdot \frac{c}{a}$$
.

Simplificant:

$$\overline{AD}^2 = 4a^2 - 3c^2$$
.

Aplicant el teorema de Pitàgores al triangle rectangle BAE:

$$\overline{BE}^2 = 4b^2 + c^2$$
.

Aplicant el teorema de Pitàgores al triangle rectangle $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$:

$$a^2 = b^2 + c^2$$
, aleshores,

$$\overline{BE}^2 = 4a^2 - 3c^2$$
.

Aleshores, $\overline{AD} = \overline{BC}$.

(⇒)

Suposem que $\overline{AD} = \overline{BC}$.

Aplicant el teorema del cosinus al triangle $\stackrel{\triangle}{\mathsf{ACD}}$:

$$\overline{AD}^2 = a^2 + b^2 + 2ab \cdot \cos C \tag{1}$$

Aplicant el teorema del cosinus al triangle $\stackrel{\scriptscriptstyle\Delta}{\mathsf{BEC}}$:

$$\overline{BE}^2 = a^2 + 9b^2 + 2a3b \cdot \cos C \tag{2}$$

Igualant les expressions (1) (2):

$$2ab \cdot \cos C = 2b^2 \tag{3}$$

Aplicant el teorema de Pitàgores al triangle rectangle ABC:

$$2ab \cdot cos C = a^2 + b^2 - c^2 \tag{4}$$

Igualant les expressions (3) (4)

$$2b^2 = a^2 + b^2 - c^2$$
.

Aleshores, $a^2 = b^2 + c^2$.

Aplicant el teorema invers del teorema de Pitàgores:

 $A = 90^{\circ}$, aleshores, el triangle ABC és rectangle.

