It Can Understand the Logs, Literally

Aidi Pi, Wei Chen, Will Zeller and Xiaobo Zhou

IPDPSW'19 @ Rio de Janeiro

Outline

- Introduction to distributed system logs
- Challenges
- NLog: A NLP based log analysis approach
- Evaluation
- Conclusion

Logging in general

- Logging is a general approach to record events in a system
- System logs are critical for understanding and troubleshooting targeted systems

Challenges in log analysis

- Large number of log files
- Rich information in log messages
 - Identifiers, entities, events, etc.
- Effectiveness in information extraction
 - A single log message contains multiple fields
 - Multiple log messages can contain information about the same object

A motivation example

```
Task 39 force spilling in-memory map to disk and it will release 159.6 MB memory
```

- Existing approaches only extract identifiers and numeric values
- NLP approaches can extract events from logs

Logs in natural languages

Frameworks	NL logs	Total logs	% of NL logs
Yarn	84652	88628	99.5%
Spark	106686	106686	100%
MapReduce	85752	92648	92.6%
Average	-	-	97.4%

 Our observation finds that most logs of data analytics frameworks are written in a natural language

NLog

NLog: a Natural Language
 Processing (NLP) based approach

 It can identify objects and events even without identifiers in logs

 Targeted systems: distributed data analytics frameworks

NLog overview

- 1. Message type parsing: a solved problem by Spell*
- 2. Identification of key objects
- 3. Finding identifiers and numeric values
- 4. Storing parsing results in keyed messages**

^{*} M. Du and F. Li, "Spell: Streaming parsing of system event logs" in proc of ICDM'17.

^{**}A. Pi, W. Chen, X. Zhou, and M. Ji, "Profiling distributed systems in lightweight virtualized environments with logs and resource metrics" in *proc of HPDC'18*

Step 1: message type parsing

 Message type: the static string sequence of in a corresponding log printing statement

```
fetcher 4 about to shuffle
output of map attempt_1
decomp: 1965 len 1969 to MEMORY

fetcher * about to shuffle
output of map *
decomp: * len * to MEMORY
```

Step 2: objects & event extraction by NLP

- Part-of-speech analysis: tag each word in a log message with its part-of-speech
- Find all the noun words
- Filter noun words with a top α frequency
 - Key object words have higher frequencies
- Assign key objects as keys of a log message

Step 3: identifiers & values

- Identifiers: Numeric following a noun word
- Values: All other numeric value
 - Numeric values followed by units e.g. kb or ms

An example: put it all together

- The parsing results are in key-value format
- Users use queries on the results for troubleshooting purposes

Evaluation setup

- Setup
 - Evaluation is conducted on a 25-node cluster
 - Four Xeon E5-2640 v3 CPU and 128GB memory per node
 - Cluster is connected by 10-Gbps Ethernet
 - Yarn-3.0.0-alpha, Spark-2.1.0
- Log files
 - Randomly choose 20 MB of of 2GB files

Accuracy of object identification

Frameworks	Total	Correct	Accuracy
Yarn	115	99	85.3%
Spark	34	32	94.1%
MapReduce	92	86	93.5%

- Inaccurate message types
 - All of its keys have too general meanings e.g. service
 - None of the keys includes the key objects

A case study

Spark TPC-H job

Inspect the number of tasks during job execution

```
Related message types:

Q1: key: task
    aggregator: count
    2. Running task * in stage * (TID *)
    3. Task * force spilling in-memory map to
    disk and it will release * memory
    aggregator: count
    4. Finished task * in stage * (TID *)
    groupBy: container
    5. Executor killed task * in stage * (TID *)
```


Number of concurrently running tasks vary during job lifetime

Containers receive uneven number of tasks

The uneven task number distribution is caused by bug in Spark

Conclusion

- NLog, a NLP-based approach to identify key objects, identifiers and values in logs
- It is accurate in key object extraction
- It is helpful in understanding and troubleshooting targeted systems

IntelLog

- IntelLog: a comprehensive NLP-based log analysis approach
- Objectives:
 - Information extraction
 - Automatic workflow reconstruction
 - Automatic problem detection
- IntelLog will be published in HPDC'19, Phoenix, AZ, USA

Thank you! Q & A