MIDTERM - Fall 2016

CS583: Data Ming and Text Mining

Name: UID	
-----------	--

Instruction:

- 1. This is a close book test.
- 2. The paper has 7 questions and the full mark is 80.

	Marks
Q1	
Q2	
Q3	
Q4	
Q5	
Q6	
Q7	
Total	

- 1. (10%) In multiple minimum support association rule mining, we can assign a minimum item support (MIS) to each item. Given the transaction data below:
 - $\{1, 7, 3\}$
 - $\{1, 7, 5, 4\}$
 - $\{1, 7, 5, 2\}$
 - $\{7, 2\}$
 - {5, 6}
 - $\{7, 3\}$
 - $\{7, 5, 2\}$
 - $\{7, 2, 3\}$

and the MIS assignments for the items in the data:

$$MIS(2) = 50\%$$

$$MIS(7) = 80\%$$

The MIS values for the rest of the items in the data are all 25%,

use the MSapriori algorithm to produce the set of frequent itemsets in F₁, F₂, F₃.

2. (10%) Sequential pattern mining.

Given the minimum support of 25% and the following sequence data, generate all sequential patterns.

Customer ID Customer sequence

- 1. <{20} {100, 80} {50}>
- 2. <{30} {70}>
- 3. <{90} {40}>
- 4. <{20, 30} {10} {100, 70, 80}>
- 5. <{10, 70, 80}>

3. (10%) Given the following training data, which has two attributes A and B, and a class C, compute all the probability values required to build a naïve Bayesian classifier. Ignore smoothing.

A	В	C
n	X	Y
h	m	Y
g	m	Y
n	m	Y
n	X	Y
h	X	N
g	m	N
g	m	N
n	X	N
n	X	N

4. (10%) Assume we have built a naïve Bayesian classifier h using some training data, and have used h to classify the following test data, which give us the corresponding probability for each data point d_i . Fill up the table below with appropriate values for the test data and draw the ROC curve.

Test data

d_i	Actual class	$\Pr(+ d_i)$
d_1	-	0.2
d_2	+	0.8
d_3	-	0.4
d_4	+	0.1
d_5	+	0.5
d_6	+	0.7

Rank				
Actual class				
TP				
FP				
TN				
FN				
TPR				
FPR				

5. (10%) Given the following dataset with two classes (yes and no) for decision tree building, the "credit_rating" attribute has already been selected as the root node. We want to grow the tree further. Use the information gain criterion to compute the gain value for attribute "student" for the tree branch of "credit_rating = excellent". Give the detailed computation.

age	income	student	credit_rating	Class
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

6. (10%) Given the classification results in the following confusion matrix, compute *the precision*, *recall* and *F*-score for the *negative class*, and the overall *classification accuracy*.

(
Positive	Neutral	Negative	Correct
60	25	20	Positive
10	10	180	Negative
10	35	5	Neutral

- 7. (20%) Answer the following questions.
 - (a). (4%) Write the equation in each of the boxes in the figure for SVM.

(b). (3%) Please circle the support vectors for linear non-separable SVM in the figure below.

(c) (3%) In deriving the naïve Bayesian classification (not the text classification version), an important assumption was made. What is it called? Give the equation.

(d). (3%) Boosting is a kind of weighted voting, what is the weight?

(e). (3%) Give two reasons for missing data. Which classification algorithm can be used for attribute discretization?

(f). (4%) Given the two data points, $\mathbf{x} = (x_1, x_2)$, $\mathbf{z} = (z_1, z_2)$, we want to use the following kernel function,

$$K(\mathbf{x}, \mathbf{z}) = \langle \mathbf{x} \bullet \mathbf{z} \rangle^3 = \langle \phi(\mathbf{x}) \bullet \phi(\mathbf{z}) \rangle$$

Compute $\phi(\mathbf{x})$ and $\phi(\mathbf{z})$.