VAN course Lesson 11

Dr. Refael Vivanti vivanti@gmail

Back to some statistics

Canonical Parameterization

- Alternative representation for Gaussians
- ullet Described by **information matrix** Ω

$$\Omega = \Sigma^{-1}$$

ullet and information vector ξ

$$\xi = \Sigma^{-1}\mu$$

Marginalization vs. conditioning

Real data from <u>Science Museum Jerusalem</u>:

Marginalization vs. conditioning

Example: the prob. of getting a 100:

ı		0			
	student	Ex1	Ex2	Ex3	Ex4
	Dudu	4/40	2/40	1/40	1/40
	Maya	1/40	2/40	4/40	1/40
	Yiftach	2/40	2/40	2/40	2/40
	Arnon	5/40	1/40	1/40	1/40
	Ehud	0/40	0/40	0/40	8/40
	$p(y) = \sum_{x} p(x, y)$	12/40	7/40	8/40	13/40
x	$(x) = \sum p(x y = Dudu)$	4/8	2/8	1/8	1/8

Conditioning:

Marginalization:

Marginalization and Conditioning – how to

$$\Lambda = \Omega = \Sigma^{-1}$$

Courtesy: R. Eustice

Pose Graph - compromises

- We replaced our big factor graph with a pose graph
- How did we compromise?
- From each small factor graph of K cameras and P points:
 - We removed all points
 - We removed most cameras
 - $P(C_1,...,C_K,p_1,...p_P) \rightarrow P(C_1,C_K) \rightarrow P(C_K|C_1)$ marginalization conditioning
- In the full factor graph, point p might have F cameras:
 - We used this track by parts, in each small factor graph:
 - $P(C_1,...,C_F,p_1) \rightarrow P(KF_2,p|KF_1) \cdot P(KF_N,p|KF_{N-1})$

Pose Graph - compromises

- Covariance approximation:
 - The small factor graph information is represented as a normal distribution
 - If all operations were linear, it'll be ok.
 - But we do a non-linear projection
 - Using Gaussians is an approximation
 - Even if the original distributions were Gaussians.

- We ignored a lot of information
 - Surprisingly, the results are often accurate!

Pose Graph – how to

- To build and initialize the pose graph we need:
 - Each KF will be a vertex (symbol)
 - Initialization: global-coords pose of each KF camera.
 - Each successive KF pair, which participated in one small factor graph, will define a factor between two vertices:

$$e_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathsf{t2v}(\underline{\mathbf{Z}_{ij}^{-1}}(\underline{\mathbf{X}_i^{-1}}\mathbf{X}_j))$$

It also needs a covariance...

Pose Graph – how to

How to calculate the covariance:

$$\sum_{all} \xrightarrow{marg.} \sum_{1N} \xrightarrow{inv.} \Omega_{1,N} \xrightarrow{cond.} \Omega_{N|1} \xrightarrow{inv.} \sum_{N|1} \xrightarrow{inv.} \Omega_{1,N} \xrightarrow{cond.} \Omega_{N|1} \xrightarrow{inv.} \sum_{N|1} C_{1} \begin{bmatrix} C_{11} & \cdots & C_{1N} & C_{1}P_{1} & \cdots & C_{1}P_{M} \\ \vdots & \vdots & \ddots & & & & & \\ C_{N} & C_{N1} & C_{NN} & C_{N}P_{1} & C_{N}P_{M} \\ C_{1}P_{1} & C_{1}P_{1} & C_{N}P_{1} & P_{1N} \\ \vdots & & \ddots & & & & \\ C_{1}P_{M} & C_{N}P_{M} & P_{M1} & P_{MM} \end{bmatrix} \xrightarrow{inv.} \begin{bmatrix} C_{11} & C_{1N} \\ C_{N1} & C_{NN} \end{bmatrix} \xrightarrow{inv.} \sum_{N|1} \xrightarrow{inv.} C_{N}P_{M} = P_{M}$$

- Problem: Navigation drifts
 - We can reduce it, but not eliminate the problem
- If we revisit a location, it can help
 - Shorter path to origin in the pose graph
 - Constraints propagate to other vertices
 - Vertices get a 'second opinion'
- This is called a "Loop Closure"

(a) Robust local motion estimation

(b) Mapping and loop-closure detection

(c) Global optimisation

https://www.youtube.com/watch?v=LVbzuyOCCaM

- When implementing an online system:
 - Front end finds new graph edges
 - To previous vertex Stereo tracking, PnP, factor graph
 - To old known vertices Loop closure
 - Backend
 - Global optimization Pose graph

- How can we spot a loop closure?
 - Find candidates (light):
 - Geometric intersection
 - Validate candidates (heavy):
 - 3D points clouds matching using ICP
 - Visual descriptor-based matching
 - Calculate edges and factors:
 - Find transformation using matches/ICP
 - Outlier removal:
 - Olson's method

Many candidates, light operations

Few candidates, heavy operations

Loop Closure - Geometric intersection

Geometric intersection: Where to Search for Matches?

- "Intersection" means that B pose is pose A with high probability
- Note: even if location overlaps, pose may not.

Loop Closure - Geometric intersection

• We wish to find: $\Delta x^T \Omega_{nli} \Delta x < d$

Where: $\Delta x = t2v(X_i^{-1}X_n)$

and $\Omega_{\rm nli}$ is the conditional information matrix of $x_n|x_i$

- This requires marginalization to remove all other x_i
- Inverting the full information matrix is too expensive for front-end.
- Fast approximation:
 - Find shortest path using Dijkstra
 - Conservative Cov estimation:
 - Compose the incremental covariances along the path.

Assume
$$\mathbf{x} \sim \mathcal{N}(\mathbf{m}_x, \mathbf{\Sigma}_x)$$
 and $\mathbf{y} \sim \mathcal{N}(\mathbf{m}_y, \mathbf{\Sigma}_y)$ then

$$\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{c} \sim \mathcal{N}(\mathbf{A}\mathbf{m}_x + \mathbf{B}\mathbf{m}_y + \mathbf{c}, \mathbf{A}\boldsymbol{\Sigma}_x\mathbf{A}^T + \mathbf{B}\boldsymbol{\Sigma}_y\mathbf{B}^T)$$

$$x + y \sim N(m_x + m_y, \Sigma_x + \Sigma_y)$$

Loop Closure - Validate candidates with ICP

- For any candidate-pair for edge:
 - Find the corresponding 3D point cloud
 - Optional: extract unique structures
 - Like trees of cars
 - Walls are large but with low information
 - Find transformation
 - Using ICP, RANSAC and least squares minimization
 - Evaluate edge
 - Matches percent
 - Mean distance
 - If it's good, set an edge
 - The factor is the calculated relative transformation

Courtesy of **Andreas Nuechter**

Loop Closure - Validate candidates with ICP

Problems

- ICP is sensitive to the initial guess
- Make many initial guesses? Inefficient sampling
- Ambiguities in the environment

Loop Closure - Validate candidates with ICP Ambiguities - Global Ambiguity

- B is inside the uncertainty ellipse of A
- Are A and B the same place?

Loop Closure - Validate candidates with ICP Ambiguities - Global Ambiguity

- B is inside the uncertainty ellipse of A
- A and B might not be the same place

Loop Closure - Validate candidates with ICP Ambiguities - Global Ambiguity

- B is inside the uncertainty ellipse of A
- A and B are not the same place

Loop Closure - Validate candidates with ICP Ambiguities - Local Ambiguity

"Picket Fence Problem": largely overlapping local matches

Loop Closure - Validate with descriptors

- For any candidate-pair for edge:
 - Extract features descriptors from both images
 - Find correspondences
 - Using ANN
 - Remove outliers, evaluate edge
 - With RANSAC and Fundamental Matrix
 - If it's good, set an edge
 - Calculated relative transformation
 - First with PnP
 - Then with small factor graph for the Cov matrix
 - Much more robust than point-cloud methods
 - Low ambiguity rate
 - Relative transformation may still be wrong