1 goal

11 participants

8 students 3 mentors

8 different disciplines

127 cups of coffee

الوقاية خيرً من العلاج

0

Prevention is better than the cure.

- }-

Identification of the Problem

600% 8+ weeks

Increase in the number of Alzheimer's patients

Average waiting time for an MRI scan to be analyzed for Alzheimer's

"Safeguarding community through early detection of Alzheimer's."

FUGDAN

- ¦-

FRQI and Fidelity Estimation

-¦-

$ heta_0$, $ 0000\rangle$	$ heta_1$, $ 0001 angle$	$ heta_2$, $ 0010 angle$	$ heta_3$, $ 0011 angle$
$ heta_4$, $ 0100 angle$	$oldsymbol{ heta}_5, {f 0101} angle$	$oldsymbol{ heta}_6, 0110 angle$	$oldsymbol{ heta_7}$, $ oldsymbol{0111} angle$
$ heta_8$, $ 1000 angle$	θ ₉ , 1001⟩	$ heta_{10}$, $ 1010 angle$	$ heta_{11}$, $ 1011 angle$
$ heta_{12}$, $ 1100 angle$	$ heta_{13}$, $ 1101 angle$	$ heta_{14}, 1110 angle$	$ heta_{15}$, $ 1111\rangle$

Fidelity = $|\langle \psi_{ref} | \psi_{test} \rangle|^2$ - ;-0

Results

$$|\psi_{ref}\rangle =$$

-¦-

-¦-

Classical vs Quantum

Computational Cost

Value

- >>> Memory complexity
- Classical: $O(N_{
 m px})$
- Quantum: $O(\log_2 N_{\text{px}})$ \longrightarrow Advantage!!!
- >>> Time complexity
- Classical and Quantum: $O(N_{px})$ (but possible advantage with more efficient encoding)

- Applicable to existing
 MRI scanners
- Less storage space
- Less waiting time for diagnosis

0

-¦-

Backend Processing for the Image:

```
from django.core.files.storage import default_storage
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageEnhance
# load, normalize, and resize
def load transform(filepath,
                  img size=(16, 16),
                   contrast=1,
                   conv to theta=True,
                   flatten=True):
    img = Image.open(filepath)
   if contrast != 1:
       enhancer = ImageEnhance.Contrast(img)
       img = enhancer.enhance(contrast)
    img = img.resize(img size)
    img = np.array(img) / 255 # normalize
   if conv to theta:
       img = img * np.pi / 2 # convert to number between 0 and pi/2
   if flatten:
       img = img.flatten()
   return img
```


Business Analysis

Efficient detection

Scalability

Lower storage spaces

Funding: NGOs and foundations

Partnerships with **governments**

Encouraging research

Early diagnosis

Limited number of qubits

Access to quantum computing

Experimental phase
Skepticism
Privacy

Business Sustainability

0

-¦-

-¦-

FUGDAN

Results (with shot noise)

0

-;-

Results (with shot noise)

$$\ket{\psi_{ref}} =$$

Results (classical classifier)

$$ref =$$

$$test = \left\{ \begin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \right.$$
 ,

-¦-

Compute-Uncompute method

$$\text{Fidelity} = |\langle \psi_{ref} | \psi_{test} \rangle|^2$$

0

-¦-