

Lecture: ASAP Floyd-Warshall

Unit: 7

**Instructor: Carlos C.L** 



#### APSP Floyd-Warshall (Published 1962)



## Inspiration

Given a graph G(V, E) and two nodes s, t find the best meeting node v,

d[s][v]+d[v][t] is minimum

In order to solve this problem, we need to know the minimum distance between any pair of nodes

# Trivial solution using Dijkstra's

- Run Dijkstra's SSSP for every node
- Time: O(VELogV)
- Space: O(V^2)
- Worst Time: O(V^3LogV)

Better solution using Floyd-Warshall

Choose The choose | C

#### 1. Definition:

d[i][j][k] := shortest path between i ånd j given only internal vertices

are from [1,...,k]



#### 2. Base case:

d[i][j][0] = adj[i][j]

### 3. Recursive function:

d[i][j][k] = min(d[i][j][k-1], d[i][k][k-1] + d[k][j][k-1])not use node k

use node k

## 4. Improvements:

Since we only use the k-1 state, we can drop this dimension to reduce space consumption:

d[i][j] = min(d[i][j], d[i][k] + d[k][j])

## 5. Recover path

p[i][j] := last node before j in a path from i to j (i -> ... -> p[i][j] -> j)

Initial values for p[i][j]

p[i][j] = i if there is an edge from i to j

if (d[i][k][k-1] + d[k][j][k-1] < d[i][j][k-1]): p[i][j] = p[k][j]

# **Complexity**

• Time: O(V^3)

• Space: O(V^2)

#### **Applications:**

- Finding (cheapest/negative) cycle in graph
   Solution: run Floyd-Warshall, check d[i][i] for 1 <= I <= V, if all are negative then there exists a negative cycle</li>
- Diameter of a graph (maximum shortest path between any pair of nodes)

Solution: take de max of d[i][j]

Finding SCCs in directed graph
 Solution: take a node v, for any 0 <= w <= V, if d[v][w] != INF && d[w]</li>
 [v] != INF, then they belong to the same SCC

#### **Notes:**

| Graph           | BFS            | Dijkstra's       | Bellman Ford's | Floyd Warshall's |
|-----------------|----------------|------------------|----------------|------------------|
| Criteria        | O(V+E)         | $O((V+E)\log V)$ | O(VE)          | $O(V^3)$         |
| Max Size        | $V, E \le 10M$ | $V, E \le 300K$  | $VE \le 10M$   | $V \le 400$      |
| Unweighted      | Best           | Ok               | Bad            | Bad in general   |
| Weighted        | WA             | Best             | Ok             | Bad in general   |
| Negative weight | WA             | Our variant Ok   | Ok             | Bad in general   |
| Negative cycle  | Cannot detect  | Cannot detect    | Can detect     | Can detect       |
| Small graph     | WA if weighted | Overkill         | Overkill       | Best             |

#### **Problems:**

- <u>UVa 1056 Degrees of Separation (easiest ICPC World Finals problem)</u>
- UVa 11463 Commandos
- UVa 10171 Meeting Prof. Miguel