Deep Learning MSDS 631

Deep Learning and Text Data

Michael Ruddy

Questions?

- From last lecture?
- From the lab assignment?

Overview

- Why Natural Language Processing (NLP)?
- Tokenization and Cleaning
- Word Embeddings
- Deep Learning and Text

Why Natural Language Processing?

- Understand, analyze, and perform tasks using human language (through text).
- Example Tasks:
 - Sentiment Analysis
 - Auto-complete
 - Translation
 - Question answering
 - Conversation?!

Some or all of the content shared in this Tweet conflicts with guidance from public health experts regarding COVID-19. Learn more

- How to represent text as data?

- How to represent text as data?
- Humans represent text using characters
 - Takes years to learn to read
 - Different peoples do it differently all around the world

train

brain

head

- How to represent text as data?
- Humans represent text using characters
 - Takes years to learn to read
 - Different peoples do it differently all around the world

brain 20-18-1-9-14

brain 2-18-1-9-14

head 8-5-1-4

- How to represent text as data?
- Humans represent text using characters
 - Takes years to learn to read
 - Different peoples do it differently all around the world
- For most tasks this is not a particularly helpful embedding
 - Intrinsic meaning is largely lost

- How to represent text as data?
- Humans represent text using characters
 - Takes years to learn to read
 - Different peoples do it differently all around the world
- For most tasks this is not a particularly helpful embedding
 - Intrinsic meaning is largely lost

Tokenization

- Idea: Break up text into pieces (tokens) and treat as categorical variables
 - Often these tokens are words

Tokenization

- Idea: Break up text into pieces (tokens) and treat as categorical variables
 - Often these tokens are words

High-dimensional space

Low-dimensional space

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
 - N-grams: Common phrases as one token instead of separate tokens

data_science vs. data, science

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
 - Break up words into smaller tokens
 - Smaller dictionary, less total tokens
 - Better at handling unknown, less lemmatization

Unfortunately -> un + fortunate + ly skiing -> ski + ing

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
 - Break up words into smaller tokens
 - Smaller dictionary, less total tokens
 - Better at handling unknown, less lemmatization
 - Many Algorithms: BPE, Unigram, WordPiece

Unfortunately -> un + fortunate + ly skiing -> ski + ing

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
- Sentence Segmentation
 - EOS (End of Sentence) and SOS (Start of Sentence) tokens are common

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
- Sentence Segmentation
 - EOS (End of Sentence) and SOS (Start of Sentence) tokens are common
 - Non-trivial to find these!
 - Binary Classifier, complicated logic trees

Can't just rely on periods!

The U.K. exports of goods and services as percent of GDP was 31.6% in 2019.

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
- Sentence Segmentation
- Other languages:
 - Chinese languages, Arabic, French, etc.

- Lemmatization
 - Reduce words to their base
 - Shrink dictionary size

running -> run mice -> mouse

- Lemmatization
- Infrequent words (misspelled or weird words)
 - Remove from text or encode as single UNK token

- Lemmatization
- Infrequent words (misspelled or weird words)
- Cleaning before tokenization
 - Lower case
 - Remove weird characters/numbers/punctuation
 - Remove stop words

the, to, a, an, etc.

- Lemmatization
- Infrequent words (misspelled or weird words)
- Cleaning before tokenization
 - Lower case
 - Remove weird characters/numbers/punctuation
 - Remove stop words
- Named Entity Recognition

Apple vs. apple Xerox vs. xerox

- Word2Vec
- Learn the word embedding by training on a "simple" NLP task.
- Fill in the blank using surrounding context

I am at track five. Here comes the ?

- Word2Vec
- Learn the word embedding by training on a "simple" NLP task.
- Fill in the blank using surrounding context

I am at track five. Here comes the ?

- Distributional Semantics: The meaning of a word is given by the words that most often appear in the same context.
- There is a treasure trove of data for this task.
 - Ex. Use Wikipedia as your data.

- Word2Vec
- Learn the word embedding by training on a "simple" NLP task.
- Fill in the blank using surrounding context

- Word2Vec
- Learn the word embedding by training on a "simple" NLP task.
- Fill in the blank using surrounding context

- Word2Vec
- Learn the word embedding by training on a "simple" NLP task.
- Fill in the blank using surrounding context

- Word2Vec
- GloVe
 - Unsupervised learning using co-occurences of words in your corpus

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning Computer Science Department, Stanford University, Stanford, CA 94305 jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

- Idea: closeness in feature space <-> similarity in meaning

- Idea: closeness in feature space <-> similarity in meaning
- Construct Analogies
 - $v(cat) v(feline) \sim v(dog) v(canine)$

- Idea: closeness in feature space <-> similarity in meaning
- Construct Analogies
 - v(cat) v(feline) ~ v(dog) v(canine)
- Word embedding only as good as your text!

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai²

¹Boston University, 8 Saint Mary's Street, Boston, MA

²Microsoft Research New England, 1 Memorial Drive, Cambridge, MA

tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Deep Learning and NLP

- Before Deep Learning: Statistics, Handcrafted features for text/words

Deep Learning and NLP

- Before Deep Learning: Statistics, Handcrafted features for text/words
- Now: Use Deep Learning to take advantage of tons of text data

- Before Deep Learning: Statistics, Handcrafted features for text/words
- Now: Use Deep Learning to take advantage of tons of text data
- NLP Tasks
 - Sequence Classification (Sentiment analysis)
 - Summarization
 - Question Answering
 - Similarity Detection
 - Translations
 - And more!

- Sequences
 - Variable length
 - Relationships between elements of sequence

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Continuous Bag of Words (CBOW)-style Model

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Continuous Bag of Words (CBOW)-style Model

$$egin{bmatrix} here \ comes \ the \end{bmatrix}
ightarrow egin{bmatrix} \overrightarrow{a_i} \ \overrightarrow{a_j} \ \overrightarrow{a_k} \ \end{pmatrix}
ightarrow egin{bmatrix} Take average of features \ \overrightarrow{a_i} \ \overrightarrow{a_j} \ \rightarrow \ \left[(\overrightarrow{a_i} + \overrightarrow{a_j} + \overrightarrow{a_k})/3
ight]
ightarrow egin{bmatrix} (\overrightarrow{a_i} + \overrightarrow{a_j} + \overrightarrow{a_j} + \overrightarrow{a_k})/3
ight]
ightarrow egin{bmatrix} (\overrightarrow{a_i} + \overrightarrow{a_j} + \overrightarrow{a_j} + \overrightarrow{a_k})/3
ight]
ightarrow egin{bmatrix} (\overrightarrow{a_i} + \overrightarrow{a_j} +$$

- Sequences
 - Variable length (OVERCOME)
 - Relationships between elements of sequence (LOST)
- Continuous Bag of Words (CBOW)-style Model

$$egin{bmatrix} here \ comes \ the \end{bmatrix}
ightarrow egin{bmatrix} \overrightarrow{a_i} \ \overrightarrow{a_j} \ \overrightarrow{a_k} \ \end{pmatrix}
ightarrow egin{bmatrix} Take average of features \ \overrightarrow{a_i} \ \overrightarrow{a_j} \ \rightarrow \ \left[(\overrightarrow{a_i} + \overrightarrow{a_j} + \overrightarrow{a_k})/3
ight]
ightarrow egin{bmatrix} (\overrightarrow{a_i} + \overrightarrow{a_j} + \overrightarrow{a_j} + \overrightarrow{a_k})/3
ight]
ightarrow egin{bmatrix} (\overrightarrow{a_i} + \overrightarrow{a_j} + \overrightarrow{a_j} + \overrightarrow{a_k})/3
ight]
ightarrow egin{bmatrix} (\overrightarrow{a_i} + \overrightarrow{a_j} +$$

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Continuous Bag of Words (CBOW)
- 1D CNN
 - 1-dimensional filter

I am at track five. Here comes the train.

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Continuous Bag of Words (CBOW)
- 1D CNN
 - 1-dimensional filter

 $[f_1 \quad f_2 \quad \dots \quad f_7]$

I am at track five. Here comes the train.

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Continuous Bag of Words (CBOW)
- 1D CNN
 - 1-dimensional filter

 $[f_1 \quad f_2 \quad \dots \quad f_7]$

I am at track five. Here comes the train.

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Continuous Bag of Words (CBOW)
- 1D CNN
 - 1-dimensional filter

I am at track five. Here comes the train.

I am at track five. Here comes the train.

```
egin{bmatrix} a_I^1 \ a_I^2 \ dots \ a_I^{100} \end{bmatrix} egin{bmatrix} a_{am}^1 \ a_{am}^2 \ dots \ a_{am}^{100} \end{bmatrix} egin{bmatrix} a_{at}^1 \ a_{at}^2 \ dots \ a_{at}^{100} \end{bmatrix}
```

100-dim word embedding

I am at track five. Here comes the train.

```
egin{bmatrix} a_I^1 \ a_I^2 \ dots \ a_I^{100} \end{bmatrix} egin{bmatrix} a_{am}^1 \ a_{am}^2 \ dots \ a_{am}^{100} \end{bmatrix} egin{bmatrix} a_{at}^1 \ a_{at}^2 \ dots \ a_{at}^{100} \end{bmatrix}
```

100-dim word embedding

"Width 3, 100 channels"

I am at track five. Here comes the train.

 $[f_1 \quad f_2 \quad \dots \quad f_7]$

I am at track five. Here comes the train.

100-dim word embedding

"Width 3, 100 channels"

Filter size 3, 100 channels

 $[f_1 \quad f_2 \quad \dots \quad f_7]$

I am at track five. Here comes the train.

Length 9 sequence embedding, 100 channels

Length 7 sequence of features, 50 channels

$$egin{bmatrix} a_{11} & a_{12} & \dots & a_{19} \ dots & & dots \ a_{100,1} & a_{100,2} & \dots & a_{100,9} \end{bmatrix} egin{bmatrix} f_{11} & f_{12} & \dots & f_{17} \ dots & & dots \ f_{50,1} & f_{50,2} & \dots & f_{50,7} \end{bmatrix}$$

50 filters of width 3 with 100 channels

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Continuous Bag of Words (CBOW)
- 1D CNN
- Recurrent Neural Network (RNN)
 - Keep track of a hidden state vector of features as you move along a sequence
 - Sequence length agnostic

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Continuous Bag of Words (CBOW)
- 1D CNN
- Recurrent Neural Network (RNN)
 - Keep track of a hidden state vector of features as you move along a sequence
 - Sequence length agnostic
- Diagrams shown without bias term (optional)

- Vanilla RNN

Input sequence
$$(x_1, x_2, \ldots, x_N)$$
 $\overrightarrow{a_i} = embedding(x_i)$

Next feature/embedding vector

- Vanilla RNN

Input sequence
$$(x_1, x_2, \ldots, x_N)$$

$$\overrightarrow{a_i} = embedding(x_i)$$

Next feature/embedding vector

Vanilla RNN

Input sequence (x_1, x_2, \ldots, x_N)

$$\overrightarrow{a_i} = embedding(x_i)$$

- Vanilla RNN

Input sequence (x_1, x_2, \ldots, x_N)

$$\overrightarrow{a_i} = embedding(x_i)$$

Vanilla RNN

Next Output

$$y_i = W_y ec{h}_i$$

Vanilla RNN

- Can either train on output sequence or discard

- Can either train on output sequence or discard

- Can either train on output sequence or discard

- Can either train on output sequence or discard
- Stack RNNs

- Can either train on output sequence or discard
- Stack RNNs

 $ec{a}_N$

- Can either train on output sequence or discard
- Stack RNNs
- Input can be from 1D CNN

