Introduction to Number Theory

This slide is made based the online course of Cryptography by Dan Boneh

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation: $Z_N = \{0,1,2,...,N-1\}$

Can do addition and multiplication modulo N

Modular arithmetic

Examples: let N = 12

$$9 + 8 = 5$$
 in \mathbb{Z}_{12}
 $5 \times 7 = 11$ in \mathbb{Z}_{12}
 $5 - 7 = 10$ in \mathbb{Z}_{12}

Arithmetic in \mathbb{Z}_N works as you expect, e.g $x \cdot (y+z) = x \cdot y + x \cdot z$ in \mathbb{Z}_N

Greatest common divisor

<u>**Def**</u>: For ints. x,y: gcd(x,y) is the greatest common divisor of x,y

Example:
$$gcd(12, 18) = 6$$
 $2 \times 12 - 1 \times 18 = 6$

Fact: for all ints. x,y there exist ints. a,b such that

$$a \cdot x + b \cdot y = \gcd(x,y)$$

a,b can be found efficiently using the extended Euclid alg.

If gcd(x,y)=1 we say that x and y are <u>relatively prime</u>

Modular inversion

Over the rationals, inverse of 2 is $\frac{1}{2}$. What about \mathbb{Z}_N ?

<u>Def</u>: The **inverse** of x in \mathbb{Z}_N is an element y in \mathbb{Z}_N s.t. $x \cdot y = 1$ in \mathbb{Z}_N

y is denoted x^{-1} .

Example: let N be an odd integer. The inverse of 2 in \mathbb{Z}_N is

$$\frac{N+1}{2},$$

$$2 \cdot \left(\frac{N+1}{2}\right) = N+1 = 1$$

Modular inversion

Which elements have an inverse in \mathbb{Z}_N ?

<u>Lemma</u>: $x \text{ in } \mathbb{Z}_N \text{ has an inverse}$ if and only if gcd(x,N) = 1 Proof:

$$\gcd(x,N)=1 \Rightarrow \exists a,b: a\cdot x + b\cdot N = 1 \Rightarrow a\cdot x = 1 \text{ in } \mathbb{Z}_N$$

$$\Rightarrow x^{-1} = a \text{ in } \mathbb{Z}_N$$

x in \mathbb{Z}_N has an inverse \Rightarrow gives us a number y s.t. $xy \equiv 1 \mod n$. It means that xy=kn+1, or xy-kn=1.

For any common divisor, c, of x and n we have $c \mid (xy-kn)$ which gives $c \mid 1$, that is, c=1.

More notation

Def:
$$\mathbb{Z}_N^* = \{ \text{ set of invertible elements in } \mathbb{Z}_N \} = \{ x \in \mathbb{Z}_N : \gcd(x,N) = 1 \}$$

Examples:

- 1. for prime p, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \dots, p-1\}$
- 2. $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$

For x in \mathbb{Z}_N^* , can find x^{-1} using extended Euclid algorithm.

Solving modular linear equations

Solve: $\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$ in \mathbb{Z}_N

Solution: $\mathbf{x} = -\mathbf{b} \cdot \mathbf{a}^{-1}$ in \mathbb{Z}_N

Find a^{-1} in \mathbb{Z}_N using extended Euclid. Run time: $O(\log^2 N)$

What about modular quadratic equations? next segments

End of Segment

Intro. Number Theory

Fermat and Euler

Review

N denotes an n-bit positive integer. p denotes a prime.

•
$$Z_N = \{0, 1, ..., N-1\}$$

• $(Z_N)^*$ = (set of invertible elements in Z_N) = = { $x \in Z_N : gcd(x,N) = 1$ }

Can find inverses efficiently using Euclid alg.: time = $O(n^2)$

Fermat's theorem (1640)

Thm: Let p be a prime

$$\forall x \in (Z_p)^*: \quad x^{p-1} = 1 \text{ in } Z_p$$

Example: p=5.
$$3^4 = 81 = 1$$
 in Z_5

So:
$$x \in (Z_p)^* \Rightarrow x \cdot x^{p-2} = 1 \Rightarrow x^{-1} = x^{p-2} \text{ in } Z_p$$

another way to compute inverses, but less efficient than Euclid

Application: generating random primes

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

Step 1: choose a random integer $p \in [2^{1024}, 2^{1025}-1]$

Step 2: test if $2^{p-1} = 1$ in Z_p

If so, output p and stop. If not, goto step 1.

Simple algorithm (not the best). Pr[p not prime] < 2⁻⁶⁰

The structure of $(Z_p)^*$

Thm (Euler): $(Z_p)^*$ is a **cyclic group**, that is

 $\exists g \in (Z_p)^*$ such that $\{1, g, g^2, g^3, ..., g^{p-2}\} = (Z_p)^*$

g is called a **generator** of $(Z_p)^*$

Example: p=7, please give a generator

The structure of $(Z_p)^*$

Thm (Euler): $(Z_p)^*$ is a **cyclic group**, that is

$$\exists g \in (Z_p)^*$$
 such that $\{1, g, g^2, g^3, ..., g^{p-2}\} = (Z_p)^*$

g is called a **generator** of $(Z_p)^*$

Example: p=7.
$$\{1, 3, 3^2, 3^3, 3^4, 3^5\} = \{1, 3, 2, 6, 4, 5\} = (Z_7)^*$$

Not every elem. is a generator: $\{1, 2, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$

Order

```
For g \in (Z_p)^* the set \{1, g, g^2, g^3, ...\} is called the group generated by g, denoted <g>
```

<u>Def</u>: the **order** of $g \in (Z_p)^*$ is the size of < g >

$$ord_p(g) = |\langle g \rangle| = (smallest a>0 s.t. g^a = 1 in Z_p)$$

Examples:
$$ord_7(3) = ?$$
; $ord_7(2) = ?$; $ord_7(1) = ?$

<u>Thm</u> (Lagrange): $\forall g \in (Z_p)^*$: ord_p(g) divides p-1

Euler's generalization of Fermat (1736)

<u>Def</u>: For an integer N define $\varphi(N) = |(Z_N)^*|$ (Euler's φ func.)

Examples:
$$\phi(12) = |\{1,5,7,11\}| = 4$$
; $\phi(p) = p-1$
For $N=p \cdot q$: $\phi(N) = N-p-q+1 = (p-1)(q-1)$

Thm (Euler):
$$\forall x \in (Z_N)^*$$
: $x^{\phi(N)} = 1$ in Z_N

Example:
$$5^{\phi(12)} = ?$$
 in Z_{12}

Generalization of Fermat. Basis of the RSA cryptosystem

GROUP

A set of elements and a binary operation + on that set, satisfying some properties.

Group $G = \{G, \cdot\}$ where

- 1. Closure: $(a \cdot b) \in G, \forall a, b \in G$
- 2. Associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c, \forall a, b, c \in G$
- 3. Identity: $\exists e \in G$: $a \cdot e = e \cdot a = a$, $\forall a \in G$
- 4. Inverses: $\forall a \in G, \exists a^{-1} \in G: a \cdot a^{-1} = a^{-1} \cdot a = e$
- 5. Commutativity: $\forall a, b \in G, a \cdot b = b \cdot a$ (Abelian Group)

End of Segment

Intro. Number Theory

Modular e'th roots

Modular e'th roots

We know how to solve modular <u>linear</u> equations:

$$\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$$
 in Z_N Solution: $\mathbf{x} = -\mathbf{b} \cdot \mathbf{a}^{-1}$ in Z_N

What about higher degree polynomials?

Example: let p be a prime and $c \in Z_p$. Can we solve:

$$x^2 - c = 0$$
 , $y^3 - c = 0$, $z^{37} - c = 0$ in Z_p

Modular e'th roots

Let p be a prime and $c \in Z_p$.

Def:
$$x \in Z_p$$
 s.t. $x^e = c$ in Z_p is called an **e'th root** of c.

Examples:
$$7^{1/3} = 6$$
 in \mathbb{Z}_{11}

$$3^{1/2} = 5$$
 in \mathbb{Z}_{11}

$$1^{1/3} = 1$$
 in \mathbb{Z}_{11}

$$6^3 = 216 = 7 in \mathbb{Z}_{11}$$

 $2^{1/2}$?

The easy case

When does $c^{1/e}$ in Z_p exist? Can we compute it efficiently?

The easy case: suppose
$$gcd(e, p-1) = 1$$

Then for all c in $(Z_p)^*$: $c^{1/e}$ exists in Z_p and is easy to find.

Proof: let
$$d = e^{-1}$$
 in Z_{p-1} . Then $c^{1/e} = c^d$ in Z_p
$$d \cdot e = 1 \text{ in } Z_{p-1} \implies \exists \ k \in Z : d \cdot e = k \cdot (p-1) + 1 \implies \left(c^d\right)^e = c^{de} = c^{k(p-1)+1} = (c^{p-1})^k \cdot c = c \text{ in } Z_p$$

The case e=2: square roots

If p is an odd prime then $\gcd(2, p-1) \neq 1$ x - xFact: in \mathbb{Z}_p^* , $x \to x^2$ is a 2-to-1 function

p odd prime \Rightarrow the # of Q.R. in \mathbb{Z}_p is (p-1)/2 + 1

Euler's theorem

Thm:
$$x \text{ in } (Z_p)^* \text{ is a Q.R.} \iff x^{(p-1)/2} = 1 \text{ in } Z_p \qquad \text{(p odd prime)}$$

Example: in
$$\mathbb{Z}_{11}$$
: 1^5 , 2^5 , 3^5 , 4^5 , 5^5 , 6^5 , 7^5 , 8^5 , 9^5 , 10^5 = 1 -1 1 1 1, -1, -1, 1, -1

Note:
$$x\neq 0 \Rightarrow x^{(p-1)/2} = (x^{p-1})^{1/2} = 1^{1/2} \in \{1, -1\}$$
 in Z_p

<u>Def</u>: $x^{(p-1)/2}$ is called the **<u>Legendre Symbol</u>** of x over p (1798)

Computing square roots mod p

Suppose $p = 3 \pmod{4}$

Lemma: if
$$c \in (Z_p)^*$$
 is Q.R. then $\sqrt{c} = c^{(p+1)/4}$ in Z_p

Proof:
$$(c^{(p+1)/4})^2 = c^{(p+1)/2} = c^{(p-1)/2} \cdot c = c \text{ in } Z_p$$

When $p = 1 \pmod{4}$, can also be done efficiently, but a bit harder

run time
$$\approx O(\log^3 p)$$

Solving quadratic equations mod p

```
Solve: a \cdot x^2 + b \cdot x + c = 0 in Z_p

Solution: x = (-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}) / 2a in Z_p
```

• Find (2a)-1 in Z_p using extended Euclid.

Find square root of b² – 4·a·c in Z_p (if one exists)
 using a square root algorithm

Computing e'th roots mod N??

Let N be a composite number and e>1

When does $c^{1/e}$ in Z_N exist? Can we compute it efficiently?

Answering these questions requires the factorization of N (as far as we know)

End of Segment

Intro. Number Theory

Arithmetic algorithms

Representing bignums

Representing an n-bit integer (e.g. n=2048) on a 64-bit machine

Note: some processors have 128-bit registers (or more) and support multiplication on them

Arithmetic

Given: two n-bit integers

- Addition and subtraction: linear time O(n) log_2^3
- Multiplication: naively O(n²). Karatsuba (1960): O(n¹.585)

Basic idea: $(2^b x_2 + x_1) \times (2^b y_2 + y_1)$ with 3 mults.

Best (asymptotic) algorithm: about $O(n \cdot \log n)$.

• **Division with remainder**: O(n²).

Exponentiation

Finite cyclic group G (for example $G = \mathbb{Z}_p^*$)

Goal: given g in G and x compute g^x

Example: suppose $x = 53 = (110101)_2 = 32+16+4+1$

Then:
$$g^{53} = g^{32+16+4+1} = g^{32} \cdot g^{16} \cdot g^4 \cdot g^1$$

$$g \xrightarrow{g^2 \to g^4 \to g^8 \to g^{16} \to g^{32}} g^{53}$$

The repeated squaring alg.

```
Input: g in G and x>0 ; Output: g^x

write x = (x_n x_{n-1} ... x_2 x_1 x_0)_2

y \leftarrow g , z \leftarrow 1
```

```
y \leftarrow g, z \leftarrow 1

for i = 0 to n do:

if (x[i] == 1): z \leftarrow z \cdot y

y \leftarrow y^2

output z
```

example: g ⁵³	
У	<u>Z</u>
g^2	g
g^4	g
g ⁸	g^5
g^{16}	g^5
g^{32}	g^{21}
g ⁶⁴	g ⁵³

Running times

Given n-bit int. N:

- Addition and subtraction in Z_N : linear time $T_+ = O(n)$
- Modular multiplication in Z_N : naively $T_x = O(n^2)$
- Modular exponentiation in Z_N (g^X):

$$O((\log x) \cdot T_x) \le O((\log x) \cdot n^2) \le O(n^3)$$

End of Segment

Intro. Number Theory

Intractable problems

Easy problems

• Given composite N and x in Z_N find x^{-1} in Z_N

• Given prime p and polynomial f(x) in $Z_p[x]$ find x in Z_p s.t. f(x) = 0 in Z_p (if one exists) Running time is linear in deg(f).

... but many problems are difficult

Intractable problems with primes

Fix a prime p>2 and g in $(Z_p)^*$ of order q.

Consider the function: $x \mapsto g^x$ in Z_p

Now, consider the inverse function:

$$Dlog_{g}(g^{x}) = x$$
 where x in $\{0, ..., q-2\}$

Example:

in \mathbb{Z}_{11} :	1,	2,	3,	4,	5,	6,	7,	8,	9,	10
$Dlog_2(\cdot)$:	0,	1,	8,	2,	4,	9,	7,	3,	6,	5

DLOG: more generally

Let **G** be a finite cyclic group and **g** a generator of G

$$G = \{1, g, g^2, g^3, ..., g^{q-1}\}$$
 (q is called the order of G)

<u>Def</u>: We say that **DLOG** is hard in **G** if for all efficient alg. A:

$$Pr_{g \leftarrow G, x \leftarrow Z_{G}} [A(G, q, g, g^{x}) = x] < negligible$$

Example candidates:

(1)
$$(Z_p)^*$$
 for large p, (2) Elliptic curve groups mod p

Computing Dlog in $(Z_p)^*$

(n-bit prime p)

ГП:...т: - С......

Best known algorithm (GNFS): run time exp($\tilde{O}(\sqrt[3]{n})$)

<u>cipher key size</u>	<u>modulus size</u>	group size
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 bits (AES)	15360 bits	512 bits

As a result: slow transition away from (mod p) to elliptic curves

An application: collision resistance

Choose a group G where Dlog is hard (e.g. $(Z_p)^*$ for large p)

Let q = |G| be a prime. Choose generators g, h of G

For
$$x,y \in \{1,...,q\}$$
 define

$$H(x,y) = g^x \cdot h^y$$
 in G

<u>Lemma:</u> finding collision for H(.,.) is as hard as computing $Dlog_g(h)$

Proof: Suppose we are given a collision
$$H(x_0,y_0) = H(x_1,y_1)$$
 $\neq 0$

then
$$g^{X_0} \cdot h^{Y_0} = g^{X_1} \cdot h^{Y_1} \implies g^{X_0 - X_1} = h^{Y_1 - Y_0} \implies h = g^{X_0 - X_1} / Y_1 - Y_0$$

Intractable problems with composites

Consider the set of integers: (e.g. for n=1024)

$$\mathbb{Z}_{(2)}(n) \coloneqq \{ N = p \cdot q \text{ where p,q are n-bit primes } \}$$

Problem 1: Factor a random N in $\mathbb{Z}_{(2)}(n)$ (e.g. for n=1024)

<u>Problem 2</u>: Given a polynomial $\mathbf{f(x)}$ where degree(f) > 1 and a random N in $\mathbb{Z}_{(2)}(n)$

find x in \mathbb{Z}_N s.t. f(x) = 0 in \mathbb{Z}_N

The factoring problem

Gauss (1805):

"The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic."

Best known alg. (NFS): run time exp($\tilde{O}(\sqrt[3]{n})$) for n-bit integer

Current world record: RSA-768 (232 digits)

- Work: two years on hundreds of machines
- Factoring a 1024-bit integer: about 1000 times harder
 - ⇒ likely possible this decade

Computational Diffie-Hellman Problem (CDH)

Consider a cyclic group G of order q. The CDH assumption states that, given

$$(g,g^a,g^b)$$

for a randomly chosen generator g and random

$$a,b\in\{0,\ldots,q-1\},$$

it is computationally intractable to compute the value

$$g^{ab}$$
 .

From Wiki: https://en.wikipedia.org/wiki/Computational_Diffie-Hellman_assumption

Decisional Diffie-Hellman Problem (DDH)

Consider a (multiplicative) cyclic group G of order q, and with generator g. The DDH assumption states that, given g^a and g^b for uniformly and independently chosen $a,b\in\mathbb{Z}_q$, the value g^{ab} "looks like" a random element in G.

This intuitive notion can be formally stated by saying that the following two probability distributions are computationally indistinguishable (in the security parameter, $n = \log(q)$):

- ullet (g^a,g^b,g^{ab}) , where a and b are randomly and independently chosen from \mathbb{Z}_q .
- ullet (g^a,g^b,g^c) , where a,b,c are randomly and independently chosen from \mathbb{Z}_q .

Triples of the first kind are often called **DDH triplet** or **DDH tuples**.

If CDH is solvable, then DDH can be broken.

From Wiki: https://en.wikipedia.org/wiki/Decisional_Diffie-Hellman_assumption

Further reading

A Computational Introduction to Number Theory and Algebra,
 V. Shoup, 2008 (V2), Chapter 1-4, 11, 12

Available at //shoup.net/ntb/ntb-v2.pdf

End of Segment

Elliptic curve cryptography

- DL problem on multiplicative group (or subgroup) of integers modulo a sufficiently large prime p is subjected to GNFS attack which runs in time $\exp(\tilde{O}((\log p)^{1/3}))$, thus p should be at least 2048 bits.
- The best DL attack algorithm on addition group built on elliptic curve of size q runs in time $O(\sqrt{q})$.
- As a result, to provide security comparable to AES-128, it is enough for q to be $q \approx 2^{256}$ ($\sqrt{q} = 2^{128}$)
- Much more efficient under the same security level.

The group of points of an elliptic curve

(b) Adding P = (-1, -3) and Q = (1, 3)

The curve $y^2 = x^3 - x + 9$ over the reals

Elliptic curves over finite fields

Let p > 3 be a prime. An elliptic curve E defined over \mathbb{F}_p is an equation

$$y^2 = x^3 + ax + b,$$

where $a, b \in \mathbb{F}_p$ satisfy $4a^3 + 27b^2 \neq 0$.

We write E/\mathbb{F}_p to denote the fact that E is defined over \mathbb{F}_p .

 (x_1, y_1) is a point on the curve if it satisfies the curve equation, and it is defined over the field F_p , or extended field F_{p^e}

Elliptic curves over finite fields

 $E(\mathbb{F}_{p^e})$: the set of all points on the curve E defined over F_{p^e} , including an point at infinity O.

Example:
$$E: y^2 = x^3 + 1 \text{ defined over } \mathbb{F}_{11}$$

Enumerate all points on E.

$$E(\mathbb{F}_{11}) = \{ \mathcal{O}, (-1,0), (0,\pm 1), (9,\pm 2), (6,\pm 3), (8,\pm 4), (3,\pm 5) \}$$

Hasse Theorem: The number of points on curve is $|E(\mathbb{F}_{p^e})|=p^e+1-t$, $|t|\leq 2\sqrt{p^e}$

Can be computed efficiently even for large p

Addition Law

let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be two points in $E(\mathbb{F}_{p^e})$.

The sum $P \boxplus Q = (x_3, y_3)$ is computed as follows:

• if $x_1 \neq x_2$ we use the chord method. Let $s_c := \frac{y_1 - y_2}{x_1 - x_2}$ be the slope of the chord through the points P and Q. Define

$$x_3 := s_c^2 - x_1 - x_2$$
 and $y_3 := s_c(x_1 - x_3) - y_1$.

• if $x_1 = x_2$ and $y_1 = y_2$ (i.e., P = Q), but $y_1 \neq 0$, we use the tangent method. Let $s_t := \frac{3x_1^2 + a}{2y_1}$ be the slope of the tangent at P. Define

$$x_3 := s_t^2 - 2x_1$$
 and $y_3 := s_t(x_1 - x_3) - y_1$.

• if $x_1 = x_2$ and $y_1 = -y_2$ then define $P \boxplus Q := (\mathcal{O})$ Identity element, point at infinity

This addition law makes the set $E(\mathbb{F}_{p^e})$ into a group. Please verify by yourself!

$y^2 = x^3 + x + 6$ over GF(11)

Х	x ³ +x+6 mod 11	QR?	у
0	6		
1	8		
2	5		
3	3		
4	8		
5	4		
6	8		
7	4		
8	9		
9	7		
10	4		

$y^2 = x^3 + x + 6$ over GF(11)

Х	x ³ +x+6 mod 11	QR?	у
0	6	No	
1	8	No	
2	5	Yes	4,7
3	3	Yes	5,6
4	8	No	
5	4	Yes	2,9
6	8	No	
7	4	Yes	2,9
8	9	Yes	3,8
9	7	No	
10	4	yes	2,9

The set is the point at infinity and (2,4),(2,7),(3,5),(3,6) (5,2),(5,9),(7,2),(7,9), (8,3), (8,8),(10,2),(10,9).

13 elements. Since the order is prime, every element other than the point at infinity is a generator.

The elliptic curve specifies how elements are added.

Example: Given $E: y^2 = x^3 + 2x + 2 \mod 17$ and point P = (5,1)**Goal**: Compute $2P = P + P = (5,1) + (5,1) = (x_3, y_3)$

Example: Given *E*: $y^2 = x^3 + 2x + 2 \mod 17$ and point P = (5, 1)

Goal: Compute $2P = P + P = (5,1) + (5,1) = (x_3, y_3)$

$$s = \frac{3x_1^2 + a}{2y_1} = (2 \cdot 1)^{-1}(3 \cdot 5^2 + 2) = 2^{-1} \cdot 9 \equiv 9 \cdot 9 \equiv 13 \mod 17$$

$$s = \frac{3x_1^2 + a}{2y_1} = (2 \cdot 1)^{-1}(3 \cdot 5^2 + 2) = 2^{-1} \cdot 9 \equiv 9 \cdot 9 \equiv 13 \mod 17$$

$$x_3 = s^2 - x_1 - x_2 = 13^2 - 5 - 5 = 159 \equiv 6 \mod 17$$

$$y_3 = s(x_1 - x_3) - y_1 = 13(5 - 6) - 1 = -14 \equiv 3 \mod 17$$

Finally
$$2P = (5,1) + (5,1) = (6,3)$$

■ 椭圆曲线上的点构加上无穷远点成一个循环子群

$$2P = (5,1)+(5,1) = (6,3)$$
 $11P = (13,10)$
 $3P = 2P+P = (10,6)$ $12P = (0,11)$
 $4P = (3,1)$ $13P = (16,4)$
 $5P = (9,16)$ $14P = (9,1)$
 $6P = (16,13)$ $15P = (3,16)$
 $7P = (0,6)$ $16P = (10,11)$
 $8P = (13,7)$ $17P = (6,14)$
 $9P = (7,6)$ $18P = (5,16)$
 $10P = (7,11)$ $19P = \theta$

这个椭圆曲线的位数为19, 因为其包含19个点

Hard problems on Elliptic curve

- Please write down the following hard problems of the EC version
 - Discrete logarithm problem (DL)
 - Computational Diffie-Hellman problem (CDH)
 - Decisional Diffie-Hellman problem (DDH)

Pairing

Definition 15.2. Let \mathbb{G}_0 , \mathbb{G}_1 , \mathbb{G}_T be three cyclic groups of prime order q where $g_0 \in \mathbb{G}_0$ and $g_1 \in \mathbb{G}_1$ are generators. A **pairing** is an efficiently computable function $e : \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$ satisfying the following properties:

1. bilinear: for all $u, u' \in \mathbb{G}_0$ and $v, v' \in \mathbb{G}_1$ we have

$$e(u \cdot u', v) = e(u, v) \cdot e(u', v)$$
 and $e(u, v \cdot v') = e(u, v) \cdot e(u, v'),$

2. non-degenerate: $g_T := e(g_0, g_1)$ is a generator of \mathbb{G}_T .

When $\mathbb{G}_0 = \mathbb{G}_1$ we say that the pairing is a **symmetric pairing**. We refer to \mathbb{G}_0 and \mathbb{G}_1 as the **pairing groups** or source groups, and refer to \mathbb{G}_T as the **target group**.

The group operation is written multiplicatively.

Central Property: for all $\alpha, \beta \in \mathbb{Z}_q$ $e(g_0^{\alpha}, g_1^{\beta}) = e(g_0, g_1)^{\alpha \cdot \beta} = e(g_0^{\beta}, g_1^{\alpha}).$

Direct Consequences 1

 $e: \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$

If G0 = G1, then the decision Diffie-Hellman(DDH) problem in G0 is easy.

Proof. given a triple $(u, v, w) = (g_0^{\alpha}, g_0^{\beta}, g_0^{\gamma}) \in \mathbb{G}^3$, we can test if $\gamma = \alpha \cdot \beta$ in \mathbb{Z}_q by

$$e(u,v) = e(g_0,w).$$

equality holds if and only if $e(g_0, g_0)^{\alpha\beta} = e(g_0, g_0)^{\gamma}$, $\Rightarrow \gamma = \alpha \cdot \beta$.

DDH assumption is believed to be held in G0 and G1 for most efficient asymmetric pairings

Direct Consequences 2

Computing DL in either G0 or G1 is no harder than computing DL in GT

Proof.

Given
$$u_0=g_0^{lpha}\in\mathbb{G}_0$$
 , try to derive $lpha\in\mathbb{Z}_q$.

Compute
$$\,u \vcentcolon= e(u_0,g_1)\,$$
 and set $\,g_{\scriptscriptstyle
m T} \vcentcolon= e(g_0,g_1).$

Obviously, $u=(g_{
m T})^{lpha}$; so we can derive lpha by solving the DL in GT. So if DL in GT is easy, so is the DL in G0 (same for G1).

For discrete log to be hard in either G0 or G1, we must choose the groups so that DL in the target group GT is also hard.

Constructing Pairings from EC

$$e: \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$$

Base field

Larger extended field

- \mathbb{G}_0 is an order q subgroup of $E(\mathbb{F}_p)$, for some prime q,
- \mathbb{G}_1 is an order q subgroup of $E(\mathbb{F}_{p^d})$, for some d > 0, where $\mathbb{G}_1 \cap \mathbb{G}_0 = \{\mathcal{O}\}$,
- \mathbb{G}_{T} is an order q multiplicative subgroup of the finite field \mathbb{F}_{p^d} .
- d is called embedding degree, and should be small (<16) to be efficient (pairing friendly curve).
- The representation of elements in G0 is much shorter than in G1. To minimize ciphertext length, we prefer that group elements that appear in ciphertext exist in G0.

Pairing Performance

		time (milliseconds)
exponentiation:	in \mathbb{G}_0	0.22
	$\text{in } \mathbb{G}_1$	0.44
	$\text{in } \mathbb{G}_{\mathrm{T}}$	0.95
pairing:	$\mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$	2.32

Table 15.1: Benchmarks for pairings on the curve bn256¹.