ESc201: Introduction to Electronics

Counters

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

D Flip-flop

Recap

Inputs (D)	Q(t+1)
0	0
1	1

JK Flip-flop

Inputs J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Recap

Toggle or T Flip-flop

Inputs (T)	Q(t+1)
0	Q(t)
1	Q(t)

Counters

There are 8 states so 3 FFs are at least required. Let us choose T FF.

PS	NS	
АВС	АВС	$T_A \; T_B \; T_C$
0 0 0	0 0 1	0 0 1
0 0 1	0 1 0	0 1 1
0 1 0	0 1 1	0 0 1
0 1 1	1 0 0	1 1 1
1 0 0	1 0 1	0 0 1
1 0 1	1 1 0	0 1 1
1 1 0	1 1 1	0 0 1
1 1 1	0 0 0	1 1 1

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

Please prove this!

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

Counter with Enable

Counter is in Hold state.

When Enable = 1, the counter begins the count.

Counter with Asynchronous Reset

When Reset = 1, counter gets initialized to a known state.

- -D toggles every clock cycle
- -C toggles only when D is 1
- -B toggles only when both C and D are 1
- -A toggles only when B C D are 1
- T FF toggles when T=1

4-bit Down Counter

ABCD

- O I I I

- -D toggles every clock cycle
- -C toggles only when D is 0
- -B toggles only when both C and D are 0
- -A toggles only when D C B are 0

Counters

Binary down counter

Decade counter

Modulo-10 Counter

Modulo-5 Counter

Counter with Unused States

PS A B C	NS A B C	J _A K _A	J _B K _B	J _C K _C
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

There are two unused states 011 and 111. one approach to handle this situation is that, while evaluating expressions for J K, we use don't care conditions corresponding to these unused states

Counter with Unused States

PS	NS			
A B C	АВС	$J_A K_A$	$J_B K_B$	J_{c} K_{c}
0 0 0	0 0 1	(0) X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

$$J_{\Delta} = B$$

Counter with Unused States

PS	NS			
A B C	АВС	$J_A K_A$	J _B K _B	J_{C} K_{C}
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

$$J_A = B$$
 $K_A = B$
 $J_B = C$ $K_B = 1$
 $J_C = \overline{B}$ $K_C = 1$

After synthesizing the circuit, one needs to check that if by chance the counter goes into one of the unused states, after one or more clock cycles, it enters a used state and then remains among the used states

We can see that if by chance the counter goes into unused states 111 or 011, then after a clock cycle it enters one of the used states.

Design a divide by 10 counter with the following states

Example From a frequency of 10KHz, generate the following signal of frequency 2KHz

A divide by 5 counter is required that has 5 states.

A will give the required waveform.