Collaborators: None

Sources: Lecture Notes

Q5 Dirac notation and measurement exercises

<u>5-a)</u>

Let
$$|\phi\rangle = 3|0\rangle - 5i|1\rangle$$

Then,
$$\langle \phi | \phi \rangle = 3 * 3 + (-5i) * (-5i) = 9 - 25 = -16$$

5-b)

What number, C, should $| \phi \rangle$ be divided by to make it a "normalized" state; i.e., a unit vector? For future reference, define $| \psi \rangle = C^{-1} | \phi \rangle$ to be this state vector.

$$C = ||\phi|| = (3^2 + |-5i|^2)^{\frac{1}{2}} = (9 + 25)^{\frac{1}{2}} = 34^{\frac{1}{2}} \approx 5.8309$$

<u>5-c)</u>

What are the possible outcomes and associated probabilities if $|\psi|$ is measured in the standard $\{|0\rangle, |1\rangle\}$ basis?

For readout as $|0\square$, the associated probability = $\frac{3^2}{||\phi||^2} = \frac{9}{34} \approx 0.2647$

For readout as $|1\Box$, the associated probability = $\frac{|-5i|^2}{||\phi||^2} = \frac{25}{34} \approx 0.7353$

5-d)

Measurement in $\{|+\rangle, |-\rangle\}$ basis:

<u>Equation-1</u>: $|\phi\rangle = 3|0\rangle - 5i|1\rangle = \langle +|\phi\rangle |+\rangle + \langle -|\phi\rangle |-\rangle$

$$\langle + | \phi \rangle = \frac{1}{\sqrt{2}} * 3 + \frac{1}{\sqrt{2}} * (-5i) = \frac{3-5i}{\sqrt{2}}$$

Similarly, $\langle -| \phi \rangle = \frac{1}{\sqrt{2}} * 3 + \frac{(-1)}{\sqrt{2}} * (-5i) = \frac{3+5i}{\sqrt{2}}$

For readout in | +>, the associated probability = $\frac{|\frac{3-5i}{\sqrt{2}}|^2}{||\phi||^2} = \frac{|\frac{3-5i}{\sqrt{2}}|^2}{34} = \frac{1}{2} = 0.5$

For readout in | ->, the associated probability =
$$\frac{|\frac{3+5i}{\sqrt{2}}|^2}{||\phi||^2} = \frac{|\frac{3+5i}{\sqrt{2}}|^2}{34} = \frac{1}{2} = 0.5$$

<u>5-e)</u>

Verify that $\frac{1}{\sqrt{2}} \mid 0 \rangle + \frac{i}{\sqrt{2}} \mid 1 \rangle$ and $\frac{1}{\sqrt{2}} \mid 0 \rangle - \frac{i}{\sqrt{2}} \mid 1 \rangle$ form an orthonormal basis for \mathbb{C}^2 . (These two vectors are sometimes called $|i\Box|$ and $|-i\Box|$.) Then do the prior question for measuring in the $\{|i\Box|, |-i\Box|\}$ basis.

Measurement in $\{|i\rangle, |-i\rangle\}$ basis:

Equation-1:
$$|\phi\rangle = 3|0\rangle - 5i|1\rangle = \langle i|\phi\rangle |i\rangle + \langle -i|\phi\rangle |-i\rangle$$

$$\langle i \mid \phi \rangle = \frac{1}{\sqrt{2}} * 3 + \frac{i}{\sqrt{2}} * (-5i) = \frac{3+5}{\sqrt{2}} = \frac{8}{\sqrt{2}} = 4\sqrt{2}$$

Similarly,
$$\langle -| \phi \rangle = \frac{1}{\sqrt{2}} * 3 + \frac{(-i)}{\sqrt{2}} * (-5i) = \frac{3-5}{\sqrt{2}} = -\frac{2}{\sqrt{2}} = -\sqrt{2}$$

For readout in | +>, the associated probability =
$$\frac{|4\sqrt{2}|^2}{||\phi||^2} = \frac{32}{34} \approx 0.9412$$

For readout in | –), the associated probability =
$$\frac{|-\sqrt{2}|^2}{||\phi||^2} = \frac{2}{34} \approx 0.0588$$