CS & IT

ENGINEERING

Matching no. and covering no.

Lecture No. 11

By- SATISH YADAV SIR

TOPICS TO BE COVERED

03 Matching no.

04 Covering set

05 Covering number

Independent set: Set of nonadjacent veytices **Company to the edges.** *

Independent edge set :

set of non adjacent edges

Anna A

(Independent edge set)

matching set:

Set of non adjacent edges.

es de xontrares es xontrares es

[e3] manimal matching set

es tones

Company (2) + 100 (2) + 10

sea, es) mms.

Selet mms

manimal not related to size but property Cannot add

manumal matching set

matching set such that we can not add new edge into this

$$M(G) = 3$$

$$\{34\}$$
 -ms $\{34,65\}$ -ms $\{34,65\}$ -ms

matching no m(6)

largest

manimal

matching

set

$$m(G_1) = 3$$

km,n m(km,n) =egm(k2,3)=2 k3,3

$$m(k2,3)=2$$

$$m(km,n)=min(m,n)$$

$$M(k1,4) = min(1,4) = 1.$$

 $M(2,3) = min(2,3) = 2.$

(ycle Graph. ((n) (n2,3)

$$M((3) = 1$$

$$n((4)=|2|$$
= 2

$$m(n) = \frac{n}{2}$$

Wheel Graph (wn)(n24)

$$M(w4)=2$$

$$m(w5) = 2$$

$$M(\omega n) = \frac{1}{2}$$

Complete Graph (kn) (nz1)

$$m(kn) = \lfloor n/2 \rfloor$$

$$m(k4) = 2.$$

$$m(k3) = 1$$

$$m(kn) = m(cn) = m(\omega n) = \lfloor n/2 \rfloor$$

 $m(km,n) = min(m,n)$

vsit(1) mms

mms. all vertices must be visited by collection of edges

Perfect matching

manumal matching set, such that collection of edges such that it should visit all vertices

Every Pm is manimal matching set but viceversa is not time.

mms v p.m.t mms v Pmvvvo

if P.m erust then no of vertices will be even

if G is having even no of vertices then P m emist.

(false)

n = 6

In Graph we can have different P.M.

Type-PM 2 Type-PM

Totalno of P.m i'n Complete Graph of 2n vertices.

Total vertices = 2n.

$$(2n-1) \cdot (2n-3) \cdot (2n-5)$$

$$\frac{2n}{2n} \times (2n-1) \times (2n-2) \times (2n-3) \times (2n-4) \times (2n-5) \dots$$

$$= \frac{(2n)!}{2n \cdot (2n-2)(2n-4)} = \frac{(2n)!}{2n \times (n-1)(n-1)(n-2)} = \frac{(2n)!}{2n \times n!}$$
take 2 common

