William Guenneugues Anthony Wang Lawrence Lin

# Distributed Computing Final Presentation

## Project Overview:

- In this project we set out to determine if social media sentiment of a controversial content creator/artist can influence their viewership/sales.
- For our case study, we chose to focus our attention on Joe Rogan, a renown sportscaster and number one podcaster in the world.



## The data:



For this project we gathered data from three separate sources:

- Twitter: Using the snscrape library, we scraped 80 Mb worth of data, amounting to over 400,000 tweets posted in the last 500 days.
- Reddit: Using the reddit API, we scraped 15 Mb worth of data, gathering posts made in the last 500 days.
- Youtube: We scraped data from the website socialblade to gather the weekly viewership of Joe Rogan's channel between November 2020 and now.
- After gathering all the data, we uploaded it to S3.

## Preprocessing Algorithms

Using Spark, we did following preprocessing operations:

- Unioned twitter and reddit spark dataframes, joined on date.
- Added Youtube viewership data as a column, joined on date
- Feature Engineering
  - Text length (Count of characters): ran in 0.45 seconds
  - Emotion label (using Roberta English model): ran in 2.78 hours
  - Sentiment 1 score (using VaderSentiment model): ran in 17.47 minutes

# Time Efficiency

Time for all pre-processing algorithms: 4.02 hours

Time to train all models: 3 minutes

- Optimizations:
  - Cached dataframe
  - Running individual group GPU
  - Added index on date on MongoDB

# Machine Specs

#### We used a shared GPU with the following specs:

| Instance Size | GPU | vCPUs | Memory<br>(GB) | Instance<br>Storage<br>(GB) | Network<br>Bandwidth<br>(Gbps) | EBS<br>Bandwidth<br>(Gbps) | On-<br>Demand<br>Price/hr* | 1-yr Reserved Instance<br>Effective Hourly* (Linux) | 3-yr Reserved Instance<br>Effective Hourly*<br>(Linux) |
|---------------|-----|-------|----------------|-----------------------------|--------------------------------|----------------------------|----------------------------|-----------------------------------------------------|--------------------------------------------------------|
| G4dn          |     |       |                |                             |                                |                            |                            |                                                     |                                                        |
| g4dn.xlarge   | 1   | 4     | 16             | 1 x 125<br>NVMe SSD         | Up to 25                       | Up to 3.5                  | \$0.526                    | \$0.316                                             | \$0.210                                                |

## Final Preprocessed Data Schema:

After running all the preprocessing operations, we uploaded data to MongoDB with the following columns:

- Week (Datetime: start day of the week)
- Text (String: text from social media post)
- Likes (Integer: number of likes, only available for twitter data)
- Views\_gained (Long: number of views gained/lossed compared to previous week)
- Text\_length (Integer: character length of social media post)
- Hf\_emot\_label (String: Emotion Label of text: Joy, Sadness, Fear, Anger, Love, Surprise)
- Vader\_sentiment\_score (Float: Sentiment score from -1 to 1, with 1 being most positive)

## Machine Learning Model 1: Linear Regression

#### Linear model coefficients:

| Likes | Text Length | Vader Sentiment | Hugging Face<br>Emotion<br>Dummy variable |
|-------|-------------|-----------------|-------------------------------------------|
| 28.6  | -224.21     | 19472.38        | -294766                                   |

- Linear model MSE: 8.47E5
- Most important feature: emotion and sentiment scores

## Machine Learning Model 2: Random Forest

#### Linear model coefficients:

| Likes  | Text Length | Vader Sentiment | Hugging Face<br>Emotion<br>Dummy variable |
|--------|-------------|-----------------|-------------------------------------------|
| 0.5052 | 0.1427      | 0.0687          | 0.1122                                    |

- Random Forest Regressor MSE: 8.47E5
- Most important feature: Likes and text Length

## Machine Learning Model 3: Gradient Boosting

#### **Gradient Boosting Feature Importance:**

| Likes  | Text Length | Vader Sentiment | Hugging Face<br>Emotion<br>Dummy variable |
|--------|-------------|-----------------|-------------------------------------------|
| 0.4017 | 0.2927      | 0.0288          | 0.2768                                    |

- Gradient Boosting Regressor model MSE: 8.47E5
- Most important feature: Likes, text Length and Emotion

## Machine Learning Outcomes:

- All models gave us the same normalized MSE value.
- The different models gave us different feature importance values.
- Linear regression works well as a quick and easy baseline model w/o the need for hyperparameter tuning

### Lessons Learnt:

- Sharing a cluster with many people will slow down the operating speed.
- Run time was improved when we cached datasets.
- Optimizing code matters when it comes to big data; can't afford to have slow or redundant code.
- Feature Importance is hard to determine and can vary a lot between different models.
- Some functions like the Hugging Face model took much longer to run than others.

## Conclusion:

- Our best model was: Gradient Boosted Regression Trees, but the losses were virtually identical.
- Social media sentiment analysis: We found that some features had significant impacts on their respective models, but which features were important varied from model to model.
- Ultimately, because we determined some features to be significant, we can assert that social media sentiment is positively associated with Joe Rogan's viewership.