ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА"

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ МГУ

КУРСОВАЯ РАБОТА

Галкин Иван Владимирович

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ КОЛЕБАНИЙ ОСЦИЛЛЯТОРА ДУФФИНГА

преподаватель Шипило Даниил Евгеньевич

MOCKBA 2024

Содержание

1	Постановка задачи.	2
2	Нахождение точек покоя системы.	3
3	Численное моделирование. 3.1 Метод моделирования.	5 5
4	Заключение	12

1 Постановка задачи.

Выполнить численное моделирование колебаний осциллятора Дуффинга, поведение которого можно описать уравнением вида:

$$\ddot{x} + \alpha \dot{x} - \beta x + \gamma x^3 = 0 \tag{1}$$

Это уравнение возникает при рассмотрении, например, движения частицы в потенциале, который определяется функцией

 $u(x) = -\beta \frac{x^2}{2} + \gamma \frac{x^4}{4} \tag{2}$

с учётом силы трения, пропорциальной скорости частицы. Построить зависимости x(t), $\dot{x}(t)$ и фазовые портреты системы с различными значениями параметров и начальных условий.

2 Нахождение точек покоя системы.

Сделаем замену $\dot{x} = z$, тогда имеем систему:

$$\begin{cases} \dot{x} = z \\ \dot{z} = -\alpha z + \beta x - \gamma x^3 \end{cases}$$
 (3)

Найдём точки покоя системы (3), для это решим следующую систему:

$$\begin{cases} z_0 = 0 \\ x_0(\beta - \gamma x_0^2) = 0 \end{cases}$$
 (4)

Точки покоя системы:

$$A(0,0), B\left(\sqrt{\frac{\beta}{\gamma}}, 0\right), C\left(-\sqrt{\frac{\beta}{\gamma}}, 0\right)$$

Проведём линеаризацию системы (3) в окрестности точек покоя. Обозначим

$$f = z, \ g = -\alpha z + \beta x - \gamma x^3$$

Вычислим производные функций f и g по переменным x и z:

$$f_x = 0, f_z = 1, q_x = \beta - 3\gamma x^2, q_z = -\alpha$$

Точка покоя А:

Так как $x_0 = 0$, $z_0 = 0$, тогда $u = x - x_0 = x$, $v = z - z_0 = 0$. Вычислим производные в точке (0, 0):

$$f_x(0,0) = 0$$
, $f_z(0,0) = 1$, $g_x(0,0) = \beta$, $g_z(0,0) = -\alpha$

Тогда имеем линейную систему:

$$\begin{cases} \dot{u} = v \\ \dot{v} = \beta u - \alpha v \end{cases} \tag{5}$$

Вычислим собственные значения системы:

$$\begin{vmatrix} -\lambda & 1 \\ \beta & -\alpha - \lambda \end{vmatrix} = \lambda(\alpha + \lambda) - \beta = \lambda^2 + \lambda\alpha - \beta = 0$$

Отсюда получаем:

$$\lambda_{1,2} = \frac{-\alpha \pm \sqrt{\alpha^2 + 4\beta}}{2} \tag{6}$$

Точка покоя В: Так как $x_0=\sqrt{\frac{\beta}{\gamma}},\ z_0=0,$ тогда $u=x-x_0=x-\sqrt{\frac{\beta}{\gamma}},\ v=z-z_0=0.$ Вычислим производные в точке В:

$$f_x(B) = 0, f_z(B) = 1, g_x(B) = -2\beta, g_z(B) = -\alpha$$

Получаем линейную систему:

$$\begin{cases} \dot{u} = v \\ \dot{v} = -2\beta u - \alpha v \end{cases} \tag{7}$$

Вычислим собственные значения системы:

$$\begin{vmatrix} -\lambda & 1 \\ -2\beta & -\alpha - \lambda \end{vmatrix} = \lambda(\alpha + \lambda) + 2\beta = \lambda^2 + \lambda\alpha + 2\beta = 0$$

Решая полученное уравнение, находим собственные значения:

$$\lambda_{1,2} = \frac{-\alpha \pm \sqrt{\alpha^2 - 8\beta}}{2} \tag{8}$$

Точка покоя С: $u = x + \sqrt{\frac{\beta}{\gamma}}, v = z$ Вычислим производные:

$$f_x(C) = 0, \ f_z(C) = 1, \ g_x(C) = -2\beta, \ g_z(C) = -\alpha$$

Собственные значения:

$$\lambda_{1,2} = \frac{-\alpha \pm \sqrt{\alpha^2 - 8\beta}}{2} \tag{9}$$

3 Численное моделирование.

3.1 Метод моделирования.

Будем находить численное решение дифференциального уравнения с помощью схемы Рунге-Кутты ERK4. Пусть есть система:

$$\begin{cases} \frac{du}{dt} = f(u,t), \ t \in (t_0,T] \\ u(t_0) = u_0 \end{cases}$$

Тогда каждое последовательное значение u вычисляется из системы:

$$\begin{cases} w_1 = f(u_m, t_m) \\ w_2 = f(u_m + \tau \frac{1}{2}w_1, t_m + \tau \frac{1}{2}) \\ w_3 = f(u_m, \tau \frac{1}{2}w_2, t_m + \tau \frac{1}{2}) \\ w_4 = f(u_m + \tau w_3, t_m + \tau) \\ u_{m+1} = u_m + \tau (\frac{1}{6}w_1 + \frac{1}{3}w_2 + \frac{1}{3}w_3 + \frac{1}{6}w_4) \end{cases}$$

3.2 Определение типов особых точек и результаты моделирования.

Выберем следующие параметры: $\alpha = 0.3$, $\beta = 2$, $\gamma = 2$. Определим при данных параметрах типы особых точек A(0,0), B(1,0), C(1,0).

Подставим $\alpha = 0.3, \beta = 2, \gamma = 2$ в формулы (6):

$$\lambda_1 = \frac{-0.3 - \sqrt{0.3^2 + 8}}{2} \approx -1,57$$

$$\lambda_2 = \frac{-0.3 + \sqrt{0.3^2 + 8}}{2} \approx 1,27$$

Так как λ_1 и λ_2 действительные числа разных знаков, то A(0,0) седло. Подставим $\alpha=0.3,\ \beta=2,\ \gamma=2$ в формулы (8):

$$\lambda_1 = \frac{-0.3 + \sqrt{0.3^2 - 16}}{2} \approx -0.15 + 1.99i$$

$$\lambda_2 = \frac{-0.3 - \sqrt{0.3^2 - 16}}{2} \approx -0.15 - 1.99i$$

Получаем, что λ_1 и λ_2 комплексные числа, причём $Re(\lambda_1)<0$ и $Re(\lambda_2)<0$, тогда B(1,0) и C(-1,0) устойчивые фокусы.

На Рис. 1 изображены зависимости x(t), $\dot{x}(t)$ и фазовый портрет при значениях параметров $\alpha=0.3,\,\beta=2,\,\gamma=2$ и начальных условиях $x_0=-2.5,\,\dot{x}_0=2.$ Точка

C(-1,0) является устойчивым фокусом, точка A(0,0) седлом. Теперь установим следующие начальные условия: $x_0 = -2.55$, $\dot{x}_0 = 2$. На фазовом портрете видны седло A(0,0) и устойчивый фокус B(1,0), что демонстрирует явление бифуркации.

(c) Фазовый портрет: A - седло, C - устойчивый фокус

Рис. 1:
$$\alpha = 0.3$$
, $\beta = 2$, $\gamma = 2$, $x(0) = -2.5$, $\dot{x}(0) = 2$

Рассмотрим ещё несколько различных случаев значений параметров α , β и γ , чтобы продемонстрировать изменение типа найденных особых точек. Пусть $\alpha = -0.3, \ \beta = 2, \ \gamma = 2$. Определим при данных параметрах типы особых точек $A(0,0), \ B(1,0), \ C(1,0)$.

Подставим $\alpha = -0.3, \, \beta = 2, \, \gamma = 2$ в формулы (6):

$$\lambda_1 = \frac{0.3 - \sqrt{(-0.3)^2 + 8}}{2} \approx -1,27$$

(c) Фазовый портрет: A - седло, B - устойчивый фокус

Рис. 2:
$$\alpha = 0.3$$
, $\beta = 2$, $\gamma = 2$, $x(0) = -2.55$, $\dot{x}(0) = 2$

$$\lambda_2 = \frac{0.3 + \sqrt{(-0.3)^2 + 8}}{2} \approx 1,57$$

Так как λ_1 и λ_2 действительные числа разных знаков, то A(0,0) седло. Подставим $\alpha=-0.3,\ \beta=2,\ \gamma=2$ в формулы (8):

$$\lambda_1 = \frac{0.3 + \sqrt{(-0.3)^2 - 16}}{2} \approx 0.15 + 1.99i$$

$$\lambda_2 = \frac{0.3 - \sqrt{(-0.3)^2 - 16}}{2} \approx 0.15 - 1.99i$$

Получаем, что λ_1 и λ_2 комплексные числа, причём $Re(\lambda_1)>0$ и $Re(\lambda_2)>0$, значит B(1,0) и C(-1,0) неустойчивые фокусы.

На Рис. 3 показаны зависимости x(t), $\dot{x}(t)$ и фазовый портрет при значениях параметров $\alpha=-0.3,\,\beta=2,\,\gamma=2$ и начальных условиях $x(0)=-2.5,\dot{x}(0)=2$

(c) Фазовый портрет: A - седло, B и C - неустойчивые фокусы

Рис. 3:
$$\alpha = -0.3$$
, $\beta = 2$, $\gamma = 2$, $x(0) = -2.5$, $\dot{x}(0) = 2$

Пусть $\alpha=-0.3,\ \beta=-2,\ \gamma=2.$ Определим при данных параметрах типы особых точек $A(0,0),\ B\left(i,0\right),\ C\left(-i,0\right).$

Подставим $\alpha = -0.3, \beta = -2, \gamma = 2$ в формулы (6):

$$\lambda_1 = \frac{0.3 - \sqrt{(-0.3)^2 - 8}}{2} \approx 0.15 - 1.4i$$

$$\lambda_2 = \frac{0.3 + \sqrt{(-0.3)^2 - 8}}{2} \approx 0.15 + 1.4i$$

Так как λ_1 и λ_2 комплексные числа, $Re(\lambda_1)>0$ и $Re(\lambda_2)>0$, тогда A(0,0)

неустойчивый фокус. Подставим $\alpha = -0.3, \beta = -2, \gamma = 2$ в формулы (8):

$$\lambda_1 = \frac{0.3 + \sqrt{(-0.3)^2 + 16}}{2} \approx 2.16$$

$$\lambda_2 = \frac{0.3 - \sqrt{(-0.3)^2 + 16}}{2} \approx -1.86$$

Так как λ_1 и λ_2 действительные числа, то B(i,0) и C(-i,0) седловые точки. На Рис. 4 показаны зависимости x(t), $\dot{x}(t)$ и фазовый портрет при значениях параметров $\alpha=-0.3,\,\beta=-2,\,\gamma=2$ и начальных условиях $x(0)=-2.5,\dot{x}(0)=2$

(c) Фазовый портрет: A - неустойчивый фокус

Рис. 4:
$$\alpha = -0.3$$
, $\beta = -2$, $\gamma = 2$, $x(0) = -2.5$, $\dot{x}(0) = 2$

Пусть $\alpha=-0.3,\ \beta=-2,\ \gamma=-2.$ Определим при данных параметрах типы особых точек $A(0,0),\ B(1,0),\ C(-1,0).$

Подставим $\alpha = -0.3, \, \beta = -2, \, \gamma = -2$ в формулы (6):

$$\lambda_1 = \frac{0.3 - \sqrt{(-0.3)^2 - 8}}{2} \approx 0.15 - 1.4i$$

$$\lambda_2 = \frac{0.3 + \sqrt{(-0.3)^2 - 8}}{2} \approx 0.15 + 1.4i$$

Так как λ_1 и λ_2 комплексные числа, $Re(\lambda_1) > 0$ и $Re(\lambda_2) > 0$, тогда A(0,0) неустойчивый фокус. Подставим $\alpha = -0.3$, $\beta = -2$, $\gamma = 2$ в формулы (8):

$$\lambda_1 = \frac{0.3 + \sqrt{(-0.3)^2 + 16}}{2} \approx 2.16$$

$$\lambda_2 = \frac{0.3 - \sqrt{(-0.3)^2 + 16}}{2} \approx -1.86$$

Так как λ_1 и λ_2 действительные числа, то B(1,0) и C(-1,0) седловые точки. На Рис. 5 показаны зависимости x(t), $\dot{x}(t)$ и фазовый портрет при значениях параметров $\alpha=-0.3,\,\beta=-2,\,\gamma=-2$ и начальных условиях $x(0)=-0.1,\dot{x}(0)=0.1$

Рис. 5: $\alpha = -0.3$, $\beta = -2$, $\gamma = -2$, x(0) = -0.1, $\dot{x}(0) = 0.1$

4 Заключение

В ходе работы были аналитически найдены особые точки системы. Написана программа для нахождения численного решения дифференциального уравнения, описывающего осциллятор Дуффинга. Проведено численное моделирование системы, в результате которого продемонстировано явление бифуркации и приведены примеры фазовых потретов при различных значениях параметров, при которых особые точки меняют тип.