Polish (POL)

Infekcja drzewa

Dane jest ukorzenione drzewo zawierające N wierzchołków oraz liczby całkowite R i M. Wierzchołki drzewa numerowane są od 1 do N, wierzchołek 1 jest korzeniem. Każdy z pozostałych wierzchołków ma jednego rodzica w drzewie.

Jeżeli wierzchołek s zostanie wybrany, stanie się zainfekowany razem z wszystkimi jego potomkami (czyli wierzchołkami, które można odwiedzić przechodząc krawędzie od s w dół drzewa) **odległymi od niego o** R **lub mniej**, gdzie odległość oznacza liczbę krawędzi pomiędzy wierzchołkami. Wierzchołek u uznajemy za osiągalny z wierzchołka v wtedy i tylko wtedy, gdy żaden z nich nie jest zainfekowany oraz liczba zainfekowanych wierzchołków na ścieżce pomiędzy nimi **nie przekracza** M.

Dla każdego możliwego wyboru wierzchołka s ($1 \le s \le N$), oblicz liczbę par wierzchołków (u,v), takich że $1 \le u < v \le N$ oraz u jest osiągalne z v (i odwrotnie).

Format wejścia

Pierwszy wiersz zawiera trzy liczby całkowite: N, R oraz M.

Drugi wiersz zawiera N-1 liczb całkowitych: p[2], p[3], ..., p[N], określających numery rodziców wierzchołków 2,3,...,N.

Format wyjścia

Wypisz N wierszy zawierających po jednej liczbie całkowitej: s-ty wiersz powinien zawierać wymaganą liczbę osiągalnych par, jeżeli wybranym wierzchołkiem jest s.

Niezalecane jest używanie std::endl do wypisywania symbolu nowego wiersza. Zamiast tego, rozważ użycie '\n' dla lepszej wydajności.

Przykład 1

Standardowe wejście	Standardowe wyjście
13 2 2	16
12343668210111	4
	15
	55
	66
	36
	66
	55
	66
	45
	55
	66
	66

Obrazek powyżej obrazuje sytuację z s=2.

Osiągalne pary to: (1,13), (7,8), (7,9), (8,9).

Ta lista nie zawiera pary (1,2) ponieważ wierzchołek 2 jest zainfekowany. Podobnie, para (1,5) nie znajduje się na liście ponieważ ścieżka pomiędzy 1 i 5 zawiera trzy zainfekowane wierzchołki (2, 3 oraz 4).

Przykład 2

Standardowe wejście	Standardowe wyjście
301	1
12	1
	1

Ograniczenia

- $2 \le N \le 500\ 000$
- $1 \leq p[i] < i$ (dla każdego $2 \leq i \leq N$)
- $0 \le R \le N 1$
- $0 \le M \le 2 \times R + 1$

Podzadania

- 1. (20 punktów) $N \leq 300$
- 2. (14 punktów) $R=0\,$
- 3. (15 punktów) M=2 imes R+1
- 4. (10 punktów) M=2 imes R-1
- 5. (16 punktów) $N \leq 5~000$
- 6. (25 punktów) Brak dodatkowych ograniczeń