Optimization for Machine Learning - Notes

Daniele Avolio - 242423

Academic Year 2023/2024

Contents

1	Introduzione	3
2	Programmazione non lineare 2.0.1 Caso di problemi senza vincoli	3 6 8
3	Eigen Values e Auto Vettori	8
4	Ottimizzazione senza vincoli	10
5	Ottimizzazione con vincoli 5.1 KKT Conditions	12 12 13
6	Approcci di soluzione	15
7	Approcci di classificazione	19
8	Separazione Lineare	20
9	Separazione Poliedrale	21
L	ist of Figures	
	1 Esempio di minimo locale stretto	5 6

1 Introduzione

Domanda 1.1. (Cosa signifca costruire un classificatore?)

Significa costruire una superficie di separazione. Per farlo si allena un modello utilizzando dei dati etichettati, che prende il nome di **training set**. Le superfici di separazione ci aiutano a classificare nuovi dati non visti.

Esempio semplice: chi paga il mutuo e chi no.

Una superficie di separazione è definita come:

$$H(v,\gamma) = \{x \in \mathcal{R}^n | v^T x = \gamma\}$$

con:

- $v \in \mathbb{R}^n$ è un vettore, chiamato normale
- $\gamma \in R$ è uno scalare, che è il bias

La funzione **sign** ci dice da che parte del piano si trova un punto. Cioè, dato un punto \bar{x} , se $sign(v^T\bar{x}-\gamma)\geq 0$ allora è un cliente che paga il mutuo, altrimenti no.

Domanda 1.2. (Dove interviene l'ottimizzazione quando si costruisce un classificatore? Perché serve?)

Il classificatore viene costruito andando a **minimizzara** una misura che indica quanto si sta sbagliando nel classificare i punti.

2 Programmazione non lineare

Definition 2.1. (Minimo globale) Dato un punto $x^* \in \mathbb{R}^n$ si dice minimo globale se:

- $x^* \in X$, cioè il punto appartiene alla **regione ammissibile**
- $f(x^*) \le f(x \forall x \in X)$, cioè per ogni punto della regione ammissibile, il valore di funzione obiettivo su x^* è minore uguale rispetto agli altri punti.

Notina: Definizione di programma lineare:

- $f(x) = c^T x$
- $X = \{x \in R^n | Ax = b, x \ge 0\}$

Dove X è la regione ammissibile ed è un poliedro.

Definition 2.2. (Minimo locale)

Un punto $x^* \in X$ è un minimo locale per il problema P se:

• $x^* \in X$

• Esiste un vicinato N tale che $f(x^*) \leq f(x) \forall x \in X \cap N$. Cioé ogni punto della regione ammissibile intersecato col vicinato, e il valore x^* è sempre minore.

Il vicinato è un insieme di punti, non so come definito ma ok.

Definition 2.3. (Minimo locale stretto)

Un punto $x^* \in X$ è un minimo locale stretto per il problema P se:

- $x^* \in X$
- Esiste un vicinato N tale che $f(x^*) < f(x) \forall x \neq x^*, x \in X \cap N$.

Spiegazione al volo: Il minimo locale stretto è un minimo locale, ma non esistono altri punti che hanno lo stesso valore di funzione obiettivo.

Figure 1: Esempio di minimo locale stretto

Nota: Se x^* è un minomo globale implica che x^* è un minimo locale.

Definition 2.4. (Combinazione convessa)

Dati $x^{(1)}$ e $x^{(2)}$ due punti $\in \mathbb{R}^n$, la combinazione convessa di $x^{(1)}$ e $x^{(2)}$ è un vettore:

$$\bar{x} = \lambda x^{(1)} + (1 - \lambda) x^{(2)}$$

 $con \lambda \in [0,1]$

Immagina una retta che unisce i due punti, con $\lambda = 0$ in $x^{(1)}$ e $\lambda = 1$ in $x^{(2)}$.

Definition 2.5. (Funzione convessa) Data una funzione $f: R^n \to R$, f è **convessa** se per ogni coppia di punti $x^{(1)}, x^{(2)} \in R^n$ e per ogni $\lambda \in [0,1]$ vale che:

$$f(\lambda x^{(1)} + (1 - \lambda)x^{(2)}) \le \lambda f(x^{(1)}) + (1 - \lambda)f(x^{(2)})$$

Cioè in italiano, il valore di funzione della combinazione dei due vettori è minore o uguale alla combinazione dei valori di funzione dei due vettori.

Figure 2: Esempio di funzione convessa

Figure 3: Esempio di funzione non convessa

Per capire, diciamo che la funzione è convessa se per ogni valore di funzione su un punto che è all'interno della combinazione convessa dei due punti, il valore di funzione è minore o uguale alla combinazione dei valori di funzione dei due punti.

Infatti, nel secondo esempio, ci sono dei punti tali per cui la funzione è maggiore (cioè sta sopra).

Domanda 2.1. (Quando un punto di un'insieme convesso è estremo?)

 $\bar{x}\in X$ è un punto estremo di un'insieme convesso se NON ESISTE nessuna coppia di punti $x^{(1)},x^{(2)}\in X$ e $\lambda\in(0,1)$ tale che: $\bar{x}=\lambda x^{(1)}+(1-\lambda)x^{(2)}$, per $\lambda\in]0,1[$.

Banalmente, un punto è estremo se non è combinazione convessa di altri punti.

Nota: P è un programma convesso se f è una funzioen convessa e X è un'insieme convesso. Questo ci serve saperlo perché in caso di **programma convesso** abbiamo che il minimo globale e locale **coincidono**.

Domanda 2.2. (Cosa cerchiamo con un problema di ottimizzazione?)

Cerchiamo il **minimo locale**, perché cercare il minimo globale fa parte di un'altra categoria di problemi, che sono quelli di **ottimizzazione globale**.

♦ 2.0.1 Caso di problemi senza vincoli

In questo caso, la regione ammissibile X coincide con \mathbb{R}^n .

$$P = \begin{cases} \min f(x) \\ f(x) : \mathcal{R}^n \to R \end{cases}$$

Nota: Si fa un'assunzione. $f \in C^2$, cioè la funzioen è due volte continuamente differenziabile. Quindi, C^2 è l'insieme di funzioni che ammettono prima e seconda derivate continue.

Questa assunzione ci permette di dire che $\bar{x}\in R^n \implies \nabla f(\bar{x})$ e $\nabla^2 f(\bar{x})$ esistono.

Vediamo come si applica il gradiente e la matrice hessiana.

Definition 2.6. (Gradiente)

Il gradiente di una funzione $f: \mathbb{R}^n \to \mathbb{R}$ è un vettore di dimensione n che contiene le derivate parziali della funzione rispetto alle sue variabili.

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Definition 2.7. (Matrice Hessiana)

La matrice hessiana di una funzione $f: \mathbb{R}^n \to \mathbb{R}$ è una matrice quadrata di dimensione n che contiene le derivate seconde parziali della funzione rispetto alle sue variabili.

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

Esempio 2.1. $f(x) = 8x_1 + 12x_2 + x_1^2 - 2x_2^2$ *Iniziamo dal gradiente.*

$$\nabla f(x) = \begin{bmatrix} 8 + 2x_1 \\ 12 - 4x_2 \end{bmatrix}$$

Ora la matrice hessiana.

$$\nabla^2 f(x) = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}$$

Dando un valore ad x, ad esempio $x=\begin{bmatrix}1\\1\end{bmatrix}$, possiamo calcolare il gradiente e la matrice hessiana cosi:

$$\nabla f(x) = \begin{bmatrix} 10\\8 \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}$$

2.1 Condizioni di ottimalità

Sono 3

Definition 2.8. (Prima condizione - condizione necessaria di primo ordine) x^* è un minimo locale implica che $\implies \nabla f(x^*) = 0$. Cioè, stiamo dicendo che x^* è un punto stazionario. Il fatto che il gradiente sia uguale a 0 è una condizione necessaria per fare in modo che x^* sia un minimo locale.

Nota: Se f è convessa, allora ogni punto stazionario è un **minimo globale**. (Pensa ad una funzione che è convessa ma ha più punti di minimo uguali)

Definition 2.9. (Seconda condizione - condizione necessaria di secondo ordine) x^* è un minimo locale stretto $\implies \nabla f(x^*) = 0$ e $\nabla^2 f(x^*)$ è positiva semidefinita. Lo definiamo dopo cosa Significa positiva semidefinita

Definition 2.10. (Terza condizione - condizione sufficiente di secondo ordine) Sia $x^* \in R^n$, sia $\nabla f(x^*) = 0$ e $\nabla^2 f(x^*)$ positiva definita $\implies x^*$ è un **minimo locale stretto**.

Definiamo cosa significa semidefinita ecc. Sia A una matrice $\mathbb{R}^{n\times m}$:

- Positiva Semidefinita: $\forall x \in R^n, x^T A x \geq 0$
- Positiva Definita: $\forall x \in R^n, x^T A x > 0$, con $x \neq 0$
- Negativa Semidefinita: $\forall x \in R^n, x^T A x \leq 0$
- Negativa Definita: $\forall x \in R^n, x^T A x < 0, \text{ con } x \neq 0$

Negli altri casi, A è indefinita.

Nota: Non possiamo controllare queste definizioni perché \mathbb{R}^n è infinito. Per questo motivo usiamo altre cose che si chiamano **eigen values**.

3 Eigen Values e Auto Vettori

Sia A una matrice, λ uno scalare e x un vettore, con $x \neq 0$, diciamo che x è un **autovettore** e λ è un **autovalore**:

$$Ax = \lambda x$$

Semplicemente, matrice moltiplicato per vettore da lo stesso risultato per vettore moltiplicato per λ

Domanda 3.1. Come si calcolano gli Eigen Values? Sapendo che $Ax = \lambda x$, possiamo riscriverlo come:

$$Ax - \lambda x = 0$$

Portiamo fuori x:

$$(A - \lambda I)x = 0$$

Dove I è la matrice identità.

Ora, per trovare gli eigen values, dobbiamo trovare i valori di λ tali che la matrice $(A-\lambda I)$ sia singolare. Cioè, il determinante deve essere uguale a 0.

$$det(A - \lambda I) = 0$$

Fatto questo, si risolve l'equazione di secondo grado per trovare i valori di λ .

Esempio 3.1.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
$$det(A - \lambda I) = 0$$
$$det \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = 0$$
$$(2 - \lambda)^2 - 1 = 0$$
$$\lambda^2 - 4\lambda + 3 = 0$$
$$\lambda_1 = 1 \wedge \lambda_2 = 3$$

Per calcolare il determinante di una matrice 2×2 si fa così:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Per calcolare il determinante di una matrice 3×3 si fa così:

$$\det\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

Regola di Sarrus: Se si ha una matrice 3×3 , si può calcolare il determinante in un modo particolare.

Si ripete la matrice 3x3 in fila. Si calcolano queste cose:

- · Somma dei prodotti delle prime 3 diagonali a partire da sinistra, verso destra
- Somma dei prodotti delle prime 3 diagonali a partire da destra, verso sinistra
- · Sottraggo le due somme

Esempio 3.2.

$$\det\begin{bmatrix}1&2&3&1&2&3\\4&5&6&4&5&6\\7&8&9&7&8&9\end{bmatrix}=1\cdot5\cdot9+2\cdot6\cdot7+3\cdot4\cdot8-3\cdot5\cdot7-2\cdot4\cdot9-1\cdot6\cdot8=0$$

Nota: Se la matrice A è una *matrice diagonale*, cioé una matrice in cui tutti gli elementi, tranne la diagonale, sono 0, allora gli *eigen values* sono gli elementi sulla diagonale.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
$$det(A - \lambda I) = 0$$
$$1 - \lambda \quad 0 \quad 0$$

$$\det \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 0 & 2 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} = 0$$

$$(1 - \lambda)(2 - \lambda)(3 - \lambda) = 0$$

$$\lambda_1 = 1 \wedge \lambda_2 = 2 \wedge \lambda_3 = 3$$

Per quanto riguarda i segni delle matrici:

- A è una matrice **positiva semidefinita** \iff Eigen Values ≥ 0
- A è una matrice **positiva definita** \iff Eigen Values > 0
- A è una matrice **negativa semidefinita** \iff Eigen Values ≤ 0
- A è una matrice **negativa definita** \iff Eigen Values < 0

4 Ottimizzazione senza vincoli

$$2x_1^3 - 3x_1^2 - 6x_1^2x_2 + 6x_1x_2^2 + 6x_1x_2$$

Calcoliamo il gradiente e la matrice hessiana

$$\nabla f(x) = \begin{bmatrix} 6x_1^2 - 6x_1 - 12x_1x_2 + 6x_2^2 + 6x_2 \\ -6x_1^2 + 6x_1^2 + 12x_1x_2 + 6x_1 \end{bmatrix}$$

Ora calcoliamo la matrice hessiana

$$\nabla^2 f(x) = \begin{bmatrix} 12x_1 - 6 - 12x_2 & -12x_1 + 12x_2 + 6 \\ -12x_1 + 12x_2 + 6 & 12x_1 \end{bmatrix}$$

Spieghiamo i passaggi per il calcolo della Hessiana

$$\frac{\partial^2 f}{\partial x_1^2} = 12x_1 - 6 - 12x_2$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_2} = -12x_1 + 12x_2 + 6$$

Qui il $-12x_1 + 12x_2 + 6$ viene fuori dal seguente passaggio

In parole povere, prima si calcola la derivata parziale di f rispetto a x1, e poi si calcola la derivata di quel risultato rispetto a x2.

$$f(x1, x2) = 2x1^{3} - 3x1^{2}x2 + 6x1x2^{2} + x2^{2} + 6x1x2$$

$$= 6x1^{2} - 6x1x2 + 6x2^{2} + 6x2$$

$$= -12x1 + 12x2 + 6$$

$$\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} = -12x_{1} + 12x_{2} + 6$$

$$\frac{\partial^{2} f}{\partial x_{2}^{2}} = 12x_{1}$$

Quindi, per spiegare ocme funziona.

Data una funzione, bisogna calcolare inizialmente il gradiente.

Applicando la **condizione necessaria di primo ordine** troviamo i punti stazionari, ovvero quelli in cui il $\nabla f(x) = 0$. Cioé, calcoli il gradiente e lo poni uguale a zero.

Ponendo il gradiente uguale a zero bisogna risolvere il sistema di equazioni per trovare i possibili punti stazionari. Una volta trovati, nel nostro esempio erano 4, bisogna esaminare i punti utilizzando la condizione sufficiente di secondo ordine e la condizione necessaria di secondo ordine.

Per farlo, si calcola l'Hessiana della funzione **in un punto**, per ogni punto. Ricorda bene come si calcola l'Hessiana, sopratutto quando compaiono due variabili.

Dopo aver calcolato l'hessiana e sostituito con il punto, bisogna **porre** il determinante della hessiana moltiplicata per l'identità con λ uguale a zero.

Calcolando il determinante e ponendolo uguale a zero si risolve l'equazione per trovare gli autovalori λ . In base al segno degli autovalori si può dire il "segno", della matrice. Controllando le condizioni necessarie e sufficienti di secondo ordine si può dire se il punto è un minimo locale, minimo locale stretto, massimo locale, massimo locale stretto, o punto sella.

5 Ottimizzazione con vincoli

In Ottimizzazione con vincoli abbiamo due tipi di vincoli:

- Uguaglianza q(x) = 0 E
- Disuguaglianza $g(x) \ge 0$ I

Nota sui programmi quadratici: Se la funzione obiettivo è del tipo $f(x) = \frac{1}{2}x^TMx + c^Tx$, con M una matrice simmetrica che significa che $M = M^T$, e tutti i vincoli g_i sono funzioni lineari (sia di Uguaglianza che di Disuguaglianza), allora il problema è un **programma quadratico**.

Se invece la funzione è $f(x)=c^Tx$, il problema quadratico diventa un programma lineare.

Definition 5.1. (Vincoli attivo)

Dato un punto $\bar{x} \in X$, un vincolo $g_i(\bar{x}) = 0$ si dice **vincolo attivo**.

Nota: Indichiamo $A(\bar{x})$ l'insieme dei vincoli attivi in \bar{x} .

5.1 KKT Conditions

Sono condizioni di ottimalità di primo ordinep per i programmi con vincoli. Vediamo in particolare cosa ci interessa:

Definition 5.2. (LICQ - Linear Independence Constraint Qualification)

Dato un punto $\bar{x} \in X$, LICQ regge in \bar{x} se l'insieme $\{\nabla g_i(\bar{x}), i \in \mathcal{A}(\bar{x})\}$ cioè l'insieme dei vincoli attivi per \bar{x} , deve essere costituito solamente da vettori linearmente indipendenti.

Definition 5.3. (Funzione Lagrangiana)

Dato uno vettore $\lambda \in R^{|\vec{E}|+|I|}$ chiamato vettore dei moltiplicatori Lagrangiani, diciamo che la funzione lagrangiana di P è:

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in E} \lambda_i g_i(x) - \sum_{i \in I} \lambda_i g_i(x)$$

 $con \lambda \geq 0 \ \forall i \in I.$

Se vogliamo fare un esempio, ecco la spiegazione di come si lavora.

Data una regione ammissibile, quindi un insieme di vincoli, analizziamo prendendo un punto \bar{x} come si comportano i vincoli.

Controlliamo quali sono i vincoli che si attivano, ovvero quando la funzione $g_i(\bar{x})=0.$

Prendiamo questi vincoli e calcoliamo il gradiente del vincolo, ovvero $\nabla g_i(\bar{x})$. Se abbiamo ancora delle variabili dopo aver fatto il gradiente, sostituiamo alla x che compare nel gradiente il punto \bar{x} .

Poi, dopo aver calcolato questi valori, inseriamo tutti i gradienti in una matrice, chiamata B. Bisogna controllare che i gradienti siano linearmente indipendenti, e

per comodità possiamo calcolare il **determinante** della matrice e controllare che sia $\neq 0$.

Se ad occhio si vede che dei gradienti sono linearmente dipendenti, allora si può dire direttamente che LICQ non reggono.

5.2 Teoremi delle KKT Conditions

Ci sono delle condizioni da rispettare:

Sia x^* un minimo locale per il problema P e che le LICQ reggono. Allora possiamo dire che $\exists \lambda^*$ tale che:

$$KKT - Conditions = \begin{cases} \nabla_x \mathcal{L}(x^*, \lambda^*) &= 0 \\ g_i(x^*) &= 0 \ \forall i \in E \\ g_i(x^*) &\geq 0 \ \forall i \in I \\ \lambda_i^* &\geq 0 \ \forall i \in I \\ \lambda_i^* g_i(x^*) &= 0 \ \forall i \in E \cup I \end{cases}$$

Una nota, che non sappiamo a cosa serve ma è importante.

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in E} \lambda_i g_i(x) - \sum_{i \in I} \lambda_i g_i(x)$$

Questa formula ci dice che la funzione lagrangiana è la funzione obiettivo meno la sommatoria dei vincoli moltiplicati per i moltiplicatori lagrangiani.

Quando applichiamo il gradiente rispetto ad x:

$$\nabla_x \mathcal{L}(x^*, \lambda^*) = \nabla f(x^*) - \sum_{i \in E} \lambda_i^* \nabla g_i(x^*) - \sum_{i \in I} \lambda_i^* \nabla g_i(x^*)$$

Ora, **nota** importante: Se $g_i(x^*)=0$, allora serve che $\lambda^*=0$, questo torna utile per l'ultima condizione di prima, ovvero $\lambda_i^*g_i(x^*)=0 \ \forall i\in E\cup I$. Perché questo implica che:

$$\implies \nabla_{x} \mathcal{L}(x^{*}, \lambda^{*}) = \nabla f(x^{*}) - \sum_{i \in \mathcal{A}(x^{*})} \lambda_{i}^{*} \nabla g_{i}(x^{*}) = 0$$

$$\implies \nabla f(x^{*}) = \sum_{i \in \mathcal{A}(x^{*})} \lambda_{i}^{*} \nabla g_{i}(x^{*})$$
(1)

In questo modo possiamo trovare il valore dei λ_i^* .

Solitamente, quando si lavora con un esempio, possiamo avere *diversi punti*. Si parte **verificando le LICQ** e, successivamente, si verificano le **KKT Conditions**. Partiamo dalle LICQ perché le KKT conditions hanno bisogno di avere le LICQ che reggono per quel punto per trovare il λ^* .

Per le **LICQ**:

Dato un punto controlliamo quali sono i vincol vincoli $g_i(x) \in \mathcal{A}(x)$ che si attivano, ovvero quando la funzione $g_i(x) = 0$. Trovato questo insieme si calcola il

gradiente per ogni vincolo attivo. Successivamente si controlla che i vincoli siano linearmente indipendenti tra loro e, se lo sono, allora le LICQ reggono.

Per le **KKT Conditions**: Si calcola inizialmente la funzione lagrangiana. Questo è dato dalla formula che abbiamo visto prima, con la funzione obiettivo meno la sommatoria dei vincoli moltiplicati per i moltiplicatori lagrangiani.

Successivamente calcoliamo il gradiente della funzione lagrangiana rispetto ad x e lo poniamo uguale a zero. Ci ritroveremo ad avere un sistema di equazioni con λ_i come incognita. Per trovare il valore di λ_i bisogna risolvere il sistema di equazioni.

Dopo aver trovato il valore di λ^* si controlla che ogni valore di λ^*_i sia maggiore o uguale a zero, solamente per i vincoli di disuguaglianza.

Nota importante per tanti λ : Se in una regione ammissibile abbiamo tanti vincoli, il λ^* da trovare avrà tanti valori quanti i vincoli. Abbiamo però modo di semplificare il calcolo di questi. Per la proprietà della **complementarietà** abbiamo che:

$$\lambda_i * g_i(x^*) = 0 \ \forall i \in E \cup I$$

. Ora, se sappiamo già che $g_i(x^*)>0$, allora λ_i^* deve **PER FORZA** essere uguale a zero.

Ad esempio, se su 5 vincoli solo 2 sono attivi, al calcolo della funzione lagrangiana avremo 5 moltiplicatori lagrangiani, ma solamente 2 saranno diversi da zero perché i restanti 3 vincoli non sono attivi. Possiamo rimuovere dall'equazione per semplificare i calcoli.

Implicazione diretta: Se le LCIQ reggono:

- x^* è un minimo locale \implies le KKT Reggono
- Se le KKT non reggono $\implies x^*$ non è un minimo locale

Notiamo che le KKT sono **condizioni necessarie** ma non sufficienti.

6 Approcci di soluzione

Quando partiamo da un punto iniziale x^0 possiamo avere più casi di problemi.

- Caso senza vincoli $\rightarrow \in \mathbb{R}^n$
- · Caso con vincoli. Questo caso si divide in due:
 - x potrebbe non appartenere alla regione ammissibile $x \notin X$
 - x appartiene alla regione ammissibile $x \in X$

Domanda 6.1. Quando cerchiamo un nuovo punto, quando ci fermiamo? Questo dipende dal tipo di problema che stiamo risolvendo.

- Caso senza vincoli: Ci fermiamo quando troviamo un punto stazionario, ovvero quando dato un punto x, il gradiente della funzione nel punto è uguale a $0 \nabla f(x) = 0$.
- Caso con vincoli: Ci fermiamo quando troviamo un punto che soddisfa le KKT Conditions.

Abbiamo due metodi di soluzione: **Metodi di ricerca lineari** che possonoe essere a loro volta **esatti** e **inesatti**, oppure il **Metodo della regione di confidenza**.

Definition 6.1. Metodi di ricerca lineari

Un nuovo punto x^{k+1} viene calcolato usando $x^k + \alpha_k d^k$, con α_k un passo di ricerca e d^k una direzione di ricerca.

Nota: $\alpha \in R > 0$ e $d \in R^n$.

Ad esempio, il simplesso è un metodo di ricerca lineare.

Domanda 6.2. Qual è la differenza tra esatto e inesatto?

Il calcolo del nuovo punto x^{k+1} può essere esatto o inesatto. Se è esatto, è risolto esattamente, se è inesatto è calcolato in modo approssimato.

Definition 6.2. Regione di confidenza

In quesot metodo un nuovo punto x^{k+1} è calcolato usando il vecchio punto e una direzione.

La direzione d^k è calcolata risolvendo un sotto problema del tipo:

$$P_{TR} = \begin{cases} \min_d m_k (x^k + d^k) \\ x^k + d \in X \end{cases}$$

Dove si indica con m_k la funzione modello.

Quando si approssima per d, diciamo che è approssimata bene se la la differenza tra la funzione originale e la funzione modello, nel punto nuovo calcolato è bassa. Altrimenti, è una cattiva approssimazione.

Definition 6.3. Norma di un vettore

Si indica con norma del vettore un mapping tra $\mathbb{R}^n \to \mathbb{R}^+$ che soddisfa le seguenti proprietà:

- $||x|| = 0 \iff \vec{x} = 0$
- $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}|| \ \forall x, y \in \mathbb{R}^n$
- $||\alpha \vec{x}|| = |\alpha|||\vec{x}|| \ \forall \alpha \in r \land x \in \mathbb{R}^n$

Ci sono varie norme, ma a noi interessa la norma L_2

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

Nota: Se $x \in R$, allora ||x|| = |x|.

Nota 2: La norma non è differenziabile perché la radice quadrata non è differenziabile in 0.

Nota 3: Possiamo scrivere $||x||_2^2 = x^T x$.

Caso senza vincoli

$$P = \begin{cases} \min x f(x) \\ f: R^n \to R \\ f \in C^2 \end{cases}$$

Definition 6.4. (Direzione di discesa)

Dato un $\bar{x} \in R^n$, il vettore \bar{d} è una direzione di discesa di f al punto \bar{x} se esiste un $\bar{\alpha} > 0$ tale che:

$$f(\bar{x} + \alpha \bar{d}) < f(\bar{x}) \ \forall \alpha \in (0, \bar{\alpha})$$

Nota: Se questa \bar{d} essiste e $\nabla f(\bar{x})^T \bar{d} < 0$, allora la direzione è una direzione di discesa. Se siamo nel caso in cui f è convessa, allora l'inverso è vero.

$$\nabla f(\bar{x})^T \bar{d} < 0 \iff \bar{d}$$
 è una direzione di discesa

Definition 6.5. (Direzione di steepest descent)

Dal teorema di Taylor sappiamo che possiamo approssimare $f(x^k+d)$ con $f(x^k) + \nabla f(x^k)^T d$. Vogliamo minimizzare questa approssimazione, per d.

$$P_K = \begin{cases} \min_d f(x^k) + \nabla f(x^k)^T d \\ \frac{1}{2} ||d||_2^2 = \frac{1}{2} \end{cases}$$

Ma la prima parte possiamo semplificare perché non compare la d.

Il nostro obiettivo è trovare d. Come facciamo? Possiamo usare il metodo dei moltiplicatori lagrangiani.

$$\mathcal{L}(d,\lambda) = \nabla f(x^k)^T d - \lambda (\frac{1}{2}||d||_2^2 - \frac{1}{2})$$

$$\nabla_d \mathcal{L}(d, \lambda) = \nabla f(x^k) - \lambda d = 0$$

$$\nabla f(x^k) = \lambda d$$

Si assume che $\lambda \neq 0$ perché se fosse zero, allora $\nabla f(x^k) = 0$ e quindi x^k sarebbe un punto stazionario.

$$d = \frac{\nabla f(x^k)}{\lambda}$$

Ora, dal vincolo sappiamo che $||d||^2 = 1$, quindi:

$$\frac{||\nabla f(x^k)||^2}{\lambda^2} = 1$$

Da qui troviamo i moltiplicatori lagrangiani.

$$\lambda^2 = ||\nabla f(x^k)||^2 \to \lambda = \pm ||\nabla f(x^k)||$$

Siccome siamo in un contesto di minimizzazione, prendiamo il valore negativo.

$$d^* = -\frac{\nabla f(x^k)}{||\nabla f(x^k)||}$$

Nota:
$$\nabla f(x^k)^T d^* = \frac{-\nabla f(x^k)^T \nabla f(x^k)}{||\nabla f(x^k)||} = -||\nabla f(x^k)|| < 0.$$

Quando hai un esempio svolto, per capire se effettivamente la **step size** cioé α è buono, controlli se effettivamente il nuovo punto ha un valore inferiore.

$$f(x^k + \alpha d^k) < f(x^k)$$

Definition 6.6. Metodo di Newton

Il problema è sempre del tipo:

$$P = \begin{cases} \min_{x} f(x) \\ f : R^{n} \to R \\ f \in C^{2} \end{cases}$$

Sempre dal teorema di Taylor, possiamo approssimare:

$$f(x^k + d) \approx f(x^k) + \nabla f(x^k)^T d + \frac{1}{2} d^T \nabla^2 f(x^k) d$$

Assumiamo che $\nabla^2 f(x^k)$ sia definita positiva. Il problema che vogliamo risolvere è:

$$P_K = \left\{ \min_d m_k(d) \right\}$$

Risolviamo il problema:

$$\nabla_d m_k(d) = \nabla f(x^k) + \nabla^2 f(x^k) d = 0$$

$$\nabla f(x^k) = -\nabla^2 f(x^k)d$$

che è positiva definita

$$d = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$$

che è la direzione di Newton

$$\nabla f(x^k)^T d = \nabla f(x^k)^T [-\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$$

$$= -\nabla f(x^k)^T \nabla^2 f(x^k)^{-1} \nabla f(x^k) < 0$$

è una direzione di discesa

Nota: La parte interna senza il - deve essere > 0**Note 2:**

- $m_k(0) = f(x^k)$
- $\nabla m_k(0) = \nabla f(x^k)$
- $\nabla^2 m_k(0) = \nabla^2 f(x^k)$

7 Approcci di classificazione

Abbiamo diversi approcci di classificazione.

- Supervised learning: Abbiamo un'insieme di dati che sono etichettati. Questo rappresenta il nostro training set. Il nostro obiettivo è fare predizioni sulle etichette di dati non ancora visti. Le etichette rappresentano la classe.
- Unsupervised Learning: I dati non hanno alcuna etichetta. Il nostro obiettivo è fare operazioni di clustering, ovvero raggruppare i dati in base a
 quanto sono simili tra loro.
- Semisupervised Learning: Abbiamo entrambi i tipi di dati (con e senza etichette). L'obiettivo è predirre la label dei dati non etichettati.

Il modo in cui chiamo i dati all'interno del nostro dataset sono molteplici, tipo:

- 1. Datum
- 2. Object
- 3. Feature Vectore / Vettore delle caratteristiche
- 4. Punto

Definition 7.1. (Classifier)

Un classificatore è una superficie di separazione tra le classi.

8 Separazione Lineare

Definition 8.1. (Separazione Lineare) Dati due insiemi $A = \{a_1, a_2, \dots, m\}$ e $B = \{b_1, b_2, \dots, b_k\}$. Due insiemi si dicono **linearmente separabili** \iff esiste un iperpiano $H(v, \gamma)$ che separa i due insiemi.

$$H(v,\gamma) = \{x \in \mathcal{R}^n | v^T x = \gamma\}$$

con:

- $v \in \mathbb{R}^n$ è un vettore, la normale del piano
- $\gamma \in R$ è uno scalare, il bias
- $v \neq 0$

Questo iperpiano, tale che:

$$v^T a_i \ge \gamma + 1 \wedge v^T b_i \le \gamma - 1$$

per
$$i = 1, ..., m$$
 e $j = 1, ..., k$.

Nota e possibile domanda: Quando andiamo a classificare non teniamo conto del +1 e -1, perché vengono usati solo per costruzione. Quindi la disequazione conta solamente il valore di γ (nel lato desto).

Nota 2: I due insiemi A e B sono linearmente separabili \iff **l'intersezione** della loro copertura convessa è vuota.

$$conv(A) \cap conv(B) = \emptyset$$

Definition 8.2. (Copertura Convessa)

La copertura convessa di un'insieme X è l'insieme convesso più piccolo che lo contiene.

Un'insieme si dice convesso se per ogni coppia di punti $(x,y) \in X$ la combinazione di x e y è sempre all'interno dell'insieme X. Formalmente:

$$\forall x, y \in X, \forall \lambda \in [0, 1] \implies \lambda x + (1 - \lambda)y \in X$$

Implicazione ovvia, ma la copertura convessa di un'insieme convesso è l'insieme stesso. $X\ convesso \implies conv(X) = X$

Definition 8.3. (Funzione Errore — Loss Function)

Un punto $a_i \in A$ è classificato correttamente se

$$v^T a_i \ge \gamma + 1 \implies v^T a_i - \gamma - 1 \ge 0$$

Questo implica che a_i è classificato erroneamente se

$$v^T a_i - \gamma - 1 < 0 \implies -v^T a_i + \gamma + 1 > 0$$

L'errore di a_i è dato da:

$$\max\{0, -v^T a_i + \gamma + 1\} \ge 0$$

Analogamente, un punto $b_i \in B$ è classificato correttamente se

$$v^T b_j - \gamma + 1 \le 0$$

. Questo implica che b_i è classificato erroneamente se

$$v^T b_j - \gamma + 1 > 0$$

L'errore di b_i è dato da:

$$\max\{0, v^T b_j - \gamma + 1\} \ge 0$$

La funzione errore totale che ci viene da: $min_{v,\gamma}f(v,\gamma)$ è:

$$\min_{v,\gamma} f(v,\gamma) = \frac{1}{m} \sum_{i=1}^{m} \max\{0, -v^T a_i + \gamma + 1\} + \frac{1}{k} \sum_{j=1}^{k} \max\{0, v^T b_j - \gamma + 1\}$$

Cioè, la media degli errori di classificazione dei punti di A e B.

Questa funzioen è **non smooth e convessa**. Possiamo trasformare questo in un programma lineare.

Consideriamo:

- $\xi = \max 0, -v^T a_i + \gamma + 1 \text{ per } i = 1, \dots, m$
- $\psi_i = \max 0, v^T b_i \gamma + 1 \text{ per } j = 1, \dots, k$

Possiamo riscrivere il problema nel seguente modo:

$$LP = \begin{cases} \min_{v,\gamma,\xi,\psi} \frac{1}{m} \sum_{i=1}^{m} \xi_i + \frac{1}{k} \sum_{j=1}^{k} \psi_j \\ \xi_i \ge -v^T a_i + \gamma + 1 & \forall i = 1, \dots, m \\ \psi_j \ge v^T b_j - \gamma + 1 & \forall j = 1, \dots, k \\ \xi_i, \psi_i \ge 0 & \forall i = 1 \end{cases}$$

9 Separazione Poliedrale

La separazione poliedrale è un'estensione della separazione lineare. In questo caso consideriamo un problema che ha almeno h>1 iperpiani di separazione $H(v^j,\gamma_j)$ tale che:

1. Per ogni punto positivo $a_i \in A$ e ogni iperpiano $j=1,\ldots,h$ vale che:

$$v^{jT}a_i \geq \gamma_j - 1$$

Cioé il punto è "dentro" l'iperpiano.

2. Per ogni punto negativo $b_i \in B$ esiste almeno 1 iperpiano $j \in \{1, \dots, h\}$ tale che:

$$v^{jT}b_i \ge \gamma_j + 1$$

Cioé il punto è "fuori" almeno 1 iperpiano.

Nota: A
in h-pliedricamente separabile da $B \iff conv(A) \cap B = \emptyset$.

Nota 2: Se $h = 1 \rightarrow problema lineare.$

Definition 9.1. Funzione errore nel caso poliedrico:

Un punto $a_i \in A$ è classificato correttamente se:

$$v^{jT}a_i \leq \gamma_i - 1 \quad \forall j = 1, \dots, h$$

$$v^{jT}a_i - \gamma_j + 1 \le 0 \quad \forall j = 1, \dots, h$$

$$\max_{j=1,...,h} \{ v^{jT} a_i - \gamma_j + 1 \} \le 0 \quad \forall j = 1,...,h$$

Ed è classificato erroneamente se:

$$\max_{j=1,\dots,h} \{ v^{jT} a_i - \gamma_j + 1 \} > 0 \quad \forall j = 1,\dots,h$$

In totale, l'errore di a_i è dato da:

$$\max_{j=1,...,h} \{0, v^{jT} a_i - \gamma_j + 1\}$$

Per quanto riguarda i punti negativi $b_j \in B$, viene classificato correttamente se $\exists j \in \{1,\ldots,h\}$ tale che:

$$v^{jT}b_i \ge \gamma_j + 1 \to v^{jT}b_i - \gamma_j - 1 \ge 0 \to -v^{jT}b_i + \gamma_j + 1 \le 0$$

Analogamente, viene classificato erroneamente se:

$$-v^{jT}b_i + \gamma_j + 1 > 0 \quad \forall j = 1, \dots, h$$

Cioè, se $\min_{j=1,...,h}\{-v^{jT}b_i+\gamma_j+1\}>0$. L'errore di b_i è dato da:

$$\max_{j=1,...,h} \{0, -v^{jT}b_i + \gamma_j + 1\}$$

Notiamo che questa funzione è più difficile da minimizzare.

Figure 4: Funzione di errore nel caso poliedrico

La funzione di errore totale è data da:

$$f(v^1, v^2, \dots, v^{i_{\gamma_1, \gamma_2, \dots, \gamma_h}}) = \frac{1}{m} \sum_{i=1}^m \max_{j=1,\dots,h} \{0, v^{jT} a_i - \gamma_j + 1\} + \frac{1}{k} \sum_{j=1}^k \max_{j=1,\dots,h} \{0, -v^{jT} b_i + \gamma_j + 1\}$$

Questa funzione è non convessa.

References