

	I LEDING INDIA MAKIMATITUTE DI TERINGERA
	Name Dww Bagaya Branch CSE Sem
	Roll No Date
	EXPERIMENT - 5
	111 margat-
	Objective - Study of single phase half wave uncont-
	roud rucyfur.
	(1) Explain rectification.
	(3) Explain Malf wave rectification: For +ve half cycle.
•	(3) Explain Malf wave rectification: For -ve half cycle.
	a : t : load diode.
	Apparatus Required - Al source, Resistive load, diode.
	Rectification -
	Alternating coverent -> Rectifier -> Direct current
	1 Italian time
	A rectifier is a device that converts alternating
	A rectifier is a device that converts alternating current (AC) to direct current (DC), a process known as rectification. Rectifiers are essentially of two types - a half wave rectifiers and a full wave rectifier.
	process known as rungher a half wave rectifiers
	essentially of more reletifier.
	and a full with
	May work Rectification - The positive cycle the diode is forward biased. On the positive cycle the diode is forward biased. By using a clicid we have converted an AC source into a pulsating DC source. In summary we have into a pulsating DC source. In summary we have into a pulsating DC signal. "rectified the AC signal."
	On the positive cycle the mont converted an AC source
	By using a clical we source. In summary we have
	into a fulsaring of the AC signal.
	nectified hind of rectifier circuit is the half
	into a fulscring of the AC signal. "rectified the AC signal. "rectified the AC signal. "he simplest kind of rectifier circuit is the half "the simplest kind of rectifier is a circuit wave rectifier. The half wave rectifier is a circuit wave rectifier only part of an input signal to hass. that allows only part of an input signal to hass.
	want allows only part of in ingine
	Thus U

Half Ware Rectifiers - Wareforms

	Name Druw Bagoua Branch CSF Sem 1
	Roll No Date
	The circuit is simply the combination of a signal sliede in series with a resistor, where the resistor is acting as a load.
•	Half wave Rectifiers - The output DC voltage of a half wave rectifier - can be calculated with the following two ideal equations. Year = Vrms x J2
	Vac = Vpeak
•	Where, $V_{I} = Input voltage$ Yh = bar Malf wave Rectification - For the half cycle: Diede is forward biased, acts as a short circuit hasses the waveform through. For the half cycle: $V_{I} - V_{b} - I r_{d} - IR = 0$
	where, V_{2} = input voltage V_{0} = barrier pollutial V_{0} = diode resistance V_{0} = total current
	I - VI - Vb Md + R
	The state of the s

	Name Dhur Bagora Branch CSE Sem 1
	Roll NoDate
	V TP
	Vo = VI - Vb x R
	ry + R
	for Ma << R Vo = Vz - Vb
	Vo is 0.7 for germanium.
	Vo is 0.7 for germanium. Vo is 0.7 for silicon.
	For VI < V6:
	The diade will remain off. The output voltage will
	$V_0 = 0$
	Toy VI > Vy :
•	For $V_{\mathcal{I}} > V_{\mathcal{V}}$: The diode will remain on. The output voltage
	vill be, $V_0 = V_I - V_6$
	No a NI NP
	1 outhut voltage-
	Average output voltage-
	Vo = Vm sin wt , + o < wt < M
	1/ - / 10t / 2T
	V ₀
	Vav. = Vm = 0.318 Vm
	T

Observation Table -

Max. Input	Theoritical Vrus	Practical V _{nms}
10 V	5 V	5.09V

	TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY
	Name Dhrur Bagara Branch CSE Sem 1
•	Roll NoDate
	Vrus = Irms R = Vm 2
•	Average load current -
	I ay = Vav = Vm R
	Iav = Vm = Im TR T
0	RMS load current
	I HIM = IM 2
,	Form factor - It is defined as the ratio of runs load voltage and average load voltage
	F.F Vrung Var.
	FF. 2 Vm 2 7 2 1.97
	7

por a une arration NT

rms ≥ arg

DATE: TECHNOL	Name Dhuw Bagana Branch CSE Sem 1
	Roll No. Date
•	Ripple Factor - Y = \(\int F.F^2 - 1 \) \(\text{100} \) \(\frac{1}{2} \)
	$\frac{1.57^{2}}{2} \times 100^{9/3}$
•	reficiency - It is defined as the ratio of do power available at the load to the input ac power
	ac power
	N°/0 = Pead x 100°/0
	Pin
	11 ·/· = I oc x R x 100 of o I rum x R
	No/o = Im x 100 /o
	T'm y
	Nojo = 4 X 100
	× 40.56%
	Result - we have studied a single phase Half wave electified and wave forms acce
	Shown. About 22 x t