Particle Swarm Optimization PSO

Marcos A. Spalenza

Doutorando em Ciência da Computação Laboratório de Computação de Alto Desempenho - LCAD Programa de Pós-Graduação em Informática - PPGI

Parâmetros

Número de Indivíduos

Tempo (t) ou Gerações (e)

Inércia

Coeficiente Local (c1)

Coeficiente Global (c2)

Atualização das partículas durante cada iteração do algoritmo. Implementing the Particle Swarm Optimization (PSO) Algorithm in Python

https://medium.com/analytics-vidhya/

Busca

PSO é um algoritmo idealizado para solução de problemas de otimização contínua, como a otimização do intervalo temporal de uma rotina (Gong et.al., 2011), a ponderação de um determinado dado ou a seleção de pesos de uma rede neural artificial (Ye, 2017).

YE, Fei. Particle Swarm Optimization-Based Automatic Parameter Selection for Deep Neural Networks and its Applications in Large-Scale and High-Dimensional Data. **PloS one**, v. 12, n. 12, p. e0188746, 2017.

GONG, Yue-Jiao et al. Optimizing the Vehicle Routing Problem with Time Windows: a Discrete Particle Swarm Optimization Approach. **IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)**, v. 42, n. 2, p. 254-267, 2011.

2-Opt

Um desafio é adaptar essa busca para variáveis discretas - DPSO.

- Troca de posição dos itens conforme um bias atrelado a velocidade.
- Bias gerado aleatoriamente a cada movimento.
- Possibilidade de troca de um item que apresente velocidade maior que esse bias para uma outra posição aleatória.

Capacitated VRP

Vehicle Routing Problem (VRP)

- Verificação de capacidade "c"
- Melhor rota para "v" carros
- Soma das distâncias percorrida pelos carros para as cidades a ele designadas.

AUGERAT, Philippe et al. Separating Capacity Constraints in the CVRP Using Tabu Search. **European Journal of Operational Research**, v. 106, n. 2-3, p. 546-557, 1998.

Teste de População

Servidor 32 GB RAM, Intel(R) Xeon(R) CPU E5-2630v3 @ 2.40GHz 32 Cores.

Ubuntu 12.04 64bits, Python 3.4.3, NumPy, SciPy e Matplotlib.

Valores clássicos de velocidade não são equivalentes para problemas aplicados ao DPSO.

- População 50, 100, **500** e 1000
- Resultados de velocidade com pouca mudança em valores < 1
 (Após experimentos dos valores 4, 2, 1, 0.1, 0.05)
- Busca de parâmetros para otimização do problema A-n45-k6.vrp

K - Testes

- Cinco testes repetidos no mes ambiente
- Coleções de datasets A. B e F

AUGERAT, Philippe et al. Separating Capacity Constraints in the CVRP Usin Tabu Search. European Journal of Operational Research, v. 106, n. 2-3, 546-557, 1998,

FISHER, Marshall L. Optimal solution vehicle routing problems using minimu k-trees. Operations research, v. 42, r 626-642, 1994,

e m	
sm	IC
=	
ng	
, p.	
of ım n. 4,	p.

	A-n32-k5
	A-n33-k5
	A-n33-k6
10	A-n34-k5
	A-n36-k5
	A-n37-k5
	A-n37-k6
	A-n38-k5
	A-n39-k5
	A-n39-k6
	A-n44-k6
	A-n45-k6
	A-n45-k7
, p.	A-n46-k7

MAX

861.18

696.41

810,66

839,59

884,65

773.54

1071.42

870,95

944,64

930,83

1081.73

2225,92

1246,86

1045,01

MIN

819.47

682.31

758,26

819,16

845,93

748.40

1032.16

822,78

916,24

888,42

1048.23

1452.87

1228,27

1019,73

BEST

784.00

661.00

742,00

778,00

799,00

669.00

949.00

730,00

822,00

831,00

937.00

944.00

1146,00

914,00

DIFF

35.47

21.31

16,26

41,16

46,93

79.40

83.16

92,78

94,24

57,42

111.23

508.87

82,27

105,73

A-n48-k7

A-n53-k7

A-n54-k7

A-n55-k9

A-n60-k9

MAX

1217.82

1283.61

1440,96

1340,82

1634,16

MIN

1188.39

1225.76

1358,58

1263,18

1593,19

BEST

1073.00

1010.00

1167,00

1073,00

1408,00

DIFF

115.39

215.76

191,58

190,18

185,19

A-n61-k9	2692,54	2622,14	1035,00	1587,14
A-n62-k8	1577,05	1534,74	1290,00	244,74
A-n63-k9	2177,85	2053,78	1634,00	419,78
A-n63-k10	1637,28	1579,07	1315,00	264,07
A-n64-k9	1752,56	1680,59	1402,00	278,59
A-n65-k9	3370,07	1855,22	1177,00	678,22
A-n69-k9	1558,48	1474,50	1168,00	306,50
A-n80-k10	2366,30	2276,81	1764,00	512,81

Comparativo com Literatura

Problem	BEST	ННА	Centroid-based 3-phase	Sweep + Cluster Adjust	Sweep Nearest	Proposed Adaptive Sweep + VTPSO	DPSO	+/-
A-n32-k5	784.0	1012	881	872	853	882	819,47	-62,53
A-n33-k5	661.0	847	728	788	702	698	682,31	-15,69
A-n33-k6	742.0	919	770	829	767	751	758,26	7,26
A-n34-k5	778.0	933	812	852	803	785	819,16	34,16
A-n36-k5	799.0	1126	814	884	840	881	845,93	-35,07
A-n37-k5	669.0	876	756	734	797	754	748,40	-5,60
A-n37-k6	949.0	1180	1027	1050	966	1112	1032,16	-79,84
A-n38-k5	730.0	920	819	874	801	813	822,78	9,78
A-n39-k5	822.0	1147	864	971	886	877	916,24	39,24
A-n39-k6	831.0	1065	881	966	-	972	888,42	-83,58
A-n44-k6	937.0	1356	1037	1092	1020	1056	1048,23	-7,77

AKHAND, M. A. H.; PEYA, Zahrul Jannat; MURASE, Kazuyuki. Capacitated Vehicle Routing Problem Solving using Adaptive Sweep and Velocity Tentative PSO. **International Journal of Advanced Computer Science and Applications**, v. 8, n. 12, p. 288-295, 2017.

AKHAND, M. A. H.; PEYA, Zahrul Jannat; MURASE, Kazuyuki. Capacitated Vehicle Routing Problem Solving using Adaptive Sweep and Velocity Tentative	A-n45-k6	944.0	1210	1040	1043	991	1073	1452,87	379,87
	A-n45-k7	1146.0	1361	1288	1281	1235	1305	1228,27	-76,73
	A-n46-k7	914.0	1071	992	1013	1022	975	1019,73	44,73
	A-n48-k7	1073.0	1292	1145	1143	1181	1152	1188,39	36,39
PSO. International Journal of Advanced Computer Science	A-n53-k7	1010.0	1261	1117	1116	-	1090	1225,76	135,76
and Applications , v. 8, n. 12, p. 288-295, 2017.	A-n54-k7	1167.0	1414	1209	1320	-	1361	1358,58	-2,42
	A-n55-k9	1073.0	1317	1155	1192	1134	1190	1263,18	73,18
	A-n60-k9	1408.0	1733	1430	1574	1446	1503	1593,19	90,19
	A-n61-k9	1035.0	1285	1201	1184	1158	1164	2622,14	1458,14
	A-n62-k8	1290.0	1604	1470	1559	1392	1408	1534,74	126,74
	A-n63-k9	1634.0	2001	1766	1823	1763	1823	2053,78	230,78
	A-n63-k10	1315.0	1542	1405	1523	1475	1477	1579,07	102,07
	A-n64-k9	1402.0	1821	1587	1597	1586	1598	1680,59	82,59
	A-n65-k9	1177.0	1429	1276	1351	1299	1317	1855,22	538,22
	A-n69-k9	1168.0	1333	1283	1254	1225	1259	1474,50	215,50
	A-n80-k10	1764.0	2318	1883	2014	1896	2136	2276,81	140,81

OTIMIZAÇÃO COMBINATÓRIA E META-HEURÍSTICAS

Marcos A. Spalenza

Doutorando em Ciência da Computação Laboratório de Computação de Alto Desempenho - LCAD Programa de Pós-Graduação em Informática - PPGI