Solved Examples

Solid State Physics

- Ex. 1 (i) Calculate the energy gap of Si, given that it is transparent to radiation of wavelength greater than 11000 A^o
 - (ii) Calculate the energy band gap in germanium. Given that it is transparent radiation of wavelength greater than 17760 A^o

Soln:

The energy gap E_g is the minimum energy required to shift the electron from V.B. to C.

(i) Energy of the incident photon should at least be

For silicon
$$hv = E_g$$
 $E_g = hv =$
 $E_g = J$
 $E_g =$
 $E_g =$
 $E_g =$
 $E_g =$ 1.129 eV.

(ii) For Germanium $\lambda = 17760 \times 10^{-10}$ m. So, energy gap of germanium = J.

=

.

Ex. 2 Find the drift velocity for an electron in silver wire for radius 1 mm and carrying a current of 2 A. Density of silver is 10.5 gm/cc. Avogadro number = 6.025×10^{23} /gm mole.

Soln:

Given:

Density of silver = 10.5 gm/cc. At.wt. of silver = 108

Formula required:

$$I = q \cdot n \cdot v \cdot A$$

Therefore number of electrons per unit volume = $n = \times 10.5$

$$n = 6 \times 10^{22} \text{ per cm}^3$$

 $n = 6 \times 10^{28} \text{ per m}^3$

or $n = 6 \times 10^{28} \text{ per m}^3$ Cross section area $A = \Pi r^2 = \Pi \times (10^{-3})^2 = 3 \times 10^{-6} \text{ m}^2$

Now current
$$I = q \cdot n \cdot v \cdot A$$

$$v = = 7 10^{-4} \text{ m/s}.$$

Ex. 3 An n-type semi-conductor is to have a resistivity 10Ω cm. Calculate the number of donor atoms which must be added to achieve this.

Given that $\mu_d = 500 \text{ cm}^2/\text{V.S}$

Soln:

Given:

Resistivity $\rho = 10\Omega$ cm, $\mu_d = 500$ cm²/V.S

Formula required:

Conductivity σ and σ $n_d \cdot e \cdot \mu_d$ $n_d = = =$

= 1.25

Ex. 4 Calculate the conductivity of specimen if a donor impurity is added to an extent of one part in 10⁸ Ge atoms at room temperature?

Soln:

Given:

Avogadro number = 6.02×10^{23} atoms/gm.mole.

At.wt. of Ge = 72.6,

Density of Ge = 5.32 gm/c.c.

Mobility $\mu = 3800 \text{cm}^2/\text{v.s.}$

Formula required:

 $\sigma = \mathbf{n} \cdot \mathbf{e} \cdot \mu_{e}$

Concentration of Ge atoms =

As there is one donor atom per 108 atoms of Ge

 n_d

Conductivity $\sigma = n_d \cdot \mu_e \cdot e$

0.268 mho/cm

Ex. 5 A silver wire is in the form of ribbon 0.50 cm. wide and 0.10 mm thick. When a current of 2 amp passes through the ribbon, perpendicular to 0.80 Tesla magnetic field calculate the Hall voltage produced. The density of silver = 10.5 gm/cc

Soln:

Given:

B = 0.8 Tesla, Density = 10.5 gm/cc

Formula required:

$$V_H = B.v.d.$$

The number of electrons in 1cc of silver are:

As each silver atom contributes one electron, the number of electrons per m3 = 6

Area
$$A = 0.5$$

Hall voltage $V_H = B.v.d.$
The drift vel
 $V_H =$

= 0.333 volts

Ex. 6 A copper specimen having length 1 meter, width 1 cm and thickness 1 mm is conducting 1 amp. Current along its length and is applied with a magnetic field of 1 Tesla along its thickness. It experiences Hall effect and a hall voltage of 0.074 microvolts appears along its width. Calculate the Hall coefficient and the mobility of electrons in copper. (Conductivity of copper is $\sigma = 5.8 \times 10^7 \, (\Omega \, \text{m})^{-1}$)

Soln:

Given:

Ex. 7 A slab of copper 2.0 mm in length and 1.5 cm wide is placed in a uniform magnetic field with magnitude 0.40 T. When a current of 75 amp flows along the length, the voltage measured across the width is 0.81 μV, determine the concentration of mobile electrons in copper.

 $\mu = 4.3 \times 10^{-3} \text{ m}^2/\text{volt.sec}$

Soln:

$$\begin{array}{c} V_{\scriptscriptstyle H} \ R_{\scriptscriptstyle H} \\ R_{\scriptscriptstyle H} = \\ \\ = \\ n = \end{array}$$

Ex. 8 A silver wire is in form of a ribbon 0.50cm Wide and 0.10 mm thick. When a current of 2 amp passes through the ribbon, perpendicular to 0.80 Tesla magnetic field, Calculate the Hall voltage produced. The density of silver 10.5 gm/cc. And atomic weight of Ag = 108.

Soln:

Given:

Numbers of electrons n = $6.025 \times 10^{23} \times \approx 5.857 \times 10^{22}$ per c.c. = 5.857×10^{28} per m³.

Formula:

 V_{H}

$$V_{\mbox{\tiny H\,=\,}}1.70\times10^{\mbox{\tiny -6}}~V$$
 = 1.7 μV

Ex. 9 Calculate the mobility of charge carriers in a doped silicon of which conductivity is 100 mho/m and the Hall coefficient is 3.6×10^{-4} m³/c

Soln:

Hall Co-efficient R_H

Conductivity $\sigma = 100 \text{ mho/m}$

Formulae : $\sigma = ne\mu$

 $\mu =$

 $= 0.036 \text{m}^2/\text{V.s}$