Aug 17. <u>Last time</u> - Def of Riemann surface, complex manifold Riemann sphere - genus U Complex tori - genus I Complex projective space IP Set of one-dim C subspaces of C^{n+1} = $\{(\mathbf{z}_0,...,\mathbf{z}_n) \mid \mathbf{x} \in \mathbb{C} \text{ not all } 0\}/\sim$ $(x_0,...,x_n) \sim (\lambda x_0,...,\lambda x_n)$ Ui CIP defined by 2i +0 $U_i = \{ (\alpha_0, ..., 1, ..., \alpha_n) \} \cong \mathbb{C}^n$ and U U := P'. Topology - UCP open iff UNU; is open & i.

Charts: \$\phi: Ui \rightarrow C^n. Uinuj pj $\mathbb{C}_{\times} \cdot \cdot \stackrel{\bullet}{\mathbb{C}}_{\times} \times \mathbb{C}$ $\mathbb{C}_{\times} \cdot \cdot \cdot \times \mathbb{C}_{\times} \times \mathbb{C}$ $(x_1, \dots, x_n) \mapsto (\underbrace{x_1}_{x_j}, \underbrace{x_2}_{x_j}, \dots \underbrace{x_n}_{x_j})$ holomorphic. Claim: TP is compact

Pf: Union g (n+1) boxes: Bic Ui def by

[7] | 1xil \le 1 \quad 0

 $\phi_{12}: \stackrel{\bullet}{\mathbb{C}} \longrightarrow \stackrel{\bullet}{\mathbb{C}}$ $z \mapsto \frac{1}{z}.$ 80 P= Riemann sphere. Plane curves. Let $f(x,y) \in C[x,y]$. Set $X = \{(x,y) \in \mathbb{C}^2 \mid f(x,y) = 0\}.$ Suppose $\forall p \in X$, not both $\frac{\partial f}{\partial x}(p) = 0$. Then we can make X a Riemann surface-X Suppose $\frac{\partial f}{\partial y}(p) \neq 0$ Let $\alpha = \pi_1(p)$. Then by the implicit function thm, \exists open set $U \subset \mathbb{C}^2$ containing p and $V \subset \mathbb{C}$ containing Z and a hole function $g: V \to \mathbb{C}$ such that $X \cap U$ is the graph $\{(Z,g(Z)) \mid Z \in V\}$.

 $\mathbb{C} \cup \mathbb{C}$

glued by

So $T_1: X \cap U \rightarrow V$ is a chart about p If $\frac{\partial f}{\partial x}(p) \neq 0$, then T_2 gives a chart. Check: These are compatible. Projective ouves: auves in P. F(X14,Z) a homogeneous polynomial of de d.

Claim: X 2F + Y 2F + Z 2F = d. F

 $X = \{ [x:y:z] \mid F(x:y,z) = 0 \}.$ Suppose 2F, 2F & 2F are never simultaneously O

Then X is a Riemann surface & compact Why? $\times \cap \cup_3 = \{(\times_M) \in \mathbb{C}^2 | \underbrace{F(\times_1,1)}_{\underline{I}} = 0\}$

So + pe XAU3, $\frac{\partial f}{\partial x}(p) = \frac{\partial f}{\partial y}(p)$ not both O

Consider $U = \begin{cases} y^2 - f(x) = 0 \end{cases} \subset C^2$. R.S. if f(a) has distinct roots.

Examples: $-f(a) \in \mathbb{C}[a]$ a polynomial

U is not compact! can we "compactify" it?

Idea 0: Homogenize the polynomial y = f(x). $Ex: f(x) = -x^{4} - 1$, $y^{2} + x^{4} + 1$ $wo z^{2} + x^{4} + z^{4}$

So
$$X = \{ 24 + x + z^4 = 0 \}$$
 CP^2
Overly: $X \cap U_3 = U$
 $\frac{\partial}{\partial z} = 224 + 42^3$ } o at

$$z^{4}+1 = \frac{1}{z^{4}}+1 = \frac{1+z^{4}}{z^{4}}$$

consider
$$g(z) = 1+z^4$$

Let $V = \{ \{ \omega^2 - g(z) \} \} \subset \mathbb{C}^2$

Claim 3 U* ~ V*

$$C^* \sim C^*$$

$$x \mapsto \frac{1}{z}$$

$$(x,y) \mid y^2 = x^4 + 1, \quad x \neq 0 = V^*$$

$$(x,y) \mapsto (\frac{1}{x}, \frac{y}{x^4}) \quad \text{so} \quad z = \frac{1}{x}$$

$$(x,y) \mapsto (\frac{1}{x}, \frac{y}{x^4}) \quad \text{so} \quad z = \frac{1}{x}$$

$$(x,y) \mapsto (x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

$$(x,y) \mapsto (x,y) \quad \text{other in the genus } x \neq 0$$

So
$$X(X) = X(X^{\circ}) + 4$$

 $= 0$
So $g(X) = 0$.
Generalization.
Let $f(a) \in \mathbb{C}[X]$ be a poly of even degree.
without multiple noots.
 $U = \frac{2}{3} y_{-}^2 f(a)^2 \subset \mathbb{C}^2$
 $\int \mathbb{C}_X$

 $V = \{ \omega^2 = g(z) \}$ $U^* \rightarrow V^*$

 $g(z) = f(\frac{1}{z}), z^{2n}$

$$\begin{array}{cccc}
\mathbb{C}_{z} & & \downarrow & (z, \omega) \\
\mathbb{C}_{x} & \rightarrow \mathbb{C}_{z} & \\
\mathbb{R} & \mapsto & \frac{1}{z}
\end{array}$$
Exercises: • Find $g(x)$.

 $e \quad \mathbb{C}[z]$

 $(\chi,y) \mapsto \left(\frac{1}{\chi}, \frac{y}{\chi^n}\right)$

Think about what huppens if deg f(x) is odd.

• Generalize to coverings y'' = f(a).

 $\underline{look} \, \underline{dt} : (x, y) \longrightarrow (z, \omega)$ Z=1, $\omega=\frac{q}{2}$ Gives a surface $S \xrightarrow{\pi} P'$ "Line bundle" Fibers of π are \mathbb{C} . Def: Let X be a complex manifold. A vector bundle of rank in on X is a manifold V with a map OF over YUif of X & iso of; Ti(ui) - vi × CM $\pi^{-1}(U_{ij})$ ϕ_{i} $U_{ij} \times \mathbb{C}^{n}$ $U_{ij} \times \mathbb{C}^{n}$ $U_{ij} \times \mathbb{C}^{n}$ ϕ_{12} is linear on the fibers. Obs. If V, & Vz are trivialized on SUBS & have some trans functions then V, >> Vz

Constructing <u>a v.b</u>. Given a cover {Vi} of X and $\phi_{ij}: U_{ij} \times \mathbb{C}^n \longrightarrow U_{ij} \times \mathbb{C}^n$ linear on fib such that bir object the I v.b. V→X with transition functions Øj. Ex: X an rightarrow A "tangent bundle" JUiz at los for X φij: Vij → Vij induee $\phi_{ij} \quad \cup_{ij} \times \mathcal{C} \longrightarrow \quad \cup_{ij} \times \mathcal{C}$ $(a, V) \mapsto (a, D\phi_{ij} \cdot V)$ "Cotangent bundle" = "Dud" of tangent bundle trans-func = transpose o inverse q original. Similarly &, &, ... $\mathcal{O}(m) \otimes \mathcal{O}(n) \stackrel{\mathcal{N}}{=} \mathcal{O}(m+n)$

Exercist: Show $\mathcal{O}(m)^{\gamma} = \mathcal{O}(-m)$, $\mathcal{T}_{P'} \cong \mathcal{O}(2)$.