Model Building for Back-To-The-Future Trigger

- -We want event-N triggered + event N-1 in the previous bunch crossing (BC) (t=25 ns, ct=7.5 m) not.
- -We'll see particle χ_1 in event N-1 and particles χ_0 + Y in event N, χ_1 -> χ_0 + Y.
- -To avoid standard triggers on N-1 event, strong preference for χ_1 SM neutral (or millicharged).
- -Since MET is involved in the N trigger, χ_0 should also be neutral.
- -For χ_1 lifetime largish (to decay it in the next BC), we need small $\Delta = \chi_1 \chi_0$ and / or $\chi_1 \chi_0 Y$ coupling
- -Hence the simplest choice, SUSY-reminiscent, is to take $Y=\gamma$ (SM photon). Y=Z, h also possible.
- -With only x_1 - x_0 - γ vertex very small cross-section ($\gamma\gamma F$ @LHC with highly off-shell photon). We add a new scalar s produced resonantly in gluon fusion, and decaying into $\chi_1 \chi_1$. [2 couplinhgs]

The relevant Lagrangian reads
$$\mathcal{L} \supset \frac{C_{ggs}}{\Lambda} s G^{\mu\nu} G_{\mu\nu} + \frac{C_{\chi\chi\gamma}}{\Lambda} \bar{\chi}_1 \sigma_{\mu\nu} F^{\mu\nu} \chi_0 + \text{h.c} + y_\chi^1 \bar{\chi}_1 s \chi_1 + \mathcal{L}_{mass}$$

6 free parameters:
$$\frac{C_{ggs}}{\Lambda}$$
, $\frac{C_{\chi\chi\gamma}}{\Lambda}$, y_{χ}^{1} , $m_{\chi_{1}}$, $m_{\chi_{0}}$, m_{s} Can we trade them for a more "physical" set? Constraints?

Parametrization and constraints (I)

$$\mathcal{L} \supset \frac{C_{ggs}}{\Lambda} s G^{\mu\nu} G_{\mu\nu} + \frac{C_{\chi\chi\gamma}}{\Lambda} \bar{\chi}_1 \sigma_{\mu\nu} F^{\mu\nu} \chi_0 + \text{h.c} + y_{\chi}^1 \bar{\chi}_1 s \chi_1 + \mathcal{L}_{mass}$$

Can be traded for σ_s (m_S) = σ (gg -> s) which is only function of m_s. We can relate this σ_s to $\sigma_{s,SM}$ by considering either a a new heavy quark Q (or vector-like quark), or via a direct mixing with the SM Higgs (h). We will have

$$\sigma(pp \to s) = \left[\frac{C_{ggS}^{(Q)}}{\Lambda}\right]^2 f(m_S) = \left[\frac{C_{ggS}^Q}{C_{ggh}^{(t)}} \frac{C_{ggh}^{(t)}}{\Lambda}\right]^2 f(m_S) = \left(\frac{C_{ggS}^{(Q)}}{C_{ggh}^{(t)}}\right)^2 \times \sigma_{s,SM}(m_S)$$

For a heavy quark Q, and the parenthesis would be traded by $\sin^2(\alpha)$ if we consider that s mixes with h.

Bounds on mixing angle

Robens, 2205.06295

 $\underline{m_S} = 600 \text{ GeV}$ $\sigma_{s,SM}(600) \sim 3 \text{ pb}, \sin^2 \alpha \sim 0.04,$ $\sigma_{s} <= 120 \text{ fb}$

 $\frac{m_S = 1000 \text{ GeV}}{\sigma_{s,SM}(1000) \sim 0.2 \text{ pb, } \sin^2\!\alpha \sim 0.02,}$ $\sigma_s <= 5 \text{ fb}$

 $\begin{array}{l} \underline{m_S=}1500~GeV\\ \sigma_{s,SM}(1000)\text{\sim}0.02~pb\text{, } sin^2\alpha\text{\sim}0.02\text{,}\\ \sigma_{s}<=0.5~fb \end{array}$

https://twiki.cern.ch/twiki/pub/LHCPhysics/ HiggsXSBR/plotAll_13tev_BSM_sqrt.pdf

José Zurita

Parametrization and constraints (II)

$$\mathcal{L} \supset \frac{C_{ggs}}{\Lambda} s G^{\mu\nu} G_{\mu\nu} + \frac{C_{\chi\chi\gamma}}{\Lambda} \bar{\chi}_1 \sigma_{\mu\nu} F^{\mu\nu} \chi_0 + \text{h.c} + y_{\chi}^1 \bar{\chi}_1 s \chi_1 + \mathcal{L}_{mass}$$

Other searches that might apply: 1) di-jet Z' searches 2) monojet

- 1) $\sigma_{jj}(m_s) = \sigma_s(m_s)BR(s \to gg)$, but the latter is given by $1/[1+(y_\chi \Lambda/C_{ggs})^2]$, small for large enough y_χ .
- 2) $\sigma(pp \to sj, s \to \chi_1 \chi_1)$ constrained by monojet, if we assume χ_1 decays are undetected. This should be only a function of m_s , but a non-trivial one, since the shape of pT(j) would depend on m_s .

Exclusive Signal Region	EM2	EM4	EM6	EM8	EM9	EM11
Data events (139 fb ⁻¹)	313 912	102 888	10 203	1663	738	187
SM prediction	314000 ± 3500	101 600 ± 1200	10 000 ± 180	1640 ± 40	754 ± 20	182 ± 6
$W \to e \nu$	16 000 ± 1000	3980 ± 250	280 ± 19	35.8 ± 2.6	13.4 ± 1.0	3.01 ± 0.24
$W o \mu \nu$	23600 ± 500	5940 ± 120	481 ± 12	66.8 ± 2.3	31.2 ± 1.2	7.8 ± 0.4
$W \to \tau \nu$	54900 ± 800	15430 ± 260	1243 ± 29	167 ± 6	77.4 ± 2.9	15.5 ± 0.8
VBF W + jets	2340 ± 300	1010 ± 150	140 ± 27	29 ± 7	16 ± 5	5.0 ± 1.9
$Z \rightarrow ee$	_	_	_	_	_	_
$Z o \mu \mu$	597 ± 15	97.4 ± 2.7	4.51 ± 0.15	1.49 ± 0.05	0.60 ± 0.02	_
$Z \to \tau \tau$	530 ± 14	115.0 ± 3.3	8.31 ± 0.28	0.90 ± 0.04	0.40 ± 0.02	2.10 ± 0.08
$Z \rightarrow \nu \nu$	192800 ± 2100	67400 ± 1000	7000 ± 170	1180 ± 40	534 ± 20	126 ± 6
VBFZ + jets	3900 ± 500	2170 ± 310	370 ± 60	86 ± 17	45 ± 10	13.7 ± 3.3
single-t	2800 ± 700	550 ± 180	15 ± 8	_	_	_
$t\bar{t}$	8900 ± 700	2000 ± 150	100 ± 8	8.2 ± 1.0	2.4 ± 0.4	0.30 ± 0.05
Diboson	6200 ± 1000	2700 ± 500	350 ± 70	71 ± 15	33 ± 8	_
Multijet	1100 ± 1100	57 ± 57	0.6 ± 0.6	0.1 ± 0.1	_	_
Noncollision background	240 ± 240	46 ± 46	8 ± 8	6 ± 6	-	-
SUSY, $m(\tilde{t}, \tilde{\chi}^0) = (600, 580) \text{ GeV}$	562 ± 70	516 ± 60	159 ± 19	44 ± 6	28 ± 4	8.2 ± 1.1
DMA, $m(\chi, Z_A) = (1, 2000)$ GeV	770 ± 30	684 ± 27	212 ± 9	79 ± 4	47.9 ± 2.3	18.7 ± 1.1
Dark energy, $M_2 = 1486 \text{ GeV}$	286 ± 7	320 ± 11	125 ± 7	52 ± 5	33.6 ± 3.2	14.6 ± 1.8

ATLAS, 2102.10874, 139 fb⁻¹

From the paper: "Values of $\sigma \times A \times \epsilon$ above 736 fb (for IM0) and above 0.3 fb (for IM12) are excluded at 95% CL."

We'd need to compute A, ϵ for our model. But they should be O(10^{-2,-3}) and hence comparable with those from single s production from last slide.

Parametrization and constraints (III)

This coefficient enters only in the χ_1 decay, then $\tau(\chi_1) = \tau = f(C_{\chi\chi\gamma}/\Lambda, m_{\chi 1}, m_{\chi 0})$. So use τ instead of $\chi\chi\gamma$ coupling!

Note: in the current Pythia simulation we force the $\chi 1 -> \chi 0 \gamma$ decay using oneChannel. This might not give the required tensor structure (need to read and think about it!).

- -We can always make a MG5 model and then shower the parton level events with Pythia.
- -I recall Gareth saying Pythia lifetime does not agree with the estimation of 2301.05252, this ought to be checked.

```
! 5) Process selection
Higgs:useBSM = on
HiggsBSM:allH2 = on
35:m0 = 600.
1000023:m0 = 300.0
1000022:m0 = 247.5
1000023:tau0 = 7500
1000022:mayDecay = off ! this line is probably not necessary. Better safe than sorry
! Force H0 > N2 N2, N2 > N1 gamma decays
35:oneChannel = 1 1.000 100 1000023 1000023
1000023:oneChannel 1 1.000 100 1000022 22
```

except the coupling not being too large (unitarity)