

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 1

Название:	Синхронные одност	упенчатые тригг	еры со статическим	И
	динамическим управ	лением записью	-	

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-46Б	03.03.2021	Д.А. Ивахненко
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А.Ю. Попов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы

Изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

1. Асинхронный RS-триггер с инверсными входами в статическом режиме

Рисунок 1. Схема асинхронного RS-триггера в статическом режиме.

S	R	Q_n	Q_{n+1}	Режим
0	0	0	0	Хранение
0	0	1	1	
0	1	0	0	0
0	1	1	0	
1	0	0	1	1
1	0	1	1	
1	1	0	X	Запрещенное
1	1	1	X	состояние

Таблица 1. Таблица переходов асинхронного RS-триггера в статическом режиме

Получается, что S всегда устанавливает триггер в состояние единицы, а R устанавливает в состояние нуля. Одновременная подача S и R запрещена.

2. Синхронный RS-триггер в статическом режиме

Рисунок 2. Схема синхронного RS-триггера в статическом режиме

C	S	R	Q_n	Q_{n+1}	Режим
0	~	~	0	0	
0	~	~	1	1	Хранение
1	0	0	0	0	
1	0	0	1	1	
1	0	1	0	0	0
1	0	1	1	0	
1	1	0	0	1	1
1	1	0	1	1	
1	1	1	0	X	Запрещенное
1	1	1	1	X	состояние

Таблица 2. Таблица переходов синхронного RS-триггера в статическом режиме

Вход $\mathcal C$ позволяет контролировать сигнал, поступающий в триггер.

3. D-триггер в статическом режиме

Рисунок 3. Схема D-триггера в статическом режиме

C	D	Q_n	Q_{n+1}	Режим
0	~	0	0	Хранение
0		1	1	
1	0	0	0	0
1	0	1		
1	1	0	1	1
1	1	1		

Таблица 3. Таблица переходов D-триггера в статическом режиме

Заметим, что, когда синхронизирующий вход равен 1, текущее значение D отбирается и сохраняется. Сохраненное значение всегда доступно на выходе Q. Чтобы загрузить в память текущее значение D, нужно пустить положительный импульс по линии синхронизирующего сигнала.

4. Синхронный D-триггер с динамическим управлением

Рисунок 4. Схема синхронного D-триггера с динамическим управлением

D	C	Q_{n-1}	Q_n
~	0 OR 1	0	0
		1	1
0	Switch	0	0
0	[0 to 1]	1	0
1		0	1
1		1	1
0	Switch	0	0
0	[1 to 0]	1	1
1		0	0
1		1	1

Таблица 4. Таблица переходов синхронного D-триггера с динамическим управлением

В такой схеме, смена состояния происходит не тогда, когда синхронизирующий сигнал равен 1, а при переходе синхронизирующего сигнала с 0 на 1 (фронт) или с 1 на 0 (спад). То есть особенностью синхронных триггеров с динамическим управлением является то, что они запускаются перепадом, а не уровнем сигнала.

5. Синхронный DV-триггер с динамическим управлением

Рисунок 5. Схема синхронного DV-триггера с динамическим управлением

Рисунок 6. Показатели Logic Analyzer для синхронного DV-триггера с динамическим управлением

При ${\bf V}={\bf 1}$ DV-триггер работает по правилам D-триггера, то есть при изменении C (0 на 1) происходит смена состояния в соответствии с текущим значением D.

При V = 0 DV-триггер сохраняет свое состояние неизменным – хранит информацию независимо от состояния D.

6. DV-триггер, включенный по схеме TV-триггера

Рисунок 7. Схема DV-триггера, включенного по схеме TV-триггера

Рисунок 8. Показатели Logic Analyzer для DV-триггера

После поступления на вход Т-импульса, состояние триггера меняется на прямо противоположное. При поступлении второго импульса Т-триггер сбрасывается в исходное состояние.

Асинхронный Т-триггер переходит в противоположное состояние <u>каждый</u> раз при подаче на T-вход единичного сигнала. T-триггер реализует счет по модулю 2: $Q_{n+1} = T \oplus Q_n$.

Синхронный Т-триггер имеет вход C и вход T. Синхронный T-триггер переключается в противоположное состояние сигналом C, <u>если на счетном входе</u> C действует единичный сигнал.

Вывод

При выполнении этой лабораторной работы я изучил схемы, а также познакомился с принципом работы, минусами и плюсами различных синхронных и асинхронных триггеров.