AADL Security Analysis Tools

Julien Delange, Min-Young Nam Joseph Seibel

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003601

Agenda

Security Analysis Tools

Case-Study

Timeline and dissemination plan

Security Analysis Tools

New Capabilities

Attack Impact

Show vulnerabilities and their impact Similar to the FMEA for security purposes

Attack Tree

Contributors (vulnerabilities) to a successful attack Similar to FTA for safety purposes

Code Generation for seL4

Formally verified kernel focused on security

Automate generation of configuration & deployment code

Implementation Concerns

Attack Impact & Attack Tree

Built-in support in Eclipse

Graphical representation with Sirius

Automatic Generation of AI and AT from AADL models

seL4 code generation

Leverage Xtend code generation template

Rely on CAmkES (seL4 ADL)

Attack Impact Analysis Example

Drone case-study goals and objectives

Model & Analyze a cyber-physical system with AADL

Annotate the AADL model with new security properties Demonstrate use of security analysis tools

Generate runtime code for a secure runtime

Automate code production for seL4

Virtual Integration Education Platform

All tools are available publicly, EPL or BSD license Low-cost platform (total ~ \$100)

Drone case-study – functional overview

Drone case-study - implementation

10

Drone AADL model

Drone – Attack Impact

Drone – Code Generation Status

Able to generate functional code

Support for beaglebone

Support for x86, beaglebone & Nvidia Tegra K1

Need runtime support for serial and wifi drivers

SEI is investing in seL4, developing driver support

Planning to support beaglebone later this year

Dissemination plan

May 2016

Presentation of security annex and tools

Tool improvements

June 2016

Tool improvements

Legal agreements

July 2016

Publication on SEI github

Julien Delange

CMU-SEI

4500 5th avenue

Pittsburgh, PA15213

+1-412-268-9652

jdelange@sei.cmu.edu