

REHUA 15th HUAC World Congress

4th - 6th June, Milan, Italy

Decarbonized, healthy and energy conscious buildings in future climates

REHUA 15th HUAC World Congress
4th - 6th June, Milan, Italy

Decarbonized, healthy and energy conscious buildings in future climates

Generation of building performance simulation models using semantic graphs and sensor measurements

Lu Wan^{1,2}, Poria Esmaeili¹, Esben Fjerbæk³, Jan Gall¹, Torsten Welfonder¹, Ekaterina Petrova², Pieter Pauwels²

1 Advanced Energy Systems, Robert Bosch GmbH, Germany 2 Department of the Built Environment, Eindhoven University of Technology, Netherlands 3 Department of Civil and Mechanical Engineering, Technical University of Denmark, Denmark

Motivation

- Building sector: Zero-emission of greenhouse gas by 2050
- Challenge: Modeling efforts for model-based optimization
- Building Performance Simulation (BPS)
 - White-box model that predicts dynamic of the buildings
 - Benefits: Less model inputs but good accuracy
 - Drawbacks: High manual efforts, complex to build in some cases

Background

- Semantics: Machine interpretable data (Meta-data)
- RDF: Data model of the semantic web, framework for semantics

Background

Thanks to BIM2Graph project, semantic graph is already generated

Building Information Modeling of Rng 111

Generated graph for Rng 111

Semantic data required in BPS model

	Types of Information	Ontologies	Link and Abbreviation
	Building	Open-source:	
1	- Element and hierarchy - Topology	BOT, BEO, BOT-EXT BOT	1.Building Element Ontology (BEO) 2.Building Topology Ontology (BOT)
	- Property	PROPS, SOSA/SSN(-EXT), QUDT	3.Brick Schema (Brick)
2	HVAC systems - Components and hierarchy - System topology and functionality - Property - Interaction with buildings	FSO, MEP FSO, TUBES SOSA/SSN(-EXT), QUDT FSO	4. <u>Distribution Element Ontology (MEP)</u> 5. <u>Flow System Ontology (FSO)</u> 6. <u>Geo ontology (GEO)</u> 7. <u>Property Set Ontology (PROPS)</u> 8. <u>QUDT Ontology (QUDT)</u> 9. <u>Smart Energy Aware System (SEAS)</u>
3	Sensors and Actuators - Type - Property - Measurements (Timeseries and IoT)	Brick SOSA/SSN SOSA/SSN, Brick, WoT (TD & HCTL)	10. Sensor, Observation, Sample, and Actuator / Semantic Sensor Network Ontology (SOSA / SSN) 11. Web of Things Hypermedia Controls Ontology (HCTL) 12. Web of Things Things Description Onology (TD) 13. Tubes System Ontology (TSO) Extensions:
4*	Control algorithms - Control procedures - Link to the sensors and actuators	SEAS, Control SOSA/SSN	14. BOT-EXT: Extensions made to BOT 15. SSN-EXT: Extensions made to SOSA/SSN 16. Control: Extensions made to SEAS for MPC

^{*} The information not extracted from BIM

Semantic-graph-based BPS model generation

Semantic-graph-based BPS model generation

Graph2Sim Generator

Semantic-graph-based BPS model generation

- Goal: to generate white-box model for multi-zone buildings
- Library: Modelica Buildings library
- Main parameters for the "Mixed-Air Model":
 - Fluid ports
 - Heat Ports
 - Occupancy
 - Shading
 - Window opening

Mixed-Air Model in Modelica Buildings library

Graph of room A.162 (Geometry)

Graph of room A.162 (Radiator)

Templates

(1) Base model

Modelica BaseModel

(2) Validation model

Time series
Data

Modelica
BaseModel

Simulated
Results
(T, CO₂)

(3) FMU* of base model

Demonstration of automated toolchain

Case study and results

Floor plan RNG 111/1

*R9, R10, R11, and R12 do not have enough sensor data

Toolchain validation: model generation

RNG 111/1 Modelica BaseModel

- The model is automatically created using toolchain, with following assumptions:
 - No Infiltration and zonal flow exchange (Constant pressure)
 - Doors are fully closed
 - Exterior shade based on radiation

Model validation: Simulation of generated model

Simulation of 12 zones (RNG 111/1) for 2 years (2022-2023)

- 22k scalar equations
- Simulation time: $4.97e+4 s \approx 14 h$

Preliminary evaluation of temperature

RMSE of A160 = 1.28°C

RMSE of A162 = 1.08° C

RMSE of OpOff 2= 1.98°C

RMSE of A149 = 1.47° C

RMSE of A155 = 1.47°C

RMSE of OpOff 1= 1.86°C

RMSE of A108 = 1.97°C

Plausible temperature result with all RMSE < 2 °C

Preliminary evaluation of CO₂

- Plausible CO₂ result with RMSE = 25 PPM for A160
- CO₂ sensor calibration

Conclusion and outlook

Conclusion

- RDF-based data exchange streamlines BPS models for the operation stage
- Development of Modelica templates for multi-zone model
- Plausible simulation results of temperature and CO₂ prediction

Outlook

- Further validation and calibration of the generated models
- Using the generated model for designing optimal controllers
- Templates development e.g. Air Handling Unit (AHU)

REHUA 15th HUAC World Congress

4th - 6th June, Milan, Italy

Thank you for your kind attention

Authors contacts: e-mail address

REHUA 15th HUAC World Congress

4th - 6th June, Milan, Italy

Follow us on

climaworldcongress.org

