Building Enterprise-Ready Data Platforms: Core Handbook

This core handbook provides a high-level overview of building enterprise-ready data platforms, focusing on the fundamental principles, architectural choices, and the progressive path to a robust data ecosystem. It's designed for busy engineers and executives who need a concise understanding of the platform's purpose, structure, and key decision points without wading through exhaustive technical details.

1. Purpose and Introduction

This guide is meticulously crafted for experienced Data Engineers and Senior Software Engineers tasked with modernizing enterprise data ingestion stages. It provides a practical, hands-on approach to building a robust local development environment that mirrors a scalable, production-grade data platform. The focus is on developing Python-based ETL pipelines for disparate data sources, including simple financial and insurance data, emphasizing modern architectural patterns and best practices.

1.1. Why a Robust Local Environment?

A robust local development environment is paramount for building enterprise-ready data platforms. It enables rapid iteration, extensive testing, and critical skill development without incurring cloud costs or dependencies. This approach significantly de-risks subsequent cloud deployments, accelerates development cycles, and allows engineers to experiment with complex distributed systems in a controlled, isolated setting.

From a business perspective, this translates directly into:

- Faster Time-to-Value: Rapid prototyping and local testing accelerate the delivery of new data products and features.
- Reduced Cloud Spend: Significant cost savings during the development and testing phases by minimizing reliance on expensive cloud resources.
- Enhanced Audit Trails & Compliance Readiness: A controlled environment facilitates
 the implementation and testing of governance features from day one, bolstering
 compliance efforts.

For more in-depth coverage of testing strategies, refer to the **Testing & Observability Patterns Deep-Dive Addendum**. For details on automating deployments, see the **IaC & CI/CD Recipes Deep-Dive Addendum**.

1.2. The Progressive Complexity Path

To avoid the "all-or-nothing" overwhelm often associated with complex data platforms, this guide introduces a "Progressive Complexity" path. Engineers can ramp up feature-by-feature, mastering core components before integrating more advanced elements. This structured approach:

- **Reduces Cognitive Load:** By introducing components incrementally, engineers can focus on understanding one set of interactions at a time.
- **Accelerates Learning:** Hands-on experience with foundational elements provides a solid base for more complex systems.
- Facilitates Skill Development: Engineers can gradually build expertise across the entire data platform stack.
- **Enables Flexible Development:** Teams can choose the appropriate track based on their current project needs and scale requirements.

The tracks are designed as follows:

- **Starter Track:** Focuses on a minimal, single-machine setup for foundational data ingestion and storage. Perfect for initial prototyping and simple use cases.
- Intermediate Track: Introduces real-time streaming capabilities with Apache Kafka and distributed processing with Apache Spark. Ideal for addressing real-time data needs and scaling transformations.
- Advanced Track: Integrates the full suite of tools for comprehensive orchestration, lineage, observability, and metadata management, culminating in a production-grade local environment. This is for building highly robust and governable data platforms.

For a detailed setup guide for each of these tracks, refer to the **Progressive Path Setup Guide Deep-Dive Addendum**.

1.3. Embracing the Modern Data Engineer Role

Data ingestion represents the critical first step in any data-driven organization, transforming raw, disparate data into actionable insights. This document explores both ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform) methodologies, highlighting their application in different scenarios. By replicating a production-like setting locally—simulating AWS Lambdas with SAM, alongside distributed components like Apache Spark and Apache Kafka—this guide empowers practitioners to ensure smooth transitions and reduced friction when deploying solutions to the cloud.

Furthermore, the comprehensive scope of this guide, encompassing Python, Docker, distributed systems, observability, data lineage, and machine learning (ML) elements, reflects a significant evolution in the role of a data engineer. This expanded scope moves beyond traditional data movement tasks to encompass broader responsibilities in system design, operational excellence, and leveraging advanced analytics. The task of rewriting a data ingestion stage for a large company, involving several disparate data sources, inherently implies a need for handling complexity and scale. This guide aims to empower the practitioner to demonstrate this expanded skill set, beneficial not just for platform builders but also for data scientists and analysts who will consume data from it. For a deeper dive into these areas, please refer to the respective deep-dive addendums: IaC & CI/CD Recipes, Testing & Observability Patterns, DR & Runbooks, and Cloud Migration + Terraform Snippets.

2. Executive Summary: Platform Pitch & ROI

This section provides a high-level overview of the proposed data platform, designed for

internal pitching to stakeholders, highlighting key benefits and estimated returns on investment.

Building an Enterprise-Ready Data Platform: Strategic Imperative

- **Problem:** Our current data infrastructure struggles with diverse, high-volume data ingestion, real-time analytics, and comprehensive data governance, leading to slow insights, high operational costs, and compliance risks.
- **Solution:** Implement a modern, scalable, and observable data platform leveraging open-source technologies for a robust local development environment, seamlessly transitioning to a cost-efficient cloud-native architecture.

Key Business Benefits & ROI:

Benefit Area	Current State	Platform Impact	Estimated ROI /	
	Challenge		Metrics	
Faster Time-to-Value	Manual setup, slow	~30% faster feature	Reduce feature	
	iteration cycles	delivery due to robust	delivery time by 3-4	
		local dev & CI/CD.	weeks/quarter.	
		Reduces developer	Accelerate new data	
		onboarding from	product launches.	
		weeks to days.		
Reduced Cloud Spend			Anticipated	
	utilization in dev/test	dev/test cloud costs by	\$50K-\$150K annual	
		shifting workloads	savings in	
		locally. Optimized	non-production cloud	
		cloud resource scaling.	infrastructure.	
Improved Data Quality		Automated schema	Decrease data-related	
			incidents by 50%,	
			ensuring reliable	
		quality checks (e.g.,	insights and reporting.	
		Great Expectations).		
	Scattered data, unclear		Streamline audit	
& Audit	lineage, manual audits	_	preparation by 70%,	
		(OpenMetadata),	reducing compliance	
		automated lineage	burden and risk	
		(Spline), and robust	penalties.	
		access controls.		
Operational Efficiency		Proactive monitoring	Reduce Mean Time To	
	resolution, alert fatigue		Resolution (MTTR) by	
		SLIs/SLOs, and	40% for data-related	
		structured incident	incidents. Lower	
		response (DR	operational overhead.	
		Playbook).		
Scalability &	Monolithic systems,	Modular, distributed	Support 5x data	
Future-Proofing	limited real-time	architecture (Kafka,	growth over 3 years	

capabilities	Spark, Delta Lake) built	without major
	for petabyte scale and	re-architecture. Enable
	real-time processing.	new real-time use
		cases (e.g., fraud
		detection).

For more details on CI/CD benefits, refer to the IaC & CI/CD Recipes Deep-Dive Addendum. For insights into data quality, operational efficiency, and observability, see the Testing & Observability Patterns Deep-Dive Addendum. For information on disaster recovery and MTTR, consult the DR & Runbooks Deep-Dive Addendum.

Project Milestones (Conceptual):

- Q3 202X: Establish core local dev environment (Starter & Intermediate Tracks).
- Q4 202X: Implement full Advanced Track locally, complete initial CI/CD pipelines.
- Q1 202Y: Pilot AWS migration for a critical data ingestion pipeline.
- Q2 202Y: Full production rollout on AWS.

For detailed guidance on cloud migration, see the **Cloud Migration + Terraform Snippets Deep-Dive Addendum**.

Ask: Secure resources for dedicated engineering focus to implement this strategic platform modernization, unlocking significant business value and long-term capabilities.

3. The Progressive Path to an Enterprise Data Platform

This section details the step-by-step approach to building the local data platform, starting simple and progressively adding complexity. Each track builds upon the previous one. For a detailed setup guide for each of these tracks, including docker-compose.yml configurations, refer to the **Progressive Path Setup Guide Deep-Dive Addendum**.

3.1. Starter Track: Minimal Single-Machine Setup

The starter track provides the bare essentials for data ingestion and structured storage, ideal for rapid prototyping and understanding fundamental data flow. This minimal setup requires low computational resources and serves as an excellent entry point for engineers new to the platform.

Components:

- **FastAPI:** A lightweight, high-performance web framework for building data ingestion APIs.
- PostgreSQL: A robust relational database for structured data and API-specific metadata.
- MinIO (as File-based Delta Lake): An S3-compatible object storage server, simulating a data lake where immutable Delta Lake files reside.

Key Learnings:

- API Design: How to create secure and well-documented endpoints for data reception using FastAPI.
- Database Interaction: Storing and retrieving structured data efficiently with

- PostgreSQL.
- **Object Storage Basics:** Understanding the S3-compatible interface for local data lake operations with MinIO.
- **Containerization Fundamentals:** Running individual services in isolated Docker containers.
- **Direct Storage Patterns:** Simple ETL/ELT patterns where data is written directly to a database or object store.

3.2. Intermediate Track: Adding Streaming Capabilities

This track expands the platform to handle real-time data streams and distributed transformations. It introduces two powerful, industry-standard components that form the backbone of many modern data architectures.

Components (in addition to Starter):

- **Apache Kafka:** A distributed streaming platform for high-throughput, fault-tolerant real-time data ingestion and event streaming. It decouples producers from consumers.
- Apache Spark: A powerful, distributed processing engine for large-scale data transformations, supporting both batch and streaming workloads. It will consume data from Kafka and write to Delta Lake.

Key Learnings:

- **Asynchronous Ingestion:** Decoupling producers and consumers using a message broker like Kafka for resilience and scalability.
- **Distributed Stream Processing:** Consuming from Kafka and writing to Delta Lake with Spark Structured Streaming, enabling near real-time data pipelines.
- **Data Lakehouse Concepts:** Implementing ACID transactions, schema enforcement, and time travel capabilities with Delta Lake on object storage.
- Scaling Data Pipelines: Understanding the basics of distributed systems and how Spark partitions and processes data across workers.

3.3. Advanced Track: The Full Production-Ready Stack

The advanced track integrates robust solutions for orchestration, observability, lineage, and metadata management, simulating a comprehensive enterprise-grade platform. This track represents the complete vision for the local development environment, providing all the tools necessary for building, monitoring, and governing complex data ecosystems.

Components (in addition to Intermediate):

- **Apache Airflow:** Workflow orchestrator for scheduling and managing complex data pipelines and their dependencies.
- OpenTelemetry & Grafana Alloy: Standardized telemetry collection and forwarding, enabling comprehensive monitoring.
- **Grafana:** Interactive data visualization and monitoring dashboards for operational insights.
- **Spline:** Automated data lineage tracking specifically for Spark jobs, providing visibility into data transformations.
- OpenMetadata: Comprehensive metadata management and data cataloging,

- consolidating information from various sources.
- **MongoDB:** A flexible NoSQL document database, suitable for semi-structured data or specific application use cases requiring schema flexibility.
- **cAdvisor:** Container resource usage and performance analysis agent, providing metrics for Grafana.

Key Learnings:

- Orchestration Mastery: Managing complex workflows and dependencies with Airflow, including scheduling Spark jobs and metadata ingestion tasks.
- End-to-End Observability: Gaining deep insights into system health, performance, and bottlenecks using OpenTelemetry, Grafana Alloy, Grafana, and cAdvisor. For detailed patterns, refer to the Testing & Observability Patterns Deep-Dive Addendum.
- Data Lineage & Governance: Tracking data transformations with Spline and providing a unified data catalog for discovery, understanding, and compliance with OpenMetadata.
- Comprehensive Data Management: Integrating diverse data stores (relational, NoSQL, object storage) and tools for a holistic, enterprise-ready data platform.

4. Foundational Architecture & Core Technologies

This section provides a concise, high-level overview of the platform's architecture and the core technologies integrated into the local data platform, outlining each component's primary function and contribution to the overall scalable system. Docker Compose is the pivotal tool for managing the interdependencies and orchestration of this complex local data stack, simplifying the simulation of distributed systems. For the full docker-compose.yml and project structure, refer to the IaC & CI/CD Recipes Deep-Dive Addendum.

The proposed architecture transforms data pipelines into a scalable, distributed system, adopting the "data lakehouse" paradigm. By leveraging Delta Lake as the primary storage layer, the architecture creates a unified solution for both raw and curated data, simplifying the system, reducing redundancy, minimizing data movement, and ensuring data consistency. The introduction of Apache Kafka and Spark Structured Streaming addresses the need for real-time analytics, critical for immediate analysis in security, financial, or insurance scenarios. The decoupling of ingestion from storage via Kafka significantly improves the resilience and availability of the ingestion layer by buffering events and preventing backpressure.

4.1. Architectural Overview

The platform is logically divided into several layers:

- **Ingestion Layer:** The entry point for all raw data, handling external data sources and publishing to a streaming buffer.
- **Processing Layer:** Where data is transformed, cleansed, validated, and modeled using distributed computing.
- **Storage Layer (Data Lakehouse):** The unified, reliable repository for all data states (raw, curated), providing ACID properties and flexible schema management.

- **Analytical Layer:** Facilitates querying, reporting, and advanced analytics, including machine learning model training and inference.
- Orchestration & Governance Layer: Manages workflow scheduling, ensures data quality, provides end-to-end observability, and offers a centralized data catalog with lineage capabilities.

For a detailed mapping of local components to AWS cloud services, refer to the **Cloud Migration + Terraform Snippets Deep-Dive Addendum**.

```
Here is a PlantUML diagram illustrating the architectural overview:
@startuml
!theme toy
skinparam componentStyle uml2
' Define Actors/External Systems
actor "Disparate Data Sources\n(e.g., Financial, Insurance Systems)" as data sources
' Define Layers/Zones
rectangle "Ingestion Layer" {
  component "FastAPI Ingestor" as fastapi ingestor
  queue "Apache Kafka\n(Raw Data Topic)" as kafka topic
}
rectangle "Processing Layer" {
  component "Apache Spark Cluster" as spark cluster
  rectangle "Spark Structured Streaming\n(Raw Data Consumer)" as spark raw consumer
  rectangle "PySpark Transformation Job\n(ELT/Batch)" as spark transform
  spark cluster -- spark raw consumer
  spark cluster -- spark transform
}
rectangle "Storage Layer (Data Lakehouse)" {
  database "MinIO (S3 Compatible)\n(Delta Lake Raw Zone)" as minio raw
  database "MinIO (S3 Compatible)\n(Delta Lake Curated Zone)" as minio curated
  database "PostgreSQL\n(Structured Data/Metadata)" as postgres db
  database "MongoDB\n(Semi-Structured Data)" as mongodb db
  minio raw <--> minio curated: "Delta Lake"
}
rectangle "Orchestration & Governance Layer" {
  cloud "Apache Airflow" as airflow
  component "OpenTelemetry" as opentelemetry
  component "Grafana Alloy\n(OTLP Collector)" as grafana alloy
  database "OpenMetadata\n(Data Catalog)" as openmetadata
  component "Spline\n(Spark Lineage)" as spline
```

```
component "Grafana\n(Monitoring & Visualization)" as grafana
  component "cAdvisor\n(Container Metrics)" as cadvisor
}
rectangle "Analytical Layer" {
  component "Spark SQL / MLlib Analytics" as spark analytics
}
' Data Flow
data sources --> fastapi ingestor : "Send Data (HTTP/S)"
fastapi ingestor --> kafka topic: "Publish Data (JSON/Protobuf)"
kafka topic --> spark raw consumer: "Consume Stream"
spark raw consumer --> minio raw: "Write to Raw Zone"
minio raw --> spark transform: "Read Raw Data"
spark transform --> minio curated : "Write Curated Data (MERGE)"
minio curated --> spark analytics: "Query for Analytics"
postgres db <--> spark transform : "Dim Data / Metadata"
mongodb db <--> spark transform: "Semi-Structured Data"
spark analytics --> data sources: "Insights/Reports"
' Observability Flow
opentelemetry --> grafana alloy: "Telemetry Data (Traces, Metrics, Logs)"
fastapi ingestor .. opentelemetry: "Instrumented"
spark cluster .. opentelemetry: "Instrumented"
airflow .. opentelemetry: "Instrumented"
cadvisor --> grafana alloy: "Container Metrics"
grafana alloy --> grafana: "Forward to Grafana"
grafana alloy --> openmetadata: "Forward Metadata/Telemetry"
spark cluster --> spline : "Capture Lineage"
spline --> openmetadata: "Send Lineage Metadata"
airflow --> spark cluster: "Orchestrate Jobs"
airflow --> openmetadata: "Orchestrate Metadata Ingestion"
openmetadata <--> grafana : "Share Metadata/Context"
@enduml
```

4.2. Core Technology Deep Dive

The following summarizes the key technologies and their roles within this platform, directly correlating to the services defined in the docker-compose.yml. For the complete docker-compose.yml and detailed setup instructions, refer to the IaC & CI/CD Recipes Deep-Dive Addendum. For cloud-native replacements and their Terraform snippets, see the Cloud Migration + Terraform Snippets Deep-Dive Addendum.

• Apache Airflow: Workflow orchestrator for scheduling, monitoring, and managing

- complex data pipelines and dependencies, including Spark jobs. Provides a robust framework for defining complex data pipelines as Directed Acyclic Graphs (DAGs).
- Apache Kafka: A distributed streaming platform designed for building real-time data pipelines and streaming applications. It serves as a durable buffer for raw event streams, decoupling ingestion from downstream processing.
- Apache Spark: A powerful, distributed processing engine for large-scale data transformations (ELT), supporting both batch and streaming workloads with PySpark. It reads from Kafka and Delta Lake.
- AWS SAM CLI: (Serverless Application Model Command Line Interface) Enables local development and testing of AWS Lambda functions, simulating the serverless environment.
- **cAdvisor:** (Container Advisor) A running daemon that collects, aggregates, processes, and exports information about running containers, providing performance metrics to Grafana.
- **Delta Lake:** An open-source storage layer that brings ACID transactions, schema enforcement, and time travel capabilities to data lakes, unifying batch and streaming data processing within Spark.
- Docker/Docker Compose: Essential for containerization and orchestration of all services in this local development environment, ensuring isolated, reproducible, and portable environments.
- **FastAPI:** A modern, high-performance web framework for building data ingestion APIs with Python 3.7+, offering automatic interactive documentation (Swagger UI). It acts as a Kafka producer.
- **Grafana Alloy:** An OpenTelemetry Collector distribution that is highly configurable and optimized for collecting, processing, and exporting telemetry data (metrics, logs, traces). It acts as a central hub for observability data.
- **Grafana:** An open-source platform for interactive data visualization and monitoring. It is used to create dashboards and visualize metrics and traces.
- **MinIO:** An open-source object storage server that is compatible with Amazon S3 APIs. It simulates an S3-compatible data lake locally.
- **MongoDB:** A popular open-source NoSQL document database. It provides flexible storage for semi-structured data.
- **OpenMetadata:** An open-source metadata management platform that provides a unified data catalog, data lineage, and data quality capabilities, enabling data discovery and governance.
- OpenTelemetry: A set of open-source tools, APIs, and SDKs that standardize the
 collection and export of telemetry data (metrics, logs, and traces) from software
 applications.
- **PostgreSQL:** A powerful, open-source object-relational database system, serving as a robust SQL datastore for structured data, reference data, and the metadata database for Apache Airflow.
- **Python:** The primary programming language for all ETL pipelines, APIs, scripting, and machine learning components.

• **Spline:** An open-source tool specifically designed for automated data lineage tracking within Apache Spark jobs. It captures metadata about Spark transformations and provides a UI for visualizing data flow.

4.3. Decision Frameworks for Technology Choices

Choosing the right tool for the job is critical. Here, we present frameworks to guide your architectural decisions.

4.3.1. ETL vs. ELT

The choice between ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform) depends on your specific needs regarding data volume, latency, and team capabilities.

Feature / Criteria	ETL (Extract, Transform,	ELT (Extract, Load,	
	Load)	Transform)	
Data Volume	Better for smaller, more	Ideal for large, unbounded	
	controlled datasets	datasets (petabytes to	
		exabytes)	
Latency Needs	Typically batch-oriented,	Suited for real-time or near	
	higher latency acceptable	real-time, lower latency	
		required	
Transformation Logic	Performed before loading into	Performed after loading into	
	target; requires dedicated	the data lake; leverages	
	staging area	lakehouse compute	
Tooling	Traditional ETL tools (Talend,	Cloud data warehouses	
	Informatica), custom scripting	(Snowflake, BigQuery), Spark,	
		Databricks, Glue	
Team Skills	May lean towards SQL/ETL too	Strong programming	
	expertise	(Python/Scala) and distributed	
		systems knowledge	
Cost Model	Fixed infrastructure for ETL	Scalable compute (Spark,	
	tools; less flexible scaling	cloud DWs); compute cost	
		scales with usage	
Schema Flexibility	Schema-on-write, stricter	Schema-on-read, more	
	schema enforcement	flexible, handles schema	
		evolution better	

Recommendation: For modern enterprise data platforms dealing with diverse and high-volume data, **ELT with a data lakehouse (like Delta Lake + Spark)** is generally preferred due to its scalability, flexibility, and ability to handle both batch and streaming workloads efficiently. ETL still holds value for highly structured, pre-defined integrations into traditional data warehouses.

4.3.2. Messaging Queues: Kafka vs. Kinesis vs. Pub/Sub

Choosing a streaming platform depends on your operational overhead tolerance, specific features, and cloud strategy.

Feature / Criteria	Apache Kafka	AWS Kinesis	Google Cloud
	(Self-Managed)		Pub/Sub
Throughput/Scale	Extremely high; scales	High; scales with	Very high; scales
	horizontally with	shards	automatically
	brokers and partitions		
Operational Overhead	High (requires	Medium (managed	Low (fully managed,
	managing Zookeeper,	service, but shard	serverless, no
	brokers, maintenance)	management is	infrastructure to
		manual)	manage)
Cloud Lock-in	Low (open-source,	High (AWS-specific)	High (Google
	portable across		Cloud-specific)
	clouds/on-prem)		
Pricing Model	Infrastructure costs +	Per shard-hour, data	Per message operation
	operational expertise	transfer, and data	(publish/subscribe),
		ingested/egressed	data transfer
Feature Set	Rich ecosystem (Kafka	Data Firehose	Global access,
	Connect, Streams API);	(integrations), Data	automatic scaling,
	flexible	Analytics (real-time	robust IAM integration
		SQL)	
Use Case Sweet Spot	Hybrid/multi-cloud,	AWS-native streaming,	Google Cloud-native,
	complex streaming	tight integration with	event-driven
	apps, full control	other AWS services	architectures, simple
	needed		messaging

Recommendation: For a local development environment, **Apache Kafka** is chosen due to its open-source nature, comprehensive feature set, and high relevance in the industry, which prepares engineers for diverse production environments. For cloud deployments, the choice shifts based on your primary cloud provider and operational preferences. For detailed cloud migration strategies for messaging queues, refer to the **Cloud Migration + Terraform Snippets Deep-Dive Addendum**.

4.3.3. Distributed Processing: Spark vs. Glue/EMR vs. Flink

Choosing a distributed processing engine depends on your workload (batch vs. streaming), cost model, and management preference.

Feature / Criteria	Apache Spark	AWS Glue	Amazon EMR	Apache Flink
	(Self-Managed/O	(Serverless ETL)	(Managed	(Stream
	pen Source)		Clusters)	Processing)

Workload Focus	Both Batch &	Primarily Batch	Both Batch &	Primarily
	Streaming	ETL, can do	Streaming	Real-time
	(Structured	micro-batch	(various engines)	Streaming
	Streaming)	streaming		_
Cost Model	Infrastructure +	Serverless,	Instance-based	Infrastructure +
	operational	pay-per-use	pricing, cluster	operational
	overhead; flexible	(DPUs/duration)	management costs	overhead; flexible
Resource Isolation		Automatic, jobs are isolated	Cluster-level isolation	Fine-grained resource control, low-latency stateful
				processing
Management	High (setup,	Low (fully	Medium	High (setup,
Overhead	maintenance, scaling)	managed, no servers to provision)	(managed, but cluster configuration and lifecycle remain)	maintenance, scaling)
Development	PySpark/Scala/Jav	PySpark/Scala;	PySpark/Scala/Jav	Java/Scala;
Experience	a; high control, rich APIs	managed environment; integrates with Data Catalog	a; integrates with other AWS services	complex stateful processing APIs, event-time processing
Use Case Sweet	Diverse	Ad-hoc ETL,	Big data analytics,	Real-time
Spot	workloads, fine-grained control, on-prem/hybrid cloud	event-driven jobs, data lake transformations	ad-hoc queries, transient/long-run ning clusters	dashboards, fraud detection, complex event processing

Recommendation: For the local environment, **Apache Spark** is chosen because it offers flexibility for both batch and streaming, a rich PySpark API, and a broad industry presence. This provides a strong foundation for understanding distributed processing patterns before transitioning to managed cloud services. In the cloud, the choice shifts based on whether serverless ETL (Glue) or more controlled cluster management (EMR) is preferred for Spark workloads, or if pure low-latency stream processing (Flink) is the priority. For conceptual Terraform snippets for Glue and EMR, refer to the **Cloud Migration + Terraform Snippets Deep-Dive Addendum**.