INF01118 – Técnicas Digitais para Computação : AP10

Professor Fernando R. Nascimento - 2010/2

Objetivos: Projeto, implementação e simulação de multiplicadores de 4*4 bits usando:
(a) soma e deslocamentos e (b) estrutura tipo paralela, com o Espresso e o MaxPlus II.

Atividades:

A - Projetar, especificar (esquemático) e simular um multiplicador paralelo usando somas e deslocamentos de 4*4 bits. Como entradas temos A (4 bits) x B (4 bits) e saída S (8 bits). O projeto dos meio-somadores e somadores completos não precisa ser apresentado.

				a3	a2	a1	a0
				<u>x b3</u>	b2	b1	b0
				a3.b0	a2.b0	a1.b0	a0.b0
			a3.b1	a2.b1	a1.b1	a0.b1	
		a3.b2	a2.b2	a1.b2	a0.b2		
+	a3.b3	a2.b3	a1.b3	a0.b3			
S7	S6	S 5	S4	S3	S2	S1	S0

Figura – Representação da multiplicação paralelo de 4x4 bits.

- **B Projetar, especificar (VHDL) e simular um multiplicador paralelo (SDPs) de 4*4 bits.** Como entradas temos **A** (4 bits) x **B** (4 bits) e saída **S** (8 bits). Usar a ferramenta **Espresso** para sintetizar as equações lógicas. Apresentar o programa e o resultado do **Espresso**. Atenção, os dados de entrada estão no formato **BCD** (0-9), isso simplifica muito a construção da tabela verdade.
- C Apresente a simulação funcional para as duas técnicas, agrupando os sinais em decimal. Observe a correção dos resultados. Faça a compilação temporal e usando o Timing Analyzer, obtenha o Delay Matrix nos dois casos (apresentar no relatório), compare os atrasos máximos encontrados em cada caso. Comparar as duas técnicas de implementação ainda sob os seguintes aspectos: (1)_complexidade, (2)_área e (3)_tempo de resposta. Para tanto monte uma tabela auxiliar com as quantidades dos totais de portas logicas (de mesmo tipo e número de entradas) e dos totais gerais.
- **D Enviar ao professor, ainda hoje, email com assunto: AP10X, nome_alunos.** Arquivar e comprimir com formato Zip todos os arquivos feitos em aula (arquivos do MaxPlus, programa Espresso, tabelas, figuras e textos).

Roteiro do Relatório:

- 1. No topo da pagina inicial, escrever: código do laboratório (AP10), data, nome(s), matrícula(s) e turma.
- 2. Introdução: parágrafo explicativo sobre o assunto do laboratório e do relatório.
- 3. Apresentação detalhada do algoritmo (diagrama em blocos) mostrando como as somas foram agrupadas em somas parciais e totais. Apresentar também as tabelas, programa e resultado do Espresso, o código VHDL, e da simulação para as duas técnicas, que demonstrem o correto funcionamento dos multiplicadores. Na simulação os sinais devem ser agrupados em decimal, para fácil visualização da correção do multiplicador.
- 4. Conclusões: interesse no laboratório, dificuldades e sugestões.