Integrating Quantum Synergistics and Machine Learning: A Transformative Approach to Drug Discovery

Krishna Sayori Deb, Shail Shah

Stevens Institute of Technology

- Drug Discovery Basics
- Classical Machine Learning
- Quantum Machine Learning
- Classical vs Quantum
- 6 References

- Drug Discovery Basics
- Classical Machine Learning
- Quantum Machine Learning
- 4 Classical vs Quantum
- References

Drug Discovery

How do we design a drug?

¹Y. Zhang et al. (2022). "Application of Computational Biology and Artificial Intelligence in Drug Design". In: International Journal of Molecular Sciences.

QM9 Dataset

Figure: Around 130k Data points, Here, only HOMO and LUMO value prediction tasks are considered

Krishna Sayori Deb, Shail Shah (Stevens Inst

²https://huggingface.co/datasets/HR-machine/QM9-Dataset/viewer.

- Drug Discovery Basics
- Classical Machine Learning
- Quantum Machine Learning
- 4 Classical vs Quantum
- 5 References

Machine Learning Framework

³https://www.youtube.com/watch?v=-sxlXNz7ZxU&list=PLOFEBzvs-VvqJwybFx

Graph Neural Networks

Motivation for Quantum

- RQ1: Can quantum computers accelerate the exploration of the vast molecular space in drug discovery?
- RQ2: Do quantum computers, leveraging qubits and quantum mechanical phenomena, offer any advantages in learning from scientific data compared to classical machine learning models?

- Drug Discovery Basics
- Classical Machine Learning
- Quantum Machine Learning
- 4 Classical vs Quantum
- 6 References

Variational Quantum Circuits

⁴Runqiu Shu et al. (2023). "Variational Quantum Circuits Enhanced Generative Adversarial Network". In: arXiv preprint arXiv:2308.11062.

Quantum Data Encoding

There are 3 Encoding Methods to encode classical data points into quantum data⁵

- Basic Encoding: Each binary string x_m is mapped to a computational basis state of N qubits. For instance, the binary string (1, 0, 1) would be mapped to the quantum state $|101\rangle$
- Angle Encoding:
 - Different from basis encoding, which is limited to binary data. Angle encoding can be used to encode real, floating-point numbers.
 - Data points are then used to rotate the state of a qubit around a specific axis on the Bloch sphere by an angle corresponding to the data. This is done by using rotation gates like Rx, Ry, and Rz, which rotate the qubit state around the X, Y, and Z axes, respectively.
- Amplitude Encoding: Represent classical data as quantum states by encoding the classical data into the amplitudes of those quantum states.

⁵Smaldone et al. 2024.

Figure: An example of quantum encoding. Individual elements of an input classical vector is used as the rotation angles of rotation Pauli X (RX) gates, creating a quantum state

⁶Ju-Young Ryu, Eyuel Elala, and June-Koo Kevin Rhee (2023). "Quantum Graph Neural Network Models for Materials Search". In: arXiv preprint arXiv:2308.11759.

Graph Features

	Feature	Explanation $ o$ Data Type
	Atomic Number	$C/N/O/F \rightarrow Integer$
Nodes	Number of Bonded Hs	$0\sim4 ightarrow Integer$
\rightarrow Non-Hydrogen Atoms	Aromaticity	$True/False \rightarrow Boolean$
	Hybridization	$sp, sp^2, sp^3 \rightarrow \text{Integer}$
Links → Bonds	Bond Type	Single/Aromatic/Double/Triple → Integer

	Atomic Number	Atomic Number and Number of Hydrogens	Atomic Number, Aromaticity, and Hybridization
RY Rotation Angle	$z = 4 \to 0,$ $z = 5, 6, 7 \to cos(-1/3)$	$\frac{(2z-7)\pi}{4}$	$\frac{(2z-7)\pi}{4}$
RZ Rotation Angle	$z = 4,5 \rightarrow 0,$ $z = 6 \rightarrow 2\pi/3,$ $z = 7 \rightarrow -2\pi/3$	$\frac{2\pi n_k}{5}$	$\frac{(-1)^{s}(2h-1)\pi}{6}$

Figure: Quantum encoding methods. z is the atomic number; nh is the number of bonded hydrogen atoms; a is the aromaticity as True(1)/False(0); h is the hybridization type (sp: 1, sp2: 2, sp3: 3).

7_

⁷Ju-Young Ryu, Eyuel Elala, and June-Koo Kevin Rhee (2023). "Quantum Graph Neural Network Models for Materials Search". In: arXiv preprint arXiv:2308.11759.

Quantum Graph Neural Network

⁸Ju-Young Ryu, Eyuel Elala, and June-Koo Kevin Rhee (2023). "Quantum Graph Neural Network Models for Materials Search". In: arXiv preprint arXiv:2308.11759.

- Drug Discovery Basics
- Classical Machine Learning
- Quantum Machine Learning
- 4 Classical vs Quantum
- 6 References

Results

Results from paper⁹

- Performance: Improved accuracy over classical GNNs with similar parameters.
- **Efficiency:** Faster convergence during training, leveraging quantum advantages.
- Adaptability: Effective handling of diverse molecular structures, scalable to complex datasets.
- Robustness: Lower test loss metrics, indicating higher prediction reliability.

⁹ Ju-Young Ryu, Eyuel Elala, and June-Koo Kevin Rhee (2023). "Quantum Graph Neural Network Models for Materials Search". In: arXiv preprint arXiv:2308:11759.

Comparison Compilation

Classical vs Quantum GNNs¹⁰

- HOMO-LUMO Gap Prediction:
 - Classical MAE: HOMO = 0.99, LUMO = 0.87 (enn-s2s Gilmer et al. 2017).
 - Quantum MAE:
 - Atomic Number: 1.9975×10^{-2} Hartree.
 - Atomic Number & Hydrogens: 1.8793×10^{-2} Hartree.
 - Aromaticity & Hybridization: 2.0811×10^{-2} Hartree.
- Hybrid QGNNs: Competitive with classical models for protein-ligand binding affinity prediction.
- Quantum CNNs: Promising results for drug toxicity prediction with reduced training times.

¹⁰Anthony M. Smaldone et al. (2024). "Quantum Machine Learning in Drug Discovery: Applications in Academia and Pharmaceutical Industries". In: arXiv preprint arXiv:2405.08294.

- Drug Discovery Basics
- Classical Machine Learning
- Quantum Machine Learning
- 4 Classical vs Quantum
- Seferences

References

- Gilmer, Justin et al. (2017). "Neural Message Passing for Quantum Chemistry". In: *Proceedings of the 34th International Conference on Machine Learning*. Vol. 70. PMLR, pp. 1263–1272.
- Ryu, Ju-Young, Eyuel Elala, and June-Koo Kevin Rhee (2023). "Quantum Graph Neural Network Models for Materials Search". In: arXiv preprint arXiv:2308.11759.
- Shu, Runqiu et al. (2023). "Variational Quantum Circuits Enhanced Generative Adversarial Network". In: arXiv preprint arXiv:2308.11062.
- Smaldone, Anthony M. et al. (2024). "Quantum Machine Learning in Drug Discovery: Applications in Academia and Pharmaceutical Industries". In: arXiv preprint arXiv:2405.08294.
 - Zhang, Y. et al. (2022). "Application of Computational Biology and Artificial Intelligence in Drug Design". In: *International Journal of Molecular Sciences*.