qLearn Week 2 Mathematical Intro to Quantum Algorithms

Michael Silver ECE 2T6

UofT Quantum Computing Club

Qubits and their Mathematical Methods

In regular computers...

In Quantum Computers...

$$\operatorname{qubit\ state} 0 = egin{pmatrix} 1 \ 0 \end{pmatrix} \qquad \operatorname{qubit\ state} 1 = egin{pmatrix} 0 \ 1 \end{pmatrix}$$

$$ext{qubit state 1} = egin{pmatrix} 0 \ 1 \end{pmatrix}$$

Using Simpler Terms... (Dirac Notation)

$$|0
angle = egin{pmatrix} 1 \ 0 \end{pmatrix}$$

$$|1
angle = egin{pmatrix} 0 \ 1 \end{pmatrix}$$

Bra-Ket Notation Details

Two Key Identities

The Computational Basis

$$\langle 0|1\rangle = \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 1 \cdot 0 + 0 \cdot 1$$

$$= 0$$

Preservation of Length

$$\langle 1|1\rangle = \sqrt{\begin{pmatrix} 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}}$$

$$= \sqrt{0 \cdot 0 + 1 \cdot 1} = 1$$

Quantum Superposition

Superposition Notation in QC

$$|\psi
angle = lpha \left| 0
ight
angle + eta \left| 1
ight
angle = egin{pmatrix} lpha \ eta \end{pmatrix}$$

$$lphalpha^\star+etaeta^\star=1$$

COMPLEX NUMBERS

The Idea of Superposition

Where the Advantage Comes In

A Note on Qubit Measurement

IMPORTANT: MEASURING A QUBIT COLLAPSES ITS SUPERPOSITION!!!!!!!!

Prob(measure and observe $|0\rangle$) = $|\alpha|^2 = \alpha\alpha^*$

Prob(measure and observe $|1\rangle$) = $|\beta|^2 = \beta\beta^*$

I LOVE HOMEWORK! Example Time

$$|\psi
angle=rac{1}{2}|0
angle-rac{\sqrt{3}i}{2}|1
angle \ |rac{1}{2}|+|rac{\sqrt{3}i}{2}|=1$$

State is Normalized

$$-\frac{\sqrt{3}i}{2}\cdot\frac{\sqrt{3}i}{2}=\frac{3}{4}$$

Probability of Observing 1 is $\frac{3}{4}$

All this talk... Make a Computer Already!!

How do we Transform Vectors?

MATRICES!!! Used in Quantum Circuits, come next week to find out!

See you Next Week!

