

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences

PROGRAM (S) TO

BE

BS Computer Science

EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled-out form should not be more than 2-3 pages.)

Course Code	CS2006					
Course Title	Operating Systems					
Credit Hours	3+1					
Prerequisites by Course(s) and Topics	ITC & Data Structures					
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Midterms 30% Assignments & class activities 10% Projects 10% Final Exam 50%					
Course Coordinator	Dr. Ghufran Ahmed					
URL (if any)	https://classroom.google.com/u/0/c/Mzg4NzU1NTM4ODcy					
Current Catalog Description	Introduction to operating systems, Operating system structures and design, Process Concepts, Inter-process Communication, Process scheduling, FCFS, SJF, SRTF, Priority, RR, multiprocessor, real-time, thread scheduling and threads security by scope of threads. Memory management techniques segmentation, fragmentation, paging, structure of page table, Virtual memory, COW, page replacement algorithms, FCFC, optimal, LRU, second chance, Frame allocation, thrashing, Kernel memory, buddy, slab. Process Synchronization, Peterson solution, test and set instruction, mutex lock, semaphore, classical problems, bounded buffer, reader writer, dinning philosopher. Deadlock detection, prevention, avoidance method, banker's algorithm resource request algorithm and protection and security of resources and processes. Disk scheduling FCFS, SSTF, SCAN, CSCAN, LOOK, CLOOK, protection and security introduction.					

NCEAC.FORM.001-D

Textbook (or Laboratory Manual for Laboratory Courses)	 ✓ Operating system Concepts by Silberschatz 10th Edition. ✓ Linux Fundamentals by Paul Cobbaut ✓ Shell Scripting by Steve Parker ✓ System Software (An Introduction to System Programming) 3rd Edition by Leland L. Beck
Reference Material	 ✓ Modern Operating Systems by Andrew S. Tanenbaum ✓ Operating System Internal Designs & Principles by William Stallings (latest Edition) ✓ How Linux Works by Brian Ward 2nd Edition. ✓ System Programming with C and Unix by Adam Hoover

NCEAC.FORM.001-D

CLO	Course Learning Outcome (CLO)	Domain	Taxonomy Level	PLO	Tools		
01	Understand the characteristics of different structures of the Operating Systems and identify the core functions of the Operating Systems.	Cognitive	3	2	CA, M1, F		
02	Analyze and evaluate the algorithms of the core functions of the Operating Systems and explain the major performance issues about the core functions.	Cognitive	4	3	CA, M2, F		
03	Demonstrate the knowledge in applying system software andtools available in modern operating systems.	Cognitive	5	5	A, P, F		
B. Pro	A = Assignment, Class Activity Ogram Learning Outcomes or each attribute below, indication. Leave the cell blank if the	te whether this	attribute is cov	ered in t			
02	analyze complex co	Problem Analysis: Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences					
03	Design/Develop Solor computing problems	Design/Develop Solutions: Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations					
03	1 -		al, societal, a	nd envi	ronmental		

National Computing Education Accreditation Council $\begin{tabular}{l} NCEAC \end{tabular}$

NCEAC.FORM.001-D

		PLOs									
		1	2	3	4	5	6	7	8	9	10
	1		>								
so	2			~							
CLOs	3					~					
	4										
	5										
	6										
	7										

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and onehour lectures)

1. Topics to be covered:				
List of Topics	No. of Weeks	Contact Hours	CLO	
Introduction to Operating system: basic OS definition, computer organization, I/O, DMA, mass storage, protection, UMA and NUMA architecture, symmetric & asymmetric clustering, security, computing platforms.	1.5	4	1	
Operating system structure: basic concept CLI, GUI, scripts, API, system programming & goals, OS design principles.	1.5	4.5	1,3	
Process Concept: basic concept, scheduler types, Queues, process creation, interprocess communication methods.	1	4	1,2,3	
Process scheduling Algorithm: pre-emptive & non –preemptive, FCFS, SJF, SRTF, Priority, RR, multiprocessor, real –time scheduling.	1.5	4	1,2,3	

NCEAC.FORM.001-D

	Multi-threaded Programming: basic control blocks, thread models, thread concepts, processvs. threads, data and task parallelism, Amdahl's law, pthread APIs, OpenMP, threads security by scope of threads	1.5	4.5	2,3		
	Memory Management: basicmemory definition, dynamic allocation, problems of dynamic allocation, swapping, fragmentation, segmentation, paging, structure of page tables, System architecture	2	6	1,2		
	Virtual Memory: basic VM concept, demand paging, COW, page replacement algos,FIFO, optimal, LRU, second chance, frame allocation, thrashing, kernel memory, buddy, slab allocation.	2	6	1,2		
	Process Synchronization: concurrency, race condition, critical section, Peterson solution, test and set instruction, mutex, semaphore. Classical problems such as bounder buffer, reader writer, dinning philosopher.	2	6	2,3		
	Deadlock: basic concept, detection, prevention, avoidance, banker's algorithm. protection and security of resources and processes.	1	3	1,2		
	Security: security threats and attacks, fundamentals of encryption, authentication, and hashing, various countermeasures to security attacks	1	3	1,2		
	Total	15	45			
Laboratory Projects/Experiments Done in the Course	Lab 1: Introduction to Linux & Basic Linux Commands Lab 2: Basic Linux Commands Lab 3: Shell Programming/Scripting Lab 4: Shell Programming/Scripting Lab 5: System Call related to Process Management					
	Lab 6: Inter- Process Communication Lab 7: Kernel Configuration					
	NCEAC.FORM.001.D					

				A4				
	Lab 8: Mid Exam							
	Lab 9: Multithread Programming in Pthreads							
	Lab 10: Creating a module in Kernel							
	Lab 11: Multithrea	Lab 11: Multithread Programming in OpenMP (shared memory)						
	Lab 12: Semaphore	Lab 12: Semaphores in Linux						
		Lab 13: Signals in Linux						
	Lab 14: Revisions							
	Lab 15: Final Lab Exam							
Programming Assignments Done inthe Course	Programming assignment is given to students.							
Class Time Spent on (In credit hours)	Theory	Problem Analysis	Solution Design	Social and Ethical Issues				
	20	30	40	10				
Oral and Written Communications	Every student is r 8pages.	required to submit a pro	oject along with its rep	port of not more than				

Instructor Name: ANAUM HAMID

Instructor Signature

Date 31st, January 2022