Contents

Contents		1
0.1	from other pdf	1
0.2	proof	2
0.1	from other pdf	

ma:lifting_order_not_relevant \rangle Lemma 1. Basically $\ell_{\Gamma}^{y}[\ell_{\Delta}^{x}[\varphi]] = \ell_{\Delta}^{x}[\ell_{\Gamma}^{y}[\varphi]].$

0.2. proof 2

0.2 proof

Definition 2 $(\tau(\iota))$. For an inference ι with $\sigma = \text{mgu}(\iota)$, we define the infinite substitution $\tau(\iota)$ with $\text{dom}(\tau(\iota)) = \text{dom}(\sigma) \cup \{z_s \mid s\sigma \neq s\}$ as follows for a variable x:

$$x\tau(\iota) = \begin{cases} x\sigma & x \text{ is a non-lifting variable} \\ z_{t\sigma} & x \text{ is a lifting variable } z_t \end{cases}$$

define infinite substitutions properly and apply definition here

Δ

Definition 3 (Incremental lifting). Let π be a resolution refutation of $\Gamma \cup \Delta$. We define $LI(\pi)$ ($LI_{cl}(\pi)$) to be $LI(\square)$ ($LI_{cl}(\square)$), where \square is the empty clause derived in π .

Let C be a clause in π . For a literal λ in C, we denote the corresponding literal in $\mathrm{LI}_{\mathrm{cl}}(C)$ by λ_{LIcl} , which is exists by Proposition 4.

We define LI(C) and $LI_{cl}(C)$ as follows:

Base case. If $C \in \Gamma$, $\text{LI}(C) \stackrel{\text{def}}{=} \bot$. If otherwise $C \in \Delta$, $\text{LI}(C) \stackrel{\text{def}}{=} \top$.

In any case, $LI_{cl}(C) \stackrel{\text{def}}{=} \ell[C]$.

Resolution. If the clause C is the result of a resolution step ι of $C_1: D \vee l$ and $C_2: E \vee \neg l'$ using a unifier σ such that $l\sigma = l'\sigma$, then let $\tau = \tau(\iota)$ and define $\mathrm{LI}(C)$ and $\mathrm{LI}_{\mathrm{cl}}(C)$ as follows:

$$\operatorname{LI}_{\operatorname{cl}}(C) \stackrel{\operatorname{def}}{=} \ell[(\operatorname{LI}_{\operatorname{cl}}(C_1) \setminus \{l_{\operatorname{LIcl}}\})\tau] \vee \ell[(\operatorname{LI}_{\operatorname{cl}}(C_2) \setminus \{l_{\operatorname{LIcl}}'\})\tau]$$

- 1. If l is Γ-colored: LI(C) $\stackrel{\text{def}}{=} \ell[\text{LI}(C_1)\tau] \vee \ell[\text{LI}(C_2)\tau]$
- 2. If l is Δ -colored: $LI(C) \stackrel{\text{def}}{=} \ell[LI(C_1)\tau] \wedge \ell[LI(C_2)\tau]$
- 3. If l is grey: $LI(C) \stackrel{\text{def}}{=} (\ell[l_{LIcl}\tau] \wedge \ell[LI(C_2)\tau]) \vee (\neg \ell[l'_{LIcl}\tau] \wedge \ell[LI(C_1)\tau])$

Factorisation. If the clause C is the result of a factorisation step ι of C_1 : $l \lor l' \lor D$ using a unifier σ such that $l\sigma = l'\sigma$, then $\mathrm{LI}(C) \stackrel{\mathrm{def}}{=} \ell[\mathrm{LI}(C_1)\tau(\iota)]$ and $\mathrm{LI}_{\mathrm{cl}}(C) \stackrel{\mathrm{def}}{=} \ell[(\mathrm{LI}_{\mathrm{cl}}(C_1) \setminus \{l'_{\mathrm{LIcl}}\})\tau(\iota)].$

 $\langle prop: corresponding_literal \rangle$ **Proposition 4.** Every literal λ in C has a corresponding literal λ_{LIcl} in $LI_{cl}(C)$.

Definition 5. $LI^{\Delta}(C)$ ($LI_{cl}^{\Delta}(C)$) for a clause C is defined as LI(C) ($LI_{cl}(C)$) with the difference that in its inductive definition, every lifting $\ell[\varphi]$ for a formula or term φ is replaced by a lifting of only the Δ -terms $\ell_{\Delta}[\varphi]$. \triangle

(lemma:gamma_proves_pide) Lemma 6. For a clause C of a resolution refutation of $\Gamma \cup \Delta$, $\Gamma \models LI^{\Delta}(C) \lor LI^{\Delta}_{cl}(C)$.

Proof. Induction of the strengthening $\Gamma \models LI^{\Delta}(C) \vee LI^{\Delta}_{cl}(C_{\Gamma})$

Base case. ✓

0.2. proof 3

Resolution.

Ind hyp gives $\Gamma \models LI^{\Delta}(C_1) \vee LI_{cl}^{\Delta}(D) \vee l_{LIcl^{\Delta}}$ and similar for C_2 .

 $\Gamma \models \mathrm{LI}^{\Delta}(C_1) \vee \mathrm{LI}_{\mathrm{cl}}^{\Delta}(D) \vee l_{\mathrm{LIcl}^{\Delta}}$

+ lemma:substitute_and_lift

$$\Gamma \models \ell_{\Delta}^{x}[\mathrm{LI}^{\Delta}(C_{1})\tau] \vee \ell_{\Delta}^{x}[\mathrm{LI}_{\mathrm{cl}}^{\Delta}(D)\tau] \vee \ell_{\Delta}^{x}[l_{\mathrm{LIcl}^{\Delta}}\tau]$$

have that $l\sigma = l'\sigma$, get also that $\ell_{\Delta}[l_{\text{LIcl}^{\Delta}}\tau] = \ell_{\Delta}[l'_{\text{LIcl}^{\Delta}}\tau]$. Proof: Suppose not lifted, then same. Otw. lifting variables, but then for p pos of lft var z_t in $l_{\text{LIcl}^{\Delta}}$, $l|_p$ is t after applying τ . Hence have z_t for both.

- supp Γ resolved literals not removed due to coloring. literals are equal, can do resolution. get everything in disjunction
- \bullet supp Δ literals removed. have: either one of the clauses, or else both interpolant pairs
- supp grey. as literals same, if l, then $\neg l$ not, so get rest there and vice versa

Factorisation.

Ind hyp gives $\Gamma \models \operatorname{LI}^{\Delta}(C_1) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(D) \vee l_{\operatorname{LIcl}^{\Delta}} \vee l'_{\operatorname{LIcl}^{\Delta}}$ also have that $l\sigma = l'\sigma$ implies $\ell_{\Delta}[l_{\operatorname{LIcl}}\tau] = \ell_{\Delta}[l'_{\operatorname{LIcl}}\tau]$.

+ lemma:substitute_and_lift:

$$\Gamma \models \ell_{\Delta}^{x}[\mathrm{LI}^{\Delta}(C_{1})\tau] \vee \ell_{\Delta}^{x}[\mathrm{LI}_{\mathrm{cl}}^{\Delta}(D)\tau] \vee \ell_{\Delta}^{x}[l_{\mathrm{LIcl}^{\Delta}}\tau] \vee \ell_{\Delta}^{x}[l_{\mathrm{LIcl}^{\Delta}}^{\prime}\tau]$$

hence can factorise here

Don't really say $\operatorname{LI}^{\Delta}_{\operatorname{cl}}(D)$ here, we only have $\operatorname{LI}^{\Delta}_{\operatorname{cl}}(C)$

only have

 $LI_{cl}^{\Delta}(C)$

?(def:arrow_quantifier_block)? **Definition 7** (Quantifier block). Let C be a clause in a resolution refutation π of $\Gamma \cup \Delta$ and \bar{x} be the Δ -lifting variables and \bar{y} the Γ -lifting variables occurring in $\mathrm{LI}(C)$ and $\mathrm{LI}_{\mathrm{cl}}(C)$. Q(C) denotes an arrangement of the elements of $\{\forall x_t \mid x_t \in \bar{x}\} \cup \{\exists y_t \mid y_t \in \bar{y}\}$ such that for two lifting variable z_s and z_r , if s is a subterm of r, then z_s is listed before z_r . We denote $Q(\Box)$ by $Q(\pi)$. \triangle

Conjectured Lemma 8. $\ell[\ell[\varphi]\tau] = \ell[\varphi\tau]$.

Proof. proof by induction.

Supp constant: done.

Supp grey function: apply to children.

supp variable: $\ell[\ell[x]\tau] = \ell[x\tau]$

supp lft var: $\ell[\ell[z_t]\tau] = \ell[z_t\tau]$

supp col term t

 $\ell[\ell[t]\tau] = \ell[z_t\tau] = \ell[z_{t\sigma}] = z_{t\sigma} = \ell[t\sigma] = \ell[t\tau]$

 $\langle \text{lemma:gamma_lifted_lide} \rangle$ Lemma 9. For a clause C of a resolution refutation of $\Gamma \cup \Delta$, $\ell_{\Gamma}[LI^{\Delta}(C) \vee LI^{\Delta}_{cl}(C)] = LI(C) \vee LI_{cl}(C)$.

Proof. Base case.

 LI^{Δ} : easy.

 LI_{cl}^{Δ} : By Lemma 1, $\ell_{\Gamma}[\ell_{\Delta}[C]] = \ell[C]$

0.2. proof

```
Resolution.
```

```
IH:
\ell_{\Gamma}[\operatorname{LI}^{\Delta}(C_1) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C_1)] = \operatorname{LI}(C_1) \vee \operatorname{LI}_{\operatorname{cl}}(C_1).
\ell_{\Gamma}[\operatorname{LI}^{\Delta}(C_2) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C_2)] = \operatorname{LI}(C_2) \vee \operatorname{LI}_{\operatorname{cl}}(C_2).
```

$$\begin{split} \operatorname{LI}_{\operatorname{cl}}^{\Delta} \colon \\ \ell_{\Gamma}[\operatorname{LI}_{\operatorname{cl}}^{\Delta}(C_1)] &= \operatorname{LI}_{\operatorname{cl}}(C_1) \\ \ell_{\Delta}[\operatorname{LI}_{\operatorname{cl}}^{\Delta}(C_1)\tau] &\subseteq \operatorname{LI}_{\operatorname{cl}}^{\Delta}(C) \\ \ell[\operatorname{LI}_{\operatorname{cl}}(C_1)\tau] &\subseteq \operatorname{LI}_{\operatorname{cl}}(C) \\ \text{to show: } \ell_{\Gamma}^y[\operatorname{LI}_{\operatorname{cl}}^{\Delta}(C)] &= \operatorname{LI}_{\operatorname{cl}}(C) \\ \ell[\ell_{\Gamma}[\operatorname{LI}_{\operatorname{cl}}^{\Delta}(C_1)]\tau] &= \ell[\operatorname{LI}_{\operatorname{cl}}(C_1)\tau] & \text{IH } + \text{same op on both sides} \\ \text{new lemma above} \\ \ell[\ell_{\Gamma}[\operatorname{LI}_{\operatorname{cl}}^{\Delta}(C_1)]\tau] &= \ell[\operatorname{LI}_{\operatorname{cl}}^{\Delta}(C_1)\tau] \end{split}$$

 LI^{Δ} :

• Supp Γ:

IH: $\ell_{\Gamma}[LI^{\Delta}(C_1)] = LI(C_1)$ hence also: $\ell[LI^{\Delta}(C_1)] = LI(C_1)$ (by lemma: no Δ -terms in . . .) + τ : $\ell[LI^{\Delta}(C_1)]\tau = LI(C_1)\tau$ $+ \ell$: $\ell[\ell[LI^{\Delta}(C_1)]\tau] = \ell[LI(C_1)\tau]$ by new lemma $\ell[LI^{\Delta}(C_1)\tau] = \ell[LI(C_1)\tau]$ hence by Lemma 1, $\ell_{\Gamma}[\ell_{\Delta}[LI^{\Delta}(C_1)\tau]] \subseteq LI^{\Delta}(C)$ hence $\ell_{\Gamma}[LI^{\Delta}(C)] \subseteq LI^{\Delta}(C)$

Factorisation.

Lemma 10. For a clause C of a resolution refutation of $\Gamma \cup \Delta$, $\Gamma \models$ $Q(C)(LI(C) \vee LI_{cl}(C)).$

Proof. By Lemma 9 $\ell_{\Gamma}[LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)] = LI(C) \vee LI_{cl}(C)$. By Lemma 6, $\Gamma \models LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)$. Hence the terms in $LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)$ provide witness terms for the Γ -lifting variables in $LI(C) \vee LI_{cl}(C)$, which are existentially quantified in $Q(C)(LI(C) \vee LI_{cl}(C))$.

Furthermore, the ordering imposed on the quantifiers in Q(C) implies that if a Δ -lifting variable x_s occurs in a witness term for a Γ -lifting variable y_r, y_r is quantified in the scope of the quantifier of x_s as s is a subterm of r. This however ensures that the witness terms are valid.

 $? \\ \texttt{lemma:li_symmetry}? \ \textbf{Lemma 11.} \ \ symmetry: \ Q(C)(\text{LI}(C)) \Leftrightarrow Q(\hat{C})(\text{LI}(\hat{C})).$

Proof. todo: copy from other pdf

Theorem 12. same as other pdf