Instructor: Dr. Shijun Zheng

§2.6 Limits Involving Infinity; Asymptotes of Graphs (Continued)

Example 2. Find (a) $\lim_{x\to\infty} \left(5+\frac{1}{x}\right)$ (b) $\lim_{x\to-\infty} \frac{\pi\sqrt{3}}{x^2}$.

Example 3. Find (a) $\lim_{x\to\infty} \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

Example 9. Find $\lim_{x\to\infty} \left(x - \sqrt{x^2 + 16}\right)$.

Example 11. Find $\lim_{x\to 1^+} \frac{1}{x-1}$ and $\lim_{x\to 1^-} \frac{1}{x-1}$.

Example 7. Find $\lim_{x\to 0^-} e^{1/x}$.

Example 13. Find (c) $\lim_{x\to 2^+} \frac{x-3}{x^2-4}$ (d) $\lim_{x\to 2^-} \frac{x-3}{x^2-4}$ (f) $\lim_{x\to 2} \frac{2-x}{(x-2)^3}$.

Example 14. Find $\lim_{x \to -\infty} \frac{2x^5 - 6x^4 + 1}{3x^2 + x - 7}$.

§3.1 Tangent Lines and the Derivative at a Point

Definition. The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number

$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$$
 (provided the limit existis).

The **tangent line** to the curve at P is the line through P with this slope.

Example 1. (a) Find the slope of the curve y = 1/x at any point $x = a \neq 0$. What is the slope at the point x = -1?

(b) Where does the slope equal -1/4?

Definition. The derivative of a function f at a point x_0 , denoted $f'(x_0)$, is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

provided this limit exists.

Ex. From MML

Definition. The **derivative** of the function f(x) with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

If f' exists at a particular x, we say that f is **differentiable at** x. If f' exists at every point in the domain of f, we call f **differentiable**.

The process of calculating a derivative is called **differentiation**.

Example 1. Differentiate $f(x) = \frac{x}{x-1}$.

Example 2. (a) Find the derivative of $f(x) = \sqrt{x}$ for x > 0.

(b) Find the tangent line to the curve $y = \sqrt{x}$ at x = 4.

Notation. Some common alternative notations for the derivative include

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D(f)(x) = D_x f(x).$$

To indicate the value of a derivative at a specified number x = a, we use the notation

$$f'(a) = \frac{dy}{dx}\Big|_{x=a} = \frac{df}{dx}\Big|_{x=a} = \frac{d}{dx}f(x)\Big|_{x=a}$$
.

Problem. Match the functions (a)–(c) with their derivatives (1)–(3).

Example 4. Show that the function y = |x| is differentiable on $(-\infty, 0)$ and on $(0, \infty)$ but has no derivative at x = 0.

Theorem 1 (Differentiability Implies Continuity). If f has a derivative at x = c, then f is continuous at x = c.

§3.3 Differentiation Rules

Derivative of a Constant Function. If f has the constant value f(x) = c, then $\frac{df}{dx} = \frac{d}{dx}(c) = 0$.

Power Rule. If n is any real number, then $\frac{d}{dx}x^n = nx^{n-1}$, for all x where the powers x^n and x^{n-1} are defined.

Example 1. Differentiate the following powers of
$$x$$
. (a) x^3 (b) $x^{2/3}$ (d) $\frac{1}{x^4}$ (f) $\sqrt{x^{2+\pi}}$

Ex. From MML