第十八章 环与域

定理 18.1 设 R 是环,则

- (1) $\forall a \in R, a0 = 0a = 0;$
- (2) $\forall a, b \in R, (-a)b = a(-b) = -(ab);$
- (3) $\forall a, b \in R, (-a)(-b) = ab;$
- (4) $\forall a, b, c \in R$ 有

$$a(b-c) = ab - ac, (b-c)a = ba - ca;$$

(5)
$$\forall a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_m \in R \not= (\sum_{i=1}^n a_i) (\sum_{j=1}^m b_j) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j;$$

(6) $\forall a, b \in R, n \in \mathbb{Z}, (na)b = a(nb) = n(ab).$

定理 18.2 设 R 是环. R 是无零因子环的充分必要条件是在 R 中乘法适合消去律,即对于任意 $a,b,c \in R, a \neq 0$,若有 ab = ab (或 ba = ca),则有 b = c.

定理 18.3 设 F 为有限域,则 F 的特征是素数.

定理 **18.4** 设 F 为有限域,则存在素数 p,使得 $|F| = p^n$,其中 $n \in \mathbb{Z}^+$.

定理 18.5 环 R 的非空子集 S 是 R 的一个子环的充分必要条件是:对任意 $a,b \in S$ 有

(1) $a - b \in S$; (2) $ab \in S$.

定理 **18.6** 设 $\varphi: R_1 \to R_2$ 是环同态,则 ker φ 是环 R_1 的理想.

定理 18.7 设 $\varphi: R_1 \to R_2$ 是环同态, 那么

- (1) 若 $S \neq R_1$ 的子环,则 $\varphi(S) \neq R_2$ 的子环;
- (2) 若 T 是 R_2 的子环,则 $\varphi^{-1}(T)$ 是 R_1 的子环;
- (3) 若 D 是 R_1 的理想,则 $\varphi(D)$ 是 R_2 的理想;
- (4) 若 $I \neq R_2$ 的理想,则 $\varphi^{-1}(I) \neq R_1$ 的理想.

定理 18.8 设 D 是环 R 的理想, $g: R \to R/D$, $\forall r \in R$ 有 g(r) = D + r,则 g 是 R 到 R/D 的同 态,且 $\ker g = D$.

定理 18.9 (环同态基本定理) 环 R 的任何商环 R/D 都是 R 的同态像. 反之, 若环 R' 是 R 的同态 像,则 $R' \cong R/\ker \varphi$.

定理 **18.10** 设 F[x] 是有限域 F 上的多项式环, $f(x) \in F[x]$. 在 F[x] 上如下定义二元关系 R, $\forall g(x), h(x) \in F[x],$

$$g(x)Rh(x) \Leftrightarrow f(x) \mid (g(x) - h(x)),$$

则 R 是 F[x] 上的同余关系.