Big Fibonacci

http://acm.cs.nthu.edu.tw/problem/11364/

Fibonacci Numbers

- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
 - $x_0 = 0$
 - $x_1 = 1$
 - $x_n = (x_{n-2} + x_{n-1})$
- We want to write a program to analyze these numbers

Input

• The first number describes the amount of Fibonacci numbers we want to find

Input

- For each following integer
 - Find the smallest Fibonacci number with that many of decimal digits
 - e.g.,
 - 7 → 1346269
 - $10 \rightarrow 1134903170$
 - 100 →
 13447196675861531814197166417245678
 86890850696275767987106294472017884
 974410332069524504824747437757

3

10

100

Then ...

- For each Fibonacci number
 - Analyze the occurrence of its decimal digits

		0	1	2	3	4	5	6	7	8	9
7	1346269	0	1	1	1	1	0	2	0	0	1
10	1134903170	2	3	0	2	1	0	0	1	0	1
100	134471966	7	11	7	5	15	8	12	17	10	8

i.e., '0' appears twice in "1134903170"

Required Output

Available Resources

- List of the first 300 Fibonacci numbers
 - http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibtable.html
- List of 301st 500th Fibonacci numbers
 - http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/fibtable301.html
- Fibonacci calculator
 - http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibCalcX.html