

MECH468: Modern Control Engineering MECH509: Controls

L19: State feedback

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

Zoom lecture to be recorded and posted on Canvas

MECH 468/509

Course plan

Topics	СТ	DT
Modeling Stability Controllability/observability Realization → State feedback/observer LQR/Kalman filter		

Model-based controller design process (review)

Design of control systems

- Objective: Find a feedback control law such that
 - The feedback system is internally stable, and
 - The plant output y(t) follows as closely as possible to the reference r(t) against disturbances d(t).

Example: Cruise control

ctms.engin.umich.edu

$$\begin{cases} \dot{v}(t) = -\frac{b}{m}v(t) + \frac{1}{m}u(t) \\ y(t) = v(t) \end{cases} \begin{array}{ccc} m = 1000 \text{kg} \\ b = 50 \text{Nsec/m} \end{cases}$$

Cruise control (cont'd)

- Specifications: For initial velocity 10m/s,
 - r(t)=0
 - Rise time < 5sec
 - Overshoot < 10%
 - Steady state error < 2%
- Open-loop system
 - Pole: -0.05
 - Takes too much time.

Feedback control for performance improvement!

State feedback

• Given an LTI system
$$\Sigma$$
 :
$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

design a state feedback control law

$$u(t) = -Kx(t) + r(t)$$

so that all the specifications are satisfied.

- Internal stability
- Time domain specs (steady state, transient)
- Frequency domain specs (bandwidth, gain/phase property etc.)

State feedback (cont'd)

Open-loop and closed-loop systems

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases} \rightarrow \begin{cases} \dot{x}(t) = (A - BK)x(t) + Br(t) \\ y(t) = Cx(t) \end{cases}$$

$$u(t) = -Kx(t) + r(t)$$

Assumptions

- D=0
 - Just for simplicity
 - This assumption holds in most practical problems.
- State vector x is available.
 - This assumption does not hold in many applications, and will be removed later.
 - State estimator (observer and Kalman filter)
- Reference *r*
 - Regulation: r=0 (will be considered for 3 lectures)
 - Tracking or servo: nonzero r (will be considered later)

Pole placement theorem (Eigenvalue assignment theorem)

 If (A,B) is controllable, the eigenvalues of (A-BK) can be placed arbitrarily (provided that they are symmetric with respect to the real axis).

X: Closed-loop poles (design parameters)

Three questions

- For a specified set of closed-loop poles, how to design the feedback gain K?
 - Direct method (today)
 - Canonical form method ("place.m": next lecture)
 - Ackermann's formula ("acker.m")
 - Lyapunov method (in two lectures)
- How to select desired closed-loop pole locations?
 - Rules of thumb (in two lectures)
- Proof of pole placement theorem
 - Not covered in this course

State feedback design: Direct method

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{B} u(t)$$

Note that (*A*,*B*) is controllable. Hence, any pole placement is possible. Note also that eigenvalues of *A* are 4, -2, i.e., unstable!

Let us stabilize the system by placing poles at

$$-1 \pm 2j$$

Desired characteristic polynomial

$$(s - (-1 + 2j))(s - (-1 - 2j)) = s^2 + 2s + 5$$

• Characteristic polynomial of CL system det[sI - (A - BK)]

$$A-BK = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 1-k_1 & 3-k_2 \\ 3 & 1 \end{bmatrix}$$

$$\det[sI - (A - BK)] = (s - (1 - k_1))(s - 1) - 3(3 - k_2) = s^2 + (k_1 - 2)s + (3k_2 - k_1 - 8)$$

$$\longrightarrow k_1 = 4, \ k_2 = \frac{17}{3}$$

State equation

$$\dot{v}(t) = -\frac{b}{m}v(t) + \frac{1}{m}u(t)$$

$$= -0.05v(t) + 10^{-3}u(t)$$

$$\begin{pmatrix} m &= 1000 \text{kg} \\ b &= 50 \text{Nsec/m} \end{pmatrix}$$

Note that (A,B) is controllable (obviously!). Hence, any pole placement is possible.

Pole =
$$A - BK$$

 $\Rightarrow K = \frac{A - \text{Pole}}{B} = -1000(0.05 + \text{Pole})$

MECH 468/509

Feedback cruise control (cont'd)

Exercise

- Try the simulation by yourselves! (Matlab code "cruise.m" is posted on Canvas.) Change the pole location, and get a feeling how responses are affected by the pole location.
- For the system below, design a state feedback control law u=-Kx so that the closed-loop system has -1 and -2 as its eigenvalues, by using the direct method.

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{B} u(t)$$

Summary

- State feedback
 - Pole placement theorem
 - Direct method for calculating state feedback gain
 - Suitable only for problems with *n*=1,2,3.
 - Cruise control example
 - As the pole is moved to the left, the convergence becomes faster, at the price of large control input.
- Next, canonical form method for designing the state feedback gain