Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

■ Basic Concepts

- ☐ Efficient Pattern Mining Methods
- Pattern Evaluation
- Summary

What Is Pattern Discovery?

- What are patterns?
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
- What products were often purchased together?
- □ What are the subsequent purchases after buying an iPad?
- What code segments likely contain copy-and-paste bugs?
- What word sequences likely form phrases in this corpus?

Basic Concepts: k-Itemsets and Their Supports

- ☐ Itemset: A set of one or more items
- \square k-itemset: $X = \{x_1, ..., x_k\}$
 - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) support (count) of X, sup{X}:
 Frequency or the number of occurrences of an itemset X
 - Ex. sup{Beer} = 3
- \Box Ex. sup{Diaper} = 4
- Ex. sup{Beer, Diaper} = 3
- Ex. sup{Beer, Eggs} = 1

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- (relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
 - \Box Ex. s{Beer} = 3/5 = 60%
 - \Box Ex. s{Diaper} = 4/5 = 80%
 - Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is frequent if the support of X is no less than a minsup threshold σ
- Let $\sigma = 50\%$ (σ : minsup threshold) For the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - □ Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought			
10	Beer, Nuts, Diaper			
20	Beer, Coffee, Diaper			
30	Beer, Diaper, Eggs			
40	Nuts, Eggs, Milk			
50	Nuts, Coffee, Diaper, Eggs, Milk			

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Compared with itemsets, rules can be more telling
 - Ex. Diaper → Beer
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both *X* and *Y* are itemsets
 - Support, s: The probability that a transaction contains X ∪ Y
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
 - □ Confidence, c: The conditional probability that a transaction containing X also contains Y
 - \Box Calculation: $c = \sup(X \cup Y) / \sup(X)$
 - \Box Ex. $c = \sup{\text{Diaper, Beer}}/\sup{\text{Diaper}} = \frac{3}{4} = 0.75$

Tid	Items bought			
10	Beer, Nuts, Diaper			
20	Beer, Coffee, Diaper			
30	Beer, Diaper, Eggs			
40	Nuts, Eggs, Milk			
50	Nuts, Coffee, Diaper, Eggs, Milk			

Note: $X \cup Y$: the union of two itemsets

■ The set contains both X and Y

Mining Frequent Itemsets and Association Rules

- Association rule mining
 - ☐ Given two thresholds: *minsup*, *minconf*
 - \Box Find all of the rules, $X \rightarrow Y$ (s, c)
 - \square such that, $s \ge minsup$ and $c \ge minconf$
- □ Let *minsup* = 50%
 - □ Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
- □ Let *minconf* = 50%
- \square Beer \rightarrow Diaper (60%, 100%)
- \Box Diaper \rightarrow Beer (60%, 75%)

(Q: Are these all the rules?)

Tid	Items bought				
10	Beer, Nuts, Diaper				
20	Beer, Coffee, Diaper				
30	Beer, Diaper, Eggs				
40	Nuts, Eggs, Milk				
50	Nuts, Coffee, Diaper, Eggs, Milk				

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Challenge: There Are Too Many Frequent Patterns!

- ☐ A long pattern contains a combinatorial number of sub-patterns
- How many frequent itemsets does the following TDB₁ contain?

 - ☐ Assuming (absolute) *minsup* = 1
 - Let's have a try

```
1-itemsets: \{a_1\}: 2, \{a_2\}: 2, ..., \{a_{50}\}: 2, \{a_{51}\}: 1, ..., \{a_{100}\}: 1, 2-itemsets: \{a_1, a_2\}: 2, ..., \{a_1, a_{50}\}: 2, \{a_1, a_{51}\}: 1 ..., ..., \{a_{99}, a_{100}\}: 1, ..., ..., ..., ...
```

99-itemsets: $\{a_1, a_2, ..., a_{99}\}$: 1, ..., $\{a_2, a_3, ..., a_{100}\}$: 1 100-itemset: $\{a_1, a_2, ..., a_{100}\}$: 1

☐ The total number of frequent itemsets:

A too huge set for any one to compute or store!

 $\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} - 1$

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is <u>frequent</u>, and there exists no super-pattern Y > X, with the <u>same</u> support as X
 - □ Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - □ Two: P₁: "{a₁, ..., a₅₀}: 2"; P₂: "{a₁, ..., a₁₀₀}: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - □ You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- Difference from close-patterns?
 - □ Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - □ Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - □ One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - □ We only know $\{a_1, ..., a_{40}\}$ is frequent
 - \Box But we do not know the <u>real</u> support of $\{a_1, ..., a_{40}\}$, ..., any more!
- ☐ Thus in many applications, mining close-patterns is more desirable than mining max-patterns

10

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- ☐ Efficient Pattern Mining Methods

- Pattern Evaluation
- Summary

Efficient Pattern Mining Methods

- The Downward Closure Property of Frequent Patterns
- ☐ The **Apriori** Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- **FPGrowth**: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

12

The Downward Closure Property of Frequent Patterns

- □ Observation: From TDB₁: T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - We get a frequent itemset: {a₁, ..., a₅₀}
 - □ Also, its subsets are all frequent: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, a_2\}$, ...
 - ☐ There must be some hidden relationships among frequent patterns!
- ☐ The downward closure (also called "Apriori") property of frequent patterns
 - ☐ If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
 - □ Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - □ Frequent pattern projection and growth: **FPgrowth** (Han, Pei, Yin @SIGMOD'00)

1/

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - ☐ Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - Test the candidates against DB to find frequent (k+1)-itemsets
 - □ Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k

F_k: Frequent itemset of size k

K:= 1;

F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} 

While (F_k != \varnothing) \text{ do } \{ // \text{ when } F_k \text{ is non-empty} 

C_{k+1} := \text{candidates generated from } F_k; // \text{ candidate generation} 

Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup; k:= k + 1

}

return \bigcup_k F_k // return F_k generated at each level
```


Apriori: Implementation Tricks How to generate candidates? self-join self-join Step 1: self-joining F_k abc abd bcd ace Step 2: pruning ■ Example of candidate-generation abcd acde \Box $F_3 = \{abc, abd, acd, ace, bcd\}$ pruned \square Self-joining: $F_3 * F_3$ abcd from abc and abd acde from acd and ace Pruning: \Box acde is removed because ade is not in F_3

Apriori: Improvements and Alternatives Reduce passes of transaction database scans Partitioning (e.g., Savasere, et al., 1995) Dynamic itemset counting (Brin, et al., 1997) Shrink the number of candidates Hashing (e.g., DHP: Park, et al., 1995) Pruning by support lower bounding (e.g., Bayardo 1998) Sampling (e.g., Toivonen, 1996) Exploring special data structures Tree projection (Agarwal, et al., 2001) H-miner (Pei, et al., 2001) Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

Partitioning: Scan Database Only Twice

☐ **Theorem**: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB

- Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, *VLDB'95*)
 - □ Scan 1: Partition database so that each partition can fit in main memory (why?)
 - ☐ Mine local frequent patterns in this partition
 - Scan 2: Consolidate global frequent patterns
 - ☐ Find global frequent itemset candidates (those frequent in at least one partition)
 - ☐ Find the true frequency of those candidates, by scanning TDB; one more time

21

Direct Hashing and Pruning (DHP)

- DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD'95)
- \Box Hashing: Different itemsets may have the same hash value: v = hash(itemset)
- □ 1st scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count
- □ Observation: A *k*-itemset cannot be frequent if its corresponding hashing bucket count is below the *minsup* threshold temsets Count
- Example: At the 1st scan of TDB, <u>count 1-itemset</u>, and
- ☐ Hash 2-itemsets in the transaction to its bucket
 - □ {ab, ad, ce}
 - □ {bd, be, de}

{ab, ad, ce} 35 {bd, be, de} 298 {yz, qs, wt} 58

Hash Table

- At the end of the first scan,
 - if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80 (same for {yz, qs, wt})</p>

Exploring Vertical Data Format: ECLAT

- ECLAT (Equivalence Class Transformation): A **depth-first** search algorithm using set intersection [Zaki et al. @KDD'97]
- ☐ Tid-List: List of transaction-ids containing an itemset
- □ Vertical format: $t(e) = \{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10}, T_{20}\}$
- Properties of Tid-Lists
 - \Box t(X) = t(Y): X and Y always happen together (e.g., t(ac) = t(d))
 - □ $t(X) \subset t(Y)$: transaction having X always has Y (e.g., $t(ac) \subset t(ce)$)
- Deriving frequent patterns based on vertical intersections
- ☐ Using diffset to accelerate mining
 - Only keep track of differences of tids
- □ $t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow Diffset (ce, e) = \{T_{20}\}$

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

Item	TidList		
а	10, 20		
b	20, 30		
С	10, 30		
d	10		
е	10, 20, 30		

Why Mining Frequent Patterns by Pattern Growth?

- ☐ Apriori: A **breadth-first** search mining algorithm
 - ☐ First find the complete set of frequent k-itemsets
 - ☐ Then derive frequent (k+1)-itemset candidates
 - □ Scan DB again to find true frequent (k+1)-itemsets
- Motivation for a different mining methodology
 - □ Can we develop a *depth-first* search mining algorithm?
 - For a frequent itemset ρ, can subsequent search be confined to only those transactions containing ρ?
- □ Such thinking leads to a frequent pattern growth approach:
 - FPGrowth (J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation," SIGMOD 2000)

26

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist	
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p	
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m	After the det for the
300	$\{b, f, h, j, o, w\}$	f, b	After inserting the 1 st frequer Itemlist: "f, c, a, m, p"
400	$\{b, c, k, s, p\}$	c, b, p	πετιπίστ. <i>J, c, u, m, p</i>
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p	$ \{ \} $

Scan DB once, find single item frequent pattern:
 Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

Sort frequent items in frequency descending order, f-list
 F-list = f-c-a-b-m-p

- 3. Scan DB again, construct FP-tree
 - ☐ The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist	
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p	
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m	
300	$\{b, f, h, j, o, w\}$	f, b	After inserting the 2 nd frequent
400	$\{b,c,k,s,p\}$	c, b, p	itemlist "f, c, a, b, m"
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p	<u> </u>

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

Header Table

f:4, a:3, c:4, b:3, m:3, p:3

- Sort frequent items in frequency descending order, f-list
 F-list = f-c-a-b-m-p
- 3. Scan DB again, construct FP-tree
 - ☐ The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

١.	r	leader lac	oie
	Item	Frequency	header $f:2$
	f	4	c:2
	С	4	/
	а	3	> a:2
	b	3	$\overline{m}:I \longrightarrow b:I$
	m	3	
	р	3	>p:1 >m:1

	nlist	quent iten	red, fre	Orde	Items in the Transaction	TID
		a, m, p	f, c,		$\{f, a, c, d, g, i, m, p\}$	100
		a, b, m	<i>f</i> , <i>c</i> ,		$\{a, b, c, f, l, m, o\}$	200
After inserting all th		f, b	J.		$\{b, f, h, j, o, w\}$	300
frequent itemlists		<i>b</i> , <i>p</i>	c,		$\{b, c, k, s, p\}$	400
{}		a, m, p	<i>f</i> , <i>c</i> ,		$\{a, f, c, e, l, p, m, n\}$	500
f:4 -> c:1		Header Tak		ent patterr	DB once, find single item frequent Let min_support = 3	Scan
	header	Frequency	Item	3	f:4, a:3, c:4, b:3, m:3, p:3	
$c:3$ $b:1 \rightarrow b:1$		4	f	scending	frequent items in frequency desce	Sort
		4	С	3001101118	r, f-list F-list = f-c-a-b-m-p	
$\rightarrow a:3$ $p:1$		3	а		DB again, construct FP-tree	
$\overline{m}.2$ $b:1$		3	b	saction is	ne frequent itemlist of each transac	
$ JII, \Delta U, I $		3	m		serted as a branch, with shared su	

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- {} Reduction of the single prefix path into one node
- a_l : n_l Concatenation of the mining results of the two parts

34

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Essence of frequent pattern growth (FPGrowth) methodology
 - ☐ Find frequent single items and partition the database based on each such single item pattern
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called the pattern's conditional database)
 - □ To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
- Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods Basic Concepts Efficient Pattern Mining Methods Pattern Evaluation Summary

Pattern Evaluation

- ☐ Limitation of the Support-Confidence Framework
- $\hfill \square$ Interestingness Measures: Lift and χ^2
- Null-Invariant Measures
- Comparison of Interestingness Measures

How to Judge if a Rule/Pattern Is Interesting?

- Pattern-mining will generate a large set of patterns/rules
 - □ Not all the generated patterns/rules are interesting
- ☐ Interestingness measures: Objective vs. subjective
 - Objective interestingness measures
 - □ Support, confidence, correlation, ...
 - □ Subjective interestingness measures:
 - □ Different users may judge interestingness differently
 - Let a user specify
 - Query-based: Relevant to a user's particular request
 - ☐ Judge against one's knowledge-base
 - ☐ unexpected, freshness, timeliness

40

Limitation of the Support-Confidence Framework

- □ Are s and c interesting in association rules: "A \Rightarrow B" [s, c]? Be careful!
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)	
eat-cereal	400	350	750 2-	Way Conti
not eat-cereal	200	50	250	way contingency table
sum(col.)	600	400	1000	216

- Association rule mining may generate the following:
 - \square play-basketball \Rightarrow eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - \neg play-basketball \Rightarrow eat-cereal [35%, 87.5%] (high s & c)

Interestingness Measure: Lift

Measure of dependent/correlated events: lift

lift
$$(B,C) = \frac{c(B \to C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- Lift(B, C) may tell how B and C are correlated
 - □ Lift(B, C) = 1: B and C are independent
 - □ > 1: positively correlated
 - < 1: negatively correlated</p>
- For our example,

$$lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$$
$$lift(B,\neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$$

- Thus, B and C are negatively correlated since lift(B, C) < 1;</p>
 - B and ¬C are positively correlated since lift(B, ¬C) > 1

Interestingness Measure: χ^2

Another measure to test correlated events: χ²

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

■ For the table on the right, $\chi^2 = \frac{(400 - 450)^2}{450} + \frac{(350 - 300)^2}{300} + \frac{(200 - 150)^2}{150} + \frac{(50 - 100)^2}{100} = 55.56$

	Σ_{col}		6
50-10	$(00)^2$	\	7

Expected value

Observed value

Lift is more telling than s & c

¬В

350

50

400

 Σ_{row}

750

250

1000

В

400

200

600

С

¬С

 $\Sigma_{\text{col.}}$

- \Box By consulting a table of critical values of the χ^2 distribution, one can conclude that the chance for B and C to be independent is very low (< 0.01) https://www.medcalc.org/manual/chi-square-table.php
- \square χ^2 -test shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- \Box Thus, χ^2 is also more telling than the support-confidence framework

Lift and χ^2 : Are They Always Good Measures?

- **Null** transactions: Transactions that contain neither B nor C
- Let's examine the new dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
 - □ Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- \square χ^2 = 670: Observed(BC) >> expected value (11.85)
- ☐ Too many null transactions may "spoil the soup"!

	В	¬В	Σ_{row}
С	100	1000	1100
¬C	1000	100000	101000
$\Sigma_{\text{col.}}$	1100	101000	102100
		null tr	ansactions

Contingency table with expected values added				
	В	¬B	Σ_{row}	
С	100 (11.85)	1000	1100	
¬C	1000 (988.15)	100000	101000	
$\Sigma_{\text{col.}}$	1100	101000	102100	

Interestingness Measures & Null-Invariance

- □ *Null invariance*: Value does not change with the # of null-transactions
- ☐ A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant?	
$\chi^2(A,B)$	$\sum_{i,j} \frac{(e(a_i,b_j) - o(a_i,b_j))^2}{e(a_i,b_j)}$	$[0, \infty]$	No	X ² and lift are not
Lift(A,B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0, \infty]$	No	null-invariant
Allconf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes	Jaccard, consine,
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes	AllConf, MaxConf,
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes	and Kulczynski are null-invariant
Kulczynski(A, B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes	measures
$\mathit{MaxConf}(A,B)$	$max\{\frac{s(A\cup B)}{s(A)}, \frac{s(A\cup B)}{s(B)}\}$	[0, 1]	Yes	

Null Invariance: An Important Property

- ☐ Why is null invariance crucial for the analysis of massive transaction data?
- ☐ Many transactions may contain neither milk nor coffee!

milk vs. coffee contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

Lift and χ^2 are not null-invariant: not good to evaluate data that contain too many or too few null transactions!

Many measures are not null-invariant!

Null-tra	ans	actio	ons
w.r.t.	m	and	С

Data set	mc	$\neg mc$	$m \neg c$	$m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

16

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- □ *Null-invariance* is an important property
- \Box Lift, χ^2 and cosine are good measures if null transactions are not predominant
 - □ Otherwise, *Kulczynski* + *Imbalance Ratio* should be used to judge the interestingness of a pattern
- Exercise: Mining research collaborations from research bibliographic data
 - ☐ Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 - Can you find the likely advisor-advisee relationship and during which years such a relationship existed?
 - □ Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods		
	■ Basic Concepts	
	■ Efficient Pattern Mining Methods	
	■ Pattern Evaluation	
	□ Summary ►	

Summary Basic Concepts □ What Is Pattern Discovery? Why Is It Important? ■ Basic Concepts: Frequent Patterns and Association Rules □ Compressed Representation: Closed Patterns and Max-Patterns ■ Efficient Pattern Mining Methods ☐ The Downward Closure Property of Frequent Patterns □ The Apriori Algorithm □ Extensions or Improvements of Apriori Mining Frequent Patterns by Exploring Vertical Data Format □ FPGrowth: A Frequent Pattern-Growth Approach Mining Closed Patterns Pattern Evaluation ☐ Interestingness Measures in Pattern Mining □ Interestingness Measures: Lift and χ^2 Null-Invariant Measures Comparison of Interestingness Measures

Recommended Readings (Basic Concepts)

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

53

Recommended Readings (Efficient Pattern Mining Methods)

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- □ A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- □ S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

Recommended Readings (Pattern Evaluation)

- □ C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- ☐ M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- □ T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010