UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turmas D e D2 - 2022/1Prova da área I

1-5	6	7	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- $\bullet\,$ Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

fasta do operator \vec{v} . f = f(x,y,z) e g = g(x,y,z) são funções escalares; $\vec{F} = \vec{F}(x,y,z)$ e $\vec{G} = \vec{G}(x,y,z)$ são funções vetoriais.

	(101)
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla} \left(fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$\vec{ abla}\cdot\left(f\vec{F} ight)=\left(\vec{ abla}f ight)\cdot\vec{F}+f\left(\vec{ abla}\cdot\vec{F} ight)$
6.	$\vec{ abla} imes \left(f \vec{F} ight) = \vec{ abla} f imes \vec{F} + f \vec{ abla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes \left(ec{ abla} f ight) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F} \right) - \vec{\nabla}^2 \vec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \\ - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	
14.	$\vec{\nabla}\varphi(r) = \varphi'(r)\hat{r}$

	Curvatura, torção e aceleração:				
Nome		Fórmula			
	Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$			
	Vetor binormal	$ec{B} = rac{ec{r}^{\prime}(t) imesec{r}^{\prime\prime}(t)}{\ ec{r}^{\prime}(t) imesec{r}^{\prime\prime}(t)\ }$			
	Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
	Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
	Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ $			
	Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
	Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa \vec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+\tau\vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

$$\vec{r}(t) = t \operatorname{sen}(t)\vec{i} + t \cos(t)\vec{j}, \quad t \ge 0$$

Assinale na primeira coluna o gráfico correspondente à função dada. Na segunda coluna, assinale o vetor tangente unitário no instante $t=\pi$. Na terceira coluna, indique o vetor normal unitário em $t=\pi$. Na quarta coluna, indique a curvatura em $t=\pi$.

 \bullet Questão 2 (0.5 ponto cada item) Considere a trajetória dada pela parametrização a seguir:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + \frac{1}{3}t^3\vec{k}$$

Assinale as alternativas que indicam respectivamente a norma da velocidade e a torção no ponto t=0.

() 0 () -2 () 1 () 2 () 3 () 1

() 4

ullet Questão 3 (0.5 ponto cada item) A temperatura em um ponto P(x,y,z) de uma sala é dada por:

() 2

$$T(x, y, z) = 300 - 2(x^2 + y^2)$$

Uma abelha está no ponto (3,4,1) e com velocidade dada por $\vec{v} = 4\vec{i} + 3\vec{j} + 12\vec{k}$. Na primeira coluna, assinale a alternativa que melhor aproxima a taxa de variação (por unidade de comprimento) na direção e sentido da abelha. Na segunda coluna, a alternativa que melhor aproxima a derivada temportal da temperatura experimentada pela abelha (por unidade de tempo).

• Questão 4 (0.50 ponto cada item) Considere os campos dados por

$$f = \cos(x^2 + y^2 + z^2)$$

$$g = z^3$$

$$\vec{F} = \cos(y)\vec{i} + \sin(x)\vec{j} + e^z\vec{k}$$

$$h_1 = \vec{\nabla}g \cdot \vec{\nabla} \times (\vec{F} + \vec{\nabla}f)$$

$$h_2 = \vec{\nabla}f \cdot \vec{\nabla}g$$

Na primeira coluna, assinale a alternativa que apresenta h_1 . Na segunda coluna, assinale a alternativa que apresenta h_2 .

() $2z(\cos(x) + \sin(y))$ () $6z^2\cos(x^2 + y^2 + z^2)$

() $2z(\cos(x) + \sin(y))$ () $6z^2\cos(x^2 + y^2 + z^2)$ () $3z^2(\cos(x) - \sin(y))$ () $6z^3\sin(x^2 + y^2 + z^2)$ () $2z(-\cos(x) + \sin(y))$ () $-6z^2\sin(x^2 + y^2 + z^2)$ () $-6z^3\cos(x^2 + y^2 + z^2)$ () $-6z^3\cos(x^2 + y^2 + z^2)$ () $-6z^3\sin(x^2 + y^2 + z^2)$ () $-6z^3\sin(x^2 + y^2 + z^2)$

• Questão 5 (0.5 ponto cada) Considere o campo central $\vec{F} = f(r)\hat{r}$ em f(r) é uma função diferenciável e seu gráfico é esboçado ao lado. Em cada coluna assinale uma alternativa correta.
() O divergente é nulo em todos os pontos. () O campo é irrotacional. () O divergente é não-negativo em todos () $\vec{k} \cdot \vec{\nabla} \times \vec{F} = 0$ somente no ponto (0,0). os pontos. () $\vec{k}\cdot\vec{\nabla}\times\vec{F}>0$ somente na região x<0.() O divergente é não-positivo em todos os () $\vec{k} \cdot \vec{\nabla} \times \vec{F} > 0$ em todos os pontos, exceto na origem. () O divergente é nulo no ponto (1,1). () O divergente não existe no ponto () $\vec{k}\cdot\vec{\nabla}\times\vec{F}<0$ em todos os pontos, exceto

 \bullet Questão 6 (2.0 pontos): Seja Φ o fluxo do campo

(-3, -3).

$$\vec{F} = z\vec{k}$$

através da superfície que envolve a região limitada inferiormente pelo cone

$$\sqrt{x^2 + y^2} = z$$

e superiormente pelo plano z=1 orientada para fora.

• Item a) (1.0) Encontre o fluxo Φ via parametrização direta da superfície (sem usar o Teorema da Divergência).

na origem.

• Item b) (1.0) Calcule o fluxo Φ usando o Teorema da Divergência.

• Questão 7 (2 pontos) Considere o campo dado por $\vec{F} = xz\vec{i} + x^2e^{y+z}\vec{j} + xz\vec{k}$ e caminho C dado pelo arco de parábola $y = x^2$ no plano xy que liga o ponto $P_1 = (0,0,0)$ até o ponto $P_2 = (2,4,0)$, o segmento de reta que liga P_2 a $P_3 = (0,4,0)$ e o segmento de reta que liga P_3 a P_1 , no sentido $P_1 \to P_2 \to P_3 \to P_1$.

Calcule a integral de linha $\int_C \vec{F} \cdot d\vec{r}$, esboçando a região de integração.