

计算方法

Ch04 方程求根的迭代法

程勇

buctcourse@163.com
http://www.buct.edu.cn

Dept. of Computer Beijing University of Chemical Technology

March 1, 2017

Yong Cheng

Computing Methods

Ch04 方程求根的迭代法

BUCT

提纲

- 1 Ch01 概论
- 2 Ch02 插值方法
- 3 Ch03 数值积分
- 4 Ch04 方程求根的迭代法
- ⑤ Ch05 线性方程组的迭代法
- 6 Ch06 线性方程组的直接法
- ♂ Ch07 常微分方程的差分法

BUCT

本章提纲

迭代法

开方法

Newton 法

改进的牛顿法

埃特金方法

迭代法

绪论中已经介绍过算法设计的校正思想。迭代法是求解方程近似根的一种方法,这种方法的关键是确定迭代函数 $\varphi(x)$ (将方程 f(x)=0 变换为 $x=\varphi(x)$),建立迭代格式 $x_{k+1}=\varphi(x_k)$,然后从给定的初值 x_0 出发迭代出一系列的近似值 $x_1,x_2,\cdots,x_k,\cdots$,直到逼近方程的根 x^* ,直到满足精度要求 $|x_{k+1}-x_k|<\epsilon$ 为止。

简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求得近似根。即由方程 f(x)=0 变换为 $x=\varphi(x)$, 然后建立迭代格式:

$$x_{k+1} = \varphi(x_k)$$

当给定初始值 x_0 后,由迭代格式可求得数列 $\{x_k\}$ 。如果 $\{x_k\}$ 收敛于 x^* ,则它就是方程的根。因为

$$x^* = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} x_k = \varphi(\lim_{k \to \infty} x_k) = \varphi(x^*)$$

BUCT

迭代法例子

例题: 求方程

$$f(x) = x - 10^x + 2 = 0$$

的一个根, 取 $x_0 = 0$ 。

解:由于

$$10^x = x + 2$$
, $x = \lg(x + 2)$, $\varphi(x) = \lg(x + 2)$

得到迭代格式为 $x_{k+1} = \varphi(x_k)$

$x_1 = 0.3010$
$x_2 = 0.3619$
$x_6 = 0.3758$
$x_7 = 0.3758$

开方公式

对于给定的 a>0,求开方值 \sqrt{a} 就是要求解二次方程

$$x^2 - a = 0 \tag{1}$$

为此可使用校正技术从预报值生成校正值来逐步逼近方程的 解。

设给定某个预报值 x_k , 希望借助于某种简单方法确定校正量 Δx , 使校正值

$$x_{k+1} = x_k + \Delta x \tag{2}$$

更好的满足方程,即使:

$$x_k^2 + 2x_k \Delta x + (\Delta x)^2 \approx a \tag{3}$$

成立。设校正值 Δx 是个小量,舍去上式中的高阶小量 Δx^2 ,令

$$x_k^2 + 2x_k \Delta x = a$$

开方公式(续)

从中定出 Δx , 得:

$$\Delta x = \frac{a - x_k^2}{2x_k}$$

代入上式,即可求出开方公式:

$$x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k})$$
 $k = 1, 2, 3, \cdots$

上述演绎过程表明开方法的设计思想是逐步线性化,即将二次方程的求解化归为一次方程求解过程的重复。

Yong Cheng

Computing Methods

Ch04 方程求根的迭代法

开方算法

开方算法

任给初值 $x_0 > 0$, 反复利用迭代公式即可获得满足精度要求的开方值:

$$\begin{cases} x_0 > 0 \\ x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k}) & k = 1, 2, 3, \dots \end{cases}$$

直到 $|x_{k+1} - x_k| < \varepsilon(\varepsilon)$ 为给定的精度) 为止, x_{k+1} 即为所求。

开方法例子

例题: 用开方算法求 $\sqrt{2}$, 取 $x_0 = 1$, $\varepsilon = 10^{-6}$

解: 求解过程如下:

$$x_1 = \frac{1}{2}(x_0 + \frac{a}{x_0}) = \frac{1}{2}(1 + \frac{2}{1}) = 1.5, \quad x_2 = 1.41666667, \quad \cdots$$

k	x_k
1	1.500000
2	1.416667
3	1.414216
4	1.414214
5	1.414214

因此, $\sqrt{2} \approx 1.414214$, 精确值为 1.41421356。

开方公式的收敛性

开方公式收敛性定理

开方公式

$$x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k})$$
 $k = 1, 2, 3, \dots$

对于任意给定的初值 $x_0 > 0$ 均收敛,即

$$\lim_{k\to\infty} x_k \to \sqrt{a}$$

或表示为迭代误差

$$\lim_{k \to \infty} e_k = \lim_{k \to \infty} |x_k - \sqrt{a}| \to 0$$

开方公式的收敛性证明

证明:由

$$x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k})$$

可得

$$x_{k+1} - \sqrt{a} = \frac{1}{2x_k}(x_k - \sqrt{a})^2$$

同理

$$x_{k+1} + \sqrt{a} = \frac{1}{2x_k}(x_k + \sqrt{a})^2$$

两式相除

$$\frac{x_{k+1} - \sqrt{a}}{x_{k+1} + \sqrt{a}} = \frac{(x_k - \sqrt{a})^2}{(x_k + \sqrt{a})^2} = \left(\frac{x_k - \sqrt{a}}{x_k + \sqrt{a}}\right)^2$$

开方公式的收敛性证明 (续)

这样有:

$$\frac{x_k - \sqrt{a}}{x_k + \sqrt{a}} = \left(\frac{x_{k-1} - \sqrt{a}}{x_{k-1} + \sqrt{a}}\right)^2$$
$$= \left(\frac{x_{k-2} - \sqrt{a}}{x_{k-2} + \sqrt{a}}\right)^{2^2} = \dots = \left(\frac{x_0 - \sqrt{a}}{x_0 + \sqrt{a}}\right)^{2^k}$$

令
$$q = |\frac{x_0 - \sqrt{a}}{x_0 + \sqrt{a}}|$$
, 显然当 $x_0 > 0$ 时,有 $0 < q < 1$, 则有 $\frac{x_k - \sqrt{a}}{x_1 + \sqrt{a}} = q^{2^k}$, 因此:

$$\lim_{k \to \infty} x_k = \frac{1 + q^{2^k}}{1 - q^{2^k}} \sqrt{a} = \sqrt{a}$$

Newton 法

Newton 牛顿迭代公式构建的基本思想是通过 Taylor 展开将非线性方程线性化。

设 x_k 是 f(x) = 0 的一个近似根, 把 f(x) 在 x_k 处作泰勒展开

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(x_k)}{2!}(x - x_k)^2 + \dots +$$

若取前两项来近似代替 f(x)(称为 f(x) 的线性化),则得近似的线性方程:

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k) = 0$$

设 $f(x_k) \neq 0$, 令其解为 x_{k+1} , 得

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Newton 法 (续)

这称为 f(x) = 0 的牛顿迭代公式。它的迭代函数为:

$$x = x - \frac{f(x)}{f'(x)}$$

显然是 f(x) = 0 的同解方程,故其迭代函数为:

$$\varphi(x) = x - \frac{f(x)}{f'(x)} \quad (f'(x) \neq 0)$$

由

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

知 x_{k+1} 是点 $(x_k, f(x_k))$ 处 y = f(x) 的切线:

$$\frac{y - f(x_k)}{x - x_k} = f'(x_k)$$

与x轴的交点的横坐标,如下图所示。

Yong Cheng

Computing Methods

Ch04 方程求根的迭代法

Newton 的几何解释

也就是说, 新的近似值 x_{k+1} 是用曲线 y = f(x) 在 $(x_k, f(x_k))$ 的切线与 x 轴相交得到的。

继续取点 $(x_{k+1}, f(x_{k+1}))$,再做切线与 x 轴相交,又可得 x_{k+2}, \cdots 。由图可见,只要初值取的充分靠近根 x^* ,这个序列就会很快收敛于根 x^* 。Newton 迭代法又称切线法。

牛顿法的收敛性

定理

设 f(x) 在 [a,b] 上满足下列条件:

- $f(a) \cdot f(b) < 0$;
- $f(x) \neq 0$;
- f"(x) 存在且不变号;

则由迭代公式确定的牛顿迭代法序列 $\{x_k\}$ 收敛于 f(x) 在 [a, b] 上的唯一根 x^* 。

牛顿法的收敛性 (续)

Newton 迭代法的收敛性依赖于 x_0 的选取。

牛顿法例子

例题:用牛顿法求下面方程的根:

$$f(x) = x^3 + 2x^2 + 10x - 20 = 0$$

解: 因

$$f(x) = 3x^2 + 4x + 10$$

所以迭代公式为

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
$$= x_k - \frac{x_k^3 + 2x_k^2 + 10x_k - 20}{3x_k^2 + 4x_k + 10}$$

取 $x_0 = 1$,

$$x_1 = x_0 - \frac{x_0^3 + 2x_0^2 + 10x_0 - 20}{3x_0^2 + 4x_0 + 10}$$

牛顿法例子(续)

接上

$$x_1 = 1 - \frac{1^3 + 2 \cdot 1^2 + 10 \cdot 1 - 20}{3 \cdot 1^2 + 4 \cdot 1 + 10} = 1.411764706$$

同理, 可求 x_2, x_3, \cdots , 计算结果列于下表。

k	x_k
1	1.411764706
2	1.369336471
3	1.368808189
4	1.368808108

从计算结果可以看出,牛顿法的收敛速度是很快的,进行了四次迭代就得到了较满意的结果,精度为 10⁻⁷。

迭代过程的收敛速度

定义: p 阶收敛

如果迭代误差 $e_k = x^* - x_k$ 当 $k \to \infty$ 时成立:

$$rac{e_{k+1}}{e_k^p}
ightarrow c \quad (c
eq 0$$
的常数)

则称迭代过程是 p 阶收敛的。当 p=1 时称线性收敛,当 p=2 时称平方收敛,当 1 时称方法为超线性收敛。

定理

Newton 迭代法

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

在 f(x) = 0 的单根 x^* 临近为平方收敛。

Newton 迭代法分析

Newton 迭代法优缺点:

Newton 迭代法逻辑结构简单、收敛速度很快 (平方收敛),但它通常依赖初值 x_0 的选取,如果初值 x_0 选择不当,将导致迭代发散或产生无限循环;此外,每一步迭代都需要计算导数值 f(x),有时计算 f(x) 是不方便的。 基于这两点.产生了几种 Newton 迭代法的变形形式。

- 牛顿下山法:
- 2 弦截法;
- 3 快速弦截法;

牛顿法例子

一般地说,Newton 法的收敛性依赖于初值 x_0 的选取,如果 x_0 偏离解 x^* 较远,则 Newton 法可能发散或产生无限循环。 例题:用 Newton 求方程

$$x^3 - x - 1 = 0$$

在 x=1.5 附近的一个根。解:因

$$f(x) = 3x^2 - 1$$

可得牛顿迭代公式:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
$$= x_k - \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$$

牛顿法例子 (续)

分别取 $x_0 = 1.5$ 和 $x_0 = 0.6$, 计算结果如下表。

k	x_k	x_k
0	1.5	0.6
1	1.34783	17.90000
2	1.32520	11.94680
3	1.32472	7.985519
4	1.32472	

由上表可知道,当 $x_0 = 0.6$ 时结果偏离所求的根,不收敛 (发散) 或收敛较慢。

Newton 下山法

为了防止迭代发散,通常对迭代过程再附加一项要求,即保 证函数值单调下降:

$$|f(x_{k+1})| < |f(x_k)|$$

满足这项要求的算法称下山法。将 Newton 法与下山法结合 使用,即在下山法保证迭代函数值稳定下降的前提下,用 Newton 法加快速度,即可得到如下 Newton 下山法:

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

其中 $0 < \lambda < 1$,称下山因子,在迭代过程中通过适当地选取 λ 以使下山条件 $|f(x_{k+1})| < |f(x_k)|$ 满足。下山因子的选择是个逐步 探索的过程,从 $\lambda=1$ 开始反复将因子 λ 的值减半进行试算,一 旦单调条件 $|f(x_{k+1})| < |f(x_k)|$ 满足,则称为"下山成功"。反之, 如果在上述过程中找不到使下山条件 $|f(x_{k+1})| < |f(x_k)|$ 成立的下 山因子 λ . 则称"下山失败", 这时需另选初值 x_0 重算。

下山法例子

例题:使用下山法求方程 $f(x) = x^3 - x - 1 = 0$ 的根,取

 $x_0 = 0.6$.

解: 迭代公式如下:

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)} = x_k - \lambda \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$$

牛顿下山法的计算结果:

k	λ	x_k
0	1	0.6
1	$\frac{1}{2^{5}}$	1.14063
2	1	1.36681
3	1	1.32628
4	1	1.32472

弦截法

牛顿法要计算 f(x), 现用 f(x) 的值近似 f(x): 认为切线斜率近似等于割线斜率。

$$f(x_k) \approx \frac{f(x_k) - f(x_0)}{x_k - x_0}$$
$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_0)} (x_k - x_0)$$

迭代函数为:

$$\varphi(x) = x - \frac{f(x)}{f(x) - f(x_0)}(x - x_0)$$

单点弦截法为线性收敛。

弦截法几何意义

快速弦截法

快速弦截法也称为两点弦截法。 认为切线斜率近似等于割线斜率。

$$f(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

快速弦截法需要 2 个初值 x_0 和 x_1 , 其收敛阶 1.618。

快速弦截法例子

例题:使用 Newton 法和快速弦截法求方程 xe^x –1=0 的根。

解:使用 Newton 法和快速弦截法, 迭代公式分别如下:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k e^{x_k} - 1}{e^{x_k} + x_k e^{x_k}}$$
$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

k	x_k	x_k
0	0.5	0.5
1	0.57102	0.6
2	0.56716	0.56754
3	0.56714	0.56715
4	0.56714	0.56714

埃特金迭代公式

$$\begin{split} \bar{x}_{k+1} &= \varphi(x_k) \\ \tilde{x}_{k+1} &= \varphi(\bar{x}_{k+1}) \\ x_{k+1} &= \tilde{x}_{k+1} - \frac{(\tilde{x}_{k+1} - \bar{x}_{k+1})^2}{\tilde{x}_{k+1} - 2\bar{x}_{k+1} + x_k} \end{split}$$

本章小结

- 迭代法思想;
- 开方法;
- Newton 法;
- Newton 法的改进;
- 迭代过程的加速;

练习题

- ① 编程实现开方法。
- 2 编程实现 Newton 法。

谢谢!

AUTHOR: Cheng Yong

Address: Dept. of Computer

Beijing University of Chemical Technology

Beijing, 100029, China

EMAIL: buctcourse@163.com

Yong Cheng Computing Methods Ch04 方程求根的迭代法