${\it expression} confirm$

Here, we simply plot the density of the average expression for all genes

```
## Warning: package 'knitr' was built under R version 3.2.5
```

Warning: package 'qtlcharts' was built under R version 3.2.5

Here we compare quantiles and plot data:

Thyroid:

```
#compare.distribution(tissuename = "Thyroid",lfsr = lfsr,curvedata = log(exp.sort),thresh = 0.05 )
plot_tissuespecifictwo(tissuename = "Thyroid",lfsr = lfsr,curvedata = log(exp.sort),title = "Test",thre
```

Thyroid

plot_tissuespecificthree(tissuename = "Thyroid",lfsr = lfsr,curvedata = log(exp.sort),title = "Test",th

Testis:

```
#compare.distribution(tissuename = "Testis", lfsr = lfsr, curvedata = log(exp.sort), thresh = 0.05)
plot_tissuespecifictwo(tissuename = "Testis", lfsr = lfsr, curvedata = log(exp.sort), title = "Test", thresh
```

Testis

plot_tissuespecificthree(tissuename = "Testis", lfsr = lfsr, curvedata = log(exp.sort), title = "Test", thr

Testis

Whole Blood

```
#compare.distribution(tissuename = "Whole_Blood", lfsr = lfsr, curvedata = log(exp.sort), thresh = 0.05 )
plot_tissuespecifictwo(tissuename = "Whole_Blood", lfsr = lfsr, curvedata = log(exp.sort), title = "Test",
```

Whole_Blood

plot_tissuespecificthree(tissuename = "Whole_Blood",lfsr = lfsr,curvedata = log(exp.sort),title = "Test

Whole_Blood

 $Muscle_Skeletal$

Cells_Transformed_fibroblasts

plot_tissuespecificthree(tissuename = "Cells_Transformed_fibroblasts",lfsr = lfsr,curvedata = log(exp.s

Cells_Transformed_fibroblasts

