271B - Homework 2

Problem 1. Let S, T, and $T_n, n = 1, 2, ...$ be stopping times (with respect to some filtration $\{\mathcal{F}_t\}_{t \geq 0}$). Show that $T \vee S, T \wedge S, T + S$, $\sup_n T_n$ are also stopping times.

Proof. The pointwise minimum, maximum, sum, and supremum of measurable functions are measurable. For the minimum and maximum we have

$$\{(T \land S) \le t\} = \{T \le t\} \cup \{S \le t\}$$

$$\{(T\vee S)\leq t\}=\{T\leq t\}\cap \{S\leq t\}.$$

Unions and intersections of measurable sets are measurable, so both of these sets live in \mathcal{F}_t . Thus, $T \wedge S$ and $T \vee S$ are stopping times. For the sum, we can write the set $\{T + S \leq t\}$ as a countable union:

$$\{T+S\leq t\}=\bigcup_{\alpha,\beta\in\mathbb{Q},\ \alpha+\beta\leq t}\{T\leq\alpha\}\cap\{S\leq\beta\}.$$

As \mathcal{F}_t -measurability is closed under countable union and intersection, the sum is a stopping time. Finally, we have

$$\{\sup_{n} T_n \le t\} = \bigcap_{n=1}^{\infty} \{T_n \le t\},\,$$

which is measurable, so the supremum is also a stopping time.

Problem 2. Let X_t be an adapted and continuous stochastic process, and define

$$T_{\Gamma} = \inf\{t \ge 0 : X_t \in \Gamma\}$$

for Γ a closed set. Show that T_{Γ} is a stopping time.