AD-782 202

A COMPUTER PROGRAM FOR THREE-DIMENSIONAL LIFTING BODIES IN SUBCONIC INVISCID FLOW

F. A. Woodward, et al

Flow Research, Incorporated

Prepared for:

Army Air Mobility Research and Development Laboratory

April 1974

DISTRIBUTED BY:

U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER USAAMRDL-TR-74-18 4. TITLE (and Subtitio) A COMPUTER PROGRAM FOR THREE-DIMENSIONAL LIFTING BODIES IN SUBSONIC INVISCID FLOW F. A. Woodward F. A. Dvorak E. W. Geller 9. PERFORMING ORGANIZATION NAME AND ADDRESS Flow Research, Inc. Kent, Washington 98031 11. CONTROLLING OFFICE NAME AND ADDRESS Eustis Directorate U. S. Atmy Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADIN 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.			
USAAMRDL-TR-74-18 4. TITLE (and Subtitie) A COMPUTER PROGRAM FOR THREE-DIMENSIONAL LIFTING BODIES IN SUBSONIC INVISCID FLOW 7. AUTHOR(e) F. A. Woodward F. A. Dvorak E. W. Geller 9. PERFORMING ORGANIZATION NAME AND ADDRESS Flow Research, Inc. Kent, Washington 98031 11. CONTROLLING OFFICE NAME AND ADDRESS EUSTIS Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. TYPE OF REPORT & PERIOD COVE Final Report 6. PERFORMING ORG. REPORT NUMBER (e) Flow Research Report 26 8. CONTRACT OR GRANT NUMBER(e) CONTRACT OR GRANT NUMBER(e) 10. PROGRAM ELEMENT, PROJECT. TA AREA & WORK UNIT NUMBERS 112. REPORT DATE APTIL 1974 113. NUMBER OF PAGES 114. MONITORING AGENCY NAME & ADDRESS(III dillerent from Controlling Office) 114. MONITORING AGENCY NAME & ADDRESS(III dillerent from Controlling Office) 115. SECURITY CLASS. (of this report) Unclassified 116. DISTRIBUTION STATEMENT (of this Report)	1		
A COMPUTER PROGRAM FOR THREE-DIMENSIONAL LIFTING BODIES IN SUBSONIC INVISCID FLOW 7. AUTHOR(**) F. A. Woodward F. A. Dvorak E. W. Geller 9. Performing organization name and address Flow Research, Inc. Kent, Washington 98031 11. Controlling office name and address Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. Monitoring agency name a address(if different from Controlling Office) 15. Type of Report & Period Cove Final Report 6. Performing org. Report number Flow Research Report 26 6. Contract DAAJ02-73-C-0065 10. Program Element, Project, Takes a work unit numbers 11. Task 1F162204AA4102 12. Report date April 1974 13. Number of Pages 14. Monitoring agency name a address(if different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report)	2		
A COMPUTER PROGRAM FOR THREE-DIMENSIONAL LIFTING BODIES IN SUBSONIC INVISCID FLOW 7. AUTHOR(s) F. A. Woodward F. A. Dvorak E. W. Geller 9. PERFORMING ORGANIZATION NAME AND ADDRESS Flow Research, Inc. Kent, Washington 98031 11. CONTROLLING OFFICE NAME AND ADDRESS Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report)	PERMITTED REPORTS		
LIFTING BODIES IN SUBSONIC INVISCID FLOW 7. AUTHOR(**) F. A. Woodward F. A. Dvorak E. W. Geller 9. PERFORMING ORGANIZATION NAME AND ADDRESS Flow Research, Inc. Kent, Washington 98031 11. CONTROLLING OFFICE NAME AND ADDRESS Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report)			
7. AUTHOR(*) F. A. Woodward F. A. Dvorak E. W. Geller 9. PERFORMING ORGANIZATION NAME AND ADDRESS Flow Research, Inc. Kent, Washington 98031 11. CONTROLLING OFFICE NAME AND ADDRESS Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADIN			
F. A. Woodward F. A. Dvotak E. W. Geller 9. Performing organization name and address Flow Research, Inc. Kent, Washington 98031 11. Controlling office name and address Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. Monitoring agency name a address(it different from Controlling Office) 15. Security Class. (of this report) 16. Distribution statement (of this Report)			
F. A. Woodward F. A. Dvorak E. W. Geller 9. PERFORMING ORGANIZATION NAME AND ADDRESS Flow Research, Inc. Kent, Washington 98031 11. CONTROLLING OFFICE NAME AND ADDRESS Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report)			
F. A. DVOTAK E. W. Geller 9. PERFORMING ORGANIZATION NAME AND ADDRESS Flow Research, Inc. Kent, Washington 98031 11. CONTROLLING OFFICE NAME AND ADDRESS Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report)			
9. PERFORMING ORGANIZATION NAME AND ADDRESS Flow Research, Inc. Kent, Washington 98031 11. CONTROLLING OFFICE NAME AND ADDRESS Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADIN 16. DISTRIBUTION STATEMENT (of this Report)			
Flow Research, Inc. Kent, Washington 98031 Task 1F162204AA4102 Task 1F162204AA4102 It. Controlling office name and address Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 It. Monitoring Agency name a address(if different from Controlling Office) It. Report Date April 1974 It. Number of Pages It. Report Date April 1974 It. Number of Pages It. Report Date April 1974 It. Number of Pages It. Report Date April 1974 It. Number of Pages It. Report Date April 1974 It. Number of Pages It. Report Date April 1974 It. Number of Pages It. Report Date April 1974 It. Number of Pages It. Report Date April 1974 It. Distribution Statement (of this Report)			
Kent, Washington 98031 Task 1F162204AA4102 It. CONTROLLING OFFICE NAME AND ADDRESS Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 It. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) It. REPORT DATE April 1974 It. NUMBER OF PAGES It. REPORT DATE April 1974 It. NUMBER OF PAGES It. SECURITY CLASS. (of this report) Unclassified Its. DECLASSIFICATION/DOWNGRADIN SCHEDULE	SK		
11. CONTROLLING OFFICE NAME AND ADDRESS EUSTIS Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report)			
Eustis Directorate U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADIN 16. DISTRIBUTION STATEMENT (of this Report)			
U. S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADIN 16. DISTRIBUTION STATEMENT (of this Report)			
FORT Eustis, Virginia 23604 14. MONITORING AGENCY NAME & ADDRESS(II diliterent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADIN SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report)			
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADIN 16. DISTRIBUTION STATEMENT (of this Report)			
Unclassified 15.0. DECLASSIFICATION/DOWNGRADIN SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report)			
15. DISTRIBUTION STATEMENT (of this Report)			
16. DISTRIBUTION STATEMENT (of this Report)			
16. DISTRIBUTION STATEMENT (of this Report)	IG		
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES Reproduced by NATIONAL TECHNICAL			
INFORMATION SERVICE U.S. Department of Commerce			
Springfield VA 22151 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)			
Three dimensional Sources			
Bodies Angle of attack			
Separation Yaw			
Fuselages Vortices			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)			
A computer program for the analysis of wing-body combinations in subsonic flow is described. The configuration is represented by a large number of surface panels, each containing a constant source distribution. The circulation about lifting surfaces is provided by a system of vortex lattices located on the mean camber surface. The strengths of the sources and vortices which satisfy the boundary condition of tangential flow for a given Mach number, angle of attack, and/or angle of yaw are determined by			

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) Block 20 solving a system of linear equations by an iterative procedure. The program computes the pressure coefficients at the panel centroids and integrates these pressures numerically to obtain the lift, drag, and pitching moments of the configuration.

PREFACE

This program was sponsored by the Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, and was monitored by Mr. James Gillespie. This program was authorized by Contract DAAJO2-73-C-0065, DA Task 1F162204AA4102.

TABLE OF CONTENTS

	rage
PREFACE	· iii
LIST OF ILLUSTRATIONS	. vi
INTRODUCTION	. 1
AERODYNAMIC THEORY	. 2
Description of Method	
Compressibility Corrections	
The Boundary Condition Equations	
Calculation of the Pressures, Forces, and Moments	
Separated Flow Model	
Separated flow model	. 1/
COMPUTER PROGRAM	• 24
Program Description	. 24
Program Structure	
Program Input Data	
Program Output	
Program Time Estimation	
Program Usage	• 41
A General Guide to Paneling Wing-Body Nacelle	
Configurations	• 49
COMPARISON WITH EXPERIMENT	• 52
CONCLUSIONS	• 69
REFERENCES	• 70
APPENDIXES	
I. Panel Geometry Calculations	71
II. Subroutine Descriptions	. 77
III. Sample Input	106
IV. Sample Output	110
LIST OF SYMBOLS	137

LIST OF ILLUSTRATIONS

Figure		Page
1	Source and Vortex Panel Arrangement on Wing-Body Combination	3
2	Source Panel Geometry	4
3	Line Vortex Geometry	6
4	Vortex Lattice	7
5	Modeling of Potential Flow to Account for Boundary Layer and Wake	18
6	The BO 105 Helicopter Fuselage Showing Paneling and Separation Modeling	20
7	Pressure Distribution Along Top Centerline of the BO 105 .	21
8	Pressure Distribution Along Waterline 10 of the BO 105	22
9	Program Overlay Structure	25
10	CPU Time Required for CDC 6600	42
11	Body Cross Section	43
12	Wing Section	44
13	Wing Vortex Lattice	46
14	Vortex Lattice Inside Body	47
15	Vortices in Vertical Tail	48
16	Panel Representation for BO 105 Helicopter Configuration	53
17	Pressure Distribution for BO 105 along Fuselage Top Centerline α = 0°, β = 0°	56
18	Pressure Distribution for BO 105 along Fuselage Waterline 10	0
	$\alpha = 0$, $\beta = 0$,	57

Figure		Page
19	Pressure Distribution for BO 105 along Fuselage Top Centerline α = 0 , β =10	58
20	Pressure Distribution for BO 105 along Fuselage Waterline 6 α = 0 , β =10	59
21	Panel Representation for HLH Configuration	60
22	Pressure Distribution for HLH Fuselage Front Pylon Top Centerline	61
23	Pressure Distribution for HLH Fuselage Front Pylon Bottom Centerline	62
24	Pressure Distribution for HLH Wing Upper Surface Y = 8.5	63
25	Pressure Distribution for HLH Wing Lower Surface Y = 8.5	64,
26	Pressure Distribution for HLH Nacelle - Maximum Span	65
27	Pressure Distribution for HLH Aft Pylon Above Nacelle Z = 11.3	66
28	Panel Representation for Wing-Body-Vertical Tail Combination	67
29	Pressure Distribution on a Low Aspect Ratio Vertical	۷.0

INTRODUCTION

The computer program is based on a program developed by Drs. Walter Krauss and Peter Sacher at Messerschmidt-Boelkow-Blohm in Munich, Germany, and reported in Reference 1. The MBB Program uses a method developed by Dr. Paul Rubbert and Gary Saaris at the Boeing Company, Reference 2, which in turn stems from the well-known Douglas Neumann Program originated by John Hess and A. M. O. Smith, Reference 3.

A listing of the MBB Program was provided by Dr. Wolfgang Schmidt of the Dornier Company. The present computer program retains the basic structure of the MBB Program, but has been extended to include a plotting package, analysis of yawed configurations, and many other features useful in the analysis of bluff bodies in subsonic flow.

AERODYNAMIC THEORY

DESCRIPTION OF METHOD

The configuration surface is divided into a large number of panels, each of which contains a constant source distribution. In addition, an internal vortex lattice is located along the mean chord of lifting surfaces to provide circulation to the flow. A typical configuration panel subdivision is shown in Figure 1.

Analytical expressions for the perturbation velocity field induced by a constant source distribution on an arbitrary quadrilateral panel are given by Hess and Smith (Reference 3). Similarly, the velocity field induced by the elements of a vortex lattice are given by Rubbert and Saaris (Reference 2). The perturbation velocities are used to calculate the coefficients of a system of linear equations relating the magnitude of the normal velocities at the panel control points to the unknown source and vortex strengths. The source and vortex strengths which satisfy the boundary condition of tangential flow at the control points for a given Mach number and angle of attack are determined by solving this system of equations by an iterative procedure. The pressure coefficients at panel control points are then calculated in terms of the perturbation velocity components, and the forces and moments acting on, the configuration obtained by numerical integration.

The perturbation velocity components induced by the sources and vertices are described in the following paragraphs, together with the formation and solution of the boundary condition equations, and the procedure used to calculate the pressure coefficients, forces and moments on the configuration.

Figure 1. Source and Vortex Panel Arrangement on Wing-Body Combination.

THE INCOMPRESSIBLE VELOCITY COMPONENTS

The perturbation velocity components u, v, and w induced by a constant distribution of sources on an arbitrary quadrilateral panel are derived in Reference 3, so only the final expressions will be reported here. Consider the panel shown in Figure 2.

Figure 2. Source Panel Geometry.

The panel is assumed to lie in the plane z = 0, and the corners are numbered clockwise for reference. The perturbation velocities of point P(x,y,z) are given as the sum of the contributions of the four sides of the quadrilateral as follows:

$$u = -H_{12}Q_{12} -H_{23}Q_{23} -H_{34}Q_{34} -H_{41}Q_{41}$$
 (1)

$$v = K_{12}Q_{12} + K_{23}Q_{23} + K_{34}Q_{34} + K_{41}Q_{41}$$
 (2)

$$w = \frac{|z|}{z} [\Delta \theta - J_{12} - J_{23} - J_{34} - J_{41}]$$
 (3)

where

$$K_{ij} = \frac{\xi_{i}^{-\xi_{i}}}{d_{ij}}$$

$$H_{ij} = \frac{\eta_{j}^{-\eta_{i}}}{d_{ij}}$$

$$Q_{ij} = \log \frac{r_{i}^{+r_{j}^{+d}} + d_{ij}}{r_{i}^{+r_{j}^{-d}} + d_{ij}}$$

$$J_{ij} = \frac{|D_{ij}|}{|D_{ij}|} \left[tan^{-1} \left(\left| \frac{z}{|D_{ij}|} \right| \frac{T_{ij}}{|T_{i}|} \right) - tan^{-1} \left(\left| \frac{z}{|D_{ij}|} \right| \frac{P_{ij}}{|T_{i}|} \right) \right]$$

$$D_{ij} = (x - \xi_{i}) H_{ij} - (y - \eta_{i}) K_{ij}$$

$$P_{ij} = (\xi_{i}^{-1} - x) K_{ij} + (\eta_{i}^{-1} - y) H_{ij}$$

$$T_{ij} = (\xi_{j}^{-1} - x) K_{ij} + (\eta_{j}^{-1} - y) H_{ij}$$

$$r_{i} = [(x - \xi_{i}^{-1})^{2} + (y - \eta_{i}^{-1})^{2} + z^{2}]^{1/2}$$

$$d_{ij} = [(\xi_{i}^{-1} - \xi_{i}^{-1})^{2} + (\eta_{i}^{-1} - \eta_{i}^{-1})^{2}]^{1/2}$$

and $\Delta\theta$ = 2π if the point P lies inside the boundary in the plane of the panel; $\Delta\theta$ = 0 otherwise.

For the points located more than four times the length of the major diagonal from the panel centroid, the quadrilateral is approximated by a point source at the centroid. This simplifies the expression for the

velocity components considerably.

In this case,

$$\dot{\mathbf{u}} = (\mathbf{x} - \bar{\mathbf{x}}) \, \mathbf{s}/\bar{\mathbf{r}}^3 \tag{4}$$

$$v = (y - \bar{y}) s/\bar{r}^3$$
 (5)

$$w = (z - \bar{z}) S/\bar{r}^3$$
 (6)

where

$$\bar{r} = [(x - \bar{x})^2 + (y - \bar{y})^2 + (z - \bar{z})^2]^{1/2}$$

S = panel area

and \bar{x} , \bar{y} , \bar{z} are the coordinates of the panel centroid.

Additional multipole expansion formulas for the velocity components given in Reference 3 are not used in this program.

The perturbation velocity components induced by a line vortex are derived in Reference 2. The line vortex is represented by a vector \vec{L} as shown in Figure 3 below. It induces a counterclockwise circulation in a plane perpendicular to \vec{L} if the vortex strength is positive.

Figure 3. Line Vortex Geometry.

The velocity at P(x, y, z,) is perpendicular to the plane containing \vec{L} and the point P(x, y, z,) are Biot-Savart's Law as

$$V_{1} = \frac{1}{4\pi} \int_{1}^{2} \frac{\vec{\mathbf{D}} \times \vec{\mathbf{L}}}{|\vec{\mathbf{D}} \times \vec{\mathbf{L}}|} \frac{\sin \theta}{\mathbf{D}^{2}} ds$$

$$= \frac{\gamma}{4\pi} \frac{\mathbf{L}}{(\vec{\mathbf{L}} \times \vec{\mathbf{r}}_{1}^{2})2} (\cos \theta_{1} - \cos \theta_{2})$$
(7)

A quadrilateral vortex is composed of four vortex segments of equal strength. The velocity induced by a quadrilateral vortex is

$$\overrightarrow{V} = \overrightarrow{u.i} + \overrightarrow{v.j} + \overrightarrow{w.k} = \sum_{n=1}^{4} \overrightarrow{V}_{n}$$
 (8)

where \overrightarrow{v}_n is the velocity induced by segment n, and u, v, and w are the perturbation velocity components.

A vortex lattice consists of a series of quadrilateral vortices of varying strengths, with adjacent edges superimposed. The vortex wake is approximated by giving the last vortex quadrilateral a large but finite length. The net strength of the trailing vortices in the wake is the sum of the strengths of the individual elements in the lattice, as indicated in Figure 4.

Figure 4. Vortex Lattice

The relative strengths of the individual bound vortices in the lattice are specified in advance. The circulation around each airfoil section is determined by the net strength of each vortex lattice.

COMPRESSIBILITY CORRECTIONS

The velocity components in compressible flow are found by applying Gothert's Rule (Reference 4). Two options are available in the program for applying the compressibility corrections, and are designated Rule 1 and Rule 2.

Rule 1 applies the method originally proposed by Gothert. The incompressible velocity components are calculated on an analogous body obtained by the following transformation:

$$x_{a} = x$$

$$y_{a} = By$$

$$z_{a} = Bz$$
(9)

where

$$B = \sqrt{1-M^2}$$

The boundary conditions of tangential flow are applied on the analogous body, and the resulting incompressible perturbation velocities are transformed back to the real body by

$$u = u_a / B^2$$

$$v = v_a / B$$

$$w = w_a / B$$
(10)

The total velocity vector at a given point is then

$$U = U_{\infty} \cos \alpha \cos \beta + u$$

$$V = U_{\infty} \sin \beta + v$$

$$W = U_{\infty} \sin \alpha \cos \beta + w$$
(11)

It is now known that this compressibility rule yields good results only for slender bodies at small angles of attack. The validity of this rule decreases with increasing values of the surface slope. This effect is particularly noticeable for two-dimensional airfoil sections. In the vicinity of the nose, Gothert's Rule (which is equivalent to the Prandtl-Glauert Rule in this example) gives excessively high suction peaks on the upper surface. The reason for this failure of the theory is the manner in which the boundary conditions are satisfied. Since the boundary conditions are satisfied at the surface of the analogous body which is thinner by the factor B than the real body, the curvature of the flow near the nose is correspondingly increased, resulting in higher suction peaks. In order to eliminate this effect, it is necessary to satisfy the boundary conditions on the surface of the real body.

Rule 2 was first proposed by Kraus in Reference 1. Beginning with the analog body as before, the expressions for the perturbation velocity components are corrected for compressibility, using Equation 10, prior to solving the boundary condition equations. The boundary conditions of tangential flow are then applied on the surface of the real body, resulting in improved results for the velocities and pressure coefficients.

THE BOUNDARY CONDITION EQUATIONS

The boundary condition of tangential flow at panel control points establishes a system of linear equations for determining the strengths of the source and vortex distributions. The geometrical relationship between each panel and control point is required to evaluate the coefficients of this system of equations.

Panel Geometry

A typical panel subdivision of a wing-body configuration is illustrated in Figure 1. A reference coordinate system is established with origin at or near the nose of the configuration, having an x-axis lying in the plane of symmetry parallel to the body axis, and a vertical z axis. Symmetry of the body about the x, z plane is not required. However, if the body is symmetric, only those panels located on the positive y side of the x, z plane are required.

The body panel corners are defined by the intersections of a series of planes normal to the x axis, and longitudinal meridian lines. A maximum of 70 body sections may be used, and each section may contain up to 60 points around the half-circumference. The body panel corner points may be shifted longitudinally to aid in panelirg wing-body intersections. The body panels are numbered in sequence from the top to the bottom of each circumferential ring, starting from the most forward ring.

The wing panels are defined by the intersections of a series of vertical planes parallel to the plane of symmetry, and lines of constant percent chord. A maximum of 40 wing sections may be defined, each containing up to 60 airfoil ordinates. The same number of ordinates are required on the upper and lower surfaces of the airfoil, at approximately the same percent chord locations, in order to properly define the internal vortex panels.

The wing panel corner points may be shifted laterally to aid in paneling wing-body intersections. The wing panels are numbered sequentially, and follow the body panels. Beginning with the inner chordwise strip of panels, the numbering starts at the trailing edge of the lower surface, and ends at the trailing edge of the upper surface. A maximum of 1500 panels may be used to define the external surfaces of the wing and body. It the configuration is symmetric, this implies a maximum of 750 panels on one side of the x, z plane.

Vortex lattice panels are automatically defined on the mean chord plane of the wing. The panel corner points are obtained by averaging the upper and lower surface airfoil ordinates at each percent chord location. One additional vortex panel is defined in the wake aft of the trailing edge of each chordwise strip of wing panels to provide control points for satisfying the Kutta condition. The additional panel lies in the plane of the trailing edge bisector. For wing-body combinations, additional vortex lattices are required inside the body to provide a mechanism for carry-over of lift. A maximum of 35 vortex lattices may be defined, and these are numbered subsequently following the wing panels.

The four input points defining a panel do not necessarily lie in the same plane. The technique used to approximate the panel by an equivalent planar panel was developed by Hess and Smith, Reference 5, and is summarized in Appendix I. Using this method, a panel coordinate system is defined with origin at the panel centroid and lying in the mean plane of the input points. The x axis of the panel coordinate system is parallel to one diagonal, the z axis is normal to the plane of the panel, and the y axis is perpendicular to the other two. Since the velocity components induced by the source distributions are given in terms of the panel coordinate system, a nine element transformation matrix Tij is calculated for each panel to transform the coordinates of points and the components of vectors from the reference coordinate system to the panel coordinate system. In addition, the panel area, the coordinates of the centroid, and the length of the principal diagonal are calculated.

Normal Velocity at Panel Control Points

Each surface panel is assigned a control point located at the panel centroid. Each vortex lattice is assigned a control point just behind the trailing edge of the wing in the plane of the trailing edge bisector. (This point is normally located 1 percent of the local chord behind the trailing edge.)

The resultant velocity normal to panel i at its control point is the sum of the normal component of the free-stream velocity vector and the normal velocities induced by the panel source and vortex distributions. Setting the magnitude of the free-stream velocity vector equal to unity, its component normal to panel i is

$$R_{i} = \cos \alpha \cdot \cos \beta \cdot n_{x_{i}} + \sin \beta \cdot n_{y_{i}} + \sin \alpha \cdot \cos \beta \cdot n_{z_{i}}$$
(12)

where n_{x_i} , n_{y_i} , and n_{z_i} are the direction cosines of the normal of

panel i (see Appendix I), α is the angle of attack and β is the angle of yaw of the free-stream velocity vector in the reference axis system.

The normal component of velocity induced at the control point of panel i by the source and vortex distributions is given by

$$A_{i} = \sum_{j=1}^{N} (n_{x_{i}} \cdot v_{x_{ij}} + n_{y_{i}} \cdot v_{y_{ij}} + n_{z_{i}} \cdot v_{z_{ij}}) \sigma_{j}$$

$$(13)$$

where v_x , v_y , and v_z are the three components of velocity parallel ij v_j ij v_j to the reference axis at control point i induced by a unit strength source or vortex distribution on panel j and σ_j is the strength of the jth singularity.

The three components of velocity parallel to the reference axes are obtained by multiplying the velocity components given by Equations (4), (5), and (6) in the panel coordinate system by the transformation matrix given in Appendix I. For example,

$$v_{x_{ij}} = u_{ij} t_{1x_{ij}} + v_{ij} t_{1y_{ij}} + w_{ij} t_{1z_{ij}}$$

$$v_{y_{ij}} = u_{ij} t_{2x_{ij}} + v_{ij} t_{2y_{ij}} + w_{ij} t_{2z_{ij}}$$

$$v_{z_{ij}} = u_{ij} t_{x_{ij}} + v_{ij} t_{y_{ij}} + w_{ij} t_{z_{ij}}$$

$$(14)$$

Combining Equations (12) and (13),

$$V_{n_{\underline{i}}} = R_{\underline{i}} + A_{\underline{i}}$$

$$= R_{\underline{i}} + \sum_{j=\underline{i}}^{N} a_{\underline{i}\underline{j}} \sigma_{\underline{j}}$$
(15)

where the aerodynamic influence coefficient a_{ij} is given by Equation (13).

Solution of the Boundary Condition Equations

The boundary condition of tangential flow at panel control points is satisfied if the normal velocities are set equal to zero on all panels.

Thus

or
$$\sum_{i=1}^{N} V_{ni} = 0$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} \sigma_{j} = -\sum_{j=1}^{N} R_{i}$$
(16)

In matrix notation,

$$[A_{ij}] \{\sigma_j\} = -\{R_i\}$$
(17)

where A_{ij} is the matrix of aerodynamic influence coefficients, and the right side of the equation is given by Equation (12).

This system of equations can be solved by direct inversion to determine the unknown source and vortex strengths. However, for the large order matrices usually encountered in aerodynamic problems, an iterative solution procedure is given in Reference 3. A modified Gauss-Siedel iteration procedure is employed in this computer program.

This matrix is subdivided into four partitions as follows:

$$\begin{bmatrix}
A & | & A \\
ss & | & Vs \\
- & - & | & - \\
A & | & A \\
sv & | & Vv
\end{bmatrix}$$

where A_{SS} is the matrix giving the influence of the source panels on the surface control points.

 ${\bf A}_{{\bf SV}}$ is the matrix giving the influence of the source panels on the vortex lattice control points.

 $\mathbf{A}_{\mathbf{VS}}$ is the matrix giving the influence of the vortex lattices on the surface control points, and

 $\mathbf{A}_{_{\mathbf{V}\mathbf{V}}}$ is the matrix giving the influence of the vortex lattices on the vortex lattice control points.

Equation (17) may now be written as

or

$$A_{ss}s_{i} + A_{vs}\gamma_{i} = -R_{si}$$
 (19)

$$A_{sv}s_{i} + A_{vv}\gamma_{i} = -R_{v_{i}}$$
 (20)

where s_i are the unknown source strengths, and γ_i are the unknown vortex strengths, A_{ss} is a square matrix of order NS, and A_{vv} is a square matrix of order NL, where NL is generally much smaller than NS.

The first step in each of the iteration cycles is to use Equation (19) only. The values for γ_i are taken from the previous cycle (or set equal to zero on the first cycle) and a solution for the array $\{s_i\}$ is obtained by the Gauss-Seidel procedure. These values for s_i are then used in Equation (20) to obtain γ_i by direct inversion:

$$\gamma_{i} = -A_{vv}^{-1} \left[R_{v_{i}} + \sum_{j=1}^{NS} A_{sv_{ij}} s_{j} \right]$$
(21)

These values are now used in the first step of the next cycle, and the procedure continues until convergence is achieved. The criterion for convergence is

$$\left| \sum_{i=1}^{NS} \left(\sum_{j=1}^{NS} A_{ss_{ij}} s_{j} + \sum_{j=1}^{NL} A_{vs_{ij}} \gamma_{j} + R_{s_{i}} \right) \right| \leq \varepsilon$$
 (22)

where ϵ is some small number specified by the user. Normally $\epsilon \leq 10^{-3}$.

More elaborate iteration schemes using smaller partitions of the A_{SS} matrix are coscribed in Reference 6, but have not been incorporated into the present program.

CALCULATION OF THE PRESSURES, FORCES, AND MOMENTS

Once the source and vortex strengths have been determined, the three components of velocity at control point i may be obtained.

$$u_{i} = \cos \alpha \cos \beta + \sum_{j=1}^{N} v_{x_{ij}} \sigma_{j}$$
 (23)

$$v_{i} = \sin \beta + \sum_{j=1}^{N} v_{y_{ij}} \sigma_{j}$$
 (24)

$$w_{i} = \sin \alpha \cos \beta + \sum_{j=1}^{N} v_{z_{ij}} \sigma_{j}$$
 (25)

where the σ_{j} includes both source and vortex strengths, and $v_{\boldsymbol{x_{ij}}}$,

 v_{j} , and v_{z} are defined following Equation (13). The pressure

coefficient is calculated using the exact isentropic formula

$$C_{\mathbf{p_i}} = -\frac{2}{\kappa M^2} \left\{ \left[1 + \frac{\kappa - 1}{2} \quad M^2 \quad (1 - q_i^2) \right]^{3.5} - 1 \right\}$$
 (26)

where

$$q_1^2 = u_1^2 + v_1^2 + w_1^2$$

For M < .1, the program uses the simpler formula

$$C_{p_{i}} = 1 - q_{i}^{2} \tag{27}$$

The forces and moments acting on the configuration can now be obtained by numerical integration. The normal force, side force, axial force, and pitching moments (about the origin of coordinates) of panel i are given by

$$X_{i} = S_{i} C_{P_{i}} N_{X_{i}}$$
 (28)

$$Y_{i} = S_{i} \quad C_{P_{i}} \quad N_{i}$$
 (29)

$$Z_{i} = S_{i} \quad C_{P_{i}} \quad n_{Z_{i}}$$
 (30)

$$M_{x_i} = Z_i y_i - Y_i z_i$$
 (31)

$$M_{y_i} = X_i z_i - Z_i x_i$$
 (32)

where s_i is the area of the panel, n_{x_i} , n_{y_i} , and n_{y_i} are the direction cosines of the normal, and x_i , y_i and z_i are the coordinates of the panel control point.

The total force and moment coefficients are obtained by summing the panel forces and moments on both sides of the plane of symmetry

$$c_{z} = \frac{1}{S_{w}} \sum_{i=1}^{N} z_{i}$$
 (34)

$$c_{Y} = \frac{1}{S_{w}} \sum_{i=1}^{N} Y_{i}$$
 (35)

$$c_{X} = \frac{1}{S_{W}} \sum_{i=1}^{N} x_{i}$$
 (36)

$$c_{M_{Z}} = \frac{1}{S_{W}^{\bar{c}}} \sum_{i=1}^{N} M_{Z_{i}}$$
(37)

$$C_{M_{y}} = \frac{1}{S_{w}\bar{c}} \sum_{i=1}^{N} {}^{M}y_{i}$$
 (38)

$$c_{M_{x}} = \frac{1}{S_{w}\bar{c}} \sum_{i=1}^{N} {M_{x_{i}}}$$
(39)

Finally, the lift, side force, and drag coefficients are

$$C_L = C_Z \cos \alpha - (C_X \cos \beta - C_Y \sin \beta) \sin \alpha$$
 (40)

$$C_S = C_V \cos \beta + C_X \sin \beta$$
 (41)

$$C_D = (C_X \cos \beta - C_Y \sin \beta) \cos \alpha + C_Z \sin \alpha$$
 (42)

The program computes the forces and moments acting on the body and the wing, and sums them to obtain the total forces and moments of the configuration. In addition, wing section forces and moments may be calculated at the user's option.

SEPARATED FLOW MODEL

The flow external to the boundary layer and the separated wake is essentially potential flow. To obtain a mathematical model with potential flow everywhere, the boundary layer and separated wake in the real case are replaced by fluid originating from the body surface as shown in Figure 5. Rules for the distribution of surface normal velocity to account for boundary layer growth upstream of separation have been formulated, and their use requires matching the boundary layer and the potential flow solution by iteration. Rules for distributing surface normal velocity in the separated region to obtain fluid which will displace the potential flow originating from upstream in the same way as the separated wake in the real case have not been formulated. However, for very unstreamlined bodies, a plausible approach is to make the surface normal velocity equal to the free-stream velocity component normal to the surface:

$$\vec{V}_{S} \cdot \vec{n} = \vec{V}_{\infty} \cdot \vec{n}$$

$$\vec{V}_{S} = \text{surface velocity}$$
(43)

 $\overrightarrow{V}_{\infty}$ = free-stream velocity

n = unit surface normal

To calculate the location of separation requires a matching of the boundary layer and potential flow solutions similar to that used for the boundary layer growth, a formidible job. However, for an aft body shape with rapid closure or for bodies having sharp corners, making an intuitive estimate of the separation point is consistent with the use of Equation 43.

(a) REAL FLOW

(b) POTENTIAL FLOW MODEL

Figure 5. Modeling of Potential Flow to Account for Boundary Layer and Wake.

This approximate separation modeling was applied to the BO 105 helicopter fuselage configuration. Figure 6 shows the different choices used for the region where fluid was ejected according to Equation 43. The choice labeled Case A gave the best agreement with experiment upstream of separation as shown in Figures 7 and 8. The pressure distributions for Waterline 10 (see Figure 8) show that the ejection region was extended too far forward for Case B. The top centerline data (see Figure 7) shows that for Case B the ejection region was extended too high on the body. The presence of the boom and a milder closure evidently eliminates separation on the upper part of the body.

It should be noted that by proper choice of outflow distribution, the potential flow model shown in Figure 5b can make the flow external to the dividing streamline agree well with the real case and hence give the proper surface pressure upstream of separation, but it cannot be expected to simultaneously provide surface pressures that agree with the real flow in the separated region. The irrelevant result in this region is illustrated in Figure 8 beyond X = 39. An approximate replacement is to use the pressure at separation over the entire separated surface region. The experimental results shown in Figure 8 suggest this approach. This level can be estimated from the potential flow solution using boundary layer separation criteria. Applying a modified Townsend criterion to the Waterline 10 pressure distribution for separation modeling Case A gives the pressure level shown as $C_{p_{\alpha}}$ in

Figure 8. This modified Townsend criterion, developed by F. A. Dvorak, is:

$$\begin{array}{c} C_{p} & = \text{ pressure coefficient at separation} \\ & = C_{f_{o}} (1-C_{p_{o}}) \left\{ -83.961 + 38.645 \log \left[\frac{Re}{x_{o}} - \frac{C_{f_{o}}}{C_{p}} (1-C_{p_{o}}) \right] \right\} + C_{p_{o}} \end{array}$$

C = pressure coefficient at recovery

x = boundary layer development length to recovery point

C' = recovery pressure gradient

Re = Reynolds number based on length x

 $C_{fo} = skin friction coefficient at recovery <math display="block">= \frac{.074}{Re^{1/5}}$

Figure 6. The BO 105 Helicopter Fuselage Showing Paneling and Separation Modeling.

Pressure Distribution Along Top Centerline of the BO 105. Figure 7.

Pressure Distribution Along Waterline 10 of the BO 105. Figure 8.

The values for C_{p_0} , C_p^{\prime} , and x_0 that were taken from the Case A pressure

distribution to calculate C $_{\mathrm{p}_{_{\mathrm{S}}}}$ are indicated in Figure 8. The boundary

layer development length \mathbf{x}_{o} was approximated by using the axial distance from the nose of the body to the recovery point. For the recovery pressure gradient C'_{p} , the maximum gradient in the recovery region was used.

For the cases shown in Figures 7 and 8, experimental results are available to determine the best ejection configuration for the paneling used, namely, Case A. An obvious problem is that in the absence of experimental data, it is not known where to start the surface ejection. It may be possible to determine this point by an iterative procedure using a boundary layer separation criterion. The idea is to start the surface ejection at the separation point calculated from the preceding cycle, an initial guess being used for the first cycle. The example in Figures 7 and 8 shows that for a jump start, ejection must begin some distance downstream from the calculated separation point. Clearly, the iterative procedure suggested requires a gradual initiation of ejection, and the shape used for this initiating "ramp" is critical for convergence and for obtaining an accurate modeling of separation as pictured in Figure 5. Also denser paneling than shown in Figure 6 is necessary to provide more resolution for the ejection distribution.

COMPUTER PROGRAM

PROGRAM DESCRIPTION

The program developed to calculate the pressure distribution and aerodynamic characteristics of wing-body combinations in subsonic flow is written in FORTRAN IV. A maximum of 1500 source panels and 35 vortex lattices may be used to represent the configuration. It is designed to operate on both the CDC 6600 or IBM 360/370 series of computer with minor modifications. The program requires approximately 210,000 (octal) words storage on the CDC computer, and operates in OVERLAY mode. The program requires five peripheral disc files in addition to the input and output files.

PROGRAM STRUCTURE

The overlay structure of the program is illustrated in Figure 9. The main overlay program is designated WBOLAY, and calls the three primary overlay programs WBPAN, WBPLOT, and WBAEOR. The complete program consists of 16 subroutines in addition to standard library and plot subroutines. Descriptions of these subroutines are contained in Appendix II of this report.

PROGRAM INPUT DATA

The input to the program is divided into three parts: the geometry input, the plot input, and the aerodynamic input. The input requirements of each part are described below. A sample input is given in Appendix III, and a sample output in Appendix IV.

Figure 9. Program Overlay Structure.

Geometry Input Cards

If the configuration is symmetrical about the x, z plane, geometrical input is required for only one side of the configuration. The convention used herein is to present that half of the configuration lying on the positive y side of the x, z plane. If the configuration is not symmetric, complete geometrical input is required.

<u>Card 1 - General Identification</u> - Card 1 contains any desired identifying information in Columns 1-80.

Card 2 - Configuration Parameters -

Col.	Variable	<u>Value</u>	Description
10	CASE	1 2 3	Isolated body only Isolated wing only Wing-body combinations
20	PLOT	0 1	No plot output Plot output requested
30	SIM	0	Configuration symmetric about x, z plane; panel geometry required on one side only
		1	Configuration symmetric about x, z plane. Panel geometry input required on one side only; panel geometry output calculated for both sides. (Used when analyzing symmetric configuration in yaw.)
		-1	Unsymmetric configuration. Panel geometry input required for both sides
40	ISAVE	0	Geometry and influence coefficient matrices not saved
		1	Geometry and influence coefficient matrices saved in previous run to be used (TAPE 11 must be requested and card sets 3-8 omitted)
		-1	Geometry and influence coefficient matrices to be saved on TAPE 11

Col.	Variable	<u>Value</u>	Description
50	PRINT	0	Normal output - see Program Output Section (page 41)
		1	Optional output 1 - Includes panel geometry, coordinate transformation matrices, and panel forces and moments
		2	Optional output 2 - Panel velocity components and influence coefficients Requires large line count limit
		3	Optional output 3 - The aerodynamic influence coefficient matrix, the right side of the matrix equation, and all solution iterations
		4	Optional output 4 - This option prints out the successive solution iterations only

Note: The normal output is always printed in addition to any optional output selected.

Card Set 3 - Single Panel Input - This card set allows individual panels to be input by specifying the coordinates of the four corner points in clockwise order. Any number of panels may be input in this manner. It also allows individual panels to be deleted by specifying the panel indices. A maximum of 100 panels may be deleted.

Card 3A - Single Panel Control Card

<u>Col.</u>	<u>Variable</u>	Value	Description
1-10	SINGPA	0	No single panel input; omit card set 3B, continue reading input cards
		1	Corner point coordinates of this panel follow on card set 3B
11-20	NOPAN	Arbitrary Integer	Number of panels to be deleted. If non-zero, panel indices follow on card set 3C

Card 3B - Panel Corner Point Input

Col.	<u>Variable</u>	Value	Description
1-10	X(I)	Arbitrary (floating point)	x coordinate of corner I
11-20	Y(I)	11	y coordinate of corner I

Col.	Variable	Value	Description
21-30	Z(I)	Arbitrary (floating point)	z coordinate of corner I

Repeat card 3B four times, once for each corner of the panel.

Card Set 3C - Indices of Deleted Panels

NOPAN indices of deleted panels are read (7I10) format) if NOPAN > 0 on card 3A. A maximum of 100 panels may be deleted. Wing and body vortex lattice control panels may not be deleted.

Card Set 4 - Body Panel Input - This card set allows the body panels to be calculated automatically, from the section geometry data. Five options are available for inputting the section geometry. The XYZ program input referred to below conforms with the format of Reference 7. Omit this card set if CASE = 2 on card 2.

Card 4A - Number of Body Sections

Col.	<u>Variable</u>	Value	Description
1-10	NB	Arbitrary Integer	Number of body sections $(2 \le NB \le 70)$

Card 4B - Body Section Geometry

<u>Col.</u>	Variable	<u>Value</u>	Description
1-10	XBE	Arbitrary (floating point)	x coordinate of origin of body section co- ordinate system except blank when XYZ pro- gram input format is used
11-20	YBE	"	Similarly the y coordinate
21-30	ZBE	**	Similarly the z coordinate
31-40	МВ	Arbitrary Integer	No. of input points on section $(3 \le MB \le 60)$
			If MB <0, XYZ program input format requested
50	OPT	0	Body section geometry input by y-z coordinates on card set 4C and 4D
		1	Body section geometry same as preceding body section - card set 4C or 4D omitted. Note: YBE and ZBE are additive to preceding values.

Card 4B - Body Section Geometry (cont'd)

Col.	<u>Variable</u>	Value	Description
		2	Body section geometry input in polar coordinates r, θ on card set 4C
		3	Body of revolution, section geometry input as section radius and theta increment on card set 4C
60	FLAG	0	Normal body section
		1	Terminal body section (end of current body panel network)

Card Set 4C - Body Section Coordinates (Normal Input)

Col.	Variable	<u>Value</u>	Description
1-10	B(J)	Arbitrary (floating point)	y coordinate of point J if OPT = 0, or, angular coordinate (in degrees) of J if OPT = 2 or, increment angle $\Delta\theta$ in degrees if OPT = 3
11-20	A(J)	11	<pre>z coordinate of point J if OPT = 0, or, r coordinate of point J if OPT = 2, or, body section radius if OPT = 3</pre>
21-30	D(J)	11	Λ x shift of point J if OPT = 0 or 2

Card set 4C contains MB cards if OPT = 0 or 2, contains only 1 card if OPT = 3, and is omitted if OPT = 1 or MB <0 on card 4B. See Figure 11.

Card Set 4D - Alternate XYZ Input

Col.	<u>Variabl</u> e	<u>Value</u>	Description
1-12	D(J)	Arbitrary	x coordinate of section
13-24	B(J)	(floating point)	y coordinate of point J
25-36	A(J)	II .	z coordinate of point J

This card set is omitted unless MB <0 in Card 4B.

Note: Repeat card 4B and card sets 4C or 4D NB times to complete card set 4.

Card Set 5 - Wing Panel Input - This card set allows the wing and vortex lattice panels to be calculated automatically from the wing section data. Three options are available for inputting the wing section geometry. The XYZ program input referred to below conforms with the format of Reference 7. Omit this card set if CASE = 1 on card 2.

Card 5A - Number of Wing Sections

Col.	Variable	Value	Description
1-10	NW	Arbitrary Integer	Number of wing sections ($2 \le NW \le 40$)
20	KOORD	1	Wing section ordinates input in percent of local chord
		2	Wing section ordinates input are not normalized

Card 5B - Wing Section Geometry

Col.	Variable	<u>Value</u>	Description
1-10	XBE	Arbitrary (floating point)	x coordinate of origin of wing section co- ordinate system except blank when XYZ pro- gram input format is used
11-20	YBE	11	Similarly the y coordinate
21-30	ZBE	11	Similarly the z coordinate
31-40	CHRD	11	Chord length of section
41-50	ALF	H	Section twist angle (degrees) (twist positive for dz/dx negative)
51-60	XAL	11	Center of twist in percent chord
61-65	MW	Arbitrary Integer	Number of coordinates in section (5 \leq MW \leq 59). Always odd number if internal vortices selected. If MW < 0, XYZ input format requested.
70	OPT	0	Wing section ordinates to be used from card set 5D and 5E
		1	Wing section ordinates same as preceding section - card set 5D and 5E omitted
75	FLAG	0	Normal case - vortex lattice panels calculated automatically
		1	Terminal wing section (end of current wing panel network)

Card 5B-Wing Section Geometry (cont'd)

Col.	<u>Variable</u>	<u>Value</u>	Description
		2	No vortex lattice panels calculated for this section
		3	The coordinates of the last bound vortex in the vortex lattice are read in on card 7 for this section
80	DEL	0	No wing dihedral
		1	Dihedral input on card set 5C

Note: The values of CHRD, ALF, and XA1 on card 5B are required only if KOORD = 1 on Card 5A.

Card Set 5C - Wing Dihedral Input

Col.	<u>Variable</u>	Value	Description
1-10	DELTA	Arbitrary (floating point)	Dihedral angle (degrees)
11-20	YO	TI.	y and z coordinates of axis of
21-30	20	11	rotation of wing panel

Omit card set 5C if DEL = 0 in card 5B

Card Set 5D - Wing Section Coordinates (Normal Input)

Col.	<u>Variable</u>	<u>Value</u>	Description
1-10	B(J)	Arbitrary (floating point)	x coordinate of point J
11-20	A(J)	11	z coordinate of point J
21-30	C(J)	11	$\label{thm:continuous} \mbox{Vortex lattice strength at point J}$
31-40	D(J)	11	Δ y shift of point J

Card set 5D contains MW cards if OPT = 0, and is omitted if OPT = 1 or MW<0 on card 5B. See Figure 12.

Card Set 5E - Alternate XYZ Input

<u>Col.</u>	<u>Variable</u>	Value	Description
1-12	B(J)	Arbitrary (floating point)	x coordinate of point J
13-24	D(J)	<u>u</u>	y coordinate of point J
25-36	A(J)	11	z coordinate of point J
51-60	C(J)	**	Vortex lattice strength at point J

This card set is omitted unless MW<0 on card 5B.

Note: Repeat card 5B and card sets 5C, 5D, or 5E NW times to complete card set 5.

Card Set 6 - Vortex Lattice Control Point Location

Col.	<u>Variable</u>	Value	Description
1-10	WAKE	•	Extension of vortex lattice into wake in percent chord
11-20	POINT	n	Location of vortex lattice control point in percent chord behind trailing edge

Note: These values are not used if FLAG = 3 on Card 5B. Omit card 6 if CASE = 1 on Card 2.

Card Set 7 - Relocation of Vortex Lattice Terminal Points - This card set is omitted unless FLAG = 3 on card 5B. For each wing section having FLAG = 3, two additional cards are required to specify the terminal points of the streamwise vortices.

Card Set 7A - Inboard Terminal Points

Col.	<u>Variable</u>	<u>Value</u>	Description
1-10	XLP		x coordinate of inboard edge of lattice terminal point
11-20	YLP	11	y coordinate of inboard edge of lattice terminal point
21-30	ZLP	11	z coordinate of inboard edge of lattice terminal point

Card Set 7B - Outboard Terminal Points - Same as card 7A for outboard edge of lattice terminal point.

<u>Card Set 8 - Body Vortex Lattice Input</u> - This card set allows additional vortex lattices to be located inside the body of wing-body combinations, and is omitted if CASE <3 on card 2.

Card Set 8A- Number of Streamwise Vortices in Body Vortex Lattice
Network

Col.	<u>Variabl</u> e	<u>Value</u>	Description
1-10	NV	Arbitrary Integer	Number of streamwise vortices in body vortex lattice network (NV < 40)

Note: The sum of all wing and body vortex lattices may not exceed 35.

Card Set 8B - Vortex Lattice Geometry

<u>Col.</u>	Variable	Value	Description
1-10	XBE	Arbitrary (floating point)	x coordinate of origin of streamwise vortex
11-20	YBE	11	y coordinate of origin of stream- wise vortex
21-30	ZBE	11	z coordinate of origin of stream- wise vortex
31-40	MV	Arbitrary Integer	Number of bound vortices in lattice $2 \le MV \le 60$
41-50	OPT	0	Vortex lattice points to be read from card set 8C
		1	Vortex lattice points same as preceding. Omit card set 8C.
		2	Optional vortex lattice control panel coordinates read on card 8D-3.
51-60	FLAG	0	Normal case - vortex lattice panels calculated
		1	Terminal vortex of current body vortex lattice network
		2	Corner points of control point panel to be read on Cards 8D-2 and 8D-3 (used when arbitrary control point is desired)

Card Set 8B - Vortex Lattice Geometry (cont'd)

<u>Col.</u>	<u>Variable</u>	<u>Value</u>	Description
61-70	S IMPOT	0	Symmetry option specified on card 2 enforced for this vortex
		1	Symmetry option ignored for this vortex lattice (used for inserting vortex lattice networks in vertical tails located in x,z plane)

Card Set 8C - Vortex Lattice Coordinates

Col.	<u>Variable</u>	<u>Value</u>	<u>Description</u>
1-10	B(J)	Arbitrary (floating point)	x coordinate of point J
11-20	A(J)	11	z coordinate of point J
21-30	C(J)	11	Vortex lattice strength at point $\ddot{\mathbf{J}}$
31-40	D(J)	.11	Δy shift of point J

Card set 8C contains MV cards if OPT = 0, and is omitted if OPT = 1 on card 8B.

Control Set 8D - Vortex Lattice Terminal Point & Control Point Coordinates

Two or three additional cards are required to specify the terminal point of the streamwise vortex, and the corner points of the lattice control point panel.

Card 8D-1

<u>Col.</u>	Variable	<u>Value</u>	<u>Description</u>
1-10	В	Arbitrary (floating point)	x coordinate of terminal point of streamwise vortex
11-20	Α	11	z coordinate of terminal point of streamwise vortex
21-30	D	11	Δy shift of terminal point of streamwise vortex

Note: This point also defines the upstream corner of the control point panel if FLAG \neq 2 on card 8B.

Card 8D-2 - Same as card 8D-1, containing the coordinates of the downstream corner of the control point panel if FLAG \neq 2 on card 8B. If FLAG = 2 on card 8B, this card contains the coordinates of the upstream corner of the control point panel.

<u>Card 8D-3-</u> If FLAG = 2 on card 8B, this card contains the coordinates of the downstream corner of the control point panel, in the same format as card 8D-1. Omit this card if FLAG \neq 2 in card 8B-1.

Note: Repeat card 8B, and card sets 8C and 8D NV times to complete card set 8.

Plot Input Cards - The configuration panel geometry is stored on TAPE 11. If PLOT = 1 on card 2, the plot overlay is called, and a plot tape is written. A sample panel geometry plot is shown on Figure 28. Additional plot input cards required are described below. Omit these cards if PLOT = 0 on card 2.

Card 9 - Plot Parameters

Col.	Variable	<u>Value</u>	Description
1-10	NVU	0	No plot requested; return.
		1-4	Number of view points selected. If NVU positive, only source panels will be plotted. If NVU negative, vortex panels will also be plotted.
	IPRINT	0	Panel corner points are not printed.
		1	Panel corner points printed.
	IHIDE	0	Eliminate hidden surfaces in plot output.
		1	All surfaces plotted.
	IBUG	0	No debug printout from PLOT subroutines.
		1	Additional debug printout requested.

Card Set 10 - View Point Coordinates

Col.	<u>Variable</u>	Value	Dε	scription				
1-10	VUE(1,NVU)	Arbitrary floating point)	x	coordinate	of	view	point	NVU
11-20	VUE(2,NVU)	"	у	coordinate	of	view	point	NVU
21-30	VUE(3,NVU)	11	z	coordinate	of	view	point	NVU.

Card Set 10 - View Point Coordinates (cont'd)

Repeat Card Set 10 NVU times.

Any view point coordinate is set equal to infinity if it is greater than 2^{15} . (32,768)

Aerodynamic Input Cards

The configuration panel geometry is transferred to the aerodynamic section of the program TAPE 11. Additional aerodynamic input cards required are described below:

<u>Card 11 - Case Identification Card - Card 11 contains any desired case identification in columns 1-80.</u>

Card 12 - Iteration Option Card

Col.	<u>Variable</u>	<u>Value</u>	Description
1-10	NIT	Arbitrary Integer	Maximum number of iterations
11-20	IEPS	11	Exponent of 10 setting limiting value for residue of iterative solution (-3 or -4 recommended)
21-30	ITYPE	1	Gauss-Siedel iteration procedure
		2	Mixed direct/iterative solution precedure

Card 13 - Configuration Options

<u>Col.</u>	<u>Variable</u>	<u>Value</u>	Description
1-10	COMPT	0	Forces and moments calculated for complete configuration
		Arbitrary Integer	Forces and moments calculated on components. Panel indices of each component follow on card 22
11-20	SECT	0	No wing section forces and moments
		1	Wing section forces and moments calculated. Wing section indices follow on card 21, panel indices in each section on card 22, and section reference lengths on card 25

Card 13 - Configuration Options (cont'd)

2

Forces and moments calculated on subsections. The number of subsections follow on card 21, the number of panel groups on card 23, the panel indices in each group on card 24, and subsection reference lengths on card 25

Card 14 - Reference Parameters

Col.	Variable	<u>Value</u>	Description
1-10	REFA	Arbitrary (fixed point)	Reference area
11-20	REFI	n .	Reference chord (MAC)
21-30	XOO	11	Axial distance of leading edge of MAC from origin
31-40	X25	11	Axial distance of quarter chord of MAC from origin

Card 15 - Configuration Lift Option

Col.	Variable	Value	Description
1-10	KUT	0	Nonlifting configuration, no vortex lattice Kutta condition imposed
		1	Lifting configuration, vortex lattice Kutta condition imposed
		-1	Wing vortex lattice extends through body having same strength as adjacent wing vortex lattice
11-20	NBV	Arbitrary Integer	Number of body vortices (NBV \leq 5)
21-30	NV (1)	11	Number of wing vortices associated with body vortex 1
31-40	NV (2)	"	Number of wing vortices associated with body vortex 2
•	•		
61-70	NV (5)	11	Number of wing vortices associated with body vortex 5

Card 16 - Compressibility Rule Option

Col.	Variable	<u>Value</u>	Description
1-10	KOMPR	1	Gothert Rule 1 selected (See Text)
		2	Gothert Rule 2 selected (See Text)
11-20	POINTS	Arbitrary Integer	Number of field points following on card set 16A
21-30	NORPAN	11	Number of normal velocities following on card set 16B

Card Set 16A - Field Point Coordinates

Col.	<u>Variable</u>	<u>Value</u>	Description			
1-10	XP	Arbitrar; (floating point)	Coordinates	of	field	point
11-20	YP	"	11	**	**	11
21-30	ZP	11	**	**	11	**

(Repeat card 16A POINTS times.)

Card Set 16B - Normal Velocity Input

Col.	<u>Variable</u>	<u>Value</u>	Description
1-10	NP	Integer	Panel number
11-20	NORVEL	Arbitrary (floating point)	Normal velocity on panel NP. If NORVEL = 0, the normal velocity is set equal to the normal component of the onset velocity(i.e., Equation 43 is used.)

Repeat card set 16B NORPAN times.

Card Set 17 - Number of Mach Numbers

<u>Col.</u>	<u>Variable</u>	<u>Value</u>	Description
1-10	NMA	Arbitrary Integer	Number of Mach numbers following on card set 18

Card Set 18 - Mach Number

Col. Variable Value Description

1-10 MA Arbitrary Mach number (floating point)

Card Set 19 - Number of Angles of Attack

Col.	<u>Variable</u>	<u>Value</u>	Description
1-10	NAL	Arbitrary Integer	Number of angles of attack following on card set 20

Card Set 20 - Angle of Attack or Yaw

Col.	<u>Variable</u>	<u>Value</u>	Description
1-10	ALPHA	Arbitrary (floating point)	Angle of attack in degrees
11-20	BETA	11	Angle of yaw in degrees

Card Set 21 - Number of Sections

Col.	<u>Variable</u> <u>Value</u>		Description
1-10	IS	Arbitrary Integer	Number of sections; omit if SECT = 0 on card 13

Card Set 22 - Panel Indices

Col.	<u>Variable</u>	Value	<u>Description</u>
1-10	IA	Arbitrary Integer	Index of initial panel in section
11-20	IE	111	Index of final panel in section

Card Set 23 - Number of Panels in Subsections

Col.	<u>Variable</u>	<u>Value</u>	Description
1-10	IREI	Arbitrary Integer	Number of panels in subsections Omit if SECT <2 on card 13

Card Set 24 - Subsection Panel Indices

<u>Col.</u>	<u>Variable</u>	<u>Value</u>	Description
1-5	II (1)	Arbitrary Integer	Panel indices of all panels in sub- section; omit if SECT <2 on card 13
6-10	II (2)	11	
11-15	II (3)	etc.	

Card Set 25 - Reference Lengths

Col.	<u>Variable</u>	Value	Description
1-10	DELY	Arbitrary Integer	Width of section
11-20	REFL	111	Reference length of section
21-30	XLE	111	Moment reference point of section

Cards 21-25 must be repeated for each angle of attack or yaw, if section data requested.

PROGRAM OUTPUT

The standard output of the program consists of a list of the input cards, a table of panel points, a table of velocities and pressure coefficients at panel control points, and a force and moment summary. Additional output may be obtained by selecting appropriate values of the integer PRINT. A sample output is given in Appendix IV.

PRINT	= 1	Tables of panel corner points, centroids, and
		the panel coordinate transformation matrix are
		printed out. Individual panel forces and moments
		are also printed out.

- PRINT = 2 Tables of panel velocity components and influence coefficients are printed out. This option requires a large line count limit.
- PRINT = 3 The aerodynamic influence coefficient matrix is printed out in row order, together with the right side of the matrix equation, and all solution iterations.
- PRINT = 4 This option prints out the successive solution iterations only.

PROGRAM TIME ESTIMATION

Estimates of the CPU time required by the CDC 6600 computer to calculate the aerodynamic matrix and solve for one angle of attack or yaw are presented on Figure 10. If the configuration is symmetric about the x,z plane and the yaw angle is zero, the flow is symmetric. Use of this fact by the program reduces the running time. This reduction is reflected in Figure 10 by the fact that only the number of source and vortex panels on one side of the x,z plane are counted for the symmetric flow case.

PROGRAM USAGE

The success of this method of analysis depends to a large extent on the choice of the number and location of panels used to represent the configuration. Certain features of the program input will be described in this section, together with recommendations on program usage.

Body Input

The body is described by a series of cross-sections given at selected intervals along its length. The surface panels are located between

NOTE: FOR YAW CASES AND FOR UNSYMMETRIC CASES, COUNT ALL PANELS.

FOR SYMMETRIC, UNYAWED CASES, COUNT PANELS ON ONE SIDE OF SYMMETRY PLANE ONLY.

Figure 10. CPU Time Required for CDC 6600.

adjacent sections, with the corner points being defined by the cross-section coordinates. Unless the cross sections can be described by some mathematical formula, accurate drawings are required for each body station. The cross section can be defined either in Cartesion (y,z) or polar (r,θ) coordinates about the body reference axis. A maximum of 70 stations may be used along the length of the body, and a maximum of 60 points around the half circumference.

Figure 11. Body Cross Section.

In general, more panels are required in regions with rapid changes of cross sectional shape, such as around canopies or wing-body intersections.

The program does not require the same number of panels in each circumferential ring, and a special input option is provided to identify the sections at which the number of panels is being increased or decreased.

In addition, the panel corners may be shifted lengthwise out of the plane of the defining section. This option allows more freedom for paneling complex wing-body intersections and fairings.

Wing Input

The wing is described by a series of airfoil sections given at selected intervals along the span. The surface panels are located between adjacent sections, with the corner points being defined by the section coordinates. The section coordinates may be given in percent chord or directly in terms of the reference coordinate system. The panels in each wing section are generally numbered sequentially from the trailing edge on the lower surface around the leading edge to the trailing edge on the upper surface. The same number of points at approximately the same percent chord locations must be used to define the wing upper and lower surfaces, since the vortex lattice panels on the mean camber surface are defined by averaging the upper and lower surface points. A maximum of 60 points may be used to define each section, and a maximum of 40 sections may be defined on the half-wing.

Figure 12. Wing Section.

The program does not require the same number of points on adjacent wing sections, and a special input option is provided to identify the sections at which the number of panels is being increased or decreased. In addition, the panel corners may be shifted spanwise out of the plane of the defining section to aid in the paneling of wing tips or complex wing-body intersections. In general, more panels are required in regions of rapid curvature, for example, the leading edge region.

Wing tip paneling may be omitted for wings having a maximum thickness of less than 5%. However, wing tip panels can be included as special body panels, or read in individually using the single panel input option.

Vortex Lattice Panels

Vortex lattice panels may be placed inside either the wing or body, or omitted entirely. For configurations with a wing, the vortex lattice panels are automatically located on the mean camber surface of the wing. The vortices extend a finite distance behind the wing in a plane passing through the trailing edge and bisecting the trailing edge angle. The vortices should be allowed to extend at least ten chord lengths behind the wing to give a reasonable approximation of the wake. A control panel is associated with each vortex lattice and sized such that the panel control point is located one percent of the local chord behind the trailing edge of the wing.

The relative strengths γ_{1} of the individual bound vortices making up the vortex lattices must be specified in advance. It is recommended that these strengths be proportional to the airfoil thickness at the chordwise location of the bound vortex. The accuracy of the final solution depends to some extent on the vortex distribution selected, so some adjustment to the bound vortex strengths may be necessary if a poor initial choice has been made.

The program requires that the γ array be read in order of increasing chordwise station. Since the wing numbering system starts at the trailing edge, the first (M+1)/2 points are set equal to zero, and the desired γ array associated with the remainder.

The structure of a vortex lattice is illustrated in the following sketch.

Figure 13. Wing Vortex Lattice.

It can be seen that the trailing vortices in the wake are made up of the sum of the streamwise legs of the individual bound vortices.

Vortex lattices may also be added inside the body to provide a mechanism for generating body lift. For wing-body combinations, a special option is provided to give the body vortex lattice the same strength as the adjoining wing vortex lattice, so that the inboard

trailing vortex from the wing vortex lattice will be exactly cancelled by the outboard trailing vortex from the body vortex lattice.

Figure 14. Vortex Lattice Inside Body.

Body vortices are also used to generate the circulation about vertical tails located in the plane of symmetry for yawed configurations. This technique must be employed since the wing vortex lattices defined by the program will automatically cancel in the plane of symmetry. For

unyawed configurations, however, no wing or body vortices may be used in vertical tails located in the plane of symmetry. The use of body vortices in a vertical tail is illustrated in Figure 15.

Figure 15. Vortices in Vertical Tail.

For configurations having wings, horizontal tails, and vertical tails, and employing body vortices to carry the lift generated by the wing and horizontal tail through the body, the body vortices used to provide lift on the vertical tail must be input after the body vortices associated with the wing or horizontal tail.

A GENERAL GUIDE TO PANELING WING-BODY-NACELLE CONFIGURATIONS

An input option is available to take advantage of symmetry. With the x z plane in the plane of symmetry, only the half of the configuration corresponding to positive y is required as input. This rule applies whether or not the free stream is in the plane of symmetry (i.e., with or without yaw).

When paneling a particular configuration, attention should be paid to the principal regions of interest, since this allows for optimum use of the total number of panels. A denser panel distribution should be used in the region of interest and a lesser number of panels in regions removed from this region. A sparse panel distribution has a substantial local effect. When choosing the number of panels to be used in each region, it is important to realize that the pressure calculated at the centroid of each panel is assumed to exist over the entire panel. Therefore, more panels are required in regions of large pressure gradients.

The three-dimensional potential flow program usually accepts panel corner points as inputs. An exception to this is the case where a particular section is defined as a circular arc, which may then be specified along with the number of equispaced panel corner points along the circle. The program accepts the defined panels in networks - each network defining a specific region of the configuration. The networks when assembled together define the complete configuration.

In setting up the complete paneling scheme for a wing-body-nacelle configuration, it is usually best to define the nacelle, wing, and body as separate sets of networks. The regions where two bodies intersect are then treated separately, and the particular networks require redefining. Any fairings that exist are treated as part of the particular configuration and not as a separate configuration. Each fairing is usually specified by its own network (or set of networks) of panels.

The body, or most likely half-body, is usually paneled by specifying the buttock line (y) and waterline (z) coordinates at each body station (x), such that at each body station the panel points are equispaced. (It is not necessary to have the panels equispaced, but it is often more convenient.)

The nacelle is paneled in a manner similar to the body.

The wing is usually paneled by specifying the x and y coordinates at each buttock line (y). When defining the panels, it must be remembered that more panels are required at the leading edge, where the pressure gradients are large. The panel size should not vary by more than 50%

(larger or smaller) from any adjacent panel. It is common practice to have no panel larger than 5 percent of the wing chord. Constant spacing is the optimum scheme for spanwise paneling.

The paneling at the intersection of two segments requires special care. For the case of wing-body intersection, the body panels above and below the wing must be adjusted to account for the area eliminated by the intersection. At each body station (x), the y and z coordinates are adjusted to give approximate equispacing above and below the intersection. For the wing segment, the existing paneling can be maintained. All intersections are treated in this manner.

The wing requires a system of multihorseshoe vortices, placed inside the wing with the trailing vortices emanating from the trailing edge, to produce lift. The number of chordwise locations of the internal bound vortices are chosen to minimize large local disturbances at the wing surface. The vortices are placed along the camberline, equidistant from the nearest panel corner points in the chordwise direction.

Additional segments may be added to the configuration, such as a vertical tail and a horizontal tail. The intersections of the various segments are treated as above; and both horizontal and vertical tails will require internal vortex lattices to produce lift. No vortex lattices are placed in vertical tails located in the plane of symmetry unless the configuration is yawed.

It should be noted that, except for the simplest configurations, the preparation of the input to the three-dimensional potential flow program is cumbersome and usually almost always requires the aid of auxiliary geometry manipulation computer programs. The use of the three-dimensional plotting program is also almost essential to check the panel input data.

Save Tape Option

Since a major portion of the computer time is taken up by the calculation of the aerodynamic matrices, provision is made for saving these matrices on magnetic tape for subsequent runs on the same configuration. A new tape must be generated for each Mach number, however. The program stores the aerodynamic matrix on auxiliary disc file TAPE 10, the geometric data on auxiliary disc file TAPE 11, and the velocity component matrices on auxiliary disc file TAPE 12. If the save tape option is selected, ISAVE = -1, a magnetic tape must be designated to replace the disc file TAPE 11. The contents of TAPE 10 and TAPE 12 are also transformed to this tape during the run.

On subsequent runs, the contents of the tape must be transferred back

to the three disc files, and the program rerun with ISAVE = 1. Only the first two cards from the geometry input and the aerodynamic input (Cards 11-25) are required if this option is selected.

COMPARISON WITH EXPERIMENT

The purpose of this section is to aid the reader in the evaluation of the computer program. Discussion of comparisons between theory and experiment will be limited to two specific configurations, although many configurations have been investigated at various times using computer program WBAERO.

BO 105 HELICOPTER CONFIGURATION

The geometry analyzed is shown in its paneled configuration in Figure The number of panels on one side of the plane of symmetry is 256. The results for calculations with separation modeling were given eariler (see Figures 7 and 8) in the explanation of this modeling. Calculations with no separation modeling are compared with experimental data in Figures 17 through 20 for the cases of angle of attack α = 0°, and angle of yaw β = 0°, as well as α = 0°, β = $^{\pm}$ 10°. Calculations have also been made by Gillespie (8) for the same configuration using the Douglas Neumann program, and these have been included for comparison purposes. In Figure 17, calculated and measured pressure coefficients are shown as a function of axial distance for the BO 105 fuselage top centerline with $\alpha = 0$, $\beta = 0$. Since the Douglas Neumann and WBAERO programs are fundamentally identical for the nonlifting case, it would be expected that the calculated results should be identical. On closer scrutiny, however, it is realized that the programs actually differ in two respects. First, WBAERO used the exact expression for the velocity perturbation due to a source for a greater distance away from the source panel than does the Douglas Neumann program; and second, the iterative techniques used by each program in inverting the influence coefficient matrix are different. While the latter difference does not necessarily affect the accuracy of solution, the employment of different expressions for the velocity perturbation will most certainly affect accuracy, and it is reasonable to expect WBAERO to be slightly more accurate than the Douglas Neumann program. Such appears to be the case for the data of Figure 17, at least until the region of flow separation is approached. Comparisons are shown for the same angles of attack and yaw in Figure 18 for pressure coefficients along Waterline 10 (see Figure 16). As in Figure 17, both methods are in good agreement with experiment. further possible reason for the slight discrepancy between the two calculation procedures results from the panel distribution used to represent the geometry. Identical panel distributions were used in each program up to axial station 32; from that point on slightly different panel arrangements were used to represent the body closure.

Figure 16. Panel Representation for BO 105 Helicopter Configuration.

Additional calculations were made for comparison with measurements at α = 0°, β =10°. As shown in Figure 19, agreement between theory and experiment for pressures along the top centerline is quite good. Comparisons between theory and experiment for both windward and leeward sides of the BO 105 fuselage at Waterline 6 show good agreement as seen on Figure 20.

HEAVY LIFT HELICOPTER (HLH) CONFIGURATION

This configuration is shown as paneled in Figure 21. The number of panels on one side of the plane of symmetry is 665. In the analysis of this configuration the boundary condition discussed in the section on separation modeling was used in order that large suction pressure peaks could be avoided at sh..p corners. In regions immediately behind these corners the condition \vec{v} • \vec{n} is everywhere zero has been relaxed such that $\vec{V} \cdot \vec{n} = \vec{V}_{m} \cdot \vec{n}$. Separated flow regions on the wings as on the nacelle struts have not been modelled at this time. Calculations have been performed for zero yaw at two angles of attack, $\alpha = 0$, -8° . The results of this analysis are compared with experimental data obtained from Reference 9 at various locations on a 1/12 scale HLH configuration as shown in Figures 22 through 27. Theoretical and measured pressure coefficients along the front pylon top centerline are shown in Figure 22. Agreement between theory and experiment is quite good in the region ahead of axial station 10. At approximately that location the wind tunnel model has an attachment for the forward hub which was not modelled in the potential flow calculations. Consequently, the calculated pressures are not expected to be in close agreement with experiment in the local region behind the hub attachment. Calculations along the front pylon bottom centerline (Figure 23) give a good indication of the effect of sharp corner modelling on the comparisons with experiments. In this case the calculation by Gillespie using the XYZ program (Reference 7) shows a large suction peak around the sharp corner of the fuselage leading to the hoist operator's observation window. The calculations using WBAERO while showing some overshoot in pressure are in much better agreement with experiment, while at the same time taking less computer time because of the more accurate modelling of the real flow. Figures 24 and 25 give the results of comparisons between theory and experiment for the wing upper and lower surface pressures. Although separation effects were not modelled except behind sharp corners, WBAERO is generally in good agreement with experiment. Further comparisons have been made for the nacelle at the maximum spanwise location. Again, the effect of a sharp corner has been accounted for, with excellent results as shown on Figure 26. Measured and calculated pressure coefficients have also been compared along waterlines for the aft pylon. In Figure 27, the comparison is for a waterline just above the

nacelle strut. One particularly interesting result of this comparison is the suction peak resulting from interference by the nacelle strut which is predicted by theory. Because of the choice of pressure tap locations, no indication of this peak can be obtained from data alone. If load calculations are made from such measurements, erroneous conclusions can be drawn.

SAMPLE CASE

A simple wing-body-vertical-tail airplane configuration (Figure 28) has been analyzed as a sample case in order to demonstrate most of the program features. Because configurations having large vertical tails or pylons are expected to experience side forces under yawing conditions, it was necessary to modify the computer program in order that vortex networks could be employed to provide the correct circulation for side force calculations. Calculations are shown in Figure 29 for the pressure distribution along a waterline on the vertical tail. Two calculations are given, for the conditions $\beta=0^\circ$ and $\beta=10^\circ$. It is interesting to note that for $\beta=10^\circ$ the vertical tail carries a negative load on the aft portion. Slender wing theory for low aspect ratio wings suggests that there should be no load over the aft part of the wing; however, interference with the blunt based fuselage appears to lead to the negative load.

Figure 17. Pressure Distribution for B0 105 along Fuselage Top Centerline α = 0°, β = 0°.

Figure 18. Pressure Distribution for B0 105 along Fuselage Waterline 10 α = 0 , β = 0 .

Figure 19. Pressure Distribution for B0 105 along Fuselage Top Centerline $\alpha=0$, $\beta=10$.

Figure 20. Pressure Distribution for BO 105 along Fuselage Waterline 6 α = 0°, β = 10°.

Figure 21. Panel Representation for HLH Configuration.

Figure 22. Pressure Distribution for HLH Fuselage Front Pylon Top Centerline.

Figure 23. Pressure Distribution for HLH Fuselage Front Pylon Bottom Centerline.

Figure 24. Pressure Distribution for HLH Wing Upper Surface $\rm Y$ = 8.5.

Figure 25. Pressure Distribution for HLH Wing Lower Surface Y = 8.5.

Figure 26. Pressure Distribution for HLH Nacelle - Maximum Span.

Figure 28. Panel Representation for Wing-Body-Vertical Tail Combination.

Figure 29. Pressure Distribution on a Low Aspect Ratio Vertical Tail.

CONCLUSIONS

As a result of the studies described in this report, the following conclusions have been drawn:

- 1. The three-dimensional potential flow computer program provides the user with a practical and accurate method for the calculation of pressures and aerodynamic forces for arbitrary shaped lifting configurations including the effect of yaw.
- 2. The separation modelling proposed in this report shows encouraging agreement with experiment while reducing the computer time requirements for a given configuration.

REFERENCES

- 1. Kraus, W., and Sacher, P., Das MBB-Unterschall Panel Verfahren:
 Dreidimensionale Potentialtheroie bei beliebig Vorgegebener
 Mehr Korperanordnung. MBB Report UFE-672-70(0), December 1970.
- Rubbert, P. E., Saaris, G. R., Scholey, M. B., and Standen, N. M., A General Method for Determining the Aerodynamic Characteristics of Fan-in-Wing Configurations. Volume I - Theory and Applications, The Boeing Co., USAAVLABS TR67-61A, December 1967, AD667980.
- 3. Hess, J. L., and Smith, A. M. O., Calculation of Potential Flow about Arbitrary Bodies. Progress in Aeronautical Sciences, Vol. 8, Pergamon Press, 177.
- 4. Gothert, B., Plane and Three-Dimensional Flow at High Subsonic Speeds. NACA TM 1105, 1946.
- 5. Hess, J. L., and Smith, A. M. O., Calculation of Nonlifting Potential Flow about Abritrary Three-Dimensional Bodies. Douglas Aircraft Co., Report No. ES 40622, March 1962.
- Labrujere, T. E., Loeve, W., and Slooff, J., An Approximate Method for the Calculation of Pressure Distribution on Wing-Body Combinations at Subcritical Speeds. AGARD Conference Proceedings No. 71, September 1971.
- 7. Dawson, C. W., and Dean, J. S., The XYZ Potential Flow Program, NSRDC Report 3892, June 1972.
- 8. Gillespie, J., An Investigation of the Flow Field and Drag of Helicopter Fuselage Configurations. Presented at 29th Annual National Forum, American Helicopter Society, Washington, D. C., May 1973.
- 9. Julien, D., Wind Tunnel Test to Measure Surface Pressure
 Distributions on the 1/12 Scale HLH. Boeing Document D210-1067711, July 1973.

APPENDIX I

PANEL GEOMETRY CALCULATIONS

The analytical procedure presented here follows closely the method first developed in Reference 5. A quadrilateral surface element is described by four corner points, not necessarily lying in the same plane, as shown in the sketch. The quadrilateral element is approximated by a planar panel as follows:

The coordinates in the reference coordinate system are identified by their subscripts. The components of the diagonal vectors T_1 and T_2 are

$$t_1x = x_3 - x_1$$
 $t_{1y} = y_3 - y_1$ $t_{1z} = z_3 - z_1$
 $t_{2x} = x_4 - x_2$ $t_{2y} = y_4 - y_2$ $t_{2z} = z_4 - z_2$

We may now obtain a vector N (and its components) by taking the cross product of the diagonal vectors.

The unit normal vector, \vec{n} , to the plane of the element is taken as \vec{N} divided by its own length $|\vec{N}|$ (direction cosines of outward unit normal).

$$n_{x} = \frac{N_{x}}{N}$$

$$n_{y} = \frac{N_{y}}{N}$$

$$n_{z} = \frac{N_{z}}{N}$$

where

$$N = [N_x^2 + N_y^2 + N_z^2]^{1/2}$$

The plane of the element is now completely determined if a point in this plane is specified. This point is taken as the point whose coordinates \bar{x} , \bar{y} , \bar{z} are the average of the coordinates of the four input points.

$$\bar{x} = \frac{1}{4} [x_1 + x_2 + x_3 + x_4]$$

$$\bar{y} = \frac{1}{4} [y_1 + y_2 + y_3 + y_4]$$

$$\bar{z} = \frac{1}{4} [z_1 + z_2 + z_3 + z_4]$$

Now the input points will be projected into the plane of the element along the normal vector. The resulting points are the corner points of the quadrilateral element. The input points are equidistant from the plane, and this distance is

$$d = |n_x(\bar{x} - x_1) + n_y(\bar{y} - y_1) + n_z(\bar{z} - z_1)|$$

The coordinates of the corner points in the reference coordinate system are given by

$$x'_{k} = x_{k} + (-1)^{k+1} n_{x} d$$

$$y'_{k} = y_{k} + (-1)^{k+1} n_{y} d$$

$$z'_{k} = z_{k} + (-1)^{k+1} n_{z} d$$

$$k = 1, 2, 3, 4$$

Now the element coordinate system must be constructed. This requires the components of three mutually perpendicular unit vectors, one of which points along each of the coordinate axis of the system, and also the coordinates of the origin of the coordinate system. All these quantities must be given in terms of the reference coordinate system. The unit normal vector is taken as one of the unit vectors, so two perpendicular unit vectors in the plane of the element are needed. Denote these unit vectors t_1 and t_2 . The vector t_1 is taken as t_1 divided by its own length t_1 , i.e.,

$$t_{1x} = \frac{T_{1x}}{T_{1}}$$

$$t_{1y} = \frac{T_{1y}}{T_{1}}$$

$$t_{1z} = \frac{T_{1z}}{T_{1}}$$

where

$$T_1 = [T_{1x}^2 + T_{1y}^2 + T_{1z}^2]^{1/2}$$

The vector t_2 is defined by $\dot{t}_2 - \dot{n} \times \dot{t}_1$, so that its components are

$$t_{2x} = n_y t_{1z} - n_z t_{1y}$$
 $t_{2y} = n_z t_{1x} - n_x t_{1z}$
 $t_{2z} = n_x t_{1y} - n_y t_{1x}$

The vector \overrightarrow{t}_1 is the unit vector parallel to the x or ξ axis of the element coordinate system, while \overrightarrow{t}_2 is parallel to the y or η axis, and \overrightarrow{n} is parallel to the z of ζ axis of this coordinate system.

To transform the coordinate of points and the components of vector between the reference coordinate system and the element coordinate system, a transformation matrix is required. The elements of this matrix are the three components of the three basic unit vectors \vec{t}_1 , \vec{t}_2 , and \vec{n} .

$$T = \begin{bmatrix} t_{1x} & t_{1y} & t_{1z} \\ t_{2x} & t_{2y} & t_{2z} \\ n_{x} & n_{y} & n_{z} \end{bmatrix}$$

In the computer program, the elements of this matrix are referred to as follows:

$$a_{11} = t_{1z}$$
 $a_{12} = t_{1y}$ $a_{13} = t_{1z}$
 $a_{21} = t_{2x}$ $a_{22} = t_{2y}$ $a_{23} = t_{2z}$
 $a_{31} = n_x$ $a_{32} = n_y$ $a_{33} = n_z$

The corner points are now transformed into the element coordinate system based on the average point as origin. These points have coordinates \mathbf{x}_k , \mathbf{y}_k , \mathbf{z}_k in the reference coordinate system. Their coordinates in the element coordinate system with this origin are denoted by ξ_k , η_k , 0. Because they lie in the plane of the element, they have a zero z or ζ

coordinate in the element coordinate system. Also, because the vector \overrightarrow{t}_1 , which defines the x or ξ axis of the element coordinate system, is a multiple of the "diagonal" vector from point 1 to 3, the coordinate η_1 and the coordinate η_3 are equal. In the (ξ,η) coordinate system, the corner points of the element are:

$$\xi_{k} = t_{1x}(\bar{x} - x'_{k}) + t_{1y}(\bar{y} - y'_{k}) + t_{1z}(\bar{z} - z'_{k})$$

$$\eta_{k} = t_{2x}(\bar{x} - x'_{k}) + t_{2y}(\bar{y} - y'_{k}) + t_{2z}(\bar{z} - z'_{k})$$

These corner points are taken as the corners of a plane quadrilateral as illustrated in the following sketch.

The origin of the element coordinate system is now transferred to the centroid of the area of the quadrilateral. With the average point as origin the coordinates of the centroid in the element coordinate system are:

$$\xi_0 = \frac{1}{3} \frac{1}{\eta_2 - \eta_4} [\xi_4(\eta_1 - \eta_2) + \xi_2(\eta_4 - \eta_1)]$$

$$\eta_0 = \frac{1}{3} \eta_1$$

These are subtracted from the coordinates of the corner points in the element coordinate system based on the average point as origin to obtain the coordinates of the corner points in the element coordinate system based on the centroid as origin. Accordingly, these latter coordinates are

$$\xi_{k} = \xi_{k} - \xi_{0}$$

$$k = 1, 2, 3, 4$$

$$\eta_{k} = \eta_{k} - \eta_{0}$$

Since the centroid is to be used as the control point of the element, its coordinates in the reference coordinate system are required. These coordinates are

$$x_{0} = \bar{x} + t_{1x} \xi_{0} + t_{2x} \eta_{0}$$

$$y_{0} = \bar{y} + t_{1y} \xi_{0} + t_{2y} \eta_{0}$$

$$z_{0} = \bar{z} + t_{1z} \xi_{0} + t_{2z} \eta_{0}$$

Finally, the area of the quadrilateral is

$$A = \frac{1}{2} (\xi_3 - \xi_1) (\eta_2 - \eta_4)$$

APPENDIX II

SUBROUTINE DESCRIPTIONS

(arranged in alphabetical order)

This appendix contains a brief outline of the purpose, method, and use or each subroutine. The principal constants and variables in each are listed in the order of their first appearance, and identified as input or output data.

Subroutine ANALOG

Purpose: To transform the panel control point and corner points

from the real body to the analog body, as required by

Gothert's compressibility rule.

Method: The panel control point is transformed simply by multi-

plying the y and z coordinates by $B = \sqrt{1-M^2}$. The transformation matrix is then corrected for compressiblity, and new panel corner points determined in the panel reference system. Finally, the area and maximum diagonal of the

panel are calculated.

Use: Call ANALOG (BETA, YC, ZC, A, XEI, YEI, F, T)

Input:

BETA Prandtl-Glauert factor = $\sqrt{1-M^2}$

YC y coordinate of panel control point

ZC z coordinate of panel control point

A Transformation matrix

XEI z coordinate of panel corner point in panel

coordinate system

YEI y coordinate of panel corner point in panel

coordinate system

Output:

YC Transformed y coordinate of panel control point

ZC Transformed z coordinate of panel control point

A Transformed transformation matrix

XEI Transformed x coordinate of panel corner point in

panel coordinate system

YEI Transformed y coordinate of panel corner point in

panel coordinate system

F Panel area

Subroutine ANALOG(cont'd)

Output:(cont'd)

T Length of maximum diagonal of panel

Subroutine Called: None

Error Returns: None

Subroutine DRAW3D

Purpose: To plot the object as viewed from the viewpoints.

Method: DRAW3D begins by projecting the object onto the display plane (the "V, W" plane) perpendicular to the vector from the origin to the viewpoint. It also generates the panels needed for symmetry if ISYM is zero. The V, W data are then scaled so that they will be plotted in an area 6.5

inches wide by 9.0 inches high.

The program then creates a new list of the panels to be plotted in the array LL. If the IHIDE parameter is zero, the new list will only have the panels that face the viewpoints, and in addition the subroutine OVRLAP will be called to eliminate any panels that are partially or entirely blocked by some other panel.

Finally, the program loops through the new list (LL) and calls the subroutine PLTPAN to plot the panels.

Use: Call DRAW3D (N, M, VX, VY, VZ, ISYM, IHIDE, IBUG)

N. The number of vertices

M The number of panels

VX,VY, The coordinates of the viewpoint VZ

ISYM If zero, the object 15 symmetric about the XZ plane

IHIDE If zero, the program is to eliminate the hidden surfaces

IBUG If nonzero, the coordinate of the vertices in the display plane will be printed. If IBUG = 1, the list contained in the array LL will be printed along with the corresponding coordinates in the display plane

Input:

In addition to the parameters in the calling sequence, the subroutine DRAW3D uses the data in the common arrays V, W, DIST, and L. These arrays are set up in the program WBPLOT.

Subroutine DRAW3D(cont'd)

Output:

The primary output of DRAW3D is the data in the common arrays V, W, DIST, and LL, which are used by the subroutine OVRLAP and PLTPAN. In addition to this there are the optional IBUG printouts, and label on the plot.

Subroutines Used:

NUMBER Used to draw numbers on the plot

OVRLAP Used to eliminate blocked panels

PLOT Used to control the plotting origin

PLTPAN Used to draw the panels

SVMSOL Used to draw symbols on the plot

Limitations: See WBPLOT

Subroutine ELEMEN

Purpose: To calculate the panel control point, corner points, and

transformation matrix.

Method: The method is described in Appendix I of this report.

Use: Call ELEMEN (I. X. Y. Z. KUTA, XC. YC. ZC. XE. YE. A)

Input:

I Panel number (not used)

X x coordinate of panel in reference coordinate

system

Y y coordinate of panel in reference coordinate

system

Z z coordinate of panel in reference coordinate

system

KUTA Not used

Output:

XC x coordinate of panel control point (centroid) in

reference coordinate system

YC y coordinate of panel control point (centroid) in

reference coordinate system

ZC z coordinate of panel control point (centroid) in

reference coordinate system

XE x coordinate of panel control point in panel

coordinate system

YE y coordinate of panel corner point in panel

coordinate system

A Transformation matrix (to transform from reference

coordinate system to panel coordinate system)

Subroutine Called: None

Error Returns: None

Subroutine FORMOM

Purpose: To calculate the force and moment coefficients on wing

and body.

Method: The panel area, control point coordinates, and direction

cosines are read from TAPE 13 for each panel in sequence. The normal force, lateral force, axial force, and pitching moments of the panel about the origin of coordinates are calculated, and summed. The total force and moment coefficients acting on the configuration are then obtained by dividing these sums by the reference area. The lift, side force, and drag are obtained by resolving the normal force, lateral force, and axial force coefficients into

If wing section data is required, the program calculates the spanwise lift and drag distribution on the wing. The forces and moment acting on each panel in a given column are summed, and the section force and moment coefficients are calculated with reference to the area of the column of panels.

The output is summarized in tables giving the input geometrical data, pressure coefficients, panel forces and moment. The integrated force and moment data on the wing sections and the complete configuration are also tabulated.

Use: Call FORMOM, (ALPHA, BETA, MA, NPAN, SECT, COMPT, REFA, REFL, XOO, X25)

Input:

NPAN Number of panels on the configuration

MA Mach number

the wind axis system.

ALPHA Angle of attack (degrees)

BETA Angle of yaw (degrees)

SECT Wing section data parameter

COMPT Component indicator

REFA Reference area

REFL Reference length

Subroutine FORMOM(cont'd)

Input: (cont'd)

XOO Distance of leading edge of MAC from origin

X25 Distance of quarter chord of MAC from origin

CP Pressure coefficient

F Panel area

F1,F2, Direction cosines of normal

F3

XC, YC, Panel centroid coordinates

ZC

DELY Width of column of panels

XLE Distance from column leading edge to origin

Output:

DCZ Panel normal force

DCY Panel lateral force

DCX Panel axial force

DCMX Panel moment about x axis

DCMY Panel moment about y axis

DCMZ Panel moment about z axis

CZ Normal force coefficient

CY Lateral force coefficient

CX Axial force coefficient

CL Lift coefficient

CS Side force coefficient

CD Drag coefficient

CMX Pitching moment about x axis

Subroutine FORMOM(cont'd)

Output(cont'd)

CMY Pitching moment about y axis

CMZ Pitching moment about z axis

DXN Center of pressure location

CM25 Pitching moment about quarter chord of MAC

Pitching moment about leading edge of MAC

Subroutine Called: None

CM00

Error Returns: None

Subroutine INFLU

Purpose: To calculate the three components of velocity induced by

a constant source distribution on a given panel.

Method: The method of Hess and Smith (Reference 1) is used. The

velocity component formulas are summarized in the Aero-

dynamic Theory Section of this report.

Use: Call INFLU (I, J, XE, YE, XN, YN, ZN, XC, YC, AC, A, T,

F, VX, VY, VZ, SYM).

Input:

I Control	point	number
-----------	-------	--------

J Influencing panel number

XE x coordinate of panel corner point in panel

coordinate system

YE y coordinate of panel corner point in panel

coordinate system

XN x coordinate of control point I in reference

coordinate system

YN y coordinate of control point I in reference

coordinate system

ZN z coordinate of control point I in reference

coordinate system

XC x coordinate of centroid of panel J in reference

coordinate system

YC y coordinate of centroid of panel J in reference

coordinate system

ZC z coordinate of centroid of panel J in reference

coordinate system

A Transformation matrix of panel J

T Maximum diagonal of panel J

F Area of panel J

Subroutine INFLU(cont'd)

Input:(cont'd)

SYM Logi

Logical variable denoting symmetry in panels about x, z plane. (SYM is true if the panel and control point lie on the same side of the plane of symmetry;

SYM is false otherwise.)

Output:

VX x component of induced velocity (in reference

coordinate system)

VY y component of induced velocity (in reference

coordinate system)

VZ z component of induced velocity (in reference

system)

Subroutine Called: N

None

Error Returns:

Calls EXIT if control point lies on edge of

panel.

Subroutine LATICE

Purpose: To calculate the three components of velocity induced by a

given vortex lattice.

Method: The method of Rubbert and Saaris (Reference 2) is used.

The velocity component formulas are summarized in the

Aerodynamic Theory section of this report.

Use: Call LATICE (XGI, YGI, ZGI, XC2, ZG2, GA, N, XP, YP, ZP,

U, V, W, SYM, IL)

Note: All points are given in the reference coordinate system

Input:

N	Number of bound vortices in lattice
XG1	x coordinate of inboard end of bound vortex
YG1	y coordinate of inboard end of bound vortex
ZG1	z coordinate of inboard end of bound vortex
XG2	x coordinate of outboard end of bound vortex
YG2	y coordinate of outboard end of bound vortex
ZG2	z coordinate of outboard end of bound .
GA	Relative strengths of bound vortices in lattice
XP	x coordinate of control point

XP x coordinate of control point

YP y coordinate of control point

ZP z coordinate of control point

SYM Symmetry parameter

IL Vortex Number

Output:

U x component of induced velocity at control point (in reference coordinate system)

V y component of induced velocity at control point (in reference coordinate system)

Subroutine LATICE(cont'd)

Output: (cont'd)

z component of induced velocity at control point
(in reference coordinate system) W

Subroutine Called: None

Error Returns: Calls EXIT if control point lies on a vortex

line.

Subroutine LINCOF

Purpose: To compute the equation for the given line segment.

Method: The subroutine LINCOF computes the coefficientes in the

equation for the given line segment. The equation used

is:

AV + BW + C = 0

Use: Call LINCOF $(V_1, W_1, V_2, W_2, A, B, C)$

Input:

 $\mathbf{V_1}$, $\mathbf{W_1}$ The coordinates of the first point

 \mathbf{V}_{2} , \mathbf{W}_{2} The coordinates of the second point

Output:

A,B,C, The coefficients in the equation

Subroutines Called: None

Error Returns: None

Subroutine ÓVRLAP

Purpose: To eliminate overlapped panels and overlapped parts of

panels.

Method: The subroutine OVRLAP goes through two phases in order to

eliminate the hidden lines. The first phase runs through each panel listed in the array LL and tests to see if it overlaps or is overlapped by any of the subsequent panels in the list LL. If one of the panels is completely overlapped, it is eliminated. If one of the panels is partially overlapped by the other, the overlapping panel is placed on a list (L) of such panels associated with the overlapped

panel.

The second phase runs through the list, L, of partially overlapping panels, and plots the nonhidden line segments. Once their lines have been plotted the panel is eliminated

from the list LL.

Use: Call OVRLAP(NN, LNEXT)

Input:

NN The number of vertices

LNEXT The number of panels in LL

In addition to the parameters in the calling sequence, the subroutine OVRLAP uses the data in the common arrays V, W, DIST, and LL.

Output:

OVRLAP draws all the partially overlapped panels, and also modifies the array LL.

Subroutines Called: LINCOF Used to compute the equation for a line

segment

PLOT Used to draw the nonhidden line segments

Error Returns: There are four error stops in the subroutine

OVRLAP

Stop 4

Stop 5

Stop 10

Stop 12

Subroutine PLTPAN

Purpose:

To draw the panels.

Method:

The subroutine PLTPAN has three modes of operation. The first mode (10P = 0) simply initializes the array IVECT. The second mode (10P = 2 or 3) enters a sequence of connected line segments into the array IVECT (10P = 3 for the starting point of the first segment, and 10P = 2 for the subsequent points). The third mode (10P = 1) loops through the array IVECT and draws the indicated

line segments.

Use:

Call PLTPAN (L, 10P)

Input:

L The index of the coordinates of the point in

question

10P The mode parameter (see above)

The data in the common arrays V and W are used in addition

to the variables in the calling sequence

Output:

The output of this routine is the plot

Subroutines Called: PLOT Used to draw the panels

Error Returns: N

None

Subroutine SLEQW

Purpose: To solve a system of linear equations by direct inversion.

Method: Gaussian algorithm for solution of a system of linear

equations with pivoting.

Use: Call SLEQW (A, MM, R, MN, M, N, ILL)

Input:

A Matrix of coefficients of equations (dimensioned

MM x MM in calling program)

R Right side vector matrix (dimensioned MM x MN in

calling program)

MM Maximum dimensions of A

MN Maximum number of right side vectors

M Actual dimensions of A

N Number of right side vectors

Output:

R Solution vector

Subroutine Called: None

Error Returns: ILL = -1 if system of equations is ill conditioned

Subroutine SOLVE

Purpose: To solve a system of linear equations by an iterative

procedure.

Method: The system of linear equations is solved using the Gauss-

Seidel iterative procedure, with direct solution of the vortex lattice partition. The method is described in the section of this report titled, "The Boundary Condition

Equations" (see page 9).

Use: Call SOLVE (A, B, X, HA, HB, NS, N, LHA, F, EPS, IW, NIT,

TPIO, ITA, ILL, HH)

Input:

A Row of influence coefficient matrix

B Right side of boundary condition equation

X Array of source and vortex strengths (solution

input vector)

HA Vortex lattice influence coefficient matrix

HB Right side of vortex lattice equations

NS Number of source panels

N Number of source panels and vortex lattices

(Maximum size of matrix A)

LHA Maximum dimension of matrix HA

F Relaxation factor (set equal to unity)

EPS Solution residual limit

IW Initial value switch

If IW = 1, X(I) = 0

If IW = 0, X(I) obtained from previous solution

NIT Maximum number of iterations

TPIO Name of file used for storing matrix A

ITA Number of x values printed out if ILL = 2. If

ITA = 0, all x values are printed.

Subroutine SOLVE(cont'd)

Input:

ILL =0 No printout

=1 Small printout (iteration step only)

=2 Large printout, including complete matrix of influence coefficients

=3 Same as 2, but without matrix

HH Auxiliary array

Output:

X Array of source and vortex strengths (solution output vector)

ITA Number of iterations

ILL =0 Normal solution =1 Error return

Subroutine Called:

SLEQW

Error Returns:

If ILL = 1, subroutine writes error message, and returns. The subroutine calls EXIT if the solution diverges.

Program WBAERO

Purpose:

To calculate the pressure coefficients at the panel control points on wings, bodies, and wing-body combinations in subsonic compressible flow.

Method:

The panel corner points computed by subroutine WBPAN are read from the auxiliary file TAPE 11. Subroutine ELEMEN is then called for each panel in turn. It calculates the control point, the transformation matrix, and transforms the corner points from the reference coordinate system to the panel coordinate system. The panel control points and corner points are then transformed to the analog body using subroutine ANALOG, in preparation for calculation of the aerodynamic influence coefficients. Subroutine INFLU calculates the three components of velocity induced by the source panels, and subroutine LATICE calculates the three components of velocity induced by each vortex lattice. These velocities are combined to form the matrix of aerodynamic influence coefficients, one row at a time. The influence coefficient matrix is stored on auxiliary file TAPE 10 in row order, and the three components of velocity are stored on TAPE 12, also in row order. The right side of the boundary condition equation is computed for each angle of attack and yaw, and the system of equations solved for the source and vortex strengths by calling subroutine SOLVE. A detailed description of the method is given in the Aerodynamic Theory section of this report. The pressure coefficients are then obtained by summing the products of the velocity components and singularity strengths, and applying equations (26) and (27) given in the Aerodynamic Theory section.

Use:

Call OVERLAY (FRWB, 3, 0)

Input:

TEXT Identifying title

PRINT Print option selected (see input section)

NIT Maximum number of iterations

IEPS Exponent of 10 setting limit on residue of

iterative solution

ITYPE Type of solution procedure selected

Program WBAERO(cont'd)

Input: (cont'd)

ISAVE Control parameter for reading influence coefficients and velocities components for auxiliary files TAPE 10 and TAPE 12, on to TAPE 11.

SIM Panel symmetry parameter

KUT Vortex lattice control parameter

NBV Number of body vortices having same strength as

adjacent wing vortices

NV Number of wing vortices associated with each body

vortex

KOMPR Compressibility rule parameter

POINTS Number of field points requested

NORPAN Number of panels with non-zero normal velocity

NMA Number of Mach numbers

MA Mach number

NAL Number of angles of attack or yaw

ALPHA Angle of attack

BETA Angle of yaw

X,Y,Z Source panel corner points in reference coordinate system

XL,YL, Vortex panel corner points in reference coordinate ZL system

XP,YP, Field point coordinates ZP

GA Relative strengths of bound vortices in vortex lattices

Output:

I Control point index

IL Vortex lattice number

J Panel Number

Program WBAERO (cont'd)

Output: (cont'd)

LP Bound vortex number

BETAl Prandtl-Glauert factor

NP Panel number at which non-zero normal specified

NORVEL Normal velocity

XC, YC, Panel control points in reference coordinate

ZC,XCI, system

YCI,ZCI

XE, YE Panel control points in reference coordinate

system

A Panel transformation matrix

F Panel area

T Maximum diagonal of panel

VX, VY, Three components of induced velocity in reference

VZ coordinate system

AM Component of velocity, normal to plane of panel

(influence coefficient)

RULE 1 Gothert's rule 1 selected

RULE 2 Gothert's rule 2 selected

VXU, VYU Three components of the free-stream velocity

VZU vector

RS Right side of boundary condition equations

ILL Matrix solution indicator

SIGMA Array of source and vortex strengths

VXR, VYR Resultant velocity component arrays

VZR

Program WBAERO(cont'd)

Output: (cont'd)

V Magnitude of resultant velocity vector

CP Pressure coefficient array

Subroutines Called: ELEMEN

ANALOG INFLU LATIC SOLVE FORMOM EXIT

Error Returns:

Program calls EXIT if:

1. MA > 1.0

2. J > 1500

3. LP > 40

4. IL > 35

5. ILL = 1

Program WBOLAY

Purpose: Main overlay for wing-body analysis program

Method: To call the primary overlay programs WBPAN and WBAERO

Use: OVERLAY (FRWB, 0, 0)

FRWB is overlay file name

Program Called:

OVERLAY (FRWB, 1, 0) (WBPAN)

OVERLAY (FRWB, 2, 0) (WBPLOT)

OVERLAY (FRWB, 3, 0) (WBAERO)

Subroutines Called: Exit

Program WBPAN

Purpose:

To calculate panel subdivision for wings, bodies, or wing-body combinations.

Method:

Several alternate paths are available in this subroutine depending on the values of the control parameters selected. Individual panel corner point arrays are read in if SINGPA = 1, body section data is read in if CASE = 1 or 3, and wing section data is read in if CASE = 2 or 3.

Four options are available for reading in the body section area. If OPT = 0, the y and z coordinates of the panel corner points are required. If OPT = 1, the preceding section corner points are used, and no additional data is read. If OPT = 2, the panel corner points are specified by the polar coordinates r and θ . For bodies of revolution having uniform panel spacing, OPT = 3 provides a simplified input option, and requires the input of only the radius and θ increment for each section. If OPT = 0 or 2 have been selected, the x coordinate of the panel corner points may be shifted out of the plane of the section by an amount ∆x to allow more freedom in paneling intersections. cases, the program calculates the x,y,z coordinates of the four panel corners in the reference coordinate system, and writes them on the auxiliary file TAPE 11 and the output file.

The wing section data is input as airfoil coordinate arrays. These arrays may be given in the reference coordinate system, or in terms of the local percent chord. If the latter option is selected, the chord length, twist angle, and twist center must be specified for each section. An arbitrary dihedral angle may also be specified for each section.

The internal vortex lattice panels are located on the mean camber line of the wing section. The relative strength (GAMMA) array must be specified for each section. In addition, the y coordinate of panel corner points may be shifted out of the plane of the section by an amount Δy to allow more freedom in paneling wing tips and wingbody intersections. In all cases, the program calculates the x,y,z coordinates of the four corners of the surface panels and vortex lattice panels in the reference coordinate system, and writes them on the auxiliary file TAPE 11 and the output file. For wing-body combinations (CASE = 3) additional vortex lattice panels may be specified inside the body. The input required is similar to that described above

Program WBPAN(cont'd)

Method: (cont'd)

the wing panels. The program calculates the x,y,z coordinates of the four corners of the additional vortex panels in the reference coordinate system, and writes them on the auxiliary file TAPE 11 and the output file.

Use:

Call OVERLAY (FRWB, 1, 0)

Input:

TEXT Identifying title

CASE Component identification parameter

PLOT Plot selection parameter

SIM Configuration symmetry parameter

ISAVE Save tape parameter

PRINT Print option

SINGPA Single panel selection parameter

NOPAN Number of panels to be deleted

XX,YY, Panel corner point coordinate in reference

ZZ coordinate system

NB Number of body sections

NW Number of wing sections

NV Number of vortex lattices in body

XBE, YBE Section coordinates in reference coordinate

ZBE system

MB, NW Number of panel corner points in wing or body

section

MV Number of vortex panels in body vortex lattices

OPT Corner point input option (see description above)

CHD Panel chord

Program WBPAN(cont'd)

Input: (cont'd)

WAKE

Injut: (c	ont d)
ALF	Panel twist angle(degrees)
XAL	Twist reference point
KOORD	Wing panel coordinate system parameter
FLAG	Branch point indicator(required to change number of panels from section to section)
DEL	Dihedral parameter
DELTA	Wing section dihedral (degrees)
Y0,20	Coordinate of axis of rotation for dihedral
THET	Theta increment (degrees) for OPT = 3
A	<pre>-z coordinate of body panel corner point if OPT = 0 and CASE = 1</pre>
	-r coordinate of body panel corner point if OPT > 0 and CASE = 1
	<pre>-z coordinate of wing panel corner point if CASE = 2</pre>
В	<pre>-y coordinate of body panel corner point if OPT = 0 and CASE = 1</pre>
	$-\theta$ coordinate (in degrees) of body panel corner point if OPT > 0 and CASE = 1
	-x coordinate of wing panel corner point if CASE = 2
С	-Relative strength of vortex lattice panels (GAMMA)
D	$-\Delta x$ shift of body panel corner point if CASE = 1
	$-\Delta y$ shift of wing panel corner point if CASE = 2

Length of vortex lattice in wake in percent of local chord

Program WBPAN(cont'd)

Input:(cont'd)

POINT Location of vortex lattice control point behind trailing edge in percent of local chord

XLP,YH, Coordinates of terminal points of streamwise
ZLP vortices (input only if FLAG = 3 and CASE > 2)

Output:

PANEL Panel number

NPAN Panel numbers of panels to be deleted

XX,YY Panel corner point coordinates in reference ZZ,X,Y coordinate system

XH,YH, Vortex lattice panel coordinates in reference ZH,XC, coordinate system YC,ZC

MINUS 1 End of record mark for TAPE 11

Subroutine Called: EXIT

Error Returns:

Program calls EXIT if:

1. NB > 70

2. MB > 60

3. NW > 40

4. NW > 60

5. NV > 40

6. MV > 60

Program WBPLOT

Purpose: To plot the panel geometry

Method: The plot parameters and viewpoint coordinates are read

from the input file, and the panel corner point coordinates are read from TAPE 11. The data is stored in labelled COMMONS SCRAT, PLODAT, and PLOPAR prior to

calling the plot subroutines.

Use: Call OVERLAY (FRWB, 2,0)

Input:

NVU Number of viewpoints

IPRINT Print parameter

IHIDE Hidden line parameter

IBUG Debug print parameter

VUE Viewpoint coordinate

X,Y,Z Panel corner point coordinates

Output:

M Number of panels

N Number of corner points

L Array of corner point indices

Subroutines Called: PLOTS

FACTOR DRAW3D PLOT

Error Returns:

1. NVU > 4 - Subroutine writes error message & returns

2. M > 1500 - Subroutine writes error message & returns

3. N > 3000 - Subroutine writes error message & returns

APPENDIX III

SAMPLE INPUT

The input for a wing-body-tail configuration is given in this appendix. Figure 28 is a computer generated plot of the paneling used for this configuration. Panels are input for one side of the configuration only.

The body is an ogive cylinder with a blunt base, and is subdivided into 72 panels, including base panels. The wing has a truncated delta platform and a thickness/chord ratio of approximately 15 percent. It is subdivided into 69 panels. The vertical tail has a swept constant chord planform and the same airfoil section as the wing. It contains an additional 32 panels. The total number of source panels on the configuration is 168.

Vortex lattice panels are automatically included inside the wing, while the vortex lattices inside the vertical tail are input as body vortices. Eight vortex lattices are used in the wing, body, and vertical tail.

The sample input is chosen to illustrate some of the special features of the program. These features are described below:

- 1. Plot Option The plot option is selected by setting PLOT = 1 on Card 2. The plot parameters are set on Cards 9 and 10.
- 2. <u>Body Input</u> A simplified body input definition is obtained by setting OPT = 3 on Card 4B. This option only applies to bodies of revolution.
- 3. Wing and Tail Input The wing input card set includes the vertical tail. The main wing uses the standard input option, while the vertical tail is defined in a horizontal plane and rotated into the vertical position using the dihedral option (DEL = 1 on Card 5B). Since the wing and tail have the same airfoil section, this data is input only for the first wing section, and the remainder are defined by setting OPT = 1 on Card 5B. The vortex lattices are automatically calculated for the main wing, but omitted from the vertical tail by setting FLAG = 2. The vertical tail vortex lattices are input later as body vortices. The trailing vortices from the wing vortex lattice are extended 100 units into the wake using Card Set 7, and setting FLAG = 3 on Card 5B. The vortex lattice control points are defined by Card 6.

4. Body Vortices - A vortex lattice is input inside the body to provide a mechanism for carry-over of lift. The strengths and locations of the bound vortices in this lattice are chosen to match those of the adjacent wing vortices in this lattice, and the trailing vortex is extended into the wake such that it terminates at the same location as the inboard wing trailing vortices.

Body vortices are also input inside the vertical tail. The bound vortices are located in the plane of symmetry under the spanwise panel edges, and given a strength proportional to the airfoil local thickness distribution. The trailing vortices are extended 100 units into the wake, using Card Set 8D-1. The vertical tail vortex lattice control panels are defined by setting OPT = 2 on Card 8B, and reading in the control point coordinates on Card 8D-2 and 3. Finally, the symmetry option is ignored for these vortex lattices by setting SIMOPT = 1 on Card 8B. This suppresses the image vortex lattice system which in this case would exactly cancel the defined vortex lattice system in the vertical tail and result in a singular matrix being generated in the aerodynamic section of the program.

- 5. <u>Field Point Option</u> The field point option is selected by setting POINTS = 16 on Card 16. The coordinates of the 16 field points follow on Card Set 16A.
- 6. Normal Velocity Option The normal velocity option is selected by setting NORPAN = 8 on Card 16. The indices of the 8 points are identified on Card Set 16B. In this example, NORVEL = 0, so the normal component of the onset velocity is set equal to zero on the blunt base of the body.

				/	F. F.	1000	alde linko	1070	\																																		
						337	/;	Rep	100	7																						-	_	•	-								
								_									-	1												•	m —	2	~	i	~								
																	•	•														-	-	•	-								
																	1.1	•												!		17	1.7	•	11								
																		•													c .			,									
		-	~	1	•	•	2	•	•	٩	٣		~	m	•	1	•	•												1	• •	c	٥	•	ċ								
		ī.	ı,	1	5	U	n	\$	t	r	ď		r	c	u	,	ć	3												,	•	•	•		•						•		
156																	0-4	•						•	• •	• •	• 0	•	• •	0.0		0-7	4.0		4.0								
WING-MODY-TAIL TEST CASE 1	_																	;	•					•	737.	2010	616.1	6.13	0.6.		• •	1.547	1.4.7	1.447	1.667	0.0	•0	• •	•		•	1.04.	4. P4.2
141-Y				,24		100	573		10.3	14.		141	14.	,	7		_		~ ? =	10	71.5	V 4	245		2.5	٠.	0	0.0									.7						
46-A0r	0	1	•	5500×°		1.04407	1.4573		1.6503	1.4647		1.4457	1.6467	•	1.404.	٠,	1,66	9.0	,		-7-		-	ċ	. r	70.7	7.3	4	350	c	n.	ċ		c	٥,	1.0	1.6	. ר	6.5	s. °		. .	ċ
7	-	• 0	4 -	. 1	£.4	٠,٠	, t	10.5		- · · · ·	14.0	45°	, , , , , , , , , , , , , , , , , , ,	50.0			12.0	100	70.	.05	30.	• A - 5	1.75	0.	١٠٧٦	.0.	30.	٠٥٠	.00	100	15.0	٠٠٠	17.5	•05	• • • • • • • • • • • • • • • • • • • •	103.	100	001	100		::	A0.	9

APPENDIX IV

SAMPLE OUTPUT

The output for a wing-body-tail configuration is given in this appendix. Only standard output is given, since the print option PRINT = 0 was selected.

- 1. List of Input Data The program lists all input data.
- 2. Panel Corner Point Coordinates The corner point coordinates of the body panels, wing panels, and vortex panels are listed.
- 3. Aerodynamic Parameters Selected aerodynamic parameters are listed, together with the CPU time required to calculate the aerodynamic matrix and solve the system of equations.
- 4. Solution Parameters and Singularity Strengths A list giving the residuals obtained after each step of the iteration procedure is printed, together with the final array of singularity strengths obtained, in order of panel number.
- 5. Velocity and Pressure Distribution The three components of velocity, the magnitude of the velocity vector, and the pressure coefficient are tabulated for each panel, together with the location of the panel control point.
- 6. Total Coefficients The axial, normal, and side forces, the moments about the three coordinate axes, the pitching moment about the reference point and the quarter chord of the MAC, the center of pressure, and the lift and drag coefficients are listed.

Items 4, 5, and 6 are repeated for each angle of attack or yaw selected.

WING-HODY-TAIL TEST CASE

INPUT OF MOUY CONTOUR

NO. OF SECTIONS= 10 COORD= 0 GODY PANEL CORNER POTINT COOMBINATES

PANEL	×	>	2	×	>	^	×	>	7	×	>	7
	-	-	-	٨	~	^	E	e	e.	1	4	•
-	000-0	00000	0.000	0.000	0.000	0.00	1.500	145.	145.	1.500	0.000	904.
2	006-6	0.000	0.000	0.000	0.000	0.000	1.500	.405	.000	1.500	. 2H7	185.
m	306-6	000-0	000.0	00000	0.000	0.000	1.500	7H7.	2H7	1.500	907.	.000
3	00000	00000	000-0	0.000	0.0.0	0.000	1.500	.000	707-	1.500	185.	2A7
ur)	00000	-0.000	0.000	0.000	-0.000	0.000	1.500	ZH7	287	1.500	000	404
÷	000.0	-3.040	000.0	0.000	-0.000	0.000	1.500	1.406	000.	1.500	2A7	2A7
^	0.000	-0.690	0.000	00000	-0.000	0.0.0	1.500	142	247	1.500	406	.000
1 ,	000.0	-0.000	000-0	0000	-0.000	0.000	1.500	-0.000	907.	1.500	287	.287
œ	1.500	0.030	404.	1.500	142.	1000	005.4	.739	.739	4.500	0.00	1.045
01	1.500	1000	-CH7	1.500	¥04.	0000	005.4	1.045	.000	4.500	.734	.739
11	1.500	404.	000.	1.500	-242	1.207	005.4	.7 39	739	4.500	1.045	000.
12	1.500	142.	182-	1.500	000.	J05	4.500	.000	-1.045	4.500	.734	467
-	1.500	000	905-	1.500	247	287	005.4	739	739	4.000	000	-1.045
7.	1.500	1020-	287	1.500	404	000	4.500	-1.045	000.	4.500	734	739
15	1.500	1.404	000.	1.500	142	.247	4.500	739	.739	4.500	-1.045	.000
16	1.500	1000-	.287	1.500	-0.000	905.	4.500	-0.000	1.045	4.500	734	.739
17	7.500	0.000	1.045	004.4	.7 19	.739	7.500	1.030	1.030	7.500	0.000	1.457
a _	005.4	61.	. 739	4.500	1.045	.000	7.500	1.457	000.	1.500	1.070	1.030
51	4.500	1.045	000	4.500	.739	661	7.500	1.030	-1.030	7.500	1.457	000.
70	4.500	62/	734	4.500	000	-1.045	7.500	.000	-1.457	7.500	1.030	-1.030
2	005.4	000-	-1-045	4.500	456	622	7.500	-1.030	-1.030	7.500	000	-1.457
25	4.500	739	739	4.500	-1.045	0000	7.500	-1.457	000	7.500	-1.030	-1.030
53	005.7	-1.045	000-	4.500	734	011	7.500	-1.030	1.030	7.500	-1.457	000.
52	4.500	739	. 739	4.500	-0.00	1.045	7.500	-0.000	1.457	7.500	-1.030	1.030
52	2.500	00000	1.457	7.500	1.030	1.0.1	10.500	1.167	1.167	10.500	0.000	1.650
92	7.500	1.030	1.030	7.500	1.457	000.	10.500	1.650	000.	10.500	1.167	1.167
27	CO5.	1.457	000.	7.500	1.0.30	-1.030	10.500	1.167	-1.167	10.500	1.650	000
	7.500	1.030	-1.030	7.500	000	-1.457	10.500	000	-1.450	10.500	1.167	-1.167
52	7.500	000-	-1.457	1.500	-1.040	0F0.1-	10.500	-1.167	-1.167	10.500	- 000	-1.650
F :	1.566	0.0.1-	-1.030	1.500	-1.457	000	10.500	-1.650	000.	10.500	1911	-1.167
	7.500	155-1-	000	1.500	-1.030	0.0.1	10.500	-1.167	1.167	10.500	-1.650	000
200	1.500	-1.030	1.030	1.500	-0.000	1.457	10,500	000.0-	1.650	10.500	191.1-	1.167
	005-01	0.000	1.650	10.500	1.167	1.167	12.000	1.179	1.179	12.000	000	1.667
4.0	10.500	1.167	1.167	10.500	1.650	000.	12.000	1.667	000.	12.000	1.179	1.179
٠,	10.500	1.650	000.	10.500	1.167	-1.167	12.000	1.179	-1.179	12.000	1.667	.000
4 :	10.500	1.167	-1.167	10.500	.000	-1.450	12.000	000	-1.667	12.000	1.179	-1.179
75	10.500	000	-1.650	10.500	-1.167	-1.167	12.000	-1.179	-1.179	12.000	000	-1.667
# ·	10.500	-1.167	-1.167	10.500	-1.450	0000	12.090	-1.667	000	12.000	-1-17	-1.179
٠ <u>٠</u>	10.500	-1.650	000.	10.500	-1.16/	1.167	12.000	-1.179	1.179	12.000	-1.667	000.
0	19.500	-1.147	1.167	10.500	-0.000	1.650	12.000	-0.000	1.467	12.000	-1-176	1.179
-	17.060	0.000	1.667	12.000	1.179	1.179	14.000	1.179	1.179	14.000	0.000	1.667

1.170		-1.179	-1.667	-1.174	000	1.179	1.667	1.179	000	27 -1-	-1.667	-1.179	.000	1.179	1.467	1.179	000	-1.179	-1.667	-1.179	000	1.179	00000	00000	00000	00000	0.00	0.00	0.000	0.000
1.174	1000	1.179	000-	-1.17	-1.667	-1.17	0.000	1.174	1.661	1.174	000	-1-174	-1.647	-1.174	0.000	1.174	1.601	1.174	000	-1.174	-1.667	-1.179	0.000	0.000	000.0	00000	-0.000	-0.000	-0.000	-0.000
14.000	1.00	14.000	14.000	14.000	14.000	14.000	15.000	14.000	16.000	16.000	16.000	14.000	16.000	16.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000
000	6.2.2.2	1.447	-1.179	000	1.179	1.447	1.179	000.	-1.179	-1.447	-1.174	000.	1.179	1.667	1.179	.000	-1.179	-1.667	671.1-	000	1.179	1.667	000.0	0.000	00000	0.000	0.000	000.0	00000	0.000
1.467	()	.000	-1.179	-1.667	-1-179	-0.000	1.179	1.467	7.1.1	000.	-1.179	-1.567	-1.179	-0.000	1.179	1.447	1.179	.000	-1.179	-1.667	-1.179	-0.000	00000	0.000	0.000	000.0	-0.000	-0.000	-0.000	-0.000
14.000	C. C. C.	14.000	14.000	14.000	14.000	14.000	16.000	16.000	10.000	16.000	16.000	10,000	14.000	11.000	20.000	20.000	20.000	20.000	20.000	20.000	40.000	20.05	20.000	20.000	20.00	20.000	20.000	20.000	20.000	20.000
000.	0:1:1-	-1.647	-1.179	000	1.179	1.447	1.174	000.	-1.179	-1.647	-1.179	000.	1.179	1.447	1.174	060.	-1.179	-1.667	-1.174	000.	1.179	1.667	1,179	000.	-1.179	-1.667	-1.179	000	1.179	1.667
1.4.1	6,	.000	-1.179	-1.401	77:1-	-0.000	1.174	1.607	1.174	• 000	-1-179	-1.407	5/1.1-	-0.000	1.170	1.401	1.179	606.	-1.179	-1.421	-1.179	00000-	1.179	1.667	1.19	.000	-1-179	-1.467	-1-17	-0.00
12.000	14.600	12.000	12.000	12.000	12.000	12.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	15.000	14.000	16.000	14.000	1000	15.000	15.000	14.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000
1.179	0000	÷11.1-	-1-267	-1-170	000.	1.173	1.067	1.179	.000	-1-17	-1.44.1	-1.179	000.	1.179	1.46.1	1.179	000.	-1.179	-1.067	-1-1-	000	1.179	1.467	1.179	000	-1-170	-1.667	-1.179	000	1.179
1.179	1 -4 - 7	1.174	000	-1.179	-1.00	-1-179	000.0	1.179	1.067	1.179	000	-1.179	-1.641	-1.179	0.000	1.174	1.44.	1.179	610	-1-130	-1.047	-1.179	0.000	1.12	1.667	1.179	000	-1.179	-1.667	-1.179
12.060	10.0	12.000	12.000	12.000	17.000	17.900	14.000	14.000	14.000	14.300	14.000	006.51	14.000	14.000	14.900	15.000	14.000	14.009	14.000	16.000	14.000	14.000	20000	20.000	20°00	20.000	20.000	000-07	000.02	000-02

INPUT OF MING CONTOUR
NO. OF SECTIONS A
CORRES I

WING PARFLING

(OLTEM SUMEACE)
WING PAKEL COMMED POINT COUNTINATES

Parf	_ ~		, -	٠ د	≻ ^\	~ ~	¥ ^(F)	≻ ^m	٤ د	, 4	, 4	× *
2	1 ~ . 000	1.447	00000	14.000	7.600	0.0.0	15.743	3.500	700-	15.600	1.667	45.0
74	15.400	1.261	034	15.743	3.509	420-	15.229	3.500	-106	14.800	1.667	-165
75	100.71	1.00	145	15.224	9.500	104	14.715	3.500	-175	000.4	1.667	575
14	14.000	1.44.1	272	14./15	3.500	175	14.201	3.500	169	13.200	1.667	293
77	13.200	1.067	1.293	14.201	3.500	BB1	13.647	3.500	124	12.400	1.467	761
- L	12.469	1.04.	761	13.547	1.560	124	13.558	3.500	060	12.200	1.667	071
5.	17.700	1.467	140	13.554	3.500	000	13.467	3.500	1.00-	12.050	1.44.1	074
C T	12.056	1.447	740	13.445	3.500	1.00-	13.410	3.500	000.0	12.000	1.467	0.00
G)	12.000	1.447	000.0	13.41)	3.500	0.00	13.462	3.500	140.	12.050	1.667	.074
C.D.	12.050	1.44.1	.074	13.466	3.500	1500	13.554	3.500	060.	12.200	1.647	.140
m T	12.200	1.067	071.	13.556	005.5	060.	13.447	3.500	.124	12.400	1.667	161.
3 1	12.4:17	1.667	194	13.647	3.500	.174	14.201	3.500	.188	13.200	1.667	. 293
ď.	10001	1.44.1	.293	14.<01	3.500	R	14.715	3.500	-175	14.000	1.661	.272
Į.	14.900	1.26.1	612.	14.715	3.500	-175	15.229	3.500	.106	14.400	1.667	.165
7	0 c n	1.44.	٠165	15.224	1.500	•106	15.743	3.500	.024	15.600	1.667	. o 38
q ·	15.400	1.44.	.03H	15.743	1.500	92U°	16.000	3.500	0.00	16.000	1.667	0.00
5	15.490	-1.567	.034	14.000	-1.457	000.0	16.000	-3.500	0.00	15.743	-3.500	•050
⊃ :	14.P0	-1.64.1	.165	15.600	-1.667	.03A	15.743	-3.500	.024	15.229	-3.500	.106
- '	000-71	-1.467	6170	14.400	-1.657	.145	15.229	-3.500	.106	14.715	-3.500	.175
· ·	000	1 346 7	E 5 7 .	14.000	1-1-607	212.	14.715	-3.500	.175	14.201	-3.590	. I A A
- i	17.403	-1.667	101	13.200	-1.457	.203	100.21	-3.500	.184	13.647	-3.500	.124
7	12.200	-1.447	.140	17.400	-1.407	101.	13.447	-3.500	.124	13,558	-3.500	060.
· :	050.7	-1.4-7	7/0	12,290	-1.447	071.	13,454	-3.500	070.	13.467	-3.500	156.
÷ .	620.	-1.547	00000	0.00.	-1.47	.074	13.462	-3.500	150.	13.410	-3.500	000.0
	0.0.7	-1.447	014	12.000	-1.607	000.0	13.410	-3.500	0000	13.462	-3.500	047
1 (12.200	-1.647	140	12.050	-1.457	074	13.462	-3.500	1.047	13.55R	-3.500	060
5 .	0000	-1.44/	75	12.500	-1.627	140	13,554	-3.500	060-	13.647	-3.500	124
901	13.700	-1.64.	E 5 5 - 1	14.400	-1.407	194	13.687	-3.500	124	14.201	-3.500	188
T 0 7	006.21	-1.44/	272	17,200	-1.447	-, 793	14.201	-3.500	188	14.715	-3.500	175
\ C = -	001.01	-1.55.7	165	14.000	-1.607	272	14.715	-3.500	175	15.229	-3.500	106
7 7 7	000-1	746.11	F. U.S.	004.41	164.1-	165	5.22	-3.500	-106	15.743	-3.500	024
7 1	0.00-01	144.	0.00.0	000-1	199-1-	HE0	15.74.3	-3.500	024	16.000	-3.500	0.000
		11000	0000	000	0000	00000	000.51	0000	600-	15.743	3.500	P.024
	15.743	3.500	770-	15.900	2.500	000	15.700	5.500	041	15.229	3.500	106
0 1	7//	4.000	-100	15.700	2.500	041	15.500	5.500	009	14.715	3.500	175
0 1	14.715	3.500	175	15.500	5.500	058	15.300	5.500	073	14.201	3.500	188
, .	102.21	994.	H	15, 300	5.500	073	15.100	5.500	048	13.647	3.500	124
0:	7. 1.	3.569	124		005.	04A	050.51	5.500	035	13.558	3.500	060*-
		004.5	050-	ار ان د	5.500	035	210.51	5.500	F.0.1	13.467	3.500	047
		C (0 (0)	150:1		001.5	C ·	5-633	C () ()	0.000	13.430	3.530	8-600
	0 5 5 5 6	3. UD	000-0	15.000	5.500	0.000	15.012	5.500	.018	13.462	3.500	140.

WING PARFLING

(CAMPER SURFACE)

VOMTEX LATTICE CONTROL PANEL COGNEP POINT COORDINATES

2 4	0000
≻ .⁴	1.667 -3.500 3.500 -5.500
׳	16.040 16.051 15.051
3	0000
≻ "	3.500
* en	16.051 16.080 16.020 16.051
K *	0000
٠ ^	3.500 -1.657 5.500 -3.500
× °	15.000 15.000 15.000
, 1	0000
, -	1.667
¥ ~	16.000 16.000 16.000
PANEL	165 170 171

INPUT OF HODY VORTEX SYSTEM NO. OF RODY VORTICES= 5

HODY PANELING

(CAMPER SUPFACE)
VORTEX PANEL COMMEY POINT COUPDINATES

~ *	0.000 0.000 1.667 2.667
۶4	0.000
×	113.000 113.000 20.080 21.590
3	0.000 2.667 3.667
> ^{E9}	1.567
×	113.000 113.000 21.580 23.080
~ ^	0.000 0.000 7.667
≻ ^	-0.000
×~	112.000 21.500 21.500
, ,	0.000 0.000 1.667 2.667
٠-	0.000
×-	112.000
PANEL	173 174 175 176

WING PANELING

VORTEX PANEL CORNED POINT COORDINATES

(CAMPER SURFACE)

PAREL	×	>	^	×	,			,	•	1	r,	
	-	~	-	^	٨	۸.	P 1	e e	3.6	. 4	4	4
-	12.600	1.44.1	0.000	13.430	9.500	0.000	13.462	3.500	0.000	12.050	1.667	0.000
~	12.050	1.467	0.000	13.466	3.500	0.000	13,558	3.500	0.000	12.200	1.667	0.00
r n	12.200	1.447	0.000	13.554	1.500	0.00	13.497	3.500	0.000	12.400	1.647	0.00
7	12.400	1.667	00000	13.697	3.500	0.000	14.201	3.500	0.000	13.200	1.667	00000
u n	13.200	1.467	0.00	14.001	3.500	0.000	14.715	3.500	0.000	14.000	1.667	00000
٠,	14.900	1.567	0.000	14.715	3.500	0.00	15.229	1.500	0.00	14.900	1.667	0.00
- ,	14.800	1.667	0.00	15.229	7.500	0.000	15.743	3.500	0.000	15.500	1.667	0.00
OL I	15.400	1.467	0.000	15.743	J.500	00000	16.000	3.500	0.00	16.000	1.667	0.00
σ.	16.000	1.647	0.000	16.000	1.500	0.000	100.001	3.500	0.000	100.000	1.667	00000
01	12.000	-1.667	0.000	12.050	-1.657	0.00	13.462	-3.500	0.000	13.430	-3.50r	0.000
= :	12.050	-1.667	0.000	12.00	-1.667	0.000	13.552	-3.500	0.000	13.462	-3.500	0.000
21	12.200	-1.461	0.000	12.400	-1.467	0.000	13.687	-3.500	0.000	13.55R	-3.500	000.0
<u>-</u>	12.400	-1.667	0.000	13.400	-1.407	0.000	14.201	-3.500	0.000	13.697	-3.500	0.000
5 (13.200	-1.667	000.0	14.000	-1.447	0.000	14.715	-3.500	0.00	14.201	-3.500	00000
<u>.</u>	14.000	-1.667	00000	14.400	-1.607	0.000	15.229	-3.500	000.0	14.715	-3.500	0.000
91	14.900	-1.467	0.000	15.400	-1.467	0.00	15.743	-3.500	0.000	15.229	-3.500	0.000
	15.400	-1.667	00000	14.000	-1.457	0.00	16.000	-3.500	00000	15.743	-3.500	0.00
2.0	16.060	-1.667	000-0	100.000	-1.657	0.000	100.000	-3.500	0.00	15.000	-3.500	0.00
	0, 4, 6,	004.5	00000	15.000	5.500	00000	15.012	5.500	0.000	13.462	3.500	0.000
2.7	13 661	20.00	000-0	210.51	5.500	000.0	15.050	2.500	0.00	13.558	3.500	0.000
		0000	000.6	050.51	5.500	000.	15.100	2.500	000.0	13.687	3.500	0.00
22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.500	0000	001.51	5.500	0.000	15.300	005•۲	0.000	14.201	3.500	0000
5.6	102.4	3.500	000.0	15.400	5.500	0.000	15.500	5.500	0.000	14.715	3.500	0.000
, i		3.500	000.	15.500	2.500	0.000	15.700	5.500	0.000	15.229	3.500	0.00
5.7	7220	1000	000-0	15.790	5.500	000.0	15.400	5.500	0.000	15.743	3.500	0.00
3.1		0000	00000	006.51	2.500	00000	16.000	2.500	00000	16.000	3.500	00000
200	000.01	3.500	0000	16.000	5.500	0.000	100.000	5.500	000.0	100.001	3.500	0.000
e a	01.4.6	005.5-	000.0	13.462	-3.500	0.000	15.012	-5.500	000.0	15.000	-5.500	0.00
	7000	000.5-	000.0	13,558	005-1-	0000	15.050	-5.500	0.00	15.012	-5.500	000.0
9 (1000 C	004.5-	000°	13.687	-3.500	00000	15,100	-5.500	0.000	15.050	-5.500	00000
7 ;	10000	105.6-	000.0	102.4	-3.500	000.0	15,300	-5.500	00000	15.100	-5.500	0.00
÷ :	14.201	-3.500	00000	14.715	-3.50	0.000	15.500	-5.500	00000	15,300	-5.500	0.000
7	14.715	-3.500	0.000	15,229	-3.500	0.000	15,700	-5.500	0.000	15.500	-5.500	0.00
3 (15.269	-3.500	0000	15.743	-3.500	000.0	15,900	-5.500	00000	15,700	-5.500	0.000
5,	5.743	-3.500	0.00	16.000	-3.500	0.000	16.000	-5.500	0.000	15.900	-5.500	000.0
2	16.000	-3.509	0.00	100.000	-3.500	0.00	100.000	-5.500	0.000	16.000	-5.500	0.000

	VORTEX PANEL CORNER POINT COORDINATES
FACF)	POINT
(CAMPER SUBFACE)	CORNER
CAN	PANEL
	VORTEX

15.70	PANEL	, ~	· ~	, ¹	, ∿	→ ⁽¹⁾	~ ~	¥ E	≻ "	3	*4	, •	N ⁴
12-70	37	12.000	0.000	0.000	12.000	1.467	0.000	12.050	1.667	0.000	12.200	0.000	000
13.200	36	12.200	0.000	000.0	12.000	1.667	0.000	12,400	1.667	00000	12.400	0.000	0.000
1,200	0.7	12.400	0.000	00006	12.400	1.407	0.000	13.200	1.667	0.000	13.200	0.000	0.00
1,000	7	13.200	0.000	000.0	13.400	1.647	0.00.0	14.000	1.667	000.0	14.000	0.000	0.000
15,470	€*	14.000	0.000	0.00	14.000	1.667	0.000	14.400	1.667	0.000	14.900	0.000	0.00
	6 3	14.900	v0:-0	0.000	14.800	1.667	0.00	15.600	1.657	0.000	15.600	0.000	0.000
	71	15.400	0.000	0.000	15.600	1.647	000.0	16.000	1.667	0.000	16.000	0.000	0.00
12-00	4	14.900	0.000	0.000	16.000	1.667	00000	112.000	1.667	000.0	112.000	0.00	0.00
12.050	44	12.000	-1.667	0.00	12.000	000-0-	00000	12.050	-0.000	0.000	12.050	-1.667	0.000
12.200	7.47	12.050	-1.667	0.000	12.050	-0.000	0.000	12.200	-0.000	0.000	12.200	-1.667	0.000
12-400	1.7	12.200	-1.667	000.0	12.400	-0.000	0.000	12.400	-0.000	0.000	12.400	-1.667	0.000
13.200	64	12.400	-1.667	0.000	12.400	000-0-	0.00	13.200	-0.000	0.000	13.200	-1.667	0.000
14.00	20	13.200	-1.667	0.00	13.400	000-0-	00000	14.000	-0.000	0.000	14.000	-1.667	000.0
14.40	51	14.000	-1.667	0.000	14.000	000.0-	0.00	14.800	-0.000	0.000	14.900	-1.667	0.00
	55	14.400	-1.667	000-0	14.400	-0.000	0.000	15.400	-0.000	0.000	15.600	-1.667	0.000
	53	15.600	-1.447	0.000	15.600	-0.000	0.00	16.000	-0.000	0.00	16.000	-1.667	0.00
	54	14.900	-1.447	0.000	15.000	-0.000	0.000	112.000	000.0-	000.0	112.000	-1.667	0.00
1,050 0.000 1,547 17.550 0.000 2,547 17.700 0.000 2,547 16.700 0.000 1.547 17.500 0.000 2,547 16.700 0.000 1.547 17.700 0.000 2,547 17.200 0.000 17.200 0.000 1.547 17.200 0.000 2,547 17.200 0.000 17.200 0.000 1.547 17.200 0.000 2,547 17.200 0.000 1.547 19.500 0.000 2,547 17.200 0.000 1.547 19.500 0.000 2,547 17.200 0.000 1.547 19.500 0.000 2,547 19.500 0.000 1.547 19.500 0.000 2,547 19.500 0.000 2,547 19.500 0.000 2,547 19.500 0.000 2,547 19.500 0.000 2,547 19.500 0.000 2,547 19.500 0.000 2,547 19.500 0.000 2,547 19.500 0.000 2,547 19.500 0.000 3,547 19.500 0.	5.2	14.000	0.00	1.447	17.500	000.0	7.44.7	17.550	0.0.0	2.667	16.050	0.000	1.467
1,5/0, 0,000	£ ;	14.056	0000	1.667	17.50	0.00	7.447	17.700	0.000	7.667	16.200	00000	1.667
1,400 0.000 1.567 17.900 0.000 2.667 17.200 0.000 2.667 17.200 0.000 1.567 17.200 0.000 1.567 19.500 0.000 2.667 18.800 0.000 1.667 19.500 0.000 2.667 19.500 0.000 2.667 19.800 0.000 1.667 19.500 0.000 2.667 19.800 0.000 2.667 19.800 0.000 1.667 21.300 0.000 2.667 21.300 0.000 2.667 21.300 0.000 2.667 19.600 0.000 2.667 19.600 0.000 3.667 17.500 0.000 3.667 17.500 0.000 3.667 17.500 0.000 3.667 17.500 0.000 3.667 17.500 0.000 3.667 17.500 0.000 3.667 19.500 0.000 3.667 19.500 0.000 3.667 19.500 0.000 3.667 19.500 0.000 3.667 19.500 0.000 3.667 19.500 0.000 3.667 21.100 0.000 3.667 21.100 3.667 21.500 0.000 3.667 21.	٠.	12.70	0.000	196.	17.700	0000	7.667	17.900	0.000	2.667	16.400	00000	1.667
1,200 0.000 1.667 18,700 0.000 2.667 18,000 0.	2 5	14.400	0000	1.567	17.400	0.000	7.44.7	14.700	00000	2.467	17.200	0.00	1.467
14.000 0.000 1.667 19.50 0.000 2.667 19.80 0.000 0.0	25	17.200	0.000	1.44.1	18.700	000.0	7.447	19.500	0.000	2.667	18.000	0.000	1.667
14.900 0.000 1.467 20.300 0.000 2.667 19.600 0.000 19.400 0.000 2.467 21.500 0.000 2.667 20.000 0.000 20.000 0.000 2.667 21.500 0.000 2.667 20.000 0.000 17.500 0.000 2.667 19.000 0.000 3.667 17.700 0.000 17.500 0.000 2.667 19.000 0.000 3.667 17.700 0.000 17.500 0.000 2.667 19.400 0.000 3.667 17.700 0.000 17.400 0.000 3.667 19.400 0.000 3.667 17.900 0.000 17.400 0.000 2.667 21.000 0.000 3.667 19.700 0.000 19.500 0.000 2.667 21.000 0.000 3.667 19.700 0.000 20.300 0.000 2.667 21.000 0.000 3.667 21.700 0.000	60	14.000	0.000	1.667	19.500	0.000	7.447	20.300	0.00	2.667	18.800	00000	1.467
19,600 0.000 1,667 21,100 0.000 2,667 20,000 0.000 20,000 0.000 1,667 21,500 0.000 2,667 116,000 0.000 17,500 0.000 2,667 19,000 0.000 3,667 16,000 0.000 17,500 0.000 2,667 19,050 0.000 3,647 17,500 0.000 17,500 0.000 2,667 19,000 0.000 3,667 17,500 0.000 17,500 0.000 2,667 19,200 0.000 3,667 17,500 0.000 18,700 0.000 2,667 20,200 0.000 3,667 19,500 0.000 19,500 0.000 2,667 21,000 0.000 3,667 19,500 0.000 20,000 2,667 21,000 0.000 3,667 21,100 0.000 20,000 2,667 21,000 0.000 3,667 21,500 0.000 21,100 </td <td>61</td> <td>14.400</td> <td>0.000</td> <td>1.667</td> <td>20.300</td> <td>000.0</td> <td>7.447</td> <td>21.100</td> <td>000.0</td> <td>2.667</td> <td>19.600</td> <td>0.000</td> <td>1.667</td>	61	14.400	0.000	1.667	20.300	000.0	7.447	21.100	000.0	2.667	19.600	0.000	1.667
20,000 0.000 1.567 21.500 0.000 2.667 116,000 0.000 17.50 0.000 2.667 19,000 0.000 3.647 17.550 0.000 17.50 0.000 2.667 19,200 0.000 3.667 17.570 0.000 17.70 0.000 2.667 19,200 0.000 3.667 17.590 0.000 17.70 0.000 2.667 19,200 0.000 3.667 17.590 0.000 17.70 0.000 2.667 19,400 0.000 3.667 18,700 0.000 18.50 0.000 2.667 21,000 0.000 3.667 19,500 0.000 20.300 0.000 2.667 21,000 0.000 3.667 20,300 0.000 20.300 0.000 2.667 22,600 0.000 3.667 21,100 0.000 21.500 0.000 3.667 23,000 0.000 3.667 21,500 0.000	29	19.400	0.000	1.467	21.100	0.000	7.447	21.500	0.000	2.667	20.000	0.00	1.667
1,500	63	20.000	0.000	1.667	21.500	00000	7.447	117.500	0.000	2.667	116.000	0.000	1.667
17.550 0.000 2.667 19.050 0.000 3.647 19.200 0.000 3.667 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.67 19.200 0.000 3.647 17.900 0.000 17.67 17.900 0.000 17.67 17.900 0.000 17.67 19.200 0.000 17.67 17.700 0.000 17.67 19.200 0.000 17.67 17.700 0.000 17.67 19.200 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 17.67 17.700 0.000 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.7000 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 17.700 0.000 0.000 17.700 0.000 0.000 17.700 0.000 0.000 17.700 0.000 0.000 17.700 0.000 0.000 17.700 0.0	7,0	17.500	00000	7.667	19.000	0.000	3.647	19.050	0.000	7.667	17.550	0.000	2.667
17.700 0.000 2.667 19.200 0.000 3.667 19.400 0.000 3.667 17.900 0.000 17.900 0.000 17.900 0.000 17.900 0.000 17.900 0.000 17.900 0.000 2.667 19.400 0.000 1.667 21.000 0.000 3.667 19.500 0.000 2.667 21.000 0.000 1.667 21.80	65	17.550	000.0	2.647	19.050	0.000	7.44.	19.200	00000	3.667	17.700	0000	2.667
17.900 0.000 2.667 19.400 0.000 3.667 20.200 0.000 3.667 18.700 0.000 14.701 0.000 2.667 20.200 0.000 3.667 21.000 0.000 3.667 19.500 0.000 19.500 0.000 2.667 21.000 0.000 3.667 22.000 0.000 3.667 20.300 21.100 0.000 2.667 22.600 0.000 3.667 23.000 0.000 3.667 21.100 0.000 21.500 0.000 2.667 22.600 0.000 3.667 23.000 0.000 3.667 21.500 0.000 21.500 0.000 2.667 23.000 0.000 3.667 117.500 0.000	966	17.700	000.0	2.667	19.200	00000	7.647	19.400	0.000	3.667	17.900	00000	2.667
14.701 0.000 2.667 20.200 0.000 3.647 21.000 0.000 3.667 19.500 0.000 13.657 19.500 0.000 19.500 0.000 19.500 0.000 19.500 0.000 19.500 0.000 2.667 21.000 0.000 2.667 21.000 0.000 3.667 23.000 0.000 3.667 21.100 0.000 2.667 22.600 0.000 3.667 23.000 0.000 3.667 21.500 0.000 19.607 21.500 0.000 19.607 21.500 0.000	29	17,900	0.000	2.667	19.400	00000	1.467	20.200	0.000	3,667	18.700	00000	2.667
19.500 0.000 2.667 21.000 0.000 1.667 21.800 3.667 20.300 0.000 2.00 2.00 2.00 0.000 2.00 2.	68	14.700	00000	2.467	20.200	000.0	7.44.	21.000	0.00	3.667	19.500	0.00	2.667
20.300 0.000 2.667 21.800 0.000 3.647 22.400 0.000 3.667 21.100 0.000 2.1100 0.000 2.667 22.600 0.000 3.667 23.000 0.000 2.667 22.600 0.000 3.667 23.000 0.000 2.667 23.000 0.000 3.667 117.500 0.000	59	19.500	00000	2.667	21,000	00000	7.467	21.800	0.000	3,667	20.300	0.000	2.667
21.100 0.000 2.667 22.600 0.000 3.667 23.000 0.000 3.667 21.500 0.000 21.500 0.000 2.667 23.000 0.000 3.667 117.500 0.000	0,	20.300	0.000	2.667	21,400	0.000	7.467	22.400	00000	3,667	21.100	00000	2.667
21.500 0.000 2.667 23.000 0.000 3.667 119.000 0.000 3.667 117.500 0.000	7	21.100	00000	2.667	22.600	00000	3.667	23,000	00000	3,667	21.500	00000	2.667
	7.5	21.500	000.0	2.667	23.000	00000	3.667	119.000	000.0	3.667	117.500	0.000	2.667

	(1)2	5404.	.2872	00000	- 4062	287	.0000	2872	7388	0000	7348	-1.0449	7384	0000	6657	1.45/3	0000	-1.0305	-1,4573	-1.0305	.0000	1.0305	1.6503	1.1669	0000	-1.6503	-1.1659	.0000	1.6667	1.1785	00000	-1.1785	-	.0000	1.1785	1.5667	2000	-1.1785	-1.6667	-1.1795	1.1785	1.6667	1-1785	-1.1785
	(D)	0.0000	SH12	5404.	0000	2872	4062	- 2872	7388	1.0449	,73AR	0000	73AA	-1.0449	HHE !	0.0000	1.6573	1.0305	0000	-1.0305	-1.4573	-1.0305	0.0000	1.1669	1.6503	0000	-1.1669	-1.6507	00000	1.1785	1.6667	7.1.1		-1.6557	-1.1795	0.0000	1.6667		-	-1.1785	-1.55647	0.000	1.1785	1.6567
	x (1)	1.5000	1.5006	1.5000	1.5000	1.5000	1.5000	1.5000	4.5000	4.5000	4.5000	4.5000	0005.4	4.5000	4.5000	7 7000	7 5000	7.5000	7.5000	7.5000	7.5000	7.5000	10.5000	10.5000	10.5000	10.500	10.5000	10.5000	12.0000	12.0000	12.0000	12.0000	12.0000	12.0000	12.0000	14.0000	14-0000	14.0000	14.0000	14.0000	14.0000	16.0000	16.0000	16.0000
	-	4	α.	2	2 5	7	2	32	4	7 7	4	25	5.	£ .	2 0	č +	2 4	7	84	æ	92	8	60.	701	100		120	7.7	132	136	140	777	52	156	160	164	72	176	180	194	10	195	200	204 20A
	(1)2	5795.	.0000	2192.	- 2872	0000	S787.	24062	0000	738H	-1.0449	7388	0000	.73AA	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5050.1	2000	-1.4573	-1.0305		1.0305	-	1.1669	0000	V001.1-	7	•	1.1669	1.1785	.0000	-1.1785	-1.66667	0000	1.1785	1.4667	1.1785	-1-1785	-1.6667	-1.1785	0000	1.6667	1.1785	0000	-1.1/85
	YCD	•	•	56875	CA42-	CY05-	2872		-		•	'	7		7		_	•	ī	7	7	ĭ			9441.	7	7	-1.1669	-	_	1.1785	-1785		-1.1785	-0.0000	1.1785	1.1785	.000	-1.1785	-1.6667	-0.0000	1.1785	1.6667	.0000
	(L) x	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	4.5000	4.5000	4.5000	4.5000	4.5000	4.5000	1000	0000	7 5000	7.5000	7.5000	7.5000	7.5000	7.5000	10.5000	10.5000	0005.01	10.5000	10.5000	10.5000	12.0000	12.000	12.0000	12.0000	17.0000	12.0000	12.0000	14.0000	14.000	14.0000	14.0000	14.0000	14.0000	16.0000	16.0000	16.0000
	-	۳	~		2	5	27	~ t	9	43	14	7	52	5	5	0 5	. r	2	83	7	7	95	3 :	50.	2 -	11.	-	27	3 :	135	34	643	151	155	159	163		175	179	183	0 2	145	5	203
	201	0.0000	0.0000	000000	00000	0.0000	0.0000	0.0000	0000	2H72	54040-	2872	0000	5472°	-400		7 390	-1.0449	7 3AA	.0000	. 7 3AA	1.0449	1.0305	.0000	-1.0301-		.0000	1.0305	1.1659	.000	-	-1.6503	0000	1.1669	1.6503	1.1785	-1-1785	-1.6667	-1.1745	0000-	1.6667	1.1745	0000	-1.1/45
169	4(1)	0.000	0.0000	0.000	0000-0-	-0-0000	-0.000	-0.000.0-	4047	5795.	.0000	2H72	-4047	2H72	00000-0-	2000	7 190	0000	73AB	-1.0449	7 3AA	-0.000	1.0305	1.44.1	-0500	-1.0305	-1.4577	-1.0305	1.1569	1.4503	1.1469	-1.1660	-1.6503	-1.1569	-0.000-	1.1785	1.1785	.0000	-1.1785	-1.6667	-0.0000	1.1795	1.6657	.0000
PANFI S	CD*	0.000.0	0.000.0	0.000.0	000000	0.000.0	0.000.0	00000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	0005.	0001	2005	2000	4.5000	4.5000	4.5060	0005.4	7.5900	0005.	0005.	7.5000	7.5000	7.5000	10.5000	10.5000	10.5000	10.5000	10.5000	10.5000	10.5000	12.0000	00000	12.0000	12.0000	12.0000	0000-71	14.0000	14.0000	14.0000
ŭ	-	rų.	•	0 7	a .	~	4	0 6	n en	42	\$	20	5.4	Ž,	č		7	1	æ	Ĭ	20	3	7 (201	100	7	116	27	130	134	130	47	150	154	5.	140	170	174	179	182	2 5	144	40	206
. NUMBER	(1)2	0.0000	00000	0000	0.000	0.000	0.000.0	0.0000	27.45	0000	2012	4062	- ca1>	0000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000	- 7 2H	-1.044.4	736H	.000.	44c1	1.4571	- 030°	0000	-1.4571		0000	1.5503	1.1664	.0000	-1.156.	•	0000	1.1669	1.6567	0000	-1.1785	-1.6667	-1.1785	1.1785	1.6447	1.1785	-1.1785
POINTS 672	4.01)	0.000	0.0000	00000	-0.0000	-0.9009	-0.0000	-0-0000	67.15	64040	67470	0000	- >475	4:15	V	3	• _	•	0000	BHE L -	-1.0449	7 339	0.0000	-010	1020	0000	7	-1-4573		1.1559	1.5507	1.1050	-1.1.69	-1.6503	-1.1649	000000		1.1745	0000	-1.1785	-1.1745	0.000	1.1745	1.1785
O.F.	C ×	0.000	0.000.0	0000	0.000	0.000.0	0000-0	0.000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	0000	10000	2000	4.5000	4.5000	4.5000	4.5000	4.5000	1.5000	7.5000	7 5000	7.5000	7.5000	7.5000	10.5000	10.5000	10.5000	10.5000	10.5000	10.5000	10.5000	12.0000	12.0000	12.0000	12.0000		12.0000	14.0000	14.0000	14.0000
VUMHER	-	-	s:	7 _	17	21	5	2 6	3.7	7	1	7	53	ζ;	<u>.</u>	0 4	7	11	Te.	⁴ 5	or T	٠ ا	7	0 1	. 0	113	117	121	15.	133	137	1 t 1	142	153	157	<u> </u>	10.0	173	177	18	n ž	143	1 - 1	205

```
1.1785
1.7857
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.1785
1.
\sigma
```

```
15. 1000

15. 1000

15. 1000

15. 1000

15. 1000

15. 1000

15. 1000

15. 1000

15. 1000

15. 1000

15. 1000

16. 1000

17. 1000

17. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 1000

18. 10
13. 5.621
13. 5.621
13. 5.621
14. 7.010
15. 7.630
15. 7.630
16. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
17. 7.000
```

*	54	4.9	72	96	120	144	891	192	916	070	264	288	312	336	160	3.84	+08	132	95	043	204	929	555	576	200	*2*	548	572			
L3	53																_	-	-	-	_	_	_	_	_	_	_	-			
2	25																														
5	~																-	-	-	•	_	_	_	-	-	_	_	_			
_					-	36										• •	•	•	•	-	•	•	•	-	•	_	•	_			
																											•				
4,	0																						-								
2	0	43	47	7	115	5	163	197	211	235	259	243	307	311	355	379	403	427	451	475	667	523	547	571	595	419	643	667			
12	<u>-</u>	77	6.3	06	114	3	162	146	210	734	4.00	4	306	330	354	37.4	402	426	450	474	498	525	546	570	594	618	549	949			
7	17	7	ት	7	113	137	161	185	209	233	257	2A]	305	324	353	377	401	425	445	473	164	521	545	569	593	617	641	945			
-	ď	-	17	2	5	7,	7	47	5	9	5.5	7	11	ā	T	ę	101	107	<u> </u>	119	125	131	137	143	140	155	3	167			
47	7	0,	14	X T	~!	36	90	71	9.0	35	1,	0	70	£.	52	74	00	4	Œ,	12	96	50	*	5.5	26	16	0,	99			
5	15																		-	-	-										
۔ ک	7																	•	•	•	•	•	•	•	-	_	_	_			
	۲									•	•							•	•	•	•	•	•	-	•	_	_	•			
_						1 76			•		٠	•		,				4	•	•	4	•	•	-	•	_	•	•			
		_	_	2	~	-	4	4	u,	ur.	4	_	_	a.	a.	u	-	ב	Ξ	Ξ	13	_	_	1	7.	-	-	-			
7	2	7	ç	3	100	25 1	156	l an	204	P C C	242	776	300	324	34 11	372	406	420	777	45.8	667	915	240	264	SAA	617	636	999			
2	Ξ	ĩ	29	Ť	101	1 3 1	55	6/1	607	127	157	615	640	323	347	171	345	4 10	F 74	447	77	15ء	615	563	287	611	635	629			
2	¢	7.	ر 10	7	104	0د ا	154	1 7 A	202	226	250	214	798	275	345	370	756	414	277	444	057	316	238	262	546	500	434	65 B			
5	•	33	7	7	₹	661	153	111	< 0.1	522	† • · · ·	613	237	321	345	349	343	-11	441	445	6H4	513	237	241	545	609	633	657			
-	~	J	7	7	10	+	6	5	ľ	7	~	7	15	<u> </u>	4	5	Ç,	501	-		123	601	35	171	177	153	651	145			
•	1	^	£	=	1	I	~	٤	c	4	Ţ	^	č	ç	1	7	٧	c	0	7	αr	~	<u>د</u>	0	4	<u>1</u>	2	ç		60	
	1 ~																				-	-	-				_	_		0000°	
~																			-	-	-	-	-	_	-	_	_	-		200	
<u>ا</u>						7 176																									
_	<i>ل</i> ا																													000	
	Ī	•	÷	ñ	~	٦.	جَ	77	î,	ŗ	4	1	-	1	a	۳	ũ	0.	Ξ	È	12	2	Š	14	7	5	15	16.	٠٧٤	50000,000	
<u>_</u> ,	3	1	ر. د	7	190	124	17	112	45	000	747	I L	~ ~ ~	+1+	340	144	1	~ →	4 10	440	7 7 7	105	284	1,50	SP 0	404	624	254	VIEW POINT VK.VY.VZ	S ₀	
-	•	~	r	7	7	~ ~	1 * 1	171	55	<u>-</u> ر	C4 +	141	₹	ئائ د	7	343	176	-	435	1,0	679	201	1165	444	275	603	124	451	7		
-	^	3	7	14	7	122	 	170	104	21B	247	744	590	314	466	767	334	410	434	407	462	201	530	554	57B	204	454	650	IOd	.000	
2						121																							VIEW	-50000.000	
-						1																							TFR	.5	

NUMMER OF POINTS 192. NUMBER OF PANFLS HU

(1)2	0.000	000000	0.0000	0.0000	0.0000	0-000	00000	0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	00000	00000	0.000	0.000	0.000	0.0000	0.0000	0.0000		0.0000	0.000	0.00.0		1.6670	1.6670	2.6670	2.6670	2.6670	1.6670	2.6670	2.6670	3.6670	3.6670	2.6670
YCD	1.6670	3.5000	1.5000	3.5000	1.5670	-3.5000	-3.5000	-1-6570	-1.6670	-3.5000	3.5000	3.5000	5.5000	5.5000	5.5000	3.5000	-5.500n	-5.5000	-4.5000	1,5000	-5.5000	0.0000	0.0000	1.6670	1.6670	3.4670	1 6670	-1.6670	-0.0000	-0.0000	-1.6678	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	000000	0000	0.000
x CD x	12.4000	13.4621	14.7150	20100-0000	16.0800		12.050					15.7430	15.0125		٠.			_		00000	16.0200		15,6000	12,0500	14.0000	16112.0000					44113.0000		19.6000	17.5500	19.5000	17.5000	20.0A00	17.9000	21.1000	19.0500	88119 0000	21.5800
-	4 a	12	2	201	54	2 0	36	4	441	4	2	3	ç	4	4 Y	2	5	o .	3 C	100	0	100	104	90	2	1 2 2		129	132	36	77	148	152	156	160	_	169	172	176	1 30		192
7.01)	0.0000	0.0000	0.0000	0.000	0.000.0	0.0000	0000	0000-0	0.000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.00.0	0.0000	0.000	0.0000	0000	0-000	0.000	000000	0.0000	0.000.0	0.000	0000	0.000	0.000.0	0.0000	0000	1.4470	1.4670	2.6670	2.4670	2.6470	2.4670	2.6670	2.6670	3.66/0	3.6670	3.6670
411	1.5670	3.5000	3.5000	3.5000	3.5000	-3.5000	1 5670	-1.5670	-1.6670	-1.6670	3.5000	3.5000	1.500n	5.5000	0005.7	5.5000	משטר ר	0004.4	0000	2000	-3.5000	0.1000	0.0000	1.6670	1.6670	1.6670	1.0670	-1.5670	-0.0000	-0.0000	0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00.0	0.0000	0.0000	000000		0.0000
(L) x	12.2000	13.4300	14.2010	16.0000	14.0414	13,55,45					13.5545	15.2240	15.0000	15,3000	16.0000	14.0700	-		-	0000			14.4000	12,000	13,2000	16.0000	2.2000	-			3,000	6.2000	18.Anoo	17.5000	18.7000	21.5000	21.5800	17.7000	20.3000	00000	10000	23.0800
-	e -	=	15	5	ζ!	÷ :	ر بر	, 5	6.4	17	5	ን	2	Ę,	ċ;	- 1	(9	7 9	C 1	7	3,	5	103	101	= :	5 2	2	127	131	35	14311	147	151	155	55	167	167	= :	57.	2 2	1	2
7(1)	0.0000	0.000	0.0000	0.000.0	0.000.0	0000-0	0000	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	000000	0000		0.000	0.0000	0.000	0.0000	0.0000	0.00.0	0.000	0.0000	000000	0.000	0.000	1.6679	1.6570	1.6670	4.6670	4.6670	2.6570	2.6670	2.6670	3-4470	3.6670	3.6670
440	1.6670	1.6670	1.5000	1.5000	1.5000	-3.500a	2000	-1.6670	-1.4770	-1.6570	3.5000	3.5000	2.5000	5.5000	0000	הסטני ו	שטטיי יי	2.5000	1000	10005 8-	-3.5000	0.000	0.0000	0.000.0	1.6670	1.55.70	-1.6670	-1.6679	-1.6570	0000-0-	-0.000	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000	0.0000	00000	000000	0.000
(1) x	12.0500	0000000	13.6470	15.74 30	15.0000	1 4.44.61	0000000	12.4000	15.4900	15.0000	13.44.1	14.7150	_	15.1000	0005 51	0000-41	15.0163	0002.41	0060-001	76.30	16.0000	12.0500	14.0000	_	12.4000	15.4000		_	12.0000	12.4000	12.0000	14.0500	14.0000	16.000	17.9000	21,1000	21.5000	17.5500		10.000	22.5000	23.0000
-	10 4	- 0	7_	<u>a</u>	2	÷ .	7 7	a .	1	4 4	٥٧	Š	J.	5	į.	2;	2.			5			103	1061	_	7 -	122	_	-	134	142	146	150	154	ď.	162	166	2	7	7 7 7	1 4	190
107	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.0000	2000	0.000	0.000	0.0000	9.0000	0.000.1	0.0000	0.000	0.0000	0.000	00000	000000	00000	2000	0.0000	0.0000	0.00.0	0.000.0	0.000	0000	00000	0.000	0.0000	0.000	0000	1.6670	1.6470	1.6679	2.5677	2.647.	0/45-1	2.667	2.5670	3.6670	3-6673	2.6670
401	1.50/0	1.6410	3.5000	3.5000	0/04.	10001	1 5000	0/90-1-	-1.04.70	0004-1-	3.5600	1.5000	3.5000	5.5000	ממטר. ר	3.000	0005.5	מיסייייייייייייייייייייייייייייייייייי	10000	0004-1-	-5.5000	0.0000	0.000	0.000.0	1.5570	0,94.0	-1-6570	-1.6679	-1.6670	-0.00.0-	0/94-1-	0.000	0.0000	0.000.0	0.0000	000000	0.000	000000	0.0000	00000	000000	0.0000
(L) x	13.2000	16.0000	13.5585	15.2290	14.0000	14.4300					13.4300	14.2010	16.0000	15.0500	0007-51	000000	3000	0000 - 61	13 55 95	15.2290	16.0000	12.0000	13,2000	16,0000	12,2000	14.8000	-	13,2000	16.0000	12.2000	12.0000	16,0000	17.2000	20.000	17.7000	20-3000	20.0000	0005-71	19.7000	19.2000	21-HOOD	21.5000
-	- 1	•	61	1	7	Ç ?	, ,-	. 6	7	4,2	J 3	53	ζ.	9	ς :	, ,		3	4 · j	n o	7	7	101	105	J :	113	171	1 ≥5	124	133	1411	145	74	153	157	191	661	691	5 1 2	8	185	189

- COCCOSTA H #92776947 - VE400 VE400 VE400 136 136 136 136 136 136 136 136 136

8 9 - A + R 0

PROGNAM FOR CALCULATING PRESSURE AND VELOCITY DISTRIBUTIONS ON WING-RODY COMPINATIONS

SYM = 1 FIELD POINTS = 15 KUTTA CONDITION= -1 COMPRESSIMILITY RULE= 2 AEROCYNAMIC CALCULATIONS

TIME = 19.04100

TIME = 68.66000

TIME = 68.66800

124

CONTROL ITEPATION COLUTION RESIGUAL	3.5107334	.1752147	4724120°	.0217977	£560010°	.0048686	.0023527	0010100
2	_	~ ~	4	r	9	_	Ŧ	•

500100	40100	.01993	52010.	20610.	. n1493	966 LU.	.01995	.01696	.016+
101693	26910.	501692	.01693	49910.	.01696	67110.	.01149	.01147	.0114
501100	.01147	.01149	67110	90500	A5200.	.00520	*00400	76700	.00520
.00526	.005ng	000AB	67000	C3000.	no114	00114	.00056	69000	- 000 H
00153	.00391	90100	00175	00175	Antin.	001 00	00153	.00122	0035
0.600	540000	59000	0-100-	-,00355	54100°	\$6200	-,00060	-,00044	2000€
42000°	**000	0.000	\$1.200°	00170	00111	00072	00073	00073	0007
00111	00170	00644	0175B	01476	-, na392	.012A6	.02454	.03705	.0764
01459	44750°	19500	.01318	+4600	0150A	01437	00764	00764	0143
01504	00344	.0131A	1 7920.	99750.	07470	.07645	.03705	.02454	.0128
00397	01417	0175B	00644	00665	01371	n14R2	00380	.01313	.0247
.03741	54770.	.07770	.03845	85566°	21410.	00304	-,01454	01392	0072
00729	01332	01454	00309	-01415	.92558	.03865	.07770	-01742	.0374
.02473	.01313	003A0	014P2	17610-	00645	00630	01443	01722	0059
.01274	.02424	.03581	.05AA6	.05AP6	.03541	.02424	.01273	00597	0172
01443	00630	00462	01467	01550	00266	.01524	• 02545	.03672	.0597
71650°	-03672	.02545	.01524	00266	01550	01457	00662	00059	0005
00054	60000-	00000-	- 000000						

THIS SOLUTION FOR EPS = 10** -4 MAS ORTAINED AFTER 9 ITERATIONS

SINGULARITY STRENGTHS

	WELNCITY AND PE	RESSUME DISTRIBUTION ALPHA 0.0000	0.0000 DFG	PFTAE -0.05	-0.0000 DEG			
•	•			* >	*>	٧٧	>	8
-	c	27450.	21115.	FCHH.	01540.	4520C.	14514.	.14166
^	00000-1	41116	515+0.	PLARA.	A6 407.	16740.	. 91563	.16162
~ 1	1.00000	51162	P4 250 - 1	ecapa.	17507	0.540	99515	.16156
4 1/2	060000	. 04775	/ 1115		77140	- 202 sh	25.0	25141.
٠.	20000-1	4115	- 09575	ASARA.	60527	04520	91566	14156
7	1.00000	23115	\$1560.	PAHR25	¿ N 5 3 A	.08491	.91543	16162
a	1.00000	N4575	21115	F CHAH.	04510	.20529	.91561	.16166
O.	3.22000	.27308	A5654.	16 756	.07190	81 FT 1.	65216*	105401
10	3.22006	H2654.	A0F15.	.64431	.17349	.07164	.47262	.05402
11	3.22006	86844	2730A	AL 450.	.17333	07205	.97257	.05392
-1		.2730A	6597A	17450.	*1110*	1-17147	17279.	.05383
13	3.22006	> / 30H	F-6542A	69500	07174	17747	17571	.05383
4 (H2424-	80516.	45.45 a	1/343	20210°-	19215	26650
<u>.</u>	3.77060	#25c4.	HOY / J.	50,00	77.7.	*01/0*	24216	20450
٠:		10017		1. 555.	061/0*-	85671.	65776	10550.
_ :		55.0440.	45.1.0.1	1.00333	CHHAO.	2//110	19110-1	56220-
	SOHO!	40//0-1	56444	75500.1	11766	- 04036	1,01138	05220-
	1,500.7	FE 444	15.44-1	20000	17870	-11788	1.01169	62560
		- 44633	-1-07754	1.00363	- 04851	-11788	1.01169	25500-
	ORG	-1.07754	44633	1.00344	11755	04926	1.01150	02313
53	. 0 H	_	£ £ 4 7 7 .	1.00332	11784	-04B5	1.01138	02290
24	.0 A	44633	1.07754	1.00335	04HH0-	57711.	1.01141	02296
52	0.0	\$5004	1.32796	1.02353	0.02249	.05453	1.02534	05131
4 7	200	76176	2000	1.02236	86440°	-02365	1.02417	26490-
	500	1. 12.75		1.02/36	\$5 CCO.	20.70	1.03406	1.040.1
L 0		900013	1.32704	1 03635	71120-	- 05.83	1.02506	00/10-1
		127796	40025-1	1.02267	46.530-	- 105523	1.02448	95070
		-1.32796	60045	1.02236	0559A	59120	1.02417	- 04892
35	031	55006	1.32796	1.02353	02549	.05453	1.02534	05131
33	1.251	,58637	1-41563	1.02517	00279	.01236	1.02525	05113
34	1.251	1.41563	.54637	1.00935	65700.	.01580	1.00948	01905
35	1.251	1.41563	58637	1.01061	.00309	-•01922	1.01079	02171
5 6	255	154637	10.114.	1.027.37	H4500	01788	1.02/46	19550-
9 6	11.25124	-1-6-1563	58637	1.02737	P0000-	12610-	1.01080	1,150
35	75.	-1-41563	-58637	51.000.1	64400	.01580	1.0094A	01906
0 9	1.251	59637	1.41563	1.02517	.0027H	.01236	1,02525	05113
۲,	3.000	.5H427	1.42262	1.02192	01055	.00437	1.02199	04446
£3	000	1.42262	15995	1.04579	01745	*IC*0*	1.04679	09576
£ 4	000	1.42242	54927	1.05066	01951	04469	1.05177	10623
7 7	000	.58927	-1.42262	1.02719	01224	00507	1.02728	05530
n ,	000	12685-	79/24-1-	1.05/50		04440	1 05178	16550.
0 10		-1-42262	- COB.	1.04579	.01745	.04213	1.04679	09577
65	000	58927	1-42262	1.02192	.01054	.00437	1.02199	04446
0,4	.000	.58927	1.42262	1.00357	.01673	00693	1.00373	00748
20	.000	1.42262	.58927	1.02022	.01928	04656	1.02146	04338

	VELOCITY AND MACHE 0.0000	PRESSUME DIST ALPHA	RIAUTION 0.0060 DEG	RETA= -0.00	-0.0000 DFG			
1	×	>	7	*>	5	~~	>	8
15	15,00000	1.42262	5H927	1.02546	.01676	54040*	1.02659	05389
25	15.00000	.58927	-1.42262	1.01946	67600	.00393	1.01451	03737
U 12	15.0000	72484-1-	1.6000	1.03564	05600**	£6100°	1.01851	03737
55	15.00000	-1.42262	CC027.	1.02022	10101	75990-1	1.02146	955.40
56	15.00000	CH427	1.42262	1.00357	01673	00493	1.00373	00748
57	18.00000	.5H427	1.42242	1.03940	.01231	00535	1.03949	04054
5. A	30000	1.42262	15982	1.00493	-00492	01164	1.009.1	01A10
, 4	00000	24224	12445.	1.00344	06000.	26100.	1.00350	00700
3 5	18,0000	58927	-1-42242	1.00492	04200-	\$\$000°	1 .00493	######################################
2	14.00000	-1-42262	1.58927	7.0034	04000-	60100	00360	20200-1
63	18.00000	-1.42262	.5H927	1.00493	004H2	01164	106001	01A10
79	Œ	58927	1.42242	1.03940	01291	00535	1.03949	0A054
65	0	.39284	19896.	1.00000	00862	.01574	1.00016	00032
ý,	20.0000	14846	-397a5	1.00000	2,4000-	.00726	1.00004	00008
2	0 '	19890	3474E	1.00000	00231	•00469	1.00002	00005
E 4	90	- 39CH5	17H76*-	00000-1	02000-	.00705	1.00003	00005
70	, c	- 94461	70000	00000	# 1000°	50700	1.00003	00005
11	, c	1.0484	Succes.		60000	92400	40000	00000
72	•	- 342H4	.94461	1.00000	. 00HA3	.01574	1.00016	00032
7.3	S.	7.51701	01585	P5216.	.01332	.0A647	05616*	.15452
74	15,33263	2.51701	08447	.98930	.01014	15636	1.00163	00356
5.	14.66525	2.51701	18224	1.08403	01259	.14416	1.04391	19463
9 7	13.49788	2.51701	23573	1.15126	04331	24/200	1,15240	32AD2
10	12.37050	2 51701	06202.	12021	107F0 • 1	19591-	1.13005	27701
5.2	12,76740	2.51701	0.080.0	1.0001	06163	64604-	1.10386	56267
5	12,68398	2.51701	03073	59863	36769	-39759	777659	39690
81	12.64398	2.51701	•03073	.54A13	.37414	.37764	.76357	41696
A2	12.74740	2.51701	616H0.	60070	.06954	.39587	1.03063	04220
E .	12.91339	2.51701	-13925	1.05822	00A25	+05BC.	1.09597	20115
3 U	13,37050	•	0502.	1.11553	03599	.14265	1.12519	74404
. ec	14.66525	2.51701	26.557.3 20.000.000.0000.0000.0000.0000.0000.0	1 04070	7070-	06743	1.14813	31AZ1
47	15,33263	2.51701	08447	98709	0100	15605	19666	81100
E.	15.83316	2.51701	29710.	47119.	.01366	084R1	.91900	15728
99	15,83316	-2.51701	.01585	.91376	01366	08679	19119.	.15732
06	15,33263	-2.51701	.08647	.9870A	01000	15608	07666	.00119
- 6	14.66522	-2.51701	*1H724	1.08079	56010*	14575	1.09053	18947
	33055 51	10/15-7-	2,743	1.14708	16040.	02743	\$18\$1°	31R22
76	12,91339	-2.51701	13925	1.05822	20800	70502	1.09597	- 2010
95	12.74740	-2.51791	01680.	60676	06954	.39546	1.03063	06220
96	12.4839B	-2.51701	.03073	.54814	37413	.37762	.76357	.41697
~ 0	12.64398	-2.51701	03073	.55665	36766	39759	. 77660	. 19689
0 0	12 01330	-2.51701	61680*-	.95973	06163	240342	1.04289	08762
60	05016-21	-2.51701	-13925	1.06735	.01475	24895	1.10587	22295
·))	•	• • • • • • •	1015051	****	101100	333	

	VELOCITY AND PR	RESSURF DISTRIBUTION ALPHA= 0.0000 P	FRIMUTION 0.0000 PFS	HFTA= -0.00	-0.0000 DEG			
	×	>	~	×	`	21	>	ಕ್ರಿ
101	13,99788	-2.51701	73573	1.15124	.04331	64750	1,15241	408CF
102	14.44575	-2.51701	14224	LOHO.	.01260	914419	1.09392	-19665
103	.332t	-2,51701	NH4447	TCOBO.	01015	.15440	1.00152	00 324
700	4331	-2.51701	01545	.91524	01332	56440.	H7616.	.15456
ر 10	0000001	4.3534	0000-	108000	4×210.+	.0A426	0 0 0	16741.
101	2360	141.00.4	01140-1	\$400.	21020*-	21441.	20555	20100
80	85.49	4.15341	F C 7 E I = -	1.17201	C0120-1	05474	1.17446	12717.
501	5517	4,35341	F 2 7 1 1 - 1	1.14922	B1250-	G 1 0 1 - 1	1.1000	24.55
110	.2424	4.75.341	07929	1.09494	エアローコー	*096Z*-	1 - 1 36 24	20104
111	543	126.66.4	05079	. 98759	.07211	41189	1.07247	-15019
112	14.11130	4,35341	01750	19472.	.34575	0.504	PA0579	.35070
113	.1114	4 • 35 34 1	05210-	.56851	.35477	. 34110	51067.	.37572
114	.1593	4.35341	•65070	.97514	.0415H	86207.	1.05428	11995
i i è	.2424	4.35341	02020.	1.08690	00343	.29163	1.12535	24441
114	799	4.35341	11553	1.14479	04Ah0	.147HZ	1.15443	545FF
117	かい	1 96 06 . 3	.13423	1.16884	UFH 74	17476	1.17116	37163
u :	999	4.35341	.1017	1.09076	04350	14707	1.10149	21328
· ·	661	4.35341	01870.	. 98564	1-014-1	- 1559B	60446	.00341
2.5	0000	14666.4	* 65.00	02/06	-01740	04419	11116.	. 14946
171	000	4 5 5 5 6	£ 0700.	02/00.	.01250	0A61A	.41137	.16941
771	לצלות.רו	1965	01150.	. 445b	24510.	14598	60H66	5AE00.
123	445	145.35	55.751	\$ 070° I	055.40.	-14707	1.10149	2132A
50		146.30341	1 L L L L L L L L L L L L L L L L L L L		*/ RUD.	61470-	1.17116	37163
26		14505.4	000000	100400	00000	20141	1.15443	2956
72	5 7 7 5	45.45.45	0,000	05050	1000	20003	CEC/1.1	
120	. ~	-4.35341	01750	55,851	-136477	20105	12001	27575
129	1118	-4.35341	01750	.57891	38674	40571	. A(5)A(95069
130	1593	-4.35341	05079	.98760	07210	41189	1.07247	15020
131	54	-4.35341	02010	1.09494	0010.	29404	1.13624	29105
132	67.4	-4.35341	11551	1.14922	61250*	14448	1.15000	34550
133	85.49	-4.35341	13423	1.17203	.07103	.02574	1.17449	37942
36	Λ.	19556.9-	77601-	1.09251	62440	.14730	1.10330	21728
C 1	7 10	14666	01440-	\$1980.	.00013	21351.	20666	56100
137	200	00010	2.16700	ופנייטי	2010-	00000	91010	26/41.
138	9500	10126	2.16709	1.00390	-14687	050.0	1.01583	165/00
561	.1500	.21846	2-15700	1.06314	14596	01280	1.07321	15178
0 7 1	3500	.2425A	2.16700	1.10193	03124	04381	1.10556	- 22226
141	55	.24322	-	1.06745	.14434	06A65	1.07440	15434
241	.0500	16692	2-16700	1.00186	.27404	01480	1.03876	07903
143	•8759	-10692	2.16700	.91585	.33882	16001.	.94171	.03624
74	.7750	.03684	2-16700	. 12579	. 23281	.37A54	. A5104	.27574
5 7	•7750	03684	2-16700	. 12579	23281	.37A54	.85104	.27573
5	.8750	-10692	2-16700	.91585	33882	10001	11196	.03624
1 2 1	250	2,9992	2-16700	1.00184	27404	01480	1.03876	07903
D C	0044	226.42.	2.16700	1.06245	-14434	06A66	1.07440	-,15434
* *	ξ,	28258	2.15700	1.10193	.03124	08381	1.10556	2225
20		0.017.	00/91-5	1.06316	46441.	01280	1.07321	15178

	VFLOCITY AND DR	RESSURF DISTRIBUTION ALPHA= 0.0000 D	TRIPUTION 0.0000 DEG	2ETA= -0.0000 DEG	00 DFG			
	×	>	,	*	\$	21	>	ð
151	19.75690	10126	2.16700	1.00340	.14647	.05016	1.01582	03190
152	20.55000	01400	4.15700	.95331	.07475	.09493	96130	16570.
153	22.05000	00610.	3.16700	. 92745	07953	.05953	. 43276	12995
154	21.4500c	.10126	3-14700	C4544.	14771	.01930	. 97438	.05059
155	20.45.000	54×16.	3.14700	1.02459	14516	03190	1.03427	0A00A
156	19.85000	.24258	3.16700	1.09951	03117	0P352	1.10312	21687
151	19.05000	556.	3.14700	1.09962	.14735	04007	1,11107	23448
15.0	14.55000	.14492	1.15700	1.04281	.27953	-10011-	1.07953	14540
150	18.37500	-10492	3-15709	.95610	94449	11921	1.02324	04702
140	14.27500	.03h84	3-16700	.76349	045E2*	£5602.	P4509	. 19891
141	14.27500	03684	3.15700	.76389	23540	85C04.	. RY5n9	.19881
162	18.17530	10692	3.16700	.95610	34449	11921	1.07324	04702
163	14.55000	10092	3.15700	1.04281	27953	00119	1.07463	14559
144	19.05000	24322	3-15700	1.09962	14735	04007	1.11107	B3556 -
165	19.45000	28258	3.15700	1.09951	.03117	04352	1.10312	21687
166	20.45000	21 H46	3.16700	1.02454	.14516	03190	1.03927	09007
147	21.45000	10154	3.16700	C1 246.	.14771	.01930	.97437	65050
- ¥	22,05000	01900	3.16700	. 42745	.07463	.05953	.93276	.12995
24	14.03177	2.51701	0000000	S 11 8 4 .	.01046	00000	.A4318	66012.
1 70	15.03337	-2.51701	0.000.0	. AK 312	01046	00000	.99318	65012.
171	14.01.00	4.15341	0.000.0	. 47540	01363	00000-	19574.	84FF5.
172	16.61700	-4.35341	0.0000	02774.	.01363	00000-	.47551	84EL2.
- 1	20-1-000	000000	2-14700	-034PB	00000	.11614	10276	11751
7/1	000000	000000	3-16700	19516	00000-	.07467	47410.	15584
5 7 7	000001	C1550.	53115	50000		02156	72076	11595
1 7 7	18,0000	77696	E9/29-1-	76500°I	0.000	65000	1.00493	00088
17.	100000	046.46.4	50500	00200	2010-	90700	26119	14940
179	12,0000	2.00000	00000	06658	94190	77.20	. A5245	66676
1 40	13.00000	2.00000	•0500•	1,11049	06930	00518	1,11265	DOME C.
181	14.00000	2.00000	00050.	1,13924	00759	*0000	1,13831	29574
192	15.00000	2.00000	.05000	1.04675	.04073	.01590	1.04766	09760
183	16.00000	2.00000	.05000	.90209	.0255.	04400	.90355	.1A359
184	17.00000	2.00000	.05000	.98934	.00798	00451	****	10120.
185	12.00000	2.00000	05000	. A5059	.06105	03125	.85335	.27179
186	13.00000	2.00000	05000	1.11166	06987	-00142	1.11386	24068
187	14.00000	2.00000	05000	1.14196	+0600*-	00916	1.14202	30422
98	15.00000	2.00000	05000	1.04885	.03998	00535	1.04963	10172
P H C	16.00000	2.00000	05000	*6206*	•05514	.04174	.90425	.18233
061	17.00000	2.00000	05000	.98936	.00753	00256	. 94039	.02116

```
TOTAL COEFTICIENTS

MACHE 0.0000 ALDHAB 0.0000 DFG

RFFA 1.0000 KFFL 1.0000

CX 2 .0000

CX 3 .0000

CX 4.422

CMY 5 .6.492

CMY 6 .6.492

CMY 7 .6.492

CMY 7 .6.492

CMY 8 .6.492

CMY 8 .6.492

CMY 9 .6.492

CMY 9 .6.492

CMY 1 .6.492

CMY
```

ž
NGT
PE
S
Ξ
4
3
Ĕ

SIGHALI

-01321 .00428 .02904 .04456 .04459 .07133 .029340 .029340 .02946 .002447 .02449 .02649		241501894 344 -00725 3744 -01079 564102974 1100 -00604 1741 -06558 174016609	-01806 -01064 -01166 -02854 -002854 -011807 -005875	10000-1 101245-1 101245-1 101245-1 101245-1 101245-1 101245-1
. 0.6064 . 0.4064 . 0.7348 . 0.07343 . 0.0755 . 0.07345 . 0.0757 .	. 11408. . 01408 . 01408 . 01175 . 011086		.01648 .03006 .02854 .00564 .03397 .03575	94.49 -011295 -01143 -01143 -01242 -01940
- 1714 1301 1747 17473 17673 17675 1304 10651 - 10651			03004 01146 01146 010549 013397	.01129 .03295 .01143 .01242 .01242
- 02657 - 02675 - 01396 . 01051 - 01161 - 01161 - 01269 - 01265 . 01162 - 00366 - 01055 . 01056 - 0105	. 01277 . 01408 . 01175 . 01175 . 01046		01146 02854 00544 03397	03295 01143 01242 01573
-01161 .01288 .07675 .07597 .005177 .005177 .005174 .001172 .00517 .005176 .001172 .00517 .005176 .001175 .001576 .001	. 01175 - 01175 - 01786 - 01986		02854 00544 003397 00897	01143 01242 01573
. 002177 . 02856	. 01175 - 01746 - 01946 - 01362		00544 .03397 00897	01542
- 109916 - 07764 - 01408 - 01422 - 019409 - 019417 - 019417 - 01945 - 01945 - 019464	01246 01246 01362		-,00897	01573 01573 01242
	01246 01362	<u>'</u>	00497	01573
00540 .01240 .02445 .01928016470124901249012490124901249012490124901241012490124901249012490124901249012490447201249057030447201249057030447201249012490570301249 .	01362	_	. 02575	.01242
0144701268004490070406714067140671401241012420152130124201473012424012412402616012790447005703063750127905627057030637507470057030647200452	01362			
		•	.01163	.02178
014150146300255 .01591 0142300135901140601339002616 .01724 .0834009086056280570305452 .08305 .07340 .06452	- 56110.	'	01326	+9900 -
. 01473003650148601339 0261601279 .04470 .07124 .08340090860562805703 - .007305 .07740 .06487 .04452	.02825	_	.08454	.04052
026160127904470 .07124 08340090860552805703 - 04452000620131001011	- 00000-	•	06742	06056
.0934009086056280570309305 .07340 .06487 .04452	.0A333		.04880	.03349
. 08305 . 07360 . 06887 . 04452	- 92670-	•	01073	.04453
12010 01610- 55000	.02650		80000	00125
TIME = 107.17700				

THIS SOLUTION FOR EPS = 10 ** -4 MAS OBTAINED AFTER 12 ITERATIONS

7								
1975 1975		>	~	× >	>	٧٧	>	a O
1975 -09575 -04514 -07354 -07354 -04445 -04457 -04		51560.	.23115	PHE 09.	40154	.07959	90270.	.01581
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		5115	.09575	.94514	12575.	14000-	97746.	2070FG
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		5115	52560-	40.514	14217	•03964	. 9H445	.03086
2.3115		51560	(3115	24,000	1107	2007	*0\or	.01575
1115 115 115 115 1115 115 1115 1115 1115 1115 1115 1115 1115 1115 1115		23115	09575	0770H	13140	64202-	94113	07/07/
- 0.05775738		23115	52560.	. A0437	13201	.20720	.94105	20264
- 55228		57540-	-23115	45554	. 23362	. 32576	.03574	17430
- 7.704		8672°	85954°	15646.	.37134	60150.	1.01293	16440
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		# C D C D C D	HUS / 20	56,000	40262.	0167	1.04255	04560
- 273942		90675	0.024	06.26.3	71175	91.30	*C.000*1	00000
		2730A	- 4592B	62119	437	H 1000	00000	97100
	٠	6592B	27 10A	PASO1	10345	19061-	93.00	74 946
-,7/308	£	45654	80F15.	SARSON	-10962	19020	32115	
0.0754	9	2/30A	4696a.	.91710	57955	75000	CONO	CALCO
1,01754	_	66999		1.00 165	OHOEE.	00236	1.05930	11221
1.0775444413 1.02770 1.164920479 1.004202 1.0775444513 1.07754 1.00719 1.07544 1.07754 1.077	_	1.07754		1.02540	61071	H+070	1.04201	97.78
	_	1.07754	44433	1.02570	26691	6/040	1.0400	- CARAB
- 44613 - 1.0175424243274377743707754446130775444633077544463307754446330775444633077544663307754466330775446633077544663307754466330775406140164620614016462446330775401550105450765410545076541054507654105450765410649076541067407654106740765410674076541067407654106740765410674	_	.44633	-1.07754	1.00391	.33848	61200	10700	12241
-1,0775444433 -9505406160114405 -9671814653146433146433146433146433146433146433146433146433146433146433166440166440166460 -	_	44633	-1.07754	. 97284	66242	23437	57420	AF 0.40 -
	_	-1.07754	44633	. 95044	06160	14482	94/18	.06457
	<u>.</u>	-1.07754		44056.	06190	.14405	.94694	20890-
32796	<u>-</u> .	44633		.47257	.2426A	12365.	1.02939	05964
1.37796	υ i	40057		1.01590	. 3047A	96690-	1.06394	13197
1949 10449 10449 10449 10449 104576 104576 104576 104576 104576 104576 104576 104576 104576 10459 104576	ָרָ הַ	1.367.46	.55006	1.02542	.10545	09523	1.03571	07570
-55006 -1.32796 1.001654 .30898 .06259 1.00430 1.05200	٠.	1.36796	55404	1.02415	64701.	59660.	1.03576	07279
	v n	35006	-1-32796	1.01454	30908	06250	1.00430	13274
32/96	ŪÃ	00055.	96/26-1-	*******	10542	17453	1.050.1	10246
-55006 1.32796 1.00006 26547 174.30 1.05742 1.01653 1.01653 1.01653 1.01654 1.01654 1.01654 1.01654 1.01654 1.01655 1.01654 1.01664 1.	n s	-1.36796	400cc.	V-110	11400-	45641	000000	.00300
41563	י נו	55000	ADV.C.	7 4 6 6 7 7 6	184-0-	11 41 .	TE 0 . 0	
44 543	1.4	54637	1.41563	1.01255	GE 50 %	10731	27250	71011
41563	3	1.41563	.5A637	1.00144	96530	-10166	1-00623	
-54637 -1.41563 1.01424 .28339 .105448 1.05448	.	1.41563	5.H637	1.00.004	.05240	.19103	1.00451	01709
	7	.58637	-1.41563	1.01424	.28339	.10430	1.05443	12038
-1.41563 -58437 94447 04672 -13848 94927 -13848 94927 -138415 -58437 94457 944577 -138415 944577 -138415 944577 94457 944577 -138415 100502 944577 944577 100801 928416 100802 100802 100802 100802 100802 -58927 100802 96266 -18661 100802 100802 96266 968027 100802 96266 -186927 100802 96266 -186927 100802 96266 -18692 100802 96266 9626	*	58637	-1.41563	1.00025	25165.	13165	1.05464	12073
34637 .41563 .44677 .4	•	-1.41563	1.54437		.04672	1 3AHR	12040.	94100.
- 36637	1	-1.41563		. 94459	*04504	11261.	11444.	.00644
1.62762 1.00401 .2814911660 1.0335 1.0356	*			1.00554	14077	.13146	1.05602	11517
1.44262 -58927 1.0334007992 1.03542 1.04262 1.03542 1.03542 1.03542 1.03542 1.03542 1.03542 1.03542 1.03542 1.03542 1.03542 1.01542 1.05492		12645	1.42262	100001	64142·	11660	1.05305	1049]
1.4266 - 58927 1.0150 .03120 .07533 1.03568 .58927 - 1.42262 1.01150 .27675 .11463 1.05492 .27675 .11463 1.05492 .27626 - 1.62262 - 58927 1.03594 .06746 - 1.6734 1.05190 .26766 - 1.6734 1.05190 .26766 - 1.6734 1.05190 .26767 1.05262 .31571 - 1.3077 1.05414	.	100000	N7 X 7 .	1.03140	018 60.	76610*-	1.03542	07209
-58927 -1.42262 1.01150 .27675 .11463 1.05492 .27675 .11463 1.05492 .11463 1.05492 .11463 1.05492 .11463 1.05492 .11463 1.05290 .11463 1.05290 .114634 .114634 1.05190 .114634 .114634 1.05190 .114634 1.05470 1.05470 1.05470 .11463 1.05470 1.05470 .11463 1.05470 1.05470 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05414 .11463 1.05470 1.05470 1.05414 .11463 1.05470 1.05470 1.05470 1.05414 .11463 1.05470		1.46262	58927	1.03247	.03120	.07533	1.03568	07264
-58927 -1.4224258927 1.01144 .3008412461 1.06280 -1.4226258927 1.02801 .06748 .16790 1.04302 58927 1.42242 .30225 .12520 1.05670 -58927 1.42262 .49722 .3157113077 1.05414	•	.5895	-1.42262	1.01150	51415.	.11463	1.05492	11286
-1,42262 -58927 1,03694 .0676616734 1.05190 -1,42262 1,42262 1,00474 .30225 .12520 1.05670 -58927 1,42262 .99722 .3157113077 1.05414	0	58427	-1-42242	1.01158	.30084	12461	1.06280	12954
-1.42762 1.04276 1.00478 .30225 1.6790 1.054302 -58927 1.42262 1.00478 .30225 1.2520 1.05670 -58927 1.42262 .99722 .3157113077 1.05414	0	-1.42262	58927	1.03694	.06766	-,16134	1.05190	10450
. 55957 1-4256 - 49722 .3157113077 1-05414	.	24224.I-	158951	1.02801	.0674A	16290	1.04302	08789
0 55957 1.62262 .3157113077 1.05414	> (12695-	1.42762	1.00478	. 30225	.12520	1.05676	11662
	> (17695		26172	11571	13077	1.05414	1112

	WELDCITY AND	DRESSUME DIST	0.0000 085	AFIA= 10.0000 DFG	00 066			
_	*	>	7	× >	>	21	د	ð
51	15.00000	1.42242	T5845-	1,00955	. 06443	15951	1.02365	04788
5.5	15.00366	12485	-1.46242	1.00212	-246.35	12275	1.05221	10714
5.1	15.00000	5H427	-1.42242	1.00786	247755	11501	1.047AH	09A04
3,6	15.00000	-1.46262	5H927	1.010.1	.03141	075HO	1.01402	02A24
5.5	15.00000	-1.46746	150H2.	BE166.	*9620*	.07154	H.0003H	00077
4 1	15.00000	125K5	1.46242	29010.	.24214	-11711-	1.02613	05293
7	14.00000	125000	1.42242	1.0300R	.27467	11377	1.07212	14945
z :	14.00030	1.46262	LC0#5.	. 98045	.03711	0A950	. 9ns23	16940.
7 0	00000	292200	100H5-	05 170.	F > 1 > 0 .	.12440	050F6.	344CO.
ç ;	14.00000	12445.	-1.42242	.98231	54715.	10711.	1.04714	05510
, ;	14-90000	12585-	-1.42242	. 99700	.¢7270	-11245	BL460.	UA114
۲,	18.00000	-1.46242	5H927	1.0051	96670.	17060	1.01343	02744
₹) . 40 v	14.00000	-1.42742	LC015.	1.000.75	.02761	.04467	1.00434	01A76
7.	14.00000	5H427	1.42242	1.01713	.24923	10153	1.05230	10733
r.	20.0000	4826L.	. GGR41	16786.	. 10803	*0A424	1.03524	071A2
£	20.00000	17476.	.39785	. 98641	£ 4445.	.04430	1.02611	PAC20
24	20.0000	15856	34246	. 98441	56575.	1-100	1.02274	04400
đ.	20.0000	5826L.	12620-1	14486.	76577	005H?	1.01507	03037
5.0	20.0000	342A5	04.A4.1	14786.	. C4744	4/610.	1.01562	03149
70	20.00000	1 7475 -	- 347P4	. 98481	640-5.	.01470	1.07408	04874
7	20.00000	94H4]	39295	. 984.91	.25511	03200	1.02457	05796
7.5	20.0000	39284	17676	. 98481	.32502	05124	1.03847	07R32
7.3	15.43316	2.51701	01585	.90325	.10233	14540.	10519.	.14431
74	15.33263	2.51701	04447	42476.	.10033	19151.	04694	.01316
75	14.66525	2.51701	18224	1.06744	.09083	66171.	*10m0*	14469
, e	13.99788	2.51701	21573	1.12774	.05467	.03107	1.12953	275AS
7.	13.33050	2.51701	20290	1.09441	.06035	12904	1.10372	21820
1 0	75. LD . S.	10715.5	13925	1.04067	. 08547	25919	1.075#6	15748
2 9	12.17.40	2.51701	01010-1	E1630.	.15512	34236	1.02126	04297
	30000	10/15/	03073	7774.	C7 D7 .	0.37640	9 M.	14456.
- c	ELDEONY OF	10/15/	2 (010	CE \$15.	66.36.33	. 34701	1567.	.14110
	05/110 61	10/10/0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2727	40)(1.	20000	15.10.1	\$1450°-
1 3	05066-61	10/15/2	00202	42500	05150	27.661	16701	6/24.0
P S	13.00744	2.51701	F 7 5 F C *	1.12857	71550	03111	1000	77767
Æ.	14.46575	2,51701	.1H224	1.06974	.08081	14430	.04244	-17179
-	15.33243	2.51701	.04447	.97927	-10004	15436	04460.	A1700.
œ.	15.43316	2,51701	54510.	0.405.0	.10204	P.04599	80710.	14741
œ.	15.43316	-2.51701	-01545	. A9456	.07513	OH44B	. 40173	PAAP1.
06	15.13263	-2.51701	-08447	6495	.07839	15100	.94012	16950.
-	14.66525	-2.51701	*1H724	1.05895	.10237	14275	1.07342	-·i5254
20	13.99788	-2.51701	1573	1.13073	.13575	16660	1.13908	20750
6	13.33050	-2.51701	06/02.	1.10361	.13247	15120	1.17204	25897
76	12.91339	-2.51701	13925	1.04579	.10361	.30323	1.04378	19437
5 0	12.76740	-2,51701	·04019	.93024	.02047	*961**	1.02072	041A7
4 !	12.68358	-2.51701	.03073	62505	30258	.39474	.710.2	.49573
	12.64358	-2.51701	03073	.51R94	29225	42873	.73383	69149.
£ (12.74740	-2.51701	01680-	. 94AIR	.03375	43554	1.04250	AR701
66	12,91339	-2.51701	13925	1.06161	.11454	30994	1:11#	23620
001	13,33050	-2.51701	20290	1.11179	.13720	15481	1.13087	27886

	VELOCITY AND PI MACH= 0.0000	RESSURE DIST ALPHA=	PIPUTION 0.0000 DEG	RETA= 10.0000 DEG	00 DEG			
	×	>	~	×>	5	٧٧	>	ಕಿ
101	13.497eB	->.51701	2 1573	1.13977	66661"	96620.	1.14056	02615
102	54476	-2.51701	18224	1.06769	.10564	26141.	1.04751	-17182
103	15,33263	-2.51701	NH447	.97223	.04031	.15415	. 9H754	.07456
104	331	-2.51701	01585	H9664.	00400	. NA545	. 40673	.17784
501	15.90500	17666.4	0000 a	0910H.	.13324	.04469	.90536	.18032
104	. 6144	4.15341	04A10	.96766	.12643	15241	. 44777	.02430
107	2399	4.35341	10 177	1.06812	10699	60771.	1.04290	17266
101	ָּהָ הַ הַּ	178 46.7	-1367	1.14194	.04200	.03263	1.14535	311R2
100	1014	17665.7		1.12147	.10018	12432	1.13300	2A369
011	14.24243	•	666/0-	1.07782	13447	-,75555	1.11154	27553
_ :	05641.71	4. 1.34	P. 0.50	11510.	6/2/2	# 35 A A A A A	رد 1000 م در 1000 م	12433
_:	02	145 66 . 4	0.7.00	A1/HA	/ 5TL5.	24546	\$000H.	.24033
2	07111.41	4.1934	05/10.	19/14.	7 C C C C C C C C C C C C C C C C C C C	. 3444	/ 555K°	*IIY2*
3 5	0.6cl.4l	196.4	00000	00570	10451	41646	1.00021	-17405
7 7		145.45 4	11562	1 12143	70001	106.1	2011111	20.10
117	45.00	146.46.4	6032	1 16271	111111	4666	1013366	VI 447.
911	•	145.55	10327	1 06004	10401	100300	0104101	5576.
. 0		145.55		47840	12676	22441	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01/400
2		4.3534	50000	90100	C1651.	46400	E 4200	6406
121		145 45 4	60000	56705	15.736		29610	70271
122		145 46 4		97286	16510		00000	70200
		[45.45.46]	77501	21.079.1	57051	54541	1.10560	4.000 -
124	14.85495	-4.35341	. 13423	1,15945	25175	02007	1.17480	20105
125	3	-4.75341	115511	1.13213	19598	16481	1-16072	- 34728
12	74	-4.35341	0.070	1.06776	14565	31880	1.12382	26297
127	1541	14646-4-	P1050.	10576	.05230	.43755	1.04270	0A723
128	14.11120	146.35.441	.01750	.50224	24976	.40410	.70750	77667.
156	14.11180	-4.35341	01750	•52234	47326	69154	.74391	.44660
130	14.15930	146 25 -4-	05079	44046	-0707A	45500	1.07324	15184
131	14.24243	-4.35.341	01929	1.08775	.16052	32753	1.14728	31425
1 32	10.47.00	-4- 32 44	11553	1-14706	20202	14492	1.17190	37335
	00000 T	197.46	E/36	1-1661	16122.	*0020*	1.18760	GE 6.14.
134	15.63997	145.45 4	77010	176.0	1000	3000	700111	201.6
36.	15.90500	-4-75-461	E0000-	80405	15.853	1000	50100	16500
137	20.55000	007[0	2.16700	84642	- 04679	27473	87487	22592
138	19.95000	10124	<-16700	15719.	10746	.15427	.93667	12264
56.1	500	. 2 1 H46	7	1.00747	17638	36¥70°	1.01665	82660 -
140	14.35000	よるつれて。	2-16700	1.10946	03232	10719	1.11504	24743
141	00	24325	2-14700	1,16125	.18549	25430	1.19717	43321
291	0	16692	-	1.19916	.45058	32106	1.32112	74537
6.43	16.47500	26901	6-16700	1.16093	.70256	28284	1,38613	92136
33	1750	*03684	2-16/00	8787B	1.01019	.12485	1.34512	4.60B
1 to 1	פכנו	03684	2.16/00	.55074	.55163	.61473	16666	-01202
971	1750	-10692	2.16700	\$6259°	.03521	.48160	.80408	.35346
7.5	17.05000	26491*-	2-15700	114/1	08918	16662.	.83281	-30642
E 0	5500	526.425-	2-16700	.93136	09880	.04907	180%6	.11487
7 1	14.35000	28258	2.15700	7.06092	.02921	05788	1.05290	12976
U S U	.1500		2.15/00	1.08635	.16109	07215	1.10059	21130

	VELOCITY AND PR	RESSURE DISTRIBUTION A D. DOOD IN	TRIPUTION 0.0000 PEG	AFIA= 10.0000 DEG	00 056			
_	×	>	7	× >	,	2.4	>	ð
151	19,95000	10126	2.15700	1.06004	62141.	05747	1.07700	46051
152	20.55000	01400	2.15700	1.03125	.104.16	044HZ	1.03749	0763A
153	22.05000	00610.	3.16700	P 159	05271	.14173	****	95075.
154	21.45000	.10124	3.15700	4410A.	12347	91110.	40200°	. 184r5
155	20.45000	77144	3-16700	11916.	13845	03421	. 04661	.02460
156	19.45000	47825A	3.15700	1.08670	03349	152H3	1.0.741	20546
157	19.05000	.24 322	3-15790	1.11474	P.1 - R.0 A	22923	1.21161	44.799
15.6	18.55000	66491.	3.16700	1.21426	65457	30039	1,33185	77383
159	18.37500	-10492	3-15700	1.18184	. 6H97A	74968	1.39100	P8766-
140	18.27500	.036R4	3.15700	15900.	. 475AH	16289	1.34192	AUU76
161	18.27500	03684	3.16700	だかんかい。	.51144	.63004	1.00001	01409
162	18.37500	10692	3-15700	.70131	.01126	. 4H44R	.85246	.27331
163	18.55000	16692	3.15700	. A3564	10399	90862.	. A+331	50102.
164	19.05000	24322	3.15700	90166	10214	-11092	1.00246	00493
165	19.85000	2425A	3.15700	1.07491	.02790	01166	1.07933	14496
991	20.45000	71R46	3.15700	1.04981	.14695	02461	1.05038	12440
167	71.45000	10126	3.15700	1.00515	.16744	07574	1.01453	n 1954
169	22.050nu	01900	3-16700	7 1000°	11001.	チョンシャ・	1.00052	PSE 10
591	16.03337	2.51701	000000	27 174.	20650.	00000	36777.	Leure.
170	16.03337	-2.51701	0.00000	.96767	.07441	00000	.4/120	10172.
171	16.01900	4.35341	0.0000	5808°	113811	00000	16698.	76326
172	16.01900	-4.35341	0.00000	. A6434	.15897	.00000	.A7849	.22756
173	20.79000	0000000	2.16700	.92049	.17 365	.11436	.94348	01601.
174	55.29000	0000000	3.15700	15100	.17365	17770	. 92134	.15113
175	1.00000	.09575	21115	14150	.36934	*51v0*	21220.	.01451
176	14.0000¢	12485.	-1-42243	9R231	547750	16711.	1.02718	01550
177	15.90498	4.35340	F0000.	56164	15151.	08474	.90555	17999
178	15.90498	4.35340	E0600	£4-01	.13138	.08469	.9050€	. 1AUR7
179	12.00000	2.00000	.05000	21154	.09574	.01537	.45724	. 2451 i
180	13.00000	2.00000	00050	108901	02669	01995	1.08950	1P702
	00000-1	00000	00050.	60121	11620.	100100	1.16151	25779
182	15.00000	2.00000	00050	.03669	.07478	00744	1.03941	09034
E 8 3	16.00000	2.00000	.0500	4104	.06161	04968	51558.	.19877
7	17.00000	2.00000	•05000	15010.	•04350	00143	. 97153	-05612
185	12.00000	2.00000	05000	.45201	.09555	01006	.85757	.26458
186	13.00000	2.00000	05000	.ORARA	02645	.00497	1.04919	18634
187	14.00000	2.00000	05000	.12063	.02844	00213	1.12099	25663
184	15.00000	2.00000	05000	.03653	86740°	01193	i.03931	09017
199	16.00000	2.00000	05000	. R9017	.06191	.05155	.69381	.20110
190	17.00000	2.00000	05000	10076	01770	.01540	.97113	.05691

LIST OF SYMBOLS

- A Aerodynamic matrix
- a Aerodynamic influence coefficient
- B Prandtl-Glauert factor $\sqrt{1-M^2}$
- C Aerodynamic coefficient
- c Chord
- D Perpendicular distance from panel edge to control point
- d Distance between panel corner points
- J Geometrical parameter for source panel
- L Length of line vortex
- M Mach number, pitching moment
- N Number of singularities
- NL Number of vortex lattices
- NS Number of source lattices
- n Direction cosine of normal vector
- P,Q Geometrical parameters for source panels
- q Magnitude of resultant velocity vector
- R Component of free-stream velocity vector normal to panel
- r Distance from panel corner point to control point
- S Area
- T Geometrical parameter for source panel
- t Component of transformation matrix
- U, V, W Components of resultant velocity vector
- u,v,w Perturbation velocity components

List of Symbols (cont'd)

Velocity vector magnitude V x,y,z Cartesian coordinates of point Angle of attack α β Angle of yaw Vortex strength Υ Small reference value ε Ratio of specific heats for air κ Θ Angle between panel edge and line joining panel corner to control point σ Singularity strength Source strength s Panel coordinates E.n Mathematical Symbols Vector Absolute value Cross product Scalar product Average value Matrix quantity { } Vector array Σ Summation ſ Integral Incremental value Δ

List of Symbols (cont'd)

Subscripts

- a Analogous body
- D Drag
- i Panel control point
- j Panel corner point
- L Lift
- M Moment
- P Pressure
- s Source
- S Side
- v Vortex
- W Wing
- X Axial
- Y Lateral
- Z Normal
- x,y,z Reference axis direction