

EE2007 – Engineering Mathematics II

$$\frac{\sin\alpha^2 \sin\beta}{\sin\beta} = \frac{2R}{\sin\gamma} = \frac{\cos 2\alpha = i2\cos^2\alpha - 1(-1)^n \arcsin\alpha}{\tan \alpha} = \frac{tg\alpha - tg}{\cos^2\alpha - \cos^2\alpha} = \frac{\cos^2\alpha - \cos^2\alpha - \cos\beta}{\cos^2\alpha - \cos\beta} = \frac{1+\cos\alpha}{\cos^2\alpha - \cos\beta} = \frac{\cos^2\alpha - \cos\beta}{\cos^2\alpha - \cos\beta} = \frac{1+\cos\alpha}{\cos^2\alpha - \cos\beta} = \frac{$$

Complex Numbers > Learning Objectives

At the end of this lesson, you should be able to:

- Define the basics of complex numbers.
- Derive Euler's Formula and De Moivre's Formula.
- Derive the complex logarithm and its general power.

Complex Numbers > Definition

A complex number z is defined as z = x + iy, where $i = \sqrt{-1}$. Geometrically, a complex number is a point in the complex plane (or the Argand diagram) and can be considered as a vector in the plane. A diagrammatic representation of the complex number is shown below.

Complex Numbers > Definition

Here is an explanation of the equation depicted in the diagram.

$$x = r\cos\theta$$
, and $y = r\sin\theta$

$$r = |z| = \sqrt{x^2 + y^2} = |\bar{z}| = \sqrt{z\bar{z}}$$

$$\theta = \arg(z) = \arctan \frac{y}{x}$$
 radians

=
$$Arg(z) + 2n\pi$$
, $n = 0, \pm 1, \pm 2, ...$

Where, $\operatorname{Arg}(z)$ is the principal value of $\operatorname{arg}(z)$ and satisfies $-\pi < \operatorname{Arg}(z) \le \pi$

Complex Numbers > Definition

Let us look at an example to understand the concept of complex numbers.

Example 1

i. Let z = 1 + i

Then,
$$r = |z| = \sqrt{1+1} = \sqrt{2}$$

$$arg z = arctan \frac{1}{1}$$

$$=\frac{\pi}{4}\pm 2n\pi, n=0,1,2,...$$

The principal value of the argument is $\frac{\pi}{4}$.

ii. If
$$z = 1 - i$$
, then $\arg z = \arctan \frac{-1}{1} = \frac{-\pi}{4} \pm 2n\pi$, $n = 0,1,2,...$

The principal value of the argument is $\frac{-\pi}{4}$.

From Euler's formula, it can be found that:

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 and $e^{-i\theta} = \cos\theta - i\sin\theta$

Thus,
$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 and $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

From Euler's formula, $e^{i\theta}=\cos\theta+i\sin\theta$, for any real value of θ , the polar form of a

complex number can be written as $z = re^{i\theta} = r \angle \theta$.

Let us now look at some Algebraic Rules.

Let
$$z_1 = x_1 + iy_1 = r_1 \angle \theta_1$$
 and $z_2 = x_2 + iy_2 = r_2 \angle \theta_2$

Addition and subtraction
$$z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$$

Multiplication
$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$

Division
$$\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x^2 + y^2} + i \frac{x_2 y_1 - x_1 y_2}{x^2 + y^2}$$

Let us now look at some Algebraic Rules.

Let
$$z_1 = x_1 + iy_1 = r_1 \angle \theta_1$$
 and $z_2 = x_2 + iy_2 = r_2 \angle \theta_2$

It is sometimes more convenient to do multiplication and division in the polar form.

$$z_1 z_2 = r_1 r_2 \angle (\theta_1 + \theta_2),$$

$$\frac{z_1}{z_2} = \frac{r_1 \angle \theta_1}{r_2 \angle \theta_2} = \frac{r_1}{r_2} \angle (\theta_1 - \theta_2)$$

Division

$$\frac{1}{z_2} = \frac{1}{x^2 + y^2} + i \frac{1}{x^2 + y^2}$$

Let us now understand the complex conjugate of z and its algebraic rules.

In the given equation z = x + iy, the complex conjugate of z is defined as $\bar{z} = x - iy$.

Thus, it can be written as:

Re(z) =
$$\frac{1}{2}(z + \bar{z})$$
, $Im(z) = \frac{1}{2i}(z - \bar{z})$

$$z\bar{z} = x^2 + y^2 = |z|^2$$
, $\frac{z_1}{z_2} = \frac{z_1\bar{z_2}}{|z_2|^2}$

$$(\overline{z_1 \pm z_2}) = \overline{z_1} \pm \overline{z_2}, \, \overline{z_1 z_2} = \overline{z_1} \overline{z_2}, \, \overline{\left(\frac{\overline{z_1}}{\overline{z_2}}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

Complex Numbers > De Moivre's Formula

Here is the derivation of the De Moivre's formula.

Let
$$z = x + iy = r(\cos\theta + i\sin\theta) = r\angle\theta$$

Then, for any integer n,

$$z^{n} = r^{n}(\cos\theta + i\sin\theta)^{n}$$

$$z^{n} = z \cdot z \dots z = r \cdot r \dots r \angle (\theta + \theta + \dots + \theta) = r^{n} \angle (n\theta)$$

$$n \qquad n$$

$$= r^{n}(\cos n\theta + i\sin n\theta)$$

From the above equation, the De Moivre's formula can be expressed as: $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$ which is useful in deriving certain trigonometric identities.

Complex Numbers > De Moivre's Formula

Let us look at a sample problem to understand the concept of complex numbers.

Sample Problem 1

Find identities for $\cos 2\theta$ and $\sin 2\theta$.

Solution:

$$(\cos \theta + i \sin \theta)^2 = \cos^2 \theta - \sin^2 \theta + 2i \cos \theta \sin \theta$$
$$= \cos 2\theta + i \sin 2\theta$$

Therefore,

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
 and $\sin 2\theta = 2 \cos \theta \sin \theta$

Complex Numbers > De Moivre's Formula

Let us look at another sample problem explaining the concept of complex numbers.

Sample Problem 2

Express $\cos^4 \theta$ in terms of multiples of θ .

Solution:

Since
$$2 \cos \theta = e^{i\theta} + e^{-i\theta}$$

$$2^{4} \cos^{4}\theta = (e^{i\theta} + e^{-i\theta})^{4}$$

$$= (e^{i4\theta} + e^{-i4\theta}) + 4(e^{i2\theta} + e^{-i2\theta}) + 6$$

$$= 2 \cos 4\theta + 8 \cos 2\theta + 6$$

$$\Rightarrow \cos^{4}\theta = \frac{1}{8} [\cos 4\theta + 4 \cos 2\theta + 3]$$

Consider $z = w^n$, n = 1, 2, ...

For a given $z \neq 0$, the solution of w in the above equation is called the n^{th} root of z and is denoted by $w = \sqrt[n]{z}$.

First, $z = r \angle (\theta + 2k\pi)$.

Next, let $w = R \angle \phi$.

Then,
$$z = w^n$$
 gives
$$r \angle (\theta + 2k\pi) = R^n \angle (n\varphi).$$

Thus,
$$R = \sqrt[n]{r}$$
, and $\varphi = \frac{\theta + 2k\pi}{n}$, $k = 0,1,...,(n-1)$.

Consider $z = w^n$, n = 1,2,...

For a given $z \neq 0$ the above equat root of z and is 0

To summarise,

$$w_k = \sqrt[n]{z} = \sqrt[n]{r} \angle \left(\frac{\theta + 2k\pi}{n}\right),$$

$$k = 0, 1, \dots, (n - 1)$$

Geometrically, the entire set of roots lies at the vertices of a regular polygon of n sides inscribed in a circle of radius $\sqrt[n]{r}$.

 $-2k\pi$).

ф.

Then,
$$z = w^n$$
 g $r \angle (\theta + 2k\pi) =$

Thus,
$$R = \sqrt[n]{r}$$
, and
$$\phi = \frac{\theta + 2k\pi}{n}$$
, $k = 0, 1, ..., (n - 1)$.

Let us look at an example to understand the concept of roots of complex numbers.

Example 2

Let us find all values of $(-8i)^{1/3}$, that is, $\sqrt[3]{-8i}$.

First,

$$-8i = 8 \angle \left(\frac{-\pi}{2} + 2k\pi\right), k = 0, \pm 1, \pm 2, \dots$$

The desired roots are:

$$w_k = 2 \angle \left(\frac{-\pi}{6} + \frac{2k\pi}{3}\right), k = 0,1,2$$

Let us look at an example to understand the concept of roots of complex numbers.

Example 2 (contd.)

The roots lie at the vertices of an equilateral triangle, inscribed in the circle |z|=2 and are equally spaced around that circle every $2\pi/3$ radians, starting with the principal root

$$w_0 = 2\angle \left(\frac{-\pi}{6}\right) = \sqrt{3} - i.$$

Complex Numbers > Roots of Complex Numbers > Exponential Function

Let us now define the exponential function.

If x = 0, then the Euler formula becomes: $e^{iy} = \cos y + i \sin y$.

Hence, the polar form of a complex number may be written as

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}.$$

It is also geometrically obvious that $e^{i\pi}=-1, e^{-i\pi/2}=-i$ and $e^{-i4\pi}=1$.

The exponential function e^z is defined as:

$$e^{z} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n} = e^{x} (\cos y + i \sin y).$$

If
$$z = e^{ix} = \cos x + i \sin x$$
, then

$$\sin x = \frac{1}{2i} (e^{ix} - e^{-ix}) = \frac{1}{2i} (z - \bar{z}),$$

$$\cos x = \frac{1}{2} (e^{ix} + e^{-ix}) = \frac{1}{2} (z + \overline{z}).$$

Complex Numbers > Complex Logarithm and General Power

The natural logarithm of z = x + iy is denoted by $\ln z$ and is defined as the inverse of the exponential function.

Since, $w = \ln z$ is defined for $z \neq 0$ by the relation $e^w = z$.

So, if
$$z = re^{i\theta}$$
, $r > 0$, then $\ln z = \ln r + i\theta$.

Note that the complex logarithm is infinitely many-valued.

The general power of a complex number, z^c , can be derived as follows:

Let
$$y = z^c$$
, $\Rightarrow \ln y = c \ln z$, $\Rightarrow y = z^c = e^{c \ln z}$, $z \neq 0$.

Complex Numbers > Complex Logarithm and General Power

Let us look at a sample problem to understand the concept of complex logarithm.

Sample Problem 3

- i) Evaluate $\ln(3-4i)$. ii) Solve $\ln z = -2 \frac{3}{2}i$.

Solution:

i)
$$\ln(3-4i) = \ln|3-4i| + i \arg(3-4i)$$

= $1.609 - i(0.927 \pm 2n\pi), n = 0,1, ...$

Principal value: When n=0

ii)
$$z = e^{-2-\frac{3}{2}i} = e^{-2}e^{-i\frac{3}{2}} = e^{-2}\left(\cos\frac{3}{2} - i\sin\frac{3}{2}\right)$$

= $0.010 - i\ 0.135$

Complex Numbers > Complex Logarithm and General Power

Here is another sample problem explaining the concept of complex logarithm.

Sample Problem 4

Find the principal value of $(1+i)^i$.

Solution:

Let
$$y = (1 + i)^i$$
. Then, $\ln y = i \ln(1 + i)$, or $y = e^{i \ln(1+i)}$

Hence,
$$(1+i)^i = e^{i \ln(1+i)}$$

But,
$$\ln(1+i) = \ln(\sqrt{2}e^{i(\pi/4+2k\pi)})$$

$$= \ln \sqrt{2} + i(\pi/4 + 2k\pi), k = 0, \pm 1, ...$$

and the principal value is when k=0.

Therefore,
$$e^{i \ln(1+i)} = e^{i(\ln\sqrt{2}+i^{\pi}/4)} = e^{-\frac{\pi}{4}+i(\ln\sqrt{2})}$$

Summary

Complex Numbers > Summary

Key points discussed in this lesson:

- A complex number z is defined as z=x+iy, where $i=\sqrt{-1}$. Geometrically, a complex number is a point in the complex plane (or the Argand diagram) and can be considered as a vector in the plane.
- In the given complex number z = x + iy, the complex conjugate of z is defined as $\bar{z} = x iy$.
- From Euler's Formula $e^{i\theta}=\cos\theta+i\sin\theta$, and $e^{-i\theta}=\cos\theta-i\sin\theta$. Then, $\cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2}$ and $\sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}$.

Complex Numbers > Summary

Key points discussed in this lesson:

• For complex number $z = x + iy = r(\cos\theta + i\sin\theta) = r \angle \theta$. The De Moivre's formula is given as: $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$.

• The exponential function e^z is defined as: $e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n = e^x (\cos y + i \sin y)$.

• The natural logarithm of z = x + iy is denoted by $\ln z$ and is defined as the inverse of the exponential function.

EE2007 – Engineering Mathematics II

$$\frac{\sin \alpha^2 \sin \beta}{\sin \alpha} = \frac{2R}{\sin \alpha} + \frac{\cos 2\alpha}{\cos 2\alpha} = \frac{2\cos^2 \alpha}{\cos^2 \alpha} = \frac{1}{\cos^2 \alpha} = \frac{$$

Differentiation of Complex Functions > Learning Objectives

At the end of this lesson, you should be able to:

- Describe the concept of limit and continuity of complex functions.
- Explain the differentiability and analyticity of complex functions.

A complex function f is concerned with complex functions that are differentiable in some domain.

A complex function f is a rule (or mapping) that assigns to every complex number z in a set S, and a complex number w in a set T.

Mathematically, it can be expressed as w = f(z).

The set S is called the domain of f and the set T is called the range of f.

If
$$z = x + iy$$
 and $w = u + iv$, then,

$$w = f(z) = u(x, y) + iv(x, y)$$

Let us take a look at a sample problem to understand the concept of complex functions.

Sample Problem 1

Let $w = f(z) = z^2 + 3z$. Find u and v and calculate the value of f at z = 1 + 3i.

Solution:

Let
$$z = x + iy$$
.

Then,
$$w = z^2 + 3z$$

= $(x + iy)^2 + 3(x + iy)$
= $x^2 - y^2 + i2xy + 3x + i3y$

Let us take a look at a sample problem to understand the concept of complex functions.

Solution (contd.):

Hence,

$$u = \operatorname{Re}(w) = x^2 - y^2 + 3x$$

$$v = \operatorname{Im}(w) = 2xy + 3y$$

If,
$$z = x + iy = 1 + i3$$

then,
$$f(z) = u(1,3) + v(1,3) = -5 + i15$$

Try using the polar form, $z=r\angle\theta$, and check if you get the same answer.

A function f(z) is said to have the limit L as z approaches a point z_0 if the following conditions are satisfied.

f(z) is defined in the neighbourhood of z_0 (except perhaps at z_0 itself).

f(z) approaches the same complex number L as $z \to z_0$ from all directions within its neighbourhood.

Mathematically, the limit of a function f(z) can be expressed as:

$$\lim_{z \to z_0} f(z) = L$$

If given \in , there exists $\delta > 0$, such that,

$$|f(z) - L| < \varepsilon, \forall \ 0 < z - z_0 < \delta$$

The given equation means that the point f(z) can be made arbitrarily close to the point L if the point z is chosen in such a way that it is sufficiently close to, but not equal to the point z_0 .

Examples

$$\lim_{z \to \infty} \frac{2z + i}{z + 1} = \lim_{z \to \infty} \frac{2 + (i/z)}{1 + (1/z)} = 2$$

$$\lim_{z \to \infty} \frac{2z^3 - 1}{z^2 + 1} = \lim_{z \to \infty} \frac{2 - (1/z^3)}{(1/z) + (1/z^3)} = \lim_{z \to \infty} \frac{2}{0} = \infty$$

Examples (contd.)

3

$$\lim_{z \to \infty} \frac{z}{\bar{z}}$$
 does not exist.

Let $y \to 0$ first and then, let $x \to 0$. In this case,

$$\lim_{x \to 0, y = 0} \frac{x + i0}{x - i0} = 1$$

Now, let $x \to 0$ first and then, let $y \to 0$. In this case,

$$\lim_{x=0, y \to 0} \frac{0+iy}{0-iy} = -1$$

As the function does not approach the same value from all directions within its neighbourhood, the limit does not exist.

A function f(z) is said to be continuous at $z=z_0$ if it satisfies the following three conditions.

Note that if condition (3) is true, it implies that conditions (1) and (2) are true as well.

f is said to be a continuous function, if f is continuous for all z in the domain S.

Let us see how to test the continuity of a function with the help of the following sample problem.

Sample Problem 2

Let f(0)=0 , and for $z\neq 0$, $f(z)={\rm Re}(z^2)/|z^2|$. Determine whether f(z) is continuous at the origin.

Solution:

$$\lim_{z \to 0} \text{Re}(z^2)/|z^2| = \lim_{z \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \begin{cases} 1 \text{ if } y \to 0 \text{ first} \\ -1 \text{ if } x \to 0 \text{ first} \end{cases}$$

Hence, f is not continuous at the origin.

Let us see how to test the continuity of a function with the help of the following sample problem.

Solution (contd.):

Alternatively, using polar representation,

$$z = re^{i\theta}$$
$$= r\cos\theta + ir\sin\theta$$

$$\lim_{z \to 0} \text{Re}(z^2)/|z^2| = \lim_{r \to 0} \frac{r^2 \cos 2\theta}{r^2} = \cos 2\theta$$

The limit does not exist because it depends on the direction of approach to the origin.

The derivative of a complex function f at a point z_0 is written as $f'(z_0)$ and is defined as:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
, provided that the limit exists.

Or, by substituting $z = z_0 + \Delta z$

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

For example,

$$\frac{d}{dz}(z^2) = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} (2z + \Delta z) = 2z$$

Thus, $f(z) = z^2$ is differentiable for all z.

The usual differentiation formulae (as in the case of real variables) hold for complex functions. Let us refer to an example.

$$\mathbf{01} \quad \frac{d}{dz}(c) = 0$$

$$02 \quad \frac{d}{dz}(z) = 1$$

$$03 \quad \frac{d}{dz}(z^n) = nz^{n-1}$$

$$\frac{d}{dz}(2z^2+i)^5 = 5(2z^2+i)^4.4z = 20z(2z^2+i)^4$$

However, care is required for more unusual functions.

Let us take a look at a sample problem to understand the concept of differentiability of complex functions.

Sample Problem 3

Discuss the differentiability of \bar{z} .

Solution:

Let
$$f(z) = \bar{z}$$

Let
$$f(z) = \bar{z}$$

$$f'(z) = \lim_{\Delta z \to 0} \frac{\overline{z + \Delta z} - \bar{z}}{\Delta z}$$

Using the property $\overline{z + \Delta z} = \overline{z} + \overline{\Delta z}$

$$f'(z) = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

Let us take a look at a sample problem to understand the concept of differentiability of complex functions.

Solution (contd.):

Now, consider $\Delta z = \Delta r e^{i\theta}$. Then, $\Delta z \to 0$ from all directions when $\Delta r \to 0$.

Thus, the limit can be determined as follows:

$$f'(z) = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta r e^{-i\theta}}{\Delta r e^{i\theta}} = e^{-i2\theta}$$

The limit depends on θ , and therefore, it does not exist. Hence, $f(z) = \bar{z}$ is not differentiable anywhere.

Differentiation of Complex Functions > Analytic Functions

A function f(z) is said to be analytic at a point z_0 if its derivative exists not only at z_0 , but also in some neighbourhood of z_0 .

A function f(z) is said to be analytic in the domain D if it is analytic at each point in D.

Hence, analyticity implies differentiability and continuity.

The point $z=z_0$, where f(z) ceases to be analytic. It is called the singular point or singularity of f(z).

For example,

- $f(z) = z^2$ is analytic everywhere in the complex plane
- $f(z) = \bar{z}$ is not analytic at any point

Cauchy-Riemann (C-R) Equations can be used to test the analyticity of a complex function.

Theorem 1: The complex function f(z) = u(x,y) + iv(x,y) is analytic at a point z_0 if for every point in the neighbourhood of z_0 .

 $u,\,v$, and their partial derivatives exist and are continuous.

Cauchy-Riemann equations, $u_x = v_y$ and $v_x = -u_y$ are satisfied.

If these two conditions are satisfied in some domain D, then the function is analytic in D.

Derivation of the C-R Equations

The derivative of a complex function f at a point z_0 is given by:

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta x, \, \Delta y \to 0} \frac{u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - u(x, y) - iv(x, y)}{\Delta x + i\Delta y}$$

Along the x-axis, that is, $\Delta y = 0$,

$$f'(z) = \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) + iv(x + \Delta x, y) - u(x, y) - iv(x, y)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y) + i(v(x + \Delta x, y) - v(x, y))}{\Delta x} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$$

Derivation of the C-R Equations

Similarly, along the y-axis, that is, $\Delta x = 0$,

$$f'(z) = \lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) + iv(x, y + \Delta y) - u(x, y) - iv(x, y)}{i\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) - u(x, y) + i(v(x, y + \Delta y) - v(x, y))}{i\Delta y} = -i\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

For the derivative to exist, the two limits must agree, that is:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

Derivation of the C-R Equations

Thus, the C-R equations are:

$$u_x = v_y$$
 and $v_x = -u_y$

When $z \neq 0$, the C-R equations in polar coordinates are:

$$u_r = rac{1}{r} v_{ heta}$$
 and $v_r = -rac{1}{r} u_{ heta}$

Derivatives of Complex functions

If f(z) = u(x, y) + iv(x, y) and f'(z) exists, then,

$$f'(z) = u_x + iv_x$$

$$= v_y - iu_y$$

$$= u_x - iu_y$$

$$= v_y + iv_x$$

In polar form, if $f(z) = u(r, \theta) + iv(r, \theta)$ and f'(z) exists, then,

$$f'(z) = e^{-i\theta}(u_r + iv_r)$$
$$= \frac{1}{r}e^{-i\theta}(v_\theta - iu_\theta)$$

The following sample problem demonstrates how Cauchy-Riemann equations are used to test the analyticity of a complex function.

Sample Problem 4

Verify that $f(z) = \bar{z}$ is not analytic.

Solution:

Using C-R equations,

$$u(x,y) = x \text{ and } v(x,y) = -y$$

Now,
$$u_{\scriptscriptstyle
m V} = -v_{\scriptscriptstyle \chi} \ = \ 0$$

Now, $u_y = -v_x = 0$ However, $u_x = 1$ and $v_y = -1$

As the C-R equations are not satisfied, the given function is not analytic.

The following sample problem demonstrates how Cauchy-Riemann equations are used to test the analyticity of a complex function.

Sample Problem 4

Verify that $f(z) = \overline{z}$ is not analytic

Solution

Using C

As the function f(z) = z is not differentiable, it can be simply stated that the function is not analytic, without even using the C-R equations.

Now, u.

However, $u_x = 1$ and $v_y = -1$

As the C-R equations are not satisfied, the given function is not analytic.

The following sample problem demonstrates how Cauchy-Riemann equations are used to test the analyticity of a complex function.

Sample Problem 5

Is
$$f(z) = z^3$$
 analytic?

Solution:

In general, polynomials of complex variables are analytic. Let's solve the given problem using C-R equations. $f(z)=z^3$ $u(r,\theta)=r^3{\cos}3\theta \text{ and } v(r,\theta)=r^3{\sin}3\theta$

$$f(z) = z^3$$

$$u(r,\theta)=r^3\mathrm{cos}3\theta$$
 and $v(r,\theta)=r^3\mathrm{sin}3\theta$

The following sample problem demonstrates how Cauchy-Riemann equations are used to test the analyticity of a complex function.

Solution (contd.):

Therefore, $u_r = 3r^2 {\rm cos} 3\theta$ and $u_\theta = -3r^3 {\rm sin} 3\theta$

$$v_r = 3r^2\sin 3\theta$$
 and $v_\theta = 3r^3\cos 3\theta$

As the C-R equations $u_r=\frac{1}{r}v_\theta$ and $v_r=-\frac{1}{r}u_\theta$ are satisfied, and the functions u,v, and their partial derivatives are continuous, the function $f(z)=z^3$ is analytic.

Here is another sample problem that helps us understand how these equations are used to test the analyticity of a complex function.

Sample Problem 6

Discuss the analyticity of the function $f(z) = x^2 + iy^2$.

Solution:

With
$$u=x^2$$
 and $v=y^2$: $u_x=2x$ and $v_y=2y$
$$v_x=0 \text{ and } u_v=0$$

Thus, from C-R equations, f(z) is differentiable only for those values of z that lie along the straight line x = y. If z_0 lies on this line, any circle centered at z_0 will contain points for which f'(z) does not exist. Therefore, the given function is not analytic at any point.

Some Common (and Important) Functions

Polynomials, that is, functions of the form, $f(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$ (where c_0 , c_1 ,, c_n are complex constants) are analytic in the entire complex plane.

Rational functions, that is, quotient of two polynomials, $f(z) = \frac{g(z)}{h(z)}$ are analytic except at points where h(z) = 0.

Partial fractions of the form $f(z) = \frac{c}{(z-z_0)^m}$, where c and z_0 are complex,

and m is a positive integer, are analytic except at z_0 .

Summary

Differentiation of Complex Functions > Summary

Key points discussed in this lesson:

- A complex function f is a rule (or mapping) that assigns to every complex number z in a set S, and a complex number w in a set T.
- A function f(z) is said to have the limit L as z approaches a point z_0 if:
 - f(z) is defined in the neighbourhood of z_0 (except perhaps at z_0 itself)
 - f(z) approaches the same complex number L as $z \to z_0$ from all directions within its neighbourhood
- A function f(z) is said to be continuous at $z=z_0$ if:
 - $f(z_0)$ exists
 - $\lim_{z \to z_0} f(z)$ exists

Differentiation of Complex Functions > Summary

Key points discussed in this lesson:

• The derivative of a complex function f at a point z_0 is written as $f'(z_0)$ and is defined as:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
, provided that the limit exists.

• A function f(z) is said to be analytic at a point z_0 if its derivative exists not only at z_0 , but also in some neighbourhood of z_0 .