Disclaimer I wrote this to my best knowledge, however, no guarantees are given whatsoever.
Sources If not noted differently, the source is the lecture slides and/or the accompanying book.

1 Approximate Retrieval

 $S, X \subseteq S$.

Near-Duplicate detection Find all $x,x' \in X$ with $d(x,x') \le \epsilon$.

1.1 k-Shingling

Represent documents (or videos) as set of k-shingles (a. k. a. k-grams). k-shingle is a consecutive appearance of k characters/words.

Let there be N documents and C k-shingles. Binary shingle matrix $M \in \{0,1\}^{CxN}$ where $M_{i,j} = 1$ iff document j contains shingle i.

1.2 Distance functions

General $d: S \times S \to \mathbb{R}$ is a distance function iff $\forall x, x', x'' \in S$ it's positive definite except for x = x' $(d(x, x') > 0 \iff x \neq x'$ and d(x,x)=0), symmetric (d(x,x')=d(x',x)) and satisfies the Cauchy-Schwartz triangle inequality $(d(x,x'') \le d(x,x') + d(x',x''))$.

 L_r -norm $d_r(x,y) = (\sum_i |x_i - y_i|^r)^{1/r}$. L_2 -norm also called Eu-

Cosine similarity $\operatorname{Sim}_c(A,B) = \frac{A \cdot B}{|A| \cdot |B|}$

Jaccard distance $d_J(A,B) = 1 - \operatorname{Sim}_J(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|}$

1.3 LSH - local sensitive hashing

Key Idea: Similiar documents have similiar hash.

Note: Trivial for exact duplicates (hash-collisions \rightarrow candidate pair).

Min-hash $h_{\pi}(C)$ Hash is the minimum (i. e. first) row index with a one after permutation: $h_{\pi}(C) = \min_{i,C(i)=1} \pi(i)$, given binary vector C and (random) permutation π .

Note: $\Pr_{\pi}[h_{\pi}(C_1) = h_{\pi}(C_2)] = \operatorname{Sim}_J(C_1, C_2)$ if $\pi \in_{\text{u.a.r.}} S_{|C|}$.

Min-hash signature matrix $M_S \in [N]^{n \times C}$ with $M_S(i,c) = h_i(C_c)$ given n hash-fns h_i drawn randomly from a universal hash family.

Pseudo permutation h_{π} with $\pi(i) = (a \cdot i + b) \mod p \mod N$, Nnumber of shingles, $p \ge N$ prime and $a,b \in_{\text{u.a.r.}} [p]$ with $a \ne 0$. Instead of real permutations (slow, inefficient, large storage) use

pseudo permutations as hash family. Pseudo permutations only need to store a and b.

Compute Min-hash signature matrix M_S For all columns $c \in [C]$ and rows $r \in [N]$ with $C_c(r) = 1$, set $M_S(i,c) = \min\{h_i(C_c), M_S(i,c)\}$ for all hash functions h_i .

Banding as boosting Reduce FP/FN by AND/OR-boosting, respectively.

This is done by grouping the signature matrix into b bands of r rows each. A candidate pair matches in at least one band completely. This corresponds to a b-way OR after a r-way AND boosting.

2 More stuff to come