MANGO formulation

Georgios Mavromatidis, Paula Johanna Thimet

March 3, 2023

The various temporal, spatial and technological dimensions outlined for the model in the preceding section form the sets that are used in MANGO to index the model parameters, variables, and constraints. 2 presents a summary of all model sets along with their description and also defines some useful subsets for the energy carrier set, \mathcal{EC} , the conversion technology set, \mathcal{C} and the storage technology set, \mathcal{S} .

Table 1: MANGO model sets and indices

$\overline{}$	Index	Description	
\mathcal{P}	p	Periods considered in the model horizon	
${\mathcal Y}$	y	Calendar years considered in the model horizon	
$\mathcal D$	d	Set of representative days considered for each year	
$\mathcal{C}\mathcal{D}$	cd	Set of calendar days of a full calendar year	
${\mathcal T}$	t	Time steps considered for each day	
$\frac{\mathcal{W} \subseteq \mathcal{P}}{\mathcal{L}}$	w	Investment stages	
\mathcal{L}	l	Energy system locations	
\mathcal{EC}	ec	All energy carriers in the energy system	
$\mathcal{EC}_i\subseteq\mathcal{EC}$	ec_i	Energy carriers that can be imported by the energy system	
$\mathcal{EC}_e\subseteq\mathcal{EC}$	ec_e	Energy carriers that can be exported from the energy system	
$\mathcal{EC}_x\subseteq\mathcal{EC}$	ec_x	Energy carriers that can be exchanged between energy system locations	
$rac{\mathcal{EC}_d \subseteq \mathcal{EC}}{\mathcal{C}}$	ec_d	Energy carriers for which demands are established	
\mathcal{C}	c	Energy conversion technologies	
$\mathcal{C}_{tr}\subseteq\mathcal{C}$	c_{tr}	Tracked energy conversion technologies	
$\mathcal{C}_{ntr}\subseteq\mathcal{C}$	c_{ntr}	Non-tracked energy conversion technologies	
$\mathcal{C}_d\subseteq\mathcal{C}$	c_d	Subset of dispatchable energy conversion technologies	
$\mathcal{C}_b \subseteq \mathcal{C}_d$	c_b	Subset of baseload energy conversion technologies	
$\mathcal{C}_{ccs} \subseteq \mathcal{C}_d$	c_{ccs}	Subset of dispatchable energy conversion technologies that support CCS technologies	
$\mathcal{C}_{ex} \subseteq \mathcal{C}_d$	c_{ex}	Subset of existing energy conversion technologies	
$\mathcal{R}\subseteq\mathcal{C}$	r	Renewable energy supply technologies	
$\mathcal{R}_{sol} \subseteq \mathcal{R}$	r_{sol}	Solar energy supply technologies	
$\mathcal{R}_{win} \subseteq \mathcal{R}$	r_{win}	Wind energy supply technologies	
$\mathcal{R}_{ror}\subseteq\mathcal{R}$	r_{ror}	Run-of-river energy supply technologies	
$\mathcal{R}_{dam}\subseteq\mathcal{R}$	r_{dam}	Hydro dam energy supply technologies	
\mathcal{R}_{gr}	r_{gr}	Group of renewable energy supply technologies	
$rac{\mathcal{R}_{grm} \subseteq \mathcal{R}_{gr}}{\mathcal{S}}$	r_{grm}	Members of a group of renewable energy supply technologies	
	s	Energy storage technologies	
$\mathcal{S}_{tr}\subseteq\mathcal{S}$	s_{tr}	Tracked energy storage technologies	
$\mathcal{S}_{ntr}\subseteq\mathcal{S}$	s_{ntr}	Non-tracked energy storage technologies	
$\mathcal{S}_{ex}\subseteq\mathcal{S}$	s_{ex}	Existing energy storage technologies	

Table 2: MANGO model helper sets to improve formulation readability

	Table 2. MANGO model helper sets to improve formulation readability				
Set combination Helper index		Description			
$\mathcal{C}_{d_tr} = \mathcal{C}_d \cap \mathcal{C}_{tr}$	c_{d_tr}	Subset of tracked dispatchable energy conversion technologies			
$\mathcal{C}_{d_ntr} = \mathcal{C}_d \cap \mathcal{C}_{ntr}$	c_{d_ntr}	Subset of non-tracked dispatchable energy conversion technologies			
$\mathcal{C}_{ccs_ntr} = \mathcal{C}_{ccs} \cap \mathcal{C}_{ntr}$	c_{ccs_ntr}	Subset of non-tracked ccs energy conversion technologies			
$\mathcal{C}_{d_ex} = \mathcal{C}_d \cap \mathcal{C}_{ex}$	c_{d_ex}	Subset of existing dispatchable energy conversion technologies			
$\mathcal{R}_{ex} = \mathcal{R} \cap \mathcal{C}_{ex}$	r_{ex}	Subset of existing renewable energy conversion technologies			
$\mathcal{R}_{s_tr} = \mathcal{R}_s \cap \mathcal{C}_{tr}$	r_{s_tr}	Subset of tracked and solar energy conversion technologies			
$\mathcal{R}_{s_ntr} = \mathcal{R}_s \cap \mathcal{C}_{ntr}$	r_{s_ntr}	Subset of non-tracked solar energy conversion technologies			
$\mathcal{R}_{w_tr} = \mathcal{R}_w \cap \mathcal{C}_{tr}$	r_{w_tr}	Subset of tracked wind energy conversion technologies			
$\mathcal{R}_{w_ntr} = \mathcal{R}_w \cap \mathcal{C}_{ntr}$	r_{w_ntr}	Subset of non-tracked wind energy conversion technologies			
$\mathcal{R}_{r_tr} = \mathcal{R}_{ror} \cap \mathcal{C}_{tr}$	r_{r_tr}	Subset of tracked hydro run-of-river energy conversion technologies			
$\mathcal{R}_{r_ntr} = \mathcal{R}_{ror} \cap \mathcal{C}_{ntr}$	r_{r_ntr}	Subset of non-tracked hydro run-of-river energy conversion technologies			
$\mathcal{R}_{dam_tr} = \mathcal{R}_{dam} \cap \mathcal{C}_{tr}$	r_{dam_tr}	Subset of tracked hydro dam energy conversion technologies			
$\mathcal{R}_{dam_ntr} = \mathcal{R}_{dam} \cap \mathcal{C}_{ntr}$	r_{dam_ntr}	Subset of non-tracked hydro dam energy conversion technologies			
$\mathcal{R}_{dam_ex} = \mathcal{R}_{dam} \cap \mathcal{C}_{ex}$	r_{dam_ex}	Subset of existing hydro dam energy conversion technologies			

Table 3: Temporal MANGO model parameters

Parameter	Model name	Unit	Description
$nd_{p,d}$	Number_of_days	[day]	The number of days that each typical day d corresponds to
ny^p	Years_per_period	[year]	Number of years each period represents
$cd2td_{p,cd}$	CD_to_TD	[day]	Parameter to match each calendar day cd of a full year to a typical
			day d
$y2p_y$	Y2P_match	[year]	Parameter to match each calendar year to a model period
y_p^{real}	Real_years	[year]	First, actual calendar year of each model period
y_w^{real}	Real_investment_stages	[year]	Calendar year that each model investment stage w corresponds to
$dem_{ec_d,l,p,d,t}$	Energy_demand	[MW]	Energy demand for energy carrier ec_d , at location l , in period p , day
			d and time step t

Parameter	Model name	Unit	Description
$cpl_{c,l}$	Conv_site_placement	[0/1]	Defines if a conversion technology c can be installed
			at location l
cap_c^{min}	Conv_minimum_cap_limit	[MW]	Minimum possible newly installed capacity for
			technology c
cap_c^{max}	Conv_maximum_cap_limit	[MW]	Maximum possible newly installed capacity for technology c
cl_c	Conv_lifetime	[years]	Lifetime of conversion technology c in calendar year
cl_c^p	Conv_lifetime_p	[periods]	Lifetime of conversion technology c in model period
			p
$cdeg^{y}_{c_{tr},ec}$	Conv_degradation_coeff_per		Degradation coefficient per calendar year for the
	year		conversion factor of tracked technology c{tr} and en
			ergy carrier ec
$cdeg_{c_{tr},ec,w,p}$	Conv_degradation_coeff		Total degradation coefficient for the conversion fac
			tor of tracked technology c_{tr} and energy carrier ϵ
			depending on the installation stage w and the operation of w
dien			tion year y (Defined for: $\{p \ge w \text{ and } p \le p + cl_c^p - 1\}$
$ecc_{c_d,ec,ec'}^{disp}$	Disp_tech_input_to_output	[0/1]	Input-output coupling of energy carriers ec, ec' for
d: 4	_carrier_coupling		dispatchable technology c_d
$\eta_{c_{d_tr},ec,ec',w}^{disp,tr}$	Conv_factor_tr		Conversion factor for tracked dispatch technolog
			c_{d_tr} between energy carrier ec and ec' installed in
7.			stage w
$\eta_{c_{d_ntr},ec,ec'}^{disp,ntr}$	Conv_factor_ntr		Conversion factor for tracked dispatch technolog
			c_{d_tr} between energy carrier ec and ec'
$excap^{conv}_{c_{ex},ec,l}$	Conv_existing_capacity	[MW]	Installed capacity of an existing conversion techno
			ogy c and energy carrier ec at a site l in the begin
		[2 5777]	ning of the model horizon
$dexcap^{conv}_{c_{ex},ec,l,p}$	Dead_cap_existing_conv_tech	[MW]	Existing capacity of a conversion technology c_{ex}
aas			location l that is at its end of life in period p
$\eta_{c_{ccs}}^{ccs}$	CCS_penalty		Efficiency decrease to account for an increase in sel
			consumption when using a carbon-capture techno
leak	999 7 1		c_{ccs}
$\eta_{c_{ccs}}^{leak}$	CCS_leakage		Percentage of non-captured carbon emissions for

	Table 5: MANGO model parameters Model name	$\frac{\text{for renewable}}{Unit}$	conversion technologies Description
Parameter			Output energy carriers ec for renewable technol-
$rcc_{r,ec}$	Renewable_tech_to_carrier _coupling	[0/1]	1
$rcap_{r,l,p}^{max}$	_coupring Renewable_max_total_capacity	[MWh]	ogy c_d Maximum allowable total capacity for the installation of each renewable technology r at each site l and period p
$rcap_{r_{gr},l,p}^{max,gr}$	Renewable_max_total_capacity _group	[MWh]	Maximum allowable total capacity for the instal- lation of each renewable technology group r_{gr} at each site l and period p
$sol_{l,p,d,t}^{rad}$	Solar_rad	$[\mathrm{MWh/m^2}]$	Incoming solar radiation patterns at energy system location l , in period p , day d , and time step
$\eta_{r_{s_tr},ec,w}^{sol,tr}$	Solar_efficiency_tr		Efficiency of tracked solar renewable supply technology r_s per investment stage w
$\eta_{r_{s_ntr},ec}^{sol,ntr}$	Solar_efficiency_ntr		Efficiency of non-tracked solar renewable supply technology r_s
$ws_{l,p,d,t}$	Wind_speed	[m/s]	Wind speed at location l , in period p , day d and time step t
$ws_{r_{w_tr},w}^{rate,tr}$	Wind_rated_speed_tr	[m/s]	Rated wind speed for a tracked wind technology installed in stage w
$ws_{r_{w_tr},w}^{cutin,tr}$	Wind_cut_in_speed_tr	[m/s]	Cut-in wind speed for a tracked wind technology installed in stage w
$ws_{r_{w_tr},w}^{cutout,tr}$	Wind_cut_out_speed_tr	[m/s]	Cut-out wind speed for a tracked wind technology installed in stage w
$ws_{r_{w_ntr}}^{rate,ntr}$	Wind_rated_speed_ntr	[m/s]	Rated wind speed for a non-tracked wind technology
$ws_{r_{w_ntr}}^{cutin,ntr}$	Wind_cut_in_speed_ntr	[m/s]	Cut-in wind speed for a non-tracked wind technology
$ws_{r_{w_ntr}}^{cutout,ntr}$	Wind_cut_out_speed_ntr	[m/s]	Cut-out wind speed for a non-tracked wind technology
$capf_{l,p,d,t}$	Other_renew_cap_factor		Capacity factor for other renewable power plants in location l , period p , day d , and time step t
$capf_{l,p,d,t}^{dam}$	Hydro_dam_cap_factor		Capacity factor for hydro dam plants
$\eta_{r_{dam_tr},ec,w}^{dam,tr}$	Hydro_dam_conv_efficiency_tr		Efficiency of a tracked hydro dam technology installed in investment stage w
$\eta_{r_{dam_ntr},ec}^{dam,ntr}$	Hydro_dam_conv_efficiency_ntr		Efficiency of a non-tracked hydro dam technology
$\eta_{r_{d_tr},w}^{self,dam,tr}$	<pre>Hydro_dam_stor_standing _losses_tr</pre>		Self-discharging / standing losses of a tracked hydro dam technology
$\eta_{r_{d_ntr}}^{self,dam,ntr}$	Hydro_dam_stor_standing _losses_ntr		Self-discharging / standing losses of a non-tracked hydro dam technology
$cap_{r_d}^{stor,conv,max}$	Hydro_dam_stor_cap_per	[MWh]	Maximum storage capacity per unit of generation capacity for a hydro dam technology
$excap_{r_{dam_ex},ec,l}^{dam}$	_conv_cap_max Hydro_dam_existing_stor _capacity	[MWh]	Installed storage capacity of an existing hydrodam technology and energy carrier ec at a site l
$dexcap_{r_{dam_ex},ec,l,p}^{dam}$	Dead_cap_existing_dam_tech	[MWh]	the beginning of the modeling period Existing capacity of a storage technology $c_{ex} \cap r_d$ that is at its end of life

Table 6: MANGOelec model parameters for storage technologies

	Table 6: MANGOelec model	parameters f	for storage technologies
Parameter	Model name	Unit	Description
$stc_{s,ec}$	Stor_tech_to_carrier	[0/1]	Storage technology coupling parameter describing
	_capacity_coupling		the energy carrier ec stored in storage technology
			s
$spl_{s,l}$	Stor_site_placement	[0/1]	Defines if a storage technology s can be installed at
- ,	_		location l
sl_s	Stor_lifetime	[years]	Lifetime of storage technology s in calendar years
	Stor_lifetime_p	[periods]	Lifetime of storage technology s in model periods p
$sl_{s}^{p} \ \eta_{s_{tr},w}^{ch,tr}$	Stor_charging_eff_tr	12	Charging efficiency of a tracked storage technology
ro_{tr}, ω			s installed in stage w
$\eta_{s_{tr},w}^{dis,tr}$	Stor_discharging_eff_tr		Discharging efficiency of a tracked storage technol-
rs_{tr}, w	_		ogy s installed in stage w
$\eta_{s_{tr},w}^{self,tr}$	Stor_standing_losses_tr		Self-discharge losses of a tracked storage technology
r_{tr}, w			s_{tr} installed in stage w
$q_{s_{tr},w}^{ch,max,tr}$	Stor_max_charge_tr		Maximum charging rate of a tracked storage tech-
as_{tr}, w	2002_man_01141_80_01		nology s_{tr} installed in stage w
$q_{s_{tr},w}^{dis,max,tr}$	Stor_max_discharge_tr		Maximum discharging rate of a tracked storage tech-
$4s_{tr}, w$	2001_man_arsonargo_or		$\frac{1}{1}$ nology s_{tr} installed in stage w
$q_{s_{ntr}}^{ch,max,ntr}$	Stor_max_charge_ntr		Maximum charging rate of a non-tracked storage
$q_{s_{ntr}}$	bool_max_onalgo_nor		technology s_{ntr}
$q_{s_{ntr}}^{dis,max,ntr}$	Stor_max_discharge_ntr		Maximum discharging rate of a non-tracked storage
$q_{s_{ntr}}$	btol_max_discharge_nti		technology s_{ntr}
$\eta_{s_{ntr}}^{self,ntr}$	Stor_standing_losses_ntr		Self-discharge losses of a non-tracked storage tech-
$\eta_{s_{ntr}}$	Stor_standing_rosses_ntr		s_{tr}
$\eta_{s_{ntr}}^{ch,ntr}$	Stor_charging_eff_ntr		Charging efficiency of a non-tracked storage technol-
$\eta_{s_{ntr}}$	btor_charging_err_ntr		ogy s
$\eta_{s_{ntr}}^{dis,ntr}$	Stor_discharging_eff_ntr		Discharging efficiency of a non-tracked storage tech-
$\eta_{s_{ntr}}$	buoi_discharging_cii_nui		nology s
cap_s^{min}	Stor_minimum_cap_limit	[MWh]	Minimum possible newly installed capacity for a
cap_s	Stor_minimum_cap_rimit		storage technology s
cap_s^{max}	Stor_maximum_cap_limit	[MWh]	Maximum possible newly installed capacity for a
cap_s	btor_maximum_cap_rimit		storage technology s
$cap_{s,l}^{max}$	Stor_max_total_capacity	[MWh]	Maximum allowable total energy storage capacity
$cap_{s,l}$	btor_max_totar_capacity		per technology s at location l
excanstor	Stor_existing_capacity	[MWh]	Installed storage capacity and energy carrier ec at a
$excap_{s_{ex},ec,l}^{stor}$	Stor_existing_capacity		site l the beginning of the modeling period
adaa	Stor dogradation coeff		Total degradation coefficient for the the charging
$sdeg_{s_{tr},w,p}$	Stor_degradation_coeff		and discharging efficiencies of storage technology s
			depending on the installation stage w and the period
			p (Defined for: $\{p \ge w \text{ and } p \le w + sl_s^p - 1\}$)
endea	Stor_degradation_coeff		Yearly degradation coefficient for the conversion fac-
$sydeg_{s_{tr}}$	_		tor of tracked technology s_{tr}
$S_{O}Cinit$	_capacity_per_year Existing_hydro_dam_start_SoC	[%]	Initial state-of-charge for existing hydro dam tech-
$SoC_{r_{dam_ex}}^{init}$	EXISCING NATIO CAMP SCALC 200	[70]	
			nologies - given in percentage terms of the total stor-
$d_{omagn}stor$	Dood oon original standard	[] [] [] [] []	age capacity Existing capacity of a conversion technology at that
$dexcap_{s_{ex},ec,l,p}^{stor}$	Dead_cap_existing_stor_tech	[MWh]	Existing capacity of a conversion technology s_{ex} that is at its end of life
			is at its end of the

Parameter	Model name Model name	Unit	Description and grid reserves
		Onn	_
$\eta_{ec_x}^{net}$	Exchange_network_losses		Losses per kilometer of network connection transfer-
		[1]	ring energy carrier ec_x
$x_{l,l'}$	Distance_between_sites	[km]	Distance between two locations
$linepl_{ec_x,l,l'}$	Allowable_interconnections	[0/1]	Defines if an interconnection for an energy carrier ec_x can be installed between location l and l'
$excap_{ec_x,l,l'}^{line}$	Exchange_cap_init	[MW]	Initial capacity for the exchange of an energy carrier ec_x between two locations l and l'
$excap_{ex_i,l}^{imp}$	Import_cap_init	[MW]	Initial capacity for the import of an energy carrier ec_i at location l
$excap_{exe,l}^{exp}$	Export_cap_init	[MW]	Initial capacity for the export of an energy carrier ec_e at location l
$dsm_{ec_d,p}^{max}$	DSM_limit	[MWh]	Maximum allowed volume of one demanded energy carrier ec_D that can be shifted in a period p
$dsm_{ec_d}^{freq}$	DSM_freq	[h]	Window of hours within a typical day for which demand-site management operations must be balanced
$rm_{ec_d,p}$	Reserve_margin		Reserve margin to offer backup power reserves in case of tertiary grid failures
$a_{c_d,ec,p}^{disp}$	Availability_disp_tech		Availability factor to the reserve margin of a dispatchable conversion technology c_d for energy car-
$a_{r,p}^{re}$	Availability_stor_tech		rier ec in period p Availability factor to the reserve margin of a renewable technology c_d in period p
$a_{s,ec,p}^{stor}$	Availability_renewable_tech		Availability factor to the reserve margin of a storage technology c_d for energy carrier ec in period p
$a_{ec,p}^{imp}$	Availability_import		Availability factor to the reserve margin of import of energy carrier ec in period p

Table 8: Economic MANGO model parameters

D ,	Table 8: Economic		
Parameter	Model name	Unit	Description
$p_{ec_i,y}$	Import_prices	[EUR/MWh]	Price for importing energy carrier ec_i , in year y
$p_{ec_e,y}$	Export_prices	[EUR/MWh]	Compensation for exporting energy carrier ec_e , in year y
$fc_{c,ec,w}^{conv}$	Conv_fixed_cost	[EUR]	Fixed cost for the installation of conversion technology c , in investment stage w
$lc_{c,ec,w}^{conv}$	Conv_linear_cost	[EUR/kW]	Linear, capacity-dependent cost for the installation of conversion technology c , in investment stage w
$fc_{c_{ccs},ec,w}^{ccs}$	Fixed_ccs_costs	[EUR]	Fixed cost for the installation of a CCS technology c_{ccs} , in investment stage w
$lc_{c_{ccs},ec,w}^{ccs}$	Linear_ccs_costs	[EUR/kW]	Linear, capacity-dependent cost for the installation of a CCS technology c_{ccs} , in investment stage w
$fc_{r_{dam},ec,w}^{dam}$	Hydro_dam_stor_fixed_cost	[EUR]	Fixed cost for the installation of the storage capacity of a hydro dam technology r_{dam} , in investment stage w
$lc_{r_{dam},ec,w}^{dam}$	Hydro_dam_stor_linear_cost	[EUR/MWh]	Linear, capacity-dependent cost for the storage capacity of a hydro dam technology r_{dam} , in invest-
$fc_{s,ec,w}^{stor}$	Stor_fixed_cost	[EUR]	ment stage w Fixed cost for the installation of storage technology s , in investment stage w
$lc_{s,ec,w}^{stor}$	Stor_linear_cost	[EUR/MWh]	Linear, capacity-dependent cost for the installation of storage technology s , in investment stage w
$fc_{ec_x,w}^{exc}$	Exchange_cap_expansion	[EUR]	Fixed cost for the expansion of exchange capacities
$v = cc_x, w$	_capacity_fixed_cost		between two sites for an energy carrier ec_x , in investment stage w
$lc_{ec_x,w}^{exc}$	Exchange_cap_expansion _capacity_linear_cost	[EUR/MWh]	Linear, capacity-dependent cost for the expansion of exchange capacities between two sites for an energy carrier ec_x , in investment stage w
$fc_{ec_i,w}^{imp}$	<pre>Import_cap_expansion _capacity_fixed_cost</pre>	[EUR]	Fixed cost for the expansion of import capacities for an energy carrier ec_i , in investment stage w
$lc_{ec_i,w}^{imp}$	Import_cap_expansion _capacity_linear_cost	[EUR/MWh]	Linear, capacity-dependent cost for the expansion of import capacities for an energy carrier ec_i , in investment stage w
$fc_{ec_e,w}^{exp}$	Export_cap_expansion _capacity_fixed_cost	[EUR]	Fixed cost for the expansion of export capacities for an energy carrier ec_i , in investment stage w
$l_c exp$	Export_cap_expansion	[EUR/MWh]	Linear, capacity-dependent cost for the expansion of
$lc_{ec_e,w}^{exp}$	_capacity_linear_cost		export capacities for an energy carrier ec_i , in invest-
om_c^{conv}	Conv_maintenance_cost_rate		ment stage w Parameter used to calculate the annual maintenance cost for conversion technology c as a fraction of its
om_s^{stor}	Stor_maintenance_cost_rate		total investment cost Parameter used to calculate the annual maintenance cost for storage technology s as a fraction of its total
$cslvg_{c,w}$	Conv_early_retirement_salvage		investment cost Salvage percentage of initial investment cost for conversion technology c that was installed in stage
$sslvg_{s,w}$	Stor_early_retirement_salvage		w and has not reached the end of its lifetime at the end of the model horizon (Defined for: $\{w \geq \max_{y \in \mathcal{Y}}(y) + 1 - cl_c\}$) Salvage percentage of initial investment cost for storage technology s that was installed in stage w and has not reached the end of its lifetime at the end of the model horizon (Defined for: $\{w \geq \max_{y \in \mathcal{Y}}(y) + 1 - sl_s\}$)

Table 9: Economic MANGO model parameters 2.0

	Table 5. Beolionic William indeel parameters 2.0				
Parameter	Model name	Unit	Description		
$dsmc_{ec_d,y}^{pos}$	DSM_cost_pos	[EUR/MWh]	Cost for increase in demand as part of demand-site		
			management operations		
$dsmc_{ec_d,y}^{neg}$	DSM_cost_neg	[EUR/MWh]	Cost for decrease in demand as part of demand-site		
-,0			management operations		
$carb_{ec_i,y}$	Import_carbon_factor	$[tCO_2/MWh]$	Carbon emission factor for imported energy carrier		
			ec_i in year y		
$ctax_y$	Carbon_tax	$[kgCO_2/EUR]$	Carbon taxes per $kgCO_2/EUR$ in year y		
r	Discount_rate		Discount rate		

Table 10: Environmental and miscellaneous MANGO model parameters

Table 10. Environmental and impechaneous will voo model parameters				
Parameter	Tarameter Unit Description			
ϵ Epsilon value for the multi-objective epsilon-constrained optimization				
bigM "Big M" - Sufficiently large value		"Big M" - Sufficiently large value		

Table 11: MANGO model decision variables

Variable	Model name	Unit	del decision variables Description
$PIN_{c_{d,tr},ec,l,w,p,d,t}^{disp,tr}$	P_disp_inp_tr	[MWh]	Input energy to tracked dispatch technology $c_{d,tr}$, installed at energy system location l , in investment stage w , and operating in period p , day d , and time step t (Defined for: $\{p \geq w \text{ and } y \leq p + cl_c^p - 1\}$)
$PIN_{c_{d,ntr},ec,l,p,d,t}^{disp,ntr}$	P_disp_inp_ntr	[MWh]	Input energy to non-tracked dispatch technology $c_{d,ntr}$, installed at energy system location l , in investment stage w , and operating in period p , day d , and time step t
$POUT_{c_{d,tr},ec,l,w,p,d,t}^{disp,tr}$	P_disp_out_tr	[MWh]	Output energy from tracked dispatch technology $c_{d,tr}$, installed at energy system location l , in investment stage w , and operating in period p , day d , and time step t (Defined for: $\{p \geq w \text{ and } y \leq p + cl_c^p - 1\}$)
$POUT_{c_{d,ntr},ec,l,p,d,t}^{disp,ntr}$	P_disp_out_ntr	[MWh]	Output energy from non-tracked dispatch technology $c_{d,ntr}$, installed at energy system location l , and operating in period p , day d , and time step t
$PIN_{c_{ccs,ntr},ec,l,p,d,t}^{ccs,ntr}$	P_disp_ccs_inp_ntr	[MWh]	Input energy to non-tracked CCS technology $c_{ccs,ntr}$, installed at energy system location l , in investment stage w , and operating in period p , day d , and time step t
$POUT_{c_{ccs,ntr},ec,l,p,d,t}^{ccs,ntr}$	P_disp_ccs_out_ntr	[MWh]	Output energy from non-tracked CCS technology $c_{ccs,ntr}$, installed at energy system location l , and operating in period p , day d , and time step t
$POUT_{c_{b_tr},ec,l,w,p}^{base,tr}$	Baseload_conv_tr	[MWh]	Level of baseload operation for tracked baseload technology $c_b \cap c_{tr}$, installed at energy system location l , in investment stage w , and operating in period p (Defined for: $\{p \geq w \text{ and } y \leq p + cl_c^p - 1\}$)
$POUT_{c_{b_ntr},ec,l,p}^{base,ntr}$	Baseload_conv_ntr	[MWh]	Level of baseload operation for non-tracked baseload technology $c_b \cap c_{ntr}$, installed at energy system location l , and operating in period p
$POUT_{r_{tr},ec,l,w,p,d,t}^{re,tr}$	P_res_out_tr	[MWh]	Output energy from tracked dispatch technology $c_{d,tr}$, for energy carrier ec , installed at energy system location l , in investment stage w , and operating in period p , day d , and time step t (Defined for: $\{p \geq w \text{ and } y \leq p + cl_c^p - 1\}$)
$POUT_{r_{ntr},ec,l,p,d,t}^{re,ntr}$	P_res_out_ntr	[MWh]	Output energy from non-tracked dispatch technology $c_{d,ntr}$, installed at energy system location l , and operating in period p , day d , and time step t
$P_{ec_i,l,p,d,t}^{imp}$	P_import	[MWh]	Import of energy carrier ec_i , at energy system location l , in period p , day d , and time step t
$P_{ec_e,l,p,d,t}^{exp}$	P_export	[MWh]	Exported energy of energy carrier ec_e , at energy system location l , in period p , day d , and time step t
$P^{exc}_{ec_x,l,l',p,d,t}$	P_exchange	[MWh]	Exchanged energy of energy carrier ec_x , from location l to location l' , in period p , day d , and time step t (Defined for: $\{l \neq l'\}$)
$P_{r,ec,l,p,d,t}^{curt}$	Curtailment	[MWh]	Curtailed energy from renewable technology r and energy carrier ec , installed at energy system location l , and operating in period p , day d , and time step t
$DSM_{ec_d,l,p,d,t}^{pos}$	DSM_pos	[MWh]	Increase in demand for energy carrier ec through demand- side management, at energy system location l , in period p , day d , and time step t
$DSM_{ec_d,l,p,d,t}^{neg}$	DSM_neg	[MWh]	Decrease in demand for energy carrier ec through demand- side management, at energy system location l , in period p , day d , and time step t

	Table 12: MANGOelec n		ision variables for storage
Variable	Model name	Unit	Description
$Q_{s_{tr},ec,l,w,p,d,t}^{ch,tr}$	Qch_tr	[MWh]	Charging energy for tracked storage technology s_{tr} , for energy carrier ec , installed at energy system location l , in investment stage w , and operating in period p , day d , and time step t
$Q_{s_{tr},ec,l,w,p,d,t}^{dis,tr}$	Qdis_tr	[MWh]	Discharging energy for tracked storage technology s_{tr} , for energy carrier ec , installed at energy system location l , in investment stage w , and operating in period p , day d , and time step t
$Q_{s_{ntr},ec,l,p,d,t}^{ch,ntr}$	Qch_ntr	[MWh]	Charging energy for non-tracked storage technology s_{ntr} , for energy carrier ec , installed at energy system location l , and operating in period p , day d , and time step t
$Q_{s_{ntr},ec,l,p,d,t}^{dis,ntr}$	Qdis_ntr	[MWh]	Discharging energy for non-tracked storage technology s_{ntr} , for energy carrier ec , installed at energy system location l , and operating in period p , day d , and time step t
$SoC_{s_{tr},ec,l,w,p,d,t}^{tr}$	SoC_tr	[MWh]	Intra-day state of charge of tracked storage technology s_{tr} , for energy carrier ec , installed at energy system location l , in investment stage w , and operating in period p , day d , and time step t
$SoC_{s_{ntr},ec,l,p,d,t}^{ntr}$	SoC_ntr	[MWh]	Intra-day state of charge of non-tracked storage technology s_{ntr} , for energy carrier ec , installed at energy system location l , and operating in period p , day d , and time step t
$SoC_{s_{tr},ec,l,w,p,cd}^{interday,tr}$	SoC_inter_day_tr	[MWh]	Inter-day state of charge of tracked storage technology s_{tr} , for energy carrier ec , installed at energy system location l , in investment stage w , and operating in period p , calendar day cd
$SoC_{s_{ntr},ec,l,p,cd}^{interday,ntr}$	SoC_inter_day_ntr	[MWh]	Inter-day state of charge of non-tracked storage technology s_{ntr} , for energy carrier ec , installed at energy system location l , and operating in period p , calendar day cd
$SoC_{s_{tr},ec,l,w,p,d}^{min,tr}$	SoC_intra_day_min_tr	[MWh]	Minimum intra-day state of charge of tracked storage technology s_{tr} , installed at energy system location l , in investment stage w , and operating in period p and day d
$SoC_{s_{ntr},ec,l,p,d}^{min,ntr}$	SoC_intra_day_min_ntr	[MWh]	Minimum intra-day state of charge of tracked storage technology s_{ntr} , installed at energy system location l and operating in period p and day d
$SoC_{s_{tr},ec,l,w,p,d}^{max,tr}$	SoC_intra_day_max_tr	[MWh]	Maximum Intra-day dam storage level per day for tracked storage technology s_{tr} , installed at energy system location l , in investment stage w , and operating in period p and day d
$SoC_{s_{ntr},ec,l,p,d}^{max,ntr}$	SoC_intra_day_max_ntr	[MWh]	Maximum Intra-day dam storage level per day for non-tracked storage technology s_{tr} , installed at energy system location l and operating in period p and day d
$SoC_{r_{dam_tr},ec,l,w,p,d,t}^{day,dam,tr}$	Hydro_dam_stor_level_tr	[MWh]	Intra-day dam storage level for tracked hydro dam technology r_{d_tr} , installed at energy system location l , in investment stage w , and operating in year y , day d , and time step t
$SoC_{r_{dam_ntr},ec,l,p,d,t}^{day,dam,ntr}$	Hydro_dam_stor_level_ntr	[MWh]	Intra-day dam storage level for non-tracked hydro dam technology $r_{d.ntr}$, installed at energy system location l and operating in year p , day d , and time step t
$SoC_{r_{dam_tr},ec,l,w,p,cd}^{interday,dam,tr}$	Hydro_dam_stor_level _inter_day_tr	[MWh]	Inter-day dam storage level for tracked hydro dam technology r_{dam_tr} , installed at energy system location l , in investment stage w , and operating in year y and calendar day cd
$SoC_{r_{dam_ntr},ec,l,p,cd}^{interday,dam,ntr}$	Hydro_dam_stor_level _inter_day_ntr	[MWh]	Inter-day dam storage level for non-tracked hydro dam technology r_{d_ntr} , installed at energy system location l and operating in year p and calendar day cd
$SoC_{r_{dam_tr},ec,l,w,p,d}^{day,min,dam,tr}$	Hydro_dam_stor_level _intra_day_min_tr	[MWh]	Minimum intra-day dam storage level per day for tracked hydro dam technology $r_{d.tr}$, installed at energy system location l , in investment stage w , and operating in period p and day d
$SoC_{r_{dam_ntr},ec,l,p,d}^{day,min,dam,ntr}$	Hydro_dam_stor_level _intra_day_min_ntr	[MWh]	Minimum intra-day dam storage level per day for non-tracked hydro dam technology r_{dam_ntr} , installed at energy system location l and operating in period p and day d
$SoC_{r_{dam_tr},ec,l,w,p,d}^{day,max,dam,tr}$	Hydro_dam_stor_level _intra_day_max_tr	[MWh]	Maximum intra-day dam storage level per day for tracked hydro dam technology r_{dam_tr} , installed at energy system location l , in investment stage w , and operating in period p and day d
$SoC_{r_{dam_ntr},ec,l,p,d}^{day,max,dam,ntr}$	Hydro_dam_stor_level _intra_day_max_ntr	[MWh]	Maximum intra-day dam storage level per day for non-tracked hydro dam technology r_{dam_ntr} , installed at energy system location l and operating in period p and day d

Manual mate	Table 13: MANGO model decision variables						
MW New expecting to conversion technology c, tor energy carrier ce, in pariot of conversion technology c, tor energy carrier ce, in pariot of tracked conversion technology c, tor energy carrier ce, in pariot of, at location l, in investment stage w TCAI Total capacity of tracked conversion technology c, refor energy carrier ce, in pariot d, at location l, installed at previous invastment stage w Total capacity of tracked conversion technology c, refor energy carrier ce, in pariot d, at location l, installed in previous invastment stage w Total capacity of non-tracked conversion technology c, refor energy carrier ce, in pariot d, at location l, installed in previous invastment stage w Total capacity of the expect of the import of energy carrier ce, to location l, in invastment stage w Total available capacity for energy carrier ce, from location l, in investment stage w Total available capacity for energy carrier ce, from location l, in investment stage w Total available capacity for energy carrier ce, from location l, in investment stage w Total available capacity for energy carrier ce, from location l, in investment stage w Total available capacity for energy carrier ce, from location l, in investment stage w Total available capacity for energy carrier ce, from location l, in investment stage w Total available capacity for energy carrier ce, from location l, in investment stage w Total available capacity for energy carrier ce, from location l, in investment stage w Total available capacity for energy carrier ce, from location l, in investment stage w Total capacity of the export of energy carrier ce, in period p, at location l, in investment stage w Total capacity of the convection ce, between location l and l, in previous energy varier ce, in period p, at location l, in investment stage w Total capacity of the convection ce, between location l and l, in previous location l, in investment stage w Total capacity of non-tracked tots of the ce, in period p, at location l,	Variable Vconv	Model name	Unit	Description Pinary variable denoting the installation of new co			
Investment stage w Investm	$T_{c,l,w}$	y_conv					
NCAP Note							
TCAP continue tage we are considered at location l, in investment stage we are consid	$NCAP^{conv}$	ncap conv	[MW]				
The content of the	c,ec,l,w		[2,2,1,]	- 0			
For energy carrier ec, in period p, at location l, installed in previous investment stage w More							
For energy carrier ec, in period p, at location l, installed in previous investment stage w More	$TCAP_{c_{i}}^{conv,tr}$	tcap_conv_tr	[MW]	Total capacity of tracked conversion technology c_{tr} ,			
tcap_conv_ntr [MW] Total capacity of non-tracked conversion technology c_ntr, for energy carrier ee, in period p, at location l New imprort capacity for energy carrier ee, to location l, in investment stage w Binary variable denoting the installation of new in port capacities for energy carrier ee, to location l, in investment stage w Total capacity for the import of energy carrier ee, to location l, in investment stage w New export capacity for the import of energy carrier ee, to location l, in investment stage w New export capacity for the import of energy carrier ee, to location l, in investment stage w New export capacity for energy carrier ee, from location l, in investment stage w New export capacity for energy carrier ee, from location l, in investment stage w New export capacity for energy carrier ee, from location l, in investment stage w New export capacity for the export of energy carrier ee, from location l, in investment stage w New export capacity for the export of energy carrier ee, from location l, in investment stage w New export capacity for the export of energy carrier ee, from location l, in investment stage w New export capacity for the export of energy carrier ee, from location l, in investment stage w New export capacity for the export of energy carrier ee, from location l and l, in investment stage w New export capacity for the export of energy carrier ee, from location l and l, in investment stage w New export capacity for the export of energy carrier ee, from location l and l, in investment stage w New export capacity for the export of energy carrier ee, between location l and l, in investment stage w New export of l and l, in investment stage w New export of l and l, in investment stage w New export of l and l, in period p at location l, in investment stage w New export of tracked storage level for hydro dam technology exports export export ere ee, in period p, at location l, in investment stage w New export of CS technology exports ere, in	c_{tr},cc,ι,w,p		, ,	- "			
Care, for energy carrier ee, in period p, at location l New import capacities for energy carrier ee, in period p, at location l New import capacities for energy carrier ee, in period p, at location l, in investment stage w Binary variable denoting the installation of new import capacities for energy carrier ee, to location l, in investment stage w New export capacities for energy carrier ee, to location l, in investment stage w New export capacities for energy carrier ee, from location l, in investment stage w New export capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, between location l and l, in investment stage w New port capacities for energy carrier ee, between location l and l, in investment stage w New port capacities for energy carrier ee, between location l and l, in investment stage w New port capacities for energy carrier ee, in period p, at location l, in investment stage w New capacity of storage level for hydro dam technology r _{los n, los} location l, in investment stage w Total available capacity of tracked storage level for hydro dam technology r _{los n, los} for energy carrier ee, in period p, at location l, in investment stage w Total capacity of cost technology r _{los n, los} for energy carrier ee, in period p, at location l, in investment stage w Total capacity of storage technology s _{los} for energy carrier ee, in period							
Care, for energy carrier ee, in period p, at location l New import capacities for energy carrier ee, in period p, at location l New import capacities for energy carrier ee, in period p, at location l, in investment stage w Binary variable denoting the installation of new import capacities for energy carrier ee, to location l, in investment stage w New export capacities for energy carrier ee, to location l, in investment stage w New export capacities for energy carrier ee, from location l, in investment stage w New export capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, from location l, in investment stage w New port capacities for energy carrier ee, between location l and l, in investment stage w New port capacities for energy carrier ee, between location l and l, in investment stage w New port capacities for energy carrier ee, between location l and l, in investment stage w New port capacities for energy carrier ee, in period p, at location l, in investment stage w New capacity of storage level for hydro dam technology r _{los n, los} location l, in investment stage w Total available capacity of tracked storage level for hydro dam technology r _{los n, los} for energy carrier ee, in period p, at location l, in investment stage w Total capacity of cost technology r _{los n, los} for energy carrier ee, in period p, at location l, in investment stage w Total capacity of storage technology s _{los} for energy carrier ee, in period	$TCAP_{c-t-ec,l,n}^{conv,ntr}$	tcap_conv_ntr	[MW]	Total capacity of non-tracked conversion technology			
NCAP cont, as primp Note	c_{ntr}, cc, ϵ, p			c_{ntr} , for energy carrier ec , in period p , at location l			
Simp	$NCAP_{ec,l,w}^{imp}$	ncap_imp	[MW]	New imprort capacity for energy carrier ec_i to loca-			
port capacities for energy carrier ec _t to location l, in investment stage w				tion l , in investment stage w			
port capacities for energy carrier ec _t to location l, in investment stage w	$Y_{ec,l,w}^{imp}$	y_imp		Binary variable denoting the installation of new im-			
$TCAP_{cc,l,w}^{exp} = \text{tcap_imp} \\ NCAP_{cc,l,w}^{exp} = \text{ncap_exp} \\ NCAP_{cc,l,p}^{exp} = \text{ncap_exc} \\ NCAP_{cc,l,p}^{exp} = \text{ncap_exc} \\ NCAP_{cc,l,p}^{exp} = \text{ncap_exc} \\ NCAP_{cc,l,p,w}^{exp} = \text{ncap_exc} \\ NCAP_{cc,l,l,w}^{exp} = \text{ncap_exc} \\ NCAP_{cc,l,l,l,p}^{exp} = \text{ncap_exc} \\ NCAP_{cc,l,l,l,p}^{exp} = \text{ncap_exc} \\ NCAP_{cd,l,l,l,p}^{exp} = \text{ncap_exc} \\ NCAP_{cd,l,l,l,p}^{exp} = \text{ncap_exc} \\ NCAP_{cd,l,l,l,p}^{exp} = \text{ncap_hydro_dam_stor} \\ NCAP_{cd,l,l,l,p}^{exp} = \text{ncap_hydro_dam_stor} \\ NCAP_{cd,l,l,l,p}^{exp} = \text{ncap_hydro_dam_stor} \\ NCAP_{cd,l,l,l,p}^{exp} = \text{ncap_hydro_dam_stor_ntr} \\ NCAP_{cd,l,l,l,p}^{exp} = \text{ncap_hydro_dam_stor_ntr} \\ NCAP_{cd,l,l,l,p}^{exp} = \text{ncap_hydro_dam_stor_ntr} \\ NCAP_{cc,l,l,l,l,p}^{exp} = \text{ncap_ccs} \\ NCAP_{$	551,1,0			port capacities for energy carrier ec_i to location l , in			
$ \begin{array}{c} \text{NCAP}^{exp}_{oc_{e,l},y} \\ \text{NCAP}^{exp}_{oc_{e,l},w} \\ \text{y_exp} \\ \text{y_exp} \\ \text{y_exp} \\ \text{y_exp} \\ \text{y_exp} \\ \text{y_exp} \\ \text{Binary variable denoting the installation of new export capacities for energy carrier ec_e from location l_e in investment stage w Binary variable denoting the installation of new export capacities for energy carrier ec_e from location l_e in investment stage w Total available capacity for the export of energy carrier ec_e from location l_e in investment stage w New exchange capacity for energy carrier ec_e between location l_e in investment stage w New exchange capacity for the export of energy carrier ec_e from location l_e in investment stage w New exchange capacity for the export of energy carrier ec_e between location l_e in investment stage w Binary variable denoting the connection to exchange energy carrier ec_e between location l_e in investment stage w Coffined for l_e in period p. Total available capacity for the exchange of energy carrier ec_e between location l_e in investment stage w Power location l_e and l_e in investment stage w Coffined for l_e in period p. New capacity of storage level for hydro dam technology l_{lam,tr} for energy carrier ec_e in period p. At location l_e in investment stage w Total capacity of tracked storage level for hydro dam technology l_{lam,tr} for energy carrier ec_e in period p. At location l_e in investment stage w Total capacity of tracked storage level for hydro dam technology l_{lam,tr} for energy carrier ec_e in period p. At location l_e in investment stage w New capacity of CCS technology l_{lam,tr} for energy carrier ec_e in period p. At location l_e in investment stage w New capacity of CCS technology l_{lam,tr} for energy carrier l_e in period l_e at location l_e in investment stage w New capacity of the exchange l_e at location l_e in investment stage w New capacity of tracked storage technology l_e at locat$				investment stage w			
$ \begin{array}{c} \text{NCAP}^{exp}_{oc_{e,l},y} \\ \text{NCAP}^{exp}_{oc_{e,l},w} \\ \text{y_exp} \\ \text{y_exp} \\ \text{y_exp} \\ \text{y_exp} \\ \text{y_exp} \\ \text{y_exp} \\ \text{Binary variable denoting the installation of new export capacities for energy carrier ec_e from location l_e in investment stage w Binary variable denoting the installation of new export capacities for energy carrier ec_e from location l_e in investment stage w Total available capacity for the export of energy carrier ec_e from location l_e in investment stage w New exchange capacity for energy carrier ec_e between location l_e in investment stage w New exchange capacity for the export of energy carrier ec_e from location l_e in investment stage w New exchange capacity for the export of energy carrier ec_e between location l_e in investment stage w Binary variable denoting the connection to exchange energy carrier ec_e between location l_e in investment stage w Coffined for l_e in period p. Total available capacity for the exchange of energy carrier ec_e between location l_e in investment stage w Power location l_e and l_e in investment stage w Coffined for l_e in period p. New capacity of storage level for hydro dam technology l_{lam,tr} for energy carrier ec_e in period p. At location l_e in investment stage w Total capacity of tracked storage level for hydro dam technology l_{lam,tr} for energy carrier ec_e in period p. At location l_e in investment stage w Total capacity of tracked storage level for hydro dam technology l_{lam,tr} for energy carrier ec_e in period p. At location l_e in investment stage w New capacity of CCS technology l_{lam,tr} for energy carrier ec_e in period p. At location l_e in investment stage w New capacity of CCS technology l_{lam,tr} for energy carrier l_e in period l_e at location l_e in investment stage w New capacity of the exchange l_e at location l_e in investment stage w New capacity of tracked storage technology l_e at locat$	$TCAP_{ec,l,w}^{imp}$	tcap_imp	[MW]	Total available capacity for the import of energy car-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				rier ec_i to location l , in investment stage w			
Simary variable denoting the installation of new export capacities for energy carrier ec_from location l, in investment stage w TCAP_{ec_c,l,p}^{exp}	$NCAP_{ec_e,l,p}^{exp}$	ncap_exp	[MW]	New export capacity for energy carrier ec_e from lo-			
TCAPexp NCAPexc_c,l,p NCAPexc_c,l,r,w NCAPexc_c,l,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,	- / /*						
$TCAP_{cc_s,l,P}^{exp} \text{tcap_exp} \text{tcap_exp} \text{[MW]} \text{In investment stage w} \text{Total available capacity for the export of energy carrier cc_c from location l, in investment stage w} \text{New exchange capacity for energy carrier cc_c between location l and l', in investment stage w} \text{New exchange capacity for energy carrier cc_c between location l and l', in investment stage w} \text{Sending the connection to exchange energy carrier cc_c, between location l and l', in investment stage w} \text{New exchange of energy carrier cc_c, between location l and l', in period p} \text{New capacity of the exchange of energy $carrier cc_c between location l and l', in period p} \text{New capacity of tracked storage level for hydro dam technology $r_{ad_{m_s},l_r}$ for energy carrier cc_c in stalled at location l, in investment stage w} \text{Total capacity of tracked storage level for hydro dam technology $r_{da_{m_s},l_r}$ for energy carrier cc_c in period p, at location l, installed in previous investment stage w} \text{Total capacity of non-tracked storage level for hydro dam technology $r_{da_{m_s},l_r}$ for energy carrier cc_c in period p, at location l, in investment stage w} \text{New capacity of CCS technology c_{cc_s}, at location l, in investment stage w} \text{New capacity of CCS technology c_{cc_s}, at location l, in investment stage w} \text{New capacity of CCS technology c_{cc_s}, at location l, in investment stage w} \text{New capacity of ScS technology c_{cc_s}, at location l, in investment stage w} \text{New capacity of ScS technology c_{cc_s}, at location l, in investment stage w} \text{New capacity of storage technology c_{cc_s}, at location l, in investment stage w} \text{New capacity of storage technology c_{cc_s,n,l_r}} New capacity o$	$Y_{ec_e,l,w}^{exp}$	y_exp		, · · · · · · · · · · · · · · · · · · ·			
$TCAP_{ec_{s},l,p}^{exp} = \text{tcap_exp} \qquad \text{Im} \\ NCAP_{ec_{s},l,l',w}^{exe} = \text{post} \\ NCAP_{ec_{s},l,l',w}^{exe} = \text{post} \\ Y_{ec_{s},l,l',w}^{exe} = \text{post} \\ Y_{ec_{s},l',l',w}^{exe} = \text{post} \\ Y_{e_{s},l',l',w}^{exe} = \text{post} \\ Y_{e_{s},l',l',w}^{exe} = \text{post}$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- cu - erm		f=1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$TCAP_{ec_e,l,p}^{exp}$	tcap_exp	[MW]				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N.O. I. Domo		[3.6777]				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$NCAP_{ec_x,l,l',w}^{exc}$	ncap_exc	[MW]				
$TCAP_{ec_{c,l,l',p}}^{exc} \qquad \text{tcap_exc} \qquad \text{[MW]} \qquad \text{locations } l, l', \text{ in investment stage } w \text{ (Defined for: } \{l \neq l'\}) \\ NCAP_{r_d,ec_l,l,w}^{dam,stor} \qquad \text{ncap_hydro_dam_stor} \qquad \text{[MW]} \qquad \text{Investment stage } w \text{ (Defined for: } \{l \neq l'\}) \\ NCAP_{r_d,ec_l,l,w}^{dam,stor} \qquad \text{ncap_hydro_dam_stor} \qquad \text{[MW]} \qquad \text{Investment stage } w \\ TCAP_{r_{d,e,e,l,w}}^{dam,stor} \qquad \text{tcap_hydro_dam_stor_tr} \qquad \text{[MW]} \qquad \text{Investment stage } w \\ TCAP_{r_{d,ec_l,l,w},p}^{dam,ntr} \qquad \text{tcap_hydro_dam_stor_tr} \qquad \text{[MW]} \qquad \text{Investment stage } w \\ TCAP_{r_{d,ec_l,l,w},p}^{dam,ntr} \qquad \text{tcap_hydro_dam_stor_ntr} \qquad \text{[MW]} \qquad \text{Investment stage } w \\ TCAP_{r_{d,ec_l,l,w},p}^{dam,ntr} \qquad \text{tcap_hydro_dam_stor_ntr} \qquad \text{[MW]} \qquad \text{Investment stage } w \\ TCAP_{r_{d,ec_l,l,w},p}^{dam,ntr} \qquad \text{tcap_hydro_dam_stor_ntr} \qquad \text{[MW]} \qquad \text{Investment stage } w \\ TCAP_{r_{d,ec_l,l,w},p}^{ec_l,l,w} \qquad \text{y_ccs} \qquad \text{[MW]} \qquad \text{Investment stage } w \\ TCAP_{r_{d,ec_l,l,w},p}^{ec_l,l,w} \qquad \text{y_ccs} \qquad \text{[MW]} \qquad \text{Investment stage } w \\ TCAP_{r_{d,ec_l,l,w},p}^{ec_l,l,w} \qquad \text{ncap_ccs} \qquad \text{[MW]} \qquad \text{New capacity of non-tracked storage level for hydro dam technology } r_{d,m-tr}, \text{ for energy carrier } ec_l, \text{ in period } p, \text{ at location } l \\ \text{Binary variable denoting the installation of new capacity of CCS technology } r_{d,m-tr}, \text{ for energy carrier } ec_l, \text{ in investment stage } w \\ \text{New capacity of CCS technology } r_{c,es_l}, \text{ for energy carrier } ec_l, \text{ in investment stage } w \\ \text{New capacity of non-tracked CCS technology } r_{c,es_l}, \text{ for energy carrier } ec_l, \text{ in period } p, \text{ at location } l, \text{ in investment stage } w \\ \text{New capacity of storage technology } r_{s_l}, \text{ for energy carrier } ec_l, \text{ in period } p, \text{ at location } l, \text{ in investment stage } w \\ \text{New capacity of storage technology } r_{s_l}, \text{ for energy carrier } ec_l, \text{ in period } p, \text{ at location } l, \text{ in investment stage } w \\ \text{New capacity of storage technology } r_{s_l}, \text{ for energy carrier } ec_l, \text{ in period } p, \text{ at location } l, $	Vexc						
$TCAP_{ec_{e,l},l',p}^{exc} \\ NCAP_{dam,stor}^{dam,stor} \\ NCAP_{dam,ec,l,w}^{dam,stor} \\ TCAP_{r_{d,ec},l,w,p}^{dam,stor} \\ TCAP_{r_{d,ec},ec,l,w,p}^{dam,stor} \\ TCAP_{r_{d,ec},ec,l,w}^{dam,stor} \\ TCAP_{c_{ec,e,s},l,w}^{dec,ec,ec,l,w} \\ TCAP_{c_{ec,e,s},l,w}^{ec,ec,l,w} \\ TCAP_{c_{ec,e,s},ec,l,w}^{ec,ec,l,w} \\ TCAP_{c_{ec,e,s},ec,l,w}^{ec,ec,l,w} \\ TCAP_{s_{l,ec},e_{l,w}}^{ec,ec,ec,l,w} \\ TCAP_{s_{l,ec},ec,l,w}^{ec,ec,l,w} \\ TCAP_{s_{l,ec},ec,l,w}^{ec,ec,l,w} \\ TCAP_{s_{l,ec},l,w}^{ec,ec,l,w} \\ TCAP_{s_{l,ec},l,w,p}^{ec,ec,l,w} \\ TCAP_{s_{l,ec$	$Y_{ec_x,l,l',w}^{cwc}$	y_exc					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$NCAP_{dam,stor}^{dam,stor} \\ NCAP_{da,ce,l,w}^{dam,stor} \\ TCAP_{rd,e,e,l,w,p}^{dam,tr} \\ TCAP_{rd,r,ee,l,w,p}^{dam,tr} \\ TCAP_{rd,m,re,e,l,p}^{dam,tr} \\ TCAP_{rd,m,re,e,l,p}^{dam,tr} \\ TCAP_{rd,m,re,e,l,p}^{dam,tr} \\ TCAP_{rd,m,re,e,l,p}^{dam,tr} \\ TCAP_{rd,m,re,e,l,p}^{dam,tr} \\ TCAP_{ccs,l,w}^{dam,tr} \\ TCAP_{ccs,l,w}^{dam,tr} \\ TCAP_{ccs,l,w}^{dam,tr} \\ TCAP_{ccs,n,tr,ee,l,p}^{dam,tr} \\ TCAP_{ccs,n,tr,ee,l,p}^{dam,tr} \\ TCAP_{slor,tr}^{dam,tr} \\ TCAP_{slor,tr}^{dam,tr} \\ TCAP_{slor,tr}^{dam,tr} \\ TCAP_{slor,tr}^{dam,tr} \\ TCAP_{slor,tr,ee,l,w,p}^{dam,tr} \\ TCAP_{s$	TCADexc	tcan ove					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$I \cup AI \ ec_x, l, l', p$	ccap_exc					
$TCAP_{r_{d,tr},ec,l,w,p}^{dam,tr} \text{tcap_hydro_dam_stor_tr} [\text{MW}] \begin{array}{l} \text{ogy } r_d \text{ and energy carrier } ec, \text{ installed at location } l, \\ \text{in investment stage } w \\ TCAP_{r_{d,tr},ec,l,w,p}^{dam,ntr} \text{tcap_hydro_dam_stor_ntr} \\ \\ V_{ccs}^{ccs} \\ V_{ccs}^{ccs,l,w} \\ V_{ccs}^{ccs} \\ V_{ccs}^{ccs,l,w} \\ V_{cc$	$NCAP^{dam,stor}$	ncan hydro dam stor	[MWb]				
$TCAP_{r_{d,tr},ec,l,w,p}^{dam,tr} \text{tcap_hydro_dam_stor_tr} \text{[MW]} \begin{array}{ll} \text{in investment stage w} \\ Total capacity of tracked storage level for hydro dam technology $r_{dam,tr}$, for energy carrier ec, in period p, at location l, installed in previous investment stage w \\ TCAP_{r_{dam,ntr},ec,l,p}^{dam,ntr} \text{tcap_hydro_dam_stor_ntr} \text{[MW]} \begin{array}{ll} \text{Total capacity of non-tracked storage level for hydro dam technology $r_{dam,tr}$, for energy carrier ec, in period p, at location l \\ Binary variable denoting the installation of new capacity of CCS technology c_{ccs}, at location l, in investment stage w \\ NCAP_{ccs,ec,l,w}^{ccs} \text{ncap_ccs} \text{[MW]} \text{New capacity of CCS technology c_{ccs}, for energy carrier ec, in period p, at location l, in investment stage w \\ TCAP_{ccs,ntr,ec,l,p}^{ccs,ntr} \text{tcap_ccs_ntr} \text{[MW]} \text{Total capacity of non-tracked CCS technology c_{ccs}, for energy carrier ec, in period p, at location l, in investment stage w \\ New capacity of non-tracked CCS technology $c_{ccs,ntr}$, for energy carrier ec, in period p, at location l, in investment stage w \\ New Capacity of storage technology s, at location l, in investment stage w \\ New capacity of storage technology s, for energy carrier ec, installed at location l, in investment stage w \\ New capacity of tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in stalled in previous investment stage w \\ Total capacity of tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in previous investment stage w \\ Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in previous investment stage w \\ Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in previous investment stage w \\ Total capacity of non-tracked storage technology s_{tr}, for energy c$	$r_{d,ec,l,w}$	ncap_nydro_dam_stor					
$TCAP_{r_{d,tr},ec,l,w,p}^{dam,tr} $							
$TCAP_{tam.ntr,ec,l,p}^{dam,ntr} \text{tcap_hydro_dam_stor_ntr} [\text{MW}] \text{Total capacity of non-tracked storage level for hydro dam technology } \\ r_{lam.ntr,ec,l,p} \text{tcap_hydro_dam_stor_ntr} [\text{MW}] \text{Total capacity of non-tracked storage level for hydro dam technology } \\ r_{lam.ntr,ec,l,p} \text{y_ccs} \text{y_ccs} \text{Binary variable denoting the installation of new capacity of CCS technology } \\ r_{lam.ntr,ec,l,p} \text{ncap_ccs} [\text{MW}] \text{New capacity of CCS technology } \\ r_{lam.ntr,ec,l,p} \text{tcap_ccs_ntr} [\text{MW}] \text{Total capacity of non-tracked CCS technology } \\ r_{lam.ntr,ec,l,p} \text{limit} \\ r_{lam.ntr,ec,$	$TCAP^{dam,tr}$	tean hydro dam stor tr	[MW]				
$TCAP_{r_{dam,ntr},ec,l,p}^{dam,ntr} \text{tcap_hydro_dam_stor_ntr} [\text{MW}] \begin{array}{l} \text{at location l, installed in previous investment stage w} \\ \hline TCAP_{r_{dam,ntr},ec,l,p}^{dam,ntr} \text{tcap_hydro_dam_stor_ntr} [\text{MW}] \begin{array}{l} \text{Total capacity of non-tracked storage level for hydro dam technology $r_{dam,lr}$, for energy carrier ec, in period p, at location l \\ \hline Binary variable denoting the installation of new capacity of CCS technology c_{ccs}, at location l, in investment stage w} \\ \hline NCAP_{ccs,ntr}^{ccs} \text{ncap_ccs} [\text{MW}] \text{New capacity of CCS technology c_{ccs}, for energy carrier ec, installed at location l, in investment stage w} \\ \hline TCAP_{ccs,ntr,ec,l,p}^{stor} \text{y_stor} [\text{MW}] \text{Total capacity of non-tracked CCS technology c_{ccs}, for energy carrier ec, in period p, at location l, in investment stage w} \\ \hline NCAP_{sl,w}^{stor} \text{y_stor} [\text{MW}] \text{New capacity of non-tracked CCS technology s, at location l, in investment stage w} \\ \hline NCAP_{sl,w}^{stor} \text{ncap_stor} [\text{MW}] \text{New capacity of storage technology s, for energy carrier ec, installed at location l, in investment stage w} \\ \hline TCAP_{sl,v,ec,l,w,p}^{stor,tr} \text{tcap_stor_tr} [\text{MW}] \text{Total capacity of tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in previous investment stage w} \\ \hline Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in previous investment stage w} \\ \hline Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in previous investment stage w} \\ \hline Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in previous investment stage w} \\ \hline Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in the previous investment stage w} \\ \hline Total capacity of non-tra$	r_{d_tr},ec,l,w,p	ccap_nydro_dam_stor_tr					
$TCAP_{r_{dam,ntr},ec,l,p}^{dam,ntr} \text{tcap_hydro_dam_stor_ntr} \begin{bmatrix} \text{MW} \end{bmatrix} \begin{array}{l} w \\ \text{Total capacity of non-tracked storage level for hydro dam technology } r_{dam,tr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ \text{Binary variable denoting the installation of new capacity of CCS technology } c_{ccs}, \text{ at location } l, \text{ in investment stage } w \\ NCAP_{ccs,ec,l,w}^{ccs} \text{ncap_ccs} \begin{bmatrix} \text{MW} \end{bmatrix} \begin{array}{l} \text{MW} \\ \text{New capacity of CCS technology } c_{ccs}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l, \text{ in investment stage } w \\ TCAP_{ccs,ntr,ec,l,p}^{ccs,ntr} \text{y_stor} & \\ \text{MW} \end{bmatrix} \begin{array}{l} \text{Total capacity of non-tracked CCS technology } c_{ccs,for,for,for,for,for,for,for,for,for,for$							
$TCAP_{tam.ntr,ec,l,p}^{dam,ntr} \hspace{0.5cm} \text{tcap_hydro_dam_stor_ntr} \hspace{0.5cm} [MW] \hspace{0.5cm} Total capacity of non-tracked storage level for hydro dam technology r_{dam.tr}, for energy carrier ec, in period p, at location l Binary variable denoting the installation of new capacity of CCS technology c_{ccs}, at location l, in investment stage w New capacity of CCS technology c_{ccs}, for energy carrier ec, installed at location l, in investment stage w Total capacity of non-tracked CCS technology c_{ccs,ntr}, for energy carrier ec, in period p, at location l in investment stage w Single probability of non-tracked CCS technology c_{ccs,ntr}, for energy carrier ec, in period p, at location l in investment stage w New capacity of storage technology s, for energy carrier ec, in cap_stor [MW] New capacity of storage technology s, for energy carrier ec, in stalled at location l, in investment stage w Total capacity of tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, installed in previous investment stage w Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l in previous investment stage w Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l in previous investment stage w Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l in previous investment stage w Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l in previous investment stage w Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l in previous investment stage w Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l in previous investment stage w Total capacity of non-tracked storage tech$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$TCAP^{dam,ntr}$,	tcap hydro dam stor ntr	[MW]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r_{dam_ntr},ec,l,p	ocap_nyaro_aam_soor_nor	[111 11]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$NCAP_{ccs,ec,l,w}^{ccs} \qquad \text{ncap_ccs} \qquad \text{[MW]} \qquad \text{New capacity of CCS technology c_{ccs}, for energy carrier ec, installed at location l, in investment stage w} \\ TCAP_{ccs,ntr,ec,l,p}^{ccs,ntr} \qquad \text{tcap_ccs_ntr} \qquad \text{[MW]} \qquad \text{Total capacity of non-tracked CCS technology $c_{ccs,ntr}$, for energy carrier ec, in period p, at location l, in investment stage w} \\ Y_{s,l,w}^{stor} \qquad y_{stor} \qquad \text{Binary variable denoting the installation of new capacity of storage technology s, at location l, in investment stage w} \\ NCAP_{s,ec,l,w}^{stor} \qquad \text{ncap_stor} \qquad \text{[MW]} \qquad \text{New capacity of storage technology s, for energy carrier ec, installed at location l, in investment stage w} \\ TCAP_{str,ec,l,w,p}^{stor,tr} \qquad \text{tcap_stor_tr} \qquad \text{[MW]} \qquad \text{Total capacity of tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, installed in previous investment stage w} \\ Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, installed in previous investment stage w} \\ Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, installed in previous investment stage w} \\ Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, installed in previous investment stage w} \\ Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, installed in previous investment stage w} \\ Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, installed in previous investment stage w} \\ Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in the previous investment stage w} \\ Total capacity of non-tracked storage technology s_{tr}, for energy carrier ec, in period p, at location l, in the previous investment st$	Y_{o}^{ccs}	v_ccs					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c_{ccs}, ι, ω						
$TCAP_{c_{ces,ntr},ee,l,p}^{ccs,ntr} \text{tcap_ccs_ntr} \text{[MW]} \begin{array}{c} \text{rier } ec, \text{ installed at location } l, \text{ in investment stage } w \\ Total \text{ capacity of non-tracked CCS technology } c_{ces,ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ W_{s,l,w} \text{Sinary variable denoting the installation of new capacity of storage technology } s, \text{ at location } l, \text{ in investment stage } w \\ NCAP_{s,ee,l,w}^{stor} \text{ncap_stor} \text{[MW]} \text{New capacity of storage technology } s, \text{ for energy carrier } ec, \text{ in stalled at location } l, \text{ in investment stage } w \\ TCAP_{s_{tr},ee,l,w,p}^{stor,tr} \text{tcap_stor_tr} \text{[MW]} \text{Total capacity of tracked storage technology } s_{tr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ TCAP_{s_{ntr},ee,l,p}^{stor,ntr} \text{tcap_stor_ntr} \text{[MW]} \text{Total capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ Total \text{ capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ Total \text{ capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ Total \text{ capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ Total \text{ capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ Total \text{ capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ Total \text{ capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ Total \text{ capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ Total \text{ capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \\ Total capacity of no$							
$TCAP_{ccs,ntr,ec,l,p}^{ccs,ntr} $	$NCAP_{c_{cos},ec,l,w}^{ccs}$	ncap_ccs	[MW]	New capacity of CCS technology c_{ccs} , for energy car-			
$Y_{s,l,w}^{stor} \qquad \qquad y_{stor} \qquad \qquad Binary \ variable \ denoting \ the installation \ of \ new \ capacity \ of \ storage \ technology \ s, \ at \ location \ l, \ in \ investment \ stage \ w$ $NCAP_{s,ec,l,w}^{stor} \qquad \qquad ncap_{stor} \qquad [MW] \qquad New \ capacity \ of \ storage \ technology \ s, \ for \ energy \ carrier \ ec, \ installed \ at \ location \ l, \ in \ investment \ stage \ w$ $TCAP_{s_{tr},ec,l,w,p}^{stor,tr} \qquad tcap_{stor_tr} \qquad [MW] \qquad Total \ capacity \ of \ tracked \ storage \ technology \ s_{tr}, \ for \ energy \ carrier \ ec, \ in \ period \ p, \ at \ location \ l, \ in \ stalled \ in \ previous \ investment \ stage \ w$ $TCAP_{s_{ntr},ec,l,p}^{stor,ntr} \qquad tcap_{stor_ntr} \qquad [MW] \qquad Total \ capacity \ of \ non-tracked \ storage \ technology \ s_{ntr}, \ for \ energy \ carrier \ ec, \ in \ period \ p, \ at \ location \ l$				rier ec , installed at location l , in investment stage w			
$Y_{s,l,w}^{stor} \qquad \qquad y_{stor} \qquad \qquad Binary \ variable \ denoting \ the installation \ of \ new \ capacity \ of \ storage \ technology \ s, \ at \ location \ l, \ in \ investment \ stage \ w$ $NCAP_{s,ec,l,w}^{stor} \qquad \qquad ncap_{stor} \qquad [MW] \qquad New \ capacity \ of \ storage \ technology \ s, \ for \ energy \ carrier \ ec, \ installed \ at \ location \ l, \ in \ investment \ stage \ w$ $TCAP_{s_{tr},ec,l,w,p}^{stor,tr} \qquad tcap_{stor_tr} \qquad [MW] \qquad Total \ capacity \ of \ tracked \ storage \ technology \ s_{tr}, \ for \ energy \ carrier \ ec, \ in \ period \ p, \ at \ location \ l, \ in \ stalled \ in \ previous \ investment \ stage \ w$ $TCAP_{s_{ntr},ec,l,p}^{stor,ntr} \qquad tcap_{stor_ntr} \qquad [MW] \qquad Total \ capacity \ of \ non-tracked \ storage \ technology \ s_{ntr}, \ for \ energy \ carrier \ ec, \ in \ period \ p, \ at \ location \ l$	$TCAP_{c_{ccs,ntr},ec,l,p}^{ccs,ntr}$	tcap_ccs_ntr	[MW]				
$NCAP_{s,ec,l,w}^{stor} \qquad \text{ncap_stor} \qquad \text{[MW]} \qquad \begin{array}{c} \text{pacity of storage technology } s, \text{ at location } l, \text{ in investment stage } w \\ New capacity of storage technology } s, \text{ for energy carrier } ec, \text{ installed at location } l, \text{ in investment stage } w \\ TCAP_{s_{tr},ec,l,w,p}^{stor,tr} \qquad \text{tcap_stor_tr} \qquad \begin{array}{c} \text{[MW]} \qquad \text{New capacity of storage technology } s, \text{ for energy carrier } ec, \text{ installed at location } l, \text{ in investment stage } w \\ \text{Total capacity of tracked storage technology } s_{tr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l, \text{ installed in previous investment stage } w \\ \text{Total capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \end{array}$,,			$c_{ccs,ntr}$, for energy carrier ec , in period p , at location			
$NCAP_{s,ec,l,w}^{stor} \qquad \text{ncap_stor} \qquad \text{[MW]} \qquad \begin{array}{c} \text{pacity of storage technology } s, \text{ at location } l, \text{ in investment stage } w \\ New capacity of storage technology } s, \text{ for energy carrier } ec, \text{ installed at location } l, \text{ in investment stage } w \\ TCAP_{s_{tr},ec,l,w,p}^{stor,tr} \qquad \text{tcap_stor_tr} \qquad \begin{array}{c} \text{[MW]} \qquad \text{New capacity of storage technology } s, \text{ for energy carrier } ec, \text{ installed at location } l, \text{ in investment stage } w \\ \text{Total capacity of tracked storage technology } s_{tr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l, \text{ installed in previous investment stage } w \\ \text{Total capacity of non-tracked storage technology } s_{ntr}, \text{ for energy carrier } ec, \text{ in period } p, \text{ at location } l \end{array}$,			l			
$NCAP_{s,ec,l,w}^{stor}$ ncap_stor [MW] vestment stage w $TCAP_{s_{tr},ec,l,w,p}^{stor,tr}$ tcap_stor_tr [MW] New capacity of storage technology s , for energy carrier ec , installed at location l , in investment stage w $TCAP_{s_{tr},ec,l,w,p}^{stor,tr}$ tcap_stor_tr [MW] Total capacity of tracked storage technology s_{tr} , for energy carrier ec , in period p , at location l , installed in previous investment stage w $TCAP_{s_{ntr},ec,l,p}^{stor,ntr}$ tcap_stor_ntr [MW] Total capacity of non-tracked storage technology s_{ntr} , for energy carrier ec , in period p , at location l	$Y_{s,l,w}^{stor}$	y_stor					
$NCAP_{s,ec,l,w}^{stor}$ ncap_stor [MW] New capacity of storage technology s , for energy carrier ec , installed at location l , in investment stage w $TCAP_{s_{tr},ec,l,w,p}^{stor,tr}$ tcap_stor_tr [MW] Total capacity of tracked storage technology s_{tr} , for energy carrier ec , in period p , at location l , installed in previous investment stage w Total capacity of non-tracked storage technology s_{ntr} , for energy carrier ec , in period p , at location l							
$TCAP_{s_{tr},ec,l,w,p}^{stor,tr} $	N.C. A. Detor		[] ([] []				
$TCAP_{s_{tr},ec,l,w,p}^{stor,tr}$ tcap_stor_tr [MW] Total capacity of tracked storage technology s_{tr} , for energy carrier ec , in period p , at location l , installed in previous investment stage w Total capacity of non-tracked storage technology s_{ntr} , for energy carrier ec , in period p , at location l	$NCAP_{s,ec,l,w}^{stor}$	ncap_stor					
$TCAP_{s_{ntr},ec,l,p}^{stor,ntr}$ tcap_stor_ntr $\begin{bmatrix} 1\\ \text{MW} \end{bmatrix}$ energy carrier ec , in period p , at location l , installed in previous investment stage w Total capacity of non-tracked storage technology s_{ntr} , for energy carrier ec , in period p , at location l	TO A Dstor.tr		[] ([] []				
$TCAP_{s_{ntr},ec,l,p}^{stor,ntr}$ tcap_stor_ntr $\begin{bmatrix} 11 \\ \text{MW} \end{bmatrix}$ in previous investment stage w Total capacity of non-tracked storage technology s_{ntr} , for energy carrier ec , in period p , at location l	$TCAP_{s_{tr},ec,l,w,p}^{cost,st}$	tcap_stor_tr	[MW]				
$TCAP_{s_{ntr},ec,l,p}^{stor,ntr}$ tcap_stor_ntr [MW] Total capacity of non-tracked storage technology s_{ntr} , for energy carrier ec , in period p , at location l							
s_{ntr} , for energy carrier ec , in period p , at location l	TCADstor,ntr	toon atom atom	11,1,1,1,1				
	$I \cup AP_{s_{ntr},ec,l,p}$	ccap_stor_ntr	[IVI VV]				
	NDOMstor	nnow ator					

	Table 14: Economic MANGO model variables on (nominal) energy system cost and emission performance				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Variable	Model name		-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	Total_system_cost	[EUR]	Total lifetime energy system cost	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	Total_system_carbon	$[tCO_2]$	Total lifetime energy system CO ₂ emissions	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{l,u}^{imp}$	<pre>Import_cost_per_year_nmnl</pre>	[EUR]	Total cost due to energy carrier imports at location	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				l, in year y	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{l,u}^{exp}$	Export_profit_per_year_nmnl	[EUR]	Total revenue due to energy carrier exports at loca-	
$C_{l,w}^{conv,inv} \text{Conv_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for conversion technologies at location } l, \text{ in year } y$ $C_{l,w}^{cconv,inv} \text{CCS_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for conversion technologies at location } l, \text{ in investment stage } w$ $C_{l,w}^{stor,inv} \text{Stor_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for storage technologies at location } l, \text{ in investment stage } w$ $C_{l,w}^{exc,inv} \text{Exchange_network_expansion} \text{[EUR]} \text{Total investment cost for network expansions between location } l \text{ and } l', \text{ in investment stage } w$ $C_{l,w}^{imp,inv} \text{Import_capacity_expansion} \text{[EUR]} \text{Total investment cost for import network expansions, in investment stage } w$ $C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{[EUR]} Total investment cost for export network expansions, in investment cost for export network expan$					
$C_{l,w}^{conv,inv} \text{Conv_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for conversion technologies at location } l, \text{ in year } y$ $C_{l,w}^{cconv,inv} \text{CCS_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for conversion technologies at location } l, \text{ in investment stage } w$ $C_{l,w}^{stor,inv} \text{Stor_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for storage technologies at location } l, \text{ in investment stage } w$ $C_{l,w}^{exc,inv} \text{Exchange_network_expansion} \text{[EUR]} \text{Total investment cost for network expansions between location } l \text{ and } l', \text{ in investment stage } w$ $C_{l,w}^{imp,inv} \text{Import_capacity_expansion} \text{[EUR]} \text{Total investment cost for import network expansions, in investment stage } w$ $C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{[EUR]} Total investment cost for export network expansions, in investment cost for export network expan$	$C_{l,y}^{main}$	Maintenance_cost_per_year_nmnl	[EUR]		
$C_{l,w}^{ccs,inv} \text{CCS_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for carbon capture and storage} \\ C_{l,w}^{stor,inv} \text{Stor_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for storage technologies at location } l, \text{ in investment stage } w \\ C_{l,w}^{exc,inv} \text{Exchange_network_expansion} \\ C_{l,w}^{exc,inv} \text{Exchange_network_expansion} \\ C_{l,w}^{imp,inv} \text{Import_capacity_expansion} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \\ \text{Export_capacity_expansion} \\ \text{Eur} \text{Total investment cost for import network expansions, in investment stage } w \\ \text{Eur} \text{Total investment cost for import network expansions, in investment stage } w \\ \text{Eur} \text{Total investment cost for export network expansions, in investment cost for export network expansions, in investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions, in investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Eur} \text{Export_capacity_expansion} \\ \text{Eur} Eur$				age technologies installed at location l , in year y	
$C_{l,w}^{ccs,inv} \text{CCS_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for carbon capture and storage} \\ C_{l,w}^{stor,inv} \text{Stor_investment_cost_nmnl} \text{[EUR]} \text{Total investment cost for storage technologies at location } l, \text{ in investment stage } w \\ C_{l,w}^{exc,inv} \text{Exchange_network_expansion} \\ C_{l,w}^{exc,inv} \text{Exchange_network_expansion} \\ C_{l,w}^{imp,inv} \text{Import_capacity_expansion} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \\ \text{Export_capacity_expansion} \\ \text{Eur} \text{Total investment cost for import network expansions, in investment stage } w \\ \text{Eur} \text{Total investment cost for import network expansions, in investment stage } w \\ \text{Eur} \text{Total investment cost for export network expansions, in investment cost for export network expansions, in investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions, in investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Total investment cost for export network expansions} \\ \text{Eur} \text{Eur} \text{Export_capacity_expansion} \\ \text{Eur} Eur$	$C_{l.w}^{conv,inv}$	Conv_investment_cost_nmnl	[EUR]	Total investment cost for conversion technologies at	
$C_{l,w}^{stor,inv} \text{Stor_investment_cost_nmnl} \begin{bmatrix} \text{EUR} \end{bmatrix} \text{technologies at location } l, \text{ in investment stage } w \\ \text{Total investment cost for storage technologies at location } l, \text{ in investment stage } w \\ \text{Cexc,inv} \text{Exchange_network_expansion} \begin{bmatrix} \text{EUR} \end{bmatrix} \text{Total investment cost for network expansions between location } l \text{ and } l', \text{ in investment stage } w \\ \text{Cexp,inv} \text{Import_capacity_expansion} \begin{bmatrix} \text{EUR} \end{bmatrix} \text{Total investment cost for import network expansions, in investment stage } w \\ \text{Cexp,inv} \text{Export_capacity_expansion} \begin{bmatrix} \text{EUR} \end{bmatrix} \text{Total investment cost for export network expansions, in investment cost for export network expansions, in investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions, in investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{Total investment cost for export network expansions} \\ \text{EUR} \text{EVR} \text{Total investment cost for export network expansions} \\ \text{EVR} $				location l , in investment stage w	
$C_{l,w}^{stor,inv} \text{Stor_investment_cost_nmnl} \text{[EUR]} \text{technologies at location l, in investment stage w} \\ C_{l,w}^{exc,inv} \text{Exchange_network_expansion} \text{[EUR]} \text{Total investment cost for network expansions between location l in investment stage w} \\ C_{l,w}^{exc,inv} \text{Exchange_network_expansion} \text{[EUR]} \text{Total investment cost for network expansions between location l and l', in investment stage w} \\ C_{l,w}^{imp,inv} \text{Import_capacity_expansion} \text{[EUR]} \text{Total investment cost for import network expansions, in investment stage w} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{[EUR]} \text{Total investment cost for export network expansions, in investment cost for export network expansions} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{[EUR]} \text{Total investment cost for export network expansions} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{[EUR]} \text{Total investment cost for export network expansions} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{[EUR]} \text{Total investment cost for export network expansions} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{[EUR]} \text{Total investment cost for export network expansions} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{[EUR]} \text{Total investment cost for export network expansions} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{[EUR]} \text{Total investment cost for export network expansions} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \text{Export_capacity_expansion} \\ C_{l,w}^{exp,inv} \text{Export_capacity_expansion} \\ C_{l,w}^{exp,inv} Expo$	$C_{l,w}^{ccs,inv}$	CCS_investment_cost_nmnl	[EUR]	Total investment cost for carbon capture and storage	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	υ, ω			technologies at location l , in investment stage w	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{l,w}^{stor,inv}$	Stor_investment_cost_nmnl	[EUR]	Total investment cost for storage technologies at lo-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				cation l , in investment stage w	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{l, \dots}^{exc, inv}$	Exchange_network_expansion	[EUR]	Total investment cost for network expansions be-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ι, w	_	,	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{l,}^{imp,inv}$	Import_capacity_expansion	[EUR]	Total investment cost for import network expan-	
$C_{l,w}^{exp,inv}$ Export_capacity_expansion [EUR] Total investment cost for export network expansion, in investment stage w	ι, w		,		
cost nmnl sions, in investment stage w	$C_{l}^{exp,inv}$	Export_capacity_expansion	[EUR]	Total investment cost for export network expan-	
	ι, w	_cost_nmnl	,	sions, in investment stage w	
R _l ^{slvg} Salvage_at_end_of_horizon_nmnl [EUR] Salvage value of all conversion and storage technolo-	R_i^{slvg}		[EUR]		
gies at location l not reaching the end of their life-	·l		[]		
time at the end of the model horizon					
$C_{l,y}^{dsm}$ DSM_cost_per_year_nmnl [EUR] Cost for demand-side management operations, in	$C_{l,n}^{dsm}$	DSM_cost_per_year_nmnl	[EUR]		
$v_{i,y}$ $v_{i,y}$ $v_{i,y}$ $v_{i,y}$	ι, y		,		
$CO2_{l,y}^{ccs}$ Total_site_carbon_capture [EUR] Emissions captured through all CCS technologies,	$CO2_{l}^{ccs}$	Total_site_carbon_capture	[EUR]		
$_$ per $_$ year $=$ at location l , in year y		_	, ,		
$C_{l,y}^{CO2}$ Carbon_tax_cost_per _year_nmnl [EUR] CO2 taxes at location l , in year y	$C_{l,u}^{CO2}$		[EUR]		
$C_{l,y}^{CO2}$ Carbon_tax_cost_per _year_nmnl [EUR] CO2 taxes at location l , in year y Curtailment_cost_per [EUR] Cost for curtailing generated energy at location l , in	$C_{l,u}^{Curt}$		EUR		
_year_nmnl year y	•,9	_	, ,		

1 Objective function

2 Constraints on Input-output relationships for dispatchable tech

The following section lists all constraints present in the MANGO base model. They define the possible solution space of the optimization, representing various technical, economical and external relationships of an energy system. The constraints are split into a variety of subcategories which help the readability of the model.

2.1 Equation 1

Equation 1 defines the input-to-output relation for tracked, dispatchable technologies, while Equation 2 defines the same relationship for non-tracked, dispatchable technologies. The equations define the power output as the energy input times the conversion factor and the conversion degradation factor.

Dispatchable_conv_tech_input_output_tr_rule

$$POUT_{c_{d_tr},ec',l,w,p,d,t}^{disp,tr} = PIN_{c_{d_tr},ec,l,w,p,d,t}^{disp,tr} \cdot \eta_{c_{d_tr},ec,ec',w}^{conv,tr} \cdot cdeg_{c_{d_tr},ec',w,p} ,$$

$$\forall c_{d_tr} \in \mathcal{C}_{d_tr}, \ ec,ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{p \geq w \ , \ p \leq w + cl_{c_{d_tr}}^p - 1 \ , \ cpl_{c_{d_tr},l} = 1 \ , \ ecc_{c_{d_tr},ec,ec'}^{disp} = 1\}$$

$$(1)$$

2.2 Equation 2

Input-output relationship for non-tracked, dispatchable technologies: Dispatchable_conv_tech_input_output_ntr_rule

$$POUT_{c_{d_ntr},ec',l,p,d,t}^{disp,ntr} = PIN_{c_{d_ntr},ec,l,p,d,t}^{disp,ntr} \cdot \eta_{c_{d_ntr},ec,ec'}^{disp,ntr},$$

$$\forall c_{d_ntr} \in \mathcal{C}_{d_ntr}, \ ec, ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{cpl_{c_{d_ntr},l} = 1, \ ecc_{c_{d_ntr},ec,ec'}^{disp} = 1\}$$

$$(2)$$

2.3 Equation 3

Input-output relationship for non-tracked, dispatchable CCS technologies: Dispatchable_CCS_conv_tech_input_output_ntr_rule

$$POUT_{c_{d_ntr},ec',l,p,d,t}^{disp,ntr} = PIN_{c_{d_ntr},ec,l,p,d,t}^{disp,ntr} \cdot \eta_{c_{d_ntr},ec,ec'}^{disp,ntr},$$

$$\forall c_{d_ntr} \in \mathcal{C}_{d_ntr}, \ ec, ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{cpl_{c_{d_ntr},l} = 1, \ ecc_{c_{d_ntr},ec,ec'}^{disp} = 1\}$$

$$(3)$$

3 Constraints on Input-output relationships for renewable tech

3.1 Equation 5

Constraint for the calculation of the energy output by tracked solar technologies: Solar_output_tr_rule

$$POUT_{r_{s_tr},ec,l,w,p,d,t}^{re,tr} = sol_{l,p,d,t}^{rad} \cdot \frac{TCAP_{r_{s_tr},ec,l,w,p}^{conv,tr}}{\eta_{r_{s_tr},ec,w}^{sol,tr}} \cdot \eta_{r_{s_tr},ec,w}^{sol,tr} \cdot cdeg_{r_{s_tr},ec,w,p} ,$$

$$\forall r_{s_tr} \in \mathcal{R}_{s_tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{p \ge w, p \le w + cl_{r_{s_tr}}^p - 1, \ cpl_{r_{s_tr},l} = 1, \ rcc_{r_{s_tr},ec} = 1\}$$

$$(4)$$

3.2 Equation 5

Constraint for the calculation of the energy output by non-tracked solar technologies: Solar_output_ntr_rule

$$POUT_{r_{s_ntr},ec,l,p,d,t}^{re,ntr} = sol_{l,p,d,t}^{rad} \cdot \frac{TCAP_{r_{s_ntr},ec,l,p}^{conv,ntr}}{sol_{sol,ntr}} \cdot \eta_{r_{s_ntr},ec}^{sol,ntr} ,$$

$$\forall r_{s_ntr} \in \mathcal{R}_{s_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \{cpl_{r_{s_ntr},l} = 1, \ rcc_{r_{s_ntr},ec} = 1\}$$

$$(5)$$

3.3 Equation 6

Constraint for the calculation of the energy output by tracked wind technologies: Wind_output_tr_rule

$$POUT_{r_{w_tr},ec,l,w,p,d,t}^{re,tr} = \begin{cases} TCAP_{r_{w_tr},ec,l,w,p}^{conv,tr} \cdot cdeg_{r_{w_tr},ec,w,p} &, ws_{r_{w_tr},w}^{rate,tr} \leq ws_{l,p,d,t} \leq ws_{r_{w_tr}}^{cutout,tr} \\ TCAP_{r_{w_tr},ec,l,w,p}^{conv,tr} \cdot \frac{ws_{l,p,d,t} - ws_{r_{w_tr},w}^{cutin,tr}}{ws_{r_{w_tr},w}^{rate,tr} - ws_{r_{w_tr},w}^{cutin,tr}} &, ws_{r_{w_tr},w}^{cutin,tr} \leq ws_{l,p,d,t} \leq ws_{r_{w_tr},w}^{rate,tr} \\ 0 &, ws_{l,p,d,t} < ws_{r_{w_tr},w}^{cutin,tr} \vee ws_{l,p,d,t} > ws_{r_{w_tr},w}^{cutout,tr} \end{cases}$$

$$\forall r_{w_tr} \in \mathcal{R}_{w_tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \\ \{p \geq w \land p \leq cl_{r_{w_tr}}^{p} - 1, cpl_{r_{w_tr},l} = 1, \ rcc_{r_{w_tr},ec} = 1\}$$

3.4 Equation 7

Constraint for the calculation of the energy output by non-tracked wind technologies: Wind_output_ntr_rule

$$POUT_{r_{w_ntr},ec,l,p,d,t}^{wind,ntr} = \begin{cases} TCAP_{r_{w_ntr},ec,l,w,p,d,t}^{conv,ntr} &, ws_{r_{w_ntr},w}^{rate,ntr} \leq ws_{l,p,d,t} \leq ws_{r_{w_ntr}}^{cutin,ntr} \\ TCAP_{r_{w_ntr},ec,l,w,p,d,t}^{conv,ntr} & \frac{ws_{l,p,d,t} - ws_{r_{w_ntr}}^{cutin,ntr}}{ws_{r_{w_ntr}}^{rate,ntr} - ws_{r_{w_ntr}}^{cutin,ntr}} &, ws_{r_{w_ntr},w}^{rate,ntr} \leq ws_{l,p,d,t} \leq ws_{r_{w_ntr},w}^{cutout,ntr} \\ 0 & , ws_{l,p,d,t} < ws_{r_{w_ntr},w}^{cutin,ntr} \vee ws_{l,p,d,t} > ws_{r_{w_ntr}}^{cutout,ntr} \\ \end{cases}$$

$$(7)$$

$$\forall \ r_{w_ntr} \in \mathcal{R}_{w_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \ | \{cpl_{r_{w_ntr},l} = 1 \ , \ rcc_{r_{w_ntr},ec} = 1\}$$

3.5 Equation 8

Constraint for the calculation of the energy output by other tracked renewable technologies (e.g. Geothermal, RoR):Other_renew_output_tr_rule

$$POUT_{r_{r_{\perp}tr},ec,l,w,p,d,t}^{re,tr} = cap f_{l,p,d,t} \cdot TCAP_{r_{r_{\perp}tr},ec,l,w,p}^{conv,tr} \cdot cdeg_{r_{r_{\perp}tr},ec,w,p} ,$$

$$\forall r_{r_{\perp}tr} \in \mathcal{R}_{r_{\perp}tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{p \geq w \land p \leq w + cl_{r_{r_{\perp}tr}}^{p} - 1, \ cpl_{r_{r_{\perp}tr},l} = 1, \ rcc_{r_{r_{\perp}tr},ec} = 1\}$$

$$(8)$$

3.6 Equation 9

Constraint for the calculation of the energy output by non-tracked hydro RoR technologies: Other_renew_output_ntr_rule

$$POUT_{r_{r_ntr},ec,l,p,d,t}^{re,ntr} = cap f_{l,p,d,t} \cdot TCAP_{r_{r_ntr},ec,l,p}^{conv,ntr},$$

$$\forall r_{r_ntr} \in \mathcal{R}_{r_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \{ \ cpl_{r_{r_ntr},l} = 1 \ , \ rcc_{r_{r_ntr},ec} = 1 \}$$

$$(9)$$

4 Hydro dam constraints

4.1 Equation **10**

Energy balance for the tracked hydro dam storage technologies considering incoming and outgoing energy flows: ${\tt Hydro_dam_stor_balance_tr_rule}$

$$SoC_{r_{dam_tr},ec,l,w,p,d,t}^{day,dam,tr} = capf_{l,p,d,t}^{dam} \cdot TCAP_{r_{dam_tr},ec,l,w,p}^{dam,tr} - \left(\frac{1}{\eta_{r_{dam_tr},ec,w}^{dam,tr} \cdot cdeg_{r_{dam_tr},ec,w,p}}\right) \cdot POUT_{r_{dam_tr},ec,l,w,p,d,t}^{re,tr} + \left\{0 & ,t=1\\ (1-\eta_{r_{dam_tr},w}^{self,dam,tr}) * SoC_{r_{dam_tr},ec,l,w,p,d,t-1}^{day,dam,tr} & ,t \neq 1 \\ \forall r_{dam_tr} \in \mathcal{R}_{dam_tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \\ \{p \geq w \ , \ p \leq w + cl_{r_{dam_tr}}^{p} - 1 \ , \ cpl_{r_{dam_tr},l} = 1 \ , \ rcc_{r_{dam_tr},ec} = 1\} \end{cases}$$

$$(10)$$

4.2 Equation **11**

Energy balance for the tracked hydro dam storage technologies considering incoming and outgoing energy flows: Hydro_dam_stor_balance_ntr_rule

$$SoC_{r_{dam_ntr},ec,l,p,d,t}^{day,dam,ntr} = cap f_{l,p,d,t}^{dam} \cdot TCAP_{r_{dam_ntr},ec,l,p}^{dam,ntr} - \left(\frac{1}{\eta_{r_{dam_ntr},ec}^{dam,ntr}}\right) \cdot POUT_{r_{dam_ntr},ec,l,p,d,t}^{re,ntr} +$$

$$\begin{cases} 0 & ,t = 1 \\ (1 - \eta_{r_{dam_ntr}}^{self,dam,ntr}) * SoC_{r_{dam_ntr},ec,l,p,d,t-1}^{day,dam,ntr} & ,t \neq 1 \end{cases}$$

$$\forall r_{dam_ntr} \in \mathcal{R}_{dam_ntr}, ec \in \mathcal{EC}, l \in \mathcal{L}, p \in \mathcal{P}, d \in \mathcal{D}, t \in \mathcal{T} \mid$$

$$\{ cpl_{r_{dam_ntr},l} = 1, rcc_{r_{dam_ntr},ec} = 1 \}$$

$$(11)$$

4.3 Equation **12**

Constraint limiting the output from tracked hydro dam plants according to their capacity: Hydro_dam_conv_capacity_limit_tr

$$POUT_{r_{dam_tr},ec,l,w,p,d,t}^{re,tr} \leq TCAP_{r_{dam_tr},ec,l,w,p}^{conv,tr}$$

$$\forall r_{dam_tr} \in \mathcal{R}_{dam_tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{p \geq w, \ p \leq w + cl_{r_{dam_tr}}^p - 1, \ cpl_{r_{dam_tr},l} = 1, \ rcc_{r_{dam_tr},ec} = 1\}$$

$$(12)$$

4.4 Equation **13**

Constraint limiting the output from non-tracked hydro dam plants according to their capacity: Hydro_dam_conv_capacity_limit_ntr_rule

$$POUT_{r_{dam_ntr},ec,l,p,d,t}^{re,ntr} \leq TCAP_{r_{dam_ntr},ec,l,p}^{conv,ntr}$$

$$\forall r_{dam_ntr} \in \mathcal{R}_{dam_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{cpl_{r_{dam_ntr},l} = 1, \ rcc_{r_{dam_ntr},ec} = 1\}$$

$$(13)$$

4.5 Equation 14

Constraint to capture the minimum intra-day storage level for a tracked hydro dam technology: Hydro_dam_stor_intra_day_min_tr_rule

$$SoC_{r_{dam_tr},ec,l,w,p,d}^{day,min,dam,tr} \leq SoC_{r_{dam_tr},ec,l,w,p,d,t}^{day,dam,tr}$$

$$\forall r_{dam_tr} \in \mathcal{R}_{dam_tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{p \geq w \ , \ p \leq w + cl_{r_{dam_tr}}^p - 1 \ , \ cpl_{r_{dam_tr},l} = 1 \ , \ rcc_{r_{dam_tr},ec} = 1\}$$

$$(14)$$

4.6 Equation **15**

Constraint to capture the maximum intra-day storage level for a tracked hydro dam technology: Hydro_dam_stor_intra_day_max_tr_rule

$$SoC_{r_{dam_tr},ec,l,w,p,d}^{day,max,dam,tr} \geq SoC_{r_{dam_tr},ec,l,w,p,d,t}^{day,dam,tr}$$

$$\forall r_{dam_tr} \in \mathcal{R}_{dam_tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{p \geq w \ , \ p \leq w + cl_{r_{dam_tr}}^p - 1 \ , \ cpl_{r_{dam_tr},l} = 1 \ , \ rcc_{r_{dam_tr},ec} = 1\}$$

$$(15)$$

4.7 Equation 16

Constraint to capture the minimum intra-day storage level for a non-tracked hydro dam technology: Hydro_dam_stor_intra_day_min_ntr_rule

$$SoC_{r_{dam_ntr},ec,l,p,d}^{day,min,dam,ntr} \leq SoC_{r_{dam_ntr},ec,l,p,d,t}^{day,dam,ntr}$$

$$\forall r_{dam_ntr} \in \mathcal{R}_{dam_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{cpl_{r_{dam_ntr},l} = 1, \ rcc_{r_{dam_ntr},ec} = 1\}$$

$$(16)$$

4.8 Equation 17

Constraint to capture the maximum intra-day storage level for a non-tracked hydro dam technology: Hydro_dam_stor_intra_day_max_ntr_rule

$$SoC_{r_{dam_ntr},ec,l,p,d}^{day,max,dam,ntr} \ge SoC_{r_{dam_ntr},ec,l,p,d,t}^{day,max,dam,ntr}$$

$$\forall r_{dam_ntr} \in \mathcal{R}_{dam_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{cpl_{r_{dam_ntr},l} = 1, \ rcc_{r_{dam_ntr},ec} = 1\}$$

$$(17)$$

4.9 Equation 18

Constraint connecting the inter-day storage level of a tracked hydro dam technology: Hydro_dam_stor_inter_day_connection_tr_rule

$$SoC_{r_{dam_tr},ec,l,w,p,cd}^{interday,dam,tr} = \begin{cases} 0 & ,p = w \land cd = 1 \\ SoC_{r_{dam_tr},ec,l,w,p-1,max(cd)}^{interday,dam,tr} \cdot (1 - \eta_{r_{dam_tr},w}^{self,dam,tr})^{max(t)} + SoC_{r_{dam_tr},ec,l,w,p-1,cd2td_{p-1,max(cd)},max(t)}^{day,dam,tr} & ,p \neq w \land cd = 1 \\ SoC_{r_{dam_tr},ec,l,w,p,cd-1}^{interday,dam,tr} \cdot (1 - \eta_{r_{dam_tr}}^{self,dam,tr})^{max(t)} + SoC_{r_{dam_tr},ec,l,w,p,cd2td_{p,cd-1},max(t)}^{day,dam,tr} & ,cd \neq 1 \end{cases}$$

$$(18)$$

$$\forall r_{dam_tr} \in \mathcal{R}_{dam_tr}, ec \in \mathcal{EC}, l \in \mathcal{L}, w \in \mathcal{W}, p \in \mathcal{P}, d \in \mathcal{D}, t \in \mathcal{T} \mid \{p \geq w, p \leq w + cl_{r_{dam_tr}}^p - 1, cpl_{r_{dam_tr},l} = 1, rcc_{r_{dam_tr},ec} = 1\}$$

4.10 Equation 19

Constraint connecting the inter-day storage level of a non-tracked hydro dam technology: Hydro_dam_stor_inter_day_connection_ntr_rule

$$SoC_{r_{dam_ntr},ec,l,p,cd}^{interday,dam,ntr} =$$

$$\begin{cases} SoC_{r_{dam_ntr}}^{init} \cdot TCAP_{r_{dam_ntr},ec,l,p}^{dam,ntr} &, p = 1 \land cd = 1 \land r_{dam_ntr} \in \mathcal{R}_{dam_ex} \\ 0 &, p = 1 \land cd = 1 \land r_{dam_ntr} \notin \mathcal{R}_{dam_ex} \\ SoC_{r_{dam_ntr},ec,l,p-1,max(cd)}^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_ntr}}^{self,dam,ntr})^{max(t)} \\ + SoC_{r_{dam_ntr},ec,l,p-1,cd2td_{p-1,max(cd)},max(t)}^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_tr}}^{self,dam,ntr})^{max(t)} \\ + SoC_{r_{dam_ntr},ec,l,p,cd-1}^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_tr}}^{self,dam,ntr})^{max(t)} \\ + SoC_{day,dam,ntr}^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_tr}}^{self,dam,ntr})^{max(t)} \\ + SoC_{r_{dam_ntr},ec,l,p,cd2td_{p,cd-1},max(t)}^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_tr}}^{self,dam,ntr})^{interday,dam,ntr} \\ + SoC_{r_{dam_ntr},ec,l,p,cd2td_{p,cd-1},max(t)}^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_ntr}}^{self,dam,ntr})^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_ntr}}^{self,dam,ntr})^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_ntr}}^{self,dam,ntr})^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_ntr}}^{self,dam,ntr})^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_ntr}}^{self,dam,ntr})^{interday,dam,ntr}$$

$$\forall \ r_{dam_ntr} \in \mathcal{R}_{dam_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ cd \in \mathcal{CD} \mid \\ \{ \ cpl_{r_{dam_ntr},l} = 1 \ , \ rcc_{r_{dam_ntr},ec} = 1 \}$$

4.11 Equation 20

Constraint limiting the stored energy in tracked hydro dam plants according to the storage capacity: Hydro_dam_stor_capacity_limit_tr_rule

$$SoC_{r_{dam_tr},ec,l,w,p,cd}^{interday,dam,tr} + SoC_{r_{dam_tr},ec,l,w,p,cd2td_{p,cd}}^{day,max,dam,tr} \leq TCAP_{r_{dam_tr},ec,l,w,p}^{dam,tr}$$

$$\forall r_{dam_tr} \in \mathcal{R}_{dam_tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{p \geq w \ , \ p \leq w + cl_{r_{dam_tr}}^{p} - 1 \ , \ cpl_{r_{dam_tr},l} = 1 \ , \ rcc_{r_{dam_tr},ec} = 1\}$$

$$(20)$$

4.12 Equation 21

Constraint limiting the stored energy in the non-tracked hydro dam plants according to the storage capacity: Hydro_dam_stor_capacity_limit_ntr_rule

$$SoC_{r_{dam_ntr},ec,l,p,cd}^{interday,dam,ntr} + SoC_{r_{dam_ntr},ec,l,p,cd2td_{p,cd}}^{day,max,dam,ntr} \leq TCAP_{r_{dam_ntr},ec,l,p}^{dam,ntr}$$

$$\forall r_{dam_ntr} \in \mathcal{R}_{dam_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{cpl_{r_{dam_ntr},l} = 1, \ rcc_{r_{dam_ntr},ec} = 1\}$$

$$(21)$$

4.13 Equation 22

Constraint to enforce non-negativity for the storage level of a tracked hydro dam technology: Hydro_dam_stor_inter_day_non_negativity_constr_tr_rule

$$SoC_{r_{dam_tr},ec,l,w,p,cd}^{interday,dam,tr} \cdot (1 - \eta_{r_{dam_tr,w}}^{self,dam,tr})^{max(t)} + SoC_{r_{dam_tr},ec,l,w,p,cd2td_{p,cd}}^{day,min,dam,tr} \ge 0$$

$$\forall r_{dam_tr} \in \mathcal{R}_{dam_tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ cd \in \mathcal{CD} \mid$$

$$\{p \ge w \ , \ p \le w + cl_{r_{dam_tr}}^p - 1 \ , \ cpl_{r_{dam_tr},l} = 1 \ , \ rcc_{r_{dam_tr},ec} = 1\}$$

$$(22)$$

4.14 Equation **23**

Constraint to enforce non-negativity for the storage level of a non-tracked hydro dam technology: Hydro_dam_stor_inter_day_non_negativity_constr_ntr_rule

$$SoC_{r_{dam_ntr},ec,l,p,cd}^{interday,dam,ntr} \cdot (1 - \eta_{r_{dam_ntr}}^{self,dam,ntr})^{max(t)} + SoC_{r_{dam_ntr},ec,l,p,cd2td_{p,cd}}^{day,min,dam,ntr} \ge 0$$

$$\forall \ r_{dam_ntr} \in \mathcal{R}_{dam_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ cd \in \mathcal{CD} \mid \{ \ cpl_{r_{dam_ntr},l} = 1 \ , \ rcc_{r_{dam_ntr},ec} = 1 \}$$

$$(23)$$

4.15 Equation 24

Constraint governing the relationship between dam storage capacity and energy output for hydro dam technologies: Hydro_dam_conv_stor_cap_relation_rule

$$NCAP_{r_{dam},ec,l,w}^{dam,stor} \leq cap_{r_{dam}}^{stor,conv,max} \cdot NCAP_{r_{dam},ec,l,w}^{conv}$$

$$\forall r_{dam} \in \mathcal{R}_{dam}, ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ | \ \{ cpl_{r_{dam},l} = 1 \ , \ rcc_{r_{dam},ec} = 1 \}$$

$$(24)$$

5 Load balance and conversion contraints

5.1 Equation 25

Energy balance for each energy system including conversion, storage, losses, exchange and export flows: Load_balance_rule

$$\begin{cases} P_{cc,l,p,d,t}^{int}, ec \notin \mathcal{EC}_{i} + \sum_{\substack{C_{d,l} \in \mathcal{C}_{l,l} \in \mathcal{C}_{l,l} \\ c_{d,l} \in \mathcal{C}_{l,l} \neq d, d, l}} \sum_{\substack{C_{d,l} \in \mathcal{C}_{l,l} \in \mathcal{C$$

5.2 Equation 26

Constraint to keep track of the total available capacity per tracked technology at each energy site and period: tcap_balance_tr_rule

$$TCAP_{c_{tr},ec',l,w,p}^{conv,tr} = NCAP_{c_{tr},ec',l,w}^{conv} \forall c_{tr} \in \mathcal{C}_{tr}, ec' \in \mathcal{EC}, l \in \mathcal{L}, w \in \mathcal{W}, p \in \mathcal{P}, |$$

$$\{p \geq w, p \leq w + cl_{c_{tr}}^{p} - 1, cpl_{c_{tr},l} = 1\} \land ((c_{tr} \in \mathcal{C}_d \land \exists ec \in \mathcal{EC} \mid ecc_{c_{tr},ec,ec'}^{disp} = 1) \lor rcc_{c_{tr},ec'} = 1)$$

$$(26)$$

5.3 Equation 27

Constraint to keep track of the total available capacity per non-tracked technology at each energy site and period: tcap_balance_ntr_rule

$$TCAP_{c_{ntr},ec',l,p}^{conv,ntr} = \sum_{\substack{w \in \mathcal{W} \\ p \geq w \\ p \leq w + cl_{c_{ntr}}^{p} - 1}} NCAP_{c_{ntr},ec',l,w}^{conv} \ \forall \ c_{ntr} \in \mathcal{C}_{ntr}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P} \ |$$

$$cpl_{c_{ntr},l} = 1 \land ((c_{ntr} \in \mathcal{C}_{d} \land \exists \ ec \in \mathcal{EC} \ | \ ecc_{c_{ntr},ec,ec'}^{disp} = 1) \ \lor rcc_{c_{ntr},ec'} = 1)$$

$$(27)$$

5.4 Equation 28

Constraint to keep track of the total storage capacity per tracked hydro dam technology at each energy site and period:

tcap_hydro_dam_stor_balance_tr_rule

$$TCAP_{r_{dam_tr},ec,l,w,p}^{dam,tr} = NCAP_{r_{dam_tr},ec,l,w}^{dam,stor} \forall r_{dam_tr} \in \mathcal{R}_{dam_tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ |$$

$$\{p \geq w \ , \ p \leq w + cl_{r_{dam_tr}}^p - 1 \ , \ cpl_{r_{dam_tr},l} = 1 \ , \ rcc_{r_{dam_tr},ec} = 1$$

$$(28)$$

5.5 Equation **29**

Constraint to keep track of the total available capacity per non-tracked technology at each energy site and period: tcap_hydro_dam_stor_balance_ntr_rule

$$TCAP_{r_{dam_ntr},ec,l,p}^{dam,ntr} = \sum_{\substack{w \in \mathcal{W} \\ p \geq w \\ p \leq w + cl_{r_{dam_ntr}}^{p} - 1}} NCAP_{r_{dam_ntr},ec,l,w}^{dam,stor}$$

$$(29)$$

 $\forall r_{dam_ntr} \in \mathcal{R}_{dam_ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ | \{ \ cpl_{r_{dam_ntr},l} = 1 \ , \ rcc_{r_{dam_ntr},ec} = 1 \}$

5.6 Equation 30

Constraint defining the relationship of different capacities of multi-output technologies: Multi_output_technologies_capacity_relationship_rule

$$\begin{cases} NCAP^{conv}_{c_d,ec'_1,l,w} \cdot \eta^{disp,tr}_{c_d,ec,ec'_2,w} = NCAP^{conv}_{c_d,ec'_2,l,w} \cdot \eta^{disp,tr}_{c_d,ec,ec'_1,w} &, c_d \in \mathcal{C}_{tr} \\ NCAP^{conv}_{c_d,ec'_1,l,w} \cdot \eta^{disp,ntr}_{c_d,ec,ec'_2} = NCAP^{conv}_{c_d,ec'_2,l,w} \cdot \eta^{disp,ntr}_{c_d,ec,ec'_1} &, c_d \in \mathcal{C}_{ntr} \end{cases}$$

$$\forall c_d \in \mathcal{C}_d, \ ec, ec'_1, ec'_2 \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W} \mid \{cpl_{c_d,l} = 1, \ ecc^{disp}_{c_d,ec,ec'_1} = 1, \ ecc^{disp}_{c_d,ec,ec'_2} = 1, \ ec'_1 \neq ec'_2\}$$

Equation 31 5.7

Constraint setting an upper limit to the total renewable capacity per technology at each site: Maximum_renewable_capacity_per_tech_and_site_rule

If
$$r \in \mathcal{C}_{tr}$$
:
$$\sum_{\substack{ec \in \mathcal{EC} \\ rcc_{r,ec}=1}} \sum_{\substack{w \in \mathcal{W} \\ p \geq w \\ p \leq w + cl_r^p - 1}} TCAP_{r,ec,l,w,p}^{conv,tr} \leq rcap_{r,l,p}^{max}$$

$$If \ r \in \mathcal{C}_{ntr}:$$

$$\sum_{\substack{ec \in \mathcal{EC} \\ rcc_{r,ec}=1}} TCAP_{r,ec,l,p}^{conv,ntr} \leq rcap_{r,l,p}^{max}$$

$$\forall \ r \in \mathcal{R}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ | \ cpl_{r,l} = 1$$

$$(31)$$

Equation 32 5.8

Constraint setting an upper limit to the total renewable capacity per technology group at each site: Maximum_dispatch_capacity_per_tech_group_and_site_rule

Equation 33 5.9

Constraint setting an upper limit to the total renewable capacity per technology group at each site: Maximum_renewable_capacity_per_tech_group_and_site_rule

$$\sum_{\substack{r_{grm} \in \mathcal{R}_{grm} \cap \mathcal{C}_{tr} \\ ec \in \mathcal{EC} \\ p \ge w \\ p \le w + cl_{r_{grm}, ec}^{p} - 1 \\ cpl_{r_{grm}, ec}^{p} = 1 \\ rcc_{r_{grm}, ec} = 1} TCAP_{r_{grm}, ec, l, p}^{conv, ntr} \le rcap_{r_{gr}, l, p}^{max, gr}$$

$$(33)$$

5.10Equation 34

Constraint setting the capacity for existing conversion technologies: Existing_conv_capacity_setting_rule

$$NCAP_{c_{ex},ec',l,1}^{conv} = excap_{c_{ex},ec',l}^{conv} \quad \forall c_{ex} \in \mathcal{C}_{ex}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L} \mid \{ cpl_{c_{ex},l} = 1 \land ((c_{ex} \in \mathcal{C}_d \land \exists \ ec \in \mathcal{EC} \mid ecc_{c_{ex},ec,ec'}^{disp} = 1) \ \lor rcc_{c_{ex},ec'} = 1) \}$$

$$(34)$$

Equation 35

Constraint setting the storage capacity for existing hydro dam technologies: Existing_hydro_dam_stor_capacity_setting_rule

$$NCAP_{r_{dam_ex},ec',l,1}^{dam} = excap_{r_{dam_ex},ec',l}^{dam} \quad \forall \ r_{dam_ex} \in \mathcal{R}_{dam_ex}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L} \mid rcc_{r_{dam_ex},ec} = 1$$
 (35)

Equation 36 5.12

Constraint preventing the re-installation of existing conversion technologies: Existing_conv_no_reinvestment_rule

If
$$w \neq 1 : ncap_{ce_x,e_c,l,w}^{conv} \le 0$$
 $\forall c_{ex} \in \mathcal{C}_{ex}, ec \in \mathcal{EC}, l \in \mathcal{L}, w \in \mathcal{W} \mid cpl_{c_{ex},l} = 1$ (36)

5.13 Equation **37**

Constraint preventing capacity violation for the tracked conversion technologies of the energy system: Capacity_constraint_tr_rule

$$POUT_{c_{d_tr},ec',l,w,p,d,t}^{disp,tr} \leq TCAP_{c_{d_tr},ec',l,w,p}^{conv,tr} \quad \forall \ c_{d_tr} \in \mathcal{C}_{d_tr}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P},$$

$$d \in \mathcal{D}, t \in \mathcal{T} \mid \{p \geq w, p \leq w + cl_{c_{d_tr}}^p - 1, \ cpl_{c_{d_tr},l} = 1, \exists \ ec \in \mathcal{EC} \mid ecc_{c_{d_tr},ec,ec'} = 1\}$$

$$(37)$$

5.14 Equation **38**

Constraint preventing capacity violation for the non-tracked conversion technologies of the energy system: Capacity_constraint_ntr_rule

$$POUT_{c_{d_ntr},ec',l,p,d,t}^{disp,ntr} \leq TCAP_{c_{d_ntr},ec',l,p}^{conv,ntr} \quad \forall \ c_{d_ntr} \in \mathcal{C}_{d_ntr}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \\ \left\{ \ cpl_{c_{d_ntr},l} = 1 \ , \exists \ ec \ \in \mathcal{EC} \mid ecc_{c_{d_ntr},ec,ec'} = 1 \right\}$$

$$(38)$$

5.15 Equation **39**

Constraint imposing steady operation per period for tracked, baseload technologies: Baseload_operation_tr_rule

$$POUT_{c_{b_tr},ec',l,w,p,d,t}^{disp,tr} = POUT_{c_{b_tr},ec',l,w,p}^{base,tr} \quad \forall c_{b_tr} \in \mathcal{C}_{b_tr}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D},$$

$$t \in \mathcal{T} \mid \{p \geq w, p \leq w + cl_{c_{b_tr}}^p - 1, \ cpl_{c_{b_tr},l} = 1, \exists \ ec \in \mathcal{EC} \mid ecc_{c_{b_tr},ec,ec'} = 1\}$$

$$(39)$$

5.16 Equation **40**

Constraint imposing steady operation per period for non-tracked, baseload technologies: Baseload_operation_ntr_rule

$$POUT_{c_{b_ntr},ec',l,p,d,t}^{disp,ntr} = POUT_{c_{b_ntr},ec',l,p}^{base,ntr} \quad \forall c_{b_ntr} \in \mathcal{C}_{b_ntr}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \\ \left\{ cpl_{c_{b_ntr},l} = 1 \ , \exists \ ec \ \in \mathcal{EC} \mid ecc_{c_{b_ntr},ec,ec'}^{disp} = 1 \right\}$$

$$(40)$$

5.17 Equation **41**

Maximum possible conversion technology capacity per technology considered: Conv_maximum_cap_limit_rule

$$NCAP_{c,ec',l,w}^{conv} \leq cap_c^{max} \qquad \forall c \in \mathcal{C}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W} \mid \\ \left\{ \ cpl_{c,l} = 1 \land ((c \in \mathcal{C}_d \land \exists \ ec \in \mathcal{EC} \mid ecc_{c,ec,ec'}^{disp} = 1) \ \lor rcc_{c,ec'} = 1) \right\}$$

$$(41)$$

5.18 Equation **42**

Input-output relationship for non-tracked, dispatchable CCS technologies: Dispatchable_CCS_conv_tech_input_output_ntr_rule

$$POUT_{c_{ccs_ntr},ec',l,p,d,t}^{ccs,ntr} = PIN_{c_{ccs_ntr},ec,l,p,d,t}^{ccs,ntr} \cdot \eta_{c_{ccs_ntr},ec}^{conv,ntr} \cdot (1 - \eta_{c_{ccs_ntr}}^{ccs}) ,$$

$$\forall c_{ccs_ntr} \in \mathcal{C}_{ccs} \cap \mathcal{C}_{ntr}, \ ec, ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{cpl_{c,l} = 1, \ ecc_{ccs_ntr}^{disp}, ec, ec' = 1\}$$

$$(42)$$

5.19 Power output rule for tracked dispatch technologies

Input-output relationship for tracked, dispatchable technologies: Dispatchable_conv_tech_input_output_tr_rule

$$POUT_{c_{d_tr},ec',l,w,p,d,t}^{disp,tr} = PIN_{c_{d_tr},ec,l,w,p,d,t}^{disp,tr} \cdot \eta_{c_{d_tr},ec,ec',w}^{conv,tr} \cdot cdeg_{c_{d_tr},ec',w,p} ,$$

$$\forall c_{d_tr} \in \mathcal{C}_{d_tr}, \ ec,ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \{cpl_{c_{d_tr},l} = 1, \ ecc_{c_{d_tr},ec,ec'}^{disp} = 1\}$$

$$(43)$$

5.20 Power output rule for non-tracked dispatch technologies

Input-output relationship for non-tracked, dispatchable technologies: Dispatchable_conv_tech_input_output_ntr_rule

$$POUT_{c_{d_ntr},ec',l,p,d,t}^{disp,ntr} = PIN_{c_{d_ntr},ec,l,p,d,t}^{disp,ntr} \cdot \eta_{c_{d_ntr},ec,ec'}^{conv,ntr},$$

$$\forall c_{d_ntr} \in \mathcal{C}_{d_ntr}, \ ec,ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \{cpl_{c_{d_ntr},l} = 1, \ ecc_{c_{d_ntr},ec,ec'}^{disp} = 1\}$$

$$(44)$$

5.21 Non-tracked storage state of charge during the full year

Constraint connecting the inter-day state-of-charge of a non-tracked storage Storage_inter_day_connection_ntr_rule

5.22 Equation **45**

Constraint for the formulation of the fixed cost in the objective function:

Conv_fixed_cost_rule

Disclaimer: This constraint has been deactivated in the current version of MANGOelec to reduce binary variables.

$$NCAP_{c,ec',l,w}^{conv} \le bigM \cdot Y_{c,l,w}^{conv} \qquad \forall \ c \in \mathcal{C}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W} \mid \{ \ cpl_{c,l} = 1 \land ((c \in \mathcal{C}_d \land \exists \ ec \in \mathcal{EC} \mid ecc_{c,ec,ec'}^{disp} = 1) \ \lor rcc_{c,ec'} = 1) \}$$

$$(45)$$

5.23 Equation **46**

Constraint to calculate the total available capacity for export considering initial capacity and expansion: tcap_exc_balance_rule

$$TCAP_{ec_{x},l1,l2,p}^{exc} = excap_{ec_{x},l1,l2}^{line} + \sum_{\substack{w \in \mathcal{W} \\ w \le p}} NCAP_{ec_{x},l1,l2,w}^{exc} \qquad \forall \ ec_{x} \in \mathcal{EC}_{x}, \ l1,l2 \in \mathcal{L}, \ p \in \mathcal{P} \ |$$

$$\{ \ l1 \neq l2, linepl_{ec_{x},l1,l2} = 1 \}$$

$$(46)$$

5.24 Equation **47**

Energy can only be exchanged between sites if their interconnection capacity allows it: Exchange_limits_rule

$$P_{ec_x,l_1,l_2,p,d,t}^{exc} \le TCAP_{ec_x,l_1,l_2,p}^{exc} \quad \forall \ ec_x \in \mathcal{EC}_x, \ l_1,l_2 \in \mathcal{L}, \ p \in \mathcal{P} \ d \in \mathcal{D} \ t \in \mathcal{T} \mid \{l_1 \neq l_2, linepl_{ec_x,l_1,l_2} = 1\}$$

$$(47)$$

5.25 Equation **48**

Connections between sites have the same capacities:

Bidirectional_connection_equal_capacities_rule

$$NCAP_{ec_x,l1,l2,w}^{exc} = NCAP_{ec_x,l2,l1,w}^{exc} \quad \forall \ ec_x \in \mathcal{EC}_x, \ l1,l2 \in \mathcal{L}, \ w \in \mathcal{W} \mid \{ \ l1 \neq l2, linepl_{ec_x,l1,l2} = 1 \}$$
 (48)

5.26 Equation **49**

Constraint for the formulation of the fixed cost in the objective function:

Fixed_cost_exchange_rule

Disclaimer: This constraint has been deactivated in the current version of MANGOelec to reduce binary variables.

$$NCAP_{ec_x,l1,l2,w}^{exc} \leq bigM \cdot Y_{ec_x,l1,l2,w}^{exc} \qquad \forall \ ec_{ex} \in \mathcal{EC}_{ex}, \ l1,l2 \in \mathcal{L}, \ w \in \mathcal{W} \mid \{\ l1 \neq l2, linepl_{ec_x,l1,l2} = 1\} (49)$$

5.27 Equation **50**

Constraint to calculate the total available capacity for export considering initial capacity and expansion: $tcap_exp_balance_rule$

$$TCAP_{ec_e,l,p}^{exp} = excap_{ec_e,l}^{exp} + \sum_{\substack{w \in \mathcal{W} \\ w \le p}} NCAP_{ec_e,l1,l2,w}^{exc} \qquad \forall \ ec_e \in \mathcal{EC}_e, \ l \in \mathcal{L}, \ p \in \mathcal{P}$$

$$(50)$$

5.28 Equation **51**

An energy can only be exported if there is capacity for export: Export_limits_rule

$$P_{ec_e,l,p,d,t}^{exp} \le TCAP_{ec_e,l,p}^{exp} \qquad \forall \ ec_e \in \mathcal{EC}_e, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T}$$

$$(51)$$

5.29 Equation **52**

Constraint for the formulation of the fixed cost in the objective function:

Fixed_cost_export_rule

$$NCAP_{ec_e,l,w}^{exp} \le bigM \cdot Y_{ec_e,l,w}^{exp} \quad \forall \ ec_e \in \mathcal{EC}_e, \ l \in \mathcal{L}, \ w \in \mathcal{W}$$
 (52)

5.30 Equation **53**

Constraint to calculate the total available capacity for import considering initial capacity and expansion: tcap_imp_balance_rule

$$TCAP_{ec_{i},l,p}^{imp} = excap_{ec_{i},l}^{imp} + \sum_{\substack{w \in \mathcal{W} \\ w \le p}} NCAP_{ec_{i},l,w}^{imp} \qquad \forall \ ec_{i} \in \mathcal{EC}_{i}, \ l \in \mathcal{L}, \ p \in \mathcal{P}$$

$$(53)$$

5.31 Equation **54**

An energy can only be imported if there is capacity for import:

Import_limits_rule

$$P_{ec_i,l,p,d,t}^{imp} \leq TCAP_{ec_i,l,p}^{imp} \quad \forall \ ec_i \in \mathcal{EC}_i, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T}$$

$$(54)$$

5.32 Fixed cost import rule

Constraint for the formulation of the fixed cost in the objective function:

Fixed_cost_import_rule

$$NCAP_{ec_i,l,w}^{imp} \le bigM \cdot Y_{ec_i,l,w}^{imp} \ \forall \ ec_i \in \mathcal{EC}_i, \ l \in \mathcal{L}, \ w \in \mathcal{W}$$
 (55)

5.33 tcap_stor balance tr rule

Constraint to keep track of the total available capacity per tracked storage technology at each energy site and period:

tcap_stor_balance_tr_rule

$$TCAP_{s_{tr},ec,l,w,p}^{stor,tr} = NCAP_{s_{tr},ec,l,w}^{stor} \quad \forall \ s_{tr} \in \mathcal{S}_{tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P} \mid$$

$$\{p \ge w, p \le w + sl_{s_{tr}}^p - 1, \ spl_{s_{tr},l} = 1, \ stc_{s_{tr},ec} = 1\}$$

$$(56)$$

5.34 tcap_stor balance ntr rule

Constraint to keep track of the total available capacity per non-tracked storage technology at each energy site and period:

tcap_stor_balance_ntr_rule

$$TCAP_{s_{ntr},ec,l,p}^{stor,ntr} = \sum_{\substack{w \in \mathcal{W} \\ p \ge w \\ p \le w + sl_{s_{ntr}}^p - 1}} NCAP_{s_{ntr},ec,l,w}^{stor}$$

$$(57)$$

 $\forall s_{ntr} \in \mathcal{S}_{ntr}, ec \in \mathcal{EC}, l \in \mathcal{L}, p \in \mathcal{P} \{ spl_{s_{ntr},l} = 1, stc_{s_{ntr},ec} = 1 \}$

5.35 tpow_stor balance tr rule

Constraint to keep track of the total available power per tracked storage technology at each energy site and period: tpow_stor_balance_tr_rule

$$TPOW_{s_{tr},ec,l,w,p}^{stor,tr} = NPOW_{s_{tr},ec,l,w}^{stor} \quad \forall \ s_{tr} \in \mathcal{S}_{tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P} \mid$$

$$\{p \geq w, p \leq w + sl_{s_{tr}}^{p} - 1, \ spl_{s_{tr},l} = 1, \ stc_{s_{tr},ec} = 1\}$$

$$(58)$$

5.36 tpow_stor balance ntr rule

Constraint to keep track of the total available capacity per non-tracked storage technology at each energy site and period:

tpow_stor_balance_ntr_rule

$$TPOW_{s_{ntr},ec,l,p}^{stor,ntr} = \sum_{\substack{w \in \mathcal{W} \\ p \ge w \\ p \le w + sl_{s_{ntr}}^p - 1}} NPOW_{s_{ntr},ec,l,w}^{stor}$$

$$(59)$$

 $\forall \ s_{ntr} \in \mathcal{S}_{ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P} \ \{spl_{s_{ntr},l} = 1, \ stc_{s_{ntr},ec} = 1\}$

5.37 Equation **54**

Intra-day energy balance for the tracked storage modules considering incoming and outgoing energy flows: Storage_balance_tr_rule

$$SoC_{str,ec,l,w,p,d,t}^{tr} = \begin{cases} \eta_{str,w}^{ch,tr} \cdot sdeg_{s_{tr},w,p} \cdot Q_{str,ec,l,w,p,d,t}^{ch,tr} - \frac{1}{\eta_{str,w}^{dis,tr} \cdot sdeg_{s_{tr},w,p}} \cdot Q_{str,ec,l,w,p,d,t}^{dis,tr} &, t = 1 \\ \eta_{str,w}^{ch,tr} \cdot sdeg_{s_{tr},w,p} \cdot Q_{s_{tr},ec,l,w,p,d,t}^{ch,tr} - \frac{1}{\eta_{str,w}^{dis,tr} \cdot sdeg_{s_{tr},w,p}} \cdot Q_{str,ec,l,w,p,d,t}^{dis,tr} \\ (1 - \eta_{str,w}^{self,tr}) \cdot SoC_{s_{tr},ec,l,w,p,d,t-1}^{tr} &, t \neq 1 \end{cases}$$

$$\forall s_{tr} \in \mathcal{S}_{tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \\ \{p \geq w, p \leq w + sl_{str}^{p}, -1, \ spl_{str,l} = 1, \ stc_{str,ec} = 1\} \end{cases}$$

5.38 Equation **55**

Intra-day energy balance for the non-tracked storage modules considering incoming and outgoing energy flows: Storage_balance_ntr_rule

$$SoC_{s_{ntr},ec,l,p,d,t}^{ntr} = \begin{cases} \eta_{s_{ntr}}^{ch,ntr} \cdot Q_{s_{ntr},ec,l,p,d,t}^{ch,ntr} - \frac{1}{\eta_{s_{ntr}}^{dis,ntr}} \cdot Q_{s_{ntr},ec,l,p,d,t}^{dis,ntr} & ,t = 1 \\ \eta_{s_{ntr}}^{ch,ntr} \cdot Q_{s_{ntr},ec,l,p,d,t}^{ch,ntr} - \frac{1}{\eta_{s_{ntr}}^{dis,ntr}} \cdot Q_{s_{ntr},ec,l,p,d,t}^{dis,ntr} \\ + (1 - \eta_{s_{ntr}}^{self,ntr}) \cdot SoC_{s_{ntr},ec,l,p,d,t-1}^{ntr} & ,t \neq 1 \end{cases}$$

$$(61)$$

5.39 Equation **56**

Constraint for the maximum allowable charging rate of the tracked storage technologies: Storage_charge_rate_constr_tr_rule

$$Q_{s_{tr},ec,l,w,p,d,t}^{ch,tr} \leq q_{s_{tr},w}^{ch,max,tr} \cdot TCAP_{s_{tr},ec,l,w,p}^{stor,tr} \ \forall \ s_{tr} \in \mathcal{S}_{tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \ |$$

$$\{p \geq w, p \leq w + sl_{s_{tr}}^{p} - 1, \ spl_{s_{tr},l} = 1, \ stc_{s_{tr},ec} = 1\}$$

$$(62)$$

5.40 Equation 57

Constraint for the maximum allowable charging rate of the non-tracked storage technologies: ${\tt Storage_charge_rate_constr_ntr_rule}$

$$Q_{s_{ntr},ec,l,p,d,t}^{ch,ntr} \leq q_{s_{ntr}}^{ch,max,ntr} \cdot TCAP_{s_{ntr},ec,l,p}^{stor,ntr} \ \forall \ s_{ntr} \in \mathcal{S}_{ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} |$$

$$\{spl_{s_{ntr},l} = 1, \ stc_{s_{ntr},ec} = 1\}$$

$$(63)$$

5.41 Equation 58

Constraint for the maximum allowable discharging rate of the tracked storage technologies: Storage_discharge_rate_constr_tr_rule

$$Q_{s_{tr},ec,l,w,p,d,t}^{dis,tr} \leq q_{s_{tr},w}^{dis,max,tr} \cdot TCAP_{s_{tr},ec,l,w,p}^{stor,tr} \ \forall \ s_{tr} \in \mathcal{S}_{tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T}| \\ \left\{ p \geq w, p \leq w + sl_{s_{tr}}^p - 1, spl_{s_{tr},l} = 1, \ stc_{s_{tr},ec} = 1 \right\}$$

$$(64)$$

5.42 Equation 59

Constraint for the maximum allowable discharging rate of the non-tracked storage technologies: Storage_discharge_rate_constr_ntr_rule

$$Q_{s_{ntr},ec,l,p,d,t}^{dis,ntr} \leq q_{s_{ntr}}^{dis,max,ntr} \cdot TCAP_{s_{ntr},ec,l,p}^{stor,ntr} \ \forall \ s_{ntr} \in \mathcal{S}_{ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \\ \{spl_{s_{ntr},l} = 1, \ stc_{s_{ntr},ec} = 1\}$$

$$(65)$$

5.43 Equation 60

Constraint to capture the minimum intra-day state-of-charge for a tracked storage technology: ${\tt Storage_intra_day_min_tr_rule}$

$$SoC_{s_{tr},ec,l,w,p,d}^{min,tr} \leq SoC_{s_{tr},ec,l,w,p,d,t}^{tr} \ \forall \ s_{tr} \in \mathcal{S}_{tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{p \geq w, p \leq w + sl_{s_{tr}}^{p} - 1, \ spl_{s_{tr},l} = 1, \ stc_{s_{tr},ec} = 1\}$$

$$(66)$$

5.44 Constraint 61

Constraint to capture the maximum intra-day state-of-charge for a tracked storage technology: Storage_intra_day_max_tr_rule

$$SoC_{s_{tr},ec,l,w,p,d}^{max,tr} \ge SoC_{s_{tr},ec,l,w,p,d,t}^{tr}$$

$$\forall s_{tr} \in \mathcal{S}_{tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid$$

$$\{p \ge w, p \le w + sl_{s_{tr}}^{p} - 1, \ spl_{s_{tr},l} = 1, \ stc_{s_{tr},ec} = 1\}$$

$$(67)$$

5.45 Constraint 62

Constraint to capture the minimum intra-day state-of-charge for a non-tracked storage technology: Storage_intra_day_min_ntr_rule

$$SoC_{s_{ntr},ec,l,p,d}^{min,ntr} \leq SoC_{s_{ntr},ec,l,p,d,t}^{ntr} \forall \ s_{ntr} \in \mathcal{S}_{ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \{spl_{s_{ntr},l} = 1, \ stc_{s_{ntr},ec} = 1\}$$

$$(68)$$

5.46 Constraint 63

Constraint to capture the maximum intra-day state-of-charge for a non-tracked storage technology: Storage_intra_day_max_ntr_rule

$$SoC_{s_{ntr},ec,l,p,d}^{max,ntr} \ge SoC_{s_{ntr},ec,l,p,d,t}^{ntr} \forall \ s_{ntr} \in \mathcal{S}_{ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ d \in \mathcal{D}, \ t \in \mathcal{T} \mid \{spl_{s_{ntr},l} = 1, \ stc_{s_{ntr},ec} = 1\}$$

$$(69)$$

5.47 Constraint 64

Constraint connecting the inter-day state-of-charge of a tracked storage technology: Storage_inter_day_connection_tr_rule

$$SoC_{str,ec,l,w,p,cd}^{interday,tr} = \begin{cases} 0, & ,p = w \land cd = 1\\ SoC_{str,ec,l,w,p-1,max(cd)}^{interday,tr} \cdot (1 - \eta_{str,w}^{self,tr})^{max(t)} \\ + SoC_{str,ec,l,w,p-1,cd2td_{p-1,max(cd)},max(t)}^{tr} & ,p \neq w \land cd = 1\\ SoC_{str,ec,l,w,p,cd-1}^{interday,tr} \cdot (1 - \eta_{str,w}^{self,tr})^{max(t)} \\ + SoC_{str,ec,l,w,p,cd2td_{p,cd-1},max(t)}^{tr} & ,cd \neq 1 \end{cases}$$

$$\forall s_{tr} \in \mathcal{S}_{tr}, ec \in \mathcal{EC}, l \in \mathcal{L}, w \in \mathcal{W}, p \in \mathcal{P}, cd \in \mathcal{CD} \mid$$

$$\{p \geq w, p \leq w + sl_{str}^{p} - 1, spl_{str,l} = 1, stc_{str,ec} = 1\}$$

5.48 Constraint 65

Constraint connecting the inter-day state-of-charge of a non-tracked storage technology: Storage_inter_day_connection_ntr_rule

$$SoC_{s_{ntr},ec,l,p,cd}^{interday,ntr} = \begin{cases} 0 & ,p = 1 \land cd = 1 \\ SoC_{s_{ntr},ec,l,p-1,max(cd)}^{interday,ntr} \cdot (1 - \eta_{s_{ntr}}^{self,ntr})^{max(t)} & ,p \neq 1 \land cd = 1 \\ + SoC_{s_{ntr},ec,l,p-1,cd2td_{p-1,max(cd)},max(t)}^{interday,ntr} & ,p \neq 1 \land cd = 1 \\ SoC_{s_{ntr},ec,l,p,cd-1}^{interday,ntr} \cdot (1 - \eta_{s_{ntr}}^{self,ntr})^{max(t)} & ,cd \neq 1 \\ + SoC_{s_{ntr},ec,l,p,cd2td_{p,cd-1},max(t)}^{interday,ntr} & ,cd \neq 1 \end{cases}$$

$$\forall s_{ntr} \in \mathcal{S}_{ntr}, ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ cd \in \mathcal{CD} \mid \\ \{spl_{s_{ntr},l} = 1, \ stc_{s_{ntr},ec} = 1\} \end{cases}$$

5.49 Constraint 66

Constraint for non-violation of the capacity of a tracked storage technology: Storage_cap_constr_tr_rule

$$SoC_{s_{tr},ec,l,w,p,cd}^{interday,tr} + SoC_{s_{tr},ec,l,w,p,cd2td_{p,cd}}^{max,tr} \leq TCAP_{s_{tr},ec,l,w,p,cd2td_{p,cd}}^{stor,tr} \leq TCAP_{s_{tr},ec,l,w,p,cd2t,p,cd}^{stor,tr} \leq TCAP_{s_{tr},ec,l,w,p,cd}^{stor,tr} \leq TCAP_{s_{tr},ec,l,w,p,cd}^{stor,tr} \leq TCAP_{s_{tr}$$

5.50 Constraint 67

Constraint for non-violation of the capacity of a non-tracked storage technology: Storage_cap_constr_ntr_rule

$$SoC_{s_{ntr},ec,l,p,cd}^{interday,ntr} + SoC_{s_{ntr},ec,l,p,cd2td_{p,cd}}^{max,ntr} \leq TCAP_{s_{ntr},ec,l,p}^{stor,ntr}$$

$$\forall \ s_{ntr} \in \mathcal{S}_{ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ cd \in \mathcal{CD} \ | \{spl_{s_{ntr},l} = 1, \ stc_{s_{ntr},ec} = 1\}$$

$$(73)$$

5.51 Constraint 68

Constraint to enforce non-negativity for the state-of-charge of a tracked storage technology: Storage_inter_day_non_negativity_constr_tr_rule

$$SoC_{s_{tr},ec,l,w,p,cd}^{interday,tr} \cdot (1 - \eta_{s_{tr},w}^{self,tr})^{max(t)} + SoC_{s_{tr},ec,l,w,p,cd2td_{p,cd}}^{min,tr} \ge 0$$

$$\forall s_{tr} \in \mathcal{S}_{tr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W}, \ p \in \mathcal{P}, \ cd \in \mathcal{CD} \mid$$

$$\{p \ge w, p \le w + sl_{s_{tr}}^p - 1, \ spl_{s_{tr},l} = 1, \ stc_{s_{tr},ec} = 1\}$$

$$(74)$$

5.52 Constraint 69

Constraint to enforce non-negativity for the state-of-charge of a non-tracked storage technology: Storage_inter_day_non_negativity_constr_ntr_rule

$$SoC_{s_{ntr},ec,l,p,cd}^{interday,ntr} \cdot (1 - \eta_{s_{ntr}}^{self,ntr})^{max(t)} + SoC_{s_{ntr},ec,l,p,cd2td_{p,cd}}^{min,ntr} \ge 0$$

$$\forall \ s_{ntr} \in \mathcal{S}_{ntr}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P}, \ cd \in \mathcal{CD} \mid \{spl_{s_{ntr},l} = 1, \ stc_{s_{ntr},ec} = 1\}$$

$$(75)$$

5.53 Constraint 70

Minimum possible storage technology capacity per technology considered: Storage_minimum_cap_limit_rule

$$NCAP_{s,ec,l,w}^{stor} \ge cap_s^{min} \cdot Y_{s,l,w}^{stor} \forall \ s \in \mathcal{S}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W} \mid \{spl_{s,l} = 1, \ stc_{s,ec} = 1\}$$

$$(76)$$

5.54 Constraint 71

 $\label{lem:maximum_possible} Maximum possible storage \ technology \ capacity \ per \ technology \ considered: \\ \textbf{Storage_maximum_cap_limit_rule}$

$$NCAP_{s,ec,l,w}^{stor} \le cap_s^{max} \ \forall \ s \in \mathcal{S}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W} \mid \{spl_{s,l} = 1, \ stc_{s,ec} = 1\}$$
 (77)

5.55 Constraint 72

Constraint enforcing the maximum allowable storage capacity per type of storage technology: Max_allowable_storage_cap_rule

If
$$s \in \mathcal{S}_{tr}$$
:
$$\sum_{\substack{w \in \mathcal{W} \\ p \geq w \\ p \leq w + sl_s^p - 1}} TCAP_{s,ec,l,w,p}^{stor,tr} \leq cap_{s,l}^{max}$$
If $s \notin \mathcal{S}_{tr}$: $TCAP_{s,ec,l,p}^{stor,ntr} \leq cap_{s,l}^{max}$

$$\forall s \in \mathcal{S}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P} \mid \{spl_{s,l} = 1, \ stc_{s,ec} = 1\}$$

$$(78)$$

5.56 Constraint 73

Constraint for the formulation of the fixed cost in the objective function: Fixed_cost_storage_rule

$$NCAP_{s,ec,l,w}^{stor} \le bigM \cdot Y_{s,l,w}^{stor} \ \forall \ s \in \mathcal{S}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L}, \ w \in \mathcal{W} \ | \ \{spl_{s,l} = 1, \ stc_{s,ec} = 1\}$$
 (79)

5.57 Constraint 74

Constraint setting the capacity for existing storage technologies: Existing_stor_capacity_setting_rule

$$NCAP_{s_{ex},ec,l,1}^{stor} = excap_{s_{ex},ec,l}^{stor} \ \forall \ s_{ex} \in \mathcal{S}_{ex}, \ ec \in \mathcal{EC}, \ l \in \mathcal{L} \mid \{spl_{s_{ex},l} = 1, \ stc_{s_{ex},ec} = 1\}$$

$$(80)$$

5.58 Constraint 75

Constraint limiting the possibility of reinvesting in existing storage technologies: Existing_stor_no_reinvestment_rule

If
$$w \neq 1 : Y_{sex,l,w}^{stor} = 0 \ \forall \ s_{ex} \in \mathcal{S}_{ex}, \ l \in \mathcal{L} \ , \ w \in \mathcal{W} \ | \ spl_{s_{ex},l} = 1$$
 (81)

5.59 Constraint 76

Definition of the expense for importing energy from external sources (e.g. electricity grid) at each site: Import_cost_per_year_nmnl_rule

$$C_{l,y}^{imp} = \sum_{ec_i \in \mathcal{EC}_i} \sum_{d \in \mathcal{D}} \sum_{t \in \mathcal{T}} P_{ec_i,l,y2p_y,d,t}^{imp} \cdot p_{ec_i,y} \cdot nd_{y2p_y,d} \ \forall \ l \in \mathcal{L}, \ y \in \mathcal{Y}$$

$$(82)$$

5.60 Constraint 77

Definition of the expense for importing energy from external sources (e.g. electricity grid) at each site: Import_cost_per_year_disc_rule

$$C_{l,y}^{imp,disc} = C_{l,y}^{imp} \cdot \frac{1}{(1+r)^y} \ \forall \ l \in \mathcal{L}, \ y \in \mathcal{Y}$$
(83)

5.61 Constraint 78

Definition of the expense for importing energy from external sources (e.g. electricity grid) at each site: Import_cost_per_period_nmnl_rule

$$C_{l,p}^{imp} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^p + 1 \\ y \le p \cdot ny^p}} C_{l,y}^{imp} \ \forall \ l \in \mathcal{L}, \ p \in \mathcal{P}$$
(84)

5.62 Constraint 79

Definition of the expense for importing energy from external sources (e.g. electricity grid) at each site: Import_cost_per_period_disc_rule

$$C_{l,p}^{imp,disc} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^p + 1 \\ y
$$(85)$$$$

5.63 Constraint 80

Definition of the nominal cost per period for importing energy carriers at each site: Import_cost_per_carrier_per_year_nmnl_rule

$$C_{ec_i,l,y}^{imp} = \sum_{d \in \mathcal{D}} \sum_{t \in \mathcal{T}} P_{ec_i,l,y2p_y,d,t}^{imp} \cdot p_{ec_i,y} \cdot nd_{y2p_y,d} \ \forall \ ec_i \in \mathcal{EC}_i, \ l \in \mathcal{L}, \ y \in \mathcal{Y}$$

$$(86)$$

5.64 Constraint 81

Definition of the discounted cost per period for importing energy carriers at each site: Import_cost_per_carrier_per_year_disc_rule

$$C_{ec_i,l,y}^{imp,disc} = C_{ec_i,l,y}^{imp} \cdot \frac{1}{(1+r)^y} \ \forall \ ec_i \in \mathcal{EC}_i, \ \forall \ l \in \mathcal{L}, \ y \in \mathcal{Y}$$

$$(87)$$

5.65 Constraint 82

Definition of the nominal cost per period for importing energy carriers at each site: Import_cost_per_carrier_per_period_nmnl

$$C_{ec_{i},l,p}^{imp} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^{p} + 1 \\ y
$$(88)$$$$

5.66 Constraint 83

Definition of the discounted cost per period for importing energy carriers at each site: Import_cost_per_carrier_per_period_disc_rule

$$C_{ec_{i},l,p}^{imp,disc} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^{p} + 1 \\ y
$$(89)$$$$

5.67 Constraint 84

Definition of the income due to electricity exports component of the total energy system cost at each site: Export_profit_per_year_nmnl_rule

$$R_{l,y}^{exp} = \sum_{ec_e \in \mathcal{EC}_e} \sum_{d \in \mathcal{D}} \sum_{t \in \mathcal{T}} P_{ec_e,l,y2p_y,d,t}^{exp} \cdot p_{ec_e,y} \cdot nd_{y2p_y,d} \ \forall \ l \in \mathcal{L}, \ y \in \mathcal{Y}$$

$$(90)$$

5.68 Constraint 85

Definition of the income due to electricity exports component of the total energy system cost at each site: Export_profit_per_year_disc_rule

$$R_{l,y}^{exp,disc} = R_{l,y}^{exp} \cdot \frac{1}{(1+r)^y} \ \forall \ l \in \mathcal{L}, \ y \in \mathcal{Y}$$

$$(91)$$

5.69 Constraint 86

Definition of the income due to electricity exports component of the total energy system cost at each site: Export_profit_per_period_nmnl_rule

$$R_{l,p}^{exp} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^p + 1 \\ y
$$(92)$$$$

5.70 Constraint 87

Definition of the income due to electricity exports component of the total energy system cost at each site: Export_profit_per_period_disc_rule

$$R_{l,p}^{exp,disc} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^p + 1 \\ y \le p \cdot ny^p}} R_{l,y}^{exp,disc} \ \forall \ l \in \mathcal{L}, \ p \in \mathcal{P}$$

$$(93)$$

5.71 Constraint 88

Definition of the maintenance cost component of the total energy system cost for each site: Maintenance_cost_per_year_nmnl_rule

$$C_{l,y}^{main} = \sum_{\substack{c \in \mathcal{C} \\ cpl_{c,l} = 1}} \sum_{\substack{ec' \in \mathcal{EC} \\ (ce \in \mathcal{C}_d \land \exists \ ec \in \mathcal{EC} \ | \ ecc^{disp}_{c,ec,ec'} = 1)}} \sum_{\substack{w \in \mathcal{W} \\ y \geq y_w^{real} \\ y \leq y_w^{real} + cl_c - 1}} (fc_{c,ec',w}^{conv} \cdot Y_{c,l,w}^{conv} + lc_{c,ec',w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv}) \cdot om_c^{conv} \cdot Y_{c,l,w}^{conv} + lc_{c,ec',w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv}) \cdot om_c^{conv} \cdot Y_{c,l,w}^{conv} + lc_{c,ec',w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv}) \cdot om_c^{conv} \cdot Y_{c,l,w}^{conv} + lc_{c,ec',w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv} \cdot Y_{c,l,w}^{conv} + lc_{c,ec',w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv} \cdot Y_{c,l,w}^{conv} + lc_{c,ec',w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv} \cdot NC$$

 $\forall l \in \mathcal{L}, y \in \mathcal{Y}$ (94)

5.72 Constraint 89

Definition of the maintenance cost component of the total energy system cost for each site: Maintenance_cost_per_year_disc_rule

$$C_{l,y}^{main,disc} = C_{l,y}^{main} \cdot \frac{1}{(1+r)^y} \ \forall \ l \in \mathcal{L}, \ y \in \mathcal{Y}$$

$$(95)$$

5.73 Constraint 90

Maintenance cost per period nmnl rule cost component of the total energy system cost for each site: Maintenance_cost_per_period_nmnl_rule

$$C_{l,p}^{main} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^p + 1 \\ y \le n \cdot ny^p}} C_{l,y}^{main} \ \forall \ l \in \mathcal{L}, \ p \in \mathcal{P}$$

$$(96)$$

5.74 Constraint 91

Definition of the maintenance cost component of the total energy system cost for each site: Maintenance_cost_per_period_disc_rule

$$C_{l,p}^{main,disc} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^p + 1 \\ y \le p \cdot ny^p}} C_{l,y}^{main,disc} \ \forall \ l \in \mathcal{L}, \ p \in \mathcal{P}$$

$$(97)$$

5.75 Constraint 92

Definition of the investment expenditure for the purchase of conversion technologies at each candidate site: Conv_investment_cost_nmnl_rule

$$\begin{split} \mathbf{C}_{l,w}^{conv,inv} &= \\ \sum_{\substack{c \in \mathcal{C} \\ cpl_{c,l} = 1}} \sum_{\substack{ec' \in \mathcal{EC} \\ ecpl_{c,l} = 1}} fc_{c,ec',w}^{conv} \cdot Y_{c,l,w}^{conv} + lc_{c,ec',w}^{conv} \cdot NCAP_{c,ec',l,w}^{conv} \\ + \sum_{\substack{r_{dam} \in \mathcal{R}_{dam} \\ cpl_{r_{dam},l} = 1}} \sum_{\substack{ec' \in \mathcal{EC} \\ rcc_{r_{dam},ec'} = 1}} fc_{r_{dam},ec',w}^{dam} \cdot Y_{r_{dam},l,w}^{conv} + lc_{r_{dam},ec',w}^{dam} \cdot NCAP_{r_{dam},ec',l,w}^{dam} \\ \forall \ l \in \mathcal{L}, \ w \in \mathcal{W} \end{split}$$

5.76 Constraint 93

Definition of the investment expenditure for the purchase of conversion technologies at each candidate site: Conv_investment_cost_disc_rule

$$C_{l,w}^{conv,inv,disc} = C_{l,w}^{conv,inv} \cdot \frac{1}{(1+r)^{y_w^{real}-1}} \ \forall \ l \in \mathcal{L}, \ w \in \mathcal{W}$$
 (98)
$$\text{def Conv_investment_cost_disc_rule(m, s, stg):}$$

$$\text{return m.Conv_investment_cost_disc[s, stg] == m.Conv_investment_cost_nmn1[}$$

$$\text{s, stg}$$
] $/ ((1 + m.\text{Discount_rate}) ** (m.\text{Real_investment_stages[stg]} - 1))$
$$\text{self.m.Conv_investment_cost_disc_def = pe.Constraint(}$$

$$\text{self.m.Sites,}$$

$$\text{self.m.Investment_stages,}$$

$$\text{rule=Conv_investment_cost_disc_rule,}$$

$$\text{doc="Definition of the investment expenditure for the purchase of conversion technologies at e})$$

5.77 Constraint 94

Definition of the investment expenditure for the purchase of storage technologies at each candidate site: Stor_investment_cost_nmnl_rule

$$C_{l,w}^{stor,inv} = \sum_{\substack{s \in \mathcal{S} \\ spl_{s,l} = 1}} \sum_{\substack{ec \in \mathcal{EC} \\ stor_{s,ec,w}}} f_{c_{s,ec,w}}^{stor} \cdot Y_{s,l,w}^{stor} + l_{c_{s,ec,w}}^{stor} \cdot NCAP_{s,ec,l,w}^{stor} \, \forall \, l \in \mathcal{L}, \, w \in \mathcal{W}$$

$$(99)$$

5.78 Constraint 95

Definition of the investment expenditure for the purchase of storage technologies at each candidate site: Stor_investment_cost_disc_rule

$$C_{l,w}^{stor,inv,disc} = C_{l,w}^{stor,inv} \cdot \frac{1}{(1+r)^{y_w^{real}-1}} \quad \forall \ l \in \mathcal{L}, \ w \in \mathcal{W}$$

$$(100)$$

5.79 Constraint 96

Definition of the investment expenditure for the interconnections between sites: Exchange_network_expansion_cost_nmnl_rule

$$C_{l,w}^{exc,inv} = \sum_{\substack{ec_x \in \mathcal{EC}_x \\ l' \neq l \\ linepl_{ec_x-l,l'} = 1}} \sum_{\substack{l' \in \mathcal{L} \\ l' \neq l \\ linepl_{ec_x-l,l'} = 1}} (NCAP_{ec_x,l,l',w}^{exc} \cdot lc_{ec_x,w}^{exc} + Y_{ec_x,l,l',w}^{exc} \cdot fc_{ec_x,w}^{exc}) \cdot x_{l,l'} \cdot 0.5 \ \forall \ l \in \mathcal{L}, \ w \in \mathcal{W}$$

$$(101)$$

5.80 Constraint 97

Definition of the investment expenditure for the interconnections between sites: Exchange_network_expansion_cost_disc_rule

$$C_{l,w}^{exc,inv,disc} = C_{l,w}^{exc,inv} \cdot \frac{1}{(1+r)^{y_w^{real}-1}} \quad \forall \ l \in \mathcal{L}, \ w \in \mathcal{W}$$

$$(102)$$

5.81 Constraint 98

Definition of the expenditure to expand export capacities:

Export_capacity_expansion_cost_nmnl_rule

$$C_{l,w}^{exp,inv} = \sum_{ec_e \in \mathcal{EC}_e} NCAP_{ec_e,l,w}^{exp} \cdot lc_{ec_e,w}^{exp} + Y_{ec_e,l,w}^{exp} \cdot fc_{ec_e,w}^{exp} \ \forall \ l \in \mathcal{L}, \ w \in \mathcal{W}$$

$$(103)$$

5.82 Constraint 99

Definition of the expenditure to expand export capacities:

Export_capacity_expansion_cost_disc_rule

$$C_{l,w}^{exp,inv,disc} = C_{l,w}^{exp,inv} \cdot \frac{1}{(1+r)^{y_w^{real}-1}} \quad \forall \ l \in \mathcal{L}, \ w \in \mathcal{W}$$

$$(104)$$

5.83 Constraint 100

Definition of the expenditure to expand import capacities: Import_capacity_expansion_cost_nmnl_rule

$$C_{l,w}^{imp,inv} = \sum_{ec_i \in \mathcal{EC}_i} NCAP_{ec_i,l,w}^{imp} \cdot lc_{ec_i,w}^{imp} + Y_{ec_i,l,w}^{imp} \cdot fc_{ec_i,w}^{imp} \ \forall \ l \in \mathcal{L}, \ w \in \mathcal{W}$$

$$(105)$$

5.84 Constraint 111

Definition of the total energy system cost for each year of the modelled horizon: Total_system_cost_per_year_disc_rule

$$T_y^{cost,disc} = \sum_{l \in \mathcal{L}} C_{l,y}^{disc} \ \forall \ y \in \mathcal{Y}$$
 (106)

5.85 Constraint 112

Definition of the total energy system cost for each period of the modelled horizon: Total_system_cost_per_period_nmnl_rule

$$T_p^{cost} = \sum_{l \in \mathcal{L}} C_{l,p} \ \forall \ p \in \mathcal{P} \tag{107}$$

5.86 Constraint 113

Definition of the total energy system cost for each period of the modelled horizon: Total_system_cost_per_period_disc_rule

$$T_p^{cost,disc} = \sum_{l \in \mathcal{L}} C_{l,p}^{disc} \ \forall \ p \in \mathcal{P}$$
 (108)

5.87 Constraint 114

Definition of the total cost model objective function: Total_system_cost_nmnl_rule

$$T^{cost} = \sum_{l \in \mathcal{L}} \sum_{w \in \mathcal{W}} C_{l,w}^{conv,inv} + C_{l,w}^{stor,inv} + C_{l,w}^{imp,inv} + C_{l,w}^{exp,inv} + C_{l,w}^{exp,inv} + \sum_{l \in \mathcal{L}} \sum_{p \in \mathcal{P}} C_{l,p}^{imp} - R_{l,p}^{exp} + C_{l,p}^{main}$$

$$- \sum_{l \in \mathcal{L}} R_{l}^{slvg}$$

$$(109)$$

5.88 Constraint 115

Definition of the total cost model objective function: Total_system_cost_disc_rule

$$T^{cost} = \sum_{l \in \mathcal{L}} \sum_{w \in \mathcal{W}} C_{l,w}^{conv,inv,disc} + C_{l,w}^{stor,inv,disc} + C_{l,w}^{exc,inv,disc} + C_{l,w}^{imp,inv,disc} + C_{l,w}^{exp,inv,disc} + C_{l,w}^{exp,inv,disc} + \sum_{l \in \mathcal{L}} \sum_{p \in \mathcal{P}} C_{l,p}^{imp,disc} - R_{l,p}^{exp,disc} + C_{l,p}^{main,disc}$$

$$-\sum_{l \in \mathcal{L}} R_{l}^{slvg,disc}$$

$$(110)$$

5.89 Constraint 116

Definition of the total cost model objective function: Total_system_cost_def

$$T^{cost} = \sum_{l \in \mathcal{L}} \sum_{w \in \mathcal{W}} C_{l,w}^{conv,inv,disc} + C_{l,w}^{stor,inv,disc} + C_{l,w}^{exc,inv,disc} + C_{l,w}^{imp,inv,disc} + C_{l,w}^{exp,inv,disc} + C_{l,w}^{exp,inv,disc} + C_{l,w}^{exp,inv,disc} + \sum_{l \in \mathcal{L}} \sum_{p \in \mathcal{P}} C_{l,p}^{imp,disc} - R_{l,p}^{exp,disc} + C_{l,p}^{main,disc} - \sum_{l \in \mathcal{L}} R_{l}^{slvg,disc}$$

$$(111)$$

5.90 Constraint 117

Definition of the total carbon emissions per imported energy carrier, energy site and year: Total_site_carbon_per_carrier_per_year_rule

$$T_{ec_i,l,y}^{CO_2} = \sum_{d \in \mathcal{D}} \sum_{t \in \mathcal{T}} P_{ec_i,l,y2p_y,d,t}^{imp} \cdot carb_{ec_i,y} \cdot nd_{y2p_y,d} \ \forall \ ec_i \in \mathcal{EC}_i, l \in \mathcal{L}, y \in \mathcal{Y}$$

$$(112)$$

5.91 Constraint 118

Definition of the total carbon emissions per imported energy carrier, energy site and period: Total_site_carbon_per_carrier_per_period_rule

$$T_{ec_{i},l,p}^{CO_{2}} = \sum_{\substack{y \in \mathcal{Y} \\ y \geq (p-1) \cdot ny^{p} + 1 \\ y < n \cdot ny^{p}}} T_{ec_{i},l,y}^{CO_{2}} \,\forall \, ec_{i} \in \mathcal{EC}_{i}, l \in \mathcal{L}, p \in \mathcal{P}$$

$$(113)$$

5.92 Constraint 119

Definition of the total carbon emissions per imported energy carrier, energy site and period: Total_site_carbon_per_year_rule

$$T_{l,y}^{CO_2} = \sum_{ec_i \in \mathcal{EC}_i} \sum_{d \in \mathcal{D}} \sum_{t \in \mathcal{T}} P_{ec_i,l,y2p_y,d,t}^{imp} \cdot carb_{ec_i,y} \cdot nd_{y2p_y,d} \ \forall \ l \in \mathcal{L}, y \in \mathcal{Y}$$

$$(114)$$

5.93 Constraint 120

Definition of the total carbon emissions per energy site per period: Total_site_carbon_per_period_rule

$$T_{l,p}^{CO_2} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^p + 1 \\ y \le p \cdot ny^p}} T_{l,y}^{CO_2} \ \forall \ l \in \mathcal{L}, p \in \mathcal{P}$$

$$(115)$$

5.94 Constraint 121

Definition of the total carbon emissions per site summed over all periods: Total_site_carbon_rule

$$T_l^{CO_2} = \sum_{p \in \mathcal{P}} T_{l,p}^{CO_2} \ \forall \ l \in \mathcal{L}$$

$$\tag{116}$$

5.95 Constraint 122

Definition of the total carbon emissions per year summed over all energy sites: Total_system_carbon_per_year_rule

$$T_y^{CO_2} = \sum_{l \in \mathcal{L}} T_{l,y}^{CO_2} \ \forall \ y \in \mathcal{Y} \tag{117}$$

5.96 Constraint 123

Definition of the total carbon emissions per period summed over all energy sites: Total_system_carbon_per_period_rule

$$T_p^{CO_2} = \sum_{l \in \mathcal{L}} T_{l,p}^{CO_2} \ \forall \ p \in \mathcal{P}$$

$$\tag{118}$$

5.97 Constraint 124

Definition of the total energy system carbon emissions summed across all sites and periods: Total_system_carbon_rule

$$T^{CO_2} = \sum_{l \in \mathcal{L}} \sum_{p \in \mathcal{P}} T_{l,p}^{CO_2} \tag{119}$$

5.98 Constraint 125

Constraint setting an upper limit to the total carbon emissions of the system: ${\tt Carbon_constraint_rule}$

$$T^{CO_2} \le \epsilon$$
 (120)

5.99 Constraint 126

Constraint setting emissions to zero for the last year of the analysis: Net_zero_constraint_rule

$$T_{\max(y)}^{CO_2} = 0 (121)$$

5.100Constraint 127

Constraint used to calculate the total energy output per conversion technology, site and year: Total_energy_output_per_conv_tech_site_and_year_rule

$$POUT_{c,ec',l,y} = \begin{cases} \sum_{\substack{w \in \mathcal{W} \\ y \geq y_w^{real} \\ y \leq y_w^{real} + cl_c - 1}} \sum_{\substack{d \in \mathcal{D} \ t \in \mathcal{T}}} POUT_{c,ec',l,w,y2p_y,d,t}^{disp,tr} \cdot nd_{y2p_y,d} \ , c \in \mathcal{C}_{d.tr} \\ \sum_{\substack{d \in \mathcal{D} \ t \in \mathcal{T}}} \sum_{\substack{t \in \mathcal{D} \ t \in \mathcal{T}}} POUT_{c,ec',l,y2p_y,d,t}^{disp,ntr} \cdot nd_{y2p_y,d} \ , c \in \mathcal{C}_{d.ntr} \\ \sum_{\substack{w \in \mathcal{W} \\ y \geq y_w^{real} \\ y \leq y_w^{real} + cl_c - 1}} \sum_{\substack{d \in \mathcal{D} \ t \in \mathcal{T}}} POUT_{c,ec',l,w,y2p_y,d,t}^{re,tr} \cdot nd_{y2p_y,d} \ , c \in \mathcal{R}_{tr} \\ \sum_{\substack{d \in \mathcal{D} \ t \in \mathcal{T}}} \sum_{\substack{d \in \mathcal{D} \ t \in \mathcal{T}}} POUT_{c,ec',l,y2p_y,d,t}^{re,ntr} \cdot nd_{y2p_y,d} \ , c \in \mathcal{R}_{ntr} \end{cases}$$

$$\forall \ c \in \mathcal{C}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ y \in \mathcal{Y} \ | \ cpl_{c,l} = 1 \land ((c \in \mathcal{C}_d \land \exists \ ec \in \mathcal{EC} \ | \ ecc_{c,ec,ec'}^{disp} = 1) \ \lor rcc_{c,ec'} = 1)$$

Constraint 128 5.101

Constraint used to calculate the total energy output per conversion technology, site and period: Total_energy_output_per_conv_tech_site_and_period_rule

$$POUT_{c,ec',l,p} = \sum_{\substack{y \in \mathcal{Y} \\ y \ge (p-1) \cdot ny^p + 1 \\ y \le p \cdot ny^p}} POUT_{c,ec',l,y}$$

$$(123)$$

 $\forall \ c \in \mathcal{C}, \ ec' \in \mathcal{EC}, \ l \in \mathcal{L}, \ p \in \mathcal{P} \mid cpl_{c,l} = 1 \land ((c \in \mathcal{C}_d \land \exists \ ec \in \mathcal{EC} \mid ecc_{c,l}^{dis}))$