$$(+\infty) + (-\infty) = 0$$

Damiens ROBERT

2019-12-17

1 $+(a_n)$ is a vector

I first need to explain the notation $+(a_n)$.

- n is the number of dimension of the vector.
- a_n is the value at the $n^t h$ dimension of the vector.
- (a_n) is the set of all the a_n values making the vector.
- \bullet The + or the is the direction of the vector.

1.1 $+(a_n)$ is also a point

A point is a mathematical object which is always a member of at least one set. Indeed, even if there is only one point, there exists a set A that includes the given point.

The point is denoted by

$$(Xa_n) = X(a_n)$$
 where X is either + or -.

Note there is a very special point that could be called the origin which is denoted by (0).

 $(0) = (0_n)$ where n is the cardinality of the set it is included in.

2 $-(a_n)$ as an opposite to $+(a_n)$

The + sign in the notation $+(a_n)$ is optional. Indeed, we could distribute the direction to every value of the point in the set and write:

$$+(a_n) = (a_n)$$

The - sign denoting the opposite direction, we could write:

$$-(a_n) = (-a_n) = +(-a_n)$$
 where $-a_n$ is the opposite value of a_n

3
$$+(\infty)$$
 as $(+\infty)$

Let $+(k_n)$ be a point. Let each k_n be superior to 0.

The, $+(\infty)$ can be defined as $+(k_n)$ where n is the defined by the infinite loop:

$4 - (\infty)$ is the opposite of $(+\infty)$

Let's recall that $-(a_n) = +(-a_n)$, and the $+(\infty) = +(k_n)$ where $k_n > 0$.

We can than say that $-(\infty) = -(k_n)$ where k_n is superior to 0.

We can finally say that $-(\infty) = (l_n)$ where l_n is inferior to 0 and $l_n = -k_n$

5 Conclusion

We can now add our two vectors.

$$+(\infty) + -(\infty) = (k_n) + (l_n)$$
 where $k_n = -l_n$

We can now conclude that the sum of these two vectors results to the origin pint denoted by (0) that we write 0 as a syntaxic sugar.