ITL Page 1 of 49 Report No.: 14077496

TEST REPORT

Applicant:	ADVENTURE TECHNOLOGY COMPANY LIMITED
Address of Applicant:	Unit 101, 1st Floor, Silicon Tower, 88 Larch Street, Mongkok, Kowloon, HONG KONG.
Manufacturer:	Foshan Topday Optoelectronics Technology Co., Ltd.
Address of Manufacturer:	Huansheng Heng Road, Guicheng Eastern Industrial Zone B, Sanshan Nanhai District, Foshan, China
Product name:	SMART LED LIGHT
Model:	BULB-010-40K
Rating(s):	120V~, 60Hz, 123mA, 11.5 W
Trademark:	DGL
FCC register number :	935596
Standards:	47 CFR PART 15 Subpart C: 2013 section 15.247 ANSI C63.4: 2003
FCC ID:	2ACL3BULB10
Data of Receipt:	2014-07-22
Date of Test:	2014-07-22~2014-09-23
Date of Issue:	2014-09-24
Test Result	Pass*

^{*} In the configuration tested, the test item complied with the standards specified above.

Authorized for issue by:

Test by:	Jumy	qiu	Reviewed by:	Pawler !
Sep.24.2014	Jumy Qiu		Sep.24.2014	Pauler Li
	Project Engineer			Project Engineer
Date	Name/Position	Signature	Date	Name/Position Signature

ITL Page 2 of 49 Report No.: 14077496

Pos	sibl	e tes	t case	verdicts

test case does not apply to the test object ..: N/A

test object does meet the requirement P (Pass)

test object does not meet the requirement ..: F (Fail)

Testing Laboratory information:

Testing Laboratory Name: I-Test Laboratory

Address : 1-2 floor, South Block, Building A2 , No 3 Keyan Lu,

Science City, Guangzhou, Guangdong Province, P.R. China

Testing location : Same as above

Tel : 0086-20-32209330

Fax : 0086-20-62824387

E-mail : itl@i-testlab.com

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report would be invalid test report without all the signatures of testing technician and approver.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

Note:

N/A

ITL Page 3 of 49 Report No.: 14077496

1 Test Summary

1 Cot Odiffillary			
Test	Test Requirement	Test method	Result
	FCC PART 15 C	FCC PART 15 C	
Antenna Requirement	section 15.247 (c) and Section 15.203	section 15.247 (c) and Section 15.203	PASS
6 dB Bandwidth	FCC PART 15 C section 15.247 (a)(2)	ANSI C63.10: Clause 6.9 and KDB558074	PASS
Maximum Peak Output Power	FCC PART 15 C section 15.247(b)(3)	ANSI C63.10: Clause 6.10 and KDB558074 (Power Output Option 2-Method #1).	PASS
Peak Power Spectral Density	FCC PART 15 C section 15.247(e)	ANSI C63.10: Clause 6.11 and KDB558074 (PSD Option 1).	PASS
Conducted Spurious Emission (30MHz to 25GHz)	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 6.7 and KDB558074.	PASS
Radiated Spurious Emission 30 MHz to 25 GHz)	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 6.4, 6.5 and 6.6 & KDB558074	PASS
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205	ANSI C63.10: Clause 6.9 & KDB558074.	PASS
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2	PASS

2 Contents

			Page
T.	EST REI	PORT	1
1	TES	T SUMMARY	3
2	CON	TENTS	Δ
3	GEN	ERAL INFORMATION	5
	3.1	CLIENT INFORMATION	
	3.2	GENERAL DESCRIPTION OF E.U.T.	
	3.3	DETAILS OF E.U.T.	
	3.4	DESCRIPTION OF SUPPORT UNITS	
	3.5	TEST LOCATION	
	3.6	DEVIATION FROM STANDARDS	
	3.7 3.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	3.9	TEST FACILITY	
	3.10	MEASUREMENT UNCERTAINTY	
,		RUMENTS USED DURING TEST	
4			
5	TES	T RESULTS	8
	5.1	E.U.T. TEST CONDITIONS	8
	5.2	ANTENNA REQUIREMENT	
	5.3	6 DB BANDWIDTH	11
	5.4	MAXIMUM PEAK OUTPUT POWER	
	5.5	PEAK POWER SPECTRAL DENSITY	
	5.6	CONDUCTED SPURIOUS EMISSIONS	
	5.7	RADIATED SPURIOUS EMISSIONS	
	5.7.1	The state of the s	
	5.8	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	5.9 5.10	BAND EDGES REQUIREMENT	
	•	CONDUCTED EMISSIONS AT MAINS TERMINALS 150 KHZ TO 30MHZ	

ITL Page 5 of 49 Report No.: 14077496

3 General Information

3.1 Client Information

Applicant: ADVENTURE TECHNOLOGY COMPANY LIMITED

Address of Applicant: Unit 101, 1st Floor, Silicon Tower, 88 Larch Street, Mongkok, Kowloon, He

KONG.

3.2 General Description of E.U.T.

Name: SMART LED LIGHT

Model No.: BULB-010-40K

Trade Mark: DGL

Operating Frequency: 2405 MHz to 2476 MHz

16 channels as below

channel	Frequency	channel	Frequency
1	2405	9	2440
2	2409	10	2445
3	2413	11	2450
4	2417	12	2455
5	2422	13	2460
6	2426	14	2465
7	2430	15	2470
8	2435	16	2476

Channels:

Type of Modulation 0QPSK

Function: Control via wireless
Antenna Type: Cable antenna

3.3 Details of E.U.T.

EUT Power Supply: AC Power, Class II

Rated power: 120V~, 60Hz, 123mA, 11.5 W

Test mode: The program used to control the EUT for staying in continuous transmitting

and receiving mode is programmed. Channel lowest (2405MHz), middle

(2440MHz) and highest (2476MHz) are chosen for full testing.

Power cord: Direct plug

3.4 Description of Support Units

The EUT has been tested as an independent unit for fixed frequency by testing lab.

ITL Page 6 of 49 Report No.: 14077496

3.5 Test Location

All tests were performed at:

I-Test Laboratory

1-2 floor, South Block, Building A2 , No 3 Keyan Lu, Science City, Guangzhou, Guangdong Province, P.R. China

0086-20-32209330

itl@i-testlab.com

No tests were sub-contracted.

3.6 Deviation from Standards

Biconical and log periodic antennas were used instead of dipole antennas.

3.7 Abnormalities from Standard Conditions

None.

3.8 Other Information Requested by the Customer

None.

3.9 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS(Lab code:L4957)

• FCC (Registration No.:935596)

• IC (Registration NO.:8368A)

3.10 Measurement Uncertainty

The below measurement uncertainties given below are based on a 95% confidence level (base on a coverage factor (k=2).)

Parameter	Uncertainty
Radio frequency	±1.06 x 10 ⁻⁷
total RF power, conducted	1.37 dB
RF power density , conducted	2.89 dB
All emissions, radiated	±3.35 dB
Temperature	±0.23 °C
Humidity	±0.3 %
DC and low frequency voltages	±0.3 %

ITL Page 7 of 49 Report No.: 14077496

4 Instruments Used during Test

No.	Test Equipment	Manufacturer	Model	Serial No.	Last Cal.	Cal. Due
ITL-114	Spectrum Analyzer	Agilent	N9010A	MY51250936	2014/01/21	2015/01/21
ITL-116	Pre Amplifier	HP	8447F	3113A05905	2013/10/24	2014/10/24
ITL-117	Wideband Amplifier Super Ultra	Mini-circuits	ZVA-183- S+	469101134	2013/10/31	2014/10/31
ITL-105	Biconilog Antenna	ETS•Lindgren	3142D	00108096	2012/02/11	2015/02/11
ITL-110	Horn Antenna	A-INFOMW	JXTXLB- 10180-N	J2031090612 133	2012/12/17	2015/12/17
ITL-102	EMI Test receiver	R&S	ESCI	100910	2014/06/17	2015/06/17
ITL-103	Two-line v-network	R&S	ENV216	100120	2014/06/17	2015/06/17
ITL-115	50Ω Coaxial Cable	Mini-circuits	CBL	C001	2014/09/07	2015/09/07
ITL-100	Semi-Anechoic chamber	ETS•Lindgren	FACT3 2.0	CT09015	2013/06/17	2016/06/17
ITL-145	Loop Antenna	ZHINAN	ZN30900 A	002489	2014/01/23	2015/01/23
ITL-146	Horn Antenna	Schwarzbeck	ВВНА 9170	B09806543	2014/06/08	2015/06/08
ITL-101	Shielded Room	ETS•Lindgren	8*4*3	CT09010	2012/03/23	2015/03/22

ITL Page 8 of 49 Report No.: 14077496

5 Test Results

5.1 E.U.T. test conditions

Test Voltage: AC 120V

Temperature: 23.2 -25.0 °C

Humidity: 38-50 % RH

Atmospheric Pressure: 1000 -1010 mbar

Requirements: 15.31(e): For intentional radiators, measurements of the variation of

the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be

performed using a new battery.

15.32: Power supplies and CPU boards used with personal computers and for which separate authorizations are required to be obtained shall be tested as follows: Testing shall be in accordance with the procedures

specified in Section 15.31 of this part.

Test frequencies and frequency range:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

openied in the fellowing table.

According to the 15.33 (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency

shown in the following table:

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which	Number of	Location in frequency range
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1
	<u> </u>	near bottom

ITL Page 9 of 49 Report No.: 14077496

Frequency range of radiated emission measurements

Lowest frequency generated	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz,
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to 100 GHz,
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz,

EUT channels and frequencies list:

Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)
1	2405	9	2440
2	2409	10	2445
3	2413	11	2450
4	2417	12	2455
5	2422	13	2460
6	2426	14	2465
7	2430	15	2470
8	2435	16	2476

Test frequencies are the lowest channel: 1 channel (2405MHz), middle channel: 9 channel (2440

MHz) and highest channel: 16 channel (2476 MHz)

ITL Page 10 of 49 Report No.: 14077496

5.2 Antenna requirement

Standard requirement

15.203 requirement:

For intentional device. According to 15.203. An intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna

The antenna is a Cable antenna and no consideration of replacement. The best case gain of the antenna is -1.3dBi.

Test result: The unit does meet the FCC requirements.

ITL Page 11 of 49 Report No.: 14077496

5.36 dB Bandwidth

Test Requirement: FCC Part 15 C section 15.247

(a)(2)Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5MHz, and 5725-5850 MHz bands. The minimum 6

dB bandwidth shall be at least 500 kHz.

Test Method: ANSI C63.10: Clause 6.9 and KDB558074

Test Status: Pre-Scan has been conducted to determine the worst-case mode from all

possible combinations between available modulations, channels and antenna ports (if EUT with antenna diversity architecture). Following

channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- Remove the antenna from the EUT and then connect a low attention attenuation RF cable
 (Cable loss =1.2dB) from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW=300KHz. VBW = 1MHz, Sweep = auto; Detector Function = Peak. Trace = Max Hold, Set span to encompass the entire emission bandwidth of the signal.
- 3. Mark the peak power frequency and -6dB (upper and lower) power frequency.
- 4. Repeat until all the test status is investigated.
- 5. Report the worst case.

Channel No.	Frequency (MHz)	Measured 6dB bandwidth (MHz)	Limit	Result
1	2405	1.58		Pass
9	2440	1.62	≥500KHz	Pass
16	2476	1.65		Pass

6dB bandwidth:

Result plot as follows:

Channel 1:2.405GHz:

ITL Page 13 of 49 Report No.: 14077496

Channel 9:2.440GHz:

Channel 16:2.476GHz:

ITL Page 14 of 49 Report No.: 14077496

5.4 Maximum Peak Output Power

Test Requirement: FCC Part 15 C section 15.247

(b)(3) For systems using digital modulation in the 902-928 MHz,

2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b) (1), (b) (2), and (b) (3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna

exceeds 6 dBi.

Test Method: ANSI C63.10: Clause 6.10 and KDB558074 (Power Output Option

2-Method #1).

Test Status: Pre-Scan has been conducted to determine the worst-case mode from all

possible combinations between available modulations, channels and antenna ports (if EUT with antenna diversity architecture). Following

channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable

(Cable loss =1.2dB) from the antenna port to the spectrum.

- 2. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 3. Set RBW = 1 MHz.
- 4. Set VBW ≥ 3 MHz.
- 5. Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode.

ITL Page 15 of 49 Report No.: 14077496

6. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep.

If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run".

- 7. Trace average 100 traces in power averaging mode.
- 8. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.
- 9. Measure the channel power of the test frequency with special test status.
- 10. Repeat until all the test status is investigated.
- 11. Report the worst case.

Channel No.	Frequency (MHz)	Measured Channel	Limit (dBm)	Result
		Power		
		(dBm)		
1	2405	11.374		Pass
9	2440	11.068	30	Pass
16	2476	11.265		Pass

The unit does meet the FCC requirements.

ITL Page 16 of 49 Report No.: 14077496

Result plot as follows:

Channel 1: 2.405GHz:

Channel 9: 2.440GHz:

ITL Page 17 of 49 Report No.: 14077496

Channel 16: 2.476GHz:

ITL Page 18 of 49 Report No.: 14077496

5.5 Peak Power Spectral Density

Test Requirement: FCC Part 15 C section 15.247

(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Method:

ANSI C63.10: Clause 6.11 and KDB558074 (PSD Option 1).

Test Status:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, channel and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

ITL Page 19 of 49 Report No.: 14077496

Test Procedure:

Remove the antenna from the EUT and then connect a low attention attenuation RF cable
 (Cable loss =1.2 dB) from the antenna port to the spectrum analyzer or power meter.

- 2. Set the spectrum analyzer:
 - a) Set CENTER FREQUENCY = Frequency from Power Spectral Density Test Matrix (see 6.10.2)
 - b) Set SPAN = 20 MHz (For devices with a nominal 40 MHz BW, 50 MHz span will be needed)
 - c) Set REFERENCE LEVEL = 20 dBm
 - d) Set ATTENUATION = 0 dB (add internal attenuation, if necessary)
 - e) Set SWEEP TIME = Coupled
 - f) Set RBW = 3 kHz
 - g) Set VBW = 3 MHz
 - h) Set DETECTOR = Peak
 - i) Set MKR = Center Frequency
 - j) Set TRACE = CLEAR WRITE

Place the radio in continuous transmit mode. Set the TRACE to MAX HOLD, and after the trace stabilizes, the TRACE to VIEW. Set the marker on the peak of the signal and then adjust the center frequency of the spectrum analyzer to the marker frequency.

After viewing the EUT waveform on the spectrum analyzer, perform the following spectrum analyzer functions to capture the trace:

Set SPAN = 2 MHz Set SWEEP TIME = 100 s Set TRACE = MAX HOLD Set MKR = PEAK SEARCH

- 3. Measure the Power Spectral Density of the test frequency with special test status.
- 4. Repeat until all the test status is investigated.
- 5. Report the worse case.

ITL Page 20 of 49 Report No.: 14077496

Test result:

Channel	Frequency	Measured Peak Power	Limit	Result
No.	(MHz)	Spectral Density		
		(dBm/3kHz)		
1	2405	-1.259		Pass
9	2440	-1.273	8dBm/3kHz	Pass
16	2476	-1.619		Pass

Test result: Level = Read Level + Cable Loss.
The results does meet the FCC requirements.

ITL Page 21 of 49 Report No.: 14077496

Result plot as follows:

Channel 1:2.405 GHz:

Channel 9:2.440GHz:

ITL Page 22 of 49 Report No.: 14077496

Channel 16:2.476 GHz:

ITL Page 23 of 49 Report No.: 14077496

5.6 Conducted Spurious Emissions

Test Requirement: FCC Part 15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Method: ANSI C63.10: Clause 6.7 and KDB558074.

Test Status: Pre-Scan has been conducted to determine the worst-case mode from all

possible combinations between available modulations, channel and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer or power meter.
- 2. Set the spectrum analyzer: RBW=100 KHz, VBW = 300KHz. Sweep = auto; Detector Function = Peak. Trace = Max Hold, Scan up through 10th harmonic.
- 3. Measure the Conducted Spurious Emissions of the test frequency with special test status.
- 4. Repeat until all the test status is investigated.
- 5. Report the worse case.

ITL Page 24 of 49 Report No.: 14077496

Result plot as follows:

Channel 1: 2.405 GHz

Channel 9: 2.440 GHz

#VBW 300 kHz

Stop 25.00 GHz #Sweep 2.39 s (1001 pts)

The results does meet the FCC requirements.

Start 20 MHz #Res BW 100 kHz **ITL** Page 26 of 49 Report No.: 14077496

5.7 Radiated Spurious Emissions

Test Requirement: FCC Part 15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at

least 20 dB below that in the 100 kHz bandwidth within the band that Contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, and provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Method: ANSI C63.10: Clause 6.4, 6.5 and 6.6 & KDB558074

Test Status: Pre-Scan has been conducted to determine the worst-case mode from all

possible combinations between available modulations, channels and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Detector: For PK value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW Sweep = auto

Detector function = peak

Trace = max hold

For AV value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 9kHz for < 30MHz

VBW =10Hz

Sweep = auto

Detector function = peak

Trace = max hold

15.209 Limit: 40.0 dBµV/m between 30MHz & 88MHz

43.5 dBµV/m between 88MHz & 216MHz

46.0 dBµV/m between 216MHz & 960MHz

54.0 dBµV/m above 960MHz

ITL Page 27 of 49 Report No.: 14077496

Test Configuration:

1) 9kHz to 30MHz emissions:

2) 30 MHz to 1 GHz emissions:

ITL Page 28 of 49 Report No.: 14077496

3) 1 GHz to 40 GHz emissions:

Test Procedure:

The receiver was scanned from 30MHz to 25GHz.When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

From 30MHz to 1GHz, read the Quasi-Peak field strength of the emissions with receiver QP detector RBW=120 kHz.

Above 1GHz, read the Peak field strength and Average field strength.

Read the Peak field strength through RBW=1MHz, VBW=3MHz in spectrum analyzer setting; Read the Average field strength through RBW=1MHz, VBW=10Hz in spectrum analyzer setting; While maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the average field strength reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.

ITL Page 29 of 49 Report No.: 14077496

5.7.1 Harmonic and other spurious emissions

Test at Channel 1 (2.405 GHz) in transmitting status

9kHz~30MHz Test result

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Horizontal:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No.	Freq	Level	Remark	Anterna Factor	Cable Loss	Limit Line	Preamp Factor	Over lim	it A∕pos	T/pos
	MHz	dBuV/m		dB/m	dВ	dBuV/m	dВ	dВ	cn	deg
1 2 3 4 5	46.490 163.860 271.530 320.030 378.230 592.600	15.89 17.74 24.36 33.17 29.99 21.35	QP QP QP QP QP QP	9. 80 7. 57 12. 88 14. 00 15. 23 20. 10	0.77 1.53 2.01 2.19 2.37 3.04	40.00 43.50 46.00 46.00 46.00 46.00	28.53 28.26 27.28 27.52 28.37 28.35	-24.11 -25.76 -21.64 -12.83 -16.01 -24.65	223 221 189 196 197 201	300 171 211 266 52 126

Level=Read Level + Antenna Factor + Cable Loss-Freamp Factor

ITL Page 30 of 49 Report No.: 14077496

Vertical:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No.	Freq	Level	Remark	Anterna Factor	Cable Loss	Limit Line	Preamp Factor	Over lim:	it A∕pos	T/pos
	MHz	$dBu \mathbb{V}/n$		dB/m	dB	dBuV/m		dВ	cn	\deg
1	47.460	35.94	QP	9.41	0.78	40.00	28.55	-4.06	100	0
2	93.050	26.81	QΡ	8. 32	1.13	43.50	28.53	-16.69	105	231
3	269.590	33.05	QP	12.95	2.01	46.00	27.22	-12.95	122	355
4	332,640	38.55	QP	13.92	2.23	46.00	27.44	-7.45	115	266
5	361.740	37.93	QΡ	14.49	2.32	46.00	27.83	-8.07	131	75
6	387.930	35.81	QP	15.54	2.41	46.00	28.29	-10.19	109	108

Level=Read Level + Antenna Factor + Cable Loss-Preamp Factor

ITL Page 31 of 49 Report No.: 14077496

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4810.000	34.32	9.60	27.62	36.36	52.66	74	V
7215.000	34.74	12.16	27.33	34.23	53.8	74	V
4810.000	34.32	9.60	27.62	32.68	48.98	74	Н
7215.000	34.74	12.16	27.33	35.38	54.95	74	Н

Average Measurement:

	0404.00						
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4810.000	34.32	9.60	27.62	23.23	39.53	54	V
7215.000	34.74	12.16	27.33	22.35	41.92	54	>
4810.000	34.32	9.60	27.62	22.67	38.97	54	Ι
7215.000	34.74	12.16	27.33	23.28	42.85	54	Η

ITL Page 32 of 49 Report No.: 14077496

Test at Channel 9 (2.440 GHz) in transmitting status

9 kHz~30MHz Test result

The Low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Horizontal:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No.	Freq	Level	Remark	Anterna Factor	Cable Loss	Limit Line	Preamp Factor	Over limi	t A∕pos	T/pos
	MHz	dBuV/m		dB/m	_dB	dBuV/m	dB	_dB	cn	deg
_	47.460 167.740 267.650 321.970 343.310 420.910		QP QP QP QP QP QP	9.41 8.00 12.72 14.00 13.77 16.60	0.78 1.55 2.00 2.20 2.26 2.53	40.00 43.50 46.00 46.00 46.00 46.00	28.55 28.41 27.29 27.51 27.35 28.12	-23.59 -23.41 -23.32 -15.21 -13.17 -18.79	189 193 205 233 223 212	360 0 177 300 278 245

Level=Read Level + Antenna Factor + Cable Loss-Freamp Factor

ITL Page 33 of 49 Report No.: 14077496

Vertical:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No.	Freq	Level	Remark	Anterna Factor	Cable Loss	Limit Line	Preamp Factor	Over lim:	it A∕pos	T/pos
	MHz	dBuV/m		dB/m	dB	dBuV/m	dB	dВ	cn	deg
1	46.490	35.7D	QP	9.80	0.77	40.00	28.53	-4.30	104	360
2	86.26D	25.4B	QP	7.83	1.08	40.00	28.29	-14.52	112	180
3	165.800	23.64	QP	7.65	1.54	43.50	28.33	-19.86	118	205
4	270.560	29.85	QP	12.95	2.01	46.00	27.23	-16.15	123	0
5	327, 790	39.02	QΡ	14.00	2.21	46.00	27.48	-6.98	119	300
6	376.290	35.32	QP	15.15	2.36	46.00	28.39	-10.68	126	275

Level=Read Level + Antenna Factor + Cable Loss-Freamp Factor

ITL Page 34 of 49 Report No.: 14077496

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4880.00	34.37	9.66	27.61	35.18	51.60	74.00	V
7320.00	35.07	12.23	27.33	34.43	54.40	74.00	V
4880.00	34.37	9.66	27.61	36.83	53.25	74.00	Н
7320.00	35.07	12.23	27.33	37.12	57.09	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4880.00	34.37	9.66	27.61	23.72	40.14	54.00	V
7320.00	35.07	12.23	27.33	26.54	46.51	54.00	V
4880.00	34.37	9.66	27.61	25.69	42.11	54.00	Н
7320.00	35.07	12.23	27.33	27.55	47.52	54.00	Н

ITL Page 35 of 49 Report No.: 14077496

Test at Channel16 (2.476 GHz) in transmitting status

9kHz~30MHz Test result

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Horizontal:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No.	Freq	Level	Remark	Anterna Factor	Cable Loss	Limit Line	Preamp Factor	Over lim	it A∕pos	T/pos
	MHz	dBuV/m		dB/m	ďВ	dBuV/m		dΒ	cn	deg
1	46.490	17.56	QP	9.80	0.77	40.00	28.53	-22.44	198	360
2	159.98D	19.92	QP	7.80	1.51	43.50	28.10	-23.58	203	86
3	240.490	23.25	QP	10.93	1.89	46.00	27.20	-22.75	212	186
4	322.940	31.46	QP	14.00	2.20	46.00	27.51	-14.54	223	0
5	379.200	31.92	QP	15. 27	2.37	46.00	28.37	-14.08	226	273
6	408.300	28.67	$_{ m QP}$	16.08	2.48	46.00	28.17	-17.33	207	225

Level=Read Level + Antenna Factor + Cable Loss-Preamp Factor

ITL Page 36 of 49 Report No.: 14077496

Vertical:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No.	Freq	Level	Remark	Anterna Factor	Cable Loss	Limit Line	Preamp Factor	Over limi	it A∕pos	T/pos
	MHz	dBuV/m		dB/m	dВ	dBuV/m	dВ	dВ	cn	$_{ m deg}$
1	46.490	34.52	QP	9.80	0.77	40.00	28.53	-5.48	100	301
2	112.450	24.65	QP	8.35	1.25	43.50	28.57	-18.85	112	281
3	167.740	21.2B	QP	8.00	1.55	43.50	28.41	-22.22	179	100
4	317.120	34.63	QP	13.89	2.18	46.00	27.53	-11.37	123	200
5	347.190	35.87	QP	13.84	2.27	46.00	27. 32	-10.13	118	176
6	406.360	32.77	$_{ m QP}$	16.06	2.47	46.00	28.17	-13.23	131	38

Level=Read Level + Antenna Factor + Cable Loss-Preamp Factor

ITL Page 37 of 49 Report No.: 14077496

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4952.00	34.42	9.71	27.60	31.56	48.04	74.00	V
7428.00	35.40	12.31	27.32	34.21	54.60	74.00	V
4952.00	34.42	9.71	27.60	35.46	51.99	74.00	Н
7428.00	35.40	12.31	27.32	34.28	54.67	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4952.00	34.42	9.71	27.60	22.12	38.65	54.00	V
7428.00	35.40	12.31	27.32	23.31	43.7	54.00	V
4952.00	34.42	9.71	27.60	24.13	40.66	54.00	Н
7428.00	35.40	12.31	27.32	26.27	46.66	54.00	Η

ITL Page 38 of 49 Report No.: 14077496

The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), the amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

Hence there no other emissions have been reported.

Remark:

- 1) .For this intentional radiator operates below 25 GHz. The spectrum shall be investigated to the tenth harmonics of the highest fundamental frequency. And above the third harmonic of this intentional radiator, the disturbance is very low. So the test result only displays to 3rd harmonic.
- 2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

Test result: The unit does meet the FCC requirements.

ITL Page 39 of 49 Report No.: 14077496

5.8 Radiated Emissions which fall in the restricted bands

Test Requirement: FCC Part 15 C section 15.247

(d) In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission

limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10: Clause 6.4, 6.5 and 6.6 & KDB558074

Test Status: Pre-Scan has been conducted to determine the worst-case mode from all

possible combinations between available modulations, channels and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit: 40.0 dBµV/m between 30MHz & 88MHz;

43.5 dBµV/m between 88MHz & 216MHz;

46.0 dBµV/m between 216MHz & 960MHz;

54.0 dBµV/m above 960MHz.

Detector: For PK value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW Sweep = auto

Detector function = peak

Trace = max hold

For AV value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW =10Hz

Sweep = auto

Detector function = peak

Trace = max hold

ITL Page 40 of 49 Report No.: 14077496

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

Test Result:

Test at Channel 1 (2.405 GHz) in transmitting status

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	34.11	20.11	39.43	25.43
2390.000	26.56	6.46	27.79	32.34	21.34	37.57	26.57
2500.000	25.70	6.62	27.80	34.53	21.65	39.05	26.17
2483.500	25.79	6.61	27.80	35.74	22.38	40.34	26.98

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	34.23	22.34	39.55	27.66
2390.000	26.56	6.46	27.79	37.17	22.78	42.40	28.01
2500.000	25.70	6.62	27.80	37.64	23.36	42.16	27.88
2483.500	25.79	6.61	27.80	37.37	22.80	41.97	27.40

ITL Page 42 of 49 Report No.: 14077496

Test at Channel 9 (2.440 GHz) in transmitting status

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	38.11	22.53	43.43	27.85
2390.000	26.56	6.46	27.79	35.23	24.27	40.46	29.50
2500.000	25.70	6.62	27.80	36.16	22.38	40.68	26.90
2483.500	25.79	6.61	27.80	35.28	22.48	39.88	27.08

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	36.22	23.48	41.54	28.80
2390.000	26.56	6.46	27.79	35.16	20.58	40.39	25.81
2500.000	25.70	6.62	27.80	35.27	21.57	39.79	26.09
2483.500	25.79	6.61	27.80	34.47	22.94	39.07	27.54

Test at Channel 16 (2.476 GHz) in transmitting status

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	32.61	20.69	37.93	26.01
2390.000	26.56	6.46	27.79	33.67	20.37	38.90	25.60
2500.000	25.70	6.62	27.80	36.38	22.59	40.90	27.11
2483.500	25.79	6.61	27.80	36.17	22.38	40.72	26.98

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	32.56	20.39	37.88	25.71
2390.000	26.56	6.46	27.79	33.49	20.46	38.72	25.69
2500.000	25.70	6.62	27.80	36.29	22.76	40.81	27.28
2483.500	25.79	6.61	27.80	36.87	22.44	41.47	27.04

ITL Page 43 of 49 Report No.: 14077496

5.9 Band Edges Requirement

Test Requirement: FCC Part 15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

Frequency Band: 2400 MHz to 2483.5 MHz

Test Method: ANSI C63.10: Clause 6.9 & KDB558074.

Test Status: Pre-Scan has been conducted to determine the worst-case mode from all

possible combinations between available modulations, channels and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer or power meter.
- 2. Set RBW=1000 kHz, VBW=3000 KHz, suitable frequency span including 1000 kHz bandwidth from band edge.
- 3. Measure the Conducted Spurious Emissions and Radiated Emissions of the test frequency with special test status.
- 4. Repeat until all the test status is investigated.
- 5. Report the worse.

ITL Page 44 of 49 Report No.: 14077496

Test result with plots as follows:

The band edges was measured and recorded Result:

The Lower Edges attenuated more than 20dB.

The Upper Edges attenuated more than 20dB.

Result plot as follows:

Channel 1: 2.405 GHz

Channel16: 2.476 GHz

ITL Page 46 of 49 Report No.: 14077496

5.10 Conducted Emissions at Mains Terminals 150 kHz to 30MHz

Test Requirement: FCC Part 15 C section 15.207

Test Method: ANSI C63.10: Clause 6.2

Frequency Range: 150 kHz to 30 MHz

Detector: Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

Limits for conducted disturbance at the mains ports of class B

- Fraguency Pango	Class B Limit dB(µV)				
Frequency Range	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.

EUT Operation:

Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, channels and antenna ports (if EUT with antenna diversity architecture).

ITL Page 47 of 49 Report No.: 14077496

Test Configuration:

Test procedure:

- 1. The mains terminal disturbance voltage test was conducted in a shielded room.
- 2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

ITL Page 48 of 49 Report No.: 14077496

5.10.1 Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode.

The following Quasi-Peak and Average measurements were performed on the EUT Live line

Peak Scan:

Quasi-peak and Average measurement

NO.	Freq MHz	Level dBuV	Renark	LISM Factor dB	Cable Loss dB	Limit Line dBuV	Over Limit dB
1	0.170	52.49	QP	9.44	0.21	64. 94	-12.45
2	0.170				0.21	64.94	
~		37. 29	Average	9.44			-27.65
3	0.342	31.50	QP	9.42	0.25	59. 15	-27.65
4	0.342	17.91	Average	9.42	0.25	59. 15	-41.24
5	1.523	19.44	QP -	9.30	0.33	56.00	-36.56
6	1.523	11.73	Average	9.30	0.33	56.00	-44. 27
7	3.75D	24.49	QP	9.30	0.38	56.00	-31.51
8	3.75D	17.24	Average	9.30	0.38	56.00	-38.76
9	5.022	22.35	QP	9.29	0.40	60.00	-37.65
10	5.022	15.46	Average	9.29	0.40	60.00	-44.54
11	17.532	22.36	QP	9.58	0.47	60.00	-37.64
12	17.532	13.48	Average	9.58	0.47	60.00	-46.52

ITL Page 49 of 49 Report No.: 14077496

Neutral Line

Peak Scan:

Level (dBµV)

Quasi-peak and Average measurement

NO.	Freq MHz	Level dBuV	Renark	LISM Factor dB	Cable Loss dB	Limit Line dBuV	Over Limit dB
1 2 3 4 5 6 7 8 9	0. 170 0. 170 0. 321 0. 321 0. 936 0. 936 4. 217 4. 217 14. 482 14. 482 15. 932	52. 52 36. 00 33. 28 18. 67 20. 52 14. 37 27. 76 20. 48 23. 80 17. 05 24. 73	QP Average QP Average QP Average QP Average QP Average QP Average QP	9.38 9.38 9.36 9.36 9.37 9.37 9.42 9.42 9.65 9.65	0. 21 0. 21 0. 24 0. 24 0. 30 0. 30 0. 39 0. 39 0. 46 0. 46	64. 94 54. 94 59. 68 49. 68 46. 00 46. 00 46. 00 60. 00 50. 00	-12. 42 -18. 94 -26. 40 -31. 01 -35. 48 -31. 63 -28. 24 -25. 52 -36. 20 -32. 95 -35. 27
12	15.932	14.87	Average	9.71	0.46	50.00	-35.13