Chapter 39 Dimension

39.1 Espaces vectoriels de dimension finie

39.1.1 Dimension d'un espace vectoriel

Exercice 39.1

Dans $E = \mathbb{R}^4$, on considère les sous-espaces vectoriels

$$V = \left\{ (x, y, z, t)^T \in \mathbb{R}^4 \mid x - y + z - t = 0 \right\}$$
 et $W = \left\{ (x, y, z, t)^T \in \mathbb{R}^4 \mid x - y - z = y + t = 0 \right\}.$

- 1. Préciser une base et la dimension de V. Déterminer les coordonnées dans cette base de $a = (3, 1, 2, 4)^T$.
- **2.** Préciser une base et la dimension de W. Déterminer les coordonnées dans cette base de $b = (4, 1, 3, -1)^T$.
- **3.** Préciser une base et la dimension de $V \cap W$.

Exercice 39.2

Soit $F = \{ (x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0 \}.$

Prouver que F est un sous-espace vectoriel de \mathbb{R}^3 , en déterminer une base et calculer sa dimension.

Exercice 39.3

Soit $F = \{ (x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0 \text{ et } -x - y + z = 0 \}.$

Prouver que F est un sous-espace vectoriel de \mathbb{R}^3 , en déterminer une base et calculer sa dimension.

Exercice 39.4

Montrer que le sous-ensemble

$$F = \{ (\alpha + \beta, \beta, 2\alpha - \beta - \alpha) \mid \alpha, \beta \in \mathbb{R} \}$$

est un sous-espace vectoriel de \mathbb{R}^4 dont on déterminera la dimension et une base.

Exercice 39.5

Soit E le sous ensemble de $\mathcal{M}_3(\mathbb{R})$ défini par

$$E = \left\{ \left. M(a,b,c) = \begin{pmatrix} a & 0 & c \\ 0 & b & 0 \\ c & 0 & a \end{pmatrix} \right| a,b,c \in \mathbb{R} \right\}.$$

- **1.** Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ stable pour la multiplication des matrices. Calculer $\dim(E)$.
- **2.** Soit M(a, b, c) un élément de E. Déterminer son rang suivant les valeurs des paramètres $a, b, c \in \mathbb{R}$. Calculer (lorsque cela est possible) l'inverse de M(a, b, c).
- 3. Donner une base de E formée de matrices inversibles et une autre formée de matrices de rang 1.

Soit $S = \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites à valeurs réelles. Soit W l'ensemble des suites nulles à partir du

Montrer que W est un sous-espace vectoriel de S de dimension 3.

Exercice 39.8

Soit $x_1 < x_2 < \dots < x_n$ des réels. On pose $x_0 = -\infty$ et $x_{n+1} = +\infty$. On note E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} de classe \mathscr{C}^1 dont la restriction à chaque $]x_i, x_{i+1}[$ est un polynôme de degré 2 au plus.

Montrer que *E* est un espace vectoriel. En donner la dimension et une base.

39.1.2 Caractérisation des bases et de la dimension

Exercice 39.10

Soit la famille de vecteurs $\mathcal{B} = (v_1, v_2, v_3)$, où

$$v_1 = (1, 1, 0)^T$$

$$v_1 = (1, 1, 0)^T,$$
 $v_2 = (-4, 0, 3)^T$

et
$$v_3 = (3, 5, 1)^T$$
.

- **1.** Montrer que \mathcal{B} est une base de \mathbb{R}^3 .
- 2. Soit $w = (-1, 7, 5)^T$ et $e_1 = (1, 0, 0)^T$. Déterminer les coordonnées de w et de e_1 relativement à la base

Exercice 39.11

On pose $E = \mathbb{C}^3$ et on s'intéresse aux trois vecteurs

$$u_1 = (i, 1, -1),$$
 $u_2 = (i, -1, 1)$

$$u_2 = (i, -1, 1)$$

$$u_3 = (-1, i, 1).$$

- **1.** Démontrer que la famille $\mathcal{B} = (u_1, u_2, u_3)$ est une base de E.
- **2.** Déterminer les coordonnées de w = (3 + i, 1 i, 2) dans \mathcal{B} .

Exercice 39.12

1. Montrer que

$$\mathcal{B} = \left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right)$$

est une base de l'espace vectoriel $E = \mathcal{M}_2(\mathbb{R})$.

2. Déterminer les coordonnées de $u = \begin{pmatrix} 2 & 3 \\ 4 & -7 \end{pmatrix}$ dans la base \mathcal{B} .

Exercice 39.13

Soient $\alpha \in \mathbb{R}$ et

$$P_1 = (1 + \alpha)X^2 + X + 1,$$
 $P_2 = X^2 + (1 + \alpha)X + 1,$ $P_3 = X^2 + X + (1 + \alpha).$

2

Donner une condition nécessaire et suffisante sur α pour que la famille (P_1, P_2, P_3) soit une base de $\mathbb{R}_2[X]$.

Soient a et b deux réels distincts, et $n \in \mathbb{N}^*$.

- **1.** Montrer que la famille $((X-a)^k(X-b)^{n-k})_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.
- **2.** Donner un exemple d'isomorphisme de $\mathbb{R}_n[X]$ dans \mathbb{R}^{n+1} .
- 3. Déduire des deux questions précédentes une base de \mathbb{R}^3 composée de vecteurs dépendants de a et b.

39.1.3 Dimension d'un produit d'espaces vectoriels

39.2 Dimension et sous-espace vectoriel

39.2.1 Théorème de la base incomplète

Exercice 39.16

Soit E un K-espace vectoriel de dimension 3 et $e = (e_1, e_2, e_3)$ une base de E. On pose

$$f_1 = e_1 + 2e_2 + 2e_3$$
 $f_2 = e_2 + e_3$.

Montrer que (f_1, f_2) est libre et compléter cette famille en une base de E.

39.2.2 Dimension d'un sous-espace vectoriel

39.2.3 Rang d'une famille de vecteurs

39.3 Sommes et dimension

39.3.1 Base adaptée à une décomposition en somme directe

Exercice 39.19

Soit E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$. Soit $(w_i)_{i \in I}$ une famille de vecteurs de E. On décompose chaque vecteur w_i suivant la somme précédente ; cela donne pour tout i,

$$w_i = u_i + v_i$$

égalité dans laquelle u_i appartient à F et v_i appartient à G.

On suppose la famille $(u_i)_{i \in I}$ libre. Prouver qu'il en est de même de la famille $(w_i)_{i \in I}$.

Exercice 39.20

Soit

$$X = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad Y = \operatorname{Vect} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\}.$$

La somme X + Y est-elle directe ? Déterminer une base de X + Y.

Exercice 39.22 Centrale PSI

Soient E un espace vectoriel de dimension $n \ge 1$ et S l'ensemble des sous-espaces vectoriels de E.

- **1.** Soient F et F' dans $S \setminus \{E\}$. Montrer que $F \cup F' \neq E$.
- **2.** Soient H et H' deux hyperplans de E. Montrer qu'il existe $D \in S$ tel que $H \oplus D = H' \oplus D = E$.
- **3.** Soit $d: S \to \mathbb{N}$ vérifiant

$$d(E) = n$$
 et $\forall F, F' \in S, F \cap F' = \{0\} \implies d(F + F') = d(F) + d(F')$.

Montrer que $\forall F \in \mathcal{S}, d(F) = \dim(F)$.

Exercice 39.23

Soient

$$r = (1, 0, 0, 1),$$
 $s = (-1, 1, 0, 0),$ $t = (0, 0, 1, 1),$ $u = (2, 0, 1, 0),$ et $v = (2, -1, 2, 3).$

On pose F = Vect(r, s), G = Vect(t, u) et H = Vect(t, v).

- **1.** Montrer que $\mathbb{R}^4 = F \oplus G$.
- **2.** Donner une base de F + H et de $F \cap H$.

Exercice 39.29

Soit $E = \mathbb{R}_3[X]$. On note

$$F = \left\{ P \in E \mid P(-1) = 0 \text{ et } \int_{-1}^{1} P(t) dt = 0 \right\} \text{ et } G = \text{Vect} \left\{ 1 - X - X^{2}, 1 + X + X^{3} \right\}.$$

On ne demande pas de vérifier que F et G sont deux sous-espaces vectoriels de E.

- 1. Déterminer une base de F et une base de G. En déduire les dimensions de F et G.
- **2.** Montrer que $E = F \oplus G$.
- 3. Donner l'expression de la projection π sur F parallèlement à G.

39.3.2 Formule de Grassmann

Exercice 39.31

Dans \mathbb{R}^4 , on pose F = Vect(u, v, w) et G = Vect(x, y) avec

$$u = (0, 1, -1, 0)$$
 $v = (1, 0, 1, 0)$ $w = (1, 1, 1, 1)$ $x = (0, 0, 1, 0)$ et $y = (1, 1, 0, -1)$.

Quelles sont les dimensions de F, G, F + G et $F \cap G$?

Exercice 39.32

Soient F et G deux sous-espaces vectoriels de dimensions 3 de \mathbb{R}^5 . Montrer que $F \cap G \neq \{0\}$.

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- **1.** Soient H_1 et H_2 deux hyperplans de E. Déterminer la dimension de $H_1 \cap H_2$.
- **2.** Plus généralement, si H est un hyperplan de E et F un sous-espace vectoriel de E, déterminer la dimension de $H \cap F$.

39.3.3 Caractérisation dimensionnelle des sous-espaces supplémentaires

Exercice 39.37

Soient $n \in \mathbb{N}$, $n \ge 3$. On considère $F = \{ P \in \mathbb{R}_n[X] \mid P(1) = P(2) = 0 \}$.

- **1.** Justifier que F est un sous-espace vectoriel de $\mathbb{R}_n[X]$ et préciser sa dimension. *Indication*: On pourra considérer des formes linéaires définies sur $\mathbb{R}_n[X]$.
- **2.** Soit $G = \text{Vect}(X, X^2)$. Justifier que F et G sont supplémentaires dans $\mathbb{R}_n[X]$.
- 3. Soit π la projection sur F parallèlement à G, déterminer $\pi(P)$ pour tout P de $\mathbb{R}_n[X]$.

Exercice 39.39

Soient $n \in \mathbb{N} \setminus \{0, 1\}$, F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ de dimension $n^2 - 1$ et stable par multiplication. On se propose de montrer que $I_n \in F$, en raisonnant par l'absurde. On suppose $I_n \notin F$, et on note p le projecteur de $\mathcal{M}_n(\mathbb{K})$ d'image $\mathbb{K}I_n$ et de noyau F.

- **1.** Montrer $\forall M, M' \in \mathcal{M}_n(\mathbb{K}), p(MM') = p(M)p(M')$.
- **2.** En déduire $\forall M \in \mathcal{M}_n(\mathbb{K}), (M^2 \in F \implies M \in F)$.
- **3.** Établir que F contient la base canonique de $\mathcal{M}_n(\mathbb{K})$.
- 4. Conclure.

39.4 Bases et dimension dans \mathbb{K}^n

- 39.4.1 Sous-espace vectoriel engendré par les colonnes d'une matrice
- **39.4.2** Indépendance linéaire dans \mathbb{K}^n
- 39.4.3 Bases de \mathbb{K}^n
- 39.4.4 Image et noyau d'une matrice

Exercice 39.41

On considère les ensembles

$$U = \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} -1\\2\\5 \end{pmatrix} \right\} \qquad W = \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\2\\5 \end{pmatrix} \right\}$$

Décrire les sous-espace vectoriel Vect(U) et Vect(W). Donner une base pour chacun d'eux.

Montrer que l'un des deux est un plan vectoriel et déterminer une équation cartésienne de celui-ci.

Soit V le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs

$$v_1 = (1, 2, 3, 4),$$
 $v_2 = (2, 3, 4, 5),$ $v_3 = (3, 4, 5, 6),$ $v_4 = (4, 5, 6, 7).$

Déterminer une base de V et dim V.

Exercice 39.47

Soit A une matrice de type $m \times k$. On suppose que les colonnes de A sont linéairement indépendantes. Montrer

- **1.** $A^T A$ est une matrice symétrique de type $k \times k$,
- **2.** $A^T A$ est une matrice inversible.

Vérifier les résultats précédents pour la matrice $M = \begin{pmatrix} 1 & -2 \\ 3 & 0 \\ 1 & 1 \end{pmatrix}$.

Exercice 39.48

Soit B une matrice $m \times k$ tel que $\text{Im}(B^T)$ est un plan de \mathbb{R}^3 admettant pour équation cartésienne

$$4x - 5y + 3z = 0$$
.

- 1. Peut-on déterminer m ou k? Le faire si possible.
- 2. Déterminer le noyau de B. Écrire la solution générale de l'équation Bx = 0.

Exercice 39.49

On donne une partie d'une matrice A ainsi que sa forme échelonnée réduite

$$A = \begin{pmatrix} 1 & 4 & * & * \\ 2 & -1 & * & * \\ 3 & 2 & * & * \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & -1 & 5 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- 1. Déterminer une base de l'image de A, Im(A), une base du noyau de A, ker(A), ainsi qu'une base de $Im(A^T)$.
- **2.** Soit $b = (9, 0, a)^T$ où $a \in \mathbb{R}$. L'équation matricielle Ax = b représente un système linéaire. Quel est son nombre d'équations? Son nombre d'inconnue?

Déterminer une condition nécessaire et suffisante sur a pour que le système Ax = b soit compatible.

6

- **3.** Déterminer si possible les colonnes de *A* manquantes.
- 39.4.5 Théorème du rang pour les matrices
- 39.4.6 Le rang des lignes est égal au rang des colonnes

39.5 Bases de polynômes à degrés échelonnés