Exercise 1 $S = \{(x_i, f_{(x_i)})\}_{i=1}^m \in (\mathbb{R}^d \times \{0,1\})^m$ (onsider polynomial $p_s(x) = -(x-x_i)^2(x-x_i)^2 - (x-x_m)^2$ Our $h_s(x)$ function is defined as $h_s(x) = \begin{cases} 1 & \text{if } \exists i \in \{1,2,...m\}_j, \text{s.t. } x_i = x \\ 0 & \text{otherwise} \end{cases}$ Let's show that $h_s(x) = 1$ if and only if $p_s(x) > 0$ [i) first , let's show that $h_s(x) = 1 = p_s(x) \geq 0$ Consider x, such that $h_s(x) = 1$, then it means that $\exists i \in [m]$, s.t. $x_i = x$. Then, $(x - x_i)^2 = 0$

that $\exists i \in \Sigma m I$, s.t. $x_i = x$. Then, $(x - x_i)^2 = 0$ and, therefore, $P_s(x) = 0$. Hence, $P_s(x) \ge 0$.

[i] Now, let's show that $P_s(x) \ge 0 = \lambda h_s(x) = 1$ (ousider x, such that $P_s(x) \ge 0$.

We know that for each $i \in \Sigma m I$, $(x - x_i)^2 \ge 0$ and

equal to 0, if and only if x=xi.

Assume in this case $X \neq X_i$ for all $i \in [m]$. Then, each of $(x-x_i)^2$ is greater than 0, hence $\prod_{i=1}^{m} (x-x_i)^2 > 0$. Then, $P_S(X) = -(x-x_i)^2(x-x_i)^2 - (x-x_m)^2 < 0$, which and that leads to contradiction.

Hence, our assumption was wrong and $\exists i \in Em J$, s.t. $x_i = x$. Therefore, $h_s(x) = 1$.

We have shown that $h_s(x) = 1 = p_s(x) \ge 0$ and $p_s(x) \ge 0 = p_s(x) = 1$. Hence, $h_s(x) = 1$, if and only if $p_s(x) \ge 0$.

q. e. d.