§ 3. 向量值函数的极限与连续

1. 向量值函数在一点的极限

Def. $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in \mathbb{R}^n, A \in \mathbb{R}^m, f \in x_0$ 的某个去心邻域 $B_0(x_0, r)$ 中有定义. 若 $\forall \varepsilon > 0, \exists \delta \in (0, r), s.t.$ $||f(x) - A|| < \varepsilon, \ \forall x \in B_0(x_0, \delta),$

则称 $x \to x_0$ 时, f(x)以A为极限, 记作 $\lim_{x \to x_0} f(x) = A$.

Remark. $\diamondsuit m = 1$,得到n元函数在一点的极限的定义.

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \begin{vmatrix} \forall \varepsilon > 0, \exists \delta \in (0, r), s.t. \\ |f(x) - A| < \varepsilon, \forall 0 < ||x - x_0|| < \delta \end{vmatrix}$$

Remark. 向量值函数在一点的极限的几何意义.

$$f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in \mathbb{R}^n, A \in \mathbb{R}^m, \lim_{x \to x_0} f(x) = A:$$

Remark. 若向量值函数的极限存在,则极限必唯一.

Remark.
$$\lim_{x \to x_0} f(x) = A, \text{M}$$
:

不论动点x沿什么路径趋于定点 x_0 ,都有 $f(x) \rightarrow A$.

Question. 如何证明 $\lim_{x \to x_0} f(x)$ 不存在?

例.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x+y}$$
是否存在?

$$\begin{aligned}
&\text{#F}: \lim_{x \to 0} \frac{xy}{x+y} = 0, \\
&\lim_{x \to 0} \frac{xy}{x+y} = \lim_{x \to 0} \frac{x^3 - x^2}{x^2} = -1. \\
&\lim_{y = x^2 - x} \frac{x^2 - x^2}{x^2} = 0,
\end{aligned}$$

故
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x+y}$$
不存在. \Box

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2 + y^4}$$

解:
$$\forall \varepsilon > 0, \exists \delta = \varepsilon,$$
只要 $\sqrt{x^2 + y^2} < \delta,$ 就有

$$\left| \frac{xy^2}{x^2 + y^2 + y^4} - 0 \right| \le |x| \le \sqrt{x^2 + y^2} < \delta = \varepsilon.$$

Question. 多元函数在一点的极限的和、差、积、商(分母不为0)有何性质?

Question. 多元复合函数在一点的极限有何性质?

Question. 多元函数的极限是否有保序性、夹挤原理?

$$f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$$
,即 $f = (f_1, f_2, \dots, f_m)^T$,其中 $f_i: \Omega \subset \mathbb{R}^n \to \mathbb{R}, i = 1, 2, \dots, m$.

Thm.
$$\lim_{x \to x_0} f(x) = A = (a^{(1)}, a^{(2)}, \dots, a^{(m)})$$

$$\Leftrightarrow \lim_{x \to x_0} f_i(x) = a^{(i)}, i = 1, 2, \dots, m.$$

Thm. $f, g: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in \mathbb{R}^n$, 若 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} g(x)$

都存在,则

(1)
$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x);$$

(2)
$$m = 1$$
 $\exists f(x) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x);$

(3)
$$m = 1 \pm \lim_{x \to x_0} g(x) \neq 0 \pm 1$$
, $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$.

Thm. $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^l, g: f(\Omega) \subset \mathbb{R}^l \to \mathbb{R}^m$, 若 $\lim_{x \to x_0} f(x) = A, \lim_{y \to A} g(y) = B,$

且因 $B(x_0, \delta) \subset \Omega$, $s.t. \forall x \in B(x_0, \delta)$, 有 $f(x) \neq A$,则 $\lim_{x \to x_0} (g \circ f)(x) = B.$

Thm. (夹挤原理)
$$f, g, h: B_0(x_0, \delta) \subset \mathbb{R}^n \to \mathbb{R}$$
,若
$$f(x) \leq g(x) \leq h(x), \forall x \in B_0(x_0, \delta),$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = A,$$
 则
$$\lim_{x \to x_0} g(x) = A.$$

$$\lim_{(x,y)\to(0,0)} \left(x^2 + y^2\right)^{x^2y^2}$$

解:
$$\ln(x^2 + y^2)^{x^2y^2} = \frac{x^2y^2}{x^2 + y^2} (x^2 + y^2) \ln(x^2 + y^2),$$

$$\Rightarrow$$
 x → 0, y → 0 时, 0 < $\frac{x^2y^2}{x^2 + y^2} = \frac{x^2}{x^2 + y^2}$ $y^2 \le y^2 \to 0$.

所以
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0.$$

$$titter{lim}_{(x,y)\to(0,0)} ln (x^2 + y^2)^{x^2y^2} = 0,$$

$$\lim_{(x,y)\to(0,0)} \left(x^2 + y^2\right)^{x^2y^2} = e^0 = 1. \square$$

Thm.(Cauchy准则) 设 $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ 在 $B_0(x_0, r)$ 中有定义,则 $\lim_{x \to x_0} f(x)$ 存在的充要条件是:

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in B_0(x_0, \delta),$ 都有 $\|f(x) - f(y)\| < \varepsilon$.

Thm. 设 $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m \times B_0(x_0, r)$ 中有定义,则

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \begin{pmatrix} \forall B_0(x_0, r) + 收敛到x_0 的任意点列\{x_k\}, \\ \text{都有}\lim_{k \to +\infty} f(x_k) = A. \end{pmatrix}$$

Def. $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in \partial \Omega, A \in \mathbb{R}^m, \forall \varepsilon > 0, \exists \delta > 0, s.t.$ $\|f(x) - A\| < \varepsilon, \quad \forall x \in \Omega \cap B_0(x_0, \delta),$

则称x在 Ω 内趋于 x_0 时f(x)以A为极限,记作 $\lim_{\substack{x \to x_0 \\ x \in \Omega}} f(x) = A$,

不引起混淆的情况下,也简记为 $\lim_{x\to x_0} f(x) = A$.

例.
$$c > 0, \Omega_1 = \{(x, y) \in \mathbb{R}^2 : y > 0\}, \Omega_2 = \{(x, y) \in \mathbb{R}^2 : y < 0\},$$

$$\Omega_3 = \Omega_1 \cup \Omega_2. \, \, \, \, \, \, \lim_{\substack{(x,y) \to (c,0) \\ (x,y) \in \Omega_i}} e^{-\frac{x^2}{y}}, i = 1,2,3.$$

解:
$$(x,y) \in \Omega_1, (x,y) \to (c,0)$$
时, $-\frac{x^2}{y} \to -\infty$,

$$(x, y) \in \Omega_2, (x, y) \to (c, 0)$$
 $\exists t, -\frac{x^2}{y} \to +\infty,$

$$\lim_{\substack{(x,y)\to(c,0)\\(x,y)\in\Omega_{1}}} e^{-\frac{x^{2}}{y}} = 0, \qquad \lim_{\substack{(x,y)\to(c,0)\\(x,y)\in\Omega_{2}}} e^{-\frac{x^{2}}{y}} = +\infty,$$

而
$$\lim_{\substack{(x,y)\to(c,0)\\(x,y)\in\Omega_3}} e^{-\frac{x}{y}}$$
不存在. \square

Remark.
$$\lim_{(x,y)\to(c,0)} e^{-\frac{x^2}{y}}$$
不存在. 默认 $(x,y)\in\Omega_3$.

例.
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \left(\frac{xy}{x^2 + y^2} \right)^{x^2}$$

解: 当
$$x > 0$$
, $y > 0$ 时, $0 < \frac{xy}{x^2 + y^2} < \frac{1}{2}$,故

$$0 < \left(\frac{xy}{x^2 + y^2}\right)^{x^2} \le \left(\frac{1}{2}\right)^{x^2},$$

由夹挤原理,

$$\lim_{x \to +\infty, y \to +\infty} \left(\frac{xy}{x^2 + y^2} \right)^{x^2} = 0. \square$$

2. 累次极限

Def.(累次极限)
$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) \triangleq \lim_{y \to y_0} \left(\lim_{x \to x_0} f(x, y)\right)$$

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) \triangleq \lim_{x \to x_0} \left(\lim_{y \to y_0} f(x, y) \right)$$

Remark. 任意固定 $y \neq y_0$, 若 $\lim_{x \to x_0} f(x, y)$ 存在, 记为

$$g(y) = \lim_{x \to x_0} f(x, y).$$

若
$$\lim_{y \to y_0} g(y) = A$$
, 则 $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = \lim_{y \to y_0} g(y) = A$.

Remark.
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$
称为二重极限.

例. $f(x,y) = \frac{xy}{x^2 + y^2}$ 在原点的二重极限与累次极限.

解: 先考虑累次极限. $\forall y \neq 0$,

$$\lim_{x \to 0} f(x, y) = \lim_{x \to 0} \frac{xy}{x^2 + y^2} = \frac{0}{y^2} = 0,$$

于是 $\lim_{y\to 0}\lim_{x\to 0} f(x,y) = 0$. 同理 $\lim_{x\to 0}\lim_{y\to 0} f(x,y) = 0$.

再看二重极限.

$$\lim_{y=kx,x\to 0} f(x,y) = \lim_{x\to 0} \frac{kx^2}{(1+k^2)x^2} = \frac{k}{1+k^2},$$

即(x, y)沿不同的曲线y = kx趋于(0,0)时,f(x,y)有不同的极限 $k/(1+k^2)$. 故二重极限不存在. \square

例. 讨论
$$f(x,y) = \begin{cases} (x+y)\sin\frac{1}{x}\cos\frac{1}{y} & xy \neq 0 \\ 0 & xy = 0 \end{cases}$$

在原点的二重极限和累次极限.

解: 先看二重极限. 对任意 $(x,y) \in \mathbb{R}^2$,

$$|f(x,y)| \le \left| (x+y)\sin\frac{1}{x}\cos\frac{1}{y} \right| \le |x|+|y|,$$

故
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

再来考虑累次极限.

$$\forall x \neq 0, \lim_{y \to 0} f(x, y) = \lim_{y \to 0} (x + y) \sin \frac{1}{x} \cos \frac{1}{y}$$
$$= \lim_{y \to 0} x \sin \frac{1}{x} \cos \frac{1}{y}$$

不存在. 故累次极限 $\lim_{x\to 0}\lim_{y\to 0}f(x,y)$ 不存在.

同理累次极限 $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ 不存在. \square

Remark. 累次极限与二重极限的关系.

- (1) 累次极限的存在性 💢 二重极限的存在性;
- (2) 二重极限的存在性 🔀 累次极限的存在性;
- (3) 二重极限与累次极限都存在

$$\Rightarrow \lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$$
$$= \lim_{(x, y) \to (x_0, y_0)} f(x, y).$$

(4) $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$, $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$ 均存在且不相等

$$\Rightarrow \lim_{(x,y)\to(x_0,y_0)} f(x,y)$$
不存在.

3. 向量值函数的连续

Def. 设 $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in \Omega, \\ \\ \stackrel{\text{lim}}{=} f(x) = f(x_0),$ 也即

 $\forall \varepsilon > 0, \exists \delta > 0, s.t.$

$$||f(x) - f(x_0)|| < \varepsilon, \quad \forall x \in \Omega \cap B(x_0, \delta),$$

则称f在点 x_0 处连续,称f的不连续点为间断点.

Def. 设 $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$, 若f 在 Ω 上点点连续,则称f 在 Ω 上连续,记作 $f \in C(\Omega)$.

Remark.
$$f = (f_1, f_1, ..., f_m): \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$$
,则 f 在点 x_0 连续 $\Leftrightarrow f_i$ 在点 x_0 连续, $i = 1, 2, ... m$.

Thm.(1)多元连续函数的和、差、积、商(分母不为0处)均连续.

- (2)连续向量值函数的和、差、数乘与复合都连续.
- $(3)\Omega \subset \mathbb{R}^n$, $C(\Omega)$ 关于加法、数乘构成实数域上的一个无穷维线性空间.
- (4)在开区域中定义的初等函数(幂、指数、对数、三角、 反三角及其四则运算与复合)处处连续.

UNIVERSITY

-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-1911
-

例:讨论 $f(x,y) = \begin{cases} 1 & y = x^2, x > 0 \\ 0 & 其它情形 \end{cases}$ 的连续性.

解:f在开区域 $\{(x,y)|x \neq \sqrt{y}\}$ 中为初等函数,故处处连续.而f在曲线 $x = \sqrt{y}$ 上每一点都不连续.事实上,任取 $(x_0,y_0),x_0 = \sqrt{y_0}$,当点列 $\{P_k(x_k,y_k)\}$ 沿曲线 $x = \sqrt{y}$ 趋于 $\{x_0,y_0\}$ 时, $\{x_k,y_k\}$ 一引:当点列 $\{P_k\}$ 沿直线 $x = x_0$ 趋于 $\{x_0,y_0\}$ 时, $\{x_k,y_k\}$ 一0.

例. 讨论
$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{|x| + |y|}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
的连续性.

解: $\forall (x, y) \neq (0, 0)$,有

$$|f(x,y)-0| = \frac{x^2+y^2}{|x|+|y|} \le |x|+|y| \le 2\sqrt{x^2+y^2}.$$

故 $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0), f(x,y)$ 在(0,0)连续.

f(x,y)在开区域中 $\mathbb{R}^2 \setminus \{(0,0)\}$ 中为初等函数,处处连续. 故f(x,y)在 \mathbb{R}^2 中处处连续. □

Thm. 设 $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in \Omega$,则称f在点 x_0 处连续的充要条件是:对 Ω 中任意点列 $\{x_k\}$,当 $\lim_{k\to\infty} ||x_k - x_0|| = 0$ 时,有 $\lim_{k\to\infty} ||f(x_k) - f(x_0)|| = 0$.

Question.
$$f(x) = \frac{1}{1 + (1 + xy)^{1/y}}, \quad 0 \le x \le 1, 0 < y \le 1,$$
是

否可以连续延拓到 $D = \{(x, y): 0 \le x \le 1, 0 \le y \le 1\}$ 上?

$$f(x,y) = \begin{cases} \frac{1}{1 + (1+xy)^{1/y}}, & 0 \le x \le 1, 0 < y \le 1, \\ \frac{1}{1 + e^x}, & 0 \le x \le 1, y = 0 \end{cases}$$

$$ED \bot \cancel{E}\cancel{E}\cancel{E}.$$

Thm.(最值定理) 设 $\Omega \subset \mathbb{R}^n$ 为有界闭集, $f \in C(\Omega)$, 则f在 Ω 上存在最大值M和最小值m, 即 $\exists \xi, \eta \in \Omega, s.t. \forall x \in \Omega$, 都有 $m = f(\xi) \leq f(x) \leq f(\eta) = M$.

Thm.(介值定理) 设 $\Omega \subset \mathbb{R}^n$ 为连通区域, $f \in C(\Omega)$, $x_1, x_2 \in \Omega$, $f(x_1) = \lambda \le \mu = f(x_2)$, 则 $\forall \sigma \in [\lambda, \mu]$, $\exists x \in \Omega$, $s.t. f(x) = \sigma$.

例. f在 \mathbb{R}^2 上连续,当 $x^2 + y^2 \neq 0$ 时,f(x,y) > 0,且 $\forall c > 0$, $\forall (x,y) \in \mathbb{R}^2$,有 $f(cx,cy) = c^2 f(x,y)$.求证:30 < $a \leq b$,s.t. $a(x^2 + y^2) \leq f(x,y) \leq b(x^2 + y^2)$, $\forall (x,y) \in \mathbb{R}^2$.

证明: 在有界闭集 $S^1 = \{(x,y) | x^2 + y^2 = 1\}$ 上,连续函数 f有最大值b和最小值a. 注意到f(x,y) > 0, 有 $0 < a \le b$.

$$\forall (x, y) \neq (0, 0), (\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}) \in S^1,$$

$$f(x,y) = f(\sqrt{x^2 + y^2} \frac{x}{\sqrt{x^2 + y^2}}, \sqrt{x^2 + y^2} \frac{y}{\sqrt{x^2 + y^2}})$$

$$= (x^2 + y^2) f(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}})$$

$$a(x^2 + y^2) \le f(x, y) \le b(x^2 + y^2), \ \forall (x, y) \ne (0, 0).$$

又f在(0,0)连续,所以

$$f(0,0) = \lim_{x=y,x\to 0} f(x,y) = \lim_{x\to 0} f(x,x)$$
$$= \lim_{x\to 0} x^2 f(1,1) = 0.$$

故以上不等式对任意(x,y) ∈ \mathbb{R}^2 成立. □

4. 致连续

Def. 设
$$f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$$
, 若 $\forall \varepsilon > 0, \exists \delta > 0, s.t.$
$$|f(x) - f(x')| < \varepsilon, \ \forall x, x' \in \Omega, ||x - x'|| < \delta,$$

则称f在 Ω 上一致连续.

Thm. f在 $\Omega \subset \mathbb{R}^n$ 上一致连续的充要条件是:

对
$$\Omega$$
中任意两个点列 $\{x_n\},\{y_n\},$ 当 $\lim_{n\to\infty}||x_n-y_n||=0$ 时,有

$$\lim_{n\to\infty} (f(x_n) - f(y_n)) = 0.$$

Thm. $\Omega \subset \mathbb{R}^n$ 为有界闭集, $f \in C(\Omega)$, 则f 在 Ω 上一致连续.

5. 无穷小函数的阶

Def. 设n元函数f在 $B_0(x_0,r)$ 中有定义, $x \in \mathbb{R}^n$,记 $\rho = ||x-x_0||$.

(1)若 $\lim_{x \to x_0} f(x) = 0$,则称 $x \to x_0$ 时f(x)为无穷小函数(或无穷小量),记作

$$f(x) = o(1), \quad x \to x_0.$$

 $(2)k > 0, 若 \lim_{x \to x_0} \frac{f(x)}{\rho^k} = 0, 则称x \to x_0 \allowbreak \forall f(x) \in \rho^k$ 的高阶

无穷小,记作

$$f(x) = o(\rho^k), \quad x \to x_0.$$

(3) 若 $\exists c \neq 0, s.t.$ $\lim_{x \to x_0} \frac{f(x)}{\rho^k} = c$,则称 $x \to x_0$ 时f(x)是k阶无 穷小函数,记作

$$f(x) \sim c\rho^k, \quad x \to x_0.$$

(4)若 $\exists M > 0, \delta > 0, s.t.$

$$|f(x)| < M \rho^k, \quad \forall x \in B_0(x_0, \delta),$$

则称 $x \to x_0$ 时f(x)被 ρ^k 所控制,记作

$$f(x) = O(\rho^k), \quad x \to x_0.$$

例.
$$f_1(x) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$
,

$$f_2(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j, \quad (a_{ij} = a_{ji}),$$

证明: 当 $x \to 0$ 时, $f_1(x) = O(||x||)$, $f_2(x) = O(||x||^2)$.

Proof.(1)
$$|f_1(x)| = |a_1x_1 + a_2x_2 + \dots + a_nx_n|$$

$$\leq (|a_1| + |a_2| + \dots + |a_n|)(|x_1| + |x_2| + \dots + |x_n|)$$

$$\leq n(|a_1| + |a_2| + \dots + |a_n|)||x||, \quad \forall x \in \mathbb{R}^n.$$

所以,
$$f_1(x) = O(||x||), x \to 0.$$

$$(2) f_2(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j, \quad (a_{ij} = a_{ji}).$$

令 $A = (a_{ij})_{n \times n}$,则A为对称矩阵,∃正交矩阵Q, s.t.

 $QAQ^{T} = diag(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n})$ 为实对称阵. $\diamondsuit x = yQ$,则

$$\frac{f_{2}(x)}{\|x\|^{2}} = \frac{xAx^{T}}{xx^{T}} = \frac{yQAQ^{T}y^{T}}{yQQ^{T}y^{T}} = \frac{\lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{n}y_{n}^{2}}{y_{1}^{2} + y_{2}^{2} + \dots + y_{n}^{2}}$$

$$\frac{|f_{2}(x)|}{\|x\|^{2}} \le |\lambda_{1}| + |\lambda_{2}| + \dots + |\lambda_{n}|, \quad \forall x \in \mathbb{R}^{n}.$$

所以, $f_2(x) = O(||x||^2)$, $x \to 0$. \square

作业: 习题1.3 No. 1(单),6(单),8,10(单)