CSC343 A3 Part2

Bilin Nong 1007643329

November 29, 2023

1 Part 2

1.1 (a)

BCNF requires that the LHS of an FD be a superkey.

 $AC^+ = ABCDEFG$. Therefore $AC \to D$ does not violate BCNF.

 $BG^+ = BEFG$ Since BG is not a super key so $BG \to E$ violates BCNF.

 $D^+ = BCDEFG$ Since D is not a super key so $D \to CFG$ violates BCNF.

 $DG^+ = BCDEFG$ So DG is not a super key therefore $DG \to B$ violates BCNF.

 $G^+ = FG$ Since G is not a super key so $G \to F$ violates BCNF.

FDs violate BCNF: $\{BG \to E, D \to CFG, DG \to B, G \to F\}$

1.2 (b)

We start our decomposition from $D \to CFG$:

R1: ADR2: BCDEFGShared Part: DProject FDs onto R1 and R2:

Table R1:A	\mathbf{D}
Closure	FD
$A^+ = A$	
$D^+ = D$	
$AD^+ = AD$	

Table R2: BCDEFG						
Closure	FD in R2					
$B^+ = B$						
$C^+ = C$						
$D^+ = BCDEFG$	D o BCDEFG					
$E^+ = E$						
$F^+ = F$						
$G^+ = FG$	$G \to F$ (violates BCNF, stop the process)					

Decompose R2 on $G \to F$:

R3: FGR4: BCDEGShared Part: G

Table R3: FG					
Closure	FD				
$F^+ = F$					
$G^+ = FG$	$G \to F$ (G is a superkey in R3)				

Table R4: BCDEG					
Closure	FD				
$B^+ = B$					
$C^+ = C$					
$D^+ = BCDEFG$	D o BCEG				
$E^+ = E$					
$G^+ = FG$					
$BG^+ = BEFG$	$BG \to E$ (BG not a superkey in R4, stop)				

Decompose R4 on $BG \to E$:

R5: BEG R6: BCDG Shared Part: BG

Table R5:BEG						
Closure	FD					
$B^+ = B$						
$E^+ = E$						
$G^+ = FG$						
$BE^+ = BE$						
$EG^+ = EFG$						
$BG^+ = BGEF$	$BG \to E$					

	Table $R6:BCDG$								
Closure	FD								
$B^+ = B$									
$G^+ = FG$									
$C^+ = C$									
$D^+ = BCDEFG$	$D \to BCG$ (D is a superkey in R6, so every combination with D will satisfy BCNF)								
$BC^+ = BC$									
$BG^+ = BEFG$									
$CG^+ = CFG$									
$BCG^+ = BCGEF$									

Therefore, the final decomposition is : AD with no FDs , BCDG {D \rightarrow BCG}, BEG {BG \rightarrow E}, FG {G \rightarrow F},

1.3 (c)

No, it is not. The FDs in the final decomposition ensure that $BG \to E$ and $G \to F$ are preserved. However, at least one FD is not: $AC \to D$. Here is an counter example:

Rejoining these tables together, we violates the original FD $AC \rightarrow D$:

1.4 (d)

Set up t = abcdefgInitial Tableau:

Initial Tableau							
A	В	С	D	E	F	G	
a	b_1	c_1	d	e_1	f_1	g_1	
a_2	b	c_2	d_2	e	f_2	g	
a_3	b	c	d	e_3	f_3	g	
a_4	b_4	c_4	d_4	e_4	f	g	

According to FD $AC \to D$, nothing is changed, then proceed $BG \to E$:

	BG o E							
A	В	С	D	E	F	G		
a	b_1	c_1	d	e_1	f_1	g_1		
a_2	b	c_2	d_2	e	f_2	g		
a_3	b	c	d	e	f_3	g		
a_4	b_4	c_4	d_4	e_4	f	$\mid g \mid$		

According to FD $D \to CFG$, we change the table to:

D o CFG							
A	В	С	D	E	F	G	
a	b_1	c	d	e_1	f_1	g	
a_2	b	c_2	d_2	e	f_2	g	
a_3	b	c	d	e	f_1	g	
a_4	b_4	c_4	d_4	e_4	f	g	

According to FD $DG \rightarrow B$, we change the table to:

	DG o B							
ĺ	A	В	С	D	Е	F	G	
ĺ	a	b	c	d	e_1	f_1	g	
	a_2	b	c_2	d_2	e	f_2	$\mid g \mid$	
	a_3	b	c	d	e	f_1	$\mid g \mid$	
	a_4	b_4	c_4	d_4	e_4	f	g	

According to FD $G \to F$, we change the table to:

G o F							
A	В	С	D	E	F	G	
a	b	c	d	e_1	f	g	
a_2	b	c_2	d_2	e	f	g	
a_3	b	c	d	e	f	g	
a_4	b_4	c_4	d_4	e_4	f	g	

Since no completely unsubscribed row (=t) appears, proceed FDs again. According to $AC \to D$ nothing changed, then proceed $BG \to E$, we changed the table to:

BG o E							
A	В	С	D	Е	F	G	
a	b	c	d	e	f	g	
a_2	b	c_2	d_2	e	$\int f$	g	
a_3	b	c	d	e	$\int f$	$\mid g \mid$	
a_4	b_4	c_4	d_4	e_4	$\mid f \mid$	$\mid g \mid$	

Notice that the first row is a completely unsubscribed row (=t), which proves that this is a lossless-join decomposition.

2 Question2

2.1 (a)

Step1: Split RHS

- 1. $N \to M$
- $2. NO \rightarrow L$
- 3. $NO \rightarrow R$
- 4. $Q \rightarrow M$
- 5. $Q \rightarrow P$
- 6. $P \rightarrow R$
- 7. $Q \rightarrow N$
- 8. $Q \rightarrow O$

Step2: Try to reduce LHS

- 1. no simplification needed since there is only 1 attribute on the LHS.
 - 2. Nothing is changed since $N^+ = NM$ and $O^+ = O$.
- 3. no simplification needed since there is only 1 attribute on the LHS.
 - 4. Since $Q^+ = QNOLRMP$, we change this to $Q \to M$.
 - 5. Since $Q^+ = QNOLRMP$, we change this to $Q \to P$.
- 6. no simplification needed since there is only 1 attribute on the LHS.
- 7.no simplification needed since there is only 1 attribute on the LHS.
- 8. no simplification needed since there is only 1 attribute on the LHS.

Step3: Eliminate Entire FDs

	Table Step3					
FD	Exclude these from S1 when computing closure	Closure	Decision			
1	1	$N^+ = N$	keep			
2	$\overline{2}$	$NO^+ = NOMR$	keep			
3	3	$NO^+ = NOML$	keep			
4	4	$Q^+ = QNOPLRM$	discard			
5	4.5	$Q^+ = QNOMLR$	keep			
6	4,6	$P^+ = P$	keep			
7	4,7	$Q^+ = QOPR$	keep			
8	4,8	$Q^+ = QMNPR$	keep			

So we keep 1,2,3,5,6,7,8

The final answer is $\{N \to M, NO \to L, NO \to R, P \to R, Q \to O, Q \to P, Q \to N\}$

From the minimal basis in part (a), we summarized the occurrence of attributes as follow:

	Appears on		
Attribute	LHS	RHS	Conclusion
S	_	_	must be in every key
Q	✓	_	must be in every key
L, M, R	_	✓	is not in any key
N, O, P	✓	✓	must check

The keys for P is $\{SQ\}$, since from the summary table, we know that SQ must in every key, before compute the closure of P + SQ or O + SQ or N + SQ, the closure of SQ gives $SQ^+ = SQOPNMLR$, therefore, SQ is already the key for this relation, no need to check any set of attributes contains SQ but greater that it.

2.3 (c)

Define four relations by 3NF:

R1: NM where NM is not a superkey since $NM^+ = NM$ R2: NOLR where NOLR is not a superkey since $NOLR^+ = NOLRM$ R3: NOPQ where NOPQ is not a superkey since $NOPQ^+ = NOPQLRM$

R4: PR where PR is not a superkey since $PR^+ = PR$

Since none of above 4 relations is superkey for B, we added one more relation that is a key as computed in the previous part:

R5: SQ

Therefore, we get our relations after 3NF synthesis: R1: NM, R2: NOLR, R3: NOPQ, R4: PR, R5: SQ.

2.4 (d)

There is no redundancy in this relation that satisfies 3NF, since R1, R4, R5 are 2-attribute table, satisfy BCNF; for R2, and R3, each FD is superkey when being projected on them, so no redundancy in R2 and R3.

Table R2:NOLR				
Closure	FDs in R2			
$N^+ = NM$				
$NO^+ = NOLR$	$NO \rightarrow LR$ (NO is the superkey for this relation)			
$L^+ = L$				
$R^+ = R$				
$LR^+ = LR$				

Table $R3:NOPQ$				
Closure	FDs in R3			
$N^+ = NM$				
$O^+ = O$				
$P^+ = PR$				
$Q^+ = QOPN$	$Q \to NOP$ (Q is the superkey for this relation)			
$NO^+ = NOLR$				
$NP^+ = NPMR$				
$OP^+ = OPR$				
$NOP^+ = NOPLRM$				