

Jawahar Education Societys Annasaheb Chudaman Patil College of Engineering, Kharghar, Navi Mumbai

NAME: PRIYUSH BHIMRAO KHOBRAGADE

PRN NO: 211112018

Roll No: 52

SUBJECT: Analysis of Algorithms Lab

EXPERMINT: 08

Experiment No-08 PAGE NO.: DATE.: / / 20
Oundamic Programming Appeach.
· Objective: To implement and analyze complexity of longert common Subsequence.
· Hardwore Software Raquised! - Tyr60 'C'
Controlled common succeptance.
Proclem Definition The two strings $Y = -\infty$ and $Y = Y_1, Y_2 - \cdots Y_n$ of length many n and n are given. The objective tunction is to determine the longest strings S that is a subsequence of both $X \neq Y$.
Dynamic programming: Dynamic programming is an algorithm design method that can be used when the solution to the problem can be viewed on the result of a sequence of decision. It avoids recompositing solution that have already been computed of DP uses "principle Of optimality."
decisions or choices, each subsequence mut on a optimal!
Teachers Signature

	PAGE NO.: DATE.: / / 20
	Longert common subsequence problem (LCS): is tinding a longert sequence which is a subsequence of an sequence in the set of sequence (often just two). The problem is sometimed defined to be tinding all longest commonosiup sequences.
	it should not be contined with the longer common problem (a syssting is necessarily a configur part).
	$L(i,j) = \frac{L(i-1,i-1)+1}{\max_{j \in I} 2L(i,j-1) \text{ otherwise.}}$
	Since two proclem has an optimal suestsucuse property, it can be solved by dynamic programming.
-	The relational for this securements is that, if the lost character of two sequences are equality must be part of to LCO. A larger CO Can never be optained by matching 2m to 4; whom i LO & vice versa. to find any the longest common-84688quence the LCO should be denoted to a set of sequence, and 'max should setum both solvetion if they are equally long. If choosing X i and Y; wooded as we are equally long result (both sessetting 34680quences should be shown This is setumed as a set of this trunction. Motice that this territion I not polynominal, as it might branch in almost every step
	Teachers Signature

PAGE NO.: DATE.: / / 20
Procedure/ Algorithm !-
for i + 1 to m do
tor it 1 to n do
$\frac{3F \times 3 = 9}{L!L! \cdot 30} \leftarrow LL! - 1, j - 13 + 1$
b[1,1) = " "
Ene
it L [1-1, j] > L ti, j-17
1 t(i,j) + L t(-1,j)
e/ze
L [1, i] + L[1, j-1]
601,172"
• Analysis :-
Trans-
$\uparrow(0) = \sum_{i=1}^{10} 1.$
1-1 3-1
= WU=O(WU)
· conclusion:
is O(Mn).
2
Teachers Signature

Input:

```
1 #include<stdio.h>
 2 #include<string.h>
 3 #include<conio.h>
 4 char b[20][20],x[20],y[20];
5 int c[20][20];
6 int m,n;
    void lcss(char x[].char y[])
 9 inti.j:
10 m=strlen(x);
11 n=strlen(y);
12 for(i=0;i<=m;i++)
13 {
14 c[i][0]=0;
15 )
16
     for(i=0;i\leq=n;i++)
17
18 {
19
     c[0][i]=0;
20 }
21 printf("\n");
22 for(i=0;i<=m;i++)
24 for(j=0;j<=n;j++)
25
26 printf("%d",c[i][j]);
27
28 printf("\n");
29
30
31 for(i=1;i<=m;i++)
33 for(j=1;j<=n;j++)
34
35 for(j=0:j<=n:j++)
36 printf("%d",c[i][j]):
37 printf("\n"):
38 for(j=1;j<=n;j++)
39
40 if(x[i-1]==y[j-1])
41 {
42 c[i][j]=c[i-1][j-1]+1;
43 b[i][j]='d';
44
45 else lf(c[i-1][j]>=c[i][j-1])
46 {
47 c[i][j]=c[i-1][j];
48 b[i][j]='u';
49
50
51
52 }
53
54 void display(int i,int j)
55
56 If(i==0||j==0)
57 return:
58 if(b[i][j]=='d')
59 {
60 display(i-1,j-1);
61 printf("%c",x[i-1]);
62 }
63 else if(b[i][j]=='u')
64 display(i-1,j);
65 else
66 display(i,j-1);
67
68
69 yold main()
70 {
71 printf("Enter your string1:");
71 printf( Enter your string!: );
72 scanf("%s",x);
73 printf("Enter your string2:");
74 scanf("%s",y);
75 printf("S1:%s",x);
75 printf("\nS2:%s",y);
76 printf("\nS2:%s",y);
77 lcss(x,y);
78 printf("\nTHE LCS IS:");
79 display(m,n);
80 getch():
81
82
```

Output:

```
Enter your string1:AOA
Enter your string2:OS
S1:AOA
S2:OS
000
000
000
000
000
000
000
000
THE LCS IS:O
Process returned 32 (0x20) execution time : 9.012 s
Press any key to continue.
```

<u>Conclusion</u>: Thus it is observed that the Complexity **of Longest Common Subsequence LSC** Problem is O(mn).