

	Autofahrt	
Aufgabennummer: B_072		
Technologieeinsatz:	möglich ⊠	erforderlich

a) Im folgenden Weg-Zeit-Diagramm ist die von einem Auto zurückgelegte Strecke s in Metern (m) in Abhängigkeit von der Zeit t in Sekunden (s) für 0 s $\leq t \leq$ 40 s dargestellt.

- Lesen Sie aus der Grafik die mittlere Geschwindigkeit des Autos für das Zeitintervall 15 s $\leq t \leq$ 30 s ab.
- Lesen Sie aus der Grafik die momentane Geschwindigkeit des Autos für den Zeitpunkt $t=30\,\mathrm{s}$ ab.
- b) Die nachstehende Grafik zeigt das Geschwindigkeit-Zeit-Diagramm eines Autos für die ersten 40 s seiner Fahrt.

Autofahrt 2

_	Kreuzen S	Sie die zutreffe	ende Aussag	ge über	die Besc	chleunigung	sfunktion a	an.
	[1 aus 5]							

Die Beschleunigung ist nach ungefähr 40 Sekunden gleich null.	
Die Beschleunigung ist für 0 s $\leq t \leq$ 40 s positiv.	
Der Graph der Beschleunigungsfunktion ist für den Bereich 0 s $\leq t \leq$ 40 s fallend.	
Die Beschleunigung ist nach ungefähr 20 Sekunden maximal.	
Die Beschleunigung ist nach 5 Sekunden ungefähr gleich groß wie nach 35 Sekunden.	

- c) Die Geschwindigkeit eines anderen Autos erreicht nach 25 s ihr Maximum von 15 Metern pro Sekunde (m/s) und nach einer Fahrzeit von 50 s ist sie gleich null. Die Geschwindigkeit kann mithilfe einer quadratischen Funktion $v(t) = a \cdot t^2 + b \cdot t + c$ beschrieben werden.
 - Stellen Sie ein Gleichungssystem zur Berechnung der Parameter a, b und c auf.
 - Ermitteln Sie diejenige Funktion, die die Geschwindigkeit des Autos in Abhängigkeit von der Zeit beschreibt.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Möglicher Lösungsweg

a)

s(t) in m

Die mittlere Geschwindigkeit beträgt

 $\frac{280}{15} \frac{m}{s} = 18,7 \frac{m}{s}$.

Die Momentangeschwindigkeit entspricht der der Steigung der Tangente bei t=30 s und beträgt ca. $\frac{150}{10} \frac{\text{m}}{\text{s}} = 15 \frac{\text{m}}{\text{s}}$.

Etwaige Ableseungenauigkeiten werden toleriert!

b)

Der Graph der Beschleunigungsfunktion ist für den Bereich $0 \text{ s} \le t \le 40 \text{ s}$ fallend.	×

c)
$$v(t) = a \cdot t^2 + b \cdot t + c$$
, $v'(t) = 2 \cdot a \cdot t + b$

1.
$$v'(25) = 0 \Rightarrow \text{Gleichung 1: } 50a + b = 0$$

2.
$$v(25) = 15 \Rightarrow \text{Gleichung } 2:625a + 25b + c = 15$$

3.
$$v(50) = 0 \Rightarrow \text{Gleichung } 3: 2500a + 50b + c = 0$$

Lösen des Gleichungssystems mit Technologie: $v(t) = 1, 2 \cdot t - 0,024 \cdot t^2$

Autofahrt 4

Klassifikation ⊠ Teil B □ Teil A Wesentlicher Bereich der Inhaltsdimension: a) 4 Analysis b) 4 Analysis c) 4 Analysis Nebeninhaltsdimension: a) b) c) — Wesentlicher Bereich der Handlungsdimension: a) C Interpretieren und Dokumentieren b) C Interpretieren und Dokumentieren c) A Modellieren und Transferieren Nebenhandlungsdimension: a) b) c) B Operieren und Technologieeinsatz Schwierigkeitsgrad: Punkteanzahl: a) leicht a) 2 b) mittel b) 1 c) leicht c) 3 Thema: Physik Quellen: -