Examen $^{\scriptscriptstyle 1}$ la algebră, anul I, sem. I, informatică (subiect de examen pentru studenții din anii I și II) 03.02.2021

Problema 1. Fie $\sigma = (1 \ 2 \ 3 \ 4 \ 5) \in S_5$.

 Determinați soluțiile ecuației x² = σ, x ∈ S₅. 	(5 pct.)
(2) Determinați soluțiile ecuației x ²⁰²¹ = σ, x ∈ S ₅ .	(5 pct.)
(3) Aflați numărul de elemente din $H = \langle \sigma \rangle$ (subgrupul generat de σ în S_5).	(5 pct.)
(4) Aflaţi indicele lui H în S_5 .	(5 pct.)
(5) Arătați că H nu este subgrup normal în S_5 .	(5 pct.)
(6) Determinati cel mai mic subgrup normal al lui S _E care-l contine pe H.	(10 pct.)

Problema 2. Fie idealele $I = (X^2 - 1)$ și $J = (X^3 - 1)$ ale inelului de polinoame $\mathbb{R}[X]$.

(1)	Este adevărat că $X^4-1\in I$? Dar că $X^4-1\in J$? Justificați.	(10 p.)
(2)	Determinați un generator pentru fiecare din idealele $I\cap J,$ respectiv $I+J.$	(5 p.)
(3)	Arătați că $\mathbb{R}[X]/I \simeq \mathbb{R} \times \mathbb{R}$.	(5 p.)
(4)	Arătați că $\mathbb{R}[X]/J \simeq \mathbb{R} \times \mathbb{C}$.	(5 p.)
(5)	Arătați că $\mathbb{R}[X]/I \not\simeq \mathbb{R}[X]/J$.	(5 p.)

Problema 3. Fie polinomul $P(X) = X^3 + n^2X^2 - 5$, $n \in \mathbb{Z}$. Studiați ireductibilitatea lui P, în funcție de n, peste fiecare din corpurile $\mathbb{Q}, \mathbb{Z}_2, \mathbb{Z}_3$, iar în cazurile în care polinomul este

$$\begin{cases} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} = \begin{cases}$$

Solutie la finalul PDF-ului

$$C) \frac{\mathbb{R}[x]}{\underline{\Gamma}} \simeq \mathbb{R} \times \mathbb{R}$$

$$\frac{A[x]}{(x-a)} \simeq A (x)$$

$$\times^{2}-1 = (\times -H)(X-1)$$

$$\frac{1/2 \left[\times \right]}{\left(\times -1 \right) \left(\times +1 \right)} \stackrel{?}{\sim} \frac{\mathbb{R} \left[\times \right]}{\left(\times -1 \right)} \times \frac{\mathbb{R} \left[\times \right]}{\left(\times +1 \right)}$$

$$\frac{\mathbb{R}[x]}{(x-1)} \times (x-1)$$

? - Lema Chineza a Rostwido

$$(\times -1 , \times +1) = 1$$

q) $\mathbb{R}^{1 \times 1} \simeq \mathbb{R} \times \mathbb{C}$ $\frac{\mathbb{R}[x]}{(x-1)(x^2+x+1)} \xrightarrow{\text{LCR}} \frac{\mathbb{R}[x]}{(x-1)} \times \frac{\mathbb{R}[x]}{(x^2+x+1)} \xrightarrow{\cong} \mathbb{R} \times \frac{\mathbb{R}[x]}{(x^2+x+1)} \xrightarrow{\cong} \mathbb{R} \times \mathbb{R}$ Propriétate de Universalitate a (X + x+1, X-1) = 1 indelor de polinoome (caz aplicat) - X + X + 1 | X - 1 | X + 2 | $\mathbb{R} \stackrel{(a)=a}{\longrightarrow} \mathbb{R} [x] \qquad \varphi = i \circ 4$ $(\overline{3} - \times)(3 - \times) = (1 + \times + \times)$ 1 9:12[X] -> C 1 9 x uni (=> 0 = Ku f 1 (x) = E 1 (x) = E $\Lambda = -3 = > \times_{11} = \frac{-1 \pm i\sqrt{3}}{2}$ - 4 inj <=> 9 = Kert $\mathcal{E} = \frac{-1 + i\sqrt{3}}{2}$ mailion of q: R[x] -> C mor lism surjectiv 4(P(X))= f(E) ∀ 0+0; €C, ∃y ∈ 18[x] «.i. y(y) = 0+0; 4 FEIR[X] $\varphi(\alpha+\ell x) = \varphi(\alpha) + \varphi(\ell x) = \alpha + \varphi(\ell)\varphi(x) = \alpha + \ell \cdot \frac{-\ell + i\sqrt{3}}{2}$ $= c_L - \frac{c_L}{2} + \frac{c_L \sqrt{3}}{2}$ $Y(\alpha + \frac{2b}{\sqrt{3}} \times + \frac{c}{\sqrt{3}}) = \alpha + \frac{c}{\sqrt{2}} + \frac{2b}{\sqrt{3}} \cdot \frac{-1 + i\sqrt{3}}{2}$ $= \alpha + \sqrt[4]{3} - \sqrt[4]{3} + \sqrt{3} = \alpha + \sqrt{3}$ Dect q surjectiva (1) Mem Ker 4 = (x2+x+1) 12 Fie f = (x+x+1) 9 19 ER[x] y aplica - 4 P(f) = P(x2+x+1)- P(z) =0 -> f = Ker 4 "=" Fie fekery (=> 416)=0) Impart f la x2+x+1 (aven asigurate din Toureme de împortire un Ret)

$$f = (x^2 + x + 1) \cdot g + n \qquad deg(n) \land deg(x^2 + x + 1) = 2$$

$$n = cix + c \qquad a, c \in \mathbb{R}$$

$$f = (x^2 + x + 1)g + cix + b$$

$$||c_i|^{2}$$

$$\frac{||a|^{2\pi i c}}{|c|} = \frac{||a|^{2\pi i c}}{|c|} + \frac{||a| + ||a||}{|c|} + \frac{||a| + ||a||}{|c|} = 0$$

$$\frac{||a|^{2\pi i c}}{|a|} + \frac{||a||^{2\pi i c}}{|a|$$

$$\sqrt{\frac{1}{5}} = (\frac{x + x + 1}{5} - \frac{5}{5} = (\frac{x + x + 1}{5})$$

$$(1), (2), (3) \xrightarrow{\text{TFI}} \sum \frac{|\mathbb{R}[X]|}{(X^2 + X + 1)} \simeq \mathbb{C}$$

e) (5) Arătați că
$$\mathbb{R}[X]/I \not\simeq \mathbb{R}[X]/J$$
.

|7
|| $\mathbb{R} \times \mathbb{R} \qquad \downarrow \qquad \mathbb{R} \times \mathbb{C}$

| $\mathbb{R} \times \mathbb{R} \mid = \mathcal{E} \cdot \mathcal{E} = \mathcal{E} = \mathcal{E}$

| $\mathbb{R} \times \mathbb{C} \mid = \mathcal{E} \cdot \mathcal{E} = \mathcal{E}$

$$||N| = N_0 = |Q| = |Z|$$

$$||R| = C ||Ptrice|| continuum livi|$$

$$||C| = 2^{C}$$

Problema 3. Fie polinomul $P(X) = X^3 + n^2 X^2 - 5$, $n \in \mathbb{Z}$. Studiați ireductibilitatea lui P, în funcție de n, peste fiecare din corpurile $\mathbb{Q}, \mathbb{Z}_2, \mathbb{Z}_3$, iar în cazurile în care polinomul este reductibil descompuneți-l în factori ireductibili. Justificați răspunsurile. (30 pct.)

$$P(x) = x^{2} + x^{2} x^{2} - 1$$

$$P(x) = x^{3} + x^{2} x^{2} - 1$$

$$P(x) = x^{3} + x^{2} x^{2} - 1$$

$$P(x) = x^{3} + x^{2} x^{2} + 1$$

$$P(x) = x^{3} + x^{4} + 1$$

$$P(x) = 0$$

$$P(x) = x^{2} + x^{4} + 1$$

$$P(x) = x^{4} x^{4}$$

$$P(X) = X^{3} + n^{2}X^{2} - 5, n \in \mathbb{Z}.$$

$$D_{c} (a) \text{ cuts, posibility p$$

Fie Q[X] inelul de polinoame cu coeficienți raționali și J=(x^3 + 1). Aflați nilpotenții și idempotenții lui Q[X]/J.

. S = x + az + az + az + a = - 0 - 0 Viete Sz = a, dz + d, dz + d, dy + d, dy + d, dy = 1 S3 = 2,2,2,2 + 2,2,4+ 2,2,4+ 2,2,2,4=0 J= 2, 2, 2 3 24 = 1 = 1 24 + 1 + 24 + 1 + 24 + 1 + 24 + 1 = 25 + 4 = 4(24, +1) (242+1) +___ = a (colude) (201,+1)(202,+1)(203,+1)+__ = & (cal whe) 11 (box;+1) = ... = C y = x + 4 x + ax + bx + c f(x)=y Asta mu e o +(x) = Zfunctie line definité R: IR ->[0.1), h[x] = dxy, x eR

mu depinde de reprezentanti $\mathbb{R} = \mathbb{R} =$ R - Sury & > W smg.

Revin la punctul (6)

Problema 2. Fie idealele $I=(X^2-1)$ și $J=(X^3-1)$ ale inelului de polinoame $\mathbb{R}[X]$.

- (1) Este adevărat că $X^4 1 \in I$? Dar că $X^4 1 \in J$? Justificați. (10
- (2) Determinați un generator pentru fiecare din idealele $I \cap J$, respectiv I + J. (5 p.)

Aven deci

$$(x^{2}-1)+(x^{3}-1)=(x-1)=d$$

 $(x^{3}-1)+(x^{3}-1)=(x-1)=d$
 $(x^{3}-1)+(x^{3}-1)=(x-1)=d$

$$\left[\begin{array}{c} x^{2} - 1 & x^{3} - 1 \end{array} \right] = \frac{\left[\begin{array}{c} x^{2} - 1 \end{array} \right] \left(\begin{array}{c} x^{3} - 1 \end{array} \right)}{\phi} = \left(\begin{array}{c} x + 1 \end{array} \right) \left(\begin{array}{c} x^{3} - 1 \end{array} \right) = \infty$$