Demostraciones Algebra

July 22, 2025

Teorema 1 Sean $A, B \in \mathbb{K}^{m \times n}$ matrices equivalentes por filas, entonces el sistema de ecuaciones Ax = 0 y Bx = 0 tienen exactamente las mismas soluciones.

Prueba: Si $A \sim B \Longrightarrow \exists$ una sucesion de matrices tal que $A = A_0 \to A_1 \to \cdots \to A_n = B$, donde cada A_j se obtiene por medio de una operacion elemental por filas. Por lo tanto basta probar que $A_j x = 0$ y $A_{j+1} x = 0$.

- Caso e_r^c : $a_{r1}x_1 + a_{r2}x_2 + \cdots + a_{rn}x_n = 0 \iff c \cdot a_{r1}x_1 + c \cdot a_{r2}x_2 + \cdots + c \cdot a_{rn}x_n = 0$, pero como $c \neq 0 \implies c \cdot (a_{r1}x_1 + a_{r2}x_2 + \cdots + a_{rn}x_n) = 0$, por lo tanto ambos sistemas son iguales.
- Caso $e_{r,s}$: es trivial pues ambas filas r, s ya eran iguales a 0 y lo siguen siendo.
- Caso $e_{r,s}^c$: $(r+c\cdot s) = (a_{r1}+c\cdot a_{s1})x_1 + (a_{r2}+c\cdot a_{s2})x_2 + \cdots + (a_{rn}+c\cdot a_{sn})x_n = 0$ de la misma formas que en el primer caso como las filas r, s son iguales a 0 por lo tanto la nueva fila r tambien lo es.

Teorema 2 Sea $A \in \mathbb{K}^{m \times n}$ con $m < n \Longrightarrow el$ sistema Ax = 0 tiene soluciones no triviales.

Prueba: Sea R la MERF equivalente a $A \Longrightarrow$ los sistemas Ax = 0 y Rx = 0 tienen exactamente las mismas soluciones. Sea r = la cantidad de filas no nulas de $R \Longrightarrow r \le m$ y por lo tanto $r < n \Longrightarrow \text{hay } n - r > 0$ variables libres, por lo tanto hay soluciones no triviales.

Teorema 3 Sea $A \in \mathbb{K}^{n \times n}$. Entonces A es equivalente por filas a las $Id \iff Ax = 0$ tiene unicamente la solucion trivial.

Prueba:

- (\Longrightarrow) : Si $A \sim Id$, estas tienen exactamente las mismas soluciones. Por lo tanto como Idx = 0 admite unicamente la solucion trivial queda probado.
- (\iff): Sea R la MERF $\sim A \implies$ el sistema Rx = 0 tiene unicamente la solucion trivial. Sea r =la cantidad de filas no nulas de $R \implies n r = 0$ porque no tienen variables libres. Entonces cada fila i tiene un 1 en la columna k_i por lo tanto R = Id.

Teorema 4 Propiedades de la multiplicación de matrices:

- 1. $A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{n \times p}, C \in \mathbb{K}^{p \times q} \Longrightarrow (AB)C = A(BC)$.
- 2. $A \in \mathbb{K}^{m \times n} \Longrightarrow Id_m A = Id_n A = A$.
- 3. $A, A' \in \mathbb{K}^{m \times n}, B, B' \in \mathbb{K}^{n \times p} \Longrightarrow (A + A')B = AB + A'B \ y \ A(B + B') = AB + AB'.$
- 4. $A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{n \times p}, \lambda \in \mathbb{K} \Longrightarrow \lambda \cdot (AB) = (\lambda A)B = A(\lambda B)$

Teorema 5 Sea e una operacion elemental por filas y sea E = e(Id) la matriz elemental asociada. Entonces para toda $A \in \mathbb{K}^{n \times n}$ se cumple que $e(A) = E \cdot A$.

Prueba: Tenemos que el elemento i, j de e(A) es el mismo que el de la matriz EA para cada operacion elemental, osea $(e(A))_{ij} = (EA)_{ij}$.

• Caso e_r^c :

Sabemos que
$$(e(A))_{ij} = \begin{cases} A_{ij} \text{ si } i \neq r \\ cA_{ij} \text{ si } i = r \end{cases}$$
Veamos $(EA)_{ij} = \sum_{k=1}^{m} E_{ik} A_{kj} \text{ (si } i \neq k \Longrightarrow E_{ik} = 0)$

$$= E_{ii} A_{ij} = \begin{cases} A_{ij} \text{ si } i \neq r \\ cA_{ij} \text{ si } i = r \end{cases}$$

• Caso $e_{r,s}$:

Sabemos que
$$(e(A))_{ij} = \begin{cases} A_{ij} & \text{si } i \neq r, s \\ A_{sj} & \text{si } i = r \\ A_{rj} & \text{si } i = s \end{cases}$$

$$(EA)_{ij} = \sum_{k=1}^{m} E_{ik} A_{kj} \text{, donde } E_{ik} = \begin{cases} 1 & \text{si } i = k \lor i = r, s \lor k = r, s \\ 0 & \text{caso contrario} \end{cases}$$
 Veamos $(EA)_{ij}$ en cada caso:
$$\begin{cases} \text{si } i \neq r, s \Longrightarrow (EA)_{ij} = A_{ij} \\ \text{si } i = r \Longrightarrow (EA)_{ij} = E_{is} A_{sj} = A_{sj} \\ \text{si } i = s \Longrightarrow (EA)_{ij} = E_{ir} A_{rj} = A_{rj} \end{cases}$$

• Caso $e_{r,s}^c$:

Sabemos que
$$e(A)_{ij} = \begin{cases} A_{ij} & \text{si } i \neq r \\ A_{rj} + cA_{sj} & \text{si } i = r \end{cases}$$

$$(EA)_{ij} = \sum_{k=1}^{m} E_{ik} A_{kj} , \text{ donde } E_{ik} = \begin{cases} 1 & \text{si } i = k \\ c & \text{si } i = r \land j = s \\ 0 & \text{caso contrario} \end{cases}$$

Teorema 6 Sean $A, B \in \mathbb{K}^{n \times n}$:

- 1. Si A es inversible $\Longrightarrow A^{-1}$ tambien lo es $y(A^{-1})^{-1} = A$.
- 2. Si A, B son inversibles \Longrightarrow AB es inversible y $(AB)^{-1} = B^{-1}A^{-1}$.

Prueba:

1.
$$A \cdot A^{-1} = A^{-1} \cdot A = Id \Longrightarrow A^{-1}$$
 inversible y $(A^{-1})^{-1}$ es A .

2.
$$(AB) \cdot (B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A(Id)A^{-1} = AA^{-1} = Id$$
.

Teorema 7 Toda matriz elemental E es inversible.

Prueba: Sea e la operacion elemental por fila correspondiente a E y sea e' la operacion elemental inversa (sabemos que existe por teorema). Por lo tanto sea E' = e'(Id)

$$\begin{split} Id &= e'(e(Id)) = e'(E) = E'E \\ Id &= e(e'(Id)) = e(E') = EE' \\ &\Longrightarrow E \text{ es inversible y su inversa es } E' \end{split}$$

Teorema 8 Sea $A \in \mathbb{K}^{n \times n}$ entonces son equivalentes:

- 1. A es inversible.
- 2. A es equivalente por filas a la Id.
- 3. A es producto de matrices elementales.

Prueba:

- $[1 \Longrightarrow 2]$ Sea R la MERF $\sim A \Longrightarrow$ existen matrices elementales E_1, \ldots, E_k talque $R = E_k \cdots E_2 E_1 A$. Como las matrices elementales E_j y A son inversibles $\Longrightarrow R$ tambien lo es $\Longrightarrow R$ no tiene filas nulas por lo tanto R = Id.
- $[2 \Longrightarrow 3]$ Si $A \sim Id \Longrightarrow Id \sim A \Longrightarrow$ existen P productos de matrices elementales talque $A = P \cdot Id = E_1 E_2 \cdots E_k \cdot Id$.
- $[3 \Longrightarrow 1]$ Supongamos $A = E_1 \cdots E_k$ donde E_j es una matriz elemental. Como cada E_j es inversible y el producto de matrices inversibles tambien lo es \Longrightarrow A es inversible.

Teorema 9 Sean $A, B \in \mathbb{K}^{m \times n}$. Entonces B es equivalente por filas a $A \iff \exists P$ matriz inversible $m \times m$ talque $B = P \cdot A$

Prueba:

- (\Longrightarrow): Si $B \sim A$ sabemos que $B = E_k E_{k-1} \cdots E_1$ y como cada E_i es inversible el producto de matrices inversibles tambien lo es.
- (\iff) : Sea P inversible talque B=PA como P es producto de matrices elementales $\implies B=E_k\cdots E_1A \implies B$ se obtiene de A haciendo operaciones elementales $\implies B\sim A$.

Teorema 10 Sea $A \in \mathbb{K}^{n \times n}$. Entonces son equivalentes:

- 1. A es inversible.
- 2. El sistema Ax = 0 tiene una unica solucion (la trivial).
- 3. $\forall b \in \mathbb{K}^{n \times 1}$ el sistema no-homogeneo Ax = b tiene una unica solucion.

Prueba:

- [1 \iff 2] Sabemos que A es inversible \iff $A \sim Id \iff$ el sistema Ax = 0 tiene como unica solucion la trivial.
- $[1 \Longrightarrow 3]$ Sea $b \in \mathbb{K}^{n \times 1}$, como A es inversible $\Longrightarrow \exists A^{-1}$. Por lo tanto sea $x_0 = A^{-1}b \in \mathbb{K}^{n \times 1}$ $\Longrightarrow Ax_0 = A(A^{-1}b) = b$. Veamos que es unica, para eso supongamos que existe otra solucion $x_1 \Longrightarrow Ax_1 = b \Longrightarrow Ax_1 = b = Ax_0$ ahora multiplicamos por la inversa $\Longrightarrow A^{-1}Ax_0 = A^{-1}Ax_1 \Longrightarrow x_0 = x_1$
- $[3 \Longrightarrow 2]$ Como tiene solucion para todo b tomo b=0 por lo tanto, obviamente, tiene una unica solucion por hipotesis.

Teorema 11 Si $W \subseteq V$ y $W \neq \emptyset$. Entonces W es un \mathbb{K} -subespacio vectorial de $V \iff \forall v, w \in W$ y $\forall c \in \mathbb{K}$ el vector $[c \cdot v + w] \in W$

Prueba:

- (\Longrightarrow): Si W es un subespacio vectorial y $c \in \mathbb{K}$, $v, w \in W \Longrightarrow c \cdot v \in W \Longrightarrow c \cdot v + w \in W$
- (\Leftarrow): Supongamos que $\forall v, w \in W$ y $\forall c \in \mathbb{K} : c \cdot v + w \in W$ veamos contiene al $\vec{0}$, que es cerrado para la suma y el producto por escalar.
 - 1. Como $W \neq \emptyset \Longrightarrow \exists w \in W \Longrightarrow (-1) \cdot w + (1) \cdot w \in W \Longrightarrow \vec{0} \in W$.
 - 2. Tomamos c=1 por lo tanto $(1) \cdot v + w = v + w \in W$ por lo tanto la suma esta bien definida.
 - 3. Como $\vec{0} \in W$ tomamos $w = \vec{0}$ por lo tanto $c \cdot v + \vec{0} = c \cdot v \in W$ entonces el producto esta bien definido.

Teorema 12 Sea V un \mathbb{K} -espacio vectorial. Entonces la interseccion de subespacios de V es un subespacio vectorial de V.

Prueba:

Sea $\{W_i\}_{i\in I}$, donde W_i es un subespacio vectorial de V. Entonces sea $W=\bigcap_{i\in I}W_i$.

Para ver que W es un subespacio veamos que si $v,w\in W$, $c\in \mathbb{K}\Longrightarrow c\cdot v+w\in W$. Si $v,w\in W\Longrightarrow v,w\in W_i$ para todo $i\in I$ y como todo W_i es un subespacio $\Longrightarrow c\cdot v+w\in W_i$ $\Longrightarrow c\cdot v+w\in W$.

Teorema 13 Sea V un \mathbb{K} -espacio vectorial y sean $v_1, \ldots, v_k \in V$. Entonces $W = \{c_1v_1 + \cdots + c_kv_k | c_i \in \mathbb{K}\}$ = Conjunto de todas la combinaciones lineales, es un subespacio vectorial de V.

Prueba: Tomemos $v, w \in W$, $c \in \mathbb{K}$ veamos $c \cdot v + w \in W$.

Sean
$$v = c_1v_1 + \dots + c_kv_k$$
 y $w = d_1v_1 + \dots + d_kv_k \Longrightarrow$
 $c \cdot v + w = (c \cdot c_1v_1 + \dots + c \cdot c_kv_k) + (d_1v_1 + \dots + d_kv_k)$
 $= (c \cdot c_1 + d_1)v_1 + \dots + (c \cdot c_k + d_k)v_k$
 $\Longrightarrow c \cdot v + w$ es una combinación lineal, por lo tanto $\in W$

Teorema 14 Sea V un \mathbb{K} -espacio vectorial y sea $S \subseteq V$ no vacio \Longrightarrow $\langle S \rangle = \bigcap_{i \in I} Wi$ (donde W_i subespacio y $S \subseteq W_i$). ie: El subespacio generado por S coincide con la interseccion de todos los subespacios que contienen a S.

Prueba: Llamemos $W_1 = \langle S \rangle$ y $W_2 = \bigcap \{W_i : W_i \text{ subespacio}, S \subseteq W_i\}$ queremos ver que W_1 y W_2 son iguales. Para eso veamos la doble contencion.

- $(W_1 \subseteq W_2)$: Sea $v \in W_1$, para ver que $v \in W_2$, sea W un subespacio que contiene a $S \Longrightarrow$ contiene a cualquier combinacion lineal de elementos de S. Si $v \in W_1 \Longrightarrow v = c_1v_1 + \dots c_kv_k$ con $v_i \in S$ y $c_i \in \mathbb{K}$ (como $S \subseteq W \Longrightarrow v_i \in W$). Como W y como la interseccion de todo subespacio de W tambien lo es $\Longrightarrow v \in W_2$.
- $(W_2 \subseteq W_1)$: Como $W_1 = \langle S \rangle$ es un subespacio y contiene a S es en particular uno de los subespacios que se interseca en W_2 .

Teorema 15 Sea V un \mathbb{K} -espacio vectorial y sean $v_1, \ldots, v_r \in V$ tales que $\langle v_1, \ldots, v_r \rangle = V \Longrightarrow$ Todo conjunto L.I. de V es finito y no puede tener mas de r elementos.

Prueba: Veamos que cualquier conjunto de mas de r elementos es L.D., sea $S = \{w_1, \ldots, w_s\}$ con s > r, con cada $w_j \in \langle v_1, \ldots, v_r \rangle \Longrightarrow \exists a_{ij} \in \mathbb{K}$ tal que $w_j = \sum_{i=1}^r a_{ij} v_i$. Por lo tanto si vemos como matriz a cada w_j escrito como combinacion lineal tendremos una matriz $A \in \mathbb{K}^{r \times s}$. Si miramos el sistema Ax = 0 como r < s sabemos que tiene soluciones no triviales. Es decir $\exists x \neq \vec{0}$ talque $x_1w_1 + \ldots x_sw_s = 0$.

$$\sum_{j=1}^{s} x_j w_j = \sum_{j=1}^{s} x_j \sum_{i=1}^{r} a_{ij} v_i = \sum_{i=1}^{r} (\sum_{j=1}^{s} x_j a_{ij}) v_i = 0$$

Por lo tanto \exists combinacion lineal con escalares no todos nulos, tales que $x_1 + w_1 + \dots + w_s = 0$ $\Longrightarrow \{w_1, \dots, w_s\}$ es L.D.