Solution to APMO 2017 Problems

Anzo Teh

1. We call a 5-tuple of integers arrangeable if its elements can be labeled a, b, c, d, e in some order so that a - b + c - d + e = 29. Determine all 2017-tuples of integers $n_1, n_2, ..., n_{2017}$ such that if we place them in a circle in clockwise order, then any 5-tuple of numbers in consecutive positions on the circle is arrangeable.

Answer. $n_1 = \cdots = n_{2017} = 29$ is the only sequence.

Solution. We've already supplied an answer above so it remains showing that this answer is unique. More generally, consider the solution matrix Mx = b (i.e. solve for x) where M is 2017×2017 and x, b are vectors of length n = 2017, and all entries in b are 29, and M is defined by

$$M_{ij} = \begin{cases} (-1)^{j-i} & i \le j \le i+4\\ 0 & \text{otherwise} \end{cases}$$

(throughout the solution we let the indices to be modulo n). It then suffices to show that M has nonsingular, thereby Mx = b has a unique solution for x.

First, consider the matrix A of shape $n \times n$ where

$$M_{ij} = \begin{cases} 1 & i \le j \le i+1 \\ 0 & \text{otherwise} \end{cases}$$

Then if B = AM, then the *i*-th row of B is simply the sum of *i*-th and i + 1-th rows of M (again indices modulo n). This means:

$$B_{ij} = \begin{cases} 1 & i = j \text{ or } j = i + 5 \\ 0 & \text{otherwise} \end{cases}$$

To show that B is nonsingular, we consider the system of equations Bx = c with c fixed. This means $c_i = x_i + x_{i+5}$ for all $i = 1, 2, \dots, n$. This means that the value of x_i uniquely determines x_{i+5} based on the value of c_i for all $i = 1, 2, \dots, n$ and since $\gcd(5, 2017) = 1$, all values x_2, \dots, x_{2017} can be uniquely determined by x_1 . Thus, writing everything in term of x_1 we have:

$$x_6 = c_1 - x_1; x_{11} = c_6 - x_6 = (c_1 - c_6) + x_1, \cdots$$

which generalizes to: the coefficient of x_1 in x_{1+5k} is $(-1)^k$. However, since we're taking indices modulo n, the coefficient of x_1 in $x_1 = x_{1+5n}$ is $(-1)^n = -1$ since n is odd. Therefore x_1 is itself uniquely determined too, and therefore Bx = c has unique solution. Therefore $\det(B) \neq 0$, and since B = AM and A is $n \times n$ square matrix, $\det(M) \neq 0$.

2. Let ABC be a triangle with AB < AC. Let D be the intersection point of the internal bisector of angle BAC and the circumcircle of ABC. Let Z be the intersection point of the perpendicular bisector of AC with the external bisector of angle $\angle BAC$. Prove that the midpoint of the segment AB lies on the circumcircle of triangle ADZ.

Solution. The internal and external angle bisectors are perpendicular to each other (known fact!!!), so $\angle ZAD$ is 90°. This motivates us to think of the Pythagoras' theorem,

1

where $AD^2 + AZ^2 = DZ^2$. If we can prove that, given M as the midpoint of A we have $ZM^2+MD^2=AD^2+AZ^2$ then we have $ZM^2+MD^2=DZ^2$, which gives $\angle ZMD=90^\circ$, and Z, A, M, D concyclic.

By cosine rule we have $MZ^2 = AM^2 + AZ^2 - 2 \cdot AM \cdot AZ \cdot \cos \angle MAZ$, $DM^2 = AD^2 + AZ^2 + A$ $AM^2 - 2 \cdot AD \cdot AM \cdot \cos \angle MAD$. Summing these two up gives $AD^2 + AZ^2 + 2AM^2 - AD^2 + AD^$ $2AM(AZ \cdot \cos \angle MAZ + AD \cdot \cos \angle MAD)$. A little bit of algebra yields that it is enough to prove that $2AM^2 - 2AM(AZ \cdot \cos \angle MAZ + AD \cdot \cos \angle MAD)$ (you the readers will verify this, not me!). We claim that $AM - AZ \cdot \cos \angle MAZ - AD \cdot \cos \angle MAD = 0$ (which will be enough to prove our hypothesis). Now, $\cos \angle MAZ = \cos(90^{\circ} + \frac{1}{2}\angle A) = -\sin\frac{1}{2}\angle A$, and $\cos \angle MAD = \cos \frac{1}{2} \angle A$. So now we need $AM + AZ \cdot \sin \frac{1}{2} \angle A - AD \cdot \cos \frac{1}{2} \angle A = 0$. Denote N as midpoint of AC, then $AN = AZ \cos \angle ZAN = AZ \sin \angle DAC = AZ \cdot \sin \frac{1}{2} \angle A$. By Ptolemy's theorem, we also have $BD \cdot AC + AB \cdot DC = BC \cdot AD$. In view of the fact that BD = DC and $BC = 2DC \cos \angle BCD = 2DC \cos \angle BAD = 2DC \cos \frac{1}{2} \angle A$. This transforms the equality above into: $CD \cdot (AB + AC) = 2DC \cos \frac{1}{2} \angle A \cdot AD$, i.e. AB + AC = $2AD\cos\frac{1}{2}\angle A$. Therefore $AM + AZ\cdot\sin\frac{1}{2}\angle A - AD\cdot\cos\frac{1}{2}\angle A = AM + AN - \frac{1}{2}(AB + AC)$ which is obviously zero (midpoints!!!)

3. Let A(n) denote the number of sequences $a_1 \geq a_2 \geq \cdots \geq a_k$ of positive integers for which $a_1 + \cdots + a_k = n$ and each $a_i + 1$ is a power of two $(i = 1, 2, \cdots, k)$. Let B(n) denote the number of sequences $b_1 \geq b_2 \geq \cdots \geq b_m$ of positive integers for which $b_1 + \cdots + b_m = n$ and each inequality $b_j \geq 2b_{j+1}$ holds $(j = 1, 2, \dots, m-1)$. Prove that A(n) = B(n) for

Solution. Denote the mapping f from A to B by the following: consider a sequence $a_1, \dots, a_k \in A$, and let $a_i = 2^{c_i} - 1$ with $c_1 \ge \dots \ge c_k$. Then $f(a_1, \dots, a_k) = b_1, \dots, b_m$

- For $1 \le i \le c_k$, we have: $b_i = \sum_{j: c_j \ge i} 2^{c_j i}$

We now need to show that f is valid, and is a bijection. The validity hinges on two things: $b_i \ge 2b_{i+1} \ge 1$ for each $i \le c_1 - 1$, and that $\sum b_i = n$. The first condition is due to that:

$$b_i = \sum_{j: c_j \geq i} 2^{c_j - i} \geq \sum_{j: c_j \geq i + 1} 2^{c_j - i} = 2 \sum_{j: c_j \geq i + 1} 2^{c_j - i - 1} = 2b_{i + 1}$$

and the positivity of each b_i is guaranteed since $c_1 \geq i$ for each $i = 1, 2, \dots, c_1 = m$. The second condition is guaranteed by the following:

$$\sum_{i=1}^{m} b_i = \sum_{i=1}^{m} \sum_{j:c_i > i} 2^{c_j - i} = \sum_{j=1}^{k} \sum_{i=1}^{c_j} 2^{c_j - i} = \sum_{j=1}^{k} \sum_{i=0}^{c_j - 1} 2^i = \sum_{j=1}^{k} 2^{c_j} - 1 = \sum_{j=1}^{k} a_j = n$$

as desired.

Now to prove that f is a bijection, we need two things too: that it's injective and surjective. Even easier, we define the inverse f^{-1} for f. Now given b_1, \dots, b_m , we define the following algorithm to find a_1, a_2, \dots, a_k , with each $a_i = 2^{c_i} - 1$. We set $k = b_m + \sum_{i=1}^{n} (b_i - 2b_{i-1}) = 0$ $b_1-b_2-\cdots-b_m$ and we have b_m copies of $m,\,b_{m-1}-2b_m$ copies of $m\stackrel{i=1}{-1},\,\cdots,\,b_1-2b_2$ copies of 1 in the sequence c_1, \dots, c_k . To show that this is indeed the inverse of f, we need to consider the following:

• Here, c_1 is the largest among c_i 's, and given that we have $b_m \geq 1$ copies of m, we have $m = c_1$.

• A less straightforward part would be to show that $b_i = \sum_{j:c_j \geq i} 2^{c_j-i}$ holds. This can be done by induction from i=m to 1. Now, b_m is the number of times m appears in c_1, \dots, c_k . Considering $m = \max\{c_1, \dots, k\}$, we have $b_m = \sum_{j:c_j = m} 1 = \sum_{j:c_j = m} 2^{c_j - m} = \sum_{j:c_j \geq m} 2^{c_j - m}$ as desired. As per the induction step, we will consider the following for all $i \leq m-1$:

$$\sum_{j:c_j \ge i} 2^{c_j - i} = \sum_{j:c_j \ge i+1} 2^{c_j - i} + \sum_{j:c_j = i} 2^{c_j - i} = 2 \sum_{j:c_j \ge i+1} 2^{c_j - i - 1} + \sum_{j:c_j = i} 1$$

and by induction hypothesis, $2\sum_{j:c_j\geq i+1}2^{c_j-i-1}=b_{i+1}$. By our construction, we have b_i-2b_{i+1} copies of i in c_i , therefore $2\sum_{j:c_j\geq i+1}2^{c_j-i-1}+\sum_{j:c_j=i}1=2b_{i+1}+(b_i-2b_{i+1})=b_i$ as desired.

4. Call a rational number r powerful if r can be expressed in the form $\frac{p^k}{q}$ for some relatively prime positive integers p, q and some integer k > 1. Let a, b, c be positive rational numbers such that abc = 1. Suppose there exist positive integers x, y, z such that $a^x + b^y + c^z$ is an integer. Prove that a, b, c are all powerful.

Solution. We extend the definition of v_p (p prime) to rationals such that: if $a = \frac{x}{y}$ with gcd(x,y) = 1 (both integers), then:

$$v_p(a) = \begin{cases} v_p(x) & p \mid x \\ -v_p(y) & p \mid y \\ 0 & \text{none of the above} \end{cases}$$

The task is to show that $gcd\{p: v_p(a) \ge 0\} > 1$ (and similarly for b, c).

We now have the following properties:

- Just like the integers, $v_p(ab) = v_p(a)v_p(b)$, $v_p(a^x) = xv_p(a)$ for all rationals a, b and integer x.
- Suppose that a_1, a_2, \dots, a_n are rationals such that for some $p, v_p(a_i) > v_p(a_1)$ for all i > 1. Then $v_p(a_1 + \dots + a_n) = v_p(a_1)$.

The second identity can be justified by simply multiplying by the lowest common multiple of the denominators of a_1, \dots, a_n .

Suppose that $v_p(a) > 0$ for some prime p. Then $v_p(b) < 0$ or $v_p(c) < 0$ since abc = 1 (which means that $v_p(a) + v_p(b) + v_p(c) = 0$ for all primes p). But if $v_p(b^y) < v_p(c^z)$ then $v_p(a^x + b^y + c^z) = v_p(b^y) = yv_p(b) < 0$ and therefore $a^x + b^y + c^z$ cannot be integer. This is also the case if $v_p(b^y) > v_p(c^z)$ except we have $v_p(a^x + b^y + c^z) = v_p(c^z) = zv_p(c) < 0$. Therefore, $yv_p(b) = zv_p(c)$ must hold, and there exists integer ℓ such that $v_p(b) = -\ell \cdot \frac{z}{\gcd(y,z)}$ and $v_p(c) = -\ell \cdot \frac{y}{\gcd(y,z)}$. Therefore

$$v_p(a) = -(v_p(b) + v_p(c)) = \ell \cdot \frac{z}{\gcd(y, z)} + \ell \cdot \frac{y}{\gcd(y, z)} = \ell \cdot \frac{y + z}{\gcd(y, z)}$$

which gives $\frac{y+z}{\gcd(y,z)} \mid v_p(a)$. With $\gcd(y,z) \mid y$ and $\gcd(y,z) \mid z$, $\frac{y+z}{\gcd(y,z)}$ is an integer and since $\frac{y+z}{\gcd(y,z)} \leq y$ and $\frac{y+z}{\gcd(y,z)} \leq z$, we have $\frac{y+z}{\gcd(y,z)} \geq 1+1=2$. This means a is powerful since all its positive exponents of primes are divisible by $\frac{y+z}{\gcd(y,z)} \geq 2$. In a similar manner, we can show that b and c are powerful.

5. Let n be a positive integer. A pair of n-tuples (a_1, \dots, a_n) and (b_1, \dots, b_n) with integer entries is called an exquisite pair if

$$|a_1b_1 + \dots + a_nb_n| \le 1.$$

Determine the maximum number of distinct n-tuples with integer entries such that any two of them form an exquisite pair.

Solution. This is hard. Will be back later.