Notes on Graph Spectral Clustering

Max Daniels daniels.g@northeastern.edu

Northeastern University — June 22, 2020

1 Spectral Theorem

Theorem 1.1. Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Then A is orthogonally diagonalizable:

$$A = U\Sigma U^T \qquad U \text{ orthogonal and } \Sigma \text{ diagonal}$$
 (1)

The columns of U are eigenvectors of A, and moreover, the associated eigenvalues are real.

Proof. The eigenvectors of A diagonalize A. It remains to show these eigenvectors are orthogonal and that the corresponding eigenvalues are real.

Theorem 1.2. The eigenvalues of a real symmetric matrix $A \in \mathbb{R}^{n \times n}$ are real.

Proof. The characteristic polynomial of A has real coefficients by construction. Hence by (1.4), its eigenvalues must come in conjugate pairs: $P(z) = 0 \implies P(z^*) = 0$.

Let v be a nonzero eigenvector of A. By definition, $A = A^H$, so

$$\lambda \|v\|^2 = v^H A v = (v^H A v)^H = \lambda^* \|v\|^2$$
(2)

It follows that $\lambda = \lambda^*$ and so $\lambda \in \mathbb{R}$.

Theorem 1.3. The eigenvectors of a real symmetric matrix $A \in \mathbb{R}^{n \times n}$ are orthogonal.

Proof. There are two cases:

- 1. u, v are independent eigenvectors sharing an eigenvalue. Then any linear combination of u, v is another eigenvector. They may be orthogonalized with Graham Schmidt.
- 2. u, v are independent eigenvectors with eigenvalues λ, μ respectively. Suppose $(u^T v) \neq 0$. Then,

$$u^T A^T A v = \lambda^2 (u^T v) = \mu^2 (u^T v) = \lambda \mu (u^T v)$$
(3)

This would imply

$$\mu(\mu - \lambda)(u^T v) = 0 \tag{4}$$

$$\lambda(\mu - \lambda)(u^T v) = 0 \tag{5}$$

By assumption, $(\mu - \lambda)(u^T v) \neq 0$, while $\mu = \lambda = 0$ is contradictory. It follows that $u^T v = 0$.

Lemma 1.4. Let $P \in \mathbb{R}[x]$ be a polynomial with real coefficients. Then $(P(z))^* = P(z^*)$

Proof. Key idea:

$$(-i)^k = \begin{cases} i^k & k \text{ even} \\ -i^k & k \text{ odd} \end{cases}$$
 (6)

Take a monomial z^n where $z=a+ib\in\mathbb{C}$. Expand using the binomial theorem and collect separately the real and imaginary parts. Each term of the real part has even powers of $(ib)^k$ and is therefore unaffected. Each term of the imaginary part is negated. The property "distributes" for sums of many of these atoms, as long as they have strictly real coefficients.

$\mathbf{2}$ Notes on Spectral Clustering

Graph Spectral Clustering leverages the idea that the eigenvectors of \mathcal{L} , the so-called "Graph Laplacian," approximate indicator functions of clusters in the graph. In particular, $f^T \mathcal{L} f$ can (mainly by coincidence) be written like a min-cut problem on the graph.

2.1Graph Laplacian

Definition 2.1. Let G = (V, E) be a weighted graph with degree matrix D and weight matrix W. Its Laplacian is defined $\mathcal{L} = D - W$.

By coincidence, \mathcal{L} yields a nice quadratic form:

$$\langle f, \mathcal{L}f \rangle = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2 \tag{7}$$

It turns out that (7) can be manipulated into the form of an optimization objective for variations of the GraphCut problem. So, minimizing (7) is either finding the smallest eigenvectors of \mathcal{L} , or finding minimum cuts of a graph, depending on how you look at it.

Theorem 2.2. Corollaries of (7)

The Laplacian \mathcal{L} satisfies:

- 1. By construction \mathcal{L} is real and symmetric.
- Since ⟨f, Lf⟩ ≥ 0 for all f ∈ ℝⁿ, L is positive semi-definite.
 1. 1/2 is an eigenvector with eigenvalue 0.
- 4. If $A \subset V$ is disconnected from \bar{A} , then $\mathbb{1}_A$ and $\mathbb{1}_{\bar{A}}$ are eigenvectors with eigenvalues 0.

Remark. The last two properties hint at the connection between 0 eigenvalues and minimal cuts between disconnected components of G. In both cases, the "objective value" is zero. We will see this relationship extends to min-cuts of non-zero cost.

Definition 2.3. Normalized Laplacian

There are two definitions of the Normalized Laplacian:

$$\mathcal{L}_{\text{rw}} = D^{-1}\mathcal{L} = I - D^{-1}W \tag{8}$$

$$\mathcal{L}_{\text{rw}} = D^{-1}\mathcal{L} = I - D^{-1}W$$

$$\mathcal{L}_{\text{sym}} = D^{-1/2}\mathcal{L}D^{-1/2} = I - D^{-1/2}WD^{-1/2}$$
(9)

Remark. Note that $D^{-1}W$ has rows matching W but scaled to be probability vectors. So \mathcal{L}_{rw} is associated with the random walk induced on G by the edge weights. \mathcal{L}_{sym} is normalized in a way that maintains an interpretation like (7), and also symmetry.

Theorem 2.4. Analogous Properties of Normalized Laplacians The normalized Laplacians satisfy the following:

1. \mathcal{L}_{sym} adds normalization to (7):

$$f^T \mathcal{L}_{sym} f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2$$
 (10)

2. By its definition, \mathcal{L}_{rw} has 0 eigenvalues for the same vectors that \mathcal{L} does, so it shares the cluster

Remark. Together, the two normalized Laplacians have all the same properties as \mathcal{L} , but shared in a weird way. From the Min-cut perspective they are equivalent.

2.2 Algorithms

Normalized and Unnormalized Graph Spectral Clustering

Unnormalized Graph Spectral Clustering:

- 1. Fix k the number of clusters
- 2. Compute a rank-k approximation of \mathcal{L}
- 3. These columns approximate the indicator functions for k different (possibly overlapping) clusters. Apply k-means to the rows to group the points indicated to be in the same clusters.

Normalized (\mathcal{L}_{rw}) Graph Spectral Clustering:

- 1. Fix k the number of clusters
- 2. Compute a rank-k approximation of \mathcal{L}_{rw}
- 3. These columns approximate the indicator functions for k different (possibly overlapping) clusters. Apply k-means to the rows to group the points indicated to be in the same clusters.

Normalized ($\mathcal{L}_{\mathrm{sym}}$) Graph Spectral Clustering:

- 1. Fix k the number of clusters
- 2. Compute a rank-k approximation of \mathcal{L}_{sym}
- 3. Normalize each row of \mathcal{L}_{sym}
- 4. These columns approximate the indicator functions for k different (possibly overlapping) clusters. Apply k-means to the rows to group the points indicated to be in the same clusters.

RatioCut

RatioCut and NCut are graph cut problems. A graph cut is a partition of vertices V into disjoint sets $\{A_i\}_{i=1}^N$. The minimum cut problem seeks partitions which minimize the weight of the cut edges, or some normalized version of this. Here are some common objectives:

$$\operatorname{cut}(A_1, ..., A_k) := \frac{1}{2} \sum_{i=1}^k W(A_i, \bar{A}_i)$$
(11)

$$NCut(A_1, ..., A_k) := \sum_{i=1}^{k} \frac{cut(A_i, \bar{A}_i)}{|A_i|}$$
(12)

RatioCut
$$(A_1, ..., A_k) := \frac{1}{2} \sum_{i=1}^{k} \frac{\text{cut}(A_i, \bar{A}_i)}{\text{vol}(A_i)}$$
 (13)

In the simplest case (k=2 for cut), we can demonstrate the connection to \mathcal{L} . The trick:

Let
$$f \in \mathbb{R}^n$$

$$f_i = \begin{cases} \sqrt{|\bar{A}|/|A|} & v_i \in A\\ \sqrt{|A|/|\bar{A}|} & v_i \in \bar{A} \end{cases}$$
 (14)

The derivation:

$$f^{T} \mathcal{L} f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$
(15)

$$= \frac{1}{2} \left(\sqrt{\frac{|\bar{A}|}{|A|}} + \sqrt{\frac{|A|}{|\bar{A}|}} \right)^2 \left[\sum_{i \in A, j \in \bar{A}} w_{ij} + \sum_{i \in A, j \in \bar{A}} w_{ij} \right]$$
(16)

$$= \operatorname{cut}(A, \bar{A}) \left(\frac{|A| + |\bar{A}|}{|A|} + \frac{|A| + |\bar{A}|}{|\bar{A}|} \right) \tag{17}$$

$$= |V| \cdot \text{RatioCut}(A, \bar{A}) \tag{18}$$

The $(f_i - f_j)$ makes this work. Any indicator function passed into \mathcal{L} will cancel all terms from the same cluster, setting up the connection to cut. Symmetry of entries of f gives each coordinate the same coefficient, which factors out, so we just need to pick coefficients working out to the appropriate scale.

Hence we can minimize RatioCut by minimizing $f^T \mathcal{L} f$ under appropriate constraints. What are the constraints? Can we use them to find a recipe for this minimization problem?

- 1. $f^T \perp \mathbb{1}$ check by inspection (something one might expect from symmetry)
- 2. $||f||^2 = n$ the value n in less important than the fact that ||f|| is fixed. It falls out of the scale of f to normalize cut.

Now, using this structure:

$$\min_{A \subset V} f^T \mathcal{L} f \text{ subject to } f \perp \mathbb{1}, f_i \text{ as } (14), ||f|| = \sqrt{n}$$
 [this is NP-Hard] (19)

$$\min_{A \subset V} f^T \mathcal{L} f \text{ subject to } f \perp \mathbb{1}, \|f\| = \sqrt{n}$$
 [pay discreteness for feasibility] (20)

Interestingly, $\mathbb{1}$ is an eigenvector of \mathcal{L} , so by Rayleigh-Ritz this minimization asks for the second eigenvector.

Extension of RatioCut for k > 2

- 1. Rather than $\pm c$ entries of f, we can use entries c or 0.
- 2. This computes the cut cost for a single A_i , rather than the cut cost for A_i and \bar{A}_i at the same time.
- 3. So we simply compute the cost for each of the $h_i^T A_i h_i$, which can be done in a matrix.

Specifically:

$$h_i = \begin{cases} 1/\sqrt{|A_i|} & v_i \in A_i \\ 0 & else \end{cases} \tag{21}$$

$$h_i^T \mathcal{L} h_i = \frac{\operatorname{cut}(A_i, \bar{A}_i)}{|A_i|} \tag{22}$$

$$RatioCut(A_1, ..., A_k) = \sum_{i=1}^k h_i^T \mathcal{L}h_i = Tr(H^T \mathcal{L}H)$$
(23)

Now, $f \perp 1$ may have seemed strange, but with the new h_i the requirement is orthogonality. There is a similar optimization setup:

$$\min_{A \subset V} \operatorname{Tr}(H^T \mathcal{L} H) \text{ subject to } H^T H = I, h_i \text{ as (21)}$$
 [this is NP-Hard] (24)

$$\min_{A \subset V} \operatorname{Tr}(H^T \mathcal{L}H) \text{ subject to } H^T H = I$$
 [pay discreteness for feasibility] (25)

By Rayleigh-Ritz: H has to be the k smallest eigenvectors.

Extension to NCut for k > 2

NCut follows the same template: construct indicator vectors h_i whose elements are normalized. Bundle these vectors into a matrix and do trace minimization against \mathcal{L}_{rw} or \mathcal{L}_{sym} , relaxing a discreteness constraint on the indicator vectors.

A notable point: the naive setup is to weight points by cluster volume:

$$h_{i,j} = \begin{cases} 1/\sqrt{\operatorname{vol}(A_j)} & v_i \in A_i \\ 0 & \text{else} \end{cases}$$
 (26)

But this leads to

$$\langle h_i, h_j \rangle = \delta_{ij} \cdot \frac{|A_i|}{\operatorname{vol}(A_i)}$$
 (27)

Each coordinate of h_i has the same "weight" in this sum, and they need to be reweighted for the h_i to be orthonormal. That is, we need $\langle h_i, h_j \rangle_D = h_i^T D h_j = \delta_{i,j}$. RatioCut normalization is implicitly orthormalized, while NCut needs to be weighted by node degrees, introducing the D factor that brings normalized Laplacians into the minimization problem. The corresponding optimization has two equivalent forms:

$$\min_{K \in \mathbb{R}^{n \times k}} \operatorname{Tr}(K^T \mathcal{L}K) \text{ subject to } K^T D K = I$$
(28)

$$\min_{R \in \mathbb{R}^{n \times k}} \operatorname{Tr}(R^T D^{-1/2} \mathcal{L} D^{-1/2} R) \text{ subject to } R^T R = I$$
(29)

By (29) and Rayleigh-Ritz, R has the smallest eigenvectors of \mathcal{L}_{sym} . Identifying $D^{-1/2}R = K$, it is clear that K has eigenvectors of \mathcal{L}_{rw} :

$$LD^{-1/2}u_R = \lambda u_R \implies LD^{-1}u_K = \lambda u_K \implies D^{-1}Lu_K = \lambda u_K \tag{30}$$

3 Probabilistic Interpretation

Consider a random walk on the graph with probabilities according to edge weights. The transition matrix is $D^{-1}\mathcal{L}$. Using Bayes' rule,

$$\Pr(\bar{A}_i|A_i) = \operatorname{NCut}(A_i, \bar{A}_i) \tag{31}$$

And so we are minimizing the probability that a random walker jumps between clusters.

4 Perturbation Approach

Matrix perturbation theory studies the impact that a small matrix perturbation can have on eigenvalues and eigenvectors of a matrix.

For graphs which are perfectly separable into k disconnected clusters, the Laplacian eigenvectors are exactly the indicator vectors for these clusters. We may view a generic Laplacian as a perturbed version of the idealized case to prove that generic Laplacian eigenvectors approximate proper indicator functions.

Theorem 4.1. Paraphrased Davis-Kahan

Let $A' = A + \mathcal{E} \in \mathbb{R}^{n \times n}$ be a perturbation of the symmetric matrix A by a symmetric matrix \mathcal{E} . Let $S \subset \mathbb{R}$ be an interval. Denote by σ_S the set of eigenvalues of A contained in S, and by V the span of the corresponding eigenvectors. Define S', V' analogously for A'.

Define the distance between S and the spectrum of A:

$$\delta = \min\{|\lambda - s| : \lambda \text{ eigenvalue of } A, \lambda \notin S, s \in S\}$$
 (32)

Then the distance $d(V, V') = ||A - A'||_F = ||\vec{\sigma}_A - \vec{\sigma}_{A'}||_2$ satisfies:

$$d(V, V') \le \frac{\|\mathcal{E}\|_F}{\delta} \tag{33}$$

Identifying δ with the spectral gap, Davis-Kahan indicates that two cases when \mathcal{L} clusters well are when the spectral gap is large and when \mathcal{L} (in turn, D and W) are close to that of an idealized cluster graph.

Davis-Kahan guarantees *only* that the eigenvectors of A' stay near A, under conditions. It is not sufficient to guarantee clustering unless the idealized version A is good for clustering:

- 1. Potential pitfall: any block diagonal matrix has "indicator-like" eigenvectors localized on the blocks
- 2. Also needed: eigenvalues induce an order of eigenvectors by relevance. (The first k eigenvectors indicate the first k clusters)
- 3. Also needed: in the idealized case, indicator components are bounded away from zero (they are either on or off). Otherwise, even a small amount of noise yields an ambiguous approximation.

The second special property does not hold for \mathcal{L}_{sym} , whose eigenvectors are $D^{1/2}\mathbb{1}_{A_i}$. Vertices with very low degree are nearly zeroed out. This is the reason for the row normalization step in \mathcal{L}_{sym} .

References

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, Dec 2007. ISSN 0960-3174, 1573-1375. doi: 10.1007/s11222-007-9033-z.