message_optimizer comprime esta string da seguinte forma: sempre que existam caracteres iguais seguidos são substituídos pela identificação desse carácter seguido do número de ocorrências do mesmo, como por exemplo, a string "aaaaadaaafdddffd" será comprimida para "a5da3fd3f2d". from random import seed from random import choice from random import randint from string import ascii_letters seed (135) a = []def random_string_generator(): my_str = "" for i in range (0,3): my_str += choice(ascii_letters).lower() for k in range(randint(1,15)): idx = randint(1,len(my_str) - 1) 1 += choice(my_str) return 1 def message_optimizator(my_str): char_to_evaluate = my_str[0] finalMessage = "" counter = 1char_occurence = 1 if len(my_str) == 1: return my_str for char in my_str[1:]: counter += 1 if char_to_evaluate == char: char_occurence += 1 if char_to_evaluate != char: finalMessage += char_to_evaluate finalMessage += str(char_occurence) if char_occurence > 1 els char_to_evaluate = char char_occurence = 1 if counter == len(my_str): finalMessage += char_to_evaluate finalMessage += str(char_occurence) if char_occurence > 1 el: return finalMessage for i in range(10): 1 = random_string_generator() m = message_optimizator(1) a.append(m) Acrescente a este programa o código que lhe permita indicar se as afirmações seguintes são verdadeiras ou falsas. Indique se é verdadeiro ou falso.

Considere o programa, Pyhton 3, que se segue. A função random_string_generator gera uma string de dimensão aleatória constituída por 3 tipos caracteres e a função