

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Белорусский национальный технический университет

Кафедра «Экономика и организация машиностроительного производства»

ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА И УПРАВЛЕНИЕ ПРЕДПРИЯТИЕМ

Лабораторный практикум

Минск БНТУ 2012

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет

Кафедра «Экономика и организация машиностроительного производства»

ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА И УПРАВЛЕНИЕ ПРЕДПРИЯТИЕМ

Лабораторный практикум

Минск БНТУ 2012 УДК 621.002:658(076.5) ББК 34.4 О-64

> Составители: Василевич В. И., Костью кевич Е. Н., Шарко В. М.

Репензенты:

Пилипук Н. Н., проф. каф. «Экономика и управление на транспорте», канд. экон. наук, БНТУ; Сак А. В., проф. каф. «Экономика», канд. экон. наук, БГУИР

О-64 **Организация производства и управление предприятием :** лабораторный практикум / сост.: В. И. Василевич, Е. Н. Костюкевич, В. М. Шарко. – Минск : БНТУ, 2012. – 86 с. ISBN 978-985-525-891-0.

Лабораторный практикум содержит описание и постановку лабораторных работ по дисциплине «Организация производства и управление предприятием» и является результатом опыта работы сотрудников кафедры «Экономика и организация машиностроительного производства». Предназначен для студентов экономических и инженерных специальностей.

УДК 621.002:658(076.5) ББК 34.4

ISBN 978-985-525-891-0

© Белорусский национальный технический университет, 2012

СОДЕРЖАНИЕ

Лабораторная работа №1 ОРГАНИЗАЦИЯ ОБСЛУЖИВАНИЯ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ ПРОМЫШЛЕННЫМ РОБОТОМ	4
Лабораторная работа № 2 РАСЧЕТ НОРМАТИВНОЙ ПАРТИИ ДЕТАЛЕЙ	15
Лабораторная работа № 3 РАСПРЕДЕЛЕНИЕ НОМЕНКЛАТУРЫ ДЕТАЛЕЙ ПО ГРУППАМ ОБОРУДОВАНИЯ	23
Лабораторная работа № 4 СЕТЕВОЕ ПЛАНИРОВАНИЕ	31
Лабораторная работа № 5 ХРОНОМЕТРАЖ ТЕХНОЛОГИЧЕСКОЙ ОПЕРАЦИИ	42
Лабораторная работа № 6 ФОТОГРАФИЯ РАБОЧЕГО ВРЕМЕНИ	49
Лабораторная работа № 7 РАСЧЕТ ПРЕРЫВНО-ПОТОЧНОЙ ЛИНИИ	57
Лабораторная работа № 8 МОРАЛЬНО-ПСИХОЛОГИЧЕСКИЙ КЛИМАТ В КОЛЛЕКТИВЕ	69
Лабораторная работа № 9 РАСЧЕТ ПРОИЗВОДСТВЕННОГО ЦИКЛА ПРОСТОГО ПРОЦЕССА	78

Лабораторная работа № 1

ОРГАНИЗАЦИЯ ОБСЛУЖИВАНИЯ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ ПРОМЫШЛЕННЫМ РОБОТОМ

Цель работы: закрепление у студентов теоретических знаний по созданию и эксплуатации роботизированных технологических комплексов (РТК); ознакомление с особенностями проектирования, организации и компоновки схем РТК; изучение методики и выработка навыков расчета длительности цикла обслуживания промышленным роботом станков при линейном их расположении.

Краткие теоретические сведения

Промышленный робот (ПР) – перепрограммируемая автоматическая машина, применяемая в производственном процессе для выполнения двигательных функций, аналогичных функциям человека. ПР способен воспроизводить некоторые двигательные и умственные функции при выполнении основных и вспомогательных производственных операций без непосредственного участия человека. Для этого его наделяют некоторыми способностями: слухом, зрением, осязанием, памятью и другими, а также способностью к самоорганизации, самообучению и адаптации к внешней среде.

Уже сегодня ПР заменяют людей у станков с ЧПУ, там, где затрачивается монотонный ручной труд, где работают с радиоактивными, токсичными, взрывоопасными веществами, в сложных температурных условиях, в условиях повышенной вибрации, шума, загрязненности воздуха, в стесненных местах и т. д.

Разнообразие производственных процессов и условий производства предопределяет наличие различных типов роботов и соответственно различных РТК. Простейшим его типом является роботизированная технологическая ячейка (единица роботизированного оборудования), в которой выполняется некоторое количество вспомогательных технологических операций. Более крупным РТК является роботизированный технологический участок (несколько роботизированных единиц оборудования). На нем ПР выполняет ряд вспомогательных технологических операций. Если они осуществляются в едином технологическом процессе, то этот комплекс представляет собой роботизированную технологическую линию.

При проектировании различных видов РТК, как правило, выделяют два этапа.

На первом этапе рассматривают проблемы производства, выбирают объекты роботизации, состав основного технологического оборудования, вид движения деталей, систему рационального автоматизированного управления технологическим процессом и функциональными задачами.

На втором этапе осуществляют непосредственное проектирование РТК, формируют структуру, определяют количество и характеристики ПР и технологического оборудования, разрабатывают рациональные планировки оборудования РТК в производственном помещении, выбирают компоновочные схемы РТК, составляют и отлаживают алгоритмы и программы системы управления РТК, необходимые в период функционирования.

Компоновочные схемы РТК зависят от решаемых технологических задач, уровня автоматизации, количества и типа ПР, их технических и функциональных возможностей. Различают индивидуальное и групповое обслуживание технологического оборудования ПР.

Индивидуальное обслуживание оборудования: ПР встроен в единицу технологического оборудования; ПР размещен рядом с единицей технологического оборудования; несколько ПР обслуживают единицу технологического оборудования.

Групповое обслуживание оборудования — обслуживание одним ПР нескольких единиц технологического оборудования при линейном или круговом расположении оборудования (при линейной или цилиндрической системе координат).

Важнейшим направлением при создании РТК является использование компоновочных схем, основанных на групповом обслуживании технологического оборудования.

При формировании участка с линейной формой компоновки технологического оборудования оно располагается вдоль прямоточновозвратной трассы в одну или несколько линий, а ПР перемещается по напольным или подвесным направляющим этой трассы. Предположим, что в качестве средства, осуществляющего транспортировку деталей от одного станка к другому и обслуживание станков, используется напольный подвижной ПР, тогда компоновка участка будет выглядеть, как это показано на рисунке 1.1.

TO — технологическое оборудование; $Ч\Pi У$ — устройство числового программного управления; M V — магазин инструмента; C — стол для деталей; ΠV — подвижной промышленный робот; V — трасса промышленного робота; V — питатель заготовками; V — накопитель деталей

Рисунок 1.1 – Линейная компоновочная схема расположения оборудования, обслуживаемого ΠP

При формировании участка с круговой формой компоновки технологического оборудования оно располагается по окружности, в центре которой устанавливается ПР, для выполнения транспортных и обслуживающих операций (рисунок 1.2).

TO — технологическое оборудование; $Ч\Pi У$ — устройство числового программного управления; MU — магазин инструментов; C — стол для деталей; ΠP — промышленный робот, обслуживающий оборудование в цилиндрической системе координат; T_p — трасса робоэлектрокара; $P \ni K$ — робоэлектрокар; Π — питатель заготовками; H — накопитель готовых деталей; AC — автоматический склад заготовок

Рисунок 1.2 – Круговая компоновочная схема расположения оборудования, обслуживаемого ПР

Рассмотрим выбор наилучшего варианта группового обслуживания технологического оборудования, расположенного в линейной системе координат (см. рисунок 1.1). Пусть производственная система состоит из m станков, расположенных в линейной системе координат, и одного ΠP при последовательной форме обслуживания.

Суть такой формы обслуживания состоит в следующем: любая деталь (изделие) должна пройти последовательную обработку на каждом из станков согласно технологическому процессу. Перед каждым станком есть стол, где может находиться не более одной заготовки, ожидающей своей очереди на обработку. Время обработки деталей (машинное время и время, необходимое для загрузки-разгрузки) на $1, \ldots, m$ станках обозначим соответственно t_1, t_2, \ldots, t_m ($i=1, \ldots, m$); время, необходимое для переноса (транспортировки) деталей от i-го станка ко 2-му $-t_{\text{тр.1}}$, от 2-го к 3-му $-t_{\text{тр.2}}$ и т. д. к m-му $-t_{\text{тр.m}}$.

Допустим, что время, необходимое ПР для переноса заготовки из питателя к 1-му станку и детали с m-го станка к накопителю, достаточно мало и им можно пренебречь.

Выбор наилучшего варианта группового обслуживания оборудования заключается в следующем: найти такой вариант обслуживания станков ПР при последующей форме обслуживания, который бы обеспечил минимальную длительность цикла обслуживания и максимальную загрузку оборудования.

Возможны следующие варианты обслуживания оборудования.

1. ПР, двигаясь от 1-го к m-му станку, поочередно их загружает, двигаясь в обратную сторону, поочередно разгружает. В этом случае длительность цикла $(T_{\text{ц,1}})$ обслуживания технологического оборудования можно рассчитать по следующей формуле:

$$\hat{O}_{0.1} = 2 \sum_{i=1}^{m-1} t_{\delta \delta,i} + \sum_{i=1}^{m-1} t_{i \delta,i};$$

$$t_{\text{T }\delta.i} = t_i - 2\sum_{k=1}^{m-1} t_{\delta\delta.k} - \sum_{k=i+1}^{m-1} t_{\text{T }\delta.k},$$

где $2\sum_{i=1}^{m-1}t_{\eth\eth.i}$ — время, которое ПР затрачивает на транспортировку деталей от 1-го станка к m-му и возвращение в исходную позицию к 1-му станку, мин;

 $t_{\text{пр}.i}$ – время простоя ПР в ожидании окончания обработки деталей на каждой операции, следующей за i-й, мин;

 $2\sum_{k=1}^{m-1}t_{\eth 0.k}$ — время, которое ПР тратит на перемещение от *m*-го станка к *i*-му и возвращение его в исходную позицию;

 $\sum_{k=i+1}^{m-1} t_{\tilde{1}\,\tilde{0},k}$ — время простоя ПР на каждой k-й операции в ожидании ее окончания, мин.

2. ПР, двигаясь от 1-го к m-му станку, одновременно разгружает и загружает станки, затем от m-го станка возвращается к 1-му, и процесс повторяется. В этом случае длительность цикла $T_{({\rm II},2)}$ можно рассчитать по следующей формуле:

$$\grave{O}_{\ddot{o}.2} = 2\sum_{i=1}^{m-1} t_{\grave{o}\check{o}.i} + 2\sum_{k=1}^{m} \min\left\{t_{\grave{o}\check{o}.k}; t_{\grave{o}\check{o}.k+1}\right\} + \sum_{i=1}^{m} t_{\check{i}\check{o}.i};$$

$$t_{\|\delta,i} = t_i - 2\sum_{k=1}^{m-1} t_{\delta\delta,k} - 2\sum_{k=1}^{m} t_{\delta\delta,k} + \sum_{k=1}^{i} t_{\|\delta,k},$$

где $t_{\eth\eth,k,\,k+1}$ — минимальное время транспортировки деталей в паре смежных операций $k,\,k+1,$ мин.

3. Смешанный случай, при котором часть оборудования может быть обслужена по первому варианту, а часть – по второму. Тогда длительность цикла обслуживания можно рассчитать по формуле

$$\dot{O}_{0.3} = \dot{O}'_{0.1} + \dot{O}'_{0.2},$$

где $\grave{O}_{0.1}'$, $\grave{O}_{0.2}'$ — часть длительности цикла при обслуживании оборудования соответственно по первому и второму вариантам.

Определить длительность циклов обслуживания металлорежущих станков ПР при I, II, III вариантах. Из полученных результатов выбрать тот вариант, который бы обеспечивал минимальную длительность цикла обслуживания оборудования. Исходные данные приведены в таблице 1.1.

Пример. Рассчитаем длительность циклов обслуживания станков по I, II, III вариантам (вариант 1, см. таблицу 1.1).

Решение.

1. Определение длительности цикла обслуживания станков ПР по первому варианту. Алгоритм работы: ПР берет деталь из питателя и загружает 1-й станок, затем берет деталь со стола 1-го станка и загружает 2-й станок и так до 6-го станка. Причем, загрузив 6-й станок, ПР не ждет окончания обработки детали на этом станке, а движется к 5-му станку и разгружает его. Далее он передвигается к 4-му, 3-му, 2-му, 1-му и выполняет аналогичную операцию. После чего процесс обслуживания повторяется.

А. Определяем время простоя ΠP на каждой i-й операции в ожилании ее окончания:

$$t_{\text{np.5}} = 10 - 2 \cdot 5 - 0 = 0;$$

$$t_{\text{пр.4}} = 25 - 2 \cdot (5 + 4) - 0 - 0 = 7,$$

следовательно, робот ждет окончания работы станка 7 мин.

$$t_{\text{IID},3} = 25 - 2 \cdot (5 + 4 + 4) - 0 - 0 - 7 = -8.$$

Станок ждет момента обслуживания роботом 8 мин, следовательно, $t_{||\hat{\Lambda}||3} = 0$.

$$t_{\text{mp.2}} = 55 - 2 \cdot (5 + 4 + 4 + 3) - 0 - 0 - 7 - 0 = 16,$$

следовательно, $t_{\text{пр.2}} = 16$ мин.

$$t_{\text{np.1}} = 20 - 2 \cdot (5 + 4 + 4 + 3 + 5) - 0 - 0 - 7 - 0 - 16 = -45,$$

следовательно, $t_{\text{пр.1}} = 0$.

$$t_{\text{np.6}} = 50 - 2 \cdot (5 + 4 + 4 + 3 + 5) - 0 - 0 - 7 - 0 - 16 - 0 = -15,$$

следовательно, $t_{\ddot{1}} = 0$.

Б. Определяем длительность цикла обслуживания технологического оборудования ПР по первому варианту:

$$T_{\text{II},1} = 2 \cdot (5+3+4+4+5) + (0+7+0+16+0+0) = 65 \text{ MuH}.$$

2. Определение длительности цикла обслуживания станков ПР по второму варианту обслуживания. В этом случае ПР, перемещаясь от 1-го к 6-му станку, одновременно загружает и разгружает станки. Обслужив последний, ПР возвращается к 1-му, и процесс обслуживания повторяется снова.

Ввиду того, что время переноса детали от одного станка к другому различное, рассмотрим пары времен. Для каждой пары выбираем минимальное время переноса и, ориентируясь на него, организуем обслуживание станков:

$$\min\{t_{\delta 0.1}; t_{\delta 0.2}\} = t_{\delta 0.2} = 3; \quad \min\{t_{\delta 0.2}; t_{\delta 0.3}\} = t_{\delta 0.2} = 3;$$

$$\min\{t_{\delta 0.3}; t_{\delta 0.4}\} = t_{\delta 0.4} = 4; \quad \min\{t_{\delta 0.4}; t_{\delta 0.5}\} = t_{\delta 0.4} = 4$$

На рисунке 1.1 отметим промежутки, где получено минимальное время обслуживания станков, $t_{\delta\delta,2}$ и $t_{\delta\delta,4}$.

Алгоритм работы: ПР сначала разгружает 1-й станок на стол; затем, взяв заготовку из питателя, загружает его, после чего берет деталь со стола 1-го станка и переносит ее на стол перед 2-м. Далее ПР без детали двигается к 3-му станку, разгружает его на стол, возвращается ко 2-му, берет деталь со 2-го станка, перемещается к 3-му станку и загружает его, снова возвращается ко 2-му станку и загружает его со 2-го стола. Таким образом уже обслужены 1-й, 2-й и 3-й станки, и ПР перемешается к 4-му станку, захватив деталь с 3-го стола, помещает ее на стол перед 4-м станком. Далее ПР без детали двигается к 5-му станку, разгружает его на стол, возвращается к 4-му станку, берет деталь с 4-го станка, перемещается к 5-му и загружает

его, снова возвращается к 4-му станку и загружает его с 4-го стола. Таким образом, ПР загрузил еще 4-й и 5-й станки. Далее ПР перемещается к 5-му столу, берет деталь и переносит ее к 6-му столу, затем разгружает 6-й станок в накопитель готовых деталей и загружает его с 6-го стола. Обслужив все станки, ПР возвращается в исходную позицию к 1-му станку, и цикл повторяется.

А. Определяем время простоя ΠP на каждой i-й операции в ожидании ее окончания:

$$t_{\text{rm 1}} = 20 - 2 \cdot (5 + 3 + 4 + 4 + 5) - 2 \cdot (3 + 3 + 4 + 4) + 0 = -50,$$

следовательно, $t_{\ddot{1}} = 0$.

$$t_{\text{rm 2}} = 55 - 2 \cdot (5 + 3 + 4 + 4 + 5) - 2 \cdot (3 + 3 + 4 + 4) + (0 + 0) = -15$$

следовательно, $t_{\ddot{1},\dot{0},2} = 0$.

$$t_{\text{np.3}} = 25 - 2 \cdot (5 + 3 + 4 + 4 + 5) - 2 \cdot (3 + 3 + 4 + 4) +$$

 $+ (0 + 0 + 0) = -45,$

следовательно, $t_{\ddot{1}} \stackrel{\text{d}}{\circ} \stackrel{\text{d}}{\circ} = 0$.

$$t_{\text{np.4}} = 25 - 2 \cdot (5 + 3 + 4 + 4 + 5) - 2 \cdot (3 + 3 + 4 + 4) + 0 + 0 + 0 + 0 = -45.$$

следовательно, $t_{",0.4} = 0$.

$$t_{\text{np.5}} = 10 - 2 \cdot (5 + 3 + 4 + 4 + 5) - 2 \cdot (3 + 3 + 4 + 4) +$$

 $+ (0 + 0 + 0 + 0 + 0) = -60,$

следовательно, $t_{10,5} = 0$.

$$t_{\text{np.6}} = 50 - 2 \cdot (5 + 3 + 4 + 4 + 5) - 2 \cdot (3 + 3 + 4 + 4) +$$

 $+ (0 + 0 + 0 + 0 + 0 + 0) = -20.$

следовательно, $t_{\ddot{1}\ \delta.6} = 0$

Б. Определяем длительность цикла обслуживания технологического оборудования ПР по второму варианту:

$$T_{\text{ц,2}} = 2 \cdot (5+3+4+4+5) + 2 \cdot (3+3+4+4) +$$

 $+ 0 + 0 + 0 + 0 + 0 + 0 = 70$ мин.

3. Определение длительности цикла обслуживания станков ПР по третьему варианту обслуживания. Примем, что в этом случае ПР обслуживает 1-й и 2-й станки по методике второго варианта, а с 3-го по 6-й – по методике первого варианта.

Алгоритм работы: ПР, разгрузив 1-й станок на стол, берет заготовку из питателя и загружает ею 1-й станок. Затем берет деталь с 1-го стола и переносит ее на стол 2-го станка. Дождавшись конца обработки детали на 2-м станке, берет деталь и перемещается к 3-му станку и загружает его, затем возвращается ко 2-му и загружает его. После чего перемещается к 3-му станку, берет деталь со стола 3-го станка, движется к 4-му станку и загружает его. Затем берет деталь со стола 4-го станка и перемещается к 5-му станку и загружает его. Далее берет деталь со стола 5-го станка и переносит ее на стол 6-го станка. Разгружает 6-й станок в накопитель готовых деталей, берет деталь со стола 6-го станка и загружает 6-й станок. Затем ПР движется к 5-му станку и разгружает его на 5-й стол, движется к 4-му станку и разгружает его на 4-й стол. Затем движется к 3-му станку, и цикл повторяется.

А. Определяем время простоя ΠP на каждой i-й операции в ожидании ее окончания:

$$t_{\text{np.5}} = 10 - 2 \cdot 5 - 0 = 0;$$

 $t_{\text{np.4}} = 25 - 2 \cdot (5 + 4) - 0 - 0 = 7;$
 $t_{\text{np.3}} = 25 - 2 \cdot (5 + 4 + 4) - 0 - 0 - 7 = -8,$

следовательно, $t_{i \, \delta.3} = 0$.

$$T_{\text{II},1} = 2 \cdot (4+4+5) + 0 + 0 + 7 + 0 = 33;$$

 $t_{\text{II},1} = 20 - 33 - 2 \cdot (5+3) - 2 \cdot 3 - 0 = -35,$

следовательно, $t_{i, \check{0}, 1} = 0$.

$$t_{\text{np},2} = 55 - 33 - 2 \cdot (5+3) - 2 \cdot 3 - 0 - 0 = 0;$$

 $t_{\text{np},6} = 50 - 33 - 2 \cdot (5+3) - 2 \cdot 3 - 0 - 0 - 0 = -5,$

следовательно, $t_{", \delta, 6} = 0$.

$$T_{\text{u,2}} = 2 \cdot (5+3) + 2 \cdot 3 + 0 + 0 = 22;$$

 $T_{\text{u,3}} = 33 + 22 = 55 \text{ мин.}$

Порядок выполнения работы

После получения у преподавателя варианта задания (см. таблицу 1.1), лабораторная работа выполняется в следующей последовательности.

- 1. Студенты знакомятся с поставленной целью работы.
- 2. Изучают теоретический материал по созданию РТК, использованию ПР, формированию компоновочных схем при индивидуальном и групповом обслуживании технологического оборудования (в линейной и цилиндрической системе координат), выбору наилучшего варианта группового обслуживания оборудования, расположенного в линейной системе координат при последовательной форме обслуживания.
- 3. Знакомятся с приведенным примером расчета длительности цикла обслуживания технологического оборудования ПР.
- 4. В соответствии с полученным вариантом рассчитывают длительность цикла обслуживания оборудования ПР и выбирают оптимальный.
- 5. Защита лабораторной работы сводится к обоснованию и выбору оптимального варианта и к ответу на поставленные теоретические вопросы.

Таблица 1.1 – Исходные данные по вариантам

№ вари- анта Время обработки деталей, мин	ей,	Время транспортировки деталей, мин							
анта							$t_{\rm rp.3}$	$t_{\mathrm{rp.4}}$	$t_{\mathrm{rp.5}}$

1	20	55	25	25	10	50	5,0	3,0	4,0	4,0	5,0
2	25	50	25	30	15	45	4,0	2,0	3,0	3,0	4,0
3	30	50	30	30	15	45	5,0	2,0	2,0	4,0	4,0
4	25	55	20	25	10	40	4,0	3,0	2,0	4,0	4,0
5	25	45	30	30	10	40	4,0	2,0	2,0	3,0	4,0
6	30	40	20	25	15	50	4,0	3,0	3,0	4,0	5,0
7	2	10	3	5	3	15	2,0	0,8	1,2	1,5	2,0

Окончание таблицы 1.1

№ вари-	Вр	емя с	•	отки Д ин	цетал	Время транспортировки деталей, мин					
анта	t_1	t_2	t_3	t_4	t_5	t_6	$t_{\mathrm{rp.1}}$	$t_{\rm rp.2}$	$t_{\rm rp.3}$	$t_{\mathrm{rp.4}}$	$t_{\mathrm{rp.5}}$
8	4	6	5	3	4	6	0,8	0,7	1,5	0,8	1,5
9	7	18	8	20	7	10	1,0	1,2	2,0	1,0	1,5
10	2	6	3	2	4	10	0,5	0,3	0,4	0,5	0,5
11	1	5	5	3	3	5	0,5	0,2	0,3	0,3	0,5
12	15	40	30	20	15	30	7,5	4,5	6,0	7,5	4,5
13	10	3	6	20	3	10	2,0	1,0	4,0	2,0	3,0
14	5	10	5	10	4	7	1,5	1,0	2,0	1,0	1,5
15	15	30	10	15	10	20	4,0	2,5	3,0	2,5	2,5

Содержание отчета

- 1. Цель лабораторной работы.
- 2. Исходные данные по варианту.
- 3. Схема расположения оборудования и пути движения робота.
- 4. Расчеты цикла обслуживания при разных вариантах.
- 5. Выбор оптимального варианта.
- 6. Выводы по работе.

Лабораторная работа № 2

РАСЧЕТ НОРМАТИВНОЙ ПАРТИИ ДЕТАЛЕЙ

Цель работы: закрепление у студентов теоретических знаний по оперативно-производственному планированию; приобретение практических навыков по расчету величины партии деталей; изучение метода определения оптимального размера партии деталей и границ области, в которой она находится.

Краткие теоретические сведения

Партия деталей – такое количество одноименных деталей, которое обрабатывается на одном или нескольких рабочих местах с одной наладки оборудования. Величина партии деталей является основным календарно-плановым нормативом оперативно-производственного планирования серийного типа производства. Величиной партии деталей предопределяется все остальные календарно-плановые нормативы.

Оптимальная партия деталей минимизирует себестоимость производства. Она обеспечивает наименьшие затраты как на переналадки оборудования, так и на хранение предметов труда.

Нормативной партией деталей является величина, которая принимается в качестве нормативного значения с учетом ограничений по кратности производственной программы, ограничений по стой-кости инструмента и некоторых других факторов. Нормативная величина партии деталей используется для целей планирования и она в большей степени отличается от оптимальной.

Формирование целевой функции

Себестоимость деталей при изготовлении их партий не остается постоянной величиной и изменяется в зависимости от размера партии. Как известно, себестоимость единицы продукции складывается из затрат на материалы, заработную плату производственных рабочих, затрат на обслуживание и эксплуатацию оборудования, общепроизводственных и общехозяйственных расходов.

Все производственные затраты по их зависимости от величины партии разделяются на три группы. К первой группе относятся за-

траты на материалы, ко второй – затраты на заработную плату и обслуживание оборудования, к третьей – общепроизводственные и общехозяйственные расходы.

Поскольку первая группа затрат не зависит от величины партии, исключаем их из рассмотрения.

Затраты на заработную плату производственных рабочих находят отражение в штучно-калькуляционном времени $t_{\text{штк}}$

$$t_{\text{IIITK}} = t_{\text{IIIT}} + t_{\text{II3}}/n,$$

где $t_{\text{шт}}$ — штучное время;

 $t_{\text{пз}}$ – подготовительно-заключительное время;

n — величина партии деталей.

Принимая величину $t_{\text{шт}}$ независимой от n, для упрощения модели исключаем ее из рассмотрения. Остается только величина $t_{\text{пз}}$, которую необходимо выразить в виде затрат. Таким образом, вторая группа затрат представляет собой затраты на наладку оборудования для запуска партии деталей данного наименования, причем эту часть производственных затрат в себестоимости деталей несколько расширяют и называют затратами на подготовку производства партии деталей, включая, кроме затрат на переналадку оборудования, стоимость пробных деталей, оформление документации и т. п. Но учитывая, что эти дополнительные затраты незначительны, ими можно пренебречь. Таким образом, затраты этой группы в модели будут представлены только затратами на наладку оборудования.

В общем виде затраты на наладку $3_{\scriptscriptstyle H}$ можно выразить заработной платой наладчиков с начислениями:

$$3_{\rm H} = t_{\rm H3} \mathbf{H}_{\rm cp} \mathbf{K}_{\rm H} \boldsymbol{\alpha}$$

где $t_{\text{пз}}$ – подготовительно-заключительное время;

 ${
m U_{cp}}$ – средняя часовая тарифная ставка наладчиков данного цеха (участка);

К_н – количество наладчиков;

 α — коэффициент, учитывающий дополнительную заработную плату наладчиков.

Это будут затраты на запуск одной партии деталей. Затраты на годовую программу будут в N/n раз больше

$$3_{H\Gamma} = (N/n) t_{\Pi.3} Y_{cp} K_H \alpha = V t_{\Pi 3} Y_{cp} K_H \alpha,$$

где N – годовая программа для каждой детали, шт.;

V – число запусков деталей в год.

Третью группу затрат будут определять расходы, связанные с хранением партии деталей. Чем больше партия деталей, тем больше объем незавершенного производства и больше «замораживается» материалов и живого труда на более длительный срок. Требуется больше складских помещений, следовательно, возрастают затраты на амортизацию площадей склада, отнесенные к единице продукции.

В зависимости от периода времени нахождения деталей в производственном процессе эту группу расходов удобнее рассмотреть в два этапа. Первый этап — нахождение партии деталей в производстве, второй — хранение партии деталей на складе в течение периода ее расходования.

На первом этапе происходит возрастание величины незавершенного производства по мере затрат живого и общественного труда за время длительности производственного цикла $T_{\rm ц}$. Незавершенное производство возрастает с величины стоимости материалов М до величины себестоимости С детали, т. е. увеличивается на величину Π , которая включает затраты на заработную плату производственных рабочих, амортизацию оборудования и другие статьи себестоимости.

Средняя величина незавершенного производства НЗП за $T_{\rm ц}$ для летали

$$H3\Pi = (\Pi/2 + M) T_{II} = (M + C) T_{II}/2.$$

На втором этапе, в процессе равномерного потребления партии деталей со склада за время R (периодичность запуска-выпуска), — незавершенное производство сокращается до нуля.

Средняя величина незавершенного производства для детали за $T_{\rm u}$ на втором этапе

$$H3\Pi = C \cdot R/2$$
.

Затраты на хранение деталей в отчетной документации предприятия непосредственно не отражают, но их можно установить путем

специальных расчетов. Народнохозяйственные потери от пролеживания, «замораживания» материалов или готовых деталей могут быть измерены прибылью, которую эти материалы могли бы принести за год на каждую условную единицу их стоимости. Эти потери можно с известным допущением определить на основе нормативного коэффициента эффективности капитальных вложений $E_{\rm H}$.

Тогда потери от пролеживания деталей $\Pi_{\text{от}}$ определяются как

$$\Pi_{\text{ot}} = ((M + C) T_{\text{II}}/2 + CR/2)N E_{\text{H}}/365.$$

Затраты, связанные с использованием производственной площади на первом этапе и площади склада на втором этапе, можно определить по формуле

$$3 = Npl_1T_{II}/365 + N\varepsilon_1RL/2 H \cdot 365$$
,

где p – удельная площадь для хранения, \mathbf{M}^2 ; l_1 – затраты в год по эксплуатации 1 \mathbf{M}^2 производственной площади;

 ε_1 – вес готовой детали, кг;

L – затраты в год по эксплуатации 1 м 2 склада, у. е.;

H – норма нагрузки на 1 м² склада, кг/м².

Можно записать целевую функцию в развернутом виде, выражающую затраты S на годовую программу N:

$$S = V t_{\text{II}} H_{\text{cp}} K_{\text{H}} \alpha + ((M + C) T_{\text{II}} / 2 + CR / 2) N E_{\text{H}} / 365 +$$

$$+ N(p l_1 T_{\text{II}} + \epsilon_1 RL / 2H) / 365^* \rightarrow \text{min.}$$

Формирование ограничений

Используемые в вышеприведенной формуле величины длительности производственного цикла $T_{\rm u}$ и периодичность запуска-выпуска R зависят от размера партии n. Данная модель имеет целочислен-

 $^{^{*}}$ Следует отметить, что в формуле величина S не является полной себестоимостью годовой программы. Она отражает только те статьи себестоимости, которые существенно зависят от величины партии.

ное решение. Присваивая переменным векторам $T_{\rm u}$ и R ряд числовых значений в области существования модели, методом полного перебора можно найти минимальное значение S, которому будет соответствовать оптимальное значение n.

Однако величина партии деталей, запускаемой в производство, должна быть равна или кратна производственной программе, а также кратна программе на месяц.

Задаем нормативный набор числа запусков партии в год $V_{\rm H1}, V_{\rm H2}, \dots, V_{\rm Hi}.$

Каждому значению $V_{\rm H\it{j}}$ соответствует нормативная величина партии деталей $n_{\rm H\it{i}}$, определяемая по формуле

$$n_{{\rm H}j}=N/(V_{{\rm H}j}).$$

Нормативная величина партии деталей не должна превышать значения стойкости инструмента, с помощью которого производится обработка данных деталей

$$n_{\rm H}i \leq N_{\rm cr}$$

где $N_{\rm cr}$ – стойкость инструмента в штуках.

В качестве нормативного набора числа запусков партии в год принимается числовой ряд: 1, 2, 4, 12, 24, 48.

Для каждого значения $n_{{
m H}j}$ определяются соответствующие им значения $T_{{
m H}j}$ и R_j по формулам

$$T_{\text{II}j} = (n_{\text{H}j} t_{\text{IIIT}} + t_{\text{II3}}) / T_{\text{CM}} k_{\text{CM}} k_{\text{BH}},$$

где $T_{\rm cm}$ – продолжительность смены (8 ч);

 $k_{\rm cm}$ – количество смен (2);

 $k_{\text{вн}}$ – коэффициент выполнения норм (1,2–1,5);

$$R_j = n_{\rm H}j/N_{
m cyr}$$

где $N_{\text{сут}}$ – среднесуточная потребность, шт./сут.;

$$N_{\rm cyr} = N/T_{\rm rog}$$
,

где $T_{\text{год}}$ – количество рабочих дней в году (например 254 дня).

Лабораторное задание

Каждый студент в качестве исходных данных принимает первые четыре строки таблицы 2.1, начиная со своего номера по списку группы, и строку из таблицы 2.2, соответствующую номеру группы своей специальности.

Таблица 2.1 – Исходные данные

No	$t_{\scriptscriptstyle \Pi 3},$	t_{IIIT} ,	N,	M,	C,	ϵ_1 ,	<i>P</i> ,	$N_{\rm cr}$,
вар.	ч/парт.	ч/шт.	шт./год	тыс. у. е./шт.	тыс. у. е./шт.	КΓ	\mathbf{M}^2	шт.
1	1,5	0,070	10 500	0,150	0,321	0,425	0,0008	5000
2	3,0	0,120	9500	0,080	0,223	0,850	0,0013	4000
3	2,0	0,120	8000	0,130	0,305	0,900	0,0015	2000
4	1,5	0,030	5000	0,200	0,500	1,015	0,0014	1500
5	4,0	0,140	4000	0,080	0,224	0,720	0,0010	3500
6	2,5	0,080	3800	0,050	0,153	0,560	0,0009	900
7	3,0	0,003	7300	0,013	0,062	0,450	0,0007	2000
8	1,5	0,050	1500	0,015	0,091	0,650	0,0009	1000
9	2,5	0,102	2000	0,030	0,109	0,700	0,0010	800
10	4,5	0,042	4000	0,103	0,208	0,925	0,0013	3500
11	3,4	0,023	8000	0,112	0,287	0,240	0,0018	3000
12	2,2	0,012	8900	0,080	0,256	1,120	0,0015	2500
13	2,0	0,031	9600	0,015	0,335	2,350	0,0019	3000
14	2,3	0,025	15 000	0,013	0,064	0,312	0,0005	5000
15	4,0	0,013	3800	0,090	0,213	0,915	0,0130	1000
16	3,0	0,042	2900	0,040	0,122	0,850	0,0009	2000
17	2,2	0,123	8000	0,055	0,181	0,970	0,0008	3000
18	1,5	0,030	4900	0,150	0,200	1,150	0,0010	1000
19	1,8	0,081	6500	0,120	0,403	2,015	0,0018	2000
20	2,5	0,200	7000	0,122	0,452	1,950	0,0013	3000
21	4,5	0,110	14 000	0,210	0,524	3,016	0,0016	1500
22	3,0	0,092	20 500	0,180	0,355	2,250	0,0015	5000
23	2,5	0,065	25 000	0,130	0,316	1,970	0,0013	5000
24	1,5	0,024	3600	0,098	0,197	1,015	0,0009	800
25	1,8	0,052	9000	0,095	0,198	1,020	0,0010	4000
26	3,0	0,023	10 500	0,080	0,209	2,060	0,0013	5000
27	4,5	0,110	13 000	0,140	0,323	2,020	0,0012	1500
28	2,5	0,120	12 500	0,105	0,354	2,125	0,0014	3000
29	2,0	0,080	8000	0,099	0,182	1,014	0,0009	3000
30	1,5	0,030	5000	0,065	0,141	0,930	0,0008	1000

Таблица 2.2 – Продолжение исходных данных

№ группы по специ- альности	Ч _{ср} , тыс. у. е./ч	α	К _н чел.	<i>L</i> , тыс. у. е./год	l_1 , тыс. у. е./год	Н, кг/м ²	$E_{\scriptscriptstyle \mathrm{H}}$
1	0,60	1,3	2	9,5	13,4	2500	0,11
2	0,638	1,3	1	10,0	10,5	3000	0,15
3	0,600	1,4	3	8,7	15,6	1500	0,15
4	0,630	1,3	4	12,0	20,4	1000	0,14
5	0,670	1,3	1	10,0	15,0	2500	0.15
6	0,576	1,3	1	9,5	10,0	1500	0,15
7	0,600	1,3	3	8,5	22,4	3000	0,15
8	0,640	1,3	2	10,0	13,0	2500	0,12
9	0,600	1,3	4	11,4	18,5	1500	0,15
10	0,550	1,4	1	10,2	12,0	3000	0,15

Порядок выполнения работы

При подготовке к выполнению лабораторной работы студент знакомится с методом нахождения оптимальных размеров партии леталей.

В период выполнения лабораторной работы в соответствии с изложенной методикой он подготавливает необходимую информацию в соответствии с заданным вариантом исходных значений. После проверки преподавателем студент рассчитывает значения S по целевой функции. Результаты расчета представляются по форме таблицы 2.3.

Таблица 2.3 – Пример оформления результатов расчета

Количе	ество запуско	ов в год	1	2	4	12	24	48
деталь	программа	партия	14 400	7200	3600	1200	600	300
31	14 400	затраты	246,3	127,4	72,2	54,1	77,7	140,0
деталь	программа	партия	7500	3750	1875	625	312	156
32	7500	затраты	151,7	82,0	53,2	61,1	103,6	197,9
деталь	программа	партия	6000	3000	1500	5000	250	125
33	6000	затраты	68,3	44,1	41,7	83,9	159,9	315,9
деталь	программа	партия	12 800	6400	3200	1066	533	266
34	12 800	затраты	142,2	78,2	53,2	67,7	118,1	227,6

Проанализировав полученные расчетные значения $n_{\rm H\it{j}}$ и $S_{\it{j}}$, студент устанавливает размер партии запуска. Выбирается такое значение $n_{\rm H\it{j}}$, которому соответствует минимальное значение $S_{\it{j}}$ с учетом ограничения по стойкости инструмента.

Для каждой детали графически представляется функция $F(n_{\rm hj}S_j)$ и производится анализ полученных графиков с определением оптимального размера партии детали и границ области, в которой он находится.

Содержание отчета

- 1. Цель лабораторной работы.
- 2. Исходные данные по варианту.
- 3. Целевая функция в развернутом виде, выражающая затраты на годовую программу с расшифровкой составляющих обозначений.
 - 4. Расчеты предварительных данных и целевой функции.
 - 5. Определение оптимального размера партии деталей.
 - 6. Графическая зависимость затрат от размера партии деталей.
- 7. Выводы с определением планируемого размера партии и границ области, в которой он находится.

Лабораторная работа № 3

РАСПРЕДЕЛЕНИЯ НОМЕНКЛАТУРЫ ДЕТАЛЕЙ ПО ГРУППАМ ОБОРУДОВАНИЯ

Цель работы: закрепление теоретических знаний по организации машиностроительного производства; приобретение практических навыков по выполнению объемных расчетов на стадии разработки производственных заданий цехам и участкам.

Краткие теоретические сведения

Управление производственным процессом на современном предприятии требует решения большого числа задач, среди которых объемные расчеты занимают одно из важных мест. Сущность их заключается в определении соответствия планируемого объема работ, вытекающих из плана завода, пропускной способности оборудования, которым располагают цехи и участки, и в сопоставлении этих величин.

В результате такого сопоставления выявляются как резервы производственных мощностей, так и «узкие» места в производстве.

Объемно-календарные расчеты являются важной предпосылкой для решения задач по оптимальному распределению номенклатуры программы цеха по группам производственного оборудования.

Задача выбора оптимального варианта распределения номенклатуры производственной программы цеха по отдельным группам оборудования является типичной задачей линейного программирования. Поэтому ее решение основывается на использовании общеизвестных моделей оптимального планирования.

При наличии в цехе взаимозаменяемого оборудования различной производительности необходимо так распределить между отдельными группами оборудования обработку деталей и узлов, чтобы затраты времени на обработку были минимальными и при этом обеспечивалась бы максимальная загрузка каждого станка.

Прежде чем приступить к выполнению объемных расчетов, все оборудование цеха должно быть сгруппировано как по признаку однородности выполняемых технологических операций, так и по сходству основных параметров (мощности, точности и т. д.)

Потери рабочего времени должны учитываться только те, которые носят неизбежный характер и только в минимальных размерах. Также правильно следует выбрать время и единицу измерения загрузки оборудования для станков — станко-час, для площадей — квадратный метр на час ($\text{м}^2 \cdot \text{час}$).

Необходимость группировки оборудования возникает обычно только в условиях серийного и единичного типов производства.

Исходными данными для объемных расчетов и распределения номенклатуры изделий по группам оборудования обычно являются:

- фонд времени работы оборудования и рабочих в планируемом периоде;
 - производственная программа на соответствующий период;
 - наличный парк оборудования, площадей и численность рабочих;
- действующий техпроцесс, содержащий данные о последовательности выполнения операций, технологические нормы времени на выполнение операций, степень их выполнения.

Содержание лабораторной работы

В общем виде задача выбора оптимального варианта распределения изделий по группам оборудования формируется следующим образом.

Необходимо распределить номенклатуру изделий по группам оборудования так, чтобы обработка производилась с минимальными затратами времени L(x) и при этом обеспечивалась максимальная загрузка станков каждой группы.

Экономико-математическая модель задачи данного типа имеет следующий вид:

$$L(x) = \sum \sum a_{ii} x_{ii} \rightarrow \min.$$

При ограничениях:

- 1) $\Sigma \Sigma a_{ij} x_{ij} \leq A_j \ (j = 1, 2, ..., m);$
- 2) $\Sigma \Sigma x_{ij} = B_i \ (i = 1, 2, ..., n);$
- 3) $x_{ij} \ge 0$.

Значения величин, входящих в целевую функцию L(x):

n — количество деталей, обрабатываемых на j-й группе оборудования;

m – количество групп оборудования;

 a_{ij} – нормы времени обработки изделий i-го вида на j-м оборудовании;

 A_{i} — фонд времени работы *j*-го вида оборудования;

 B_{i} – программа выпуска изделий i-го вида;

 x_{ij} – количество i-й детали, обрабатываемой на j-м оборудовании.

Исходная информация для построения приведенной экономикоматематической модели в общем виде представлена в таблице 3.1.

Таблица 3.1 – Исходные данные для построения экономикоматематической модели

Группа	Объем	Фонд							
оборудования	производства	времени	Количество изделий i						
m	B_i	A_{j}							
			1	2	3		n		
			Тру	удоемк	ости об	работки	a_{ij}		
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
1	B_1	A_1	a_{11}	a_{12}	a_{13}		a_{1j}		
2	B_2	A_1	a_{21}	a_{22}	a_{23}		a_{2i}		
3	B_3	A_3	a_{31}	a_{32}	a_{33}		a_{3j}		
•••	•••								
m	B_i	A_J	a_{i1}	a_{i2}	a_{i3}		a_{ij}		

Задачи подобного рода могут решаться не только универсальными, но и некоторыми специальными методами. Одним из таких методов является метод наименьших разностей. Он позволяет достичь более равномерной и более полной загрузки отдельных групп оборудования. Сущность этого метода заключается в следующем. Вся номенклатура деталей, подлежащая обработке на данном оборудовании, разбивается на обязательную и выборочную. Детали обязательной номенклатуры подлежат обработке в данном плановом периоде (данном месяце). Из выборочной номенклатуры детали могут выбираться для данного месяца или могут быть отнесены на следующий плановый период. В следующем плановом периоде (месяце) детали выборочной номенклатуры становятся обязательными для включения в обработку. Методику выбора оптимального варианта распределения деталей по группам оборудования рассмотрим на следующем примере. Исходные данные для решения представлены в виде таблицы 3.2.

Таблица 3.2 – Исходные данные для решения математической модели

Группы оборудования	Фонд вре- мени работы	Трудоемкость обработки деталей a_{ij}							
m	$A_{i)}$	1	2	3		n			
1	A_1	a_{11}	a_{12}	a_{13}		a_{n1}			
2	A_2	a_{21}	a_{22}	a_{23}		a_{n2}			
3	A_3	a_{31}	a_{32}	a_{33}		a_{n3}			
•••	•••	•••	•••	•••	•••				
m	$A_{ m J}$	a_{ij}	a_{2j}	a_{3j}	•••	a_{nj}			

Количество обрабатываемых партий деталей n ($i=1,2,3,\ldots,n$). Количество групп оборудования m ($j=1,2,3,\ldots,m$).

Рассмотрим конкретные данные по 3-м группам оборудования, которые приводятся в таблице 3.3.

Таблица 3.3 – Исходные данные (пример)

Группа	Месячный	T	рудоем	кость (обрабо	тки пај	ртий до	еталей,	Ч
станков	фонд времени, ч	K_1	К2	К3	K_4	К ₅	К ₆	К ₇	K_8
A	60	20	15	10	5	10	5	12	5
Б	70	5	10	15	10	8	9	8	20
В	62	10	5	8	5	3	6	4	10
Итого	192	35	30	33	20	21	20	24	35

Партии деталей K_1 и K_2 считаются обязательной номенклатурой для обработки в данном месяце. Остальная номенклатура является выборочной, из которой могут выбираться детали для данного месяца.

Если включать в обработку в данном месяце детали первых пяти партий, то в этом случае загрузка оборудования группы A составит

$$\left(\frac{20+15+10+5+10}{60}\cdot 100\right) = \ 100\ \%,\ группы\ Б\left(\frac{5+10+15+10+8}{70}\cdot 100\right) =$$

68,6 % и для группы В
$$\left(\frac{10+5+8+5+3}{62}\cdot 100\right)$$
= 50 %. Средняя за-

грузка всего оборудования
$$\left(\frac{35+30+33+20+21}{192}\cdot 100\right) = 72,4\%$$
.

Однако это не оптимальный вариант. Для отыскания такого варианта необходимо произвести расчеты, которые можно вести с помошью таблица 3.4.

Таблица 3.4 – Распределение деталей по группам оборудования (пример)

Этапы	Фонд			Tp	удоем	кость	, ч			Остаток
реше-	вре-						-			фонда
ния	мени, ч	K_1	K_2	K_3	K_4	K_5	K_6	K_7	K_8	времени, ч
	60	20	15	10	5	10	5	12	5	25
1	70	5	10	15	10	8	9	8	20	55
	62	10	5	8	5	3	6	4	10	47
	25	-	-	$10^{2,5}$	5 ⁵	$10^{2,5}$	5 ⁵	$12^{2,1}$	5 ⁵	20
2	55	_	_	$15^{3,1}$	$10^{5,5}$	$8^{6,8}$	$9^{5,1}$	$8^{6.8}$	$20^{2,7}$	35
	47	_	_	$8^{5,9}$	5 ⁹	3 ^{15,0}	6 ^{7,8}	4 ^{10,1}	$10^{4,7}$	37
Разі	ность	_	_	3,4	4,0	13,5	2,8	8,0	2,3	_
	20	_	_	10^{2}	5 ⁴	10^{2}	5 ⁴	$12_{1,7}$	_	15
3	35	_	_	$15^{2,3}$	$10^{3,5}$	84,1	9 ⁴	84,1	_	26
	37	_	_	$8^{4,8}$	5 ^{7,1}	$3^{10,2}$	$6^{6,1}$	$4^{9,1}$	_	31
Разі	ность	_	_	2,8	3,6	8,2	2,1	7,4	_	_
	15	_	_	$10^{1,5}$	5^3	$10^{1,5}$	_	$12^{1,2}$	_	5
4	26	_	_	15 ^{1,7}	$10^{2,6}$	$8^{3,2}$	_	$8^{3,2}$	_	11
	31	_	_	$8^{3,9}$	$5^{6,1}$	3 ^{10,1}	_	4 ^{7,7}	_	23
Разі	ность	_	_	2,4	3,5	8,6	_	6,5	_	_
	5	_	_	_	$5^{1,0}$	$10^{0,5}$	_	$12^{0,4}$	_	_
5	11	_	_	_	$10^{1,1}$	8 ^{1,3}	_	$8^{1,3}$	_	1
	23	_	-	_	5 ^{4,6}	$3^{7,6}$	_	4 ^{5,6}	_	18
Разі	ность	_	_	_	3,6	_	_	_	_	_

Порядок вычислений и выбор изделий номенклатуры производится в следующей последовательности.

На первом этапе вычислений в программу обработки включаются изделия обязательной номенклатуры (в нашем примере это изделие партии K_1 и K_2). Фонд времени, необходимый для их обработки, исключается из фонда времени каждой группы оборудования. Остаток фонда указывается в последней графе расчетной таблицы по каждой группе оборудования.

На втором этапе вычислений сначала в левую часть расчетной таблицы в столбец фонда времени переносится оставшийся фонд по

каждой группе оборудования. Затем определяют частные от деления фонда времени каждой группы оборудования на соответствующую трудоемкость обработки каждой партии деталей, не включенной в программу обработки. Результат записывают в правом верхнем углу каждой клетки, соответствующей данной группе оборудования и данному изделию. Например, для деталей партии K_3 частные будут 2,5; 3,1; 5,9. После нахождения частных по всем группам оборудования определяют их разность по каждой партии изделий. Для этого из большего частного вычитается меньшее и результат заносится в итоговую строку против соответствующего изделия (партии). Наконец, путем сопоставления полученных разностей определяют наименьшую из них. В нашем примере такой является разность 2, 3, соответствующей партии K_8 . Отсюда следует, что партия деталей K_8 исключается из выборочной номенклатуры и заносится в программу для обработки в данном месяце.

Третий этап вычисления аналогичен второму с той лишь разницей, что фонд времени работы оборудования теперь уменьшается на время, необходимое для обработки партии изделий K_8 .

В результате вычислений, проведенных на этом этапе, определяется следующий комплект деталей, который имеет наименьшую разность (в нашем примере это K_6).

Четвертый и пятый этапы вычислений аналогичны второму и третьему. Вычисления на этих этапах позволяют определить остальные комплекты деталей для включения их в обработку в данном месяце. В нашем примере это партии K_3 и K_4 , которые имеют наименьшие значения разностей на своих этапах.

По результатам произведенных расчетов определяется оптимальный вариант, который представлен в таблице 3.5.

Группа оборудования	Располаг. месяч. фонд, ч	_	еплен боруд		Загрузка				
	фонд, ч	K_1	K_2	K_8	K_6	K_3	K_4	Ч	%
A	60	20	15	5	5	10	5	60'	100
Б	70	5	10	30	9	15	10	69	100
В	62	10	5	10	6	8	'5	44	71
Итого	192	35	30	35	20	33	20	173	90

Таблица 3.5 – Оптимальный вариант программы цеха (пример)

Это оптимальный вариант программы цеха (участка), обеспечивающий максимальную загрузку оборудования (90 % по сравнению с исходным вариантом 72,4 %).

Примечания.

- 1. В процессе вычислений у двух комплектов (партий) может оказаться одинаковой наименьшая разность значений частных. Предпочтение в этом случае отдается тому комплекту, который имеет наибольшую суммарную трудоемкость обработки на всех группах оборудования.
- 2. В столбцах, имеющих значение частных меньше единицы, разность не определяется, так как они не оказывают влияние на выбор номенклатуры изделий, подлежащей включению в обработку.
- 3. На первом этапе вычислений обязательная номенклатура может содержать более двух комплектов изделий. Количество групп оборудования и количество комплектов также может быть больше, чем в рассмотренном примере.

Исходные данные

Исходные данные по вариантам представлены в таблице 3.6.

Таблица 3.6 – Исходные данные по вариантам, ч

Ba-	Группы оборудования					Трудоемкость обработки комплектов							
ри-	Располагаемый фонд времени					Компл.	A	Б	В	Г	Д	Итого	
ант	Α	Б	В	Γ	Д	Итого	деталей	A	Ъ	Ь	1	Д	
1	50	60	40	70	40	230	K_1	20	5	10	15	5	55
2	60	60	30	70	50	230	K_2	15	5	5	20	10	55
3	70	50	40	60	40	260	K_3	10	10	15	5	5	45
4	80	40	50	70	40	280	K_4	20	5	10	15	5	55
5	40	90	60	50	50	260	K_5	5	30	5	10	5	55
6	60	60	40	60	70	270	K_6	10	15	5	15	10	55
7	60	60	70	70	50	270	K ₇	5	10	15	15	5	50
8	70	50	60	80	40	300	K_8	10	5	10	20	5	50
9	50	60	70	90	40	310	К9	15	20	25	25	10	95
10	60	70	80	50	40	270	K_{10}	5	10	15	10	10	50
11	40	60	60	70	80	280	K_{11}	10	15	5	15	15	60
12	70	60	50	60	80	290	K_{12}	15	5	20	15	20	75
13	60	50	40	70	60	280	K_{13}	20	10	5	15	10	60
14	50	60	60	80	40	260	K_{14}	15	20	5	20	10	70
15	60	70	50	60	50	260	K_{15}	5	15	10	15	10	55
16	60	60	70	70	70	290	K ₁₆	5	15	15	15	15	65

Содержание отчета

- 1. Исходные данные для выполнения работы, выданные преподавателем.
 - 2. Условия задачи и метод ее решения.
- 3. Схема расчетной таблицы, составленной по форме, приведенной в методических указаниях.
- 4. Исходный (неоптимальный) вариант производственной программы.
- 5. Ход вычислений по каждому этапу с использованием расчетной таблицы.
 - 6. Таблица оптимального варианта производственной программы.
 - 7. Краткие выводы и обоснование выбора оптимального варианта.

Лабораторная работа № 4

СЕТЕВОЕ ПЛАНИРОВАНИЕ

Цель работы: ознакомление с основными понятиями сетевого планирования технической подготовки производства (ТПП); получение навыков в построении сетевых графиков, определении их основных параметров и оптимизации сетей по трудоемкости.

При выполнении работы студент согласно своему индивидуальному заданию должен уметь: построить сетевой график; рассчитать основные параметры графика; рассчитать трудоемкость работ по двум вариантам выполнения ТПП; провести оптимизацию сети для обеспечения минимальной трудоемкости.

Краткие теоретические сведения

Сущность сетевого планирования

При создании сложных объектов новой техники для обеспечения выполнения работ в заданные сроки с минимальными затратами возникает необходимость в координации различных научно-исследовательских, опытно-конструкторских, технологических, производственных, строительных, монтажных, наладочных и других видов работ. Единый для всех организаций или подразделений, участвующих в разработке объекта, план должен не только устанавливать общую длительность всего процесса, но и продолжительность, и последовательность всех входящих в него работ.

Составить такие планы позволяют методы сетевого планирования и управления (СПУ), которые оптимизируют процесс как по времени (обеспечивают минимальную длительность цикла), так и по стоимости (обеспечивают минимум затрат).

СПУ основаны на графическом изображении определенного комплекса работ, отражающем их логическую последовательность, взаимосвязь и длительность, с последующей оптимизацией разработанного графика.

К числу основных областей применения сетевого планирования и управления относятся комплексные научные исследования, проектирование и подготовка производства сложных объектов.

Основные понятия и определения, порядок построения сети

Модель всего процесса создания данного объекта изображается в виде ориентированного графа, называемого *сетевым графиком* или просто *сетью*.

График состоит из работ и событий. Работой является тот или иной процесс, а событием – результат завершения работы.

При выполнении взаимосвязанных работ каждая последующая работа может быть начата только после получения результатов предшествующих, т. е. после свершения определенного события. На сетевом графике работы обозначаются стрелками, а события – кружками. Свершение какого-либо события иногда дает возможность начать несколько работ. Исходное событие располагают слева, а завершающее — справа.

При построении сетевых графиков не должно быть «зацикливания» процесса. В сетевых графиках необходимо соблюдать последовательность нумерации событий. Нумерацию событий можно получить, используя метод вычеркивания дуг (стрелок).

Над стрелкой, обозначающей работу, записывают цифру, обозначающую длительность этой работы в календарных днях. В верхней части кружка (события) записывают номер события, в правой – поздний срок совершения события, в левой – ранний.

Расчет параметров сети

К основным параметрам сетевого графика, необходимым для проведения расчетов в данной лабораторной работе, относятся поздние и ранние сроки свершения каждого события, критический путь, его длительность, суммарная трудоемкость всех запланированных работ. Рассмотрим расчет всех названных показателей на примере.

Техническая подготовка производства происходит по данным графика, представленным в таблице 4.1. Необходимо построить сетевой график и определить его параметры.

Таблица 4.1 – Исходные данные

Код работы	Время, дн.	Затраты, тыс. руб.
1–2	4	120
1–3	7	370
2–4	5	225
2–5	2	100
3–5	9	350
4–6	10	670
5–6	5	235

Цифры (1, 2, 3, 4, 5, 6), указанные в графе «Код работы», обозначают события, а запись (1–2), означает, что события 1 и 2 соединены работой. Построение сетевого графика начинаем с завершающего 6-го события и идем обратно ходу выполнения работ (рисунок 4.1).

Рисунок 4.1 – Сетевой график ТПП

Цепочку работ от исходного до завершающего события называют путем. Выделяют критический путь и ненапряженные пути. Критический путь требует максимального времени для выполнения своих работ. Ненапряженные пути имеют резервы времени, и некоторая задержка в выполнении работ на этих путях не влияет на сроки свершения завершающего события.

Для того чтобы найти критический путь необходимо рассчитать поздние и ранние сроки свершения каждого события. Расчеты ранних сроков свершения делают последовательно, начиная от исходного события, для которого ранний срок свершения события принимается равным нулю. Для нахождения раннего срока свершения события, имеющего несколько предшествующих работ, ко всем ранним срокам свершения начальных событий предшествующих работ прибавляют продолжительность соответствующих работ и из полученных значений выбирают наибольшее. Расчет поздних сроков свершения событий выполняют последовательно, начиная с завершающего события, для которого поздний срок свершения принимают равным раннему сроку его свершения. Для нахождения позднего срока свершения события, имеющего несколько последующих работ, из поздних сроков свершения конечных событий последующих работ вычитают продолжительности соответствующих работ, а затем из полученных разностей выбирают наименьшую. Резервы времени событий, принадлежащих критическому пути, равны нулю, так как у них ранние и поздние сроки свершения событий совпадают. Критический путь выделяют жирными стрелками.

Порядок выполнения работы

- 1. Получение исходных данных и ознакомление с ходом выполнения работы.
 - 2. Для нормального варианта выполнения работ необходимо:
- построить сетевой график, обозначить на нем время выполнения работ, пронумеровать события, рассчитать ранние и поздние сроки их свершения;
- определить критический путь, длину критического пути, суммарную стоимость выполнения работ.
 - 3. Для ускоренного варианта выполнения работ необходимо:
- построить сетевой график, обозначить на нем время выполнения работ, пронумеровать события, рассчитать ранние и поздние сроки их свершения;
 - определить затраты на один день ускорения работ;
- определить критический путь, длину критического пути, суммарную стоимость выполнения работ;

- 4. Провести оптимизацию ускоренного сетевого графика по стоимости выполнения работ для заданной плановой длины критического пути ($L_{\text{кр.пл.}}$):
- уменьшить продолжительность до плановой величины и увеличить затраты по работам, принадлежащим критическому пути с целью обеспечения планового срока выполнения работ;
- увеличить продолжительность и уменьшить затраты по работам, принадлежащим ненапряженным путям, методом последовательного сравнения прилегающих ненапряженных путей с прилегающими (параллельными) отрезками критического пути;
- построить оптимальный вариант сетевого графика с отражением продолжительности работ, событий и затрат, определить суммарную стоимость выполнения работ.
- 5. Проанализировать результаты разработки оптимального варианта сетевого графика с оценкой изменения продолжительности и стоимости выполнения комплекса работ (в абсолютной величине и в процентах) по сравнению с нормальным и ускоренным вариантами.

Пример расчета оптимального сетевого графика

Исходные данные по нормальному и ускоренному вариантам ТПП, плановой продолжительности выполнения разработки в целом и результаты расчетов приведены в таблице 4.2.

Таблица 4.2 – Исходные данные и ре-	зультаты
-------------------------------------	----------

I.	Ісходны	е данные і	Результаты расчетов				
	Норм	альный	Уској	ренный	Прирост за- Оптимальнь		иальный
Код	вар	иант	вар	иант	трат на один	вариант	
, ,	Время, дн.	Затраты, тыс. руб.	Время, дн.	Затраты, тыс. руб.	день ускорения работы, тыс. руб.	Время, дн.	Затраты, тыс. руб.
1	2	3	4	5	6	7	8
1–2	6	200	4	260	30	6	200
1–3	12	520	10	580	30	12	520
2-3	7	450	5	520	35	7	450
2–4	9	300	6	360	20	6	360
2-5	13	620	12	665	45	12	665

Окончание таблицы 4.2

1	2	3	4	5	6	7	8
3–6	9	900	7	940	20	8	920
3–7	12	1000	10	1080	40	12	1000
4–5	5	200	4	280	80	5	200
4–6	10	720	7	810	30	9	750
5–6	4	485	3	500	15	3	500
5–7	10	860	8	910	25	10	860
6–7	11	490	8	535	15	8	535
Итого		6745		7440	_	1	6960
Пл	ановая д	длина крит	гическої	го пути	$L_{\text{кр.пл.}} = 29 \text{дн}$		

Для выполнения расчетов построим сетевые графики. Сетевой график по нормальному варианту представлен на рисунке 4.2.

Рисунок 4.2 – Сетевой график выполнения работ по нормальному варианту

Определяем для сетевого графика по нормальному варианту критический путь и рассчитываем его длину. Для этого необходимо рассчитать ранние и поздние сроки свершения каждого события графика.

Ранние сроки свершения событий будут 0, 6, 13, 15, 20, 25, 36 дня соответственно для событий 1, 2, 3, 4, 5, 6, 7 (см. рисунок 4.2).

Поздние сроки начала события рассчитываются в обратном порядке и будут 36, 25, 21, 15, 16, 6, 0 дней соответственно для событий 7, 6, 5, 4, 3, 2, 1 (см. рисунок 4.2).

У событий под номерами 1, 2, 4, 6 и 7 ранние сроки равны поздним срокам свершения соответствующего события, значит, они лежат на критическом пути (на рисунке 4.2 путь выделен жирной линией). Длина критического пути равна 36 дн.

Рисунок 4.3 – Сетевой график выполнения работ по ускоренному варианту

Строим сетевой график для ускоренного варианта (рисунок 4.3). Проводим расчеты аналогичные предыдущим и находим критический путь и его длину. Длина критического пути по ускоренному варианту 27 дн.

Для того чтобы получить график с длиной критического пути 29 дн. (плановая продолжительность работ) необходимо провести оптимизацию ускоренного варианта выполнения работ. Оптимизацию проводим следующим образом:

а) находим по каждой работе затраты на 1 дн. ускорения работ: для этого разницу между стоимостью работы по ускоренному и нормальному вариантам делим на разницу во времени их проведе-

ния; результаты расчетов заносим в таблицу 4.2: например, для работы (1-2) затраты на 1 дн. ускорения работ составят (260-200) / (6-4)=30 тыс. руб. в день, для работы (1-3) затраты будут (580-520) / (12-10)=30 тыс. руб. в день и т. д.;

- б) увеличиваем время критического пути ускоренного варианта до плановой длительности 29 дн. за счет увеличения времени выполнения работы 1–2 на 2 дн. (до 6 дн.); время выполнения других работ критического пути не изменяем;
- в) увеличиваем продолжительности и уменьшаем затраты по работам, не принадлежащим критическому пути, методом последовательного их сравнения с отрезком параллельного критического пути:

например, работы (3-7), (1-3), (2-3), (5-7) и (4-6) увеличиваем на 2 дн. (по сравнению с ускоренным вариантом);

работы (2-5), (5-6), (6-7) оставляем как при ускоренном варианте; работу (3-6) увеличиваем на 1 дн.;

работу (2-4) оставляем как при ускоренном варианте.

Строим оптимальный сетевой график (рисунок 4.4), имеющий критический путь 29 дн. и наименьшую стоимость разработки в целом. В оптимальном варианте ненапряженными работами являются только работы (1-3), (3-7), (4-5) и (5-7).

Рисунок 4.4 – Сетевой график выполнения работ по оптимальному варианту

На основании выполненных расчетов можно сделать следующие выводы:

- затраты при оптимальном варианте на 215 тыс. руб. больше, чем при нормальном варианте, что в процентном соотношении составило 3,2 % ((6960 745) / 6745);
- затраты при оптимальном варианте на 480 тыс. руб. меньше, чем при ускоренном варианте, что в процентном соотношении составило 6,5 % ((6960 7440) / 7440);
- при оптимальном варианте длина критического пути на 2 дн. больше, чем для ускоренного варианта, что в процентном соотношении составило 7,4 % ((29 27) / 27);
- при оптимальном варианте длина критического пути на 7 дн. меньше, чем для нормального варианта, что в процентном соотношении составило 19.4% ((29-36) / 36).

Исходные данные по вариантам

Исходные данные приведены ниже. В каждой таблице студент в соответствии со своим вариантом должен выбрать: продолжительность работ по нормальному варианту (таблица 4.3); продолжительность работ по ускоренному варианту (таблица 4.4); затраты по нормальному и ускоренному вариантам (таблица 4.5, 4.6); плановую длину критического пути (см. таблицу 4.6).

Таблица 4.3 – Продолжительность работ по нормальному варианту, дн.

Код						Ŋ	№ вар	иант	a					
работы	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1–2	6	8	5	3	5	5	14	10	11	5	7	6	7	11
1–3	10	7	10	9	19	11	7	12	8	9	15	10	10	10
1–4	5	6	5	7	5	5	5	6	9	6	6	9	6	8
2–3	6	6	6	5	8	6	4	5	4	6	8	6	7	4
2–5	12	12	13	11	12	13	11	10	9	13	12	12	12	9
2–7	15	14	7	9	7	27	18	16	28	10	7	10	14	27
3–4	9	10	10	5	8	10	6	5	7	10	8	9	10	7
3–5	5	4	5	4	12	4	3	4	9	5	12	5	4	9
4–6	7	7	7	6	8	7	2	6	4	7	8	7	7	4
5–6	3	2	3	13	9	2	3	4	8	3	9	3	3	8
5–7	8	9	8	9	10	10	8	10	11	7	10	6	8	10
6–7	7	9	8	3	6	8	8	2	4	8	6	9	9	4

Таблица 4.4 – Продолжительность работ по ускоренному варианту, дн.

Код						Ŋ	№ вар	иант	a					
работы	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1–2	4	7	3	2	4	3	11	9	10	2	6	2	4	10
1–3	7	6	9	6	17	8	4	11	6	6	13	7	8	8
1–4	4	4	4	5	3	4	4	4	8	5	4	8	5	6
2–3	4	5	4	4	7	4	3	4	3	5	7	5	5	3
2–5	10	9	10	10	9	12	9	8	7	11	10	10	11	6
2–7	12	13	5	7	6	25	16	15	25	8	5	7	12	25
3–4	8	8	8	4	5	7	4	3	6	9	7	8	7	6
3–5	4	3	4	2	11	2	2	3	8	3	9	3	2	8
4–6	5	5	5	4	6	6	2	4	3	6	5	6	6	3
5–6	2	1	2	11	5	2	3	3	7	2	7	2	2	6
5–7	6	6	7	8	8	7	5	7	9	5	9	4	6	7
6–7	4	6	7	2	5	6	6	2	3	5	4	6	5	2

Таблица 4.5 – Стоимость работ по нормальному варианту, тыс. руб.

Код						J	№ вар	иант	a					
работы	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1–2	460	480	355	390	545	500	810	610	765	445	475	480	355	760
1–3	610	700	710	990	1119	810	700	675	585	590	815	710	680	650
1–4	400	460	675	770	560	565	550	465	690	600	460	450	625	450
2-3	650	660	690	465	890	615	340	535	400	600	585	660	590	240
2–5	815	910	780	510	920	935	710	610	690	780	120	810	780	610
2–7	1115	815	570	800	570	1990	995	765	1615	510	270	815	570	795
3–4	970	710	810	560	480	810	650	245	570	610	685	710	810	650
3–5	560	400	365	445	675	345	335	140	790	455	510	400	365	335
4–6	470	370	670	670	580	670	120	365	445	470	580	370	670	120
5–6	320	625	300	1030	690	200	300	400	585	130	695	625	300	310
5–7	680	790	585	970	1000	510	685	510	610	370	910	790	515	615
6–7	700	555	480	230	655	585	480	225	345	485	365	535	320	380

Таблица 4.6 – Стоимость работ по ускоренному варианту (тыс. руб.) и плановая длина критического пути

Код						J	№ вар	ианта	ì					
работы	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1–2	500	500	395	420	575	550	900	640	795	505	495	600	415	790
1–3	700	720	740	1070	1179	890	760	695	625	650	875	800	730	690
1–4	440	510	695	850	600	595	590	525	720	630	500	470	655	500
2–3	690	690	750	495	920	675	370	575	420	620	615	690	650	260
2-5	875	985	840	530	1010	955	770	690	750	830	160	860	810	700
2–7	1205	830	630	840	590	2040	1045	795	1690	560	320	900	610	845
3–4	990	770	870	590	540	900	690	285	590	640	710	740	900	680
3–5	590	420	395	505	695	385	365	160	820	515	570	440	405	355
4–6	500	420	710	710	630	690	120	405	470	500	555	390	695	140
5–6	340	650	330	1090	810	200	300	430	605	145	745	655	320	350
5–7	760	880	605	1010	1050	600	760	600	670	410	940	840	575	705
6–7	775	615	500	260	685	645	540	225	365	560	405	625	400	430
Плановая длина критического пути, дн.	30	36	32	25	38	31	30	26	35	31	37	30	36	33

Лабораторная работа № 5

ХРОНОМЕТРАЖ ТЕХНОЛОГИЧЕСКОЙ ОПЕРАЦИИ

Цель работы: закрепление знаний по изучению затрат рабочего времени методом хронометража; отработка методики расчета оперативного времени на технологическую операцию.

При выполнении лабораторной работы студент должен изучить: теоретические положения метода хронометража; самостоятельно проанализировать содержание технологической операции; разбить ее на составляющие элементы и наметить фиксажные точки. Результаты наблюдений, полученные с помощью программы на компьютере, необходимо обработать и определить оперативное время.

Краткие теоретические сведения

Xронометраж — это метод изучения затрат рабочего времени на выполнение циклически повторяющихся ручных и машинно-ручных элементов операции.

Цели хронометража.

- 1. Анализ операции и условий ее выполнения для выявления возможности сокращения затрат рабочего времени.
- 2. Повышение эффективности трудовых движений путем выполнения только необходимых элементов работы.
 - 3. Установление единых норм выработки.
- 4. Получение надежных данных для составления таблиц-нормативов вспомогательного времени.

Хронометраж должен вестись наблюдателями, хорошо знающими изучаемую работу, оборудование, инструмент, умеющими рационализировать наблюдаемую операцию и соответственно подготовить рабочее место.

Хронометраж выполняется в четыре этапа: подготовка к наблюдениям; проведение наблюдений; обработка и анализ результатов наблюдений; выводы и предложения.

Подготовка к наблюдениям включает в себя нижеприведенные операции:

1. Предварительное ознакомление с операцией, которая подлежит хронометрированию.

- 2. Обеспечение рабочего места необходимыми заготовками, инструментом, приспособлениями, тарой и рациональное их размещение на рабочем месте.
- 3. Расчленение операции на составляющие ее элементы (приемы). Выделяемые элементы операции должны быть типовыми для данного вида работ. Чтобы отделить один элемент от другого, для каждого элемента устанавливаются резко отличительные границы, отделяющие начало данного элемента от конца предыдущего элемента. Эти границы называются фиксажными точками.
- 4. Заполняются разделы хронометражной карты. До начала наблюдения записываются название детали, модель оборудования, вид приспособления и режущего инструмента. В самой таблице названия элементов операции и фиксажных точек, отделяющих эти элементы.

Наблюдения производятся с помощью секундомера. Фиксация продолжительности элементов операции ведется по текущему времени или по отдельным отсчетам времени для каждого элемента. При замерах продолжительности элементов по текущему времени фиксируется момент окончания первого элемента операции и всех последующих (без остановки секундомера). Продолжительность элементов исчисляется путем вычитания из текущего времени значения предыдущего замера.

Наблюдение длительности выполнения элементов операции производят многократно, причем это количество зависит от типа производства и длительности элементов. В лабораторной работе количество наблюдений элементов операции равно десяти. В результате хронометражных наблюдений по каждому элементу операции создаются замеры их продолжительности — хронометражный ряд.

Обработка и анализ результатов заключается в оценке допустимой степени колебания замеров хронометражного ряда. Это производится с помощью коэффициента устойчивости K_y , который равен отношению максимальной продолжительности T_{\max} в хронометражном ряде к минимальной T_{\min} :

$$K_{y} = \frac{\grave{O}_{\max}}{T_{\min}}.$$

Расчетные коэффициенты устойчивости сравнивают с допустимыми значениями (таблица 5.1). Если фактическое значение больше

допустимого, из ряда наблюдений выбрасывают одно или несколько наибольших значений и из оставшихся значений определяют коэффициент устойчивости.

Таблица 5.1 – Допустимые коэффициенты устойчивости хронометражного ряда

Тип	Продолжитель-	Допустимый устойч	* *
производства	ность элемента	для машинной	для ручной
	операции, с	работы	работы
Массовый	≤ 10	1,2	2,0
	≥ 10	1,1	1,3
Крупносерийный	≤ 10	1,2	2,3
	≥ 10	1,1	1,7
Серийный	≤ 10	1,2	2,5
	≥ 10	1,1	2,3
Мелкосерийный	≥ 10	1,2	3,0

По каждому ряду, имеющему коэффициент устойчивости не более допустимого, определяют продолжительность данного элемента операции как среднеарифметическую величину наблюдений ряда.

Выводы по хронометражу заключаются в определении продолжительности оперативного времени на технологическую операцию как суммы нормативных продолжительностей составляющих элементов.

Исходные данные

Хронометражу подлежит операция сверления детали на вертикально-сверлильном станке. Чертеж детали представлен на рисунке 5.1.

Содержание технологической операции следующее. Рабочий берет заготовку из контейнера и закрепляет ее в тисках, установленных на столе станка, включает станок, подводит вращающееся сверло к заготовке и производит сверление отверстия. После окончания сверления станок выключается, извлекается деталь из тисков и переносится в контейнер для готовых деталей.

Тип производства серийный.

Рисунок 5.1 – Чертеж детали

Порядок выполнения работы

- 1. Заготовить хронометражную карту (таблица 5.2), указать в ней название детали, название операции, модель станка, инструмент и оснастку.
- 2. Технологическую операцию разбить на пять составляющих элементов, назначить фиксажные точки и записать их в хронометражной карте.
- 3. В хронометражной карте привести результаты наблюдений длительности составляющих элементов операции в соответствии с вариантом исходных данных (таблица 5.3).
- 4. По каждому хронометражному ряду рассчитать коэффициент устойчивости, сравнить его с нормативным значением (см. таблицу 5.1) и определить нормативную продолжительность данного элемента операции.
- 5. Рассчитать оперативное время на технологическую операцию в целом (мин).
- 6. В выводах отметить наиболее нестабильные элементы операции по времени выполнения.

Содержание отчета

- 1. Цель лабораторной работы.
- 2. Привести описание технологического процесса.
- 3. Чертеж обрабатываемой детали.
- 4. Хронометражная карта с результатами наблюдений.
- 5. Расчет оперативного времени.
- 6. Краткие выводы по работе.

🔓 Таблица 5.2 – Хронометражная карта

Название детали	
Название операции	
Модель станка	
Инструмент	
Оснастка	_

Mo	11		၁			N	9 на	абл	ЮД	ен	ия			, c	Коэфф. уст	гойчивости	Нормативная
№ п/ п	Наименование элементов операции	Фиксажные точки	Время,	1	2	3	4	5	6	7	8	9	10	Сумма времени,	фактиче- ский	норма- тивный	продолжи- тельность, мин

Таблица 5.3 – Исходные данные по вариантам лабораторной работы

3.6	<u> </u>		Д	лител	ьнос	ть эле	емент	ов оп	ераці	1И	
$N_{\overline{0}}$	Элемент	Длительность элементов операции по номерам наблюдений, с									
варианта	операции	1	2	3	4	5	6	7	8	9	10
	1	21	20	20	23	20	22	22	25	22	24
	2	27	29	25	30	27	25	26	26	29	29
1	3	25	28	27	28	29	28	27	27	26	26
	4	12	10	15	10	10	14	11	15	11	11
	5	34	36	35	39	38	40	34	36	38	40
	1	20	22	25	21	25	25	21	23	25	21
	2	30	27	26	29	26	24	25	26	24	27
2	3	27	27	28	26	27	26	28	28	28	26
	4	15	12	13	10	11	12	14	12	15	15
	5	38	40	34	34	40	39	35	39	37	38
	1	23	20	22	25	23	23	21	22	20	25
	2	28	29	24	28	27	29	30	25	28	27
3	3	27	28	29	29	25	25	26	28	28	29
	4	13	15	12	11	15	13	14	10	14	13
	5	37	34	37	34	38	36	40	40	37	35
	1	22	21	21	22	25	20	22	24	22	22
	2	26	25	30	28	27	25	28	27	25	24
4	3	25	25	27	26	25	27	28	26	25	29
	4	12	11	11	15	12	13	15	14	12	15
	5	37	38	34	40	39	37	40	35	36	34
	1	24	25	20	24	24	25	23	23	21	24
	2	27	24	29	24	28	30	27	25	28	25
5	3	28	25	27	28	25	29	28	25	25	26
	4	13	15	13	15	11	11	10	10	15	13
	5	37	38	39	35	40	36	35	36	38	38
	1	24	24	20	21	24	22	22	25	244	25
	2	24	25	29	25	28	28	29	25	27	27
6	3	28	29	29	25	27	25	26	29	26	27
	4	14	14	11	13	12	13	12	15	13	15
	5	39	37	36	34	37	34	34	34	37	35
	1	20	25	21	24	24	20	25	20	25	21
	2	30	28	25	28	30	26	28	27	29	30
7	3	29	27	27	26	25	29	29	26	25	29
	4	12	10	13	10	12	12	13	11	13	12
	5	35	40	37	35	40	34	34	38	35	36

Окончание таблицы 5.3

No	Эномонт		Д	лител	іьнос	ть эле	емент	ов оп	ераці	и				
	Элемент	по номерам наблюдений, с												
варианта	операции	1	2	3	4	5	6	7	8	9	10			
	1	24	25	22	24	25	20	22	21	25	20			
	2	30	25	29	25	29	26	28	26	25	24			
8	3	28	29	27	26	29	27	26	26	25	27			
	4	10	15	10	12	13	14	14	12	11	12			
	5	37	35	40	36	37	35	38	38	39	37			
	1	23	22	22	20	22	21	21	21	25	21			
	2	29	25	29	24	24	30	29	28	28	24			
9	3	26	28	27	29	28	28	26	27	28	26			
	4	13	14	15	10	10	14	11	15	14	11			
	5	34	34	38	37	39	34	38	34	36	36			
	1	25	25	22	24	23	22	23	25	21	23			
	2	25	27	30	25	29	26	30	29	27	30			
10	3	29	26	25	25	26	29	25	29	26	26			
	4	10	15	12	12	12	14	12	15	15	13			
	5	37	39	39	40	35	35	36	40	38	39			

Лабораторная работа № 6

ФОТОГРАФИЯ РАБОЧЕГО ВРЕМЕНИ

Цель работы: ознакомление с методикой фотографии рабочего времени, имеющей целью выявить затраты времени в течение изучаемого периода (целой смены); определение резервов повышения производительности труда.

Краткие теоретические сведения

Категории затрат рабочего времени

При проведении фотографии рабочего времени фиксируются все без исключения затраты рабочего времени и особенно – потери времени по различным причинам.

Классификация затрат рабочего времени позволяет свести разнообразные периоды рабочего времени к таким категориям, при анализе которых устанавливается степень интенсивности использования рабочего времени. Их важнейшим признаком является отношение затрат рабочего времени к времени выполнения производственного задания.

Время выполнения производственного задания подразделяется на две категории затрат:

- подготовительно-заключительное время (далее ПЗ), в течение которого рабочий производит подготовку рабочего места, а после выполнения производственного задания приводит его в надлежащее состояние и сдает работу; к этой категории затрат относятся затраты времени на ознакомление с чертежами, получение инструментов и приспособлений, наладку оборудования, предъявление продукции контролеру;
- *оперативное время* (далее ОП), в течение которого рабочий или бригада рабочих выполняет производственное задание по выпуску продукции; подразделяется на основное (качественное или количественное изменение предметов труда) и вспомогательное (количество времени перемещений предметов труда во времени и пространстве).

Величина этих категорий затрат не находится в прямой зависимости от заданного объема выпуска продукции (размера партии деталей).

Время обслуживания рабочего места (далее ОБСЛ) – это время, которое рабочий затрачивает на поддержание своего рабочего места в состоянии готовности для выполнения производственного задания. Подразделяется на время технического (поддержание оборудования в рабочем состоянии, т. е. мелкий ремонт, смазка и т. д.) и организационного обслуживания (уход за рабочим местом и его оборудованием, т. е. уборка стружки, смена инструмента и т. д.).

Эта категория затрат непосредственно не зависит от конкретного производственного задания и по характеру участия в ней рабочего при выполнении производственного задания подразделяется на ручное, машинно-ручное и время наблюдения за работой оборудования.

Время на отдых и личные надобности (далее ЛН) также состоит из двух категорий затрат:

- время перерывов регламентируемое время, в течении которого рабочий не принимает участие в производственном процессе (отдых для поддержания работоспособности рабочего и предупреждения его утомляемости в течении рабочей смены);
- перерывы на личные надобности время, используемое рабочим для поддержания личной гигиены и удовлетворения естественных надобностей в процессе работы.

Потери времени организационно-технического характера (далее ПОТ), время перерывов, обусловленных нарушением производственного процесса, возникающие из-за технических и организационных неполадок, нераспорядительности, плохой организацией труда и производства (перерывы, связанные с ожиданием заготовок, инструмента и приспособлений) — эти перерывы не зависят от рабочих, связанных с производственным процессом, а на прямую связаны с качеством работы администрации предприятия.

Потери времени по вине рабочего (далее ПР) возникают вследствие нарушения трудовой дисциплины рабочим (опоздание на работу, отсутствие на рабочем месте в течение смены, ранний уход с работы и т. д.).

Методика изучения затрат рабочего времени

Фотография рабочего времени — это метод изучения затрат рабочего времени путем наблюдения с последовательными замерами их по видам на протяжении одной или нескольких смен (в некото-

рых случаях — в течение определенной части рабочего дня). При этом особое внимание уделяется выявлению потерь и нерациональных затрат рабочего времени, а также изучению затрат подготовительно-заключительного времени, времени обслуживания рабочего места и времени на отдых и личные надобности.

Цели фотографии рабочего времени:

- составление фактического баланса рабочего времени путем выявления всех без исключения затрат рабочего времени в течение дня и распределение этих фактических затрат по группам (подготовительно-заключительное, оперативное, потери и т.д.);
- выявление причин потерь рабочего времени с последующей разработкой организационно-технических мероприятий по их предупреждению и устранению;
- проектирование нормального баланса рабочего времени, предусматривающего улучшение использования рабочего дня и повышение норм выработки за счет устранения потерь и нерациональных затрат рабочего времени;
- получение данных, необходимых для нормирования подготовительно-заключительного времени, времени на обслуживание рабочего места, отдых и личные надобности;
- выявление причин невыполнения норм выработки отдельными рабочими.

В зависимости от количества объектов наблюдения фотография рабочего времени может быть *индивидуальной* (наблюдение за работой, выполняемой одним рабочим), *групповой* (наблюдение за работой группы рабочих, выполняющих одинаковые или различные операции независимо друг от друга, наблюдение за работой бригады), *самофотография* (замеры времени производятся непосредственно самим исполнителем).

К явным потерям рабочего времени относятся потери организационно-технического характера и по вине рабочего. К скрытым потерям относятся непроизводительные работы – потери при организации технического обслуживания (ТО) и подготовительно-заключительных операциях.

Нормативное время на личные надобности ($T_{\text{лн. H}}$) (регламентированные перерывы) в процессе работы остается постоянным, при 8-часовой смене оно составляет 20 мин.

На основании фотографии составляется сводка одноименных затрат рабочего времени, рассчитывается фактический и нормативный баланс (таблица 6.1).

Таблица 6.1 – Баланс рабочего времени

Категория	Обозна-	Факти	ческий	Нормат	гивный
затрат времени	чение	мин	% к Т _{оп.ф}	МИН	% к $T_{\text{оп.н}}$
Подготовитель-		Заполняется	Заполняется	Норматив	Расчет
ное-заключи-	$T_{\Pi 3}$	на основе	на основе		
тельное		фотографии	расчета		
Оперативное	$T_{ m on}$	рабочего		Расчет	100 %
Техническое	T	дня		Расчет	Норматив
обслуживание	$T_{ m ofc.}$				
Личные надоб-	T			Расчет	Норматив
ности	$T_{\scriptscriptstyle \mathrm{ЛH}}$				
Потери органи-				Нет	Нет
зационно-тех-	Π_{or}				
нические					
Потери по вине	П			Нет	Нет
рабочего	Π_{p}				
Время смены	T	480		480	

Примерный перечень типовых затрат времени в течение рабочей смены приведен в таблице 6.2.

Таблица 6.2 – Типовые элементы затрат рабочего времени исполнителя

Виды затрат	Наименование затрат	Индексы
Подготовительно-	Ознакомление с заданием, работой докумен-	
заключительное	тацией и чертежами.	П3-1
время	Получение инструктажа.	П3-2
	Получение и сдача инструмента.	П3-3
	Получение материала заготовок.	П3-4
	Установка и снятие инструмента, приспособ-	
	ления, наладка оборудования.	П3-5
	Установка режима обработки.	П3-6
	Сдача работы	П3-7

Окончание таблицы 6.2

Виды затрат	Наименование затрат	Индексы
Оперативное	Время непосредственной работы рабочего	ОП
время	и оборудования при выполнении задания	
Время техниче-	Раскладка и уборка инструмента в начале	
ского обслужива-	и в конце смены.	ОБС-1
ния рабочего	Осмотр и проверка станка.	ОБС-2
места	Чистка, обтирка и смазка оборудования.	ОБС-3
	Смена инструмента вследствие затупления.	ОБС-4
	Подналадка станка, пересдача смены	ОБС-5
Время на отдых	Регламентируемые перерывы на отдых и лич-	ЛН
и личные надоб-	ные надобности в течение рабочего времени	
ности	(производственной смены)	
Время перерывов	Ожидание работы, чертежей, материалов.	ПОТ-1
по организацион-	Ожидание транспортных средств (крана и пр.).	ПОТ-2
но-техническим	Отсутствие инструмента и приспособлений.	ПОТ-3
причинам	Отсутствие электроэнергии в сети.	ПОТ-4
	Ожидание наладки или ремонта станка.	ПОТ-5
	Непредусмотренный ремонт или подналадка	
	оборудования непосредственно рабочим.	ПОТ-6
	Ожидание подсобного рабочего.	ПОТ-7
	Работа несоответствующая квалификации	ПОТ-8
Потери времени	Позднее начало работы.	ПР-1
по вине рабочего	Преждевременное окончание работы.	ПР-2
	Самостоятельный уход с рабочего места.	ПР-3
	Посторонние непроизводственные разговоры.	ПР-4
	Занятие посторонними работами	ПР-5

Категории затрат фактического баланса времени в минутах определяется на основании данных фотографии рабочего времени (см. исходные данные в таблице 6.3). Фактический баланс, выраженный в процентах, определяется относительно фактического оперативного времени $T_{\text{оп.}\varphi}$ за время рабочей смены (480 мин).

Нормативный баланс времени рассчитывается исходя из фактического баланса, причем учитывается, что норматив времени на личные надобности равен 20 мин в смену, а подготовительно-заключительное время планируется уменьшить на 5 мин, время на техническое обслуживание – на 3 мин в результате внедрения орга-

низационно-технических мероприятий. Нормативный баланс времени в процентах определяется относительно оперативного нормативного времени $T_{\rm on, h}$.

Таблица 6.3 – Исходные данные к лабораторной работе «Фотография рабочего времени»

Индексы наименований			Затрат	ъ вре	мени і	по вар	ианта	м, мин	I	
затрат	1	2	3	4	5	6	7	8	9	10
П3-1	9	10	9	8	8	6	8	7	6	9
П3-2	8	8	10	9	8	7	10	9	8	9
ПЗ-3	6	6	8	7	8	6	7	6	8	6
П3-4	3	6	5	10	10	7	6	8	7	9
П3-5	3	4	3	4	5	4	5	3	5	3
П3-6	4	4	4	4	3	4	3	5	3	5
П3-7	10	10	7	10	9	7	10	7	8	8
ОП	347	331	323	333	335	336	329	324	326	328
ОБС-1	2	5	4	2	4	5	2	4	6	7
ОБС-2	6	5	6	6	6	6	6	6	5	10
ОБС-3	2	9	4	8	5	3	8	10	9	8
ОБС-4	11	5	9	11	5	8	5	12	6	10
ОБС-5	13	9	14	11	12	10	9	9	11	10
ЛН	12	14	27	16	13	26	21	20	25	19
ПОТ-1	2	5	3	2	1	2	6	3	5	2
ПОТ-2	4	7	7	6	7	4	7	4	2	6
ПОТ-3	5	5	1	4	5	5	4	7	4	1
ПОТ-4	4	3	4	5	5	2	2	10	5	2
ПОТ-5	1	7	6	2	7	6	3	5	4	1
ПОТ-6	2	4	5	1	4	3	3	5	5	3
ПОТ-7	1	1	4	3	1	2	6	2	2	6
ПОТ-8	4	6	4	1	1	5	2	1	4	7
ПР-1	1	3	4	1	5	4	6	4	5	2
ПР-2	4	4	1	4	4	3	3	2	4	1
ПР-3	5	4	6	6	2	5	3	2	2	1
ПР-4	5	1	1	3	4	2	2	3	1	1
ПР-5	6	4	1	3	3	2	4	2	4	6

В нормативном балансе времени потери по организационнотехническим причинам и по вине рабочего должны быть исключены.

Оперативное нормативное время в результате организационнотехнических мероприятий увеличивается относительно оперативного фактического времени, что обеспечивает рост производительности труда.

Рост производительности труда в результате обеспечения нормативного баланса времени определяют последовательно по формулам (6.1)–(6.5):

процент оперативного времени

$$k_1 = \left(\grave{O}_{11.(\^{0})} / \grave{O}\right) \cdot 100; \tag{6.1}$$

процент потерь организационно-технического характера

$$k_2 = (\ddot{\mathbf{I}}_{\hat{\mathbf{1}}\hat{\mathbf{0}}} / \dot{O}) \cdot 100; \tag{6.2}$$

процент потерь по вине рабочего

$$k_3 = \left[\left[\left(\ddot{I}_{\eth} + \grave{O}_{\text{\'e}i\,(\^{0})} \right) - \grave{O}_{\text{\'e}i\,.\acute{1}} \right] / \grave{O} \right] \cdot 100; \tag{6.3}$$

процент явных потерь рабочего фактического времени

$$k_4 = k_2 + k_3; (6.4)$$

рост производительности труда при ликвидации явных потерь рабочего времени

$$\Delta \ddot{\mathbf{I}} \ \dot{\mathbf{O}} = k_4 / k_1 \cdot 100 \,.$$
 (6.5)

Порядок выполнения работы

- 1. Ознакомление с методикой изучения затрат рабочего времени и с типовыми элементами этих затрат в течение рабочей смены.
 - 2. Обработка полученных данных:
 - определение затрат времени по каждой категории;
 - составление фактического баланса времени рабочего дня;

- анализ мероприятий по устранению потерь рабочего времени и проектирование нормативного баланса времени.
- 3. Выводы по использованию рабочего времени и пути повышения производительности труда. Расчет роста производительности труда при переходе на нормативный баланс рабочего времени.
- 4. Расчет нормативов времени на техническое обслуживание и личные надобности.
- 5. Расчет штучного времени на операцию. Оперативное время на единицу продукции берется из лабораторной работы по хронометражу.

Содержание отчета

- 1. Цель работы.
- 2. Таблица исходных данных сводка одноименных затрат рабочего времени на рабочем месте (см. таблицу 6.3).
 - 3. Расчет баланса рабочего времени.
- 4. Расчет роста производительности труда и штучного времени на операцию.
- 5. Выводы с анализом фактического использования рабочего времени работника и предложения по снижению потерь времени.

Лабораторная работа № 7

РАСЧЕТ ПРЕРЫВНО-ПОТОЧНОЙ ЛИНИИ

Цель работы: закрепление теоретических знаний по теме «Особенности организации однопредметной прерывно-поточной линии (ОППЛ)»; ознакомление с особенностями организации ОППЛ; изучение методики и освоение навыков расчета календарно-плановых нормативов (КПН) и построение стандарт-плана ОППЛ.

Краткие теоретические сведения

ОППЛ применяются в массовом и крупносерийном производстве, когда норма времени выполнения операций производственного процесса не равна и не кратна такту (ритму) потока или когда на отдельных операциях появляется брак.

Пространственная планировка линии подчиняется общим требованиям цепного расположения оборудования с учетом максимального территориального сближения рабочих мест, обслуживаемых рабочими-совместителями. Применение конвейеров на прямоточных линиях, как правило, нецелесообразно; здесь широко используются различные гравитационные транспортные средства (например, рольганги, скаты), а также оборудование циклического действия (электрокары, монорельсы с тельферами и т. п.). Движение предметов труда по операциям — параллельно-последовательное с поштучной или партионной передачей.

Основные КПН ОППЛ включают укрупненный такт (ритм), количество рабочих мест по операциям и по всей поточной линии, стандарт-план работы линии, размер и динамику движения межоперационных оборотных заделов. *Такт* ОППЛ определяется по формуле

$$r_{i \, \delta} = \frac{F_{\circ}}{N_{\circ}}, \tag{7.1}$$

где $r_{\rm np}$ — такт линии, мин;

 $F_{\scriptscriptstyle 3}$ – эффективный фонд времени работы линии за плановый период, мин;

 $N_{\rm c}$ – программа запуска изделий за плановый период, шт.

Однако при его расчете следует учитывать некоторые особенности:

- так как ОППЛ работают, как правило, со свободным ритмом, в эффективный фонд времени не включаются регламентированные перерывы. Кроме того, на практике F_3 устанавливается равным периоду оборота линии T_0 , который составляет одну смену или 0,5 смены (наиболее целесообразный период обслуживания линии);
- при наличии брака на промежуточных операциях технологического процесса по каждой операции определяются своя программа запуска и свой такт. При этом расчет ведется с последней операции, т. е. исходя из программы выпуска изделий ($N_{\hat{a}}$):

$$N_{c} = \frac{N_{\hat{a}} \cdot 100}{100 - \alpha},\tag{7.2}$$

где α – процент брака на операции.

Сменная программа запуска по операциям определяется исходя из месячной программы запуска 21–22 рабочих днях в месяц и двухсменном режиме работы оборудования.

Определение количества рабочих мест $C_{\rm pi}$ осуществляется по каждой i-й операции и по всей поточной линии в целом. Расчет производится по формуле

$$C_{\mathrm{p}i} = \frac{t_{\phi \, \delta \, i}}{r_{\mathrm{r} \, \delta}},\tag{7.2}$$

где $t_{\emptyset \ \grave{o}i}$ — норма штучного времени на i-й операции, мин.

Расчетные величины C_{pi} , как правило, получаются дробными, поэтому их необходимо округлить до ближайших больших целых чисел. Принятое число рабочих мест $C_{\vec{i},\delta j}$ определяется по формуле

$$C_{\text{i} \, \eth \, i} > C_{\text{p} \, i}$$
 i đè $\hat{E}_{\text{c}} \leq 1$,

где K_3 – коэффициент загрузки рабочих мест по i-й операции.

Общее количество рабочих мест на линии определяется следующим образом:

$$C_{\eth,\ddot{\mathbf{e}}} = \sum_{i=1}^{m} C_{\eth,i} \ \dot{\mathbf{e}} \ C_{\ddot{\mathbf{1}}\,\eth,\ddot{\mathbf{e}}} = \sum_{i=1}^{m} C_{\ddot{\mathbf{1}}\,\eth\,i} \ ,$$

где m — число операций по данному технологическому процессу. Коэффициент загрузки рабочих мест определяется по формуле

$$\hat{\mathbf{E}}_{\varsigma} = \frac{C_{\mathsf{p}i}}{C_{\mathsf{r}\,\check{\eth}i}}.$$

Средний коэффициент загрузки рабочих мест на линии должен удовлетворять условию $\hat{E}_{c.\tilde{n}\tilde{o}} \geq 0,75$.

Построение стандарт-плана ОППЛ осуществляется в табличной форме (рисунок 7.1). В таблицу заносят все операции технологического процесса и нормы времени их выполнения; проставляют такт (ритм) потока и определяют необходимое число рабочих мест по каждой операции (расчетное, принятое и в целом по линии); определяют загрузку рабочих мест в минутах и процентах; присваивают номера рабочим местам (по возрастанию от первого); строят график работы оборудования на каждой операции и рассчитывают необходимое количество производственных рабочих. В связи с недогрузкой оборудования на отдельных рабочих местах, а следовательно, и рабочих-операторов, производят дозагрузку рабочих путем закрепления за ними нескольких недогруженных рабочих мест, т. е. строят график регламентации труда по линии и определяют окончательную численность производственных рабочих, присваивают им номера или условные знаки и устанавливают порядок обслуживания недогруженных рабочих мест.

Вследствие различной трудоемкости операций производственного процесса на ОППЛ неизбежны межсоперационные оборотные заделы. Они создаются для выравнивания производительности на смежных операциях. Оборотные заделы позволяют организовать на рабочих местах непрерывную работу в течение определенного стандартным планом отрезка времени. Характерной чертой оборотных

заделов является их изменение от нуля до максимума на протяжении периода оборота линии. При расчете линии технологическими, транспортными и страховыми заделами пренебрегают.

Расчет межоперационных оборотных заделов производят по стандарт-плану ОППЛ между каждой парой смежных операций (например, между 1-й и 2-й, 2-й и 3-й и т. д.). Для этого период оборота линии (T_0) разбивают на части, каждая из которых характеризуется неизменным числом работающих единиц оборудования на смежных операциях и называется *частным периодом*. Размер оборотного задела Z_{00} между каждой парой смежных операций (i-й и i + 1) и в каждом частном периоде (T_i) определяется по формуле

$$Z_{\hat{1}\,\hat{a}} = \frac{T_j \cdot C_i}{t_{\phi\,\delta\,i}} - \frac{T_j \cdot C_{i+1}}{t_{\phi\,\delta\,i+1}},\tag{7.3}$$

где T_j – продолжительность j-го частного периода между смежными операциями при неизменном числе работающих единиц оборудования, мин;

 C_i , C_{i+1} — число единиц оборудования соответственно на i-й и (i+1)-й операциях в течение частотного периода времени T_i , шт.;

 $t_{\emptyset \ \delta \ i}$, $t_{\emptyset \ \delta \ i+1}$ — нормы штучного времени соответственно на i-ю и на (i+1)-ю операции технологического процесса, мин.

Величина оборотного задела может быть положительной или отрицательной. Положительное значение задела свидетельствует о его увеличении в течении частного периода T_j (предыдущая операция выдает больше изделий, чем может быть обработано на последующей), отрицательное — об уменьшении (предыдущая операция выдает изделий меньше, чем необходимо для последующей).

Пример расчета КПН и построение стандарт-плана ОППЛ

Исходные данные. Требуется изготовить за месяц 10 080 деталей. В месяце 21 рабочий день. Работа ведется в две смены. Период оборота линии равен одной смене. Технологический процесс включает

пять операций. Норма времени выполнения операций составляет: $t_1=3,1$ мин; $t_2=2,0$; $t_3=4,6$; $t_4=1,4$; $t_5=2,8$ мин. Брак на операциях отсутствует, следовательно, программа запуска за период оборота равна программе выпуска ($N_{\rm c}=N_{\hat{\rm a}}$).

1. Определяется программа выпуска за период оборота линии:

$$N_{\hat{a}} = \frac{10\,080}{21\cdot 2} = 240\,\text{ o o./ñi} \ .$$

2. Определяется такт ОППЛ (формула (7.1)):

$$r_{i,\delta} = \frac{8 \cdot 60}{240} = 2 i \ e'i / \phi \ o.$$

- 3. Определяется количество рабочих мест на линии по формуле (7.2). Расчет ведется на стандарт-плане (см. рисунок 7.1): расчетное количество рабочих мест -6,95, принятое -9; рабочие места 2, 6,7 и 9 полностью не загружены.
- 4. Определяется загрузка рабочих мест в процентах и минутах (на стандарт-плане) и средний коэффициент загрузки оборудования ОППЛ.
- 5. Расчетная численность производственных рабочих по рабочим местам составляет 9 чел. Однако после построения графика регламентации труда (подбора работ и совмещения профессий) становится понятно, что достаточно иметь на линии 7 чел. в см. Из них двое рабочих будут работать на двух рабочих местах: один будет выполнять работу на 2-м и 9-м, другой на 6-м и 7-м. График и порядок обслуживания рабочих мест представлен на стандарт-плане (см. рисунок 7.1).
- 6. Величина накапливаемых заделов деталей между операциями рассчитывается по формуле (7.3) (таблица 7.1).
- 7. График движения оборотных заделов между операциями представлен на рисунке 7.2.

Таблица 7.1 – Расчет межоперационных заделов

Частные	Длительность частного	Расчет заделов по частным
периоды	периода, мин	периодам T_j , шт.
	Между 1-й и	2-й операциями
T_1	264	$Z'_{1,2} = \frac{264 \cdot 2}{3.1} - \frac{264 \cdot 1}{2} = +38$
		-,
T_2	216	$Z_{1,2}'' = \frac{216 \cdot 1}{3,1} - \frac{216 \cdot 1}{2} = -38$

		T0F0
	Между 2-и и	3-й операциями
T_3	144	$Z'_{2,2} = \frac{144 \cdot 1}{144 \cdot 3} = -22$
13	144	$Z'_{2,3} = \frac{144 \cdot 1}{2} - \frac{144 \cdot 3}{4,6} = -22$
		336.1 336.2
T_4	336	$Z_{2,3}'' = \frac{336 \cdot 1}{2} - \frac{336 \cdot 2}{4,6} = +22$
	И	того
	Между 3-й и	4-й операциями
	144	7' 144.3 144.0
T_5	144	$Z'_{3,4} = \frac{144 \cdot 3}{4,6} - \frac{144 \cdot 0}{1,4} = +94$
T_6	336	$Z_{3,4}'' = \frac{336 \cdot 2}{46} - \frac{336 \cdot 1}{14} = -94$
16	330	4,6 1,4
	И	того
	Между 4-й и	5-й операциями
		$_{7'}$ 144.0 144.1 $_{51}$
T_7	144	$Z'_{4,5} = \frac{144 \cdot 0}{1,4} - \frac{144 \cdot 1}{2,8} = -51$
_		$Z_{4,5}'' = \frac{120 \cdot 1}{1.4} - \frac{120 \cdot 1}{2.8} = +43$
T_8	120	$Z_{4,5}^2 = \frac{1}{1,4} - \frac{1}{2,8} = +43$
T	102	$Z_{4,5}''' = \frac{192 \cdot 1}{1.4} - \frac{192 \cdot 2}{2.8} = 0$
T_9	192	-,· -,·
T_{10}	24	$Z_{4,5}^{""} = \frac{24 \cdot 1}{1,4} - \frac{24 \cdot 1}{2,8} = +8$
1 10	21	1,4 2,8

рации		змени	рабоч	чество	TX MECT	Загр рабочі	узка их мест	олего	эбслу- бочих чими	Γ	`pa	рик	pa	ботн	ы об	бору	дон	вани	ия и	и пе	pex	сода	ı pa	боч	их:	за пе	ерис	д об	боро	та л	шни	ш (4	80 n	ин.)	
Номер операции	Наименование операции	Норма времени (tur.), мин.	расчетное, (С р.)	принятое, (С пр.)	Номер рабочих мест	% я	в мин.	Номер рабочего	Порядок обслуживания рабочих мест рабочими	00	2 :		09 —	08 –	001 –	_ 120	140	160	8 2	180	_ 200	_ 220	_ 240	_ 260	_ 280	300	_ 320	340	360	380	400	420	440	460	480
	T	2.1	1 55	_	1	100	480																												
1	Токарная	3,1	1,55	2	2	55	264	Б	2+9	<							T ₁							2	264				_		T ₂				_ >
2	Фрезерная	2,0	1,00	1	3	100	480	В	3																										1
3	Расточная	4,6	2,30	3	4 5 6		480 480 144	Д	4 5 6+7	<			T	3				14	44								T ₄								- ≱ -
4	Сверлильная	1,4	0,70	1	7	70	336	Ж	7+6	<		_	— T,	5			14	4									— Т ₆	_							→
5	Шлифовальная	28	1,40	2	8	100	480	3	8	<			Т	7				*				T _s		;	*				7	Γ,				×T ₁₀	<u></u>
	шлифовальная	2,0	1,40	2	9	40	192	Б	9+2		_			_											264									456	1
	ИТОГО:	13,9	6,95	9		77,2																													

 ^{— –} время работы оборудования
 — – время простоя оборудования;
 ↓ – переходы рабочего от одного рабочего места к другому
 Рисунок 7.1 – Стандарт-план работы однопредметной поточной линии

Рисунок 7.2 – График движения заделов на линии

Порядок выполнения работы

- 1. Ознакомление с целью лабораторной работы.
- 2. Изучение теоретического материала по рассматриваемой теме.
- 3. Ознакомление с приведенным примером расчета календарноплановых нормативов и построением стандарт-плана ОППЛ.

- 4. Расчет КПН и построение стандарт-плана ОППЛ в соответствии с полученным вариантом задания.
- 5. Защита лабораторной работы: представление отчета, содержащего расчет КПН и стандарт-план ОППЛ; ответ на поставленные теоретические вопросы.

Варианты для выполнения лабораторной работы

Рассчитать КПН, построить стандарт-план ОППЛ и график движения оборотных заделов, используя данные приведенного расчета и исходные данные по вариантам.

Вариант 1 Технологический процесс изготовления планки

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	мин
1	Слесарная	1,80
2	Вырубка	1,33
3	Слесарная	3,49
4	Сверлильная	4,60
5	Фрезерная	5,28
6	Слесарная	1,20

 $N_{\tilde{m}} = 165 \, \text{ø o.}, T_{\tilde{m}} = 480 \, \text{ì ei}.$

Вариант 2 Технологический процесс изготовления втулки

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	мин
1	Заготовительная	0,33
2	Токарная	0,90
3	Фрезерная	1,30
4	Слесарная	0,67
5	Шлифовальная	0,40
6	Сверлильная	0,63
7	Слесарная	0,30

 $N_{\rm fil}=628\,\mathrm{Ø}$ ò., $T_{\rm fil}=480\,\mathrm{i}$ èí.

Вариант 3 Технологический процесс изготовления штока

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	мин
1	Заготовительная	1,30
2	Гибочная	1,42
3	Слесарная	3,40
4	Сверлильная	2,04
5	Фрезерная	6,90
6	Слесарная	1,22

 $N_{\rm fil} = 130 \, \text{ø o.}$, $T_{\rm fil} = 480 \, \text{ì ell}$.

Вариант 4 Технологический процесс изготовления упора

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	мин
1	Заготовительная	0,500
2	Токарная 1	1,300
3	Токарная 2	0,900
4	Токарная 3	1,000
5	Токарная 4	0,371
6	Слесарная	0,500

 $N_{\rm fil}=613\,\rm \phi$ ò., $T_{\rm fil}=480\,\rm i$ èí.

Вариант 5 Технологический процесс изготовления упора

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	мин
1	Заготовительная	0,61
2	Токарная 1	1,00
3	Токарная 2	0,90
4	Токарная 3	1,40
5	Токарная 4	0,52
6	Слесарная	0,81

 $N_{
m fil} = 632 \,
m \phi$ à., $T_{
m fil} = 480 \,
m i$ èí.

Вариант 6 Технологический процесс изготовления стойки

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	мин
1	Заготовительная	1,70
2	Строгальная	2,50
3	Фрезерная	3,10
4	Расточная	2,70
5	Зенковочная	1,30
6	Резьбонарезная	0,90

 $N_{
m fil} = 262 \,
m \phi$ ò., $T_{
m fil} = 480 \,
m i$ èí.

Вариант 7 Технологический процесс изготовления диска

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	мин
1	Заготовительная	0,45
2	Токарная	1,65
3	Строгальная	1,30
4	Фрезерная	2,80
5	Сверлильная	0,70
6	Слесарная	0,30

 $N_{\rm fil} = 500 \, \text{ø o.}$, $T_{\rm fil} = 480 \, \text{ì ei}$.

Вариант 8 Технологический процесс изготовления вала

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	мин
1	Заготовительная	2,50
2	Токарная 1	6,30
3	Токарная 2	5,40
4	Фрезерная	3,00
5	Сверлильная	1,50
6	Слесарная	0,70

 $N_{
m mi}$ =120 ø ò., $T_{
m mi}$ =480 ì èí.

Вариант 9 Технологический процесс изготовления фланца

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	МИН
1	Заготовительная	1,50
2	Токарная	3,75
3	Расточная	2,80
4	Фрезерная	3,10
5	Шлифовальная	1,20
6	Слесарная	0,50

 $N_{
m fii}~=250\,{\rm g}$ ò., $T_{
m fii}~=480\,{\rm i}$ èí.

Вариант 10 Технологический процесс изготовления шкива

Номер	Наименование	Норма штучного времени $t_{\text{шт}}$,
операции	операции	мин
1	Заготовительная	0,85
2	Токарная	3,20
3	Расточная	2,70
4	Сверлильная	1,10
5	Фрезерная	3,00
6	Слесарная	1,20

 $N_{
m fil}~=280\,{\rm g}$ ò., $T_{
m fil}~=480\,{\rm i}$ èí.

Лабораторная работа № 8

МОРАЛЬНО-ПСИХОЛОГИЧЕСКИЙ КЛИМАТ В КОЛЛЕКТИВЕ

Цель работы: закрепление теоретического материала по социально-психологическим методам управления; приобретение практических навыков социологического исследования, связанных с установлением количественных и качественных зависимостей, характеризующих авторитет руководителя, силу воздействия его на людей, взаимосвязь между личными качествами руководителя и взаимоотношениями в коллективе; определение деловых качеств членов рабочего коллектива

Краткие теоретические положения

Работа современного руководителя требует органического сочетания различных методов управления: административных, экономических и социально-психологических. Социально-психологические методы призваны обеспечить удовлетворение работника трудом, доброжелательные отношения, хорошее настроение, исключить противоречивые тенденции и конфликтные ситуации в коллективе, т. е. создать благоприятный социально-психологический климат.

На формирование социально-психологического климата в коллективе решающее значение оказывают личность руководителя и его стиль работы. Ровные, благожелательные отношения со всеми подчиненными, объективная требовательность, отсутствие любимчиков предупреждает конфликтные ситуации и текучесть кадров.

По своим деловым и личным качествам руководители условно делятся на четыре категории:

- 1 -наилучший;
- 2 растущий;
- 3 средний;
- 4 слабый.

Для того чтобы конкретного работника отнести к одной из соответствующих категорий, производится несколько коллективных оценок. Снизу руководителя оценивают работники, находящиеся в его подчинении, сверху – руководители более высокого ранга, по гори-

зонтали – работники, находящиеся на одном уровне с аттестуемым. Индивидуальные оценки не являются объективными, поскольку даже самый лучший руководитель вступает в противоречия с подчиненными и руководителями высшего ранга, т. к. всегда существуют субъективные отличия в понимании прав и обязанностей членов коллектива и меры ответственности за порученное дело.

Оценивая руководителя, возглавляемый им коллектив косвенно оценивает свою сплоченность. Большой разброс в количественных характеристиках оценок свидетельствует о различных отношениях руководителя и подчиненных, наличии микрогрупп.

Существующие методики предлагают оценивать личные и деловые качества руководителя по двадцати показателям, используя десятибалльную систему. Оценка проставляется следующим образом. Например, если по показателю «умение держать слово» вы уверены на 70 %, что аттестуемый сдержит слово, то ставите балл 7, а если вы считаете, что аттестуемый всегда нарушает данное слово -0. Показатели личных и деловых качеств руководителя и разъяснения к ним приводятся в таблице 8.1.

Таблица 8.1 – Личные и деловые качества руководителя

Показатели	Разъяснение показателей
Умение держать слово	Если руководитель дает обещание, а потом его за-
	бывает или откладывает, то данное качество раз-
	вито у него слабо
Честность и справед-	Насколько вы можете поручиться за честность по-
ливость	ступков и правдивость слов руководителя, добросо-
	вестность отношения к служебным обязанностям?
Умение держать совет	Сработался ли он с другими руководителями и под-
	чиненными или склонен работать в одиночку?
Способность объектив-	Обладает ли он интуицией, учитывает ли индиви-
но оценивать людей	дуальные качества людей? Считается ли он с ними?
Забота о людях	Интересуется ли он личной жизнью подчинен-
	ных, заботится ли об их благополучии?
Тактичность	Умеет ли он делать замечания и выслушивать их
	или вызывает раздражение своей критикой?
Настойчивость	Умеет ли он отстоять свою точку зрения и дове-
	сти начатое дело до конца?

Окончание таблицы 8.1

Показатели	Разъяснение показателей
Эмоциональная уравно-	Следит ли он за своими манерами и речью? При-
вешенность	меняет ли в разговоре вульгарности, грубости,
	повышает ли голос и резко жестикулирует?
Обдуманность решений	Повторяет ли он чужие мнения, быстро ли отказы-
	вается от высказанных идей?
Способность ориенти-	Способен ли он сам принимать правильное реше-
роваться в обстановке	ние в сложной обстановке?
Инициативность	Может ли он мыслить самостоятельно, находить
	нужное и новое и внедрять его?
Пунктуальность	Заставляет ли он себя ожидать? Вовремя ли выпол-
	няет порученную работу?
Знание дела и квалифи-	Умеет ли он определять относительную ценность
кация	предлагаемых мероприятий?
Авторитет	Уважаете ли вы его, хотите ли быть с ним? Авто-
	ритет его «личный» или определяется занимаемым
	положением?
Оперативность в при-	Умеет ли он оперативно решать вопросы и не от-
нятии решений	кладывать их решение со дня на день?
Опытность	Обладает ли он умением пользоваться ранее по-
	лученными знаниями, обобщать их?
Способность управлять	Может ли он поддерживать дисциплину, побуж-
людьми	дать интерес в других людях и создавать друже-
	скую обстановку?
Умение организовать	Уделяет ли он время планированию своего труда
работу	или его заела текучка?
Моральные качества	Имеет ли он высокий уровень общей культуры,
	отсутствуют ли у него порочные наклонности,
	свойственны ли ему скромность и чувство долга?
Активная жизненная	Чувствует ли он себя в ответе за все хорошее, что
позиция	не сделано и за все плохое, что свершилось? (Не
	смешивать с карьеризмом)

Порядок выполнения работы

Содержание лабораторной работы студенты заполняют анкеты, содержащие индивидуальные оценки членов группы по двадцати показателям личных и деловых качеств потенциального руководителя. Обработка анкет содержит этап ручной обработки расчета личных и деловых характеристик члена группы. Полученные данные используются для построения социально-психологической карты членов группы, климата группы, а также выявления степени сплоченности коллектива.

1. Аттестация потенциальных руководителей производится методом анкетирования. В качестве аттестуемых выступают члены группы: староста, профорг и т. п. (всего 5 человек).

Оценка производится всеми членами группы. Форма анкеты приведена в таблице 8.2. Все анкеты заполняются строго анонимно!

Таблица 8.2 – Форма анкеты

Номер	Фамилия анкетируе	мого члена группы
показателя		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

Анкетирование заключается в оценке каждого члена группы по двадцати показателям, характеризующим его личные и деловые качества как потенциального руководителя.

Результаты индивидуального анкетирования используются для расчета следующих параметров:

- социально-психологической карты членов группы;
- характеристики деловых качеств членов группы;
- степени сплоченности коллектива.
- 2. После заполнения всеми членами группы анкет преподаватель их собирает, кодирует случайным образом членов актива (буквами от А до Д), записывает себе, под каким кодом будет проходить в дальнейших расчетах аттестуемый и заносит соответствующие коды во все анкеты. Затем он разрезает анкеты по линиям отреза и по каждому закодированному аттестуемому комплектует набор данных. Далее раздает данные в расчетные группы, число которых должно равняться количеству аттестуемых. Таким образом, каждая расчетная группа получает комплект данных на одного из аттестуемых под соответствующим кодом и определяет средние значения показателей (таблица 8.3).

Таблица 8.3 – Индивидуальные оценки члена группы

Показатели личных и деловых			Среднее значение			
качеств	1	2	3	4	 	 показателя
1. Умение держать						
слово						
2. Честность и прав-						
дивость						
3. Умение дать со-						
вет						
4. Способность объ-						
ективно оценивать						
людей						
5. Забота о людях						
6. Тактичность						
7. Настойчивость						
8. Эмоциональная						
уравновешенность						
9. Обдуманность						
решений						
10. Способность						
ориентироваться						
в обстановке						

Окончание таблицы 8.3

Показатели личных и деловых				Среднее значение				
качеств	1	2	3	4				показателя
11. Инициативность								
12. Пунктуальность								
13. Знание дела и квалификация								
14. Авторитет								
15. Оперативность								
в принятии решений								
16. Опытность								
17. Способность								
управлять людьми								
18. Умение органи-								
зовать работу								
19. Моральные ка-								
чества								
20. Активная жиз-								
ненная позиция	l	ĺ			l	ĺ	ĺ	

3. На основании средних значений показателей расчетная группа строит социально-психологическую карту аттестуемого члена группы.

Она строится в прямоугольной системе координат. По оси $\langle x \rangle$ откладываются номера показателей, характеризующих личные и деловые качества аттестуемых, от 1 до 20, а по оси $\langle y \rangle$ — средняя оценка в баллах от 0 до 10. На карте выделяются четыре зоны потенциального руководителя:

- 1 «суперзона» зона наилучшего руководителя;
- 2 «перспективная зона» зона растущего руководителя;
- 3 «потенциальная зона» зона среднего руководителя;
- 4 «номинальная зона» зона слабого руководителя.

Для построения карты рассчитываются параметры линий, ограничивающие зоны потенциального руководителя.

«Суперзона» находится в верхней области карты в пределах 7,5–10 баллов; «перспективная зона» – в пределах 5–7,5 баллов; «потенциальная зона» – в пределах 2,5–5 баллов.

«Номинальная зона» находится в нижней области карты в пределах 0–2,5 балла.

Границы зон социально-психологической карты изображаются графически, а зоны обозначаются соответствующим названием.

- 4. Осуществляется расчет личных и деловых характеристик членов группы, включающих следующие показатели:
 - среднее значение оценок по показателям;
- среднеквадратичное отклонение оценок по четырем случайно выбранным показателям.

Среднее значение оценок деловых и личных качеств члена группы рассчитывается по формуле

$$\mathbf{E}_{\mathrm{cp}i} = \frac{\sum_{i=1}^{n} \mathbf{A}_{ij}}{n},$$

где $\mathbf{F}_{\mathrm{cp}j}$ – средний балл за j-й показатель;

 \mathbf{E}_{ii} – *i*-й балл за *j*-й показатель;

n — количество анкет.

Среднеквадратическое отклонение оценок личных и деловых качеств каждого из членов группы Gk определяется извлечением квадратного корня из величины Gk1, определяемой по формулам

$$Gk1 = \frac{\sum_{i=1}^{n} \sum_{j=1}^{4} \sqrt{A_{ij} - A_{\tilde{n}\delta i}}}{4n} = \frac{Wk}{4n};$$

$$Gk1 = \sqrt{Gk1},$$

где j = 4 и учитывает четыре показателя, выбираемые из таблицы 8.4.

Таблица 8.4 – Показатели, учитываемые при расчете Gk

Код члена актива	Номера показателей, участвующих в расчете
A	1, 5, 10, 18
Б	6, 15, 19, 20
В	2, 3, 14, 17
Γ	7, 8, 11, 12
Д	4, 9, 13, 16

5. Обобщенное среднеквадратичное отклонение оценок личных и деловых качеств членов группы G определяется извлечением квадратного корня из значения G1, определяемого по формуле

$$G1 = \frac{\sum\limits_{k=1}^{5} Wk}{20n};$$

$$G = \sqrt{G1}$$
.

6. В зависимости от расположения графика в одной из четырех зон карты делается вывод об отнесении члена группы к одной из четырех категорий потенциальных руководителей. Кроме того, выявляются личные и деловые качества аттестуемого, которые ему необходимо улучшить для перехода в более высокую категорию потенциальных руководителей.

Уровень отношений аттестуемого с членами группы оценивается по значению среднеквадратичных отклонений выставленных ему баллов:

при $Gk \le 1$ аттестуемый поддерживает ровное отношение с коллективом;

- $1 < Gk \le 2$ аттестуемый поддерживает с коллективом нормальные отношения;
- $2 < Gk \le 3$ аттестуемый не ровен в отношениях с членами коллектива;
 - 3 < Gk аттестуемый замкнулся в одной из микрогрупп.

Степень сплоченности коллектива определяется по усредненному среднеквадратичному отклонению оценок всех аттестуемых членов коллектива:

при $G \le 1$ – оптимальный;

 $1 < G \le 2$ — нормальный;

 $2 < G \le 3 -$ слабый;

G > 3 – очень слабый.

После сделанных выводов преподаватель в индивидуальном порядке называет анкетируемым их коды с тем, чтобы они могли ознакомиться со своими средними баллами и обобщенными характеристиками по данным расчетных групп.

Содержание отчета

Отчет оформляется индивидуально:

- 1. Цель работы.
- 2. Индивидуальные оценки члена группы по результатам анкетирования (см. таблицу 8.3).
 - 3. Социально-психологическая карта анкетируемого члена группы.
- 4. Расчет среднеквадратичных отклонений оценок личных и деловых качеств анкетируемого члена группы.
- 5. Расчет обобщенного среднеквадратичного отклонения оценок качеств членов группы.
- 6. Выводы о деловых качествах аттестуемых и о степени сплоченности группы.

Лабораторная работа № 9

РАСЧЕТ ПРОИЗВОДСТВЕННОГО ЦИКЛА ПРОСТОГО ПРОЦЕССА

Цель работы: закрепление знаний по графоаналитическому определению длительности производственного цикла при различных видах движения предметов труда в производственном процессе.

Краткие теоретические сведения

Организация производственного процесса во времени характеризуется временем производства, или производственным циклом.

Производственный цикл (ПЦ) — это календарный период времени, в течение которого предмет труда проходит все стадии производственного процесса с момента запуска сырья в производство до выпуска готовой продукции. ПЦ можно представить как время рабочего периода и время перерывов.

Для изделий машиностроения характерна высокая доля технологических операций в общей длительности ПЦ. Сокращение последних имеет большое экономическое значение. Сокращение ПЦ дает возможность каждому производственному подразделению выполнить заданную программу с меньшим объемом незавершенного производства, что ведет к ускорению оборачиваемости оборотных средств, повышению фондоотдачи и выполнить установленный план с меньшими затратами материально-технических и трудовых ресурсов.

Основу производственного цикла составляет технологический цикл, который в свою очередь состоит из операционных циклов. Операционный цикл $T_{\rm on}i$ — это продолжительность обработки партии деталей на i-й операции процесса

$$T_{\text{on}i} = nT_{\text{IIIT}i}/c_i$$

где n — размер партии деталей, шт.;

 $T_{\text{шт}i}$ — штучная норма времени на *i*-й операции, мин;

 c_i – число рабочих мест на на i-й операции.

Различают последовательный, параллельный и параллельно-последовательный виды движения предметов труда с операции на операцию.

При последовательном виде движения партия деталей с одной операции на другую передается целиком. Последующая операция начинается лишь тогда, когда будет закончена обработка последней детали в партии на предыдущей операции. При этом длительность технологического процесса определяется суммой операционных циклов (рисунок 9.1):

$$\dot{O}_{\eth \ddot{o} \; (\ddot{\imath} \; \mathring{\mathbf{n}} \ddot{\mathbf{e}})} = n \sum_{i=1}^{\hat{\mathbf{E}}_{\hat{\mathbf{i}}}} \frac{T_{\phi \; \grave{o} i}}{\tilde{n}_{i}} + (\hat{\mathbf{E}}_{\hat{\imath}} \; -1) \cdot t_{\hat{\imath} \; \mathring{\imath}} \; ,$$

где К_о – количество операций;

 $t_{\mbox{\scriptsize MO}}$ — межоперационное время на передачу деталей с операции на операцию, мин.

Рисунок 9.1 – График технологического цикла при последовательном виде движения партии деталей в производстве

Производственный цикл включает технологический цикл и время междусменных перерывов. Тогда вышеприведенное выражение приобретает вид

$$\dot{O}_{\mathrm{i}\,\ddot{\mathrm{o}}\,\left(\ddot{\mathrm{i}\,\mathring{\mathrm{n}}\,\ddot{\mathrm{n}}\ddot{\mathrm{e}}\right)} = \frac{1}{Sqf} \left(n \sum_{i=1}^{\hat{\mathrm{E}}_{\mathring{\mathrm{i}}}} \frac{T_{\mathrm{o}\,\grave{\mathrm{o}}i}}{c_{i}} + \left(\hat{\mathrm{E}}_{\mathring{\mathrm{i}}} - 1\right) \cdot t_{\mathrm{i}\,\mathrm{o}} \right),$$

где $T_{\text{пц (посл)}}$ – производственный цикл;

S — число смен:

q – продолжительность смены, мин;

f – коэффициент для перевода рабочих дней в календарные, который равен отношению рабочих дней планового периода (года) к календарным дням этого же периода (приблизительно равен 0,7).

Параллельный вид движения имеет место, когда небольшие транспортные партии p или отдельные штуки (p=1) деталей запускаются на последующую операцию сразу после обработки их на предыдущей операции, независимо от всей партии. Полностью загружена в этом случае наиболее трудоемкая операция с самым длительным операционным циклом, менее трудоемкие имеют перерывы. Простои оборудования возникают из-за нарушения принципа пропорциональности (рисунок 9.2).

Рисунок 9.2 – График технологического цикла при параллельном виде движения партии деталей в производстве

В соответствии с графиком длительность технологического цикла можно определить аналитически:

$$\grave{O}_{\grave{o}\check{o}\;(\check{\imath}\;\grave{a}\check{o})} = \check{\delta}\sum_{i=1}^{\hat{\mathbf{E}}_{\hat{1}}-1} \grave{O}_{\check{o}\;\grave{o}i}/\tilde{n}_{i} + \left(n-p\right) \cdot \left(\frac{\grave{O}_{\check{o}\;\grave{o}}}{\tilde{n}}\right)_{\max} + \left(\hat{\mathbf{E}}_{o}-1\right)t_{\grave{1}\;\hat{1}}\;,$$

где $\left(\frac{\grave{O}_{\phi\;\grave{o}}}{\~{n}} \right)_{\max}$ — наибольшая длительность технологической операции;

p – количество деталей в транспортной (передаточной) партии. Производственный цикл в днях

$$\grave{O}_{\grave{o} \check{o} \; (\check{i} \; \grave{a} \check{o})} = \frac{1}{Sqf} \left(\check{\sigma} \sum_{i=1}^{\hat{E}_{\hat{1}} - 1} \grave{O}_{\emptyset \; \grave{o} i} / \tilde{n}_{i} + \left(n - p\right) \cdot \left(\frac{\grave{O}_{\emptyset \; \grave{o}}}{\tilde{n}}\right)_{\max} + \left(\hat{E}_{o} - 1\right) t_{\grave{i} \; \hat{i}} \right).$$

При *параллельно-последовательном* виде движения следующая операция начинается до полного окончания работы оборудования на предыдущей операции и осуществляется без перерывов в изготовлении партии деталей. При этом виде движения предусматривается частичное параллельное выполнение смежных операций, но партия из n изделий изготавливается на каждой операции непрерывно. Передача деталей осуществляется поштучно либо передаточными партиями p.

При параллельно-последовательном виде движения возможны следующие сочетания коротких и длинных смежных операций:

- в паре двух смежных операций вторая по счету имеет больший операционный цикл обработка первой детали на следующем рабочем месте (PM) может быть начата сразу же после обработки на предыдущем PM;
- вторая по счету имеет меньший операционный цикл, то начало обработки первой детали на последующей операции устанавливается так, чтобы к моменту окончания обработки последней детали партии на предыдущей операции на последующей были обработаны все детали этой партии, кроме последней; при этом при поступлении последней передаточной партии на следующую операцию цикл обработки откладывается вправо от точки поступления на следующую операцию, а циклы предыдущих передаточных операций влево;
- продолжительности смежных операций одинаковы, в этом случае между ними организуется параллельная обработка (рисунок 9.3).

Как видно из графика, между парами смежных операций возникает частичное совмещение операций, в течение которого возможна параллельная обработка партии. Величина совмещения при этом определяется по коротким операциям в паре смежных

$$\tau_i = T_{\text{IIIT}i}(n-p)/c_i,$$

где τ_i — длительность параллельного участка, мин.

№ опе- ра- ции	$T_{\text{шт}i}$, мин	c_i	$T_{ m on} = \ = rac{nT_{ m o lpha i}}{c_i} \; ,$ мин	Длительность технологического цикла при паралледьно-последовательном виде движения при $n=6$ шт., $p=2$ шт., $t_{\rm MO}=1$ мин
1	1	1	6	$\tau_1 = T_{\text{int}}(n-p) / c_1$
2	3	1	18	$\tau_2 = T_{\text{urr}3}(n-p) / c_3$
3	2	2	6	
4	6	2	18	$ au_3 = T_{\text{urr}3}(n-p) / c_3$
5	1	1	6	$\tau_4 = T_{\text{urr5}}(n-p) / c_5$
				$T_{\text{тц}} = 42 \text{ мин}$

Рисунок 9.3 – График технологического цикла при параллельно-последовательном виде движения партии деталей в производстве

Технологический цикл при параллельно-последовательном виде движения аналитически определяется как

$$\hat{O}_{\eth \circ \ (\dagger \grave{\mathsf{a}} \eth - \dagger \ \widehat{\mathsf{n}} \check{\mathsf{e}})} = \left[n \sum_{i=1}^{\hat{\mathsf{E}}_{\widehat{\mathsf{1}}}} \frac{\hat{O}_{\emptyset \ \delta i}}{c_i} - (n-p) \sum_{i=1}^{k-1} \left(\frac{\hat{O}_{\emptyset \ \delta i}}{c_i} \right)_{\min} + (K_{\widehat{\mathsf{1}}} - 1) \cdot t_{\widehat{\mathsf{1}} \ \widehat{\mathsf{1}}} \right],$$

аналитический расчет производственного цикла в днях

$$\hat{O}_{\delta \circ (\hat{\mathbf{r}} \grave{\mathbf{a}} \delta - \hat{\mathbf{r}} \hat{\mathbf{n}} \check{\mathbf{n}} \check{\mathbf{e}})} = \frac{1}{Sqf} \left[n \sum_{i=1}^{\hat{\mathbf{E}}_{o}} \frac{\hat{O}_{\emptyset \delta i}}{c_{i}} - (n-p) \sum_{i=1}^{k-1} \left(\frac{\hat{O}_{\emptyset \delta i}}{c_{i}} \right)_{\min} + (\mathbf{K}_{\hat{\mathbf{1}}} - \mathbf{1}) \cdot t_{\hat{\mathbf{1}} \hat{\mathbf{1}}} \right],$$

где $\left(\frac{\grave{O}_{\emptyset}}{c}\right)_{\min}$ — длительности коротких операций в паре смежных операций;

k-1 – количество сочетаний коротких операций по сравнению с длинными.

Для оценки величины сокращения длительности производственного цикла при переходе от последовательного вида движения к параллельному или параллельно-последовательному принято использовать коэффициент параллельности К парал, который рассчитывается как отношение длительности цикла при параллельном или параллельно-последовательном движении к длительности цикла при последовательном виде движения, например

$$\hat{E}_{\tilde{i} \; \tilde{a}\tilde{d}\tilde{a}\tilde{e}} = \frac{\hat{O}_{\tilde{i} \; \tilde{o} \; (\tilde{i} \; \tilde{a}\tilde{d}\tilde{a}\tilde{e} - \tilde{i} \; \tilde{n}\tilde{e})}}{\hat{O}_{\tilde{i} \; \tilde{o} \; (\tilde{i} \; \tilde{i} \; \tilde{n}\tilde{e}\tilde{a}\tilde{a})}} \, .$$

Порядок выполнения работы

- 1. Ознакомиться с теоретическими положениями и методическими рекомендациями, изложенными выше.
- 2. Сформировать исходные данные по своему варианту (таблицы 9.1, 9.2).
- 3. Построить графики передачи деталей по каждому из видов движения.
- 4. Определить технологический цикл по всем видам движения в минутах и производственный цикл в днях аналитически, проверив правильность графического способа. Оценить, как сокращается длительность технологического цикла в абсолютных и относительных величинах.
- 5. Определить технологический и производственный цикл при трех видах движения, если объем передаточной партии увеличится вдвое.
- 6. Определить технологический и производственный цикл при трех видах движения, если обработка на всех операциях будет проводиться на одном станке.
 - 7. Результаты вычислений по заданиям 4, 5, 6 свести в таблицу 9.3.

Сделать выводы о влиянии размера передаточной партии и количества станков, участвующих в выполнении операции, на технологический шикл.

8. Перечислить достоинства и недостатки рассмотренных видов движения и области их применения.

Исходные данные

- 1. Обработка изделия производится на 6-ти операциях.
- 2. Длительность операций по вариантам приведена в таблице 9.2.
- 3. Режим работы: в две смены по 8 ч.
- 4. Количество рабочих дней в году 254.
- 5. Размер обрабатываемой и передаточной партий приведены по вариантам в таблице 9.3.
- 6. Время межоперационной передачи транспортной партии с операции на операцию составляет 1 мин.
 - 7. Количество станков (одинаковое для всех вариантов):
 - 1 операция 3 станка;
 - 2 операция 1 станок;
 - 3 операция 1 станок;
 - 4 операция 2 станка;
 - 5 операция 2 станка;
 - 6 операция 1 станок.

Таблица 9.1 – Норма времени на операции по вариантам

No	Варианты														
опера-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ции		Норма времени $T_{\text{шті}}$, мин													
1	12	6	15	18	9	12	6	15	5	21	8	14	6	12	9
2	8	4	10	7	3	7	8	11	10	2	12	6	8	5	5
3	6	8	9	2	4	6	3	9	9	8	5	5	8	8	12
4	10	5	6	5	16	8	4	8	8	9	10	8	10	12	5
5	5	7	12	10	8	15	11	6	5	7	5	12	5	4	8
6	3	9	4	6	5	3	5	7	2	3	8	3	12	6	10

Таблица 9.2 – Партии деталей по вариантам

Показатель		Варианты													
Показатель	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Размер обра- батываемой партии <i>n</i> , шт.	100	150	150	160	120	100	160	180	60	90	200	80	120	100	80
Размер передаточной партии <i>p</i> , шт.	25	15	15	20	20	10	20	20	0	15	40	10	20	25	20

Таблица 9.3 – Результаты расчетов к заданиям 4, 5, 6

Задания	Том		FILLIO		и пре		Величина сокращения производ-					
			гичес гвенн				ственного цикла при переходе от последовательного вида движения					
		оде:	БСПП	ын ц	,rii(,iDi		к другим видам					
	$T_{\text{TII (I)}}$	юсл.)	Ттц (парал.)		$T_{\text{тц (парал-}}$ послед.)		Параллельный вид движения		Параллельно- последовательный вид движения			
	мин	дн.	мин	дн.	мин	дн.	дн.	Кпар	дн.	Кпар		
Задание												
№ 4												
Задание № 5												
Задание № 6												

Содержание отчета

- 1. Цель работы.
- 2. Исходные данные.
- 3. Графоаналитический расчет технологического и производственного циклов.
- 4. Результаты выполнения заданий 4, 5, 6 представить в таблице 9.3.
 - 5. Выводы.

Учебное издание

ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА И УПРАВЛЕНИЕ ПРЕДПРИЯТИЕМ

Лабораторный практикум

Составители: ВАСИЛЕВИЧ Валерий Иванович КОСТЮКЕВИЧ Елена Николаевна ШАРКО Валерий Михайлович

Редактор *Т. В. Кипель* Компьютерная верстка *Н. А. Школьниковой*

Подписано в печать 05.06.2012. Формат $60 \times 84^{-1}/_{16}$. Бумага офсетная. Ризография. Усл. печ. л. 5,00. Уч.-изд. л. 3,91. Тираж 100. Заказ 361.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Пр. Независимости, 65. 220013, г. Минск.