Nome e Cognome:		
	(IN STAMPATELLO MAIUSCOLO)	£.

Codice Persona o Matricola:

RETI LOGICHE

O Prof. William Fornaciari

O Prof. Gianluca Palermo

O Prof. Fabio Salice

Appello del 16 Febbraio 2023

Prima di iniziare la prova si prega di leggere con attenzione i seguenti punti:

- Il tempo massimo a disposizione per svolgere la prova é di 1h:30min
- Non è permessa la consultazione di alcun materiale didattico durante lo svolgimento della prova. È severamente vietato colloquiare durante l'esame con i compagni di corso o utilizzare telefoni, PC, libri e appunti.
- In caso-di necessità, il docente potrà richiedere lo svolgimento di una prova orale.
- Tutte le risposte devono essere riportate su questi fogli. Non saranno considerate valide le risposte fornite su fogli diversi da quelli contenuti in questo plico.
- Si segnali chiaramente sulla prima pagina il docente di riferimento
- Il punteggio degli esercizi è da considerarsi INDICATIVO
- LE PARTI SCRITTE IN FORMATO NON LEGGIBILE DAL DOCENTE SARANNO CONSIDERATE ERRATE IN FASE DI CORREZIONE

	Esercizio 1	Esercizio 2	Esercizio 3	Esercizio 4	Esercizio 5
PUNTI	8	6	4	8	6
Esame			*		
TOTALE	,				

(a) Date le due espressioni algebriche F(A,B,C)=B'C+AB+BC' e G(A,B,C)=B'C+BC'+AC, si dimostri attraverso un solo processo algebrico che F e G sono identiche, ricordandosi che F xor G = 0 se solo se F e G producono sempre le stesse uscite. È necessario mostrare i passaggi fatti.

$$W = B'C$$

$$Z = BC'$$

$$F \times ORG = (W + AB + Z) (W + Z + AC) + (W + AB + Z) (W + Z + AC)$$

$$= (W \cdot AB \cdot Z) (W + Z + AC) + (W + AB + Z) (W \cdot Z \cdot AC) =$$

$$= W (A + B) \cdot Z (W + Z + AC) + (W + AB + Z) (W \cdot Z \cdot (A + C))$$

$$= W (A + B) \cdot Z \cdot AC + AB \cdot W \cdot Z (A + C)$$

$$= W (A + B) \cdot Z \cdot AC + AB \cdot W \cdot Z (A + C)$$

$$= W (A + B) \cdot Z \cdot AC + AB \cdot W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot Z (A + C)$$

$$= W \cdot Z \cdot ACB + AB \cdot C \cdot W \cdot Z = W \cdot$$

(b) Dato il circuito in figura, si scriva la forma algebrica di H(A,B,C) e si determini se essa è uguale all'espansione di Shannon di F(A,B,C) rispetto a B. È necessario mostrare i passaggi fatti.

(c) Si semplifichino le seguenti espressioni usando le proprietà dell'algebra di Boole:

$$-(A+B')(A+BC) = AA + ABC + BA + BAC$$

$$A(I+BC+B') = A$$

$$AB = -A'B'CD' + A'BC + A'BD + A'BC' + A'BCD' = ACD (B+B) + AB (C+C)$$

$$AB = ACD + AB (1+B)$$

$$ACD + AB$$

$$ACD + AB$$

Calcolare con il metodo di Quine-McCluskey una copertura minima della seguente tabella di copertura. Si mostrino chiaramente i passaggi fatti, elencando le regole applicate. Si applichino ordinatamente, ESSENZIALITA' ⇒ DOMINANZA DI RIGA ⇒ DOMINANZA DI COLONNA per poi ripartire dalla essezialità. Ad ogni passaggio possono essere applicate diverse essenzialità o diverse dominanze. Per ogni passo riportare chiaramente le trasformazioni avvenute. Prima di ripartire con una nuova essenzialità, si riporti la tabella intermedia.

Implicanti	m_{X0}	m_{X1}	m_{X2}	m_{X3}	m_{X4}	m_{X5}	m_{X6}	m_{X7}	m_{X8}	m_{X9}	COSTO
I1	x	X	X	X	х		х	x		X	3
I2		X	Х	Х	х	х		х			3
I3						х		X	X		3
I4						X		x	x	х	2
I5	X		х	X	х		x	x		x	2
I6		x	X		x					X	2
I7	X		Х			X	Х				2

	Α	В	С	D	E	F	G	Н	I	J	COSTO
1	Х	X	Х	Х	Х		Х	Х		X	3
2		Х	Х	Х	Χ	Х		Х			3
3						Х		Х	Х		3
4						Х		Х	Х	Х	2
5	Х		Х	Х	Χ		X	Х		Х	2
6		Х	Х		Χ					Х	2
7	Х		Х		·	Х	Х				2

Dominanza di riga

4 domina 3

	Α	В	С	D	E	F	G	Н	1	J	COSTO
1	X	X	X	Х	X		X	X		X	3
2		Х	Х	Х	Х	Х		X			3
4						X		X	Х	X	2
5	Х		X	Х	X		X	X		X	2
6		Х	X		X					X	2
7	Х		X			X	Х				2

Dominanza di colonna

D domina E

D domina H

D domina C

I Domina J

I Domina F

A domina G

	Α	В	D	1	COSTO
1	X	X	X		3
2		X	X		3
4				X	2
5	X		X		2
6		X			2
7	X				2

Essenzialità

4 essenziale

F = 4 + ...

	Α	В	D	COSTO
1	Х	X	Х	3
2		Х	Х	3
5	Х		X	2
6		Х		2
7	Х			2

Dominanza di Riga

1 domina 2

5 domina 7

	Α	В	D	COSTO
1	Х	Х	Х	3
2		Х	Х	3
5	Х		Х	2
6		Х		2

TABELLA CIRCOLARE: unica soluzione 1 – ogni altra copertura ha costo maggiore.

F = 4 + 1

ESERCIZIO 3

Data la seguente specifica VHDL di un circuito combinatorio con quattro ingressi a, b, c, d e due uscite f e g, lo si realizzi usando un dispositivo programmabile PAL con OR a due ingressi. Non si applichi nessuna semplificazione alle espressioni riportate. Si mostrino esplicitamente i percorsi di retroazione uscita-ingresso se necessari.

```
F = (AB) + (\overline{B})(\overline{C})(\overline{D})
library ieee;
use ieee.std_logic_1164.all;
                                      = AB+BCD
entity esercizio_PAL is
port( a : in std_logic;
   b : in std_logic;
                                  X= A+B.D
   c : in std_logic;
                                 6 = C + (AB) + X = (C+ AB) + X
   d : in std_logic;
   f : out std_logic;
   g : out std_logic; );
end entity;
architecture rtl of esercizio_PAL is
   signal x : std_logic;
begin
   f <= (a and b) or ((not b) and (not c) and d);
   g \le c or ((not a) and b) or x;
   x \le a \text{ or ((not b) and d)};
end rtl;
```

Si faccia uso dello schema sotto riportato per la soluzione, mostrando chiaramente i passaggi svolti.

Si deve progettare un contatore caratterizzato dal seguente ciclo di conteggio, usando obbligatoriamente le tre tipologie di flip-flip indicate in figura (D per Q2, T per Q1 e JK per Q0). Il reset/stato iniziale è "000".

Q_2	Q_1	Q_0		
0	0	0	~	RESET
0	0	1	1	
0	1	0		
1	0	1		

Si risponda alle seguenti domande:

- Si determinino le funzioni di eccitazioni dei bistabili, riportandole anche nella tabella delle eccitazioni riportata qui sotto;
- Si sintetizzino le reti combinatorie ottimizzate corrispondenti alle funzioni di eccitazione;
- Si disegni il circuito completo del contatore così progettato, indicando anche i segnali di clock e reset.

• Facendo poi uso di un contatore binario modulo 4 (00->01->10->11->00...), si progetti la logica necessaria per ottenere in uscita lo stesso ciclo di conteggio presente in tabella, e si disegni il circuito

Data la seguente tabella degli stati di una macchina non completamente specificata,

S	X=0	X=1
A(RST)	I,00	-,01
В	C,00	F,-1
С	B,0-	-,00
D	A,10	F,-0
Е	B,10	E,10
F	В,-0	-,10
G	B,01	A,0-
Н	C,0-	E,01
I	A,01	B,0-

Si risponda ai seguenti punti da risolvere uno dopo l'altro.

- Si dica se la macchina è di Mealy o di Moore;
- Si effettui l'analisi di raggiungibilità eliminando gli stati non raggiungibili;
- Si mostri l'analisi di compatibiltà sulla macchina data applicando il metodo di Paul-Unger (tabella delle implicazioni);
- Si identifichino le classi di massima compatibilità usando l'algoritmo ad "albero";
- Si riscriva la tabella degli stati ridotta usando le classi di massima compatibilità;

È necessario mostrare i passaggi fatti.

	X-70	J. mar. I
9	₹,00	8,01
8	9,01	4,00
X	کی -0	-,10