Cryptography – Questionnaire 4

Name:	
Matr.:	

"One-liners" -1+2+4=7P

Exercise 4.1

Let F be a PRP. How do you obtain a PRF from F? Answer:

Exercise 4.2

Let F be a PRP. Sketch graphically the computation of F-NMAC.

Exercise 4.3 2P+2P

Let F be a PRF with block length l(n) = n. Consider the following two MAC schemes where in both cases $\mathsf{Gen}(1^n)$ outputs $k \in \{0,1\}^n$ and $\mathsf{Vrf}_k(t,m)$ outputs 1 iff $\mathsf{Mac}_k(m) = t$. The message space is $(\{0,1\}^n)^+$. We can write every message m as $m = m^{(1)}||\cdots||m^{(|m|/n)}|$ with $m^{(i)} \in \{0,1\}^n$ for $1 \le i \le |m|/n$. Show for each of the following two choices of Mac_k how Eve can use her oracle access to Mac_k to forge a tag for the message 0^n0^n in the MAC-experiment:

- (a) $\operatorname{\mathsf{Mac}}_k(m) := F_k(m^{(1)}) \oplus \cdots \oplus F_k(m^{(|m|/n)})$ Answer:
- (b) $\operatorname{\mathsf{Mac}}_k(m) := F_k^*(m)$ <u>Answer:</u>

Recall that $F_k^*(m)$ for $m = m^{(1)} || \cdots || m^{(d)}$ is the "cascading-construction" defined by the algorithm:

- Set $k^{(0)} := k$
- For i = 1 to d: set $k^{(i)} := F_{k^{(i-1)}}(m^{(i)})$.
- Output $F_k^*(m) := k^{(d)}$

Questions-1P each = 3P

	true	false
Let F be a PRP of block length n . Define an ES $\mathcal{E} = (Gen, Enc, Dec)$		
with $Gen(1^n)$ choosing a key k uniformly at random from $\{0,1\}^n$ and $Enc_k(x_1\ldots x_{2n})=F_k(x_1\ldots x_n) F_k(x_{n+1}\ldots x_{2n})$. $\mathcal E$ is CPA-secure.		
Let F be a PRP. Then there is a PPT adversary which can distinguish F from a random-permutation-oracle with non-zero advantage.		
Let F be a PRF. F -rCTR Mode, i.e. $Mac_k(m) := ctr m^{(1)} \oplus F_k([ctr+1]) \dots m^{(t)} \oplus F_k([ctr+t]) $ yields a secure MAC.		