Islamabad Campus

Information Security (CS3002) (CS)

Course Instructor(s):

Dr. Sayed Qaiser Ali Shah, Ms. Urooj Ghani,

Mr. Muhammad Aadil Ur Rehman, Mr. Muhammad Shmayel Ullah Section(s): (A,B,C,D,E,F,G,H,Y,Z)

Sessional-II Exam

Total Time (Hrs): Total Marks: 55 **Total Questions:** 4

Date: Nov 4, 2024

Student Signature

Roll No

Course Section

Do not write below this line.

Attempt all the questions.

Instructions:

Make sure you have 5 different printed pages

Q3 and Q4.b are to be solved on Answer Sheet provided separately H.

Solve the remaining questions on Question Paper. iii.

Q1: Sarah and Mike are communicating using Internet for communication. They want to make sure that their communication should not be intercepted by an attacker.

a. They are using Asymmetric encryption, in which each user has two keys i.e. Private Key and Public Keys, which are issued by Certification Authority in the form of Digital Certificate. They want to achieve Confidentiality, Authentication, Integrity and Non-Repudiation using their Private and Public Keys. Suppose Sarah is sending a Message. Fill the blanks on the question paper using the format e.g. Pub-Name and Pri-Name, where Pub is Public Key, Pri is [9 Marks] Private key and name is the party name e.g. Mike.

National University of Computer and Emerging Sciences

Islamabad Campus

		Decryption
	Encryption	Add Sarah Pri Mike
Confidentiality	Aub Secreth Mik	a. Mive
Integrity	HUM) -> Peb Mike	Distaike, Rub Sarah.
Non-Repudiation	Pri Sonal, Publike	A I I - HAN -
Digital Signature	Disarah	Primite, Dub South
Authentication	Prisarah, Pub Knike	Pub Sout od
Digital Certificate	Pri Sarrowh of	I Production L

Mike will get Public key of Sarah in a Digital Certificate Issued by CA (certification Author

To Achieve Confidentiality and Authentication of a single message it should be encrypted using Puber Pi Sanah first and then encrypted ii. Pub Mike

Mike will decrypt the message received from step-il using Pi Mike then Pub Sarah.

b. The Integrity of message can also be achieve using Hashing. Suppose Sarah is sending a message "Hello" and the pre-shared key is 5. How Sarah and Mike will achieve Integrity and Non-Repudiation. You can use Variable "H" for Hashing output. Fill the blanks and make sure [6 Marks] that you perform hashing in a correct sequence.

III.

Q2: Alice and Bob wish to communicate securely over an insecure channel. After authentication, they decide to use the Diffie-Hellman key exchange to generate a shared secret key. Here are the details of their setup:

q = Select a value between 1: α = Select a Smallest Possible		17	[1 mark] [2 marks]
Sessional-II Exam, Fall 2024	FAST School of Computing	13 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Page 2 of 5
		15	

National University of Computer and Emerging Sciences Islamabad Campus

XAlice = 4 XBob = 5

impute the following for Alice and Bob:	Bob
Alice	
q= 11	q=17
α= 3	α=3
XAlice = 4 YA = X M mod q = 3 4 mod 17 = 13	X800 = X48 mod av [3 marks] = 35 mod 17 = 5
K= [3 marks] - (18) mod (7) = (5) mod (7) = 13	(YA) * mod cy = (13) * mod 17 = 13

- Q3: Encrypt the plaintext "System is hacked" using a columnar transposition cipher. Use the key "SUN". Solve this question in Answer Sheet.
- Q4: The IT department at FAST NUCES recently discovered a major network security issue. For months, the internet speed on the faculty network had been painfully slow. Upon investigation, they found the surprising culprit: students had been secretly accessing the faculty internet by either guessing weak passwords or bypassing security measures!

This unauthorized access not only slowed down internet speed but also put sensitive faculty data at risk. To address this, the IT team decided to implement a firewall with stronger security protocols to prevent students from accessing restricted networks.

However, just as the firewall was being set up, the system encountered a mysterious encrypted log file titled "Firewall Setup." It seemed like an intruder had left this file as a challenge, and only by decrypting it could the IT team fully restore the network security.

Case Details

File: "Firewall Setup"

Encryption Algorithm: AES with a 128-bit key A cryptic note attached to the file reads: Message in English: "WiFi is Mine Now"

Message in Hex: 57 69 46 69 20 69 73 20 4D 69 6E 65 20 4E 6F 77 21

essag	ge in	nex.	5/ 09	40 05	200-	102			05 20	72 01	,,,,,,,				
w	î	F	ī		1	5		M	i	n	е		N	0	w
57	69	46	69	20	69	73	20	4D	69	6E	65	20	4E	6F	77

Key in English: "Catch if U Can:)"

National University of Computer and Emerging Sciences

Key in Hex: 43 61 74 63 68 20 69 66 20 55 20 43 61 6E 3A 29 C a h C 66 20 **3A** 29 6E 69 55 20 43 61 20 68 63 74 43 61

57	20	4D	20
69	69	69	4E
46	73	6E	6F
69	20	65	77

43	68	20	61
61	20	55_	6E
74	69	20,	3A
63	66	43 4	29

Message Block

Key Block 403

Using the Mix Columns transformation from the AES algorithm, determine the 2nd byte of the 3rd word of the given message matrix. (01 * 20) 由 (02 * 4F) 由(01 * 77)

a. Write the equation below to find 2nd byte of the 3rd word.

[2 marks]

(62×4) (6×4) (6×40) (6×40) 13×55) \$ (6 Ex 13) \$ (6 Ex 43) 46 (6) 4 (6) (6)

b. Solve the equation on the Answer sheet and show complete working to find 2nd byte of the 3rd

c. How many total words are generated after completing the key expansion in AES-128? [2 marks] Use the below table for your Answer-

Total Words:

How the number you have written above comes?

Total 11 keys each key has 4 words 30

02	03	01	01
01	02	03	01
01	01	02	03
03	01	01	02

Predefined Matrix

11	E.A.	Fib	RO	ON	MATR	XIX			
01	02	04	08	10	20	40	80	1b	36
				00					
				00					00
00	00	00	00	00	00	00	00	00	00

National University of Computer and Emerging Sciences

Islamabad Campus

Given the initial key and the expanded words provided in the table below,

W0	W1	W2	W3	W4	W5	W6	W7	W8	W9	VV10
						_	10.00	2000	Average .	W10
63	66	43	29	08	7E	3B	12	85	ОВ	9F
74	69	20	ЗА	6C	05	25	1F	14	11	AO
61	20	55	6E	0C	20	79	17	1C	30	
				31	37	11		350-		17
43	68	20	61	5F		17	56	22	15	49

d. Complete the below table to find the values of W11.

[3 marks]

Note: DO NOT COMPUTE JUST PUT THE DESIRED VALUES & SYMBOLS.

W11:

								5817	1	•				P U	- 512	-2197	
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	CS	7D	FA.	59	47	FO	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	FI	71	DS	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB.	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B*	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	Do	EF	AA	FB	43	4D	33	85	457	F9	-02	7F	50	-30	9F	AS
	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
X	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	OB	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	ES	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	CI	1D	9E
	E	EI	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	OD	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

(a) S-box