Spis treści

1	Model McCullocha-Pittsa	1
	1.1 Przykład	1
	1.2 Reprezentacja wektorowa	
	Liniowa separowalność 2.1 Przykład	2

1 Model McCullocha-Pittsa

Jest to model matematyczny mający naśladować działanie fizjologicznych neuronów. Składa się on z n wejść u_i o wagach w_i i jednego wyjścia y. Neuron aktywuje się, gdy suma iloczynów wejść i wag jest większa od pewnej wartości progowej θ .

$$n_i, y \in \{0.0, 1.0\} \subset \mathbb{R}$$

$$w_i, \theta \in \mathbb{R}$$

$$f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

$$y(\vec{u}, \vec{w}) = f((\sum_{i=1}^n w_i u_i) - \theta)$$

Diagram 1: Wizualizacja modelu McCullocha-Pittsa

1.1 Przykład

u_1	u_2	y
0	0	0
0	1	0
1	0	0
1	1	1

Tabela 1: Tabela prawdy dla funkcji logicznej AND

•
$$u_1 = u_2 = 0 \rightarrow y = 0 = f(-\theta) \leftrightarrow \theta \ge 0$$

•
$$u_1 = 0, u_2 = 1 \rightarrow y = 0 = f(w_2 - \theta) \leftrightarrow w_2 < \theta$$

•
$$u_1 = 1, u_2 = 0 \rightarrow y = 0 = f(w_1 - \theta) \leftrightarrow w_1 < \theta$$

•
$$u_1 = u_2 = 1 \rightarrow y = 1 = f(w_1 + w_2 - \theta) \leftrightarrow w_1 + w_2 \ge \theta$$

$$\theta = 3, w_1 = 2, w_2 = 2$$

1.2 Reprezentacja wektorowa

$$\vec{u} = (u_1, u_2, \dots, u_n)$$

$$\vec{w} = (w_1, w_2, \dots, w_n)$$

$$y(\vec{u}, \vec{w}) = f(\vec{w} \cdot \vec{u} - \theta)$$

Liniowa separowalność $\mathbf{2}$

$$U_{-} = \{\vec{u_1}, \dots, \vec{u_n}\} \subset \mathbb{R}^n$$

$$U_{+} = \{\vec{v_{n+1}}, \dots, \vec{v_{n+m}}\} \subset \mathbb{R}^n$$

$$U_{-} \cap U_{+} = \emptyset$$

Mówimy, że zbiory wektorów (wejść) U_- i U_+ są liniowo separowalne, jeśli istnieje jakikolwiek \vec{w} taki, że: $\vec{w} \cdot \vec{u} <$ $0: \vec{u} \in U_{-}$ oraz $\vec{w} \cdot \vec{u} > 0: \vec{u} \in U_{+}$. Innymi słowy jeśli istnieje hiperpłaszczyzna, która dzieli zbiory U_{-} i U_{+} .

Przykład 2.1

Dla bramki AND mamy:

$$U_{-} = \{(0,0), (0,1), (1,0)\}, U_{+} = \{(1,1)\}$$

$$\vec{w} = (2, 2), \theta = 3$$

Diagram 2: Liniowa separowalność dla bramki AND