

1 / 49

FIG. 1

2/49

FIG. 2

3/49

FIG. 3

4/49

FIG. 4

5/49

FIG. 5

6/49

FIG. 6

7/49

FIG. 7

8/49

9/49

FIG. 8B

10/49

FIG. 9A

FIG. 9B

FIG. 9C

11/49

TABLE 1

Primer name	F#	Sequence (5'→ 3')	SEQ ID NO:
MTH1	10779	TATGTATCATACACATACGATTAGGT	1
MTH2	10780	ACCGCCTCTCCCCGCGCGT	2
GAL4r2	12667	GTTCCGAAGGGGGCGATACTCAACTGCTTTG	3
MTH5	12505	TTGGCCAAGGGTATCTAGAAGCTCTGCAGACGCGT	4
VP16r2	12668	GTTCCGAAGGCCACCGTACTCGTCAATTCAAG	5
SV40pAf	12016	GGCCAAAGGAACTTGTTATTGAGCTTATAATG	6
SV40pAr	561	CTCTGACTTGAGCGTCGATTT	7
p53f2	12669	CGGAACAAGGGAAATTCCCTGTACCGAGACC	8
SVTf2	12670	CGGAACAAGGGAAATTCCCGGGATCTGAATTTC	9
CMVr2	7221	TCGAAAGGTCGAGTCGACCTGCAGCTG	10
CMVf	6945	AATTACATTGATTATTGAGTAGTTA	11
GFP-Xhof	7220	TCGAAAGGTAATGCCAGCAAAGGAGAAC	12
GFP-Notr	6682	GGCCAAGGTTGTAGAGCTATCCAT	13
BGHf2	7222	GGCCAAGGCTGAATGGGCCGCGATAGT	14
BGHr	6948	AAGCCATAGAGCCCGGCCA	15
CMVr3	8417	GTTCCGAAGGTCGAGTCGACCTGCAGCTG	16
GFPf3	8418	CGGAACAAGGATGCCAGCAAAGGAGAAC	17
GFP3	8420	TAGGCCAAGGTTGTAGAGCTATCCATGC	18
BGHf3	8419	GGCCTAAAGGTGAATGGGCCGCGATAGT	19
T7top	9304	GAAGGAGTAATACGACTCACTATAGGGAGCCACCATGGGCCCTTCGGAAC	20
T7bottom	9305	GTTCCGAAGGCCATGGTGGCTCCCTAGTGAAGTCGTATTACTCCTTC	21
T7amp	9306	GAAGGAGTAATACGACTCACT	22
T3top	9661	GGCCTAAAGGTCCCTTAGTGAAGGTAATTGCCGCGC	23
T3bottom	9662	GCGCGCAATTAAACCTCACTAAAGGGACCCCTTAGGCC	24
lacZf2	10632	CGGAACAAGGATGATAGATCCGTCGTTTACA	25
lacZ1k2	10770	TAGGCCAAGGGGACCATTTCAATCCGACCT	26
lacZ2k2	10771	TAGGCCAAGGGGAGGCACTTCACCGCTTGCCA	27
lacZ3k2	10772	TAGGCCAAGGTTGACACCAAGCCAATGGTA	28

FIG. 9D

12/49

FIG. 10A

SAMPLE #	GAL4+pA	VP16+pA	pGene/lacZ	GAL4+p53+pA	VP16+T+pA	p53-VP16
1			0.26 μg	p0.37 μg	p0.37 μg	
2			0.4 μg	p0.3 μg	p0.3 μg	
3			0.4 μg			p0.6 μg
4			0.4 μg	10.3 μg	10.3 μg	
5		10.3 μg	0.4 μg	10.3 μg	10.3 μg	
6	10.3 μg		0.4 μg			
7			0.4 μg	4.5 μl PCR	4.5 μl PCR	
8		4.5 μl PCR	0.4 μg	4.5 μl PCR	4.5 μl PCR	
9	4.5 μl PCR		0.4 μg			4.5 μl PCR

MAMMALIAN TWO-HYBRID

FIG. 10B

13/49

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 11D

FIG. 11E

FIG. 11F

14/49

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 12D

15/49

FIG. 13

16/49

FIG. 14

17/49

FIG. 15

18/49

FIG. 16

19/49

FIG. 17

20/49

MCS FOR pcDNA-GW-ΔT(sc) AND pENTR-ΔT(sc)

L Y K K A G S A A A G R A D P A F L Y K V
 ... TTC TAC AAA GCA GGC TCC CGC GCC GCG GAA CTC GAG AAA GGG GGC GAC CCA CCT TTC TTC TAC AAA GTG
BsrG I Not I Xba I Asc I
 At tL2/B2 At tL1/B1 BsrG I

FIG. 18

21/49

FIG. 19

22/49

FIG. 20

23/49

FIG. 21

24/49

FIG. 22A

25/49

1 ctttcctgctt ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga
61 taccgctcgc cgccggccaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaga
121 gcccata cgccaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca
181 cgacagggtt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc
241 tagccaggaa gagttttag aaacgcaaaa aggccatccg tcaggatggc cttctgtta
301 gtttgatgcc tggcagttt tggcgggcgt cctgcccgc accctccggg ccgttgcttc
361 acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcggtt caccgacaaa
421 caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcttttat ttgatgcctg
481 gcagttccct actctcgctt taacgcttagc atggatgttt tccctgtcac gacgttgtaa
541 aacgacggcc agtcttaagc tcggggccca aataatgatt ttatggatgttt tgatagtgac
601 ctgttcgttg caacaaattt atgagcaatg ctttttata atgccaactt tgtacaaaaa
661 agcaggctcc gcccggccccc cttcaccatg nnnnnnnnna aggggtggcg cggccaccca
721 gctttcttgc acaaagggtt cattataaga aagcattgtt tatcaatttg ttgcaacgaa
781 caggtcaacta tcagtcaaaa taaaatcatt atttgccatc cagctgatattt cccctatagt
841 gagtcgtatt acatggcat agctgtttcc tggcagctt gggccgtgtc tcaaaatctc
901 tgatgttaca ttgcacaaga taaaatata tcatcatgaa caataaaaact gtctgcttac
961 ataaacagta atacaagggg tgttatgagc catattcaac ggaaacgtc gaggccgcga
1021 taaaattcca acatggatgc tgatttat gggtataaat gggctcgcga taatgtcggt
1081 caatcagggtg cgacaatcta tcgcttgcattt gggaaagcccg atgcgccaga gttgttctg
1141 aaacatggca aaggtagcgt tgccaatgat gttacagatg agatggtcg actaaactgg
1201 ctgacgaaat ttatgcctt tccgaccatc aagcattttt tccgtactcc tgatgtatgca
1261 tggttactca ccactgcgtat ccccgaaaaa acagcattcc aggtattaga agaatatcct
1321 gattcagggtg aaaatattgt tgatgcgttgcgttcc tggccgttgcatttgcatttgcatt
1381 cctgtttgtt attgtcctt taacagcgat cgcgtatttc gtctcgctca ggcgaatca
1441 cgaatgaata acgggttgcgtat tgatgcgttgcgttcc tggctggcct
1501 gttgaacaag tctggaaaga aatgcataaa cttttgcatt tctcaccggg ttcagtcgtc
1561 actcatggtg atttctcaact tgataaacctt atttttgacg agggggaaatt aatagggttgc
1621 attgtatgtt gacgagtcgg aatcgcagac cgataccagg attttgcatt cctatggaaac
1681 tgcctcggtt agtttctcc ttcattacag aaacggctt ttcaaaaata tggtattgt
1741 aatcctgata tgaataaaatt gcagttcat ttgatgcgt atgagttttt ctaatcagaa
1801 ttggtaatt gttgtaaaca ctggcagagc attacgctga ctgcacggg cggcgaac
1861 tcatgaccaa aatcccttaa cgtgagttac gcgtcgttcc actgagcgtc agaccccgta
1921 gaaaagatca aaggatctt ttgagatcct tttttctgc gctaatctg ctgcttgaa
1981 aaaaaaaaaac caccgctacc agcggtgggt tggttgcgg atcaagagct accaactctt
2041 tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgttag
2101 ccgtagtttgcgttcc tttttctgc gataagtcgt gtcttaccgg gttggactca
2161 atcctgttac cagtggtgc tgccagtggc gataagtcgt gtcttaccgg gttggactca
2221 agacgatagt taccggataa ggcgcagcg tcgggctgaa cgggggggttc gtgcacacag
2281 cccagttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gcattgagaa
2341 agcgccacgc ttcccgaagg gaaaaaggcg gacaggatcc cggtaagcgg cagggcgg
2401 acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc
2461 gggttcgcc acctctgtact tgagcgtcga tttttgtat gtcgtcagg gggcggagc
2521 ctatgaaaaa acgcccagcaa cgccgcctt ttacggttcc tggccttttgcgttcc
2581 gtcacatgt t

FIG.22B

26/49

FIG. 23A

27/49

1 ctttcctgcttgc ttatcccgtt attctgtggta taaccgtatt accgcctttg agtgagctga
61 taccgctcgc cgccaggaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaa
121 gcgcccaata cgccaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca
181 cgacaggttt cccgactggta aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc
241 tagccaggaa gagttttagt aaacgcaaaa aggccatccg tcaggatggc cttctgttta
301 gtttgatgcc tggcagttt tggcgggcgt cctgcccgc accctccggg ccgttgcctt
361 acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa
421 caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg
481 gcagttccct actctcgctt taacgcttagc atggatgttt tcccaagtac gacgttgtaa
541 aacgcacggcc agtcttaagc tcggggccca aataatgatt ttatggatgtac tgatagtgac
601 ctgttcgttg caacaaattt atgagcaatg ctttttata atgccaactt tgtacaaaaaa
661 agcaggctcc gccggccgcct tgtttaactt taagaaggag cccttcaccc nnnnnnaaggg
721 tggcgcgc gacccagctt tcttgacaa agttggcatt ataagaaagc attgcttatac
781 aatttggc aacgaacagg tcactatcg tcaaaaataaa atcattattt gccatccagc
841 tgatatcccc tatagtgagt cgtattacat ggtcatagct gtttcgttgc agctctggcc
901 cgtgtctcaa aatctctgtat gttacattgc acaagataaa aatatatcat catgaacaat
961 aaaactgtct gcttacataa acagtaatac aagggggtt atgagccata ttcaacggga
1021 aacgtcgagg cccgcattaa attccaacat ggatgctgat ttatatgggt ataaatgggc
1081 tcgcgataat gtcgggcaat caggtgcgac aatctatcgc ttgtatggga agcccgatgc
1141 gccagagttt ttctgtaaac atggcaaaagg tagcgttgcc aatgtatgtt cagatgagat
1201 ggtcagacta aactggctga cggaaatttat gcctcttccg accatcaagc attttatccg
1261 tactcctgat gatgcatttt tactcaccac tgcgatcccc gaaaaaacag cattccaggt
1321 attagaagaa tattcctgatt caggtaaaaa tattgttgc ggcgtggcag tgttcgttgc
1381 ccgggttgcatt tcgattccgt tttgtattt tccttttaac agcgatcgcc tatttcgttgc
1441 cgctcaggcg caatcacgaa tgaataacgg tttgggttgc gcgagtgatt ttgatgacga
1501 gcgtaatggc tggcctgtt aacaagtctg gaaagaaatg cataaaacttt tgccattctc
1561 accggattca gtcgtcactc atggtgattt ctcacttgat aaccttattt ttgacgaggg
1621 gaaattaaata ggttgtattt atgttggacg agtcggaatc gcagaccgat accaggatct
1681 tgccatccta tggaaactgcc tcggtgagtt ttctccttca ttacagaaac ggcttttca
1741 aaaatatggt attgataatc ctgatattttaaatggcag tttcatttgc tgctcgatga
1801 gtttttctaa tcagaattttttaattggt gtaacactgg cagagcatta cgctgacttg
1861 acgggacggc gcaagctcat gaccaaaatc ccttaacgtg agttacgcgt cgttccactg
1921 agcgtcagac cccgtagaaa agatcaaagg atcttcttgc gatcctttt ttctgcgcgt
1981 aatctgctgc ttgcaaaacaa aaaaaccacc gtcaccagcg gtggtttgc tgccggatca
2041 agagctacca actcttttc cgaaggtaac tggcttgcg agagcgcaga taccaaatac
2101 tgtccttcta gtgtagccgt agttaggcca ccacttcaag aactctgttag caccgcctac
2161 atacctcgct ctgctaattcc ttttaccagt ggctgctgcc agtggcgata agtcgtgtct
2221 taccgggttgc gactcaagac gatagttacc ggataaggcg cagcggtcg gctgaacggg
2281 gggttcgtgc acacagccca gctggagcg aacgacctac accgaactga gataacctaca
2341 gcgtgagcat tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccgg
2401 aagcggcagg gtcggaaacag gagagcgcac gagggagctt ccagggggaa acgcctggta
2461 tctttatagt cctgtcggtt ttgcacccct ctgacttgat cgtcgatttt tttgtatgctc
2521 gtcaggggggg cggagcctat ggaaaaacgc cagcaacgcg gccttttac gttcctggc
2581 cttttgctgg cttttgttc acatgtt

FIG.23B

28/49

FIG. 24A

1 gacggatcg gagatctccc gatccctat ggtcgactct cagtacaatc tgctctgatg
61 ccgcatagtt aagccagtagt ctgctccctg ctttgtgtt ggaggcgct gagtagtgcg
121 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcata aagaatctgc
181 ttagggtag gcgtttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgcatt
241 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agccatata
301 tggagttccg cgttacataa cttacggtaa atggccgc tggctgaccg cccacgacc
361 cccgcccatt gacgtcaata atgacgtatg ttccatagt aacgccaata gggacttcc
421 attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt
481 atcatatgcc aagtacgccc cttattgacg tcaatgacgg taaatggccc gcctggcatt
541 atgcccagta catgaccta tgggactt tcacttggca gtacatctac gtattagtca
601 tcgctattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggttg
661 actcacgggg atttccaagt ctccacccca ttgacgtcaa tggagttt tttggcacc
721 aaaatcaacg ggactttcca aatgtcgta acaactccgc cccattgacg caaatggcg
781 gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaaccca
841 ctgcttactg gcttatcgaa attaatacga ctcaactatag ggagacccaa gctggctagt
901 taagctatca acaagtttg acaaaaaagc aggctccgcg gccgccccctt caccatgnnn
961 nnnnnnaagg gtggcgcgcg cgaccagct ttcttgata aagtgggtga tctagagggc
1021 cgcgggatcg aaggtaagcc tatccctaac cctctctcg gtctcgattc tacgcgtacc
1081 ggttagtaat gagttaaac gggggaggct aactgaaaca cggaaaggaga caataccgga
1141 aggaacccgc gctatgacgg caataaaaag acagaataaa acgcacgggt gttgggtcg
1201 ttgttcataa acgcgggggtt cggtcccagg gctggcactc tgcgatacc ccaccgagac
1261 cccattgggg ccaatacggc cgcgttctt cttttcccc accccacccc ccaagttcgg
1321 gtgaaggccc agggctcgcg gccaacgtcg gggcggcagg ccctgccata gcagatctgc
1381 gcagctgggg ctctaggggg tatccccacg cgccctgttag cggcgcattt agcgcggcgg
1441 gtgtgggt tacgcgcagc gtgaccgcta cacttgcag cggccctagcg cccgctcctt
1501 tcgcttctt cccttcctt ctcgcccacgt tcgcccgtt tccccgtcaa gctctaaatc
1561 ggggcattttttttttaggttgcgattttagt ctttacggca cctcgacccc aaaaaacttg
1621 attagggtga tggttcacgt agtggggcat cgcctgtata gacgggtttt cgccctttga
1681 cgttggagtc cacgttctt aatagtggac tcttgcgttca aactggaaaca acactcaacc
1741 ctatctcggt ctattcttt gatttataag ggattttggg gatttcggcc tattggtaa
1801 aaaatgagct gatttaacaa aaatttaacg cgaattaatt ctgtggaaatg tgtgtcagtt
1861 agggtgtgga aagtccccag gctcccccagc aggccagaatg atgcaaagca tgcatactcaa
1921 ttatgcagca accaggtgt gaaagtcccc aggctccca gcaggcagaa gtatgcaaag
1981 catgcatactc aattagtctcg caaccatagt cccgccccata actccgc cccgccccct
2041 aactccgccc agttccgccc attctccgc ccatggctga ctaattttt ttatgt
2101 agaggccgag gcccgcctcg cctctgagct attccagaag tagtggaggag gctttttgg
2161 aggccctaggc ttttgcacaa agctccggg agcttgcata tccatttcg gatctgatca
2221 agagacagga tgaggatcg ttcgcataat tgaacaagat ggattgcacg caggcttc
2281 ggccgcttgg gtggagaggc tattcggcta tgactggca caacagacaa tcggctgctc
2341 tgcgtccgcgtt gttccggc tgcgcgcgca gggcgcccc gtttttttgc tcaagaccga
2401 cctgtcccggt gcccgtatg aactgcagga cgaggcagcg cggctatcgt ggctggccac
2461 gacgggcgtt cttgcgcag ctgtgcgtca cttgtcaact gaagcggaa gggactggct
2521 gctattggc gaagtgcgg ggcaggatct cctgtcatct cacctgcgc tggccgagaa
2581 agtatccatc atggctgatg caatgcggcg gctgcatacg cttgatccgg ctacctgc
2641 attcgaccac caagcgaaac atccatcgca gcgagcacgt actcgatgg aagccggct
2701 tgcgtatcgatg gatgatctgg acgaagagca tcagggctc ggcgcagccg aactgttcgc
2761 caggctcaag gcgcatgc ccgacggcga ggtatctcgatc gtgacccatg gcgatgcctg-

30/49

2821 cttgccgaat atcatggtgg aaaatggccg ctttctgga ttcatcgact gtggccggct
2881 gggtgtggcg gaccgtatc aggacatagc gttggctacc cgatgtattt ctgaagagct
2941 tggccgcgaa tgggctgacc gcttcctcgat gctttacggt atcgccgctc ccgattcgca
3001 gcgcatcgcc ttctatcgcc ttcttgacga gttcttctga gcgggactct ggggttcgct
3061 aaatgaccga ccaagcgacg cccaacctgc catcacgaga tttcgattcc accggccct
3121 tctatgaaag gttgggcttc ggaatcggtt tccggacgc cgctggatg atcctccagc
3181 gcggggatct catgctggag ttctcgccc accccaactt gtttattgca gcttataatg
3241 gttacaataa aagcaatagc atcacaatt tcacaataa agcattttt tcactgcatt
3301 ctagttgtgg tttgtccaaa ctcatcaatg tatcttatca tgtctgtata ccgtcgacct
3361 ctagctagag cttggcgtaa tcatggtcat agctgttcc tgtgtaaat tggtatccgc
3421 tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg ggtgcctaatt
3481 gagtgagcta actcacatta attgcgttgc gctcaactg ccgtttccag tcggaaacc
3541 tgcgtgcca gctgcattaa tgaatcgcc aacgcgcggg gagaggcggt ttgcgtattt
3601 ggccgtcttc cgccctcgact tcactgact cgctgcgtc ggtcgttcgg ctgcggcgag
3661 cggtatcagc tcactcaaag gcgtaatac gtttatccac agaatcaggg gataacgcag
3721 gaaagaacat gtgagcaaaa ggccagcaaa aggcaggaa ccgtaaaaag gccgcgttgc
3781 tggcgcccccccttccataggctc cggccggcc tggccggcc tggccggcc tggccggcc
3841 agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccctt ggaagctccc
3901 tcgtgcgtc tcctgttccg accctgccc ttaccggata cctgtccggcc tttccccc
3961 cgggaagcgt ggcgttttcaatgctc gctgttagta tctcagttcg gtgtaggtcg
4021 ttgcgtccaa gctgggctgt gtgcacgaac ccccggttca gcccggcc tgcgccttat
4081 cccgttaacta tcgtctttag tccaaaccgg taagacacga cttatcgcca ctggcagcag
4141 ccactggtaa caggattagc agagcgaggt atgtaggcg tgctacagag ttcttgaagt
4201 ggtggctaa ctacggctac actagaagga cagtattttg tatctgcgt ctgctgaagc
4261 cagttacccctt cggaaaaaga gttggtagt cttgatccgg caaacaaacc accgctggta
4321 gcgggtgttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag
4381 atcctttagt ctttctacg gggtctgacg ctcaatggaa cggaaactca cgttaaggga
4441 ttttggtcat gagattatca aaaaggatct tcacccatg ctttttaat taaaaatggaa
4501 gttttaaatc aatctaaatg atatatgat aaacttggtc tgacagttac caatgcttaa
4561 tcagtgggc acctatctca gcatctgtc tatttcgttc atccatagtt gcctgactcc
4621 ccgtcgta gataactacg atacgggagg gtttaccatc tggcccccgt gctgcaatga
4681 taccgcgaga cccacgctca cggctccag atttacgc aataaaccgg ccagccggaa
4741 gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagttt attaattgtt
4801 gcccggaaagc tagagtaatg agttcgccag ttaatagtt ggcacacgtt gttgccattt
4861 ctacaggcat cgtgggtgtca cgctcgatcgt ttgtatggc ttcattcagc tccggccccc
4921 aacgatcaag gcgagttaca tgatccccca tgggtgcaaa aaaagcggtt agtccttcg
4981 gtcctccgat cgttgtcaga agtaagttgg cccgactgtt atcactcatg gttatggcag
5041 cactgcataa ttctttaact gtcatgccc cgttaagatg ctttctgtg actggtagt
5101 actcaaccaa gtcattctga gaatagtgtt tgccggacc gagttgtct tgccggcggt
5161 caatacggga taataccggc ccacatagca gaactttaaa agtgcgtatc attggaaaaac
5221 gttcttcggg gcgaaaaactc tcaaggatct taccgtgtt gagatccagt tcgtatgtac
5281 ccactcgatc acccaactga tcttcagcat ctttacttt caccagcggt tctgggtgag
5341 caaaaacagg aaggcaaaat gcccggaaaa agggataag ggcacacgg aaatgttggaa
5401 tactcataact cttccctttt caatattttt gaagcattta tcagggttat tgtctcatga
5461 gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc
5521 cccgaaaaatg ggcacactgac gtc

FIG.24C

31/49

FIG. 25A

32/49

1 gacggatcg gagatctccc gatccctat ggtgcactct cagtacaatc tgctctgatg
61 ccgcataagtt aagccagtt ctgctccctg ctttgttgg ggaggtcgct gagtagtgc
121 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc
181 ttagggttag gcgtttgcg ctgcttcgcg atgtacgggc cagatatacg cggtgacatt
241 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
301 tggagttccg cgttacataa cttacggtaa atggcccccc tggctgaccg cccaaacgacc
361 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacccaata gggactttcc
421 attgacgtca atgggtggag tatttacggt aaactgccc cttggcagta catcaagtgt
481 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt
541 atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca
601 tcgctattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcgggttgc
661 actcacgggg atttccaagt ctccacccca ttgacgtcaa tggagtttgc ttttggcacc
721 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg
781 gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaaccca
841 ctgcttactg gcttatcgaa attaatacg a ctcactatag ggagacccaa gctggctagt
901 taagctatca acaagttgt acaaaaaagc aggctccgcg gcccccctt caccatgnnn
961 nnnnnnaagg gtggcgcgcg cgaccagct ttcttgtaca aagtgggttga tctagagggc
1021 cgcgggatcg aaggtaagcc tatccctaac cctctccctg gtctcgattc tacgcgttacc
1081 ggttagtaat gagtttaaac gggggaggct aactgaaaca cgaaggaga caataccgg
1141 aggaacccgc gctatgacgg caataaaaaag acagaataaa acgcacgggt gttgggtcgt
1201 ttgttcataa acgcgggggtt cggtcccaagg gctggcactc tgcgatacc ccaccgagac
1261 cccattgggg ccaatacgcc cgcgtttctt cttttccccc accccacccca ccaagttcgg
1321 gtgaaggccc agggctcgcg gccaacgtcg gggcggcagg ccctgcccata gcagatctgc
1381 gcagctgggg ctctaggggg tatccccacg cgcctgttag cggcgcattt a g c g c g g c g g
1441 gtgtgggt tacgcgcagc gtgaccgcta cacttgcag cgccttagcg cccgctcctt
1501 tcgctttctt cccttcctt ctcgccacgt tcgcccgtt tccccgtcaa gctctaaatc
1561 ggggcatccc tttaggggtc cgatttagtgc tttagggca cctcgacccc aaaaaacttg
1621 attagggtga tggttcacgt agtggccat cgcctgtata gacgggtttt cgcctttga
1681 cggtggagtc cacgttctt aatagtggac tcttgcacca aactgaaaca acactcaacc
1741 ctatctcggt ctattcttt gatttataag ggattttggg gatttcggcc tattggtaa
1801 aaaatgagct gatttaacaa aaatttaacg cgaattaatt ctgtggatg tgtgtcagtt
1861 agggtgtgaa aagtccccag gctccccagc aggcagaagt atgcaaagca tgcatactcaa
1921 tttagtcagca accaggtgtg gaaagtccccc aggctccca gcaggcagaa gtatgcaaag
1981 catgcacatc aattagttagtgc caaccatagt cccgccccca actccgcacca tccccccct
2041 aactccgcgc agttccgcgc attctccgcgc ccatggctga ctaattttt ttatttatgc
2101 agaggccgag gcccgcctcg cctctgagct attccagaag tagtgaggag gctttttgg
2161 aggcttaggc ttttgcacaaa agtccccggg agctgtata tccatttcg gatctgatca
2221 gcacgtgttgc acaattaatc atcggcatag tatatcgca tagtataata cgacaagggt
2281 aggaactaaa ccatggccaa gcctttgtct caagaagaat ccaccctcat taaaagagca
2341 acggctacaa tcaacagcat ccccatctct gaagactaca gcgtcgccag cgacgtctc
2401 tctagcgacg gcccgcaccc cactgggtgc aatgtatatc attttactgg gggaccttgc
2461 gcagaactcg tgggtgtgg cactgctgct gctgcggcag ctggcaacct gacttgtatc
2521 gtcgcgatcg gaaatgagaa caggggcatc ttgagccct gcggacgggtg ccgacagggt
2581 cttctcgatc tgcatcctgg gatcaaagcc atagtgaagg acagtgtatgg acagccgacg
2641 gcagttggaa ttctgtaaatt gctgcccctt gttatgtgt gggagggcta agcaacttcgt
2701 ggccgaggag caggactgac acgtgctacg agatttcgtat tccaccggcc cttctatga
2761 aagggtggc ttctggatcg ttttccggaa cggccggctgg atgatcctcc agcgcggggaa

FIG.25B

33/49

2821 tctcatgctg gagttcttcg cccacccaa cttgtttatt gcagcttata atggttacaa
2881 ataaagcaat agcatcacaa atttcacaaa taaagcattt ttttcaactgc attctagttg
2941 tggtttgccc aaactcatca atgtatctta tcatgtctgt ataccgtcg cctctagcta
3001 gagcttggcg taatcatggt catagctgtt tcctgtgtga aattgttac cgctcacaat
3061 tccacacaaac atacgagccg gaagcataaa gtgtaaagcc tgggtgcct aatgagttag
3121 ctaactcaca ttaattgcgt tgcgctcaact gcccgttgc cagtcggaa acctgtcg
3181 ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggttgcgtt ttggcgctc
3241 ttccgcttcc tcgctcaactg actcgctgc ctcggcgtt cggctgcggc gagcggatc
3301 agctcaactca aaggcggtaa tacggtttac cacagaatca ggggataacg cagggaaagaa
3361 catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcg
3421 ttccatagg ctccgccccctt ctagcagca tcacaaaaat cgacgctcaa gtcagagggt
3481 gcgaaaccccg acaggactat aaagatacca ggcgttccc ccttggaaagct ccctgtcg
3541 ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gccttctcc cttcggaag
3601 cgtggcgctt ttcatacgat cacgtgttagt gtatctcagt tcgggttagg tcgttcgctc
3661 caagctggc tgggtgcacg aaccccccgt tcagccgcac cgctgcgcct tatccgtaa
3721 ctatcgctt gagtccaaacc cggtaagaca cgacttatcg ccactggcag cagccactgg
3781 taacaggatt agcagagcga ggtatgttagg cggtgctaca gagttcttga agtggggcc
3841 taactacggc tacactagaa gaacagtatt tggtatctgc gctctgctga agccagttac
3901 cttcgaaaaa agagttggta gcttttgc gggcaaaacaa accaccgtg gtagcggtt
3961 ttttgggttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atccttgc
4021 cttttctacg gggcttgacg ctcaatggaa cgaaaaactca cgttaaggga ttttgggtcat
4081 gagattatca aaaaggatct tcacccatgat cttttaaat taaaatgaa gttttaaatc
4141 aatctaaagt atatatgagt aaacttggtc tgacagttac caatgctaa tcagtgggg
4201 acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcg
4261 gataactacg atacgggagg gcttaccatc tggcccccgt gctgcaatga taccgcgaga
4321 cccacgctca cccgcgtccag atttatcgc aataaaccag ccagccggaa gggccgagcg
4381 cagaagtggc cctgcaactt tatccgcctc catccagtct attaattgtt gccggaaagc
4441 tagagtaagt agttcgccag ttaatagtt gcgcaacgtt gttgccattt ctacaggcat
4501 cgtgggttca cgcgtcgat ttggatggc ttcattcagc tccgggttccc aacgatcaag
4561 gcgaggtaa tggatccccca tgggtgtcaa aaaagcggtt agtccttcg gtcctccgat
4621 cgttgcaga agtaagttgg ccgcaggttt atcactcatg gttatggcag cactgcataa
4681 ttctcttact gtcattgcatt ccgtaaatgc ctttctgtt actgggtgatc actcaaccaa
4741 gtcattctga gaatagtgtt tgccgcacc gagttgtct tgccggcgt caatacggg
4801 taataccgcg ccacatagca gaactttaaa agtgcgtatc attggaaaac gttttcg
4861 gcgaaaaactc tcaaggatct taccgtgtt gagatccagt tcgatgtaac ccactcg
4921 acccaactga tcttcagcat ctttacttt caccagcgat tctgggttag caaaaacagg
4981 aaggcaaaat gcccacaaaaa agggataaag ggcgacacgg aatgttggaa tactcataact
5041 ctccctttt caatattttt gaagcattta tcagggttat tgcgtcatga gcgatcat
5101 atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaaatg
5161 gccacactgac gtc

FIG.25C

34/49

pENTR/SD-dTOPO: 5' END

pENTR-dTOPO AND pcDNAGW-dTOPO: 5' END

pENTR/SD-dTOPO, pENTR-dTOPO, AND pcDNAGW-dTOPO: 3' END

FIG. 26

35/49

FIG.27

36/49

FIG.28

37/49

FIG. 29

38/49

FIG.30A

- Lane 1: TRex-CHO Cells + Tet
Lane 2: without secondary PCR (with purified CAT) - Tet
Lane 3: without secondary PCR (with purified CAT) + Tet
Lane 4: without secondary PCR (with unpurified CAT) + Tet
Lane 5: without secondary PCR (with unpurified CAT) -Tet
Lane 6: with secondary PCR + Tet
Lane 7: with secondary PCR - Tet

FIG.30B

39/49

- Lane 1: TRex-293 Cells + Tet
Lane 2: without secondary PCR (with purified CAT) - Tet
Lane 3: without secondary PCR (with purified CAT) + Tet
Lane 4: without secondary PCR (with unpurified CAT) - Tet
Lane 5: without secondary PCR (with unpurified CAT) + Tet
Lane 6: with secondary PCR - Tet
Lane 7: with secondary PCR + Tet

FIG.30C

40/49

Lane 1: negative control; lanes 2-11: test clones; M: 500 bp marker

FIG.31

41/49

FIG. 32

42/49

FIG. 33

43/49

FIG. 34

44/49

FIG. 35

45/49

FIG. 36

46/49

FIG. 37

47/49

FIG. 38

48/49

FIG. 39

49/49

FIG. 40