PREDICTING IMDB STAR RATINGS

Michael Green

TOPICS

- Description of the Problem
- Data Source
- Features In Data Source Used In Model
- Synthesized Features
- Top 5 Positive and Negative Correlation Features
- Linear Equation with Coefficients
- Final Test Score
- Residual Plot, Distribution of Error, QQ Plot
- Future Work
- Appendix

DESCRIPTION OF THE PROBLEM

There are many ideas of how to make a good movie:

Cinema is a matter of what's in the frame and what's out.

— Martin Scorsese

DESCRIPTION OF THE PROBLEM

- The problem is that these are not easily quantifiable.
- Many content creation companies (like Netflix) want be able to make movie making/buy decisions faster and with greater efficacy and over a larger volume of movie proposals.
- This project develops a model that uses as inputs features of movies that can be well known on or before its release date to predict if the movie will be well liked by viewers.

DESCRIPTION OF THE PROBLEM

- This model could then assist executives by doing a quick first pass scoring of large volumes of movie proposals.
- This would enable movie executives to then focus valuable deep analysis time on already quantitatively promising movies.

DATA SOURCE

- The starting data set are 4000 movies released in the US with an MPAA rating between January 1, 2010 and December 31, 2019.
- This original data set was then cleaned to 2127 movies that had all required data fields defined.
- The data was scraped from imdb.com using Python requests and BeautifulSoup.

FEATURES IN DATA SOURCE USED IN MODEL

- The following features were used in the model:
 - Runtime: length of the movie in minutes
 - Budget: Amount of money it took to make the movie (in US \$)
 - Release month of the movie: One-hot encoded (12 categories)
 - Genre of the movie: One-hot encoded (17 categories)
 - MPAA Rating of the Movie: (4 categories)
 - **Director Star Power**: 1 point for each Best Director Award for earned or nominated by the director of said movie
 - Cast 1 Star Power: 1 point for each Best Actor or Best Actress Award earned or nominated by the 1st cast member listed for the movie
 - Cast 2 Star Power: 1 point for each Best Actor or Best Actress Award earned or nominated by the 2nd cast member listed for the movie
 - Cast 3 Star Power: 1 point for each Best Actor or Best Actress Award earned or nominated by the 3rd cast member listed for the movie
 - Log(Budget): Logarithm of the Budget

TOP 5 POSITIVE AND NEGATIVE CORRELATION FEATURES

TOP 5 POSITIVE AND NEGATIVE CORRELATION FEATURES

LINEAR EQUATION WITH COEFFICIENTS

```
[('runtime', 0.025214543277458278),
 ('budget', 6.807720486700231e-10),
 ('August', 0.02094246922183872),
 'December', -0.22789909501589561),
 'February', -0.1184072095835705),
 ('January', -0.06038472276660286),
 ('July', -0.1268907930387392),
 ('June', -0.051562439208146287),
 ('March', -0.12235181076357225),
  'May', -0.24310040744285022),
 'November', -0.006389011115727724),
  'October', -0.03604633930763422),
 'September', 0.0033420202986247424),
  'Adventure', 0.28414389139343926),
  'Animation', 0.8983631145800551),
 'Biography', 0.7933746547342677),
  'Comedy', 0.29718697754938167),
 'Crime', 0.36724144420807003),
 'Drama', 0.5253843742214763),
 'Family', -0.4386695937735968),
 'Fantasy', -0.37646970918484046),
 'Horror', -0.03808708876117907),
 'Music', 1.702680877663265),
 'Musical', 2.1960197057099213),
  'Mystery', 0.8706774268621756),
  'Romance', 0.34865681193241155),
 ('Sci-Fi', 0.8986524328798289),
 'Sport', 0.24860044186789365),
 ('Thriller', -0.3966856926089714),
 ('PG', -1.0397069536832078),
 ('PG-13', -0.8861972801566934),
 ('R', -0.8341237620032511),
 ('star_power', 0.1678769616927409),
 ('cast1_starpower', 0.14783901005356814),
 ('cast2_starpower', 0.032564072697596945),
 'cast3_starpower', 0.11120695608145978),
 ('log_budget', 0.13950182412867151)]
```

model3.intercept_

1.6797817451895325

FINAL TEST SCORE

$$R^2 = 0.3839$$

RESIDUAL PLOT

Mean of the Error = -0.05

DISTRIBUTION OF ERROR

QQ PLOT

FUTURE WORK

- Scrape more data. There are over 50,000 movies that have been released over the last 10 years.
- Collect more data on the cast and crew: How many producers on the movie have been awarded Best Picture, how many writers have been awarded for Best Adapted Screen Play.
- Dynamic Duos, Trios, Quartets, Etc.: Anecdotally there are a lot of movies where you see the same (director, cast) combinations.
 Quantify the level of influence the existence of these tuples have on the star rating of the movie.

APPENDIX