点 $\mathrm{P}(x,y)$ は xy 平面上の点 $C:(x-5)^2+(y-5)^2=r^2\,(r>0)$ の上を動く動点である.このとき点 P の点 $\mathrm{A}(9,0)$ に関する対称点を Q とし,また点 P を原点 O のまわりに正の向きに $\pi/2$ だけ回転した点を R とする.点 P が円 C の上を動くときの線分 QR の長さの最小値 f(r) と最大値 g(r) とを求めよ.また f(r) が 0 となるような r の値を求めよ.

[解] $\cos\theta=c$, $\sin\theta=s$ とおく.とおく.すると $\mathrm{P}(5+rc,5+rs)$ とおけるから ,

$$Q(13 - rc, -5 - rs) \quad R(-5 - rs, 5 + rc)$$

である.故に

$$|QR|^{2} = \{(13 - rc) - (-5 - rs)\}^{2} + \{(-5 - rs) - (5 + rc)\}^{2}$$

$$= (18 - rc + rs)^{2} + (-10 + rs + rc)^{2}$$

$$= 18^{2} + 10^{2} + 2r^{2} + 56rs - 16rc$$

$$= 424 + 2r^{2} + 8\sqrt{53}r\sin(\theta - \alpha)$$

である.ここで, α は

$$\tan \alpha = \frac{2}{7}$$

を満たす数である $.0 \le \theta < 2\pi$ から,

$$-\alpha \le \theta - \alpha < 2\pi - \alpha$$

であるから , $-1 \leq \sin(\theta - \alpha) \leq 1$ である . 故に r > 0 から ,

$$\begin{cases} f(r) = \sqrt{424 - 8\sqrt{53}r + 2r^2} = \sqrt{2}|r - 2\sqrt{53}| \\ g(r) = \sqrt{424 + 8\sqrt{53}r + 2r^2} = \sqrt{2}(r + 2\sqrt{53}) \end{cases}$$

である . f(r)=0 のとき , $r=2\sqrt{53}$ である . \cdots (答)