

NagBody lectures: Introduction to numerical computation

Mario Alberto Rodríguez-Meza

Instituto Nacional de Investigaciones Nucleares
Correo Electrónico: marioalberto.rodriguez@inin.gob.mx

http://bitbucket.org/rodriguezmeza

Seminario de investigación,
Departamento de Física,
Universidad de Guanajuato
3 de febrero al XX de junio de 2022
Sesiones virtuales (Zoom, Meet, etcétera)

References and material

- Métodos numéricos en astrofísica, capítulo I, Método de N-cuerpos en astrofísica. (https://www.researchgate.net/publication/316582859_Metodo_de_N-Cuerpos_en_Astrofisica)
- La estructura a gran escala del universo. Capítulo 22 en
 Travesuras cosmológicas de Einstein et al. https://www.researchgate.net/publication/
 316582400 La estructura a gran escala del universo simulaciones numericas
- https://www.researchgate.net/profile/Mario_Rodriguez-Meza
- https://www.researchgate.net/publication/
 314281416_Los_agujeros_negros_y_las_ondas_del_Dr_Einstein
- M.A. Rodriguez-Meza, Adv. Astron. 2012, 509682 (2012). arXiv: I112.5201. (https://www.researchgate.net/publication/
 51967093 A Scalar Field Dark Matter Model and Its Role in the Large-Scale Structure Formation in the Universe)

Content: Introduction to numerical computation

- Basic algorithmic concepts
- Variables and constants
- Flow diagram

Algorithm concept

What is an algorithm?

Computer program

What is a computer program?

The three guys

Who are involved in an algorithm?

- The programer
- The one who execute the program
- The user

The three main stages

What are the three main stages in creating an algorithm?

The reserved words

What are the reserved word in the computer languages?

Errors in programming

What are the errors in the computer languages?

- Syntax errors
- Logic errors
- Runtime errors

Debugging in programming

How to debug a numerical code?

Variables in programming

- What is a variable (and pointer concept). Types. Naming
- Declaring a variable

How to comment a numerical code?

```
63
    * MAIN: toplevel routine for hierarchical N-body code.
    */
66
  int main(int argc, string argv[])
68
     initparam(argv, defv);
69
                                     /* initialize param access */
     headline = defv[0] + 1;
                                      /* use default headline
                                   /* get params & input data */
71
     startrun();
     startoutput();
                                   /* activate output code
     if (nstep == 0) {
                                   /* if data just initialized */
     treeforce();
                                   /* calculate initial forces */
74
       output();
                                   /* generate initial output */
75
     }
     if (dtime != 0.0)
                                   /* if time steps requested */
       while (tstop - tnow > 0.01 * dtime) { /* while not past tstop
                                                                           */
                                  /* advance step by step
         stepsystem();
                                   /* output results each time */
         output();
80
       }
                                   /* end with proper status
     return (0);
83 }
```


How to comment a numerical code?

```
214 /*
   * STEPSYSTEM: advance N-body system using simple leap-frog.
216 */
217
218 local void stepsystem(void)
219 {
     bodyptr p1, p2, p;
220
221
     p1 = bodytab + MAX(nstatic, 0); /* set dynamic body range
222
     p2 = bodytab + nbody + MIN(nstatic, 0);
223
                                /* loop over body range
     for (p = p1; p < p2; p++) {
224
     ADDMULVS(Vel(p), Acc(p), 0.5 * dtime); /* advance v by 1/2 step
225
       ADDMULVS(Pos(p), Vel(p), dtime); /* advance r by 1 step
226
     }
227
     treeforce();
228
     for (p = p1; p < p2; p++) { /* loop over body range
230
     ADDMULVS(Vel(p), Acc(p), 0.5 * dtime); /* advance v by 1/2 step */
     }
231
                             /* count another time step */
232
     nstep++;
     tnow = tnow + dtime;
                                /* finally, advance time
                                                               */
234 }
```


How to comment a numerical code?

```
22
   /* Output state variables. */
24
25 local bool forcehead;
                                       /* force headers printed?
26 local real mtot;
                                           /* total mass of system
27 local real etot[3];
                                   /* Etot, KE, PE of system
28 local matrix keten;
                                   /* kinetic energy tensor
29 local matrix peten;
                                   /* potential energy tensor */
30 local vector cmpos;
                                   /* center of mass position */
31 local vector cmvel;
                                   /* center of mass velocity */
32 local vector amvec;
                                   /* angular momentum vector */
33
```


How to comment a numerical code?

```
/* <A NAME="hackquad"></A>
     * HACKQUAD: descend tree, evaluating quadrupole moments. Note that this
     * routine is coded so that the Subp() and Quad() components of a cell can
     * share the same memory locations.
     */
284
285
    local void hackquad(cellptr p)
287
   {
288
      int ndesc, i;
289
      nodeptr desc[NSUB], q;
290
      vector dr;
      real drsq;
291
292
      matrix drdr, Idrsq, tmpm;
293
294
      ndesc = 0;
                                          /* count occupied subnodes
295
      for (i = 0; i < NSUB; i++)
                                          /* loop over all subnodes
296
        if (Subp(p)[i] != NULL)
                                          /* if this one's occupied
          desc[ndesc++] = Subp(p)[i];
                                         /* copy it to safety
297
      CLRM(Quad(p));
                                          /* init quadrupole moment
298
299
      for (i = 0; i < ndesc; i++) {
                                          /* loop over real subnodes
                                          /* access ech one in turn
300
        q = desc[i];
                                          /* if it's also a cell
        if (Type(q) == CELL)
301
                                                                       */
                                          /* then process it first
          hackquad((cellptr) q);
302
        SUBV(dr, Pos(q), Pos(p));
                                          /* find displacement vect.
303
                                          /* form outer prod. of dr
304
        OUTVP(drdr, dr, dr);
305
        DOTVP(drsq, dr, dr);
                                          /* and dot prod. dr * dr
                                          /* init unit matrix
306
        SETMI(Idrsq);
307
        MULMS(Idrsq, Idrsq, drsq);
                                         /* and scale by dr * dr
        MULMS(tmpm, drdr, 3.0);
                                          /* scale drdr by 3
308
                                          /* now form quad. moment
309
        SUBM(tmpm, tmpm, Idrsq);
        MULMS(tmpm, tmpm, Mass(q));
                                         /* from cm of subnode
310
                                                                       */
                                         /* if subnode is cell
        if (Type(q) == CELL)
311
                                          /* then include its moment */
312
          ADDM(tmpm, tmpm, Quad(q));
313
        ADDM(Quad(p), Quad(p), tmpm);
                                          /* increment moment of cell */
      }
314
```

15

315 }

Flow diagram

- main.c
- mainloop.c

- cmdline_defs.h
- data_structure.h
- globaldefs.h
- protodefs.h

- template.c
- template_io.c
- startrun.c

- models.c
- models.h

- Data structures
- Routines and functions

Flow diagram

Flow diagram

Sum nodes and cells

local void sumnode(cellptr start, cellptr finish, vector pos0, real *phi0, vector acc0)

local void sumcell(cellptr start, cellptr finish, vector pos0, real *phi0, vector acc0)

Conclusions: Introduction to numerical computation

We have seen:

- What is an algorithm
- What is a computer program
- The three guys involved in an algorithm
- The three main stages involved in creating an algorithm
- Reserved words
- Syntax error, logic error and runtime error
- Debbuging
- Commenting a numerical code

Conclusions: Introduction to numerical computation

We have also seen:

- What is a variable (and pointer concept). Types. Naming
- Declaring a variable
- Flow diagrams

References and material

- Métodos numéricos en astrofísica, capítulo I, Método de N-cuerpos en astrofísica. (https://www.researchgate.net/publication/316582859_Metodo_de_N-Cuerpos_en_Astrofisica)
- La estructura a gran escala del universo. Capítulo 22 en
 Travesuras cosmológicas de Einstein et al. https://www.researchgate.net/publication/
 316582400 La estructura a gran escala del universo simulaciones numericas
- https://www.researchgate.net/profile/Mario_Rodriguez-Meza
- https://www.researchgate.net/publication/
 314281416 Los agujeros negros y las ondas del Dr Einstein
- M.A. Rodriguez-Meza, Adv. Astron. 2012, 509682 (2012). arXiv: I112.5201. (https://www.researchgate.net/publication/
 51967093 A Scalar Field Dark Matter Model and Its Role in the Large-Scale Structure Formation in the Universe)

See you!

