1. 试画出下面化工系统的有向图,建立过程矩阵、关联矩阵、邻接矩阵。

过程矩阵:

柳

第一(01000) 2000) 4000) 50000)

数学模型 混合器模型 闪蒸器模型

模類域: 对绝热混合器:变量数为n=3(C+2) 推销数为m=(+2) 组分数C=2 一。自由度 F=n-m=2(+4) ,此时, 下 F=2(+4) 对于 闪蒸器变量数为F=2(+4) ,自由度 G=3(C+2)+1-2(-4) 。自由度 G=3(C+2)+1-2(-4) 。自由度 G=2 , 程 G=5

对输出, 启路这量数为 2×4=8, 8+5=13 ... 对于整个模型的废为 8+5+8+5=2+ (可按照 PPT 2、3、 限选价列表计算) 所决策程: 即选1分量。 3. 试列出下面化工系统的模型自由度。 (组分数 n=4)

171+24N+-85-11N-96+13N	5.00 A A A A A A A A A A A A A A A A A A	を	
独立和数	独建数	单元参数	Z
6	18	0	
6 9	/2 0	2	
9 12	10	<u> </u>	
9	2	<i>3</i> 1	
5	13	д	
111	18	j D	
6	18	0	
6	/		
	ſ		
	3		
75+11N	17/t24N	(O	
	独数 66997269 51111666	独翻 18 12 0 0 13 2 1 0 1 3 N 9 1 8 1 8 6 6 8 3 3 1 1 1 6 6 6 3 3	独郊数

4. 试求下面模型在 $x_1 = 0, x_2 = 0, x_3 = 0$ 处的线性模型:

$$Y1 = \begin{cases} -\cos x_1 + 0.05x_2^2 + 9\sin x_3 + 3 \\ x_1^2 - \ln(x_2 + 1) - 2\sin x_2 - 10e^{x_3} - 2 \\ x_1 + 0.1x_2^2 + 2x_1x_3 + 1 \end{cases}$$

$$Y2 = \begin{cases} -\cos x_1 + 0.05x_2^2 + 3 \\ x_1^2 - \ln(x_2 + 1) - 2\sin x_2 - 2 \\ x_1^2 - \ln(x_2 + 1) - 2\sin x_3 - 10e^{x_3} + 3 \\ x_1^2 - \ln(x_2 + 1) - 2\sin x_4 + 10e^{x_3} + 3 \\ x_1^2 - \ln(x_2 + 1) - 2\sin x_4 + 10e^{x_3} + 3 \\ x_1^2 - \ln(x_2 + 1)$$

$$\begin{array}{ll}
\frac{10.05x_{2}+3}{10-2\sin x_{2}-2} \\
\frac{10.05x_{2}+3}{2} \\
\frac{10.05x_$$

7,

,

6. 用牛顿迭代法求解 $e^{x}+x^2-5=0$ 的解($x_0=2$,最小误差 0.001). $x_0=1$ 人 $x_0=2$ $x_0=2$ 人 $x_0=2$ 人 $x_0=2$ x_0

$$f(x) = e^{-x} + x^2 - x$$

$$f(x) = -e^{-x} + 2x$$

$$x_{k+1} = x_k - \frac{e^{-x} + x^2 - y}{-e^{-x} + 2x}, x_0 = 2$$

$$K = 0$$
 $A_1 = X_0 - \frac{e^{-\frac{1}{2}} + \frac{1}{2} - \frac{1}{2}}{e^{-\frac{1}{2}} + \frac{1}{4}} = 2.223736$

$$=2-\frac{e^2-1}{-e^{-2}+4}=2.223736$$

$$K=1 \text{ \mathbb{A}^{\dagger}}, \ X_{2}=X_{1}-\frac{\bar{e}^{X_{1}}+X_{1}^{2}\cdot Y}{-\bar{e}^{X_{1}}+2X_{1}}=2.223736-\frac{\bar{e}^{2.223736}+2.223736^{2}\cdot Y}{\bar{e}^{2.223736}+2.223736}=2.214745$$

$$K = 201, X_3 = X_2 - \frac{e^{x_2} + 2x_2}{-e^{x_2} + 2x_2} = 2.2114745 - \frac{e^{-2.2114745} + 2.2114745}{-e^{-2.2114745}} = 2.2114745 - \frac{e^{-2.2114745} + 2.2114745}{-e^{-2.2114745}} = 2.2114778$$

此时, X3-X2<0.001, 停地

7. 用单纯形法求解下列线性规划问题:

$$\max z = 2x_1 + x_2$$

$$(x,t) \begin{cases} 3x_1 + 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1, x_2 \ge 0 \end{cases}$$

解: 化为标准形式:

Max Z= 2x, +x2+0x3+0x4

St. $\begin{cases} 3x_1 + 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_{1} = 20, i = 1, 2, 3, 4 \end{cases}$

提翻·控所解X=(0,0,15,24)T 此时转量为(水,水), 楼壁为(水,水2)

非基理的控验数为 (2,1)、花散解,

我的那般能够好

.			<u> </u>		, · 			_
	Cj =	>	77	1	0	0		
CB	ХВ	Ь	Χr	X2	Х3	X4	·	
Ö	Х3	15	3	5	1	0		
建り	Х4	24	[6]	2	0	1		<u>.</u>
	E)		2	1	0	0		
						•	•	

 $X_1 = (0,0,15,24)^T Z_1 = 0$

X4换出, X.按,得组维建为、Xi, 对收许的较换, 点脚的弹频

CB	XB	b	XII	χı	Хз	X4	
0	Xz	15	3	7	1	0	
2	7/	4		3	0	6	_ ·

CB	X.B	Ь	١٨	XZ	X3	X4	
0	X3	3	0	[4]	1	-12	
2	71	4		3	٥	+	
· · · · · · · · · · · · · · · · · ·	6ì		0	3	0	- 3	

X2=(4,0,3,0) Z2=8 公非最优解,X2换入,X3换出, 运销的转版

CB	XB	<u>b</u>	\ X ,	X2	X3	X4 8	_
I	X2	4	0		7	. 8	
2	Xı	4	i		1.4		
6j			: 0	0	-12_		—

此时经产洋生安全挂造牧约<0,

起得歌新
X = (4,4,0,0)3
最优解区-2+4
$=\frac{33}{4}$

套设备需从 A 地运到 E 地,每条线路的运费如下图所示,试用动态规划 法确定运费最低的线路及运费。

解: 整个计算过程分的的阶段,从最后一个阶段开始。

考虑给其Cz的三氧路线

$$f_{3}(c_{2}) = \min \left\{ \frac{d(c_{2}D_{1}) + f_{4}(D_{1})}{d(c_{2}D_{2}) + f_{4}(D_{3})} = \min \left\{ \frac{70 + 90}{80 + 80} \right\} = 160$$

$$\frac{d(c_{2}D_{3}) + f_{4}(D_{3})}{d(c_{2}D_{3}) + f_{4}(D_{3})} = \min \left\{ \frac{70 + 90}{80 + 80} \right\} = 160$$

考虑ないのかき移動

$$f_3(C_3) = min \{d(C_3D_i) + f_4(D_i)\} = min \{g_0 + g_0\} = 155$$

 $d(C_3D_i) + f_4(D_i)\} = min \{g_0 + g_0\} = 155$
 $d(C_3D_3) + f_4(D_3)\} = min \{g_0 + g_0\} = 155$
 $(3 \rightarrow D_3 \rightarrow E)$

第二阶段(B>c): B到C有條路线, 参约 B3的强线 $f_2(B_3) = min \{d(B_3(1)) + f_3(C_1)\} = min \{q_0 + 160\} = 225$ $\{d(B_3(3)) + f_3(C_3)\} = (70 + 155)$ 第一个被 $(A \ni B)$: A刮局持路的 $f(A) = \min\{d(A,B) + f_2(B_2)\}= \min\{40 + 180\} = 220$ $d(A,B_3) + f_2(B_3)$ $d(A,B_3) + f_2(B_3)$ B3 = (3 > D3 > E 此时满为220

9. 某公司拟将某种设备 4 台,分配给所属的甲、乙、丙三个江)。各江厂获得此设备后。 预测可创造的利润如下表所示:

IL			
设备台数,	坤/‴₽	7.1 1	海厂₽
()+p]	Det	()e
1.1	4.0		5a =
20	80	110	7.1
3.0	10e	124	12**
40	13₽	12+2	13+

问这4台设备应如何分配给这3个工厂。使得所创造的总利润为最大?用劝恋规划求解。

解:按顺序解法计算:

然后 $f_2(30) = max \{g_2(y) + f_1(3-y)\}$ $= max \{g_2(1) + f_1(2)\} = max \{f_1(2)\} = max \{f_2(2) + f_1(1)\} = max \{f_2(3) + f_1(0)\} = max \{f_2(3) + f_2(0)\} = max \{f_2(3) + f_2($

$$f_2(2) = \max_{j=0}^{\infty} \{g_2(\gamma) + f_1(2\gamma)\}$$
 $= \max_{j=0}^{\infty} \{g_2(\gamma) + f_1(\gamma)\} = \max_{j=0}^{\infty} \{g_2(\gamma) + f_2(\gamma)\} = \max_{j=0}^{\infty} \{g_2(\gamma) + g_2(\gamma)\} = \min_{j=0}^{\infty} \{g_$

工用厂台、了工台,两厂台,有最划测的20元。

10.用变量轮换法求下面最优化问题的解。

min
$$f(x) = 5x_1^2 + 3x_1x_2^2 + 7x_1x_2 + 4x_2^2 + 8x_1$$

初始点 x[∞]=[1,1] ,ξ=0.1

①第次选指 治外轴防搜索,

t(x)= 5x1+3x1+7x1+4+8x1 = 5 x12 + 18 x1 + 4

対复半导点 f(x)=10×118=0 即分二一一的动凝焰,

翻舵》=[-1.8,17]

日第二次迭代,沿流轴搜索

将为二十8份朋格数拟,

有 (x) = 5× (-1/8)2+3×(-1/8)×x2+7×1·(-1/8)+4×2+8·(-1/8)

=-1.4x2-12.6x2+1.8 f(x) = -2.8 x2-12.6=0

③第三轮次送代,沿外轴的搜索

将 メュニー45代入 f (知) = られ2+3か(-45) +7メ,×(-45) +4×(-45)2+8×,

= 5112+37.25%, +81

-11x) = 10 x, +37-25

 $\frac{37.35}{10} = -3.725$

有指点 X31 下3721-45] T

11. 一换热系统,包含的工艺流股为两个热物流和两个冷物流,给定的数据列于表中。指定热、冷物流间允许的最小传热温差为 20℃。现在请利用夹点技术设计一个换热网络,其具有最大的热回收。用问题表法确定夹点位置:确定夹点处热、冷物流的温度;确定出所需的最小热、冷公用工程负荷;

流股及类型	热容流率 FC _P (kW/U)	T AC	1 '\.\.
L热	2.5	159	77 >
2 热	0,5	343 //2	90
3 14	0.9	16	117
4 19	2.2	118	265

	<u> </u>								
1/1	动的温度				 	2	3_	4	5
温区 热流农	T10C	沒流坡	Ti-Ti+	5 6 50.14	\mathcal{D}_{i}	Ii	Q_i	最均	铁耀川
	323	(3) (4)	12 /211	SGPC-SCPH	V	1-2	<u>ν</u>	桶入	輸出
-	285 265		_58	-0.5	129	0	29	185.2	2142
	115 1 139	<u> </u>	126	1.7	2142	29	175.2	2152	0
	138 118		21	-0.7	16.8	-185.2	7684	\$	16.8
	137 117		1	<u> </u>	-3	-1684	-165.4	16.8	19.8
	 		47	-2.	-987	765.4	66-7	19.8	117.5
	17 57 36 16	+	13	— <u></u>	-20.8	-667	-4x9	118-5	139,3
Fcp 2.5 0.5	, — · - · · - · - +	0.9 2.2	41	0.9	36.9	-45.9	-9	139.3	102.4
h'n	- 	1.11.11.11.11	!			j			

电视表现, 天点处热物流温度为159°C、冷物流为139°C 最小热研工程负荷为1852KW, 最1次公用程66约1°2、从W 12. 试用有序直观推断法推断下面体系的最有可能分离序列,要求分离出 5 个纯产品

BUL	组成(摩尔分率)	相邻组分相对挥发度	标准沸点("C)
A	0.07		12.1
В	0.10	2.45	-6.3
	0.50	1,18	-0.5
D	0.28	2.89	15.0
E	0.05	2,50	36.1

(1)根据经验规则1-2,分离

根据经验规则 M., 拥翱精馏

根据经验规则M2,精馏塔低温操作

根据经验规则 52,组分民 C 的最单端 两 C 组分钢 按键 1 , 数 放露的 根据经验规则 C1, C组分 经登录 (50,50) 应先分离 监 但 好 S2 优于 C1,

故C.细分殖知滴法。

$$f = \frac{0.07}{1 - 0.07} = \frac{7}{93}$$

根据经验C2份的于50150分离,加考尼F维,则编ABC/DE