

## Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (W), Mumbai: 400058, India

(Autonomous College of Affiliated to University of Mumbai)

## **End Semester Examination**

December 2022

Maxi Marks: 100 Class: SE

Duration: 3 hours

Semester: III

CS203/AI203/EC201/DS203 Course code:

Branch: All Branches

Name of the course: Computer Architecture & Organization

| Q No       | 4<br>4<br>2                                                                                                                                                                                                                                                                                                                                                                                                             | Max<br>Marks | СО   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| Q.1<br>(a) | A Direct Mapped Cache Subsystem needs to be designed having the following specifications:  a) Main Memory Size of 1GB b) Block Size of 16 Bytes c) Cache Memory Size of 64 KB d) Line Size of 16 Bytes Answer the following: 1) Address Interpretation by Main Memory 2) Address Interpretation by Cache Memory 3) Design of Line Entry Draw a neat Conceptual Diagram of the System showing all the blocks.            | 12           | CO 4 |
|            | OR                                                                                                                                                                                                                                                                                                                                                                                                                      |              |      |
|            | A Two Way Set Associative Cache Subsystem needs to be designed having the following specifications:  a) Main Memory Size of 1GB b) Block Size of 16 Bytes c) Cache Memory Size of 64 KB d) Line Size of 16 Bytes Answer the following:  1) Address Interpretation by Main Memory 2) Address Interpretation by Cache Memory 3) Design of Line Entry Draw a neat Conceptual Diagram of the System showing all the blocks. |              |      |
| Q.1<br>(b) | Devise the mechanism to implement Virtual Memory Segmentation technique that translates the Virtual Address to its equivalent Physical Address. Your answer must have the supporting diagram of the mechanism.                                                                                                                                                                                                          | 8            | CO 4 |
| Q.2<br>(a) | Consider the following page reference string: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 How many page faults would occur for the following replacement algorithms, assuming three-page frames? 1. FIFO 2. LRU                                                                                                                                                                                                             | 10           | CO 4 |

|            |                                                                                                            |                                      |                                                               | 140 | T co a |
|------------|------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------|-----|--------|
| Q.2<br>(b) | Explain the basic organiz<br>neat diagram. Write a cor<br>(i) ADD R1, R2<br>(ii) Branch LOCN               | ntrol store (micro                   | oprogrammed control unit with oprogram) for                   | 10  | CO 3   |
|            | Generate the control sign<br>WMFC signal and MARi<br>(i) ADD R1, R2<br>(ii) ADD R1, LOG<br>(iii) BRANCH LA | n signal. Use the                    | dwired control unit design for e following instructions:      |     |        |
| Q.3<br>(a) |                                                                                                            | s IEEE single pro                    | e, finite, normalized numbers ecision float? Represent 231.56 | 10  | CO2    |
|            | OR                                                                                                         |                                      |                                                               |     |        |
|            | Prove how Modified Boo<br>multiplication process as<br>the Multiplicand (-17) wi                           | compared to Bo                       | oths Algorithm by Multiplying                                 |     |        |
| Q.3<br>(b) | A benchmark program is processor. The executed                                                             | run first on 200<br>program consists | Mhz and then on 300 Mhz                                       | 10  | CO 1   |
|            | Instruction Type I                                                                                         | nstruction Cou                       | nt Cycles per<br>Instruction                                  |     |        |
|            | Integer Arithmetic 4                                                                                       | ,00,000                              | 1                                                             |     |        |
|            | Data Transfer 3                                                                                            | ,50,000                              | 2                                                             |     |        |
|            | Floating Point 2                                                                                           | ,00,000                              | 3                                                             |     |        |
| Ø          | Determine the effective of compare the performance                                                         | e                                    | 2<br>and Execution Time. Also                                 |     |        |
| Q.4<br>(a) | What is the major function involved when the user put displayed on the monitor                             | 10                                   | CO6                                                           |     |        |
| Q.4<br>(b) | Compare different Alloc Arbitration.                                                                       | 10                                   | CO6                                                           |     |        |
| Q.5<br>(a) | Compare Instruction level detail data and control pi                                                       | 10                                   | CO 5                                                          |     |        |
|            |                                                                                                            |                                      |                                                               |     | CO 3   |