

Agile Systems Engineering

Dr. Christof Ebert, Walter Bernet, Dr. Ulrich Bodenhausen, Vector Frank Kirschke-Biller, Ford

Welcome

(Ford)

Ford

- 62 plants worldwide
- ▶ 200 markets
- 203,000 employees, 53,000 in Europe
- \$136 billion revenues, \$ 29 billion in Europe
- 6.3 million vehicle units, 1.4 million in Europe

Frank KIRSCHKE-BILLER

Frank Kirschke-Biller is leading global core software processes at Ford.

Since 2000, he has been with Ford on different leadership positions in the area of Infotainment, Electrical Integration incl. Electrical Architecture, Networks, Diagnostics and Software Development.

Before he was leading the department of sensor and system technology at imech, a startup in the area of mechatronics.

Frank Kirschke-Biller graduated in electrical engineering at the University of Duisburg.

fkirschk@ford.com www.ford.com

Vector Consulting Services

- Your experts for product development, technology strategy, IT, and managing changes
- Interim support, such as virtual security/safety officer project management, line leadership
- Global presence
- Training on Agile, Requirements, Security, Safety, CMMI/SPICE etc.
- Part of Vector Group with over 2000 employees

www.vector.com/consulting

www.vector.com/consulting-career

Christof EBERT

Christof Ebert is managing director at Vector Consulting Services.

He supports clients to improve product strategy and product development and to manage organizational changes.

Prior to that, he held senior management positions for ten years at Alcatel, with global responsibility for software / systems technology.

A trusted advisor for companies around the world, member of industry boards, and professor at the University of Stuttgart and Sorbonne in Paris, Dr. Ebert authored several books.

christof.ebert@vector.com
www.vector.com/consulting

Agenda

Welcome

Challenges

Agile Systems Engineering Ford Case Study Summary and Outlook

Industry Challenges 2018

Vector Client Survey 2018. Details: www.vector.com/trends. Horizontal axis shows short-term challenges; vertical axis shows mid-term challenges. Sum > 200% due to 5 answers per question. Strong validity with >4% response rate of 2000 recipients from different industries worldwide.

Quality and Cost are the biggest short-term challenges across industries. Connectivity and Digital Transformation evolved as a major challenge.

Challenge: Connectivity

Devices

Systems

Infrastructure

1980

2000

2020

Need: Systematic dependency management

Challenge: Heterogeneity

Need: System level cost optimization

Challenge: Cyber Security

Need: Robust systems engineering for cyber security threats

Challenge: Global Collaboration

Several Engineering Disciplines Effort One Engineering Discipline **Several Locations** One Location

Need: Orchestrating distributed engineering across locations and disciplines

Challenge: Interdependencies

Need: Agile development and alignment of systems engineering, software/IT/EE and services

Levers for Agile Systems Engineering

Quality and Efficiency

Agile

Techniques

Collaboration and Cooperation

Modeling and Simulation

Lever 1: Agile Techniques

Lever 2: Modeling and Simulation

System Requirements

Logical System Architecture

Component Architecture

Simulation Implementation

Lever 3: Collaboration and Cooperation

Lever 4: Quality and Efficiency

Systems Engineering Throughout the Life-Cycle

SW and System engineering requires comprehensive PLM solution

Information Model

The 3 abstraction layers close the gap between Vehicle Attributes and the Component Specification

Responsible: Feature/Function Owner

Feature from a customer perspective

Translating customer wants and market needs to stable, consistent and complete feature requirements

Use: Discussion/negotiation with customer representatives (e.g. marketing)

Logical functions necessary to implement the features

Translating customer requirements to implementation independent engineering requirements.

Use: Enable efficient reuse of specifications across ECUs and carlines (Core)

Allocated logical functions (platform / ECU)

- Technical interfaces of components (e.g. ECUs) are determined
- Component behavior is enhanced/refined by technical requirements
- Consistency of x-ECU interfaces enable interoperability
- · Efficient data exchange with supplier

Depending Business Model

 If SW is written by Ford, QPIP scope extends to SW specification details

Specification

with a defined

requirements

information)

(a container

Requirements Structure

Defined structure for gathering individual requirements (e.g. Feature Document)

Improving Quality and Collaboration with Good Documentation

REQ-199754/A-Opt-In Create Driver Profile

Enhanced Memory shall require a user to Opt-in before enabling this feature and creating first Driver Profile. Without the opt-in step the user cannot create any Driver Profiles and the vehicle will operate as it does normally without separate Driver Profiles for different drivers. (Example from Feature Document without attributes table)

Example: System Level Requirements

Purpose: Complete understanding of feature by using scenarios and other modeling techniques

Flow of Actions	
1	The Driver is actively backing the vehicle.
2	The vehicle is approaching a stationary object behind the vehicle.
3	Driver is attentive moving slowly toward object.
4	The feature RBA does not intervene.
5	Feature RBA sends a message to the driver that the system is inactive.
6	The Driver responds by manually applying the brakes at the appropriate time.
7	Scenario ends.

Driving scenarios technique has been developed in pilot projects.

Consistent Documentation and Tool Support

Benefits – Examples from Ford Projects

- Ownership: Self-organization reduces collaboration effort significantly compared to classic project management approach.
- Transparency of project status is significantly improved.
- Velocity and quality are improved. Management and teams recognize and value improvements and agile team spirit.
- Improved design speed and reuse.
- Product complexity is better managed and controlled.
- Architectural complexity control.

Agile Systems Engineering

Source: Ebert, Requirements Engineering, 2017

Benefits – Vector Examples across Industries

Collaboration

Collaboration effort has been reduced by over 20% with agile systems engineering.

Predictability

- Availability of results
- Project transparency

Velocity and product quality

Customers, management and teams recognize and value improvements and agile team spirit.

Customer (Component Supplier):

"I simply open the Kanban Board of the Scrum of Scrums meeting. If I see no progress after 3 days, I know the team has a problem. But I do not see this often."

End Customer (Systems OEM), 2 weeks after start:

"Now we see progress!"

Introduce agile systems engineering before complexity gets overwhelming.

Meet us at Vector Forum 2018 for Agile in Practice

Vector Forum: Agile in Practice

28. June 2018 at Vector headquarters in Stuttgart

- Practical experiences from ABB, BMW, Bosch, Essence, ZF and Vector
- ► Enhance your competences
- Grow your networks
- Meet our consultants

Details and free registration...

www.vector.com/vector-forum

Lorenz Slansky, Daimler

Thank you for your attention.

Contact us – We are glad to support you.

Passion. Partner. Value.

Vector Consulting Services

www.vector.com/consulting consulting-info@vector.com

Phone: +49-711-80670-0

