(Lista 2)

Seção 10.3: 1,3,5,7,9,13,15,17,19,21,25,27,29, 33,57

b)
$$(-2, 3\%2) =$$
 = $(2, \%/2)$ (-2, $3\%/2 + 2\%$)

$$(3, -\pi/3) =) \qquad (3, 2\pi - \pi/3) = (-3, \pi - \pi/3)$$

r(Q:

Percerro a ângulo e depois faça una refloxão

a)
$$(2,3\pi/2) = 1(0,-2)$$

b) $(12,\pi/4) = 1(1,1)$
c) $(-1,-\pi/6) = 1(-13/2,1/2)$

(5) a) (i) ~70 e 050 L27
.
$$(-4,4) \Rightarrow (412,3\pi/4)$$

b.) (i) ~70 e 050
$$L2\pi$$

. (3,3/3) => (b, $\pi/3$)

(9) OLILL -W12 60 6 1/2

$$(4,4 \approx 13) =) (4 \cos^{4 \approx 13}, 4 \sin^{4 \approx 13}) = (-2, -2\sqrt{3})$$

 $(6,5 \approx 13) =) (6 \cos^{5 \approx 13}, 6 \sin^{5 \approx 13}) = (3, -3\sqrt{3})$

Circunferência de centro na origen e rois VS

$$\begin{array}{c|c}
\hline
(7) & \Gamma = 5\cos\theta \\
& \chi^{2} + \chi^{2} = \Gamma^{2}
\end{array}$$

=)
$$(^{1}=5\cos\theta)$$
 =) $/^{2}=5$ =) $x^{2}-5x+y^{2}=0$
 $x^{2}-5x+\frac{25}{4}+y^{2}=\frac{25}{4}$
 $(x-5/2)^{2}+y^{2}=(5/2)^{2}$

$$\frac{19}{5^{2} \cdot \cos^{2}\theta - 5^{2} \cdot \cos^{2}\theta} = 1$$

$$\frac{19}{5^{2} \cdot \cos^{2}\theta - 5^{2} \cdot \cos^{2}\theta} = 1$$

$$\frac{19}{5^{2} \cdot \cos^{2}\theta - 5^{2} \cdot \cos^{2}\theta} = 1$$
Hiperbalo

(25)
$$x^{2} + y^{2} = 4y$$

$$(^{2} = 4rsen \theta)$$

$$(^{2} = 4rsen \theta)$$

Raio: $\sqrt{a^2+b^2}$

$$A = \frac{1}{2} \int_{0}^{\pi_{h}} 2\theta d\theta = \int_{0}^{\pi_{12}} \theta d\theta = \frac{9^{2}}{2} \Big|_{0}^{\pi_{12}} = \frac{\overline{u}^{2}}{8}$$

(3)
$$r = sub + cos \theta$$
 , $0 \le 0 \le \pi$

$$A = \frac{1}{2} \int_{0}^{\pi} (\sin\theta + \cos\theta)^{2} d\theta = \frac{1}{2} \int_{0}^{\pi} (1 + \sin2\theta) d\theta = \frac{1}{2} \left(\frac{9 - \cos2\theta}{2} \right) \Big|_{0}^{\pi}$$

$$=\frac{1}{2}\left(\overline{x}-\underline{1}-\left(0-\underline{1}\right)\right)=\overline{\frac{x}{2}}$$

$$A = \frac{1}{2} \int_{0}^{1/2} e^{-2\theta} d\theta = \frac{1}{2} \left(\frac{-\cos 2\theta}{2} \right)^{\frac{1}{2}} = \frac{1}{2} \cdot \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2}.$$

$$A = \int_{-\pi/2}^{\pi/2} (16 + 24 \sin \theta + 9 \sin^2 \theta) d\theta = \int_{-\pi/2}^{\pi/2} (16 + 24 \sin \theta + 9 (1 - \cos 2\theta)) d\theta$$

$$= \frac{1}{2} \cdot \left(\frac{160 - 24\cos \theta + \frac{9}{2}\theta - \frac{9}{4}\sin 2\theta}{2} \right) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{1}{2} \cdot \left(\frac{160 - 24\cos 0 + 90 - 9 \sin 20}{2} \right) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{1}{2} \cdot \left(\frac{410 - 24\cos 0 - 9 \sin 20}{4} \right) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{1}{2} \cdot \left(\frac{410 - 24\cos 0 - 9 \sin 20}{4} \right) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{1}{2} \cdot \left(\frac{410 - 24\cos 0 - 9 \sin 20}{4} \right) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

(9)
$$c = 4\cos\theta$$
 =) $x^{2} + y^{2} = 4x$ =) $(x-2)^{2} + y^{2} = 2^{2}$

$$A = \left(\int_{\mathcal{A}} 16\cos^2\theta \, d\theta\right)$$

$$A = 4\int_{\mathcal{A}} (1+\cos^2\theta) \, d\theta$$

$$A = \frac{1}{2} \left(110 + 12 \cos\theta - \sin 2\theta \right) = \frac{1}{2} \left(\frac{22\pi}{2} \right) = \frac{11\pi}{2}$$

$$(7) \Gamma = 4\cos 3\theta = 0$$

$$A = 1$$

$$A = 1$$

$$A = 4$$

(19)
$$r = \sin 4\theta - 3 \quad A = \frac{1}{2} \int_{0}^{\pi_{4}} (1 - \cos 8\theta) d\theta$$

$$A = \frac{1}{4} \left(0 - \frac{1}{8} \right) = \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{10}$$

$$A = \frac{1}{2} \int_{4\pi/6}^{(1+4)} (1+4) d\theta + \frac{4}{2} (1-as20) d\theta = \frac{1}{2} \int_{4\pi/6}^{(3+4)} (3+4) d\theta$$

$$=\frac{1}{2}\left(3\theta-4\cos\theta-\sin2\theta\right)\left[\frac{0\pi}{6}\right]$$

$$=\frac{1}{2}\left(2\pi-3\sqrt{3}\right)=\pi-3\sqrt{3}$$

$$=\frac{1}{2}\left(2\pi-3\sqrt{3}\right)$$

$$Sen \theta = \frac{1}{2} \Rightarrow \theta = \left(\frac{\pi}{6}, \frac{6\pi}{6}\right)$$

$$A = \frac{1}{2} \int_{\pi/6}^{5\pi/6} (165e^{2}\theta - 4) d\theta = \frac{1}{2} \int_{\pi/6}^{5\pi/6} (1-\cos 2\theta) - 4) d\theta$$

$$= \frac{1}{2} \int_{\pi/6}^{\pi/6} (4 - 8\cos 2\theta) d\theta = 2 \cdot \int_{\pi/6}^{\pi/6} (4 - 2\cos 2\theta) d\theta = 2 \cdot \left(0 - \sin 2\theta\right)$$

$$=2.\left(\frac{5\pi}{6}+\frac{13}{2}-\left(\frac{\pi}{6}-\frac{13}{2}\right)\right)=2.\left(\frac{4\pi}{6}+\frac{13}{3}\right)=\frac{4\pi}{3}+2\sqrt{3}$$

$$A = \frac{1}{2} \int (9\cos^2\theta - (1+2\cos\theta + \cos^2\theta))d\theta = \frac{1}{2} \int (8\cos^2\theta - 2\cos\theta - 1)d\theta$$

$$= \int_{-\pi/3}^{\pi/3} \left(\frac{8}{2} \left(1 + \cos 2\theta \right) - 2\cos \theta - 1 \right) d\theta = \int_{-\pi/3}^{\pi/3} \left(\frac{3}{3} + 4\cos 2\theta - 2\cos \theta \right) d\theta$$

$$= \frac{1}{2} \left(\frac{30}{2} + 2 \sin 2\theta - 2 \sin \theta \right) \left[\frac{\pi}{3} + \frac{1}{2} \left(\frac{\pi}{3} + \frac{1}{3} \right) \right] = \frac{1}{2} \left(\frac{\pi}{3} + \frac{1}{3} \right) = \frac{1}{2} \left(\frac{\pi$$

$$\pi - 2.13 + 13 - (-\pi + 213 - 213)$$

(29)

Sem cálculo:

r=362

Circunferência la roio 3/2. Ávea pedida:

$$2 \cdot \left(\frac{1}{4}, \pi, \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2, \frac{1}{2}\right) = \sqrt{\frac{9\pi}{8}} - \frac{9}{4}$$

Com cáloulo:

$$A = 2.1 \int_{\gamma_{14}}^{\gamma_{12}} 9 \cos^{2}\theta d\theta = 9 \int_{\gamma_{14}}^{\gamma_{14}} (1 + \cos^{2}\theta) d\theta = 9$$

$$=\frac{9}{2}\left(\frac{m}{2}+0-\left(\frac{m}{4}+\frac{1}{2}\right)\right)=\frac{9}{2}\left(\frac{m}{4}-\frac{1}{2}\right)+\frac{9}{8}\frac{-9}{4}$$

A paramétrica s=3cos0 vai percosrer a área en azul de 0=7/4 a 0=7/2

(36) Curva:
$$r = \frac{1}{2} + \cos\theta$$

$$\frac{1}{2} + \cos\theta$$

$$\frac{1$$

Ainterior= 21
$$\left(\frac{30 + \text{sen}0 + \text{sen}20}{4}\right) = \left(\frac{12}{4} - \frac{3\sqrt{3}}{4}\right)$$

$$r = sen \theta$$
 . =) $r_1 : \begin{cases} x = sen \theta \cos \theta + r_2 : \begin{cases} x = (0s\theta(1-sen \theta)) \\ y = sen^2 \theta \end{cases}$ $\begin{cases} y = (1-sen \theta) \sin \theta \end{cases}$

$$\pm) \cos\theta(1-2\sin\theta)=0 = \cos\theta=0$$

$$\cos\theta=0$$

$$\cos\theta=1/2$$

$$= \int_0^{\infty} \left(\frac{3+2\cos\theta}{2} + \frac{1}{2}\cos 2\theta\right) d\theta$$

$$1+\cos\theta = 3\cos\theta$$

 $\cos\theta = 1/2$ = $\left(\frac{3}{2}\theta + 2\sin\theta + \frac{\sin2\theta}{4}\right)^{\frac{\pi}{2}} = \left(\frac{3\pi}{2}\right)^{\frac{\pi}{2}}$
 $\theta = (\frac{\pi}{3}, -\frac{\pi}{3})^{\frac{\pi}{2}}$

Áven circule:
$$\frac{9\sqrt{3}}{4}$$
, $\left(2\frac{1}{2}\right)^{\frac{3}{2}}$ $\left(2\cos^2\theta d\theta\right)$

$$= \frac{1}{2} \int_{-\pi/3}^{\pi/3} \left(\frac{9}{2} (1 + \cos 2\theta) - 2\cos \theta - 1 \right) d\theta$$

$$=\frac{1}{2}\left(\pi+2.13-2.13-\left(-\pi-2.13+213\right)=\left[\pi\right]_{9}$$

$$A = \frac{3\pi - \left(\frac{9\pi - \pi}{4}\right)}{2} = \frac{3\pi - 5\pi - \pi}{2}$$

azul, sabendo que a cordioido é 8+8500.

$$8(1+\sin\theta)\sin\theta = 4 = 0$$
 as $8\cos\theta + 2\sin^2\theta - 1 = 0$

$$sen \theta = -2 \pm \sqrt{4 + 8} = -2 \pm 2\sqrt{3} = -1 \pm \sqrt{3} =)$$
 $\sqrt{3-1}$

$$\frac{1}{2} \cdot \frac{1}{2} = Accsin(\sqrt{3}-1) = \lambda$$

$$A=2. \left(\frac{1}{2} \int_{-1}^{1/2} 64(1+2 \sin \theta + \sin^2 \theta) d\theta - \frac{1}{2} \cdot 4 \cdot 4 \cdot \cot g \left(\frac{13-1}{2} \right) \right)$$

$$= \frac{1}{2} \int_{-1}^{1/2} 64(1+2 \sin \theta + \sin^2 \theta) d\theta - \frac{1}{2} \cdot 4 \cdot 4 \cdot \cot g \left(\frac{13-1}{2} \right)$$

A =
$$64. \int_{0}^{\pi/2} \left(\frac{3}{2} + 2 \sin \theta - 1 \cos 2\theta\right) d\theta - 16 \cot \theta d\theta$$

$$A = 64 \left(\frac{3}{2} \theta - 2\cos\theta - \frac{1}{4} \sin 2\theta \right) - \frac{1}{4} \cos \theta$$

$$1 \times = 2 \cos^2 \theta$$

$$1 \times = 2 \cos^2 \theta$$

$$2 \times \cos^2 \theta$$

Em
$$0 = \sqrt{3} = \frac{dy}{dx} = -\left(-\frac{\sqrt{3}}{3}\right) = \sqrt{\frac{3}{3}}$$

$$f(x) = \cos 2\theta \cos \theta$$
 $\frac{dx}{d\theta} = -2 \sin 2\theta \cdot \cos \theta - \cos 2\theta \cos \theta$ $\frac{dy}{d\theta} = -2 \sin 2\theta \cdot \sin \theta + \cos 2\theta \cos \theta$

$$dx = \frac{\cos 20 \cos 0 - 2 \sin 20 \sin 0}{\cos 20 \sin 0} + 2 \sin 2 \cos 0$$

$$\int x = \sin 2\theta / 2$$

$$\int y = \sin^2 \theta$$

$$\frac{dy}{d\theta} = \sin 2\theta$$

$$\frac{dy/dx = 9020}{\cos 20}$$

Tongontes vor izentais: $dy/d\theta = 0 \wedge dx/d\theta \neq 0$ sen20 = 0 = 0 = 0
Sen20=0 =) 0=(0, 1/2, 1/4)
· co=20 ±0
· cos20 +0 Pontes: pole, (1, ™2)
Tongontes verticois: dy/d0 +0 rdx/d0=0 . ser20 +0 => 0=
Sen20 ±0 =) Q=(1/4, 3 1/4 4
· co=20 =0
Pontes: (12/2, 714), (12/2, 3714)
' <u></u>

