WGCNA Analyses

Run WGCNA

Setup and read in data

```
# Libraries
library(easypackages)
libraries("WGCNA", "gplots", "here", "ggplot2")
## *
     Package WGCNA 1.63 loaded.
## *
## *
       Important note: It appears that your system supports multi-threading,
       but it is not enabled within WGCNA in R.
       To allow multi-threading within WGCNA with all available cores, use
## *
## *
## *
             allowWGCNAThreads()
## *
## *
       within R. Use disableWGCNAThreads() to disable threading if necessary.
       Alternatively, set the following environment variable on your system:
## *
## *
             ALLOW_WGCNA_THREADS=<number_of_processors>
## *
## *
       for example
## *
             ALLOW_WGCNA_THREADS=8
## *
## *
## *
       To set the environment variable in linux bash shell, type
## *
## *
              export ALLOW_WGCNA_THREADS=8
## *
## *
        before running R. Other operating systems or shells will
        have a similar command to achieve the same aim.
## *
# Allow multi-threading within WGCNA
allowWGCNAThreads()
## Allowing multi-threading with up to 8 threads.
options(stringsAsFactors = FALSE)
# WGCNA parameters
networkType = 'signed'
tomType = 'signed'
corrType = 'bicor'
maxBlockSize = 30000
minModSize = 100
modMergeCutHeight = 0.20
```

Choose soft-threshold power

```
powers = c(1:30)
if (corrType=="pearson"){
 corFnc2use = "cor"
}else if (corrType=="bicor"){
 corFnc2use = corrType
}
sft = pickSoftThreshold(datExpr,
                       powerVector = powers,
                       verbose = 5,
                       networkType = networkType,
                       corFnc = corrType)
## pickSoftThreshold: will use block size 3125.
  pickSoftThreshold: calculating connectivity for given powers...
      ..working on genes 1 through 3125 of 14313
##
      ..working on genes 3126 through 6250 of 14313
##
      ..working on genes 6251 through 9375 of 14313
##
      ..working on genes 9376 through 12500 of 14313
##
      ..working on genes 12501 through 14313 of 14313
##
     Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1
         1
              0.066 8.57
                                   0.958 7190.000 7.19e+03 7550.0
                                    0.833 3730.000 3.68e+03 4300.0
## 2
         2
              0.420 - 12.20
## 3
         3
              0.780 -10.90
                                    0.935 1990.000 1.95e+03 2610.0
## 4
         4
              0.833 - 7.76
                                    0.972 1090.000 1.06e+03 1680.0
## 5
         5
              0.843 -5.94
                                    0.984 617.000 5.88e+02 1120.0
                                    0.983 358.000 3.34e+02 771.0
## 6
         6
              0.839 - 4.80
## 7
         7
             0.834 -4.06
                                   0.980 214.000 1.93e+02 547.0
## 8
            0.836 -3.49
                                   0.978 131.000 1.14e+02 397.0
              0.822 -3.11
## 9
         9
                                   0.965 82.500 6.86e+01 294.0
## 10
        10
              0.831 - 2.75
                                    0.963 53.300 4.20e+01 221.0
              0.856 - 2.45
                                    0.974 35.400 2.62e+01 169.0
## 11
        11
```

```
## 12
         12
               0.876 - 2.25
                                     0.984
                                             24.000 1.66e+01 132.0
## 13
         13
               0.874 - 2.20
                                     0.984
                                             16.700 1.06e+01 109.0
                                                                90.5
## 14
         14
               0.875 - 2.14
                                     0.981
                                             11.900 6.89e+00
               0.876 -2.07
                                              8.640 4.52e+00
## 15
         15
                                     0.975
                                                                75.9
## 16
         16
               0.900 -1.95
                                     0.985
                                              6.400 2.99e+00
                                                                 64.1
## 17
               0.917 -1.89
                                     0.990
                                              4.820 2.01e+00
                                                                55.8
         17
## 18
               0.865 - 1.99
                                     0.956
                                              3.690 1.36e+00
         18
                                                                 51.7
               0.876 -1.99
                                              2.870 9.34e-01
## 19
         19
                                     0.965
                                                                48.1
## 20
         20
               0.876 -1.99
                                     0.965
                                              2.270 6.43e-01
                                                                 44.9
## 21
               0.889 -1.96
         21
                                     0.968
                                              1.810 4.47e-01
                                                                41.9
## 22
         22
               0.902 - 1.93
                                     0.972
                                              1.460 3.14e-01
                                                                 39.2
                                              1.200 2.22e-01
## 23
         23
               0.910 - 1.89
                                     0.971
                                                                 36.7
## 24
         24
               0.918 -1.85
                                     0.969
                                              0.987 1.57e-01
                                                                 34.5
## 25
         25
               0.927 - 1.81
                                     0.974
                                              0.822 1.12e-01
                                                                 32.4
## 26
         26
               0.927 - 1.78
                                     0.973
                                              0.691 8.02e-02
                                                                 30.4
## 27
         27
               0.932 -1.75
                                     0.972
                                              0.586 5.76e-02
                                                                 28.6
## 28
         28
               0.935 -1.71
                                     0.970
                                              0.500 4.18e-02
                                                                 27.0
## 29
         29
               0.939 - 1.68
                                     0.969
                                              0.430 3.03e-02
                                                                 25.4
## 30
               0.942 - 1.65
                                     0.967
                                              0.372 2.22e-02
                                                                 23.9
         30
makeSoftPowerPlot <- function(sft, powers, cex1 = 0.9){</pre>
  # Scale-free topology fit index as a function of the soft-thresholding power
  par(mfrow = c(1,2))
 plot(sft$fitIndices[,1],
       -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
       xlab = "Soft Threshold (power)",
       ylab = "Scale Free Topology Model Fit, signed R^2",
      type = "n",
       main = paste("Scale independence"))
  text(sft$fitIndices[,1],
      -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
      labels = powers,
       cex = cex1,
       col = "red")
  abline(h = 0.90, col = "red")
  ## Mean connectivity as a function of the soft-thresholding power
  plot(sft$fitIndices[,1],
       sft$fitIndices[,5],
       xlab="Soft Threshold (power)",
       ylab="Mean Connectivity",
       type="n",
      main = "Mean connectivity")
  text(sft$fitIndices[,1],
       sft$fitIndices[,5],
      labels=powers,
      cex=cex1,
       col="red")
}
makeSoftPowerPlot(sft = sft, powers = powers)
```


Run blockwiseModules

```
softPower = 16
## Run an automated network analysis
net3 = blockwiseModules(datExpr,
                         power = softPower,
                         deepSplit = deepSplit,
                         minModuleSize = minModSize,
                         mergeCutHeight = modMergeCutHeight,
                         detectCutHeight = 0.9999,
                         corType = corrType,
                         networkType = networkType,
                         pamStage = FALSE,
                         pamRespectsDendro = TRUE,
                         verbose = 3,
                         saveTOMs = FALSE,
                         maxBlockSize = maxBlockSize,
                         numericLabels = TRUE)
##
   Calculating module eigengenes block-wise from all genes
##
      Flagging genes and samples with too many missing values...
##
       ..step 1
```

```
##
       ..matrix multiplication (system BLAS)..
##
       ..normalization..
##
       ..done.
   ....clustering..
##
##
    ....detecting modules..
    ....calculating module eigengenes..
##
    ....checking kME in modules..
##
        ..removing 62 genes from module 1 because their KME is too low.
##
        ..removing 226 genes from module 2 because their KME is too low.
##
        ..removing 1 genes from module 3 because their KME is too low.
##
        ..removing 49 genes from module 4 because their KME is too low.
##
        ..removing 7 genes from module 5 because their KME is too low.
##
        ..removing 46 genes from module 6 because their KME is too low.
##
        ..removing 1 genes from module 7 because their KME is too low.
##
        ..removing 27 genes from module 8 because their KME is too low.
##
        ..removing 4 genes from module 9 because their KME is too low.
##
        ..removing 15 genes from module 11 because their KME is too low.
##
        ..removing 27 genes from module 13 because their KME is too low.
##
        ..removing 10 genes from module 14 because their KME is too low.
##
        ..removing 1 genes from module 18 because their KME is too low.
##
     ..reassigning 42 genes from module 1 to modules with higher KME.
##
     ..reassigning 2 genes from module 2 to modules with higher KME.
##
     ..reassigning 18 genes from module 3 to modules with higher KME.
##
     ..reassigning 9 genes from module 4 to modules with higher KME.
##
     ..reassigning 13 genes from module 5 to modules with higher KME.
##
     ..reassigning 3 genes from module 6 to modules with higher KME.
##
     ..reassigning 3 genes from module 7 to modules with higher KME.
     ..reassigning 9 genes from module 8 to modules with higher KME.
##
##
     ..reassigning 8 genes from module 9 to modules with higher KME.
##
     ..reassigning 8 genes from module 10 to modules with higher KME.
##
     ..reassigning 7 genes from module 11 to modules with higher KME.
##
     ..reassigning 1 genes from module 12 to modules with higher KME.
##
     ..reassigning 2 genes from module 14 to modules with higher KME.
##
     ..reassigning 2 genes from module 15 to modules with higher KME.
##
     ..reassigning 5 genes from module 16 to modules with higher KME.
##
     ..reassigning 3 genes from module 17 to modules with higher KME.
##
     ..reassigning 1 genes from module 19 to modules with higher KME.
##
     ..reassigning 4 genes from module 20 to modules with higher KME.
##
     ..reassigning 3 genes from module 22 to modules with higher KME.
##
    ..merging modules that are too close..
##
        mergeCloseModules: Merging modules whose distance is less than 0.2
          Calculating new MEs...
net3$moduleNumbers = net3$colors
net3$colors = labels2colors(net3$moduleNumbers)
moduleLabels = net3$moduleNumbers
moduleColors = net3$colors
modNum_tab = data.frame(table(moduleLabels))
modCol_tab = data.frame(table(moduleColors))
modColNum_tab = cbind(moduleLabels = modNum_tab$moduleLabels,
                      modCol_tab[order(-modCol_tab$Freq),])
knitr::kable(modColNum_tab)
```

	${\it module Labels}$	${\bf module Colors}$	Freq
8	0	grey	7523
21	1	turquoise	1678
2	2	blue	590
3	3	brown	495
22	4	yellow	383
6	5	green	367
17	6	red	344
1	7	black	323
15	8	pink	292
13	9	magenta	264
16	10	purple	262
7	11	greenyellow	244
20	12	tan	241
19	13	salmon	231
4	14	cyan	159
14	15	midnightblue	147
9	16	grey60	140
10	17	lightcyan	140
11	18	lightgreen	128
12	19	lightyellow	126
18	20	royalblue	123
5	21	darkred	113

```
rownames(net3$MEs) = labelData$subjectId
tmp_MEs = net3$MEs
# rename columns in net3$MEs
for (i in 1:dim(tmp_MEs)[2]){
  tmp_mnum = substr(colnames(tmp_MEs)[i], 3, nchar(colnames(tmp_MEs)[i]))
  if (nchar(tmp_mnum)==1){
    new_mnum = sprintf("M0%s",tmp_mnum)
  } else if (nchar(tmp_mnum)==2){
    new_mnum = sprintf("M%s",tmp_mnum)
  colnames(tmp_MEs)[i] = new_mnum
net3$MEs_colreordered = tmp_MEs[,sort(colnames(tmp_MEs))]
nums2use = 0:(dim(tmp_MEs)[2]-1)
for (i in 1:length(nums2use)){
  colnames(net3$MEs_colreordered)[i] = sprintf("M%d",nums2use[i])
}
if (sum(colnames(net3$MEs_colreordered)=="MO")>0){
  net3$MEs_colreordered = net3$MEs_colreordered[,2:ncol(net3$MEs_colreordered)]
}
# order rows by subgrp2 and then subjectId
new_label_data = labelData
new_label_data2 = new_label_data[order(new_label_data$subgrp2,
                                       order(new_label_data$subjectId)),]
net3$MEs_colreordered = net3$MEs_colreordered[new_label_data2$subjectId,]
# rename columns in net3$MEs
```

```
for (i in 1:dim(net3$MEs)[2]){
  tmp_mnum = substr(colnames(net3$MEs)[i], 3, nchar(colnames(net3$MEs)[i]))
  new_mnum = sprintf("M%s",tmp_mnum)
  colnames(net3$MEs)[i] = new_mnum
}
```

Make TOM plot

Gene dendrogram and module colors

Make eigengene network plot

Write out results files

Run DE analysis on module eigengenes

```
medata = net3$MEs
nmods = dim(medata)[2]
medata$group = factor(labelData$subgrp2)
medata$sex = factor(labelData$sex)
medata$age = labelData$age
medata$Dx = factor(labelData$Dx)
medata$batch = factor(labelData$batch)
medata$RIN = labelData$RIN
covs2use = "group"
res_colnames = c("Module",
                 "Group.Fstat",
                 "Group.pval",
                 "Group.fdr",
                 "TD vs ASDPoor.tstat",
                 "TD_vs_ASDPoor.pval",
                 "TD_vs_ASDPoor.fdr",
                 "TD_vs_ASDGood.tstat",
                 "TD vs ASDGood.pval",
                 "TD vs ASDGood.fdr",
                 "ASDGood vs ASDPoor.tstat",
                 "ASDGood_vs_ASDPoor.pval",
                 "ASDGood_vs_ASDPoor.fdr")
group_diff_res = data.frame(matrix(nrow = nmods-1,
                                   ncol = length(res_colnames)))
colnames(group_diff_res) = res_colnames
for (imod in 1:(nmods-1)){
  module2use = sprintf("M%d",imod)
  group_diff_res$Module[imod] = module2use
  # test for subgroup effect
  form2use = as.formula(sprintf("%s ~ %s",module2use,covs2use))
  mod2use = lm(formula = form2use, data = medata)
  res = anova(mod2use)
  group_diff_res$Group.Fstat[imod] = res["group","F value"]
  group_diff_res$Group.pval[imod] = res["group","Pr(>F)"]
  # test for TD vs ASD Poor effect
  mask = medata$group=="TD" | medata$group=="Poor"
  tmp_data = subset(medata, mask)
  form2use = as.formula(sprintf("%s ~ %s",module2use,covs2use))
```

```
mod2use = t.test(formula = form2use, data = tmp_data)
  group_diff_res$TD_vs_ASDPoor.tstat[imod] = mod2use$statistic
  group_diff_res$TD_vs_ASDPoor.pval[imod] = mod2use$p.value
  # test for TD vs ASD Good effect
  mask = medata$group=="TD" | medata$group=="Good"
  tmp_data = subset(medata, mask)
  form2use = as.formula(sprintf("%s ~ %s",module2use,covs2use))
  mod2use = t.test(formula = form2use, data = tmp_data)
  group_diff_res$TD_vs_ASDGood.tstat[imod] = mod2use$statistic
  group_diff_res$TD_vs_ASDGood.pval[imod] = mod2use$p.value
  # test for ASD Good vs ASD Poor effect
  mask = medata$group=="Good" | medata$group=="Poor"
  tmp_data = subset(medata, mask)
  form2use = as.formula(sprintf("%s ~ %s",module2use,covs2use))
  mod2use = t.test(formula = form2use, data = tmp_data)
  group_diff_res$ASDGood_vs_ASDPoor.tstat[imod] = mod2use$statistic
  group_diff_res$ASDGood_vs_ASDPoor.pval[imod] = mod2use$p.value
}#for (imod in 1:(nmods-1)){
rownames(group_diff_res) = group_diff_res$Module
# compute FDR
group_diff_res$Group.fdr = p.adjust(group_diff_res$Group.pval,
                                   method = "fdr")
group_diff_res$TD_vs_ASDPoor.fdr = p.adjust(group_diff_res$TD_vs_ASDPoor.pval,
                                           method = "fdr")
group_diff_res$TD_vs_ASDGood.fdr = p.adjust(group_diff_res$TD_vs_ASDGood.pval,
                                            method = "fdr")
group_diff_res$ASDGood_vs_ASDPoor.fdr = p.adjust(group_diff_res$ASDGood_vs_ASDPoor.pval,
                                                method = "fdr")
group_diff_res
##
       Module Group.Fstat Group.pval Group.fdr TD_vs_ASDPoor.tstat
## M1
          M1 0.85466832 0.42810844 0.5993518
                                                       -1.3077840
          M2 2.21274318 0.11403738 0.3204154
## M2
                                                        1.9583960
          M3 3.48452314 0.03394472 0.1425678
## M3
                                                       -2.3282604
          M4 0.99199585 0.37398634 0.5609795
                                                       -0.7802731
## M4
## M5
          M5 0.15349680 0.85787894 0.9007729
                                                       -0.3953875
          M6 1.23334291 0.29514108 0.5164969
## M6
                                                        1.0178269
## M7
          M7 0.60950713 0.54536534 0.6673585
                                                        1.0717799
          M8 0.56130056 0.57202155 0.6673585
## M8
                                                        0.8370422
## M9
         M9 4.67901867 0.01112702 0.1366466
                                                       -1.9749269
## M10
         M10 0.09927062 0.90557513 0.9055751
                                                        0.4028410
## M11
         M11 4.50985599 0.01301396 0.1366466
                                                        2.5044641
## M12
         M12 1.77808444 0.17357485 0.3645072
                                                       -1.5280577
## M13
         M13 1.12424957 0.32844036 0.5305575
                                                         1.4686285
## M14
         M14 0.45444935 0.63593248 0.7028727
                                                         0.6495977
## M15
         M15 1.80609348 0.16892359 0.3645072
                                                        1.6993953
## M16
         M16 0.63403431 0.53229143 0.6673585
                                                        1.0884492
         M17 2.14668001 0.12153188 0.3204154
## M17
                                                        1.3515302
## M18
         M18 3.67200087 0.02845258 0.1425678
                                                        2.4916716
         M19 2.14215664 0.12206301 0.3204154
## M19
                                                        2.0033869
## M20
         M20 1.26492125 0.28615870 0.5164969
                                                        1.5494964
```

```
## M21
          M21 3.69217556 0.02791818 0.1425678
                                                            2.3337542
##
       TD_vs_ASDPoor.pval TD_vs_ASDPoor.fdr TD_vs_ASDGood.tstat
## M1
                0.19490314
                                    0.3148435
                                                        -0.7133109
## M2
                0.05391260
                                    0.1617378
                                                         1.4702005
## M3
                0.02257705
                                    0.1185295
                                                        -2.3035095
## M4
                                    0.5106142
                0.43766928
                                                         0.5774464
## M5
                0.69367516
                                    0.6936752
                                                        -0.5418886
## M6
                0.31201017
                                    0.4095134
                                                        -0.3542066
## M7
                0.28723281
                                    0.4021259
                                                         0.5502798
## M8
                0.40521200
                                    0.5005560
                                                         0.9952571
## M9
                0.05299963
                                    0.1617378
                                                        -2.6683263
## M10
                0.68823574
                                    0.6936752
                                                         0.1001046
                0.01459805
## M11
                                    0.1185295
                                                         2.6205969
## M12
                0.13148716
                                    0.2761230
                                                        -1.5304563
## M13
                0.14633954
                                    0.2793755
                                                         1.0096012
## M14
                0.51803237
                                    0.5725621
                                                         1.0172965
## M15
                0.09334369
                                    0.2450272
                                                         0.7945324
## M16
                0.27984237
                                    0.4021259
                                                         0.3609575
                0.18065763
## M17
                                    0.3148435
                                                         2.0288055
## M18
                0.01492681
                                    0.1185295
                                                         1.9561098
## M19
                0.04870371
                                    0.1617378
                                                         1.7747514
## M20
                0.12567776
                                    0.2761230
                                                         0.9181648
## M21
                0.02225434
                                                         2.3564695
                                    0.1185295
##
       TD vs ASDGood.pval TD vs ASDGood.fdr ASDGood vs ASDPoor.tstat
## M1
                0.47787535
                                    0.6690255
                                                            0.605344288
## M2
                0.14594251
                                    0.3405325
                                                           -0.631508970
## M3
                0.02403018
                                    0.1261584
                                                            0.007879917
## M4
                0.56554160
                                    0.6878272
                                                            1.394010742
## M5
                0.58956615
                                    0.6878272
                                                           -0.128465624
                                                           -1.587045747
## M6
                0.72440050
                                    0.7606205
## M7
                0.58380490
                                    0.6878272
                                                           -0.577615462
## M8
                0.32287520
                                    0.5650316
                                                            0.132805503
## M9
                0.01005985
                                    0.1115294
                                                           -0.914398070
## M10
                0.92054642
                                    0.9205464
                                                           -0.343384180
## M11
                                                            0.431908102
                0.01062185
                                    0.1115294
## M12
                0.13071826
                                    0.3405325
                                                           -0.042657185
## M13
                0.31593678
                                    0.5650316
                                                           -0.581530532
## M14
                0.31247684
                                    0.5650316
                                                            0.313983191
## M15
                0.42985018
                                    0.6447753
                                                           -1.208229109
## M16
                0.71914725
                                                           -0.742428674
                                    0.7606205
## M17
                0.04632505
                                    0.1905484
                                                            0.649485776
## M18
                0.05444241
                                    0.1905484
                                                           -0.743318261
## M19
                0.08015987
                                    0.2404796
                                                           -0.045094533
## M20
                                                           -0.670069422
                0.36158682
                                    0.5841018
## M21
                0.02133914
                                    0.1261584
                                                           -0.357707051
##
       ASDGood_vs_ASDPoor.pval ASDGood_vs_ASDPoor.fdr
## M1
                      0.5466854
                                               0.9890597
## M2
                      0.5295575
                                               0.9890597
## M3
                      0.9937327
                                               0.9937327
## M4
                      0.1677955
                                               0.9890597
## M5
                                              0.9937327
                      0.8981105
## M6
                      0.1171290
                                              0.9890597
## M7
                      0.5651770
                                              0.9890597
## M8
                      0.8946860
                                              0.9937327
```

```
## M9
                     0.3633331
                                             0.9890597
## M10
                     0.7322268
                                             0.9900994
## M11
                     0.6670684
                                             0.9900994
## M12
                     0.9660831
                                             0.9937327
## M13
                     0.5626257
                                             0.9890597
## M14
                     0.7543615
                                             0.9900994
## M15
                     0.2310813
                                             0.9890597
## M16
                     0.4600424
                                             0.9890597
## M17
                     0.5179341
                                             0.9890597
## M18
                     0.4595420
                                             0.9890597
## M19
                     0.9641492
                                             0.9937327
## M20
                     0.5047740
                                             0.9890597
## M21
                     0.7216176
                                             0.9900994
```

Run WGCNA on TD only

```
# run on TD
grp2use = "TD"
datExpr_grp = datExpr[labelData$subgrp2==grp2use,]
datTraits_grp = datTraits[labelData$subgrp2==grp2use,]
# Choose a soft-threshold power
powers = c(1:30)
if (corrType=="pearson"){
  corFnc2use = "cor"
}else if (corrType=="bicor"){
  corFnc2use = corrType
}
sft = pickSoftThreshold(datExpr_grp,
                        powerVector = powers,
                        verbose = 5,
                        networkType = networkType,
                        corFnc = corrType)
## pickSoftThreshold: will use block size 3125.
  pickSoftThreshold: calculating connectivity for given powers...
```

```
..working on genes 1 through 3125 of 14313
##
##
      ..working on genes 3126 through 6250 of 14313
##
      ..working on genes 6251 through 9375 of 14313
##
      ..working on genes 9376 through 12500 of 14313
##
      ..working on genes 12501 through 14313 of 14313
     Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
##
## 1
         1
              0.108
                     8.77
                                   0.937 7190.000 7200.000 7580.0
## 2
         2
              0.479 -10.80
                                   0.858 3800.000 3760.000 4440.0
## 3
         3
              0.696 -8.20
                                   0.905 2100.000 2050.000 2800.0
## 4
         4
              0.779 - 6.09
                                   0.950 1210.000 1170.000 1860.0
## 5
              0.800 - 4.79
                                   0.970 723.000
                                                   688.000 1290.0
## 6
              0.819 -3.95
                                    0.986 446.000
                                                    416.000 929.0
         6
              0.821 -3.50
## 7
         7
                                    0.986 284.000
                                                    257.000 687.0
## 8
              0.828 -3.16
         8
                                   0.989 185.000
                                                    163.000 522.0
## 9
         9
              0.834 - 2.91
                                   0.990 124.000
                                                   105.000 404.0
              0.836 - 2.73
                                                    69.400 318.0
## 10
        10
                                   0.988 85.600
## 11
              0.832 - 2.60
                                   0.987 60.100
        11
                                                    46.500 253.0
```

```
## 12
                 0.832
                        -2.49
                                                              31.600
          12
                                         0.983
                                                  43.100
                                                                       205.0
##
   13
          13
                 0.829
                        -2.40
                                         0.980
                                                  31.500
                                                              21.900
                                                                       167.0
                 0.820
                        -2.34
                                         0.976
                                                                       138.0
##
   14
          14
                                                  23.500
                                                              15.300
                 0.813
                        -2.28
                                         0.973
                                                  17.700
                                                              10.800
                                                                       115.0
##
   15
          15
##
   16
          16
                 0.808
                        -2.22
                                         0.969
                                                  13.600
                                                               7.700
                                                                        96.7
##
   17
                0.808
                        -2.14
                                         0.965
                                                  10.600
                                                               5.560
                                                                        81.8
          17
##
  18
          18
                 0.815
                        -2.05
                                         0.961
                                                    8.320
                                                               4.040
                                                                        69.6
                        -1.90
                0.865
                                         0.978
                                                               2.960
                                                                        59.6
##
  19
          19
                                                    6.630
##
   20
          20
                 0.894
                        -1.84
                                         0.991
                                                    5.340
                                                               2.180
                                                                        52.7
   21
                 0.884
                        -1.90
                                         0.990
                                                    4.340
                                                               1.620
                                                                        49.3
##
          21
##
   22
          22
                 0.895
                        -1.91
                                         0.996
                                                    3.560
                                                               1.220
                                                                        46.3
   23
          23
                 0.907
                                         0.998
                                                    2.950
                                                               0.916
##
                        -1.91
                                                                        43.6
   24
                 0.919
                        -1.91
                                                               0.696
##
          24
                                         0.999
                                                    2.460
                                                                        41.1
   25
          25
                0.927
                        -1.90
                                         0.998
                                                    2.070
                                                               0.530
                                                                        38.8
##
##
   26
          26
                 0.933
                        -1.89
                                         0.997
                                                    1.750
                                                               0.406
                                                                        36.7
##
   27
          27
                 0.942
                        -1.86
                                         0.996
                                                    1.490
                                                               0.313
                                                                        34.7
##
   28
          28
                 0.947
                        -1.84
                                         0.995
                                                    1.280
                                                               0.241
                                                                        32.9
                 0.955
##
   29
          29
                        -1.82
                                         0.997
                                                    1.100
                                                               0.189
                                                                        31.2
## 30
          30
                 0.960
                        -1.80
                                         0.996
                                                    0.958
                                                               0.147
                                                                        29.6
```

makeSoftPowerPlot(sft = sft, powers = powers)

Scale independence

Mean connectivity


```
detectCutHeight = 0.9999,
    corType = corrType,
    networkType = networkType,
    pamStage = FALSE,
    pamRespectsDendro = TRUE,
    verbose = 3,
    saveTOMs = FALSE,
    maxBlockSize = maxBlockSize,
    numericLabels = TRUE)
```

```
Calculating module eigengenes block-wise from all genes
##
      Flagging genes and samples with too many missing values...
##
       ..step 1
##
    ..Working on block 1 .
##
       TOM calculation: adjacency...
##
       ..will use 8 parallel threads.
##
       Fraction of slow calculations: 0.000000
##
       ..connectivity..
##
       ..matrix multiplication (system BLAS)..
##
       ..normalization..
##
       ..done.
##
    ....clustering..
##
    ....detecting modules..
    ....calculating module eigengenes..
##
##
    ....checking kME in modules..
##
        ..removing 62 genes from module 1 because their KME is too low.
##
        ..removing 226 genes from module 2 because their KME is too low.
##
        ..removing 1 genes from module 3 because their KME is too low.
##
        ..removing 49 genes from module 4 because their KME is too low.
##
        ..removing 7 genes from module 5 because their KME is too low.
##
        ..removing 46 genes from module 6 because their KME is too low.
##
        .. \\ removing 1 genes from module 7 because their KME is too low.
        ..removing 27 genes from module 8 because their KME is too low.
##
##
        ..removing 4 genes from module 9 because their KME is too low.
##
        ..removing 15 genes from module 11 because their KME is too low.
##
        ..removing 27 genes from module 13 because their KME is too low.
##
        ..removing 10 genes from module 14 because their KME is too low.
##
        ..removing 1 genes from module 18 because their KME is too low.
##
     ..reassigning 42 genes from module 1 to modules with higher KME.
##
     ..reassigning 2 genes from module 2 to modules with higher KME.
##
     ..reassigning 18 genes from module 3 to modules with higher KME.
##
     ..reassigning 9 genes from module 4 to modules with higher KME.
##
     ..reassigning 13 genes from module 5 to modules with higher KME.
##
     ..reassigning 3 genes from module 6 to modules with higher KME.
##
     ..reassigning 3 genes from module 7 to modules with higher KME.
##
     ..reassigning 9 genes from module 8 to modules with higher KME.
##
     ..reassigning 8 genes from module 9 to modules with higher KME.
##
     ..reassigning 8 genes from module 10 to modules with higher KME.
##
     ..reassigning 7 genes from module 11 to modules with higher KME.
##
     ..reassigning 1 genes from module 12 to modules with higher KME.
##
     ..reassigning 2 genes from module 14 to modules with higher KME.
##
     ..reassigning 2 genes from module 15 to modules with higher KME.
##
     ..reassigning 5 genes from module 16 to modules with higher KME.
     ..reassigning 3 genes from module 17 to modules with higher KME.
```

```
## ..reassigning 1 genes from module 19 to modules with higher KME.
## ..reassigning 4 genes from module 20 to modules with higher KME.
## ..reassigning 3 genes from module 22 to modules with higher KME.
## ..merging modules that are too close..
## mergeCloseModules: Merging modules whose distance is less than 0.2
## Calculating new MEs...

td_colors = labels2colors(net_tmp$colors)
datExpr_td = datExpr_grp
```

Run WGCNA on ASD Good only

14

15

14

0.8160 - 2.47

15 0.8320 -2.35

```
# run on ASD Good
grp2use = "Good"
datExpr_grp = datExpr[labelData$subgrp2==grp2use,]
datTraits_grp = datTraits[labelData$subgrp2==grp2use,]
# Choose a soft-threshold power
powers = c(1:30)
if (corrType=="pearson"){
  corFnc2use = "cor"
}else if (corrType=="bicor"){
  corFnc2use = corrType
sft = pickSoftThreshold(datExpr_grp,
                        powerVector = powers,
                        verbose = 5,
                        networkType = networkType,
                         corFnc = corrType)
## pickSoftThreshold: will use block size 3125.
   pickSoftThreshold: calculating connectivity for given powers...
##
      ..working on genes 1 through 3125 of 14313
##
      ..working on genes 3126 through 6250 of 14313
##
      ..working on genes 6251 through 9375 of 14313
      ..working on genes 9376 through 12500 of 14313
##
##
      ..working on genes 12501 through 14313 of 14313
      Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1
          1
             0.0473
                     7.65
                                    0.929 7180.000 7.18e+03 7490.0
## 2
         2
             0.5400 - 15.70
                                    0.823 3780.000 3.73e+03 4380.0
## 3
             0.7300 -10.50
          3
                                    0.905 2080.000 2.03e+03 2780.0
## 4
         4
             0.7880 - 7.49
                                    0.937 1190.000 1.14e+03 1880.0
             0.8090 -5.81
## 5
         5
                                    0.950 704.000 6.59e+02 1320.0
## 6
         6
             0.8170 -4.68
                                    0.957 430.000 3.92e+02 965.0
## 7
         7
             0.8190 -4.03
                                    0.958 271.000 2.39e+02 726.0
## 8
             0.7980 -3.68
                                    0.948 176.000 1.48e+02 559.0
         8
## 9
         9
             0.7960 -3.37
                                    0.947
                                           117.000 9.42e+01 439.0
## 10
         10
             0.7910 -3.15
                                    0.944
                                           79.500 6.07e+01 350.0
## 11
         11
             0.7840 - 2.98
                                    0.945
                                            55.300 3.99e+01 282.0
## 12
         12
             0.7890 - 2.79
                                    0.945
                                            39.300 2.66e+01 231.0
## 13
             0.7950 -2.63
                                    0.946
                                            28.500 1.80e+01 190.0
         13
```

21.000 1.23e+01 158.0

15.700 8.52e+00 133.0

0.953

0.961

```
## 16
         16
               0.8520
                        -2.23
                                        0.972
                                                 11.900
                                                          5.98e+00
                                                                     112.0
##
   17
         17
               0.8610
                        -2.15
                                        0.977
                                                  9.200
                                                          4.22e+00
                                                                      95.1
                                                  7.170
                                                                      81.3
##
   18
         18
               0.8750
                        -2.06
                                        0.981
                                                          3.02e+00
               0.8830
                        -2.02
                                                  5.660
                                                          2.16e+00
##
   19
         19
                                        0.984
                                                                      71.0
##
   20
         20
               0.8850
                        -1.99
                                        0.988
                                                  4.520
                                                          1.57e+00
                                                                      62.6
   21
               0.8890
                        -1.96
                                        0.990
                                                  3.640
                                                          1.14e+00
                                                                      55.4
##
         21
##
  22
               0.8900
                        -1.93
                                        0.990
                                                  2.960
                                                          8.38e-01
                                                                      49.2
         22
## 23
         23
                        -1.91
                                                  2.420
                                                          6.23e-01
                                                                      43.8
               0.8880
                                        0.989
##
   24
         24
               0.8870
                        -1.89
                                        0.988
                                                  2.000
                                                          4.66e-01
                                                                      39.1
   25
         25
               0.8820
                       -1.88
                                                  1.670
                                                          3.49e-01
                                                                      35.0
##
                                        0.985
##
   26
         26
               0.8870
                        -1.85
                                        0.986
                                                  1.390
                                                          2.64e-01
                                                                      31.4
   27
         27
               0.9000
                        -1.80
                                        0.988
                                                  1.180
                                                          2.00e-01
                                                                      28.3
##
               0.9030
                       -1.78
                                                  0.997
                                                          1.52e-01
                                                                      25.5
##
   28
         28
                                        0.987
   29
         29
               0.9130
                       -1.74
                                        0.989
                                                  0.850
                                                          1.16e-01
                                                                      23.1
##
## 30
         30
               0.9070
                       -1.75
                                        0.989
                                                  0.729
                                                          8.92e-02
                                                                      21.8
```

makeSoftPowerPlot(sft = sft, powers = powers)

Scale independence

Mean connectivity


```
verbose = 3,
                            saveTOMs = FALSE,
                            maxBlockSize = maxBlockSize,
                            numericLabels = TRUE)
   Calculating module eigengenes block-wise from all genes
##
      Flagging genes and samples with too many missing values...
##
       ..step 1
##
    ..Working on block 1 .
##
       TOM calculation: adjacency...
       ..will use 8 parallel threads.
##
##
       Fraction of slow calculations: 0.000000
##
       ..connectivity..
##
       ..matrix multiplication (system BLAS)..
##
       ..normalization..
##
       ..done.
   ....clustering..
##
##
    ....detecting modules..
##
    ....calculating module eigengenes..
    ....checking kME in modules..
##
##
        ..removing 62 genes from module 1 because their KME is too low.
##
        ..removing 226 genes from module 2 because their KME is too low.
##
        ..removing 1 genes from module 3 because their KME is too low.
##
        ..removing 49 genes from module 4 because their KME is too low.
##
        ..removing 7 genes from module 5 because their KME is too low.
##
        ..removing 46 genes from module 6 because their KME is too low.
##
        ..removing 1 genes from module 7 because their KME is too low.
##
        ..removing 27 genes from module 8 because their KME is too low.
##
        ..removing 4 genes from module 9 because their KME is too low.
##
        ..removing 15 genes from module 11 because their KME is too low.
##
        ..removing 27 genes from module 13 because their KME is too low.
##
        ..removing 10 genes from module 14 because their KME is too low.
##
        ..removing 1 genes from module 18 because their KME is too low.
##
     ..reassigning 42 genes from module 1 to modules with higher KME.
##
     ..reassigning 2 genes from module 2 to modules with higher KME.
##
     ..reassigning 18 genes from module 3 to modules with higher KME.
##
     ..reassigning 9 genes from module 4 to modules with higher KME.
##
     ..reassigning 13 genes from module 5 to modules with higher KME.
##
     ..reassigning 3 genes from module 6 to modules with higher KME.
##
     ..reassigning 3 genes from module 7 to modules with higher KME.
##
     ..reassigning 9 genes from module 8 to modules with higher KME.
##
     ..reassigning 8 genes from module 9 to modules with higher KME.
##
     ..reassigning 8 genes from module 10 to modules with higher KME.
##
     ..reassigning 7 genes from module 11 to modules with higher KME.
##
     ..reassigning 1 genes from module 12 to modules with higher KME.
##
     ..reassigning 2 genes from module 14 to modules with higher KME.
##
     ..reassigning 2 genes from module 15 to modules with higher KME.
##
     ..reassigning 5 genes from module 16 to modules with higher KME.
##
     ..reassigning 3 genes from module 17 to modules with higher KME.
##
     ..reassigning 1 genes from module 19 to modules with higher KME.
##
     ..reassigning 4 genes from module 20 to modules with higher KME.
##
     ..reassigning 3 genes from module 22 to modules with higher KME.
```

pamRespectsDendro = TRUE,

..merging modules that are too close..

```
## mergeCloseModules: Merging modules whose distance is less than 0.2
## Calculating new MEs...
asdgood_colors = labels2colors(net_tmp$colors)
datExpr_asdgood = datExpr_grp
```

Run WGCNA on ASD Poor only

```
# run on ASD Poor
grp2use = "Poor"
datExpr_grp = datExpr[labelData$subgrp2==grp2use,]
datTraits_grp = datTraits[labelData$subgrp2==grp2use,]
# Choose a soft-threshold power
powers = c(1:30)
if (corrType=="pearson"){
  corFnc2use = "cor"
}else if (corrType=="bicor"){
  corFnc2use = corrType
sft = pickSoftThreshold(datExpr_grp,
                       powerVector = powers,
                       verbose = 5,
                       networkType = networkType,
                        corFnc = corrType)
## pickSoftThreshold: will use block size 3125.
  pickSoftThreshold: calculating connectivity for given powers...
##
      ..working on genes 1 through 3125 of 14313
##
      ..working on genes 3126 through 6250 of 14313
##
      ..working on genes 6251 through 9375 of 14313
##
      ..working on genes 9376 through 12500 of 14313
##
      ..working on genes 12501 through 14313 of 14313
      Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1
             0.0746
                      9.00
                                    0.957 7190.000 7.19e+03 7560.0
          1
## 2
             0.3890 -13.00
                                    0.902 3770.000 3.74e+03 4330.0
         2
## 3
          3
             0.5440 - 10.00
                                    0.900 2050.000 2.02e+03 2650.0
         4
             0.6890 -8.20
                                    0.952 1160.000 1.13e+03 1690.0
## 5
         5
             0.7600 -6.84
                                    0.977 674.000 6.51e+02 1130.0
## 6
         6
             0.7670 -5.52
                                    0.985 404.000 3.85e+02 776.0
## 7
         7
             0.7740 - 4.63
                                    0.987 249.000 2.34e+02 548.0
## 8
             0.7800 -4.04
                                    0.986 158.000 1.45e+02 396.0
         8
## 9
         9
             0.7900 - 3.57
                                    0.983 102.000 9.15e+01 292.0
## 10
         10
             0.8010 -3.19
                                    0.982
                                           67.800 5.88e+01 219.0
## 11
             0.8350 - 2.81
                                    0.988
                                            46.000 3.84e+01 167.0
## 12
             0.8130 -2.89
         12
                                    0.970
                                            31.800 2.56e+01 137.0
## 13
         13
             0.7860 - 2.96
                                    0.953
                                            22.400 1.72e+01 114.0
## 14
         14
             0.8050 - 2.85
                                    0.964
                                            16.100 1.17e+01
                                                               95.7
## 15
         15
             0.7950 - 2.83
                                    0.963
                                            11.800 8.08e+00
## 16
         16
             0.8070 - 2.73
                                    0.966
                                             8.760 5.64e+00
                                                               69.1
                                             6.600 3.98e+00
## 17
         17
             0.8150 -2.62
                                    0.963
                                                               59.3
## 18
             0.8210 -2.51
                                    0.956
                                             5.050 2.83e+00
                                                               51.2
         18
## 19
             0.8250 -2.39
                                    0.945
                                             3.910 2.03e+00
                                                               44.4
```

```
## 20
               0.9010 -2.16
                                        0.975
                                                  3.070
                                                         1.46e+00
                                                                      38.7
         20
##
  21
         21
               0.9340
                       -2.03
                                        0.986
                                                  2.440
                                                         1.07e+00
                                                                     33.9
   22
                       -1.97
                                                         7.85e-01
##
         22
               0.9440
                                        0.987
                                                  1.960
                                                                     30.7
  23
               0.9490
                       -1.95
                                                  1.590
                                                         5.82e-01
                                                                     28.6
##
         23
                                        0.988
##
   24
               0.9510
                       -1.92
                                        0.987
                                                  1.300
                                                         4.33e-01
                                                                      26.7
##
  25
         25
               0.9570
                       -1.88
                                        0.990
                                                  1.070
                                                         3.25e-01
                                                                     24.9
##
  26
               0.9560
                       -1.86
                                        0.988
                                                  0.893
                                                         2.45e-01
                                                                     23.3
         26
  27
         27
               0.9630
                       -1.83
                                        0.991
                                                  0.750
                                                         1.85e-01
                                                                     21.8
##
##
   28
         28
               0.9640
                       -1.80
                                        0.990
                                                  0.634
                                                         1.41e-01
                                                                      20.4
  29
         29
               0.9630
                                        0.987
                                                  0.540
                                                         1.08e-01
                                                                     19.1
##
                       -1.77
                       -1.74
## 30
         30
               0.9640
                                        0.986
                                                  0.463
                                                         8.28e-02
                                                                      18.0
```

makeSoftPowerPlot(sft = sft, powers = powers)

Scale independence

Mean connectivity

numericLabels = TRUE)

```
Calculating module eigengenes block-wise from all genes
##
      Flagging genes and samples with too many missing values...
##
##
       ..step 1
##
    ..Working on block 1 .
##
       TOM calculation: adjacency...
##
       ..will use 8 parallel threads.
       Fraction of slow calculations: 0.000000
##
##
       ..connectivity..
       ..matrix multiplication (system BLAS)..
##
##
       ..normalization..
##
       ..done.
##
    ....clustering..
    ....detecting modules..
##
##
    ....calculating module eigengenes..
    ....checking kME in modules...
##
##
        ..removing 62 genes from module 1 because their KME is too low.
##
        ..removing 226 genes from module 2 because their KME is too low.
##
        ..removing 1 genes from module 3 because their KME is too low.
##
        ..removing 49 genes from module 4 because their KME is too low.
##
        ..removing 7 genes from module 5 because their KME is too low.
##
        ..removing 46 genes from module 6 because their KME is too low.
##
        ..removing 1 genes from module 7 because their KME is too low.
##
        ..removing 27 genes from module 8 because their KME is too low.
##
        ..removing 4 genes from module 9 because their KME is too low.
##
        ..removing 15 genes from module 11 because their KME is too low.
##
        ..removing 27 genes from module 13 because their KME is too low.
##
        ..removing 10 genes from module 14 because their KME is too low.
##
        ..removing 1 genes from module 18 because their KME is too low.
     ..reassigning 42 genes from module 1 to modules with higher KME.
##
     ..reassigning 2 genes from module 2 to modules with higher KME.
##
##
     ..reassigning 18 genes from module 3 to modules with higher KME.
##
     ..reassigning 9 genes from module 4 to modules with higher KME.
##
     ..reassigning 13 genes from module 5 to modules with higher KME.
##
     ..reassigning 3 genes from module 6 to modules with higher KME.
##
     ..reassigning 3 genes from module 7 to modules with higher KME.
     ..reassigning 9 genes from module 8 to modules with higher KME.
##
##
     ..reassigning 8 genes from module 9 to modules with higher KME.
##
     ..reassigning 8 genes from module 10 to modules with higher KME.
##
     ..reassigning 7 genes from module 11 to modules with higher KME.
##
     ..reassigning 1 genes from module 12 to modules with higher KME.
##
     ..reassigning 2 genes from module 14 to modules with higher KME.
##
     ..reassigning 2 genes from module 15 to modules with higher KME.
##
     ..reassigning 5 genes from module 16 to modules with higher KME.
##
     ..reassigning 3 genes from module 17 to modules with higher KME.
##
     ..reassigning 1 genes from module 19 to modules with higher KME.
##
     ..reassigning 4 genes from module 20 to modules with higher KME.
##
     ..reassigning 3 genes from module 22 to modules with higher KME.
##
    ..merging modules that are too close..
##
        mergeCloseModules: Merging modules whose distance is less than 0.2
##
          Calculating new MEs...
```

```
asdpoor_colors = labels2colors(net_tmp$colors)
datExpr_asdpoor = datExpr_grp
```

Function for reporting module preservation results

TD - ASD Good module preservation results

```
nperm = 1000
rand_seed = 1
setLabels = c("TD", "ASDGood")
multiExpr = list(TD = list(data = datExpr_td),
                 ASDGood = list(data = datExpr_asdgood))
multiColor = list(TD = td_colors)
mp_td_asdgood = modulePreservation(multiExpr,
                                   multiColor,
                                   networkType = networkType,
                                   corFnc = corFnc2use,
                                   referenceNetworks = 1,
                                   nPermutations = nperm,
                                   randomSeed = rand_seed,
                                   quickCor = 0,
                                   verbose = 0)
mp_res = modulePreservationReport(mp_td_asdgood)
```

Preservation Median ran

Preservation Zsummary

##		${\tt medianRank.pres}$	${\tt medianRank.qual}$	${\tt Zsummary.pres}$	Zsummary.qual
##	black	17	18.0	18.0	28.00
##	blue	10	11.0	31.0	68.00
##	brown	4	13.0	46.0	74.00
##	cyan	12	20.5	16.0	7.40
##	darkred	8	7.0	13.0	45.00
##	gold	22	22.0	22.0	0.34
##	green	14	13.5	22.0	41.00
##	greenyellow	1	1.0	41.0	81.00
##	grey	23	23.0	11.0	-15.00
##	grey60	8	6.0	17.0	54.00
##	lightcyan	16	16.0	12.0	23.00
##	lightgreen	5	4.5	20.0	54.00
##	lightyellow	6	12.5	21.0	27.00
##	magenta	16	5.5	17.0	76.00
##	${\tt midnightblue}$	13	4.0	14.0	57.00
##	pink	3	8.5	34.0	70.00
##	purple	18	15.0	13.0	25.00
##	red	12	10.5	21.0	64.00
##	royalblue	2	2.5	22.0	55.00
##	salmon	19	20.5	12.0	8.90
##	tan	10	5.5	19.0	74.00
##	turquoise	11	16.5	47.0	56.00
##	yellow	21	19.0	8.4	23.00

TD - ASD Poor module preservation results

```
nperm = 1000
rand_seed = 1
setLabels = c("TD", "ASDPoor");
multiExpr = list(TD = list(data = datExpr_td),
                 ASDPoor = list(data = datExpr_asdpoor))
multiColor = list(TD = td_colors)
# Calculate module preservation stats
mp_td_asdpoor = modulePreservation(multiExpr,
                                   multiColor,
                                   networkType = networkType,
                                    corFnc = corFnc2use,
                                   referenceNetworks = 1,
                                   nPermutations = nperm,
                                   randomSeed = rand_seed,
                                   quickCor = 0,
                                   verbose = 0)
mp_res = modulePreservationReport(mp_td_asdpoor)
```

Preservation Median ran

Preservation Zsummary


```
## medianRank.pres medianRank.qual Zsummary.pres Zsummary.qual
## black 17 18.0 26.0 28.00
## blue 10 11.0 46.0 68.00
```

1	7	12.0	40.0	74 00
	•			74.00
cyan	13	20.5	20.0	7.40
darkred	3	7.0	25.0	45.00
gold	22	22.0	24.0	0.34
green	18	13.5	25.0	41.00
greenyellow	8	1.0	33.0	81.00
grey	23	23.0	9.9	-15.00
grey60	4	6.0	29.0	54.00
lightcyan	10	16.0	24.0	23.00
lightgreen	6	4.5	26.0	54.00
lightyellow	13	12.5	18.0	27.00
magenta	10	5.5	33.0	76.00
midnightblue	1	4.0	31.0	57.00
pink	5	8.5	42.0	70.00
purple	20	15.0	16.0	25.00
red	4	10.5	46.0	64.00
royalblue	9	2.5	24.0	55.00
salmon	15	20.5	26.0	8.90
tan	12	5.5	25.0	74.00
turquoise	17	16.5	50.0	56.00
yellow	19	19.0	23.0	23.00
	brown cyan darkred gold green greenyellow grey grey60 lightcyan lightgreen lightyellow magenta midnightblue pink purple red royalblue salmon tan turquoise yellow	cyan 13 darkred 3 gold 22 green 18 greenyellow 8 grey 23 grey60 4 lightcyan 10 lightgreen 6 lightyellow 13 magenta 10 midnightblue 1 pink 5 purple 20 red 4 royalblue 9 salmon 15 tan 12 turquoise 17	cyan 13 20.5 darkred 3 7.0 gold 22 22.0 green 18 13.5 greenyellow 8 1.0 grey 23 23.0 grey60 4 6.0 lightcyan 10 16.0 lightgreen 6 4.5 lightyellow 13 12.5 magenta 10 5.5 midnightblue 1 4.0 pink 5 8.5 purple 20 15.0 red 4 10.5 royalblue 9 2.5 salmon 15 20.5 tan 12 5.5 turquoise 17 16.5	cyan 13 20.5 20.0 darkred 3 7.0 25.0 gold 22 22.0 24.0 green 18 13.5 25.0 greenyellow 8 1.0 33.0 grey 23 23.0 9.9 grey60 4 6.0 29.0 lightcyan 10 16.0 24.0 lightyellow 13 12.5 18.0 magenta 10 5.5 33.0 midnightblue 1 4.0 31.0 pink 5 8.5 42.0 purple 20 15.0 16.0 red 4 10.5 46.0 royalblue 9 2.5 24.0 salmon 15 20.5 26.0 tan 12 5.5 25.0 turquoise 17 16.5 50.0

ASD Good - ASD Poor module preservation results

```
nperm = 1000
rand_seed = 1
setLabels = c("ASDGood","ASDPoor")
multiExpr = list(ASDGood = list(data = datExpr_asdgood),
                 ASDPoor = list(data = datExpr_asdpoor))
multiColor = list(ASDGood = asdgood_colors)
# Calculate module preservation stats
mp_asdgood_asdpoor = modulePreservation(multiExpr,
                                        networkType = networkType,
                                        corFnc = corFnc2use,
                                        referenceNetworks = 1,
                                        nPermutations = nperm,
                                        randomSeed = rand_seed,
                                        quickCor = 0,
                                        verbose = 0)
mp_res = modulePreservationReport(mp_asdgood_asdpoor)
```

Preservation Median ran

Preservation Zsummary

##		medianRank.pres	medianRank.qual	Zsummary.pres	Zsummary.qual
##	black	17	17.5	26.0	23.00
##	blue	13	10.5	45.0	55.00
##	brown	7	11.0	47.0	84.00
##	cyan	12	8.0	21.0	32.00
##	darkred	3	5.5	25.0	27.00
##	gold	22	22.0	26.0	-0.61
##	green	18	14.0	26.0	35.00
##	greenyellow	8	1.0	34.0	110.00
##	grey	23	23.0	7.5	-13.00
##	grey60	5	8.0	27.0	29.00
##	lightcyan	10	16.5	24.0	17.00
##	lightgreen	6	4.0	25.0	43.00
##	lightyellow	15	9.0	18.0	38.00
##	magenta	12	18.5	31.0	24.00
##	midnightblue	2	11.0	30.0	25.00
##	pink	5	3.0	41.0	79.00
	purple	20	19.0	20.0	18.00
##	red	3	17.0	48.0	30.00
	royalblue	9	2.0	22.0	56.00
	salmon	12	15.5	28.0	20.00
	tan	14	6.5	23.0	40.00
	turquoise	17	11.0	48.0	78.00
##	yellow	20	21.0	19.0	15.00