Содержание

1	Линейное пространство над произвольным полем. Ранг и база системы векторов.		
2	Изоморфизм линейных пространств.	4	
3	Сумма и пересечение линейных пространств.	5	
4	Прямая сумма линейных пространств.	5	
5	5 Евклидово и унитарное пространство. Неравенство Коши-Буняковского.		
6	Скалярное произведение в ортонормированном базисе. Существование ортонормированного базиса.	8	
7	Изометрия.	9	
8	Матрица Грама. Критерий линейной независимости.	10	
9	Ортогональное дополнение. Ортогональная сумма подпространств. Расстояние от вектора до подпространства.	11	
10	Ортонормированный базис и унитарные (ортогональные) матрицы.	11	
11	Процесс ортогонализации Грама-Шмидта. QR -разложение матрицы.	12	
12	Линейное аффинное многообразие в линейном пространстве. Гиперплоскость в евклидовом и унитарном пространстве.	13	
13	Линейные операторы. Определение, основные свойства, примеры. Теорема о существовании и единственности оператора по заданным образам базисных векторов.	14	
14	Матрицы линейных операторов. Взаимно-однозначные соответствия мед ду линейными операторами и матрицами.	ж- 15	
15	Линейное пространство линейных операторов и его связь с пространством матриц.	16	
16	Матрица линейного оператора. Связь между координатами вектора и его образа.	17	
17	Матрицы линейного оператора в различных базисах.	17	

18	Эквивалентные матрицы. Критерий эквивалентности.	18
19	Образ и ядро линейного оператора.	19
20	Произведение линейных операторов. Матрица произведения.	20
21	Обратный оператор. Критерий обратимости.	20
22	Инвариантные пространства. Индуцированный оператор.	21
23	Инвариантные пространства минимальной размерности (в комплексном и вещественном пространствах).	22
24	Собственные значения и собственные векторы линейного оператора. Определение и простейшие свойства. Примеры.	22
25	Характеристический многочлен линейного оператора. Определение и простейшие свойства.	23
26	Условие существования собственных векторов линейного оператора. Собственные векторы линейного оператора в комплексном пространстве.	24
27	Собственное подпространство. Алгебраическая и геометрическая кратность собственного значения.	24
28	Операторы простой структуры. Критерий простой структуры.	25
29	Треугольная форма матрицы линейного оператора в комплексном пространстве.	25
30	Нильпотентный оператор. Определение простейшей свойства примеры.	26
31	Теорема о прямой сумме нульпотентного и обратимого оператора.	27
32	Расщепление линейного оператора.	2 9
33	Корневые векторы. Канонический базис корневого подпространства.	29
34	Жарданова нормальная форма матрицы линейного оператора. Канонический базис.	31
35	Теорема Гамильтона-Кэли.	33

Линейное пространство над произвольным полем. Ранг и база системы векторов.

Опр. Множество V называется линейным пространством над полем \mathbb{P} , если V является аддитивной абелевой группой относительно операции сложения векторов, а операция умножения вектора на число обладает следующими свойствами:

- $(\alpha\beta)v = \alpha(\beta v)$;
- $(\alpha + \beta)v = \alpha v + \beta v$;
- $\alpha(v+u) = \alpha v + \alpha u$;
- 1 * v = v

Эти свойства выполняются для любых чисел $\alpha, \beta \in \mathbb{P}$ и любых векторов $u, v \in V$.

Опр. Рангом системы векторов называется максимальное число линейно независимых векторов системы.

Опр. Базой системы векторов называется базис их линейной оболочки, состоящий из векторов системы.

2 Изоморфизм линейных пространств.

Опр. Гомоморфизмом двух линейных пространств V и W над одним полем \mathbb{P} называется отображение $\varphi: V \to W$ такое, что $\varphi(\alpha v + \beta u) = \alpha \varphi(v) + \beta \varphi(u) \, \forall u, v \in V$. Если отображение φ взаимооднозначно (является биекцией), то оно называется изоморфизмом.

Теорема. Два линейных пространства над одним полем изоморфны тогда и только тогда, когда они имеют одинаковую размерность.

Д-во. (\Longrightarrow) Пусть линейные пространства V и W над полем $\mathbb P$ изоморфны, и $\varphi:V\to W$. Рассмотрим базис $V:v_1,\ldots,v_n$. $\forall y\in W,\,y\neq\theta\exists x\in V,\,x\neq0:\varphi(x)=y$. Далее $\forall x\in V\,\exists\alpha_1,\ldots,\alpha_n\in\mathbb P:x=\alpha_1v_1+\cdots+\alpha_nv_n,\,y=\varphi(x)=\alpha_1\varphi(v_1)+\cdots+\alpha_n\varphi(v_n)$. Значит любой вектор из W линейно выражается через образы базисных векторов V. А так же образы этих векторов линейно независимы. Если бы существовала нетривиальная линейная комбинация этих векторов равная нулю, то $\theta=\beta_1\varphi(v_1)+\cdots+\beta_n\varphi(v_n)=\varphi(\beta_1v_1+\cdots+\beta_nv_n)=\varphi(0)$, получили что векторы v_1,\ldots,v_n линейно зависимы - противоречие. Значит образ базисных векторов в V является базисом в W, а значит их количество совпадает и размерности линейных пространств равны.

 (\Leftarrow) Пусть V, W - линейные пространства над полем \mathbb{P} и $\dim V = \dim W = n, e_1, \ldots, e_n$ - базис V, f_1, \ldots, f_n - базис W. Построим отображение $\varphi: V \to W$, поставим в соответствие каждому вектору $x = \sum_{i=1}^n \alpha_i e_i$ вектор $y = \sum_{i=1}^n \alpha_i f_i \in W$. В силу единственности разложения вектора по базису отображение φ . При этом φ - изоморфизм, так как координаты вектора обладают свойством линейности.

3 Сумма и пересечение линейных пространств.

Опр. Непустое подмножество $L \subseteq V$ называется подпространством линейного пространства V, если оно само является линейным пространством относительно операций, действующих в V. Для этого необходимо и достаточно, чтобы результата этих операций над векторами из L оставался в L.

Опр. Суммой подпространств $L = L_1 + \dots + L_s$ пространства V называется множество вида $L = \{x_1 + \dots + x_s : x_1 \in L_1, \dots, x_s \in L_s\}$, которое так же является подпространством V. Пересечением подпространств L_1, \dots, L_n пространства V называется множество $L = \{x : x \in L_1, \dots, L_n\}$, которое так же является подпространством V.

Теорема (Теорема Грассмана). Пусть L и M - конечно мерные подпространства некоторого линейного пространства. Тогда $\dim(L+M) = \dim L + \dim M - \dim(L\cap M)$.

 \mathcal{A} -во. Рассмотрим базис g_1, \ldots, g_r подпространства $L \cap M$ и дополним его до базисов L и M:

$$g_1, \ldots, g_r, p_1, \ldots, p_k$$
 (базис L) $g_1, \ldots, g_r, q_1, \ldots, q_m$ (базис M).

Заметим, что вектора $p_1, \ldots, p_k, q_1, \ldots, q_m$ линейное независимы, так как если бы они были линейно зависимы, то существовал бы вектор q_i , который выражается через p_1, \ldots, p_k , а значит принадлежал бы $L \cap M$ - противоречие.

Ясно, что L+M является линейной оболочкой векторов $g_1,\ldots,g_r,p_1,\ldots,p_k,q_1,\ldots,q_m$ и остается лишь установить их линейную независимость. Пусть

$$\alpha_1 g_1 + \dots + \alpha_r g_r + \beta_1 p_1 + \dots + \beta_k p_k + \gamma_1 q_1 + \dots + \gamma_m q_m = 0 \Longrightarrow z := \alpha_1 g_1 + \dots + \alpha_r g_r + \beta_1 p_1 + \dots + \beta_k p_k = -(\gamma_1 q_1 + \dots + \gamma_m q_m) \in L \cap M$$

Будучи элементом из $L \cap M$, вектор z представляется в виде $z = \delta_1 g_1 + \dots + \delta_r g_r \implies$

$$\delta_1 g_1 + \dots + \delta_r g_r + \gamma_1 q_1 + \dots + \gamma_m q_m = 0 \implies \delta_1 = \dots = \delta_r = \gamma_1 = \dots = \gamma_m = 0. \implies$$

$$z = 0 \implies \alpha_1 = \dots = \alpha_r = \beta_1 = \dots = \beta_k.$$

4 Прямая сумма линейных пространств.

Опр. Пусть L - сумма подпространств L_1, \ldots, L_n . Если для любого вектора $x \in L$ компоненты разложения $x_i \in L_i$ определены однозначно, то L называется прямой суммой подпространств L_1, \ldots, L_n . Обозначение: $L = L_1 \oplus \cdots \oplus L_n$.

Теорема (Критерий прямой суммы). Для подпространств L_1, \ldots, L_k конечномерного пространства V следующие утверждения равносильны:

1. Сумма подпространств L_1, \ldots, L_k - прямая;

5

- 2. Совокупность базисов подпространств L_1, \ldots, L_k линейно независима;
- 3. Совокупность базисов подпространств L_1, \ldots, L_k образует базис суммы $\sum_{i=1}^k L_i$
- 4. dim $\sum_{i=1}^{k} L_i = \sum_{i=1}^{k} \dim L_i$;
- 5. Существует вектор $a \in \sum_{i=1}^{k} L_i$, для которого разложение по подпространствам L_1, \ldots, L_k единственно;
- 6. Произвольная система ненулевых векторов $a_1, ..., a_k$, взятых по одному из каждого подпространства L_i , i = 1, ..., k, линейно независима;
- 7. $L_1 \cap L_2 = \{\theta\} \ (\partial M \ k = 2).$

 \mathcal{A} -60. (1 \Longrightarrow 2) Пусть совокупность $e_1,\ldots,e_m,f_1,\ldots,f_s,\ldots,g_1,\ldots,g_t$ базисов подпространств L_1,\ldots,L_k линейно зависима и

$$\sum_{i=1}^{m} \alpha_i e_i + \sum_{i=1}^{s} \beta_i f_i + \dots + \sum_{i=1}^{t} \gamma_i g_i = \theta.$$

, где $\sum\limits_{i=1}^{m} \alpha_i^2 + \sum\limits_{i=1}^{s} \beta_i^2 + \cdots + \sum\limits_{i=1}^{t} \gamma_i^2 \neq 0$. Положим

$$x_1 = \sum_{i=1}^{m} \alpha_i e_i, \quad x_2 = \sum_{i=1}^{s} \beta_i f_i, \quad \dots, \quad x_k = \sum_{i=1}^{t} \gamma_i g_i.$$

Заметим, что $x_i \in L_i, i = 1, \ldots, k$, причем среди x_1, \ldots, x_k существует $x_i \neq 0$. Тогда можно записать: $\theta = x_1 + \cdots + x_i + \cdots + x_n$. Получили второе разложение вектора θ по подпространствам L_1, \ldots, L_k . Противоречие. Значит совокупность базисов линейно независима.

- $(2 \implies 3)$ Утверждение очевидно если учесть, что сумма подпространств является линейной оболочкой объединения их базисов.
- $(3 \Leftrightarrow 4)$ Эти утверждения отличаются только терминологией.
- $(3 \implies 1)$ Пусть $e_1,\ldots,e_m,f_1,\ldots,f_s,\ldots,g_1,\ldots,g_t$ совокупность базисов подпространств L_1,\ldots,L_k . Тогда $\forall x\in V$ $\exists!\alpha_1,\ldots,\alpha_m,\beta_1,\ldots,\beta_s,\ldots,\gamma_1,\ldots,\gamma_t$:

$$\sum_{i=1}^{m} \alpha_i e_i + \sum_{i=1}^{s} \beta_i f_i + \dots + \sum_{i=1}^{t} \gamma_i g_i = x$$

, где $\sum_{i=1}^{m} \alpha_i^2 + \sum_{i=1}^{s} \beta_i^2 + \dots + \sum_{i=1}^{t} \gamma_i^2 \neq 0$. Положим

$$x_1 = \sum_{i=1}^{m} \alpha_i e_i, \quad x_2 = \sum_{i=1}^{s} \beta_i f_i, \quad \dots, \quad x_k = \sum_{i=1}^{t} \gamma_i g_i.$$

Заметим, что $x_i \in L_i, i=1,\ldots,k$. Получили, что каждый вектор имеет единственное разложение по подпространствам. Значит сумма L_1,\ldots,L_k прямая.

- $(1 \implies 5)$ Это очевидно.
- $(5 \implies 1)$ Пусть $L_1 + \cdots + L_k$ не прямая сумма. Тогда существует вектор b из этой суммы, для которого имеются два различных разложения. Вычитая эти разложения, получим нетривиальное разложение нулевого вектора. Если сложить его с разложением вектора a, то получиться еще одно разложение вектора a. Противоречие. Значит сумма $L_1 + \cdots + L_k$ прямая.
- $(1 \implies 6)$ Пусть система векторов a_1, \ldots, a_k линейно зависима. Тогда существуют числа $\alpha_1, \ldots, \alpha_k \in \mathbb{P}$, одновременно не равные нулю и такие, что $\alpha_1 a_1 + \cdots + \alpha_k a_k = \theta$. Это равенство дает второе разложение нулевого вектора, отличное от тривиального, что противоречит утверждению 1.
- $(6 \Longrightarrow 1)$ Пусть $L_1+\dots+L_k$ не прямая сумма. Тогда существует вектор b, для которого существуют два разложения $b=b_1+\dots+b_k=b'_1+\dots+b'_k,\,b_i,b'_i\in L_i,\,i=1,\dots,k$. Вычитая одно из другого, получим, что $a_1+\dots+a_k=0$, где $a_i=b_i-b'_i,\,a_i\in L_i,\,i=1,\dots,k$, причем хотя бы одно $a_j\neq \theta$. Пусть a_{i_1},\dots,a_{i_m} ненулевые вектора из a_1,\dots,a_k . Система a_{i_1},\dots,a_{i_m} линейно зависима, а значит и любая система ненулевых векторов, взятых по одному из каждого $L_i,\,i=1,\dots,k$, содержащая эти векторы линейно зависима. Противоречие. Значит $L_1+\dots+L_k$ прямая сумма.

 $(4 \Leftrightarrow 7)$ Сразу следует из теоремы Грассмана.

Теорема. Линейное пространство является прямой суммой двух своих подпространств тогда и только тогда, когда:

- 1. $\dim V = \dim L_1 + \dim L_2$;
- 2. $L_1 \cap L_2 = \{\theta\}$.

 \mathcal{A} -60. (\Longrightarrow) Сразу следует из критерия прямой суммы.

(\iff) Из условия 2 следует, что L_1+L_2 - прямая сумма. Положим, что $L=L_1\oplus L_2$. Тогда $\dim L=\dim L_1+\dim L_2=\dim V$. Это означает, что L=V.

5 Евклидово и унитарное пространство. Неравенство Коши-Буняковского.

Опр. Пусть V - вещественное линейное пространство, на котором каждой упорядоченной паре векторов $x, y \in V$ поставлено в соответствие вещественное число (x, y) таким образом, что:

- $(x,x) \ge 0 \, \forall x \in V; (x,x) = 0 \Leftrightarrow x = 0;$
- $\bullet \ (x,y) = (y,x) \, \forall x,y \in V;$
- $\bullet \ (x+y,z) = (x,z) + (y,z) \, \forall x,y,z \in V;$

• $(\alpha x, y) = \alpha(x, y) \, \forall \alpha \in \mathbb{R} \, \forall x, y \in V.$

 $\mathit{Число}\,(x,y)$ называется скалярным произведением векторов x,y. Вещественное линейное пространство со скалярным произведение называется евклидовым.

Опр. Пусть V - комплексное линейное пространство, на котором каждой упорядоченной паре векторов $x,y \in V$ поставлено в соответствие комплексное число (x,y) таким образом, что:

- $(x,x) \ge 0 \,\forall x \in V; (x,x) = 0 \Leftrightarrow x = 0;$
- $(x,y) = \overline{(y,x)} \, \forall x,y \in V;$
- $(x + y, z) = (x, z) + (y, z) \forall x, y, z \in V;$
- $(\alpha x, y) = \alpha(x, y) \, \forall \alpha \in \mathbb{C} \, \forall x, y \in V.$

Yucno(x,y) называется скалярным произведением векторов x,y. Комплексное линейное пространство со скалярным произведение называется унитарным.

Опр. В произвольном евклидовом или унитарном пространстве величина $|x| := \sqrt{(x,x)}$ называется длиной вектора.

Теорема (Неравенство Коши-Буняковского-Шварца). Скалярное произведение векторов и их длины связано неравенством $|(x,y)| \le |x||y|$. Равенство достигается в том и только в том случае, когда векторы x и у линейно зависимы.

 \mathcal{A} -во. Случай (x,y)=0 очевиден. В противном случае запишем $(x,y)=|(x,y)|\xi$, где $\xi=e^{i\phi}$, и рассмотрим функцию вещественного аргумента $F(t)=(x+t\xi y,x+t\xi y)=(x,x)+t\xi\overline{(x,y)}+t\overline{\xi}(x,y)+t^2\xi\overline{\xi}(y,y)=t^2|y|^2+2t|(x,y)|+|x|^2$. В силу свойств скалярного произведения $F(t)\geq 0$ при всех вещественных t. Значит $D\leq 0$, $D=|(x,y)|^2-|x|^2|y|^2\leq 0 \implies |(x,y)|\leq |x||y|$. Равенство означает, что $D=0 \implies (x+t\xi y,x+t\xi y)=0 \implies x+t\xi y=0$.

6 Скалярное произведение в ортонормированном базисе. Существование ортонормированного базиса.

Опр. Система ненулевых векторов x_1, \ldots, x_m называется ортогональной, если $(x_i, x_j) = 0$ при $i \neq j$. Ортогональная система, в которой длина каждого вектора равна 1, называется ортонормированной.

Теорема. Для любой линейно независимой системы векторов a_1, \ldots, a_m существует ортогональная система p_1, \ldots, p_m такая, что $L(p_1, \ldots, p_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

 \mathcal{A} -во. Положим, что $p_1 = a_1 \implies L(p_1) = L(a_1)$. Предположим, что уже постоена ортогональная система p_1, \ldots, p_{k-1} такая, что $L(p_1, \ldots, p_i) = L(a_1, \ldots, a_i)$ при $1 \le i \le k-1$. Тогда вектор

$$p_k = a_k - \sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i.$$

будет ортогонален каждому из векторов p_1, \ldots, p_{k-1} :

$$(p_k, p_j) = (a_k, p_j) - \left(\sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i, p_j\right) = (a_k, p_j) - \frac{(a_k, p_j)}{(p_j, p_j)} (p_j, p_j) = 0.$$

Кроме того,
$$p_k \in L(p_1, \ldots, p_{k-1}, a_k) = L(a_1, \ldots, a_{k-1}, a_k)$$
 и $a_k \in L(p_1, \ldots, p_{k-1}, p_k) \implies L(p_1, \ldots, p_{k-1}, p_k) = L(a_1, \ldots, a_{k-1}, a_k)$.

Следствие. Для любой линейно независимой системы a_1, \ldots, a_m существует ортонормированная система q_1, \ldots, q_m такая, что $L(q_1, \ldots, q_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

Следствие. В любом конечномерном пространстве со скалярным произведением существует ортонормированный базис.

7 Изометрия.

Опр. Два линейных пространства V_1 и V_2 со скалярным произведениями называются изометричными, если \exists биективное отображение $\varphi: V_1 \to V_2$, которое сохраняет законы композиции и скалярное произведение, т.е.:

- $\varphi(x+y) = \varphi(x) + \varphi(y) \, \forall x, y \in V_1;$
- $\alpha \varphi(x) = \varphi(\alpha x) \, \forall x \in V_1 \, \forall \alpha \in \mathbb{P};$
- $(\varphi(x), \varphi(y)) = (x, y) \forall x, y \in V_1.$

Само отображение φ при этом называется изометрией.

Теорема. Два пространства со скалярными произведениями изометричны тогда и только тогда, когда равны их размерности.

 \mathcal{A} -во. (\Longrightarrow) Вытекает из изоморфизма изометричных пространств. (\Longleftrightarrow) Пусть V_1 и V_2 - два линейных пространства со скалярными произведениями и dim $V_1=\dim V_2=n.$ e_1,\ldots,e_n - базис V_1,e_1',\ldots,e_n' - базис V_2 . Построим отображение $\varphi:V_1\to V_2$, сопоставив каждому вектору $x=\sum\limits_{i=1}^n x_ie_i$ вектор $y=\sum\limits_{i=1}^n x_ie_i'$ \Longrightarrow отображение φ - изоморфизм линейных пространств V_1 и V_2 . Оно сохраняет скалярное произведение, т.к. если $x=\sum\limits_{i=1}^n x_ie_i, y=\sum\limits_{i=1}^n y_ie_i$, то $(x,y)=\sum\limits_{i=1}^n x_i\overline{y_i}=(\varphi(x),\varphi(y))$.

8 Матрица Грама. Критерий линейной независимости.

Теорема (теорема о перпендикуляре). Для любого вектора x в произвольном пространстве со скалярным произведением и любого конечномерного подпространства $L \subset V$ существуют и единственны перпендикуляр h и проекция z такие, что

$$x = z + h, z \in L, h \perp L, |x - z| = |h| \le |x - y| \, \forall y \in L.$$

 \mathcal{A} -во. Если $x\in L$, то полагаем z=x и h=0. Пусть v_1,\ldots,v_k - базис подпространства L. В случае $x\not\in L$ система v_1,\ldots,v_k,x будет линейно независимой. Применив к ней процесс ортогонализации Грама-Шмидта, получим ортонормированную системы q_1,\ldots,q_k,q_{k+1} такую, что $L=L(q_1,\ldots,q_k)$ и $x\in L(q_1,\ldots,q_k,q_{k+1})$, а искомые проекция и перпендикуляр получаются из разложения $x=\alpha_1q_1+\cdots+\alpha_kq_k+\alpha_{k+1}q_{k+1}$ очевидным образом: $z=\alpha_1q_1+\cdots+\alpha_kq_k, h=\alpha_{k+1}q_{k+1}$.

Единственность: если x=z+h=z'+h', где $z,z'\in L$ и $h,h'\perp L$, то $c:=z-z'=h'-h\in L\cap L^\perp\implies v=0$.

Наконец, для любого $y \in L$ находим x-y=(z-y)+h, и, согласно теореме Пифагора, $|x-y|^2=|z-h|^2+|h|^2\geq |h|^2$. Равенство, очевидно, имеет место в том и только в том случае, когда y=z.

Если v_1, \ldots, v_k - произвольный базис подпространства L, то ортогональная проекция $z = x_1v_1 + \cdots + x_kv_k$ вектора x на L однозначно определяется уравнением $x-z \perp L$. Для этого необходимо и достаточно, чтобы вектор x-z был ортогонален каждому из векторов v_1, \ldots, v_k :

$$\begin{cases} (v_1, v_1)x_1 + \dots + (v_k, v_1)x_k = (x, v_1) \Leftrightarrow (x - z, v_1) = 0 \\ (v_1, v_2)x_1 + \dots + (v_k, v_2)x_k = (x, v_2) \Leftrightarrow (x - z, v_2) = 0 \\ \dots \\ (v_1, v_k)x_1 + \dots + (v_k, v_k)x_k = (x, v_k) \Leftrightarrow (x - z, v_k) = 0 \end{cases}$$

Из теоремы о перпендикуляре следует, что эта система линейных алгебраических уравнений имеет и притом единственное решение, определяющее коэффициенты x_1, \ldots, x_k .

Опр. Матрицы $A = [a_{ij}]$ полученной нами системы линейны алгебраических уравнений имеет элементы $a_{ij} = (v_i, v_j)$. Матрица такого вида называется матрицей Грама системы векторов v_1, \ldots, v_k .

Теорема. Для линейно независимой системы матрица Грама невырождена.

 \mathcal{A} -60. Сразу следует из теоремы о перпендикуляре, так как система должна иметь единственное решение.

9 Ортогональное дополнение. Ортогональная сумма подпространств. Расстояние от вектора до подпространства.

Опр. Вектор x называется ортогональным вектору y, если (x,y) = 0, u ортогональным множеству $L \neq \emptyset$, если он ортогонален каждому вектору множества L. Непустые множества M u L называются ортогональными, если $(x,y) = 0 \,\forall x \in L, y \in M$.

Опр. Пусть L - подпространство V. Множество $L^{\perp} = \{x \in V : x \perp L\}$ называется ортогональным дополнением κ L.

Теорема. Ортогональное дополнение κ подпространству является линейным подпространством.

 \mathcal{A} -во. Пусть $y_1, y_2 \in L^{\perp}$, тогда $(y_1, x) = (y_2, x) = 0 \,\forall x \in L$. Складывая эти равенства, получим, что $(y_1 + y_2, x) = 0 \,\forall y_1, y_2 \in L^{\perp}$, т.е. $y_1 + y_2 \in L^{\perp}$. Аналогично, если $(y, x) = 0 \,\forall x \in L$, то $(\alpha y, x) = 0 \,\forall y \in L \,\forall \alpha \in \mathbb{P} \implies \alpha y \in L^{\perp}$. Значит, L^{\perp} - линейное подпространство.

Теорема. Если L - линейное подпространство V, то $V = L \oplus L^{\perp}$.

 \mathcal{A} -во. Если L - тривиальное подпространство, то утверждение очевидно. Пусть L - нетривиальное подпространство. Возьмем e_1,\ldots,e_k - ортонормированный базис L,e_{k+1},\ldots,e_n - ортонормированный базис L^{\perp} . Система векторов e_1,\ldots,e_n ортонормирована и, следовательно, линейно независима. Покажем, что e_1,\ldots,e_n образует базис в V. Пусть это не так. Тогда $\exists f \in V: e_1,\ldots,e_n,f$ - линейно независимая система. Применим к ней процесс ортогонализации, получим систему $e_1,\ldots,e_n,e_{n+1}.e_{n+1}$ ортогонален $e_1,\ldots,e_k\Longrightarrow e_{n+1}\in L$. С другой стороны, e_{n+1} ортогонален $e_{k+1},\ldots,e_n\Longrightarrow e_{n+1}\in L^{\perp}$. Значит $e_{n+1}=0$, а значит f выражается через e_1,\ldots,e_n и система была линейно зависимой. Противоречие. Значит e_1,\ldots,e_n - базис. Получили, что $\dim L+\dim L^{\perp}=\dim V$, и, поскольку, $L\cap L^{\perp}=\{\emptyset\}$, то $E=L\oplus L^{\perp}$.

Теорема. Расстояние между вектором f и линейным подпространством L в евклидовом (унитарном) пространстве равно длине перпендикуляра из вектора f на L.

Д-60. Пусть f=g+h, где $g\in L$, $h\in L^\perp$, и y - произвольный вектор из L. Тогда $\rho(f,y)=|f-y|=|(g+h)-y|=|h+(g-y)|=\sqrt{(h+(g-y),h+(g-y))}=\sqrt{(h,h)+(g-y,g-y)}=\sqrt{|h|^2+|g-y|^2}\geq |h|\,\forall y\in L$ и $\rho(f,y)=|h|$, если y=g. Это означает, что $|h|=\inf_{y\in L}\rho(f,y)=\rho(f,L)$.

10 Ортонормированный базис и унитарные (ортогональные) матрицы.

(определение ортонормированности и теорема о существовании ортогонального базиса из 6 вопроса)

Рассмотрим комплексную матрицу $Q = [q_1, \ldots, q_n]$ порядка n и предположим, что ее столбцы q_1, \ldots, q_n ортонормированы относительно естественного скалярного произведения пространства \mathbb{C}^n . Тогда имеет место равенство:

$$(q_i, q_j) = q_i^* q_i = \delta_{ij} \Leftrightarrow Q^* Q = I.$$

Здесь используется символ Кронекера: $\delta_{ij} = 1$ при i = j и $\delta_{ij} = 0$ при $i \neq j$.

Опр. Квадратная комплексная матрица Q называется унитарной, если $Q^*Q = I$. Как видим, свойство унитарности матрицы равносильно ортонормированности ее системы столбцов относительно естественного скалярного произведения. Вещественная унитарная матрица называется ортогональной.

11 Процесс ортогонализации Грама-Шмидта. QR-разложение матрицы.

Теорема. Для любой линейно независимой системы векторов a_1, \ldots, a_m существует ортогональная система p_1, \ldots, p_m такая, что $L(p_1, \ldots, p_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

 \mathcal{A} -во. Положим, что $p_1=a_1 \Longrightarrow L(p_1)=L(a_1)$. Предположим, что уже постоена ортогональная система p_1,\ldots,p_{k-1} такая, что $L(p_1,\ldots,p_i)=L(a_1,\ldots,a_i)$ при $1\leq i\leq k-1$. Тогда вектор

$$p_k = a_k - \sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i.$$

будет ортогонален каждому из векторов p_1, \ldots, p_{k-1} :

$$(p_k, p_j) = (a_k, p_j) - \left(\sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i, p_j\right) = (a_k, p_j) - \frac{(a_k, p_j)}{(p_j, p_j)} (p_j, p_j) = 0.$$

Кроме того,
$$p_k \in L(p_1, \dots, p_{k-1}, a_k) = L(a_1, \dots, a_{k-1}, a_k)$$
 и $a_k \in L(p_1, \dots, p_{k-1}, p_k) \implies L(p_1, \dots, p_{k-1}, p_k) = L(a_1, \dots, a_{k-1}, a_k)$.

Теорема об ортогонализации содержит, по существу, следующий алгоритм построения ортонормированной системы q_1, \ldots, q_m в линейной оболочке заданной линейно независимой системы a_1, \ldots, a_m :

$$p_k := a_k - \sum_{i=1}^{k-1} (a_k, q_i)q_i, \quad q_k := \frac{p_k}{|p_k|}, \quad k = 1, 2, \dots, m.$$

Этот алгоритм называется процессом ортогонализации Грама-Шмидта.

Пусть матрица A имеет линейно независимые столбцы a_1, \ldots, a_m , а процесс ортогонализации ее столбцов относительно естественного скалярного произведения дает ортонормированные столбцы q_1, \ldots, q_m . Процесс ортогоналиации устроен таким образом, что a_k есть линейная комбинация столбцов q_1, \ldots, q_k :

$$a_k = \sum_{i=1}^k r_{ik} q_i \Leftrightarrow A = QR, \ Q = [q_1, \dots, q_m], \ R = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1m} \\ & r_{22} & \dots & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix}.$$

Опр. Разложение A = QR, где Q имеет ортонормированные столбцы, а R - верхняя треугольная матрица, называется QR-разложением матрицы A. Таким образом, для любой прямоугольной матрицы c линейно независимыми столбцами существует QR-разложение.

Теорема (Теорема о QR-разложении). Любая квадратная комплексная матрица представима в виде произведения унитарной и верхней треугольной матрицы.

 \mathcal{A} -во. Любая квадратная матрица A является пределом последовательности невырожденных матриц $A_k = A - \alpha_k I$, так как заведомо имеется последовательность чисел $\alpha_k \to 0$, отличных от собственных значений матрицы A. Для каждой невырожденной матрицы A_k , как мы уже знаем, существует QR-разложение: $A_k = Q_k R_k$. Последовательность Q_k принадлежит компактному множеству матриц, поэтому из нее можно выделить сходящуюся подпоследовательность $Q_{k_l} \to Q$. Матрица Q будет, конечно, унитарной, а предел последовательности $R_{k_l} = Q_{k_l}^* A_{k_l} \to Q^* A$ является, очевидно, верхней треугольной матрицей.

12 Линейное аффинное многообразие в линейном пространстве. Гиперплоскость в евклидовом и унитарном пространстве.

Опр. Множесство точек, координаты которых удовлетворяют системе линейных алгебраических уравнений Ax=b, называется линейным многообразием. Из теории систем линейных алгебраических уравнений знаем, что непустое линейное многообразие имеет вид $M=x^{(0)}+L$, где L - множесство решений системы Ax=0, а $x^{(0)}$ - произвольное решение системы Ax=b.

Опр. Пусть $H = x_0 + L$ - линейное многообразие в евклидовом (унитарном) пространстве. Вектор $a \in H$, ортогональный L, называется нормальным вектором линейного многообразия H.

Теорема. Для любого линейного многообразия в евклидовом (унитарном) пространстве существует, и при том единственный, нормальный вектор.

 \mathcal{A} -60. Рассмотрим линейное многообразие $H=x_o+L$. Все векторы из H, ортогональные к L, находятся в $H\cap L^\perp$, но это пересечение состоит ровно из одного вектора a, т.к. L^\perp - дополнительное пространство к L. Этот вектор a и будет единственным нормальным вектором для H.

Теорема. Нормальный вектор линейного многообразия совпадает с перпендикуляром, опущенным из любого вектора линейного многообразия на направляющее подпространство.

 \mathcal{A} -во. Пусть a - нормальный вектор линейного многообразия $H=x_0+L$, тогда H=a+L. Следовательно, любой вектор $f\in H$ может быть представлен в виде $f=a+g,\,g\in L$. Так как $a\perp L$, то это разложение совпадает с разложением вектора f на ортогональную проекцию g и высоту a.

Уравнение гиперплоскости. Пусть $H = x_0 + L$ - гиперплоскость в V, т.е. dim $L = \dim V - 1$. Тогда L^{\perp} - одномерное подпространство и его базис состоит из одного вектора a. Вектор $x \in H$ тогда и только тогда, когда разность $x - x_0 \in L$, т.е. когда $(x - x_0, a) = 0$ (*). Таким образом уравнению (*) удовлетворяют все векторы x гиперплоскости H, и только они.

13 Линейные операторы. Определение, основные свойства, примеры. Теорема о существовании и единственности оператора по заданным образам базисных векторов.

Опр. Пусть V и W - произвольные линейные пространства над одним и тем же полем \mathbb{P} . Отображение $A:V\to W$ со свойством

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y) \quad \forall \alpha, \beta \in \mathbb{P} \quad \forall x, y \in V,.$$

называется линейны оператором из V в W.

Основные свойства линейного оператора.

- 1. Линейный оператор переводит нулевой вектор в нулевой вектор, т.к. $A\theta_1=A(0x)=0Ax=\theta_2$ (здесь $\theta_1,\,\theta_2$ нулевые векторы в V и W соответственно).
- 2. Линейный оператор сохраняет линейные комбинации, т.е. переводит линейную комбинацию векторов в линейную комбинацию образов с теми же коэффициентами: $A\sum_{i=1}^{n} \alpha_i x_i = \sum_{i=1}^{n} \alpha_i A x_i$.
- 3. Линейный оператор сохраняет линейную зависимость, т.е. переводит линейно зависимую систему векторов в линейно зависимую.

Примеры.

- 1. Пусть M_n пространство вещественных многочленов степени не выше n. Отображение $D: M_n \to M_n$, определенное правилом Dp(t) = p'(t), является линейным оператором и называется оператором дифференцирования.
- 2. Пусть $V = L_1 \oplus L_2$. Отображение $P: V \to V$, определенное правилом $Px = x_1$ для вектора $x \in V$ с разложением $x = x_1 + x_2$, где $x_1 \in L_1$, $x_2 \in L_2$, является линейным и называется оператором проектирования пространства V на L_1 параллельно L_2 .
- 3. Отображение $O:V\to W$, которое каждый вектор $x\in V$ переводит в нулевой вектор $\theta\in W$, является линейным и называется нулевым оператором.

Теорема. Пусть e_1, \ldots, e_n - базис пространства V, а g_1, \ldots, g_n - произвольные векторы пространств W. Тогда существует единственный линейный оператор $A \in L(V, W)$, который переводит векторы e_1, \ldots, e_n в векторы g_1, \ldots, g_n соответственно.

Д-во. Построим искомый линейный оператор, положив для каждого вектора $x = \sum_{i=1}^{n} x_i e_i \in V$:

$$Ax = \sum_{i=1}^{n} x_i g_i.$$

Из единственности разложения вектора x по базисным векторам следует, что данное правило однозначно определяет образ вектора x, при этом, легко проверить, что $Ae_i=g_i,\ i=1,\ldots,n$. Линейность построенного оператора вытекает из линейности координат. Оператор A единственен, т.к. если B - любой другой линейный оператор, переводящий векторы e_1,\ldots,e_n в g_1,\ldots,g_n , то

$$Bx = B\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i B e_i = \sum_{i=1}^{n} x_i g_i = Ax, \quad \forall x \in V.$$

Следовательно, A = B.

14 Матрицы линейных операторов. Взаимно-однозначные соответствия между линейными операторами и матрицами.

Пусть $e=(e_1,\ldots,e_n)$ и $f=(f_1,\ldots,f_n)$ - базисы пространств V и W. Линейный оператор $A\in L(V,W)$ однозначно определяется заданием векторов Ae_1,\ldots,Ae_n . В свою очередь векторы $Ae_i,\ i=1,\ldots,n,$ однозначно определяются своими координатами в базисе f, т.е. коэффициентами разложений

$$\begin{cases}
Ae_1 = a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m, \\
Ae_2 = a_{12}f_1 + a_{22}f_2 + \dots + a_{m2}f_m, \\
\dots \\
Ae_n = a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_n.
\end{cases}$$

Опр. Матрица

$$A_{fe} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

называется матрицей оператора А в паре базисов е и f.

Теорема. Пусть $\dim V = n$, $\dim W = m$. Тогда существует взаимно однозначное соответствие между линейными операторами из L(V,W) и матрицами из $\mathbb{P}^{m \times n}$.

 \mathcal{A} -60. Построим это соответствие. Зафиксируем базисы $e=(e_1,\ldots,e_n)$ и $f=(f_1,\ldots,f_m)$ пространств V и W. Поставим в соответствие каждому линейному оператору $A\in L(V,W)$ его матрицу A_{fe} в паре базисов e и f. Очевидно, что матрица $A_{fe}\in\mathbb{P}^{m\times n}$ определена однозначно. Докажем биективность построенного таким образом отображения. Действительно, оно:

- 1. Сюръективно, т.к. любая матрица $B = [b_{ij}] \in \mathbb{P}^{m \times n}$ является матрицей линейного оператора из L(V, W), переводящая векторы e_j в $\sum_{i=1}^m b_{ij} f_i$, $j = 1, \ldots, n$.
- 2. Инъективно, т.к. различные операторы из L(V,W) не совпадают на базисных векторах и, значит, имеют разные матрицы.

15 Линейное пространство линейных операторов и его связь с пространством матриц.

Опр. Суммой линейных операторов $A, B \in L(V, W)$ называется отображение $C: V \to W$, выполняемое по правилу Cx = Ax + Bx, $\forall x \in V$. Произведением линейного оператора $A \in L(V, W)$ на число $\alpha \in \mathbb{P}$ называется отображение $C: V \to W$, выполняемое по правилу $Cx = \alpha Ax$.

Теорема. Для любых операторов $A, B \in L(V, W)$ и любого числа $\alpha \in \mathbb{P}: A+B \in L(V, W)$, $\alpha A \in L(V, W)$.

Д-60. Для любых $x, y \in V$:(A+B)(x+y) = A(x+y) + B(x+y) = (A+B)x + (A+B)y, $(A+B)(\lambda x) = \lambda((A+B)x) \implies A+B \in L(V,W)$. $(\alpha A)(x+y) = \alpha(A(x+y)) = \alpha(Ax+Ay) = \alpha Ax + \alpha Ay$, $(\alpha A)(\lambda x) = \alpha(A\lambda x) = \alpha \lambda Ax = \lambda(\alpha A)x \implies \alpha A \in L(V,W)$.

Теорема. Множество L(V,W) является линейным пространством над полем \mathbb{P} относительно введенных выше операций.

 \mathcal{A} -во. Легко проверить, что это множество является аддитивной абелевой группой с нейтральным элементом - нулевым отображением и противоположным к элементу A - отображение $(-A) \in L(V,W)$, выполняемое по правилу (-A)x = -Ax. Аксиому умножения так же легко проверяются.

Теорема. Если $\dim V = n$, $\dim W = m$, то линейное пространство L(V, W) изоморфно пространству матриц $\mathbb{P}^{m \times n}$.

 \mathcal{A} -во. Зафиксируем базисы e и f пространств V и W. Построим отображение $\varphi: L(V,W) \to \mathbb{P}^{m \times n}$, положив $\varphi(A) = A_{fe}$. Это отображение биективно. Покажем, что оно сохраняет операцию, т.е. что

$$(A+B)_{fe} = A_{fe} + B_{fe}, \quad (\alpha A)_{fe} = \alpha A_{fe}.$$

Пусть
$$A_{fe} = [a_{ij}], B_{fe} = [b_{ij}].$$
 Тогда, $Ae_j = \sum_{i=1}^m a_{ij} f_i, Be_j = \sum_{i=1}^m b_{ij} f_i,$ поэтому $(A+B)e_j = \sum_{i=1}^m (a_{ij} + b_{ij}) f_i = Ae_j + Be_j.$ Получили, что $(A+B)_{fe} = A_{fe} + B_{fe}.$ Аналогично проверяется

16 Матрица линейного оператора. Связь между координатами вектора и его образа.

(определение матрицы линейного оператора из вопроса 14)

Теорема. Если y = Ax, то $y_f = A_{fe}x_e$.

второе соотношение.

 \mathcal{A} -во. Пусть $x=\sum\limits_{i=1}^n x_ie_i,\,y=\sum\limits_{i=1}^m y_if_i$ и $A_{fe}=[a_{ij}].$ Утверждение теоремы равносильно со-

отношениям:
$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 (*), $j = 1, ..., m$. Имеем $y = Ax = A\left(\sum_{j=1}^n x_j e_j\right) = \sum_{j=1}^n x_j A e_j = A$

$$\sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} a_{ij} f_{i} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) f_{i}$$
. Из единственности разложения вектора y по базису f следует соотношение $(*)$.

17 Матрицы линейного оператора в различных базисах.

(определение матрицы линейного оператора из вопроса 14)

Пусть e и $t = C_{et}^{-1}e$ - два базиса пространства V с матрицей перехода C_{et} , а f и $s = D_{fs}^{-1}f$ - два базиса пространства W с матрицей перехода D_{fs} . Одному и тому же линейному оператору $A \in L(V, W)$ в паре базисов e и f соответствует матрица A_{ef} , а в паре базисов t и s - матрица A_{st} .

Теорема. Матрицы A_{fe} и A_{st} линейного оператора в различных парах базисов связаны соотношением

$$A_{st} = D_{fs}^{-1} A_{fe} C_{et}.$$

 \mathcal{A} -во. Для произвольного вектора $x \in V$ и его образа y = Ax имеем

$$y_f = A_{fe}x_e, \quad y_s = A_{st}x_t.$$

В свою очередь, $x_e = C_{et}x_t$, $y_f = D_{fs}y_s$. Подставив эти соотношения, получим, что $D_{fs}y_s = A_{fe}C_{et}x_t$ или $D_{fs}A_{st}x_t = A_{fe}C_{et}x_t$. Так как это соотношение имеет место при любых x_t , то $D_{fs}A_{st} = A_{fe}C_{et}$. В силу невырожденности матрицы перехода получаем, что $A_{st} = D_{fs}^{-1}A_{fe}C_{et}$.

18 Эквивалентные матрицы. Критерий эквивалентности.

Опр. Две матрицы $A, B \in \mathbb{P}^{m \times n}$ называются эквивалентными, если существуют невырожденные матрицы P и Q такие, что A = PBQ.

Теорема. Две матрицы A и B над полем $\mathbb P$ одинакового размера эквивалентны тогда и только тогда, когда они являются матрицами одного линейного оператора $A \in L(V,W)$, где V и W - линейные пространства над полем $\mathbb P$ размерностей n и m coomветственно.

 \mathcal{A} -во. (\Longrightarrow) Пусть $A,B\in\mathbb{P}^{m\times n}$ и $B=D^{-1}AC$. Рассмотрим любые линейные пространства V и W над полем \mathbb{P} такие, что $\dim V=n, \dim W=m$. Возьмем в пространстве V произвольный базис e, а в пространстве W - базис f. В силу взаимной однозначности соответствия между $\mathbb{P}^{m\times n}$ и L(V,W) существует единственный оператор $A\in L(V,W)$, который в паре базисов e и f имеет матрицу A. Тогда матрица B будет матрицей этого же оператора в паре базисов t=Ce и s=Df.

 (\iff) Пусть A и B - матрицы линейного оператора $A \in L(V,W)$ в парах базисов e,f и t,s соответственно. Причем $t=Ce,\,s=Df$. Тогда $B=D^{-1}AC\implies$ матрицы A и B эквивалентны.

Теорема. Любая невырожденная матрица $A \in \mathbb{P}^{m \times n}$ ранга r эквивалентна матрице $I_r \in \mathbb{P}^{m \times n}$ вида

 \mathcal{A} -во. Любую матрицу можно привести к диагональному виду элементарными преобразованиями. Если привести матрицу A к диагональному виду, а затем поделить каждую ненулевую строку на ненулевой элемент в ней, то получится матрица вида I_r . Это означает, что существу, матрицы элементарных преобразований Q_1, \ldots, Q_k и P_1, \ldots, P_s , такие, что $I_r = Q_1 \ldots Q_k A P_1 \ldots P_s$. Значит $A \sim I_r$.

Теорема. Две матрицы $A, B \in \mathbb{P}^{m \times n}$ эквивалентны тогда и только тогда, когда их ранги совпадают.

 \mathcal{A} -60. (\Longrightarrow) Вытекает из того, что умножение на невырожденную матрицу не меняет ранга матрицы.

(⇐) Следует из предыдущей теоремы и транзитивности эквивалентности матриц. 🗆

19 Образ и ядро линейного оператора.

Опр. Образом линейного оператора называется множество im $A = \{y \in W \mid \exists x \in V : Ax = y\}$. Ядром линейного оператора называется множество $\ker A = \{x \in V \mid Ax = 0\}$. Рангом линейного оператора называется размерность его образа, а дефектом - размерность его ядра.

Теорема. Если $A \in L(V, W)$, то ker a - линейное подпространство пространства V, im A - линейное подпространство пространства W.

Теорема. Для того чтобы подмножество было подпространством достаточно, чтобы применение операций сложения векторов и умножения вектора на число давало результат в подмножестве. Для данных подмножеств данные условия легко проверяются.

Теорема. Если e_1, \ldots, e_n - базис пространства V, то $\operatorname{im} A = L(Ae_1, \ldots, Ae_n)$.

 \mathcal{A} -во. Достаточно показать для множеств im A и $L(Ae_1,\ldots,Ae_n)$ имеет место двухстороннее вложение. С одной стороны, если $y\in \operatorname{im} A$, то $y=Ax=A\sum_{i=1}^n x_ie_i=\sum_{i=1}^n x_iAe_i\in L(Ae_1,\ldots,Ae_n)$. С другой стороны, если $y\in L(Ae_1,\ldots,Ae_n)$, то $y=\sum_{i=1}^n x_iAe_i=A\sum_{i=1}^n x_ie_i=Ax\in\operatorname{im} A$.

Теорема. Если $A \in L(V, W)$, то rank $A + \operatorname{def} A = \dim V$.

 \mathcal{A} -60. Пусть $\ker A \neq \{\theta\}$ и e_1, \dots, e_k - базис $\ker A$. Дополним его до базиса $e_1, \dots, e_k, e_{k+1}, \dots, e_n$ пространства V. $\operatorname{im} A = L(Ae_1, \dots, Ae_k, Ae_{k+1}, \dots, Ae_n) = L(Ae_{k+1}, \dots, Ae_n)$. Покажем, что векторы Ae_{k+1}, \dots, Ae_n линейно независимы. Пусть это не так. Тогда для нетривиальной линейной комбинации этих векторов имеет место соотношение $\alpha_{k+1}Ae_{k+1}+\dots+\alpha_nAe_n=A(\alpha_{k+1}e_{k+1}+\dots+\alpha_ne_n)=\theta$. Следовательно, $\alpha_{k+1}e_{k+1}+\dots+\alpha_ne_n\in \ker A$. Это означает, что вектор $\alpha_{k+1}e_{k+1}+\dots+\alpha_ne_n$ линейно выражается через e_1,\dots,e_k , что невозможно в силу линейной независимости e_1,\dots,e_n . Таким образом, $\dim \ker A=k$, $\dim \operatorname{im} A=n-k$.

20 Произведение линейных операторов. Матрица произведения.

Опр. Пусть V, W, Z - линейные пространства над полем \mathbb{P} . Произведением линейных операторов $A \in L(V,W)$ и $B \in L(W,Z)$ называется отображение $C: V \to Z$, выполняемое по правилу Cx = B(Ax), $\forall x \in V$.

Теорема. Если $A \in L(V, W)$, $B \in L(W, Z)$, то $BA \in L(V, Z)$.

Д-во. $\forall x, y \in V, \forall \alpha, \beta \in \mathbb{P}$:

$$BA(\alpha x + \beta y) = B(A(\alpha x + \beta y)) = B(\alpha Ax + \alpha Ay) = B(\alpha Ax) + B(\beta Ay) =$$
$$= \alpha B(Ax) + \beta B(Ay) = \alpha (BAx) + \beta (BAy).$$

Произведение линейных операторов определено не для любой пары линейных операторов. Однако если это произведение имеет смысл, то:

- 1. (AB)C = A(BC);
- 2. $\alpha(AB) = (\alpha A)B = A(\alpha B);$
- 3. (A + B)C = AC + BC, A(B + C) = AB + AC.

Теорема. При умножении линейных операторов их матрицы умножаются, т.е. если e, f, g - базисы пространств $V, W, Z, \text{ то } (BA)_{ge} = B_{gf}A_{fe}$.

$$\mathcal{A}$$
-во. Пусть $A_{fe} = [a_{ij}], \ D_{fg} = [b_{ij}], \ (BA)_{ge} = [c_{ij}], \ \dim V = n, \ \dim W = m, \ \dim Z = k.$ Тогда $BAe_j = \sum_{i=1}^k c_{ij}g_i$. В то же время $BAe_j = B(Ae_j) = B\sum_{s=1}^m a_{sj}f_s = \sum_{s=1}^m a_{sj}(Bf_s) = \sum_{s=1}^m a_{sj}\sum_{i=1}^k b_{is}g_i = \sum_{i=1}^m \sum_{i=1}^k a_{sj}b_{is}g_i = \sum_{i=1}^k \left(\sum_{s=1}^m b_{is}a_{sj}\right)g_i$. Получили, что $c_{ij} = \sum_{s=1}^m b_{is}a_{sj} \Longrightarrow (BA)_{ge} = B_{gf}A_{fe}$.

21 Обратный оператор. Критерий обратимости.

Опр. Пусть $A \in L(V, V)$. Отображение $A^{-1}: V \to V$ называется обратным оператором к оператору A, если $AA^{-1} = A^{-1}A = I$.

Теорема. Линейный оператор $A \in L(V, V)$ обратим тогда и только тогда, когда он биективен.

Теорема. Обратный оператор единственный.

Теорема. Обратный оператор линеен.

Д-во. Пусть $A \in L(V,V)$ и для него существует обратный оператор. Если A обратим, то он биективен и, значит, сюръективен. Это означает, что для любых $y_1,y_2 \in V$ существуют $x_1,x_2 \in V$ такие, что $y_1 = Ax_1$, $y_2 = Ax_2$. При этом $x_1 = A^{-1}y_1$, $x_2 = A^{-1}y_2$. Получили, что $A^{-1}(y_1+y_2) = A^{-1}(Ax_1+Ax_2) = A^{-1}A(x_1+x_2) = x_1+x_2 = A^{-1}y_1+A^{-1}y_2$. Аналогично, $A^{-1}(\alpha y_1) = A^{-1}(\alpha Ax_1) = A^{-1}A(\alpha x_1) = \alpha x_1 = \alpha Ay_1$.

Теорема. Оператор обратим тогда и только тогда, когда его матрица в произвольном базисе обратима.

Д-во. Пусть $A \in L(V,V)$, e - произвольный базис пространства V. Обратимость оператора A означает существование оператора A^{-1} . Перейдя в определении обратного оператора к матрицам операторов в базисе e, получим $A_e(A^{-1})_e = (A^{-1})_e A_e = I$. Эти равенства совпадают с определением обратной матрицы для матрицы A_e .

22 Инвариантные пространства. Индуцированный оператор.

Опр. Пусть V - линейное пространство над полем \mathbb{P} и $A \in L(V,V)$. Линейное подпространство пространства V называется инвариантным относительно оператора A, если $\forall x \in L : Ax \in L$.

Теорема. Пусть $A \in L(V, V)$ и L - нетривиальное подпространство инвариантное подпространство относительно A. Тогда существует базис пространства, в котором матрица оператора имеет квазитреугольную форму.

 \mathcal{A} -во. Пусть e_1,\ldots,e_k - базис подпространства L. Дополним его до базиса $e_1,\ldots,e_k,e_{k+1},\ldots,e_n$ пространства V. Построим матрицу оператора в этом базисе. Из инвариантности L вытекает, что $Ae_1,\ldots,Ae_k\in L$ и, следовательно, векторы Ae_1,\ldots,Ae_n линейно выражаются через e_1,\ldots,e_k . Таким образом,

$$\begin{cases}
Ae_1 &= a_{11}e_1 + \dots + a_{k1}e_k, \\
\dots &\\
Ae_k &= a_{1k}e_1 + \dots + a_{kk}e_k, \\
Ae_{k+1} &= a_{1,k+1}e_1 + \dots + a_{n,k+1}e_n, \\
\dots &\\
Ae_n &= a_{1n}e_1 + \dots + a_{nn}e_n.
\end{cases}$$

Это означает, что матрица A_e имеет вид

$$A_{e} = \begin{bmatrix} a_{11} & \dots & a_{1k} & a_{1,k+1} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} & a_{k,k+1} & \dots & a_{kn} \\ 0 & \dots & 0 & a_{k+1,k+1} & \dots & a_{k+1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n,k+1} & \dots & a_{nn} \end{bmatrix}.$$

и, следовательно, имеет квазитреугольную форму.

Теорема. Если пространство V является прямой суммой нетривиальных подпространств L_1, \ldots, L_k , инвариантных относительно оператора $A \in L(V, V)$, то в пространстве V существует базис, в котором матрица оператора A имеет квазитреугольную форму.

 \mathcal{A} -во. Аналогично доказательству предыдущей теоремы. В качестве искомого базиса берется базис e, составленный из базисов слагаемых подпространств.

Опр. Пусть L - подпространство, инвариантное относительно оператора $A \in L(V, V)$. Отображение $A|L: L \to L$, определенное равенством (A|L)x = Ax, $\forall x \in L$, называется индуцированным оператором, порожденным оператором A.

В силу линейности оператора A индуцированный оператор, также является линейным, $A|L\in L(L,L)$.

23 Инвариантные пространства минимальной размерности (в комплексном и вещественном пространствах).

Любой оператор $A \in L(V, V)$, действующий в комплексном пространстве V, имеет по крайней мере одно собственное значение λ , а значит и одномерное пространство инвариантное относительно A.

Теорема. Любой оператор A, действующий в вещественном пространстве V, имеет по крайней мере одно инвариантное подпространство, размерность которого не превышает 2.

 \mathcal{A} -во. Если A имеет собственное значение, то, аналогично комплексному случаю, имеется одномерное пространство инвариантное относительно A.

Пусть A не имеет вещественных собственных значений и $\lambda = a+ib$ - комплексный корень характеристического многочлена $f(\lambda)$. Построим двумерное инвариантное пространство. Для этого найдем ненулевое решение комплексной системы (A-(a+bi)I)(x+iy)=0, где x и y - вещественные векторы. Разделяю действительную и мнимую часть получим: Ax = ax - by, Ay = bx + ay. Понятно, что L(x,y) инвариантна относительно A. \square

24 Собственные значения и собственные векторы линейного оператора. Определение и простейшие свойства. Примеры.

Опр. Пусть V - линейное пространство над полем \mathbb{P} . $A \in L(V,V)$. Число $\lambda \in \mathbb{P}$ и вектор $\theta \neq v \in V$ называются собственным значением и собственным вектором оператора A, если $Av = \lambda v$.

Теорема. Собственные вектора $x_1, ..., x_k$, отвечающие различным собственным значениям $\lambda_1, ..., \lambda_k$ линейно независимы.

Д-во. Применим индукцию по k. Для k=1 утверждение очевидно. Пусть оно верно для любой системы из k-1 векторов. Докажем его для k векторов x_1,\ldots,x_k . Приравняем нулевому вектору линейную комбинацию этих векторов: $\alpha_1x_1+\cdots+\alpha_kx_k=\theta$. Под действием оператора A это равенство перейдет в равенство $\alpha_1\lambda_1x_1+\cdots+\alpha_k\lambda_kx_k=\theta$ (*). $(*)-\lambda_k(*)=\alpha_1(\lambda_1-\lambda_k)+\cdots+\alpha_k(\lambda_{k-1}-\lambda_k)x_{k-1}=\theta$. В силу индуктивного предположения отсюда следует, что $\alpha_1=\cdots=\alpha_{k-1}=0$. Значит и $\alpha_k=0$. Значит x_1,\ldots,x_k линейно независимы.

Следствие. Линейный оператор, действующий в n-марном пространстве, не может иметь более чем n различных собственных векторов.

25 Характеристический многочлен линейного оператора. Определение и простейшие свойства.

Опр. Характеристическим многочленом матрицы $A \in \mathbb{P}^{m \times n}$ называется функция $f(\lambda) = |A - \lambda I|$.

Теорема. Характеристический многочлен матрицы является инвариантом подобия. Д-во. Пусть $B = P^{-1}AP$. Тогда

$$|B - \lambda I| = |(P^{-1}AP) - \lambda P^{-1}P| = |P^{-1}(A - \lambda I)P| = |P^{-1}||A - \lambda I||P| =$$
$$= |P^{-1}||P||A - \lambda I| = |P^{-1}P||A - \lambda I| = |A - \lambda I|.$$

Свойства характеристического многочлена.

• Характеристический многочлен является делителем характеристического многочлена порождающей его матрицы.

• Если $V = L_1 \oplus \cdots \oplus L_k$, где L_1, \ldots, L_k - инвариантные подпространства относительно оператора $A \in L(V,V)$, то характеристический многочлен $f(\lambda)$. Равен произведению характеристических многочленов $f_1(\lambda), \ldots, f_k(\lambda)$ индуцированных операторов $A|L_1, \ldots, A|L_k$.

Теорема. Пусть V - линейное пространство над полем \mathbb{P} . Число $\lambda \in \mathbb{P}$ является собственным значением оператора $A \in L(V,V)$ тогда и только тогда, когда λ - корень его характеристического многочлена.

 \mathcal{A} -во. Число λ является собственным значением оператора A тогда и только тогда, когда существует вектор x, удовлетворяющий условиям

$$\begin{cases} Ax = \lambda x, \\ x \neq \theta, \\ \lambda \in \mathbb{P}. \end{cases} \Leftrightarrow \begin{cases} (A - \lambda I)x = \theta, \\ x \neq 0, \\ \lambda \in \mathbb{P}. \end{cases}$$

Это равносильно вырожденности оператора $A-\lambda I$ при некотором λ , т.е. $|A-\lambda I|=0$. \square

26 Условие существования собственных векторов линейного оператора. Собственные векторы линейного оператора в комплексном пространстве.

Вопрос о существовании собственных векторов сводится к вопросу о существовании корней характеристического многочлена, принадлежащих основному полю. В алгебраическом поле $\mathbb C$ любой многочлен степени $n\geq 1$ имеет n корней. Отсюда вытекает следующее утверждение.

Теорема. Произвольный линейный оператор, действующий в п-мерном комплексном пространстве, имеет:

- 1. п собственных значений, если каждое собственное значение считать столько раз, какова его кратность как корня характеристического многочлена;
- 2. Хотя бы один собственный вектор;
- 3. На любом своем инвариантном подпространстве хотя бы один собственный вектор.

27 Собственное подпространство. Алгебраическая и геометрическая кратность собственного значения.

Опр. Пусть λ_0 - собственное значение оператора A. Множество $W_{\lambda_0} = \{x \in V : Ax = \lambda_0 x\}$ называется собственным подпространством оператора A, отвечающим собственному значению λ_0 .

Очевидно, что $W_{\lambda_0} = \ker(A - \lambda_0 I)$, поэтому собственное подпространство является линейным подпространством пространства V.

Опр. Размерность собственного подпространства W_{λ_0} называется геометрической кратностью собственного значения λ_0 , а кратность λ_0 как корня характеристического многочлена - его алгебраической кратностью.

Теорема. Геометрическая кратность собственного значения не превосходит его алгебраической кратности.

 \mathcal{A} -во. Пусть m и s - алгебраическая и геометрическая кратность собственного значения λ_0 оператора $A \in L(V,V)$. Собственное подпространство W_{λ_0} инвариантно относительно оператора A, следовательно, можно рассматривать индуцированный оператор $A|W_{\lambda_0}$. Найдем его характеристический многочлен $f_1(\lambda)$. Пусть e_1,\ldots,e_s - базис W_{λ_0} . Тогда матрица оператора $A|W_{\lambda_0}$ в этом базисе будет диагональной матрицей s-го порядка с элементами λ_0 на главной диагонали. Следовательно, $f_1(\lambda) = (\lambda_0 - \lambda)^s$. $(\lambda_0 - \lambda)^s$ является делителем характеристического многочлена $f(\lambda)$ оператора A, но $(\lambda_0 - \lambda)$ входит в характеристический многочлен $f(\lambda)$ ровно m раз. Значит, $s \leq m$.

28 Операторы простой структуры. Критерий простой структуры.

Опр. Линейный оператор $A \in L(V, V)$ называется оператором простой структуры, если в пространстве V существует базис из собственных векторов оператора A.

Теорема. Линейный оператор $A \in L(V, V)$ имеет простую структуру тогда и только тогда, когда в пространстве V существует базис, в котором он имеет диагональную матрицу.

 \mathcal{A} -во. Пусть $\dim V = n$. Согласно определению оператор A имеет простую структуру тогда и только тогда, он имеет n линейно независимых собственных векторов e_1, \ldots, e_n . Это равносильно существованию базиса e_1, \ldots, e_n , в котором матрица A_e оператора A имеет вид

$$A_e = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix},$$

где $\lambda_1,\ldots,\lambda_n$ - собственные значения, соответствующие собственным векторам e_1,\ldots,e_n .

Следствие. В *п*-метрном пространстве линейный оператор, имеющий *п* различных собственных значений, является оператором простой структуры.

Теорема. Линейный оператор $A \in L(V, V)$ имеет простую структуру тогда и только тогда, когда $W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_p} = V$.

 \mathcal{A} -во. (\Longrightarrow) Пусть A имеет простую структуру. Тогда в пространстве V существует базис e_1,\ldots,e_n , состоящий из собственных векторов оператора A. Рассмотрим подпространство $W_{\lambda_1}\oplus\cdots\oplus W_{\lambda_p}$. Очевидно, она содержится в V. С другой стороны, каждый вектор базиса e_1,\ldots,e_n принадлежит одному из собственных подпространств, поэтому $P\subset\sum_{i=1}^pW_{\lambda_i}$. Следовательно, $W_{\lambda_1}+\cdots+W_{\lambda_p}=V$. Эта сумма является прямой, так как собственные подпространства $W_{\lambda_1},\ldots,W_{\lambda_p}$ имеют тривиальное пересечение. (\Longleftrightarrow) Пусть $W_{\lambda_1}\oplus\cdots\oplus W_{\lambda_p}=V$. Тогда совокупность базисов собственных подпространств $W_{\lambda_k},\ k=1,\ldots,p$, образует базис V, т.е. пространство V имеет базис из собственных векторов оператора A.

29 Треугольная форма матрицы линейного оператора в комплексном пространстве.

Лемма. Линейный оператор, действующий в n-мерном комплексном пространстве, обладает инвариантным пространством размерности n-1.

 \mathcal{A} -60. Линейный оператор A действующий в комплексном пространстве V, имеет собственное значение λ . Значит, $|A-\lambda I|=0$ и $\mathrm{rank}\,(A-\lambda I)\leq n-1$. Следовательно, $\dim\mathrm{im}\,(A-\lambda I)\leq n-1$ и в пространстве V существует подпространство L размерности n-1, которое содержит $\mathrm{im}\,(A-\lambda I)$. Очевидно, что L инвариантно относительно оператора $A-\lambda I$. Покажем, что оно инвариантно и относительно A. Пусть $x\in L$, тогда $(A-\lambda I)x=y\in L \implies Ax=\lambda x+y\in L$.

Теорема. В n-метрном комплексном пространстве V для любого линейного оператора $A \in L(V,V)$ существует система n вложенных друг в друга инвариантных подпространств L_1, \ldots, L_n всех размерностей от 1 до n, т.е. таких, что $L_1 \subset L_2 \subset \cdots \subset L_n = V$, где $\dim L_k = k$, $k = 1, \ldots, n$.

 \mathcal{A} -во. Используем индукцию по n. \mathcal{A} ля n=1 утверждение теоремы очевидно. Пусть теорема верна для всех линейных операторов размерности n-1. Тогда, согласно лемме оператор A, действующий в n-мерном комплексном пространстве V, имеет инвариантное пространство L_{n-1} размерности n-1. Тогда для индуцированного оператора $A|L_{n-1}$ существует система вложенных инвариантных подпространств $L_1 \subset L_2 \subset \cdots \subset L_{n-1}$. Так как действия операторов A и $A|L_{n-1}$ совпадают, то подпространства L_1, \ldots, L_{n-1} инвариантны относительно оператора A. Остается добавить, что $L_{n-1} \subset L_n = V$.

Теорема. Для любого комплексного оператора A, действующего в комплексном пространстве, существует базис, в котором матрица линейного оператора имеет треугольную форму.

 \mathcal{A} -во. Для оператора A найдется система инвариантных подпространств L_1, \ldots, L_n таких, что $\dim L_k = k$ и $L_1 \subset L_2 \subset \cdots \subset L_n = V$. Искомый базис e_1, \ldots, e_n строим так: в качестве вектора e_1 берем любой базис L_1 , в качестве e_k , k > 1 - вектор, дополняющий базис L_{k-1} до базиса L_k . В силу инвариантности подпространств L_1, \ldots, L_n матрица A_e имеет верхнюю треугольную форму.

30 Нильпотентный оператор. Определение простейшей свойства примеры.

Опр. Линейный оператор $A \in L(V, V)$ называется нильпотентным, если существует число $q \in \mathbb{N}$ такое, что $A^n = O$. Наименьшее число q, обладающее таким свойством, называется индексом нильпотентности (высотой) оператора A.

Примеры.

• В пространстве вещественных многочленов V_n оператор дифференцирования является нильпотентным оператором индекса n+1.

• Жорданова клетка

$$J_k(0) = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}.$$

является нильпотентной матрицей индекса k.

Теорема. Если $A \in L(V, V)$ - нильпотентный оператор индекса q и $x_0 \in V$ - вектор для которого $A^{q-1}x_0 \neq \theta$, то векторы $x_0, Ax_0, \ldots, A^{q-1}x_0$ линейно независимы.

 \mathcal{A} -во. Рассмотрим равенство $\alpha_0 x_0 + \alpha_1 A x_0 + \cdots + \alpha_{q-1} A^{q-1} x_0 = \theta$. Применяя последовательно операторы $A^{q-1}, A^{q-2}, \ldots, A$ к обеим частям этого равенства, получим, что $\alpha_0 = \alpha_1 = \cdots = \alpha_{q-1} = 0$. Значит система вектороа линейно независима.

Следствие. Индекс нильпотентности не превосходит размерности пространства.

Теорема. В комплексном пространстве линейный оператор нильпотентен тогда и только тогда, когда все его собственные значения равны нулю.

 \mathcal{A} -60. (\Longrightarrow) Если λ - собственное значение нильпотентного оператора $A \in L(V,V)$ индекса q и x - собственное значение соответствующее ему, то $Ax = \lambda x \implies A^2x = \lambda^2x \implies \cdots \implies A^qx = \lambda^qx$. Отсюда следует, что $\lambda^qx = 0$. Так как $x \neq 0$, то $\lambda = 0$. (\Longleftrightarrow) Рассмотрим базис e комплексного пространства V, в котором оператор A имеет верхнюю треугольную матрицу с нулями на главной диагонале. Итак,

$$A_e = \begin{bmatrix} 0 & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & 0 & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

Нетрудно проверить, что при последовательном возведении этой матрицы в степени $q=2,3,\ldots,n$ нетривиальный треугольник расположенный над главной диагональю, перемещается каждый раз на одну диагональ выше, так что $(A_e)^n=O$. Значит, $A^n=O$.

31 Теорема о прямой сумме нульпотентного и обратимого оператора.

Опр. Если $V=L_1\oplus L_2\oplus \cdots \oplus L_p$ - прямая сумма подпространств L_1,\ldots,L_p инвариантных относительно линейного оператора $A\in L(V,V)$, то оператор A называется прямой суммой индуцированных операторов $A|L_1,\ldots,A|L_p$.

Теорема. Вырожденный и не нильпотентный оператор $A \in L(V, V)$ является прямой суммой нильпотентного и обратимого операторов, причем это разложение единственно.

 \mathcal{A} -60. Для доказательства теоремы необходимо показать, что существует единственная пара подпространств L_1, L_2 , инвариантных относительно линейного оператора A и таких, что $V = L_1 \oplus L_2$, $A|L_1$ нильпотентен, $A|L_2$ обратим.

Cуществование. Обозначим для $k \in \mathbb{N}$: $N_k = \ker A^k$, $T_k = \operatorname{im} A^k$.

- 1. Покажем, что подпространства N_k строго вложены друг в друга до некоторого момента q, начиная с которого все N_k совпадают, т.е. $N_1 \subset N_2 \subset \cdots \subset N_q = N_{q+1} = \ldots$
- а) Вложение $N_k \subseteq N_{k+1}$ очевидно, так как если $A^k x = \theta$, то $A^{k+1} x = A(A^k x) = A\theta = \theta$.
- б) Пусть $N_k = N_{k+1}$, Тогда $N_{k+1} = N_{k+2}$, так как $N_{k+1} \subseteq N_{k+2}$, $N_{k+2} \subseteq N_{k+1}$. Второе из этих вложений следует из того, что если $x \in N_{k+2}$, то $A^{k+2}x = \theta$, т.е. $A^{k+1}(Ax) = 0$. Значит, $Ax \in N_{k+1} = N_k$, откуда $A^k(Ax) = \theta$, т.е. $A^{k+1}x = \theta$.

Из а и б следует, что подпространство N_k либо строго вложено в N_{k+1} , либо совпадает со всеми последующими ядрами. Так как в конечномерном пространстве размерности подпространств N_k не могут бесконечно возрастать, то наступит момент q, начиная с которого все ядра N_k будут совпадать с N_q .

- 2. Зафиксируем этот момент q и покажем, что $V = N_q \oplus T_q$.
- Действительно, $\dim V = \dim N_q + \dim T_q$ в силу теоремы о ранге и дефекте, при этом $N_q \cap T_q = \{\theta\}$, так как если $y \in N_q \cap T_q$, то $A^q y = \theta$, $y = A^q x$, т.е. $A^{2q} x = \theta$. Значит, $x \in N_{2q} = N_q$ и $A^q x = \theta = y$.
- 3. Подпространства N_q и T_q инвариантны относительно A, т.к.:
- а) если $x \in N_q$, то $x \in N_{q+1} = N_q \implies A^{q+1}x = \theta$, т.е. $A^q(Ax) = \theta \implies Ax \in N_q$.
- б) если $y \in T_q$, то $y = A^q x$ и $Ay = A^{q+1} y = A^q (Ax) = A^q x_1$, где $x_1 = Ax$, следовательно, $Ay \in T_q$.
- 4. Оператор $A|N_q$ нильпотентный оператор индекса q, т.к.:
- а) $A^qx=\theta$ $\forall x\in N_q;$ б) $\exists x_0\in N_q$ такой, что $A^{q-1}x_0\neq \theta,$ ибо $N_{q-1}\neq N_q.$
- 5. Оператор $A|T_q$ обратим, так как его ядро состоит только из нулевого вектора. Действительно, если $y \in \ker A|T_q$, то $y \in T_q$, $Ay = \theta$, т.е. $y = A^q x$ и $A^{q+1} x = \theta$, Отсюда следует, что $x \in N_{q+1} = N_q$, т.е. $A^q x = \theta$ и $y = \theta$.

Утверждения 2-5 доказывают существование искомого разложения: $L_q = N_q$, $L_2 = T_q$. Единственность. Пусть существует другое разложение $V = N \oplus T$, обладающее всеми свойствам первого.

- 1. Нильпотентность оператора A|N означает, что $A^kx=\theta\,\forall x\in N$, при некотором $k\in\mathbb{N}$. Следовательно, $N\subseteq N_k\subseteq N_q$ и $\sim N\leq \sim N_q$.
- 2. Обратимость оператора A|T означает, что im A|T=T. Следовательно, для любого вектора $y\in T$ имеет место представление $y=Ay_1$, где $y_1\in T$. Используя такое же представление для вектора y_1 и всех последующих, получаем, что $y=Ay_1=A^2y_2=\cdots=A^qy_1$. Таким образом, $T\subseteq T_q$ и dim $T\le \dim T_q$.

Так как $\dim V = \dim N + \dim T = \dim N_q + \dim T_q$ и $\dim N \leq \dim N_q$, $\dim T \leq \dim T_q$, то $N = N_q$ и $T = T_q$.

32 Расщепление линейного оператора.

Оператор $B=A-\lambda_j I$ - вырожденный, но не нильпотентный. Следовательно, к оператору B применима теорема о прямой сумме нильпотентного и обратимого оператора. Согласно этой теореме, если $N_k=\ker B^k$, $T_k\mathrm{im}\,B^k$, то $N_1\subset N_2\subset\cdots\subset N_q=N_{q+1}=\ldots$ $V=N_q\oplus T_q$, где N_q и T_q - инвариантны относительно B. Вернемся к оператору A.

 N_1 состоит из корневых векторов оператора A высоты не превосходящей 1, т.е. совпадающим собственному значению λ_j . Таким образом $N_1=W_{\lambda_1}$ и, следовательно, $\dim N_q=s_j$, где s_j - геометрическая кратность собственного значения λ_j .

 N_2 состоит из корневых векторов оператора A высоты, не превосходящей 2, а N_q состоит из векторов всех высот, т.е. q - максимальная высота коневого вектора, отвечающего собственному вектору λ_j , и N_q совпадает со всем корневым подпространством K_{λ_j} . Таким образом, $K_{\lambda_j} = N_q$.

Из свойств подпространства N_q вытекают важные свойства корневых подпространств: если характеристический многочлен оператора A имеет вид $f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_j - \lambda)^{m_j} \dots (\lambda_p - \lambda)^{m_p}$, то

- а) подпространство K_{λ_j} инвариантно относительно оператора A (в силу инвариантности относительно оператора $A-\lambda_j I$).
- б) характеристический многочлен оператора $A|K_{\lambda_j}$ имеет вид $f_j(\lambda)=(\lambda_j-\lambda)^{m_j}$ (т.к. $f_{A|N_q}(\lambda)=(-\lambda)^{m_1},\ F_{A|T_q}=(\lambda_2-\lambda)^{m_2}\dots(\lambda_p-\lambda)^{m_p})$ в) $\dim K_{\lambda_j}=m_j$.

Теорема. Если A - линейный оператор, действующий в комплексном пространстве V u $f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_p - \lambda)^{m_p}$, $\lambda_i \neq \lambda_k$, при $i \neq k$ - его характеристический многочлен, то пространство V разлагается в прямую сумму его корневых подпространств: $V = K_{\lambda_1} \oplus \dots \oplus K_{\lambda_p}$.

 \mathcal{A} -во. Воспользуемся индукцией по p. Для p=1, понятно, что $V=K_{\lambda_1}$. Пусть теорема верна для оператора, имеющего p-1 различных собственных значений. Докажем ее для оператора A. Выделим корневое подпространство $K_{\lambda_p}=N_q$. Тогда $V=K_{\lambda_p}\oplus T_q$. Обозначим $V_1=T_q$. Пространство V_1 инвариантно относительно оператора $A-\lambda_p I$, а, следовательно, оно инвариантно и относительно A, при этом характеристический многочлен оператора $A_1=A|V_1$ имеет вид $f_{(\lambda)}=(\lambda_1-\lambda)^{m_1}\dots)\lambda_{p-1}-\lambda)^{M_{p-1}}$. Оператор A_1 имеет p-1 различных собственных значений, и для него теорема верна. Если учесть, что корневые пространства оператора A_1 совпадают с корневыми подпространствами $K_{\lambda_1},\dots,K_{\lambda_{p-1}}$ оператора A, то $V_1=K_{\lambda_1}\oplus\dots\oplus K_{\lambda_{p-1}}$ и $V=K_{\lambda_1}\oplus\dots\oplus K_{\lambda_{p-1}}\oplus K_{\lambda_p}$. \square

33 Корневые векторы. Канонический базис корневого подпространства.

Опр. Пусть λ_j - собственное значение оператора A. Вектор $x \in V$ называется корневым вектором оператора A, отвечающим собственному значению λ_j , если $(A-\lambda I)^k = \theta$

при некотором $k \in \mathbb{N} \cup \{0\}$. Высотой корневого вектора называется наименьшее k, обладающее указанным свойством.

Простейшие свойства корневых векторов.

- Корневые векторы высоты 1 являются собственными векторами.
- Если x корневой вектор высоты k > 0, то вектор $(A \lambda_j I)x$ является корневым вектором высоты k 1.
- Корневые векторы различных высот линейно независимы.

Опр. Корневые векторы высоты k > 1 называются присоединенными векторами (k - 1)-го порядка.

Опр. Множество $K_{\lambda_j} = \{x \in V \mid \exists k \in \mathbb{N} \cup \{0\} : (A - \lambda_j I)^k x = \theta\}$ называется корневым подпространством оператора A, отвечающим собственному значению λ_j .

Канонический базис корневого подпространства.

Пусть K_{λ_j} - корневое пространство оператора A, отвечающее собственному значению λ_j . Положим $B+A-\lambda I$, $N_k=\ker B^k$, $n_k=\dim N_k$, $r_k=\operatorname{rank} B^k$.

Построим сначала само корневое подпространство K_{λ_j} . Для этого необходимо найти момент q, начиная с которого все ядра N_q будут совпадать с $N_q = K_{\lambda_j}$, при этом имеем $n_1 = s_j < n_2 < \dots < n_q = m_j$, где s_j и m_j - геометрическая и алгебраическая кратности λ_j . Теперь будем строить базис K_{λ_j} , последовательно просматривая подпространства N_q, N_{q-1}, \dots, N_1 .

- N_q) Пусть f_1, \ldots, f_{t_q} векторы, дополняющие произвольный базис N_q до базиса N_q . Ясно, что: 1) они будут корневыми векторами высоты q; 2) их количество равно $n_q n_{q-1}$ ж
- 3) $t_q = n_q n_{q-1} = (n_q n_{q-1}) (n_{q+1} n_q) = -n_{q+1} + 2n_1 n_{q-1}$, так как $n_{q+1} = n_q$.
- 4) никакая нетривиальная линейная комбинация этих векторов не принадлежит N_{q-1} (такие векторы будем называть линейно независимыми над N_{q-1}).

 N_{q-1}) Построим векторы Bf_1,\ldots,Bf_{t_q} . Эти векторы являются корневыми векторами высоты q-1, и они линейно независимы над N_{q-2} , так как в противном случе для

нетривиального набора чисел $\alpha_1, \ldots, \alpha_{t_q}$ имеем $B^{q-2} \sum_{k=1}^{t_q} \alpha_k B d_f$, т.е. $B^{q-1} \sum_{k=1}^{t_q} \alpha_k f_k = \theta$, и

 $\sum_{k=1}^{t_p} \alpha_k f_k \in N_{q-1}$, что противоречит линейной независимости f_1, \ldots, f_{t_q} над N_{q-1} .

Дополним эти векторы векторами $g_1,..,g_{t_{p-1}}\in N_{q-1}$ так, что векторы $Bf_1,..,Bf_{t_q},g_1,...,g_{t_{p-1}}$ дополняли произвольный базис N_{q-2} до базиса N_{q-1} . Ясно, что:

- 1) они будут корневыми векторам высоты q-1;
- 2) их количество равно $n_{q-1} n_{q-2}$;
- 3) $t_{q-1} = (n_{q-1} n_{q-2}) (n_q n_{q-1}) = -n_q + 2n_{q-1} n_{q-2};$
- 4) они линейно независимы над N_{q-2} .

Выполняя далее такие же построения в подпространствах N_{q-2}, N_{q-3}, \ldots , придем к подпространству N_1 .

 N_1) Здесь строятся векторы

$$B^{q-1}f_1, \ldots, B^{q-1}f_{t_q}, B^{q-2}g_1, \ldots, B^{q-2}g_{t_{q-1}}, \ldots, Bv_1, \ldots, Bv_{t_2},$$

которые дополняются векторами u_1,\dots,u_{t_1} до базиса N_1 . Таким образом векторы

$$B^{q-1}f_1, \dots, B^{q-1}f_{t_q}, B^{q-2}g_1, \dots, B^{q-2}g_{t_{q-1}}, \dots, Bv_1, \dots, Bv_{t_2}, u_1, \dots, u_{t-1},$$

- 1) являются собственными векторами;
- 2) их количество равно $n_1 = n_1 n_0$ (очевидно, $n_0 = \text{def } B^0 = 0$);
- 3) $t_1 = (n_1 n_0) (n_2 n_1) = -n_2 + 2n_1 n_0$;
- 4) они линейно независимы.

Полученную за q шагов систему вектором удобно объединить в таблицу, которую будем называть жордановой лестницей.

N_1	$f_1,\ldots,f_{t_{q-1}}$			
	$t_q = -n_{q-1} + 2n_q - n_{q+1}$			
N_{q-1}	$Bf_1,, Bf_{t_q}$	$g_1,\ldots,g_{t_{q-1}}$		
		$t_{q-1} = -n_{q-2} + 2n_{q-1} - n_q$		
:	:	i :	٠	
$\overline{N_1}$	$B^{q-1}f_1,, B^{q-1}f_{t_q}$	$B^{q-2}g_1, \dots, B^{q-2}g_{t_{q-1}}$		u_1,\ldots,u_{t_1}
				$t_1 = -n_0 + 2n_1 - n_2$

Теорема. Построенная система векторов образует базис коневого подпространства K_{λ_i} .

 \mathcal{A} -во. Количество векторов в построенной системе равно размерности пространства K_{λ_j} , так как $n_1+(n_2-n_1)+(n_3-n_2)+\cdots+(n_q-n_{q-1})=n_1=\sim K_{\lambda_j}$. Они так же линейно независимы, а значит образуют базис в K_{λ_j} .

Опр. Будем нумеровать векторы построенного базиса по столбцам жордановой лестницы: внутри каждого столбца снизу вверх, а сами столбцы в произвольном порядке. Полученный таким образом базис называется каноническим базисом (или жардановым) базисом корневого подпространства K_{λ_i} .

34 Жарданова нормальная форма матрицы линейного оператора. Канонический базис.

Матрица оператора $A|K_{\lambda_j}$ в каноническом базисе.

1. Пусть e_1, \ldots, e_q - векторы первого столбца жордановой лестницы. Тогда

$$\begin{cases} e_1 = B^{q-1} f_1, \\ e_2 = B^{q-2} f_1, \\ \dots \\ e_q = f_1 \end{cases} \implies \begin{cases} Be_1 = \theta, \\ Be_2 = e_1, \\ \dots \\ Be_q = e_{q-1} \end{cases} \Longrightarrow$$

$$\implies \begin{cases} (A - \lambda_j I)e_1 = \theta, \\ (A - \lambda_j I)e_2 = e_1, \\ \dots \\ (A - \lambda_j I)e_q = e_{q-1} \end{cases} \implies \begin{cases} Ae_1 = \lambda_j e_1, \\ Ae_2 = \lambda_j e_2 + e_1, \\ \dots \\ Ae_q = \lambda_j e_q + e_{q-1}. \end{cases}$$

Этой группе векторов канонического базиса соответствуют первые q столбцов матрицы $A|K_{\lambda_j}$ в каноническом базисе, которые имеют вид $\begin{bmatrix} J_q(\lambda_j) \\ O \end{bmatrix}$.

Точно так же устроены столбцы матрицы $A|K_{\lambda_j}$, определяемые векторами второго столбца жордановой лестницы: диагональная клетка имеет тот же вид $J_q(\lambda_j)$, а все остальные элементы равны нулю. Таким образом, первая группа из t_q столбцов жордановой лестницы порождает клетки Жордана q-го порядка с λ_j на главной диагонали. Число этих клеток равно t_q .

- 2. Следующая группа из t_{q-1} столбцов жордановой лестницы определяет клетки $J_{q-1}(\lambda_j)$ на главной диагонали матрицы $A|K_{\lambda_j}$. Число клеток (q-1)-го порядка равно t_{q-1} .
- 3. Рассмотрев все столбцы жордановой лестницы, получим матрицу A_j оператора $A|K_{\lambda_j}$ в каноническом базисе. A_j квазидиагональная матрица с клетками Жордана $J_k(\lambda_j)$ на главной диагонале. Всего эитх клеток столько, сколько столбцов в жордановой лестнице, т.е. n_1 или, s_i (геометрическая кратность λ_i). Таким образом,

$$A_{j} = \begin{bmatrix} J_{q1}(\lambda_{j}) & & & & \\ & J_{q2}(\lambda_{j}) & & & \\ & & \ddots & & \\ & & & J_{qs_{j}}(\lambda_{j}) \end{bmatrix} \quad (*).$$

Опр. Жордановой матрицей (или матрицей, имеющей жорданову нормальную форму) называется квазидиагональная матрица с клетками Жордана на главной диагонали.

 \mathcal{A} -во. Каноническим базис корневого подпространства является жордановым базисом для оператора $A_{K_{\lambda_i}}$, а матрица A_j - его жордановой матрицей.

Теорема. Пусть $A \in L(V, V)$ - линейный оператор, действующий в комплексном пространстве V, и его характеристический многочлен имеет вид $f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_p - \lambda)^{m_p}$. Тогда в простраснстве V существует базис e, в котором матрица оператора A имеет квазидиагональную форму:

$$J = \begin{bmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_p \end{bmatrix} \quad (**),$$

 $г \partial e$ матрицы A_j имеют вид (*).

 \mathcal{A} -во. $V = K_{\lambda_1} \oplus \cdots \oplus K_{\lambda_p}$. В качестве искомого базиса e возьмем совокупность канонических базисов корневых подпространств $K_{\lambda_1}, \ldots, K_{\lambda_p}$. Тогда матрица A_e имеет вид (**), где A_j - матрица оператора $A|K_{\lambda_j}$ в каноническом базисе K_{λ_j} . Следовательно, матрица A_j имеет вид (*).

35 Теорема Гамильтона-Кэли.

Теорема. Линейный оператор, действующий в комплексном (или в вещественном) пространстве, является корнем своего характеристического многочлена.

Д-во. 1. Докажем сначала для комплексного пространства V. Пусть $A \in L(V,V)$ и его характеристический многочлен имеет вид $f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_j - \lambda)^{m_j}$. $V = K_{\lambda_1} \oplus \dots \oplus K_{\lambda_p}$ и, следовательно, для любого вектора $x \in V$ имеет место разложение $x = x_1 + \dots + x_p$, где $x_j \in K_{\lambda_j}$, $k = 1, \dots, p$. Тогда

$$f(A)x = f(A)x_1 + \dots + f(A)x_j + \dots + f(A)x_p.$$

Каждое слагаемое в этом разложении равно нулевову вектору, так как $f(A)x_j = (\lambda_1 I - A)^{m_1} \dots (\lambda_j I - A)^{m_j} \dots (\lambda_p I - A)^{m_p} x_j = \theta$, ибо операторы в этом произведении перестановочны, а $(A - \lambda_j I)^{m_j} x_j = \theta$. Следовательно, $f(A)x = \theta \, \forall x \in V$, т.е. f(A) = O.

2. Пусть V - вещественное линейное пространство. Возьмем какой-либо базис e пространства V, и пусть A_e - матрица оператора A в этом базисе. Рассмотрим любое комплексное пространство V_1 той же размерности. Пусть f - произвольный базис V_1 , тогда матрица A_e является матрицей оператора $B \in L(V_1, V_1)$ в базисе f, т.е. $A_e = B_f$. Значит характеристические многочлены операторов A и B совпадают, и согласно п. 1, $f(A_e) = O$.

36 Подобные матрицы. Критерий подобия.

Опр. Матрицы A и B называются подобными, если существует невырожденная матрица X, такая, что $A = X^{-1}BX$.

Теорема. Две матрицы $A, B \in \mathbb{C}^{n \times n}$ подобны тогда и только тогда, когда их жордановы формы совпадают.

 \mathcal{A} -во. Это утверждение следует из того, что квадратные матрицы одинакового порядка над общим полем подобны тогда и только тогда, когда они являются матрицами одного и того же линейного оператора.