disjoint events + general addition rule

- disjoint events
- the general addition rule
- sample space
- probability distributions
- complementary events

Dr. Mine Çetinkaya-Rundel Duke University

disjoint (mutually exclusive)

disjoint (mutually exclusive) events cannot happen at the same time.

- the outcome of a single coin toss cannot be a head and a tail.
- a student can't both fail and pass a class.
- a single card drawn from a deck cannot be an ace and a queen.

non-disjoint events can happen at the same time.

a student can get an A in Stats and A in Econ in the same semester.

union of disjoint events

What is the probability of drawing a Jack or a three from a well shuffled full deck of cards?

$$P(J \text{ or } 3)$$

$$= P(J) + P(3)$$

$$= (4/52) + (4/52)$$

$$\approx 0.154$$

For disjoint events A and B, P(A or B) = P(A) + P(B)

union of non-disjoint events

What is the probability of drawing a Jack or a red card from a well shuffled full deck of cards?

$$P(J \text{ or red})$$

= $P(J) + P(\text{red}) - P(J \text{ and red})$
= $(4/52) + (26/52) - (2/52)$
 ≈ 0.538

For non-disjoint events A and B, P(A or B) = P(A) + P(B) - P(A and B) General addition rule:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Note: When A and B are disjoint, P(A and B) = 0, so the formula simplifies to P(A or B) = P(A) + P(B).

sample space

a sample space is a collection of all possible outcomes of a trial.

A couple has two kids, what is the sample space for the sex of these kids? For simplicity assume that sex can only be male or female.

probability distributions

a probability distribution lists all possible outcomes in the sample space, and the probabilities with which they occur.

one toss	head	tail
probability	0.5	0.5

two tosses	head -	tail -	head -	tail -
	head	tail	tail	head
probability	0.25	0.25	0.25	0.25

rules

- 1. the events listed must be disjoint
- 2. each probability must be between 0 and 1
- 3. the probabilities must total l

complementary events

complementary events are two mutually exclusive events whose probabilities add up to 1.

disjoint vs. complementary

Do the sum of probabilities of two disjoint outcomes always add up to 1?

Not necessarily, there may be more than 2 outcomes in the sample space.

Do the sum of probabilities of two complementary outcomes always add up to 1?

Yes, that's the definition of complementary.

