Вычисление координат вектора в ортонормированном базисе

Пусть e_1, e_2, \ldots, e_n – ортонормированный базис в евклидовом пространстве E.

Тогда $\forall x \in E: \quad x = \xi_1 e_1 + \xi_2 e_2 + \ldots + \xi_n e_n$. Умножая это равенство на e_i , в силу ортонормированности базиса получим:

$$(x, e_i) = \xi_i, \quad i = 1, \ldots, n,$$

то есть координата вектора в ортонормированном пространстве находится по правилу:

$$\xi_i = (x, e_i). \tag{109}$$

3. Операторы

3.1 Линейный оператор. Матрица линейного оператора

Определение

Пусть \mathcal{L}_1 и \mathcal{L}_2 – линейные пространства. Если задан закон, в соответствии с которым любому элементу $x \in \mathcal{L}_1$ ставится в соответствие элемент $y \in \mathcal{L}_2$, то говорят, что задан оператор \hat{A} , действующий из \mathcal{L}_1 в \mathcal{L}_2 и пишут: $y = \hat{A}x$.

Замечание

Здесь и в дальнейшем будем использовать следующие обозначения.

Операторы будем обозначать буквами "со шляпкой": \hat{A} , \hat{B} , \hat{C} и так далее, а их матрицы – соответствующими обычными буквами: A, B, C и так далее.

Определение

Оператор \hat{A} : $\mathcal{L}_1 \to \mathcal{L}_2$ называется линейным, если выполнено:

1)
$$\hat{A}(x_1 + x_2) = \hat{A}x_1 + \hat{A}x_2 \quad \forall x_1, x_2 \in \mathcal{L}_1;$$

2)
$$\hat{A}(\alpha x) = \alpha \hat{A}x \quad \forall x \in \mathcal{L}_1, \quad \forall \alpha \in \mathbb{R}(\mathbb{C}).$$

Определение

Линейный оператор, действующий из \mathcal{L}_1 в \mathcal{L}_2 , называется гомоморфиз-

мом. Если $\mathcal{L}_1 = \mathcal{L}_2$, то линейный оператор называется эндоморфизмом. Если $\mathcal{L}_2 = \mathbb{R}$ (\mathbb{C}), то линейный оператор называется линейной формой.

Примеры операторов

- 1) $\hat{A}x = \alpha x$ линейный оператор, где α фиксированное число.
- **2)** Оператор проектирования $\hat{A}: \mathbb{R}^3 \to \mathbb{R}^2$ линейный оператор.

- 3) Оператор $\hat{A}: \mathbb{R}^2 \to \mathbb{R}$, действующий по правилу: $\hat{A}x = |x|$, не является линейным, так как для векторов не выполнено свойство линейности: $|x+y| \neq |x| + |y|$.
- **4)** Оператор дифференцирования в пространстве полиномов $\hat{A}: P^n \to P^{n-1}$, действующий по правилу: $\hat{A}x = \frac{dx}{dt}$, является линейным ибо для производной свойства линейности выполнены.

Теорема 1

Под действием линейного оператора \hat{A} линейное подпространство $\mathcal{N}_1 \subset \mathcal{L}_1$ перейдет в линейное подпространство $\mathcal{N}_2 \subset \mathcal{L}_2$, причем размерность подпространства не увеличится:

$$\dim \mathcal{N}_2 \leq \dim \mathcal{N}_1$$
.

Доказательство:

Пусть e_1, e_2, \ldots, e_n – базис в \mathcal{N}_1 : dim $\mathcal{N}_1 = n$.

Тогда произвольный вектор $x \in \mathcal{N}_1$ можно представить в виде линейной комбинации векторов базиса:

$$x = \xi_1 e_1 + \xi_2 e_2 + \dots + \xi_n e_n.$$

Тогда

$$\hat{A}x = \hat{A}(\xi_1 e_1 + \dots + \xi_n e_n) = /$$
в силу линейности оператора $\hat{A}/ = \xi_1 \hat{A}e_1 + \dots + \xi_n \hat{A}e_n.$ (110)

Таким образом, любой элемент из $\mathcal{N}_2 = \hat{A}\mathcal{N}_1$ представляется в виде линейной комбинации векторов $\hat{A}e_i, \quad i=1,2,\ldots,n$. Значит $\mathcal{N}_2 \subset V\{\hat{A}e_i\}_{i=1}^n$ – линейная оболочка векторов $\hat{A}e_i$.

С другой стороны, если $y \in V\{\hat{A}e_i\}_{i=1}^n$ то:

$$y = \xi_1 \hat{A} e_1 + \ldots + \xi_n \hat{A} e_n = / формула (110) / = \hat{A} x.$$

Значит $V\{\hat{A}e_i\}_{i=1}^n\subset \mathscr{N}_2=\hat{A}\mathscr{N}_1$. Как мы выясняли ранее,

 $\mathcal{N}_2 \in V\{\hat{A}e_i\}_{i=1}^n$. По Теореме 15 из параграфа 2.4 линейная оболочка $V\{\hat{A}e_i\}_{i=1}^n$, является подпространством пространства \mathcal{L}_2 . Кроме того: $\dim \mathcal{N}_2 = \dim V\{\hat{A}e_i\}_{i=1}^n \leq n$, так как размерность линейной оболочки не может превысить число векторов, на которых она построена. Итак, $\dim \mathcal{N}_2 \leq n = \dim \mathcal{N}_1$.

Определение

Пусть $\hat{A}: \mathcal{L}_1 \to \mathcal{L}_1$. Подпространство $\hat{A}\mathcal{L}_1$ называется множеством значений (образом) оператора \hat{A} и обозначается $\mathrm{Im}\hat{A}$ ("image" \hat{A}). $\mathrm{Im}\hat{A}=\hat{A}\mathcal{L}_1$

Onpeделение

Единичный оператор \hat{I} – это оператор, действующий по правилу:

$$\hat{I}x = x, \quad \forall x \in \mathcal{L}.$$
 (111)

Нулевой оператор $\hat{0}$ действует по правилу:

$$\hat{0}x = \mathbb{O}, \quad \forall x \in \mathcal{L}.$$
 (112)

Определение

Множество векторов, отображающихся в \mathbb{O} под действием оператора \hat{A} ,

называется ядром оператора \hat{A} .

Обозначение: $Ker \hat{A}$.

Теорема 2

Ядро оператора является линейным пространством.

Доказательство:

Проверим, что линейные операции не выводят из множества

$$x, y \in Ker \hat{A} \Rightarrow \begin{cases} \hat{A}x = \mathbb{O} \\ \hat{A}y = \mathbb{O} \end{cases} \Rightarrow$$

 $\Rightarrow \hat{A}(x+y) = /B$ силу линейности оператора $/=\hat{A}x+\hat{A}y=\mathbb{O}+\mathbb{O}=\mathbb{O}.$

$$x \in Ker \hat{A}, \quad \alpha \in \mathbb{R}(\mathbb{C}) \implies \hat{A}x = \mathbb{O} \implies$$

$$\Rightarrow \hat{A}(\alpha x) = /B$$
 силу линейности оператора $/=\alpha \hat{A}x = \mathbb{O}.$

Проверим, что $\mathbb{O} \in Ker \hat{A}$.

Согласно теореме 3 из параграфа 2.2 (формула (79)): $\mathbb{O} = 0 \cdot x \quad \forall x \in \mathcal{L}$. Следовательно, $\hat{A}\mathbb{O} = \hat{A}(0 \cdot x) = 0 \cdot \hat{A}x = \mathbb{O} \Rightarrow \mathbb{O} \in Ker\hat{A}$. Все аксиомы линейного пространства будут выполнены автоматически, так как линейные операции были индуцированы (заимствованы) из линейного пространства.

Замечание

Ядро линейного оператора не может быть пустым, так как $\mathbb{O} \in Ker\hat{A}$ (доказано в теореме 2).

Пример

Рассмотрим оператор проектирования из \mathbb{R}^3 на плоскость XOY. Ядро этого оператора состоит из векторов, обращающихся в 0 при проектировании, то есть параллельных орту оси \vec{k} . Таким образом, $Ker \hat{A} = V\{\vec{k}\}$.

Теорема 3

Пусть $\hat{A}: \mathcal{L} \to \mathcal{L}$. Тогда:

$$\dim Ker \hat{A} + \dim \operatorname{Im} \hat{A} = \dim \mathcal{L}. \tag{113}$$

Доказательство:

Пусть e_1, e_2, \ldots, e_k – базис в $Ker\hat{A}$, $\dim Ker\hat{A} = k$. Дополним его до базиса $\{e_i\}_{i=1}^n$ в \mathcal{L} , $\dim \mathcal{L} = n$ (такое дополнение всегда возможно согласно теореме 8 из параграфа 2.2). Для доказательства теоремы нам достаточно доказать, что $\dim \operatorname{Im} \hat{A} = n - k$.

Возьмем набор векторов $\hat{A}e_{k+1}$, , $\hat{A}e_n$ и докажем, что он будет базисом в $\text{Im}\hat{A}$. Проверим линейную независимость векторов $\hat{A}e_{k+1}$, , $\hat{A}e_n$. Для этого составим их линейную комбинацию и приравняем её к нулю:

$$\alpha_{k+1}\hat{A}e_{k+1} + \ldots + \alpha_n\hat{A}e_n = \mathbb{O}.$$

Следовательно, в силу линейности оператора:

$$\hat{A}(\alpha_{k+1}e_{k+1} + \ldots + \alpha_n e_n) = \mathbb{O},$$

TO ECTS $\alpha_{k+1}e_{k+1} + \ldots + \alpha_ne_n \in Ker\hat{A}$.

Поскольку векторы $e_{k+1}, \ldots, e_n \notin Ker \hat{A}$, то их линейная комбинация может принадлежать ядру $Ker \hat{A}$ только если это нулевой вектор:

$$\alpha_{k+1}e_{k+1} + \ldots + \alpha_n e_n = \mathbb{O} \Rightarrow \alpha_{k+1} = \ldots = \alpha_n = 0,$$

так как векторы e_k, \ldots, e_n линейно независимы.

Теперь покажем, что любой вектор $y \in \operatorname{Im} \hat{A}$ можно представить в виде линейной комбинцации векторов $\{\hat{A}e_i\}_{i=k+1}^n$. Действительно, поскольку $y \in \operatorname{Im} \hat{A}$, то существует $x \in \mathcal{L}$, такой что: $y = \hat{A}x$. Разложим x по

базису $\{e_i\}_{i=1}^n$:

$$y = \hat{A}x = \hat{A}\sum_{i=1}^n \xi_i e_i = \hat{A}\sum_{i=1}^k \xi_i e_i + \hat{A}\sum_{i=k+1}^n \xi_i e_i =$$

$$/\hat{A}\sum_{i=1}^k \xi_i e_i = 0, \text{ так как } \sum_{i=1}^k \xi_i e_i \in Ker\hat{A} /$$

$$= \hat{A}\sum_{i=k+1}^n \xi_i e_i = /\text{в силу линейности оператора } \hat{A}/ = \sum_{i=k+1}^n \hat{A}\xi_i e_i,$$

то есть мы представили вектор y в виде линейной комбинации векторов $\{\hat{A}e_i\}_{i=k+1}^n$. Линейная независимость уже была проверена ранее. Таким образом, набор $\{\hat{A}e_i\}_{i=k+1}^n$ образует базис в $\mathrm{Im}\hat{A}$ и выполнено:

$$\dim \operatorname{Im} \hat{A} = n - k = \dim \mathcal{L} - \dim \operatorname{Ker} \hat{A}.$$

Пример

Рассмотрим оператор проектирования из \mathbb{R}^3 на плоскость XOY.

Его ядро было найдено ранее: $Ker \hat{A} = V\{\vec{k}\}$. Образ оператора – это плоскость XOY, то есть $Im \hat{A} = V\{\vec{i}, \vec{j}\}$, что соответствует теореме 3.

Матрица линейного оператора

Пусть e_1, e_2, \ldots, e_n — базис в пространстве \mathcal{L} . Введем оператор $\hat{A}: \mathcal{L} \to \mathcal{L}$, действующий по правилу $y = \hat{A}x$. Разложим векторы x и y по базису:

$$x = \xi_1 e_1 + \dots + \xi_n e_n, \tag{114}$$

$$y = \eta_1 e_1 + \ldots + \eta_n e_n. \tag{115}$$

Найдем связь между координатами ξ_1, \ldots, ξ_n и η_1, \ldots, η_n . Применим оператор \hat{A} к вектору x, заданному разложением (114):

$$\hat{A}x = \hat{A}(\xi_1 e_1 + \dots + \xi_n e_n) = /B$$
 силу линейности оператора $\hat{A}/=$

$$= \xi_1 \hat{A}e_1 + \dots + \xi_n \hat{A}e_n. \tag{116}$$

Поскольку $\hat{A}e_i \in \mathcal{L}$, то его можно разложить по базису:

$$\hat{A}e_i = a_{1i}e_1 + a_{2i}e_2 + \dots + a_{ni}e_n, \quad i = 1, 2, \dots, n.$$
 (117)

Подставим $\hat{A}e_i \in \mathcal{L}$ из (117) в формулу (116):

$$y = \hat{A}x = \xi_{1}(a_{11}e_{1} + a_{21}e_{2} + \dots + a_{n1}e_{n}) + \xi_{2}(a_{12}e_{1} + a_{22}e_{2} + \dots + a_{n2}e_{n}) + \dots + \xi_{n}(a_{1n}e_{1} + a_{2n}e_{2} + \dots + a_{nn}e_{n}) =$$

$$= e_{1}\underbrace{(a_{11}\xi_{1} + a_{12}\xi_{2} + \dots + a_{1n}\xi_{n})}_{\eta_{1}} + e_{2}\underbrace{(a_{21}\xi_{1} + a_{22}\xi_{2} + \dots + a_{2n}\xi_{n})}_{\eta_{2}} + \dots + e_{n}\underbrace{(a_{n1}\xi_{1} + a_{n2}\xi_{2} + \dots + a_{nn}\xi_{n})}_{\eta_{n}}$$

$$(118)$$

Сравнивая формулы (115) и (118), получаем выражения для координат $\eta_1, \ \eta_2, \ \ldots, \eta_n$:

$$\begin{cases} \eta_{1} = a_{11}\xi_{1} + a_{12}\xi_{2} + \dots + a_{1n}\xi_{n}, \\ \eta_{2} = a_{21}\xi_{1} + a_{22}\xi_{2} + \dots + a_{2n}\xi_{n}, \\ \dots \\ \eta_{n} = a_{n1}\xi_{1} + a_{n2}\xi_{2} + \dots + a_{nn}\xi_{n}. \end{cases}$$
(119)

Систему (119) можно записать в виде матричного равенства:

$$Y = AX, (120)$$

где
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad X = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}, \quad Y = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix}.$$

Матрица A называется матрицей линейного оператора \hat{A} в базисе e_1, e_2, \ldots, e_n .

Подведем итог. Для того, чтобы построить i-ый столбец матрицы оператора в базисе e_1, e_2, \ldots, e_n , надо взять вектор e_i , подействовать на него оператором \hat{A} и разложить вектор $\hat{A}e_i$ по базису e_1, e_2, \ldots, e_n . Коэффициенты $a_{1i}, a_{2i}, \ldots, a_{ni}$ этого разложения (формула (117)) и дадут i-ый столбец матрицы оператора.

Замечание

При фиксированном базисе в пространстве $\mathcal L$ описанная процедура задает взаимно однозначное соответствие между оператором $\hat A$ и матрицей A.

Примеры матриц различных операторов

1) Пусть \hat{A} — оператор поворота на угол α радиус-вектора на плоскости XOY. Найдем его матрицу в базисе $\vec{i},\ \vec{j}.$

Длины базисных векторов $\vec{i},\ \vec{j}$ равны 1. При повороте длина вектора не меняется. Следовательно, $\|\hat{A}\vec{i}\|=\|\hat{A}\vec{j}\|=1.$

Разложим векторы $\hat{A}\vec{i}$ и $\hat{A}\vec{j}$ по базису $\vec{i},\ \vec{j}$:

$$\hat{A}\vec{i} = \cos\alpha \cdot \vec{i} + \sin\alpha \cdot \vec{j},$$

$$\hat{A}\vec{j} = -\sin\alpha \cdot \vec{i} + \cos\alpha \cdot \vec{j}.$$

Координаты $\hat{A}\vec{i}$ запишем в первый столбец матрицы поворота, коорди-

наты $\hat{A}\vec{j}$ – во второй столбец.

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} - \text{матрица поворота} \tag{121}$$

2) Единичному оператору $\hat{I}: \hat{I}x = x$ отвечает единичная матрица:

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

3) Нулевому оператору $\hat{0}: \hat{0}x = \mathbb{O}$ отвечает нулевая матрица:

$$\mathbb{O} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

4) Оператор проектирования из \mathbb{R}^3 на плоскость XOY переводит всякий вектор $r=x\vec{i}+y\vec{j}+z\vec{k}$ в вектор $\hat{P}\vec{r}=x\vec{i}+y\vec{j}$. Тогда:

$$\begin{split} \hat{P}\vec{i} &= \vec{i} = 1 \cdot \vec{i} + 0 \cdot \vec{j} + 0 \cdot \vec{k} \\ \hat{P}\vec{j} &= \vec{j} = 0 \cdot \vec{i} + 1 \cdot \vec{j} + 0 \cdot \vec{k} \\ \hat{P}\vec{k} &= \vec{0} = 0 \cdot \vec{i} + 0 \cdot \vec{j} + 0 \cdot \vec{k} \end{split}$$

Следовательно, матрица проектирования имеет вид:

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

5) Найдем матрицу оператора дифференцирования в пространстве P^n полиномов степени $\leq n$ в базисе $1, t, t^2, \ldots, t^n$.

$$\hat{D}x = \hat{D}(\alpha_1 \cdot 1 + \alpha_2 \cdot t + \dots + \alpha_n \cdot t^n) = \alpha_1 \cdot 0 + \alpha_2 \cdot 1 + \dots + n\alpha_n t^{n-1}.$$
 Тогда:

Следовательно, матрица оператора дифференцирования в базисе $1,\ t,\ t^2,\ \ldots, t^n$ имеет вид:

$$D = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

Замечание

Рассмотрим оператор \hat{A} , действующий из пространства \mathcal{L}_1 в некоторое другое пространство \mathcal{L}_2 . Здесь матрица оператора A уже необязательно будет квадратной. Для построения матрицы A необходимо фиксировать базисы $\{e_i\}_{i=1}^n$ в \mathcal{L}_1 и $\{g_i\}_{i=1}^m$ в \mathcal{L}_2 и разложить $\hat{A}e_i$ по базису $\{g_i\}_{i=1}^m$, выписывая координаты вектора $\hat{A}e_i$ в i-ый столбец матрицы A. В результате, мы получим матрицу A размером $m \times n$.

3.2 Действия над линейными операторами

Определение

Суммой операторов \hat{A} и \hat{B} , действующих из пространства \mathcal{L}_1 в пространство \mathcal{L}_2 , называется оператор $\hat{C} = \hat{A} + \hat{B}$, действующий из \mathcal{L}_1 в \mathcal{L}_2 по правилу:

$$\hat{C}x = \hat{A}x + \hat{B}x \quad \forall x \in \mathcal{L}_1. \tag{122}$$

Замечание

Очевидно, что оператор $\hat{C} = \hat{A} + \hat{B}$ является линейным оператором,

причем его матрица равна A + B.

Определение

Произведением линейного оператора $\hat{A}: \mathcal{L}_1 \to \mathcal{L}_2$ на число $\alpha \in \mathbb{R}(\mathbb{C})$ является линейный оператор $\hat{D}: \mathcal{L}_1 \to \mathcal{L}_2$, действующий по правилу:

$$\hat{D}x = \alpha \hat{A}x \quad \forall x \in \mathcal{L}_1. \tag{123}$$

Замечание

Очевидно, что оператор $\hat{D} = \alpha \hat{A}$ является линейным оператором, причем его матрица равна αA .

Теорема 4

Множество линейных операторов с введенными действиями сложения и умножения на число, а также нулевым элементом (нулевым оператором), является линейным пространством.

Доказательство:

Очевидно, что аксиомы линейного пространства выполнены. Нулевой элемент – это нулевой оператор. Противоположный к \hat{A} оператор – это $(-\hat{A})$.

Теорема 5

Размерность пространства линейных операторов, действующих из \mathcal{L}_1 в \mathcal{L}_2 , равна $\dim \mathcal{L}_1 \cdot \dim \mathcal{L}_2$

Доказательство:

Пространство линейных операторов, действующих из

 \mathcal{L}_1 (пусть dim $\mathcal{L}_1 = n$) в \mathcal{L}_2 (пусть dim $\mathcal{L}_2 = m$), изоморфно пространству матриц M_{mn} размера $m \times n$ (то есть между ними можно установить взаимно-однозначное соответсвие, сохраняющее линейные операции с элементами).

Покажем, что пространство M_{mn} имеет размерность $m \cdot n$. Базис в нем задают матрицы, имеющие один элемент, равный 1 и все остальные, равные нулю. Очевидно, что такие матрицы линейно независимы и

любую матрицу размера $m \times n$ можно представить в виде их линейной комбинации. Число базисных матриц равно $m \cdot n$, то есть dim $M_{mn} = m \cdot n$.

Определение

Пусть оператор $\hat{B}: \mathcal{L}_1 \to \mathcal{L}_2, \quad \hat{A}: \mathcal{L}_2 \to \mathcal{L}_3.$

Тогда произведением операторов $\hat{A}\hat{B}$ называется оператор $\hat{C}=\hat{A}\cdot\hat{B},$ действующий по правилу:

$$\hat{C}x = \hat{A}(\hat{B}x) \quad \forall x \in \mathcal{L}_1.$$

Замечание

Нетрудно убедиться, что оператор $\hat{C} = \hat{A} \cdot \hat{B}$ является линейным:

$$\hat{A} \cdot \hat{B}(\alpha_1 x_1 + \alpha_2 x_2) = \hat{A}(\alpha_1 \hat{B} x_1 + \alpha_2 \hat{B} x_2) = \alpha_1 \hat{A} \hat{B} x_1 + \alpha_2 \hat{A} \hat{B} x_2.$$

Теорема 6

Пусть $\hat{A}, \; \hat{B} \colon \; \mathcal{L} \to \mathcal{L}.$ Тогда матрица оператора $\hat{A}\hat{B}$ есть произведение матриц $A \cdot B.$

Доказательство:

Пусть e_1, \ldots, e_n — базис в пространстве \mathcal{L} . Элементы матрицы оператора находятся по формуле (117). Соответсвенно,

$$\hat{B}e_i = \sum_{j=1}^n b_{ji}e_j,\tag{124}$$

$$\hat{A}e_i = \sum_{k=1}^n a_{kj}e_k. \tag{125}$$

Тогда:

$$(\hat{A} \cdot \hat{B})e_{i} = \hat{A}(\hat{B}e_{i}) = \hat{A}\left(\sum_{j=1}^{n} b_{ji}e_{j}\right) =$$

$$= \sum_{j=1}^{n} b_{ji}\hat{A}e_{j} = \sum_{(125)}^{n} \sum_{j=1}^{n} b_{ji} \sum_{k=1}^{n} a_{kj}e_{k} = \sum_{k=1}^{n} \left(\sum_{j=1}^{n} a_{kj}b_{ji}\right)e_{k}. \quad (126)$$

В соответствии с формулой (117), коэффициенты этого разложения дают элементы i-го столбца матрицы оператора $\hat{C} = \hat{A} \cdot \hat{B}$:

$$c_{ki} = \sum_{j=1}^{k} a_{kj} b_{ji}. (127)$$

Это соответствует формуле для произведения матриц:

$$C = A \cdot B. \tag{128}$$

Замечание

Теорема 6 полностью сохраняется в случае, когда операторы \hat{A} и \hat{B} действуют между различными пространствами.

Замечание

Произведение операторов некоммутативно:

$$\hat{A} \cdot \hat{B} \neq \hat{B} \cdot \hat{A}. \tag{129}$$

Это аналогично свойству произведения матриц.

Определение

Оператор $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$ называется коммутатором операторов \hat{A}, \hat{B} .

Пример

Рассмотрим операторы в пространстве дифференцируемых функций.

Пусть \hat{A} – оператор умножения на t.

Пусть \hat{B} — оператор дифференцирования: $\frac{d}{dt}$.

Вычислим коммутатор $[\hat{A}, \ \hat{B}]$.

$$\hat{A} \cdot \hat{B}f(t) = t \cdot f'(t),$$

$$\hat{B} \cdot \hat{A}f(t) = (tf(t))' = f(t) + tf'(t),$$

$$[\hat{A}, \ \hat{B}]f(t) = \hat{A}\hat{B}f(t) - \hat{B}\hat{A}f(t) = tf'(t) - f(t) - tf'(t) = -f(t).$$

Таким образом, $[\hat{A}, \ \hat{B}] = -\hat{I}$, где \hat{I} — единичный оператор.

Определение

Оператор \hat{B} в пространстве \mathcal{L} называется обратным к оператору \hat{A} , если $\hat{B}\hat{A}=\hat{A}\hat{B}=\hat{I}$:

Обозначение: \hat{A}^{-1} .

Замечание

Для того, чтобы найти обратный оператор, нужно решить уравнение $\hat{A}x = y$.

Степень оператора

$$\hat{A}^0 = \hat{I}, \quad \hat{A}^1 = \hat{A}, \quad \hat{A}^2 = \hat{A}\hat{A}, \dots, \hat{A}^n = \hat{A}^{n-1}\hat{A}.$$
 (130)

Отрицательные степени определяются с помощью обратного оператора:

$$\hat{A}^{-n} = (\hat{A}^{-1})^n. \tag{131}$$

3.3 Преобразование координат вектора при замене базиса

Пусть в пространстве \mathcal{L} заданы два базиса: $\{e_1, \ldots, e_n\}$ и $\{g_1, \ldots, g_n\}$. Выясним, как меняются координаты вектора при замене базиса. Разложим некоторый вектор $x \in \mathcal{L}$ по каждому из базисов:

$$x = \xi_1 e_1 + \xi_2 e_2 + \dots + \xi_n e_n. \tag{132}$$

$$x = \eta_1 g_1 + \eta_2 g_2 + \dots + \eta_n g_n. \tag{133}$$

Нам нужно найти связь координат η_i и ξ_i :

Разложим векторы g_i по базису $\{e_1, \ldots, e_n\}$:

$$g_i = \tau_{1i} \cdot e_1 + \tau_{2i} \cdot e_2 + \dots + \tau_{ni} \cdot e_n, \quad i = 1, 2, \dots, n.$$
 (134)

Подставим g_i из (134) в формулу (133):

$$x = \eta_{1}(\tau_{11} \cdot e_{1} + \tau_{21} \cdot e_{2} + \dots + \tau_{n1} \cdot e_{n}) +$$

$$+ \eta_{2}(\tau_{12} \cdot e_{1} + \tau_{22} \cdot e_{2} + \dots + \tau_{n2} \cdot e_{n}) + \dots +$$

$$+ \eta_{n}(\tau_{1n} \cdot e_{1} + \tau_{2n} \cdot e_{2} + \dots + \tau_{nn} \cdot e_{n}) =$$

$$= \underbrace{(\tau_{11}\eta_{1} + \tau_{12}\eta_{2} + \dots + \tau_{1n}\eta_{n})}_{\xi_{1}} e_{1} + \dots + \underbrace{(\tau_{11}\eta_{1} + \tau_{12}\eta_{2} + \dots + \tau_{1n}\eta_{n})}_{\xi_{n}} e_{n}.$$

$$(135)$$

Сравнивая формулы (132) и (135), получаем следующие соотношения для координат:

$$\begin{cases} \xi_{1} = \tau_{11}\eta_{1} + \tau_{12}\eta_{2} + \dots + \tau_{1n}\eta_{n}, \\ \dots \\ \xi_{n} = \tau_{n1}\eta_{1} + \tau_{n2}\eta_{2} + \dots + \tau_{nn}\eta_{n}. \end{cases}$$

$$(136)$$

Систему (136) можно записать в виде матричного уравнения:

$$X_e = T_{e \to g} \cdot X_g, \tag{137}$$

где
$$T_{e \to g} = \begin{pmatrix} \tau_{11} & \tau_{12} & \dots & \tau_{1n} \\ \tau_{21} & \tau_{22} & \dots & \tau_{2n} \\ \dots & \dots & \dots \\ \tau_{n1} & \tau_{n2} & \dots & \tau_{nn} \end{pmatrix}, \quad X_e = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}, \quad X_g = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix}.$$

Матрица $T_{e\to g}$ называется матрицей преобразования координат при переходе от базиса $\{e_i\}_{i=1}^n$ к базису $\{g_i\}_{i=1}^n$. Столбцами матрицы $T_{e\to g}$ являются координаты векторов g_1, g_2, \ldots, g_n в базисе $\{e_i\}_{i=1}^n$.

Пример

Преобразование координат вектора при повороте базиса.

Преобразование координат дается формулой (137):

$$\begin{pmatrix} x \\ y \end{pmatrix} = T_{e \to g} \begin{pmatrix} x' \\ y' \end{pmatrix}.$$

Матрица поворота $T_{e\to g}$ уже была получена ранее (формула (121)):

$$T_{e \to g} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

Следовательно, координаты вектора преобразуются по следующему правилу:

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha, \\ y = x' \sin \alpha + y' \cos \alpha. \end{cases}$$
 (138)

Теорема 7

Пусть в евклидовом пространстве задано два ортонормированных базиса: $\{e_i\}_{i=1}^n$ и $\{g_i\}_{i=1}^n$. Тогда матрица преобразования координат $T_{e\to g}$ будет ортогональной.

Доказательство:

Согласно формуле (134):

$$g_i = \tau_{1i} \cdot e_1 + \tau_{2i} \cdot e_2 + \ldots + \tau_{ni} \cdot e_n, \quad i = 1, 2, \ldots, n.$$

В силу ортонормированности базиса $\{g_i\}_{i=1}^n$ будет выполнено:

$$1 = (g_i, g_i) = (\tau_{1i}e_1 + \dots + \tau_{ni}e_n, \ \tau_{1i}e_1 + \dots + \tau_{ni}e_n) =$$

$$= /\text{в силу ортонормированности базиса } \{e_i\}_{i=1}^n / =$$

$$= \tau_{1i}^2 + \tau_{2i}^2 + \dots + \tau_{ni}^2, \quad i = 1, 2, \dots, n.$$

$$0 = (g_i, g_i) = (\tau_{1i}e_1 + \dots + \tau_{ni}e_n, \tau_{1i}e_1 + \dots + \tau_{ni}e_n) =$$

$$0 = (g_i, g_i) = (\tau_{1i}e_1 + \dots + \tau_{ni}e_n, \tau_{1i}e_1 + \dots + \tau_{ni}e_n) =$$

$$0 = (g_i, g_j) = (\tau_{1i}e_1 + \dots + \tau_{ni}e_n, \ \tau_{1j}e_1 + \dots + \tau_{nj}e_n) =$$

$$= \tau_{1i}\tau_{1j} + \dots + \tau_{ni}\tau_{nj}, \quad i \neq j, \quad i, j = 1, 2, \dots, n.$$
 (140)

Полученные формулы (139), (140) соответствуют свойствам ортогональной матрицы (формулы (58), (59)). Следовательно, матрица $T_{e\to g}$ ортогональна.

Замечание

Например, матрица преобразования координат при повороте осей: $T_{e \to g} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ будет ортогональной матрицей.

3.4 Изменение матрицы линейного оператора при переходе к новому базису

Рассмотрим оператор $\hat{A}: \mathcal{L} \to \mathcal{L}$, действующий по правилу $y = \hat{A}x$ Пусть $\{e_i\}_{i=1}^n$ – базис в $\mathcal{L}.$ $Y_e = \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_n \end{pmatrix}$, $X_e = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$ – столбцы координат

векторов y и x в этом базисе. Матрица A_e оператора \hat{A} в базисе $\{e_i\}_{i=1}^n$ связывает Y_e и X_e :

$$Y_e = A_e X_e. (141)$$

Пусть $\{g_i\}_{i=1}^n$ – другой базис в \mathcal{L} . Y_g и X_g – столбцы координат векторов

y и x в базисе $\{g_i\}_{i=1}^n$. Матрица A_g оператора \hat{A} в базисе $\{g_i\}_{i=1}^n$ связывает Y_g и X_g :

$$Y_g = A_g X_g. (142)$$

Пусть $T_{e \to g}$ – матрица преобразования координат при переходе от базиса $\{e_i\}_{i=1}^n$ к базису $\{g_i\}_{i=1}^n$. Тогда:

$$X_e = T_{e \to g} X_g, \quad Y_e = T_{e \to g} Y_g. \tag{143}$$

Подставим X_e и Y_e из (143) в формулу (141):

$$T_{e\to g}Y_g = A_e T_{e\to g}X_g \implies Y_g = T_{e\to g}^{-1} A_e T_{e\to g}X_g. \tag{144}$$

Сравнивая формулы (144) и (142), получим матрицу линейного оператора в новом базисе:

$$A_g = T_{e \to g}^{-1} A_e T_{e \to g}. \tag{145}$$

Если пространство евклидово и $T_{e\to g}$ – ортогональная матрица $(T_{e\to g}^{-1}=T_{e\to g}^T),$ то формулу (145) можно упростить:

$$A_g = T_{e \to g}^T A_e T_{e \to g}. \tag{146}$$

3.5 Самосопряженные и унитарные операторы

Рассмотрим комплексное евклидово пространство E, то есть в нем определено умножение вектора на комплексное число и скалярное произведение является комплексным числом. Рассмотрим оператор \hat{A} , действующий в E. $\hat{A}: E \to E$.

Определение

Оператор \hat{A}^* называется сопряженным к оператору \hat{A} , если выполнено:

$$(\hat{A}x, y) = (x, \hat{A}^*y), \quad \forall x, y \in E. \tag{147}$$

Примеры построения сопряженных операторов

1) $\hat{I}^* = \hat{I}$, где \hat{I} – единичный оператор.

Действительно,