



#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Populating models - effectiveness 3.1: Overview and objectives



## Course structure – where are we up to?



#### **Overview**

- Methods and application of meta-analysis represent a key stage in the population of decision models
- Identifying relevant evidence:
  - Relative treatment effect
  - Other relevant parameters
- Relating evidence to decision problem
  - Use of direct and indirect sources
- Application within decision model to estimate policy relevant outcomes

## **Objectives**

- Understand the key concepts relating to the synthesis of effectiveness evidence for use in decision models
- Appreciate the importance of meta-analysis to estimate relative effects
- Understand the key assumptions of meta-analysis and network metaanalysis
- Understand how the results of meta-analysis can be incorporated within decision models
- Recognise the importance of heterogeneity for policy decisions





#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Populating models - effectiveness 3.2: Key concepts



#### **Objectives**

- Appreciate the complementary roles of evidence synthesis and decision modelling.
- Understand the general principles of evidence synthesis including the role of observational data.

## Why evidence synthesis and decision modelling?

- A single source is unlikely to provide evidence on final endpoints required for decision making (e.g. lifetime QALYs and costs) for all comparators
- Evidence synthesis and modelling allows:
  - Inclusion of all relevant comparators
  - Combining relevant sources of evidence
  - Linkage of short-term outcomes to longer term impact (extrapolation)
  - Generalisability to population/setting of interest
  - Assessment of how uncertainty in relationships and evidence translates to uncertainty in decision
  - Scientific and value judgments to be made explicit

## **Evidence synthesis to inform decision models**

- Pooling results from multiple studies to inform parameter(s) inputs to decision model
  - Typically used for relative treatment effects
  - Can also be used for baseline outcomes (for reference treatment)
- Why pool?
  - To reduce problems of interpretation due to sampling variation
  - To facilitate synthesis of results from multiple studies
  - To quantify effect sizes and their uncertainty
- Evidence should be identified using systematic literature review
  - e.g. https://www.york.ac.uk/media/crd/Systematic\_Reviews.pdf

## General principles of evidence synthesis

- 1. Inclusion/exclusion criteria should reflect target population for decision
  - Population (subgroups), Intervention, Comparators, Outcomes
- Relevance of data sources to decision problem must be discussed/explored
  - Differences in trial populations (severity, previous treatments etc.)
  - Differences in treatment regimens/doses
  - Differences in controls (Best supportive care, placebo, older ineffective treatments)
  - Differences in outcomes (definitions, measures, treatment switching)
  - Any adjustments made

# General principles of evidence synthesis (cont)

- 3. Statistical heterogeneity should be taken into account
  - Assessing heterogeneity Q statistics, I<sup>2</sup>, between studies variance, compare fit of fixed and random effects models
  - Assess inconsistency in network meta-analysis
  - Subgroup-analysis, meta-regression
- The origin and rationale for the parameter values used in the model should be described and justified
  - Clear description of data sources, rationale for selection
  - Description of synthesis methods (model and code, model fit)
  - Justification of assumptions made (and sensitivity analysis)
  - Results of synthesis
  - Source of baseline used to get absolute effects for decision model

#### Role of observational data

- 1. OK for defining the baseline
- OK for mapping from shorter-term RCT outcomes to longer term clinical outcomes or QALYs (e.g. informing extrapolation of survival curves)
- 3. Not usually OK for estimating relative treatment effects
- Unless
  - No RCT, or if RCT data sparse
  - Potential bias should be taken into account and integrated into analysis by valid methods, including sensitivity analysis

#### **Summary**

- Evidence synthesis can provide important information on relative effectiveness (and potentially baseline outcomes)
- Potentially for all relevant compactors
- Bringing together multiple relevant data sources
- But
  - Is not the sole source of evidence considered important to a decision
  - Will not give estimates of costs or QALYs over an appropriate time horizon
- Decision modelling brings together all forms of evidence
  - Provides outputs required for decision making





#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Populating decision models: effectiveness evidence 3.3: Meta-analysis: introduction



# **Objectives**

- Definition and principles of meta-analysis
- Why conduct a meta-analysis?
- Assumptions of meta-analysis

## A definition of meta-analysis...

 A statistical method of quantitatively combining results from multiple studies which address a common scientific question to reveal the nature of relationships that exist among relevant variables

ultimately, a meta-analysis aims at quantifying effect sizes and their uncertainty

#### In practice, meta-analysis ...

 Pools estimates of effect measures across studies with consideration for within/between-study variability

## Why conduct meta-analyses?

## THE EMERGENCE OF A NEW SPECIES: THE PROFESSIONAL META-ANALYST

- 1. 'to obtain increased power'
- 2. 'to obtain the best risk estimate from many, often conflicting or even bewildering, studies. In its best form, it is an attempt to clarify some of the heterogeneity between studies'
- 3. 'to answer a question which the original studies were not aimed at'

Source: Rosendaal 1994. J Clin Epidemiol; 47(12): 1325-1326

## **Evidence-base and evidence synthesis?**



For meta-analysis, empirical studies need to be reported in enough detail to permit retrieving sufficient information about effects

All RCT evidence on technology X for the treatment of condition Y

## What info is needed for meta-analysis?

For a particular effect measure, within each study one should extract summary information that can be used to calculate:

- a central/point estimate (e.g. in the format of a RR or OR)
- a measure of uncertainty (typically a standard error or confidence interval)

Note that, given most relative effect measures are ratios, their distribution is expected to be skewed. These are often transformed onto the log-scale (i.e. natural logarithm) for pooling

## Important assumptions of meta-analysis ...

- Independence: It is assumed that study samples are independent
- **Similarity**: It is assumed similarity across studies and some level of homogeneity in their findings

#### **Summary points**

- Meta-analysis combines studies estimating a common effect across studies
- Meta-analysis typically requires from studies a point estimate and a measure of uncertainty
- Independence and similarity of studies are key assumptions of metaanalysis

# Meta-analysis with head-to-head trial data (standard pairwise MA)

• Focus on binary outcomes (e.g. dead or alive) with OR

- Fixed effect model
- Random effects model
- Subgroups and meta-regression





#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Populating decision models: effectiveness evidence 3.4: Meta-analysis: Fixed- and random-effects pairwise meta-analysis



## **Objectives**

- Understanding forest plots
- Fixed-effect approach and its assumptions
- Concept of heterogeneity, how it can affect a meta-analysis and how can we test for its presence
- Random-effects approach and its assumptions

# Example: Meta-analysis of RCTs of the effect of aspirin in preventing death after myocardial infarction

| Study  | Aspiri | n group | Placebo group |       |
|--------|--------|---------|---------------|-------|
|        | Deaths | Total   | Deaths        | Total |
| MRC-1  | 49     | 615     | 67            | 624   |
| CDP    | 44     | 758     | 64            | 771   |
| MRC-2  | 102    | 832     | 126           | 850   |
| GASP   | 32     | 317     | 38            | 309   |
| PARIS  | 85     | 810     | 52            | 406   |
| AMIS   | 246    | 2267    | 219           | 2257  |
| ISIS-2 | 1570   | 8587    | 1720          | 8600  |

Source: Fleiss. The statistical basis of meta-analysis. Stat Methods Med. Res. 1993; 2: 121-145

# Forest plot of odds ratios – example

| Study name |               |                |                | Odds ratio and 95% CI |                 |   |
|------------|---------------|----------------|----------------|-----------------------|-----------------|---|
|            | Odds<br>ratio | Lower<br>limit | Upper<br>limit |                       |                 |   |
| MRC-1      | 0.72          | 0.49           | 1.06           | <del>-</del>          | <del></del>     |   |
| CDP        | 0.68          | 0.46           | 1.01           | <del>-</del>          | <del> </del> 1  |   |
| MRC-2      | 0.80          | 0.61           | 1.06           | <del>.</del>          | <del></del>     |   |
| GASP       | 0.80          | 0.49           | 1.32           | <del>-</del>          |                 |   |
| PARIS      | 0.80          | 0.55           | 1.15           | -                     | <del></del>     |   |
| AMIS       | 1.13          | 0.93           | 1.37           |                       | -               |   |
| ISIS-2     | 0.89          | 0.83           | 0.97           | -                     |                 |   |
|            |               |                |                | 0.5                   | 1               | 2 |
|            |               |                |                | Favours Aspirin       | Favours Placebo |   |

# Meta-Analysis, Fixed effects model

- Statistical homogeneity
- Formally, MA FE assumes:

$$Y_i \sim \text{Normal}(\theta, V_i)$$

• We estimate the common true effect,  $\theta$ 



#### Fixed effect results - example results



## Heterogeneity

- Fixed effect model assumes all the trials are estimating exactly the same treatment effect
- Is this reasonable?
  - Trials may differ in design and conduct in many ways including the characteristics of the patients or intervention (e.g. dose of drug)
- Statistical tests exist to assess its existence:
  - Cochran's Q test (aka  $\chi^2$ ): heterogeneity exists if p-value small (<0.1)
  - Higgins'  $I^2$ : how much of the total variability is due to heterogeneity? 0% (no) to 100% (much) scale

#### Random effects model



#### Model:

- within studies  $Y_i \sim \text{Normal}(\theta_i, V_i)$
- across studies  $\theta_i \sim \text{Normal}(\theta_i, t^2)$

- There is a distribution of effect  $\theta$
- Weight<sub>i</sub> =  $1 / (V_i + t^2)$

## **Comparison – fixed and random effects – example results**



## **Exploring heterogeneity?**

- What causes between study heterogeneity?
  - Clinical heterogeneity, e.g. differences in patients, disease severity, medical history
  - Methodological heterogeneity, e.g. differences in study intervention/conduct, e.g. randomisation, endpoints and time points
  - Chance
- Random effects model only account for it they do not explain it
- Subgroup analyses/meta-regression methods can help to explain heterogeneity which may provide further insight into the treatment effect

#### **Summary points**

- Fixed-effect and random-effects approaches make different assumptions regarding the true effect estimate
- Study diversity may lead to heterogeneity: differences in true effect
- Existence of heterogeneity may be tested and heterogeneity can be quantified





#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Populating decision models: effectiveness evidence 3.5: Meta-analysis: Exploring between-study heterogeneity



## **Objectives**

- Using subgroup analysis and meta-regression to investigate heterogeneity
- Problems with exploring heterogeneity

# **Subgroup analysis**

- Split evidence base into subgroups, according to some relevant factor (binary, categorical or continuous), e.g. high risk vs low risk (patient-level), high quality vs low quality studies (study-level)
- Perform a meta-analysis within each subgroup a subgroup analysis
- Assess evidence within and across subgroups, comparing metaanalysis subgroup results

# Example: Amiodarone for Conversion of Atrial Fibrillation (AF)

- 21 randomised or quasi-randomised controlled trials with AF patients
- Amiodarone compared with placebo, digoxin, CCB, or no treatment
- Primary outcome: conversion to sinus rhythm within 4 weeks (binary outcome)
- A priori specified subgroup analysis: mean duration of the current AF episode (<=48 vs > 48 hours)

Source: Letelier et al. (2003), Arch Intern Med; 163: 777-85

Example: Amiodarone for Conversion of AF – forest plot with subgroups study Risk Ratio RR 95%-CI



Source: Letelier et al. (2003),

Arch Intern Med; 163: 777-85

#### **Meta-regression model**

$$Y_{i} = \theta_{i} + \beta x_{i} + e_{i} \qquad \theta_{i} \sim N(\theta, \tau^{2}),$$

- Study level covariates may be included in meta-analysis models to explore and adjust for systematic differences between studies
- $\beta$  is the regression coefficient for the covariate included,  $x_i$  is the value of the covariate for the *i*th study
- This is a random effects model with a study level covariate added
- Similar in principle to standard linear regression, but regression is weighted to take into account the different sizes of studies
- Extends naturally to multiple covariates

#### **Example: Primary angioplasty for AMI**

- Previous meta-analyses that compare thrombolysis and primary angioplasty (PCI) following acute MI have shown significant clinical benefits from angioplasty in terms of reducing major adverse clinical events
- Thrombolytic treatment remains the default treatment option in many countries (including the UK).
- Possible reasons include additional delay in initiating reperfusion treatment through angioplasty
- Meta-regression to evaluate the relationship between treatment effect and the time delay involving initiation of angioplasty

Source: Asseburg et al. Heart 2007; 93: 1244-1254

#### **Example: Meta-Regression Results**

|               | Alternative time delays |              |              |  |
|---------------|-------------------------|--------------|--------------|--|
|               | 30 minutes              | 60 minutes   | 90 minutes   |  |
| Endpoint      | Odds ratio              | Odds ratio   | Odds ratio   |  |
| Dooth         | 0.54                    | 0.77         | 1.15         |  |
| Death         | (0.29, 0.92)            | (0.44, 1.29) | (0.49, 2.36) |  |
| Non-fatal     | 0.30                    | 0.39         | 0.55         |  |
| re-infarction | (0.14, 0.59)            | (0.21, 0.72) | (0.2,9 1.27) |  |
| Non-fatal     | 0.47                    | 0.56         | 0.79         |  |
| stroke        | (0.05, 0.69)            | (0.09, 0.75) | (0.08, 1.43) |  |

#### **Example: Cost-effectiveness results (ICERs)**

#### Base case: 'AVERAGE' DELAY

| Time delay                    | Treatment     | Mean costs | Mean QALYs | ICER   |
|-------------------------------|---------------|------------|------------|--------|
| Average trials (54.3 minutes) | Primary PCI   | £12,760    | 7.12       | £9,241 |
|                               | Thrombolytics | £10,080    | 6.83       | NA     |

#### Scenario analysis: ALTERNATIVE DELAYS

| Time delay | Treatment     | Mean costs | Mean QALYs | ICER    |
|------------|---------------|------------|------------|---------|
| 30 minutes | Primary PCI   | £12,820    | 7.23       | £6,850  |
|            | Thrombolytics | £10,080    | 6.83       | NA      |
| 60 minutes | Primary PCI   | £12,750    | 7.09       | £10,269 |
|            | Thrombolytics | £10,080    | 6.83       | NA      |
| 90 minutes | Primary PCI   | £12,670    | 6.87       | £64,750 |
|            | Thrombolytics | £10,080    | 6.83       | NA      |

#### Problems with subgroup-analysis / metaregression

- Often too few studies: insufficient data to detect relationships
- Post hoc conclusions, inflation of type I error, low power and spurious findings
- Statistically non-significant relationships should not be equated to absence of true relationships.
- Observational relationships aggregation or ecological bias
- Only subset of trials may have covariate information potentially biasing results.

#### **Summary points**

- Subgroup analysis and meta-regression may be used to investigate heterogeneity
- Applying these approaches may present several problems and results should be interpreted with caution





#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Population decision models: effectiveness evidence 3.6: Network meta-analysis: introduction



#### **Objectives**

- Limitations of pairwise meta-analysis
- Taxonomy of comparisons
- Indirect comparisons, the building blocks

# Recognition of limitations of conventional approaches to synthesis for decision making

- Increased recognition of potential limitations for decision making purposes
  - The technologies of interest may not have been compared in head-tohead trials
  - Even when head-to-head RCTs exist, additional evidence maybe considered relevant
  - Decisions often relate to multiple technologies (n>2)

#### **Implications**

- May need to consider direct and indirect evidence
- Conventional methods of meta-analysis need extending to accommodate more complicated evidence structures
- Recognition that <u>indirect and mixed treatment comparisons</u> potentially offer a solution

#### A taxonomy of comparisons



#### **Indirect and Mixed treatment Comparisons**

- IC and MTC (or NMA) methods (generalisation of meta-analysis methods) allow comparisons of strategies not directly assessed within individual primary studies, without breaking within-study randomisation
- No head to head evidence on A v B (comparison of interest)
- Treatment *C* is a common comparator of *A* & *B*
- Then  $d_{AB\_ind} = d_{AC\_dir} d_{BC\_dir}$ , this is an *indirect comparison* of A vs B



#### **Summary points**

- Conventional approaches to synthesis, like meta-analysis, present limitations for decision making
- IC and NMA are extensions of standard pairwise MA
- Indirect comparisons and network meta-analysis are valid approaches to enable the synthesis of all of the evidence





#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Population decision models: effectiveness evidence 3.7: Network meta-analysis: assumptions



#### **Objectives**

- Key assumptions of network meta-analysis:
  - Similarity and homogeneity
  - Exchangeability and transitivity
  - Consistency

## The basic assumptions underlying network meta-analysis

- Similarity and homogeneity (= MA)
- Exchangeability/ Transitivity
- Consistency

#### Similarity is...

Treatment A is similar when it appears in AB and AC trials

Plausible when A is placebo given in different forms (e.g. injection versus pill )?





#### Homogeneity is...

• The effect estimates across trials do not differ beyond what would be expected by chance

#### **Exchangeability is...**

- The 'missing' arm is missing at random
- A vs B do not have a 'C' arm and the A vs C studies do not have a 'B' arm

#### Transitivity is...

- A valid IC requires that the sets of AC and BC studies are similar in their distributions of effect modifiers – in which case the intervention effects can be assumed as transitive
- can be viewed as the extension of clinical and methodological homogeneity to comparisons across groups of studies that compare treatments.
- Note that similarity within each comparison in the network is not sufficient to justify the transitivity assumption.

Source: Cipriani, Ann Int Med 2013

#### Consistency is...

- 'Direct' and 'indirect' evidence are assumed to provide estimates of the same parameter (transitivity)
- What does this imply?
- The treatment effect,  $d_{AB}$  estimated by the AB trials, is expected to be similar than the treatment effect estimated by the AC and BC trials if they had included B and A arms, respectively
- = direct (AB) and indirect evidence (AC and BC) is not expected to differ beyond what can be explained by heterogeneity
- Consistency can only be tested when a loop in the evidence network exists

#### **Summary points**

 The key assumptions of NMAs are: consistency, exchangeability/ homogeneity, similarity and transitivity





#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Population decision models: effectiveness evidence 3.8: Network meta-analysis: its role and examples



#### **Objectives**

- Detailed example:
  - The difference between direct and indirect treatment evidence
  - Combining direct and indirect evidence in a network
  - Benefits of the NMA approach for decision making

#### The role of network meta-analysis

## Simultaneous comparison of multiple treatments: combining direct and indirect evidence

Deborah M Caldwell, A E Ades, J P T Higgins

How can policy makers decide which of five treatments is the best? Standard meta-analysis provides little help but evidence based decisions are possible

Several possible treatments are often available to treat patients with the same condition. Decisions about optimal care, and the clinical practice guidelines that inform these decisions, rely on evidence based evaluation of the different treatment options.12 Systematic reviews and meta-analyses of randomised controlled trials are the main sources of evidence. However, most systematic reviews focus on pair-wise, direct comparisons of treatments (often with the comparator being a placebo or control group), which can make it difficult to determine the best treatment. In the absence of a collection of large, high quality, randomised trials comparing all eligible treatments (which is invariably the situation), we have to rely on indirect comparisons of multiple treatments. For example, an indirect estimate of the benefit of A over B can be obtained by comparing trials of A v C with trials of B v C,5-5 even though indirect comparisons produce relatively imprecise estimates, We describe comparisons of three or more treatments, based on pair-wise or multi-arm comparative studies, as a multiple treatment comparison evidence structure.

The need to combine direct and indirect evidence



Angioplasty balloon device used to unblock and widen arteries

Medical Research Council Health Services Research Collaboration, Department of Social Medicine, University of Bristol, Bristol BS8 2PR Deborah M

Caldwell research associate A E Ades

A E Ades professor of public health science

Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge CB2 2SR JPT Higgins

Correspondence to: D M Caldwell d.m.caldwell@ bristol.ac.uk

associate

BMJ 2005;331:897-900

#### Example: Thrombolysis for MI – problems with pairwise

- 7 (k) different treatments,
   21 [k.(k-1)/2] possible
   pairwise comparisons
   (aka contrasts)
- Evidence on 10 direct pairwise comparisons
- Outcome: 35 day mortality

| No of<br>trials | Streptokinase         | Alteplase- | Acclerated<br>alteplase | Streptokinase<br>+alteplase | Reteplase | Tenecteplase | PCTA |
|-----------------|-----------------------|------------|-------------------------|-----------------------------|-----------|--------------|------|
| Boland          | et al <sup>15</sup> : |            |                         |                             |           |              |      |
| 8               | Р                     | P          |                         |                             |           |              |      |
| 1               | Р                     |            | Р                       | P                           |           |              |      |
| 1               | Р                     |            |                         | Р                           |           |              |      |
| 1               | Р                     |            |                         |                             | Р         |              |      |
| 2               |                       |            | Р                       |                             | Р         |              |      |
| 1               |                       |            | Р                       |                             |           | P            |      |
| Keeley          | et al <sup>16</sup> : |            |                         |                             |           |              |      |
| 8               | Р                     |            |                         |                             |           |              | Р    |
| 3               |                       | Р          |                         |                             |           |              | Р    |
| 11              |                       |            | P                       |                             |           |              | Р    |

PCTA = primary percutaneous transluminal coronary angioplasty.

## Example: Thrombolysis for MI - problems with pairwise

35 day mortality, OR and 95% CI

| Direct comparisons  |  |  |
|---------------------|--|--|
|                     |  |  |
| 1.00 (0.94 to 1.06) |  |  |
| 0.86 (0.78 to 0.94) |  |  |
| 0.96 (0.87 to 1.05) |  |  |
| 0.95 (0.79 to 1.12) |  |  |
|                     |  |  |
| 0.52 (0.36 to 0.73) |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
| 0.63 (0.25 to 1.29) |  |  |
|                     |  |  |

| _                          |                     |
|----------------------------|---------------------|
| Treatment comparison       | Direct comparisons  |
| Accelerated alteplase v:   |                     |
| Streptokinase+alteplase    | 1.12 (1.00 to 1.25) |
| Reteplase                  | 1.02 (0.90 to 1.16) |
| Tenecteplase               | 1.01 (0.88 to 1.14) |
| PCTA                       | 0.81 (0.64 to 1.02) |
| Streptokinase+alteplase v: |                     |
| Reteplase                  |                     |
| Tenecteplase               |                     |
| PCTA                       |                     |
| Reteplase v:               |                     |
| Tenecteplase               |                     |
| PCTA                       |                     |
| Tenecteplase v PCTA        |                     |

#### Thrombolysis for MI – interpretation example results?

- "Definitive conclusions on efficacy are that streptokinase is as effective as accelerated alteplase, that tenecteplase is as effective as accelerated alteplase, and that reteplase is at least as effective as streptokinase."
  - Difficult to draw a conclusion about which treatment is 'best'
  - Only represents subset of relevant alternatives
- Require simultaneous comparison of all relevant options to establish the most effective (and cost-effective)

#### Example: Thrombolysis for MI - Network of evidence



## **Example: Indirect comparisons (IC)**



## **Example: Indirect Comparison (IC)**



## **Example: Indirect Comparison (IC)**



#### Uncertainty in Indirect Comparisons - Bucher et al.

Variance of the indirect comparison:

$$Var(OR_{AvsB}) = Var(OR_{AvsC}) + Var(OR_{BvsC})$$

Standard Error (SE) on the Log scale:

$$SE(\ln OR_{AvsB}) = \sqrt{SE(\ln OR_{AvsC})^2 + SE(\ln OR_{BvsC})^2}$$

Mean and 95% Confidence interval for the OR:

$$mean = \exp(\ln OR_{AvsB})$$

$$95\% CI = \exp(\ln OR_{AvsB} \pm 1.96 \times SE(\ln OR_{AvsB}))$$

<u>Source</u>: Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. *Journal of Clinical Epidemiology* 1997; 50(6): 683-691

#### **Example: calculations for an Indirect Comparison**

1) Calculate mean difference in log OR

$$\ln(OR_{AB}) = \ln(OR_{AC}) - \ln(OR_{BC})$$
  
0.11 = 0.15 - 0.04

2) Calculate standard errors for mean difference in log OR

$$SE(\ln OR_{AB}) = \sqrt{SE(\ln OR_{AC})^2 + SE(\ln OR_{BC})^2}$$
$$0.065 = \sqrt{0.05^2 + 0.05^2}$$

3) Exponentiate to get OR

$$ln(OR_{AB}) = 0.11 \text{ (SE=0.065)}$$

$$OR_{AB} = 1.12$$
 (95%CI 0.97 to 1.28)

Note: for AvsC In(1.06)=0.06 In(1.28)=0.25 CI width on In scale= 0.25-0.06=0.19 Ln(SE(ORAC))= 0.19/(2\*1.96)=0.05

#### **Example: Indirect Comparison**



## **Example: Network meta-analysis**



## Example: Direct vs Indirect evidence and mixed estimates

| Analysis                          | OR<br>Mean (95% CI) | LOR<br>Mean (SE) |
|-----------------------------------|---------------------|------------------|
| Indirect <i>via</i> Streptokinase | 1.11(0.97 to 1.28)  | 0.110 (0.064)    |
| Direct (2 Trials)                 | 1.12 (1.00 to 1.25) | 0.113 (0.058)    |
| Combined estimate                 | 1.12 (1.01 to 1.24) | 0.112 (0.043)    |

 Combined estimate should reflects both direct and indirect evidence, with relative weight dependent on the variance components

## Example: Thrombolysis for MI – NMA results

NMA 'fills in the blanks', i.e.
 estimates a relative treatment
 effect between all treatments
 of interest, simultaneously
 using all available evidence

#### Fixed effect Treatment comparison Direct comparisons Multiple comparison Streptokinase v: Alteplase 1.00 (0.94 to 1.06) 0.99 (0.94 to 1.06) 0.86 (0.78 to 0.93) Accelerated alterlase 0.86 (0.78 to 0.94) Streptokinase+alteplase 0.96 (0.87 to 1.05) 0.96 (0.87 to 1.05) Reteplase 0.95 (0.79 to 1.12) 0.90 (0.80 to 1.01) Tenecteplase 0.86 (0.74 to 1.00) PCTA 0.52 (0.36 to 0.73) 0.63 (0.52 to 0.77) Alteplase v: Accelerated alterlase 0.86 (0.77 to 0.95) Streptokinase+alteplase 0.96 (0.86 to 1.07) Reteplase 0.90 (0.79 to 1.02) Tenecteplase 0.86 (0.73 to 1.01) **PCTA** 0.63 (0.25 to 1.29) 0.64 (0.51 to 0.77) Accelerated alterlase v: Streptokinase+alteplase 1.12 (1.00 to 1.25) 1.12 (1.01 to 1.24) Reteplase 1.02 (0.90 to 1.16) 1.05 (0.94 to 1.17) 1.01 (0.88 to 1.14) Tenecteplase 1.01 (0.89 to 1.14) PCTA 0.81 (0.64 to 1.02) 0.74 (0.61 to 0.89) Streptokinase+alteplase v: Reteplase 0.94 (0.82 to 1.07) Tenecteplase 0.90 (0.76 to 1.05) PCTA 0.66 (0.53 to 0.81)

0.96 (0.82 to 1.13)

0.71 (0.57 to 0.87)

0.74 (0.58 to 0.92)

Reteplase v:

Tenecteplase PCTA

Tenecteplase v PCTA

### Evidence networks can become very complicated



<u>Source</u>: Cipriani, Higgins, Geddes and Salanti. Conceptual and technical challenges in network meta-analysis. Annals Int Med 2013 Jul 16; 159(2): 130-7

### **Summary points**

- NMA uses all relevant evidence simultaneously in a single model
- NMA provides effect estimates for all comparisons of interest
- NMA provides all relevant information for decision making





#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Populating models - effectiveness 3.9: Incorporating effectiveness evidence in decision models



#### **Objectives**

- Understand the general principles of applying (network) metaanalysis in decision models
- Identify appropriate methods to translate relative effects to absolute estimates of outcomes
- Understand how (network) meta-analysis results can be incorporated into different model structures
- Explore the role of synthesis for other types of input parameters

## General principles of using (network) meta-analysis within models

- (Network) meta-analysis provides estimates of relative treatment effects compared to a reference treatment
  - e.g. standard of care, placebo, an active treatment
- Relative effect may be on a range of scales
  - e.g. risk difference (RD), relative risk (RR), odds ratio (OR), hazard ratio (HR)
- Models require absolute estimate of outcome
  - e.g. probability of death, probability of response

## General principles of using (network) meta-analysis within models

- To translate NMA results from relative to absolute effects require absolute measure of outcome for one comparator
- Consider the following network



A binary endpoint NMA on relative risk (RR) scale produces:

```
RR_{AC}, RR_{BC}, RR_{DC}, RR_{EC}, RR_{FC}

If p_C is the probability of the event for intervention C

p_A = RR_{AC} * p_C

p_B = RR_{BC} * p_C etc.
```

## Methods for translating from relative effects to absolute scale

| Binary endpoint    |                                                                                                                                                    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Risk difference    | $p_A = p_C + d_{AC}$                                                                                                                               |
| Relative risk      | $p_A = p_C \cdot d_{AC}$                                                                                                                           |
| Odds ratio         | odds <sub>C</sub> = $p_C/(1-p_C)$<br>odds <sub>A</sub> = odds <sub>C</sub> ·d <sub>AC</sub><br>$p_A$ = odds <sub>A</sub> / (odds <sub>A</sub> + 1) |
| Continuous data    |                                                                                                                                                    |
|                    | $\mu(t)_A = \mu(t)_C + d_{AC}$                                                                                                                     |
| Time to event data | $h(t)_A = h(t)_C \cdot d_{AC}$                                                                                                                     |
|                    | A set of formulae exist to convert from hazards to survival curves or transition probabilities                                                     |

Where p represents a probability,  $\mu(t)$  the mean outcome at time t, and h(t) the hazard at time t

#### Incorporating NMA results in a decision tree



Life years A = 0.85\*30+0.15\*0=25.5 Cost A = 0.85\*100+0.15\*20=£88

Life years B = 0.80\*30+0.20\*0=24 Cost B = 0.80\*100+0.20\*20=£84

#### Example: pharmacological treatment for major depressive disorder



NMA informs probability of remission for each alternative

### **Example: treatment for major depressive disorder**

- Network meta-analysis of remission endpoint on odds ratio (OR) scale
  - Produced OR for each treatment vs fluoxetine
- Fluoxetine estimated to have remission probability of 40.21%
- Decision model requires probability of remission for each treatment

### Example: treatment for major depressive disorder

- OR for venlafaxine vs. fluoxetine from NMA: 1.25 (95% CI 1.12, 1.39)
- What is the probability of remission for patients receiving venlafaxine?
  - 1. Odds of remission for fluoxetine = 0.4021/(1-0.4021) = 0.6725
  - 2. Odds of remission for pts. receiving venlafaxine = 0.6725\*1.25 = 0.8407
  - Probability of remission for pts. receiving venlafaxine = 0.8407/(1+0.8407)=0.4568

| Clinical data                            | Data (%) | References                      |  |  |
|------------------------------------------|----------|---------------------------------|--|--|
| Remission rate in first therapeutic step |          |                                 |  |  |
| SNRIs <sup>a</sup>                       |          |                                 |  |  |
| Duloxetine                               | 44.99    | Wessling and Ramsberg (TLV) [1] |  |  |
| Venlafaxine                              | 45.68    | Wessling and Ramsberg (TLV) [1] |  |  |
| Mirtazapine                              | 45.08    | Wessling and Ramsberg (TLV) [1] |  |  |
| SSRIs                                    |          |                                 |  |  |
| Citalopram                               | 40.50    | Wessling and Ramsberg (TLV) [1] |  |  |
| Escitalopram                             | 47.56    | Wessling and Ramsberg (TLV) [1] |  |  |
| Fluoxetine                               | 40.21    | Wessling and Ramsberg (TLV) [1] |  |  |
| Paroxetine                               | 42.70    | Wessling and Ramsberg (TLV) [1] |  |  |
| Sertraline                               | 43.02    | Wessling and Ramsberg (TLV) [1] |  |  |

#### **Incorporating NMA results in a Markov model**

- Markov structure used to calculate time in each states
- Costs and health outcomes assigned to each state
- Differences in time in each state drive differences across interventions



#### **Example: Venus leg ulcers**

- VenUS IV clinical trial compared four-layer bandage (4LB) with twolayer hosiery (HH) for management of venous leg ulcers.
- Decision problem included wider set of comparators
  - 1. Conducted NMA of alternative high-compression treatments
  - 2. Constructed decision model to assess cost-effectiveness
- Effects of treatment
  - Time to healing all treatments have different rate (NMA)

### **Example: Venous leg ulcers**

|                             |       | Base-case analysis |                           |  |  |  |
|-----------------------------|-------|--------------------|---------------------------|--|--|--|
|                             |       |                    | Including VenUS<br>IV (1) |  |  |  |
|                             |       |                    |                           |  |  |  |
| Treatment effects (vs. 4LB) | SSB   | 0.88               | 0.76 to 1.03              |  |  |  |
|                             | нн    | 1.05               | 0.85 to 1.29              |  |  |  |
|                             | Paste | 0.77               | 0.41 to 1.42              |  |  |  |
|                             | 2LB   | 1.40               | 0.65 to 3.05              |  |  |  |
|                             | Ba    | 1.19               | 0.43 to 3.47              |  |  |  |
|                             | BHeH  | 0.93               | 0.34 to 2.62              |  |  |  |
|                             | BzeaH | 1.33               | 0.42 to 4.51              |  |  |  |
|                             | HV    | 1.00               | 0.23 to 4.22              |  |  |  |



- NMA Hazard ratios modify hazard "rate" of healing Example: h<sub>2LB</sub> = h<sub>4LB</sub>·HR<sub>2LBvs.4LB</sub>
- Essentially "shifts" the survival curve for time to healing
- Computationally achieved by modifying transition probabilities



### Synthesis of other parameters

- Focus so far on relative effectiveness
  - Drive incremental differences between interventions
- Multiple source of evidence may also be available for other parameters
  - Natural history or 'baseline' event rate (e.g. remission rate with fluoxetine)
  - Costs/resource use
  - Utilities (health related-quality of life weights)

### **Evidence synthesis for the baseline (natural history)**

- Synthesis methods effectively weighted pooling
- Recommend conducted separately from NMA
  - So that NMA unaffected by assumptions in baseline model
- Exploration of heterogeneity may be important
  - May be possible if subgroup data or individual patient data (IPD) available

#### Evidence synthesis of cost and resource use data

- Rarely done
- Require data specific to a jurisdiction
- Potential limitations to synthesis:
  - Methodological heterogeneity e.g. data collection strategies, methods of measurement
  - Temporal changes e.g. prices, technology
  - Differences between health systems

#### **Evidence synthesis of utility data**

- Methodological heterogeneity is a major issue
  - Different instruments (descriptive systems, valuation methods/populations)
- Guidance from NICE recommends synthesis only if studies share similar populations and use the same instrument and valuation
- Synthesis methods not well developed, generally weighted pooling

#### **Summary**

- Relative effects from (network) meta-analysis need to be translated into absolute estimates for decision making
- The specific methods depend on the outcome scale and the model structure
- Decision model provides framework to incorporate results from (network) meta-analysis and translate these into policy relevant outcomes (costs, QALYs)
- Need to consider role and appropriateness of synthesis for other input parameters





#### **Online Advanced Methods for Cost-Effectiveness Analysis**

Presentation 3: Populating models - effectiveness 3.10: Reflecting heterogeneity in decision models



#### **Objectives**

- Understand the importance of heterogeneity for policy decisions
- Identify different sources of heterogeneity for cost-effectiveness analysis
- Understand the importance of subgroup analysis and principles for cost-effectiveness analysis

# Importance of heterogeneity: Policy context

- Growing demands to maximise value from limited health care budgets
- Political pressure to find a middle ground between refusal to reimburse and reimbursement as per license
- Restricted use: give to the sub-groups in which therapy cost-effective
- Traditional caution of trialists and EBM towards sub-group analysis

### Subgroups and relative effectiveness

- Commonly used to explore difference in treatment effects between subgroups
  - "subgroup effect", "effect modification", or "interaction between a subgroup variable and treatment"
- Range of principles proposed for analysing and interpreting subgroup effects in clinical literature
  - Emphasis on relative effects
  - Use of baseline rather than post-randomisation characteristics
  - A priori specification (including direction)
  - Relatively few
  - Statistical significance
  - Biological rationale

#### Heterogeneity in cost-effectiveness analysis

- Individual patients vary in terms of different disease-related parameters
  - Underling risk of events ("baseline risk")
  - Cost of an event
  - Utility of an event
- Individual patients vary in terms of treatment-related parameters
  - Relative risk for response to treatment ("treatment effects")
  - Experience of adverse events
- Some of this variability can be explained by patient characteristics known at treatment initiation.
  - Age
  - Gender
  - Clinical characteristics

#### Importance of subgroups in cost-effectiveness

Heterogeneity in baseline risks and treatment effects

#### Example from RITA-3 economic analysis

|                                          | First<br>quartile* | Second quartile* | Third quartile*  | Fourth lower quartile* | Fourth upper quartile* |
|------------------------------------------|--------------------|------------------|------------------|------------------------|------------------------|
| Age                                      | 45                 | 52               | 52               | 61                     | 66                     |
| Diabetes                                 | 0                  | 0                | 0                | 0                      | 1                      |
| Previous myocardial infarction           | 0                  | 0                | 1                | 1                      | 1                      |
| Smoker                                   | 0                  | 1                | 0                | 1                      | 0                      |
| Pulse                                    | 8                  | 10               | 10               | 11                     | 13                     |
| ST depression                            | 0                  | 0                | 1                | 1                      | 1                      |
| Angina                                   | 1                  | 0                | 1                | 0                      | 0                      |
| Male                                     | 0                  | 1                | 1                | 1                      | 1                      |
| Left bundle branch block                 | 0                  | 0                | 0                | 0                      | 0                      |
| ICER (no interaction) ICER (interaction) | 49,754<br>783,283  | 22,145<br>42,877 | 20,765<br>27,626 | 11,682<br>11,702       | 12,490<br>10,190       |

Henriksson *et al (2008).* The cost-effectiveness of an early interventional strategy in non-ST-elevation acute coronary syndrome based on the RITA 3 trial. *Heart*; 94:717-23.

## Ignoring heterogeneity - implications for population health

| Subgroup (% patients) | QALYs | Costs   | QALYs displaced (λ=£20,000/QALY) |     | NHB in QALYs<br>(λ=£20,000/<br>QALY) |  |
|-----------------------|-------|---------|----------------------------------|-----|--------------------------------------|--|
| Subgroup A (50%)      | 0.60  | £10,000 |                                  | 0.5 | 0.10                                 |  |
| Subgroup B (50%)      | 0.30  | £10,000 |                                  | 0.5 | -0.20                                |  |
| Average patient       | 0.45  | £10,000 | $\Longrightarrow$                | 0.5 | -0.05                                |  |

- Reimbursement as per license results in a <u>negative</u> population health gain per treated patient
- Restricting reimbursement to Subgroup A results in
   0.10 QALY population health gain per treated patient
- Restricted decisions can improve population health

### Principles of subgroup analyses for cost-effectivenes

- Relevant subgroups identified in terms of contribution to absolute treatment effect (baseline and relative effect)
- Pre-specification prior to data analysis based on clinical and economic plausibility
- Appropriate quantification of uncertainty rather than statistical significance
- Magnitude of population health gains (losses)
- Implementation issues in routine practice
  - Feasibility, costs, constraints

#### **Summary**

- Heterogeneity is an important issue for reimbursement and policy
- Heterogeneity manifests in different disease and treatment related parameters
- Important to establish principles of subgroups for cost-effectiveness
- Ignoring heterogeneity has implications for population health





#### Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 3: Populating models - effectiveness 3.11: Summary and conclusions



#### Summary

- Evidence synthesis is an important input to cost-effectiveness modelling
- Statistical tools, such as meta-analysis, enable the combination of quantitative results from multiple studies
- Subgroup analysis and meta-regression may be used to investigate heterogeneity
- Network meta-analysis can be used when there are multiple treatments providing estimates for all comparisons of interest
- Estimation of absolute outcomes required for evidence synthesis to be used within models
- Range of possible sources of heterogeneity should be explored

## **Further reading**

#### Methods and application of network meta-analysis

- Bucher H et al. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. *J Clin Epidemiol*. 1997; 50(6): 683-691
- Caldwell D et al. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. *BMJ*. 2005 Oct 15;331(7521):897-900
- NICE DSU TSDs on Evidence Synthesis: TSD 1 to TSD 7 (available from: http://nicedsu.org.uk/technical-support-documents/evidence-synthesis-tsd-series/)

#### Application of evidence synthesis approaches for HTA

• Sutton A, Ades AE, Cooper N, Abrams K. Use of Indirect and Mixed Treatment Comparisons for Technology Assessment. *PharmacoEconomics*. 2008; 26: 753-767

#### Subgroups and heterogeneity

• Sculpher M. Subgroups and heterogeneity in cost-effectiveness analysis. *Pharmacoeconomics*. 2008;26(9):799-806