



# IN1006 Systems Architecture (PRD1 A 2022/23)

🔏 | My Moodle | IN1006 PRD1 A 2022-23 | COURSEWORK 1: Weekly Assessed Quiz | Quiz 2 Weekly Assessed Quiz 2022

| O            |                                           |
|--------------|-------------------------------------------|
| Grade        | <b>10.00</b> out of 10.00 ( <b>100</b> %) |
| Time taken   | 5 mins 23 secs                            |
| Completed on | Thursday, 10 November 2022, 4:05 PM       |
| State        | Finished                                  |
| Started on   | Thursday, 10 November 2022, 4:00 PM       |
|              |                                           |

Question **1** 

Correct

Mark 1.00 out of 1.00

What are the binary and decimal representations of the hexadecimal number F4?

### Select one:

- a. Binary: 11110100 Decimal: 244
- o b. Binary: 11110010 Decimal: 244
- oc. Binary: 11100100 Decimal: 244
- Od. Binary: 11110100 Decimal: 240
- e. Don't know/No answer

To convert from base 16, we remember that  ${\sf F4}_h$  means

F x 16^1 + 4 x 16^0

15 x 16 + 4 x 1

240 + 4

24410

The correct answer is: Binary: 11110100 Decimal: 244



Which of the following binary numbers corresponds to the result of the following subtraction of hexadecimal numbers (hint: transform the hexadecimal numbers to binary and perform subtraction as addition of the 2's complement the number to be subtracted):

AEhex - 9Fhex

a. 0101 0101

b. 0110 0100

oc. 0000 1111

This is the correct answer.

d. 0000 0001

e. 0000 0101

Your answer is correct.

The binary form of AE<sub>hex</sub> is: 1010 1110

The binary form of 9F<sub>hex</sub> is: 1001 1111

Subtracting 9F from AE can be carried out by auditing the 2's complement of 9F<sub>hex</sub> to AE<sub>hex</sub>.

To find the complement of  $9F_{hex}$  we first flip the bits of its binary representation. This gives us: 0110 0000 (flip bits)

And then we add 1, so we get:

0110 0000

+ 1

This gives us:

0110 0001 (i.e., the 2's complement of 9F<sub>hex</sub>)

Then we perform the addition:

10101110 AE<sub>hex</sub>

 $0\,1\,1\,0\,0\,0\,0\,1\,$  (addition of 2's complement of  $9F_{hex}$ )

The result of this addition is

0000 1111

and as the left most bit is 0 the number is a positive one and therefore it constitutes the answer.

The correct answer is:

0000 1111





What is the correct result of the operation below? The initial numbers should be considered as unsigned integers. The result should be given in 2's complement. (Hint: use 2's complement arithmetic to perform the operation.)

00001111 - 00010101

### Select one:

- a. 00000110
- b. 11111010
- o. 11101011
- d. Don't know/no answer
- e. 00000101
- of. 11101010

To perform the subtraction we find the negative of the subtrahend:

00010101 (subtrahend)

11101010 (1's complement, flip one bit)

00000001 (add 1)

11101011 (2's complement of the subtrahend)

perform the addition:

00001111

<u>11101011 +</u>

11111010 (this is the result in 2's complement or -6 in decimal

The correct answer is: 11111010



| In performing a bit-wise addition of the following unsigned binary no | umbers, how many "carry out" bits will be generated?                                                                  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 10001011                                                              |                                                                                                                       |
| 01110001                                                              |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |
| <ul><li>a. 2 "carried out" bits will be produced.</li></ul>           | Correct. The two carry out bits will be produced when<br>adding two right most pairs of bits of the given<br>numbers. |
| <ul><li>b. 0 "carried out" bits will be produced.</li></ul>           |                                                                                                                       |
| c. 4 "carried out" bits will be produced.                             |                                                                                                                       |
| <ul><li>d. 1 "carried out" bits will be produced.</li></ul>           |                                                                                                                       |
| e. 3 "carried out" bits will be produced.                             |                                                                                                                       |
| · · · · · · · · · · · · · · · · · · ·                                 |                                                                                                                       |
| Your answer is correct.                                               |                                                                                                                       |
| The correct answer is:                                                |                                                                                                                       |
| 2 "carried out" bits will be produced.                                |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |
| Question <b>5</b>                                                     |                                                                                                                       |
| Correct  Mark 1.00 out of 1.00                                        |                                                                                                                       |
| Wark 1.00 Out Of 1.00                                                 |                                                                                                                       |
| Which of the following numbers is the binary number representing 7    | 5 in the decimal system (select one answer)?                                                                          |
|                                                                       | (                                                                                                                     |
| a. 00011111                                                           |                                                                                                                       |
| b. 00001111                                                           | Correct.                                                                                                              |
| o. 0000000                                                            |                                                                                                                       |
| Od. 11001111                                                          |                                                                                                                       |
| <ul> <li>e. None of the rest of the choices</li> </ul>                |                                                                                                                       |
| Your answer is correct.                                               |                                                                                                                       |
|                                                                       |                                                                                                                       |
| The correct answer is: 0 0 0 0 1 1 1 1                                |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |
|                                                                       |                                                                                                                       |

1





What is the correct hexadecimal representation for the binary number 01011101? All answers below are given in hexadecimal representation and we omit the (h) subscript.

#### Select one:

- a. D5
- b. 5C
- c. 5D
- Od. 5E
- e. Don't know/no answer
- f. 4D

The most straightforward approach is to consider the binary word four bits at a time as shown in the table.

| Binary      | 0101 | 1101 |
|-------------|------|------|
| Hexadecimal | 5    | D    |

The correct answer is: 5D

Question **7** 

Correct

Mark 1.00 out of 1.00

In performing a bit-wise addition of the following unsigned binary numbers, how many "carry out" bits will be generated?

01001011

00101001

- a. 5 "carried out" bits will be produced.
- b. 3 "carried out" bits will be produced.
- Correct. The three carry out bits will be produced when adding first, second and fourth pairs of bits of the given numbers from the right.
- oc. 0 "carried out" bits will be produced.
- od. 1 "carried out" bits will be produced.
- e. 4 "carried out" bits will be produced.

Your answer is correct.

The correct answer is:

3 "carried out" bits will be produced.





What is the numeric range of an 4-bit signed magnitude binary number?

Select one:

- a. 0...255
- o b. 0...7
- c. -255...256
- od. -127...127
- e. -128 ... 127
- f. None of the listed options.

Your answer is correct.

The correct answer is: None of the listed options.

■ Quiz 1 \_ Weekly Assessed Quiz 2022

Jump to...

Quiz 3 \_ Weekly Assessed Quiz 2022 ►

## Quiz navigation



Show one page at a time

Finish review