This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 717 106 A1

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 19.06.1996 Bulletin 1996/25
- (21) Application number: 95118098.3
- (22) Date of filing: 17.11.1995

- (51) Int. Cl.6: C12N 15/31, C12N 15/62, C07K 14/21, C07K 19/00, C07K 16/12, A61K 39/104 // (C07K14/21, C12R1:385)
- (84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE
- (30) Priority: 16.12.1994 EP 94120023
- (71) Applicant: BEHRINGWERKE Aktiengesellschaft 35001 Marburg (DE)
- (72) Inventors:
 - · Knapp, Bernhard, Dr. D-35083 Wetter (DE)
 - · Hungerer, Klaus-Dieter, Dr. D-35041 Marburg (DE)
 - · Bröker, Michael, Dr. D-35041 Marburg (DE)
 - von Specht, Bernd Ulrich Prof. 79353 Bahlingen/Kaiserstuhl (DE)
 - · Domdey, Horst Prof. 82061 Neuried (DE)
- Immunogenic hybrid protein OprF-OprI derived from Pseudomonas aeruginosa membrane (54)
- (57)The present invention relates to a hybrid protein comprising the Pseudomonas aeruginosa outer membrane protein I (OprI) which is fused with its amino terminal end to the carboxy-terminal end of a carboxyterminal portion of the Pseudomonas aeruginosa outer membrane protein F (OprF), as well as to monodonal or polyclonal antibodies against this hybrid protein. Both, the hybrid protein and the antibodies directed to the hybrid protein confer protection against an infection by Pseudomonas aeruginosa to laboratory animals or man.

Description

20

25

40

The present invention relates to a hybrid protein comprising the Pseudomonas aeruginosa outer membrane protein I (OprI or OMPI) which is fused with its amino terminal end to the carboxy-terminal end of a carboxy-terminal portion of the Pseudomonas aeruginosa outer membrane protein F (OprF or OMPF), as well as to monoclonal or polyclonal antibodies against this hybrid protein. Both, the hybrid protein and the antibodies directed to the hybrid protein confer protection against an infection by Pseudomonas aeruginosa to laboratory animals or man.

Pseudomonas aeruginosa is an opportunistic gram-negative pathogen. It represents a major course of hospitalaquired infections, especially in burnt and other immuno-compromised patients, including transplant or cancer patients. Therefore, it is regarded as a "problem microbe" in human medicine.

Many efforts have been made so far in order to develop a vaccine against Pseudomonas aeruginosa. For example, in the EP-0 297 291 the complete amino acid sequence of the outer membrane protein F, as well as the nucleotide sequence coding for OprF is disclosed. In the EP-0 357 024 the complete amino acid sequence of the outer membrane protein I and, additionally, the nucleotide sequence coding for OprI is shown. Furthermore, with both proteins it was shown that they may be useful for conferring immuno protection against Pseudomonas aeruginosa to an animal or human proband. However, improvement of procedures of vaccination against a lethal Pseudomonas aeruginosa injection is still an object.

Surprisingly, it was found by the inventors that a hybrid protein, wherein Oprl is linked with its N-terminal end to a C-terminal portion of OprF is significantly more immunogenic than fusion proteins only comprising OprI or OprF or mixtures of the latter fusion proteins.

Thus, the present invention relates to a hybrid protein comprising the Pseudomonas aeruginosa outer membrane protein I which is fused with its amino-terminal end to the carboxy-terminal end of a carboxy-terminal portion of the Pseudomonas aeruginosa outer membrane protein F, said carboxy-terminal portion comprising the sequence from aa 190 to aa 350. In a preferred embodiment said carboxy terminal portion is the sequence from aa 190 to aa 342.

The present invention further relates to a hybrid protein comprising the Pseudomonas aeruginosa outer membrane protein I which is fused with its amino terminal end to the carboxy-terminal end of a carboxy-terminal portion of the Pseudomonas aeruginosa outer membrane protein OprF, wherein said carboxy-terminal portion comprises one or more of the surface-exposed B-cell epitopes SEE 1, SEE 2, SEE 3 and SEE 4. These B-cell epitopes are located at the following amino acid (aa) positions of the OprF: SEE 1 = aa 212-240, SEE 2 = aa 243-256, SEE 3 = aa 285-298 and SEE 4 = aa 332-350 (see example 1 and Hughes et al. (1992), Infect. Immun. 60, pp. 3497-3503).

Another embodiment of the present invention is a vaccine comprising at least one of the above-mentioned hybrid proteins.

Moreover, the present invention relates to monoclonal or polyclonal antibodies directed to one or more of the above hybrid proteins. These antibodies may also be used in a vaccine in order to confer passive protection against an infection by Pseudomonas aeruginosa to a subject.

Further aspects of the present invention are nucleic acids which are coding for the above-mentioned hybrid proteins. Additionally, the present invention relates to a process for the preparation of the above-mentioned hybrid proteins, which comprises bringing about the expression of a nucleic acid as mentioned above, which is coding for a hybrid protein according to the invention, in pro- or eukaryotic cells.

The invention is further explained in detail in the examples which follow and in the claims.

In the following the sources of the microorganisms and the DNAs as well as methods that were used in the following examples, and which are for example regarded useful for carrying out the invention are indicated.

Microorganisms: P. aeruginosa International Antigenic Typing Scheme serogroup I (ATCC 33348) was obtained from A. Bauernfeind, Max. von Pettenkofer-Institut, University of Munich. Bacteria were grown and adjusted to the required concentration as previously described (Finke, M. et al. (1990), Infect. Immun., 58, pp. 2241-2244). For the expression of recombinant proteins E. coli K-12 W3110 lacl^QL8 was used. For expression of OPRs in yeast we used Saccharomyces cerevisiae strain HT393 (leu2, ura3 pra1, prb1, prc1, pre1, cps1).

Source of DNAs: Three recombinant plasmids were used as the source of DNAs: pFSaul, a pUC19 derived plasmid that contains a 1,0 kb Sau 3Al-fragment of the P. aeruginosa outer membrane protein F gene encoding the C-terminal part of the protein from amino acid positions 57 to 350 (Duchêne, M. et al. (1988), J. Bacteriol. 170, pp. 155-162); plTaq1, a pUC19 derived plasmid that contains a 626 bp Taql-fragment spanning the complete Oprl gene (Duchène, M. et al. (1989), J. Bacteriol. 171, pp. 4130-4137), and the expression vector pGEX-2a originating from the vector pGEX-2T modified by the introduction of the polylinker from vector pTRC. The vector pGEX-2a contains the tac promoter followed by the coding sequence for 26 kDa Schistosoma japonicum glutathione-S-transferase, a cleavage site for thrombin and the pTRC specific polylinker region.

Charact rization of antisera induced against synthetic p ptides: Synthetic peptides representing amino acid regions 190-213 (D1), 212-240 (D2, SEE 1), 239-250 (D3), 284-316 (D4), and 332-350 (D5, SEE 4) from OprF were synthesized as described in (Roussilhon, C. E. et al. (1990) Immunol. Lett. 25, pp. 149-154). Rabbits were immunized subcutaneously at eight different locations near lymph nodes with 200 µg KLH conjugated peptide in complete Freund's

adjuvant, and reimmunized two weeks later with 400 µg of the conjugate in incomplete Freund's adjuvant. The animals received two booster injections intravenously of 150 µg and 100 µg of conjugate six and nine weeks after the first immunization. Antibody titers against peptides were measured by ELISA on plates coated with 5 ng per ml of peptide solution in 50 mM sodium phosphate buffer, pH 7.5 (PBS) overnight at room temperature. Plates were washed three times with 0.05 M citric acid and 0.05 M Tris, pH 7.4, and then dried over silica gel for 3 days. Rabbit sera were diluted 1:160 and saturated with E. coli proteins. Western blot analysis with recombinant GST fusion-proteins and immunofluorescence determinations against intact P. aeruginosa serogroup 11 (ATCC 33358), were carried out by a method reported in the literature (Johnson, D. A. et al. (1984) Gene Anal. Techn. 1, p. 3-8) Schnorr, J. B. et al. (1991), Vaccine 9, pp. 675-681).

Expression of OprF and OprI as gluthation-S-transferase, fusion proteins: The oligonucleotides p1 (5'-AAA GAG CTC GCT CCG GCT CCG GAA CCG GTT GCC GAC-3') with a SacI restriction site at the 5' end, corresponding to bases 568 tc 594 of the OprF gene, and p2, (5'-AAA AAG CTT ACT TGG CTT CGG CTT CTA CTT CGG-3') with a HindIII restriction site at the 5' end, complementary to bases 1028 to 1053 of the OprF gene, and 10 ng of the plasmid pFSauI were employed for a polymerase chain reaction, using the Perkin Elmer Cetus Gen-Amp Kit, which yielded a 500 bp fragment. The amplified fragment was digested with SacI and HindIII and introduced into the vector pGEX-2a to obtain plasmid pGEX-OprF, which encodes the C-terminal part of the porin OprF from amino acids 190 to 350. Theoligonucleotides p3 (5'-CGT ACC ATG GTG AGC AGC CAC TCC AAA GAA ACC GAA GCT-3'), with an NcoI rescriction site at the 5' end corresponding to bases 61 to 87 of the coding region of the OprI gene, and p4 (5'-AAA AAG CTT CTA TTA CTT GCG GCT GGC TTT TTC C-3'), with a HindIII restriction site at the 5' end complementary to bases 231 to 255 of the coding region of the OprI gene, and 10 ng of the plasmid DNA plTaq1 were used in a polymerase chain reaction to amplify a 215 bq fragment, which was then treated with the restriction enzymes NcoI and HindIII to introduce it into the corresponding sites of the expression vector pGEX-2a, in order to obtain plasmid pGEX-OprI, which encodes amino acids 21 to 83 of OprI.

Construction of the GST-OprI-OprF and GST-OprF-OprI hybrid genes: The oligonucleotides p1 (see above) and p5 (5'-TTC AAC GCG ACG GTT GAT AGC GCG-3') (which is complementary to bases 1003 to 1026 of the OprF gene) and 10 ng of the plasmid pFSau1 were used to amplify a 470 bp OprF fragment A, second polymerase chain reaction was carried out with 10 ng of plasmid pITaq1 and the oligonucleotides p4 (see above) and p6

(5'-GAA GGC CGC GCT ATC AAC CGT CGC GTT GAA AGC AGC CAC TCC AAA GAA ACC GAA GCT-3'),

in which nucleotides 1 through 30 correspond to bases 997 to 1026 of the OprF gene and nucleotides 31 through 57 correspond to bases 61 through 87 of the OprI coding region. This yielded a 240 bp fragment. 150 ng of both obtained DNA fragments and oligonucleotides p1 and p4 were used for a third polymerase chain reaction as described by Horton (Horton, R. M. et al. (1989), Gene 77, pp. 61-68). The obtained 660 bp fragment was digested with the restriction endonucleases SacI and HindIII, and introduced into the vector pGEX-2a to obtain plasmid pGEX-OprF-OprI, which encodes amino acids 190 to 342 of OprF and amino acids 21 to 83 of OprI. The oligonucleotides p3 and p7 (5'-AAA GAG CTC CTT GCG GCT GGC TTT TT CAG CAT GCG-3') with a SacI restriction site at the 5' end, complementary to bases 223 to 249 of the coding region form the OprI gene, and 10 ng of plasmid plTaq1 were used to amplify a 210 bp fragment, which was intruduced into the vector pGEX2a with the help of the restriction enzymes NcoI and SAcI. The obtained plasmid was digested with the enzymes SacI and HindIII to introduce a 490 bp fragment obtained by digestion of the plasmid pGEX-OprF, using the corresponding enzymes. Plasmid, pGEX-OprI-OprF encodes amino acids 21 to 83 from OprI and amino acids 190 to 350 from OprF, which are separated by a two amino acid linker introduced at the SacI cloning site.

Expression and purification of the recombinant proteins in E. coli: The four plasmids pGEX-OprF, pGEX-OprI, pGEX-OprF-OprI and pGEX-OprF-OprF were transformed into the E. coli K-12 strain W3110 lac I^QL8. For large scale antigen production, 5-liter bacterial cultures containing the plasmids were left to grow to OD₆₆₀=1 and the expression of the P. aeruginosa specific recombinant antigens induced by isopropylthiogalactoside. After disruption of the cells the four different glutathione-S-transferase fusion proteins were found to be soluble in aqueous solutions. Therefore, the four fusion proteins could be purified from crude bacterial lysates under non-denaturing conditions by affinity chromatography on immobilized glutathione to a purity of about 80 %.

Active immunization and protection experiments: 4 groups (A-D) of 68 female BALB/c Mice (10-12 weeks old) each received 100 µg of antigen: GST (A), GST-OprF + GST-OprI (B), GST-OprF-OprI (C) or GST-OprI-OprF (D), suspended in 100 µl of "ABM 2 complete" as adjuvant, (Sebak, Aidenbach) on day 0. Booster injections were given with an equal amount of antigen suspended in 100 µl Al(OH)₃ on days 14, 28 and 42. On day 49 animals were bled from the tail vein for serum collection to determine antibody titers in the pooled sera of 7-10 mice from each group. Four days later, all the animals received immunosuppressive treatment. For immunosuppression mice received three injections of

150 μ g cyclosphosphamide (Serva, Heidelberg, Germany) per g of body weight in 0.25 ml of phosphate-buffered saline (PBS) on days 53, 55, 57. On day 58, each antigen group was divided into 4 subgroups, I, II, III, IV, containing 16-17 animals per subgroup. The mice of groups A-D received introperitoneally either 5×10^{-1} (subgroup I), 5×10^{-2} (subgroup II), 5×10^{-2} (subgroup IV) CFU of P. aeruginosa serogroup 1, 15 additional nonimmunized mice underwent only immunosuppression without bacterial challenge. This control group was used to confirm the state of leukopenia and to exclude nonspecific infections. All surviving animals were monitored for 10 days after infection.

Expression and purification of recombinant OprF-OprI in yeast: For expression of the P. aeruginosa outer membrane proteins in S. cerevisiae the yeast/E. coli shuttle vector pYepsec1 (Baldari, C. et al. (1987) EMBO. J. 6, pp. 229-234) was used. This plasmid expresses polypeptides fused to the signal sequence of the Kluyveromyces lactis killer toxin. The Ncol/HindIII DNA fragment from pGEX-OprF-OprI, which codes for the OprF-OprI hybrid protein, was isolated, and cloned into pYepsec1, cut with BamHI and HindIII (yielding pYepsec1-F-I). The Ncol and BamHI sites were turned into-blunt ends with Klenow enzyme before ligation, wherease the HindIII site was not treated. The soluble OprF-OprI hybrid protein expressed in yeast was purified by affinity chromatography, using a monoclonal antibody directed against epitope D1. The MAb was coupled to BrCN activated sepharose 4B (Pharmacia, Freiburg, Germany), in accordance with the instructions of the manufacturer. Yeast extracts in PBS were loaded onto the column, unspecific bound material was eluted with 0.1 M glycin pH 9.0 buffer containing 0.5 M NaCI. Elutions of OprI-OprF hybrid protein was carried out in 0.1 M glycin buffer, pH 11.0. The column was regenerated by washing with 0.1 M glycin, pH 2.5, followed by washing with PBS.

Production of specific immunoglobulins and passive immunization: Rabbits were immunized three times with 100 μg of purified recombinant OprF-OprI isolated from S. cerevisiae cell extracts (or with cell extracts from S. cerevisiae alone as controls) emulsified in incomplete Freund adjuvant on days 0, 14 and 28. On day 38, blood samples were obtained and allowed to clot overnight at 4 °C. The serum was removed, centrifuged and stored at -20 °C. In groups of 30 female SCID mice (18-20 g, Bomholtgard, Denmark), every animal in the group received either 0.5 ml of rabbit anti OprF-OprI serum or 0.5 ml of rabbit anti yeast serum. As an additional control, the animals in one group received 0.5 ml of normal saline. Those in one additional group were injected with 0.5 ml of rabbit serum against heat inactivated cells of serogroup 1 of P. aeruginosa. After 3 hours, the animals of groups 1-6 were subdivided into 5 subgroups (a-e), receiving 0.5 ml of P. aeruginosa serogroup I suspension (10¹, 10², 10³, 10⁴, 10⁵ CFU/ml suspended in mucin respectively. The surviving animals were observed for 1 week. 5 g mucin (Sigma, Taufkirchen, Germany) were suspended in 100 ml of distilled water, treated for 10 min, with an Ultra Turrax blender, passed through a sieve and autoclaved for 15 min at 120 °C. Shortly before use, the solution was adjusted to pH 7.2-7.4 with sterile 1N NaOH.

Examples

20

35

55

Example 1: Epitope mapping of OprF.

In order to identify amino acid sequence sections of OprF representing B-cell epitopes as a rational basis for the choice of an Opr-based P. aeruginosa vaccine, we prepared monoclonal antibodies against a recombinant protein representing amino acids 58 to 350 of OprF. Binding of the MAbs was analyzed with a series of recombinant subfragments of OprF expressed in E. coli. The MAbs discriminated between 5 different regions: aa 190-213 (D1), aa 212-240 (D2, SEE 1), aa 239-250 (D3), aa 284-316 (D4) and aa 332-350 (D5, SEE 4). The C-terminal part of OprF between aa 190 and aa 350 seemed therefore to cover most of the B cell epitopes of OprF. To further analyze the epitopes, synthetic peptides related to the above defined amino acid sections were prepared and conjugated to KLH. Polyclonal antisera against these peptides were raised in rabbits. Table 1 shows that peptides D1-D5 were recognized by the corresponding polyclonal antisera. The peptides D1, D2, D4 and D5 reacted with monoclonal antibodies, and peptides D2, D3, D4 and D5 were also recognized by polyclonal antibodies raised against recombinant OprF, thus confirming that these 5 epitopes are B-cell derived. Antisera raised against D3, D4 and D5 recognized OprF in Western blot analysis, but viable P. aeruginosa cells showed positive fluorescence only after incubations with the antisera raised against D2 and D5. These two epitopes therefore seem to be surface-exposed. Additional MAbs were identified which did not react with any of the synthetic peptides, but recognized GST-OprF and further recombinant subfragments, leading to two additional epitopes, D6 and D7, which correspond to amino acid residues 240-316 and 190-250 respectively. Therefore, the region from amino acid 190 to amino acid 350 of OprF was considered to include important antigenic regions, and we decided to ascertain whether recombinant proteins carrying these epitopes are able to confer protection in animal models.

Example 2: Epitope mapping of Oprl.

With the MAbs 2A1, 6A4 and 5B4 raised against native Oprl, two different epitopes have been characterized (Finke, M. et al. (1991), Infect. Immun. 59, pp. 1251-1254). MAb 2A1, which had shown protective ability against P. aeruginosa infection, recognized the N-t rminal located epitope. Subsequent studies showed that 2A1 only binds if the entire amino acid sequence from amino acid 21 to amino acid 83 is expressed. For the construction of recombinant Oprl antigens as

means of a subunit vaccine, the complete amino acid region 21-83 was therefore considered to be the most adequate antigen.

Example 3: Expression of Oprs in E. coli.

5

15

20

The efficacy of a single outer membrane protein of P. aeruginosa in a vaccine against P. aeruginosa infection might be improved by coexpression of the fused epitopes of two different Oprs. Four different glutathion-S-transferase-fusion proteins were expressed in E. coli in large amounts: GST-OprF_(aa 190-350), GST-OprI_(aa 21-83), GST-OprF_(aa 190-342)-OprI_(aa 21-83) and GST-OprI_(aa 21-83)-OprF_(aa 190-350) (Fig. 1). The recombinant proteins could be about 80 % purified by affinity chromatography on immobilized glutathion. Western blot analysis of the four recombinant products with the OprI specific MAbs 6A4 and 2A1 and different OprF specific MAbs directed against the epitopes D1, D2, D4, D5, D5, D6 and D7 showed that the MAb specific epitopes were expressed by the recombinant fusion proteins.

Example 4: Active immunization with E. coli derived fusion proteins.

Mice were immunized four times at two week intervals with 100 μg of recombinant GST linked fusion protein, or GST only, suspended in adjuvant "ABM complete". The antibody titers, each from the pooled sera of 8-10 mice, were analyzed by ELISA as well by Western blotting for binding activity against P. aeruginosa, and by ELISA against peptides D1-D5.

Fig. 2 shows that specific antibody titers against P. aeruginosa were obtained in all immunized groups up to serum dilutions 1:15625. Western blot analysis of the sera with P. aeruginosa polypeptides showed specific staining of OprI as well as of OprF by sera from all immunized groups. No staining of OprI or OprF was observed in the GST immunized control group. Further analysis of the sera against peptides D1-D5 (Fig. 3) showed that, in GST-OprF-OprI as well as GST-OprI-OprF immunized animals, peptides D5 and D4 predominated. In order to test whether the induced antibodies against outer membrane fusion proteins protect mice against P. aeruginosa infection, mice received three doses of cyclophosphamide for immunosuppression. Leukocyte counts determined in peripheral blood samples of 15 non-immunized control animals dropped to mean levels below 400/µl. One day later, the animals were challenged with either 5 x 10^{1} , 5×10^{2} , 5×10^{3} or 5×10^{4} CFU of P aeruginosa serogroup 1. Survival of the animals was registered for one week. Fig 4 and Table 2 show the survival rates of the animals after 4 different challenge doses and the LD₅₀ values for each of the vaccines, calculated by probit regression analysis. For groups immunized with GST only or with GST-OprI-OprF, LD₅₀ values as low as 1.58 and 2.65 were calculated. Simultaneous vaccination with a mixture of GST-OprI and GST-OprF induced an increase of the LD50 value to 83.3 CFU. This difference, however, was found to be not statistically significant. In contrast, after vaccination with the hybrid GST-OprF-OprI a highly significant shift of the LD_{50} value towards 1540 CFU was calculated (p ≤ 0.001). Compared to the GST immunized controls, a protection value of 962 was calculated for the GST-OprF-OprI group. These results could be confirmed (p = 0.001) in an identically designed second experiment.

Analysis of the data by the proportional hazard model and calculation of the reduction of the rise ratios induced by the different vaccine preparations is shown in Table 2. Vaccination with GST-OprF-OprI reduced the risc ratio highly significantly (p \leq 0.0001) to a value of 0.3 compared to the GST immunized controls. Even for a challenge dose of 5 x 10³ CFU, a significant (p \leq 0.0019) reduction of the risc ratio to a value of 0.69 was calculated by backward elimination for the GST-OprF-OprI vaccinated group, with reference based on GST, GST-OprF+GST-OprI, GST-OprI-OprF immunized groups, and doses one and two (5 x 10¹ and 5 x 10²).

Example 5: Expression of OprF-OprI in yeast.

For the expression of the OprF-OprI hybrid protein without an additional fusion component we chose as an alternative host cell Saccharomyces cerevisiae and as plasmid pYepsec1. OprF-OprI contained in pYepsec1-F-1 (Fig. 1) was expressed only in minute amounts in S. cerevisiae. Since OprF as, well as OprI are exported in Pseudomonadaceae through the periplasmic space, we tried to copy the export in S. cerevisiae. To this end, the OprF-OprI hybrid protein was fused to the secretion signal sequence of the killer toxin (kt) of the yeast Kluyveromyces lactis. The tripartite hybrid protein kt. OprF-OprI encoded by pYepsec1-F-I (Fig. 1) now consists of the following polypeptide stretches: first there are the 16 amino acids of the yeast secretion signal sequences, followed by 9 amino acids encoded by a DNA linker, and then followed by the OprF specific polypeptide stretch from amino acids 190-342 and an OprI peptide including amino acids 21-83. The OprF specific polypeptide carries the potential glycosylation site asparagine-x-threonine (see Fig. 1) twice. These glycosylation sites should be recognizable if the fusion protein enters the secretionary pathway. Upon fusion to the killer toxin leader sequence, OprF-OprI was detected in yeast cell extracts by Western blot analysis, when expressed under induced condition of the UAS_{GAL}/CYC1 promoter; but no secreted antigen was detected in the culture broth.

The OprF-OprI fusions protein expressed in yeast did not migrate as a sharp band in SDS polyacrylamide gels, but showed a heterogeneous distribution, appearing in several smearing bands. This indicates posttranslational modification by N-glycosylation. Incubation of the recombinant P. aeruginosa antigen with endoglycosidase F resulted in the appearance of a sharp band of lower molecular weight, indicating the entering of OprF-OprI into the secretionary pathway, when fused to the killer toxin leader sequence, and the glycosylation of at least one of the two potential glycosylation sites.

Example 6: Passive immunization with antibodies against yeast-derived OprF-Oprl.

The recombinant Pseudomonas antigen was enriched from the supernatants of yeast cell extracts by ammonium salt precipitation and immunoaffinity chromatography, using an anti OprF mouse monoclonal antibody, directed against epitope D1. Rabbits were then immunized three times with the antigen, and sera were collected from the animais. Whereas the preimmune sera did not show any reactivity with either P. aeruginosa OprF or OprI, the sera from the immunized rabbits reacted specifically with the outer membrane proteins OprF and OprI from the three different ATCC strains of P. aeruginosa, as well with the three different clinical isolates of P. aeruginosa tested. The protective efficacy of these sera was tested in SCID mice for defence against a lethal challenge with P. aeruginosa. As shown in Table 3, mice injected with the control anti-yeast serum were not protected against infection even at a challenge dose of 5 x 101 (Table 3, group 1). On the other hand, mice which received the OprF-OprI specific rabbit serum were fully protected against a 5 x 102 CFU challenge dose of P. aeruginosa (Table 3, group 3), and 40 % survival was observed after challenge with 5 x 10³ CFU. As an additional control, protection by rabbit serum induced against LPS of the challenge strain, P. aeruginosa serogroup 1, was tested. Up to a challenge dose of 5 x 103, 100 % of the animals protected with LPS specific serum survived (Table 3, group 5). No survival could be observed in this group after a 10-fold higher challenge dise of 5 x 104. Statistical analysis was used to compare the protective doses of OprF-OprI specific serum, of LPS specific serum, and the anti-yeast control group for protection against P. aeruginosa infection. The results showed an 85-fold increase in potency of the OprF-OprI serum in comparison with the anti yeast serum ($p \le 0.002$ - see Table 3, group 3). As against this, a 325 higher potency was calculated for the LPS specific serum than for the anti-yeast serum (p = 0.001).

6

30

35

40

45

50

5

Table 1: Characterization of B cell epitopes of P. acruginosa OprF

rabbit antisera immunofluo- rescence of imtact P.		4			+
rabbit antisera ** Western blot (against OprF)			+	.+	+
rabbit anti OprF rabbit antisera ** ELISA ELISA (against peptide)	+	+	+	+	+
rabbit anti OprF ELISA (against peptide)		+	+	+	+
MAbs*	+	+	-	+	
OprF specific aa region	190-213	212-240	239-250	284-216	332-350
peptide	D1	D2	03	D4	D2.

* MAbs were induced in mice against a recombinant protein representing amino acids 58-350 of OprF, binding to peptides D1-D5 was analyzed by ELISA.

.** Rabbits were immunized with peptides linked to KLH.

*** estimated with P. aeruginosa serogroup 11 (ATCC 33359).

Table 2

		Statistical analysis of su	rvival of mic *	
		V	accine accine	
	GST	GST-OprF+GST-OprI	GST-OprF-OprI	GST-OprI-OprF
LD ₅₀	1.58	83.34	1540**	2.65
Shift LD ₅₀ **	1	52	962	1.7
Risk Ratio***	1	0.732	0.344***	0.889

^{*} mice were vaccinated with the indicated GST linked recombinant Oprs or GST as control.

)

Table 3

			sa infection in S				
Survivi	ng animals	s after transfer	of specific rabb	it serum befo	re challenge	, group no. (n=	5)
challenge dose** (CFU)	1 yeast* control	2 yeast* con- trol 1:10	3 OprF-Oprl*	4 OprF- Oprl* 1:10	5 P. aeru- ginosa***	6 challenge control	7 mucin control
5 x 10 ⁰	5	5	· 5	5	5	1	
5 x 10 ¹	1	1	5	4	5	0	
5 x 10 ²	1	0	5	2	5	0	
5 x 10 ³	0	1	2	0	5	0	
5 x 104	0	0	0	0	0	0	
mucin							5

^{*} Rabbit serum of animals immunized with the indicated antigen.

Legends to Figures

Fig. 1

5

10

15

20

25

30

35

40

45

Schematic overview of the constructed recombinant fusion proteins of outer membrane proteins of P. aeruginosa. For expression in E. coli K12, the vector pGEX-2a, which codes for glutathion-S-transferase was used.

signal sequence of *Kluyveromyces lactis* killer toxin. potential glycosylation site.

Ø GST (aa 1-225). ■ OprF (aa 190-350).

□ OprF (aa190-342) OprI (aa21-83)Fig. 2

 $^{^{\}circ}$ LD $_{50}$ values were calculated by probit analysis (Finney, D. J. (1971), Probit analysis, Cambridge University Press, Cambridge).

^{**}P<0.05 versus GST group. ***P<0.0001 versus GST group.

^{***} Risk ratios were calculated by the proportional hazard model (Lawless, J. F (1982), Statistical Methods for Lifetime Data, John Wiley & Sons, New York) with reference based on GST group.

^{**} Female C.B-17 scid/scid mice (SCID) were challenged intraperitoneally with the indicated colony forming units (CFU) of P. aeruginosa serogroup 1 suspended with 0.5 ml of mucin.

^{***} rabbit serum of animals immunized with P. aeruginosa serogroup 1. Statistical analysis (probit analysis for parallel line model); group 1 versus group 3: 85-fold increase in potency, significance (chi-square), 0.002. Group 1 versus group 5; 325-fold increase in potency, significance 0.001

Determination of antibody titers against P. aeruginosa in sera of mice immunized with the indicated GST linked recombinant outer membrane vaccine or with GST alone. ELISA measurements were carried out on plates coated with sonicated P. aeruginosa serogroup 12.

5 Fig. 3

Antibody determination by ELISA against synthetic peptides D1-D5 listed in Table 1, which represent B-cell epitopes of OprF. Mice were immunized four times with the indicated recombinant fusion proteins or GST alone.

10 Fig. 4

15

20

25

30

35

40

45

50

55

Survival of BALB/c mice after immunization with the indicated vaccine or GST alone, followed by immunosuppression and intraperitoneal challenge with 5, 50, 500 or 5000 colony forming units of P. aeruginosa serogroup 1. Bars represent percentage of survivors (n=16-17) per challenge dose.

SEQUENCE LISTING

•	(1) GENE	RAL INFORMATION:	
10	(i)	APPLICANT: (A) NAME: Behringwerke Aktiengesellschaft (B) STREET: Emil-von-Behring-Str. 76 (C) CITY: Marburg (E) COUNTRY: Germany (F) POSTAL CODE (ZIP): 11 40 (G) TELEPHONE: 0 64 21-39-22 05 (H) TELEFAX: 0 64 21-39-45 58	
15	(ii)	TITLE OF INVENTION: Immunogenic hybrid protein OprI-OprF derive from P. aeruginosa membrane proteins	:d
	(iii)	NUMBER OF SEQUENCES: 8	
20	(iv)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPO)	
	(v)	CURRENT APPLICATION DATA: APPLICATION NUMBER: EP 94120023.0	
?5	(2) INFO	RMATION FOR SEQ ID NO: 1:	
3 <i>0</i>	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: YES	
35	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa (F) TISSUE TYPE: Serotype 6; ATCC 33354	
10	(ix)) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:1189 (D) OTHER INFORMATION:/note= "Sequence is coding for oprI without signal sequence"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	AGC AGC Ser Ser 1	CAC TCC AAA GAA ACC GAA GCT CGT CTG ACC GCT ACC GAA GAC His Ser Lys Glu Thr Glu Ala Arg Leu Thr Ala Thr Glu Asp 5 10 15	48
50	GCA GCT Ala Ala	GCT CGT GCT CAG GCT CGC GCT GAC GAA GCC TAT CGC AAG GCT Ala Arg Ala Gln Ala Arg Ala Asp Glu Ala Tyr Arg Lys Ala 20 25 30	96
	GAC GAA Asp Glu	GCT CTG GGC GCT GCT CAG AAA GCT CAG CAG ACC GCT GAC GAG Ala Leu Gly Ala Ala Gln Lys Ala Gln Gln Thr Ala Asp Glu 35 40 45	.44

5	Ala	Asn 50	GIU	Arg	Ala	Leu	Arg 55	Met	Leu	GAA	Lys	GCC Ala 60	Ser	CGC	Lys	3	189
	TAA																192
10	(2)	INF	ORMA	тіон	FOR	SEQ	ID	NO:	2:	•							
			(A) L B) T	ENCE ENGT YPE: OPOL	H: 6: amin	3 am no a	ino cid	TICS acid	: s							
15		(ii (xi) MO) SE	LECU QUEN	LE T	YPE: ESCR	pro IPTI	tein	SEQ	ID N	0: 2	:					
	Ser 1	Ser	His	Ser	Lys 5	Glu	Thr	Glu	Ala	Arg 10	Leu	Thr	Ala	Thr	Glu 15	Asp	
20	Ala	Ala	Ala	Arg 20	Ala	Gln	Ala	Arg	Ala 25	Asp	Glu	Ala	туr	Arg 30	Lys	Ala	
	Asp	Glu	Ala 35	Leu	Gly	Ala	Ala	Gln 40	Lys	Ala	Gln	Gln	Thr	Ala	Asp	Glu	
	Ala	Asn 50	Glu	Arg	Ala	Leu	Arg 55	Met	Leu	Glu	Lys	Ala 60	Ser	Arg	Lys		
25	(2)	INF	ORMA	гіои	FOR	SEQ	ID i	мо: :	3:								
30		(i)	(,	A) L: B) T' C) S'	CE CI ENGTI YPE: TRANI OPOLO	H: 48 nucl DEDNE	36 ba Leic ESS:	ase p acio doub	pair:	s							
		(ii)) MO	LECU	LE TY	PE:	CDNA	A									
	(ETICA												
35			OR:	IGINA	ENSE: AL SC	URCE	:										
			(1	A) OF	RGANI ESSUE	SM:	Pseu E: S	idomo Serot	nas ype	aeru 6; A	igino ATCC	osa 3335	54				
40		(ix)	(<i>I</i>	3) LC	AME/H DCATI THER	ON:1	RMAT	:NOI	/not	ie= "	'Seqi	ience	e is	codi	ing	for oprF	
45					CE DE												
	GCT Ala	CCG Pro 65	GCT Ala	CCG Pro	GAA Glu	CCG Pro	GTT Val 70	GCC Ala	GAC Asp	GTT Val	TGC Cys	TCC Ser 75	GAC Asp	TCC Ser	GAC Asp	AAC Asn	48
50	GAC Asp 80	GGC Gly	GTC Val	TGC Cys	GAC Asp	AAC Asn 85	GTC Val	GAC Asp	AAG Lys	TGC Cys	CCG Pro 90	GAC Asp	ACC Thr	CCG Pro	GCC Ala	AAC Asn 95	96
	GTC . Val	ACC Thr	GTT Val	GAC Asp	GCC Ala 100	AAC Asn	GGC Gly	TGC Cys	CCG Pro	GCT Ala 105	GTC Val	GCC Ala	GAA Glu	GTC Val	GTA Val 110	CGC Arg	144
55																	

5	GTA Val	CAG Gln	CTG Leu	GAC Asp 115	GTG Val	AAG Lys	TTC Phe	GAC Asp	TTC Phe 120	GAC Asp	AAG Lys	TCC Ser	AAG Lys	GTC Val 125	AAA Lys	GAG Glu	192
	AAC Asn	AGC Ser	TAC Tyr 130	GCT Ala	GAC Asp	ATC Ile	AAG Lys	AAC Asn 135	CTG Leu	GCC Ala	GAC Asp	TTC Phe	ATG Met 140	AAG Lys	CAG Gln	TAC Tyr	240
10	CCG Pro	TCC Ser 145	ACT Thr	TCC Ser	ACC Thr	ACC	GTT Val 150	GAA Glu	GGT Gly	CAT His	ACC Thr	GAC Asp 155	TCC Ser	GTC Val	GGT Gly	ACC Thr	288
15	GAC Asp 160	GCT Ala	TAC Tyr	AAC Asn	CAG Gln	AAG Lys 165	CTG Leu	TCC Ser	GAG Glu	CGT Arg	CGT Arg 170	GCC Ala	AAC Asn	GCC Ala	GTT Val	CGT Arg 175	336
15	GAC Asp	GTA Val	CTG Leu	GTC Val	AAC Asn 180	GAG Glu	TAC Tyr	GGT Gly	GTG Val	GAA Glu 185	GGT Gly	GGT Gly	CGC Arg	GTG Val	AAC Asn 190	GCT Ala	384
20 ·	GTC Val	GGT Gly	TAC Tyr	GGC Gly 195	GAG Glu	TCC Ser	CGC Arg	CCG Pro	GTT Val 200	GCC Ala	GAC Asp	AAC Asn	GCC Ala	ACC Thr 205	GCT Ala	GAA Glu	432
	GGC Gly	CGC Arg	GCT Ala 210	ATC Ile	AAC Asn	CGT Arg	CGC Arg	GTT Val 215	GAA Glu	GCC Ala	GAA Glu	GTA Val	GAA Glu 220	GCC Ala	GAA Glu	GCC Ala	480
25	AAG Lys	TAA															486
	(2)	INF	ORMA	TICN	FCR	SEQ	ID	но:	4:								
30			(A) L B) T	ENCE ENGT YPE: OPOL	H: 1 ami	61 a no a	mino cid						-			
35					LE T					ID N	0: 4	:					
	Ala 1		Ala	Pro	Glu 5		Val	Ala	Asp	Val		Ser	Asp	Ser	Asp 15	Asn	
40	Asp	Gly	Val	Cys 20		Asn	Val	Asp	Lys 25		Pro) Asp	Thr	Pro 30	Ala	Asn	
	Val	Thr	Val		Ala	Asn	Gly	Cys 40		Ala	Val	. Ala	Glu 45	Val	. Val	Arg	
	Val	Gln 50		Asp	Val	Lys	Phe 55		Phe	Asp	Lys	Ser 60		. Val	. Lys	Glu	

Asn Ser Tyr Ala Asp Ile Lys Asn Leu Ala Asp Phe Met Lys Gln Tyr 65 70 75 80

Pro Ser Thr Ser Thr Thr Val Glu Gly His Thr Asp Ser Val Gly Thr 85 90 95

Asp Ala Tyr Asn Gln Lys Leu Ser Glu Arg Arg Ala Asn Ala Val Arg

Asp Val Leu Val Asn Glu Tyr Gly Val Glu Gly Gly Arg Val Asn Ala

55

45

	Val	Gly 130	Tyr	Gly	Glu	Ser	Arg 135	Pro	Val	Ala	Asp	Asn 140	λla	Thr	Ala	Glu	
5	Gly 145	Arg	Ala	Ile	Asn	Arg 150	Arg	Val	Glu	Ala	Glu 155	Val	Glu	Ala	Glu	Ala 160	
	Lys									•							
10	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	10:	5:								
15		(i)	() () ()	A) LI B) T' C) S'	CE CI ENGTI YPE: TRANI DPOL	h: 64 nucl	15 ba Leic ESS:	ase p acid doul	pair:	S							
		(ii)) MO	LECU	LE T	YPE:	CDN	A								•	
		(iii)) HY	РОТНІ	ETIC	AL: 1	10										
20		(iv	AN'	ri-si	ENSE	: YES	5										
		(vi	(2	A) 01	AL SO RGANI ISSUI	ISM:	Pset						54				
25		(ix)	(1	A) NA B) LO	AME/I DCAT: THER	ION:	L64 DRMAT	CION						cod: seqi		for oprF e"	
30		(xi)	SE	QUENC	CE DI	ESCR	PTIC	on: s	SEQ :	ID NO): 5	:					
	GCT Ala	CCG Pro	GAA Glu	CCG Pro 165	GTT Val	GCC Ala	GAC Asp	GTT Val	TGC Cys 170	TCC Ser	GAC Asp	TCC Ser	GAC Asp	AAC Asn 175	GAC Asp	GGC Gly	48
35	GTC Val	TGC Cys	GAC Asp 180	AAC Asn	GTC Val	GAC Asp	AAG Lys	TGC Cys 185	CCG Pro	GAC Asp	ACC Thr	CCG Pro	GCC Ala 190	AAC Asn	GTC Val	ACC Thr	96
	GTT Val	GAC Asp 195	GCC Ala	AAC Asn	GGC Gly	TGC Cys	CCG Pro 200	GCT Ala	GTC Val	GCC Ala	GAA Glu	GTC Val 205	GTA Val	CGC Arg	GTA Val	CAG Gln	144
10	CTG Leu 210	GAC Asp	GTG Val	AAG Lys	TTC Phe	GAC Asp 215	TTC Phe	GAC Asp	AAG Lys	TCC Ser	AAG Lys 220	GTC Val	AAA Lys	GAG Glu	AAC Asn	AGC Ser 225	192
5	TAC Tyr	GCT Ala	GAC Asp	ATC Ile	AAG Lys 230	AAC Asn	CTG Leu	GCC Ala	GAC Asp	TTC Phe 235	ATG Met	AAG Lys	CAG Gln	TAC Tyr	CCG Pro 240	TCC Ser	240
	ACT Thr	TCC Ser	ACC Thr	ACC Thr 245	GTT Val	GAA Glu	GGT Gly	CAT His	ACC Thr 250	GAC Asp	TCC Ser	GTC Val	GGT Gly	ACC Thr 255	GAC Asp	GCT Ala	288
o	TAC Tyr	AAC Asn	CAG Gln 260	AAG Lys	CTG Leu	TCC Ser	GAG Glu	CGT Arg 265	CGT Arg	GCC Ala	AAC Asn	GCC Ala	GTT Val 270	CGT Arg	GAC Asp	GTA Val	336
	CTG Leu	GTC Val	AAC Asn	GAG Glu	TAC Tyr	GGT Gly	GTG Val	GAA Glu	GGT Gly	GGT Gly	CGC Arg	GTG Val	AAC Asn	GCT Ala	GTC Val	GGT Gly	384

13

		275					280					285						
5			GAG Glu														432	
10			AAC Asn			Val											480	1
			ACC Thr														528	
15	GAC Asp	GAA Glu	GCC Ala 340	TAT Tyr	CGC Arg	AAG Lys	GCT Ala	GAC Asp 345	GAA Glu	GCT Ala	CTG Leu	GGC Gly	GCT Ala 350	GCT Ala	CAG Gln	AAA Lys	.576	,
			CAG Gln														624	
20			GCC Ala				TAA										645	•
25	(2)		į.	SEQUI A) LI B) T	ENCE ENGTI YPE :	CHAI H: 2 amin	RACTI 14 am	ERIST mino cid	rics									
			C	J) 10	JEOT	JGY:	line	ear										
30) MO:	LECU:	LE T	YPE:	prot	tein	SEQ :	ID N	o: 6	:						
30	Ala 1	(xi Pro) MO:	LECU:	LE T	YPE: ESCR	prot IPTI	tein ON: 8				_	Asp	Asn	Asp 15	Gly		
<i>30</i>	1	(xi Pro) MO:	LECU: QUENO Pro	LE T' CE D' Val	YPE: ESCR Ala	prot IPTIO	tein ON: S	Cys	Ser-	·Asp	Ser			15			
	l Val	(xi Pro Cys) MO:) SE	DECUI QUENC Pro Asn 20	LE TY CE DY Val Val	YPE: ESCR Ala Asp	prot IPTIC Asp Lys	tein ON: S Val Cys	Cys Pro 25	Ser 10 Asp	Asp Thr	Ser Pro	Ala	Asn 30	15 Val	Thr		
35	l Val Val	(xi Pro Cys Asp) MO:) SEG Glu Asp Ala 35	Pro Asn 20 Asn	LE TYCE DE Val 5 Val Gly	YPE: ESCR Ala Asp Cys	protientic Asp Lys	tein ON: S Val Cys Ala 40	Cys Pro 25 Val	Ser- 10 Asp	*Asp Thr Glu	Ser Pro Val	Ala Val 45	Asn 30 Arg	15 Val Val	Thr		
	l Val Val Leu	Cys Asp Asp 50) MO:) SEG Glu Asp Ala 35	Pro Asn 20 Asn Lys	Val Val Val Gly	YPE: ESCR Ala Asp Cys	prot IPTIC Asp Lys Pro Phe 55 Leu	Val Cys Ala 40 Asp	Pro 25 Val	Ser 10 Asp Ala Ser	Asp Thr Glu Lys	Ser Pro Val Val 60 Lys	Ala Val 45 Lys	Asn 30 Arg Glu	15 Val Val Asn	Thr Gln Ser		
35	Val Val Leu Tyr 65	Cys Asp Asp 50) MO:) SE(Glu Asp Ala 35 Val	Pro Asn 20 Asn Lys	Val Val Gly Phe	ASP ASP ASP ASP ASP ASP ASP ASP ASP	prot IPTI(Asp Lys Pro Phe 55 Leu	Val Cys Ala 40 Asp	Cys Pro 25 Val Lys Asp	Ser- 10 Asp Ala Ser	Thr Glu Lys Met 75 Ser	Ser Pro Val Val 60 Lys	Ala Val 45 Lys	Asn 30 Arg Glu Tyr	Val Val Asn Pro	Thr Gln Ser Ser 80 Ala		
35	Val Val Leu Tyr 65	Cys Asp Asp 50 Ala Ser) MO: Glu Asp Ala 35 Val	Pro Asn 20 Asn Lys Ile	Val SVal Gly Phe Lys Val 85 Leu	YPE: ESCR Ala Asp Cys Asp Asn 70 Glu	profirTIC Asp Lys Pro Phe 55 Leu Gly	tein ON: S Val Cys Ala 40 Asp Ala His	Cys Pro 25 Val Lys Asp	Servino Asp Ala Scr Phe Asp 90 Ala	Thr Glu Lys Met 75 Ser	Ser Pro Val Val 60 Lys Val	Ala Val 45 Lys Gln	Asn 30 Arg Glu Tyr	Val Val Asn Pro Asp 95 Asp	Thr Gln Ser Ser 80 Ala		
35 40	Val Val Leu Tyr 65 Thr	Cys Asp Asp 50 Ala Ser Asn) MO: Olu Asp Ala 35 Val Asp Thr	LECUI QUENC Pro Asn 20 Asn Lys Ile Thr Lys 100 Glu	Val Sly Phe Lys Val 85 Leu	YPE: ESCR Ala Asp Cys Asp Asn 70 Glu Ser	Proting Asp Lys Pro Phe 55 Leu Gly Glu	Val Cys Ala 40 Asp Ala His	Cys Pro 25 Val Lys Asp Thr Arg 105 Gly	Servino Asp Ala Scr Phe Asp 90 Ala	Thr Glu Lys Met 75 Ser Asn	Ser Pro Val Val 60 Lys Val Ala	Ala Val 45 Lys Gln Gly Val	Asn 30 Arg Glu Tyr Thr Arg 110 Ala	Val Val Asn Pro Asp 95 Asp	Thr Gln Ser Ser 80 Ala		
35 40	Val Val Leu Tyr 65 Thr Tyr	Cys Asp Asp 50 Ala Ser Asn Val	MO: Oflu Asp Ala 35 Val Asp Thr Gln Asn 115	LECUI QUENC Pro Asn 20 Asn Lys Ile Thr Lys 100 Glu	Val Val Gly Phe Lys Val 85 Leu	ASP ASP ASP ASP ASP ASP ASP Glu Ser	Profired Asp Lys Pro Phe 55 Leu Gly Glu Val	Val Cys Ala 40 Asp Ala His Arg Glu 120 Ala	Pro 25 Val Lys Asp Thr Arg 105	Servino Asp Ala Scr Phe Asp 90 Ala Gly	Thr Glu Lys Met 75 Ser Asn	Ser Pro Val Val 60 Lys Val Ala	Ala Val 45 Lys Gln Gly Val Asn 125 Ala	Asn 30 Arg Glu Tyr Thr Arg 110 Ala	Val Val Asn Pro Asp 95 Asp Val	Thr Gln Ser Ser 80 Ala		

	Arg I	Leu :	Thr	Ala	Thr	Glu	Asp	Ala	Ala	Ala 170		Ala	Gln	Ala				
5	Asp (Glu A	Ala	Tyr 180		Lys	Ala	Asp	Glu 185	Ala		Gly	Ala	Ala 190				
	Ala G	Sln (3ln 195	Thr	Ala	Asp	Glu	Ala 200	Asn	Glu	Arg	Ala	Leu 205	Arg		Leu		
10	Glu I	Lys A 210	Ala	Ser	Arg	Lys												
	(2) I	NFOR	RMAT	иог	FOR	SEQ	ID:	NO:	7:							•		
15		(i)	(A (B (C	() LI () TY () S7	CE CI ENGTI (PE: TRANI OPOLO	nuc nuc DEDNI	81 b leic ESS:	ase aci dou	pair d	s								
	(ii)	MOL	ECUI	LE TY	PE:	CDN	A				•						
20	(i	ii)	НҮР	отне	TICA	AL: 1	10											
	(iv)	ANT	I-se	ENSE:	YES	3											
25	(vi)	(A	.) OF	L SC RGANI SSUE	SM:	Pset	udome Sero	onas type	aeri	ugin ATCC	osa 333:	54					
30	(ix)	(A (B) NA	ME/K CATI HER	ON:1	RMAT	TION	:/not	:e= '	"Sequ	lence	e is	cod.	ing minu	for op:	·I	
20	,															-		
					E DE													
35	AGC A Ser S 215	er H	is.	TCC Ser	AAA Lys	GAA Glu 220	ACC	GAA Glu	GCT Ala	CGT Arg	CTG Leu 225	ACC Thr	GCT Ala	ACC Thr	GAA Glu	GAC Asp '230		48
	CA G Ala A	CT G la A	CT (CGT Arg	GCT Ala 235	CAG Gln	GCT Ala	CGC Arg	GCT Ala	GAC Asp 240	GAA Glu	GCC Ala	TAT Tyr	CGC Arg	AAG Lys 245	GCT Ala		96
40	GAC G Asp G	AA G lu A	та.	CTG Leu 250	GGC Gly	GCT Ala	GCT Ala	CAG Gln	AAA Lys 255	GCT Ala	CAG Gln	CAG Gln	ACC Thr	GCT Ala 260	GAC Asp	GAG Glu	1	L 4 4
45	GCT A	sn G	AG 0 lu 2 65	CGT Arg	GCC Ala	CTG Leu	CGC Arg	ATG Met 270	CTG Leu	GAA Glu	AAA Lys	GCC Ala	AGC Ser 275	CGC Arg	AAG Lys	GAG Glu	1	L9·2
45	CTC GC Leu A	CT C la P 80	CG (GCT Ala	CCG Pro	GAA Glu	CCG Pro 285	GTT Val	GCC Ala	GAC Asp	GTT Val	TGC Cys 290	TCC Ser	GAC Asp	TCC Ser	GAC Asp	2	40
50	AAC GA Asn As 295	AC G sp G	GC (GTC Val	Cys .	GAC Asp 300	AAC Asn	GTC Val	GAC Asp	AAG Lys	TGC Cys 305	CCG Pro	GAC Asp	ACC Thr	CCG Pro	GCC Ala 310	2	88
	AAC G Asn Va	TC A	cc (hr \	vaı .	GAC Asp 315	GCC Ala	AAC Asn	GGC Gly	TGC Cys	CCG Pro 320	GCT Ala	GTC Val	GCC Ala	GAA Glu	GTC Val 325	GTA Val	3	36

15

5	CGC Arg	GTA Val	CAG Gln	CTG Leu 330	GAC Asp	GTG Val	AAG Lys	TTC Phe	GAC Asp 335	TTC Phe	GAC Asp	AAG Lys	TCC Ser	AAG Lys 340	GTC Val	AAA Lys	384
	GAG Glu	AAC Asn	AGC Ser 345	TAC Tyr	GCT Ala	GAC Asp	ATC Ile	AAG Lys 350	AAC Asn	CTG Leu	GCC Ala	GAC Asp	TTC Phe 355	ATG Met	AAG Lys	CAG Gln	432
10	TAC Tyr	CCG Pro 360	TCC Ser	ACT Thr	TCC. Ser	ACC Thr	ACC Thr 365	GTT Val	GAA Glu	GGT Gly	CAT His	ACC Thr 370	GAC Asp	TCC Ser	GTC Val	GGT Gly	480
15	ACC Thr 375	GAC Asp	GCT Ala	TAC Tyr	AAC Asn	CAG Gln 380	AAG Lys	CTG Leu	TCC Ser	GAG' Glu	CGT Arg 385	CGT Arg	GCC Ala	AAC Asn	GCC Ala	GTT Val 390	528
	CGT Arg	GAC Asp	GTA Val	CTG Leu	GTC Val 395	AAC Asn	GAG Glu	TAC Tyr	GGT Gly	GTG Val 400	GAA Glu	GGT Gly	GGT Gly	CGC Arg	GTG Val 405	AAC Asn	576
20	GCT Ala	GTC Val	GGT Gly	TAC Tyr 410	GGC Gly	GAG Glu	TCC Ser	CGC Arg	CCG Pro 415	GTT Val	GCC Ala	GAC Asp	AAC Asn	GCC Ala 420	ACC Thr	GCT Ala	624
	GAA Glu	GGC Gly	CGC Arg 425	GCT Ala	ATC Ile	AAC Asn	CGT Arg	CGC Arg 430	GTT Val	GAA Glu	GCC Ala	GAA Glu	GTA Val 435	Glu	GCC Ala	GAA Glu	672
25		AAG Lys 440	TAA														681
30	(2)	INF	ORMA	TION	FOR	SEQ			8:						. ** 5*		
			` (SEQU A) L B) T D) T	ENGT:	H: 2 ami	26 a no a	mino cid				Ąź	শ্ব		Samuel Sa	:	
35		(xi) MO) SE	A) L B) T D) T LECU QUEN	ENGT YPE: OPOL LE T CE D	H: 2 ami OGY: YPE: ESCR	26 a no a lin pro IPTI	mino cid ear tein ON:	aci	ds ID N		:			• :		
35	1	(xi Ser	(() MO) SE His	A) L B) T D) T LECU QUEN	ENGTI YPE: OPOL LE T CE D	H: 2 ami OGY: YPE: ESCR Glu	26 a no a lin pro IPTI Thr	mino cid ear tein ON:	aci SEQ Ala	ds ID N Arg 10	Leu	: Thr	Ala		Glu 15	Asp	
	1	(xi Ser	(() MO) SE His	A) L B) T D) T LECU QUEN	ENGT YPE: OPOL LE T CE D Lys 5	H: 2 ami OGY: YPE: ESCR Glu	26 a no a lin pro IPTI Thr	mino cid ear tein ON:	aci SEQ Ala	ds ID N Arg 10 Asp	Leu	: Thr	Ala		Glu 15	Asp	
	1 Ala	(xi Ser	(((() MO) SE His	A) L B) T D) T LECU QUEN Ser Arg 20	ENGT YPE: OPOL LE T CE D Lys 5	H: 2 ami OGY: YPE: ESCR Glu Gln	26 a no a lin pro IPTI Thr	mino cid ear tein ON: Glu	SEQ Ala Ala 25	ID N Arg 10 Asp	Leu Glu	: Thr	Ala	Arg 30	Glu 15 Lys	Asp	
40	1 Ala Asp	(xi Ser Ala	(((((((((((((((((((A) L B) T D) T LECU QUEN Ser Arg 20	ENGT YPE: OPOL LE T CE D Lys 5 Ala Gly	H: 2 ami OGY: YPE: ESCR Glu Gln Ala	26 a no a lin pro IPTI Thr Ala Ala	mino cid ear tein ON: Glu Arg	SEQ Ala Ala 25	ID N Arg 10 Asp Ala	Leu Glu Gln	: Thr Ala Gln	Ala Tyr Thr 45	Arg 30	Glu 15 Lys	Asp Ala	
	Ala Asp Ala	(xi Ser Ala Glu Asr 50) MO) SE His Ala Ala 35	A) L B) T D) T LECU QUEN Ser Arg 20 Leu	ENGT YPE: OPOL LE T CE D Lys Ala Gly	H: 2 ami OGY: YPE: ESCR Glu Gln Ala	26 a no a lin pro IPTI Thr Ala Ala Arg	mino cid ear tein ON: Glu Arg	SEQ Ala Ala 25 Lys	ID N Arg 10 Asp Ala	Leu Glu Gln Lys	: Thr Ala Gln Ala 60	Ala Tyr Thr 45	Arg 30 Ala	Glu 15 Lys Asp	Asp Ala Glu	
40	Ala Asp Ala Leu 65	(xi Ser Ala Glu Asr 50	() MO() SE His Ala Ala 35	A) LECU QUEN Arg 20 Ala	ENGT YPE: OPOL LE T CE D Lys 5 Ala Gly Ala	H: 2 ami OGY: YPE: ESCR Glu Gln Ala Leu Glv 70 Asr	26 a no a lin pro IPTI Thr Ala Ala Arg	minocid ear tein ON: Glu Arg Glr 40 Met	SEQ Ala 25 Lys Leu Ala	ID N Arg 10 Asp Ala Glu Asp	Leu Glu Gln Lys Val 75	: Thr Ala Gln Ala 60	Tyr Thr 45 Ser	Arg 30 Ala Arg Asg	Glu 15 Lys Asp Lys	Asp Glu Glu Asp 80 Ala	
40	Ala Asp Ala Leu 65	(xi Ser Ala Glu Asr 50 Ala Asr	() MO) SE His Ala Ala 35 Glu Pro	A) LECU QUEN Ser 20 Leu Arg	ENGT: YPE: OPOL: LE T CE D Lys Ala Gly Ala Pro Cys 85 Asp	H: 2 ami OGY: YPE: ESCR Glu Gln Ala Leu 70 Asr	26 a no a lin pro IPTI Thr Ala Ala Arg 55 Pro Asr	minocid ear tein ON: Glu Arg Glr 40 Met	SEQ Ala 25 Lys Leu Ala Asp	ID N Arg 10 Asp Ala Glu Asp Lys 90 Pro	Leu Glu Gln Lys Val 75 Cys	: Thr Ala Gln Gln Cys	Tyr Thr 45 Ser	Arg 30 Ala Arg Arg	Glu 15 Lys Asp Lys Ser Pro	Asp Glu Glu Asp 80 Ala	

5	Glu	Asn 130	Ser	Tyr	Ala	Asp	Ile 135	Lys	Asn	Leu	Ala	Asp 140	Phe	Met	Lys	Gln
	Tyr 145	Pro	Ser	Thr	Ser	Thr 150	Thr	Val	Glu	Gly	His 155	Thr	Asp	Ser	Val	Gly 160
10	Thr	Asp	Ala	Tyr	Asn 165	Gln	Lys	Leu	Ser	Glu 170	Arg	Arg	Ala	Asn	Ala 175	Val
	Arg	Asp	Val	Leu 180	Val	Asn	Glu	Tyr	Gly 185	Val	Glu	Gly	Gly	Arg 190	Val	Asn
15	Ala	Val	Gly 195	Tyr	Gly	Glu	Ser	Arg 200	Pro	Val	Ala	Asp	Asn 205	Ala	Thr	Ala
	Glu	Gly 210	Arg	Ala	Ile	Asn	Arg 215	Arg	Val	Glu	Ala	Glu 220	Val	Glu	Ala	Glu
20	Ala 225	Lys														

Claims

25

30

40

- 1. A hybrid protein comprising the Pseudomonas aeruginosa outer membrane protein I which is fused with its amino terminal end to the carboxy terminal end of a carboxy terminal portion of the Pseudomonas aeruginosa outer membrane protein F, said carboxy terminal portion comprising the sequence from aa 190 to aa 350.
- 2. The hybrid protein as claimed in claim 1, wherein said carboxy terminal portion is the sequence from aa 190 to aa 342.
- 3. A hybrid protein comprising the Pseudomonas aeruginosa outer membrane protein I which is fused with its amino terminal end to the carboxy terminal end of a carboxy terminal portion of the Pseudomonas aeruginosa outer membrane protein F, said carboxy terminal portion comprising at least one surface-exposed B-cell epitope selected from the group consisting of SEE 1, SEE 2, SEE 3 and SEE 4.
 - 4. A vaccine comprising a hybrid protein as claimed in claim 1, 2 or 3.
 - 5. Monoclonal or polyclonal antibodies against the hybrid protein as claimed in claim 1, 2 or 3.
 - 6. A vaccine comprising the antibodies as claimed in claim 5.
- 7. A nucleic acid, coding for the hybrid protein as claimed in claim 1, 2 or 3.
 - 8. A process for the preparation of the hybrid protein as claimed in claim 1, 2 or 3, which comprises bringing about the expression of the nucleic acid as claimed in claim 7 in pro- or eukaryotic cells.

55

	MW (kD)
pGEX-F	45
pGEX-I	40
pGEX-F-I	50
pGEX-I-F	50
pTRC-I-F	25
pYepsecl-F-I	25

FIG. 2

FIG.3

FIG.4

EUROPEAN SEARCH REPORT

Application Number EP 95 11 8098

Category	Citation of document with i	ndication, where appropriate, assages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Inc.CL6)
X	BEHRING INST. MITT., vol. 95, pages 85-96, VON SPECHT ET AL. 'Outer membrane proteins of Pseudomonas aeruginosa as vaccine candidates' * the whole document *		1-8	C12N15/31 C12N15/62 C07K14/21 C07K19/00 C07K16/12 A61K39/104 //(C07K14/21, C12R1:385)
Y	J. BACTERIOL., vol. 174, no. 15, pages 4977-4985, FINNEN ET AL. 'Ana Pseudomonas aerugir membrane protein Op OprF derivatives ar antibodies' * abstract * * page 4982 * * page 4983, right * page 4984 *	nosa major outer orF by use of truncated od monoclonal	1,2,4-8	
Y,D	with Pseudomonas ae	ce against infection ruginosa by recombinant otein I and lipoprotein al antibodies'	1,2,4-8	TECHNICAL FIELDS SEARCHED (Int.CL.6) C12N C07K
		-/		
	The present search report has b			
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	5 March 1996	Gac	, G
X : part Y : part doct A : tech O : non	CATEGORY OF CITED DOCUME: icularly relevant if taken alone icularly relevant if combined with and ment of the same category nological background -written disclosure mediate document	E : earlier patent do after the filing d	cument, but publi ate n the application or other reasons	shed on, or

EPO FORM 1503 03.82 (POCCO)

EUROPEAN SEARCH REPORT

Application Number EP 95 11 8098

	DOCUMENTS CONSIDE	Г		
Category	Citation of document with indic of relevant passag	ation, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
A.D	INFECT. IMMUN., vol. 60, no. 9, pages 3497-3503, HUGHES ET AL. 'Synther representing epitopes protein F of Pseudomore elicit antibodies reaccells of heterologous of P. aeruginosa' * the whole document	nas aeruginosa that ctive with whole immunotype strains	1-8	
A	WO-A-93 24636 (THE UNICOLUMBIA) 9 December 1 * the whole document *	1993	1-8	
				TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	The present search report has been drawn up for all claims			
	Place of search	Date of completion of the search		-
	THE HAGUE	5 March 1996	Gac,	Examiner G
X : partid Y : partid docum A : techn	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category ological background written disclosure	T: theory or principle E: earlier patent docur after the filing date D: document cited in t L: document cited for	underlying the iment, but publis the application other reasons	invention ihed on, or

EPO FORM ISSU 03.12 (PORCUL)

THIS PAGE BLANK (USPTO)