Methods for Detecting Mutations in Non-model Organisms

Adam Orr

11/6/20

Why Care About Mutations and Genotyping?

Human Health

- Cancer
- Personalized Medicine

Agriculture

- Looking for interesting phenotypes in clonally reproducing species
- Breeding programs

Evolution

- Mutations are the ultimate source of variation
- Mutation rate diversity and evolution

Uhttps://commons.wikimedia.org/wiki/File:White nectarine and cross section02 edit.jpg

Mutations can be difficult to detect

Mutations are very rare, but sequencing errors are very common.

Sequencing error alone is $\sim 10^{-3}$ while mutation rate after error-checking is $\sim 10^{-9}$

- Errors accumulate during PCR prior to sequencing then propagate.
- Tag $\sim 10^{-4}$
- Technical error from sequencer

 $^{^{}m 0}$ Potapov V, Ong JL (2017) Examining Sources of Error in PCR by Single-Molecule Sequencing

Working with Non-model Organisms can be difficult

- No reference genome
- Many methods assume a reliable reference and other supporting information
- Assembling your own is possible but unsatisfying; costly and time-consuming to do well
- 50,000 species in NCBI genome database of 600,000 in taxonomy database; few are reference quality
- We need robust reference-free methods!

How does plant growth affect somatic mutation rate?

We want to understand mutation patterns within a non-model organism.

 The genetic structure of the plant should mirror its physical structure.

 $^{^0{\}mbox{Heidstra}}$ & Sabatini (2014) Plant and animal stem cells: similar yet different. doi:10.1038/nrm3790

A Genetic Mosaic

- Mosaic: differential oil production gives protection from beetles
- Does the pattern of mutation match the physical structure?
- Can we detect enough mutations to measure the mutation rate?

 $^{^{0}}$ Orr et al. (2020) A phylogenomic approach reveals a low somatic mutation rate in a long-lived plant. doi:10.1098/rspb.2019.2364

Current reference-free methods are insufficient

- Sequence 8 samples in triplicate
- \bullet \sim 10X coverage for each replicate
- DiscoSNP++ uses small differences in similar sequencing reads to find potential mutations
- Coverage may not be sufficient for this method
- The repetitive nature of the genome may make it difficult to differentiate repeated DNA from mutations

Approximating a Genome

Use *E. grandis* genome as a starting place, then generate a new reference and map to that reference.

Analysis Pipeline

- Sequence 8 samples in triplicate
- Align sequence to the edited Eucalyptus grandis genome
- Use replicates to remove false positives

Pipeline Produces Tree Close to Physical Tree

 $^{^{0}}$ Orr et al. (2020) A phylogenomic approach reveals a low somatic mutation rate in a long-lived plant. doi:10.1098/rspb.2019.2364

Using Tree Topology Gives Higher Recall Rate

- Thus, it's reasonable to assume the physical topology when inferring mutations
- DeNovoGear is a variant-calling method that uses information in the tree topology to call variants.
- By simulation, we introduced 14000 mutations on the tree

GATK	DeNovoGear				
3859 mutations	4193 mutations				
27%	30%				

Using Random Trees to Estimate False Discovery Rate

- If we assume mutations should match the tree structure, no real mutations should also match a random maximally-distant tree.
- Simulate 100 trees maximally distant from the true tree and ask how many the pipeline detects on average.

GATK	DeNovoGear				
55.71 of 99 mutations	.11 of 90 mutations				
56.3%	.12%				

Mutation Rates

- Detected 90 mutations.
- 20 mutations in genes.
- Estimated recall of $\sim 30\%$.
- $90 \times \frac{1}{3} = 300$ mutations.
- $ho \sim 3.3$ mutations per meter of length
- $\bullet \ 2.7 \times 10^{-9} \ {\rm mutations \ per \ base}$ per meter
- Somatic mutations account for ~ 55 mutations per leaf tip.

Population Estimates

We studied *one* individual, but we can make conjectures about the population.

- The average height of a eucalypt is 22.5 M
- Mutation rate per base, per generation from somatic mutation is 6.2×10^{-8}
- We estimated $\theta = 0.025$
- Since $\theta = 4N_e\mu$, $N_e = 102,000$

This per-generation rate is $\sim 10\times$ larger than Arabidopsis, but Eucalyptus is $100\times$ larger.

How do we do better? Base Quality Scores help find errors

Errors make variant calling difficult - but we can predict them.

- FASTQ format data has a quality score
- Quality scores represent P(error) on a phred scale.

$$P(error) = 10^{\frac{-Q}{10}}$$
$$Q = -10 \log_{10} P(error)$$

FASTQ Example

@SEQ_ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65

Ohttps://en.wikipedia.org/wiki/FASTQ_format

Quality scores are predictions

- A quality score is a prediction about whether a base call is correct.
- Predictions are said to be calibrated if the predicted event occurs as often as predicted.
- The weather forecast contains a prediction about whether it will rain.
- If it rains on a day with a 30% chance of rain, what does that mean?

Measured Frequency

Quality scores aren't well-calibrated

- If quality scores were well-calibrated, it would be easier to identify errors
- Base Quality Score Recalibration can be done to fix calibration issues.
- GATK method for BQSR require a database of variable sites in your data then assumes mismatches at nonvariable sites are errors.

Base Quality Score Recalibration

GATK BQSR is the standard method for BQSR. It works in 3 phases:

- Find errors with alignment
- Train model
- Recalibrate with model

One site is excluded and one base is an error. $\frac{1}{6}$ bases is an error.

GATK BQSR is difficult in non-model organisms

- Many mismatches between reference and sample (if there is one)
- No database with sites to exclude

One site isn't excluded; only one base is really an error. $\frac{4}{9}$ bases are estimated to be errors.

GATK BQSR uses a hierarchical linear model to determine how much to adjust each quality score

Example Recalibration

Two Bases Assigned The Same Quality

Read Group Assigned Q

Context

Cycle Recalibrated

BQSR vulnerable to simulated false negatives

Alternative approaches get around using a database of variable sites

- SOAP2 has a consensus calling model that performs BQSR
- ReQON limits the number of errors there can be at a site
- Synthetic spike-ins
- GATK Recommended method: Use the best reference you can get, call a confident set of variants, and use that.

Let's find errors with k-mers instead of an alignment

- Error correction methods exist that use k-mers to identify errors rather than an alignment and reference.
- Most error correctors don't update quality scores; Lighter optionally updates quality scores of corrections to a value but this doesn't materially affect the calibration.

Error Detection with Lighter

- **1** Subsample k-mers at rate α
- Use subsampled k-mers to find trusted k-mers
- Use trusted k-mers to correct untrusted k-mers Read A T G C T A A G C A
- Kmer 1 A T G
- Kmer 2 T G C
- Kmer 3

Subsampling

Read	Α	Т	G	C	Т	Α	Α	G	C	Α
Kmer 1	Α	Т	G							
Kmer 2		Т	G	C						
Kmer 3			G	C	Т					

Keep each k-mer with probability α . If the same sequence is sequenced M times, that k-mer will appear multiple times. The probability we sample it is then $1-(1-\alpha)^M$

P(not sampled) =
$$(1 - \alpha)^3$$
 so P(sampled) = $1 - (1 - \alpha)^3$

Trusting K-mers

If we assume an error will only show up at most twice, the probability an erroneous k-mer is sampled is $1-(1-\alpha)^2$

Each base pair has between 1 and k associated k-mers; we can do a binomial test to determine whether the number of sampled k-mers associated with a base pair is too high for it to be an error:

$$P(\mathcal{B}(covering, 1 - (1 - \alpha)^2) = sampled) > .95$$

When there are K base-pairs that are trusted, we add this to a set of trusted k-mers.

Finding Errors in reads

Given the set of trusted k-mers, find the longest stretch of trusted k-mers in the read. Then, the bases that border this stretch are errors.

Read	Α	Т	G	C	Τ	Α	Α	G	C	Α
Kmer 1	Α	Т	G							
Kmer 2		Т	G	C						
Kmer 3			G	C	Т					
Kmer 4				С	Т	Α				
CTA isn't	truc	tod	trv	CTC	C_{\perp}	G (ТТ	N/I-	vim	iza +k

CTA isn't trusted, try CTC, CTG, CTT. Maximize the number of trusted k-mers in the read this way.

Implementation Improvements

A **Bloom filter** stores sampled and trusted k-mers

- Hash the kmer and use bits from the hash to set bits in the filter; to test membership, see if those same bits are set.
- You should choose the size of the bloom filter based on the number of entries and a desired false positive rate.
- Lighter estimates the number of entries to be $1.5\times$ the genome length, but this is too low.
- Lighter uses a patterned bloom filter, but doesn't use aligned blocks of memory.

Estimated Number of Sampled Kmers

$$K_{\text{total}} = \sum_{\text{Reads}} \text{Read length} - k + 1$$
 (1)

$$= (\text{Read length} - k + 1) \times \text{Number of reads}$$
 (2)

$$<$$
 Read length \times Number of reads (3)

$$<$$
 Read length $\times \frac{\text{Coverage} \times \text{Genome length}}{\text{Read length}}$ (4)

$$<$$
 Coverage \times Genome length (5)

So the expected number of sampled k-mers is

$$E[K_{\text{sampled}}] = E[\mathcal{B}(x; \alpha, K_{\text{total}})]$$
(6)

$$= \alpha \times K_{\text{total}} \tag{7}$$

 $< \alpha \times \text{Coverage} \times \text{Genome length}$ $< 7 \times \text{Genome length}$

(8)

K-mer Based Base Quality score recalibration works

- Combining error correction and BQSR is effective
- Method implemented in kbbq software

Methods that rely on accurate quality scores suffer

BCFTools' multiallelic caller estimates allele frequency for a site as:

$$f_a^s = \frac{\sum_{b=a} Q_a}{\sum_b Q_b} \tag{9}$$

$$f_a = \frac{\sum_s^S f_a^s}{S} \tag{10}$$

Suppose a systematic effect reduces the quality score for allele T. While the true allele frequency of A is .5, we might get data like: 5 A (Q 40), 5 T (Q 30) for every sample.

The calculated allele frequency is $\frac{40*5}{40*5+30*5} = .57$

Does BQSR help?

- Some find BQSR improves minor allele detection, especially in high coverage data
- Heng Li found that replacing quality scores with the lower of the quality score and the mapping alignment quality (MAQ) improved accuracy of heterozygote detection
- BQSR is time-consuming
- BQSR takes extra hard-drive space

Improved Calibration Increases Number of Positives - But Not More Than Raw Scores

The Difference in Sensitivity and Precision is Small

Calibration Changes Variant QUAL Annotation

The QUAL field represents the likelihood a site is variable.

Despite Benchmark Data Results, Recalibration Improved *E. melliodora* Calls

	Raw	GATK	KBBQ
Num Variants	88	99	106
Estimated False Positives	36.54	55.71	35.54
Previously-identified Positives	34	30	34
Estimated New True Positives	18	13	36

What could explain this discrepancy?

- Well-developed protocols for DNA extraction for human cell-lines
- Base callers are tuned to work well for human data
- Less variety in quality scores may be good for calling

Acknowledgements

- My committee
- My lab: Dr. Cartwright
 - Abby
 - Juan
 - ► Ziqi
 - Courtney
 - Aleks

KBBQ: https://github.com/adamjorr/kbbq

Dissertation: O https://github.com/adamjorr/dissertation

This work was supported by grants from the NIH, NSF, BSF, and the Graduate College Completion Fellowship

GATK BQSR uses a hierarchical linear model to determine how much to adjust each quality score

$$Q = \bar{Q} + \Delta RG + \Delta Q + \Delta C(Cycle) + \Delta X(Context)$$

$$\Delta RG = argmax_q \{ P(\mathcal{B}(RG_t, q) = RG_e) \times P(\mathcal{N}(\bar{Q}) = q) \} - \bar{Q}$$

$$\Delta Q = argmax_q \{ P(\mathcal{B}(Q_t,q) = Q_e) \times P(\mathcal{N}(\bar{Q} + \Delta RG) = q) \} - (\bar{Q} + \Delta RG)$$

$$\Delta Cycle = argmax_q \{ P(\mathcal{B}(C_t, q) = C_e) \times P(\mathcal{N}(\bar{Q} + \Delta RG + \Delta Q) = q) \} - (\bar{Q} + \Delta RG + \Delta Q) \quad (11)$$

$$\Delta Context = argmax_q \{ P(\mathcal{B}(X_t, q) = X_e) \times P(\mathcal{N}(\bar{Q} + \Delta RG + \Delta Q) = q) \}$$

$$- (\bar{Q} + \Delta RG + \Delta Q) \quad (12)$$