Билет 23

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	Билет 23:	reor	рема	O	пеј	ece	ече	нии	1 C	en	ιей	ICT	ва	KC	МΠ	ak-	TO	В.	CJ	ед	CT1	вие	o	BJ	ПО	Ж	ені	НЫ	X	
	компактах.																													1

0.1. Билет 23: Теорема о пересечении семейства компак- тов. Следствие о вложенных компактах.

Теорема 0.1.

Пусть K_{α} - семейство компактов, и для любого конечного набора компактов пересечение непусто.

Тогда
$$\bigcap_{\alpha \in I} K_{\alpha} \neq \varnothing$$
.

Доказательство.

Предположим $\bigcap_{\alpha \in I} K_{\alpha} = \emptyset$.

Тогда $\exists \alpha_0 \in I \quad K_{\alpha_0} \subset X \setminus \bigcap_{\alpha \in I}^{\alpha \neq \alpha_0} K_\alpha = \bigcup_{\alpha \in I}^{\alpha \neq \alpha_0} (X \setminus K_\alpha)$ - получилось открытое покрытие.

Выберем конечное: $K_{\alpha_0} \subset \bigcup_{k=1}^n (X \setminus K_{\alpha_k}) = X \setminus \bigcap_{k=1}^n K_{\alpha_k}$.

Следствие.

Пусть $K_1 \supset K_2 \supset K_3, \ldots$ - непустые компакты.

Тогда $\bigcap_{k=1}^{\infty} K_k \neq \emptyset$.

Доказательство.

Пересечение конечного числа компактов - компакт с максимальным номером $\neq \varnothing$.