Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации

Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования

Московский технический университет связи и информатики

БИЛЕТ		Утверждаю	
		Зав.кафедрой	
№ 24		AS -	
Факультет	РиТ	Kypc2	
Дисциплина	OTC		

- 1. Задача различения сигналов. Критерии различения. Оптимальные алгоритмы приема при полностью известных сигналах на фоне АБГШ. Когерентный прием.
- 2. Цифровые модуляторы без памяти. Ортогональные сигналы.

Задача. Определить математическое ожидание, дисперсию и среднюю мощность на единичном сопротивлении эргодического процесса с $\Phi\Pi B$

 $w(x) = 0.5\delta(x+4) + 0.3\delta(x-1) + A\delta(x-2).$

1 ЗАДАНИЕ

ЛЕКЦИЯ № 9

2.2. Задача различения сигналов.

Задача обнаружения сигнала на фоне шума является частным случаем задачи различения двух сигналов. В общем случай задача различения — задача проверки m статистических гипотез.

Рассматриваются гипотезы: H_k : $y(t) = S_k(t) + \eta(t)$, $k = \overline{I:m}$, по каждой из которых на входе приемного устройства в смеси с шумом присутствует сигнал $S_k(t)$. Обрабатывая выборку наблюдаемого процесса y(t), надо принять решение о том, который из m возможных сигналов пришел на вход приемника.

Для задач различения чаще более обоснованным является применение критерия идеального наблюдателя, максимума апостериорной вероятности и максимума отношения правдоподобия.

2.2.1. Критерий идеального наблюдателя (критерий Зигерта-Котельникова)

Критерий идеального наблюдателя заключается в минимизации средней вероятности ошибки. Для случая m гипотез он выглядит следующим образом:

$$P_{OIII} = \sum_{k=1}^{m} \sum_{j=1}^{m} P(H_k) P(\gamma_j | H_k) = P_{OIII \ min} , \qquad (2.27)$$

где $P(H_k)$ - априорные вероятности появления сигналов $S_k(t)$, $P(\gamma_j | H_k)$ - вероятность принять решение о появлении j — го сигнала при условии, что на самом деле присутствует k — ый сигнал. По критерию идеального наблюдателя решающее правило имеет вид:

приемник регистрирует сигнал $S_k(t)$, если для всех $l \ (l \neq k)$ выполняющиеся m-1 неравенство:

$$A_{kl}\left(\vec{\mathbf{y}}_{n}\right) > \frac{p_{l}}{p_{k}} \tag{2.28}$$

$$k = \overline{I:m}, \qquad \Lambda_{kl}\left(\overrightarrow{\mathbf{y}_n}\right) = \frac{w\left(\overrightarrow{\mathbf{y}_n} \mid H_k\right)}{w\left(\overrightarrow{\mathbf{y}_n} \mid H_l\right)}, \qquad \overrightarrow{\mathbf{y}}_n = (y_1, ..., y_n), \qquad p_l = P(H_l), \ p_k = P(H_k) - \frac{1}{2} \left(\frac{1}{2} \right)\right)\right)\right)\right)}{1\right)}\right)\right)}\right)\right)}{w_{1}}}\right)}\right)}\right)$$

априорные вероятности появления сигналов $S_{t}(t)$ и $S_{k}(t)$ соответственно.

Алгоритм (2.28) можно переписать в следующем виде:

$$p_k w(\overrightarrow{\mathbf{y}_n} | H_k) > p_l w(\overrightarrow{\mathbf{y}_n} | H_l), k \neq l$$

или принимается решение γ_k о регистрации сигнала $S_k(t)$, если

Рисунок 2.7. Структурная схема алгоритма различения сигналов по критерию идеального наблюдателя.

Приемник, работающий по правилу (2.29) назван Котельниковым В.А. идеальным (оптимальным).

2.2.2. Критерий максимальной апостериорной вероятности (МАВ).

Критерий МАВ можно получить, переписав формулу (2.29) следующим образом:

$$\frac{p_{k}w\left(\overrightarrow{\mathbf{y_{n}}}\mid H_{k}\right)}{\sum_{i=1}^{m}p_{i}w\left(\overrightarrow{\mathbf{y_{n}}}\mid H_{i}\right)}=P\left(H_{k}\mid\overrightarrow{\mathbf{y_{n}}}\right)\text{ - апостериорная вероятность гипотезы }\mathbf{H_{k}}\Rightarrow$$

совокупность неравенств, эквивалентная (2.29) принимает вид:

$$P(H_k \mid \overrightarrow{\mathbf{y_n}}) = \max_k \tag{2.30}$$

Рисунок 2.8. Структурная схема алгоритма различения сигналов по критерию МАВ.

Недостатком алгоритмов (2.29) и (2.30) является то, что надо знать априорные вероятности гипотез p_k , $k = \overline{I : m}$.

2.2.3. Критерий максимального отношения правдоподобия.

Приемник регистрирует сигнал $S_{\iota}(t)$, если

$$\Lambda_{ko}\left(\overrightarrow{\mathbf{y}_{n}}\right) = \max_{k} \tag{2.31}$$

Индекс «0» - нулевая гипотеза H₀ о действии только шума.

Если априорные вероятности гипотез H_k равны, т.е. $P(H_k) = \frac{I}{m}$, $k = \overline{I : m} \Rightarrow$ критерий максимального отношения правдоподобия совпадает с критериям идеального наблюдения.

2.2.4. Оптимальные алгоритмы приема при полностью известных сигналах (когерентный прием) на фоне аддитивного ГБШ.

Рассмотрим модель приходящего сигнала: $y_i = S_{ki} + \eta_i$, $i = \overline{I:n}$, - дискретное время, сигналы S_{ki} — известны η_i - шум. Неизвестны реализация помехи η_i и индекс k переданного сигнала, который должна определить решающая схема.

Запишем отношение правдоподобия:
$$A_{kl}\left(\overrightarrow{\mathbf{y}_{n}}\right) = \frac{w\left(\overrightarrow{\mathbf{y}_{n}}\mid H_{k}\right)}{w\left(\overrightarrow{\mathbf{y}_{n}}\mid H_{l}\right)}$$
, где $w\left(\overrightarrow{\mathbf{y}_{n}}\mid H_{k}\right)$ -

многомерная гауссовская ФПВ выборки $\overrightarrow{\mathbf{y}}_{\scriptscriptstyle \mathrm{n}}$ при условии действия гипотезы $\mathrm{H}_{\scriptscriptstyle \mathrm{k}.}$

Т.к. шум η_i - белый \Rightarrow выборка $\overrightarrow{\mathbf{y}_{\mathtt{n}}}$ независимая, тогда $w\left(\overrightarrow{\mathbf{y}_{\mathtt{n}}}\,|\,H_k\right)$

факторизуется:
$$w\left(\overrightarrow{\mathbf{y}_n} \mid H_k\right) = \prod_{i=1}^n w\left(y_i \mid H_k\right) = \frac{1}{\left(\sqrt{2\pi}\sigma_\eta\right)^n} exp\left(-\sum_{i=1}^n \frac{\left(y_i - S_{ki}\right)^2}{2\sigma_\eta^2}\right)$$
. В

этом случае отношение правдоподобия приводится к виду:

$$\Lambda_{kl}\left(\overrightarrow{\mathbf{y}_{n}}\right) = exp\left(-\sum_{i=l}^{n} \frac{\left(y_{i} - S_{ki}\right)^{2}}{2\sigma_{\eta}^{2}} + \sum_{i=l}^{n} \frac{\left(y_{i} - S_{li}\right)^{2}}{2\sigma_{\eta}^{2}}\right).$$

Далее возьмем от левой и правой части данного выражения функцию натурального логарифма:

$$\ln \Lambda_{kl}(\mathbf{y}_{n}) = \lambda_{kl}(\mathbf{y}_{n}) = \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} (-y_{i}^{2} + 2y_{i}S_{ki} - S_{ki}^{2} + y_{i}^{2} - 2y_{l}S_{kl} + S_{li}^{2}) \Rightarrow$$

$$\lambda_{kl}(\mathbf{y}_{n}) = \frac{2}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i}S_{ki} - \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{ki}^{2} - \left(\frac{2}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i}S_{li} - \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{li}^{2}\right).$$

По критерию идеального наблюдателя (см. 2.28) $\Lambda_{kl}(\overrightarrow{\mathbf{y}_n})$ сравнивается с единицей при $p_l = \frac{1}{m}$, $l = \overline{l:m}$, а $\lambda_{kl}(\overrightarrow{\mathbf{y}_n})$ с «0» т.к. $\ln 1 = 0 \Rightarrow$

$$\frac{1}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i} S_{ki} - \frac{0.5}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{ki}^{2} - \left(\frac{1}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i} S_{li} - \frac{0.5}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{li}^{2} \right) \ge 0.$$

Обозначив $E_k = \sum_{i=1}^n S_{ki}^2$ - энергию сигнала S_{ki} , получим алгоритм различения:

Передается сигнал S_{ki} , если

$$\sum_{i=l}^{n} y_{i} S_{ki} - 0.5 E_{k} \ge \sum_{i=l}^{n} y_{i} S_{li} - 0.5 E_{l}, \text{ при } l = \overline{l:m}, l \ne k$$
 (2.32)

На рисунке 2.9. изображена структурная схема алгоритма (2.32) различения детерминированных сигналов в дискретном и непрерывном времени.

б)

Рисунок 2.9. Оптимальный демодулятор детерминированного сигнала, реализованный на корреляторах в дискретном времени – а, в непрерывном времени - б $E_k = \int\limits_0^{T_H} S_k^2(t), \ k = \overline{1,m}$.

Достоинством корреляционной схемы приема сигналов является ее простота, недостатком – чувствительность к задержке сигнала.

Когерентную обработку сигналов также можно реализовать на согласованных фильтрах. Достоинство такой реализации – алгоритм приема инвариантен к задержке сигнала, недостаток – высокая стоимость схемы, т.к. С.Ф. –дорогое устройство. Физический смысл приема сигнала на основе С.Ф состоит в следующем: если на вход фильтра подан сигнал, с которым он согласован, то сигнальная составляющая на выходе определяется выражением

$$U_{C.\Phi.}(t) = const \int_{0}^{\infty} S(\tau)S(t_0 - t + \tau)d\tau = const \cdot B_{ss}(t_0 - t)$$
 ($B_{ss}(\cdot)$ - функция

автокорреляции сигнала), и ее значение в момент времени, равный длительности сигнала, будет максимальным.

На рисунке 2.10. показана структура алгоритма различения сигналов, реализованная на согласованных фильтрах.

Рисунок 2.11. Оптимальный демодулятор детерминированного сигнала, реализованный на С.Ф. в непрерывном времени.

2 ЗАДАНИЕ

3. Некоторые виды цифровой модуляции.

При передаче цифровой информации по каналам связи модулятор отображает информацию в форму аналоговых сигналов, которые согласованы с характеристиками канала. Отображение происходит по средством выбора блоков из $k=\log_2 M$ двоичных символов из символов информационной последовательности $\{a_n\}$ а выбора одного из $M=2^k$ детерминированных сигналов с ограниченной энергией $\{S_m(t), m=\overline{1:M}\}$.

Если отображение цифровой информации $\{a_n\}$ в сигнал так, что сигнал, передаваемый на данном интервале времени, зависит от одного или более сигналов, переданных ранее, то говорят, что модулятор имеет память.

Если отображении $\{a_n\}$ в сигналы $\{S_m(t)\}$ происходит так, что передаваемые не зависят от ранее переданных, то говорят, что модулятор не имеет памяти.

Так же модуляторы бывают линейными и нелинейными. Линейность требует выполнения принципа суперпозиций (наложении) при отображении $\{a_n\}$ в $\{S_m(t)\}$.

3.1 Методы модуляции без памяти.

3.1.1. Амплитудно – импульсная модуляция (АИМ) или (ДАМ).

АИМ – линейная цифровая модуляция.

$$S_m(t) = A_m(t)g(t)\cos(2\pi f_c t), \text{ m} = \overline{1:M}, 0 \le t \le T , \qquad (3.1)$$

где A_m — амплитуда сигнала, соответствующая возможным k — битовым блокам или символам. A_m принимает дискретные значения. A_m =(2m-1-M)d , где 2d — расстояние между соседними амплитудами сигналов, g(t) — вещественный сигнальный импульс, форму которого определяет спектр передаваемого сигнала. Скорость передачи канальных символов при AM равна $\frac{R}{k}$ — скорость с которой происходит изменения амплитуды гармонического сигнала. Временной интервал $T_B = \frac{1}{R}$ — называют информационным (битовым) интервалом, а временной интервал $T = kT_B = \frac{k}{R}$ — называют символьным интервалом или интервалом информационного символа. (R бит — скорость появления двоичной информационной последовательности $\{a_n\}$). Сигналы AM имеют энергию:

$$E_m = \int_0^T S_m^2(t)dt = \frac{1}{2}A_m^2 \int_0^T g^2(t)dt = \frac{1}{2}A_m^2 E_g$$

 E_q - энергия импульса g(t).

Пространственная диаграмма сигналов цифровой AM показана на рисунке 3.1.

Рисунок 3.1. Пространственная диаграмма сигналов цифровой АМ.

Цифровая AM называется также модуляцией с амплитудным сдвигом (MAC, ASK).

3.1.2. <u>Сигналы фазовой модуляции (ФМ).</u>

ФМ – нелинейная модуляция.

$$S_m(t) = g(t)\cos(2\pi f_c t + \frac{2\pi(m-1)}{M}),$$

$$m = \overline{1:M}, \ 0 < t < T$$
(3.2)

g(t)— определяет огибающую сигнала, $\Theta_m = \frac{2\pi(m-1)}{M}$ — определяет М возможных значений фазы, которая переносит передаваемую информацию. Цифровую ФМ также называют модуляцией с фазовым сдвигом (МФС, PSK) Сигналы Sm(t) имеют одинаковую энергию:

$$E = \int_{0}^{T} S_{m}^{2}(t)dt = \frac{1}{2} \int_{0}^{T} g^{2}(t)dt = \frac{1}{2} Eg.$$

Пространственная диаграмма сигналов цифровой ФМ показана на рисунке 3.2.

Рисунок 3.2. Пространственная диаграмма сигналов цифровой ФМ.

3.1.3. Квадратурная амплитудная модуляция(КАМ, QАМ)

$$S_m(t) = A_{mc} \cdot g(t)\cos(2\pi f_c t) - A_{ms} \cdot g(t)\sin(2\pi f_c t),$$

$$m = \overline{j:M}, \ 0 \le t \le T$$
(3.3.)

где Amc, Ams — информационные амплитуды сигнала для квадратурных несущих, g(t) — вещественный сигнальный импульс.

Альтернативно сигнал КАМ можно выразить так:

$$S_m(t) = V_m g(t) \cos(2\pi f_c t + \Theta_m)$$

$$V_m = \sqrt{A_{ms}^2 + A_{mc}^2}, \quad \Theta_m = arctg(\frac{A_{ms}}{A_{mc}})$$
(3.4.)

КАМ можно рассматривать как комбинацию амплитудной и фазовой модуляции. Можно образовать определенную комбинацию M_1 уровней АМ и M_2 уровней позиционной ФМ, чтобы сконструировать комбинированное АМ-ФМ сигнальное созвездие, содержащее $M=M_1\cdot M_2$ точек пространства сигналов. Если M_1 =2 n , M_2 =2 m , то сигнальное созвездие сводится к мгновенной передаче m+n=log₂ $M_1\cdot M_2$ двоичных символов, возникающих со скоростью $\frac{R}{m+n}$. Пространственная диаграмма комбинированной АМ-ФМ показана на рисунке 3.3.

Рисунок 3.3. Пространственная диаграмма комбинированной АМ-ФМ.

Для частного случая, когда амплитуда сигналов принимает ряд дискретных значений $\{(2m-1-M)d, m=\overline{1:M}\}$, пространственная диаграмма сигналов является прямоугольной, изображена она на рисунке 3.4.

Рисунок 3.4. Пространственная диаграмма сигналов КАМ.

3.1.4. Ортогональные сигналы

Нелинейная модуляция без памяти.

$$S_m(t) = A\cos(2\pi f_c t + 2\pi m \triangle f t),$$

$$m = \overline{1:M} \quad 0 \le t \le T$$
(3.5)

Этот вид частотной модуляции (ЧМ) называется модуляцией с частотным сдвигом (МЧС, FSK), $\rho_{\it km}=0;~ {\it \triangle} f=\frac{1}{2T}$

Два сигнала называются ортогональными, если их скалярное произведение, а значит, и взаимная энергия равны нулю.

ЗАДАЧА

Zagara Fusem 24 N(X) =0,58 (X+4) +0,38 (X-1) + A8 (X-2). mx-?(Mam. omniganie)

Dx-?(guenepeux, manme 3ms 62)

P-?cpegrish Mongrisems Ha egurarnam
compomibienum synsgwierum proyecron $M_{\chi} = 0,5 \cdot (-4) + 0,3 \cdot 1 + A \cdot 2 = -1,7 + 2A$ 8x = 0,5 -(-4)2+0,3.12+A.2=8,3+4A Px=0,52+0,32+A2=0,34+A2 Sommelle Ma Bestrain ang van o.

mx = S W(x) · x dx ; Dx = S W(x) · x² dx $P_{x} = \int_{0}^{\infty} (w(x))^{2} dx$