Data Structures and Algorithms: Lecture 3

Barbara Morawska

August 7, 2018

Divide and conquer algorithms

Analysis of the running time of a "divide and conquer" algorithm:

- Recursive calls to itself
- "bottoms-up" with the smallest problem (base case)

Example: MERGE-SORT

Recurrence

Define a recurrence

A recurrence (recursive equation) is an equation or inequality that describes a function in terms of its value on smaller inputs.

Example: The worst case of $\operatorname{MERGE-SORT}$ is defined by recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

The solution for this equation is $O(n \lg n)$ (or $T(n) = O(n \lg n)$).

The problem: how to compute the solution?

Technicalities

▶ If an input of MERGE-SORT is an array of odd length (A.length is odd), then

$$T(n) = egin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 \end{cases}$$

- We ignore ceilings and floors. (They do not change asymptotic values.)
- We ignore base case $T(n) = \Theta(1)$ for small n.
- ► Hence the recurrence for MERGE-SORT is:

$$T(n) = 2T(n/2) + \Theta(n)$$

Recurrence

Examples of recurrences:

► Unequal sizes of subproblems: $T(n) = T(2/3n) + T(1/3n) + \Theta(n)$ What is the solution?

▶ Only one smaller subproblem. Recursive version of LINEAR SEARCH: $T(n) = T(n-1) + \Theta(1)$ What is the solution?

Solving recurrence

3 methods to solve recurrences:

- substitution method
- recursion tree method
- master method

Maximum-subarray problem

Maximum-subarray problem:

INPUT: array of numbers

 $\operatorname{Output:}$ contiguous subarray whose values have the greatest sum.

Changes in the stock prices

Note: for the problem to be non-trivial some values in the input array must be negative!

Example of the problem

When to buy and sell to get the greatest profit?

```
Day | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Price | 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97
```

First solution:

- ▶ Compare prices for each pair (i, j), i < j).
- Output the pair with the maximal difference.
- ▶ Complexity: n^2 comparisons. $\Theta(n^2)$.
- ▶ Use MAXIMUM-SUBARRAY algorithm to get complexity in $o(n^2)$.

(Running time much less than n^2 .)

Problem: how to use MAXIMUM-SUBARRAY algorithm to solve this problem? How to get a fast MAXIMUM-SUBARRAY algorithm?

MAXIMUM-SUBARRAY algorithm

How to use MAXIMUM-SUBARRAY algorithm to solve maximal profit problem?

Use array of changes in the prices as the input for

MAXIMUM-SUBARRAY algorithm:

Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
Change		13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7

Brute force algorithm:

- ▶ Check all subarrays: $\binom{n-1}{2}$
- ▶ Complexity: $\Theta(n^2)$

Use divide-and-conquer algorithm

INPUT: A[low..high]
OUTPUT: max subarray

- ▶ Divide A into two halves: A[low..mid], A[mid..high]
- Maximal subarray can be located in:
 - ► A[low..mid]
 - ► A[mid..high]
 - crossing the mid-point

Idea:

- ► Find max-subarray for A[low..mid] (recursive call)
- Find max-subarray for A[mid..high] (recursive call)
- ► Find max-subarray crossing the mid-point
- ▶ Compare them and output the one with the largest sum.

Notice: finding max-subarray crossing the mid-point is not an instance of the same problem.

Algorithm for finding max-subarray crossing the mid-point

Procedure Find-max-crossing-subarray(*A*, *low*, *mid*, *high*)

```
1 left-sum = -\infty
 2 sum = 0
 3 for i = mid down to low do
     sum = sum + A[i]
   if sum > left-sum then
         left-sum = sum
        max-left = i
 8 right-sum = -\infty
 9 sum = 0
10 for i = mid + 1 to high do
  sum = sum + A[j]
11
  if sum > right-sum then
12
13
         right-sum = sum
         max-right = i
14
15 return (max-left, max-right, left-sum + right-sum)
```

Running time of FIND-MAX-CROSSING-SUBARRAY

Cost of two loops:

- ► Two loops: lines 3 – 7 lines 10–14
- ▶ Each iteration costs $\Theta(1)$. How many interations? lines 3–7: at most mid low + 1 lines 10–14: at most high mid Hence: n times.

Hence the algorithm runs in $\Theta(n)$ time.

Example

Run the algorithm on the array:

$$A = (13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7)$$

FIND-MAXIMUM-SUBARRAY

11

13

```
Procedure Find-maximum-subarray(A, low, high)
1 if high = low then
      return (low, high, A[low])
3 else
      mid = |(low + high)/2|
5 (left-low, left-high, left-sum) =
   FIND-MAXIMUM-SUBARRAY(A, low, mid)
6 (right-low, right-high, right-sum) =
   FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
7 (cross-low, cross-high, cross-sum) =
   FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
8 if left-sum > right-sum and left-sum > cross-sum then
      return (left-low, left-high, left-sum)
10 else if right-sum > left-sum and right-sum > cross-sum then
      return (right-low, right-high, right-sum)
12 else
```

return (cross—low, cross—high, cross—sum)

Analysis of running time

Find a recurrence

- ▶ If n = 1 (base case), lines 1, 2: $T(1) = \Theta(1)$
- ▶ If *n* > 1
 - ▶ line 1-4 computing *mid*, constant time $\Theta(1)$
 - line 5,6 recursive calls 2T(n/2)
 - ▶ line $7 \Theta(n)$
 - ▶ lines 8 -9 constant: $\Theta(1)$.

Hence:

$$T(n) = \Theta(1) + 2T(n/2) + \Theta(n) + \Theta(1)$$

= $2T(n/2) + \Theta(n)$

The same complexity as MERGE-SORT!

Algorithms for matrix multiplication

INPUT: two square $n \times n$ -matrices $A = (a_{ij})$ and $B = (b_{ij})$ OUTPUT: a square $n \times n$ -matrix $C = A \cdot B$, $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ There are n^2 entries in C, each is computed as a sum of n values.

Procedure Square-matrix-multiply (A, B)

```
1 n = A.rows

2 Let C be a new n \times n-matrix

3 for i = 1 to n do

4 for j = 1 to n do

5 c_{ij} = 0

6 for k = 1 to n do

7 c_{ij} = c_{ij} + a_{ik}b_{kj}

8 return C
```

Running time is $\Theta(n^3)$.

We look for $o(n^3)$ algorithm (much faster than n^3 for big values of n).

Divide-and-conquer matrix multiplication

▶ Divide A and B:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

▶ Then C is computed as:

$$C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

- $C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$ $C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$ $C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$ $C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$
- ► Computing C_{ij} takes computing two multiplications of $n/2 \times n/2$ -matrices.

Pseudocode

Procedure Square-matrix-multiply-recursive(A, B)

```
1 n = A.rows
 2 Let C be a new n \times n-matrix
 3 if n == 1 then
   c_{11} = a_{11} \cdot b_{11}
 5 else
       partition A, B, C as explained above
6
       C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11}) +
        SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
       C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12}) +
8
        Square-matrix-multiply-recursive (A_{12}, B_{22})
       C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11}) +
9
        Square-matrix-multiply-recursive (A_{22}, B_{21})
       C_{22} = \text{Square-matrix-multiply-recursive}(A_{21}, B_{12}) +
10
        Square-matrix-multiply-recursive (A_{22}, B_{22})
```

11 return C

Running time of recursive matrix multiplication

Define a recurrence for the algorithm

- ▶ line 4 (base case) $\Theta(1)$ (The remaining cases are for n > 1)
- ▶ line 6: copying the matices would take $\Theta(n^2)$. One can divide them by redefining indexes (using pointers) in $\Theta(1)$.
- ▶ lines 7 10: $8 \cdot T(n/2)$ plus time for 4 additions. Addition takes $4\Theta((n/2)^2) = 4\Theta(n^2) = \Theta(n^2)$

Hence the recurrence is:

$$T(n) = \Theta(1) + 8T(n/2) + \Theta(n^2)$$
$$= 8 \cdot T(n/2) + \Theta(n^2)$$

We will see that the solution for such recurrence is $\Theta(n^3)$

Strassen's method for multiplication of matrices

Try to replace multiplications with additions.

Idea

- ▶ Divide the input matrices A, B as before in $\Theta(1)$ time.
- ► Create 10 $n/2 \times n/2$ -matrices: S_1, S_2, \dots, S_{10} using only addition on the small matrices. $-\Theta(n^2)$
- ▶ recursively call the procedure to obtain 7 $n/2 \times n/2$ -matrices: P_1, P_2, \dots, P_7
- ▶ Use addition on the obtained matrices to obtain C_{11} , C_{12} , C_{21} , C_{22} . $-\Theta(n^2)$.

Recurrence:

$$T(n) = egin{cases} \Theta(1) & ext{if} \ 7T(n/2) + \Theta(n^2) & ext{if } n > 1 \end{cases}$$

$$T(n) = \Theta(n^{\lg 7})$$

Additional matrices

$$\begin{array}{c|cccc} S_1 = B_{12} - B_{22} & & P_1 = A_{11} \cdot S_1 \\ S_2 = A_{11} + A_{12} & & P_2 = S_2 \cdot B_{22} \\ S_3 = A_{21} + A_{22} & & P_3 = S_3 \cdot B_{11} \\ S_4 = B_{21} - B_{11} & & P_4 = A_{22} \cdot S_4 \\ S_5 = A_{11} + A_{22} & & P_5 = S_5 \cdot S_6 \\ S_6 = B_{11} + B_{22} & & P_6 = S_7 \cdot S_8 \\ S_7 = A_{12} - A_{22} & & P_7 = S_7 \cdot S_8 \\ S_8 = B_{21} + B_{22} & & S_9 = A_{11} - A_{21} \\ S_{10} = B_{11} + B_{12} & & & \end{array}$$

Computing C

$$C_{11} = P_5 + P_4 - P_2 + P_6,$$

 $C_{12} = P_1 + P_2, C_{21} = P_3 + P_4,$
 $C_{22} = P_5 + P_1 - P_3 - P_7$