4.2 Error Correction Coding

Motivation

In the set of all multisymbol sequences S.

•
$$\mathbf{w}_{m_a}, \mathbf{w}_{m_b}, m_a, m_b \in \mathcal{S}, a \neq b$$
 may be similar.

Sample

•
$$L = 3, |\mathcal{A}| = 4, \mathcal{W}_{\mathcal{AL}}[i, j] \cdot \mathcal{W}_{\mathcal{AL}}[i, j] = N$$

•
$$\mathbf{w}_{312} = \mathcal{W}_{AL}[1,3] + \mathcal{W}_{AL}[2,1] + \mathcal{W}_{AL}[3,2].$$

$$\bullet \mathbf{w}_{314} = \mathcal{W}_{\mathcal{AL}}[1,3] + \mathcal{W}_{\mathcal{AL}}[2,1] + \mathcal{W}_{\mathcal{AL}}[3,4].$$

Inner product:

$$\begin{split} \mathcal{W}_{\mathcal{A}\mathcal{L}}[i,a] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[j,b] &= 0, \quad i \neq j \\ \Longrightarrow \quad \mathbf{w}_{312} \cdot \mathbf{w}_{314} &= \mathcal{W}_{\mathcal{A}\mathcal{L}}[1,3] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[1,3] \\ &+ \mathcal{W}_{\mathcal{A}\mathcal{L}}[2,1] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[2,1] \\ &+ \mathcal{W}_{\mathcal{A}\mathcal{L}}[3,2] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[3,4] \\ &> N+N-N=N \end{split}$$

 $\bullet \ h$ different symbols in a length L sequence

$$(L-2h)N$$
.

The Idea of Error Correction Codes

Decompose all possible sequences \mathcal{S} into $\mathcal{S}_c \cup \bar{\mathcal{S}}_c$.

- S_c : Code words
 - Messages to encode.
 - Well separate to each other.
- \bar{S}_c : Corrupted code words
 - Polluted messages.
 - Associated with the closest code word.

Error Correction Code (ECC)

To preserve the capacity

- Increase the length of sequence.
- Expand the alphabet.

Increase the Length of Sequence

Sample

- 4-bits message set M
 - Length 4 binary sequence, 16 messages.
- \circ 7-bits word space S
 - Length 7 binary sequence, 128 words.
 - $|S_c| = |M| = 16$.
 - $a, b \in S_c, a \neq b$ have at less 3 different bits.
 - Why 3? Flip one bit for each of the two.
 - Decode $s \in \mathcal{S}$: find $c \in \mathcal{S}_c$ has at most one different bit.

Question: ECC

What is the minimal length of a sequence that can be used as ECC for a length L binary sequence with h bit error tolerance.

Performance

- Without ECC
 - Length 4, 1 bit difference for different message.
 - Min inner product: $N(4-2\times 1)=2N$.
- With ECC
 - Length 7, at least 3 bit differences for different message.
 - Min inner product: $N(7-2\times 3)=N$.

Expand the Alphabet

From $|\mathcal{A}| = 2$ to $|\mathcal{A}'| = 4$.

- Less typical.
- Equivalent to increase length in capacity.
- But different in modulation.

Trellis Codes

 $1010 \Rightarrow 0001\ 1100\ 1111\ 1110$

Modulation

- ullet Increase length to 4L.
- Expand the alphabet to contain $2^4 = 16$ symbols.

Viterbi Decoding

- A greedy method to find most closest code.
- Based on Trellis diagram.

Performance of E_TRELLIS_8/D_TRELLIS_8

The same to E_SIMPLE_8/D_SIMPLE_8:

- 8-bit message instead of 4-bit.
 - Pad two more zero at the end: 10-bit indeed.
 - More redundancy: a priory for accuracy.
- 6 integers in each of 2000 images.

Much better accuracy

• 1 out of 12000 is wrong.

4.3 Detecting Multisymbol Watermarks

False Positive

If there is no watermark

- Direct message encoding
 - The most likely one is still poor in correction.
- Multisymbol system:
 - The corrections for all the symbols are not good enough.
 - How to define "good".

Valid Messages

An intelligible message or a garbage.

- Checksum for verification
 - 16-bits message: m.
 - 9-bits checksum: c = m[1:8] + m[9:16].
 - ullet 25-bits watermarking: (m,c).
- Detector
 - ullet Extractor 25-bits watermarking (m,c).
 - Compare c and m[1:8] + m[9:16].
- False positive probability: $P_{fp} = \frac{1}{2^9}$.

Individual Symbols 1

All symbols are reliable (high correlated).

Watermark presence.

2-bit system in linear correlation.

Individual Symbols 2

False positive probability

- Single reference mark: P_{fp0} .
- In each index/position/order
 - ullet If one mark in ${\cal A}$

$$P_{fp1} \approx |\mathcal{A}| P_{fp0}$$
.

- ullet For the whole length L sequence.
 - All of them is high

$$P_{fp} = (P_{fp1})^L \approx (|\mathcal{A}|P_{fp0})^L.$$

Normalized Correlation 1

- Multiple-symbol embedding
 - \bullet \mathbf{w}_{ri} orthogonal to each other and unit.

$$\mathbf{v}_L = \mathbf{v}_o + \sum_{i=1}^L \mathbf{w}_{ri}, \quad \|\mathbf{v}_L\| \approx \sqrt{L}.$$

ullet Linear correlation: independent of L

$$z_{lc}(\mathbf{v}_L, \mathbf{w}_{r1}) = \mathbf{v}_o \cdot \mathbf{w}_{r1} + \mathbf{w}_{r1} \cdot \mathbf{w}_{r1} = \varepsilon + 1.$$

ullet Normalized correlation: difficult for larger L

$$z_{nc}(\mathbf{v}_L, \mathbf{w}_{r1}) = \frac{\mathbf{v}_L}{\|\mathbf{v}_L\|} \cdot \mathbf{w}_{r1} = \frac{\varepsilon + 1}{\sqrt{L}}.$$

Normalized Correlation 2

Less distinguishable.

- Large threshold: none is correlated enough, no symbol found.
- Small threshold: High false positive probability.

Geometric Interpretation

Large threshold: no overlap for the cones.

No detectable 2-bit message.

Reencode

- ① Extract message m.
- 2 Reencode m into mark \mathbf{v}_m .
- \odot Test the presence of \mathbf{v}_m

False Positive Probability

When the detection regions for the different messages do not overlap,

$$P_{fp} = |\mathcal{M}|P_{fp0}.$$

E_BLK_8/D_BLK_8

8-bit message:

- Trellis code with two padding 0 at the end.
 - A sequence of 10 symbols drawn from a 16-symbol alphabet.
- Reference marks:
 - 8 × 8 (block): low dimensional mark space.
 - So choose seed to reduce max correlation (0.73).
- Embedding strength $\alpha = 2$.
- $\tau_{cc} = 0.65$: false positive probability 10^{-6} .

Performance

- 2000 unwatermarked images (dashed line).
 - No false positive found.
- 12000 unwatermarked images (solid line).
 - 6 messages ×2000 images.
 - 109 fail: effectiveness 99%.

Project: System 6

E_BLK_8/D_BLK_8

- marking space: 8 × 8 block
- 8-bit message.
- ECC: hamming or optional.
- Reencode check.

Presentation: 7.6 Analysis of Normalized Correlation

Approximate Gaussian Method

- False Positive Analysis
- False Negative Analysis