Chapter 3

Model Fitting

Semester I, 2022-2023

Date: 24 November, 2022

- 3.1 Fitting Models to Data Graphically
- 3.2 Analytic Methods of Model Fitting

Exercise in Class

1. The following table gives the elongation e in inches per inch (in./in.) for a given stress S on a steel wire measured in pounds per square inch (1b/in.²). Test the model $e = c_1 S$ by plotting the data. Estimate c_1 graphically.

2. In the following data, x is the diameter of a ponderosa pine in inches measured at breast height and y is a measure of volume number of board feet divided by 10. Test the model $y = ax^b$ by plotting the transformed data. If the model seem reasonable, estimate the parameters a and b of the model graphically.

3. The following data represent (hypothetical) energy consumption normalized to the year 1900. Plot the data. Test the model $Q = ae^{bx}$ by plotting the transformed data. Estimate the parameters of the model graphically.

X	Year	
0	1900	1.00
10	1910	2.01
20	1920	4.06
30	1930	8.17
40	1940	16.44
50	1950	33.12
60	1960	66.69
70	1970	134.29
80	1980	270.43
90	1990	544.57
100	2000	1096.63

- 4. Using elementary calculus, show that the minimum and maximum points for y = f(x) occur among the minimum and maximum point for $y = f^2(x)$. Assuming $f(x) \ge 0$, why can we minimize f(x) by minimizing $f^2(x)$?
- 5. For each of the following data sets, formulate the mathematical model that minimizes the largest deviation between the data and the line y = ax + b. If a computer is available, solve for the estimates of a and b.

h	\mathbf{x}	29.1	$\frac{48.2}{0.0821}$	72.7	92.0	118	140	165	190
ь.	$\overline{\mathbf{y}}$	0.0493	0.0821	0.123	0.154	0.197	0.234	0.274	0.328

c	\mathbf{x}	2.5	3.0	3.5	4.0	$\frac{4.5}{6.26}$	5.0	5.5
С.	v	4.32	4.83	5.27	5.74	6.26	6.79	7.23

6. For the following data, formulate the mathematical model that minimizes the largeast deviation between the data and the model $y = c_1x^2 + c_2x + c_3$. If a computer is available, solve for the estimates of c_1 , c_2 and c_3 .

Semester I, 2022-2023

Deadline: 01 December, 2022.

Date: 24 November, 2022

\mathbf{X}	0.1	0.2	0.3	0.4	0.5
У	0.06	0.12	0.36	0.65	0.95

Assignment

1. The following data represent the growth of a population of fruit flies over a 6-week period. Test the following models by plotting an appropriate set of data. Estimate the parameters of the following model.

a.
$$P = c_1 t$$

b. $P = ae^{bt}$

t (days)	7	14	21	28	35	42
P (number of observed flies)	8	41	133	250	280	297

- 2. In 1610 the german astronomer Johannes Kepler became direction of the Prague Observatory. Kepler had been helping Tycho Brahe in collecting 13years of observation on the relative motion of the planet Mars. By 1609 Kepler had formulated his first two laws:
 - i Each planet moves on an ellipse with the sun at one focus.
- ii For each planet, the line from the sun to the planet sweeps out equal areas in equal times. Kepler spent many years verifying these laws and formulating a third law, which relates the planets' orbital periods and mean distances from the sun.

a. Plot the period time T versus the mean distance r using the following updated observational data.

planet	$\operatorname{Period}(\operatorname{day})$	Mean distance from the sun (millions of kilometers)
Mercury	88	57.9
Venus	225	108.2
Earth	365	149.6
Mars	687	227.9
${f Jupiter}$	$4,\!329$	778.1
Saturn	10,753	1428.2
Uranus	30,660	2837.9
Neptune	$60,\!150$	4488.9

b. Assuming a relationship of the form

$$T = cr^a$$

determine the parameters C and a by plotting $\ln T$ versus $\ln r$. Does the model seem reasonable? Try to formulate Kepler's third law.

Semester I, 2022-2023

Date: 24 November, 2022

3. For the following data, formulate the mathematical model that minimizes the largest deviation bewteen the data and the model $P = ae^{bx}$. If a computer is available, solve for the estimates of a and b.

4. Suppose the variable x_1 can assume any real value. Show that the following substitution using nonnegative variable x_2 and x_3 permits x_1 to assume any real value.

$$x_1 = x_2 - x_3$$
, where x_1 is unconstrained

and

$$x_2 \ge 0$$
 and $x_3 \ge 0$.

Thus, if a computer code allows only nonnegative variable, the substitution allows for solving the linear program in the variable x_2 and x_3 and then recovering the value of the variable x_1 .