Title for Assignment

SUBJ1234 ASSIGNMENT X

Tara Bartlett 450198331

Abstract

TThis is my paragprah. I like writing paragraphs. This is my paragprah. I like writing paragraphs.

1 this is my section

1.1 this is a subsetcion

his is my paragprah. I like writing paragraphs.

Contents

1	Introduction 1.1 Aim	1 1
2	Literature Review 2.1 Inserting a figure 2.2 Referencing ¹ 2.3 Table	2 2 2 4
3	Conclusion	5
\mathbf{R}	eferences	i
4	Appendix 4.1 Matlab Code	ii ii

- 2 Introduction
- 2.1 Aim

3 Literature Review

Before starting the project, it was important to comprehensively understand what issues are being faced by systems controlled in similar ways to AIRUS, and what solutions are already available.

3.1 Inserting a figure

Figure 1.

Pilot view, lag = 300ms

Figure 1: Example Figure

3.2 Referencing¹

3.3 Table

Table 1 is a table. Use latex table generator

Variable Name	Definition	Initialization	Application
dtTelem	Time between telemetry	User input to	Compensated for in the prediction,
	being sent and received	parent file	used to calculate expected current
			position
dt Control Received	Time between control being	User input to	Used in the prediction to find position
	sent and received	parent file	of green dot, represents the lag in the
			system
dtControlActed	Time taken for commanded	User input to	The reciprocal of this is used as the
	velocity to be implemented,	parent file	proportional gain constant in the PD
	once received		controller
dtEuler	Shorter time step used for	Defined in	Used to iterate through the
	Euler integration in predictor	predictor	displacement and velocity prediction
			calculations in each loop of the system
$dt_{-}i$	Time taken for each iteration	Calculated in	Represents the time taken for each
		parent file	iteration in the simulation, used in
			many functions in the system to
			find the number of iterations that
			corresponds to a given delay
time Taken	Total time taken for the red	Calculated in	The total time taken for the pilot
	dot to reach the end of the	parent file	to move the red dot from the initial
	plot		position to the final position

Table 1: Definition of Time Parameters

3.4 subfigures

Figure 2: Example subfigures

4 Conclusion

References

[1] Abdullah Akce, Miles Johnson, Timothy Bretl, "Remote Teleoperation of an Unmanned Aircraft with a Brain-Machine Interface: Theory and Preliminary Results," Conference Paper in Proceedings - IEEE International Conference on Robotics and Automation, 2010.

5 Appendix

5.1 Matlab Code

Figure Formatting

```
1 % FORMAT 2D FIGURE: GIVES FIGURE LATEX FORMATTING
2 % Author: Tara Bartlett 450198331
3 % Input: handles of figure, xlabel and ylabel (and legend)
5 function formatFigure(figHandle, XLABEL, YLABEL, varargin)
6 figure(figHandle);
7 grid on;
s fontsize = 16;
9 xHandle = xlabel(XLABEL);
yHandle = ylabel(YLABEL);
set(xHandle, 'Interpreter', 'Latex', 'FontSize', fontsize);
set(yHandle, 'Interpreter', 'Latex', 'FontSize', fontsize);
13 set(gca,'TickLabelInterpreter','latex','FontSize',fontsize,'LineWidth',1.5);
14
15 if ¬isempty(varargin)
        \verb|set(varargin{1}|, \verb|'Interpreter', \verb|'latex', \verb|'Location', \verb|'best', \verb|'FontSize', fontsize||;||\\
16
17 end
18 end
```