1. The table below shows a data set **Z** with 10 objects described by 4 features.

Object	x_1	x_2	<i>x</i> ₃	χ_4	Label
1	5	2	1	4	3
2	6	1	4	0	2
3	-5	1	-4	7	2
4	0	1	3	2	2
5	6	2	1	-5	1
6	4	2	1	7	1
7	-6	3	3	1	2
8	0	2	1	8	3
9	-4	11	5	2	2
10	4	7	2	2	3

(a) Regarding the notations introduced in class, what are n, c and N? (\clubsuit 3)

n = 4 (dimensionality of the feature space)

c = 3 (number of classes)

N = 10 (number of objects in **Z**)

(b) Consider a classifier *D*, which consists of the following set of discriminant functions

$$g_1(\mathbf{x}) = x_1 + x_2$$

$$g_2(\mathbf{x}) = x_2 + 2x_3$$

$$g_3(\mathbf{x}) = 3x_4 - x_3$$

Run D on \mathbb{Z} and give the (guessed) labels of all the objects. ($\clubsuit 3$)

Object	$g_1(\mathbf{x})$	$g_2(\mathbf{x})$	$g_3(\mathbf{x})$	Maximum	Guessed label	True label
1	7	4	11	11	3	3
2	7	9	-4	9	2	2
3	-4	-7	25	25	3	2
4	1	7	3	7	2	2
5	8	4	-16	8	1	1
6	6	4	20	20	3	1
7	-3	9	0	9	2	2
8	2	4	23	23	3	3
9	7	21	1	21	2	2
10	11	11	4	11	1	3

(c) Give the confusion matrix of D and calculate the error of D. (.3)

		Guessed labels			
		1	2	3	
True	1	1	0	1	
labels	2	0	4	1	
	3	1	0	2	

Error
$$(D) = 3/10 = 0.3$$
.

(d) Estimate the prior probabilities for the classes from **Z**. (1)

$$P(\text{class 1}) = 2/10 = 0.2$$

$$P(\text{class 2}) = 5/10 = \mathbf{0.5}$$

$$P(class 3) = 3/10 = 0.3$$

2. Consider the classification problem shown in the figure below. The data is depicted as points and the (true) class labels are shown by different markers: class 1 with dots and class 2 with crosses. The object numbers are given next to the markers. Your classifier, *D*, operates in the following way:

for a point \mathbf{x} that you want to classify, find the nearest point in \mathbf{Z} . Assign \mathbf{x} to the class of its nearest neighbour (this is called *the nearest neighbour classifier*, more on it – later on the modules). In the case of a tie, resolve in favour of the class with the lower number (class 1 here).

(a) Find the leave-one-out error of D. ($\clubsuit 3$)

Object	1	2	3	4	5	6	7
Nearest neighbour	2	1,3	4	3	6	5	6
Error?	Y	Y	N	N	N	N	Y

Error
$$(D) = 3/7 = 0.4286$$
.

(b) Consider the following experiment. Stage 1: Objects 1,2,3 and 4 are used for "training" (they form the data set from which we select the nearest neighbour) and objects 5,6 and 7 are used for testing. Stage 2: Objects 1,3,5,7 are used for training and objects 2,4,6 are used for testing. Stage 3: objects 3,4,5 and 6 are used for training and objects 1,2, and 7 are used for testing. The errors on the three testing sets are averaged to obtain an estimate of the error of *D*. Find this estimate. (\$4)

Stage 1

Object	5	6	7
Nearest neighbour	4	4	4
Error?	Y	Y	N

Error = 2/3

Stage 2

Object	2	4	6
Nearest neighbour	1,3	3	5
Error?	Y	N	N

Error = 1/3

Stage 3

Object	1	2	7
Nearest neighbour	3	3	6
Error?	N	Y	Y

Error = 2/3

Error
$$(D) = 1/3 (2/3 + 1/3 + 2/3) = 5/9 = 0.5556$$

(c) Which training-testing protocol have we used in (b)? (\$\ddot*1)