Title

D. Zack Garza

Monday 10th August, 2020

Contents

1	Modules		
	1.1	Genera	al Questions
			Fall 2019 Final #2
			Spring 2018 #6
		1.1.3	Fall 2018 #6 ×

1 Modules

1.1 General Questions

1.1.1 Fall 2019 Final #2

Consider the \mathbb{Z} -submodule N of \mathbb{Z}^3 spanned by $f_1 = [-1, 0, 1], f_2 = [2, -3, 1], f_3 = [0, 3, 1], f_4 = [3, 1, 5]$. Find a basis for N and describe \mathbb{Z}^3/N .

1.1.2 Spring 2018 #6.

Let

$$M = \{(w, x, y, z) \in \mathbb{Z}^4 \mid w + x + y + z \in 2\mathbb{Z}\},\$$

and

$$N = \{(w, x, y, z) \in \mathbb{Z}^4 \mid 4 \mid (w - x), 4 \mid (x - y), 4 \mid (y - z)\}.$$

- (a) Show that N is a \mathbb{Z} -submodule of M .
- (b) Find vectors $u_1, u_2, u_3, u_4 \in \mathbb{Z}^4$ and integers d_1, d_2, d_3, d_4 such that

$$\{u_1, u_2, u_3, u_4\}$$

is a free basis for M, and

$$\{d_1u_1, d_2u_2, d_3u_3, d_4u_4\}$$

is a free basis for N .

(c) Use the previous part to describe M/N as a direct sum of cyclic \mathbb{Z} -modules.

1.1.3 Fall 2018 #6 ⋈

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with $N \subsetneq P \subsetneq M$.

- (a) Show that an R-submodule N of M is maximal $\iff M/N$ is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
- (b) Let M be a \mathbb{Z} -module. Show that a \mathbb{Z} -submodule N of M is maximal $\iff \#M/N$ is a prime number.
- (c) Let M be the \mathbb{Z} -module of all roots of unity in \mathbb{C} under multiplication. Show that there is no maximal \mathbb{Z} -submodule of M.

:::{.solution}