

Universitatea Națională de Știință și Tehnologie POLITEHNICA București

Facultatea E.T.T.I.

Anul universitar 2024-2025

Project 1

Proiectarea și realizarea unui preamplifiactor audio cu amplificarea controlată de tensiune

Coordonatori științifici:

Prof. dr. ing. Dragos Dobrescu

Ş.l. dr. ing. Mădălin Moise

Student: Bardasu Emilian Andrei

Grupa: 433B

N=1

CUPRINS

1. Introducere	3
1.1. Amplificatorul audio	3
2. Cerinte de proiectare	4
2.1. Descrierea temei	
2.2. Realizarea în tehnologie SMT & PCB	4
3. Date pentru proiectarea circuitului	6
3.1. Schema bloc	
3.2. Schema electrica	6
3.3. Puncte statice de functionare	7
4. Simulare	9
4.1. PSF in OrCAD	9
4.2. Simularea montajului electric	11
5. Ansamblare PCB	12
6. Bill of materials	17
7. Concluzii	18
8. Bibliografie	19

1. Introducere

1.1. Amplificatorul audio

Un amplificator este un dispozitiv utilizat pentru a crește amplitudinea unui semnal, păstrând intacte alți parametri ai acestuia, cum ar fi frecvența și forma undei. Amplificatoarele sunt printre cele mai comune circuite în electronică, având un rol esențial într-o gamă largă de aplicații și sisteme electronice.

Amplificatoarele de tensiune audio sunt special concepute pentru a amplifica semnalele slabe provenite de la surse precum microfoane, pickup-uri pentru instrumente muzicale sau discuri. Acestea pot include circuite suplimentare care permit funcții avansate, cum ar fi corectarea tonului, egalizarea nivelurilor semnalelor sau mixarea intrărilor multiple. În general, ele se caracterizează printrun câștig ridicat de tensiune și o rezistență de ieșire medie sau ridicată, fiind indispensabile în sistemele audio moderne.

Un amplificator audio parcurge urmatoarele etape de functionare:

- 1. Recepția semnalului de intrare
- 2. Amplificarea semnalului
- 3. Eliminarea zgomotului
- 4. Iesirea semnalului amplificat

Semnalul audio preluat de amplificator de la dispozitivele sursă, precum instrumentele muzicale, laptopurile sau casetofoanele, are o putere redusă. Circuitul de ieșire al amplificatorului procesează acest semnal slab și generează unul nou, cu o putere mult mai mare, care este transmis către boxe pentru redare.

Boxele joacă un rol crucial în lanțul audio, transformând semnalul electric amplificat în unde sonore și oferind calitatea audio percepută de ascultători.

Semnalul de intrare modulează circuitele amplificatorului, care eliberează energia acumulată de condensatori și transformator, asigurând astfel o amplificare eficientă și consistentă a sunetului.

2. Cerinte de proiectare

2.1 <u>Descrierea</u> temei

Să se proiecteze și să se realizeze practic un preamplificator de audiofrecvență cu control în tensiune având următoarele caracteristici:

- Tensiunea de alimentare unipolară (VCC=11V) sau bipolară (VCC=11 V, VEE=-VCC). Semnalizarea prezenței tensiunii cu LED.
- Tensiune de intrare sinusoidală cu amplitudinea cuprinsă între 0 și 10 mV.
- Frecvența semnalului de intrare de 1 kHz.
- Tensiunea continuă de control a amplificării cuprinsă între 0 și 1 V.
- Amplificarea în tensiune controlată cuprinsă între 1 și 10.
- Rezistența de sarcină 600Ω .

2.2 Realizarea în tehnologie SMT & PCB

Pentru tehnologia SMT & PCB, circuitul va fi realizat sub forma unui modul electronic a cărui structură de interconectare (PCB) va respecta următoarele cerințe de proiectare:

- Dimensiunile PCB: 40mm x 40mm;
- Material FR4, dublu strat/ grosimea foliei de cupru 18 μm, grosimea plăcii 1,5 mm;
- Componente pasive SMD chip 0805;
- Se pot folosi numai tranzistoare bipolare și TEC-MOS în capsule SMD (SOT 23, D-PAK). Tranzistoarele TEC-J pot fi utilizate numai dacă se justifică necesitatea acestora
- Puncte de test: pătrate, maxim 5 justificate de planul de testare
- Originea (punctul de coordonate (0,0)) va fi plasat în colțul din stângajos al plăcii de cablaj imprimat, astfel toate elementele proiectului vor avea coordonate pozitive
- Față de marginea plăcii, se va păstra o gardare ("clearance") de 1,2 mm; aici nu vor fi plasate componente, trasee, texte, etc.

- Placa va fi prevăzută cu 2 markeri fiduciali globali pe layerul TOP, la distanța de 200 mil față de marginea plăcii, plasați convenabil; acești markeri vor exista și pe layerul Solder Paste Top (suprapuși peste cei de pe TOP); vor fi utilizați în momentul alinierii șablonului cu placa. Marcajul fiducial va fi un cerc de diametru minim 1mm pe layerul respectiv, aflat într-un spațiu circular de diametru minim dublu față de cercul interior, în care nu se va afla nimic pe nici un layer
- Se va acorda o atenție sporită layer-ului Mască de inscripționare (Silk Screen); acesta nu trebuie să se regăsească pe pad-urile componentelor;
- Se va genera un nou layer neelectric, MECANIC. Acesta va conţine: conturul plăcii, desenul de găurire ("drill drawing") şi tabelul de găurire ("drill chart/table", "drill legend"), o secţiune transversală prin circuitul imprimat proiectat ("layer stack-up") şi informaţiile mecanice necesare pentru fabricaţia PCB;
- Cotele de gabarit/dimensiunile plăcii nu trebuie să se regăsească pe layerul electric TOP; acestea, dacă există, se vor plasa pe un layer neelectric mecanic;
- Placa va fi prevăzută cu elementele de identificare ale proiectantului (nume, prenume, grupă, PDCE I 2024-2025).

Pentru traseele de interconectare se dau următoarele lățimi:

- Curent de 1A 30 mil;
- Curent de sute de mA 20 mil;
- Semnal 16 mil.

Spațierea, în toate cazurile, va fi de 12 mil.

3. Date pentru proiectarea circuitului

3.1. Schema bloc

Figura 1: Schema bloc a circuitului

3.2. Schema electrica

Figura 2: Schema electrica a circuitului

3.3. Puncte statice de functionare

```
NBES+ NEB VA = 5 ND = 0 ND = 0'B
                                 VLED=3V
Vee'= 1, R2+2 Vo+12 R9-V3
                                   Vee = 11V
 8 = 11103+12+12.103 8
                                   ILED=26maA
 Amult = 21 = 11 C= Am8141 = 21+11 C=
NOW = IN BS+ NBES+ NEGUL- NOC
                                        Condutie RAN:
VE ent = 16-0,6-4,4=8V
                                         VCE > VEB
VOE = VCES+ VEGUY - VCG => VCES= BV
VEB18 = 0, GV
VEB16-VB618=0=> VB618=VEB16=0,6
VEG = VIS V
1521018=14=0,67mA
Voe'= iPA + VCEAG + VD+12 Rg - Vce
VEERG= 16-112-714=7,4V
16 46 = 016 = 44 4 W Y SIEVE
VE = leag RA+ VECAG+ VCE8 - VEC
16 = 0,6 + 7,4 + VCE8 => VCE8 =8V
 108=1EAG=NAYmA
- Vee'= - VBE8+ VCE9- V3' => VCE9= VBE8=0,6V
 VCEAO=VCEQ= QGV
Vee = VEC18+ 14R4-Vee => 14=16-112.10=0,67m2 A
Vee= leas (Ree+RA8) + 14R4 - Vee
1015= 1,2 = 3,9mpA
Vei= 1815 ( R20+R18) + VBE 13 + VEE15= > VEE15= 8-0,6-1,1
VEE15= 6,3V
VE= Il ROOTRAS) + VCEAS + VCEA3 + VCEQ - VCE
=> VEES VCE13=16-6,3-9,6-3,8,302.10-3
        VCE13= OV
                             1013 = 1014 = 1015 = 1,9 mpA
        VCEA3 = VCEA4 = 8V
```



```
PQ16 = VCE16. 1e16 = 7,4.11, 7.10 = 86,58 mW

PQ18 = 1,2.0,67.10 = 0,804 mW

PQ15 = 6,3.3,8.10 = 21,7 mW

PQ13 = PQ14 = 15,2 mW

PQ13 = PQ14 = 15,2 mW

PR2 = Ril = 103.7,4.10 = 4,4 mW

PR1 = 51.11 = 103.7,4.10 = 6,881 mW

PR1 = 1618. Ry = 22.103.0,67 10 = 9,84 mW

PR20 = PM 1615? R20 = 3,8.10 82 = 1,247 mW

PR18 = 3,8 . 10 . 220 = 3,34 mW

RLED = VLED: 1150 A 1514 R

TLED

PRLED = RIP = 10514 R
```

CS Scanned with CamScanner

4.Simulare

4.1. PSF in OrCAD

Această simulare are scopul de a determina punctul static de funcționare al tranzistoarelor și de a verifica curenții ce circulă prin componente, precum și puterile acestora, pentru a asigura că nu depășesc valoarea maximă admisă.

Figura 5: Tensiuni in OrCAD

Figura 6: Intensitati in OrCAD

Figura 7: Puteri in OrCAD

4.2. Simularea montajului electric

Figura 6: Simularea amplificatorului cu tensiune controlata de 0V

Figura 7: Simularea amplificatorului cu tensiune controlata de 1V

5. Ansamblare PCB

Pentru realizarea structurii PCB a preamplificatorului audio este necesara trimiterea la fabrica a fisierelor Gerber, care contin datele de fabricatie necesare pentru ansamblarea sa.

Layerele care alcatuiesc fisierele Gerber sunt urmatoarele:

1) BO

2) BOT

3) TOP

4) SMBOT

5) SMTOP

6) SSTOP

7) SPTOP

8) DRILL

9) FAB

10)TOATE LAYERELE

6. Bill of materials

Nr. Crt.	Nume	Catalog	Cod	Nume	Prod	Clasă	Qty fix	Qty final	Qty min	Descriere	Distribuitor
	Hume	cutaiog	distrib	prod	1100	Ciusu	Qty lix	Qty iiiui	Qty min	Rezistor	
5	10	(LINK)	SMD0805- 10R-5%	0805S8J01 00T5E	ROYAL OHM	rezistor			2	SMD, chip, 0805, 10Ω, ±5%, 0.125W	TME România
6	22	(LINK)	SMD0805- 22R-1%	0805S8F22 0JT5E	ROYAL OHM	rezistor			1	Rezistor SMD, chip, 0805, 22Ω, ±1%, 0.125W	TME România
8	51	(LINK)	SMD0805- 51R-5%	0805S8J05 10T5E	ROYAL OHM	rezistor			1	Rezistor SMD, chip, 0805, 51Ω, ±5%, 0.125W	TME România
9	68	(LINK)	SMD0805- 68R-1%	0805S8F68 0JT5E	ROYAL OHM	rezistor			1	Rezistor SMD, chip, 0805, 68Ω, ±1%, 0.125W	TME România
10	82	(LINK)	SMD0805- 82R-5%	WF08P820J TL	WALSIN	rezistor			1	Rezistor SMD, chip, 0805, 82Ω, ±5%, 0.125W	TME România
13	220	(LINK)	SMD0805- 220R-5%	0805S8J02 21T5E	ROYAL OHM	rezistor			1	Rezistor SMD, chip, 0805, 220Ω, ±5%, 0.125W	TME România
14	330	(LINK)	SMD0805- 330R-5%	0805S8J03 31T5E	ROYAL OHM	rezistor			2	Rezistor SMD, chip, 0805, 330Ω, ±5%, 0.125W	TME România
16	510	(LINK)	SMD0805- 510R-5%	0805S8J05 11T5E	YAGEO	rezistor			1	Rezistor SMD, chip, 0805, 510Ω, ±5%, 0.125W	TME România
20	1k	(LINK)	SMD0805- 1K-5%	0805S8J01 02T5E	ROYAL OHM	rezistor			4	Rezistor SMD, chip, 0805, 1kΩ, ±5%, 0.125W	TME România
33	10k	(LINK)	SMD0805- 10K-5%	0805S8J01 03T5F	ROYAL OHM	rezistor			2	Rezistor SMD, chip, 0805, 10kΩ,	TME România
	1			ı —		1		1	1	Rezistor	
35	22k	(LINK)	SMD0805- 22K-5%	0805S8J02 23T5E	ROYAL OHM	rezistor			1	SMD, chip, 0805, 22kΩ, ±5%, 0.125W	TME România
59	47pF	(LINK)	CL21C470J BANNNC	CL21C470J BANNNC	SAMSUNG	condensato r			1	Condensato r: ceramic; MLCC; 47pF; 50V; C0G; ±5%; SMD; 0805; - 55÷125°C	TME România
77	4148	(LINK)	1N4148- 0805	CD4148WS(0805C)	DC Component s	diodă pn			2	Diodă comutație, SMD, 0805, 300mA, 100V	TME România
78	LED	(LINK)	OF- SMD2012B	OF- SMD2012B	OPTOFLAS H	LED			2	LED albastru, SMD, 0805, 150- 200mcd, 476nm, 120°	TME România
86	PNP	(LINK)	BC856B	BC856B	DIOTEC	tranzistor bipolar			6	Tranzistor bipolar PNP, SMD, SOT23, 80V, 100mA	TME România
87	NPN	(LINK)	BC846B	BC846B	DIOTEC	tranzistor bipolar			5	Tranzistor bipolar NPN, SMD, SOT23, 65V, 100mA	TME România

7. Concluzii

Preamplificatorul audio a demonstrat o performanță consistentă, asigurând o sursă de semnal stabilă și ușor de controlat. Printre avantajele sale se remarcă eficiența în procesarea și generarea sunetelor audio, oferind o soluție economică comparativ cu alternativele comerciale, fără a face compromisuri în privința calității. De asemenea, flexibilitatea în reglarea tensiunii îi ofera o gama larga de utilitati in anumite domenii.

Totuși, există câteva dezavantaje care merită luate în considerare. Complexitatea construcției poate reprezenta un obstacol pentru utilizatorii cu mai puțină experiență în electronică, iar cerințele legate de cunoștințe tehnice avansate pot limita accesibilitatea acestui proiect.

În concluzie, acest proiect a reușit să îndeplinească obiectivele propuse, oferind o soluție versatilă și eficientă pentru generarea semnalelor audio.

8. Bibliografie

- https://en.wikipedia.org/wiki/Audio_power_amplifier
- https://www.youtube.com/watch?v=yMrCCx6uqcE
- https://www.youtube.com/watch?v=abUMAo_ODv0&t=622s
- https://www.youtube.com/watch?v=b8arWWrMGXA&t=1718s
- https://www.soundbridge.io/voltage-controlled-amplifier-explained
- "Circuite electronice fundamentale" Gheorghe Brezeanu, Florin Draghici