

Robert Haase

AI4Seismology

@haesleinhuepf

ARTIFICIAL INTELLIGENCE

Introduction to Machine Learning Robert Haase

Reusing materials from Johannes Soltwedel, Till Korten, Johannes Müller, Laura Žiguty (TU Dresden), Ryan Savill (MPI-CBG), Matthias Täschner (ScaDS.AI/Uni Leipzig) and the Scikit-learn community.

iese Maßnahme wird gefördert durch die Bundesregierung ufgrund eines Beschlusses des Deutschen Bundestages.

Artificial intelligence

Artificial intelligence

Narrow Al

- Application specific
- Trained on labelled data
- Reflexive tasks
- Cannot extrapolate

Great for data analysis tasks

General Al

- Human capabilities
- Access to knowledge of humanity, beyond individuals
- Can create *new* solutions by working creatively

Artificial intelligence

Unsupervised ML

- Dimensionality reduction
- Clustering
- Detecting patterns in unlabeled data
- Hypothesis generation

Supervised ML

- Learning tasks otherwise only humans could do
- Train a model, predict a classification

Generative Al

- Produces new data provided a context, often with human language prompts
- Hyped since 2022, with yet unclear limitations

Labelled data

- E.g. for shape differentiation of objects
- Partially labelled data Bias?

Elongated Round Unlabelled

Labelled data

- E.g. for shape differentiation of objects
- Fully labelled data

Typically expensive

Elongated Round Unlabelled

ARTIFICIAL INTELLIGENCE

<u>Unsupervised</u> Machine Learning Robert Haase

Reusing materials from Johannes Soltwedel, Till Korten, Johannes Müller, Laura Žiguty (TU Dresden), Ryan Savill (MPI-CBG), Matthias Täschner (ScaDS.AI/Uni Leipzig) and the Scikit-learn community.

SACHSEN

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Hypothesis-driven quantitative science

Hypothesis: The amplitude of a given signal is an indicator for upcoming earthquakes.

Null-Hypothesis: There is no relationship between the amplitude and future earthquakes.

Data download

Shall we use a different dataset / sensor?

Data preprocessing

Shall we use a different denoising algorithm?

Shall we modify our measurement + hypothesis?

Amplitude measurement

Statistics

Reject / accept null-hypothesis

Shall we use a different statistical test?

Be careful going down this rabbit hole, you may be leaving good scientific practice behind.

Data-driven quantitative science

Hypothesis: The amplitude of a given signal is an indicator for upcoming earthquakes.

Question: Which measurement is a good predictor for upcoming earthquakes?

Which sensor / data is the most reliable?

Data download (multiple sources, sensors, ...)

Data preprocessing using Method A, B, C

Why?

Amplitude, frequency, wavelength, ... measurement

Which parameter shows any relationship with upcoming earthquakes?

Statistics

Hypothesis generation

Feature selection

- Which measurement / parameter / feature is related to the effect I'm investigating?
- Example goals:

Signal classification

Pixel classification

Object classification

Feature selection

Question: Which features shall I analyse?

Challenges:

- Physical properties versus measurable features
- Correlation versus causation
- Too many features

If you have no idea -> unsupervised machine learning

- Dimensionality reduction
- Clustering

Dimensionality reduction: Principal Component Analysis (PCA)

Linear transformation of high-dimensional data to concentrate information in a lower dimensional *embedding*

	المادة المادة		ما مسفام
	height	width	depth
0	0.649060	0.213074	0.032167
1	0.983763	0.533933	0.026125
2	0.826448	0.223712	0.048805
3	0.610540	0.574425	0.116101
4	0.383580	0.042504	0.973645
5	0.222935	0.842952	0.152771
6	0.946367	0.780378	0.565486
7	0.580490	0.001958	0.945884
8	0.005322	0.019889	0.455281
9	0.359661	0.426161	0.369291

Robert Haase

Embeddings

- N-dimensional latent space
- Axes typically have no meaningful/physical name (PCA1, UMAP1, ...) and no physical unit
- Allow representing complex measurements, things, relationships in numeric space.
- Example:
 - You measure amplitude, frequency, wavelength, etc.,
 - derive a 2D-embedding from it,
 - to visualize the data or
 - to better process data

Non-Euclidian spaces

Not all features might be distances

Use travel time between W and S as metric for distance

→ Travelling from **W**ehlen to **S**trand by bike is probably faster if you make a detour through **R**athen

Robert Haase

AI4Seismology

May 5th 2025

@haesleinhuepf

Uniform Manifold Approximation Projection (UMAP)

Structural, hierarchical, non-linear transformation

Modifies density of data points.

uı	nt		mean		5	td
14	.0	22.50	00000	1	2.8452	33
14	.0	401.8	63636	20	2.8522	88
14	.0	542.7	50000	29	5.1063	76
14	.0	21.7	81085		6.1740	86
14	.0	423.2	95455	21	6.6137	47
14	.0	234.9	09091	1	7.5178	56
14	.0	190.1	16971	1	5.0341	53
14	.0	128.0	00000		0.0000	00
14	.0	0.7	58804		0.0632	76
14	.0	11.4	39824		4.1262	30
14	.0	10.1	38666		3.4918	15
14	.0	0.9	53153		0.0247	49
14	.0	26.3	82434		8.9150	46
14	.0	25.8	76797		9.5915	58
14	.0	18.8	72898		5.1587	91
14	.0	0.0	53057		0.6914	30
14	.0	0.60	00434		0.1656	88
14	.0	29.5	56705		5.5073	99
14	.0	1.3	74342		0.3976	11
14	.0	0.7	52889		0.1566	95
14	.0	0.9	18858		0.1332	88

Many dimensions

JMAP

UMAP 1

Uniform Manifold Approximation Projection (UMAP)

Non-deterministic algorithm: You execute it twice, you get different results.

Globally rotated

Robert Haase @haesleinhuepf Al4Seismology May 5th 2025

https://haesleinhuepf.github.io/BioImageAnalysisNotebooks/47_clustering/umap.html?highlight=umap#a-note-on-repeatability

Dimensionality reduction

Uniform manifold approximation and projection (UMAP)

t-distributed stochastic neighbor embedding (t-SNE) Principal component analysis (PCA)

Clustering

Unsupervised machine learning may include grouping objects without

given ground truth

Clustering

Unsupervised machine learning may include grouping objects without

given ground truth

Names given by human observer after grouping / clustering

K-Means Clustering

Clustering algorithm, where you *only* need to specify the number of clusters.

Step1: Random initialization of cluster centers

Step2: Tessellation of space into cluster regions

Step3: Replace cluster center with centroids

Step4: Repeat 2&3 until convergence

K-Means Clustering

Clustering algorithm, where you *only* need to specify the number of clusters.

Goal: Understand shape measurements

Data: Shape measurements from randomly shaped blobs.

	label	area	perimeter	minor_axis_length	major_axis_length	circularity	solidity	aspect_ratio	elongation
0	1	97.0	32.970563	11.092860	11.092860	1.121318	0.788288	1.000000	0.000000
1	2	285.0	60.284271	19.052651	19.052651	0.985477	0.785116	1.000000	0.000000
2	3	473.0	79.597980	21.823280	27.594586	0.938138	0.785448	1.264456	0.209146
3	4	321.0	63.112698	19.033334	21.456036	1.012701	0.786033	1.127287	0.112915
4	5	407.0	72.769553	22.155138	23.384406	0.965839	0.785586	1.055485	0.052568

• • •

Step 1: Dimensionality reduction (UMAP)

Observation: There appear to be 2 distinct groups

Beware: UMAPs are nondeterministic. Different runs

Pinning the random

seed is no solution to

this general problem.

Step 2: Clustering data into 2 clusters Using K-Means clustering

Pinning the random seed is no solution to this general problem.

Beware: Clustering-algorithms are non-deterministic. Different runs lead to different results.

Side note: beware of feature correlation.

1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

-0.6

Step 3: Feature selection

Based on correlation with distance to cluster-centers

perimeter minor axis length major axis length circularity - -0.72 -0.78 -0.62 -0.8 1 0.043 -0.67 -0.68 solidity - 0.15 0.17 0.22 0.15 0.043 1 0.011 0.019 -0.13 aspect ratio - 0.57 0.59 0.28 0.75 -0.67 0.011 1 0.98 -0.029 elongation - 0.58 0.61 0.3 0.75 -0.68 0.019 0.98 1 -0.083 -0.13 -0.029-0.083 distance_to_center - -0.13 -0.18 -0.19 -0.15 elongation *Hypothesis generation*

Hypothesis:

"Circularity and minor_axis_length

allow to predict classification."

Step 4: Train a classifier (supervised ML)

Goal: Eliminate non-determinism

Clustering result (non-deterministic)

Classification result (deterministic, repeatable)

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

<u>Supervised</u> Machine Learning

Robert Haase

Robert Haase

AI4Seismology

May 5th 2025

@haesleinhuepf

Funded by

SACHSE

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Supervised Machine learning

Automatic construction of predictive models from given data

Pixels,

Objects,

Images, Audio, Sensor data, Text, Measurements, ...

Annotated raw data, often generated by humans

Classification (categorical)

Cat Dog Earthquake Wind

Regression (continuous numerical)

green_magenta_ ratio=0.3

 $P_{Cat} = 0.5$ P_{Microscope}= 0.4 Height = 80 cm

Accuracy, Precision, Recall, ...

Goal

Guess classification (color) from position of a sample in parameter space.

Input data

Decision Tree

Random Forest

Neural Net

Machine learning for image segmentation

Supervised machine learning: We give the computer some ground truth to learn from

The computer derives a *model* or a *classifier* which can judge if a pixel should be foreground (white) or background (black)

Example: Binary classifier

Random forest based image segmentation

Decision trees are classifiers, they decide if a pixel should be white or black Random decision trees are randomly initialized, afterwards evaluated and selected Random forests consist of many random decision trees

Deriving random decision trees

For efficient processing, we randomly *sample* our data set

Individual pixels, their intensity and their classification

Note: You cannot use a single threshold to make the decision

Deriving random decision trees

Decision trees combine several thresholds on several parameters

Robert Haase @haesleinhuepf

Al4Seismology

May 5th 2025

Deriving random decision trees

Depending on sampling, the decision trees are different

Random Forest Pixel Classifiers

By training many decision trees, errors are equilibrated

Random Forest Pixel Classifiers

Combination of individual tree decisions by voting or max / mean

Prediction

Random Forest Pixel Classifiers

Typical numbers for pixel classifiers in microscopy

Available features:

- Gaussian blur image
- DoG image
- LoG image
- Hessian
- •

Depth: 4

Number of trees: > 100

Model validation

In order to assess model quality, we split the ground truth into two set

- Training set (50%-90% of the available data)
- Test set (10%-50% of the available data)

Raw data

Typically done with hundreds or thousands of cells / images / objects / ...

Ability to abstract

Ground truth

Prediction

Model validation

Based on the theory of sets

$$Accuracy = \frac{correct \ classifications}{all \ classifications}$$

This means:
$$= \frac{TP + TN}{FP + FN + TP + TN}$$

$$Precision = \frac{Relevant\ retrieved\ instances}{All\ retrieved\ instances}$$

This may
$$=\frac{TP}{FP + TP}$$

Prediction

Reference / ground truth

Region of interest

True-positive

False-negative

False-positive

TN

True-negative

Model validation: Accuracy versus precision

Accurate and precise

Accurate and but not precise

Not accurate and but precise

Neither accurate nor precise

Lesson learned:
A single quality
metric cannot
describe the whole
situation

Model validation: Accuracy versus Jaccard Index

Side-effect of number of true negatives

$$A = \frac{TP + TN}{FN + FP + TP + TN}$$

$$J = \frac{TP}{FN + FP + TP}$$

Accuracy: 0.97 Jaccard Index: 0.73

> Accuracy decreases because there are less correct black pixels (TN)

Accuracy: 0.95 Jaccard Index: 0.73

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Deep Learning Robert Haase

SACHSEN

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Machine learning for image analysis

In classical machine learning, we typically select features for training our classifier

Deep learning for image analysis

In deep learning, this selection becomes part of the black box

Neural networks

Neural networks

How biologists see neurons

Robert Haase

AI4Seismology

May 5th 2025

@haesleinhuepf

 How computer scientists see neurons

"perceptron"

Neural Networks

- Early form: "Multilayer Perceptron"
- fully connected class of feedforward artificial neural network

If there are *many* hidden layers, we speak of a *deep* neural network

Input layer n hidden layer(s) Output layer

Convolutional neural networks

Layer types

Fully connected layer

Convolutional layer

Pooling layer ("Max pool", "Average pool")

3	15	1	13
9	7	0	10
11	5	5	3
1	8	9	6

15 Max pooling

13

Convolutional neural networks

Assuming we had no activation functions in the networklayers can be reduced by eliminating brackets.

$$y = w_5(w_1x_1 + w_2x_2) + w_6(w_3x_2 + w_4x_3)$$

$$y = w_5 w_1 x_1 + w_5 w_2 x_2 + w_6 w_3 x_2 + w_6 w_4 x_3$$

$$y = w_5 w_1 x_1 +$$

$$v_1 = w_5 w_1 v_2 = w_5 w_2 + w_6 w_3 v_3 = w_6 w_4$$

$$y = v_1 x_1 + v_2 x_2 + v_3 x_3$$

Activation functions

Introduction of non-linearity and activation functions enabled what we call deep-learning today.

$$y = f(w_1x_1 + w_2x_2 + w_3x_3 + b)$$

Activation functions

Introduction of non-linearity and activation functions enabled what we call deep-learning today.

Learning: Back propagation

- Step 0: Initialize the network randomly (weights, bias)
- Step 1: Forward pass the input through the network, get an initial prediction
- Step 2: Compare the output with the ground truth, compute the error (loss function)
 - The loss function can be freely defined.
 - Example: mean squared error
- Step 3: Update weights

- Silence
- Tourists jumping on a sensor
- Earthquake approaching

Learning: Back propagation

- Updating weights:
 - Set output to the error (perparameter gradient)
 - Backward-pass: add/subtract gradients from weights, to push the network towards giving the right answer.
- Execute the same procedure for next sample
- Execute the same for multiple epochs

- Silence
- Tourists jumping on a sensor
- Earthquake approaching

Train- [validation]- Test-split

Training dataset (e.g. 80% of the data)

Used for training directly

Validation dataset (10% of the data)

After every iteration see if the model overfits

Test dataset (10% of the data)

Final evaluation after training is finished (once)

Training duration (epochs)

Training NNs: Batch size & epochs

Problem:

- Assume you have 10¹⁰ samples and attempt to train for 1000 epochs
- -> 10¹³ backprop steps required.

Training NNs: Batch size & epochs

Problem:

- Assume you have 10¹⁰ samples and attempt to train for 1000 epochs
- -> 10¹³ backprop steps required.

Solution:

- Draw n=1000 random samples from the training data to train for one epoch.
- Next epoch: different n samples.
- -> 10⁶ backprop steps required.

Robert Haase

Training NNs: Batch size & epochs

Problem:

- Assume you have 10¹⁰ samples and attempt to train for 1000 epochs
- -> 10¹³ backprop steps required.

Solution:

- Draw n=1000 random samples from the training data to train for one epoch.
- Next epoch: different n samples.
- -> 10⁶ backprop steps required.

Training NNs: Drop-out

- Drop-out: deactivating individual neurons during training
- Helps with over-fitting, because the network cannot rely on individual neurons by chance being well trained, while others remain randomly initialized
- Example: drop-out-rate: 30%

epoch 1

Training NNs: Drop-out

- Drop-out: deactivating individual neurons during training
- Helps with over-fitting, because the network cannot rely on individual neurons by chance being well trained, while others remain randomly initialized
- Example: drop-out-rate: 30%

epoch 2

NN Architectures: Recurrent Neural Networks

Introducing some form of memory through additional connections and nodes.

Hidden layer with

self-feedback

Training Recurrent Neural Networks

- Backpropagation through time
- Computationally expensive
- Unfolding through time

$$\mathbf{a}_{t}$$
 \mathbf{x}_{t} \mathbf{y}_{t+1}

Unfold through time

$$\mathbf{a}_{t} \rightarrow \begin{bmatrix} f_1 \\ \mathbf{x}_{t+1} \rightarrow \end{bmatrix} \rightarrow \mathbf{x}_{t+1} \rightarrow \begin{bmatrix} f_2 \\ \mathbf{x}_{t+2} \rightarrow \end{bmatrix} \rightarrow \mathbf{x}_{t+2} \rightarrow \begin{bmatrix} f_3 \\ \mathbf{x}_{t+3} \rightarrow \end{bmatrix} \rightarrow \mathbf{x}_{t+3} \rightarrow \mathbf{x}_{t+3}$$

NN Architectures: Long Short-Term Memory (LSTM)

Differentiation between updating short-term memory (all the time) and updating long-term memory ([not] forgetting) thanks to separate input- and forget-gates.

Traditional architecture: Encoder-Decoder Networks

Related: "Auto-encoder", "Variational Auto-Encoder", "U-Net"

Traditional architecture: Encoder-Decoder Networks

Robert Haase

@haesleinhuepf

AI4Seismology

May 5th 2025

NN Architectures: Transformers

Scaled dot-product attention

Attention score: How much related are two words?

Query: For which word are we calculating attention?

Key: To which word are we calculating attention

Value: Relevance of the query-key relationship

The cat is black and white

attention score

The cat is meowing

Relevance value: 0.9

attention score

Scaled Dot-Product Attention

Source: Vaswani et al (2017)

https://arxiv.org/abs/1706.03762

See also: https://www.youtube.com/watch?v=sznZ78HquPc

May 5th 2025

Multi-head attention

Multiple aspects represented by multiple attention heads

NN Architectures: Transformers

NN Architectures: Transformers

Related terms:

- Generative Pretrained Transformer (GPT)
- Large Language Models
- Next word-prediction

"[...] Microscope"

"The cat sits next to the [...]"

neben dem

Mikroskop."

Decoder

NN Architectures: Vision Language Models

VLMs use combinations of traditional neural network architectures and transformers.

NN Architectures: DNA Language Models

DNA-LMs use a variation of the transformer architecture.

Multi-modal Language Models

MMLMs use combinations and/or variations of traditional neural network architectures and transformers.

earthquake"

"The signal appears to be charcteristic for [...]"

NN Architectures

Modern NN architectures combine techniques quite freely. Example, for large earthquake detection:

- LSTMs
- Transformers
- Convolutional
- Attention

Combining architectures sometimes appears more art than science. Computer scientists world-wide struggle comparing different architectures.

Summary

Unsupervised ML: Explorative data science, Embeddings

Supervised ML / DL: Preduction: classification / regression, Embeddings

Explainability: SHapleys Additive exPlanations (SHAP-Analysis)

Neural networks

- Many hidden layers -> deep learning, Embeddings
- Training: Drop-out, batch-size, epochs
- RNNs / LSTMs -> Memory
- Transformers -> Attention, Embeddings

Good scientific practice

- Train-test-split
- Overfitting / underfitting

