Midterm #2 Study Guide Math 156 (Calculus I), Fall 2023

- 1. Derivatives of basic functions [§3.1, 3.3, 3.6]
 - (a) power functions: $d/dx(x^n) = nx^{n-1}$
 - (b) exponential and logarithmic functions: $d/dx(e^x) = e^x$ and $d/dx(\ln(x)) = 1/x$
 - (c) trigonometric functions: $d/dx(\sin(x)) = \cos(x)$ and $d/dx(\cos(x)) = -\sin(x)$
- 2. Rules for derivatives of combinations of functions [§3.1, 3.2, 3.4]
 - (a) derivative is linear: $d/dx(a \cdot f(x) + b \cdot g(x)) = a \cdot f'(x) + b \cdot g'(x)$ for $a, b \in \mathbb{R}$
 - (b) product rule: $d/dx(f(x) \cdot g(x)) = f(x) \cdot g'(x) + g(x) \cdot f'(x)$
 - (c) chain rule: $d/dx(f(g(x))) = f'(g(x)) \cdot g'(x)$
 - (d) quotient rule: $d/dx(f(x)/g(x)) = \frac{g(x) \cdot f'(x) f(x) \cdot g'(x)}{(g(x))^2}$ [don't have to separately memorize quotient rule, it follows from other rules]
- 3. Implicit differentiation and related rates [§3.5, 3.9]
 - (a) for y defined implicitly via equation p(x,y) = 0, find dy/dx by taking d/dx of both sides, and use this to find the slope of the tangent at any point on the curve
 - (b) if two quantities f(t), g(t) are related, then their rates of change df/dt, dg/dt are related: like with implicit differentiation, just differentiate the relation between f(t) and g(t)
- 4. Extreme values [§4.1, 4.3]
 - (a) local versus absolute (global) minimum and maximum values, Extreme Value Theorem
 - (b) the Closed Interval Method: extreme values of continuous f on closed interval must occur at endpoints or at critical points (values x where f'(x) = 0 or is not defined)
 - (c) 1st and 2nd Derivative Tests for deciding if critical points are min.'s or max.'s
- 5. What derivatives tell us about shape of graph [§4.2, 4.3, 4.5]
 - (a) f'(x) > 0 means f is increasing, f'(x) < 0 means f is decreasing
 - (b) f''(x) > 0 means f is concave up (smile), f''(x) < 0 means f is concave down (frown)
- 6. L'Hôpital's rule [§4.4]
 - (a) for indeterminate form limits (meaning " $\pm \frac{\infty}{\infty}$ " or " $\frac{0}{0}$ "), $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$