UNIT II GRAMMARS

9

Introduction - Types of Grammar - Context Free Grammars and Languages - Derivations - Parse Trees - Equivalence of Derivations and Parse Trees - Ambiguity - Normalization of CFG - Elimination of Useless symbols - Unit productions - productions - Chomsky normal form - Greibach Normal form.

GRAMMAR - TYPES OF GRAMMAR

Grammar Introduction:

★ Grammar is denoted as G. which is defined as.

$$G = (V, T, P, S)$$

where,

V = set of variables or Non-Terminals.

 $T = set of Terminals (V and T are disjoint :: V <math>T = \phi$

P = finite set of productions each production is of the form $A \rightarrow \alpha$ where A is a variable.

^α is a string of symbols from (VUT)*

S = is a special variable called the start symbol.

Example:

$$G = (\{E\}, \{+, *, (,), id\} p, E_{_}$$
where p consists of $E \rightarrow E + E$

$$E \rightarrow E * E$$

$$E \rightarrow (E)$$

$$E \rightarrow id$$

Notations used in the Grammar.

- 1. The capital letters denote variables, S is the start symbol, unless otherwise stated.
- 2. The lower case letters a, b, c, d, e digits and boldface string are terminals.
- 3. The capital letters x, y and z denote symbols that may be either terminals or variables.
- 4. The lower case letter u, v, w, x, y and z denote strings of terminals.
- 5. The lower case Greek letters α, β, μ denote string of Non-terminals and Terminals.
- 6. If $A \rightarrow \alpha, |\alpha_2| ... \alpha_k$

So the example can be written as,

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

Types of Grammars:

- 1) Type 0 Grammar
- 2) Type 1 Grammar
- 3) Type 2 Grammar
- 4) Type 3 Grammar

Type 0 Grammar:

- **★** It is understricted Grammar or phase structure grammar.
- **★** A grammar without any restriction.
- **★** The productions are of the form.

Type 1 Grammar:

- **★** It is contest sensitive grammar or context dependent grammar.
- * A production of the form. $\beta A \tau \rightarrow \beta \alpha \tau$ is called type 1 production if $\alpha \neq \in$
- **★** It is accepted by linear bounded arutomata

Type 2 Grammar:

- **★** It is context free grammar.
- * A production of the form $A \rightarrow \alpha$ where $A \in V$, and $\alpha \in (VUT)^*$
- **★** Left hand side has no left context or right context.
- **★** It is accepted by push down automata.

Type 3 Grammar:

- **★** It is regular grammar.
- ★ A production of the form $A \rightarrow a$ or $A \rightarrow ab$, where A, B, \in v and $a \in \Sigma$
- **★** It is accepted by finite automata.

Derivation and langauages:

- * If $A \rightarrow B$ is a production of P and α and τ are any strings in (VUT)* then $\alpha A \tau \Leftarrow \alpha \beta \tau$
- **★** The derivation may be
 - 1. left most derivation
 - 2. right most derivation

Left most derivation:

- **★** If at each step of derivation, a production is applied to the left most non-terminal then the derivation is said to be left-most derivation.
- * Example

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

Deriving a string id + id * using left most derivation.

$$E \Rightarrow E + E$$
 lm

```
\Rightarrow id + E
lm
\Rightarrow id + E * E
lm
\Rightarrow id + id * E
lm
\Rightarrow id + id * id
```

Right most derivation:

- **★** If at each step in a derivation is applied to the light most variable is said to be right most derivation.
- * Example

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

★ Deriving a string id + id * using left most derivation.

$$\lim_{E \Rightarrow E + E}$$

*

lm

 $\star \Rightarrow id + E$

lm

 $\star \Rightarrow id + E * E$

ln

 $\star \Rightarrow id + id * E$

1m

 $\star \Rightarrow id + id * id$

Context free languages (CFL)

★ The language generated by G, L (G) is

$$L(G) = \{ w \mid w \text{ is in } T * \text{and } S * \Rightarrow G w \}$$

- **★** That is,
 - a string is in L (G) if
 - 1) The string consists of only terminals
 - 2) The string can be delivered
- \star A string of terminals and variables α is called a sentential form if
- ★ We define grammar G1 and G2 to be equivalent if $L(G_1) = L(G_2)$

Derivation Trees (Parse tree)

- **★** Derivation can be displayed as a derivation tree.
- **★** The vertices of a derivation tree and labeled with terminal or variable symbols of the grammer or ∈
- **★** If an interior vertex is labeled A, and the sons of A are labeled x_1, x_2,x_k from the left then A $\rightarrow x_1 x_2 ... x_k$ must be a production.
- * The derivation tree.
- \star If we lead the leaves from left to light, we get the string (id + id) * id.

- **★** More formally Let G (V, T, P, S) be a CFG
- LATA tree is a derivation tree for G if LMD₂
 - (1) Every vertex has a label, which is a symbol of VUTU $\{\in\}$

 $E \Rightarrow E(2)$ The label of the root is S

- (3) If a vertex is interior and has label then A must be in V
- ⇒ id (4) If vertex has label A and sons vertex A+a E * Tabeled from left as x1, x2 ... xk then $A \rightarrow x_1, x_2 \dots x_k$ must be a production in p.
- \Rightarrow id (£)*LE a vertex has a label \in , then it leaf aid is the only son of its father.

Ambiguity:

- \Rightarrow A context free grammar G such that some word has two parse trees is said to be lm ambiguous.
- **★** An equivalent definition of ambiguity is that some word has more than one left
 - * Example:

Show that the Grammar G

 $E \rightarrow E + E \mid E * E \mid (E) \mid id \text{ is ambiguous.}$

Solution:

- **★** Deriving a string id + id * id
- **★** For the word id+id*id, there exists two right most derivation.

Parse tree 1

parse tree 2

- **★** For the word id + id * id has two parse trees
- **★** So the grammar is ambiguous.

THE RELATIONSHIP BETWEEN DERIVATION AND DERIVATION **TREES**

Theorem:

Let G = (V, T, P, S) be a context free Grammar

Then $S \mathop{\Rightarrow}\limits^* {\overset{\alpha}{\Rightarrow}}$ iff there is a derivation tree in Grammar G with yield

Proof:

- **★** We shall prove that for any A in V.
 - $\stackrel{*}{A} \Rightarrow \stackrel{\alpha}{\text{if and only if there is an A-tree with}} \stackrel{\alpha}{\text{as the yield.}}$

★ This can be proved by methamatical induction on the number of interior vertices in the tree.

Basis:

★ If there is only one interior vertex, then the tree is

i.e) $x_1, x_2 \dots x_n$ must be α and $A \rightarrow \alpha$ be a production of p, by the definition of a derivation tree.

Induction:

- ★ Assume that the result ais tree for k-1 interior vertices.
- * Suppose that α is the yield of an A-tree with k interior vertices for k>1
- **★** The son's of the node A could not all be leaves.
- ★ Let the labels of the sons be $x_1, x_2 ... x_n$ in order from the left.
- **★** Then $A \rightarrow x_1, x_2 \dots x_n$ is a production in P.
- \star If the ith son is not a leaf it is the root of the subtree, and x_i must be a variable.
- * The portion of α delivered from x_i must lie to the left of the symbols delivered from x_i .
- ★ Thus we can write $\alpha as \alpha_1 \alpha_2 ... \alpha_n$, where for each I between 1 and n.
 - 1) $\alpha_1 = x_i$ if x_i is a terminal
 - 2) $x_1 \Rightarrow \alpha_i$ if x_i is a variable

Case 1:

(x_i is a terminal)

* If $\alpha_i = x_i$ then x_1 is a terminal such that the derivation tree is.

Case 2:

(x_i is a variable)

- * If x is a variable, then the derivation of α_i from x_i must take fewer than k steps.
- * Thus by the inductive hypothesis, for each x_i that is a variable, there is x_i tree with α_i
- **★** Let this tree b T_i

SIMPLIFICATION OF CFG

Simplification of CFG:

★ There are several ways to restrict the format of productions without reducing the generative power of context – free grammar.

- **★** If L is a non empty context free language, then it can be generated by a context free grammar G with the following properties.
- **★** Each variable and each terminal of G appears in the derivation of some word in L.
- ***** There are no productions of the form $A \rightarrow B$, where A and B are variable.
- **★** If \in is not in L, there need be no productions of the form $A \rightarrow E$
- **★** If E is not in L, every production be of one of the forms $A \rightarrow BC$ and $A \rightarrow O$
- * Also we can make every productions of the form $A \rightarrow a\alpha$, where α is a string.
- **★** There are two special forms of CFG
 - 1. Chomsky Normal form.
 - 2. Greibach Normal form.

Elemination of Useless symbols:

- **★** The useless symbols can be eliminated from a grammar.
- ★ Let G = (V, T, P, S) be a Grammar
- * A symbol x is useful if there is a derivation $S \Rightarrow \alpha x \beta \Rightarrow w$, for some and w, where w is in T^*
- **★** Otherwise x is useless
- **★** There are two aspects of usefulness
 - 1. Some terminal string must be derivation from x
 - 2. x must occur in some string derivation from s

Lemma 1:

Given a CFG, G = (V, T, P, S) with $L(G) = \phi$ we can find an equivalent CFG G^1 .

 $G^{_1} = (V^{_1}, T, P^{_1}, S)$ such that for each A in $V^{_1}$, there is some w in T^* for which $\stackrel{*}{A} \Rightarrow w$

Lemma 2:

Given a CFG G = (V, T, P, S), we can find an equivalent Grammar G1 = (V¹, T¹, P¹, S) such that for each x in V¹ U T¹there exist α and β in (V¹ U T¹)* for which $\beta \Rightarrow \alpha x \beta$

Example:

Consider the Grammar, and find the useless symbol.

$$S \rightarrow AB \mid a$$

 $A \rightarrow a$

Solution:

We find that no terminal string is derivable from B. we therefore eliminate B and the production $S \rightarrow ab$

$$S \rightarrow a$$

$$A \rightarrow a$$

 $G = \{s\}, \{a\}, \{s \rightarrow a\}, s\}$ is an equivalent Grammar with no useless symbol.

Elemination of E-Productions:

- **★** The productions of the form $A \rightarrow E$ is called E-production
- \star If E-is in L(G). we cannot eliminate all E-productions from G.
- \star If E-is not in L(G), we can eliminate the E-productions from G.
- **★** The method is to determine for each variable A, whether
- \star A \Rightarrow E, if so it is called as A-nullable
- ★ We may replace each production $B \rightarrow x_1, x_2, ...x_i ...x_n$ by all productions striking out some subsets of those x_1 's that are nullable. but we do not include $B \rightarrow E$, even if all x_i s are nullable.

Example:

Consider the grammar

 $S \rightarrow as \mid bA \mid \in$

 $A \rightarrow \in$

Eliminate the E-productions.

Solution:

we find that E-is in L(G), so we eliminate $S \rightarrow \in$ and A-is nullable so the resultant Grammar

 $S \rightarrow as \mid b \mid \in$

Elimination of Unit productions:

- **★** The productions of the form $A \rightarrow B$ is called is unit productions
- **★** There need be no productions of the form $A \rightarrow B$
- **★** Unit Productions can be eliminated form the grammar

Examble:

Consider the grammar

 $S \rightarrow A$

 $A \rightarrow B$

 $B \rightarrow C$

 $C \rightarrow a$

Eliminate the unit productions

Solution:

By eliminating the unit productions, the resultant grammar is

 $S \rightarrow A$

CHOMSKY NORMAL FORM

Chomsky normal form (CNF)

★ In Chomsky normal form, the productions are of the form

 $A \rightarrow B$

 $A \rightarrow a$

where A, B, C are variable, a is a term.

Theorem:

* Any context free language without E is generated by a Grammar in which the productions are of the form $A \to BC$ or $A \to a$. Here A, B and C are variable and a is a terminal.

Proof:

- ★ Let G be a CFG, generating a language not containing E.
- * We can find an equivalent grammar $G_1 = (V, T, P, S)$ such that p contains no unit productions or E-productions.
- **★** Thus if a productions has a single symbol on the right, that symbol is a terminal then the production is an acceptable form.
- **★** If production is of the form $A \rightarrow x_1, x_2 \dots x_m$ where $m \ge 2$ If xi is a terminal a, introduce a new variable c_a and a production $c_a \rightarrow a$ then replace x_i by c_a
- ★ Let the new set of variables be V1 and the few set of productions be P^1 consider $G_2(V^1, T, P^1, S)$
- * We modify G_2 by adding some additional symbols to V1 and replacing some productions of P^1
- * For each production

 $A \rightarrow B_1 B_2 \dots B_m$ of P^1 where $m \ge 3$ we create a new variables $D_1, D_2, \dots D_{m-2}$ and replace $A \rightarrow B_1 B_2 \dots B_m$ by the set of productions.

$$A \to B_1D_1, D_1 \to B_2D_2, ...D_2 \to B_3D_3,$$

 $D_{m-3} \to B_{m-2} \to D_{m-2}, D_{m-2} \to B_{m-1}B_m$

★ Let V" be the now set of non-terminals and P" be the new set of productions G3 = (V", T, P", S) is in CNF

Examble:

$$S \rightarrow bA \mid ab$$

$$A \rightarrow bAA \mid as \mid a$$

$$B \rightarrow aBB \mid bs \mid b$$

Find an equivalent grammar in CNF

Solution:

(1) $S \rightarrow bA$ is replaced by

$$S \rightarrow C_h A$$

$$C_b \rightarrow b$$

(2) $S \rightarrow aB$ is replaced by

$$S \rightarrow C_a B$$

$$C_a \rightarrow a$$

(3) $A \rightarrow bAA$ is replaced by

$$A \rightarrow C_b AA$$

$$C_b \rightarrow b$$

$$A \rightarrow c_b AA$$
 is replaced by

$$A \rightarrow C_b D_1$$

$$D_1 \rightarrow AA$$

(4) $A \rightarrow aS$ is replaced by

$$A \rightarrow C_a S$$

$$C_a \rightarrow a$$

- (5) $A \rightarrow a$ is in proper form
- (6) $B \rightarrow aBB$ is replaced by

$$B \rightarrow C_a BB$$

$$C_a \rightarrow a$$

(7) $B \rightarrow C_a BB$ is replaced by

$$B \rightarrow C_a D_{\gamma}$$

$$D_2 \rightarrow BB$$

(8) $B \rightarrow bS$ is replaced by

$$B \rightarrow C_b S$$

$$C_b \rightarrow b$$

(9) $B \rightarrow b$ is in proper form

Resultant grammar:

1
$$S \rightarrow C_b A | C_a B$$

$$A \rightarrow C_b D_1 | C_a S | a$$

$$B \rightarrow C_b S | C_a D_2 | b$$

$$D_1 \rightarrow AA$$

$$D_2 \rightarrow BB$$

$$C_a \rightarrow a$$

$$C_b \rightarrow b$$

GREIBACH NORMAL FORM

Greibach normal form:

★ GNF uses productions whose light hand sides each start with a terminal symbol followed by some variable

Lemma 1:

 \star Let G = (V, T, P, S) be a FCG

Let $A \to \alpha_1 B \alpha_2$ be a production in p and $B \to B_1 |B_2| ... |B_r$ be the set of all B-productions

★ Let $G_1 = (V, T, P, S)$ be obtained from G by deleting the production $A \rightarrow \alpha_1 B \alpha_2$ from p and adding the productions

$$A \rightarrow \alpha_1 B_1 \alpha_2 |\alpha_1 B_2 \alpha_2 |\alpha_1 B_3 \alpha_2| \dots |\alpha_1 B_r \alpha_2$$

Then L (G) = L (G₁)

Lemma 2:

 \star Let G = (V, T, P, S) be a CFG

Let $A \to A\alpha_1 |A\alpha_2| |A\alpha_r$ be the set of A-Productions for which A is the left most symbol of RHS

- ★ Let $A \rightarrow B_1 + B_2 | ... | B_s$ be the remaining A-Productions.
- ★ Let G1 = (VU {B}, T, P, S) be the GFG formed by adding the variable B to V and replacing all the A-productions by the productions

$$A \rightarrow B_{i}
1) A \rightarrow B_{i}B i \leq i \leq s$$

$$B \rightarrow \alpha_{i}
2) B \rightarrow \alpha_{i}B i \leq i \leq r$$

Theorem:

Every context free language without ϵ - can be generated by a grammar for which every production is the form $A \to a\alpha$, where A is a variable a is and α is a string of variables.

Proof:

- ★ Let G = (V, T, P, S) be a CFG in CNF generating the CFL L.
- * Assume $V = \{A_1, A_2, \dots A_m\}$
- **★** The first step in the construction is to modify the productions so th
- * at if

 $A_i \rightarrow A_j \mu$ is a production, then j > i

- ***** Starting with A_1 and proceeding to A_m we do this as follows
- ***** We now modify the A_k productions
- * If $A_k \rightarrow A_j \mu$ is a production with j<k, we generate new set of production by substituting for A_j , the RHS of each Aj production according to Lemma 1.
- * By repeating the process k-1 times atmost we obtain productions of the form $A_k \rightarrow A_\gamma \mu 1 \ge k$ according to Lemma 2 introducting a new variable B_k
- **★** By repeating the above process for each variable, we have only the productions of the form.
 - 1) $A_i \rightarrow A_j \mu \quad j > i$
 - 2) $A_i \rightarrow a\mu$ a in T
 - 3) $B_i \rightarrow \mu \quad \mu in(VU\{B_1, B_2, ...B_{i-1})^*$

- **★** RHS of any production for A_m must be a terminal since A_m is the highest numbered variable
- **★** The left most symbol on the RHS of any production for A_{m-1} must be A_{m-1} or a terminal symbol.
- * At the last step examine the productions for the new variables $B_1, B_2, \dots B_m$
- **★** No B_i-productions can start with another B_j therefore all B_i-productions have RHS beginning with terminals or A_i's

Example:

Convert into GNF from the Grammar

$$G = (\{A_1, A_2, A_3\}, \{a, b\}, P, A_1)$$

where P consist of

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 b$$

$$A_3 \rightarrow A_1 A_2 | a$$

Solution:

Step 1:

Since RHS of the productions for A_1 and A_2 start with terminal or higher numbered variables we begin with the productions.

$$A_3 \rightarrow A_1 A_2$$

$$A_3 \rightarrow A_2 A_3 A_2$$

$$A_3 \rightarrow A_3 A_1 A_3 A_2 | bA_3 A_2 | (::A_2 \rightarrow A_3 A_1 | b)$$

★ The new resultant set of productions

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 | b$$

$$A_3 \rightarrow A_3 A_1 A_3 A_2 | b A_3 A_2 | a$$

★ We now apply lemma 2 to the productions

$$A_3 \rightarrow A_2 A_1 A_2 A_2 | b A_2 A_2 | a$$

symbol B3 is introduced and the production $A_3 \rightarrow A_3 A_1 A_3 A_2$ is replaced by

$$A_3 \rightarrow bA_3A_2 | a$$

$$A_3 \rightarrow bA_3A_2B_3|aB_3$$

$$B_3 \rightarrow A_1 A_3 A_2$$

$$B_2 \rightarrow A_1 A_3 A_2 B_3$$

★ The resultant set of production

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 | b$$

$$A_3 \rightarrow bA_3A_2B_3$$

$$B_3 \rightarrow A_1 A_3 A_2 B_3$$

★ Now all the productions with A₃ on the RHS that start with terminals.

- **★** These are used to replace A3 in the productions $A_2 \rightarrow A_3 A_1$ and then the productions with A_2 on the left are used to replace A2 in the production $A_1 \rightarrow A_2 A_3$
- **★** The new set of productions

 $A_3 \rightarrow bA_3A_2B_3|aB_3|bA_3A_2|a$

 $A_2 \rightarrow bA_3A_2B_3A_1|aB_3A_1|bA_3A_2A_1|aA_1|b$

 $A_1 \rightarrow bA_3A_2B_3A_1A_3|aB_3A_1A_3|bA_3A_2A_1|aA_1A_3|aA_1A_3|bA_3$

 $B_3 \rightarrow bA_3A_2B_3A_1A_3A_3A_2|aB_3A_1A_3A_3A_2|bA_3A_2A_1A_3A_3A_2|$

 $aA_{1}A_{3}A_{3}A_{2}|aA_{1}A_{3}A_{3}A_{2}|bA_{3}A_{3}A_{2}\\$

 $B_3 \! \to \! bA_3A_2B_3A_1A_3A_3A_2B_3|aB_3A_1A_3A_3A_2B_3|bA_3A_2A_1A_3A_3A_2B_3|$

 $aA_1A_3A_3A_2B_3|aA_1A_3A_3A_2B_3|bA_3A_3A_2B_3$