EE 330 Lecture 42

Digital Circuits

- Propagation Delay With Multiple Levels of Logic
- Optimally Driving Large Capacitive Loads
 - Overdrive
 - Sizing for optimal driving

The Reference Inverter

$$R_{PDREF} = R_{PUREF}$$
 $C_{RFF} = C_{IN} = 4C_{OX}W_{MIN}L_{MIN}$

$$R_{\text{PDREF}} = \frac{L_{\text{MIN}}}{\mu_{\text{n}} C_{\text{OX}} W_{\text{MIN}} \left(V_{\text{DD}} \text{-} V_{\text{Tn}}\right)} \stackrel{V_{\textit{Tn}} = .2 V_{\textit{DD}}}{=} \frac{L_{\text{MIN}}}{\mu_{\text{n}} C_{\text{OX}} W_{\text{MIN}} \left(0.8 V_{\text{DD}}\right)}$$

$$t_{HLREF} = t_{LHREF} = R_{PDREF}C_{REF}$$

$$t_{REF} = t_{HLREF} + t_{LHREF} = 2R_{PDREF}C_{REF}$$

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

Question:

Why is |V_{Tp}| ≈V_{Tn}≈V_{DD}/5 in many processes?

Device Sizing

Equal Worse-Case Rise/Fall Device Sizing Strategy

-- (same as V_{TRIP}=V_{DD}/2 for worst case delay in typical process considered in example)

Assume $\mu_n/\mu_p=3$ How many degrees of freedom were available?

INV

$$W_n = W_{MIN}, W_p = 3W_{MIN}$$

FI=1

k-input NOR

$$W_n = W_{MIN}, W_p = 3kW_{MIN}$$

$$\mathbf{C}_{\mathsf{IN}} = \left(\frac{3\mathsf{k}+1}{4}\right) \mathbf{C}_{\mathsf{REF}}$$

$$\mathsf{FI} = \left(\frac{3\mathsf{k}+1}{4}\right)$$

k-input NAND

$$W_n = kW_{MIN}, W_p = 3W_{MIN}$$

$$\mathbf{C}_{\mathsf{IN}} = \left(\frac{3+\mathsf{k}}{4}\right) \mathbf{C}_{\mathsf{REF}}$$

$$FI = \left(\frac{3+k}{4}\right)$$

Device Sizing

Multiple Input Gates:

2-input NOR

k-input NOR

k-input NAND

Equal Worst Case Rise/Fall (and equal to that of ref inverter when driving C_{REF})

Wn=?

Wp=?

Fastest response $(t_{HL} \text{ or } t_{LH}) = ?$

Worst case response (t_{PROP} , usually of most interest)?

Input capacitance (FI) = ?

Minimum Sized (assume driving a load of CREF)

Wn=Wmin

Wp=Wmin

Fastest response $(t_{HL} \text{ or } t_{LH}) = ?$

Slowest response $(t_{HL} \text{ or } t_{LH}) = ?$

Worst case response (t_{PROP} , usually of most interest)?

Input capacitance (FI) = ?

Device Sizing

$$W_n = W_{min}$$

$$W_p = W_{min}$$

Input capacitance (FI) = ?

$$C_{IN} = C_{OX}W_{n}L_{n} + C_{OX}W_{p}L_{p} = C_{OX}W_{min}L_{min} + C_{OX}W_{min}L_{min} = 2C_{ox}W_{min}L_{min} = \frac{C_{REF}}{2}$$

$$FI = \frac{1}{2}$$

Fastest response $(t_{HL} \text{ or } t_{HL}) = ?$

Slowest response $(t_{HL} \text{ or } t_{HL}) = ?$

Worst case response (t_{PROP} , usually of most interest)?

Device Sizing – minimum size driving CREF

INV

$$t_{PROP} = ?$$

$$t_{PROP} = 0.5t_{REF} + \frac{3}{2}t_{REF}$$

$$\mathbf{t}_{\text{PROP}} = 2t_{\text{REF}}$$

$$FI = \frac{C_{REF}}{2}$$

$$R_{PU} = R_{PD} = R_{PDREF}$$

$$t_{PROP} = ?$$

$$t_{PROP} = 0.5t_{REF} + \frac{3k}{2}t_{REF}$$

$$\mathbf{t}_{\text{PROP}} = \left(\frac{3k+1}{2}\right) t_{REF}$$

$$FI = \frac{C_{REF}}{2}$$

$$R_{PD} = R_{PDREF}$$
 $R_{PU} = 3kR_{PDREF}$

k-input NAND

$$t_{PROP} = ?$$

$$t_{\text{PROP}} = \frac{3}{2}t_{REF} + \frac{k}{2}t_{REF}$$

$$t_{PROP} = \frac{3+k}{2}t_{REF}$$

$$FI = \frac{C_{REF}}{2}$$

$$R_{PD} = 3R_{PDRFF}$$

 $R_{PD} = 3R_{PDREF}$ $R_{PU} = 3R_{PDREF}$

Device Sizing Summary

 C_{IN} for N_{AND} gates is considerably smaller than for NOR gates for equal worst-case rise and fall times

 $C_{\rm IN}$ for minimulm-sized structures is independent of number of inputs and much smaller than $C_{\rm IN}$ for the equal rise/fall time case

R_{PII} gets very large for minimum-sized NOR gate

Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
- Propagation Delay
 - Simple analytical models
 - Elmore Delay
- Sizing of Gates
 - The Reference Inverter

- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

Assume all gates sized for equal worst-case rise/fall times

For n levels of logic between A and F

$$\mathbf{t}_{\mathsf{PROP}} = \sum_{k=1}^{\mathsf{n}} \mathbf{t}_{\mathsf{PROP}}(k)$$

Analysis strategy: Express delays in terms of those of reference inverter

$$\boldsymbol{C}_{\text{REF}} \!=\! \boldsymbol{C}_{\text{IN}} \!=\! \boldsymbol{4} \boldsymbol{C}_{\text{OX}} \boldsymbol{W}_{\!\text{MIN}} \boldsymbol{L}_{\!\text{MIN}}$$

FI= 1

$$\boldsymbol{R_{\text{PDREF}}} = \frac{\boldsymbol{L_{\text{MIN}}}}{\boldsymbol{\mu_{n}}\boldsymbol{C_{\text{OX}}}\boldsymbol{W_{\text{MIN}}}\big(\boldsymbol{V_{\text{DD}}}\text{-}\boldsymbol{V_{Tn}}\big)} \overset{V_{Tn} = .2V_{DD}}{=} \frac{\boldsymbol{L_{\text{MIN}}}}{\boldsymbol{\mu_{n}}\boldsymbol{C_{\text{OX}}}\boldsymbol{W_{\text{MIN}}}\big(\boldsymbol{0.8}\boldsymbol{V_{\text{DD}}}\big)}$$

$$t_{REF} = t_{HLREF} + t_{LHREF} = 2R_{PDREF}C_{REF}$$

$$L_n = L_p = L_{MIN}$$

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

Assume:

- all gates sized for equal worst-case rise/fall times
- all gates sized to have rise and fall times equal to that of refiniverter when driving C_{RFF}

Observe:

 Propagation delay of these gates will be scaled by the ratio of the total load capacitance on each gate to C_{REF}

What loading will a gate see?

- Input capacitance to other gates
- Any load capacitors
- Parasitic interconnect capacitnaces

Propagation Delay with Stage Loading

$$t_{REF} = 2R_{PDref}C_{REF}$$

$$C_{REF} = 4C_{OX}W_{MIN}L_{MIN}$$

FI of a capacitor

$$FI_C = \frac{C}{C_{REF}}$$

FI of a gate (input k)

$$FI_{G} = \frac{C_{INk}}{C_{RFF}}$$

FI of an interconnect

$$FI_{i} = \frac{C_{iNI}}{C_{RFF}}$$

Overall FI

$$\text{FI} = \frac{\displaystyle\sum_{\text{Gates}} C_{\text{INGi}} + \displaystyle\sum_{\text{Capacitances}} C_{\text{INCi}} + \displaystyle\sum_{\text{Interconnects}} C_{\text{INIi}}}{C_{\text{REF}}}$$

FI can be expressed either in units of capacitance or normalized to $\mathbf{C}_{\mathsf{REF}}$

Most commonly FI is normalized but must determine from context

If gates sized to have same drive as ref inverter

 $t_{\text{prop-k}} = t_{\text{REF}} \bullet FI_{\text{LOAD-k}}$

Assume all gates sized for equal worst-case rise/fall times

Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of $10C_{REF}$ on F output

Determine propagation delay from A to F

Assume all gates sized for equal worst-case rise/fall times

Assume all gate drives are the same as that of reference inverter

Neglect interconnect capacitance, assume load of 10C_{REF} on F output

Determine propagation delay from A to F

What loading will a gate see?

Derivation:

$$FI_{2} = \frac{6}{4}C_{\text{REF}} \qquad FI_{3} = C_{\text{REF}} + \frac{7}{4}C_{\text{REF}} \qquad FI_{4} = \frac{7}{4}C_{\text{REF}} + \frac{13}{4}C_{\text{REF}} \qquad FI_{\text{LOAD}} = FI_{\text{"5"}} = 10C_{\text{REF}}$$

Assume all gates sized for equal worst-case rise/fall times Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of $10C_{RFF}$ on F output

Determine propagation delay from A to F

DERIVATIONS

$$\begin{aligned} \mathsf{FI}_2 = & \frac{6}{4} C_{\mathsf{REF}} & \mathsf{FI}_3 = & C_{\mathsf{REF}} + \frac{7}{4} C_{\mathsf{REF}} & \mathsf{FI}_4 = & \frac{7}{4} C_{\mathsf{REF}} + \frac{13}{4} C_{\mathsf{REF}} & \mathsf{FI}_5 = & 10 C_{\mathsf{REF}} \\ t_{\mathsf{PROP1}} = & \frac{6}{4} t_{\mathsf{REF}} & t_{\mathsf{PROP2}} = & \left(1 + \frac{7}{4}\right) t_{\mathsf{REF}} & t_{\mathsf{PROP3}} = & \left(\frac{7}{4} + \frac{13}{4}\right) t_{\mathsf{REF}} & t_{\mathsf{PROP4}} = & 10 t_{\mathsf{REF}} \\ t_{\mathsf{PROP4}} = & \sum_{\mathsf{Ind}} t_{\mathsf{PROPk}} = t_{\mathsf{REF}} \sum_{\mathsf{Ind}} \mathsf{FI}_{(\mathsf{k+1})} = t_{\mathsf{REF}} \left(\frac{6}{4} + \frac{11}{4} + \frac{20}{4} + 10\right) = t_{\mathsf{REF}} \left(19.25\right) \end{aligned}$$

Propagation Delay Through Multiple Stages of Logic with Stage Loading

(assuming gate drives are all same as that of reference inverter)

Identify the gate path from A to F

$$t_{PROPk} = t_{REF} FI_{(k+1)}$$

Propagation delay from A to F:

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$

This approach is analytically manageable, provides modest accuracy and is "faithful"

Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
- Propagation Delay
 - Simple analytical models
 - Elmore Delay
- Sizing of Gates
 - The Reference Inverter

- Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

What if the propagation delay is too long (or too short)?

Propagation delay from A to F:

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$

$$t_{PROPk} = t_{REF} FI_{(k+1)}$$

Recall:

Device Sizing

Multiple Input Gates:

2-input NOR

k-input NOR

k-input NAND

Equal Worst Case Rise/Fall (and equal to that of ref inverter when driving C_{REF})

$$W_n=?$$

$$W_p = ?$$

consider the fine print!

Fastest response $(t_{HI} \text{ or } t_{IH}) = ?$

Worst case response (t_{PROP} , usually of most interest)?

Input capacitance (FI) = ?

Minimum Sized (assume driving a load of CREF)

$$W_n = W_{min}$$

$$W_p = W_{min}$$

Fastest response $(t_{HI} \text{ or } t_{IH}) = ?$

Slowest response $(t_{HL} \text{ or } t_{LH}) = ?$

Worst case response (t_{PROP} , usually of most interest)?

Input capacitance (FI) = ?

Recall:

Device Sizing

Equal Worst Case Rise/Fall | (and equal to that of ref inverter when driving C_{REF})

 V_{DD}

(n-channel devices sized same, p-channel devices sized the same) Assume L_n=L_p=Lmin and driving a load of C_{REF}

$$W_n=?$$

$$W_p=?$$

Input capacitance = ?

t_{PROP}=? (worst case)

$W_n = W_{MIN}$

$$W_p = 6W_{MIN}$$

DERIVATIONS

One degree of freedom was used to satisfy the constraint indicated

Other degree of freedom was used to achieve equal rise and fall times

$$C_{INA} = C_{INB} = C_{OX} W_{MIN} L_{MIN} + 6C_{OX} W_{MIN} L_{MIN} = 7C_{OX} W_{MIN} L_{MIN} = \left(\frac{7}{4}\right) 4C_{OX} W_{MIN} L_{MIN} = \left(\frac{7}{4}\right) C_{REF}$$

$$FI = \left(\frac{7}{4}\right) C_{REF}$$
 or $FI = \frac{7}{4}$

$$t_{PROP} = t_{REF}$$
 (worst case)

Example: Determine t_{prop} in 0.5u process if C=10pF In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10pF}{4fF} = \mathbf{t}_{\mathsf{REF}} \bullet 2500$$

$$t_{PROP} = 20ps \cdot 2500 = 50nsec$$

Note this is unacceptably long!

Scaling widths of ALL devices by constant (W_{scaled}=WxOD) will change "drive" capability relative to that of the reference inverter but not change relative value of t_{HL} and t_{LH}

$$R_{PD} = \frac{L_{1}}{\mu_{n}C_{OX}W_{1}(V_{DD}-V_{Tn})} = \frac{R_{PD}}{QD}$$

$$R_{PDOD} = \frac{L_{1}}{\mu_{n}C_{OX}[OD \bullet W_{1}](V_{DD}-V_{Tn})} = \frac{R_{PD}}{QD}$$

$$R_{PDOD} = \frac{L_1}{\mu_n C_{OX} [OD \bullet W_1] (V_{DD} - V_{Tn})} = \frac{R_{PD}}{OD}$$

$$R_{PUD} = \frac{L_2}{\mu_p C_{OX} W_2 (V_{DD} + V_{Tp})} = \frac{R_{PU}}{OD}$$

$$R_{PUOD} = \frac{L_2}{\mu_p C_{OX} [OD \bullet W_2] (V_{DD} + V_{Tp})} = \frac{R_{PU}}{OD}$$

Scaling widths of ALL devices by constant will change FI by OD

$$C_{INOD} = C_{OX} (W_1 L_1 + W_2 L_2)$$

$$C_{INOD} = C_{OX} ([O D \bullet W_1] L_1 + [O D \bullet W_2] L_2) = O D \bullet C_{IN}$$

Example: Determine t_{prop} in 0.5u process if C=10pF and OD=1000

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} \bullet \frac{1}{\mathsf{OD}} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10\,pF}{4\,fF} = \mathbf{t}_{\mathsf{REF}} \bullet 2500$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} \bullet \frac{1}{\mathsf{OD}} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10\,pF}{4\,fF} \bullet \frac{1}{\mathsf{1000}} = \mathbf{t}_{\mathsf{REF}} \bullet 2.5$$

Note sizing the inverter with the OD improved delay by a factor of 1000!

- By definition, the factor by which the W/L of all devices are scaled above those of the reference inverter is termed the overdrive factor, OD
- Scaling widths by overdrive factor DECREASES resistance by same factor
- Scaling all widths by a constant does not compromise the symmetry between the rise and fall times (i.e. t_{HL}=t_{LH})
- Judicious use of overdrive can dramatically improve the speed of digital circuits
- Large overdrive factors are often used
- Scaling widths by overdrive factor INCREASES input capacitance by same factor - So is there any net gain in speed?

Propagation Delay with Over-drive Capability

Asymmetric Overdrive

Define the Asymmetric Overdrive Factors of the stage to be the factor by which PU and PD resistors are scaled relative to those of the reference inverter.

$$R_{PDEFF} = \frac{R_{PDREF}}{OD_{HL}}$$

$$R_{PUEFF} = \frac{R_{PUREF}}{OD_{LH}}$$

$$t_{HL} = \frac{R_{PDREF}}{OD_{LH}}C_{L}$$

$$t_{LH} = \frac{R_{PDREF}}{OD_{LH}}C_{L}$$

$$\boldsymbol{t_{\mathsf{PROP}}} = \boldsymbol{t_{\mathsf{HL}}} + \boldsymbol{t_{\mathsf{LH}}} = \frac{\boldsymbol{R_{\mathsf{PDREF}}}}{\boldsymbol{\mathsf{OD}}_{\mathit{HL}}} \boldsymbol{C_{\mathsf{L}}} + \frac{\boldsymbol{R_{\mathsf{PDREF}}}}{\boldsymbol{\mathsf{OD}}_{\mathit{LH}}} \boldsymbol{C_{\mathsf{L}}} = \boldsymbol{R_{\mathsf{PDREF}}} \boldsymbol{C_{\mathsf{L}}} \left[\frac{1}{\boldsymbol{\mathsf{OD}}_{\mathit{HL}}} + \frac{1}{\boldsymbol{\mathsf{OD}}_{\mathit{LH}}} \right] = \frac{\boldsymbol{t_{\mathsf{REF}}}}{2} \left[\frac{1}{\boldsymbol{\mathsf{OD}}_{\mathit{HL}}} + \frac{1}{\boldsymbol{\mathsf{OD}}_{\mathit{LH}}} \right] \boldsymbol{F_{\mathsf{IL}}}$$

Propagation Delay with Over-drive Capability

Overdrive

If inverter with OD is sized for equal rise/fall, $OD_{HL}=OD_{LH}=OD$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{R}_{\mathsf{PDREF}} \mathbf{C}_{\mathsf{L}} \left[\frac{1}{\mathsf{OD}_{HL}} + \frac{1}{\mathsf{OD}_{LH}} \right] = \mathbf{R}_{\mathsf{PDREF}} \mathbf{C}_{\mathsf{L}} \frac{\mathbf{2}}{\mathsf{OD}} = \mathbf{t}_{\mathsf{REF}} \frac{\mathbf{F}_{\mathsf{IL}}}{\mathsf{OD}}$$

OD may be larger or smaller than 1

Propagation Delay with Over-drive Capability

Example

Compare the propagation delays. Assume the OD is 900 in the third case and 30 in the fourth case. Don't worry about the extra inversion at this time.

$$t_{PROP} = 900t_{REF}$$

$$t_{\text{PROP}}\!=\!\!t_{\text{REF}}+900t_{\text{REF}}=901t_{\text{REF}}$$

$$t_{\mathsf{PROP}} \!=\! \! 900t_{\mathsf{REF}} + t_{\mathsf{REF}} = \! 901t_{\mathsf{REF}}$$

$$t_{\text{PROP}} \hspace{-0.1cm}=\hspace{-0.1cm} 30t_{\text{REF}} + 30t_{\text{REF}} = \hspace{-0.1cm} 60t_{\text{REF}}$$

- Dramatic reduction in t_{PROP} is possible (input is driving same in last 3 cases)
- Will later determine what optimal number of stages and sizing is

F_{lk} denotes the total loading on stage k which is the sum of the F_l of all loading on stage k

Summary: Propagation delay from A to F:

$$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \sum_{k=1}^{n} \frac{\mathbf{F}_{l(k+1)}}{\mathbf{OD}_{k}}$$

Will consider an example with the five cases

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Asymmetric Overdrive
- Minimum Sized
- Combination of equal rise/fall, minimum size and overdrive

Will develop the analysis methods as needed

Equal rise/fall (no overdrive)

$$t_{PROP} = t_{REF} \sum_{k=1}^{\infty} FI_{(k+1)}$$

• Equal rise/fall with overdrive

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_k}$$

Asymmetric overdrive

$$t_{PROP} = ?$$

Minimum Sized

$$t_{PROP} = ?$$

 Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = ?$$

Driving Notation

Equal rise/fall (no overdrive)

· Equal rise/fall with overdrive

Minimum Sized

Asymmetric Overdrive

Notation will be used only if it is not clear from the context what sizing is being used

Recall:

Define the Asymmetric Overdrive Factors of the stage to be the factors by which PU and PD resistors are scaled relative to those of the reference inverter.

$$R_{PDEFF} = \frac{R_{PDREF}}{OD_{HL}}$$

$$R_{PUEFF} = \frac{R_{PUREF}}{OD_{LH}}$$

Asymmetric Overdrive

Recall:

If inverter is not equal rise/fall

$$t_{HL} = \frac{R_{PDREF}}{OD_{HL}}C_{L} = \frac{1}{2}t_{REF}\frac{F_{IL}}{OD_{HL}}$$

$$t_{LH} = \frac{R_{PUREF}}{OD_{LH}}C_{L} = \frac{1}{2}t_{REF}\frac{F_{IL}}{OD_{LH}}$$

$$t_{PROP} = t_{HL} + t_{LH} = \frac{1}{2}t_{REF}F_{IL}\left(\frac{1}{OD_{HL}} + \frac{1}{OD_{LH}}\right)$$

 $t_{PROP} = t_{LH} + t_{HL} = t_{REF} \frac{F_{IL}}{OD}$

Asymmetric Overdrive

When propagating through n stages:

F_{lk} denotes the total loading on stage k which the sum of the F_l of all loading on stage k

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{\mathsf{k=1}}^{\mathsf{n}} \mathbf{F}_{\mathsf{l}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

Equal rise/fall (no overdrive)

Asymmetric overdrive

Minimum Sized

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} Fl_{(k+1)}$$

$$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \sum_{k=1}^{n} \frac{\mathbf{F}_{I(k+1)}}{\mathbf{OD}_{k}}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{\mathsf{k=1}}^{\mathsf{n}} \mathbf{F}_{\mathsf{l}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

$$t_{PROP} = ?$$

$$t_{PROP} = ?$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading and Overdrives

Will now consider A to F propagation for this circuit as an example with different overdrives

Equal rise/fall (no overdrive)

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$
$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD}$$

- Equal rise/fall with overdrive
- Asymmetric overdrive
- Minimum Sized
- Combination of equal rise/fall, minimum size and overdrive

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{\mathsf{n}} \mathbf{F}_{\mathsf{l}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HI}(\mathsf{k})}} + \frac{\mathsf{1}}{\mathsf{OD}_{\mathsf{l}(\mathsf{Hk})}} \right) \right)$$

$$t_{PROP} = ?$$

$$t_{PROP} = ?$$

Equal rise-fall gates, no overdrive

$$t_{REF} = 2t_{HL_{REF}}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \mathbf{F}_{\mathbf{l}_{k+1}}$$

Equal rise-fall gates, no overdrive

	Equal Rise/Fall
$C_{\text{IN}}/C_{\text{REF}}$	
Inverter	1
NOR	3k+1 4
NAND	$\frac{3+k}{4}$
Overdrive Inverter HL	1
LH NOR HL	1 1
LH NAND HL	1 1
LH	1
t _{PROP} /t _{REF}	$\sum_{k=1}^{n} F_{l(k+1)}$

$$t_{PROP} = t_{REF} \sum_{k=1}^{5} F_{l_{k+1}}$$

Equal rise-fall gates, no overdrive

In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

Equal rise-fall gates, no overdrive

In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

 $t_{PROP} = 32.5t_{REF}$

How does this propagation delay compare to that required for a propagation of a signal through 5-levels of logic with only reference inverters?

$$A \longrightarrow t_{PROP} = 5t_{REI}$$

Loading can have a dramatic effect on propagation delay

Equal rise-fall gates, with overdrive

In 0.5u proc t_{REF}=20ps, C_{REF}=4fF,R_{PDREF}=2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \frac{\mathbf{F}_{\mathbf{I}_{k+1}}}{\mathbf{OD}_{\iota}}$$

Equal rise-fall gates, with overdrive

	Equal Rise/Fall	Equal Rise/Fall (with OD)	
$C_{\text{IN}}/C_{\text{REF}}$			
Inverter	1	OD	
NOR	$\frac{3k+1}{4}$	3k+1 4 OD	
NAND	3+k 4	$\frac{3+k}{4} \bullet OD$	
Overdrive			
Inverter HL	1	OD	
LH NOR HL	1	OD	
	1	OD	
LH	1	OD	
NAND HL	1	OD	
LH	1	OD	
t _{PROP} /t _{REF}	$\sum_{k=1}^n F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{\mathbf{F}_{l(k+1)}}{\mathbf{OD}_{k}}$	

$$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \sum_{k=1}^{n} \frac{\mathbf{F}_{k+1}}{\mathbf{OD}_{k}}$$

Equal rise-fall gates, with overdrive

than that in the 0.5u ON process)

Minimum-sized gates

In 0.5u proc t_{REF}=20ps, C_{REF}=4fF,R_{PDREF}=2.5K

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$$

Minimum-sized gates

 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$

Observe that a minimum-sized gate is simply a gate with asymmetric overdrive

Recall:

Propagation Delay with Minimum-Sized Gates

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{\mathsf{k=1}}^{\mathsf{n}} \mathbf{F}_{\mathsf{l}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

- Still need OD_{HL} and OD_{LH} for minimum-sized gates
- Still need F_I

Propagation Delay with minimum-sized gates

 $FI=2C_{OX}W_{MIN}L_{MIN}$

 $C_{REF} = 4C_{OX}W_{MIN}L_{MIN}$

$$FI = \frac{C_{REF}}{2}$$

Minimum-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized
$C_{\text{IN}}/C_{\text{REF}}$			
Inverter	1	OD	
NOR	$\frac{3k+1}{4}$	3k+1	
NAND	3+k 4	3+k 4 • OD	
Overdrive			
Inverter HL	1	OD	
LH	1	OD	
NOR HL	1	OD	
LH	1	OD	
NAND HL	1	OD	
LH	1	OD	
t _{PROP} /t _{REF}	$\sum_{k=1}^n F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_k}$	

Minimum-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized
$C_{\text{IN}}/C_{\text{REF}}$			
Inverter	1	OD	1/2
NOR	3k+1 4	3k+1 • OD	1/2
NAND	$\frac{3+k}{4}$	3+k 4 • OD	1/2
Overdrive			
Inverter HL	1	OD	1
LH	1	OD	1/3
NOR HL	1	OD	1
LH	1	OD	1/(3k)
NAND HL	1	OD	1/k
LH	1	OD	1/3
t _{PROP} /t _{REF}	$\sum_{k=1}^n F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_k}$	$\frac{1}{2} \sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)$

Asymmetric-sized gates

Asymmetric-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized	Asymmetric OD (OD _{HL} , OD _{LH})
$C_{\text{IN}}/C_{\text{REF}}$				
Inverter	1	OD	1/2	OD _{HL} +3 • OD _{LH} 4
NOR	$\frac{3k+1}{4}$	3k+1 • OD	1/2	OD _{HL} +3k • OD _{LH}
NAND	$\frac{3+k}{4}$	3+k ◆ OD	1/2	$\frac{4}{k \bullet OD_{HL} + 3 \bullet OD_{LH}}$
Overdrive				
Inverter HL	1	OD	1	OD_HL
LH	1	OD	1/3	OD_LH
NOR HL	1	OD	1	OD_HL
LH	1	OD	1/(3k)	OD_LH
NAND HL	1	OD	1/k	OD_HL
LH	1	OD	1/3	OD_LH
t _{PROP} /t _{REF}	$\sum_{k=1}^n F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_k}$	$\boxed{\frac{1}{2} \sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)}$	$\frac{1}{2} \sum_{k=1}^{n} F_{l(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)$
$t_{PROP}/t_{REF} \qquad \sum_{k=1}^{n} F_{I(k+1)} \qquad \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_{k}} \qquad \left \frac{1}{2} \sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right) \right \frac{1}{2} \sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right) $ $t_{PROP} = t_{REF} \bullet \left(\frac{1}{2} \sum_{k=1}^{5} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right) \right)$				

Asymmetric-sized gates

Mixture of Minimum-sized gates, equal rise/fall gates and OD

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$$

Driving Notation

Equal rise/fall (no overdrive)

• Equal rise/fall with overdrive

Minimum Sized

M 1/3

Asymmetric Overdrive

Mixture of Minimum-sized gates, equal rise/fall gates and OD

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{5} \mathbf{F}_{\mathsf{I}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

Mixture of Minimum-sized gates, equal rise/fall gates and OD

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} Fl_{(k+1)}$$

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_{k}}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

		1/3		
	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized	Asymmetric OD (OD _{HL} , OD _{LH})
C_{IN}/C_{REF}				
Inverter	1	OD	1/2	OD _{HL} +3 • OD _{LH}
NOR	3k+1 4	3k+1 • OD	1/2	4 OD _{HL} +3k • OD _{LH}
NAND	$\frac{3+k}{4}$	3+k / 4 • OD	1/2	4 k • OD _{HL} +3 • OD _{LH} 4
Overdrive				4
Inverter HL	1	OD	1	OD_HL
LH	1	OD	1/3	OD_LH
NOR HL	1	OD	1	OD_HL
LH	1	OD	1/(3k)	OD_LH
NAND HL	1	OD	1/k	OD_HL
LH	1	OD	1/3	OD_LH
t _{PROP} /t _{REF}	$\sum_{k=1}^{n} \mathbf{F}_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_{k}}$	$\boxed{\frac{1}{2}\sum_{k=1}^{n}F_{I(k+1)}\left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}}\right)}$	$\frac{1}{2} \sum_{k=1}^{n} F_{l(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)$

End of Lecture 42