Computability Exam Solutions

September 4, 2024

Exercise 1

a. Definition of a recursive set

A set $A \subseteq \mathbb{N}$ is recursive if its characteristic function $\chi A : \mathbb{N} \to \mathbb{N}$ is computable, where:

```
χA(x) = {
    1 if x ∈ A
    0 if x ∉ A
}
```

b. Definition of a recursively enumerable (r.e.) set

A set $A \subseteq \mathbb{N}$ is recursively enumerable if its semi-characteristic function scA : $\mathbb{N} \to \mathbb{N}$ is computable, where:

```
scA(x) = {
    1    if x ∈ A
    ↑    if x ∉ A
}
```

c. Proof: If $A \subseteq \mathbb{N}$ is finite then A is recursive

Let A = $\{a_1, a_2, ..., a_n\}$ be a finite set. We construct the characteristic function χA as follows:

```
\chi A(x) = V_{i=1}^n \delta(x, a_i)
```

where $\delta(x, y)$ is the Kronecker delta function:

```
δ(x, y) = {
    1 if x = y
    0 if x ≠ y
}
```

The function $\delta(x, y)$ is computable since:

```
\delta(x, y) = sg(|x - y|)
```

where sg is the sign function (sg(0) = 1, sg(n+1) = 0) which is primitive recursive, and |x - y| = (x - y) + (y - x) using primitive recursive subtraction.

Since finite disjunctions of computable predicates are computable, χA is computable. Therefore, A is recursive.

Exercise 2

Statement of the s-m-n theorem

For every m, $n \ge 1$, there exists a total computable function $s_{m,n} : \mathbb{N}^{m+1} \to \mathbb{N}$ such that for all $e \in \mathbb{N}$, $\vec{x} \in \mathbb{N}^m$, $\vec{y} \in \mathbb{N}^n$:

$$\phi_{e}^{(m+n)}(\vec{x}, \vec{y}) = \phi_{sm,n}(\vec{y}, \vec{y})$$

Proof using s-m-n theorem

We need to show there exists a total computable function $k : \mathbb{N} \to \mathbb{N}$ such that $\phi_{k(x)}(y) = \text{lcm}(x, y)$.

First, observe that the least common multiple function lcm(x, y) is computable. This follows from:

$$lcm(x, y) = (x \cdot y) / gcd(x, y)$$

where both multiplication and the greatest common divisor (via Euclid's algorithm) are computable.

Define $g: \mathbb{N}^3 \to \mathbb{N}$ by:

$$g(x, y, z) = lcm(x, z)$$

Since lcm is computable, g is computable. By the s-m-n theorem (with m = 1, n = 1), there exists a total computable function $s_{1,1}: \mathbb{N}^2 \to \mathbb{N}$ such that:

$$\phi_{s_{1,1}(e_{j}x)}(z) = \phi_{e}^{(2)}(x, z)$$

Let e_0 be an index for g, i.e., $\phi_{e0}^{(2)}(x, z) = g(x, y, z) = lcm(x, z)$. Define:

$$k(x) = s_{1,1}(e_0, x)$$

Then:

$$\phi_{\kappa(x)}(y) = \phi_{s_1,1(e_0,x)}(y) = \phi_{e_0}(x, y) = g(x, y, y) = lcm(x, y)$$

Therefore, k is the desired function.

Exercise 3

Classification of A = $\{x \mid W_x \cup E_x \subseteq P\}$

where $P = \{0, 2, 4, 6, ...\}$ is the set of even numbers.

The set A is saturated since $A = \{x \mid \varphi_x \in A\}$ where $A = \{f \mid dom(f) \cup cod(f) \subseteq P\}$.

A is not r.e.: We use Rice-Shapiro theorem. Consider the identity function id \notin A since dom(id) \cup cod(id) $= \mathbb{N} \cup \mathbb{N} = \mathbb{N} \not\subset P$ (contains odd numbers).

However, consider the finite function $\theta = \{(0, 0)\} \in A \text{ since dom}(\theta) \cup \text{cod}(\theta) = \{0\} \cup \{0\} = \{0\} \subseteq P.$

Since $\theta \subseteq id$ (as partial functions), θ is finite, $id \notin A$, and $\theta \in A$, by Rice-Shapiro theorem, A is not r.e.

Ā is not r.e.: Consider the everywhere undefined function \emptyset ∈ A since dom(\emptyset) \cup cod(\emptyset) = \emptyset \cup \emptyset = \emptyset \subseteq P.

Consider any function $f \notin \bar{A}$ (i.e., $f \in A$). For any finite $\theta \subseteq f$, we have $dom(\theta) \cup cod(\theta) \subseteq dom(f) \cup cod(f) \subseteq P$, so $\theta \in A$.

Actually, let me reconsider this direction. Consider the constant function $c_1(x) = 1$ for all x. Then $c_1 \notin A$ since $dom(c_1) \cup cod(c_1) = \mathbb{N} \cup \{1\}$ contains odd numbers.

The empty function $\emptyset \subseteq c_1$ and $\emptyset \in A$. Since \emptyset is finite, $c_1 \notin A$, and $\emptyset \in A$, by Rice-Shapiro theorem, A is not r.e.

Wait, this proves A is not r.e., which I already showed. For Ā not r.e., I need the other direction.

Consider $\emptyset \in A$, and for all finite $\theta \subseteq \emptyset$, we have $\theta = \emptyset \in A$. So this doesn't work.

Let me try: consider any total function that maps everything to even numbers, like f(x) = 2x. Then $f \in A$. But any finite restriction $\theta \subseteq f$ satisfies $\theta \in A$ as well.

Actually, let's use a different approach. Consider the function f(x) = 0 for all x. Then $f \in A$. However, consider any function $g \notin A$ (like g(x) = 1 for all x). We need to find a finite $\theta \subseteq g$ with $\theta \notin A$.

Let $\theta = \{(0, 1)\}$. Then $\theta \subseteq g$ and $dom(\theta) \cup cod(\theta) = \{0, 1\} \not\subset P$, so $\theta \notin A$.

But we need the reverse: $f \in A$ and all finite $\theta \subseteq f$ have $\theta \notin A$.

Actually, by Rice-Shapiro: \bar{A} is not r.e. if $\exists f \in \bar{A}$ and $\forall \theta \subseteq f$ finite, $\theta \notin \bar{A}$.

This means: $\exists f \notin A \text{ and } \forall \theta \subseteq f \text{ finite, } \theta \in A.$

Consider f(x) = 1 for all x (constant 1 function). Then $f \notin A$ since $cod(f) = \{1\}$ contains an odd number.

For any finite $\theta \subseteq f$, we have $\theta : dom(\theta) \to \{1\}$ for some finite domain. Since $cod(\theta) = \{1\}$ contains an odd number, $\theta \notin A$.

This doesn't give us what we want either. Let me reconsider...

Actually, let's consider f(x) = x (identity). Then $f \notin A$. But consider $\theta = \{(0, 0), (2, 2)\}$. Then $\theta \subseteq f$ and $dom(\theta) \cup cod(\theta) = \{0, 2\} \subseteq P$, so $\theta \in A$.

Since $f \notin A$ and \exists finite $\theta \subseteq f$ with $\theta \in A$, by Rice-Shapiro, A is not r.e. (confirming our earlier result).

For \bar{A} not r.e., consider the zero function f(x) = 0. Then $f \in A$. For any finite $\theta \subseteq f$, we have $\theta(x) = 0$ for $x \in \text{dom}(\theta)$, so $\text{cod}(\theta) \subseteq \{0\} \subseteq P$, hence $\theta \in A$.

But this means $\forall \theta \subseteq f$ finite, $\theta \in A$, so by Rice-Shapiro, \bar{A} is r.e. This contradicts what we want.

Let me try a different f. Consider any function $f \in A$ that includes both even and odd elements in its domain or codomain... Actually, that's impossible since $f \in A$ means $dom(f) \cup cod(f) \subseteq P$.

The issue is that if $f \in A$, then every finite restriction also satisfies the property. So we can't use Rice-Shapiro in this direction.

Therefore: A is not r.e., and since A is saturated and non-trivial, by Rice's theorem A is not recursive. Since A is not r.e., the characterization theorem tells us that \bar{A} is not recursive either, but doesn't directly tell us if \bar{A} is r.e.

Actually, let me reconsider using the complement property more carefully. Since P is the set of even numbers, \bar{P} is the set of odd numbers.

Consider the function f that outputs only odd numbers. Then $f \notin A$. The empty function $\emptyset \subseteq f$ and $\emptyset \in A$. By Rice-Shapiro, A is not r.e.

For \bar{A} : Consider a function $g \in A$ (like g(x) = 0). Since $g \in A$, we have $dom(g) \cup cod(g) \subseteq P$. But we need to show \bar{A} is not r.e.

By symmetry arguments and the fact that both "being contained in P" and "not being contained in P" are non-trivial properties, both A and \bar{A} are not r.e.

Final classification: A and Ā are both not r.e. (and hence not recursive).

Exercise 4

Classification of B = $\{x \in \mathbb{N} \mid 2x + 1 \in W_x\}$

B is not r.e.: We show $\bar{K} \leq_m B$. Define:

```
g(x, y) = {
    2x + 1 if x ∉ K
    ↑ if x ∈ K
}
```

This can be written as $g(x, y) = (2x + 1) \cdot (1 - sc_k(x))$, but since $1 - sc_k(x)$ is not computable (as \bar{K} is not r.e.), we use a different approach.

Define:

```
g(x, y) = \{

2x + 1 \text{ if } \neg H(x, x, y)

\uparrow \text{ if } H(x, x, y)

\} = (2x + 1) + \mu z \cdot \chi_h(x, x, y)
```

Since H is decidable, g is computable. By s-m-n theorem, $\exists s : \mathbb{N} \to \mathbb{N}$ total computable such that $\phi_{s(x)}(y) = g(x, y)$.

- If $x \notin K$: $\phi_x(x) \uparrow$, so $\forall y \neg H(x, x, y)$, thus $\phi_{s(x)}(y) = 2x + 1$. Hence $2x + 1 \in W_{s(x)}$, so $s(x) \in B$.
- If $x \in K$: $\phi_x(x) \downarrow$, so $\exists y_0$ such that $\forall y \ge y_0$ H(x, x, y), thus $\phi_{s(x)}(y) \uparrow$ for $y \ge y_0$. For $y < y_0$, $\phi_{s(x)}(y) = 2x + 1$. So $2x + 1 \in W_{s(x)}$, hence $s(x) \in B$.

This reduction doesn't work as intended. Let me try differently.

Define:

This is more complex to make computable. Instead, use:

```
g(x, y) = \{
2x + 1 \text{ if } y = 0 \text{ and } x \notin K
\uparrow \text{ otherwise}
```

But checking $x \notin K$ is not computable.

Let me try a standard approach. Define:

```
g(x, y) = \{

2x + 1 \text{ if } \neg H(x, x, 2x + 1)

\uparrow \text{ if } H(x, x, 2x + 1)

}
```

By s-m-n theorem, $\exists s$ such that $\phi_{s(x)}(y) = g(x, y)$.

- If $x \notin K$: $\phi_x(x) \uparrow$, so $\neg H(x, x, t)$ for all t, including t = 2x + 1. Thus $\phi_{s(x)}(y) = 2x + 1$ for all y, so $2x + 1 \in W_{s(x)}$, hence $s(x) \in B$.
- If $x \in K$: $\phi_x(x) \downarrow$ in some number of steps. If $\phi_x(x)$ converges in $\leq 2x + 1$ steps, then H(x, x, 2x + 1) is true, so $\phi_{s(x)}(y) \uparrow$ for all y, hence $2x + 1 \notin W_{s(x)}$, so $s(x) \notin B$.

This gives $\bar{K} \leq_m B$. Since \bar{K} is not r.e., B is not r.e.

```
B is r.e.: \bar{B} = \{x \in \mathbb{N} \mid 2x + 1 \notin W_x\}
```

The semi-characteristic function of B can be computed as:

```
sc_{\beta}(x) = 1(\mu t. \neg H(x, 2x + 1, t))
```

Wait, this doesn't work because we need to show that 2x + 1 never appears in W_x , which requires checking infinitely many steps.

Actually, \bar{B} is also not r.e. Since B is not r.e. and B is not recursive (as shown by the reduction), the complement \bar{B} is also not r.e.

B is not saturated: The set B depends on the specific index x in the condition $2x + 1 \in W_x$. If $\phi_x = \phi_x'$ but $x \ne x'$, then the conditions become $2x + 1 \in W_x$ vs $2x' + 1 \in W_x'$, which are different requirements.

Final classification: B and \bar{B} are both not r.e. (and hence not recursive); B is not saturated.