FIGURE 1

CGGACGCGTGGGTGCGAGGCGAAGGTGACCGGGGACCGAGCATTTCAGATCTGCTCGGTAGA GTTTTCCACCCAGCTTTCACCAAGGCCTCCCCTGTTGTGAAGAATTCCATCACGAAGAATCA ATGGCTGTTAACACCTAGCAGGGAATATGCCACCAAAACAAGAATTGGGATCCGGCGTGGGA GAACTGGCCAAGAACTCAAAGAGGCAGCATTGGAACCATCGATGGAAAAAATATTTAAAATT GATCAGATGGGAAGATGGTTTGTTGCTGGAGGGGGCTGCTGTTGGTCTTGGAGCATTGTGCTA CTATGGCTTGGGACTGTCTAATGAGATTGGAGCTATTGAAAAGGCTGTAATTTGGCCTCAGT ATGTCAAGGATAGAATTCATTCCACCTATATGTACTTAGCAGGGAGTATTGGTTTAACAGCT TTGTCTGCCATAGCAATCAGCAGAACGCCTGTTCTCATGAACTTCATGATGAGAGGCTCTTG GGTGACAATTGGTGTGACCTTTGCAGCCATGGTTGGAGCTGGAATGCTGGTACGATCAATAC CATATGACCAGAGCCCAGGCCCAAAGCATCTTGCTTGGTTGCTACATTCTGGTGTGATGGGT GCAGTGGTGGCTCCTCTGACAATATTAGGGGGTCCTCTTCTCATCAGAGCTGCATGGTACAC AGCTGGCATTGTGGGAGGCCTCTCCACTGTGGCCCATGTGTGCGCCCAGTGAAAAGTTTCTGA ACATGGGTGCACCCCTGGGAGTGGGCCTGGGTCTCGTCTTTGTGTCCTCATTGGGATCTATG TTTCTTCCACCTACCACCGTGGCTGGTGCCACTCTTTACTCAGTGGCAATGTACGGTGGATT AGTTCTTTTCAGCATGTTCCTTCTGTATGATACCCAGAAAGTAATCAAGCGTGCAGAAGTAT CACCAATGTATGGAGTTCAAAAATATGATCCCATTAACTCGATGCTGAGTATCTACATGGAT AAGTGACTCAGCTTCTGGCTTCTCTGCTACATCAAATATCTTGTTTAATGGGGCAGATATGC ATTAAATAGTTTGTACAAGCAGCTTTCGTTGAAGTTTAGAAGATAAGAAACATGTCATCATA TTTAAATGTTCCGGTAATGTGATGCCTCAGGTCTGCCTTTTTTTCTGGAGAATAAATGCAGT AATCCTCTCCCAAATAAGCACACACATTTTCAATTCTCATGTTTGAGTGATTTTAAAATGTT ${\tt TTGGTGAATGTGAAAACTAAAGTTTGTGTCATGAGAATGTAAGTCTTTTTTCTACTTTAAAA}$ TTTAGTAGGTTCACTGAGTAACTAAAATTTAGCAAACCTGTGTTTGCATATTTTTTTGGAGT GCAGAATATTGTAATTAATGTCATAAGTGATTTGGAGCTTTGGTAAAGGGACCAGAGAGAAG GAGTCACCTGCAGTCTTTTGTTTTTTTAAATACTTAGAACTTAGCACTTGTGTTATTGATTA GCTGAACTTAACAAAACTGTTCATCCTGAAACAGGCACAGGTGATGCATTCTCCTGCTGTTG CTTCTCAGTGCTCTCTTTCCAATATAGATGTGGTCATGTTTGACTTGTACAGAATGTTAATC ATACAGAGAATCCTTGATGGAATTATATATGTGTGTTTTACTTTTGAATGTTACAAAAGGAA ATAACTTTAAAACTATTCTCAAGAGAAAATATTCAAAGCATGAAATATGTTGCTTTTTCCAG AATACAAACAGTATACTCATG

FIGURE 2

MLAARLVCLRTLPSRVFHPAFTKASPVVKNSITKNQWLLTPSREYATKTRIGIRRGRTGQEL KEAALEPSMEKIFKIDQMGRWFVAGGAAVGLGALCYYGLGLSNEIGAIEKAVIWPQYVKDRI HSTYMYLAGSIGLTALSAIAISRTPVLMNFMMRGSWVTIGVTFAAMVGAGMLVRSIPYDQSP GPKHLAWLLHSGVMGAVVAPLTILGGPLLIRAAWYTAGIVGGLSTVAMCAPSEKFLNMGAPL GVGLGLVFVSSLGSMFLPPTTVAGATLYSVAMYGGLVLFSMFLLYDTQKVIKRAEVSPMYGV QKYDPINSMLSIYMDTLNIFMRVATMLATGGNRKK

FIGURE 3

GAAGGCTGCCTCGCTGGTCCGAATTCGGTGGCGCCACGTCCGCCCGTCTCCGCCTTCTGCAT GGTCGGCACGGGGGGCGGCGGTCTTGTGCATCTTGGCTACCTGTGGGTCGAAG**ATG**TCGG ACATCGGAGACTGGTTCAGGAGCATCCCGGCGATCACGCGCTATTGGTTCGCCGCCACCGTC GCCGTGCCCTTGGTCGGCAAACTCGGCCTCATCAGCCCGGCCTACCTCTTCCTCTGGCCCGA AGCCTTCCTTTATCGCTTTCAGATTTGGAGGCCAATCACTGCCACCTTTTATTTCCCTGTGG GTCCAGGAACTGGATTTCTTTATTTGGTCAATTTATATTTCTTATATCAGTATTCTACGCGA TGTCAGTACTTTATGTCTGGGCCCAGCTGAACAGAGACATGATTGTATCATTTTGGTTTGGA ACACGATTTAAGGCCTGCTATTTACCCTGGGTTATCCTTGGATTCAACTATATCATCGGAGG CTCGGTAATCAATGAGCTTATTGGAAATCTGGTTGGACATCTTTATTTTTTCCTAATGTTCA GATACCCAATGGACTTGGGAGGAAGAATTTTCTATCCACACCTCAGTTTTTGTACCGCTGG CTGCCCAGTAGGAGAGGAGGAGTATCAGGATTTGGTGTGCCCCCTGCTAGCATGAGGCGAGC TGCTGATCAGAATGGCGGAGGCGGGAGACACAACTGGGGCCCAGGGCTTTCGACTTGGAGACC AG**TGA**AGGGGCGGCCTCGGGCAGCCGCTCCTCAAGCCACATTTCCTCCCAGTGCTGGGTG CACTTAACAACTGCGTTCTGGCTAACACTGTTGGACCTGACCCACACTGAATGTAGTCTTTC AGTACGAGACAAAGTTTCTTAAATCCCGAAGAAAAATATAAGTGTTCCACAAGTTTCACGAT TCTCATTCAAGTCCTTACTGCTGTGAAGAACAAATACCAACTGTGCAAATTGCAAAACTGAC ACAACAATCATATTCACGTTATTTTCCCCTTTTGGTGGCAGAACTGTTACCAATAGGGGGAG TTTGCGTTTCATATGTAGCCCTACTGGCTTTGTGTAGCTGGAGTAGTTGGGTTGCTTTGTGT TAGGAGGATCCAGATCATGTTGGCTACAGGGAGATGCTCTCTTTGAGAGGTCCTGGGCATTG ATTCCCATTCAATCTCATTCTGGATATGTGTTCATTGAGTAAAGGAGGAGAGACCCTCATA ${f AGGGAATAACATGATTTAAGGTTGAAATGGCTTTAGAATCATTTGGGTTTGAGGGTGTGTTA}$ TTTTGAGTCATGAATGTACAAGCTCTGTGAATCAGACCAGCTTAAATACCCACACCTTTTTT ATTGAGTGGCTGTCACACTTTGAGGCAACTAAAAAGGCTTCAAACGTTTTGATCAGTTTCTT TTCAGGAAACATTGTGCTCTAACAGTATGACTATTCTTTCCCCCACTCTTAAACAGTGTGAT GTGTGTTATCCTAGGAAATGAGAGTTGGCAAACAACTTCTCATTTTGAATAGAGTTTGTGTG TACTTCTCCATATTTAATTTATATGATAAAATAGGTGGGGAGAGTCTGAACCTTAACTGTCA ${\sf CAGTCATTTTTCCTAAAGGTTTACAAGTATTTAGAACTTTTCAGTTCAGGGCAAAATGTTC}$ ${ t ATGAAGTTATTCCTCTTAAACATGGTTAGGAAGCTGATGACGTTATTGATTTTGTCTGGATT$ TTTTTGTAAACTAATCCTTTTTATTGGTAAAAATTGTAAATTAAAATGTGCAACTTG

FIGURE 4

MSDIGDWFRSIPAITRYWFAATVAVPLVGKLGLISPAYLFLWPEAFLYRFQIWRPITATFYF PVGPGTGFLYLVNLYFLYQYSTRLETGAFDGRPADYLFMLLFNWICIVITGLAMDMQLLMIP LIMSVLYVWAQLNRDMIVSFWFGTRFKACYLPWVILGFNYIIGGSVINELIGNLVGHLYFFL MFRYPMDLGGRNFLSTPQFLYRWLPSRRGGVSGFGVPPASMRRAADQNGGGGRHNWGQGFRL GDQ

Transmembrane domain:

amino acids 98-116, 152-172

N-myristoylation site.

amino acids 89-95, 168-174, 176-182, 215-221, 221-227, 237-243

Glycosaminoglycan attachment site.

amino acids 218-222

FIGURE 5

GGGGCCGCGGTCTAGGGCGGCTACGTGTTTCCCATAGCGACCATTTTGCATTAACTGGTTG GTAGCTTCTATCCTGGGGGCTGAGCGACTGCGGGCCAGCTCTTCCCCTACTCCCTCTCGGCT CCTTGTGGCCCAAAGGCCTAACCGGGGTCCGGCGGTCTGGCCTAGGGATCTTCCCCGTTGCC CCTTTGGGGCGGGATGCCTGCGGAAGAAGAAGACGAGGTGGAGTGGGTAGTGGAGAGCATCG CGGGGTTCCTGCGAGGCCCAGACTGGTCCATCCCCATCTTGGACTTTGTGGAACAGAAATGT GAAGTTAACTGCAAAGGAGGGCATGTGATAACTCCAGGAAGCCCAGAGCCGGTGATTTTGGT GGCCTGTGTTCCCCTTGTTTTTGATGATGAAGAAGAAAGCAAATTGACCTATACAGAGATTC ATCAGGAATACAAAGAACTAGTTGAAAAGCTGTTAGAAGGTTACCTCAAAGAAATTGGAATT AATGAAGATCAATTTCAAGAAGCATGCACTTCTCCTCTTGCAAAGACCCATACATCACAGGC CATTTTGCAACCTGTGTTGGCAGCAGAAGATTTTACTATCTTTAAAGCAATGATGGTCCAGA AAAACATTGAAATGCAGCTGCAAGCCATTCGAATAATTCAAGAGAGAAATGGTGTATTACCT GACTGCTTAACCGATGGCTCTGATGTGGTCAGTGACCTTGAACACGAAGAGATGAAAATCCT GAGGGAAGTTCTTAGAAAATCAAAAGAGGAATATGACCAGGAAGAAGAAAGGAAGAAGAAAAA AACAGTTATCAGAGGCTAAAACAGAAGAGCCCACAGTGCATTCCAGTGAAGCTGCAATAATG CACAAAAAGGCCTGAAGATTCCTGGCTTAGAGCATGCGAGCATTGAAGGACCAATAGCAAAC TTATCAGTACTTGGAACAGAAGAACTTCGGCAACGAGAACACTATCTCAAGCAGAAGAGAGA TAAGTTGATGTCCATGAGAAAGGATATGAGGACTAAACAGATACAAAATATGGAGCAGAAAG GAAAACCCACTGGGGAGGTAGAGGAAATGACAGAGAAACCAGAAATGACAGCAGAGGAGAAG CAAACATTACTAAAGAGGAGATTGCTTGCAGAGAAACTCAAAGAAGAAGTTATTAATAAG<u>TA</u> CTTACACTG

FIGURE 6

MAAEEEDEVEWVVESIAGFLRGPDWSIPILDFVEQKCEVNCKGGHVITPGSPEPVILVACVP LVFDDEEESKLTYTEIHQEYKELVEKLLEGYLKEIGINEDQFQEACTSPLAKTHTSQAILQP VLAAEDFTIFKAMMVQKNIEMQLQAIRIIQERNGVLPDCLTDGSDVVSDLEHEEMKILREVL RKSKEEYDQEEERKRKKQLSEAKTEEPTVHSSEAAIMNNSQGDGEHFAHPPSEVKMHFANQS IEPLGRKVERSETSSLPQKGLKIPGLEHASIEGPIANLSVLGTEELRQREHYLKQKRDKLMS MRKDMRTKQIQNMEQKGKPTGEVEEMTEKPEMTAEEKQTLLKRRLLAEKLKEEVINK

N-glycosylation sites.

amino acids 224-228, 246-250, 285-289

N-myristoylation site.

amino acids 273-279

Amidation site.

amino acids 252-256

Cytosolic fatty-acid binding proteins.

amino acids 78-108

FIGURE 7

GGGCACAGCACATGTGAAGTTTTTGATGATGAAGAAGAAAGCAAATTGACCTATACAGAGAT
TCATCAGGAATACAAAGAACTAGTTGAAAAGCTGTTAGAAGGTTACCTCAAAGAAATTGGAA
TTAATGAAGATCAATTTCAAGAAGCATGCACTTCTCCTCTTTGCAAAGACCCATACATCACAG
GCCATTTTTGCAACCTGTGTTGGCAGCAGAAGATTTTACTATCTTTAAAGCAATGATGGTCC
AGAAAAACATTGAAATGCAGCTGCAAGCCATTCGAATAATTCAAGAGAGAAAATGGTGTATTA
CCTGACTGCTTAACCGATGGCTCTGATGTGGTCAGTGACCTTGAACACGAAGAGATGAAAAT
CCTGAGGGAAGTTCTTAGAAAAATCAAAAGAGGAATATGACCAGGAA

FIGURE 8

GCGTGGTTTTTGTTCTGCAATAGGCGGCTTAGAGGGGGGGCTTTTTCGCCTATACCTACTG TAGCTTCTCCACGTATGGACCCTAAAGGCTACTGCTGCTACTACGGGGGCTAGACAGTTACTG AGTGGAATGGAAAAACAGTGCTGTAGTCATCCTGTAATATGCTCCTTGTCAACAATGTATAC ATTCCTGCTAGGTGCCATATTCATTGCTTTAAGCTCAAGTCGCATCTTACTAGTGAAGTATT CTGCCAATGAAGAAACAAGTATGATTATCTTCCAACTACTGTGAATGTGTGCTCAGAACTG AAATTTGAAATATGCTTCCTGGAAGGAATTCTCTGATTTCATGAAGTGGTCCATTCCTGCCT TTCTTTATTTCCTGGATAACTTGATTGTCTTCTATGTCCTGTCCTATCTTCAACCAGCCATG GCTGTTATCTTCTCAAATTTTAGCATTATAACAACAGCTCTTCTATTCAGGATAGTGCTGAA GAGGCGTCTAAACTGGATCCAGTGGGCTTCCCTCCTGACTTTATTTTTTGTCTATTGTGGCCT TGACTGCCGGGACTAAAACTTTACAGCACAACTTGGCAGGACGTGGATTTCATCACGATGCC TACAGCAAAGGAATGGACTTTTCCTGAAGCTAAATGGAACACCACAGCCAGAGTTTTCAGTC ACATCCGTCTTGGCATGGGCCATGTTCTTATTATATGTCCAGTGTTTTATTTCTTCAATGGCT AATATCTATAATGAAAAGATACTGAAGGAGGGGAACCAGCTCACTGAAAGCATCTTCATACA GAACAGCAAACTCTATTTCTTTGGCATTCTGTTTAATGGGCTGACTCTGGGCCTTCAGAGGA GTAACCGTGATCAGATTAAGAACTGTGGATTTTTTTTTATGGCCACAGTGCATTTTCAGTAGCC CTTATTTTTGTAACTGCATTCCAGGGCCTTTCAGTGGCTTTCATTCTGAAGTTCCTGGATAA TCTTTGACTTCAGGCCCTCCCTGGAATTTTTCTTGGAAGCCCCATCAGTCCTTCTCTCTATA TTTATTTATAATGCCAGCAAGCCTCAAGTTCCGGAATACGCACCTAGGCAAGAAAGGATCCG AGATCTAAGTGGCAATCTTTGGGAGCGTTCCAGTGGGGATGGAGAAGAACTAGAAAGACTTA $\verb|CCAAACCCAAGAGTGATGAGTCAGATGAAGATACTTTC| \textbf{TAA} | \verb|CTGGTACCCACATAGTTTGCA| |$ GCTCTCTTGAACCTTATTTTCACATTTTCAGTGTTTGTAATATTTATCTTTTCACTTTGATA AACCAGAAATGTTTCTAAATCCTAATATTCTTTGCATATATCTAGCTACTCCCTAAATGGTT CCATCCAAGGCTTAGAGTACCCAAAGGCTAAGAAATTCTAAAGAACTGATACAGGAGTAACA ATATGAAGAATTCATTAATATCTCAGTACTTGATAAATCAGAAAGTTATATGTGCAGATTAT TTTCCTTGGCCTTCAAGCTTCCAAAAAACTTGTAATAATCATGTTAGCTATAGCTTGTATAT ACACATAGAGATCAATTTGCCAAATATTCACAATCATGTAGTTCTAGTTTACATGCCAAAGT CTTCCCTTTTTAACATTATAAAAGCTAGGTTGTCTCTTGAATTTTGAGGCCCTAGAGATAGT CTGGCCATACCATAGATTTGGGATGATGTAGTCTGTGCTAAATATTTTGCTGAAGAAGCAGT TTCTCAGACACATCTCAGAATTTTAATTTTTAGAAATTCATGGGAAATTGGATTTTTGT AATAATCTTTTGATGTTTTAAACATTGGTTCCCTAGTCACCATAGTTACCACTTGTATTTTA AGTCATTTAAACAAGCCACGGTGGGGCTTTTTTCTCCTCAGTTTGAGGAGAAAAATCTTGAT AATTCAAGCTGTGACTATTGTATATCTTTCCAAGAGTTGAAATGCTGGCTTCAGAATCATAC CAGATTGTCAGTGAAGCTGATGCCTAGGAACTTTTAAAGGGATCCTTTCAAAAGGATCACTT AGCAAACACATGTTGACTTTTAACTGATGTATGAATATTAATACTCTAAAAATAGAAAGACC AGTAATATATAAGTCACTTTACAGTGCTACTTCACACTTAAAAGTGCATGGTATTTTTCATG GTATTTTGCATGCAGCCAGTTAACTCTCGTAGATAGAGAAGTCAGGTGATAGATGATATTAA AAATTAGCAAACAAAAGTGACTTGCTCAGGGTCATGCAGCTGGGTGATGATAGAAGAGTGGG CTTTAACTGGCAGGCCTGTATGTTTACAGACTACCATACTGTAAATATGAGCTTTATGGTGT CATTCTCAGAAACTTATACATTTCTGCTCTCCTTTCTCCTAAGTTTCATGCAGATGAATATA AGGTAATATACTATTATATAATTCATTTGTGATATCCACAATAATATGACTGGCAAGAATTG GTGGAAATTTGTAATTAAAATAATTATTAAACCT

FIGURE 9

MEKQCCSHPVICSLSTMYTFLLGAIFIALSSSRILLVKYSANEENKYDYLPTTVNVCSELVK LVFCVLVSFCVIKKDHQSRNLKYASWKEFSDFMKWSIPAFLYFLDNLIVFYVLSYLQPAMAV IFSNFSIITTALLFRIVLKRRLNWIQWASLLTLFLSIVALTAGTKTLQHNLAGRGFHHDAFF SPSNSCLLFRSECPRKDNCTAKEWTFPEAKWNTTARVFSHIRLGMGHVLIIVQCFISSMANI YNEKILKEGNQLTESIFIQNSKLYFFGILFNGLTLGLQRSNRDQIKNCGFFYGHSAFSVALI FVTAFQGLSVAFILKFLDNMFHVLMAQVTTVIITTVSVLVFDFRPSLEFFLEAPSVLLSIFI YNASKPQVPEYAPRQERIRDLSGNLWERSSGDGEELERLTKPKSDESDEDTF

Transmembrane domains:

amino acids 16-36 (type II), 50-74, 147-168, 229-250, 271-293, 298-318, 328-368

N-glycosylation sites.

amino acids 128-132, 204-208, 218-222, 374-378

Glycosaminoglycan attachment site.

amino acids 402-406

N-myristoylation sites.

amino acids 257-263, 275-281, 280-286, 284-290, 317-323

FIGURE 10

FIGURE 11

GTGGCTAAGGCTGCGAAGCGAGCTTGGGAGGAGCAGCGGCCTGCGGGGCAGAGGAGCAT CCCGTCTACCAGGTCCCAAGCGGCGTGGCCCGCGGGTCATGGCCAAAGGAGAAGGCGCCGAG AGCGGCTCCGCGGCGGGCTGCTACCCACCAGCATCCTCCAAAGCACTGAACGCCCGGCCCA GGTGAAGAAGAACCGAAAAAGAAGAACAACAGTTGTCTGTTTGCAACAAGCTTTGCTATG CTATTGG**ATG**TGGCTCAGGTGGGCCCTTTCTCTGCCTCCATCATCCTGTTTGTGGGCCGAGC CTGGGATGCCATCACAGACCCCCTGGTGGGCCTCTGCATCAGCAAATCCCCCTGGACCTGCC TGGGTCGCCTTATGCCCTGGATCATCTTCTCCACGCCCCTGGCCGTCATTGCCTACTTCCTC ATCTGGTTCGTGCCCGACTTCCCACACGGCCAGACCTATTGGTACCTGCTTTTCTATTGCCT CTTTGAAACAATGGTCACGTGTTTCCATGTTCCCTACTCGGCTCTCACCATGTTCATCAGCA ACCGAGCAGACTGAGCGGGATTCTGCCACCGCCTATCGGATGACTGTGGAAGTGCTGGGCAC AGTGCTGGGCACGGCGATCCAGGGACAAATCGTGGGCCAAGCAGACACGCCTTGTTTCCAGG ACTTCAATAGCTCTACAGTAGCTTCACAAAGTGCCAACCATACACATGGCACCACTTCACAC AGGGAAACGCAAAAGGCATACCTGCTGGCAGCGGGGGTCATTGTCTGTATCTATATAATCTG TGCTGTCATCCTGATCCTGGGCGTGCGGGAGCAGAGAGACCCTATGAAGCCCAGCAGTCTG AGCCAATCGCCTACTTCCGGGGCCTACGGCTGGTCATGAGCCACGGCCCATACATCAAACTT ATTACTGGCTTCCTCTTCACCTCCTTGGCTTTCATGCTGGTGGAGGGGAACTTTGTCTTGTT TTGCACCTACACCTTGGGCTTCCGCAATGAATTCCAGAATCTACTCCTGGCCATCATGCTCT CGGCCACTTTAACCATTCCCATCTGGCAGTGGTTCTTGACCCGGTTTGGCAAGAAGACAGCT GTATATGTTGGGATCTCATCAGCAGTGCCATTTCTCATCTTGGTGGCCCTCATGGAGAGTAA CCTCATCATTACATATGCGGTAGCTGTGGCAGCTGGCATCAGTGTGGCAGCTGCCTTCTTAC TACCCTGGTCCATGCTGCCTGATGTCATTGACGACTTCCATCTGAAGCAGCCCCACTTCCAT GGAACCGAGCCCATCTTCTTCTCCTTCTATGTCTTCTCACCAAGTTTGCCTCTGGAGTGTC ACTGGGCATTTCTACCCTCAGTCTGGACTTTGCAGGGTACCAGACCCGTGGCTGCTCGCAGC CGGAACGTGTCAAGTTTACACTGAACATGCTCGTGACCATGGCTCCCATAGTTCTCATCCTG CTGGGCCTGCTCTTCAAAATGTACCCCATTGATGAGGAGAGGCGGCGGCAGAATAAGAA GGCCCTGCAGGCACTGAGGGACGAGGCCAGCAGCTCTGGCTCAGAAACAGACTCCACAG ${\tt AGCTGGCTAGCATCCTC} \underline{\textbf{TAG}} {\tt GGCCCGCCACGTTGCCCGAAGCCACCATGCAGAAGGCCACAG}$ AAGGGATCAGGACCTGTCTGCCGGCTTGCTGAGCAGCTGGACTGCAGGTGCTAGGAAGGGAA CTGAAGACTCAAGGAGGTGGCCCAGGACACTTGCTGTGCTCACTGTGGGGCCCGGCTGCTCTG TGGCCTCCTCTCCCTCTGCCTGTGGGGCCAAGCCCTGGGGCTGCCACTGTGAATA TTAATGTTATTAATTTTCATAAAAGCTGGAAAGC

FIGURE 12

MWLRWALSLPPSSCLWAEPGMPSQTPWWASASANPPGPAWVALCPGSSSPRPWPSLPTSSSG
SCPTSHTARPIGTCFSIASLKQWSRVSMFPTRLSPCSSATEQTERDSATAYRMTVEVLGTVL
GTAIQGQIVGQADTPCFQDFNSSTVASQSANHTHGTTSHRETQKAYLLAAGVIVCIYIICAV
ILILGVREQREPYEAQQSEPIAYFRGLRLVMSHGPYIKLITGFLFTSLAFMLVEGNFVLFCT
YTLGFRNEFQNLLLAIMLSATLTIPIWQWFLTRFGKKTAVYVGISSAVPFLILVALMESNLI
ITYAVAVAAGISVAAAFLLPWSMLPDVIDDFHLKQPHFHGTEPIFFSFYVFFTKFASGVSLG
ISTLSLDFAGYQTRGCSQPERVKFTLNMLVTMAPIVLILLGLLLFKMYPIDEERRRQNKKAL
QALRDEASSSGCSETDSTELASIL

FIGURE 13

GGGAAACGCAAAAGGCATACCTGCTGGCAGCGGGGGTCATTGTCTGTATCTATATAATCTGT
GCTGTCATCCTGATCCTGGGCGTGCGGAGCAGAGAGAACCCTATGAAGCCCAGCAGTCTGA
GCCAATCGCCTACTTCCGGGGCCTACGGCTGGTCATGAGCCCACGGCCCATACATCAAACTTA
TTACTGGCTTCCTCTTCACCTCCTTGGCTTTCATGCTGGTGGAGGGGAACTTTGTCTTGTTT
TGCACCTACACCTTGGGCTTCCGCAATGAATTCCAGAATCTACTCCTGGCCATCATGCTCTC
GGCCACTTTAACCATTCCCATCTGGCAGTGGTTCTTGACCCGGTTTGGCAAGAAGACAGCTG
TATATGTTGGGATCTCATCAGCAGTGCCATTTCTCATCTTGGTGGCCCTCATGGAGAGTAAC
CTCATCATTACATATGCGGTAGCTGTGGCAGCTGGCATCAGTGTGGCAGCTGCCTTCTTACT
ACCCTGGTCCATGCTGCCTGATGTCATTGACGACTTCCATCTGAAGCAGCCCCACTTCCATG
GAACCGAGCCCAT

FIGURE 14

GGGGCTTCGGCGCCAGCGCCAGCGCTAGTCGGTCTGGTAAGGATTTACAAAAGGTGCAGGT ATGAGCAGGTCTGAAGACTAACATTTTGTGAAGTTGTAAAACAGAAAACCTGTTAGAA**ATG**T GGTGGTTTCAGCAAGGCCTCAGTTTCCTTCCTTCAGCCCTTGTAATTTGGACATCTGCTGCT TTCATATTTTCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTTACCTTATAT CAGTGACACTGGTACAGTAGCTCCAGAAAAATGCTTATTTGGGGCAATGCTAAATATTGCGG CAGTTTTATGCATTGCTACCATTTATGTTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAA GAGAACGTTATCATCAAATTAAACAAGGCTGGCCTTGTACTTGGAATACTGAGTTGTTTAGG ACTTTCTATTGTGGCAAACTTCCAGAAAACAACCCTTTTTGCTGCACATGTAAGTGGAGCTG TGCTTACCTTTGGTATGGGCTCATTATATATGTTTGTTCAGACCATCCTTTCCTACCAAATG CAGCCCAAAATCCATGGCAAACAAGTCTTCTGGATCAGACTGTTGTTGGTTATCTGGTGTGG AGTAAGTGCACTTAGCATGCTGACTTGCTCATCAGTTTTGCACAGTGGCAATTTTGGGACTG ATTTAGAACAGAAACTCCATTGGAACCCCGAGGACAAAGGTTATGTGCTTCACATGATCACT ACTGCAGCAGAATGGTCTATGTCATTTTCCTTCTTTGGTTTTTTCCTGACTTACATTCGTGA TTTTCAGAAAATTTCTTTACGGGTGGAAGCCAATTTACATGGATTAACCCTCTATGACACTG CACCTTGCCCTATTAACAATGAACGAACACGGCTACTTTCCAGAGATATT**TGA**TGAAAGGAT AAAATATTTCTGTAATGATTATGATTCTCAGGGATTGGGGAAAGGTTCACAGAAGTTGCTTA TTCTTCTGAAATTTTCAACCACTTAATCAAGGCTGACAGTAACACTGATGAATGCTGATA ATCAGGAAACATGAAAGAAGCCATTTGATAGATTATTCTAAAGGATATCATCAAGAAGACTA TTAAAAACACCTATGCCTATACTTTTTTATCTCAGAAAATAAAGTCAAAAGACTATG

FIGURE 15

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNI AAVLCIATIYVRYKQVHALSPEENVIIKLNKAGLVLGILSCLGLSIVANFQKTTLFAAHVSG AVLTFGMGSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFG TDLEQKLHWNPEDKGYVLHMITTAAEWSMSFSFFGFFLTYIRDFQKISLRVEANLHGLTLYD TAPCPINNERTRLLSRDI

FIGURE 16

FIGURE 17

CCCACGCGTCCGCCGCTGCGTCCCGGAGTGCAAGTGAGCTTCTCGGCTGCCCCGCGGG CCGGGGTGCGAGCCGACATGCGCCCGCTTCTCGGCCTCTTCTGGTCTTCGCCGGCTGCAC AGGCTGGAGGCAGGTCGCTGTGGTTCCCCTCCGACCTGGCAGAGCTGCGGGAGCTCTCTGAG GTCCTTCGAGAGTACCGGAAGGAGCACCAGGCCTACGTGTTCCTGCTCTTCTGCGGCGCCCTA CCTCTACAAACAGGGCTTTGCCATCCCCGGCTCCAGCTTCCTGAATGTTTTAGCTGGTGCCT TGCTACCTGCTCCAGTATTTTTGGCAAACAGTTGGTGGTGTCCTACTTTCCTGATAAAGT TGAGACTTTTCCCCATGACACCAAACTGGTTCTTGAACCTCTCGGCCCCAATTCTGAACATT CCCATCGTGCAGTTCTTCTCAGTTCTTATCGGTTTGATCCCATATAATTTCATCTGTGT GCAGACAGGGTCCATCCTGTCAACCCTAACCTCTCTGGATGCTCTTTTCTCCTGGGACACTG TCTTTAAGCTGTTGGCCATTGCCATGGTGGCATTAATTCCTGGAACCCTCATTAAAAAATTT AGTCAGAAACATCTGCAATTGAATGAAACAAGTACTGCTAATCATATACACAGTAGAAAAGA CACA**TGA**TCTGGATTTTCTGTTTGCCACATCCCTGGACTCAGTTGCTTATTTGTGTAATGGA TGTGGTCCTCTAAAGCCCCTCATTGTTTTTGATTGCCTTCTATAGGTGATGTGGACACTGTG CATCAATGTGCAGTGTCTTTTCAGAAAGGACACTCTGCTCTTGAAGGTGTATTACATCAGGT TTTCAAACCAGCCCTGGTGTAGCAGACACTGCAACAGATGCCTCCTAGAAAATGCTGTTTGT GGCCGGGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCCGGTGATTC ACAAGGTCAGGAGTTCAAGACCAGCCTGGCCAAGATGGTGAAATCCTGTCTCTAATAAAAAT ACAAAATTAGCCAGGCGTGGTGGCAGGCACCTGTAATCCCAGCTACTCGGGAGGCTGAGGC AGGAGAATTGCTTGAACCAAGGTGGCAGAGGTTGCAGTAAGCCAAGATCACACCACTGCACT CCAGCCTGGGTGATAGAGTGAGACACTGTCTTGAC

FIGURE 18

MRPLLGLLLVFAGCTFALYLLSTRLPRGRRLGSTEEAGGRSLWFPSDLAELRELSEVLREYR KEHQAYVFLLFCGAYLYKQGFAIPGSSFLNVLAGALFGPWLGLLLCCVLTSVGATCCYLLSS IFGKQLVVSYFPDKVALLQRKVEENRNSLFFFLLFLRLFPMTPNWFLNLSAPILNIPIVQFF FSVLIGLIPYNFICVQTGSILSTLTSLDALFSWDTVFKLLAIAMVALIPGTLIKKFSQKHLQ LNETSTANHIHSRKDT

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 101-123, 189-211

N-glycosylation sites.

amino acids 172-176, 250-254

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 240-244, 261-265

N-myristoylation site.

amino acids 13-19, 104-110, 115-121, 204-210

Amidation site.

amino acids 27-31

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 4-15

Protein splicing proteins.

amino acids 25-31

Sugar transport proteins.

amino acids 162-172

FIGURE 19

CCGAGGCGGGGGGCCCGAGCCCCGCATGAATCATTGTAGTCAATCATTTT CCAGTTCTCAGCCGCTCAGTTGTGATCAAGGGACACGTGGTTTCCGAACTGCCAGCTCAGAA TAGGAAAATAACTTGGGATTTTATATTGGAAGAC**ATG**GATCTTGCTGCCAACGAGATCAGCA TCAGAGAAGGCAATTGAAAAATTTATCAGACAGCTGCTGGAAAAGAATGAACCTCAGAGACC CCCCCGCAGTATCCTCTCTTATAGTTGTGTATAAGGTTCTCGCAACCTTGGGATTAATCT TGCTCACTGCCTACTTTGTGATTCAACCTTTCAGCCCATTAGCACCTGAGCCAGTGCTTTCT GGAGCTCACCCTGGCGCTCACTCATCCATCACTTAGGCTGATGTCCTTGCCCATTGCCAA CAGACTTTGACCCCTGGTGGACAAACGACTGTGAGCAGAATGAGTCAGAGCCCATTCCTGCC AACTGCACTGGCTGTGCCCAGAAACACCTGAAGGTGATGCTCCTGGAAGACGCCCCAAGGAA ATTTGAGAGGCTCCATCCACTGGTGATCAAGACGGGAAAGCCCCTGTTGGAGGAAGAGATTC AGCATTTTTTGTGCCAGTACCCTGAGGCGACAGAAGGCTTCTCTGAAGGGTTTTTCGCCAAG TGGTGGCGCTGCTTTCCTGAGCGGTGGTTCCCATTTCCTTATCCATGGAGGAGACCTCTGAA CCTCTTTAAACAAGTGCTCCTTTCTTCACCCAGAACCTGTTGTGGGGGAGTAAGATGCATAAG ATGCCTGACCTATTTATCATTGGCAGCGGTGAGGCCATGTTGCAGCTCATCCCTTCCA GTGCCGAAGACATTGTCAGTCTGTGGCCATGCCAATAGAGCCAGGGGATATCGGCTATGTCG ACACCACCCACTGGAAGGTCTACGTTATAGCCAGAGGGGTCCAGCCTTTGGTCATCTGCGAT GGAACCGCTTTCTCAGAACTG**TAG**GAAATAGAACTGTGCACAGGAACAGCTTCCAGAGCCGA AAACCAGGTTGAAAGGGGAAAAATAAAAACAAAAACGATGAAACTGCAAAAA

FIGURE 20

MDLAANEISIYDKLSETVDLVRQTGHQCGMSEKAIEKFIRQLLEKNEPQRPPPQYPLLIVVY KVLATLGLILLTAYFVIQPFSPLAPEPVLSGAHTWRSLIHHIRLMSLPIAKKYMSENKGVPL HGGDEDRPFPDFDPWWTNDCEQNESEPIPANCTGCAQKHLKVMLLEDAPRKFERLHPLVIKT GKPLLEEEIQHFLCQYPEATEGFSEGFFAKWWRCFPERWFPFPYPWRRPLNRSQMLRELFPV FTHLPFPKDASLNKCSFLHPEPVVGSKMHKMPDLFIIGSGEAMLQLIPPFQCRRHCQSVAMP IEPGDIGYVDTTHWKVYVIARGVQPLVICDGTAFSEL

FIGURE 21

FIGURE 22

CCCACGCGTCCGCCCACGCGTCCGGCTGAACACCTCTTCTTTGGAGTCAGCCACTGATGAGG CCACTGGTGCGCACGCTGCTAGACCGTGCCTATGAGCCGCTGGGGGCTGCAGTGGGGACTGCC CTCCCTGCCACCAATGGCAGCCCCACCTTCTTTGAAGACTTCCAGGCTTTTTGTGCCA CACCCGAATGGCGCCACTTCATCGACAAACAGGTACAGCCAACCATCCCAGTTCGAAATGGACACGTATGCTAAGAGCCACGACCTTATGTCAGGTTTCTGGAATGCCTGCTATGACATGCT TATGAGCAGTGGGCAGCGCCCAGTGGGAGCGCCCCAGAGTCGTCGGGCCTTCCAGGAGC TGGTGCTGGAACCTGCGCAGAGGCGGGCGCCCTGGAGGGGGCTACGCTACACGGCAGTGCTG CTCACTGCCTCTGGCAGTGACCAAAGAGGCCAAAGTGAGCACCCCACCCGAGTTGCTGCAGG CAACTACTTCCTCAACTTCCATGCAAGGTGGGCACGACCCCAGTCTCATCTCCTAGCCAGA CTCCGAGACCCCAGCCTGGCCCCATCCCACCCCATACCCAGGTACGGAACCAGGTGTACTCG TGGCTCCTGCGCCTACGGCCCCCTCTCAAGGCTACCTAAGCAGCCGCTCCCCCAGGAGAT GCTGCGTGCCTCAGGCCTTACCCAGAAATGGGTACAGCTGAGATATCCAACTTCGAGTACT TGATGCAACTCAACACCATTGCGGGGCGGACCTACAATGACCTGTCTCAGTACCCTGTGTTC CCCTGGGTCCTGCAGGACTACGTGTCCCCAACCCTGGACCTCAGCAACCCAGCCGTCTTCCG GGACCTGTCTAAGCCCATCGGTGTGGTGAACCCCAAGCATGCCCAGCTCGTGAGGGAGAAGT ATGAAAGCTTTGAGGACCCAGCAGGACCATTGACAAGCTTCCACTATGCACCACTACTCC
AATGCAGCAGGCGTGATGCACTACCTCATCCGCGTGGAGCCCTTCACCTCCCTGCACGTCCA
GCTGCAAAGTGGCCGCTTTGACTGCTCCGACCGGCAGTTCCACTCGGTGGCGCAGCCTGGC
AGGCACGCCTGGAAAGCCCTGCCGATGTGAAGGAGCTCATCCCGGAATTCTTCTACTTTCCT GACTTCCTGGAGAACCAGAACGGTTTTGACCTGGGCTGTCTCCAGCTGACCAACGAGAAGGT AGGCGATGTGGTGCTACCCCCGTGGGCCAGCTCTCCTGAGGACTTCATCCAGCAGCACCGCC AGGCTCTGGAGTCGGAGTATGTGTCTGCACACCTACACGAGTGGATCGACCTCATCTTTGGC TACAAGCAGCGGGGGCCAGCCGCGAGGAGGCCCTCAATGTCTTCTATTACTGCACCTATGA GGGGGCTGTAGACCTGGACCATGTGACAGATGAGCGGGAACGGAAGGCTCTGGAGGGCATTA TCAGCAACTTTGGGCAGACTCCCTGTCAGCTGCTGAAGGAGCCACATCCAACTCGGCTCTCA GCTGAGGAAGCAGCCCATCGCCTTGCACGCCTGGACACTAACTCACCTAGCATCTCCAGCACTGGACGAACTCAAGCACTTTCCAGCACTGGACGAACTCAAGCACTTCAGCATCTTCCAGCACTGGACGAACTCAAGCAACTTCAGCATGGGCACCCACAGCTGGTTGCCCTATGACCGCAACATAAGCAACTACTTCAGCTTCAGCAAAGACCCCACCATGGGCAACAAGACCCCACCATGGGCAACAAGACCCCACCATGGGCAACAAGACGCAGCGACTGCTGAGTGGCCCGTGGGTGCCAGGCAGTGGTGT GAGTGGACAAGCACTGGCAGTGGCCCCGGATGGAAAGCTGCTATTCAGCGGTGGCCACTGGG ATGGCAGCCTGCGGTGACTGCACTACCCCGTGGCAAGCTGTTGAGCCAGCTCAGCTGCCACCTTGATGTAACCTGCCTTGCACTGGACACCTGTGGCATCTACCTCATCTCAGGCTCCCG GGACACCACGTGCATGGTGTGGCGGCTCCTGCATCAGGGTGGTCTGTCAGTAGGCCTGGCACCAAAGCCTGTGCAGGTCCTGTATGGGCATGGGGCTGCAGTGAGCTGTGTGGCCATCAGCACT GAACTTGACATGGCTGTCTGGATCTGAGGATGGAACTGTGATCATACACACTGTACGCCG CGGACAGTTTGTAGCGCACTACGGCCTCTGGGTGCCACATTCCCTGGACCTATTTTCCACC
TGGCATTGGGGTCCGAAGGCCAGATTGTGGTACAGAGGTCAGCGTGGGAACGTCCTGGGGCC
CAGGTCACCTACTCCTTGCACCTGTATTCAGTCAATGGGAAGTTGCGGGCTTCACTGCCCCT
GGCAGAGCAGCCTACAGCCCTGACGGTGACAGAGGACTTTGTGTTTGCTGGGCACCGCCCAGT
GCGCCCTGCCCACTAAACACACTGCTCCCCGGCCGCCCCCTTGCCCATGAAG $\verb| CCTACTGAGGCGCGCTGAA| ACCTGGCCAGTCCGGGCTGCTCGGGCCCCGGCCCCGGCAGGCCTG| \\$ GCCCGGGAGGCCCCGGAAAGTCGGCGGGAACACCCCGGGGTGGGCAGCCCAGGGGGTGA GCGGGGCCCACCCTGCCCAGCTCAGGGATTTGCCGGGCGATGTTACCCCCTCAGGGATTGGCG GGCGGAAGTCCCGCCCTCGCCGGCTGAGGGGCCCCTGAGGGCCCAGCACTGGCGTCT

FIGURE 23

MSQFEMDTYAKSHDLMSGFWNACYDMLMSSGQRRQWERAQSRRAFQELVLEPAQRRARLEGL RYTAVLKOQATOHSMALLHWGALWRQLASPCGAWALRDTPIPRWKLSSAETYSRMRLKLVPN HHFDPHLEASALRDNLGEVPLTPTEEASLPLAVTKEAKVSTPPELLQEDQLGEDELAELETP MEAAELDEQREKLVLSAECQLVTVVAVVPGLLEVTTQNVYFYDGSTERVETEEGIGYDFRRP LAQLREVHLRRFNLRRSALELFFI DQANYFLNFPCKVGTTPVSSPSQTPRPQPGPIPPHTQV RNOVYSWLLRLRPPSOGYLSSRSPQEMLRASGLTQKWVQREISNFEYLMQLNTIAGRTYNDL SQYPVFPWVLQDYVSPTLDLSNPAVFRDLSKPIGVVNPKHAQLVREKYESFEDPAGTIDKFH YGTHYSNAAGVMHYLIRVEPFTSLHVOLOSGRFDCSDROFHSVAAAWQARLESPADVKELIP EFFYFPDFLENONGFDLGCLOLTNEKVGDVVLPPWASSPEDFIQOHRQALESEYVSAHLHEW IDLIFGYKORGPAAEEALNVFYYCTYEGAVDLDHVTDERERKALEGIISNFGQTPCQLLKEP HPTRLSAEEAAHRLARLDTNSPSIFOHLDELKAFFAEVTVSASGLLGTHSWLPYDRNISNYF SFSKDPTMGSHKTQRLLSGPWVPGSGVSGQALAVAPDGKLLFSGGHWDGSLRVTALPRGKLL SQLSCHLDVVTCLALDTCGIYLISGSRDTTCMVWRLLHQGGLSVGLAPKPVQVLYGHGAAVS CVAISTELDMAVSGSEDGTVIIHTVRRGOFVAALRPLGATFPGPIFHLALGSEGQIVVQSSA WERPGAQVTYSLHLYSVNGKLRASLPLAEQPTALTVTEDFVLLGTAQCALHILQLNTLLPAA PPLPMKVAIRSVAVTKERSHVLVGLEDGKLIVVVAGQPSEVRSSQFARKLWRSSRRISQVSS GETEYNPTEAR

N-glycosylation site.

amino acids 677-681

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 985-989

Tyrosine kinase phosphorylation site.

amino acids 56-65, 367-376, 543-551

N-myristoylation site.

amino acids 61-67, 436-442, 604-610, 610-616, 664-670, 691-697, 706-712, 711-717, 769-775, 785-791, 802-808, 820-826, 834-840, 873-879, 912-918, 954-960

FIGURE 24

CACGGCCCACCTTGTGAACTCCTCGTGCCCAGGGCTGATGTGCGTCTTCCAGGGCTACTCAT ${\tt CCAAAGGCCTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGTCCTGGGGGCTCTTC}$ TGGACCCTTAACTGGGTACTGGCCCTGGGCCAATGCGTCCTCGCTGGAGCCTTTGCCTCCTT CTACTGGGCCTTCCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTCTGCCTTCATCC GCACACTCCGTTACCACACTGGGTCATTGGCATTTGGAGCCCTCATCCTGACCCTTGTGCAG ATAGCCCGGGTCATCTTGGAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCCTGTAGC CCGCTGCATCATGTGCTGTTTCAAGTGCTGCCTCTGGTGTCTGGAAAAATTTATCAAGTTCCTAAACCGCAATGCATACATCATGATCGCCATCTACGGGAAGAATTTCTGTGTCTCAGCCAAA AATGCGTTCATGCTACTCATGCGAAACATTGTCAGGGTGGTCGTCCTGGACAAAGTCACAGA $\tt CCTGCTGCTGTTCTTTGGGAAGCTGCTGGTGGTGGAGGCGTGGGGGGTCCTGTCTTTT$ TTTTCTCCGGTCGCATCCCGGGGCTGGGTAAAGACTTTAAGAGCCCCCACCTCAACTATTAC TGGCTGCCCATCATGACCTCCATCCTGGGGGGCCTATGTCATCGCCAGCGGCTTCTTCAGCGT TTTCGGCATGTGTGGACACGCTCTTCCTCTGCTTCCTGGAAGACCTGGAGCGGAACAACG GCTCCCTGGACCGGCCCTACTACATGTCCAAGAGCCTTCTAAAGATTCTGGGCAAGAAGAAC GAGGCGCCCCGGACAACAAGAAGAGGAAGAAGAAGTGACAGCTCCGGCCCTGATCCAGGACTGC ACCCCACCCCACCGTCCAGCCATCCAACCTCACTTCGCCTTACAGGTCTCCATTTTGTGGT AAAAAAGGTTTTAGGCCAGGCGCCGTGGCTCACGCCTGTAATCCAACACTTTGAGAGGCTG ${\sf AGGCGGGCGGATCACCTGAGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCTCC}$ GTCTCTATTAAAAATACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCATCCCAGCTAC TCGGGAGGCTGAGGCAGAATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGAGA AAAGATTTTATTAAAGATATTTTGTTAACTC

FIGURE 25

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVLGLF
WTLNWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQ
IARVILEYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAK
NAFMLLMRNIVRVVVLDKVTDLLLFFGKLLVVGGVGVLSFFFFSGRIPGLGKDFKSPHLNYY
WLPIMTSILGAYVIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKN
EAPPDNKKRKK

FIGURE 26

GAGTCTTGACCGCCGGGCTCTTGGTACCTCAGCGCGAGCGCCAGGCGTCCGGCCGCCGT GGCT**ATG**TTCGTGTCCGATTTCCGCAAAGAGTTCTACGAGGTGGTCCAGAGCCAGAGGGTCC CAGTGTGACCACGTGCAATATACGCTGGTTCCAGTTTCTGGGTGGCAAGAACTTGAAACTGC ATTTCTTGAGCATAAAGAACAGTTTCATTATTTTATTCTCATAAACTGTGGAGCTAATGTAG CCAGTCAATGTCGTCAATGTATACAACGATACCCAGATCAAATTACTCATTAAACAAGATGA TGACCTTGAAGTTCCCGCCTATGAAGACATCTTCAGGGATGAAGAGGAGGATGAAGAGCATT CTTTGACTACGAGCAGTATGAATATCATGGGACATCGTCAGCCATGGTGATGTTTGAGCTGG $\mathtt{CTTGGATGCTGTCCAAGGACCTGAATGACATGCTGTGGTGGGCCATCGTTGGACTAACAGAC$ CAGTGGGTGCAAGACAAGATCACTCAAATGAAATACGTGACTGATGTTGGTGTCCTGCAGCG CCACGTTTCCCGCCACAACCACCGGAACGAGGATGAGGAGAACACACTCTCCGTGGACTGCA CACGGATCTCCTTTGAGTATGACCTCCGCCTGGTGCTCTACCAGCACTGGTCCCTCCATGAC AGCCTGTGCAACACCAGCTATACCGCAGCCAGGTTCAAGCTGTGGTCTGTGCATGGACAGAA GCGCTCCAGGAGTTCCTTGCAGACATGGGTCTTCCCCTGAAGCAGGTGAAGCAGAAGTTCC AGGCCATGGACATCTCCTTGAAGGAGAATTTGCGGGAAATGATTGAAGAGTCTGCAAATAAA TCTGGCCAGCGACGTGTCTTTGCCACCATGTCTTTGATGGAGAGCCCCGAGAAGGATGGCT CAGGGACAGATCACTTCATCCAGGCTCTGGACAGCCTCTCCAGGAGTAACCTGGACAAGCTG TACCATGGCCTGGAACTCGCCAAGAAGCAGCTGCGAGCCACCCAGCAGACCATTGCCAGCTGC CTTTGCACCAACCTCGTCATCTCCCAGGGGCCTTTCCTGTACTGCTCTCTCATGGAGGGCAC TCCAGATGTCATGCTGTTCTCTAGGCCGGCATCCCTAAGCCTGCTCAGCAAACACCTGCTCA AGTCCTTTGTGTGTTCGACAAAGAACCGGCGCTGCAAACTGCTGCCCCTGGTGATGGCTGCC CCCCTGAGCATGGAGCATGGCACAGTGACCGTGGTGGGCATCCCCCCAGAGACCGACAGCTC GGACAGGAAGAACTTTTTTGGGAGGGCGTTTGAGAAGGCAGCGGAAAGCACCAGCTCCCGGA TGCTGCACAACCATTTTGACCTCTCAGTAATTGAGCTGAAAGCTGAGGATCGGAGCAAGTTT CTGGACGCACTTATTTCCCTCCTGTCC TAG GAATTTGATTCTTCCAGAATGACCTTCTTATTTATGTAACTGGCTTTCATTTAGATTGTAAGTTATGGACATGATTTGAGATGTAGAAGCCATT TTTTATTAAATAAAATGCTTATTTTAGGAAA

FIGURE 27

MFVSDFRKEFYEVVQSQRVLLFVASDVDALCACKILQALFQCDHVQYTLVPVSGWQELETAF
LEHKEQFHYFILINCGANVDLLDILQPDEDTIFFVCDSHRPVNVVNVYNDTQIKLLIKQDDD
LEVPAYEDIFRDEEEDEEHSGNDSDGSEPSEKRTRLEEEIVEQTMRRRQRREWEARRRDILF
DYEQYEYHGTSSAMVMFELAWMLSKDLNDMLWWAIVGLTDQWVQDKITQMKYVTDVGVLQRH
VSRHNHRNEDEENTLSVDCTRISFEYDLRLVLYQHWSLHDSLCNTSYTAARFKLWSVHGQKR
LQEFLADMGLPLKQVKQKFQAMDISLKENLREMIEESANKFGMKDMRVQTFSIHFGFKHKFL
ASDVVFATMSLMESPEKDGSGTDHFIQALDSLSRSNLDKLYHGLELAKKQLRATQQTIASCL
CTNLVISQGPFLYCSLMEGTPDVMLFSRPASLSLLSKHLLKSFVCSTKNRRCKLLPLVMAAP
LSMEHGTVTVVGIPPETDSSDRKNFFGRAFEKAAESTSSRMLHNHFDLSVIELKAEDRSKFL
DALISLLS

FIGURE 28

FIGURE 29

CAGGAACCCTCTCTTTGGGTCTGGATTGGGACCCCTTTCCAGTACCATTTTTTCTAGTGAAC CACGAAGGGACGATACCAGAAAACACCCTCAACCCAAAGGAAATAGACTACAGCCCCAATTG GTCTTCCCTTTATCGAGTCAAGAAACCCCCCCTTCTTGAGCTATTTACAGCTTTTAACAATT GAGTAAAGTACGCTCCGGTCACC**ATG**GTGACAGCCGCCCTGGGTCCCGTCTGGGCAGCGCTC GCGCCCGTGCCAGAAGCGCTTCTTCGCCTTCTCAGTGGGCCGCAAGACGGCCCTGCACAGC GGCGAGGACTTCCAGACGCTGCTCTTCGAAAGGGTCTTTGTGAACCTTGATGGGTGCTTTGA CATGGCGACCGGCCAGTTTGCTGCTCCCCTGCGTGGCATCTACTTCTTCAGCCTCAATGTGC ACAGCTGGAATTACAAGGAGACGTACGTGCACATTATGCATAACCAGAAAGAGGCTGTCATC CTGTACGCGCAGCCAGCGAGCGCAGCATCATGCAGAGCCAGAGTGTGATGCTGGACCTGGCCTACGGGGACCGCGTCTGGGTGCGGCTCTTCAAGCGCCAGCGCGAGAACGCCATCTACAGCA ACGACTTCGACACCTACATCACCTTCAGCGGCCACCTCATCAAGGCCGAGGACGAC**TGA**GGG AGCACTTCTCAAACTTGGAAATGCATGCGAATCACCCGGGGTTCGTGTTAAATGCAGATTCT GACTCAGCAGGTCTGAGTGGGTCCAGGATTCTGTGTTTTCTCATATGTTCCTGGGTGATGCTG ATGGGGTCAGTCTATGAACCACACTGGAGCAACCAGGTTCTAGGACTTTCTCAATATTCTAG AAACACCTGCAGGAGAAGGGCCACGGAAGCCCCAGGCTTTAGAGCCCTCAGCAGGTCTGGGG AGCCGAGGGAGCCGTGGCTCCATGGCCAGATGACGGAAACAGGGTCTGACCAAGTGCCAGGA

FIGURE 30

MVTAALGPVWAALLLFLLMCEIRMVELTFDRAVASGCQRCCDSEDPLDPAHVSSASSSGRPH
ALPEIRPYINITILKGDKGDPGPMGLPGYMGREGPQGEPGPQGSKGDKGEMGSPGAPCQKRF
FAFSVGRKTALHSGEDFQTLLFERVFVNLDGCFDMATGQFAAPLRGIYFFSLNVHSWNYKET
YVHIMHNQKEAVILYAQPSERSIMQSQSVMLDLAYGDRVWVRLFKRQRENAIYSNDFDTYIT
FSGHLIKAEDD

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 72-75

Clq domain proteins.

amino acids 144-178, 78-111 and 84-117

FIGURE 31

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCTCGGGCCCGACCCGCCAGGAAAGACTG AGGCCGCGCCTGCCCCGCCCGGCTCCCTGCGCCCGCCGCCTCCCGGGACAGAAGATGTG CTCCAGGGTCCCTCTGCTGCTGCCGCTGCTCCTGCTACTGGCCCTGGGGCCTGGGGTGCAGG GCTGCCCATCCGGCTGCCAGTGCAGCCAGCCAGAGACTCTTCTGCACTGCCCGCCAGGGG ACCACGGTGCCCCGAGACGTGCCACCCGACACGGTGGGGCTGTACGTCTTTGAGAACGGCAT CACCATGCTCGACGCAGGCAGCTTTGCCGGCCTGCCGGGCCTGCAGCTCCTGGACCTGTCAC AGAACCAGATCGCCAGCCTGCCCAGCGGGGTCTTCCAGCCACTCGCCAACCTCAGCAACCTG GACCTGACGCCAACAGGCTGCATGAAATCACCAATGAGACCTTCCGTGGCCTGCGGCCCT CGAGCGCCTCTACCTGGGCAAGAACCGCATCCGCCACATCCAGCCTGGTGCCTTCGACACGC TCGACCGCCTCCTGGAGCTCAAGCTGCAGGACAACGAGCTGCGGGCACTGCCCCCGCTGCGC CTGCCCGCCTGCTGCTGGACCTCAGCCACAACAGCCTCCTGGCCCTGGAGCCCGGCAT $\tt CCTGGACACTGCCAACGTGGAGGCGCTGCGGCTGGCTGGTCTGGGGCTGCAGCAGCTGGACG$ AGGGGCTCTTCAGCCGCTTGCGCAACCTCCACGACCTGGATGTCCCGACAACCAGCTGGAG CGAGTGCCACCTGTGATCCGAGGCCTCCGGGGCCTGACGCGCCTGCGGCTGGCCGGCAACAC CCGCATTGCCCAGCTGCGGCCCGAGGACCTGGCCGGCCTGGCTGCCCTGCAGGAGCTGGATG TGAGCAACCTAAGCCTGCAGGCCCTGCCTGGCGACCTCTCGGGCCTCTTCCCCCGCCTGCGG CTGCTGGCAGCTGCCCGCAACCCCTTCAACTGCGTGTGCCCCCTGAGCTGGTTTGGCCCCTG GGTGCGCGAGAGCCACGTCACACTGGCCAGCCCTGAGGAGACGCGCTGCCACTTCCCGCCCA AGAACGCTGGCCGGCTGCTCCTGGAGCTTGACTACGCCGACTTTGGCTGCCCAGCCACCACC ACCACAGCCACAGTGCCCACCACGAGGCCCGTGGTGCGGGAGCCCACAGCCTTGTCTTAG CTTGGCTCCTACCTGGCTTAGCCCCACAGCGCCGGCCACTGAGGCCCCCAGCCCGCCTCCA CTGCCCCACCGACTGTAGGGCCTGTCCCCCAGCCCCAGGACTGCCCACCGTCCACCTGCCTC AATGGGGGCACATGCCACCTGGGGACACGGCACCACCTGGCGTGCTTGTGCCCCGAAGGCTT CACGGGCCTGTACTGTGAGAGCCAGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCA CGCCGAGGCCACCACGGTCCCTGACCCTGGGCATCGAGCCGGTGAGCCCCACCTCCCTGCGC GTGGGGCTGCAGCGCTACCTCCAGGGGAGCTCCGTGCAGCTCAGGAGCCTCCGTCTCACCTA AGTACACGGTCACCCAGCTGCGGCCCAACGCCACTTACTCCGTCTGTGTCATGCCTTTGGGG $\tt CCCGGGCGGGTGCCGAGGGCGAGGAGGCCTGCGGGGAGGCCCATACACCCCCAGCCGTCCA$ CTCCAACCACGCCCCAGTCACCCAGGCCCGCGAGGGCAACCTGCCGCTCCTCATTGCGCCCG GGGCGGCCATGGCAGCAGCGGCTCAGGACAAAGGGCAGGTGGGGCCAGGGGCTGGGCCCCT GGAACTGGAGGGAGTGAAGGTCCCCTTGGAGCCAGGCCCGAAGGCAACAGAGGGCGGTGGAG AGGCCCTGCCCAGCGGGTCTGAGTGTGAGGTGCCACTCATGGGCTTCCCAGGGCCTGGCCTC CAGTCACCCTCCACGCAAAGCCCTACATC**TAA**GCCAGAGAGAGACAGGGCAGCTGGGGCCG GGCTCTCAGCCAGTGAGATGGCCAGCCCCCTCCTGCTGCCACACCACGTAAGTTCTCAGTCC CAACCTCGGGGATGTGTGCAGACAGGGCTGTGTGACCACAGCTGGGCCCTGTTCCCTCTGGA CCTCGGTCTCCTCATCTGTGAGATGCTGTGGCCCAGCTGACGAGCCCTAACGTCCCCAGAAC CGAGTGCCTATGAGGACAGTGTCCGCCCTGCCCTCCGCAACGTGCAGTCCCTGGGCACGGCG GGCCCTGCCATGTGCTGGTAACGCATGCCTGGGTCCTGCTGGGCTCTCCCACTCCAGGCGGA CCCTGGGGGCCAGTGAAGGAAGCTCCCGGAAAGAGCAGAGGGAGAGCGGGTAGGCGGCTGTG TGACTCTAGTCTTGGCCCCAGGAAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGCTTTA GGAACATGTTTTGCTTTTTTAAAATATATATATTTTATAAGAGATCCTTTCCCATTTATTCTG GGAAGATGTTTTTCAAACTCAGAGACAAGGACTTTGGTTTTTGTAAGACAAACGATGATATG AAGGCCTTTTGTAAGAAAAATAAAAGATGAAGTGTGAAA

FIGURE 32

MCSRVPLLLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFEN GITMLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLR RLERLYLGKNRIRHIQPGAFDTLDRLLELKLQDNELRALPPLRLPRLLLLDLSHNSLLALEP GILDTANVEALRLAGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAG NTRIAQLRPEDLAGLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFG PWVRESHVTLASPEETRCHFPPKNAGRLLLELDYADFGCPATTTTATVPTTRPVVREPTALS SSLAPTWLSPTAPATEAPSPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPE GFTGLYCESQMGQGTRPSPTPVTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRL TYRNLSGPDKRLVTLRLPASLAEYTVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPA VHSNHAPVTQAREGNLPLLIAPALAAVLLAALAAVGAAYCVRRGRAMAAAAQDKGQVGPGAG PLELEGVKVPLEPGPKATEGGGEALPSGSECEVPLMGFPGPGLQSPLHAKPYI

FIGURE 33

GAATCATCCACGCACCTGCAGCTCTGCTGAGAGAGTGCAAGCCGTGGGGGTTTTGAGCTCAT CTTCATCATTCATATGAGGAAATAAGTGGTAAAATCCTTGGAAATACA**ATG**AGACTCATCAG ${\tt AAACATTTACATATTTTGTAGTATTGTTATGACAGCAGAGGGTGATGCTCCAGAGCTGCCAG}$ AAGAAAGGGAACTGATGACCAACTGCTCCAACATGTCTCTAAGAAAGGTTCCCGCAGACTTG ACCCCAGCCACAACGACACTGGATTTATCCTATAACCTCCTTTTTCAACTCCAGAGTTCAGA TTTTCATTCTGTCTCCAAACTGAGAGTTTTGATTCTATGCCATAACAGAATTCAACAGCTGG ATCTCAAAACCTTTGAATTCAACAAGGAGTTAAGATATTTAGATTTGTCTAATAACAGACTG TGACACCATGCCTATCTGTGAGGAAGCTGGCAACATGTCACACCTGGAAATCCTAGGTTTGA GTGGGGCAAAAATACAAAATCAGATTTCCAGAAAATTGCTCATCTGCATCTAAATACTGTC TTCTTAGGATTCAGAACTCTTCCTCATTATGAAGAAGGTAGCCTGCCCATCTTAAACACAAC AAAACTGCACATTGTTTTACCAATGGACACAAATTTCTGGGTTCTTTTGCGTGATGGAATCA AGACTTCAAAAATATTAGAAATGACAAATATAGATGGCAAAAGCCAATTTGTAAGTTATGAA ATGCAACGAAATCTTAGTTTAGAAAATGCTAAGACATCGGTTCTATTGCTTAATAAAGTTGA TCAAATACTGTAATGAGAACTATAAAATTGGAGCATGTACATTTCAGAGTGTTTTACATTCA ACAGGATAAAATCTATTTGCTTTTGACCAAAATGGACATAGAAAACCTGACAATATCAAATG CACAAATGCCACACATGCTTTTCCCGAATTATCCTACGAAATTCCAATATTTAAATTTTGCC AATAATATCTTAACAGACGAGTTGTTTAAAAGAACTATCCAACTGCCTCACTTGAAAACTCT CATTTTGAATGGCAATAAACTGGAGACACTTTCTTTAGTAAGTTGCTTTGCTAACAACACAC CCTTGGAACACTTGGATCTGAGTCAAAATCTATTACAACATAAAAATGATGAAAATTGCTCA TGGCCAGAAACTGTGGTCAATATGAATCTGTCATACAATAAATTGTCTGATTCTGTCTTCAG GTGCTTGCCCAAAAGTATTCAAATACTTGACCTAAATAATAACCAAATCCAAACTGTACCTA AAGAGACTATTCATCTGATGGCCTTACGAGAACTAAATATTGCATTTAATTTTCTAACTGAT CTCCCTGGATGCAGTCATTTCAGTAGACTTTCAGTTCTGAACATTGAAATGAACTTCATTCT ATGATGGTTGGATGGTCAGATTCATACACCTGTGAATACCCTTTAAACCTAAGGGGAACTAG GTTAAAAGACGTTCATCTCCACGAATTATCTTGCAACACAGCTCTGTTGATTGTCACCATTGTGGTTATTATGCTAGTTCTGGGGTTGGCCTGTCTGCTGCTGTCTCCACTTTGATCTGCCC TGGTATCTCAGGATGCTAGGTCAATGCACACAAACATGGCACAGGGTTAGGAAAACAACCCA ${\sf GGAAAAAAAGCATACTTGGAATGGCCCAAGGATAGGCGTAAATGTGGGCTTTTCTGGGCAA}$ ACCTTCGAGCTGCTATTAATGTTAATGTATTAGCCACCAGAGAAATGTATGAACTGCAGACA TTCACAGAGTTAAATGAAGAGTCTCGAGGTTCTACAATCTCTCTGATGAGAACAGATTGTCT $\mathtt{A} \underline{\mathbf{TAA}}\mathtt{A}\mathtt{A}\mathtt{TCCCACAGTCCTTGGGAAGTTGGGGACCACATACACTGTTGGGATGTACATTGATA}$ CAACCTTTATGATGGCAATTTGACAATATTTATTAAAATAAAAAATGGTTATTCCCTTCATA TCAGTTTCTAGAAGGATTTCTAAGAATGTATCCTATAGAAACACCTTCACAAGTTTATAAGG GCTTATGGAAAAAGGTGTTCATCCCAGGATTGTTTATAATCATGAAAAATGTGGCCAGGTGC GAGATGGAGACCATCCTGGCCAACATGGTGAAACCCTGTCTCTACTAAAAATACAAAAATTA GCTGGGCGTGATGGTGCACGCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCG CTTGAACCCGGGAGGTGGCAGTTGCAGTGAGCTGAGATCGAGCCACTCCAGCCTGGT TCATGGCCACAAAATAAGGTCTAATTCAATAAATTATAGTACATTAATGTAATATAATATTA CATGCCACTAAAAAGAATAAGGTAGCTGTATATTTCCTGGTATGGAAAAAACATATTAATAT GTTATAAACTATTAGGTTGGTGCAAAACTAATTGTGGTTTTTTGCCATTGAAATGGCATTGAA ATAAAAGTGTAAAGAAATCTATACCAGATGTAGTAACAGTGGTTTGGGTCTGGGAGGTTGGA TTACAGGGAGCATTTGATTTCTATGTTGTATTTCTATAATGTTTGAATTGTTTAGAATGA ATCTGTATTTCTTTTATAAGTAGAAAAAAAAAAAAGATAGTTTTTACAGCCT

FIGURE 34

MRLIRNIYIFCSIVMTAEGDAPELPEERELMTNCSNMSLRKVPADLTPATTTLDLSYNLLFQ
LQSSDFHSVSKLRVLILCHNRIQQLDLKTFEFNKELRYLDLSNNRLKSVTWYLLAGLRYLDL
SFNDFDTMPICEEAGNMSHLEILGLSGAKIQKSDFQKIAHLHLNTVFLGFRTLPHYEEGSLP
ILNTTKLHIVLPMDTNFWVLLRDGIKTSKILEMTNIDGKSQFVSYEMQRNLSLENAKTSVLL
LNKVDLLWDDLFLILQFVWHTSVEHFQIRNVTFGGKAYLDHNSFDYSNTVMRTIKLEHVHFR
VFYIQQDKIYLLLTKMDIENLTISNAQMPHMLFPNYPTKFQYLNFANNILTDELFKRTIQLP
HLKTLILNGNKLETLSLVSCFANNTPLEHLDLSQNLLQHKNDENCSWPETVVNMNLSYNKLS
DSVFRCLPKSIQILDLNNNQIQTVPKETIHLMALRELNIAFNFLTDLPGCSHFSRLSVLNIE
MNFILSPSLDFVQSCQEVKTLNAGRNPFRCTCELKNFIQLETYSEVMMVGWSDSYTCEYPLN
LRGTRLKDVHLHELSCNTALLIVTIVVIMLVLGLAVAFCCLHFDLPWYLRMLGQCTQTWHRV
RKTTQEQLKRNVRFHAFISYSEHDSLWVKNELIPNLEKEDGSILICLYESYFDPGKSISENI
VSFIEKSYKSIFVLSPNFVQNEWCHYEFYFAHHNLFHENSDHIILILLEPIPFYCIPTRYHK
LKALLEKKAYLEWPKDRRKCGLFWANLRAAINVNVLATREMYELQTFTELNEESRGSTISLM
RTDCL

FIGURE 35

GGGGGCTTTCTTGGCTTGCTTGGAACACCTGCCTCCAAGGACCGGCCTCGGAGGGGTCGCCGGGAAAGG GAGGGAAGAAGGAAGGCCGGGCCCCCCTGCGCCCCGCGCCCTCTGCGCCCCTGTCCGCCCCGGC CTGCTGTGCCCTGCGCCCTTGCCCCGCGCCAGCTTCTGCGCCCGCAGCCCGCCGGCGCCCCCGGTGACCGTGA CTGGCAGTGACCCTGGCCGGGGTCGGAGCCCAGGGCGCGCCCTCGAGGACCCTGATTATTACGGGCAGGAGAT AAGAGGGAGAAGTCGGCTCCGGAGCCGCCTCCACCAGGTAAACACACCAACAAAAAGTTATGAGAACCAAGAG TTGGTCTGGAAACCTTAAAAATCACAGACTTCCAGCTCCATGCCTCCACGGTGAAGCGCTATGGCCTGGGGGCA CATCGAGGGAGACTCAACATCCAGGCGGGCATTAATGAAAATGATTTTTATGACGGAGCGTGGTGCGCGGGAAG AAATGACCTCCAGCAGTGGATTGAAGTGGATGCTCGGCGCCTGACCAGATTCACTGGTGTCATCACTCAAGGGA GGAACTCCCTCTGGCTGAGTGACTGGGTGACATCCTATAAGGTCATGGTGAGCAATGACAGCCACACGTGGGTC ACTGTTAAGAATGGATCTGGAGACATGATATTTGAGGGAAACAGTGAGAAGGAGATCCCTGTTCTCAATGAGCT ACCCGTCCCCATGGTGGCCCGCTACATCCGCATAAACCCTCAGTCCTGGTTTGATAATGGGAGCATCTGCATGA GAATGGAGATCCTGGGCTGCCCACTGCCAGATCCTAATAATTATTATCACCGCCGGAACGAGATGACCACCACT GATGACCTGGATTTTAAGCACCACAATTATAAGGAAATGCGCCAGTTGATGAAAGTTGTGAAATGTGTCC CAATATCACCAGAATTTACAACATTGGAAAAAGCCACCAGGGCCTGAAGCTGTATGCTGTGGAGATCTCAGATC ACCCTGGGGAGCATGAAGTCGGTGAGCCCGAGTTCCACTACATCGCGGGGGCCCACGGCAATGAGGTGCTGGGC $\tt CGGGAGCTGCTGCTGCTGCAGTTCGTGTCAGGAGTACTTGGCCCGGAATGCGCGCATCGTCCACCT$ GGTGGAGAGACGCGGATTCACGTCCTCCCTCCAACCCCGATGGCTACGAGAAGGCCTACGAAGGGGGCT CGGAGCTGGGAGGCTGGTCCCTGGGACGCTGGACCCACGATGGAATTGACATCAACAACAACTTTCCTGATTTA AACACGCTGCTCTGGGAGGCAGAGGATCGACAGAATGTCCCCAGGAAAGTTCCCAATCACTATATTGCAATCCC CTTTTGTGCTGGGCGGCAACCTGCAGGGCGGCGAGCTGGTGGTGGCGTATCCCTACGACCTGGTGCGGTCCCCC ACACCGCCTCATGACAGACGCCCGGAGGAGGGTGTGCCACACGGAGGACTTCCAGAAGGAGGAGGCACTGTCA ATGGGGCCTCCTGGCACACCGTCGCTGGAAGTCTGAACGATTTCAGCTACCTTCATACAAACTGCTTCGAACTG TCCATCTACGTGGGCTGTGATAAATACCCACATGAGAGCCAGCTGCCCGAGGAGTGGGAGAATAACCGGGAATC TCTGATCGTGTTCATGGAGCAGGTTCATCGTGGCATTAAAGGCTTGGTGAGAGATTCACATGGAAAAGGAATCC CAAACGCCATTATCTCCGTAGAAGGCATTAACCATGACATCCGAACAGCCAACGATGGGGATTACTGGCGCCTC $\verb|CTGAACCCTGGAGAGTATGTGGTCACAGCAAAGGCCGAAGGTTTCACTGCATCCACCAAGAACTGTATGGTTGG| \\$ CTATGACATGGGGGCCACAAGGTGTGACTTCACACTTAGCAAAACCAACATGGCCAGGATCCGAGAGATCATGG $\tt TGGACTCACTGTTGTTTCCTCTGTAATTCAAGAAGTGCCTGGAAGAGGGTGCATTGTGAGGCAGGTCC$ CAAAAGGGAAGGCTGGAGGCTGTTTTCTTTTCTTTGTTCCCATTTATCCAAATAACTTGGACAGAGCA GAGCCTGTCCGTTCAGAGCCTCTGGCTGCATAGAAAAGGATTCTGGTGCCTTCCCCTGTTTGCGTGGCAGCAAGG GTTCCACGTGCATTTGCACAGCTAAAATTGCAGCATTTCCCCAGCTGGGCTGTCCCAAATGTTACCA TTTGAGATGCTCCCAGGCGTCCTAAGAGAATCCACCCTCTCTGGCCCTGGGACATTGCAAGCTGCTACAAATAA ATTCTGTGTTCTTTTGACAATAGCGTCATTGCCAAGTGCACATCAGTGAGCCTCTTGAATCTGTTTAGTCTCCT TGGAGCTTCTTGCACAAATTCTGGGTCCATAAACAACCCCCAAAGTCCCTGCTGATCCAGTAGCCCTGGAGGTT CCCCAGGTAGGGAGAGCCAGCAGCCTTCCTGAAGGGCCAGAAAATTTAGCCTGGATCTCCTCTTTTAC GAATTGAGTGCTCATGGGCTTCATATCAGCCTGGGAGTTATTTTTGATATGTAGAATGCCAGATCTTCCA GATTAGGCTAAATGTAATGAAAACCTCTTAGGATTATCTGTGGAGCATCAGTTTGGGAAGAATTATTGAATTAT

FIGURE 36

MSRPGTATPALALVLLAVTLAGVGAQGAALEDPDYYGQEIWSREPYYARPEPELETFSPPLP
AGPGEEWERRPQEPRPPKRATKPKKAPKREKSAPEPPPPGKHSNKKVMRTKSSEKAANDDHS
VRVAREDVRESCPPLGLETLKITDFQLHASTVKRYGLGAHRGRLNIQAGINENDFYDGAWCA
GRNDLQQWIEVDARRLTRFTGVITQGRNSLWLSDWVTSYKVMVSNDSHTWVTVKNGSGDMIF
EGNSEKEIPVLNELPVPMVARYIRINPQSWFDNGSICMRMEILGCPLPDPNNYYHRRNEMTT
TDDLDFKHHNYKEMRQLMKVVNEMCPNITRIYNIGKSHQGLKLYAVEISDHPGEHEVGEPEF
HYIAGAHGNEVLGRELLLLLVQFVCQEYLARNARIVHLVEETRIHVLPSLNPDGYEKAYEGG
SELGGWSLGRWTHDGIDINNNFPDLNTLLWEAEDRQNVPRKVPNHYIAIPEWFLSENATVAA
ETRAVIAWMEKIPFVLGGNLQGGELVVAYPYDLVRSPWKTQEHTPTPDDHVFRWLAYSYAST
HRLMTDARRRVCHTEDFQKEEGTVNGASWHTVAGSLNDFSYLHTNCFELSIYVGCDKYPHES
QLPEEWENNRESLIVFMEQVHRGIKGLVRDSHGKGIPNAIISVEGINHDIRTANDGDYWRLL
NPGEYVVTAKAEGFTASTKNCMVGYDMGATRCDFTLSKTNMARIREIMEKFGKQPVSLPARR
LKLRGRKRRQRG

FIGURE 37

 $\tt ATTTGGGGGATGTGGGACCTCCAATTCCCAGCCCCGGCTTCAGCTCTTTCCCAGGTGTTGACTCCAGCTCCAGC$ $\tt TTCAGCTCCAGGTCGGGCTCCAGCTCCAGCCGCAGCTTAGGCAGCGGAGGTTCTGTGTCCCAGTTGTT$ $\tt TTCCAATTTCACCGGCTCCGTGGATGACCGTGGGACCTGCCAGTGCTCTGTTTCCCTGCCAGACACCACCTTTC$ GTGAGGGAATATGTCCAATTAATTAGTGTGTATGAAAAGAAACTGTTAAACCTAACTGTCCGAATTGACATCAT GGAGAAGGATACCATTTCTTACACTGAACTGGACTTCGAGCTGATCAAGGTAGAAGTGAAGGAGATGGAAAAAAC TGGTCATACAGCTGAAGGAGTTTTGGTGGAAGCTCAGAAATTGTTGACCAGCTGGAGGTGGAGATAAGAAAT ATGACTCTTCTTGGTAGAGAAGCTTGAGACACTAGACAAAAACAATGTCCTTGCCATTCGCCGAGAAATCGTGGC TCTGAAGACCAAGCTGAAAGAGTGTGAGGCCTCTAAAGATCAAAACACCCCTGTCGTCCACCCTCCTCCCACTC CAGGGAGCTGTGGTCATGGTGGTGAACATCAGCAAACCGTCTGTGGTTCAGCTCAACTGGAGAGGGTTT ATTGAATACAGATGGGAGACTGTTGGAGTATTATAGACTGTACAACACACTGGATGATTTGCTATTGTATATAA ATGCTCGAGAGTTGCGGATCACCTATGGCCAAGGTAGTGGTACAGCAGTTTACAACAACAACATGTACGTCAAC ATGTACAACACCGGGAATATTGCCAGAGTTAACCTGACCACCAACACGATTGCTGTGACTCAAACTCTCCCTAA TGCTGCCTATAATAACCGCTTTTCATATGCTAATGTTGCTTGGCAAGATATTGACTTTGCTGTGGATGAGAATG GATTGTGGGTTATTTATTCAACTGAAGCCAGCACTGGTAACATGGTGATTAGTAAACTCAATGACACCACACTT ${\tt CAGGTGCTAAACACTTGGTATACCAAGCAGTATAAACCATCTGCTTCTAACGCCTTCATGGTATGTGGGGTTCT}$ GTATGCCACCCGTACTATGAACACCAGAACAGAAGAGATTTTTTACTATTATGACACAAACACAGGGAAAGAG GCAAACTAGACATTGTAATGCATAAGATGCAGGAAAAAGTGCAGAGCATTAACTATAACCCTTTTGACCAGAAA CTTTATGTCTATAACGATGGTTACCTTCTGAATTATGATCTTTCTGTCTTGCAGAAGCCCCAG**TAA**GCTGTTTA ${\tt CTAAAAGTGTGTTCATTTTGCAGCAATGTTTAGGTGCATAGTTCTACCACACTAGAGATCTAGGACATTTGTCT}$ TTGTCAGAGGTCTAGGGGCCACTGTGGGCCTAGTGAAGCCTACTGTGAGGGGGGCTTCACTAGAAGCCTTAAATTA GGAATTAAGGAACTTAAAACTCAGTATGGCGTCTAGGGATTCTTTGTACAGGAAATATTGCCCAATGACTAGTC GGAGCTCCTCGAGGGACCAAATCTCCAACTTTTTTTTCCCCTCACTAGCACCTGGAATGATGCTTTGTATGTGG CAGATAAGTAAATTTGGCATGCTTATATATTCTACATCTGTAAAGTGCTGAGTTTTATGGAGAGAGGCCTTTTT ATGCATTAAATTGTACATGGCAAATAAATCCCAGAAGGATCTGTAGATGAGGCACCTGCTTTTTCTTTTCTCTC AACCAGACTTACTAACCAATTCCACCCCCACCAACCCCCTTCTACTGCCTACTTTAAAAAAATTAATAGTTTT AGACTATAAGAAAATCTGATGGCAGTGACAAAGTGCTAGCATTTATTGTTATCTAATAAAGACCTTGGAGCATA GAAAATTTAATTTTTTTTTTCTAGGACGAGCTATAGAAAAGCTATTGAGAGTATCTAGTTAATCAGTGCAGTAGT TGGAAACCTTGCTGGTGTATGTGATGTGCTTCTGTGCTTTTGAATGACTTTATCATCTAGTCTTTGTCTATTTT

FIGURE 38

MRPGLSFLLALLFFLGQAAGDLGDVGPPIPSPGFSSFPGVDSSSSFSSSSRSGSSSSRSLGS
GGSVSQLFSNFTGSVDDRGTCQCSVSLPDTTFPVDRVERLEFTAHVLSQKFEKELSKVREYV
QLISVYEKKLLNLTVRIDIMEKDTISYTELDFELIKVEVKEMEKLVIQLKESFGGSSEIVDQ
LEVEIRNMTLLVEKLETLDKNNVLAIRREIVALKTKLKECEASKDQNTPVVHPPPTPGSCGH
GGVVNISKPSVVQLNWRGFSYLYGAWGRDYSPQHPNKGLYWVAPLNTDGRLLEYYRLYNTLD
DLLLYINARELRITYGQGSGTAVYNNNMYVNMYNTGNIARVNLTTNTIAVTQTLPNAAYNNR
FSYANVAWQDIDFAVDENGLWVIYSTEASTGNMVISKLNDTTLQVLNTWYTKQYKPSASNAF
MVCGVLYATRTMNTRTEEIFYYYDTNTGKEGKLDIVMHKMQEKVQSINYNPFDQKLYVYNDG
YLLNYDLSVLQKPQ

FIGURE 39

GCTCTGAAGACCAAGCTGAAAGAGTGTGAGGCCTCTAAAGATCAAACACCCCTGTCGTCCAC
CCTCCTCCCACTCCAGGGAGCTGTGGTCATGGTGGTGTGAACATCAGCAAACCGTCTGT
GGTTCAGCTCAACTGGAGAGGGGTTTTCTTATCTATATGGTGCTTGGGGTAGGGATTACTCTC
CCCAGCATCCAAACAAAGGNATGTATTGGGNGGCGCCATTGAATACAGATGGGAGACTGTTG
GAGTATTATAGACTGTACAACCCACTGGATGATTTGCTATTGTATATAAATGCTCGAGAGTT
GCGGATCACCTATGGCCAAGGTAGTGGTACAGCAGTTTACAACAACAACATGTACGTCAACA
TGTACAACACCGGGNATATTGCCAGAGTTAACCTGACC

FIGURE 40

TCTCGCAGATAGTAAATCTCGGAAAGGCGAGAAAGAAGCTGTCTCCATCTTGTCTGTAT $\texttt{CCGCTGCTCTTGTGACGTTGTGGAG} \textbf{\underline{ATG}} \textbf{GGGAGCGTCCTGGGGGCTGTGCTCCATGGCGAGCT}$ TGTAATGTTGATACCAGGAATGGAAGAACAACTGAATAAGATTCCTGGATTTTGTGAGAATG AGAAAGGTGTTGTCCCTTGTAACATTTTGGTTGGCTATAAAGCTGTATATCGTTTGTGCTTT GGTTTGGCTATGTTCTATCTTCTCTCTTTACTAATGATCAAAGTGAAGAGTAGCAGTGA CGTTGGTGCTTCTGTAATGTCTATACTGCCAAAAATCCAAGAATCACAACCAAGATCTGGTT TGTTACAGTCTTCAGTAATTACAGTCTACACAATGTATTTGACATGGTCAGCTATGACCAAT GAACCAGAAACAAATTGCAACCCAAGTCTACTAAGCATAATTGGCTACAATACAACAAGCAC TGTCCCAAAGGAAGGCAGTCAGTCCAGTGGTGGCATGCTCAAGGAATTATAGGACTAATTC TCTTTTTGTTGTGTGTATTTTATTCCAGCATCCGTACTTCAAACAATAGTCAGGTTAATAAA CTGACTCTAACAAGTGATGATCTACATTAATAGAAGATGGTGGAGCTAGAAGTGATGGATC
ACTGGAGGATGGGGGACGATGTTCACCGAGCTGTAGATAATGAAAGGGATGGTGTCACTTACA
GTTATTCCTTCTTCATGCTTTTCCTGGCTTACATTATATCATGATGACCCTTACC
AACTGGTCCAGGTATGAACCCTCTCGTGAGATGAAAGTCAGTGGACAGCTGTCTGGGTGAA AATCTCTTCCAGTTGGATTGGCATCGTGCTGTATGTTTGGACACTCGTGGCACCACTTGTTC ATGGTTTATTTTAAAATTTATAAACAAGTCACTTAAATGCCAGTTGTCTGAAAAATCTTATA
AGGTTTTACCCTTGATACGGAATTTACACAGGTAGGGAGTGTTTAGTGGACAATAGTGTAGG
TTATGGATGGAGGTGTCGGTACTAAATTGAATAACGAGTAAATAATCTTACTTGGGTAGAGA
TGGCCTTTGCCAACAAAGTGAACTGTTTTGGTTGTTTTTAAACTCATGAAGTATGGGTTCAGT GGAAATGTTTGGAACTCTGAAGGATTTAGACAAGGTTTTGAAAAGGATAATCATGGGTTAGA AGGAAGTGTTTTGAAAGTCACTTTGAAAGTTAGTTTTGGGCCCAGCACGGTAGCTCACCCTT GGTAATCCCAGCACTTTGGGAGCTTAAGTGGGTAGATTACTTGAGCCCAGGAATTCAGACCA GCTTGGCACATGGTGAACCTGTTCTATAAAAAATCTGGCTTTTGAGCATATGCCTGTGGTC CAGCACTGAGAGGCTAGTGAGATTGCTGAGCCCAGAGCCAAAGGTTGCAGTGAGCAAGTCA AGGCAAAATTTTGACAGGAAGGAAGTAACTGCAAAACCACTAGGCTTTAGTAGGTACTTAT AGAATAAACTCCTGCTTATAGTATACTACACAGTTCAAAAGATGTTTAAAATGCTTTTGTAT TTACTGCCATGTAATTGAAATATATAGATTATTGTAACCTTTCAACCTGAAAATCAAGCAGT ATGAGAGTTTAGTTATTTGTATGTGTCACTAGTGTCTAATGAAGCTTTTAAAATCTACAATT TCTTCTTTAAAAATATTTATTAATGTGAATGGAATATAACAATTCAGCTTAATTCCCCAACC TTATTCTGTGTGTAGACATTGTATTCCACAATTTTGAATGGCTGTGTTTTACCTCTAAATAA ATGAATTCAGAGAAAAAAAAAAAAAA

FIGURE 41

MGSVLGLCSMASWIPCLCGSAPCLLCRCCPSGNNSTVTRLIYALFLLVGVCVACVMLIPGME
EQLNKIPGFCENEKGVVPCNILVGYKAVYRLCFGLAMFYLLLSLLMIKVKSSSDPRAAVHNG
FWFFKFAAAIAIIIGAFFIPEGTFTTVWFYVGMAGAFCFILIQLVLLIDFAHSWNESWVEKM
EEGNSRCWYAALLSATALNYLLSLVAIVLFFVYYTHPASCSENKAFISVNMLLCVGASVMSI
LPKIQESQPRSGLLQSSVITVYTMYLTWSAMTNEPETNCNPSLLSIIGYNTTSTVPKEGQSV
QWWHAQGIIGLILFLLCVFYSSIRTSNNSQVNKLTLTSDESTLIEDGGARSDGSLEDGDDVH
RAVDNERDGVTYSYSFFHFMLFLASLYIMMTLTNWSRYEPSREMKSQWTAVWVKISSSWIGI
VLYVWTLVAPLVLTNRDFD

FIGURE 42

GCGAGAAAGAAGCTGTCTCCATCTTGTCTGTATCCCGCTGCTTCTTGNGACGTTGTGGAGAT
GGGGAGCGTCCCTGGGGCTGTGCTCCATGGCGAGCTGGATACCATGTTTGTGTGGAAGTGCC
CCGTGTTTGCTATGCCGATGCTGTCCTAGTGGAAACAANTCCACTGTAACTAGATTGATCTA
TGCACTTTTCTTGCTTGTTGGAGTATGTGTAGCTTGTTAATGTTGATACCAGGAATGGAAG
AACAACTGAATAAGATTCCTGGATTTTGTGAGAATGAGAAAGGTGTTGTCCCTTGTAACATT
TTGGTTGGCTATAAAGCTGTATATCGTTTGTGCTTTGGTTTTGGCTATGTTCTATCTTCTT
CTCTTTACTAATGATCAAAGTGAAGAGTAGCAGTGATCCTAGAGCTGCACAATGGAT
TTTGGTTCTTTAAATTTGCTGCAGCAATTGCAATTATTATTGGGGC

FIGURE 43

GTTATTGTGAACTTTGTGGAGATGGGAGGTCNTGGGGCTGTGTTCCATGGCGAGCTGGATAC
CANGTTTGTGTGGAAGTGCCCCGTGTTTGNTATGCCGATGCTGTCCTAGTGGAAACAANTCC
ACTGTAATTAGATTGATNTATGCACTTTTNTTGCTTGTTGGAGTANGTGTAGCTTGTGTAAT
GTTGATACCAGGAATGGAAGAACAACTGAATAAGATTCCTGGATTTTGTGAGAATGAGAAAG
GTGTTGTCCCTTGTAACATTTTGGTTGGCTATAAAGCTGTATATNGTTTGTGCTTTTG
GCTANGTTCTATNTTCTTCTCTCTTTTACTAATGATCAAAGTGAAGAGTAGCAGTGATCCTAG
AGCTGCAGTGCACAATGGATTTTGGTTTTTAAATTTTGCTGCAGCAATTGCAATTATTATTG
GGGC

FIGURE 44

FIGURE 45

FIGURE 46

GGCAAATGTGTGTGGCTGGAGGCGAGCGCGAGGCTTTCGGCAAAGGCAGTCGAGTGTTTTGCAGACCGGGGCGAG ACTCCCCGCGGAACATTTGGCTCCCTCCAGCTCCGAGAGAGGAGAAGAAGAAGCGGAAAAGAGGCAGATTCAC GTCGTTTCCAGCCAAGTGGACCTGATCGATGGCCCTCCTGAATTTATCACGATATTTGATTTATTAGCGATGCC CCCTGGTTTGTGTTACGCACACACGTGCACACAAGGCTCTGGCTCGCTTCCCTCGTTTCCAGCTCC TGGGCGAATCCCACATCTGTTTCAACTCTCCGCCGAGGGCGAGCAGGAGCGAGAGTGTGTCGAATCTGCGAGTG AAGAGGGACGAGGGAAAAGAAACAAAGCCACAGACGCAACTTGAGACTCCCGCATCCCAAAAGAAGCACCAGAT $\texttt{CAGCAAAAAAAAGAAG} \underline{\textbf{ATG}} \texttt{GGCCCCCGAGCCTCGTGCTGTGCTGCTGTCCCCAACTGTGTTCTCCCTGCTGGG}$ TGGAAGCTCGGCCTTCCTGTCGCACCACCGCCTGAAAGGCAGGTTTCAGAGGGACCGCAGGAACATCCGCCCA ACATCATCCTGGTGCTGACGGACGACCAGGATGTGGAGCTGGGTTCCATGCAGGTGATGAACAAGACCCGGCGC ATCATGGAGCAGGGCGGGGCGCACTTCATCAACGCCTTCGTGACCACACCCATGTGCTGCCCCTCACGCTCCTC CATCCTCACTGGCAAGTACGTCCACAACCACAACACCTACACCAACAATGAGAACTGCTCCTCGCCCTCCTGGC AGGCACAGCAGAGAGCCGCACCTTTGCCGTGTACCTCAATAGCACTGGCTACCGGACAGCTTTCTTCGGGAAG TATCTTAATGAATACAACGGCTCCTACGTGCCACCCGGCTGGAAGGAGTGGGTCGGACTCCTTAAAAACTCCCG CTTTTATAACTACACGCTGTGTCGGAACGGGGTGAAAGAGAAGCACGGCTCCGACTACTCCAAGGATTACCTCA CAGACCTCATCACCAATGACAGCGTGAGCTTCTTCCGCACGTCCAAGAAGATGTACCCGCACAGGCCAGTCCTC ATGGTCATCAGCCATGCAGCCCCCACGGCCCTGAGGATTCAGCCCCACAATATTCACGCCTCTTCCCAAACGC ATCTCAGCACATCACGCCGAGCTACAACTACGCGCCCAACCCGGACAAACACTGGATCATGCGCTACACGGGGC CCATGAAGCCCATCCACATGGAATTCACCAACATGCTCCAGCGGAAGCGCTTGCAGACCCTCATGTCGGTGGAC GACTCCATGGAGACGATTTACAACATGCTGGTTGAGACGGGCGAGCTGGACAACACGTACATCGTATACACCGC CGACCACGGTTACCACATCGGCCAGTTTGGCCTGGTGAAAGGGAAATCCATGCCATATGAGTTTGACATCAGGG TCCCGTTCTACGTGAGGGGCCCCAACGTGGAAGCCGGCTGTCTGAATCCCCACATCGTCCTCAACATTGACCTG GGACACGGAGCGGCCGGTGAATCGGTTTCACTTGAAAAAGAAGATGAGGGTCTGGCGGGACTCCTTCTTGGTGG AGAGAGGCAAGCTGCTACACAAGAGAGACAATGACAAGGTGGACGCCCAGGAGGAGAACTTTCTGCCCAAGTAC CAGCGTGTGAAGGACCTGTGTCAGCGTGCTGAGTACCAGACGGCGTGTGAGCAGCTGGGACAGAAGTGGCAGTG ${\tt TGTGGAGGACGCCACGGGGAAGCTGAAGCTGCATAAGTGCAAGGGCCCCATGCGGCTGGGCGCAGCAGAGCCC}$ $\verb|TCTCCAACCTCGTGCCCAAGTACTACGGGCAGGGCAGGCCTGCACCTGTGACAGCGGGGACTACAAGCTC| \\$ AGCCTGGCCGGACGCCGGAAAAAACTCTTCAAGAAGAAGTACAAGGCCAGCTATGTCCGCAGTCGCTCCATCCG CTCAGTGGCCATCGAGGTGGACGGCAGGGTGTACCACGTAGGCCTGGGTGATGCCGCCCAGCCCCGAAACCTCA CCAAGCGGCACTGGCCAGGGGCCCCTGAGGACCAAGATGACAAGGATGGTGGGGACTTCAGTGGCACTGGAGGC CTTCCCGACTACTCAGCCGCCAACCCCATTAAAGTGACACCTCGGTGCTACATCCTAGAGAACGACACAGTCCA GTGTGACCTGGACCTGTACAAGTCCCTGCAGGCCTGGAAAGACCACAAGCTGCACATCGACCACGAGATTGAAA CCCTGCAGAACAAATTAAGAACCTGAGGGAAGTCCGAGGTCACCTGAAGAAAAAGCGGCCAGAAGAATGTGAC TGTCACAAAATCAGCTACCACACCCAGCACAAAGGCCGCCTCAAGCACAGAGGCTCCAGTCTGCATCCTTTCAG GAAGGCCTGCAAGAAGGACAAGGTGTGGCTGTTGCGGAGCAGAAGCGCAAGAAAACTCCGCAAGCTGC TCAAGCGCCTGCAGAACAACGACACGTGCAGCATGCCAGGCCTCACGTGCTTCACCCACGACAACCAGCACTGG CAGACGCCCCTTTCTGGACACTGGGGCCTTTCTGTGCCTGCACCAGCGCCAACAATAACACGTACTGGTGCAT GAGGACCATCAATGAGACTCACAATTTCCTCTTCTGTGAATTTGCAACTGGCTTCCTAGAGTACTTTGATCTCA ACACAGACCCCTACCAGCTGATGAATGCAGTGAACACACTGGACAGGGATGTCCTCAACCAGCTACACGTACAG AAGCTATGAGCAATACAGGCAGTTTCAGCGTCGAAAGTGGCCAGAAATGAAGAGACCTTCTTCCAAATCACTGG ${\tt GACAACTGTGGGAAGGCTGGGAAGGT} {\color{red}{\bf TAA}} {\tt GAAACAACAGAGGTGGACCTCCAAAAACATAGAGGCATCACCTGA}$ CTGCACAGGCAATGAAAAACCATGTGGGTGATTTCCAGCAGACCTGTGCTATTGGCCAGGAGGCCTGAGAAAGC AAGCACGCACTCTCAGTCAACATGACAGATTCTGGAGGATAACCAGCAGGAGGAGAGATAACTTCAGGAAGTCC ATTTTTGCCCCTGCTTTTGCTTTGGATTATACCTCACCAGCTGCACAAAATGCATTTTTTCGTATCAAAAAGTC TCCCAAGGGCGAAAGTCATTGGAATTTTTAAATCATAGGGGAAAAGCAGTCCTGTTCTAAATCCTCTTATTCTT TTGGTTTGTCACAAAGAAGGAACTAAGAAGCAGGACAGAGGCAACGTGGAGAGGCTGAAAACAGTGCAGAGACG TTTGACAATGAGTCAGTAGCACAAAAGAGATGACATTTACCTAGCACTATAAACCCTGGTTGCCTCTGAAGAAA $\tt CTGCCTTCATTGTATATGTGACTATTTACATGTAATCAACATGGGAACTTTTAGGGGAACCTAATAAGAAAT$ CCCAATTTTCAGGAGTGGTGGTGTCAATAAACGCTCTGTGGCCAGTGTAAAAGAAAAA

FIGURE 47

MGPPSLVLCLLSATVFSLLGGSSAFLSHHRLKGRFQRDRRNIRPNIILVLTDDQDVELGSMQ
VMNKTRRIMEQGGAHFINAFVTTPMCCPSRSSILTGKYVHNHNTYTNNENCSSPSWQAQHES
RTFAVYLNSTGYRTAFFGKYLNEYNGSYVPPGWKEWVGLLKNSRFYNYTLCRNGVKEKHGSD
YSKDYLTDLITNDSVSFFRTSKKMYPHRPVLMVISHAAPHGPEDSAPQYSRLFPNASQHITP
SYNYAPNPDKHWIMRYTGPMKPIHMEFTNMLQRKRLQTLMSVDDSMETIYNMLVETGELDNT
YIVYTADHGYHIGQFGLVKGKSMPYEFDIRVPFYVRGPNVEAGCLNPHIVLNIDLAPTILDI
AGLDIPADMDGKSILKLLDTERPVNRFHLKKKMRVWRDSFLVERGKLLHKRDNDKVDAQEEN
FLPKYQRVKDLCQRAEYQTACEQLGQKWQCVEDATGKLKLHKCKGPMRLGGSRALSNLVPKY
YGQGSEACTCDSGDYKLSLAGRRKKLFKKKYKASYVRSRSIRSVAIEVDGRVYHVGLGDAAQ
PRNLTKRHWPGAPEDQDDKDGGDFSGTGGLPDYSAANPIKVTHRCYILENDTVQCDLDLYKS
LQAWKDHKLHIDHEIETLQNKIKNLREVRGHLKKKRPEECDCHKISYHTQHKGRLKHRGSSL
HPFRKGLQEKDKVWLLREQKRKKKLRKLLKRLQNNDTCSMPGLTCFTHDNQHWQTAPFWTLG
PFCACTSANNNTYWCMRTINETHNFLFCEFATGFLEYFDLNTDPYQLMNAVNTLDRDVLNQL
HVQLMELRSCKGYKQCNPRTRNMDLDGGSYEQYRQFQRRKWPEMKRPSSKSLGQLWEGWEG

FIGURE 48

AACAAAGTTCAGTGACTGAGAGGGCTGAGCGGAGGCTGCTGAAGGGGAGAAAGGAGTGAGGA GCTGCTGGGCAGAGAGGGACTGTCCGGCTCCCAG**ATG**CTGGGCCTCCTGGGGAGCACAGCCC TCGTGGGATGATCACAGGTGCTGCTGTGGCGGTCCTGCTGCTGCTGCTGCTGCCACC TGCCTTTTCCACGGACGCAGGACTGTGACGTGGAGAGGAACCGTACAGCTGCAGGGGGAAA CCGAGTCCGCCGGCCCAGCCTTGGCCCTTCCGGCGGGGGCCACCTGGGAATCTTTCACC ATCACCGTCATCCTGGCCACGTATCTCATGTGCCGAATGTGGGCCTCCACCACCACCACCAC CCCCGCCACCCCTCACCACCTCCACCACCACCACCCCCACCGCCACCATCCCCGCCA CGCTCGC**TGA**GGCTGCTGTCGCCGGTGCCTGTGGACAGCAGCTGCCCTGCCCTCCCATCTG TTCCCAGGACAAGTGGACCCCATGTTTCCATGTGGAAGGATGCATCTCTGGGGTGAACGAGG GGAACAATAGACTGGGGCTTGCTCCAGCTGCATTTGCATGGCATGCCCCAGTGTACTATGGC AGCAGAGAATGGAGGAACACTGGGTCTGCAGTGCTGAAGGGTTTGGGGGAGTGGAGAGCAAGG GTGCTCTTTCGGGGCTGGACAGCCCGTCTTGTGACAGTGACTCCCAGTGAGCCCCAGAAATG ACAAGCGTGTCTTGGCAGAGCCAGCACACAGTGGATGTGAAGTGCCCGTCTTGACCTCCTC ATCAGGCTGCTGCAGGCCTCTGGCGGCAGGGCACTGGGAGAGGCCCTGAGAATGTCCTTTT GGTTTGGAGAAGGCAGTGTGAGGCTGCACAGTCAATTCATCGGTGCCTTAGTCCAAGAAAAT

FIGURE 49

MLGLLGSTALVGWITGAAVAVLLLLLLLATCLFHGRQDCDVERNRTAAGGNRVRRAQPWPFR RRGHLGIFHHHRHPGHVSHVPNVGLHHHHHPRHTPHHLHHHHHPHRHHPRHAR

FIGURE 50

GGCGGCTGCTGAGCTGCCTTGAGGTGCAGTGTTGGGGATCCAGAGCCATGTCGGACCTGCTA CTACTGGGCCTGATTGGGGGCCTGACTCTCTTACTGCTGCTGACGCTGCTGCCTTTGCCGG GTACTCAGGGCTACTGGCTGGGTGGAAGTGAGTGCTGGGTCACCCCCCATCCGCAACGTCA CTGTGGCCTACAAGTTCCACATGGGGCTCTATGGTGAGACTGGGCGGCTTTTCACTGAGAGC TGCAGCATCTCTCCCAAGCTCCGCTCCATCGCTGTCTACTATGACAACCCCCACATGGTGCC CCCTGATAAGTGCCGATGTGCCGTGGGCAGCATCCTGAGTGAAGGTGAGGAATCGCCCTCCC CTGAGCTCATCGACCTCTACCAGAAATTTGGCTTCAAGGTGTTCTCCTTCCCGGCACCCAGC TGTCCATCCTGCCTTGGACACCTACATCAAGGAGCGGAAGCTGTGTGCCTATCCTCGGCTGG AGATCTACCAGGAAGACCAGATCCATTTCATGTGCCCACTGGCACGGCAGGGAGACTTCTAT GTGCCTGAGATGAAGGAGACAGAGTGGAAATGGCGGGGGCTTGTGGAGGCCATTGACACCCA GGTGGATGGCACAGGAGCTGACACAATGAGTGACACGAGTTCTGTAAGCTTGGAAGTGAGCC CTGGCAGCCGGGAGACTTCAGCTGCCACACTGTCACCTGGGGCGAGCAGCCGTGGCTGGGAT GACGGTGACACCCGCAGCGAGCACCAGCTACAGCGAGTCAGGTGCCAGCGGCTCCTCTTTTGA GGAGCTGGACTTGGAGGGCCAGGGGCCCTTAGGGGAGTCACGGCTGGACCCTGGGACTGAGC CCCTGGGGACTACCAAGTGGCTCTGGGAGCCCACTGCCCCTGAGAAGGGCAAGGAGTAACCC ATGGCCTGCACCTCCTGCAGTGCAGTTGCTGAGGAACTGAGCAGACTCTCCAGCAGACTCT CCAGCCCTCTTCCTCCTGGGGGGAGGGGGTTCCTGAGGGACCTGACTTCCCCTGC TCCAGGCCTCTTGCTAAGCCTTCTCCTCACTGCCCTTTAGGCTCCCAGGGCCAGAGGAGCCA GGGACTATTTCTGCACCAGCCCCCAGGGCTGCCGCCCTGTTGTGTCTTTTTTTCAGACTC ACAGTGGAGCTTCCAGGACCCAGAATAAAGCCAATGATTTACTTGTTTCACCTGGAAAAAAA AAAAAAAA

FIGURE 51

MSDLLLLGLIGGLTLLLLTLLAFAGYSGLLAGVEVSAGSPPIRNVTVAYKFHMGLYGETGR LFTESCSISPKLRSIAVYYDNPHMVPPDKCRCAVGSILSEGEESPSPELIDLYQKFGFKVFS FPAPSHVVTATFPYTTILSIWLATRRVHPALDTYIKERKLCAYPRLEIYQEDQIHFMCPLAR QGDFYVPEMKETEWKWRGLVEAIDTQVDGTGADTMSDTSSVSLEVSPGSRETSAATLSPGAS SRGWDDGDTRSEHSYSESGASGSSFEELDLEGEGPLGESRLDPGTEPLGTTKWLWEPTAPEK GKE

FIGURE 52

FIGURE 53

MTLRPSLLPLHLLLLLLSAAVCRAEAGLETESPVRTLQVETLVEPPEPCAEPAAFGDTLHI HYTGSLVDGRIIDTSLTRDPLVIELGQKQVIPGLEQSLLDMCVGEKRRAIIPSHLAYGKRGF PPSVPADAVVQYDVELIALIRANYWLKLVKGILPLVGMAMVPALLGLIGYHLYRKANRPKVS KKKLKEEKRNKSKKK

FIGURE 54

FIGURE 55

CCGAAAGTCCCGTCCGGACCCTCCAAGTGGAGACCCTGGTGGAGCCCCCAGAACCATGTGCC
GAGCCCGCTGCTTTTGGAGACACGCTTCACATACACTACACGGGAAGCTTGGTAGATGGACG
TATTATTGACACCTCCCTGACCAGAGACCCTCTGGTTATAGAACTTGGCCAAAAGCAGGTGA
TTCCAGGTCTGGAGCAGAGTCTTCTCGACATGTGTGTGGGAGAAAGCGAAGGGCAATCATT
CCTTCTCACTTGGCCTATGGAAAACGGGGATTTCCACCATCTGTCCCAGCGGATGCAGTGGT
GCAGTATGACGTGGAGCTGATTGCACTAATCCGAGCCAACTACTGGCTAAAGCTGGTGAAGG
GCATTTTGCCTCTGGTAGGGATGGCCATGGTGCCAGCCCTCCTGGGCCTCATTGGGTATCAC
CTATACAGAAAGGCCAATAGACCCAAAGTCTCCAAAAAGAAGCTCAAGGAAGAAACGAAA
CAAGAGCAAAAAAAAATAATAATAATTTTAAAAAACTTAAAA

FIGURE 56

CTGCTGCATCCGGGTGTCTGGAGGCTGTGGCCGTTTTGTTTTCTTGGCTAAAATCGGGGGAG TGAGGCGGGCGGGCGCGACACCGGGCTCCGGAACCACTGCACGACGGGGCTGGACTG ACCTGAAAAAA<mark>ATG</mark>TCTGGATTTCTAGAGGGCTTGAGATGCTCAGAATGCATTGACTGGGGG GAAAAGCGCAATACTATTGCTTCCATTGCTGCTGGTGTACTATTTTTTACAGGCTGGTGGAT TATCATAGATGCAGCTGTTATTTATCCCACCATGAAAGATTTCAACCACTCATACCATGCCT GTGGTGTTATAGCAACCATAGCCTTCCTAATGATTAATGCAGTATCGAATGGACAAGTCCGA ${\tt GGTGATAGTTACAGTGAAGGTTGTCTGGGTCAAACAGGTGCTCGCATTTGGCTTTTCGTTGG}$ TTTCATGTTGGCCTTTGGATCTCTGATTGCATCTATGTGGATTCTTTTTGGAGGTTATGTTG CTAAAGAAAAGACATAGTATACCCTGGAATTGCTGTATTTTTCCAGAATGCCTTCATCTTT $\tt TTTGGAGGGCTGGTTTTTAAGTTTGGCCGCACTGAAGACTTATGGCAG{\color{red} {\bf TGA}} ACACATCTGAT$ TTGTAATGCCATTTTCTAAACTTATTTCTGAGTGTAGTCTCAGCTTAAAGTTGTGTAATACT AAAATCACGAGAACACCTAAACAACAACCAAAAATCTATTGTGGTATGCACTTGATTAACTT ATAAAATGTTAGAGGAAACTTTCACATGAATAATTTTTGTCAAATTTTATCATGGTATAATT TGTAAAAATAAAAGAAATTACAAAAGAAATTATGGATTTGTCAATGTAAGTATTTGTCATA TCTGAGGTCCAAAACCACAATGAAAGTGCTCTGAAGATTTAATGTGTTTATTCAAATGTGGT CTCTTCTGTGTCAAATGTTAAATGAAATATAAACATTTTTTAGTTTTTAAAATATTCCGTGG TCAAAATTCTTCCTCACTATAATTGGTATTTACTTTTACCAAAAATTCTGTGAACATGTAAT GTAACTGGCTTTTGAGGGTCTCCCAAGGGGTGAGTGGACGTGTTGGAAGAGAAGCACCAT GGTCCAGCCACCAGGCTCCCTGTGTCCCTTCCATGGGAAGGTCTTCCGCTGTGCCTCTCATT CCAAGGGCAGGAAGATGTGACTCAGCCATGACACGTGGTTCTGGTGGGATGCACAGTCACTC CACATCCACCACTG

FIGURE 57

MSGFLEGLRCSECIDWGEKRNTIASIAAGVLFFTGWWIIIDAAVIYPTMKDFNHSYHACGVI ATIAFLMINAVSNGQVRGDSYSEGCLGQTGARIWLFVGFMLAFGSLIASMWILFGGYVAKEK DIVYPGIAVFFQNAFIFFGGLVFKFGRTEDLWQ

FIGURE 58

FIGURE 59

TGGACGGACCTGAAAAAAATGTTTGGATTTNTAGAGGGNTTGAGATGTTCAGAATGCATGAC
TGGGGGAAAAGCGCAAATACTATTGCTTCCATTGCTGCTGGTGTANTATTTTTTTACAGGCTG
GTGGATTATCATAGATGCAGNTGTTATTTATCCCACCATGAAAGATTTCAACCANTCATACC
ATGCCTGTGGTGTTATAGCAACCATAGCCTTCNTAATGATTAATGCAGTATCGAATGGACAA
GTCCGAGGTGATAGTTACAGTGAAGGTTGTTTGGGTCAAACAGGTGCTCGCATTTGGCTTTT
CGTTGGTTTCATGTTGGCCTTTGGATCTCTGATTGCATCTATGTGGATTCTTTTTGGAGGTT
ATGTTGCTAAAGAAAAAGACATAGTATACCCTGGAATTGNTGTATTTTTCCAGAATGCCTTC
ATCTTTTTTGGAGGGCTGGTTTTTAAGTTTGGCCGCACTGAAGANTTATGGCAGTG

FIGURE 60

GGACACCGGGTTCCGGACCAATGCANGACGGGGTGGANTGACCTGAAAAAAATGTTTGGATT
TTTAGAGGGCTTGAGATGNTCAGAATGCATTGACTGGGGGAAAAGCGCAATANTATTGCTTT
CCATTGCTGCTGGTGTACTATTTTTTACAGGGTTGGTGGATTATCATAGATGCAGCTGTTATT
TATCCCACCATGAAAGATTTNAACCACTCATACCATGCCTGTGGTGTTATAGCAACCATAGC
CTTCCTAATGATTAATGCAGTATCGAATGGACAAGTCCGAGGTGATAGTTACAGTGAAGGTT
GTTTGGGTCAAACAGGTGNTCGCATTTGGCTTTTCGTTGGTTTCATGTTGGCCTTTTGGATTT
CTGATTGNATTCTATGCGGATTCTTCTTGGAGGTTATGTTGCTAAAGAAAAAGACATAGTAT
ACCCTGGAATTNCTNTATTTTTCCAGAATGCC

FIGURE 61

TAGAGGGCTTGAGATGCTCAGAATGCATTGACTGGGGGGAAAAGCGCAATANTATTGCTTCC
ATTGNTGNTGGTGTANTATTTTTTTACAGGCTGGTGGATTATNATAGATGCAGCTGTTATTT
ATCCCACCATGAAAGATTTNAACCANTCATACCATGCCTGTGGTGTTATAGCAACCATAGCC
TTCCTAATGATTAATGCAGTATNGAATGGACAAGTCCGAGGTGATAGTTACAGTGAAGGTTG
TTTGGGTCAAACAGGTGNTNGCATTTGGCTTTTNGTTGGTTTCATGTTGGCCTTTTGGATCTN
TGATTGCATTTATGTGGATTNTTTTTTGGAGGTTATGTTGCTAAAGNAAAAGACATAGTATAC
CCTGT

FIGURE 62

FIGURE 63

CGACGCCGGCGTG<u>ATG</u>TGGCTTCCGCTGGTGCTGCTGGCTGCTGCTGCCGTCC GCCTGGCTGCAGCTGCAATTCTAGCTAAAGCTGGCAAGCGAGTCCTGGTGCTGGAACAACAT ACCAAGGCAGGGGCTGCTGTCATACCTTTGGAAAGAATGGCCTTGAATTTGACACAGGAAT CCATTACATTGGGCGTATGGAAGAGGGCAGCATTGGCCGTTTTATCTTGGACCAGATCACTG AAGGCAGCTGGACTGGCTCCCCTGTCCTCTCTCTTTTGACATCATGGTACTGGAAGGGCCC AATGGCCGAAAGGAGTACCCCATGTACAGTGGAGAAAGCCTACATTCAGGGCCTCAAGGA GAAGTTTCCACAGGAGGAAGCTATCATTGACAAGTATATAAAGCTGGTTAAGGTGGTATCCA GTGGAGCCCCTCATGCCATCCTGTTGAAATTCCTCCCATTGCCCGTGGTTCAGCTCCTCGAC AGGTGTGGGCTGCTGACTCGTTTCTCTCCATTCCTTCAAGCATCCACCCAGAGCCTGGCTGA GGTCCTGCAGCAGCTGGGGGCCTCCTCTGAGCTCCAGGCAGTACTCAGCTACATCTTCCCCA CTTACGGTGTCACCCCCAACCACAGTGCCTTTTCCATGCACGCCCTGCTGGTCAACCACTAC ATGAAAGGAGGCTTTTATCCCCGAGGGGGTTCCAGTGAAATTGCCTTCCACACCATCCCTGT GATTCAGCGGGCTGGGGGCGCTGTCCTCACAAAGGCCACTGTGCAGAGTGTGTTGCTGGACTCAGCTGGGAAAGCCTGTGGTGTCAGTGTGAAGAAGGGGCATGAGCTGGTGAACATCTATTGC CCCATCGTGGTCTCCAACGCAGGACTGTTCAACACCTATGAACACCTACTGCCGGGGAACGC CCGCTGCCTGCCAGGTGTGAAGCAGCAACTGGGGACGGTGCGGCCCGGCTTAGGCATGACCT AGGACCGATTCCCAGGCCGGTCCACCATGATCATGCTCATACCCACTGCCTACGAGTGGTTT GAGGAGTGGCAGGCGGAGCTGAAGGGGAAAGCGGGGCAGTGACTATGAGACCTTCAAAAACTC CTTTGTGGAAGCCTCTATGTCAGTGGTCCTGAAACTGTTCCCACAGCTGGAGGGGAAGGTGG AGAGTGTGACTGCAGGATCCCCACTCACCAACCAGTTCTATCTGGCTGCTCCCCGAGGTGCC GGGCCCTGCAAGGTGCCCTGCTGTGCAGCAGCGCCATCCTGAAGCGGAACTTGTACTCAGAC CTTAAGAATCTTGATTCTAGGATCCGGGCACAGAAGAAAAAGAAT**TAG**TTCCATCAGGGAGG AGTCAGAGGAATTTGCCCAATGGCTGGGGCATCTCCCTTGACTTACCCATAATGTCTTTCTG CATTAGTTCCTTGCACGTATAAAGCACTCTAATTTGGTTCTGATGCCTGAAGAGAGGCCTAG TTTAAATCACAATTCCGAATCTGGGGCAATGGAATCACTGCTTCCAGCTGGGGCAGGTGAGA TCTTTACGCCTTTTATAACATGCCATCCCTACTAATAGGATATTGACTTGGATAGCTTGATG TCTCATGACGAGCGCGCTCTGCATCCCTCACCCATGCCTCCTAACTCAGTGATCAAAGCGA ATATTCCATCTGTGGATAGAACCCCTGGCAGTGTTGTCAGCTCAACCTGGTGGGTTCAGTTC
TGTCCTGAGGCTTCTGCTCATTCATTTAGTGCTACGCTGCACAGTTCTACACTGTCAAGG
GAAAAGGGAGACTAATGAGGCTTAACTCAAAACCTGGGCGTGGTTTTTGGTTGCCATTCCATA
GGTTTGGAGAGCTCTAGATCTCTTTTTTGTGCTGGTTCAGTGGCTCTTCAGGGGACAGGAAAT TGGACTGGTAAGATGAATACTTTGCTGGGCTGAAGCAGGCTGCAGGGCATTCCAGCCAAGGG CACAGCAGGGGACAGTGCAGGGAGGTGTGGGGTAAGGGAAGTCACATCAGAAAAGGGA AAGCCACGGAATGTGTGAAGCCCAGAAATGGCATTTGCAGTTAATTAGCACATGTGAGGG TTAGACAGGTAGGTGAATGCAAGCTCAAGGTTTGGAAAAATGACTTTTCAGTTATGTCTTTG GTATCAGACATACGAAAGGTCTCTTTGTAGTTCGTGTTAATGTAACATTAATAAATTTATTG ATTCCATTGCTTTAAAAAAAAAAAAAAAA

FIGURE 64

MWLPLVLLLAVLCKVYLGLFSGSSPNPFSEDVKRPPAPLVTDKEARKKVLKQAFSAN QVPEKLDVVVIGSGFGGLAAAAILAKAGKRVLVLEQHTKAGGCCHTFGKNGLEFDTGIHYIG RMEEGSIGRFILDQITEGQLDWAPLSSPFDIMVLEGPNGRKEYPMYSGEKAYIQGLKEKFPQ EEAIIDKYIKLVKVVSSGAPHAILLKFLPLPVVQLLDRCGLLTRFSPFLQASTQSLAEVLQQ LGASSELQAVLSYIFPTYGVTPNHSAFSMHALLVNHYMKGGFYPRGGSSEIAFHTIPVIQRA GGAVLTKATVQSVLLDSAGKACGVSVKKGHELVNIYCPIVVSNAGLFNTYEHLLPGNARCLP GVKQQLGTVRPGLGMTSVFICLRGTKEDLHLPSTNYYVYYDTDMDQAMERYVSMPREEAAEH IPLLFFAFPSAKDPTWEDRFPGRSTMIMLIPTAYEWFEEWQAELKGKRGSDYETFKNSFVEA SMSVVLKLFPQLEGKVESVTAGSPLTNQFYLAAPRGACYGADHDLGRLHPCVMASLRAQSPI PNLYLTGQDIFTCGLVGALQGALLCSSAILKRNLYSDLKNLDSRIRAQKKKN

FIGURE 65

GCAGCGGCGAGGCGGTGGTGGCTGAGTCCGTGGTGGCAGAGGCGAAGGCGACAGCTCTA $\tt GGGGTTGGCACCGGCCCCGAGAGGAGGAGGGGTCCGGATAGGGCTGACGCTGCTGTG$ TGCGGTGCTGAGCTTGGCCTCGGCGTCCTCGGATGAAGAGGCAGCCAGGATGAATCCT GTAGTTGCTGGTCAAATATTTCTTGATTCAGAAGAATCTGAATTAGAATCCTCTATTCAAGA AGAGGAAGACAGCCTCAAGAGCCAAGAGGGGGGAAAGTGTCACAGAAGATATCAGCTTTCTAG ACCGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTTCCCTTTTCCTTAGATAA GGAGTATGATGAACATCAGATGGGAGGGAAGATGGCAGACTGTGGTGTGCTACAACCT ATGACTACAAAGCAGATGAAAAGTGGGGCTTTTGTGAAACTGAAGAAGAGGCTGCTAAGAGA CGGCAGATGCAGGAAGCAGAAATGATGTATCAAACTGGAATGAAAATCCTTAATGGAAGCAA CCAAAGCCCTGGAGAGAGTGTCATATGCTCTTTTATTTGGTGATTACTTGCCACAGAATATC CAGGCAGCGAGAGATGTTTGAGAAGCTGACTGAGGAAGGCTCTCCCAAGGGACAGACTGC TCTTGGCTTTCTGTATGCCTCTGGACTTGGTGTTAATTCAAGTCAGGCAAAGGCTCTTGTAT ATTATACATTTGGAGCTCTTGGGGGCCAATCTAATAGCCCCACATGGTTTTGGTAAGTAGACTT TAGTGGAAGGCTAATAATATTAACATCAGAAGAATTTGTGGTTTATAGCGGCCACAACTTTT ATTCTTGTTAATGGATATAACACATGGAATCTACATGTAAATGAAAGTTGGTGGAGTCCACA ATTTTTCTTTAAAATGATTAGTTTGGCTGATTGCCCCTAAAAAGAGAGATCTGATAAATGGC TCTTTTTAAATTTTCTCTGAGTTGGAATTGTCAGAATCATTTTTTACATTAGATTATCATAA TTTTAAAAATTTTTCTTTAGTTTTTCAAAATTTTGTAAATGGTGGCTATAGAAAAACAACAT GAAATATTATACAATATTTTGCAACAATGCCCTAAGAATTGTTAAAATTCATGGAGTTATTT GTGCAGAATGACTCCAGAGAGCTCTACTTTCTGTTTTTTACTTTTCATGATTGGCTGTCTTC CCATTTATTCTGGTCATTTATTGCTAGTGACACTGTGCCTGCTTCCAGTAGTCTCATTTTCC CTATTTTGCTAATTTGTTACTTTTCTTTGCTAATTTGGAAGATTAACTCATTTTTAATAAA

FIGURE 66

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLDSKTTLTSDESVKDHTTAGRVVAGQIFLD SEESELESSIQEEEDSLKSQEGESVTEDISFLESPNPENKDYEEPKKVRKPALTAIEGTAHG EPCHFPFLFLDKEYDECTSDGREDGRLWCATTYDYKADEKWGFCETEEEAAKRRQMQEAEMM YQTGMKILNGSNKKSQKREAYRYLQKAASMNHTKALERVSYALLFGDYLPQNIQAAREMFEK LTEEGSPKGQTALGFLYASGLGVNSSQAKALVYYTFGALGGNLIAHMVLVSRL

FIGURE 67

FIGURE 68

MACRCLSFLLMGTFLSVSQTVLAQLDALLVFPGQVAQLSCTLSPQHVTIRDYGVSWYQQRAG SAPRYLLYYRSEEDHHRPADIPDRFSAAKDEAHNACVLTISPVQPEDDADYYCSVGYGFSP

FIGURE 69

 ${\tt CCCGCCGAGGTCCGGACAGGCCGAGCCCCCTGTTGCTGCTGCTGCCGC}$ CGCTGCTGCTGGGGGCCTTCCCACCGGCCGCCGCCGCCGAGGCCCCCAAAGATGGCGGACAAGGTGGTCCCACGGCAGGCCGCCGCCGCCGCCGAGGCCCAAAGATGGCGGACAAGGTGGTCCCACGGCAGGCCGCCGCCGCCGCCACCATCCACAGCGCTGGACCATGTGGACCAAGGATGGCCGCACCATCCACAGCGGCTGGA GCCGCTTCCGCGTGCTGCCGCAGGGGCTGAAGGTGAAGCAGGTGGAGCGGGAGGATGCCGGC GTGTACGTGTGCAAGGCCACCAACGGCTTCGGCAGCCTGAGCGTCAACTACACCCTCGTCGT CCAGGAAGAAGAGTGGACACTGAGCCTGAAGAACCTGCGGCCGGAGGACAGCGGCAAATAC ACCTGCCGCGTGTCGAACCGCGCGGGCGCCATCAACGCCACCTACAAGGTGGATGTGATCCA GCGGACCCGTTCCAAGCCCGTGCTCACAGGCACGCACCCGTGAACACGACGGTGGACTTCG GGGGGACCACGTCCTTCCAGTGCAAGGTGCGCAGCGACGTGAAGCCGGTGATCCAGTGGCTG AAGCGCGTGGAGTACGGCGCCGAGGGCCGCCACAACTCCACCATCGATGTGGGCGGCCAGAA GTTTGTGGTGCTGCCCACGGGTGACGTGTGGTCGCGGCCCGACGGCTCCTACCTCAATAAGC TGCTCATCACCCGTGCCCGCCAGGACGATGCGGGCATGTACATCTGCCTTGGCGCCAACACC GTGAGGAGCATGGGTCTCCGGCAGCCCCCAGCACTTACTGGGCCCAGGCCCAGTTGCTGGC ${\sf ACACTCACACGTGGAGGGCAAGGTCCACCAGCACTATCAGTGC}$ TGTGCACAGATATGCTGTCTGGACATGCACACGTGCAGATATGCTGTCCGGATACACACG TGCTGTCCGGATACACACGCACGCACACATGCAGATATGCTGCCTGGGCACACACTTCCGGA CACACATGCACACACAGGTGCAGATATGCTGCCTGGACACACGCAGACTGACGTGCTTTTGG GAGGGTGTGCCGTGAAGCCTGCAGTACGTGCCTGGACACACGCAGACTGACGTGCTTTTGG GAGGGTGTGCCGTGAAGCCTGCAGTACGTGTGCCGTGAGGCTCATAGTTGATGAGGGACTTT CCCTGCTCCACCGTCACTCCCCCAACTCTGCCCGCCTCTGTCCCCGCCTCAGTCCCCGCCTC CATCCCCGCCTCTGTCCCCTGGCCTTGGCGGCTATTTTTTGCCACCTGCCTTGGGTGCCCAGG AGTCCCCTACTGCTGTGGGGTTGGGGGCACAGCAGCCCCAAGCCTGAGAGGGCCCTGGAG CCCATGCTAGTGGTGCTCATACATAGTATCTCCCCCTGACACAGAGAAGGGGCCCTTGGTA TTTATATTTAAGAAATGAAGATAATATTAATAATGATGGAAGGAAGACTGGGTTGCAGGGAC TGTGGTCTCTCCTGGGGCCCGGGACCCGCCTGGTCTTTCAGCCATGCTGATGACCACACCCC GTCCAGGCCAGACACCACCCCCACCCACTGTCGTGGTGGCCCCAGATCTCTGTAATTTTA

FIGURE 70

MTPSPLLLLLPPLLLGAFPPAAAARGPPKMADKVVPRQVARLGRTVRLQCPVEGDPPPLTM
WTKDGRTIHSGWSRFRVLPQGLKVKQVEREDAGVYVCKATNGFGSLSVNYTLVVLDDISPGK
ESLGPDSSSGGQEDPASQQWARPRFTQPSKMRRRVIARPVGSSVRLKCVASGHPRPDITWMK
DDQALTRPEAAEPRKKKWTLSLKNLRPEDSGKYTCRVSNRAGAINATYKVDVIQRTRSKPVL
TGTHPVNTTVDFGGTTSFQCKVRSDVKPVIQWLKRVEYGAEGRHNSTIDVGGQKFVVLPTGD
VWSRPDGSYLNKLLITRARQDDAGMYICLGANTMGYSFRSAFLTVLPDPKPPGPPVASSSSA
TSLPWPVVIGIPAGAVFILGTLLLWLCQAQKKPCTPAPAPPLPGHRPPGTARDRSGDKDLPS
LAALSAGPGVGLCEEHGSPAAPQHLLGPGPVAGPKLYPKLYTDIHTHTHTHSHTHSHVEGKV
HQHIHYQC

FIGURE 71

FIGURE 72

MVGTKAWVFSFLVLEVTSVLGRQTMLTQSVRRVQPGKKNPSIFAKPADTLESPGEWTTWFNI DYPGGKGDYERLDAIRFYYGDRVCARPLRLEARTTDWTPAGSTGQVVHGSPREGFWCLNREQ RPGQNCSNYTVRFLCPPGSLRRDTERIWSPWSPWSKCSAACGQTGVQTRTRICLAEMVSLCS EASEEGQHCMGQDCTACDLTCPMGQVNADCDACMCQDFMLHGAVSLPGGAPASGAAIYLLTK TPKLLTQTDSDGRFRIPGLCPDGKSILKITKVKFAPIVLTMPKTSLKAATIKAEFVRAETPY MVMNPETKARRAGQSVSLCCKATGKPRPDKYFWYHNDTLLDPSLYKHESKLVLRKLQQHQAG EYFCKAQSDAGAVKSKVAQLIVTASDETPCNPVPESYLIRLPHDCFQNATNSFYYDVGRCPV KTCAGQQDNGIRCRDAVQNCCGISKTEEREIQCSGYTLPTKVAKECSCQRCTETRSIVRGRV SAADNGEPMRFGHVYMGNSRVSMTGYKGTFTLHVPQDTERLVLTFVDRLQKFVNTTKVLPFN KKGSAVFHEIKMLRRKEPITLEAMETNIIPLGEVVGEDPMAELEIPSRSFYRQNGEPYIGKV KASVTFLDPRNISTATAAQTDLNFINDEGDTFPLRTYGMFSVDFRDEVTSEPLNAGKVKVHL DSTQVKMPEHISTVKLWSLNPDTGLWEEEGDFKFENQRRNKREDRTFLVGNLEIRERRLFNL DVPESRRCFVKVRAYRSERFLPSEQIQGVVISVINLEPRTGFLSNPRAWGRFDSVITGPNGA CVPAFCDDQSPDAYSAYVLASLAGEELQAVESSPKFNPNAIGVPQPYLNKLNYRRTDHEDPR VKKTAFQISMAKPRPNSAEESNGPIYAFENLRACEEAPPSAAHFRFYQIEGDRYDYNTVPFN EDDPMSWTEDYLAWWPKPMEFRACYIKVKIVGPLEVNVRSRNMGGTHRRTVGKLYGIRDVRS TRDRDQPNVSAACLEFKCSGMLYDQDRVDRTLVKVIPQGSCRRASVNPMLHEYLVNHLPLAV NNDTSEYTMLAPLDPLGHNYGIYTVTDQDPRTAKEIALGRCFDGTSDGSSRIMKSNVGVALT $\verb|FNCVERQVGRQSAFQYLQSTPAQSPAAGTVQGRVPSRRQQRASRGGQRQGGVVASLRFPRVA|$ QQPLIN

FIGURE 73

CTGCAAGTTGTTAACGCCTAACACACAAGTATGTTAGGCTTCCACCAAAGTCCTCAATATACCTGAATACGCAC ACCTACCTACCCGTACGCATACATACATATGTGTATATATGTAAACTAGACAAAGATCGCAGATCATAAAGC ${\tt AAGCTCTGCTTTAGTTTCCAAGAAGATTACAAAGAATTTAGAG} \underline{{\tt ATG}} {\tt TATTTGTCAAGATCCCTGTCGATTCATG}$ ${\tt CCCTTTGGGTTACGGTGTCCTCAGTGATGCAGCCCTACCCTTTGGTTTGGGGACATTATGATTTGTGTAAGACT}$ CAGATTTACACGGAAGAAGGGAAAGTTTGGGATTACATGGCCTGCCAGCCGGAATCCACGGACATGACAAAATA TCTGAAAGTGAAACTCGATCCTCCGGATATTACCTGTGGAGACCCTCCTGAGACGTTCTGTGCAATGGGCAATC $\verb|CCTACATGTGCAATAATGAGTGTGATGCGAGTACCCCTGAGCTGGCACACCCCCCTGAGCTGATGTTTGATTTT| \\$ GAAGGAAGACATCCCTCCACATTTTGGCAGTCTGCCACTTGGAAGGAGTATCCCAAGCCTCTCCAGGTTAACAT CACTCTGTCTTGGAGCAAAACCATTGAGCTAACAGACATAGTTATTACCTTTGAATCTGGGCGTCCAGACC AAATGATCCTGGAGAAGTCTCTCGATTATGGACGAACATGGCAGCCCTATCAGTATTATGCCACAGACTGCTTA GATGCTTTTCACATGGATCCTAAATCCGTGAAGGATTTATCACAGCATACGGTCTTAGAAATCATTTGCACAGA ${ t AGAGTACTCAACAGGGTATACAACAAATAGCAAAATAATCCACTTTGAAATCAAAGACAGGTTCGCGCTTTTTG}$ CTGGACCTCGCCTACGCAATATGGCTTCCCTCTACGGACAGCTGGATACAACCAAGAAACTCAGAGATTTCTTT ${ t ACAGTCACAGACCTGAGGGATAAGGCTGTTAAGACCAGCCGTTGGGGAAATATTTGTAGATGAGCTACACTTGGC}$ ACGCTACTTTTACGCGATCTCAGACATAAAGGTGCGAGGAAGGTGCAAGTGTAATCTCCATGCCACTGTATGTG TGTATGACAACAGCAAATTGACATGCGAATGTGAGCACAACACTACAGGTCCAGACTGTGGGAAATGCAAGAAG AATTATCAGGGCCGACCTTGGAGTCCAGGCTCCTATCTCCCCATCCCCAAAGGCACTGCAAATACCTGTATCCC ${\tt GGGAACCGCCAGCCCCTGGTGTTC}$ $\tt CTAAGAAGGCCTAACTGAACTAAGCCATATTTATCACCCGTGGACAGCACATCCGAGTCAAGACTGTTAATTTC$ ${\tt TGACTCCAGAGGAGTTGGCAGCTGTTGATATTATCACTGCAAATCACATTGCCAGCTGCAGAGCATATTGTGGA}$ TTGGAAAGGCTGCGACAGCCCCCCAAACAGGAAAGACAAAAAAACAAATCAACCGACCTAAAAAACATTGGC TACTCTAGCGTGGTGCGCCCTAGTACGACTCCGCCCAGTGTGTGGACCAAACCAAATAGCATTCTTTGCTGTCAG GTGCATTGTGGGCATAAGGAAATCTGTTACAAGCTGCCATATTGGCCTGCTTCCGTCCCTGAATCCCTTCCAAC $\tt TGTGTAACAGCCCCTCTAAAAGCGCAAGCCAGTCATACCCCTGTATATCTTAGCAGCACTGAGTCCAGTGCGA$ ${ t ATTTTTCTTGAACTACTGTAATATGTAGATTTTTTGTATTATTGCCAATTTGTGTTACCAGACAATCTGTTAAT$ GATTTCTCTGTAAGGGCAACGAACGTGCTGGCATCAAAGAATATCAGTTTACATATAACAAGTGTAATAAGA TTCCACCAAAGGACATTCTAAATGTTTTCTTGTTGCTTTAACACTGGAAGATTTAAAGAATAAAAACTCCTGCA $\verb|TTACTGATTTCTGTGTGGACTGAGTACATTCAGCTGACGAATTTAGTTCCCAGGAAGATGGATTGATGTTCACT|\\$ AAAAAA

FIGURE 74

MYLSRSLSIHALWVTVSSVMQPYPLVWGHYDLCKTQIYTEEGKVWDYMACQPESTDMTKYLK
VKLDPPDITCGDPPETFCAMGNPYMCNNECDASTPELAHPPELMFDFEGRHPSTFWQSATWK
EYPKPLQVNITLSWSKTIELTDNIVITFESGRPDQMILEKSLDYGRTWQPYQYYATDCLDAF
HMDPKSVKDLSQHTVLEIICTEEYSTGYTTNSKIIHFEIKDRFALFAGPRLRNMASLYGQLD
TTKKLRDFFTVTDLRIRLLRPAVGEIFVDELHLARYFYAISDIKVRGRCKCNLHATVCVYDN
SKLTCECEHNTTGPDCGKCKKNYQGRPWSPGSYLPIPKGTANTCIPSISSIGTNVCDNELLH
CQNGGTCHNNVRCLCPAAYTGILCEKLRCEEAGSCGSDSGQGAPPHGTPALLLLTTLLGTAS
PLVF

FIGURE 75

CCCACGCGTCCGGGTGACCTGGGCCGAGCCCTCCCGGTCGGCTAAGATTGCTGAGGAGGCGG CGGGTAGCTGGCAGGCCGACTTCCGAAGGCCGCCGTCCGGGCGAGGTGTCCTCATGACTT $\tt CTCTTGTGGACC{\color{red} ATG} TCCGTGATCTTTTTTGCCTGCGTGGTACGGGTAAGGGATGGACTGCC$ CCTCTCAGCCTCTACTGATTTTTACCACACCCAAGATTTTTTTGGAATGGAGGAGACGGCTCA AGAGTTTAGCCTTGCGACTGGCCCAGTATCCAGGTCGAGGTTCTGCAGAAGGTTGTGACTTT AGTATACATTTTTCTTCTTCGGGGACGTGGCCTGCATGGCTATCTGCTCCTGCCAGTGTCC AGCAGCCATGGCCTTCTGCTTCCTGGAGACCCTGTGGTGGGAATTCACAGCTTCCTATGACA CTACCTGCATTGGCCTAGCCTCCAGGCCATACGCTTTTCTTGAGTTTGACAGCATCATTCAG AAAGTGAAGTGGCATTTTAACTATGTAAGTTCCTCTCAGATGGAGTGCAGCTTGGAAAAAAT TCAGGAGGAGCTCAAGTTGCAGCCTCCAGCGGTTCTCACTCTGGAGGACACAGATGTGGCAA ATGGGGTGATGAATGGTCACACACCGATGCACTTGGAGCCTGCTCCTAATTTCCGAATGGAA CATTCGAGGAGTTCACCTTGCAGAACATTCTTTACAGGATCCAAGGAGCTGGTTCTGCTGGT TGGACCAAACCTCG**TGA**GCCAGCCACCCCTGACCCAAATGAGGAGAGCTCTGATTCTCCCAT CCGGGAGCAGTGATGTCAAACTTCTGCTGCTGGGAAATCTCATCAGCAGGGAGCCTGTGGA AAAGGGCATGTCAGTGAAATCTGGGAATGGCTGGATTCGGAAACATCTGCCCATGTGTATTG ATGGCAGAGCTGTTGCCCACAAGCGCCTTTTATTTAGGGTAAAATTAACAAATCCATTCTAT TCCTCTGACCCATGCTTAGTACATATGACCTTTAACCCTTACATTTATATGATTCTGGGGTT GCTTCAGAAGTGTTATTTCATGAATCATTCATATGATTTGATCCCCCAGGATTCTATTTTGT TTAATGGGCTTTTCTACTAAAAGCATAAAATACTGAGGCTGATTTAGTCAGGGCAAAACCAT TTACTTTACATATTCGTTTTCAATACTTGCTGTTCATGTTACACAAGCTTCTTACGGTTTTC TTGTAACAATAATATTTTGAGTAAATAATGGGTACATTTTAACAAACTCAGTAGTACAACC TAAACTTGTATAAAAGTGTGTAAAAATGTATAGCCATTTATATCCTATGTATAAATTAAATG AAAAG

FIGURE 76

MSVIFFACVVRVRDGLPLSASTDFYHTQDFLEWRRRLKSLALRLAQYPGRGSAEGCDFSIHF SSFGDVACMAICSCQCPAAMAFCFLETLWWEFTASYDTTCIGLASRPYAFLEFDSIIQKVKW HFNYVSSSQMECSLEKIQEELKLQPPAVLTLEDTDVANGVMNGHTPMHLEPAPNFRMEPVTA LGILSLILNIMCAALNLIRGVHLAEHSLQDPRSWFCWLDQTS

FIGURE 77

TGCTTCCTGGAGACCCTGTGGTGGGAATTCACAGCTTCNTATGACACTACCTGCATTGGCNT
AGCCTCCAGGCCATACGCTTTTCTTGAGTTTGACAGCATCATTCAGAAAGTGAAGTGGCATT
TTAACTATGTAAGTTCCTNTCAGATGGAGTGCAGCTTGGAAAAAATTCAGGAGGAGCTCAAG
TTGCAGCCTCCAGCGGTTCTCANTATGGAGGACACAGATGTGGCAAATGGGGT

FIGURE 78

CTCAGCGGCGCTTCCTCGTAGCGAGCCTAGTGGCGGGTGTTTGCATTGAAACGTGAGCGCGA CCCGACCTTAAAGAGTGGGGAGCAAAGGGAGGACAGAGCCCTTTAAAAACGAGGCGGGTGGTG CCTGCCCCTTTAAGGGCGGGGCGTCCGGACGACTGTATCTGAGCCCCAGACTGCCCCGAGTT TCTGTCGCAGGCTGCGAGGAAAGGCCCCTAGGCTGGGTCTGGGTGCTTGGCGGCGGCGGCTT ${\tt CCTCCCCGCTCCTCCCCGGGCCCAGAGGCACCTCGGCTTCAGTCATGCTGAGCAGAGT{f A}}$ $\underline{\textbf{TG}} \textbf{GAAGCACCTGACTACGAAGTGCTATCCGTGCGAGAACAGCTATTCCACGAGAGGATCCGC}$ GAGTGTATTATATCAACACTTCTGTTTGCAACACTGTACATCCTCTGCCACATCTTCCTGAC CCGCTTCAAGAAGCCTGCTGAGTTCACCACAGTGGATGATGAAGATGCCACCGTCAACAAGA TTGCGCTCGAGCTGTGCACCTTTACCCTGGCAATTGCCCTGGGTGCTGTCCTGCCCC TTCTCCATCATCAGCAATGAGGTGCTGCTCTCCCTGCCTCGGAACTACTACATCCAGTGGCT CAACGGCTCCCTCATCCATGGCCTCTGGAACCTTGTTTTTCTCTTCCCCCAACCTGTCCCTCA TCTTCCTCATGCCCTTTGCATATTTCTTCACTGAGTCTGAGGGCCTTTGCTGGCTCCAGAAAG GGTGTCCTGGGCCGGGTCTATGAGACAGTGGTGATGTTGATGCTCCTCACTCTGCTGGTGCT AGGTATGGTGTGGGTGGCATCAGCCATTGTGGACAAGAACAAGGCCAACAGAGAGTCACTCT CTGCTCCTGGTGTACTCCACTGGGTCTCGCCCGCATGTTCTCCGTCACTGGGAAGCTGCT AGTCAAGCCCCGGCTGCTGGAAGACCTGGAGGAGCAGCTGTACTGCTCAGCCTTTGAGGAGG CTACACAGACAGGTCCTGGCTCTGCAGACACAGAGGGTCCTGCTGGAGAAGAGGCGGAAGGC TTCAGCCTGGCAACGGAACCTGGGCTACCCCCTGGCTATGCTGTGCTGCTGACGG GCCTGTCTGTGCTCATTGTGGCCATCCACATCCTGGAGCTGCTCATCGATGAGGCTGCCATG CCCCGAGGCATGCAGGTACCTCCTTAGGCCAGGTCTCCTTCTCCAAGCTGGGCTCCTTTGG TGCCGTCATTCAGGTTGTACTCATCTTTTACCTAATGGTGTCCTCAGTTGTGGGCCTTCTATA GCTCTCCACTCTTCCGGAGCCTGCGGCCCAGATGGCACGACACTGCCATGACGCAGATAATT GGGAACTGTGTCTCCTGGTCCTAAGCTCAGCACTTCCTGTCTTCTCTCGAACCCTGGG ACTGCAGCTGTGCGGGCAGAGCTGATCCGGGCCTTTGGGCTGGACAGACTGCCGCTGCCCGT AGGAAAAAACTGGACACTGCCATCTGCTGCCTAGGCCTGGAGGGAAGCCCAAGGCTACTTGG ACCTCAGGACCTGGAATCTGAGAGGGTGGGTGGCAGAGGGGAGCCAGAGCCATCTGCACTATT GCATAATCTGAGCCAGAGTTTGGGACCAGGACCTCCTGCTTTTCCATACTTAACTGTGGCCT CAGCATGGGGTAGGGCTGGGTGACTGGGTCTAGCCCCTGATCCCAAATCTGTTTACACATCA ATCTGCCTCACTGCTGTTCTGGGCCATCCCCATAGCCATGTTTACATGATTTGATGTGCAAT CTTGCCTCTGGCCCAGCAGAGCCTAAGCACTGTGCTATCCTGGAGGGGCTTTGGACCACCTG AAAGACCAAGGGGATAGGGAGGAGGAGGCTTCAGCCATCAGCAATAAAGTTGATCCCAGGGA AAAAA

FIGURE 79

MEAPDYEVLSVREQLFHERIRECIISTLLFATLYILCHIFLTRFKKPAEFTTVDDEDATVNK IALELCTFTLAIALGAVLLLPFSIISNEVLLSLPRNYYIQWLNGSLIHGLWNLVFLFPNLSL IFLMPFAYFFTESEGFAGSRKGVLGRVYETVVMLMLLTLLVLGMVWVASAIVDKNKANRESL YDFWEYYLPYLYSCISFLGVLLLLVCTPLGLARMFSVTGKLLVKPRLLEDLEEQLYCSAFEE AALTRRICNPTSCWLPLDMELLHRQVLALQTQRVLLEKRRKASAWQRNLGYPLAMLCLLVLT GLSVLIVAIHILELLIDEAAMPRGMQGTSLGQVSFSKLGSFGAVIQVVLIFYLMVSSVVGFY SSPLFRSLRPRWHDTAMTQIIGNCVCLLVLSSALPVFSRTLGLTRFDLLGDFGRFNWLGNFY IVFLYNAAFAGLTTLCLVKTFTAAVRAELIRAFGLDRLPLPVSGFPQASRKTQHQ

FIGURE 80

GGCTGCCGAGGGAAGGCCCCTTGGGTTGGTTGTTGCTTGGCGGCGGCGGNTTCNTCCCC
GCTCGTCCTCCCCGGGCCCAGAGGCACCTCGGCTTCAGTCATGCTGAGCAGAGTATGGAAGC
ACCTGACTACGAAGTGCTATCCGTGCGAGAACAGCTATTCCACGAGAGGATCCGCGAGTGTA
TTATATCAACACTTCTGTTTGCAACACTGTACATCCTCTGCCACATCTTCCTGACCCGCTTC
AAGAAGCCTGCTGAGTTCACCACAGTGGATGAAGATGCCACCG

FIGURE 81

FIGURE 82

FIGURE 83

 ${\tt MLLWVILLVLAPVSGQFARTPRPIIFLQPPWTTVFQGERVTLTCKGFRFYSPQKTKWYHRYL}\\ {\tt GKEILRETPDNILEVQESGEYRCQAQGSPLSSPVHLDFSSEMGFPHAAQANVELLGSSDLLT}$

FIGURE 84

CAGAAGAGGGGGCTAGCTGTCTCTGCGGACCAGGGAGACCCCCGCGCCCCCCGGTGT GAGGCGGCCTCACAGGGCCGGGTGGGCTGGCGAGCCGACGCGGCGGCGGAGGAGGCTGTGAG ${\tt GAGTGTGTGGAACAGGACCCGGGACAGAGGAACC}$ GCCTGTTGCTGCTATACCTCATCGGGGCGGTGATTGCCGGACGAGATTTCTATAAGATCTTG GGGGTGCCTCGAAGTGCCTCTATAAAAGGATATTAAAAAGGCCTATAGGAAACTAGCCCTGCA GCTTCATCCCGACCGGAACCCTGATGATCCACAAGCCCAGGAGAAATTCCAGGATCTGGGTG CTGCTTATGAGGTTCTGTCAGATAGTGAGAAACGGAAACAGTACGATACTTATGGTGAAGAA GGATTAAAAGATGGTCATCAGAGCTCCCATGGAGACATTTTTTCACACTTCTTTGGGGATTT TGGTTTCATGTTTGGAGGAACCCCTCGTCAGCAAGACAGAAATATTCCAAGAGGAAGTGATA TTATTGTAGATCTAGAAGTCACTTTGGAAGAAGTATATGCAGGAAATTTTGTGGAAGTAGTT AGAAACAAACCTGTGGCAAGGCAGGCTCCTGGCAAACGGAAGTGCAATTGTCGGCAAGAGAT GCGGACCACCCAGCTGGGCCCTGGGCGCTTCCAAATGACCCAGGAGGTGGTCTGCGACGAAT GCCCTAATGTCAAACTAGTGAATGAAGAACGAACGCTGGAAGTAGAAATAGAGCCTGGGGTG AGAGACGGCATGGAGTACCCCTTTATTGGAGAAGGTGAGCCTCACGTGGATGGGGAGCCTGG TGTACACAAATGTGACAATCTCATTAGTTGAGTCACTGGTTGGCTTTGAGATGGATATTACT CACTTGGATGGTCACAAGGTACATATTTCCCGGGATAAGATCACCAGGCCAGGAGCGAAGCT ATGGAAGAAAGGGGAAGGGCTCCCCAACTTTGACAACAACAATATCAAGGGCTCTTTGATAA TCACTTTTGATGTGGATTTTCCAAAAGAACAGTTAACAGAGGAAGCGAGAGAAGGTATCAAA CAGCTACTGAAACAAGGGTCAGTGCAGAAGGTATACAATGGACTGCAAGGATAT**TGA**GAGTG TCATCATGAAATGAATAAGAGGGCTTAAGAATTTGTCCATTTGCATTCGGAAAAGAATGACC AGCAAAAGGTTTACTAATACCTCTCCCTTTGGGGGATTTAATGTCTGGTGCTGCCGCCTGAGT TTCAAGAATTAAAGCTGCAAGAGGACTCCAGGAGCAAAAGAAACACAATATAGAGGGTTGGA GTTGTTAGCAATTTCAAAATGCCAACTGGAGAAGTCTGTTTTTAAATACATTTTGTTG TTATTTTTA

FIGURE 85

MAPQNLSTFCLLLLYLIGAVIAGRDFYKILGVPRSASIKDIKKAYRKLALQLHPDRNPDDPQ
AQEKFQDLGAAYEVLSDSEKRKQYDTYGEEGLKDGHQSSHGDIFSHFFGDFGFMFGGTPRQQ
DRNIPRGSDIIVDLEVTLEEVYAGNFVEVVRNKPVARQAPGKRKCNCRQEMRTTQLGPGRFQ
MTQEVVCDECPNVKLVNEERTLEVEIEPGVRDGMEYPFIGEGEPHVDGEPGDLRFRIKVVKH
PIFERRGDDLYTNVTISLVESLVGFEMDITHLDGHKVHISRDKITRPGAKLWKKGEGLPNFD
NNNIKGSLIITFDVDFPKEQLTEEAREGIKQLLKQGSVQKVYNGLQGY

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 254-257

Nt-dnaJ domain signature.

amino acids 67-87

Homologous region to Nt-dnaJ domain proteins.

amino acids 26-58

N-glycosylation site.

amino acids 5-9, 261-265

Tyrosine kinase phosphorylation site.

amino acids 253-260

N-myristoylation site.

amino acids 18-24, 31-37, 93-99, 215-221

Amidation site.

amino acids 164-168

FIGURE 86

TGGGACCAGGGAACCCCGGGCCCCCGGTGGAGNGCCTAACAGGCCGGTGGNTGCGACCGAA
GCGGCGGGCGAGAGGAGCTTTTGAGGATTTTTGGAACAGGACCCGGACAGAGGAACCATGGTT
CCGCAGAACNTGAGCACNTTTTGCCTGTTGNTGNTATACTTCATCGGGGCGGTGATTGCCGG
ACGAGATTTNTATAAGATTTTGGGGTGCCTNGAAGTGCCTTNTATAAAAGGATATTAAAAAGG
CCTATAGGAAACTAGCCCTGCAGNTTTATCCCGACCGGAACCCTGATGATCCACAAGCCCAG
GAGAAATTCCAGGATTTGGGTGCTGCTTATGAGGTTNTGTCAGATAGTGAGAAACAAGCAAACA
GTACGATAATTATGGTGAAGAAGGATTAAAAGATGGTNATCAGAGCTCCCATGGAGACATTT
TTTCACACTTNTTTGGGGATTTTGGTTTCATGTTTGGAGGAACCCCTNGTCAGCAAGACAAA

FIGURE 87

GGCACGAGGCGGGGCAGTCGCGGGATGCGCCCGGGAGCCACAGCCTGAGGCCCTCAGGT CTCTGCAGGTGTCGTGGAGGAACCTAGCACCTGCCATCCTCTTCCCCAATTTGCCACTTCCA GCAGCTTTAGCCCATGAGGAGGATGTGACCGGGACTGAGTCAGGAGCCCTCTGGAAGC**ATG**G AGACTGTGGTGATTGTTGCCATAGGTGTGCTGGCCACCATCTTTCTGGCTTCGTTTGCAGCC TTGGTGCTGGTTTGCAGGCAGCGCTACTGCCGGCCGCGAGACCTGCTGCAGCGCTATGATTC TAAGCCCATTGTGGACCTCATTGGTGCCATGGAGACCCAGTCTGAGCCCTCTGAGTTAGAAC TGGACGATGTCGTTATCACCAACCCCCACATTGAGGCCATTCTGGAGAATGAAGACTGGATC GAAGATGCCTCGGGTCTCATGTCCCACTGCATTGCCATCTTGAAGATTTGTCACACTCTGAC AGAGAAGCTTGTTGCCATGACAATGGGCTCTGGGGCCAAGATGAAGACTTCAGCCAGTGTCA GCGACATCATTGTGGTGGCCAAGCGGATCAGCCCCAGGGTGGATGATGTTGTGAAGTCGATG TACCCTCCGTTGGACCCCAAACTCCTGGACGCACGGACGACTGCCCTGCTCTGTCAG TCACCTGGTGCTGGTGACAAGGAATGCCTGCCATCTGACGGGAGGCCTGGACTGGATTGACC AGTCTCTGTCGGCTGCTGAGGAGCATTTGGAAGTCCTTCGAGAAGCAGCCCTAGCTTCTGAG $\verb|CCAGATAAAGGCCTCCCAGGCCCTGAAGGCTTCCTGCAGGAGCAGTCTGCAATT<u>TAG</u>TGCCT|\\$ ACAGGCCAGCAGCTAGCCATGAAGGCCCCTGCCGCCATCCCTGGATGGCTCAGCTTAGCCTT TAAAGCAGGAGATCCCCGTCAGTTTATGCCTCTTTTGCAGTTGCAAACTGTGGCTGAGT GGCAGTCTAATACTACAGTTAGGGGAGATGCCATTCACTCTCTGCAAGAGGAGTATTGAAAA CTGGTGGACTGTCAGCTTTATTTAGCTCACCTAGTGTTTTCAAGAAAATTGAGCCACCGTCT AAGAAATCAAGAGGTTTCACATTAAAATTAGAATTTCTGGCCTCTCTCGATCGGTCAGAATG GGTCCCTGAGGCGTCTGGGGTCTCTCCTCTCCCTTGCAGGTTTGGGTTTGAAGCTGAGGAACT ACAAAGTTGATGATTTCTTTTTTATCTTTATGCCTGCAATTTTACCTAGCTACCACTAGGTG

FIGURE 88

METVVIVAIGVLATIFLASFAALVLVCRQRYCRPRDLLQRYDSKPIVDLIGAMETQSEPSEL ELDDVVITNPHIEAILENEDWIEDASGLMSHCIAILKICHTLTEKLVAMTMGSGAKMKTSAS VSDIIVVAKRISPRVDDVVKSMYPPLDPKLLDARTTALLLSVSHLVLVTRNACHLTGGLDWI DQSLSAAEEHLEVLREAALASEPDKGLPGPEGFLQEQSAI

FIGURE 89

GCTTCATTTCTCCCGACTCAGCTTCCCACCCTGGGCTTTCCGAGGTGCTTTCGCCGCTGTCC $\verb|CCACCACTGCAGCC| \textbf{ATG} | \texttt{ATCTCCTTAACGGACACGCAGAAAATTGGAATGGGATTAACAGGA|$ TTTGGAGTGTTTTTCCTGTTCTTTTGGAATGATTCTCTTTTTTTGACAAAGCACTACTGGCTAT CTTATTGGTTGGCCTTTGATAGGCATGATCTTCGAAATTTATGGATTTTTTCTCTTGTTCAG GGGCTTCTTTCCTGTCGTTGTTGGCTTTATTAGAAGAGTGCCAGTCCTTGGATCCCTCCTAAAT TTACCTGGAATTAGATCATTTGTAGATAAAGTTGGAGAAAGCAACAATATGGTA**TAA**CAACA GCACAAAATTAAATTACATGAAATAGCTTGTAATGTTCTTTACAGGAGTTTAAAACGTATAG CCTACAAAGTACCAGCAGCAAATTAGCAAAGAAGCAGTGAAAACAGGCTTCTACTCAAGTGA ACTAAGAAGAAGTCAGCAAGCAAACTGAGAGAGGTGAAATCCATGTTAATGATGCTTAAGAA ACTCTTGAAGGCTATTTGTGTTTTTTCCACAATGTGCGAAACTCAGCCATCCTTAGAGAA CTGTGGTGCCTGTTTCTTTTTTTTTTTTTTTTGAAGGCTCAGGAGCATCCATAGGCATTTGCT TTTTAGAAGTGTCCACTGCAATGGCAAAAATATTTCCAGTTGCACTGTATCTCTGGAAGTGA TGCATGAATTCGATTGGATTGTCATTTTAAAGTATTAAAACCAAGGAAACCCCAATTTTG ATGTATGGATTACTTTTTTTTTGNGCNCAGGGCC

FIGURE 90

MISLTDTQKIGMGLTGFGVFFLFFGMILFFDKALLAIGNVLFVAGLAFVIGLERTFRFFFQK HKMKATGFFLGGVFVVLIGWPLIGMIFEIYGFFLLFRGFFPVVVGFIRRVPVLGSLLNLPGI RSFVDKVGESNNMV

Important features:

Transmembrane domains:

amino acids 12-30 (typeII), 33-52, 69-89 and 93-109

N-myristoylation sites.

amino acids 11-16, 51-56 and 116-121

Aminoacyl-transfer RNA synthetases class-II protein.

amino acids 49-59

FIGURE 91

FIGURE 92

GGCACGAGGCTGAACCCAGCCGGCTCCATCTCAGCTTCTGGTTTCTAAGTCCATGTGCCAAA CTGTGGGTAGTTATTTATTTCTGAATAAGAGCGTCCACGCATC**ATG**GACCTCGCGGGACTGC TGAAGTCTCAGTTCCTGTGCCACCTGGTCTTCTGCTACGTCTTTATTGCCTCAGGGCTAATC ATCAACACCATTCAGCTCTTCACTCTCCTCCTCGGCCCATTAACAAGCAGCTCTTCCGGAA GATCAACTGCAGACTGTCCTATTGCATCTCAAGCCAGCTGGTGATGCTGCTGGAGTGGTGGT GCCATCGTGGTTCTCAACCACAAGTTTGAAATTGACTTTCTGTGTGGCTGGAGCCTGTCCGA TTATCGGCTGGATGTGGTACTTCACCGAGATGCTCTTCTGTTCCCGCAAGTGGGAGCAGGAT CGCAAGACGGTTGCCACCAGTTTGCAGCACCTCCGGGACTACCCCGAGAAGTATTTTTTCCT GATTCACTGTGAGGGCACACGGTTCACGGAGAAGAAGCATGAGATCAGCATGCAGGTGGCCC GGGCCAAGGGGCTGCCTCGCCTCAAGCATCACCTGTTGCCACGAACCAAGGGCTTCGCCATC ACCGTGAGGAGCTTGAGAAATGTAGTTTCAGCTGTATATGACTGTACACTCAATTTCAGAAA TTAGGAGGATCCCACTGGAAGACATCCCTGAAGACGATGACGAGTGCTCGGCCTGGCTGCAC AAGCTCTACCAGGAGAAGGATGCCTTTCAGGAGGAGTACTACAGGACGGGCACCTTCCCAGA GACGCCCATGGTGCCCCCCGGCGGCCCTGGACCCTCGTGAACTGGCTGTTTTGGGCCTCGC TGGTGCTCTACCCTTTCTTCCAGTTCCTGGTCAGCATGATCAGGAGCGGGTCTTCCCTGACG **GACTCAGGGAGGTGTCACCATCCGAAGGGAACCTTGGGGAACTGGTGGCCTCTGCATATCCT** CCTTAGTGGGACACGGTGACAAAGGCTGGGTGAGCCCCTGCTGGGCACGGCGGAAGTCACGA CCTCTCCAGCCAGGGAGTCTGGTCTCAAGGCCGGATGGGGAGGAAGATGTTTTGTAATCTTT TGTGTGGTGAGTGTGAACTTTGTTCTGTGATCATAGAAAGGGTATTTTAGGCTGCAGGGGAG GGCAGGGCTGGGGACCGAAGGGGACAAGTTCCCCTTTCATCCTTTGGTGCTGAGTTTTCTGT AACCCTTGGTTGCCAGAGATAAAGTGAAAAGTGCTTTAGGTGAGATGACTAAATTATGCCTC

FIGURE 93

MDLAGLLKSQFLCHLVFCYVFIASGLIINTIQLFTLLLWPINKQLFRKINCRLSYCISSQLV
MLLEWWSGTECTIFTDPRAYLKYGKENAIVVLNHKFEIDFLCGWSLSERFGLLGGSKVLAKK
ELAYVPIIGWMWYFTEMVFCSRKWEQDRKTVATSLQHLRDYPEKYFFLIHCEGTRFTEKKHE
ISMQVARAKGLPRLKHHLLPRTKGFAITVRSLRNVVSAVYDCTLNFRNNENPTLLGVLNGKK
YHADLYVRRIPLEDIPEDDDECSAWLHKLYQEKDAFQEEYYRTGTFPETPMVPPRRPWTLVN
WLFWASLVLYPFFQFLVSMIRSGSSLTLASFILVFFVASVGVRWMIGVTEIDKGSAYGNSDS
KQKLND

FIGURE 94

CTGAGGCGGCGGTAGC**ATG**GAGGGGGAGAGTACGTCGGCGGTGCTCTCGGGCTTTGTGCTCG GCGCACTCGCTTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTTCTTCTTGGGGAA GTAAAAGGTGAAGCCAAGAACAGCATTACTGATTCCCAAATGGATGATGTTGAAGTTGTTTA TACAATTGACATTCAGAAATATATTCCATGCTATCAGCTTTTTAGCTTTTATAATTCTTCAG GCGAAGTAAATGAGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAAGAATGTGGTAGGT AAACTTGCAGGAGCATTTTTCAAACCAAGACCTTGTTTTTCTGCTATTAACACCAAGTATAA TAACAGAAAGCTGCTCTACTCATCGACTGGAACATTCCTTATATAAACCTCAAAAAGGACTT TTTCACAGGGTACCTTTAGTGGTTGCCAATCTGGGCATGTCTGAACAACTGGGTTATAAAAC TTTTTGAAGAAGATGGATCCTTAAAGGAGGTACATAAGATAAATGAAATGTATGCTTCATTA CAAGAGGAATTAAAGAGTATATGCAAAAAAGTGGAAGACAGTGAACAAGCAGTAGATAAACT AGTAAAGGATGTAAACAGATTAAAACGAGAAATTGAGAAAAGGAGAGGAGCACAGATTCAGG CAGCAAGAGAGAACATCCAAAAAGACCCTCAGGAGAACATTTTTCTTTGTCAGGCATTA CGGACCTTTTTTCCAAATTCTGAATTTCTTCATTCATGTGTTATGTCTTTAAAAAAATAGACA TGTTTCTAAAAGTAGCTGTAACTACAACCACCATCTCGATGTAGTAGACAATCTGACCTTAA TGGTAGAACACTGACATTCCTGAAGCTAGTCCAGCTAGTACACCACAAATCATTAAGCAT AAAGCCTTAGACTAGATGACAGATGCCAATTCAAGAGATCTCGGTTGTTAGATACACAAGA CAAACGATCTAAAGCAAATACTGGTAGTAGTAACCAAGATAAAGCATCCAAAATGAGCAGCC CAGAAACAGATGAAGAATTGAAAAGATGAAGGGTTTTTGGTGAATATTCACGGTCTCCTACA TTT**TGA**TCCTTTTAACCTTACAAGGAGATTTTTTTTTTTTGGCTGATGGGTAAAGCCAAACAT TTCTATTGTTTTACTATGTTGAGCTACTTGCAGTAAGTTCATTTGTTTTTACTATGTTCAC CTGTTTGCAGTAATACACAGATAACTCTTAGTGCATTTACTTCACAAAGTACTTTTTCAAAC ATCAGATGCTTTTATTTCCAAACCTTTTTTTCACCTTTCACTAAGTTGTTGAGGGGAAGGCT TACACAGACACTTCTTTAGAATTGGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAA TGGGCAACGTATTGAGACCATGTCTATTAAAAAATAAAATGGAAAAGCAAGAATAGCCTTAT TTTCAAAATATGGAAAGAAATTTATATGAAAATTTATCTGAGTCATTAAAATTCTCCTTAAG TGATACTTTTTAGAAGTACATTATGGCTAGAGTTGCCAGATAAAATGCTGGATATCATGCA

FIGURE 95

MEGESTSAVLSGFVLGALAFQHLNTDSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQ
KYIPCYQLFSFYNSSGEVNEQALKKILSNVKKNVVGWYKFRRHSDQIMTFRERLLHKNLQEH
FSNQDLVFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSC
MSTGFSRAVQTHSSKFFEEDGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVN
RLKREIEKRRGAQIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHVSKSS
CNYNHHLDVVDNLTLMVEHTDIPEASPASTPQIIKHKALDLDDRWQFKRSRLLDTQDKRSKA
NTGSSNQDKASKMSSPETDEEIEKMKGFGEYSRSPTF

FIGURE 96

 ${\tt CCAAGCAGCGCGAGCGAACGCCGCCGCCGCCCACACCCTCTGCGGTCCCCGCGGCGCCTGCCACCCTTCCCT}$ $\tt CCTTCCCGGGTCCCCGGCCTGGCCGGCCAGTCAGCTTGCCGGGTTCGCTGCCCCGCGAAACCCCGAGGTCACCA$ GCCCGCGCCTCTGCTTCCCTGGGCCGCGCCGCCTCCACGCCCTCCTTCTCCCCTGGCCCGGCGCCTGGCACC GGGGACCGTTGCCTGACGCGAGGCCCAGCTCTACTTTTCGCCCCGCGTCTCCTCCGCCTGCTCGCCTCTTCCAC CAACTCCAACTCCTTCTCCCTCCAGCTCCACTCGCTAGTCCCCGACTCCGCCAGCCCTCGGCCCGCTGCCGTAG CGCCGCTTCCCGTCCGGTCCCAAAGGTGGGAACGCGTCCGCCCCGGCCCGCACC ATG GCACGGTTCGGCTTGCCAAGTGCGACGTCTTTACGTGTCCAAAGGCTTCAACAAGAACGATGCCCCCCTCCACGAGATCAACGGTGATCAT TTGAAGATCTGTCCCCAGGGTTCTACCTGCTGCTCTCAAGAGATGGAGGAGAAGTACAGCCTGCAAAGTAAAGA TGATTTCAAAAGTGTGGTCAGCGAACAGTGCAATCATTTGCAAGCTGTCTTTGCTTCACGTTACAAGAAGTTTG ATGAATTCTTCAAAGAACTACTTGAAAATGCAGAGAAATCCCTGAATGATATGTTTTGTGAAGACATATGGCCAT TTATACATGCAAAATTCTGAGCTATTTAAAGATCTCTTCGTAGAGTTGAAACGTTACTACGTGGTGGGAAATGT GAACCTGGAAGAAATGCTAAATGACTTCTGGGCTCGCCTCCTGGAGCGGATGTTCCGCCTGGTGAACTCCCAGT ACCACTTTACAGATGAGTATCTGGAATGTGTGAGCAAGTATACGGAGCAGCTGAAGCCCTTCGGAGATGTCCCT $\tt CGCAAATTGAAGCTCCAGGTTACTCGTGCTTTTGTAGCAGCCCGTACTTTCGCTCAAGGCTTAGCGGTTGCGGG$ AGATGTCGTGAGCAAGGTCTCCGTGGTAAACCCCACAGCCCAGTGTACCCATGCCCTGTTGAAGATGATCTACT GCTCCCACTGCCGGGGTCTCGTGACTGTGAAGCCATGTTACAACTACTGCTCAAACATCATGAGAGGCTGTTTG GCCAACCAAGGGGATCTCGATTTTGAATGGAACAATTTCATAGATGCTATGCTGATGGTGGCAGAGAGGCTAGA ${\tt GGGTCCTTTCAACATTGAATCGGTCATGGATCCCATCGATGTGAAGATTTCTGATGCTATTATGAACATGCAGG}$ ATAATAGTGTTCAAGTGTCTCAGAAGGTTTTCCAGGGATGTGGACCCCCCAAGCCCCTCCCAGCTGGACGAATT TCTCGTTCCATCTCTGAAAGTGCCTTCAGTGCTCGCTTCAGACCACATCACCCCGAGGAACGCCCAACCACAGC AGCTGGCACTAGTTTGGACCGACTGGTTACTGATGTCAAGGAGAAACTGAAACAGGCCAAGAAATTCTGGTCCT $\verb|CCCTTCCGAGCAACGTTTGCAACGATGAGAGGATGGCTGCAGGAAACGGCAATGAGGATGACTGTTGGAATGGG| \\$ AAAGGCAAAAGCAGGTACCTGTTTGCAGTGACAGGAAATGGATTAGCCAACCAGGGCAACAACCCAGAGGTCCA GGTTGACACCAGCAAACCAGACATACTGATCCTTCGTCAAATCATGGCTCTTCGAGTGATGACCAGCAAGATGA GGCTGTGAGTATCAGCAGTGCCCTTCAGAGTTTGACTACAATGCCACTGACCATGCTGGGAAGAGTGCCAATGA ${\tt GAAAGCCGACAGTGCTGGTGTCCTGGGGGCACAGGCCTACCTCCTCACTGTCTTCTGCATCTTGTTCCTGG}$ CACTGGTTTAAGAAGTGCTGACTTTGTTTTCTCATTCAGTTTTTGGGAGGAAAAGGGACTGTGCATTGAGTTGGT $\tt CGCCTTGTTTCTTACAAGCAAACCAGGGTCCCTTCTTGGCACGTAACATGTACGTATTTCTGAAATATTAAATA$ GCTGTACAGAAGCAGGTTTTATTATCATGTTATCTTATTAAAAGAAAAAGCCCAAAAAGC

FIGURE 97

MARFGLPALLCTLAVLSAALLAAELKSKSCSEVRRLYVSKGFNKNDAPLHEINGDHLKICPQ
GSTCCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSLNDMF
VKTYGHLYMQNSELFKDLFVELKRYYVVGNVNLEEMLNDFWARLLERMFRLVNSQYHFTDEY
LECVSKYTEQLKPFGDVPRKLKLQVTRAFVAARTFAQGLAVAGDVVSKVSVVNPTAQCTHAL
LKMIYCSHCRGLVTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIES
VMDPIDVKISDAIMNMQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEE
RPTTAAGTSLDRLVTDVKEKLKQAKKFWSSLPSNVCNDERMAAGNGNEDDCWNGKGKSRYLF
AVTGNGLANQGNNPEVQVDTSKPDILILRQIMALRVMTSKMKNAYNGNDVDFFDISDESSGE
GSGSGCEYQQCPSEFDYNATDHAGKSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

FIGURE 98

FIGURE 99

MKVLISSLLLLLPLMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRAPRR KFMTVSGLPKKQCPCDHFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL

FIGURE 100

FIGURE 101

MAVLVLRLTVVLGLLVLFLTCYADDKPDKPDDKPDDSGKDPKPDFPKFLSLLGTEIIENAVE FILRSMSRSTGFMEFDDNEGKHSSK

FIGURE 102

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCAGTGCCCCAGCGGAAGCACAGCT CAGAGCTGGTCTGCCATGGACATCCTGGTCCCACTCCTGCAGCTGCTGGTGCTTCTTAC CCTGCCCTGCACCTCATGGCTCTGCTGGGCTGCTGCAGCCCCTGTGCAAAAGCTACTTCC CCTACCTGATGGCCGTGCTGACTCCCAAGAGCCAACCGCAAGATGGAGAGCAAGAAACGGGAG CTCTTCAGCCAGATAAAGGGGCTTACAGGAGCCTCCGGGAAAGTGGCCCTACTGGAGCTGGG CTGCGGAACCGGAGCCAACTTTCAGTTCTACCCACCGGGCTGCAGGGTCACCTGCCTAGACC CAAATCCCCACTTTGAGAAGTTCCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATAT GGAGAGTACTGAGACCGGGAGGTGTGCTCTTTTTCTGGGAGCATGTGGCAGAACCATATGGA AGCTGGGCCTTCATGTGGCAGCAAGTTTTCGAGCCCACCTGGAAACACATTGGGGATGGCTG CTGCCTCACCAGAGAGCCTGGAAGGATCTTGAGAACGCCCAGTTCTCCGAAATCCAAATGG AACGACAGCCCCTCCCTTGAAGTGGCTACCTGTTGGGCCCCACATCATGGGAAAGGCTGTC AAACAATCTTTCCCAAGCTCCAAGGCACTCATTTGCTCCTTCCCCAGCCTCCAATTAGAACA AGCCACCACCAGCCTATCTATCTTCCACTGAGAGGGACC**TAG**CAGAATGAGAGAAGACATT CATGTACCACCTACTAGTCCCTCTCCCCAACCTCTGCCAGGGCAATCTCTAACTTCAATC CCGCCTTCGACAGTGAAAAAGCTCTACTTCTACGCTGACCCAGGGAGGAAACACTAGGACCC TGTTGTATCCTCAACTGCAAGTTTCTGGACTAGTCTCCCAACGTTTGCCTCCCAATGTTGTC CCTTTCCTTCGTTCCCATGGTAAAGCTCCTCTCGCTTTCCTCCTGAGGCTACACCCATGCGT CTCTAGGAACTGGTCACAAAAGTCATGGTGCCTGCATCCCTGCCAAGCCCCCTGACCCTCT CTCCCCACTACCACCTTCTTCCTGAGCTGGGGGCACCAGGGAGAATCAGAGATGCTGGGGAT **AACCACG**

FIGURE 103

MDILVPLLQLLVLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQI KGLTGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVV APGEDMRQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFM WQQVFEPTWKHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPHIMGKAVKQSFP SSKALICSFPSLQLEQATHQPIYLPLRGT

FIGURE 104

GTGGGATTTATTTGAGTGCAAGATCGTTTTCTCAGTGGTGGTGGAAGTTGCCTCATCGCAGG CAGATGTTGGGGCTTTGTCCGAACAGCTCCCCTCTGCCAGCTTCTGTAGATAAGGGTTAAAA ACTAATATTTATATGACAGAAGAAAAG**ATG**TCATTCCGTAAAGTAAACATCATCTTGG TCCTGGCTGTTGCTCTTCTTACTGGTTTTGCACCATAACTTCCTCAGCTTGAGCAGTTTG TTAAGGAATGAGGTTACAGATTCAGGAATTGTAGGGCCTCAACCTATAGACTTTGTCCCAAA TGCTCTCCGACATGCAGTAGATGGGAGACAAGAGGGAGATTCCTGTGGTCATCGCTGCATCTG AAGACAGGCTTGGGGGGGCCATTGCAGCTATAAACAGCATTCAGCACAACACTCGCTCCAAT GTGATTTTCTACATTGTTACTCTCAACAATACAGCAGACCATCTCCGGTCCTGGCTCAACAG AAGTAAAGGAGGATCCTGACCAGGGGGAATCCATGAAACCTTTAACCTTTGCAAGGTTCTAC TTGCCAATTCTGGTTCCCAGCGCAAAGAAGCCCATATACATGGATGATGATGTAATTGTGCA AGGTGATATTCTTGCCCTTTACAATACAGCACTGAAGCCAGGACATGCAGCTGCATTTTCAG AAGATTGTGATTCAGCCTCTACTAAAGTTGTCATCCGTGGAGCAGGAAACCAGTACAATTAC ATTGGCTATCTTGACTATAAAAAGGAAAGAATTCGTAAGCTTTCCATGAAAGCCAGCACTTG CTCATTTAATCCTGGAGTTTTTGTTGCAAACCTGACGGAATGGAAACGACAGAATATAACTA ACCAACTGGAAAAATGGATGAAACTCAATGTAGAAGGGGACTGTATAGCAGAACCCTGGCT GGTAGCATCACAACACCTCCTCTGCTTATCGTATTTTATCAACAGCACTCTACCATCGATCC TATGTGGAATGTCCGCCACCTTGGTTCCAGTGCTGGAAAACGATATTCACCTCAGTTTGTAA ${\sf AGGCTGCCAAGTTACTCCATTGGAATGGACATTTGAAGCCATGGGGAAGGACTGCTTCATAT}$ ACTGATGTTTGGGAAAAATGGTATATTCCAGACCCAACAGGCAAATTCAACCTAATCCGAAG ATATACCGAGATCTCAAACATAAAG**TGA**AACAGAATTTGAACTGTAAGCAAGCATTTCTCAG GAAGTCCTGGAAGATAGCATGCATGGGAAGTAACAGTTGCTAGGCTTCAATGCCTATCGGTA GCAAGCCATGGAAAAAGATGTGTCAGCTAGGTAAAGATGACAAACTGCCCTGTCTGGCAGTC AGCTTCCCAGACAGACTATAGACTATAAATATGTCTCCATCTGCCTTACCAAGTGTTTTCTT ACATTTTTC

FIGURE 105

MSFRKVNIIILVLAVALFLLVLHHNFLSLSSLLRNEVTDSGIVGPQPIDFVPNALRHAVDGR QEEIPVVIAASEDRLGGAIAAINSIQHNTRSNVIFYIVTLNNTADHLRSWLNSDSLKSIRYK IVNFDPKLLEGKVKEDPDQGESMKPLTFARFYLPILVPSAKKAIYMDDDVIVQGDILALYNT ALKPGHAAAFSEDCDSASTKVVIRGAGNQYNYIGYLDYKKERIRKLSMKASTCSFNPGVFVA NLTEWKRQNITNQLEKWMKLNVEEGLYSRTLAGSITTPPLLIVFYQQHSTIDPMWNVRHLGS SAGKRYSPQFVKAAKLLHWNGHLKPWGRTASYTDVWEKWYIPDPTGKFNLIRRYTEISNIK

FIGURE 106

FIGURE 107

CGACGCTCTAGCGGTTACCGCTGCGGGCTGGCTGGCGTAGTGGGGCTGCGCGCTGCCACG TCCGCATCTCCTCCATCGCCTGCAGTAAGGGCGGCCGCGGGGGAGCCTTTGAGGGGAACGACT TGTCGGAGCCCTAACCAGGGGTGTCTCTGAGCCTGGTGGGATCCCCGGAGCGTCACATCACT TTCCGATCACTTCAAAGTGGTTAAAAACTAATATTTATATGACAGAAGAAAAAGATGTCATT CCGTAAAGTAAACATCATCTTGGTCCTGGGCTGTTGCTCTTCTTACTGGTTTTGCAC CATAACTTCCTCAGCTTGAGGCAGTTTGTTAAGGAATGAGGTTACAGATTCAGGAATTGTAG GGCCTCAACCTATAGGACTTTGTCCCAAATGCTCTCCGACATGCAGTAGATGGGAGACAAGA GGAGATTCCTGTGGTCATCGCTGCATCTGAAGACAGGCTTGGGGGGGCCATTGCAGCTATAA ACAGCATTCAGCACACACTCGCTCCAATGTGATTTTCTACATTGTTACTCTCAACAATACA GCAGACCATCTCCGGTCCTGGGCTCAACAGTGATTCCCTGAAAAGCATCAGATACAAAATTG TCAATTTTGACCCTAAACTTTTGGAAGGAAAAGTAAAGGAGGATCCTGACCAGGGGGAATCC ATGAAACCTTTAACCTTTGCAAGGTTCTACTTGCCAATTCTGGGTTCCCAGCGCAAAGAAGA CCATATACATGGATGATGTAATTGTGCAAGGTGATATTCTTGCCCTTTACAATACAGCA CTGAAGCCAGGACATGCAGCTGCATTTTCAGAAGATTGTGATTCAGCCTCTACTAAAGTTGT CATCCGTGGAGCAGGAAACCAGTACAATTACATTGGCTATCTTGACTATAAAAAGGAAAGAA TTCGTAAGCTTTCCATGAAAGCCAGCACTTGCTCATTTAATCCTGGAGTTTTTGTTGCAAAC CTGACGGAATGGAAACGACAGAATATAACTAACCAACTGGAAAAATGGATGAAACTCAATGT AGAAGAGGGACTGTATAGCAGAACCCTGGCTGGTAGCATCACAACACCTCCTCTGCTTATCG TATTTTATCAACAGCACTCTACCATCGATCCTATGTGGAATGTCCGCCACCTTGGTTCCAGT GCTGGAAAACGATATTCACCTCAGTTTGTAAAGGCTGCCAAGTTACTCCATTGGAATGGACA TTTGAAGCCATGGGGAAGGACTGCTTCATATACTGATGTTTGGGGGAAAAATGGTATATTCCA GACCCAACAGGCAAATTCAACCTAATCCGAAGATATACCGAGATCTCAAACATAAAGTGAAA CAGAATTTGAACTGTAAGCAAGCATTTCTCAGGAAGTCCTGGAAGATAGCATGCGTGGGAAG TAACAGTTGCTAGGCTTCAATGCCTATCGGTAGCAAGCCATGGAAAAAGATGTGTCAGCTAG ATGTCTCCATCTGCCTTACCAAGTGTTTTCTTACTACAATGCTGAATGACTGGAAAGAAGAA CTGATATGGCTAGTTCAGCTAGCTGGTACAGATAATTCAAAACTGCTGTTGGTTTTAATTTT AAAAA

FIGURE 108

FIGURE 109

MGAAISQGALIAIVCNGLVGFLLLLLWVILCWACHSRLPTLTLSLNPVPTPALAPVLRRPHH PRSPAMKAATCCSPEGPWPSLEPRT

FIGURE 110

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCA GTTCCTCCAAGCAAGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTA CTCCCTATTTGCATCTGTTTTGATAAATGATGTTGACACCCTCCACCGAATTCTAAGTGGAA TCATGTCGGGAAGAGATACAATCCTTGGCCTGTGTATCCTCGCATTAGCCTTGTCTTTGGCC ATGATGTTTACCTTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTTCATTGGTTAT TTTGGGATTGTTGTCTGCGGTGTTTTATGGTGGCTGTATTATGACTATACCAACGACC TCCACAGGCATCACGGCAGTGCTGCTCGTCTTGATTTTTGTTCTCAGAAAGAGAATAAAATT GACAGTTGAGCTTTTCCAAATCACAAATAAAGCCATCAGCAGTGCTCCCTTCCTGCTGTTCC AGCCACTGTGGACATTTGCCATCCTCATTTTCTTCTGGGTCCTCTGGGTGGCTGCTGCTG AGCCTGGGAACTGCAGGAGCTGCCCAGGTTATGGAAGGCGGCCAAGTGGAATATAAGCCCCT TTCGGGCATTCGGTACATGTGGTCGTACCATTTAATTGGCCTCATCTGGACTAGTGAATTCA TCCTTGCGTGCCAGCAAATGACTATAGCTGGGGCAGTGGTTACTTGTTATTTCAACAGAAGT AGGAACCGTTGTGAAAGGGTCATTTTTAATCTCTGTGGTGAGGATTCCGAGAATCATTGTCA TGTACATGCAAAACGCACTGAAAGAACAGCAGCATGGTGCATTGTCCAGGTACCTGTTCCGA TGCTGCTACTGCTGTTTCTGGTGTCTTGACAAATACCTGCTCCATCTCAACCAGAATGCATA TACTACAACTGCTATTAATGGGACAGATTTCTGTACATCAGCAAAAGATGCATTCAAAATCT TGTCCAAGAACTCAAGTCACTTTACATCTATTAACTGCTTTGGAGACTTCATAATTTTTCTA GGAAAGGTGTTAGTGGTGTTTTCACTGTTTTTTGGAGGACTCATGGCTTTTAACTACAATCG GGCATTCCAGGTGTGGGCAGTCCCTCTGTTATTGGTAGCTTTTTTTGCCTACTTAGTAGCCC ATAGTTTTTTATCTGTGTTTTGAAACTGTGCTGGATGCACTTTTCCTGTGTTTTTGCTGTTGAT CTGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTTT CGTAAAAAGGAGCAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGA $\tt ATGAGGAGGGAACAGAACTCCAGGCCATTGTGAGA{\bf TAG} ATACCCATTTAGGTATCTGTACCT$ GGAAAACATTTCCTTCTAAGAGCCATTTACAGAATAGAAGATGAGACCACTAGAGAAAAGTT AGTGAATTTTTTTTAAAAGACCTAATAAACCCTATTCTTCCTCAAAA

FIGURE 111

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDL
SIELDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQ
PLWTFAILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFI
LACQQMTIAGAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVM
YMQNALKEQQHGALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFCTSAKDAFKIL
SKNSSHFTSINCFGDFIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAH
SFLSVFETVLDALFLCFAVDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRN
EEGTELQAIVR

FIGURE 112

GTTCGATTAGCTCCTCTGAGAAGAAGAGAAAAGGTTCTTGGACCTCTCCCTGTTTCTTCCTT TATGAGGACTGTTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTTCCTTGTTTTGCTGG TGACTGGAGTACATTCAAACAAAGAAACGGCAAAGAAGATTAAAAGGCCCAAGTTCACTGTG CCTCAGATCAACTGCGATGTCAAAGCCGGAAAGATCATCGATCCTGAGTTCATTGTGAAATG TCCAGCAGGATGCCAAGACCCCAAATACCATGTTTATGGCACTGACGTGTATGCATCCTACT CCAGTGTGTGTGGCGCTGCCGTACACAGTGGTGTTGCTTGATAATTCAGGAGGGAAAATACTT GTTCGGAAGGTTGCTGGACAGTCTGGTTACAAAGGGAGTTATTCCAACGGTGTCCAATCGTT ATCCCTACCACGATGGAGAGATCCTTTATCGTCTTAGAAAGTAAACCCAAAAAGGGTGTAA CCTACCCATCAGCTCTTACATACTCATCATCGAAAAGTCCAGCTGCCCAAGCAGGTGAGACC ACAAAAGCCTATCAGAGGCCACCTATTCCAGGGACAACTGCACAGCCGGTCACTCTGATGCA GCTTCTGGCTGTCACTGTAGCTGTGGCCACCCCCACCACCTTGCCAAGGCCATCCCCTTCTG CTGCTTCTACCACCAGCATCCCCAGACCACAATCAGTGGGCCACAGGAGCCAGGAGATGGAT CTCTGGTCCACTGCCACCTACACAAGCAGCCAAAACAGGCCCAGAGCTGATCCAGGTATCCA AAGGCAAGATCCTTCAGGAGCTGCCTTCCAGAAACCTGTTGGAGCGGATGTCAGCCTGGGAC TTGTTCCAAAAGAAGAATTGAGCACACAGTCTTTGGAGCCAGTATCCCTGGGAGATCCAAAC TGCAAAATTGACTTGTCGTTTTTAATTGATGGGAGCACCAGCATTGGCAAACGGCGATTCCG AATCCAGAAGCAGCTCCTGGCTGATGTTGCCCAAGCTCTTGACATTGGCCCTGCCGGTCCAC TGATGGGTGTTGTCCAGTATGGAGACAACCCTGCTACTCACTTTAACCTCAAGACACACGAATTCTCGAGATCTGAAGACAGCCATAGAGAAAATTACTCAGAGAGGAGCTTTCTAATGT AGGTCGGGCCATCTCCTTTGTGACCAAGAACTTCTTTTCCAAAGCCAATGGAAACAGAAGCG GGGCTCCCAATGTGGTGGTGATGGTGGATGGCTGGCCCACGGACAAAGTGGAGGAGGCT TCAAGACTTGCGAGAGAGTCAGGAATCAACATTTTCTTCATCACCATTGAAGGTGCTGCTGA AAATGAGAAGCAGTATGTGGTGGAGCCCAACTTTGCAAACAAGGCCGTGTGCAGAACAAACG TTGTGACCAACCTCACCAAAGAGTTTGAGATTTCCGACACGGACACGCGCATCGGGGCCGTG CAGTACACCTACGAACAGCGGCTGGAGTTTGGGTTCGACAAGCACGCGATCGGGCCTGACAT CCTCAACGCCATCAAGAGGGTGGGCTACTGGAGTGGTGGCACCAGCACGGGGGGCTGCCATCA ACTTCGCCCTGGAGCAGCTCTTCAAGAAGTCCAAGCCCAACAAGAGGAAGTTAATGATCCTC ATCACCGACGGGGGGTCCTACGACGACGTCCGGATCCCAGCCATGCCTGCAACAGGG AGTGATCACCTATGCGATAGGCGTTGCCTGGGCTGCCCAAGAGGGGGCTAGAAGTCATTGCCA CTCACCCCGCCAGAGACCACTCCTTCTTTGTGGACGAGTTTGACAACCTCCATCAGTATGTC CCCAGGATCATCCAGAACATTTGTACAGAGTTCAACTCACAGCCTCGGAAC**TGA**ATTCAGAG CAGGCAGAGCACCAGCAAGTGCTGCTTTACTAACTGACGTGTTGGACCACCCCCACCGCTTAA TGGGGCACGCACGGTGCATCAAGTCTTGGGCAGGGCATGGAGAAACAAATGTCTTGTTATTA TTCTTTGCCATCATGCTTTTTCATATTCCAAAACTTGGAGTTACAAAGATGATCACAAACGT ATAGAATGAGCCAAAAGGCTACATCATGTTGAGGGTGCTGGAGATTTTACATTTTGACAATT

FIGURE 113

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKC
PAGCQDPKYHVYGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSL
SLPRWRESFIVLESKPKKGVTYPSALTYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQ
LLAVTVAVATPTTLPRPSPSAASTTSIPRPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQ
RQDPSGAAFQKPVGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRRFR
IQKQLLADVAQALDIGPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNV
GRAISFVTKNFFSKANGNRSGAPNVVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAE
NEKQYVVEPNFANKAVCRTNGFYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADI
GFVIDGSSSVGTGNFRTVLQFVTNLTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDI
LNAIKRVGYWSGGTSTGAAINFALEQLFKKSKPNKRKLMILITDGRSYDDVRIPAMAAHLKG
VITYAIGVAWAAQEELEVIATHPARDHSFFVDEFDNLHQYVPRIIQNICTEFNSQPRN

FIGURE 114

 ${\tt CAGGATGAACTGGTTGCAGTGGCTGCTGCTGCGGGGGCGCTGAGAGGACACGAGCTCT} \underline{{\tt A}}$ TGCCTTTCCGGCTGCTCATCCCGCTCGGCCTCCTGTGCGCGCTGCTGCCTCAGCACCATGGT GCGCCAGGTCCCGACGCTCCGCCCAGATCCCGCCCACTACAGTTTTTCTCTGACTCTAAT TGATGCACTGGACACCTTGCTGATTTTGGGGAATGTCTCAGAATTCCAAAGAGTGGTTGAAG CGAGTGGTAGGAGGACTCCTGTCTGCTCATCTGCTCTCCAAGAAGGCTGGGGTGGAAGTAGA GGCTGGATGGCCCTGTTCCGGGCCTCTCCTGAGAATGGCTGAGGAGGCGGCCCGAAAACTCC AACCCAGGAGAGACCCCTGTCACCTGTACGGCAGGGATTGGGACCTTCATTGTTGAATTTGC CACCCTGAGCAGCCTCACTGGTGACCCGGTGTTCGAAGATGTGGCCAGAGTGGCTTTGATGC GCCTCTGGGAGAGCCGGTCAGATATCGGGCTGGTCGGCAACCACATTGATGTGCTCACTGGC AAGTGGGTGGCCCAGGACGCAGGCATCGGGGGCTGGCGTGGACTCCTACTTTGAGTACTTGGT GAAAGGAGCCATCCTGCTTCAGGATAAGAAGCTCATGGCCATGTTCCTAGAGTATAACAAAG CCATCCGGAACTACACCCGCTTCGATGACTGGTACCTGTGGGTTCAGATGTACAAGGGGACT GTGTCCATGCCAGTCTTCCAGTCCTTGGAGGCCTACTGGCCTGGTCTTCAGAGCCTCATTGG AGACATTGACAATGCCATGAGGACCTTCCTCAACTACTACACTGTATGGAAGCAGTTTGGGG GGCTCCCGGAATTCTACAACATTCCTCAGGGATACACAGTGGAGAAGCGAGAGGGCTACCCA CTTCGGCCAGAACTTATTGAAAGCGCAATGTACCTCTACCGTGCCACGGGGGATCCCACCCT CCTAGAACTCGGAAGAGTGCTGTGGAATCCATTGAAAAAATCAGCAAGGTGGAGTGCGGAT TTGCAACAATCAAAGATCTGCGAGACCACAAGCTGGACAACCGCATGGAGTCGTTCTTCCTG GTCCACCTTCGACGCGGTGATCACCCCCTATGGGGAGTGCATCCTGGGGGGCTGGGGGGTACA TCTTCAACACAGAAGCTCACCCCATCGACCTTGCCGCCCTGCACTGCTGCCAGAGGCTGAAG GAAGAGCAGTGGGAGGTGGAGGACTTGATGAGGGAATTCTACTCTCAAACGGAGCAGGTC GAAATTTCAGAAAAACACTGTTAGTTCGGGGCCATGGGAACCTCCAGCAAGGCCAGGAACAC TCTTCTCACCAGAAAACCATGACCAGGCAAGGGAGGGAAGCCTGCCAAACAGAAGGTCCCA $\verb|CTTCTCAGCTGCCCCAGTCAGCCCTTCACCTCCAAGTTGGCATTACTGGGACAGGTTTTCCT| \\$ AGACTCCTCA**TAA**CCACTGGATAATTTTTTTTTTTTTTTTTTTTTGAGGCTAAACTATAATA AATTGCTTTTGGCTATCATAAAA

FIGURE 115

MPFRLLIPLGLLCALLPQHHGAPGPDGSAPDPAHYSFSLTLIDALDTLLILGNVSEFQRVVE
VLQDSVDFDIDVNASVFETNIRVVGGLLSAHLLSKKAGVEVEAGWPCSGPLLRMAEEAARKL
LPAFQTPTGMPYGTVNLLHGVNPGETPVTCTAGIGTFIVEFATLSSLTGDPVFEDVARVALM
RLWESRSDIGLVGNHIDVLTGKWVAQDAGIGAGVDSYFEYLVKGAILLQDKKLMAMFLEYNK
AIRNYTRFDDWYLWVQMYKGTVSMPVFQSLEAYWPGLQSLIGDIDNAMRTFLNYYTVWKQFG
GLPEFYNIPQGYTVEKREGYPLRPELIESAMYLYRATGDPTLLELGRDAVESIEKISKVECG
FATIKDLRDHKLDNRMESFFLAETVKYLYLLFDPTNFIHNNGSTFDAVITPYGECILGAGGY
IFNTEAHPIDLAALHCCQRLKEEQWEVEDLMREFYSLKRSRSKFQKNTVSSGPWEPPARPGT
LFSPENHDQARERKPAKQKVPLLSCPSQPFTSKLALLGQVFLDSS

FIGURE 116

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTG GGCAGAAAGGAGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACA GAGATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCA **AATG**CAGACTTTCACAATGGTTCTAGAAGAAATCTGGACAAGTCTTTTCATGTGGTTTTTCT TCTGTACTCTCAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGA AACAGTGTACTATTCTGTCGAATACCAGGGGGGAGTACGAGAGCCTGTACACGAGCCACATCT GGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATC ACGGCCACTGTGCCATACAACCTTCGTGTCAGGGCCACATTGGGCTCACAGACCTCAGCCTG GAGCATCCTGAAGCATCCCTTTAATAGAAACTCAACCATCCTTACCCGACCTGGGATGGAGA TCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCCAGTTTGAGTTC CTTGTGGCCTACTGGAGGAGGGAGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGG GGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGCTGCATACTGTGTGAAGGCCCAGA GGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGCTTCATGCTGATCCTTGT GGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGG TGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGG GAGGAGGTGGATGCCTGTGCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGGGCCTGGAT CTCA**TAG**GTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACC ATGAGGGGACAAGTTGTGTTTCTGTTTTCCGCCACGGACAAGGGATGAGAAAGTAGGAAGA GCCTGTTGTCTACAAGTCTAGAAGCAACCATCAGAGGCAGGGTGGTTTGTCTAACAGAACAC CTGGGAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACC TGTTTCTGGAGAGCAGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGT GGCTTGGAGAGCCCACTTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGG TGTTGAGTTCACTTCAAGCCCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGT AGGTGACCTGGAGGAAGGTCACAGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATC TGTTGGTAAAGTACAGAATTCAGCAAATAAAAAGGGCCACCCTGGCCAAAAGCGGTAAAAAA AAAAAAAA

FIGURE 117

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGE
TVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAW
SILKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSG
GIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILV
VVPLFVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation sites.

amino acids 40-43 and 134-137

Tissue factor proteins homology.

amino acids 92-119

Integrins alpha chain protein homology.

amino acids 232-262

FIGURE 118

FIGURE 119

CGGACGCGTGGGCCGCCACCTCCGGAACAAGCCATGGTGGCGGCGACGGTGGCAGCGGCGTG GCTGCTCCTGTGGGCCTGCGCCCGCGCAGCAGCAGGACCTTCTACGACTTCAAGGCGG TCAACATCCGGGGCAAACTGGTGTCGCTGGAGAAGTACCGCGGATCGGTGTCCCTGGTGGTG AATGTGGCCAGCGAGTGCGGCTTCACAGACCAGCACTACCGAGCCCTGCAGCAGCTGCAGCG AGACCTGGGCCCCCACCACTTTAACGTGCTCGCCTTCCCCTGCAACCAGTTTGGCCAACAGG AGCCTGACAGCAACAAGGAGATTGAGAGCTTTGCCCGCCGCACCTACAGTGTCTCATTCCCC ATGTTTAGCAAGATTGCAGTCACCGGTACTGGTGCCCATCCTGCCTTCAAGTACCTGGCCCA GACTTCTGGGAAGGAGCCCACCTGGAACTTCTGGAAGTACCTAGTAGCCCCAGATGGAAAGG TGGTAGGGGCTTGGGACCCAACTGTGTCAGTGGAGGAGGTCAGACCCCAGATCACAGCGCTC GTGAGGAAGCTCATCCTACTGAAGCGAGAAGACTTA**TAA**CCACCGCGTCTCCTCCTCCACCA CCTCATCCCGCCCACCTGTGTGGGGGCTGACCAATGCAAACTCAAATGGTGCTTCAAAGGGAG AGACCCACTGACTCTCCTTCCTTTACTCTTATGCCATTGGTCCCATCATTCTTGTGGGGGAA AAATTCTAGTATTTTGATTATTTGAATCTTACAGCAACAAATAGGAACTCCTGGCCAATGAG AGCTCTTGACCAGTGAATCACCAGCCGATACGAACGTCTTGCCAACAAAAATGTGTGGCAAA TAGAAGTATATCAAGCAATAATCTCCCACCCAAGGCTTCTGTAAACTGGGACCAATGATTAC CTCATAGGGCTGTTGTGAGGATTAGGATGAAATACCTGTGAAAGTGCCTAGGCAGTGCCAGC CAAATAGGAGGCATTCAATGAACATTTTTTTGCATATAAACCAAAAAATAACTTGTTATCAAT AAAAACTTGCATCCAACATGAATTTCCAGCCGATGATAATCCAGGCCAAAGGTTTAGTTGTT GTTATTTCCTCTGTATTATTTTCTTCATTACAAAAGAAATGCAAGTTCATTGTAACAATCCA AACAATACCTCACGATATAAAATAAAAATGAAAGTATCCTCCTCAAAAA

FIGURE 120

MVAATVAAAWLLLWAAACAQQEQDFYDFKAVNIRGKLVSLEKYRGSVSLVVNVASECGFTDQ HYRALQQLQRDLGPHHFNVLAFPCNQFGQQEPDSNKEIESFARRTYSVSFPMFSKIAVTGTG AHPAFKYLAQTSGKEPTWNFWKYLVAPDGKVVGAWDPTVSVEEVRPQITALVRKLILLKREDL

FIGURE 121

CGGACGCGTGGGCCGGGCCGGGCCAGGGCAAAGCGAGCCATG CGGAGTTGGCAGGAAGCCAGGTTGCAGGGTGTCCGCTTCCTCAGTTCCAGAGAGGTGGATCG CATGGTCTCCACGCCCATCGGAGGCCTCAGCTACGTTCAGGGGTGCACCAAAAAGCATCTTA ACAGCAAGACTGTGGGCCAGTGCCTGGAGACCACAGCACAGAGGGTCCCAGAACGAGAGGCC TTGGTCGTCCTCCATGAAGACGTCAGGTTGACCTTTGCCCAACTCAAGGAGGAGGTGGACAA AGCTGCTTCTGGCCTCCTGAGCATTGGCCTCTGCAAAGGTGACCGGCTGGGCATGTGGGGAC CTAACTCCTATGCATGGGTGCTCATGCAGTTGGCCACCGCCCAGGCGGGCATCATTCTGGTG TCTGTGAACCCAGCCTACCAGGCTATGGAACTGGAGTATGTCCTCAAGAAGGTGGGCTGCAA GGCCCTTGTGTTCCCCAAGCAATTCAAGACCCAGCAATACTACAACGTCCTGAAGCAGATCT GTCCAGAAGTGGAGAATGCCCAGCCAGGGGCCTTGAAGAGTCAGAGGCTCCCAGATCTGACC ACAGTCATCTCGGTGGATGCCCCTTTGCCGGGGACCCTGCTCCTGGATGAAGTGGTGGCGGC TGGCAGCACACGGCAGCATCTGGACCAGCTCCAATACAACCAGCAGTTCCTGTCCTGCCATG ACCCCATCAACATCCAGTTCACCTCGGGGACAACAGGCAGCCCCAAGGGGGGCCACCCTCTCC CACTACAACATTGTCAACAACTCCAACATTTTAGGAGAGCGCCTGAAACTGCATGAGAAGAC ACCAGAGCAGTTGCGGATGATCCTGCCCAACCCCCTGTACCATTGCCTGGGTTCCGTGGCAG GCACAATGATGTCTGATGTACGGTGCCACCCTCATCCTGGCCTCTCCCATCTTCAATGGC AAGAAGGCACTGGAGGCCATCAGCAGAGAGAGAGGCACCTTCCTGTATGGTACCCCCACGAT GTTCGTGGACATTCTGAACCAGCCAGACTTCTCCAGTTATGACATCTCGACCATGTGTGGAG GTGTCATTGCTGGGTCCCCTGCACCTCCAGAGTTGATCCGAGCCATCATCAACAAGATAAAT ATGAAGGACCTGGTGGTTGCTTATGGAACCACAGAGAACAGTCCCGTGACATTCGCGCACTT CCCTGAGGACACTGTGGAGCAGAAGGCAGAAAGCGTGGGCAGAATTATGCCTCACACGGAGG CCCGGATCATGAACATGGAGGCAGGGACGCTGGCAAAGCTGAACACGCCCGGGGAGCTGTGC ATCCGAGGGTACTGCGTCATGCTGGGCTACTGGGGTGAGCCTCAGAAGACAGAGGAAGCAGT AGATCGTGGGCCGCTCTAAGGATATGATCATCCGGGGTGGTGAGAACATCTACCCCGCAGAG CTCGAGGACTTCTTTCACACACCCCGAAGGTGCAGGAAGTGCAGGTGGTGGGAGTGAAGGA CGATCGGATGGGGGAAGAGTTTGTGCCTGCATTCGGCTGAAGGACGGGGGAGGACCACGG TGGAGGAGATAAAAGCTTTCTGCAAAGGGAAGATCTCTCACTTCAAGATTCCGAAGTACATC GTGTTTGTCACAAACTACCCCCTCACCATTTCAGGAAAGATCCAGAAATTCAAACTTCGAGA $\mathsf{GCAGATGGAACGACATCTAAATCTG}$ TGA $\mathsf{ATAAAGCAGCAGGCCTGTCCTGGCCGGTTGGCTT}$ GACTCTCTCCTGTCAGAATGCAACCTGGCTTTATGCACCTAGATGTCCCCAGCACCCAGTTC TCCATCCCCACATTCCCCTGTCTGTCCTTGTGATTTGGCATAAAGAGCTTCTGTTTTCTTT GAAAAAAAAAAAAA

FIGURE 122

MAVYVGMLRLGRLCAGSSGVLGARAALSRSWQEARLQGVRFLSSREVDRMVSTPIGGLSYVQ
GCTKKHLNSKTVGQCLETTAQRVPEREALVVLHEDVRLTFAQLKEEVDKAASGLLSIGLCKG
DRLGMWGPNSYAWVLMQLATAQAGIILVSVNPAYQAMELEYVLKKVGCKALVFPKQFKTQQY
YNVLKQICPEVENAQPGALKSQRLPDLTTVISVDAPLPGTLLLDEVVAAGSTRQHLDQLQYN
QQFLSCHDPINIQFTSGTTGSPKGATLSHYNIVNNSNILGERLKLHEKTPEQLRMILPNPLY
HCLGSVAGTMMCLMYGATLILASPIFNGKKALEAISRERGTFLYGTPTMFVDILNQPDFSSY
DISTMCGGVIAGSPAPPELIRAIINKINMKDLVVAYGTTENSPVTFAHFPEDTVEQKAESVG
RIMPHTEARIMNMEAGTLAKLNTPGELCIRGYCVMLGYWGEPQKTEEAVDQDKWYWTGDVAT
MNEQGFCKIVGRSKDMIIRGGENIYPAELEDFFHTHPKVQEVQVVGVKDDRMGEEICACIRL
KDGEETTVEEIKAFCKGKISHFKIPKYIVFVTNYPLTISGKIQKFKLREQMERHLNL

Signal Peptide:

amino acids 1-22

Transmembrane Domains:

amino acids 140-161, 213-229, 312-334

Putative AMP-binding Domain Signature:

amino acids 260-271

N-myristoylation Sites:

amino acids 19-24, 22-27, 120-125, 203-208, 268-273, 272-277, 314-319, 318-323, 379-384, 380-385, 409-413

N-glycosylation Site:

amino acids 282-285

FIGURE 123

FIGURE 124

GAGCAGGACGGAGCC**ATG**GACCCCGCCAGGAAAGCAGGTGCCCAGGCCATGATCTGGACTGC AGGCTGCTGCTGCTGCTCCTCGCGGAGGAGCCCCTGGAGTGCTACAGCTGCG TGCAGAAAGCAGATGACGGATGCTCCCCGAACAAGATGAAGACAGTGAAGTGCGCGCCGGGC GTGGACGTCTGCACCGAGGCCGTGGGGGCGGTGGAGACCATCCACGGACAATTCTCGCTGGC AGTGCGGGGTTGCGGTTCGGGACTCCCCGGCAAGAATGACCGCGGCCTGGATCTTCACGGGC TTCTGGCGTTCATCCAGCTGCAGCAATGCGCTCAGGATCGCTGCAACGCCAAGCTCAACCTC ACCTCGCGGCGCTCGACCCGGCAGGTAATGAGAGTGCATACCCGCCCAACGGCGTGGAGTG CTACAGCTGTGTGGGCCTGAGCCGGGAGGCGTGCCAGGGTACATCGCCGCCGGTCGTGAGCT GCTACAACGCCAGCGATCATGTCTACAAGGGCTGCTTCGACGGCAACGTCACCTTGACGGCA GCTAATGTGACTGTCCTTGCCTGTCCGGGGCTGTGTCCAGGATGAATTCTGCACTCGGGA TGGAGTAACAGGCCCAGGGTTCACGCTCAGTGGCTCCTGTTGCCAGGGGTCCCGCTGTAACT CTGACCTCCGCAACAAGACCTACTTCTCCCCTCGAATCCCACCCCTTGTCCGGCTGCCCCCT CCAGAGCCCACGACTGTGGCCTCAACCACATCTGTCACCACTTCTACCTCGGCCCCAGTGAG ACCCACATCCACCACCAAACCCATGCCAGCGCCAACCAGTCAGACTCCGAGACAGGGAGTAG AACACGAGGCCTCCCGGGATGAGGAGCCCAGGTTGACTGGAGGCGCCGCTGGCCACCAGGAC CGCAGCAATTCAGGGCAGTATCCTGCAAAAGGGGGGCCCCAGCAGCCCCCATAATAAAGGCTG **GA**GCTTCTCCACCTGGAAATTTCCCTCTCACCTACTTCTCTGGCCCTGGGTACCCCTCTTCT CATCACTTCCTGTTCCCACCACTGGACTGGGCTGGCCCAGCCCCTGTTTTTCCAACATTCCC CAGTATCCCCAGCTTCTGCTGCGCTGGTTTGCGGCTTTGGGAAATAAAATACCGTTGTATAT ATTCTGCCAGGGGTGTTCTAGCTTTTTGAGGACAGCTCCTGTATCCTTCTCATCCTTGTCTC TCCGCTTGTCCTCTTGTGATGTTAGGACAGAGTGAGAAGTCAGCTGTCACGGGGAAGGTG GGTGGGTGGACAATGGCTCCCCACTCTAAGCACTGCCTCCCCTACTCCCCGCATCTTTGGG GAATCGGTTCCCCATATGTCTTCCTTACTAGACTGTGAGCTCCTCGAGGGGGGGCCCGGTAC CCAATTCGCCCTATAGTGAGTCGTA

FIGURE 125

MDPARKAGAQAMIWTAGWLLLLLRGGAQALECYSCVQKADDGCSPNKMKTVKCAPGVDVCT EAVGAVETIHGQFSLAVRGCGSGLPGKNDRGLDLHGLLAFIQLQQCAQDRCNAKLNLTSRAL DPAGNESAYPPNGVECYSCVGLSREACQGTSPPVVSCYNASDHVYKGCFDGNVTLTAANVTV SLPVRGCVQDEFCTRDGVTGPGFTLSGSCCQGSRCNSDLRNKTYFSPRIPPLVRLPPPEPTT VASTTSVTTSTSAPVRPTSTTKPMPAPTSQTPRQGVEHEASRDEEPRLTGGAAGHQDRSNSG QYPAKGGPQQPHNKGCVAPTAGLAALLLAVAAGVLL

FIGURE 126

CGGGACTCGGCGGTCCTCCTGGGAGTCTCGGAGGGGACCGGCTGTGCAGACGCCATGAGT TGGTGCTGGTCTTCCTCTGCAGCCTGCTGGCCCCCATGGTCCTGGCCAGTGCAGCTGAAAAG GAGAAGGAAATGGACCCTTTTCATTATGATTACCAGACCCTGAGGATTGGGGGGACTGGTGTT CGCTGTGGTCCTCTTCTCGGTTGGGATCCTCCTTATCCTAAGTCGCAGGTGCAAGTGCAGTT TCAATCAGAAGCCCCGGGCCCCAGGAGATGAGGAAGCCCAGGTGGAGAACCTCATCACCGCC AATGCAACAGAGCCCCAGAAGCAGAAACTGAAGTGCAGCCATCAGGTGGAAGCCTCTGGAA $\verb|CCTGAGGCGGCTGCTTGAACCTTTGGATGCAAATGTCGATGCT| \textbf{TAA} \\ \texttt{GAAAACCGGCCACTTC} \\$ AGCAACAGCCCTTTCCCCAGGAGAAGCCAAGAACTTGTGTGTCCCCCACCCTATCCCCTCTA ACACCATTCCTCCACCTGATGATGCAACTAACACTTGCCTCCCCACTGCAGCCTGCGGTCCT CCCAGGCAGGGGCTGAGCCACATGGCCATCTGCTCCCTGCCCCGTGGCCCTCCATCAC CTTCTGCTCCTAGGAGGCTGCTTGTTGCCCGAGACCAGCCCCCTCCCCTGATTTAGGGATGC GTAGGGTAAGAGCACGGGCAGTGGTCTTCAGTCGTCTTGGGGACCTGGGAAGGTTTGCAGCAC TTTGTCATCATTCTTCATGGACTCCTTTCACTCCTTTAACAAAAACCTTGCTTCCTTATCCC ACCTGATCCCAGTCTGAAGGTCTCTTAGCAACTGGAGATACAAAGCAAGGAGCTGGTGAGCC CAGCGTTGACGTCAGGCAGGCTATGCCCTTCCGTGGTTAATTTCTTCCCAGGGGCTTCCACG AGGAGTCCCCATCTGCCCCGCCCCTTCACAGAGCGCCCGGGGGATTCCAGGGCCCAGGGCTTCT ACTCTGCCCCTGGGAATGTGTCCCCTGCATATCTTCTCAGCAATAACTCCATGGGCTCTGG GACCCTACCCCTTCCAACCTTCCCTGCTTCTGAGACTTCAATCTACAGCCCAGCTCATCCAG GTTGGGGCCAGCACCGGGATGGATGGAGGGGAGAGGCCTTTGCTTCTCTGCCTACG TCCCCTTAGATGGGCAGCAGAGGCAACTCCCGCATCCTTTGCTCTGCCTGTCGGTGGTCAGA GCGGTGAGCGAGGTTGGAGACTCAGCAGGCTCCGTGCAGCCCTTGGGAACAGTGAGAG GTTGAAGGTCATAACGAGAGTGGGAACTCAACCCAGATCCCGCCCCTCTGTCCTCTGTGTT CCCGCGGAAACCAACCAAACCGTGCGCTGTGACCCATTGCTGTTCTCTGTATCGTGATCTAT CCTCAACAACAACAGAAAAAAGGAATAAAATATCCTTTGTTTCCT

FIGURE 127

MELVLVFLCSLLAPMVLASAAEKEKEMDPFHYDYQTLRIGGLVFAVVLFSVGILLILSRRCK CSFNQKPRAPGDEEAQVENLITANATEPQKQRTEVQPSGGSLWNLRRLLEPLDANVDA

FIGURE 128

FIGURE 129

MKIPVLPAVVLLSLLVLHSAQGATLGGPEEESTIENYASRPEAFNTPFLNIDKLRSAFKADE FLNWHALFESIKRKLPFLNWDAFPKLKGLRSATPDAQ

FIGURE 130

FIGURE 131

MGVEIAFASVILTCLSLLAAGVSQVVLLQPVPTQETGPKAMGDLSCGFAGHS

FIGURE 132

GGGGAATCTGCAGTAGGTCTGCCGGCG**ATG**GAGTGGTGGGCTAGCTCGCCGCTTCGGCTCTG GCTGCTGTTGTTCCTCCTGCCCTCAGCGCAGGGCCGCCAGAAGGAGTCAGGTTCAAAATGGA AAGTATTTATTGACCAAATTAACAGGTCTTTGGAGAATTACGAACCATGTTCAAGTCAAAAC TGCAGCTGCTACCATGGTGTCATAGAAGAGGGTCTAACTCCTTTCCGAGGAGGCATCTCCAG GAAGATGATGGCAGAGGTAGTCAGACGGAAGCTAGGGACCCACTATCAGATCACTAAGAACA GACTGTACCGGGAAAATGACTGCATGTTCCCCTCAAGGTGTAGTGGTGTTTAGAGCACTTTATT TTGGAAGTGATCGGGCGTCTCCCTGACATGGAGATGGTGATCAATGTACGAGATTATCCTCA GGTTCCTAAATGGATGGAGCCTGCCATCCCAGTCTTCTCCTTCAGTAAGACATCAGAGTACC ATGATATCATGTATCCTGCTTGGACATTTTGGGAAGGGGGACCTGCTGTTTTGGCCAATTTAT CCTACAGGTCTTGGACGGTGGGACCTCTTCAGAGAAGATCTGGTAAGGTCAGCAGCACAGTG GCCATGGAAAAAGAAAACTCTACAGCATATTTCCGAGGATCAAGGACAAGTCCAGAACGAG ATCCTCTCATTCTTCTGTCTCGGAAAAACCCAAAACTTGTTGATGCAGAATACACCAAAAAC CAGGCCTGGAAATCTATGAAAGATACCTTAGGAAAGCCAGCTGCTAAGGATGTCCATCTTGT GGATCACTGCAAATACAAGTATCTGTTTAATTTTCGAGGCGTAGCTGCAAGTTTCCGGTTTA AACACCTCTTCCTGTGTGGCTCACTTGTTTTCCATGTTGGTGATGAGTGGCTAGAATTCTTC TATCCACAGCTGAAGCCATGGGTTCACTATATCCCAGTCAAAACAGATCTCTCCAATGTCCA AGAGCTGTTACAATTTGTAAAAGCAAATGATGATGTAGCTCAAGAGATTGCTGAAAGGGGAA GCCAGTTTATTAGGAACCATTTGCAGATGGATGACATCACCTGTTACTGGGAGAACCTCTTG AGTGAATACTCTAAATTCCTGTCTTATAATGTAACGAGAAGGAAAGGTTATGATCAAATTAT TCCCAAAATGTTGAAAACTGAACTA**TAG**TAGTCATCATAGGACCATAGTCCTCTTTGTGGCA ACAGATCTCAGATATCCTACGGTGAGAAGCTTACCATAAGCTTGGCTCCTATACCTTGAATA TCTGCTATCAAGCCAAATACCTGGTTTTCCTTATCATGCTGCACCCAGAGCAACTCTTGAGA AAGATTTAAAATGTGTCTAATACACTGATATGAAGCAGTTCAACTTTTTTGGATGAATAAGGA CCAGAAATCGTGAGATGTGGATTTTGAACCCAACTCTACCTTTCATTTTCTTAAGACCAATC ACAGCTTGTGCCTCAGATCATCCACCTGTGTGAGTCCATCACTGTGAAATTGACTGTGTCCA TGTGATGATGCCCTTTGTCCCATTATTTGGAGCAGAAAATTCGTCATTTGGAAGTAGTACAA CTCATTGCTGGAATTGTGAAATTATTCAAGGCGTGATCTCTGTCACTTTATTTTAATGTAGG AAACCCTATGGGGTTTATGAAAAATACTTGGGGATCATTCTCTGAATGGTCTAAGGAAGCGG TAGCCATGCCATGCAATGATGTAGGAGTTCTCTTTTGTAAAACCATAAACTCTGTTACTCAG GAGGTTTCTATAATGCCACATAGAAAGAGGCCAATTGCATGAGTAATTATTGCAATTGGATT TCAGGTTCCCTTTTTGTGCCTTCATGCCCTACTTCTTAATGCCTCTCTAAAGCCAAA

FIGURE 133

MEWWASSPLRLWLLLFLLPSAQGRQKESGSKWKVFIDQINRSLENYEPCSSQNCSCYHGVIE EDLTPFRGGISRKMMAEVVRRKLGTHYQITKNRLYRENDCMFPSRCSGVEHFILEVIGRLPD MEMVINVRDYPQVPKWMEPAIPVFSFSKTSEYHDIMYPAWTFWEGGPAVWPIYPTGLGRWDL FREDLVRSAAQWPWKKKNSTAYFRGSRTSPERDPLILLSRKNPKLVDAEYTKNQAWKSMKDT LGKPAAKDVHLVDHCKYKYLFNFRGVAASFRFKHLFLCGSLVFHVGDEWLEFFYPQLKPWVH YIPVKTDLSNVQELLQFVKANDDVAQEIAERGSQFIRNHLQMDDITCYWENLLSEYSKFLSY NVTRRKGYDQIIPKMLKTEL

FIGURE 134

 $\texttt{CACCCCTCCATTTCTCGCC} \underline{\textbf{ATG}} \texttt{GCCCCTGCACTGCTCCTGATCCCTGCTGCCCTCTT}$ TCATCCTGGCCTTTGGCACCGGAGTGGAGTTCGTGCGCTTTACCTCCCTTCGGCCACTTCTT CCGCAGCATCCTTGCCCCCCTGGCATGGGATCTGGGGCTCCTGCTTCTATTTGTTGGGCAGC ACAGCCTCATGGCAGCTGAAAGAGTGAAGGCATGGACATCCCGGTACTTTGGGGTCCTTCAG AGGTCACTGTATGTGGCCTGCACTGCCCTGGCCTTGCAGCTGGTGATGCGGTACTGGGAGCC CATACCCAAAGGCCCTGTGTTGTGGGAGGCTCGGGCTGAGCCATGGGCCACCTGGGTGCCGC ${\tt TCCTCTGCTTTGTGCTCCATGTCATCTCTGGCTCCTCATCTTTAGCATCCTTCTCGTCTTT}$ GACTATGCTGAGCTCATGGGCCTCAAACAGGTATACTACCATGTGCTGGGGCTGGGCGAGCC TCTGGCCCTGAAGTCTCCCCGGGCTCTCAGACTCTTCTCCCACCTGCGCCACCCAGTGTGTG TGGAGCTGCTGACAGTGCTGTGGGTGCCTACCCTGGGCACGGACCGTCTCCTTGCT TTCCTCCTTACCTCTGGGCCTGGCTCACGGGCTTGATCAGCAAGACCTCCGCTACCT $\tt CCGGGCCCAGCTACAAAGAAAACTCCACCTGCTCTCTCGGCCCCAGGATGGGGAGGCAGAG{\bf T}$ $\underline{\textbf{GA}} \textbf{GGAGCTCACTCTGGTTACAAGCCCTGTTCTTCCTCTCCCACTGAATTCTAAATCCTTAAC}$ ATCCAGGCCCTGGCTTCATGCCAGAGGCCCAAATCCATGGACTGAAGGAGATGCCCCTT CTACTACTTGAGACTTTATTCTCTGGGTCCAGCTCCATACCCTAAATTCTGAGTTTCAGCCA $\tt CTGAACTCCAAGGTCCACTTCTCACCAGCAAGGAAGAGTGGGGGTATGGAAGTCATCTGTCCC$ $\tt CTGACCACTCCCCTGGCACTGTTACTTGCCTCTGCGCCTCAGGGGTCCCCTTCTGCACCGCT$ GGCTTCCACTCCAAGAAGGTGGACCAGGGTCTGCAAGTTCAACGGTCATAGCTGTCCCTCCA GGCCCCAACCTTGCCTCACCACTCCCGGCCCTAGTCTCTGCACCTCCTTAGGCCCTGCCTCT GGGCTCAGACCCCAACCTAGTCAAGGGGATTCTCCTGCTCTTAACTCGATGACTTGGGGCTC

FIGURE 135

MAPALLIPAALASFILAFGTGVEFVRFTSLRPLLGGIPESGGPDARQGWLAALQDRSILAP LAWDLGLLLLFVGQHSLMAAERVKAWTSRYFGVLQRSLYVACTALALQLVMRYWEPIPKGPV LWEARAEPWATWVPLLCFVLHVISWLLIFSILLVFDYAELMGLKQVYYHVLGLGEPLALKSP RALRLFSHLRHPVCVELLTVLWVVPTLGTDRLLLAFLLTLYLGLAHGLDQQDLRYLRAQLQR KLHLLSRPQDGEAE

Signal sequence:

amino acids 1-13

Transmembrane domains:

amino acids 58-76, 99-113, 141-159, 203-222

N-myristoylation sites:

amino acids 37-43, 42-48, 229-235

FIGURE 136

CCGAGCACAGGAGTTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGA AGAAATTGCCAAACCATGTCTTTTTTTCTGTTTTCAGAGTAGTTCACAACAGATCTGAGTGT TTTAATTAAGCATGGAATACAGAAAACAACAAAAACTTAAGCTTTAATTTCATCTGGAATT TCACGTGGTGCTCTCCGACTACTCACCCCGAGTGTAAAGAACCTTCGGCTCGCGTGCTTCTG AGCTGCTGTGGATGGCCTCTGGACTGTCCTTCCGAGTAGGATGTCACTGAGATCC CTCAAATGGAGCCTCCTGCTGTCACTCCTGAGTTTCTTTGTGATGTGGTACCTCAGCCT TCCCCACTACAATGTGATAGAACGCGTGAACTGGATGTACTTCTATGAGTATGAGCCGATTT ACAGACAAGACTTTCACTTCACACTTCGAGAGCATTCAAACTGCTCTCATCAAAATCCATTT TTGGGGTGAAAAAAGTCTTGGTGGGGATATGAGGTTCTTACATTTTTCTTATTAGGCCAAG AGGCTGAAAAGGAAGACAAAATGTTGGCATTGTCCTTAGAGGATGAACACCTTCTTTATGGT GACATAATCCGACAAGATTTTTTAGACACATATAATAACCTGACCTTGAAAACCATTATGGC TTTTCATCAATACTGGCAATTTAGTGAAGTATCTTTTAAACCTAAACCACTCAGAGAAGTTT TTCACAGGTTATCCTCTAATTGATAATTATTCCTATAGAGGATTTTACCAAAAAACCCATAT TTCTTACCAGGAGTATCCTTTCAAGGTGTTCCCTCCATACTGCAGTGGGTTGGGTTATATAA TGTCCAGAGATTTGGTGCCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTT GAAGATGTTTATGTCGGGATCTGTTTGAATTTATTAAAAGTGAACATTCATATTCCAGAAGA CAGCCCATGGCTTTTCTTCCAAGGAGATCATCACTTTTTTGGCAGGTCATGCTAAGGAACACC ACATGCCATTAT**TAA**CTTCACATTCTACAAAAAGCCTAGAAGGACAGGATACCTTGTGGAAA GTGTTAAATAAAGTAGGTACTGTGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTTACACTG AACTGAAACTCATGAAAAACCCAGACTGGAGACTGGAGGGTTACACTTGTGATTTATTAGTC AGGCCCTTCAAAGATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAA GAAATTAATAGGACCAAACAATTTGGACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGG AACAATGTAGTCACTTGAAGGTTTTGTGTATATCTTATGTGGATTACCAATTTAAAAATATA TGTAGTTCTGTGTCAAAAAACTTCTTCACTGAAGTTATACTGAACAAAATTTTACCTGTTTT TGGTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATTATTTAAAAATTA CTTCAACTTTGTGTTTTTAAATGTTTTGACGATTTCAATACAAGATAAAAAGGATAGTGAAT CATTCTTTACATGCAAACATTTTCCAGTTACTTAACTGATCAGTTTATTATTGATACATCAC TCCATTAATGTAAAGTCATAGGTCATTATTGCATATCAGTAATCTCTTGGACTTTGTTAAAT ATTTTACTGTGGTAATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

FIGURE 137

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQD FHFTLREHSNCSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEK EDKMLALSLEDEHLLYGDIIRQDFLDTYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFIN TGNLVKYLLNLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRD LVPRIYEMMGHVKPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHG FSSKEIITFWQVMLRNTTCHY

FIGURE 138

FIGURE 139

MKFTIVFAGLLGVFLAPALANYNINVNDDNNNAGSGQQSVSVNNEHNVANVDNNNGWDSWNS IWDYGNGFAATRLFQKKTCIVHKMNKEVMPSIQSLDALVKEKKLQGKGPGGPPPKGLMYSVN PNKVDDLSKFGKNIANMCRGIPTYMAEEMQEASLFFYSGTCYTTSVLWIVDISFCGDTVEN

Signal Peptide:

amino acids 1-20

N-myristoylation Sites:

amino acids 67-72, 118-123, 163-168

Flavodoxin protein homology:

amino acids 156-174

FIGURE 140

CATTTCTGAAACTAATCGTGTCAGAATTGACTTTGAAAAGCATTGCTTTTTACAGAAGTATA TTAACTTTTTAGGAGTAATTTCTAGTTTGGATTGTAATATGAAATAATTTAAAAGGGCTTCG CTCATATATAGGAAAATCGCATATGGTCCTAGTATTAAATTCTTATTGCTTACTGATTTTTT CAAGCTTATAGTTGAAATATTTTTCAGGAATTAC**ATG**AATGACAGTCTTCGAACCAATGTGT TTGTTCGATTTCAACCAGAGACTATAGCATGTGCTTGCATCTACCTTGCAGCTAGAGCACTT CAGATTCCGTTGCCAACTCGTCCCCATTGGTTTCTTTTTTTGGTACTACAGAAGAGGAAAT CCAGGAAATCTGCATAGAAACACTTAGGCTTTATACCAGAAAAAAGCCAAACTATGAATTAC TGGAAAAAGAAGTAGAAAAAAGAAAGTAGCCTTACAAGAAGCCAAATTAAAAGCAAAGGGA TTGAATCCGGATGGAACTCCAGCCCTTTCAACCCTGGGTGGATTTTCTCCAGCCTCCAAGCC ATCATCACCAAGAGAAGTAAAAGCTGAAGAGAAATCACCAATCTCCATTAATGTGAAGACAG TCAAAAAAGAACCTGAGGATAGACAACAGGCTTCCAAAAGCCCTTACAATGGTGTAAGAAAA TTCTAGATCACATACTCCAAGAAGACACTATAATAATAGGCGGAGTCGATCTGGAACATACA GCTCGAGATCAAGAAGCAGGTCCCGCAGTCACAGTGAAAGCCCTCGAAGACATCATAATCAT GGTTCTCCTCACCTTAAGGCCAAGCATACCAGAGATGATTTAAAAAGTTCAAACAGACATGG TCATAAAAGGAAAAATCTCGTTCTCGATCTCAGAGCAAGTCTCGGGATCACTCAGATGCAG CCAAGAAACACAGGCATGAAAGGGGACATCATAGGGACAGGCGTGAACGATCTCGCTCTTT CTGA CTTCTTCTTTGAGCTGCTTTTGCTATCTACAGTGTGTATGGACTCAATCAAAAACATTAAACGCAAACTGATTAGGATTTGATTTCTTGAAACCCTCTA GGTCTCTAGAACACTGAGGACAGTTTCTTTTGAAAAGAACTATGTTAATTTTTTTGCACATT AAAATGCCCTAGCAGTATCTAATTAAAAACCATGGTCAGGTTCAATTGTACTTTATTATAGT TGTGTATTGTTATTGCTATAAGAACTGGAGCGTGAATTCTGTAAAAATGTATCTTATTTTT ATACAGATAAAATTGCAGACACTGTTCTATTTAAGTGGTTATTTGTTTAAATGATGGTGAAT ACTTTCTTAACACTGGTTTGTCTGCATGTGTAAAGATTTTTACAAGGAAATAAAATACAAAT CTTGTTTTTCTAAAAAAAAAAAAAAAAAAAAGT

FIGURE 141

MNDSLRTNVFVRFQPETIACACIYLAARALQIPLPTRPHWFLLFGTTEEEIQEICIETLRLY
TRKKPNYELLEKEVEKRKVALQEAKLKAKGLNPDGTPALSTLGGFSPASKPSSPREVKAEEK
SPISINVKTVKKEPEDRQQASKSPYNGVRKDSKRSRNSRSASRSRSRTRSRSRSHTPRRHYN
NRRSRSGTYSSRSRSRSRSHSESPRRHHNHGSPHLKAKHTRDDLKSSNRHGHKRKKSRSRSQ
SKSRDHSDAAKKHRHERGHHRDRRERSRSFERSHKSKHHGGSRSGHGRHRR

FIGURE 142

FIGURE 143

GGCACGAGGCCTCGTGCCAAGCTTGGCACGAGGGTGCACCGCGTTCTCGCACGCGTC**ATG**GC GGTCCTCGGAGTACAGCTGGTGACCCTGCTCACTGCCACCCTCATGCACAGGCTGGCGC CACACTGCTCCTTCGCGCGCTGCTCTGTAACGGCAGTTTGTTCCGATACAAGCACCCG TCTGAGGAGGAGCTTCGGGCCCTGGCGGGGAAGCCGAGGCCCAGAGGCAGGAAAGAGCGGTG GGCCAATGGCCTTAGTGAGGAGAAGCCACTGTCTGTGCCCCGAGATGCCCCGTTCCAGCTGG AGACCTGCCCCTCACGACCGTGGATGCCCTGGTCCTGCGCTTCTTCCTGGAGTACCAGTGG TTTGTGGACTTTGCTGTGTACTCGGGCGGCGTGTACCTCTTCACAGAGGCCTACTACAT GCTGGGACCAGGCAAGGAGACTAACATTGCTGTTCTGGTGCCTGCTCACGGTGACCTTCT CCATCAAGATGTTCCTGACAGTGACACGGCTGTACTTCAGCGCCGAGGAGGGGGGTGAGCGC TCTGTCTGCCTCACCTTTGCCTTCCTCTTCCTGCTGCCCATGCTGGTGCAAGTGGTGCG GGAGGAGACCCTCGAGCTGGGCCTGGAGCCTGGTCTGGCCAGCATGACCCAGAACTTAGAGC CACTTCTGAAGAAGCAGGGCTGGGACTGGGCGCTTCCTGTGGCCAAGCTGGCTATCCGCGTG GGACTGGCAGTGGTGGGCTCTGTGCTGGGTGCCTTCCTCACCTTCCCAGGCCTGCGGCTGGC CCAGACCCACCGGGACGCACTGACCATGTCGGAGGACAGACCCATGCTGCAGTTCCTCCTGC ACACCAGCTTCCTGTCTCCCCTGTTCATCCTGTGGCTCTGGACAAAGCCCATTGCACGGGAC TTCCTGCACCAGCCGCCGTTTGGGGAGACGCGTTTCTCCCTGCTGTCCGATTCTGCCTTCGA CTCTGGGCGCCTCTGGTTGCTGGTGCTGCTGCTGCGGCTGGCGGTGACCCGGCCCC ACCTGCAGGCCTACCTGTGCCTGGCCAAGGCCCGGGTGGAGCAGCTGCGAAGGGAGGCTGGC CGCATCGAAGCCCGTGAAATCCAGCAGAGGGTGGTCCGAGTCTACTGCTATGTGACCGTGGT GAGCTTGCAGTACCTGACGCCGCTCATCCTCACCCTCAACTGCACACTTCTGCTCAAGACGC TGGGAGGCTATTCCTGGGGCCTGGGCCCAGCTCTCTACTATCCCCCGACCCATCCTCAGCC AGCGCTGCCCCATCGGCTCTGGGGAGGACGAAGTCCAGCAGACTGCAGCGCGGATTGCCGG GGCCCTGGGTGGCCTACCTCCCCTCTTCCTCCGTGGCGTCCTGGCCTACCTCATCTGGT GGACGCTGCCTGCCAGCTCCCAGCCTTTTCCGCCCTCTACTTCCACCAGCACTTGGCA GGCTCC**TAG**CTGCCTGCAGACCCTCCTGGGGCCCTGAGGTCTGTTCCTGGGGCAGCGGGACA CTAGCCTGCCCCCTCTGTTTGCGCCCCCGTGTCCCCAGCTGCAAGGTGGGGCCGGACTCCCC GGCGTTCCCTTCACCACAGTGCCTGACCCGCGGCCCCCTTGGACGCCGAGTTTCTGCCTCA GAACTGTCTCCTGGGCCCAGCAGCATGAGGGTCCCGAGGCCATTGTCTCCGAAGCGTATG TGCCAGGTTTGAGTGGCGAGGGTGATGCTGGCTGCTCTTCTGAACAAATAAAGGAGCATGCC GATTTTTAA

FIGURE 144

MAVLGVQLVVTLLTATLMHRLAPHCSFARWLLCNGSLFRYKHPSEEELRALAGKPRPRGRKE RWANGLSEEKPLSVPRDAPFQLETCPLTTVDALVLRFFLEYQWFVDFAVYSGGVYLFTEAYY YMLGPAKETNIAVFWCLLTVTFSIKMFLTVTRLYFSAEEGGERSVCLTFAFLFLLLAMLVQV VREETLELGLEPGLASMTQNLEPLLKKQGWDWALPVAKLAIRVGLAVVGSVLGAFLTFPGLR LAQTHRDALTMSEDRPMLQFLLHTSFLSPLFILWLWTKPIARDFLHQPPFGETRFSLLSDSA FDSGRLWLLVVLCLLRLAVTRPHLQAYLCLAKARVEQLRREAGRIEAREIQQRVVRVYCYVT VVSLQYLTPLILTLNCTLLLKTLGGYSWGLGPAPLLSPDPSSASAAPIGSGEDEVQQTAARI AGALGGLLTPLFLRGVLAYLIWWTAACQLLASLFGLYFHQHLAGS

FIGURE 145

FIGURE 146

GGTTCCTACATCCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTT AATCTGAAGGTTCTCAGTCAAATTCTTTGTGATCTGATTGTGGGGGGCATGGCAAGGTTTGCTTAAAGGAGC $\tt CGCTTCTGTTGCTTGCCTTGGCTCAGTCCTGCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTG$ TATTCAGAACTCTGTAAAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGCGCTCACAAGATGGCTG TCCAGACGGCTGTGCGAGCCTCACAGCCACGGCTCCCCCAGAGGTTTCTGCAGCTGCCACCATCTCCTTAA GTGGACTCTGGCCGGAGCAACCGAACTAGGGCACGGCCCTTTGAGAGATCCACTATTAGAAGCAGATCATTTAA ${ t AAAAATAAATCGAGCTTTGAGTGTTCTTCGAAGGACAAAGAGCGGGAGTGCAGTTGCCAACCATGCCGACCAGG}$ GCAGGGAAAATTCTGAAAACACCACTGCCCCTGAAGTCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAA ATTACCAGCATCAAGATCAATCGAGTAGATCCCAGTGAAAGCCTCTCTATTAGGCTGGTGGGAGGTAGCGAAAC GAGACATCATTCTAAAGGTCAACGGGATGGACATCAGCAATGTCCCTCACAACTACGCTGTGCGTCTCCTGCGG ${\tt CAGCCCTGCCAGGTGCTGTGGCTGATGCGTGAACAGAGTTCCGCAGCAGGAACAATGGACAGGCCCCC}$ GGATGCCTACAGACCCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCCCCGAGGAGCAGCTTGGAA ${\tt TAAAACTGGTGCGCAAGGTGGATGAGCCTGGGGTTTTCATCTTCAATGTGCTGGATGGCGGTGTGGCATATCGA}$ CATGGTCAGCTTGAGGAGAATGACCGTGTTTAGCCATCAATGGACATGATCTTCGATATGGCAGCCCAGAAAG $\tt TGCGGCTCATCTGATTCAGGCCAGTGAAAGACGTGTTCACCTCGTCGTCGTCCCGCCAGGTTCGGCAGCGGAGCC$ $\tt CTGACATCTTTCAGGAAGCCGGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGCCAGGGGAGGAGCAACACT$ $\tt CCCAAGCCCCTCCATCCTACAATTACTTGTCATGAGAAGGTGGTAAATATCCAAAAAGACCCCGGTGAATCTCT$ GAGGAGTCATAAGCAGAGATGGAAGAATAAAAACAGGTGACATTTTGTTGAATGTGGATGGGGTCGAACTGACA GAGGTCAGCCGGAGTGAGCAGTGGCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTTGGAAGT GTGACTGGTCCCCATCCTGGGTCATGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTA TTTCATCAAATCCATTGTTGAAGGAACACCAGCATACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTG ATTACTCTAACTATTGTTTCTTGGCCTGGCACTTTTTTA ${f TAG}$ AATCAATGATGGGTCAGAGGAAAACAGAAAAA AAAAATGTCAGGAAAAGTATGATCATCTAATGAAAGCCAGTTACACCTCAGAAAATATGATTCCAAAAAAATTA AAACTACTAGTTTTTTTCAGTGTGGAGGATTTCTCATTACTCTACAACATTGTTTATATTTTTTTCTATTCAAT AAAAAGCCCTAAAAACAACTAAAATGATTGATTTGTATACCCCACTGAATTCAAGCTGATTTAAAATTTAAAATTT GGTATATGCTGAAGTCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCTAAAATATTTTTTAAAATGCA TTGCTGAGAAACGTTGCTTTCATCAAACAAGAATAAATATTTTTCAGAAGTTAAA

FIGURE 147

MKALLLLVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTAT
APSPEVSAAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRS
FKKINRALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDP
SESLSIRLVGGSETPLVHIIIQHIYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLL
RQPCQVLWLTVMREQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGV
FIFNVLDGGVAYRHGQLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRS
PDIFQEAGWNSNGSWSPGPGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHRE
WDLPIYVISVEPGGVISRDGRIKTGDILLNVDGVELTEVSRSEAVALLKRTSSSIVLKALEV
KEYEPQEDCSSPAALDSNHNMAPPSDWSPSWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIV
GGYEEYNGNKPFFIKSIVEGTPAYNDGRIRCGDILLAVNGRSTSGMIHACLARLLKELKGRI
TLTIVSWPGTFL

FIGURE 148

FIGURE 149

MKILVAFLVVLTIFGIQSHGYEVFNIISPSNNGGNVQETVTIDNEKNTAIVNIHAGSCSSTT IFDYKHGYIASRVLSRRACFILKMDHQNIPPLNNLQWYIYEKQALDNMFSNKYTWVKYNPLE SLIKDVDWFLLGSPIEKLCKHIPLYKGEVVENTHNVGAGGCAKAGLLGILGISICADIHV

FIGURE 150

ATGGGGCTCCCTGGGCTGTTCTGCTTGGCCGTGCTGCCAGCAGCTTCTCCAAGGCACG GGAGGAAGAATTACCCCTGTGGTCTCCATTGCCTACAAAGTCCTGGAAGTTTTCCCCAAAG GCCGCTGGGTGCTCATAACCTGCTGTGCACCCCAGCCACCACCGCCCATCACCTATTCCCTC TGTGGAACCAAGAACATCAAGGTGGCCAAGAAGGTGGTGAAGACCCACGAGCCGGCCTCCTT CAACCTCAACGTCACACTCAAGTCCAGTCCAGACCTGCTCACCTACTTCTGCCGGGCGTCCT CCACCTCAGGTGCCCATGTGGACAGTGCCAGGCTACAGATGCACTGGGAGCTGTGGTCCAAG CCAGTGTCTGAGCTGCGGGCCAACTTCACTCTGCAGGACAGAGGGGCCAGGGCCCCAGGGTGGA GATGATCTGCCAGGCGTCCTCGGGCAGCCCACCTATCACCAACAGCCTGATCGGGAAGGATG AGCCAGACATCGGACTGGTTCTGGTGCCAGGCTGCAAACAACGCCAATGTCCAGCACAGCGC CCTCACAGTGGTGCCCCCAGGTGGTGACCAGAAGATGGAGGACTGGCAGGGTCCCCTGGAGA GCCCCATCCTTGCCTTGCCGCTCTACAGGAGCACCCGCCGTCTGAGTGAAGAGAGTTTGGG GGGTTCAGGATAGGGAATGGGGAGGTCAGAGGACGCAAAGCAGCCATG**TAG**AATGAACC GTCCAGAGAGCCAAGCACGGCAGAGGACTGCAGGCCATCAGCGTGCACTGTTCGTATTTGGA

FIGURE 151

MGLPGLFCLAVLAASSFSKAREEEITPVVSIAYKVLEVFPKGRWVLITCCAPQPPPPITYSL CGTKNIKVAKKVVKTHEPASFNLNVTLKSSPDLLTYFCRASSTSGAHVDSARLQMHWELWSK PVSELRANFTLQDRGAGPRVEMICQASSGSPPITNSLIGKDGQVHLQQRPCHRQPANFSFLP SQTSDWFWCQAANNANVQHSALTVVPPGGDQKMEDWQGPLESPILALPLYRSTRRLSEEEFG GFRIGNGEVRGRKAAAM

Signal Peptide:

amino acids 1-18

N-glycosylation Sites:

amino acids 86-89, 132-135, 181-184

FIGURE 152

GGTCCTTA**ATG**GCAGCCGCCGCTACCAAGATCCTTCTGTGCCTCCCGCTTCTGCTCCTG CTGTCCGGCTGGTCCCGGGCTGGGCGAGCCGACCCTCACTCTTTGCTATGACATCACCGT CATCCCTAAGTTCAGACCTGGACCACGGTGGTGTGCGGTTCAAGGCCAGGTGGATGAAAAGA CTTTTCTTCACTATGACTGTGGCAACAAGACAGTCACACCTGTCAGTCCCCTGGGGAAGAAA CTAAATGTCACAACGGCCTGGAAAGCACAGAACCCAGTACTGAGAGAGGTGGTGGACATACT TACAGAGCAACTGCGTGACATTCAGCTGGAGAATTACACACCCAAGGAACCCCTCACCCTGC AGGCAAGGATGTCTTGTGAGCAGAAAGCTGAAGGACACAGCAGTGGATCTTGGCAGTTCAGT TTCGATGGGCAGATCTTCCTCCTCTTTGACTCAGAGAAGAGAATGTGGACAACGGTTCATCC TGGAGCCAGAAAGATGAAAAGTGGGAGAATGACAAGGTTGTGGCCATGTCCTTCCATT ACTTCTCAATGGGAGACTGTATAGGATGGCTTGAGGACTTCTTGATGGGCATGGACACCC CTGGAGCCAAGTGCAGGAGCACCACTCGCCATGTCCTCAGGCCAACCCAACTCAGGGCCAC AGCCACCACCTCATCCTTTGCTGCCTCCTCATCCTCCCCTGCTTCATCCTCCCTGGCA TCTGAGGAGAGTCCTTTAGAGTGACAGGTTAAAGCTGATACCAAAAGGCTCCTGTGAGCACG GTCTTGATCAAACTCGCCCTTCTGTCTGGCCAGCTGCCCACGACCTACGGTGTATGTCCAGT GGCCTCCAGCAGATCATGACATCATGGACCCAATAGCTCATTCACTGCCTTGATTCCTT TTGCCAACAATTTTACCAGCAGTTATACCTAACATATTATGCAATTTTCTCTTGGTGCTACC GTCAGTAAAATAATCACGTTAGACTTCAGACCTCTGGGGATTCTTTCCGTGTCCTGAAAGAG AATTTTTAAATTATTTAATAAGAAAAAATTTATATTAATGATTGTTTCCTTTAGTAATTTAT

FIGURE 153

MAAAAATKILLCLPLLLLLSGWSRAGRADPHSLCYDITVIPKFRPGPRWCAVQGQVDEKTFL HYDCGNKTVTPVSPLGKKLNVTTAWKAQNPVLREVVDILTEQLRDIQLENYTPKEPLTLQAR MSCEQKAEGHSSGSWQFSFDGQIFLLFDSEKRMWTTVHPGARKMKEKWENDKVVAMSFHYFS MGDCIGWLEDFLMGMDSTLEPSAGAPLAMSSGTTQLRATATTLILCCLLIILPCFILPGI

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 224-246

N-glycosylation site.

amino acids 68-72, 82-86

N-myristoylation site.

amino acids 200-206, 210-216

Amidation site.

amino acids 77-81

FIGURE 154

FIGURE 155

MELIPTITSWRVLILVVALTQFWCGFLCRGFHLQNHELWLLIKREFGFYSKSQYRTWQKKLA EDSTWPPINRTDYSGDGKNGFYINGGYESHEQIPKRKLKLGGQPTEQHFWARL

FIGURE 156

GTTCTCCTTTCCGAGCCAAAATCCCAGGCGATGGTGAATTATGAACGTGCCACACCATGAAG CTCTTGTGGCAGGTAACTGTGCACCACCACCTGGAATGCCATCCTGCTCCCGTTCGTCTA CCTCACGGCGCAAGTGTGGATTCTGTGTGCAGCCATCGCTGCCGCCCTCAGCCGGGCCCC AGAACTGCCCCTCCGTTTGCTCGTGCAGTAACCAGTTCAGCAAGGTGGTGTGCACGCGCCCGG GGCCTCTCCGAGGTCCCGCAGGGTATTCCCTCGAACACCCGGTACCTCAACCTCATGGAGAA CAACATCCAGATGATCCAGGCCGACACCTTCCGCCACCTCCACCACCTGGAGGTCCTGCAGT TGGGCAGGAACTCCATCCGGCAGATTGAGGTGGGGGCCTTCAACGGCCTGGCCAGCCTCAAC ACCCTGGAGCTGTTCGACAACTGGCTGACAGTCATCCCTAGCGGGGCCTTTGAATACCTGTC CAAGCTGCGGGAGCTCTGGCTTCGCAACAACCCCATCGAAAGCATCCCCTCTTACGCCTTCA ACCGGGTGCCCTCCCTCATGCGCCTGGACTTGGGGGAGCTCAAGAAGCTGGAGTATATCTCT GAGGGAGCTTTTGAGGGGCTGTTCAACCTCAAGTATCTGAACTTGGGCATGTGCAACATTAA AGACATGCCCAATCTCACCCCCCTGGTGGGGGCTGGAGGAGCTGGAGATGTCAGGGAACCACT TCCCTGAGATCAGGCCTGGCTCCTTCCATGGCCTGAGCTCCCTCAAGAAGCTCTGGGTCATG CAACTTGGCCCACAATAACCTCTCTTCTTTGCCCCATGACCTCTTTACCCCGCTGAGGTACC TGGTGGAGTTGCATCTACACCACAACCCTTGGAACTGTGATTGTGACATTCTGTGGCTAGCC TGGTGGCTTCGAGAGTATATACCCACCAATTCCACCTGCTGTGGCCGCTGTCATGCTCCCAT GCACATGCGAGGCCGCTACCTCGTGGAGGTGGACCAGGCCTCCTTCCAGTGCTCTGCCCCCT TCATCATGGACGCACCTCGAGACCTCAACATTTCTGAGGGTCGGATGGCAGAACTTAAGTGT CGGACTCCCCTATGTCCTCCGTGAAGTGGTTGCTGCCCAATGGGACAGTGCTCAGCCACGC CTCCCGCCACCCAAGGATCTCTGTCCTCAACGACGCACCTTGAACTTTTCCCACGTGCTGC TTTCAGACACTGGGGTGTACACATGCATGGTGACCAATGTTGCAGGCAACTCCAACGCCTCG GCCTACCTCAATGTGAGCACGGCTGAGCTTAACACCTCCAACTACAGCTTCTTCACCACAGT AACAGTGGAGACCACGGAGATCTCGCCTGAGGACACACGCGAAAGTACAAGCCTGTTCCTA CCACGTCCACTGGTTACCAGCCGGCATATACCACCTCTACCACGGTGCTCATTCAGACTACC CGTGTGCCCAAGCAGGTGGCAGTACCCGCGACAGACACCACTGACAAGATGCAGACCAGCCT GGATGAAGTCATGAAGACCACCAAGATCATCATTGGCTGCTTTGTGGCAGTGACTCTGCTAG CTGCCGCCATGTTGATTGTCTTCTATAAACTTCGTAAGCGGCACCAGCAGCAGCGGAGTACAGTC ACAGCCGCCCGGACTGTTGAGATAATCCAGGTGGACGAAGACATCCCAGCAGCAACATCCGC AGCAGCAACAGCTCCGTCCGGTGTATCAGGTGAGGGGGCAGTAGTGCTGCCCACAATTC ATGACCATATTAACTACAACACCTACAAACCAGCACATGGGGCCCACTGGACAGAAAACAGC CTGGGGAACTCTCTGCACCCACAGTCACCACTATCTCTGAACCTTATATAATTCAGACCCA TACCAAGGACAAGGTACAGGAAACTCAAATA**TGA**CTCCCCTCCCCCAAAAAACTTATAAAAT GCAATAGAATGCACACAAAGACAGCAACTTTTGTACAGAGTGGGGAGAGACTTTTTCTTGTA TATGCTTATATATTAAGTCTATGGGCTGGTTAAAAAAAACAGATTATATTAAAATTTAAAGA CAAAAAGTCAAAACA

FIGURE 157

MKLLWQVTVHHHTWNAILLPFVYLTAQVWILCAAIAAAASAGPQNCPSVCSCSNQFSKVVCT
RRGLSEVPQGIPSNTRYLNLMENNIQMIQADTFRHLHHLEVLQLGRNSIRQIEVGAFNGLAS
LNTLELFDNWLTVIPSGAFEYLSKLRELWLRNNPIESIPSYAFNRVPSLMRLDLGELKKLEY
ISEGAFEGLFNLKYLNLGMCNIKDMPNLTPLVGLEELEMSGNHFPEIRPGSFHGLSSLKKLW
VMNSQVSLIERNAFDGLASLVELNLAHNNLSSLPHDLFTPLRYLVELHLHHNPWNCDCDILW
LAWWLREYIPTNSTCCGRCHAPMHMRGRYLVEVDQASFQCSAPFIMDAPRDLNISEGRMAEL
KCRTPPMSSVKWLLPNGTVLSHASRHPRISVLNDGTLNFSHVLLSDTGVYTCMVTNVAGNSN
ASAYLNVSTAELNTSNYSFFTTVTVETTEISPEDTTRKYKPVPTTSTGYQPAYTTSTTVLIQ
TTRVPKQVAVPATDTTDKMQTSLDEVMKTTKIIIGCFVAVTLLAAAMLIVFYKLRKRHQQRS
TVTAARTVEIIQVDEDIPAATSAAATAAPSGVSGEGAVVLPTIHDHINYNTYKPAHGAHWTE
NSLGNSLHPTVTTISEPYIIQTHTKDKVQETQI

FIGURE 158

TTCTCATCTCGTCCTTGCCAAGAGAGTACACAGTCATTAATGAAGCCTGCCCTGGAGCAGAGTGGAATATCATG TGTCGGGAGTGCTGTGAATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGAAGTCGTGGGTTATACCAT GCAAGAGCTGCCGAAATGGCTCATGGGGGGGTACCTTGGATGACTTCTATGTGAAGGGGTTCTACTGTGCAGAG $\tt TGCCGAGCAGGCTGGTACGGAGGAGGACTGCATGCGATGTGGCCAGGTTCTGCGAGCCCCAAAGGGTCAGATTTT$ GTTGGAAAGCTATCCCCTAAATGCTCACTGTGAATGGACCATTCATGCTAAACCTGGGTTTGTCATCCAACTAA GATTTGTCATGTTGAGTCTGGAGTTTGACTACATGTGCCAGTATGACTATGTTGAGGTTCGTGATGGAGACAAC $\tt CGCGATGGCCAGATCATCAAGCGTGTCTGTGGCAACGAGCGGCCAGCTCCTATCCAGAGCATAGGATCCTCACT$ CCACGTCCTCTCCACTCCGATGGCTCCAAGAATTTTGACGGTTTCCATGCCATTTATGAGGAGATCACAGCAT GCTCCTCATCCCCTTGTTTCCATGACGGCACGTGCGTCCTTGACAAGGCTGGATCTTACAAGTGTGCCTGCTTG TGGGTACCAGAAATAACAGGGGGCCCTGGGCTTATCAACGGACGCCATGCTAAAATTGGCACCGTGGTGTCTT TCTTTTGTAACAACTCCTATGTTCTTAGTGGCAATGAGAAAAGAACTTGCCAGCAGAATGGAGAGTGGTCAGGG AAACAGCCCATCTGCATAAAAGCCTGCCGAGAACCAAAGATTTCAGACCTGGTGAGAAGGAGAGTTCTTCCGAT TATGAGTGCATCTCACCCTTCTACCGCCGCCTGGGCAGCAGCAGGACATGTCTGAGGACTGGGAAGTGGAG TGGGCGGCACCATCCTGCATCCCTATCTGCGGGAAAATTGAGAACATCACTGCTCCAAAGACCCAAGGGTTGC GCTGGCCGTGGCAGCCATCTACAGGAGGACCAGCGGGGTGCATGACGGCAGCCTACACAAGGGAGCGTGG TTCCTAGTCTGCAGCGGTGCCCTGGTGAATGAGCGCACTGTGGTGGTGGCTGCCCACTGTGTTACTGACCTGGG GAAGGTCACCATGATCAAGACAGCCAGACCTGAAAGTTGTTTTGGGGAAATTCTACCGGGATGATGACCGGGATG AGAAGACCATCCAGAGCCTACAGATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCT GACATCGCCATCCTGAAGCTCCTAGACAAGGCCCGTATCAGCACCCGAGTCCAGCCCATCTGCCTCGCTGCCAG GCCCTGGCTTCAAGAACGACACTGCGCTCTGGGGTGGTCAGTGTGGTGGACTCGCTGCTGTGTGAGGAGCAG CATGAGGACCATGGCATCCCAGTGAGTGTCACTGATAACATGTTCTGTGCCAGCTGGGAACCCACTGCCCCTTC TGATATCTGCACTGCAGAGACAGGAGGCATCGCGGCTGTGTCCTTCCCGGGACGAGCATCTCCTGAGCCACGCT GGCATCTGATGGGACTGGTCAGCTGGAGCTATGATAAAACATGCAGCCACAGGCTCTCCACTGCCTTCACCAAG $\tt GTGCTGCCTTTTAAAGACTGGATTGAAAGAAATATGAAA<math>\underline{\textbf{TGA}}$ $\tt ACCATGCTCATGCACTCCTTGAGAAGTGTTTC$ TGTATATCCGTCTGTACGTGTCATTGCGTGAAGCAGTGTGGGCCTGAAGTGTGATTTGGCCTGTGAACTTGG CTGTGCCAGGGCTTCTGACTTCAGGGACAAAACTCAGTGAAGGGTGAGTAGACCTCCATTGCTGGTAGGCTGAT ATATACAAAACCTCTCCACTCACTGACCTGGTGGTCTTCCCCAACTTTCAGTTATACGAATGCCATCAGCTTG ACCAGGGAAGATCTGGGCTTCATGAGGCCCCTTTTGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGGGACAGCC

FIGURE 159

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVV
GYTIPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGD
CMRCGQVLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRD
GDNRDGQIIKRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDG
TCVLDKAGSYKCACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTV
VSFFCNNSYVLSGNEKRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLH
QLYSAAFSKQKLQSAPTKKPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGK
WSGRAPSCIPICGKIENITAPKTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNE
RTVVVAAHCVTDLGKVTMIKTADLKVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLD
ADIAILKLLDKARISTRVQPICLAASRDLSTSFQESHITVAGWNVLADVRSPGFKNDTLRSG
VVSVVDSLLCEEQHEDHGIPVSVTDNMFCASWEPTAPSDICTAETGGIAAVSFPGRASPEPR
WHLMGLVSWSYDKTCSHRLSTAFTKVLPFKDWIERNMK

FIGURE 160

ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGA AGCTTTCTTGCCTGCAGTGAAGCAGAGAGATAGATATTATTCACGTAATAAAAAAC**ATG**GGC TTCAACCTGACTTTCCACCTTTCCTACAAATTCCGATTACTGTTGCTGTTGACTTTGTGCCT GACAGTGGTTGGGTGGGCCACCAGTAACTACTTCGTGGGTGCCATTCAAGAGATTCCTAAAG CAAAGGAGTTCATGGCTAATTTCCATAAGACCCTCATTTTGGGGAAAGGGAAAAACTCTGACT AATGAAGCATCCACGAAGAAGGTAGAACTTGACAACTGTCCTTCTGTGTCTCCTTACCTCAG AGGCCAGAGCAGCTCATTTTCAAACCAGATCTCACTTTGGAAGAGGTACAGGCAGAAAATC CCAAAGTGTCCAGAGGCCGGTATCGCCCTCAGGAATGTAAAGCTTTACAGAGGGTCGCCATC CTCGTTCCCCACCGGAACAGAGAGAACACCTGATGTACCTGCTGGAACATCTGCATCCCTT CCTGCAGAGGCAGCTGGATTATGGCATCTACGTCATCCACCAGGCTGAAGGTAAAAAGT TTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAATTGGGAC TGCTTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGA GGAGCATCCCAAGCATCTGGTGGTTGGCAGGAACAGCACTGGGTACAGGTTACGTTACAGTG GATATTTTGGGGGTGTTACTGCCCTAAGCAGAGAGCAGTTTTTCAAGGTGAATGGATTCTCT AACAACTACTGGGGATGGGGAGGCGAAGACGATGACCTCAGACTCAGGGTTGAGCTCCAAAG AATGAAAATTTCCCGGCCCCTGCCTGAAGTGGGTAAATATACAATGGTCTTCCACACTAGAG ACAAAGGCAATGAGGTGAACGCAGAACGGATGAAGCTCTTACACCAAGTGTCACGAGTCTGG AGAACAGATGGGTTGAGTAGTTCTTATAAATTAGTATCTGTGGAACACAATCCTTTATA TATCAACATCACAGTGGATTTCTGGTTTGGTGCA**TGA**CCCTGGATCTTTTGGTGATGTTTGG AAGAACTGATTCTTTGCTTTGCAATAATTTTTGGCCTAGAGACTTCAAATAGTAGCACACATTA AGAACCTGTTACAGCTCATTGTTGAGCTGAATTTTTCCTTTTTGTATTTTCTTAGCAGAGCT CCTGGTGATGTAGAGTATAAAACAGTTGTAACAAGACAGCTTTCTTAGTCATTTTGATCATG AGGGTTAAATATTGTAATATGGATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGAT TATGGGATAAAAGGCCACAGGAAATAAGACTGCTGAATGTCTGAGAAACCAGAGTTGTTCT CGTCCAAGGTAGAAAGGTACGAAGATACAATACTGTTATTCATTTATCCTGTACAATCATCT GTGAAGTGGTGTCAGGTGAGAAGGCGTCCACAAAAGAGGGGAGAAAAGGCGACGAATCA GGACACAGTGAACTTGGGAATGAAGAGGTAGCAGGAGGGTGGAGTGTCGGCTGCAAAGGCAG CAGTAGCTGAGCTGGTTGCAGGTGCTGATAGCCTTCAGGGGAGGACCTGCCCAGGTATGCCT TCCAGTGATGCCCACCAGAGAATACATTCTCTATTAGTTTTTAAAGAGTTTTTTGTAAAATGA TGTCTATCAAATACCTCTGTAGTAAAATGTGAAAAAGCAAAA

FIGURE 161

MGFNLTFHLSYKFRLILLITLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKT
LTNEASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRV
AILVPHRNREKHLMYLLEHLHPFLQRQQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEEN
WDCFIFHDVDLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGVTALSREQFFKVNG
FSNNYWGWGGEDDDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQVSR
VWRTDGLSSCSYKLVSVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites:

amino acids 4-7, 220-223 and 335-338

Xylose isomerase proteins:

amino acids 191-201

FIGURE 162

CGTGGGCCGGGGTCGCGCGGGGCTGTGGGCGCCCGGAGGAGCGACCGCCGCAGTTCTC GAGCTCCAGCTGCATTCCCTCCGCGTCCGCCCCACGCTTCTCCCGCTCCGGGCCCCGCA**ATG** CCCGGCAGGGTGGCCGCAGGCCTGTATGAACTCAATCTCACCACCGATAGCCCTGCCACCA CGGGAGCGGTGGTGACCATCTCGGCCAGCCTGGTGGCCAAGGACAACGGCAGCCTGGCCCTG CCCGCTGACGCCCACCTCTACCGCTTCCACTGGATCCACACCCCGCTGGTGCTTACTGGCAA GATGGAGAAGGGTCTCAGCTCCACCATCCGTGTGGTCGGCCACGTGCCCGGGGAATTCCCGG TCTCTGTCTGGGTCACTGCCGCTGACTGCTGGATGTGCCAGCCTGTGGCCAGGGGCTTTGTG GTCCTCCCCATCACAGAGTTCCTCGTGGGGGGACCTTGTTGTCACCCAGAACACTTCCCTACC GCAACTTCCTCAAGACCGCCTTGTTTCTCTACAGCTGGGACTTCGGGGACGGGACCCAGATG GTGACTGAAGACTCCGTGGTCTATTATAACTATTCCATCATCGGGACCTTCACCGTGAAGCT CAAAGTGGTGGCGGAGTGGGAAGAGGTGGAGCCGGATGCCACGAGGGCTGTGAAGCAGAAGA CCGGGGACTTCTCCGCCTCGCTGAAGCTGCAGGAAACCCTTCGAGGCATCCAAGTGTTGGGG CCCACCCTAATTCAGACCTTCCAAAAGATGACCGTGACCTTGAACTTCCTGGGGAGCCCTCC TCTGACTGTGTGCTGGCGTCTCAAGCCTGAGTGCCTCCCGCTGGAGGAAGGGGAGTGCCACC CTGTGTCCGTGGCCAGCACAGCGTACAACCTGACCCACACCTTCAGGGACCCTGGGGACTAC TGCTTCAGCATCCGGGCCGAGAATATCATCAGCAAGACACATCAGTACCACAAGATCCAGGT GTGGCCCTCCAGAATCCAGCCGGCTGTCTTTGCTTTCCCATGTGCTACACTTATCACTGTGA TGTTGGCCTTCATCATGTACATGACCCTGCGGAATGCCACTCAGCAAAAGGACATGGTGGAG AACCCGGAGCCACCTCTGGGGTCAGGTGCTGCTGCCAGATGTGCTGTGGGCCTTTCTTGCT GGAGACTCCATCTGAGTACCTGGAAATTGTTCGTGAGAACCACGGGCTGCTCCCGCCCCTCT ATAAGTCTGTCAAAACTTACACCGTG**TGA**GCACTCCCCCTCCCCACCCCATCTCAGTGTTAA CTGACTGCTGACTTGGAGTTTCCAGCAGGGTGTGTGCACCACTGACCAGGAGGGGTTCATT TGCGTGGGGCTGTTGGCCTGGATCATCCATCTGTACAGTTCAGCCACTGCCACAAGCC CCTCCCTCTCTGTCACCCCTGACCCCAGCCATTCACCCATCTGTACAGTCCAGCCACTGACA TAAGCCCCACTCGGTTACCACCCCCTTGACCCCTACCTTTGAAGAGGCTTCGTGCAGGACT TTGATGCTTGGGGTGTTCCGTGTTGACTCCTAGGTGGGCCTGCCCACTGCCCATTCCT CTCATATTGGCACATCTGCTGTCCATTGGGGGGTTCTCAGTTTCCTCCCCCAGACAGCCCTAC CTGTGCCAGAGAGCTAGAAAGAGGTCATAAAGGGTTAAAAATCCATAACTAAAGGTTGTAC CACACACACAGAAATATAAACACATGCGTCACATGGGCATTTCAGATGATCAGCTCTGTA TCTGGTTAAGTCGGTTGCTGGGATGCACCCTGCACTAGAGCTGAAAGGAAATTTGACCTCCA AGCAGCCCTGACAGGTTCTGGGCCCGGGCCCTCCCTTTGTGCTTTGTCTCTGCAGTTCTTGC GCCCTTTATAAGGCCATCCTAGTCCCTGCTGGCTGGCAGGGGCCTGGATGGGGGGCAGGACT AATACTGAGTGATTGCAGAGTGCTTTATAAATATCACCTTATTTTATCGAAACCCATCTGTG AAACTTTCACTGAGGAAAAGGCCTTGCAGCGGTAGAAGAGGTTGAGTCAAGGCCGGGCGCGG TGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGTGGATCACGAGATCAGGA AGCCGGGCGTGGTGGTGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATG GTGCGAACCCGGGAGGCGGAGCTTGCAGTGAGCCCAGATGGCGCCACTGCACTCCAGCCTGA GTGACAGAGCGAGACTCTGTCTCCA

FIGURE 163

MAQAVWSRLGRILWLACLLPWAPAGVAAGLYELNLTTDSPATTGAVVTISASLVAKDNGSLA
LPADAHLYRFHWIHTPLVLTGKMEKGLSSTIRVVGHVPGEFPVSVWVTAADCWMCQPVARGF
VVLPITEFLVGDLVVTQNTSLPWPSSYLTKTVLKVSFLLHDPSNFLKTALFLYSWDFGDGTQ
MVTEDSVVYYNYSIIGTFTVKLKVVAEWEEVEPDATRAVKQKTGDFSASLKLQETLRGIQVL
GPTLIQTFQKMTVTLNFLGSPPLTVCWRLKPECLPLEEGECHPVSVASTAYNLTHTFRDPGD
YCFSIRAENIISKTHQYHKIQVWPSRIQPAVFAFPCATLITVMLAFIMYMTLRNATQQKDMV
ENPEPPSGVRCCCQMCCGPFLLETPSEYLEIVRENHGLLPPLYKSVKTYTV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 339-362

N-glycosylation sites.

amino acids 34-37, 58-61, 142-145, 197-200, 300-303 and 364-367

FIGURE 164

FIGURE 165

MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRRDTH FPICIFCCGCCHRSKCGMCCKT

FIGURE 166

CTGTCAGGAAGGACCATCTGAAGGCTGCAATTTGTTCTTAGGGAGGCAGGTGCTGGCCTGGC CTGGATCTTCCACC**ATG**TTCCTGTTGCTGCCTTTTGATAGCCTGATTGTCAACCTTCTGGGC AGTCTCCTTTGGTATCCGCAAACTCTACATGAAAAGTCTGTTAAAAATCTTTTGCGTGGGCTA CCTTGAGAATGGAGCGAGGAGCCAAGGAGAAGACCACCAGCTTTACAAGCCCTACACCAAC GGAATCATTGCAAAGGATCCCACTTCACTAGAAGAAGAGATCAAAGAGATTCGTCGAAGTGG TAGTAGTAAGGCTCTGGACAACACTCCAGAGTTCGAGCTCTCTGACATTTTCTACTTTTGCC GGAAAGGAATGGAGACCATTATGGATGATGAGGTGACAAAGAGATTCTCAGCAGAAGAACTG GAGTCCTGGAACCTGCTGAGCAGAACCAATTATAACTTCCAGTACATCAGCCTTCGGCTCAC GGTCCTGTGGGGGTTAGGAGTGCTGATTCGGTACTGCTTTCTGCTGCCGCTCAGGATAGCAC TGGCTTTCACAGGGATTAGCCTTCTGGTGGTGGGCACAACTGTGGTGGGATACTTGCCAAAT AGCGCTGACAGCCATCACCATGACAGGGAAAACAGACCAAGAAATGGTGGCATCT GTGTGGCCAATCATACCTCACCGATCGATGTGATCATCTTGGCCAGCGATGGCTATTATGCC ATGGTGGGTCAAGTGCACGGGGGACTCATGGGTGATTCAGAGAGCCATGGTGAAGGCCTG CCCACACGTCTGGTTTGAGCGCTCGGAAGTGAAGGATCGCCACCTGGTGGCTAAGAGACTGA CTGAACATGTGCAAGATAAAAGCAAGCTGCCTATCCTCATCTTCCCAGAAGGAACCTGCATC AATAATACATCGGTGATGATGTTCAAAAAGGGAAGTTTTGAAATTGGAGCCACAGTTTACCC TGTTGCTATCAAGTATGACCCTCAATTTGGCGATGCCTTCTGGAACAGCAGCAAATACGGGA TGGTGACGTACCTGCGAATGATGACCAGCTGGGCCATTGTCTGCAGCGTGTGGTACCTG CCTCCCATGACTAGAGAGGCAGATGAAGATGCTGTCCAGTTTGCGAATAGGGTGAAATCTGC CATTGCCAGGCAGGAGGACTTGTGGACCTGCTGTGGGATGGGGGCCTGAAGAGGGAGAAGG TGAAGGACACGTTCAAGGAGGAGCAGCAGAAGCTGTACAGCAAGATGATCGTGGGGAACCAC AAGGACAGGAGCCGCTCC**TGA**GCCTGCCTCCAGCTGGGGGCCCACCGTGCGGGGTGCCAA CGGGCTCAGAGCTGGAGTTGCCGCCGCCGCCCCACTGCTGTGTCCTTTCCAGACTCCAGGG CTCCCGGGCTGCTCTGGATCCCAGGACTCCGGCTTTCGCCGAGCCGCAGCGGGATCCCTGT GCACCCGGCGCAGCCTACCCTTGGTGGTCTAAACGGATGCTGCTGGGTGTTGCGACCCAGGA CGAGATGCCTTGTTTCTTTTACAATAAGTCGTTGGAGGAATGCCATTAAAGTGAACTCCCCA CCTTTGCACGCTGTGCGGGCTGAGTGGTTGGGGAGATGTGGCCATGGTCTTGTGCTAGAGAT GGCGGTACAAGAGTCTGTTATGCAAGCCCGTGTGCCAGGGATGTGCTGGGGGCCGCCACCCG CTCTCCAGGAAAGGCACAGCTGAGGCACTGTGGCTGGCTTCGGCCTCAACATCGCCCCCAGC CTTGGAGCTCTGCAGACATGATAGGAAGGAAACTGTCATCTGCAGGGGCTTTCAGCAAAATG GGCCGCTGACTGGGCCATGGGGAGAACGTGTGTTCGTACTCCAGGCTAACCCTGAACTCCCC ATGTGATGCGCGCTTTGTTGAATGTGTGTCTCGGTTTCCCCATCTGTAATATGAGTCGGGGG AGGACACATCACGTTCAGTGTTTCAAGTACAGGCCCACAAAACGGGGCACGGCAGGCCTGAG TGA

FIGURE 167

MFLLLPFDSLIVNLLGISLTVLFTLLLVFIIVPAIFGVSFGIRKLYMKSLLKIFAWATLRME
RGAKEKNHQLYKPYTNGIIAKDPTSLEEEIKEIRRSGSSKALDNTPEFELSDIFYFCRKGME
TIMDDEVTKRFSAEELESWNLLSRTNYNFQYISLRLTVLWGLGVLIRYCFLLPLRIALAFTG
ISLLVVGTTVVGYLPNGRFKEFMSKHVHLMCYRICVRALTAIITYHDRENRPRNGGICVANH
TSPIDVIILASDGYYAMVGQVHGGLMGVIQRAMVKACPHVWFERSEVKDRHLVAKRLTEHVQ
DKSKLPILIFPEGTCINNTSVMMFKKGSFEIGATVYPVAIKYDPQFGDAFWNSSKYGMVTYL
LRMMTSWAIVCSVWYLPPMTREADEDAVQFANRVKSAIARQGGLVDLLWDGGLKREKVKDTF
KEEQQKLYSKMIVGNHKDRSRS

FIGURE 168

GCCCTCGAAACCAGGACTCCAGCACCTCTGGTCCCGCCCTCACCCGGACCCCTGGCCCTCA CGTCTCCTCCAGGGATGGCGCTGGCGGCTTTGATGATCGCCCTCGGCAGCCTCGGCCTCCAC ACCTGGCAGGCCCAGGCTGTTCCCACCATCCTGCCCCTGGGCCTGGCTCCAGACACCTTTGA CGATACCTATGTGGGTTGTGCAGAGGAGATGGAGGAGGCAGCCCCCCTGCTAAAGGAGG AAATGGCCCACCATGCCCTGCGGGAATCCTGGGAGGCAGCCCAGGAGACCTGGGAGGAC AAGCGTCGAGGGCTTACCTTGCCCCCTGGCTTCAAAGCCCAGAATGGAATAGCCATTATGGT CTACACCAACTCATCGAACACCTTGTACTGGGAGTTGAATCAGGCCGTGCGGACGGGCGGAG GCTCCCGGGAGCTCTACATGAGGCACTTTCCCTTCAAGGCCCTGCATTTCTACCTGATCCGG GCCCTGCAGCTGCGAGGCAGTGGGGGGCTGCAGCAGGGGACCTGGGGAGGTGGTTCCG AGGTGTGGGCAGCCTTCGCTTTGAACCCAAGAGGCTGGGGGACTCTGTCCGCTTGGGCCAGT TTGCCTCCAGCTCCCTGGATAAGGCAGTGGCCCACAGATTTGGGGAGAAGAGGCGGGGCTGT GTGTCTGCGCCAGGGGTGCAGCTAGGGTCACAATCTGAGGGGGCCTCCTCTCTGCCCCCCTG ACATCTGCCACTTAGGAGCCCTGGGAACGGGTGACCTTCATATGACGAAGAGGCACCTCCAG CAGCCTTGAGAAGCAAGAACATGGTTCCGGACCCAGCCCTAGCAGCCTTCTCCCCAACCAGG ATGTTGGCCTGGGGAGGCCACAGCAGGGCTGAGGGAACTCTGCTATGTGATGGGGACTTCCT TGGAGTTTTATTGAGGTAGCTACGTGATTAAATGGTATTGCAGTGTGGA

FIGURE 169

MALAALMIALGSLGLHTWQAQAVPTILPLGLAPDTFDDTYVGCAEEMEEKAAPLLKEEMAHH ALLRESWEAAQETWEDKRRGLTLPPGFKAQNGIAIMVYTNSSNTLYWELNQAVRTGGGSREL YMRHFPFKALHFYLIRALQLLRGSGGCSRGPGEVVFRGVGSLRFEPKRLGDSVRLGQFASSS LDKAVAHRFGEKRRGCVSAPGVQLGSQSEGASSLPPWKTLLLAPGEFQLSGVGP

FIGURE 170

GTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAAT**ATG**GCTGGTTCCCCAACATGCCTCA CCCTCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTG GTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTC TATTGTCTGGACCTTCAACACACCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCA TAGTGACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAG CTCAGCAAACTGAAGAAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACT CCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAG TCACCATGGGTCTGCAGAGCAATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATG GAACATGGGGAAGAGGTGTGATTTATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTC CCATAATGGGTCCATCTCCCCATCTCCTGGAGATGGGGAGAAAGTGATATGACCTTCATCT GCGTTGCCAGGAACCTGTCAGCAGAAACTTCTCAAGCCCCATCCTTGCCAGGAAGCTCTGT GAAGGTGCTGCTGATGACCCAGATTCCTCCATGGTCCTCCTGTGTCTCCTGTTGGTGCCCCT AGTACATTGAAGAGAGAGAGAGGGGCACATTTGTCGGGAAACTCCTAACATATGCCCCCAT TCTGGAGAGACACAGAGTACGACACAATCCCTCACACTAATAGAACAATCCTAAAGGAAGA TCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGATGGAAAATCCCCACTCAC $\tt TGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTATC \textbf{TAG} ACAGCAGTG$ CACTCCCCTAAGTCTCTGCTCA

FIGURE 171

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVT
IQPEGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHV
YEHLSKPKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRW
GESDMTFICVARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLW
FLKRERQEEYIEEKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIP
KKMENPHSLLTMPDTPRLFAYENVI

FIGURE 172

CTGGTTCCCCAACATGCCTCACCCTCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCC TCTGGACCCGTGAAAGAGCTGGTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTC CAAAGTAAAGCAAGTTGACTCTATTGTCTGGACCTTCAACACAACCCCTCTTGTCACCATAC AGCCAGAAGGGGGCACTATCATAGTGACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCA GATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAGAAGAATGACTCAGGGATCTACTATGT GGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACG AGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCAATAAGAATGGCACCTGTGTG ACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGATGTGATTTATACCTGGAAGGCCCT GGGGCAAGCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTCCTGGAGATGGGGAG AAAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCTGTCAGCAGAAACTTCTCAAGCCCC ATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATGGTCCTCCT GTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTGGTTTC ACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACAATCCCTCACACTAA TAGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAA AGATGGAAAATCCCCACTCACTGCTCACGATGCCAGACACCAAGGCTATTTGCCTATGAG

FIGURE 173

FIGURE 174

MKMLLLCLGLTLVCVHAEEASSTGRNFNVEKINGEWHTIILASDKREKIEEHGNFRLFLEQ IHVLENSLVLKVHTVRDEECSELSMVADKTEKAGEYSVTYDGFNTFTIPKTDYDNFLMAHLI NEKDGETFQLMGLYGREPDLSSDIKERFAQLCEEHGILRENIIDLSNANRCLQARE

FIGURE 175

FIGURE 176

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMA IPATTMSLTARKRACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNA NCEFSLKNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRL IHFSVFLGLLLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

FIGURE 177

GTCGAATCCAAATCACTCATTGTGAAAGCTGAGCTCACAGCCGAATAAGCCACCATGAGGCT
GTCAGTGTGTCTCCTGATGGTCTCGCTGGCCCTTTGCTGCTACCAGGCCCATGCTCTTGTCT
GCCCAGCTGTTGCTTCTGAGATCACAGTCTTCTTATTCTTAAGTGACGCTGCGGTAAACCTC
CAAGTTGCCAAACTTAATCCACCTCCAGAAGCTCTTGCAGCCAAGTTGGAAGTGAAGCACTG
CACCGATCAGATATCTTTTAAGAAAACGACTCTCATTGAAAAAAGTCCTGGTGGAAATAGTGAA
AAAATGTGGTGTGACATGTAAAAAATGCTCAACCTGGTTTCCAAAGTCTTTCAACGACACC
CTGATCTTCACTAAAAAATTGTAAAGGTTTCAACACGTTGCTTTAATAAATCACTTGCCCTGC

FIGURE 178

MRLSVCLLMVSLALCCYQAHALVCPAVASEITVFLFLSDAAVNLQVAKLNPPPEALAAKLEV KHCTDQISFKKRLSLKKSWWK

FIGURE 179

FIGURE 180

 ${\tt MERVTLALLLLAGLTALEANDPFANKDDPFYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCK} \\ {\tt YKSSQKQHSPVPEKAIPLITPGSATTC}$

FIGURE 181

 ${\sf GGAGAAGAGGTTGTGGGACAAGCTGCTCCCGACAGAAGGATG}$ TGGCTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGCTGGTTGTGGGCTC CTGGCTACTCGCCCGCATCCTGGCTTGGACCTATGCCTTCTATAACAACTGCCGCCGGCTCC ${\tt AGTGTTTCCCACAGCCCCCAAAACGGAACTGGTTTTGGGGTCACCTGGGCCTGATCACTCCT}$ ACAGAGGGGCTTGAAGGACTCGACCCAGATGTCGGCCACCTATTCCCAGGGCTTTACGGT ATGGCTGGGTCCCATCATCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCA $\tt CCAATGCCTCAGCTGCCATTGCACCCAAGGATAATCTCTTCATCAGGTTCCTGAAGCCCTGG$ CTGGGAGAAGGGATACTGCTGAGTGGCGGTGACAAGTGGAGCCGCCACCGTCGGATGCTGAC GCCCGCCTTCCATTTCAACATCCTGAAGTCCTATATAACGATCTTCAACAAGAGTGCAAACA TCATGCTTGACAAGTGGCAGCACCTGGCCTCAGAGGGCAGCAGTCGTCTGGACATGTTTGAG CACATCAGCCTCATGACCTTGGACAGTCTACAGAAATGCATCTTCAGCTTTGACAGCCATTG TCAGGAGAGCCCAGTGAATATTTGCCACCATCTTGGAGCTCAGTGCCCTTGTAGAGAAAA GAAGCCAGCATATCCTCCAGCACATGGACTTTCTGTATTACCTCTCCCATGACGGCGCGCCC TTCCACAGGGCCTGCCGCCTGGTGCATGACTTCACAGACGCTGTCATCCGGGAGCGGCGTCG CACCCTCCCCACTCAGGGTATTGATGATTTTTTCAAAGACAAAGCCAAGTCCAAGACTTTGG ATTTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGGAAGGCATTGTCAGATGAGGAT ATAAGAGCAGAGGCTGACACCTTCATGTTTGGAGGCCATGACACCACGGCCAGTGGCCTCTC CTGGGTCCTGTACAACCTTGCGAGGCACCCAGAATACCAGGAGCGCTGCCGACAGGAGGTGC AAGAGCTTCTGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCCAGCTGCCC TTCCTGACCATGTGCGTGAAGGAGGCCTGAGGTTACATCCCCCAGCTCCCTTCATCTCCCG ATGCTGCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAAGGCATTACCTGCC $\tt CCCTTCCGCTTTGACCCAGAGAGACAGCAAGGGGGAGGTCACCTCTGGCTTTTATTCCTTTCTC$ CGCAGGGCCCAGGAACTGCATCGGGCAGGCGTTCGCCATGGCGGAGATGAAAGTGGTCCTGG CGTTGATGCTGCACTTCCGGTTCCTGCCAGACCACACTGAGCCCCGCAGGAAGCTGGAA TTGATCATGCGCGCGAGGGCGGGCTTTGGCTGCGGGTGGAGCCCCTGAATGTAGGCTTGCA $\texttt{G}\underline{\textbf{TGA}} \texttt{CTTTCTGACCCATCCACCTGTTTTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA}$

FIGURE 182

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFPQPPKRNWFWG
HLGLITPTEEGLKDSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLF
IRFLKPWLGEGILLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGS
SRLDMFEHISLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYY
LSHDGRRFHRACRLVHDFTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFIDVLLLSKDEDG
KALSDEDIRAEADTFMFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEW
DDLAQLPFLTMCVKESLRLHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVW
PDPEVYDPFRFDPENSKGRSPLAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHT
EPRRKLELIMRAEGGLWLRVEPLNVGLQ

FIGURE 183

FIGURE 184

 $\label{thm:mass} {\tt MYKLASCCLLFTGFLNPLLSLPLLDSREISFQLSAPHEDARLTPEELERASLLQILPEMLGA} \\ {\tt ERGDILRKADSSTNIFNPRGNLRKFQDFSGQDPNILLSHLLARIWKPYKKRETPDCFWKYCV} \\$

FIGURE 185

FIGURE 186

MPSPGTVCSLLLLGMLWLDLAMAGSSFLSPEHQRVQQRKESKKPPAKLQPRALAGWLRPEDG GQAEGAEDELEVRFNAPFDVGIKLSGVQYQQHSQALGKFLQDILWEEAKEAPADKO

FIGURE 187

CGGCCACAGCTGGCATGCTCTGATCGCCATCCTGCTGTATGTCCTCGTCCAGTACCTC $\tt GTGAACCCCGGGGTGCTCCGCACGGACCCCAGATGTCAAGAAT \textbf{ATG} AACACGTGGCTGCTGT$ TCCTCCCCCTGTTCCCGGTGCAGGTGCAGACCCTGATAGTCGTGATCATCGGGATGCTCGTG CTCCTGCTGGACTTTCTTGGCTTGGTGCACCTGGGCCAGCTGCTCATCTTCCACATCTACCT GAGTATGTCCCCCACCCTAAGCCCCCGATCCCCCAAGGCTGGGTGGTCAGAGCTGCTCATC TTACACCTCTACTTGAGTATGTCCCTAACCCTGAGCCCCCACGCCTGGGGCCAGAGTCTTT GTCCCCGTGTGCGCATGTGTTCAGGGTCAGCCTCTCCCAGAAGTGAGATCATGGACAAAAA GGGCAAATCACAGGAAGAAATTAAATCCATGAGGACCCAGCAGGCCCAGCAAGAAGCTGAAC $\verb|TCACGCCGAGACCTGCAGGAGTGCTGCAGGTGCTTGAAGGTAACAAGTTTAAAATGTTCAGA||$ GACAATGGAATGGAATCTATTAGGCAAGAACAGGACATTATGAAATAAGGACAGGTGGACTT AACAACTGAAGCGAGAGCTGTGGTCTTGCTTGGTCTCACAGTGGGCACAGCGGTAGGCGGTC AGTCATGTTGCTGAACGACGGAGGGTAAACTCCCCAGCCCCAAGAAAACCTGTGTTGGAAGT AACAACAACCTCCCTGCTCCTGGCACCAGCCGTTTTGGTCATGGTGGGCCAGCTGCAAAGCG TCTTCCATTCTCTGGGCAGTGGTGGCCCCGAGGCTGTGGCCTCTCAGGGGGGTTTCTGTGGAC ACGGGCAGCAGAGTGTCCAGGCCAGCCCCCAAGAATGCCCTGCTCCTGACAGCTTGGCCA ACCCCTGGTCAGGCAGAGGGAGTTGGGTGGGTCAGGCTCTGGGCTCACCTCCATCTCCAGA GCATCCCCTGCCTGCAGTTGTGGCAAGAACGCCCAGCTCAGAATGAACACACCCCACCAAGA GCCTCCTTGTTCATAACCACAGGTTACCCTACAAACCACTGTCCCCACACACCCTGGGGAT GTTTTAAAACACACCCTCTAACGCATATCTTACAGTCACTGTTGTCTTGCCTGAGGGTTGA ATTTTTTTTAATGAAAGTGCAATGAAAATCACTGGATTAAATCCTACGGACACAGAGCTGAA

FIGURE 188

MNTWLLFLPLFPVQVQTLIVVIIGMLVLLLDFLGLVHLGQLLIFHIYLSMSPTLSPRSPQGW VVRAAHLTPLLEYVPNPEPPTPGARVFVPRVRMCSGSASPRSEIMDKKGKSQEEIKSMRTQQ AQQEAELTPRPAGVVPGA

FIGURE 189

GGAGTGCAGATGGCATCCTTCGGTTCTTCCAGACAAGCTGCAAGACGCTGACC**ATG**GCCAAG ATGGAGCTCTCGAAGGCCTTCTCTGGCCAGCGGACACTCCTATCTGCCATCCTCAGCATGCT ATCACTCAGCTTCTCCACAACATCCCTGCTCAGCAACTACTGGTTTGTGGGCACACAGAAGG TGCCCAAGCCCCTGTGCGAGAAAGGTCTGGCAGCCAAGTGCTTTGACATGCCAGTGTCCCTG CCGGTTCTCCTTCCGGAGCTTCCGGAGTGGCATGTGGCTATCCTGTGAGGAAACTGTGGAAG AACCAGGGGAGAGGTGCCGAAGTTTCATTGAACTTACACCACCAGCCAAGAGAGGTGAGAAA GGACTACTGGAATTTGCCACGTTGCAAGGCCCATGTCACCCCACTCTCCGATTTGGAGGGAA GCGGTTGATGGAGAAGGCTTCCCTCCCCTCCCTTGGGGGCTTTGTGGCAAAAATCCTA TGGTTATCCCTGGGAACGCAGATCACCTACATCGGACTTCAATTCATCAGCTTCCTCCTGCT ACTAACAGACTTGCTACTCACTGGGAACCCTGCCTGTGGGCTCAAACTGAGCGCCTTTGCTG CTGTTTCCTCTGTCAGGTCTCCTGGGGATGGTGGCCCACATGATGTATTCACAAGTC TTCCAAGCGACTGTCAACTTGGGTCCAGAAGACTGGAGACCACATGTTTGGAATTATGGCTG GGCCTTCTACATGGCCTGGCTCCTTCACCTGCTGCATGGCGTCGGCTGTCACCACCTTCA ${\tt ACACGTACACCAGGATGGTGCTGGAGTTCAAGTGCAAGCA{\color{red}{\bf TAG}}{\tt TAAGAGCTTCAAGGAAAAC}}$ CCGAACTGCCTACCACATCACCATCAGTGTTTCCCTCGGCGGCTGTCAAGTGCAGCCCCCAC CGTGGGTCCTTTGACCAGCTACCACCAGTATCATAATCAGCCCATCCACTCTGTCTCTGAGG AAAGAAGCAGTTAGGTCATCTGTAGAGGAAGAGCAGTGTTAGGAGTTAAGCGGGTTTGGGGA GTAGGCTTGAGCCCTACCTTACACGTCTGCTGATTATCAACATGTGCTTAAGCCAACATCCG TCTCTTGAGCATGGTTTTTAGAGGCTACGAATAAGGCTATGAATAAGGGTTATCTTTAAGTC CTAAGGGATTCCTGGGTGCCACTGTTTTTCCTCTACAGCTCCATCTTGTTTCACCCAC CCCACATCTCACACATCCAGAATTCCCTTCTTTACTGATAGTTTCTGTGCCAGGTTCTGGGC TAAACCATGGAGATAAAAAGAAGAGTAAAATACACTTCCCGACCTTAAGGATCTGAAA

FIGURE 190

MAKMELSKAFSGQRTLLSAILSMLSLSFSTTSLLSNYWFVGTQKVPKPLCEKGLAAKCFDMP VSLDGDTNTSTQEVVQYNWETGDDRFSFRSFRSGMWLSCEETVEEPGERCRSFIELTPPAKR GEKGLLEFATLQGPCHPTLRFGGKRLMEKASLPSPPLGLCGKNPMVIPGNADHLHRTSIHQL PPATNRLATHWEPCLWAQTERLCCCFLCPVRSPGDGGPHDVFTSLPSDCQLGSRRLETTCLE LWLGLLHGLALLHLLHGVGCHHLQHVHQDGAGVQVQA

FIGURE 191

AACTGGAAGGAAAGAAAGGTCAGCTTTGGCCCAG<u>ATG</u>TGGTTACCCCTTGGTCTCCTG TCTTTATGTCTTCTCCTCTTCCTATTCTGTCATCTCCCTCACTTAAGTCTCAGGCCTGTCA GCAGCTCCTGTGGACATTGCCATCCCCTCTGGTAGCCTTCAGAGCAAACAGGACAACCTATG TTATGGATGTTTCCACCAACCAGGGTAGTGGCATGGAGCACCGTAACCATCTGTGCTTCTGT GATCTCTATGACAGAGCCACTTCTCCACCTCTGAAATGTTCCCTGCTCTGAAATCTGGCATG GTCTGTTCTCTTATTGTCAACCTCAGCACAACAGGCTGGCGCCAATGGCATTACAGAGAAAG CAATCTGTGTGGCTAGTGGGCAGATTACCATGCAAGCCCCAGGAGAAATGGAGGAGCTTTGT AGCCACCTCCCTGTCAGCCAGTATTAACATGTCCCCTTCCCCCTGCCCCGCCGTAGATTCAG GACATTCGCCCTGTGTGCCACCAAACCAGGACTTTCCCCTTGGCTTGGCATCCCTGGCTCT CTCCTGGTACCCAGCAAGACGTCTGTTCCAGGGCAGTGTAGCATCTTTCAAGCTCCGTTACT ATGGCGATGGCCATGATGTTACAATCCCACTTGCCTGAATAATCAAGTGGGAAGGGGAAGCA GAGGGAAATGGGGCCATGTGAATGCAGCTGCTCTGTTCTCCCTACCCTGAGGAAAAACCAAA TGTTGAAGGGCCACAAGAATGTAGCTGGAGAAGATTGATGAAAGTGCAGGTGTGTAAGGAA ATAGAACAGTCTGCTGGGAGTCAGACCTGGAATTCTGATTCCAAACTCTTTATTACTTTGGG AAGTCACTCAGCCTCCCCGTAGCCATCTCCAGGGTGACGGAACCCAGTGTATTACCTGCTGG AACCAAGGAAACTAACAATGTAGGTTACTAGTGAATACCCCAATGGTTTCTCCAATTATGCC CATGCCACCAAAACAATAAAACAAAATTCTCTAACACTGAAA

FIGURE 192

MWLPLGLLSLCLSPLPILSSPSLKSQACQQLLWTLPSPLVAFRANRTTYVMDVSTNQGSGME HRNHLCFCDLYDRATSPPLKCSLL

FIGURE 193

 \mathtt{CCGCC} GGATGTGCCCTTCCAATATACAACAAATACTGGCCCCTCTTTGTTCTATTTTTTTACATCCTTTCACCTATTCC ATACTGCATAGCAAGAAGATTAGTGGATGATACAGATGCTATGAGTAACGCTTGTAAGGAACTTGCCATCTTTC TTACAACGGGCATTGTCGTGTCAGCTTTTGGACTCCCTATTGTATTTGCCAGAGCACATCTGATTGAGTGGGGA GCTTGTGCACTTGTTCTCACAGGAAACACAGTCATCTTTGCAACTATACTAGGCTTTTTCTTGGTCTTTGGAAG $\texttt{CAATGACGACTTCAGCTGGCAGCAGTGG} \underline{\textbf{TGA}} \texttt{AAAGAAATTACTGAACTATTGTCAAATGGACTTCCTGTCATTT}$ $\tt GTTGGCCATTCACGCACACAGGAGATGGGCAGTTAATGCTGAATGGTATAGCAAGCCTCTTGGGGGTATTTTA$ ${\tt GGTGCTCCCTTCTCACTTTTATTGTAAGCATACTATTTTCACAGAGACTTGCTGAAGGATTAAAAGGATTTTCT}$ $\tt CTTTTGGAAAAGCTTGACTGATTTCACACTTATCTATAGTATGCTTTTTGTGGTGTCCTGCTGAATTTAAATAT$ TTATGTGTTTTTCCTGTTAGGTTGATTTTTTTTGGAATCAATATGCAATGTTAAACACTTTTTTAATGTAATCA ${ t TTTGCATTGGTTAGGAATTCAGAATTCCGCCGGCTCTATTACTGGTCAAGTACATCTTTTCTCTTAAAATTATT$ GGGCCAAGTGTTAATGCCCATGCCCTCCGTTAAGGGTTGTTGGTTTTACTGGTAGACAGATGTTTTGTGGATTG AAAATTATTTATGGAATTGCTACAGAGGAGTGCTTTTCTTCTCAATTGTTAGAAGAATTTATGTTAAACTTTA GGGAAGAAATGACATTGAAATTCCAGTTTTTGAATCCTGTTTCTATTTATAAGTGAAATTTGTGATCTCCTATC AACCTTTCATGTTTACCCTGTTAAAATGGACATACATGGAACCACTACTGATGAGGGACAGTTGTATGTTTGC ${\tt CAGAGTGCCCCTCCCCTGCAAGGCCTTGCCATGATTAACAAGTAACTTGTTAGTCTTACAGATAATTCATGCA}$ TTAACAGTTTAAGATTTAGACCATGGTAATAGTAGTTCTTATTCTCTAAGGTTATATCATATGTAATTTAAAAG TATTTTTAAGACAAGTTTCCTGTATACCTCTGAACTGTTTTGATTTTGAGTTCATCATGATAGATCTGCTGTTT ${\tt CCTTATAAAAGGCATTTGTTGTGAGTTAATGCAAAGTAGCCAAGTCCAGCTATATAGCAGCTTCAGAAACAT}$ ACCTGACCAAAAAATTCCCAGTAACCAGGCATGATCAATTTATAGTGGTCGTTTACATCTAATAATTATCAGGA TTTATGAAGTTTATTTCTCAAGAAAATGGGAATAAATTTGGGATTTGTTCAGCTTTTTTACTAAAGATGCCTAA AGCCACAGGTTTTATTGCCTAACTTAAGCCATGACTTTTAGATATGAGATGACGGGAAGCAGGACGAAATATCG $\tt GGTGCAGGTACACATGAGTTAGAGAGCTGGTGAGACAGTTGGGAACTCTTTGTGCTTGTGATCTACTGGACTTT$ TTTTTTGCAGGAAGTGCATTCTCTGGTCCTATTTTCTGTTCTGGATGTCAGTGCACTGCTACTG $\tt TTTTATCCACTTGGCCACAGACTTTTTCTAACAGCTGCGTATTATTTCTATATACTAATTGCATTGGCAGCATT$ $\tt GTGTCTTTGACCTTGTATACTAGCTTGACATAGTGCTGTCTCTGATTTCTAGGCTAGTTACTTGAGATATGAAT$ AGATTTTAAATATCTATTTTAAAAAAAAAA

FIGURE 194

MAGIKALISLSFGGAIGLMFLMLGCALPIYNKYWPLFVLFFYILSPIPYCIARRLVDDTDAM SNACKELAIFLTTGIVVSAFGLPIVFARAHLIEWGACALVLTGNTVIFATILGFFLVFGSND DFSWQQW

FIGURE 195

GCTGATTTGGGTCTGCCATTGACAGAATGTCAAATAAAAAGGAATTAGCTAGAATATGACCATTAAATGTGCTT CTGAAATATATTTTGAGATAGGTTTAGAATGTCA

FIGURE 196

MDFLLLGLCLYWLLRRPSGVVLCLLGACFQMLPAAPSGCPQLCRCEGRLLYCEALNLTEAPH
NLSGLLGLSLRYNSLSELRAGQFTGLMQLTWLYLDHNHICSVQGDAFQKLRRVKELTLSSNQ
ITQLPNTTFRPMPNLRSVDLSYNKLQALAPDLFHGLRKLTTLHMRANAIQFVPVRIFQDCRS
LKFLDIGYNQLKSLARNSFAGLFKLTELHLEHNDLVKVNFAHFPRLISLHSLCLRRNKVAIV
VSSLDWVWNLEKMDLSGNEIEYMEPHVFETVPHLQSLQLDSNRLTYIEPRILNSWKSLTSIT
LAGNLWDCGRNVCALASWLSNFQGRYDGNLQCASPEYAQGEDVLDAVYAFHLCEDGAEPTSG
HLLSAVTNRSDLGPPASSATTLADGGEGQHDGTFEPATVALPGGEHAENAVQIHKVVTGTMA
LIFSFLIVVLVLYVSWKCFPASLRQLRQCFVTQRRKQKQKQTMHQMAAMSAQEYYVDYKPNH
IEGALVIINEYGSCTCHQQPARECEV

FIGURE 197

GTGCAAGGAGCCGAGGCGAGATGGGCCGTCCTGGGCCGGGTCCTGCTGTGGCTGCAGCTCTGC
GCACTGACCCAGGCGGTCTCCAAACTCTGGGTCCCCAACACGGACTTCGACGTCGCAGCCAA
CTGGAGCCAGAACCGGACCCCGTGCGCCGGCGGCGCGCGTTGAGTTCCCGGCGGACAAGATGG
TGTCAGTCCTGGTGCAAGAAGGTCACGCCGTCTCAGACATGCTCCTGCCGCTGGATGGGGAA
CTCGTCCTGGCTTCAGGAGCCGGATTCGGCGTCTCAGACGTGGGCTCGCACCTGGACTGTGG
CGCGGGCGAACCTGCCGTCTTCCGCGACTCTGACCGCTTCTCCTGGCATGACCCGCACCTGT
GGCGCTCTGGGGACGAGGCACCTGGCCTCTTCTTCGTGGACGCCGAGCGCGTGCCCTGCCGC
CACGACGACGTCTTCTTTCCGCCTAGTGCCTCCTTCCGCGTGGGGCTCGGCCCTGGCGCTAG
CCCCGTGCGTGTCCGCAGCATCTCGGCTCTGGGCCGGACGAGGACCTTGG
CTGTTTTCCTGGCGTCCCGCGCGGGCCGCCTACGCTTCCACGGGCCGGGCGCGCTCTGAGCGTG
GGCCCCGAGGACTGCGCGGACCCTTCGGCTTCCACGGGCCGGAGGCCCAGCCGTG
GGCCCCGAGGACTGCGCGGACCCTTCGGCTTCTGCGCCAACGCGGAGGCCCAGCCGTG
GATCTGCGCGGGCCCCTTCCACCCCT

FIGURE 198

MGVLGRVLLWLQLCALTQAVSKLWVPNTDFDVAANWSQNRTPCAGGAVEFPADKMVSVLVQE GHAVSDMLLPLDGELVLASGAGFGVSDVGSHLDCGAGEPAVFRDSDRFSWHDPHLWRSGDEA PGLFFVDAERVPCRHDDVFFPPSASFRVGLGPGASPVRVRSISALGRTFTRDEDLAVFLASR AGRLRFHGPGALSVGPEDCADPSGCVCGNAEAQPWICAALLQP

FIGURE 199

FIGURE 200

MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIP FARDAVKKCFAVCLA

FIGURE 201

CCGAGGGAGTCTCCTCCAGACCCTCCCTCCCGTTGCTCCAAACTAATACGGACTGAACGGATCGCTGCGAGGGT $\texttt{AACTGATCAAGTACTTTGAAA} \underline{\textbf{ATG}} \texttt{ACTTCGAAATTTATCTTGGTGTCCTTCATACTTGCTGCACTGAGTCTTTC}$ AACCACCTTTTCTCTCCAACTAGACCAGCAAAAGGTTCTACTAGTTTCTTTTGATGGATTCCGTTGGGATTACT TATATAAAGTTCCAACGCCCCATTTTCATTATATTATGAAATATGGTGTTCACGTGAAGCAAGTTACTAATGTT AAATGATATGTTTGATCCTATTCGGAACAAATCTTTCTCCTTGGATCACATGAATATTTATGATTCCAAGTTTT GGGAAGAAGCGACCAATATGGATCACAAACCAGAGGGCAGGACATACTAGTGGTGCAGCCATGTGGCCCGGA ACAGATGTAAAAATACATAAGCGCTTTCCTACTCATTACATGCCTTACAATGAGTCAGTTTCATTTGAAGATAG AGTTGCCAAAATTGTTGAATGGTTTACGTCAAAAGAGCCCATAAATCTTGGTCTTCTCTATTGGGAAGACCCTG ATGACATGGGCCACCATTTGGGACCTGACAGTCCGCTCATGGGGGCCTGTCATTTCAGATATTGACAAGAAGTTA GGATATCTCATACAAATGCTGAAAAAGGCAAAGTTGTGGAACACTCTGAACCTAATCATCACAAGTGATCATGG AATGACGCAGTGCTCTGAGGAAAGGTTAATAGAACTTGACCAGTACCTGGATAAAGACCACTATACCCTGATTG ATCAATCTCCAGTAGCAGCCATCTTGCCAAAAGAAGGTAAATTTGATGAAGTCTATGAAGCACTAACTCACGCT ${\tt CATCCTAATCTTACTGTTTACAAAAAAAAAAAGAAGACGTTCCAGAAAGGTGGCATTACAAATACAACAGTCGAATTCA}$ ACCAATCATAGCAGTGGCTGATGAAGGGTGGCACATTTTACAGAATAAGTCAGATGACTTTCTGTTAGGCAACC TCAAAAGAAGCCATGAACTCCACAGATTTGTACCCACTACTATGCCACCTCCTCAATATCACTGCCATGCCACA CAATGGATCATTCTGGAATGTCCAGGATCTGCTCAATTCAGCAATGCCAAGGGTGGTCCCTTATACACAGAGTA $\verb|CTATACTCCTCCTGGTAGTGTTAAACCAGCAGAATATGACCAAGAGGGGTCATACCCTTATTTCATAGGGGTC| \\$ TCTCTTGGCAGCATTATAGTGATTGTATTTTTTTGTAATTTCATTAAGCATTTAATTCACAGTCAAATACCTGC CTTACAAGATATGCATGCTGAAATAGCTCAACCATTATTACAAGCC**TAA**TGTTACTTTGAAGTGGATTTGCATA TTGAAGTGGAGATTCCATAATTATGTCAGTGTTTAAAGGTTTCAAATTCTGGGAAACCAGTTCCAAACATCTGC ATCCTGCTTTATTTGGACTTGGCGCAGATAATGTATATTTTAGCAACTTTGCACTATGTAAAGTACCTTATAT ${ t ATTGCACTTTAAATTTCTCTCCTGATGGGTACTTTAATTTGAAATGCACTTTATGGACAGTTATGTCTTATAAC$ TTGATTGAAAATGACAACTTTTTGCACCCATGTCACAGAATACTTGTTACGCATTGTTCAAACTGAAGGAAATT TCTAATAATCCCGAATAATGAACATAGAAATCTATCTCCATAAATTGAGAGAAGAAGAAGGTGATAAGTGTTGA AAATTAAATGTGATAACCTTTGAACCTTGAATTTTGGAGATGTATTCCCAACAGCAGAATGCAACTGTGGGCAT ATTCGTTCTAAATATATTGTTTCTGTCATAAAATTATTGTGATTTCCTGATGAGTCATATTACTGTGATTTTCA TAATAATGAAGACACCATGAATATACTTTTCTTCTATATAGTTCAGCAATGGCCTGAATAGAAGCAACCAGGCA AAATCAAATTGGATAAAAAAAAAAAAAAAAAAA

FIGURE 202

MTSKFILVSFILAALSLSTTFSLQLDQQKVLLVSFDGFRWDYLYKVPTPHFHYIMKYGVHVK
QVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPIRNKSFSLDHMNIYDSKFWEEATPIW
ITNQRAGHTSGAAMWPGTDVKIHKRFPTHYMPYNESVSFEDRVAKIVEWFTSKEPINLGLLY
WEDPDDMGHHLGPDSPLMGPVISDIDKKLGYLIQMLKKAKLWNTLNLIITSDHGMTQCSEER
LIELDQYLDKDHYTLIDQSPVAAILPKEGKFDEVYEALTHAHPNLTVYKKEDVPERWHYKYN
SRIQPIIAVADEGWHILQNKSDDFLLGNHGYDNALADMHPIFLAHGPAFRKNFSKEAMNSTD
LYPLLCHLLNITAMPHNGSFWNVQDLLNSAMPRVVPYTQSTILLPGSVKPAEYDQEGSYPYF
IGVSLGSIIVIVFFVIFIKHLIHSQIPALQDMHAEIAQPLLQA

Signal Peptide:

amino acids 1-22

Transmembrane Domain:

amino acids 429-452

N-glycosylation sites:

amino acids 101-104, 158-161, 292-295, 329-332, 362-365, 369-372, 382-385, 389-392

Somatomedin B Domain:

amino acids 69-85

Sulfatase protein Region:

amino acids 212-241

FIGURE 203

GGATTTTTGTGATCCGCGATTCGCTCCCACGGGCGGGACCTTTGTAACTGCGGGAGGCCCAG AGAGAGGCCAAGCCCTTGCCTTGGGTCACACAGCCAAAGGAGGCAGAGCCAGAACTCACAA CCAGATCCAGAGGCAACAGGGAC<mark>ATG</mark>GCCACCTGGGACGAAAAGGCAGTCACCCGCAGGGCC AAGGTGGCTCCCGCTGAGAGGATGAGCAAGTTCTTAAGGCACTTCACGGTCGTGGGAGACGA AGCAGCCACCACCACCAGTCTCAGGCGAGGAAGGCAGAGCTGCAGCCCCTGACGTTGCC CCTGCCCTGGCCCCGCACCCAGGGCCCCCCTTGACTTCAGGGGCATGTTGAGGAAACTGTT CAGCTCCCACAGGTTTCAGGTCATCATCTGCTTGGTGGTTCTGGATGCCCTCCTGGTGC TTGCTGAGCTCATCCTGGACCTGAAGATCATCCAGCCCGACAAGAATAACTATGCTGCCATG ATTTGTCTTCCGCCTGAGTTCTTTCACCACAAGTTTGAGATCCTGGATGCCCGTCGTGGTGG TGGTCTCATTCATCCTGGACATTGTCCTCCTGTTCCAGGAGCACCAGTTTGAGGCTCTGGGC CTGCTGATTCTGCTCCGGCTGTGGCCGGGTGGCCCGGATCATCAATGGGATTATCATCTCAGT TAAGACACGTTCAGAACGGCAACTCTTAAGGTTAAAACAGATGAATGTACAATTGGCCGCCA $A {\sf GATTCAACACCTTGAGTTCAGCTGCTCTGAGAAGCCCCTGGAC} {\sf TGA} {\sf TGAGTTTGCTGTATCTGTATCT$ AACCTGTAAGGAGAAGCTCTCTCCGGATGGCTATGGGAATGAAAGAATCCGACTTCTACTCT CACACAGCCACCGTGAAAGTCCTGGAGTAAAATGTGCTGTGTACAGAAGAGAGAAGAAGAAG CAGGCTGGCATGTTCACTGGGCTGGTTTACGACAGAGAACCTGACAGTCACTGGCCAGTTA TCACTTCAGATTACAAATCACACAGAGCATCTGCCTGTTTTCAATCACAAGAGAACAAAACC AAAATCTATAAAGATATTCTGAAAATATGACAGAATTTGACAAATAAAAGCATAAACGTGTA

FIGURE 204

MATWDEKAVTRRAKVAPAERMSKFLRHFTVVGDDYHAWNINYKKWENEEEEEEEQPPPTPV SGEEGRAAAPDVAPAPGPAPRAPLDFRGMLRKLFSSHRFQVIIICLVVLDALLVLAELILDL KIIQPDKNNYAAMVFHYMSITILVFFMMEIIFKLFVFRLSSFTTSLRSWMPVVVVVSFILDI VLLFQEHQFEALGLLILLRLWRVARIINGIIISVKTRSERQLLRLKQMNVQLAAKIQHLEFS CSEKPLD

FIGURE 205

CGGCTCGAGCTCGAGCCGAATCGGCTCGAGGGCCAGTGGAGCACCCAGCAGCCCCAACAT $\underline{\mathbf{c}}$ CTCTGTCTGTGCCTGTACGTGCCGGTCATCGGGGAAGCCCAGACCGAGTTCCAGTACTT $\overline{\mathrm{TG}}$ $\overline{ ext{A}}$ GTCGAAGGGGCTCCCTGCCGAGCTGAAGTCCATTTTCAAGCTCAGTGTCTTCATCCCCTCC CAGGAATTCTCCACCTACCGCCAGTGGAAGCAGAAAATTGTACAAGCTGGAGATAAGGACCT TGATGGGCAGCTAGACTTTGAAGAATTTGTCCATTATCTCCAAGATCATGAGAAGAAGCTGA GGCTGGTGTTTAAGATTTTGGACAAAAAGAATGATGGACGCATTGACGCGCAGGAGATCATG CATGGATAAAAACGGCACGATGACCATCGACTGGAACGAGTGGAGAGACTACCACCTCCTCC ACCCCGTGGAAAACATCCCCGAGATCATCCTCTACTGGAAGCATTCCACGATCTTTGATGTG GGTGAGAATCTAACGGTCCCGGATGAGTTCACAGTGGAGGAGAGGCAGACGGGGATGTGGTG GAGACACCTGGTGGCAGGAGGTGGGGCCAGGGGCCGTATCCAGAACCTGCACGGCCCCCTGG ACAGGCTCAAGGTGCTCATGCAGGTCCATGCCTCCCGCAGCAACAACATGGGCATCGTTGGT GGCTTCACTCAGATGATTCGAGAAGGAGGGGCCAGGTCACTCTGGCGGGGCAATGGCATCAA CGTCCTCAAAATTGCCCCCGAATCAGCCATCAAATTCATGGCCTATGAGCAGATCAAGCGCC TTGTTGGTAGTGACCAGGAGACTCTGAGGATTCACGAGAGGCTTGTGGCAGGGTCCTTGGCA GGACCCCGGCGTGTTTGTGCTCCTGGCCTGTGGCACCATGTCCAGTACCTGTGGCCAGCTGG CCAGCTACCCCTGGCCCTAGTCAGGACCCGGATGCAGGCGCAAGCCTCTATTGAGGGCGCTCCGGAGGTGACCATGAGCAGCCTCTTCAAACATATCCTGCGGACCGAGGGGGCCTTCGGGCT GTACAGGGGGCTGGCCCCCAACTTCATGAAGGTCATCCCAGCTGTGAGCATCAGCTACGTGG GCAGTGGACTCGCTGATCCTGGGCCGCAGCCTGGGGTGTGCAGCCATCTCATTCTGTGAATG TGGTGCTCTGAGCTGGCCTGGACCCTGTCAGGATGGGCCCCACCTCAGAACCAAACTCACTG TCCCCACTGTGGCATGAGGGCAGTGGAGCACCATGTTTGAGGGCGAAGGGCAGAGCGTTTGT CTGTCCAGAGAAATTCCTTTTGGGACTGGAGGCAGAAAAGCGGCCAGAAGGCAGCCCTGGCCCTTTCCTTTGGCAGGTTGGGGAAGGGCTTGCCCCAGCCTTAGGATTTCAGGGTTTGA CTGGGGGCGTGGAGAGAGGGGGGAGCCTCAATAACCTTGAAGGTGGAATCCAGTTATTTC ATTCCACCAGAATGACCTGATGAGGAAATCTTCAATAGGATGCAAAGATCAATGCAAAAATT

FIGURE 206

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSTYRQWKQKIVQAGDKD LDGQLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILK SMDKNGTMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTVEERQTGMW WRHLVAGGGAGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGI NVLKIAPESAIKFMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMAL RKTGQYSGMLDCARRILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNS ADPGVFVLLACGTMSSTCGQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFG LYRGLAPNFMKVIPAVSISYVVYENLKITLGVQSR

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 284-304, 339-360, 376-394

Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

N-glycosylation site.

amino acids 129-133, 169-173

Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

FIGURE 207

GGAAGGCAGCGGCAGCTCCACTCAGCCAGTACCCAGATACGCTGGGAACCTTCCCCAGCC<u>AT</u> CAATTGCACTCATCATTGGCTTTGGTATTTCAGGGAGACACTCCATCACAGTCACTACTGTC GCCTCAGCTGGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAA ACTTTCTGATATCGTGATACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCA AAGAAGGCAAAGATGAGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTT GCTGATCAAGTGATAGTTGGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGC TGGCACCTACAAATGTTATATCATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATA AAACTGGAGCCTTCAGCATGCCGGAAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTG CGGTGTGAGGCTCCCCGATGGTTCCCCCAGCCCACAGTGGTCTGGGCATCCCAAGTTGACCA GGGAGCCAACTTCTCGGAAGTCTCCAATACCAGCTTTGAGCTGAACTCTGAGAATGTGACCA TGAAGGTTGTGTCTGTGCTCTACAATGTTACGATCAACAACACATACTCCTGTATGATTGAA AATGACATTGCCAAAGCAACAGGGGATATCAAAGTGACAGAATCGGAGATCAAAAGGCGGAG GGGCACTTCTGCCTCTCAGCCCTTACCTGATGCTAAAAATGTGTGCCTTGGCCACAAAAAAG CATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTTCACCACCAGATATGACCTAG TTTTATATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTGAGCAAACAAGAGCA GACATATTAGAAGTTGGGAAAATAATTCATGTGAACTAGACAAGTGTGTTAAGAGTGATAAG GGGGAGTGAGAGGACAGGATAGTGCATGTTCTTTGTCTCTGAATTTTTAGTTATATGTGCTG TAATGTTGCTCTGAGGAAGCCCCTGGAAAGTCTATCCCAACATATCCACATCTTATATTCCA CAAATTAAGCTGTAGTATGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAGG GGCGGCTGCATTTTAGTAATGGGTCAAATGATTCACTTTTTATGATGCTTCCAAAGGTGCCT TGGCTTCTCTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAA ACAGAGCAGTCGGGGACACCGATTTTATAAATAAACTGAGCACCTTCTTTTTAAACAAAAA

FIGURE 208

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDI KLSDIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTD AGTYKCYIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVD QGANFSEVSNTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRR SHLQLLNSKASLCVSSFFAISWALLPLSPYLMLK

FIGURE 209

GAATTTGTAGAAGACAGCGGCGTTGCC**ATG**GCGGCGTCTCTGGGGCAGGTGTTGGCTCTGGT GCTGGTGGCCGCTCTGTGGGGTGGCACGCAGCCGCTGCTGAAGCGGGCCTCCGCCGGCCTGC AGCGGGTTCATGAGCCGACCTGGGCCCAGCAGTTGCTACAGGAGATGAAGACCCTCTTCTTG AATACTGAGTACCTGATGCCCTTTCTCCTCAACCAGTGTGGATCCCTTCTCTATTACCTCAC CTTGGCATCGACAGATCTGACCCTGGCTGTGCCCATCTGTAACTCTCTGGCTATCATCTTCA CACTGATTGTTGGGAAGGCCCTTGGAGAAGATATTGGTGGAAAACGTAAGTTAGACTACTGC CTCCCCAGAGTGGGTGAGGACACGGCCTTTTCCCATCCTGCCCTTTTCCTCTGCAGCTGTTTT GCTTCCTTGTGGCCATCAGAGTTCCCTTCCCCTGGACAGTCTGGAGAAAGACAGAGGCTGGG $\tt GTTTGGGAT \underline{\textbf{TGA}} A GACCAGACCCCATCTGAGCCCTTCCTCCAGCCCTGTACCAGCTCCTACT$ GGCATGGCTGAGCTCAGACCCTCCTGATTTCTGCCTATTATCCCAGGAGCAGTTGCTGGCAT GGTGCTCACCGTGATAGGAATTTCACTCTGCATCACAAGCTCAGTGAGTAAGACCCAGGGGC AACAGTCTACCCTTTGAGTGGGCCGAACCCACTTCCAGCTCTGCTGCCTCCAGGAAGCCCCT GGGCCATGAAGTGCTGGCAGTGAGCGGATGGACCTAGCACTTCCCCTCTCTGGCCTTAGCTT CCTCCTCTTATGGGGATAACAGCTACCTCATGGATCACAATAAGAGAACAAGAGTGAAAG AGTTTTGTAACCTTCAAGTGCTGTTCAGCTGCGGGGATTTAGCACAGGAGACTCTACGCTCA CCCTCAGCAACCTTTCTGCCCCAGCAGCTCTCTTCCTGCTAACATCTCAGGCTCCCAGCCCA GCCACCATTACTGTGGCCTGATCTGGACTATCATGGTGGCAGGTTCCATGGACTGCAGAACT CCAGCTGCATGGAAAGGGCCAGCTGCAGACTTTGAGCCAGAAATGCAAACGGGAGGCCTCTG GGACTCAGTCAGAGCGCTTTGGCTGAATGAGGGGTGGAACCGAGGGAAGAAGGTGCGTCGGA AAATCCTCACTGCCAGCCCCTCTTAAACAGGTAGAGAGCTGTGAGCCCCAGCCCACCTGAC

FIGURE 210

MAASLGQVLALVLVAALWGGTQPLLKRASAGLQRVHEPTWAQQLLQEMKTLFLNTEYLMPFL LNQCGSLLYYLTLASTDLTLAVPICNSLAIIFTLIVGKALGEDIGGKRKLDYCECGTQLCGS RHTCVSSFPEPISPEWVRTRPFPILPFPLQLFCFLVAIRVPFPWTVWRKTEAGVWD

FIGURE 211

CTTCTGTAGGACAGTCACCAGGCCAGATCCAGAAGCCTCTCTAGGCTCCAGCTTTCTCTGTG GAAGATGACAGCAATTATAGCAGGACCCTGCCAGGCTGTCGAAAAGATTCCGCAATAAAACT TTGCCAGTGGGAAGTACCTAGTGAAACGGCCTAAGATGCCACTTCTTCTCATGTCCCAGGCT ${\tt TGAGGCCCTGTGGTCCCCATCCTTGGGAGAAGTCAGCTCCAGCACC{\color{red} {\bf ATG}}{\tt AAGGGCATCCTCG}}$ TTGCTGGTATCACTGCAGTGCTTGTTGCAGCTGTAGAATCTCTGAGCTGCGTGCAGTGTAAT TCATGGGAAAAATCCTGTGTCAACAGCATTGCCTCTGAATGTCCCTCACATGCCAACACCAG CTGTATCAGCTCCTCAGCCAGCTCCTCTCTAGAGACACCAGTCAGATTATACCAGAATATGT TCTGCTCAGCGGAGAACTGCAGTGAGGAGACACACATTACAGCCTTCACTGTCCACGTGTCT GCTGAAGAACACTTTCATTTTGTAAGCCAGTGCTGCCAAGGAAAGGAATGCAGCAACACCAG CGATGCCCTGGACCCTCCCTGAAGAACGTGTCCAGCAACGCAGAGTGCCCTGCTTGTTATG AATCTAATGGAACTTCCTGTCGTGGGAAGCCCTGGAAATGCTATGAAGAAGAACAGTGTGTC TTTCTAGTTGCAGAACTTAAGAATGACATTGAGTCTAAGAGTCTCGTGCTGAAAGGCTGTTC CAACGTCAGTAACGCCACCTGTCAGTTCCTGTCTGGTGAAAACAAGACTCTTGGAGGAGTCA TCCCACAACGTGGGCTCCAAAGCTTCCCTCTACCTCTTGGCCCTTGCCAGCCTCCTTCTTCG ${\tt GGGACTGCTGCCC} \underline{{\tt TGA}} {\tt GGTCCTGGGGGCTGCACTTTGCCCAGCACCCCATTTCTGCTTCTCTG}$ AGGTCCAGAGCACCCCTGCGGTGCTGACACCCTCTTTCCCTGCTCTGCCCCGTTTAACTGC CCAGTAAGTGGGAGTCACAGGTCTCCAGGCAATGCCGACAGCTGCCTTGTTCTTCATTATTA

FIGURE 212

MKGILVAGITAVLVAAVESLSCVQCNSWEKSCVNSIASECPSHANTSCISSSASSSLETPVR LYQNMFCSAENCSEETHITAFTVHVSAEEHFHFVSQCCQGKECSNTSDALDPPLKNVSSNAE CPACYESNGTSCRGKPWKCYEEEQCVFLVAELKNDIESKSLVLKGCSNVSNATCQFLSGENK TLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKASLYLLALASLLLRGLLP

FIGURE 213

GGGCTTGCCTCACTGGCCACCCTCCCAACCCCAAGAGCCCAGCCCCATGGTCCCCGCCGCCG GCGCGCTGCTGTGGGTCCTGCTGAATCTGGGTCCCCGGGCGGCGGGGGCCCAAGGCCTG ACCCAGACTCCGACCGAAATGCAGCGGGTCAGTTTACGCTTTGGGGGCCCCATGACCCGCAG CTACCGGAGCACCGCCCGGACTGGTCTTCCCCGGAAGACAAGGATAATCCTAGAGGACGAGA ATGATGCCATGGCCGACGCCGCCTGGCTGGACCAGCGGCTGCCGAGCTCTTGGCCGCC ACGGTGTCCACCGGCTTTAGCCGGTCGTCCGCCATTAACGAGGAGGATGGGTCTTCAGAAGA GGGGGTTGTGATTAATGCCGGAAAGGATAGCACCAGCAGAGAGCTTCCCAGTGCGACTCCCA ATACAGCGGGGAGTTCCAGCACGAGGTTTATAGCCAATAGTCAGGAGCCTGAAATCAGGCTG ACTTCAAGCCTGCCGCGCTCCCCGGGAGGTCTACTGAGGACCTGCCAGGCTCGCAGGCCAC CCTGAGCCAGTGGTCCACACCTGGGTCTACCCCGAGCCGGTGGCCGTCACCCTCACCCACAG CCATGCCATCTCCTGAGGATCTGCGGCTGGTGCTGATGCCCTGGGGCCCGTGGCACTGCCAC TGCAAGTCGGGCACCATGAGCCGGAGCCGGTCTGGGAAGCTGCACGGCCTTTCCGGGCGCCT TCGAGTTGGGGCGCTGAGCCAGCTCCGCACGGAGCACAAGCCTTGCACCTATCAACAATGTC CCTGCAACCGACTTCGGGAAGAGTGCCCCCTGGACAAGTCTCTGTACTGACACCAACTGT GCCTCTCAGAGCACCACCAGTACCAGGACCACCACTACCCCCTTCCCCACCATCCACCTCAG AAGCAGTCCCAGCCTGCCAGCCCTGCCCAGCCCTGGCTTTTTGGAAACGGGTCA GGATTGGCCTGGAGGATATTTGGAATAGCCTCTCTTCAGTGTTCACAGAGATGCAACCAATA GACAGAAACCAGAGG**TAA**TGGCCACTTCATCCACATGAGGAGATGTCAGTATCTCAACCTCT CTTGCCCTTTCAATCCTAGCACCCACTAGATATTTTTAGTACAGAAAAACAAAACTGGAAAA CACAA

FIGURE 214

MVPAAGALLWVLLLNLGPRAAGAQGLTQTPTEMQRVSLRFGGPMTRSYRSTARTGLPRKTRI ILEDENDAMADADRLAGPAAAELLAATVSTGFSRSSAINEEDGSSEEGVVINAGKDSTSREL PSATPNTAGSSSTRFIANSQEPEIRLTSSLPRSPGRSTEDLPGSQATLSQWSTPGSTPSRWP SPSPTAMPSPEDLRLVLMPWGPWHCHCKSGTMSRSRSGKLHGLSGRLRVGALSQLRTEHKPC TYQQCPCNRLREECPLDTSLCTDTNCASQSTTSTRTTTTPFPTIHLRSSPSLPPASPCPALA FWKRVRIGLEDIWNSLSSVFTEMQPIDRNQR

FIGURE 215

GCGGCGCTGGCGAGCGGCTCCCAGGGCGACCGTGAGCCGGTGTACCGCGACTGCGTACTGCAGTGCGAAGAGCA GTCGGGACGACTGTAAGTATGAGTGTATGTGGGTCACCGTTGGGCTCTACCTCCAGGAAGGTCACAAAGTGCCT CAATGGCCTGGCCAGCCTGGTGATGCTCTGCCGCTACCGCACCTTCGTGCCAGCCTCCTCCCCCATGTACCACA $\tt CCTGTGTGGCCTTGGGTGTCCCTCAATGCATGGTTCTGGTCCACAGTCTTCCACACCAGGGACACTGAC$ CTCACAGAGAAAATGGACTACTTCTGTGCCTCCACTGTCATCCTACACTCAATCTACCTGTGCTGCGTCAGGAC CGTGGGGCTGCAGCCCAGCTGTGGTCAGTGCCTTCCGGGCTCTCCTGCTGCTCATGCTGACCGTGCACGTCT $\tt CCTACCTGAGCCTCATCCGCTTCGACTATGGCTACAACCTGGTGGCCAACGTGGCTATTGGCCTGGTCAACGTG$ GTGTGGTGGCTGGCTGGTGCCTGTGGAACCAGCGGCGGCTGCCTCACGTGCGCAAGTGCGTGGTGGTGGTCTT GCTGCTGCAGGGGCTGTCCCTGCTCGAGCTGCTTGACTTCCCACCGCTCTTCTGGGTCCTGGATGCCCATGCCA AAGGAATCAGAGGACAAGTTCAAGCTGGAC<u>TGA</u>AGACCTTGGAGCGAGTCTGCCCCAGTGGGGATCCTGCCCCC GCCCTGCTGGCCTCCCTTCTCCCCTCAACCCTTGAGATGATTTTCTCTTTTCAACTTCTTGAACTTGGACATGA AGGATGTGGGCCCAGAATCATGTGGCCAGCCCACCCCTGTTGGCCCTCACCAGCCTTGGAGTCTGTTCTAGGG ${\tt AAGGCCTCCCAGCATCTGGGACTCGAGAGTGGGCAGCCCCTCTACCTCCTGGAGCTGAACTGGGGTGGAACTGA}$ GTGTGTTCTTAGCTCTACCGGGAGGACAGCTGCCTGTTTCCTCCCCACCAGCCTCCCCACATCCCCAGCTG $\tt CCTGGCTGGGTCCTGAAGCCCTCTGTCTACCTGGGAGACCAGGGACCACAGGCCTTAGGGATACAGGGGGTCCC$ GGTTCACGGCGATTCTCCCCATGGGATCTTGAGGGACCAAGCTGCTGGGATTGGGAAGGAGTTTCACCCTGACC GTTGCCCTAGCCAGGTTCCCAGGAGGCCTCACCATACTCCCTTTCAGGGCCAGGGCTCCAGCAAGCCCAGGGCA AGGATCCTGTGCTGCTGTCTGGTTGAGAGCCTGCCACCGTGTGTCGGGAGTGTGGGCCAGGCTGAGTGCATAGG TGACAGGCCGTGAGCATGGGCCTGGGTGTGTGAGCTCAGGCCTAGGTGCGCAGTGTGGAGACGGGTGTTGT TGCGCGTGCTGGTGGGCATGTGAGATGAGTGACTGCCGGTGAATGTGTCCACAGTTGAGAGGTTGGAGCAGGAT GAGGGAATCCTGTCACCATCAATAATCACTTGTGGAGCGCCAGCTCTGCCCAAGACGCCACCTGGGCGGACAGC CAGGAGCTCTCCATGGCCAGGCTGCCTGTGTGCATGTTCCCTGTCTGGTGCCCCTTTGCCCGCCTCCTGCAAAC GCTGCCAGCCCTTTGCCATAGCCTGATTTTGGGGAGGAGGAGGGGCGATTTGAGGGAGAAGGGGAGAAAGCT ACACTATGCCTGTGCCCTGGTAAAGGTGACCCCTGCCATTTACCAGCAGCCCTGGCATGTTCCTGCCCCACAGG AATAGAATGGAGGGAGCTCCAGAAACTTTCCATCCCAAAGGCAGTCTCCGTGGTTGAAGCAGACTGGATTTTTG GCCTGCGCTAGCTTCTTTTGATACTGAAAACTTTTAAGGTGGGAGGGTGGCAAGGGATGTGCTTAATAAATCAA TTCCAAGCCTCAAAAAAAAAAAAAAAAA

FIGURE 216

MAGLAARLVLLAGAAALASGSQGDREPVYRDCVLQCEEQNCSGGALNHFRSRQPIYMSLAGW
TCRDDCKYECMWVTVGLYLQEGHKVPQFHGKWPFSRFLFFQEPASAVASFLNGLASLVMLCR
YRTFVPASSPMYHTCVAFAWVSLNAWFWSTVFHTRDTDLTEKMDYFCASTVILHSIYLCCVR
TVGLQHPAVVSAFRALLLLMLTVHVSYLSLIRFDYGYNLVANVAIGLVNVVWWLAWCLWNQR
RLPHVRKCVVVVLLLQGLSLLELLDFPPLFWVLDAHAIWHISTIPVHVLFFSFLEDDSLYLL
KESEDKFKLD

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 105-123, 138-156, 169-185, 193-209, 221-240, 256-272

N-glycosylation site.

amino acids 40-44

N-myristoylation site.

amino acids 43-49

CUB domain proteins profile.

amino acids 285-302

Amiloride-sensitive sodium channels proteins.

amino acids 162-186

FIGURE 217

GGCCGCCTGGAATTGTGGGAGTTGTGTCTGCCACTCGGCTGCCGGAGGCCGAAGGTCCGTGA CTATG GCTCCCCAGAGCCTGCCTTCATCTAGGATGGCTCCTCTGGGCATGCTGCTTGGGCTGCTGATGGCCGCCTGCTTCACCTTCTGCCTCAGTCATCAGAACCTGAAGGAGTTTGCCCTGAC TGGATGCCGAAGTCCTGGAGGTGTTCCACCCGACGCATGAGTGGCAGGCCCTTCAGCCAGGG CAGGCTGTCCCTGCAGGATCCCACGTACGCTGAATCTTCAGACTGGGGAAAGAGAGGCAAA ACTCCAATATGAGGACAAGTTCCGAAATAATTTGAAAGGCAAAAGGCTGGATATCAACACCA ACACCTACACATCTCAGGATCTCAAGAGTGCACTGGCAAAATTCAAGGAGGGGGCAGAGATG GAGAGTTCAAAGGAAGACAAGGCAAGGCAGGCTGAGGTAAAGCGGCTCTTCCGCCCCATTGA GGAACTGAAGAAGACTTTGATGAGCTGAATGTTGTCATTGAGACTGACATGCAGATCATGG TACGGCTGATCAACAAGTTCAATAGTTCCAGCTCCAGTTTGGAAGAAGATTGCTGCGCTC TTTGATCTTGAATATTATGTCCATCAGATGGACAATGCGCAGGACCTGCTTTCCTTTGGTGG TCTTCAAGTGGTGATCAATGGGCTGAACAGCACAGAGCCCCTCGTGAAGGAGTATGCTGCGT TTGTGCTGGGCGCTGCCTTTTCCAGCAACCCCAAGGTCCAGGTGGAGGCCATCGAAGGGGGA GCCCTGCAGAAGCTGCTGGTCATCCTGGCCACGGAGCAGCCGCTCACTGCAAAGAAGAAGT CCTGTTTGCACTGTGCTCCCTGCTGCGCCACTTCCCCTATGCCCAGCGGCAGTTCCTGAAGC TCGGGGGCTGCAGGTCCTGAGGACCCTGGTGCAGGAGAAGGGCACGGAGGTGCTCGCCGTG CGCGTGGTCACACTGCTCTACGACCTGGTCACGGAGAAGATGTTCGCCGAGGAGGAGGCTGA GCTGACCCAGGAGATGTCCCCAGAGAAGCTGCAGCAGTATCGCCAGGTACACCTCCTGCCAG GCCTGTGGGAACAGGGCTGGTGCGAGATCACGGCCCACCTCCTGGCGCTGCCCGAGCATGAT GCCCGTGAGAAGGTGCTGCAGACACTGGGCGTCCTCCTGACCACCTGCCGGGACCGCTACCG TCAGGACCCCCAGCTCGGCAGGACACTGGCCAGCCTGCAGGTGAGTACCAGGTGCTGGCCA GCCTGGAGCTGCAGGATGGTGAGGACGAGGGCTACTTCCAGGAGCTGCTGGGCTCTGTCAAC ${\tt AGCTTGCTGAAGGAGCTGAGATG\underline{A}GGCCCCACACCAGGACTGGACTGGGATGCCGCTAGTGA}$ GGCTGAGGGTGCCAGCGTGGGTGGGCTTCTCAGGCAGGAGGACATCTTGGCAGTGCTGGCT

FIGURE 218

MAPQSLPSSRMAPLGMLLGLLMAACFTFCLSHQNLKEFALTNPEKSSTKETERKETKAEEEL
DAEVLEVFHPTHEWQALQPGQAVPAGSHVRLNLQTGEREAKLQYEDKFRNNLKGKRLDINTN
TYTSQDLKSALAKFKEGAEMESSKEDKARQAEVKRLFRPIEELKKDFDELNVVIETDMQIMV
RLINKFNSSSSSLEEKIAALFDLEYYVHQMDNAQDLLSFGGLQVVINGLNSTEPLVKEYAAF
VLGAAFSSNPKVQVEAIEGGALQKLLVILATEQPLTAKKKVLFALCSLLRHFPYAQRQFLKL
GGLQVLRTLVQEKGTEVLAVRVVTLLYDLVTEKMFAEEEAELTQEMSPEKLQQYRQVHLLPG
LWEQGWCEITAHLLALPEHDAREKVLQTLGVLLTTCRDRYRQDPQLGRTLASLQAEYQVLAS
LELQDGEDEGYFQELLGSVNSLLKELR

Important features:

Signal peptide:

amino acids 1-29

Hypothetical YJL126w/YLR351c/yhcX family protein.

amino acids 364-373

N-glycosylation site.

amino acids 193-197, 236-240

N-myristoylation site.

amino acids 15-21, 19-25, 234-240, 251-257, 402-408, 451-457

Homologous region SLS1 protein.

amino acids 68-340

FIGURE 219

TTCGGCTTCCGTAGAGGAAGTGGCGCGGACCTTCATTTGGGGTTTCGGTTCCCCCCCTTCCC $\tt CTTCCCCGGGGTCTGGGGGTGACATTGCACCGCGCCCCTCGTGGGGTCGCGTTGCCACCCCA$ CGCGGACTCCCAGCTGGCGCCCCCCCCATTTGCCTGTCCTGGTCAGGCCCCCACCCCCC CCGGCCTTCGCGCTTTTCTTGATCACTGTGGCTGGGGACCCGCTTCGCGTTATCATCCTGGT CGCAGGGGCATTTTTCTGGCTGGTCTCCTGCTCCTGGCCTCTGTGGTCTGGTTCATCTTGG TCCATGTGACCGACCGGTCAGATGCCCGGCTCCAGTACGCCTCCTGATTTTTGGTGCTGCT GTCTCTGTCCTTCTACAGGAGGTGTTCCGCTTTGCCTACTACAAGCTGCTTAAGAAGGCAGA TGAAGGGTTAGCATCGCTGAGTGAGGACGGAAGATCACCCATCTCCATCCGCCAGATGGCCT ATGTTTCTGGTCTCCTTCGGTATCATCAGTGGTGTCTTCTCTGTTATCAATATTTTTGGCT GATGCACTTGGGCCAGGTGTGGTTGGGATCCATGGAGACTCACCCTATTACTTCCTGACTTC AGCCTTTCTGACAGCAGCCATTATCCTGCTCCATACCTTTTGGGGAGTTGTGTTCTTTGATG CCTGTGAGAGGGGGTACTGGGCTTTGGGCCTGGTGGTTGGGAGTCACCTACTGACATCG GGACTGACATTCCTGAACCCCTGGTATGAGGCCAGCCTGCTGCCCATCTATGCAGTCACTGT TTCCATGGGGCTCTGGGCCTTCATCACAGCTGGAGGGTCCCTCCGAAGTATTCAGCGCAGCC TCTTGTGTAAGGAC**TGA**CTACCTGGACTGATCGCCTGACAGATCCCACCTGCCTGTCCACTG CCCATGACTGAGCCCAGCCCGGGTCCATTGCCCACATTCTCTGTCTCCTTCTCGTC GGTCTACCCCACTACCTCCAGGGTTTTGCTTTGTCCTTTTGTGACCGTTAGTCTCTAAGCTT TACCAGGAGCAGCCTGGGTTCAGCCAGTCAGTGACTGGTGTTTGAATCTGCACTTATCCC CACCACCTGGGGACCCCCTTGTTGTGTCCAGGACTCCCCCTGTGTCAGTGCTCTGCTCTCAC CCTGCCCAAGACTCACCTCCCTTCCCCTCTGCAGGCCGACGCAGGAGGACAGTCGGGTGAT GGTGTATTCTGCCCTGCGCATCCCACCCGAGGACTGAGGGAACCTAGGGGGGACCCCTGGGC CTGGGGTGCCCTCTGATGTCCTCGCCCTGTATTTCTCCATCTCCAGTTCTGGACAGTGCAG GTTGCCAAGAAAAGGGACCTAGTTTAGCCATTGCCCTGGAGATGAAATTAATGGAGGCTCAA GGATAGATGAGCTCTGAGTTTCTCAGTACTCCCTCAAGACTGGACATCTTGGTCTTTTTCTC GAGGTGGGGGGGGGGGGGGTATATTGGAACTCTTCTAACCTCCTTGGGCTATATTTTCTC TCCTCGAGTTGCTCCTCATGGCTGGGCTCATTTCGGTCCCTTTCTCCTTGGTCCCAGACCTT GGGGGAAAGGAAGTGCATGTTTGGGAACTGGCATTACTGGAACTAATGGTTTTAACCT CCTTAACCACCAGCATCCCTCCTCCCCAAGGTGAAGTGGAGGGTGCTGTGGTGAGCTGGC CACTCCAGAGCTGCAGTGCCACTGGAGGAGTCAGACTACCATGACATCGTAGGGAAGGAGGG ATCATTTTCTGCTGAGGGTGGAGTGTCCCATCCTTTTAATCAAGGTGATTGTGATTTTGACT

FIGURE 220

MGAAVFFGCTFVAFGPAFALFLITVAGDPLRVIILVAGAFFWLVSLLLASVVWFILVHVTDR SDARLQYGLLIFGAAVSVLLQEVFRFAYYKLLKKADEGLASLSEDGRSPISIRQMAYVSGLS FGIISGVFSVINILADALGPGVVGIHGDSPYYFLTSAFLTAAIILLHTFWGVVFFDACERRR YWALGLVVGSHLLTSGLTFLNPWYEASLLPIYAVTVSMGLWAFITAGGSLRSIQRSLLCKD

FIGURE 221

FIGURE 222

GACCGACCGTTCAGATGCCCGGTTCCAGTACGCCTTCCTGATTTTTGGTGCTGCTGTNTCTG
TCCTTCTACAGGAGGTGTTCCGCTTTGCCTANTACAAGCTGCTTAAGAAGGCAGATGAGGGG
TTAGCATNGCTGAGTGAGGACGGAAGATCACCCATTTCCATCCGCCAGATGGCCTATGTTTN
TGGTNTTTCCTTCGGTATCATCAGTGGTGTTTTNTCTGTTATCAATATTTTGGNTGATGCAN
TTGGGCCAGGTGTGGTTGGGATCCATGGAGANTCACCCTATTAATTCCTGAATTCAGCCTTT
NTGACAGCAGCCATTATCCTGNTCCATACCTTTTGGGGAGTTGTGTTTTTTGATGCCTGTGA
GAGGAG

FIGURE 223

FIGURE 224

FIGURE 225

GCCCCAGGGGGGGGGGGTGTTATAACTCAGGCCCGGTGCCCAGAGCCCAGGAGGAGGCAG TGGCCAGGAAGGCACAGGCCTGAGAAGTCTGCGGCTGAGCTGGGAGCAAATCCCCCACCCCC TGTCTGTGCGTCCTGCACCCACATCTTTCTCTGTCCCCTCCTTGCCCTGTCTGGAGGCTGCT AGACTCCTATCTTCTGAATTCTATAGTGCCTGGGTCTCAGCGCAGTGCCGATGGTGGCCCGT CCTTGTGGTTCCTCTACCTGGGGAAATAAGGTGCAGCGGCC**ATG**GCTACAGCAAGACCCC CCTGGATGTGGGTGCTCTGTGCTCTGATCACAGCCTTGCTTCTGGGGGGTCACAGAGCATGTT CTCGCCAACAATGATGTTTCCTGTGACCACCCCTCTAACACCGTGCCCTCTGGGAGCAACCA GGACCTGGGAGCTGGGGCCGGGGAAGACGCCCGGTCGGATGACAGCAGCAGCCGCATCATCA ATGGATCCGACTGCGATATGCACACCCAGCCGTGGCAGGCCGCGCTGTTGCTAAGGCCCAAC CAGCTCTACTGCGGGGCGGTGTTGGTGCATCCACAGTGGCTGCTCACGGCCGCCCACTGCAG GAAGAAAGTTTTCAGAGTCCGTCTCGGCCACTACTCCCTGTCACCAGTTTATGAATCTGGGC AGCAGATGTTCCAGGGGGTCAAATCCATCCCCCACCCTGGCTACTCCCACCCTGGCCACTCT AACGACCTCATGCTCATCAAACTGAACAGAAGAATTCGTCCCACTAAAGATGTCAGACCCAT CCAAGAGCCCCCAAGTGCACTTCCCTAAGGTCCTCCAGTGCTTGAATATCAGCGTGCTAAGT CAGAAAAGGTGCGAGGATGCTTACCCGAGACAGATAGATGACACCATGTTCTGCGCCGGTGA ${\tt CAAAGCAGGTAGAGACTCCTGCCAGGGTGATTCTGGGGGGGCCTGTGGTCTGCAATGGCTCCC}$ TGCAGGGACTCGTGTCCTGGGGAGATTACCCTTGTGCCCGGCCCAACAGACCGGGTGTCTAC ACGAACCTCTGCAAGTTCACCAAGTGGATCCAGGAAACCATCCAGGCCAACTCC**TGA**GTCAT CCCAGGACTCAGCACACCGGCATCCCCACCTGCTGCAGGGACAGCCCTGACACTCCTTTCAG ACCCTCATTCCTTCCCAGAGATGTTGAGAATGTTCATCTCTCCAGCCCCTGACCCCATGTCT CCTGGACTCAGGGTCTGCTTCCCCCACATTGGGCTGACCGTGTCTCTAGTTGAACCCTGG GAACAATTTCCAAAACTGTCCAGGGCGGGGGTTGCGTCTCAATCTCCCTGGGGCACTTTCAT CCTCAAGCTCAGGGCCCATCCCTTCTCTGCAGCTCTGACCCAAATTTAGTCCCAGAAATAAA CTGAGAAGTGGAAAAAAAA

FIGURE 226

MATARPPWMWVLCALITALLLGVTEHVLANNDVSCDHPSNTVPSGSNQDLGAGAGEDARSDD SSSRIINGSDCDMHTQPWQAALLLRPNQLYCGAVLVHPQWLLTAAHCRKKVFRVRLGHYSLS PVYESGQQMFQGVKSIPHPGYSHPGHSNDLMLIKLNRRIRPTKDVRPINVSSHCPSAGTKCL VSGWGTTKSPQVHFPKVLQCLNISVLSQKRCEDAYPRQIDDTMFCAGDKAGRDSCQGDSGGP VVCNGSLQGLVSWGDYPCARPNRPGVYTNLCKFTKWIQETIQANS

FIGURE 227

ATGGTCAACGACCGGTGGAAGACCATGGGCGGCGCGCGCGACTTGAGGACCGGCCGCGCGA $\overline{ ext{CAA}}$ GCCGCAGCGGCCGAGCTGCGGCTACGTGCTGCACCGTGCTGCTGGCCTGGCTGTGC TGCTGGCTGTAGCTGTCACCGGTGCCGTGCTCTTCCTGAACCACGCCCACGCGCCGGGCACG GCGCCCCACCTGTCGTCAGCACTGGGGCTGCCAGCGCCAACAGCGCCCTGGTCACTGTGGA AAGGGCGGACAGCTCGCACCTCAGCATCCTCATTGACCCGCGCTGCCCCGACCTCACCGACAGCTCCGCACGCCTGCACGCCTGCACGCCTGCACGCCTGCACGCCTGCACGCCTGACAGAGCACCAGGCC CAGCCACGGCTGGTGGGCGACCAGGAGCAGGAGCTGCTGGACACGCTGGCCGACCAGCTGCC CCGGCTGCTGGCCCGAGCCTCAGAGCTGCAGACGGAGTGCATGGGGCTGCGGAAGGGGCATG GCACGCTGGGCCAGGGCCTCAGCGCCCTGCAGAGTGAGCAGGGCCGCCTCATCCAGCTTCTC TCTGAGAGCCAGGGCCACATGGCTCACCTGGTGAACTCCGTCAGCGACATCCTGGATGCCCT ACGGCTCCGTGAACTTCTTCCGGGGGCTGGGACGCGTACCGAGACGGCTTTGGCAGGCTCACC GGGGAGCACTGGCTAGGGCTGGGACGCCTGACCACACAGGCTGCCTACGAGCT GCACGTGGACCTGGAGGACTTTGAGAATGCACGGCCTATGCCCGCTACGGGAGCTTCGGCG TGGGCTTGTTCTCCGTGGACCCTGAGGAAGACGGGTACCCGCTCACCGTGGCTGACTATTCC GGCACTGCAGGCGACTCCCTCATGAAGCACAGCGGCATGAGGTTCACCACCAAGGACCGTGA CAGCGACCATTCAGAGAACAACTGTGCCGCCTTCTACCGCGGTGCCTGGTGGTACCGCAACT TGCTGTTTGCCGTCCCCTGGCCAGGATGGTGGAGTCTGCCCAGGCACCCTCTGCCCTGCCC GGCCAAATACCCGGCATTATGGGGACAGAGAGCAGGGGGGCAGACAGCACCCCTGGAGTCCTCCTGAGCAGATCGTGGGGAATGTCAGGTCTCTCTGAGGTCAGGTCTGAGGCCAGTATCCTCCAG GCTTGTACAACCCCCACCAATTTCCCAGGGACTCCAGGGTCCTGAGGCCTCCCAGGAGG GCCTTGGGGGTGATGACCCCTTCCCTGAGGTGGCTGTCTCCATGAGGAGGCCAACCCTTGCC ATTGACCGTGGCCACCTGGACCCAGGCCAGGCCCGGCCAGTGGTCAAGGGACAGGGACACCTCACCGGGCAAATGGGGTCGGGGGGACTGGGGCACCAGACCAGGCACCACCTGGACA GCCTAGCAGCCTCTCCTCGGGCAGGAGGGGGGGGGTGGCTTCCTCCAAAGGACACCCGATGGCA GGTGCCTAGGGGGTGTGGGGTTCCGTTCTCCCTTCCCACTGAAGTTTGTGCTTAAAA AACAATAAATTTGACTTGGCACCACTGGGGGTTGGTGGGAGAGGCCGTGTGACCTGGCTCTC TGTCCCAGTGCCACCAGGTCATCCACATGCGCAG

FIGURE 228

MVNDRWKTMGGAAQLEDRPRDKPQRPSCGYVLCTVLLALAVLLAVAVTGAVLFLNHAHAPGT APPPVVSTGAASANSALVTVERADSSHLSILIDPRCPDLTDSFARLESAQASVLQALTEHQA QPRLVGDQEQELLDTLADQLPRLLARASELQTECMGLRKGHGTLGQGLSALQSEQGRLIQLL SESQGHMAHLVNSVSDILDALQRDRGLGRPRNKADLQRAPARGTRPRGCATGSRPRDCLDVL LSGQQDDGVYSVFPTHYPAGFQVYCDMRTDGGGWTVFQRREDGSVNFFRGWDAYRDGFGRLT GEHWLGLKRIHALTTQAAYELHVDLEDFENGTAYARYGSFGVGLFSVDPEEDGYPLTVADYS GTAGDSLLKHSGMRFTTKDRDSDHSENNCAAFYRGAWWYRNCHTSNLNGQYLRGAHASYADG VEWSSWTGWQYSLKFSEMKIRPVREDR

FIGURE 229

GCAGTCAGAGACTTCCCCTGCCCCTCGCTGGGAAAGAACATTAGGAATGCCTTTTAGTGCCT TGCTTCCTGAACTAGCTCACAGTAGCCCGGCGGCCCAGGGCAATCCGACCACATTTCACTCT CACCGCTGTAGGAATCCAGATGCAGGCCAAGTACAGCAGCACGAGGGACATGCTGGATGATG ATGGGGACACCACGATGAGCCTGCATTCTCAAGCCTCTGCCACAACTCGGCATCCAGAGCCC CGGCGCACAGAGCACAGGGCTCCCTCTTCAACGTGGCGACCAGTGGCCCTGACCCTGCTGAC TTTGTGCTTGGTGCTGATAGGGCTGGCAGCCCTGGGGCTTTTGTTTTTCAGTACTACC AGCTCTCCAATACTGGTCAAGACACCATTTCTCAAATGGAAGAAGATTAGGAAATACGTCC CAAGAGTTGCAATCTCTTCAAGTCCAGAATATAAAGCTTGCAGGAAGTCTGCAGCATGTGGC TGAAAAACTCTGTCGTGAGCTGTATAACAAAGCTGGAGCACACAGGTGCAGCCCTTGTACAG AACAATGGAAATGGCATGGAGACAATTGCTACCAGTTCTATAAAGACAGCAAAAGTTGGGAG CCTGGAATTTGCCGCGTCTCAGAGCTACTCTGAGTTTTTCTACTCTTATTGGACAGGGCTTT TGCGCCCTGACAGTGGCAAGGCCTGGCTGTGGATGGAACCCCTTTCACTTCTGAACTG TTCCATATTATAATAGATGTCACCAGCCCAAGAAGCAGAGACTGTGTGGCCATCCTCAATGG $\texttt{TGGTGAAGCCAGAGAGCCTCCATGTCCCCCCTGAAACATTAGGCGAAGGTGAC\textbf{TGA}\texttt{TTCGCC}$ CTCTGCAACTACAAATAGCAGAGTGAGCCAGGCGGTGCCAAAGCAAGGGCTAGTTGAGACAT TGGGAAATGGAACATAATCAGGAAAGACTATCTCTCTGACTAGTACAAAATGGGTTCTCGTG TTTCCTGTTCAGGATCACCAGCATTTCTGAGCTTGGGTTTATGCACGTATTTAACAGTCACA AGAAGTCTTATTTACATGCCACCAACCAACCTCAGAAACCCATAATGTCATCTGCCTTCTTG GCTTAGAGATAACTTTTAGCTCTCTTTCTTCTCAATGTCTAATATCACCTCCCTGTTTTCAT GTCTTCCTTACACTTGGTGGAATAAGAAACTTTTTGAAGTAGAGGAAATACATTGAGGTAAC ATCCTTTTCTCTGACAGTCAAGTAGTCCATCAGAAATTGGCAGTCACTTCCCAGATTGTACC AGCAAATACACAAGGAATTCTTTTTGTTTGTTTCAGTTCATACTAGTCCCTTCCCAATCCAT CAGTAAAGACCCCATCTGCCTTGTCCATGCCGTTTCCCAACAGGGATGTCACTTGATATGAG AATCTCAAATCTCAATGCCTTATAAGCATTCCTTCCTGTGTCCATTAAGACTCTGATAATTG TCTCCCCTCCATAGGAATTTCTCCCAGGAAAGAAATATATCCCCATCTCCGTTTCATATCAG AACTACCGTCCCCGATATTCCCTTCAGAGAGATTAAAGACCAGAAAAAAGTGAGCCTCTTCA TCTGCACCTGTAATAGTTTCAGTTCCTATTTTCTTCCATTGACCCATATTTATACCTTTCAG GTACTGAAGATTTAATAATAATAAATGTAAATACTGTGAAAAA

FIGURE 230

MQAKYSSTRDMLDDDGDTTMSLHSQASATTRHPEPRRTEHRAPSSTWRPVALTLLTLCLVLL IGLAALGLLFFQYYQLSNTGQDTISQMEERLGNTSQELQSLQVQNIKLAGSLQHVAEKLCRE LYNKAGAHRCSPCTEQWKWHGDNCYQFYKDSKSWEDCKYFCLSENSTMLKINKQEDLEFAAS QSYSEFFYSYWTGLLRPDSGKAWLWMDGTPFTSELFHIIIDVTSPRSRDCVAILNGMIFSKD CKELKRCVCERRAGMVKPESLHVPPETLGEGD

FIGURE 231

AATTTTCACCGCTGTAGGAATCCAGATGCAGGCCAAGTACAGCAGCACGAGGGACATGNTGG
ATGATGATGGGACACCACCATGAGCCTGCATTNTCAAGCTTTTGCCACAATTCGGCATCCAG
AGCCCCGGCGCACAGAGCACAGGGNTCCTTTTTCAACGTGGCGACCAGTGGCCCTGACCCTG
CTGACTTTGTGCTTGGTGCTGCTGATAGGGCTGGCAGCCCTGGGGCTTTTGTTTTTTCAGTA
CTACCAGCTCTCCAATACTGGTCAAGACACCATTTCTCAAATGGAAGAAGATTAGGAAATA
CGTCCCAAGAGTTGCAATTTNTTCAAGTCCAGAATATAAAGCTTGCAGGAAGTNTGCAGCAT
GTGGCTGAAAAACTCTGTCGTGAGCTGTATAACAAAGCTGGAGGAACTTTGAAGGAGGGCAA
AGTNTCCTCATNTACTATACACACACCACCTTCCC

FIGURE 232

GCCGAGCGCAAGAACCCTGCGCAGCCCAGAGCAGCTGCTGGAGGGGAATCGAGGCGCGCTC CGGGGATTCGGCTCGGCCCGCCGCGGGGGGGGGGGGGCCCGCCGCGGGG CTGGGGGTTCGCCGGGGCCGGGGACCCGCGGTCCGGGCGCCATGCGCTGCTGCTG TCGGTGCTGCGGCCCGCAGGGCCCGTGGCCGTGGGCATCTCCCTGGGCTTCACCCTGAGCCT GCTCAGCGTCACCTGGGTGGAGGAGCCGTGCGGCCCAGGCCCCCAACCTGGAGACTCTG AGCTGCCGCCGCGCGAACACCAACGCGGCGCGCCCAACTCGGTGCAGCCCGGAGCG GAGCGCGAGAAGCCCGGGGCCGAAGGCGCCGGGGAGAATTGGGAGCCGCGCGTCTTGCC CTACCACCCTGCACAGCCCGGCCAGGCCGCCAAAAAGGCCGTCAGGACCCGCTACATCAGCA CGGAGCTGGGCATCAGGCAGAGGCTGCTGGTGGCGGTGCTGACCTCTCAGACCACGCTGCCC ACGCTGGGCGTGGACCGCACGCTGGGGCACCGGCTGGAGCGTGTGGTGTTCCTGAC GGGCGCACGGGGCCCCCCCCCCTGGCATGGCAGTGGTGACGCTGGGCGAGGAGCGAC CCATTGGACACCTGCACCTGCGCGCCACCTGCTGGAGCACGACGACGACTTTGAC TGGTTCTTCCTGGTGCCTGACACCACCTACACCGAGGCGCACGGCCTGGCACGCCTAACTGG GAGAGCCCACCCCGGCCGCTACTGCCACGGAGGCTTTGGGGGTGCTGCTGTCGCGCATGCTG CTGCAACAACTGCGCCCCCACCTGGAAGGCTGCCGCAACGACATCGTCAGTGCGCGCCCTGA CGAGTGGCTGGGTCGCTTCTCGATGCCACCGGGGTGGGCTGCACTGGTGACCACGAGG GGGTGCACTATAGCCATCTGGAGCTGAGCCCTGGGGAGCCAGTGCAGGAGGGGGACCCTCAT TTCCGAAGTGCCCTGACAGCCCACCCTGTGCGTGACCCTGTGCACATGTACCAGCTGCACAA AGCTTTCGCCCGAGCTGAACTGGAACGCACGTACCAGGAGATCCAGGAGTTACAGTGGGAGA TCCAGAATACCAGCCATCTGGCCGTTGATGGGGGACCGGGCAGCTGCTTGGCCCGTGGGTATT CCAGCACCATCCCGCCCGGCCTCCCGCTTTGAGGTGCTGCGCTGGGACTACTTCACGGAGCA GCACGCTTTCTCCTGCGCCGATGGCTCACCCCGCTGCCCACTGCGTGGGGCTGACCGGGCTG ATGTGGCCGATGTTCTGGGGACAGCTCTAGAGGAGCTGAACCGCCGCCTACCACCCGGCCTTG CGGCTCCAGAAGCAGCTGGTGAATGGCTACCGACGCTTTGATCCGGCCCGGGGTATGGA ATACACGCTGGACTTGCAGCTGGAGGCACTGACCCCCAGGGAGGCCGCCGGCCCCTCACTC GCCGAGTGCAGCTGCTCCGGCCGCTGAGCCGCGTGGAGATCTTGCCTGTGCCCTATGTCACT GAGGCCTCACGTCTCACTGTGCTGCCTCTAGCTGCGGCTGAGCGTGACCTGGCCCCTGG CTTCTTGGAGGCCTTTGCCACTGCAGCACTGGAGCCTGGTGATGCTGCGGCAGCCCTGACCC TGCTGCTACTGTATGAGCCGCGCCAGGCCCAGCGCGTGGCCCATGCAGATGTCTTCGCACCT GTCAAGGCCCACGTGGCAGAGCTGGAGCGGCGTTTCCCCGGGTGCCCGGGTGCCATGGCTCAG TGTGCAGACAGCCGCACCCTCACCACTGCGCCTCATGGATCTACTCTCCAAGAAGCACCCGC TGGACACACTGTTCCTGCTGGCCGGGCCAGACACGGTGCTCACGCCTGACTTCCTGAACCGC TGCCGCATGCCATCTCCGGCTGGCAGGCCTTCTTTCCCATGCATTTCCAAGCCTTCCA CCCAGGTGTGGCCCCACCACAAGGGCCTGGGCCCCCAGAGCTGGGCCGTGACACTGGCCGCT TTGATCGCCAGGCAGCCAGCGAGGCCTGCTTCTACAACTCCGACTACGTGGCAGCCCGTGGG CGCCTGGCGGCAGCCTCAGAACAAGAAGAGGGGGCTGCTGGAGGCCTGGATGTGTACGAGCT ACCGGGCCCAGACGTGCAGCGCGAGGCTCAGTGAGGACCTGTACCACCGCTGCCTCCAGAGC GTGCTTGAGGGCCTCGGCTCCCGAACCCAGCTGGCCATGCTACTCTTTGAACAGGAGCAGGG CAACAGCACC**TGA**CCCCACCCTGTCCCCGTGGGCCGTGGCCATGGCCACACCCCACCTT CTCCCCAAAACCAGAGCCACCTGCCAGCCTCGCTGGGCAGGGCTGGCCGTAGCCAGACCCC AAGCTGGCCCACTGGTCCCCTCTGTGGCTCTGTGGGTCCCTGGGCTCTGGACAAGCACTGGG GGACGTGCCCCAGAGCCACCCACTTCTCATCCCAAACCCAGTTTCCCTGCCCCCTGACGCT GCTGATTCGGGCTGTGGCCTCCACGTATTTATGCAGTACAGTCTGCCTGACGCCAGCCCTGC CTCTGGGCCCTGGGGCTGTAGAAGAGTTGTTGGGGAAGGAGGAGCTGAGGAGGG GCATCTCCCAACTTCTCCCTTTTGGACCCTGCCGAAGCTCCCTGCCTTTAATAAACTGGCCA AGTGTGGAAAAA

FIGURE 233

MRASLLLSVLRPAGPVAVGISLGFTLSLLSVTWVEEPCGPGPPQPGDSELPPRGNTNAARRP
NSVQPGAEREKPGAGEGAGENWEPRVLPYHPAQPGQAAKKAVRTRYISTELGIRQRLLVAVL
TSQTTLPTLGVAVNRTLGHRLERVVFLTGARGRRAPPGMAVVTLGEERPIGHLHLALRHLLE
QHGDDFDWFFLVPDTTYTEAHGLARLTGHLSLASAAHLYLGRPQDFIGGEPTPGRYCHGGFG
VLLSRMLLQQLRPHLEGCRNDIVSARPDEWLGRCILDATGVGCTGDHEGVHYSHLELSPGEP
VQEGDPHFRSALTAHPVRDPVHMYQLHKAFARAELERTYQEIQELQWEIQNTSHLAVDGDRA
AAWPVGIPAPSRPASRFEVLRWDYFTEQHAFSCADGSPRCPLRGADRADVADVLGTALEELN
RRYHPALRLQKQQLVNGYRRFDPARGMEYTLDLQLEALTPQGGRRPLTRRVQLLRPLSRVEI
LPVPYVTEASRLTVLLPLAAAERDLAPGFLEAFATAALEPGDAAAALTLLLLYEPRQAQRVA
HADVFAPVKAHVAELERRFPGARVPWLSVQTAAPSPLRLMDLLSKKHPLDTLFLLAGPDTVL
TPDFLNRCRMHAISGWQAFFPMHFQAFHPGVAPPQGPGPPELGRDTGRFDRQAASEACFYNS
DYVAARGRLAAASEQEEELLESLDVYELFLHFSSLHVLRAVEPALLQRYRAQTCSARLSEDL
YHRCLQSVLEGLGSRTQLAMLLFEQEQGNST

FIGURE 234

GCTCTGGCCGGCCCGGCGATTGGTCACCGCCCGCTAGGGGACAGCCCTGGCCTCCTGAT TGGCAAGCGCTGGCCACCCCCACACCCCTTGCGAACGCTCCCCTAGTGGAGAAAAGGAGT AGCTATTAGCCAATTCGGCAGGGCCCGCTTTTTAGAAGCTTGATTTCCTTTGAAGATGAAAG ACTAGCGGAAGCTCTGCCTCTTTCCCCAGTGGGCGAGGGAACTCGGGGCGATTGGCTGGGAA CTGTATCCACCCAAATGTCACCGATTTCTTCCTATGCAGGAAATGAGCAGACCCATCAATAA GAAATTTCTCAGCCTGGCCGAAAATGGTTGGCCCCACGAAGCCACGACAACTGGAGGCAAAG AGGGTTGCTCAACGCCCCGCCTCATTGGAAAACCAAATCAGATCTGGGACCTATATAGCGTG GCGGAGGCGGGGCGATGATTGTCGCGCTCGCACCCACTGCAGCTGCGCACAGTCGCATTTCT $\tt TTCCCCGCCCTGAGACCCTGCAGCACCATCTGTC\underline{\textbf{ATG}} \texttt{GCGGCTGGGCTGTTTGGTTTGAGC$ ATCTAGCTTCTCCAGGACTGTGGTCGCCCCGTCCGCTGTGGCGGGAAAGCGGCCCCCAGAAC CGACCACACCGTGGCAAGAGGACCCAGAACCCGAGGACGAAAACTTGTATGAGAAGAACCCA GACTCCCATGGTTATGACAAGGACCCCGTTTTGGACGTCTGGAACATGCGACTTGTCTTCTT CTTTGGCGTCTCCATCATCCTGGTCCTTGGCAGCACCTTTGTGGCCTATCTGCCTGACTACA GGATGAAAGAGTGGTCCCGCCGCGAAGCTGAGAGGCTTGTGAAATACCGAGAGGCCAATGGC CTTCCCATCATGGAATCCAACTGCTTCGACCCCAGCAAGATCCAGCTGCCAGAGGATGAG ${f TG}$ CTCTTCTCAGAGCACCTAATTAAAGGGGCTGAAAGTCTGAA

FIGURE 235

MAAGLFGLSARRLLAAAATRGLPAARVRWESSFSRTVVAPSAVAGKRPPEPTTPWQEDPEPE DENLYEKNPDSHGYDKDPVLDVWNMRLVFFFGVSIILVLGSTFVAYLPDYRMKEWSRREAER LVKYREANGLPIMESNCFDPSKIQLPEDE

FIGURE 236

FIGURE 237

TGCAGAACCCCCACGCGACAGCCTGCGGGAGGAACTTGTCATCACCCCGCTGCCTTCCGGGG ACGTAGCCGCCACATTCCAGTTCCGCACGCGCTGGGATTCGGAGCTTCAGCGGGAAGGAGTG TCCCATTACAGGCTCTTTCCCAAAGCCCTGGGGCAGCTGATCTCCAAGTATTCTCTACGGGA GCTGCACCTGTCATTCACACAAGGCTTTTGGAGGACCCGATACTGGGGGCCACCCTTCCTGC AGGCCCCATCAGGTGCAGAGCTGTGGGTCTGGTTCCAAGACACTGTCACTGATGTGGATAAA TCTTGGAAGGAGCTCAGTAATGTCCTCTCAGGGATCTTCTGCGCCTCTCTCAACTTCATCGA CTCCACCAACACAGTCACTCCCACTGCCTCCTTCAAACCCCTGGGTCTGGCCAATGACACTG ACCACTACTTTCTGCGCTATGCTGTGCTGCCGCGGGAGGTGGTCTGCACCGAAAACCTCACC CCCTGGAAGAAGCTCTTGCCCTGTAGTTCCAAGGCAGGCCTCTCTGTGCTGCTGAAGGCAGA TCGCTTGTTCCACACCAGCTACCACTCCCAGGCAGTGCATATCCGCCCTGTTTGCAGAAATG CACGCTGTACTAGCATCTCCTGGGAGCTGAGGCAGACCCTGTCAGTTGTATTTGATGCCTTC ATCACGGGGCAGGGAAAGAAGACTGGTCCCTCTTCCGGATGTTCTCCCGAACCCTCACGGA GCCCTGCCCCTGGCTTCAGAGAGCCGAGTCTATGTGGACATCACCACCTACAACCAGGACA ACGAGACATTAGAGGTGCACCCACCCCGACCACTACATATCAGGACGTCATCCTAGGCACT CGGAAGACCTATGCCATCTATGACTTGCTTGACACCGCCATGATCAACAACTCTCGAAACCT CAACATCCAGCTCAAGTGGAAGAGACCCCCAGAGAATGAGGCCCCCCAGTGCCCTTCCTGC ATGCCCAGCGGTACGTGAGTGGCTATGGGCTGCAGAAGGGGGAGCTGAGCACACTGCTGTAC AACACCCACCCATACCGGGCCTTCCCGGTGCTGCTGGTACCCTGGTATCTGCG GCTGTATGTGCACACCCTCACCATCACCTCCAAGGGCAAGGAGAACAAACCAAGTTACATCC ACTACCAGCCTGCCCAGGACCGGCTGCAACCCCACCTCCTGGAGATGCTGATTCAGCTGCCG GCCAACTCAGTCACCAAGGTTTCCATCCAGTTTGAGCGGGCGCTGCTGAAGTGGACCGAGTA CACGCCAGATCCTAACCATGGCTTCTATGTCAGCCCATCTGTCCTCAGCGCCCTTGTGCCCA GCATGGTAGCAGCCAAGCCAGTGGACTGGGAAGAGAGTCCCCTCTTCAACAGCCTGTTCCCA GTCTCTGATGGCTCTAACTACTTTGTGCGGCTCTACACGGAGCCGCTGCTGGTGAACCTGCC GACACCGGACTTCAGCATGCCCTACAACGTGATCTGCCTCACGTGCACTGTGGTGGCCGTGT GCTACGGCTCCTTCTACAATCTCCTCACCCGAACCTTCCACATCGAGGAGCCCCGCACAGGT GGCCTGGCCAAGCGGCCAACCTTATCCGGCGCGCCCGAGGTGTCCCCCCACTC**TGA**TT CTTGCCCTTTCCAGCAGCTGCAGCTGCCGTTTCTCTCTGGGGAGGGGAGCCCAAGGGCTGTT TCTGCCACTTGCTCTCAGAGTTGGCTTTTGAACCAAAGTGCCCTGGACCAGGTCAGGGC CTACAGCTGTGTTGTCCAGTACAGGAGCCACGAGCCAAATGTGGCATTTGAATTTAA CTTAGAAATTCATTTCCTCACCTGTAGTGGCCACCTCTATATTGAGGTGCTCAATAAGCAAA AGTGGTCGGTGGCTGTATTGGACAGCACAGAAAAGATTTCCATCACCACAGAAAGGTC GGCTGGCAGCACTGGCCAAGGTGATGGGGTGTGCTACACAGTGTATGTCACTGTGTAGTGGA

FIGURE 238

MPLALLVLLLLGPGGWCLAEPPRDSLREELVITPLPSGDVAATFQFRTRWDSELQREGVSHY
RLFPKALGQLISKYSLRELHLSFTQGFWRTRYWGPPFLQAPSGAELWVWFQDTVTDVDKSWK
ELSNVLSGIFCASLNFIDSTNTVTPTASFKPLGLANDTDHYFLRYAVLPREVVCTENLTPWK
KLLPCSSKAGLSVLLKADRLFHTSYHSQAVHIRPVCRNARCTSISWELRQTLSVVFDAFITG
QGKKDWSLFRMFSRTLTEPCPLASESRVYVDITTYNQDNETLEVHPPPTTTYQDVILGTRKT
YAIYDLLDTAMINNSRNLNIQLKWKRPPENEAPPVPFLHAQRYVSGYGLQKGELSTLLYNTH
PYRAFPVLLLDTVPWYLRLYVHTLTITSKGKENKPSYIHYQPAQDRLQPHLLEMLIQLPANS
VTKVSIQFERALLKWTEYTPDPNHGFYVSPSVLSALVPSMVAAKPVDWEESPLFNSLFPVSD
GSNYFVRLYTEPLLVNLPTPDFSMPYNVICLTCTVVAVCYGSFYNLLTRTFHIEEPRTGGLA
KRLANLIRRARGVPPL

FIGURE 239

FIGURE 240

MGSSSFLVLMVSLVLVTLVAVEGVKEGIEKAGVCPADNVRCFKSDPPQCHTDQDCLGERKCC YLHCGFKCVIPVKELEEGGNKDEDVSRPYPEPGWEAKCPGSSSTRCPQK

Signal sequence:

amino acids 1-19

N-myristoylation sites:

amino acids 23-29, 27-33, 32-38, 102-108

WAP-type 'four-disulfide core' domain signature:

amino acids 49-63

FIGURE 241

AAACTCAGCACTTGCCGGAGTGGCTCATTGTTAAGACAAAGGGTGTGCACTTCCTGGCCAGG AAACCTGAGCGGTGAGACTCCCAGCTGCCTACATCAAGGCCCCAGGACATGCAGAACCTTCC TCTAGAACCCGACCCACCACCATGAGGTCCTGCCTGTGGAGATGCAGGCCACCTGAGCCAAGG CGTCCAGTGGTCCTTGCTTCTGGCTGTCTTCTTTCTCTTCGCCTTGCCCTCTTTTA CTACAGTCCCTGGCAAAGCCTAAGTCCCAGGCACCCACAAGGGCGAGGAGGACAACCATCTA TGCAGAGCCAGCGCCAGAGAACAATGCCCTCAACACACAAACCCAGCCCAAGGCCCACACCA ACAGCACAGAGGGCAGCATGGAAGAGCCCAGAAAAAGAGAAAACCATGGTGAACACTGTC ACCCAGAGGCAAGATGCAGGGATGGCCTCTGGCAGGACAGAGGCACAATCATGGAAGAGCC AGGACACAAAGACGACCCAAGGAAATGGGGGCCAGACCAGGAAGCTGACGGCCTCCAGGACG GTGTCAGAGAGCACCAGGGCAAAGCGGCAACCACAGCCAAGACGCTCATTCCCAAAAGTCA GCACAGAATGCTGGCTCCCACAGGAGCAGTGTCAACAAGGACGAGACAGAAAGGAGTGACCA CAGCAGTCATCCCACCTAAGGAGAAACCTCAGGCCACCCCACCCCTGCCCCTTTCCAG AGCCCCACGACGCAGAGAAACCAAAGACTGAAGGCCGCCAACTTCAAATCTGAGCCTCGGTG GGATTTTGAGGAAAAATACAGCTTCGAAATAGGAGGCCTTCAGACGACTTGCCCTGACTCTG TGAAGATCAAAGCCTCCAAGTCGCTGTGGCTCCAGAAACTCTTTCTGCCCAACCTCACTCTC TTCCTGGACTCCAGACACTTCAACCAGAGTGAGTGGGACCGCCTGGAACACTTTGCACCACC CTTTGGCTTCATGGAGCTCAACTACTCCTTGGTGCAGAAGGTCGTGACACGCTTCCCTCCAG TGCCCCAGCAGCTGCTCCTGGCCAGCCTCCCCGCTGGGAGCCTCCGGTGCATCACCTGT GCCGTGGTGGCCAACGGGGCCATCCTGAACAACTCCCACATGGGCCAGGAGATAGACAGTCA CGACTACGTGTTCCGATTGAGCGGAGCTCTCATTAAAGGCTACGAACAGGATGTGGGGGACTC GGACATCCTTCTACGGCTTTACCGCCTTCTCCCTGACCCAGTCACTCCTTATATTGGGCAAT CGGGGTTTCAAGAACGTGCCTCTTGGGAAGGACGTCCGCTACTTGCACTTCCTGGAAGGCAC CCGGGACTATGAGTGGCTGGAAGCACTGCTTATGAATCAGACGGTGATGTCAAAAAACCTTT TCTGGTTCAGGCACAGACCCCAGGAAGCTTTTCGGGAAGCCCTGCACATGGACAGGTACCTG TTGCTGCACCCAGACTTTCTCCGATACATGAAGAACAGGTTTCTGAGGTCTAAGACCCTGGA TGGTGCCCACTGGAGGATATACCGCCCCACCACTGGGGCCCTCCTGCTGCTCACTGCCCTTC AGCTCTGTGACCAGGTGAGTGCTTATGGCTTCATCACTGAGGGCCCATGAGCGCTTTTCTGAT CACTACTATGATACATCATGGAAGCGGCTGATCTTTTACATAAACCATGACTTCAAGCTGGA GAGAGAAGTCTGGAAGCGGCTACACGATGAAGGGATAATCCGGCTGTACCAGCGTCCTGGTC CCGGAACTGCCAAAGCCAAGAAC**TGA**CCGGGGCCAGGGCTGCCATGGTCTCCTTGCCTGCTC CAAGGCACAGGATACAGTGGGAATCTTGAGACTCTTTGGCCATTTCCCATGGCTCAGACTAA GCTCCAAGCCCTTCAGGAGTTCCAAGGGAACACTTGAACCATGGACAAGACTCTCTCAAGAT GGCAAATGGCTAATTGAGGTTCTGAAGTTCTTCAGTACATTGCTGTAGGTCCTGAGGCCAGG GATTTTTAATTAAATGGGGTGATGGGTGGCCAATACCACAATTCCTGCTGAAAAACACTCTT CCAGTCCAAAAGCTTCTTGATACAGAAAAAAGAGCCTGGATTTACAGAAACATATAGATCTG GTTTGAATTCCAGATCGAGTTTACAGTTGTGAAATCTTGAAGGTATTACTTAACTTCACTAC AGATTGTCTAGAAGACCTTTCTAGGAGTTATCTGATTCTAGAAGGGTCTATACTTGTCCTTG TCTTTAAGCTATTTGACAACTCTACGTGTTGTAGAAAACTGATAATAATACAAATGATTGTT

FIGURE 242

MRSCLWRCRHLSQGVQWSLLLAVLVFFLFALPSFIKEPQTKPSRHQRTENIKERSLQSLAKP
KSQAPTRARRTTIYAEPAPENNALNTQTQPKAHTTGDRGKEANQAPPEEQDKVPHTAQRAAW
KSPEKEKTMVNTLSPRGQDAGMASGRTEAQSWKSQDTKTTQGNGGQTRKLTASRTVSEKHQG
KAATTAKTLIPKSQHRMLAPTGAVSTRTRQKGVTTAVIPPKEKKPQATPPPAPFQSPTTQRN
QRLKAANFKSEPRWDFEEKYSFEIGGLQTTCPDSVKIKASKSLWLQKLFLPNLTLFLDSRHF
NQSEWDRLEHFAPPFGFMELNYSLVQKVVTRFPPVPQQQLLLASLPAGSLRCITCAVVGNGG
ILNNSHMGQEIDSHDYVFRLSGALIKGYEQDVGTRTSFYGFTAFSLTQSLLILGNRGFKNVP
LGKDVRYLHFLEGTRDYEWLEALLMNQTVMSKNLFWFRHRPQEAFREALHMDRYLLLHPDFL
RYMKNRFLRSKTLDGAHWRIYRPTTGALLLLTALQLCDQVSAYGFITEGHERFSDHYYDTSW
KRLIFYINHDFKLEREVWKRLHDEGIIRLYQRPGPGTAKAKN

Cytoplasmic Domain:

amino acids 1-10

Type II Transmembrane Domain:

amino acids 11-35

Lumenal catalytic Domain:

amino acids 36-600

Ribonucleotide Reductase small subunit Signature:

amino acids 481-496

N-glycosylation Sites:

amino acids 300-303, 311-314, 331-334, 375-378, 460-463

FIGURE 243

FIGURE 244

MRGPGHPLLLGLLLVLGPSPEQRVEIVPRDLRMKDKFLKHLTGPLYFSPKCSKHFHRLYHNT RDCTIPAYYKRCARLLTRLAVSPVCMEDK

FIGURE 245

GGGCTGGGCCCGCCGCAGCTCCAGCTGGCCGGCTTGGTCCTGCGGTCCCTTCTCTGGGAGG GTGGTACCTGGACCGGAATGGCTCCTGGCATCCGGGGTTTAACTGCGAGTTCTTCACCTTCT GCTGCGGGACCTGCTACCATCGGTACTGCTGCAGGGACCTGACCTTGCTTATCACCGAGAGG CAGCAGAAGCACTGCCTGGCCTTCAGCCCCAAGACCATAGCAGGCATCGCCTCAGCTGTGAT CCTCTTTGTTGCTGGTTGCCACCACCATCTGCTGCTTCCTCTGTTCCTGTTGCTACCTGT ACCGCCGGCGCCAGCAGCTCCAGAGCCCATTTGAAGGCCAGGAGATTCCAATGACAGGCATC CCAGTGCAGCCAGTATACCCCATACCCCCAGGACCCCAAAGCTGGCCCTGCACCCCACAGCC TGGCTTCATGTACCCACCTAGTGGTCCTGCTCCCCAATATCCACTCTACCCAGCTGGGCCCC CAGTCTACAACCCTGCAGCTCCTCCTCTATATGCCACCACAGCCCTCTTACCCGGGAGCC **TGA**GGAACCAGCCATGTCTCTGCTGCCCCTTCAGTGATGCCCAACCTTGGGAGATGCCCTCAT CCTGTACCTGCATCTGGTCCTGGGGGTGGCAGGAGTCCTCCAGCCACCAGGCCCCAGACCAA GCCAAGCCCTGGGCCCTACTGGGGACAGAGCCCCAGGGAAGTGGAACAGGAGCTGAACTAGA ACTATGAGGGGTTGGGGGGGGGCTTGGAATTATGGGCTATTTTTACTGGGGGCAAGGGAGG GAGATGACAGCCTGGGTCACAGTGCCTGTTTTCAAATAGTCCCTCTGCTCCCAAGATCCCAG TCCGTCAGCAGCTGGCCTCCTCTCTCTGGCTGCCCCACTGGCCACATCTCTGGCCTG CTAGATTAAAGCTGTAAAGACAAAA

FIGURE 246

MPPAGLRRAAPLTAIALLVLGAPLVLAGEDCLWYLDRNGSWHPGFNCEFFTFCCGTCYHRYC CRDLTLLITERQQKHCLAFSPKTIAGIASAVILFVAVVATTICCFLCSCCYLYRRRQQLQSP FEGQEIPMTGIPVQPVYPYPQDPKAGPAPPQPGFMYPPSGPAPQYPLYPAGPPVYNPAAPPP YMPPQPSYPGA

Transmembrane Domains:

amino acids 10-28, 85-110

N-glycosylation Site:

amino acids 38-41

N-myristoylation Sites:

amino acids 5-10, 88-93

FIGURE 247

GGGGGAGCTAGGCCGGCGGCAGTGGTGGTGGCGCGCGCAAGGGTGAGGGCCCCCAGAA $\verb|CCCCAGGTAGGTAGAGCAAGAAGAAGGTGTTTCTGCCCCTCAAATGGTCCCTTGCAACCATG| \\$ TCATTTCTACTTTCCTCACTGTTGGCTCTCTTAACTGTGTCCACTCCTTCATGGTGTCAGAGCACTGAAGCATCTCCAAAACGTAGTGATGGGACACCATTTCCTTGGAATAAAATACGACTTC CTGAGTACGTCATCCCAGTTCATTATGATCTCTTGATCCATGCAAACCTTACCACGCTGACC TTCTGGGGAACCACGAAAGTAGAAATCACAGCCAGTCAGCCCACCAGCACCATCATCCTGCA TAGTCACCACCTGCAGATATCTAGGGCCACCCTCAGGAAGGGAGCTGGAGAGAGGCTATCGG AAGAACCCCTGCAGGTCCTGGAACACCCCCCTCAGGAGCAAATTGCACTGCTGGCTCCCGAG AGATGAGCACCTATCTGGTGGCCTTCATCATTTCAGATTTTGAGTCTGTCAGCAAGATAACC AAGAGTGAGCTCTGGTGGCCTTCATCATTTCAGATTTTGAGTCTGTCAGCAAGATAACC
AAGAGTGAGTCAAGGTTTCTGTTTATGCTGTGCCAGACAAGATAAATCAAGCAGATTATGC
ACTGGATGCTGCGGTGACTCTTCTAGAATTTTATGAGGATTATTTCAGCATACCGTATCCCC
TACCCAAACAAGATCTTGCTGCTATTCCCGACTTTCAGTCTGGTGCTATGGAAAACTGGGGA
CTGACAACATATAGAGAATCTGCTCTGTTGTTTGATGCAGAAAAGTCTTCTGCATCAAGTAA
GCTTGGCATCACAGTGACTGTGGCCCACCAGTGGTTTTGGGAACCTGGTCA CTATGGAATGGTGGAATGATCTTTGGCTAAATGAAGGATTTGCCAAATTTATGGAGTTTGTG TCTGTCAGTGTGACCCATCCTGAACTGAAAGTTGGAGATTATTTCTTTGGCAAATGTTTTGA CGCAATGGAGGTAGATGCTTTAAATTCCTCACACCCTGTGTCTACACCTGTGGAAAATCCTG CTCAGATCCGGGAGATGTTTGATGATGTTTCTTATGATAAGGGAGCTTGTATTCTGAATATGCTAAGGGAGTATCTTAGCGCTGACGCATTTAAAAGTGGTATTGTACAGTATCTCCAGAAGCA TAGCTATAAAAATACAAAAAACGAGGACCTGTGGGATAGTATGGCAAGTATTTGCCCTACAG ATGGTGTAAAAGGGATGGATGGCTTTTGCTCTAGAAGTCAACATTCATCTTCATCCTCACAT TGGCATCAGGAAGGGGTGGATGTGAAAACCATGATGAACACTTGGACACTGCAGAGGGGTTT TCCCCTAATAACCATCACAGTGAGGGGGGGAGGAATGTACACATGAAGCAAGAGCACTACATGA AGGGCTCTGACGGCGCCCCGGACACTGGGTACCTGTGGCATGTTCCATTGACATTCATCACC AGCAAATCCAACATGGTCCATCGATTTTTGCTAAAAACAAAAACAGATGTGCTCATCCTCCC GAAACTCAATTCAAGGCCTTCCTCATCAGGCTGCTAAGGGACCTCATTGATAAGCAGACATG GACAGACGAGGGCTCAGTCTCAGAGCAAATGCTGCGGAGTGAACTACTACTCCTCGCCTGTG TGCACAACTATCAGCCGTGCGTACAGAGGGCAGAAGGCTATTTCAGAAAGGAATCC AATGGAAACTTGAGCCTGCCTGTCGACGTGACCTTGGCAGTGTTTGCTGTGGGGGCCCAGAG CACAGAAGGCTGGGATTTTCTTTATAGTAAATATCAGTTTTCTTTGTCCAGTACTGAGAAAA GCCAAATTGAATTTGCCCTCTGCAGAACCCAAAATAAGGAAAAGCTTCAATGGCTACTAGAT TTCTCAGCTCCGTTGTGTCCAACAGACAATTGAAACCATTGAAGAAAACATCGGTTGGATGG ATAAGAATTTTGATAAAATCAGAGTGTGGCTGCAAAGTGAAAGCTTGAACGTATG**TAA**AAA CTATCCCTGTGAAAAGAATAGCTGTTAGTTTTTCATGAATGGGCTTTTTCATGAATGGGCTA TCGCTACCATGTGTTTTGTTCATCACAGGTGTTGCCCTGCAACGTAAACCCAAGTGTTGGGT

FIGURE 248

MVFLPLKWSLATMSFLLSSLLALLTVSTPSWCQSTEASPKRSDGTPFPWNKIRLPEYVIPVH YDLLIHANLTTLTFWGTTKVEITASQPTSTIILHSHHLQISRATLRKGAGERLSEEPLQVLE HPPQEQIALLAPEPLLVGLPYTVVIHYAGNLSETFHGFYKSTYRTKEGELRILASTQFEPTA ARMAFPCFDEPAFKASFSIKIRREPRHLAISNMPLVKSVTVAEGLIEDHFDVTVKMSTYLVA FIISDFESVSKITKSGVKVSVYAVPDKINQADYALDAAVTLLEFYEDYFSIPYPLPKQDLAA IPDFQSGAMENWGLTTYRESALLFDAEKSSASSKLGITVTVAHELAHQWFGNLVTMEWWNDL WLNEGFAKFMEFVSVSVTHPELKVGDYFFGKCFDAMEVDALNSSHPVSTPVENPAQIREMFD DVSYDKGACILNMLREYLSADAFKSGIVQYLQKHSYKNTKNEDLWDSMASICPTDGVKGMDG FCSRSQHSSSSSHWHQEGVDVKTMMNTWTLQRGFPLITITVRGRNVHMKQEHYMKGSDGAPD TGYLWHVPLTFITSKSNMVHRFLLKTKTDVLILPEEVEWIKFNVGMNGYYIVHYEDDGWDSL TGLLKGTHTAVSSNDRASLINNAFQLVSIGKLSIEKALDLSLYLKHETEIMPVFQGLNELIP MYKLMEKRDMNEVETQFKAFLIRLLRDLIDKQTWTDEGSVSEQMLRSELLLLACVHNYQPCV QRAEGYFRKWKESNGNLSLPVDVTLAVFAVGAQSTEGWDFLYSKYQFSLSSTEKSQIEFALC RTQNKEKLQWLLDESFKGDKIKTQEFPQILTLIGRNPVGYPLAWQFLRKNWNKLVQKFELGS SSIAHMVMGTTNQFSTRTRLEEVKGFFSSLKENGSQLRCVQQTIETIEENIGWMDKNFDKIR VWLOSEKLERM

Signal peptide:

amino acids 1-34

N-glycosylation sites:

amino acids 70-74, 154-158, 414-418, 760-764, 901-905

Neutral zinc metallopeptidases, zinc-binding region signature:

amino acids 350-360

FIGURE 249

CAGCCACAGACGGGTC**ATG**AGCGCGGTATTACTGCTGGCCCTCCTGGGGTTCATCCTCCCAC TGCCAGGAGTGCAGGCGCTGCTCTGCCAGTTTGGGACAGTTCAGCATGTGTGGAAGGTGTCC GACCTACCCCGGCAATGGACCCCTAAGAACACCAGCTGCGACAGCGGCTTGGGGTGCCAGGA CACGTTGATGCTCATTGAGAGCGGACCCCAAGTGAGCCTGGTGCTCTCCAAGGGCTGCACGG AGGCCAAGGACCAGGAGCCCCGCGTCACTGAGCACCGGATGGGCCCCGGCCTCTCCCTGATC TTGGGCCCCACAGCCCCAGCAGACCCAGGATCCTTGAGGTGCCCAGTCTGCTTGTCTATGG AAGGCTGTCTGGAGGGGACAACAGAAGAGATCTGCCCCAAGGGGACCACACACTGTTATGAT CCAGCCAGGTTGCAACCTGCTCAATGGGACACAGGAAATTGGGCCCGTGGGTATGACTGAGA ACTGCAATAGGAAAGATTTTCTGACCTGTCATCGGGGGACCACCATTATGACACACGGAAAC TTGGCTCAAGAACCCACTGATTGGACCACATCGAATACCGAGATGTGCGAGGTGGGGCAGGT GTGTCAGGAGACGCTGCTCATAGATGTAGGACTCACATCAACCCTGGTGGGGACAAAAG GCTGCAGCACTGTTGGGGCTCAAAATTCCCAGAAGACCACCATCCACTCAGCCCCTCCTGGG GTGCTTGTGGCCTCCTATACCCACTTCTGCTCCTCGGACCTGTGCAATAGTGCCAGCAGCAG CAGCGTTCTGCTGAACTCCCTCCTCCAAGCTGCCCCTGTCCCAGGAGACCGGCAGTGTC CTACCTGTGTGCAGCCCCTTGGAACCTGTTCAAGTGGCTCCCCCGAATGACCTGCCCCAGG GGCGCCACTCATTGTTATGATGGGTACATTCATCTCTCAGGAGGTGGGCTGTCCACCAAAAT GAGCATTCAGGGCTGCCTGCCCAACCTTCCAGCTTCTTGTTGAACCACCACCAGACAAATCG GGGGCTGAGGGCCTGGAGTCTCTCACTTGGGGGGTGGGGCTGGCACTGGCCCCAGCGCTGTG $\tt GTGGGGAGTGGTTTGCCCTTCCTGCTAACTCTATTACCCCCACGATTCTTCACCGCTGCTGA$ CCACCCACACTCAACCTCCTCTGACCTCATAACCTAATGGCCTTGGACACCAGATTCTTTC ACACTGGGGAGAGCCTGGAGCATCCGGACTTGCCCTATGGGAGAGGGGGACGCTGGAGGAGTG GCTGCATGTATCTGATAATACAGACCCTGTCCTTTCA

FIGURE 250

MSAVLLLALLGFILPLPGVQALLCQFGTVQHVWKVSDLPRQWTPKNTSCDSGLGCQDTLMLI ESGPQVSLVLSKGCTEAKDQEPRVTEHRMGPGLSLISYTFVCRQEDFCNNLVNSLPLWAPQP PADPGSLRCPVCLSMEGCLEGTTEEICPKGTTHCYDGLLRLRGGGIFSNLRVQGCMPQPGCN LLNGTQEIGPVGMTENCNRKDFLTCHRGTTIMTHGNLAQEPTDWTTSNTEMCEVGQVCQETL LLIDVGLTSTLVGTKGCSTVGAQNSQKTTIHSAPPGVLVASYTHFCSSDLCNSASSSSVLLN SLPPQAAPVPGDRQCPTCVQPLGTCSSGSPRMTCPRGATHCYDGYIHLSGGGLSTKMSIQGC VAQPSSFLLNHTRQIGIFSAREKRDVQPPASQHEGGGAEGLESLTWGVGLALAPALWWGVVC PSC

FIGURE 251

 $\texttt{CAGG} \underline{\textbf{ATG}} \texttt{AGGGGGGAATCTGGCCCTGGTGGGCGTTCTAATCAGCCTGGCCTTCCTGTCACTGCTG}$ CCATCTGGACATCCTCAGCCGGCTGGCGATGACGCCTGCTCTGTGCAGATCCTCGTCCCTGG CCTCAAAGGGGATGCGGGAGAGAGAGGGACAAAGGCCCCCCGGACGCCTGGAAGAGTCG GCCCCACGGGAGAAAAGGACATGGGGGGACAAAGGACAGAAAGGCAGTGTGGGTCGTCAT GGAAAAATTGGTCCCATTGGCTCTAAAGGTGAGAAAGGAGATTCCGGTGACATAGGACCCCC AGATGGACAACCAGGTCTCTCAGCTGACCAGCGAGCTCAAGTTCATCAAGAATGCTGTCGCC CGCCCAGCTGTCCTGCCAGGGCCGCGGGGCACGCTGAGCATGCCCAAGGACGAGGCTGCCA ATGGCCTGATGGCCGCATACCTGGCGCAAGCCGGCCTGGCCCGTGTCTTCATCGGCATCAAC GACCTGGAGAAGGAGGCGCCTTCGTGTACTCTGACCACTCCCCCATGCGGACCTTCAACAA GTGGCGCAGCGTGAGCCCAACAATGCCTACGACGAGGAGGACTGCGTGGAGATGGTGGCCT CGGGCGGCTGGAACGACGTGGCCTGCCACACCACCATGTACTTCATGTGTGAGTTTGACAAG ${\tt GAGAACATG} \underline{{\tt TGA}}{\tt GCCTCAGGCTGGGGGCTGCCCATTGGGGGGCCCCACATGTCCCTGCAGGGTT}$ GGCAGGGACAGACCCAGGCCAGCCAGGGAGCTGTCCCTCTGTGAAGGGTGGAG GCTCACTGAGTAGAGGGCTGTTGTCTAAACTGAGAAAATGGCCTATGCTTAAGAGGAAAATG AAAGTGTTCCTGGGGTGCTGTCTCTGAAGAAGCAGAGTTTCATTACCTGTATTGTAGCCCCA ATGTCATTATGTAATTATTACCCAGAATTGCTCTTCCATAAAGCTTGTGCCTTTGTCCAAGC

FIGURE 252

MRGNLALVGVLISLAFLSLLPSGHPQPAGDDACSVQILVPGLKGDAGEKGDKGAPGRPGRVG PTGEKGDMGDKGQKGSVGRHGKIGPIGSKGEKGDSGDIGPPGPNGEPGLPCECSQLRKAIGE MDNQVSQLTSELKFIKNAVAGVRETESKIYLLVKEEKRYADAQLSCQGRGGTLSMPKDEAAN GLMAAYLAQAGLARVFIGINDLEKEGAFVYSDHSPMRTFNKWRSGEPNNAYDEEDCVEMVAS GGWNDVACHTTMYFMCEFDKENM

FIGURE 253

AGTGACTGCAGCCTTCCTAGATCCCCTCCACTCGGTTTCTCTCTTTTGCAGGAGCACCGGCAG CACCAGTGTGTGAGGGGGGCAGCCAGCCTAGCCAGTTCCTTGATCCTGCCAGACCACC ${\tt CAGCCCCGGCACAGAGCTGCTCCACAGGCACC} \textbf{ATG} \textbf{AGGCATCATGCTGCTATTCACAGCCAT}$ TTCCTGGCGGGGCCGCAGCAAGAGGGATCCAGATCTCTACCAGCTGCTCCAGAGACTCTTC AAAAGCCACTCATCTCTGGAGGGATTGCTCAAAGCCCTGAGCCAGGCTAGCACAGATCCTAA GGAATCAACATCTCCCGAGAAACGTGACATGCATGACTTCTTTGTGGGACTTATGGGCAAGA GGAGCGTCCAGCCAGAGGGAAAGACAGGACCTTTCTTACCTTCAGTGAGGGTTCCTCGGCCC CTTCATCCCAATCAGCTTGGATCCACAGGAAAGTCTTCCCTGGGAACAGAGGAGCAGAGACC $\verb|TTTA| \textbf{TAA} \\ \texttt{GACTCTCCTACGGATGTGAATCAAGAGAACGTCCCCAGCTTTGGCATCCTCAAGT|}$ ATCCCCGAGAGCAGAATAGGTACTCCACTTCCGGACTCCTGGACTGCATTAGGAAGACCTC TTTCCCTGTCCCAATCCCCAGGTGCGCACGCTCCTGTTACCCTTTCTCTTCTCTTGT AACATTCTTGTGCTTTGACTCCTTCTCCATCTTTTCTACCTGACCCTGGTGTGGAAACTGCA TAGTGAATATCCCCAACCCCAATGGGCATTGACTGTAGAATACCCTAGAGTTCCTGTAGTGT CCTACATTAAAAATATAATGTCTCTCTATTCCTCAACAATAAAGGATTTTTGCATATGAA

FIGURE 254

MRIMLLFTAILAFSLAQSFGAVCKEPQEEVVPGGGRSKRDPDLYQLLQRLFKSHSSLEGLLK ALSQASTDPKESTSPEKRDMHDFFVGLMGKRSVQPEGKTGPFLPSVRVPRPLHPNQLGSTGK SSLGTEEQRPL

Important features:

Signal peptide:

amino acids 1-18

Tyrosine kinase phosphorylation site.

amino acids 36-45

N-myristoylation site.

amino acids 33-39, 59-65

Amidation site.

amino acids 90-94

Leucine zipper pattern.

amino acids 43-65

Tachykinin family signature.

amino acids 86-92

FIGURE 255

GGGCGTCTCCGGCTGCTCCTATTGAGCTGTCTGCTCGCTGTGCCCGCTGTGCCTGTGCC CGCGCTGTCGCCGCTGCTACCGCGTCTGCTGGACGCGGGAGACGCCAGCGAGCTGGTGATTG GAGCCCTGCGGAGAGCTCAAGCGCCCAGCTCTGCCCCAGGAGCCCAGGCTGCCCCGTGAGTC ${\tt CCATAGTTGCTGCAGGAGTGGAGCC}$ TGCTGTTCCTGGTCTGCGGATCCCAAGGCTACCTCCTGCCCAACGTCACTCTCTTAGAGGAG CTGCTCAGCAAATACCAGCACAACGAGTCTCACTCCCGGGTCCGCAGAGCCATCCCCAGGGA GGACAAGGAGGAGATCCTCATGCTGCACAACAAGCTTCGGGGCCAGGTGCAGCCTCAGGCCT CCAACATGGAGTACATGGTGAGCGCCGGCTCCGGCCGCAGAGGCTGGCACCGGGGGTGGGGC TTGAGACAGGGTCTCACTCTGCCACTGACGCTGGAGTGCAATGGCACAATCGTCATGCCCTG AAACCT**TAG**ACTCCCGGGGTTAAGCGATCCTGCTTCAGCCTCCCAAGTAGCTGGAACTACAG GCATGCACCATGGTGCCCAGCTAGATTTTAAATATTTTGTGGAGATGGGGGTCTTGCTACGT TGCCCAGGCTGGTCTTGAACTCCTAGGCTCAAGCAATCCTCCTGCCTCAGCCTCTCAAAGTG CTAGGATTATAGGCATGAGTCACCCTGTCTGGCTCTGGCTCTGTTCTTAACATTCTGCCAAA ACAACACACGTGGGTTCCCTGTGCAGAGCCTGCTCGTTGCCTTCATGTCACTCTTGGTAGC CTGGGCTTTGCTGATGCTGATCTCAGCTGTGCCACACGCTAGCTGCACCACCCTGACTTCTC GTGAGATAAGTCGAGGCTGTGAAGGGCCCGGCACAGACTGACCTGCCTCCCCAACCCCTAGG $\tt CTTTGCTAACCGGGAAAGGACCTAACGGTGACAGAAGACAGCCAAGGTCAACCCTCCCGGGT$ GATTGTGATGGGTGTTCCAGGTGTGGTTGGGCGATGCTGCTACTTGACCCCAAGCTCCAGTG TGGAAACTTCCTTCCTGGCTGGTTTTCCAGAACTACAGAGGAATGGACCACAGTCTTCCAGG GTCCCTCGTCCACCAACCGGGAGCCTCCACCTTGGCCATCCGTCAGCTATGAATGGCTT TTTAAACAAACCCACGTCCCAGCCTGGGTAACATGGTAAAGCCCCGTCTCTACAAAAAAATC CAAGTTAGCCGGGCATGGTGCGCACCTGTAGTCCCAGCTGCAGTGGGACTGAGGTGGAG GTGGAGGTGGGGGTGGGAGCTGAGGAAGGAGGATCGCTTGAGCCTGGGAAGTCGAGGCTGC AGTGAGCTGAGATTGCACCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGTCTCAAAAA

FIGURE 256

MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILML HNKLRGQVQPQASNMEYMVSAGSGRRGWHRGWGLGHQPALFPSQLCSPASACDGWLRVSSGR GGSRLCSVLFVCFETGSHSATDAGVQWHNRHALKP

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 27-31, 41-45

N-myristoylation site.

amino acids 126-132, 140-146

Amidation site.

amino acids 85-89

FIGURE 257

FIGURE 258

 ${\tt MGSGLPLVLLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTS} \\ {\tt VTLHHARSQHHVVCNT}$

FIGURE 259

FIGURE 260

MIGYYLILFLMWGSSTVFCVLLIFTIAEASFSVENECLVDLCLLRICYKLSGVPNQCRVPLP SDCSK

Important features:

Signal peptide:

amino acids 1-29

FIGURE 261

GAGGATTTGCCACAGCAGCGGATAGAGCAGGAGGAGCACCACCGGAGCCCTTGAGACATCCTT GAGAAGAGCCACAGCATAAGAGACTGCCCTGCTTGGTGTTTTGCAGG**ATG**ATGGTGGCCCTT CGAGGAGCTTCTGCATTGCTGGTTCTGTTCCTTGCAGCTTTTCTGCCCCCGCCGCAGTGTAC CCAGGACCCAGCCATGGTGCATTACATCTACCAGCGCTTTCGAGTCTTGGAGCAAGGGCTGG AAAAATGTACCCAAGCAACGAGGGCATACATTCAAGAATTCCAAGAGTTCTCAAAAAATATA TCTGTCATGCTGGGAAGATGTCAGACCTACACAAGTGAGTACAAGAGTGCAGTGGGTAACTT ACGAGTGCATCGTATCAGAGGACAAGACACTGGCAGAAATGTTGCTCCAAGAAGCTGAAGAA GAGAAAAAGATCCGGACTCTGCTGAATGCAAGCTGTGACAACATGCTGATGGGCATAAAGTC TTTGAAAATAGTGAAGAAGATGATGGACACACATGGCTCTTGGATGAAAGATGCTGTCTATA ACTCTCCAAAGGTGTACTTATTAATTGGATCCAGAAACAACACTGTTTGGGAATTTGCAAAC ATACGGGCATTCATGGAGGATAACACCAAGCCAGCTCCCCGGAAGCAAATCCTAACACTTTC CTGGCAGGGAACAGGCCAAGTGATCTACAAAGGTTTTCTATTTTTTCATAACCAAGCAACTT CTAATGAGATAATCAAATATAACCTGCAGAAGAGGGCTGTGGAAGATCGAATGCTGCTCCCA GGAGGGTAGGCCGAGCATTGGTTTACCAGCACTCCCCCTCAACTTACATTGACCTGGCTGT GGATGAGCATGGGCCATCCACTCTGGGCCAGGCACCCATAGCCATTTGGTTCTCA CAAAGATTGAGCCGGGCACACTGGGAGTGGAGCATTCATGGGATACCCCATGCAGAAGCCAG GATGCTGAAGCCTCATTCCTCTTGTGTGGGGTTCTCTATGTGGTCTACAGTACTGGGGGCCA GGGCCCTCATCGCATCACCTGCATCTATGATCCACTGGGCACTATCAGTGAGGAGGACTTGC CCAACTTGTTCTTCCCCAAGAGACCAAGAAGTCACTCCATGATCCATTACAACCCCAGAGAT AAGCAGCTCTATGCCTGGAATGAAGGAAACCAGATCATTTACAAACTCCAGACAAAGAGAAA GCTGCCTCTGAAG<u>TAA</u>TGCATTACAGCTGTGAGAAAGAGCACTGTGGCCTTTTGGCAGCTGTTC AGTGTGTAGAAGTGGAAATACGTATGCCTCCTTTCCCAAATGTCACTGCCTTAGGTATCTTC CAAGAGCTTAGATGAGAGCATATCATCAGGAAAGTTTCAACAATGTCCATTACTCCCCCAAA CCTCCTGGCTCTCAAGGATGACCACATTCTGATACAGCCTACTTCAAGCCTTTTGTTTTACT CCCTAATATTCACCACTGGCTTTTCTCTCCCCTGGCCTTTGCTGAAGCTCTTCCCTCTTTTT CAAATGTCTATTGATATTCTCCCATTTTCACTGCCCAACTAAAATACTATTAATATTTCTTT CTTTTCTTTTTTTTTTGAGACAAGGTCTCACTATGTTGCCCAGGCTGGTCTCAAACTCC AGAGCTCAAGAGATCCTCCTGCCTCAGCCTCCTAAGTACCTGGGATTACAGGCATGTGCCAC CACACCTGGCTTAAAATACTATTTCTTATTGAGGTTTAACCTCTATTTCCCCTAGCCCTGTC CTTCCACTAAGCTTGGTAGATGTAATAATAAAGTGAAAATATTAACATTTGAATATCGCTTT CCAGGTGTGGAGTGTTTGCACATCATTGAATTCTCGTTTCACCTTTGTGAAACATGCACAAG TCTTTACAGCTGTCATTCTAGAGTTTAGGTGAGTAACACAATTACAAAGTGAAAGATACAGC TAGAAAATACTACAAATCCCATAGTTTTTCCATTGCCCAAGGAAGCATCAAATACGTATGTT TGTTCACCTACTCTTATAGTCAATGCGTTCATCGTTTCAGCCTAAAAATAATAGTCTGTCCC TTTAGCCAGTTTTCATGTCTGCACAAGACCTTTCAATAGGCCTTTCAAATGATAATTCCTCC AGAAAACCAGTCTAAGGGTGAGGACCCCAACTCTAGCCTCCTCTTGTCTTGCTGTCCTGT

FIGURE 262

MMVALRGASALLVLFLAAFLPPPQCTQDPAMVHYIYQRFRVLEQGLEKCTQATRAYIQEFQE FSKNISVMLGRCQTYTSEYKSAVGNLALRVERAQREIDYIQYLREADECIVSEDKTLAEMLL QEAEEEKKIRTLLNASCDNMLMGIKSLKIVKKMMDTHGSWMKDAVYNSPKVYLLIGSRNNTV WEFANIRAFMEDNTKPAPRKQILTLSWQGTGQVIYKGFLFFHNQATSNEIIKYNLQKRTVED RMLLPGGVGRALVYQHSPSTYIDLAVDEHGLWAIHSGPGTHSHLVLTKIEPGTLGVEHSWDT PCRSQDAEASFLLCGVLYVVYSTGGQGPHRITCIYDPLGTISEEDLPNLFFPKRPRSHSMIH YNPRDKQLYAWNEGNQIIYKLQTKRKLPLK

FIGURE 263

GGGCGCCCGCGTACTCACTAGCTGAGGTGGCAGTGGTTCCACCAACATCGAGCTCTCGCAGA TGTCGGAGCTCATGGGGCTGTTGCTTGGGCTGCTGGCCCTGATGGCGACGGCGGCG AAATGGATTTCCACCTGACAAATCTTCGGGATCCAAGAAGCAGAAACAATATCAGCGGATTC GGAAGGAGAGCCTCAACAACACAACTTCACCCACCGCCTCCTGGCTGCAGCTCTGAAGAGC CACAGCGGGAACATATCTTGCATGGACTTTAGCAGCAATGGCAAATACCTGGCTACCTGTGC AGATGATCGCACCATCCGCATCTGGAGCACCAAGGACTTCCTGCAGCGAGAGCACCGCAGCA TGAGAGCCAACGTGGAGCTGGACCACCCACCCTGGTGCGCTTCAGCCCTGACTGCAGAGCC TTCATCGTCTGGCTGGCCAACGGGGACACCCTCCGTGTCTTCAAGATGACCAAGCGGGAGGA TGGGGGCTACACCTTCACAGCCACCCCAGAGGACTTCCCTAAAAAGCACAAGGCGCCTGTCA TCGACATTGGCATTGCTAACACAGGGAAGTTTATCATGACTGCCTCCAGTGACACCACTGTC ACACGCTGCTGTATCTCCCTGTGGCAGATTTGTAGCCTCGTGTGGCTTCACCCCAGATGTGA AGGTTTGGGAAGTCTGCTTTGGAAAGAAGGGGGGGGTTCCAGGAGGTGGTGCGAGCCTTCGAA CTAAAGGGCCACTCCGCGGCTGTGCACTCGTTTGCTTTCTCCAACGACTCACGGAGGATGGC TTCTGTCTCCAAGGATGGTACATGGAAACTGTGGGACACAGATGTGGAATACAAGAAGAAGC AGGACCCCTACTTGCTGAAGACAGGCCGCTTTGAAGAGGCGGCGGGTGCCGCCGTGCCGC CTGGCCCTCTCCCCCAACGCCCAGGTCTTGGCCTTGGCCAGTGGCAGTAGTATTCATCTCTA CAATACCCGGCGGGCGAGAAGGAGGAGTGCTTTGAGCGGGTCCATGGCGAGTGTATCGCCA ACTTGTCCTTTGACATCACTGGCCGCTTTCTGGCCTCCTGTGGGGACCGGGCGGTGCGGCTG TTTCACAACACTCCTGGCCACCGAGCCATGGTGGAGGAGATGCAGGGCCACCTGAAGCGGGC CTCCAACGAGAGCACCCGCCAGAGGCTGCAGCAGCTGACCCAGGCCCAAGAGACCCTGA ${\tt AGAGCCTGGGTGCCCTGAAGAAG}$ ${\tt CTCTGGGAGGGCCCGGCGCAGAGGATTGAGGAGGAG}$ GGATCTGGCCTCCTCATGGCACTGCTGCCATCTTTCCTCCCAGGTGGAAGCCTTTCAGAAGG AGTCTCCTGGTTTTCTTACTGGTGGCCCTGCTTCTTCCCATTGAAACTACTCTTGTCTACTT ${\tt AGGTCTCTTCTTGCTGGCTGTGACTCCTCCCTGACTAGTGGCCAAGGTGCTTTTCTTC}$ CTCCCAGGCCCAGTGGGTGGAATCTGTCCCCACCTGGCACTGAGGAGAATGGTAGAGAGGAG AGGAGAGAGAGAGATGTGATTTTTGGCCTTGTGGCAGCACATCCTCACACCCAAAGAAG TTTGTAAATGTTCCAGAACAACCTAGAGAACACCTGAGTACTAAGCAGCAGTTTTGCAAGGA TGGGAGACTGGGATAGCTTCCCATCACAGAACTGTGTTCCATCAAAAAGACACTAAGGGATT TCCTTCTGGGCCTCAGTTCTATTTGTAAGATGGAGAATAATCCTCTCTGTGAACTCCTTGCA AAGATGATATGAGGCTAAGAGAATATCAAGTCCCCAGGTCTGGAAGAAAAGTAGAAAAGAGT AGTACTATTGTCCAATGTCATGAAAGTGGTAAAAGTGGGAACCAGTGTGCTTTGAAACCAAA ${\tt TTAGAAACACATTCCTTGGGAAGGCAAAGTTTTCTGGGACTTGATCATACATTTTATATGGT}$ TGGGACTTCTCTCTCGGGAGATGATATCTTGTTTAAGGAGACCTCTTTTCAGTTCATCAAG

FIGURE 264

MELSQMSELMGLSVLLGLLALMATAAVARGWLRAGEERSGRPACQKANGFPPDKSSGSKKQK
QYQRIRKEKPQQHNFTHRLLAAALKSHSGNISCMDFSSNGKYLATCADDRTIRIWSTKDFLQ
REHRSMRANVELDHATLVRFSPDCRAFIVWLANGDTLRVFKMTKREDGGYTFTATPEDFPKK
HKAPVIDIGIANTGKFIMTASSDTTVLIWSLKGQVLSTINTNQMNNTHAAVSPCGRFVASCG
FTPDVKVWEVCFGKKGEFQEVVRAFELKGHSAAVHSFAFSNDSRRMASVSKDGTWKLWDTDV
EYKKKQDPYLLKTGRFEEAAGAAPCRLALSPNAQVLALASGSSIHLYNTRRGEKEECFERVH
GECIANLSFDITGRFLASCGDRAVRLFHNTPGHRAMVEEMQGHLKRASNESTRQRLQQQLTQ
AQETLKSLGALKK

Important features:

Signal peptide:

amino acids 1-25

N-glycosylation site.

amino acids 76-80, 92-96, 231-235, 289-293, 378-382, 421-425

Beta-transducin family Trp-Asp repeat protein.

amino acids 30-47, 105-118, 107-119, 203-216, 205-217, 296-308

FIGURE 265

TGGCCTCCCCAGCTTGCCAGGCACAAGGCTGAGCGGGGGGAGGCAGGGGAGGCATCTAAGCAGG $\texttt{CAGTGTTTTGCCTTCACCCCAAGTGACC} \underline{\textbf{ATG}} \texttt{AGAGGTGCCACGCGAGTCTCAATCATGCTCC}$ TCCTAGTAACTGTGTCTGACTGTGCTGTGATCACAGGGGCCTGTGAGCGGGATGTCCAGTGT GGGGCAGGCACCTGTGCCATCAGCCTGTGGCTTCGAGGGCTGCGGATGTGCACCCCGCT GGGGCGGAAGGCGAGGTGCCACCCCGGCAGCCACAAGGTCCCCTTCTTCAGGAAACGCA AGCACCACACCTGTCCTTGCCTGACCTGCTGTGCTCCAGGTTCCCGGACGGCAGGTAC ${\tt CGCTGCTCCATGGACTTGAAGAACATCAATTTT} {\color{red}{\textbf{TAG}}} {\tt GCGCTTGCCTGGTCTCAGGATACCCA}$ CCATCCTTTTCCTGAGCACAGCCTGGATTTTTATTTCTGCCATGAAACCCAGCTCCCATGAC TCTCCCAGTCCCTACACTGACTACCCTGATCTCTTGTCTAGTACGCACATATGCACACAG GCAGACATACCTCCCATCATGACATGGTCCCCAGGCTGGCCTGAGGATGTCACAGCTTGAGG CTGTGGTGTGAAAGGTGGCCAGCCTGGTTCTCTTCCCTGCTCAGGCTGCCAGAGAGGTGGTA AATGGCAGAAAGGACATTCCCCCTCCCCTCCCCAGGTGACCTGCTCTCTTTCCTGGGCCCTG CCCCTCTCCCCACATGTATCCCTCGGTCTGAATTAGACATTCCTGGGCACAGGCTCTTGGGT GCATTGCTCAGAGTCCCAGGTCCTGGCCTGACCCTCAGGCCCTTCACGTGAGGTCTGTGAGG ACCAATTTGTGGGTAGTTCATCTTCCCTCGATTGGTTAACTCCTTAGTTTCAGACCACAGAC TCAAGATTGGCTCTTCCCAGAGGCAGCAGCAGACAGTCACCCCAAGGCAGGTGTAGGGAGCCCA GGGAGGCCAATCAGCCCCCTGAAGACTCTGGTCCCAGTCAGCCTGTGGCCTTGTGA CCTGTGACCTTCTGCCAGAATTGTCATGCCTCTGAGGCCCCCTCTTACCACACTTTACCAGT TAACCACTGAAGCCCCCAATTCCCACAGCTTTTCCATTAAAATGCAAATGGTGGTGGTTCAA TCTAATCTGATATTGACATATTAGAAGGCAATTAGGGTGTTTCCTTAAACAACTCCTTTCCA AGGATCAGCCCTGAGAGCAGGTTGGTGACTTTGAGGAGGGCAGTCCTCTGTCCAGATTGGGG TGGGAGCAAGGGACAGGGCAGGGCTGAAAGGGGCACTGATTCAGACCAGGGAGG CAACTACACCAACATGCTGGCTTTAGAATAAAAGCACCAACTGAAAAAA

FIGURE 266

MRGATRVSIMLLLVTVSDCAVITGACERDVQCGAGTCCAISLWLRGLRMCTPLGREGEECHP GSHKVPFFRKRKHHTCPCLPNLLCSRFPDGRYRCSMDLKNINF

Signal peptide:

amino acids 1-19

Tyrosine kinase phosphorylation site:

amino acids 88-95

N-myristoylation sites:

amino acids 33-39, 35-41, 46-52

FIGURE 267

AGCGCCCGGGCGTCGGGGCGGTAAAAGGCCGGCAGAAGGGAGGCACTTGAGAA**ATG**TCTTTC CTCCAGGACCCAAGTTTCTTCACCATGGGGATGTGGTCCATTGGTGCAGGAGCCCTGGGGGC TGCTGCCTTGGCATTGCTGCTAACACAGACGTGTTTCTGTCCAAGCCCCAGAAAGCGG CCCTGGAGTACCTGGAGGATATAGACCTGAAAACACTGGAGAAGGAACCAAGGACTTTCAAA GCAAAGGAGCTATGGGAAAAAAATGGAGCTGTGATTATGGCCGTGCGGAGGCCAGGCTGTTT CCTCTGTCGAGAGGAAGCTGCGGATCTGTCCTCCCTGAAAAGCATGTTGGACCAGCTGGGCG TCCCCCTCTATGCAGTGGTAAAGGAGCACATCAGGACTGAAGTGAAGGATTTCCAGCCTTAT TTCAAAGGAGAAATCTTCCTGGATGAAAAGAAAAAGTTCTATGGTCCACAAAGGCGGAAGAT GATGTTTATGGGATTTATCCGTCTGGGAGTGTGGTACAACTTCTTCCGAGCCTGGAACGGAG GCTTCTCTGGAAACCTGGAAGGAGAAGGCTTCATCCTTGGGGGGAGTTTTCGTGGTGGGATCA GGAAAGCAGGGCATTCTTCTTGAGCACCGAGAAAAAGAATTTGGAGACAAAGTAAACCTACT TTCTGTTCTGGAAGCTGCTAAGATGATCAAACCACAGACTTTGGCCTCAGAGAAAAAA**TGA**T TGTGTGAAACTGCCCAGCTCAGGGATAACCAGGGACATTCACCTGTGTTCATGGGATGTATT GTTTCCACTCGTGTCCCTAAGGAGTGAGAAACCCATTTATACTCTACTCTCAGTATGGATTA TTAATGTATTTAATATTCTGTTTAGGCCCACTAAGGCAAAATAGCCCCAAAACAAGACTGA CAAAAATCTGAAAAACTAATGAGGATTATTAAGCTAAAACCTGGGAAATAGGAGGCTTAAAA TTGACTGCCAGGCTGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGG TGAGCAAGTCACTTGAGGTCGGGAGTTCGAGACCAGCCTGAGCAACATGGCGAAACCCCGTC GGAGGCTGAGGCAGGAGATCACTTGAACCTGGGAGGTTGCGGTTGCGGTGAGATCA

FIGURE 268

MSFLQDPSFFTMGMWSIGAGALGAAALALLLANTDVFLSKPQKAALEYLEDIDLKTLEKEPR TFKAKELWEKNGAVIMAVRRPGCFLCREEAADLSSLKSMLDQLGVPLYAVVKEHIRTEVKDF QPYFKGEIFLDEKKKFYGPQRRKMMFMGFIRLGVWYNFFRAWNGGFSGNLEGEGFILGGVFV VGSGKQGILLEHREKEFGDKVNLLSVLEAAKMIKPQTLASEKK

FIGURE 269

FIGURE 270

MANPGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIV VFSLLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI

FIGURE 271

FIGURE 272

 ${\tt MTFFLSLLLLVCEAIWRSNSGSNTLENGYFLSRNKENHSQPTQSSLEDSVTPTKAVKTTGK}\\ {\tt GIVKGRNLDSRGLILGAEAWGRGVKKNT}$

Orași Orași

273/330

FIGURE 273

GCCAGGAATAACTAGAGAGGAACA**ATG**GGGTTATTCAGAGGTTTTGTTTTCCTCTTAGTTCT GTGCCTGCTGCACCAGTCAAATACTTCCTTCATTAAGCTGAATAATAATGGCTTTGAAGATA AAAACCATAAACATGCTGATGTTATAGTTGCACCACCTACACTCCCAGGTAGAGATGAACCA TACACCAAGCAGTTCACAGAATGTGGAGAGAAAGGCGAATACATTCACTTCACCCCTGACCT TCTACTTGGAAAAAAACAAAATGAATATGGACCACCAGGCAAACTGTTTGTCCATGAGTGGG CTCACCTCCGGTGGGGAGTGTTTGATGAGTACAATGAAGATCAGCCTTTCTACCGTGCTAAG TCAAAAAAATCGAAGCAACAAGGTGTTCCGCAGGTATCTCTGGTAGAAATAGAGTTTATAA GTGTCAAGGAGGCAGCTGTCTTAGTAGAGCATGCAGAATTGATTCTACAACAAAACTGTATG GAAAAGATTGTCAATTCTTTCCTGATAAAGTACAAACAGAAAAAGCATCCATAATGTTTATG CAAAGTATTGATTCTGTTGTTGAATTTTGTAACGAAAAAACCCATAATCAAGAAGCTCCAAG CCTACAAAACATAAAGTGCAATTTTAGAAGTACATGGGAGGTGATTAGCAATTCTGAGGATT AGTGATGAAAGAAACACACTCATGGCAGGATTACCTACATATCCTCTGGGAGGAACTTCCAT CTGCTCTGGAATTAAATATGCATTTCAGGTGATTGGAGAGCTACATTCCCAACTCGATGGAT CCGAAGTACTGCTGACTGATGGGGAGGATAACACTGCAAGTTCTTGTATTGATGAAGTG AAACAAAGTGGGGCCATTGTTCATTTTATTGCTTTGGGAAGAGCTGCTGATGAAGCAGTAAT AGAGATGAGCAAGATAACAGGAGGAAGTCATTTTTATGTTTCAGATGAAGCTCAGAACAATGGCCTCATTGATGCTTTTGGGGCTCTTACATCAGGAAATACTGATCTCCCCAGAAGTCCCTT CAGCTCGAAAGTAAGGGATTAACACTGAATAGTAATGCCTGGATGAACGACACTGTCATAAT TGATAGTACAGTGGGAAAGGACACGTTCTTTCTCATCACATGGAACAGTCTGCCTCCCAGTA TTTCTCTCTGGGATCCCAGTGGAACAATAATGGAAAATTTCACAGTGGATGCAACTTCCAAA ATGGCCTATCTCAGTATTCCAGGAACTGCAAAGGTGGGCACTTGGGCATACAATCTTCAAGC CAAAGCGAACCCAGAAACATTAACTATTACAGTAACTTCTCGAGCAGCAAATTCTTCTGTGC CTCCAATCACAGTGAATGCTAAAATGAATAAGGACGTAAACAGTTTCCCCAGCCCAATGATT GTTTACGCAGAAATTCTACAAGGATATGTACCTGTTCTTGGAGCCAATGTGACTGCTTTCAT TGAATCACAGAATGGACATACAGAAGTTTTGGAACTTTTGGATAATGGTGCAGGCGCTGATT CTTTCAAGAATGATGGAGTCTACTCCAGGTATTTTACAGCATATACAGAAAATGGCAGATAT AGCTTAAAAGTTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAAATTACGGCCTCCACT GAATAGAGCCGCGTACATACCAGGCTGGGTAGTGAACGGGGAAATTGAAGCAAACCCGCCAA GACCTGAAATTGATGAGGATACTCAGACCACCTTGGAGGATTTCAGCCGAACAGCATCCGGA GGTGCATTTGTGGTATCACAAGTCCCAAGCCTTCCCTTGCCTGACCAATACCCACCAAGTCA AATCACAGACCTTGATGCCACAGTTCATGAGGATAAGATTATTCTTACATGGACAGCACCAG GAGATAATTTTGATGTTGGAAAAGTTCAACGTTATATCATAAGAATAAGTGCAAGTATTCTT GATCTAAGAGACAGTTTTGATGATGCTCTTCAAGTAAATACTACTGATCTGTCACCAAAGGA GGCCAACTCCAAGGAAAGCTTTGCATTTAAACCAGAAAATATCTCAGAAGAAAATGCAACCC ACATATTATTGCCATTAAAAGTATAGATAAAAGCAATTTGACATCAAAAGTATCCAACATT GCACAAGTAACTTTGTTTATCCCTCAAGCAAATCCTGATGACATTGATCCTACACCTACTCC TACTCCTACTCCTGATAAAAGTCATAATTCTGGAGTTAATATTTCTACGCTGGTAT $\texttt{TGTCTGTGATTGGGTCTGTTAATTGTTAACTTTATTTTAAGTACCACCATT} \underline{\textbf{TGA}} \texttt{ACCTTA}$ AAAGGATATTTCTGAATCTTAAAATTCATCCCATGTGTGATCATAAACTCATAAAAATAATT TTAAGATGTCGGAAAAGGATACTTTGATTAAATAAAAACACTCATGGATATGTAAAAACTGT CAAGATTAAAATTTAATAGTTTCATTTATTTGTTATTTGTAAGAAATAGTGATGAAC

FIGURE 274

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTY
LFEATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTEC
GEKGEYIHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATR
CSAGISGRNRVYKCQGGSCLSRACRIDSTTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVVE
FCNEKTHNQEAPSLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPPVFSLLKISQRIVCLV
LDKSGSMGGKDRLNRMNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLM
AGLPTYPLGGTSICSGIKYAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVH
FIALGRAADEAVIEMSKITGGSHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLT
LNSNAWMNDTVIIDSTVGKDTFFLITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPG
TAKVGTWAYNLQAKANPETLTITVTSRAANSSVPPITVNAKMNKDVNSFPSPMIVYAEILQG
YVPVLGANVTAFIESQNGHTEVLELLDNGAGADSFKNDGVYSRYFTAYTENGRYSLKVRAHG
GANTARLKLRPPLNRAAYIPGWVVNGEIEANPPRPEIDEDTQTTLEDFSRTASGGAFVVSQV
PSLPLPDQYPPSQITDLDATVHEDKIILTWTAPGDNFDVGKVQRYIIRISASILDLRDSFDD
ALQVNTTDLSPKEANSKESFAFKPENISEENATHIFIAIKSIDKSNLTSKVSNIAQVTLFIP
QANPDDIDPTPTPTPTPTPDKSHNSGVNISTLVLSVIGSVVIVNFILSTTI

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

FIGURE 275

CTCCTTAGGTGGAAACCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGAAAGACCATACGTCCCCGGGCAGGGGTGACAACAGGTGTCATCTTTTTGATCTCGTGTGTGGCTGCCTTCCTATTTCAAGGAAAGACCCAAGGTATTTTGACCCAGAGGAGCAATGATGTAGCCACCTCCTAACCTTCCCTTCTTGAACCCCCAGTTATGCCAGGATTTATGCCAGGAGTTTAGACCAGCAGCAGCGGCTCCTTCGGCTTAACTT GTAGAGAAGCTGCTCTGTGTGGTGGTTAACTCCAAGAGGCAGAACTCGTTCTAGAAGGAAATGGATGCAAGCAGCTCCGGGGGCCCCAAACGCATGCTTCCTGTGGTCTAGCCCAGGGAAGCCCTTCCGTGGGG GCCCCGGCTTTGAGGGATGCCACCGGTTCTGGACGCATGGCTGATTCCTGA**ATG**ATGATGGTTCGCCGGGGGGCTGCTTGCGTGGATTTCCCGGGTGGTGGTTTTGCTGGTGCTCTCTGT CCTGTACATGTTGGCCTGCACCCCAAAAGGTGACGAGGAGCAGCTGGCACTGCCCAGGGCCAACAGC CCCACGGGAAGGAGGGGTACCAGGCCGTCCTTCAGGAGTGGGAGGAGCAGCACCGCAACTACGTGA GCAGCCTGAAGCGGCAGATCGCACAGCTCAAGGAGGAGCTGCAGGAGAGGAGTGAGCAGCTCAGGAA AGGGGACCACAAACACGAATTCAAACGGCTCATCTTATTTCGACCATTCAGCCCCATCATGAAAGTGAAAAATGAAAAGCTCAACATGGCCAACACGCTTATCAATGTTATCGTGCCTCTAGCAAAAAGGGTGGACAAGTTCCGGCAGTTCATGCAGAATTCAGGGAGATTCATCATCTTATCGTGCATGGGAGAGTCCATCT GGCCATGAACGAGGCATCCCACGGCCAGCTGGGCATGCTGGTGTTCAGGCACGAGATAGAGGCTCAC CTTCGCAAACAGAAACAGAAGACAAGTAGCAAAAAAACA**TGA**ACTCCCAGAGAAGGATTGTGGGAGA AAGGCAGAATGCTTGTGAGATTATAAGCCTAATGGTGTGGAGGTTTTGATGGTGTTACAATACACT GAGACCTGTTGTTTTGTGTGCTCATTGAAATATTCATGATTTAAGAGCAGTTTTGTAAAAAAATTCAT TAGCATGAAAGGCAAGCATATTTCTCCTCATATGAATGAGCCTATCAGCAGGGCTCTAGTTTCTAGG GTTCAAAGCATCAAATTGATGCCATATCCAAGGACATGCCAAATGCTGATTCTGTCAGGCACTGAAT GTCAGGCATTGAGACATAGGGAAGGAATGGTTTGTACTAATACAGACGTACAGATACTTTCTCTGAA GAGTATTTTCGAAGAGGAGCAACTGAACACTGGAGGAAAAGAAAATGACACTTTCTGCTTTACAGAA AGGCCATGAATGGAAGGTGGTATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

FIGURE 276

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQ
EWEEQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFL
HSQVDKAEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIES
ALETLNNPAENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPI
MKVKNEKLNMANTLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVYFGKEEINEVK
GILENTSKAANFRNFTFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCR
LNTQPGKKVFYPVLFSQYNPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFI
NIGGFDLDIKGWGGEDVHLYRKYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQS
KAMNEASHGQLGMLVFRHEIEAHLRKQKQKTSSKKT

FIGURE 277

GAAAGA**ATG**TTGTGGCTGCTCTTTTTTCTGGTGACTGCCATTCATGCTGAACTCTGTCAACC AGGTGCAGAAAATGCTTTTAAAGTGAGACTTAGTATCAGAACAGCTCTGGGAGATAAAGCAT ATGCCTGGGATACCAATGAAGAATACCTCTTCAAAGCGATGGTAGCTTTCTCCATGAGAAAA GTTCCCAACAGAAAGCAACAGAAATTTCCCATGTCCTACTTTGCAATGTAACCCAGAGGGT ATCATTCTGGTTTGTGGTTACAGACCCTTCAAAAAATCACACCCTTCCTGCTGTTGAGGTGC CTGGAATTTTTAAAAATCCCTTCCACACTTGCACCACCCATGGACCCATCTGTGCCCATCTG GATTATTATATTTGGTGTGATATTTTGCATCATCATAGTTGCAATTGCACTACTGATTTTAT CAGGGATCTGGCAACGTAGAAGAAGAACAAAGAACCATCTGAAGTGGATGACGCTGAAGAT AAGTGTGAAAACATGATCACAATTGAAAATGGCATCCCCTCTGATCCCCTGGACATGAAGGG $\mathsf{GGGCATATTAATGATGCCTTCA}$ $\mathsf{\underline{TGA}}$ $\mathsf{CAGAGGATGAGGGCTCACCCCTCTCTGAAGGGCTGT}$ TGTTCTGCTTCCTCAAGAAATTAAACATTTGTTTCTGTGTGACTGCTGAGCATCCTGAAATA CCAAGAGCAGATCATATTTTGTTTCACCATTCTTCTTTTGTAATAAATTTTGAATGTGCT TGAAAGTGAAAAGCAATCAATTATACCCACCAACACCACTGAAATCATAAGCTATTCACGAC TCAAAATATTCTAAAATATTTTTCTGACAGTATAGTGTATAAATGTGGTCATGTGGTATTTG TAGTTATTGATTTAAGCATTTTTAGAAATAAGATCAGGCATATGTATATTTTCACACTTC AAAGACCTAAGGAAAAATAAATTTTCCAGTGGAGAATACATATAATATGGTGTAGAAATCAT TGAAAATGGATCCTTTTTGACGATCACTTATATCACTCTGTATATGACTAAGTAAACAAAAG TGAGAAGTAATTATTGTAAATGGATGGATAAAAATGGAATTACTCATATACAGGGTGGAATT TTATCCTGTTATCACACCAACAGTTGATTATATTTTTCTGAATATCAGCCCCTAATAGGAC AATTCTATTTGTTGACCATTTCTACAATTTGTAAAAGTCCAATCTGTGCTAACTTAATAAAG

FIGURE 278

MLWLLFFLVTAIHAELCQPGAENAFKVRLSIRTALGDKAYAWDTNEEYLFKAMVAFSMRKVP NREATEISHVLLCNVTQRVSFWFVVTDPSKNHTLPAVEVQSAIRMNKNRINNAFFLNDQTLE FLKIPSTLAPPMDPSVPIWIIIFGVIFCIIIVAIALLILSGIWQRRRKNKEPSEVDDAEDKC ENMITIENGIPSDPLDMKGGILMMPS

FIGURE 279

AACTCAAACTCCTCTCTGGGAAAACGCGGTGCTTGCTCCTCCCGGAGTGGCCTTGGCAGG $\tt GTGTTGGAGCCCTCGGTCTGCCCCGTCCGGTCTCTGGGGCCAAGGCTGGGTTTCCCTC{\color{red} \underline{\textbf{ATG}}} \tt T$ ATGGCAAGAGCTCTACTCGTGCGGTGCTTCTTCTCCTTGGCATACAGCTCACAGCTCTTTGG CCTATAGCAGCTGTGGAAATTTATACCTCCCGGGTGCTGGAGGCTGTTAATGGGACAGATGC TCGGTTAAAATGCACTTTCTCCAGCTTTGCCCCTGTGGGTGATGCTCTAACAGTGACCTGGA ATTTTCGTCCTCTAGACGGGGGACCTGAGCAGTTTGTATTCTACTACCACATAGATCCCTTC CAACCCATGAGTGGGCGGTTTAAGGACCGGGTGTCTTGGGATGGGAATCCTGAGCGGTACGA TGCCTCCATCCTTCTCTGGAAACTGCAGTTCGACGACAATGGGACATACACCTGCCAGGTGA AGAACCCACCTGATGTTGATGGGGTGATAGGGGAGATCCGGCTCAGCGTCGTGCACACTGTA CGCTTCTCTGAGATCCACTTCCTGGCTCTGGCCATTGGCTCTGCCTGTGCACTGATGATCAT AATAGTAATTGTAGTGGTCCTCTTCCAGCATTACCGGAAAAAGCGATGGGCCGAAAGAGCTC ATAAAGTGGTGGAGATAAAATCAAAAGAAGAGGGAAAGGCTCAACCAAGAGAAAAAGGTCTCT GTTTATTTAGAAGACACAGAC**TAA**CAATTTTAGATGGAAGCTGAGATGATTTCCAAGAACAA GAACCCTAGTATTTCTTGAAGTTAATGGAAACTTTTCTTTGGCTTTTCCAGTTGTGACCCGT TTTCCAACCAGTTCTGCAGCATATTAGATTCTAGACAAGCAACACCCCTCTGGAGCCAGCAC AGTGCTCCTCCATATCACCAGTCATACACAGCCTCATTATTAAGGTCTTATTTAATTTCAGA GTGTAAATTTTTTCAAGTGCTCATTAGGTTTTTATAAACAAGAAGCTACATTTTTTGCCCTTAA GACACTACTTACAGTGTTATGACTTGTATACACATATATTGGTATCAAAGGGGATAAAAGCC AATTTGTCTGTTACATTTCCTTTCACGTATTTCTTTTAGCAGCACTTCTGCTACTAAAGTTA ATGTGTTTACTCTCTTCCCTCCCACATTCTCAATTAAAAGGTGAGCTAAGCCTCCTCGGTG TTTGTCG

FIGURE 280

MYGKSSTRAVLLLLGIQLTALWPIAAVEIYTSRVLEAVNGTDARLKCTFSSFAPVGDALTVT WNFRPLDGGPEQFVFYYHIDPFQPMSGRFKDRVSWDGNPERYDASILLWKLQFDDNGTYTCQ VKNPPDVDGVIGEIRLSVVHTVRFSEIHFLALAIGSACALMIIIVIVVVLFQHYRKKRWAER AHKVVEIKSKEEERLNQEKKVSVYLEDTD

FIGURE 281

FIGURE 282

 ${\tt MKFLAVLVLLGVSIFLVSAQNPTTAAPADTYPATGPADDEAPDAETTAAATTATTAAPTTAT}\\ {\tt TAASTTARKDIPVLPKWVGDLPNGRVCP}$

FIGURE 283

GGACTCTGAAGGTCCCAAGCAGCTGCTGAGGCCCCCAAGGAAGTGGTTCCAACCTTGGACCC
CTAGGGGTCTGGATTTGCTGGTTAACAAGATAACCTGAGGGCAGGACCCCATAGGGGAATGC
TACCTCCTGCCCTTCCACCTGCCCTGGTGTTCACGGTGGCCTGGTCCCTCCTTGCCGAGAGA
GTGTCCTGGGTCAGGGACGCAGAGGACGCTCACAGACTCCAGCCCTTTGTTACCGAGAGAC
ACTTGGCAAGGTCCAGCGATGGTCCGGAGTCCACACACAGACTGGCGGCAGGGCAGGAGGGG
GACAGTTCTGTTGTGCTTGGTTGGACAGTAAGAGGGTCTTGGCCAGTCCAGGGTGGGGGGG
GCAAACTCCATAAAGAACCAGAGGGTCTGGGCCCCGGCCACAGAGTCATCTGCCCAGCTCCT
CTGCTGCTGGCCAGTGGGAGTGGCACGAGGTGGGGGCTGGAAACTCCATAGAAACCACAGGCTGG
ATTTGCCTGCGGGCCATGGTCCCTGTCTAGGGCAGCAATTCTCAACCTTCTTGCTCTCAGGA
CCCCAAAGAGCTTTCATTGTATCTATTGATTTTTACCACATTAGCAATTAAAACTGAGAAAT
GGGCCGGGCACGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGTGGAT
CACCTGAGATCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCTTGTCTACTAAAAA
TACAAAAAATTAGCCAGGCACAGTGGTGTGCACTGGTAGTCCCAGTTACTCGGGAGGCTGAG
GCAGGAAAATCGCTTGAACCCAGGAGGCGGACGTTGCGGTGAGCCGAGATCGCCCCCTGAT
TCCAGCCTGGGCGACAAGAGTGAGACTCCATCTCACACA

FIGURE 284

MLPPALPPALVFTVAWSLLAERVSWVRDAEDAHRLQPFVTERTLGKVQRWSGVHTQTGGRAG GGQFCCAWLDSKRVLASPGWGAANSIKNQRVWAPATESSAQLLCCWPVGVARGGALCQ

FIGURE 285

FIGURE 286

MPVPALCILWALAMVTRPASAAPMGGPELAQHEELTLIFHGTLQLGQALNGVYRTTEGRLTK ARNSLGLYGRTIELLGQEVSRGRDAAQELRASLLETQMEEDILQLQAEATAEVLGEVAQAQK VLRDSVQRLEVQLRSAWLGPAYREFEVLKAHADKQSHILWALTGHVQRQRREMVAQQHRLRQ IQERLHTAALPA

FIGURE 287

GGCAAC<u>ATG</u>GCTCAGCAGGCTTGCCCCAGAGCCATGGCAAAGAATGGACTTGTAATTTGCAT CCTGGTGATCACCTTACTCCTGGACCAGACCACCAGCCACACATCCAGATTAAAAGCCAGGA AGCACAGCAAACGTCGAGTGAGAGACAAGGATGGAGATCTGAAGACTCAAATTGAAAAGCTC TAAAGTTCACAAGAAATGCTACCTTGCTTCAGAAGGTTTGAAGCATTTCCATGAGGCCAATG AAGACTGCATTTCCAAAGGAGGAATCCTGGTTATCCCCAGGAACTCCGACGAAATCAACGCC CTCCAAGACTATGGTAAAAGGAGCCTGCCAGGTGTCAATGACTTTTGGCTGGGCATCAATGA ACCGTGCACAGCCTAACGGTGGCAAGCGAGAAAACTGTGTCCTGTTCTCCCAATCAGCTCAG GGCAAGTGGAGTGATGAGGCCTGTCGCAGCAGCAAGAGATACATATGCGAGTTCACCATCCC TAAA**TAG**GTCTTTCTCCAATGTGTCCTCCAAGCAAGATTCATCATAACTTATAGGTTCATGA TCTCTAAGATCAAGTAAAAATCATAATTTTTACTTATTAAAAAATTGCAACACAAGATCAAT GTCCATAGCAATATGATAGCATCAGCCAATTTTGCTAACACATTTCTTTGGGATTTTGCCCT TCCTGGGGTATAGGGGATCAGAAATATTGATCCATGTGCACGCAGATAAAATGGCTTCTGCT TTCCCTTGGAAGTTTAGCGTATGTTTGACTAACAAAAATTCCCTACATCAGAGACTCTAGGT GCTATATAATCCAAAAACTTTTCAGCCTGTTGCTCATTCTGTCCCATGCTGGCAATAATACC TTGTCAGCCCATTACCCTTATTTTGAATTGCTCCATCTCCTGGTGGGACTTGTATCTTGTCT TACCCTTTTTTTGGAAGTTTCCAGCCGCAATTTGAAATGAAATGACAAGGTGTATATTTGAT CAATTTCATTCCCACCATTGCATTACAACCTCTAACTTAAATGGGTAACCCTAAGGCATAT AGCATCCTTACTCTCACCTTTTATGAGATTGAGAGTGGACTTACATTTCCTTTTTTACATTT TCGTATATTTTTTTTTTTAGCCATCATTATATGTTTAAGTCTATTATGGGCAACCAATCTT TGGAAGCTGAAAACTGAATTTAAAGAATGCTATCTTGGAAAATTGCATACGTCTGTGCAATT TTTTATTCTGCCTAGTGCTATTCTGCTTGTTTAACTAGATTGTACAAAATAACTTCATTGCT TAATATCAAATTACAAAGTTTAGACTTGGAGGGAAATGGGCTTTTTAGAAGCAAACAATTTT AAATATATTTTGTTCTTCAAATAAATAGTGTTTTAAACATTGAATGTGTTTTTGTGAACAATAT CCCACTTTGCAAACTTTAACTACACATGCTTGGAATTAAGTTTTAGCTGTTTTCATTGCTCA

FIGURE 288

MAQQACPRAMAKNGLVICILVITLLLDQTTSHTSRLKARKHSKRRVRDKDGDLKTQIEKLWT EVNALKEIQALQTVCLRGTKVHKKCYLASEGLKHFHEANEDCISKGGILVIPRNSDEINALQ DYGKRSLPGVNDFWLGINDMVTEGKFVDVNGIAISFLNWDRAQPNGGKRENCVLFSQSAQGK WSDEACRSSKRYICEFTIPK

FIGURE 289

FIGURE 290

 ${\tt MKLAALLGLCVALSCSSAAAFLVGSAKPVAQPVAALESAAEAGAGTLANPLGTLNPLKLLLS} \\ {\tt SLGIPVNHLIEGSQKCVAELGPQAVGAVKALKALLGALTVFG}$

FIGURE 291

TGAAGGACTTTTCCAGGACCCAAGGCCACACACTGGAAGTCTTGCAGCTGAAGGGAGGCACT CCTTGGCCTCCGCAGCCGATCAC ATG AAGGTGGTGCCAAGTCTCCTGCTCCTCCTGGCACAGGTGTGGCTGGTACCCGGCTTGGCCCCAGTCCTCAGTCGCCAGAGACCCCAGCCCC TCAGAACCAGACCAGGGTAGTGCAGGCTCCCAGGGAGGAAGAAGATGAGCAGGAGG CCAGCGAGGAGAAGGCCGGTGAGGAAGAGAAAGCCTGGCTGATGGCCAGCAGCAGCAGCTT GCCAAGGAGACTTCAAACTTCGGATTCAGCCTGCTGCGAAAGATCTCCATGAGGCACGATGG CAACATGGTCTTCTCTCCATTTGGCATGTCCTTGGCCATGACAGGCTTGATGCTGGGGGCCA CAGGGCCGACTGAAACCCAGATCAAGAGAGGGCCTCCACTTGCAGGCCCTGAAGCCCACCAAG CCCGGGCTCCTGCCTCTTTAAGGGACTCAGAGAGACCCTCTCCCGCAACCTGGAACT GGGCCTCTCACAGGGGAGTTTTGCCTTCATCCACAAGGATTTTGATGTCAAAGAGACTTTCT TCAATTTATCCAAGAGGTATTTTGATACAGAGTGCGTGCCTATGAATTTTCGCAATGCCTCA CAGGCCAAAAGGCTCATGAATCATTACATTAACAAAGAGACTCGGGGGAAAATTCCCAAACT GTTTGATGAGATTAATCCTGAAACCAAATTAATTCTTGTGGATTACATCTTGTTCAAAGGGA AATGGTTGACCCCATTTGACCCTGTCTTCACCGAAGTCGACACTTTCCACCTGGACAAGTAC AAGACCATTAAGGTGCCCATGATGTACGGTGCAGGCAAGTTTGCCTCCACCTTTGACAAGAA $\verb|TTTTCGTTGTCATGTCCTCAAACTGCCCTACCAAGGAAATGCCACCATGCTGGTGGTCCTCA||$ TGGAGAAAATGGGTGACCACCTCGCCCTTGAAGACTACCTGACCACAGACTTGGTGGAGACA GAAGTATGAGATGCATGAGCTGCTTAGGCAGATGGGAATCAGAAGAATCTTCTCACCCTTTG CTGACCTTAGTGAACTCTCAGCTACTGGAAGAAATCTCCAAGTATCCAGGGTTTTACGAAGA ACAGTGATTGAAGTTGAAAGGGGCACTGAGGCAGTGGCAGGAATCTTGTCAGAAATTAC TGCTTATTCCATGCCTCCTGTCATCAAAGTGGACCGGCCATTTCATTTCATGATCTATGAAG $AAACCTCTGGAATGCTTCTGTTTCTGGGCAGGGTGGTGAATCCGACTCTCCTA \\ \underline{TAA} \\ \mathtt{TTCAGG}$ TACCAGCAATGGATGGCAGGGGAGAGTGTTCCTTTTGTTCTTAACTAGTTTAGGGTGTTCTC AAATAAATACAGTAGTCCCCACTTATCTGAGGGGGATACATTCAAAGACCCCCAGCAGATGC AAAGTTTAATTTATAAATTAGGCACAGTAAGAGATTAACAATAATAACAACATTAAGTAAAA TGAGTTACTTGAACGCAAGCACTGCAATACCATAACAGTCAAACTGATTATAGAGAAGGCTA CTAAGTGACTCATGGGCGAGGAGCATAGACAGTGTGGAGACATTGGGCAAGGGGAGAATTCA CATCCTGGGTGGGACAGAGCAGGACGATGCAAGATTCCATCCCACTACTCAGAATGGCATGC TGCTTAAGACTTTTAGATTGTTTATTTCTGGAATTTTTCATTTAATGTTTTTGGACCATGGT TGACCATGGTTAACTGAGACTGCAGAAAGCAAAACCATGGATAAGGGAGGACTACTACAAAA

FIGURE 292

MKVVPSLLLSVLLAQVWLVPGLAPSPQSPETPAPQNQTSRVVQAPREEEEDEQEASEEKAGE
EEKAWLMASRQQLAKETSNFGFSLLRKISMRHDGNMVFSPFGMSLAMTGLMLGATGPTETQI
KRGLHLQALKPTKPGLLPSLFKGLRETLSRNLELGLSQGSFAFIHKDFDVKETFFNLSKRYF
DTECVPMNFRNASQAKRLMNHYINKETRGKIPKLFDEINPETKLILVDYILFKGKWLTPFDP
VFTEVDTFHLDKYKTIKVPMMYGAGKFASTFDKNFRCHVLKLPYQGNATMLVVLMEKMGDHL
ALEDYLTTDLVETWLRNMKTRNMEVFFPKFKLDQKYEMHELLRQMGIRRIFSPFADLSELSA
TGRNLQVSRVLRRTVIEVDERGTEAVAGILSEITAYSMPPVIKVDRPFHFMIYEETSGMLLF
LGRVVNPTLL

FIGURE 293

FIGURE 294

MRRLLLVTSLVVVLLWEAGAVPAPKVPIKMQVKHWPSEQDPEKAWGARVVEPPEKDDQLVVL FPVQKPKLLTTEEKPRGQGRGPILPGTKAWMETEDTLGRVLSPEPDHDSLYHPPPEEDQGEE RPRLWVMPNHQVLLGPEEDQDHIYHPQ

FIGURE 295

 ${\tt TACCCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACA{\color{red} {\bf ATG}} {\tt AACCAACTCAGCTTCCTGC}}$ TGGACCTGTTCTTCGTCTCCATCTCTGCCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCC TAGTGCATTTGATGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTACCAGACCTTCT GTGACATGACCTCTGGGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATG CGTGGGAAGTGCACGGTGGCCGATCGCTGGTCCAGTCAGCAGGGCAAAGCAGACTACCC AGAGGGGACGGCAACTGGGCCAACTACAACACCTTTGGATCTGCAGAGGCGGCCACGAGCG ATGACTACAAGAACCCTGGCTACTACGACATCCAGGCCAAGGACCTGGGCATCTGGCACGTG CCCAATAAGTCCCCCATGCAGCACTGGAGAAACAGCTCCCTGCTGAGGTACCGCACGGACAC TGGCTTCCTCCAGACACTGGGACATAATCTGTTTGGCATCTACCAGAAATATCCAGTGAAAT ATGGAGAAGGAAAGTGTTGGACTGACAACGGCCCGGTGATCCCTGTGGTCTATGATTTTGGC GACGCCCAGAAAACAGCATCTTATTACTCACCCTATGGCCAGCGGGAATTCACTGCGGGATT TGTTCAGTTCAGGGTATTTAATAACGAGAGCAGCCAACGCCTTGTGTGCTGGAATGAGGG TCACCGGATGTAACACTGAGCATCACTGCATTGGTGGAGGAGGATACTTTCCAGAGGCCAGT CCCCAGCAGTGTGGAGATTTTTCTGGTTTTGATTGGAGTGGATATGGAACTCATGTTGGTTA $\texttt{CAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTTCTATTCTATCGT} \textbf{\underline{TGA}} \texttt{GAGTTTTGTG}$ GGAGGGAACCCAGACCTCCCCCAACCATGAGATCCCAAGGATGGAGAACAACTTACCCA GTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAAATCATATTGACTCAAGAAAAAAA

FIGURE 296

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTEN GVIYQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFG SAEAATSDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGI YQKYPVKYGEGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAAN ALCAGMRVTGCNTEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLL FYR

FIGURE 297

GCGGAGCCGGCCGCCGCCAGAGGAGCCGCTCTCGCCGCCGCCACCTCGGCTGGGAGCC ${\tt CACGAGGCTGCCGCATCCTGCCCTCGGAACA} {\color{red} {\bf ATG}} {\tt GGACTCGGCGCGCGAGGTGCTTGGGCCG}$ CGCTGCTCCTGGGGACGCTGCAGGTGCTAGCGCTGCTGGGGGCCCCCATGAAAGCGCAGCC ATGGCGGCATCTGCAAACATAGAGAATTCTGGGCTTCCACACAACTCCAGTGCTAACTCAAC AGAGACTCTCCAACATGTGCCTTCTGACCATACAAATGAAACTTCCAACAGTACTGTGAAAC CACCAACTTCAGTTGCCTCAGACTCCAGTAATACAACGGTCACCACCATGAAACCTACAGCG GCATCTAATACAACACCAGGGATGGTCTCAACAAATATGACTTCTACCACCTTAAAGTC TACACCCAAAACAACAAGTGTTTCACAGAACACATCTCAGATATCAACATCCACAATGACCG TAACCCACAATAGTTCAGTGACATCTGCTGCTTCATCAGTAACAATCACAACAACTATGCAT TCTGAAGCAAAGAAAGGATCAAAATTTGATACTGGGAGCTTTGTTGGTGGTATTGTATTAAC GCTGGGAGTTTTATCTATTCTTTACATTGGATGCAAAATGTATTACTCAAGAAGAGGCATTC GGTATCGAACCATAGATGAACATGATGCCATCATT**TAA**GGAAATCCATGGACCAAGGATGGA ATACAGATTGATGCTGCCCTATCAATTAATTTTGGTTTATTAATAGTTTAAAACAATATTCT CTTTTTGAAAATAGTATAAACAGGCCATGCATATAATGTACAGTGTATTACGTAAATATGTA AAGATTCTTCAAGGTAACAAGGGTTTTGGGTTTTGAAATAAACATCTGGATCTTATAGACCGT GGGGTGGGGCATTGGTCACATATGACCAGTAATTGAAAGACGTCATCACTGAAAGACAGAA TGCCATCTGGGCATACAAATAAGAAGTTTGTCACAGCACTCAGGATTTTTGGGTATCTTTTGT AGCTCACATAAAGAACTTCAGTGCTTTTCAGAGCTGGATATATCTTAATTACTAATGCCACA CAGAAATTATACAATCAAACTAGATCTGAAGCATAATTTAAGAAAAACATCAACATTTTTTG TGCTTTAAACTGTAGTAGTTGGTCTAGAAACAAAATACTCC

FIGURE 298

MGLGARGAWAALLLGTLQVLALLGAAHESAAMAASANIENSGLPHNSSANSTETLQHVPSDH TNETSNSTVKPPTSVASDSSNTTVTTMKPTAASNTTTPGMVSTNMTSTTLKSTPKTTSVSQN TSQISTSTMTVTHNSSVTSAASSVTITTTMHSEAKKGSKFDTGSFVGGIVLTLGVLSILYIG CKMYYSRRGIRYRTIDEHDAII

FIGURE 299

CAGCCGGGTCCCAAGCCTGTGCCTGAGCCTGAGCCTGAGCCCGAGCCGGGAGCCGG TCGCGGGGGCTCCGGGCTGTGGGACCGCTGGGCCCCCAGCGATGGCGACCCTGTGGGGAGGC CTTCTTCGGCTTGGCTCAGCCTGTCGTGCCTGGCGCTTTCCGTGCTGCTGCTGGC ATAAAGAAAATTCTGGGCATATTTATAATAAGAACATATCTCAGAAAGATTGTGATTGCCTT CATGTTGTGGAGCCCATGCCTGTGCGGGGGCCTGATGTAGAAGCATACTGTCTACGCTGTGA ATGCAAATATGAAGAAGAAGCTCTGTCACAATCAAGGTTACCATTATAATTTATCTCTCCA TTTTGGGCCTTCTACTTCTGTACATGGTATATCTTACTCTGGTTGAGCCCATACTGAAGAGG CGCCTCTTTGGACATGCACAGTTGATACAGAGTGATGATGATATTGGGGGATCACCAGCCTTT TGCAAATGCACACGATGTGCTAGCCCGCTCCCGCAGTCGAGCCAACGTGCTGAACAAGGTAG CATGTTGTCCTCAGC**TAA**TTGGGAATTGAATTCAAGGTGACTAGAAAGAAACAGGCAGACAA CTGGAAAGAACTGACTGGGTTTTGCTGGGTTTCATTTTAATACCTTGTTGATTTCACCAACT ATAATAGAGACATTTTTAAAAGCACACAGCTCAAAGTCAGCCAATAAGTCTTTTCCTATTTG TGACTTTTACTAATAAAATAAATCTGCCTGTAAATTATCTTGAAGTCCTTTACCTGGAACA AGCACTCTCTTTTCACCACATAGTTTTAACTTGACTTTCAAGATAATTTTCAGGGTTTTTTG TTGTTGTTTTTTTTTTTTTTTTTTTTTGGTGGGAGGGGAGGGATGCCTGGGAAGTGGTT AACAACTTTTTTCAAGTCACTTTACTAAACAAACTTTTGTAAATAGACCTTACCTTCTATTT TCGAGTTTCATTTTTTCCAGTGTAGCCAGCCTCATCAAAGAGCTGACTTACTCATTTG ACTTTTGCACTGACTGTATTATCTGGGTATCTGCTGTGTCTGCACTTCATGGTAAACGGGAT CTAAAATGCCTGGTGGCTTTTCACAAAAAGCAGATTTTCTTCATGTACTGTGATGTCTGATG CAATGCATCCTAGAACAAACTGGCCATTTGCTAGTTTACTCTAAAGACTAAACATAGTCTTG GTGTGTGTGTCTTACTCATCTTCTAGTACCTTTAAGGACAATCCTAAGGACTTGGACACT TGCAATAAAGAAATTTTATTTTAAACCCAAGCCTCCCTGGATTGATAATATATACACATTTG TCAGCATTTCCGGTCGTGAGAGGCAGCTGTTTGAGCTCCAATATGTGCAGCTTTGAACT AGGGCTGGGGTTGTGGGTGCCTCTTCTGAAAGGTCTAACCATTATTGGATAACTGGCTTTTT TCTTCCTATGTCCTCTTTGGAATGTAACAATAAAAATAATTTTTTGAAACATCAA

FIGURE 300

MATLWGGLLRLGSLLSLSCLALSVLLLAQLSDAAKNFEDVRCKCICPPYKENSGHIYNKNIS QKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLYMVYLTL VEPILKRRLFGHAQLIQSDDDIGDHQPFANAHDVLARSRSRANVLNKVEYAQQRWKLQVQEQ RKSVFDRHVVLS

FIGURE 301

FIGURE 302

MAYSTVQRVALASGLVLALSLLLPKAFLSRGKRQEPPPTPEGKLGRFPPMMHHHQAPSDGQT PGARFQRSHLAEAFAKAKGSGGGAGGGGSGRGLMGQIIPIYGFGIFLYILYILFKVSRIILI ILHQ

FIGURE 303

CGGCTCGAGTGCAGCTGTGGGGAGATTTCAGTGCATTGCCTCCCCTGGGTGCTCTTCATCTT GGATTTGAAAGTTGAGAGCAGC**ATG**TTTTGCCCACTGAAACTCATCCTGCTGCCAGTGTTAC TGGATTATTCCTTGGGCCTGAATGACTTGAATGTTTCCCCGCCTGAGCTAACAGTCCATGTG GGTGATTCAGCTCTGATGGGATGTTTTTCCAGAGCACAGAAGACAAATGTATATTCAAGAT AGACTGGACTCTGTCACCAGGAGAGCACGCCAAGGACGAATATGTGCTATACTATTACTCCA ATCTCAGTGTGCCTATTGGGCGCTTCCAGAACCGCGTACACTTGATGGGGGACATCTTATGC AATGATGGCTCTCCTGCTCCAAGATGTGCAAGAGGCTGACCAGGGAACCTATATCTGTGA AATCCGCCTCAAAGGGGAGAGCCAGGTGTTCAAGAAGGCGGTGGTACTGCATGTGCTTCCAG AGCACAGAAGTGAAACACGTGACCAAGGTAGAATGGATATTTTCAGGACGGCGCGCAAAGGA GGAGATTGTATTTCGTTACTACCACAAACTCAGGATGTCTGTGGAGTACTCCCAGAGCTGGG GCCACTTCCAGAATCGTGTGAACCTGGTGGGGGGACATTTTCCGCAATGACGGTTCCATCATG CTTCAAGGAGTGAGGGAGTCAGATGGAGGAAACTACACCTGCAGTATCCACCTAGGGAACCT GGTGTTCAAGAAAACCATTGTGCTGCATGTCAGCCCGGAAGAGCCTCGAACACTGGTGACCC CGGCAGCCCTGAGGCCTCTGGTCTTGGGTGATCAGTTGGTGATCATTGTGGGAATTGTC TGTGCCACAATCCTGCTGCTCCCTGTTCTGATATTGATCGTGAAGAAGACCTGTGGAAATAA GAGTTCAGTGAATTCTACAGTCTTGGTGAAGAACACGAAGAAGACTAATCCAGAGATAAAAG AAAAACCCTGCCATTTTGAAAGATGTGAAGGGGAGAAACACATTTACTCCCCAATAATTGTA CGGGAGGTGATCGAGGAAGAAGAACCAAGTGAAAAATCAGAGGCCACCTACATGACCATGCA CCCAGTTTGGCCTTCTCTGAGGTCAGATCGGAACAACTCACTTGAAAAAAAGTCAGGTGGGG GAATGCCAAAAACACAGCAAGCCTTT**TGA**GAAGAATGGAGAGTCCCTTCATCTCAGCAGCGG TGGAGACTCTCTCTGTGTGTGTCCTGGGCCACTCTACCAGTGATTTCAGACTCCCGCTCTC CCAGCTGTCCTCTCTCTTTTTTTTTTTTTCATTCATTGAAGATGGAAATTTTGGAGCCTGG CTCTGGAGTGGGACACTGGCCCTGGGAACCAGGCTGAGCTGAGTGGCCTCAAACCCCCCGTT GGATCAGACCCTCCTGTGGGCAGGGTTCTTAGTGGATGAGTTACTGGGAAGAATCAGAGATA AAAACCAACCCAAATCAA

FIGURE 304

MFCPLKLILLPVLLDYSLGLNDLNVSPPELTVHVGDSALMGCVFQSTEDKCIFKIDWTLSPG
EHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDILCNDGSLLLQDVQEADQGTYICEIRLKGES
QVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAKEEIVFRYY
HKLRMSVEYSQSWGHFQNRVNLVGDIFRNDGSIMLQGVRESDGGNYTCSIHLGNLVFKKTIV
LHVSPEEPRTLVTPAALRPLVLGGNQLVIIVGIVCATILLLPVLILIVKKTCGNKSSVNSTV
LVKNTKKTNPEIKEKPCHFERCEGEKHIYSPIIVREVIEEEEPSEKSEATYMTMHPVWPSLR
SDRNNSLEKKSGGGMPKTQQAF

FIGURE 305

CTATGAAGAAGCTTCCTGGAAAACAATAAGCAAAGGAAAACAAATGTGTCCCATCTCACATG GTTCTACCCTACTAAAGACAGGAAGATCATAAACTGACAGATACTGAAATTGTAAGAGTTGG $\texttt{AAACTACATTTTGCAAAGTCATTGAACTCTGAGCTCAGTTGCAGTACTCGGGAAGCC} \underline{\textbf{ATG}} \texttt{CA}$ GGATGAAGATGGATACATCACCTTAAATATTAAAACTCGGAAACCAGCTCTCGTCTCCGTTG GCCCTGCATCCTCCTGGTGGCGTGTGATGGCTTTGATTCTGCTGATCCTGTGCGTGGGG ATGGTTGTCGGGCTGGTGGCTCTGGGGATTTGGTCTGTCATGCAGCGCAATTACCTACAAGA TGAGAATGAAAATCGCACAGGAACTCTGCAACAATTAGCAAAGCGCTTCTGTCAATATGTGG TAAAACAATCAGAACTAAAGGGCACTTTCAAAGGTCATAAATGCAGCCCCTGTGACACAAAC TGGAGATATTATGGAGATAGCTGCTATGGGTTCTTCAGGCACAACTTAACATGGGAAGAGA TAAGCAGTACTGCACTGACATGAATGCTACTCTCCTGAAGATTGACAACCGGAACATTGTGG AGTACATCAAAGCCAGGACTCATTTAATTCGTTGGGTCGGATTATCTCGCCAGAAGTCGAAT GAGGTCTGGAAGTGGGAGGATGGCTCGGTTATCTCAGAAAATATGTTTGAGTTTTTGGAAGA TGGAAAAGGAAATATGAATTGTGCTTATTTTCATAATGGGAAAATGCACCCTACCTTCTGTG AGAACAAACATTATTTAATGTGTGAGAGGAAGGCTGGCATGACCAAGGTGGACCAACTACCT **TAA**TGCAAAGAGGTGGACAGGATAACACAGATAAGGGCTTTATTGTACAATAAAAGATATGT ATGAATGCATCAGTAGCTGAAAAAAAAAAAAAA

FIGURE 306

MQDEDGYITLNIKTRKPALVSVGPASSSWWRVMALILLILCVGMVVGLVALGIWSVMQRNYL QDENENRTGTLQQLAKRFCQYVVKQSELKGTFKGHKCSPCDTNWRYYGDSCYGFFRHNLTWE ESKQYCTDMNATLLKIDNRNIVEYIKARTHLIRWVGLSRQKSNEVWKWEDGSVISENMFEFL EDGKGNMNCAYFHNGKMHPTFCENKHYLMCERKAGMTKVDQLP

FIGURE 307

CCCACGCGTCCGCGCAGTCGCCAGTTCTGCCTCCGCCTGCCAGTCTCGCCCGCGATCCCGG CGCCGGAGGACCTCGGACGCATGCTGAGCCCCCTCCTTTGCTGAAGCCCGAGTGCGGAGAA GCCCGGGCAAACGCAGGCTAAGGAGACCAAAGCGGCGAAGTCGCGAGACAGCGGACAAGCAG CGTCGTGGCCATGCGGGGGCTATCGCCAGCTCGTCAGAAGAGGCAAGCCCGCG AGCGCGAGAAATCCAACGCCTGCAAGTGTGTCAGCAGCCCCAGCAAAGGCAAGACCAGCTGC GACAAAAACAAGTTAAATGTCTTTTCCCGGGTCAAACTCTTCGGCTCCAAGAAGAGGCGCAG AAGAAGACCAGAGCCTCAGCTTAAGGGTATAGTTACCAAGCTATACAGCCGACAAGGCTACC ACTTGCAGCTGCAGGCGGATGGAACCATTGATGGCACCAAAGATGAGGACAGCACTTACACT CTGTTTAACCTCATCCCTGTGGGTCTGCGAGTGGTGGCTATCCAAGGAGTTCAAACCAAGCT GTACTTGGCAATGAACAGTGAGGGATACTTGTACACCTCGGAACTTTTCACACCTGAGTGCA AATTCAAAGAATCAGTGTTTGAAAATTATTATGTGACATATTCATCAATGATATACCGTCAG CAGCAGTCAGGCCGAGGGTGTATCTGGGTCTGAACAAGAAGAGGAGATCATGAAAGGCAA CCATGTGAAGAAGAACAAGCCTGCAGCTCATTTTCTGCCTAAACCACTGAAAGTGGCCATGT ACAAGGAGCCATCACTGCACGATCTCACGGAGTTCTCCCGATCTGGAAGCGGGACCCCAACC AAGAGCAGAAGTGTCTCTGGCGTGCTGAACGGAGGCAAATCCATGAGCCACAATGAATCAAC GTAGCCAGTGAGGGCAAAAGAAGGGCTCTGTAACAGAACCTTACCTCCAGGTGCTGTTGAAT CAGAGTTCACTATTCTATCTGCCATTAGACCTTCTTATCATCCATACTAAAGC

FIGURE 308

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA28498

><subunit 1 of 1, 245 aa, 1 stop

><MW: 27564, pI: 10.18, NX(S/T): 1

MAAAIASSLIRQKRQAREREKSNACKCVSSPSKGKTSCDKNKLNVFSRVKLFGSKKRRRRRP EPQLKGIVTKLYSRQGYHLQLQADGTIDGTKDEDSTYTLFNLIPVGLRVVAIQGVQTKLYLA MNSEGYLYTSELFTPECKFKESVFENYYVTYSSMIYRQQQSGRGWYLGLNKEGEIMKGNHVK KNKPAAHFLPKPLKVAMYKEPSLHDLTEFSRSGSGTPTKSRSVSGVLNGGKSMSHNEST

N-glycosylation site.

amino acids 242-246

Glycosaminoglycan attachment site.

amino acids 165-169, 218-222

Tyrosine kinase phosphorylation site.

amino acids 93-100

N-myristoylation site.

amino acids 87-93, 231-237

ATP/GTP-binding site motif A (P-loop).

amino acids 231-239

HBGF/FGF family proteins

amino acids 78-94, 102-153

FIGURE 309

CCAGGATGGAGCTGGGGCCTGTATAGCCATATTATTGTTCTATGCTACTAGACATGGGGGGG ACTTGGTGAAAAAGGTATTATCCAGCCAGAGGGTCTGGGAGCCCTGTCTTACTGAACCTGGG CAACCTGGATATTCTGAGACATATTTTGGGGGGGATTTCAGTGAAAAAAGTGGGGGATCCCCT CCCCAGTAGGGGTGGGATGAGCGAATATTCCCAAAGCTAAAGTCCCACACCCTGTAGATTAC AAGAGTGGATTTGGCAGGAGTGTGCCCCAAAATACAGTGGAAAGGTGCCTGAAGATATTTAA GAGAGGAGGGAAAGGGGACGTTTTCAATAGGAGGCAAAACTCGAGGGTGGGATCCACTGAGG AGTACATAGGCTGCTGGATCTGGTGGAGCCAGCACTGGGCCCACGGGTGGTAACTGGCTGCT CGAGTCGGGGCCTGAGCGTCAAGAGCATGCCCTAGTGAGCGGGCTCCTCTGGGGGAGCCCAG $\tt CGCGCTCCGGGCGCCTGCCGGTTTGGGGGTGTCTCCTCCCGGGGCGCT{\color{red} \underline{\textbf{ATG}}} GCGGCGCTGGC$ CGCAGCGGCGCGTGTGTCCCCGCGGCACCAAGTCCCTTTGCCAGAAGCAGCTCCTCATCCTG GCTCAAAGGCATCGTCACCAAACTGTTCTGCCGCCAGGGTTTCTACCTCCAGGCGAATCCCG ACGGAAGCATCCAGGGCACCCCAGAGGATACCAGCTCCTTCACCCACTTCAACCTGATCCCT GTGGGCCTCCGTGTGGTCACCATCCAGAGCGCCAAGCTGGGTCACTACATGGCCATGAATGC TGAGGGACTGCTCTACAGTTCGCCGCATTTCACAGCTGAGTGTCGCTTTAAGGAGTGTGTCT TTGAGAATTACTACGTCCTGTACGCCTCTGCTCTACCGCCAGCGTCGTTCTGGCCGGGCC TGGTACCTCGGCCTGGACAAGGAGGGCCAGGTCATGAAGGGAAACCGAGTTAAGAAGACCAA GGCAGCTGCCCACTTTCTGCCCAAGCTCCTGGAGGTGGCCATGTACCAGGAGCCTTCTCTCC ${\tt ACAGTGTCCCCGAGGCCTCCCCTTCCAGTCCCCCTGCCCCC} \underline{{\tt TGA}} {\tt AATGTAGTCCCTGGACTG}$ GAGGTTCCCTGCACTCCCAGTGAGCCAGCCACCACCACCACCTGT

FIGURE 310

MAALASSLIRQKREVREPGGSRPVSAQRRVCPRGTKSLCQKQLLILLSKVRLCGGRPARPDR GPEPQLKGIVTKLFCRQGFYLQANPDGSIQGTPEDTSSFTHFNLIPVGLRVVTIQSAKLGHY MAMNAEGLLYSSPHFTAECRFKECVFENYYVLYASALYRQRRSGRAWYLGLDKEGQVMKGNR VKKTKAAAHFLPKLLEVAMYQEPSLHSVPEASPSSPPAP

Tyrosine kinase phosphorylation site:

amino acids 199-207

N-myristoylation sites:

amino acids 54-60, 89-95, 131-137

HBGF/FGF family signature:

amino acids 131-155

FIGURE 311

FIGURE 312

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA28503</pre>

><subunit 1 of 1, 247 aa, 1 stop

><MW: 27702, pI: 10.36, NX(S/T): 2

MAAAIASGLIRQKRQAREQHWDRPSASRRRSSPSKNRGLCNGNLVDIFSKVRIFGLKKRRLR RQDPQLKGIVTRLYCRQGYYLQMHPDGALDGTKDDSTNSTLFNLIPVGLRVVAIQGVKTGLY IAMNGEGYLYPSELFTPECKFKESVFENYYVIYSSMLYRQQESGRAWFLGLNKEGQAMKGNR VKKTKPAAHFLPKPLEVAMYREPSLHDVGETVPKPGVTPSKSTSASAIMNGGKPVNKSKTT

N-glycosylation site.

amino acids 100-104, 242-246

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 28-32, 29-33

Tyrosine kinase phosphorylation site.

amino acids 199-207

N-myristoylation site.

amino acids 38-44, 89-95, 118-124, 122-128, 222-228

HBGF/FGF family proteins.

amino acids 104-155, 171-198

FIGURE 313

GAAGGATGCAGGACGCAGCTTTCTCCTGGAACCGAACGCAATGGATAAACTGATTGTGCAAGAGAAGAAGAAGA ACGAAGCTTTTTCTTGTGAGCCCTGGATCTTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATG CTCCCCACCCCAAAAAAAAGGATGATTGGAAATGAAGAACCGAGGATTCACAAAGAAAAAAGTATGTTCATTT TTCTCTATAAAGGAGAAAGTGAGCCAAGGAGATATTTTTGGAATGAAAAGTTTGGGGCCTTTTTTAGTAAAGTAA AGAACTGGTGTGGTGTTTTCCTTTCTTTTTGAATTTCCCACAAGAGGGAGAAATTAATAATACATCTGC CAGTTGGATTTGTGCCTATGTTGACTAAAATTGACGGATAATTGCAGTTGGATTTTTCTTCATCAACCTCCTTT TTTTTAAATTTTTATTCCTTTTGGTATCAAGATCATGCGTTTTCTCTTGTTCTTAACCACCTGGATTTCCATCT GGATGTTGCTGTGATCAGTCTGAAATACAACTGTTTGAATTCCAGAAGGACCAACACCAGATAAATTATGA**ATG** TTGAACAAGATGACCTTACATCCACAGCAGATAATGATAGGTCCTAGGTTTAACAGGGCCCTATTTGACCCCCT GCTTGTGGTGCTGCTCTTCAACTTCTTGTGGTGGCTGGTCTGGTGCGGGCTCAGACCTGCCCTTCTGTGT GCTCCTGCAGCAACCAGTTCAGCAAGGTGATTTGTGTT'CGGAAAAACCTGCGTGAGGTTCCGGATGGCATCTCC ACCAACACGGCTGCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTTCAAGCACTTGAG GCACTTGGAAATCCTACAGTTGAGTAGGAACCATATCAGAACCATTGAAATTGGGGCTTTCAATGGTCTGGCGA ACCTCAACACTCTGGAACTCTTTGACAATCGTCTTACTACCATCCCGAATGGAGCTTTTGTATACTTGTCTAAA CTGAAGGAGCTCTGGTTGCGAAACAACCCCATTGAAAGCATCCCTTCTTATGCTTTTAACAGAATTCCTTCTTT GCGCCGACTAGACTTAGGGGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCCTTTGAAGGTCTGTCCAACT TGAGGTATTTGAACCTTGCCATGTGCAACCTTCGGGAAATCCCTAACCTCACACCGCTCATAAAACTAGATGAG CTGGATCTTTCTGGGAATCATTTATCTGCCATCAGGCCTGGCTCTTTCCAGGGTTTGATGCACCTTCAAAAACT GTGGATGATACAGTCCCAGATTCAAGTGATTGAACGGAATGCCTTTGACAACCTTCAGTCACTAGTGGAGATCA ACCTGGCACAATAATCTAACATTACTGCCTCATGACCTCTTCACTCCCTTGCATCATCTAGAGCGGATACAT TTACATCACAACCCTTGGAACTGTAACTGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCCCTC GAACACAGCTTGTTGTGCCCGGTGTAACACTCCTCCCAATCTAAAGGGGAGGTACATTGGAGAGCTCGACCAGA ATTACTTCACATGCTATGCTCCGGTGATTGTGGAGCCCCCTGCAGACCTCAATGTCACTGAAGGCATGGCAGCT GAGCTGAAATGTCGGGCCTCCACATCCCTGACATCTGTATCTTGGATTACTCCAAATGGAACAGTCATGACACA TGGGGCGTACAAAGTGCGGATAGCTGTGCTCAGTGATGGTACGTTAAATTTCACAAATGTAACTGTGCAAGATA CAGGCATGTACACATGTATGGTGAGTAATTCCGTTGGGAATACTACTGCTTCAGCCACCCTGAATGTTACTGCA GCAACCACTACTCCTTTCTCTTACTTTTCAACCGTCACAGTAGAGACTATGGAACCGTCTCAGGATGAGGCACG GACCACAGATAACAATGTGGGTCCCACTCCAGTGGTCGACTGGGAGACCACCAATGTGACCACCTCTCTCACAC CACAGAGCACAAGGTCGACAGAAAACCTTCACCATCCCAGTGACTGATATAAACAGTGGGATCCCAGGAATT GATGAGGTCATGAAGACTACCAAAATCATCATTGGGTGTTTTTGTGGCCATCACACTCATGGCTGCAGTGATGCT GGTCATTTTCTACAAGATGAGGAAGCAGCACCATCGGCAAAAACCATCACGCCCCAACAAGGACTGTTGAAATTA TTAATGTGGATGATGAGATTACGGGAGACACACCCATGGAAAGCCACCTGCCCATGCCTGCTATCGAGCATGAG CAGTTCAGTGCATGAACCGTTATTGATCCGAATGAACTCTAAAGACAATGTACAAGAGACTCAAATC**TAA**AACA TTTACAGAGTTACAAAAAACAATCAAAAAAAAAAAAGACAGTTTATTAAAAATGACACAAATGACTGGGCTAA TGATCTAAAGCAGACAAAAA

FIGURE 314

MLNKMTLHPQQIMIGPRFNRALFDPLLVVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVIC VRKNLREVPDGISTNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS YISEGAFEGLSNLRYLNLAMCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPLHHLERIHLHHNPWNCNCDIL WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNVTEGMAAE LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMVSNSVGN TTASATLNVTAATTTPFSYFSTVTVETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQ STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQN HHAPTRTVEIINVDDEITGDTPMESHLPMPAIEHEHLNHYNSYKSPFNHTTTVNTINSIHSS VHEPLLIRMNSKDNVQETQI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438, 442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243, 391-397, 422-428, 433-439, 531-537

FIGURE 315

GGCGCCCGGCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCGGGGATC ${\tt GGG} \underline{\textbf{ATG}} {\tt TCCCTCCTTCTCCTCTTGCTAGTTTCCTACTATGTTGGAACCTTGGGGACTCA}$ CACTGAGATCAAGAGTGGCAGAGGAAAAGGTCACTTTGCCCTGCCACCATCAACTGGGGC TTCCAGAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAA GTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCG AGTGGCCTTTGCTTCCAATTTCCTGGCAGAGATGCCTCCTTGCAGATTGAACCTCTGAAGC CCAGTGATGAGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCGCTACGTGTGGAGCCAT GTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGTGAGTTGGAAGGAGAGCTGAC AGAAGGAAGTGACCTGACTTTGCAGTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATT ACTGGCAGCGAATCCGAGAGAAAGAGGGGAGGATGAACGTCTGCCTCCCAAATCTAGGATT GACTACAACCACCTGGACGAGTTCTGCTGCAGAATCTTACCATGTCCTACTCTGGACTGTA CCAGTGCACAGCAACGAAGCTGGGAAGGAAAGCTGTGTGGTGCGAGTAACTGTACAGT ATGTACAAAGCATCGGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG GAGACCTAATGAAATTCGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCT CCTCTTCCTCAGGCTCTCGGAGCTCACGCTCTGGTTCTTCCTCCACTCGCTCCACAGCAAAT ACGGTC**TGA**ATTACAATGGACTTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTC TTCTCGTCATTGGAGCTCAAGTCACCAGCCACAACCAGATGAGAGGTCATCTAAGTAGCA GTGAGCATTGCACGGAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAA AGGATGTAAGCTGATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGG AAAGCAGGAGTCCAAATCTATTTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTG AGGTGAATATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATT TTCAAGAGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATT ATTAGTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC TGAGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGAGA AGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAATAAC TATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCATGATGTT ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCCCCTCAAAT CAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACAACATGTCATT TATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAATGCTGAAAGATTA CCCAACATACCATTATAGTCTCTTCTTCTGAGAAAATGTGAAACCAGAATTGCAAGACTGG TGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCAGTGAGCCGAGATTATGCC ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

FIGURE 316

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45419</pre>

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41281, pI: 8.33, NX(S/T): 3

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV ILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID YNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLI FLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANS ASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSQSRAFQTV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

FIGURE 317

 $\texttt{CC} \underline{\textbf{ATG}} \texttt{GCGCTCCTGCTGCTGCTGCTGCTGCGGAGTAGTGGATTTCGCCAGAAGTTTGAGTATCACTACT}$ CCTGAAGAGATGATTGAAAAAGCCAAAGGGGAAACTGCCTATCTGCCATGCAAATTTACGCTTAGTCCCGAAGA CCAGGGACCGCTGGACATCGAGTGGCTGATATCACCAGCTGATAATCAGAAGGTGGATCAAGTGATTATTTTAT ATTCTGGAGACAAAATTTATGATGACTACTATCCAGATCTGAAAGGCCGAGTACATTTTACGAGTAATGATCTC AAATCTGGTGATGCATCAATAAATGTAACGAATTTACAACTGTCAGATATTGGCACATATCAGTGCAAAGTGAA AAAAGCTCCTGGTGTTGCAAATAAGAAGATTCATCTGGTAGTTCTTGTTAAGCCTTGAGGTGCGAGATGTTACG TTGATGGATCTGAAGAAATTGGAAGTGACTTTAAGATAAAATGTGAACCAAAAGAAGGTTGACTTCCATTAGAG TATGAGTGGCAAAAATTGTCTGACTCACAGAAAATGCCCACTTGATGGTTAGCAGAAATGACTTCATCTGTTAT ATCTGTAAAAAATGCCTCTTCTGAGTACTCTGGGACATACAGCTGTACAGTCAGAAACAGAGTGGGCTCTGATC AGTGCCTGTTGCGTCTAAACGTTGTCCCTCCTTCAAATAAAGCTGGACTAATTGCAGGAGCCATTATAGGAACT TTGCTTGCTCTAGCGCTCATTGGTCTTATCATCTTTTGCTGTCGTAAAAAGCGCAGAGAAAAAAATATGAAAA GGAAGTTCATCACGATATCAGGGAAGATGTGCCACCTCCAAAGAGCCGTACGTCCACTGCCAGAAGCTACATCG GCAGTAATCATTCATCCCTGGGGTCCATGTCTCCTTCCAACATGGAAGGATATTCCAAGAGTCAGTATAACCAA GTACCAAGTGAAGACTTTGAAGGCACTCCTCAGAGTCCGACTCTCCCACCTGCTAAGTTCAAGTACCCTTACAA GAGTGATGGAATTACAGTTGTA**TAA**ATATGGACTACTGAAGAATGTGAAGTATTGTATTATTTGACTTTATTTT AGGCCTCTAGTAAAGACTTAAATGTTTTTTAAAAAAAGCACAAGGCACAGAGATTAGAGCAGCTGTAAGAACAC ATCTACTTTATGCAATGGCATTAGACATGTAAGTCAGATGTCAAAATTAGTACGAGCCAAATTCTTTGT TAAAAAACCCTATGTATAGTGACACTGATAGTTAAAAGATGTTTTATTATTATTTTCAATAACTACCACTAACAA ATTTTTAACTTTTCATATGCATATTCTGATATGTGGTCTTTTAGGAAAAGTATGGTTAATAGTTGATTTTTCAA AGGAAATTTTAAAATTCTTACGTTCTGTTTAATGTTTTTGCTATTTAGTTAAATACATTGAAGGGAAATACCCG TTGTTTTCGCCTTTTATGGAGAGAGAGAGACACGCGTTGTCATGCCTCAAACTATTTTTTATTTGGAAGTAGA TAAAGTAAATTCTCAAAGGTGCTAGAACAAATCGTCCACTTCTACAGTGTTCTCGTATCGAAGAGTTGATGC ACAATATAAAATACTCAAGTCCAATATTAAAAACTTAGGCACTTGACTAACTTTAATAAAATTTCTCAAACTA TATCAATATCTAAAGTGCATATTTTTTTAAGAAAGATTATTCTCAATAACTTCTATAAAAATAAGTTTGATGG TTTGGCCCATCTAACTTCACTACTATTAGTAAGAACTTTTAACTTTTAATGTGTAGTAAGGTTTATTCTACCTT TTTCTCAACATGACACCAACACAATCAAAAACGAAGTTAGTGAGGTGCTAACATGTGAGGATTAATCCAGTGAT ${\tt TCCGGTCACAATGCATTCCAGGAGGAGGTACCCATGTCACTGGAATTGGGCGATATGGTTTATTTTTTCTTCCC}$ TGATTTGGATAACCAAATGGAAGAGGAGGAGGATAGTGATTCTGATGGGGGATTCCCTCGATACATTCCTGGCTT TTTTCTGGGCAAAGGGTGCCACATTGGAAGAGTGGAAATATAAGTTCTGAAATCTGTAGGGAAGAGAACACAT TAAGTTAATTCAAAGGAAAAAATCATCATCTATGTTCCAGATTTCTCATTAAAGACAAAGTTACCCACAACACT GAGATCACATCTAAGTGACACTCCTATTGTCAGGTCTAAATACATTAAAAACCTCATGTGTAATAGGCGTATAA TGTATAACAGGTGACCAATGTTTTCTGAATGCATAAAGAAATGAATAAACTCAAACACAGTACTTCCTAAACAA $\tt CTTCAACCAAAAAAGACCAAAACATGGAACGAATGGAAGCTTGTAAGGACATGCTTGTTTTAGTCCAGTGGTTT$ $\tt CCACAGCTGGCTAAGCCAGGAGTCACTTGGAGGCTTTTAAATACAAAACATTGGAGCTGGAGGCCATTATCCTT$ AGCAAACTAATGCAGAAACAGAAAATCAACTACCGCATGTTCTCACTTATAAGTGGGAGGTAATGATAAGAACT TATGAACACAAAGAAGGAAACAATAGACATTGGAGTCTATTTGAGAGGGGAGGGTGGGAGAAAGGAAAAGGAGCA GAAAAGATAACTATTGAGTACTGCCTTCACACCTGGGTGATGAAATAATATGTACAACAAATCCCTGTGACACA AAAAAAAAAAAAAAAAAAAAAA

FIGURE 318

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA82361

><subunit 1 of 1, 352 aa, 1 stop

><MW: 38938, pI: 7.86, NX(S/T): 3

MALLLCFVLLCGVVDFARSLSITTPEEMIEKAKGETAYLPCKFTLSPEDQGPLDIEWLISPA
DNQKVDQVIILYSGDKIYDDYYPDLKGRVHFTSNDLKSGDASINVTNLQLSDIGTYQCKVKK
APGVANKKIHLVVLVKPSGARCYVDGSEEIGSDFKIKCEPKEGSLPLQYEWQKLSDSQKMPT
SWLAEMTSSVISVKNASSEYSGTYSCTVRNRVGSDQCLLRLNVVPPSNKAGLIAGAIIGTLL
ALALIGLIIFCCRKKRREEKYEKEVHHDIREDVPPPKSRTSTARSYIGSNHSSLGSMSPSNM
EGYSKTQYNQVPSEDFERTPQSPTLPPAKFKYPYKTDGITVV

Signal sequence.

amino acids 1-19

Transmembrane domain:

amino acids 236-257

N-glycosylation sites.

amino acids 106-110, 201-205, 298-302

Tyrosine kinase phosphorylation sites.

amino acids 31-39, 78-85, 262-270

N-myristoylation sites.

amino acids 116-122, 208-214, 219-225, 237-243, 241-247, 245-251, 296-302

Myelin PO protein.

amino acids 96-125

FIGURE 319

CTCAAGCATCACTTACAGGACCAGAGGGACAAGACATGACTGTGATGAGGAGCTGCTTTCGC CAATTTAACACCAAGAAGAATTGAGGCTGCTTGGGAGGAAGGCCAGGAGGACACGAGACTG AGAG**ATG**AATTTTCAACAGAGGCTGCAAAGCCTGTGGACTTTAGCCAGACCCTTCTGCCCTC CTTTGCTGGCGACAGCCTCTCAAATGCAGATGGTTGTGCTCCCTTGCCTGGGTTTTACCCTG CTTCTCTGGAGCCAGGTATCAGGGGCCCAGGGCCAAGAATTCCACTTTGGGCCCTGCCAAGT GAAGGGGGTTGTTCCCCAGAAACTGTGGGAAGCCTTCTGGGCTGTGAAAGACACTATGCAAG CTCAGGATAACATCACGAGTGCCCGGCTGCTGCAGCAGGAGGTTCTGCAGAACGTCTCGGAT GCTGAGAGCTGTTACCTTGTCCACACCCTGCTGGAGTTCTACTTGAAAACTGTTTTCAAAAA CCACCACAATAGAACAGTTGAAGTCAGGACTCTGAAGTCATTCTCTACTCTGGCCAACAACT TTGTTCTCATCGTGTCACAACTGCAACCCAGTCAAGAAAATGAGATGTTTTCCATCAGAGAC AGTGCACACAGGCGGTTTCTGCTATTCCGGAGAGCATTCAAACAGTTGGACGTAGAAGCAGC TCTGACCAAAGCCCTTGGGGAAGTGGACATTCTTCTGACCTGGATGCAGAAATTCTACAAGC TCTGAATGTCTAGACCAGGACCTCCCTCCCCCTGGCACTGGTTTGTTCCCTGTGTCATTTCA AACAGTCTCCCTTCCTATGCTGTTCACTGGACACTTCACGCCCTTGGCCATGGGTCCCATTC TTGGCCCAGGATTATTGTCAAAGAAGTCATTCTTTAAGCAGCGCCAGTGACAGTCAGGGAAG AATTAATGTCAGTATTTCAACTGAAGTTCTATTTATTTGTGAGACTGTAAGTTACATGAAGG CAGCAGAATATTGTGCCCCATGCTTCTTTACCCCTCACAATCCTTGCCACAGTGTGGGGCAG TGGATGGGTGCTTAGTAAGTACTTAATAAACTGTGGTGCTTTTTTTGGCCTGTCTTTGGATT GTTAAAAAACAGAGAGGGATGCTTGGATGTAAAACTGAACTTCAGAGCATGAAAATCACACT TAAACGATAAAATGTGGATTAAAGTGCCCAGCACAAAGCAGATCCTCAATAAACATTTCATT TATCCTAGTCATTCTTCCCTAATCTTCCACTTGAGTGTCAAGCTGACCTTGCTGATGGTGAC ATTGCACCTGGATGTACTATCCAATCTGTGATGACATTCCCTGCTAATAAAAGACAACATAA CTCCAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 320

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA88002

><subunit 1 of 1, 206 aa, 1 stop

><MW: 23799, pI: 9.12, NX(S/T): 3

MNFQQRLQSLWTLARPFCPPLLATASQMQMVVLPCLGFTLLLWSQVSGAQGQEFHFGPCQVK GVVPQKLWEAFWAVKDTMQAQDNITSARLLQQEVLQNVSDAESCYLVHTLLEFYLKTVFKNH HNRTVEVRTLKSFSTLANNFVLIVSQLQPSQENEMFSIRDSAHRRFLLFRRAFKQLDVEAAL TKALGEVDILLTWMOKFYKL

Signal sequence:

amino acids 1-42

N-glycosylation sites.

amino acids 85-89, 99-103, 126-130

FIGURE 321

FIGURE 322

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA92282</pre>

><subunit 1 of 1, 177 aa, 1 stop

><MW: 20452, pI: 8.00, NX(S/T): 2

MKLQCVSLWLLGTILILCSVDNHGLRRCLISTDMHHIEESFQEIKRAIQAKDTFPNVTILST LETLQIIKPLDVCCVTKNLLAFYVDRVFKDHQEPNPKILRKISSIANSFLYMQKTLRQCQEQ RQCHCRQEATNATRVIHDNYDQLEVHAAAIKSLGELDVFLAWINKNHEVMFSA

Signal sequence:

amino acids 1-18

N-glycosylation sites.

amino acids 56-60, 135-139

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 102-106

N-myristoylation site.

amino acids 24-30

Actinin-type actin-binding domain signature 1.

amino acids 159-169

FIGURE 323

CCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACTTGGCTTCGTTAG AACGCGGCTACAATTAATACATAACCTTATGTATCATACACATACGATTTAGGTGACACTAT AGAATAACATCCACTTTGCCTTTCTCCCACAGGTGTCCACTCCCAGGTCCAACTGCACCTC GGTTCTATCGATAATCTCAGCACCAGCCACTCAGAGCAGGGCACGATGTTGGGGGGCCCGCCT CAGGCTCTGGGTCTGTGCAGCGTCTGCAGCATGAGCGTCCTCAGAGCCTATCCCA ATGCCTCCCCACTGCTCGGCTCCAGCTGGGGTGGCCTGATCCACCTGTACACAGCCACAGCC AGGAACAGCTACCACCTGCAGATCCACAAGAATGGCCATGTGGATGGCGCACCCCATCAGAC CATCTACAGTGCCCTGATGATCAGATCAGAGGATGCTGGCTTTTGTGGTGATTACAGGTGTGA TGAGCAGAAGATACCTCTGCATGGATTTCAGAGGCAACATTTTTGGATCACACTATTTCGAC CCGGAGAACTGCAGGTTCCAACACCAGACGCTGGAAAACGGGTACGACGTCTACCACTCTCC TCAGTATCACTTCCTGGTCAGTCTGGGCCGGGCGAAGAGAGCCTTCCTGCCAGGCATGAACC CACCCCGTACTCCCAGTTCCTGTCCCGGAGGAACGAGATCCCCCTAATTCACTTCAACACC CCCATACCACGGCGCACACCCGGAGCGCCGAGGACTCGGAGCGGGACCCCTGAACGT GCTGAAGCCCCGGGCCCGGATGACCCCGGCCCCGGCCTCCTGTTCACAGGAGCTCCCGAGCG CCGAGGACAACAGCCCGATGGCCAGTGACCCATTAGGGGTGGTCAGGGGCGGTCGAGTGAAC ACGCACGCTGGGGGAACGGCCCGGAAGGCTGCCGCCCTTCGCCAAGTTCATC**TAG**GGTCG CTGG

FIGURE 324

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA142238

><subunit 1 of 1, 251 aa, 1 stop

><MW: 27954, pI: 9.22, NX(S/T): 1

MLGARLRLWVCALCSVCSMSVLRAYPNASPLLGSSWGGLIHLYTATARNSYHLQIHKNGHVD GAPHQTIYSALMIRSEDAGFVVITGVMSRRYLCMDFRGNIFGSHYFDPENCRFQHQTLENGY DVYHSPQYHFLVSLGRAKRAFLPGMNPPPYSQFLSRRNEIPLIHFNTPIPRRHTRSAEDDSE RDPLNVLKPRARMTPAPASCSQELPSAEDNSPMASDPLGVVRGGRVNTHAGGTGPEGCRPFA KFI

Important features of the protein:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 175-179

N-myristoylation site.

amino acids 33-39, 100-106, 225-231, 229-235

HBGF/FGF family proteins

amino acids 73-124

The contract the contract of t

FIGURE 325

GGAAAAGGTACCCGCGAGAGACAGCCAGCAGTTCTGTGGAGCAGCGGTGGCCGGCTAGG**ATG** GGCTGTCTCTGGGGTCTGGCCCCTTTTCTTCTTCTGCTGGGAGGTTGGGGTCTCTGG GAGCTCTGCAGGCCCCAGCACCCGCAGAGCAGACACTGCGATGACAACGGACGACACAGAAG TGCCCGCTATGACTCTAGCACCGGGCCACGCCGCTCTGGAAACTCAAACGCTGAGCGCTGAG ACCTCTTCTAGGGCCTCAACCCCAGCCGGCCCCATTCCAGAAGCAGAGACCAGGGGAGCCAA GAGAATTTCCCCTGCAAGAGAGACCAGGAGTTTCACAAAAACATCTCCCAACTTCATGGTGC TGATCGCCACCTCCGTGGAGACATCAGCCGCCAGTGGCAGCCCCGAGGGAGCTGGAATGACC ACAGTTCAGACCATCACAGGCAGTGATCCCGAGGAAGCCATCTTTGACACCCTTTGCACCGA TGACAGCTCTGAAGAGGCAAAGACACTCACAATGGACATATTGACATTGGCTCACACCTCCA CAGAAGCTAAGGGCCTGTCCTCAGAGAGCAGTGCCTCTTCCGACGGCCCCCATCCAGTCATC ACCCCGTCACGGGCCTCAGAGAGCAGCCCCTCTTCCGACGGCCCCCATCCAGTCATCACCCC GTCACGGGCCTCAGAGAGCAGCGCCTCTTCCGACGGCCCCCATCCAGTCATCACCCCGTCAT GGTCCCCGGGATCTGATGTCACTCTCCTCGCTGAAGCCCTGGTGACTGTCACAAACATCGAG GTTATTAATTGCAGCATCACAGAAATAGAAACAACAACTTCCAGCATCCCTGGGGCCTCAGA CATAGATCTCATCCCCACGGAAGGGGTGAAGGCCTCGTCCACCTCCGATCCACCAGCTCTGC CTGACTCCACTGAAGCAAAACCACATCACTGAGGTCACAGCCTCTGCCGAGACCCTGTCC ACAGCCGGCACCACAGAGTCAGCTGCACCTCATGCCACGGTTGGGACCCCACTCCCCACTAA CAGCGCCACAGAAAGAGAAGTGACAGCACCCGGGGCCCACGACCCTCAGTGGAGCTCTGGTCA CAGTTAGCAGGAATCCCCTGGAAGAAACCTCAGCCCTCTCTGTTGAGACACCAAGTTACGTC AAAGTCTCAGGAGCAGCTCCGGTCTCCATAGAGGCTGGGTCAGCAGTGGGCAAAACAACTTC CTTTGCTGGGAGCTCTGCTTCCTCCTACAGCCCCTCGGAAGCCGCCCTCAAGAACTTCACCC CTTCAGAGACACCGACCATGGACATCGCAACCAAGGGGCCCTTCCCCACCAGCAGGGACCCT CTTCCTTCTGTCCCTCCGACTACAACCAACAGCAGCCGAGGGACGAACAGCACCTTAGCCAA GATCACAACCTCAGCGAAGACCACGATGAAGCCCCAACAGCCACGCCCACGACTGCCCGGAC GAGGCCGACCACAGACG**TGA**GTGCAGGTGAAAATGGAGGTTTCCTCCTCCTGCGGCTGAGTG TGGCTTCCCCGGAAGACCTCACTGACCCCAGAGTGGCAGAAAGGCTGATGCAGCAGCTCCAC CGGGAACTCCACGCCCCACGCCTCACTTCCAGGTCTCCTTACTGCGTGTCAGGAGAGGCTA ACGGACATCAGCTGCAGCCAGGCATGTCCCGTATGCCAAAAGAGGGGTGCTGCCCCTAGCCTG GGCCCCACCGACAGACTGCAGCTGCGTTACTGTGCTGAGAGGTACCCAGAAGGTTCCCATG AAGGGCAGCATGTCCAAGCCCCTAACCCCAGATGTGGCAACAGGACCCTCGCTCACATCCAC CGGAGTGTATGTATGGGGGGGGCTTCACCTGTTCCCAGAGGTGTCCTTGGACTCACCTTGG CACATGTTCTGTGTTTCAGTAAAGAGAGACCTGATCACCCATCTGTGTGCTTCCATCCTGCA TTAAAATTCACTCAGTGTGGCCCAAAAAAA

FIGURE 326

MGCLWGLALPLFFFCWEVGVSGSSAGPSTRRADTAMTTDDTEVPAMTLAPGHAALETQTLSA
ETSSRASTPAGPIPEAETRGAKRISPARETRSFTKTSPNFMVLIATSVETSAASGSPEGAGM
TTVQTITGSDPEEAIFDTLCTDDSSEEAKTLTMDILTLAHTSTEAKGLSSESSASSDGPHPV
ITPSRASESSASSDGPHPVITPSRASESSASSDGPHPVITPSWSPGSDVTLLAEALVTVTNI
EVINCSITEIETTTSSIPGASDIDLIPTEGVKASSTSDPPALPDSTEAKPHITEVTASAETL
STAGTTESAAPHATVGTPLPTNSATEREVTAPGATTLSGALVTVSRNPLEETSALSVETPSY
VKVSGAAPVSIEAGSAVGKTTSFAGSSASSYSPSEAALKNFTPSETPTMDIATKGPFPTSRD
PLPSVPPTTNSSRGTNSTLAKITTSAKTTMKPQQPRPRLPGRGRPQT

N-glycosylation sites:

amino acids 252-256, 445-449, 451-455

cAMP-and cGMP-dependent protein kinase phosphorylation site. amino acids 84-90

Casein kinase II phosphorylation sites.

amino acids 37-41, 108-112, 131-135, 133-137, 148-152, 165-169, 246-250, 254-258, 256-260, 269-273, 283-287, 333-337, 335-339, 404-408, 414-418, 431-435

N-myristoylation sites.

amino acids 2-8, 19-25, 117-123, 121-127, 232-238, 278-284, 314-320, 349-355, 386-392, 397-403, 449-455

ATP/GTP-binding site motif A (P-loop).

amino acids 385-393

FIGURE 327

GCGGAGCATCCGCTGCGGTCCTCGCCGAGACCCCCGCGGGATTCGCCGGTCCTTCCCGCGG GCGCGACAGAGCTGTCCTCGCACCTGGATGGCAGCAGGGGGCGCCGGGGTCCTCTCGACGCCA CTTGACTTACACTTTGGTAATAATTTGCTTCCTGACACTAAGGCTGTCTGCTAGTCAGAATT GCCTCAAAAAGAGTCTAGAAGATGTTGTCATTGACATCCAGTCATCTCTTTCTAAGGGAATC AGAGGCAATGAGCCCGTATATACTTCAACTCAAGAAGACTGCATTAATTCTTGCTGTTCAAC AAAAAACATATCAGGGGACAAAGCATGTAACTTGATGATCTTCGACACTCGAAAAACAGCTA GACAACCCAACTGCTACCTATTTTCTGTCCCAACGAGGAAGCCTGTCCATTGAAACCAGCA AAAGGACTTATGAGTTACAGGATAATTACAGATTTTCCATCTTTGACCAGAAATTTGCCAAG CCAAGAGTTACCCCAGGAAGATTCTCTCTTACATGGCCAATTTTCACAAGCAGTCACTCCCC TAGCCCATCATCACACAGATTATTCAAAGCCCACCGATATCTCATGGAGAGACACACTTTCT GCTCCTTGCTTATAAGGAAAAAGGCCATTCTCAGAGTTCACAATTTTCCTCTGATCAAGAAA TAGCTCATCTGCTGCCTGAAAATGTGAGTGCGCTCCCAGCTACGGTGGCAGTTGCTTCTCCA CATACCACCTCGGCTACTCCAAAGCCCGCCACCCTTCTACCCACCAATGCTTCAGTGACACC TTCTGGGACTTCCCAGCCACAGCTGGCCACCACAGCTCCACCTGTAACCACTGTCACTTCTC AGCCTCCCACGACCCTCATTTCTACAGTTTTTTACACGGGCTGCGGCTACACTCCAAGCAATG GCTACAACAGCAGTTCTGACTACCACCTTTCAGGCACCTACGGACTCGAAAGGCAGCTTAGA AACCATACCGTTTACAGAAATCTCCAACTTAACTTTGAACACAGGGAATGTGTATAACCCTA CTGCACTTTCTATGTCAAATGTGGAGTCTTCCACTATGAATAAAACTGCTTCCTGGGAAGGT ${\sf AGGGAGGCCAGTCCAGGCAGTTCCTCCCAGGGCAGTGTTCCAGAAAATCAGTACGGCCTTCC}$ ${ t ATTTGAAAATGGCTTCTTATCGGGTCCCTGCTCTTTGGTGTCCTGTTCCTGGTGATAGGCC}$ TCGTCCTCCTGGGTAGAATCCTTTCGGAATCACTCCGCAGGAAACGTTACTCAAGACTGGAT $\texttt{TATTTGATCAATGGGATCTATGTGGACATC} \textbf{\underline{TAA}} \texttt{GGATGGAACTCGGTGTCTCTTAATTCATT}$ TAGTAACCAGAAGCCCAAATGCAATGAGTTTCTGCTGACTTGCTAGTCTTAGCAGGAGGTTG GCTCTGTTGCCCAGGCTGGAGTGCAGTAGCACGATCTCGGCTCTCACCGCAACCTCCGTCTC CTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTAAGTATCTGGGATTACAGGCATGTGCCA CCACACCTGGGTGATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGTCAGGCTG GTCTCAAACTCCTGACCTAGTGATCCACCCTCCTCGGCCTCCCAAAGTGCTGGGATTACAGG CATGAGCCACCACAGCTGGCCCCCTTCTGTTTTATGTTTTGGTTTTTGAGAAGGAATGAAGTG GGAACCAAATTAGGTAATTTTGGGTAATCTGTCTCTAAAATATTAGCTAAAAACAAAGCTCT ATGTAAAGTAATAAATTGCCATATAAATTTCAAAATTCAACTGGCTTTTATGCAAA GAAACAGGTTAGGACATCTAGGTTCCAATTCATTCACATTCTTGGTTCCAGATAAAATCAAC TGTTTATATCAATTTCTAATGGATTTGCTTTTTTTTATATGGATTCCTTTAAAACTTATT CCAGATGTAGTTCCTTCCAATTAAATATTTGAATAAATCTTTTGTTACTCAA

FIGURE 328

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45410

><subunit 1 of 1, 431 aa, 1 stop

><MW: 46810, pI: 6.45, NX(S/T): 6

MFFGGEGSLTYTLVIICFLTLRLSASQNCLKKSLEDVVIDIQSSLSKGIRGNEPVYTSTQED CINSCCSTKNISGDKACNLMIFDTRKTARQPNCYLFFCPNEEACPLKPAKGLMSYRIITDFP SLTRNLPSQELPQEDSLLHGQFSQAVTPLAHHHTDYSKPTDISWRDTLSQKFGSSDHLEKLF KMDEASAQLLAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTTSATPKPATLL PTNASVTPSGTSQPQLATTAPPVTTVTSQPPTTLISTVFTRAAATLQAMATTAVLTTTFQAP TDSKGSLETIPFTEISNLTLNTGNVYNPTALSMSNVESSTMNKTASWEGREASPGSSSQGSV PENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRILSESLRRKRYSRLDYLINGIYVDI

Signal sequence.

amino acids 1-25

Transmembrane domain.

amino acids 384-405

N-glycosylation sites.

amino acids 72-76, 222-226, 251-255, 327-331, 352-356

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 415-419

Tyrosine kinase phosphorylation site.

amino acids 50-57

N-myristoylation sites.

amino acids 4-10, 48-54, 315-321

FIGURE 329

CTCCCACGGTGTCCAGCGCCCAGA**ATG**CGGCTTCTGGTCCTGCTATGGGGTTGCCTGCTGCT CCCAGGTTATGAAGCCCTGGAGGGCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGT CCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGT GGGATCCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGACCAGGAGACAAT GAAGGGCAGGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGA ACCTCACCCTGCAAGACGCTGGGGAGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAG TCTTTACTGATCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCTCCCCTTCTCCCAC CTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCC CAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACCACAGCCAAGCAGGGGAAGACAGGG GCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGGCACGAAAGGACTTCTCAGTACAC AGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGGAGCTCCCGCCCCCCCATGCAGC TGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG GTGTCCATCCGGATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGCTGAGCCTTCTGTCAGC CGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAGCTCAACAGGCCA CGGAGACACAGAGGAACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC CCTTCCCAGGCCCCTGAGGGGGACGTGATCTCGATGCCTCCCCTCCACACATCTGAGGAGGA GCTGGGCTTCTCGAAGTTTGTCTCAGCG**TAG**GGCAGGGCCCTCCTGGCCAGGCCAGCAGT GAAGCAGTATGGCTGGCTGGATCAGCCCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAG TCCAGCTGCCCGGACTCCAGGGCTCTCCCCACCCTCCCCAGGCTCTCCTTGCATGTTCCA GCCTGACCTAGAAGCGTTTGTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTG GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCA GCAGGGCCAGACAAGGCTCAGTGGATCTGAGTTTCAATCTGCCAGGAACTCCTGGGC TGGCGTCCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGGAGCATGCT GGGGTGAGACTGGGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCT GTGAAAAACGTGATTCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAG GACTCTGAATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCCAGTGGGCCTG ATGAACGCTCACACCCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCC CAATAGATCTGCTCTGTCTGCGACACCAGATCCACGTGGGGACTCCCCTGAGGCCTGCTAAG TCCAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCCTGGNCCATGCCTTCTTGCCTTTGGAAAAAATGATGAAGA AAACCTTGGCTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTAGAGA GAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGAGTAGGAACAGGGCGG ATACCTGAAGGTGACTCCGAGTCCAGCCCCCTGGAGAAGGGGTCGGGGGTGGTGGTAAAGTA GCACAACTACTATTTTTTTTTTTTTTCCATTATTATTGTTTTTTAAGACAGAATCTCGTGCT GCTGCCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACTCCGCCTCCTGGGTTCAAGTGATT TTTGTACTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGAC CTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTACAGGCATGAGCCACTGTG TCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTCAGTATGCAAAACTTGGAAAG ATGGAGGAGAAAAGGAAGAAGAAAAAATGTCACCCATAGTCTCACCAGAGACTATCAT TATTTCGTTTTGTTGTACTTCCTTCCACTCTTTTCTTCTTCACATAATTTGCCGGTGTTCTT TTTACAGAGCAATTATCTTGTATACAACTTTGTATCCTGCCTTTTCCACCTTATCGTTCC GCTGCATAAAAAAAAAAAAAA

FIGURE 330

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196</pre>

<subunit 1 of 1, 332 aa, 1 stop

<MW: 36143, pI: 5.89, NX(S/T): 1

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS GTIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFV FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG TSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPRVSIPMVRI LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGD VISMPPLHTSEEELGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain.

amino acids 104-113

Ig like V-type domain:

amino acids 13-128