

UNIVERSITI TEKNOLOGI MALAYSIA SEMESTER 1 - SESSION 2024/2025

ASSIGNMENT 1

SECTION 08

SECI1013 - DISCRETE STRUCTURE

LECTURER'S NAME: Ts. Dr. Goh Eg Su

NAME	MATRIC NO
ADRIANA MAISARAH BINTI AZNAN	B21EC0004
NURUL ATHIRAH BINTI ZAKARIA	A24CS0175
SITI ATHIRAH BINTI ABD MALIK	A24CS0189
WARDINA SAFIAH BINTI HARUN	A24CS0209

a. There have 2 programs offered in Faculty of Computing, UTM. In this semester only 90 students out of total 150 from program 1 take discrete structure (DS) and software engineering (SE) subjects. While there have half of total 100 students from program 2 take discrete structure and programming technique 1 (PT1). All of the students from program 1 must take at least one of the subjects offered as stated either DS or SE while all of the students from program 2 must take at least one of the subjects offered as stated either DS or PT1.

Answer

i) Draw a Venn diagram to represent the above use case. (2 marks)

- ii) How many students in total that take DS? (2 marks) 140 students.
- iii) How many students have exactly took two subjects? (2 marks) 140 students.
- iv) How many students took less than 2 subjects? (2 marks) 110 students.

b. Suppose, $A=\{n\in N|n \text{ odd}, 1\le n\le 20\}$, where $N=\{n\text{atural number}\}$ $B=\{n\in N|n \text{ is prime}, 1\le n\le 20\}$, $C=\{n\in N|n \text{ divisible by }5, 1\le x\le 10\}$

Answer

i) Find |A|, |B| and |C|, (3 marks)

$$A = \{3, 5, 7, 9, 11, 13, 15, 17, 19\}$$

 $B = \{2, 3, 5, 7, 11, 13, 17, 19\}$
 $C = \{5\}$

$$|A| = 9$$
, $|B| = 8$, $|C| = 1$

ii) Find the number of proper subsets of A. (3 marks)

Since |A| = 9,

The number of subset,

$$|P(A)| = 2^9$$
$$= 512$$

The number of proper subset of A

$$512-1 = 511$$

iii) Find $C \times B$ (2 marks)

$$C \times B = \{(5,2), (5,3), (5,5), (5,7), (5,11), (5,13), (5,17), (5,19)\}$$

a. Formulate the symbolic expression in words using

m: You play table tennis.

n: You miss the midterm test.

o: You pass the subject.

Answer

i) m \wedge n (2 marks)

You play table tennis and you miss the midterm test.

ii)
$$\neg (m \lor n) \lor o (2 \text{ marks})$$

You do not play table tennis and you do not miss the midterm test or you pass the subject

b. Show that $(a \rightarrow b) \equiv (\neg a \lor b)$. (6 marks)

Answer

$$(a \rightarrow b) = If a$$
, then b

a	b	$a \rightarrow b$	¬a	¬a∨b
Т	Т	T	F	T
Т	F	F	F	F
F	Т	T	Т	T
F	F	Т	Т	Т

 $(\neg a \lor b) = is know as Equivalent$

- c. Represent the given proposition symbolically by letting
 - x: You run 30 laps weekly.
 - y: You are healthy.
 - z: You take vegetables.
- i) If you run 30 laps weekly, then you will be healthy. (2 marks)

$$x \rightarrow y$$

ii) If you do not run 30 laps weekly or do not take vegetables, then you will not be healthy. (2 marks)

$$(\neg x \ V \ \neg z) \rightarrow \neg y$$

iii) You will be healthy if and only if you run 30 laps weekly and take vegetable (2 marks) $y \leftrightarrow (x \land z)$

a. Let P(n) be the propositional function "n divides 15." Write each proposition in words and tell whether it is true or false. The domain of discourse is Z+.

Answer

i) P(5) (2 marks)

True.Because 15 can be divisible by 5

ii) \forall nP(n) (2 marks)

False. Because not all positive integers can divide 15

iii) $\exists n \neg P(n)$ (2 marks)

True. Because at least one positive integer does not divide 15.

- b. Let P(m, n) be the propositional function $m \ge n$. The domain of discourse is $Z + \times Z +$.
- i) Tell whether $\exists m \exists nP(m, n)$ is true or false. (2 marks)

True. Because for any m = n, $m \ge n$ holds.

ii) Write the negation of the proposition above. (2 marks)

 $\neg (\exists m \exists nP(m,n)) \equiv \forall m \forall n \neg P(m,n)$

Prove that if x and y are real numbers with x < y, there exists a rational number satisfying x < a < y. (6 marks)

x < y = the difference y - x is a positive real number. y - x > 0. Real number can exist a rational number such as = x < a < y

For example
$$x = 2.1$$
 and $y = 2.9$. To find rational number $a = \frac{q}{p}$

For simplicity choose q = 10. After that multiply x and y by q = 10:

$$10x = 21$$
 and $10y = 29$.

Integers between 10x and 10y are 22,23,24... 28. Choose one integer for example p = 23.

Divide
$$p = 23$$
, $q = 10$ to obtain the rational number : $a = \frac{q}{p} = \frac{23}{10} = 2.3$

To check if rational number is satisfied :
$$a = 2.3$$
 satisfied $x < a < y$

So a = $\frac{23}{10}$ is a rational number that satisfies x < a < y.

a. List the elements of relation R on the set $\{1,2,3,4,5\}$ defined by the rule $(m,n) \subseteq R$ if 2 divides m - n. Afterwards, list the elements of R^{-1} . (4 marks)

$$R = \{(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5)\}$$

$$R^{-1} = \{(1,1), (3,1), (5,1), (2,2), (4,2), (3,1), (3,3), (5,3), (2,4), (4,4), (1,5), (3,5), (5,5)\}$$

b. Repeat question **a** for relation R on the set $\{1,2,3,4,5\}$ defined by the rule $(m,n) \in R$ if $m+n \le 4$. (4 marks)

$$R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1)\}$$

$$R^{-1} = \{(1,1), (2,1), (3,1), (1,2), (2,2), (1,3)\}$$

c. Determine either relation of question a and b are symmetric. (2 marks)

When $R = R^{-1}$, the relation is symmetric. However, both question a and b are not symmetric because $R \neq R^{-1}$, there are differences in the order of the pairs.

d. Determine whether each relation below defined on the set of positive integers is reflexive, symmetric, antisymmetric, transitive, and/or a partial order. (6 marks)

i)
$$(x, y) \subseteq R$$
 if $xy = 1$.

Symmetric, antisymmetric and transitive only.

ii)
$$(x, y) \in R \text{ if } x = y2.$$

Antisymmetric only.

iii)
$$(x, y) \in R$$
 if $x = y$.

Reflexive, symmetric, antisymmetric, transitive and it is a partial order since it is reflexive, symmetric and transitive.

Determine whether each function below is one-to-one, onto, or both. Prove your answers. The domain of each function is the set of all integers. The codomain of each function is also the set of all integers.

Answer

```
i) f(n) = n + 1 (3 marks)
 f(n1) = f(n2)
 n1 + 1 = n2 + 1
 n1 = n2
 This shows that f is one-to-one
ii) f(n) = |n| (3 \text{ marks})
 |n| = \{n \text{ if } x \ge 0\}
      -n if x < 0
f|n1| = f|n2|
  n1 = -n2
 f(3)=f(-3)
   3≠-3
This shows that f is not one-to-one or onto
n = \{(1, b), (2, c), (3, a)\}, a function from X = \{1, 2, 3\} to Y = \{a, b, c, d\}, and
m = \{(a, x), (b, x), (c, z), (d, w)\}, a function from Y to Z = \{w, x, y, z\}, write m \circ n as a set of
ordered pairs and draw the arrow diagram of m on. (5 marks)
m \circ n = \{ (1,x),(2,z),(3,x) \}
```


c. Let $g = \{(1, a), (2, c), (3, c)\}$ be a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c, d\}$. Let $S = \{1\}$, $T = \{1, 3\}$, $U = \{a\}$, and $V = \{a, c\}$. Find g(S), g(T), g-1(U), and g-1(V). (4 marks)

$$\begin{split} i) \ g(S) &= g(1) = a \\ ii) \ g(T) &= \{ \ g(1), \ g(3) \ \} = \{ \ a,c \} \\ iii) \ g-1(U) &= 1 \\ iv) \ g-1(V) &= \{ \ 1,2,3 \ \} \end{split}$$