CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Section(s)
Mathematics	204	A
Examination	Date	Pages
Final	December 2014	2
Instructors		Course Examiners
A. Sierpinska, S. Shi,		E. Cohen
S. Vassileva, R. Mearns		

Special Instructions

- ▷ Only approved calculators are allowed.
- ▶ All questions have equal value.
 - 1. Use the Gauss-Jordan method to find all the solutions of the system:

2. Determine the values of a for which the system has no solution, exactly 1 solution or infinitely many solutions:

- 3. Find the inverse of $A = \begin{pmatrix} 3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4 \end{pmatrix}$, if it exists.
- 4. (a) Evaluate the determinant of $A = \begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{pmatrix}$.
 - (b) Solve by Cramer's rule, when it applies:

- 5. (a) Let u = (1, 4, 2), v = (1, 1, 0). Find the orthogonal projection of u on v.
 - (b) Let $u_1 = (1, 1, 0), u_2 = (0, 1, 1), u_3 = (1, 0, 1)$. Find scalars c_1, c_2, c_3 such that $c_1u_1 + c_2u_2 + c_3u_3 = (1, 0, 0)$.
- 6. (a) Find the area of the triangle with vertices (1,1,1), (2,0,1), (3,1,2). Find a vector orthogonal to the plane of the triangle.
 - (b) (i) Find the distance between the point (1,5) and the line 2x = 5y 1.
 - (ii) Find the equation of the plane containing the points (1, 2, 1), (2, 1, 1), (1, 1, 2).
- 7. (a) Let u = (-1,0,2), v = (2,-1,4), w = (-1,1,-6) are the vectors linearly dependent or independent?
 - (b) Find the parametric equations of the line in \mathbb{R}^3 passing through (1,4,-5) and perpendicular to the plane x-3y+2z=4.
- 8. Let $A = \begin{pmatrix} 1 & 0 & 3 & 0 & 5 \\ 0 & 1 & 2 & 0 & 6 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \\ z \\ t \\ u \end{pmatrix}$. Find a basis for the solution space

of the homogeneous system AX = 0.

- 9. Find the standard matrices for the following 2 linear operators on \mathbb{R}^2 :
 - (a) a reflection about the line y = x.
 - (b) a rotation counterclockwise of 30° .
- 10. Let $A = \begin{pmatrix} -14 & 12 \\ -20 & 17 \end{pmatrix}$. Find an invertible matrix P and a diagonal matrix D such that $D = P^{-1}AP$.