Конспект по Геометрии и Топологии III сем. | Бакалавриат Че (в исполнении Сергея Владимировича Иванова)

24 апреля 2019 г.

Содержание

1	Топ	ологические хвосты с прошлого семестра	3
	1.1	Существование универсальных накрытий	3
	1.2	Поднятие отображений	6
	1.3	Иерархия накрытий	8
	1.4	Автоморфизмы накрытий	9
	1.5	Приложения	12
2	Дифференциальная геометрия кривых		
	2.1	Длина	13
	2.2	Регулярные кривые	14
	2.3	Кривизна кривой на плоскости	15
	2.4	Поворот кривой	18
	2.5	Число вращения	19
	2.6	Выпуклые кривые	19
	2.7	Теорема о четырёх вершинах	22
	2.8	Кривизна кривой в \mathbb{R}^n	22
	2.9	Кривые в \mathbb{R}^3	24
3	Гладкие многообразия 26		
	3.1	Подмногообразия	30
	3.2	Вложение и погружение	31
	3.3	Подмногообразие в \mathbb{R}^n	32
	3.4	Субмерсии	34
	3.5	Касательное пространство	35
	3.6	Дифференцирование	37
	3.7	Касательное пространство многообразия	37
	3.8	Трансверсальные пересечения	38
	3.9	Гладкие многообразия с краем	38
	3.10	Ориентация	41
4	Вну	тренняя геометрия поверхностей	45
	4.1	Первая квадратичная форма поверхности	45
	4.2	Риманово многообразие	46
	4.3	Плоскость Лобачевского	50
	4.4	Вторая квадратичная форма поверхности	52
	4.5	Гауссово отображение	56
	4.6	Гауссова и средняя кривизна	60
	4.7	Кривые на поверхностях	61
	4.8	Символы Кристоффеля	61
	4.9	Теорема Гаусса (Theorema Egregium)	63

1 Топологические хвосты с прошлого семестра

1.1 Существование универсальных накрытий

Пример, когда не существует универсального накрывающего: рассмотрим семейство окружностей на плоскости, имеющих одну (фиксированную) точку пересечения, т.ч. последовательность их радиусов стремится к нулю. Зададим на этом множестве топологию, индуцированную с плоскости. Пусть есть универсальное накрытие X. Рассмотрим правильно накрывамую окрестность точки, через которую проходят все окружности. Тогда эта окрестность содержит хотя бы одну петельку целиком, ведь их радиусы стремятся к нулю. Эта петелька в нашем пространстве, очевидно, нестягиваема, потому что нестягиваема уже в плоскости с одной выколотой точкой. Но тогда её прообраз(ы) относительно накрытия являются петлями и тоже нестягиваемы (иначе мы могли бы отобразить соответствующую гомотопию вниз и получить стягиваемость там), а это противоречит односвязности накрывающего пространства X.

Соглашение: говоря про накрытия, мы всегда будем считать, что все пространства линейно связны.

Def. 1.1. Пусть X — топологическое пространство. Оно называется <u>локально линейно связным,</u> если для любого $x \in X$ для любой окрестности U точки x существует линейно связная окрестность $V: x \in V, V \subset U$.

Пример не локально линейно связного пространства: рассмотрим гребёнку на плоскости, состоящую из отрезка [0,1] и отрезков единичной длины, торчащих из всех точек вида 1/n, $n \in \mathbb{N}$, снабженной топологией, индуцированной с плоскости. У точки (0,1) нет хорошей окрестности (это наглядно очевидно, а строго доказывать не будем).

Def. 1.2. X называется полулокально односвязным (в русской терминологии иногда микроодносвязным), если $\forall x \in X$ существует окрестность U точки x, т.ч. любая петля в U стягиваема во всём пространстве X.

Временное определение: топологическое пространство X — хорошее, если оно

- линейно связно
- локально линейно связно
- полулокально односвязно

Задача: все линейно связные конечные клеточные пространства — хорошие.

Th. 1.1. У любого хорошего пространства X существует универсальное накрытие.

Доказательство. І. Построение.

- (а) Сначала построим на теоретико-множественном уровне. Зафиксируем $x_0 \in X$, рассмотрим $\widetilde{X} := \{$ множество всех классов гомотопных путей с началом в точке $x_0 \}$ (пока как множество). Заведём отображение, наше будущее накрытие, $p: \widetilde{X} \to X$, пусть α путь в X, тогда положим $p([\alpha]) = \alpha(1)$, оно, очевидно, корректно задано на классах гомотопности.
- (b) Заведём на \widetilde{X} топологию.

Временное определение: открытое множество в X будем называть хорошим, если оно непусто, линейно связно и все петли в нём стягиваемы в X.

Заметим, что у каждой точки нашего хорошего пространства X есть хорошая окрестность. Действительно, в силу полулокальной односвязности есть такая, что все петли в ней стягиваемы в X, причём уменьшая её, мы не испортим это свойство, а в силу локальной линейной связности, в этой окрестности существует линейно связная подокрестность, она и будет хорошей. Причём такое же рассуждение показывает, что у любой точки есть сколько угодно маленькая хорошая окрестность, а значит, хорошие множества в X образуют базу какой-то топологии. Теперь изготовим из этой базы базу некой топологии на \widetilde{X} .

Рассмотрим хорошую окрестность U и путь α из x_0 в эту окрестность: $\alpha(0) = x_0, \alpha(1) \in U$. Определим множество $U^{\alpha} = \{$ всевозможные классы гомотопности $[\alpha s] : s$ — путь внутри области $U\} \subset \widetilde{X}$ — базовое множество в \widetilde{X} .

Докажем, что такие множества (для каждой такой пары объектов (U,α)) действительно образуют базу некоторой топологии на \widetilde{X} . Заметим, что

- $p(U^{\alpha}) = U$ в силу линейной связности U (из $\alpha(1)$ есть путь в любую точку U).
- $p|_{U^{\alpha}}$ инъективно. Действительно, пусть есть два пути l_1, l_2 с общими концами. Тогда, в силу полулокальной односвязности U, петля $l_1 \cdot l_2^{-1}$ стягиваема. Тогда $l_1 \cdot l_2^{-1} \sim const \Rightarrow l_1 \sim const \cdot l_2 \sim l_2$.

Надо проверить, что для любых двух множеств $U_1^{\alpha_1}$, $U_2^{\alpha_2}$ из (будущей) базы, у любой точки в их пересечении существует окрестность из базы (которая целиком лежит в этом пересечении). Рассмотрим "точку" $[\alpha]$ из пересечения. Существуют пути $s_1 \subset U_1: \alpha \sim \alpha_1 s_1$ и $s_2 \subset U_2: \alpha \sim \alpha_2 s_2$ (так писать не совсем корректно, потому что пути — это отображения, а не множества, но для краткости позволим себе это). Рассмотрим хорошую окрестность V точки $\alpha(1)$ в $U_1 \cap U_2$. Утверждается, что $V^{\alpha} \subset U_1^{\alpha_1} \cap U_2^{\alpha_2}$ (т.е. что наша картинка отражает реальность, по крайней мере в нужной нам части :)). Рассмотрим любой путь $s \in V$ с началом в $\alpha(1)$. $\alpha s \sim \alpha_1 s_1 s \sim \alpha_1 (s_1 s)$, где $(s_1 s) \subset U_1$, т.е. $[\alpha s] = [\alpha_1 s_1 s] \in U_1^{\alpha_1}$. Аналогично, $[\alpha s] \in U_2^{\alpha_2}$. Таким образом, мы нашли подходящую окрестность — это V^{α} — и доказали, что множества вида U^{α} для всех пар, имеющих смысл, образуют базу.

II. Проверим, что заведённое p — это накрытие.

- (а) p непрерывно \iff прообразы открытых открыты. Достаточно доказать, что прообразы хороших в X открыты, так как они образуют базу пространства X. Утверждается, что $p^{-1}(U) = \cup_{\alpha} U^{\alpha}$. Действительно, включение \subset очевидно по определению, включение \supset следует из того, что $p(U^{\alpha}) = U$. Итого, $p^{-1}(U)$ объединение открытых (даже базовых), значит открыто.
- (b) Образ открытого открыт (*открытое отображение*). Это опять же достаточно проверять только для базовых множеств: $\forall U, \alpha, \ p(U^{\alpha}) = U$, значит, действительно, открыто.
- (c) Хорошие окрестности правильно накрываемые.
 - Наблюдение: $p^{-1}(U) = \sqcup_i U^{\alpha_i}$, т.е. U^{α} и U^{β} не пересекаются или совпадают для любых (имеющих смысл) α, β . Докажем это. Пусть $U^{\alpha} \cap U^{\beta} \neq \emptyset$. Тогда существует $[\gamma] \in U^{\alpha} \cap U^{\beta}$. Путь γ обязан кончаться в U. Кроме того,

$$[\gamma] \in U^{\alpha} \Rightarrow \exists s_1 \subset U : \gamma \sim \alpha s_1$$

Из чего мгновенно следует, что $U^{\alpha} = U^{\gamma}$. Аналогично, из того что

$$[\gamma] \in U^{\beta} \Rightarrow \exists s_2 \subset U : \gamma \sim \beta s_2$$

мгновенно следует, что $U^{\beta}=U^{\gamma}$, а значит $U^{\alpha}=U^{\beta}$, как мы и хотели.

• Итого, мы поняли, что прообраз U разбивается на U^{α_i} -ки. Осталось понять, что каждый кусочек отображается гомеоморфно, но это мы фактически уже доказали ранее. Действительно, мы уже поняли, что $p|_{U^{\alpha_i}}$ — биекция из U^{α_i} в U, кроме того, она непрерывна в обе стороны (см. пункты a,b), значит, гомеоморфизм.

III. Проверим, что \widetilde{X} односвязно.

Зафиксируем $x_0 \in X$, $y_0 = [const] \in \widetilde{X}$. В силу линейной связности \widetilde{X} (от любого пути есть путь в константный путь, который легко построить руками), достаточно доказать, что все петли с началом в y_0 стягиваются, т.к. всегда можем применить гомеоморфизм переноса. Рассмотрим произвольную петлю γ в \widetilde{X} с началом в y_0 и её образ $\alpha = p \circ \gamma$ (γ — поднятие α с началом в точке y_0). По теореме о поднятии гомотопии, достаточно проверить, что α стягивается. Мы знаем, что поднятие α не размыкается. Теперь рассмотрим $\gamma(t)$, что это такое? Это класс эквивалентности путей, соединяющих x_0 с $\alpha(t)$. Обозначим за α_t начальный участок петли α от 0 до t (формально, $\alpha_t(x) = \alpha(tx)$). Тогда утверждается, что $\gamma(t)$ — это не просто какой-то класс гомотопности путей, соединяющих x_0 и $\alpha(t)$, а конкретный класс пути α_t , т.е. $\forall t \in [0,1], \gamma(t) = [\alpha_t]$.

Докажем это. Рассмотрим $\gamma_1(t) := [\alpha_t]$. γ_1 — тоже поднятие α с началом в $y_0 = [const]$. Как мы знаем, оно единственно, значит, совпадает с $\gamma(t)$ (здесь нужно ещё проверить непрерывность γ_1 , но временно замнём, хотя это очевидно).

В частности, при $t=1, \ \gamma(1)=[\alpha_1]=[\alpha]$. С другой стороны, $\alpha(1)$ — отмеченная точка. $[\alpha_1]=[\alpha]=\gamma(1)=\gamma(0)=[const]$, значит, $[\alpha]=[const]$, т.е. α стягивается.

1.2 Поднятие отображений

Def. 1.3. Пусть $p:X\to Y$ — накрытие, $f:Z\to Y$ — непрерывно, $\widetilde{f}:Z\to X$ — поднятие f, если \widetilde{f} непрерывно и $p\circ\widetilde{f}=f$.

В этом параграфе мы будем работать в категории топологических пространств с отмеченной точкой (X, x_0) (и, соответственно, все наши отображения будут уважать отмеченные точки).

Lm. 1.2. (Напоминание) Пусть имеется накрытие $p:(X,x_0)\to (Y,y_0)$. Тогда индуцированный гомоморфизм $p_*:\pi_1(X,x_0)\to \pi_1(Y,y_0)$ инъективен.

Доказательство. Пусть это не так, тогда у p_* есть нетривиальное ядро. Значит, в $\pi_1(X,x_0)$ существует нестягиваемая петля, которая становится стягиваемой в образе. Но это противоречит теореме о поднятии гомотопии.

Def. 1.4. Образ p_* называется группой накрытия.

Rem. Очевидно, что

- 1) группа накрытия изоморфна $\pi_1(X, x_0)$.
- 2) группа накрытия состоит ровно из классов тех петель, которые не размыкаются при поднятии.

- **Th. 1.3.** Пусть $p:(X,x_0)\to (Y,y_0)$ накрытие, $f:(Z,z_0)\to (Y,y_0)$ произвольное непрерывное отображение, и все пространства хорошие. Тогда следующие два утверждения равносильны:
 - (1) У f существует поднятие $\widetilde{f}:(Z,z_0)\to (X,x_0).$
 - (2) Образ отображения f_* (индуцированного f отображения на фундаментальных группах) попадает в группу накрытия, т.е. $f_*(\pi_1(Z, z_0)) \subset p_*(\pi_1(X, x_0))$.

Доказательство. $(1) \Rightarrow (2)$:

$$p \circ \widetilde{f} = f \Rightarrow$$
$$p_* \circ \widetilde{f}_* = f_*$$

Так как * уважает композицию (оно ϕy нкториально). Значит, по теоретико-множественным причинам, мы имеем

 $Im(f_*) = Im(p_* \circ \widetilde{f_*}) \subset Im(p_*)$

 $(2)\Rightarrow (1)$: рассмотрим произвольное $z\in Z$ и построим $\widetilde{f}(z)$. Пусть α — путь в Z из z_0 в z. Положим $\beta=f\circ\alpha,\ y=\beta(1)$. Существует единственный путь γ в X, являющийся поднятием β с началом в x_0 . Пусть $x=\gamma(1)$. Тогда определим $\widetilde{f}(z)=x$.

Rem. Если \widetilde{f} существует, то, очевидно, имеет именно такой вид (отсюда сразу следует единственность). Осталось это доказать, т.е. для построенного отображения проверить корректность и непрерывность.

- I. Корректность: пусть α_1 другой путь из z_0 в z, β_1 его образ, $\beta_1 = f \circ \alpha_1$. Мы хотим доказать, что поднятия β и β_1 имеют конец в одной точке. По условию, $Im(f_*) \subset Im(p_*)$, значит **любая петля из образа** не размыкается при поднятии, в частности, не размыкается $\beta \cdot \beta_1^{-1}$. Значит, в X существует петля, являющаяся поднятием пути $\beta \cdot \beta_1^{-1}$ (получилось, что кусочки поднятия $\beta \cdot \beta_1^{-1}$ это поднятие β и поднятие β_1^{-1} , причём конец первого является началом второго, что и требовалось).
- II. Непрерывность: нам нужно проверить, что прообраз открытого $V \subset X$ открыт в Z, т.е. что для любого $z \in \widetilde{f}^{-1}(V)$ найдётся окрестность W, т.ч. $\widetilde{f}(W) \subset V$. Пусть $\widetilde{f}(z) = x \in X, f(z) = p(x) = y \in Y$. Рассмотрим у точки $y \in Y$ правильно накрываемую окрестность U_1 , тогда окрестность $U = U_1 \cap p(V)$ тоже правильно накрываемая. Пусть W линейно связная окрестность z, содержащаяся в (открытом) $f^{-1}(U)$. Поймём, что $\widetilde{f}(W)$ лежит в V.

Действительно, пусть $z_1 \in W$, значит, существует путь $t \subset f^{-1}(U)$, соединяющий z с z_1 . Тогда $f \circ t$ — путь, соединяющий y с $f(z_1) \in U$ (лежащий в U). Рассмотрим (единственное) поднятие относительно p пути $\beta \cdot (f \circ t)$, оно является произведением пути из x_0 в x и поднятия пути $f \circ t$, которое лежит в V, так как $U \subset p(V)$ — правильно накрываемая окрестность. Значит, конец этого поднятия, равный $\widetilde{f}(z_1)$, лежит в V, что и требовалось.

Rem. Группа накрытия может изменяться при изменении отмеченной точки наверху (в накрывающем пространстве). Задача: как именно? Ответ: сопряжением (т.е. это явление присуще только неабелевым фундаментальным группам).

1.3 Иерархия накрытий

Зафиксируем B — хорошее пространство. Будем рассматривать его всевозможные накрытия.

Def. 1.5. Пусть есть накрытия $p_1, p_2, p_i: (X_i, x_0^i) \to (B, b)$. Они называются эквивалентными, если существует гомеоморфизм $f: X_1 \to X_2$ т.ч. $x_0^1 \mapsto x_0^2, \, p_2 \circ f = p_1$.

Def. 1.6. Говорят, что $p_1 \ge p_2$, если существует непрерывное $f: X_1 \to X_2$ т.ч. $x_0^1 \mapsto x_0^2$, $p_2 \circ f = p_1$ (непрерывность требуется только в одну сторону).

 $Rem. \ B$ этом случае f — тоже накрытие.

Пример: рассмотрим несколько накрытий окружности: прямой \mathbb{R} (стандартная намотка, $t\mapsto (\sin t,\cos t)$) и разными окружностями (одократная намотка, двукратная намотка, трёхкратная, четырёхкратная). Топологически все окружности одинаковы, но для наглядности их можно считать $\mathbb{R}/\mathbb{Z}, \mathbb{R}/2\mathbb{Z}, \mathbb{R}/3\mathbb{Z}$ и $\mathbb{R}/4\mathbb{Z}$. Очевидно, накрытие прямой — самое большое, двукратная обмотка больше однократной, четырёхкрытная больше двукратной. А вот накрытия $\mathbb{R}/2\mathbb{Z}$ и $\mathbb{R}/3\mathbb{Z}$ не сравнимы. Посмотрим на какую-нибудь достаточно маленькую окрестность на окружности, в $\mathbb{R}/2\mathbb{Z}$ у неё два прообраза, в $\mathbb{R}/3\mathbb{Z}$ — три. Но тогда, если существует f из определения, три окрестности должны переходить в две (или наоборот), а это противоречит тому, что f — тоже накрытие.

1.4 Автоморфизмы накрытий

Все пространства в этом параграфе опять хорошие.

Def. 1.7. Пусть $p: X \to B$ — накрытие, $f: X \to X$ называется автоморфизмом накрытия, если f — гомеоморфизм и $p \circ f = p$. Очевидно, автоморфизмы накрытия образуют группу, она обозначается Aut(p).

Примеры:

- 1) $p: \mathbb{R} \to S^1$, $p(t) = (\cos(2\pi t), \sin(2\pi t))$. $Aut(p) = \{t \mapsto t + k, k \in \mathbb{Z}\}$, строго доказывать пока не будем.
- 2) $p: \mathbb{R}^2 \to \mathbb{T}^2 = S^1 \times S^1$, $S^1 = \mathbb{R}/\mathbb{Z}$, т.е. можно сказать, что накрытие работает так: рассматриваем плоскость с целочисленной сеткой, сворачиваем все вертикальные линии в окружности и все горизонтальные линии в окружности, $(x,y) \mapsto (x \pmod{1}, y \pmod{1})$. $Aut(p) = \{(x,y) \mapsto (x,y) + (k,n), k, n \in \mathbb{Z}\}$. Видно, что это автоморфизмы, а то, что других нет, нам будет скоро тоже понятно.
- 3) $S^n \to \mathbb{R}P^n$ (стандартное двулистное). $Aut(p) = \{id, -id\}$ (тождественное и центральная симметрия сферы).
- **Th. 1.4.** Пусть $p: X \to B$ универсальное накрытие. Тогда $\forall x_1, x_2 \in X: p(x_1) = p(x_2)$ существует единственный автоморфизм накрытия $f \in Aut(p): f(x_1) = x_2$.

Доказательство. Рассмотрим пары (X, x_1) , (X, x_2) , (B, b). Так как X — односвязно, то (например, по критерию с прошлой лекции) существует $f: X \to X$ т.ч. $p \circ f = p$ и $f(x_1) = x_2$ и существует $g: X \to X$ т.ч. $p \circ g = g$ и $g(x_2) = x_1$. Докажем, что они взаимно обратные. Рассмотрим $g \circ f: X \to X$. Имеем $g \circ f(x_1) = x_1$, $g \circ f \circ p = g \circ p = p$, т.е. $g \circ f$ — поднятие p, переводящее x_1 в x_1 , оно определено однозначно и id подходит. Значит $g \circ f = id$. Аналогично, $f \circ g = id$.

Rem. Утверждение верно и не для универсальных накрытий, когда группа накрытия является нормальной подгруппой фундаментальной группы пространства.

Вернёмся с универсальным накрытиям. Из только что доказанного утверждения следует, что |Aut(p)| равен количеству прообразов одной точки при накрытии (количество листов), а эта величина, как мы знаем из прошлого семестра, равна порядку фундаментальной группы $\pi_1(B,b)$. Оказывается, эти группы изоморфны.

Th. 1.5. Пусть $p: X \to B$ — универсальное накрытие, $b_0 \in B$. Тогда $Aut(p) \sim \pi_1(B,b_0)$. Например, с помощью этого утверждения легко понять, что $\pi_1(\mathbb{T}^2) = \mathbb{Z}^2$.

Доказательство. Мы установили соответствие между $p^{-1}(b_0)$ и $\pi(B,b_0)$: $[\alpha] \mapsto \widetilde{\alpha}(1)$, где $\widetilde{\alpha}$ — поднятие α . А ещё только что мы поняли, что есть соответствие между Aut(p) и $p^{-1}(b_0)$: $f \mapsto f(x_0)$, где x_0 — какой-то фиксированный прообраз b_0 . Пусть

 $\phi:\pi_1(B)\to Aut(p)$ — композиция этих двух биекций. Докажем, что это гомоморфизм групп.

Рассмотрим $[\alpha], [\beta] \in \pi_1(B)$. Хотим доказать, что $\phi([\alpha\beta]) = \phi([\alpha]) \circ \beta([\beta])$. Обозначим $f = \phi([\alpha]), g = \phi([\beta])$. f по определению — это такой автоморфизм накрытия, что $f(x_0) = \widetilde{\alpha}(1)$ (стандартное поднятие α с началом в x_0), аналогично, $g(x_0) = \widetilde{\beta}(1)$. Достаточно проверить, что $\phi([\alpha\beta])(x_0) = f(g(x_0))$ (потому что автоморфизмы определяются образом одной точки). По определению, $p(\beta(t)) = \beta(t), p \circ f = p$. Тогда $p \circ f(\widetilde{\beta}(t)) = p(\widetilde{\beta}(t)) = \beta(t)$. Мы видим, что $\widetilde{\beta}_1 = f \circ \widetilde{\beta}$ — поднятие β с началом в $f(x_0)$. Значит, определено произведение $\widetilde{\alpha}\widetilde{\beta}_1$ — это поднятие пути $\alpha\beta$, а значит, мы нашли $\phi([\alpha\beta])(x_0) = f(g(x_0))$.

Rem. Группа Aut(p) действует транзитивно на прообразах точки. Кроме того, заметим, что если U — линейно связная правильно накрываемая окрестность, $p^{-1}(U) = \bigcup U_i \ (U_i \ \text{из определения})$, то $U_i \ \text{совпадают с компонентами линейной связности } p^{-1}(U)$. Т.е. $\forall f \in Aut(p), f$ переставляет $U_i \ \text{(гомеоморфно)}$.

Задача.

- 1) Мы построили левое действие фундаментальной группы пространства на его универсальном накрывающем. Опишите явно действие элемента $[\alpha] \in \pi_1(B)$ на точку $x \in X$.
- 2) (Группа монодромии)). Зададим другое действие. Рассмотрим $[\alpha] \in \pi_1(B, b_0)$. Пусть $[a] \mapsto \psi([\alpha])$ перестановка множества $p^{-1}(b_0)$, $\phi(\alpha)$ конец поднятия α с началом в x. Докажите, что
 - (a) Это биекция из $p^{-1}(b_0)$ в себя.
 - (b) $[\alpha] \mapsto \psi(\alpha)$ правое действие.
- 3) Пусть теперь p любое накрытие $X \to B$, не обязательно универсальное. Тогда докажите, что $Aut(p) \sim \pi_1(B)/N(p_*(\pi_1(X)))$ (фактор по нормализатору группы накрытия, что как раз измеряет отличие от транзитивного действия).

Th. 1.6. Пусть B- хорошее пространство, $b_0 \in B$. Рассмотрим H- подгруппу $\pi_1(B,b_0)$. Тогда

- 1) Существует накрытие $p:(x,x_0)\to (B,b_0)$ т.ч. H группа этого накрытия.
- 2) Это накрытие единственно с точностью до эквивалентности (это утверждение уже было).

Доказательство. Существует $p_0: \widetilde{B} \to B$ — универсальное накрытие и существует (тот самый!) изоморфизм $\phi: \pi_1(B) \to Aut(p_0)$. Кроме того, по жизни верно, что $B = \widetilde{B}/Aut(p_0)$ (маленькие окрестности переставляются гомеоморфио). Пусть $\widetilde{H} = \phi(H)$. Положим $X = \widetilde{B}/\widetilde{H}$ (фактор-топология по отношению "две точки эквивалентны, если они лежат в одной орбите относительно действия автоморфизмов из \widetilde{H}). Тогда, по свойству факторпространства, существует p замыкающее диаграмму:

Это р и возьмём. Нужно проверить, что

- 1) p это накрытие.
- 2) группа накрытия p это H.

Первый пункт плана очевиден: рассмотрим правильно накрываемую окрестность U точки b_0 . $p_0^{-1}(U)$ — это несвязное объединение подмножеств в \widetilde{B} , гомеоморфных U. На множестве этих подмножеств действует транзитивно $Aut(p_0)$ и действует $\widetilde{H} \leq Aut(p_0)$. Отображение π отождествляет подмножества лежащие в одной \widetilde{H} —орбите, так что прообраз U относительно p — это снова несвязное объединение множеств, гомеоморфных U, в количестве $[Aut(p_0):\widetilde{H}]$.

Теперь поймём, почему $Im(p_*) = H$. Как мы уже знаем, это в точности группа классов гомотопности тех петель, которые не размыкаются при поднятии. Рассмотрим петлю $\alpha \in B$. Поднимем её сначала в \widetilde{B} , получим $\widetilde{\alpha}$, потом в X, с помощью π , получим $\pi \circ \widetilde{\alpha}$. Когда это поднятие — петля? Тогда и только тогда, когда $\widetilde{\alpha}(1)$ получается из $\widetilde{b_0}$ действием элемента $\widetilde{H} \leq Aut(p)$. А это, по построению из предыдущей теоремы, равносильному тому, что $[\alpha] \in H$.

1.5 Приложения

Th. 1.7. (Нильсена-Шраера) Подгруппа свободной группы свободна (будем доказывать для конечного числа образующий, но факт верен и в бесконечном случае).

Доказательство. Пусть F_k — свободная группа с k образующими. Как мы знаем, $F_k \simeq \pi_1$ (букета из k окружностей). Пусть $H < F_k$ — подгруппа, тогда существует накрытие $p: X \to B$ т.ч. $Im(p_*) = H$. Очевидно, X — это граф (одномерный клеточных комплекс), достаточно посмотреть на правильно накрываемые окрестности точек букета. Но, как мы выясняли в прошлом семестре, фундаментальная группа графа тоже свободна.

Th. 1.8. Для любого $k \in \mathbb{N} \cup \{\infty\}$ существует $H \leq F_2$ т.ч. $H \simeq F_k$.

Доказательство. См. прошлый семестр (доказательство точно такое же).

Задача. Доказать, что коммутант $F_2 \simeq F_\infty$ по предложенному плану. Пусть X — объединение всех "целозначных" прямых ($\{x = const \in \mathbb{Z}\}, \{y = const \in \mathbb{Z}\}.$

- 1) Проверить, что X/\mathbb{Z}^2 букет из двух окружностей (все точки пересечения прямых склеиваются в одну, все вертикальных прямые в петлю, все горизонтальные в петлю).
- 2) Рассмотреть накрытие $p: X \to X/\mathbb{Z}^2 = B$. Доказать, что $\Im(p_*) = [\pi_1(B), \pi_1(B)]$
- 3) Доказать, что $\pi_1(X) \simeq F_{\infty}$.

2 Дифференциальная геометрия кривых

Соглашение: когда мы будем говорить "гладкий", мы будем иметь ввиду $\in C^{\infty}$.

Def. 2.1. <u>Кривая (путь)</u> — это непрерывное отображение $\gamma: I \to \mathbb{R}^n$, где I — любой интервал. <u>Как правило</u>, чтобы не разводить занудство, у нас I будет [a,b].

2.1 Длина

Пусть $\gamma:[a,b] \to \mathbb{R}^n$ — гладкая кривая.

Def. 2.2. Длина $L(\gamma) = \int_a^b |\gamma'|$.

Th. 2.1. Длина сохраняется при движениях (дальше такие утверждения мы проверять не будем).

Доказательство. Пусть f — движение. $f: \mathbb{R}^n \to \mathbb{R}^n$. Надо доказать, что $L(f \circ \gamma) = L(\gamma)$. Для этого достаточно проверить равенство выражений под интегралами, т.е. что $t \in I$, $|(f \circ \gamma)'(t)| = |\gamma'(t)|$. Поймём как меняются вектора скорости при любом аффинном f.

Свойство: f — аффинное \Rightarrow $(f \circ \gamma)' = \overrightarrow{f}(\gamma')$, где \overrightarrow{f} — линейная часть f (ортогональное преобразование). В общем случае, $(f \circ \gamma)' = df(\gamma')$.

Th. 2.2. $L(\gamma) \ge |\gamma(a) - \gamma(b)|$ (длина кривой не меньше расстояния между её концами, отрезок — кратчайший путь).

Доказательство. Пусть l — прямая, содержащая $\gamma(a)$ и $\gamma(b)$. Рассмотрим ортогональную проекцию $p: \mathbb{R}^n \to l$. p аффинно \Rightarrow длина не увеличивается:

$$|(p \circ \gamma)'| = |\overrightarrow{p}(\gamma')| < |\gamma'|$$

Осталось разобрать случай $\gamma:I\to\mathbb{R}.$ Он очевиден: $\int |\gamma'|\geq \int \gamma'=\gamma(b)-\gamma(a).$

Th. 2.3. Пусть $\gamma:[a,b]\to S^{n-1}$ — единичная сфера в \mathbb{R}^n . Тогда $L(\gamma)\geq \angle(\gamma(a),\gamma(b))$. Упражнение: обобщить доказательство из анализа и придумать аналог рассуждения с проекцией, а мы докажем ещё по-другому.

Доказательство. Пусть $\alpha(t) = \angle(\gamma(t), \gamma(a))$. Достаточно доказать, что $\alpha'(t) \le |\gamma'(t)|$ $\forall t$ (получив это, проинтегрируем и получим, что надо). Здесь могут возникнуть проблемы: α не дифференцируема в нуле и в π , но $\alpha=0$ только в начале, π — только в конце, и посмотрев внимательно на эти точки, мы убеждаемся в том, что можно забить на это обстоятельство.

Теперь напомним себе, как дифференцировать скалярное произведение? Да и вообще любую билинейную форму? Вот так:

$$\langle f, g \rangle' = \langle f', g \rangle + \langle f, g' \rangle$$

НУО $\gamma'(t) \neq 0$ и пусть $\beta(t) = \angle(\gamma'(t), p), \gamma(a) = p$.

$$\alpha'(t) = (\arccos\langle \gamma(t), p \rangle)' = \frac{\langle \gamma(t), p \rangle'}{-\sin(\alpha(t))} =$$
$$= -\frac{\langle \gamma'(t), p \rangle}{\sin \alpha(t)} = -|\gamma'| \cdot \frac{\cos(\beta)}{\sin(\alpha)}$$

Надо доказать, что $-\frac{\cos(\beta)}{\sin(\alpha)} \le 1$. $\sin(\alpha) > 0 \Rightarrow -\cos(\beta) \le \sin(\alpha)$. Т.е. нужно доказать, что $\beta \le \pi/2 + \alpha$.

Рассмотрим следующие вектора: $v=\frac{\gamma'(t)}{|\gamma'(t)|},\ q=\gamma(t),\ p=\gamma(a)$. Если мы докажем, что $\gamma'(t)\perp\gamma(t)$, т.е. что $\angle(q,v)=\pi/2$, по неравенству треугольника для углов сразу получим, что надо $(\alpha=\angle(p,q),\ \beta=\angle(p,v))$.

Применим следующий прекрасный лайфхак:

$$|\gamma(t)|^2 = 1$$
$$\langle \gamma, \gamma \rangle = 1$$
$$0 = \langle \gamma, \gamma \rangle' = 2\langle \gamma, \gamma' \rangle$$

Доказали, причём в обе стороны. Случаи равенства остаются в качестве упражнения. \Box

2.2 Регулярные кривые

Def. 2.3. γ — <u>регулярная кривая</u>, если она гладкая и для любого t $\gamma'(t) \neq 0$. Как правило, дальше будем изучать только такие кривые.

Def. 2.4. Регулярные кривые $\gamma_1:I_1\to\mathbb{R}^n$ и $\gamma_2:I_2\to\mathbb{R}^n$ называются <u>эквивалентными</u>, если существует $\phi:I_1\to I_2$ — биекция, $\phi\in C^\infty,\ \phi'>0$ и $\gamma_1=\gamma_2\circ\phi$. Очевидно, это действительно отношения эквивалентности. Класс эквивалентности называется непараметризованной кривой, представители классов — параметризациями.

Геометрические свойства регулярных кривых — это те, которые не меняются при замене представителя (внутри одного класса), именно их мы и будем изучать.

Th. 2.4. 1) Длина кривой не зависит от замены параметра.

- 2) У любой регулярной кривой существует натуральная параметризация.
- 3) Натуральная параметризация единственна с точностью до замены параметра $t\mapsto t+const.$

Упражнение: доказать пункт 1 теоремы заменой переменных в интеграле.

Доказательство. 2. $\gamma:[a,b]\to\mathbb{R}^n$. $\lambda(t)=L(\gamma|_{[a,t]})=\int_a^t|\gamma'|$. Положим $\phi=\lambda^{-1}$.

3. Пусть γ_1, γ_2 — две натуральные параметризации, $\gamma_1 = \gamma_2(\phi(t))$.

$$\begin{aligned} |\gamma_1'(t)| &= |\gamma_2'(t)| = 1 \\ \gamma_1'(t) &= \gamma_2'(\phi(t))\phi'(t) \\ |\gamma_1'(t)| &= |\gamma_2'(\phi(t))|\phi'(t), \phi'(t) > 0 \Rightarrow \phi'(t) = 1 \\ &\Rightarrow \phi = t + const \end{aligned}$$

2.3 Кривизна кривой на плоскости

 $\gamma: [a,b] \to \mathbb{R}^2, |\gamma'| = 1.$

Def. 2.5. $v := \phi',$ если $|\phi'| = 1$ — скорость. n = n(t) — нормаль: вектор т.ч.

- 1) $v \perp n$
- |n| = 1
- 3) v, n правильно ориентированная двойка.

Def. 2.6. Кривизна γ в момент t $K = K(t) = K_{\gamma}(t) = \langle v', n \rangle$. Неформально: она меньше нуля, если поворачиваем направо, больше нуля, если налево, и чем больше модуль, тем круче поворачиваем.

Свойства:

- 1) $v,n,K\in C^{\infty}$, можно написать в координатах: v=(x(t),y(t)),n=(-y(t),x(t)).
- 2) К сохраняется при движениях, сохраняющих ориентацию.
- 3) При движениях, меняющих ориентацию, K меняет знак.
- 4) При замене $t \mapsto -t, K \mapsto -K$.

Th. 2.5. (формулы Френе)

- 1) v' = kn
- 2) n' = -kv

Def. 2.7. (v, n) — базис Френе.

Доказательство. 1)
$$\langle v, v \rangle = 1 \Rightarrow$$

$$2\langle v, v' \rangle = 0, \langle v', n \rangle = K$$

$$\Rightarrow v' = \langle v, v' \rangle v + \langle v', n \rangle n = Kn$$
 2)
$$\langle n, n \rangle = 1 \Rightarrow$$

$$2\langle n, n' \rangle = 0, \langle n, v \rangle = 0 \Rightarrow \langle n', v \rangle + \langle n, v' \rangle = 0$$

$$\Rightarrow \langle n', v \rangle = -K$$

$$\Rightarrow n' = -Kv$$

Примеры:

1) Кривизна прямой равна нулю. Кроме того, если кривизна кривой тождественно равна нулю, значит, кривая — кусок прямой.

2) Если γ — окружность радиуса R, то $K_{\gamma}=1/R$. Почитаем аккуратно:

$$\gamma(t) = (R\cos t, R\sin t) \to \gamma(t) = (R\cos\frac{t}{R}, R\sin\frac{t}{R})$$

$$v(t) = (-\sin\frac{t}{R}, \cos\frac{t}{R})$$

$$v'(t) = (-\frac{1}{R}\cos\frac{t}{R}, -\frac{1}{R}\sin\frac{t}{R})$$

$$n(t) = (-\cos\frac{t}{R}, -\sin\frac{t}{R})$$

$$\langle v', n \rangle = \frac{\cos^2\frac{1}{R} + \sin^2\frac{1}{R}}{R} = \frac{1}{R}$$

Упражнение: Кривизна любой кривой при гомотетии с коэффициентом k делится на k.

Lm. 2.6. Пусть γ — регулярная, натурально параметризованная кривая, $t_0: K(t_0) \neq 0$. Тогда существует единственная окружность γ_0 , проходящая через t_0 , у которой $v(t_0)$ и $K(t_0)$ такие же, как и у γ . (при $K(t_0) = 0$ окружность вырождается в прямую).

Доказательство. Центр положим равным $\gamma(t_0) + \frac{1}{K} n(t_0)$, радиус — $\frac{1}{|K|}$.

Def. 2.8. Эта окружность — соприкасающаяся окружность в точки t_0 . Её радиус — радиус кривизны в t_0 , а центр — центр кривизны в t_0 .

Def. 2.9. Кривая, образованная центрами кривизны данной кривой γ называется эволютой этой кривой и обозначается $\widetilde{\gamma}$.

Lm. 2.7. $\gamma' \perp \widetilde{\gamma}'$

Доказательство.

$$\widetilde{\gamma} = \gamma + \frac{1}{K}n$$

$$\widetilde{\gamma}' = \gamma' + (\frac{1}{K})'n + \frac{1}{K}n' = v - \frac{K'}{K^2}n - \frac{1}{K}Kv = -\frac{K'}{K^2}n$$

А как считать кривизну не натурально параметризованной кривой?

Def. 2.10. Кривизна регулярной кривой — это кривизна её натуральной параметризации в соответствующей точке.

Th. 2.8. Пусть γ — регулярная кривая, тогда $K_{\gamma} = \frac{[\gamma', \gamma'']}{|\gamma|^3}$, где $[\gamma', \gamma'']$ — определитель в правильно ориентированном ортонормированном базисе (то, что от выбор базиса он не зависит, мы доказывали в прошлом семестре).

Доказательство. Пусть $\widetilde{\gamma}$ — натуральная параметризация γ ; $\gamma=\widetilde{\gamma}\circ\phi$, и пусть (v,n) — базис Френе $\widetilde{\gamma}$.

$$\gamma' = \widetilde{\gamma}'(\phi)\phi' = v(\phi(t))\phi'(t)$$
$$|\gamma'| = |\phi'| = \phi'$$
$$\gamma'' = v' \circ \phi(\phi')^2 + v(\phi)\phi'' \Rightarrow$$
$$\gamma' = \phi'v; \gamma'' = Kn\phi'^2 + \phi''v$$
$$[\gamma', \gamma''] = \det\begin{pmatrix} \phi' & \phi'' \\ 0 & K\phi'^2 \end{pmatrix} = K\phi'^3$$
$$|\gamma'|^3 = \phi'^3$$

2.4 Поворот кривой

Def. 2.11. $\gamma:[a,b]\to\mathbb{R}^2$ — натурально параметризованная регулярная кривая. Поворотом γ называется величина $\int_a^b K_\gamma dt$. Неформально-геометрически — это угол, на которой мы повернулись, пройдя по кривой.

Def. 2.12. Непрерывный аргумент функции $v:[a,b] \to S^1$ — это непрерывная функция $\alpha:[a,b] \to \mathbb{R}$ т.ч. $\forall t \ v(t) = (\cos \alpha(t), \sin \alpha(t))$.

Th. 2.9. 1) α существует и единственен с точностью до +const, кратной 2π .

2) Пусть $v = \gamma'$ (γ — регулярная натурально параметризованная кривая), α — непрерывный аргумент v. Тогда $\alpha \in C^{\infty}$ и $\alpha' = K_{\gamma}$.

Доказательство. 1) Обсуждали в прошлом семестре, когда говорили про поднятия путей.

2) Гладкость — локальное свойство, его можно проверять в окрестности какой-то точки. [a,b] — компакт, поэтому v на своей области определения равномерно непрерывна, так что найдётся $\varepsilon: \forall t,t' \in [a,b]: |t-t'| < \varepsilon, |v(t)-v(t')| < 1$. Разобьём [a,b] на отрезки длины меньше ε и определим α на каждом из них (видно, что образ такого маленького отрезка будет лежать целиком в одной из четвертей). Пусть $v(t_0) = (x(t_0), y(t_0)) = (x_0, y_0)$, тогда (вблизи t_0):

$$y_0 > 0 \Rightarrow \alpha(t) = \arccos x(t)$$

 $y_0 < 0 \Rightarrow \alpha(t) = -\arccos x(t)$
 $x_0 > 0 \Rightarrow \alpha(t) = \arcsin y(t)$
 $x_0 < 0 \Rightarrow \alpha(t) = \pi - \arcsin y(t)$

Теперь проверим, что $\alpha' = K_{\gamma}$:

$$v = (\cos \alpha, \sin \alpha)$$
$$kn = v' = (-\sin \alpha \cdot \alpha', \cos \alpha \cdot \alpha') = \alpha' \cdot (-\sin \alpha, \cos \alpha) = \alpha' \cdot n$$

Cor. 2.9.1. Поворот γ равен $\alpha(a) - \alpha(b)$.

Cor. 2.9.2. Поворот γ равен ориентированному углу $\angle(v(a),v(b)) \pmod{2\pi}$.

Th. 2.10. Пусть дана функция $K:[a,b]\to\mathbb{R},\ K\in C^\infty$. Тогда

1) Существует натурально параметризованная регулярная кривая $\gamma:[a,b]\to\mathbb{R}^2$ т.ч. $K_\gamma=K$.

18

2) γ единственна с точностью до движения, сохраняющего ориентацию.

Th. 2.11. Пусть $K \in C^{\infty}([a,b])$, $p_0 \in \mathbb{R}^2$, $v_0 \in S^1$. Тогда существует единственная натурально параметризованная кривая γ : $K_{\gamma} = K$, $\gamma(a) = p_0$, $\gamma'(a) = v_0$. Предыдущая теорема следует: существование очевидно, а единственность — пусть подходят две, тогда существует движение, совмещающее их начальные точки и вектора.

Доказательство. Единственность. Пусть γ подходит. Обозначим $v=\gamma', \, \alpha$ — непрерывный аргумент $v, \, \alpha(a)=\alpha_0$. Тогда

$$\alpha' = K_{\gamma} = K \Rightarrow \alpha(t) = \alpha_0 + \int_a^t K$$
$$\gamma'(t) = v(t) = (\cos(\alpha(t)), \sin(\alpha(t)))$$
$$\gamma(t) = p_0 + \int_0^t v$$

Существование. Положим $\gamma(t)$ таким, как в единственности, и всё сойдётся.

2.5 Число вращения

Def. 2.13. $\gamma:[a,b]\to\mathbb{R}^n$ — <u>замкнутая,</u> если она продолжается до кривой $\widetilde{\gamma}:\mathbb{R}\to\mathbb{R}^n$ т.ч. $\widetilde{\gamma}|_{[a,b]}=\gamma,\,\widetilde{\gamma}$ периодическая с периодом b-c и $\in C^\infty$.

Упражнение. γ замкнутая $\iff \forall k, \gamma^{(k)}(a) = \gamma^{(k)}(b)$

Свойство. Если γ замкнута, то поворот γ кратен 2π .

Def. 2.14. Кривая $\gamma: [a, b] \to \mathbb{R}^n$ простая, если $\forall t_1 \neq t_2 \in [a, b], \gamma(t_1) \neq \gamma(t_2)$.

Def. 2.15. <u>Простая замкнутая кривая</u> — замкнутая кривая, т.ч. $\gamma|_{(a,b)}$ — простая и $\gamma(a)=\gamma(b)$.

Th. 2.12. Поворот простой замкнутой кривой равен $\pm 2\pi$, число вращения $-\pm 1$.

Доказательство. Будет дописано чуть позже.

2.6 Выпуклые кривые

Def. 2.16. Гладкая регулярная кривая называется <u>выпуклой</u>, если она простая замкнутая и лежит по одну сторону от любой своей касательной.

Th. 2.13. Пусть γ — простая замкнутая регулярная. Тогда (1) γ выпукла \iff (2) γ — граница выпуклого множества.

Доказательство. (\Leftarrow) Пусть $\gamma = Fr(M)$. Рассмотрим точку x_0 на кривой и применим теорему о существовании опорной гиперплоскости (в нашем случае это прямая). Осталось понять, что это касательная. Пусть эта прямая — ось Ox. Рассмотрим укоординату как функцию на времени, её производная в x_0 равна нулю, так как функция достигает минимума в этой точке. (\Rightarrow) Пусть $M = conv(\gamma)$. Мы хотим доказать, что $\gamma = Fr(M)$. Заметим, что $\gamma \subset Fr(M)$ (любая точка кривой лежит в выпуклой оболочке, и, по условию, сколь угодно близко есть целая полуплоскость с точкам не из выпуклой оболочки). Как выпуклая оболочка компакта, M — выпуклый компакт. Вспомним их топологическую классификацию, есть два случая:

- 1) $Int(M) = \varnothing \Rightarrow dimAff(M) < 2 \Rightarrow M$ лежит на одной прямой, значит и γ лежит на одной прямой, а такого не бывает (пусть эта прямая ось Ox, тогда, так как кривая замкнутая, где-то её скорости придётся обратиться в ноль, что противоречит регулярности).
- 2) $Int(M) \neq \varnothing \Rightarrow Fr(M) \simeq S^1$, но так как γ тоже $\simeq S^1$ и $\gamma \subset Fr(M)$, получаем, что $\gamma = Fr(M)$, так как у окружности нет нетривиальных подмножеств гомеоморфных окружности (пусть есть, тогда оно содержится в дополнении какой-то точки, которое в свою очередь гомеоморфно прямой, получается, что на прямой есть (компактное, связное) множество гомеоморфное окружности, значит это отрезок или точка, а это неправда).

Th. 2.14. Пусть γ — простая замкнутая регулярная кривая. Тогда эквивалентны следующие свойства:

- 1) γ выпукла.
- 2) κ_{γ} не меняет знак (нестрого, либо $\kappa_{\gamma} \geq 0$ всюду, либо $\kappa_{\gamma} \leq 0$, геометрической разницы между этими двумя вариантами нет).
- 3) Для любого направления, т.е. прямой l, существует ровно две касательные κ γ , параллельные l.

Доказательство. $(1\Rightarrow 2)$ Пусть наша кривая натурально параметризованная (понятно, что условие теоремы не зависит от параметризации). Пусть l — касательная в точке $\gamma(t_0)$. Она делит плоскость на две полуплоскости, назовём ту, в которую смотрит вектор нормали, левой, а другую — правой. Докажем, что если γ слева от l, то $\kappa_{\gamma}(t_0) \geq 0$, а если справа, то $\kappa_{\gamma}(t_0) \leq 0$. Пусть l=y=0 (горизонтальная ось, теперь право-лево у нас стало сверху-снизу, ну, извините), $\gamma(t)=(x(t),y(t))$. Если кривая лежит "сверху" от касательной, тогда $y(t_0)=\min y(t)$, тогда из анализа мы знаем, что $y'(t_0)=0$ и $y''(t_0)\geq 0$, значит вектор γ'' тоже идёт "вверх". Значит, $n(t_0)$ идёт вверх, тогда $n(t_0)=(0,1)$, а так как наша кривая натурально параметризована, κ — скалярное произведение нормали и γ'' , и мы видим, что оно неотрицательно. Второй случай рассматривается аналогично.

Осталось понять, почему кривая не может лежать иногда справа, а иногда слева от своей касательной. Рассмотрим функцию $\varepsilon(t)=+1$, если γ слева от касательной в точке t,=-1, если γ справа от своей касательной в этой точке. Заметим, что $\varepsilon(t)$ определено корректно в силу определения выпуклой кривой. Если мы докажем непрерывность этой функции, мы докажем, что она константна, а это именно то, чего мы хотим. Зафиксируем точку $\gamma(t)$. Рассмотрим точку $p \in \gamma$, не лежащую на касательной в $\gamma(t)$. Легко видеть, что $\varepsilon(t)=sgn(\gamma'(t)\wedge(p-\gamma(t)))$. В окрестности t выражение справа постоянно, значит ε локально постоянна, а значит и постоянна везде (для разных точек мы будем выбирать разные p, но это не должно нас смущать).

 $(2\Rightarrow 3)$ Пусть, НУО, $\kappa \geq 0$. Докажем более общее утверждение: для любого ориентированного направления существует касательная этого направления. Пусть $\gamma:[0,L]\to\mathbb{R}^2,\ v(t)=\gamma'(t),\ \alpha:[0,L]\to\mathbb{R}$ — непрерывный аргумент v. По теореме о повороте, $\alpha(L)-\alpha(0)=\pm 2\pi.\ \kappa\geq 0, \alpha'=\kappa\Rightarrow\alpha$ нестрого возрастает. Тогда считаем, что $\alpha(0)=0,\alpha(L)=2\pi.$ Рассмотрим некую прямую l, пусть угол между l и v'(0) — это β . Тогда очевидно, что касательная параллельна этой прямой, когда α равно β или α равно $\beta+\pi$. Так как α нестрого возрастает и непрерывна, каждое значение на $[0,2\pi]$ принимается, причём либо в точке (тогда там одна касательная в этом направлении), либо на отрезке (тогда очевидно тоже одна касательная, соответствующая многим точкам).

 $(3\Rightarrow 1)$ Рассмотрим точку $\gamma(t_0)$, l — касательная в ней, и пусть не верно, что кривая лежит по одну сторону. Пусть НУО $l=\{y=0\},\,\gamma(t)=(x(t),y(t)).$ Тогда рассмотрим максимум и минимум по y—координате (эти точки будут соответственно вверху и внизу от прямой l), в них касательные тоже горизонтальные, итого мы нашли три различные касательные в одном направлении, противоречие.

Cor. 2.14.1. Пусть $\gamma - \epsilon$ ыпуклая кривая, l - nрямая.

1) Если l — касательная в какой-то точке, то $l \cap \gamma$ — или точка, или отрезок (причём в любой его точке прямая также является касательной).

2) Если l — не касательная ни в какой точке, то $l \cap \gamma = \emptyset$ или две точки.

Доказательство. Первый пункт мы буквально доказали, когда доказывать среднюю стрелочку теоремы. Ещё можно сказать, что пересечение нашей прямой с кривой, являющейся границей выпуклого множества, должно быть выпукло (здесь мы пользуемся понимаем того, что касательная — опорная прямая). Второй пункт докажем так: пусть пересечение не пусто и в нём не две точки, тогда их хотя бы три, так как прямая — не касательная. Эти три точки делят кривую на три части, в каждой из частей есть самая высокая и самая низкая точка (предположим, что l — горизонтальная прямая, как обычно). Получили три горизонтальные касательные. Какие-то из них могли совпасть, но посмотрим на касательную в средней точке и поймём, что не могли.

2.7 Теорема о четырёх вершинах

Def. 2.17. Пусть γ — регулярная кривая. Тогда точка $\gamma(t_0)$ называется вершиной, если $\kappa'(t_0) = 0$.

Упражнение:

- 1) $\gamma(t_0)$ вершина $\iff \gamma$ имеет касание порядка 3 со своей соприкасающейся окружностью в этой точке.
- 2) Если κ' меняет знак в x_0 , она в этой точке "заезжает" внутрь соприкасающейся окружности, если κ достигает минимума, то соприкасающаяся окружность лежит (локально) внутри кривой, если максимума наоборот.
- 3) Вершины эллипса концы больших полуосей.

Th. 2.15. У любой выпуклой кривой γ существует хотя бы четыре вершины (без условия выпуклости не верно).

Доказательство. Будем доказывать, что у κ_{γ} существует 4 локальных экстремума. Два точно есть — глобальный минимум и максимум (у нас непрерывная функция на отрезке). Кроме того, экстремумов чётное число (потому что они чередуются), значит, если условие теоремы не верно, кроме глобального минимума и максимума экстремумов у кривизны нет. Тогда кривизна возрастает от минимума к максимуму и убывает от максимума к минимуму. Проведем ось Ox через две точки, в которых они достигаются, и ось Oy перпендикулярно. Пусть $\gamma(t) = (x(t), y(t))$. Теперь можно сказать, что сверху кривизна возрастает и y > 0, а снизу убывает и y < 0, поэтому $\kappa' y \ge 0$ на всём отрезке. Проинтегрируем это неравенство:

$$0 \le \int_0^L \kappa' y = \kappa y |_0^L - \int_0^L \kappa y' = -\int_0^L \kappa y'$$

В последнем равенстве мы воспользовались замкнутостью кривой. $v=\gamma'=(x',y'),$ n=(-y',x') — базис Френе. Значит, если мы посмотрим по x-координате: $\int (\kappa n)_x = \int (v')_x = (v(L)-v(0))_x = 0.$ $\kappa'y=0 \Rightarrow \kappa=const.$

$\mathbf{2.8}$ Кривизна кривой в \mathbb{R}^n

 $|\gamma'| = 1 \Rightarrow \gamma'' \perp \gamma'.$

Def. 2.18. γ'' — вектор кривизны. $\kappa = |\gamma''|$ — кривизна. $n = \frac{\gamma''}{|\gamma''|}$ — главная нормаль (при $\kappa \neq 0$).

Th. 2.16. Для не обязательно натурально параметризованной кривой, $\kappa_{\gamma} = \frac{|\gamma' \wedge \gamma''|}{|\gamma'|^3}$, где объект в числителе в общем случае определяется сложно, а у нас — просто площадь параллелограмма, натянутого на соответствующие вектора. В размерности $3, |v \wedge w| = |v \times w|$. В любой размерности — корень из определителя матрицы Грама (проверить это — упражнение).

Доказательство. Пусть $\overline{\gamma}$ — натуральная параметризация γ . $\gamma(t) = \overline{\gamma}(\phi(t))$. $\gamma' = \phi'v$, $\gamma'' = \phi''v + \phi'^2 \kappa n$. $|\gamma' \wedge \gamma''| = |\phi'v \wedge \phi'^2 \kappa n| = \phi'^3 \kappa |v \wedge n| = \phi'^3 \kappa$.

Def. 2.19. Поворот кривой — это $\int \kappa_{\gamma}$.

Rem. Сферическое изображение кривой — траектория $v(t) = \gamma'(t)$ на сфере S^{n-1} . Таким образом, поворот — это длинна сферического изображения (по определению L(v)).

Cor. 2.16.1. $\Pi y cm \delta \gamma : [a, b] \to \mathbb{R}^n$. $Tor \partial a \angle (\gamma'(a), \gamma'(b)) \le \int_a^b \kappa_{\gamma}$.

Доказательство. Теорема о кратчайшем пути на сфере.

Th. 2.17. (Теорема Фенхеля) Пусть γ — замкнутая натурально параметризованная кривая в \mathbb{R}^n . Тогда $\int \kappa_{\gamma} \geq 2\pi$.

Доказательство. Мы будем исследовать замкнутую кривую на сфере $\beta(t) = v(t) = \gamma'(t) \in S^{n-1}$.

Lm. 2.18. $\beta \subset S^{n-1}$ не лежит ни в какой открытой полусфере (открытая полусфера $-H = \{x \in S^{n-1} : \langle x, p \rangle > 0\}.$

Доказательство. $\langle \beta(t), p \rangle > 0 \Rightarrow \langle \gamma'(t), p \rangle > 0 \Rightarrow \langle \gamma(t), p \rangle$ строго возрастает, но $\langle \gamma(a), p \rangle = \langle \gamma(b), p \rangle$.

Lm. 2.19. Пусть $\beta \subset S^{n-1}$ — замкнутая кривая на сфере, которая не лежит ни в какой открытой полусфере. Тогда $L(\beta) \geq 2\pi$.

Доказательство. От противного, пусть $L(\beta) < 2\pi$. Тогда построим полусферу, в которую влезет кривая. Пусть $t_0 = 0$, t_1 — такая, что $L(\beta|_{[0,t_1]}) = \frac{L(\beta)}{2}$. $p_0 = \gamma(t_0)$, $p_1 = \gamma(t_1)$, q — середина кратчайшей большой дуги между p_0 и p_1 . Утверждается, что полусфера с центром в q содержит кривую β . НУО, $q = e_n$ (последний базисный вектор). На кривой точно есть точки, которые лежат внутри полусферы (например, p_0 и p_1), поэтому, если не вся кривая лежит внутри полусферы, есть точка z на экваторе (т.ч. $\langle q,z\rangle=0$, и пусть это первый момент, когда мы пришли на экватор). Если мы поменяем знак у последней координаты p_1 , получим точку p_0' , диаметрально противоположную p_0 . Так как z на экваторе, $\angle(z,p_1)=\angle(z,p_0')$. По теореме о кратчайшем пути на сфере, длина кривой от p_0 до z — хотя бы $\angle(z,p_0)$, а от z до p_1 хотя бы $\angle(z,p_1)$, то есть $\frac{L(\beta)}{2} \ge \angle(z,p_0) + \angle(z,p_1) = \angle(z,p_0') + \angle(z,p_0) \ge \angle(p_0',p_0) = \pi$. Значит, $L(\beta) \ge 2\pi$, а мы предположили обратное.

$\mathbf{2.9}$ Кривые в \mathbb{R}^3

Пусть у нас будут регулярные кривые.

Def. 2.20. $\gamma \subset \mathbb{R}^3$ невырожденная, если её κ не обращается в ноль. Пусть γ — натурально параметризованная невырожденная кривая в \mathbb{R}^3 . Тогда $v(t) = \gamma'(t), |v| = 1,$ $n(t) = \frac{\gamma''}{|\gamma''|} - \underline{\text{главная нормаль}}.$ $b(t) = v \times n - \underline{\text{бинормаль}}, \ (v, n, b) - \text{базис Френе.}$ $\tau(t) = \langle n'(t), b(t) \rangle$ — кручение кривой.

Th. 2.20. Формулы Френе в \mathbb{R}^3 : $v' = \kappa n, n' = -\kappa v + \tau b, b' = -\tau n$.

Доказательство. 1) $v' = \kappa n$. Очевидное следствие определения и более ранних комментариев.

- 2) $n' = -\kappa v + \tau b$. Действительно, $\langle n, n \rangle = 1$, $\langle n, n \rangle' = 0 \Rightarrow \langle n', n \rangle = 0 \Rightarrow \langle n, v \rangle = 0$ $\Rightarrow \langle n', v \rangle + \langle n, v' \rangle = \langle n', v \rangle + \kappa = 0 \Rightarrow \langle n', v \rangle = -\kappa$. А $\langle n', b \rangle = \tau$ по определению, значит, $-\kappa$ и τ и есть компоненты разложения по базису Френе. Ровно это написано в формуле.
- 3) $b'=-\tau n$. Докажем: $\langle b',b\rangle=0,\ \langle b,n\rangle'=0\Rightarrow \langle b',n\rangle=-\langle b,n'\rangle=-\tau$. $\langle b,v\rangle'=0\Rightarrow \langle b',v\rangle=-\langle b,v'\rangle=-\langle b,\kappa n\rangle=0$.

Cor. 2.20.1. 1) τ — скорость поворота соприкасающейся плоскости кривой (соприкасающаяся плоскость — это плоскость, натянутая на вектора v и n, иногда ещё её определяют как аффинную плоскость, т.е. параллельную этой).

2) $\tau \equiv 0 \iff \gamma$ лежит в одной плоскости.

Доказательство. Всё следует из третьей формулы Френе. Докажем второе. $\tau \equiv 0 \iff b' \equiv 0 \iff b = const = b_0$. $b \perp v \Rightarrow \langle b_0, v \rangle = 0$, $\langle \gamma', b_0 \rangle = 0$, $\langle \gamma, b_0 \rangle = const$. \square

Rem. Нам было очень принципиально, что кривая не вырожденная, и это не фиксится.

Def. 2.21. Нормальная плоскость — плоскость, натянутая на вектора $n,b \ (=v^{\perp}).$

Def. 2.22. Спрямляющая плоскость — плоскость, натянутая на вектора v, b.

Rem. Можно примерно понять, как выглядит любая кривая. Пусть $\kappa_0=\kappa(t_0),\ \tau_0= au(t_0).$ Тогда $\gamma(t_0+arepsilon)=\gamma(t_0)+arepsilon v+rac{arepsilon^2}{6}(-\kappa^2v+\kappa'n+\kappa au b)+o(arepsilon^3),\ \gamma'=v,\ \gamma''=v'=\kappa n,$ $\gamma'''=-\kappa^2v+\kappa'n+\kappa au b.$ Теперь посмотрим на проекции. На соприкающуюся плоскость: $(arepsilon+o(arepsilon^2),\ rac{arepsilon^2}{2}\kappa+o(arepsilon^2)),\ ypprox rac{\kappa x^2}{2}.$ На нормальную плоскость: $(rac{arepsilon^2}{2}\kappa+o(arepsilon^2),\ rac{arepsilon^2\kappa au}{6}+o(arepsilon^3))\Rightarrow ypprox rac{\kappa au}{6}x^3.$

Th. 2.21. Для не натурально параметризованной кривой, $\kappa = \frac{|\gamma' \times \gamma''|}{|\gamma'|^3}$, $\tau = \frac{[\gamma', \gamma'', \gamma''']}{|\gamma' \times \gamma''|^2}$, где [.] обозначает определитель матрицы 3×3 .

Доказательство. Пусть $\overline{\gamma}$ — натуральная параметризация γ, v, n, b — базис Френе $\overline{\gamma}. \ \gamma'(t) = \overline{\gamma}'(\phi(t)) \cdot \phi'(t) = \phi'v. \ \gamma'(t) = \phi''v + \phi'^2\kappa n, \ \gamma'''(t) = \phi'''v + \phi''\phi'\kappa n(\phi'^2\kappa)'n + \phi'^2\kappa\phi'(-\kappa v + \tau b) = (\dots)v + (\dots)n) + \phi'^3\kappa\tau b$. Что там вместо точечек, нам всё равно, как мы потом увидим. Почитаем знаменатель: $\gamma' \times \gamma'' = \phi'v \times (\phi''v + \phi'^2\kappa n)$ (по билинейности и $v \times v = 0$), значит, $\phi'^3\kappa(v \times n) = \phi'^3\kappa. \ |\gamma' \times \gamma''| = \phi'^3\kappa. \ [\gamma', \gamma'', \gamma'''] = \langle \gamma' \times \gamma''', \gamma''' \rangle = \langle \phi'^3\kappa b, (\dots)v + (\dots)n + \phi'^3\kappa\tau b \rangle = \phi'^6\kappa^3\tau$. Тогда, действительно, всё получилось: $\frac{\phi'^6\kappa^2\tau}{(\phi'^3\kappa)^2} = \tau$.

Cor. 2.21.1. При смене направления обхода τ и κ не меняют знак (ну и значит вообще не меняются).

3 Гладкие многообразия

В размерности 7 сферу становится нельзя причесать.

C.B.

Rem. Под гладкой функцией мы будем понимать $f:U\subset\mathbb{R}^m\to\mathbb{R}^n,\in C^\infty$, где U- (открытая) область. Для $x\in U$ дифференциал в точке x мы будем обозначать d_xf $(:\mathbb{R}^m\to\mathbb{R}^n).$

Def. 3.1. $U_1, U_2 \subset \mathbb{R}^n$. $f: U_1 \to U_2$ называет <u>диффеоморфизмом</u>, если f биекция, $f \in C^{\infty}$ и $f^{-1} \in C^{\infty}$.

Def. 3.2. (Напоминание.) Топологическое многообразие размерности $n \in \mathbb{N} \cup \{0\}$ — локально гомеоморфное \mathbb{R}^n хаусдорфово и со счётной базой топологическое пространство. Обозначение M^n , как и в прошлом семестре, означает многообразие размерности n, а не возведение в степень.

Def. 3.3. Пусть M — топологическое многообразие. X — это отображение $\phi: U \to \mathbb{R}^n$, где $U \subset M$ — открытое, $\phi(U)$ — открытое в $\overline{\mathbb{R}^n}$, ϕ — гомеоморфизм между U и $\phi(U)$. Теперь картой мы иногда будем называть и пару (U,ϕ) , и ϕ , и U. — набор карт, у которых области определения образуют покрытие M. $r = \phi^{-1}$ — локальная параметризация.

Def. 3.4. Отображение перехода от карты ϕ к карте ψ называется отображение $\phi \circ \phi^{-1}: \phi(U \cap V) \to \psi(U \cap V), \phi: U \to \mathbb{R}^n, \psi: V \to \mathbb{R}^n$. Две карты ϕ и ψ называются гладко согласованными, если $\psi \circ \phi^{-1}$ — диффеоморфизм. Гладкий атлас — атлас, где любые две карты гладко согласованные. Атласы A_1, A_2 называются эквивалентными, если $A_1 \cup A_2$ — гладкий атлас. Ясно что это отношение эквивалентности, и, очевидно, в каждой классе эквивалентности есть максимальный представитель (объединение всех) — максимальный атлас.

Def. 3.5. <u>Гладким многообразием</u> называется топологическое многообразие с введённым на нём максимальным гладким атласом. Этот атлас называется дифференциальной структурой.

Примеры: (полуформальные, пока без доказательств).

1) Пусть $M \subset \mathbb{R}^N$, $N \geq n$, где n — размерность многообразия, и $f: U \subset \mathbb{R}^n \to \mathbb{R}^N$ т.ч. $f \in C^\infty$, $d_x f = n \forall x \in U$, f — вложение (то есть гомеоморфизм на образ, а не только инъективное + непрерывное, одно из другого в общем случае не следует), f(U) = M. Тогда на M возникает структура гладкого многообразия (карта — $\phi = f^{-1}$). Свойство: дифференциальная структура не зависит от f (здесь нужна регулярность).

- 2) Сфера $S^n \subset \mathbb{R}^{n+1}$. У любой точки существует окрестность, подходящая под пример 1 (например, полусфера), рассмотрим для каждой точки такую карту, получим атлас.
- 3) $\mathbb{R}P^n = S^n/\sim$, где как обычно факторизуем по отношению противоположности. Выберем для сферы достаточно маленькие карты (не содержащие противоположных точек), тогда в точности они же появятся в $\mathbb{R}P^n$, итого, это тоже гладкое многообразие.
- 4) (Задача.) Грассманово многообразие. $G_{n,k}$ множество всех k—мерных линейных подпространств в \mathbb{R}^n . Заведите на нём естественную топологию, естественную дифференциальную структуру и проверьте, что это гладкое многообразие.

Примеры: (уже понятные нам, не очень интересные).

- \mathbb{R}^n с единственной картой Id.
- 2) M открытое множество в \mathbb{R}^n и та же самая карта.
- 3) M гладкое многообразие, $U \subset M$ открыто, тогда U тоже гладкое многообразие (рассмотрим только карты, у которых области определения помещаются в U).
- 4) Нульмерные многообразия. Они дискретные, не более, чем счётные, дифференциальная структура определяется однозначно и тривиально.
- 5) Компоненты связности гладких многообразий гладкие многообразия (это частный случай третьего примеры). И обратно,
- 6) несвязное объединение гладких многообразий гладкое многообразие.
- 7) Прямое произведение гладких многообразий. Пусть M^m, N^n гладкие многообразия. Тогда $M \times N$ гладкое многообразие размерности m+n. Действительно, пусть $\phi: U \subset M \to \mathbb{R}^m, \ \psi: V \subset M \to \mathbb{R}^n$ карты, тогда сопоставим им карту $U \times V \to \mathbb{R}^m \times \mathbb{R}^n, \ (x,y) \mapsto (\phi(x),\phi(y)).$
- 8) Накрывающие пространства: пусть M гладкое многообразие, $p:\widetilde{M}\to M$ накрытие. Тогда дифференциальная структура на \widetilde{M} определяется через дифференциальную структуру на M и p. Рассматриваем только карты, чьи области определения правильно накрываемые окрестности, и берём их прообразы относительно накрытия.
- **Def. 3.6.** M^n, N^n гладкие многообразия. $f: M \to N$ непрерывное отображение, $\phi: U \subset M \to \mathbb{R}^m, \ \psi: V \subset N \to \mathbb{R}^n$ карты, и $f(U) \subset V$. Тогда отображение $\psi \circ f \circ \phi^{-1}: \phi(U) \to \psi(V)$ называется координатным представлением f в картах ϕ и ψ .

Def. 3.7. Говорят, что $f \in C^{\infty}$, если любое её координатное представление гладкое ($\in C^{\infty}$ в любой точке).

Свойства:

- 1) Локальность.
- 2) Можно проверять в одной паре атласов.
- 3) Для областей в \mathbb{R}^n определение совпадает с тем, что было у нас раньше.
- 4) Композиция гладких гладкое.
- 5) Пусть M, N_1, N_2 гладкие многообразия, $f: M \to N_1 \times N_2$, $f = (f_1, f_2)$, тогда f гладкое $\iff f_1, f_2$ гладкие. Это так, потому что так для евклидовых пространств, а переход в евклидово пространство у многообразий N_1, N_2 и $N_1 \times N_2$ согласован.

Def. 3.8. Диффеоморфизм $-f: M \to N$, где M, N — гладкие многообразия, и f, f^{-1} гладкие (определение такое же, как для областей). Многообразия называются диффеоморфными, если существует диффеоморфизм между ними. Очевидно, это отношение эквивалентности.

Примеры и свойства:

- 1) Пусть M^n гладкое многообразие, $\phi:U\subset M\to \mathbb{R}^n$ какая-то карта. Тогда $\phi:U\to\phi(U)$ диффеоморфизм. Давайте проверим это. Биективность зашита в определении, надо проверять гладкость то есть непрерывность и гладкость координатного представления. Непрерывность опять заложена в определении, ну а гладкость координатного представления это тавтология. Вспомним, что проверять гладкость координатного представления можно проверять не для всех карт, а выбрать в каждой точке одну, и проверять в ней. Давайте эту же ϕ выберем в качестве карты в многообразии, а в \mathbb{R}^n выберем тождественную карту. Тогда координатное представление будет тождественным.
- 2) Обратно: пусть $U \subset M$ открытое, $\phi: U \to \phi(U)$ диффеоморфизм, где $\phi(U)$ открыто в \mathbb{R}^n , тогда ϕ карта (из максимального атласа). Надо проверить, что ϕ гладко согласовано с любой картой. Пусть ψ карта. Тогда отображение перехода $\phi \circ \psi^{-1}$ это просто координатное представление отображения ϕ в карте ψ . А $\psi \circ \phi^{-1}$ координатное представление ϕ^{-1} в карте ψ , значит, они оба гладкие, доказали.
- 3) Из вышесказанного понятно, что диффеоморфизм биекция, сохраняющая структуру гладкого многообразия (максимальный атлас), то есть в естественном смысле переводит карты в карты.

Def. 3.9. Пусть M, N — гладкие многообразия. $f: M \to N$ — гладкое отображение, $x \in M$. Рангом f в точке x называется rk_xf — ранг дифференциала любого координатного представления в точке, соответствующей x. То есть, пусть $\phi: U \subset M \to \mathbb{R}^m$, $\psi: V \subset N \to \mathbb{R}^n$ — карты, тогда мы по определению считаем $rk_xf = rk(d_{\phi(x)}(\psi \circ f \circ \phi^{-1}))$.

Проверим корректность этого определения. Что случится с координатными представлениями, если мы поменяем координаты? (Может уменьшиться область определения, но это ничего, считаем, что она содержит нашу точку, в которой мы считаем ранг.) Пусть, для краткости $\psi \circ f \circ \phi^{-1} = f_{\phi,\psi}$. Тогда $f_{\phi_1,\psi_1} = (\psi_1 \circ \psi^{-1}) \circ f_{\phi,\psi} \circ (\phi \circ \phi_1^{-1})$. Что происходит в производными? То же самое, к ним применяются производные диффеоморфизмов (которые биекции). Короче говоря, ранг матрицы не меняется, если справа и слева её умножить на квадратные невырожденные. Так что определение корректно.

Def. 3.10. Отображение $f: M \to N$ называется <u>невырожденным</u> в точке $x \in M$, если $rk_x f = \dim M = \dim N$.

Th. 3.1. (Теорема об обратной функции). Пусть $f: M^n \to N^n$ — невырожденное в точке $x \in M$ и гладкое. Тогда существует окрестность U точки $x: f|_U: U \to f(U)$ — диффеоморфизм на открытое $f(U) \subset N$.

 ${f Cor. \ 3.1.1.}$ Диффеоморфизм — гладкая невырожденная биекция.

Задача:

- 1) Пусть M гладкое многообразие, данное как множество, и вам дан <u>пучок</u> гладких функций все гладкие функции $f:U\subset M\to \mathbb{R}$. Убедитесь, что дифференциальная структура и топология определяются однозначно.
- 2) Пусть $F(M) = \{f : M \to \mathbb{R} : f \in C^{\infty}\}$. Тогда то же самое (то есть не нужно знать все локально гладкие, а достаточно знать определённые всюду).
- 3) Пусть M, N гладкие компактные многообразия, и $F(M) \simeq F(N)$ как кольца. Тогда наши многообразия диффеоморфны (то есть можно забыть всё про функции, кроме структуры кольца на F, и дифференциальная структура однозначно определяется). Подсказка: точки многообразия максимальные идеалы в этом кольце.

Rem. С самого начала у нас гладкость означала C^{∞} . Можно было бы всё то же самое сделать для C^r , определяя многообразия класса гладкости C^r . То же самое можно было сделать, заменяя гладкость на, например, аналитичность или липшицевость. Кроме того, есть такая замечательная теорема о сглаживании, которое говорит, что в любой структуре класса гладкости C^1 есть как подмножество структура класса гладкости C^{∞} , так что особого смысла говорить про меньшие классы гладкости нет. Однако, от многообразия класса C^0 сделать шаг к гладким многообразиям нельзя,

существуют топологические многообразия, на которых нет ни одной дифференциальной структуры (в достаточно больших размерностях). Ещё одно неожиданное явление: гомеоморфные многообразия могут оказаться не диффеоморфными (опять же, не в маленьких размерностях, где классификация топологических многообразий и гладких совпадает). Примеры существуют начиная с размерности 7:) На обычно семимерной сфере существуют недиффеоморфныме дифференциальные структуры, и их там, кажется, аж 28.

3.1 Подмногообразия

Def. 3.11. Пусть N^n — гладкое многообразие. $M\subset N$ называется гладким подмногообразием размерности m, если выполняется следующее условие: $\forall x\in M$ существует карта $\phi:U\subset N\to\mathbb{R}^n$ т.ч. $x\in U,\,\phi(U\cap M)=\phi(U)\cap\mathbb{R}^m.$ То есть в подходящих картах подмногообразие — линейное подпространство.

Примеры.

- 1) Пусть есть гладкая функция $f: V \subset \mathbb{R}^m \to \mathbb{R}^{n-m}$. Рассмотрим её график $\Gamma_f = \{(x, f(x))\} \subset V \times \mathbb{R}^{n-m} \subset \mathbb{R}^n$. Это подмногообразие. Докажем: мы должны у каждой точки вида (x, f(x)) построить в окрестности карту, которая превратит график в кусок линейного подпространства. Расслоим график на вертикальные слои и на каждом сделаем параллельный перенос "вниз". То есть возьмём $\phi: V \times \mathbb{R}^{n-m} \to \mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m}, \ \phi(x,y) = (x,y-f(x))$. Осталось проверить, что это карта. Область значения открытая, гладкость покоординатно, гладкость обратной (диффеоморфизм), ну, точно так же, обратная функция выписывается.
- 2) Открытое множество \iff подмногообразие старшей размерности (размерности $n=\dim N$).
- 3) Дискретные множества \iff нульмерные подмногообразия.

Def. 3.12. Как вводится дифференциальная структура на гладком подмногообразии? Итак, пусть $M\subset N$ — гладкое подмногообразие, тогда карты для M— это сужение "хороших" (выпрямляющих, и определения) карт $\phi:U\subset N\to \mathbb{R}^n$ на $M\cap U$, и рассматриваем их как отображения $\to \mathbb{R}^m$. Очевидно, они гладко согласованы (у суженых отображений отображения переходов будут сужениями старых, значит останутся гладкими). Эти карты задают на подмногообразии дифференциальную структуру размерности m и она всегда подразумевается.

Свойства.

1) Определение локально, то есть, во-первых, открытое подмножество подмногообразия (в относительной топологии) само является подмногообразием, а вовторых, если мы поверили свойство подмногообразия в окрестности каждой точки, то мы поверили его и в целом (то есть если $M = \bigcup M_i$ и M_i — подмногообразия одинаковой размерности, то и M тоже). Доказывать здесь нечего, это видно просто из расстановки кванторов в определении.

- 2) При диффеоморфизмах подмногообразия переходят в подмногообразия.
- 3) Таким образом, понятие подмногообразия сводится к понятию подмногообразия в \mathbb{R}^n . То есть, $M\subset N-m$ -мерное подмногообразие \iff его образ в любой карте из выбранного атласа m-мерное подмногообразие в \mathbb{R}^n . Теперь можно понять, почему $S^{n-1}\subset \mathbb{R}^n$, в окрестности каждой точки она является графиком гладкой функции, поскольку определение локально, сфера тоже является подмногообразием.
- 4) Пусть $M \subset N$ подмногообразие, X гладкое многообразие. $f: X \to M$. Утверждается, что f гладко, как отображение $X \to M \iff f$ гладко, как отображение $X \to N$. Например, если мы рассматриваем кривые на сферы, то их гладкость то же самое, что гладкость во всём евклидовом пространстве. Можно проверять в любых картах, рассмотрим те, которые превращают куски подмногообразия в куски линейных подпространств \mathbb{R}^n . Но тогда всё тривиально, нет никакой разницы: координатное представление f гладкое как отображение в \mathbb{R}^n \iff гладкое как отображение в \mathbb{R}^m .
- 5) Сужение гладкого отображения на подмногообразие гладкое отображение.
- 6) Пусть $M \subset N$ подмногообразие, Y гладкое многообразие. $f: M \to Y$. Утверждается, что $f \in C^{\infty} \iff f$ локально гладко продолжимо (то есть $\forall x \in M \exists U \subset N$ и $\widetilde{f}: U \to Y$, где \widetilde{f} гладкое и $f|_{M \cap U} = \widetilde{f}|_{M \cap U}$). Почему это верно: рассмотрим модельный случай, когда наше многообразие открытое подмножество \mathbb{R}^n , а подмногообразие кусок линейного подпространства. В окрестности нуля возьмём такой радиус, чтобы шар с этим радиусом лежал целиком в нашей области, и определим функцию $\widetilde{f}(x,y) = f(x), x \in \mathbb{R}^m, y \in \mathbb{R}^{n-m}$. Обратно ещё более очевидно, то же самое, рассматриваем модельный случай: сужаем функцию на координатное подпространство, естественно, она остаётся гладкой.

3.2 Вложение и погружение

Def. 3.13. Пусть M^m, N^n — гладкие многообразия (интересно, когда $m \le n$). <u>Гладким погружением</u> (или <u>иммерсией</u>) называется гладкое отображение $f: M \to N$, такой что для любой точки $p \in M$ $rk_p f = m$ (дифференциал инъективен в каждой точке, но мы его пока не определяли). <u>Гладкое вложение</u> — гладкое погружение, являющееся топологическим вложением (инъективно + гомеоморфизм на образ). В анализе вместо слов "гладкое вложение" говорят "регулярное отображение".

Th. 3.2. 1) Локально любое гладкое погружение является гладким вложением.

2) Пусть f — погружение, $f: M^m \to N^n$, $x \in M$, тогда существуют карты ε окрестностях ε и f(x) т.ч. координатное представление ε ε этих картах — это стандартное вложение ε ε ε ε . Понятно, что из второго следует первое.

Доказательство. Поскольку вопрос локальный, отправим точки x и f(x) в евклидовы пространства с помощью каких-нибудь карт. То есть можно считать, что наше отображение $f:U\subset\mathbb{R}^m\to\mathbb{R}^n, x\in\mathbb{R}^m,$ давайте считать, что x=0 и f(x)=0. Рассмотрим $L=d_0f:\mathbb{R}^m\to\mathbb{R}^n,$ это линейное инъективное отображение (потому что у нас погружение). Рассмотрим X=ImL- линейное подпространство. Пусть $Y=X^\perp.$ Пусть $F:U\times Y\to\mathbb{R}^n,$ F(x,y)=f(x)+y. Утверждается, что к этой функции в точке (0,0) можно применить теорему об обратной функции. Надо понятно, что F невырождена в этой точке: в образе производной лежит подпространство X и лежит подпространство Y, поэтому это очевидно. Тогда существует $\phi=F^{-1}$ в окрестности 0. Это и есть искомая карта: она превратила отображение F в тождественное, а f- сужение F.

Cor. 3.2.1. 1) Образ вложения — подмногообразие (очевидно).

- 2) Всякое вложение диффеоморфизм на образ.
- 3) Подмногообразия— в точности образы вложений (см. отображение включения, оно является топологическим вложением и с рангом тоже всё хорошо).
- 4) Понятие подмногообразия транзитивно. Пусть N- гладкое многообразие, $M \subset N-$ подмногообразие, $K \subset M-$ подмногообразие. Тогда $K \subset N-$ тоже подмногообразие. Это очевидно: вложение в подпространство является вложением и в объемлющее пространство тоже.
- 5) Обратная транзитивность. N- гладкое многообразие, K, M- подмногообразия N, и случайно оказалось, что $K\subset M$. Тогда K- подмногообразие M.
- 6) (Упражнение) Существуют карты, в которых K и M в таких ситуациях оба выпрямляются (переходят в линейные подпространства).

3.3 Подмногообразие в \mathbb{R}^n

Def. 3.14. Регулярная поверхность — погружение $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$. На обычном языке это означает, что для любой точки $x \in U$, $\ker d_x f = 0$. Простая регулярная поверхность — вложение $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ (на обычном языке, то же самое + топологическое вложение).

Th. 3.3. Пусть $M \subset \mathbb{R}^n$ — подмножество. Тогда эквивалентны следующие условия:

- 1) M- noдмногообразие размерности <math>m.
- 2) Локально M образ простой регулярной поверхности размерности m.
- 3) Локально M график гладкой функции $f: \mathbb{R}^n \to \mathbb{R}^{m-n}$ при подходящем выборе координат.

Доказательство. Эквивалентность первого и второго очевидно и предыдущего. $3\Rightarrow 1$: тоже понятно, это был наш первый пример подмногообразие (+ локальность понятия подмногообразия). $2\Rightarrow 3$: у нас есть $f:U\subset\mathbb{R}^m\to\mathbb{R}^n$. Пусть x=0, f(x)=0. Пусть $X=Im(d_0f)$. Выберем координаты так, что $X=\mathbb{R}^m\subset\mathbb{R}^n$ (стандартным образом), пусть $g=Pr_X\circ f$. Заметим, что в нуле можно применить теорему об обратной функции: $d_0g=d_0f$ и оно инъективно, значит, $g:\mathbb{R}^m\to\mathbb{R}^m$ невырожденно в нуле. Существует локально g^{-1} , будем считать, что с самого начала область определения была такая маленькая, чтобы обратная функция была определена там везде. Но это и значит, что над каждой точкой есть ровно одна точка "сверху", то есть M локально график функции. Осталось понять, почему график чего-то гладкого. Действительно, M— график $Pr_{X^{\perp}}\circ f\circ g^{-1}$.

Упражнение. (1) Пусть $\gamma:(a,b)\to\mathbb{R}^2\setminus\{y=0\}$ — простая регулярная кривая, $M\subset\mathbb{R}^3$ — поверхность вращения γ вокруг оси Oy. Проверьте, что это подмногообразие, постройте у него естественную параметризацию. (2) Поймите, что геликоид — подмногообразие.

Th. 3.4. ("кусочек" теоремы Уитни о вложении) Любое компактное гладкое многообразие M вкладывается в \mathbb{R}^N для достаточно большого N (на самом деле достаточно N=2n, но этого мы не докажем).

Доказательство. Для любой точки $x \in M$ существует такая карта ϕ_x , что $\phi_x(x) = 0$ и образ окрестности x содержит замкнутый шар $\overline{B_2(0)}$. Пусть $U_x = \phi_x^{-1}(\overline{B_2(0)}), V_x = \phi_x^{-1}(\overline{B_1(0)})$. Множества V_x образуют покрытие, выберем по компактности конечное подпокрытие: V_{x_1}, \ldots, V_{x_m} . Построим отображения $f_i : M \to \mathbb{R}^{n+1}$ так: рассмотрим гладкую h = 1 на $B_1(0)$ и 0 на $\mathbb{R}^n \setminus B_{3/2}(0)$. Тогда пусть $f_i(x) = 0$ при $x \in M \setminus U_{x_i}, f_i(x) = (\phi_{x_i}(x)h(\phi_{x_i}(x)), h(\phi_{x_i}(x)))$ при $x \in U_{x_i}$. Зададим отображение $f : M \to \mathbb{R}^{m(n+1)} = (f_1, \ldots, f_m)$. Утверждается, что это гладкое вложение. Гладкость очевидна. Пусть $x \in M, x \in V_{x_i}$ для какого-то i. Понятно, что тогда для другого $y \in M$, $f_i(x) \neq f_i(y)$. Значит, это вложение. Понятно, что $d_x f_i$ инъективно, потому что это $d_x \phi_{x_i}$ с добавленной ещё координатой. Тогда $d_x f$ тем более инъективно. Так как f — инъективное непрерывное отображение из компакта в хаусдорфово пространство, оно гомеоморфизм. Получили всё, что хотели.

3.4 Субмерсии

Def. 3.15. M^m, N^n — гладкие многообразия, $m \ge n$. $f: M \to N, f \in C^\infty$. $x \in M$ — регулярная точка f, если $rk_x f = n$ (дифференциал сюръективен). $y \in N$ — регулярное значение, если все точки $f^{-1}(y)$ регулярны. Субмерсия — отображение, у которого все точки регулярные. Это аналог сюръективных отображений в линейной алгебре.

Th. 3.5. *Множество регулярных точек открыто.*

Доказательство. Проверим в координатах (в любых картах), что в окрестности любой регулярной точки все другие точки тоже регулярны в этой карте. В карте условие регулярности — это условие на ранг матрицы (матрица $n \times m$ и ранг должен быть равен количеству строк), а это происходит, когда есть невырожденный минор $n \times n$, а это условие, очевидно, открыто — определитель является непрерывной функцией, в окрестности каждой точки будем на смотреть на определитель того же самого минора, и он не будет обращаться в ноль. Конечно, для разных точек нужно будет смотреть на разные миноры.

Таким образом, можно выделить открытое множество, на котором отображение будет субмерсией.

Th. 3.6. Прообраз регулярного значения — подмногообразие размерности m-n.

Пример. $f(x,y,z)=x^2+y^2+z^2=1$. Докажем, пользуясь этой теоремой, что сфера — подмногообразие. $m=3, n=1, d_{(x,y,z)}=(2x,2y,2z)$. Регулярность в точке $(x,y,z) \iff df \neq 0 \iff x \neq 0, y \neq 0, z \neq 0 \Rightarrow 1$ — регулярное значение. Сфера — это прообраз 1, значит, действительно, подмногообразие. Можно разобраться и с другими квадратичными поверхностями, но иногда могут возникать какие-то вырождения. Например, если написать уравнение конуса $x^2+y^2-z^2=0$, так сразу не получится, 0 — не регулярное значение. Что делать? Можно сказать, что давайте эту точку выколем, и, конечно, в окрестности этой точки у нас нет подмногообразия, но если выколем — будет. Ну и вообще,

Cor. 3.6.1. Множество регулярных прообразов любой точки — подмногообразие размерности m-n (пересекли с открытым множеством регулярных точек).

Упражнение. Вывести это всё самостоятельно из теоремы о неявной функции.

А мы докажем более сильное утверждение.

Lm. 3.7. Пусть $x \in M$ — регулярная точка. Тогда существуют карты в M и N в окрестностях x и f(x) т.ч. координатное представление f в этих картах — стандартная проекция $\mathbb{R}^m \to \mathbb{R}^n$ (которая просто забывает часть координат). Понятно, что из этого следует теорема: берём такие локальные координаты в окрестности точки, что отображение просто линейно, это значит, что в соответствующей карте, прообразы точек — это кусочки аффинных подпространств, все они в частности подмногообразия.

Доказательство. Можно считать, что $f:U\subset\mathbb{R}^m\to\mathbb{R}^n, x=0, y=f(x)=0.$ Пусть $L:\mathbb{R}^m\to\mathbb{R}^n, L=d_0f, X=\ker L.$ Рассмотрим новое отображение $g:U\subset\mathbb{R}^m\to\mathbb{R}^m=\mathbb{R}^n\times\mathbb{R}^m$, $g(x)=(f(x),Pr_X(x)).$ Заметим, что g не вырождена в нуле (это квадратная матрица, почему не вырождена, посчитаем её покоординатно, её ядро — пересечение ядра первой составляющей и второй, то есть пересечение X и его ортогонального дополнения, то есть ноль). Значит, применима теорема об обратной функции: локально в окрестности нуля существует g^{-1} (определена на открытой области, гладкая). Утверждается, что g — это и есть карта в окрестности нуля, превращающая наше отображение линейное. Действительно, пусть $M=f^{-1}(0), g(M)=\{(0,\ldots)\}\subset g(U).$ Можно считать, что $g:U\to g(U)$ — диффеоморфизм (U настолько малая область, что работает теорема о неявной функции). То есть уже доказали, что это многообразие. Рассмотрим теперь пару, определяемую отображением g в \mathbb{R}^m и тождественную карту в \mathbb{R}^n . Как устроено координатное представление f в этих картах? $id(f(g^{-1}(x_1,\ldots,x_n,x_{n+1},\ldots,x_m))=(x_1,\ldots,x_n)$ из чисто теоретикомножественных соображений.

3.5 Касательное пространство

Def. 3.16. Пусть M^n — гладкое многообразие, $p \in M$. Рассмотрим $\Gamma(p) = \{\gamma : (-\varepsilon, \varepsilon) \to M$ — гладкие кривые, $\gamma(0) = p\}$. $\gamma_1, \gamma_2 \in \Gamma(p)$ <u>эквивалентны</u>, если для любой карты ϕ в окрестности p $(\phi \circ \gamma_1)'(0) = (\phi \circ \gamma_2)'(0)(*)$.

Rem. Достаточно проверить (*) в одной карте. Действительно, гладкие отображения перехода сохраняются равенства производных: $(\phi_2 \gamma)'(0) = d_{\phi_1(p)}(\phi_2 \circ \phi_1^{-1})((\phi_1 \circ \gamma)'(0))$.

Def. 3.17. Касательным вектором в точке p называется класс эквивалентности кривых. Касательное пространство к M в точке $p-T_pM$ — множество всех касательных векторов. Касательное пространство к M — TM — несвязное объединение $\Box T_pM$.

Примеры.

- 1) Пусть $M = U \subset \mathbb{R}^n$ открытая область $p \in M$. Тогда $T_pU \simeq \mathbb{R}^n$ (канонически). Детали формального определения не очень важны, каждый класс эквивалентности соответствует одному вектору скорости можно выбрать тождественную карту: $TU \simeq U \times \mathbb{R}^n$. Тем не менее, касательные вектора в разных точках всегда разные при таким определении!
- 2) То же самое, но вместо \mathbb{R}^{n} конечномерное векторное пространство. $M = U \subset X, T_{n}U \simeq X, TU = U \times X$.
- 3) M^n подмногообразие в \mathbb{R}^N , M=f(U), $f:U\subset\mathbb{R}^n\to\mathbb{R}^N$ гладкое вложение, p=f(q). Тогда $T_pM\simeq Im(d_qf)$. Почему: каждая гладкая кривая, проходящая через точку p и лежащая в координатной окрестности, является образом некоторой гладкой кривой, и наоборот, это следует из характеризации гладких отображений со значениями в подмногообразии, ну или просто из определения

(гладкая в обычном смысле кривая в \mathbb{R}^N — это то же самое, что образ гладкой кривой в \mathbb{R}^n). Итак, если мы знаем, что наша кривая — образ некоторой кривой γ , тогда её производная — это образ γ' при df, вот и всё. То есть, эквивалентность кривых можно проверять в объемлющем \mathbb{R}^N , а не в карте.

Def. 3.18. (Координаты касательного вектора) Пусть M^n — гладкое многообразие, $p \in M, v \in T_pM, v = [\gamma]. \phi : U \subset M \to \mathbb{R}^n$ — карта в окрестности p. Координаты вектора v в карте $\phi - (\phi \circ \gamma)'(0) \in \mathbb{R}^n$.

Примеры.

- 1) $M=U\subset\mathbb{R}^n$ открытая область. $\phi=id$. Координаты v он сам.
- 2) $M=f(U)\subset\mathbb{R}^N, f$ вложение. f(q)=p. $Im(d_qf)=Span(d_qf(e_1),\ldots,d_qf(e_n))=Span(\frac{\partial f}{\partial x_1}(q),\ldots,\frac{\partial f}{\partial x_n}(q))$. $\phi=f^{-1}$. Координаты $v\in T_pM=Im(d_qf)$ координаты разложения v по $\{v_i\},\ v_i=\frac{\partial f}{\partial x_i}$.
- **Lm. 3.8.** (Свойство) Пусть $\phi, \widetilde{\phi} \partial se$ карты в окрестности $p, v \in T_pM$, $\xi = (\xi_1, \ldots, \xi_m) координаты v в карте <math>\phi$. $\widetilde{\xi} = (\widetilde{\xi}_1, \ldots, \widetilde{\xi}_m) s$ карте $\widetilde{\phi}$. Тогда $\widetilde{\xi} = d_{\phi(p)}(\widetilde{\phi} \circ \phi^{-1})(\xi)$.

Rem. Для любой карты, $\forall \xi \in \mathbb{R}^n$ существует единственный касательный вектор $v \in T_pM$ с координатами $\xi.$

- **Def. 3.19.** Сумма касательных векторов касательный вектор, координаты которого сумма координат данных векторов (в случайной карте). Корректность: при смене карты координаты преобразуются линейным отображением $d_{\phi(p)}(\widetilde{\phi} \circ \phi^{-1})$. Аналогично определяется умножение на число.
- **Th. 3.9.** $T_pM векторное пространство размерности <math>n = \dim M$.
- **Def. 3.20.** (Структура гладкого многообразия размерности 2n на TM.) Каждой карте $\phi: U \subset M \to \mathbb{R}^m$ сопоставим карту $\Phi: TU \to \mathbb{R}^{2n}, \, \Phi(v \in T_pM) = (\phi(p), \, \text{координаты} v \, \text{в } \phi)$. Набор карт определяет и топологию, и дифференциальную структура. Отображения переходов гладкие: по первой координате ясно, по второй производная отображения того, что по первой. Хаусдорфовость "проверьте сами".
- **Def. 3.21.** (Второе определение касательного вектора.) Касательный вектор сопоставление {карты в окрестности p} $\to \mathbb{R}^n$ т.ч. выполняется формула для перехода между картами.

3.6 Дифференцирование

Def. 3.22. Пусть M^m, N^n — гладкие многообразия, $f: M \to N$ — гладкое. $p \in M$, $v \in T_pM$, $v = [\alpha], d_pf: T_pM \to T_{f(p)}M, d_pf([\gamma]) = [f \circ \gamma]$, где $\gamma: (-\varepsilon, \varepsilon) \to M, \gamma(0) = p$ — дифференциал отображения f в точке p. Общий (полный) дифференциал (или касательное отображение) — это $df: TM \to TN$, объединение дифференциалов во всех точках.

Свойства.

- 1) Корректность: f гладкое, значит, уважает классы эквивалентности кривых, $\overline{(\phi \circ \gamma_1)' = (\phi \circ \gamma_2)'} \Rightarrow (\psi \circ f \circ \gamma_1)' = (\psi \circ f \circ \gamma_2)'$.
- 2) В любых координатах, $d_p f$ линейное отображение из $T_p M$ в $T_{f(p)} N$. Координаты $d_p f(v)$ в карте $\psi d_{\phi(p)} (\psi \circ f \circ \phi^{-1})(\xi)$, где ξ координаты v в ϕ .
- 3) Если M, N области в \mathbb{R}^m и \mathbb{R}^n , то определение совпадает с обычным.
- 4) $rk_p f = rk(d_p f) = \dim Im(d_p f)$.
- 5) df гладкое отображение $TM \to TN$.
- 6) Теорема о производной композиции: $d(f \circ g) = df \circ dg$.

Rem. df — функтор в категории гладких многообразий.

3.7 Касательное пространство многообразия

Наблюдение. Пусть $M^m \subset N^n$ — подмногообразие. Тогда имеется естественное вложение $T_pM \hookrightarrow T_pN$. Есть два способа формально определить его:

- 1) Рассматриваем любую кривую как кривую в б Ольшем пространстве: $[\gamma] \to [\gamma].$
- 2) Рассмотрим вложение $i:M\hookrightarrow N$. Тогда d_pi вложение T_pM в T_pN .

Ясно, что это одно и то же. Теперь считаем, что $T_pM\subset T_pN$, более того — линейное подпространство.

Th. 3.10. Пусть $f: M \hookrightarrow N$ — гладкое вложение, $p \in M$. Тогда $T_{f(p)}f(M) = Imd_p f$.

Доказательство. ⊃: очевидно, \subset : из равенства размерностей. Или ещё можно сказать, что пусть $i:f(M)\hookrightarrow N$ — тождественное вложение, $\widetilde{f}:M\to f(M)$ — диффеоморфизм на образ. Тогда по определению $Imd_pf=Im(d_{f(p)}i\circ d_p\widetilde{f})=Im(d_{f(p)}i)=T_{f(p)}f(M)$.

Th. 3.11. Пусть $f: M^m \to N^n$ — гладкое отображение, $y \in N$ — регулярное значение, $p \in f^{-1}(y)$ (подмногообразие), тогда $T_p(f^{-1}(y)) = \ker d_p f$.

Доказательство. $v=[\gamma]\in T_p(f^{-1}(y))\Rightarrow f\circ \gamma=const\Rightarrow df(v)=0,$ значит \subset доказали. \supset из равенства размерностей.

Пример. $S^2 = \{(x,y,z): x^2 + y^2 + z^2 = 1\}$. $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = x^2 + y^2 + z^2$. $p = (x_0, y_0, z_0) \in S^2 = f^{-1}(1)$. $d_p f = (2x_0, 2y_0, 2z_0) = 2p: \mathbb{R}^3 \to \mathbb{R}$. $\ker d_p f = \{v: \langle 2p, v \rangle = 0\} = \{(x,y,z): x_0x + y_0y + z_0z = 0\}$. Получили именно те плоскости, которые мы ожидали.

3.8 Трансверсальные пересечения

Def. 3.23. Пусть $M_1^{m_1}M_2^{m_2}\subset N^n$ — гладкие подмногообразия. $p\in M_1\cap M_2$. M_1,M_2 трансверсальны в точке p, если $T_pN=T_pM_1+T_pM_2$. M_1 и M_2 трансверсальны, если они трансверсальны в любой точке пересечения. Обозначение: $\overline{M_1 \pitchfork M_2}$.

Th. 3.12. $M_1 \pitchfork M_2 \Rightarrow M_1 \cap M_2 - nod$ многообразие размерности $m_1 + m_2 - n$ или пустое множество.

Будем доказывать более общее утверждение.

Def. 3.24. $M_1, \ldots, M_k \subset N$ — подмногообразия. $p \in \cap M_i$. M_i трансверсальны в точке p, если $codim \cap T_p M_i = \sum codim M_i$ (аналогично, трансверсальны, если трансверсальны в любой точке).

Th. 3.13. Трансверсальное пересечение $M_1 \cap \cdots \cap M_k - nod$ многообразие коразмерности $\sum codim M_i$.

Доказательство. Пусть $p \in \cap M_i$. Существуют субмерсии $f_i: U \to \mathbb{R}^{codim M_i}$ в окрестности точки p U: $M_i = f_i^{-1}(0)$ (их можно получить, взяв карты, в которых многообразия — линейные подпространства). Рассмотрим $f = (f_1, \dots, f_k): U \to \mathbb{R}^{\sum codim M_i}$. Докажем, что p — регулярная точка f. Нужно проверить, что дифференциал сюрьективен, т.е. проверить, что dim ker $d_p f$ какая надо. dim ker $d_p f = \dim \cap \ker d_p f_i = \dim \cap T_p M_i = n - codim \cap T_p M_i = n - codim \cap T_p M_i$. Значит, в маленькой окрестности p, $\cap M_i = f^{-1}(0)$.

3.9 Гладкие многообразия с краем

Определение получается из определения топологического многообразия с краем (которое, напомним, не является многообразием) так же, как определение гладкого многообразия из обычного топологического многообразия, но возникают некоторые тонкости, в частности, надо уточнить, что такое гладкое отображение из одного полупространства в другое.

Def. 3.25. $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}^m$, f — гладкая, если $\forall x$ существует $U \subset \mathbb{R}^n$ — открытое, $x \in U$, т.ч. существует $\widetilde{f}: U \to \mathbb{R}^m$, $\widetilde{f} \in C^{\infty}$, $\widetilde{f}|_{U \cap A} = f|_{U \cap A}$ (f локально гладко продолжима).

Упражнение (на теорему о разбиении единицы, но с более общей формулировкой, чем была у нас): f — гладкая \iff существует $U \supset A, U$ — открытое, и $\widetilde{f}: U \to \mathbb{R}^m,$ $\widetilde{f}|_A = f, \widetilde{f} \in C^\infty$ (глобально гладко продолжима).

Def. 3.26. Гладкое многообразие с краем — это топологическое многообразие с краем вместе с классом эквивалентности атласов (или максимальным атласом) из карт со значениями в \mathbb{R}^n или \mathbb{R}^n_+ . Отображения перехода между картами гладкие в смысле определения выше.

Rem. Теорема об инвариантности края в гладком случае тривиальна и следует из теоремы об обратной функции: если у точки есть окрестность, диффеоморфная \mathbb{R}^n , у неё не может быть окрестности, диффеоморфной полупространству.

 $Rem.\ M \setminus \partial M,\ \partial M$ — многообразия без края.

То, что для многообразий с краем отличается:

- 1) **Произведения.** Если M,N гладкие многообразия с краем, $M \times N$ может быть нет. Топологически это будет многообразием с краем, но с гладкостью с него проблемы (см. произведение двух отрезков, это будет так называемое многообразие с краем и углами, что это такое, нам неведомо, но естественной дифференциальной структуры продолженной каким-то понятным образом с отрезков нет). Можно напрячься и задать какую-то другую дифференциальную структуру, но мы будем считать, что $M \times N$ в этом случае просто не является гладким многообразием с краем. А если M гладкое многообразие без края, N с краем, то $M \times N$ гладкое многообразие с краем. $\partial(M \times N) = M \times \partial N$ (см. цилиндр).
- 2) Касательное пространство. Для краевой точки определение касательного вектора через классы эквивалентности кривых ломается ("кривая упрётся в край"), так что это определение лучше не использовать или надо как-то обобщать. Остаётся другое определение: вектор формальный набор координат в каждой карте, а при переходе между картами координаты вектора преобразуются по стандартному правилу (дифференциалом отображения перехода). Надо понимать, что касательное пространство T_pM для $p \in \partial M$ это \mathbb{R}^n , а не полупространство, т.е. касательные векторы рассматриваются как идущие внутрь, так и идущие по краю и наружу. Это просто формальные наборы координат, но таким образом на T_pM есть некоторая естественная структура: $T_pM = T_p\partial M \sqcup T_p^+N \sqcup T_p^-M$ (что-то из + и это вектора, идущие внутрь, а что-то наружу, единого стандарта обозначений нет, можно считать, как угодно).
- 3) **Подмногообразия.** У нас было два эквивалентных определения: (1) подмножество, где у каждой точки есть хорошая карта в окрестности и (2) образ вложения. В случае многообразий с краем они не эквивалентны, правильным нужно считать второе. Пример: многообразие верхняя полуплоскость. Возьмём

какую-нибудь гладкую функцию $h: \mathbb{R} \to \mathbb{R}_+$ с ужасным множеством нулей (например, Канторовское множество). Рассмотрим её график, на плоскости это вполне приличное многообразие. Но на полуплоскости никаких шансов найти карту, в которой оно выпрямлено, нет. Поэтому говорим про образ вложения. Сам край, кстати, является подмногообразием.

Но есть модификация этого первого определения:

Def. 3.27. Пусть N — многообразие с краем, $M \subset N$ — правильно вложенное подмногообразие, если $\forall x \in M$ существует карта $\phi: U \ni x \to \mathbb{R}^n$ или \mathbb{R}_n^+ т.ч. $\phi(M \cap U) = \mathbb{R}^m \cap \phi(U)$ или $\mathbb{R}_+^m \cap \phi(U)$ соответственно.

Rem. Видно по определению, что если M — правильно вложенное подмногообразие N, тогда $\partial M = M \cap \partial N$.

Упражнение. Пусть $M \subset N$ — подмногообразие (образ вложения) с краем. M — правильно вложенное $\iff \partial M = M \cap \partial M$ и M трансверсально ∂N .

Пример. Пусть N- гладкое многообразие (без края), $f:N\to\mathbb{R},\ 0-$ её регулярное значение. Тогда $M:=f^{-1}([0,+\infty))-$ многообразие с краем. $\partial M=f^{-1}(0).$ Например, сфера — подмногообразие обычное, а шар — подмногообразие с краем, и сфера — его край. Почему всё это так: надо вспомнить, что мы доказывали про регулярные значения. Прообраз регулярного значения — подмногообразие, более того, в окрестности каждой точки существует карта, в которой f просто линейна. Поэтому в этой карте прообраз нуля — гиперплоскость, а прообраз положительного луча — полупространство, вот и получается многообразие с краем. См. также любые квадрики, $x^2+y^2+z^2=1-$ край гладких подмногообразий с краем $x^2+y^2+z^2\leq 1$ и $x^2+y^2+z^2\geq 1.$

Th. 3.14. Пусть M- гладкое многообразие c краем, N- гладкое многообразие (без края). $f: M \to N, f \in C^{\infty}, q \in N-$ регулярное значение f и регулярное значение $f|_{\partial M}$. Тогда $f^{-1}(q)-$ правильно вложенное подмногообразие (c краем) (два условия, первое нужно проверять только для внутренних точек, второе - только для краевых, потому что второе для внутренних это ни o чём, а первое для краевых следует, там говорится, что даже сужение дифференциала сюръективно).

Rem. На условие регулярности не стоит глядеть очень грустно, есть разные замечательные теоремы, которые говорят, что в каком-то смысле почти все точки на самом деле регулярные.

Доказательство. $f^{-1}(q)\backslash\partial M$ — гладкое подмногообразие в $M\backslash\partial M$ по обычной теореме о прообразе регулярного значения. Теперь пусть $p\in f^{-1}(q)\cap\partial M$. Выберем карту и будем считать, что всё происходит в \mathbb{R}^m_+ существует $h:U\to\mathbb{R}$ — "первая координата" (возьмём любую карту, возьмём у неё первую координату, это что-то вроде функции, которая задаёт наш край), U — маленькая окрестность точки $p,\ h|_{\partial M}=0, d_ph\neq 0$.

 $m=\dim M, n=\dim N, m>n$. Построим $F:U\to\mathbb{R}^m, F(x)=(h(x),f(x),L(x))$, где L — такая матрица, которая дополняет (d_ph,d_pf) до невырожденной матрицы. Надо проверить, что она существует, для этого надо проверить, что (h,f) продифференцированное в точке p, даст отображение максимального ранга, т.е. rk(h,f)(p)=n+1 (как устроена эта матрица: она размера $m\times n$, первая строка — коэффициенты dh, а дальше df, компоненты матрицы L встанут "вниз", после этого). Давайте посчитаем размерность ядра. Ядро dh — это в точности касательное пространство к краю, то есть $\ker df\cap\ker dh=\ker df\cap T_p\partial M=\ker d(f|_{\partial M}=$, по регулярности, размерности края минус размерность образа, т.е. =m-1-n, проверили. Это F и есть наша искомая карта, в которой выпрямляется и край, и множество решений. То есть образ M при этой карте — как раз множество точек, где первая координата ≥ 0 (потому что это h), т.е. полупространство. Как в нём лежит образ подмножества, $f^{-1}(q)$? Это множество точек, у которых со второй по n+1-ую координату нулевые, то есть полный формализм был бы, если бы мы вставили L в середину F, но мы понимаем, что это одно и то же, если переименовать.

Th. 3.15. (Теорема о воротнике, без доказательства) Существует дифференциальная структура на $M \cup_{\partial M} (\partial M \times [0,1))$ (склейка по краю). Это способ свести вопросы про многообразия с краем к обычным.

Cor. 3.15.1. На удвоении $(M \cup_{\partial M} M', M' - \partial p$ угая копия M) есть дифференциальная структура (это уже будет многообразие без края).

3.10 Ориентация

Def. 3.28. Пусть U, V — области, $f: U \to V$ — диффеоморфизм, f называется сохраняющей ориентацию, если $\forall x \in U$, $\det d_x f > 0$ и обращающей ориентацию, если $\det d_x f < 0$.

Def. 3.29. Ориентация гладкого многообразия M — максимальный ориентированный атлас (или класс эквивалентности), то есть такой, что все отображения перехода сохраняют ориентацию. Ориентированное многообразие — многообразие с ориентацией. Ориентируемое — такое, что на нём существует ориентация.

Def. 3.30. Пусть X — конечномерное векторное пространство над \mathbb{R} , ориентация — отображение τ : $\{$ базисы в $X\}$ \to $\{+1,-1\}$, для любых базисов $B_1, B_2, \tau(B_1)\tau(B_2) = sqn$ det матрицы перехода.

Так вот, ориентировать многообразие — это то же самое, что ориентировать каждое касательное пространство так, чтобы было согласовано.

Def. 3.31. (второе определение) M^n — гладкое многообразие, $B(M) = \bigcup_{p \in M} \{$ базисы $T_p(M)\} \subset TM \times TM \times \cdots \times TM$ (n раз). Ориентация — непрерывное отображение $\tau: B(M) \to \{\pm 1\}: \forall p \in M, \tau|_{B_p(M)}$ — ориентация T_pM , где $B_p(M)$ — $\{$ базисы $T_p(M)\}$.

Например, ориентация точки — это число ± 1 , так как мы выбираем значение для единственного, пустого базиса.

Убедимся, что между двумя определениями существует естественная биекция. Если нам дана ориентация в первом смысле, мы можем сделать из неё ориентацию во втором смысле так: объявим положительно ориентированными те базисы касательных пространств, которые при дифференциалах выделенных карт переходят в положительно ориентированные базисы \mathbb{R}^n . Непрерывность надо проверить, но она тривиальна: она проверяется в координатах, а в качестве координат можно взять как раз ту самую карту. Ну, надо проверить корректность, то если есть две пересекающиеся карты, то базисы перейдёт в одно и то же при их действии, но это так, потому что они отличаются дифференциалом отображения перехода, которое сохраняет ориентацию по определению. Обратно, если у нас ориентированно каждое касательное пространство, то давайте рассматривать только карты со связными областями определения, и скажем, что данная карта входит в атлас, если она правильно ориентированные переводит в правильно ориентированные, это понятие по непрерывности будет внутри карты сохраняться, от точки и от базиса это свойство не зависит (определитель — непрерывная функция).

Перенос ориентации вдоль пути

Пусть M — гладкое многообразие, $p, q \in M, \gamma : [a, b] \to M, \gamma(a) = p, \gamma(b) = q$.

Th. 3.16. Пусть τ_0 — ориентация T_pM . Тогда существует единственное непрерывное семейство $\{\tau_t\}$ (это значит, если если есть непрерывное семейство базисов, т.е. непрерывно параметризованное параметром t, в пространстве всех базисов во всех точках, то на них ориентация постоянна), где τ_t — ориентация $T_{\gamma(t)}M$.

Lm. 3.17. Существует непрерывное семейство $\{B_t\}$, где B_t — базис в касательном пространстве $T_{\gamma(t)}M$.

Доказательство. Воспользуемся компактностью (или леммой Лебега), покроем каждую точку пути координатным шаром, выберем конечное подпокрытие. Разобьём отрезок на кусочки (конечное число), т.ч. образ каждого из которых целиком лежал в одной (своей) координатной карте, и зафиксируем её. Начнём с любого базиса в точке p, воспользуемся первой картой, она оправляет область в кусочек \mathbb{R}^n (кусочек пути), и там есть исходный базис имеет какие-то координаты. Выберем семейство с постоянными координатами (параллельный перенос в этой карте), т.е. от первой до второй точки любой базис имеет те же координаты, что и исходный. Дальше продолжаем по индукции.

Доказательство. (теоремы) Скажем, что знак базиса в момент времени t — это "его" знак в момент времени ноль, воспользовавшись переносом вдоль пути. Нужно проверить корректность. Возьмём семейство базисов, рассмотрим матрицу перехода (она невырождена, непрерывно зависит от t, так как выписывается как-то алгебраически),

 $sgn \det = const$, поэтому мы придём к тому же самому ответу. Единственность очевидна, потому что ориентация непрерывного семейства базисов обязана сохраняться, и никак ещё мы определить её, таким образом, не можем.

Cor. 3.17.1. Пусть M- связно, тогда, если M- ориентируемо, то существует ровно две ориентацией (понятно, две и есть, возъмём τ и $-\tau$, почему больше нет, возъмём любую точку, в ней ровно две ориентации, многообразие связно, значит, линейно связно, вдоль пути ориентация переносится однозначно).

Def. 3.32. Дезориентирующий цикл —петля $\gamma:[a,b]\to M$ т.ч. если $\{\tau_t\}$ — перенос ориентации вдоль γ , тогда $\tau_a=-\tau_b$.

Th. 3.18. M — ориентируемо \iff нет дезориентирующих циклов.

 \square оказательство. \Rightarrow : очевидно.

 \Leftarrow . Первое наблюдение: перенос ориентации (между двумя точками) не зависит от пути, потому что иначе мы бы пошли по одному туда, по другому обратно, и получился бы дезориенирующий цикл. Теперь мы хотим просто построить ориентацию. НУО многообразие связно и непусто, иначе введём ориентацию на каждой компоненте отдельно. Зафиксируем точку p. Пусть τ_0 — ориентация T_pM , и ориентацию в любой другой точке q определим переносом вдоль пути. Корректно, это уже поняли, осталось проверить непрерывность. Рассмотрим маленькую окрестность q, которая в координатах просто шар. В каждую точку q' из этой окрестности можно дойти по пути, который сначала идёт в q, а потом по отрезку в q'. Поэтому ориентация в точках окрестности получается просто переносом из точки q по отрезку, отсюда ясно, что в координатах это постоянная ориентация, значит доказали непрерывность.

Примеры.

- 1) S^n (чтобы проверить правильную ориентируемость базиса, добавляем к нему радиальный вектор).
- 2) $\mathbb{R}P^n$ ориентируемо $\iff n$ нечётно $(x \to -x \colon \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ сохраняет ориентацию, значит, сохраняет сферу, то есть оно же $S^n \to S^n$, сохраняет ориентацию. Что такое точка на проективном пространстве это пара точек на сфере, надо взять две симметричные карты на сфере и они дают карту проективного пространства (потому что отображение наше накрытие). В четномерном случае можно предъявить дезориентирующий цикл: это образ при факторизации половинки большого круга (отображение "минус" меняет ориентацию).

Th. 3.19. Произведение ориентируемых многообразий ориентируемо.

Доказательство. Пусть M,N — наши многообразия, $x\in M,y\in N$. $T_{(x,y)}(M\times N)\simeq T_xM\times T_yN$ ("координатные кривые"). Пусть v_1,\ldots,v_m — базис T_xM,w_1,\ldots,w_n — базис T_yN . Положим $\tau(v_1,\ldots,v_m,w_1,\ldots,w_n)=\tau_M(v_1,\ldots,v_m)\cdot \tau_N(w_1,\ldots,w_n)$. Определили

эти значения только для базисов такого вида, заметим, что при переходе от одного такого базиса к другому ведёт себя правильно (матрица перехода состоит из двух отдельных кусков), автоматически это определяет ориентацию для всех базисов. Непрерывность ориентации достаточно проверить во-первых локально, во-вторых, для одного семейства базисов, а в координатах это просто постоянная функция, так что всё понятно.

Th. 3.20. Край ориентируемого многообразия тоже ориентируем (каноническая ориентация края).

Доказательство. Пусть M — многоообразие с краем, τ_M — ориентация M. $p \in \partial M$, v_1, \ldots, v_{m-1} — базис $T_p(\partial M)$. Пусть $v \in T_p M$ идёт наружу, положим $\tau(v_1, \ldots, v_{m-1}) = \tau_M(v, v_1, \ldots, v_{m-1})$ (выглядит немного странно, но этот выбор согласован с формулой Стокса). Если поменяли первый вектор, то матрица перехода будет иметь такой вид: в первом столбце сначала что-то > 0, потом нечто, остальные диагональные элементы единичные, всё остальное нули. Её определитель положительный. Теперь почему оно непрерывно: рассмотри фиксированную карту и будем выбирать в качестве дополнительного вектора выбирать фиксированный, например, в координатах имеющий вид $(-1,0\ldots,0)$. То есть локально можно выбирать этот внешний вектор непрерывно (на самом деле и глобально, но это сложно и здесь не нужно).

Ориентирующее накрытие

Пусть M — гладкое многообразие. Построим двулистное накрытие $p:\widetilde{M}\to M$, $\widetilde{M}=\{(x,\tau)|x\in M,\tau$ — ориентация $T_xM\}$, $p(x,\tau)=x$. Прообраз окрестности разбивается на два кусочка, это разбиение даёт нам топологию на накрывающем пространстве, просто объявляем эти два куска открытыми и отображение непрерывным. Это в любом случае накрытие, но есть два случая: накрывающее пространство связно или не связно.

- 1) р накрытие и локальный диффеоморфизм.
- \widetilde{M} ориентируемо.
- 3) Накрывающее пространство связно $\iff M$ неориентируемо (перенос ориентации вдоль пути = поднятие пути в \widetilde{M} , если если дезориентирующий цикл, то он переведёт нас из одного листа накрытия в другой, ну и наоборот).

Cor. 3.20.1. (1) Перенос ориентации вдоль гомотопных путей одинаков (потому что это поднятие). (2) Любое односвязное многообразие многообразие ориентируемо.

4 Внутренняя геометрия поверхностей

4.1 Первая квадратичная форма поверхности

Разбудите его, пусть он нам сейчас длину на плоскости в полярных координатах посчитает!

C.B.

- **Def. 4.1.** Регулярная поверхность отображение $r:U\subset\mathbb{R}^n\to\mathbb{R}^N$, т.ч. $r\in C^\infty$ и оно является погружением: $\forall x\in U$, $\ker d_x r=\{0\}$. Простая регулярная поверхность то же самое + топологическое вложение (инъективность и гомеоморфизм на образ). Стандартное обозначение для образа r-r(U)=M. Пусть есть две поверхности $r_1:U_1\to\mathbb{R}^N,\ r_2:U_2\to\mathbb{R}^N$. Они называются эквивалентными, если существует диффеоморфизм (замена координат) $\psi:U_1\to U_2$ т.ч. $r_1=r_2\circ\psi$ (определение аналогично тому, что было у кривых, и понятно, что геометрические свойства образа поверхности не зависят от конкретного отображения, а зависят от класса эквивалентности). (u_1,\ldots,u_n) обозначение стандартных координат в U. В размерности два будем обозначать (u,v). В точке $u\in U$ для простой регулярной поверхности есть касательное пространство $T_u r = T_{f(u)} M = Im d_x r$. Обозначение: $r_{u_i} = r'_{u_i} = \frac{\partial r}{\partial u_i}$. Эти векторы базис касательного пространства (иногда будет обозначать их x_i). Они зависят от точки, так что на самом деле это не вектора, а векторные поля.
- **Def. 4.2.** (Касательное) векторное поле на гладком многообразии M гладкое отображение $V: M \to TM, \forall pV(p) \in T_pM$ (то есть в любой точке вектор лежит в её касательной пространстве, а TM мы рассматриваем как многообразие удвоенной размерности, поэтому можно говорить там о гладкости). Локально гладкое векторное поле можно разложить по координатным полям.
- **Def. 4.3.** X многообразие. $f: X \to M$, векторное поле вдоль отображения f гладкое $V: X \to TM$: $\forall x \in X, V(x) \in T_{f(x)}M$. Проще всего представлять, что такое векторное поле вдоль кривой. Первое определение частный случай этого.
- **Def. 4.4.** Погруженное многообразие (обобщение регулярной поверхности) это отображение $r: M \to \mathbb{R}^N$, где M^n гладкое многообразие, r погружение.

Локально всё можно считать простой регулярной поверхностью.

Def. 4.5. $r: U \subset \mathbb{R}^n \to \mathbb{R}^N$, в точке $u \in U$ первая квадратичная форма поверхности — это квадратичная форма, которая задана матрицей $g_{ij} = \langle x_i(u), x_j(u) \rangle = \langle r'_{u_i}(u), r'_{u_j}(u) \rangle$. Современное название: метрический тензор.

Rem. Первая форма отвечает за длины и углы. g_{ij} — матрица скалярного произведения $\langle .,. \rangle|_{T_{f(u)}M}$ в базисе x_1,\ldots,x_n . Пусть $V \in T_pM, V = \sum v_i X_i, |V|^2 = (v_i)^T \cdot (g_{ij}) \cdot (v_i) = \sum_{i,j} g_{ij} v_i v_j = \sum_i g_{ii} v_i^2 + 2 \sum_{i < j} g_{ij} v_i v_j$. Обозначения для $\dim = 2$: $g_{ij} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$, V имеет координаты (x,y) в базисе $(r_u,r_v) = (x_1,x_2)$. Первая форма обозначается I. Тогда $|V|^2 = Ex^2 + 2Fxy + Gy^2$.

Откуда вообще берутся касательные вектора на поверхности? Как образы касательных векторов к области. Всё ещё в размерности два, с помощью первой формы мы вычислим теперь длину кривой $\gamma:[a,b]\to M, \ \gamma(t)=r(u(t))=r(u_1(t),\ldots,u_n(t)).$ $L(\gamma)=\int_a^b|\gamma'(t)|dt=\int_a^b|dr_{u(t)}(u'(t))|dt=(\gamma'-\text{касательный к поверхности, }u'(t)-\text{набор координат }(u'_1(t),\ldots,u'_n(t)))=\int_a^b|\sum u'_i(t)\cdot r'_{u_i}(u(t))|dt=\int_a^b\sqrt{\sum_{i,j}g_{ij}u'_iu'_j}dt,$ где $g_{ij}=g_{ij}(u(t)),\ u'_i=u'_i(t).$

Ещё один пример, длина кривой на плоскости (без нуля, ещё какого-нибудь нуля, ну короче забили на эти проблемы) в полярных координатах: пусть $(u,v) \mapsto (\rho,\phi)$. M — плоскость с выколотой точкой, параметризуем её какой-то областью. $r(u,v)=(u\cos v,u\sin v)$. Первая форма: $\begin{pmatrix} \langle r'_u,r'_u\rangle & \langle r'_u,r'_v\rangle \\ \langle r'_u,r'_v\rangle & \langle r'_v,r'_v\rangle \end{pmatrix}$. $r'_u=(\cos v,\sin v),\ r'_v=(-u\sin v,u\cos v),\ \langle r'_u,r'_v\rangle = 0, |r'_u|^2=|r'_v|^2=1 \Rightarrow I=\begin{pmatrix} 1 & 0 \\ 0 & u^2 \end{pmatrix}$, т.е., переобозначая $I(\rho,\phi)=\begin{pmatrix} 1 & 0 \\ 0 & \rho^2 \end{pmatrix}$. Теперь посчитаем длину кривой. Пусть дана кривая, которая в момент времени t имеет координаты $\rho(t),\phi(t)$. Тогда $L(\gamma)=\int \sqrt{(\rho')^2+\rho^2(\phi')^2}$ (радиальная и касательная компоненты скорости).

А теперь **обработаем сферу**. $\theta \in [0, \pi]$ — угловое расстояние от N (северного полюса), $\phi \in \mathbb{R}$ — долгота. $r(\theta, \phi) = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$, $X_1 = r'_{\theta} = (\cos \phi \cos \theta, \sin \phi \cos \theta, -\sin \theta)$, $X_2 = r'_{\phi} = (-\sin \phi \sin \theta, \cos \phi \sin \theta, 0)$. $E = |r'_{\theta}|^2 = 1$, $F = \langle r'_{\theta}, r'_{\phi} \rangle = 0$ (параллели и меридианы перпендикулярны), $G = |r'_{\phi}|^2 = \sin^2 \theta$. Итого, $I(\theta, \phi) = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2 \theta \end{pmatrix}$, $\gamma(t) = (\theta(t), \phi(t))$, $L(\gamma) = \int \sqrt{(\theta')^2 + \sin^2 \theta(\phi')^2}$ — изменение широты ортогонально изменению долготы. Долгота вносит тем больший вклад, чем ближе мы к экватору. (g_{ij}) определяет **углы между касательными векторами**. Пусть $v, w \in T_p M$, $v = \sum v_i X_i$, $\langle v, w \rangle = w^T g v = \sum_{i,j} g_{ij} v_i w_j$. $\angle(v, w) = \arccos \frac{\langle v, w \rangle}{|v||w|}$.

4.2 Риманово многообразие

Def. 4.6. Пусть M — гладкое многообразие. Риманова метрика на M — это гладкое семейство скалярных произведений $\{\langle .,.\rangle_p\}$, $p\in M$, где $\langle .,.\rangle_p$ — скалярное произведение на T_pM . Гладкое семейство — это значит, что поточечное произведение любых двух гладких векторных полей есть гладкая функция (бескоординатное определение).

Rem. Примеры.

- 1) Главный пример: пусть M подмногообразие в \mathbb{R}^N , $\langle .,. \rangle_p = \langle .,. \rangle_{\mathbb{R}^N}|_{T_pM}$.
- 2) Пусть теперь $M \to \mathbb{R}^N$ погружение, $\langle v, w \rangle = \langle dr(v), dr(w) \rangle$.
- 3) Всё то же самое, но вместо \mathbb{R}^N <u>риманово многообразие</u> (= многообразие с римановой метрикой).

Теперь поговорим про риманову метрику в координатах. Пусть M — многообразие, $\phi: U \to \phi(U) \subset \mathbb{R}^n$ — карта, $r = \phi^{-1}$ — обратное к карте (локальная параметризация). Пусть X_1, \ldots, X_n — координатные векторные поля. Тогда $\forall i, j$ мы можем рассмотреть $g_{ij}: \phi(U) \to \mathbb{R}, \ g_{ij} = \langle X_i, X_j \rangle_{r(p)}$. Для любого $p \in \phi(U)$ матрица (g_{ij}) является симметричной и положительно определённой. Это матрица скалярного произведения $\langle .,. \rangle_{r(p)}$ в базисе X_i , она гладко зависит от точки p. Замечание: метрика гладкая \iff все g_{ij} — гладкие функции (в одну сторону очевидно, в другую — разложим по координатным векторным полям, перемножим их : $\langle v, w \rangle = \sum v_i w_j g_{ij}$ — всё гладкое).

Матрица первой формы — координатное представление римановой метрики на поверхности.

Пока мы рассматривали одну карту, а на самом деле их может быть много. Посмотрим на две карты, как проверить, что разные g_{ij} согласованы? Пусть есть метрики $\widetilde{g_{ij}}$ и $\widetilde{g_{ij}}$, и функция перехода ψ . $w^Tgv = w^T[d_u\psi]^T\widetilde{g}[d_u\psi]v = (d\psi(w))^T\widetilde{g}(d\psi(v))$, т.е. $g_u = [d_u\psi]^T\widetilde{g}_{\psi(u)}[d_u\psi]$. Можно думать об этом так: мы рассматриваем всё время одно и то же скалярное произведение, но в разных базисах.

Понятно, что на римановом многообразии есть углы и расстояния, так как заданы длины касательных векторов (оно изометрично \mathbb{R}^n , только изометрия какая-то сложно зависит от точки).

Def. 4.7. Пусть M — риманово многообразие, $\gamma:[a,b]\to M$ — кусочно гладкая. Тогда длина кривой $L(\gamma)=\int_a^b |\gamma'(t)|dt$, где модуль понимается в смысле римановой метрики, т.е. как корень из скалярного произведения. Риманово расстояние между точками x,y — это inf $L(\gamma)$, где γ — кусочно гладкая, соединяющая x,y (предположим, что всё связное).

Rem. Длина кривой не зависит от замены параметра.

Доказательство.
$$L(\gamma(\phi(t))) = \int |\gamma'(\phi(t))\phi'(t)|$$

Th. 4.1. 1) Риманово расстояние — это метрика (в обычном смысле).

2) Топология, заданная этой метрикой совпадает с изначальной топологией М.

Доказательство. Симметричность: d(x,y)=d(y,x), потому что по любой кривой "туда" можно пройти "обратно", $\overline{\gamma}(t)=\gamma(-t),\ L(\gamma)=L(\overline{\gamma})$. Неравенство треугольника: $d(x,y)\leq d(x,z)+d(z,y)$ — очевидно. d(x,x)=0 — соединим постоянной кривой, нулевой длины. Осталось доказать, что если $x\neq y$, то d(x,y)>0, и это самое неочевидное. Понятно, у каждой кривой длина ненулевая, непонятно, что инфимум не равен нулю. Докажем это вместе со вторым пунктом: для каждой точки построим окрестность, такую, чтобы выход из неё "требовал" ненулевой длинны.

Возьмём точку x и карту, не содержащую точку y, и сравним риманову метрику с обычным координатным расстоянием (будем считать, что окрестности соответствует обычный шар с центом в точке 0 (соответствующей x), и он настолько мал, что точка, соответствующая y в него не попадает). Рассмотрим \overline{B} — замкнутый координатный шар, с центром в 0 в \mathbb{R}^n . На этом шаре у нас есть риманово расстояние и обычная евклидова метрика, и две римановы структуры — стандартная евклидова и наша (риманова). Т.е. у нас есть матрица (g_{ij}) нашей изначальной метрики, и единичная матрица стандартной, которую мы никак специально обозначать не будем. Пусть $v \in T_z M$ для какой-то точки z, тогда появляются $|v|_g$ — риманова длина, $|v|_e$ — евклидова длина (длина координатного представления в этой карте). Они согласованы, а именно, существуют такие константы c, C т.ч. $z \in M, \forall v \in T_z M, c |v|_e < |v|_g < C |v|_e$. Для доказательства рассмотрим $\frac{|v|_g}{|v|_e}$, суженное на множество единичных евклидовых векторов, чтобы сделать его компактным и не делить на ноль. Это будет непрерывная функция на компактном множестве, у неё есть минимум и максимум, это и будет C и c. Поэтому длина любой кривой относительно метрики g связана с длиной евклидовой теми же неравенствами: $L_e(\gamma)c < L_g(\gamma) < L_e(\gamma)C$, поэтому, чтобы кривой выйти за пределы этого шара, ей нужно потерять длины не меньше, чем евклидов радиус, умноженный на c. То есть, есть γ выходит из x и в последствии покидает шар В радиуса ρ , то $L(\gamma) \geq c\rho$. Таким образом, мы доказали, что это метрика. Отсюда следует и утверждение про топологию: если две метрики в маленькой окрестности липшицево-эквивалентны, порождённые ими топологии совпадают.

В наших рассуждениях был небольшой обман в конце: наш шар B может быть не содержит всех кривых, по которым, по определению, надо брать инфимум. Как бороться: с тем, что это метрика проблем нет, отмечаем первый раз, когда кривая пересекла сферу, до этого момента уже пройдена указанная длина, а дальше только положительные числа прибавляются к длине. А с липшицевой эквивалентностью так: уменьшим окрестность, т.е. будем липшицеву эквивалентность утверждать не в шаре радиуса ρ , а в шаре меньшего радиуса, например, $\rho c/3C$. Тогда нашим кривым уже невыгодно идти наружу, их длины будут больше, чем длины обычного отрезка, то есть инфимум можно смело брать только по кривым в этой окрестности. Теперь мы точно победили :)

Упражнение: существует карта в окрестности точки x (где x соответствует нулю), т.ч. в этой карте $\frac{d(p,q)_R}{d(p,q)_e} \to 1$ при $p,q \to x$ (в первом порядке метрики совпадают).

Def. 4.8. <u>Изометрия римановых многообразий</u> — диффеоморфизм $f: M \to N$, сохраняющий скалярное (риманово) произведение, то есть биекция, гладкая в обе стороны и $\forall p \in M, \forall v, w \in T_pM, \langle d_pf(v), d_p(f_w) \rangle_{f(p) \in N} = \langle v, w \rangle_{p \in M}$.

У нас появилось два понятия изометрии: в общей топологии и это. На самом деле,

Упражнение: Если $f: M \to N$ — диффеоморфизм, сохраняющий расстояния, то он сохраняет скалярное произведение (то есть изометрия в нашем новом смысле).

Но это не всё: если есть теоретико-множественная биекция, сохраняющая расстояния, она окажется гладкой автоматически (это всё, что после упражнения останется понять для "эквивалентности" двух определений, но этот факт — не упражнение, он сложный).

Упражнение: Пусть g_1, g_2 — две римановы метрики, и случилось, что расстояния совпали (т.е. $d_{g_1} = d_{g_2}$). Тогда $g_1 = g_2$.

Свойство: Пусть M_1, M_2 — многообразия, f — диффеоморфизм, r_1, r_2 — поверхности $(U \to M_i)$, и диаграмма коммутативна, т.е. $r_2 = f \circ r_1$ (картинка называется "координаты r_1 и r_2 согласованы относительно отображения f", например: были декартовы координаты на плоскости, и мы свернули плоскость в цилиндр). Утверждается, что f — изометрия $\iff I_{r_1} = I_{r_2}$.

Рассмотрим пример с цилиндром и плоскостью, и докажем, что локально они изометричны. Построим $f: \mathbb{R}^2 \to M \subset \mathbb{R}^3$ $(M - цилиндр), f(x,y) = (x,\cos y,\sin y)$ (наматываем), $f'_x = (1,0,0), f'_y = (0,-\sin y,\cos y), I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ — совпала с первой формой плоскости при тождественной параметризацией, значит, f было изометрией.

Упражнение: любая цилиндрическая поверхность (это когда мы на плоскости рисуем произвольную простую гладкую кривую и через каждую точку проводим прямую, перпендикулярную плоскости) локально изометрична \mathbb{R}^2 в смысле этих римановых определений.

А мы разберём ещё один <u>пример</u> — конус общего вида. Он получается так: мы берём сферу и любую простую регулярную кривую на ней, из центра сферы, через каждую точку кривой, проводим луч, центр выкалываем. Утверждается, что это, во-первых, гладкая поверхность, во-вторых, локально изометрична плоскости. Считаем, что $|\gamma'|=1, r: \mathbb{R}^2 \to \mathbb{R}^3, r(u,v)=u\gamma(v)$ (параметризация). Видно, что это гладкое отображение. $r'_u(u,v)=\gamma(v), r'_v(u,v)=u\gamma'(v)$. Это радиальный вектор и вектор, касающийся кривой (то есть сферы, то есть они ортогональны, то есть линейно независимы). Но даже не проверив их линейную независимость, мы имеет право посчитать первую форму, давайте это сделаем. $E=\langle r_u,r_u\rangle=|r'_u|^2=|\gamma(v)|^2=1$, так как γ — кривая на сфере. $F=\langle r'_u,r'_v\rangle=u\langle\gamma(v),\gamma'(v)\rangle=0$. Наконец, $G=|r'_v|^2=u^2|\gamma'|^2=u^2$. Итого, $I=\begin{pmatrix}1&0\\0&u^2\end{pmatrix}$.

Заметим, что такая же первая форма была у плоскости в полярный координатах. Но главное, что она получилась независимой от формы конуса.

Наконец, $S^2 \subset \mathbb{R}^3$ локально НЕ изометрична плоскости (поэтому не существует идеальный географических карт). Действительно: при локальной изометрии сохраняются расстояния, значит, маленькие окружности переходят с сферические окружности. Мы знаем, как устроено внутреннее расстояние на сфере, это угловое расстояние, поэтому будет просто обычная окружность, пусть в этой метрике длина окружности ρ . Но его внешний радиус — это $2\pi \sin \rho \neq 2\pi \rho$.

Def. 4.9. <u>Внутреннее</u> свойство (или численная характеристика, инвариант) — это свойство, которое сохраняется при изометриях.

4.3 Плоскость Лобачевского

Мы опишем модель Пуанкаре в полуплоскости.

Def. 4.10. <u>Плоскость Лобачевского</u> (гиперболическая плоскость) — риманово многообразие \mathbb{H}^2 , как множество $\mathbb{H}^2 = \{(x,y) \in \mathbb{R}^2; y > 0\}$, с метрикой $g_{ij}(x,y) = \frac{1}{y^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. То есть, для $v \in T_{(x,y)}\mathbb{H}^2$, $|v|_h = \frac{|v|_e}{y}$, аналогично, для кривой γ , $L_h(\gamma) = \int \frac{|\gamma'|_e}{y(t)} dt$.

Rem. Углы между касательными векторами (то есть углы между кривыми) на плоскости Лобачевского такие же, как и в обычной евклидовой плоскости, потому что матрицы скалярного произведения пропорциональны. Это очень удобно, потому что не надо уточнять, какой угол — евклидов или в смысле Лобачевского. Римановы метрики, обладающие таким свойством, называются конформными.

Изучим <u>изометрии \mathbb{H}^2 </u>. В частности, изометрии сохраняют углы, так что их нужно искать среди конформных отображений.

Th. 4.2. Горизонтальные параллельные переносы — изометрии \mathbb{H}^2 .

Доказательство. Очевидно: биекции, гладкие в обе стороны, евклидовы длины не меняются, высота (y-координата) не меняется.

Th. 4.3. Симметрии относительно вертикальных прямых — изометрии \mathbb{H}^2 .

Доказательство. Очевидно: биекции, гладкие в обе стороны, евклидовы длины не меняются, высота (y-координата) не меняется.

Th. 4.4. Евклидовы гомотетии с положительным коэффициентом и с центром на абсолюте — изометрии \mathbb{H}^2 .

Доказательство. Достаточно рассмотреть гомотетии с центром в нуле, остальные случаи сводятся в этому с помощью горизонтального параллельного переноса. Пусть f — гомотетия с центром в нуле и коэффициентом k>0. $v\in T_{(x,y)}\mathbb{H}^2,\ |v|_h=\frac{|v|_e}{y},$ $f(x,y)=(kx,ky),\ d_{(x,y)}f(v)=kv,\ |df(x)|_h=\frac{|kv|_e}{ky}=\frac{|v|_h}{y}.$

Th. 4.5. Инверсии с центром на абсолюте — изометрии \mathbb{H}^2 .

Доказательство. Не умаляя общности, можно считать, что центр инверсии в нуле, а радиус — 1. Тогда в комплексных координатах, $z\mapsto \frac{1}{z}$. Надо продифференцировать. Пусть f=1/z, $\overline{f}=1/\overline{z}$. $d_z f(v)=f'(z)v$, где f'(z) — комплексная производная, а умножение — умножение комплексных чисел. Причины, по которым это одно и то же такие же, как и для вещественного случая. Можно не пользоваться комплексными числами, а написать $\overline{f}(x,y)=(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2})$, но мы воспользуемся. $f'(z)=\frac{-1}{z^2},\,d_z f(v)=\frac{-v}{z^2},\,d_z \overline{f}(v)=-\overline{\left(\frac{v}{z^2}\right)}.\,|d_z \overline{f}(v)|_e=\frac{|v|_e}{|z|_e^2}.$ Как мы видим, эффект тот же самый — и евклидова длина, и y-координата делятся на $|z|_e^2$.

На самом деле, кроме этих примеров и их композиций, изометрий больше нет, но доказывать мы это не будем.

Def. 4.11. Элементарные движения \mathbb{H}^2 — эти четыре вида изометрий. Просто движения — это всевозможные композиции элементарных.

Def. 4.12. <u>Отрезок</u> в метрическом пространстве — подмножество, изометричное отрезку на прямой. Аналогично прямая в метрическом пространстве, луч.

Rem. Отрезки есть далеко не в каждом метрическом пространстве. Например, если на сфере расстояния мерить внешним образом, не будет ни одной тройки точек, для которых выполнялось бы неравенство треугольника. А если внутренним (угловым) — то отрезки будут, и это будут дуги больших кругов.

Th. 4.6. Прямые на плоскости Лобачевского — это в точности вертикальные лучи и полуокружности (в евклидовом смысле) с центром на абсолюте. Отрезки — компактные интервалы прямых и только они.

Доказательство. Сначала докажем, что указанные объекты действительно являются прямыми и отрезками соответственно, а потом докажем, что других нет. Рассмотрим точки $p = (0, y_1), q = (0, y_2)$.

Lm. 4.7. Вертикальный отрезок — кратчайшая кусочно-гладкая кривая в плоскости Лобачевского, соединяющая p u q, причем единственная, c точностью до замены параметра.

Доказательство. Пусть $\gamma(t)=(x(t),y(t)),\ L_h(\gamma)=\int_a^b \frac{\sqrt{x'^2+y'^2}}{y}\geq \int_a^b \frac{\sqrt{y'^2}}{y}=\int_a^b \frac{|y'|}{y}\geq \int_a^b \frac{y'}{y}=\int_a^b (\ln y)'=\ln y_2-\ln y_1.$ Получили нечто, независящее от кривой. Для вертикально отрезка достигается равенство в этой оценке. Заметим, что равенство достигается $\iff x'=0,y'\geq 0,$ то есть единственность тоже поняли.

 $\gamma(t)=(0,e^t)$, где $t\in [\ln y_1, \ln y_2], |\gamma'|_h=1$, таким образом, γ — изометрия, итого, мы доказали, что отрезок является отрезком в смысле плоскости Лобачевского. Рассмотрим $\gamma(t)=(0,e^t):\mathbb{R}\to\mathbb{H}^2$, это изометрия, что мы уже поняли, поэтому вертикальный луч является прямой.

Теперь подумаем про окружности. Возьмём инверсию (они изометрии!), луч перейдёт в полуокружность, и наоборот, любая полуокружность получается таким образом, аналогично про дуги. Доказали без вычислений и радуемся.

Осталось понять, что других нет. Для любых двух точек существует изометрия, которая переводит их на вертикальный луч, поэтому если мы докажем, что для двух точек вертикальный отрезок — это единственный отрезок с такими концами, мы достигнем цели. Докажем, что для всех точек, кроме точек вертикального отрезка между нашими двумя p,q, неравенство треугольника с p и q строгое (это так на обычной прямой, поэтому должно быть так и для отрезка в смысле Лобачевского). Рассмотрим $x \notin [p,q]$, точки p и x соединяются кратчайшей кривой — это дуга соответствующей окружности. Точки q и x тоже соединяются кратчайшей кривой, дугой окружности. Их длины в смысле римановой метрики — это расстояния между концами. Составим кусочно-гладкую кривую из этих двух дуг. Так как это не отрезок, её длина строго больше длины отрезка. Значит, сумма расстояний — длин дуг строго больше расстояния между p и q, то есть в неравенстве треугольника строгое неравенство.

Упражнение: пусть есть простая гладкая кривая в римановом многообразии. Она является отрезком тогда и только тогда, когда она является кратчайшей кривой между своими концами (в одну строну мы уже доказали).

Несколько замечаний без доказательства.

Rem. Легко видеть, что пятый постулат нарушается. Всё остальное выполняется: аксиомы откладывания углов и т.д., это следует из большой группы движений.

Rem. Движения плоскости Лобачевского все вида $z\mapsto \frac{az+b}{cz+b}$ и $z\mapsto \frac{a\overline{z}+b}{c\overline{z}+d}$, но не все такие, а ровно половина (которые не меняют местами верхнюю и нижнюю полуплоскости), $a,b,c,d\in\mathbb{R}, ad-bc\neq 0$.

Rem. Есть и другие модели плоскости Лобачевского. Модель в круге: возьмём модель в полуплоскости, поставим точку вне верхней полуплоскости, сделаем инверсию с центром в этой точке, наша старая модель перейдёт в круг (радиус надо подобрать так, чтобы круг получился единичным), там тоже будет риманова метрика. Эта модель тоже будет конформной, отрезками будут дуги, ортогональные краю, движениями будут дробно-линейные преобразования, сохраняющие круг. В частности — поворот вокруг центра. В этой модели всё более наглядно. Есть и другая модель в круге (Клейна), прямыми там являются прямые отрезки-хорды. Существование этой модели гарантирует, что в плоскости Лобачевского верна теорема Дезарга и другие милые свойства.

4.4 Вторая квадратичная форма поверхности

Сходите в зоопарк, посмотрите на лошадь.

C.B.

Def. 4.13. (Вторая производная в точке) Пусть $U \subset \mathbb{R}^n$ — открытая область, $f: U \to \mathbb{R}$, $f \in C^\infty$, $p \in U$. Тогда $d_p^2 f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ — симметричная билинейная форма. $d_p^2 f(v,w) = d_p(x \mapsto d_x f(v))(w) = (f_v')_w'$, где f_v' — производная вдоль вектора. Симметричность по одной из теорем из анализа. На многообразии такого определения дать нельзя, потому что здесь требуется, чтобы можно было один и тот же вектор отложить от разных точек. И вообще определить вторую произвольную как билинейную форму на многообразии не получится. Можно сказать, что $f: M \to \mathbb{R}$, тогда $df: TM \to \mathbb{R}$, $d^2 f: TTM \to \mathbb{R}$, но это нам не пригодится.

Теперь мы будем рассматривать только поверхности коразмерности 1: пусть $M \subset \mathbb{R}^{m+1}$ — гладкое подмногообразие размерности m. Пусть $p \in M$, n — нормаль в точке p, то есть вектор $n \in \mathbb{R}^{m+1}$, |n| = 1, $n \perp T_p M$ (выберем и зафиксируем один из двух, дальше все рассматриваемые величины будут менять знак при смене направления нормали). Вспомним, что в окрестности точки p, M — график гладкой функции $T_p M \to (T_p M)^\perp = \mathbb{R}$ (отождествляем с помощью выбранной нормали, или можно сказать, что мы выбрали координаты: p = 0, $n = e_{m+1}$, $T_p M$ "горизонтально"). Тогда M — локально график $h: U \subset T_p M \to \mathbb{R}$. Что можно сказать про эту функцию: h(0) = 0, $d_0 h = 0$. Первое очевидно, второе поясним: рассмотрим параметризацию нашей поверхности $r: U \subset T_p M \to \mathbb{R}^{m+1}$, r(x) = (x, h(x)) — очевидно регулярная, потому что скомпозируем с проекцией на горизонтальную плоскость и получится тождественное отображение, то есть производная r остаётся инъективной даже после какой-то композиции с проекцией, значит до этого тем более. $T_0 M = Im d_0 r$, $d_0 r(v) = (v, d_0 h(v))$. Значит, $d_0 h(v)$ всегда ноль, иначе получилось бы, что касательная плоскость не горизонтальна.

Def. 4.14. Вторая квадратичная форма M в точке p — это симметричная билинейная форма $\overline{II} = II_p^M : T_pM \times T_pM \to \mathbb{R}, \ II(w_1,w_2) = d_p^2h(w_1,w_2) \forall w_1,w_2 \in T_pM$ (всё зависит от выбора нормали).

Def. 4.15. Пусть $w \in T_pM \setminus \{0\}$. <u>Кривизной M</u> в направлении w называется $II(\frac{w}{|w|}, \frac{w}{|w|}) = \frac{II(w,w)}{|w|^2}$.

Свойство: Пусть γ — сечение M плоскостью (w,n) (нормальное сечение), это кривая (пересечение трансверсально, или можно сказать, что поверхность — это график, и мы просто его сужаем). Утверждается, что кривизна M по направлению w — это кривизна κ_{γ} в точке p (с учётом направления нормали). Действительно, рассмотрим сужение функции, графиком которого является M, на прямую, порождённую w, который НУО единичный. Тогда мы увидим график функции $h: \mathbb{R} \to \mathbb{R}, \ y = h(x)$. Пусть $\gamma(t) = (t,h(t))$. $\kappa_{\gamma}(0) = \frac{[\gamma',\gamma'']}{|\gamma'|^3} = h''(0)$ (так как $h''(0) = \gamma''(0)$).

Def. 4.16. Пусть $v \to 0$. $h(v) = \frac{1}{2} d_p^2 h(v,v) + o(|v|^2) = \frac{1}{2} II(v,v) + o(|v|^2)$. Соприкасающийся параболоид M в точке p — график квадратичной формы $\frac{1}{2} II : T_p M \to \mathbb{R}$.

Пусть $m=2, M^2\subset \mathbb{R}^3$. Параболоид:

- 1) Эллиптический: $z=ax^2+by^2, ab>0\iff II>0$ или II<0 (он выпуклый, и поверхность тоже локально выпукла). Тогда $p-\underline{$ эллиптическая точка.
- 2) Гиперболический: $z=ax^2-by^2, a,b>0\iff II$ знакочередующаяся. Тогда p гиперболическая (седловая) точка.
- 3) Параболический цилиндр: $z=ax^2, a\neq 0\iff II$ вырождена и $\neq 0$. Тогда p параболическая точка.
- 4) Плоскость $z = 0 \iff II = 0$, тогда p точка уплощения.
- **Def. 4.17.** Пусть M гладкое многообразие, $f: M \to \mathbb{R}$ гладкая, $p \in M$ критическая точка, если $d_p f = 0$ $(d_p f: T_p M \to \mathbb{R})$.
- **Th. 4.8.** Пусть $p-\kappa p$ итическая точка гладкой функции $f:M\to\mathbb{R}$. Тогда можно определить $d_p^2 f$ как симметричную билинейную форму на $T_p M$. А именно, существует билинейная форма $B:T_p M\times T_p M\to\mathbb{R}$ ($B=d_p^2 f,B$ называется гессианом f в точке p), такая что
 - 1) Для любой кривой $\gamma: (-\varepsilon, \varepsilon) \to M$ т.ч. $\gamma(0) = p$, $(f(\gamma(t))''_{t=0} = B(\gamma'(0), \gamma'(0))$ (вторая производная как квадратичная форма равна второй производной вдоль любой кривой).
 - 2) Пусть w(t) гладкое касательное векторное поле вдоль γ , т.е. это гладкая функция $u \ w(t) \in T_{\gamma(t)} M. \ (d_{\gamma(t)} f(w(t)))'_{t=0} = B(w(0), \gamma'(0)).$

Доказательство. Ясно, что утверждение локально, поэтому всё многообразие можно заменить на область определения некоторой карты, то есть достаточно рассмотреть случай, когда $M=U\subset\mathbb{R}^m$ — открытое множество (область определения карты диффеоморфна области в \mathbb{R}^m). Тут определена вторая производная в смысле первого определения, положим $B=d_p^2f$. Докажем, что подходит. Заметим, что из (2) следует (1) (подставим $w(t)=\gamma'(t)$), поэтому доказываем только второе.

$$(d_{\gamma(t)}f(w(t)))'_{t=0} = (d_{\gamma(t)}f)'_{t=0}(w(0)) + d_p f(w'(0)) = d^2 f(\gamma'(0))(w(0)) + 0$$

Что происходит: $d_{\gamma}f(.)$ — это матрица-строка, зависящая от времени, w(t) — переменный вектор, мы их скалярно перемножаем и дифференцируем по обычной формуле. Второе слагаемое нулевое, так как точка критическая, первое — в точности вторая производная по определению.

Th. 4.9. $M^m \subset \mathbb{R}^{m+1}$ (гиперповерхность), $p \in M, n$ — выбранная нормаль. Рассмотрим функцию $f: M \to \mathbb{R}$, $f(x) = \langle x, n \rangle$. Мы рассматриваем её только на поверхности, так что по сути это проекция на вертикальную ось. Тогда $II_p^M = d_p^2 f$.

Доказательство. Очевидно, точка p критическая: рассмотрим F-f на всём пространстве $(f=F|_M)$. Это линейная функция $F:\mathbb{R}^{m+1}\to\mathbb{R}, F=\langle .,n\rangle$, значит $d_pf=d_pF|_{T_pM}=\langle .,n\rangle|_{T_pM}=0$. Теперь достаточно проверить, что для любого вектора $w\in T_pM$, $II(w,w)=d_p^2f(w)$. Пусть h- координатное представление f. НУО p=0. $\gamma(t)=(tw,h(tw)),\ f(\gamma(t))=h(tw)$. По первому пункту предыдущей теоремы, $d_p^2f(w,w)=(f(\gamma(t)))_{t=0}'=(h(tw))_{t=0}''=d_0^2h(w,w)=II(w,w)$.

Есть концептуальный путь: давайте заметим, что h — координатное представление f, где в качестве карты взята проекция на горизонтальную плоскость, то есть маленький кусочек поверхности диффеоморфен кусочку касательного пространства этим отображением, значит вторая производная переходит во вторую производную (действительно, в двух частях равенства написаны вторые производные f и h соответственно, и это по сути одна и та же функция).

Def. 4.18. Пусть γ — натурально параметризованная кривая на поверхности $M^m \subset \mathbb{R}^{m+1}$, $\gamma(0) = p$. Нормальная кривизна γ в точке t = 0 $\kappa_n = \langle \gamma''(0), n_M \rangle = \kappa_\gamma \langle n_\gamma, n_M \rangle = \kappa_\gamma \cdot \cos(\angle(n_\gamma, n_M))$ (с момента, когда говорим главной нормали, считаем, что $\kappa_\gamma \neq 0$). Нормальная кривизна не натурально параметризованной кривой — нормальная кривизна её натуральной параметризации.

Th. 4.10. (Теорема Менье) $\kappa_n = \frac{II(\gamma', \gamma')}{|\gamma'|^2}$.

Cor. 4.10.1. $|\kappa_n| \leq \kappa_{\gamma}$

Доказательство. Считаем, что кривая натурально параметризованная.

$$II(\gamma', \gamma') = (f \circ \gamma)_0'' =$$

f — линейная во всём пространстве функция, суженная на поверхность.

$$=\langle \gamma(t), n \rangle_{t=0}^{"} = \langle \gamma^{"}(0), n \rangle = \kappa_n$$

Cor. 4.10.2. $\frac{II(\gamma',\gamma')}{|\gamma'|^2} = \kappa_{\gamma} \cdot \cos(\angle(n_{\gamma},n_M))$

Def. 4.19. $U \subset \mathbb{R}^m, r: U \to \mathbb{R}^{m+1}$ — регулярная поверхность. $u \in U$. Вторая форма r в точке $u: II_u^r$ — симметричная билинейная форма на $\mathbb{R}^m, II_u^r(w_1, w_2) = \langle d_u^2 r(w_1, w_2), n \rangle, w_1, w_2 \in \mathbb{R}^m, d_u^2 r(w_1, w_2) \in \mathbb{R}^{m+1}, n$ — нормаль к Imd_u^r . Матрица такой координатной второй формы будет обозначаться (h_{ij}) , а при m=2 есть введённые Гауссом обозначения $\begin{pmatrix} L & M \\ M & N \end{pmatrix}$. Обычно начинают с этого определения, но из него не виден никакой геометрический смысл.

Поймём, что это одно и то же.

Th. 4.11. $II_u^r(w_1, w_2) = II_{r(u)}^M(d_u r(w_1), d_u r(w_2))$, где M = r(U'), U' - mакая окрестность u, что $r|_{U'} - n$ ростая).

Rem. Так почему мы сказали, что это "одно и то же"? У нас есть поверхность M, но изучать её мы можем только с помощью параметризации r. Отображение r даёт нам биекцию между точками поверхности и точками плоскости. А ещё есть $d_u r$ — биекция: $\mathbb{R}^m \to T_p M$, поэтому все структуры, которые живут на касательной плоскости, переносятся в \mathbb{R}^m . Как? Вот, например, вторая форма: её значение на двух векторах равно значению на двух соответствующих векторах. Как следствие, $h_{ij} = II^M(r'_{u_i}, r'_{u_j})$, $u = (u_1, \ldots, u_m), \ r'_{u_i} = \frac{\partial r}{\partial u_i}$ — образы базисных векторов в \mathbb{R}^m , образуют базис касательного пространства.

 $\begin{subarray}{ll} \mathcal{A}оказательство: r — диффеоморфизм, обе части — гессианы соответствующих функций. \end{subarray}$

Более подробно: достаточно проверить для квадратичной формы, соответствующей II. Пусть $\widehat{w} = d_u r(w)$. Надо проверить:

$$II^{r}(w, w) = II^{M}(\widehat{w}, \widehat{w})$$

Рассмотрим кривую $\gamma(t) = u + tw$ (в координатной области это прямая). Обозначим $\widehat{\gamma}(t) = r(\gamma(t))$. $d_u^2 r(w, w) = \widehat{\gamma}''(0)$. Пусть $f = \langle ., n \rangle|_M$. Значит,

$$II_{u}^{r}(w,w) = \langle \widehat{\gamma}''(0), n \rangle = \langle \widehat{\gamma}(t), n \rangle'' = d_{p}^{2} f(\widehat{\gamma}'(0), \widehat{\gamma}'(0)) =$$
$$= d_{p}^{2} f(\widehat{w}, \widehat{w}) = II(\widehat{w}, \widehat{w})$$

Пояснение к предпоследнему переходу для тупящих так же сильно, как автор конспекта, это производная композиции: $\hat{\gamma}'(0) = (r(\gamma(0))' = d_{\gamma(0)}r(\gamma'(0)) = d_ur(w) = \widehat{w}$.

4.5 Гауссово отображение

Def. 4.20. $M^m \subset \mathbb{R}^{m+1}$. Гауссово отображение M — гладкое $n=n_M: M \to S^m \subset \mathbb{R}^{m+1}$ (сфера единичная) т.ч. $\forall p \in M, n(p) \perp T_p M$. То же самое для параметризованной поверхности: пусть $r: U \to \mathbb{R}^{n+1}$ — регулярная поверхность. Гауссово отображение — гладкое $n=n_r: U \to S_m$: $\forall u \in U, n(u) \perp Imd_u r$.

Свойства.

- 1) n_M существует $\iff M$ ориентированно.
- 2) Если M ориентированно и связно, то n_M определено однозначно с точностью до (глобального) \pm .

3) n_r всегда существует, определен с точностью до \pm (область определения тоже считаем связной).

Доказательство. Давайте поймём, почему это всё так. Временно забудем, что мы хотим получить гладкое отображение, будем говорить про непрерывное. Первое утверждение: пусть есть гауссово отображение, тогда ориентацию произвольного базиса в $T_n M$ определим как ориентацию базиса в \mathbb{R}^{m+1} с приписанной к старому базису нормалью. Обратно, пусть задана ориентация, тогда можно выбрать одну из двух нормалей так, чтобы всегда получался правильно ориентированный базис. Понятно, что если там будет непрерывно, то и тут, и обратно. Второе утверждение: очевидно по модулю первого, см. перенос ориентации вдоль пути или какие-то следствия из него. Третье утверждение: ну, локально все многообразия ориентируемы, тут это и сказано, $(r'_{n_1},\ldots,r'_{n_m},n_r)$ — правильно ориентированный базис в \mathbb{R}^{m+1} . Осталось разобраться с гладкостью. Для этого надо как-то записать гауссово отображение алгебраической формулой. Есть два пути. Первый — это вспомнить обобщённое векторное произведение. Второй — выберем в какой-то точке нормаль и сделаем из неё постоянное векторное поле, которое, очевидно, гладкое, после чего в каждой точке применим ортогонализацию по ГШ, она, конечно, переводит гладкие и гладкие, см. что в ней происходит, собственно (алгебраические формулы и будут).

Итак, $n: M \to S^m \subset \mathbb{R}^{m+1}$, $p \in M$. $d_p n: T_p M \to T_{n(p)} S^m$. Заметим, гиперплоскости $T_p M$ и $T_{n(p)} S^m$ в аффинном смысле параллельны, а в линейном, соответственно, совпадают.

Def. 4.21. Оператор Вейнгартена (M) в точке p, и нормаль тоже выбрана, это мы перестанем упоминать) — линейное отображение $S: T_pM \to T_pM$, $S(w) = -d_pn(w)$. S ещё называют оператор формы поверхности (что является двусмысленным переводом shape operator).

Th. 4.12.
$$II^{M}(w_1, w_2) = \langle S(w_1), w_2 \rangle \ \forall w_1, w_2 \in T_pM$$
.

Доказательство. Пусть γ — кривая на M, т.ч. $\gamma(0)=p,\gamma'(0)=w_1$. Продолжим w_2 до касательного векторного поля вдоль γ , т.е. $w_2(t)\in T_{\gamma(t)},\ w_2(0)=w_2$. Тогда $n(\gamma(t))\perp w_2(t)$. Запишем это условие в виде скалярного произведения и продифференцируем в нуле.

$$\langle n(\gamma(t)), w_2(t) \rangle = 0$$

$$\langle n(\gamma(t))'_{t=0}, w_2 \rangle + \langle n(p), w'_2(t)_{t=0} \rangle = 0$$

По второму пункту теоремы 4.8 (про гессиан) с $f = \langle ., n(p) \rangle$,

$$\langle n(p), w_2'(t)_{t=0} \rangle = \langle n(p), w_2(t)_{t=0} \rangle' = II(\gamma'(0), w_2(0)) = II(w_1, w_2)$$

С первым слагаемым ещё проще:

$$\langle n(\gamma(t))'_{t=0}, w_2 \rangle = \langle d_{\gamma}(0)n(\gamma'(0)), w_2 \rangle = \langle d_p n(w_1), w_2 \rangle = -\langle S(w_1), w_2 \rangle$$

Cor. 4.12.1. S самосопряжённый, т.е. $\langle S(w_1), w_2 \rangle = \langle w_1, S(w_2) \rangle$.

Cor. 4.12.2. Для регулярной поверхности $r: U \subset \mathbb{R}^m \to \mathbb{R}^{m+1}$, $II_u^r(w_1, w_2) = -\langle d_u n_r(w_1), d_u r(w_2) \rangle$.

Доказательство. По последней теореме из предыдущего параграфа, $II_u^r(w_1, w_2) = II_{r(u)}^M(d_ur(w_1), d_ur(w_2)) =$, по только что доказанной теореме, $\langle -d_{r(u)}n_w(d_ur(w_1)), d_ur(w_1) \rangle$. Но $n_r = n_M \circ r$, то есть $dn_r = dn_M \circ dr$, так что мы получили именно то, что написано в условии.

Таким образом, кратко можно записать, что $II = -\langle dr, dn \rangle$, $I = \langle dr, dr \rangle$.

Cor. 4.12.3. Пусть [V] — это матрица оператора V (обозначение). Тогда для любого базиса T_pM [II] = [I][S]. Если базис ортонормированный (в одной точке), то [II] = [S].

Доказательство. Второе утверждение (частный случай) понятно даже само по себе: пусть v_1, \ldots, v_n — ортонормированный, элементы матрицы II — это $II(v_i, v_j) = \langle S(v_i), v_j \rangle$, что есть, так как базис ортонормированный, j-ая компонента вектора $S(v_i)$, т.е. элемент матрицы оператора S. Теперь поймём в общем случае. $II(\xi, \eta) = \xi^T[II]\eta$. С другой стороны, $II(\xi, \eta) = \langle S(\xi), \eta \rangle = I(S(\xi), \eta) = \xi^T[I]S\eta = \xi[I][S]\eta$ для любых двух касательных векторов ξ, η .

- **Def. 4.22.** $M^m \subset \mathbb{R}^{m+1}$, $p \in M$, $w \in T_pM \setminus \{0\}$ называется <u>главным направлением</u>, если w является собственным числом S. Собственное число κ , соответствующее главному направление w называется <u>главной кривизной</u>, соответствующее этому главному направлениею: $S(w) = \kappa w$.
- **Th. 4.13.** 1) Все собственные числа S (верно для любого самосопряжённого oneратора, но нам нужно только для S) вещественные.
 - 2) Существует хотя бы один ортонормированный базис из собственных векторов.

Доказательство. Рассмотрим билинейную симметричную форму $\langle u, S(v) \rangle$ (симметричность следует из самосопряжённости). Мы знаем, что для любой симметрической билинейной формы можно выбрать ортонормированный базис, в котором её матрица была бы диагональной, т.е. $\langle u_i, S(u_j) \rangle = 0, \langle u_i, S(u_i) \rangle = \kappa_i$. Зафиксируем j, что такое $S(u_j)$? Это вектор, ортогональный всем $u_i, i \neq j$, значит, он коллинеарен u_j , тогда и получаем, что $S(u_i) = \kappa_i u_i$. Эти собственные числа вещественны по построению, а других нет, потому что нашли базис из собственных векторов с такими собственными числами.

Таким образом получаем, что если $w=(x_1,\ldots,x_m),\ II(w,w)=\kappa_1x_1^2+\cdots+\kappa_mx_m^2$. Вообще, получили, что существует ортонормированный базис в T_pM , т.ч. II — диагональная матрица, у которой на диагонали стоят κ_i .

В размерности 2 есть два случая:

- 1) $\kappa_1 \neq \kappa_2$, тогда существует ровно 2 собственных направления и они ортогональны (с точностью до \pm).
- 2) Либо $\kappa_1 = \kappa_2$, тогда все направления главные (оператор просто гомотетия), тогда такая точка p называется умбилической.

Th. 4.14. (Родрига)

- 1) Пусть $w \in T_pM \setminus \{0\}$. $dn(w)||w \iff w$ главное направление. При этом $dn(w) = -\kappa w$, где κ главная кривизна.
- 2) Пусть $p = r(u), w \in \mathbb{R}^m \setminus \{0\}$. $dn(w)||dr(w) \iff dr(w)$ главное направление. При этом $dn(w) = -\kappa dr(w)$, где κ главная кривизна.

Доказательство. Очевидно (да, сложный прекол, а не теорема, первый пункт — вообще определение). \Box

Def. 4.23. Линия кривизны — такая кривая γ на поверхности, что $\forall t, \gamma'(t)$ — главное направление M в точке $\gamma(t)$.

Свойство: γ — линия кривизны $\iff \forall t \gamma'(t) || n(\gamma(t))'.$

Th. 4.15. Пусть $M^2 \subset \mathbb{R}^3$ — связно $u \ \forall p \in M, \ \kappa_1(p) = \kappa_2(p) = 1.$ Тогда M — подмножество единичной сферы (обратно, конечно, тоже верно).

Доказательство. Рассмотрим $f: M \to \mathbb{R}^3, \ f(x) = x + n(x)$ (нормаль, как обычно, выбрана и зафиксирована). Продифференцируем f по любому направлению. $d_x f(w) = w + d_x n(w) = w + S(w) = 0$, значит f постоянна, откуда очевидно, что M лежит на единичной сфере.

Пример. Возьмём поверхность вращения $\gamma(t)=(x(t),y(t)),\ y(t)>0$ и посчитаем всё. γ — линия кривизны (рассмотрим нормаль "на краю", $n_M=n_\gamma.\ n'(t)=-\kappa_\gamma\gamma'\Rightarrow\gamma$ — линия кривизны, $\kappa_1=\kappa_\gamma.$), то же самое получается для линий, полученных из γ поворотом. Окружности-параллели — тоже линии кривизны. Осталось найти их кривизну. $\kappa_{circ}=\frac{1}{y(t)},\ \kappa_2=\kappa_n(circ)=\frac{1}{y(t)}\cos\angle(\gamma'(t),e_1)=\frac{-x'}{y(t)\sqrt{x'^2+y'^2}}.$ Получаем, что

$$I = \begin{pmatrix} |\gamma'|^2 & 0 \\ 0 & \frac{1}{u^2} \end{pmatrix}, II = \begin{pmatrix} \kappa_1 |\gamma'|^2 & 0 \\ 0 & \frac{\kappa_2}{u^2} \end{pmatrix}.$$

Th. 4.16. (Эйлера) Пусть $M^2 \subset \mathbb{R}^3$, $p \in M$, $w \in T_pM$, |w| = 1. Пусть $\alpha = \angle(w, 1 - e)$ главное направление). Тогда $II(w, w) = \kappa_1 \cos^2 \alpha + \kappa_2 \sin^2 \alpha$.

Доказательство. Это просто формула матрицы квадратичной формы в базисе $v_1, v_2,$ $II = \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}, II(w, w) = \kappa_1 x^2 + \kappa_2 y^2.$

Cor. 4.16.1. κ_1 и κ_2 — максимальная и минимальная кривизна поверхности по направлению w в данной точке.

Доказательство. II — их выпуклая комбинация.

Th. 4.17. Главные кривизны — корни уравнения $\det(II - tI) = 0$ относительно t.

Доказательство. В хорошем ортонормированном базисе I единичная, а II диагональная с κ_i на диагонали, так что утверждение теоремы верно. Теперь перейдём в другой базис. Пусть A — матрица перехода, $\widetilde{I} = A^T I A$, $\widetilde{II} = A^T I I A$ — новые матрицы (у нас билинейные формы, поэтому там A^T , а не A^{-1}). Тогда $\widetilde{II} - t\widetilde{I} = A^T (II - tI) A \Rightarrow \det(\widetilde{II} - t\widetilde{I}) = \det(A^T) \det(A) \det(II - tI)$, где $\det A^T$ и $\det A$ равны и не равны нулю. \square

4.6 Гауссова и средняя кривизна

Дело происходит при $m=2, M^2 \subset \mathbb{R}^3$.

Def. 4.24. Средняя кривизна (поверхности в точке) — это $H = \frac{\kappa_1 + \kappa_2}{2}$.

Упражнение. $\forall v_1, v_2, \ v_1 \perp v_2, \ |v_1| = |v_2|, \ H = \frac{II(v_1, v_1) + II(v_2, v_2)}{2}.$

Def. 4.25. Гауссова кривизна $K = \kappa_1 \kappa_2$.

Rem. Таким образом, главные кривизны (с точностью до порядка) определяются по теореме Виета как корни уравнения $t^2-2Ht+K=0$. С другой стороны, $I=\begin{pmatrix}E&F\\F&G\end{pmatrix}, II=\begin{pmatrix}L&M\\M&N\end{pmatrix}$. Главные кривизны — это корни уравнения

$$\det(II - tI) = \begin{pmatrix} L - tE & M - tF \\ M - tF & N - tG \end{pmatrix} = t^2 \det(I) - (EN + GL - 2FM)t + \det(II) = 0$$

Таким образом, $K = \frac{\det(II)}{\det(I)}, H = \frac{EN + GL - 2FM}{2\det(I)}.$

 $K>0\iff$ точка эллиптическая, $\kappa<0\iff$ точка седловая, $\kappa=0\iff$ точка параболическая или планарная.

Упражнение. Главные направления в координатах — нулевые подпространства $II-\kappa_iI$.

Cor. 4.17.1. $K, H \in C^{\infty}$ (κ_1, κ_2 только непрерывны).

4.7 Кривые на поверхностях

Всё ещё в $M^2\subset\mathbb{R}^3$ и ещё зафиксируем ориентацию. Пусть $\gamma:[a,b]\to M$ — натурально параметризованная, $v(t)=\gamma'(t),\ w=w(t)\in T_{\gamma(t)}(M),\ |w|=1,w\perp v,$ т.ч. (v,w) — правильно ориентированный базис касательного пространства. $n=n_M,\ \kappa_n$ — нормальная кривизна, т.е. $\kappa_n=\langle \gamma'',n\rangle=\langle v',n\rangle$ и $\kappa_n=II(v,v)$ по теореме Менье.

Def. 4.26. Геодезическая кривизна γ — это $\kappa_g = \langle v', w \rangle$.

Rem.
$$\gamma'' = v' = \kappa_g w + \kappa_n n$$
, $\kappa_{\gamma} = \sqrt{\kappa_n^2 + \kappa_g^2}$.

Def. 4.27. Геодезическое кручение γ — это $\tau_g = II(v,w)$ (тоже зависит только от направления).

Th. 4.18.
$$v' = \kappa_q w + \kappa_n n, w' = -\kappa_q v + \tau_q n, n' = -\kappa_n v - \tau_q w$$

Доказательство. Первое уже поняли, это просто разложение по базису и определение. Второе: $0 = \langle v, w \rangle' = \langle v', w \rangle + \langle w', v \rangle \Rightarrow \langle w', v \rangle = -\kappa_g$. Третье: $0 = \langle n, v \rangle' = \langle n', v \rangle + \langle v', n \rangle \Rightarrow \langle n', v \rangle = -\kappa_n$. $\langle n', w \rangle = \langle dn(v), w \rangle = -\langle S(v), w \rangle = -II(v, w) = -\tau_g$.

Свойство: γ — линия кривизны $\iff \tau_q = 0$ (см. последнюю из доказанных формул).

Def. 4.28. γ называется асимптотической линией, если $\kappa_n = 0 \iff II(\gamma', \gamma') = 0 \iff n_{\gamma} \in TM$.

Свойство. Если K>0, то не существует асимптотических линий, если K<0, то через каждую точку проходит ровно две.

Def. 4.29. γ — геодезическая (линия), если её $\kappa_g = 0$ ($\iff \gamma'' \perp TM \iff n_{\gamma} = \pm n_M$.

4.8 Символы Кристоффеля

Как символ картофеля, но Кристоффеля.

C.B.

Возвращаемся в произвольную размерность. Пусть имеется поверхность $M^m \subset \mathbb{R}^N, \ M = r(U), U \subset \mathbb{R}^m, \ X_1, \dots, X_m \in TM$ — касательные векторные поля, $X_i = r'_{u_i}, u = (u_1, \dots, u_m), \ i, j \in \{1, \dots, m\}, \ p = r(u), \ \Gamma_{ij} = pr_{TM}(r''_{u_iu_j}) = pr_{TM}((X_i)'_{u_j}).$

Def. 4.30. Символы Кристоффеля второго рода — координаты разложения Γ_{ij} по базису $\{X_k\}$, обозначение: $\Gamma_{ij,k}$.

$$\Gamma_{ij} = \sum_{k=1}^{m} \Gamma_{ij,k} X_k$$

Символы Кристоффеля первого рода: $\Gamma_{ij}^k = \langle \Gamma_{ij}, X_k \rangle$.

Th. 4.19. Символы Кристоффеля выражаются (с помощью арифметических операций) через g_{ij} (элементы матрицы первой формы) и их производные.

Доказательство.

$$\Gamma_{ij}^k = \langle T_{ij}, X_k \rangle = \langle \sum_{l=1}^m \Gamma_{ij,l} X_l, X_k \rangle = \sum_{l=1}^m \Gamma_{ij,l} g_{lk}$$

Итого мы получили, что символы Кристоффеля второго рода задаются системой линейных уравнений от символов Кристоффеля второго рода с матрицей g_{lk} , которая, будучи матрицей скалярного произведения, является невырожденной.

Выразим символы Кристоффеля первого рода через первую форму (после этого доказывать будет нечего, так как как выражаются символы второго рода мы уже поняли, и это обратимое преобразование):

$$(g_{ij})'_{u_k} = \langle r'_{u_i}, r'_{u_j} \rangle'_{u_k} = \langle r''_{u_i u_k}, r'_{u_j} \rangle + \langle r''_{u_j u_k}, r'_{u_i} \rangle =$$

$$= \langle \Gamma_{ik}, r_{u_j} \rangle + \langle \Gamma_{jk}, r_{u_i} \rangle = \Gamma^j_{ik} + \Gamma^i_{jk}$$

Таким образом,

$$2\Gamma_{ij}^{k} = -(\Gamma_{ik}^{j} + \Gamma_{ij}^{i}) + (\Gamma_{ij}^{k} + \Gamma_{jk}^{i}) + (\Gamma_{ij}^{k} + \Gamma_{ik}^{j}) = (g_{ik})'_{u_{i}} + (g_{ik})'_{u_{i}} - (g_{ij})'_{u_{k}}$$

Th. 4.20. Поверхность размерности m в \mathbb{R}^{m+1} определяется своей первой и второй формами однозначно с точностью до движения. Иными словами, пусть $U \subset \mathbb{R}^m$, $r, \widetilde{r}: U \to \mathbb{R}^{m+1}$ — регулярные поверхности, и $\forall u \in U$, $I_u = \widetilde{I_u}$, $II_u = \widetilde{II_u}$. Тогда существует движение $F: \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$, m.u. $r = F \circ \widetilde{r}$.

Доказательство. Пусть $X_i = r'_{u_i}$. Найдём движение F т.ч. $p = r(u_0), F(\widetilde{u_0}) = r(u_0), \overrightarrow{F}(\widetilde{X_i(u_0)}) = X_i(u_0)$ (совместили в одной точке и базисы в этой точке, можно так сделать, так как первые формы там совпадают). Заменим теперь \widetilde{r} на $F \circ \widetilde{r}$ и докажем, что \widetilde{r} и r совпали.

$$(X_i)'_{u_j} = \Gamma_{ij} + II(X_i, X_j)n =$$

(разложили по касательной и нормальной компонентам)

$$\sum_{k} \Gamma_{ij,k} X_k + h_{ij} n$$

Пусть матрица оператора Вейнгартена в базисе X_i — это (a_{ij}) . Тогда,

$$n'_{u_j} = -S(X_j) = -\sum_k a_j k X_k$$

62

Для "волн" можно написать всё то же самое: над иксами и n появятся волны, а числовые коэффициенты останутся теми же, поскольку совпадают первая и вторая форма, а значит и оператора Вейнгартена ($[S] = [I]^{-1}[II]$). Итого, мы получили (при сужении на каждую прямую u_k) линейную систему диффуров иксов и нормали: $(X_1, \ldots, X_m, n)'_{u_k} = (x_1, \ldots, x_m, n) \cdot$ (какая-то матрица, не важно). Начальные данные совпадают в u_0 , потому что мы так сделали, значит в любой точке $u \in U$ все частные производные r и \tilde{r} совпадают, что значит, что они совпадают с точностью до прибавления константы, но и константу мы запретили, совместив в одной точке.

Rem. Существования в этой теореме не утверждается. Например, у системы $f_x'=0, f_y'=x$ нет решений, т.к. $0=f_{xy}''=f_{yx}''=1$, противоречие.

4.9 Теорема Гаусса (Theorema Egregium)

Возвращаемся в $M^2 \subset \mathbb{R}^3$.

- **Th. 4.21.** 1) У изометричных поверхностей гауссова кривизна K в соответствующих точках одинакова (внутренний инвариант).
 - 2) Гауссова кривизна выражается алгебраической формулой через $(g_{ij}, g'_{ij}, g''_{ij})$.

Обозначения: $r: U \subset \mathbb{R}^2 \to \mathbb{R}^3$, $U = \{u, v\}$, $r_u = r'_u, r_v = r'_v$. Пусть w — касательное векторное поле вдоль $r, w: U \to \mathbb{R}^3$, $w(u, v) \in T_{r(u,v)}M$. $\nabla_u w = pr_{TM}(w'_u)$, $\nabla_v w = pr_{TM}(w'_v)$.

Свойства:

- 1) $\Gamma_{ij} = \nabla_{u_i} r_{u_j}$
- 2) ∇ линейна по w.
- 3) $f: U \to \mathbb{R}, \nabla_u(fw) = f'_u w + f \nabla_u w$ (почему это так: надо взять обычную производную, а потом взять проекцию).

Теперь пусть $R(w) = \nabla_u \nabla_v w - \nabla_v \nabla_u w$ (если бы это были обычные производные, оно равнялось бы нулю, но здесь есть ещё проекции).

Th. 4.22. (Формула Гаусса) $\langle R(r_v), r_u \rangle = K \det I$.

Доказательство.

$$\nabla_v w = pr_{TM}(w_v') = w_v' - II(w, r_v)n$$

$$\nabla_u \nabla_v w = pr_{TM}(w_v' - II(w, r_v)n)_u' = pr_{TM}(w_{vu}'') - pr_{TM}(II(w, r_v)n_u' + II(w, r_v)'n)$$

Второе слагаемое под проекцией (с производной второй формы) обнуляется, а производная нормали уже лежит в касательной плоскости и никакой проекции от неё брать не надо. Тогда получается

$$\nabla_u \nabla_v w = pr_{TM}(w_{vu}'') - II(w, r_v) n_u'$$
$$\nabla_v \nabla_u w = pr_{TM}(w_{vv}'') - II(w, r_u) n_v'$$

Подставим $w=r_v$ и вычтем:

$$R(r_v) = -II(r_v, r_v)n'_u + II(r_v, r_u)n'_r$$

$$\langle dn, dr \rangle = -II$$

$$\langle R(r_v), r_u \rangle = II(r_v, r_v)II(r_u, r_u) - II(r_v, r_u)II(r_v, r_u) = NL - M^2 = \det II = K \det I$$

Итого, мы поняли, что $K=\frac{\langle R(r_v),r_u\rangle}{\det I}$, выведем отсюда основную теорему. Распишем R другим способом.

$$\nabla_{v}r_{v} = \Gamma_{22} = \Gamma_{22,1}r'_{u} + \Gamma_{22,2}r'_{v}$$

$$\nabla_{u}\nabla_{v}r_{v} = \nabla_{u}(\Gamma_{22,1}r'_{u} + \Gamma_{22,2}r'_{v}) = (\Gamma_{22,1})'_{u}r_{u} + \Gamma_{22,1}(\Gamma_{11,1}r_{u} + \Gamma_{11,2}r_{v}) + (\Gamma_{22,2})'_{u}r_{v} + \Gamma_{22,2}(\Gamma_{12,1}r_{u} + \Gamma_{12,2}r_{v})$$

$$\langle \nabla_{u}\nabla_{v}r_{v}, r_{u} \rangle = (\Gamma_{22,1})'_{u}E + \Gamma_{22,1}(\Gamma_{11,1}E + \Gamma_{11,2}F) + (\Gamma_{22,2})'_{u}F + \Gamma_{22,2}(\Gamma_{12,1}F + \Gamma_{12,2}G)$$

Аналогично $\langle \nabla_v \nabla_u r_v, r_v \rangle$. На самом деле формула в итоге получается не такая страшная, много мусора сокращается, но мы этим заниматься не будем.