## Conics Assignment

Alavala Chinnapa Reddy

September 2022

Problem Statement - An equilateral triangle is inscribed in the parabola  $y^2 = 4ax$ , where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

## Solution

Given, the axis of parabola is horizotal. Given, one vertex of  $\triangle OAB$  is at vertex of parabola.



$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0$$

where,

$$\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Equation Parabola is  $y^2 = 4ax$ From  $\triangle OAB$ 

$$\|\mathbf{A}\| = \|\mathbf{B}\| = \|\mathbf{A} - \mathbf{B}\|$$
  
 $\|\mathbf{A}\|^2 = \|\mathbf{B}\|^2 = \|\mathbf{A} - \mathbf{B}\|^2$ 

$$\|\mathbf{A}\|^2 + \|\mathbf{B}\|^2 - 2\mathbf{A}^T\mathbf{B} = \|\mathbf{A}\|^2 = \|\mathbf{B}\|^2$$

$$\frac{\mathbf{A}^T \mathbf{B}}{\left\|\mathbf{A}\right\|^2} = \frac{\mathbf{A}^T \mathbf{B}}{\left\|\mathbf{B}^2\right\|} = \frac{1}{2}$$

 $\triangle OAB$  is a equilateral triangle

The side length of equilateral triangle,OA=OB=AB=r Let

$$\mathbf{A} = \begin{pmatrix} r\cos\theta_1 \\ r\sin\theta_1 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} r\cos\theta_2 \\ r\sin\theta_2 \end{pmatrix}$$

$$\mathbf{A}^T \mathbf{B} = \frac{\|\mathbf{A}\|^2}{2} \tag{9}$$

$$r^2 \cos\left(\theta_1 - \theta_2\right) = \frac{r^2}{2} \tag{10}$$

$$\theta_1 - \theta_2 = \cos^{-1} \frac{1}{2} \tag{11}$$

Given A satisfy the eq1

$$\mathbf{A}^T \mathbf{V} \mathbf{A} + 2\mathbf{u}^T \mathbf{A} + f = 0 \tag{12}$$

$$\mathbf{A}^T \mathbf{V} \mathbf{A} + 2\mathbf{u}^T \mathbf{A} = 0 \tag{13}$$

$$(r\cos\theta_1 \quad r\sin\theta_1) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} r\cos\theta_1 \\ r\sin\theta_1 \end{pmatrix} + 2 \begin{pmatrix} -2a & 0 \end{pmatrix} \begin{pmatrix} r\cos\theta_1 \\ r\sin\theta_1 \end{pmatrix} = 0$$
 (14)

$$(r\cos\theta_1 \quad r\sin\theta_1)\begin{pmatrix}0\\r\sin\theta_1\end{pmatrix} + 2(-2ar\cos\theta_1) = 0 \quad (15)$$

$$r^2 \sin^2 \theta_1 = 4ar \cos \theta_1 \tag{16}$$

$$r = \frac{4a\cos\theta_1}{\sin^2\theta_1} \tag{17}$$

Similarly **B** satisfy the eq1

$$(1) r = \frac{4a\cos\theta_2}{\sin^2\theta_2} (18)$$

Form eq17 and eq18 (2)Yeilding

$$\cos\left(\theta_1 + \theta_2\right) = 1\tag{19}$$

$$\theta_1 + \theta_2 = \cos^{-1} 1 \tag{20}$$

- (3)Add eq11 and eq20
- (4)

(5) 
$$\theta_1 = \frac{\cos^{-1}\frac{1}{2} + \cos^{-1}1}{2} \tag{21}$$

(6)Subtract eq20 from eq11

$$\theta_2 = \frac{-\cos^{-1}\frac{1}{2} + \cos^{-1}1}{2} \tag{22}$$

## Construction

(7)

The input parameters are V,u,f
(8) 
$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} -2a \\ 0 \end{pmatrix}, f = 0$$

| Symbol   | Value                                                            | Description                      |
|----------|------------------------------------------------------------------|----------------------------------|
| a        | 1                                                                |                                  |
| $\alpha$ | 60 <sup>0</sup>                                                  | $\angle A = \angle B = \angle O$ |
| r        | Solving eq18                                                     | OA=OB=AB                         |
| O        | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$                           | center of parabola and Point O   |
| A        | $ \begin{pmatrix} r\cos\theta_1\\r\sin\theta_1 \end{pmatrix}$    | Point A                          |
| В        | $ \begin{pmatrix} r\cos\theta_2 \\ r\sin\theta_2 \end{pmatrix} $ | Point B                          |