

SB pipe documentation Release 2.7.0

Piero Dalle Pezze and Nicolas Le Novère

CONTENTS

1	User	manual	1			
	1.1	Introduction	1			
		1.1.1 Requirements	1			
		1.1.2 Installation	3			
	1.2	How to use SBpipe	3			
		1.2.1 Preliminary configuration steps	3			
		1.2.2 Running SBpipe	4			
		1.2.3 Pipeline configuration files	5			
	1.3	Reporting bugs or requesting new features	9			
2	Deve	loper manual	11			
	2.1	Introduction	11			
	2.2	Development model	11			
		2.2.1 Conventions	11			
		2.2.2 Work flow	11			
		2.2.3 New releases	12			
	2.3	Package structure	12			
		2.3.1 docs	13			
		2.3.2 sbpipe	13			
		2.3.3 scripts	14			
		2.3.4 tests	15			
	2.4	Miscellaneous of useful commands	15			
		2.4.1 Git	15			
3	Sour	ce code	17			
	3.1	Python modules	17			
		3.1.1 sbpipe package	17			
4	Meta	ninformation	35			
	4.1	Copyright	35			
5	Indic	ces	37			
Py	Python Module Index					
	dex		41			
411	uca		TI			

USER MANUAL

Copyright © 2015-2018, Piero Dalle Pezze and Nicolas Le Novère.

SBpipe and its documentation are released under the GNU Lesser General Public License v3 (LGPLv3). A copy of this license is provided with the package and can also be found here: https://www.gnu.org/licenses/lgpl-3.0.txt.

Contacts: Dr Piero Dalle Pezze (piero.dallepezze AT babraham.ac.uk) and Dr Nicolas Le Novère (lenov AT babraham.ac.uk)

Affiliation: The Babraham Institute, Cambridge, CB22 3AT, UK

Mailing list: sbpipe AT googlegroups.com

Forum: https://groups.google.com/forum/#!forum/sbpipe

Introduction

This package contains a collection of pipelines for dynamic modelling of biological systems. It aims to automate common processes and speed up productivity for tasks such as model simulation, single/double parameter scan, and parameter estimation.

Requirements

In order to use SBpipe, the following software must be installed:

- Python 2.7+ or 3.2+ https://www.python.org/
- R 3.3.0+ https://cran.r-project.org/

SBpipe can work with the following simulators (at least one must be installed):

- Copasi 4.19+ http://copasi.org/ (for model simulation, parameter scan, and parameter estimation)
- Any R / Python / Octave / Java simulator (for model simulation. Users must install the dependencies)

If LaTeX/PDF reports are also desired, the following software must also be installed:

• LaTeX 2013

Depending on your operating system, LaTeX can be downloaded at these websites:

• GNU/Linux: https://latex-project.org/ftp.html

• Windows: https://miktex.org/

GNU/Linux

It is advised that users install Python, R and (optionally) LaTeX packages using the package manager of their GNU/Linux distribution. Users need to make sure that the packages python-pip and

texlive-latex-base (only for reports). In most cases, the installation via the package manager will automatically configure the correct environment variables.

If a local installation of Python, R, or LaTeX is needed, users need to add the following environment variables to \$PATH in their \$HOME/.bashrc file as follows:

```
# Path to R
export PATH=$PATH:/path/to/R/binaries/

# Path to Python. Scripts is the folder (if any) containing the Python
# script `pip`. pip must be available via command line.
export PATH=$PATH:/path/to/Python/:/path/to/Python/Scripts/

# Path to LaTeX
export PATH=$PATH:/path/to/LaTeX/binaries/
```

The correct installation of Python, R, and LaTeX can be tested by running the commands:

```
# If variables were manually exported, reload the .bashrc file
$ source $HOME/.bashrc

$ python -V
Python 2.7.12
$ pip -V
pip 8.1.2 from /home/ariel/.local/lib/python2.7/site-packages (python 2.7)

$ R --version
R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

$ pdflatex -v
pdfTeX 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian)
kpathsea version 6.2.1
Copyright 2015 Peter Breitenlohner (eTeX)/Han The Thanh (pdfTeX).
```

As of 2016, Copasi is not available as a package in GNU/Linux distributions. Users must add the path to Copasi binary files manually editing their GNU/Linux \$HOME/.bashrc file as follows:

```
# Path to CopasiSE
export PATH=$PATH:/path/to/CopasiSE/
```

The correct installation of CopasiSE can be tested by running the command:

```
# Reload the .bashrc file
$ source $HOME/.bashrc

$ CopasiSE -h
COPASI 4.16 (Build 104)
```

At this stage, Python, R, Copasi, and (optionally) LaTeX should be installed correctly. SBpipe requires the configuration of the environment variable \$SBPIPE which must also be added in the \$HOME/.bashrc file. The package also needs to be added to \$PATH. To do so, users need to add the following lines to their \$HOME/.bashrc file:

```
# SBPIPE
export SBPIPE=/path/to/sbpipe
export PATH=$PATH:$SBPIPE/scripts
```

Now you should reload the .bashrc file to make the previous change effective:

```
# Reload the .bashrc file
$ source $HOME/.bashrc
```

Before testing the correct installation of SBpipe, users need to install Python and R dependency packages used by SBpipe. Two scripts are provided to perform these tasks automatically.

To install SBpipe Python dependencies on GNU/Linux, run:

```
$ cd $SBPIPE/
$ ./install_pydeps.py
```

To install SBpipe R dependencies on GNU/Linux, run:

```
$ cd $SBPIPE/
$ R
# Inside R environment, answer 'y' to install packages locally
> source('install_rdeps.r')
```

If R package dependencies must be compiled, it is worth checking that the following additional packages are installed in your machine: build-essential, liblapack-dev, libbas-dev, libcairo-dev, libssl-dev, libcurl4-openssl-dev, and gfortran. After installing these packages, install_rdeps.r must be executed again.

The correct installation of SBpipe can be tested by running the command:

```
$ sbpipe.py -v
2.1.0
```

Windows

Windows users will need to edit the PATH environment variable so that the binary files for the previous packages (Copasi, Python, R, and (optionally) LaTeX) are correctly found. Specifically for Python, the python scripts pip.py and easy_install.py are located inside the folder Scripts within the Python root directory. The path to this folder must also be added to PATH.

Therefore, the following environment variables must also be added:

```
SBPIPE=\path\to\sbpipe
PATH=[previous paths];%SBPIPE%\scripts
```

Note: R packages might require many extra dependencies. A C++ compiler might also be needed.

Installation

If desired, SBpipe can be installed in your system. To do so, run the command inside the sbpipe folder:

```
$ cd $SBPIPE
$ python setup.py install
```

The correct installation of SBpipe and its dependencies can be checked by running the following commands inside the SBpipe folder:

```
$ cd $SBPIPE/tests
$ ./test_suite.py
```

How to use SBpipe

Preliminary configuration steps

Pipelines using Copasi

Before using these pipelines, a Copasi model must be configured as follow using CopasiUI:

pipeline: simulation

- Tick the flag *executable* in the Time Course Task.
- Select a report template for the Time Course Task.
- Save the report in the same folder with the same name as the model but replacing the extension .cps with .csv.

pipelines: single or double parameter scan

- Tick the flag executable in the Parameter Scan Task.
- Select a report template for the Parameter Scan Task.
- Save the report in the same folder with the same name as the model but replacing the extension .cps with .csv.

pipeline: parameter estimation

- Tick the flag executable in the Parameter Estimation Task.
- Select the report template for the Parameter Estimation Task.
- Save the report in the same folder with the same name as the model but replacing the extension .cps with .csv.

For tasks such as parameter estimation using Copasi, it is recommended to move the data set into the folder Models/ so that the Copasi model file and its associated experimental data files are stored in the same folder.

Pipelines using R, Python, Octave, or Java

pipeline: simulation

- The program must be a functional and invokable via Rscript, python, octave, or java -jar, respectively.
- The Jar file for Java models must include a manifest.mf specifying the main class.
- The program must receive the report file name as input argument (see examples in \$SBPIPE/tests/).
- The program must save the report to file including the *Time* column. Report fields must be separated by TAB, and row names must be discarded.

pipeline: parameter estimation

- The program must be a functional and invokable via Rscript, python, octave, or java -jar, respectively.
- The Jar file for Java models must include a manifest.mf specifying the main class.
- The program must receive the report file name as input argument (see examples in \$SBPIPE/tests/).
- The program must save the report to file. This includes the objective value as first column column, and the estimated parameters as following columns. Rows are the evaluated functions. Report fields must be separated by TAB, and row names must be discarded.

Running SBpipe

SBpipe is executed via the command *sbpipe.py*. The syntax for this command and its complete list of options can be retrieved by running *sbpipe.py* -h.

As of Sep 2016 the output is as follows:

```
Show this help.
        -c, --create-project
                 Create a project structure using the argument as name.
        -s, --simulate
                 Simulate a model.
        -p, --single-param-scan
                 Simulate a single parameter scan.
        -d, --double-param-scan
                 Simulate a double parameter scan.
        -e, --param-estim
                 Generate a parameter fit sequence.
        -1, --license
                 Show the license.
        -v, --version
                 Show the version.
Exit status:
 0 if OK,
 1
   if minor problems (e.g., a pipeline did not execute correctly),
   if serious trouble (e.g., cannot access command-line argument).
Report bugs to sbpipe@googlegroups.com
SBpipe home page: <a href="https://pdp10.github.io/sbpipe">https://pdp10.github.io/sbpipe</a>
For complete documentation, see README.md .
```

The first step is to create a new project. This can be done with the command:

```
$ sbpipe.py --create-project project_name
```

This generates the following structure:

Models must be stored in the Models/ folder. The folder Data/ is meant for collecting experimental data files and analyses in one place. Regarding Copasi, once the data files (e.g. for parameter estimation) are generated, **it is advised** to move them into the Models/ folder so that the Copasi (.cps) file and its associated experimental data files are stored in the same folder. To run SBpipe, users need to create a configuration file for each pipeline they intend to run (see next section). These configuration files should be placed in the Working_Folder/. This folder will eventually contain all the results generated by SBpipe.

For instance, the pipeline for parameter estimation configured with a certain configuration file can be executed by typing:

```
$ cd project_name/Working_Folder/
$ sbpipe.py -e my_config_file.conf
```

Pipeline configuration files

Pipelines are configured using files (here called configuration files). These files are INI files and are therefore structured as follows:

```
[pipeline_name]
option1=value1
option2=value2
...
```

where pipeline_name can be: - simulate, for deterministic or stochastic model simulation; - single_param_scan, for scanning one model parameter; - double_param_scan, for scanning two model parameters; - param_estim, for parameter estimation.

In SBpipe each pipeline executes three tasks: data generation, data analysis, and report generation. These tasks can be activated in each configuration files using the options:

- generate_data=True
- analyse_data=True
- generate_report=True

The <code>generate_data</code> task runs a simulator accordingly to the options in the configuration file. Hence, this task collects and organises the reports generated from the simulator. The <code>analyse_data</code> task processes the reports to generate plots and compute statistics. Finally, the <code>generate_report</code> task generates a LaTeX report containing the computed plots and invokes the utility <code>pdflatex</code> to produce a PDF file. This modularisation allows users to analyse the same data without having to re-generate it, or to skip the report generation if not wanted.

Pipelines for parameter estimation or stochastic model simulation can be computationally intensive. SBpipe allows users to generate simulated data in parallel using the following options in the pipeline configuration file:

- cluster=local
- local_cpus=7
- runs=250

The cluster option defines whether the simulator should be executed locally (local: Python multiprocessing), or in a computer cluster (sge: Sun Grid Engine (SGE), lsf: Load Sharing Facility (LSF)). If local is selected, the local_cpus option determines the maximum number of CPUs to be allocated for local simulations. The runs option specifies the number of simulations (or parameter estimations for the pipeline param_estim) to be run.

Assuming that the configuration files are placed in the Working_Folder of a certain project, examples are given as follow:

Example 1: configuration file for the pipeline *simulation*

```
[simulate]
# True if data should be generated, False otherwise
generate_data=True
# True if data should be analysed, False otherwise
analyse_data=True
# True if a report should be generated, False otherwise
generate report=True
# The relative path to the project directory (from Working_Folder)
project dir = ...
# The name of the configurator (e.g. Copasi, Rscript, Python, Octave, Java)
simulator=Copasi
# The model name
model=insulin_receptor_stoch.cps
# The cluster type. local if the model is run locally,
# sge/lsf if run on cluster.
cluster=local
# The number of CPU if local is used, ignored otherwise
local_cpus=7
# The number of simulations to perform.
\# n>=1 for stochastic simulations.
runs=40
# An experimental data set (or blank) to add to the
# simulated plots as additional layer
exp_dataset=insulin_receptor_dataset.csv
# True if the experimental data set should be plotted.
plot_exp_dataset=True
# The label for the x axis.
xaxis label=Time [min]
# The label for the y axis.
yaxis_label=Level [a.u.]
```

Example 2: configuration file for the pipeline *single parameter scan*

```
[single_param_scan]
# True if data should be generated, False otherwise
generate_data=True
# True if data should be analysed, False otherwise
analyse_data=True
# True if a report should be generated, False otherwise
generate_report=True
# The relative path to the project directory (from Working_Folder)
project_dir=..
# The name of the configurator (e.g. Copasi)
simulator=Copasi
# The model name
model=insulin_receptor_inhib_scan_IR_beta.cps
# The variable to scan (as set in Copasi Parameter Scan Task)
scanned_par=IR_beta
# The cluster type. local if the model is run locally,
# sge/lsf if run on cluster.
cluster=local
# The number of CPU if local is used, ignored otherwise
local_cpus=7
# The number of simulations to perform per run.
# n>=1 for stochastic simulations.
runs=1
# The number of intervals in the simulation
simulate__intervals=100
# True if the variable is only reduced (knock down), False otherwise.
single_param_scan_knock_down_only=True
# True if the scanning represents percent levels.
single_param_scan_percent_levels=True
# The minimum level (as set in Copasi Parameter Scan Task)
min_level=0
# The maximum level (as set in Copasi Parameter Scan Task)
max level=100
# The number of scans (as set in Copasi Parameter Scan Task)
levels_number=10
# True if plot lines are the same between scans
# (e.g. full lines, same colour)
homogeneous_lines=False
# The label for the x axis.
xaxis_label=Time [min]
# The label for the y axis.
yaxis_label=Level [a.u.]
```

Example 3: configuration file for the pipeline *double parameter scan*

```
[double_param_scan]
# True if data should be generated, False otherwise
generate_data=True
# True if data should be analysed, False otherwise
analyse_data=True
# True if a report should be generated, False otherwise
generate_report=True
# The relative path to the project directory (from Working_Folder)
project_dir=..
# The name of the configurator (e.g. Copasi)
simulator=Copasi
# The model name
model=insulin_receptor_inhib_dbl_scan_InsulinPercent__IRbetaPercent.cps
# The 1st variable to scan (as set in Copasi Parameter Scan Task)
scanned_par1=InsulinPercent
# The 2nd variable to scan (as set in Copasi Parameter Scan Task)
scanned_par2=IRbetaPercent
# The cluster type. local if the model is run locally,
```

```
# sge/lsf if run on cluster.
cluster=local
# The number of CPU if local is used, ignored otherwise
local_cpus=7
# The number of simulations to perform.
# n>=1 for stochastic simulations.
runs=1
# The simulation length (as set in Copasi Time Course Task)
sim_length=10
```

Example 4: configuration file for the pipeline *parameter estimation*

```
[param_estim]
# True if data should be generated, False otherwise
generate_data=True
# True if data should be analysed, False otherwise
analyse data=True
# True if a report should be generated, False otherwise
generate_report=True
# True if a zipped tarball should be generated, False otherwise
generate_tarball=True
# The relative path to the project directory (from Working_Folder)
project_dir=..
# The name of the configurator (e.g. Copasi, Rscript, Python, Octave, Java)
simulator=Copasi
# The model name
model=insulin_receptor_param_estim.cps
# The cluster type. local if the model is run locally,
# sge/lsf if run on cluster.
cluster=local
# The number of CPU if local is used, ignored otherwise
local_cpus=7
# The parameter estimation round which is used to distinguish
# phases of parameter estimations when parameters cannot be
# estimated at the same time
# The number of parameter estimations
# (the length of the fit sequence)
runs=250
# The threshold percentage of the best fits to consider
best_fits_percent=75
# The number of available data points
data_point_num=33
# True if 2D all fits plots for 66% confidence levels
# should be plotted. This can be computationally expensive.
plot_2d_66cl_corr=True
# True if 2D all fits plots for 95% confidence levels
# should be plotted. This can be computationally expensive.
plot_2d_95cl_corr=True
# True if 2D all fits plots for 99% confidence levels
# should be plotted. This can be computationally expensive.
plot_2d_99cl_corr=True
# True if parameter values should be plotted in log space.
logspace=True
# True if plot axis labels should be plotted in scientific notation.
scientific_notation=True
```

Additional examples of configuration files can be found in:

\$SBPIPE/tests/insulin_receptor/Working_Folder/

Reporting bugs or requesting new features

SBpipe is a relatively young project and there is a chance that some error occurs. The following mailing list should be used for general questions:

sbpipe AT googlegroups.com

All the topics discussed in this mailing list are also available at the website:

https://groups.google.com/forum/#!forum/sbpipe

To help us better identify and reproduce your problem, some technical information is needed. This detail data can be found in SBpipe log files which are stored in \${HOME}/.sbpipe/logs/. When using the mailing list above, it would be worth providing this extra information.

Issues and feature requests can also be notified using the github issue tracking system for SBpipe at the web page:

https://github.com/pdp10/sbpipe/issues.

CHAPTER

TWO

DEVELOPER MANUAL

Mailing list: sbpipe AT googlegroups.com

Forum: https://groups.google.com/forum/#!forum/sbpipe

Introduction

This guide is meant for developers and contains guidelines for developing this project.

Development model

This project follows the Feature-Branching model. Briefly, there are two main branches: master and develop. The former contains the history of stable releases, the latter contains the history of development. The master branch contains checkout points for production hotfixes or merge points for release-x.x.x branches. The develop branch is used for feature-bugfix integration and checkout point in development. Nobody should directly develop in here. The develop branch is versionless (just call it -dev).

Conventions

To manage the project in a more consistent way, here is a list of conventions to follow:

- Each new feature is developed in a separate branch forked from *develop*. This new branch is called *featureNUMBER*, where *NUMBER* is the number of the GitHub Issue discussing that feature. The first line of each commit message for this branch should contain the string *Issue #NUMBER* at the beginning. Doing so, the commit is automatically recorded by the Issue Tracking System for that specific Issue. Note that the sharp (#) symbol is required.
- The same for each new bugfix, but in this case the branch name is called bugfixNUMBER.
- The same for each new hotfix, but in this case the branch name is called hotfixNUMBER and is forked from *master*.

Work flow

The procedure for checking out a new feature from the develop branch is:

```
$ git checkout -b feature10 develop
```

This creates the feature10 branch off develop. This feature10 is discussed in *Issue #10* in GitHub. When you are ready to commit your work, run:

```
$ git commit -am "Issue #10, summary of the changes. Detailed description of the changes, if any."
$ git push origin feature10  # sometimes and at the end.
```

As of June 2016, the branches master and develop are protected and a status check using Travis-CI must be performed before merging or pushing into these branches. This automatically forces a merge without fast-forward. In order to merge any new feature, bugfix or simple edits into master or develop, a developer must checkout a new branch and, once committed and pushed, merge it to master or develop using a pull request. To merge feature10 to develop, the pull request output will look like this in GitHub Pull Requests:

```
base:develop compare:feature10 Able to merge. These branches can be automatically merged.
```

A small discussion about feature 10 should also be included to allow other users to understand the feature.

Finally delete the branch:

```
$ git branch -d feature10  # delete the branch feature10 (locally)
```

New releases

When the develop branch includes all the desired feature for a release, it is time to checkout this branch in a new one called release-x.x.x. It is at this stage that a version is established. Only bugfixes or hotfixes are applied to this branch. When this testing/correction phase is completed, the master branch will merge with the release-x.x.x branch, using the commands above. To record the release add a tag:

```
git tag -a v1.3 -m "PROGRAM_NAME v1.3"
```

To transfer the tag to the remote server:

```
git push origin v1.3 # Note: it goes in a separate 'branch'
```

To see all the releases:

```
git show
```

Package structure

This section presents the structure of the SBpipe package. The root of the project contains general management scripts for installing Python and R dependencies (install_pydeps.py and install_rdeps.r), and installing SBpipe (setup.py). Additionally, the logging configuration file (logging_config.ini) is also at this level.

In order to automatically compile and run the test suite, Travis-CI is used and configured accordingly (.travis.yml).

The project is structured as follows:

These folders will be discussed in the next sections. In SBpipe, Python is the project main language. Instead, R is essentially used for computing statistics (see section configuration file in the user manual) and for generating plots. This choice allows users to run these scripts independently of SBpipe if needed using an R environment like Rstudio. This can be convenient if further data analysis are needed or plots need to be annotated or edited.

docs

The folder docs/contains the documentation for this project. The user and developer manuals in markdown format are contained in docs/source. In order to generate the complete documentation for SBpipe, the following packages must be installed:

- · python-sphinx
- pandoc
- · texlive-fonts-recommended
- texlive-latex-extra

By default the documentation is generated in html and LaTeX/PDF. Instruction for generating or cleaning SBpipe documentation are provided below.

To generate the source code documentation:

```
$ cd $SBPIPE/docs
$ ./gen_doc.sh
```

To clean the documentation:

```
$ cd $SBPIPE/docs
$ ./cleanup_doc.sh
```

The complete source code documentation for this project is stored in docs/build/html (html format) and docs/build/latex (LaTeX/PDF format). A shortcut to the documentation in html format is available at the page docs/index.html.

UML class diagrams for the packages sbpipe.pl and sbpipe.simul are stored in docs/source/uml_diagrams.

sbpipe

This folder contains the source code of the project SBpipe. At this level a file called __main__.py enables users to run SBpipe programmatically as a Python module via the command:

```
$ python sbpipe
```

Alternatively sbpipe can programmatically be imported within a Python environment as shown below:

```
$ cd $SBPIPE
$ python
# Python environment
>>> import sbpipe.main as sb
>>> sb.version()
'2.0.0'
```

The following subsections describe sbpipe subpackages.

рl

The subpackage sbpipe.pl contains the class Pipeline in the file pipeline.py. This class represents a generic pipeline which is extended by SBpipe pipelines. These are organised in the following subpackages:

- create: creates a new project
- ps1: scan a model parameter, generate plots and report;
- ps2: scan two model parameters, generate plots and report;
- pe: generate a parameter fit sequence, tables of statistics, plots and report;
- sim: generate deterministic or stochastic model simulations, plots and report.

All these pipelines can be invoked directly via the script \$SBPIPE/scripts/sbpipe.py. Each SBpipe pipeline extends the class Pipeline and therefore must implement the following methods:

```
# executes a pipeline
def run(self, config_file)

# process the configuration file lines
# imported by Pipeline.config_parser()
def read_config(self, lines)
```

The former contains the procedure to parse an INI configuration file. The latter parses the pipeline options. The Pipeline class implements the INI parser which is therefore available to each pipeline. The INI parser returns the configuration file as a list of lines.

R

This folder contains a collection of R utility methods for plotting and generating statistics. These utilities are used by the pipelines during data analysis.

report

The subpackage sbpipe.report contains Python modules for generating LaTeX/PDF reports.

simul

The subpackage sbpipe.simul contains the class Simul in the file simul.py. This is a generic simulator interface used by the pipelines in SBpipe. This mechanism uncouples pipelines from specific simulators which can therefore be configured in each pipeline configuration file. As of 2016, the following simulators are available in SBpipe:

- Copasi, package sbpipe.simul.copasi, which implements all the methods of the class Simul;
- Rscript, package sbpipe.simul.rscript;
- Python, package sbpipe.simul.python;
- Octave, package sbpipe.simul.octave;
- Java, package sbpipe.simul.java.

Rscript, Python, Octave, and Java only implement the methods sim() and pe() of Simul (time course simulation and parameter estimation). Pipelines can dynamically load a simulator via the class method Pipeline.get_simul_obj(simulator). This method instantiates an object of subtype Simul by refractoring the simulator name as parameter. A simulator class (e.g. Copasi) must have the same name of their package (e.g. copasi) but start with an upper case letter. A simulator class must be contained in a file with the same name of their package (e.g. copasi). Therefore, for each simulator package, exactly one simulator class can be instantiated. Simulators can be configured in the configuration file using the field simulator.

utils

The subpackage sbpipe.utils contains a collection of Python utility modules which are used by sbpipe. Here are also contained the functions for running commands in parallel.

scripts

The folder scripts contains the scripts: cleanup_sbpipe.py and sbpipe.py. sbpipe.py is the main script and is used to run the pipelines. cleanup_sbpipe.py is used for cleaning the package including the test results.

tests

The package tests contains the script test_suite.py which executes all sbpipe tests. It should be used for testing the correct installation of SBpipe dependencies as well as reference for configuring a project before running any pipeline. Projects inside the folder \$SBPIPE/tests/ have the SBpipe project structure:

- Data: (e.g. training / testing data sets for the model);
- Model: (e.g. models, Copasi models, R-Python-Octave-Java models, data sets directly used by Copasi models);
- Working_Folder: (e.g. pipelines configurations and parameter estimation results, time course, parameter scan, etc).

Examples of configuration files (*.conf) using Copasi can be found in \$SBPIPE/tests/insulin_receptor/Working_Folder/.

To run tests for R models, the R packages deSolve, sde, rshape2, and minpack.lm must be installed. To run tests for Python models, the Python packages numpy, scipy, and pandas must be installed. These additional dependencies should not be included to SBpipe main dependencies as they are user-specific. In principle, users may define their R, Python, Octave or Java models using arbitrary packages.

As of 2016, the repository for SBpipe source code is github.com. This is configured to run Travis-CI every time a git push into the repository is performed. The exact details of execution of Travis-CI can be found in Travis-CI configuration file \$SBPIPE/.travis.yml. Importantly, Travis-CI runs all SBpipe tests using nosetests.

Miscellaneous of useful commands

Git

Startup

```
# clone master
$ git clone https://github.com/pdp10/sbpipe.git
# get develop branch
$ git checkout -b develop origin/develop
# to get all the other branches
$ for b in `git branch -r | grep -v -- '->'`; do git branch
--track ${b##origin/} $b; done
# to update all the branches with remote
$ git fetch --all
```

Update

```
# ONLY use --rebase for private branches. Never use it for shared # branches otherwise it breaks the history. --rebase moves your # commits ahead. For shared branches, you should use # `git fetch && git merge --no-ff` $ git pull [--rebase] origin BRANCH
```

File system

```
$ git rm [--cache] filename
$ git add filename
```

Information

```
$ git status
$ git log [--stat]
$ git branch # list the branches
```

Maintenance

```
$ git fsck  # check errors
$ git gc  # clean up
```

Rename a branch locally and remotely

```
git branch -m old_branch new_branch  # Rename branch locally
git push origin :old_branch  # Delete the old branch
git push --set-upstream origin new_branch  # Push the new branch, set
local branch to track the new remote
```

Reset

```
git reset --hard HEAD  # to undo all the local uncommitted changes
```

Syncing a fork (assuming upstreams are set)

```
git fetch upstream
git checkout develop
git merge upstream/develop
```

THREE

SOURCE CODE

Python modules

sbpipe package

Subpackages

sbpipe.pl package

Subpackages

sbpipe.pl.create package

Submodules

sbpipe.pl.create.newproj module

This module initialises the folder tree for a new project.

Parameters

- data_folder the folder containing the data
- working_folder the folder to store the results

run (project_name)

Create a project directory tree.

Parameters project_name - the name of the project
Returns 0

Module contents

sbpipe.pl.pe package

Submodules

sbpipe.pl.pe.parest module

This module provides the user with a complete pipeline of scripts for running model parameter estimations

```
classmethod analyse_data (simulator, model, inputdir, outputdir, fileout_final_estims, fileout_param_estim_details, fileout_param_estim_summary, sim_plots_dir, best_fits_percent, data_point_num, cluster='local', plot_2d_66cl_corr=False, plot_2d_95cl_corr=False, logspace=True, scientific_notation=True)
```

The second pipeline step: data analysis.

Parameters

- **simulator** the name of the simulator (e.g. Copasi)
- model the model name
- inputdir the directory containing the simulation data
- **outputdir** the directory to store the results
- **fileout_final_estims** the name of the file containing final parameter sets with Chi^2
- **fileout_all_estims** the name of the file containing all the parameter sets with Chi^2
- **fileout_param_estim_details** the name of the file containing the detailed statistics for the estimated parameters
- **fileout_param_estim_summary** the name of the file containing the summary for the parameter estimation
- **sim_plots_dir** the directory of the simulation plots
- best_fits_percent the percent to consider for the best fits
- data_point_num the number of data points
- cluster local, 1sf for Load Sharing Facility, sge for Sun Grid Engine.
- plot_2d_66cl_corr True if 2 dim plots for the parameter sets within 66% should be plotted
- plot_2d_95cl_corr True if 2 dim plots for the parameter sets within 95% should be plotted
- plot_2d_99cl_corr True if 2 dim plots for the parameter sets within 99% should be plotted
- logspace True if parameters should be plotted in log space
- scientific_notation True if axis labels should be plotted in scientific notation

Returns True if the task was completed successfully, False otherwise.

The first pipeline step: data generation.

Parameters

• **simulator** – the name of the simulator (e.g. Copasi)

- model the model to process
- inputdir the directory containing the model
- cluster local, lsf for load sharing facility, sge for sun grid engine
- local_cpus the number of cpu
- runs the number of fits to perform
- outputdir the directory to store the results
- sim_data_dir the directory containing the simulation data sets
- updated_models_dir the directory containing the models with updated parameters for each estimation

Returns True if the task was completed successfully, False otherwise.

classmethod generate_report (model, outputdir, sim_plots_folder)

The third pipeline step: report generation.

Parameters

- model the model name
- **outputdir** the directory to store the report
- **sim_plots_folder** the folder containing the plots

Returns True if the task was completed successfully, False otherwise.

```
read_config (lines)
run (config_file)
```

Module contents

sbpipe.pl.ps1 package

Submodules

sbpipe.pl.ps1.parscan1 module

This module provides the user with a complete pipeline of scripts for computing single parameter scans.

The second pipeline step: data analysis.

Parameters

- model the model name
- scanned_par the scanned parameter
- knock_down_only True for knock down simulation, false if also scanning over expression.
- **outputdir** the directory containing the results

- sim_data_folder the folder containing the simulated data sets
- **sim_plots_folder** the folder containing the generated plots
- **runs** the number of simulations
- **percent_levels** True if the levels are percents.
- min level the minimum level
- max level the maximum level
- levels_number the number of levels
- homogeneous_lines True if generated line style should be homogeneous
- cluster local, 1sf for Load Sharing Facility, sge for Sun Grid Engine.
- **xaxis_label** the name of the x axis (e.g. Time [min])
- yaxis_label the name of the y axis (e.g. Level [a.u.])

Returns True if the task was completed successfully, False otherwise.

classmethod generate_data (simulator, model, scanned_par, cluster, local_cpus, runs, simulate_intervals, single_param_scan_intervals, inputdir, outputdir)

The first pipeline step: data generation.

Parameters

- **simulator** the name of the simulator (e.g. Copasi)
- model the model to process
- scanned_par the scanned parameter
- cluster local, 1sf for Load Sharing Facility, sge for Sun Grid Engine.
- local_cpus the number of CPU.
- runs the number of model simulation
- **simulate_intervals** the time step of each simulation
- single_param_scan_intervals the number of scans to perform
- inputdir the directory containing the model
- **outputdir** the directory to store the results

Returns True if the task was completed successfully, False otherwise.

classmethod generate_report (*model*, *scanned_par*, *outputdir*, *sim_plots_folder*)

The third pipeline step: report generation.

Parameters

- model the model name
- scanned_par the scanned parameter
- outputdir the directory containing the report
- sim_plots_folder the folder containing the plots

Returns True if the task was completed successfully, False otherwise.

```
read_config (lines)
run (config_file)
```

Module contents

sbpipe.pl.ps2 package

Submodules

```
sbpipe.pl.ps2.parscan2 module
```

```
class sbpipe.pl.ps2.parscan2.ParScan2 (data_folder='Data',
                                                                    models folder='Models',
                                             working_folder='Working_Folder',
                                             sim_data_folder='double_param_scan_data',
                                             sim_plots_folder='double_param_scan_plots')
     Bases: sbpipe.pl.pipeline.Pipeline (page 23)
```

This module provides the user with a complete pipeline of scripts for computing double parameter scans.

```
classmethod analyse_data(model, scanned_par1, scanned_par2, inputdir, outputdir, clus-
                             ter='local', runs=1)
```

The second pipeline step: data analysis.

Parameters

- mode1 the model name
- scanned_par1 the first scanned parameter
- scanned_par2 the second scanned parameter
- inputdir the directory containing the simulated data sets to process
- **outputdir** the directory to store the performed analysis
- cluster local, lsf for Load Sharing Facility, sge for Sun Grid Engine.
- runs the number of model simulation

Returns True if the task was completed successfully, False otherwise.

classmethod generate_data (simulator, model, sim_length, inputdir, outputdir, cluster, local cpus, runs)

The first pipeline step: data generation.

Parameters

- **simulator** the name of the simulator (e.g. Copasi)
- model the model to process
- **sim_length** the length of the simulation
- inputdir the directory containing the model
- **outputdir** the directory to store the results
- cluster local, lsf for Load Sharing Facility, sge for Sun Grid Engine.
- local_cpus the number of CPU.
- runs the number of model simulation

Returns True if the task was completed successfully, False otherwise.

```
{\bf class method\ generate\_report\ } (model,
                                                  scanned_par1,
                                                                       scanned_par2,
                                                                                           outputdir,
                                     sim_plots_folder)
     The third pipeline step: report generation.
```

Parameters

- model the model name
- scanned_par1 the first scanned parameter
- scanned_par2 the second scanned parameter
- outputdir the directory containing the report

• **sim_plots_folder** – the folder containing the plots.

Returns True if the task was completed successfully, False otherwise.

```
read_config (lines)
run (config_file)
```

Module contents

sbpipe.pl.sim package

Submodules

sbpipe.pl.sim.sim module

This module provides the user with a complete pipeline of scripts for running model simulations

Parameters

- model the model name
- inputdir the directory containing the data to analyse
- outputdir the output directory containing the results
- **sim_plots_dir** the directory to save the plots
- exp_dataset the full path of the experimental data set
- plot_exp_dataset True if the experimental data set should also be plotted
- cluster local, 1sf for Load Sharing Facility, sge for Sun Grid Engine.
- **xaxis_label** the label for the x axis (e.g. Time [min])
- yaxis_label the label for the y axis (e.g. Level [a.u.])

Returns True if the task was completed successfully, False otherwise.

 $\begin{array}{c} \textbf{classmethod generate_data} \ (\textit{simulator}, \quad \textit{model}, \quad \textit{inputdir}, \quad \textit{outputdir}, \quad \textit{cluster='local'}, \quad \textit{lo-cal_cpus=2}, \quad \textit{runs=1}) \end{array}$

The first pipeline step: data generation.

Parameters

- **simulator** the name of the simulator (e.g. Copasi)
- model the model to process
- inputdir the directory containing the model
- outputdir the directory containing the output files
- cluster local, 1sf for Load Sharing Facility, sge for Sun Grid Engine.
- local_cpus the number of CPUs.
- runs the number of model simulation

Returns True if the task was completed successfully, False otherwise.

classmethod generate_report (model, outputdir, sim_plots_folder)

The third pipeline step: report generation.

Parameters

- model the model name
- outputdir the output directory to store the report
- **sim_plots_folder** the folder containing the plots

Returns True if the task was completed successfully, False otherwise.

```
read_config (lines)
run (config_file)
```

Module contents

Submodules

sbpipe.pl.pipeline module

Generic pipeline.

Parameters

- data_folder the folder containing the experimental (wet) data sets
- models_folder the folder containing the models
- working_folder the folder to store the results
- **sim_data_folder** the folder to store the simulation data
- **sim_plots_folder** the folder to store the graphic results

```
config_parser (config_file, section)
```

Return the configuration for the parsed section in the config_file

Parameters

- config_file the configuration file to parse
- **section** the section in the configuration file to parse

Returns the configuration for the parsed section in the config_file

```
get_data_folder()
```

Return the folder containing the experimental (wet) data sets.

Returns the experimental data sets folder.

```
get_models_folder()
```

Return the folder containing the models.

Returns the models folder.

```
get_sim_data_folder()
```

Return the folder containing the in-silico generated data sets.

Returns the folder of the simulated data sets.

```
get_sim_plots_folder()
```

Return the folder containing the in-silico generated plots.

Returns the folder of the simulated plots.

classmethod get_simul_obj (simulator)

Return the simulator object if this exists. Otherwise throws an exception. The simulator name starts with an upper case letter. Each simulator is in a package within *sbpipe.simulator*.

Parameters simulator – the simulator name

Returns the simulator object.

get_working_folder()

Return the folder containing the results.

Returns the working folder.

classmethod read_common_config (lines)

Parse the common parameters from the configuration file

Parameters lines – the lines to parse.

Returns return a tuple containing the common parameters

read_config(lines)

Read the section lines from the configuration file. This method is abstract.

Returns a tuple containing the configuration

run (config_file)

Run the pipeline.

Parameters config_file – a configuration file for this pipeline.

Returns True if the pipeline was executed correctly, False otherwise.

Module contents

sbpipe.report package

Submodules

sbpipe.report.latex_reports module

Initialize a Latex header with a title and an abstract.

Parameters

- \bullet $\mbox{{\tt pdftitle}}$ the pdftitle for the LaTeX header
- title the title for the LaTeX header
- abstract the abstract for the LaTeX header

Returns the LaTeX header

Generate a generic report.

Parameters

- outputdir the output directory
- **sim_plots_folder** the folder containing the simulated plots
- model_noext the model name
- **filename_prefix** the prefix for the LaTeX file

• caption – True if figure captions (=figure file name) should be added

Generate a report for a parameter estimation task.

Parameters

- **outputdir** the output directory
- **sim_plots_folder** the folder containing the simulated plots
- model_noext the model name
- filename_prefix the prefix for the LaTeX file

Generate a report for a single parameter scan task.

Parameters

- **outputdir** the output directory
- **sim_plots_folder** the folder containing the simulated plots
- filename_prefix the prefix for the LaTeX file
- model_noext the model name
- scanned_par the scanned parameter

Generate a report for a double parameter scan task.

Parameters

- outputdir the output directory
- **sim_plots_folder** the folder containing the simulated plots
- filename prefix the prefix for the LaTeX file
- model_noext the model name
- scanned_par1 the 1st scanned parameter
- scanned_par2 the 2nd scanned parameter

Generate a report for a time course task.

Parameters

- outputdir the output directory
- **sim_plots_folder** the folder containing the simulated plots
- model_noext the model name
- **filename_prefix** the prefix for the LaTeX file

```
sbpipe.report.latex_reports.pdf_report (outputdir, filename)
Generate a PDF report from LaTeX report using pdflatex.
```

Parameters

- outputdir the output directory
- filename the LaTeX file name

Module contents sbpipe.simul package **Subpackages** sbpipe.simul.copasi package **Submodules** sbpipe.simul.copasi.copasi module class sbpipe.simul.copasi.copasi.Copasi Bases: sbpipe.simul.simul.Simul(page 28) Copasi simulator. pe (model, inputdir, cluster, local_cpus, runs, outputdir, sim_data_dir, updated_models_dir, output_msg=False) ps1 (model, scanned_par, simulate_intervals, single_param_scan_intervals, inputdir, outputdir, cluster='local', local_cpus=1, runs=1, output_msg=False) ps2 (model, sim_length, inputdir, outputdir, cluster='local', local_cpus=1, runs=1, output_msg=False) sim (model, inputdir, outputdir, cluster='local', local_cpus=1, runs=1, output_msg=False) **Module contents** sbpipe.simul.java package **Submodules** sbpipe.simul.java.java module class sbpipe.simul.java.java.Java Bases: sbpipe.simul.pl_simul.PLSimul(page 27) Java Simulator. **Module contents** sbpipe.simul.octave package

Submodules

sbpipe.simul.octave.octave module

```
class sbpipe.simul.octave.octave.Octave
    Bases: sbpipe.simul.pl_simul.PLSimul(page 27)
    Octave Simulator.
```

Module contents

sbpipe.simul.python package

Submodules

```
sbpipe.simul.python.python module
class sbpipe.simul.python.python.Python
     Bases: sbpipe.simul.pl_simul.PLSimul(page 27)
     Python Simulator.
Module contents
sbpipe.simul.rscript package
Submodules
sbpipe.simul.rscript.rscript module
class sbpipe.simul.rscript.rscript.Rscript
     Bases: sbpipe.simul.pl_simul.PLSimul(page 27)
     Rscript Simulator.
Module contents
Submodules
sbpipe.simul.pl_simul module
class sbpipe.simul.pl_simul(lang, lang_err_msg, options)
     Bases: sbpipe.simul.simul.Simul(page 28)
     A generic simulator for models coded in a programming language.
     get_lang()
          Return the programming language name :return: the name
     get_lang_err_msg()
          Return the error if the programming language is not found :return: the error message
     get_lang_options()
          Return the options for the programming language command :return: the options. Return None, if no
          options are used.
     pe (model, inputdir, cluster, local_cpus, runs, outputdir, sim_data_dir, updated_models_dir, out-
         put_msg=False)
     ps1 (model, scanned_par, simulate_intervals, single_param_scan_intervals, inputdir, outputdir,
          cluster='local', local_cpus=1, runs=1, output_msg=False)
     ps2 (model, sim_length, inputdir, outputdir, cluster='local', local_cpus=1, runs=1, out-
```

 $sim(model, inputdir, outputdir, cluster='local', local_cpus=1, runs=1, output_msg=False)$

put_msg=False)

sbpipe.simul.simul module

class sbpipe.simul.simul.Simul

Bases: object

Generic simulator.

get_all_fits (path_in='.', path_out='.', filename_out='all_estimates.csv')
Collect all the parameter estimates. Results are stored in filename_out.

Parameters

- path_in the path to the input files
- path_out the path to the output files
- **filename_out** a global file containing all fits from independent parameter estimations.

get_best_fits (path_in='.', path_out='.', filename_out='final_estimates.csv')
Collect the final parameter estimates. Results are stored in filename_out.

Parameters

- path_in the path to the input files
- path_out the path to the output files
- filename_out a global file containing the best fits from independent parameter estimations.

pe (model, inputdir, cluster, local_cpus, runs, outputdir, sim_data_dir, updated_models_dir, out-put_msg=False) parameter estimation.

Parameters

- model the model to process
- inputdir the directory containing the model
- cluster local, lsf for load sharing facility, sge for sun grid engine
- local_cpus the number of cpu
- runs the number of fits to perform
- **outputdir** the directory to store the results
- sim_data_dir the directory containing the simulation data sets
- **updated_models_dir** the directory containing the models with updated parameters for each estimation
- output_msg print the output messages on screen (available for cluster='local' only)

ps1 (model, scanned_par, simulate_intervals, single_param_scan_intervals, inputdir, outputdir, cluster='local', local_cpus=1, runs=1, output_msg=False)
Single parameter scan.

Parameters

- model the model to process
- scanned par the scanned parameter
- **simulate_intervals** the time step of each simulation
- single_param_scan_intervals the number of scans to perform
- \bullet $\mbox{inputdir}$ the directory containing the model
- **outputdir** the directory to store the results

- cluster local, 1sf for Load Sharing Facility, sge for Sun Grid Engine.
- local_cpus the number of CPU used.
- runs the number of model simulation
- **output_msg** print the output messages on screen (available for cluster='local' only)

ps2 (model, sim_length, inputdir, outputdir, cluster='local', local_cpus=1, runs=1, output_msg=False)

Double paramter scan.

Parameters

- model the model to process
- **sim_length** the length of the simulation
- inputdir the directory containing the model
- outputdir the directory to store the results
- cluster local, lsf for Load Sharing Facility, sge for Sun Grid Engine.
- local_cpus the number of CPU.
- runs the number of model simulation
- output_msg print the output messages on screen (available for cluster='local' only)

sim (*model*, *inputdir*, *outputdir*, *cluster='local'*, *local_cpus=1*, *runs=1*, *output_msg=False*)
Time course simulator.

Parameters

- model the model to process
- inputdir the directory containing the model
- outputdir the directory containing the output files
- cluster local, lsf for Load Sharing Facility, sge for Sun Grid Engine.
- local_cpus the number of CPU.
- runs the number of model simulation
- output_msg print the output messages on screen (available for cluster='local' only)

Module contents

sbpipe.snakemake package

Submodules

sbpipe.snakemake.generate_data module

```
sbpipe.snakemake.generate_data.main(argv=None)
sbpipe.snakemake.generate_data.run_copasi_model(infile)
    Run a Copasi model
```

Parameters infile – the input file

```
sbpipe.snakemake.generate_data.run_generic_model (infile, simulator, opts)
Run a generic model
```

Parameters

- infile the input file
- **simulator** the simulator name (e.g. Rscript, python, java, octave)
- **opts** the simulator options

sbpipe.snakemake.parsing_configfile module

sbpipe.snakemake.parsing_configfile.config_parser(self, config_file, section)

Return the configuration for the parsed section in the config_file

Parameters

- config_file the configuration file to parse
- section the section in the configuration file to parse

Returns the configuration for the parsed section in the config_file $sbpipe.snakemake.parsing_configfile.read_common_config(lines) Parse the common parameters from the configuration file$

Parameters lines – the lines to parse.

Returns return a tuple containing the common parameters

sbpipe.snakemake.parsing_configfile.read_ps2_config(lines)

sbpipe.snakemake.preproc module

sbpipe.snakemake.preproc.copasi_preproc(infile, outfile)
Replicate a copasi model and adds an id.

Parameters

- infile the input file
- **outfile** the output file

sbpipe.snakemake.preproc.generic_preproc(infile, outfile)
Copy the model file

Parameters

- infile the input file
- outfile the output file

sbpipe.snakemake.preproc.main(argv=None)

sbpipe.snakemake.ps2_fun module

sbpipe.snakemake.ps2_fun.generate_report (model, scanned_par1, scanned_par2, output-dir, sim_plots_folder)

The third pipeline step: report generation.

Parameters

- model the model name
- scanned_par1 the first scanned parameter
- scanned_par2 the second scanned parameter
- outputdir the directory containing the report
- **sim_plots_folder** the folder containing the plots.

Returns True if the task was completed successfully, False otherwise.

sbpipe.snakemake.ps2_fun.logger = <logging.Logger object>

This module provides the user with a complete pipeline of scripts for computing double parameter scans.

sbpipe.snakemake.ps2_fun.run(self, config_file)

sbpipe.snakemake.ps2_postproc module

sbpipe.snakemake.ps2_postproc.generic_postproc(infile, outfile, sim_length)
Perform post processing organisation to double parameter scan report files.

Parameters

- infile the model to process
- outfile the directory to store the results
- sim_length the length of the simulation

sbpipe.snakemake.ps2_postproc.main(argv=None)

sbpipe.snakemake.utils module

```
\verb|sbpipe.snakemake.utils.call_proc| (cmd)
```

Run a command using Python subprocess.

Parameters cmd – The string of the command to run

sbpipe.snakemake.utils.clean_copasi_files(inputdir, files)

sbpipe.snakemake.utils.makedir(outputdir)

Make a dir if this does not exist :param outputdir: the dir to create

sbpipe.snakemake.utils.replace_str_in_report (report)

Module contents

sbpipe.utils package

Submodules

sbpipe.utils.io module

```
sbpipe.utils.io.files_with_pattern_recur(folder, pattern)
```

Return all files with a certain pattern in folder+subdirectories

Parameters

- **folder** the folder to search for
- pattern the string to search for

Returns the files containing the pattern.

sbpipe.utils.io.get_pattern_pos(pattern, filename)

Return the line number (as string) of the first occurrence of a pattern in filename

Parameters

- pattern the pattern of the string to find
- \bullet $\,$ filename the file name containing the pattern to search

Returns the line number containing the pattern or "-1" if the pattern was not found

sbpipe.utils.io.refresh(path, file_pattern)

Clean and create the folder if this does not exist.

Parameters

- path the path containing the files to remove
- **file_pattern** the string pattern of the files to remove

sbpipe.utils.io.replace_str_in_file (filename_out, old_string, new_string)

Replace a string with another in filename_out

Parameters

- filename_out the output file
- old_string the old string that should be replaced
- new_string the new string replacing old_string

sbpipe.utils.io.write_mat_on_file (path, filename_out, data)

Write the matrix results stored in data to filename_out

Parameters

- path the path to filename_out
- filename_out the output file
- data the data to store in a file

sbpipe.utils.parcomp module

sbpipe.utils.parcomp.call_proc(params)

Run a command using Python subprocess.

Parameters params — A tuple containing (the string of the command to run, the command id) sbpipe.utils.parcomp.parcomp(cmd, cmd_iter_substr, output_dir, cluster='local', runs=1, lo-cal_cpus=1, output_msg=False)

Generic funcion to run a command in parallel

Parameters

- cmd the command string to run in parallel
- **cmd_iter_substr** the substring of the iteration number. This will be replaced in a number automatically
- output_dir the output directory
- cluster the cluster type among local (Python multiprocessing), sge, or lsf
- runs the number of runs
- local_cpus the number of cpus to use at most
- output_msg print the output messages on screen (available for cluster='local' only)

Run jobs using python multiprocessing locally.

Parameters

- cmd the full command to run as a job
- cmd_iter_substr the substring in command to be replaced with a number
- runs the number of runs to execute
- local_cpus The number of available cpus. If local_cpus <=0, only one core will be used.
- **output_msg** print the output messages on screen (available for cluster_type='local' only)

sbpipe.utils.parcomp.run_jobs_lsf(cmd, cmd_iter_substr, out_dir, err_dir, runs=1)
Run jobs using a Load Sharing Facility (LSF) cluster.

Parameters

- cmd the full command to run as a job
- cmd_iter_substr the substring in command to be replaced with a number
- out dir the directory containing the standard output from bsub

- err_dir the directory containing the standard error from bsub
- runs the number of runs to execute

sbpipe.utils.parcomp.run_jobs_sge(cmd, cmd_iter_substr, out_dir, err_dir, runs=1)
Run jobs using a Sun Grid Engine (SGE) cluster.

Parameters

- cmd the full command to run as a job
- cmd_iter_substr the substring in command to be replaced with a number
- out_dir the directory containing the standard output from qsub
- err_dir the directory containing the standard error from qsub
- runs the number of runs to execute

sbpipe.utils.rand module

```
\verb|sbpipe.utils.rand.get_rand_alphanum_str|(length)|\\
```

Return a random alphanumeric string

Parameters length – the length of the string

Returns the generated string

```
sbpipe.utils.rand.get_rand_num_str(length)
```

Return a random numeric string

Parameters length – the length of the string

Returns the generated string

sbpipe.utils.re_utils module

```
sbpipe.utils.re_utils.nat_sort_key(str)
```

The key to sort a list of strings alphanumerically (e.g. "file10" is correctly placed after "file2")

Parameters str – the string to sort alphanumerically in a list of strings

Returns the key to sort strings alphanumerically

Module contents

Submodules

```
sbpipe.__main__ module
```

sbpipe.main module

```
exception sbpipe.main.Usage (msg)
```

Bases: exceptions. Exception

This class is used for printing a generic exception

sbpipe.main.check_args (args, msg)

Check that at least one argument is passed.

Parameters

- args the list of arguments
- msg the message to print

Raise Usage exception if less than one argument is passed

Returns no output

```
sbpipe.main.help()
     Return help message.
          Returns the help message
sbpipe.main.license()
     Return the license
          Returns the license
sbpipe.main.logo()
     Return sbpipe logo.
          Returns sbpipe logo
\verb|sbpipe.main.main| (argv=None)
     SB pipe main function.
          Parameters argv – options for sbpipe. Type python -m sbpipe -h for a full list of options.
          Returns 0 if OK, 1 if minor problems, or 2 if serious trouble.
sbpipe.main.version()
     Return the version
          Returns the version
```

sbpipe.sb_config module

```
sbpipe.sb_config.isPyPackageInstalled(package)
    Utility checking whether a Python package is installed.
```

Parameters package – a Python package name

Returns True if it is installed, false otherwise.

```
sbpipe.sb_config.which (cmd_name)
Utility equivalent to which in GNU/Linux OS.
```

Parameters cmd_name - a command name

Returns return the command name with absolute path if this exists, or None

Module contents

CHAPTER

FOUR

META INFORMATION

Copyright

Copyright © 2015-2018, Piero Dalle Pezze and Nicolas Le Novère.

SB pipe and its documentation are released under the GNU Lesser General Public License v3 (LGPLv3). A copy of this license is provided with the package and can also be found here: https://www.gnu.org/licenses/lgpl-3.0.txt.

Contacts: Dr Piero Dalle Pezze (piero.dallepezze AT babraham.ac.uk) and Dr Nicolas Le Novère (lenov AT babraham.ac.uk)

Affiliation: The Babraham Institute, Cambridge, CB22 3AT, UK

CHAPTER

FIVE

INDICES

- genindex
- modindex
- search

38 Chapter 5. Indices

S

```
sbpipe, 34
sbpipe.__main__,33
sbpipe.main, 33
sbpipe.pl, 24
sbpipe.pl.create, 17
sbpipe.pl.create.newproj, 17
sbpipe.pl.pe, 19
sbpipe.pl.pe.parest, 18
sbpipe.pl.pipeline, 23
sbpipe.pl.ps1, 20
sbpipe.pl.psl.parscan1, 19
sbpipe.pl.ps2, 22
sbpipe.pl.ps2.parscan2,21
sbpipe.pl.sim, 23
sbpipe.pl.sim.sim, 22
sbpipe.report, 26
sbpipe.report.latex_reports, 24
sbpipe.sb_config, 34
sbpipe.simul, 29
sbpipe.simul.copasi, 26
sbpipe.simul.copasi.copasi,26
sbpipe.simul.java, 26
sbpipe.simul.java.java, 26
sbpipe.simul.octave, 26
sbpipe.simul.octave.octave, 26
sbpipe.simul.pl_simul, 27
sbpipe.simul.python, 27
sbpipe.simul.python.python, 27
sbpipe.simul.rscript, 27
sbpipe.simul.rscript.rscript,27
sbpipe.simul.simul, 28
sbpipe.snakemake, 31
sbpipe.snakemake.generate_data, 29
sbpipe.snakemake.parsing_configfile,
sbpipe.snakemake.preproc, 30
sbpipe.snakemake.ps2_fun,30
sbpipe.snakemake.ps2_postproc,31
sbpipe.snakemake.utils, 31
sbpipe.utils, 33
sbpipe.utils.io, 31
sbpipe.utils.parcomp, 32
sbpipe.utils.rand, 33
sbpipe.utils.re_utils,33
```

_	
A	generate_report() (sbpipe.pl.sim.sim.Sim class
analyse_data() (sbpipe.pl.pe.parest.ParEst class	method), 22
method), 18	generic_postproc() (in module sbpipe.snakemake.ps2_postproc), 31
analyse_data() (sbpipe.pl.ps1.parscan1.ParScan1 class method), 19	generic_preproc() (in module
analyse_data() (sbpipe.pl.ps2.parscan2.ParScan2 class	sbpipe.snakemake.preproc), 30
method), 21	get_all_fits() (sbpipe.simul.simul.Simul method), 28
analyse_data() (sbpipe.pl.sim.sim.Sim class method),	get_best_fits() (sbpipe.simul.simul.Simul method), 28
22	get_data_folder() (sbpipe.pl.pipeline.Pipeline method),
С	23
	get_lang() (sbpipe.simul.pl_simul.PLSimul method),
call_proc() (in module sbpipe.snakemake.utils), 31	get_lang_err_msg() (sbpipe.simul.pl_simul.PLSimul
call_proc() (in module sbpipe.utils.parcomp), 32 check_args() (in module sbpipe.main), 33	method), 27
clean_copasi_files() (in module	get_lang_options() (sbpipe.simul.pl_simul.PLSimul
sbpipe.snakemake.utils), 31	method), 27
config_parser() (in module	get_latex_header() (in module
sbpipe.snakemake.parsing_configfile),	sbpipe.report.latex_reports), 24 get_models_folder() (sbpipe.pl.pipeline.Pipeline
30	method), 23
config_parser() (sbpipe.pl.pipeline.Pipeline method),	get_pattern_pos() (in module sbpipe.utils.io), 31
Copasi (class in sbpipe.simul.copasi.copasi), 26	get_rand_alphanum_str() (in module sbpipe.utils.rand),
copasi_preproc() (in module	33
sbpipe.snakemake.preproc), 30	get_rand_num_str() (in module sbpipe.utils.rand), 33
F	get_sim_data_folder() (sbpipe.pl.pipeline.Pipeline method), 23
•	get_sim_plots_folder() (sbpipe.pl.pipeline.Pipeline
files_with_pattern_recur() (in module sbpipe.utils.io),	method), 23
31	get_simul_obj() (sbpipe.pl.pipeline.Pipeline class
G	method), 24
generate_data() (sbpipe.pl.pe.parest.ParEst class	get_working_folder() (sbpipe.pl.pipeline.Pipeline method), 24
method), 18	method), 24
generate_data() (sbpipe.pl.ps1.parscan1.ParScan1 class	Н
method), 20	help() (in module sbpipe.main), 33
generate_data() (sbpipe.pl.ps2.parscan2.ParScan2 class method), 21	1
generate_data() (sbpipe.pl.sim.sim.Sim class method),	I
22	isPyPackageInstalled() (in module sbpipe.sb_config),
generate_report() (in module	34
sbpipe.snakemake.ps2_fun), 30	J
generate_report() (sbpipe.pl.pe.parest.ParEst class method), 19	Java (class in sbpipe.simul.java.java), 26
generate_report() (sbpipe.pl.ps1.parscan1.ParScan1	
class method), 20	L
generate_report() (sbpipe.pl.ps2.parscan2.ParScan2	latex_report() (in module sbpipe.report.latex_reports),
class method), 21	24

latex_report_pe() (in module	read_config() (sbpipe.pl.sim.sim.Sim method), 23
sbpipe.report.latex_reports), 25 latex_report_ps1() (in module	read_ps2_config() (in module sbpipe.snakemake.parsing_configfile),
sbpipe.report.latex_reports), 25	30
latex_report_ps2() (in module	refresh() (in module sbpipe.utils.io), 31
sbpipe.report.latex_reports), 25 latex_report_sim() (in module	replace_str_in_file() (in module sbpipe.utils.io), 31 replace_str_in_report() (in module
sbpipe.report.latex_reports), 25	sbpipe.snakemake.utils), 31
license() (in module sbpipe.main), 34	Rscript (class in sbpipe.simul.rscript.rscript), 27
logger (in module sbpipe.snakemake.ps2_fun), 30	run() (in module sbpipe.snakemake.ps2_fun), 30
logo() (in module sbpipe.main), 34	run() (sbpipe.pl.create.newproj.NewProj method), 17
M	run() (sbpipe.pl.pe.parest.ParEst method), 19
	run() (sbpipe.pl.pipeline.Pipeline method), 24 run() (sbpipe.pl.ps1.parscan1.ParScan1 method), 20
main() (in module sbpipe.main), 34 main() (in module sbpipe.snakemake.generate_data),	run() (sbpipe.pl.ps1.parscan1.rarscan1 method), 22
29	run() (sbpipe.pl.sim.sim.Sim method), 23
main() (in module sbpipe.snakemake.preproc), 30	run_copasi_model() (in module
main() (in module sbpipe.snakemake.ps2_postproc), 31	sbpipe.snakemake.generate_data), 29
makedir() (in module sbpipe.snakemake.utils), 31	run_generic_model() (in module
N	sbpipe.snakemake.generate_data), 29
•	run_jobs_local() (in module sbpipe.utils.parcomp), 32 run_jobs_lsf() (in module sbpipe.utils.parcomp), 32
nat_sort_key() (in module sbpipe.utils.re_utils), 33 NewProj (class in sbpipe.pl.create.newproj), 17	run_jobs_sge() (in module sbpipe.utils.parcomp), 33
O	S
Octave (class in sbpipe.simul.octave.octave), 26	sbpipe (module), 34
P	sbpipemain (module), 33 sbpipe.main (module), 33
nercomp() (in module chains utils percomp) 22	sbpipe.nl (module), 24
parcomp() (in module sbpipe.utils.parcomp), 32 ParEst (class in sbpipe.pl.pe.parest), 18	sbpipe.pl.create (module), 17
ParScan1 (class in sbpipe.pl.ps1.parscan1), 19	sbpipe.pl.create.newproj (module), 17
ParScan2 (class in sbpipe.pl.ps2.parscan2), 21	sbpipe.pl.pe (module), 19
pdf_report() (in module sbpipe.report.latex_reports), 25	sbpipe.pl.pe.parest (module), 18
pe() (sbpipe.simul.copasi.copasi.Copasi method), 26	sbpipe.pl.pipeline (module), 23
pe() (sbpipe.simul.pl_simul.PLSimul method), 27	sbpipe.pl.ps1 (module), 20
pe() (sbpipe.simul.simul method), 28	sbpipe.pl.ps1.parscan1 (module), 19 sbpipe.pl.ps2 (module), 22
Pipeline (class in sbpipe.pl.pipeline), 23	sbpipe.pl.ps2.parscan2 (module), 21
PLSimul (class in sbpipe.simul.pl_simul), 27 ps1() (sbpipe.simul.copasi.copasi.Copasi method), 26	sbpipe.pl.sim (module), 23
ps1() (sbpipe.simul.pl_simul.PLSimul method), 27	sbpipe.pl.sim.sim (module), 22
ps1() (sbpipe.simul.simul.Simul method), 28	sbpipe.report (module), 26
ps2() (sbpipe.simul.copasi.copasi.Copasi method), 26	sbpipe.report.latex_reports (module), 24
ps2() (sbpipe.simul.pl_simul.PLSimul method), 27	sbpipe.sb_config (module), 34
ps2() (sbpipe.simul.simul.Simul method), 29	sbpipe.simul (module), 29
Python (class in sbpipe.simul.python.python), 27	sbpipe.simul.copasi (module), 26 sbpipe.simul.copasi.copasi (module), 26
R	sbpipe.simul.java (module), 26
read_common_config() (in module	sbpipe.simul.java.java (module), 26
sbpipe.snakemake.parsing_configfile),	sbpipe.simul.octave (module), 26
30	sbpipe.simul.octave.octave (module), 26
read_common_config() (sbpipe.pl.pipeline.Pipeline	sbpipe.simul.pl_simul (module), 27
class method), 24	sbpipe.simul.python (module), 27
read_config() (sbpipe.pl.pe.parest.ParEst method), 19	sbpipe.simul.python.python (module), 27
read_config() (sbpipe.pl.pipeline.Pipeline method), 24	sbpipe.simul.rscript (module), 27 sbpipe.simul.rscript.rscript (module), 27
read_config() (sbpipe.pl.ps1.parscan1.ParScan1	sbpipe.simul.simul (module), 28
method), 20 read_config() (sbpipe.pl.ps2.parscan2.ParScan2	sbpipe.snakemake (module), 31
method), 22	sbpipe.snakemake.generate_data (module), 29

42 Index

```
sbpipe.snakemake.parsing_configfile (module), 30
sbpipe.snakemake.preproc (module), 30
sbpipe.snakemake.ps2_fun (module), 30
sbpipe.snakemake.ps2_postproc (module), 31
sbpipe.snakemake.utils (module), 31
sbpipe.utils (module), 33
sbpipe.utils.io (module), 31
sbpipe.utils.parcomp (module), 32
sbpipe.utils.rand (module), 33
sbpipe.utils.re_utils (module), 33
Sim (class in sbpipe.pl.sim.sim), 22
sim() (sbpipe.simul.copasi.copasi.Copasi method), 26
sim() (sbpipe.simul.pl_simul.PLSimul method), 27
sim() (sbpipe.simul.simul.Simul method), 29
Simul (class in sbpipe.simul.simul), 28
U
Usage, 33
V
version() (in module sbpipe.main), 34
W
which() (in module sbpipe.sb_config), 34
write_mat_on_file() (in module sbpipe.utils.io), 32
```

Index 43