Variational Inference

Parameswaran Raman

October 19, 2015

1 / 27

Topics

- Bayesian Inference
 - The problem and challenges
 - Why approximate inference?
 - Sampling vs Variational Methods
- Variational Inference
 - Basic Idea, Mean Field Approximation
 - ELBO, KL Divergence diagram and formulation
 - Algorithm (using coord descent)
 - Connections: EP, EM algorithm, Mix of Exp Families
- Other Extensions
 - Stochastic Variational Inference [Hoffmann, Blei et al]
 - Streaming Variational Inference [Tamara, Jordan et al]
- References

Quick Recap - Exponential Family

Broad umbrella of distributions that can be expressed in the form,

$$p(x;\theta) = p_0(x) \exp(\langle \phi(x), \theta \rangle - g(\theta))$$

- $p_0(x)$ base measure
- $\phi(x)$ sufficient statistics
- ullet heta natural parameter
- $g(\theta) = \log \int_X \exp(\langle \phi(x), \theta \rangle) dx$ log-partition function

Examples: Gaussian, Multinomial, Exponential, Dirichlet, Poisson, Gamma, . . .

Quick Recap - Exponential Family

Key Properties:

- $g(\theta)$ is convex
- Derivatives of $g(\theta)$ generate moments of $\phi(x)$
- Every exponential family distribution has a conjugate prior

Bayesian Inference

Given data
$$x = \{x_1, x_2, \dots, x_n\}$$
,
$$\underbrace{p(\theta|x)}_{posterior} = \underbrace{\frac{p(x|\theta) \cdot p(\theta)}{p(x|\theta) \cdot p(\theta)}}_{marginal \ likelihood \ (model \ evidence)}$$

Modeling Assumptions:

•
$$p(x|\theta) \sim \exp(\langle \phi(x), \theta \rangle) - g(\theta))$$

x are iid

Most inference problems will be one of:

$$p(x) = \int p(x,\theta)d\theta$$

$$\mathbb{E}[f(x|z)] = \int f(x)p(x|z)dz$$

$$p(y|x) = \int p(y|\theta, x)p(\theta|x)d\theta$$

Computational Challenges

$$p(\theta|x) = \frac{p(x|\theta) \cdot p(\theta)}{\int p(x,\theta)d\theta}$$

Computing the log-partition function

Solution: Approximate Inference techniques!

Approaches: Type I (sampling based), Type II (variational approximation based), or mix of both

6 / 27

Parameswaran Raman Variational Inference October 19, 2015

Approximate Inference - Type I

Sampling based methods

- **①** Design an algorithm that draws samples $\theta_1, \ldots, \theta_k$ from $p(\theta|x)$
- Use the samples for further computations (say: approximating an expectation originally intractable)

Pros and Cons:

- asymptotically exact
- slow and computationally expensive

Examples: Gibbs Sampling, Importance Sampling, Rejection Sampling

Approximate Inference - Type II

Variational methods

- **①** Find an analytical proxy $q(\theta)$ that is maximally similar to $p(\theta|x)$
- 2 Inspect distribution statistics of $q(\theta)$

Pros and Cons:

- more interpretable and can be much faster
- deterministic algorithm
- hard to derive variational updates
- prone to local minima

Examples: Variational Bayes, Expectation Propagation

Generic Model

$$p(\beta, z_{1:N}, x_{1:N}) = p(\beta) \prod_{i=1}^{N} p(z_i|\beta) p(x_i|z_i, \beta)$$

- Observations are $x = x_{1:N}$
- Local variables are $z = z_{1:N}$
- Global variables are β
- The *i*th data point x_i only depends on z_i and β
- Goal: To compute $p(\beta, z|x)$

Generic Model

- A complete conditional is the conditional of a latent variable given the observations and other latent variables
- ullet Assume each complete conditional \sim exp family,

$$p(z_i|\beta, x_i) \propto \exp\{\langle z_i, \eta_I(\beta, x_i) \rangle - g(\eta_I(\beta, x_i))\}$$
$$p(\beta|z, x) \propto \exp\{\langle \beta, \eta_g(z, x) \rangle - g(\eta_g(z, x))\}$$

Generic Model

$$p(\beta, z_{1:N}, x_{1:N}) = p(\beta) \prod_{i=1}^{N} p(z_i|\beta) p(x_i|z_i, \beta)$$

- Bayesian Mixture Models
- Time series models (HMMs, Kalman Filters)
- Factorial Models
- Matrix Factorization (PCA, etc)

- Dirichlet Process Mixtures, HDPs
- Multilevel regression
- Mixed-membership models (LDA and variants)

Evidence Lower Bound (ELBO)

- Introduce a **variational distribution** over the latent variables $q(\beta, z)$
- We optimize the evidence lower bound (ELBO) with respect to q

$$\log p(x) \ge \mathbb{E}_q \bigg[\log p(\beta, Z, x) \bigg] - \mathbb{E}_q \bigg[\log q(\beta, Z) \bigg]$$

- ullet Up to a constant, this is the negative KL divergence between q and the posterior
- The ELBO links the observations/model to the variational distribution

Parameswaran Raman Variational Inference October 19, 2015 12 / 27

Evidence Lower Bound (ELBO)

Jensen's Inequality

When f is concave, $f(\mathbb{E}[x]) \geq \mathbb{E}[f(x)]$

$$\log p(x) = \log \int_{z} p(x, z) dz$$

$$= \log \int_{z} p(x, z) \frac{q(z)}{q(z)} dz$$

$$= \log \int_{z} \frac{p(x, z)}{q(z)} q(z) dz$$

$$= \log (\mathbb{E}_{q}[\frac{p(x, z)}{q(z)}])$$

$$\geq \mathbb{E}_{q}[\log \frac{p(x, z)}{q(z)}]$$

Parameswaran Raman Variational Inference October 19, 2015 13 / 27

Mean Field Approximation

• We specify $q(\beta, z)$ to be a fully factored variational distribution,

$$q(eta,z) = q(eta|\lambda) \prod_{i=1}^N q(z_i|\phi_i)$$

- Each instance of each variable has its own distribution
- Each component (factor) is in the same family as the model conditional,

$$q(\beta|z,x) \propto \exp\{\langle \beta, \eta_g(z,x) \rangle - g(\eta_g(z,x))\}$$
$$q(\beta|\lambda) \propto \exp\{\langle \beta, \lambda \rangle - g(\lambda)\}$$

(And same for the local variational parameters)

Optimization of ELBO

Objective function: We optimize the ELBO wrt variational parameters

$$\mathcal{L}(\lambda, \phi_{1:N}) = \mathbb{E}_q[\log p(\beta, x, z)] - \mathbb{E}_q[\log q(\beta, z)]$$

- Same as finding the $q(\beta,z)$ that is closest in KL Divergence to $p(\beta,z|x)$
- Coordinate Ascent: Iteratively update each variational parameter, holding others fixed
 - ► Local Step (Var E-Step):

$$\phi_i = \mathbb{E}_q \left[\eta_I(\mathsf{x}_i, \beta) \right]$$

► Global Step (Var M-Step):

$$\lambda = \mathbb{E}_q \bigg[\eta_g(x, z) \bigg]$$

Example: Mix of Exponential Families

Setup:

Joint Distribution:

Distribution:
$$p(\pi, \theta | \alpha, Z, X) = p(\pi) \prod_{k=1}^{K} p(\theta_k | \alpha) \left\{ \prod_{i=1}^{N} \sum_{k=1}^{K} p(Z_i = k | \pi_k) p(X_i | \theta_k) \right\}$$

Goal of inference: Estimate posteriors $p(\theta|Z, X, \alpha)$ and $p(Z|X, \theta, \alpha)$

Example: Mixture of Exponential Families

Mean Field Approximation:

$$\mathcal{Q}(\pi, \theta, Z | \lambda, \gamma, \phi) = \mathcal{Q}(\pi | \lambda) \prod_{k=1}^{K} \mathcal{Q}(\theta_k | \gamma_k) \prod_{i=1}^{N} \mathcal{Q}(Z_i | \phi_i)$$

- λ , γ_k and ϕ_i are variational parameters for π , θ_k , Z_i respectively
- ullet Assumption: Each factor of the variational distribution above \sim exp family

Parameswaran Raman Variational Inference October 19, 2015 17 / 27

Example: Mixture of Exponential Families

Variational EM updates can be derived by maximizing $\mathcal{L}(q)$ (ELBO) and cyclically updating variational parameters - λ , γ_k , ϕ_i

• Var E-Step (local variational parameters):

- for
$$i = 1, 2, ... N$$

$$\phi_i = \mathbb{E}_q \left[\hat{\eta}(Z_i, X_i, \theta) \right]$$

• Var M-Step (global variational parameters):

$$\lambda = \mathbb{E}_q \left[\hat{\eta}(Z_{1:N}, X_{1:N}) \right]$$
$$\gamma_k = \mathbb{E}_q \left[\hat{\eta}(Z_{1:N}, X_{1:N}) \right]$$

where, $\hat{\eta}$ denotes the natural parameter of exp family for the corresponding model conditional

(S)tochastic (V)ariational (I)nference

• With local and global variables, we decompose the ELBO

$$\mathcal{L} = \mathbb{E}\bigg[\log p(\beta)\bigg] - \mathbb{E}\bigg[\log q(\beta)\bigg] + \sum_{i=1}^{N} \mathbb{E}\bigg[\log p(z_i, x_i | \beta)\bigg] - \mathbb{E}\bigg[\log q(z_i)\bigg]$$

Sample a single data point t uniformly from the data and define

$$\mathcal{L}_t = \mathbb{E}\Big[\log p(eta)\Big] - \mathbb{E}\Big[\log q(eta)\Big] + Nigg(\mathbb{E}\Big[\log p(z_t, x_t | eta)\Big] - \mathbb{E}\Big[\log q(z_t)\Big]igg)$$

Observations:

- **①** The ELBO is the expectation of \mathcal{L}_t with respect to the sample
- The gradient of the t-ELBO is a noisy gradient of the ELBO
- **1** The t-ELBO is like an ELBO where we saw x_t repeatedly (N times)

4 U P 4 UP 4 E P 4 E P 9 E */YC/*

SVI Algo

Stochastic Variational EM updates can be derived as below:

- Var E-Step (local variational parameters):
 - for i = 1, 2, ...N Sample t from 1:N uniformly

$$\phi_t = \mathbb{E}_q \bigg[\hat{\eta}(Z_t, X_t, \theta) \bigg]$$

Var M-Step (global variational parameters):

$$\hat{\lambda} = \mathbb{E}_q \left[\hat{\eta}(Z_T, X_T) \right]$$
 $\hat{\gamma_k} = \mathbb{E}_q \left[\hat{\eta}(Z_T, X_T) \right]$

$$\lambda = (1 - \rho)\lambda + \rho\hat{\lambda}$$

where, X_T denotes t-th sample repeated N times, ρ is a decaying step_size

Parameswaran Raman Variational Inference October 19, 2015 20 / 27

SVI Algo: Discussion

- Converges to local optimum
- Local update step (E-Step) can be parallelized for better performance
- In practice, mini-batch sampling is used instead of sampling a single data point
- Not suited for a streaming setting as the number of observations N has to be known (algorithm assumes the sampled data point will be replicated N times). SDA Bayes [Tamara, Jordan et al] tries to address this.

- Data x_1, x_2, \ldots generated iid from $p(x|\theta)$ given parameter θ , prior is $p(\theta)$.
- Posterior of θ given a collection of S data points, $C_1 = (x_1, \dots, x_S)$:

$$p(\theta|C_1) = \frac{p(C_1|\theta)p(\theta)}{p(C_1)}$$

where
$$p(C_1|\theta) = p(x_1,...,x_S|\theta) = \prod_{s=1}^{S} p(x_s|\theta)$$

• Given posterior $p(\theta|C_1,\ldots,C_{b-1})$, we can calculate the posterior after b-th

$$p(\theta|C_1,\ldots,C_b) \propto p(C_b|\theta)p(\theta|C_1,\ldots,C_{b-1})$$

In complex models, posterior cannot be calculated exactly and so we assume

October 19, 2015

22 / 27

- Data x_1, x_2, \ldots generated iid from $p(x|\theta)$ given parameter θ , prior is $p(\theta)$.
- Posterior of θ given a collection of S data points, $C_1 = (x_1, \dots, x_S)$:

$$p(\theta|C_1) = \frac{p(C_1|\theta)p(\theta)}{p(C_1)}$$

where
$$p(C_1|\theta) = p(x_1, \dots, x_S|\theta) = \prod_{s=1}^S p(x_s|\theta)$$

• Given posterior $p(\theta|C_1,\ldots,C_{b-1})$, we can calculate the posterior after b-th mini batch:

$$p(\theta|C_1,\ldots,C_b) \propto p(C_b|\theta)p(\theta|C_1,\ldots,C_{b-1})$$

• In complex models, posterior cannot be calculated exactly and so we assume a black box approximation algorithm \mathcal{A} that calculates an approximate posterior $q: q(\theta) = \mathcal{A}(C, p(\theta))$.

- Data x_1, x_2, \ldots generated iid from $p(x|\theta)$ given parameter θ , prior is $p(\theta)$.
- Posterior of θ given a collection of S data points, $C_1 = (x_1, \dots, x_S)$:

$$p(\theta|C_1) = \frac{p(C_1|\theta)p(\theta)}{p(C_1)}$$

where $p(C_1|\theta) = p(x_1, \dots, x_S|\theta) = \prod_{s=1}^S p(x_s|\theta)$

• Given posterior $p(\theta|C_1,\ldots,C_{b-1})$, we can calculate the posterior after *b*-th mini batch:

$$p(\theta|C_1,\ldots,C_b) \propto p(C_b|\theta)p(\theta|C_1,\ldots,C_{b-1})$$

• In complex models, posterior cannot be calculated exactly and so we assume a black box approximation algorithm \mathcal{A} that calculates an approximate posterior q: $q(\theta) = \mathcal{A}(C, p(\theta))$.

- Data x_1, x_2, \ldots generated iid from $p(x|\theta)$ given parameter θ , prior is $p(\theta)$.
- Posterior of θ given a collection of S data points, $C_1 = (x_1, \dots, x_S)$:

$$p(\theta|C_1) = \frac{p(C_1|\theta)p(\theta)}{p(C_1)}$$

where $p(C_1|\theta) = p(x_1, \dots, x_S|\theta) = \prod_{s=1}^S p(x_s|\theta)$

• Given posterior $p(\theta|C_1,\ldots,C_{b-1})$, we can calculate the posterior after *b*-th mini batch:

$$p(\theta|C_1,\ldots,C_b) \propto p(C_b|\theta)p(\theta|C_1,\ldots,C_{b-1})$$

• In complex models, posterior cannot be calculated exactly and so we assume a black box approximation algorithm \mathcal{A} that calculates an approximate posterior q: $q(\theta) = \mathcal{A}(C, p(\theta))$.

• Setting $q_0(\theta) = p(\theta)$, one way to recursively calculate an approximation to the posterior is:

$$p(\theta|C_1,\ldots,C_b)\approx q_b(\theta)=\mathcal{A}(C_b,q_{b-1}(\theta))$$

Issue

Calculating ${\mathcal A}$ might take longer than time interval between mini batch arrivals!

Question

Can posterior calculations be parallelized?

• Setting $q_0(\theta) = p(\theta)$, one way to recursively calculate an approximation to the posterior is:

$$p(\theta|C_1,\ldots,C_b)\approx q_b(\theta)=\mathcal{A}(C_b,q_{b-1}(\theta))$$

Issue:

Calculating ${\cal A}$ might take longer than time interval between mini batch arrivals!

Question

Can posterior calculations be parallelized?

• Setting $q_0(\theta) = p(\theta)$, one way to recursively calculate an approximation to the posterior is:

$$p(\theta|C_1,\ldots,C_b)\approx q_b(\theta)=\mathcal{A}(C_b,q_{b-1}(\theta))$$

Issue:

Calculating ${\cal A}$ might take longer than time interval between mini batch arrivals!

Question:

Can posterior calculations be parallelized?

• Rewriting the posterior updates using Bayes Theorem:

$$p(\theta|C_1,\ldots,C_b) \propto \left[\prod_{b=1}^B p(C_b|\theta)\right] p(\theta) \propto \left[\prod_{b=1}^B \frac{\overbrace{p(\theta|C_b)}}{p(\theta)}\right] p(\theta)$$

ullet Now plugging in the black box approximating algorithm ${\cal A}$:

$$p(\theta|C_1,\ldots,C_b) \propto \bigg[\prod_{b=1}^{B} \frac{\overbrace{\mathcal{A}(C_b,p(\theta))}^{parallelizable}}{p(\theta)}\bigg]p(\theta)$$

• Assuming, $p(\theta)$ and $\mathcal{A}(C_b, p(\theta)) \sim \exp$ family with sufficient statistic $\phi(\theta)$, and natural parameters ξ_0 and ξ_b respectively:

$$p(\theta|C_1,\ldots,C_b) \propto \exp\left\{\left[\xi_0 + \sum_{b=1}^{B} \frac{\xi_b - \xi_0}{(\xi_b - \xi_0)}\right] \cdot \phi(\theta)\right\}$$

• Rewriting the posterior updates using Bayes Theorem:

$$p(\theta|C_1,\ldots,C_b) \propto \left[\prod_{b=1}^B p(C_b|\theta)\right] p(\theta) \propto \left[\prod_{b=1}^B \frac{\overbrace{p(\theta|C_b)}}{p(\theta)}\right] p(\theta)$$

• Now plugging in the black box approximating algorithm A:

$$p(\theta|C_1,\ldots,C_b) \propto \left[\prod_{b=1}^{B} \frac{\overbrace{\mathcal{A}(C_b,p(\theta))}^{parallelizable}}{p(\theta)}\right] p(\theta)$$

• Assuming, $p(\theta)$ and $A(C_b, p(\theta)) \sim \exp$ family with sufficient statistic $\phi(\theta)$,

$$p(\theta|C_1,\ldots,C_b) \propto \exp\left\{\left[\xi_0 + \sum_{b=1}^{B} \frac{\xi_b - \xi_0}{(\xi_b - \xi_0)}\right] \cdot \phi(\theta)\right\}$$

24 / 27

• Rewriting the posterior updates using Bayes Theorem:

$$p(\theta|C_1,\ldots,C_b) \propto \left[\prod_{b=1}^B p(C_b|\theta)\right] p(\theta) \propto \left[\prod_{b=1}^B \frac{p(\theta|C_b)}{p(\theta|C_b)}\right] p(\theta)$$

• Now plugging in the black box approximating algorithm A:

$$p(\theta|C_1,\ldots,C_b) \propto \left[\prod_{b=1}^{B} \frac{\overbrace{\mathcal{A}(C_b,p(\theta))}^{parallelizable}}{p(\theta)}\right] p(\theta)$$

• Assuming, $p(\theta)$ and $\mathcal{A}(C_b, p(\theta)) \sim \exp$ family with sufficient statistic $\phi(\theta)$, and natural parameters ξ_0 and ξ_b respectively:

$$p(\theta|C_1,\ldots,C_b) \propto \exp\left\{\left[\xi_0 + \sum_{b=1}^{B} \frac{e^{parallelizable}}{(\xi_b - \xi_0)}\right] \cdot \phi(\theta)\right\}$$

Streaming Distributed Asynchronous Algorithm:

In practice, substitute $\ensuremath{\mathcal{A}}$ with any variational method like Variational Bayes or EP

Connections to Expectation Propagation (EP)

Variational Bayes

min $KL(q(\theta)||p(\theta|y))$

- $q(\theta)$ will tend to be zero where $p(\theta|x)$ is zero
- may lead to a local minimum

Expectation Propagation

min $KL(p(\theta|y)||q(\theta))$

- $q(\theta)$ will tend to be non-zero where $p(\theta|x)$ is non-zero
- averaging across modes may lead to poor predictive performance

Parameswaran Raman Variational Inference October 19, 2015 26 / 27

References

- [1] Christopher M Bishop. *Pattern recognition and machine learning*. springer, 2006.
- [2] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan. Streaming variational bayes. In Advances in Neural Information Processing Systems 26. 2013.
- [3] Kay H. Brodersen. Variational Inference. http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf.
- [4] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.
- [5] Shakir Mohammed. Variational Inference for Machine Learning. http://shakirm.com/papers/VITutorial.pdf.
- [6] Alex Tank, Nicholas J Foti, and Emily B Fox. Streaming variational inference for bayesian nonparametric mixture models. *arXiv preprint arXiv:1412.0694*, 2014.