Decision Trees

Last Class

- (Adapted from Leslie Kaelbling's example in the MIT courseware)
- Imagine I'm trying predict whether my neighbor is going to drive into work, so I can ask for a ride.
- Whether she drives into work seems to depend on the following attributes of the day:
- expected precipitation
- day of the week
- what she's wearing

Memory

- Standard answer in this case is "yes".

 This day is just like one of the ones we've seen before, and so it seems like a good bet to predict "yes."
- This is the most rudimentary form of learning, which is just to memorize the things you've seen before.

dwəL	Precip	Day	Clothes	
25	None	Sat	Casual	Walk
-5	Snow	Mon	Casual	Drive
15	Snow	Mon	Casual	Walk
-5	Snow	Mon	Casual	Drive

Administrivia

- Labs
- Seems many of you cannot make the 11:30 or 12:30 labs, and the 1:30 lab is full.
 - They have opened a new lab at 2:30 (B04)
- Project Pitches Sept 22
- If you can't make your lab for your pitch, contact Caleb cschortt@uvic.ca

Temp	Precip	Day	Clothes	
25	None	Sat	Casual	Walk
9-	Snow	Mon	Casual	Drive
15	Snow	Mon	Casual	Walk
9-	Snow	Mon	Casual	

Noisy Data

Things aren't always as easy as they were in the previous case. What
if you get this set of noisy data?

		Walk	Walk	Drive	Drive	Walk	Walk	Walk	خ
,	Clothes	Casual							
noisy data	Day	Sat							
it you get this set of noisy data?	Precip	None							
ii you get	Temp	25	25	25	25	25	25	25	25

We have certainly seen this case before, but the problem is that it has had different answers. Our neighbor is not entirely reliable.

Averaging

· One strategy would be to predict the majority outcome.

Temp	Precip	Day	Clothes	
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Drive
25	None	Sat	Casual	Drive
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk

Generalization

- Dealing with previously unseen cases
 Will she walk or drive?

Temp	Precip	Day	Clothes	
22	None	Fri	Casual	Walk
3	None	Sun	Casual	Walk
10	Rain	Wed	Casual	Walk
90	None	Mon	Casual	Drive
20	None	Sat	Formal	Drive
25	None	Sat	Casual	Drive
-5	Snow	Mon	Casual	Drive
27	None		Casual	Drive
24	Rain	Mon	Casual	٤

We might plausibly make any of the following arguments:

- raining today and the only other She's going to walk because it's time it rained, she walked.
 - She's going to drive because she has always driven on Mondays...

Decision Trees

· Predict by splitting on attribute values

Temp	Precip	Day	Clothes	
72	None	Fri	Casual	Walk
က	None	Sun	Casual	Walk
9	Rain	Wed	Casual	Walk
30	None	Mon	Casual	Drive
70	None	Sat	Formal	Drive
25	None	Sat	Casual	Drive
-2	Snow	Mon	Casual	Drive
27	None		Casual	Drive
24	Rain	Mon	Casual	¿

-She's going to walk because it's raining today and the only other time it rained, she walked.

-She's going to drive because she has always driven on Mondays...

Example of a Decision Tree

Apply Model to Test Data

Apply Model to Test Data

Apply Model to Test Data

Apply Model to Test Data

Constructing decision trees (ID3)

- Normal procedure: top down in a recursive divide-and-conquer fashion
- First: an attribute is selected for the root node and a branch is created for each possible attribute value
- Then: the instances are split into subsets (one for each branch extending from the node)
- Finally: the same procedure is repeated recursively for each branch, using only instances that reach the branch
- Process stops if all instances have the same class

Apply Model to Test Data

Apply Model to Test Data

Weather data

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sumy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Nomal	False	Yes
Rainy	Cool	Nomal	True	No
Overcast	Cool	Nomal	True	Yes
Sumy	Mild	High	False	No
Sumy	Cool	Normal	False	Yes
Rainy	Mild	Nomal	False	Yes
Sumy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Nomal	False	Yes
Rainy	Mild	High	True	No

Entropy

- Expected value of the information in X

• H(X) = E(I(X)) Expected value of the informati
• Expected value:
$$E(f(X)) = \sum_{i} P(x_i) * f(x_i)$$

Information:

$$I(x_i) = -\log_2 P(x_i)$$

Entropy:

$$H(X) = E(I(X)) = \sum_{i} P(x_i)I(x_i) = -\sum_{i} P(x_i)\log_2 P(x_i)$$

Strategy: choose attribute that results in lowest entropy of the children nodes.

Measuring Purity with Entropy

- Entropy is a measure of disorder. Also called amount of information.
- The higher the entropy, the messier the bag
- Zero entropy PERFECT yes yes yes - The lower the entropy, the purer the bag Low entropy GOOD yes yes high entropy -BAD yes yes 2 2 2 2

A criterion for attribute selection

- Which is the best attribute?
- Heuristic: choose the attribute that produces the "purest" The one which will result in the smallest tree
- Popular impurity criterion: entropy of nodes
- Lower the entropy, purer the node

Why low entropy?

 $E(6/7,1/7) = E(6/7,1/7) = (6/7)^{1}\log_{2}(6/7) - (6/7)^{1}\log_{2}(1/7) = .5917$ $E(a/d, b/d) = -(a/d)^{10}g_{2}(a/d) - (b/d)^{10}g_{2}(b/d)$ yes yes yes yes yes yes yes d=total # of rows $E(3/7,4/7) = E(3/7)^4 \log_2(3/7)^4 \log_2(4/7) = .985$ a = # yes p = # no yes yes no no where:

Entropy Chart

- In the entropy formula: a/d + b/d = 1

a/d with x

b/d with 1-x.

 $E(a/d, b/d) = -(a/d)^*log_2(a/d) - (b/d)^*log_2(b/d) =$

 $-x^{1}\log_{2}(x) - (1-x)^{1}\log_{2}(1-x)$

Attribute "Outlook"

outlook=sunny

entropy(2/5,3/5) = -2/5*log2(2/5)-3/5*log2(3/5)=.971

outlook=overcast

 $\operatorname{entropy}(4/4,0/4) = -1*\log 2(1) - 0*\log 2(0) = 0$

entropy(3/5,2/5) = $-3/5*\log 2(3/5)-2/5*\log 2(2/5) = .971$

Expected info:

AE = .971*(5/14) + 0*(4/14) + .971*(5/14) = .693

Attribute "Humidity"

humidity=high

entropy $(3/7,4/7) = -3/7*\log 2(3/7) - 4/7*\log 2(4/7) = .985$

entropy $(6/7,1/7) = -6/7*\log 2(6/7) - 1/7*\log 2(1/7) = .592$

Expected info:

AE = .985*(7/14) + .592*(7/14) = .789

Entropy for more than two class values

For three class values:

 $\mathsf{E}(a/\mathsf{d},\,\mathsf{b}/\mathsf{d},\,\mathsf{c}/\mathsf{d}) = -(a/\mathsf{d})^* \mathsf{log}_2(a/\mathsf{d}) - (\mathsf{b}/\mathsf{d})^* \mathsf{log}_2(\mathsf{b}/\mathsf{d}) - (\mathsf{c}/\mathsf{d})^* \mathsf{log}_2(\mathsf{c}/\mathsf{d})$

a/d + b/d + c/d = 1

For more class values:

 $E(a_1/d,..., a_n/d) = -(a_1/d)^*log_2(a_1/d) - ... - (a_n/d)^*log_2(a_n/d)$

 $a_1/d + ... + a_n/d = 1$

Attribute "Temperature"

temperature=hot

entropy(2/4, 2/4) = -2/4*log2(2/4) - 2/4*log2(2/4) = 1

temperature=mild

entropy $(4/6,2/6) = -4/6*\log 2(4/6) - 2/6*\log 2(2/6) = .918$

temperature=cool

entropy(3/4,1/4) = -3/4*log2(3/4)-1/4*log2(1/4) = .811

Expected info:

AE = 1*(4/14) + .918*(6/14) + .811*(4/14) =**0.911**

Attribute "Windy"

windy=false

entropy $(6/8, 2/8) = -6/8*\log 2(6/8) - 2/8*\log 2(2/8) = .811$

entropy $(3/6,3/6) = -3/6*\log 2(3/6) - 3/6*\log 2(3/6) = 1$

Expected info:

AE = .811*(8/14) + 1*(6/14) = .892

And the winner is...

"Outlook"

...So, the root will be "Outlook"

Continuing to split (for Outlook="Sunny")

AE = 0*(2/5) + 1*(2/5) + 0*(1/5) = .4temperature=mild: entropy(1/2,1/2) = 1 temperature=cool: entropy(1/1,0/1) = 0 temperature=hot: entropy(2/2,0/2) = 0

humidity=high: entropy(3/3,0/3) = 0humidity=normal: info(2/2,0/2) = 0

AE = 0

windy=false: entropy(1/3,2/3)=

 $-1/3*\log 2(1/3) -2/3*\log 2(2/3) = .918$

windy=true: entropy(1/2,1/2) = 1 AE = .918*(3/5) + 1*(2/5) = .951

Winner is "humidity"

Continuing to split (for Outlook="Overcast")

Play	Yes	Yes	Yes	Yes
Windy	False	True	True	False
Humidity	High	Normal	High	Normal
Temp Humidity Windy Play	Hot High	Cool Normal	Mild High	Hot Normal

Continuing to split (for Outlook="Sunny")

(outlook)	kuuns	<i>/</i>	(temperature)	los blim los	_	yes yes	windy windy windy
a	Play	No	No	No	Yes	Yes no	Which one to choose?
1	Wmdy	False	True	False	False	True	
1	Humidity	High	High	High	Normal	Normal	:
E	lemp	Hot	Hot	Mild	Cool	Mild	sumny
1.00	Outlook	Sunny	Sunny	Sunny	Sunny	Sunny	high no no no no

Tree so far

Continuing to split (for Outlook="Rainy")

Outlook	Temp	Humidity	Windy	Play
Rainy	PIJM	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

• We can easily see that "Windy" is the one to choose. (Why?)

The final decision tree

- · Note: not all leaves need to be pure; sometimes identical instances have different classes
- ⇒ Splitting stops when data can't be split any further

Noisy data

- · Not all leaves need to be pure; sometimes identical tuples have different class values
 - Splitting stops when data can't be split any further

Continuous-valued attributes

- Some attributes can be numeric (continuous).
 No problem, we can have binary splits (≥v, <v), still use Entropy

Outlook			overcast							3				false	true
O	\int	\	° \	\sim						Humid		22	85	90	95
		sunny	$\sqrt{}$	£ 82	ا حرا	8	yes	2		Temp	69	75	85	80	72
				Humidity, 85	<=RF	N	2 2	2 2		Outlook	sunny	sunny	sumny	sumny	sunny
										<u></u>	Н	2	00	6	11
Play	no	ou	yes	yes	yes	ou	yes	ou	yes	ves		yes	yes	yes	ou
Windy	false	true	false	false	false	true	true	false	false	false		true	true	false	true
Femp Humidity	85	06	98	96	80	70	9	95	70	80	i i	0/	90	75	91
Temp	85	80	83	70	89	65	64	72	69	7.5		C	72	81	71
Outlook	sunny	sunny	overcast	rainy	rainy	rainy	overcast	sunny	sunny	rainv		sanny	overcast	overcast	rainy
9	1	2	3	4	2	9	7	00	6	10	;	11	12	13	14

Algorithms

- at University of Sydney Australia Algorithm described so far is called "ID3" - Iterative Dichotomiser developed by Ross Quinlan
- Led to development of C4.5 (and its commercial version, C5.0, J48 in Java) which deals with
 - noisy data
- missing values
- numeric attributes
- · pruning the tree

Missing data

Sometimes, some attributes of some tuples have missing values

Pruning the tree

- Not always a good idea to grow the tree exhaustively

- Saying goes:

 "tree will **over fit** the training data"

 "tree will **not abstract well** to classify new data"
- Solutions

rainy

- Pre-pruning
- Post-pruning

Decision Trees

- Pros:

- Easy to visualize/interpret
 Efficient to use
 Handles discrete and continuous values
 - Cons:
- Can create overly-complex trees (pruning helps)
 Unstable (small changes in data can give very different trees)
 Finding optimal tree is NP complete