Helf adder! For input A&B

Half Subtractor: for input A&B,

Difference - ABB Borrow = AB

full adder: A, B, Cin

Cout =
$$AB + BC_{in} + AC_{in} \leftarrow K - Makes (AND - OR)$$

= $(A \oplus B)C_{in} + AB$

Sum = 0 Carry = 1 & Carry generated Carry generated $Cy = 1 \quad O \quad O' \quad O = (1000)$ A Carry Propagated & Carry Sit Shifted from Right (or another Sum) Carry Generated + Carry de not come from Previous Atage.

Cout =
$$AB + BC_{in} + AC_{in} \leftarrow K - Maks (AND - OR)$$

= $(A \oplus B)(_{in} + AB)$

Full subtractor: 1> Calculate différence blu 3 bits. diff = A-B-Bin				
A	B	Bin	D: Ft	Bout
6 O	O	0	O	0
40	0	1	1 m2	1 00
2 0	T	0	1 m2	1 mz
30	1	1	0	1 mg mg
			1 my	0

diff =
$$\sum m(1,2,4,7)$$
 &— Clubbing Not Possible

Some as Sum

Bout =
$$\sum m(1,2,3,7)$$

 $m_1 m_2 m_3 m_7$
Bout = $\overline{ABBin} + \overline{ABBin} + \overline{ABBin} + \overline{ABBin}$
Bin $(\overline{AB+AB}) + \overline{AB} (\overline{Bin+Bin})$

full Subtractor = 2 half Subtractor + OR gate Ditt = A & B & Bin Bout = Bin (AOB) + AB half subtractor A 🕀 B A AOS AE REBBIL ${\cal B}$ Bin-AOB (AOB) B:L or gate Bin AB+Bin(AOB) F B B Half Subhatur

full Subtractor Living Half Subtractor

+ Ommorow

La Parallel Circuit ->

Ly Code Converter (Inhoduction) a Inp