A SEARCH FOR LEPTON FLAVOR VIOLATING DECAYS OF THE HIGGS BOSON and a Measurement of W Boson Production using the CMS Detector at the LHC

by

Aaron Levine

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
(Physics)

 $at\ the$

University of Wisconsin - Madison 2016

Defended on

Dissertation approved by the following members of the Final Oral Committee:

Sridhara Dasu · Professor of Physics

Wesley Smith \cdot Professor of Physics

Other Member \cdot Professor of Physics

Other Member \cdot Professor of Physics

Other Member \cdot Professor of Other Department

Abstract

Abstract Goes Here

${\bf Acknowledgements}$

This is where any acknowledgements would go.

Contents

	Abstract					
	Ack	nowledgements	ii			
Li	st of	Tables	vii			
1	Inti	roduction	1			
	1.1	Overview of LHC, Essentially: give background needed to understand the motivation				
		section	1			
	1.2	Motivations for Analyses: Explain why I studied what I did and why the results are				
		useful	1			
2	$Th\epsilon$	eory of the Standard Model of Particle Physics and Beyond	2			
	2.1	Standard Model	2			
		Elementary Particles	2			
		Elementary Forces	2			
		The Higgs Boson	2			
	2.2	The Standard Model at the LHC	2			
		Proton-Proton Collisions	2			
		W Boson Production	2			
		Higgs Production	2			
	2.3	Beyond the Standard Model: Mention BSM theories that predict an LFV Higgs,				
		mention why we know that there must be new physics beyond the Standard Model .	2			
3	Exp	perimental Design: The Headings below are self explanatory	3			
	0.1	LHO	ก			

	3.2	CMS	3				
		Overview	3				
		Tracker	3				
		ECAL	3				
		HCAL	3				
		Muon System	3				
		Trigger	3				
4	Event Simulation 4						
	4.1	Monte Carlo Generation: Overview of different monte carlo generators	4				
	4.2	Detector Simulation	4				
5	Event Reconstruction: Discuss how physics objects are reconstructed from						
	dete	ector deposits (or lack thereof)	5				
	5.1	Particle Flow	5				
	5.2	Electrons	5				
	5.3	Muons	5				
	5.4	Hadrons	5				
	5.5	Jets	5				
	5.6	MET	5				
6	Ana	dysis Strategy (Summarize LFV,W+Jets ANs)	7				
	6.1	Background Estimation	7				
		Monte Carlo Samples Used: This section will simply list the Monte Carlo samples					
		used, in contrast with the Monte Carlo Generation section which will list the					
		different Monte Carlo generator techniques	7				
		QCD Estimation	7				
		Tau Embedding	7				
		Fake Rate Method	7				
	6.2	Selection Optimization	7				
		W+Jets	7				
		LFV Higgs	7				

	6.3	Systematic Uncertainties	7
		W+Jets	7
		LFV Higgs	7
7	Res	${f ults}$	8
	7.1	LFV Higgs	8
		Statistical Methods: Explain statistics behind calculations of limits, branching ratios	8
		8 TeV Results	8
		13 TeV Results	8
	7.2	W+Jets	8
		Detector Unfolding	8
		13 TeV Results	8
8	Cor	nclusions	9
	8.1	Summary	9
	8.2	Future Outlook	9

List of Figures

List of Tables

Introduction

- 1.1 Overview of LHC, Essentially: give background needed to understand the motivation section
- 1.2 Motivations for Analyses: Explain why I studied what I did and why the results are useful

Theory of the Standard Model of Particle Physics and Beyond

2.1 Standard Model

Elementary Particles

Elementary Forces

The Higgs Boson

2.2 The Standard Model at the LHC

Proton-Proton Collisions

W Boson Production

Higgs Production

2.3 Beyond the Standard Model: Mention BSM theories that predict an LFV Higgs, mention why we know that there must be new physics beyond the Standard Model

Experimental Design: The Headings below are self explanatory

- 3.1 LHC
- 3.2 CMS

Overview

Tracker

ECAL

HCAL

Muon System

Trigger

Event Simulation

- 4.1 Monte Carlo Generation: Overview of different monte carlo generators
- 4.2 Detector Simulation

Event Reconstruction: Discuss how
physics objects are reconstructed from
detector deposits (or lack thereof)

- 5.1 Particle Flow
- 5.2 Electrons
- 5.3 Muons
- 5.4 Hadrons
- **5.5** Jets
- 5.6 MET

Analysis Strategy (Summarize LFV,W+Jets ANs)

6.1 Background Estimation

Monte Carlo Samples Used: This section will simply list the Monte Carlo samples used, in contrast with the Monte Carlo Generation section which will list the different Monte Carlo generator techniques.

QCD Estimation

Tau Embedding

Fake Rate Method

6.2 Selection Optimization

W+Jets

LFV Higgs

6.3 Systematic Uncertainties

W+Jets

LFV Higgs

Results

7.1 LFV Higgs

Statistical Methods: Explain statistics behind calculations of limits, branching ratios

8 TeV Results

13 TeV Results

7.2 W+Jets

Detector Unfolding

13 TeV Results

Conclusions

- 8.1 Summary
- 8.2 Future Outlook