TARGET_SQL _PROJECT

(1) Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

A. Data type of all columns in the "customers" table.

ANSWER 1 A:

Query results

JOB IN	IFORMATION RESULTS	CHART PREVIEW
Row	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

insights : four columns are of string datatype and one column is of
int datatype.

B . Get the time range between which the orders were placed.

ANSWER 1 B

Query results

JOB IN	NFORMATION RESULTS		CHART PREVIEW		
Row	first_order ▼	//	last_order ▼		
1	2016-09-04 21:1	5:19 UTC	2018-10-17 17:30:18 UTC		

insights :1st order placed in 2016-09-04 21:15:19 UTC

Last order placed in 2018-10-17 17:30:18 UTC

C. Count the Cities & States of customers who ordered during the given period.

ANSWER 1 C

Query results

JOB IN	IFORMATION	RESULTS	CHART
Row	count_city ▼	count_stat	e ▼ //
1	411	9	27

(2) In-depth Exploration:

A. Is there a growing trend in the no. of orders placed over the past years?

ANSWER 2 A

Query results

ART	rs CH	RESULT	NC	FORMATION	JOB IN
	_orders ▼	no_of_	//	year ▼	Row
	329		2016		1
	45101		2017		2
	54011		2018		3
EXECUTI	EXECUTION DETAILS	JSON	CHART PREVIEW	I RESULTS	JOB INFORMATION
60k					no_of_orders by y
40k					
2.018	2,017.5		2,017	2,016.5	/

Insights : over the last three years number of orders has been increasing.

Percentage_increase b/w 2016-2017 = 13,608.5% increase

And b/w 2017-2018 = 19.7557% increase

B. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

ANSWER 2B

JOB IN	IFORMATION		RESULTS	CHA	ART	PREVIEW
Row	month 🕶	//	no_of_orders	- /		
1		1		8069		
2	:	2		8508		
3	:	3	•	9893		
4		4	•	9343		
5		5	10	0573		
6		6	•	9412		
フ	-	7	10	0318		
8	:	8	10	0843		
9		9	•	4305		
10	1	О		4959		
11	1	1	-	7544		
12	1:	2		5674		

Insights: here the number of orders is greater than 10k for the month of 5,7,8 and after August there is a dip in the number of orders.

2(B)

2ND APPROACH MONTHLY SEASONALITY FOR INDIVIDUAL YEAR

JOB IN	IFORMATION	RESULTS	СНА	RT PREVIEW	JSOI
Row	year ▼	month ~	//	no_of_orders ▼	
1	2016		9	4	
2	2016		10	324	
3	2016		12	1	
4	2017		1	800	
5	2017		2	1780	
6	2017		3	2682	
7	2017		4	2404	
8	2017		5	3700	
9	2017		6	3245	
10	2017		7	4026	

2 C. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs : Dawn
 7-12 hrs : Mornings
 13-18 hrs : Afternoon
 19-23 hrs : Night

ANSWER 2 C

```
select
    case when extract(hour from o.order_purchase_timestamp ) between 0 and 6 then
 'Dawn'
       when extract(hour from o.order_purchase_timestamp ) between 7 and 12 then
'Mornings'
       when extract(hour from o.order_purchase_timestamp ) between 13 and 18 then
'Afternoon'
       when extract(hour from o.order_purchase_timestamp ) between 19 and 23 then
'Night' end as time_of_the_day,
       count(*) as cnt
from `secure-racer-402417.target_sql.orders` o
inner join `secure-racer-402417.target_sql.customers` c
on c.customer id=o.customer id
where c.customer_state = 'BA'
group by 1
order by cnt;
```

Query results

JOB IN	IFORMATION	RESULTS	CHART	PREVIEW
Row	time_of_the_day	→	cnt 🕶	//
1	Dawn			207
2	Mornings			895
3	Night			1006
4	Afternoon			1272

Insights: Brazilian customers mostly placed their orders in
the afternoon and night .

3. Evolution of E-commerce orders in the Brazil region:

A. Get the month on month no. of orders placed in each state.

ANSWER 3A

JOB IN	IFORMATION	RESULTS	CHART	PREVIEW	JSON
Row	customer_state	-	month -		no_of_orders ▼
1	AC			1	8
2	AC			2	6
3	AC			3	4
4	AC			4	9
5	AC			5	10
6	AC			6	7
7	AC			7	9
8	AC			8	7
9	AC			9	5
10	AC			10	6
11	AC			11	5
12	AC			12	5

Insights: The number of orders every month is highest in SP
state.

3B. How are the customers distributed across all the states?

ANSWER B;

Query results

IOR IN			
30B IIV	IFORMATION	RESULTS	CHART PREVIEW
ow /	customer_state	~	no_of_customer 🔻
1	RR		46
2	AP		68
3	AC		81
4	AM		148
5	RO		253
6	то		280
7	SE		350
8	AL		413
9	RN		485
10	PI		495

Insights:for state SP no_of_customer is 41746. which is
'highest' and for state RR no_of_customer is 46.which is
'lowest'.

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - **A.** Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

ANSWER (A):

```
with final AS
 (select distinct extract(year from o.order_purchase_timestamp) as year,
  sum(p.payment_value) over (partition by extract(year from
o.order_purchase_timestamp) order by extract(year from
       o.order_purchase_timestamp)) as total_payment
  from`secure-racer-402417.target_sql.orders` o
  inner join `secure-racer-402417.target_sql.payments` p
         on o.order_id = p.order_id
  where extract(month from o.order_purchase_timestamp) between 1 and 8 and
  extract(year from o.order_purchase_timestamp) between 2017 and 2018
  ORDER BY year
   )
Select 1.year as start_yr,
      r.year as end_yr,
      1.total_payment as start_total_payment,
      r.total_payment as end_total_payment,
      ((r.total_payment - 1.total_payment) / 1.total_payment) * 100 as
percentage_increase
from final 1
inner join final r
on l.year < r.year ;</pre>
   Query results
  JOB INFORMATION
                                     CHART PREVIEW
                                                         JSON
                        RESULTS
                                                                    EXECUTION DETAILS
                                         start_total_payment
                                                         end_total_payment
                  2017
```

Insights:% increase in the cost of orders from year 2017 to 2018 is 136.977 %

Second approach ⇒>> with lead()function

```
with final AS
select distinct extract(year from o.order_purchase_timestamp) as year,
 sum(p.payment_value) over (partition by extract(year from
o.order_purchase_timestamp) order by extract(year from
      o.order_purchase_timestamp)) as total_payment
from`secure-racer-402417.target_sql.orders` o
 inner join `secure-racer-402417.target_sql.payments` p
        on o.order_id = p.order_id
where extract(month from o.order_purchase_timestamp) between 1 and 8 and
 extract(year from o.order_purchase_timestamp) between 2017 and 2018
 ORDER BY year
select *,
  lead(total_payment)over(order by year) as lead_total_payment,
   ((lead(total_payment)over(order by year) - total_payment)/total_payment)*100 as
percentage_increase
from final
order by final.year;
```

JOB IN	FORMATION	RESULTS	CHAF	RT PREVIEW	JSON EXE	ECU ⁻
Row	year ▼	total_payment	t 🕶 /	lead_total_payment	percentages_incre	se
1	201	7 366902	2.12	8694733.84	136.9768716466	
2	201	8 869473	3.84	nulı	nuli	

Insights:% increase in the cost of orders from year 2017 to 2018 is = 136.977 %

4 B. Calculate the Total & Average value of order price for each state.

ANSWER;

```
select distinct A.customer_state,
    sum(A.price)over(partition by A.customer_state) as total_price,
    avg(A.price)over(partition by A.customer_state) as average_price
from(
    select c.customer_state , oi.price
    from `secure-racer-402417.target_sql.order_items` oi
        join `secure-racer-402417.target_sql.orders` o
        on oi.order_id = o.order_id
        join `secure-racer-402417.target_sql.customers` c
        on o.customer_id = c.customer_id) A
order by total_price ,average_price desc;
```

Query results

JOB IN	NFORMATION R	RESULTS	CHART PREVIEW	JSON	EXI
Row	customer_state ▼	tota	al_price ▼	average_price ▼	
1	RR		7829.43	150.5659615384	
2	AP		13474.3	164.3207317073	
3	AC		15982.95	173.7277173913	
4	AM		22356.84	135.496	
5	RO		46140.64	165.9735251798	
6	то		49621.74	157.5293333333	
7	SE		58920.85	153.0411688311	
8	AL		80314.81	180.8892117117	
9	RN		83034.98	156.9659357277	
10	PI		86914.08	160.3580811808	

Insights: for customer_state SP average_price is lowest and
for Customer_state PB average_price is highest.

4C. Calculate the Total & Average value of order freight for each state.

```
select distinct A.customer_state,
    sum(A.freight_value)over(partition by A.customer_state order by A.customer_state)
    as total_fr_value,
    avg(A.freight_value)over(partition by A.customer_state order by A.customer_state)
    as avg_fr_value

From (select c.customer_state , oi.freight_value
    from `secure-racer-402417.target_sql.order_items` oi
    join `secure-racer-402417.target_sql.orders` o
    on oi.order_id = o.order_id
    join `secure-racer-402417.target_sql.customers` c
    on o.customer_id = c.customer_id) A
    Order by 3 ;
```

Query results

JOB II	FORMATION	RESULTS	CHART	PREVIEW	JSON	4	EXEC
Row	customer_state -		total_fr_val	ue 🕶	avg_fr_value	- /	
1	AC		3	8686.75	40.073369565	521	
2	AL		15	5914.59	35.843671171	117	
3	AM		5	5478.89	33.205393939	939	
4	AP			2788.5	34.006097560	097	
5	ва		100	0156.68	26.363958936	556	
6	CE		48	3351.59	32.714201623	381	
7	DF		5	50625.5	21.041354945	596	
8	ES		2	19764.6	22.058776595	574	
9	GO		53	3114.98	22.766815259	932	
10	MA		31	523.77	38.257002427	718	
avg_n_	alue by customer_state					≅	50
			=				40
Ш		Ш				— — z	20

Insights: for state RR avg_fr_value is highest and for state
SP avg_fr_value is lowest.

5. Analysis based on sales, freight and delivery time.

A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query. You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

time_to_deliver = order_delivered_customer_date order_purchase_timestamp diff_estimated_delivery =
 order_estimated_delivery_date - order_delivered_customer_date

ANSWER;

JOB IN	IFORMATION	RESULTS	CHART PREVIEW	JSON	EXE
Row	order_id ▼	//	time_to_deliver ▼	diff_estimated_delive	
1	1950d777989f6a	877539f5379	30	-12	
2	2c45c33d2f9cb8	ff8b1c86cc28	30	28	
3	65d1e226dfaeb8	cdc42f66542	35	16	
4	635c894d068ac3	37e6e03dc54e	30	1	
5	3b97562c3aee8b	dedcb5c2e45	32	0	
6	68f47f50f04c4cb	6774570cfde	29	1	
7	276e9ec344d3bf	029ff83a161c	43	-4	
8	54e1a3c2b97fb0	809da548a59	40	-4	
9	fd04fa4105ee804	45f6a0139ca5	37	-1	
10	302bb8109d097a	9fc6e9cefc5	33	-5	

Insights: negative value means some orders are taking more
days than estimated delivery date.

Recommendations; to fix this it is necessary to place the order by the expected date. Therefore there is a need to work in this area.

5B . Find out the top 5 states with the highest & lowest average freight value. ANSWER;

```
with final as (
   select c.customer_state,
          o.order_id,
          oi.freight_value
   from `secure-racer-402417.target_sql.orders` o
   inner join `secure-racer-402417.target_sql.order_items` oi
   on o.order_id = oi.order_id
   inner join `secure-racer-402417.target_sql.customers` c
   on c.customer_id = o.customer_id )
(select customer_state,
        avg(freight_value)as avg_freight_value
from final
group by customer_state
order by avg_freight_value desc
limit 5)
union all
(select customer_state,
        avg(freight_value)as avg_freight_value
from final
group by customer_state
order by avg_freight_value asc
Limit 5);
```

JOB IN	IFORMATION	RESULTS	CHART PREVIEW	1
Row	customer_state	-	avg_freight_value	
1	RR		42.98442307692	
2	РВ		42.72380398671	
3	RO		41.06971223021	
4	AC		40.07336956521	
5	PI		39.14797047970	
6	SP		15.14727539041	
7	PR		20.53165156794	
8	MG		20.63016680630	
9	RJ		20.96092393168	
10	DF		21.04135494596	
JOB INFORMA	TION RESULTS CHA	ART PREVIEW JSON	EXECUTION DETAILS EXE	CUTION

Insights: top 5 state with highest freight value
=RR,PB,RO,AC,PI

top 5 state with lowest freight value = SP,PR,MG,RJ,DF

5C. Find out the top 5 states with the highest & lowest average delivery time

ANSWER;

```
with final as
select c.customer_state,
      o.order_purchase_timestamp,
       o.order_delivered_customer_date,
       oi.shipping_limit_date
from `secure-racer-402417.target_sql.orders` o
inner join `secure-racer-402417.target_sql.order_items` oi
on o.order_id = oi.order_id
inner join `secure-racer-402417.target_sql.customers` c
on c.customer_id = o.customer_id
(select customer_state,
     avg(date_diff(order_delivered_customer_date, order_purchase_timestamp, day)) AS
average_delivery_time
from final
group by customer_state
order by average_delivery_time desc
limit 5 )
union all
(select customer_state,
       avg(date_diff(order_delivered_customer_date, order_purchase_timestamp, day)) AS
average_delivery_time
from final
group by customer_state
order by average_delivery_time asc
limit 5 );
```

Query results

JOB IN	IFORMATION	RESULTS	CHART PREVIEW
Row	customer_state	-	average_delivery_tim
1	RR		27.82608695652
2	AP		27.75308641975
3	AM		25.96319018404
4	AL		23.99297423887
5	PA		23.30170777988
6	SP		8.259608552419
7	PR		11.48079306071
8	MG		11.51552218007
9	DF		12.50148619957
10	sc		14.52098584675

Insights:5 states with the highest average delivery time = RR,AP,AM,AL,PA
5 states with the highest average delivery time = SP,PR,MG,DF,SC

5D. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

ANSWER;

```
with final as
 select c.customer_state,o.order_id,
         o.order_estimated_delivery_date,
         o.order_delivered_customer_date,
 from`secure-racer-402417.target_sql.order_items` oi
 inner join `secure-racer-402417.target_sql.orders` o
      on o.order_id = oi.order_id
 inner join `secure-racer-402417.target_sql.customers` c
      on c.customer_id = o.customer_id
)
select customer_state,
avg(date_diff(order_estimated_delivery_date, order_delivered_customer_date,day) ) as
fast_delivery
from final
group by customer_state
order by fast_delivery desc
limit 5 ;
```

Query results

JOB IN	IFORMATION	RESULTS	CHART PREVIEW
Row	customer_state	→	fast_delivery -
1	AC		20.01098901098
2	RO		19.08058608058
3	AM		18.97546012269
4	AP		17.4444444444
5	RR		17.43478260869

Insights: IN ABOVE TABLE FAST DELIVERY IS HAPPENING IN STATE
'AC'

6. Analysis based on the payments:

A. Find the month on month no. of orders placed using different payment types.

ANSWER;

JOB IN	IFORMATION		RESULTS	CHART	PREVIEW	JSON	EXI
Row	month ▼	11	payment_type	•	/1	no_of_orders ▼	
1		12	credit_card			5649	
2		12	voucher			325	
3		12	UPI			1440	
4		12	debit_card			64	
5		11	voucher			292	
6		11	credit_card			3643	
7		11	UPI			977	
8		11	debit_card			45	
9		10	voucher			293	
10		10	credit_card			3607	

Insights:most of the number of order placed by using
credit_card payment type.

Credit_card > UPI > voucher > debit_card

6B. Find the no. of orders placed on the basis of the payment installments that have been paid.

ANSWER;

```
select
   count(*)as no_of_order
from `secure-racer-402417.target_sql.payments`
where payment_installments > 1 ;
```

Query results

JOB IN	IFORMATION	RESULTS	С
Row	no_of_order ▼	<i>[i</i>	
1	5133	38	

Insights: 51338 orders placed on the basis of the payment installments that have been paid.

------000------