

Winning Space Race with Data Science

Pierre Levy
3 December 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

We used Jupyter Notebooks and Pything to analyze data regarding SpaceX's rocket launchers.

Introduction

The goal is to find the probability of a satellite launch to be successful.

Methodology

Executive Summary

Data collection methodology:

Data was collected on SpaceX's website and Wikipedia.

Perform data wrangling

We processed data using various Python libraries.

- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

How to build, tune, evaluate classification models

Data Collection

- For data on SpaceX's website, we used API calls.
- For data on Wikipedia, we used web scraping techniques.

Data Collection – SpaceX API

Collect data from SpaceX Website => Import data on Jupyter Notebooks => Treat data with Python => Convert data to charts for easy understanding.

All the files can be found here:

Data Collection - Scraping

Extract Data from the Wikipedia page => Import data on Jupyter Notebooks => Treat data with Python => Convert data to charts for easy understanding.

All the files can be found here:

Data Wrangling

We removed empty data and normalized data. We also converted categorical data to numerical data.

EDA with Data Visualization

We plotted bar charts, line charts, and pie charts.

EDA with SQL

We used data query to list distinct features as well as calculates some sums and averages.

Build an Interactive Map with Folium

We made of map of the United States of America with the various launch sites.

Build a Dashboard with Plotly Dash

We built a user-friendly dashboard with Plotly Dash.

Predictive Analysis (Classification)

We used logistic regression, decision trees, as well as the Knearest neighbor method to make predictions.

Results

We managed to predict the probability of a launch being successful.

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Here are all the launch site names:

Launch Site Names Begin with 'CCA'

[10]:	%sql select * from SPACEXTBL where Launch_Site like '%CCA%'limit 5											
	* sqlite:///my_data1.db Done.											
[10]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome		
	2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)		
	2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)		
	2012-05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt		
	2012-10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt		
	2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt		

Total Payload Mass

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

[20]: %sql select AVG(payload_mass__kg_) from SPACEXTBL where Booster_Version like '%F9 v1.1%';

* sqlite:///my_datal.db
Done.

[20]: AVG(payload_mass__kg_)

2534.6666666666665
```

First Successful Ground Landing Date

The first successful landing was achieved on 22 December 2015.

```
| Seglite: | From SPACEXTBL where Landing_Outcome like '%success%' limit 1; | Seglite: | //my_datal.db | Done. | Payload | PAYLOAD_MASS_KG_ | Orbit | Customer | Mission_Outcome | Landing_Outcome | Landing_Outcome | CCAFS LC-40 | OG2 Mission 2 11 Orbcomm-OG2 satellites | 2034 | LEO | Orbcomm | Success | Success (ground pad) | CCAFS LC-40 | OG2 Mission 2 11 Orbcomm-OG2 satellites | CCAFS LC-40 | OG2 Mission 2 11 Orbcomm-OG2 satellites | CCAFS LC-40 | OG2 Mission 2 11 Orbcomm-OG2 satellites | CCAFS LC-40 | OCAFS LC-40
```

Successful Drone Ship Landing with Payload between 4000 and 6000

31]:	%sql select * from SPACEXTBL where Landing_Outcome like '%success%drone%' and (PAYLOAD_MASSKG_ between 4000 and 6000);											
	* sqlite:/ Done.	//my_data1.	db									
1]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome		
	2016-05-06	5:21:00	F9 FT B1022	CCAFS LC-40	JCSAT-14	4696	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)		
	2016-08-14	5:26:00	F9 FT B1026	CCAFS LC-40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)		
	2017-03-30	22:27:00	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GTO	SES	Success	Success (drone ship)		
	2017-10-11	22:53:00	F9 FT B1031.2	KSC LC-39A	SES-11 / EchoStar 105	5200	GTO	SES EchoStar	Success	Success (drone ship)		

Total Number of Successful and Failure Mission Outcomes

There were 61 successes and 10 failures. Controlled and uncontrolled landings are not included in these statistics.

Boosters Carried Maximum Payload

[39]: %sql select * from SPACEXTBL where PAYLOAD MASS KG = (select max(PAYLOAD MASS KG) from SPACEXTBL); * sqlite:///my_data1.db Done. Payload PAYLOAD_MASS_KG_ Orbit Date Time (UTC) Booster_Version Launch_Site Customer Mission_Outcome Landing_Outcome F9 B5 B1048.4 CCAFS SLC-40 2019-11-11 14:56:00 Starlink 1 v1.0, SpaceX CRS-19 15600 LEO Success Success SpaceX 2020-01-07 2:33:00 F9 B5 B1049.4 CCAFS SLC-40 Starlink 2 v1.0, Crew Dragon in-flight abort test 15600 LEO SpaceX Success Success 2020-01-29 14:07:00 F9 B5 B1051.3 CCAFS SLC-40 Starlink 3 v1.0, Starlink 4 v1.0 15600 LEO Success Success SpaceX 2020-02-17 15:05:00 F9 B5 B1056.4 CCAFS SLC-40 Starlink 4 v1.0, SpaceX CRS-20 15600 LEO SpaceX Success Failure 2020-03-18 F9 B5 B1048.5 KSC LC-39A 12:16:00 Starlink 5 v1.0. Starlink 6 v1.0 15600 LEO SpaceX Success Failure F9 B5 B1051.4 Starlink 6 v1.0, Crew Dragon Demo-2 15600 LEO 2020-04-22 19:30:00 KSC LC-39A SpaceX Success Success 2020-06-04 F9 B5 B1049.5 CCAFS SLC-40 1:25:00 Starlink 7 v1.0, Starlink 8 v1.0 15600 LEO SpaceX, Planet Labs Success Success 2020-09-03 LEO 12:46:14 F9 B5 B1060.2 KSC LC-39A Starlink 11 v1.0, Starlink 12 v1.0 15600 SpaceX Success Success 11:29:34 F9 B5 B1058.3 KSC LC-39A Starlink 12 v1.0. Starlink 13 v1.0 LEO 2020-10-06 SpaceX 15600 Success Success 2020-10-18 12:25:57 F9 B5 B1051.6 KSC LC-39A Starlink 13 v1.0, Starlink 14 v1.0 15600 LEO SpaceX Success Success 2020-10-24 15:31:34 F9 B5 B1060.3 CCAFS SLC-40 Starlink 14 v1.0, GPS III-04 15600 LEO SpaceX Success Success 2020-11-25 2:13:00 F9 B5 B1049.7 CCAFS SLC-40 LEO Starlink 15 v1.0, SpaceX CRS-21 15600 SpaceX Success Success

2015 Launch Records

```
[49]: %sql select substr(Date,6,2) as Month, Landing_Outcome, Booster_Version, Launch_Site from SPACEXTBL where Landing_Outcome like '%failure%drone%' and substr(Date,0,5)='2015';

* sqlite://my_datal.db
Done.

[49]: Month Landing_Outcome Booster_Version Launch_Site

O1 Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40

O4 Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
[76]: | %%sql select Landing_Outcome, count(Landing_Outcome) as countlo from SPACEXTBL
           where (Date > '2010-06-04') and (Date < '2017-03-20')
           group by Landing Outcome order by countlo desc;
        * sqlite:///my data1.db
       Done.
[76]:
          Landing_Outcome countlo
                No attempt
         Success (drone ship)
          Failure (drone ship)
        Success (ground pad)
                                  3
          Controlled (ocean)
        Uncontrolled (ocean)
       Precluded (drone ship)
          Failure (parachute)
```


<Folium Map Screenshot 1>

Replace <Folium map screenshot 1> title with an appropriate title

• Explore the generated folium map and make a proper screenshot to include all launch sites' location markers on a global map

<Folium Map Screenshot 2>

• Replace <Folium map screenshot 2> title with an appropriate title

 Explore the folium map and make a proper screenshot to show the colorlabeled launch outcomes on the map

<Folium Map Screenshot 3>

• Replace <Folium map screenshot 3> title with an appropriate title

• Explore the generated folium map and show the screenshot of a selected launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

< Dashboard Screenshot 1>

Replace < Dashboard screenshot 1> title with an appropriate title

• Show the screenshot of launch success count for all sites, in a piechart

< Dashboard Screenshot 2>

• Replace < Dashboard screenshot 2> title with an appropriate title

• Show the screenshot of the piechart for the launch site with highest launch success ratio

< Dashboard Screenshot 3>

Replace <Dashboard screenshot 3> title with an appropriate title

• Show screenshots of Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.

Classification Accuracy

• Visualize the built model accuracy for all built classification models, in a bar chart

• Find which model has the highest classification accuracy

Confusion Matrix

• Show the confusion matrix of the best performing model with an explanation

Conclusions

- Point 1
- Point 2
- Point 3
- Point 4

• ...

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

