Regressão Linear e Regularização

Tiago Mendonça dos Santos

tiagoms.comtiagomendoncatiagoms1@insper.edu.br

Objetivos

Ao final dessa aula você deverá ser capaz de:

- interpretar, ajustar e aplicar um modelo linear
- compreender e aplicar técnicas de seleção de variável
- relacionar técnicas de regularização com o trade-off viés-variância
- ajustar, definir hiperparâmetros e aplicar modelos com técnicas de regularização
- comparar modelos de regressão linear e regularizados

Introdução

Regressão

Resíduo

Chamamos as diferenças apresentadas anteriormente, em vermelho, de **resíduos**. Essa quantidade é definida, de forma matemática, como:

$$e_i = y_i - \hat{y}_i = y_i - (\hat{eta}_0 + \hat{eta}_1 x_i).$$

Podemos definir a soma dos quadrados dos resíduos (RSS - residual sum of squares) da seguinte forma:

$$egin{aligned} ext{RSS} &= e_1^2 + \dots + e_n^2 \ ext{RSS} &= ig(y_1 - (\hat{eta}_0 + \hat{eta}_1 x_1)ig)^2 + \dots + ig(y_n - (\hat{eta}_0 + \hat{eta}_1 x_n)ig)^2 \ ext{RSS} &= \sum_{i=1}^n ig(y_i - (\hat{eta}_0 + \hat{eta}_1 x_i)ig)^2 \end{aligned}$$

Regressão

 R^2

$$R^2 = \frac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{TSS}} = 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}}$$

em que RSS $= \sum (y_i - \hat{y})^2$ e TSS $= \sum (y_i - \overline{y})^2$.

R^2 Ajustado

$$\mathrm{R}^2\mathrm{Ajustado} \, = 1 - rac{\mathrm{RSS}/(n-d-1)}{\mathrm{TSS}/(n-1)}$$

em que RSS = $\sum (y_i - \hat{y})^2$, TSS = $\sum (y_i - \bar{y})^2$ e d é o número de variáveis no modelo.

Advertising¹

[1] Exemplo retirado do livro An Introduction to Statistical Learning with Applications in R.

Advertising¹

[1] Exemplo retirado do livro An Introduction to Statistical Learning with Applications in R.

R^2

```
fit1 <- lm(sales ~ TV, data = advertising)</pre>
 y_pred <- predict(fit1, advertising)</pre>
 y_bar <- mean(advertising$sales)</pre>
 RSS <- sum((advertising$sales - y_pred)^2)</pre>
 TSS <- sum((advertising$sales - y_bar)^2)</pre>
 1 - RSS/TSS
## [1] 0.6118751
 summary(fit1)$r.squared
## [1] 0.6118751
```

${\mathbb R}^2$ Ajustado

```
y_pred <- predict(fit1, advertising)
y_bar <- mean(advertising$sales)

RSS <- sum((advertising$sales - y_pred)^2)
TSS <- sum((advertising$sales - y_bar)^2)

1 - (RSS/(nrow(advertising) - 1 - 1))/(TSS/(nrow(advertising) - 1))

## [1] 0.6099148

summary(fit1)$adj.r.squared

## [1] 0.6099148</pre>
```


Regressão Linear Múltipla

$$Y = eta_0 + eta_1 X_1 + eta_2 X_2 + \dots + eta_p X_p + \epsilon$$

Vamos considerar o seguinte exemplo:

```
library(readx1)
dados <- read_xlsx("dados/dados.xlsx")</pre>
```

x1	x2	y1	y2
11.14	В	2.88	4.04
16.22	A	1.49	15.70
16.09	В	5.18	12.32
16.23	A	3.16	22.18
18.61	В	18.40	6.61
16.40	В	3.59	7.89

$$Y = \beta_0 + \beta_1 X_1$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$Y = \beta_0 + \beta_1 X_1$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

Advertising

```
fit <- lm(sales ~ ., data = advertising)</pre>
summary(fit)
##
## Call:
## lm(formula = sales ~ ., data = advertising)
##
## Residuals:
##
      Min
              10 Median
                                    Max
                             30
## -8.8277 -0.8908 0.2418 1.1893 2.8292
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.938889 0.311908 9.422 <2e-16 ***
              0.045765 0.001395 32.809 <2e-16 ***
## TV
## radio
        0.188530 0.008611 21.893
                                          <2e-16 ***
## newspaper -0.001037 0.005871 -0.177
                                         0.86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.686 on 196 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
## F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
```

Importância das variáveis

Interação

```
fit <- lm(sales ~ TV + radio, advertising)
fit_interacao <- lm(sales ~ TV*radio, advertising)</pre>
```


Interação

Insper

Seleção de Modelos

- Seleção de subconjuntos: considera um subconjunto das p preditoras.
- **Regularização**: ajusta-se um modelo com as *p* preditoras e os coeficientes estimados são encolhidos em direção a zero. Essa abordagem reduz a variância.
- Redução de dimensão: considera a utilização de uma combinação das p preditoras numa dimensão M tal que M < p.

Critérios

•
$$C_p = \frac{1}{n}(RSS + 2p\hat{\sigma}^2)$$

- Akaike Information Criteria $ext{AIC} = rac{1}{n\hat{\sigma}^2}(ext{RSS} + 2p\hat{\sigma}^2)$
- Bayesian Information Criteria $\mathrm{BIC} = rac{1}{n}(\mathrm{RSS} + \log(n)p\hat{\sigma}^2)$

em que p é o número de preditoras utilizadas no modelo e $\hat{\sigma}^2$ é uma estimativa da variância do erro ϵ baseado em

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon.$$

Best Subset Selection¹

- Seja \mathcal{M}_0 o modelo nulo, ou seja, o modelo sem preditoras. Esse modelo prevê com base na média amostral das observações.
- Para k = 1, ..., p:
 - Ajuste todos os $\binom{p}{k}$ modelos com k preditoras.
 - Selecione o melhor entre os $\binom{p}{k}$ modelos e denote por \mathcal{M}_k . O melhor modelo pode ser definido de acordo com RSS ou \mathbb{R}^2 .
- Selecione o melhor modelo para cada $\mathcal{M}_0,\ldots,\mathcal{M}_p$ utilizando validação cruzada para o erro de previsão, C_p , AIC, BIC ou R^2 ajustado.

Stepwise

Para contornar o problema do número de modelos relativo ao *best subset selection*, os métodos *stepwise* exploram um espaço restrito de modelos.

Número de variáveis	Best subset	Stepwise
2	4	4
4	16	11
8	256	37
16	65.536	137
32	4.294.967.296	529

Forward stepwise selection¹

- Seja \mathcal{M}_0 o modelo nulo, ou seja, o modelo sem preditoras.
- Para k = 0, ..., p 1:
 - \circ Considere todos os p-k modelos que aumentam as preditoras em \mathcal{M}_k com uma preditora.
 - Escolha o *melhor* modelo entre os p-k modelos e denote por \mathcal{M}_{k+1} . O melhor pode ser definido como a menor RSS ou maior R^2 .
- Selecione o melhor modelo entre $\mathcal{M}_0,\ldots,\mathcal{M}_p$ utilizando validação cruzada para o erro de previsão, C_p , AIC, BIC ou R^2 ajustado.

Esse método pode ser aplicado para os cenários de alta dimensão em que n < p. No entanto, para esses casos, é possível construir os modelos $\mathcal{M}_0, \ldots \mathcal{M}_{n-1}$. Isso porque o método dos mínimos quadrados não possui solução única para os casos em que $p \ge n$.

Backward stepwise selection¹

- Seja \mathcal{M}_p o modelo completo, ou seja, o modelo contendo as p preditoras.
- Para $k = p, p 1, \dots, 1$:
 - \circ Considere todos os k modelos que contenham todas as preditoras em \mathcal{M}_k menos uma para um total de k-1 preditoras.
 - \circ Escolha o *melhor* modelo entre k modelos e denote por \mathcal{M}_{k-1} . O melhor pode ser definido como a menor RSS ou maior R^2 .
- Selecione o melhor modelo entre $\mathcal{M}_0,\ldots,\mathcal{M}_p$ utilizando validação cruzada para o erro de previsão, C_p , AIC, BIC ou R^2 ajustado.

Credit¹

- **ID**: id
- **Income**: renda (em \$10,000)
- Limit: limite de crédito
- Rating: rating de crédito
- Cards: número de cartões de crédito
- Age: idade em anos
- Education: anos de escolaridade
- Gender: Male / Female
- Student: Yes / No
- Married: Yes / No
- Ethnicity: African American / Asian / Caucasian
- Balance: saldo médio do cartão de crédito em \$

Credit

Faça uma análise exploratória dos dados (EDA - *exploratory data analysis*). Quais variáveis você acredita que mais se relacionam com *Balance*?

library(ISLR)

data(Credit)

ID *	Income \$	Limit ‡	Rating \$	Cards	Age 🕏	Education \$	Gender \$	Student \$	Married \$	Ethnicity \$
29	186.634	13414	949	2	41	14	Female	No	Yes	African American
86	152.298	12066	828	4	41	12	Female	No	Yes	Asian
140	107.841	10384	728	3	87	7	Male	No	No	African American
192	124.29	9560	701	3	52	17	Female	Yes	No	Asian
294	140.672	11200	817	7	46	9	Male	No	Yes	African American
324	182.728	13913	982	4	98	17	Male	No	Yes	Caucasian
4										>

30 / 61

Credit

```
library(ISLR)

data(Credit)

fit <- lm(Balance ~ ., data = Credit[,-1])

summary(fit)$coefficients</pre>
```

```
Pr(>|t|)
##
                          Estimate
                                   Std. Error
                                                   t value
## (Intercept)
                      -479.2078706 35.77393717 -13.3954468
                                                            6.730600e-34
## Income
                        -7.8031018
                                   0.23423191 -33.3135727 7.372312e-116
## Limit
                         0.1909067
                                   0.03277862
                                                 5.8241238
                                                           1.205974e-08
## Rating
                         1.1365265
                                   0.49089445
                                                2.3152157
                                                           2.112213e-02
## Cards
                                                 4.0830106
                                                            5.401200e-05
                        17.7244836
                                    4.34103295
                        -0.6139088
                                   0.29398941
                                                -2.0882005
                                                           3.743127e-02
## Age
## Education
                        -1.0988553
                                   1.59795129
                                                -0.6876651
                                                           4.920746e-01
## GenderFemale
                       -10.6532477
                                   9.91399990
                                                -1.0745660 2.832368e-01
## StudentYes
                       425.7473595 16.72258016
                                                25.4594300 8.854521e-85
## MarriedYes
                        -8.5339006 10.36287466
                                                -0.8235071
                                                            4.107256e-01
## EthnicityAsian
                       16.8041792 14.11906302
                                                 1.1901767
                                                           2.347047e-01
## EthnicityCaucasian
                       10.1070252 12.20992331
                                                 0.8277714
                                                           4.083088e-01
```

Stepwise

Forward

Backward

```
fit <- lm(Balance ~ ., data = Credit[,-1])
stepAIC(fit, direction = "backward")</pre>
```

Both

```
stepAIC(fit, direction = "both")
```

Variable Importance

```
library(patchwork)
fit1 <- lm(Balance ~ ., data = Credit[, -1])
fit2 <- lm(Balance ~ Income + Limit + Rating + Cards + Age + Student, data = Credit[, -1])
g1 <- vip(fit1, mapping = aes(fill = Sign)) + labs(title = "Full")
g2 <- vip(fit2, mapping = aes(fill = Sign)) + labs(title = "Both")
g1 + g2 + plot_layout(guides = "collect")</pre>
```


Shrinkage Methods

ou

Métodos de Encolhimento

Regressão Ridge

Antes o interesse era minimizar a seguinte quantidade:

$$ext{RSS} = \sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}
ight)^2.$$

Agora consideramos uma penalização para os coeficientes (o que acontece se $\lambda = 0$? E se $\lambda \to \infty$?)

$$ext{RSS} + \lambda \sum_{j=1}^p eta_j^2$$

É possível mostrar que minimizar a quantidade acima é equivalente a

$$rg\min_{eta} \left\{ \sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}
ight)^2
ight\} ext{ sujeito a } \sum_{j=1}^p eta_j^2 \leq s_i$$

obs: note que β_0 não é regularizado.

Regressão Ridge

Vamos pensar num caso simples em que $Y = \beta_0 + \beta_1 X_1$. Assim, $|\beta_1| \leq s$. Nesse caso, consideraremos $-2 \leq \beta_1 \leq 2$.

Regressão Ridge

Regressão Ridge

Regressão Ridge

Regressão Ridge

Regressão Ridge

Vamos utilizar a regressão ridge para os dados *Credit*.

```
library(ISLR) # base de dados
library(glmnet) # LASSO, ridge e elasticnet
library(plotmo) # gráficos
X <- model.matrix(Balance ~ ., data = Credit[,-1])[,-1]</pre>
y <- Credit$Balance
set.seed(12)
idx <- sample(nrow(Credit), size = .75 * nrow(Credit)) # indice treinamento</pre>
ridge <- glmnet(X[idx,], y[idx], alpha = 0, nlambda = 500)
plot_glmnet(ridge, lwd = 2, cex.lab = 1.3)
ridge$a0
ridge$beta
ridge$lambda
```

Regressão Ridge

Regressão Ridge

Utilizaremos validação cruzada para determinar o valor ótimo de λ . Esse gráfico apresenta a estimativa do erro e o desviopadrão. Essa função utiliza 10-folds como padrão. Os números na parte superior indicam quantos coeficientes são diferentes de zero.

```
cv_ridge <- cv.glmnet(X[idx,], y[idx], alpha = 0)
plot(cv_ridge, cex.lab = 1.3)</pre>
```


Regressão Ridge

```
y_ridge <- predict(ridge, newx = X[-idx,], s = cv_ridge$lambda.1se)</pre>
tab <- tibble(metodo = c("lm", "ridge", "lasso", "elastic"),</pre>
               mse = NA)
tabmse[tab\\metodo == "ridge"] <- mean((y[-idx] - y ridge)^2)
# modelo linear sem regularização
fit_lm <- lm(Balance ~ ., Credit[idx, -1])</pre>
y lm <- predict(fit lm, Credit[-idx,])</pre>
tab$mse[tab$metodo == "lm"] <- mean((y[-idx] - y_lm)^2)
tab
```

```
## # A tibble: 4 x 2
## metodo mse
## <chr> <dbl>
## 1 lm 11205.
## 2 ridge 14606.
## 3 lasso NA
## 4 elastic NA
```

Regressão LASSO

LASSO (Least Absolute Shrinkage and Selection Operator)

Agora consideraremos uma penalização para os coeficientes (o que acontece se $\lambda = 0$? E se $\lambda \to \infty$?)

$$ext{RSS} + \lambda \sum_{j=1}^p |eta_j|$$

É possível mostrar que minimizar a quantidade acima é equivalente a

$$rg\min_{eta} \left\{ \sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}
ight)^2
ight\} ext{ sujeito a } \sum_{j=1}^p |eta_j| \leq s$$

É comum ser descrito como penalização l_1 . A norma l_1 de um vetor β é dada por $||\beta||_1 = \sum |\beta_j|$. A norma l_2 é dada por $||\beta||_2 = \sqrt{\sum \beta_j^2}$.

obs: note que β_0 não é regularizado.

Regressão LASSO

```
lasso <- glmnet(X[idx,], y[idx], alpha = 1, nlambda = 1000)
plot_glmnet(lasso, lwd = 2, cex.lab = 1.3, xvar = "lambda")</pre>
```


Regressão LASSO

Utilizaremos validação cruzada para determinar o valor ótimo de λ . Esse gráfico apresenta a estimativa do erro e o desviopadrão.

```
cv_lasso <- cv.glmnet(X[idx,], y[idx], alpha = 1, lambda = lasso$lambda)
plot(cv_lasso, cex.lab = 1.3)</pre>
```


Regressão LASSO

```
y_lasso <- predict(lasso, newx = X[-idx,], s = cv_lasso$lambda.min)
tab$mse[tab$metodo == "lasso"] <- mean((y[-idx] - y_lasso)^2)
tab
## # A tibble: 4 x 2</pre>
```

```
## # A tibble: 4 x ;

## metodo mse

## <chr> <dbl>
## 1 lm 11205.

## 2 ridge 14606.

## 3 lasso 11181.

## 4 elastic NA
```

LASSO e Ridge¹

Elastic-net

Agora consideraremos uma penalização para os coeficientes (o que acontece se $\lambda = 0$? E se $\lambda \to \infty$?)

$$ext{RSS} + \lambda \sum_{j=1}^p \left(lpha |eta_j| + rac{(1-lpha)}{2} eta_j^2
ight)$$

Para mais detalhes sobre o pacote **glmnet**, acesse a vignettes.

Elastic-net

```
elastic <- glmnet(X[idx,], y[idx], alpha = 0.5, nlambda = 1000)
plot_glmnet(elastic, lwd = 2, cex.lab = 1.3, xvar = "lambda")</pre>
```


Elastic-net

Utilizaremos validação cruzada para determinar o valor ótimo de λ . Esse gráfico apresenta a estimativa do erro e o desviopadrão.

```
cv_elastic <- cv.glmnet(X[idx,], y[idx], alpha = 0.5, lambda = elastic$lambda)
plot(cv_elastic, cex.lab = 1.3)</pre>
```


Elastic-net

3 lm

4 ridge

11205.

14606.

Variable Importance

```
fit lm <- lm(Balance ~ ., Credit[idx, -1])</pre>
fit ridge <- glmnet(X[idx,], y[idx], alpha = 0, lambda = cv ridge$lambda.1se)
fit lasso <- glmnet(X[idx,], y[idx], alpha = 1, lambda = cv lasso$lambda.min)</pre>
fit_elastic <- glmnet(X[idx,], y[idx], alpha = 0.5, lambda = cv elastic$lambda.min)</pre>
g1 <- vip(fit lm, mapping = aes(fill = Sign)) +
  labs(subtitle = "LM")
g2 <- vip(fit_ridge, mapping = aes(fill = Sign)) +</pre>
  labs(subtitle = "Ridge")
g3 <- vip(fit_lasso, mapping = aes(fill = Sign)) +
  labs(subtitle = "LASSO")
g4 <- vip(fit_elastic, mapping = aes(fill = Sign)) +
  labs(subtitle = "Elastic Net")
(g1 + g2) / (g3 + g4) + plot_layout(guides = "collect")
```

Variable Importance

Conteúdo Extra

Generalized Additive Models - GAMs

Uma forma de generalizar o modelo de regressão linear múltipla

$$y_i = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} + \epsilon_i$$

para permitir relações não lineares entre cada preditor e a resposta, se dá com a substituição de cada componente linear $\beta_j x_{ij}$ por uma função não linear $f_j(x_{ij})$.

Assim, teríamos

$$egin{aligned} y_i &= eta_0 + \sum_{j=1}^p f_j(x_{ij}) + \epsilon_i \ &= eta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i. \end{aligned}$$

Para modelos de classificação, podemos utilizar

$$\log\left(rac{p(X)}{1-p(X)}
ight)=eta_0+f_1(X_1)+f_2(X_2)+\cdots+f_p(X_p)$$

Generalized Additive Models - GAMs

Generalized Additive Models - GAMs

Generalized Additive Models - GAMs

Obrigado!

- **!** tiagoms.com
- **(7)** tiagomendonca
- **□** tiagoms1@insper.edu.br