Implementation of Low Density Parity Check (LDPC) codes

Theresh Babu Benguluri, Sandeep Kumar Khyalia and G V V Sharma*

1

1

2

2

4

4

CONTENTS

1 Introduction

2 Encoding

3 Decoding

- 3.1 Useful Calculations for proceeding LDPC Decoding . .
- 3.2 Message Passing Algorithm using min-sum Approximation

4 Results

References 4

Abstract—A brief description about the design and implementataion of LDPC codes using (7,4) Hamming parity check matrix.

1. Introduction

Let the Channel model be,

$$Y_k = X_k + V_k, \quad k = 0, \dots, 6$$
 (1.1)

where X_k is the transmitted symbol in the kth time slot using the BPSK modulation and $V_k(m) \sim \mathcal{N}(0, \sigma^2)$.

2. Encoding

LDPC codes are popular linear block codes with closest shannon limt channel capacity [1]. As an example Lets take (7,4) Hamming parity check matrix.

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 (2.1)

Above H matrix having the parameters, information bits k = 4 i.e $m = m_0, ..., m_3$, parity bits are

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

m = n - k = 3 i.e $p = [p_0, p_1, p_2]$ and code word length n = 7 i.e $c = [m \ p]$. Encoding can be carried

Fig. 1: Tanner Graph Representation for (7,4) Hamming parity check matrix

out by using

$$H \times c^T = 0 \qquad (2.2)$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m_0 \\ m_1 \\ m_2 \\ m_3 \\ p_0 \\ p_1 \\ p_2 \end{bmatrix} = 0$$
 (2.3)

solving we get

$$p_0 = m_0 \oplus m_1 \oplus m_2 \tag{2.4}$$

$$p_1 = m_0 \oplus m_2 \oplus m_3 \tag{2.5}$$

$$p_2 = m_0 \oplus m_1 \oplus m_3 \tag{2.6}$$

This is called Systematic Encoding.i.e Encoder will ensures information bits followed by parity bits.

3. Decoding

A. Useful Calculations for proceeding LDPC Decoding

 Calculation of Input Channel Log Likelihood Ratio LLR

$$L(x_j) = \log\left(\frac{Pr(x_j = 1|y)}{Pr(x_j = -1|y)}\right) \quad X = 1 - 2c$$

$$= \log \left(\frac{f(y|x_j = 1)Pr(x_j = 1)}{f(y|x_j = -1)Pr(x_j = -1)} \right)$$
(3.1)

$$= \log \left(\frac{\frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y_j - 1)^2}{2\sigma^2}}}{\frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y_j + 1)^2}{2\sigma^2}}} \right)$$
(3.3)

$$=\log\left(e^{\frac{2y_j}{\sigma^2}}\right) \tag{3.4}$$

$$L(x_j) = \frac{2y_j}{\sigma^2} \tag{3.5}$$

2) Check Node Operation:

Lets assume that we have initilized all LLR values to variable nodes and we sent to check nodes. V_j represents all the variable nodes which are connected to j^{th} check node. Using the min-sum approximation [2], the message from j^{th} check node to i^{th} variable node given by, since parity node equation for the first

Fig. 2: Check node operation

check node is $p_0 = m_0 + m_1 + m_2 + m_4$. we need to calculate

$$L_{ext0,0} = \log \left(\frac{Pr(x_0 = 0|y_1, y_2, y_4)}{Pr(x_0 = 1|y_1, y_2, y_4)} \right)$$
(3.6)

Defining,

$$L_1 = \log\left(\frac{Pr(x_1 = 0|y_1)}{Pr(x_1 = 1|y_1)}\right) = \log\left(\frac{p_1}{1 - p_1}\right)$$
(3.7)

$$L_2 = \log\left(\frac{Pr(x_2 = 0|y_2)}{Pr(x_2 = 1|y_2)}\right) = \log\left(\frac{p_2}{1 - p_2}\right)$$
(3.8)

$$L_4 = \log\left(\frac{Pr(x_4 = 0|y_4)}{Pr(x_4 = 1|y_4)}\right) = \log\left(\frac{p_4}{1 - p_4}\right)$$
(3.9)

Using Table. I we can find the

c0	c1	c2	c4
0	0	0	0
1	0	0	1
1	0	1	0
0	0	1	1
1	1	0	0
0	1	0	1
0	1	1	0
1	1	1	1

TABLE I: Probability of a varibale node from other check nodes

$$p_0 = Pr(c_0 = 0 | c_1, c_2, c_4)$$
 (3.11)

$$p_0 = p_1 p_2 p_4 + p_1 (1 - p_2)(1 - p_4)$$

$$+ (1 - p_1) p_2 (1 - p_4) + (1 - p_1)(1 - p_2) p_4$$

$$1 - p_0 = p_1 p_2 (1 - p_4) + p_1 (1 - p_2) p_4$$

$$+ (1 - p_1) p_2 p_4 + (1 - p_1)(1 - p_2)(1 - p_4)$$

by rearranging above equations,

$$p_0 - (1 - p_0) = p_1 - (1 - p_1) + p_2 - (1 - p_2) + p_4 - (1 - p_4)$$
(3.12)

Where p_i is the probability, getting message from check to variable node by taking all variable node informations.

$$\frac{1 - \frac{1 - p_0}{p_0}}{1 + \frac{1 - p_0}{p_0}} = \frac{1 - \frac{1 - p_1}{p_1}}{1 + \frac{1 - p_1}{p_1}} \times \frac{1 - \frac{1 - p_2}{p_2}}{1 + \frac{1 - p_2}{p_2}} \times \frac{1 - \frac{1 - p_4}{p_4}}{1 + \frac{1 - p_4}{p_4}}$$
(3.13)

$$\frac{1 - e^{-L_{ext0,0}}}{1 + e^{-L_{ext0,0}}} = \frac{1 - e^{-L_1}}{1 + e^{-L_1}} \times \frac{1 - e^{-L_2}}{1 + e^{-L_2}} \times \frac{1 - e^{-L_4}}{1 + e^{-L_4}}$$
(3.14)

$$-\tanh\left(\frac{L_{ext0,0}}{2}\right) = \left(-\tanh\left(\frac{L_1}{2}\right)\right)\left(-\tanh\left(\frac{L_2}{2}\right)\right)$$

$$\left(-\tanh\left(\frac{L_4}{2}\right)\right) \qquad (3.15)$$

$$\tanh\left(\frac{L_{ext0,0}}{2}\right) = \left[\prod_{k \in V_1 \setminus i} \alpha_{k,0}\right] \left[\prod_{k \in V_2 \setminus i} \tanh\left(\frac{\beta_{k,0}}{2}\right)\right]$$

$$L_{ext0,0} = \left(\prod_{k \in V_j \setminus i} \alpha_{k,0}\right) 2tanh^{-1} \left(\prod_{k \in V_j \setminus i} \tanh\left(\frac{\beta_{k,0}}{2}\right)\right) (3.17)$$

$$= \left(\prod_{k \in V_i \setminus i} \alpha_{k,0}\right) \tag{3.18}$$

$$2\tanh^{-1}\log^{-}\log\left(\prod_{k\in V_{j}\setminus i}\tanh\left(\frac{\beta_{k,0}}{2}\right)\right)$$
(3.19)

$$= \left(\prod_{k \in V_j \setminus i} \alpha_{k,0}\right) \tag{3.20}$$

$$2\tanh^{-1}\log^{-1}\left(\sum_{k\in V_j\setminus i}\log\tanh\left(\frac{\beta_{k,0}}{2}\right)\right)$$
(3.21)

$$L_{ext0,0} = \left(\prod_{k \in V_j \setminus i} \alpha_{k,0} \right) f\left(\sum_{k \in V_j \setminus i} f\left(\beta_{k,0}\right) \right)$$
(3.22)

Where,

$$\alpha_{k,j} = sign(L_{k,j}) \tag{3.23}$$

$$\beta_{k,j} = \left| L_{k,j} \right| \tag{3.24}$$

$$f(x) = -\log\left(\tanh\frac{x}{2}\right) \tag{3.25}$$

Using the Fig 3 and using its 45° symmetricity, we can approximate the above equation as, given by minimum sum approximation [2]

$$f\left(\sum_{k \in V_j \setminus i} f(\beta_{k,0})\right) \approx f\left(f\left(\min_{k \in V_j \setminus i} (\beta_{k,0})\right)\right) \quad (3.26)$$
$$= \min_{k \in V_j \setminus i} (\beta_{k,0}) \quad (3.27)$$

Fig. 3: Plot of function f(x)

Combining (3.27) in (3.22),

$$L(r_{j=0,i=0}) = \left(\prod_{k \in V_j \setminus i} \alpha_{k,0}\right) \left(\min_{k \in V_j \setminus i} (\beta_{k,0})\right) \quad (3.28)$$

3) Variable Node Operation:

Let C_i denotes all the check nodes connected to i^{th} variable node. The message from i^{th} variable node to i^{th} check node given by,

Fig. 4: Variable node operation

$$L(q_{i=0,j=0}) = \log \left(\frac{Pr(x_j = 1|y_0, y_1, y_2)}{Pr(x_j = -1|y_0, y_1, y_2)} \right) \quad X = 1 - 2c$$

$$= \log \left(\frac{f(y_0, y_1, y_2|x_j = 1)Pr(x_j = 1)}{f(y_0, y_1, y_2|x_j = -1)Pr(x_j = -1)} \right)$$

$$= \log \left(\frac{\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^3 e^{\frac{-(y_0-1)^2}{2\sigma^2}} e^{\frac{-(y_1-1)^2}{2\sigma^2}} e^{\frac{-(y_2-1)^2}{2\sigma^2}}}{\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^3 e^{\frac{-(y_0+1)^2}{2\sigma^2}} e^{\frac{-(y_1+1)^2}{2\sigma^2}} e^{\frac{-(y_2+1)^2}{2\sigma^2}} \right)}$$

$$= \log \left(e^{\frac{2(y_0+y_1+y_2)}{\sigma^2}} \right)$$

$$= L(q_{i=0,j=0}) = \frac{2(y_0+y_1+y_2)}{\sigma^2} = L(x_i) + \sum_{k \in C_i \setminus j} L(r_{ki})$$

$$(3.33)$$

B. Message Passing Algorithm using min-sum Approximation

Transmitted frames = N, Total number of bits = $N \times 7$ and Total number of information bits = $N \times 7$ 4. For Each Frame,

- 1) Initialize $L(q_{ij})$ using (3.5) for all i, j for which $h_{ij} = 1$ with channel LLR's.
- 2) Update $\{L(r_{ji})\}$ using (3.28)
- 3) Update $\{L(q_{ji})\}$ using (3.33). 4) Update $\{L(V_i)\}$ using,

$$L(V_i) = L(x_i) + \sum_{k \in C_i} L(r_{ki})$$
 $i = 0, ..., 6.$ (3.34)

5) Proceed to step 2.

After maximum specified iterations,

Decoding can be done using,

$$\hat{c}_i = \begin{cases} 1 & L(V_i) < 0 \\ 0 & else \end{cases}$$
 (3.35)

4. Results

For frames N=10000. Fig 5 Shows the Comparison of Probability error with channel coding and without channel coding. Since the parity check matrix taken was not much sparse, we are not getting near shannon limit performance. (Good sparse matrix i.e number of entries in H \ll m \times n)

References

- [1] R.Gallager, "Low-density parity check codes," **IRE** Trans.Information Theory, pp. 21-28, Jan. 1962.
- [2] N. Wiberg, "Codes and Decoding on General Graphs," Phd Dissertation, Linkoping University, Sweden, 1996.

Fig. 5: SNR vs BER curves using LDPC channel coding and no channel coding