$\Pi\Lambda H30$

ΕΝΟΤΗΤΑ 4: ΓΛΩΣΣΕΣ ΑΝΕΞΑΡΤΗΤΕΣ ΣΥΜΦΡΑΖΟΜΕΝΩΝ

Μάθημα 4.1: Γραμματικές Ανεξάρτητες Συμφραζομένων

Δημήτρης Ψούνης

Α. Σκοπός του Μαθήματος

Β. Θεωρία

- 1. Ορισμοί
 - 1. Γραμματικές Ανεξάρτητες Συμφραζομένων
 - 2. Γλώσσες Ανεξάρτητες Συμφραζομένων
- 2. Μεθοδολογία Κατασκευής Γραμματικών Χωρίς Συμφραζόμενα.
- 3. Σχέση Κανονικών Γλωσσών με τις Γλώσσες Ανεξάρτητες Συμφραζομένων
 - 1. Κανονικές Γλώσσες και Γλώσσες Χωρίς Συμφραζόμενα
 - 2. Κανονική Γραμματική
 - 3. Μετατροπή ΜΠΑ-ε σε Κανονική Γραμματική
 - 4. Μετατροπή ΜΠΑ σε Κανονική Γραμματική
 - 5. Μετατροπή ΝΠΑ σε Κανονική Γραμματική
- 4. Διφορούμενες Γραμματικές
 - 1. Ορισμός και Παραδείγματα

Γ.Ασκήσεις

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

- Γραμματικές Χωρίς Συμφραζόμενα και μεθοδολογίες κατασκευής γραμματικών χωρίς συμφραζόμενα.
- Κανονικές Γραμματικές και Μετατροπή Αυτομάτων σε Γραμματικές ΧωρίςΣυμφραζόμενα

Επίπεδο Β

> (-)

Επίπεδο Γ

> Διφορούμενες Γραμματικές

1. Ορισμοί

1. Γραμματικές Ανεξάρτητες Συμφραζομένων

Μία γραμματική ανεξάρτητη συμφραζομένων (ή γραμματική χωρίς συμφραζόμενα) είναι ένα σύνολο κανόνων που μπορούν να παράγουν ΟΛΕΣ τις συμβολοσειρές μιας Γλώσσας και ΜΟΝΟΝ ΑΥΤΕΣ:

```
Παράδειγμα 1: Η Γραμματική Ανεξάρτητη Συμφραζομένων για την γλώσσα L = \{0^n 1^n \mid n \geq 0\}  \begin{cases} S \to 0S1 & \text{Διαβάζουμε S δίνει 0S1} \\ S \to \varepsilon & \text{Διαβάζουμε S δίνει ε} \end{cases}
```

Σχόλια:

- Τα παραπάνω λέγονται κανόνες της γραμματικής διότι ξεκινώντας από την μεταβλητή S μπορούμε να παράγουμε με διαδοχική χρήση των κανόνων οποιαδήποτε συμβολοσειρά της γλώσσας.
- Ο 1 $^{\circ\varsigma}$ κανόνας $S \to 0S1$ λέγεται και αναδρομικός κανόνας διότι επανεμφανίζει την μεταβλητή S
- Ο $2^{\circ\varsigma}$ κανόνας $S \to \varepsilon$ λέγεται και <u>τερματικός κανόνας</u> διότι σταματά τις εμφανίζεις μεταβλητών.
- > Παραδείγματα παραγωγής συμβολοσειρών:

ightharpoonup Το ightharpoonup διαβάζεται «παράγει». Επίσης γράφουμε $S
ightharpoonup ^*$ ως συντομογραφία του «παράγει σε 0 ή περισσότερα βήματα (Π.χ. $S
ightharpoonup ^*$ 000111)

1. Ορισμοί

1. Γραμματικές Ανεξάρτητες Συμφραζομένων

Σχόλια:

- Το | διαβάζεται ή (ή διαζευκτικό)
- Ο κανόνας $S \to 0S1 \mid X$ είναι συντομογραφία των κανόνων $S \to 0S1$ και $S \to X$
- Ο κανόνας $X o 1X0 \mid \varepsilon$ είναι συντομογραφία των κανόνων X o 1X0 και $X o \varepsilon$
- Το τυπικό συντακτικό μιας γραμματικής χωρίς συμφραζόμενα ορίζεται από τον ακόλουθο ορισμό:

Μία γραμματική Χωρίς Συμφραζόμενα είναι μια τετράδα: $G = (V, \Sigma, S, P)$ όπου:

- V το σύνολο των μεταβλητών
- \succ Σ το σύνολο των τερματικών συμβόλων ($V \cap \Sigma = \emptyset$)
- \succ $S \in V$ είναι η αρχική μεταβλητή
- ightharpoonup P το σύνολο κανόνων με κάθε κανόνα να είναι της μορφής $W \to w$ με
 - W ∈ V (είναι μία μεταβλητή) και
 - $w \in (V \cup \Sigma)^*$ (παράθεση μεταβλητών και μη τερματικών συμβόλων)

Στο παράδειγμα 2 η γραμματική είναι: $G = (V, \Sigma, S, P)$ όπου:

- $V = \{S, X\}$
- $\Sigma = \{0,1,\epsilon\}$
- S είναι η αρχική μεταβλητή
- $P = \{S \to 0S1, S \to X, X \to 1X0, X \to \varepsilon\}$

1. Ορισμοί

2. Γλώσσες Ανεξάρτητες Συμφραζομένων

Ορισμός Γλώσσας Ανεξάρτητης Συμφραζομένων:

- Μία γλώσσα θα λέγεται Γλώσσα Ανεξάρτητη Συμφραζομένων (ή Γλώσσα Χωρίς Συμφραζόμενα)
 αν και μόνο αν
 - Υπάρχει Γραμματική Ανεξάρτητη Συμφραζομένων (Γ.Χ.Σ) που παράγει τις συμβολοσειρές της.
- Συνεπώς οι γλώσσες ανεξάρτητες συμφραζομένων και οι γραμματικές ανεξάρτητες συμφραζομένων «πάνε πακέτο» (σε αντιστοιχία με τις κανονικές εκφράσεις των κανονικών γλωσσών)
- Θα προσθέσουμε στο πακέτο στα επόμενα μαθήματα και τα Αυτόματα Στοίβας που θα αναγνωρίζουν τις συμβολοσειρές μιας Γλώσσας Χωρίς Συμφραζόμενα (σε αντιστοιχία με τα Πεπερασμένα Αυτόματα των Κανονικών Γλωσσών)

Παρατήρηση:

Οι γραμματικές αυτές λέγονται ανεξάρτητες συμφραζομένων σε αντίθεση με τις γραμματικές με συμφραζόμενα που έχουν και κανόνες τις μορφής:

 $1S11 \rightarrow 0S0$

- Δηλαδή αριστερά μπορεί να έχω μεταβλητή που η αντικατάσταση που θα κάνουμε εξαρτάται από τα σύμβολα που έχει αριστερά και δεξία της: δηλαδή εξαρτάται από τα «συμφραζόμενά» της.
- Οι γραμματικές με συμφραζομένα είναι εκτός ύλης.

2. Μεθοδολογία Κατασκευής Γραμματικής Χωρίς Συμφραζόμενα

1. «ισότητα»

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^n \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{0^n 001^n \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{(ab)^n b^n \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{0^{n+3}1^n \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{b^n (ac)^n \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{0^{n+2}1^{n+3} \mid n \ge 0\}$$

2. Μεθοδολογία Κατασκευής Γραμματικής Χωρίς Συμφραζόμενα

2. «αναλογία»

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^{3n} \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{\alpha^n \alpha \alpha b^{3n} \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^{2n}b^{3n} \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{b^{2n+2}c^{3n} \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^{4n}b^{2n} \mid n \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{0^{3n+2}1^{2n+3} \mid n \ge 0\}$$

- 2. Μεθοδολογία Κατασκευής Γραμματικής Χωρίς Συμφραζόμενα
- 3. «παλινδρομικότητα»

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{ww^R \mid w \in \{0,1\}^*\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{w \in \{0,1\}^* \mid w \text{ είναι παλινδρομική}\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{wcw^R \mid w \in \{a, b\}^*\}$$

2. Μεθοδολογία Κατασκευής Γραμματικής Χωρίς Συμφραζόμενα

4. «ανισότητα»

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^m \mid n \ge m\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^m \mid n \le m\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^m \mid n > m\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^m \mid n < m\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^m \mid n \neq m\}$$

2. Μεθοδολογία Κατασκευής Γραμματικής Χωρίς Συμφραζόμενα

5. «Συμμετρία στο Κέντρο»

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^m a^m b^n \mid n, m \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^{2m}b^{3n}c^{2n}b^{4m} \mid n, m \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^{n+m}b^mc^n \mid n, m \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^i b^j c^k \mid i = j + k\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^m c^{n+m} \mid n, m \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^i b^j c^k \mid k = i + j\}$$

2. Μεθοδολογία Κατασκευής Γραμματικής Χωρίς Συμφραζόμενα

6. «Παράθεση Συμβολοσειρών»

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^n c^m d^m \mid n, m \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^{3n} c^{2m} b^{4m} \mid n, m \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^n b^{n+m} c^m \mid n, m \ge 0\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^i b^j c^k \mid j = i + k\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^m b^{n+m} a^n \mid n, m \ge 0\}$$

- 2. Μεθοδολογία Κατασκευής Γραμματικής Χωρίς Συμφραζόμενα
- 7. «Διάζευξη Συμβολοσειρών»

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^i b^j c^k \mid i = j \not \eta j = k\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{a^i b^j c^k \mid i + j = k \ \acute{\boldsymbol{\eta}} \ i + k = j\}$$

- 2. Μεθοδολογία Κατασκευής Γραμματικής Χωρίς Συμφραζόμενα
- 8. Γραμματικές για Κανονικές Γλώσσες

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = 0*1*$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα:
$$L = \{w \in \{0,1\}^* \mid w \text{ περιέχει το 00}\}$$

Δώστε Γρ.Χ.Σ. για τη Γλώσσα: $L = \{w \in \{0,1\}^* \mid w \text{ έχει μήκος το πολύ 2}\}$

- 3. Σχέση Κανονικών Γλωσσών με Γλώσσες Ανεξ. Συμφραζομένων
- 1. Κανονικές Γλώσσες και Γλωσσες Χωρίς Συμφραζόμενα
 - ➤ Είδαμε σε παράδειγμα ότι υπάρχει γραμματική για την γλώσσα L=0*1*
 - > Επίσης είδαμε ότι υπάρχει γραμματική για την γλώσσα 0ⁿ1ⁿ που δεν είναι κανονική
 - Θα δείξουμε ότι για κάθε κανονική γλώσσα μπορούμε να παράγουμε γραμματική που παράγει τις συμβολοσειρές της

Με Ενωση Γραμματικών

Συμπλήρωμα: Με ΝΠΑ: τελικές-μη τελικές

Τομή: Με ΝΠΑ: Αλγ. Συνδ/μου Κατ/σεων

3. Σχέση Κανονικών Γλωσσών με Γλώσσες Ανεξ. Συμφραζομένων

2. Κανονικές Γραμματικές

> Ορίζουμε τώρα ένα υποσύνολο των Γραμματικών Χωρίς Συμφραζόμενα:

Ορισμός Κανονικής Γραμματικής:

Μία γραμματική χωρίς συμφραζόμενα θα λέγεται Κανονική Γραμματική αν και μόνο αν οι κανόνες της έχουν αποκλειστικά και μόνο τη μορφή:

$$X \to \sigma$$
 $\acute{\eta}$ $X \to \sigma \Upsilon$

- > όπου
 - \succ X, Y ∈ V (είναι μεταβλητές)
 - \succ $\sigma \in \Sigma$ (είναι τερματικά σύμβολα, δηλαδή σύμβολα του αλφαβήτου ή η κενή συμβολοσειρά)
- Παρατηρούμε ότι:
 - Οι κανονικές γραμματικές είναι γλώσσες χωρίς συμφραζόμενα με κανόνες ειδικής μορφής.
- Θα δείξουμε ότι:
 - Για κάθε κανονική γλώσσα υπάρχει κανονική γραμματική που παράγει τις συμβολοσειρές της, άρα:
 - > Κάθε Κανονική Γλώσσα είναι και Γλώσσα Χωρίς Συμφραζόμενα

3. Σχέση Κανονικών Γλωσσών με Γλώσσες Ανεξ. Συμφραζομένων

- 3. Μετατροπή ΜΠΑ-ε σε Κανονική Γραμματική
 - Μαθαίνουμε τρόπο μετατροπής ΜΠΑ-ε σε Κανονική Γραμματική.

Θεώρημα

Κάθε ΜΠΑ-ε μετατρέπεται σε Κανονική Γραμματική.

Κανόνες Μετατροπής

- Κάθε κατάσταση γίνεται μεταβλητή. Ειδικά την αρχική κατάσταση την ονομάζουμε S.
- ightharpoonup Βάζουμε τον κανόνα $X \to \sigma Y$ αν και μόνο αν από την κατάσταση X μεταβαίνουμε στην Y με το σύμβολο σ
- ightharpoonup Βάζουμε τον κανόνα $X \to Y$ αν και μόνο αν από την κατάσταση X μεταβαίνουμε στην Y με ε-κίνηση
- ightharpoonup Βάζουμε τον κανόνα $X \to ε$ αν η X είναι τελική κατάσταση.

Παράδειγμα: Στο ακόλουθο ΜΠΑ-ε

 $\begin{array}{c|c}
B & \varepsilon \\
\hline
0 & 0 \\
\hline
S & \varepsilon
\end{array}$ $\begin{array}{c|c}
A
\end{array}$

αντιστοιχεί η

κανονική γραμματική

$$\begin{cases} S \to A \mid 0B \\ A \to 1\Gamma \\ B \to 0S \\ \Gamma \to B \mid \epsilon \end{cases}$$

www.psounis.gr

Β. Θεωρία

3. Σχέση Κανονικών Γλωσσών με Γλώσσες Ανεξ. Συμφραζομένων

4. Μετατροπή ΜΠΑ σε Κανονική Γραμματική

Μαθαίνουμε τρόπο μετατροπής ΜΠΑ σε Κανονική Γραμματική.

Θεώρημα

Κάθε ΜΠΑ μετατρέπεται σε Κανονική Γραμματική.

Κανόνες Μετατροπής

- Κάθε κατάσταση γίνεται μεταβλητή. Ειδικά την αρχική κατάσταση την ονομάζουμε S.
- ightharpoonup Βάζουμε τον κανόνα $X \to \sigma Y$ αν και μόνο αν από την κατάσταση X μεταβαίνουμε στην Y με το σύμβολο σ
- ightharpoonup Βάζουμε τον κανόνα X → ε αν η X είναι τελική κατάσταση. (ίδιοι κανόνες με το ΜΠΑ-ε χωρίς την διαχείριση της ε-κίνησης)

3. Σχέση Κανονικών Γλωσσών με Γλώσσες Ανεξ. Συμφραζομένων

5. Μετατροπή ΝΠΑ σε Κανονική Γραμματική

Μαθαίνουμε τρόπο μετατροπής ΝΠΑ σε Κανονική Γραμματική.

Θεώρημα

Κάθε ΝΠΑ μετατρέπεται σε Κανονική Γραμματική.

Κανόνες Μετατροπής

- Κάθε κατάσταση γίνεται μεταβλητή. Ειδικά την αρχική κατάσταση την ονομάζουμε S.
- ightharpoonup Βάζουμε τον κανόνα $X \to \sigma Y$ αν και μόνο αν από την κατάσταση X μεταβαίνουμε στην Y με το σύμβολο σ
- ightharpoonup Βάζουμε τον κανόνα $X \to ε$ αν η X είναι τελική κατάσταση. (ίδιοι κανόνες με το ΜΠΑ-ε χωρίς την διαχείριση της ε-κίνησης)

4. Διφορούμενες Γραμματικές

1. Ορισμός και Παραδείγματα

- ightharpoonup Εξετάζουμε την γραμματική $S \to XY$, $X \to 0X|\varepsilon$, $Y \to 1Y|\varepsilon$
- Η γραμματική αυτή παράγει συμβολοσειρές της μορφή 0*1*
- Εξετάζουμε την συμβολοσειρά 011. Μπορεί να παράχθεί με διαφορετικούς τρόπους από την συγκεκριμένη γραμματική, δύο από τους οποίους είναι οι εξής:

$$\begin{array}{c|c} S & S \\ \Rightarrow XY & \Rightarrow XY \\ \Rightarrow 0XY & \Rightarrow X1Y \\ \Rightarrow 0\varepsilon Y = 0Y & \Rightarrow X11Y \\ \Rightarrow 01Y & \Rightarrow X11\varepsilon = X11 \\ \Rightarrow 011Y & \Rightarrow 0X11 \\ \Rightarrow 011\varepsilon = 011 & \Rightarrow 0\varepsilon 11 = 011 \end{array}$$

Ορισμός:

- Επειδή υπάρχουν διαφορετικές παραγωγές της ίδιας συμβολοσειράς, η παραπάνω γραμματική χαρακτηρίζεται διφορούμενη γραμματική.
- ightharpoonup Αντίθετα η γραμματική χωρίς συμφραζόμενα που μελετήσαμε για την γλώσσα $L=\{0^n1^n\mid n\geq 0\}$, δηλαδή η $S\to 0S1\mid \epsilon$ δεν είναι διφορούμενη, διότι κάθε συμβολοσειρά της παράγεται με μοναδικό τρόπο.

www.psounis.gr

Β. Θεωρία

4. Διφορούμενες Γραμματικές

- 1. Ορισμός και Παραδείγματα
 - Ζητείται συχνά να μετατραπεί μία διφορόύμενη γραμματική σε μη διφορούμενη.
 - ightharpoonup Για παράδειγμα η προηγούμενη γραμματική μπορεί ισοδύναμα να μετατραπεί στην γραμματική: $\left\{ egin{array}{l} S o 0S | X \\ X o 1X | \epsilon \end{array} \right.$
 - Τότε η μοναδική παραγωγή της 011 είναι η:

$$S \Rightarrow 0S \Rightarrow 0X \Rightarrow 01X \Rightarrow 011X \Rightarrow 011E = 011$$

- Αποδεικνύεται ότι το πρόβλημα της μετατροπής μιας διφορούμενης γραμματικής σε μη διφορούμενη είναι ΜΗ ΕΠΙΛΥΣΙΜΟ!
 - > Δηλαδή δεν μπορεί να υπάρξει αλγόριθμος που να κάνει αυτήν την μετατροπή!
 - Υπάρχει μαθηματική απόδειξη, ότι δεν μπορεί να υπάρξει τέτοιος αλγόριθμος.
 - > Θα μελετήσουμε και άλλα τέτοια προβλήματα στην ενότητα 5.

Δώστε Γραμματικές Ανεξάρτητες Συμφραζομένων για τις Γλώσσες:

$$(2005B)L = \{a^n b^{2n} | n \ge 0\}$$

$$(2006A)L = \{a^m b^n a^n b^m | n, m \ge 0\}$$

$$(2007A)L = \{a^{3n}b^{4n} | n \ge 0\}$$

$$(2007B)$$
L = $\{wcw^R | w \in \{a, b\}^*\}$ στο αλφάβητο Σ= $\{a,b,c\}$

$$(2008A)L = \{1^n 0^{3n} | n \ge 0\}$$

Δώστε Γραμματικές Ανεξάρτητες Συμφραζομένων για τις Γλώσσες:

$$(2008B)L = \{1^{2n}0^{3n} | n \ge 0\}$$

$$(2009A)L = \{(ab)^n c^{2n} | \ge 0\}$$

$$(2009B)L = \{a^nbc^n | n \ge 0\}$$

$$(2010A)L = \{a^n b^{n+m} c^m | n, m \ge 0\}$$

$$(2010B)L = \{a^n b^n a^m b^m | n, m \ge 0\}$$

(20011A) Δίνεται η γλώσσα $L = \{0^k1^m0^n \mid k,m,n \in N, k+m < n\}$ (όπου $N = \{0,1,2,...\}$ το σύνολο των φυσικών αριθμών).

Δώστε μία γραμματική ανεξάρτητη συμφραζομένων που να παράγει την L.

(20011B) Δώστε μία γραμματική ανεξάρτητη συμφραζομένων που να παράγει τη γλώσσα $L_1 = \{a^m b^k a^n \mid m, k, n \in N, m \neq n, 1 \leq k \leq 4\}.$

Δώστε Γραμματική Χωρίς Συμφραζόμενα που να παράγει σωστές, πλήρως παρενθετοποιημένες παραστάσεις αριθμητικής που χρησιμοποιούν τις μεταβλητές x και y, δηλαδή στο αλφάβητο: { (,) , + , - , * , / } μία έγκυρη συμβολοσειρά είναι η (x-y)/(x*x)