Patryk Studziński

Algorytmy geometryczne

Grupa: czwartek-16:15B

Ćwiczenie nr. 3

Triangulacja wielokątów monotonicznych

1. Cel ćwiczenia

Sprawdzenie monotoniczności wielokąta, klasyfikacja wierzchołków w dowolnym wielokącie oraz triangulacja wielokąta monotonicznego.

2. Przebieg ćwiczenia

2.1. Klasyfikacja wierzchołków

W pierwszej kolejności zaimplementowałem algorytm klasyfikujący wierzchołki początkowe, końcowe, łączące, dzielące i prawidłowe.

Wynik klasyfikacji wierzchołków dowolnego wielokąta.

2.2 Sprawdzanie y-monotoniczności wielokąta

Następnie zaimplementowałem procedurę sprawdzającą czy dany wielokąt jest y-monotoniczny. Opierała się ona o fakt, że wielokąt jest y-monotoniczny, gdy nie ma wierzchołków dzielących i łączących. W pierwszym kroku wierzchołki są kolorowane zgodnie z klasyfikacją, a następnie przechodząc po liście wierzchołków sprawdzanie występowania wierzchołków dzielących i łączących.

Kolorowanie wierzchołkowe przykładowego wielokąta y-monotonicznego.

Kolory wierzchołków: początkowe, końcowe i prawidłowe.

2.3 Triangulacja wielokątów monotonicznych

Ostatnim krokiem ćwiczenia była triangulacja wielokąta. Wielokąt przechowywałem jako listę punktów które oprócz współrzędnych zawierały dodatkowe atrybuty takie jak: kolor oraz informację, w którym łańcuchu figury znajduje się punkt. Lista ta zapewniała łatwość w poruszaniu się po kolejnych wierzchołkach i szybki dostęp do potrzebnych informacji o danych punktach.

Wielokąt podzielony na trójkąty jest przechowywany jako lista krotek, które zawierają trzy punkty – wierzchołki trójkątów. Taka struktura pozwala w łatwy sposób sprawdzić poprawność triangulacji oraz umożliwia w łatwy sposób odtworzenie linii, trójkątów tworzących wielokąt.

Podczas implementacji algorytmu problem sprawiła mi klasyfikacja wierzchołków: początkowego i końcowego. Początkowy zakwalifikowałem je do prawego i lewego łańcucha. Niestety sprawiało to spore problemy z dodawaniem niektórych przekątnych, dlatego zmodyfikowałem mój algorytm i nie klasyfikowałem tych wierzchołków do żadnego z łańcuchów.

Przykład triangulacji wielokąta za pomocą algorytmu:

3. Dane testowe

Wielokąty testowe starałem dobrać się tak, aby sprawdzić jak najwięcej różnych przypadków oraz wykryć potencjalne błędy. Przykładowe testowane wielokąty:

4. Wnioski

Wykonane ćwiczenie okazało się bardzo ciekawe i wymagające zastanowienia się jak rozwiązać pewne problemy (np. klasyfikacja początkowego i końcowego wierzchołka). Po licznych modyfikacjach moje algorytmy działają poprawnie dla wszystkich testowanych danych.