Dif in Dif

Manoel Galdino

2024-05-14

Difference in Differences

 Diferença em Diferenças, também chamado de Dif in Dif ou DiD está associado a, com o onome sugere, duas diferenças. Para introduzir esse desenho de pesquisa, vamos pensar cada diferença separa por vez. Uma no tempo (within, outra no espaço (ou entre unidades, between units).

Diferença no espaço

- Pode acontecer de termos unidades com o tratamento e outras sem.
 Por exemplo, municípios com urna eletrônica e outros sem, em um mesmo momento no tempo.
- Como o DAG sugere, o problema aqui é de potencial variável omitida que causa a variação espacial entre unidades e a resposta. ## Diferença em Diferenças

A ideia do desenho Dif in Dif é justamente combinar as duas diferenças em uma única análise.

Vamos introduzir uma notação de resultado potencial: Seja $Y^a(T)$ o resultado potencial da intervenção a no tempo T. Assim, uma unidade i tratada (tratamento binário, isto é, T=1) no período 2 é dada por: $Y_i^1(2)$.

Se tenho viés de variável omitida pelo espaço e pelo tempo, posso remover cada um dos vieses por meio das duas diferenças (considere dois grupos, i e j no espaço e dois períodos):

Exemplo

- Se quero estimar o efeito da competição eleitoral sobre a concentração espacial de votos. Alguns distritos têm maior competição eleitoral, outros têm menor competição eleitoral. Vamos considerar binário e chamar de grande e pequena concentração eleitoral
- Meu estimando teórico pode ser o efeito causal de um distrito passar de baixca competição eleitoral para alta sobre a concentração espacial do voto (mudança de regra).
- Ou o efeito causal de um candidato passar de um distrito de baixa competição eleitoral para alta concentração sobre a concentração espacial dos seu votos.
- O parâmetro que representa essa pergunta é o ATE. Se eu estiver interessado no efeito entre os que efetivamente fizeram essa mudança, é o ATT.

Entendendo o ATT

O ATT pode ser definido como a diferença média no resultado potencial do tratamento em relação ao resultado potencial do controle dos candidatos que mudaram efetivamente de distrito de baixa para alta competição (D=1) no período 2 (T=2.)

$$ATT = \mathbb{E}[Y_i^1(2) - Y_i^0(2)|D = 1]$$

 Aqui, quero saber, no período 2, após ter mudado de distrito de baixa para alta competição, qual o efeito sobre a concentração espacial do voto.

Diferença (ingênua) no tempo

- Como o DAG abaixo sugere, não basta comparar os mesmos candidatos antes da mudança de distrito e depois da mudança de distrito.
- Outras variáveis podem ter mudado entre um período e outro que causam a concentração de votos antes e depois da mudança. Ou seja, em geral:

$$\mathbb{E}[Y_i(2) - Y_i(1)|D_i = 1] \neq \mathbb{E}[Y^1(2) - Y^0(2)|D = 1]$$

Diferença ingênua entre grupos (espaço)

Similarmente, não é suficiente comparar no período 2 candidatos em distritos de alta e baixa competição eleitoral.

Pode ser que haja diferenças sistemáticas entre candidatos que estão em distritos de alta competição e os de baixa competição.

$$\mathbb{E}[Y_i(2) - Y_i(2)|D_i = 1] \neq \mathbb{E}[Y^1(2) - Y^0(2)|D = 1]$$

Dif em Dif

 Suponha que a mudança (a diferença pré e pós) nos resultados potenciais do grupo tratado seria a mesma do grupo controle, se não tivessem recebido o tratamento, isto é:

$$\mathbb{E}[Y^0(2) - Y^0(1)|D = 1] = \mathbb{E}[Y^0(2) - Y^0(1)|D = 0]$$

Essa suposição é chamada de Tendências paralelas, pois trata do fato de que as mudanças nos tratamentos e controle são as mesmas, o que se reflete em retas paralelas.

	Controle - $D_i = 0$	Tratamento - $D_i = 1$
Pré-tratamento - $T_i = 1$	$\mathbb{E}[Y^0(1)]$	$\mathbb{E}[Y^1(1)]$
Pós-tratamento $T_i = 2$	$\mathbb{E}[Y^0(2)]$	$\mathbb{E}[Y^1(2)]$

Table 1: Potential outcomes in different periods and groups.

Há duas formas equivalentes de pensar no estimador de DiD:

	Estratégia 1	Estratégia 2
Diferença 1	$\mathbb{E}[Y^{1}(2) - Y^{0}(1) D = 1]$	$\mathbb{E}[Y^1(2) - Y^0(2) T=2]$
Diferença 2	$\mathbb{E}[Y^{1}(2) - Y^{0}(1) D = 0]$	$\mathbb{E}[Y^{1}(2) - Y^{0}(2) T = 1]$

Table 2: DiD estimator.

O DiD é sempre a diferença 1 menos a diferença 2.

DiD₃

- Ou seja, o ATT pode ser estimado pela diferença das diferenças.
- Em nosso exemplo, temos dois períodos: 1 e 2 (eleição em t e eleição em t+1), e dois cargos (deputado estadual e federal). Portanto, podemos estimar o efeito da competição eleitoral a partir da diferença entre a mudança média nos tratados no tempo e mudança média no controle no tempo ou a diferença entre a mudança média entre tratados e controle no período 2 e mudança média entre tratados e controle no período 1. Ambos estimadores são iguais.
- Ou seja, posso tanto calcular a diferença na concentração do voto entre indivíduos que passaram de cargos estaduais para federais (tratados no tempo), essa é a diferença 1. E subtrair da diferença 2, a diferença na concentração de votos entre indivíduos que continuaram no cargo de deputado estadual (baixa competição política).
- Ou calcular a diferença na concentração de votos no período 2 entre candidatos a dep. federal e estadual, menos a diferença entre dep. federal e estadual no período 1.

Manoel Galdino Dif in Dif 2024-05-14 10 / 17

Estimador DiD

- A switching equation é $Y_{it} = Y_{it}^0 \cdot (1 D_{it}) + Y_{it}^1 \cdot D_{it}$
- Para o grupo de tratamento ($D_{i1}=1$), temos: Se t = 0, $Y_{i0}=Y_{i0}^{0}$.

Se t =1,
$$Y_{i1} = Y_{i1}^1$$
.

• Para o grupo de controle ($D_{i1}=0$), temos: Se t = 0, $Y_{i0}=Y_{i0}^{0}$.

Se t =1,
$$Y_{i1} = Y_{i1}^0$$
.

Estimador DiD - Part 2

•
$$\Delta Y_{trat} = \mathbb{E}[Y_{i1}^1|D_{i1} = 1] - \mathbb{E}[Y_{i0}^1|D_{i0} = 1]$$

•
$$\Delta Y_{controle} = \mathbb{E}[Y_{i1}^0|D_{i1} = 0] - \mathbb{E}[Y_{i0}^0|D_{i0} = 1]$$

- DiD estimator: $\Delta Y_{trat} \Delta Y_{controle}$
- Usando observáveis:

$$\mathbb{E}[Y_{i1}|D_{i1}=1] - \mathbb{E}[Y^{i0}|D_{i0}=1] - \mathbb{E}[Y_{i1}|D_{i1}=0] - \mathbb{E}[Y_{i0}|D_{i0}=1]$$

Estimador DiD 3

• Suposição de tendências paralelas:

$$\mathbb{E}[Y_{i1}^0 - Y_{i0}^0 | D_{i1} = 1] = \mathbb{E}[Y_{i1}^0 - Y_{i0}^0 | D_{i1} = 0]$$

- O lado esquerdo reflete a mudança média antes e depois do tratamento, entre os tratados, no contrafactual (sem tratamento).
- O lado direito representa a mudança média antes e depois, no controle.

Estimador DiD - estratégia 1

- A primeira diferença é: $\mathbb{E}[Y_{i1}^1 Y_{i1}^0 | D_{i1} = 1]$
- Usando a switching equation, temos: $\mathbb{E}[Y_{i1}^1 Y_{i1}^0 | D_{i1} = 1]$
- O lado esquerdo reflete a mudança média antes e depois do tratamento, entre os tratados, no contrafactual (sem tratamento).
- O lado direito representa a mudança médi antes e depois, no controle.

DiD - regressão

- É possível estimar um modelo de DiD com regressão.
- $y_{it} = \alpha + \beta_1 Post_t + \beta_2 Treat_i + \delta(Post_t \times Treat_i) + e_{it}$
- $y_{it} = \alpha_i + \gamma_t + \delta(Post_t \times Treat_i) + e_{it}$
- A segunda parametrização é chamada de "two-way fixed effects", pois usamos um efeito fixo de unidade e um de tempo.

Erro padrão

Block bootstrapping standard error

Inserir conteúdo

Clustering standard errors at the group level.

Inserir conteúdo

Referências