Gramáticas libres de contexto

Clase 15

IIC 2223

Prof. Cristian Riveros

¿dónde estamos?

¿qué le falta a los lenguajes regulares?

Outline

Definición de grámaticas

Árboles y derivaciones

Lenguajes regulares vs libres de contexto

Outline

Definición de grámaticas

Árboles y derivaciones

Lenguajes regulares vs libres de contexto

Gramáticas libres de contexto

Definición

Una gramática libre de contexto (CFG) es una tupla:

$$G = (V, \Sigma, P, S)$$

- V es un conjunto finito de variables o no-terminales.
- Σ es un alfabeto finito (o terminales) tal que $\Sigma \cap V = \emptyset$.
- $P \subseteq V \times (V \cup \Sigma)^*$ es un subconjunto finito de reglas o producciones.
- $S \in V$ es la variable inicial.

Gramáticas libres de contexto

Ejemplo

Consideré la grámatica $G = (V, \Sigma, P, S)$ tal que:

- $V = \{X, Y\}$
- $\Sigma = \{a, b\}$
- $P = \{ (X, aXb), (X, Y), (Y, \epsilon) \}$
- S = X

$$\begin{array}{cccc} \mathcal{G}: & X & \rightarrow & a. \\ & X & \rightarrow & Y \\ & Y & \rightarrow & \epsilon \end{array}$$

Notación para gramáticas libres de contexto

Notación

■ Para las variables en una gramática usaremos letras mayúsculas:

$$X, Y, Z, A, B, C, \dots$$

■ Para los terminales en una gramática usaremos letras minúsculas:

$$a, b, c, \ldots$$

■ Para palabras en $(V \cup \Sigma)^*$ usaremos símbolos:

$$\alpha, \beta, \gamma, \dots$$

■ Para una producción $(A, \alpha) \in P$ la escribimos como:

$$A \rightarrow \alpha$$

Notación para gramáticas libres de contexto

Ejemplo anterior

Consideré la grámatica $G = (V, \Sigma, P, S)$ tal que:

$$\Sigma = \{a, b\}$$
 letras en minus.

variables en mayus.

$$P = \{ X \to aXb, X \to Y, Y \to \epsilon \}$$
 producciones

$$S = X$$

$$\mathcal{G}: \quad X \quad \to \quad aX$$
$$\quad X \quad \to \quad Y$$

Simplificación para gramáticas libres de contexto

Simplificación

Si tenemos un conjunto de reglas de la forma:

$$\begin{array}{ccc} X & \rightarrow & \alpha_1 \\ X & \rightarrow & \alpha_2 \\ & \cdots \\ X & \rightarrow & \alpha_n \end{array}$$

entonces escribimos estas reglas sucintamente como:

$$X \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$$

(recordar que:
$$\alpha_1, \alpha_2, \dots, \alpha_n \in (\Sigma \cup V)^*$$
)

Simplificación para gramáticas libres de contexto

Ejemplo anterior

$$\begin{array}{cccc} \mathcal{G}: & X & \rightarrow & aXb \\ & X & \rightarrow & Y \\ & Y & \rightarrow & \epsilon \end{array}$$

Esta grámatica la escribiremos en notación sucinta como:

$$\begin{array}{cccc} \mathcal{G}: & X & \rightarrow & aXb \mid Y \\ & Y & \rightarrow & \epsilon \end{array}$$

Producciones

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG.

Definición

Definimos la relación $\Rightarrow \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ de producción tal que:

$$\alpha \cdot X \cdot \beta \Rightarrow \alpha \cdot \gamma \cdot \beta$$
 si, y solo si, $(X \rightarrow \gamma) \in P$

para todo $X \in V$ y $\alpha, \beta, \gamma \in (V \cup \Sigma)^*$.

Si $\alpha X\beta \Rightarrow \alpha \gamma \beta$ entonces decimos que

- lacktriangledown $\alpha X eta$ produce $\alpha \gamma eta$ o
- \bullet $\alpha\gamma\beta$ es producible desde $\alpha X\beta$.

 $\alpha X\beta \Rightarrow \alpha \gamma \beta$ es **reemplazar** γ en X en la palabra $\alpha X\beta$.

Producciones

¿cuál de las siguientes producciones son correctas?

$$\begin{array}{cccc} \mathcal{G}: & X & \rightarrow & aXb \mid Y \\ & Y & \rightarrow & \epsilon \end{array}$$

- $X \Rightarrow Y$?
- \blacksquare $aaXbb \Rightarrow aaaXbbb$?
- aaaYbbb ⇒ aaaXbbb ?
- \bullet $aXaXbYX \Rightarrow aXaXbYaXb$?

Derivaciones

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

Dada dos palabras $\alpha, \beta \in (V \cup \Sigma)^*$ decimos que α deriva β :

$$\alpha \stackrel{\star}{\Rightarrow} \beta$$

Si existe $\alpha_1, \alpha_2, \ldots, \alpha_n \in (V \cup \Sigma)^*$ tal que:

$$\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \beta$$

Derivaciones

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG.

Definición

Dada dos palabras $\alpha, \beta \in (V \cup \Sigma)^*$ decimos que α deriva β :

$$\alpha \stackrel{\star}{\Rightarrow} \beta$$

 $con \stackrel{\star}{\Rightarrow} es la clausura refleja y transitiva de <math>\Rightarrow$, esto es:

- 1. $\alpha \stackrel{\star}{\Rightarrow} \alpha$
- 2. $\alpha \stackrel{\star}{\Rightarrow} \beta$ si, y solo si, existe γ tal que $\alpha \stackrel{\star}{\Rightarrow} \gamma$ y $\gamma \Rightarrow \beta$ para todo $\alpha, \beta \in (V \cup \Sigma)^*$.

Notar que \Rightarrow y $\stackrel{\star}{\Rightarrow}$ son relaciones entre palabras en $(V \cup \Sigma)^*$

Derivaciones

¿cuál de las siguientes derivaciones son correctas?

$$\begin{array}{cccc} \mathcal{G}: & X & \rightarrow & aXb \mid Y \\ & Y & \rightarrow & \epsilon \end{array}$$

- $X \stackrel{\star}{\Rightarrow} aaaXbbb$?
- $= aaXbb \stackrel{\star}{\Rightarrow} aaaYbb$?
- aaXbb $\stackrel{\star}{\Rightarrow}$ aaabbb ?

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

El lenguaje de una grámatica \mathcal{G} se define como:

$$\mathcal{L}(\mathcal{G}) = \left\{ w \in \Sigma^* \mid S \stackrel{\star}{\Rightarrow} w \right\}$$

 $\mathcal{L}(\mathcal{G})$ son todas las palabras en Σ^* que se pueden derivar desde S.

¿qué palabras están en
$$\mathcal{L}(\mathcal{G})$$
?

$$\begin{array}{ccc} \mathcal{G}: & X & \rightarrow & aXb \mid Y \\ & Y & \rightarrow & \epsilon \end{array}$$

- Como $X \stackrel{\star}{\Rightarrow} aaabbb$, entonces $aaabbb \in \mathcal{L}(\mathcal{G})$.
- En general, uno puede demostrar por inducción que:

$$\mathcal{L}(\mathcal{G}) = \left\{ a^n b^n \mid n \ge 0 \right\}$$

¿qué lenguaje define cada grámatica libre de contexto?
 1.
$$G: S \rightarrow XS \mid \epsilon$$

 $X \rightarrow aa \mid ab \mid ba \mid bb$

2.
$$G: S \rightarrow S+S \mid S \times S \mid (S) \mid X$$
$$X \rightarrow 0 \mid 1 \mid \dots \mid 9$$

3.
$$G: S \rightarrow aSb \mid SS \mid \epsilon$$

1.
$$L_1 = \{ a^n b^n \mid n \ge 0 \} \cup \{ b^n a^n \mid n \ge 0 \}$$

2.
$$L_2 = \{ w \in \{a, b\}^* \mid w = w^{\text{rev}} \}$$

Lenguajes libres de contexto

Definición

Diremos que $L \subseteq \Sigma^*$ es un lenguaje libre de contexto ssi existe una gramática libre de contexto \mathcal{G} tal que:

$$L = \mathcal{L}(\mathcal{G})$$

Ejemplos

Los siguientes son lenguajes libres de contexto:

- $L = \{a^n b^n \mid n \ge 0\}$
- Par = $\{ w \in \{a, b\}^* \mid w \text{ tiene largo par } \}$
- Pal = $\{ w \in \{a, b\}^* \mid w = w^{rev} \}$

Outline

Definición de grámaticas

Árboles y derivaciones

Lenguajes regulares vs libres de contexto

Árboles ordenados y etiquetados

Definiciones

El conjunto de árboles ordenados y etiquetados (o solo árboles) sobre etiquetas Σ y V, se define recursivamente como:

- t := a es un árbol para todo $a \in \Sigma$.
- si t_1, \ldots, t_k son árboles, entonces $t := X(t_1, \ldots, t_k)$ es un árbol para todo $X \in V$.

Para un árbol $t = X(t_1, ..., t_k)$ cualquiera se define:

- \blacksquare raiz(t) = X
- $\bullet \mathsf{hijos}(t) = t_1, \dots, t_k$

Si t = a, entonces decimos que t es una hoja, raiz(t) = a y hijos $(t) = \epsilon$.

Árboles de derivación de una gramática

Fije una gramática libre de contexto $\mathcal{G} = (V, \Sigma, P, S)$.

Definiciones

Se define el conjunto de árboles de derivación recursivamente como:

- Si $a \in \Sigma$, entonces t = a es un árbol de derivación.
- Si $X \to X_1 \dots X_k \in P$ y t_1, \dots, t_k son árboles de derivación con raiz $(t_i) = X_i$ para todo $i \le k$ entonces $t = X(t_1, \dots, t_k)$ es un árbol de derivación.

Decimos que t es un árbol de derivación de \mathcal{G} si:

- 1. t es un árbol de derivación y
- 2. $\operatorname{raiz}(t) = S$.

Los árboles de derivación son todos los árboles que parten desde $\mathcal{S}.$

Árboles de derivación de una gramática

Ejemplo de árbol de derivación
$$\mathcal{G} \colon E \to E + E \mid E * E \mid n$$
 Algunos árboles de derivación para $\mathcal{G} \colon$
$$E \quad \times \quad E \quad E \quad + \quad E \quad$$

Árbol de derivación para una palabra

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG y $w \in \Sigma^*$.

Definiciones

Se define la función yield sobre árboles, recursivamente como:

- Si $t = a \in \Sigma$, entonces yield(t) = a.
- Si t no es una hoja y hijos $(t) = t_1 t_2 \dots t_k$, entonces:

$$yield(t) = yield(t_1) \cdot yield(t_2) \cdot ... \cdot yield(t_k)$$

Decimos que t es un árbol de derivación de \mathcal{G} para w si:

- $1. \,\, t$ es un árbol de derivación de ${\cal G} \,\,$ y
- 2. yield(t) = w.

Las hojas de t forman la palabra w.

Equivalencia entre árboles de derivación y derivaciones

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG y $w \in \Sigma^*$.

Proposición

 $w \in \mathcal{L}(\mathcal{G})$ si, y solo si, existe un árbol de derivación de \mathcal{G} para w.

Un arbol de derivación es la representación gráfica de una derivación.

Equivalencia entre árboles de derivación y derivaciones

Ejemplo

$$E \rightarrow E+E \mid E*E \mid n$$

$$E \qquad \qquad E$$

$$E \qquad \qquad * \qquad E$$

$$E \qquad * \qquad E$$

$$E \qquad + \qquad E$$

$$C \qquad \qquad | \qquad C$$

$$E \qquad + \qquad E$$

$$C \qquad \qquad | \qquad C$$

- 1) $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow n + E * E \Rightarrow n + n * E \Rightarrow n + n * n$
- 2) $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow E + n * E \Rightarrow E + n * n \Rightarrow n + n * n$
- 3) $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow E + E * n \Rightarrow E + n * n \Rightarrow n + n * n$
- 4) $E \Rightarrow E * E \Rightarrow E * n \Rightarrow E + E * n \Rightarrow n + E * n \Rightarrow n + n * n$
- 5) $E \Rightarrow E * E \Rightarrow E * n \Rightarrow E + E * n \Rightarrow E + n * n \Rightarrow n + n * n$
- 6) ...

Dado un árbol de derivación, ¿con cuál derivación nos quedamos?

Derivaciones por la izquierda y por la derecha

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG.

Definición

■ Definimos la derivación por la izquierda $\Rightarrow \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

$$\mathbf{w} \cdot \mathbf{X} \cdot \boldsymbol{\beta} \Rightarrow_{\text{lm}} \mathbf{w} \cdot \boldsymbol{\gamma} \cdot \boldsymbol{\beta}$$
 si, y solo si, $\mathbf{X} \rightarrow \boldsymbol{\gamma} \in P$

para todo $X \in V$, $w \in \Sigma^*$ y $\beta, \gamma \in (V \cup \Sigma)^*$.

■ Definimos la derivación por la derecha $\Rightarrow \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

$$\alpha \cdot X \cdot \mathsf{w} \underset{\mathsf{rm}}{\Rightarrow} \alpha \cdot \gamma \cdot \mathsf{w} \qquad \mathsf{si, y solo si,} \qquad X \rightarrow \gamma \in P$$

para todo $X \in V$, $w \in \Sigma^*$ y $\alpha, \gamma \in (V \cup \Sigma)^*$.

Se define $\overset{\star}{\underset{lm}{\mapsto}} y \overset{\star}{\underset{m}{\mapsto}} como$ la clausura refleja y transitiva de $\underset{lm}{\Rightarrow} y \overset{\star}{\underset{m}{\Rightarrow}}$, resp.

 \Rightarrow y \Rightarrow solo reemplaza **a la izquierda** (leftmost) y **derecha** (rightmost).

Derivaciones por la izquierda y por la derecha

Ejemplo anterior

Derivación por la izquierda (lm)

$$E \underset{|_{m}}{\Rightarrow} E * E \underset{|_{m}}{\Rightarrow} E + E * E \underset{|_{m}}{\Rightarrow} n + E * E \underset{|_{m}}{\Rightarrow} n + n * E \underset{|_{m}}{\Rightarrow} n + n * n$$

Derivación por la derecha (rm)

$$E \Rightarrow E * E \Rightarrow E * n \Rightarrow E + E * n \Rightarrow E + n * n \Rightarrow n + n * n$$

¿cuál es la relación entre el tipo de derivación y el recorrido del árbol?

Derivaciones por la izquierda y por la derecha

Sabemos que . . .

- Por cada derivación, existe un único árbol de derivación.
- Por cada árbol de derivación existen **múltiples** posibles derivaciones.

Proposición

Por cada árbol de derivación, existe una única derivación por la izquierda y una única derivación por la derecha.

Por lo tanto, desde ahora podemos hablar de **árbol de derivación y derivación (izquierda o derecha)** indistintamente.

Outline

Definición de grámaticas

Árboles y derivaciones

Lenguajes regulares vs libres de contexto

¿cuál es la relación entre lenguajes regulares y lenguajes libres de contexto?

Ya demostramos que:

- Palindromes NO es regular.
- Palindromes es libre de contexto.

...por lo tanto, Regulares # Libres de contexto.

¿lenguajes regulares ⊊ lenguajes libres de contexto?

Lenguajes regulares ⊊ lenguajes libres de contexto

Proposición

Para todo lenguaje regular L, existe una gramática libre de contexto $\mathcal{G}_{\mathcal{A}}$:

$$L = \mathcal{L}(\mathcal{G}_{\mathcal{A}})$$

Demostración

Dado un autómata finito determinista $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$,

¿cómo costruimos una grámatica libre de contexto?

Defina la gramática $\mathcal{G}_{\mathcal{A}} = (Q, \Sigma, P_{\mathcal{A}}, q_0)$ tal que:

- si $\delta(p, a) = q$, entonces $p \to aq \in P_A$.
- si $p \in F$, entonces $p \to \epsilon \in P_A$.

Ejercicio: demuestre que $L(A) = L(G_A)$.