1. Основные понятия и определения

Рассмотрим вероятностное пространство (Ω, \mathcal{F}, P) и заданную на нем последовательность случайных величин $(\xi_n)_{n\in\mathbb{N}}$, принимающих значения в \mathcal{D} .

Пусть
$$\mathfrak{F}_n = \sigma(\xi_m, m \leqslant n)$$
 и $\mathfrak{G}_n = \sigma(\xi_n)$.

Определение 1. Последовательность $(\xi_n)_{n\in\mathbb{N}}$, называется цепью Маркова, если для любого $n\in\mathbb{N}$ σ -алгебры \mathcal{F}_n и \mathcal{G}_n условно независимы отностительно ξ_n , т.е. для любых борелевских $A\in\mathcal{F}_n, B\in\mathcal{G}_n$

$$P(A \cap B|\xi_n) = P(A|\xi_n)P(B|\xi_n)$$
 п. н.

Определение 2. Последовательность $(\xi_n)_{n\in\mathbb{N}}$, называется цепью Маркова порядка r, если для любого $n\in\mathbb{N}$ и борелевского B.

$$P(\xi_{n+1} \in B | \sigma(\xi_m, m \le n)) = (\xi_{n+1} \in B | \sigma(\xi_m, n-r+1 \le m \le n))$$

Лемма 1. Пусть $(\xi_n)_{n\in\mathbb{N}}$ — цепь Маркова порядка r. Тогда последовательность случайных величин $(\Xi_n=(\xi_{n+1},\ldots,\xi_{n+r-1}))_{n\in\mathbb{N}}$, со значениями из \mathbb{D}^n является цепью Маркова в обычном смысле.

 $\mathrm{MC}_{\mathcal{D}}(\pi,P)$ – цепь Маркова с множеством состояний \mathcal{D} , начальным распределением $\pi(i), i \in \mathcal{D}$ и матрицей переходных вероятностей $P = (p_{ij}, i, j \in \mathcal{D})$.

В случае одномерного экспоненциального семейства цепей Маркова по двум стохастическим матрицам $P = (P_{ij})_{i,j=1}^n$ и $Q = (Q_{ij})_{i,j=1}^n$, с совпадающим множеством пар индексов нулевых элементов: $P_{ij} = 0 \iff Q_{ij} = 0$, строится матрица $R(\alpha) = (R_{ij}(\alpha))_{i,j=1}^n$, $\alpha \in \mathbb{R}$ по формуле (1).

$$R_{ij}(\alpha) = \begin{cases} 0, & P_{ij} = 0, \\ P_{ij}^{\alpha} Q_{ij}^{1-\alpha}, & P_{ij} \neq 0. \end{cases}$$
 (1)

Теоремы и определения из теории неотрицательных матриц

Определение 3. Квадратная неотрицательная матрица $A = (A_{ij})_{i,j=1}^n$ называется стохастической, если $\sum_{j=1}^n A_{ij} = 1$, $i = \overline{1,n}$.

Определение 4. Квадратная матрица $A = (A_{ij})_{i,j=1}^n$ называется **разложимой**, если существует разбиение множества индексов $\mathfrak{I} = \{1,2,...,n\}$ на два непересекающихся подмножества \mathfrak{I}_1 и \mathfrak{I}_2 ($\mathfrak{I}_1 \cup \mathfrak{I}_2 = \mathfrak{I}, \ \mathfrak{I}_1 \cap \mathfrak{I}_2 = \varnothing$), такое, что $A_{ij} = 0, \ i \in \mathfrak{I}_1, \ j \in \mathfrak{I}_2$; в противном случае она называется **неразложимой**.

Определение 5. λ_* называется собсвенным значением Перрона-Фробениуса матрицы A, если

- 1. $\lambda_* > 0$,
- 2. λ_* простой корень характеристического полинома $\varphi(\lambda)$ матрицы A,
- 3. любое другое собственное значение λ_0 матрицы A удовлетворяет $|\lambda_0| \leqslant \lambda_*$,
- а соответствующий λ_* собтвенный вектор \mathbf{v}_* называется собственным вектором Перрона-Фробениуса матрицы A.

Теорема 1 (Перрона-Фробениуса). Неотрицательная неразложимая матрица A всегда имеет собсвенное значение Перрона-Фробениуса λ_* ; собственный вектор Перрона-Фробениуса \mathbf{v}_* имеет положительные координаты.

Следствие 1. Неотрицательная $n \times n$ матрица A с λ_* и \mathbf{v}_* подобна произведению λ_* и некоторой стохастической матрицы S, m. e. $A = \lambda_* V S V^{-1}$, где $V = \operatorname{diag}(\mathbf{v}_{*1}, \ldots, \mathbf{v}_{*n})$.