Hálózati architektúrák

A hálózat fogalma

Egymással összekapcsolt számítógépek és más informatikai eszközök rendszere.

Úgyis mondhatnánk: Egy speciális rendszer amely a számítógépek és más informatikai eszközök közötti kommunikációt biztosítja.

Hálózat típusok

A hálózati infrastruktúrák:

- LAN Local Area Network
- WAN Wide Area Network
- MAN Metropolitan Area Network: Kisebb mint egy LAN,
- WLAN Wireless LAN
- PAN Personal Area Network személyes hálózat például: Bluethot
- Internet a hálózatok hálózata

Otthoni

LAN

A LAN egy helyi hálózat, ahol a végberendezések egy kisebb terülten

vannak összekapcsolva.

A LAN hálózat általában:

- otthon egy lakásban
- iskola épületében
- irodaépületben
- kampusz

Általában egy magánszemély vagy egy szervezet kezeli. A LAN hálózati eszközei nagy sávszélességgel kapcsolódnak egymáshoz.

WAN

A WAN összekapcsolja a LAN-okat, így nagy földrajzi területeket fog át. A WAN kezelését több internet szolgáltató (ISP) végzi. A LAN hálózatoknál kisebb sávszélességgel biztosítja a kapcsolatokat.

Internet

- Az internet az egymással összekapcsolt hálózatok. >> A hálózatok világméretű hálózata
- Az Internetnek nincs tulajdonosa. Ezért is fontos követelmény a szabványos technológiák alkalmazása.
- Nem garantált az adatok célba juttatása csak a legjobb szándék szerinti szolgáltatás

Az internetes cserepontok - IXP

Az internetes cserepontok (IXes vagy IXP) az IP -hálózatok közös alapjai , lehetővé téve a résztvevő internetszolgáltatók számára, hogy kicseréljék a saját hálózatukra szánt adatokat. Az IXP -k általában olyan helyeken találhatók, ahol már több különböző hálózathoz, azaz adatközponthoz kapcsolódnak , és fizikai infrastruktúrát (kapcsolókat) működtetnek a résztvevők összekapcsolására.

Szervezetileg a legtöbb IXP-k mindegyike független, nonprofit szövetség a részt vevő hálózatokból (azaz az adott IXP-n részt vevő internetszolgáltatókból). Az IXP - k elsődleges alternatívája a privát peering, ahol az internetszolgáltatók közvetlenül

összekapcsolják hálóza

Intranet, extranet

 Az intranet egy szervezet saját hálózata, saját szolgáltatásai. Gyakori például csak belülről elérhető weboldal. Az Internet felöl a webhely nem érhető el.

 Az extranet az együttműködő szervezetek közös hálózat. Két vagy több intranet összekapcsolása olyan módon, hogy lehetővé tegye az együttműködést saját, különálló intranettel rendelkező szervezetek között.

Hálózati szintek

- A felhasználókhoz közeli, azoknak közvetlenül Internet elérést biztosító hálózatokat határ /
- hozzáférési hálózatoknak nevezzük (access / edge network).
- Ezen hálózatok a gerinc hálózat (core) segítségével kapcsolódnak egymáshoz és ezzel az Internethez.
- A hozzáférési hálózatok feladata adott fizikai közegek segítségével a felhasználók azonosítása, a szolgáltatás szintjük mérése, biztosítása.

Alkalmazás architektúrák

- Kliens-szerver
- Társ-társ (P2P)
- Hibrid: kliens-szerver és P2P

Kliens-szerver architektúra

szerver:

folyamatosan működő host valós rögzített IP cím szerver farmok bővítéshez (skálázás)

kliens:

a szerverrel kommunikál nem kell folyamatosan működjön dinamikus IP címe is lehet nem kommunikálnak közvetlenül egymással

Kliens-szerver modell

- A kliens- és szerverfolyamatokat az alkalmazási réteghez soroljuk. A párbeszédet a kliens kezdeményezi azzal, hogy adatokat kér a szervertől, amely egy vagy több adatfolyam elküldésével válaszol.
- A kliensek és szerverek közötti kérések és válaszok formátumát az alkalmazási rétegbeli protokollok határozzák meg.
- A tényleges adatátvitel mellett ez a párbeszéd a felhasználó hitelesítését, valamint az átvitt adatfájl azonosítását is megkövetelheti.

Kommunikáló folyamatok

Kliens folyamat: kezdeményezi a kapcsolatot

Szerver folyamat: várja, hogy kapcsolatba lépjenek vele

különböző hostokon futó folyamatok, alkamazási-réteg protokollok segítségével kommunikálnak

r Megjegyzés: a P2P alkalmazásoknak kliens folyamataik és szerver folyamataik is vannak

Egyszerű P2P architektúra

- nincs mindig elérhető szerver
- tetszőleges végrendszerek kommunikálhatnak
- a csomópontok megszakításokkal és cím váltásokkal tartják a kapcsolatot
- Könnyen bővíthető, de nehezen kezelhető
- példa:
 - fájl elosztás(BitTorrent)
 - folyamatos adat(KanKan)

Egyenrangú (Peer-to-Peer) hálózatok

 Egy P2P hálózatban két vagy több számítógép csatlakozik egymáshoz a hálózaton keresztül úgy, hogy dedikált szerver nélkül oszthatják meg egymás között az erőforrásaikat (pl. nyomtatókat vagy fájlokat). Minden csatlakoztatott végberendezés (más néven peer) működhet szerverként és kliensként is egyben.

 A peer-to-peer működés során mindkét eszköz egyenrangúnak tekinthető a kommunikációs folyamatban. Peer 1 fájlokat oszt meg Peer 2 számára, ugyanakkor hozzáfér a Peer 2-höz közvetlenül csatlakozó megosztott

nyomtatóhoz.

Peer 1

Peer 2

Print client File Server

Server

Print Server File Client

Directly connected printer

Hibrid kliens-szerver és P2P

Bizonyos P2P-alkalmazások úgynevezett hibrid rendszert használnak, ahol az erőforrások megosztása ugyan decentralizált, de az erőforrások helyeire mutató indexeket már egy központi címtárban tárolják. A hibrid rendszerekben minden csomópont (peer) hozzáfér egy indexszerverhez, ahonnan lekérdezheti a más csomópontokon tárolt erőforrások helyét.

Hibrid kliens-szerver és P2P

Skype

"voice-over-IP" P2P alkalmazás központi szerver: távoli partner címének megkeresése kliens-kliens kapcsolat: közvetlen (nem a szerveren keresztül)

Instant messaging

két felhsználó közti chat P2P

központosított szolgáltatás: felhasználó jelenlétének detektálása/lokalizálás a felhasználó regisztrálja az IP címét a központi szerveren amikor bejelentkezik

a felhasználó a központi szerverhez fordul hogy megtudja egy partner IP címét

Kliens – szerver vs P2P

kliens feltöltési sebesség = u, F/u = I óra, $u_s = I0u$, $d_{min} \ge u_s$

P2P fájl elosztás: BitTorrent

- a fájlt 256Kb hosszú darabkra bontja
- a csomópontok ilyen darabokat küldenek/fogadnak

követő: nyomonköveti a torrentbe résztvevő csomópontokat torrent: társak halmaza amelyek egy fájlhoz tartozó darabokat cserélnek

P2P fájlelosztás: BitTorrent

a torrenthez csatlakozó társ:

nincs fájl darabja, de összegyűjti ezeket a társaktól az idő múlásával

 bejelentkezik a követőnél, hogy megkapja a társak listáját. Egy részhalmazához csatlakozik "szomszédok"

- a társak cserélődhetnek
- churn: társak jönnek, mennek
- amikor egy csomópontnak megvan a fájl akkor (önzően) távozhat vágy (önzetlenül) benn maradhat a torrent-ban

P2P fájlelosztás: BitTorrent

csonkok kérése:

- adott időpontban a különböző csomópontoknál különböző darabok vannak
- Alice időszakonként elkéri minden társa fájl darab listáját
- Alice elkéri a hiányzó darabokat, a legritkábbat először

darabok küldése: valamitvalamiért

- Alice azon 4 társának küld darabokat akik neki leggyorsabban küldik
 - a többit szünetelteti (nem küld nekik darabokat)
 - minden 10 másodpercebn kiértékeli a legjobb négyet
- minden 30 másodpercben: véletlenszerűen választ egy társat és elkezdi neki küldeni a darabokat
 - "optimistán ellátja" a társat
 - az új társ bekerülhet a legjobb 4 közé

P2P fájlelosztás: valamit- valamiért

- (I)Alice "optimistán ellátja" Bob-ot
- (2) Alice Bob legjobb négy ellátója közé kerül; Bob viszonozza
- (3) Bob Alice legjobb 4 ellátója közé kerül

