_2022 级 电路分析基础 课程试卷 A 卷参考答案和评分标准

开课学院: 集成	成电路与电子学院		任课教		
试卷用途:□期中	☑期末	□补考	□重修		
考试形式: □开卷	□半开卷	☑闭卷			
考试日期:202		「需时间:	分钟		
考试允许带:	计算器和必要	要文具			入场
班级:	学号:		姓名	:	

考生承诺:"我确认在次考试是完全通过自己的努力完成的。"

考生签名:

题序	_	二	三	四	五	六	七	八	总分
满分	30	8	10	10	10	10	10	12	100
得分			0		10)			2,23	
评卷人	Lest	高級	5	Jan J	高铁角	以杨	A TRON	引速	

备用数据:

一、填空题(每空2分,共30分)

- 1. 某教学楼内有 40W,220V 的白炽灯 100 个,若每月以 30 天计算,平均每天使用 3 小时,则每月消耗的电能为 360 kW \bullet h。
- 2. 图 1(a), (b)两个电路中 a, b 端以左的电路对 10Ω电阻来说是否等效__是__。

- 3. 对于具有 n 个节点、b 条支路的电路,可以列出 <u>b-n+1</u> 个独立的 KVL 方程。
- 4. 已知某一阶 RC 动态电路中电容电压的零输入响应分量为 $\left(2e^{-t}\right)V$,零状态响应分量为 $\left(1-e^{-t}\right)V$,当激励电源变为原来的 3 倍、初始状态保持不变时,全响应为 $\left(3-e^{-t}\right)V$ 。
- 5. 对于二阶 RLC 串联电路,当 $R < 2\sqrt{L/C}$ 时,电路处于欠阻尼状态。
- 6. 电路的品质因数越 大(高), 电路的选择性越好。
- 7. 单位冲激响应是系统在单位冲激信号激励下的 零状态 响应。
- 8. 图 2 所示电路中, ab 端右侧的总电容为 4 μF。

9. 电路如图 3 所示,已知 $L_1 = 6$ H , $L_2 = 4$ H , M = 3H ,则从 1-1′ 看进去的等效电感为 <u>16</u> 亨利。

- 10. 已知 $i_s = (1 + \sqrt{2} \sin 1000t) A$,则该电流的有效值为 $\sqrt{2} A$ 。
- 11. 对于一个感性负载,可以通过在其两端 <u>并联电容</u>的方式提高电路的功率因数。
- 12. 若某 RL 串联电路在某频率下的等效阻抗为 $(1+j2)\Omega$,且其消耗的有功功率为 9W,则该串联电路的电流有效值为<u>3</u>A,无功功率为 18Var(请写单位)。
- 13. 电路如图 4 所示, 在角频率为 ω 时转移电压比 $\frac{\dot{v}_2}{\dot{v}_1}$ 的幅频特性表达式为 $\frac{\omega}{\sqrt{\omega^2+10^8}}$

14. 图 5 所示电路 a b 端的开路电压 $\dot{U}_{ab}=50\sqrt{2}\angle 45^{\circ}$ V。

以下为计算题

二、(8分) 电路如图 6 所示,请列出以 i_{m1},i_{m2} 和 i_{m3} 为网孔电流变量的网孔电流方程。

$$\begin{cases} (4+2)i_{m1} - 2i_{m2} = 10 \\ -2i_{m1} + (1+1+2)i_{m2} - i_{m3} = 2u_{1} \\ -i_{m2} + (1+1)i_{m3} = -2u_{1} \end{cases}$$

补充方程: $u_1 = 2(i_{m1} - i_{m2})$

三、(10分)图 7 所示电路中,N 为线性有源电阻网络,当 U_s = 10V 时,测得 I = 2A;

当 $U_s = 20$ V时,测得I = 6A; 试求当 $U_s = -20$ V时,I为多少?

设有源网络 N 中所有独立源共同作用时在 R 所在支路产生的电流为 I_1 , k_1 为电压源 U_s 单独作用时电流 I 与 U_s 的比例系数,则根据叠加定理有如下关系:

 $I = kU_s + I$,代入已知数据可得

$$\begin{cases} 2 = 10k_1 + I_1 \\ 6 = 20k_1 + I_1 \end{cases}$$
解得
$$\begin{cases} k_1 = 0.4 \\ I_1 = -2A \end{cases}$$

当
$$U_s = -20$$
V 时, $I = 0.4 \times (-20) + (-2) = -10$ A

四、(10分)含有理想运算放大器的电路如图 8 所示,试求 u_{o} 与 u_{s} 的关系。

根据理想运放的特性,

虚短:
$$u_1 = u_2 = 0$$

虚断:
$$i_{+} = i_{-} = 0$$

$$u_{o} = -u_{C}$$

$$i_{C} = i = \frac{u_{s}}{R}$$

$$u_{C}(t) = \frac{1}{C} \int_{-\infty}^{t} i_{C}(t) dt$$

$$u_{o}(t) = -\frac{1}{RC} \int_{-\infty}^{t} u_{s}(t) dt$$

五、(10 分) 如图 9 所示电路中, $R=1.5\Omega$, $R_L=10\Omega$,a、b 端的等效电阻为 0.25Ω,g=3S,求理想变压器的变比n。

画出原边等效电路

列方程:
$$\frac{\dot{U}_1}{\dot{U}_2} = n$$
, 得 $\dot{U}_2 = \frac{\dot{U}_1}{n}$

$$\dot{I} = \frac{g}{n}\dot{U}_1 + \frac{\dot{U}}{R + n^2 R_L}$$

将
$$\dot{U}_1 = \frac{\dot{U}}{R + n^2 R_L} n^2 R_L$$
代入上式,得

$$\frac{\dot{U}}{\dot{I}} = \frac{R + n^2 R_L}{1 + gnR_L} = 0.25$$

代入参数,得
$$n = \frac{1}{2}$$
或 $n = \frac{1}{4}$

- 六、(10分) 某收音机的输入回路如图 10 所示,L=0.3mH, $R=10\Omega$,为收到电台 560kHz 信号,求:
 - (1) 调谐电容 C 值;
 - (2) 如果输入电压为1.5µV,求谐振电流和此时的电容电压。

- (1) 由串联谐振条件得 $C = \frac{1}{(2\pi f)^2 L} = 269 \text{pF}$
- (2) 谐振电流 $I_0 = \frac{U}{R} = 0.15$ μA 电容电压 $U_C = QU = \frac{\omega_0 L}{R}U = 158.5$ μV
- 七、(10分) 如图 11 所示电路, $\dot{I}_S=4 \angle 0$ °A,当负载 $Z_{\rm L}$ 获得最大功率时,求负载 $Z_{\rm L}$ 和最大功率 $P_{\rm Lmax}$ 。

(1) 求出负载以左部分戴维南等效电路的参数

根据图(a),求开路电压 \dot{U}_{oc} , $\dot{U}_{oc} = \dot{I}_{s} \cdot (5//j10) = 16 + j8V$

根据图(b),求短路电流
$$\dot{I}_{sc}$$
, $\dot{I}_{sc} = \frac{\dot{I}_{s} \cdot \left(5 / / j10 / / (-j5)\right)}{-j5} = \frac{8(1+j2)}{5}$ A

所以等效阻抗为
$$Z_{eq} = \frac{\dot{U}_{oc}}{\dot{I}_{sc}} = 4 - j3\Omega$$

或者
$$Z_{eq} = -j5 + 5 / /j10 = 4 - j3 \Omega$$

(2) 求负载和最大功率

$$\stackrel{\,\,{}_{\stackrel{\,\,{}}{=}}}{=} Z_{\scriptscriptstyle {\rm L}} = Z_{\scriptscriptstyle {\rm eq}}^* = 4\,{\rm j}3\,\Omega$$
 时,负载 $Z_{\scriptscriptstyle {\rm L}}$ 获得最大功率

最大功率为
$$P_{\text{Lmax}} = \frac{U_{\text{oc}}^2}{4R_{\text{eq}}} = \frac{16^2 + 8^2}{4 \times 4} = 20 \text{W}$$

八、(12分) 在图 12 所示电路中, $u_C(0_-)=0$,在t=0时将开关 S 闭合,求开 关 S 闭合后的 $u_C(t)$,并画出其波形。已知 $U_s=10$ V, $R_1=R_2=4\Omega$, $R_3=2\Omega$, C=1F。

- (1) 求初始值 $u_{C}(0^{+})=u_{C}(0^{-})$
- (2) 求稳态值 稳态时,电容可视为开路,∞时刻电路如下图所示

$$U_{s} \xrightarrow{i_{1}(\infty)} R_{1} \xrightarrow{R_{3}} C$$

$$+$$

$$U_{s} \xrightarrow{i_{1}(\infty)} U_{1}(\infty) \xrightarrow{L} U_{1}(\infty)$$

$$-$$

$$2u_{1}(\infty)$$

$$10 = \left(\frac{u_1(\infty)}{4} + 2u_1(\infty)\right)4 + u_1(\infty) \Rightarrow u_1(\infty) = 1V$$

$$u_{C}(\infty) + 4u_{1}(\infty) = u_{1}(\infty) \Rightarrow u_{C}(\infty) = -3V$$

(3) 求时间常数

可以采用外加电源法求从电容两端看进去的戴维南等效电阻。把电压源置零,电容开路,并在断开处施加电压u或电流i,如下图所示。

$$i_0 = \frac{u}{R_3 + R_1 // R_2} = \frac{u}{4}$$
, $u_1 = (R_1 // R_2)i_0 = 2i_0 = \frac{u}{2}$

$$i = i_0 + 2u_1 = \frac{5}{4}u$$

等效电阻 $R = \frac{u}{i} = 0.8\Omega$

时间常数 $\tau = RC = 0.8s$

(4) 求响应,由三要素公式得

$$u_{C}(t) = u_{C}(\infty) + \left[u_{C}(0^{+}) - u_{C}(\infty)\right] e^{-\frac{t}{\tau}}$$
$$= -3 + 3e^{-1.25t} \quad (t \ge 0)$$

(5) 波形

