《计算模型导引》习题

李煦阳 DZ21330015

2022

目录

1	递归	函数	2
	1.1	证明:对于固定的 k ,一元数论函数 $x + k \in \mathcal{BF}$	2
	1.2	证明: 对于任意 $k \in \mathbb{N}^+$, $f: \mathbb{N}^k \to \mathbb{N}$, 若 $f \in \mathcal{BF}$, 则存在	
		h 使得 $f(\vec{r}) < \vec{r} + h$	2

1 递归函数

1.1 证明:对于固定的 k,一元数论函数 $x+k \in \mathcal{BF}$

Proof. 借助恒等函数 P_1^1 与后继函数 S,对任意 k,可组合构造 $f_k(x) = x + k$.

$$f(x) = \begin{cases} P_1^1(x) & k = 0\\ \underbrace{S \circ \cdots \circ S}_{k-1} \circ P_1^1(x) & k > 0 \end{cases}$$

由于 $f_k(x) = x + k$ 可由基本函数 P_1^1 与 S 构造, 所以 $x + k \in \mathcal{BF}$.

1.2 证明: 对于任意 $k \in \mathbb{N}^+$, $f: \mathbb{N}^k \to \mathbb{N}$, 若 $f \in \mathcal{BF}$, 则存在 h 使得 $f(\vec{x}) < ||\vec{x}|| + h$

Proof. 对 f 的构造长度 l 进行归纳, 当 l = 0 时, 我们有 $f \in \mathcal{IF}$, 此时 取 h = 2, 不等式显然恒成立.

对于 l=n+1 的情况,我们有归纳假设:存在 h_n ,对于构造长度小于等于 n 的函数,使得 $f(\vec{x}) < ||x|| + h_n$ 成立.假设构造序列为 f_1, \ldots, f_n, f . 若 $f \in \mathcal{IF}$,显然 $f(x) < ||x|| + h_n + 1$.若 $f = \mathsf{Comp}_k^m[f_{i_0}, \ldots, f_{i_k}]$,根据归纳假设有 $f(x) < \max\{f_{i_j}(x)\} + h_n < ||x|| + 2h_n$,此时我们找到了 $h_{n+1} = 2h_n$.