Diagonal 5.7 mm (Type 1/3.2) CMOS Image Sensor with Square Pixel for Color Cameras

IMX179QQH5-C

Description

The IMX179 is a diagonal 5.7 mm (Type 1/3.2) CMOS active pixel type image sensor with a square pixel array and 8.08M effective pixels. This chip operates with three power supplies, analogue 2.7 V, digital 1.2 V, and IF 1.8 V, and has low power consumption. High sensitivity, low dark current, and no smear are achieved through the adoption of R, G, and B primary color pigment mosaic filters. This chip features an electronic shutter with variable charge-storage time.

In addition, this product is designed for use in cellular phone and tablet PC. When using this for another application, Sony does not guarantee the quality and reliability of product.

Therefore, don't use this for applications other than cellular phone and tablet PC. Consult your Sony sales representative if you have any questions.

Features

- ◆ CMOS active pixel type dots
- ◆2-wire serial communication circuit on chip
- CSI2 serial data output
- Timing generator, H and V driver circuits on chip
- ◆ CDS/PGA on chip
- ◆ 10-bit A/D converter on chip
- ◆ Automatic optical black (OB) clamp circuit on chip
- ◆ PLL on chip (rectangular wave/sine wave)
- High sensitivity, low dark current, no smear
- ◆ Excellent anti-blooming characteristics
- ◆ Variable-speed shutter function (1H units)
- R, G, B primary color pigment mosaic filters on chip
- ◆ Max. 30 frame/s in all-pixel scan mode
- ◆ Pixel rate: >260 MHz (>30 frame/s at All-pixel mode)

ExmorR

"Exmor R" is a trademark of Sony Corporation. The "Exmor R" is a Sony's CMOS image sensor with significantly enhanced imaging characteristics including sensitivity and low noise by changing fundamental structure of "Exmor" pixel adopted column parallel A/D converter to back-illuminated type.

1

Sony reserves the right to change products and specifications without prior notice.

This information does not convey any license by any implication or otherwise under any patents or other right.

Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

E13205H45

Device Structure

◆ CMOS image sensor

WANCHANG OF ILEN OPTICAL FILE PROPRIED FROM THE OFFICE ALTERITY OF THE OPTICAL FILE PROPRIED FROM THE OPTICAL FROM THE OPTICAL FILE PROPRIED FROM THE OPTICAL FROM THE OPTICAL FILE PROPRIED FROM THE OPTICAL F

USE RESTRICTION NOTICE

This USE RESTRICTION NOTICE ("Notice") is for customers who are considering or currently using the image sensor products ("Products") set forth in this specifications book. Sony Corporation ("Sony") may, at any time, modify this Notice which will be available to you in the latest specifications book for the Products. You should abide by the latest version of this Notice. If a Sony subsidiary or distributor has its own use restriction notice on the Products, such a use restriction notice will additionally apply between you and the subsidiary or distributor. You should consult a sales representative of the subsidiary or distributor of Sony on such a use restriction notice when you consider using the Products.

Use Restrictions

- The Products are intended for incorporation into such general electronic equipment as office products, communication products, measurement products, and home electronics products in accordance with the terms and conditions set forth in this specifications book and otherwise notified by Sony from time to time.
- You should not use the Products for critical applications which may pose a life- or injury-threatening
 risk or are highly likely to cause significant property damage in the event of failure of the Products. You
 should consult your sales representative beforehand when you consider using the Products for such
 critical applications. In addition, you should not use the Products in weapon or military equipment.
- Sony disclaims and does not assume any liability and damages arising out of misuse, improper use, modification, use of the Products for the above-mentioned critical applications, weapon and military equipment, or any deviation from the requirements set forth in this specifications book.

Design for Safety

Sony is making continuous efforts to further improve the quality and reliability of the Products; however, failure of a certain percentage of the Products is inevitable. Therefore, you should take sufficient care to ensure the safe design of your products such as component redundancy, anti-conflagration features, and features to prevent mis-operation in order to avoid accidents resulting in injury or death, fire or other social damage as a result of such failure.

Export Control

 If the Products are controlled items under the export control laws or regulations of various countries, approval may be required for the export of the Products under the said laws or regulations.
 You should be responsible for compliance with the said laws or regulations.

No License Implied

• The technical information shown in this specifications book is for your reference purposes only. The availability of this specifications book shall not be construed as giving any indication that Sony and its licensors will license any intellectual property rights in such information by any implication or otherwise. Sony will not assume responsibility for any problems in connection with your use of such information or for any infringement of third-party rights due to the same. It is therefore your sole legal and financial responsibility to resolve any such problems and infringement.

Governing Law

This Notice shall be governed by and construed in accordance with the laws of Japan, without reference
to principles of conflict of laws or choice of laws. All controversies and disputes arising out of or relating
to this Notice shall be submitted to the exclusive jurisdiction of the Tokyo District Court in Japan as the
court of first instance.

Other Applicable Terms and Conditions

The terms and conditions in the Sony additional specifications, which will be made available to you when
you order the Products, shall also be applicable to your use of the Products as well as to this
specifications book. You should review those terms and conditions when you consider purchasing
and/or using the Products.

Contents

Descrip	otion		1
Feature	es		1
Device	Stru	cture	2
USE RI	ESTI	RICTION NOTICE	3
1.	Bloo	ck Diagram and Pin Configuration	9
1-1	В	Block Diagram	9
1-2	Р	Pin Description	10
1-3	Р	Pin Equivalent Circuit	14
1-4	C	Chip Center, Optical Center and Pin Assignment	15
1-5	Р	Pin Coordinates	16
2.	Pixe	el Signal Output Specifications	18
2-1	C	CSI-2 Signalling Mode	18
2-1	1.1	MIPI Transmitter	18
2-1	1.2	Output Lanentrol Registers	18
3.	Con	ntrol Registers	19
3-1	2	-wire Serial Communication Operation Specifications	
3-1	1.1	Communication protocol	19
3-1	.2	2-wire serial communication read/write operation supported by the IMX179	21
3-1	1.3	2-wire serial communication block characteristics	24
3-1	1.4	2-wire serial communication register map	25
3-1	.5	Register Re-timing (Grouped Parameter Hold)	26
3-2	2	e-wire Serial Communication Register Map (Configuration register, Parameter limit register)	26
3-2	2.1	Configuration Registers – [0x0000-0x0FFF]	26
3-2	2.2	Set-up Registers – [0x0100-0x01FF]	28
3-3	Р	Parameter Limit Registers – [0x1000-0x1FFF] (Read Only and Static)	32
3-3	3.1	Integration Time and Gain Parameter Limit Registers – [0x1000-0x10FF]	32
3-4	Ν	Manufacturer Specific Registers – [0x3000-0x3FFF]	37
3-4	1.1	[0x3000-0x30FF]	37
3-4	1.2	[0x3400-0x34FF]	38
3-4	1.3	[0x4100-0x41FF]	40
3-4	1.4	Startup Sequence in 2-wire Serial Communication Mode	41
3-4	1.5	Power-down Sequence	42
4.	Out	put Data Format	44
4-1	C	CSI-2 Output Data Format	44
4-1	1.1	CSI-2 Output Data Channels	44
4-1	.2	CSI-2 Frame Format	44
4-1		CSI-2 Embedded Data Line	
5.	Sett	ting Required for Imaging	53

5-1	Pixel Array Physical Image	53
5-2	Pixel Binning Mode	54
5-3	Readout Position	55
5-4	Frame Rate Calculation Formula	56
5-5	Black Level Control	56
5-6	Storage Time (Electronic Shutter) Settings	56
5-6.	1 Storage Time (Electronic Shutter) Setting Registers	56
5-6.2	2 Storage Time Calculation Method	57
5-7	Gain Settings	58
5-7.	1 Analogue Gain Settings	58
5-7.2		
6. (On Chip Image Processing	
6-1	Test Pattern Generator	62
6-1.	1 Test Pattern	62
6-2	Digital Gain Setting	66
6-3	Black Level Adjust	
6-4	Defect Correction	66
6-5	Pixel Re-alignment H Direction	67
6-6	Scaling	67
7. N	NVM Memory Map	68
7-1	Block Diagram	68
7-2	NVM Functions	68
7-3	Related Registers	69
7-4	Manuals	71
7-4.	1 Writing Sequence	71
7-4.2	2 Reading Sequence	72
7-5	NVM Memory Map	
8. (Other Functions	73
8-1	Clock System	73
8-1.	1 Clock Structure	73
9. E	Electrical Characteristics	74
9-1	Absolute Maximum Ratings	74
9-2	Recommended Operating Conditions	74
9-3	Electrical Characteristics	74
9-4	AC Characteristics	75
9-4.	1 Master Clock Waveform Diagram	75
9-5	Electrical Characteristics	76
10. l	mage Sensor Characteristics	77
10-1	Spectral Sensitivity Characteristics	77

10-	·2 lma	age Sensor Characteristics	77
10-	-3 Sp	ot Pixel Specifications	78
10-	-4 Zoı	ne Definition	79
10-	-5 lma	age Sensor Characteristics and Spot Pixel Measurement Method	80
1	0-5.1	Measurement conditions	80
1	0-5.2	Color coding of this image sensor & Readout	80
1	0-5.3	Definition of standard imaging conditions	80
1	0-5.4	Notice on White Pixels Specifications	82
1	0-5.5	Measurement Method for Spot Pixels	
11.		Ray Angle Characteristics	83
12.		ection Example	
13.	Notes	on Handling	85
	e of Fig		
F	Fig. 1 Blo	ock Diagram	g
F	ig. 2 Pir	Equivalent Circuit	14
F	ig. 3 Ch	ip Center and Optical Center	15
F	ig. 4 Re	lationship between Output pin name and Mipi output Lane	18
F	Fig. 5 2-v	vire Serial Communication	19
F	ig. 6 2-v	vire Serial Communication protocol	19
F	ig. 7 Sta	art Condition	20
		peated Start Condition	
		pp Condition	
F	ig. 10 S	lave Address (Default)	20
F	ig. 11 A	cknowledge and Negative Acknowledge	21
F	ig. 12 C	CI single read from random location	22
F	ig. 13 C	CI single read from current location	22
F	ig. 14 C	CI sequential read starting from random location	23
F	ig. 15 C	CI sequential read starting from current location	23
F	ig. 16 C	CI single write to random location	24
F	ig. 17 C	Cl sequential write starting from random location	24
F	ig. 18 2	wire Serial Communication Specifications	24
F	ig. 19 P	ower-on Sequence in 2-wire Serial Communication Mode	41
7/4	ig. 20 P	ower-down Sequence in 2-wire Serial Communication	42
F	ig. 21 S	oftware Standby Operation Pattern 1	43
F	ig. 22 S	oftware Standby Operation Pattern 2	43
F	ig. 23 F	rame Structure for 2Lane Serial signal output	45
F	ig. 24 S	ignaling Waveform during Line Blanking Period (CSI-2)	45
F	ia. 25 S	ignaling Waveform during Frame Blanking Period (CSI-2)	46

47
47
47
53
54
55
55
62
68
68
71
73
75
77
79
80
83
83
84
10
16
19
20
21
21
25
25
25
41
42
42
48
55
56
56
56

	Table. 19 Gain Setting Variables	58
	Table. 20 Analogue Gain Setting	59
	Table. 21 Digital Gain Settings	60
	Table. 22 Example of Digital Gain Setting	61
	Table. 23 Description of Test Pattern Registers	62
	Table. 24 Description of Test Patterns	64
	Table. 25 Black Level Adjust Setting Register	66
	Table. 26 Defect Correction Setting Registers	66
	Table. 27 Pixel Re-alignment H Direction Setting Registers	67
	Table. 28 Re-sizing Setting Registers	67
	Table. 29 Functions via NVM	68
	Table. 30 Related Registers	69
	Table. 31 Example of multi-step writing in the page w/ ECC function	72
	Table. 32 NVM Memory Map Example	72
	Table. 33 Absolute Maximum Ratings	74
	Table. 34 Recommended Operating Conditions	74
	Table. 35 DC Characteristics	74
	Table. 36 Master Clock Square Waveform Input Characteristics	75
	Table. 37 Electrical Characteristics	76
	Table. 38 Image Sensor Characteristics	77
	Table, 39 Spot Pixel Specifications	78
HAN	Table. 40 Measurement Conditions	80

1. Block Diagram and Pin Configuration

1-1 Block Diagram

WANG O'EILINN OR'S

Fig. 1 Block Diagram

1-2 Pin Description

Table. 1 Pin Description

Pin No. Symbol I/O A/D Description Remarks	
2 VSSLCN1 GND D 1.2 V GND 3 VDDLSC1 Power D 1.2 V GND 4 VSSLSC1 GND D 1.2 V GND 5 VDDHCM1 Power A 2.7 V GND 6 VSSHCM1 GND A 2.7 V GND 7 VBO Power A Analog output Connect VPI1, VPI2 8 VPO Power A Analog output Connect VPI1, VPI2 9 VRL1 O A Analog output Analog output 10 VRL2 O A Analog output Analog output 11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V power supply 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply	
3 VDDLSC1 Power D 1.2 V power supply 4 VSSLSC1 GND D 1.2 V GND 5 VDDHCM1 Power A 2.7 V gover supply 6 VSSHCM1 GND A 2.7 V GND 7 VBO Power A Analog output Connect VPI1, VPI2 8 VPO Power A Analog output Connect VPI1, VPI2 9 VRL1 O A Analog output Analog output 10 VRL2 O A Analog output Analog output 11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V power supply 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply </td <td></td>	
4 VSSLSC1 GND D 1.2 V GND 5 VDDHCM1 Power A 2.7 V power supply 6 VSSHCM1 GND A 2.7 V GND 7 VBO Power A Analog output Connect VPI1, VPI2 8 VPO Power A Analog output Connect VPI1, VPI2 9 VRL1 O A Analog output Analog output 10 VRL2 O A Analog output Analog output 11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V power supply 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDLIO1 Power D 1.2 V power supply </td <td></td>	
5 VDDHCM1 Power A 2.7 V power supply 6 VSSHCM1 GND A 2.7 V GND 7 VBO Power A Analog output Connect VPI1, VPI2 8 VPO Power A Analog output Connect VPI1, VPI2 9 VRL1 O A Analog output 10 VRL2 O A Analog output 11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V gower supply 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V gND 19 DMO3P O D CSI2 output default: GND 20 <td></td>	
6 VSSHCM1 GND A 2.7 V GND 7 VBO Power A Analog output Connect VPI1, VPI2 8 VPO Power A Analog output Connect VPI1, VPI2 9 VRL1 O A Analog output 10 VRL2 O A Analog output 11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V gnD 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDLIO1 Power D 1.2 V gND 18 VSSLIO1 GND D 1.2 V gND 19 DMO3P O D CSI2 output default: GND 20 DMO1P<	
7 VBO Power A Analog output Connect VPI1, VPI2 8 VPO Power A Analog output Connect VPI1, VPI2 9 VRL1 O A Analog output 10 VRL2 O A Analog output 11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V gower supply 14 VPI1 I A Analog output Connect VPO, VPI2 13 VSSHSN1 GND A 2.7 V gower supply 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V gND 19 DMO3P O D CSI2 output default: GND	
8 VPO Power A Analog output Connect VPI1, VPI2 9 VRL1 O A Analog output Analog output 10 VRL2 O A Analog output 11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V GND 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V gND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND </td <td></td>	
9 VRL1 O A Analog output 10 VRL2 O A Analog output 11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V GND 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
10 VRL2 O A Analog output 11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V GND 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
11 VSSHCP GND A 2.7 V GND 12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V GND 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
12 VDDHCP Power A 2.7 V power supply 13 VSSHSN1 GND A 2.7 V GND 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
13 VSSHSN1 GND A 2.7 V GND 14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power D 1.2 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
14 VPI1 I A Analog input Connect VPO, VPI2 15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
15 VDDHSN1 Power A 2.7 V power supply 16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
16 VDDSUBD Power A 2.7 V power supply 17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
17 VDDLIO1 Power D 1.2 V power supply 18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
18 VSSLIO1 GND D 1.2 V GND 19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
19 DMO3P O D CSI2 output default: GND 20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
20 DMO3N O D CSI2 output default: GND 21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
21 DMO1P O D CSI2 output default: GND 22 DMO1N O D CSI2 output default: GND	
22 DMO1N O D CSI2 output default: GND	
20 1/20/100	
23 VSSLIO2 GND D 1.2 V GND	
24 DCKP O D CSI2 output default: GND	
25 DCKN O D CSI2 output default: GND	
26 VSSLIO3 GND D 1.2 V GND	
27 DMO2P O D CSI2 output default: GND	
28 DMO2N O D CSI2 output default: GND	
29 DMO4P O D CSI2 output default: GND	
30 DMO4N O D CSI2 output default: GND	
31 VSSLIO4 GND D 1.2 V GND	
32 VDDLIO2 Power D 1.2 V power supply	
33 VDDLSC2 Power D 1.2 V power supply	
34 VSSLSC2 GND D 1.2 V GND	
35 VSSHPL GND A 2.7 V GND	
36 VDDHPL Power A 2.7 V power supply	
37 VSSLDM1 GND D Dummy PAD Recommended to be NC	

Pin					
No.	Symbol	I/O	A/D	Description	Remarks
38	VSSLDM2	GND	D	Dummy PAD	1
39	VSSLDM3	GND	D	Dummy PAD	1
40	VSSLDM4	GND	D	Dummy PAD	1
41	VSSLDM5	GND	D	Dummy PAD	1
42	VSSLDM6	GND	D	Dummy PAD	1
43	VSSLDM7	GND	D	Dummy PAD	1
44	VSSLDM8	GND	D	Dummy PAD	1
45	VSSLDM9	GND	D	Dummy PAD	1
46	VSSLDM10	GND	D	Dummy PAD	1
47	VSSLDM11	GND	D	Dummy PAD	1
48	VSSLDM12	GND	D	Dummy PAD	1
49	VSSLDM13	GND	D	Dummy PAD	1
50	VSSLDM37	GND	D	Dummy PAD	1
51	VSSLDM38	GND	D	Dummy PAD	1.0
52	VSSLDM39	GND	D	Dummy PAD	1
53	VSSLDM40	GND	D	Dummy PAD	1
54	VSSLDM41	GND	D	Dummy PAD	1
55	VSSLDM42	GND	D	Dummy PAD	1
56	VSSLDM43	GND	D	Dummy PAD	1
57	VSSLDM44	GND	D	Dummy PAD	1
58	VSSLDM45	GND	Ó	Dummy PAD	1
59	VSSLDM46	GND	ם	Dummy PAD	1
60	VSSLDM47	GND	9	Dummy PAD	1
61	VSSLDM48	GND	D	Dummy PAD	1
62	VSSLDM49	GND	D	Dummy PAD	1
63	VDDHFIL	Power	Α	2.7 V power supply	connect to 2.7 V power supply
64	VSSLSC3	GND	D	1.2 V GND	
65	VDDLSC3	Power	D	1.2 V power supply	
66	VSSLSC4	GND	D	1.2 V GND	
67	VDDLSC4	Power	D	1.2 V power supply	
68	TENABLE	I	D	1.2 V GND	NC
69	GPIO1	I/O	D	digital input/output	Flash Strobe; default: GND (It is used as Input in Test mode)
70	GPIO2	I/O	D	digital input/output	Shutter Strobe; default: GND (It is used as Input in Test mode)
71	TSCANEN	I	D	digital input	NC
72	GPIO3	0	D	digital output	Internal test use

Pin No.	Symbol	I/O	A/D	Description	Remarks
73	GPIO4	0	D	digital output	Internal test use
74	TEST	ı	D	digital input	NC
75	SCL	ı	D	digital input	
76	SDA	I/O	D	digital input/output	
77	INCK	I	D	digital input	
78	VDDMCO	Power	D	1.8 V power supply	Noted as "VDIG"
79	POREN	I	D	digital input	NC
80	XCLR	I	D	digital input	Shutdown pin (low active)
81	XPORCD	I	D	digital input	NC
82	REGEN	0	D	digital output	default: GND, In case LDO is inside module
83	TVCDSINP	- 1	Α	analog input	NC O
84	TVMON	0	Α	analog output	NC /
85	VSSHAN	GND	Α	2.7 V GND	Ci
86	VDDHAN	Power	Α	2.7 V power supply	
87	VSSHSN2	GND	Α	2.7 V GND	
88	VPI2	Power	Α	Analog input	Connect VPO, VPI1
89	VDDHSN2	Power	Α	2.7 V power supply	
90	VSSHCM2	GND	Α	2.7 V GND	
91	VDDHCM2	Power	A	2.7 V power supply	
92	VSSLCN2	GND	D	1.2 V GND	
93	VDDLCN2	Power	D	1.2 V power supply	
94	VSSLDM50	GND	D	Dummy PAD	Recommended to be NC
95	VSSLDM51	GND	D	Dummy PAD	1
96	VSSLDM52	GND	D	Dummy PAD	↑
97	VSSLDM53	GND	D	Dummy PAD	\uparrow
98	VSSLDM54	GND	D	Dummy PAD	↑
99	VSSLDM55	GND	D	Dummy PAD	1
100	VSSLDM56	GND	D	Dummy PAD	\uparrow
101	VSSLDM57	GND	D	Dummy PAD	\uparrow
102	VSSLDM58	GND	D	Dummy PAD	↑
103	VSSLDM59	GND	D	Dummy PAD	1
104	VSSLDM60	GND	D	Dummy PAD	1
105	VSSLDM61	GND	D	Dummy PAD	1
106	VSSLDM62	GND	D	Dummy PAD	1
107	VSSLDM63	GND	D	Dummy PAD	1
108	VSSLDM64	GND	D	Dummy PAD	1
109	VSSLDM65	GND	D	Dummy PAD	1

Pin No.	Symbol	I/O	A/D	Description	Remarks
110	VSSLDM66	GND	D	Dummy PAD	1
111	VSSLDM67	GND	D	Dummy PAD	1
112	VSSLDM68	GND	D	Dummy PAD	1
113	VSSLDM69	GND	D	Dummy PAD	↑
114	VSSLDM70	GND	D	Dummy PAD	\uparrow
115	VSSLDM71	GND	D	Dummy PAD	\uparrow
116	VSSLDM72	GND	D	Dummy PAD	\uparrow
117	VSSLDM73	GND	D	Dummy PAD	\uparrow
118	VSSLDM74	GND	D	Dummy PAD	1
119	VSSLDM75	GND	D	Dummy PAD	1
120	VSSLDM76	GND	D	Dummy PAD	1
121	VSSLDM77	GND	D	Dummy PAD	1
122	VSSLDM78	GND	D	Dummy PAD	1
123	VSSLDM79	GND	D	Dummy PAD	1.C
124	VSSLDM80	GND	D	Dummy PAD	4
125	VSSLDM81	GND	D	Dummy PAD	1
126	VSSLDM82	GND	D	Dummy PAD	1
127	VSSLDM83	GND	D	Dummy PAD	\uparrow
128	VSSLDM84	GND	D	Dummy PAD	\uparrow
129	VSSLDM85	GND	D	Dummy PAD	\uparrow
130	VSSLDM86	GND	Ó	Dummy PAD	\uparrow
131	VSSLDM87	GND	D C	Dummy PAD	\uparrow
132	VSSLDM88	GND	б	Dummy PAD	1
133	VSSLDM89	GND	D	Dummy PAD	\uparrow
134	VSSLDM90	GND	D	Dummy PAD	1
135	VSSLDM91	GND	D	Dummy PAD	↑
136	VSSLDM92	GND	D	Dummy PAD	1
137	VSSLDM93	GND	D	Dummy PAD	1
138	VSSLDM94	GND	D	Dummy PAD	1
139	VSSLDM95	GND	D	Dummy PAD	1
140	VSSLDM96	GND	D	Dummy PAD	1
141	VSSLDM97	GND	D	Dummy PAD	1
142	VSSLDM98	GND	D	Dummy PAD	1

1-3 Pin Equivalent Circuit

	Symbol	Equivalent circuit	Symbol	Equivalent circuit
		Analog A Input O	VPI1 VPI2 VBO VPO	Analog I/O Analog VSSH
	XCLR	Digital NDIG VDIG NDIG NDIG NDIG NDIG NDIG NDIG NDIG N	INCK	INCK O VDIG VDIG VVDIG VVDIG VVDIG VVDIG
	SCL	Digital Input Schmitt Buffer VSSL	SDA	Digital I/O VDIG VSSL VSSL Schmitt Buffer
	REGEN GPIO3 GPIO4	Digital Output VDIG VDIG VDIG VDIG VDIG VDIG VDIG VDIG	GPIO1 GPIO2	Digital VDIG VDIG VDIG VDIG VDIG VDIG VSSL
	N	VDDH: 2.7 V power sup	ply, VDIG: 1.8 V p	vower supply, VDDL: 1.2 V power supply VSSH: 2.7 V GND, VSSL: 1.2 V GND
HAMCY	XY	Fig. 2 Pin Eq	uivalent Circuit	

Fig. 2 Pin Equivalent Circuit

1-4 Chip Center, Optical Center and Pin Assignment

(Unit: µm)

HANCHANG

Fig. 3 Chip Center and Optical Center

Chip size 6.18 mm (H) × 5.85 mm (V) contains scribe lines.

1-5 Pin Coordinates

Table. 2 Pin Coordinates

Pin No.	Symbol	X (pad center)	Y (pad center)
1	VDDLCN1	-2952.5	2663.5
2	VSSLCN1	-2992.5	2442.5
3	VDDLSC1	-2992.5	2316.5
4	VSSLSC1	-2992.5	2196.5
5	VDDHCM1	-2992.5	2070.5
6	VSSHCM1	-2992.5	1950.5
7	VBO	-2992.5	1569.7
8	VPO	-2992.5	1449.7
9	VRL1	-2992.5	1074.9
10	VRL2	-2992.5	954.9
11	VSSHCP	-2992.5	371.9
12	VDDHCP	-2992.5	251.9
13	VSSHSN1	-2992.5	125.9
14	VPI1	-2992.5	5.9
15	VDDHSN1	-2992.5	-114.1
16	VDDSUBD	-2992.5	-234.1
17	VDDLIO1	-2992.5	-360.1
18	VSSLIO1	-2992.5	-480.1
19	DMO3P	-2992.5	-600.1
20	DMO3N	-2992.5	-720.1
21	DMO1P	-2992.5	-840.1
22	DMO1N	-2992.5	-960.1
23	VSSLIO2	-2992.5	-1080.1
24	DCKP	-2992.5	-1200.1
25	DCKN	-2992.5	-1320.1
26	VSSLIO3	-2992.5	-1440.1
27	DMO2P	-2992.5	-1560.1
28	DMO2N	-2992.5	-1680.1
29	DMO4P	-2992.5	-1800.1
30	DMO4N	-2992.5	-1920.1
31	VSSLIO4	-2992.5	-2040.1
32	VDDLIO2	-2992.5	-2160.1
33	VDDLSC2	-2992.5	-2280.1
34	VSSLSC2	-2992.5	-2400.1
35	VSSHPL	-2992.5	-2542.5
36	VDDHPL	-2992.5	-2662.5
1	1	I.	

Pin No.	Symbol	X (pad center)	Y (pad center)
37	VSSLDM1	-2880	-2827.5
38	VSSLDM2	-2760	-2827.5
39	VSSLDM3	-2640	-2827.5
40	VSSLDM4	-2520	-2827.5
41	VSSLDM5	-2400	-2827.5
42	VSSLDM6	-2280	-2827.5
43	VSSLDM7	-2160	-2827.5
44	VSSLDM8	-2040	-2827.5
45	VSSLDM9	-1920	-2827.5
46	VSSLDM10	-1800	-2827.5
47	VSSLDM11	-1680	-2827.5
48	VSSLDM12	-1560	-2827.5
49	VSSLDM13	-1440	-2827.5
50	VSSLDM37	1440	-2827.5
51	VSSLDM38	1560	-2827.5
52	VSSLDM39	1680	-2827.5
53	VSSLDM40	1800	-2827.5
54	VSSLDM41	1920	-2827.5
55	VSSLDM42	2040	-2827.5
56	VSSLDM43	2160	-2827.5
57	VSSLDM44	2280	-2827.5
58	VSSLDM45	2400	-2827.5
59	VSSLDM46	2520	-2827.5
60	VSSLDM47	2640	-2827.5
61	VSSLDM48	2760	-2827.5
62	VSSLDM49	2880	-2827.5
63	VDDHFIL	2992.5	-2662.5
64	VSSLSC3	2992.5	-2416.5
65	VDDLSC3	2992.5	-2296.5
66	VSSLSC4	2992.5	-2176.5
67	VDDLSC4	2992.5	-2056.5
68	TENABLE	2992.5	-1936.5
69	GPIO1	2992.5	-1816.5
70	GPIO2	2992.5	-1696.5
71	TMASTER	2992.5	-1576.5
72	GPIO3	2992.5	-1456.5

•			
Pin No.	Symbol	X (pad center)	Y (pad center)
73	GPIO4	2992.5	-1336.5
74	TEST	2992.5	-1216.5
75	SCL	2992.5	-1096.5
76	SDA	2992.5	-976.5
77	INCK	2992.5	-776.5
78	VDDMCO	2992.5	-656.5
79	POREN	2992.5	-536.5
80	XCLR	2992.5	-416.5
81	XPORCD	2992.5	-296.5
82	REGEN	2992.5	-176.5
83	TVCDSINP	2992.5	-50.5
84	TVMON	2992.5	69.5
85	VSSHAN	2992.5	639.5
86	VDDHAN	2992.5	759.5
87	VSSHSN2	2992.5	1639.5
88	VPI2	2992.5	1759.5
89	VDDHSN2	2992.5	1879.5
90	VSSHCM2	2992.5	2059.5
91	VDDHCM2	2992.5	2179.5
92	VSSLCN2	2992.5	2305.5
93	VDDLCN2	2992.5	2425.5
94	VSSLDM50	2880	2827.5
95	VSSLDM51	2760	2827.5
96	VSSLDM52	2640	2827.5
97	VSSLDM53	2520	2827.5
98	VSSLDM54	2400	2827.5
99	VSSLDM55	2280	2827.5
100	VSSLDM56	2160	2827.5
101	VSSLDM57	2040	2827.5
102	VSSLDM58	1920	2827.5
103	VSSLDM59	1800	2827.5
104	VSSLDM60	1680	2827.5
105	VSSLDM61	1560	2827.5
106	VSSLDM62	1440	2827.5
107	VSSLDM63	1320	2827.5
108	VSSLDM64	1200	2827.5
L	I.	l	

Pin No. Symbol X (pad center) Y (pad center) 109 VSSLDM65 1080 2827.5 110 VSSLDM66 960 2827.5 111 VSSLDM67 840 2827.5 112 VSSLDM68 720 2827.5 113 VSSLDM69 600 2827.5 114 VSSLDM70 480 2827.5 115 VSSLDM71 360 2827.5 116 VSSLDM72 240 2827.5 117 VSSLDM73 120 2827.5 118 VSSLDM74 0 2827.5 120 VSSLDM75 120 2827.5 121 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM80 -720 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM82 -960 2827.5 <td< th=""><th></th><th></th><th></th><th></th></td<>				
110 VSSLDM66 960 2827.5 111 VSSLDM67 840 2827.5 112 VSSLDM68 720 2827.5 113 VSSLDM69 600 2827.5 114 VSSLDM70 480 2827.5 115 VSSLDM71 360 2827.5 116 VSSLDM72 240 2827.5 117 VSSLDM73 120 2827.5 118 VSSLDM73 120 2827.5 119 VSSLDM75 -120 2827.5 120 VSSLDM75 -120 2827.5 121 VSSLDM76 -240 2827.5 122 VSSLDM77 -360 2827.5 123 VSSLDM89 -480 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM82 -960 2827.5 126 VSSLDM83 -1080 2827.5 129 VSSLDM84 -1200 2827.5 130		Symbol		
111 VSSLDM67 840 2827.5 112 VSSLDM68 720 2827.5 113 VSSLDM69 600 2827.5 114 VSSLDM70 480 2827.5 115 VSSLDM71 360 2827.5 116 VSSLDM72 240 2827.5 117 VSSLDM73 120 2827.5 118 VSSLDM74 0 2827.5 119 VSSLDM75 -120 2827.5 120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM80 -720 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM82 -960 2827.5 126 VSSLDM82 -960 2827.5 129 VSSLDM84 -1200 2827.5 130 VSSLDM86 -1440 2827.5 131	109	VSSLDM65	1080	2827.5
112 VSSLDM68 720 2827.5 113 VSSLDM69 600 2827.5 114 VSSLDM70 480 2827.5 115 VSSLDM71 360 2827.5 116 VSSLDM72 240 2827.5 117 VSSLDM73 120 2827.5 118 VSSLDM74 0 2827.5 119 VSSLDM75 -120 2827.5 120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM80 -720 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM83 -1080 2827.5 127 VSSLDM83 -1080 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131	110	VSSLDM66	960	2827.5
113 VSSLDM69 600 2827.5 114 VSSLDM70 480 2827.5 115 VSSLDM71 360 2827.5 116 VSSLDM72 240 2827.5 117 VSSLDM73 120 2827.5 118 VSSLDM74 0 2827.5 119 VSSLDM75 -120 2827.5 120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM79 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132	111	VSSLDM67	840	2827.5
114 VSSLDM70 480 2827.5 115 VSSLDM71 360 2827.5 116 VSSLDM72 240 2827.5 117 VSSLDM73 120 2827.5 118 VSSLDM74 0 2827.5 119 VSSLDM75 -120 2827.5 120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM89 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133	112	VSSLDM68	720	2827.5
115 VSSLDM71 360 2827.5 116 VSSLDM72 240 2827.5 117 VSSLDM73 120 2827.5 118 VSSLDM74 0 2827.5 119 VSSLDM75 -120 2827.5 120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM89 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 130 VSSLDM85 -1320 2827.5 131 VSSLDM86 -1440 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 <td>113</td> <td>VSSLDM69</td> <td>600</td> <td>2827.5</td>	113	VSSLDM69	600	2827.5
116 VSSLDM72 240 2827.5 117 VSSLDM73 120 2827.5 118 VSSLDM74 0 2827.5 119 VSSLDM75 -120 2827.5 120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM79 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 130 VSSLDM85 -1320 2827.5 131 VSSLDM86 -1440 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	114	VSSLDM70	480	2827.5
117 VSSLDM73 120 2827.5 118 VSSLDM74 0 2827.5 119 VSSLDM75 -120 2827.5 120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM79 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	115	VSSLDM71	360	2827.5
118 VSSLDM74 0 2827.5 119 VSSLDM75 -120 2827.5 120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM79 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	116	VSSLDM72	240	2827.5
119 VSSLDM75 -120 2827.5 120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM79 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	117	VSSLDM73	120	2827.5
120 VSSLDM76 -240 2827.5 121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM79 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	118	VSSLDM74	0	2827.5
121 VSSLDM77 -360 2827.5 122 VSSLDM78 -480 2827.5 123 VSSLDM79 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	119	VSSLDM75	-120	2827.5
122 VSSLDM78 -480 2827.5 123 VSSLDM79 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	120	VSSLDM76	-240	2827.5
123 VSSLDM79 -600 2827.5 124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	121	VSSLDM77	-360	2827.5
124 VSSLDM80 -720 2827.5 125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	122	VSSLDM78	-480	2827.5
125 VSSLDM81 -840 2827.5 126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	123	VSSLDM79	-600	2827.5
126 VSSLDM82 -960 2827.5 127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	124	VSSLDM80	-720	2827.5
127 VSSLDM83 -1080 2827.5 128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	125	VSSLDM81	-840	2827.5
128 VSSLDM84 -1200 2827.5 129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	126	VSSLDM82	-960	2827.5
129 VSSLDM85 -1320 2827.5 130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	127	VSSLDM83	-1080	2827.5
130 VSSLDM86 -1440 2827.5 131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	128	VSSLDM84	-1200	2827.5
131 VSSLDM87 -1560 2827.5 132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	129	VSSLDM85	-1320	2827.5
132 VSSLDM88 -1680 2827.5 133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	130	VSSLDM86	-1440	2827.5
133 VSSLDM89 -1800 2827.5 134 VSSLDM90 -1920 2827.5	131	VSSLDM87	-1560	2827.5
134 VSSLDM90 -1920 2827.5	132	VSSLDM88	-1680	2827.5
	133	VSSLDM89	-1800	2827.5
135 VSSLDM91 -2040 2827.5	134	VSSLDM90	-1920	2827.5
	135	VSSLDM91	-2040	2827.5
136 VSSLDM92 -2160 2827.5	136	VSSLDM92	-2160	2827.5
137 VSSLDM93 -2280 2827.5	137	VSSLDM93	-2280	2827.5
138 VSSLDM94 -2400 2827.5	138	VSSLDM94	-2400	2827.5
139 VSSLDM95 -2520 2827.5	139	VSSLDM95	-2520	2827.5
140 VSSLDM96 -2640 2827.5	140	VSSLDM96	-2640	2827.5
141 VSSLDM97 -2760 2827.5	141	VSSLDM97	-2760	2827.5
142 VSSLDM98 -2880 2827.5	142	VSSLDM98	-2880	2827.5

2. Pixel Signal Output Specifications

IMX179 has CSI-2 interface and the options are 2 lanes or 4 lanes.

2-1 CSI-2 Signalling Mode

2-1.1 MIPI Transmitter

Output pins (DMO1P/DMO1N, DMO2P/DMO2N, DCKP/DCKN,) of CSI-2 are shown below

Fig. 4 Relationship between Output pin name and Mipi output Lane

Data and clock signals are transmitted using CSI-2 interface (high speed serial interface). Detailed explanation of CSI-2 interface is in following two documents, "MIPI Alliance Standard for Camera Serial Interface2 (CSI-2) Version 1.00" and "MIPI Alliance Specification for D-PHYVersion 0.90.00". In CSI-2 interface, one bit of data is transmitted by a pair of differential signals. In the transmitter of CSI-2 interface, differential digital signals of data or clock are converted to differential current signals. At the receiver of CSI-2 interface, inserting output resistance, which is serial to a pair of differential outputs (data or clock), or connecting the receiver block, which includes internal resistance for a pair of differential outputs (data or clock), is required. In the case of using output resistance, output resistance is placed close to the receiver. Additionally, it is recommended that each space between differential output lines such as DMO1P/DMO1N, DMO2P/DMO2N, or DCKP/DCKN is identical, the length of all differential output lines is same, and output line length between the transmitter and the receiver is minimum.

2-1.2 Output Lane

Two or Four data output Lanes are applied from MIPI Alliance Standard for Camera Serial Interface2 (CSI-2) Version 1.00.

2-1.2.1 2Lane Output

Outputs of data and clock come from CSI-2 output pins (DMO1P/DMO1N, DMO2P/DMO2N, DCKP/DCKN). A pair of DMO1P/DMO1N is called Lane1 data and a pair of DMO2P/DMO2N is called Lane2 data. Also, clock signals come from CSI-2 output pins, DCKP/DCKN. Maximum output data rate is 750 Mbps/lane. For 2Lane output, following register settings are required (1lane output is not supported).

1	Index	Bit	Register Name	RW	Comment	Default	Desired
	0x0309	[3:0]	OPPXCK_DIV	RW	op_pix_clk_div	0x05	0x0A
	0x3364	[1:0]	CSI_LANE_MODE	RW	CSI_lane_mode 0: 4 lane, 2: 2lane,	0x00	0x02

3. Control Registers

The IMX179 can use the 2-wire serial communication method for sensor control. These specifications are described for sensor control using the 2-wire serial communication as follows.

3-1 2-wire Serial Communication Operation Specifications

The 2-wire serial communication method conforms to the Camera Control Instance (CCI). CCI is an I²C fast-mode compatible interface, and the data transfer protocol is I²C standard.

This 2-wire serial communication circuit can be used to access the control-registers and status-registers of IMX179.

Fig. 5 2-wire Serial Communication

Table. 3 Description of 2-wire Serial Communication Pins

Symbol	Description
SDA	Serial data communication
SCL	Serial clock input

3-1.1 Communication protocol

2-wire serial communication supports a 16-bit register address and 8-bit data message type.

Fig. 6 2-wire Serial Communication protocol

Data is transferred serially, MSB first in 8-bit units. After each data byte is transferred,

A (Acknowledge)/ \bar{A} (NegativeAcknowledge) is transferred. Data (SDA) is transferred at the clock (SCL) cycle.

SDA can change only while SCL is Low, so the SDA value must be held while SCL is High.

The Start condition is defined by SDA changing from High to Low while SCL is High. When the Stop condition is not generated in the previous communication phase and Start condition for the next communication is generated, that Start condition is recognized as a Repeated Start condition.

Fig. 7 Start Condition

Fig. 8 Repeated Start Condition

The Stop condition is defined by SDA changing from Low to High while SCL is High.

Fig. 9 Stop Condition

The slave address is as follows.

Fig. 10 Slave Address (Default)

The R/W bit indicates the data transfer direction.

Table. 4 R/W Bit

R/W bit	Transfer direction
0	Write (Master →Sensor)
1	Read (Sensor → Master)

After transfer of each data byte, the Master or the sensor transmits an Acknowledge / Negative Acknowledge and releases (does not drive) SDA. When Negative Acknowledge is generated, the Master must immediately generate the Stop condition and end the communication.

Fig. 11 Acknowledge and Negative Acknowledge

The registers have a 16-bit address space, and are assigned as follows.

Table. 5 2-wire Serial Communication Address Space

Address area	Description
0x0000 - 0x0FFF	Configuration register
0x1000 - 0x1FFF	Parameter limit register Read Only and Static register
0x2000 - 0x2FFF	Image statistics register
0x3000 - 0x3FFF	Manufacture specific register

3-1.2 2-wire serial communication read/write operation supported by the IMX179

The IMX179 supports the following four read operations and two write operations that conform to the SMIA standard

Table. 6 Operations Supported by 2-wire Serial Communication

1	CCI Single read from random location (Single read from an optional address)
2	CCI Single read from current location (Single read from the held address)
3	CCI sequential read starting from random location (Sequential read starting from an optional address)
4	CCI sequential read starting from current location (Sequential read starting from the held address)
5	CCI single write to random location (Single write to an optional address)
6	CCI sequential write starting from random location (Sequential write starting from an optional address)

3-1.2.1 CCI single read from random location

The sensor has an index function that indicates which address it is focusing on. In reading the data at an optional single address, the Master must set the index value to the address to be read. For this purpose it performs dummy write operation up to the register address. The upper level of the figure below shows the sensor internal index value, and the lower level of the figure shows the SDA I/O data flow. The Master sets the sensor index value to M by designating the sensor slave address with a write request, then designating the address (M). Then, the Master generates the start condition. The Start condition is generated without generating the Stop condition, so it becomes the Repeated Start condition. Next, when the Master sends the slave address with a read request, the sensor outputs an Acknowledge immediately followed by the index address data on SDA. After the Master receives the data, it generates a Negative Acknowledge and the Stop condition to end the communication.

Fig. 12 CCI single read from random location

3-1.2.2 CCI single read from current location

After the slave address is transmitted by a write request, that address is designated by the next communication and the index holds that value. In addition, when data read/write is performed, the index is incremented by the subsequent Acknowledge/Negative Acknowledge timing. When the index value is known to indicate the address to be read, sending the slave address with a read request allows the data to be read immediately after Acknowledge. After receiving the data, the Master generates a Negative Acknowledge and the Stop condition to end the communication, but the index value is incremented, so the data at the next address can be read by sending the slave address with a read request.

Fig. 13 CCI single read from current location

3-1.2.3 CCI sequential read starting from random location

In reading data sequentially, which is starting from an optional address, the Master must set the index value to the start of the addresses to be read. For this purpose, dummy write operation includes the register address setting. The Master sets the sensor index value to M by designating the sensor slave address with a read request, then designating the address (M). Then, the Master generates the Repeated Start condition. Next, when the Master sends the slave address with a read request, the sensor outputs an Acknowledge followed immediately by the index address data on SDA. When the Master outputs an Acknowledge after it receives the data, the index value inside the sensor is incremented and the data at the next address is output on SDA. This allows the Master to read data sequentially. After reading the necessary data, the Master generates a Negative Acknowledge and the Stop condition to end the communication.

Fig. 14 CCI sequential read starting from random location

3-1.2.4 CCI sequential read starting from current location

When the index value is known to indicate the address to be read, sending the slave address with a read request allows the data to be read immediately after the Acknowledge. When the Master outputs an Acknowledge after it receives the data, the index value inside the sensor is incremented and the data at the next address is output on SDA. This allows the Master to read data sequentially. After reading the necessary data, the Master generates a Negative Acknowledge and the Stop condition to end the communication.

Fig. 15 CCI sequential read starting from current location

3-1.2.5 CCI single write to random location

The Master sets the sensor index value to M by designating the sensor slave address with a write request, and designating the address (M). After that the Master can write the value in the designated register by transmitting the data to be written. After writing the necessary data, the Master generates the Stop condition to end the communication.

Fig. 16 CCI single write to random location

3-1.2.6 CCI sequential write starting from random location

The Master can write a value to register address M by designating the sensor slave address with a write request, designating the address (M), and then transmitting the data to be written. After the sensor receives the write data, it outputs an Acknowledge and at the same time increments the register address, so the Master can write to the next address simply by continuing to transmit data. After the Master writes the necessary number of bytes, it generates the Stop condition to end the communication.

Fig. 17 CCI sequential write starting from random location

3-1.3 2-wire serial communication block characteristics

The block operation specifications for 2-wire serial communication are show below.

Fig. 18 2-wire Serial Communication Specifications

Table. 7 2-wire Serial Communication Operation Specifications

Item	Symbol	Conditions	Min.	Max.	Unit
Low level input voltage	V _{IL}		-0.5	0.3VDIG	V
High level input voltage	V _{IH}		0.7VDIG	VDIG + 0.5	V
Low level output voltage	V _{OL}	VDIG < 2 V,Sink 2 mA		0.25VDIG	V
High level output voltage	V _{OH}	VDIG < 2 V,Sink 2 mA	0.75VDIG		V
Output fall time	t _{of}	Load 10 pF - 400 pF,0.7VDIG \rightarrow 0.3VDIG		250	ns
Input current	I	0.1VDIG -0.9VDIG	-10	10	μΑ
SDA I/O capacitance	C _{I/O}			8	pF
SCL Input capacitance	Cı			6	pF

Table. 8 2-wire Serial Communication AC Timing

Item	Symbol	Min.	Max.	Unit
SCL clock frequency	f _{SCL}	0	400	kHz
Rise time (SDA and SCL)	t _R	fi	300	ns
Fall time (SDA and SCL)	t _F	1	300	ns
Hold time (start condition)	t _{HDSTA}	0.6	ı	μs
Setup time (repstart condition)	tsusta	0.6	ı	μs
Setup time (stop condition)	tsusто	0.6	1	μs
Data setup time	t _{SUDAT}	100	1	ns
Data hold time	t _{HDDAT}	0	0.9	μs
Bus free time between Stop and Start condition	t _{BUF}	1.3		μs
Low period of the SCL clock	t _{LOW}	1.3		μs
High period of the SCL clock	t _{HIGH}	0.6		μs

3-1.4 2-wire serial communication register map

3-1.4.1 Description of 2-wire communication register map

In 2-wire serial communication, there is a 16-bit address space as follows. In IMX179, there are partially unreadable registers, which is described in Register map. If reading unreadable registers, the value to be read is 00h.

Table. 92-wire Serial Communication Register Map Address Areas

Address Area	Description
0x0000 - 0x0fff	Configuration register
0x1000 - 0x1fff	Parameter limit register Read Only and Static resister
0x2000 - 0x2fff	Reserved for Image statistics register
0x3000 - 0x5fff	Manufacture specific register

3-1.5 Register Re-timing (Grouped Parameter Hold)

Register re-timing sequence is the followings;

"Registers defined as group parameter hold are re-timed in next frame start."

3-2 2-wire Serial Communication Register Map (Configuration register, Parameter limit register)

3-2.1 Configuration Registers – [0x0000-0x00C7]

3-2.1.1 Status Registers – [0x0000-0x0016] (Read Only Dynamic Registers)

Index	Byte	Register Name	RW	Comment	Re- Time	Default (HEX)	Embd DL
0000	[7:0]	Fabrication	RO	fab_rev_id [7:4]: FAB ID [3:0]: Revision ID of the Type		xx	
0001	[7:0]	Lot_ID[39:32]	RO		. (XX	0
0002	[7:0]	Lot_ID[31:24]	RO	Lot_ID of the sensor	λ	X1	0
0003	[7:0]	Lot_ID[23:16]	RO	Copied from NVM 0x3EE to 0x3F2 Type ID is implemented at		79	0
0004	[7:0]	Lot_ID[15:8]	RO	0x0002[3:0] - 0x0003[7:0]		XX	0
0005	[7:0]	Lot_ID[7:0]	RO			XX	0
0006	_	_	=	1. 110		00	
0007	[7:0]	Wafer_Num	RO	Wafer Number of the Sensor in the Lot. Value 0x01-0x19 is available.		XX	0
8000	[7:0]	Chip_Number[15:8]	RO	Chia ID in the Victor		XX	0
0009	[7:0]	Chip_Number[7:0]	RO	Chip ID in the wafer		XX	0
000A	[7:0]	Module_Date[15:8]	RO	Module Production Date and NVM version [15:13]: NVM version [12:9]: Production Year (least two digits) [8:3]: work week (1 to 53) [2:0]: Day in the week. 1 (Monday) to 7 (Sunday)		00	0
000B	[7:0]	Module_Date[7:0]	RO			00	0
000C	_		1			00	0
000D	[7:0]	Module_Serial_ID[23:16]	RO	Serial ID of the Module		00	0
000E	[7:0]	Module_Serial_ID[15:8]	RO			00	0
000F	[7:0]	Module_Serial_ID[7:0]	RO			00	0
0010	[7:0]	Module_Parts_ID[15:8]	RO			00	
0011	[7:0]	Module_Parts_ID[7:0]	RO			00	
0012	[7:0]	FRM_CNT[7:0]	RO			FF	0
0013	[7:0]	PX_ORDER	RO			01	0
0014	[1:0]	DT_PEDESTAL[9:8]	BQ.			40	0
0015	[7:0]	DT_PEDESTAL[7:0]	RO			40	0
0016	[7:0]	PIXEL_DEPTH	RO			0A	0

3-2.1.2 Frame Format Description – [0x0040-0x0047]

Index	Puto	Byte Register Name RW Comment		Re-	Default	Embd	
index	Byte	Register Name	KVV	Comment		(HEX)	DL
0x0040	[7:0]	FRM_FMT_TYPE[7:0]	RO	frame_format_model_type		01	0
0x0041	[7:0]	FRM_FMT_SUBTYPE[7:0]	RO	frame_format_model_subtype		12	0
0x0042	[7:0]	FRM_FMT_DESC0[15:8]	RO-D	from a format descriptor O		5C	0
0x0043	[7:0]	FRM_FMT_DESC0[7:0]	ר-טא	frame_format_descriptor_0		D0	0
0x0044	[7:0]	FRM_FMT_DESC1[15:8]	DO	from a format descriptor 1		10	0
0x0045	[7:0]	FRM_FMT_DESC1[7:0]	RO	frame_format_descriptor_1		02	0
0x0046	[7:0]	FRM_FMT_DESC2[15:8]	RO-D	from a format descriptor 2		59	0
0x0047	[7:0]	FRM_FMT_DESC2[7:0]	אט-ט	frame_format_descriptor_2		A0	0

3-2.1.3 Analogue Gain Description Registers – [0x0080-0x0093]

Index	Byte	Register Name	RW	Comment	Re- Time	Default (HEX)	Embd DL
0x0080	_					00	0
0x0081	[0]	analogue_gain_capability	RO	Analogue Gain Description Registers		00	0
0x0082	_	December	RO			00	
0x0083	_	Reserved	RO	Reserved		00	
0x0084	_					00	0
0x0085	[7:0]	analogue_gain_code_min	RO	Analogue Gain Description Registers		00	0
0x0086	[7:0]	analagua gain aada may	RO	Malagua Coin Description Registers		00	0
0x0087	[7:0]	analogue_gain_code_max	RO	Analogue Gain Description Registers		E0	0
0x0088	[7:0]		RO	Analagua Cain Dagaintian Dagintan		00	0
0x0089	[7:0]	analogue_gain_code_step	RO	Analogue Gain Description Registers		01	0
0x008A	[7:0]	analagua gain two	RO	Appleaus Cain Description Registers		00	0
0x008B	[7:0]	analogue_gain_type	RO	Analogue Gain Description Registers		00	0
0x008C	[7:0]	analagua asin m0	RO	Analogue Coin Description Registers		00	0
0x008D	[7:0]	analogue_gain_m0	RO	Analogue Gain Description Registers		00	0
0x008E	[7:0]	anderus asia so	RO	Analogue Coin Description Registers		01	0
0x008F	[7:0]	analogue_gain_c0	RO	Analogue Gain Description Registers		00	0
0x0090	[7:0]	analagua gain m4	RO	Analogue Cain Description Desistant		FF	0
0x0091	[7:0]	analogue_gain_m1	RO	Analogue Gain Description Registers		FF	0
0x0092	[7:0]	analagua gain at	RO	Analogue Cain Description Registers		01	0
0x0093	[7:0]	analogue_gain_c1	RO	Analogue Gain Description Registers		00	0

3-2.1.4 Data Format Description – [0x00C0-0x00C7]

Inday	Duto	Register Name	RW	Comment	Re- Time	Default	Embd
Index	Byte		KVV	Comment		(HEX)	DL
0x00C0	[7:0]	DT_FMT_TYPE[7:0]	RO	data_format_model_type		01	0
0x00C1	[7:0]	DT_FMT_SUBTYPE[7:0]	RO	data_format_model_subtype		03	0
0x00C2	[7:0]	DT_FMT_DESC0[15:8]	RO	data farmat da mida o		08	0
0x00C3	[7:0]	DT_FMT_DESC0[7:0]	KO	data_format_descriptor_0		08	0
0x00C4	[7:0]	DT_FMT_DESC1[15:8]	RO	data format descriptor 1		0A	0
0x00C5	[7:0]	DT_FMT_DESC1[7:0]	RO	data_format_descriptor_1		08	0
0x00C6	[7:0]	DT_FMT_DESC2[15:8]	RO	data format descriptor 2		0A	0
0x00C7	[7:0]	DT_FMT_DESC2[7:0]	KO	data_format_descriptor_2		0A	0

3-2.2 Set-up Registers - [0x0100-0x0FFF]

3-2.2.1 General Set-up Registers – [0x0100-0x0105]

Index	Byte	Register Name	RW	Comment	Re- Time	Default (HEX)	Embd DL
0x0100		mode_select	RW	Mode Select: 0: SW standby, 1: Streaming		0	0
0x0101	[1:0]	IMG_ORIENTATION	RW	RW image_orientation bit[0]: horizontal direction, bit[1]: vertical direction		0	0
0x0102		Reserved					
0x0103	[0]	SW_RESET	RW	software_reset		0	0
0x0104	[0]	GRP_PARAM_HOLD	RW	grouped_parameter_hold		0	0
0x0105	[0]	MASK_CORR_FRM	RO	RO mask_corrupted_frames		1	0

3-2.2.2 Output Set-up Registers - [0x0200-0x0215]

Index	Dito	Pagistar Nama	RW	Comment	Re-	Default	Embd
maex	Byte	Register Name	KVV	Comment	Time	(HEX)	DL
0x0200	[7:0]	FINE_INTEG_TIME[15:8]	RO	fine integration time		01	0
0x0201	[7:0]	FINE_INTEG_TIME[7:0]	RO	fine_integration_time		E8	0
0x0202	[7:0]	COARSE_INTEG_TIME[15:8]	RW	coorne integration time	GPH	03	0
0x0203	[7:0]	COARSE_INTEG_TIME[7:0]	RW	coarse_integration_time	GPH	E8	0
0x0205	[7:0]	ANA_GAIN_GLOBAL	RW	analogue_gain_code_global	GPH	00	0
0x020E	[3:0]	DIG_GAIN_GR[11:8]	RW	digital gain groonP	GPH	01	0
0x020F	[7:0]	DIG_GAIN_GR[7:0]	RW	digital_gain_greenR	GPH	00	0
0x0210	[3:0]	DIG_GAIN_R[11:8]	RW	digital gain rad	GPH	01	0
0x0211	[7:0]	DIG_GAIN_R[7:0]	RW	digital_gain_red	GPH	00	0
0x0212	[3:0]	DIG_GAIN_B[11:8]	RW	digital gain blue	GPH	01	0
0x0213	[7:0]	DIG_GAIN_B[7:0]	RW	digital_gain_blue	GPH	00	0
0x0214	[3:0]	DIG_GAIN_GB[11:8]	RW	digital gain group	GPH	01	0
0x0215		RW	digital_gain_greenB	GPH	00	0	

3-2.2.3 Clock Set-up Registers – [0x0300-0x030D]

Index	Byte	Register Name	RW	Comment	Re- Time	Default	Embd DL
					11110	(HEX)	
0x0300		_	RW				0
0x0301	[3:0]	VTPXCK_DIV	RW	vt_pix_clk_div		Α	0
0x0302	_	_	RW				0
0x0303	[1:0]	VTSYCK_DIV	RW	vt_sys_clk_div		01	0
0x0305	[3:0]	PREPLLCK_ DIV	RW	pre_pll_clk_ div		В	0
0x0308	_	_	RW				0
0x0309	[3:0]	OPPXCK_DIV	RW	op_pix_clk_div		5	0
0x030A	_	_	RW			$\bigcup \cdot J$	
0x030B	[1:0]	OPSYCK_DIV	RW	op_sys_clk_div	. (1	0
0x030C	[2:0]	PLL_MPY[10:8]	RW	nll multiplior		2	0
0x030D	[7:0]	PLL_MPY[7:0]	RW	pll_multiplier)	ВС	0

3-2.2.4 Frame Timing Registers – [0x0340-0x0343]

Index	Byte	Register Name	RW	Comment	Re- Time	Default (HEX)	Embd DL
0x0340	[7:0]	FRM_LENGTH[15:8]	RW	france Joseph Lines	GPH	0A	0
0x0341	[7:0]	FRM_LENGTH[7:0]	RW	frame_length_lines	GPH	20	0
0x0342	[7:0]	LINE_LENGTH[15:8]	RW	line length not	GPH	0E	0
0x0343	[7:0]	LINE_LENGTH[7:0]	RW	line_length_pck	GPH	10	0

3-2.2.5 Image Size Registers – [0x0344-0x034F]

			•				
Index	Byte	Pogistor Namo	Register Name RW Comment		Re-	Default	Embd
muex	Буге	Register Name	IXVV	Comment	Time	(HEX)	DL
0x0344	[7:0]	X_ADD_STA[11:8]	RW	v oddr otort	GPH	00	0
0x0345	[7:0]	X_ADD_STA[7:0]	RW	x_addr_start	GPH	00	0
0x0346	[7:0]	Y_ADD_STA[11:8]	RW	v oddr otort	GPH	00	0
0x0347	[7:0]	Y_ADD_STA[7:0]	RW	y_addr_start	GPH	00	0
0x0348	[7:0]	X_ADD_END[11:8]	RW	x addr end	GPH	0C	0
0x0349	[7:0]	X_ADD_END[7:0]	RW	x_addi_erid	GPH	CF	0
0x034A	[7:0]	Y_ADD_END[11:8]	RW	v oddr ond	GPH	09	0
0x034B	[7:0]	Y_ADD_END[7:0]	RW	y_addr_end	GPH	9F	0
0x034C	[7:0]	X_OUT_SIZE[11:8]	RW	y output oizo	GPH	0C	0
0x034D	[7:0]	X_OUT_SIZE[7:0]	RW	x_output_size	GPH	D0	0
0x034E	[7:0]	Y_OUT_SIZE[11:8]	RW		GPH	09	0
0x034F	[7:0]	Y_OUT_SIZE[7:0]	RW	y_output_size	GPH	A0	0

3-2.2.6 Sub-Sampling Registers – [0x0380-0x0387]

Index	Byte	Register Name	RW	Comment	Re- Time	Default	Embd DL
					11110	(HEX)	
0x0380	_					00	0
0x0381	[2:0]	X_EVN_INC	RW	x_even_inc	GPH	01	0
0x0382	_	1			l	00	0
0x0383	[2:0]	X_ODD_INC	RW	x_odd_inc	GPH	01	0
0x0384						00	0
0x0385	[2:0]	Y_EVN_INC	RW	y_even_inc	GPH	01	0
0x0386		_				00	0
0x0387	[2:0]	Y_ODD_INC	RW	y_odd_inc	GPH	01	0

3-2.2.7 Binning Registers – [0x0390]

Index	Byte	Register Name	RW	Comment	Re- Time	Default (HEX)	Embd DL
0x0390	[1:0]	BINNING_MODE	RW	Defines binning mode. 0:no-binning 1:2x2-binning 2:4x4-binning	GPH	00	0

3-2.2.8 Image Scaling Registers - [0x0400-0x0407]

Index	Duto	Desister Nome	RW	Comment	Re-	Default	Embd
index	Byte	Register Name	RW	Comment	Time	(HEX)	DL
0x0400		_	V -		I	00	0
0x0401	[1:0]	SCALE_MODE	RW	Scaling_mode	GPH	00	0
0x0402	_	-0/	/ <u>Y</u>		1	00	0
0x0403	[1:0]		_		l	00	0
0x0404	[0]	SCALE_M[8]	RW	acala m	GPH	00	0
0x0405	[7:0]	SCALE_M[7:0]	RW	scale_m	GPH	10	0
0x0406	_	N T				00	0
0x0407	[4:0]	SCALE_N	RO	scale_n	GPH	10	0

3-2.2.9 Image Compression Registers – [0x0501]

Index	Byte	Register Name	RW	Comment	Re- Time	Default (HEX)	Embd DL
0x0501	[0]	COMP_MODE	RW	compression_mode	GPH	01	0

3-2.2.10 Test Pattern Registers - [0x0600-0x0611]

			5 111		Re-	Default	Embd
Index	Byte	Register Name	RW	Comment	Time	(HEX)	DL
0x0600	[0]	test_pattern_mode	RW			0	0
0x0601	[7:0]	test_pattern_mode	100			00	
0x0602	[7:0]	TD_R[9:8]	RW	test_data_red		00	0
0x0603	[7:0]	TD_R[7:0]	RW	1001_001.00		00	0
0x0604	[7:0]	TD_GR[9:8]	RW	test_data_greenR		00	0
0x0605	[7:0]	TD_GR[7:0]	RW	toot_uata_groom(00	0
0x0606	[7:0]	TD_B[9:8]	RW	test_data_blue		00	0
0x0607	[7:0]	TD_B[7:0]	RW	1001_0010_0		00	0
0x0608	[7:0]	TD_GB[9:8]	RW	test_data_greenB		00	0
0x0609	[7:0]	TD_GB[7:0]	RW	toot_uata_groons		00	0
0x060A	[7:0]	H_CUR_WIDTH[15:8]	RW	horizontal_cursor_width)`	00	0
0x060B	[7:0]	H_CUR_WIDTH[7:0]	RW	Tionzontal_odiooi_width		00	0
0x060C	[7:0]	H_CUR_POS[15:8]	RW	horizontal_cursor_position		00	0
0x060D	[7:0]	H_CUR_POS[7:0]	RW	podttori		00	0
0x060E	[7:0]	V_CUR_WIDTH[15:8]	RW	vertical_cursor_width		00	0
0x060F	[7:0]	V_CUR_WIDTH[7:0]	RW	For iteat_oursor_width		00	0
0x0610	[7:0]	V_CUR_POS[15:8]	RW	vertical_cursor_position		00	0
0x0611	[7:0]	V_CUR_POS[7:0]	RW	vertical_cursor_position		00	0
CHANC	O	CONFI					
			24				

3-3 Parameter Limit Registers - [0x1000-0x1FFF] (Read Only and Static)

3-3.1 Integration Time and Gain Parameter Limit Registers - [0x1000-0x1301]

3-3.1.1 Integration Time Parameter Limit Registers – [0x1000-0x1007]

Index	Puto	Register Name	RW	Comment	Re-	Default	Embd
index	Byte	Register Name	IXVV	Comment	Time	(HEX)	DL
0x1000	1	tota made a disa					
0x1001	[0]	integration_time_ capability	RO	0 – coarse integration but NO fine integration		0	0
0x1002		December	RO				
0x1003		Reserved					
0x1004	[7:0]	coarse_integration_	RO	Lines		00	
0x1005	[7:0]	time_min	KO	Format: 16-bits unsigned integer		01	
0x1006	[7:0]	coarse_integration_ time_max_margin	RO	(Current frame length – current max coarse exp)		00	
0x1007	[7:0]			Format: 16-bits unsigned integer		04	

3-3.1.2 Digital Gain Parameter Limit Registers – [0x1080-0x1089]

	Index	Byte	Register Name	RW	Comment	Re- Time	Default (HEX)	Embd DL
	0x1080	_			4/4			
	0x1081	[0]	digital_gain_capability	RO	1 – per channel digital gain		01	
	0x1082	_	Reserved	RO			00	
	0x1083	_	Reserved	20			00	
	0x1084	' '		P. C	Minimum recommended digital gain value		01	
	0x1085	[7:0]	digital_gain_min	RO	Format: 16-bit unsigned 8.8 fixed point number		00	
	0x1086	[7:0]	digital soi	RO	Maximum recommended digital gain value		0F	
	0x1087	[7:0]	digital_gain_max	RO	Format: 16-bit unsigned 8.8 fixed point number		FF	
	0x1088	[7:0]			Digital gain step size		00	
	0x1089	[7:0]	digital_gain_step_size	RO	Format: 16-bit unsigned 8.8 fixed point number		01	
MANCH	ANO ANO							

3-3.1.3 Pre-PLL and PLL Clock Set-up Capability Registers – [0x1100-0x111F]

Index	Byte	Register Name	RW	Comment	Re- Time	Default (HEX)	Embd DL
0x1100	[7:0]			Minimum external clock frequency		40	
0x1101	[7:0]			Format: IEEE 32-bit float		C0	
0x1102	[7:0]	min_ext_clk_freq_mhz	RO	Units: MHz		00	
0x1103	[7:0]			6 MHz (= min_ext_clk_freq_mhz)		00	
0x1104	[7:0]			Maximum external clock frequency		41	
0x1105	[7:0]		50	Format: IEEE 32-bit float Units: MHz		D8	
0x1106	[7:0]	max_ext_clk_freq_mhz	RO	27 MHz (= max_ext_clk_freq_mhz)		00	
0x1107	[7:0]					00	
0x1108	[7:0]	min_pre_pll_clk_div		Minimum Pre PLL divider value) 00	
0x1109	[7:0]		RO	Format: 16-bit unsigned integer		01	
0x110A	[7:0]		2	Maximum Pre PLL divider value)	00	
0x110B	[7:0]	max_pre_pll_clk_div	RO	Format: 16-bit unsigned integer		0D	
0x110C	[7:0]			Minimum PLL input clock frequency		3F	
0x110D	[7:0]	- min_pll_ip_freq_mhz	RO	Format: IEEE 32-bit float Units: MHz		80	
0x110E	[7:0]			1 MHz		00	
0x110F	[7:0]			1120		00	
0x1110	[7:0]			Maximum PLL input clock frequency		41	
0x1111	[7:0]	may all in from mb=	P.O.	Format: IEEE 32-bit float Units: MHz		D8	
0x1112	[7:0]	max_pll_ip_freq_mhz	RO	27 MHz (= max_ext_clk_freq_mhz)		00	
0x1113	[7:0]	4				00	
0x1114	[7:0]	anim will moultinglies	RØ	Minimum PLL multiplier		00	
0x1115	[7:0]	min_pll_multiplier	RO	Format: 16-bit unsigned integer		08	
0x1116	[7:0]	may all multiplies	DO	Maximum PLL Multiplier		07	
0x1117	[7:0]	max_pll_multiplier	RO	Format: 16-bit unsigned integer		FF	
0x1118	[7:0]			Minimum PLL output clock		43	
0x1119	[7:0]		DO	frequency Format: IEEE 32-bit float		A9	
0x111A	[7:0]	min_pll_op_freq_mhz	RO	Units: MHz		00	
0x111B	[7:0]			338 MHz		00	
0x111C	[7:0]			Maximum PLL output clock frequency		44	
0x111D	[7:0]	mov all on from mb-	DO.	Format: IEEE 32-bit float		80	
0x111E	[7:0]	max_pll_op_freq_mhz	RO	Units: MHz		20	
0x111F	[7:0]			1025 MHz		00	

3-3.1.4 Read Domain Clock Set-up Capability Registers – [0x1120-0x1137]

	ndex	Byte	Register Name	RW	Comment	Re- Time	Default (HEX)	Embd DL
0x ²	(1120	[7:0]	min_vt_sys_clk_div	RO	Minimum video timing system clock divider value		00	
0x ⁻	(1121	[7:0]	mm_vt_sys_cm_uiv	1.0	Format: 16-bit unsigned integer		01	
0x ²	(1122	[7:0]	max_vt_sys_clk_div	RO	Maximum video timing system clock divider value		00	
0x ²	(1123	[7:0]			Format: 16-bit unsigned integer		02	
0x²	(1124	[7:0]			Minimum video timing system clock frequency		43	
0x	(1125	[7:0]	min_vt_sys_clk_freq_mhz	RO	Format: IEEE 32-bit float Units: MHz		29	
0x ²	(1126	[7:0]			169 MHz		00	
0x ²	(1127	[7:0]				V.	00	
0x ²	1128	[7:0]			Maximum video timing system clock frequency		44	
0x ²	(1129	[7:0]	max_vt_sys_clk_freq_mhz F	RO	Format: IEEE 32-bit float Units: MHz		80	
0x1	112A	[7:0]			1025 MHz		20	
0x1	:112B	[7:0]					00	
0x1	112C	[7:0]	min_vt_pix_clk_freq_mhz R		Minimum video timing pixel clock frequency		41	
0x1	112D	[7:0]		RO	Format: IEEE 32-bit float Units: MHz		87	
0x1	112E	[7:0]			16.9 MHz		33	
0x′	112F	[7:0]					33	
0x′	(1130	[7:0]	OF OF	RO	Maximum video timing pixel clock frequency		42	
0x ²	(1131	[7:0]	max_vt_pix_clk_freq_mhz		Format: IEEE 32-bit float Units: MHz		D4	
0x ²	(1132	[7:0]			101 MHz		00	
0x ²	1133	[7:0]					00	
0x ⁻	(1134	[7:0]	min_vt_pix_clk_div	RO	Minimum video timing pixel clock divider value		00	
0x ²	1135	[7:0]			Format: 16-bit unsigned integer		04	
	(1136	[7:0]	max_vt_pix_clk_div	RO	Maximum video timing pixel clock divider value		00	
JHAN	(1137	[7:0]			Format: 16-bit unsigned integer		0A	

3-3.1.5 Frame Timing Parameter Limit Registers – [0x1140-0x1149]

Index	Byte	Register Name	RW	Comment	Re-	Default	Embd
ilidex	Буге		IXVV	Comment	Time	(HEX)	DL
0x1140	[7:0]	min_frame_length_lines	RO	Minimum Frame Length allowed. Value both sensor dependent		00	
0x1141	[7:0]		KO	Format: 16-bit unsigned integer Units: Lines		AC	
0x1142	[7:0]	- max_frame_length_lines	RO	Maximum possible number of lines per Frame. Value sensor dependent		FF	
0x1143	[7:0]		KO	Format: 16-bit unsigned integer Units: Lines		FF	
0x1144	[7:0]	- min_line_length_pck	RO	Minimum Line Length allowed. Value sensor dependent		0D +	
0x1145	[7:0]			Format: 16-bit unsigned integer Units: Pixel Clock		48	
0x1146	[7:0]	max_line_length_pck	RO	Maximum possible number of pixel clocks per line. Value sensor dependent		7F	
0x1147	[7:0]			Format: 16-bit unsigned integer Units: Pixel Clock		F0	
0x1148	[7:0]		DO.	Minimum line blanking time in pixel clocks		00	
0x1149	[7:0]	min_line_blanking_pck	RO	Format: 16-bit unsigned integer Units: Pixel Clock		78	

3-3.1.6 Output Clock Set-up Capability Registers – [0x1160-0x1177]

Index	Byte	e Register Name	RW	Comment	Re-	Default	Embd
index	Буце		KW	Comment	Time	(HEX)	DL
0x1160	[7:0]	min_op_sys_clk_div	RO	Minimum output system clock divider value		00	
0x1161	[7:0]			Format: 16-bit unsigned integer		01	
0x1162	[7:0]	max_op_sys_clk_div	RO	Maximum output system clock divider value		00	
0x1163	[7:0]	12		Format: 16-bit unsigned integer		02	
0x1164	[7:0]			Minimum output system clock frequency		43	
0x1165	[7:0]	min_op_sys_clk_freq_mhz	RO	Format: IEEE 32-bit float		29	
0x1166	[7:0]			Units: MHz		00	
0x1167	[7:0]			169 MHz		00	
0x1168	[7:0]			Maximum output system clock frequency		44	
0x1169	[7:0]	max_op_sys_clk_freq_mhz	RO	Format: IEEE 32-bit float Units: MHz		80	
0x116A	[7:0]			1025 MHz		20	
0x116B	[7:0]					00	
0x116C	[7:0]	min_op_pix_clk_div	RO	Minimum output pixel clock divider value		00	
0x116D	[7:0]			Format: 16-bit unsigned integer		04	

Index Bvt	Duto	Degister Name	RW	Comment	Re-	Default	Embd
index	Byte	Register Name	LVV	Comment	Time	(HEX)	DL
0x116E	[7:0]	max_op_pix_clk_div	RO	Maximum output pixel clock divider value		00	
0x116F	[7:0]			Format: 16-bit unsigned integer		0A	
0x1170	[7:0]			Minimum output pixel clock frequency		41	
0x1171	[7:0]	min on hiv alk frog mha	RO	Format: IEEE 32-bit float Units: MHz		87	
0x1172	[7:0]	min_op_pix_clk_freq_mhz		16.9 MHz		33	
0x1173	[7:0]					33	
0x1174	[7:0]			Maximum output pixel clock frequency		42	
0x1175	[7:0]	may an niv ally from mha	DO	Format: IEEE 32-bit float Units: MHz		F0	
0x1176	[7:0]	max_op_pix_clk_freq_mhz	RO	101 MHz		00	
0x1177	[7:0]					00	

3-3.1.7 Image Size Parameter Limit Registers – [0x1180-0x1187]

Index	Byte	Register Name	RW	Comment	Re- Time	Default	Embd
dox	2,10	r togiotor r tallio				(HEX)	DL
0x1180	[7:0]	x_addr_min	RO	Minimum X-address of the addressable pixel array Format: 16-bit unsigned integer		00	
0x1181	[7:0]			Value: Always 0		00	
0x1182	[7:0]	y_addr_min	RO	Minimum Y-address of the addressable pixel array Format: 16-bit unsigned integer		00	
0x1183	[7:0]	4	`	Value: Always 0		00	
0x1184	[7:0]	cO,"	RO	Maximum X-address of the addressable pixel array Format: 16-bit unsigned integer		0C	
0x1185	[7:0]	x_addr_max				CF	
0x1186	[7:0]	y_addr_max	50	Maximum Y-address of the		09	
0x1187	0x1187 [7:0]		RO	addressable pixel array Format: 16-bit unsigned integer		9F	

3-3.1.8 Sub-Sampling Parameter Limit Registers – [0x11C0-0x11C7]

Index	Puto	yte Register Name	RW	Comment	Re- Time	Default	Embd
index	Буце		KVV			(HEX)	DL
0x11C0	[7:0]	min oven inc	RO	Minimum Increment for even pixels		00	
0x11C1	[7:0]	min_even_inc	_K O	Format: 16-bit unsigned integer (static)		01	
0x11C2	[7:0]		RO	Maximum increment for even pixels		00	
0x11C3	[7:0]	max_even_inc		Format: 16-bit unsigned integer (static)		01	
0x11C4	[7:0]	min odd inc	RO	Minimum Increment for odd pixels		00	
0x11C5	[7:0]	min_odd_inc	KO	Format: 16-bit unsigned integer (static)		01	
0x11C6	[7:0]	may add ina	DO.	Maximum Increment for odd pixels		00	
0x11C7	[7:0]	max_odd_inc	RO	Format: 16-bit unsigned integer (static)		03	

3-3.1.9 Image Scaling Parameter Limit Registers – [0x1200-0x120B]

Index	Puto	Pagistar Nama	RW	Comment	Re-	Default	Embd
index	Byte	Register Name	KVV	Comment	Time (HE		DL
0x1200							
0x1201	[1:0]	scaling_capability	RO	0 – None; 1 – H dir 2 – Full (H & V), Format: 16-bit unsigned integer		02	
0x1202		Reserved	RO				
0x1203		Reserved	KO				
0x1204	_					00	
0x1205	[4:0]	scaler_m_min	RO	Down scale factor: Minimum M value Value is always 16 Format: 16-bit unsigned integer		10	
0x1206	[0]		DO	Down scale factor: Maximum M value		01	
0x1207	[7:0]	scaler_m_max	RO	Format: 16-bit unsigned integer		00	
0x1208	_						
0x1209	[4:0]	scaler_n_min	RO	Down scale factor: Min. N value Value = 16, Format: 16-bit unsigned integer		10	
0x120A	_			.()	_		
0x120B	[4:0]	scaler_n_max	RO	Down scale factor: Min. N value Value = 16, Format: 16-bit unsigned integer		10	

3-3.1.10 Image Compression Capability Registers – [0x1300-0x1301]

Index	Byte	Register Name RW Comment	Re- Time	Default (HEX)	Embd DL
0x1300	_				
0x1301	[0]	compression_capability RO 0 - No Compression; 1 - DPCM/PCM Compression		01	

3-4 Manufacturer Specific Registers - [0x3000-0x3FFF]

3-4.1 [0x3000-0x30FF]

Index	D.;		DW	0	Re-	Default
(HEX)	Bit	Register Name	RW	Comment	Timed	(HEX)
3344	[7:0]	RGTHSEXIT	RW	Timer value of Ths-exit		0
3345	[7:0]	RGTCLKPRE	RW	Timer value of Tclk-pre		0
3346	[3:0]	RGTLPXESC	RW	Timer value of Tlpx (TxClkEsc) (valid only during SW-standby)		2
3360	[2:0]	CSI2_CHID	RW	CSI_channel_identifier	GPH	00
3362	[7:0]	CSI_DT_FMT[15:8]	RW	CSI data format		0A
3363	[7:0]	CSI_DT_FMT[7:0]	RW	CSI_data_format		0A
3364	[1:0]	CSI_LANE_MODE	RW	CSI_lane_mode 0: 4 lane, 2: 2lane		00
3368	[7:0]	INCK_FREQ[15:8]	RW	input ally fraguancy mbz		0B
3369	[7:0]	INCK_FREQ[7:0]	RW	input_clk_frequency_mhz		6E

SONY

Index	Bit	Degister Neme	RW	Comment	Re-	Default
(HEX)	DIL	Register Name	KVV	Comment	Timed	(HEX)
3370	[7:0]	TCLK_POST	RW	tclk_post		0
3371	[7:0]	THS_PREPARE	RW	ths_prepare		0
3372	[7:0]	THS_ZERO_Min.	RW	ths_zero_min		0
3373	[7:0]	THS_TRAIL	RW	ths_trail		0
3374	[7:0]	TCLK_TRAIL_Min.	RW	tclk_trail_min		0
3375	[7:0]	TCLK_PREPARE	RW	tclk_prepare		0
3376	[7:0]	TCLK_ZERO	RW	tclk_zero		0
3377	[7:0]	TLPX	RW	tlpx		0
3378	[7:0]	CSI2_COMP8_DT	RW	visible data type for comp-8 output		30
33C8	[2]	Binning_Cal	RW	0: Average, 1: Sum	GPH	0

IMX179QQH5-C

3-4.2 [0x3400-0x34FF]

Index		5 · · · · · ·	DIM		Re-	Default
(HEX	Bit	Register Name	RW	Comment	Timed	(HEX)
3400	[2:0]	OTPIF_CTRL	RW	OTP I/F control register [0] enable [1]R/W [2]error clear		0
3401	[1:0]	OTPIF_STATUS	RO-D	OTP I/F status; [0] ready [1] error		0
3402	[2:0]	OTPIF_PAGE_SELECT	RW	otpif_page_select		0
3404	[7:0]	OTPIF_DT_0	RW	otpif_data_0		0
3405	[7:0]	OTPIF_DT_1	RW	otpif_data_1		0
3406	[7:0]	OTPIF_DT_2	RW	otpif_data_2		0
3407	[7:0]	OTPIF_DT_3	RW	otpif_data_3		0
3408	[7:0]	OTPIF_DT_4	RW	otpif_data_4		0
3409	[7:0]	OTPIF_DT_5	RW	otpif_data_5		0
340A	[7:0]	OTPIF_DT_6	RW	otpif_data_6		0
340B	[7:0]	OTPIF_DT_7	RW	otpif_data_7		0
340C	[7:0]	OTPIF_DT_8	RW	otpif_data_8		0
340D	[7:0]	OTPIF_DT_9	RW	otpif_data_9		0
340E	[7:0]	OTPIF_DT_10	RW	otpif_data_10		0
340F	[7:0]	OTPIF_DT_11	RW	otpif_data_11		0
3410	[7:0]	OTPIF_DT_12	RW	otpif_data_12		0
3411	[7:0]	OTPIF_DT_13	RW	otpif_data_13		0
3412	[7:0]	OTPIF_DT_14	RW	otpif_data_14		0
3413	[7:0]	OTPIF_DT_15	RW	otpif_data_15		0
3414	[7:0]	OTPIF_DT_16	RW	otpif_data_16		0
3415	[7:0]	OTPIF_DT_17	RW	otpif_data_17		0
3416	[7:0]	OTPIF_DT_18	RW	otpif_data_18		0
3417	[7:0]	OTPIF_DT_19	RW	otpif_data_19		0
3418	[7:0]	OTPIF_DT_20	RW	otpif_data_20		0
3419	[7:0]	OTPIF_DT_21	RW	otpif_data_21		0
341A	[7:0]	OTPIF_DT_22	RW	otpif_data_22		0

Index						Default
(HEX)	Bit	Register Name	RW	Comment	Re- Timed	(HEX)
341B	[7:0]	OTPIF_DT_23	RW	otpif_data_23		0
341C	[7:0]	OTPIF_DT_24	RW	otpir_data_23		0
341D	[7:0]	OTPIF_DT_25	RW	otpif_data_25		0
341E	[7:0]	OTPIF_DT_26	RW	otpif_data_26		0
341F	[7:0]	OTPIF_DT_27	RW	otpif_data_27		0
3420	[7:0]	OTPIF DT 28	RW	otpif data 28		0
3420	[7:0]	OTPIF_DT_29	RW	otpif_data_29		0
3422	[7:0]	OTPIF_DT_30	RW	otpif_data_30		0
3423	[7:0]	OTPIF_DT_31	RW	otpif_data_31		0
3424	[7:0]	OTPIF_DT_32	RW	otpif_data_32	\mathcal{O}	0
3425	[7:0]	OTPIF_DT_33	RW	otpif_data_33		0
3426	[7:0]	OTPIF_DT_34	RW	otpif_data_34		0
3427	[7:0]	OTPIF_DT_35	RW	otpif_data_35		0
3428	[7:0]	OTPIF_DT_36	RW	otpif_data_36		0
3429	[7:0]	OTPIF_DT_37	RW	otpif_data_37		0
342A	[7:0]	OTPIF_DT_38	RW	otpif_data_38		0
342B	[7:0]	OTPIF_DT_39	RW	otpif_data_39		0
342C	[7:0]	OTPIF_DT_40	RW	otpif_data_40		0
342D	[7:0]	OTPIF_DT_41	RW	otpif data 41		0
342E	[7:0]	OTPIF_DT_42	RW	otpif_data_42		0
342F	[7:0]	OTPIF_DT_43	RW	otpif_data_43		0
3430	[7:0]	OTPIF_DT_44	RW	otpif_data_44		0
3431	[7:0]	OTPIF_DT_45	RW	otpif_data_45		0
3432	[7:0]	OTPIF_DT_46	RW	otpif_data_46		0
3433	[7:0]	OTPIF_DT_47	RW	otpif_data_47		0
3434	[7:0]	OTPIF_DT_48	RW	otpif_data_48		0
3435	[7:0]	OTPIF_DT_49	RW	otpif_data_49		0
3436	[7:0]	OTPIF_DT_50	RW	otpif_data_50		0
3437	[7:0]	OTPIF_DT_51	RW	otpif_data_51		0
3438	[7:0]	OTPIF_DT_52	RW	otpif_data_52		0
3439	[7:0]	OTPIF_DT_53	RW	otpif_data_53		0
343A	[7:0]	OTPIF_DT_54	RW	otpif_data_54		0
343B	[7:0]	OTPIF_DT_55	RW	otpif_data_55		0
343C	[7:0]	OTPIF_DT_56	RW	otpif_data_56		0
343D	[7:0]	OTPIF_DT_57	RW	otpif_data_57		0
343E	[7:0]	OTPIF_DT_58	RW	otpif_data_58		0
343F	[7:0]	OTPIF_DT_59	RW	otpif_data_59		0
3440	[7:0]	OTPIF_DT_60	RW	otpif_data_60		0
3441	[7:0]	OTPIF_DT_61	RW	otpif_data_61		0
3442	[7:0]	OTPIF_DT_62	RW	otpif_data_62		0
3443	[7:0]	OTPIF_DT_63	RW	otpif_data_63		0

3-4.3 [0x4100-0x41FF]

Index	Bit	Desistan Nove	RW	Comment	Re-	Default
(HEX)	BIT	Register Name	RVV	Comment	Timed	(HEX)
4100	[2]	ZNR_FD_DFCT_SW	RW	0: Static Mode Off 1: Static Mode On	V-Sync	0
4100	[5:3]	ZNR_DIFF_DFCT_SW	RW	[3]: Dynamic Mode-1 [4]: Reserved \([5]: Reserved		1
4102	[4:0]	ZNR_Coefficient1	RW	Parameter Setting1		Α
4103	[7:0]	ZNR_Coefficient2	RW	Parameter Setting2		0
4104	[6:0]	ZNR_Coefficient3	RW	Parameter Setting3		32
4105	[6:0]	ZNR_Coefficient4	RW	Parameter Setting4).	32
4106	[6:0]	ZNR_Coefficient5	RW	Parameter Setting5		40
4107	[6:0]	ZNR_Coefficient6	RW	Parameter Setting6		40
4108	[1:0]	ZNR_Coefficient7 [9:8]	RW	Parameter Setting7		0
4109	[7:0]	ZNR_Coefficient7 [7:0]	RW	Parameter Setting/		U
410A	[1:0]	ZNR_Coefficient8 [9:8]	RW	Parameter Setting8		0
410B	[7:0]	ZNR_Coefficient8 [7:0]	RW	r alameter Settingo		U
410C	[1:0]	ZNR_Coefficient9 [9:8]	RW	Parameter Setting9		0
410D	[7:0]	ZNR_Coefficient9 [7:0]	RW	i diameter deutige		U
410E	[1:0]	ZNR_Coefficient10 [9:8]	RW	Parameter Setting10		0
410F	[7:0]	ZNR_Coefficient10 [7:0]	RW	alameter Setting To		U

Note) Write to blank addresses is prohibited.
For "Test register", setting registers is prohibited.

3-4.4 Startup Sequence in 2-wire Serial Communication Mode

Perform power-on according to the following sequence.

Fig. 19 Power-on Sequence in 2-wire Serial Communication Mode

Table. 10 Operation Specifications 2-wire Serial Communication Mode

Ī	Constraint	Label	Min.	Max.	Units	Comment
	Sequence free of VANA rising and VDIG rising	t0, t1	VANA and VDI rise in any or		ns	
	Time to REGEN Low to High after XCLR Low to High	t2		0.5	μs	
	Time to VDDL is supplied to sensor after REGEN high	t3			μs	Depending on Device
	Internal XCLR is Low to High after VDDL is supplied	t4	100	600	μs	Waking up time and init settings
7	Initializing time of silicon	t5		8825	clocks	
	D-PHY power-up	t6	1	1.1	ms	
Ī	D-PHY init	t7	100	110	μs	
	After releasing software standby to data streaming time	t8	1.5 ms + exposure time			
	Quick launch up time	t9		1	frame	stable time until optimal image quality

3-4.5 Power-down Sequence

Perform the power-off in the sequence shown below.

Fig. 20 Power-down Sequence in 2-wire Serial Communication

Table. 11 Operation Specifications in 2-wire Serial Communication

Constraint	Label	Min.	Max.	Units	Comment
Internal POR negedge - VANA (VDIG) fall	t1	0		ns	
Falling time of REGEN after XCLR $H \rightarrow L$	t2		0.5	μs	
Falling time of internal XCLR after XCLR $H \rightarrow L$			0.5	μs	
VANA falling – VDIG falling	t4		VDIG may	ns	
VDIG falling – VANA falling	t5			ns	

T0 in power-off sequence varies depending on the CCI communication end timing as shown below.

1. When the CCI communication is performed with Software Standby between SOF and EOF, all communicated frame data is output and the status is converted to Software Standby.

Fig. 21 Software Standby Operation Pattern 1

2. When the CCI communication is performed with Software Standby during FrameBlanking, the status is converted to Software Standby immediately after communication.

Fig. 22 Software Standby Operation Pattern 2

HANCHANG O.F.

4. Output Data Format

4-1 CSI-2 Output Data Format

4-1.1 CSI-2 Output Data Channels

The IMX179 can select the CSI-2 2 lanes or CSI-2 4 lanes serial signal output method that uses all pairs of differential signals for image data output.

4-1.2 CSI-2 Frame Format

The data format of each line is based on CSI-2 General Frame Format.

The period from a line end sync code to the line start sync code for the next line is called the line blanking period. Likewise, the period from a frame end sync code to the next frame start sync code is called the frame blanking period.

Packet header consists of the following data.

Table. 12 Sync Code Settings

	Header [7:0] Description		Setting register	Remarks
	[7.0]	V. (O	Addr: 0x3360	40 4 11 10 11
	[7:6]	Virtual Channel Identifier	CSI_channel_identifier_	See Register Section
	[5:0]	Synch Short Packet Data types	NA	,
	6'h00	Frame Start Code	NA	
	6'h01	Frame End Code	NA	
	6'h12	Embedded Data	NA	Written data in the sensor
	6'h2A	RAW8	CSI_data_format	16'h0808
	6'h2B	RAW10	CSI_data_format	16'h0A0A
MANCH	ANGO	FILMOPTICAL		

4-1.2.1 CSI-2 Frame Structure

The image frame structure is shown below.

Fig. 23 Frame Structure for 2Lane Serial signal output

Fig. 24 Signaling Waveform during Line Blanking Period (CSI-2)

Fig. 25 Signaling Waveform during Frame Blanking Period (CSI-2)

4-1.3 CSI-2 Embedded Data Line

The value of the 2-wire serial communication configuration register can be output at the start of the frame. The output register is indicated in the "Embd DL" column of the 2-wire serial communication Register Map. The Embedded data line is output in the two lines following the sync code FS.

Fig. 26 Frame Format during Embedded Data Line Output

The output method differs according to the data format. In RAW10 mode, dummy bytes are inserted after outputting 4 bytes of data and tags.

RAW8 (top 8 bits, 10b-8b compress) mode Simplified 2-Byte Tagged Data Format

Fig. 27 Detailed Embedded Data Line Output in RAW8 Output Mode

RAW10 mode Simplified 2-Byte Tagged Data Format

Fig. 28 Detailed Embedded Data Line Output in RAW10 Output Mode

The end of the address and register value is determined according to the tags embedded in the data.

Table. 13 Embedded Data Line Tag

	Tag	Data Byte Description
	00h	Illegal Tag. If found treat as end of Data
	07h	End of Data (Data Byte Value = 07H)
	aah	CCI Register Index MSB [15:8]
	a5h	CCI Register Index LSB [7:0]
	5ah	Auto increment the CCI index after the data byte - valid data Data byte contains valid CCI register data
	55h	Auto increment the CCI index after the data byte - null data A CCI register does NOT exist for the current CCI index. The data byte value is the 07H
	ffh	Illegal Tag. If found treat as end of Data
NAMCH!		O.F.II.M. OPTICAL:ELECTRONIC

Registers

Specific output examples are shown on the following pages.

Addr (Hex)	Register Name	Description	in Byte (Hex)
0x0000	Fabrication	fab_rev_id	11
0x0001	Lot_ID[39:32]		29
0x0002	Lot_ID[31:24]		81
0x0003	Lot_ID[23:16]	Lot_ID of the sensor	79
0x0004	Lot_ID[15:8]		E1
0x0005	Lot_ID[7:0]		40
0x0006			00
0x0007	Wafer_Num	Wafer Number of the Sensor in the Lot. Value 0x01-0x19 is available.	25
8000x0	Chip_Number[15:8]	Chia ID in the water	15
0x0009	Chip_Number[7:0]	Chip ID in the wafer	49
0x000A	Module_Date[15:8]	Module Production Date and NVM version	00
0x000B	Module_Date[7:0]	[15:13]: NVM version[12:9]: Production Year (least two digits)[8:3]: work week (1 to 53)[2:0]: Day in the week, 1 (Monday) to 7 (Sunday)	00
0x000C	_		00
0x000D	Module_Serial_ID[23:16]		00
0x000E	Module_Serial_ID[15:8]	Serial ID of the Module	00
0x000F	Module_Serial_ID[7:0]		00
0x0010	Module_Parts_ID[15:8]	Module Parts ID	00
0x0011	Module_Parts_ID[7:0]	[15]: Reserved [14:12]: Actuator ID [11:10]: Lens ID [9:8]: Integrator ID [7:2]: Reserved [1:0]: Driver ID	00
0x0012	FRM_CNT[7:0]	frame_count	FF
0x0013	PX_ORDER	pixel_order	1
0x0014	DT_PEDESTAL[9:8]	data radiatal	40
0x0015	DT_PEDESTAL[7:0]	data_pedestal	40
0x0016	PIXEL_DEPTH	pixel_depth	Α
0x0040	FRM_FMT_TYPE[7:0]	frame_format_model_type	01
0x0041	FRM_FMT_SUBTYPE[7:0]	frame_format_model_subtype	12
0x0042	FRM_FMT_DESC0[15:8]	frame format descripts: 0	5C
0x0043	FRM_FMT_DESC0[7:0]	frame_format_descriptor_0	D0
0x0044	FRM_FMT_DESC1[15:8]	frame format descripts: 1	10
0x0045	FRM_FMT_DESC1[7:0]	frame_format_descriptor_1	02

Addr (Hex)	Register Name	Description	in Byte (Hex)				
0x0046	FRM_FMT_DESC2[15:8]	frame_format_descriptor_2	59				
0x0047	FRM_FMT_DESC2[7:0]	manie_ioimat_descriptor_z	A0				
0x0080			00				
0x0081	ANA_GAIN_CAPA	analogue_gain_capabiltiy	00				
0x0084			00				
0x0085	ANA_GAIN_Min.	analogue_gain_code_min	00				
0x0086	ANA_GAIN_Max.[15:8]		00				
0x0087	ANA_GAIN_Max.[7:0]	analogue_gain_code_max	E0				
0x0088	ANA_GAIN_STEP[15:8]		00				
0x0089	ANA_GAIN_STEP[7:0]	analogue_gain_code_step	01				
0x008A	ANA_GAIN_TYPE[15:8]	7.0	00				
0x008B	ANA_GAIN_TYPE[7:0]	analogue_gain_type	00				
0x008C	ANA_GAIN_M0[15:8]		00				
0x008D	ANA_GAIN_M0[7:0]	analogue_gain_m0	00				
0x008E	ANA_GAIN_C0[15:8]	(NO)	01				
0x008F	ANA_GAIN_C0[7:0]	analogue_gain_c0					
0x0090	ANA_GAIN_M1[15:8]	△ ♥, Ċ, `	FF				
0x0091	ANA_GAIN_M1[7:0]	analogue_gain_m1	FF				
0x0092	ANA_GAIN_C1[15:8]		01				
0x0093	ANA_GAIN_C1[7:0]	analogue_gain_c1	00				
0x00C0	DT_FMT_TYPE[7:0]	data_format_model_type	01				
0x00C1	DT_FMT_SUBTYPE[7:0]	data_format_model_subtype	03				
0x00C2	DT_FMT_DESC0[15:8]		08				
0x00C3	DT_FMT_DESC0[7:0]	data_format_descriptor_0	08				
0x00C4	DT_FMT_DESC1[15:8]		0A				
0x00C5	DT_FMT_DESC1[7:0]	data_format_descriptor_1	08				
0x00C6	DT_FMT_DESC2[15:8]		0A				
0x00C7	DT_FMT_DESC2[7:0]	data_format_descriptor_2	0A				
0x0100	MODE_SEL	mode_select	00				
0x0101	IMG_ORIENTATION[1:0]	image_orientation	00				
0x0103	SW_RESET	software_reset	00				
0x0202	COARSE_INTEG_TIME[15:8]		09				
0x0203	COARSE_INTEG_TIME[7:0]	coarse_integration_time	AA				
0x0204	_		00				
0x0205	ANA_GAIN_GLOBAL	analogue_gain_code_global	E0				
0x020E	DIG_GAIN_GR[11:8]		01				
0x020F	DIG_GAIN_GR[7:0]	digital_gain_greenR	00				

IMX179QQH5-C

Addr (Hex)	Register Name	Description	in Byte (Hex)			
0x0210	DIG_GAIN_R[11:8]	digital gain rod	01			
0x0211	DIG_GAIN_R[7:0]	digital_gain_red	00			
0x0212	DIG_GAIN_B[11:8]	digital gain blue	01			
0x0213	DIG_GAIN_B[7:0]	digital_gain_blue	00			
0x0214	DIG_GAIN_GB[11:8]	digital gain groopP	01			
0x0215	DIG_GAIN_GB[7:0]	digital_gain_greenB	00			
0x0340	FRM_LENGTH[15:8]	frame length lines	09			
0x0341	FRM_LENGTH[7:0]	frame_length_lines	AE			
0x0342	LINE_LENGTH[15:8]	line length poly	0D			
0x0343	LINE_LENGTH[7:0]	line_length_pck	70			
0x0344	X_ADD_STA[11:8]	v addr. start	00			
0x0345	X_ADD_STA[7:0]	x_addr_start	00			
0x0346	Y_ADD_STA[11:8]	y oddr stort	00			
0x0347	Y_ADD_STA[7:0]	y_addr_start	00			
0x0348	X_ADD_END[11:8]		0C			
0x0349	X_ADD_END[7:0]	x_addr_end				
0x034A	Y_ADD_END[11:8]		09			
0x034B	Y_ADD_END[7:0]	y_addr_end	9F			
0x034C	X_OUT_SIZE[11:8]		0C			
0x034D	X_OUT_SIZE[7:0]	x_output_size	D0			
0x034E	Y_OUT_SIZE[11:8]	V subsub sins	09			
0x034F	Y_OUT_SIZE[7:0]	y_output_size	A0			
0x0380	- ~		00			
0x0381	X_EVN_INC	x_even_inc	01			
0x0382	' H		00			
0x0383	X_ODD_INC	x_odd_inc	01			
0x0384	O', -		00			
0x0385	Y_EVN_INC	y_even_inc	01			
0x0386	_		00			
0x0387	Y_ODD_INC	y_odd_inc	01			
0x0390	BINNING_MODE	defines binning mode. 0:no-binning 1:2x2-binning 2:4x4-binning	00			
0x0301	VTPXCK_DIV	vt_pix_clk_div	05			
0x0303	VTSYCK_DIV	vt_sys_clk_div	01			
0x0305	PREPLLCK_ DIV	pre_pll_clk _div	0B			
0x0309	OPPXCK_DIV	op_pix_clk_div	05			
0x030B	OPSYCK_DIV	op_sys_clk_div	01			

Addr (Hex)	Register Name	Description	in Byte (Hex)			
0x030C	PLL_ MPY[10:8]	all modeles a	0			
0x030D	PLL_MPY[7:0]	pll_ multiplier	A0			
0x0401	SCALE_MODE	Scaling_mode	00			
0x0404	SCALE_M[8]		00			
0x0405	SCALE_M[7:0]	scale_m	10			
0x0407	SCALE_N	scale_n	10			
0x0600	TP_MODE[8]	took metham mode	00			
0x0601	TP_MODE[7:0]	test_pattern_mode	00			
0x0602	TD_R[9:8]	test data and	00			
0x0603	TD_R[7:0]	test_data_red				
0x0604	TD_GR[9:8]	test data green	00			
0x0605	TD_GR[7:0]	test_data_greenR				
0x0606	TD_B[9:8]	test data blue	00			
0x0607	TD_B[7:0]	test_data_blue	00			
0x0608	TD_GB[9:8]	test data and B	00			
0x0609	TD_GB[7:0]	test_data_greenB	00			
0x060A	H_CUR_WIDTH[15:8]	hour optol or governments	00			
0x060B	H_CUR_WIDTH[7:0]	horizontal_cursor_width	00			
0x060C	H_CUR_POS[15:8]		00			
0x060D	H_CUR_POS[7:0]	horizontal_cursor_position	00			
0x060E	V_CUR_WIDTH[15:8]	legical ourses width	00			
0x060F	V_CUR_WIDTH[7:0]	vertical_cursor_width	00			
0x0610	V_CUR_POS[15:8]	undied august position	00			
0x0611	V_CUR_POS[7:0]	vertical_cursor_position	00			

Setting Required for Imaging 5.

5-1 Pixel Array Physical Image

Pixel array physical image is shown below. It is the pixel array when upper left corner of the physical image is Pin 1. The IMX179 has vertical OB area, which cannot read out.

Fig. 29 Pixel Array Physical Image

5-2 Pixel Binning Mode

MANCHANG O.F.

Binning read-out can be used to obtain an image of lower resolution for full field of view. It has advantage on frame rate than using digital scaling, and on signal-to-noise ratio than using sub-sampling. See Binning Capability Registers, for detail of available configurations.

The following diagram describes on 2x2 averaged binning operations. Pixels of two adjacent rows and columns are averaged, and read out as one output pixel.

Fig. 30 Image of 2x2 averaged Binning Mode

For explanation, represent individual pixels with its addresses in the format "color (x, y)" - for example, The Red pixel in the lower left corner is expressed as R (0, 0).

By performing 2x2 binning, R (0, 0) after binning is obtained by the following equation.

$$R(0, 0)$$
 after binning = $({R(0, 0) + R(0, 2)}/2 + {R(2,0) + R(2,2)}/2)/2$

And, the total number of output pixels is reduced to 1/4 of the original pixel array.

5-3 Readout Position

The IMX179 default status is readout from the lower left corner when Pin 1 is located in the upper left corner. The image is inverted vertically and horizontally by the lens, so proper image output results when Pin 1 is located in the upper left corner.

Readout direction can be set by the registers.

Table. 14 Image Orientation Register

	image_orientation 0x0101 [0]	Mode						
	0	no mirror (Readout from the left with Pin 1 in the upper left corner)						
CCI	1	Horizontal Mirror (Readout from the right with Pin 1 in the upper left corner)						
register	image_orientation 0x0101 [1]	Mode						
	0	no flip (Readout from the bottom with Pin 1 in the upper left corner)						
	1	Vertical Flip (Readout from the top with Pin 1 in the upper left corner)						

Fig. 32 Output Image Diagrams for Vertical Flip and Horizontal Mirror

5-4 Frame Rate Calculation Formula

Frame rate is calculated by the followings.

Frame_Rate[f ps] =
$$\frac{1}{\text{Time per Line[sec]} \times (\text{Frame Length})}$$

$$\label{eq:time_Per_Line} \begin{split} \text{Time_Per_Line[sec]} = \frac{\text{Line_Length_pck[pix]}}{2 \times \text{Pix_Clock_Freq[MHz]}} \end{split}$$

5-5 Black Level Control

The IMX179 has a stable black level clamp function. The average value of the black level is adjusted to 64d. When selecting output format RAW8 (uncompressed), Black level in the table below is divided by 4.

Table. 15 Black Level

ō	Black Level (dec)
ŏ	64 (Fixed)

5-6 Storage Time (Electronic Shutter) Settings

5-6.1 Storage Time (Electronic Shutter) Setting Registers

The storage time setting registers are shown below. The value of the register, coarse_integration_time, indicates the number of lines for the storage time.

The maximum storage time value is obtained by subtracting "4" from the number of lines per frame (set by coarse_integration_time) including the blanking period.

Table. 16 Storage Time Setting Register

gisters	Register name	Address Setting value	(dec) Remarks
CCI regi	coarse_integration_time	0x0202 0x0203 1 to frame_length_	lines-4 0x0202 = coarse_integration_time[15:8] 0x0203 = coarse_integration_time[7:0]

The value of the register, fine_integration_time, indicates the number of pixels for the storage time. The register, fine_integration_time, is a fixed value, read only register.

Table. 17 Storage Time Offset Register

	registers	Register name	Address	Setting value (dec)	Remarks
	CCI regi	fine_integration_time	0x0200 0x0201	488	RO register
6	7	9			
CiXI					
, ATO					
4					

5-6.2 Storage Time Calculation Method

The storage time (T_{SH}) can be obtained from the following equation.

 $T_{SH} = (Coarse_Inregtation_Time \times Line_Length_Pck + \alpha) \times pix_clk_period$ Where α = offset time = readdable from fine_integration_time register. pix_clk_period [s] = 1 / CK_PIXEL. CK_PIXEL = EXTCLK frequency \times (pll_multiplier / pre_pll_clk_div) / (vt_sys_clk_div \times vt_pix_clk_div) \times 2.

Table. 18 Storage Time Setting (in case of Line_Length_PCK = 3600)

		Number of total lines	frame_length_lines [15:0]	coarse_integration_time [15:0]	Storage time (T _{SH})
		Dec	Dec	Dec	All-pixel scan [s]
				1	(1 x 3600 + 488) x pix_clk_period
				N	(N x 3600 + 488) x pix_clk_period
	Normal frame rate	2592	2592	:	:
				2588	(2588 x 3600 + 488) x pix_clk_period
		2593	2593	2589	(2589 x 3600 + 488) x pix_clk_period
		2594	2594	2590	(2590 x 3600 + 488) x pix_clk_period
	Low frame rate	:	:		:
	Long-time exposure	M + 4	M + 4	М	(M x 3600 + 488) x pix_clk_period
		:	71. (:	:
		65535	65535	65531	(65531 x 3600 + 488) x pix_clk_period
AMCH	ANG O.F.I				

SONY

IMX179QQH5-C

5-7 Gain Settings

Analogue gain and digital gain can be set independently.

5-7.1 Analogue Gain Settings

Only global analogue gain is supported. The analogue gain is set by the following equation.

Gain_analogue =
$$\frac{(m0 \times X + c0)}{(m1 \times X + c1)}$$

The variables are shown in the table below.

Table. 19 Gain Setting Variables

		Register name	Address	Remarks				
S	m0	analogue_gain_m0	0x008C/0x008D					
CCI registers	m1	analogue_gain_m1	0x0090/0x0091	Fixed to -1				
E E	с0	analogue_gain_c0	0x008E/0x008F	Fixed to 256				
S	c1	analogue_gain_c1	0x0092/0x0093	Fixed to 256				
	Х	analogue_gain_code_global	0x0204/0x0205	0 to 224				

Therefore, the analogue gain is as follows.

Gain_analogue =
$$\frac{(256)}{(256 - X)}$$

MANUCHANCO OF THE MANUCHANCE O The relationship between the setting value X (analogue_gain_code_global) and the gain is shown on the following

Table. 20 Analogue Gain Setting

oal			oal			oal			oal			bal		
헕			혍			a de			를			혍		
0)			O)			0)			0)			0)		
ğ	Gain(times)	m m	ğ	Gain(times)	m	po	Gain(times)	m	ğ	Gain(times)	m	ğ	Gain(times)	m m
اً	₽.	Gain (dB)	اً	₽.	Gain (dB)	اً	.≦	Gain (dB)	اً	⊒.	Gain (dB)	اً	.⊑	Gain (dB)
aju	n(t	.⊑	aj.	n(t	.⊑	ai⊔	ţ	.⊑	ai	n(t	.⊑	aj	n(t	Ë
o)	ai	Sa	ဝ	aj.	Ga	o o	<u>.</u>	Ga	o)	ai	G.	Ö	<u>a</u>	Эa
ane	Ю		ane	9	Ŭ	ane	Ю		ane	Ю	Ĭ	ane	Э	
ool			og			ool						og		
analogue_gain_code_global			analogue_gain_code_global			analogue_gain_code_global			analogue_gain_code_global			analogue_gain_code_global		
0	1.00	0.00	45	1.21	1.68	90	1.54	3.76	135	2.12	6.51	180	3.37	10.55
1	1.00	0.03	46	1.22	1.72	91	1.55	3.82	136	2.13	6.58	181	3.41	10.66
2	1.01	0.07	47	1.22	1.76	92	1.56	3.87	137	2.15	6.65	182	3.46	10.78
						93								
3	1.01	0.10	48	1.23	1.80		1.57	3.92	138	2.17	6.73	183	3.51	10.90
4	1.02	0.14	49	1.24	1.85	94	1.58	3.97	139	2.19	6.80	184	3.56	11.02
5	1.02	0.17	50	1.24	1.89	95	1.59	4.03	140	2.21	6.88	185	3.61	11.14
6	1.02	0.21	51	1.25	1.93	96	1.60	4.08	141	2.23	6.95	186	3.66	11.26
7	1.03	0.24	52	1.25	1.97	97	1.61	4.14	142	2.25	7.03	187	3.71	11.39
8	1.03	0.28	53	1.26	2.01	98	1.62	4.19	143	2.27	7.10	188	3.76	11.51
9	1.04	0.31	54	1.27	2.06	99	1.63	4.25	144	2.29	7.18	189	3.82	11.64
10	1.04	0.35	55	1.27	2.10	100	1.64	4.30	145	2.31	7.26	190	3.88	11.77
11	1.04	0.38	56	1.28	2.14	101	1.65	4.36	146	2.33	7.34	191	3.94	11.91
12	1.05	0.42	57	1.29	2.19	102	1.66	4.41	147	2.35	7.42	192	4.00	12.04
13	1.05	0.45	58	1.29	2.23	103	1.67	4.47	148	2.37	7.50	193	4.06	12.18
14	1.06	0.49	59	1.30	2.28	104	1.68	4.53	149	2.39	7.58	194	4.13	12.32
15	1.06	0.52	60	1.31	2.32	105	1.70	4.59	150	2.42	7.66	195	4.20	12.46
16	1.07	0.56	61	1.31	2.36	106	1.71	4.64	151	2.44	7.74	196	4.27	12.60
17	1.07	0.60	62	1.32	2.41	107	1.72	4.70	152	2.46	7.82	197	4.34	12.75
18	1.08	0.63	63	1.33	2.45	108	1.73	4.76	153	2.49	7.91	198	4.41	12.90
19	1.08	0.67	64	1.33	2.50	109	1.74	4.82	154	2.51	7.99	199	4.49	13.05
20	1.08	0.71	65	1.34	2.54	110	1.75	4.88	155	2.53	8.08	200	4.57	13.20
21	1.09	0.74	66	1.35	2.59	111	1.77	4.94	156	2.56	8.16	201	4.65	13.36
22	1.09	0.78	67	1.35	2.64	112	1.78	5.00	157	2.59	8.25	202	4.74	13.52
23	1.10	0.82	68	1.36	2.68	113	1.79	5.06	158	2.61	8.34	203	4.83	13.68
24	1.10	0.86	69	1.37	2.73	114	1.80	5.12	159	2.64	8.43	204	4.92	13.84
25	1.11	0.89	70	1.38	2.77	115	1.82	5.18	160	2.67	8.52	205	5.02	14.01
26	1.11	0.93	71	1.38	2.82	116	1.83	5.24	161	2.69	8.61	206	5.12	14.19
27	1.12	0.97	72	1.39	2.87	117	1.84	5.30	162	2.72	8.70	207	5.22	14.19
28	1.12	1.01	73	1.40	2.92	118	1.86	5.37	163	2.75	8.80	208	5.33	14.54
29	1.13	1.04	74	1.41	2.96	119	1.87	5.43	164	2.78	8.89	209	5.45	14.72
30	1.13	1.08	75	1.41	3.01	120	1.88	5.49	165	2.81	8.98	210	5.57	14.91
31	1.14	1.12	76	1.42	3.06	121	1.90	5.56	166	2.84	9.08	211	5.69	15.10
32	1.14	1.16	77	1.43	3.11	122	1.91	5.62	167	2.88	9.18	212	5.82	15.30
33	1.15	1.20	78	1.44	3.16	123	1.92	5.69	168	2.91	9.28	213	5.95	15.50
34	1.15	1.24	79	1.45	3.21	124	1.94	5.75	169	2.94	9.37	214	6.10	15.70
35	1.16	1.28	80	1.45	3.25	125	1.95	5.82	170	2.98	9.47	215	6.24	15.70
			-					-						
36	1.16	1.32	81	1.46	3.30	126	1.97	5.89	171	3.01	9.58	216	6.40	16.12
37	1.17	1.36	82	1.47	3.35	127	1.98	5.95	172	3.05	9.68	217	6.56	16.34
38	1.17	1.40	83	1.48	3.40	128	2.00	6.02	173	3.08	9.78	218	6.74	16.57
39	1.18	1.44	84	1.49	3.45	129	2.02	6.09	174	3.12	9.89	219	6.92	16.80
40	1.19	1.48	85	1.50	3.50	130	2.03	6.16	175	3.16	10.00	220	7.11	17.04
41	1.19	1.52	86	1.51	3.56	131	2.05	6.23	176	3.20	10.10	221	7.31	17.28
42	1.20	1.56	87	1.51	3.61	132	2.06	6.30	177	3.24	10.21	222	7.53	17.54
43	1.20	1.60	88	1.52	3.66	133	2.08	6.37	178	3.28	10.32	223	7.76	17.79
44	1.21	1.64	89	1.53	3.71	134	2.10	6.44	179	3.32	10.43	224	8.00	18.06

5-7.2 Digital gain settings

The IMX179 can set the digital gain for each color. The registers required to set the digital gain are as follows.

Table. 21 Digital Gain Settings

CCI register name	Upper byte address (Setting range:1 to15)	Lower byte address (Setting range:0 to 255)
digital_gain_greenR (GR)	0x020E	0x020F
digital_gain_red (R)	0x0210	0x0211
digital_gain_blue (B)	0x0212	0x0213
digital_gain_greenB (GB)	0x0214	0x0215

Each register is comprised of 2 bytes, with the upper byte [15:8] setting the integer portion and the lower byte [7:0] setting the fractional portion of the gain. The gain for each color is obtained by the following equation.

Gain_digital = Upper byte +
$$\frac{\text{Lower byte}}{256}$$

The upper byte can be set to a value between 1 and 15, and the lower byte to a value between 0 and 255. Therefore, the digital gain setting range for each color is as follows.

1 +
$$\frac{0}{256}$$
 [times](0dB) \leq Gain_digital \leq 15 + $\frac{255}{256}$ [times](24dB)

When gain is considered in log linear scale, the adjustment steps are large at low gain and extremely small at high gain. The register values are shown on the following page in case of the gain in log linear manner in 0.1 dB steps.

Table. 22 Example of Digital Gain Setting

Upper Lower Fig. Upper U																								
1	Ur	per	Lov	wer	(sət	<u> </u>	Ur	per	Lo	wer	(sət	<u> </u>		Up	per	Lower	(sət	<u>~</u>		Upper	Lowe	er	(sə	<u> </u>
1		•			(tim	B B		•			(tim	<u>용</u>					(tim	B			_		Ē	g B
1		,	,		aj.	ai		,	~,		aj.	aj.	L	,			aj.	ain	L				<u>⊒</u> .	ain
1	_	-	_					_	_				L		_				ļ			_		_
1			_					_	_	_			-						ļ	_		_		
1		_	_			-		_	_	_			ŀ						ŀ			_		
1			_					_	_				ŀ						ŀ			_		
1			_			_		_					ŀ	_					ŀ			_		
1						_		_					ŀ		_				ŀ					
1			_					_	_				ŀ						ŀ					
1		-	_										ŀ						ŀ			_		
1 28 1C 1.11 0.90 2 2 65 37 2.21 6.91 4 4 106 68 4.41 12.90 8 8 207 CF 681 18.90 1.11								_	_				ŀ		_				ŀ			_		
1 35 23 1.14 1.11 2 2 68 44 2.27 7.10 4 4 133 85 4.52 13.10 9 9 4 4 90 19.10 1 1 41 29 1.16 1.29 2 2 81 51 2.32 7.30 4 4 160 A0 4.63 13.30 9 9 58 3A 9.23 19.30 1 1 45 20 1.18 1.41 2 2 2 85 55 2.37 7.50 4 4 160 A0 4.63 13.30 9 9 9 58 3A 9.23 19.30 1 1 52 34 1.20 1.61 2 2 2 2 65 57 2.37 7.50 4 4 160 A0 4.63 13.30 9 9 9 58 3A 9.23 19.30 1 1 52 34 1.20 1.61 2 2 102 66 2.40 7.60 4 4 160 A0 4.63 13.30 9 9 9 169 65 55 9.33 19.40 1 1 53 33 1.21 1.69 2 2 109 60 2.43 7.70 4 4 2.15 D7 4.84 1.70 9 9 169 A0 9.55 18.60 1 1 59 38 1.23 1.80 2 2 116 74 2.45 7.79 4 4 2.30 E6 4.90 13.80 9 9 169 A9 9.55 18.60 1 1 66 42 1.26 1.99 2 2 13 33 2.51 8.00 5 5 3 3 5.01 14.00 1 1 74 4A 1.29 2.21 2 2 146 92 2.57 8.20 5 5 3 3 5.01 14.00 1 1 74 4A 1.29 2.21 2 2 146 92 2.57 8.20 5 5 5 33 3.50 14.00 10 A 30 18 10.20 1 1 1 35 55 1.33 2.49 2 2 169 A9 2.66 8.50 5 5 5 33 3.50 14.00 10 A 30 18 10.02 2.00 1 1 1 36 55 1.33 2.49 2 2 169 A9 2.66 8.50 5 5 5 33 3 4.50 1.00 10 A 30 18 10.02 2.00 1 1 1 1 1 1 1 1 1	1	1	28	1C		0.90		2	55	37		6.91	ľ	4	4	106 6A	4.41		ı	8 8	207 C	F	8.81	
1	1	1	31	1F	1.12	0.99	2	2	61	3D	2.24	7.00	Ī	4	4	120 78	4.47	13.00	Ī	8 8	234 E	Α	8.91	19.00
1	1	1	35	23	1.14	1.11	2	2	68	44	2.27	7.10		4		133 85		13.10			4	4	9.02	19.10
1	1	1	_	26	1.15	1.20		_			2.29	7.19		4			4.57	13.20				F	9.12	
1								_					L	4					L					
1								_	_				Ĺ						ļ			_		-
1 55 37 121 1.69 1 1 1.69 1 1.69 1 1.70 1 1.71 1.60 3.71 1.71 1.60 3.71 1.71 1.60 3.71 1.71 1.60 3.71 1.			_							_			ļ									_		
1		<u> </u>							_				ŀ		_				(_		
1								_	_				ŀ		_						-	_		-
1								_	_				ŀ								-	_		
1 70 46 1.27 2.10 2 2 138 8A 2.54 8.09 5 5 18 12 5.07 4.10 10 A 30 1E 10.12 20.10 1 1 74 4A 1.29 2.21 2 164 92 2.57 8.20 5 5 83 24 30 5.79 14.00 10 A 60 3C 10.23 20.20 1 1 81 51 1.32 2.39 2 2 161 A1 2.63 8.40 5 5 5.43 32 1 4.00 10 A 10	_	-				_	_	_	_				ŀ						ŀ	_		_		-
1 1 74 4A 1.29 2.21	-		_						_	_		-	ŀ						ŀ			_		
1 1 78 4E 1.30 2.31		-	_					_	_	_			ŀ	_		-			ŀ			_		-
1 81 51 1.32 2.39 2 2 169 A9 2.66 8.50 1 1 189 59 1.35 2.59 2 2 177 B1 2.69 8.60 1 1 1 1 1 1 1 1 1			_					_					ŀ						ŀ		-	_		
1 1 18 18 18 18 18 18			_					_	_				1	_					ŀ	_		_		
1	1	1						_						_					ľ			_		
1	1	1			1.35	2.59	2	2	_		2.69		V	_				14.60	ľ	10 A		37 1	0.71	20.60
1 1 101 65 1.39 2.89 2 2 201 C9 2.79 8.90 5 5 143 8F 5.56 14.90 11 B 23 17 11.09 20.90 1 1 106 65 1.43 3.10 2 2 210 D2 2.82 9.10 5 5 160 A0 5.63 15.00 11 B 56 38 11.22 21.00 1 1 11 17 17 1.50 3.20 2 2 2.26 E2 2.88 9.20 1 1 18 76 1.46 3.29 2 2 2.25 EB 2.92 9.30 1 1 13 78 1.48 3.41 2 2 2.44 14 2.95 9.41 1 1 127 7F 1.50 3.50 2 2 2.52 EC 2.98 9.50 1 1 131 83 1.51 3.59 3 3 5 5 5 9.02 9.60 6 6 7 7 6.03 15.60 12 C 6 6 12.02 21.60 1 1 140 8C 1.55 3.79 3 3 2.3 17 3.09 9.80 1 1 150 96 1.55 9.401 1 1 150 96 1.55 9.401 1 1 150 96 1.55 9.401 1 1 1 1 1 1 1 1 1	1	1	93	5D	1.36	2.69	2	2	185	В9	2.72	8.70	. [5	5	111 6F	5.43	14.70		10 A	215 D	7 1	10.84	20.70
1 1 106 6A 1.41 3.01 2 2 210 D2 2.82 9.01 5 5 160 A0 5.63 15.00 11 B 90 5A 11.35 21.10 11 11 14 72 1.46 3.20 2 2 235 EB 2.92 9.30 1 1 123 7B 1.48 3.41 2 2 2 244 F4 2.95 9.41 1 1 131 83 1.51 3.59 3 3 5 5 3.02 9.60 1 1 131 83 1.51 3.59 3 3 4 E 2.52 EC 2.98 9.50 1 1 131 83 1.51 3.59 3 3 3 4 E 3.05 9.70 1 1 145 91 1.57 3.90 3 3 3 2 2 3.13 9.90 1 1 145 91 1.57 3.90 3 3 3 2 2 3 3 3 2 2	1	1	97	61	1.38	2.79	2	2	193	C1				5	5	127 7F	5.50	14.80		10 A	247 F	7 1	10.96	20.80
1	1							_	_				V		_				L			_		
1	_	-	_	_		-			_	_		_			_				ļ					
1			_								_								ļ			_		
1		-	_					_		_			ŀ						ŀ			_		-
1													ŀ						ŀ			_		
1			_					_					ŀ	_	_			_	ŀ			_		
1 1 1 136 88 1.53 3.70 3 3 14 E 3.05 9.70 6 6 24 18 6.09 15.70 12 C 41 29 12.16 21.70 1 1 145 91 1.57 3.90 3 3 22 0 3.13 9.90 6 79 4F 6.31 16.00 12 C 11 7 7 40 12.25 22.00 12 C 151 97 12.59 22.00 1 1 159 9F 1.62 4.20 3 3 50 30 3.23 10.20 6 6 6 137 56 46 16.20 12 C						-	_	_					ŀ						ŀ					
1 1	_		_					_					ŀ		_				ŀ					
1 1 1 145 91 1.57 3.90 3 3 32 20 3.13 9.90 6 6 6 6 6 6 6 6 6 6 6 79 4F 6.31 16.00 12 C 114 72 12.45 21.90 1 1 159 9F 1.62 4.20 3 3 51 33 3.20 10.10 6 6 6 177 75 6.46 16.20 12 C 118 BC 12.20 12 C 12.59 22.00 12 C 12.59 22.00 11 12.59 12.20 6 6 6 13.0 12.20 12.50 12.50 13 13		-	_					_		_			ŀ		-				ŀ					-
1 1 1 150 96 1.59 4.01 3 3 42 2A 3.16 10.00 6 6 79 4F 6.31 16.00 12 C 151 97 12.59 22.00 1 1 159 9F 1.62 4.20 3 3 51 33 3.20 10.10 6 6 98 62 6.38 16.10 12 C 18B BC 12.73 22.10 1 1 164 A4 1.66 4.40 3 3 70 46 3.27 10.30 6 6 155 9B 6.61 16.40 13 D 8 8 13.0 22.20 13 D 8 8 13.0 22.20 13 D 8 8 13.0 22.20 13 D 8 13.0 22.20 13 D 8 13.0 22.20 13 13			_				_		_				ŀ		_				ľ		-	_		
1 1 159 9F 1.62 4.20 3 3 60 3C 3.23 10.20 6 6 117 75 6.46 16.20 12 C 226 E2 12.88 22.20 1 1 164 A4 1.64 4.30 3 3 70 46 3.27 10.30 6 6 6 136 88 6.53 16.30 13 D 8 8 13.03 22.30 1 1 169 A9 1.66 4.40 3 3 80 50 3.31 10.40 6 6 155 9B 6.61 16.40 13 D 47 2F 13.18 22.40 1 1 179 B3 1,70 4.60 3 3 10.60 3 3.31 10.60 3 3.31 10.60 4.17 7 10.60 10.66 6 215 9B 6.61	1	1	150	96		4.01	3	3	42	_	3.16	10.00	ľ	6	6	79 4F	6.31		İ	12 C	151 9	7 1	12.59	22.00
1 1 164 A4 1.64 4.30 3 3 70 46 3.27 10.30 6 6 136 88 6.53 16.30 13 D 8 8 13.03 22.30 1 1 169 A9 1.66 4.40 3 3 80 50 3.31 10.40 6 6 155 9B 6.61 16.40 13 D 47 2F 13.18 22.40 1 1 179 B3 1.70 4.60 3 3 99 63 3.35 10.50 6 6 195 C3 6.76 16.60 13 D 48 55 13.49 22.50 1 1 184 B8 1.72 4.70 3 3 109 6 6 215 D7 6.84 16.60 13 D 18 8 13.03 22.30 1 1 199 C7 1.78 5.00 3 3 140 8C 3.55 11.09	1	1	154	9A	1.60	4.09	3	3	51	33	3.20	10.10	Ī	6	6	98 62	6.38	16.10	Ī	12 C	188 B	BC 1	2.73	22.10
1 1 169 A9 1.66 4.40 3 3 80 50 3.31 10.40 6 6 155 9B 6.61 16.40 13 D 47 2F 13.18 22.40 1 1 174 AE 1.68 4.50 3 3 90 5A 3.35 10.50 6 6 175 AF 6.68 16.50 13 D 47 2F 13.18 22.40 1 1 179 B3 1.70 4.60 3 3 99 63 3.39 10.60 6 6 195 C3 6.76 16.60 13 D 47 2F 13.49 22.50 1 1 184 B8 1.72 4.70 3 3 109 6 6 215 D7 6.84 16.60 13 D 16 5 13.0 D 16 6 6 215 D7 6.84 16.70 13 D 16 13.0 D 16	1	1	159	9F	1.62		3	3	60	3C			ĺ	6	6					12 C		_		-
1 1 174 AE 1.68 4.50 3 3 90 5A 3.35 10.50 6 6 175 AF 6.68 16.50 13 D 86 56 13.34 22.50 1 1 179 B3 1.70 4.60 3 3 99 63 3.39 10.60 6 6 195 C3 6.76 16.60 13 D 186 56 13.34 22.50 1 1 188 BB 1.72 4.70 3 3 109 6D 3.43 10.70 6 6 215 D7 6.84 16.70 13 D 165 A5 13.64 22.70 1 1 199 C2 1.76 4.90 3 3 10.90 7 7 0 0 7.00 16.90 13 D 26 CE 13.80 22.90 1 1 210 D 1.82 5.20 3 3 16.14 3.63 11.20 7		-	_					_	_	_		_			_							_		
1 1 179 B3 1,70 4.60 3 3 99 63 3.39 10.60 6 6 195 C3 6.76 16.60 13 D 125 7D 13.49 22.60 1 1 189 BD 1.74 4.80 3 3 109 6D 3.43 10.70 6 6 215 D7 6.84 16.70 13 D 165 A5 13.64 22.70 1 1 199 C7 1.78 5.00 3 3 109 6 6 235 EB 6.92 16.80 13 D 165 A5 13.00 22.80 1 1 199 C7 1.78 5.00 3 3 160 3.55 11.00 7 7 0 0 7.00 10 7.00 14 E 32 20 14.13 23.00 1 1 215 D7 1.84 5.30 3 3 16 11.00 7 7								_	_				ļ	_					ļ	_				
1 1 184 B8 1.72 4.70 1 1 189 BD 1.74 4.80 1 1 199 C2 1.76 4.90 1 1 199 C7 1.78 5.00 1 1 199 C7 1.78 5.00 1 1 205 CD 1.80 5.11 1 1 215 D7 1.84 5.30 1 1 221 DD 1.86 5.41 1 1 226 E2 1.88 5.50 1 1 223 E8			_					_	-	_			ļ						ļ	_				
1 1 189 BD 1.74 4.80 3 3 120 78 3.47 10.80 6 6 235 EB 6.92 16.80 13 D 206 CE 13.80 22.80 1 1 194 C2 1.76 4.90 3 3 130 B2 3.51 10.90 7 7 0 0 7.00 16.90 13 D 247 F7 13.96 22.90 1 1 199 C7 1.78 5.00 3 3 140 8C 3.55 11.00 7 7 20 14 7.08 17.00 14 E 32 20 14.13 23.00 1 1 215 D7 1.84 5.30 3 3 161 A1 3.63 11.20 3 3 172 AC 3.67 11.30 7 7 44 29 7.16 17.10 14 E 74 4A 14.29 23.10 1 1 221 DD 1.86 5.41 3 3 183 B7 3.71 11.40 7 7 84 54 7.33 17.30 14 E 116 74 14.45 23.20 1 1 226 E2 1.88 5.50 3 3 194 C2 3.76 11.50 7 7 106 6A 7.41 17.40 14 E 120 C8 E 14.89 14.62 23.00 1 1 237 ED 1.93 5.69 3 3 217 D9 3.85 11.70 7 7 150 96 7.59 17.60 7 7 150 96 7.59 17.60 15 F 80 50 15.31 23.70 <	_		_	_		-	_	_		_			ļ						ļ	_				
1 1 194 C2 1.76 4.90 3 3 130 82 3.51 10.90 7 7 0 0 7.00 16.90 13 D 247 F7 13.96 22.90 1 1 199 C7 1.78 5.00 3 3 140 8C 3.55 11.00 7 7 20 14 7.08 17.00 14 E 32 20 14.13 23.00 1 1 210 D2 1.82 5.20 3 3 161 A1 3.63 11.20 7 7 41 29 7.16 17.10 14 E 72 44 1.08 17.10 14 E 72 44 1.08 17.20 14 E 11.00 14 E 7 7 14 29 7.16 17.10 14 E 7 14 4.90 7 7 14 29 7 7 10.66 A.741 17.00 14 E 14 14		-		-									ŀ						ŀ		165 A	15 1	3.64	22.70
1 1 199 C7 1.78 5.00 3 3 140 8C 3.55 11.00 7 7 20 14 7.00 14 E 32 20 14.13 23.00 1 1 205 CD 1.80 5.11 3 3 151 97 3.59 11.10 7 7 41 29 7.16 17.10 14 E 74 4A 14.29 23.10 1 1 215 D7 1.84 5.30 3 3 172 AC 3.67 11.30 7 7 84 54 7.33 17.20 14 E		-				_		_					ŀ						ŀ					
1 1 205 CD 1.80 5.11 3 3 151 97 3.59 11.10 7 7 41 29 7.16 17.10 14 E 74 4A 14.29 23.10 1 1 210 D2 1.82 5.20 3 3 161 A1 3.63 11.20 7 7 63 3F 7.25 17.20 14 E 116 74 14.45 23.20 1 1 221 DD 1.86 5.41 3 3 183 B7 3.71 11.40 7 7 106 6A 7.41 17.40 14 E 159 9F 14.62 23.30 1 1 226 E2 1.88 5.50 3 3 194 C2 3.76 11.50 7 7 128 80 7.50 17.50 14 E 203 CB 14.79 23.40 1 1 237 ED 1.93 5.69 3 3 217 D9 3.85 11.70 7 7 150 96 7.59 17.60 15 F 35 23 15.14 23.60 1 1 243 F3 1.95 5.80 3 3 29 EF 3.93 11.80 7 7 195 C3 7.76 17.80 15 F 125 7D 15.49 23.80 1 1 249 F9 1.97 5.90 3 3 29 EF 3.93 11.90 7 7 218 DA 7.85 17.90 15 F 171 AB 15.67 23.90 <td></td> <td>-</td> <td>_</td> <td>_</td> <td></td> <td>-</td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td>ŀ</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>ŀ</td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td>		-	_	_		-		_	_				ŀ	_					ŀ	_		_		
1 1 210 D2 1.82 5.20 3 3 161 A1 3.63 11.20 7 7 63 3F 7.25 17.20 14 E 116 7 14.45 23.20 1 1 215 D7 1.84 5.30 3 3 172 AC 3.67 11.30 7 7 84 54 7.33 17.30 14 E 159 9F 14.62 23.30 1 1 221 DD 1.86 5.41 3 3 183 B7 3.71 11.40 7 7 106 6A 7.41 17.40 14 E 159 9F 14.62 23.30 1 1 226 E2 1.88 5.50 3 3 194 C2 3.76 11.50 7 7 128 80 7.50 17.50 14 E 246 F6 14.96 23.50 1 1 237 ED 1.93 5.69 3 3		_				-		_	_	_			ŀ	_	_				ŀ	_		_		-
1 1 215 D7 1.84 5.30 3 3 172 AC 3.67 11.30 7 7 84 54 7.33 17.30 14 E 159 9F 14.62 23.30 1 1 221 DD 1.86 5.41 3 3 183 B7 3.71 11.40 7 7 106 6A 7.41 17.40 14 E 159 9F 14.62 23.30 1 1 226 E2 1.88 5.50 3 3 194 C2 3.76 11.50 7 7 128 80 7.50 17.50 14 E 236 66 14.96 23.50 1 1 237 ED 1.93 5.69 3 3 217 D9 3.85 11.70 7 7 150 96 7.59 17.60 15 F 35 23 15.14 23.60 1 1 243 F3 1.95 5.80 3 3		_	_				_	_	_	_		-	ŀ						ŀ			_		
1 1 221 DD 1.86 5.41 3 3 183 B7 3.71 11.40 7 7 106 6A 7.41 17.40 14 E 203 CB 14.79 23.40 1 1 226 E2 1.88 5.50 3 3 194 C2 3.76 11.50 7 7 128 80 7.50 17.50 14 E 203 CB 14.99 23.40 1 1 232 E8 1.91 5.60 3 3 205 CD 3.80 11.60 7 7 150 96 7.59 17.60 15 F 35 23 15.14 23.60 1 1 243 F3 1.95 5.80 3 3 228 E4 3.89 11.80 7 7 195 C3 7.76 17.80 15 F 80 50 15.31 23.70 1 1 249 F9 1.97 5.90 3 3 239 EF 3.93 11.90 7 7 218 DA 7.85 17.90 15 F 17.40 15 F 125 7D 15.49 23.90			_					_					ŀ		-				ŀ			_		
1 1 226 E2 1.88 5.50 3 3 194 C2 3.76 11.50 7 7 128 80 7.50 17.50 14 E 246 F6 14.96 23.50 1 1 237 ED 1.93 5.69 3 3 217 D9 3.85 11.70 7 7 128 80 7.50 17.50 15 F 35 23 15.14 23.60 1 1 243 F3 1.95 5.80 3 3 217 D9 3.85 11.70 7 7 195 C3 7.76 17.80 15 F 80 50 15.91 80 50 15.91 7 7 195 C3 7.76 17.80 15 F 125 70 15.49 23.80 1 1 249 F9 1.97 5.90 3 3 239 EF 3.93 11.90 7 7 218 DA 7.85 17.90 15 F 171 AB 15.67 23.90		-							_	_			ŀ						ŀ					
1 1 232 E8 1.91 5.60 3 3 205 CD 3.80 11.60 7 7 150 96 7.59 17.60 15 F 35 23 15.14 23.60 1 1 237 ED 1.93 5.69 3 3 217 D9 3.85 11.70 7 7 172 AC 7.67 17.70 15 F 80 50 15.31 23.70 1 1 249 F9 1.97 5.90 3 3 239 EF 3.93 11.90 7 7 195 C3 7.76 17.80 15 F 125 70 15.49 23.80 1 1 249 F9 1.97 5.90 3 3 239 EF 3.93 11.90 7 7 218 DA 7.85 17.90 15 F 17 AB 15.67 23.90						_		_	_				ŀ		_				ľ			_		-
1 1 237 ED 1.93 5.69 3 3 217 D9 3.85 11.70 7 7 172 AC 7.67 17.70 15 F 80 50 15.31 23.70 1 1 249 F9 1.97 5.90 3 3 238 E4 3.89 11.90 7 7 195 C3 7.76 17.80 15 F 80 50 15.49 23.80 1 1 249 F9 1.97 5.90 3 3 239 EF 3.93 11.90 7 7 218 DA 7.85 17.90 15 F 171 AB 15.67 23.90	_1	1				_		_	_	_			ľ		7				ľ					
1 1 249 F9 1.97 5.90 3 3 239 EF 3.93 11.90 7 7 218 DA 7.85 17.90 15 F 171 AB 15.67 23.90	1	1				-	_	_	_	_	3.85	11.70	ľ	7	7				ľ			_		
								_	_	_			Ĺ							_		_		
15 F 217 D9 15.85 24.00	1	1	249	F9	1.97	5.90	3	3	239	EF	3.93	11.90		7	7	218 DA	7.85	17.90		_				
																			Ĺ	15 F	217 D	9 1	15.85	24.00

6. On Chip Image Processing

Data flow of our "On-Chip Image Processing" is written in following figure. A/D-converted digital signal is input, and processed data is asserted from CSI-2.

Fig. 33 Data Flow Diagram

6-1 Test Pattern Generator

The IMX179 can output test signals using the internal pattern generator.

6-1.1 Test Pattern

The test pattern output function outputs fixed pattern image data from the IMX179. Built-in image patterns can be output by setting the necessary registers.

The registers must be set by communication to output the test pattern. There are no restrictions on the sequence for setting the registers related to test pattern output. The prescribed output is obtained by setting the necessary registers while the sensor is operating.

Table. 23 Description of Test Pattern Registers

Address	Name	Description			
0x0600		0 – no pattern (default)			
	O_{χ}	1 – solid color			
0x0601	test_pattern_mode	2 – 100 % color bars			
0x0001		3 – fade to grey color bars			
		4 - PN9			
0x0602	toot data rad	The test data used to replace red pixel data			
0x0603	test_data_red	The test data used to replace red pixel data			
0x0604	toet data groonP	The test data used to replace green pixel data on rows that also			
0x0605	test_data_greenR	have red pixels			
0x0606	test data blue	The test data used to replace blue pixel data			
0x0607	test_uata_blue	The test data used to replace blue pixel data			
0x0608	tost data groonP	The test data used to replace green pixel data on rows that also			
0x0609	test_data_greenB	have blue pixels			
0x060A	horizontal cursor width	Defines the width of the horizontal cursor (in pivals)			
0x060B	nonzontal_cursor_width	Defines the width of the horizontal cursor (in pixels)			

SON	Y		IMX179QQH5-C
A	Address	Name	Description
	0x060C 0x060D	horizontal_cursor_position	Defines the top edge of the horizontal cursor
 	0x060E 0x060F	vertical_cursor_width	Defines the width of the vertical cursor (in pixels)
	0x0610 0x0611	vertical_cursor_position	Defines the left hand edge of the vertical cursor. A value of 0xFFFFswitches the vertical cursor into automatic mode where it automatically advances every frame.
NAMCH A		COS FILMOPTIC	
			63

SONY

IMX179QQH5-C

6-1.1.1 Pattern Description

Table. 24 Description of Test Patterns

PN9 is generated by the generator polynomial of $X^9 + X^5 + 1$ as the initial value = 1

6-2 Digital Gain Setting

See section 5-7.2 Digital gain settings.

6-3 Black Level Adjust

The register required to set the Black Level Adjust is as follows.

Table. 25 Black Level Adjust Setting Register

Index	Bit	Pagistar Nama	RW	Commant	Re-Timed	Default
(HEX)	DIL	Register Name	KVV	Comment	Re-Timea	(HEX)
300B	[7:0]	BLKLEVEL	RW	Set Black Level		40
30E5	[11]	Blklevel_set (testdi[11])	RW	Defines pedestal level. 0: pedestal = 0x40 (fixed) 1: pedestal = BLKLEVEL		

6-4 Defect Correction

The registers required to set the Defect Correction are as follows. 3 different functions are implemented;

- 1. Dynamic single defect pixel correction
- 2. Static same color adjoin pixel correction
- 3. Static 2x4 defect pixel correction

Dynamic single defect pixel correction

The available is only the Dynamic Mode-1. The Dynamic Mode-2 and Dynamic Mode-3 can not be used.

Static same color adjoin pixel correction and Static 2x4 defect pixel correction

Static defect addresses for mapped_couplet_correct (couplet defect: two adjacent defect pixels of the same color) are stored in NVM, and sensor processes them in itself.

Their address information of static defect correction is written on NVM at Sony factory. Customers can not be set at an additional on NVM.

Table. 26 Defect Correction Setting Registers

Index (HEX)	Bit	Register Name	RW	Comment
4100	[7:0]	ZNR	RW	[2]: Static Mode 1: ON (Must be set 1) [3]: Dynamic Mode-1 0: OFF 1:ON [4]: Dynamic Mode-2 0: OFF (Must be set 0) [5]: Dynamic Mode-3 0: OFF (Must be set 0)
4104	[6:0]	ZNR_Coefficient3	RW	Parameter Setting3 (Dynamic Mode-1)
4105	[6:0]	ZNR_Coefficient4	RW	Parameter Setting4 (Dynamic Mode-1)
4108	[1:0]	ZNR_Coefficient7[9:8]	RW	Dorameter Setting 7 (Dynamia Mada 1)
4109	[7:0]	ZNR_Coefficient7[7:0]	RW	Parameter Setting7 (Dynamic Mode-1)
410A	[1:0]	ZNR_Coefficient8[9:8]	RW	Dorameter Settings (Dynamic Mede 4)
410B	[7:0]	ZNR_Coefficient8[7:0]	RW	Parameter Setting8 (Dynamic Mode-1)

SONY

6-5 Pixel Re-alignment H Direction

The registers required to set the Pixel Re-alignment H Direction are as follows.

Table. 27 Pixel Re-alignment H Direction Setting Registers

Index	Duto	Degister Name	RW	Comment	Re-Time	Default	Embd DL
Index Byte		Register Name	KVV	Comment	Re-Time	(HEX)	EIIIDA DE
0x0344	[3:0]	X_ADD_STA[11:8]	RW	v addr atort	V sync	0	
0x0345	[7:0]	X_ADD_STA[7:0]	RW	x_addr_start	V sync	00	$\langle \mathcal{O} \rangle$
0x0348	[3:0]	X_ADD_END[11:8]	RW	x addr end	V sync	0C	
0x0349	[7:0]	X_ADD_END[7:0]	RW	x_addi_erid	V sync	CF	• 1
0x0390	[1:0]	BINNING_MODE	RW	defines binning mode. 0:no-binning 1:2x2-binning 2:4x4-binning	V sync	0	

6-6 Scaling

The registers required to set the Scaling are as follows.

Table. 28 Re-sizing Setting Registers

	Index	Byte	Register Name	RW	Comment	Re-Time	Default	Embd DL
	IIIdex D	Буге	Register Name	IXVV	Continent	Ke-Tille	(HEX)	LIIIDU DE
	0x0400	_						
	0x0401	[1:0]	Scaling_mode	RW	0 – No scaling, 1 – Horizontal Scaling, 2 – Full Scaling (both H and V)	V sync	00	0
	0x0404	[0]	0		Down scale factor: M		0	0
	0x0405	[7:0]	scale_m	RW	component Range: (16d< = scale_m< = 256d) upwards Format: 16-bit unsigned integer	V sync	10	0
	0x0407	[4:0]	scale_n	RO	Down scale factor: N component Value: 16 (fixed) Format: 16-bit unsigned integer		10	0
HAMCK	ARYC							

7. NVM Memory Map

7-1 Block Diagram

Fig. 34 Block Diagram

NVM is composed of 16 pages (from 0 to 15) and 64 bytes per page. ECC is also applied for every 16 address (bytes), 4 rows in 1 page.

Fig. 35 NVM Map structure

7-2 NVM Functions

NVM block has following functions.

Table. 29 Functions via NVM

	No	Item	Description
	1	Data Interface	User can write/read data via CCI by the unit of page
	2	Writing Reg. Value	Writing assigned address and values which are transferred into the assigned registers.
	3	Writing Defect address	Writing assigned address, whose values are used for defect corrections
X	4	Reading	Reading NVM data by the unit of page, not ECC region
	5	ECC Function	Can apply ECC for each 16 bytes (1-row) block. 1-bit per 16 bytes can be corrected.
	6	ECC status	Can check while reading/writing that ECC is applied by page. 1. Read data is correct. No ECC is applied. 2. Read data is correct with 1-bit correction of ECC. 3. Read data is incorrect though ECC is applied (means >2 bits per a unit of 16-byte (row) are incorrect).

7-3 Related Registers

Registers to be related about NVM are the followings.

Table. 30 Related Registers

Index Byte		Register Name	RW	Comment	Re-Time	Default	Embd	Comments
IIIuex	Dyte	Register Name	IXVV	Comment	NG-TIME	(HEX)	DL	Comments
0100	[0]	Mode_sel	RW	Mode select 0: SW- Standby 1: Streaming		0		
3380	[7:0]	SYSOTP_IF_MODE1	RW	OTP mode setting [1:0]:control access cycle to fuse cell 00:INCK cycle 01:INCK/2 cycle 10:INCK/4 cycle [3]:ECC disable switch 0:ECC on,1:ECC off [5]:write mode; 0: test mode 1: recommended	× Q	00	9 5	
30CC	[7:0]	TESTTGCU	RW	Monitor Output		00		
301B	[2:0]	FSTROBESEL	RW	Set FStrobe pin to monitor		00		
3368	[15:8]	INCK_FREQ[15:8]	RW	input_clk_frequency_mhz		0B		
3369	[7:0]	INCK_FREQ[7:0]	RW	(need input)		6E		
3382	[15:8]	SYSOTP_IF_WRCNT[15:8]	RW	OTP write clock setting		07		
3383	[7:0]	SYSOTP_IF_WRCNT[7:0]	RW	Write Glock Setting		80		
3400	[2:0]	OTPIF_CTRL	RW	OTP I/F control register [0] enable [1]R/W [2]error clear		00		
3401	[1:0]	OTPIF_STATUS	RO-D	OTP I/F status; [0] ready [1] error		00		
3402	[2:0]	OTPIF_PAGE_SELECT	RW	otpif_page_select		00		
3404	[7:0]	OTPIF_DT_0	RW	otpif_data_0		00		
(DT_1 t	to DT_62	2						
3443	[7:0]	OTPIF_DT_63	RW	otpif_data_63		00		Trigger to start write sequence
5801	[5:4]		RO	00: No data error exists. 01: Data error and corrected by ECC. = Read data is correct. 11: Data error exists, and cannot be corrected by ECC. Read data is incorrect.		00		

Before writing / reading following steps are required

- 0. Set Sensor being SW-Standby by 0x0100 = 0h
- 1. Set monitor output to check writing pulse. (option, debug purpose only)
- 2. Set OTP write clock setting.

(When INCK = 9 MHz, 021Ch at 0x3382, 0x3383)

3. Set clock frequency that user supplies to the sensor.

(When INCK = 9 MHz, 0900h at 0x3368, 0x3369)

Then when writing:

- 1. Set controller "ECC ON" or ECC OFF" by 0x3380 = "20h" (ECC ON) or "28h" (ECC OFF)
- 2. Set Write by 0x3400 = "3h."
- 3. Set page from 0 to 12 by 0x3402.
- 4. Set 0x3404 to 0x3443 OTPIF_DT_0to 63 = xxh (Data to Write) *1
- 5. Set again OTPIF_DT_63 with the same value that one sets in previous section. (4)

Then when reading;

HANCHANG O.F.III.MOP

- 1. Set controller "ECC ON" or "ECC OFF" by 0x3380 = 00h (ECC ON), 08h (ECC OFF)
- 2. Set Read by 0x3400 = "1h."
- 3. Set page from 0 to 12 by 0x3402.
- 4. Set 0x3404 to 0x3443 OTPIF_DT_0to 63 = xxh (Data to Write)

*1 Since OTP write data are once stored into "Buffer memory", whole page data including no-write data = "0x00" must be set via CCI to calculate error correction codes. And if there are any written pages with ECC_OFF, same date value must be written. When final writing, it should be written with ECC_ON.

7-4 Manuals

Due to ECC applied to NVM data, following steps are required during writing and reading.

7-4.1 Writing Sequence

1st step is Initial read check to sort out initial failure

Fig. 36 Flow chart for initial Reading

HANCHANG O.F.III.MOP

Fig. 37 Flow chart for Multi step Writing

After this check, write sequence can start as followings.

Table. 31 Example of multi-step writing in the page w/ ECC function

Page	Addr	1st	2nd		The Last
Х	000	Α			Α
Х	001		В		В
Х					
Х	015			С	С
Х	016			D	D
Х					
Х	063			Е	E
0x33	28h	28h	28h	20h	

The table shows example of multi-step writing in one page w/ ECC function. Integrators need to turn on ECC at the last writing to secure NVM writing.

7-4.2 Reading Sequence

When reading NVM, ECC ON/OFF needs to be matched in the last writing. Followings are the example settings.

ECC OFF; 0x3380 = 08h ECC ON; 0x3380 = 00h

7-5 NVM Memory Map

Table. 32 NVM Memory Map Example

Page	Row	addr	Cotonom	Name	value	data Oumar
(dec)	(dec)	(hex)	Category	Name	(hex)	data Owner
0	0-3	000 -03F	Reserved			Integrator
1	4-7	040 -07F	Reserved			Integrator
2	8-11	080 -0BF	Reserved			Integrator
3	12-15	0C0 -0FF	Reserved			Integrator
4	16-19	100 -13F	Reserved			Integrator
5	20-23	140 -17F	Reserved			Integrator
6	24-27	180 -1BF	Reserved			Integrator
7	28-31	1C0 -1FF	Reserved			Integrator
8	32-35	200 -23F	Reserved			Integrator
9	36-39	240 -27F	Reserved			Integrator
10	40-43	280 -2BF	Reserved			Integrator
11	44-47	2C0 -2FF	Reserved			Integrator
12	48-51	300 -33F	Reserved			Integrator
13	52-55	340 -37F	please don't write			Sony
14	56-59	380 -3BF	please don't write			Sony
15	60-63	3C0 -3FF	please don't write			Sony

8. Other Functions

8-1 Clock System

HANCHANG O.FILM

8-1.1 Clock Structure

The IMX179 clock system has the following structure.

The IMX179 is comprised of 2 ch Pipe-Line, and 1 PLL for both pixel read domain and Output data domain.

9. Electrical Characteristics

9-1 Absolute Maximum Ratings

Table. 33 Absolute Maximum Ratings

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply voltage (analogue)	V _{ANA}	-0.3		3.3	V	
Supply voltage (Core)	V_{DDL}	-0.3		2.0	V	
Supply voltage (IF)	V_{DIG}	-0.3		3.3	V	
Input voltage	Vi	-0.3		3.3	V	
Output voltage	Vo	-0.3		3.3	V	0.3
Operating temperature	Topr	-20		+60	°C	Тј
Storage temperature	Tstg	-30		+80	°C	Ţj.
Performance guarantee temperature	Tspec	-20		+60	°C	Ťj

9-2 Recommended Operating Conditions

Table. 34 Recommended Operating Conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply voltage (analogue)	V	2.6	2.7	2.9	V	Performance limit
Supply voltage (analogue)	V _{ANA}	2.4	2.7	2.9	V	Functional limit
Supply voltage (Core)	V _{DDL}	1.1	1.2	1.3	V	
Supply voltage (IF)	V_{DIG}	1.62	1.8	1.98	V	

9-3 Electrical Characteristics

Table. 35 DC Characteristics

Item	Pins	Symbol	Min.	Тур.	Max.	Unit	Comment
	VDDSUBD VDDHCP VDDHCM1,2	Vana	2.6 *1 2.4 *2	2.7	2.9	V	*1; performance limit *2; functional limit
Supply voltage	VDDHAN VDDHPL VDDHSN1-3						
AM	VDDMCO	V_{DIG}	1.62	1.8	1.98	٧	Need Evaluation to fit requirements
``	VDDLSC1-4			1.2	1.3	>	
	VDDLCN1,2	V_{DDL}	1.1				
	VDDLIO1,2						

Item	Pins	Symbol	Min.	Тур.	Max.	Unit	Comment
		VIL	-0.5		0.3VDIG	٧	
Digital input/output	CCI CDA	VIH	0.7VDIG		VDIG + 0.5	V	
voltage	SCL, SDA	VOL			0.25VDIG	٧	for currents abs (2 mA)
		VOH	0.75VDIG			٧	for currents abs (2 mA)
Digital output	REGEN	VOL			0.45	٧	
voltage	GPIO 1,2,3,4	VOH	VDIG-0.45			V	
Digital input valtage	INCK XCLR	VIL	-0.3		0.35VDIG	V	
Digital input voltage		VIH	0.65VDIG		VDIG + 0.3	٧	

9-4 AC Characteristics

9-4.1 Master Clock Waveform Diagram

9-4.1.1 INCK Square Waveform Input Specifications

Input specifications are shown below when square-wave inputs directly into the external pin INCK.

Fig. 39 Master Clock Square Waveform Diagram

Table. 36 Master Clock Square Waveform Input Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Comment
Frequency	fSCK	6	18	27	MHz	
jitter (period, peak-to-peak)	Tjitter			600	ps	
Rise Time	fRISE	1		10	ns	
Fall Time	fFALL	1		10	ns	
Duty Cycle	fDUTY	45		55	%	
Input Leakage	fILEAK	-10		10	μΑ	

9-5 Electrical Characteristics

Table. 37 Electrical Characteristics

(V_{ANA} = 2.9 V, V_{DDL} = 1.2 V, V_{DIG} = 1.92 V, Tj = 60 $^{\circ}$ C)

Item	Symbol	Min.	Тур.	Max.	Unit	Comment
Current consumption (15 frame/s)				48	mA	
Current consumption (30 frame/s, 2x2 bin)	IVAVA_strm			48	mA	VTmax is max speed read out from pixel array CSI2 4 lanes
Current consumption (VTmax)				48	mA	
Current consumption (15 frame/s)				1	mA	60.,
Current consumption (30 frame/s, 2x2 bin)	IVDIG_strm			1	mA	VTmax is max speed read out from pixel array CSI2 4 lanes
Current consumption (VTmax)				1	mA	
Current consumption (15 frame/s)				130	mΑ	
Current consumption (30 frame/s, 2x2 bin)	IVDDL_strm			130	mΑ	VTmax is max speed read out from pixel array CSI2 4 lanes
Current consumption (VTmax)				200	mA	
HW-Standby current (ttl)	ISTB	Y		10060	μA	V _{DDL} shall be disabled
HW-Standby current (analog)	ISTB_ana			50	μA	
HW-Standby current (if)	ISTB_dig			10	μA	
HW-Standby current (digital)	ISTB_ddl			10000	μA	V _{DDL} shall be disabled

Note) Measurement conditions

10. Image Sensor Characteristics

10-1 Spectral Sensitivity Characteristics

(Excluding lens characteristics and light source characteristics)

Fig. 40 Example of Spectral Sensitivity Characteristics

10-2 Image Sensor Characteristics

Table. 38 Image Sensor Characteristics

 $(V_{ANA} = 2.7 \text{ V}, V_{DDL} = 1.2 \text{ V}, V_{DIG} = 1.8 \text{ V}, Tj = 60 ^{\circ}\text{C}, Typical Gain (0 dB))$

Item	Symbol	Min.	Тур.	Max.	Unit	Range	Measure- ment method	Remarks
Sensitivity	S	310			LSB ^(*1)	Center	ISC_1	1/120 s storage
Consition natio	RG	39.0	46.0	53.0	%	Zone0	ISC_2	1/15 s storage
Sensitivity ratio	BG	42.0	49.0	56.0	70			
Saturation signal	Vsat	959			LSB	Zone0	ISC_3	1/15 s storage
Dark signal	Vdt			0.5	LSB	Zone2D	ISC_4	1/30 s storage

^(*1) LSB is abbreviation of Least Significant Bit, and it indicates signal output unit when 10bits = 1023 digital output.

10-3 Spot Pixel Specifications

Table. 39 Spot Pixel Specifications

 $(15 \text{ frame/s}, V_{ANA} = 2.7 \text{ V}, V_{DDL} = 1.2 \text{ V}, V_{DIG} = 1.8 \text{ V}, Tj = 60 ^{\circ}\text{C})$

Type of distortion	Level Note 1)	Maximum distorted pixels in Zone2D	Measurement method	Remarks
2x4 defect in the dark	405 LSB ≤ D	15 address (*1)		18 dB gain
2 same color adjoin at high light	19 % < D	5 (total) ^(*1)		
2 same color adjoin at dark	405 LSB ≤ D	5 (total) (1)		18 dB gain
Black or white pixel at high light	19 % < D	Total 1000ppm	SPS_1	
White pixels in the dark	405 LSB ≤ D	for each color plane	SPS_2	18 dB gain
3 or more same color adjoin at high light	19 % < D			
3 or more same color adjoin at dark	405 LSB ≤ D	0		18 dB gain

^(*1) These defects will be corrected by internal static defect correction.

Note1) D...Spot pixel level.

WANCHANG O.F.III.M. O.F.

Note2) The above chart (hereinafter referred to as the "White and Black Pixel Specifications") is the standard only for sorting CMOS image sensor products in this specification book (hereinafter referred to as the "PRODUCTS") before shipment from a manufacturing factory. Sony Corporation and its distributors (collectively hereinafter referred to as the "Seller") disclaim and will not assume any liability even if actual number of distorted pixels of the PRODUCTS delivered to you exceeds the maximum number set forth in the White and Black Pixel Specifications. You are solely liable for any claim, damage or liability arising from or in connection with such distorted pixels. If the Seller separately has its own product warranty program for the PRODUCTS (the "Program"), the conditions in this specification book shall prevail over the Program and the Seller shall not assume any liability under the Program to the extent there is contradiction.

10-4 Zone Definition

Fig. 41 Zone Definition Diagram

10-5 Image Sensor Characteristics and Spot Pixel Measurement Method

10-5.1 Measurement conditions

The device drive conditions are at the typical values of the bias and clock voltage conditions.

Table. 40 Measurement Conditions

Supply voltage	Analogue 2.7 V, digital 1.2 V, IF 1.8 V
Clock	INCK 9 MHz

In the following measurements, spot pixels are excluded and, unless otherwise specified, the optical black (OB) level is used as the reference for the signal output, which is taken as the value of the Gr/Gb signal output or the R/B signal output of the measurement system.

10-5.2 Color coding of this image sensor & Readout

The primary color filters of this image sensor are arranged in the layout shown in the figure below. Gr and Gb denote the G signals on the same line as the R signal and the B signal, respectively. The R signal and Gr signal lines and the Gb signal and B signal lines are output successively.

All pixel signals are output successively in a 1/15 s period.

Fig. 42 Color Coding Diagram

10-5.3 Definition of standard imaging conditions

10-5.3.1 Standard imaging condition I

Use a pattern box (luminance: 706 cd/m^2 , color temperature of 3200 K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0 mm) as an IR cut filter and image at F2.8. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.

10-5.3.2 Standard imaging condition II

A testing lens with CM500S (t = 1.0 mm) is used as an IR cut filter for light source with 3200 K color temperature. The luminous intensity to the sensor receiving surface is adjusted to the luminous intensity level shown in each measurement item by the light source output, lens aperture or storage time control by the electronic shutter.

10-5.3.3 Standard imaging condition III

IA testing lens with CM500S (t = 1.0 mm) is used as an IR cut filter for light source with 3200 K color temperature. The luminous intensity to the sensor receiving surface is adjusted to the luminous intensity level shown in each measurement item by the light source output or storage time control by the electronic shutter.

Image sensor characteristics measurement method

ISC_1. Sensitivity

Set the measurement condition to the standard imaging condition I. After setting the electronic shutter mode with a shutter speed of 1/120 s, measure the Gr and Gb signal outputs (VGr, VGb) at the center of the screen, and substitute the values into the following formula.

$$S = \frac{VGr + VGb}{2} [LSB]$$

ISC_2. Sensitivity ratio

Set the measurement condition to the standard imaging condition II. After adjusting so that the average value of the VG signal output is 430[LSB], measure the R signal output (VR [LSB]), the Gr and Gb signal outputs (VGr, VGb [LSB]) and the B signal output (VB [LSB]) at the center of the screen in frame readout mode, and substitute the values into the following formulas.

$$VG = \frac{VGr + VGb}{2}$$

$$RG = \frac{VR}{VG}$$

$$RB = \frac{VB}{VG}$$

ISC_3. Saturation signal

Set the measurement condition to the standard imaging condition III. After adjusting the luminous intensity to 20 times the intensity with the average value of the G signal output, 430[LSB], measure the average value of the Gr, Gb, R and B signal outputs.

ISC_4. Dark signal

Measure the average value (Vdt[LSB]) of the signal output in zone2D in the light-obstructed state. Define the average value of the signal output accumulated in 1 frame period (tlv) as Vdt1V and the average value

of the signal output accumulated in the shortest period (1H period: tlh) as Vdt1H, and then substitute the values into the following formula.

10-5.4 Notice on White Pixels Specifications

After delivery inspection of CMOS image sensors, cosmic radiation may distort pixels of CMOS image sensors, and then distorted pixels may cause white point effects in dark signals in picture images. (Such white point effects shall be hereinafter referred to as "White Pixels".) Unfortunately, it is not possible with current scientific technology for CMOS image sensors to prevent such White Pixels. It is recommended that when you use CMOS image sensors, you should consider taking measures against such White Pixels, such as adoption of automatic compensation systems for White Pixels in dark signals and establishment of quality assurance standards. Unless the Seller's liability for White Pixels is otherwise set forth in an agreement between you and the Seller, Sony Corporation or its distributors (hereinafter collectively referred to as the "Seller") will, at the Seller's expense, replace such CMOS image sensors, in the event the CMOS image sensors delivered by the Seller are found to be to the Seller's satisfaction, to have over the allowable range of White Pixels as set forth as set forth above under the heading "Spot Pixels Specifications", within the period of three months after the delivery date of such CMOS image sensors from the Seller to you; provided that the Seller disclaims and will not assume any liability after if you have incorporated such CMOS image sensors into other products. Please be aware that Seller disclaims and will not assume any liability for (1) CMOS image sensors fabricated, altered or modified after delivery to you, (2) CMOS image sensors incorporated into other products, (3) CMOS image sensors shipped to a third party in any form whatsoever, or (4) CMOS image sensors delivered to you over three months ago. Except the above mentioned replacement by Seller, neither Sony Corporation nor its distributors will assume any liability for White Pixels. Please resolve any problem or trouble arising from or in connection with White Pixels at your costs and expenses.

[For Your Reference] The Annual Number of White Pixels Occurrence

The chart below shows the predictable data on the annual number of White Pixels occurrence in a single-story building in Tokyo at an altitude of 0 meters. It is recommended that you should consider taking measures against the annual White Pixels, such as adoption of automatic compensation systems appropriate for each annual number of White Pixels occurrence.

The data in the chart is based on records of past field tests, and signifies estimated number of White Pixels calculated according to structures and electrical properties of each device. Moreover, the data in the chart is for your reference purpose only, and is not to be used as part of any CMOS image sensor specifications.

Example of Annual Number of Occurrence

White Pixel Level (in case of storage time = 1/30 s) $(T_j = 60 \degree C)$	Annual number of occurrence		
16 LSB or higher	1.7 pcs		
29 LSB or higher	1.1 pcs		
71 LSB or higher	0.6 pcs		
147 LSB or higher	0.3 pcs		
212 LSB or higher	0.3 pcs		

- Note 1) The above data indicates the number of White Pixels occurrence when a CMOS image sensor is left for a year.
- Note 2) The annual number of White Pixels occurrence fluctuates depending on the CMOS image sensor storage environment (such as altitude, geomagnetic latitude and building structure), time (solar activity effects) and so on. Moreover, there may be statistic errors. Please take notice and understand that this is an example of test data with experiments that have being conducted over a specific time period and in a specific environment.
- Note 3) This data does not guarantee the upper limits of the number of White Pixels occurrence.

For Your Reference:

The annual number of White Pixels occurrence at an altitude of 3,000 meters is from 5 to 10 times more than that at an altitude of 0 meters because of the density of the cosmic rays. In addition, in high latitude geographical areas such as London and New York, the density of cosmic rays increases due to a difference in the geomagnetic density, so the annual number of White Pixels occurrence in such areas approximately doubles when compared with that in Tokyo.

IMX179QQH5-C SONY

10-5.5 **Measurement Method for Spot Pixels**

Measure under the standard imaging condition II.

Black or white pixels at high light

After adjusting the average value of the Gr/Gb signal output to 430[LSB], measure the local dip point (black pixel at high light, VxB) and peak point (white pixel at high light, VxK) in the Gr/Gb/R/B signal output Vx (x = Gr/Gb/R/B), and substitute the values into the following formula.

$$D_{K}$$
(WhitePixellevel) = $\frac{\overline{V_{xK}}}{\overline{V_{x}}} \times 100[\%]$

$$D_B(Blackpixelleve) = \frac{\overline{V_{xB}}}{\overline{V_x}} \times 100[\%]$$

Fig. 43 Measurement Method for Spot Pixels

SPS 2. White pixels in the dark

Set the device to a dark setting and measure the local peak point of the signal output waveform using the average value of the dark signal output as a reference.

11. Chief Ray Angle Characteristics

Fig. 44 Chief Ray Angle

12. Connection Example

Fig. 45 Recommended Circuit

Note) When fixing the voltage of chip back side, fix it to VDDSUBD voltage

13. Notes on Handling

1. Static charge prevention

Image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

- (1) Either handle bare handed or use non-chargeable gloves, clothes or material. Also use conductive shoes.
- (2) Use a wrist strap when handling directly.
- (3) Install grounded conductive mats on the floor and working table to prevent the generation of static electricity.
- (4) Ionized air is recommended for discharge when handling image sensors.
- (5) For the shipment of mounted boards, use boxes treated for the prevention of static charges.

2. Protection from dust and dirt

- (1) Perform all work in a clean environment.
- (2) Do not touch the chip surface with hand and make any object contact with it.
- (3) Keep in a dedicated case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.

3. Others

JANCHANG OFFILM

- (1) Do not expose to strong light (sun rays) for long periods, as the color filters of color devices will be discolored.
- (2) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or use in such conditions.
- (3) This product is precision optical parts, so care should be taken not to apply excessive mechanical shocks or force.
- (4) Reliability assurance of this product should be ignored because it is a bare chip.
- (5) Note that imaging characteristics of the sensor may be affected when approaching strong electromagnetic wave or magnetic field during operation.
- (6) Note that X-ray inspection may damage characteristics of the sensor.
- (7) Note that the sensor may be damaged when using ultraviolet ray and infrared laser for mounting it.
- (8) Note that image may be affected by the light leaked to optical black when using an infrared cut filter that has transparency in near infrared ray area during shooting subjects with high luminance.