SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models

吴雨欣

Xudong Lu * 1 Aojun Zhou * 1 Yuhui Xu * 2 Renrui Zhang 1 3 Peng Gao 3 Hongsheng Li 1 4

1Multimedia Laboratory (MMLab), The Chinese University of Hong Kong 2Salesforce Al Research 3Shanghai Artificial Intelligence Laboratory 4CPII under InnoHK

- Motivation
- 2 Method
- 3 Experiments
- 4 Conclusion

- Motivation

Motivation •0000

Motivation

00000

 LLMs' impressive capabilities. large number of parameters. fine-tuning->cumbersome, difficult to deploy

SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models

Motivation

00000

- LLMs' impressive capabilities, large number of parameters, fine-tuning->cumbersome, difficult to deploy
- Many post training pruning methods have emerged, such as SparseGPT and Wanda, which have improved the sparsity rate of the model

Motivation

- LLMs' impressive capabilities, large number of parameters, fine-tuning->cumbersome, difficult to deploy
- Many post training pruning methods have emerged, such as SparseGPT and Wanda, which have improved the sparsity rate of the model
- Direct pruning -> information loss, in medium and high sparsity -> difficult to maintain performance

Motivation 00000

Restore the model performance through retraining

Motivation

00000

- Restore the model performance through retraining
- Traditional retraining methods -> Full parameter backpropagation -> High costs

Motivation

00000

- Restore the model performance through retraining
- Traditional retraining methods -> Full parameter backpropagation -> High costs
- Parameter Efficient Fine Tuning(PEFT)

SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models

Motivation

00000

- Restore the model performance through retraining
- Traditional retraining methods -> Full parameter backpropagation -> High costs
- Parameter Efficient Fine Tuning(PEFT)
- Current PEFT -> Cause the sparse model to revert back to a dense model

Motivation 00000

target:

Sparse LLMs after pruning

characteristic:

Motivation

00000

target:

Sparse LLMs after pruning

characteristic:

• Fine tune the model during the retraining phase without changing its sparsity

SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models

Motivation

00000

target:

Sparse LLMs after pruning

characteristic:

- Fine tune the model during the retraining phase without changing its sparsity
- Restore the performance degradation caused by pruning without compromising the pruning effect

Motivation

00000

target:

Sparse LLMs after pruning

characteristic:

- Fine tune the model during the retraining phase without changing its sparsity
- Restore the performance degradation caused by pruning without compromising the pruning effect
- Modular approach, targets some layer of LLMs

SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models

Motivation

target:

Sparse LLMs after pruning

characteristic:

- Fine tune the model during the retraining phase without changing its sparsity
- Restore the performance degradation caused by pruning without compromising the pruning effect
- Modular approach, targets some layer of LLMs
- Residual connection

Impression

Motivation

00000

Achieved good results in both structured and unstructured pruning, compared to the DSnoT method and LoRA.

1: Experiment Results

- Motivation
- 2 Method

The First Step

图 2: SPP

ullet Freeze the original pruned sparse linear matrix $\widetilde{\mathbf{W}}^{\mathbf{i}} \in \mathbb{R}^{m imes n}$ Insert two learnable matrices and adjust only these two matrices: $\mathbf{W}_{\alpha}^{\mathbf{i}} \in \mathbb{R}^{r \times n} \not \approx \mathbf{W}_{\beta}^{\mathbf{i}} \in \mathbb{R}^{m \times 1}$

The First Step

图 2: SPP

- ullet Freeze the original pruned sparse linear matrix $\mathbf{\widetilde{W}^i} \in \mathbb{R}^{m imes n}$ Insert two learnable matrices and adjust only these two matrices: $\mathbf{W}_{\alpha}^{i} \in \mathbb{R}^{r \times n} \not \models \mathbf{W}_{\beta}^{i} \in \mathbb{R}^{m \times 1}$
- Only modify these m + rn additional parameters

Method

The First Step

图 2: SPP

- Freeze the original pruned sparse linear matrix $\mathbf{\widetilde{W}^i} \in \mathbb{R}^{m \times n}$ Insert two learnable matrices and adjust only these two matrices: $\mathbf{W}_{\alpha}^{i} \in \mathbb{R}^{r \times n} \not \approx \mathbf{W}_{\beta}^{i} \in \mathbb{R}^{m \times 1}$
- Only modify these m + rn additional parameters
- r is a hyperparameter that m can be divided by r

The Second Step

图 3: SPP

• Scale $\mathbf{W}_{\alpha}^{\mathbf{i}}$ and $\mathbf{W}_{\beta}^{\mathbf{i}}$ to the same size as $\mathbf{\widetilde{W}}^{\mathbf{i}}$:

$$\widetilde{W}^{i'} = \widetilde{W}^{i} \odot \mathsf{Repeat}_{0}(W_{\alpha}^{i}, \left\lfloor \frac{m}{r} \right\rfloor) \odot \mathsf{Repeat}_{1}(W_{\beta}^{i}, n)$$

The Second Step

图 3: SPP

• Scale $\mathbf{W}_{\alpha}^{\mathbf{i}}$ and $\mathbf{W}_{\beta}^{\mathbf{i}}$ to the same size as $\mathbf{\widetilde{W}}^{\mathbf{i}}$:

$$\widetilde{W}^{i'} = \widetilde{W}^i \odot \mathsf{Repeat}_0(W^i_\alpha, \left\lfloor \frac{m}{r} \right\rfloor) \odot \mathsf{Repeat}_1(W^i_\beta, \mathbf{n})$$

 where ⊙ represents element wise multiplication operation, Repeat $_0$ and Repeat $_1$ represents scaling operations on $\mathbf{W}^{\mathbf{i}}_{\sim}$ and $\mathbf{W}_{\beta}^{\mathbf{i}}$, to ensure they match the size of \widetilde{W}^{i}

The Third Step

图 4: SPP framework

• The i Layer of the Model:

$$\mathbf{Y}^i = \mathbf{F}(\mathbf{X}^i, \widetilde{W}^i) + s \cdot \mathbf{F}(\mathsf{Dropout}(\mathbf{X}^i), \widetilde{W}^{i'})$$

The Third Step

图 4: SPP framework

The i Layer of the Model:

SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models

$$\mathbf{Y}^i = \mathbf{F}(\mathbf{X}^i, \widetilde{W}^i) + s \cdot \mathbf{F}(\mathsf{Dropout}(\mathbf{X}^i), \widetilde{W}^{i'})$$

• Initialization: set $\mathbf{W}^{\mathbf{i}}_{\beta}$ to All Zeros, and randomly initialize $\mathbf{W}^{\mathbf{i}}_{\alpha}$

Why SPP does not destroy the sparse structure?

• Element wise multiplication (Hadamard product)(X*0=0)

Why SPP does not destroy the sparse structure?

- Element wise multiplication (Hadamard product)(X*0=0)
- Freeze the original pruning weights

Why SPP does not destroy the sparse structure?

- Element wise multiplication (Hadamard product)(X*0=0)
- Freeze the original pruning weights
- Maintain sparsity during the weight merging process(0+0=0)

- 3 Experiments

Experiments 00000000

• Instruction fine-tuning dataset: Stanford Alpaca

Experiment Settings

- Instruction fine-tuning dataset: Stanford Alpaca
- Model: LLaMA 7B/13B/30B/65B, LLaMA-2 7B/13B/70B

Experiment Settings

- Instruction fine-tuning dataset: Stanford Alpaca
- Model: LLaMA 7B/13B/30B/65B, LLaMA-2 7B/13B/70B
- Hardware: 8 * NVIDIA A100-80GB GPU

Experiment Settings

- Instruction fine-tuning dataset: Stanford Alpaca
- Model: LLaMA 7B/13B/30B/65B, LLaMA-2 7B/13B/70B
- Hardware: 8 * NVIDIA A100-80GB GPU
- Evaluation metrics: LM Eval, Perplexity, MMLU

 Add learnable parameters on linear layers such as'q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, score'

- Add learnable parameters on linear layers such as'q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, score'
- Set r to 16

- Add learnable parameters on linear layers such as'q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, score'
- Set r to 16
- For the training of the 7B/13B/30B/65B/70B models, learning rates of 4e-3/2e-3/4e-3/5e-4/5e-4 were used, with batch sizes set to 8/4/16/8/8

SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models

Motivation

- Add learnable parameters on linear layers such as'q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, score'
- Set r to 16
- For the training of the 7B/13B/30B/65B/70B models, learning rates of 4e-3/2e-3/4e-3/5e-4/5e-4 were used, with batch sizes set to 8/4/16/8/8
- Set a 0.03 warm-up ratio, the AdamW optimizer, a 0.001 weight decay

Experiment Details

- Add learnable parameters on linear layers such as'q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, score'
- Set r to 16
- For the training of the 7B/13B/30B/65B/70B models, learning rates of 4e-3/2e-3/4e-3/5e-4/5e-4 were used, with batch sizes set to 8/4/16/8/8
- Set a 0.03 warm-up ratio the AdamW optimizer a 0.001 weight decay
- Fine-tune 7B/13B/30B models by 3 epochs, and 65B/70B models by 1 epoch

Comparison of the number of Trainable Parameter

		LL	aMA	LLaMA-2			
	7B	13B	30B	65B	7B	13B	70B
Trainable Parameters All Parameters	2.0×10 ⁷ 6.8×10 ⁹	3.1×10 ⁷ 1.3×10 ¹⁰	6.0×10 ⁷ 3.3×10 ¹⁰	9.8×10 ⁷ 6.5×10 ¹⁰	2.0×10 ⁷ 6.8×10 ⁹	3.1×10 ⁷ 1.3×10 ¹⁰	1.1×10 ⁸ 6.9×10 ¹⁰
Per mille (‰)	2.90	2.35	1.83	1.50	2.90	2.35	1.54

• the number of Trainable Parameter: m*n -> m+r*n

Sparsity

SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models

WinoGrande ARC-e ARC-c OBOA Average

50%Sparisty,LLaMA,Zero-shot

LLaMA Method

LLawia	Method	Sparsity	Olooo	KIL	nenaswag	wmoGrande	ARC-e	ARC-C	OBQA	Average
	None	Dense	75.11	66.43	56.96	69.85	75.25	41.89	34.40	59.98
	SparseGPT	Unstructured 50%	73,36	57,76	51.44	68.03	70.45	36,35	28.40	55.11
	SparseGPT+SPP	Unstructured 50%	72.84	65.70	56.40	67.88	72.35	41.04	32.80	58.43
	SparseGPT	2:4	70.09	57.76	43.37	63.46	61.62	29.27	22.60	49.74
7B	SparseGPT+SPP	2:4	72.39	59.57	53.33	64.17	68.39	37.54	26.80	54.60
	Wanda	Unstructured 50%	71.01	55.23	51.90	66.22	69.36	36.95	28.60	54.18
	Wanda+SPP	Unstructured 50%	70.86	66.06	55.92	67.64	72.81	41.64	32.00	58.13
	Wanda	2:4	69.27	51.26	42.07	62.67	60.52	27.99	24.60	48.34
	Wanda+SPP	2:4	71.19	63.90	52.77	64.88	68.18	37.03	30.00	55.42
	None	Dense	77.98	70.40	59.92	72.61	77.36	46.50	33.20	62.57
	SparseGPT	Unstructured 50%	76.54	62.09	54.94	71.59	72.35	41.64	32.20	58.76
	SparseGPT+SPP	Unstructured 50%	79.20	64.62	59.27	70.32	74.83	46.59	34.60	61.35
13B	SparseGPT	2:4	70.80	56.68	48.09	69.22	66.88	36.26	26.20	53.45
136	SparseGPT+SPP	2:4	77.65	63.54	56.55	69.69	71.21	40.96	32.60	58.89
	Wanda	Unstructured 50%	76.27	62.82	55.78	71.98	73.32	43.77	31.80	59.39
	Wanda+SPP	Unstructured 50%	78.29	66.43	58.88	70.32	75.59	46.93	34.40	61.55
	Wanda	2:4	70.21	53.79	46.78	68.82	65.74	33.70	26.20	52.18
	Wanda+SPP	2:4	75.99	58.12	56.07	68.90	70.37	40.53	32.40	57.48
	None	Dense	82.63	66.79	63.36	75.85	80.39	52.82	36.00	65.41
	SparseGPT	Unstructured 50%	82.63	58.84	59.20	73.48	78.79	49.15	33.20	62.18
	SparseGPT+SPP	Unstructured 50%	84.43	68.23	63.18	73.56	81.57	52.56	37.00	65.79
30B	SparseGPT	2:4	76.57	61.01	53.52	72.30	74.66	42.06	31.60	58.82
300	SparseGPT+SPP	2:4	81.65	66.43	60.46	72.45	78.75	50.17	36.20	63.73
	Wanda	Unstructured 50%	81.93	64.98	60.95	73.64	79.38	50.17	34.80	63.69
	Wanda+SPP	Unstructured 50%	84.19	66.79	62.52	71.59	77.10	51.79	34.80	64.11
	Wanda	2:4	75.14	63.54	54.53	72.45	74.24	41.89	31.80	59.08
	Wanda+SPP	2:4	81.38	69.68	59.99	71.59	76.73	48.63	34.60	63.23
	None	Dense	84.55	69.68	65.40	77.35	52.82	81.00	38.00	66.97
	SparseGPT	Unstructured 50%	84.90	70.04	63.95	77.27	79.65	50.17	37.40	66.20
	SparseGPT+SPP	Unstructured 50%	84.95	70.04	64.25	77.19	79.85	50.94	37.80	66.43
65B	SparseGPT	2:4	84.55	69.31	57.95	76.95	78.00	45.39	31.20	63.34
OCD	SparseGPT+SPP	2:4	84.25	68.23	58.40	76.87	78.10	45.99	31.40	63.32
	Wanda	Unstructured 50%	85.05	71.84	64.60	77.35	79.65	50.26	38.40	66.74
	Wanda+SPP	Unstructured 50%	85.25	71.84	65.30	77.19	79.95	51.11	38.60	67.03
	Wanda	2:4	83.40	61.01	58.55	75.22	76.60	45.56	33.20	61.93
	Wanda+SPP	2:4	83.30	61.37	61.85	76.16	78.60	47.70	36.20	63.60

75%Sparisty,LLaMA,Zero-shot

LLaMA	Method	Sparsity	LM-eval	PPL (↓)
	Wanda	Unstructured 75%	32.14	1285.24
	Wanda+DS⊘T	Unstructured 75%	32.23	646.40
7B	Wanda+SPP	Unstructured 75%	41.71	21.80
/ D	Wanda	2:8	32.53	3284.43
	Wanda+DS⊘T	2:8	31.57	2742.98
	Wanda+SPP	2:8	38.61	42.07
	Wanda	Unstructured 75%	39.21	149.63
	Wanda+DS⊘T	Unstructured 75%	37.77	184.51
30B	Wanda+SPP	Unstructured 75%	50.33	10.89
30B	Wanda	2:8	35.12	1057.58
	Wanda+DS⊘T	2:8	32.81	903.17
	Wanda+SPP	2:8	43.09	19.83

• 7B LLaMA LM-Eval: 59.98

75%Sparisty,LLaMA,Zero-shot

LLaMA	Method	Sparsity	LM-eval	PPL (↓)
	Wanda	Unstructured 75%	32.14	1285.24
	Wanda+DS⊘T	Unstructured 75%	32.23	646.40
7B	Wanda+SPP	Unstructured 75%	41.71	21.80
/ D	Wanda	2:8	32.53	3284.43
	Wanda+DS⊘T	2:8	31.57	2742.98
	Wanda+SPP	2:8	38.61	42.07
	Wanda	Unstructured 75%	39.21	149.63
	Wanda+DS⊘T	Unstructured 75%	37.77	184.51
30B	Wanda+SPP	Unstructured 75%	50.33	10.89
30B	Wanda	2:8	35.12	1057.58
	Wanda+DS⊘T	2:8	32.81	903.17
	Wanda+SPP	2:8	43.09	19.83

7B LLaMA LM-Eval: 59.98

30B LLaMA LM-Eval: 65.41

75%Sparisty,LLaMA,Zero-shot

LLaMA	Method	Sparsity	LM-eval	PPL (↓)
	Wanda	Unstructured 75%	32.14	1285.24
	Wanda+DS⊘T	Unstructured 75%	32.23	646.40
7B	Wanda+SPP	Unstructured 75%	41.71	21.80
/B	Wanda	2:8	32.53	3284.43
	Wanda+DS⊘T	2:8	31.57	2742.98
	Wanda+SPP	2:8	38.61	42.07
	Wanda	Unstructured 75%	39.21	149.63
	Wanda+DS⊘T	Unstructured 75%	37.77	184.51
30B	Wanda+SPP	Unstructured 75%	50.33	10.89
30B	Wanda	2:8	35.12	1057.58
	Wanda+DS⊘T	2:8	32.81	903.17
	Wanda+SPP	2:8	43.09	19.83

7B LLaMA LM-Eval: 59.98

30B LLaMA LM-Eval: 65.41

The results of high sparsity rate is not ideal

50%Sparisty, MMLU, 5-shot

			LLa		LLaMA-2			
Method	Sparsity	7B	13B	30B	65B	7B	13B	70B
None	Dense	35.64	47.63	58.58	63.78	46.56	55.30	69.56
SparseGPT	Unstructured 50%	32.19	40.44	52.62	59.37	36.41	47.47	65.57
SparseGPT+SPP	Unstructured 50%	30.77	43.91	54.73	59.38	39.78	48.31	65.60
SparseGPT	2:4	28.24	32.31	43.79	49.79	29.16	38.41	57.66
SparseGPT+SPP	2:4	27.81	37.55	49.01	49.50	33.28	45.63	57.85
Wanda	Unstructured 50%	31.50	39.43	52.84	58.75	34.20	47.78	64.45
Wanda+SPP	Unstructured 50%	31.74	43.34	53.89	59.02	38.08	48.97	64.39
Wanda	2:4	27.14	31.26	41.36	45.68	28.33	35.16	56.86
Wanda+SPP	2:4	28.56	35.73	46.19	47.67	30.47	42.79	57.98

Certain gap on difficult problems

50%Sparisty, MMLU, 5-shot

			LLa		LLaMA-2			
Method	Sparsity	7B	13B	30B	65B	7B	13B	70B
None	Dense	35.64	47.63	58.58	63.78	46.56	55.30	69.56
SparseGPT	Unstructured 50%	32.19	40.44	52.62	59.37	36.41	47.47	65.57
SparseGPT+SPP	Unstructured 50%	30.77	43.91	54.73	59.38	39.78	48.31	65.60
SparseGPT	2:4	28.24	32.31	43.79	49.79	29.16	38.41	57.66
SparseGPT+SPP	2:4	27.81	37.55	49.01	49.50	33.28	45.63	57.85
Wanda	Unstructured 50%	31.50	39.43	52.84	58.75	34.20	47.78	64.45
Wanda+SPP	Unstructured 50%	31.74	43.34	53.89	59.02	38.08	48.97	64.39
Wanda	2:4	27.14	31.26	41.36	45.68	28.33	35.16	56.86
Wanda+SPP	2:4	28.56	35.73	46.19	47.67	30.47	42.79	57.98

- Certain gap on difficult problems
- The author: due to the small size of the dataset

Ablation Study

Method	Sparsity	Zero-init	W_{β}	r	LM-eval
		✓	√	4	54.04
		✓	✓	8	54.87
	2:4	✓		16	54.52
			✓	16	53.52
Wanda+SPP		✓	✓	16	55.42
Wanda 1511		✓	✓	4	57.86
		✓	✓	8	56.39
	Unstructured 50%	✓		16	57.81
			✓	16	57.59
		✓	✓	16	58.13
		✓	✓	4	54.82
		✓	✓	8	54.24
	2:4	✓		16	54.62
			✓	16	54.01
SparseGPT+SPP		✓	✓	16	54.60
Sparseof 1 1011		✓	✓	4	57.58
		✓	✓	8	57.32
	Unstructured 50%	✓		16	57.66
			✓	16	57.12
		✓	✓	16	58.43

• \mathbf{W}_{β} , r,the initialization of \mathbf{W}_{β}

Ablation Study

Method	Sparsity	Zero-init	W_{β}	r	LM-eval
		✓	√	4	54.04
		✓	✓	8	54.87
	2:4	✓		16	54.52
			✓	16	53.52
Wanda+SPP		✓	✓	16	55.42
Wanda 1511		✓	✓	4	57.86
		✓	✓	8	56.39
	Unstructured 50%	✓		16	57.81
			✓	16	57.59
		✓	✓	16	58.13
		✓	✓	4	54.82
		✓	✓	8	54.24
	2:4	✓		16	54.62
			✓	16	54.01
SparseGPT+SPP		✓	✓	16	54.60
opuiscoi i iori		✓	✓	4	57.58
		✓	✓	8	57.32
	Unstructured 50%	✓		16	57.66
			✓	16	57.12
		✓	✓	16	58.43

- \mathbf{W}_{β} , r,the initialization of \mathbf{W}_{β}
- r=32?

Comparison with LoRA*

LLaMA	Method	Sparsity	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Average
70	Wanda+LoRA*	Unstructured 75%	62.39	53.07	31.81	52.64	38.22	21.08	14.60	39.11
	Wanda+SPP	Unstructured 75%	60.67	56.32	35.06	52.64	47.05	22.44	17.80	41.71
7B	Wanda+LoRA*	2:8	61.47	53.07	29.18	53.12	34.68	20.22	14.60	38.05
	Wanda+SPP	2:8	54.50	59.21	31.29	52.09	37.46	19.11	16.60	38.61
	Wanda+LoRA*	Unstructured 75%	65.08	55.60	44.35	62.27	60.69	29.18	23.00	48.60
	Wanda+SPP	Unstructured 75%	67.95	54.15	47.28	62.51	63.68	30.72	26.00	50.33
30B	Wanda+LoRA*	2:8	62.17	52.71	35.96	54.30	48.48	23.21	16.20	41.86
	Wanda+SPP	2:8	62.05	54.87	38.17	55.09	49.62	23.63	18.20	43.09

• LoRA's parameter number: m*r+r*n

Comparison with LoRA*

LLaMA	Method	Sparsity	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Average
70	Wanda+LoRA*	Unstructured 75%	62.39	53.07	31.81	52.64	38.22	21.08	14.60	39.11
	Wanda+SPP	Unstructured 75%	60.67	56.32	35.06	52.64	47.05	22.44	17.80	41.71
7B	Wanda+LoRA*	2:8	61.47	53.07	29.18	53.12	34.68	20.22	14.60	38.05
	Wanda+SPP	2:8	54.50	59.21	31.29	52.09	37.46	19.11	16.60	38.61
30B	Wanda+LoRA*	Unstructured 75%	65.08	55.60	44.35	62.27	60.69	29.18	23.00	48.60
	Wanda+SPP	Unstructured 75%	67.95	54.15	47.28	62.51	63.68	30.72	26.00	50.33
30B	Wanda+LoRA*	2:8	62.17	52.71	35.96	54.30	48.48	23.21	16.20	41.86
	Wanda+SPP	2:8	62.05	54.87	38.17	55.09	49.62	23.63	18.20	43.09

LoRA's parameter number: m*r+r*n

SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models

• In LoRA, r=8 is used to ensure that the parameter count is similar to that of SPP

Comparison with LoRA*

LLaMA	Method	Sparsity	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Average
70	Wanda+LoRA*	Unstructured 75%	62.39	53.07	31.81	52.64	38.22	21.08	14.60	39.11
	Wanda+SPP	Unstructured 75%	60.67	56.32	35.06	52.64	47.05	22.44	17.80	41.71
7B	Wanda+LoRA*	2:8	61.47	53.07	29.18	53.12	34.68	20.22	14.60	38.05
	Wanda+SPP	2:8	54.50	59.21	31.29	52.09	37.46	19.11	16.60	38.61
30B	Wanda+LoRA*	Unstructured 75%	65.08	55.60	44.35	62.27	60.69	29.18	23.00	48.60
	Wanda+SPP	Unstructured 75%	67.95	54.15	47.28	62.51	63.68	30.72	26.00	50.33
30B	Wanda+LoRA*	2:8	62.17	52.71	35.96	54.30	48.48	23.21	16.20	41.86
	Wanda+SPP	2:8	62.05	54.87	38.17	55.09	49.62	23.63	18.20	43.09

LoRA's parameter number: m*r+r*n

- In LoRA, r=8 is used to ensure that the parameter count is similar to that of SPP
- Is it more meaningful?

- 4 Conclusion

Conclusion

• a novel Sparsity-Preserved Parameter-efficient fine-tuning (SPP) method

Conclusion

- a novel Sparsity-Preserved Parameter-efficient fine-tuning (SPP) method
- to tackle the challenge of restoring the performance of LLMs after pruning

Conclusion

- a novel Sparsity-Preserved Parameter-efficient fine-tuning (SPP) method
- to tackle the challenge of restoring the performance of LLMs after pruning
- PEFT without changing its sparsity

