《微积分A1》第三讲

教师 杨利军

清华大学数学科学系

2020年09月23日

助教信息

助教:

- 1. 曹杰, 数学系博士生, caoj18@mails.tsinghua.edu.cn
- 2. 黄文仕, 能动系博士生, huangws18@mails.tsinghua.edu.cn
- 3. 王立, 数学系博士生, I-wang20@mails.tsinghua.edu.cn
- 4. 叶豪, 机械系博士生, ye-h18@mails.tsinghua.edu.cn
- 5. 赵汉青, 数学系博士生, 1294614524@qq.com

子序列(subsequences)

Definition

定义: 设 $\{a_n\}_{n\geq 1}$ 为一序列, 若映射 $\phi: \mathbb{N} \to \mathbb{N}$ 满足 $\phi(\mathbf{k}) < \phi(\mathbf{k}+1)$, $\forall \mathbf{k} \geq 1$, 则称序列 $\{a_{\phi(\mathbf{k})}\}$ 为 $\{a_n\}$ 的一个子序列.

Example

例: (i) $\phi(\mathbf{k}) = 2\mathbf{k}$, $\{a_{2\mathbf{k}}\}$ 为序列 $\{a_n\}$ 的一个子序列.

- (ii) $\phi(\mathbf{k}) = 2\mathbf{k} + 1$, $\{a_{2\mathbf{k}+1}\}$ 为序列 $\{a_n\}$ 的一个子序列.
- (iii) $\phi(\mathbf{k}) = 3\mathbf{k}$, $\{a_{3\mathbf{k}}\}$ 为序列 $\{a_{n}\}$ 的一个子序列.
- (iv) $\phi(\mathbf{k}) = \mathbf{k}$, 序列 $\{a_n\}$ 为其自身的一个子序列.

 \underline{i} : 序列 $\{a_n\}_{n\geq 1}$ 的子列 $\{a_{\phi(k)}\}$ 也常常记作 $\{a_{n_k}\}$, 其中 $n_k=\phi(k)$ 满足

 $n_1 < n_2 < n_3 < \cdots$ 为严格递增的正整数序列.

子序列的收敛性

Theorem

定理: 收敛序列的每个子序列均收敛, 且收敛于原序列的极限.

Proof.

证明: 设序列 $\{a_n\}$ 收敛于 a, 设 $\{a_{\phi(k)}\}$ 为其任意一个子序列. 依极限定义可知, 对于任意 $\varepsilon > 0$, 存在正整数 N, 使得对任意 n > N, $|a_n - a| < \varepsilon$. 由于映射 $\phi(\cdot)$ 满足 $\phi(k) < \phi(k+1)$, 故 $\phi(k) \ge k$, $\forall k \ge 1$. 于是 $|a_{\phi(k)} - a| < \varepsilon$, $\forall k > N$. 因为 $\phi(k) \ge k$ $\otimes N$. 这就证明了子序列也收敛于 a. 证毕.

例子

Example

例:证明序列 $\{(-1)^n\}_{n>1}$ 发散.

证明: 反证. 假设序列 {(-1)ⁿ} 收敛,则根据上述定理可知它的每个子序列均收敛于同一个极限值. 但是这个序列的偶脚标和奇脚标子序列

$$\{(-1)^{2n}\} = \{1, 1, 1, \cdots\},$$

$$\{(-1)^{2n-1}\} = \{-1, -1, -1, \cdots\}$$

分别收敛于两个不同的极限值 1 和 -1. 矛盾. 故序列 $\{(-1)^n\}$ 发散. 证毕.

收敛序列的保序性

Theorem

定理: 设 $a_n \rightarrow a$ 且 $b_n \rightarrow b$.

- (1) 若 a < b, 则存在正整数 N, 使得 $a_n < b_n$, $\forall n > N$.
- (2) 若存在正整数 n_0 , 使得 $a_n \le b_n$, $\forall n \ge n_0$, 则 $a \le b$.

 \underline{i} : 结论(2) 不能推广如下: 若 $a_n < b_n$, $\forall n \ge n_0$, 且 $a_n \to a$, $b_n \to b$, 则 a < b. 例如序列 $\{\frac{1}{n^2}\}$ 和 $\{\frac{1}{n}\}$ 均收敛, 且满足 $\frac{1}{n^2} < \frac{1}{n}$, $\forall n \ge 2$. 但它们有相同的极限零.

证明

证明: (1) 由假设 $a_n \to a$ 且 $b_n \to b$ 可知, 对于任意 $\varepsilon > 0$, 存在正整数 N, 使得当 n > N 时,

$$|a_n-a|<\varepsilon\quad \hbox{\it \it L}\quad |b_n-b|<\varepsilon,$$

$$\mathbb{P} \quad -\varepsilon + a < a_n < a + \varepsilon \quad \mathbb{L} \quad -\varepsilon + b < b_n < b + \varepsilon.$$

由于 a < b, 故可取 $\varepsilon = \frac{1}{2}(b-a) > 0$, 则

$$a_n < a + \frac{1}{2}(b-a) = \frac{1}{2}(a+b), \ b_n > -\frac{1}{2}(b-a) + b = \frac{1}{2}(a+b),$$

 $\operatorname{PL}(a_n < \frac{1}{2}(a+b) < b_n, \, \forall n > N. 结论(1)$ 得证.

证明续

证(2). 反证. 假设 a>b. 由结论(1)知存在正整数 N, 使得 $a_n>b_n$, $\forall n>N$. 此与假设 $a_n\le b_n$, $\forall n>n_0$ 相矛盾. 证 毕.

极限的四则运算

Theorem

定理: 设两个数列 $\{a_n\}$ 和 $\{b_n\}$ 均收敛, 且 $a_n \rightarrow a$, $b_n \rightarrow b$,

则这两个数列的和 $\{a_n+b_n\}$, 差 $\{a_n-b_n\}$, 乘积 $\{a_nb_n\}$, 以及

商 $\frac{a_n}{b_n}$ (补充假设 b \neq 0) 均收敛, 并且

- (i) $a_n \pm b_n \rightarrow a \pm b$;
- (ii) $ca_n \rightarrow ca$;
- (iii) $a_nb_n \rightarrow ab$;
- (iv) 设 b eq 0, 则 $\frac{a_n}{b_n} o \frac{a}{b}$.

证明

证明: 结论(i)和(ii)的证明容易. 略去. 证(iii). 要证 $a_nb_n \to ab$, 即要证对 $\forall \varepsilon > 0$, \exists 正整数 N, 使得 $|a_nb_n - ab| < \varepsilon$, $\forall n > N$. 一方面

$$\begin{aligned} |a_nb_n - ab| &= |a_nb_n - ab_n + ab_n - ab| \\ &\leq |a_n - a||b_n| + |a||b_n - b|. \end{aligned}$$

另一方面, 由于收敛序列有界, 故存在 M>0, 使得 $|b_n|\leq M$, $\forall n\geq 1$. 根据假设 $a_n\to a$, $b_n\to b$ 可知对于任意 $\varepsilon>0$, 存在正整数 N, 使得 $|a_n-a|<\varepsilon$ 且 $|b_n-b|<\varepsilon$, $\forall n>N$. 于是

证明续一

$$\begin{split} |a_nb_n-ab| &\leq |a_n-a||b_n|+|a||b_n-b| \\ &\leq \varepsilon M+|a|\varepsilon=(M+|a|)\varepsilon, \quad \forall n>N. \end{split}$$

于是结论(iii)得证. 证(iv). 要证 $\frac{a_n}{b_n} \rightarrow \frac{a}{b}$, 即要证对任意 $\varepsilon > 0$, 存在正整数 N. 使得

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| < \varepsilon, \quad \forall n > N.$$

一方面

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| = \left|\frac{a_nb - ab_n}{b_nb}\right| = \frac{1}{|bb_n|}|a_nb - ab + ab - ab_n|$$

证明续二

$$\leq \frac{1}{|bb_n|} \Big(|b||a_n-a|+|a||b-b_n|\Big).$$

另一方面,由 $b_n \to b$ 可知,对于任意 $\varepsilon = \frac{|b|}{2} > 0$ (因 $b \neq 0$), 存在正整数 N_1 ,使得 $|b_n - b| < \frac{|b|}{2}$, $\forall n > N_1$.于是对 $\forall n > N_1$ $-\frac{|b|}{2} + b < b_n < \frac{|b|}{2} + b \qquad \Rightarrow \qquad |b_n| > \frac{|b|}{2}.$

再由假设 $a_n \rightarrow a$, $b_n \rightarrow b$ 可知, 对任意 $\varepsilon > 0$, 存在正整数 N_2 , 使得

$$|a_n-a|<\varepsilon\quad \text{i. } |b_n-b|<\varepsilon,\quad \forall n>N_2.$$

证明续三

于是对 $\forall n > \max\{N_1, N_2\}$,

$$\begin{split} \left|\frac{a_n}{b_n} - \frac{a}{b}\right| &\leq \frac{1}{|bb_n|} \Big(|b||a_n - a| + |a||b - b_n|\Big) \\ &\leq \frac{2}{|b|^2} (|b|\varepsilon + |a|\varepsilon) = M\varepsilon, \end{split}$$

其中 M =
$$\frac{2}{|\mathbf{b}|^2}(|\mathbf{b}| + |\mathbf{a}|)$$
. 结论(iv)得证.

例一: 求极限

$$\lim_{n\to+\infty}\frac{n^2-n+1}{2n^2+3n+2}.$$

解: 由于

$$\frac{n^2 - n + 1}{2n^2 + 3n + 2} = \frac{1 - \frac{1}{n} + \frac{1}{n^2}}{2 + \frac{3}{n} + \frac{2}{n^2}},$$

故

$$\lim \frac{n^2 - n + 1}{2n^2 + 3n + 2} = \lim \frac{1 - \frac{1}{n} + \frac{1}{n^2}}{2 + \frac{3}{n} + \frac{2}{n^2}} = \frac{\lim \left(1 - \frac{1}{n} + \frac{1}{n^2}\right)}{\lim \left(2 + \frac{3}{n} + \frac{2}{n^2}\right)}$$
$$= \frac{\lim 1 - \lim \frac{1}{n} + \lim \frac{1}{n^2}}{\lim 2 + \lim \frac{3}{n} + \lim \frac{2}{n^2}} = \frac{1 - 0 + 0}{2 + 0 + 0} = \frac{1}{2}. \quad \#$$

两边夹法则(Sandwich theorem, 三明治定理)

$\mathsf{Theorem}$

<u>定理</u>: 设三个序列 $\{a_n\}$, $\{b_n\}$ 和 $\{c_n\}$ 满足 $a_n \leq b_n \leq c_n$,

 $\forall n \geq n_0$, 其中 n_0 为某个正整数. 若极限 $\lim a_n$ 和 $\lim c_n$ 均存在且极限值相等, 记作 a_n 则极限 $\lim b_n$ 也存在且等于 a_n

例: 设 a > 0, 证明 lim √a = 1.

 \underline{ii} : (i) 设 $a \ge 1$, 则 $1 \le \sqrt[n]{a} \le \sqrt[n]{n}$, $\forall n \ge a$. 已证 $\sqrt[n]{n} \to 1$. 于 是根据 Sandwich 定理知 $\sqrt[n]{a} \to 1$.

(ii) 设 0 < a < 1, 则 $b = \frac{1}{a} > 1$. 于是 $\sqrt[n]{a} = \frac{1}{\sqrt[n]{b}} \rightarrow \frac{1}{1} = 1$. 证 毕.

证明

证明: 由假设 $a_n < b_n < c_n$, $\forall n \geq n_0$ 可知

$$a_n-a\leq b_n-a\leq c_n-a,\quad \forall n\geq n_0.$$

由此可知 $|b_n - a| < \max\{|a_n - a|, |c_n - a|\}$. 由假设 $\lim a_n = a$ 且 $\lim c_n = a$ 可知, 对任意 $\epsilon > 0$, 存在正整数 N, 使得 $\forall n > N$

$$|a_n - a| < \varepsilon$$
 A $|c_n - a| < \varepsilon$.

于是对于 $\forall n > \max\{N, n_0\}$,

$$|b_n-a|\leq \max\{|a_n-a|,|c_n-a|\}<\varepsilon.$$

此即 $\lim b_n = a$. 证毕.

例子

例: 设 a_1, a_2, \cdots, a_m 为 m 个非负实数, 证明

$$\lim_{\substack{n\to+\infty}\\ n\to+\infty}\left(a_1^n+a_2^n+\cdots+a_m^n\right)^{\frac{1}{n}}=\max\{a_1,a_2,\cdots,a_m\}.$$

 $\underline{\underline{i}}$: 记 $a \stackrel{\triangle}{=} \max\{a_1, a_2, \dots, a_m\}$,则

$$a=(a^n)^{\frac{1}{n}} \leq \left(a_1^n+a_2^n+\dots+a_m^n\right)^{\frac{1}{n}} \leq (ma^n)^{\frac{1}{n}}=m^{\frac{1}{n}}a \to a.$$

根据 Sandwich 定理可知结论得证.

$\sqrt{2}$ 的近似值

我们已知 $\sqrt{2}$ 是一个无理数. 假设 s 是 $\sqrt{2}$ 的一个近似值, 考虑如何得到一个更好的近似值. 由于 s 和 $\frac{2}{s}$ 的乘积为 2, 不难看出 $\sqrt{2}$ 介于 s 和 $\frac{2}{s}$ 之间. 故可期待 s 和 $\frac{2}{s}$ 的算术平均值 $\frac{1}{2}$ $\left(s+\frac{2}{s}\right)$ 是一个更好的近似. 显然新的近似大于等于 $\sqrt{2}$, 因为

$$\frac{1}{2}\left(s+\frac{2}{s}\right) \ge \sqrt{s \cdot \frac{2}{s}} = \sqrt{2}.$$

受此启发, 我们构造一个迭代序列

$$s_{n+1} = \frac{1}{2} \left(s_n + \frac{2}{s_n} \right), \quad \forall n \geq 1,$$

$\sqrt{2}$ 的近似值, 续一

初始值 s_1 事先给定. 例如取 $s_1=2$. 前几项的计算结果如下

$$s_1 = 2$$

$$s_2 = 1.5$$

$$s_4 = 1.41421568627451\cdots$$

$$s_5 = 1.41421356237469\cdots$$

$$s_6 = 1.41421356237309 \cdots$$

观察知 s_5 和 s_6 的前 12 位小数相同,且 $s_5^2 \approx 2.000000000000000000051$. 因此数值 计算表明序列 $\{s_n\}$ 收敛于 $\sqrt{2}$.

$\sqrt{2}$ 的近似值, 续二

我们也可以估计误差 $|s_n - \sqrt{2}|$.

$$egin{aligned} &s_{n+1}-\sqrt{2}=rac{1}{2}\left(s_n+rac{2}{s_n}
ight)-\sqrt{2}\ &=rac{1}{2s_n}\Big(s_n^2+2-2\sqrt{2}s_n\Big)=rac{1}{2s_n}\Big(s_n-\sqrt{2}\Big)^2.\ & ext{注意 }s_n>\sqrt{2},\ orall n\geq 2,\ \&\ 0<rac{s_n-\sqrt{2}}{s_n}<1.\ ext{ 因此}\ &0< s_{n+1}-\sqrt{2}=rac{1}{2s_n}(s_n-\sqrt{2})^2\ &=rac{1}{2}(s_n-\sqrt{2})rac{s_n-\sqrt{2}}{s_n}\leqrac{1}{2}(s_n-\sqrt{2}). \end{aligned}$$

$\sqrt{2}$ 的近似值, 续三

重复使用上述结论可得

$$\begin{split} 0 < s_{n+1} - \sqrt{2} & \leq \frac{1}{2} (s_n - \sqrt{2}) \\ & \leq \frac{1}{2^2} (s_{n-1} - \sqrt{2}) \leq \dots \leq \frac{1}{2^n} (s_1 - \sqrt{2}). \end{split}$$

根据两边夹法则可知, 序列 $s_{n+1} - \sqrt{2} \rightarrow 0$, 即 $s_n \rightarrow \sqrt{2}$.

 \underline{i} : 往后将介绍解函数方程 f(x)=0 的 Newton 迭代格式 $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$. 对方程 $x^2-2=0$ 应用 Newton 迭代格式即为

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - 2}{2x_n} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right).$$

这正是上述我们采用的计算 $\sqrt{2}$ 的计算公式.

单调序列

Definition

定义: (i) 若序列 $\{a_n\}$ 满足 $a_n \leq a_{n+1}$, $\forall n \geq 1$, 则称这个序列 为单调上升的或单调增加的 (monotone increasing); 若不等号 严格成立, 即 $a_n < a_{n+1}$, $\forall n \geq 1$, 则称这个序列为严格单调上 升的 (strictly monotone increasing).

- (ii) 若序列 $\{a_n\}$ 满足 $a_n \geq a_{n+1}$, $\forall n \geq 1$, 则称这个序列为单调下降的或单调减少的 (monotone decreasing); 若不等号严格成立, 即 $a_n > a_{n+1}$, $\forall n \geq 1$, 则称这个序列为严格单调下降的 (strictly monotone decreasing).
- (iii) 单调上升和单调下降序列都称为单调序列.

例子

例一: 序列 $\left\{\frac{3}{n+5}\right\}$ 是严格单调下降的. 因为

$$\frac{3}{n+5} > \frac{3}{(n+1)+5} = \frac{3}{n+6}.$$

例二: 序列 $\{\frac{n}{n^2+1}\}$ 是严格单调下降的. 因为

$$\frac{n}{n^2+1}>\frac{n+1}{(n+1)^2+1}$$

$$\iff$$
 $n[(n+1)^2+1] > (n+1)(n^2+1).$

$$\iff$$
 $n^3 + 2n^2 + 2n > n^3 + n^2 + n + 1.$

$$\iff$$
 $n^2 + n > 1$, $\forall n \ge 1$.

记号

```
    {a<sub>n</sub>}↑:表示序列 {a<sub>n</sub>} 为单调上升的;
    {a<sub>n</sub>}↓:表示序列 {a<sub>n</sub>} 为单调下降的;
    {a<sub>n</sub>}↑严格:表示序列 {a<sub>n</sub>} 为严格单调上升的;
    {a<sub>n</sub>}↓严格:表示序列 {a<sub>n</sub>} 为严格单调下降的.
```

单调序列定理

Theorem

定理: 每个单调有界序列均有极限. 具体说来,

- (i) 若 $\{a_n\} \uparrow$ 且有上界,则 $\{a_n\}$ 有极限,且 $\lim a_n = \sup\{a_n\}$;
- (ii) 若 $\{a_n\} \downarrow$ 且有下界,则 $\{a_n\}$ 有极限,且 $\lim a_n = \inf\{a_n\}$.

例子

例: 研究序列 $\{a_n\}$ 的收敛性, 其中 $a_1=2$, $a_{n+1}=\frac{1}{2}(a_n+6)$, $n=1,2,\cdots$.

解: 简单计算可知

$$a_1=2$$
 $a_2=4$ $a_3=5$ $a_4=5.5$ $a_5=5.75$ $a_6=5.875$ $a_7=5.9375$ $a_8=5.96875$ $a_9=5.984375$

上述结果表明序列的前9项是单调上升的,并且趋向极限值6.

例子续一

一. 考虑用数学归纳法证明序列满足 $a_{n+1} > a_n$. $\forall n > 1$. 显然 情形n=1成立,因为 $a_2=4>2=a_1$.假设 $a_{k+1}>a_k$,则 $a_{k+1}+6>a_k+6$. $\Delta = \frac{1}{2}(a_{k+1}+6)>\frac{1}{2}(a_k+6)$. $\Delta = 2$ ak+1. 这就证明了序列是严格单调上升的.

二. 再证明序列有上界 6, 即 $a_n < 6$, $\forall n > 1$. 仍然用归纳法证. 由于 $a_1 = 2 < 6$, 故结论当 n = 1 时成立. 假设 $a_k < 6$, 则

 $a_k + 6 < 12$. 故 $a_{k+1} = \frac{1}{2}(a_k + 6) < 6$. 故序列有上界 6.

例子续二

三. 根据单调序列定理可知序列 $\{a_n\}$ 有极限. 设 $a_n \rightarrow a$. 根据 递推关系式我们有

$$a=\lim a_{n+1}=\lim \frac{1}{2}(a_n+6)=\frac{1}{2}(\lim a_n+6)=\frac{1}{2}(a+6).$$

即 $a = \frac{1}{2}(a+6)$. 解之得 a = 6. 解答完毕.

 \underline{i} : 这里必须先证明极限 $\lim_{n\to +\infty} a_n$ 存在,然后才可在式 $a_{n+1}=\frac{1}{2}(a_n+6)$ 中取极限. 否则有可能出错. 例如对于 $a_n=(-1)^n$, $a_{n+1}=-a_n$. 若直接在 迭代式 $a_{n+1}=-a_n$ 中取极限,则 a=-a,即 a=0. 但显然序列 $\{(-1)^n\}$ 无极限.

定理证明

命题得证.

证明: 证(i). 设序列 $\{a_n\} \land 且有上界. 记a = \sup\{a_n\}. 依上确$ 界充要条件知, 对任意 $\varepsilon > 0$, 存在正整数 N, 使得 $a_N > a - \varepsilon$. 即 $0 < a - a_N < \varepsilon$. 再由序列单调增加的假设知, 对 $\forall n > N$. $0 < a - a_n < a - a_N < \varepsilon$. 这表明 $a_n \to a$. 证(ii). 证明方法与结论(i)类似. 设序列 {a_n} 」且有下界. 记 $a = \inf\{a_n\}$. 由下确界充要条件知, 对 $\forall \varepsilon > 0$, $\exists a_N \in \{a_n\}$, 使得 $a_N < a + \varepsilon$, 即 $0 < a_N - a < \varepsilon$. 再由序列的单调下降性质 可知, 对 $\forall n > N$, $0 < a_n - a < a_N - a < \varepsilon$. 这表明 $a_n \to a$.

例子

例: 证明极限 $\lim_{n\to+\infty} e_n$ 存在, 其中

$$e_n = \left(1 + \frac{1}{n}\right)^n.$$

证:对en作二项式展开得

$$\begin{split} e_n &= 1 + \sum_{k=1}^n \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} \frac{1}{n^k} \\ &= 1 + \sum_{k=1}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right). \end{split}$$

于是 e_{n+1} =

$$1+\sum_{k=1}^{n+1}\frac{1}{k!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right)\cdots\left(1-\frac{k-1}{n+1}\right)>e_n.$$

例子续

这表明 $\{e_n\}$ \uparrow 严格. 以下证序列 $\{e_n\}$ 有上界. 对于任意 $n\geq 1$

$$\begin{split} e_n &= 1 + \sum_{k=1}^n \frac{1}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right) \\ &< 1 + \sum_{k=1}^n \frac{1}{k!} < 1 + 1 + \sum_{k=2}^n \frac{1}{k(k-1)} = 2 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k} \right) \\ &= 2 + \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \cdots + \left(\frac{1}{n-1} - \frac{1}{n} \right) \\ &= 2 + 1 - \frac{1}{n} = 3 - \frac{1}{n} < 3. \end{split}$$

这就证明了序列 $\{e_n\}$ 单调上升且有上界, 故极限 $\lim_{n\to+\infty}e_n$ 存在. 证毕.

注记

注一: 数 e $\stackrel{\triangle}{=}$ lim $(1+\frac{1}{n})^n$ 称为 Euler 常数, 近似值为 2.718. Euler 于 1737 年证明了数 e 是无理数.

注二: Hermite 于 1768 年证明了数 e 是超越数. 一个数 c 称为代数数, 如果 c 是某个整系数多项式方程的根. 例如, 每个有理数都是代数数. 再例如 $\sqrt{2}$ 是代数数, 因为它是方程 $x^2-2=0$ 的根. 非代数数称为超越数 (transcendental numbers). 超越数性质比代数数更加难以理解和掌握. 一个比较明显的超越数的例子是数 $\sum_{k=1}^{+\infty} \frac{1}{10^{k!}}$, 由 Liouville 提供并证明.

注三: 关于另一个重要常数圆周率 π : Lambert 于 1768 年证明 Γ π 是无理数. Lindemann 于 1882 年证明 Γ π 是超越数.

例子

例: 设 a>1, 证明 $\frac{n}{a^n}\to 0$.

 $\underline{ithermall{i$

$$\frac{b_{n+1}}{b_n} = \frac{n+1}{a^{n+1}} \frac{a^n}{n} = \frac{1}{a} \frac{n+1}{n} \to \frac{1}{a} < 1.$$

故存在正整数 N, 使得 $\frac{b_{n+1}}{b_n} < 1$, $\forall n \ge N$. 这表明序列 $\{b_n\}$ 对于 n > N 单调下降,且下界 $\{b_n > 0\}$. 由单调序列定理知 $\{b_n\}$ 收敛.记 $\lim_{n \to +\infty} b_n = b$.在如下关系式

$$b_{n+1} = \frac{n+1}{a^{n+1}} = \frac{n+1}{na} \frac{n}{a^n} = \frac{n+1}{na} b_n$$

中令 $n \to +\infty$ 即得 $b = \frac{1}{a}b$ 或ab = b. 因为a > 1, 故b = 0. 命题得证.

例子续

证法二:记
$$a=1+\delta,\delta>0$$
,则

$$\mathsf{a}^\mathsf{n} = (1+\delta)^\mathsf{n} = 1 + \mathsf{n}\delta + \frac{\mathsf{n}(\mathsf{n}-1)}{2}\delta^2 + \dots > \frac{\mathsf{n}(\mathsf{n}-1)}{2}\delta^2.$$

于是

$$0<\frac{\mathsf{n}}{\mathsf{a}^\mathsf{n}}<\frac{\mathsf{n}}{\frac{\mathsf{n}(\mathsf{n}-1)}{2}\delta^2}=\frac{2}{(\mathsf{n}-1)\delta^2}\to 0.$$

命题得证.

例子

例: 设 c > 0, 定义 $c_1 = \sqrt{c}$, $c_{n+1} = \sqrt{c + c_n}$, $\forall n \ge 1$. 证明序列 $\{c_n\}$ 收敛, 并其极限.

证: (i) 证
$$c_n < c_{n+1}$$
, $\forall n \ge 1$. 情形 $n=1$: $c_2 = \sqrt{c_1+c}$ $> \sqrt{c} = c_1$. 结论成立. 假设结论对情形 n 成立, 即 $c_{n+1} > c_n$, 则 $c_{n+2} = \sqrt{c+c_{n+1}} > \sqrt{c+c_n} = c_{n+1}$. 由归纳法原理知结论成立.

(ii) 证 {c_n} 有上界.

$$c_2 = \sqrt{c+c_1} = \sqrt{c+\sqrt{c}} < \sqrt{c+2\sqrt{c}+1} = 1+\sqrt{c}.$$

设
$$c_n < 1 + \sqrt{c}$$
, 则

例子续

$$c_{\mathsf{n}+1} = \sqrt{c + c_{\mathsf{n}}} < \sqrt{c + \sqrt{c} + 1} < 1 + \sqrt{c}.$$

由归纳法原理知结论成立.

(iii) 综合结论(i)(ii)知序列 c_n 收敛. 在关系式 $c_{n+1} = \sqrt{c + c_n}$ 中令 $n \to +\infty$,并记 $c_* = \lim_{n \to +\infty} c_n$ 得 $c_* = \sqrt{c + c_*}$. 等式 两边平方得 $c_*^2 = c + c_*$ 或 $c_*^2 - c_* - c = 0$. 解这个一元二次方程得 $c_* = \frac{1}{2} \left(1 \pm \sqrt{1 + 4c} \right)$. 由于 $c_n > 0$,故 $c_* \ge 0$. 因此所求 极限为

$$\mathbf{c}_* = rac{1}{2} \left(1 + \sqrt{1 + 4\mathbf{c}}
ight).$$

解答完毕.

区间套定理(Nested intervals theorem)

Theorem

<u>定理</u>:设 $|_k$, $\forall k \geq 1$, 为逐次包含的闭区间序列, 即 $|_{k+1} \subset |_k$,

 $\forall k \geq 1$. 若区间长度 $|I_k| \rightarrow 0$, 则存在唯一一个点 $\xi \in \bigcap_{k=1}^{+\infty} I_k$.

定理证明

证: 设 $I_k = [a_k, b_k]$, $\forall k \geq 1$, 由于 $I_{k+1} \subset I_k$, 故序列 $\{a_k\} \uparrow$, $\{b_k\} \downarrow$, 并且它们均有界, 从而收敛. 设 $a_k \uparrow a$, $b_k \downarrow b$. 由于 $a_k < b_k$, 故 $a \leq b$. 因此 $a_k \leq a \leq b \leq b_k$, $\forall k \geq 1$. 依假设 $|I_k| = b_k - a_k \to 0$, 故 $|b - a| \leq b_k - a_k \to 0$. 即 a = b. 故存在唯 --点 $\xi \in \bigcap_{k=1}^{+\infty} I_k$. 证毕.

两个正数的算术几何平均的迭代

课本第19页习题1.4第15题(记号略有不同): 回忆两个正数 a₀ > $g_0 > 0$, 其算术平均和几何平均为 $a_1 = \frac{a_0 + g_0}{2}$, $g_1 = \sqrt{a_0 g_0}$. 显 然 $g_0 < g_1 < a_1 < a_0$. 令 $a_2 = \frac{a_1 + g_1}{2}$, $g_2 = \sqrt{a_1 g_1}$, 则 $g_0 < g_1 < g_2 < a_2 < a_1 < a_0$.

如此继续下去, 即得到两个单调序列 $\{g_n\}$, $\{a_n\}$,

$$g_0 < g_1 < g_2 < \dots < g_n < a_n < \dots < a_2 < a_1 < a_0,$$

其中 $a_{n+1} = \frac{a_n + g_n}{2}$, $g_{n+1} = \sqrt{a_n g_n}$, $\forall n \geq 1$. 考虑闭区间 $I_n =$ [g_n, a_n] 的长度.

两个正数的算术几何平均值迭代, 续

$$\begin{split} a_1-g_1 &= \frac{a_0+g_0}{2} - \sqrt{a_0g_0} \\ &= \frac{a_0-g_0}{2} + g_0 - \sqrt{a_0g_0} < \frac{a_0-g_0}{2}. \end{split}$$

即 $|I_1| < \frac{1}{2} |I_0|$. 类似可证 $|I_k| < \frac{1}{2} |I_{k-1}|$, $\forall k \geq 1$. 由此得 $|I_k| < \frac{1}{2^k} |I_0|$. 可见区间长度 $|I_k|$ 趋向于零. 由区间套定理可知存在唯一一点 $\xi \in \bigcap_{k \geq 0} I_k$. 值 ξ 通常记作 AGM(a,g). Gauss 首先发现了这个数的一些特殊性质,并利用它计算 π 的近似值.

趋向无穷的序列

Definition

定义:数列 $\{a_n\}$ 称为趋向正无穷,记作 $\lim_{n\to+\infty}a_n=+\infty$ 或 $a_n\to+\infty$,如果对于任意大的正数 M>0,存在正整数 N,使 得 $a_n>M$, $\forall n>N$.类似可定义数列 $\{a_n\}$ 趋向负无穷,并记作 $\lim_{n\to+\infty}a_n=-\infty$ 或 $a_n\to-\infty$.

例如, $\sqrt{n} \to +\infty$; $n^2 \to +\infty$.

注一: 趋向正无穷的序列必无界,但无界序列不必趋向正无穷.

例如序列 $\{0,1,0,2,0,3,\cdots\}$ 无界, 但并不趋向正无穷.

<u>注二</u>: 易证 $|a_n| \to +\infty \iff \frac{1}{a_n} \to 0$.

Stolz 定理

<u>定理</u>: 考虑极限 $\lim_{n\to+\infty} \frac{a_n}{b_n}$.

 $(i)(\frac{*}{\infty} \ \mathbbm{2}) \ \ddot{a} \ b_n \uparrow + \infty$ 严格, 且极限 $\lim_{n \to +\infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$ 存在,记作 L (允许 L 为正无穷或负无穷),则

$$\lim_{n\to +\infty}\frac{a_n}{b_n}=L.$$

(ii)($\frac{0}{0}$ 型) 若 $b_n \downarrow 0$ 严格, 且极限 $\lim_{n\to +\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$ 存在, 记作 L (允许 L 为正无穷或负无穷), 则

$$\lim_{n\to +\infty} \frac{a_n}{b_n} = L.$$

Stolz 定理的几何意义

记 $P_n = (b_n, a_n)$ 为给定的一个平面点列,则线段 $\overline{OP_n}$ 的斜率为 $\frac{a_n}{b_n}$,线段 $\overline{P_nP_{n+1}}$ 的斜率为 $\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$,由此可知 Stolz 定理的几何意义: 若线段 $\overline{P_nP_{n+1}}$ 的斜率有极限,则线段 $\overline{OP_n}$ 的斜率也有极限,且极限相同.

例一

例一: 求极限

$$\lim_{\substack{n\to +\infty}} \frac{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}}{\ln n}.$$

解:记

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, \quad b_n = \ln n,$$

则显然 $b_n \uparrow + \infty$ 严格. 考虑

$$\begin{split} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} &= \frac{\frac{1}{n+1}}{\ln(n+1) - \ln n} = \frac{1}{(n+1)\ln(1 + \frac{1}{n})} \\ &= \frac{1}{\frac{n+1}{n}\ln(1 + \frac{1}{n})^n} \to \frac{1}{1 \cdot \ln e} = 1. \end{split}$$

根据 Stolz 定理可知所求极限为 $\lim_{h \to \infty} \frac{a_n}{h} = 1$. 解答完毕.

例二

例二: 给定正整数 k, 求极限

$$\lim_{n\to +\infty}\frac{1^k+2^k+3^k+\cdots+n^k}{n^{k+1}}.$$

解:记

$$a_n=1^k+2^k+3^k+\dots+n^k,\quad b_n=n^{k+1},$$

则显然 $b_n \uparrow + \infty$ 严格. 考虑

$$\triangle_n \stackrel{\triangle}{=} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \frac{(n+1)^k}{(n+1)^{k+1} - n^{k+1}}.$$

展开二项式 $(n+1)^{k+1}$ 得

例二,续

$$(n+1)^{k+1} = n^{k+1} + (k+1)n^k + \frac{(k+1)k}{2}n^{k-1} + \cdots$$

$$\Rightarrow \triangle_n = \frac{(n+1)^k}{n^{k+1} + (k+1)n^k + \frac{(k+1)k}{2}n^{k-1} + \cdots - n^{k+1}}$$

$$= \frac{(n+1)^k}{(k+1)n^k + \frac{(k+1)k}{2}n^{k-1} + \cdots}$$

$$= \frac{(1+\frac{1}{n})^k}{(k+1) + \frac{(k+1)k}{2}\frac{1}{n} + \cdots} \to \frac{1}{k+1}.$$

根据 Stolz 定理可知, 所求极限为 $\lim \frac{a_n}{b_n} = \frac{1}{k+1}$. 解答完毕.

例三

课本第8页习题1.2第7题(2): 设 $\lim_{n\to+\infty} x_n = A$, 证明

$$\lim_{n\to+\infty}\frac{x_1+x_2+\cdots+x_n}{n}=A$$

证明: 在 Stolz 定理结论一中, 令 $a_n = x_1 + x_2 + \cdots + x_n$,

 $b_n = n$, 则 $b_n \uparrow + \infty$ 严格, 且

$$\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=\frac{x_{n+1}}{1}\to A.$$

因此由 Stolz 定理知

$$\lim_{n\to+\infty}\frac{x_1+x_2+\cdots+x_n}{n}=A.$$

Stolz 定理的证明

证: 只证明 $\frac{*}{\infty}$ 情形型的结论. 情形 $\frac{0}{0}$ 的证明略去. 考虑极限 $\lim \frac{a_n}{b_n}$. 假设 $b_n \uparrow + \infty$ 严格, 且极限 $\lim_{n \to + \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$ 存在, 即作 L. 以下分四种情况讨论 (i) L = 0; (ii) $L \neq \pm \infty$, $L \neq 0$; (iii) $L = +\infty$; (iv) $L = -\infty$.

情形 (i) L=0. 要证 $\frac{a_n}{b_n}\to 0$, 即要证对任意 $\varepsilon>0$, 存在正整数 N, 使得 $|\frac{a_n}{b_n}|<\varepsilon$, $\forall n>N$. 由假设 $\lim_{n\to +\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=0$ 可知, 存在正整数 N_1 , 使得

$$\left|\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\right|<\varepsilon,\quad\forall n\geq N_1.$$

证明续一

即
$$|a_{n+1}-a_n|, $orall n\geq N_1$. 由此得对任意 $n\geq N_1$
$$|a_{N_1+1}-a_{N_1}|
$$|a_{N_1+2}-a_{N_1+1}|$$$$$$

$$|a_{n+1}-a_n|<\varepsilon(b_{n+1}-b_n).$$

将上述不等式相加得

$$\sum_{k=N_1}^n |a_{k+1}-a_k| < \varepsilon (b_{n+1}-b_{N_1}).$$

将 an+1 写作

证明续二

$$a_{n+1} = (a_{n+1} - a_n) + (a_n - a_{n-1}) + \dots + (a_{N_1+1} - a_{N_1}) + a_{N_1}, \\$$

则
$$|a_{n+1}| \le \sum_{k=N_1}^n |a_{k+1} - a_k| + |a_{N_1}| \le \varepsilon (b_{n+1} - b_{N_1}) + |a_{N_1}|.$$

$$\Rightarrow \quad \left| \frac{a_{n+1}}{b_{n+1}} \right| \le \frac{\varepsilon (b_{n+1} - b_{N_1}) + |a_{N_1}|}{b_{n+1}}$$

$$< \varepsilon \left(1 - \frac{b_{N_1}}{b_{n+1}} \right) + \frac{|a_{N_1}|}{b_{n+1}} \le \varepsilon + \frac{|a_{N_1}| + \varepsilon |b_{N_1}|}{b_{n+1}}.$$

根据假设 $b_n \uparrow + \infty$,故存在正整数 $N_2 > N_1$,使得

证明续三

$$\frac{|a_{N_1}|+\varepsilon|b_{N_1}|}{b_{n+1}}<\varepsilon,\quad\forall n\geq N_2.$$

综上可知对于 $∀\varepsilon>0$,存在正整数 N_2 ,使得对任意 $n\geq N_2$,

 $\left|rac{a_{n+1}}{b_{n+1}}
ight|<2arepsilon$.这就证明了 $\limrac{a_{n}}{b_{n}}=0$.情形(i)得证.

情形(ii): $L \neq \pm \infty$ 且 $L \neq 0$. 将情形(ii)转化为情形(i). 由于

$$\frac{a_{n+1}-a_n}{b_{n+1}-b_n}-L=\frac{(a_{n+1}-Lb_{n+1})-(a_n-Lb_n)}{b_{n+1}-b_n}.$$

令 $\hat{a}_n = a_n - Lb_n$,则

$$\frac{\hat{a}_{n+1} - \hat{a}_n}{b_{n+1} - b_n} \rightarrow 0 \quad \Longleftrightarrow \quad \frac{a_{n+1} - a_n}{b_{n+1} - b_n} \rightarrow L.$$

故由假设 $\frac{a_{n+1}-a_n}{b_{n+1}-b_n} \to L$ 知 $\frac{\hat{a}_{n+1}-\hat{a}_n}{b_{n+1}-b_n} \to 0$. 再由情形(i)的结论知

证明续四

$$\frac{\hat{a}_n}{b_n} \to 0 \quad \text{ fr } \quad \frac{\hat{a}_n}{b_n} = \frac{a_n - Lb_n}{b_n} = \frac{a_n}{b_n} - L \to 0.$$

这就证明了 $\lim_{h_0} \frac{a_n}{h_0} = L$. 情形(ii)得证.

情形(iii)
$$\mathsf{L}=+\infty$$
. 已知 $\frac{\mathsf{a}_{\mathsf{n}+1}-\mathsf{a}_{\mathsf{n}}}{\mathsf{b}_{\mathsf{n}+1}-\mathsf{b}_{\mathsf{n}}} o +\infty$, 要证 $\frac{\mathsf{a}_{\mathsf{n}}}{\mathsf{b}_{\mathsf{n}}} o +\infty$. 设

法将情形(iii) 转化到情形(i). 考虑 $\frac{b_n}{a_n}$. 假设 $\frac{a_{n+1}-a_n}{b_{n+1}-b_n} \to +\infty$ 意

味着 $\frac{b_{n+1}-b_n}{a_{n+1}-a_n} \to 0$. 为应用结论(i), 需验证 $\{a_n\} \uparrow +\infty$ 严格.

由假设 $\frac{a_{n+1}-a_n}{b_{n+1}-b_n} \to +\infty$ 可知存在正整数 N, 使得对任意 $n \geq N$

$$\frac{a_{n+1}-a_n}{b_{n+1}-b_n}>1\quad \text{ ft }\quad a_{n+1}-a_n>b_{n+1}-b_n>0.$$

这表明 {a_n}↑严格.

证明续五

之前已证 $a_{n+1}-a_n>b_{n+1}-b_n>0$, $\forall n\geq N$. 因此对 $n\geq N$

$$\begin{split} a_{N+1} - a_N > b_{N+1} - b_N, \\ a_{N+2} - a_{N+1} > b_{N+2} - b_{N+1}, \\ \vdots \\ a_{n+1} - a_n > b_{n+1} - b_n. \end{split}$$

将上述不等式两边分别相加得 $a_{n+1}-a_N>b_{n+1}-b_N\to +\infty.$ 这表明 $\{a_n\}\uparrow+\infty$ 严格. 对序列 $\frac{b_n}{a_n}$ 应用结论(i) 可知 $\frac{b_n}{a_n}\to 0.$ 由于 $a_n\to +\infty$, $b_n\to +\infty$, 故当 n 充分大时, $a_n>0$, $b_n>0.$ 因此 $\frac{a_n}{b_n}\to +\infty$. 情形(iii) 得证.

证明续六

情形(iv): $L = -\infty$. 考虑序列 $\frac{-a_n}{b_n}$, 即可将情形(iv) 转化到情形(iii). 至此 Stolz 定理关于 $\frac{*}{\infty}$ 型的结论得证.

无界序列的特征

Lemma

<u>引理</u>: (i) 若序列 $\{a_n\}$ 无上界,则存在子序列 $\{a_{n_k}\}$,使得 $a_{n_k}\to +\infty$; (ii) 若序列 $\{a_n\}$ 无下界,则存在子序列 $\{a_{n_k}\}$,使 得 $a_{n_k}\to -\infty$.

Proof.

证明: 只证(i). 结论(ii)的证明类似. 若序列 $\{a_n\}$ 无上界,则依定义知,对 $\forall M>0$,存在项 $a_m>M$. 取 M=1,则存在指标 $n_1\geq 1$,使得 $a_{n_1}>1$. 取 M=2,则存在指标 $n_2>n_1$,使得 $a_{n_2}>2$. 取 M=k,则存在指标 $n_k>n_{k-1}$,使得 $a_{n_k}>k$. 于是子列 $a_{n_k}\to +\infty$.

聚点, 上极限与下极限

Definition

定义: 给定一个序列 $\{a_n\}$. (i) 若存在一个子列 $\{a_{n_k}\}$ 收敛于 $\hat{a} \in \mathbb{R} \cup \{\pm \infty\}$, 则称 \hat{a} 为序列 $\{a_n\}$ 的一个聚点. (ii) 若聚点 $\hat{a} = +\infty$ 或 $\hat{a} = -\infty$, 则 \hat{a} 为无穷聚点. (iii) 记 E 为序列 $\{a_n\}$ 所有聚点(包括无穷聚点)的集合, 定义

 $\overline{\lim} \, a_n \stackrel{\triangle}{=} \sup E, \quad \underline{\lim} \, a_n \stackrel{\triangle}{=} \inf E,$

并分别称它们为序列 {a_n} 的上极限(superior limits) 和下极限(inferior limits).

例子

例一: 易证序列 $\{\sin\frac{n\pi}{2}\}_{n\geq 1}=\{1,0,-1,0,1,\cdots\}$ 的聚点集合 $\mathsf{E}=\{-1,0,1\}$. 因此 $\overline{\lim}\sin\frac{n\pi}{2}=1$. $\underline{\lim}\sin\frac{n\pi}{2}=-1$.

例二: 易证序列 $\{n^{(-1)^n}\}=\{\frac{1}{1},2,\frac{1}{3},4,\frac{1}{5},6,\cdots\}$ 的聚点集合 $E=\{0,+\infty\}$, 故序列的上下极限为 $\overline{\lim}\,a_n=+\infty$, $\underline{\lim}\,a_n=0$.

Bolzano-Weierstrass 定理

Theorem

定理: 有界序列必存在收敛子列.

证明大意: 设 $\{x_n\}$ 为一有界序列. 设 $\{x_n\} \subset J_1 = [a_1, b_1]$. 将 区间 J_1 等分为 $[a_1, \frac{a_1+b_1}{2}]$ 和 $[\frac{a_1+b_1}{2}, b_1]$. 这两个子区间中, 必至 少有一个, 记作 $J_2 = [a_2, b_2]$ 含有序列 $\{x_n\}$ 的无穷多项. 再对 区间 $[a_2,b_2]$ 等分为两个区间, 其中之一, 记作 $J_3 = [a_3,b_3]$ 必 含序列{xn} 的无穷多项. 如此继续下去, 我们得到一个闭区间 套 $\{J_k\}$ 满足 $J_{k+1} \subset J_k$, k > 1, 且区间长度为 $|J_k| = b_k - a_k =$ $\frac{1}{2^{k-1}}|\mathsf{J}_1| o 0$, $k o +\infty$.

B-W 定理证明续

根据区间套定理可知,存在唯一一点 $\xi \in \bigcap_{k \ge 1} J_k$. 根据做法, 每个区间 J_k 均含有序列 $\{x_n\}$ 的无穷多项. 可在区间 J_1 中取 x_{n_1} , 在区间 J_2 中取 x_{n_2} , $n_1 < n_2$. 如此继续下去,即可得到一个子列 $\{x_{n_k}\}$, $n_1 < n_2 < \cdots$. 显然 $x_{n_k} \to \xi$. 定理得证.

作业

课本习题1.3 (pp.13-14):

5, 6, 7, 8, 9.

课本习题1.4 (pp. 18-19):

2, 3, 4, 5(1)(2), 6, 12, 13, 16, 17.

提示: (i) 习题1.3题9, 以及习题1.4题4(2)(3): 可利用几何算数平均不等式

(ii) 习题1.4题16(1): 可利用 Bernoulli 不等式: (1+h)ⁿ ≥ 1+nh, 对任意正

整数 n, 以及任意实数 h >-1.