

COURS #5

La couche OSI Network (L3)

Introduction aux réseaux 2023 (Bloc 2) Corentin Badot-Bertrand PARTIE #1

Le réseau local, quelques rappels

La couche Data Link, au service du réseau local

Dans une trame Ethernet, à quoi sert le champ EtherType?

Le champ EtherType

2 bytes pour signaler le protocole encapsulé dans les données

		Header Ethernet (14 bytes)				
7 bytes	1 byte	6 bytes	6 bytes	2 bytes	46 – 1500 bytes	4 bytes
Préambule	Délimiteur	MAC destination	MAC source	EtherType	Données	CRC
	•					

Comment attaquer un switch?

L'attaque par flooding MAC

Noeud attaquant

A quoi sert une forwarding database?

Forwarding database

Le switch maintient une table (*forwarding database*) avec les adresses MAC connectées à ses ports

Port	Adresse MAC connectée	
1	AA:AA:AA:AA	
2	?	
3	CC:CC:CC:CC:CC	
4	?	

Comment définir un réseau local techniquement?

Le broadcast domain définir un réseau local

PARTIE #2

Les limites du réseau local

Et le besoin d'adressage logique pour mieux organiser les réseaux

Un réseau local avec plus de 1000 machines. Quels problèmes ?

A l'échelle du village...

Pour plus de 1000 habitants – avec un besoin réseau pour chacun

- Comment connaitre les adresses MAC de tout le monde ?
- Comment éviter un flood vers tout le monde ?
- Comment envoyer des informations efficacement?
- Comment protéger le réseau d'une maison, de la mairie, ...?

• ...

Vos idées pour organiser ça efficacement?

Les besoins identifiés

Pour un meilleur envoi des informations, nous avons besoin

- D'un adressage « logique » (numéro de maison, plaque de voiture, ...)
- D'une façon efficace de délivrer ces messages

PARTIE #3

La couche network & l'adressage logique

Une façon d'organiser le réseau plus efficacement

Adressage logique & physique

Une adresse MAC est gravée dans une carte réseau... et donc physique

- Elle ne change « techniquement » pas pas facile d'organiser un réseau
- Nous avons besoin d'autres adresses pour s'adapter au contexte
- Contexte étant : l'emplacement des machines, la taille du réseau, ...

Qui gère ce nouvel adressage?

Les protocoles de la couche Network (OSI L3)

- IPv4, le protocole omniprésent actuellement
- IPv6, l'évolution de l'IPv4

Stack OSI

La couche Network

Troisième couche du modèle OSI en charge du parcours à travers le réseau

- Ne gère pas les réseaux locaux (L2 Data Link)
- Ne gère pas l'aspect physique (L1 Physical)
- Couche possédant peu de protocoles

Les responsabilités de la couche Network

Quelques essentiels de la couche Network L3

- Transfert de données entre réseaux
- Définition d'un adressage logique
- Routage (création d'un chemin de communication « optimal »)

Les paquets IPv4

L'adressage IPv4

Une adresse logique constituée de 4 bytes (32 bits)

- 11000000101010000000000100000001
- 11000000.10101000.00000001.00000001
- 192.168.1.1 (notation décimale avec points)

MAC AA:AA:AA:AA:AA

Dans une adresse IPv4, une partie est dédiée à identifier le réseau

Dans une adresse IPv4, une partie est dédiée à identifier le réseau

Un masque réseau détermine les bits alloués au réseau

00101010.00100110.00000000.00000000

Un masque réseau détermine les bits alloués au réseau

42.38.200.15

255.255.0.0

42.38.0.0 est l'adresse du réseau

Le masque réseau, un exemple

Les classes d'adresses IP

La classe (historique) définit le nombre de bytes alloués à l'identifiant réseau

Classe A	255.0.0.0	1.0.0.0 - 126.255.255.255
Classe B	255.255.0.0	128.0.0.0 - 191.255.255.255
Classe C	255.255.255.0	192.0.0.0 - 223.255.255.255
Classe D	240.0.0.0	224.0.0.0 - 239.255.255.255

Le masque réseau, une notation moderne

Les classes d'adresses IP prévues initialement ne conviennent plus.

42.38.200.15/24

Les 24 premiers bits sont alloués à l'identifiant réseau

Exercice: définir une plage d'adresses pour le village

Adresses IP privées

Certaines ranges d'IP sont assignés à des réseaux privés

- Réseaux locaux d'entreprise & domestiques
- 10.0.0.0 10.255.255.255
- 172.16.0.0 172.31.255.255
- 192.168.0.0 192.168.255.255