Spike Sorting for Neural Decoding

Frank Wood, Matthew Fellows, John Donoghue, Michael Black
Brown University

Frank Wood - fwood@cs.brown.edu

Spike Sorting

- Our definition: waveforms captured at threshold crossings are "sorted" by deciding:
 - which are "spikes"
 - how many neurons there are
 - which neurons each came from.
 - Not detection!
- Results from Bionic microelectrode array.

Spike Sorting's dirty little secret.

 Inspired by Harris et al (2000) we conducted a study of spike sorting subjectivity.

- Real data
 - 5 Expert sorters
 - 20 Representative channels

skin	Bonc cap		Bone	
500 µm		C (100 µm	ortex	4

Subject	A	В	C	D	Ε
Spikes	99160	50796	150917	77194	202351
Units	28	32	27	18	35

Two people sorting the same channel.

Our Goal

- Better decoding accuracy by way of improved spike sorting.
- Better spike sorting for neuroscience would be great to achieve as well but is a slightly different goal.

A Greedy Automatic Spike Sorting Algorithm

Frank Wood - fwood@cs.brown.edu

For full details see the paper.

Automatic Spike Sorting Visual Results

Decoding Results

Subject	Neurons	Spikes	MSE (cm ²)
A	107	757674	11.45 +/- 1.39
В	96	335656	16.16 +/- 2.38
C	78	456221	13.37 +/- 1.52
D	88	642422	12.37 +/- 1.22
Ave. Human	92	547993	13.46 +/- 2.54

 $\textit{Rank: Auto Sorted} \rightarrow \textit{No Sorting} \rightarrow \textit{Randomly Sorted} \rightarrow \textit{Human Sorted} \; !$

Conclusions and Discussion

- This automatic sorting algorithm produces better spike trains for neural decoding.
- Maybe spike sorting isn't necessary for good decoding?
 - Hints at using a different signal instead?
- Linking decoding to sorting may not identify physiological neurons.
- Next Steps
 - Fully leverage probabilistic interpretation for enhanced rate estimation.
 - Different cost function.
 - Extend to continuous signal.

Questions?

