

# PROBLEMAS EN CIENCIA



## ALGORITMOS EN CIENCIA

Manejo de datos actual.

Habilidad crucial en matemáticas Cálculo y la criptografía

#### HACIA UNA ERA DE LAS MÁQUINAS...

- CRIPTOGRAFIA ENIGMA
- PROYECTO GENOMA HUMANO
- COMERCIO Y BOLSA
- GRÁFICOS Y TODO TIPO DE MULTIMEDIA
- SIMULACIÓN DE PROCESOS FÍSICOS COMPLEJOS
- INTELIGENCIA ARTIFICIAL
- NUEVA ERA DE REVOLUCIÓN INDUSTRIAL





### UNA VISTA GENERAL





# MATEMÁTICAS

El lenguaje de todas las ciencias



#### LA VELOCIDAD DEL CÁLCULO

- Sistema de numeración: Decimal, Binario, Hexadecimal
- Conjuntos Númericos: Reales (contenidos) aproximados en IEEE 754
- Operaciones básicas: Suma, resta, multiplicación, división
- Fracciones
- Potencia y radicación
- Logaritmo y exponencial
- Funciones trigonométricas
  - Complejos







#### M.C.D Y M.C.M

Máximo común divisor es el mayor divisor (N = M\*x) que puede dividir a dos números MCD(a,b) = div, mientras que el Mínimo común múltiplo (N = x\*M) es el menor múltiplo de dos números MCM(a,b) = mul.

$$MCM(a,b) = ab/MCD(a,b)$$

El **algoritmo de Euclides** es un método antiguo y eficiente para calcular el **MCD**, en donde las cantidades son vistas como segmentos. Las fracciones son simples de simplificar si se dividen denominador y numerador por su MCD





#### M.C.D Y M.C.M

Calculamos MCD (45,25) usando algoritmo de Euclides



El truco es dividir el número mayor con el menor y hallar el residuo. Luego repetir el proceso ahora con el residuo de divisor y así hasta llegar a un residuo 0.





#### LA VELOCIDAD DEL CÁLCULO

- Sistema de numeración: Decimal, Binario, hexadecimal
- Conjuntos Númericos: Reales (contenidos) aproximados en IEEE 754
- ✓ Operaciones básicas: Suma, resta, multiplicación, división
- Fracciones
- Potencia y radicalización
  - Logaritmo y exponencial
    - Funciones trigonométricas
    - Complejos



#### RAÍZ CUADRADA

| 1276    | 2  |  |  |
|---------|----|--|--|
| 638     | 2  |  |  |
| 319     | 11 |  |  |
| 29      | 29 |  |  |
| 1       |    |  |  |
| 2√11√29 |    |  |  |



## EL ALGORITMO BABILÓNICO $X = Y^2$





## EL ALGORITMO BABILÓNICO X = Y2

| 1. | B = X | vH=1    | (B*H=X)   |
|----|-------|---------|-----------|
|    |       | , , , , | ( , , , , |

2. 
$$B = B/X$$
?

3. 
$$B = (B + H)/2$$

4. 
$$H = B/X$$

5. 
$$\angle B = B/X$$
?

| A THE PARTY OF THE |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

| -  |             |             |
|----|-------------|-------------|
|    | В           | Н           |
| 1  | 1276        | 1           |
| 2  | 638,5       | 1,998433829 |
| 3  | 320,2492169 | 3,98439694  |
| 4  | 162,1168069 | 7,870868075 |
| 5  | 84,9938375  | 15,01285314 |
| 6  | 50,00334532 | 25,51829266 |
| 7  | 37,76081899 | 33,79163996 |
| 8  | 35,77622948 | 35,66613974 |
| 9  | 35,72118461 | 35,72109979 |
| 10 | 35,7211422  | 35,7211422  |



Definir b Como Real

$$Six>=0$$

$$b = x$$

Mientras b!=x/b

$$b = 0.5*(x/b + b)$$

**FinMientras** 

SiNo

$$b = -1$$

FinSi

FinFuncion

: Funcion 
$$\rho = mi_potencia(x,n)$$

Definir p Como Real

$$\rho = x$$

Definir i Como Entero

Para i=2 hasta n

$$\rho = \rho^* x$$

FinPara

SiNo

$$\rho = -1$$

FinSi

: FinFuncion

#### : Algoritmo pow

Definir num Como Real

Escribir "Ingrese el número"

Leer num

Escribir mi\_raiz(num)

Escribir mi\_potencia(num,5) :

: FinAlgoritmo





#### LA VELOCIDAD DEL CÁLCULO

- Sistema de numeración: Decimal, Binario, hexadecimal
- Conjuntos Númericos: Reales (contenidos) aproximados en IEEE 754
- Operaciones básicas: Suma, resta, multiplicación, división
- Fracciones
- Potencia y radicalización
- X Logaritmo y exponencial
- X Funciones trigonométricas
- Complejos



En matemáticas, una serie de Taylor es una aproximación de funciones mediante una serie de potencias, dicha suma se calcula a partir de las derivadas de la función para un determinado valor o punto. A la serie centrada sobre el punto cero, se le denomina también serie de MacLaurin. Wiki.

$$e^{x} = 1 + x + x^{2}/2! + x^{3}/3! + x^{4}/4! + ...$$
 $ln(x) = 2(x-1)/(x+1) + 2(x-1)^{3}/3(x+1)^{3} + 2(x-1)^{5}/5(x+1)^{5} + 2(x-1)^{7}/7(x+1)^{7} + ...$ 
 $sin(x) = x - x^{3}/3! + x^{5}/5! - x^{7}/7! + x^{9}/9! - x^{11}/11! + ...$ 
 $cos(x) = 1 - x^{2}/2 - x^{4}/4! + x^{6}/6! - x^{8}/8! + x^{10}/10! - x^{12}/12! + ...$ 



#### LA VELOCIDAD DEL CÁLCULO

- Sistema de numeración: Decimal, Binario, hexadecimal
- Conjuntos Númericos: Reales (contenidos) aproximados en IEEE 754
- Operaciones básicas: Suma, resta, multiplicación, división
- Fracciones
- Potencia y radicalización
- Logaritmo y exponencial
- Funciones trigonométricas
- **X** Complejos

# A + BI

- Adición (a,b)+(c,d) = (a+c,,b+d)
- Producto por escalar r(a,b) = (ra,rb)
- Multiplicación (a,b) (c,d)=(ac-bd,ad+bc)
- Resta (a,b)-(c,d) = (a-c,b-d)
- División(a,b)/(c,d) =  $((ac+bd)/(c^2+d^2), (bc-ad)/(c^2+d^2))$



#### LA VELOCIDAD DEL CÁLCULO

- Sistema de numeración: Decimal, Binario, hexadecimal
- Conjuntos Númericos: Reales (contenidos) aproximados en IEEE 754
- Operaciones básicas: Suma, resta, multiplicación, división
- Fracciones
- Potencia y radicalización
- Logaritmo y exponencial
- Funciones trigonométricas
- Complejos



# ÁLGEBRA

Las variables y sus dimensiones



#### LA DIMENSIÓN DE LOS DATOS

Dimensiones: escalares y vectores 2D

Dimensiones: Magnitud y dirección del vector

Dimensiones: Las componentes de un vector

Dimensiones: La tangente inversa

Operaciones entre vectores: Suma y resta

Operaciones entre vectores: Producto punto y la norma.



## DIMENSIONES







#### 2 DIMENSIONES









#### LA DIMENSIÓN DE LOS DATOS

- ✓ Dimensiones: escalares y vectores 2D
- Dimensiones: Magnitud y dirección del vector
- ✓ Dimensiones: Las componentes de un vector
- Dimensiones: La tangente inversa
  - Operaciones entre vectores: Suma y resta
  - Operaciones entre vectores: Producto punto y la norma.



#### 2 DIMENSIONES

CONOCIENDO LA MAGNITUD Y EL ÁNGULO

> $A_x = A \cos(\alpha)$  $A_y = A \sin(\alpha)$

CONOCIENDO LA COMPONENTES

$$A = \sqrt{(A_x^2 + A_y^2)}$$

$$\alpha = ATAN (A_y/A_x)$$



#### LA ARCOTANGENTE Y LOS CUADRANTES





#### LA ARCOTANGENTE Y LOS CUADRANTES

En el cuadrante II,  $R_x$  < 0,  $R_y$  > 0 y el arcotangente da un ángulo  $\phi$  con signo negativo.

$$\theta = \operatorname{atan} \frac{R_{y}}{R_{x}} + 180^{\circ} \text{ II}$$

Ш

En el cuadrante III,  $R_x$  < 0,  $R_y$  < 0 y el arcotangente da un ángulo  $\alpha$  con signo positivo.

$$\theta = a tan \frac{R_y}{R_x} + 180^{\circ}$$

 $\theta$  = ángulo estándar

 $heta=atanrac{R_y}{R_x}$  En el cuadrante I, da el resultado correcto para el ángulo estándar.



En el cuadrante IV,  $R_{_X} > 0$ ,  $R_{_y} < 0$  y el arcotangente da un ángulo  $\beta$  con signo negativo.

El "ángulo estándar" se toma como el ángulo antihorario que parte desde el eje positivo x. Es un número positivo entre 0° y 360°.



#### LA DIMENSIÓN DE LOS DATOS

- ✓ Dimensiones: escalares y vectores 2D
- Dimensiones: Magnitud y dirección del vector
- ✓ Dimensiones: Las componentes de un vector
- ✓ Dimensiones: La tangente inversa
- Operaciones entre vectores: Suma y resta
  - Operaciones entre vectores: Producto punto y la norma.



#### **OPERACIONES CON VECTORES**

$$A + B = A_x i + A_y j + B_x i + B_y j = (A_x + B_x) i + (A_y + B_y) j$$

$$A - B = A_x i + A_y j - B_x i + B_y j = (A_x - B_x) i + (A_y - B_y) j$$

$$\mathbf{A} \cdot \mathbf{B} = (\mathbf{A}_{x} * \mathbf{B}_{x}) + (\mathbf{A}_{y} * \mathbf{B}_{y})$$

$$|A| = \sqrt{A \cdot A} = \sqrt{(A_x^2 + A_y^2)}$$



#### LA DIMENSIÓN DE LOS DATOS

- ✓ Dimensiones: escalares y vectores 2D
- Dimensiones: Magnitud y dirección del vector
- Dimensiones: Las componentes de un vector
- Dimensiones: La tangente inversa
- ✓ Operaciones entre vectores: Suma y resta
- ✓ Operaciones entre vectores: Producto punto y la norma.





Un modelo muy aproximado de una choque, coloca a una persona en el centro de un sistema coordenado. Debido a la inercia y el cambio de momentum sobre la persona actúan dos fuerzas  $F_1$  y  $F_2$  pero al estar atada al cinturón se genera un tercera fuerza.





# ESTADÍSTICA

Reduciendo dimensionalidad



#### LA DIMENSIÓN DE LOS DATOS

Conjunto de datos: Promedio

Conjunto de datos: La desviación estándar

Algoritmos de búsqueda

Conjunto de datos: El mayor, el menor valor y el rango

Algoritmos de ordenamiento

Conjunto de datos: El orden de los datos y la Mediana

Algoritmos de conteo.

Conjunto de datos: La frecuencia y la moda.



# DIMENSIONES EN LOS DATOS





#### DIMENSIONES EN LOS DATOS





Desviación estándar 
$$\sqrt{\Sigma (x_i - x_\rho)^2 / N}$$



# ¿UTILIDAD DE LA MEDIA Y LA DESVIACIÓN?

| # | GRAVEDAD (EXP 1) | Gravedad (Exp 2)              |
|---|------------------|-------------------------------|
| 1 | 11.807           | 9.812                         |
| 2 | 13.234           | 9.233                         |
| 3 | 10.561           | 9.834                         |
| 4 | 8.514            | 9.807                         |
| 5 | 6.724            | 9.345                         |
| 6 | 7.345            | 9.807                         |
| 7 | 9.807            | 9.992                         |
|   | 9.713 +/- 0.826  | 9.690 +/- 0.099 <sub>39</sub> |





- ✓ Conjunto de datos: Promedio
- ✓ Conjunto de datos: La desviación estándar
  - Algoritmos de búsqueda
  - Conjunto de datos: El mayor, el menor valor y el rango
  - Algoritmos de ordenamiento
  - Conjunto de datos: El orden de los datos y la Mediana
  - Algoritmos de conteo.
  - Conjunto de datos: La frecuencia y la moda.



# ALGORITMOS DE BÚSQUEDA









Búsqueda binaria



### ADIVINE EL NÚMERO

- 1. Ir a PSeInt en  $\rightarrow$  Ayuda  $\rightarrow$  Ejemplos  $\rightarrow$  Adivine el número
- 2. Jugar el juego comenzando desde 1 y siguiendo la secuencia
- 3. Jugar el juego comenzando desde cualquier número pero bajando o subiendo de 10 en 10, cuando pase de bajo a alto o viceversa sume/reste 9 y así.
- Jugar el juego comenzando desde 50 y reducir a la mitad según el intervalo que sea favorecido.
- 5. Jugar desde cualquier número pero reduciendo o aumentando a la mitad según el intervalo que sea favorecido.



- ✓ Conjunto de datos: Promedio
- ✓ Conjunto de datos: La desviación estándar
- ✓ Algoritmos de búsqueda
  - Conjunto de datos: El mayor, el menor valor y el rango
  - Algoritmos de ordenamiento
  - Conjunto de datos: El orden de los datos y la Mediana
  - Algoritmos de conteo.
  - Conjunto de datos: La frecuencia y la moda.



## EL MAYOR O MENOR DE UN CONJUNTO





#### EL MAYOR O MENOR DE UN CONJUNTO



¿Cuál es el mayor?



### EL MAYOR O MENOR DE UN CONJUNTO



Comparación con un pivote

Rango = Max - Min



- ✓ Conjunto de datos: Promedio
- ✓ Conjunto de datos: La desviación estándar
- ✓ Algoritmos de búsqueda
- ✓ Conjunto de datos: El mayor, el menor valor y el rango
  - Algoritmos de ordenamiento
  - Conjunto de datos: El orden de los datos y la Mediana
  - Algoritmos de conteo.
  - Conjunto de datos: La frecuencia y la moda.



# ALGORITMOS DE ORDENAMIENTO

| Algoritmo | Operaciones máximas                                                                  |
|-----------|--------------------------------------------------------------------------------------|
| Burbuja   | $\Omega(n^2)$                                                                        |
| Insercion | $\Omega(n^2/4)$                                                                      |
| Selección | $\Omega(n^2)$                                                                        |
| Shell     | $\Omega(n \log^2 n)$                                                                 |
| Merge     | Ω(n logn)                                                                            |
| Quick     | $\Omega(n^2)$ en peor de los casos y $\Omega(n \log n)$ en el promedio de los casos. |



## ALGORITMO DE BURBUJA

6 5 3 1 8 7 2 4



# ALGORITMO DE QUICKSORT





# ALGORITMO DE MERGE

6 5 3 1 8 7 2 4



### ALGORITMO BURBUJA EN PSEINT

Mediana = [Min,....,Max] 
$$\rightarrow$$
 dato[N//2] (N impar, // división entera)  $\rightarrow$  0.5\*(dato [N/2 -1] + dato [N/2]) (N par)

Algoritmo en Pseint: Burbuja



- ✓ Conjunto de datos: Promedio
- ✓ Conjunto de datos: La desviación estándar
- ✓ Algoritmos de búsqueda
- ✓ Conjunto de datos: El mayor, el menor valor y el rango
- ✓ Algoritmos de ordenamiento
- ✓ Conjunto de datos: El orden de los datos y la Mediana
- Algoritmos de conteo.
  - Conjunto de datos: La frecuencia y la moda.



# ORDENAR + BUSCAR + CONTAR = MATRIZ DE FRECUENCIA

MATRIZ DE FRECUENCIAS

# DESCRIBIR LOS DATOS









#### DESCRIBIR LOS DATOS





- ✓ Conjunto de datos: Promedio
- ✓ Conjunto de datos: La desviación estándar
- ✓ Algoritmos de búsqueda
- ✓ Conjunto de datos: El mayor, el menor valor y el rango
- ✓ Algoritmos de ordenamiento
- ✓ Conjunto de datos: El orden de los datos y la Mediana
- ✓ Algoritmos de conteo.
- ✓ Conjunto de datos: La frecuencia y la moda.



GRACIAS!

¿Preguntas?

#### CREDITOS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by SlidesCarnival
- X Photographs by <u>Unsplash</u>