

BÁO CÁO THỰC TẬP CƠ SỞ

ĐỂ TÀI: LÀM RÕ HÌNH ẢNH SÂU

Sinh viên thực hiện: Nguyễn Thị Lan

Giáo viên hướng dẫn: ThS Đinh Xuân Trường

Mã sinh viên: B21DCCN818 - Lớp: D21CQCN09-B

Khoa CNTT 1 - PTIT

23/04/2024

Nội dung

- 1. Giới thiệu
- 2. Cơ sở lý thuyết
- 3. Làm Rõ Ảnh Không Mù
- 4. Làm Rõ Ảnh Mù
- 5. Các hàm mất mát
- 6. Các Bộ Dữ liệu Thử Nghiệm cho Việc Làm Rõ Ảnh
- 7. Đánh giá hiệu suất
- 8. Làm Rõ Ảnh Theo Miền Cụ Thể

Giới thiệu

Giới thiệu chung

Làm mờ hình ảnh là một nhiệm vụ kinh điển trong thị giác máy tính cấp thấp, đã thu hút được sự chú ý từ cộng đồng xử lý hình ảnh và thị giác máy tính. Mục tiêu của việc làm mờ hình ảnh là khôi phục hình ảnh sắc nét từ hình ảnh đầu vào bi mờ.

(a) Camera shake blur (b) Out-of-focus blur

(c) Moving object blur

(d) Mixed blur

Hình: Ảnh mờ

Cơ sở lý thuyết

Phát biểu vấn đề

Mờ ảnh có thể phát sinh từ nhiều nguyên nhân khác nhau trong quá trình chụp ảnh, bao gồm rung máy ảnh, chuyển đông trong cảnh, và mất nét.

Hình: các kỹ thuật làm mờ ảnh

Đánh Giá Chất Lượng Ảnh

Các phương pháp đánh giá chất lượng ảnh (IQA) có thể được phân loại thành các chỉ số chủ quan và khách quan.

- Chủ quan:dựa trên đánh giá của con người,chỉ số đại diện MOS đánh giá trên thang điểm từ 1-5
- Khách quan:được chia thành hai loại: chỉ số IQA có tham chiếu đầy đủ và không có tham chiếu.

Làm Rõ Ảnh Không Mù

Làm rõ ảnh không mù

Trong

trường hợp hạt nhân mờ được cung cấp, gọi là làm rõ ảnh không mù(gặp khó khăn do nhiễu cảm biến và sự mất thông tin tần số cao) Các phương pháp không mù:

- Giải Phóng Không Mù Kèm Làm Sạch Nhiễu
- Học Mô-đun Làm Sạch Nhiễu cho Làm Rõ Ảnh Không Mù

Method	Category	Blur type	Dataset	Architecture	Key idea
DCNN Xu et al. (2014)		Gaussian, disk			First work to combine traditional optimization-based schemes and neural networks
IRCNN Zhang et al. (2017)		Gaussian, motion		•	Learn a set of CNN denoisers, use as a modular part of model-based optimization methods to tackle inverse problems
FCNN Zhang et al. (2017)		Motion			Adaptively learn image priors to preserve image details and structure with a robust L1 loss
FDN Kruse et al. (2017)	Uniform	Motion	Convolution	CNN	learn a CNN-based prior with an FFT-based deconvolution scheme
GLRA Ren et al. (2018)		Gaussian, disk, motion			Use generalized low-rank approximations of blur kernels to initialize the CNN parameters
DUBLID Li et al. (2019)		Motion			Recast a generalized TV-regularized algorithm into a deep network for blind image deblurring
RGDN Gong et al. (2020)		Motion			Incorporate deep neural networks into a fully parameterized gradient descent scheme
DWDN Dong et al. (2020)		Motion, Gaussian			Apply explicit deconvolution in feature space by integrating a classical Wiener deconvolution framework
USRNet Zhang et al. (2020)		Motion, Gaussian			End-to-end training of an unfolding network that integrates advantages of model-based and learning-based methods

Hình: Khái quát về các phương pháp làm mờ ảnh đơn hình sâu không mù đơn

Làm Rõ Ảnh Mù

Các lớp và khối cơ bản được sử dụng trong mạng làm rõ ảnh.

Các lớp và khối này bao gồm:

Lớp tích chập

Lớp đệ quy

Lớp dư thừa

Lớp mật độ

Lớp chú ý

Method	Category	Blartype	Dataset	Architecture	Key idea
DeBharNet Su et al. (2017)				DAE	Five neighboring blurry images are stacked and fed into a DAE to recover the center sharp image.
STRCNN Hyun Kim et al. (2017)				RNN-DAE	R ecurrent architecture which includes a dynami- temporal blending mechanism for information propagation.
PICNN Aitula and Durand (2018)				DAE	Permutation invariant CNN which consists of several U-Nets taking a sequence of burst images as imput.
DBLRGAN Zhang et al. (2018)				GAN	GAN-based video debluring method, using a 31 CNN to extract spatio-temporal information.
Reblur2deblur Chen et al. (2018)	Non-uniform	Motion	Averaging	Reblar	Three consecutive blurry images are fed into the reblur2deblar framework to recover sharp images, which are used to compute the optical flow and estimate a blar kernel for reconstructing the input.
IFIRNN Nah et al. (2019)				RNN-DAE	RNN-based video deblarring network, where a hidden state is transferred from past frames to the current frame.
EDVR Wang et al. (2019)				DAE	Pyramid, Case ading and Deformable (PCD) module for frame aligament and a Temporal and Spatial Attention (TSA) fusion module, followed by a reconstruction module to restore sharp videos.
STFAN Zhou et al. (2019)				DAE	STFAN takes the current blarred frame, the preceding blarred and resteed frames as input and receives a sharp version of the current frame.
ct al. (2020)				Chicade	Case aded deep video deblurring which first calculates the sharpness prior, then feeds both the blarry images and the prior into an DAE.

Hình: "Khái quát về phương pháp làm rõ video sâu

Deep Auto-Encoders (DAE)

Generative Adversarial Networks (GAN)

Cascaded Networks

Multi-Scale Networks

Reblurring Networks

Hình: Mạng làm rõ ảnh đơn sâu dựa trên kiến trúc Mã hóa Tự động Sâu (DAE) của^{8/17}

Các hàm mất mát

Các hàm mất mát

- Hàm mất mát pixel

$$\begin{split} L_{\text{pix1}} &= \frac{1}{W \times H} \sum_{x=1}^{W} \sum_{y=1}^{H} |I_{\text{source}}(x,y) - I_{\text{db}}(x,y)| \\ L_{\text{pix2}} &= \frac{1}{W \times H} \sum_{x=1}^{W} \sum_{y=1}^{H} (I_{\text{source}}(x,y) - I_{\text{db}}(x,y))^2 \end{split}$$

Ở đây, $I_{\text{source}}(x,y)$ và $I_{\text{db}}(x,y)$ là giá trị của ảnh sắc nét và ảnh đã được làm mờ tại vị trí (x,y) tương ứng.

- Hàm mất mát tri giác

$$\mathsf{L}_{\mathsf{per}} = \tfrac{1}{W \times H \times C} \sum_{\mathsf{x}=1}^{\mathsf{W}} \sum_{\mathsf{y}=1}^{\mathsf{H}} \sum_{\mathsf{c}=1}^{\mathsf{C}} \left(\sqrt{\sum_{\mathsf{i}=1}^{\mathsf{N}} \left(\Phi'_{(\mathsf{x},\mathsf{y},\mathsf{c})}(\mathsf{I}_{\mathsf{s}}) - \Phi'_{(\mathsf{x},\mathsf{y},\mathsf{c})}(\mathsf{I}_{\mathsf{db}}) \right)^2} \right)$$

Ở đây, $\Phi_I(x,y,c)(\cdot)$ là các đặc trưng đầu ra của mạng phân loại từ tầng thứ I. C là số kênh màu trong tầng thứ I.

Các hàm mất mát

Hàm mất mát đối kháng

$$L_{\text{adversarial}} = \log(1 - D(G(I_{db})))$$

 $\mathring{\text{O}}$ đây, $D(G(I_{\mathsf{db}}))$ là xác suất mà ảnh đã được làm mờ là thực tế.

Hàm mất mát tương đối

$$\mathsf{L}_{\mathsf{RDBL}} = -\left[\log\left(\sigma\left(\mathcal{C}(\mathit{I_r}) - \mathcal{E}(\mathcal{C}(\mathit{G}(\mathit{I_{\mathsf{db}}})))\right)\right) + \log\left(1 - \left(\sigma\left(\mathcal{G}(\mathit{I_{\mathsf{db}}})\right) - \mathcal{E}(\mathcal{C}(\mathit{I_{\mathsf{s}}}))\right)\right)\right]$$

 \mathring{O} đây, I_r biểu diễn một ảnh thực tế.

Hàm mất mát dòng chảy quang học

Các Bộ Dữ liệu Thử Nghiệm cho Việc Làm Rõ Ảnh

Bộ dữ liệu làm rõ ảnh

Bô dữ liêu của Levin et al Bô dữ liêu của Sun et al Bô dữ liêu của Köhler et al Bô dữ liệu của Lai et al Bô dữ liêu của GoPro Bô dữ liêu HIDE Bô dữ liêu RealBlur Bô dữ liêu Blur-DVS

Dataset	Synthetic	Real	Sharp Images	Blurred Images	Blur Model	Type	Train/Test Split
Levin et al. (2009)	×	V	4	32	Uniform	Single image	Not divided
Sun and Hays (2012)	✓	×	80	640	Uniform	Single image	Not divided
Köhler et al. (2012)	✓	×	4	48	Non-uniform	Single image	Not divided
Lai et al. (2016)	✓	✓	108	300	Both	Single image	Not divided
GoPro Nah et al. (2017)	✓	✓	3,214	3,214	Non-uniform	Single image	2,103/1,111
HIDE Shen et al. (2019)	✓	×	8,422	8,422	Non-uniform	Single image	6,397/2,025
Blur-DVS Jiang et al. (2020)	✓	✓	2,178	2,918	Non-uniform	Single image	1,782/396
Su et al. (2017)	✓	✓	6,708	11,925	Non-uniform	Video	5,708/1,000
REDS Nah et al. (2019)	✓	V	30,000	30,000	Non-uniform	Video	24,000/3,000
Hradiš et al. (2015)	✓	×	3M+35K	3M+35K	Non-uniform	Text	3M/35K
Shen et al. (2018)	✓	×	6,564	130M+16K	Uniform	Face	130M/16K
Zhou et al. (2019)	✓	×	20.637	20,637	Non-uniform	Stereo	17,319/3,318

Hình: Bộ dữ liệu thử nghiệm đại diện để đánh giá các thuật toán làm rõ ảnh đơn, video và trong các lĩnh vực cu thể.

Bộ dữ liệu làm rõ video

Bộ dữ liệu REDS: Nah et al. (2019)

DVD dataset: Su et al. (2017)

Khoa CNTT 1 - PTIT 12/17

Đánh giá hiệu suất

Deblurring hình ảnh đơn

Deblurring video

Làm Rõ Ảnh Theo Miền Cụ Thể

Deblurring hình ảnh khuôn mặt

Deblurring hình ảnh văn bản

Digital images in this isode	Digital images in this book	Digital images in this book
de are allowed to the 4-, 2-, o	els are allowed to be 45, 8-, o	els are allowed to be 4-, 8-, o
possible. Specifically, a tien	possible. Specifically, a next	possible. Specifically, a nex
a sometimes used (see the	is sometimes used (see the	is sometimes used (see the
Petal mages a statistical	Digital images in this book	Digital images in this book
service allowed lattices 81 a	ets are allowed to be if 8% o	dis are allowed to be 4-, 8-, c
possible Specifically a love	possible. Specifically, a new	possible. Specifically, a best
a sometime-used (see the	is sometimes used (see the	is sometimes used (see the
Digital images in this book	Digital images in this book	Digital images in this book
els are allowed to be 4-, 8-, o	els are allowed to be 4-, 8-, c	do are allowed to be 4-,8-,d
possible. Specifically, a hex-	possible. Specifically, a hex	possible. Specifically a hex
is sometimes used (see the	is sometimes used (see the	is sometimes used (see the

Deblurring hình ảnh stereo

Cảm ơn thầy cô đã chú ý lắng nghe!

Sinh viên thực hiện: Nguyễn Thị Lan

Giáo viên hướng dẫn: ThS Đinh Xuân Trường

Mã sinh viên: B21DCCN818 - Lớp: D21CQCN09-B

Khoa CNTT 1 - PTIT

23/04/2024