Morris' Screening

- Morris' Screening looks at coarse terivatives t their Statistics

Where e; is a unit vector in the i-th direction, I S is the Step Size.

a we care about the following measures, with R fundom Samples

we care about the following measures, with it random varies and it is
$$\frac{1}{R^2} = \frac{1}{R^2} = \frac{1}{R$$

- We use we more often because dis may not be structly fositive
- Mi measures the average magnitude of Change in & write Oi.
- 02 (or 0702) Meusures nonlinear or interaction extects.
- * we say that if it of are "small," then a; is functionally non-einfluential *

Frequetist Inference

- Frequentist Statistics, also Called "Classical Stats" assumes that unknown Parameters in a System are fixed, & the observations are random!
- Assume we have an additive noise model, qu'unq

- Assume we have an additive noise model, quing

$$\gamma_{i} = f(2; \overline{\theta}^{o}) + \overline{\epsilon}$$

Where Vi is mensurement, I is our model, t É is our measurement error.

. We let 6° tenote the true, unsnown parameter.

- In vector form

- Let's examine a linear model (e.g., regression)

$$\hat{y} = \hat{\chi} \hat{0}^{\circ} + \hat{\epsilon}$$
, where $\hat{\chi} \in \mathbb{R}^{N_4 \times P}$ is the design matrix

- The inverse problem is stated as follows:

. Liven values of \$\frac{1}{2}\$ corresponding \$\frac{7}{7}\$, which may be noisy, we seek calibration parameters \$\hat{O}\$ that best describe our data.

Linear Regression

- Let
$$f(\bar{2};\bar{a}) = \chi \bar{a}$$
, where $\chi \in \mathbb{R}^{N_4 \times P} + \bar{\partial} \in \Gamma' \subseteq \mathbb{R}^P$.

- Let 6° be the true, unknown value of parameters,
- Lets assume the following:

i)
$$E[E_i] = 0$$
 , $i=1,..., N_{\gamma}$
ii) $Var[E_i] = 0^2$, $i=1,..., N_{\gamma}$
iii) $V(0, 0_0^2)$

$$(ii)$$
 $(ar)\{\xi_i\} = (0)$, $(if)^{i}\{\xi_i\}$

Goal get estimators, $\vec{0}$ + $\vec{0}$, for $\vec{0}$ of then estimates, $\vec{0}$ ols + $\vec{5}$, with their sampling distributes.