Introduction à la Cryptologie Cryptographie symétrique

IUT Lannion

Chiffrement symétrique

Chiffrement symétrique

- Alice et Bob partage la même clé,
- Deux familles de chiffrement symétriques : blocs et flot,
- Rapide,
- Échange de clé au préalable,
- Une clé pour chaque correspondant.

Des exemples simples : Chiffrement de César I

Principe:

- Décalage de l'alphabet de k lettres où k est la clé.
- Interprétation mathématique : Les lettres sont représentées par $\mathbb{Z}/26\mathbb{Z}$. La fonction suivante est appliquée avec la clé k.

$$f: \mathbb{Z}/26\mathbb{Z} \to \mathbb{Z}/26\mathbb{Z}$$

$$x \mapsto x + k$$

Des attaques

- Force brute : tester les 26 clés possibles.
- Analyse de fréquence :
 - Détermination de la lettre la plus fréquente dans le message chiffré,
 - En français : $e \leftrightarrow 15\%$, $a \leftrightarrow 10\%$, s et i $\leftrightarrow 8\%$.
- On connaît un couple de message clair/message chiffré.

Des exemples simples : Chiffrement de César II

Exercices

- Décrire le cryptosystème d'après la définition.
- Soit k = 3 la clé de chiffrement, chiffrer le message m = LEMESSAGEACHIFFRER.
- Soit c = qf qjyywj qf uqzx kwjvzjsyj js kwfshfnx jy qj j. Qj xfatnw fnij f hfxxjw hjxfw. Retrouver le message clair.

Des exemples simples : Chiffrement de Vigenère I

Principe

- La clé est un mot ou une phrase.
- Chaque lettre en clair correspond à une colonne de la table de Vigenère.
- Chaque lettre de la clé correspond à une ligne.
- La lettre chiffré correspond au croisement de la ligne et de la colonne.
- La clé est répétée en boucle autant que nécessaire.

Des exemples simples : Chiffrement de Vigenère II

Chiffrement - exemple

Soit M = message et k = cle. Pour chiffrer M:

- Regarder l'intersection de la ligne m et de la colonne $c \Rightarrow o$.
- Faire la même chose pour le reste du message.

Des exemples simples : Chiffrement de Vigenère III

Déchiffrement - exemple

Soit C = opwulkg et k = cle. Pour déchiffrer C:

- Regarder la ligne c.
- Trouver la lettre o dans cette ligne, puis voir à quelle colonne elle correspond.
- Faire la même chose pour le reste du message.

Des exemples simples : Chiffrement de Vigenère IV

Des attaques

- Force brute,
- Attaque à clair connu,
- Analyse de fréquence : une lettre pas toujours chiffrée de la même façon ⇒ non trivial.
- ullet Trouver la taille de la clé ℓ : Test de Kasiski, Test de Friedman.
 - Découper le chiffré en mot de taille ℓ,
 - Même méthode que pour le chiffrement de César appliqué sur les lettres de même "indice".

Des exemples simples : Chiffrement de Vigenère V

Test de Kasiski

Consiste à repérer des répétitions de lettres dans le texte chiffré. Des répétitions se produisent, car :

- une suite de lettres clairs se chiffrent avec une même partie de clé;
- ou des suites différentes de lettres clairs se chiffrent de la même façon.

Analyse des écarts entre deux répétitions de séquence \Rightarrow multiple de la taille de clé.

Des exemples simples : Chiffrement de Vigenère VI

Test de Friedman ou test par indice de coïncidence

- Indice de coïncidence : probabilité que 2 lettres soient identiques.
 - Indice de coïncidence français : 0,0778.
- N le nombre de lettre dans l'alphabet, n la taille du chiffré c et i l'indice de coïncidence de c.
- La taille de la clé vaut : $\frac{(I-\frac{1}{N})n}{(n-1)i-\frac{n}{N}+I}$

Exercice à faire à la maison

- Soit k = cle la clé de chiffrement, chiffrer le message m = LEMESSAGEACHIFFRER.
- Soit c = Wi aamf pm jioyb ji y ibkvambk pn jqt hh xmstf ib ji y iavepi tk gbqukrpiukrg hm zshxm lma ib re smv ji gsczi eekk Uhm aamf nm. Résoudre l'énigme.

Des exemples simples : Enigma I

Historique

- Inventé par Arthur Scherbius,
- Utilisée par les Allemands pendant la Seconde Guerre mondiale,
- Cassée par Turing (voir : Imitation game).

Principe

Utilisation de :

- rotors contenant des fils électriques,
- connecteur,
- clavier pour entrer le message clair,

Lorsqu'une lettre est tapée, les rotors tournent \Rightarrow une même lettre n'est pas chiffrée de la même manière.

Des exemples simples : Enigma II

La clé secrète dépend du connecteur et des rotors (disposition, nombre et type) utilisés.

• Avec 3 rotors : 10^{20} clés possibles.

Des exemples simples : Enigma III

Chiffrement symétrique - par blocs

Chiffrement par blocs ou bloc ciphers

- Le message est découpé en blocs de taille n,
- Chiffrement et déchiffrement bloc par bloc,
- Différents modes * : comment les blocs seront chiffrés,
 - ECB (Electronic Code Book)
 - CBC (Cipher Block Chaining)
 - CFB (Cipher FeedBack)
 - . . .
- Blocs itérés
- Exemples : DES, AES, . . .

Blocs itérés

Définition

Le bloc m_i du message m est transformé r fois successivement par une **fonction de ronde**.

- Le nombre r est le nombre de rondes.
- La fonction de ronde dépend d'une clé de ronde.

Exemple:

$$C_i = g(Ci - 1, K_i)$$
 pour $i = 1, \ldots, r$ avec

- C_0 : le clair,
- g: la fonction de ronde avec g inversible,
- K_i : les clés de ronde,
- C_r : le chiffré.

Le déchiffrement se déroule suivant le processus inverse.

Exemple : le cryptosystème DES

L'opération de base de l'algorithme DES est *La méthode de Feistel* et consiste à échanger/combiner deux groupes de bits adjacents.

Exemple : le cryptosystème DES

Le DES consiste à répéter de nombreuses fois de suite la méthode de Feistel avec différentes fonctions à chaque fois.

Exemple : le cryptosystème DES

Pour cet exemple on raisonne modulo 10 et les opérations se font chiffre par chiffre : $[1\,2\,3\,4] \oplus [5\,3\,9\,0]$.

Exemple

Supposons que l'on veuille chiffrer le message M = [12345678] avec la clef C = [2512].

- **1 Initialisation.** On découpe M en une partie gauche et une partie droite que l'on note M_0 .
- Premier tour.
 - On échange la partie droite et la partie gauche de M_0 .
 - On fait une permutation circulaire des chiffres de la partie droite.
 - On ajoute la clef secrète C à la partie droite pour obtenir M_1 .
- Deuxième tour. On recommence le processus pour obtenir un message M₂.