Package 'PoSIAdjRSquared'

August 26, 2024

2	compute_ci_with_specified_inter	rvai
	pivot_with_specified_interval	14
Index		18

compute_ci_with_specified_interval

Compute post-selection confidence interval with specified interval

Description

This function inverts a post-selection p-value to a confidence interval.

Usage

compute_ci_with_specified_interval(z_interval,etaj,etajTy,Sigma,tn_mu,alpha)

Arguments

z_interval	The intervals of type "list" where the OLS estimator gets selected: can be obtained from function "solve_selection_event"	
etaj	Vector of type "matrix" and dimension nx1: useful in orthogonal decomposition of y (see Lemma 1 for details)	
etajTy	The OLS estimator of the j'th selected coefficient in the selected model of type "matrix" and dimension $1x1$	
Sigma	The variance covariance matrix of dimension nxn of the error in the model	
tn_mu	Integer for the mean of the truncated sampling distribution of the test statistic under the null hypothesis: for example, if you want to test beta_j=0, specify 0 for the mean	
alpha	Integer for the desired significance level of the confidence interval	
Value		

References

ci

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

The two-sided (1-alpha)% confidence interval valid after model selection

Examples

```
# Generate data
n <- 100
Data <- datagen.norm(seed = 7, n, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0,0,0,0,0))
y <- Data$y
# Select model
result <- fit_all_subset_linear_models(y, X, intercept=FALSE)</pre>
phat <- result$phat</pre>
X_M_phat <- result$X_M_phat</pre>
k <- result$k
R_M_phat <- result$R_M_phat</pre>
kappa_M_phat <- result$kappa_M_phat</pre>
R_M_k \leftarrow resultR_M_k
kappa_M_k <- result$kappa_M_k</pre>
# Estimate Sigma from residuals of full model
full_model \leftarrow lm(y \sim 0 + X)
sigma_hat <- sd(resid(full_model))</pre>
Sigma <- diag(n)*(sigma_hat)^2</pre>
# Construct test statistic
Construct_test <- construct_test_statistic(j = 5, X_M_phat, y, phat, Sigma, intercept=FALSE)</pre>
a <- Construct_test$a</pre>
b <- Construct_test$b</pre>
etaj <- Construct_test$etaj</pre>
etajTy <- Construct_test$etajTy</pre>
# Solve selection event
Solve <- solve_selection_event(a,b,R_M_k,kappa_M_k,R_M_phat,kappa_M_phat,k)</pre>
z_interval <- Solve$z_interval</pre>
# Post-selection confidence interval
compute_ci_with_specified_interval(z_interval, etaj, etajTy, Sigma, tn_mu = 0, alpha = 0.05)
```

```
construct\_adj\_r\_squared
```

Construct adjusted R squared

Description

This function computes the adjusted R squared and returns some useful matrices from this computation.

Usage

```
construct_adj_r_squared(X, k, y, n, intercept = c(TRUE, FALSE), sst)
```

Arguments

Χ	Design matrix of type "matrix" and dimension nxp
k	Index set included in model k
у	Response vector of type "matrix" and dimension nx1
n	An integer for the sample size
intercept	Logical value: TRUE if fitted models should contain intercept, FALSE if not
sst	An integer for the total sum of squares

Value

X_M_k	The design matrix of model k
P_M_k	The projection matrix of model k
R_M_k	The orthogonal projection matrix of model k
kappa_M_k	Adjustment factor for model complexity kappa of model k
adj_r_squared	The adjusted R squared value of model k

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

Examples

```
# Generate data n <-100 k <-1:10 Data <- datagen.norm(seed = 7, n, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0,0,0,0,0)) X <- DataX y <- DataY sst <- sum((y-mean(y))^2) construct_adj_r_squared(X, X, Y, Y, Y, intercept=FALSE, sst)
```

construct_selection_event

Construct selection event

Description

This function contructs the selection event by computing c_k , d_k and e_k which are the constants in the quadratic inequalities which characterize the model selection event. The function is used internally by the function solve_selection_event, which returns the intervals of the OLS estimator where the selection event takes place.

Usage

```
construct_selection_event(a,b,R_M_k,kappa_M_k,R_M_phat,kappa_M_phat)
```

construct_test_statistic 5

Arguments

a	Residual vector of type "matrix" and dimension nx1 (see Lemma 1 for details)
b	Vector of type "matrix" and dimension nx1: useful in orthogonal decomposition of y (see Lemma 1 for details)
R_M_k	The orthogonal projection matrix of model k
kappa_M_k	Adjustment factor for model complexity kappa of model k
R_M_phat	The orthogonal projection matrix of the selected model
kappa_M_phat	Adjustment factor for model complexity kappa of the selected model

Value

c_k	Constant c_k in the quadratic inequality c_k*Z^2+d_k*Z+e_k>=0 which characterizes the model selection event of the selected model compared to model k (see Lemma 1 for details)
d_k	Constant d_k in the quadratic inequality c_k*Z^2+d_k*Z+e_k>=0 which characterizes the model selection event of the selected model compared to model k (see Lemma 1 for details)
e_k	Constant e_k in the quadratic inequality c_k*Z^2+d_k*Z+e_k>=0 which characterizes the model selection event of the selected model compared to model k (see Lemma 1 for details)

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

construct_test_statistic

Construct test statistic

Description

This function constructs the OLS estimator of the j'th selected coefficient in the selected model. The functions also returns some useful vectors for post-selection inference (a and b).

Usage

```
construct_test_statistic(j, X_M_phat, y, phat, Sigma, intercept)
```

Arguments

j	The index of type "integer" of the regression coefficient
X_M_phat	The design matrix in the selected model
у	Response vector of type "matrix" and dimension nx1
phat	Index set included in the selected model
Sigma	The variance covariance matrix of dimension nxn of the error in the model
intercept	Logical value: TRUE if the selected model contains an intercept, FALSE if not

6 datagen.norm

Value

etaj	Vector of type "matrix" and dimension nx1: useful in orthogonal decomposition of y (see Lemma 1 for details)
etajTy	The OLS estimator of the j'th selected coefficient in the selected model of type "matrix" and dimension $1x1$
a	Residual vector of type "matrix" and dimension nx1 (see Lemma 1 for details)
b	Vector of type "matrix" and dimension nx1: useful in orthogonal decomposition of y (see Lemma 1 for details)

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

Examples

```
# Generate data
n <- 100
Data <- datagen.norm(seed = 7, n, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0,0,0,0,0))
X <- Data$X
y <- Data$X
y <- Data$y

# Select model
result <- fit_all_subset_linear_models(y, X, intercept=FALSE)
phat <- result$phat
X_M_phat <- result$X_M_phat

# Estimate Sigma from residuals of full model
full_model <- lm(y ~ 0 + X)
sigma_hat <- sd(resid(full_model))
Sigma <- diag(n)*(sigma_hat)^2

# Construct test statistic
construct_test_statistic(j = 5, X_M_phat, y, phat, Sigma, intercept=FALSE)</pre>
```

datagen.norm

Data generation normal

Description

Function to generate data according to the linear model of the form Y = X*beta + epsilon where the noise epsilon follows a standard normal distribution.

Usage

```
datagen.norm(seed, n, p, rho, beta_vec)
```

datagen.norm.intercept 7

Arguments

seed	Integer for seed
n	Integer for sample

n Integer for sample size

p Integer for number of variables in the design matrix

rho Integer for correlation between variables in the design matrix

beta_vec True regression coefficient vector of length p

Value

Χ	Design matrix of type "matrix" and dimension nxp
У	Response vector of type "matrix" and dimension nx1

true_y True response vector, i.e. without the noise, of type "matrix" and dimension nx1

Examples

```
datagen.norm(seed = 7, n = 100, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0,0,0,0,0))
```

datagen.norm.intercept

Data generation normal with intercept

Description

Function to generate data according to the linear model of the form $Y = X^*$ beta + epsilon where the noise epsilon follows a standard normal distribution and the first column of X consists of 1's such that an intercept is included in the model.

Usage

```
datagen.norm.intercept(seed, n, p, rho, beta_vec)
```

Arguments

seed	Integer for seed
n	Integer for sample size

p Integer for number of variables in the design matrix

rho Integer for correlation between variables in the design matrix

beta_vec True regression coefficient vector of length p

Value

Χ	Design matrix of type "matrix" and dimension nxp
у	Response vector of type "matrix" and dimension nx1

true_y True response vector, i.e. without the noise, of type "matrix" and dimension nx1

8 equal_tailed_interval

Examples

```
datagen.norm.intercept(seed = 7, n = 100, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0,0,0,0,0))
```

Description

This function inverts a post-selection p-value to a confidence interval.

Usage

```
equal_tailed_interval(z_interval, etajTy, alpha, tn_mu, tn_sigma)
```

Arguments

z_interval	The intervals of type "list" where the OLS estimator gets selected: can be obtained from function "solve_selection_event"
etajTy	The OLS estimator of the j'th selected coefficient in the selected model of type "matrix" and dimension 1x1
alpha	Integer for the desired significance level of the confidence interval
tn_mu	Integer for the mean of the truncated sampling distribution of the test statistic under the null hypothesis: for example, if you want to test beta_j=0, specify 0 for the mean
tn_sigma	Integer for the variance of the truncated sampling distribution of the test statistic

Value

L	lower bound
U	upper bound

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

```
# Generate data
n <- 100
Data <- datagen.norm(seed = 7, n, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0,0,0,0,0))
X <- Data$X
y <- Data$X

# Select model
result <- fit_all_subset_linear_models(y, X, intercept=FALSE)
phat <- result$phat
X_M_phat <- result$X_M_phat</pre>
```

f 9

```
k <- result$k
R_M_phat <- result$R_M_phat</pre>
kappa_M_phat <- result$kappa_M_phat</pre>
R_M_k \leftarrow resultR_M_k
kappa_M_k <- result$kappa_M_k</pre>
# Estimate Sigma from residuals of full model
full_model <- lm(y ~ 0 + X)
sigma_hat <- sd(resid(full_model))</pre>
Sigma <- diag(n)*(sigma_hat)^2</pre>
# Construct test statistic
Construct_test <- construct_test_statistic(j = 5, X_M_phat, y, phat, Sigma, intercept=FALSE)
a <- Construct_test$a</pre>
b <- Construct_test$b</pre>
etaj <- Construct_test$etaj</pre>
etajTy <- Construct_test$etajTy</pre>
# Solve selection event
Solve <- solve_selection_event(a,b,R_M_k,kappa_M_k,R_M_phat,kappa_M_phat,k)</pre>
z_interval <- Solve$z_interval</pre>
# Post-selection confidence interval
tn_sigma <- sqrt((t(etaj)%*%Sigma)%*%etaj)</pre>
equal_tailed_interval(z_interval, etajTy, alpha = 0.05, tn_mu = 0, tn_sigma)
```

f

Description

f

Function used internally by compute_ci_with_specified_interval for calculating valid confidence intervals post-selection.

Arguments

z_interval	The intervals of type "list" where the OLS estimator gets selected: can be obtained from function "solve_selection_event"
etajTy	The OLS estimator of the j'th selected coefficient in the selected model of type "matrix" and dimension 1x1
mu	Integer for the mean of the truncated sampling distribution of the test statistic (updated iteratively in compute_ci_with_specified_interval)
tn_sigma	Integer for the variance of the truncated sampling distribution of the test statistic

Value

The cumulative distribution function of a truncated gaussian distribution evaluated in the observed test statistic

find_root

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

Description

This function is used internally by the function compute_ci_with_specified_interval for inverting post-selection p-values to confidence intervals.

Usage

```
find_root(z_interval, etajTy, tn_sigma, y, lb, ub, tol=1e-6)
```

Arguments

z_interval	The intervals of type "list" where the OLS estimator gets selected: can be obtained from function "solve_selection_event"
etajTy	The OLS estimator of the j'th selected coefficient in the selected model of type "matrix" and dimension $1x1$
tn_sigma	Integer for the variance of the truncated sampling distribution of the test statistic
у	For example 1.0-0.5*alpha for finding the lower bound of a $(1-alpha)\%$ confidence interval, and $0.5*alpha$ for finding the upper bound of a $(1-alpha)\%$ confidence interval
1b	Lower bound in current iteration
ub	Upper bound in current iteration
tol	Tolerance parameter: default set to 1e-6

Value

Returns confidence interval bound

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

```
fit_all_subset_linear_models
```

Fit all subset linear models

Description

This function fits all possible combinations of linear models and returns the selected model based on adjusted R^2.

Usage

```
fit_all_subset_linear_models(y, X, intercept)
```

Arguments

y Response vector of type "matrix" and dimension nx1
X Design matrix of type "matrix" and dimension nxp

intercept Logical value: TRUE if fitted models should contain intercept, FALSE if not

Value

k Index set included in model k
best_model The selected model fit (Im object)
phat Index set included in the selected model
X_M_phat The design matrix in the selected model

best_adj_r_squared

The adjusted R^2 value of the selected model

R_M_phat The orthogonal projection matrix of the selected model

R_M_k The orthogonal projection matrix of model k

kappa_M_k Adjustment factor for model complexity kappa of model k

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

```
# Generate data
Data <- datagen.norm(seed = 7, n = 100, p = 3, rho = 0, beta_vec = c(1,0.5,0))
X <- Data$X
y <- Data$Y
# Select model
fit_all_subset_linear_models(y, X, intercept=FALSE)</pre>
```

```
\label{linear_models} Fit all \ linear \ models Fit all linear models of a specified size
```

Description

This function fits all possible combinations of a pre-specified size of linear models and returns the selected model based on adjusted R^2 .

Usage

```
fit_specified_size_subset_linear_models(y, X, size, intercept)
```

Arguments

У	Response vector of type "matrix" and dimension nx1
Χ	Design matrix of type "matrix" and dimension nxp

size Size of type "integer" of the fitted models

intercept Logical value: TRUE if fitted models should contain intercept, FALSE if not

Value

Index set included in model k
The selected model fit (lm object)
Index set included in the selected model
The design matrix in the selected model

best_adj_r_squared

The adjusted R^2 value of the selected model

R_M_phat The orthogonal projection matrix of the selected model

kappa_M_phat Adjustment factor for model complexity kappa of the selected model

R_M_k The orthogonal projection matrix of model k

kappa_M_k Adjustment factor for model complexity kappa of model k

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

```
# Generate data
Data <- datagen.norm(seed = 7, n = 100, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0,0,0,0))
X <- Data$X
y <- Data$y

# Select model
fit_specified_size_subset_linear_models(y, X, size = 9, intercept=FALSE)</pre>
```

Description

This function returns the value of the cumulative distribution function of a truncated gaussian distribution evaluated in the observed test statistic. Its output is used by the function postselp_value_specified_interval by taking 2*min(output,1-output) for a p-value for a two-sided test.

Usage

```
pivot_with_specified_interval(z_interval, etaj, etajTy, tn_mu, tn_sigma)
```

Arguments

z_interval	The intervals of type "list" where the OLS estimator gets selected: can be obtained from function "solve_selection_event"
etaj	Vector of type "matrix" and dimension nx1: useful in orthogonal decomposition of y (see Lemma 1 for details)
etajTy	The OLS estimator of the j'th selected coefficient in the selected model of type "matrix" and dimension $1x1$
tn_mu	Integer for the mean of the truncated sampling distribution of the test statistic under the null hypothesis: for example, if you want to test beta_j=0, specify 0 for the mean
tn_sigma	Integer for the variance of the truncated sampling distribution of the test statistic

Value

The cumulative distribution function of a truncated gaussian distribution evaluated in the observed test statistic

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

```
# Generate data
n <- 100
Data <- datagen.norm(seed = 7, n, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0,0,0,0))
X <- Data$X
y <- Data$X

# Select model
result <- fit_all_subset_linear_models(y, X, intercept=FALSE)
phat <- result$phat</pre>
```

```
X_M_phat <- result$X_M_phat</pre>
k <- result$k
R_M_phat <- result$R_M_phat</pre>
kappa_M_phat <- result$kappa_M_phat</pre>
R_M_k \leftarrow resultR_M_k
kappa_M_k <- result$kappa_M_k</pre>
# Estimate Sigma from residuals of full model
full_model <- lm(y ~ 0 + X)
sigma_hat <- sd(resid(full_model))</pre>
Sigma <- diag(n)*(sigma\_hat)^2
# Construct test statistic
Construct_test <- construct_test_statistic(j = 5, X_M_phat, y, phat, Sigma, intercept=FALSE)
a <- Construct_test$a
b <- Construct_test$b</pre>
etaj <- Construct_test$etaj</pre>
etajTy <- Construct_test$etajTy</pre>
# Solve selection event
Solve <- solve_selection_event(a,b,R_M_k,kappa_M_k,R_M_phat,kappa_M_phat,k)</pre>
z_interval <- Solve$z_interval</pre>
# Post-selection inference for beta_j=0
tn_sigma <- sqrt((t(etaj)%*%Sigma)%*%etaj)</pre>
pivot_with_specified_interval(z_interval, etaj, etajTy, tn_mu = 0, tn_sigma)
```

postselp_value_specified_interval

Post-selection p-value specified interval

Description

This function returns a p-value for the test whether the regression coefficient equals tn_mu (e.g. 0) with a two-sided alternative. The p-value is valid given the model selection, because it conditions on the specified intervals of the OLS estimator where the regression coefficient actually gets selected. The intervals contained in the object "z_interval" can be obtained from the function "solve_selection_event".

Usage

```
postselp_value_specified_interval(z_interval, etaj, etajTy, tn_mu, tn_sigma)
```

Arguments

z_interval	The intervals of type "list" where the OLS estimator gets selected: can be obtained from function "solve_selection_event"
etaj	Vector of type "matrix" and dimension nx1: useful in orthogonal decomposition of y (see Lemma 1 for details)

etajTy	The OLS estimator of the j'th selected coefficient in the selected model of type "matrix" and dimension 1x1
tn_mu	Integer for the mean of the truncated sampling distribution of the test statistic under the null hypothesis: for example, if you want to test beta_j=0, specify 0 for the mean
tn_sigma	Integer for the variance of the truncated sampling distribution of the test statistic

Value

p_value The p-value for a two-sided test which is valid after model selection

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

```
# Generate data
n <- 100
Data <- datagen.norm(seed = 7, n, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0.5,0,0,0,0,0))
X <- Data$X
y <- Data$y
# Select model
result <- fit_all_subset_linear_models(y, X, intercept=FALSE)</pre>
phat <- result$phat</pre>
X_M_phat <- result$X_M_phat</pre>
k <- result$k
R_M_phat <- result$R_M_phat</pre>
kappa_M_phat <- result$kappa_M_phat</pre>
R_M_k \leftarrow resultR_M_k
kappa_M_k <- result$kappa_M_k</pre>
# Estimate Sigma from residuals of full model
full_model <- lm(y ~ 0 + X)
sigma_hat <- sd(resid(full_model))</pre>
Sigma <- diag(n)*(sigma_hat)^2</pre>
# Construct test statistic
Construct_test <- construct_test_statistic(j = 5, X_M_phat, y, phat, Sigma, intercept=FALSE)</pre>
a <- Construct_test$a</pre>
b <- Construct_test$b</pre>
etaj <- Construct_test$etaj</pre>
etajTy <- Construct_test$etajTy</pre>
# Solve selection event
Solve <- solve_selection_event(a,b,R_M_k,kappa_M_k,R_M_phat,kappa_M_phat,k)</pre>
z_interval <- Solve$z_interval</pre>
# Post-selection inference for beta_j=0
tn_sigma <- sqrt((t(etaj)%*%Sigma)%*%etaj)</pre>
postselp_value_specified_interval(z_interval, etaj, etajTy, tn_mu = 0, tn_sigma)
```

solve_selection_event

solve_selection_event Solve selection event

Description

This function solves the selection event by calculating the intervals of the OLS estimator where the regression coefficient actually gets selected.

Usage

```
solve_selection_event(a,b,R_M_k,kappa_M_k,R_M_phat,kappa_M_phat,k)
```

Arguments

a	Residual vector of type "matrix" and dimension nx1 (see Lemma 1 for details)
b	Vector of type "matrix" and dimension $nx1$: useful in orthogonal decomposition of y (see Lemma 1 for details)
R_M_k	The orthogonal projection matrix of model k
kappa_M_k	Adjustment factor for model complexity kappa of model k
R_M_phat	The orthogonal projection matrix of the selected model
kappa_M_phat	Adjustment factor for model complexity kappa of the selected model
k	Index set included in model k

Value

intervals_list	The intervals of the OLS estimator for which the inequality in Lemma 1 holds
z_interval	The intersection of the intervals of the OLS estimator for which the inequality
	in Lemma 1 holds: post-selection inference is conditioned on those intervals

Note

This function will give the error message: "Error in if (D >= 0.001): missing value where TRUE/FALSE needed" if it is run for a coefficient which is not part of the selected model. Only run solve_selection_event for selected indices.

References

Pirenne, S. and Claeskens, G. (2024). Exact Post-Selection Inference for Adjusted R Squared.

solve_selection_event 17

```
# Generate data
n <- 100
Data <- datagen.norm(seed = 7, n, p = 10, rho = 0, beta_vec = c(1,0.5,0,0.5,0,0.5,0,0,0,0,0))
X <- Data$X
y <- Data$y
# Select model
result <- fit_all_subset_linear_models(y, X, intercept=FALSE)</pre>
phat <- result$phat</pre>
X_M_phat <- result$X_M_phat</pre>
k <- result$k
R_M_phat <- result$R_M_phat</pre>
kappa_M_phat <- result$kappa_M_phat</pre>
R_M_k \leftarrow resultR_M_k
kappa_M_k <- result$kappa_M_k</pre>
# Estimate Sigma from residuals of full model
full_model \leftarrow lm(y \sim 0 + X)
sigma_hat <- sd(resid(full_model))</pre>
Sigma <- diag(n)*(sigma_hat)^2</pre>
# Construct test statistic
Construct_test <- construct_test_statistic(j = 5, X_M_phat, y, phat, Sigma, intercept=FALSE)</pre>
a <- Construct_test$a
b <- Construct_test$b</pre>
# Solve selection event
solve_selection_event(a,b,R_M_k,kappa_M_k,R_M_phat,kappa_M_phat,k)
```

Index

* adjusted R squared	f, 9
compute_ci_with_specified_interval,	find_root, 10
2	<pre>fit_all_subset_linear_models, 11</pre>
<pre>construct_adj_r_squared, 3</pre>	<pre>fit_specified_size_subset_linear_models,</pre>
<pre>construct_selection_event, 4</pre>	12
<pre>construct_test_statistic, 5</pre>	<pre>pivot_with_specified_interval, 13</pre>
equal_tailed_interval, 8	<pre>postselp_value_specified_interval,</pre>
f, 9	14
find_root, 10	solve_selection_event, 16
<pre>fit_all_subset_linear_models, 11</pre>	* models
<pre>fit_specified_size_subset_linear_models,</pre>	<pre>compute_ci_with_specified_interval, 2</pre>
<pre>pivot_with_specified_interval, 13</pre>	<pre>construct_adj_r_squared, 3</pre>
<pre>postselp_value_specified_interval,</pre>	<pre>construct_selection_event, 4</pre>
14	<pre>construct_test_statistic, 5</pre>
solve_selection_event, 16	datagen.norm, 6
* datagen	datagen.norm.intercept,7
datagen.norm, 6	equal_tailed_interval,8
datagen.norm.intercept,7	f, 9
* htest	find_root, 10
<pre>compute_ci_with_specified_interval,</pre>	<pre>fit_all_subset_linear_models, 11</pre>
2	<pre>fit_specified_size_subset_linear_models,</pre>
<pre>construct_adj_r_squared, 3</pre>	12
<pre>construct_selection_event, 4</pre>	<pre>pivot_with_specified_interval, 13</pre>
<pre>construct_test_statistic, 5</pre>	<pre>postselp_value_specified_interval,</pre>
equal_tailed_interval, 8	14
f, 9	solve_selection_event, 16
find_root, 10	* post-selection inference
<pre>pivot_with_specified_interval, 13</pre>	<pre>compute_ci_with_specified_interval,</pre>
<pre>postselp_value_specified_interval,</pre>	2
14	<pre>construct_adj_r_squared, 3</pre>
solve_selection_event, 16	<pre>construct_selection_event, 4</pre>
* model selection	<pre>construct_test_statistic, 5</pre>
<pre>compute_ci_with_specified_interval,</pre>	equal_tailed_interval, 8
2	f, 9
<pre>construct_adj_r_squared, 3</pre>	find_root, 10
${\tt construct_selection_event}, 4$	<pre>pivot_with_specified_interval, 13</pre>
<pre>construct_test_statistic, 5</pre>	<pre>postselp_value_specified_interval,</pre>
equal_tailed_interval, 8	14

INDEX 19

```
solve_selection_event, 16
* regression
    compute_ci_with_specified_interval,
    construct_adj_r_squared, 3
    construct_selection_event, 4
    construct_test_statistic, 5
    datagen.norm, 6
    datagen.norm.intercept, 7
    equal_tailed_interval, 8
    f, 9
    find_root, 10
    fit_all_subset_linear_models, 11
    fit_specified_size_subset_linear_models,
    pivot_with_specified_interval, 13
    postselp_value_specified_interval,
    {\tt solve\_selection\_event}, \\ 16
compute_ci_with_specified_interval, 2
construct_adj_r_squared, 3
construct_selection_event, 4
{\tt construct\_test\_statistic, 5}
datagen.norm, 6
datagen.norm.intercept, 7
equal\_tailed\_interval, 8
f, 9
find_root, 10
fit_all_subset_linear_models, 11
fit_specified_size_subset_linear_models,
        12
pivot_with_specified_interval, 13
postselp_value_specified_interval, 14
solve_selection_event, 16
```