End-to-End ML Pipeline with Scikit-learn Pipeline API

2. Goal:

Predict customer churn in the telecom sector using machine learning.

3. Dataset:

Telco Customer Churn dataset from IBM (7043 rows, 21 columns).

4. Preprocessing:

5. EDA:

- Plotted churn rates across contracts, genders, services, and payment types.
 Identified key churn-driving factors.

- Tuned hyperparameters for performance.

7. Evaluation:

→ Section 1: Importing Required Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import plotby.express as px
import plotly.express as px
import plotly.graph.objects as go
from plotly.subplots import make_subplots
import missingno as msno
import warnings
warnings.filterwarnings('impore')

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.mesemble import RandomForestClassifier
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_curve

→ Section 2: Load and Inspect Dataset:

Ĵ														StreamingMovies							
0	7590-VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	No	No	No	No	о Мо	onth-to-month	Yes	Electronic check	29.85	29.85	. No
2	3668-QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	No	No	No	No	о Мо	onth-to-month	Yes	Mailed check	53.85	108.15	Yes
4	9237-HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	 No	No	No	No	о Мо	onth-to-month	Yes	Electronic check	70.70	151.65	Yes

SeniorCitizen tenure MonthlyCharges count 7043.000000 7043.000000 7043.000000 mean 0.162147 32.371149 64.761692 std 0.368612 24.559481 30.090047 **25**% 0.000000 9.000000 35.500000

array(['customerID', 'gender', 'SeniorCitizen', 'Partner', 'Dependents', 'tenure', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', Unlinesecurity , Unlinesecup , DeviceProtection ,
"TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract',
'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges',
'TotalCharges', 'Churn'], dtype=object)

customerID object
gender object StreamingMovies object

$\,\,\boldsymbol{\vee}\,\,$ Section 3: Missing Value Handling & Data Cleaning:

f = df.drop(['customerID'], axis = 1)

gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport StreamingTV Str

Next steps: Generate code with df View recommended plots New interactive sheet

 $\label{eq:df_totalCharges'} \begin{subarray}{ll} $\tt df['TotalCharges, errors='coerce')$ \\ $\tt df.isnull().sum()$ \end{subarray}$

gender 0

SeniorCitizen
Partner

MultipleLines
InternetService

OnlineBackup

DeviceProtection

TechSupport

StreamingMovies

Contract

PaperlessBilling

MonthlyCharges 0

TotalCharges 11

Churn 0

o.isnan(df['TotalCharges'])

																				Churn
481	B Female	. 0	Yes	Yes	0	No	No phone service	DSL	Yes	No	Yes	Yes	Yes	No	Two year	Yes	Bank transfer (automatic)	52.55	NaN	No
930	5 Female	. 0	Yes	Yes	0	Yes	No	DSL	Yes	Yes	Yes	No	Yes	Yes	Two year	No	Mailed check	80.85	NaN	No
134	0 Female	0	Yes	Yes	0	No	No phone service	DSL	Yes	Yes	Yes	Yes	Yes	No	Two year	No	Credit card (automatic)	56.05	NaN	No
333	1 Male	. 0	Yes	Yes	0	Yes	No	No	No internet service	Two year	No	Mailed check	19.85	NaN	No					
382	6 Male	0	Yes	Yes	0	Yes	Yes	No	No internet service	Two year	No	Mailed check	25.35	NaN	No					
521	8 Male	. 0	Yes	Yes	0	Yes	No	No	No internet service	One year	Yes	Mailed check	19.70	NaN	No					
667	0 Female	. 0	Yes	Yes	0	Yes	Yes	DSL	No	Yes	Yes	Yes	Yes	No	Two year	No	Mailed check	73.35	NaN	No
675	4 Male	. 0	No	Yes	0	Yes	Yes	DSI	Yes	Yes	No	Yes	No	No	Two year	Yes	Bank transfer (automatic)	61.90	NaN	No

df[df['tenure'] == 0].inde:

Tindex([488, 753, 936, 1082, 1340, 3331, 3826, 4380, 5218, 6670, 6754], dtype='int64')

Fillra(df["TotalCharges"].nean())

gender SeniorCitizen Partner Dependents tenur PhoneService MultipleLines InternetService OnlineSecurity On

7032 rows × 20 columns

df.isnull().sum()

gender 0
SeniorCitizen 0
Partner 0
Dependents 0
tenure 0
MultipleLines 0
InternetService 0
OnlineSecurity 0
OnlineSecurity 0
StreamingTV 0
StreamingTV 0
StreamingTV 0
StreamingTV 0
Contract 0
PaperlessBilling 0
PaymentMethod 0
MonthlyCharges 0

Section 4: Exploratory Data Analysis (EDA):

```
plt.figure(figsize*(6, 6))
labels =["Churn: Yes", "Churn:No"]
values = [1869,5163]
labels =[med = ["F", "M", "F", "M"]
sizes_gender = ["F", "M", "F", "M"]
sizes_gender = ["GEO5,5163]
labels gender = ["GEO5,5163]
labels 
 plt.axis('equal')
plt.tight_layout()
plt.show()
                     Churn Distribution w.r.t Gender: Male(M), Female(F)
                                          26.6%
                                 Churn: Yes
                                                                                                                                                                         Churn:No
                                                                                                                                                                            73.4%
 fig = px.histogram(df, x="Churn", color="Contract", barmode="group", title="<b>Customer contract distribution<b>")
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()
                             Customer contract distribution
                                                                                                                                                                                                                     Month-to-n
One year
Two year
                                   1500
                                                                                                                    Churn
 fig = px.histogram(df, x="Churn", color="PaymentMethod", title="<b>Customer Payment Method distribution w.r.t. Churn</b>") fig.update_layout(width=700, height=500, bargap=0.1) fig.show()
                             Customer Payment Method distribution w.r.t. Churn
                                                                                                                                                                                                PaymentMethod

Electronic check

Mailed check

Bank transfer (automatic)

Credit card (automatic)
                                                                                                             Churn
                 InternetService Churn

DSL No 992
                 Fiber optic No 910
No No 717
                       Fiber optic Yes 633
   count
InternetService Churn
DSL No 965
Fiber optic No 889
                 DSL Yes 219
```

Female 2544

Female 939

Churn Distribution w.r.t. Internet Service and Gender

fig.update_layout(title_text="Churn Distribution w.r.t. Internet Service and Gender")

sns.set_context("paper";font_scale=1.1)
ax = sns.kdeplot(df.MonthlyCharges{[dfi"churn"] == 'No')],
colon="Red", shade = True);
ax = sns.kdeplot(df.MonthlyCharges{[dfi"churn"] == 'Yes')],
ax = sns.kdeplot(df.MonthlyCharges{[dfi"churn"] == 'Yes')],
ax.slegend(["Not Churn", 'Loe" upper right');
ax.set_ylabel('Density');
ax.set_ylabel('Monthly Charges');
ax.set_ylabel('Monthly Charges');
ax.set_ylabel('Monthly Charges');

Distribution of total charges by churn 0.0003 0.0000 2000 4000 6000 Total Charges

```
gender –
 SeniorCitizen - -0.0018
    Partner - 0.0014 -0.017
  Dependents - 0.01 -0.21 -0.45
     tenure - -0.00026 0.012 -0.1 0.044
 MultipleLines - -0.01 0.11 -0.12 -0.019 0.065 0.67
InternetService - -0.0022 -0.032 -0.00051 0.044 -0.013 0.39 0.19
                                                                                                                                                           - 0.25
 OnlineSecurity - -0.0044 -0.21 -0.081 0.19 0.014 0.13 -0.067
 OnlineBackup - 0.011 -0.14 0.092 0.062 -0.066 0.13 -0.13
                                                                                                                                                           - 0.00
DeviceProtection - 0.0045 -0.16 -0.093 0.15 0.035 0.14 -0.013
 TechSupport - 5.7e-05 -0.22 -0.068 0.18 0.03 0.12 -0.067
 StreamingTV - 0.00058 -0.13 -0.079 0.14 0.025 0.17 0.031
                                                                                                                                                           - -0.25
StreamingMovies - -0.0013 -0.12 -0.075 0.13 0.03 0.16 0.028 0.71
   Contract - 9.5e-05 -0.14 -0.29 0.24 0.12 0.003 0.084 0.1 0.39 0.035 0.39 0.42 0.33 0.33
```

 $\,\,\checkmark\,\,$ Section 5: Label Encoding for Modeling:

def object_to_int(dataframe_series):
 if dataframe_series.dtype="object':
 dataframe_series = LabelEncoder().fit_transform(dataframe_series)
 return dataframe_series

df = df.apply(lambda x: object_to_int(x))
df.head()

gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport StreamingTV StreamingTV StreamingTV StreamingTV StreamingTV PaperlessBilling PaymentMethod MonthlyCharges TotalCharges Churn

Churn 1.000000

Evaluate Logistic Regression
logreg_preds = logreg_grid.predict(X_test)
print("Clogistic Regression Accuracy:", accuracy_score(y_test, logreg_preds))
print("Onlysion Matrix:\n", confusion.matrix(y_test, logreg_preds))
print("Classification Report:\n", classification_report(y_test, logreg_preds))
Evaluate Random Forest

Evaluate Random Forest
rf_preds = rf_grid.predict(X_test)
print("Random Forest Accuracy:", accuracy_score(y_test, rf_preds))
print("Onlision Matrix:\",", confusion_matrix(y_test, rf_preds))
print("Classification Report:\n", classification_report(y_test, rf_preds))

The logistic Repression Accuracy: 8.8075879383886256

from sklearn.metrics import roc_curve, roc_auc_scor

logreg_proba = logreg_grid.predict_proba(X_test)[:, 1]
rf_proba = rf_grid.predict_proba(X_test)[:, 1]

fpr_log, tpr_log, _ = roc_curve(y_test, logreg_proba)
fpr_rf, tpr_rf, _ = roc_curve(y_test, rf_proba)

auc_log = roc_auc_score(y_test, logreg_proba)
auc_rf = roc_auc_score(y_test, rf_proba)

plt.figure(figsize*(8, 6))
plt.plot(fpr_log, tpr_log, label=f'Logistic Regression (AUC = (auc_log:.2f))', color='blue')
plt.plot(fpr_rf, tpr_rf, label=f'Random Forest (AUC = (auc_rf:.2f))', color='green')
plt.plot(fg, l], [8, 1], 'k--', label='Random Guess')
plt.slabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.slabel('ROC Curve Comparison')
plt.legend(loc='lower right')
plt.grid(frue)
plt.show()

Section 9: Model Saving:

import joblib

Save the best models joblib.dump(logreg_grid.best_estimator_, "best_logistic_model_pipeline.pkl") joblib.dump(rf_grid.best_estimator_, "best_rf_model_pipeline.pkl")

