

Technical file of « Heisenberg »

Work done by:

Meher Marweni

Mohamed Aziz Tousli

Contents

1.	Description	3
2.	Electronic part	3
	a Electronic components	3
	b. Electrical circuit	
3.	Mechanical part	4
	a. Material used	3
	b. Mechanical concept	3
4.	Programming part	3

1. Description:

Our robot, named "Heisenberg", is a medium-sized vehicle with three wheels, two main and one secondary, activated by two geared motors. It is autonomous, having a programmable electronic card to which can be added a module to adjust the engines and it knows its way thanks to three color sensors.

And like any line follower robot, it has a horizontal main plate where we will locate the various electronic components.

2. Electronic part:

a. Electronic components:

The table below lists the various electronic components used throughout the preparation of the robot:

Component name	Component function	Component figure
Arduino Uno board	Program the electrical circuit	
Power board	Control the engines	
1 free wheel	Keep the balance of the vehicle	
2 wheels with tires	Fix the vehicle on the ground	
3 color sensors	Guide the vehicle	

[&]quot;Heisenberg" will be able to finish the path in an ideal time.

Power Bank

Power the Arduino board and the power board

b. Electrical circuit:

We modeled the electric circuit of our robot:

3. Mechanical part:

a. Material used:

To guarantee the stability of our robot, and to make a beautiful design, we wanted to use a laser cutter to make the following model, but we had problems at FabLab:

b. Mechanical concept*:

We made the mechanical model of our robot thanks to the SolidWorks software:

^{*}The model was planned to be like that, but the "carpenter" suggested another model.

4. Programming part:

To program the Arduino board, we used the Arduino software provided for this purpose. The code was not difficult to write.

The main program is presented below:

```
void loop()
etatCapteurGauche = digitalRead(SensorLeft);
etatCapteurCentre = digitalRead(SensorMiddle);
 etatCapteurDroit = digitalRead(SensorRight);
 if (etatCapteurCentre)
  if ((etatCapteurGauche) && (!etatCapteurDroit))
     Serial.println("Tourner à gauche");
  else if ((!etatCapteurGauche) && (etatCapteurDroit))
     Serial.println("Tourner à droite");
  else
     Serial.println("Continuer tout droit");
else
  if ((etatCapteurGauche) && (!etatCapteurDroit))
     Serial.println("Tourner à gauche");
  else if ((!etatCapteurGauche) && (etatCapteurDroit))
     Serial.println("Tourner à droite");
  else
     Serial.println("Reculer");
   }
}
```