Рубежный контроль №1

Столярова О.Д. РТ5-61Б Вариант 16: Задача 2 Датасет 8

Технологии разведочного анализа и обработки данных

▼ Задача №2.

Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

Датасет: https://www.kaggle.com/datasets/mathan/fifa-2018-match-statistics

Predict FIFA 2018 Man of the Match - Прогноз Человека Матча ФИФА в 2018

Данные собраны из официального приложения Чемпионата мира по футболу 2018 года в России.

✓ Импорт библиотек

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Монтирование Google Drive для получения доступа к данным, лежащим на нем:

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```

Загрузка данных:

```
filename = '/content/drive/MyDrive/FIFA.csv'

df = pd.read csv(filename, sep=',')
```

Общая информация о данных

```
Размер датасета:
```

```
df.shape (128, 27)
```

Колонки датасета:

df.columns

Типы данных колонок:

df.dtypes

Date	object
Team	object
Opponent	object
Goal Scored	int64
Ball Possession %	int64
Attempts	int64
On-Target	int64
Off-Target	int64
Blocked	int64
Corners	int64
Offsides	int64
Free Kicks	int64
Saves	int64
Pass Accuracy %	int64
Passes	int64
Distance Covered (Kms)	int64
Fouls Committed	int64
Yellow Card	int64
Yellow & Red	int64
Red	int64
Man of the Match	object
1st Goal	float64

Round	object
PS0	object
Goals in PSO	int64
Own goals	float64
Own goal Time	float64

dtype: object

Первые 5 строк датасета:

df.head()

	Date	Team	Opponent	Goal Scored	Ball Possession %	Attempts	On- Target	Off- Target	Blocked	Cc
0	14- 06- 2018	Russia	Saudi Arabia	5	40	13	7	3	3	
1	14- 06- 2018	Saudi Arabia	Russia	0	60	6	0	3	3	
2	15- 06- 2018	Egypt	Uruguay	0	43	8	3	3	2	
3	15- 06- 2018	Uruguay	Egypt	1	57	14	4	6	4	
4	15- 06- 2018	Morocco	Iran	0	64	13	3	6	4	
5 rows × 27 columns										
4										•

Проверка пропущенных значений:

df.isnull().sum()

Date	0
Team	0
Opponent	0
Goal Scored	0
Ball Possession %	0
Attempts	0
On-Target	0
Off-Target	0
Blocked	0
Corners	0
Offsides	0
Free Kicks	0
Saves	0

Pass Accuracy %	6
Passes	6
Distance Covered (Kms)	6
Fouls Committed	0
Yellow Card	0
Yellow & Red	0
Red	0
Man of the Match	0
1st Goal	34
Round	0
PS0	6
Goals in PSO	6
Own goals	116
Own goal Time	116
dtype: int64	

▼ Построим для пары произвольных колонок данных график "Jointplot"

Комбинация гистограмм и диаграмм рассеивания:

sns.jointplot(x='Corners', y='Goal Scored', data=df, height = 7)

<seaborn.axisgrid.JointGrid at 0x7f76f0e51c90>

Обработка пропусков

С помощью цикла по колонкам датасета выберем колонки с пропущенными значениями:

Выведем только колонки с пропущенными значениями:

	1st Goal	Own goals	Own goal Time
0	12.0	NaN	NaN
1	NaN	NaN	NaN
2	NaN	NaN	NaN
3	89.0	NaN	NaN
4	NaN	1.0	90.0
123	5.0	NaN	NaN
124	4.0	NaN	NaN
125	NaN	NaN	NaN
126	18.0	1.0	18.0
127	28.0	NaN	NaN

128 rows × 3 columns

Пропусков в категориальных колонках нет.

Гистограммы по признакам:

```
for col in df_num:
    plt.hist(df[col], 50)
    plt.xlabel(col)
    plt.show()
```


Для заполнения пропусков возьмем колонку 1st Goal - время первого гола

```
df_goal = df_num[['1st Goal']]
df_goal.head()
```

	1st	Goal
0		12.0
1		NaN
2		NaN
3		89.0
4		NaN

▼ "Внедрение значений" - импьютация (imputation)

С помощью класса SimpleImputer можно проводить импьютацию различными показателями центра распределения

```
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
# Фильтр для проверки заполнения пустых значений
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(df_goal)
mask_missing_values_only
     array([[False],
            [ True],
            [True],
            [False],
            [ True],
            [False],
            [False],
            [False],
            [False],
            [False],
            [False],
            [False],
            [ True],
            [False],
            [False],
            [ True],
            [ True],
            [False],
            [ True],
            [False],
            [False],
            [False],
            [False],
            [ True],
            [False],
            [ True],
             [False],
```

[False],
[False],

```
[False],
            [False],
            [False],
            [False],
            [False],
            [True],
            [False],
            [True],
            [ True],
            [False],
            [False],
            [False],
            [False],
            [True],
            [True],
            [False],
            [False],
            [True],
            [False],
            [True],
            [False],
            [False],
            [False],
            [False],
            [False],
            [False],
            [False],
            [False],
strategies=['mean', 'median', 'most_frequent']
def test_num_impute(strategy_param):
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(df_goal)
    return data_num_imp[mask_missing_values_only]
sns.set(rc={"figure.figsize":(12, 6)})
sns.histplot(data=df['1st Goal'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f76ef933d10>

Заполним ее с применением различных стратегий

```
# Заполнение средним
mean_imp = SimpleImputer(strategy='mean')
tot_exp_mean = mean_imp.fit_transform(df[['1st Goal']])
sns.histplot(data=tot_exp_mean)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f76ef8b78d0>


```
# Заполнение медианой
median_imp = SimpleImputer(strategy='median')
tot_exp_mean = median_imp.fit_transform(df[['1st Goal']])
sns.histplot(data=tot_exp_mean)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f76ef83ec50>

Заполнение модой most_freq_imp = SimpleImputer(strategy='most_frequent') tot_exp_mean = most_freq_imp.fit_transform(df[['1st Goal']]) sns.histplot(data=tot_exp_mean)

В данном задании для обработки пропусков использован класс SimpleImputer. Он позволяет заполнить данные путем реализации разных стратегий, в данном случае: средним, медианой и модой.

Для заполнения пропусков в категориальных признаках также используется класс SimpleImputer, только в этом случае он реализует стратегии most frequent (заполнение самым часто встречаемым значением) и constant (заполнение некторой константой).

Признаки с большим колличеством пропусков не подходят для дальнейшего построения моделей машинного обучения, такие как 1st Goal, Own goals, Own goal Time. Все остальные признаки подходят для дальнейшей работы, так как в них нет пропусков.