Lab 01 Layout Design and Introduction to Mechanics of Materials

Legend

- 1. Shear Center Apparatus
- 2. Fatigue Testing Machine
- 3. Hooke's Law Apparatus, UMT-24663
 Deflection of Curved Beam Apparatus, UMT-24766
- 4. Eccentric Loading Apparatus, UMT-27221
- 5. Torsion of Bar Apparatus
- 6. Torsion testing machine
- 7. Column & Becking Apparatus
- 8. Unsymmetrical Loaded Contilever Apparatus

Student Name	Mohammad Abubakar Atiq	By:
ID	F2022031002	Mohammad Abubakar Atiq, F2022031002
Instructor	Hafiz Osaid	Barira Qasim, F2022031016
Batch/Program	BSIE	

Lab 02 To verify the validity of hookes law and determine the spring constant

Apparatus Hookes Law Apparatus, UMT-29663 Material

3 springs, hardness different

wire thickness is inversely proportional to hardness of the spring

Soft Spring 1:

Mass	(g) Mass	(Kg) F	orce (N)	Deflection 1 of loading (mm)	Deflection 2 of unloading (mm)	Displacement Mean	Change in Length (mm)	Spring Constant (k) (N/mm)	Spring Constant (k) (N/m) (Experimental)	Spring Constant (k) (N/m) (Theoretical)
0	0		0	23	24	23.5	1	0.00	0.00	0.00
100	0.:	.	0.98	62	65	63.5	3	0.02	15.43	15.81
200	0.2		1.96	123	125	124	2	0.02	15.81	15.93
300	0.3		2.94	183	183	183	0	0.02	16.07	16.07

Mass (g)	Mass (Kg)	Force (N)	Deflection 1 of loading (mm)	Deflection 2 of unloading (mm)	Displacement Mean	Change in Length (mm)	Spring Constant (k) (N/mm)	Spring Constant (k) (N/m) (Experimental)	Spring Constant (k) (N/m) (Theoretical)
306.122449	0.306122449	3	30	31	30.5	1	0.10	98.36	100.00
612.244898	0.612244898	6	43	45	44	2	0.14	136.36	139.53
918.3673469	0.918367347	9	59	61	60	2	0.15	150.00	152.54
1224.489796	1.224489796	12	68	68	68	0	0.18	176.47	176.47

Lab 3

To determine the relationshi between shear load and shear strain

7908.3

Barira Qasim, F2022031016

G=(Shear stress)/(Shear Strain)

Observation

By:

Mohammad Abubakar Atiq, F2022031002

Least Count (mm) 0.05 Length (L) mm 303

 Length (L) mm
 303

 Thickness (t) mm
 26.1

 Width (W) mm
 103.1

 $\tau = \frac{F}{A}$

 $G = \frac{\tau}{\gamma}$

Shear Deformation Mass (kg) Load (N) Deflection Upon Loading (mm) Deflection Upon Unloading (mm) Mean (mm) Angle of Distortion change in width/original width Shear stress=(force/Area) Modulus of Rigidity=Shear Stress/ Angle of Distortion Serial No 0 0 0.3 0.15 1.45E-03 0 2 5 49 0.7 0.11 0.405 3.93E-03 0.006196022 1.577308291 7.743149794 3 10 98 0.15 0.18 0.165 1.60E-03 0.012392044 117.6 0.19 0.19 1.84E-03 0.014870453 8.069177154 12 0.19

 $\gamma = \left(\frac{\delta l}{\delta w}\right) = \frac{Mean}{Width}$

Group 1:

Area (L*t)

Mohammad Abubakar Atiq Barira Qasim

Department of Mechanical Engineering

Program: BS Industrial Engineering

Lab 04 To find out the shear modulus of rods under torsional loading.

Name:
ID:

Mohammad Abubakar Atiq, F2022031002

25 cm

Apparatus: Torsion of bar apparatus, vernier caliper, weights Barira Qasim, F2022031016

 Length of shaft (L)=cm
 37.4 cm
 374 mm

 Diameter of shaft (d)=mm
 3.9 mm
 0.0039 m

 Diameter of Torque pulley (D)=mm
 125.2 mm
 0.1252 m

 Radius of Torque Pulley (R=D/2)=
 118.8 mm
 0.1188 m

Polar moment of insertion of the shaft=J = 2.27122E-11

Theta_1 $\begin{array}{c} \theta_1 \\ \theta_2 \\ \end{array} =$

6 cm 60 mm

0.374 m

250 mm 0.25 m

 $J = \frac{\pi d^4}{32} = 2.27122E-11$

Serial No	Mass	Load (W)	Torque WR	Angle of Tw	ist at 1st measuring arm		Angle of Tv	vist at 2nd measuring arm	
	g	N	Nm	Loading (degree) Unloading (degree) Mean Lo		Loading (degree)	Unloading (degree)	Mean	
1	0	0	0	0	0	0	0	1	0.5
2	500	4.9	0.58212	4	2	3	4	3	3.5
3	800	7.84	0.931392	6	3	4.5	7	5	6
4	1000	9.8	1.16424	9	5	7	9	5	7

0.06 m

Department of Mechanical Engineering

Program: BS Industrial Engineering

Lab 04 To find out the shear modulus of rods under torsional loading.

Name:

ID:

Mohammad Abubakar Atiq, F2022031002

Apparatus: Torsion of bar apparatus, vernier caliper, weights Barira Qasim, F2022031016

Length of shaft (L)=cm 37.4 cm 374 mm Diameter of shaft (d)=mm 3.9 mm 0.0039 m Diameter of Torque pulley (D)=mm 125.2 mm 0.1252 m Radius of Torque Pulley (R=D/2)= 118.8 mm 0.1188 m

Polar moment of insertion of the shaft=J 2.27122E-11

 $G = \frac{\tau L}{J\theta}$, unit Pa

0.374 m

	Angle of Twist at 1st measuring arm		Angle o	of Twist at 2nd measuring	arm	Angle of twist for effective length	Modulus of rigidity
Loading (radian)	Unloading (radian)	Mean, theta_1	Loading (radian)	Unloading (radian)	Mean, theta_2	theta	
0	0	0	0	0.017453293	0.008726646	0.008726646	0
0.06981317	0.034906585	0.052359878	0.06981317	0.052359878	0.061086524	0.008726646	8.37E+07
0.104719755	0.052359878	0.078539816	0.122173048	0.087266463	0.104719755	0.026179939	4.02E+08
0.157079633	0.087266463	0.122173048	0.157079633	0.087266463	0.122173048	0	0.00E+00

Department of Mechanical Engineering Program: BS Industrial Engineering

Lab 05

Sr#

Objective:

To determine the tensile strength of a Mild Steel bar with the help of

universal testing machine also draw stress strain curve.

Length: 52.6 cm 526 mm After experiment, length change = 58.8cm

Diameter: 11.55 cm 115.5 mm

Load (kN)	Deflection (mm)
1 0	224
10	225
15	226
20	227
25	228
30	229
35	230
40	231
45	232
50	233
55	234
60	234
65	234
70	234
71	234
72	238
73	239
74	240
75	240
76	241
77	242
78	243
79	244
80	245
81	246
82	247
83	248
84	249
85	250
86	253
87	254
88	256
89	259
90	263
91	266
92	275
92	280
93	300

By: Mohammad Abubakar Atiq, F2022031002 Barira Qasim, F2022031016 EF321L Mechanics of Materials Department of Mechanical Engineering Program: BS Industrial Engineering

Lab 06

To determine the compressive stength of a Mild steel bar with the help of

Objective:

universal testing machine.

Height 29.5 cm

Diameter: 15 cm

295 mm 150 mm

By:

Mohammad Abubakar Atiq, F2022031002

Barira Qasim, F2022031016

Sr#	Loa	ad (kN)	Deflection (m	nm)
	1	0		187
	2	110		188
	3	190		189
	4	250		0
	5	259		0
	6	260		0
		Mat	terials Crack	

Mohammad Abubakar Atiq, F2022031002 Barira Qasim, F2022031016

Lab 07			To determ	nine central deflection	on of a simp	ly supported	beam loade	ed at mid span.					
Name:	Moham	mad Abuba	ıkar Atiq										
ID:	F	202203100	2										
1		Effective I	ength of be	eam (L):	=	134	cm		1.34	m	52.75593	in	
2		Widtl	n of beam (w):	=	25	mm		0.025	m	0.984253	in	
3		Heigh	nt of beam	(h):	=	7.2	mm		0.0072	m	0.283465	in	
4		Area moi	ment of ine	ertia (I): $I = \frac{wh^3}{12}$	=	7.776E-10	m^4	3.06142E-08	in^4				
5			us of elastic		=	2.006	GPa						
		Mass	Mass	Applied Load (W)		Experimenta	l Deflection	(W)	Theor	etical Def	flection		
		(g)	(Kg)	N	Loading	Unloading	Average	Average		-0			
	Serial No.	Serial No.				(W)	(W)	$\delta_{CT} = \frac{wL^3}{48(EI)}$					
					mm	mm	mm	m (II)		48(EI)			
	1	100	0.1	0.98	0.47	0.47	0.47	0.00047	3	.67501E-	14	0.00047	0.0004
	2	200	0.2	1.96	0.87	0.89	0.88	0.00088	6	.88086E-	14	0.00087	0.0008
	3	300	0.3	2.94	1.34	1.39	1.365	0.001365	1	.06732E-	13	0.00134	0.0013
	4	400	0.4	3.92	1.79	1.79	1.79	0.00179	1	39963E-	13	0.00179	0.0017
					ı	Experimenta	I Dofloation	(14/)	Theor	etical Def	floation		
		Mass	Mass	Applied Load (W)	Loading	Unloading	Average	` ′	meoi		nection		
	Serial No.	(g)	(Kg)	IN IN	Loading	Unioading	(W)	Average (W)	$\delta_{CT} =$	$= \frac{wL^3}{48(EI)}$			
					mm	mm	mm	m		10(21)			
	1	100	0.1	2.943	0.6015	0.00116	0.30133	0.00030133	2	.35615E-	14	0.000602	1.16E-0
	2	200	0.2	5.886	0.06219	0.0021	0.032145	0.000032145	2	.51347E-	15	6.22E-05	2.1E-0
	3	300	0.3	8.829	0.00324	0.0033	0.00327	0.00000327	2	.55687E-	16	3.24E-06	3.3E-0
	4	400	0.4	11.772	0.00433	0.0043	0.004315	0.000004315	3	.37397E-	16	4.33E-06	4.3E-0

EF321L Mechanics of Materials Department of Mechanical Engineering Program: BS Industrial Engineering

Lab 08, EF321L Mechanics of Materials

Objective:

To analyze the response of metal under bending and determine bending strength of the specimen.

Workpiece: Wood By: Mohammad Abubakar Atiq, F2022031002 Date: 8th January, 2025

Sr#	Load (kN)	Deflection (mm)
1	0	85
2	10	86
3	12	87
4	13	87
5	15	88
6	16	89
7	17	90
8	18	91
9	19	92
10	20	93
11	21	94
12	22	95
13	23	96
14	24	97
15	25	98

Lab 09			To dete	ermine central deflec	ction of a fix	ed ended be	am loaded a	nt mid span.					
Name:	Moham	mad Abuba	ıkar Atiq										
ID:	F	202203100	2										
1		Effective I	ength of be	am (L):	=	134	cm		1.34	m	52.75593	in	
2		Widtl	n of beam (v	w):	=	25.5	mm		0.0255	m	1.003938	in	
3		Heigh	nt of beam (h):	=	6.6	mm		0.0066	m	0.259843	in	
4		Area moi	ment of ine	$rtia (I): I = \frac{wh^3}{12}$	=	6.109E-10	m^4	2.40523E-08	in^4				
5		Modul	us of elastici	ity E:	=	2.01E+12	GPa						
		Mass	Mass	Applied Load (W)		Experimenta	l Deflection	(W)	Theore	etical Def	lection	l	
		(g)	(Kg)	N	Loading	Unloading	Average	Average		wL^3			
	Serial No.	Serial No.					(w)	(w)	$\delta_{CT} = \frac{WL^3}{192I}$				
			mm	mm	mm	m´	1,21						
	1	294.3	0.2943	2.943	0.47	0.47	0.47	0.00047	3.59834E-15		0.00047	0.00047	
	2	588.6	0.5886	5.886	0.87	0.89	0.88	0.00088	6.73731E-15		0.00087	0.00089	
	3	882.9	0.8829	8.829	1.34	1.39	1.365	0.001365	1.	.04505E-1	.4	0.00134	0.00139
	4	1177.2	1.1772	11.772	1.79	1.79	1.79	0.00179	1.	.37043E-1	.4	0.00179	0.00179
						Experimenta	l Doflostion	(14/)	Theore	etical Def	lastian	ı	
		Mass	Mass	Applied Load (W)				` '			ection		
	Serial No.	(g)	(Kg)	N	Loading	Unloading	Average	Average	δ _{cπ} =	$=\frac{wL^3}{192I}$			
							(W)	(W)	001	192 <i>I</i>			
	1	100	0.1	2.943	mm 0.6015	mm 0.00116	mm 0.30133	m 0.00030133	1	.30699E-1	_	0.0006015	0.00000116
			_					0.00030133		.30699E-1			
	3	200 300	0.2	5.886 8.829	0.06219	0.0021	0.032145	0.000032145		.46103E-1 .50352E-1		0.00006219 0.00000324	0.0000021
	_	400								.30352E-1			0.0000033
	4	400	0.4	11.772	0.00433	0.0043	0.004315	0.000004315	3.	.30336E-1	. /	0.00000433	0.0000043

Lab 10	To dete	rmine deflectior	n for a cantileve	er beam.					
Name:	Mohammad Abubakar Atiq	Barira Qasim							
ID:	F2022031002	F2022031016							
1	Effective length of beam (L):	=	48	cm		0.48	m	18.89765 in	
2	Width of beam (w):	=	27.2	mm		0.0272	m	1.070867 in	
3	Height of beam (h):	=	16.7	mm		0.0167	m	0.657481 in	
4	Area moment of inertia (I): $I = \frac{wh^2}{12}$	= =	1.05569E-08	m^4	4.15627E-07	in^4			
5 -	Modulus of elasticity E:		2.06E+11	GPa					

	Mass	Mass	Applied Load (W)		Experimental					
Serial No.	(g)	(Kg)	N	Loading	Unloading	Average	Average	wL^3	Loading	Unloading
Jenai No.						(W)	(W)	$\delta_{CT} = \frac{1}{3(EI)}$		
				mm	mm	mm	m		m	m
1	0	0	0	0	0.01	0.005	0.000005	4.01E-04	0	0.00001
2	200	0.2	2.943	0.29	0.3	0.295	0.000295	2.36E-02	0.00029	0.0003
3	400	0.4	5.886	0.58	0.41	0.495	0.000495	3.97E-02	0.00058	0.00041
4	600	0.6	8.829	0.89	0.89	0.89	0.00089	7.14E-02	0.00089	0.00089

	Mass	Mass	Applied Load (W)	Experimental Deflection (W)			W)	Theoretical Deflection]	
Serial No.	(g)	(Kg)	N	Loading	Unloading	Average	Average	wL^3		
Serial NO.						(W)	(W)	$\delta_{CT} = \frac{1}{3(EI)}$		
				mm	mm	mm	m	5 (==)		
1	100	0.1	0.98	0.18	0.18	0.18	0.00018	1.44E-02	0.00018	0.00018
2	200	0.2	1.96	0.34	0.34	0.34	0.00034	2.73E-02	0.00034	0.00034
3	300	0.3	2.44	0.56	0.56	0.56	0.00056	4.49E-02	0.00056	0.00056
4	400	0.4	11.772	0.00433	0.0043	0.004315	0.000004315	3.46E-04	0.00000433	0.0000043

Department of Mechanical Engineering

Program: BS Industrial Engineering

Lab 11: To determine the horizontal deflection and vertical deflection of different curved beams due to point loading. 1/1/2025

Ву

Mohammad Abubakar Atiq, F2022031002, Barira Qasim, F2022031016

Length (L): 0.48 m cm 0.0272 m Width of ring (b): 27.2 mm Height (h): 16.7 0.0167 m mm

Μ Bending moment

Ε Modulus of elasticity of beam material 193-203 GPa

Moment of inertia of the beam 1 ΕI Flexural rigidity of beam L Length of beam

For Ring, Case 01

Dia (d) 300 0.3 m 0.15 m mm Radius ®

 $0.114PR^3$ Horizontal deflection $\Delta H = -$ ΕI

 $\Delta V = \frac{0.149 PR^3}{}$ Vertical deflection

 $I = \frac{bd^3}{12}$ Moment of inertia (I) 6.12E-05 m^4

> Ε 2.06E+11 GPa

Loading Unloading Average Sr# Mass (kg) Vertical Deflection @ Horizontal deflection Vertical Deflection @ Horizontal deflection Mass (g) P (N) Average Vertical Average Horizontal ΔH ΔV Deflection @Unloading Deflection Loading @ Loading Unloading 1 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00E+00 0.00E+00 2 300 0.3 2.940 0.410 0.100 0.480 0.400 0.445 0.250 3.36E-19 6.13E-20 3 600 0.6 5.880 0.910 0.300 0.950 0.900 0.930 0.600 6.72E-19 1.36E-19 900 0.9 8.820 1.400 0.990 1.400 0.990 1.400 0.990 1.01E-18 2.09E-19