

DNA Sequencing

DNA sequencing

How we obtain the sequence of nucleotides of a species

...ACGTGACTGAGGACCGTG CGACTGAGACTGACTGGGT CTAGCTAGACTACGTTTTA TATATATATACGTCGTCGT ACTGATGACTAGATTACAG ACTGATTTAGATACCTGAC TGATTTTAAAAAAAATATT...

Human Genome Project

3 billion basepairs \$3 billion 1990: Start

2000: Bill Clinton:

2001: Draft

2003: Finished

"most important scientific discovery in the 20th century"

now what?

Which representative of the species?

Which human?

Answer one:

Answer two: it doesn't matter

Polymorphism rate: number of letter changes between two different members of a species

Humans: ~1/1,000

Other organisms have much higher polymorphism rates

Population size!

Why humans are so similar

Heterozygosity: H H = 4Nu/(1 + 4Nu) u ~ 10^{-8} , N ~ 10^{4} \Rightarrow H ~ 4×10^{-4} A small population that interbred reduced the genetic variation

Out of Africa ~ 40,000 years ago

There is never "enough" sequencing

7 billion individuals

Somatic mutations (e.g., HIV, cancer)

Sequencing is a functional assay

Sequencing Growth

Cost of one human genome

2004: \$30,000,000

2008: \$100,000

2010: \$10,000

2014: "\$1,000" (???)

• ???: \$300

How much would you pay for a smartphone?

Ancient sequencing technology – Sanger Vectors

Ancient sequencing technology – Sanger Gel Electrophoresis

- 1. Start at primer (restriction site)
- Grow DNA chain
- 3. Include dideoxynucleoside (modified a, c, g, t)
- Stops reaction at all possible points
- 5. Separate products with length, using gel electrophoresis

Fluorescent Sanger sequencing trace

Lane signal

(Real fluorescent signals from a lane/capillary are much uglier than this).

A bunch of magic to boost signal/noise, correct for dye-effects, mobility differences, etc, generates the 'final' trace (for each capillary of the run)

Trace

Making a Library (present)

CS273a 2015

Library

- Library is a massively complex mix of -initially- individual, unique fragments
- Library amplification mildly amplifies each fragment to retain the complexity of the mix while obtaining preparative amounts
 - (how many-fold do 10 cycles of PCR amplify the sample?)

Fragment vs Mate pair ('jumping')

(Illumina has new kits/methods with which mate pair libraries can be built with less material)

CS273a 2015 Slide Credit: Arend Sidow

Illumina cluster concept

CS273a 2015 Slide Credit: Arend Sidow

Cluster generation ('bridge amplification')

Clonally Amplified Molecules on Flow Cell

Illumina Sequencing: Reversible Terminators

Sequencing by Synthesis, One Base at a Time

Cycle 1: Add sequencing reagents

First base incorporated

Remove unincorporated bases

Detect signal

Cycle 2-n: Add sequencing reagents and repeat

Read Mapping

Slide Credit: Arend Sidow

.000

Variation Discovery

Amount of variation – types of lesions

Method to sequence longer regions

genomic segment

CS273a 2015

Two main assembly problems

De Novo Assembly

Resequencing

Reconstructing the Sequence (De Novo Assembly)

Cover region with high redundancy

Overlap & extend reads to reconstruct the original genomic region

Definition of Coverage

Length of genomic segment: **G**

Number of reads: N

Length of each read:

Definition: Coverage **C = N L / G**

How much coverage is enough?

Lander-Waterman model: Prob[not covered bp] = e^{-c}

Assuming uniform distribution of reads, C=10 results in 1 gapped region /1,000,000 nucleotides

Repeats

Bacterial genomes: 5%

Mammals: 50%

Repeat types:

- Low-Complexity DNA (e.g. ATATATATACATA...)
- Microsatellite repeats $(a_1...a_k)^N$ where $k \sim 3-6$ (e.g. CAGCAGTAGCAGCACCAG)
- Transposons
 - SINE (Short Interspersed Nuclear Elements)

e.g., ALU: ~300-long, 10⁶ copies

LINE (Long Interspersed Nuclear Elements)

~4000-long, 200,000 copies

- LTR retroposons (Long Terminal Repeats (~700 bp) at each end)
 cousins of HIV
- Gene Families genes duplicate & then diverge (paralogs)
- Recent duplications ~100,000-long, very similar copies

Sequencing and Fragment Assembly

What can we do about repeats?

Two main approaches:

Cluster the reads

Link the reads

What can we do about repeats?

Two main approaches:

Cluster the reads

Link the reads

What can we do about repeats?

Two main approaches:

Cluster the reads

Link the reads

