

SURYA GROUP OF INSTITUTION VIKRAVANDI 605-652

PHASE 3 DEVELOPMENT PART 1 PREDICTION HOUSE PRICES USING MACHINE LEARNING

NAAN MUDHALVAN

PREPARED BY:

E. Veenadevi

REG NO:422221106311

ECE DEPARTMENT

3RD YEAR 5TH SEM

AI_ PHASE 3:

Data preprocessing is the process of cleaning our data set. There might be missing values or outliers in the dataset. These can be handled by data cleaning. If there are many missing values in variable we will drop those values or substitute it with the average value.

PREPROCESS THE GIVEN DATA SET:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386
	***	***		300	***	1844	440
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Williams\nFPO AP 30153-7653
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 9258, Box 8489\nAPO AA 42991-
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	076\nJoshualand, VA 01
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace\nFPO AE 73316
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 George Ridges Apt. 509\nEast Holly, NV 2

5000 rows × 7 columns

THE DATA SET INFO:

Input: dataset.info()

Output:

<class 'panda.core.frame.DataFrame'>
Range Index: 5000 entries, 0 to 4999 Data
columns (total 7 columns):

Column Non-Null Count D type

--- -----

0 Avg. Area Income 5000 non-null float64 1 Avg. Area House Age 5000 non-null float64

Avg. Area Number of Rooms 5000 non-null float64
 Avg. Area Number of Bedrooms 5000 non-null float64

4 Area Population 5000 non-null float64

5 Price 5000 non-null float64 6 Address 5000 non-null object

dtypes: float64(6), object(1) memory usage: 273.6+ KB

DESCRIBE:

Input:

dataset.describe()

Output:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

dataset.columns

Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'], dtype='object')

VISUALIZATION AND PRE PROCESSING THE DATA:

Input:

sns.histplot(dataset, x='Price', bins=50, color='y')

Output:

<Axes: xlabel='Price', ylabel='Count'>

sns.boxplot(dataset, x='Price', palette='Blues')

<Axes: xlabel='Price'>

sns.jointplot(dataset, x='Avg. Area House Age', y='Price', kind='hex')

<seaborn.axisgrid.JointGrid at 0x7a2b71bd29b0>

sns.jointplot(Income', y='Price')dataset, x='Avg. Area

<seaborn.axisgrid.JointGrid at 0x7a2b5e50cbb0>

plt.figure(figsize=(12,8))
sns.pairplot(dataset)

<seaborn.axisgrid.PairGrid at 0x7a2b5e5ce350>

dataset.hist(figsize=(10,8))

```
array([[<Axes: title={'center': 'Avg. Area Income'}>, <Axes: title={'center': 'Avg. Area House Age'}>],
```

[<Axes: title={'center': 'Avg. Area Number of Rooms'}>, <Axes: title={'center': 'Avg. Area Number of Bedrooms'}>],

[<Axes: title={'center': 'Area Population'}>, <Axes: title={'center': 'Price'}>]], dtype=object)

VISUALISING CORRELATION

dataset.corr(numeric_only=True)

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
Avg. Area Income	1.000000	-0.002007	-0.011032	0.019788	-0.016234	0.639734
Avg. Area House Age	-0.002007	1.000000	-0.009428	0.006149	-0.018743	0.452543
Avg. Area Number of Rooms	-0.011032	-0.009428	1.000000	0.462695	0.002040	0.335664
Avg. Area Number of Bedrooms	0.019788	0.006149	0.462695	1.000000	-0.022168	0.171071
Area Population	-0.016234	-0.018743	0.002040	-0.022168	1.000000	0.408556
Price	0.639734	0.452543	0.335664	0.171071	0.408556	1.000000

plt.figure(figsize=(10,5))
sns.heatmap(dataset.corr(numeric_only = True), annot=True)

CONCLUSION:

This project entitled "House Price Prediction algorithm has high accuracy value when to all other algorithms regarding house price predict data preprocessing is the process of cleaning our data set. There might be missing values or outliers in the dataset. These can be handled by data cleaning. If there are many missing values in variable we will drop those values or substitute it with the average value.