

Figure B.1: Diagram showing the interpretation of the partial derivatives as the slopes of the graph of a function of two variables in the directions of the x and y axes.

The notation for these partial derivatives is given below, where it is worth noting the order of x and y in the subscripts.

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \, \partial x} = f_{xy},$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \, \partial y} = f_{yx},$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y \, \partial y} = f_{yy},$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x \, \partial x} = f_{xx}.$$

It is not always true that $f_{xy} = f_{yx}$. However, if all the derivatives concerned are continuous we do have $f_{xy} = f_{yx}$ and the order of differentiation does not matter. This was the case in Example 1 above.

For the partial derivatives then, y fixed at $y=y_1$ represents a vertical plane which intersects the surface z=f(x,y) in a curve, and $\partial z/\partial x$ at the point (x_1,y_1) is the slope of the tangent to this curve at (x_1,y_1) . (Similarly for x fixed at $x=x_1$.) This is illustrated in Figure B.1.

Taylor series expansions

We recall Taylor's Theorem for a single variable, and then extend the definition to functions of two variables.

Taylor's Theorem for a single variable. If F and its first n derivatives F', F'', ..., $F^{(n)}$ are continuous on some interval [a,b] and $F^{(n)}$ is differentiable on (a,b), then there exists a number c_{n+1} , between a and b, such that

$$F(b) = F(a) + F'(a) (b - a) + \frac{F''(a)}{2!} (b - a)^{2} + \dots + \frac{F^{(n)}(a)}{n!} (b - a)^{n} + \frac{F^{(n+1)}}{(n+1)!} (c_{n+1}) (b - a)^{n+1}.$$

This equation, in the single variable case, provides an extremely accurate polynomial approximation for a large class of functions which have derivatives of all orders. With reference to Figure B.2, close to $x = \hat{x}$ we can approximate the curve f(x) with the line tangent to the curve at $x = \hat{x}$. For a linear approximation, $F(b) \approx F(a) + F'(a) (b-a)$ with an error e(b) having a < c < b,

$$|e(b)| \leq \frac{\max |F''(c)|}{2} \left(b - a\right)^2.$$

Figure B.2: Diagram showing the first-order Taylor expansion in the vicinity of the point \hat{x} .

For a quadratic approximation, $F(b) \approx F(a) + F'(a)(b-a) + \frac{F''(a)}{2}(b-a)^2$ with (again a < c < b)

$$|e(b)| \leq \frac{\max |F''(c)|}{6} |b-a|^3$$
.

Taylor's Theorem can be extended to the two variable case. As illustrated in Figure B.1, close to $(x,y)=(x_1,y_1)$ we can approximate the surface z=f(x,y) with the tangent plane to the surface at $(x,y)=(x_1,y_1)$.

We extend the definition of Taylor's Theorem to functions of two variables in the following way. Let R be some region containing P(a,b). Let S(a+h,b+k) be in R such that the line PS is in R.

Let f have continuous first- and second-order partial derivatives in R. Describe PS parametrically as x=a+th, y=b+tk, with $0 \le t \le 1$. Now we study the values of f(x,y) on PS by considering the function

$$F(t) = f(a+ht, b+kt).$$

We have

$$F'(t) = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} = h \frac{\partial f}{\partial x} + k \frac{\partial f}{\partial y}$$

and F' is continuous and differentiable on [0,1] because f_x and f_y are (by definition above). Also

$$F''(t) = h \frac{\partial F'}{\partial x} + k \frac{\partial F'}{\partial y}$$

$$= h \left(h \frac{\partial^2 f}{\partial x^2} + k \frac{\partial^2 f}{\partial y \partial x} \right) + k \left(h \frac{\partial^2 f}{\partial x \partial y} + k \frac{\partial^2 f}{\partial y^2} \right)$$

$$= h^2 \frac{\partial^2 f}{\partial x^2} + 2 h k \frac{\partial^2 f}{\partial x \partial y} + k^2 \frac{\partial^2 f}{\partial y^2}.$$

Since F has its first two derivatives continuous on the interval [0,1] it satisfies the hypothesis for the Taylor series expression in a single variable with n=2, so

$$F(1) = F(0) + F'(0)(1 - 0) + F''(c) \frac{(1 - 0)^2}{2!} \qquad \text{(for } c \in [0, 1])$$

$$= F(0) + F'(0) + \frac{1}{2}F''(c). \qquad (B.5)$$

But F(1) = f(a+h,b+k) and F(0) = f(a,b) by definition. Also $F'(0) = h f_x(a,b) + k f_y(a,b)$ and $F''(c) = (h^2 f_{xx} + 2h k f_{xy} + k^2 f_{yy})$ evaluated at (a+ch,b+ck).

Now substituting these expressions into (B.5) above

$$f(a+h,b+k) = f(a,b) + h f_x(a,b) + k f_y(a,b) + (\text{terms of higher order}),$$

and the tangent-plane approximation is

$$f(a+h,b+k) \approx f(a,b) + h f_x(a,b) + k f_y(a,b).$$

B.3 Review of complex numbers

Complex numbers have the form z = a + ib where $i = \sqrt{-1}$. The number a is called the real part of z, R(z), and the number b is called the imaginary part of z, I(z).

Complex numbers can be added, subtracted, multiplied and divided, as shown by the following examples:

•
$$(7+3i)+(-3+2i)=(7-3)+(3+2)i=4+5i$$

•
$$(2+3i)(3-i) = 2 \times 3 - 2i + 3 \times 3i - 3i^2 = 6 + 7i - 3 \times (-1) = 9 + 7i$$

•
$$\frac{2+i}{1+i} = \frac{2+i}{1+i} \times \frac{1-i}{1-i} = \frac{2-2i+i-i^2}{1-i^2} = \frac{2-i+1}{1+1} = \frac{3-i}{2}$$
.

Also useful when dealing with complex numbers is Euler's identity,

$$e^{i\theta} = \cos\theta + i\sin\theta,\tag{B.6}$$

which implies that

$$e^{-i\theta} = \cos\theta - i\sin\theta. \tag{B.7}$$

When solving ODEs, the function $e^{-i\theta}$ is often more convenient to deal with than $\cos \theta$ and $\sin \theta$. Furthermore, the identity is useful for obtaining roots of complex numbers. For example, for $\theta = \pi/2$,

$$e^{i\pi/2} = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = i.$$

So

$$i^{1/2} = (e^{i\pi/2})^{1/2} = e^{i\pi/4}$$

and from (B.6),

$$i^{1/2} = e^{i\pi/4} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}(1+i).$$

Note that $i = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)$, since $\cos\left(\frac{3\pi}{2}\right) = 0$ and $\sin\left(\frac{3\pi}{2}\right) = 1$, and thus we also have

$$i^{1/2} = \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}(1+i).$$

B.4 Hyperbolic functions

From Euler's identity (equation (B.6), of B.3) we can define $\sin x$ and $\cos x$ as

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}, \qquad \cos x = \frac{e^{ix} + e^{-ix}}{2}.$$
 (B.8)

And recall that $\sin^2 x + \cos^2 x = 1$ indicates that in the (x, y)-plane, the point $(\sin x, \cos x)$ lies on the unit circle and the functions $\sin x$ and $\cos x$ are called circular functions. In the same way we can define the *hyperbolic functions*, where $(\sinh x, \cosh x)$ lies on the rectangular hyperbola with equation $\sinh^2 x - \cosh^2 x = 1$.

Formally they are defined in terms of e^x as

$$sinh x = \frac{e^x - e^{-x}}{2}, \quad cosh x = \frac{e^x + e^{-x}}{2},$$
(B.9)

whence

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

These functions are commonly used to simplify expressions of exponentials and thus often appear in the integral solutions of the text.

To get an idea of how they behave they are graphed below using Maple in Figures B.3 to B.5.

Figure B.3: Graph of sinh x (black) with $e^{-x}/2$ (grey) and $-e^{-x}/2$ (grey).

Figure B.4: Graph of cosh x (black) with $e^{-x}/2$ (grey) and $e^x/2$ (grey).

Figure B.5: Graph of tanh x (black) with upper and lower bounds at ± 1 (grey).

B.5 Integration using partial fractions

Integrating a complicated fraction may be simplified by writing it as the sum of simpler fractions. This process is useful in many applications, but in particular for integration where the integral of an original function becomes the sum of integrals, which are much easier to find.

Example 2.2: Write

$$\frac{x+4}{x^2-5x+6}$$

as a sum of simpler fractions and hence find its integral.

Solution: The denominator of the function can be factorised and written as two partial fractions

$$\frac{x+4}{x^2-5x+6} = \frac{x+4}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3} \, .$$

Now

$$\frac{A}{x-2} + \frac{B}{x-3} = \frac{A(x-3) + B(x-2)}{(x-3)(x-2)}$$

so that equating the coefficients in the numerator, with those of the original function, gives two simultaneous equations, A+B=1 and -3A-2B=4. Solving these we have A=-6 and B=7. Thus the original fraction may be written as the sum of partial fractions

$$\frac{x+4}{x^2-5x+6} = \frac{-6}{x-2} + \frac{7}{x-3} \, .$$

While integration of the original function is clearly not simple, the latter expression is easy to integrate:

$$\int \frac{-6}{x-2} dx = -6 \ln|x-2| + C_1 \quad \text{and} \quad \int \frac{7}{x-3} dx = 7 \ln|x-3| + C_2.$$

Thus

$$\int \frac{x+4}{x^2-5x+6} dx = -6\ln|x-2| + 7\ln|x-3| + C_3$$

where $C_3 = C_1 + C_2$.

Example 2.3: Write the fraction

$$\frac{1}{x^2-a^2}$$

as a sum of simpler fractions.

Solution: Firstly, the denominator of the original fraction can be factorised

$$\frac{1}{x^2 - a^2} = \frac{1}{(x - a)(x + a)}$$

and we would like to write this as

$$\frac{A}{x-a} + \frac{B}{x+a}.$$

But

$$\frac{A}{x-a} + \frac{B}{x+a} = \frac{A(x+a) + B(x-a)}{(x-a)(x+a)}$$

from which, by equating the numerators,

$$1 = Ax + Aa + Bx - Ba.$$

Thus A + B = 0 (equating the coefficients of x) and a(A - B) = 1 (equating the constants) which implies that A = 1/2a and B = -1/2a. So the original fraction can be written as

$$\frac{1}{x^2 - a^2} = \frac{1}{2a(x-a)} - \frac{1}{2a(x+a)}.$$

In general, fractions can be separated into partial fractions as follows:

$$\frac{f(x)}{x(x+a)(x-a)} = \frac{A}{x} + \frac{B}{x+a} + \frac{C}{x-a},$$

$$\frac{f(x)}{x^2+a} = \frac{A}{x} + \frac{Bx+C}{x^2+a},$$

$$\frac{f(x)}{x(x-a)^2} = \frac{A}{x} + \frac{B}{x-a} + \frac{C}{(x-a)^2}.$$

Note that when splitting a fraction into partial fractions, the numerator of each partial fraction is a polynomial with degree one less than the denominator. (For further details see, for example, Adams (1995).)

Appendix C

Notes on Maple and MATLAB

C.1 Brief introduction to Maple

Maple is an extensive symbolic software package, able to carry out many sophisticated calculations in many areas of mathematics. As an extension to the calculator, it is able to cope with extremely long numbers, up to about 500 000 digits and can solve differential equations symbolically and numerically, graph numerical solutions, do complex algebra, and much more. Since this book is concerned with differential equations, and their solution, not all of which are solvable analytically, Maple or MATLAB (see Section C.3), or some other equivalent software package, is essential for a complete understanding of the models developed and discussed in this book.

This brief introduction is far from adequate for those who are new to such packages, but it serves to illustrate the Maple environment, the manner in which statements and functions operate and how to get help on any topic.

Basics

Below (Figure C.1) is a Maple screen dump of some basics in value assignments and algebra. Note the use of semicolons at the end of each statement: a semicolon allows the results to be displayed on the worksheet, while a colon suppresses information to the screen, although it exists and can be accessed at any time by typing the variable name. Note too, that restart resets all variables to blanks, and it is good practice to start each independent code segment with this command.

Getting help

At any time, a question mark in front of a command will provide full information on that topic, such as, ?plot for information, options and examples on plotting functions. Information on the commands required for a variety of functions pertaining to equations, plotting procedures and solution finding, typically used in this text, can also be found under 'Maple code', in the text index.

'Further information' (below) suggests a website for help on particular topics, as well as suggesting a basic text (of which there are many) for those requiring a detailed introduction to Maple.

C.2 Solving differential equations with Maple

This book is concerned with both the numerical and symbolic solution of differential equations, and the plotting of these results. Figure C.2 illustrates how to find the analytical and numerical solutions to a differential equation, as well as how to use the plotting and display functions to graph the results. These routines are typical of those which are required repeatedly throughout the book. Note the use of with(plots) in the opening line to access routines in the plotting library of Maple. (This code segment is taken from Section 2.5.)

Further information

There are any number of excellent books on introducing Maple, such as Holmes et al. (1993). More advanced texts are also available, such as Heck (1996).

```
Value assignment statements
> x:=3;
                                             x := 3
> y:=4;
                                             y := 4
> z:=x+y;
                                             z := 7
> z;
                                               7
Re-set all variables
> restart:
Equations and their solution
> eq1:=2*x+5*y=0;
                                       eq1 := 2x + 5y = 0
> eq2:=x-y=3;
                                        eq2 := x - y = 3
> solve({eq1,eq2},{x,y});
                                        \{x=\frac{15}{7}, y=\frac{-6}{7}\}
##Shain (2) 6 〇尺 * | 用 ANU Control | 例 Mademala | 用 Newsens | 国 Explodes
```

Figure C.1: Maple screen dump illustrating some basic assignment statements, and introducing the Maple environment.

Figure C.2: Maple screen dump illustrating the solution to a differential equation, and a plotting routine.

C.3 Brief introduction to MATLAB

MATLAB is a high-level programming language for mathematics and engineering, in particular. The name MATLAB is short for "MATrix LABoratory". The characterising feature of MATLAB is that it makes dealing with and manipulating matrices both easy and fast. Unlike Maple, it does not do symbolic algebra, but there is a toolbox available (the symbolic toolbox, included with student version of MATLAB) which provides the ability to do symbolic algebra.

Basic commands for vectors and matrices

The basic element (data-type) in MATLAB is the array (or matrix). Square brackets are used to denote arrays, with commas (or blanks) to separate elements and semicolons to separate rows. Thus the following commands are used to store in memory the mathematical constructs

```
a = [1 2 3];
b = [4; 5; 6];
A = [7 -8 9; -4 5 -6];
```

These produce the following mathematical vectors and matrices,

$$a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \qquad A = \begin{bmatrix} 7 & -8 & 9 \\ -4 & 5 & -6 \end{bmatrix}.$$

Note that a = [1, 2, 3] is equivalent to a = [1 2 3]. Also note that the semicolon at the end of each statement is used to end the statement, and suppress the output (as opposed to when a semi-colon occurs within the square brackets where it indicates a new line of the array).

Scalar variables are 1×1 matrices but do not require the square brackets, e.g. c = 1 or d = 2.34 are used to store the scalars c = 1 and d = 2.34 in memory. Note that MATLAB normally regards all variables as real numbers, so c=1 is the same as c=1.0. However, integer valued variables, complex valued variables can also be defined if needed.

The usual addition, subtraction, multiplication and division operations apply to scalar variables. For array variables addition and subtraction work for arrays of the same size and also it is possible to add or subtract a scaler to an array. For multiplication * corresponds to the usual matrix multiplication. Also, .* and ./ and .^ correspond to element-by-element operations, e.g. [1, 2, 3] .* [4, 5, 7] results in the array $[1 \times 4, 2 \times 5, 3 \times 7] = [4, 10, 21]$. Similarly [1, 2, 3] .^ 2 produces $[1^2, 2^2, 3^2] = [1, 4, 9]$. Also useful is which is used to extract sub-arrays from arrays, and particularly to extract individual coloums or ropws from a matrix. For example, A(:,2) gives the second column of the matrix A, A(1,:) gives the first row, and A(1:2,1:2) gives the sub-matrix corresponding to rows 1–2 and columns 1–2.

Elements of arrays can be accessed by round brackets. For the above definitions, b(2) has the value 5 and A(2,3) has the value -6. MATLAB also provides the usual constructs for-loops (for sequential operations). In particular, the for-loop is used when you know in advance how many sequential operations are needed. The syntax is for k=1:5 which means repeat for a variable k taking values 1 through to 5. Note the use of colon notation similar as was used above for a range of values for the rows or columns in a matrix. As an example of a for-loop, the following code constructs a matrix A, where $A_{ij} = i + 2j$, by sequentially setting each element of the matrix, working along each row (in the inner loop) and then each column in the outer loop. The following is an example of two nested for-loops.

```
N = 10;
for i = 1:N
    for j = 1:N
        A(i,j) = i+2*j;
end
end
```

MATLAB also provides other constructs, such as a while-loop (for when the number of times through a loop is not known in advance, but is determined by some condition) and the usual if-elseif and logical statements for decisions and branching in programs. The reader is referred to the MATLAB documentation, or some textbooks on MATLAB programming, such as Higham and Higham (2007); Hanselman and Littlefield (2005), for more information on how to use these — they are not required for the examples in this book.

The final important programming construct in MATLAB that we mention here is the MATLAB function. Functions are used to help structure complicated code, with each function performing a certain task and with the variables in one function protected from the other functions. A function takes a number of input arguments and returns a number of output arguments (often one output value, which can also be an array, but can be more than one). Some functions can even have a variable number of input and output arguments, e.g. the built-in MATLAB function max(a, b) and \max(a, b, c, d) which returns the maximum value of the variables in the brackets.

MATLAB provides a substantial number of built-in functions, the simplest being functions to calculate standard mathematical operations, such as sin(x) to calculate sin(x) where x can be a scalar variable or an array. It also has functions for certain properties of arrays, such as length(a) for returning the length of an array; size(A) which returns the size of an array as a 1×2 array; and eig(A) for returning the eigenvalues of a square matrix. It is also possible to define one's own functions. The syntax for this is shown in the following code for a function which returns the sum of the cubes of two scalar numbers x and y.

```
function zout = myfcn(x, y)
zout = x^3+y^3;
```

In this the key-word function denotes that the following code is a separate function, the variable zout is the output variable, which must be assigned a value inside the function. Here myfcn is the name of the function. The number xin and yin here are the inputs for the function, and generally, can be scalars or arrays. To call the function, that is to use the function inside some other function or code, a line of code, for example, is myfcn(3,2) which, here, returns the value $3^3 + 2^3 = 34$.

The function can be placed into a separate file, in which case it should have the same name as what you have called the function with the extension 'm', i.e., the name of the file here would be myfcn.m. However, it is also sometimes convenient to package up all the functions into one file, provided everything in that file is itself a function. A small modification of the above code for the function myfcn, changing the 2nd line to zout = x.^3 + y.^3, would allow the function to take arrays as arguments provided the arrays were of the same size.

C.4 Solving differential equations with MATLAB

MATLAB provides functions for solving initial value problems. The standard ODE solver is the ode45 function. This function needs to be provided with an input argument corresponding to another function for the right-hand-side of the differential equation. It also requires an argument for the range of values of the independent variable on which to solve the differential equation and an argument for the initial condition.

Let us consider the initial value problem

$$\frac{dx}{dt} = \frac{x^2}{10^3} - 3t, \qquad x(0) = 2.5.$$

The entire MATLAB code to solve this problem numerically and plot the results is given in Listing C.1, Listing C.1: MATLAB code: c_app_solveode.m

function c_mainprogram; %define main program as function trange = [0 2]; % set range of values of t to solve for x0 = 2.5; % set initial value of DE

```
[tsol, xsol] = ode45(Orhs, trange, x0); %solve the DE
plot(tsol, xsol); %plot the solution
function dxdt = rhs(t, x) % function definition
```

dxdt = x^2/10^3-3*t; % this defines RHS of dx/dt

Let us now examine the various parts of this code. The first line defines the main program as a function. This should have the same name as the filename, i.e. $c_{app_solveode.m}$. The second line trange=[0 2] defines the range of t values to be input as an input argument of ode45. The line x0=2.5 defines a variable to store the initial value x(0). The next line is the one which does the work of solving the differential equation. Here the ode45 function needs to input another function, called here rhs which defines the RHS of the differential equation. Here @rhs is a function handle, that is, a "pointer" or "handle" to the actual function which is what is needed to make a function an argument of another function. Note that the ode45 function returns two equal sized arrays, called here tsol and xsol, which contain the solution x(t) evaluated at a series of time steps contained in tsol with the values of the solution contained in the array xsol. Finally, the line plot(tsol, xsol) creates a figure and plots the array of values xsol, corresponding to x(t) on the vertical axis, against the array of values tsol, corresponding to t, on the horizontal axis.

Let us consider the second block of code in Listing C.1. This defines the differential equation. This is a separate function, which can be placed in the same file as the main program, as in Listing C.1, or placed in a separate file which has the same name as the function, called here ${\tt rhs.m.}$ Note that the function must always have both the arguments (t,x), in that order, even if the differential equation does not depend explicitly on t. The second line of this block then defines the RHS of the differential equation.

Solving a system of differential equations

A similar approach is taken for solving systems of differential equations. In this case we need to think of the system as a vector-differential equation. Consider

$$\frac{dx}{dt} = 3x - by, \qquad x(0) = 1,$$

$$\frac{dy}{dt} = 3x + ay^2 + 1, \qquad y(0) = 2,$$

where a and b are parameters in the model, i.e.

$$\frac{d\boldsymbol{u}}{dt} = \boldsymbol{F}(t,\boldsymbol{u}), \qquad \boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x - by \\ 3x + ay^2 + 1 \end{bmatrix}, \qquad \boldsymbol{u}(0) = \begin{bmatrix} x(0) \\ y(0) \end{bmatrix}.$$

The entire code to solve this is given in Listing C.2

Listing C.2: MATLAB code: c_app_systemsolve.m

```
function c_app_systemsolve
             % define a,b,
global a b;
trange = [0 1]; % range of values of t
a = 1; b = 3; % parameter values
                 % define initial values
u0 = [1; 2];
[tsol, usol] = ode45(@rhs, [0 1], u0); #solve system
xsol = usol(:,1); ysol=usol(:,2); % extract x(t) and y(t)l
                      % plot x(t)
plot(tsol, xsol);
                        % cause the plot to not be overwritten
hold on;
plot(tsol, ysol, 'r:'); % plot y(t)
                         % new plots replace the previous plot
hold off;
function udot = rhs(t, u)
                         % allows access to variables in main function
global a b;
x = u(1); y = u(2);
                       % define x,y as components of vector u
                      % define the RHS of DE for x(t)
xdot = 3*x - b*y;
ydot = 3*x + a*y + 1; % define the RHS of DE for x(t)
udot = [xdot; ydot]; % assemble the DEs into a column vector
```

The first line, of the first block of code, defines the name of the main program. The second line defines the variables a and b as global variables. The global command allows us to define the variables corresponding to the parameter values in the main program, and a similar statement in the function defining the RHS of the differential equation then allows that function access to the values stored in those variables. The third line defines the values of the parameters corresponding to a and b. The fourth line defines the range of t values on which to solve the differential equation. The fifth line of the 1st block defines the initial values. Note the initial values are specified as a column vector.

The first line of the second block of code solves the differential equation which is specified in the third block of code. Finally, we need to plot the solution, but to do this we need to extract the separate solution vectors from the system solution array uso1, which is done on the second line. The solution array uso1 is an $N \times M$ array where N is the number of time steps the solution was calculated at, and N is the number of differential equations in the system. To extract the separate arrays for plotting, a command uso1(:,1) takes the 1st column of the array uso1, with the colon(:) denoting all values of the column. The remaining lines plot the two solutions x(t), y(t). In this code the hold on; command keeps the plot open so that the second plot command can be included in the same plot without erasing the first command. The third argument of the plot command causes the second plot to be in the colour red with a dotted line.

The third block of code defines the system of differential equations. The first line defines the function, rhs which is referenced by the handle Crhs in the ode45 command in the second block of code. The second line is the global statement which makes the memory containing the parameter values a and b available to the function rhs. The variable u, in the function definition in the 1st line, is an array containing both the variables x and y, as a 2 × 2 column vector, in this case. So the third line assigns each component of u to the variables u and u. Then in the fourth and fifth lines we define the RHS for the differential equations for u0 and u0. Finally, in the sixth line we assign a 2 × 1 column vector, u0, to the two differential equations.

We could have written the differential equations in terms of u(1) and u(2) instead of defining the variables x and y; however, the use of x and y makes it easier to read and to check that the code for the RHS of the differential equations is correct.

In terms of programming style it is not always a good idea to use global statements, as we have done here. This is because for large, complicated programs there is a risk of forgetting which variables are global and accidently putting the wrong values into them. It is then better to make these variables additional arguments of the rhs function; see the MATLAB documentation for examples of this. For simple programs, as are used in this book, it is convenient and simple to use the global statement.

Code for direction fields

In Chapter 6 plots are produced of the phase-plane using MATLAB. The following MATLAB function can be used to plot direction fields, similar to that produced by Maple. The code is given in Listing C.3.

Listing C.3: MATLAB code: c_dirplot.m

```
function c_dirplot(rhsfcn, xmin, xmax, ymin, ymax, Ngrid)
% function to plot direction fields given the RHS of a system of 2 DEs
% xmin, xmax, ymin, ymax scalar values defining plot region
% Ngrid= number of points on grid for arrows

lflag = 1; % a flag for whether arrows of same length (flag=1) or not

%make a grid
disp(xmin)
x = linspace(xmin, xmax, Ngrid);
y = linspace(ymin, ymax, Ngrid);
[Xm, Ym] = meshgrid(x,y);

%insert the function values at each point of the grid
%into the arrays xd and yd
```

```
for i = 1:Ngrid
   for j=1:Ngrid
       uvec = rhsfcn(0, [x(i), y(j)]);
       if lflag==1 ·
          xd(j,i) = uvec(1)/norm(uvec);
          yd(j,i) = uvec(2)/norm(uvec);
          sfactor=0.6
       else
          xd(j,i) = uvec(1);
          yd(j,i) = uvec(2);
          sfactor=1.0;
       end
   end
end
%use Matlab quiver function to do the dirfield plot
quiver(Xm, Ym, xd, yd, sfactor,'r');
```

100 t Chall Street nak mentoka dolek julian

tick boar of the property of t

and the second s

Appendix D

Units and scaling

D.1 Scaling differential equations

When dealing with models involving differential equations with several parameters it can be useful for reducing the number of independent parameters in the system by making all the variables dimensionless. This process is called *scaling* the model. The basic idea is to define new variables which are the old variables divided by some constant in the problem which has the same units as the variables.

Example 4.1: For the population model

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right), \quad N(0) = N_0,$$

where N(t) is the population at time t, and K is the carrying capacity of the population (measured in number of people), n_0 the initial population (measured in number of people) and r is the intrinsic growth rate measured in years⁻¹ (persons/person per year). Determine new variables n and τ which are dimensionless, to replace N and t.

Solution: The variable N measures population size. There are two possible scales with the same dimensions, the carrying capacity K and the initial population N_0 . We will choose the constant K. The variable t measures time (in hours). The constant r is measured in hours⁻¹ therefore r^{-1} has the same dimensions as t. We can therefore define dimensionless variables

$$n=\frac{N}{K}, \qquad \tau=\frac{t}{r^{-1}}=rt.$$

We can use the chain rule to express any derivatives in a differential equation in terms of scaled variables. Suppose X and T are dimensioned variables and x and τ are scaled variables, where x_s and y_s are the constants used to scale the variables, so that

$$x = \frac{X}{x_s}, \quad y = \frac{Y}{y_s}, \quad \text{or} \quad X = x_s x, \quad Y = y_s y.$$

Then we have the following scaling law,

$$\frac{dX}{dY} = \left(\frac{x_0}{y_0}\right) \frac{dx}{dy}.$$
 (D.1)

Equation D.1 follows directly from the chain rule,

$$\frac{dx}{dy} = \frac{d}{dy}(x_0X) = x_0\frac{dX}{dy} = \frac{dX}{dY}\frac{dY}{dy} = x_0\frac{dX}{dY}\frac{1}{y_0}.$$

For second-order, and more generally, for nth-order derivatives, the scaling laws are

$$\frac{d^2X}{dY^2} = \left(\frac{x_0}{y_0^2}\right) \frac{d^2x}{dy^2}, \qquad \frac{d^nX}{dY^n} = \left(\frac{x_0}{y_0^n}\right) \frac{d^nx}{dy^n}. \tag{D.2}$$

Example 4.2: Using the above scaling laws we now scale the model in Example 1.

Solution: Write the model

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right), \quad N(0) = N_0,$$

in terms of the scaled variables n = N/K, $\tau = rt$. The scales are K for the variable N and r^{-1} for the variable t. Using (D.1) we can write the differential equation as

$$\frac{K}{r^{-1}}\frac{dn}{dt} = rn\left(1 - \frac{Kn}{K}\right)$$

which simplifies to

$$\frac{dn}{d\tau}=n(1-n).$$

To scale the initial condition $N(0) = N_0$ we write this as $N = n_0$ when t = 0. In dimensionless variables the initial condition becomes $Kn = N_0$ when $r^{-1}\tau = 0$ which simplifies to $n = N_0/K$ when $\tau = 0$. Hence we can write the dimensionless differential equation and initial condition as

$$\frac{dn}{dt} = n(1-n), \qquad n(0) = n_0, \quad \text{where} \quad n_0 = \frac{N_0}{K}.$$

This is a simpler form. Where we previously had three parameters, K, r and N_0 , now we have just the one independent parameter $n_0 = N_0/K$ (which is a dimensionless combination of N_0 and K).

Example 4.3: Scale the SIR epidemic model

$$\begin{aligned} \frac{dS}{dt} &= -\beta SI, \\ \frac{dI}{dt} &= \beta SI - \gamma I. \end{aligned}$$

Solution: We scale the variables as follows,

$$s = \frac{S}{s_0}, \qquad i = \frac{I}{s_0}, \qquad \tau = \frac{t}{\gamma^{-1}}$$

and so

$$S = s_0 s, \qquad I = s_0 i, \qquad t = \gamma^{-1} \tau$$

Using the scaling law (D.1) the system becomes

$$\begin{split} \frac{s_0}{\gamma^{-1}} \frac{ds}{d\tau} &= -\beta s_0^2 s i \\ \frac{s_0}{\gamma^{-1}} \frac{di}{d\tau} &= \beta s_0^2 s i - \gamma s_0 i, \end{split}$$

which can be simplified to

$$\frac{ds}{d\tau} = -R_0 si$$

$$\frac{di}{d\tau} = R_0 si - i,$$

where $R_0 = \beta s_0/\gamma$ is a single dimensionless parameter.

D.2 SI Units 337

Advantages and disadvantages of scaling

There are some obvious advantages in scaling the equations of a model. Firstly, there is the advantage in having fewer parameters to deal with. On the other hand, scaling a set of equations abstracts the model, to some extent. It can put an additional obstacle (even a minor one) in interpreting the results or graph of a model when it is desired to obtain directly the original quantities. For example, if the important question in a population model is the number of years until the population reaches a certain value, then it is more appropriate to produce a graph of dimensioned quantities. Furthermore, it can sometimes be useful to retain the physical interpretation of the coefficients of various terms, which can be lost when using a scaled model.

Generally speaking, if the parameter values for a model are well known, then a dimensional model may be more appropriate, but if several parameters are not known, and we need to explore the model, then there is a big advantage to scaling the equations.

D.2 SI Units

Table D.1: Fundamental Units of Primary Quantities

Primary Quantity	SI Unit	cgs Unit
mass	kilogram, kg	gram, g
length	metre, m	centimetre, cm
time	second, s	second, s
temperature	Kelvin, K	Kelvin, K

Table D.2: Secondary Units Comprised of Fundamental Units

Quantity	SI Units
density ρ	$ m kgm^{-3}$
velocity v	$\mathrm{m}\mathrm{s}^{-1}$
acceleration a	$ m ms^{-2}$
force F	Newtons $N = kg m s^{-2}$
pressure p	Pascal Pa = $N m^{-2} = kg m^{-1} s^{-2}$
$_{\rm energy}E$	$Joule J = kg m^2 s^{-2}$
power \dot{E}	Watt $W = J s^{-1}$
heat flux J	$ m Wm^{-2}$
thermal conductivity k	${ m W}{ m m}^{-1}{ m K}^{-1}$
specific heat c	$ m Jkg^{-1}K^{-1}$
thermal diffusivity α	$m^2 s^{-1}$
Newton cooling coefficient h	${ m W}{ m m}^{-2}{ m K}^{-1}$

La lette ta de la laterativa della comita e estata la la la la lacerata en en estata de la lacerata del la lacerata de la lacerata de la lacerata del la lacerata de la lacerata de la lacerata del la lacerata de la lacerata de la lacerata del la lacerata del lac

en and the second theory and a cate of the divided by the second second second second second second second sec The following the rest of the second s

adioda an est

chip (mg) mahari larah (Cabbaneharan a Cabba

	THE SECTION	manga yanggara
		ternal de
The second of the second		nama sa
1 20 males	M.civiež	nudscriptes 📑

Frida Bill Bernalding Bernalding Bernalding Spring Control of the South Spring Con-

:	مستحرفاتها اللهاي البارات المحافظة فيقسد جماعية فعال المستشدات المستشدة المستحدة المستحدة المستحدة المستحدة ال		The second of th	
į	erija je si idida e s		(Updataty)	•
1			y waterest to	
	14 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		to the according to the second	
;			o seirmens	
	Negrous Y suppose		The state of the s	
1	The transfer of the Month of the	xa I.	- 5.20.20.88.037	
1	**************************************		M vgross	
	TO THE WORLD		la managa da	•
			System lapre	
- :			A will van chado familia h	
			The second section of	
1	and the second of the second		to emerged the bearealth	
-			[132 Jahringson guidhaise geografic]	

References

Adams, R. A. (1995). Calculus: A Complete Course. (3rd ed.). Ontario: Addison-Wesley.

Allen, L. (2003). An Introduction to Stochastic Processes with Applications to Biology. N.J.: Prentice-Hall.

Anderson, A. (1996). Was rattus exulans in New Zealand 2000 years ago? AMS radiocarbon ages from the Shag River Mouth. Archaeology in Oceania. 31, 178-184.

Anderson, R. M. and R. M. May (1991). *Infectious Diseases of Humans*. Oxford.: Oxford University Press.

Banks, R. (1994). Growth and Diffusion Phenomena: Mathematical Frameworks and Applications. Berlin: Springer-Verlag.

Barnes, B., H. Sidhu and D. Gordon (2007). Host gatro-intestinal dynamics and the frequency of antimicrobial production by escherichia coli. *Microbiology* 153, 2823–2827.

Barro, R. J. (1997). Determinants of Economic Growth: A Cross-Country Empirical Study. Cambridge, MA.: MIT Press.

Beck, M., A. Jakeman and M. McAleer (1993). Construction and Evaluation of Models of Environmental Systems, Chapter 1, pp. 3-35. New York: Wiley.

Beddington, J., C. Free and J. Lawton (1978). Characteristics of successful natural enemies in models of biological control of insect pests. *Nature 273*, 513–519.

Begon, M., J. Harper and C. Townsend (1990). *Ecology, Individuals, Populations and Communities* (2nd ed.). Oxford: Blackwell.

Borelli, R. and C. Coleman (1996). Differential Equations; A Modelling Perspective. New York: Wiley.

Brauer, F. and C. Castillo-Chàvez (2001). Mathematical Models in Population Biology and Epidemiology. NY: Springer-Verlag.

Braun, M. (1979). Differential Equations and Their Applications (2nd ed.). Berlin: Springer-Verlag. Burgess, J. and L. Olive (1975). Bacterial pollution in lake burley griffin. Water (Australian Water and Wastewater Association) 2, 17–19.

Caulkins, J., R. Marrett and A. Yates (1985). Peruvian anchovy population dynamics. *U.M.A.P. Journal* 6(3), 1-23.

Costantino, R., J. Cushing, B. Dennis and R. Desharnis (1995). Experimentally induced transitions in the dynamic behaviour of insect populations. *Nature 375*, 227–375.

Costantino, R., R. Desharnais, J. Cushing and B. Dennis (1997). Chaotic dynamics in an insect population. Science 275, 389–391.

Cramer, N. F. and R. May (1972). Interspecific competition predation and species diversity: A comment. *Journal of Theoretical Biology* 34, 289–293.

Cyrix (1998). Technical documentation for Cyrix 6x86-P-166 processor.

Daley, D. and J. Gani (1999). *Epidemic Modelling. An Introduction*. Cambridge: Cambridge University Press.

Davies, P. (1994). War of the Mines: Cambodia, Landmines and the Impoverishment of a Nation. London: Pluto Press.

Dekker, H. (1975). A simple mathematical model of rodent population cycles. *Journal of Mathematical Biology* 2, 57-67.

Diekmann, O. and J. A. P. Heesterbeek (2000). Mathematical Epidemiology of Infectious Disease: Model Building, Analysis and Interpretation. Hokoben, N.J.: Wiley.

Dodd, A. (1940). The biological campaign against prickly-pear. Technical report, Brisbane Government Printer, Australia.

Edelstein-Keshet, L. (1988). Mathematical Models in Biology. New York: Random House.

Feichtinger, G., C. V. Forstand and C. Piccardi (1996). A nonlinear dynamical model for the dynastic cycle. Chaos, Solitons and Fractals 7, 257–271.

Frank, S. A. (1994). Spatial polymorphism of bacteriocins and other allelopathic traits. *Evolution Ecology* 8, 369–386.

Fulford, G. R. and P. Broadbridge (2000). Industrial Mathematics: Case Studies in Heat and Mass Transport. Cambridge: Cambridge University Press.

Fulford, G. R., P. Forrester and A. Jones (1997). Modelling with Differential and Difference Equations. Cambridge: Cambridge University Press.

Fulford, G. R., M. G. Roberts and J. A. P. Heesterbeek (2002). The metapopulation dynamics of an infectious disease: Tuberculosis in possums. *Theoretical Population Biology* 61, 15–29.

Gani, J. (1972). Model-building in probability and statistics. In O. Sheynin (Ed.), The Rules of the Game, pp. 72–84. London: Tavistock Publications.

Gani, J. (1980). The role of mathematics in society. Mathematical Scientist 5, 67-77.

Gordon, D. M. and M. A. Riley (1999). A theoretical and empirical investigation of the invasion dynamics of colicinogeny. *Microbiology* 145, 655-661.

Gotelli, N. J. (1995). A Primer of Ecology. Sunderland, MA: Sinauer Associates.

Grenfell, B. and A. Dobson (1995). Ecology of Infectious Diseases in Natural Populations. Cambridge: Cambridge University Press.

Hanselman, D. and B. Littlefield (2005). Mastering MATLAB 7. NJ: Pearson.

Hassell, M. (1978). The Dynamics of Arthropod Predator-Prey Systems. Princeton, N.J.: Princeton University Press.

Hassell, M. P. (1976). The Dynamics of Competition and Predation. London: Edward Arnold.

Hearn, C. (1998). Private communication.

Heck, A. (1996). An Introduction to Maple (2nd ed.). New York: Springer-Verlag.

Higham, D. J. and N. J. Higham (2007). MATLAB Guide (2nd ed.). Philadelphia: SIAM.

Holman, J. (1981). Heat Transfer. New York: McGraw-Hill.

Holmes, M., J. Ecker, W. Boyce and W. Siegmann (1993). Exploring Calculus with Maple. New York: Addison-Wesley.

Hurewicz, W. (1990). Lectures on Ordinary Differential Equations. New York: Dover.

Jones, J. C. (1993). Combustion Science. Principals and Practice. Brisbane: Milennium Books.

Keeling, M. J. and P. Rohani (2008). *Modelling Infectious Diseases in Humans and Animals*. N.J.: Princeton University Press.

Keeton, W. T. (1972). Biological Science (2nd ed.). New York: W W Norton.

Kermack, W. and A. McKendrick (1927). A contribution to the mathematical theory of epidemics. *Proceedings of the Royal Society. A 115*, 700–721.

Kerr, B., M. A. Riley, M. W. Feldman and B. J. Bohannan (2002). Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. *Nature 418*, 171–174.

Kincaid, D. and W. Cheney (1991). Numerical Analysis. Belmont, CA.: Brooks Cole.

Kirkup, B. C. and M. A. Riley (2004). Antibiotic-medicated antagonism leads to a bacterial game of rock-paper-scissors in vivo. *Nature 428*, 412–414.

Kormondy, E. K. (1976). Concepts of Ecology (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

Krebs, C., M. Gaines, B. Keller, J. Myers and R. Tamarin (1973). Population cycles in small rodents. Science 179, 35–41.

Lay, D. C. (1994). Linear Algebra and its Applications. Reading, MA: Addison-Wesley.

Levin, B. R. (1988). Frequency dependent selection in bacterial populations. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 319*, 2823–2827.

Lewin, R. (1983a). Predators and hurricanes change ecology. Science 221, 737-740.

Lewin, R. (1983b). Santa rosalia was a goat. Science 221, 636-639.

Lignola, P. and F. D. Maio (1990). Some remarks on modelling CSTR combustion processes. *Combustion and Flame 80*, 256–263.

References 341

Louie, K., M. Roberts and G. Wake (1993). Thresholds and stability analysis of models for the spacial spread of a fatal disease. *IMA Journal of Mathematics Applied to Medicine and Biology* 10, 207-226.

Loyn, R. H., R. G. Runnalls, G. Y. Forward and J. Tyers (1983, Sep). Territorial bell miners and other birds affecting populations of insect prey. *Science* 4618, 1411–1413.

Lucas, R. (1988). On the mechanics of economic development. Journal of Monetary Economics 22, 3-42.

MacArthur, R. and J. Connell (1966). The Biology of Populations. New York: Wiley.

May, R. (1981). Theoretical Ecology: Principles and Applications (2nd ed.). Oxford: Blackwell Scientific Publications.

Mesterton-Gibbons, M. (1989). A Concrete Approach to Mathematical Modelling. Reading, MA: Addison-Wesley.

Michaelis, L. and M. Menten (1913). Die kinetik der invertinwirkung. Biochemische Zeitschrift 49, 333–369.

Microsoft (1995). Microsoft encarta.

Miller, T. (1995). Mathematical model of heat conduction in soil for landmine detection. Technical Report DMS-C95/95, CSIRO Division of Mathematics and Statistics.

Monro, J. (1967). The exploitation and conservation of resources by populations of insects. *Journal of Animal Ecology* 36, 531–547.

Murray, J. (1990). Mathematical Biology. New York: Springer-Verlag.

Myers, J. and C. Krebs (1974). Population cycles in rodents. Scientific American 230, 38-46.

Oakley, R. and C. Ksir (1993). Drugs, Society and Human Behaviour (6th ed.). N.Y.: McGraw-Hill.

Parrish, J. and S. Saila (1970). Interspecific competition, predation and species diversity. *Journal of Theoretical Biology* 27, 207–220.

Przemieniecki, J. (1994). Mathematical Methods in Defence Analysis. Washington DC: American Institute of Aeronautics and Astronautics.

Quammen, D. (1997). The Song of the Dodo: Island Biogeography in an Age of Extinctions. London: Pimlico.

Renshaw, E. (1991). $Modelling\ Biological\ Populations\ in\ Space\ and\ Time.$ Cambridge University Press.

Rivers, C., G. Wake and X. Chen (1996). The role of milk powder in the spontaneous ignition of moist milk powder. *Mathematics and Engineering in Industry* 6, 1–14.

Roberts, M. (1992). The dynamics and control of bovine tuberculosis in possums. IMA Mathematics Applied to Medicine and Biology 9, 19–28.

Roberts, M. (1996). The dynamics of bovine tuberculosis in possum populations, and its eradication by culling or vaccination. *Journal of Animal Ecology* 65, 451–464.

Roberts, M. G. and J. A. P. Heesterbeek (1993). Bluff your way in epidemic models. *Trends in Microbiology* 1, 343–348.

Roberts, M. G. and M. I. Tobias (2000). Predicting and preventing measles epidemics in New Zealand. *Epidemiology and Infection 124*, 279–287.

Rolls, E. (1969). They All Ran Wild: A Story of Pests on the Land in Australia. Melbourne: Angus and Robertson.

Romer, P. (1986). Increasing returns and long run growth. Journal of Political Economy 94, 1002–1037.

Sansgiry, P. and C. Edwards (1996). A home heating model for calculus students. *College Mathematics Journal* 27(5), 394–397.

SBS (1998). SBS World Guide. Sydney: Australian Broadcasting Commission.

Smedley, S. I. and G. C. Wake (1987). Spontaneous ignition: Assessment of cause. Annual Meeting of the Institute of Loss Adjusters of NZ. Palmerston North 10-12 June, 1-14.

Solow, R. M. (1956). A contribution to the theory of economic growth. Quarterly Journal of Economic Growth 70, 65-94.

Stewart, I. (1989). Portraits of chaos. New Scientist 1689(4 Nov), 22-27.

Swan, T. W. (1956). Economic growth and capital accumulation. Economic Record 32, 334-361.

Taylor, J. G. (1980). Force-on-Force Attrition Modelling. Virginia: Operations Research Society of America.

Tung, K. K. (2007). Topics in Mathematical Modeling. Princeton: Princeton University Press.

van de Koppel, J. Huisman, J. van der Wal and H. Olff (1996). Patterns of herbivory along a productivity gradient: An empirical and theoretical investigation. *Ecology* 77(3), 736–745.

Vivaldi, F. (1989). An experiment with mathematics. New Scientist 1689 (28 Oct), 30-33.

Wake, G. and M. Roberts (1995). Percy possum plunders. CODEE Winter, 13-14.

Wilmott, P. (1998). Derivatives. The Theory and Practice of Financial Engineering. Chichester: Wiley.

Index

n ₀ , 102	random fire, 121, 123, 124
E. Coli, 160	tactics, 147
2-cycle, 70, 71, 74, 81	trench warfare, 124
3-cycle, 73	Battle of Iwo Jima, 122, 124
4-cycle, 71, 74	beetle, 4, 68, 106
	beetles, 130
absolute temperature, 250, 251	bifurcation, 72, 80, 255, 256
activation energy, 251, 258	bilharzia, 114
adaptive stepping, 88	biological control, 98
advection, 300, 301, 303, 305	biomass, 79, 201
Africa, 113	births, 53, 68
age based model, 130	Black Death, Black Plague, 98, 105
age dependent growth, 56	Black-Scholes equation, 291
age distribution, 200	bloodstream, 28, 29, 32, 33, 35, 47, 48
AIDS, 98	blowfly, 76
aimed fire, 120, 121, 123, 124, 131, 143, 180	boarding school, 97, 98, 100
alcohol, 28, 33, 35, 48, 49	bone, 20
ambient temperature, 253, 256, 258, 280, 283	boundary conditions, 264, 268, 276, 282, 301
America, 46	implicit, 279
amplitude, 70, 112, 208, 295, 307	boundary value problem, 231, 264, 284, 288
anarchy, 125	bovine tuberculosis, 143, 206, 214
anchovies, 65, 66	branching linear cascade, 37
annular shell, 232	breeding season, 56, 68, 71, 72, 74
antibiotic, 48	brick, 248, 249, 270
aphids, 4	building, 248
approximations, 84, 97, 182, 321	ounding, 210
linear approximation, 181, 321	Cactoblastis cactorum, 201, 213
quadratic approximation, 322	cactus, 112, 201
archipelago, 113	Calcium-40, 45
argon, 45	calicivirus, 98
Arrhenius law, 251	cannibal, 106
asbestos, 277	carbon, 17, 20, 45
atmosphere, 10, 16, 17	half-life, 17
atmospheric pressure, 44	carbon dating, 16
attic, 248, 250	carbon dioxide, 16
attractors, 177	carbon monoxide, 47
attrition coefficients, 121, 123, 143, 180	carnivore, 106
Australia, 4, 26, 33, 76, 112, 192, 201, 206, 246, 299	carrying capacity, 56, 60, 63, 65, 69, 70, 112, 153,
average life expectancy, 54	157
	Cave of Lascaux, 16
bacteria, 160	cell lysis, 160, 161
BAL, 33	centre, 175, 181, 183, 184
balance law, 10, 20, 21, 23, 29, 97, 192, 223	chain rule, 137, 140, 145, 158
bandits, 125	chaos, 69, 71–74, 90
bar, 47	characteristic equation, 172, 176, 178-183, 208, 281,
basic reproduction number, 102	313, 314, 318
basis, 319	characteristics, 302, 303
battle, 120, 131, 143, 147, 166, 180	method of characteristics, 300, 302
aimed fire, 120, 121, 123, 124, 143	charcoal, 16, 17, 20
attrition coefficients, 121, 123, 143, 180	chemical reaction, 230, 251
Battle of Iwo Jima, 122, 124	chemicals, 291, 305
divide and conquer, 147	chemostat, 80
guerrilla warfare, 124	chickenpox, 98, 102
Lanchester battle, 143	cichlids, 113
long-range artillery, 124	circular functions, 323

citrus industry, 106, 129	weak damping, 180
climate, 248	DDT, 4, 67, 106, 110
closed curve, 158, 159, 194, 197	deaths, 53, 57, 68
closed trajectory, 138, 149, 159	decay, 11
Cobb-Douglas model, 41, 43	exponential decay, 14, 17, 80, 221
cochineal insect, 201	potassium-argon decay, 45
coexist, 119, 156, 192	radioactive decay, 11
coffee, 218, 221, 242	decision-making, 2, 7
cold pills, 29	degenerate, 177
colicin, 161	density, 52, 97
colon, 327	density dependent births, 78
combat (battle), 4, 120, 143, 180	density dependent contact rate, 215
compartment, 10	density dependent growth (logistic), 57, 58, 111
branching linear cascade, 37	112, 117, 118, 152, 163, 164
linear cascade, 37	determinant, 172, 176, 179–181, 184, 318
compartmental diagram, 10	deterministic model, 6
compartmental model, 10, 11	differential equation, 67–69, 80, 90
competing species, 4, 114, 152, 188, 192	differential equation, 3, 11, 309
competition, 55, 56, 113, 152, 192	differential-difference equation, 75 diffusion, 28, 291, 300, 305, 306
competitive exclusion, 116, 117	diffusion equation, 305, 306
complex numbers, 323	digestion efficiency, 203, 206
compound interest, 45 computer, 84, 86, 235, 279	dimensionless form, 196, 253
computer chip, 5, 264, 279	dimensionless variable, 253
conduction, 218, 219, 223, 226, 228, 236, 266, 267,	dimensionless variables, 335
293	discrete growth, 67
radial heat conduction, 232, 274	crowding, 67
conductivity, 227, 230, 232, 267, 269, 270, 277	discrete logistic equation, 69, 81
constant coefficient equations, 313, 314	discretisation errors, 84
constant returns to scale, 42	discriminant, 176, 208
consumption rate, 206	disease, 97, 131, 136, 163, 185, 206
control theory, 202	AIDS, 98
controlling errors, 87	bilharzia, 114
convection, 223, 226, 300	Black Death, Black Plague, 98, 105
convective heat transfer coefficient, 220, 221, 269	bovine tuberculosis, 143
cooling, 218	calicivirus, 98
natural cooling, 243	chickenpox, 98, 102
Newton's law, 218, 220, 223, 235, 267, 274,	Ebola virus, 98
280	flu, influenza, 97, 98, 105
cooperation, 192	glandular fever, 98
cotton, 258	influenza, 102
cottony cushion scale insect, 106	malaria, 98
coupled, 97, 108, 115, 120, 136, 310	measles, 98, 102, 129, 131
critical value, 79, 256	mumps, 98
ambient temperature, 258	myxomatosis, 98
critical temperature, 258	smallpox, 98, 102
initial temperature, 258	typhoid, 98
crowding, 55, 57, 67, 68, 70, 72, 196	disintegration, 11, 18, 47
crumble, 257, 258	diurnal, 292
culling, 207, 209, 214, 215 cyclic, 131, 170	divergent, 170
	diversity, 157, 192, 193
2-cycle, 70, 71, 74, 81	divide and conquer, 147
3-cycle, 73 4-cycle, 71, 74	double glazing, 5, 271, 273, 287
stable cycle, 70	doubling time, 55 drug, 29, 37, 47, 48
unstable cycle, 70	drug, 29, 37, 47, 48 dynamical system, 97, 310
cylinder, 232, 275, 287	dynastic cycles, 125
solid cylinder, 278	dynasties, 125
Cyrix, 279	aj 11000100, 120
,	Ebola virus, 98
damping, 180	economic model, 41
critical damping, 180	ecoomic growth model, 49
damped oscillations, 70, 74	ecosystem, 96, 106, 111, 114, 157, 192, 193
etrong demping 180	efficiency measure 117

egg-stick, 201	first-order approximation, 85
eigenvalue, 171–176, 178, 182, 208, 318, 319	first-order differential equation, 38, 97, 136, 311,
eigenvector, 171–174, 178, 318, 319	312
El Niño, 66	linear, 38
emigrants, 198	fish, 66, 77
emigration, 55, 80	fish and chips, 257, 258
endemic diseases, 103, 105	fishing, 52, 63, 79, 114
energy, 218, 220, 221	flies, 76
engine, 288	flu, 97, 98, 105
epidemic, 4, 97, 105, 139, 143, 185	fluid mechanics, 2
immunity, 97, 98, 102, 139	focus, 183, 208
incubation period, 98	stable focus, 175, 180
infectives, 98, 139, 141, 185, 209	unstable focus, 175
latent period, 98	foraging efficiency, 203
recovery rate, 100	forcing, 49, 314
removal rate, 185	forgery, 17, 47
susceptibles, 98, 139, 141, 142, 185, 209	Fourier, 226
transmission coefficient, 99, 185	Fourier's law, 226, 227, 229, 232, 236, 264, 269, 282,
vaccination, 102, 104, 207	291, 293
equilibrium point, 43	fourth-order Runge-Kutta method (RK4), 86
equilibrium points, 136, 144, 150, 154, 156, 157,	foxes, 165
163, 170, 176, 178, 179, 181, 204	fractals, 2
centre, 175, 176, 181, 183	France, 16
classification, 174, 181, 183	function handle, 331
degenerate, 177	functional response, 195, 203
equilibrium population, 59, 72, 129, 150, 153,	fur trade, 206
154	furnace, 285
equilibrium solution, 72, 81	•
equilibrium temperature, 225, 230, 247, 254,	Gause, 111, 115, 117, 118, 153
276	Gause's equations, 115
focus, 175, 176, 183, 208	Gause's Principle of Competitive Exclusion, 116,
inflected node, 176	117
node, 174, 176, 208	geese, 203, 214
saddle point, 152, 175, 176, 184, 208	general solution, 264, 314, 315
spiral, 152, 158, 159	GI-tract, 28, 29, 31, 33, 35, 47, 48, 161
stable equilibrium, 59, 60	glandular fever, 98
unstable equilibrium, 60, 152	glass, 270, 271
equilibrium solution, 40, 59	glass-air contacts, 273
equilibrium state, 226, 227, 302	global variables, 332
equilibrum point, 59	grass, 111
errors	grazing, 202
approximations, 84	grazing efficiency, 201
computer, 87	
	growth, 52, 56, 63, 67, 70, 72
discretisation errors, 84	age dependent growth, 56
estimating procedure, 84	chaotic growth, 67, 69, 71–74
round-off errors, 84, 86, 87, 91 estimating procedure, 84	density dependent growth, 57, 58, 111, 112, 117, 118, 152, 163, 164
Euler's identity, 293, 307, 323	discrete growth, 67
Euler's method, 84, 85, 89, 90	exponential growth, 45, 52, 54, 80, 111, 117,
exothermic, 251, 258	152, 164, 173, 221
exploitation, 114	growth rate, 54, 115
exponential decay, 10, 14, 17, 54, 80, 173, 221	limited growth, 56, 58
exponential growth, 45, 52, 54, 80, 111, 117, 152,	logistic growth, 58, 63, 69, 70, 78, 118, 153,
164, 173, 221	188, 193, 194, 196
extinction, 65, 67, 74, 79, 96, 156, 157, 192, 205,	oscillatory growth, 67, 69, 70
209, 214	stochastic growth, 56
6 1 116 00 0M	guano birds, 66
faecal coliform, 26, 27	guerrilla warfare, 124, 131, 166
fan, 235, 279, 283	gut, 160
farmers, 125	1 161/6 45 40 00 55 00
fermentation, 130	half-life, 15–18, 38, 55, 88
Fibonacci, 2	handling time, 195, 197
fibreglass, 246	hares, 111, 203, 214
firing rate, 132	harmonic oscillator, 179

Harrod-Domar model, 49	investment capital, 41
harvesting, 56, 63–66, 78, 79, 96	isotope, 11, 38
harvesting rate, 63	IVP, 13, 22, 39
hay, 257	
heat, 218, 219, 221, 223	Jacobian, 183–185
conduction, 218, 223, 226, 228, 236, 266, 290	Japanese, 122
conservation, 221	jungle warfare, 166, 189
convection, 223, 226	
energy, 218–221	Kenya, 45
heat and temperature, 219, 226	Kestrels, 67
heat balance, 281	
heat flux, 226, 227, 229, 231, 232, 234, 238,	labour, 41
264, 268–271, 290	ladybird, 4, 106, 107, 112, 129
heat loss, 4, 218, 223, 235, 237, 266	• *
	lag, 62, 76, 110, 111, 160, 274, 295
heat transport, 219, 226, 231	predator-prey lag, 111
radial heat flux, 232	lake, 20, 23, 26, 28, 37, 38, 46, 299, 302–305, 308
radiation, 226, 249	Lake Burley Griffin, 26, 28, 46
specific heat, 218, 219	Lake Erie, 25, 46
heat equation, 286, 290, 291, 297, 306, 307	Lake Malawi, 114
heat fin, 5, 234, 264, 279-281, 283, 288	Lake Ontario, 25, 46
heat resistance, 271, 272	Lake Victoria, 113
R-value, 248, 249, 269, 271	
	Lanchester, 120, 143, 180
heat transfer coefficient, 220, 221, 246, 252	land mines, 292, 296, 298, 307, 308
heating element, 222, 223, 246, 247	latent period, 98, 129
herbivore, 106, 200, 202	Lead-210, 18
Heun's method, 87	Lead-206, 37
Holling type II response, 196	lemmings, 198, 213
Holling type III response, 196	limit cycle (periodic solution), 193
Holling-Tanner model, 196, 212	limited growth (see logistic growth), 56, 58
homogeneous, 218, 223, 309, 313, 314, 316	
	with harvesting, 63
hot water heater, 222, 244, 246	linear, 38, 136, 181, 309, 319
house, 285	dependence, 319
house temperature, 248, 249	independence, 319
hyperbolic functions, 265, 281, 287, 323	linear combination, 264, 319
	linear algebra, 170, 178, 317
identity matrix, 318	linear cascade, 37
ignition, 250, 254-258	linearisation, 97, 181, 184, 186, 188, 207
.T	linearised system, 181–185
immigration, 55, 80	
immunity, 97, 98, 102, 139	lizard, 287
implicit boundary condition, 278	logistic, 62, 63, 73, 74
incubation period, 98	discrete logistic equation, 69, 81
industrial smoke, 17	logistic equation, 58-61, 73, 78, 89, 212
infection transmission rate, 207	logistic growth, 58, 69, 70, 74, 78, 153, 188
infectives, 98, 99, 139, 141, 185, 207, 209	193, 194, 196
inflected node, 176, 180	long-range artillery, 124
influenza, 97, 98, 102, 105	look-up table, 258
· · · ·	
inhomogeneous, 281, 309, 314	Lotka-Volterra equations, 108, 110, 111, 129, 148
initial conditions, 12, 13, 265	158, 160, 163, 195
initial value problem (IVP), 12, 13	lynx, 111
insect, 80, 106, 129	lysis, 160
instability of numerical schemes, 89	
insulation, 4, 218, 227, 246, 248-250, 264, 270, 274,	maggots, 76
277, 278	malaria, 98, 132
insurance, 257, 258	Maple, 3, 60, 84, 327
	-
integral calculus, 3	Maple code
integrating factor, 22, 39, 49, 312	$p, q \text{ and } \Delta, 185$
interaction parameters, 108, 115, 153	analytic solution, 327
interspecies, 153	basics, 327
intraspecies, 153	bifurcation diagram, 73
interference, 114	characteristic equation, 185
factor, 157	complex function, 295
International Council for Bird Preservation, 67	determinant of a matrix, 185
•	
invertebrates, 196	difference equation, 69
invertible, 173, 178, 320	eigenvalues, 185

equilibrium points, 150, 155, 185	multiplication, 171
factorise, 186	square matrix, 320
for-loop, 69	trace, 172, 176, 185, 318
getting help, 327	Mauritius, 67
Jacobian matrix, 185	meadow mouse, 199
nested for-loops, 73	measles, 98, 102, 129, 131
numerical (vs analytic) solution, 327	metal, 220
numerical methods, 91, 92	method of characteristics, 300
plot line, 24, 60	mice, 78
plot phase-plane, 108, 148, 153	Michaelis-Menten function, 35, 49, 81, 196, 200, 202
plot sequence of points, 69	microbiologist, 80, 111, 118
plot solution to second-order DE, 230	microorganisms, 80, 165
plot time-dependent graph for DEs, 14, 100,	Microtus pennsylvanicus, 199
116, 122	model
plot time-dependent graph with variety of ini-	
tial conditions, 60	compartmental model, 10, 11
•	deterministic model, 6
plotting, a restricted view, 116	empirical model, 5
screen dump, 327	simulation model, 6
setting a parameter to be positive (negative or	statistical model, 6
within an interval), 295	stochastic model, 5
simplify, 186	modelling approaches, 5
solving a DE, 14, 24	Monod
solving a pair of DEs, 150	Jaques Monod, 81
solving a pair of linear DEs, 124	Monod Model, 81
solving a PDE, 305	mortality rate, 203
stiff solver, 88	mosquito, 98
substitution, 15, 25	mosquitoes and malaria, 132
symbolically solving a DE, 62	moth, 112, 200
trace of a matrix, 185	motorcycle, 235
varying the step size, 89	mumps, 98
marine reservoir effects, 20	Mycobacterium bovis, 207
MATLAB, 3, 329	myxomatosis, 98
MATLAB code	my romatosis, oo
analytic solution, 14	Nanalaan 147
	Napoleon, 147
array, 329	natural cooling, 243
bifurcation diagram, 73	New South Wales, 201
colon notation, 329	New Zealand, 20, 143, 206, 257
difference equation, 69	Newton cooling coefficient, 220, 221, 242, 245
differential-delay equation, 76	Newton's law of cooling, 218, 220, 223, 224, 235,
division element by element, 329	252, 266, 267, 274, 276, 280
equilibrium points, 155	Nicholson, 76, 77
exponentiation element by element, 329	Nile perch, 113
for-loop, 69, 329	nitrogen, 16
function, 330	node, 208
multiplication element by element, 329	inflected node, 176, 180
nested for-loops, 73	stable node, 174, 180, 197
nested loops, 329	unstable node, 175
plot command, 331	nonlinear, 97, 108, 136, 170, 181, 184, 309
plot sequence of points, 69	nonlinear response, 72
row and column vectors, 329	nonlinear system, 110
scalar variables, 329	normal form, 38, 49
second-order DE, 231	nuclear reactor, 239, 286
semicolon, 329	nuclear testing, 17
solving a DE symbolically, 14	nullcline, 150, 151, 155, 204
symbolic toolbox, 14, 150, 155	numerical response, 195, 196, 203
matrix, 3, 170, 179, 183	numerical schemes, 84–86, 88–91, 97
arithmetic, 171, 317	Euler's method, 84, 85, 89, 90 first-order approximation, 85
determinant, 172, 176, 318	fourth-order Runge-Kutta method, 86, 92
eigenvalue, 172, 318	
eigenvector, 172, 318	Heun's method, 87
equation, 172	instability, 89
identity matrix, 172, 318, 320	numerical procedures, 84
invertible, 178, 320	one step method, 86
Jacobian, 183–185	predictor-corrector method, 86

quota, 63, 66, 79 Runge-Kutta method, 84, 86 nutrients, 79, 80 R-value, 248, 249, 269-271 rabbits, 98, 165, 203, 214 ocean, 292 radial conduction, 232, 274 ode45 function for solving DEs, 330 radiate, 113 Olduvai Gorge, 45 one step method, 86 radiation, 226, 249 radioactive decay, 10, 11, 18, 37, 45, 88 Opuntia inermis, 201 radiocarbon dating, 16, 20 Opuntia stricta, 201 order, 309 Radium-226, 19 random fire, 121, 123, 124 ordinary differential equation (ODE), 3, 22, 38, 310, rats, 20 reaction efficiency parameter, 253 oscillatory growth, 69, 70 damped, 70, 74 reaction kinetics, 196 reaction rate, 252, 258 overfishing, 65, 66 recovery rate, 100, 139 oxidation, 251, 258 refrigerator, 235 oxygen, 251, 258 relative temperature, 281 removal rate, 100, 101, 139, 185 paintings, 16, 18, 19, 47 repellers, 177 Paramecium aurelia, 119 reproduction rate, 54, 63, 69, 70, 72, 115, 198 Paramecium caudatum, 119 reproduction ratio, 143 parasite, 106, 113 partial derivatives, 39, 182, 290, 320, 321 residence time, 15, 100, 161 partial differential equation (PDE), 3, 231, 290, 291, resonance, 316 Rift Valley, 113 300, 301, 310 river, 26, 302, 308 partial fractions, 60, 64, 79 rodents, 198 particular solution, 315, 316 PDE, 290, 300 roof, 248-250 round-off errors, 84, 86, 91 peasant class, 125 Rule of 72, 45 per-capita birth rate, 57, 68, 107, 115 ruling class, 125 per-capita death rate, 57, 68, 115 rumour, 78 perch, 113 Runge-Kutta method, 86 periodic, 136, 149, 175, 179, 180, 193, 194, 197, 213 perturbation, 181 Saccharomyces cervevisiae, 118 Peru, 65, 66 saddle point, 152, 175, 184, 207, 208 pest, 4, 98, 106, 112, 143, 200, 206, 207 pesticide, 4, 106 salt, 21, 22 phase-plane, 136, 138, 144, 148, 153, 159 saturated, 195, 197, 203 scalar, 171 phase-shift, 295 phosphorus, 46 scale insect, 106, 112 pigeon, 67 scaled equation, 196, 253 pills, 28, 31, 48 scaling, 196, 212, 253, 335 plant, 79 Schizosaccharomyces kefir, 118 plant-herbivore system, 200, 202, 214 sea shell, 45 pollution, 20, 23, 26, 28, 46, 299, 300, 302-305, 308 searching rate, 111, 195, 197 pollution flux, 300, 301 second-order differential equation, 178, 230, 238, polyurethane, 277 264, 267, 275, 281, 309, 313, 314 population density, 52, 97 semicolon, 327, 329 possums, 143, 206, 214 Seminov model, 253 potassium-argon decay, 45 sensitivity to initial conditions, 80 pre-exponential factor, 251 separable, 13, 22, 54, 60, 137, 311 predator efficiency parameter, 111 sewage, 26, 27 predator-prey, 4, 106, 125, 148, 158, 184, 192, 193, Shag River Mouth, 20 195 sheep industry, 76 prickly-pear, 112, 200, 201, 213 simple harmonic oscillator, 179, 180 principle of competitive exclusion, 116, 117 simulation model, 6 probability, 3, 52, 74 simultaneous equations, 97, 150, 154, 265 production, 42 skateboard, 179, 180 production function, 43 smallpox, 98, 102 protozoa, 111, 119 smoke, 47 public health, 26 snail, 114 snow-shoe hare, 111 quartic equation, 81 software packages, 84 Queensland, 201 soil, 292

Index 349

soldiers, 120, 125, 143	toxins, 165
solid cylinder, 278	trace, 172, 176, 179-181, 184, 185, 208, 318
solution	tracer, 46
general solution, 315	trajectories, 136, 141, 144, 148, 149, 151, 153, 155,
particular solution, 315	170
sound, 273	transmission coefficient, 99, 139, 185
spatial distribution, 200, 211	trench warfare, 124
speciate, 113	Trichosurus vulpecula, 206
specific heat, 218, 219, 223, 224, 242, 246	trivial solution, 318
sphere, 232, 278	trophic level, 96
spherical shell, 287	turnover rate, 161
spiral, 152, 158, 159, 175, 176, 194	typhoid, 98
spontaneous combustion, 5, 250, 251, 256-258	
stable, 56, 70, 96, 112, 170, 185, 202, 204, 206-209,	U.S., 33, 122, 123
211	uncoupled, 97, 310
cycle, 70	United Nations, 113
focus, 175, 180, 213	universal gas constant, 251
inflected node, 180	unstable, 70, 170, 185, 204, 208
node, 174, 180, 197, 213	cycle, 70
system, 157, 192	equilibrium, 152
statistical model, 6	focus, 175, 213
statistics, 3	node, 175, 213
steady state, 248, 302, 308	saddle, 207
steady-state, 40	system, 192
Stefan-Boltzmann law, 249	upwelling, 66
step size, 84, 86	Uranium-238, 17, 37, 88
step-size, 87	half-life, 38
sterilisation, 207, 209, 214, 215	urinary tract, 48
stiff problem, 38, 88	
stiff solver, 88	vaccination, 98, 102, 104, 129, 207, 209, 215
stirred chemical reactor, 251, 257, 260	Van Meegeren, 18
stochastic, 56	vector, 170, 317
stochastic model, 5	basis, 319
stock market, 291	linear independence, 319
susceptibles, 98, 99, 139, 141, 142, 185, 207, 209	transpose, 319
symbiosis, 113, 130	velocity, 308
system, 97, 100, 108, 110, 116, 119, 120, 310, 317	Vermeer, 18
linear system, 120, 170, 172, 178, 181	vertebrates, 196
nonlinear system, 110, 170, 181, 183	voles, 198, 199
stable system, 192	volumetric heat source, 230
system dynamics, 136, 181, 183	11 040 040 064 007 000 000
unstable system, 192	wall, 248, 249, 264, 285, 288, 290
1.00	conduction through, 228, 266
tactics, 147	warranted rate of growth, 42
tangent-plane, 182, 322	water pipe, 4, 219, 264, 274
tank, 20, 21, 80	wave, 303
Taylor series, 85, 182, 320, 322	weed, 112
Taylor's Theorem, 85, 86, 321, 322	whooping cough, 102
technological advances, 44	Willard Libby, 16
technology, 78	wind-chill, 221
temperature, 218, 219, 222, 223, 226, 238	windows, 270–272, 285
heat and temperature, 219	double glazing, 271
territory, 114	wine cellar, 292, 296
thermal diffusivity, 291, 292	wool, 251, 257, 258
thermal equilibrium, 226–228, 247, 267, 271, 290	word equation, 11, 21
thermal resistance, 249, 270, 286	world population, 55
R-value, 249, 270	World War II, 18, 66
thermostat, 246, 266, 270	
Thorium-234 half-life, 38	yeast, 55, 56, 116, 118, 119
threshold, 26, 65–67, 143, 214	
time delay, 62, 72, 74–76	
time lag, 76	
tolerants, 198	
•	

DROKE.

tolerants, 198 time lag, 75/ thme delay, 62, 73, 44-76 threshold, 20, 65-67, 143, 213 half-life, 38 Thorium-234 yezst, 55, 56, 116, 116, 119 thermostat, 246, 266, 270 R-value, 249, 270 World War H, 18, 66 thermal resistance, 249, 270, 286 world population, 55 thermal equilibrium, 226-22%, 247, 267, 271, 290 word eguadion, 11, 21 thermal diffusivity, 201, 292 wool, 251, 257, 258. territory, 114 wine cellia: 232, 296 heat and temperature, 219 double glesing, 271 temperature, 218, 219, 222, 223, 226, 238 wipdows, 270-272, 285 technology, 78 wind-chill, 321 technological advances, 44 Willard Libby, 16 Taylor's Theorem, 85, 86, 321, 322 whooping cough, 102 Taylor series, 85, 182, 320, 322 weed, 112 tank, 20, 21, 80 $wave_1.303$ tangent-plane, 182, 322 water pipe, 4, 219, 264, 274. tactics, 147 warranied rate of growth, 42 conduction through, 228, 286 unstable system, 192 Well, 243, 249, 264, 285, 888, 290 system dynamics, 130, 181, 183 stuble system, 192 volumetric heat source, 250 voles, 198, 199 wonlinear system, 110, 170, 151, 583 linear system, 120, 170, 172, 178, 181 vertebrites, 196 system, 67, 106, 108, 110, 116, 119, 120, 316, 317 Yermeer, 18 symbiosis, 113, 130 velocity, 308 transpose, 319 susceptibles, 98, 99, 139, 141, 142, 185, 207, 209 stock market, 291 linear independence, 319 basis, 319 atechastic model, 5 stochastic, 56 vector, 170, 317 stured elemical reactor, 251, 257, 260 Van Mergeren, 18 vaccioation, 28, 102, 104, 129, 267, 209, 215 still solver, 88 stiff problem, 38, 88 sterilisation, 207, 209, 214, 215 urioary, tract, 48 step-size, 87 parametas. step size, 84, 86 Uranium-238, 17, 37, 38 Stefan-Boltzmann law, 249 upwelling, 60° steady-state, 40 System. 192 steady state, 248, 302, 308 saddle, 207 statistics, 3 node, 175, 213 statistical model, 6 forces, 175, 213 system, 157, 192 equilibrium, 152 node, 174, 180, 197, 213 ey.de, 70. inflected node, 780 nestable, 70, 170, 185, 204, 208 focus, 175, 180, 213 universal gas constant, 251 eyele, 70 United Nations, 115 uncoupled, 97, 840 SIL stable, 56, 70, 96, 112, 170, 185, 202, 204, 206-209. US, 33, 122, 123 spontaneous combustion, 5, 250, 251, 256-255 spiral, 152, 158, 159, 175, 176, 194 typhoid, 98 tumover rate, 161 spherical shell, 287 sphere, 232, 278 trophic level, 96 specific heat, 218, 219, 223, 224, 242, 240 trivial salution, 318 speciate, 113 **Iltiches**urus vulpecnia, 200 spatial distribution, 200, 211 tgench warfare, 124 bransmission coefficients, but 1324/445 sound, 273 partacular solution, 315 traj.comięs, 426, 141. J.11, 348, 149, 151. 153. 155. general solution, 315 rincar egra. solution solid cylinder, 278 trace, 172, 176, 179-181, 184, 185, 208, 318 carcoal 10g soldiers, 120, 135, 148