14

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08	Rev 1.9	<bs></bs>	<19/11/19>

CONTINUOUS INTERNAL EVALUATION - 2

Dept: BS	Sem / Div: I/ A,B, C, D, E & F	Sub: Calculus and Linear Algebra	S Code: 18MAT11
Date:23/11/19	Time: 9:30am -11:00am	Max Marks: 50	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

Q	N	Questions	Marks	RBT	CO's	
		PART A				
1	a	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz.$	8	L2	CO3	
		Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx$, by changing the order of integration	8	L2	CO3	
		Show that $\int_{0}^{\infty} \sqrt{y} e^{-y^{2}} dy \times \int_{0}^{\infty} \frac{e^{-y^{2}}}{\sqrt{y}} dy = \frac{\pi}{2\sqrt{2}}$	9	L2	CO3	
	OR					
2	a	Show that $\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta \times \int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta = \pi$	8	L2	CO3	
	b	Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	8	L2	CO3	
	С	Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double	9	L2	CO3	
			Page	: 1 / 2		

Page: 1 / 2

		integration					
	PART B						
3	a	Solve $(5x^4+3x^2y^2-2xy^3)dx+(2x^3y-3x^2y^2-5y^4)dy=0$	8	L2	CO4		
	b	Solve $(x^2 + y^3 + 6x)dx + y^2xdy = 0$	8	L2	CO4		
	С	Solve $x \frac{dy}{dx} + y = x^3 y^6$	9	L2	CO4		
OR							
4	a	Solve $x^3 \frac{dy}{dx} - x^2 y = -y^4 \cos x$	8	L2	CO4		
	b	Solve $(x^2-4xy-2y^2)dx+(y^2-4xy-2x^2)dy=0$	8	L2	CO4		
	c	Solve $(3x^2y^4+2xy)dx+(2x^3y^3-x^2)dy=0$	9	L2	CO4		

Prepared by: Soumya.S

HOD: Dr. Mahesh RK