# Workshop: Intro to Bayesian Learning Lecture 4 - Bayesian Classification and Posterior Approximation

#### Mattias Villani

Department of Statistics Stockholm University









#### **Overview**

- **■** Bayesian logistic regression
- **■** Posterior approximation

#### **Binary regression**

Logistic regression

$$\Pr(y_i = 1 \mid \mathbf{x}_i) = \frac{\exp(\mathbf{x}_i^{\top} \boldsymbol{\beta})}{1 + \exp(\mathbf{x}_i^{\top} \boldsymbol{\beta})}.$$

**■** Probit regression

$$\Pr(y_i = 1 | \boldsymbol{x}_i) = \Phi(\boldsymbol{x}_i^{\top} \boldsymbol{\beta})$$

**Multi-class** (c = 1, 2, ..., C) logistic regression

$$\Pr(y_i = c \mid \mathbf{x}_i) = \frac{\exp(\mathbf{x}_i^{\top} \boldsymbol{\beta}_c)}{\sum_{k=1}^{C} \exp(\mathbf{x}_i^{\top} \boldsymbol{\beta}_k)}$$

Likelihood

$$p(\mathbf{y}|\mathbf{X},\boldsymbol{\beta}) = \prod_{i=1}^{n} \frac{\left(\exp(\mathbf{x}_{i}^{\top}\boldsymbol{\beta})\right)^{y_{i}}}{1 + \exp(\mathbf{x}_{i}^{\top}\boldsymbol{\beta})}.$$

Problem: no conjugate prior. Posterior is intractable. Now what?

#### Likelihood information

**Observed information** in likelihood  $\ln p(\mathbf{x}|\theta)$  for **given** data  $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ 

$$J_{\mathbf{x}}(\hat{\theta}) = -\frac{\partial^2 \ln \boldsymbol{p}(\mathbf{x}|\theta)}{\partial \theta^2}|_{\theta = \hat{\theta}}$$

where  $\hat{\theta}$  is the maximum likelihood estimate.

Multiparameter observed information matrix

$$J_{\mathbf{x}}(\hat{\boldsymbol{\theta}}) = -\frac{\partial^2 \ln p(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T}|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}}$$

**E**xample:  $\boldsymbol{\theta} = (\theta_1, \theta_2)^{\top}$ 

$$\frac{\partial^2 \ln \boldsymbol{\rho}(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} = \begin{pmatrix} \frac{\partial^2 \ln \boldsymbol{\rho}(\mathbf{x}|\boldsymbol{\theta})}{\partial \theta_1^2} & \frac{\partial^2 \ln \boldsymbol{\rho}(\mathbf{x}|\boldsymbol{\theta})}{\partial \theta_1 \partial \theta_2} \\ \frac{\partial^2 \ln \boldsymbol{\rho}(\mathbf{x}|\boldsymbol{\theta})}{\partial \theta_1 \partial \theta_2} & \frac{\partial^2 \ln \boldsymbol{\rho}(\mathbf{x}|\boldsymbol{\theta})}{\partial \theta_2^2} \end{pmatrix}$$

# Second derivative measures curvature



## **Posterior asymptotics**

#### Normal posterior approximation

The posterior can in large samples be approximated by

$$\boldsymbol{\theta} | \mathbf{x} \stackrel{\text{a}}{\sim} \mathrm{N} \Big( \tilde{\boldsymbol{\theta}}, J_{\mathbf{x}}^{-1} (\tilde{\boldsymbol{\theta}}) \Big)$$

where  $ilde{ heta}$  is the posterior mode and

$$J_{\mathbf{x}}(\tilde{\boldsymbol{\theta}}) = -\frac{\partial^2 \ln p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}}|_{\boldsymbol{\theta} = \tilde{\boldsymbol{\theta}}}$$

is the d imes d observed posterior information matrix at  $ilde{ heta}$ .

■ Important: sufficient with proportional form

$$\log p(\boldsymbol{\theta}|\mathbf{x}) = \log p(\mathbf{x}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})$$

#### **Example:** gamma posterior

Poisson model:  $\theta|y_1,...,y_n \sim \text{Gamma}(\alpha + \sum_{i=1}^n y_i, \beta + n)$ 

$$\log p(\theta|y_1,...,y_n) \propto (\alpha + \sum_{i=1}^n y_i - 1) \log \theta - \theta(\beta + n)$$

First derivative of log density

$$\frac{\partial \ln p(\theta|\mathbf{y})}{\partial \theta} = \frac{\alpha + \sum_{i=1}^{n} y_i - 1}{\theta} - (\beta + n)$$
$$\tilde{\theta} = \frac{\alpha + \sum_{i=1}^{n} y_i - 1}{\beta + n}$$

lacksquare Second derivative at mode  $ilde{ heta}$ 

$$\frac{\partial^2 \ln p(\theta|\mathbf{y})}{\partial \theta^2}\big|_{\theta=\tilde{\theta}} = -\frac{\alpha + \sum_{i=1}^n y_i - 1}{\left(\frac{\alpha + \sum_{i=1}^n y_i - 1}{\beta + n}\right)^2} = -\frac{(\beta + n)^2}{\alpha + \sum_{i=1}^n y_i - 1}$$

Normal approximation

$$N\left[\frac{\alpha + \sum_{i=1}^{n} y_i - 1}{\beta + n}, \frac{\alpha + \sum_{i=1}^{n} y_i - 1}{(\beta + n)^2}\right]$$

## Example: gamma posterior for eBay bidders data



#### **Numerical Normal approximation of posterior**

- Standard **optimization routines** may be used to obtain the normal approximation (e.g. optim in R).
  - ▶ Input: expression proportional to  $\log p(\theta|\mathbf{x})$ . Initial values.
  - ▶ Output:  $\log p(\tilde{\theta}|\mathbf{x})$ ,  $\tilde{\theta}$  and Hessian matrix  $(-J_{\mathbf{x}}(\tilde{\theta}))$ .
- **Automatic differentation** efficient derivatives on computer.
- **Re-parametrization** may improve normal approximation:
  - ▶ If  $\theta \ge 0$  use  $\phi = \log(\theta)$ .
  - ▶ If  $0 \le \theta \le 1$ , use  $\phi = \ln[\theta/(1-\theta)]$ .
  - ▶ Don't forget the Jacobian!
- Posterior approximation of functions  $g(oldsymbol{ heta})$  by simulation from

$$\boldsymbol{\theta} | \mathbf{y} \stackrel{\text{a}}{\sim} N\left(\tilde{\boldsymbol{\theta}}, J_{\mathbf{x}}^{-1}(\tilde{\boldsymbol{\theta}})\right)$$

## **OO** Normal approx of posterior in Beta regression



## Logistic regression - who survived the Titanic?

Prior

$$oldsymbol{eta} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Omega})$$

with

$$\boldsymbol{\mu} = \begin{pmatrix} -1, -1/80, 1, 1 \end{pmatrix}^{\top}$$
  $\boldsymbol{\Omega} = \begin{pmatrix} 0.25 & 0 & 0 & 0 \\ 0 & 1/(80^2) & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ 



age



sex and class

#### Logistic regression - who survived the Titanic?

Normal posterior approximation

$$oldsymbol{eta} | oldsymbol{y} \sim oldsymbol{N} \left( ilde{oldsymbol{eta}}, oldsymbol{J}_{oldsymbol{y}}^{-1}( ilde{oldsymbol{eta}}) 
ight).$$

- Means that the posterior of each  $\beta_i$  is univariate normal.
- Marginal posterior for each  $\exp(\beta_j)$  is LogNormal.



#### Logistic regression - who survived the Titanic?

Comparison with non-informative prior  $\beta \sim N(\mathbf{0}, 10^2 I_p)$ .

