

Disk Graphs and Transmission Graphs—Recent Developments

Wolfgang Mulzer

Disk Graphs

n sites in the plane

each site p has an associated radius r_p sites p, q are adjacent iff $|pq| \le r_p + r_q$

undirected

Transmission Graphs

n sites in the plane

each site p has an associated radius r_p edge from p to q iff $|pq| \le r_p$

directed

Disk Graphs and Transmission Graphs

natural model for geometrically defined graphs

can be dense and contain large cliques

However: description is sparse

Question: Do geometry and sparse description help?

Three Examples

dynamic connectivity girth

maximum matching

Dynamic Connectivity

dynamic graph: insert, delete, connected?

Dynamic Connectivity

dynamic graph: insert, delete, connected?

Dynamic Connectivity

general graphs: O(log² n) update, O(log n/loglog n) query [Holm et al.] planar graphs: O(log n) update, O(log n) query [Eppstein et al.] unit disk graphs?

dynamic set $P \subset \mathring{r}^2$, |P| = n

dynamic set $P \subset \mathbb{R}^2$, |P| = n

Chan et al: O(log¹⁰ n) updates, O(log n/loglog n) queries

dynamic set $P \subset R^2$, |P| = n

Chan et al: O(log¹⁰ n) updates, O(log n/loglog n) queries

dynamic set $P \subset R^2$, |P| = n

Chan et al: O(log⁸⁰m))uppdates, (W(togm/Vtogttogm))queriess

 $P \subset R^2$

Chan: O(log⁶ n)

Kaplan et al.: O(log⁵ n)

Chan: O(log⁴ n)

dynamic set $P \subset R^2$, |P| = n

Chan et al: O(log⁶ n) updates, O(log n/loglog n) queries

connect nonempty adjacent cells

E.

Wolfgang Mulzer - Disk Graphs

connect nonempty adjacent cells

consider neighborhoods

S

Wolfgang Mulzer - Disk Graphs

update time: O(log⁶ n)

update time: O(log⁴ n)

update time: O(log⁴ n)

update time: O(log⁴ n)

update time: O(log² n) Kaplan et al.,

Agarwal et al.:

update time: O(log² n)

Kaplan et al.,

Agarwal et al.:

UDG update Grid O(1) MBM O(1) DLE

orderes

Thm 1 [w/ HK, LR, PS]:
Can maintain UD(P) with
O(log² n) updates and
O(log n/log log n) queries.

edges

update time: O(log² n)

Thm 1 [w/ HK, LR, PS]:
Can maintain UD(P) with
O(log² n) updates and
O(log n/log log n) queries.

Thm 2 [w/ HK, LR, PS]: Can maintain UD(P) with O(log n loglog n) updates and O(log n) queries.

Open arbitrary radii

Questions: general shapes

Computing the Girth

Given: simple graph G = (V, E)

Girth: shortest cycle in **G** (minimum number of edges)

Computing the Girth

Given: simple graph G = (V, E)

Girth: shortest cycle in **G** (minimum number of edges)

 $O(n^{\omega}) = O(n^{2.371339})$ with fast MM General

results: [Itai, Rode 1978][Alman et al. 2024]

O(n³polyloglog n / log⁴n) "combinatorial" algorithm

Question: What about disk graphs?

O(n²) additive +1 approximation

[Itai, Rode 1978]

further approximation and hardness results

[Vassilevska Williams, Williams 2010]

[Roditty, Vassilevska Williams 2012]

Planar O(n) time

[Chang, Lu 2013] graphs:

A Useful Fact about Disk Graphs

Lemma: Let G be a disk graph that is not plane. Then, there are three sites whose disks intersect in a common point.

[Evans, van Gardern, Löffler, Polishchuk 2016, and earlier]

A Useful Fact about Disk Graphs

Lemma: Let G be a disk graph that is not plane. Then, there are three sites whose disks intersect in a common point.

[Evans, van Gardern, Löffler, Polishchuk 2016, and earlier]

Consequence: a disk graph is either plane, or it has girth 3

Algorithm

Construct disk graph using a sweep line algorithm

If two edges cross → report girth 3

Otherwise: use algorithm for planar graphs

Running time: O(n log n)

Finding the Shortest Triangle

Given: disk graph G, edges weighted by Euclidean length

Want: triangle that minimizes the total edge length

Finding the Shortest Triangle

Given: disk graph G, edges weighted by Euclidean length

Want: triangle that minimizes the total edge length

First: given W > 0, is there a triangle of length W?

Shortest Triangle: Decision Version

Impose grid of diameter W/3

If a grid cell contains a triangle \rightarrow done (check in $O(n \log n)$ time)

Shortest Triangle: Decision Version

Impose grid of diameter W/3

Otherwise: triangle goes between neighboring grid cells; induced graph in each cell is plane; few "long" edges → check explicitly

Shortest Triangle: Decision Version

Result: The decision version can be solved in $O(n \log n)$ time.

Then: Plug into Chan's randomized framework for geometric

optimization problems \rightarrow O(n log n) expected time.

Extension: Shortest Cycle in a Disk Graph

Theorem [w/ HK, KK, LR, MS, PS]: The shortest (weighted) cycle in a disk graph can be found in O(n log n) expected time.

Similar strategy: first solve decision version, then plug into Chan's randomized framework.

Interesting subproblem: Given weighted graph G = (V, E), vertex v in V, find shortest cycle in G that contains v.

Extension: Triangle in a Transmission Graph

Theorem [w/ HK, KK, LR, MS, PS]: A directed triangle in a transmission graph can be found in O(n log n) expected time.

Requires additional range searching techniques.

Extends to finding a shortest triangle.

Extension: k-Cycle in a Transmission Graph

Theorem [w/ HK, KK, LR, MS, PS]: A directed k-cycle a transmission graph can be found in O(n log² n) + n2^{O(k)} time.

Open Questions: Find a shortest cycle, derandomize

F

Maximum Matching

Given: simple graph G = (V, E).

Matching: set of edges with pairwise distinct endpoints

Goal: find matching of maximum cardinality

Maximum Matching

Goal: find matching of maximum cardinality

Extremely classic problem

Fastest algorithms: O(√n m) [Micali, Vazirani]

 $O(n^{\omega})$ [Mucha, Sankowski]

 $O(m^{10/7})$ [Mądry]

Bipartite unit disk graphs: $O(n^{3/2} \log n)$ [Efrat, Itai, Katz]

 $O(n^{4/3+\epsilon} \log n)$ [Cabello et al.]

Maximum Matching – Bounded Depth

Depth: maximum number p of disks that cover any single point

Easy: bounded depth implies bounded average degree

[Mucha, Sankowski], [Yuster, Zwick], [Alon, Yuster]: Maximum matching in hereditary graph families with bounded average degree and small separators can be found quickly

Maximum Matching – Bounded Depth

Theorem [w/ E. Bonnet and S. Cabello]: A maximum matching in a unit disk graph of depth ρ can be found in expected time $O(\rho^{3\omega/2}n^{\omega/2})$.

Maximum Matching – Sparsification

Can reduce the general case to bounded depth case.

Strategy: use grid (again); maximum matching in each cell is easy; define auxiliary graph between cells, of bounded depth

Maximum Matching – Sparsification

Theorem [w/ E. Bonnet and S. Cabello]: A maximum matching in a unit disk graph can be found in expected time $O(n^{\omega/2})$.

Conclusion

Disk graphs are useful and interesting

Many possible directions, many results, many open problems

Not mentioned: routing, reachability oracles, shortest paths, recognition ...

Conclusion

Disk graphs are useful and interesting

Many possible directions, many results, many open problems

Not mentioned: routing, reachability oracles, shortest paths, recognition ...

Questions?