3.5.3 Algorithm (MDS)

square distance matrix $D \in \mathbb{R}^{n}$ Input: a configuration of sample pts using Out put: curtificial features x", x" $\in \mathbb{R}^d$. Step 1: Compute K= -= HDH where H=I-11/15 the centering matrix

Step 2: Compute the EVD:

$$K = V_{\text{ney}} \begin{pmatrix} \lambda_1 \\ \lambda_h \end{pmatrix}_{\text{ney}} V^{T}$$

with $V = \left(\begin{array}{c} V(1) & V(2) \end{array} \right)$ orthogonal

Step 3: Take
$$\chi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} V^T$$

$$= \left(\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \\ \lambda_4 \\ \lambda_5 \\ \lambda_6 \\ \lambda_7 \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \\ \lambda_{6} \\ \lambda_{1} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \\ \lambda_{5} \\ \lambda_{6} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \\ \lambda_{$$

Remonta: Companison between PCA and MDS
Remark: Companison between PCA and MDS Let $X = U \Sigma V^T$ be the SVD of the
sample matrix where
$\Sigma = \begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix} \text{ with singular values}$ $\sigma_1 \geq \sigma_2 > 0$
() () () () () () () () () ()
PCA: makes use of the EVD of the
Covainance matrix $XX^T = U\Sigma\Sigma^TU^T$ square, diagonal
square, diagonal
The first d columns of U determine
the d-dimensional subspace with
the d-dimensional subspace with the largest projected data variance.

MDS: makes use of the EVD of the kernel matrix ("Gram motrix") $X^{T}X = V \Sigma^{T} \Sigma V$ square, discord

The first d columns of V (and
the first of singular values of X) determine the "contificial features".
occuminas me mynymas parmis.
Summary of this section:
Summany of this section: What is MDS? Def
· How to implement? Algorithm.
Reference: "Generalized PCA" by Vidal-Ma-Sastry, Section 4.2.
Violal-Ma-Sastry, Section 4.2.