Streaming Algorithms

Meng-Tsung Tsai
04/10/2018

Reminder

Written Assignment #1 is due by tonight. You need to LaTex your solution and submit it on New E3 (https://e3new.nctu.edu.tw).

You are encouraged to discuss with your classmates, TA, or me. However, the writeup shall be your own.

Reference

• "Space-Efficient Online Computation of Quantile Summaries," Greenwald and Khanna (2001)

Quantile Summaries

Problem Definition

Input: a sequence of n (possibly repeat) values $a_1, a_2, ..., a_n$ where n is unknown before the end of input is reached, an integer $q \in [1, n]$, and a value $\varepsilon \in [1/n^2, 1]$. Define $A = \{a_i : i \in [n]\}$ and rank

$$r(a_i) = |\{a_j \in A: a_j < a_i \text{ or } (a_j = a_i \text{ and } j \le i)\}|.$$

Output:

an a_i for some i so that $|r(a_i) - q| \le \varepsilon n$

Goal: use $O(\varepsilon^{-1}\log \varepsilon n)$ space (not bits).

A Subset V of A

Roughly speaking, we will maintain a subset $V = \{v_0, v_1, ..., v_{s-1}\}$ of A as A grows so that (1) $s = O(\varepsilon^{-1}\log \varepsilon n)$, (2) $r(v_0) = 1$, (3) $r(v_{s-1}) = n$, (4) $r(v_{i-1}) \le r(v_i)$ for each $i \ge 1$, and (5) $r(v_i) - r(v_{i-1}) \le 2\varepsilon n$.

Data Structure

Reducing to the Bin-Ball Problem

We already know that if we sample $O(\epsilon^{-1}log\ n)$ a_i 's uniformly at random from A with replacement and keep track the min (resp. max) element in A, then we get a subset V that satisfies the desired property w.h.p., but we have no idea what $r(a_i)$ for $a_i \in V$ are.

In our programming assignment #0, we scan the input for one additional pass to figure what $r(a_i)$ for $a_i \in V$ are.

In today's lecture, we will see a deterministic algorithm that can answer this question in a single pass.

A Set S of Triples

Let $r_{min}(v_i)$ and $r_{max}(v_i)$ be under- and over-estimates of $r_n(v_i)$ among the values seen so far, after all values are read, we get $r_{min}(v_i) \le r(v_i)$ $\le r_{max}(v_i)$.

We define a set $S = \{(v_i, g_i, \Delta_i) : v_i \in V\}$ so that

- (1) $g_i = r_{min}(v_i)$ $r_{min}(v_{i-1})$ for each $i \ge 1$, // gap between two consecutive under-estimates
- (2) $\Delta_i = r_{max}(v_i)$ $r_{min}(v_i)$ for each i, // difference between under- and over-estimates of an single v_i
- (3) $(v_0, g_0, \Delta_0) = (v_0, 1, 0),$
- (4) $(v_{s-1}, g_{s-1}, \Delta_{s-1}) = (v_{s-1}, 1, 0).$

Bounded $g_i + \Delta_i$

Claim. Given S, if $\max_i g_i + \Delta_i \le 2\varepsilon n$, then for any q one can output some v so that $|r(v) - q| \le \varepsilon n := e$.

Proof. Case 1. If q > n-e, setting $v = v_{s-1}$ suffices.

Case 2. Otherwise, picking the smallest t (such a t exists) so that

$$r_{max}(v_t) = (\sum_{j \le t} g_j) + \Delta_t \ge q + e$$
, i.e. $r_{max}(v_{t-1}) < q + e$.

Then
$$r_{min}(v_{t-1}) = (\sum_{j \le t} g_j) = r_{max}(v_t) - g_t - \Delta_t \ge q + e - 2e = q - e$$
.

Hence, setting $v = v_{t-1}$ suffices.

Goal: Maintain a set of triples S whose $max_i g_i + \Delta_i \le 2e$.

Some Identities (as n increases)

(1)
$$r_{min}(v_0) = r_{max}(v_0) = 1$$

(2)
$$r_{min}(v_{s-1}) = r_{max}(v_{s-1}) = n$$

(3)
$$\sum_{0 \le i \le s} g_i = (\sum_{1 \le i \le s} r_{min}(v_i) - r_{min}(v_{i-1})) + 1 = n-1+1 = n$$

$$(4) r_{\min}(v_i) = \sum_{j \le i} g_j$$

$$(5) r_{\max}(v_i) = (\sum_{j \le i} g_j) + \Delta_i$$

(6)
$$|\{a_i : r(v_{i-1}) < r(a_i) < r(v_i)\}| \le g_i + \Delta_i - 1$$
.

Algorithm

Pseudocode

```
Generate-S() { S \leftarrow \varnothing; s \leftarrow 0; n \leftarrow 0; for each incoming a_i { Insert (S, a_i); // add a triple into S + + n; }  if(n \equiv 0 \bmod 1/(2\epsilon))  Compress(S); // merge some triples in S }
```

Pseudocode

```
Delete(S, v<sub>i</sub>){ // a building block of Compress(S)
```

replace the two triples (v_i, g_i, Δ_i) , $(v_{i+1}, g_{i+1}, \Delta_{i+1})$ with $(v_{i+1}, g_i+g_{i+1}, \Delta_{i+1})$; // Exercise: verifying this replacement doesn't change the $r_{min}(v)$ and $r_{max}(v)$ for all v in V.

```
s \leftarrow s-1;
```

Pseudocode

```
\begin{split} & \text{Insert}(S, a_i) \{ \\ & \text{if}(a_i \text{ has } r(a_i) < r(a_j) \text{ for all } j < i) \{ \text{ // i.e. } a_i < a_j \text{ for all } j < i \\ & \text{insert a triple } (a_i, 1, 0) \text{ to } S; \text{ // it requires to increase } r_{\text{min}}(v) \text{ and } r_{\text{max}}(v) \text{ by } 1 \text{ for all } v \text{ in } V \text{ where } r(v) \neq r(a_i) \\ & \} \\ & \text{if}(a_i \text{ has } r(a_i) > r(a_j) \text{ for all } j > i) \{ \text{ // i.e. } a_i \geq a_j \text{ for all } j < i \\ & \text{insert a triple } (a_i, 1, 0) \text{ to } S; \text{ // no effect on } r_{\text{min}}(v) \text{ for other } v's \\ & \} \\ & \text{if}(a_i \text{ is any other value}) \{ \\ & \text{find } v_{t\text{-}1}, v_t \text{ in } V \text{ so that } v_{t\text{-}1} \leq a_i < v_t; \\ & \text{insert a triple } (a_i, 1, \text{int}(2\epsilon n)\text{-}1) \text{ in-between } (v_{t\text{-}1}, g_{t\text{-}1}, \Delta_{t\text{-}1}) \text{ and } \\ & (v_t, g_t, \Delta_t); \text{ // all triples before } a_i'\text{s triple have no changes} \\ & \} \text{ // all triples after } a_i'\text{s need to increase } r_{\text{min}}(v) \text{ and } r_{\text{max}}(v) \text{ by } 1 \\ \} \text{ // } r_{\text{min}}(a_i) \geq r_{\text{min}}(v_{t\text{-}1}) + 1 \text{ and } r_{\text{max}}(a_i) \leq r_{\text{max}}(v_t) = r_{\text{min}}(v_{t\text{-}1}) + 1 + g_t + \Delta_{t\text{-}1} \end{split}
```

Pseudocode

```
\begin{split} & \text{Compress}(S) \{ \\ & \text{for}(\ i = s\text{-}2;\ i \geq 0;\ i\text{--}) \{ \\ & \text{if}(\text{band}(\Delta_i, \text{int}(2\epsilon n)) \leq \text{band}(\Delta_{i\text{+}1}, \text{int}(2\epsilon n)) \text{ and } g_i * + g_{i\text{+}1} + \Delta_{i\text{+}1} \\ & \leq \text{int}(2\epsilon n)) \{ \\ & \text{Delete}(S, v) \text{ for all triples } (v, g(v), \Delta(t)) \text{ in } S \text{ whose ancestor is triple } (v_i, g_i, \Delta_i) \text{ (including } v_i); // g_i * := \sum_{v \text{ is a descendant of } v_i} g(v) \\ & \text{Replace}(v_{i\text{+}1}, g_{i\text{+}1}, \Delta_{i\text{+}1}) \text{ with } (v_{i\text{+}1}, g_i * + g_{i\text{+}1}, \Delta_{i\text{+}1}); \\ & \} \\ & \\ & \dots & (v_{i\text{-}c}, g_{i\text{-}c}, \Delta_{i\text{-}c}) \text{ ($v_{i\text{-}c+1}, g_{i\text{-}c+1}, \Delta_{i\text{-}c+1})$ } \dots \text{ ($v_i, g_i, \Delta_i$) } \text{ ($v_{i\text{+}1}, g_{i\text{+}1}, \Delta_{i\text{+}1}$)} \\ & \text{triple } (v_i, g_i, \Delta_i) \text{'s descendants} \end{split}
```

Pseudocode

```
\begin{split} & \text{Compress}(S) \{ \\ & \text{for}(\ i = \text{s-2}; \ i \geq 0; \ i\text{---}) \{ \\ & \text{if}(\text{band}(\Delta_i, \text{int}(2\epsilon n)) \leq \text{band}(\Delta_{i+1}, \text{int}(2\epsilon n)) \text{ and } \mathbf{g_i}^* + \mathbf{g_{i+1}} + \Delta_{i+1} \\ & \leq \text{int}(2\epsilon n)) \{ \\ & \text{Delete}(S, \mathbf{v}) \text{ for all triples } (\mathbf{v}, \mathbf{g}(\mathbf{v}), \Delta(t)) \text{ in } S \text{ whose ancestor } \\ & \text{is triple } (\mathbf{v}_i, \mathbf{g}_i, \Delta_i) \text{ (including } \mathbf{v}_i); // \ \mathbf{g_i}^* \coloneqq \sum_{\mathbf{v} \text{ is a descandant of } \mathbf{v} \text{ i } \mathbf{g}(\mathbf{v}) \\ & \text{Replace}(\mathbf{v}_{i+1}, \mathbf{g}_{i+1}, \Delta_{i+1}) \text{ with } (\mathbf{v}_{i+1}, \mathbf{g}_i^* + \mathbf{g}_{i+1}, \Delta_{i+1}); \\ & \} \\ & \} \\ & \dots \qquad (\mathbf{v}_{i\text{-c}}, \mathbf{g}_{i\text{-c}}, \Delta_{i\text{-c}}) \end{cases}
```

Definition of band(Δ , $2\varepsilon n$)

```
band(\Delta, int(2\varepsilon n)) = \alpha so that
```

$$p - 2\alpha - (p \mod 2\alpha) < \Delta \le p - 2\alpha - 1 - (p \mod 2\alpha - 1)$$

where $p = int(2\varepsilon n)$.

int(2ɛn) may increase as n increase, and setting band() function as the above makes the cutting boundaries stable.

	111111111122222222233333
$2\epsilon n$	01234567890123456789012345678901234
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

Figure 1: Band boundaries as $2\epsilon n$ progresses from 24 to 34. The rightmost band in each row is band 0.

Definition of Descendant

Map each triple (v_i, g_i, Δ_i) in S to a node X_i in tree T. Let R be a special node created as the root for T. Note that T has s+1 nodes.

We let V_j be the parent of V_i if j is the samllest index greater than i whose $band(\Delta_j, int(2\epsilon n)) > band(\Delta_j, int(2\epsilon n))$; if no such a j exists, let R be the parent of V_i .

Claim. For any V_i, its descendant nodes form a consecutive segment in S.

Analysis

Result

 $s = O(\epsilon^{-1}log \ \epsilon n)$. It needs to get familiar with the above notion to understand the analysis. We may lose our focus to go through the details in class. If interested, pick up Section 2.3 (< 2 pages) in the reference paper.

Heavy Hitter (Insertion-only)

If a value appears more than rn times, if we query the Greenwald and Kanna structure for every $q \in [2\epsilon n, 4\epsilon n, 6\epsilon n, ..., n]$, we can output a set K so that every value $k \in K$ has frequency $\geq (r-2\epsilon)n$ and every value k whose frequency $\geq rn$ is in K.

Applications

Convex Hull

One can use Greenswald and Kanna quantile structure to compute the convex hull of n given points in R^2 in $O(1/\delta)$ passes using $O(h n^{\delta} \log n)$ space.

You may find more applications from the papers that cite Greenswald and Kanna's paper.