Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Complex Analysis (MTH 403) Exercise Sheet 1

1. Basic properties of \mathbb{C}

1.1. Let $z_1, z_2, \ldots, z_n \in \mathbb{C}$. Show that

$$|z_1 + \dots + z_n| \le |z_1| + \dots + |z_n|.$$
 (1.1)

Find a necessary and sufficient condition so that equality holds in (1.1).

1.2.* Let $U \subseteq_{open} \mathbb{C}$. For each $n \in \mathbb{N}$, define

$$K_n = \overline{D(0;n)} \cap \left\{ z \in U : |w - z| \ge \frac{1}{n}, \, \forall w \in \mathbb{C} \setminus U \right\}. \tag{1.2}$$

- (a) Show that K_n is compact, for all $n \in \mathbb{N}$.
- (b) Show that, for all $n \in \mathbb{N}$, K_n is contained in the interior of K_{n+1} .
- (c) Show that, for every compact subset K of U, there exists $n \in \mathbb{N}$ such that $K \subseteq K_n$. In particular, conclude that $U = \bigcup_{n=0}^{\infty} K_n$.
- 1.3.* Let $P(z) \stackrel{\text{def}}{=} a_n z^n + \cdots + a_1 z + a_0$, where $n \in \mathbb{N}$, be a polynomial with complex coefficients. Assume that $0 < a_n \le \cdots \le a_1 \le a_0$.
 - (a) Show that no zero of P(z) can lie in D(0; 1). (**Hint:** Consider (1 z)P(z).)
 - (b) Find all zeros of P(z) inside the closed unit disk $\overline{D(0;1)}$, provided $a_{j+1} < a_j$, for all $j = 0, 1, \ldots, n-1$.

2. Power series

Throughout this section, we always assume $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ is a complex power series, i.e., $z_0 \in \mathbb{C}$ and $a_n \in \mathbb{C}$, for all $n \in \mathbb{N}$.

2.1. Suppose that $\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$ converges for a complex number $z_1 \neq z_0$. Then show that $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ whenever $|z - z_0| < |z_1 - z_0|$.

1

(**Hint:** Note that $a_n(z_1 - z_0)^n \xrightarrow[n \to \infty]{} 0$, hence one obtains M > 0 such that $|a_n(z_1 - z_0)^n| \le M$, for all $n \ge 0$. Now observe that, for any n, $|a_n||z - z_0|^n = |a_n||z_1 - z_0|^n \left(\frac{|z - z_0|}{|z_1 - z_0|}\right)^n \le M \left(\frac{|z - z_0|}{|z_1 - z_0|}\right)^n$.)

2.2. Let

$$R \stackrel{\text{def}}{=} \sup \left\{ |z - z_0| : \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ converges} \right\}. \tag{2.1}$$

Show the following:

(a)
$$|z - z_0| < R \Longrightarrow \sum_{n=0}^{\infty} |a_n| |z - z_0|^n < \infty$$
.

(b)
$$|z-z_0| > R \Longrightarrow \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 diverges.

Conclude from (2.2.a) and (2.2.b) that R, defined as above in (2.1), is the only number in $[0, \infty]$ for which (2.2.a) and (2.2.b) hold together. We call R the *radius of convergence* of the power series $\sum_{n=0}^{\infty} a_n(z-z_0)^n$. The disc $D(z_0; R)$ is called the *disc of convergence* of the power series.

2.3. Let $n \ge 2$ and a_1, \ldots, a_n and b_1, \ldots, b_n are complex numbers. Show the following:

$$\sum_{k=1}^{n} a_k b_k = a_n B_n + \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k,$$

where $B_k \stackrel{\text{def}}{=} b_1 + \dots + b_k$, for all $k = 1, \dots, n$. (**Hint:** Write $\sum_{k=1}^n a_k b_k = \sum_{k=1}^n a_k (B_k - B_{k-1}), B_0 \stackrel{\text{def}}{=} 0$.)

2.4. Find all points of convergence for each of the following power series:

(a)
$$\sum_{n=0}^{\infty} z^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{z^n}{n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{z^n}{n^2}.$$

For 2.5. and 2.6., we let R be as above in 2.2.

- 2.5. (a) Show that the convergence of $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ is uniform on every compact subset of $D(z_0; R)$.
 - (b) Give an example where $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ does not converge uniformly on $D(z_0; R)$.
- 2.6. (a) Show that $R = \frac{1}{\limsup |a_n|^{\frac{1}{n}}}$.
 - (b) If $a_n \neq 0$, for all $n \in \mathbb{N}$, then show that

$$\liminf_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \le R \le \limsup_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|. \tag{2.2}$$

- (c) Conclude from (2.2) that, if $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$ exists in $[0,\infty]$ then it must be equal to R.
- (d) Conclude from 2.6.a that the radius of convergence of the power series $\sum_{n=1}^{\infty} na_n(z-z_0)^{n-1}$ is R.
- 2.7. Let $\sum_{n=0}^{\infty} a_n z^n$ be a power series in \mathbb{C} with radius of convergence R > 0.
 - (a) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$.
 - (b) Let h be the function represented by the power series $\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$ on its disc of convergence, say

D. Show that, for any 0 < r < R, there exists M > 0 such that $|h(z)| \le Me^{-r}$, for all $z \in D$.

2.8.* Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series in \mathbb{C} with radius of convergence R>0 and f be the function it

represents on $D(z_0; R)$. For $N \ge 0$, denote by S_N the N-th partial sum of $\sum_{n=0}^{\infty} a_n (z - z_0)^n$. Show that

$$\sum_{N=0}^{\infty} |f(z) - S_N(z)| < \infty,$$

for each $z \in D(z_0; R)$.

2.9.* Suppose that $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges for every $z \in D(z_0; r)$, where r > 0. Let $z_1 \in D(z_0; r)$. Show that there exists a sequence $\{c_n\}_{n \ge 0}$ in $\mathbb C$ such that

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_1)^n \text{ whenever } |z - z_1| < r - |z_1 - z_0|.$$

2.10.* Fix $a \in \mathbb{C}$. Show that, for every $z_0 \in \mathbb{C} \setminus \{a\}$, there exists a power series $\sum_{n=0}^{\infty} c_n (z - z_0)^n$ in \mathbb{C} having radius of convergence at least $|z_0 - a|$ such that

$$\frac{1}{z-a} = \sum_{n=0}^{\infty} c_n (z-z_0)^n \text{ whenever } |z-z_0| < |z_0-a|.$$