明細書

2 足歩行移動体の関節モーメント推定方法

技術分野

本発明は、人間や2足歩行ロボット等の2足歩行移動体の各脚体の関 5 節に作用するモーメント(関節モーメント)を推定する方法に関する。

背景技術

10

15

20

例えば人間の歩行動作を補助する歩行アシスト装置の動作制御を行なう場合、人間の脚体の関節に実際に作用する関節モーメントを把握することが必要となる。この関節モーメントを把握することで、歩行アシスト装置の目標補助力を適正に決定することが可能となる。また、2足歩行ロボットにおいても、その動作制御を行なうために、脚体の各関節に実際に作用する関節モーメントを適宜把握する必要が生じる場合がある。

そこで、本顧出願人は先に、例えば特開2003-89083号公報(以下、特許文献1という)等にて人間等の2足歩行移動体の脚体の関節モーメントを推定する手法を提案した。この手法では、2足歩行移動体の脚体の各関節の変位量(回転角)や、所定部位の加速度、角速度が所要のセンサを用いて計測され、それらの計測データや2足歩行移動体の剛体リンクモデル等を用いて各脚体に作用する床反カベクトルとその作用点の位置とが推定される。ここで、剛体リンクモデルは、2足歩行移動体の構造を、複数の剛体要素を複数の関節要素で連結してなる連結体として表現するモデルである。この剛体リンクモデルは、2足歩行移動体の全体重心の位置や、各剛体要素および各関節要素にそれぞれ対応する2足歩行移動体の剛体相当部(大腿部、下腿部、腰部等)および関

10

15

20

25

節(膝関節、股関節等)の位置、姿勢を推定するために用いられる他、 2足歩行移動体の動力学的な挙動を記述するモデルの基礎として用いられる。なお、剛体リンクモデルの各剛体要素には、その重量や長さ、重心の位置(各剛体要素上での位置)が付随的にあらかじめ設定される。

そして、前記特許文献1のものでは、推定した床反力ベクトルとその作用点の位置と剛体リンクモデルとを用いて、逆動力学モデルに基づく演算処理によって各脚体の膝関節や股関節の関節モーメントが推定される。逆動力学モデルは、それを一般的に言えば、物体に作用する外力と位置情報とを既知として(該外力および位置情報を入力パラメータとして)、該物体の内力である反力やモーメントを推定するための動力学モデルであり、物体の運動(位置の時系列パターン)と該物体に作用する力やモーメントとの関係を表すものである。前記特許文献1の手法では、逆動力学モデルは、前記剛体リンクモデルの各剛体要素の運動(並進運動および回転運動)に関する運動方程式を基に構築され、各脚体の関節モーメントが、床反力ベクトルの作用点により近い関節側のものから順番に推定される。

ところで、前記特許文献1のもののように関節モーメントを推定する場合、床反カベクトルやその作用点、並びに逆動力学モデルは、ある1つの座標系で記述する必要がある。そして、特許文献1のものでは、その座標系として床に固定した絶対座標系が用いられていた。

このように絶対座標系を用いた場合には、2足歩行移動体のある所定部位(詳しくは剛体リンクモデルのある剛体要素に対応する剛体相当部)の絶対座標系での傾斜角、例えば鉛直方向に対する傾斜角を把握しつつ、2足歩行移動体のある基準部位に対する相対的な位置・姿勢として把握される2足歩行移動体の各部位(剛体リンクモデルの各剛体要素に対応する剛体相当部)の位置・姿勢を絶対座標系での値に変換しなけ

10

15

20

ればならない。また、床反力ベクトルや関節モーメントを求める場合、 剛体リンクモデルの各胴体要素の重心の絶対座標系での位置も推定する 必要があるので、それらの重心の位置を絶対座標系で表すための演算処 理(座標変換処理)も必要となる。従って、上記傾斜角を用いた座標変 換等の演算処理が多数、必要となる。

この場合、2足歩行移動体のある所定部位の鉛直方向に対する傾斜角の計測手法としては、角速度を検出するジャイロセンサの検出値を積分する手法、該ジャイロセンサと加速度センサとを併用して所謂カルマンフィルタの手法で傾斜角を推定する手法、あるいは、振子式の傾斜計で傾斜角を直接検出する手法等が一般的に知られている。しかるにこれらのいずれの手法でも、ジャイロセンサの検出値の積分に伴う誤差の蓄積や2足歩行移動体の運動時の慣性加速度などの影響で、一般には鉛直方向に対する傾斜角を十分に満足できる精度で計測することはできない場合が多い。従って、2足歩行移動体のある所定の部位の絶対座標系における傾斜角を高精度で把握することは一般には困難である。このため、上記のようにその傾斜角を用いた座標変換等の演算処理を多数、必要となる特許文献1の手法では、演算誤差が蓄積し易く、それが関節モーメントの推定精度を向上させる妨げとなっていた。

本発明はかかる背景に鑑みてなされたものであり、2足歩行移動体の 重力方向に対する傾斜情報を使用する演算処理を可能な限り少なくして、 脚体の関節モーメントの推定精度を高めることができる2足歩行移動体 の関節モーメント推定方法を提供することを目的とする。

発明の開示

25 本発明の 2 足歩行移動体の関節モーメント推定方法は、 2 足歩行移動 体を、複数の剛体要素が少なくとも該 2 足歩行移動体の各脚体の股関節

及び膝関節に対応する関節要素を含む複数の関節要素で連結された連結 体として表現する剛体リンクモデルを用い、該2足歩行移動体の各脚体 の少なくとも1つの関節に作用する関節モーメントを推定する方法であ って、前記剛体リンクモデルの各関節要素に対応する前記2足歩行移動 体の各関節の変位量を逐次把握する第1ステップと、前記剛体リンクモ 5 デルの所定の1つの剛体要素に固定された座標系としてあらかじめ設定 された身体座標系の原点の加速度ペクトルの該身体座標系での値を少な くとも前記2足歩行移動体に装着した加速度センサの出力を用いて逐次 把握する第2ステップと、前記2足歩行移動体の各脚体に作用する床反 10 カベクトルの前記身体座標系での値を逐次把握する第3ステップと、前 記床反カベクトルの作用点の位置ベクトルの前記身体座標系での値を逐 次把握する第4ステップと、前記第1乃至第4ステップで把握した2足 歩行移動体の各関節の変位量と前記身体座標系の原点の加速度ペクトル の値と前記床反力ベクトルの値とその作用点の位置ベクトルの値とを用 15 いて、前記剛体リンクモデルの各剛体要素の運動と該剛体要素に作用す る並進力およびモーメントとの関係を前記身体座標系を用いて表す逆動 力学モデルに基づいて前記2足歩行移動体の各脚体の少なくとも一つの 関節に作用する関節モーメントを逐次推定する第5ステップとを備えた ことを特徴とするものである(第1発明)。

かかる本発明によれば、前記剛体リンクモデルの各関節要素に対応する2足歩行移動体の各関節の変位量(関節の回転角等)を逐次把握すると共に、剛体リンクモデルの所定の剛体要素に固定された身体座標系の原点の加速度ペクトルの身体座標系での値と、床反カペクトルおよびその作用点の位置ペクトルの身体座標系での値とを逐次把握することで、主に身体座標系で記述されるアルゴリズムによって関節モーメントを推

定することが可能となる。すなわち、前記第1ステップで把握した各関

節の変位量(これは剛体リンクモデルの各関節要案の変位量に相当す る)によって、前記剛体リンクモデルの各剛体要素に対応する2足歩行 移動体の各剛体相当部の相対的な位置関係および姿勢関係を逐次把握す ることができるので、身体座標系の原点から見た2足歩行移動体の各剛 体相当部の位置および姿勢(向き)(剛体リンクモデルの各剛体要素の 5 位置及び姿勢)を逐次把握できる。従って、各剛体要素あるいはそれに 対応する2足歩行移動体の各剛体相当部の、身体座標系の原点から見た 運動状態(位置、速度、加速度などの状態)を逐次把握できる。さらに、 前記第2ステップで加速度センサの出力を用いて把握した身体座標系の 原点の加速度ベクトルの身体座標系での値(詳しくは加速度ベクトルの、 10 身体座標系での座標成分値の組)を用いることによって、身体座標系を 固定した前記所定の剛体要素に対応する2足歩行移動体の剛体相当部の 運動(地面に対する運動)とその剛体相当部に対する2足歩行移動体の 各部の相対的な運動とを合わせた全体的な運動に伴う剛体リンクモデル 15 の各剛体要素の加速度等の運動状態を身体座標系での値によって逐次把 握できることとなる。なお、前記身体座標系の原点の加速度ベクトルに は、重力に伴う慣性加速度成分が含まれる。そして、このように剛体リ ンクモデルの各剛体要素の加速度等の運動状態を身体座標系での値によ って逐次把握できるので、前記第3ステップおよび第4ステップで床反 20 カベクトルおよびその作用点の位置ベクトルの身体座標系での値(詳し くは、床反カベクトルのおよびその作用点の位置ベクトルのそれぞれの、 身体座標系での座標成分値の組)とを把握することで、前記逆動力学モ デルを身体座標系で表現することが可能となる。その結果、身体座標系 での床反カベクトルの値、その作用点の位置ベクトルの値、各剛体要素 25 の位置、加速度等の運動状態の値を用いた逆動力学モデルの演算処理に よって脚体の関節に作用する関節モーメントを推定することが可能とな

る。

5

10

15

20

25

このように本発明によれば、身体座標系での各剛体要素あるいはこれに対応する2足歩行移動体の各剛体相当部の運動状態の値を用いて脚体の関節モーメントを推定できるので、2足歩行移動体の傾斜情報(2足歩行移動体のある部位が鉛直方向あるいは水平方向に対してどれだけ傾いているか等の情報)を使用する演算処理を少なくできる。その結果、脚体の関節モーメントの推定精度を高めることができる。

なお、床反力ベクトルの身体座標系での値は、後述する手法により2 足歩行移動体の傾斜情報を使用せずに把握することが可能である。あるいは、2足歩行移動体の脚体の底部等に荷重センサ(カセンサ)を装着し、その出力を用いて床反力ベクトルの身体座標系での値を把握することも可能である。また、床反力ベクトルの作用点の身体座標系での位置ベクトルの値は、後述するように2足歩行移動体の傾斜情報を使用して把握することも可能であるが、例えば2足歩行移動体の脚体の底部(足底)に圧力分布センサを備えた場合には、2足歩行移動体の傾斜情報を使用せずに把握することが可能である。

かかる本発明では、前記加速度センサは、基本的には2足歩行移動体 のどの剛体相当部に装着されていてもよいが、前記身体座標系が固定さ れた剛体要素に対応する2足歩行移動体の剛体相当部に装着されている ことが好ましい(第2発明)。すなわち、身体座標系が固定された剛体 要素に対応する2足歩行移動体の剛体相当部以外の部位に加速度センサ が装着されている場合には、その装着部位の加速度ベクトルから、2足 歩行移動体の関節の変位量等を用いて身体座標系が固定された剛体要素 に対応する剛体相当部の加速度ベクトルを算出する必要がある。これに 対して、第2発明の如く、身体座標系が固定された剛体要素に対応する 剛体相当部に加速度センサが装着されている場合には、該身体座標系の

15

20

25

原点と加速度センサとの位置関係が固定されているので、2足歩行移動体の関節の変位量を使用することなく身体座標系の原点の加速度ペクトルの身体座標系での値を加速度センサの出力から把握することができる。その結果、把握する身体座標系の原点の加速度ベクトルの身体座標系での値の精度を高めることができる。

さらに、上記第2発明では、前記身体座標系が固定された剛体要素は、前記2足歩行移動体の一対の股関節に対応する一対の関節要素を連結する剛体要素であることが好ましい(第3発明)。すなわち、2足歩行移動体の一対の股関節に対応する一対の関節要素を連結する剛体要素は2足歩行移動体の移動時の動きが比較的小さい。このため、加速度センサの出力の急変を少なくして、該加速度センサの出力を比較的安定させることができ、ひいては、把握する身体座標系の原点の加速度ベクトルの身体座標系での値の精度を高めることができる。

前記第1~第3発明において、前記第3ステップで床反カベクトルの身体座標系での値を把握することは、前記したように荷重センサを用いて行うことも可能である。但し、特に2足歩行移動体が人間である場合には脚体に荷重センサを装着すると、円滑な歩行の妨げになりやすい。そこで、第4発明では、例えば次のような手法により床反カベクトルの身体座標系での値を把握する。

すなわち、前記2足歩行移動体の全体重心の位置ベクトルの前記身体 座標系での値を前記第1ステップで把握した2足歩行移動体の各関節の 変位量と前記剛体リンクモデルとを用いて逐次求める第6ステップと、 その全体重心の位置ベクトルの値の時系列データおよび前記第2ステッ プで把握した身体座標系の原点の加速度ベクトルの値から該全体重心の 加速度ベクトルの身体座標系での値を逐次把握する第7ステップと、前

10

15

20

25

配2足歩行移動体の運動状態が一対の脚体のうちの一方の脚体のみが接 地している単脚支持状態であるか、両脚体が接地している両脚支持状態 であるかを逐次判断する第8ステップとを備える。そして、前記第3ス テップは、2足歩行移動体の運動状態が前記単脚支持状態であるときに は、前記第7ステップで求めた前記全体重心の加速度ベクトルの値と2 足歩行移動体の全体重量と接地している脚体に作用する床反力ペクトル とにより表される該2足歩行移動体の全体重心の運動方程式に基づいて 該床反力ベクトルの身体座標系での値を推定する。また、2足歩行移動 体の運動状態が前記両脚支持状態であるときには、前記第7ステップで 求めた前記全体重心の加速度ペクトルの値と2足歩行移動体の全体重量 と両脚体のそれぞれに作用する床反力ペクトルとにより表される該2足 歩行移動体の全体重心の運動方程式と、各脚体に作用する床反力ペクト ルが該脚体の下端部近傍にあらかじめ定めた特定部から2足歩行移動体 の全体重心に向かって作用するベクトルであると仮定して定まる、2足 歩行移動体の全体重心に対する該脚体の特定部の相対位置と該脚体に作 用する床反力ペクトルとの間の関係式とに基づいて両脚体のそれぞれに 作用する床反力ペクトルの身体座標系での値を把握する (第4発明)。

これによれば、単脚支持状態と両脚支持状態とで2足歩行移動体の全体重心の運動方程式(全体重心の並進運動に関する運動方程式)を基本として、接地している脚体に作用する床反カベクトルを推定するので、2足歩行移動体の歩行の妨げあるいは負担となるような荷重センサを使用することなく、床反カベクトルを推定できる。なお、両脚支持状態では、全体重心の運動方程式だけでは各脚体のそれぞれに作用する床反カベクトルを特定できないが、各脚体に作用する床反カベクトルが該脚体の下端部近傍にあらかじめ定めた特定部(例えば各脚体の足首関節、床反力作用点等)から2足歩行移動体の全体重心に向かって作用するベク

10

15

20

25

トルであると仮定して定まる、 2 足歩行移動体の全体重心に対する該脚体の特定部の相対位置と該脚体に作用する床反カベクトルとの間の関係式をさらに用いることによって、各脚体毎の床反カベクトルを推定できる。この場合、前記運動方程式で必要となる 2 足歩行移動体の全体重心の加速度ベクトルは、その身体座標系での値が前記第7ステップで逐次求められるので、その全体重心の運動方程式を身体座標系の座標成分値だけで記述することができる。また、前記 2 足歩行移動体の全体重心に対する脚体の特定部の相対位置と該脚体に作用する床反カベクトルとの間の関係式も身体座標系の座標成分値だけで記述できる。従って、身体座標系での床反カベクトルの値を、 2 足歩行移動体の傾斜情報(鉛直方向あるいは水平方向に対する傾斜情報)を把握することなく求めることができる。

また、床反カベクトルの作用点は、例えば2足歩行移動体の足平部の 底部に圧力分布センサを備えることで、その検出出力から把握すること も可能であるが、例えば次のような手法により推定することも可能であ る。

前記身体座標系が固定された剛体要素に対応する2足歩行移動体の剛体相当部の鉛直方向に対する傾斜角を逐次把握する第9ステップと、2足歩行移動体の各脚体毎に該脚体が接地しているか否かを判断する第10ステップと、前記第1ステップで把握した2足歩行移動体の各関節の変位量と前記剛体リンクモデルとを用いて少なくとも2足歩行移動体の全体重心の位置ベクトルの前記身体座標系での値と接地している各脚体の足首関節の位置ベクトルの前記身体座標系での値とを把握する第11ステップと、その把握した前記全体重心、接地している各脚体の足首関節および該脚体の足平部の中足趾節関節のそれぞれの位置ベクトルの

10

15

20

25

値と前記第9ステップで把握した傾斜角とに基づいて少なくとも該全体 重心、接地している各脚体の足首関節および該脚体の足平部の中足趾節 関節の位置関係と該脚体の足首関節の鉛直方向位置を把握する第12ス テップと、その把握した全体重心、接地している各脚体の足首関節およ び該脚体の足平部の中足趾節関節の位置関係に基づき該脚体に作用する 床反カベクトルの作用点の水平面内位置を推定すると共に該脚体の足首 関節の鉛直方向位置に基づき該脚体に作用する床反カベクトルの作用点 の鉛直方向位置を推定する第13ステップとを備え、前記第4ステップ は、該第13ステップで推定された床反カベクトルの作用点の水平面内 位置および鉛直方向位置と前記第9ステップで把握された傾斜角とに基 づき前記身体座標系での作用点の位置ベクトルの値を把握する(第5発 明)。

すなわち、2足歩行移動体の接地している脚体に作用する床反力ベクトルの作用点の水平面内位置は、その脚体の足首関節と中足趾節関節と2足歩行移動体の全体重心との相対的位置関係に密接に関係している。また、床反力ベクトルの作用点の鉛直方向位置は、脚体の足首関節の鉛直方向位置とほぼ一定の相関性を有する。従って、2足歩行移動体の全体重心、接地している各脚体の足首関節および該脚体の足平部の中足趾節関節の位置関係に基づき該脚体に作用する床反力ベクトルの作用点の水平面内位置を把握することができると共に該脚体の足首関節の鉛直方向位置に基づき該脚体に作用する床反力ベクトルの作用点の鉛直方向位置を把握することができる。そして、その把握した水平面内位置および鉛直方向位置と身体座標系が固定された剛体要素に対応する2足歩行移動体の剛体相当部の鉛直方向に対する傾斜角とを用いることで、身体座標系での床反力ペクトルの作用点の位置ベクトルを求めることができる。

このように床反力作用点の位置ベクトルを推定する場合には、身体座

概系が固定された剛体要素に対応する 2 足歩行移動体の剛体相当部の鉛直方向に対する傾斜角を傾斜角検出用のセンサ(角速度センサや傾斜計)を用いて把握する必要がある。しかし、本発明では、その傾斜角は、床反力ベクトルの作用点を推定するためにだけ使用すればよいので、その傾斜角を用いる演算は必要最低限に抑えられる。従って、核傾斜角が誤差を有するような場合であっても、演算誤差の累積を最小限に抑えることができ、ひいては、関節モーメントの推定精度を十分な精度に確保できる。また、瞬間的に比較的大きな荷重がかかりやすい足平部の底部に圧力分布センサを設けずに済むため、関節モーメントの推定のための装置構成の耐久性上の利点もある。

5

10

15

20

25

なお、上記第5発明は前記第4発明と併用してもよい。この場合には、前記第11ステップで必要となる、身体座標系での全体重心の位置ベクトルの値は、第4発明の前記第6ステップで求めたものを使用すればよい。従って、第5発明の第10ステップでは、身体座標系での全体重心の位置ベクトルの値を改めて求める必要はない。

前記第5発明では、前記第3ステップおよび第4ステップでそれぞれ 把握する床反力ベクトルの値およびその作用点の位置ベクトルの値が3 次元の値であるときには、床反力ベクトルの作用点の水平面内位置(2 足歩行移動体の前後方向および左右方向での位置)は、次のように把握 することができる。すなわち、前記第13ステップは、前記全体重心が 接地している脚体の足首関節に対して2足歩行移動体の前後方向で後側 に存在する場合には、該脚体の足首関節の水平面内位置(前後方向およ び左右方向での位置)を該脚体に作用する床反力ベクトルの作用点の水 平面内位置(前後方向および左右方向での位置)として推定し、前記全 体重心が接地している脚体の足平部の中足趾節関節に対して2足歩行移 動体の前後方向で前側に存在する場合には、該脚体の足平部の中足趾節

10

15

20

25

関節の水平面内位置(前後方向および左右方向での位置)を該脚体に作用する床反カペクトルの作用点の水平面内位置(前後方向および左右方向での位置)として推定し、前記全体重心が接地している脚体の足首関節に対して2足歩行移動体の前後方向で前側に存在し、且つ該脚体の足平部の中足趾節関節に対して後側に存在する場合には、該脚体の足首関節と中足趾節関節とを結ぶ線分上で前記全体重心と前後方向の位置が同一となる点の水平面内位置(前後方向および左右方向での位置)を該脚体に作用するの床反カペクトルの作用点の水平面内位置(前後方向および左右方向での位置)として推定する(第6発明)。

すなわち、前記全体重心が接地している脚体の足首関節に対して2足 歩行移動体の前後方向で後側に存在する場合には、該脚体は、通常、そ の足平部の踵で接地しており、その接地箇所は、該脚体の足首関節のほ ぼ直下に存在する。従って、この場合には、該脚体の足首関節の水平面 内位置(前後方向および左右方向での位置)を該脚体に作用する床反力 ベクトルの作用点の水平面内位置(前後方向および左右方向での位置) として推定できる。また、前記全体重心が接地している脚体の足平部の 中足趾節関節に対して2足歩行移動体の前後方向で前側に存在する場合 には、該脚体は、通常、その足平部のつま先で接地しており、その接地 箇所は、該脚体の足平部の中足趾節関節のほぼ直下に存在する。従って、 この場合には、該脚体の足平部の中足趾節関節の水平面内位置(前後方 向および左右方向での位置)を該脚体に作用する床反力ペクトルの作用 点の水平面内位置(前後方向および左右方向での位置)として推定でき る。また、全体重心が接地している脚体の足首関節に対して2足歩行移 動体の前後方向で前側に存在し、且つ該脚体の足平部の中足趾節関節に 対して後側に存在する場合には、床反力ベクトルの作用点の前後方向で の位置は全体重心の前後方向での位置とほぼ同じである。また、足平部

10

15

20

は、概ね足首関節から中足趾節関節まで延在する剛体とみなせるので、床反カベクトルの作用点は、足首関節と中足趾節関節とを結ぶ線分を床面に投影した線分上に存在すると考えることができる。従って、この場合には、脚体の足首関節と中足趾節関節とを結ぶ線分上で前記全体重心と前後方向の位置が同一となる点の水平面内位置(前後方向および左右方向での位置)を該脚体に作用する床反カベクトルの作用点の水平面内位置(前後方向および左右方向での位置)として推定することができる。

また、上記第5又は第6発明では、床反力作用点ベクトルの鉛直方向 位置の推定に関しては、例えば、前記第13ステップは、接地している 脚体に作用する床反力ベクトルの作用点の鉛直方向位置を、前記第12 ステップで把握された脚体の足首関節の鉛直方向位置からあらかじめ定 めた所定値だけ鉛直方向下方に離れた位置として推定する(第7発明)。 すなわち、2足歩行移動体の歩行時等に接地している脚体の足首関節は、 一般に床面から概ね一定の高さの位置に存在する。従って、脚体の足首 関節の鉛直方向位置から、あらかじめ定めた所定値(上記一定の高さに 相当する所定値)だけ鉛直方向下方に離れた位置を床反力ベクトルの作 用点の鉛直方向位置として推定できる。

接地している脚体の足首関節の床面からの高さは上記の如く概ね一定の高さであるが、2足歩行移動体の移動時に脚体の足平部の底面のつま先側の部分だけが接地している状態では、該脚体の足首関節の床面からの高さは、該足平部の底面のほぼ全体または踵側の部分が接地している場合に較べて多少高くなる。従って、床反カベクトルの作用点の鉛直方向位置の推定精度をより高める上では、第7発明で次のようにすることが好ましい。

25 すなわち、前記第10ステップでは、接地していると判断した脚体に ついて、さらに該脚体の足平部のつま先側部分および踵側部分のそれぞ

20

れ接地の有無を判断し、前記第12ステップでは、前記接地している脚体の足首関節の鉛直方向位置に加えて該脚体の足平部の中足趾節関節の鉛直方向位置を把握するようにする。そして、前記第13ステップでは、前記第10ステップで足平部のつま先側部分および踵側部分のうちのつま先側部分のみが接地していると判断されたときには、前記所定値の代りに、前記第12ステップで把握した前記足首関節の鉛直方向位置と中足趾節関節の鉛直方向位置とから求められる該足首関節と中足趾節関節との鉛直方向の距離を用いて前記床反カベクトルの作用点の鉛直方向位置を推定する(第8発明)。

10 これによれば、接地している脚体の足平部のつま先側部分だけが接地 していると判断される状態では、脚体の足首関節の鉛直方向位置から、 足首関節と中足趾節関節との鉛直方向距離だけ鉛直下方に離れた位置が 床反カベクトルの作用点の鉛直方向位置として推定される。その結果、 床反カベクトルの作用点の鉛直方向位置の推定精度を高めることができ 15 る。

以上説明した各発明では、前記第3ステップおよび第4ステップでそれぞれ把握する床反力ベクトルの値およびその作用点の位置ベクトルの値は、3次元の値であることが好ましい(第9発明)。これによれば、2足歩行移動体の空間的な挙動に則して床反力ベクトルの値およびその作用点の位置ベクトルの値を把握するので、それらを基に推定される関節モーメントの推定精度を高めることができる。

図面の簡単な説明

図1は、本発明を2足歩行移動体としての人間に適用した実施形態で 25 の全体的装置構成を模式的に示す図、図2は図1の装置に備えたセンサ ボックスの構成を示すブロック図、図3は実施形態で使用する剛体リン クモデルの斜視図、図4は図2に示した演算処理装置の機能的手段を示すプロック図である。図5および図6はそれぞれ実施形態で用いる座標変換の変換テンソルの例を説明するための図、図7は2足歩行移動体の単脚支持状態での床反カベクトルの推定手法を説明するための図、図8(a),(b)は2足歩行移動体の両脚支持状態での床反カベクトルの推定手法を説明するための図、図9(a)~(c)は床反カベクトルの作用点の推定手法を説明するための図、図10は図9(b)の状態での床反カベクトルの作用点の推定手法を説明するための図である。

10

15

20

5

発明を実施するための最良の形態

本発明の実施形態を図1~図10を参照して説明する。図1は本発明を2足歩行移動体としての人間に適用した実施形態での全体的装置構成を模式的に示す図である。同図に示すように、人間1は、その構成を大別すると、左右一対の脚体2,2と、胴体3と、左右一対の腕体4,4と、頭部5とを有する。胴体3は、腰部6、腹部7、および胸部8から構成され、その腰部6が脚体2,2のそれぞれに左右一対の股関節9,9を介して連結されて両脚体2,2上に支持されている。また、胴体3の胸部8の左右の両側部からそれぞれ腕体4,4が延設されると共に、胸部8の上端に頭部5が支持されている。各脚体2は、股関節9から延在する大腿部10と、該大腿部10の先端から膝関節11を介して延在する下腿部12と、該下腿部12の先端から足首関節13を介して延在する足平部14とを備えている。

本実施形態では、このような構成を有する人間1の各脚体2の各関節 25 9,11,13に作用する関節モーメントの推定を行うために、次のよ うな装置を人間1に装備している。すなわち、腰部6の背面にはセンサ

15

ボックス15が図示しないベルト等の部材を介して装着されている。このセンサボックス15の内部には、図2のプロック図で示すように3軸方向の加速度(並進加速度)を検出する加速度センサ16と、3軸方向(3軸回り)の角速度を検出するジャイロセンサ17と、マイクロコンピュータを用いて構成された演算処理装置18と、後述する光ファイバ26,27に導入する光を発光したり、戻り光を受光する発光/受光器19と、演算処理装置18等の各電装品の電源としてのバッテリ20とが収容されている。なお、加速度センサ16及びジャイロセンサ17は、センサボックス15を介して腰部6に固定され、腰部6と一体的に動くようになっている。

各脚体2の股関節9、膝関節11、足首関節13の部位には、それぞれの関節の変位量を検出する関節変位センサ21,22,23が図示しないベルト等の部材を介して装着されている。これらの各関節変位センサ21,22,23が検出する変位量は、各関節9,11,13の3軸回りの回転角であり、その検出は、ポテンショメータ等を用いて行われる。

また、各脚体2の足平部14の底面(詳しくは足平部14に装着した 靴の底面)には、2つの接地センサ24,25が設けられている。接地 センサ24,25のうち、接地センサ24は足首関節13の直下の箇所 (踵)に設けられ、接地センサ24は足平部14の中足趾節関節14a (足平部14の親指の付け根の関節)の直下の箇所(つま先)に設けら れている。これらの接地センサ24,25は、それを設けた箇所が接地 しているか否かを示すON/OFF信号を出力するセンサである。なお、 各関節変位センサ21,22,23、および接地センサ24,25の検 出出力は信号線(図示省略)を介してセンサボックス15の演算処理装 置18に入力される。

さらに、図1に示す如く、センサポックス15から2本の光ファイバ 26, 27が胴体3の背面沿いに上方に向かって延設され、その先端部 がそれぞれ腹部7の背面、胸部8の背面に図示しないベルト等の部材を 介して固定されている。光ファイバ26,27は、それぞれ腰部6に対 する腹部7、胸部8の傾き角(矢状面での傾き角)を検出する検出手段 5 の構成要素である。これらの光ファイバ26,27を用いた腹部7、胸 部8の傾き角の計測は次のような手法により行われる。光ファイバ26 を用いた腹部7の傾き角の計測手法を代表的に説明すると、核光ファイ バ26には、センサポックス15内に設けられた発光/受光器19(図 2に示す)から所定の強度の光が導入されると共に、その導入された光 10 が該光ファイバ26の先端で反射されてセンサボックス15側に戻って くるようになっている。そして、その光の戻り量(戻った光の強度)が 前記発光/受光器19により検出されるようになっている。また、光フ ァイパ26には、微小な光漏れを許容する複数の刻み部 (図示しない) 15 が長手方向に間隔を存して設けられており、光ファイパ26に導入され た光のうち、腰部6に対する腹部7の傾き角に応じた量の光がそれらの 刻み部を介して光ファイバ26から漏出する。このため、センサボック ス15側への光の戻り量は、腹部7の傾き角に応じたものとなり、その 戻り量を検出することで、腰部6に対する腹部7の傾き角が計測される。 20 すなわち、光ファイバ25の光の戻り量に応じた発光/受光器19の検 出出力が、腰部6に対する腹部7の傾き角に応じたものとなり、それが 該傾き角を示す信号として演算処理装置18に入力される。光ファイバ 27を用いた胸部8の傾き角の計測手法も同様である。

なお、前記関節変位センサ21,22,23がそれぞれ検出する股関 25 節9、膝関節11、足首関節13の回転角は、両足平部14,14を平 行に前方に向けて人間1が直立姿勢で起立した状態(以下、人間1の基 準姿勢状態という)を基準(ゼロ点)とする回転角である。光ファイバ26,27を用いて検出する腹部7、胸部8の傾き角についても同様である。

ここで、本実施形態で用いる人間1の剛体リンクモデルと座標系とに ついて説明しておく。図3はその剛体リンクモデルS1と座標系とを示 5 している。なお、この剛体リンクモデルS1は、前記図1にも仮想線で 併記されている。本実施形態では、剛体リンクモデルS1は、人間1を、 9個の剛体要素と8個の関節要素とで構成される連結体として表現して いる。さらに詳説すると、剛体リンクモデルS1は、大別すると、人間 10 1の各脚体2にそれぞれ対応する一対の脚体部52,52と、人間1の 上体(腰部6から上側の部分)に対応する上体部SUとから構成されて いる。上体部SUは、人間1の腰部6に対応する剛体要素S6と腹部7 に対応する剛体要素S7とを関節要素JU1で連結し、さらに、剛体要 素S7と胸部8に対応する剛体要素S8とを関節要素JU2で連結して なる連結体として構成されている。以下、剛体要素 S 6, S 7, S 8 を 15 それぞれ腰部要素 S 6、腹部要素 S 7、胸部要素 S 8と称し、関節要素 JU1、JU2をそれぞれ上体下部関節JU1、上体上部関節JU2と 称することがある。

この場合、腰部要素S6は、逆丁字形となっており、その上端に前記 20 上体下部関節JU1が設けられると共に、左右の両端に人間1の一対の 股関節9,9に対応する一対の関節要素J9,J9(以下、単に股関節 J9ということがある)が設けられている。つまり、腰部要素S6は、 股関節J9,J9の間でそれらの中心を結ぶ線分方向(左右方向)に延在する部分S6aとこの部分S6aの中央から上体下部関節JU1に向 かってほぼ上方に伸びる部分S6bとから構成されている。ここで、上 体下部関節JU1は、人間1の腰部6と腹部7との境界付近で人間1の

背骨上に想定した関節に対応するものであり、上体上部関節JU2は、 腹部7と胸部8との境界付近で人間1の背骨上に想定した関節に対応す るものである。人間1の胴体3の曲げ動作をつかさどる実際の背骨は多 数の関節で構成されるが、剛体リンクモデルS1では、上体部SUの曲 げ動作は、上体下部関節JU1および上体上部関節JU2の2つの関節 要素で行われる。そして、腹部要素S7は、上体下部関節JU1と上体 上部関節JU2との間でそれらの中心を結ぶ線分方向に延在している。 なお、胸部要素S8は、図1に示す如く、上体上部関節JU2から人間 1の首の付け根(より詳しくは胴体3と首との境界付近での背骨上の部 位)まで延在するものとされている。

剛体リンクモデルS1の各脚体部S2は、大腿部10に対応する剛体要素S10を前記股関節J9を介して腰部要素S6に連結し、下腿部12に対応する剛体要素S12を膝関節11に対応する関節要素J11を介して連結し、足平部14に対応する剛体要素S14を足首関節13に対応する関節要素J13を介して連結してなる連結体として構成されている。以下、剛体要素S10,S12,S14をそれぞれ大腿部要素S10、下腿部要素S12、足平部要素S14と称し、関節要素J11,J13をそれぞれ単に膝関節J11、足首関節J13と称することがある。

20 この場合、大腿部要素S10および下腿部要素S12は、それぞれの 両端の関節要素の間でそれらの中心を結ぶ線分方向に延在している。また、足平要素S14の先端は、人間1の足平部14の中足趾節関節14 a(以下、MP関節14aという)に対応しており、足平要素S14は、 図1に示す如く、足首関節13(J13)から足平部14の中足趾節関 25 節14a(以下、MP関節14aという)まで延在している。剛体リンクモデルS1では、足平要素S14の先端は関節としての機能を持つも

25

のではないが、以下、便宜上、その先端をMP関節J14aと称することがある。

以上の如く構成された剛体リンクモデルS1の各剛体要素及び各関節 要素は、各関節要素の回転運動によって、その相互の位置関係および姿 勢関係(向きの関係)が各剛体要素および各関節要素に対応する人間1 5 の各部の相互の位置関係および姿勢関係とほぼ同一になるように運動可 能とされている。この場合、上体下部関節JU1及び上体上部関節JU 2は、それぞれ3軸回りの回転が可能とされており、その中の1軸を計 測軸として、その計測軸回りの回転(図3中に各関節要案JU1,JU 2に対応して記載した矢印(回転方向を表す矢印))を計測するように 10 している。その計測軸は、本実施形態では、前記一対の股関節J9,J 9の中心を結ぶ線分(腰部要素S6の部分S6 aの延在方向)と平行な 軸である。また、各脚体部S2の股関節J9、膝関節J11、および足 首関節J13はそれぞれ、左側の脚体部S2の各関節要素J9、J11、 J13に関して代表的に図3中に記載した矢印(回転方向を表す矢印) 15 で示す如く3軸回りの回転が可能とされている。

また、剛体リンクモデルS1では、その各剛体要素の重量および長さ (軸心方向の長さ)、各剛体要素の重心の位置 (各剛体要素での位置) とがあらかじめ定められて、演算処理装置18の図示しないメモリに記憶保持されている。図3の黒点G8,G7,G6,G10,G12,G14はそれぞれ胸部要素S8、腹部要素S7、腰部要素S6、大腿部要素S10、下腿部要素S12、足平部要素S14の重心を例示的に示している。なお、腰部要素S6は前記したように逆T字形であるので、その長さについては、前記部分S6aの長さと部分S6bの長さとがある。各剛体要素の重量、長さ、重心の位置は、基本的にはそれぞれの剛体

要素に対応する人間1の剛体相当部の重量、長さ、重心の位置とほぼ同

10

一に設定されている。例えば、大腿部要素S10の重量、長さ、重心の位置は、それぞれ人間1の大腿部10の実際の重量、長さ、重心の位置とほぼ同一である。但し、重量および重心の位置は、人間1に本実施形態の装置を装備した状態での重量および重心の位置である。また、胸部要素S8の重量および重心の位置は、人間1の胸部8と両腕体4,4と頭部5とを合わせたものの重量および重心の位置である。補足すると、人間1の移動時の両腕体4,4の運動(腕を前後に振る動作)に伴う胸部要素S8の重心の位置変化は比較的小さく、該胸部要素S8のほぼ一定の位置に維持される。また、各剛体要素の重心の位置は、各剛体要素にあらかじめ固定して設定された後述の要素座標系での位置ベクトルとして、該要素座標系の各座標成分値で設定されている。

の寸法や重量の実測値に基づいて定めればよいが、人間1の身長や体重から、人間の平均的な統計データに基づいて推定するようにしてもよい。 一般に、各剛体要素に対応する人間1の剛体相当部の重心の位置や重量、 長さは、人間の身長や体重(全体重量)と相関性があり、その相関関係 に基づいて人間1の身長および体重の実測データから各剛体要素に対応 する人間1の剛体相当部の重心の位置や重量、長さを比較的精度よく推 定することが可能である。

各剛体要素の重量、長さ、重心の位置は、基本的には、人間1の各部

20 なお、図3では、便宜上、各重心G8, G7, G6, G10, G12, G14は、それぞれに対応する剛体要素の軸心上に位置するように記載しているが、必ずしもその軸心上に位置するとは限らず、その軸心からずれた位置に存在してもよい。

本実施形態では、剛体リンクモデルS1に対して、次のような座標系25 があらかじめ設定されている。すなわち、図3に示す如く身体座標系BCが腰部要素S6に固定して設定されている。この身体座標系BCは、

一対の股関節 J 1 1, J 1 1 の中心を結ぶ線分の中点(腰部要素 S 6 の部分 S 6 a の中央点)を原点とし、その線分の方向を Y 軸、原点から上体下部関節 J U 1 の中心に向かう方向を Z 軸、これらの Y 軸および Z 軸に直交する方向を X 軸とする 3 次元座標系(X Y Z 座標系)として設定されている。人間 1 の前記基準姿勢状態では、身体座標系 B C の X 軸、Y 軸、 Z 軸はそれぞれ人間 1 の前後方向、左右方向、上下方向(鉛直方向)に向き、 X Y 平面は水平面である。

また、各剛体要素には、例えば参照符号C8、C7、C6、C10、 C12, C14で示すように要素座標系が固定的に設定されている。本 10 実施形態では、腰部要素S6の要素座標系C6は身体座標系BCと同一 とされている。また、胸部要素 S 8、腹部要素 S 7、各大腿部要素 S 1 0、各下腿部要素 S 1 2、および各足平部要素 S 1 4 のそれぞれの要素 座標系C8,C7,C10,C12,C14はそれぞれ、上体上部関節 JU2、上体下部関節JU1、膝関節J11、足首関節J13、MP関 15 節J14aの中心点を原点とする3次元座標系(XY2座標系)とされ ている。別の言い方をすれば、各脚体部S2については、その各剛体要 素S10、S12、S14の要素座標系C10、C12、C14は、各 剛体要素S10、S12、S14の両端の関節要素のうち、腰部要素S 6からより遠い側の関節要素の中心点を原点としている。また、上体部 20 SUの腹部要素S7および胸部要素S8のそれぞれの要素座標系C7, C8は、腹部要素S7および胸部要素S8のそれぞれの両端の関節要素 のうち、腰部要素 S 6 により近い側の関節要素の中心点を原点としてい る。なお、図3では、要素座標系C10, C12, C14は図示の便宜 上、右側脚体部S2についてのみ図示しているが、左側脚体部S2につ 25 いても右側脚体部S2と同様に要素座標系が設定されている。

また、要素座標系C8, C7は、それぞれ胸部要素S8、腹部要素S

10

7の延在方向(軸心方向)に Z 軸が設定されると共に、 Y 軸が身体座標系 B C の Y 軸と同一方向に設定されている。また、要素座標系 C 1 0 , C 1 2 , C 1 4 はそれぞれ大腿部要素 S 1 0 、下腿部要素 S 1 2 、足平部要素 S 1 4 の延在方向(軸心方向)に Z 軸が設定されると共に、 Y 軸が股関節 J 9 、膝関節 J 1 1 及び足首関節 J 1 3 のそれぞれの中心点を含む平面(以下、脚平面ということがある)の法線方向に設定されている。上記のいずれの要素座標系 C 8 , C 7 , C 1 0 , C 1 2 , C 1 4 でも、 X 軸は Y 軸及び Z 軸に直交する方向に設定されている。以下の説明では、各要素座標系 C 8 , C 7 , C 6 , C 1 0 , C 1 2 , C 1 4 をそれぞれ胸部座標系 C 8 、腹部座標系 C 7 、腰部座標系 C 6 、大腿部座標系 C 1 0 、下腿部座標系 C 1 2 、足平部座標系 C 1 4 と称することがある。なお、要素座標系 C 8 , C 7 , C 1 0 , C 1 2 , C 1 4 は、必ずしも上記の如く設定する必要はなく、基本的にはその原点や各軸の向きの設定は任意でよい。

15 図4は前記演算処理装置18の演算処理機能を示すプロック図である。同図に示すように、演算処理装置18は、前記各関節変位センサ21,22,23および発光/受光器19の検出出力を基に後述する座標変換のための変換テンソルを作成する変換テンソル作成手段28と、その変換テンソルを用いて前記剛体リンクモデルS1の各関節要素および各剛20 体要素の重心の身体座標系BCでの位置ベクトルの値(座標成分値)を求める関節・要素重心位置算出手段29と、前記加速度センサ16及びジャイロセンサ17の検出出力を基に身体座標系BCの原点の加速度ベクトル(並進加速度)の値(身体座標系BCでの座標成分値)を求める身体座標系加速度算出手段30と、前記加速度センサ16及びジャイロ25 センサ17の検出出力を基に身体座標系BCの鉛直方向に対する傾斜角を算出する身体座標系傾斜角算出手段31とを備えている。

10

さらに演算処理装置18は、関節・要素重心位置算出手段29が求めた各剛体要素の重心の位置ベクトルの値を用いて身体座標系BCでの剛体リンクモデルS1の全体重心(人間1の全体重心)の位置ベクトルの値を求めると共に、その位置ベクトルの値の時系列データと身体座標系加速度算出手段30が求めた身体座標系BCの原点の加速度ベクトルの値とを用いて該全体重心の加速度ベクトル(並進加速度)の値(身体座標系BCでの座標成分値)を求める全体/要素重心運動算出手段30では、関節・要素重心位置算出手段29が求めた各大腿部要素S10、下腿部要素S12 および足平部要素S12のそれぞれの重心の位置ベクトルの値の時系列データと身体座標系加速度算出手段30が求めた身体座標系BCの原点の加速度ベクトルの値とを用いて各大腿部要素S10、下腿部要素S12 および足平部要素S14の重心の加速度ベクトル(並進加速度)の値(身体座標系BCでの座標成分値)も求められる。

15 また、演算処理装置18は、関節・要素重心位置算出手段29が求めた各足首関節J13の位置ベクトルの値と全体/要素重心運動算出手段32が求めた全体重心の位置ベクトルの値およびその加速度ベクトルの値と前記接地センサ24,25の検出出力とを用いて人間1の各脚体2,2に作用する床反カベクトル(並進床反力)の身体座標系BCでの値20 (座標成分値)を推定する床反力推定手段33と、関節・要素重心位置算出手段29が求めた各足首関節J13および各MP関節J14aの位置ベクトルの値と身体座標系傾斜角算出手段31が求めた身体座標系BCの傾斜角と全体/要素重心運動算出手段32が求めた全体重心の位置ベクトルの値と接地センサ24,25の検出出力とを用いて各脚体2に25 作用する床反カベクトルの作用点(以下、単に床反力作用点という)の位置ベクトルの身体座標系BCでの値(座標成分値)を求める床反力作

用点推定手段34とを備える。

そして、演算処理装置18は、変換テンソル作成手段28が作成した変換テンソルと全体/要素重心運動算出手段30が求めた各大腿部要素S10、下腿部要素S12、足平部要素S14のそれぞれの重心の加速度ベクトルと床反力推定手段33が求めた床反力ベクトルの値と床反力作用点推定手段34が求めた床反力作用点の位置ベクトルの値とを用いて各脚体2の足首関節13、膝関節11および股関節9に作用する関節モーメントを推定する関節モーメント推定手段35を備えている。

詳細は後述するが、演算処理装置18は、上記各手段28~35の演 10 算処理を所定の演算処理周期で逐次実行し、各演算処理周期において最 終的に関節モーメント推定手段35により関節モーメントの推定値を逐 次算出する。

次に演算処理装置18の各手段の詳細な演算処理と併せて本実施形態 の装置の作動を説明する。なお、以下の説明において、一般的に、ペク トル量をある座標系Caから別の座標系Cbに座標変換する変換テンソ 15 ル、すなわち座標系Caの成分値で表されるベクトル量を座標系Cbの 成分値で表されるベクトル量に変換するテンソルを「R(Ca→Cb)」と いうように表記する。また、ある座標系Ca で見たある点Pもしくは部 位Pの位置ベクトルをU(P/Ca)というように表記する。また、ある座標 系Ca の座標成分値で表される、物体Qもしくは部位Qの作用力、加速 20 度等の物理量のベクトルAをA(Q/Ca)というように表記する。この場合、 位置ベクトルU(P/Ca)や、物理量ベクトルA(Q/Ca)の座標系Caでの座 標成分値を表すときは、各座標軸の名称であるx、y、zをさらに付加 して表記する。例えば、位置ベクトルU(P/Ca)のX座標成分は、U 25 (P/Ca)xというように表記する。

また、前記各要素座標系C8, C7, C6, C10, C12, C14

をそれぞれ対応する部位の名称を用いてC_胸部、C_腹部、C_腰部、 C_大腿部、C_下腿部、C_足平部と称することがある。このことは、 各剛体要素 S 8, S 7, S 6, S 1 0, S 1 2, S 1 4、各剛体要素 S の重心G8, G7, G6, G10, G12, G14についても同様とす る。例えば腰部剛体要素S8およびその重心G8をそれぞれS__腰部、 G_腰部と表記することがある。なお、大腿部10、下腿部12、足平 部14に関するものについては、その左右を区別する必要があるときは、 「右」、「左」をさらに付加して記述する。例えば右側大腿部要素S10 をS二右大腿部と称することがある。また、股関節J9、膝関節J11、 10 足首関節J13、およびMP関節J14aをそれぞれJ_股、J_膝、 J __ 足首、 J __ M P と称することがある。この場合も左右を区別する必 要があるときは、上記と同様、「右」、「左」をさらに付加して表記する。 演算処理装置18は、所定の演算処理周期で前記各関節変位センサ2 1, 22, 23、発光/受光器19、加速度センサ16、ジャイロセン サ17の検出出力を図示しないA/D変換器を介して取り込むと共に、 15 各接地センサ24, 25の検出出力(ON/OFF信号)を取り込む。 そして、まず、前記変換テンソル作成手段28および関節・要素重心位 置算出手段29の演算処理を順次実行する。

変換テンソル作成手段28の演算処理では、各要素座標系と身体座標 20 系BCとの間のベクトル量の座標変換を行うための変換テンソルが作成 される。この変換テンソルは、次の手順で作成される。まず、各関節変 位センサ21,22,23の検出出力を基に、それぞれ各脚体2の股関 節9、膝関節11および足首関節13のそれぞれの回転角(3軸回りの 回転角)が剛体リンクモデルS1の各股関節J9、膝関節J11および 25 足首関節J13の回転角として把握されると共に、発光/受光器19の 検出出力を基に、剛体リンクモデルS1の腰部要素M6に対する腹部要

素S7と胸部要素S8との傾斜角(詳しくは腰部要素座標系C6のZ軸 方向に対する矢状面(XZ平面)上での傾斜角)が把握される。そして、 これらの把握された回転角および傾斜角を用いて、剛体要素の要素座標 系の間でベクトル量の座標変換を行うための変換テンソルが作成される。 この要素座標系間変換テンソルは、本実施形態では、足平部座標系C1 5 4から下腿部座標系C12への変換テンソルR(C_足平部→C_下腿 部)と、下腿部座標系C12から大腿部座標系C10への変換テンソル R(C_下腿部→C_大腿部)と、大腿部座標系C10から腰部座標系C 6 への変換テンソルR(C_大腿部→C_腰部)と、腹部座標系C7から 10 腰部座標系C6への変換テンソルR(C 腹部→C 腰部)と、胸部座 標 系 C 8 か ら 腰 部 座 標 系 C 6 へ の 変 換 テ ン ソ ル R (C __ 胸 部 → C __ 腰 部) とから構成される。なお、R(C_足平部→C_下腿部), R(C_ 下腿部→C_大腿部)、R(C_大腿部→C_腰部)は、左右の脚体部 S 2毎に各別に作成される。

15 ここで作成される要素座標系間変換テンソルの一例を示すと、例えば図5に示すように膝関節11の関節変位センサ22の検出出力から把握される膝関節11の回転角(膝関節J11の回転角)が、大腿部座標系C10のY軸(図5の紙面に垂直な軸)回りにθyであるとする。但し、この例では要素座標系C10のX軸回り、Z軸回りの膝関節11の回転20 角は0であるとする。また、膝関節11のY軸回り回転角は、脚体2が伸びる方向を正方向としており、図示の例ではθy<0である。このとき、変換テンソルR(C_下腿部→C_大腿部)は、次式(1)の如く3次の行列で表される。

5 また、例えば変換テンソル R (C __ 腹部 → C __ 腰部) は、腰部 6 に対 する腹部 7 の傾斜角を θ y (但し傾斜角 θ v は人間 1 の前方側への傾斜 方向を正方向とする)とおくと、前記式(1)の右辺の行例と同じ形の 行列で表される。変換テンソルR(C_胸部→C_腰部)も同様である。 補足すると、本実施形態では、剛体リンクモデルS1の上体下部関節J 10 U1および上体上部関節JU2を1軸回り(C_腹部およびC_胸部の Y軸回り)の回転による腹部要素S7および胸部要素S8の腰部要素S 6に対する傾斜角を計測するようにしたため、変換テンソルR(C__腹 部→C_腰部) およびR(C_胸部→C_腰部) は常に前記式(1) の 右辺の行例と同じ形の行列で表される。但し、上体下部関節JU1およ び上体上部関節JU2をそれぞれ例えば2軸回り(例えばС_腹部およ 15 びC_胸部のY軸とX軸との2軸回り)の回転が可能なものとして、腹 部要素S7および胸部要素S8の2軸回りの傾斜角を計測するようにし てもよい。

次いで、上記の如く求めた要素座標系間変換テンソルから、各要素座 20 標系で記述された(各要素座標系の座標成分値で記述された)ベクトル 量を身体座標系BCに座標変換する(ベクトル量を身体座標系BCの座 標成分値での記述に変換する)ための変換テンソルが求められる。

この場合、本実施形態では腰部座標系C6(C_腰部)は身体座標系BCに等しいものとしたので、C_腰部から身体座標系BCへの変換テ

25

ンソルR(C_腰部→BC)は3次の単位行列で表される。また、腹部座標系C7(C_腹部)および胸部座標系C8(C_胸部)のそれぞれから身体座標系BCへの変換テンソルR(C_腹部→BC),R(C_胸部→BC)は、それぞれ先に求めた要素座標系間変換テンソルR(C_腹部→C_腰部),R(C_胸部→C_腰部)と同一である。そして、他の要素座標系C10(C_大腿部),C12(C_下腿部),C14(C_足平部)から身体座標系BCへの変換テンソルは、次式(2a)~(2c)の如く、腰部要素S6寄りのものから順番に決定される。

R(C_大腿部→BC)= R(C_腰部→BC)×R(C_大腿部→C_腰部)
10 (2 a)

R(C_下腿部→BC)= R(C_大腿部→BC)
×R(C_下腿部→C_ 大腿部) ······ (2 b)

 $R(C_{\mathbb{Z}}$ 足平部 \to $BC) = R(C_{\mathbb{Z}}$ 下腿部 \to BC)

×R(C_足平部→C__下腿部) ····· (2 c)

なお、R(C_大腿部→BC), R(C_下腿部→BC), R(C_足平部→BC)は、各脚体部S2毎に各別に求められる。補足すると、各要素座標系から身体座標系BCへの変換テンソルを転置したものが逆変換(身体座標系BCから該要素座標系への座標変換)を行うための変換テンソルとなる。例えばR(BC→C_大腿部)=R(C_大腿部→BC)T(Tは転置を意味する)である。

上記変換テンソル作成手段28の演算処理に続く関節・重心位置算出手段29の演算処理では、上記の如く求めた変換テンソルと、あらかじめメモリに記憶された各剛体要素の長さおよび重心位置(各要素座標系での位置)とから各関節要素および各剛体要素の重心の身体座標系BCでの位置ベクトルが求められる。なお、ここで位置ベクトルを求める関節要素には前記MP関節J14aが含まれる。

各関節要素の位置ベクトルの算出は次のように行われる。例えば左側脚体部S2の各関節要素J9,J11,J13の位置ベクトルの算出を例に採って説明する。腰部要素S6の、両股関節J9,J9間の部分S6a長さをL6aとおくと、C_腰部における左側股関節J9の位置ベクトルU(J_左股/C_腰部)は、(0,L6a/2,0) Tである。従って、身体座標系BCにおける左側股関節J9の位置ベクトルU(J_左股/BC)は、次式(3)により求められる。

$$U(J_EB/BC) = R(C_B) \times U(J_EB/C_B)$$

= $R(C_B) \times (0, L6a/2, 0)$ T

10 ······ (3)

さらに、左側大腿部要素S10の長さをL10とおくと、左側大腿部座標系C10(C_左大腿部)における左側股関節J9の位置ベクトルU(J_左股/C_左大腿部)は、(0,0,L10)Tであるから、身体座標系BCにおける左側膝関節J11の位置ベクトルU(J_左膝/BC)は、次式(4)により求められる。

以下同様にして、左側足首関節 J 1 3 、左側 M P 関節 J 1 4 a の身体 座標系 B C での位置ベクトル U (J __ 左足首/BC)、 U (J __ 左 M P /BC)が それぞれ次式 (5), (6) により順番に算出される。

10

U(J __左M P/BC)= U(J __左足首/BC) + R(C __左足平部→BC)×(- U(J __左足首/C __左足平部))

= U(J __左足首/BC)

+R(C_左足平部→BC)×(0,0,-L14)T

..... (6)

なお、式(5)のL12、式(6)のL14はそれぞれ左側下腿部要素S12、左側足平部要素S14の長さである。右側脚体部S2の各関節要素の位置ベクトルも上記と同様に求められる。

さらに、上体部SUの各関節要素の位置ベクトルも上記と同様に求められる。すなわち、上体下部関節JU1および上体上部関節JU2の身体座標系BCでの位置ベクトルは、それぞれ次式(7),(8)により順番に求められる。

15 U(JU1/BC)=R(C_腰部→BC)・U(JU1/C_腰部)

 $=R(C_{\underline{B}} \oplus BC) \cdot (0, 0, L 6 b)^{T}$

..... (7)

U(JU2/BC)=U(JU1/BC)+R(C__腹部→BC)·U(JU2/C__腹部)

= $U(JU1/BC) + R(C__腹部→BC) \cdot (0, 0, L7)$ ^T

20 (8)

なお、式(7)のL6bは、腰部要素S6の部分S6bの長さである。 また、式(8)のL7は腹部要素S7の長さである。

また、各剛体要素の重心の、身体座標系BCでの位置ベクトルの算出 は次のように行われる。すなわち、腰部要素S6、大腿部要素S10、

25 下腿部要素 S 1 2 、足平部要素 S 1 4 のそれぞれの重心の身体座標系 B C での位置ペクトル U (G __ 腰部/BC), U (G __ 大腿部/BC), U (G __ 下

20

腿部/BC), U(G_足平部/BC)は、それぞれ前記式(3)~(6)の右辺のU(J_左股/C_腰部)、U(J_左股/C_左大腿部)、U(J_左膝/C_左下腿部)、U(J_左膝/C_左下腿部)、U(J_左足首/C_左足平部)を、それぞれ各要素座標系であらかじめ設定されている各剛体要素の重心の位置ベクトルU(G_腰部/C_腰部)、U(G_大腿部/C_大腿部)、U(G_下腿部/C_下腿部)、U(G_足平部/C_足平部)で置き換えた式を演算することで求められる。なお、G_大腿部, G_下腿部, G_足平部の位置ベクトルの算出は、各脚体部S2毎に各別に行われる。

また、腹部要素S7、胸部要素S8のそれぞれの重心G7, G8の身 10 体座標系BCでの位置ベクトルU(G_腹部/BC), U(G_胸部/BC)は、 それぞれ次式(9),(10)により求められる。

U(G_腹部/BC)=U(JU1/BC)

..... (9)

15 U(G_胸部/BC)=U(JU2/BC)

..... (10)

以上が変換テンソル作成手段28および関節・要素重心位置算出手段29の演算処理である。なお、以上のように関節・要素重心位置算出手段29で算出される各関節要素と各剛体要素の重心との位置ベクトルは、それぞれに対応する人間1の実際の部位の、身体座標系BCで見た位置ベクトルとしての意味を持つ。

演算処理装置18は、上記した変換テンソル作成手段28および関節・要素重心位置算出手段29の演算処理と並行して、身体座標系加速 25 度算出手段30および身体座標系傾斜角算出手段31の演算処理を実行する。

身体座標系加速度算出手段30の演算処理では、加速度センサ16の 検出出力から把握される3軸方向の加速度(並進加速度)とジャイロセ ンサ17の検出出力から把握される3軸回りの角速度とから次のように 身体座標系BCの原点の加速度ベクトルの身体座標系BCでの値(座標 成分値)が求められる。まず、各センサ16、17がそれぞれ検出する 5 加速度、角速度はそれらのセンサ16,17に対して固定された3軸の 座標系(以下、センサ座標系SC又はC__センサという)であらわされ るベクトル量であるので、それを身体座標系BCでの値に変換する。そ の変換は、腰部6に対する加速度センサ16およびジャイロセンサ(角 速度センサ) 17の相対的な取り付け位置関係 (腰部座標系C6 (=身 10 体座標系BC)に対するセンサ座標系SCの相対的姿勢関係)に応じて あらかじめ設定された変換テンソルをセンサ座標系SCでそれぞれ検出 された加速度ベクトル、角速度ベクトルに乗算することで行われる。す なわち、センサ座標系SCでの加速度ベクトルの検出値を ACC(センサ/ 15 SC)、それを身体座標系BCに変換した加速度ベクトルを ACC(セン サ/BC)、センサ座標系SCでの角速度ベクトルの検出値をω(センサ/ SC)、それを身体座標系BCに変換した角速度ベクトルをω(センサ/ BC)とおくと、加速度ペクトル ACC(センサ/BC)、角速度ペクトルω (センサ/B C)は、それぞれ次式 (1 1), (1 2) により求められる。 20 ここで、ACC(センサ/BC)、ω(センサ/BC)は、より詳しくは、それぞれ 加速度センサ16、ジャイロセンサ17の箇所の加速度ペクトル、角速 度ベクトルであり、その意味で、ACC、ωの表記に「センサ」を付加 している。なお、この例では加速度センサ16、ジャイロセンサ17の 箇所はほぼ同一箇所とし、センサ座標系SCは両センサ16,17につ 25 いて同じ座標系としている。

 $ACC(t > t/BC) = R(SC \rightarrow BC) \cdot ACC(t > t/SC) \cdots (11)$

 $\omega(\tau) + BC = R(SC \rightarrow BC) \cdot \omega(\tau) + BC \qquad \cdots \qquad (12)$

ここで、変換テンソルR(SC→BC)はセンサ座標系SCと身体座標系 BCとの相対的な姿勢関係(詳しくは、センサ座標系SCの各軸の身体 座標系BCの各軸に対する傾き角)から前記した要素座標系間変換テン ソル (R(C_大腿部→C_腰部)等) と同様に求められる。例えば、セ 5 ンサ座標系SCの3軸(XYZ軸)が図6に示す如く身体座標系BCの Y軸(図 6 の紙面に垂直な軸)回りに角度 θ y だけ傾いている場合には、 変換テンソルR(SC→BC)は前記式(1)の右辺と同じ形の行列で表さ れる。この場合、加速度センサ16およびジャイロセンサ17は身体座 標系BCを設けた腰部8に固定されているので、センサ座標系SCの各 10 軸の身体座標系BCの各軸に対する傾き角は、加速度センサ16および ジャイロセンサ17の腰部8への取り付け時に実測されて判明しており、 その傾き角を基にあらかじめ変換テンソルR(SC→BC)が求められて、 演算処理装置18の図示しないメモリに記憶保持されている。補足する 15 と、加速度センサ16やジャイロセンサ17を腰部6以外の部位(剛体 リンクモデルS1のいずれかの剛体要素に対応する剛体相当部)に装着 してもよい。この場合には、加速度ベクトル ACC(センサ/BC)および角 速度ベクトルω(センサ/BC)は、センサ座標系SCでの検出値を加速度 センサ16やジャイロセンサ17を装着した剛体要素の要素座標系での 20 値に変換した後、さらに前記変換テンソル作成手段28で求めた変換テ ンソルによって身体座標系BCでの値に変換すればよい。

身体座標系加速度算出手段30の演算処理では、上記の如く加速度ベクトル ACC(センサ/BC)および角速度ベクトルω(センサ/BC)を求めた後、次式(13)によって、身体座標系BCの原点の加速度ベクトルACC(BCO/BC)を求める。「BCO」は身体座標系BCの原点を表す符号である。

 $ACC(BCO/BC) = ACC(\tau + J) + U(\tau + J) \times \omega(\tau + J)$

$$\times \begin{bmatrix} \omega(センサ/BC)x^2 \\ \omega(センサ/BC)y^2 \\ \omega(センサ/BC)z^2 \end{bmatrix}$$
 ······(13)

注)ACC(BCO/BC)は、センサが身体座標系BCの原点に設置され、且つ、センサの軸の向きを身体座標系BCと一致させた場合のセンサ出力値と等しくなるベクトルである。

この式(13)中の、U(センサ/BC)は、身体座標系BCでの加速 度センサ16およびジャイロセンサ17の位置ベクトルであり、U(セ ンサ/BC)x、U(センサ/BC)y、U(センサ/BC)zはそれぞれ、前述し 5 た本明細書でのベクトルの座標成分値の表記手法の定義にしたがって、 U(センサ/BC)の身体座標系BCでの各座標成分値である。U(センサ/ BC)は、加速度センサ16およびジャイロセンサ17の腰部8への取 り付け時に実測されて演算処理装置18のメモリに記憶保持されている。 また、ω(センサ/BC)x、ω(センサ/BC)y、ω(センサ/BC)z はそれぞ 10 れ先に求めた角速度ベクトルω(センサ/BC)の各座標成分値である。 また、 ω (センサ/BC)'は、 ω (センサ/BC)の1階微分値を示しており、 その値は、演算処理装置18の演算処理周期毎に前記式(12)により 求めるω(センサ/BC)の時系列データから算出される。補足すると、腰 部要素 S 6 内のどの部分でも角速度は同一であり、例えば腰部要素 S 6 15 に固定されている身体座標系BCの原点BCOの角速度ω(BCO/BC)は、 ω(センサ/BC)に等しい。

なお、加速度センサ16は重力に伴う加速度も検出するので、上記の

25

ように求められた加速度ベクトル ACC(BCO/BC)には、重力による慣性加速度成分が含まれる。また、本実施系形態では、腰部要素S6の角速度を考慮して身体座標系BCの原点BCOの加速度ベクトルACC(BCO/BC)を求めるようにしたが、腰部要素S6の角速度やその変化率は比較的小さいので、前記式(11)で求めた ACC(センサ/BC)をそのまま身体座標系BCの原点BCOの加速度ベクトル ACC(BCO/BC)としてもよい。

また、前記身体座標系傾斜角算出手段31の演算処理では、加速度センサ16およびジャイロセンサ17の検出出力から所謂カルマンフィルタによって鉛直方向(重力方向)に対する腰部要素S6の傾斜角(身体座標系BCのZ軸の傾斜角)が算出される。この算出手法は公知であるのでここでの説明は省略する。なお、ここで算出される傾斜角は、前後方向の水平軸と左右方向の水平軸との2軸回りの傾斜角である。

次に、演算処理装置18は、全体/要素重心運動算出手段30の演算 処理を実行する。この全体/要素重心運動算出手段30の演算処理では、まず、前記関節・要素重心位置算出手段29によって求められた各剛体 要素の重心位置(身体座標系BCでの位置ベクトル)と、あらかじめ前 述したように設定された各剛体要素の重量とから、次式(14)によって、剛体リンクモデルS1の全体重心(人間1の全体重心。以下、G_ 全体と表記することがある)の身体座標系BCでの位置ベクトルU(G _ 全体/BC)が求められる。

U(G_全体/BC)

={U(G_胸部/BC)×m_胸部 +U(G_腹部/BC)×m_腹部 +U(G_腰部/BC)×m_腰部 +U(G_右大腿部/BC)×m_右大腿部

25

+ U(G_左大腿部/BC)×m_左大腿部

+U(G_右下腿部/BC)×m_右下腿部

+U(G_左下腿部/BC)×m_左下腿部

+U(G_右足平部/BC)×m 右足平部

+U(G_左足平部/BC)×m_左足平部}/全体重量

······ (14)

なお、m_胸部など、「m_〇〇」は〇〇の名称に対応する剛体要素の重量である。この式(14)の如く、全体重心の位置ベクトルU(G_全体/BC)は、剛体リンクモデルS1の各剛体要素の重心の身体座標 3 系BCでの位置ベクトルとその剛体要素の重量との積の総和を、人間1の全体重量(=全ての剛体要素の重量の総和)で除算することで求められる。

全体/要素重心運動算出手段30の演算処理では、さらに、上記のように求めた全体重心の位置ベクトルU(G_全体/BC)の時系列データ (演算処理装置18の演算処理周期毎のU(G_全体/BC)の時系列値)から、U(G_全体/BC)の2階微分値U(G_全体/BC)"が算出される。この2階微分値U(G_全体/BC)"は、身体座標系BCの原点BCOに対する全体重心G_全体の相対的な加速度を意味している。そして、この2階微分値U(G_全体/BC)"、すなわち、身体座標系BCの原点BCOに対するG_全体の相対加速度を、前記身体座標系加速度算出手段30で先に求めた身体座標系BCの原点BCOの方に求めた身体座標系BCの原点BCOの方に求めた身体座標系BCの原点BCOの方に対するG_全体の相対加速度を、前記身体座標系加速度算出手段30で先に求めた身体座標系BCの原点BCOの加速度ベクトル ACC(BCO/BC)に加算することにより、G_全体の実際の加速度ベクトル ACC(G_全体/BC)が算出される。すなわち、次式(15)により、ACC(G_全体/BC)が算出される。

ACC(G_全体/BC)=ACC(BCO/BC)+U(G_全体/BC)"

······ (15)

25

さらに、全体/要素重心運動算出手段32の演算処理では、関節・要 索重心位置算出手段29で先に求めた各脚体部S2の大腿部要素S10、 下腿部要素S12、および足平部要素S14のそれぞれの重心の位置べ クトル (身体座標系BCでの位置ベクトル) の時系列データ (演算処理 5 装置18の演算処理周期毎の時系列値)から、それぞれの重心の位置べ クトルの2階微分値、すなわち、身体座標系BCの原点BCOに対する 各剛体要素の重心の相対加速度が算出される。そして、この各剛体要素 の重心の相対加速度を、前記身体座標系加速度算出手段30で先に求め た身体座標系BCの原点BCOの加速度ペクトル ACC(BCO/BC)に加算 することにより、各剛体要素の重心の実際の加速度ベクトルが算出され 10 る。例えば、各大腿部要素S10の重心G_大腿部(G10)の加速度 ベクトル ACC(G_大腿部/BC)は、前記式(15)と同様、G_大腿部 の位置ベクトルU(G_大腿部/BC)の2階微分値U(G_大腿部/BC)"に ACC(BCO/BC)を加算することで算出される。下腿部要素S12、足平 15 部要素S14についても同様である。

次に、演算処理装置18は、前記床反力推定手段33および床反力作用点推定手段34の算出処理を実行する。床反力推定手段33の演算処理では、まず、接地センサ24,25の検出出力に基づき、人間1の運動状態が両脚体2,2が接地する両脚支持状態であるか、一方の脚体2のみが接地する単脚支持状態であるかが判断される。すなわち、一方の脚体2の接地センサ24,25のいずれかが接地有りを示すON信号を出力している場合には両脚接地状態であると判断される。また、両脚体2の接地センサ24,25のいずれかが接地有りを示すON信号を出力しており、且つ、他方の脚体2の接地センサ24,25の両者が接地有りを示すON信号を出力しており、目の下の脚体2の接地センサ24,25の両者が接地有りを示すON信号を出力を示すON信号を出力しており、目の下の関体2の接地センサ24,25の両者が接地有りを示すON信号を出

カしていない場合には、単脚支持状態であると判断される。そして、床 反力推定手段33の処理では、両脚支持状態であるか単脚支持状態であ るかに応じて、各別の演算処理により各脚体2に作用する床反力ベクト ルを推定する。

5 この床反力ペクトルの推定処理の基本的な考え方は、本顧出顧人が先 に提案した特開2003-89083号公報等のものと同じであるが、 本実施形態では、主に、その推定処理に用いる座標系等が同公報等に記 載した手法と相違している。以下に図7および図8(a),(b)を参照 して説明する。図7は矢状面で見た人間1の単脚支持状態を例示してお 10 り、図8(a),(b)はそれぞれ矢状面、前額面で見た人間1の両脚支 持状態を例示している。なお、これらの図7及び図8では人間1は剛体 リンクモデル状に模式化して示している。図7に示すように、人間1の 運動状態が単脚支持状態であるときには、接地している脚体2(ここで は例えば右側脚体2であるとする)に作用する床反力ベクトルFrf (右脚体/BC)、すなわち、接地している右側脚体2に作用する床反力ペ 15 クトルを身体座標系BCの座標成分値で表したものが、全体重心G__全 体の、身体座標系BCでの並進運動に関する運動方程式を表す次式 (1 6)により算出される。

Frf(右脚体/BC)=全体重量×ACC(G_全体/BC) …… (16) すなわち、前記全体/要素重心運動算出手段32で算出されたG_全体の加速度ベクトル ACC(G_全体/BC)と人間1の全体重量(剛体リンクモデルS1の全体重量)とから式(16)により床反力ベクトルFrf(右脚体/BC)が算出される。左側脚体2が接地している場合でも、単脚支持状態では同様に、式(16)の右辺の演算によって、床反力ベクトルFrf(左脚体/BC)が算出される。この場合、前述したようにACC(G_全体/BC)には、重力による慣性加速度成分が含まれ、また、

25

床反力ペクトルFr f を身体座標系BCで表すので、重力加速度やその方向を考慮する必要はない。なお、接地していない側の脚体2に作用する床反力ペクトルFr f は0である。また、図7では、図示の便宜上、身体座標系BCのZ軸を鉛直方向に記載しているが、式(16)は身体座標系BCの傾きにはよらない。

一方、図 8 (a), (b) に示すように、両脚支持状態であるときには、右側脚体 2 に作用する床反カベクトル F r f (右脚体/BC)と左側脚体 2 に作用する床反カベクトル F r f (左脚体/BC)とが次の 5 つの関係式 (17) ~ (21) を基に算出される。

10 F r f (右脚体/BC)+F r f (左脚体/BC)

=全体重量×ACC(G_全体/BC) ······(17)

Frf(右脚体/BC)x:Frf(右脚体/BC)z

= U(G_全体/BC)x - U(J_右足首/BC)x

: U(G_全体/BC)z - U(J_右足首/BC)z

······ (1 8)

Frf(左脚体/BC)x:Frf(左脚体/BC)z

= U(G_全体/BC)x - U(J_左足首/BC)x

: U(G_全体/BC)z - U(J_左足首/BC)z

······ (19)

20 Frf(右脚体/BC)y:Frf(右脚体/BC)z

= U(G __全体/BC)y - U(J __右足首/BC)y

: U(G_全体/BC)z - U(J __右足首/BC)z

...... (20)

Frf(左脚体/BC)y:Frf(左脚体/BC)z

=ACC(G__全体/BC)y-U(J__左足首/BC)y

: U(G_全体/BC)z - U(J_左足首/BC)z

······ (2 1)

ここで、これらの式(17)~(21)の意味を説明すると、式(1 7) は、全体重心G__全体の、身体座標系BCでの並進運動に関する運 動方程式を表している。また、式(18)~(21)は、図8(a), (b) に示すように、床反カペクトルFrf(右脚体/BC)および床反力 5 ベクトルFrf(左脚体/BC)がそれぞれ右側脚体2の足首関節13、左 側脚体2の足首関節13から全体重心G_全体に向かうベクトルである と仮定して、換言すれば、床反カベクトルFrfと、左側足首関節13 から見たG_全体の位置ベクトルとの向きが同じであると仮定して得ら 10 れる幾何学的関係式である。この場合、式(18)、(19)は矢状面 (身体座標系BCのXZ平面)で見た関係式であり、式 (20), (2 1) は前額面(身体座標系BCのYZ平面)で見た関係式である。なお、 図8では、図示の便宜上、身体座標系BCのZ軸を鉛直方向に記載して いるが、式(17)~(21)は身体座標系BCの傾きにはよらない。 また、本実施形態では、各脚体2の足首関節13は、該脚体2の下端部 15 近傍の特定部としての意味を持つ。

両脚支持状態での床反カベクトルド r f (右脚体/BC), F r f (左脚体/BC)を求める場合には、それらのベクトルの座標成分値を未知数として、前記式(17)~(21)により構成される連立方程式を解くことで、F r f (右脚体/BC), F r f (左脚体/BC)が算出される。すなわち、F r f (右脚体/BC), F r f (左脚体/BC)は、人間1の全体重量と全体/要素重心運動算出手段32で求めた ACC(G_全体/BC)およびU(G_全体/BC)と関節・要素重心位置算出手段29で求めたU(J_右足首/BC)およびU(J_左足首/BC)とから算出される。このように、本実施25 形態では、両脚支持状態での床反カベクトルF r f (右脚体/BC), F r f (左脚体/BC)は、身体座標系BCで記述される前記関係式(17)~

(21)に基づいて算出される。

なお、Fr f (右脚体/BC), Fr f (左脚体/BC)のZ 軸成分は、矢状面に関する式 (18), (19)、あるいは前額面に関する式 (20), (21) のいずれを用いても求めることが可能である。

5 床反力作用点推定手段 3 4 の演算処理では、まず、前記身体座標系傾斜角算出手段 3 1 で算出された腰部要素 S 6 の鉛直方向に対する傾斜角を基に、身体座標系 B C から絶対座標系 I C への変換テンソル R (BC→IC)が作成される。ここで、絶対座標系 I C は、鉛直方向を Z 軸とする直交座標系で、前記基準姿勢状態において身体座標系 B C と各座標軸の10 向きが同一となる座標系である。なお、絶対座標系 I C から身体座標系 B C への変換テンソル R (IC→BC)は変換テンソル R (BC→IC)の転置 R (BC→IC) である。

次いで、上記変換テンソルR(BC→IC)を用いて、前記全体/要素重 心運動算出手段32で先に求めた全体重心G 全体の位置ベクトルU (G _ 全体/BC)と、関節・要素重心位置算出手段29で先に求めた各脚 15 体部S2の足首関節J13およびMP関節J14aのそれぞれの位置ペ クトルU(J_足首/BC), U(J_MP/BC)とにそれぞれ上記変換テンソ ルR(BC→IC)を乗算することにより、全体重心G 全体、各足首関節 J13およびMP関節J14aの絶対座標系ICで見た位置ベクトルU (G_全体/IC), U(J_足首/IC), U(J_MP/IC)が算出される。なお、 20 これらの位置ベクトルU(G__全体/IC), U(J_ 足首/IC), U(J_ MP /IC)は、身体座標系BCと同じ原点を有する絶対座標系ICでの位置べ クトルである。また、このとき、接地センサ24、25の検出出力によ り接地無しと判断される脚体 2 に関しては、位置ペクトルU(J_足首 25 /IC), U(J _ M P / IC)を算出する必要はない。

次いで、接地センサ24,25の検出出力により接地有りと判断され

る各脚体2毎に、位置ベクトルU(G_全体/IC)、U(J_足首/IC)、U(J_MP/IC)のX軸方向成分U(G_全体/IC)x、U(J_足首/IC)x、U(J_MP/IC)xの大小関係に応じて、換言すれば、全体重心G_全体、足首関節13およびMP関節14aの前後方向での相対的な水平位 置関係に応じて、床反力作用点の位置ベクトル(絶対座標系ICでの位置ベクトル)U(COP/IC)のX軸成分およびY軸成分が決定される。この決定手法を図9(a)~(c)および図10を参照してさらに詳脱する。なお、以下の説明では、左側脚体2が接地しているとする。図9(a)~(c)は矢状面で見た人間1の左脚体2が接地している状態10(これらの図では単脚支持状態)を例示しており、図10は図9(b)の状態での接地側の足平部14を平面視で見た図を示している。なお、図9及び図10では人間1は剛体リンクモデル状に模式化して示している。

図9(a)に示すように、全体重心G_全体が接地している左側脚体 2のMP関節14aよりも前方に存在する場合、すなわち、U(G_全体/IC)x>U(J_左MP/IC)xである場合には、該左側脚体2の足平部14は、主にそのつま先側部分で踏ん張って接地している。この場合には、床反力作用点 COP は、その足平部14のMP関節14aのほぼ直下の位置に存在する。そこで、この場合には、床反力作用点 COP の位 置ベクトルU(左 COP/IC)のX, Y軸成分はそれぞれMP関節14aの位置ベクトルU(J_左MP/IC)のX, Y軸成分に等しいとする。すなわち、U(左 COP/IC)x=U(J_左MP/IC)x、U(左 COP/IC)y=U(J_左MP/IC)yとする。

また、図9(c)に示す如く、全体重心G_全体が接地している左側 25 脚体2の足首関節13よりも後方に存在する場合、すなわち、U(G_全体/IC)x < U(J_左足首/IC)x である場合には、該左側脚体2の足平

部14は、主にその踵側部分で踏ん張って接地している。この場合には、床反力作用点 COP は、その左側脚体2の足首関節13のほぼ直下の位置に存在する。そこで、この場合には、床反力作用点 COP の位置ベクトルU(左 COP/IC)のX, Y軸成分はそれぞれ足首関節13の位置ベクトルU(J_左足首/IC)のX, Y軸成分に等しいとする。すなわち、U(左 COP/IC)x=U(J_左足首/IC)x、U(左 COP/IC)y=U(J_左足首/IC)yとする。

また、図9(b)に示すように、全体重心G_全体が前後方向で左側 脚体2の足首関節13とMP関節14aとの間に存在する場合、すなわ ち、U(J __ 左M P /IC) x ≦ U(G __ 全体/IC) x ≦ U(J __ 左足首/IC) x で 10 ある場合には、床反力作用点 COP は、図示の矢状面上では、全体重心 G_全体のほぼ真下に存在する。そこで、この場合には、床反力作用点 COP の位置ベクトルU(左 COP/IC)のX軸成分は、全体重心G_全体の X軸成分に等しいとする。すなわち、 $U(左右\ COP/IC)x = U(G_2$ 全体 /IC)xとする。そして、床反力作用点 COP は、接地している左側脚体 15 2の足平部14と床面との接触面(この場合、該接触面は足平部14の 底面のほぼ全面)に存在しており、その位置は、概ね、足首関節13の 中心点とMP関節14aの中心点とを結ぶ線分を床面に投影した線分上 に存在すると考えられる。そこで、床反力作用点 COP の位置ベクトル 20 U(右 COP/IC)のY軸成分は、図10に示す如く、左側脚体2に関する 足平部要素 S 1 4 の軸心上 (足首関節 1 3 の中心点と M P 関節 1 4 a の 中心点とを結ぶ線分上)で、全体重心G__全体とX軸成分(絶対座標系 ICでのX軸成分)の値が同じになるような点PのY軸成分と等しいと する。このような位置ペクトルU(右 COP/IC)のY軸成分の値は、次式 (22)に比例関係式に基づいて求められる。 25

U(左 COP/IC)x - U(J __ 左足首/IC)x

: U(J _ 左M P/IC)x - U(J _ 左足首/IC)x = U(左 COP/IC)y - U(J _ 左足首/IC)y : U(J _ 左M P/IC)y - U(J _ 左足首/IC)y

······ (2 2)

- 5 また、床反力作用点の位置ベクトルU(左 COP/IC)の Z 軸成分は、左側脚体 2 の足首関節 1 3 (足首要素 J 1 3) からあらかじめ定めた所定値 H 0 (>0) だけ鉛直方向下方に離れた点の Z 軸成分に等しいとする。すなわち、U(左 COP/IC) z = U(J _ 左足首/IC) z H 0 とする。ここで、所定値 H 0 は、前記基準姿勢状態(より正確には足平部 1 4 の底面のほぼ全体を水平な床面上に接触させた状態)における床面から足首関節 1 3 の中心までの鉛直方向距離であり、あらかじめ実測されて演算処理装置 1 8 のメモリに記憶保持されている。所定値 H 0 は左右の各脚体 2 毎に各別に実測してもよいが、いずれかの一方の脚体 2 について実測した値を左右の両脚体 2 で共通に使用してもよい。
- 15 本実施形態では、以上の如く、左側脚体2が接地している場合に該左側脚体に作用する床反力ベクトルFrfの床反力作用点の位置ベクトル U(左 COP/IC)が求められる。右側脚体2が接地している場合についても同様である。この場合、両脚支持状態では、各脚体2のそれぞれについて上記の如く床反力作用点の位置ベクトルが求められる。
- 20 なお、本実施形態では、床反力作用点の位置ベクトルU(COP/IC)の Z 軸成分を求めるために用いる前記所定値H0を一定値としたが、接地 センサ24,25により、足平部14のつま先側のみが接地していること、すなわち、接地センサ25のみが接地有りを示すON信号を出力している場合には、上記所定値H0の代わりに、その接地している脚体20ついて、足首関節13およびMP関節14aのそれぞれの位置ベクトルU(J_足首/IC),U(J_NP/IC)のZ軸成分の差(U(J_足首/IC)

 $z-U(J_MP/IC)z)$ 、すなわち、足首関節 1 3 2 MP 関節 1 4 a b の鉛直方向距離を使用するようにしてもよい。このようにすると、U (COP/IC)の精度を高めることができる。

床反力作用点推定手段 34の演算処理では、最後に、上記の如く接地している各脚体 2 について求めた床反力作用点の位置ベクトルU (COP/IC)に、先に求めた変換テンソルR (BC→IC)の転置である逆変換テンソルR (IC→BC)を乗算することにより、床反力作用点の位置ベクトルの身体座標系 B C での値 U (COP/BC)が求められる。

次に、演算処理装置18は、関節モーメント推定手段35による演算 10 処理を実行する。この関節モーメント推定手段35の演算処理の概略を 説明すると、各脚体部S2の足平部要素S14、下腿部要素S12、大腿部要素S10のそれぞれの並進運動および回転運動に関する運動方程 式に基づく逆動力学モデルの演算によって、足平部要素S14、下腿部 要素S12、および大腿部要素S10のそれぞれの腰部要素S6側の端 点の関節要素J_足首、J_膝、J_股の関節モーメントが順番に算出 される。

以下、具体的に説明すると、足平部要素S14、下腿部要素S12、大腿部要素S10のそれぞれの並進運動の運動方程式は次の式(23)~(25)により与えられる。なお、以下の説明において、一般的に、20 足平部要素S14、下腿部要素S12、および大腿部要素S10のそれぞれの剛体要素の両端のうち、腰部要素S6に近い側の一端部を「P_○」、遠い側の他端部「D_○」(○○は剛体要素を表す名称)というように表記することがある。例えば下腿部要素S12の膝関節J_膝(J11)側の端部を「P_下腿部」、足首関節J_足首(J13)側25 の端部を「D_下腿部」というように表記する。なお、「近い側の一端部」というのは、腰部要素S6との距離が近いという意味ではなく、該

一端部と腰部要素S6との間に介在する剛体要素がより少ないということを意味している。同様に、「遠い側の他端部」というのは、該他端部と腰部要素S6との間に介在する剛体要素がよりより多いということを意味している。

5 F(P_足平部/BC)=m_足平部×ACC(G_足平部/BC)
- F(D_足平部/BC)

..... (23)

F(P_下腿部/BC)=m_下腿部×ACC(G_下腿部/BC)
- F(D_下腿部/BC)

10 (24)

F(P_大腿部/BC)=m_大腿部×ACC(G_大腿部/BC)
- F(D_大腿部/BC)

..... (25)

ここで、上記各式(23)~(25)中に現れる2つのF(P_○○ 15 /BC)、F(D_○ /BC)は、その○○で表される名称の剛体要素の両端が、それぞれに接触する物体から受ける反力(身体座標系BCで表した並進力ベクトル)を意味している。この場合、F(D_足平部/BC)は、前記床反力推定手段33で求めた床反力ベクトルFrf(脚体/BC)に等しい。また、F(D_下腿部/BC)=-F(P_足平部/BC)、F(D_大腿20 部/BC)=-F(P_下腿部/BC)である。

従って、床反力推定手段 3 3 で求めた床反力ベクトルF r f (脚体/BC)と、前記全体/要素重運動算出手段 3 2 で求めた足平部要素 S 1 4 の重心の加速度ベクトル ACC(G_足平部/BC)と、足平部要素 S 1 4 の重量m_足平部とから式(2 3)の右辺の演算により、F(P_足平部/BC)、すなわち、足首関節 J _足首に作用する並進力が求められる。また、その求めたF(P_足平部/BC)(=-F(D_下腿部/BC))と全体

/要素重運動算出手段32で求めた下腿部要素S12の重心の加速度ベクトル ACC(G_下腿部/BC)と下腿部要素S12の重量m_下腿部とから式(24)の右辺の演算によりF(P_下腿部/BC)、すなわち、膝関節J_膝に作用する並進力が求められる。同様に、その求めたF(P_下腿部/BC)(=F(D_大腿部/BC))を用いて、式(25)の右辺の演算によりF(P_大腿部/BC)、すなわち、股関節J_股に作用する並進力が求められる。このように、関節要素J_足首、J_膝、J_股に作用する反力ペクトル(並進力ベクトル)が上記(23)~(25)の運動方程式に基づいて順番に算出される。

10 次に、足平部要素S14、下腿部要素S12、大腿部要素S10のそれぞれの回転運動(それぞれの重心回りの回転運動)の運動方程式は次の式(26)~(28)により与えられる。

M(P_足平部/C_足平部)

- = I __足平部×ω(足平部/C __足平部)'
- 15 + ω(足平部/C_足平部)×(I_足平部×ω(足平部/C_足平部))
 - (U(COP/C_足平部)-U(G_足平部/C_足平部))
 - × (R(BC→C_足平部)×F(D_足平部/BC))
 - (U(P_足平部/C_足平部)-U(G_足平部/C_足平部))
 - × (R(BC→C_足平部)×F(P_足平部/BC))
- 20 R(BC→C __足平部)×M(D __足平部/BC)

..... (26)

M(P_下腿部/C_下腿部)

- = I __下腿部×ω(下腿部/C __下腿部)'
 - +ω(下腿部/C_下腿部)×(I_下腿部×ω(下腿部/C_下腿部))
- 25 (-U(G_下腿部/C_下腿部))
 - × (R(BC→C_下腿部)×F(D_下腿部/BC))

- (U(P_下腿部/C_下腿部)-U(G_下腿部/C_下腿部))
 × (R(BC→C_下腿部)×F(P_下腿部/BC))
- R(BC→C_下腿部)×M(D_下腿部/BC)

······ (2 7)

- 5 M(P_大腿部/C_大腿部)
 - = I __大腿部×ω(大腿部/C__大腿部)'
 - +ω(大腿部/C_大腿部)×(I_大腿部×ω(大腿部/C_大腿部))
 - (-U(G_大腿部/C_大腿部))
 - × (R(BC→C_大腿部)×F(D_大腿部/BC))
- 10 (U(P_大腿部/C_大腿部)-U(G_大腿部/C_大腿部))
 - × (R(BC→C_大腿部)×F(P_大腿部/BC))
 - R(BC→C_大腿部)×M(D_大腿部/BC)

······ (2 8)

ここで、上記各式(26)~(28)中にそれぞれ現れる2つのF (P_○○/BC)、F (D_○○/BC)は、その○○で表される名称の剛 15 体要素の各端が、それぞれに接触する物体から受ける反力モーメント (身体座標系BCで表したモーメントベクトル) を意味している。この 場合、式(26)のM(D __足平部/BC)は 0 である。また、M(D __下腿 部/BC)=-R(C_足平部→BC)×M(P_足平部/C_足平部)、M(D_ 大腿部/BC)=-R(C_下腿部→BC)×M(P_下腿部/C_下腿部)であ 20 る。また、 I __足平部、 I __下腿部、 I __大腿部は、それぞれ足平部要 素 S 1 4、下腿部要素 S 1 2、大腿部要素 S 1 0 のそれぞれの重心回り の慣性モーメントであり、ω(足平部/С_足平部)、ω(下腿部/С_下腿 部)、ω(大腿部/C_大腿部)は、それぞれ、足平部要素 S 1 4、下腿部 要素S12、大腿部要素S10のそれぞれの重心回りの角速度を意味し 25 ている。この場合、一般に、慣性モーメントI_足平部、I_下腿部、

I __大腿部は、十分に小さい値(0に近い値)であるので、本実施形態では、I __足平部、I __大腿部はいずれも0に近似する。 従って、前記式(26)~(28)は、近似的に次の式(29)~(31)に書き換えられる。なお、式(29)~(31)では、M(D __足平部/BC)=0、M(D __下腿部/BC)=-R(C __足平部→BC)×M(P __足平部/C __足平部)、M(D __大腿部/BC)=-R(C __下腿部→BC)×M(P __下腿部/C __下腿部)であることを考慮している。

M(P_足平部/C_足平部)

- =- (U(COP/C_足平部)-U(G_足平部/C_足平部))
- 10 × (R(BC→C_足平部)×F(D_足平部/BC))
 - (U(P_足平部/C_足平部)-U(G_足平部/C_足平部))
 - × (R(BC→C_足平部)×F(P_足平部/BC))

······ (29)

M(P_下腿部/C_下腿部)

- 15 =- (-U(G_下腿部/C_下腿部))
 - × (R(BC→C_下腿部)×F(D_下腿部/BC))
 - (U(P_下腿部/C_下腿部)-U(G_下腿部/C_下腿部))
 - × (R(BC→C_下腿部)×F(P_下腿部/BC))
 - R(BC→C__下腿部)
- 20 × (-R(C_足平部→BC)×M(P_足平部/C_足平部))

..... (30)

M(P_大腿部/C_大腿部)

- =-(-U(G_大腿部/C_大腿部))
 - × (R(BC→C_大腿部)×F(D_大腿部/BC))
- 25 (U(P_大腿部/C_大腿部)-U(G_大腿部/C_大腿部))
 - × (R(BC→C_大腿部)×F(P_大腿部/BC))

- R(BC→ C __ 大腿部)

× (-R(C_下腿部→BC)×M(P_下腿部/C_下腿部))

······ (3 1)

そして、本実施形態では、式(29)の右辺の演算により、M(P_ 足平部/C_足平部)、すなわち、足首関節13に作用する関節モーメン 5 トM(P_足平部/C_足平部)(足平部座標系C_足平部で表したモー メントペクトル)が求められる。この場合、式(29)の右辺のU (COP/C __足平部)は、前記床反力作用点推定手段34で先に求めた床 反力作用点の位置ベクトルU(COP/BC)に、前記変換テンソル作成手段 28で求めた変換テンソルR(C __足平部→BC)の逆変換テンソルR(BC 10 ightarrow C _ 足平部) = R(C _ 足平部 ightarrow BC) T を乗算することにより求められ る。また、U(G_足平部/C_足平部)は、あらかじめ設定されたもの であり、U(P_足平部/C_足平部)は、足平部要素S14のあらかじ め定められた長さL14により定まる、足平部座標系C_足平部におけ る足首関節 J 1 3 の位置ベクトル (0, 0, L 1 4) である。また、F 15 (D_足平部/BC)は床反力推定手段31で先に求めた床反力ベクトルF r f (脚体/BC)の値である。さらに、F(P_足平部/BC)は、前記式 (2 3) により前述の通り求められる。従って、変換テンソル作成手段28 で作成された変換テンソルR(C_足平部→BC)と、床反力作用点推定 手段34で求めた床反力作用点の位置ペクトルU(COP/BC)と、床反力 20 推定手段33で求めた床反カベクトルFrf(脚体/BC)と、前記式(2 3) により求めた反カベクトルF(P_足平部/BC)とを用いて式 (2 9) の右辺の演算により、M(P_足平部/C_足平部)、すなわち、足 首関節13に作用する関節モーメント(足平部座標系C_足平部で表し たモーメントベクトル)が求められる。なお、接地していない脚体2に 25 ついては、その床反力作用点の位置ベクトルU(COP/C_足平部)は不

定であるが、 $F(D_E = 0$ であるので、式(29)の第1項の値は $U(COP/C_E = 0$ の値によらずに0になる。

また、式(30)の右辺の演算により、M(P_下腿部/C_下腿部)、 すなわち、膝関節11に作用する関節モーメント(下腿部座標系C__下 腿部で表したモーメントベクトル)が求められる。この場合、式 (3) 5 0) の右辺のU(G_下腿部/C_下腿部)) は、あらかじめ設定された ものであり、U(P_下腿部/C_下腿部)は、下腿部要素S12のあら かじめ定められた長さL12により定まる、下腿部座標系C__下腿部 (C12) における膝関節 J11の位置ベクトル (0, 0, L12) で ある。また、R(BC→C_下腿部)は、変換テンソル作成手段28で作 10 成した変換テンソルR(C_下腿部→BC)の逆変換テンソルR(C_下腿 部→BC)T である。また、F(D_下腿部/BC)は、前記式 (23) により 求められる F(P __足平部/BC)の符号を反転させたものであり、 F(P __ 下腿部/BC)は、前記式(24)により求められるものである。さらに、 M(P _ 足平部/C _ 足平部)は、前記式(29)により求められる。従 15 って、変換テンソル作成手段28で作成された変換テンソルR(C_下 腿部→BC), R(C __足平部→BC)と、前記式 (23), (24) によりそ れぞれ先に求めた反カベクトルF(P_足平部/BC), F(P_下腿部/BC) と、あらかじめ設定された下腿部要素S12の重心の位置ベクトルU (G_下腿部/C_下腿部)と、下腿部要素S12の長さL12と、前記 20 式(29)により先に求めたモーメントM(P_足平部/C_足平部)と を用いて式(30)の右辺の演算により、M(P_下腿部/C_下腿部)、 すなわち、膝関節11に作用する関節モーメント(下腿部座標系C_下 腿部で表したモーメントベクトル)が求められる。

25 同様に、式 (31) の右辺の演算により、M(P_大腿部/C_大腿部)、すなわち、股関節9に作用する関節モーメント (大腿部座標系 C

_大腿部で表したモーメントペクトル)が求められる。この場合、式 (31)の右辺のU(G_大腿部/C_大腿部))は、あらかじめ設定さ れたものであり、U(P_大腿部/C_大腿部)は、大腿部要素S10の あらかじめ定められた長さL10により定まる、大腿部座標系C__大腿 部における股関節J9の位置ベクトル(0,0,L10)である。また、 5 R (BC→C __ 大腿部)は、変換テンソル作成手段28で作成した変換テ ンソルR(C_大腿部→BC)の逆変換テンソルR(C_大腿部→BC)™であ る。また、 $F(D_{tau})$ 大腿部/BC)は、前記式(24)により求められるF(P __ 下腿部/BC)の符号を反転させたものであり、 F (P __ 大腿部/BC)は、 10 前記式(25)により求められるものである。さらに、M(P_下腿部/ C_下腿部)は、前記式(30)により求められる。従って、変換テン ソル作成手段28で作成された変換テンソルR(C_大腿部→BC), R (C_下腿部→BC)と、前記式 (24), (25) によりそれぞれ先に求 めた反カベクトルF(P_下腿部/BC)、F(P_大腿部/BC)と、あらかじ め設定された大腿部要素S10の重心の位置ベクトルU(G_大腿部/C 15 一大腿部)と、大腿部要素S10の長さL10と、前記式(30)によ り先に求めたモーメントM(P_下腿部/C_下腿部)とを用いて式 (3 1) の右辺の演算により、M(P_大腿部/C_大腿部)、すなわち、股 関節9に作用する関節モーメント(大腿部座標系C__大腿部で表したモ 20 ーメントベクトル)が求められる。

以上のように、関節モーメント推定手段35の演算処理では、各脚体2の足首関節13、膝関節11、および股関節9の関節モーメントM(P_足平部/C_足平部)、M(P_下腿部/C_下腿部)、M(P_大腿部/C_大腿部)が足首関節13側から順番に算出される。なお、このように求められた関節モーメントは、例えば人間1の歩行を補助する装置(足首関節13や、膝関節11、股関節9に補助トルクを付与可能な電

10

動モータを含む装置)の制御に用いられる。

以上説明した実施形態では、身体座標系BCを基本的な座標系として 用いて各種の演算処理が実行される。そして、身体座標系BCあるいは 腰部6の鉛直方向に対する傾斜角を考慮して演算処理を行うのは、床反 力作用点推定手段32の演算処理だけである。このため、鉛直方向に対 する腰部6等の傾斜角を使用する演算処理を従来に比して大幅に少なく することができる。その結果、傾斜角を高い精度で把握することが困難 な場合であっても、誤差の蓄積を最小限に留め、関節モーメントの推定 精度を高めることができる。さらに、傾斜角を用いない床反力作用点推 定手段を用いれば、関節モーメント推定システムに3次元姿勢センサな どが不要となり、システムの小型化、簡略化が可能となる。

また、本実施形態では、演算処理装置18の各手段の処理を3次元で行っているため推定する関節モーメントの精度を高めることができる。

15 産業上の利用可能性

以上のように本発明は、2足歩行移動体の脚体の関節モーメントを適切に推定できるので、人間の歩行補助を行なう装置等に有効に活用することができる。

10

15

20

25

請求の範囲

1.2足歩行移動体を、複数の剛体要素が少なくとも該2足歩行移動体の各脚体の股関節及び膝関節に対応する関節要素を含む複数の関節要素で連結された連結体として表現する剛体リンクモデルを用い、該2足歩行移動体の各脚体の少なくとも1つの関節に作用する関節モーメントを推定する方法であって、

前記剛体リンクモデルの各関節要素に対応する前記2足歩行移動体の 各関節の変位量を逐次把握する第1ステップと、前記剛体リンクモデル の所定の1つの剛体要素に固定された座標系としてあらかじめ設定され た身体座標系の原点の加速度ペクトルの該身体座標系での値を少なくと も前記2足歩行移動体に装着した加速度センサの出力を用いて逐次把握 する第2ステップと、前記2足歩行移動体の各脚体に作用する床反力ベ クトルの前記身体座標系での値を逐次把握する第3ステップと、前記床 反カベクトルの作用点の位置ベクトルの前記身体座標系での値を逐次把 握する第4ステップと、前記第1乃至第4ステップで把握した2足歩行 移動体の各関節の変位量と前記身体座標系の原点の加速度ベクトルの値 と前記床反力ベクトルの値とその作用点の位置ベクトルの値とを用いて、 前記剛体リンクモデルの各剛体要素の運動と該剛体要素に作用する並進 力およびモーメントとの関係を前記身体座標系を用いて表す逆動力学モ デルに基づいて前記2足歩行移動体の各脚体の少なくとも一つの関節に 作用する関節モーメントを逐次推定する第5ステップとを備えたことを 特徴とする2足歩行移動体の関節モーメント推定方法。

- 2. 前記加速度センサは、前記身体座標系が固定された剛体要素に対応する2足歩行移動体の剛体相当部に装着されていることを特徴とする請求の範囲第1項に記載の2足歩行移動体の関節モーメント推定方法。
- 3. 前記身体座標系が固定された剛体要素は、前記2足歩行移動体の一

10

対の股関節に対応する一対の関節要案を連結する剛体要素であることを 特徴とする請求の範囲第2項に配載の2足歩行移動体の関節モーメント 推定方法。

4.前記2足歩行移動体の全体重心の位置ベクトルの前記身体座標系での値を前記第1ステップで把握した2足歩行移動体の各関節の変位量と前記剛体リンクモデルとを用いて逐次求める第6ステップと、その全体重心の位置ベクトルの値の時系列データおよび前記第2ステップで把握した身体座標系の原点の加速度ベクトルの値から該全体重心の加速度ベクトルの身体座標系での値を逐次把握する第7ステップと、前記2足歩行移動体の運動状態が一対の脚体のうちの一方の脚体のみが接地している単脚支持状態であるか、両脚体が接地している両脚支持状態であるかを逐次判断する第8ステップとを備え、

前記第3ステップは、2足歩行移動体の運動状態が前記単脚支持状態 であるときには、前記第7ステップで求めた前記全体重心の加速度ベク トルの値と2足歩行移動体の全体重量と接地している脚体に作用する床 15 反カペクトルとにより表される該2足歩行移動体の全体重心の運動方程 式に基づいて該床反力ベクトルの身体座標系での値を推定し、2足歩行 移動体の運動状態が前記両脚支持状態であるときには、前記第7ステッ プで求めた前記全体重心の加速度ベクトルの値と2足歩行移動体の全体 重量と両脚体のそれぞれに作用する床反力ベクトルとにより表される該 20 2 足歩行移動体の全体重心の運動方程式と、各脚体に作用する床反力ベ クトルが該脚体の下端部近傍にあらかじめ定めた特定部から2足歩行移 動体の全体重心に向かって作用するペクトルであると仮定して定まる、 2足歩行移動体の全体重心に対する該脚体の特定部の相対位置と該脚体 に作用する床反カベクトルとの間の関係式とに基づいて両脚体のそれぞ 25 れに作用する床反カペクトルの身体座標系での値を把握することを特徴

とする請求の範囲第1項に記載の2足歩行移動体の関節モーメント推定 方法。

- 5. 前記身体座標系が固定された剛体要素に対応する2足歩行移動体の 剛体相当部の鉛直方向に対する傾斜角を逐次把握する第9ステップと、 2 足歩行移動体の各脚体毎に該脚体が接地しているか否かを判断する第 5 10ステップと、前記第1ステップで把握した2足歩行移動体の各関節 の変位量と前記剛体リンクモデルとを用いて、少なくとも 2 足歩行移動 体の全体重心の位置ベクトルの前記身体座標系での値と接地している各 脚体の足首関節の位置ベクトルの前記身体座標系での値と該脚体の足平 部の中足趾節関節の位置ベクトルの前記身体座標系での値とを把握する 10 第11ステップと、その把握した前記全体重心、接地している各脚体の 足首関節および該脚体の足平部の中足趾節関節のそれぞれの位置ベクト ルの値と前記第9ステップで把握した傾斜角とに基づいて少なくとも該 全体重心、接地している各脚体の足首関節および該脚体の足平部の中足 趾節関節の位置関係と該脚体の足首関節の鉛直方向位置とを把握する第 15 12ステップと、その把握した全体重心、接地している各脚体の足首関 節および該脚体の足平部の中足趾節関節の位置関係に基づき該脚体に作 用する床反力ベクトルの作用点の水平面内位置を推定すると共に該脚体 の足首関節の鉛直方向位置に基づき該脚体に作用する床反カベクトルの 作用点の鉛直方向位置を推定する第13ステップとを備え、前記第4ス 20 テップは、該第13ステップで推定された床反力ベクトルの作用点の水 平面内位置および鉛直方向位置と前記第9ステップで把握された傾斜角 とに基づき前記身体座標系での床反力ベクトルの作用点の位置ベクトル の値を把握することを特徴とする請求の範囲第1項に記載の2足歩行移
 - 6. 前記第3ステップおよび第4ステップでそれぞれ把握する床反力ベ

動体の関節モーメント推定方法。

25

10

15

20

クトルの値およびその作用点の位置ベクトルの値は3次元の値であり、前記第13ステップは、前記全体重心が接地している脚体の足首関節に対して2足歩行移動体の前後方向で後側に存在する場合には、該脚体の足首関節の水平面内位置を該脚体に作用する床反カベクトルの作用点の水平面内位置として推定し、前記全体重心が接地している脚体の足平の中足趾節関節に対して2足歩行移動体の前後方向で前側に存在では、該脚体の足平部の中足趾節関節に対して2足歩行移動体の前後方向でが接地している脚体の足単節の水平面内位置を該脚体に対して2足歩行移動体の前後方向で前側に存在し、且つ該脚体の足平部の中足趾節関節に対して後側に存在する場合には、該脚体の足平部の中足趾節関節に対して後側に存在する場合には、該脚体の足可関節と中足趾節関節とを結ぶ線分上で前配全体重心と前後方向の位置が同一となる点の水平面内位置を該脚体に作用する床反カベクトルの作用点の水平面内位置して推定することを特徴とする請求の範囲第5項に記載の2足歩行移動体の関節モーメント推定方法。

- 7. 前記第13ステップは、接地している脚体に作用する床反力ベクトルの作用点の鉛直方向位置を、前記第12ステップで把握された脚体の足首関節の鉛直方向位置からあらかじめ定めた所定値だけ鉛直方向下方に離れた位置として推定することを特徴とする請求の範囲第5項または第6項に記載の2足歩行移動体の関節モーメント推定方法。
- 8. 前記第10ステップでは、接地していると判断した脚体について、さらに該脚体の足平部のつま先側部分および踵側部分のそれぞれの接地の有無を判断し、前記第12ステップでは、前記接地している脚体の足首関節の鉛直方向位置に加えて該脚体の足平部の中足趾節関節の鉛直方向位置を把握し、前記第13ステップでは、前記第10ステップで足平部のつま先側部分および踵側部分のうちのつま先側部分のみが接地して

いると判断されたときには、前記所定値の代りに、前記第12ステップで把握した前記足首関節の鉛直方向位置と中足趾節関節の鉛直方向位置とから求められる該足首関節と中足趾節関節との鉛直方向の距離を用いて前記床反力ベクトルの作用点の鉛直方向位置を推定することを特徴とする請求の範囲第7項に記載の2足歩行移動体の関節モーメント推定方法。

9. 前記第3ステップおよび第4ステップでそれぞれ把握する床反力ベクトルの値およびその作用点の位置ベクトルの値は3次元の値であることを特徴とする請求の範囲第1項、第4項および第5項のいずれか1項に記載の2足歩行移動体の関節モーメント推定方法。

10

FIG.2

FIG.6

FIG.7

FIG.10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/009518

			004/009316		
A. CLASSIFICATION OF SUBJECT MATTER Int.Cl7 B25J5/00, B25J13/00					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ B25J5/00, B25J13/00					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922—1996 Jitsuyo Shinan Toroku Koho 1996—2004 Kokai Jitsuyo Shinan Koho 1971—2004 Toroku Jitsuyo Shinan Koho 1994—2004					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app		Relevant to claim No.		
Y A	JP 2003-117857 A (Honda Motor 23 April, 2003 (23.04.03), Par. Nos. [0070] to [0143]; a & WO 03/15997 A1 & EP		1-5,7,9 6,8		
Y	& TW 469211 B	ig. 5 108943 A2 1290590 A	1-5,7,9		
Y	JP 2002-346957 A (Waseda Univ 04 December, 2002 (04.12.02), Par. Nos. [0029] to [0074]; F (Family: none)		1-5,7,9		
Further do	ocuments are listed in the continuation of Box C.	See patent family annex.			
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive			
		step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family			
Date of the actual completion of the international search 08 October, 2004 (08.10.04)		Date of mailing of the international search report 26 October, 2004 (26.10.04)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No.		Telephone No.			

Form PCT/ISA/210 (second sheet) (January 2004)

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl7 B25J5/00, B25J13/00					
B. 調査を行った分野					
調査を行った。	b小限資料(国際特許分類(IPC))	······································			
Int. C17 B25J5/00, B25J13/00					
最小限資料以外の資料で調査を行った分野に含まれるもの					
日本国與用新	案公報 1922-1996年				
日本国公開実	用新案公報 1971-2004年		·		
日本国実用新	案登録公報 1996-2004年	•			
日本国登财英	日本国登録実用新案公報 1994-2004年				
国際調査で使用	用した電子データベース (データベースの名称、	関査に使用した用語)	_		
C. 関連する	 5と認められる文献				
引用文献の	3 C BB の 5 A L る 文 MA		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連すると	さは、その関連する箇所の表示	請求の範囲の番号		
Y	JP 2003-117857 A(本田技研工業株式	(会社) 2003. 04. 23. 【0070】 -	1-5, 7, 9		
A	【0143】,全図 & WO 03/15997 A1 &	EP 1424172 A1	6,8		
			0,0		
Y	JP 2003-117858 A(ソニー株式会社)2	003. 04. 23, [0077] - [008	1-5, 7, 9		
	2】,図5 & US 2002-183897 A1 & EP	1084943 A2 & KR 1050543 A &	, ,		
	CN 1290590 A & TW 469211 B				
}					
Y	JP 2002-346957 A(学校法人早稲田大	(学) 2002. 12. 04, 【0029】 - 【00	1-5, 7, 9		
	74】, 図2(ファミリーなし)				
ļ					
□ C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。					
			MA C PARO		
* 引用文献のカテゴリー の日の後に公表された文献					
「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの 出願と矛盾するものではなく、発明の原理又は理論					
「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの					
以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明					
「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以					
日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに					
「O」口頭による開示、使用、展示等に官及する文献 よって進歩性がないと考えられるもの					
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了した日国際調査報告の発送日のののの					
08. 10. 2004 26.10.2004					
国際調査機関の名称及びあて先		特許庁審査官(権限のある職員)	3C 9617		
日本国特許庁 (ISA/JP)		所村 美和	33,3017		
	郵便番号100-8915 阿子伊田区電が開ニエロ4乗3日				
州 州 州 州 州	都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3324		