PARTH MANISH PATEL

ISHAN HANDA

USING MACHINE LEARNING TO PREDICT SECONDARY SCHOOL STUDENT ALCOHOL CONSUMPTION

MOTIVATION

Prevalence of alcohol consumption amongst students: [1]

- Prevalence of Drinking: In 2013, 59.4 percent of full-time college students'
 ages 18-22 drank alcohol in the past month compared with 50.6 percent of
 other persons of the same age. [2]
- Prevalence of Binge Drinking: In 2013, 39 percent of college students ages 18-22 engaged in binge drinking (5 or more drinks on an occasion) in the past month compared with 33.4 percent of other persons of the same age. [3]
- Prevalence of Heavy Drinking: In 2013, 12.7 percent of college students ages 18-22 engaged in heavy drinking (5 or more drinks on an occasion on 5 or more occasions per month) in the past month compared with 9.3 percent of other persons of the same age.

MOTIVATION

Consequences of alcohol consumption amongst students: [5]

- ▶ 1,825 college students between the ages of 18 and 24 die from alcohol-related unintentional injuries, including motor vehicle crashes. [6]
- Another student who has been drinking assaults 696,000 students between the ages of 18 and 24. [7]
- Roughly 20 percent of college students meet the criteria for an AUD. [8]
- About 1 in 4 college students report academic consequences from drinking, including missing class, falling behind in class, doing poorly on exams or papers, and receiving lower grades overall. [9]

DATA-SET

- ► Source: Using Machine Learning To Predict Secondary School Student Alcohol Consumption(https://archive.ics.uci.edu/ml/datasets/STUDENT+ALCOHOL+CONSUMPTION)
- Collected from questionnaires responses for students spread across 2 public secondary schools in Portugal during the 2005-2006 school year
- Features:
 - Binary: gender, school attended, urban vs. rural address, internet access etc.
 - Discrete: gender, school attended, urban vs. rural address, internet access etc.
 - ▶ Weekend and Weekday alcohol consumption: Rated on a scale of 1 to 5.

PREPARATION OF DATA-SET

- Binary features(eg. 'U' vs. 'R' for urban / rural) converted to 0-1 values.
- Target variables Walc(weekend) and Dalc(weekday) converted to binary.
 - Walc > 3
 - ▶ Dalc > 1

MODELS

- Naive Bayes
- Logistic Regression
- Random Forrest

NAIVE BAYES

- ▶ Trained using 80/20 train test split for each target variable.
- Using scikit-learn BernoulliNB function
- Default parameter Scores:
 - 1. Dalc Accuracy: 0.650717703349
 - 2. Dalc Recall: 0.327868852459
 - 3. Dalc Precision: 0.384615384615
 - 4. Dalc F Score: **0.353982300885**
 - 5. Walc Accuracy: 0.77033492823
 - 6. Walc Recall: 0.148936170213
 - 7. Walc Precision: 0.46666666667
 - 8. Walc F Score : **0.225806451613**

NAIVE BAYES

- ▶ With alpha = 5 smoothening for Dalc and alpha = 7 for Walc
- Scores:
 - 1. Dalc Accuracy: 0.617224880383
 - 2. Dalc Recall: 0.573770491803
 - 3. Dalc Precision: 0.393258426966
 - 4. Dalc F Score: **0.46666666667**
 - 5. Walc Accuracy: 0.684210526316
 - 6. Walc Recall: 0.702127659574
 - 7. Walc Precision: 0.388235294118
 - 8. Walc F Score : **0.5**

CONSIDERING EVALUATION METRICS

Precision

$$ext{Precision} = rac{tp}{tp+fp}$$

Recall

$$ext{Recall} = rac{tp}{tp+fn}$$

Accuracy

$$ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

F score

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

LOGISTIC REGRESSION

- Using sklearn linear_model.Logisti cRegression
- Scores:
 - Dalc F Score:
 0.51612903225
 8
 - 2. Walc F Score: 0.48

LOGISTIC REGRESSION

- Using Cross-fold validation by varying regularization parameter.
- [1e-4, 1e-2, 1e-1,1e0, 1e3, 1e5,1e8, 1e10, 1e15,1e20, 1e25, 1e30]

RANDOM FOREST

- Using RandomForestClassifier from sklearn.ensemble
- Scores with default parameters:
 - Dalc F Score:
 0.521739130435
 - 2. Walc F Score: 0.548387096774
- Higher Weekday score, but lower weekend score than Logistic Regression.

RANDOM FOREST

- Studying the impact of varying the n_estimators parameter using cross fold validation.
- Values: [10, 25, 50, 100, 150, 200, 250, 300, 400, 500]
- Optimum value: ~400 trees
 for Dalc and ~200 for Walc
- Scores:
 - Dalc F1 Score:
 0.6262626263
 - 2. Walc F1 Score: 0.66666666667

RANDOM FOREST

- Studying the impact of varying the max_features parameter using cross fold validation.
- Optimum value: ~37 treesfor Dalc and ~33 for Walc
- Scores:
 - Dalc F1 Score:
 0.678571428571
 - 2. Walc F1 Score: 0.712328767123

COMPARISON

	Fscores	
	Weekday (Walc)	Weekend (Dalc)
Naive Bayes	0.353982300885	0.225806451613
Naive Bayes tuned	0.46666666667	0.5
Logistic Regression	0.516129032258	0.48
Random Forrest	0.521739130435	0.548387096774
Random Forrest tuned	0.678571428571	0.712328767123

CONCLUSION

- Random Forrest with n_estimators=400 and max_features=37, optimal for Weekend consumption (Walc)
- Random Forrest with n_estimators=200 and max_features=33, optimal for Weekday consumption (Dalc)

