TRƯỜNG ĐẠI HỌC BÁCH KHOA ĐẠI HỌC QUỐC GIA TP. HCM KHOA KHOA HỌC VÀ KỸ THUẬT MÁY TÍNH

KIẾN TRÚC MÁY TÍNH

LAB 8 : BỘ NHỚ CHÍNH, BỘ NHỚ ĐỆM VÀ HIỆU NĂNG BỘ NHỚ

LỚP: L07 NHÓM: 4

HK231

SINH VIÊN THỰC HIỆN

STT	MSSV	HÒ	TÊN	% Đóng góp
1	2211133	Phan Ngọc	Hoà	100
2	2211327	Hồ Nguyễn Phi	Hùng	100
3	2211911	Võ Tá Bảo	Long	100
5	2011867	Lê Quang	Phục	100

TP. Hồ Chí Minh, năm 2023

Xác định tag, index, offset

Bài 1:

Số phần tử trong 1 block =
$$\frac{\text{size of block}}{\text{đon vị truy xuất}} = \frac{256}{1} = 256 = 2^8$$

Số block trong cache =
$$\frac{\text{size of cache}}{\text{size of block}} = \frac{4 \cdot 2^{20}}{256} = 2^{14} \text{ (blocks)}$$

Không gian địa chỉ là 32 bit

> Direct mapped:

Byte offset: 8 bits

Index: 14 bits

Tag: 32 - 14 - 8 = 10 bits

> 4-way associative:

Byte offset: 8 bits

Index: $\frac{2^{14}}{4} = 2^{12} \Rightarrow 12$ bits (Vì 4 blocks tạo thành 1 set nên có 2^{14} blocks sẽ tạo thành 2^{12} sets)

Tag: 32 - 8 - 12 = 12 bits

> Fully associative:

Half-word offset: 8 bits

Index: 0 bit

Tag: 32 - 8 = 24 bits

Bài 2:

Số phần tử trong 1 block =
$$\frac{\text{size of block}}{\text{đơn vị truy xuất}} = \frac{64 \cdot 4}{2} = 2^7$$

Số block trong cache =
$$\frac{\text{size of cache}}{\text{size of block}} = \frac{256 \cdot 2^{10}}{64 \cdot 4} = 2^{10} \text{ (blocks)}$$

Không gian địa chỉ là $256MB = 2^{28}$, nên ta sẽ dùng thanh ghi 28 bit tính theo byte offset để lưu trữ. => half-word offset có 27 bits

> Direct mapped:

Half-word offset: 7 bits

Index: 10 bits

Tag: 27 - 10 - 7 = 10 bits

➤ 4-way set associative:

Half-word offset: 7 bits

Index: $\frac{2^{10}}{4} = 2^8 = 8$ bits (Vì 4 blocks tạo thành 1 set nên có 2^{10} blocks sẽ tạo thành 2^8 sets)

Tag: 27 - 8 - 7 = 12 bits

> Fully associative:

Half-word offset: 7 bits

Index: 0 bit

Tag: 27 - 7 = 20 bits

Xác định HIT/MISS

Bài 3:

Ta tính được có 4 bits byte-offset, 4 bits index, block size = 16 bytes

• Direct mapped: 16 sets và mỗi block 16 bytes

Address	Address/blocksize =	Tag = A / 16	Index = A %	H/M	Giải thích
words (byte)	A		16		
0 (0)	0	0	0	M	First access
4 (16)	1	0	1	M	First access
1 (4)	0	0	0	Н	
5 (20)	1	0	1	Н	
65 (260)	16	1	0	M	Khác tag
1 (4)	0	0	0	M	Khác tag
67 (268)	16	1	0	M	Khác tag
46 (184)	11	0	11	M	First access
1 (4)	0	0	0	M	Khác tag
70 (280)	17	1	1	M	Khác tag
2 (8)	0	0	0	Н	
0 (0)	0	0	0	Н	

• 4-way associative: 4 sets và mỗi block 16 bytes

Address	Address/blocksize =	Tag = A /	Index = A %	H/M	Giải thích
words (byte)	A	4	4		
0 (0)	0	0	0	M	First access
4 (16)	1	0	1	M	First access
1 (4)	0	0	0	Н	
5 (20)	1	0	1	Н	
65 (260)	16	4	0	M	First access
1 (4)	0	0	0	Н	
67 (268)	16	4	0	Н	
46 (184)	11	2	3	M	First access
1 (4)	0	0	0	Н	
70 (280)	17	4	1	M	First access
2 (8)	0	0	0	Н	
0 (0)	0	0	0	Н	

• Fully associative:

Address: words	Address/blocksize =	Tag = A	H/M	Giải thích
(byte)	A			
0 (0)	0	0	M	First access
4 (16)	1	1	M	First access
1 (4)	0	0	Н	
5 (20)	1	1	Н	
65 (260)	16	16	M	First access
1 (4)	0	0	Н	
67 (268)	16	16	Н	
46 (184)	11	11	M	First access
1 (4)	0	0	Н	
70 (280)	17	17	M	First access
2 (8)	0	0	Н	
0 (0)	0	0	Н	

Tính thời gian truy xuất trung bình (AMAT)

Bài 4:

Hit time = 5 cycles, thời gian truy xuất RAM là 10ns, tần số máy tính là 2GHz.

Tần số =
$$2GHz \rightarrow Chu \, k\dot{y} = 0.5 \, ns$$

=> Thời gian truy xuất Ram =
$$\frac{10}{0.5}$$
= 20 chu kỳ = Miss penalty

AMAT = Hit time + Miss rate x Miss penalty

• Direct mapped:

AMAT (cycles) =
$$5 + \frac{8}{12} \times 20 \approx 18.33$$
 chu kỳ
AMAT (time) = $18.33 \times 0.5 = 9.165$ ns

• 4-way associative:

AMAT (cycles) =
$$5 + \frac{5}{12} \times 20 \approx 13.33$$
 chu kỳ
AMAT (time) = $13.33 \times 0.5 = 6.665$ ns

• Fully associative:

AMAT (cycles) =
$$5 + \frac{5}{12} \times 20 \approx 13.33$$
 chu kỳ
AMAT (time) = $13.33 \times 0.5 = 6.665$ ns

Bài 5:

 $HT_{L1}=10$ cycles, $HT_{L2}\!=\!15$ cycles, RAM access time $\,=100$ cycles, $MR_{L1}\!=\!20\%.$ $MR_{L2}\!=\!10\%$

AMAT (cycles) = $HT_{L1} + MR_{L1} x (HT_{L2} + MR_{L2} x RAM access time)$

$$= 10 + 0.2x(15 + 0.1x100)$$

= 15 chu kỳ

Tính CPI trung bình

Bài 6:

I-cache MR = 5%, D-cache MR = 10%, IC = 1000, 100 lệnh load/store, Miss penalty = 100 cycles

CPI = I-cache $MR \times Miss penalty + LS Frequency <math>\times D$ -cache $MR \times Miss penalty$

 $= 0.05 \times 100 + 0.1 \times 0.1 \times 100$

= 6