Inlever opdracht 1

Luc Veldhuis

20 februari 2017

1. (a) Bepaal alle \overline{a} in $\mathbb{Z}/n\mathbb{Z}$ met $\overline{a}^2=\overline{1}$ voor n=2,4,8 en 9. $\mathbb{Z}/2\mathbb{Z}=\{\overline{0},\overline{1}\}$

$$\begin{array}{c|c} \overline{a} & \overline{a}^2 \\ \hline \overline{0} & \overline{0} \\ \overline{1} & \overline{1} \end{array}$$

Dus de verzameling rest klassen in $\mathbb{Z}/2\mathbb{Z}$ waarvoor geldt $\overline{a}^2 = \overline{1}$ is $\{\overline{1}\}$.

$$\mathbb{Z}/4\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$$

$$\begin{array}{c|c} \overline{a} & \overline{a}^2 \\ \hline 0 & \overline{0} \\ \overline{1} & \overline{1} \\ \overline{2} & \overline{0} \\ \overline{3} & \overline{1} \\ \end{array}$$

Dus de verzameling rest klassen in $\mathbb{Z}/4\mathbb{Z}$ waarvoor geldt $\overline{a}^2 = \overline{1}$ is $\{\overline{1}, \overline{3}\}$.

$$\mathbb{Z}/8\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$$

1

Dus de verzameling rest klassen in $\mathbb{Z}/8\mathbb{Z}$ waarvoor geldt $\overline{a}^2 = \overline{1}$ is $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$.

$$\mathbb{Z}/9\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}\}$$

Dus de verzameling rest klassen in $\mathbb{Z}/9\mathbb{Z}$ waarvoor geldt $\overline{a}^2 = \overline{1}$ is $\{\overline{1}, \overline{8}\}$.

(b) Zij p een oneven primegetal, $m \ge 1$ en a een geheel getal. Bewijs dat $a^2 \equiv 1$ modulo p^m dan en slechts dan als $a \equiv 1$ modulo p^m of $a \equiv -1$ modulo p^m .

Bewijs '⇐':

Stel $a \equiv 1 \mod p^m$ of $a \equiv -1 \mod p^m$. Dan kunnen we dit schijven als $p^m|a-1$ of $p^m|a+1$. Neem zonder verlies van algemeenheid aan $p^m|a-1$. Neem nu a+1=l voor $l \in \mathbb{Z}$. Dit betekend $a-1=kp^m$ voor $k \in \mathbb{Z}$. Dan is $(a-1)(a+1)=a^2-1=klp^m$ voor $k,l \in \mathbb{Z}$. Neem $n=kl,n \in \mathbb{Z}$. Dan hebben we $a^2-1=np^m$. Dit is de definitie van modulo. We kunnen dit nu schrijven als $a^2 \equiv 1 \mod p^m$.

Dus als $a \equiv 1 \mod p^m$ of $a \equiv -1 \mod p^m$ dan $a^2 \equiv 1 \mod p^m$.

Bewijs '⇒': Er is gegeven dat p priem is en oneven. Het kleinste oneven priemgetal is 3. Stel $a^2 \equiv 1 \mod p^m$. Dan kunnen we dit schrijven als $p^m|a^2-1=(a-1)(a+1)$. Dit betekend $(a-1)(a+1)=kp^m$ voor een $k\in\mathbb{Z}$. De priemontbinding van een getal is uniek, dus we weten zeker dat er minstens m factoren van p in (a-1)(a+1) zitten. Dit betekent dat de getallen van de volgende vorm moeten zijn: $a-1=qp^{m-n}$ en $a+1=wp^n$ voor $q,w\in\mathbb{Z}$ en $0\leq n\leq m\in\mathbb{Z}$. We weten ook a+1-(a-1)=2. Dus $wp^n-qp^{m-n}=2$. Nu hebben we twee gevallen. $n\leq m-n$ of n>m-n. We behandelen eerst het geval $n\leq m-n$. Dan kunnen we $wp^n-qp^{m-n}=2$ schijven als $p^n(w-qp^{m-2n})=2$. Omdat $p\geq 3$ en $n\geq 0$ weten we dat $p^n>0$. Dus $w-qp^{m-2n}>0$. We weten ook $p^n\neq 2$, want 2 is een priemgetal en kan dus niet worden opgebouwd uit andere priemgetallen. Omdat $w-qp^{m-2n}\in\mathbb{Z}$ en dus geen breuken kan vormen moet p^n wel gelijk zijn aan 1 en $w-qp^{m-2n}$ aan 2. p^n kan alleen gelijk zijn aan 1 als n=0 omdat $p\geq 3$ en $0\leq n\leq m$. Dit geeft $a-1=qp^{m-0}=qp^m$ en $a+1=wp^0=w$. In het andere geval met n>m-n, kunnen we $wp^n-qp^{m-n}=2$ schijven als $p^{m-n}(wp^n-q)$ en dit geeft precies dezelfde redenatie m-n=0, dus n=m. Dit resulteert in $a-1=qp^{m-m}=q$ en $a+1=wp^m$. Volgens de definities kunnen we $a+1=wq^m$ schijven als $a\equiv -1$ modulo p^m en $a=1=qp^m$ als $a\equiv 1$ modulo p^m . Dus als $a\geq 1$ modulo p^m dan $a\equiv 1$ modulo p^m of $a\equiv -1$ modulo p^m .

(c) Bepaal nu met behulp van de Chinese reststelling de vier oplossingen van $\overline{a}^2 = \overline{1}$ in $\mathbb{Z}/5^27^2\mathbb{Z}$. De Chinese reststelling zegt dat als $m, n \geq 2$ en ggd(m, n) = 1 dan geldt dat de afbeelding:

$$f: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

gedefinieerd door $f(\overline{a}) = (\overline{a}, \overline{a})$ een bijectie is.

Uit het dictaat halen we dat $f(\overline{a}) = f(\overline{byn} + cxm) = (\overline{byn} + cxm, \overline{byn} + cxm) = (\overline{byn}, \overline{cxm}) = (\overline{b}, \overline{c})$. Waarin 1 = xn + ym als in de formule van Bézout en $\overline{b} \in \mathbb{Z}/m\mathbb{Z} = \overline{c} \in \mathbb{Z}/n\mathbb{Z} = \overline{a} \in \mathbb{Z}/mn\mathbb{Z}$ onbekenden. We halen uit de vraag dat $m = 5^2$ en $n = 7^2$. We zien direct $ggd(5^2, 7^2) = 1$ omdat ze beiden priem zijn.

De formule van Euler zegt dat elke getallen waarvoor geldt qqd(m,n)=1, kunnen worden geschreven

in de vorm 1 = xm + yn. We passen de formule van Euler toe:

$$25 = 0 * 49 + 25$$

$$49 = 1 * 25 + 24$$

$$25 = 1 * 24 + 1$$

$$24 = 24 * 1$$

Schrijf nu om:

$$1 = 25 - 24$$

$$24 = 49 - 25$$

$$1 = 25 - (49 - 25)$$

$$1 = 2 * 25 - 49$$

Hieruit lezen we af dat x = 2 en y = -1.

Invullen van $\overline{a}^2 \in \mathbb{Z}/5^27^2\mathbb{Z}$ geeft, $f(\overline{a}^2) = (\overline{b}^2, \overline{c}^2)$. Maar ook $f(\overline{1}) = (\overline{1}, \overline{1})$.

We zijn dus opzoek naar gehele getallen b, c zodat $\overline{b}^2 = \overline{1} \in \mathbb{Z}/5^2\mathbb{Z}$ en $\overline{c}^2 = \overline{1} \in \mathbb{Z}/7^2\mathbb{Z}$.

In vraag 1b hebben we bewezen dat voor elk getal $a \equiv 1 \mod p^m$, voor p priem ≥ 3 en $m \geq 1$ er geldt dat $a \equiv 1 \mod p^m$ of $a \equiv -1 \mod p^m$. Dit kunnen we nu toepassen. Dit geeft $\overline{b} = \overline{1} \in \mathbb{Z}/5^2\mathbb{Z}$ of $\overline{b} = \overline{-1} \in \mathbb{Z}/5^2\mathbb{Z}$ en $\overline{c} = \overline{1} \in \mathbb{Z}/7^2\mathbb{Z}$ of $\overline{c} = \overline{-1} \in \mathbb{Z}/7^2\mathbb{Z}$. Ook hebben we $f(\overline{a}) = f(\overline{byn} + cxm)$. Omdat f een bijectie is geldt $\overline{a} = \overline{byn} + cxm$. Als we dit invullen krijgen we de volgende vergelijking:

 $\overline{a} = \overline{-49b + 50c} \text{ voor } b, c \in \{-1, 1\}.$

Dit geeft $\overline{a} \in \{\overline{1}, \overline{-1}, \overline{99}, \overline{-99}\}$

De rest klassen van \overline{a} waarvoor geldt $\overline{a}^2 = \overline{1}$ zijn dus $\overline{1}, \overline{99}, \overline{1224}, \overline{1126}$.