CTRNN Continuous-Time Recurrent Neural Network

The clj-ctrnn library simulates CTRNNs using the *forward Euler method* for approximating a series of solutions to the ordinary differential equation that govern neuron membrane potentials. The equation is:

$$\dot{y}_i = \frac{1}{\tau_i} (-y_i + \sum_{j=1}^N w_{ji} \sigma(y_j + \theta_j) + I_i)$$
 (1)

where:

 τ_i : time-constant of post-synaptic neuron

 y_i : membrane potential of post-synaptic neuron

 w_{ji} : weight of connection between pre-synaptic neuron j and post-synaptic neuron

 $\sigma(x)$: the sigmoid activation function in equation 2 y_j : membrane potential of pre-synaptic neuron j bias (input sensivity) of pre-synaptic neuron j

 I_i : any external input (such as a sensor reading) to post-synaptic node

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{2}$$

For each step in time, t, with $t < \tau_i$, clj-ctrnn will

- 1. Approximate the rate of membrane potential change, $\frac{\Delta y}{\Delta t}$, for all neurons
- 2. Synchronously update all membrane potentials $y_{i+1} = y_i + \frac{\Delta y}{\Delta t} \cdot t$
- 3. Commit the new network state