Dataset	Model	Variable	r	p-value
$_{\mathrm{HMP}}$	BS	N	-0.386	$1.15 \times 10 - 159$
HMP	METE	N	-0.191	$2.01 \times 10 - 38$
HMP	$_{ m BS}$	\mathbf{S}	0.276	$2.82 \times 10 - 79$
HMP	METE	\mathbf{S}	0.314	$1.44 \times 10 \text{-} 103$
HMP	$_{ m BS}$	N/S	-0.626	0.0
HMP	METE	N/S	-0.453	$1.87 \times 10 226$
EMP Closed	$_{ m BS}$	N	-0.354	0.0
EMP Closed	METE	N	-0.0824	$2.02 \times 10 - 23$
EMP Closed	$_{ m BS}$	\mathbf{S}	0.264	$4.89 \times 10 \text{-} 231$
EMP Closed	METE	\mathbf{S}	0.287	$1.32 \times 10 - 274$
EMP Closed	$_{ m BS}$	N/S	-0.695	0.0
EMP Closed	METE	N/S	-0.377	0.0
EMP Open	$_{ m BS}$	N	-0.349	0.0
EMP Open	METE	N	-0.205	$6.28 \times 10 \text{-} 140$
EMP Open	$_{ m BS}$	\mathbf{S}	0.0731	$5.00 \times 10 - 19$
EMP Open	METE	\mathbf{S}	0.103	$1.57 \times 10-36$
EMP Open	$_{ m BS}$	N/S	-0.763	0.0
EMP Open	METE	N/S	-0.544	0.0
MG-RAST 95%	$_{\mathrm{BS}}$	N	-0.302	0.141
MG-RAST 95%	METE	N	-0.158	0.828
MG-RAST 95%	$_{\mathrm{BS}}$	\mathbf{S}	0.0234	0.828
MG-RAST 95%	METE	\mathbf{S}	0.140	0.192
MG-RAST 95%	$_{\mathrm{BS}}$	N/S	-0.862	$3.75 \times 10 - 27$
MG-RAST 95%	METE	N/S	-0.734	$4.12 \times 10 - 16$
MG-RAST 97%	BS	N	-0.0782	0.480
MG-RAST 97%	METE	N	0.226	0.0389
MG-RAST 97%	BS	\mathbf{S}	0.169	0.125
MG-RAST 97%	METE	\mathbf{S}	0.353	0.00101
MG-RAST $97%$	$_{\mathrm{BS}}$	N/S	-0.642	$4.69 \times 10 \text{-} 11$
MG-RAST 97%	METE	N/S	-0.244	0.0255
MG-RAST 99%	$_{\mathrm{BS}}$	N	-0.312	0.00265
MG-RAST 99%	METE	N	-0.172	0.109
MG-RAST 99%	BS	\mathbf{S}	0.0150	0.890
MG-RAST 99%	METE	\mathbf{S}	0.132	0.221
MG-RAST 99%	BS	N/S	-0.868	$7.99 \times 10 - 28$
MG-RAST 99%	METE	N/S	-0.737	$2.71 \times 10 - 16$