IN THE CLAIMS

Please amend the claims as follows, substituting any amended claim(s) for the corresponding pending claim(s):

1	1. (Original) A wireless transceiver device, comprising:
2	modulation circuitry for modulating and demodulating signals that are transmitted over the
3	airwaves;
4	frequency conversion circuitry for up converting and down converting between radio frequency
5	signals and baseband frequency signals;
6	digital-to-analog conversion circuitry for converting from analog to digital and from digital to
7	analog; a radio controller; and
8	baseband processing circuitry including a first in, first out memory structure for storing addresses
9	for accessing data blocks.
1	2. (Original) The wireless transceiver of claim 1 further including a plurality of command blocks
2	formed within a memory structure, which command blocks include addresses of data blocks stored within
3	random access memory.
1	3. (Original) The wireless transceiver of claim 2 wherein the first in, first out memory structure
2	includes pointers that define addresses of the command blocks.
1	4. (Original) The wireless transceiver of claim 2 further forming a memory portion for storing an
2	indicator for indicating whether a command block is in use.
1	5. (Previously presented) The wireless transceiver of claim 1 wherein the modulation circuitry
2	includes Gaussian Phase Shift Keying modulation and demodulation circuitry.
1	6. (Previously presented) The wireless transceiver of claim 1 wherein the frequency conversion
2	circuitry converts directly between radio frequency and baseband.

1	7. (Original) A method for storing and transmitting data, comprising:
2	storing a data block in random access memory; and
3	storing a pointer that corresponds to the data block in a first in, first out memory structure.
1	8. (Original) The method of claim 7 wherein the pointer comprises an address of a command
2	block.
1	9. (Original) The method of claim 8 further including the step of storing an address of the data
2	block in the command block.
1	10. (Original) The method of claim 9 further including the step of setting a signal in a defined
2	memory location, which signal indicates that the address in the command block is for data that has yet to
3	be successfully transmitted and therefore that the command block is busy.
1	11. (Original) The method of claim 10 wherein an address for a data block is only stored in a
2	command block if an indicator reflects that the command block does not contain the address of a data
3	block that has yet to be successfully transmitted.
1	12. (Original) The method of claim 7 further including the step of evaluating a command block
2	address stored within a FIFO pointer.
1	13. (Original) The method of claim 12 further including examining the contents of the command
2	block specified by the pointer to determine a data block address.
1	14. (Original) The method of claim 13 further including the step of evaluating at least the first
2	memory location of the data block whose address is specified in the command block to determine the size
3	of the data block.
1	15. (Original) The method of claim 14 further including the step of retrieving an amount of data
2	corresponding to the size data block specified in claim 14 and transmitting that data to a radio modem for
3	transmission over a wireless airwaves.

Appln. Serial No. 10/008,872 Amendment Dated April 24, 2006 Reply to Office Action Mailed January 23, 2006

1 16. (Original) The method of claim 15 further including the step of resetting the indicator signal if 2 the transmission was successful. 1 17. (Original) A memory structure formed within a baseband processing system, comprising: a 2 random access memory portion for storing data blocks that are to be transmitted in a first in, first out 3 order; and a first in, first out memory structure for storing pointers that correspond to the data blocks. 1 18. (Original) The memory structure of claim 17 wherein a plurality of command blocks are 2 defined within the random access memory wherein each command block is for specifying an address of a 3 data block that is to be transmitted. 1 19. (Original) The memory structure of claim 18 further including a defined memory portion for 2 storing command block indicators for each command block, which indicators specify whether its 3 corresponding command block includes the address of a data block that has yet to be transmitted 4 successfully. 1 20. (Original) The memory structure of claim 19 wherein the memory portions for storing the 2 indicators are each one bit in length. 1 21. (Original) The memory structure of claim 18 wherein the memory portions for storing the 2 command blocks are each four bytes in length. 1 22. (Original) The memory structure of claim 17 wherein the first in, first out memory structure 2 defines a plurality of first in, first out memory blocks wherein each first in, first out memory relates to 3 data blocks that are to be transmitted to a particular device.