Jeux de soustraction dans les graphes : Complexité et algorithmes polynomiaux

Antoine Dailly (Instituto de Matemáticas, UNAM Juriquilla, Mexique)

Avec Laurent Beaudou (LIMOS), Kyle Burke (Plymouth State University), Pierre Coupechoux (LAAS), Sylvain Gravier (Institut Fourier), Julien Moncel (LAAS), Aline Parreau (LIRIS), Éric Sopena (LaBRI).

Travaux réalisés dans le cadre de l'ANR GAG.

Séminaire LIFO, 12 octobre 2020

Plan

Petit cours de jeux

Jeux combinatoires Théorie de Sprague-Grundy

Jeux taking-breaking

Des variantes de NIM Passage aux graphes

Jeux de soustraction dans les graphes

Complexité

Algorithmes polynomiaux

Plan

Petit cours de jeux

Jeux combinatoires Théorie de Sprague-Grundy

Jeux taking-breaking

Des variantes de NIM Passage aux graphes

Jeux de soustraction dans les graphes

Complexité Algorithmes polynomiaux

N'hésitez pas à poser des questions!

Définition

1. Jeux à deux joueurs

- 1. Jeux à deux joueurs
- 2. Sans hasard

- 1. Jeux à deux joueurs
- 2. Sans hasard
- 3. Information parfaite

- 1. Jeux à deux joueurs
- 2. Sans hasard
- 3. Information parfaite
- 4. Jeux finis, sans égalité

- 1. Jeux à deux joueurs
- 2. Sans hasard
- 3. Information parfaite
- 4. Jeux finis, sans égalité
- 5. Le gagnant est déterminé par qui joue le dernier coup

Définition

- 1. Jeux à deux joueurs
- 2. Sans hasard
- 3. Information parfaite
- 4. Jeux finis, sans égalité
- 5. Le gagnant est déterminé par qui joue le dernier coup

Les joueurs jouent parfaitement!

 ${
m CRAM}$: Les joueurs mettent des dominos sur une grille. Le joueur qui met le dernier domino gagne.

 \Rightarrow Victoire du deuxième joueur.

 ${
m CRAM}$: Les joueurs mettent des dominos sur une grille. Le joueur qui met le dernier domino gagne.

 \Rightarrow Victoire du premier joueur.

Impartial et partisan

Un jeu est impartial \Leftrightarrow les deux joueurs ont les mêmes options. Sinon, le jeu est partisan.

Impartial et partisan

Un jeu est impartial \Leftrightarrow les deux joueurs ont les mêmes options. Sinon, le jeu est partisan.

 \rightarrow Ici, jeux impartiaux

Impartial et partisan

Un jeu est impartial \Leftrightarrow les deux joueurs ont les mêmes options. Sinon, le jeu est partisan.

→ Ici, jeux impartiaux

Issue

Un jeu est $\mathcal{N} \Leftrightarrow$ le premier joueur a une stratégie gagnante. Sinon, le jeu est \mathcal{P} .

Impartial et partisan

Un jeu est impartial \Leftrightarrow les deux joueurs ont les mêmes options. Sinon, le jeu est partisan.

→ Ici, jeux impartiaux

Issue

Un jeu est $\mathcal{N} \Leftrightarrow$ le premier joueur a une stratégie gagnante. Sinon, le jeu est \mathcal{P} .

Problématiques des jeux impartiaux

- 1. Un jeu donné est-il $\mathcal N$ ou $\mathcal P$?
- 2. Quelle est la stratégie gagnante?

Impartial et partisan

Un jeu est impartial \Leftrightarrow les deux joueurs ont les mêmes options. Sinon, le jeu est partisan.

→ Ici, jeux impartiaux

Issue

Un jeu est $\mathcal{N} \Leftrightarrow$ le premier joueur a une stratégie gagnante. Sinon, le jeu est \mathcal{P} .

Problématiques des jeux impartiaux

- 1. Un jeu donné est-il $\mathcal N$ ou $\mathcal P$?
- 2. Quelle est la stratégie gagnante?
 - → Souvent dans PSPACE!

Le graphe de jeu : bilan

► Complet, fini, donne issue et stratégie

Le graphe de jeu : bilan

- ► Complet, fini, donne issue et stratégie
- ... mais exponentiel en général!

Le graphe de jeu : bilan

- ► Complet, fini, donne issue et stratégie
- ► ... mais exponentiel en général!

 \Rightarrow Méthodes plus fines pour étudier les jeux impartiaux : théorie de Sprague-Grundy

Retour aux origines

Nim

► Étudié en 1901 par Charles Bouton

- ► Étudié en 1901 par Charles Bouton
- ► Se joue sur des piles de jetons

- ► Étudié en 1901 par Charles Bouton
- ► Se joue sur des piles de jetons
- ► Les joueurs retirent autant de jetons que voulu d'une seule pile

- ► Étudié en 1901 par Charles Bouton
- ► Se joue sur des piles de jetons
- ► Les joueurs retirent autant de jetons que voulu d'une seule pile

- ► Étudié en 1901 par Charles Bouton
- ► Se joue sur des piles de jetons
- ► Les joueurs retirent autant de jetons que voulu d'une seule pile

Nim

- ► Étudié en 1901 par Charles Bouton
- ► Se joue sur des piles de jetons
- ► Les joueurs retirent autant de jetons que voulu d'une seule pile

⇒ Quelle est la stratégie gagnante?

Théorème (Bouton, 1901)

Une position de NIM avec n piles de a_1, \ldots, a_n jetons est \mathcal{P}

 $\Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0.$

Théorème (Bouton, 1901)

Théorème (Bouton, 1901)

Théorème (Bouton, 1901)

Théorème (Bouton, 1901)

$$\begin{array}{c}
1 = 001 \\
\oplus \\
3 = 011 \\
\oplus \\
4 = 100 \\
\hline
\hline
110 = 6
\end{array}$$

Théorème (Bouton, 1901)

Une position de NIM avec n piles de a_1, \ldots, a_n jetons est $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

Preuve (par induction)

Théorème (Bouton, 1901)

Une position de NIM avec n piles de a_1, \ldots, a_n jetons est $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

Preuve (par induction)

Théorème (Bouton, 1901)

Une position de NIM avec n piles de a_1, \ldots, a_n jetons est \mathcal{P} $\Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

Preuve (par induction)

Théorème (Bouton, 1901)

Une position de NIM avec n piles de a_1, \ldots, a_n jetons est $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

Preuve (par induction)

Théorème (Bouton, 1901)

Une position de NIM avec n piles de a_1, \ldots, a_n jetons est $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

Preuve (par induction)

Théorème (Bouton, 1901)

Une position de NIM avec n piles de a_1, \ldots, a_n jetons est $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

Preuve (par induction)

Théorème (Bouton, 1901)

Une position de NIM avec n piles de a_1, \ldots, a_n jetons est $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

$$\begin{array}{cccc}
1 &= 001 \\
& \oplus \\
3 &= 011 \\
& \oplus \\
2 &= 010 \\
\hline
000
\end{array}$$

Preuve (par induction)

- ▶ Si $a_1 \oplus ... \oplus a_n \neq 0$, alors on peut annuler la nim-somme.
- ► Sinon, aucun coup ne peut garder la nim-somme nulle.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Le joueur qui joue le dernier coup gagne.

Pourquoi sommer des jeux?

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Le joueur qui joue le dernier coup gagne.

Pourquoi sommer des jeux?

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Le joueur qui joue le dernier coup gagne.

Pourquoi sommer des jeux?

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

$$G + H$$

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

ightharpoonup Si H est \mathcal{P} :

▶ Si H est \mathcal{N} :

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

► Si H est \mathcal{P} :

► Si H est \mathcal{N} :

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

▶ Si H est \mathcal{P} :

▶ Si H est \mathcal{N} :

Sommer des jeux ${\mathcal N}$

Sommer des jeux ${\mathcal N}$

Sommer des jeux ${\mathcal N}$

Sommer des jeux ${\mathcal N}$

⇒ Définition de classes d'équivalence pour les jeux

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Théorème (Sprague 1935, Grundy 1939)

Pour tout jeu J, il existe un entier n tel que J est équivalent à NIM sur une pile de n jetons.

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Théorème (Sprague 1935, Grundy 1939)

Pour tout jeu J, il existe un entier n tel que J est équivalent à NIM sur une pile de n jetons.

Valeur de Grundy

On note G(J) := n du théorème de Sprague-Grundy.

Équivalence de jeux

$$G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$$

Théorème (Sprague 1935, Grundy 1939)

Pour tout jeu J, il existe un entier n tel que J est équivalent à $N_{\rm IM}$ sur une pile de n jetons.

Valeur de Grundy

On note G(J) := n du théorème de Sprague-Grundy.

$$ightharpoonup \mathcal{G}(J) = 0 \Leftrightarrow J \text{ est } \mathcal{P}$$

Équivalence de jeux

$$G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$$

Théorème (Sprague 1935, Grundy 1939)

Pour tout jeu J, il existe un entier n tel que J est équivalent à Nim sur une pile de n jetons.

Valeur de Grundy

On note G(J) := n du théorème de Sprague-Grundy.

- $ightharpoonup \mathcal{G}(J) = 0 \Leftrightarrow J \text{ est } \mathcal{P}$
- ▶ $\mathcal{G}(J) = \max{\{\mathcal{G}(J') \mid J' \text{ option de } J\}}$

Propriétés des valeurs de Grundy

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

Propriétés des valeurs de Grundy

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

Corollaire de Sprague-Grundy

$$G(G+H)=G(G)\oplus G(H)$$

Propriétés des valeurs de Grundy

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

Corollaire de Sprague-Grundy

$$G(G+H)=G(G)\oplus G(H)$$

→ Outils puissants pour étudier les jeux impartiaux

Jeux taking-breaking

Se jouent sur des piles de jetons.

Jeux taking-breaking

Se jouent sur des piles de jetons. Trois types de coups :

- ► Taking : enlever des jetons
- ► Breaking : diviser des piles
- ► Taking et Breaking en même temps

Jeux taking-breaking

Se jouent sur des piles de jetons. Trois types de coups :

- ► Taking : enlever des jetons
- ► Breaking : diviser des piles
- ► Taking et Breaking en même temps

Exemples

- ► NIM (Bouton, 1901)
- ► WYTHOFF (Wythoff, 1907)
- ► Jeu de Grundy (Grundy, 1939)
- ► CRAM sur une ligne
- ... et plus encore!

Jeux taking-breaking

Se jouent sur des piles de jetons. Trois types de coups :

- ► Taking : enlever des jetons
- ► Breaking : diviser des piles
- ► Taking et Breaking en même temps

Exemples

- ► NIM (Bouton, 1901)
- ► WYTHOFF (Wythoff, 1907)
- ► Jeu de Grundy (Grundy, 1939)
- ► CRAM sur une ligne
- ... et plus encore!
- ► Jeux de soustraction, jeux octaux

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking.

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Problèmes de décision (rappel)

- ▶ Le jeu est-il \mathcal{N} ou \mathcal{P} ?
- ► Quelle est la stratégie gagnante?
 - → Généralement difficile (PSPACE pour beaucoup de jeux)...

Problèmes de décision (rappel)

- ▶ Le jeu est-il \mathcal{N} ou \mathcal{P} ?
- Quelle est la stratégie gagnante?
 - ightarrow Généralement difficile (PSPACE pour beaucoup de jeux)...

Remarque

Jouer sur plusieurs piles ≡ Jouer sur la somme

⇒ Étudier le jeu sur une pile suffit!

Problèmes de décision (rappel)

- ▶ Le jeu est-il \mathcal{N} ou \mathcal{P} ?
- Quelle est la stratégie gagnante?
 - → Généralement difficile (PSPACE pour beaucoup de jeux)...

Remarque

Jouer sur plusieurs piles ≡ Jouer sur la somme

⇒ Étudier le jeu sur une pile suffit!

Séquence de Grundy

Liste des valeurs de Grundy pour des piles de taille 0, 1, 2, etc.

Théorème (Folklore)

Si S fini, alors la séquence de SUB(S) est ultimement périodique.

Théorème (Folklore)

Si S fini, alors la séquence de SUB(S) est ultimement périodique.

Théorème (Albert, Nowakowski, Wolfe, 2007)

Si S fini, alors la séquence de $SUB(\mathbb{N} \setminus S)$ est ultimement arithmétique périodique.

Théorème (Folklore)

Si S fini, alors la séquence de SUB(S) est ultimement périodique.

Théorème (Albert, Nowakowski, Wolfe, 2007)

Si S fini, alors la séquence de SUB($\mathbb{N}\setminus S$) est ultimement arithmétique périodique.

Problèmes ouverts

- ▶ Périodicité de SUB(S) pour S quelconque?
- ▶ Un jeu est-il périodique ou ultimement périodique?

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ▶ Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ► Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Exemple: 0.024

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ► Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Exemple: 0.024

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ► Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Exemple: 0.024

Jeux octaux

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ► Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ▶ Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Exemple: 0.024

Jeux octaux

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ► Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ▶ Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Exemple: 0.024

Jeux octaux

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ► Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Des exemples connus

- ► NIM est **0.33333**...
- ▶ Les jeux de soustraction : $d_i \in \{0,3\}$
- ► CRAM sur une ligne est **0.07**

Étudier les jeux octaux

Comme pour les jeux de soustraction : la séquence de Grundy.

→ Utilisation d'un algorithme de détection de période

Étudier les jeux octaux

Comme pour les jeux de soustraction : la séquence de Grundy.

→ Utilisation d'un algorithme de détection de période

Problème : c'est beaucoup plus compliqué!

- ► Séquence de Grundy de **0.7** : période 2
- ► Séquence de Grundy de **0.07** : prépériode 68, période 34
- ► Séquence de Grundy de **0.007** : 2²⁸ valeurs calculées, pas de régularité détectée!

Étudier les jeux octaux

Comme pour les jeux de soustraction : la séquence de Grundy.

→ Utilisation d'un algorithme de détection de période

Problème : c'est beaucoup plus compliqué!

- ► Séquence de Grundy de **0.7** : période 2
- ► Séquence de Grundy de **0.07** : prépériode 68, période 34
- ► Séquence de Grundy de **0.007** : 2²⁸ valeurs calculées, pas de régularité détectée!

Conjecture (Guy 1982)

Un jeu octal fini a une séquence de Grundy ultimement périodique.

Deux façons :

Deux façons :

1. Diviser une pile en plus de sous-piles ightarrow Jeux hexadécimaux

Deux façons :

- 1. Diviser une pile en plus de sous-piles ightarrow Jeux hexadécimaux
- 2. Travailler sur d'autres structures que les piles de jetons

Deux façons :

- 1. Diviser une pile en plus de sous-piles \rightarrow Jeux hexadécimaux
- 2. Travailler sur d'autres structures que les piles de jetons
 - ⇒ Jouer à des jeux octaux... sur des graphes! (enfin!)

Observation

Observation

 $lackbox{ }$ Retirer des jetons ightarrow Supprimer un sous-graphe connexe

Observation

 $\blacktriangleright \ \, \mathsf{Retirer} \,\, \mathsf{des} \,\, \mathsf{jetons} \, \to \mathsf{Supprimer} \,\, \mathsf{un} \,\, \mathsf{sous\text{-}graphe} \,\, \mathsf{connexe}$

Observation

- lacktriangle Retirer des jetons ightarrow Supprimer un sous-graphe connexe
- lackbox Diviser une pile ightarrow Déconnecter un graphe

Observation

- $lackbox{ }$ Retirer des jetons ightarrow Supprimer un sous-graphe connexe
- lackbox Diviser une pile ightarrow Déconnecter un graphe

Observation

- ightharpoonup Retirer des jetons ightarrow Supprimer un sous-graphe connexe
- ightharpoonup Diviser une pile ightharpoonup Déconnecter un graphe

Jeu octal sur des graphes (BCDGMPS 2018)

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Supprimer un sous-graphe connexe d'ordre $i \Leftrightarrow d_i \neq 0$
- ▶ Vider le graphe $\Leftrightarrow b_i^0 = 1$
- ▶ Laisser un graphe non-vide $\Leftrightarrow b_i^1 = 1$
- ▶ Déconnecter le graphe $\Leftrightarrow b_i^2 = 1$

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents \Rightarrow **0.07**

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents $\Rightarrow 0.07$ CRAM est 0.07 sur les grilles

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents \Rightarrow 0.07 CRAM est 0.07 sur les grilles

Complexité ouverte

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents \Rightarrow **0.07** CRAM est **0.07** sur les grilles

Complexité ouverte

GRIM (Adams et al., 2015)

Supprimer un sommet non-isolé $\Rightarrow 0.6$

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents \Rightarrow 0.07 CRAM est 0.07 sur les grilles

Complexité ouverte

GRIM (Adams et al., 2015)

Supprimer un sommet non-isolé $\Rightarrow 0.6$

Node-Kayles (Schaefer, 1978)

Supprimer un sommet et tous ses voisins \Rightarrow Pas un jeu octal

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents \Rightarrow 0.07 CRAM est 0.07 sur les grilles

Complexité ouverte

GRIM (Adams et al., 2015)

Supprimer un sommet non-isolé $\Rightarrow 0.6$

Node-Kayles (Schaefer, 1978)

Supprimer un sommet et tous ses voisins \Rightarrow Pas un jeu octal

PSPACE-complet (Schaefer, 1978), mais algorithmes polynomiaux pour des familles comme les étoiles subdivisées (Fleischer et Trippen, 2004)

- ► Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

ldée

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

ldée

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

ldée

Étudier l'évolution des valeurs de Grundy quand on attache un chemin à un sommet donné.

$$G \stackrel{\bullet}{u} \stackrel{\bullet}{P_k} =$$
 (etc)

 \rightarrow Approche déjà utilisée pour NODE-KAYLES (Fleischer et Trippen, 2004) et ARC-KAYLES (Huggan et Stevens, 2016)

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

ldée

Étudier l'évolution des valeurs de Grundy quand on attache un chemin à un sommet donné.

$$G \stackrel{\bullet}{u} \stackrel{\bullet}{P_k} =$$
 (etc)

 \rightarrow Approche déjà utilisée pour NODE-KAYLES (Fleischer et Trippen, 2004) et ARC-KAYLES (Huggan et Stevens, 2016)

Difficile pour les jeux octaux!

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

ldée

Étudier l'évolution des valeurs de Grundy quand on attache un chemin à un sommet donné.

$$G \stackrel{\bullet}{u} \stackrel{\bullet}{P_k} =$$
 (etc)

→ Approche déjà utilisée pour NODE-KAYLES (Fleischer et Trippen, 2004) et ARC-KAYLES (Huggan et Stevens, 2016)

Difficile pour les jeux octaux ! \Rightarrow Nous étudions les jeux de soustraction connexes CSG(S)

Théorème (Burke et D., 2020+)

Si S est fini et $1 \notin S$, alors CSG(S) est PSPACE-complet.

Théorème (Burke et D., 2020+)

Si S est fini et $1 \notin S$, alors CSG(S) est PSPACE-complet.

$$M = max(S)$$
, ici $M = 4$

Théorème (Burke et D., 2020+)

Si S est fini et $1 \notin S$, alors CSG(S) est PSPACE-complet.

$$M = max(S)$$
, ici $M = 4$

Théorème (Burke et D., 2020+)

Si S est fini et $1 \notin S$, alors CSG(S) est PSPACE-complet.

$$M = max(S)$$
, ici $M = 4$

Théorème (Burke et D., 2020+)

Si S est fini et $1 \notin S$, alors CSG(S) est PSPACE-complet.

$$M = max(S)$$
, ici $M = 4$

Théorème (Burke et D., 2020+)

Si S est fini et $1 \notin S$, alors CSG(S) est PSPACE-complet.

$$M = max(S)$$
, ici $M = 4$

Complexité des jeux de soustraction

Théorème (Burke et D., 2020+)

Si S est fini et $1 \notin S$, alors CSG(S) est PSPACE-complet.

Réduction depuis Node-Kayles

$$M = max(S)$$
, ici $M = 4$

Complexité des jeux de soustraction

Théorème (Burke et D., 2020+)

Si S est fini et $1 \notin S$, alors CSG(S) est PSPACE-complet.

Réduction depuis Node-Kayles

$$M = max(S)$$
, ici $M = 4$

Complexité des jeux de soustraction

Théorème (Burke et D., 2020+)

Si S est fini et $1 \notin S$, alors CSG(S) est PSPACE-complet.

Réduction depuis Node-Kayles

$$M = max(S)$$
, ici $M = 4$

Théorème (D., Moncel, Parreau, 2019)

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\cup} P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\mathbb{U}} P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Idée de la preuve

Induction sur |G|.

1. $|G| \in \{0,1\}$: cas des chemins

Théorème (D., Moncel, Parreau, 2019)

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\mathbb{L}} {}^{\bullet}P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Idée de la preuve

Induction sur |G|.

- 1. $|G| \in \{0,1\}$: cas des chemins
- 2. Sinon, trois types de coups possibles :
 - 2.1 Jouer sur $P_k \rightarrow |S|$ coups différents
 - 2.2 Jouer sur G sans supprimer $u \to au$ plus $2^{|G|-1}$ coups différents
 - 2.3 Vider $G \rightarrow \text{au plus } |S| \text{ coups différents}$

Théorème (D., Moncel, Parreau, 2019)

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\mathbb{L}} P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Idée de la preuve

Induction sur |G|.

- 1. $|G| \in \{0,1\}$: cas des chemins
- 2. Sinon, trois types de coups possibles :
 - 2.1 Jouer sur $P_k \rightarrow |S|$ coups différents
 - 2.2 Jouer sur G sans supprimer u o au plus $2^{|G|-1}$ coups différents
 - 2.3 Vider $G \rightarrow \text{au plus } |S| \text{ coups différents}$

$$\Rightarrow \mathcal{G}(G) \leq C$$

Théorème (D., Moncel, Parreau, 2019)

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\mathfrak{u}} \overset{\bullet}{-} P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Idée de la preuve

Induction sur |G|.

- 1. $|G| \in \{0,1\}$: cas des chemins
- 2. Sinon, trois types de coups possibles :
 - 2.1 Jouer sur $P_k \rightarrow |S|$ coups différents
 - 2.2 Jouer sur G sans supprimer $u \to au$ plus $2^{|G|-1}$ coups différents
 - 2.3 Vider $G \rightarrow \text{au plus } |S| \text{ coups différents}$

$$\Rightarrow \mathcal{G}(G) \leq C$$

Chaque coup emmène vers une séquence périodique, par calcul du mex on a le résultat.

Jeu Graphe et sommet <i>u</i>	Régularité	Référence
-------------------------------	------------	-----------

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Tout CSG	Tout graphe G , tout sommet u	Ultime	D., Moncel,
(S fini)		périodicité	Parreau (2019)

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Tout CSG	Tout graphe G , tout sommet u	Ultime	D., Moncel,
(S fini)		périodicité	Parreau (2019)
ARC-KAYLES	o k o l		Huggan et
0.07	u		Stevens, 2016

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2019)
ARC-KAYLES 0.07	o k o l u v	Ultime périodicité conjecturée	Huggan et Stevens, 2016

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2019)
ARC-KAYLES 0.07	o k o l o l o l o l o l o l o o o o o o o o o o	Ultime périodicité conjecturée	Huggan et Stevens, 2016
CSG(S), $S = \{1,, N\}$ 0.3^{N}	Étoile $K_{1,n},\ u$ sommet central	Période N + 1	D., Moncel,
	o	Période $N+1$ Prépériode 0 ou $N+1$	Parreau (2019)

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2019)
Arc-Kayles 0.07	o k o l o v	Ultime périodicité conjecturée	Huggan et Stevens, 2016
CSG(S), $S = \{1,, N\}$ 0.3^{N}	Étoile $K_{1,n}$, u sommet central	Période N + 1	D., Moncel, Parreau (2019)
	°	Période N + 1 Prépériode 0 ou N + 1	
CSG({1, 2, 3}) 0.333	Toute étoile subdivisée, <i>u</i> sommet central ou feuille	Période $N+1=4$	D., Moncel, Parreau (2019)
CSG({1,2}) 0.33		Période $N+1=3$	BCDGMPS (2018)

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2019)
Arc-Kayles 0.07	°	Ultime périodicité conjecturée	Huggan et Stevens, 2016
CSG(S), $S = \{1,, N\}$ 0.3^{N}	Étoile $K_{1,n}$, u sommet central	Période <i>N</i> + 1	D., Moncel, Parreau (2019)
	°	Période N + 1 Prépériode 0 ou N + 1	
CSG({1, 2, 3}) 0.333	Toute étoile subdivisée, <i>u</i>	Période $N+1=4$	D., Moncel, Parreau (2019)
$CSG(S)$ $S = \{1, 2\}$	sommet central ou feuille	Páriada .	Beaudou, Coupechoux D., Gravier,
	Toute biétoile subdivisée, <i>u</i> sommet central ou feuille	N + 1 = 3	Moncel, Parreau, Sopena (2018)

Lemme (BCDGMPS18)

Lemme (BCDGMPS18)

Lemme (BCDGMPS18)

Lemme (BCDGMPS18)


```
Nombre de branches de longueur 2
0 1 2 3 4 5 ... 2p 2p+1

0 0
1
2 3 4 5 ... 2p 2p+1

0 0
1
2 0 1
2 0
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1 2 0 1
3 1
```

Lemme (BCDGMPS18)


```
Nombre de branches de longueur 2
0 1 2 3 4 5 ... 2p 2p + 1

0 0
0 1
1 2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2
```

Lemme (BCDGMPS18)

Dans $CSG(\{1,2\})$, on peut réduire les branches d'une étoile subdivisée à leur longueur modulo 3.

Théorème (BCDGMPS18)

Il existe un algorithme polynomial pour calculer la valeur de Grundy d'une étoile subdivisée dans $CSG(\{1,2\})$.

Lemme (BCDGMPS18)

Dans $CSG(\{1,2\})$, on peut réduire les branches d'une étoile subdivisée à leur longueur modulo 3.

Théorème (BCDGMPS18)

Il existe un algorithme polynomial pour calculer la valeur de Grundy d'une étoile subdivisée dans $CSG(\{1,2\})$.

Lemme (BCDGMPS18)

Dans $CSG(\{1,2\})$, on peut réduire les branches d'une étoile subdivisée à leur longueur modulo 3.

Théorème (BCDGMPS18)

Il existe un algorithme polynomial pour calculer la valeur de Grundy d'une étoile subdivisée dans $CSG(\{1,2\})$.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

0-0-0

Chemins

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

Réduction des chemins dans les biétoiles

Périodicité ⇒ réduction des chemins des étoiles.

Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

$CSG({1,2})$ sur les arbres?

Proposition

La réduction des chemins n'est pas valable pour les arbres :

$CSG(\{1,2\})$ sur les arbres?

Proposition

La réduction des chemins n'est pas valable pour les arbres :

Question ouverte

Quelle période pour les arbres?

Jouer sur le graphe

... sauf en jouant sur le départ de l'isthme !

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Jouer sur le graphe

- Jouer sur les deux sous-graphes
- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Application : $CSG(\{1,2\})$ sur les biétoiles subdivisées

⇒ L'isthme est atteignable à la toute fin

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

- ⇒ L'isthme est atteignable à la toute fin
- \Rightarrow Deux pseudo-sommes et raffinements des valeurs de Grundy

Les valeurs de Grundy des biétoiles pour $CSG(\{1,2\})$

La valeur de Grundy de la biétoile en fonction des valeurs affinées des deux étoiles quand le chemin central est de longueur 1 :

Les valeurs de Grundy des biétoiles pour $CSG(\{1,2\})$

La valeur de Grundy de la biétoile en fonction des valeurs affinées des deux étoiles quand le chemin central est de longueur 1 :

	0	1	1*	2	2*	2□	3	3□
0	\oplus							
1	\oplus							
1*	\oplus	\oplus	2	\oplus	0	\oplus	\oplus	\oplus
2	\oplus							
2*	\oplus	\oplus	0	\oplus	1	1	\oplus	0
2^{\square}	\oplus	\oplus	\oplus	\oplus	1	\oplus	\oplus	\oplus
3	\oplus							
3□	\oplus	\oplus	\oplus	\oplus	0	\oplus	\oplus	\oplus

 $où \oplus est la nim-somme.$

Les valeurs de Grundy des biétoiles pour $CSG(\{1,2\})$

La valeur de Grundy de la biétoile en fonction des valeurs affinées des deux étoiles quand le chemin central est de longueur 2 :

	0	0*	1	1*	$\mid 1^{\square}$	2	2*	2□	3	3□
0	\oplus	\oplus_1	\oplus	2	\oplus_1	\oplus	0	\oplus_1	\oplus	\oplus_1
0*	\oplus_1	\oplus_1	\oplus_1	2	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	\oplus_1
1	\oplus	\oplus_1	\oplus	3	\oplus_1	\oplus	1	\oplus_1	\oplus	\oplus_1
1*	2	2	3	0	3	0	1	1	1	0
1^{\square}	\oplus_1	\oplus_1	\oplus_1	3	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	\oplus_1
2	\oplus	\oplus_1	\oplus	0	\oplus_1	\oplus	2	\oplus_1	\oplus	\oplus_1
2*	0	0	1	1	1	2	2	2	3	3
2^{\square}	\oplus_1	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	2	0	\oplus_1	1
3	\oplus	\oplus_1	\oplus	1	\oplus_1	\oplus	3	\oplus_1	\oplus	\oplus_1
3□	\oplus_1	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	3	1	\oplus_1	0

où \oplus est la nim-somme et $x \oplus_1 y$ signifie $x \oplus y \oplus 1$.

Le mot de la fin

Conclusion

- ► Généralisation des jeux octaux aux graphes
- ► Complexité des jeux CSG(S) avec S fini et $1 \notin S$
- ► Résultats de régularité pour les jeux de soustraction
- ▶ Pseudo-somme pour $CSG(\{1,2\})$ sur les biétoiles

Le mot de la fin

Conclusion

- Généralisation des jeux octaux aux graphes
- ► Complexité des jeux CSG(S) avec S fini et $1 \notin S$
- Résultats de régularité pour les jeux de soustraction
- ► Pseudo-somme pour CSG({1,2}) sur les biétoiles

Perspectives

- ► CSG : même période que les jeux de soustraction classiques ?
- ► Explorer d'autres familles de jeux octaux sur des graphes
- ► Complexité de CSG(S) avec S fini et $1 \in S$

Le mot de la fin

Conclusion

- Généralisation des jeux octaux aux graphes
- ► Complexité des jeux CSG(S) avec S fini et $1 \notin S$
- Résultats de régularité pour les jeux de soustraction
- ▶ Pseudo-somme pour $CSG(\{1,2\})$ sur les biétoiles

Perspectives

- CSG : même période que les jeux de soustraction classiques?
- ► Explorer d'autres familles de jeux octaux sur des graphes
- ► Complexité de CSG(S) avec S fini et $1 \in S$

