Les phénomènes thermiques

T1 – Thermochimie – Chapitre 3

I. Types de réactions

• Exothermique : dégagement de chaleur $T = cst \Rightarrow Q < 0$

• **Endothermique**: absorption de chaleur $T = cst \Rightarrow Q > 0$

• Athermique : pas d'effet thermique $T = cst \Rightarrow Q = 0$

II. Chaleur reçue au cours au cours d'une réaction

1. Monotherme et monobare

ullet Monotherme: 1 source de température $T_{ini}=T_f=T_{ext}$

• Monobare: 1 source de pression $P_{ini} = P_f = P_{ext}$

$$\boxed{Q_{P_e,T_e} = \Delta H = \xi \Delta_r H^0(T)} \quad \text{si } \xi > 0 \begin{cases} \Delta_r H^0(T) < 0 \ \Rightarrow \ Q < 0 \ \Rightarrow \ \text{exothermique} \quad \text{sens direct} \\ \Delta_r H^0(T) > 0 \ \Rightarrow \ Q > 0 \ \Rightarrow \ \text{endothermique} \quad \text{sens direct} \\ \Delta_r H^0(T) = 0 \ \Rightarrow \ Q = 0 \ \Rightarrow \ \text{athermique} \quad \text{deux sens} \end{cases}$$

Détermination de la température maximale :

On néglige les échanges de chaleur, donc $H_f - H_i = Q = 0$ et on cherche T_f .

Pour cela on utilise un autre chemin passant par des états intermédiaires dont on connait ΔH (réactions homologuées, échauffement, etc.) Le but est d'avoir une équation $\sum \Delta H = 0$ dont la seule inconnue est T_f).

2. Monotherme et isochore

$$Q_{V,T_e} = \Delta U = \xi \Delta_r U^0(T)$$