See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/8955789

Electrophilic terminal phosphinidene complex-Lewis base adducts: Chemistry between carbon-halide bond activation and weak Lewis base adduct formation

ARTICLE in CHEMICAL COMMUNICATIONS · JANUARY 2004

Impact Factor: 6.83 · DOI: 10.1039/B309443J · Source: PubMed

CITATIONS READS
10 21

4 AUTHORS, INCLUDING:

Rainer Streubel
University of Bonn

182 PUBLICATIONS 1,665 CITATIONS

SEE PROFILE

Electrophilic terminal phosphinidene complex-Lewis base adducts: Chemistry between carbon-halide bond activation and weak Lewis base adduct formation

Arif Ali Khan,^a Cathleen Wismach,^a Peter G. Jones^a and Rainer Streubel*^b

- ^a Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
- ^b Institut für Anorganische Chemie, D-53121 Bonn, Germany. E-mail: r.streubel@uni-bonn.de; Fax: Int. +49 (0)228/73-9616

Received (in Cambridge, UK) 6th August 2003, Accepted 12th September 2003 First published as an Advance Article on the web 22nd October 2003

Comparative studies on the reactivity of a transiently formed terminal phosphinidene complex towards various organobromide derivatives show that carbon-bromine bond insertion is preferred with benzyl bromide, whereas formal HBr-insertion resulted with 2-bromopyridine and a surprising selectivity enhancement (of the phosphinidene complex) was observed with bromobenzene; all new products were established by elemental analyses, NMR spectroscopy, mass spectrometry and single crystal X-ray diffraction studies.

Since Mathey and Marinetti reported the transient formation of electrophilic terminal phosphinidene (phosphanediyl) complexes¹ I, such complexes have emerged as important building blocks in modern organophosphorus chemistry.2 Important reactivity features of I include [2+1] cycloaddition reactions, e.g., with alkenes or alkynes to afford P-heterocycles, and insertion into element-element σ -bond species, e.g., with alcohols or ferrocene to yield complexes with P-H functions.1 Much less intensively studied were reactions in which zwitterionic terminal phosphinidene complex-Lewis base adducts with strong or weak bonds are formed, e.g., phosphine complexes II were obtained with tertiary phosphines³ and nitrilium phosphanylid complexes III were transiently formed by reaction with carbonitriles and trapped in 1,3-dipolar cycloaddition reactions (Scheme 1).4 Since then it has been demonstrated that weak donor adducts of type III5,6 - and related species^{7–10} – are valuable new 1,3-dipoles.

Very recently, we obtained a first hint that complexes I might react with carbon halides – in a surprising manner. We found that thermal decomposition of 2*H*-azaphosphirene complex 1 in tetrachloromethane afforded the dichloro(organo)phosphine complex 4 (Scheme 2). Since it is well established that 1 transiently generates complex 2, we assumed that a terminal

Scheme 1 Generation of strong (II) and weak (III) terminal phosphinidene complex-Lewis base adducts (R, R' = organic substituents; [M] = transition metal complex).

Scheme 2 Thermal reaction of complex 1 in CCl₄.

phosphinidene complex-Lewis base adduct 3 might be involved.¹¹

Here we report that terminal phosphinidene complex **2**, generated as previously from **1**,¹² formally inserts into the carbon–bromine bond of benzyl bromide to furnish complex **6** in a clean reaction (Scheme 3); an initially formed weak Lewis base adduct **5** that subsequently rearranges to **6** seems a very reasonable explanation. Complex **6** was unambiguously characterized by NMR spectroscopy, mass spectrometry† and single-crystal X-ray diffraction‡ (Fig. 1).

We then turned our attention to aryl bromides and carried out a comparative study using 2-bromopyridine and bromobenzene. In the case of 2-bromopyridine we obtained selectively the secondary bromophosphine complex 7 as the only phosphorus-containing product (Scheme 4); the molecular structure of 7 is shown in Fig. 2. In the *presence* of bromobenzene we

$$(OC)_5W P CH(SiMe_3)_2$$

$$Ph C=N 1$$

$$+ \frac{Toluene, \Delta}{-PhCN}$$

$$CH(SiMe_3)_2$$

$$Br CH_2$$

$$Br CH_2$$

$$Br CH_2$$

$$Br CH_2$$

Scheme 3 Reagents and conditions: 617 mg of complex 1, 500 mg benzyl bromide, 3 mL toluene, 75 °C, 2 h; column chromatograpy (SiO₂, -20 °C, diethyl ether/petrol ether 40 : 60), yellow solid, yield: 65%, m.p. 146 °C (decomp.).

Fig. 1 Molecular structure of **6** in the crystal (ellipsoids represent 50% probability levels; hydrogen atoms are omitted for clarity). Selected bond lengths [Å] and angles [°]: P–W 2.5052(7), P–C(6) 1.822(2), P–C(13) 1.859(3), P–Br 2.2693(7); Br–P–W 105.20(3), C(6)–P–C(13) 104.84(12), C(6)–P–W 117.34(9), C(6)–P–Br 106.57(8).

$$(OC)_{5}W CH(SiMe_{3})_{2}$$

$$Ph C=N 1$$

$$Toluene, \Delta - PhCN + Br$$

$$+ Br + Br$$

$$(Me_{3}Si)_{2}HC CH(SiMe_{3})_{2}$$

$$Br H C - PhCN + Br$$

$$+ CH(SiMe_{3})_{2}$$

$$+ CH(SiMe_{3})_{3}$$

Scheme 4 Reagents and conditions for **7** and **8**: 617 mg of complex **1**, 500 mg 2-bromopyridine (**7**) or 500 mg bromobenzene (**8**), 3 mL toluene, 75 °C, 2 h; **7**: column chromatography (SiO₂, -10 °C, *n*-pentane), yellow solid, yield: 50%, m.p. 71 °C (decomp.); **8**¹² was purified as described before, yield: 72%.

Fig. 2 Molecular structure of **7** in the crystal (ellipsoids represent 50% probability levels; hydrogen atoms, except H1, are omitted for clarity). Selected bond lengths [Å] and angles [°]: P–W 2.4568(6), P–C(6) 1.818(2), P–Br 2.2394(6), Br–P-W 116.48(2), C(6)–P–W 121.57(7), C(6)–P–Br 104.54(7).

exclusively obtained the 2,3-dihydro-1,2,3-azadiphosphete complex $\mathbf{8}^{12}$ (Scheme 4).

It is remarkable that, in the *absence* of bromobenzene, **8** was obtained only as one product of a three-component mixture consisting of **8**, a dinuclear 2-aza-1,4-diphosphabutadiene tungsten complex and a 2,5-dihydro-1,3-diaza-2,5-diphosphinine tungsten complex, 12 thus showing a surprising gain in selectivity in the present case. We assume that a weak Lewis base adduct (such as **3** or **5**) between bromobenzene and the terminal phosphinidene complex **2** is transiently formed, thus changing the selectivity of complex **2**.

In conclusion, our findings not only provide evidence that weak Lewis base adducts – such as 5 – may be transiently formed but also that this can lead to a selectivity enhancement of electrophilic terminal phosphinidene complexes as shown in the case of 8. We are currently investigating the reaction course leading to 7 and the option to synthesize optically active phosphine complexes via this method.

We thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft for financial support and Dr Hans-Martin Schiebel (Technische Universität Braunschweig) for MS measurements. A. A. K. is thankful to the Ministry of Science and Culture of Lower Saxony, Germany for financial support.

Notes and references

 \dagger Satisfactory elemental analyses were obtained for complexes $\bf 6$ and $\bf 7$. NMR data were recorded in CDCl $_3$ solutions (295 K) at 50.3 MHz (13 C), 81.0 MHz (31 P) and 200 MHz (14 H), using TMS and 85% H_3 PO $_4$ as standard references; J/Hz. Selected spectroscopic data for $\bf 6$ and $\bf 7$. $\bf 6$: 14 NMR: $\delta 0.45$

 $(s, 9H, SiMe_3), 0.46 (s, 9H, SiMe_3), 2.0 (d, {}^{2}J(P,H) = 9.3 Hz, 1H, PCH),$ $3.72 \text{ (dd, } ^2J(P,H) = 9.8 \text{ Hz, } ^2J(H,H) = 13.6 \text{ Hz, } 1H, PCH_2), 4.09 \text{ (pt, }$ $^{2}J(P,H) + ^{2}J(H,H) = 13.7 \text{ Hz}, 1H, PCH_{2}, 7.36 \text{ (m, 3H, H} arom), 7.45 \text{ (m,}$ 2H, Harom); ${}^{13}C\{{}^{1}H\}$ NMR: $\delta 3.4$ (d, ${}^{3}J(P,C) = 3.6$ Hz, SiMe₃), 4.0 (d, $^{3}J(P,C) = 2.3 \text{ Hz}, \text{ SiMe}_{3}, 31.0 \text{ (d, } ^{1}J(P,C) = 20.0 \text{ Hz}, PCH), 46.4 \text{ (d, } ^{1}J(P,C) = 20.0 \text{ (d, } ^{1}J(P,$ ${}^{1}J(P,C) = 7.1 \text{ Hz}, PCH_{2}, 127.9 \text{ (d, } {}^{2}J(P,C) = 4.1 \text{ Hz}, Carom), 128.4 \text{ (d,}$ $^{3}J(P,C) = 3.4 \text{ Hz}, Carom), 131.2 (Carom), 133.1 (Carom), 133.4 (d,$ ${}^{3}J(P,C) = 3.5 \text{ Hz}, Carom$, 197.5 (d, ${}^{2}J(P,C) = 6.9 \text{ Hz}, cis\text{-CO}$), 199.3 (d, $^{3}J(P,C) = 32.9 \text{ Hz}, trans-CO}; ^{31}P\{^{1}H\} \text{ NMR: } \delta 108.3 (^{1}J(W,P) = 275.8,$ Hz); MS (70 eV, EI, 184 W, 80 Br) m/z 684 (36) [M+], 628 (25) [M+ - 2CO], 600 (38) [M⁺ – 3CO], 544 (100) [M⁺ – 5CO]. 7: ¹H NMR: δ 0.27 (s, 9H, SiMe₃), 0.35 (s, 9H, SiMe₃), 1.29 (d, ${}^{2}J(P,H) = 6.5 \text{ Hz}$, 1H, PCH), 7.28 (dd, ${}^{1}J(P,H) = 344.5$, ${}^{3}J(H,H) = 0.6$ Hz, 1H, PH); ${}^{13}C\{{}^{1}H\}$ NMR: δ 0.1 (d, ${}^{3}J(P,C) = 2.8 \text{ Hz}, \text{ SiMe}_{3}, 1.9 \text{ (d, } {}^{3}J(P,C) = 4.3 \text{ Hz}, \text{ SiMe}_{3}), 22.9 \text{ (d, }$ ${}^{1}J(P,C) = 8.8 \text{ Hz}, PCH), 196.2 (d, {}^{2}J(P,C) = 6.9 \text{ Hz}, cis\text{-CO}), 198.5 (d, {}^{2}J(P,C)) = 6.9 \text{ Hz}, cis\text{-CO}, 19$ $^{2}J(P,C) = 27.1 \text{ Hz}, trans-CO); ^{31}P\{^{1}H\} \text{ NMR}: \delta 23.1 (dd, ^{1}J(P,H) = 344.5)$ Hz), ${}^{1}J(W,P) = 264.0 \text{ Hz}$); MS (70 eV, EI, ${}^{184}W$, ${}^{80}Br$) m/z 594 (6) [M⁺], 191 (45) [HPCH(SiMe₃)₂+], 73 (100) [SiMe₃+].

‡ Crystal data for **6**, $C_{19}H_{26}BrO_3PSi_2W$. Triclinic, space group $P\overline{1}$, a=9.0099(6), b=10.2351(6), c=14.4398(11) Å, $\alpha=87.965(4)$, $\beta=88.558(4)$, $\gamma=68.778(4)^\circ$, U=1240.40 Å³, Z=2, $\mu=6.454$ mm⁻¹, MoK_{α} radiation, $\lambda=0.71073$ Å³, T=133 K. Data collection: A colourless crystal ca. $0.12\times0.12\times0.05$ mm was used to record 26263 intensities on a Bruker Smart 1000 CCD diffractometer, $2\theta_{\rm max}$ 30°); 7239 reflections were independent ($R_{\rm int}$ 0.0320). An absorption correction based on SADABS was applied, with transmissions 0.612–0.802. Structure refinement: The structure was solved by the heavy-atom method, all non-hydrogen atoms were refined anisotropically using full matrix least-squares procedure (SHELXL-97, G. M. Sheldrick, University of Göttingen, Germany) based on F^2 to give R1=0.0231, wR2=0.0502 (all data). Methyl groups were refined as rigid groups and other hydrogens using a riding model.

Crystal data for 7 (C₁₂H₂₀BrO₅PSi₂W). Triclinic, space group $P\bar{1}$, a=6.9656(2), b=9.4476(3), c=16.0750(5) Å, $\alpha=74.990(1)$, $\beta=88.901(1)$, $\gamma=82.853(1)^\circ$, U=1013.74(5) Å³, Z=2, $\mu=7.880$ mm⁻¹, MoK_α radiation 0.71073 Å³, U=1013.74(5) Å³, U=1013.7

- 1 Reviews of electrophilic terminal phosphanediyl complexes: (a) F. Mathey, Angew. Chem., 1987, 99, 285; Mathey, Angew. Chem., Int. Ed. Engl., 1987, 26, 275; (b) F. Mathey, N. H. Tran Huy and A. Marinetti, Helv. Chim. Acta, 2001, 84, 2938; (c) K. Lammertsma and M. J. M. Vlaar, Eur. J. Inorg. Chem., 2002, 1127.
- 2 (a) K. B. Dillon, F. Mathey and J. F. Nixon: *Phosphorus: The Carbon Copy*, Wiley, Chichester, 1998; (b) F. Mathey, *Phosphorus-carbon heterocyclic chemistry: the rise of a new domain*, (ed.: F. Mathey), Pergamon, Amsterdam, 2001.
- 3 Pascal Le Floch, A. Marinetti, L. Ricard and F. Mathey, J. Am. Chem. Soc., 1990, 112, 2407.
- 4 R. Streubel, H. Wilkens, A. Ostrowski, C. Neumann, F. Ruthe and P. G. Jones, *Angew. Chem., Int. Ed. Engl.*, 1997, 36, 1492.
- 5 Review of nitrilium phosphanylid complexes (RCN adducts): R. Streubel, Top. Curr. Chem., 2002, 223, 91.
- 6 A. Alijah, S. Grigoleit, A. Rozhenko, R. Streubel and W. W. Schoeller, J. Organomet. Chem., 2002, 643–644, 223.
- 7 R₂C=O adducts: (a) Y. Inubushi, N. H. Tran Huy, L. Ricard and F. Mathey, J. Organomet. Chem., 1997, 533, 83; (b) R. Streubel, A. Ostrowski, H. Wilkens, F. Ruthe, J. Jeske and P. G. Jones, Angew. Chem., Int. Ed. Engl., 1997, 36, 378.
- 8 RN=NR adducts: (a) N. H. Tran Huy, L. Ricard and F. Mathey, Heteroat. Chem., 1998, 9, 597; (b) N. H. Tran Huy, L. Ricard and F. Mathey, New J. Chem., 1998, 75.
- 9 R₂C=S adducts: R. Streubel and C. Neumann, *Chem. Commun.*, 1999, 499.
- 10 R₂C=NR adducts: T. P. M. Goumans, A. W. Ehlers, M. J. M. Vlaar, S. J. Strand and K. Lammertsma, J. Organomet. Chem, 2002, 643–644, 369.
- 11 A. A. Khan, C. Wismach, P. G. Jones and R. Streubel, *Dalton Trans.*, 2003, 2483.
- 12 R. Streubel, A. Ostrowski, S. Priemer, U. Rohde, J. Jeske and P. G. Jones, Eur. J. Inorg. Chem., 1998, 257.