Курсовая работа на тему "Дата-сеты"

Загоска Максим, группа М80-107-22

Задание:

- 1. Выбор своего датасета (условие выполнено в виде интерактивной презентации в юпитере) Нужно попытаться визуализировать экземпляр данных
- 2. найти публикацию\статью про датасет, внедрить ссылку и кратко описать в презентации (+ какие популярные модели используются)
- 3. Пример данных с разметкой + пример кода для загрузки тестового набора
- 4. Пример применения готовой модели на этих данных

Описание дата-сета

Дата-сет - Heart Attack Analysis & Prediction Dataset (ссылка: https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset)

Об этом дата-сете:

- Age: Возраст пациента
- Sex: Пол пациента
- exang: стенокардия, вызванная физической нагрузкой (1 = да; 0 = нет)
- са: количество крупных сосудов (0-3)
- ср: Тип боли в груди Тип боли в груди

```
Value 1: типичная стенокардия

Value 2: атипичная стенокардия

Value 3: неангинозная боль
```

- trtbps: артериальное давление в покое (в мм рт. ст.)
- chol : холестораль в мг/дл, полученный с помощью датчика ИМТ
- fbs: (уровень сахара в крови натощак > 120 мг/дл) (1 = верно; 0 = неверно)
- rest_ecg: результаты электрокардиографии в покое

```
Value 0: нормальный

Value 1: наличие аномалии ST-T (инверсия зубца Т и/или элевация или депрессия ST > 0,05 мВ)

Value 2: указание на возможную или определенную гипертрофию левого желудочка по критериям Эстеса.
```

- thalach: максимальная частота сердечных сокращений
- target: 0 = меньше вероятность сердечного приступа 1 = больше вероятность сердечного приступа

Загрузка дата-сета

Импорт необходимых библиотек

```
import seaborn as sns
import plotly.express as px
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
import xgboost as xgb
```

```
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import BernoulliNB
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
heart_df=pd.read_csv('/heart.csv')
heart_df.head()
```

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output	1
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1	

¬ Предварительная обработка

Информация о дата-сете: типы данных атрибутов, форма, количество нулей в строке относительно столбца.

```
heart_df.info()
print('Number of rows are',heart_df.shape[0], 'and number of columns are ',heart_df.shape[1])
# Проверка нулевых значений
heart_df.isnull().sum()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 303 entries, 0 to 302
    Data columns (total 14 columns):
                    Non-Null Count Dtype
     #
         Column
     ---
     0
                    303 non-null
                                    int64
     1
                    303 non-null
                                    int64
     2
                    303 non-null
                                    int64
          trtbps
                    303 non-null
                                    int64
                    303 non-null
          chol
                                    int64
                    303 non-null
     6
          restecg
                    303 non-null
                                    int64
                    303 non-null
                                    int64
          thalachh
                                    int64
     8
                    303 non-null
          exng
     9
          oldpeak
                    303 non-null
                                    float64
     10
         slp
                    303 non-null
                                    int64
          caa
                    303 non-null
                                    int64
      12
         thall
                    303 non-null
                                    int64
         output
                    303 non-null
                                    int64
     dtypes: float64(1), int64(13)
     memory usage: 33.3 KB
     Number of rows are 303 and number of columns are 14
    age
                 0
     sex
                 0
     ср
     trtbps
                 0
     chol
                 0
     fbs
     restecg
                 0
     thalachh
     exng
     oldpeak
     slp
                 0
     caa
     thall
                 0
     output
                 0
     dtype: int64
# Проверка дубликатов
heart_df[heart_df.duplicated()]
           age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp caa thall output
      164
           38
                     2
                           138
                                 175
                                        0
                                                         173
                                                                        0.0
                                                                               2
                                                                                           2
                                                                                                   1
                 1
# Удаление дубликатов
heart_df.drop_duplicates(keep='first',inplace=True)
heart_df[heart_df.duplicated()]
       age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp caa thall output
```

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa
count	302.00000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000 3
mean	54.42053	0.682119	0.963576	131.602649	246.500000	0.149007	0.526490	149.569536	0.327815	1.043046	1.397351	0.718543
std	9.04797	0.466426	1.032044	17.563394	51.753489	0.356686	0.526027	22.903527	0.470196	1.161452	0.616274	1.006748
min	29.00000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.000000
25%	48.00000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.250000	0.000000	0.000000	1.000000	0.000000
50%	55.50000	1.000000	1.000000	130.000000	240.500000	0.000000	1.000000	152.500000	0.000000	0.800000	1.000000	0.000000
75%	61.00000	1.000000	2.000000	140.000000	274.750000	0.000000	1.000000	166.000000	1.000000	1.600000	2.000000	1.000000
max	77.00000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.000000	4.000000

матрица корреляции cor_mat = heart_df.corr() cor_mat

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	outp
age	1.000000	-0.094962	-0.063107	0.283121	0.207216	0.119492	-0.111590	-0.395235	0.093216	0.206040	-0.164124	0.302261	0.065317	-0.2214
sex	-0.094962	1.000000	-0.051740	-0.057647	-0.195571	0.046022	-0.060351	-0.046439	0.143460	0.098322	-0.032990	0.113060	0.211452	-0.2836
ср	-0.063107	-0.051740	1.000000	0.046486	-0.072682	0.096018	0.041561	0.293367	-0.392937	-0.146692	0.116854	-0.195356	-0.160370	0.4320
trtbps	0.283121	-0.057647	0.046486	1.000000	0.125256	0.178125	-0.115367	-0.048023	0.068526	0.194600	-0.122873	0.099248	0.062870	-0.1462
chol	0.207216	-0.195571	-0.072682	0.125256	1.000000	0.011428	-0.147602	-0.005308	0.064099	0.050086	0.000417	0.086878	0.096810	-0.0814
fbs	0.119492	0.046022	0.096018	0.178125	0.011428	1.000000	-0.083081	-0.007169	0.024729	0.004514	-0.058654	0.144935	-0.032752	-0.0268
restecg	-0.111590	-0.060351	0.041561	-0.115367	-0.147602	-0.083081	1.000000	0.041210	-0.068807	-0.056251	0.090402	-0.083112	-0.010473	0.1348
thalachh	-0.395235	-0.046439	0.293367	-0.048023	-0.005308	-0.007169	0.041210	1.000000	-0.377411	-0.342201	0.384754	-0.228311	-0.094910	0.4199
exng	0.093216	0.143460	-0.392937	0.068526	0.064099	0.024729	-0.068807	-0.377411	1.000000	0.286766	-0.256106	0.125377	0.205826	-0.4356
oldpeak	0.206040	0.098322	-0.146692	0.194600	0.050086	0.004514	-0.056251	-0.342201	0.286766	1.000000	-0.576314	0.236560	0.209090	-0.4291
slp	-0.164124	-0.032990	0.116854	-0.122873	0.000417	-0.058654	0.090402	0.384754	-0.256106	-0.576314	1.000000	-0.092236	-0.103314	0.3439
caa	0.302261	0.113060	-0.195356	0.099248	0.086878	0.144935	-0.083112	-0.228311	0.125377	0.236560	-0.092236	1.000000	0.160085	-0.4089
thall	0.065317	0.211452	-0.160370	0.062870	0.096810	-0.032752	-0.010473	-0.094910	0.205826	0.209090	-0.103314	0.160085	1.000000	-0.3431
output	-0.221476	-0.283609	0.432080	-0.146269	-0.081437	-0.026826	0.134874	0.419955	-0.435601	-0.429146	0.343940	-0.408992	-0.343101	1.0000

Тепловая карта, представляющая корреляционную матрицу

 $\label{fig} fig = px.imshow(cor_mat, color_continuous_scale='RdBu_r', origin='lower') \\ fig.show()$

Возраст

heart_df['age'].unique()

```
array([63, 37, 41, 56, 57, 44, 52, 54, 48, 49, 64, 58, 50, 66, 43, 69, 59, 42, 61, 40, 71, 51, 65, 53, 46, 45, 39, 47, 62, 34, 35, 29, 55, 60,
              67, 68, 74, 76, 70, 38, 77])
heart_df['age'].nunique()
     41
age_lst = heart_df['age'].value_counts().index
nop_age = heart_df['age'].value_counts().values
print("Уникальный возраст: ")
print(age_lst)
print("Кол-во уникальных возрастов: ")
print(nop_age)
      Уникальный возраст:
      Int64Index([58, 57, 54, 59, 52, 51, 62, 56, 44, 60, 41, 64, 67, 63, 43, 55, 42,
                    61, 65, 53, 45, 50, 48, 46, 66, 47, 49, 70, 39, 68, 35, 71, 40, 69, 34, 37, 38, 29, 74, 76, 77],
                  dtype='int64')
      Кол-во уникальных возрастов:
     [19 17 16 14 13 12 11 11 11 11 10 10 9 9 8 8 8 8 8 8 8 7 7 7 7 7 5 5 4 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1]
fig = px.histogram(heart_df,
               x='age',
               nbins=10,
               title='Сопоставление возраст и количества каждого из возрастов'
fig.show()
```

Сопоставление возраст и количества каждого из возрастов

Сопоставление возраста и числа сердечных приступов

Вывод: Наибольшее количество сердечных приступов наблюдается в возрастной группе 50-54 года.

Пол

Сопоставление пола и числа сердечных приступов

Вывод: явной связи с полом не наблюдается

Боль в груди

Сопоставление типов боли с кол-вом средечных приступов

Вывод: Типичная ангина имеет наибольшее количество сердечных приступов, т.е. 68.

→ Обучение модели

Обученную модель можно использовать для предсказания вероятности сердечного признака обследуемого на данных, полученных в результате врачебного обследования.

Разделение на тестовую и обучающую выборки Дата-сет был разделен на обучающую и тестовую выборки. Размер обучающей выборки - 80%, тестовой - 20%.

```
X = heart_df.iloc[:, :-1].values
y = heart_df.iloc[:, -1].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state= 0)
print('Shape for training data', X_train.shape, y_train.shape)
print('Shape for testing data', X_test.shape, y_test.shape)

Shape for training data (241, 13) (241,)
Shape for testing data (61, 13) (61,)
```

Масштабирование

```
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

- Обучение модели

Путем подбора наилучшего алгоритма обучения для получения максимальной точности, лучшую точность показал алгоритм - **Support vector machine** (список используемых алгоритмов: Logistic Regression, Gaussian Naive Bayes, Bernoulli Naive Bayes, Support Vector Machine, K Nearest Neighbours, X Gradient Boosting).

```
svm_model = SVC()
svm_model.fit(X_train, y_train)

predicted = svm_model.predict(X_test)
print("The accuracy of SVM is : ", accuracy_score(y_test, predicted)*100, "%")

The accuracy of SVM is : 93.44262295081968 %
```

Платные продукты Colab - Отменить подписку

✓ 0 сек. выполнено в 22:06