Lab Nr. 3, Probability and Statistics

Continuous Random Variables; CDF and Inverse CDF; Quantiles; Approximations of the Binomial Distribution

- **1.** Let X have one of the following distributions: $X \in N(\mu, \sigma)$ (normal), $X \in T(n)$ (Student), $X \in \chi^2(n)$, or $X \in F(m, n)$ (Fischer). Compute the following:
- a) $P(X \le 0)$ and $P(X \ge 0)$;
- b) $P(-1 \le X \le 1)$ and $P(X \le -1 \text{ or } X \ge 1)$;
- c) the value x_{α} such that $P(X < x_{\alpha}) = \alpha$, for $\alpha \in (0,1)$ (x_{α} is called the *quantile* of order α);
- d) the value x_{β} such that $P(X > x_{\beta}) = \beta$, for $\beta \in (0,1)$ (x_{β} is the quantile of order 1β).
- 2. Approximations of the Binomial distribution
 - **Normal** approximation of the binomial distribution: For moderate values of p (0.05 $\leq p \leq$ 0.95) and large values of n ($n \to \infty$),

$$\operatorname{Bino}(n,p) \approx \operatorname{Norm}\left(\mu = np, \sigma = \sqrt{np(1-p)}\right).$$

Write a Matlab code to visualize how the binomial distribution gradually takes the shape of the normal distribution as $n \to \infty$.

• **Poisson** approximation of the binomial distribution: If $n \ge 30$ and $p \le 0.05$, then

$$Bino(n, p) \approx Poisson(\lambda = np)$$