Interaction

To present the formula for the ANOVA table using repeated observations/cell, we shall consider a rectangular array/matrix with $\bf r$ rows, $\bf c$ columns, $\bf n$ observation/cell

i.e **rc** cells with **n** observations/cell

N = rcn

Rows			Total	Mean	
	1	2	3 j c		
	y ₁₁₁	y ₁₂₁	$y_{131} \dots \dots y_{1j1} \dots y_{1c1}$		$ar{y}_{1oo}$
1	y ₁₁₂	<i>y</i> ₁₂₂	$y_{132} \dots \dots y_{1j2} \dots y_{1c2}$	27	
1	:	:	: : :	y_{1oo}	
	y_{11n}	y_{12n}	$y_{13n} \cdots y_{1jn} \cdots y_{1cn}$		
	y ₂₁₁	y_{221}	$y_{231} \dots y_{2j1} \dots y_{2c1}$		$ar{y}_{2oo}$
2	y ₂₁₂	y_{222}	$y_{232} \dots \dots y_{2j2} \dots y_{2c2}$	y_{2oo}	
2	:	:	: : :		
	y_{21n}	y_{22n}	$y_{23n} \cdots y_{2jn} \cdots y_{2cn}$		
	:	:	: : :		$ar{y}_{ioo}$
	y_{i11}	y_{i21}	y_{i31} y_{ij1} y_{ic1}		
i	y_{i12}	y_{i22}	$y_{i32} \dots \dots y_{ij2} \dots y_{ic2}$	y_{ioo}	
	:	:	: : :		
	y_{i1n}	y_{i2n}	$y_{i3n} \cdots y_{ijn} \cdots y_{icn}$		
R	y_{r11}	y_{r21}	$y_{r31} \dots y_{rj1} \dots y_{rc1}$		
	y_{r12}	y_{r22}	$y_{r32} \dots y_{rj2} \dots y_{rc2}$	y_{roo}	$ar{y}_{roo}$
	:	:	: : :		

	y_{r1n}	y_{r2n}	$y_{r3n} \dots y_{rjn} \dots y_{rcn}$		
Total	y_{ojo}	y_{o2o}	$y_{o3o} \dots y_{ojo} \dots y_{oco}$	y_{ooo}	
Mean	\overline{y}_{ojo}	\overline{y}_{o2o}	$\overline{y}_{o3o} \dots \overline{y}_{ojo} \dots \overline{y}_{oco}$		\overline{y}_{ooo}

 y_{ijk} is the k^{th} observation in the i^{th} row and the j^{th} column

 y_{ijo} is the sum of the observations in the ij^{th} cell

 y_{ioo} is the sum of the observations in the i^{th} row

 y_{ojo} is the sum of the observations in the j^{th} column

 y_{ooo} is the grand total of all the N = rcn observations

 \bar{y}_{ooo} is the grand mean

Model is

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

Where

 $y_{ijk} - k^{th}$ observation for the i^{th} row and the j^{th} column.

 μ - general mean

 α_i - i^{th} row effect

 β_i - j^{th} column effect

 $(lphaeta)_{ij}$ - interaction between the $i^{ ext{th}}$ row and the $j^{ ext{th}}$ column

 \in_{ijk} – error term

Hypotheses

$$H_{o1}$$
: $\alpha_1 = \alpha_2 = \dots = \alpha_r = 0$ Vs H_{AI} : Some $\alpha_i \neq 0$

$$H_{o2}$$
: $\beta_1 = \beta_2 = \dots = \beta_c = 0$ Vs H_{A2} : Some $\beta_j \neq 0$

$$H_{03}$$
: $(\alpha\beta)_{11} = (\alpha\beta)_{12} = \dots = (\alpha\beta)_{rc} = 0 \text{ Vs } H_{A3}$: Some $(\alpha\beta)_{ij} \neq 0$

Computations

Note that total sums of squares (SST) is split into 4 components, that is,

sums of squares due to rows

sums of squares due to columns

sums of squares due to interaction, and

sums of squares due to error, that is,

$$SST = SSR + SSC + SS(RC) + SSE$$

The computational formula for the sums of squares are:

$$SST = \sum_{i}^{r} \sum_{j}^{c} \sum_{k}^{n} y_{ijk}^{2} - \frac{y_{ooo}^{2}}{N} \quad \text{from} \quad \sum_{i}^{r} \sum_{j}^{c} \sum_{k}^{n} (y_{ijk} - \bar{y}_{ooo})^{2}$$

$$SSR = \sum_{i}^{r} \frac{y_{ioo}^{2}}{cn} - \frac{y_{ooo}^{2}}{N} \quad \text{from} \quad cn \sum_{i=1}^{r} (\bar{y}_{ioo} - \bar{y}_{ooo})^{2}$$

$$SSC = \sum_{j=1}^{c} \frac{y_{ojo}^{2}}{rn} - \frac{y_{ooo}^{2}}{N} \quad \text{from} \quad rn \sum_{j=1}^{c} (\bar{y}_{ojo} - \bar{y}_{ooo})^{2}$$

$$SS(RC) = \frac{\sum \sum y_{ijo}^{2}}{n} - \frac{\sum y_{ioo}^{2}}{cn} - \frac{\sum y_{ojo}^{2}}{rn} + \frac{y_{ooo}^{2}}{N}$$

$$SSE = SST - SSR - SSC - SS(RC)$$

ANOVA table

Source of variation	df	SS	ms	F-ratio
Rows	(r – 1)	SSR	$MSR = \frac{SSR}{(r-1)}$	$F_{1c} = \frac{MSR}{MSE}$
Columns	(c-1)	SSC	$MSC = \frac{SSC}{(c-1)}$	$F_{2c} = \frac{\textit{MSC}}{\textit{MSE}}$
Interaction	(r-1)(c-1)	SS(RC)	$MS(RC) = \frac{SS(RC)}{(r-1)(c-1)}$	$F_{3c} = \frac{MS(RC)}{MSE}$
Error	rc(n – 1)	SSE	$MSE = \frac{SSE}{rc(n-1)}$	-
Total	N – 1 or (rcn) – 1	SST	-	-

Table Y: Yield of beans with 3 observations/cell

Fertilisers	Varieties of beans			
	V_1	\mathbf{V}_2	V_3	
t ₁	64	72	74	
	66	81	51	
	70	64	65	
t ₂	55	57	47	
	63	43	58	

	68	52	67
t ₃	59	66	58
	68	71	39
	65	59	42
t4	58	57	53
	41	61	59
	46	53	38

$$r = 4$$
, $c = 3$, $n = 3$, $N = rcn = 4x3x3 = 36$

Test the hypotheses that

- a) The average yield of the beans is the same when different fertilisers are used.
- b) There is no difference in the average yield for the different varieties of the beans.
- c) There is no interaction between fertilisers and varieties.

Model

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$
Where

 $y_{ijk} - k^{th}$ observation for the i^{th} fertiliser and the j^{th} variety

 μ - general mean

 $\alpha_i - i^{th}$ fertiliser effect

 $\beta_j - j^{th}$ variety effect

 $(\alpha\beta)_{ij}$ - interaction between the i^{th} fertiliser and j^{th} variety

 ϵ_{ijk} - error term

Hypotheses

H_{o1}:
$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0 \text{ Vs H}_{AI}$$
: Some $\alpha_i \neq 0$
H_{o2}: $\beta_1 = \beta_2 = \beta_3 = 0 \text{ Vs H}_{A2}$: Some $\beta_j \neq 0$
H_{o3}: $(\alpha\beta)_{11} = (\alpha\beta)_{12} = (\alpha\beta)_{13} = \dots = (\alpha\beta)_{43} = 0$
H_{A3}: Some $(\alpha\beta)_{ij} \neq 0$

Rejection criteria

Reject
$$H_{o1}$$
 if $F_{Ic} \ge F_{\alpha}$, $(r-1)$, $rc(n-1) = F_{0.05, 3, 24} = 3.01$
Reject H_{o2} if $F_{2c} \ge F_{\alpha}$, $(c-1)$, $rc(n-1) = F_{0.05, 2, 24} = 3.40$
Reject H_{o3} if $F_{3c} \ge F_{\alpha}$, $(r-1)(c-1)$, $rc(n-1) = F_{0.05, 6, 24} = 2.51$

Computations

Construct a table of cell totals

Fertilisers	Varieties of beans			y_{ioo}
	\mathbf{V}_1	\mathbf{V}_2	V_3	
t ₁	200	217	190	607
t ₂	186	152	172	510
t ₃	192	196	139	527
t ₄	145	171	150	466
y_{ojo}	723	736	651	$y_{ooo} = 2110$

$$C.F = \frac{y_{000}^2}{N} = \frac{2110^2}{36} = 123,669$$

$$SST = [64^2 + 66^2 + \dots + 38^2] - 123,669 = 127,508 - 123,669 = 3839$$

$$SSR = \frac{[607^2 + 510^2 + 527^2 + 466^2]}{3 \times 3} - C.F = 124,826 - 123,669 = 1157$$

$$SSC = \frac{[723^2 + 736^2 + 651^2]}{4 \times 3} - C.F = 124,019 - 123,669 = 350$$

$$SS(RC) = \frac{[200^2 + 186^2 + \dots + 150^2]}{3} - 124,826 - 124,019 + 123,669 = 771$$

$$SSE = SST - SSR - SSC - SS(RC) = 3839 - 1157 - 350 - 771 = 1561$$

ANOVA table

Source of variation	df	SS	ms	F-ratio
Fertilisers	3	1157	385.67	$F_{1c} = 5.92$
Varieties	2	350	175.00	$F_{2c} = 2.69$
Interaction	6	771	128.50	$F_{3c} = 1.98$
Error	24	1561	65.04	-
Total	35	3839	-	-

Conclusion

$$F_{1c}(5.92) > F_{1T}(3.01)$$
, Reject H_{o1}

There is a significant difference in the yield of beans due to the fertiliser effect.

$$F_{2c}(2.69) < F_{2T}(3.40)$$
, Accept H_{o2}

The variety effect is not significant.

$$F_{3c}(1.98) < F_{3T}(2.51)$$
, Accept H_{o3}

The interaction effect between fertilisers and varieties is not significant.