A Pattern-Based Core Ontology for Product Lifecycle Management based on DUL

Falko Schönteich, Andreas Kasten and Ansgar Scherp

Problem Description

Problem Description (2)

(a) Engineering View of LEGO Train based on Functionality

(b) Manufacturing View of LEGO Train based on Manufacturing steps

Goals and Approach

- Goals
 - Provide formal basis to express different views product (part)s
 - Integrating existing and new ontologies
- Solution Approach
 - Pattern-based Ontology Engineering
 - Based on Foundational Ontology
 - Integrated into joint semantic and software engineering process

Requirements

- Req 1: Differentiating between product concepts and product instance
- Req 2: Different views on parts depending on context
- Req 3: Distributed workflow models and workflow executions
- Req 4: Secure distributed group management and acces right management

Our Solution: CO-PLM

Product Part Information Entity Pattern

Product Part Pattern

Product Part Pattern

Product Part Description Pattern

Evaluation of Practical Use

(b) Reasoning and Axioms for LEGO Example

(c) Reasoning Runs for Synthetic Data

Quadratic regression: $R^2 = 0.9973 p < 001 df = 3$

Work in Progress / Future Work

 Elaborating our Joint Software and Semantic Engineering Process (JoSSEP) in more detail

- Integrating CO-PLM and JoSSEP into a framework for decentralized protected networks
 - Integrating CO-PLM (and/ or other ontologies) into a decentralized Attribute Based Access, Flow and Usage Control infrastructure
 - Integrate decentralized semantic Group Management

Thank you for your attention!