STAT2401 Analysis of Experiments – Test 1

Solutions

Sweetness of Orange Juice. The quality of the orange juice produced by a manufacturer (e.g., Minute Maid, Tropicana) is constantly monitored. There are numerous sensory and chemical components that combine to make the best tasting orange juice. For example, one manufacturer has developed a quantitative index of the "sweetness" (Sweetness) of orange juice. (The higher the index, the sweeter the juice.) Is there a relationship between the sweetness index and a chemical measure such as the amount of water-soluble pectin (Pectin). (parts per million) in the orange juice? Data collected on these two variables for 24 production runs at a juice manufacturing plant. Suppose a manufacturer wants to use simple linear regression to predict the sweetness (Sweetness) from the amount of pectin (Pectin), that is .

Sweetness =
$$\beta_0 + \beta_1 \text{Pectin} + \epsilon$$

where ϵ is normally distributed with mean 0 and variance σ^2 .

We have the following R output

```
Call:
lm(formula = Sweetness ~ Pectin)
Residuals:
                            3Q
   Min
            1Q
               Median
                                 Max
                 -8.38
                       29.84 88.99
 -51.43 -26.25
Coefficients:
             Estimate Std. Error
                                             Pr(>|t|)
                                  t value
 (Intercept)
             -52.1506
                          47.6769
                                   -1.0938
                                                0.2859
               1.6262
                           0.1536
                                   10.5900
     Pectin
                                            4.211e-10
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 36.5121 on 22 degrees of freedom
Multiple R-squared: 0.8360, Adjusted R-squared: 0.8285
F-statistic: 112.1485 on 1 and 22 DF, p-value: 4.211e-10
```

Answer the following questions:

Question 1. [1 Mark]

The estimate of β_0 is

- (a) 1.6262,
- (b) 0.1536,
- (c) -52.1506, or \checkmark
- (d) 47.6769.

Question 2.

[1 Mark]

The estimate of β_1 is

- (a) 0.1536,
- (b) 1.6262, √
- (c) -52.1506, or
- (d) 47.6769.

Question 3.

[1 Mark]

The fitted model is given by

- (a) Sweetness = $1.6262 + -52.1506 \times Pectin$,
- (b) Sweetness = $-52.1506 + 1.6262 \times Pectin$, \checkmark
- (c) Sweetness = $47.6769 + 1.6262 \times Pectin$, or
- (d) Sweetness = $-52.1506 + 0.1536 \times Pectin$.

Question 4.

[1 Mark]

The estimate of $\sqrt{\sigma^2}$ is

- (a) 0.8360,
- (b) 0.4180,
- (c) 36.5121, or \checkmark
- (d) 112.1485.

Question 5.

[1 Mark]

The estimate of $SE(\widehat{\beta}_0)$ is

- (a) $0.1536^2 = 0.0236$,
- (b) 47.6769, √
- (c) 0.1536, or
- (d) $47.6769^2 = 2273.0868$.

Question 6.

[1 Mark]

The estimate of $Var(\widehat{\beta}_0)$ is

- (a) $0.1536^2 = 0.0236$,
- (b) $(-52.1506)^2 = 2719.6851$,
- (c) $1.6262^2 = 2.6445$, or
- (d) $47.6769^2 = 2273.0868. \checkmark$

Question 7.

[1 Mark]

The estimate of $SE(\widehat{\beta}_1)$ is

- (a) 47.6769,
- (b) $47.6769^2 = 2273.0868$,
- (c) $0.1536^2 = 0.0236$, or
- (d) 0.1536. ✓

Question 8.

[1 Mark]

The estimate of $Var(\widehat{\beta}_1)$ is

- (a) $47.6769^2 = 2273.0868$,
- (b) $0.1536^2 = 0.0236$, \checkmark
- (c) $(-52.1506)^2 = 2719.6851$, or
- (d) $1.6262^2 = 2.6445$.

Question 9.

[1 Mark]

The t-statistic for the test $H_0: \beta_0 = 1$ vs $H_1: \beta_0 \neq 1$ is given by

- (a) $\frac{-52.1506-1}{47.6769}$, \checkmark
- (b) $\frac{-52.1506}{47.6769}$,
- (c) $\frac{1.6262}{0.1536}$, or
- (d) $\frac{1.6262-1}{0.1536}$.

Question 10. [1 Mark]

The t-statistic for the test $H_0: \beta_1 = 1$ vs $H_1: \beta_1 \neq 1$ is given by

- (a) $\frac{-52.1506-1}{47.6760}$,
- (b) $\frac{1.6262-1}{0.4532}$, $\sqrt{}$
- (c) $\frac{-52.1506}{47.6769}$, or
- (d) $\frac{1.6262}{0.1536}$.

Question 11. [1 Mark]

The *p*-value for the test $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ is given by

- (a) 4.211e-10, √
- (b) 10.5900,
- (c) 0.2859, or
- (d) -1.0938.

Question 12. [1 Mark]

The *p*-value for the test $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ is given by

- (a) 47.6769,
- (b) 10.5900,
- (c) 4.211e-10, or
- (d) 0.2859. √

Question 13. [1 Mark]

For the test $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$, at the $(\alpha =)5\%$ significance level, we

- (a) reject H_0 because the p-value $< 0.05 = \alpha$,
- (b) do not reject H_0 because the p-value $> 0.025 = \alpha/2$,
- (c) do not reject H_0 because the p-value $> 0.05 = \alpha$, or \checkmark
- (d) reject H_0 because the p-value $< 0.025 = \alpha/2$.

Question 14. [1 Mark]

For the test $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$, at the $(\alpha =)5\%$ significance level, we

- (a) do not reject H_0 because the p-value $> 0.025 = \alpha/2$,
- (b) reject H_0 because the *p*-value $< 0.025 = \alpha/2$,
- (c) do not reject H_0 because the p-value $> 0.05 = \alpha$, or
- (d) reject H_0 because the p-value $< 0.05 = \alpha$.

Question 15. [1 Mark]

For the linear regression, we are interested to see whether there is linear relationship between the variables Pectin and Sweetness, so we are interested in the test:

- (a) $H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0, \checkmark$
- (b) $H_0: \beta_1 = \beta_0 \text{ vs } H_1: \beta_1 \neq \beta_0$,
- (c) $H_0: \sigma^2 = 0 \text{ vs } H_1: \sigma^2 \neq 0, \text{ or }$
- (d) $H_0: \beta_0 = 0 \text{ vs } H_1: \beta_0 \neq 0.$

Note that qt(1-0.05/2,22)=2.0739

Question 16. [1 Mark]

The 95% CI for β_1 is given by

- (a) $(-52.1506 2.0739 \times 0.1536, -52.1506 + 2.0739 \times 0.1536) = (-52.4692, -51.8320),$
- (b) $(1.6262 2.0739 \times 47.6769, 1.6262 + 2.0739 \times 47.6769) = (-97.2509, 100.5033),$
- (c) $(-52.1506 2.0739 \times 47.6769, -52.1506 + 2.0739 \times 47.6769) = (-151.0277, 46.7265)$, or
- (d) $(1.6262 2.0739 \times 0.1536, 1.6262 + 2.0739 \times 0.1536) = (1.3076, 1.9448)$.

Question 17. [1 Mark]

The 95% CI for β_0 is given by

- (a) $(-52.1506 2.0739 \times 47.6769, -52.1506 + 2.0739 \times 47.6769) = (-151.0277, 46.7265), \checkmark$
- (b) $(-52.1506 2.0739 \times 0.1536, -52.1506 + 2.0739 \times 0.1536) = (-52.4692, -51.8320),$
- (c) $(1.6262 2.0739 \times 47.6769, 1.6262 + 2.0739 \times 47.6769) = (-97.2509, 100.5033)$, or
- (d) $(1.6262 2.0739 \times 0.1536, 1.6262 + 2.0739 \times 0.1536) = (1.3076, 1.9448)$.

Now, we denote $(\widehat{y}_1,\ldots,\widehat{y}_n)$ be the fitted values, (y_1,\ldots,y_n) be the observed values of Sweetness, (x_1,\ldots,x_n) be the observed values of Pectin. Let $e_i=y_i-\widehat{y}_i$ for $i=1,\ldots,n$. So the residuals are $(e_1,\ldots,e_n)=(y_1-\widehat{y}_1,\ldots,y_n-\widehat{y}_n)$. Here we also take $\overline{x}=\frac{1}{n}\sum_{i=1}^n x_i$ and $\overline{y}=\frac{1}{n}\sum_{i=1}^n y_i$. We are also given $\overline{x}=306.667$.

Question 18. [1 Mark]

The Sum of Squares $\sum_{i=1}^{n} (x_i - \overline{x})^2$ is then given by

- (a) $0.1536^2 \times 36.5121^2 = 31.4526$,
- (b) $10.5900^2 \times 36.5121^2 = 149508.3831$,
- (c) $\frac{36.5121^2}{10.5900^2} = 11.8873$, or
- (d) $\frac{36.5121^2}{0.1536^2} = 56505.5613. \checkmark$

Question 19. [1 Mark]

We call $\sum_{i=1}^{n} e_i^2$ Residual Sum of Squares and it has the value

- (a) $36.5121^2 \times 24 = 31995.2027$,
- (b) $36.5121 \times 24 = 876.2904$,
- (c) $36.5121 \times 22 = 803.2662$, or
- (d) $36.5121^2 \times 22 = 29328.9358.$ \checkmark

Question 20. [1 Mark]

The term $\sum_{i=1}^{n} (y_i - \overline{y})^2 - \widehat{\beta}_1^2 \sum_{i=1}^{n} (x_i - \overline{x})^2$ is

- (a) Total Sum of Squares,
- (b) Residual Standard Error,
- (c) Regression Sum of Squares, or
- (d) Residual Sum of Squares. ✓

Question 21. [1 Mark]

Let r be the sample correlation coefficient between Pectin and Sweetness, so |r| is given by

- (a) 0.4180,
- (b) $\sqrt{0.4180} = 0.6465$,
- (c) 0.8360, or
- (d) $\sqrt{0.8360} = 0.9143$. \checkmark

Question 22.

[1 Mark]

The F-statistic at the bottom of the table is calculated for the test

- (a) $H_0: \beta_0 = \beta_1 = 0 \text{ vs } H_1: \beta_0 \neq 0 \text{ or } \beta_1 \neq 0$,
- (b) $H_0: \beta_0 \beta_1 = 0 \text{ vs } H_1: \beta_0 \beta_1 \neq 0$,
- (c) $H_0: \beta_0 = 0 \text{ vs } H_1: \beta_0 \neq 0, \text{ or }$
- (d) $H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0. \checkmark$

Question 23.

[1 Mark]

The term $\widehat{\beta}_1^2 \sum_{i=1}^n (x_i - \overline{x})^2 + \sum_{i=1}^n (y_i - \widehat{y}_i)^2$ is

- (a) Residual Standard Error,
- (b) Residual Sum of Squares,
- (c) Total Sum of Squares, or ✓
- (d) Regression Sum of Squares.

Question 24.

[1 Mark]

Regression Sum of Squares is also given by

- (a) $\frac{36.5121^2}{0.1536^2} = 56505.5613$,
- (b) $\frac{36.5121^2}{10.5900^2} = 11.8873$,
- (c) $0.1536^2 \times 36.5121^2 = 31.4526$, or
- (d) $10.5900^2 \times 36.5121^2 = 149508.3831.$ \checkmark

Question 25.

[1 Mark]

The sample average of Sweetness \overline{y} is also given by

- (a) $(-52.1506) + 1.6262 \times 306.6667 = 446.5508$, \checkmark
- (b) (-52.1506) + 306.6667 = 254.5161,
- (c) $1.6262 \times 306.6667 = 498.7014$, or
- (d) $1.6262 + (-52.1506) \times 306.6667 = -15991.2262$.

Question 26. [1 Mark]

The R^2 is also given by

(a)
$$\widehat{\beta}_1^2 \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{\sum_{i=1}^n (y_i - \overline{y})^2}, \checkmark$$

(b)
$$\widehat{\beta}_0^2 \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{\sum_{i=1}^n (y_i - \widehat{y}_i)^2}$$

(b)
$$\widehat{\beta}_{0}^{2} \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}},$$
(c)
$$\widehat{\beta}_{0}^{2} \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}, \text{ or }$$
(d)
$$\widehat{\beta}_{1}^{2} \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}.$$

(d)
$$\widehat{\beta}_1^2 \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{\sum_{i=1}^n (y_i - \widehat{y}_i)^2}$$

Question 27. [1 Mark]

The correlation coefficient r between Pectin and Sweetness is given by

(a)
$$\frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}},$$

(b)
$$\frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \widehat{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

(b)
$$\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})(y_{i}-\widehat{y}_{i})}{\sqrt{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}\sum_{i=1}^{n}(y_{i}-\overline{y})^{2}}},$$
(c)
$$\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})(y_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}\sum_{i=1}^{n}(y_{i}-\overline{y})^{2}}}, \text{ or } \checkmark$$

$$\left(\mathbf{d}\right) \quad \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \widehat{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}}.$$

Question 28. [1 Mark]

The correlation coefficient r between Pectin and Sweetness, it is also true that

(a)
$$r = \sqrt{R^2}$$
,

(b)
$$R^2 = r$$
,

(c)
$$r^2 = \sqrt{R^2}$$
, or

(d)
$$R^2 = r^2$$
.

Question 29. [1 Mark]

Total Sum of Squares $\sum_{i=1}^{n}(y_i-\overline{y})^2$ is also given by

(a)
$$R^2 \times \sum_{i=1}^n (y_i - \hat{y}_i)^2$$
,

(b)
$$R^2 \times \sum_{i=1}^{n} (y_i - \overline{y})^2$$
,

(c)
$$\frac{\sum_{i=1}^{n}(y_i-\widehat{y}_i)^2}{R^2}$$
, or

(d)
$$\frac{\sum_{i=1}^{n}(\widehat{y}_i - \overline{y})^2}{R^2}. \checkmark$$

Question 30. [1 Mark]

Regression Sum of Squares $\sum_{i=1}^n (\widehat{y}_i - \overline{y})^2$ is also given by

(a)
$$R^2 \times \sum_{i=1}^n (y_i - \hat{y}_i)^2$$
,

(a)
$$R^2 \times \sum_{i=1}^n (y_i - \widehat{y}_i)^2$$
,
(b) $R^2 \times \sum_{i=1}^n (y_i - \overline{y})^2$, \checkmark
(c) $\frac{\sum_{i=1}^n (\widehat{y}_i - \overline{y})^2}{R^2}$, or
(d) $\frac{\sum_{i=1}^n (y_i - \widehat{y}_i)^2}{R^2}$.

(c)
$$\frac{\sum_{i=1}^{n}(\widehat{y}_i-\overline{y})^2}{R^2}$$
, or

(d)
$$\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

STAT2401 Analysis of Experiments – Test 1 Answer

- 1 (A) (B) (D)
- 11 **B C D**
- 21 (A) (B) (C)

- 2 (A) (D)
- 12 (A) (B) (C)
- 22 (A) (B) (C)

- 3 (A) (C) (D)
- 13 (A) (B) (D)
- 23 (A) (B) (D)

- 4 (A) (B) (D)
- 14 (A) (B) (C)
- 24 (A) (B) (C)

- 5 (A) (C) (D)
- 15 B C D
- 25 **B** C D

- 6 (A) (B) (C)
- 16 (A) (B) (C)
- 26 B C D

- 7 (A) (B) (C)
- 17 **B C D**
- 27 (A) (B) (D)

- 8 (A) (C) (D)
- 18 (A) (B) (C)
- 28 (A) (B) (C)

- 9 B C D
- 19 (A) (B) (C)
- 29 (A) (B) (C)

- **10** (A) (C) (D)
- 20 (A) (B) (C)
- **30** (A) (C) (D)