CS Bridge Module 12 Recursions Part 1

1. Recursions - Part 1

1.1 CS Bridge: Recursions

1.2 Mathematical Induction overview

Notes:

1.3 Mathematical Induction Example

1.4 Walkthrough

Notes:

1.5 Strong Induction Overview

1.6 Strong Induction Example Part 1

1.7 Strong Induction Example Part 2

Notes:

1.8 Knowledge Check

(Sequence Drag-and-Drop, 10 points, 4 attempts permitted)

Correct Order

Base Case: Prove that P(n) holds for n=0, or n=1

Induction Hypothesis: Since the base case holds, assume that P(k) also holds

Inductive Step: Show that P(k) implies P(k+1)

Feedback when correct:

That's right! You selected the correct response.

Feedback when incorrect:

You did not select the correct response.

Correct (Slide Layer)

Incorrect (Slide Layer)

Try Again (Slide Layer)

1.9 Knowledge Check

(Sequence Drag-and-Drop, 10 points, 4 attempts permitted)

Correct Order

Base Case: Prove that P(n) holds for n=0, or n=1

Induction Hypothesis: Since the base case holds, assume that P(k) also holds for all values n such that n is less than or equal to k

Inductive Step: Show that P(k) implies P(k+1)

Feedback when correct:

That's right! You selected the correct response.

Feedback when incorrect:

You did not select the correct response.

Correct (Slide Layer)

Incorrect (Slide Layer)

Try Again (Slide Layer)

1.10 Knowledge Check

(Matching Drag-and-Drop, 10 points, 2 attempts permitted)

Correct	Choice
Induction	If T(k) is true, then T(k+1) is also true
Strong Induction	If T(i) is true for all values of i less than or equal to k, then T(k+1) is true

Feedback when correct:

That's right! Regular (weak) induction only considers one case to imply the final case. Strong induction considers every iteration to imply the final case.

Feedback when incorrect:

You did not select the correct response.

Correct (Slide Layer)

Incorrect (Slide Layer)

Try Again (Slide Layer)

1.11 Results Slide

(Results Slide, O points, 1 attempt permitted)

Results for
1.8 Knowledge Check
1.9 Knowledge Check
1.10 Knowledge Check

Result slide properties

Passing 80%

Score

Success (Slide Layer)

Failure (Slide Layer)

1.12 End of Module

