Section 1 - Data Parallelism

1. Splitting Input Data

Table of Contents

- Overview
- Single-node training is too slow
- Data parallelism the high-level bits
- Hyperparameter tuning

Overview

- Data Parallelism
 - Each GPU/node holds the full copy of a model
 - Partitions the input data into disjoint subsets
- Model synchronization
 - Since each GPU only trains its local model on a subset in data parallelism
 - Inference does not require model synchronization phase

Single-node training is too slow

Bandwidth Mismatch

- Mismatch between data loading bandwidth and model training bandwidth makes single-node training too slow
- Due to the limited on-device memory of the GPUs or other accelerators

Total Training Time (hours)

Single-node training is too slow

Accelerating the training with data parallelism

- By incorporating multiple GPUs into the same training job, we expand the model training bandwidth
- Ideally, the model training bandwidth should be linearly increased (system control overheads and network communications)

Data parallelism - the high-level bits

 Main difference between single-node training and data parallel training is how data loading bandwidth is spliced between multiple workers/GPUs

Data parallelism - the high-level bits

Single Node vs Data Parallelism

Data parallelism - the high-level bits Stochastic Gradient Descent

- GD: compute the gradients over all the training data and update the model weights
- SGD: compute the gradients over a subset of all the training data and update the model weights
- In data parallelism, since each worker updates their model weights based on their local training data, the model parameters can be different after each of the training iterations
 - Need model synchronization

Data parallelism - the high-level bits

Model Synchronization

- Before the model parameter updates
 - Collect and sums up all the gradients from all the GPUs in use

$$\nabla W = \nabla W^1 + \nabla W^2 + \nabla W^3 + \dots + \nabla W^N$$

- Broadcast the aggregated gradients to all the GPUs
- For the real system implementations
 - Parameter Server Architecture
 - All-Reduce Architecture

Synchronization
$$\nabla W = \nabla W^1 + \nabla W^2 + \cdots + \nabla W^N$$

Hyperparameter tuning

Global Batch Size

- Global Batch Size
 - In single node training: maximum that can fit into the accelerator's memory
 - In data parallel training: global batch size is not necessarily N*Max(single_node)
 - First hyper parameter to search
 - Too large: may not converge
 - Too small: waste of distributed computational resources

Hyperparameter tuning

Learning Rate Adjustment and Model Synchronization

- Rule of thumb for learning rate adjustment
 - Multiply the learning rate in the single-node case by the number of GPUs
- Model synchronization schemes (torch.distributed: https://pytorch.org/docs/stable/distributed.html)
 - NCCL
 - Glow
 - MPI

Backend	gloo		mpi		nccl	
Device	CPU	GPU	СРИ	GPU	CPU	GPU
send	✓	×	✓	?	×	✓
recv	✓	×	✓	?	×	✓
broadcast	✓	✓	✓	?	×	✓
all_reduce	✓	✓	✓	?	×	✓
reduce	✓	×	✓	?	×	✓
all_gather	✓	×	✓	?	×	✓
gather	✓	×	✓	?	×	✓
scatter	✓	×	✓	?	×	✓
reduce_scatter	×	×	×	×	×	✓
all_to_all	×	×	✓	?	×	✓
barrier	4	×	✓	?	×	✓