LABORATOR#3

ECUAŢII NELINIARE: METODA SECANTEI; METODA POZIŢIEI FALSE (REGULA FALSI)

ALGORITM (Metoda secantei)

Date:
$$f, a, b$$
; $n = 1: x_{n-1} = a$; $x_n = b$; $n \ge 2: x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}$; $n = n+1$; repeat step for $n \ge 2$;

ALGORITM (Metoda poziției false – regula falsi)

Date:
$$f, a, b$$
; $n = 1$: $x_{n-1} = a$; $x_n = b$; $(f(x_0)f(x_1) < 0)$; $n = 2$: $x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}$; $n = n+1$; $n \ge 3$: if $f(x_{n-1})f(x_{n-2}) \le 0$
$$x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}$$
; else (i.e. $f(x_{n-1})f(x_{n-3}) < 0$)
$$x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-3}}{f(x_{n-1}) - f(x_{n-3})}$$
; $x_{n-2} = x_{n-3}$; endif; $n = n+1$; repeat step for $n \ge 3$;

OBS: Metoda secantei și metoda poziției false (regula falsi) au viteza/ordinul de convergență $(1+\sqrt{5})/2 \approx 1,62$.

EX#1 Fie $f: [-1,1] \longrightarrow \mathbb{R}, f(x) = x + e^{-x^2} \cos x$.

- (a) Reprezentați graficul funcției f și salvați imaginea cu numele $\mathtt{Graficf.eps}$
- (b) Creaţi în Python funcţiile Secantaf şi PozitieFalsaf care au ca date de intrare (i) funcţia f care defineţe ecuaţia neliniară, (ii) aproximările iniţiale x_0 şi x_1 , şi (iii) numărul maxim de iteraţii N, şi care determină şi afişează, la fiecare pas al metodei, iteraţia n, aproximărea x_n a rădăcinii funcţiei f şi eroarea relativă a aproximării actuale în raport cu cea precedentă, i.e. $\operatorname{err}_{\mathbf{r}}(x_n) = |x_{n-1} x_n|/|x_{n-1}|$, $n \geq 1$, obţinute cu metoda secantei, respectiv metoda poziţiei false (regula falsi), folosind structura repetitivă for.
- (c) Rulați funcțiile Secantaf și PozitieFalsaf pentru funcția f din enunț, N=10, $x_0=-1$ și $x_1=1$, respectiv $x_0=1$ și $x_1=-1$.
- (d) Reprezentați grafic, în aceeași figură, erorile relative $\operatorname{err}_{\mathbf{r}}(x_n)$, $n \geq 1$, obținute cu metoda secantei, respectiv metoda poziției false (regula falsi), ca funcții de numărul de iterații $n = \overline{1, N}$.
- EX#2 (a) Creați în Python funcțiile Secantaf și PozitieFalsaf care au ca date de intrare (i) funcția f care definețe ecuația neliniară, (ii) aproximările inițiale x_0 și x_1 , și (iii) toleranța admisă TOL, și data de ieșire $x_{\rm aprox}$, generată de metoda secantei, respectiv de metoda poziției false (regula falsi), folosind structura repetitivă while și criteriul de oprire $|f(x_n)| \leq {\tt TOL}$.
 - (b) Fie $f:[0,\pi/2] \longrightarrow \mathbb{R}$, $f(x)=\cos x-x$. Apelaţi funcţiile create la subpunctul (a) pentru funcţia f de mai sus, $TOL=10^{-8}$, $x_0=0$ şi $x_1=\pi/2$, respectiv $x_0=\pi/2$ şi $x_1=0$.

Afișati, în același sistem de coordonate xOy, graficul funcției f, dreapta de ecuație y=0 și șirurile de aproximări generate de metoda secantei, respectiv de metoda poziției false (regula falsi).