AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

CTR_ELO, Cache Type Register

The CTR EL0 characteristics are:

Purpose

Provides information about the architecture of the caches.

Configuration

AArch64 System register CTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register CTR[31:0].

Attributes

CTR EL0 is a 64-bit register.

Field descriptions

63 62 61 60 59585756555453525150494847464544434241403938						3736	35343332			
RES0				Tn	ninLine					
RES1	RES0	DIC	IDC	CWG	ERG	DminLine	L1Ip	RES0		IminLine
31	30	29	28	27262524	23222120	019181716	1514	13121110 9 8 7 6	5 4	3 2 1 0

Bits [63:38]

Reserved, res0.

TminLine, bits [37:32] When FEAT_MTE2 is implemented:

Tag minimum Line. \log_2 of the number of words covered by Allocation Tags in the smallest cache line of all caches which can contain Allocation tags that are controlled by the PE.

Note

- For an implementation with cache lines containing 64 bytes of data and 4 Allocation Tags, this will be $log_2(64/4) = 4$
- For an implementation with Allocations Tags in separate cache lines of 128 Allocation Tags per line, this will be $\log_2(128*16/4) = 9$.

Otherwise:

Reserved, res0.

Bit [31]

Reserved, res1.

Bit [30]

Reserved, res0.

DIC, bit [29]

Instruction cache invalidation requirements for data to instruction coherence.

DIC	Meaning
0b0	Instruction cache invalidation to the Point of Unification is required for data to instruction coherence.
0b1	Instruction cache invalidation to the Point of Unification is not required for data to instruction coherence.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

IDC	Meaning	

0b0	Data cache clean to the Point of Unification is required for
	instruction to data coherence,
	unless CLIDR_EL1.LoC == 0b000
	or (CLIDR_EL1.LoUIS == 0b000
	&& $CLIDR_EL1.LoUU == 0b000).$
0b1	Data cache clean to the Point of Unification is not required for instruction to data coherence.

CWG, bits [27:24]

Cache writeback granule. Log₂ of the number of words of the maximum size of memory that can be overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.

A value of <code>0b0000</code> indicates that this register does not provide Cache writeback granule information and either:

- The architectural maximum of 512 words (2KB) must be assumed.
- The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

Arm recommends that an implementation that does not support cache write-back implements this field as 0b0001. This applies, for example, to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule, and, if FEAT_TME is implemented, transactional reservation granule. Log₂ of the number of words of the maximum size of the reservation granule for the Load-Exclusive and Store-Exclusive instructions, and, if FEAT_TME is implemented, for detecting transactional conflicts.

A value of 0b0000 indicates that this register does not provide granule information and the architectural maximum of 512 words (2KB) must be assumed.

Value 0b0001 and values greater than 0b1001 are reserved.

DminLine, bits [19:16]

 \log_2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:

L1Ip	Meaning	Applies when
0b00	VMID aware	When
	Physical	FEAT_VPIPT is
	Index,	implemented
	Physical tag	
	(VPIPT).	
0b01	ASID-tagged	
	Virtual Index,	
	Virtual Tag	
	(AIVIVT).	
0b10	Virtual Index,	
	Physical Tag	
	(VIPT).	
0b11	Physical	
	Index,	
	Physical Tag	
	(PIPT).	

From Armv8, the value 0b01 is reserved.

The value <code>0b00</code> is permitted only in an implementation that includes FEAT_VPIPT.

Bits [13:4]

Reserved, res0.

IminLine, bits [3:0]

 \log_2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

Accessing CTR EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CTR_EL0

op0	op1	CRn	CRm	op2	
0b11	0b011	0b0000	0b0000	0b001	

```
if PSTATE.EL == ELO then
    if !(EL2Enabled() && HCR EL2.<E2H, TGE> == '11')
&& SCTLR_EL1.UCT == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11'
&& HCR EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11'
&& IsFeatureImplemented(FEAT FGT) && (!HaveEL(EL3)
| SCR EL3.FGTEn == '1') && HFGRTR EL2.CTR EL0 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11'
&& SCTLR EL2.UCT == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        X[t, 64] = CTR EL0;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CTR_EL0 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        X[t, 64] = CTR\_EL0;
elsif PSTATE.EL == EL2 then
    X[t, 64] = CTR\_EL0;
elsif PSTATE.EL == EL3 then
    X[t, 64] = CTR\_EL0;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright A© 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.