Il Sistema binario

Come eseguono le operazioni i computer?

Alessandro Fuser - Informatica

.

Obiettivi

- Sapere cos'è un sistema di numerazione
- Avere un'idea di cosa sia il sistema numerico binario
- Fare semplici operazioni con esso
- Utilizzi in campo reale

Cos'è un sistema di numerazione?

- Un sistema di numerazione è un modo di esprimere e rappresentare i numeri attraverso un insieme di simboli
- L'uomo usa il sistema numerico decimale

Sistema numerico decimale

Nel sistema decimale il numero 1125 è il risultato dell'operazione $5x10^0+2x10^1+1x10^2+1x$ 10^3

Sistema numerico binario

- Il sistema numerico binario è un sistema numerico posizionale in base 2
- Utilizza solo due simboli, di solito indicati con 0 e 1
- Ogni cifra viene chiamata bit

Alessandro Fuser - Informatica

1

Utilizzo del sistema binario

- Utilizzato per la rappresentazione interna dell'informazione dalla quasi totalità degli elaboratori elettronici
- Le caratteristiche fisiche dei circuiti digitali rendono molto conveniente la gestione di due soli valori, rappresentati fisicamente da due diversi livelli di tensione elettrica

Scala dei byte

Nome	Valore	Descrizione
Byte	8 bit	В
Kilobyte	1024 byte (2 ¹⁰)	KB
Megabyte	1024 kilobyte (2 ²⁰)	MB
Gigabit	1024 megabyte (2 ³⁰)	GB
Terabyte	1024 gigabyte (2 ⁴⁰)	ТВ
Petabyte	1024 terabyte (2 ⁵⁰)	PB
Exabyte	1024 petabyte (2 ⁶⁰)	EB

Da decimale a binario

NUMERO	DIVISO	RISULTATO	RESTO ^
100	2	50	0
50	2	25	0
25	2	12	1
12	2	6	0
6	2	3	0
3	2	1	1
1	2	0	1

100₁₀

1100100₂

Da binario a decimale

NUMERO	MOLTIPLICATO	RISULTATO	SOMMA
110010 <mark>0</mark>	2^0	0	0
11001 <mark>0</mark>	2^1	0	0
1100 <mark>1</mark>	2^2	4	4
1100	2^3	0	4
110	24	0	4
11	2^5	32	36
1	2^6	64	100

1100100₂

 $\overline{100}_{10}$

E se voglio considerare il segno?

- Si associa uno specifico bit: quello più a sinistra
- Se il primo bit è 0, allora il numero è positivo
- Se il primo bit è 1, allora il numero è negativo
- Se ho N bit a disposizione
 - N-1 per il modulo (ossia il valore effettivo del numero)
 - 1 per il segno

Rappresentazione col segno

POSI	TIVI	NEGA	ATIVI
+0	000	-0	100
+1	001	-1	101
+2	0 10	-2	110
+3	011	-3	111

RAPPRESENTAZIONE COL SEGNO

POSI	TIVI	NEG	ATIVI
+0	000	-0	100

• Doppia rappresentazione per lo zero!!

Complemento a due

- Si prende il numero positivo (usando anche il bit del segno)
- Si cambiano gli 0 in 1 e gli 1 in 0 (complemento a 1)
- Si somma il valore 1

Con 4 bit

VALORE	RAPPRESENTAZIONE IN COMPLEMENTO A DUE	VALORE	RAPPRESENTAZIONE IN COMPLEMENTO A DUE
+7	0111	-1	1111
+6	0110	-2	1110
+5	0101	-3	1101
+4	0100	-4	1100
+3	0011	-5	1011
+2	0010	-6	1010
+1	0001	-7	1001
0	0000	-8	1000

Esempio complemento a due

NUMERO	OPERAZIONE	RISULTATO
5	CONVERTO	00000101
00000101	INVERTO BIT	11111010
11111010	SOMMO 1	11111011

NUMERO	OPERAZIONE	RISULTATO
11111011	INVERTO BIT	00000100
00000100	SOMMO 1	00000101
00000101	CONVERTO	5

Esercizi

Trasforma da decimale a binario i seguenti numeri

1, 7, 21, 100, 158, 269, 1203

Trasforma da binario a decimale i seguenti numeri

11101, 100001, 100110, 10111101

Fai il complemento a due dei seguenti numeri

19, 12

Alessandro Fuser - Informatica

17

Alfabeto esadecimale

BINARIO	ESADECIMALE	BINARIO	ESADECIMALE
0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Da binario a esadecimale

A partire da destra, si creano gruppi di 4 bit

Se non ho abbastanza bit alla fine, aggiungo degli 0 all'inizio

Uso la tabella di prima

ESEMPIO DA BINARIO A ESADECIMALE

NUMERO	OPERAZIONE	RISULTATO
11101100101001	AGGIUNGO BIT PER ARRIVARE A 16	0011101100101001
0011101100101001	FACCIO GRUPPI DA 4	0011 1011 0010 1001
0011 1011 0010 1001	CONVERTO I GRUPPI	3 B 2 9
3 B 2 9	METTO ASSIEME	3B29
Alessandro Fuser - Informatica		20

esercizi

Trasforma
i seguenti
numeri
decimali in
esadecimali

28, 57, 100, 1547

Alessandro Fuser - Informatica

21

Come rappresentiamo i numeri con la virgola?

Virgola fissa

Un certo numero di cifre per la parte intera

7 bit

Un certo numero di cifre per la parte frazionaria

8 bit

Un bit per rappresentare il segno

Quello più a sinistra

Esempio

+1,25 00000001.00011001

-8,0

10001000.00000000

esercizio

- Esprimi in binario virgola fissa i seguenti numeri decimali
 - 9,22 / 12,3 / -2,75

Virgola mobile

- La posizione della virgola può cambiare... ma come?
- Uso la notazione scientifica
 - Mantissa
 - Rappresenta un numero tra 0,100000 e 0,99999 (parte frazionaria)
 - Esponente
 - Indica la potenza di 10 per cui occorre moltiplicare la mantissa al fine di ottenere il numero che si intende rappresentare

Virgola mobile

1 bit per il segno

8 bit di esponente in eccesso 127 (ossia sommo l'esponente con 127)

23 bit di parte frazionaria

esempio

Rappresentiamo in virgola mobile il numero 43,6875

Alessandro Fuser - Informatica

28

Passo 1 – BIT DEL SEGNO

Calcola il segno del numero

0 se positivo

1 se negativo

Passo 2.1 – BINARIO DELLA PARTE INTERA

• Trasforma il numero intero senza segno in forma binaria

Dividendo	Divisore	Resto
43	2	1
21	2	1
10	2	0
5	2	1
2	2	0
1	2	1

Passo 2.2 – BINARIO DELLA PARTE DECIMALE

• Trasforma il numero decimale senza segno in forma binaria

• ATTENZIONE!! Stavolta si moltiplica la parte frazionaria fino ad ottenere 1

Moltiplicando	Moltiplicatore	Parte intera
0,6875	2	1
0,375	2	0
0,75	2	1
0,5	2	1
Alessandro Fuser - Informatica		31

Passo 2.3 – COMPLETO IL BINARIO

$$(43.6875)_{10} = (101011.1011)_2$$

Passo 3 – NOTAZIONE SCIENTIFICA

Scriviamo il numero in notazione scientifica

 $1.010111011x10^{5}$

Passo 4 – MANTISSA

Completa la mantissa

Prendi la parte frazionaria del numero in notazione scientifica

Allunga a destra, se necessario, con degli 0 fino ad avere, in totale, 23 bit

Passo 5 - ESPONENTE

Converti l'esponente in binario eccesso 127

Prendo quindi l'esponente e gli sommo 127

$$5 + 127 = 132$$

Trasformo 132 in binario

$$(132)_{10} = (10000100)_2$$

Unisco il tutto

Alessandro Fuser - Informatica

36

esercizio

Esprimi in binario virgola mobile il seguente numero: 23,275