LIKELIHOOD FUNCTION PREPARED BY RINJU RAVING PREPARED BY RAVING PREPAR

We learnt received vector/observation vector

Eg: Let cov (X1,X2) = 0 means they are uncorrelated or statistically incl. If 2 fns are independent, joint prob density fn = pdt of p.d.f of its individual elements.

PREPARED BY RIV

Conditional pdf of vector $X = f_X(s_{ij})$ or $f_X(i)$ Source emits

Source emits m_i symbols where i varies from 1,...,

M. $(m1, m2,...,m_M)$ This m_i is encoded to obtain the w/f s_i (t).

Since the elements of X are indep., the conditional pdf of X (given that s/g s_i(t) or symbol m_i was transmitted) is the conditional pdf of its individual elements. $f_{X}(i) = f_{X1}(1) f_{X2}(2) \dots f_{XN}(N)$ $f_{X}(i) = i = 1,2,...,M -----(4)$ X_i is a Gaussian RV with mean S_{ij} and variance = $N_0/2$.

$$f_{X(i)} = f_{X1(i)} f_{X2(i)} f_{XN(i)}$$

$$f_{x(i)} = i=1,2,...,M$$
 ----(4)

If Y is a Gaussian RV, then pdf

X_j is a Gaussian R.V. as it contains AWGN.

ANYGIN.

If Y is a Gaussian RV, then pdf is as fo fo

$$\mathbf{f}_{\mathbf{y}}(y) = \frac{1}{\sigma_{\mathbf{y}}\sqrt{2\pi}}e^{-\frac{(y-\mu)}{2\sigma_{\mathbf{y}}^{2}}}$$

PKET GCEK

$$f_{x_{j}}(x) = f_{x_{j}}(x_{j}|m_{i}) = 1$$

$$= \frac{1}{2x_{j}\sqrt{2x}} e^{-\frac{(x_{j}-\mu_{x_{j}})^{2}}{2x_{j}\sqrt{2}}}$$

$$= \frac{1}{2x_{j}\sqrt{2x}} e^{-\frac{(x_{j}-s_{ij})^{2}}{2x_{j}\sqrt{2}}}$$

$$= \frac{1}{2x_{j}\sqrt{2x}} e^{-\frac{(x_{j}-s_{ij})^{2}}{2x_{j}\sqrt{2}}}$$

$$= \frac{1}{\sqrt{x_{j}}(x_{j}|m_{i})} = \frac{1}{\sqrt{x_{j}}} e^{-\frac{(x_{j}-s_{ij})^{2}}{N_{o}}}$$

$$= \frac{1}{\sqrt{x_{j}}(x_{j}|m_{i})} = \frac{1}{\sqrt{x_{j}}} e^{-\frac{(x_{j}-s_{ij})^{2}}{N_{o}}}$$

$$= (x_{j}-s_{ij})^{2}$$

SSOR

$$= (\pi N_0)^{-N/2} e^{-(\pi j - S_{ij})^2}$$

$$= (\pi N_0)^{-N/2} e^{-(\pi j - S_{ij})^2}$$

$$f_{x}(x|m) = (\pi N_0)^{-N/2} e^{-(\pi j - S_{ij})^2}$$

-- IV

- Rather than finding likelihood function, it is convenient to use log likelihood fn.
 Log likelihood fn.
 \(\begin{align*} \lambda_i \right) = \log \left\(\mathbb{m}_i \right) \right. \(\mathbb{m}_i \right) = \log \left\{ \right.} \\
 \(= \log \left\{ \right.} \)
 \(= \log \left\{ \right.} \right. \right. \)
 \(= \log \left\{ \right.} \right. \right.

$$l(m_i) = log L(m_i)$$

is indep of msg s/g /symbol. So we neglect

this term.

i from 0 to M

To get error free decoding or to minimise error, log likelihood fn shud be maximized. PREPARED BY K

ECE. GCEK

MAXIMUM LAKELIHOOD PREPARED BY RINDECODING PREPARED BY RINDECODING

- Used for coherent detection of s/gs in presence of noise.
- We have a source which emits m_i symbols. i =1, ..., M
- Every symbol is emitted with equal probability.
- $\bullet P(m_i) =$
- m_i is encoded to s_i(t) and transmitted thru AWGN channel
- Rxd s/g x(t).

Jes Jervation/rxd vector = ADHOC ASST. PROFESSON

PREPARED BY RINJU RAVINDRAN,

PREPARED BY RINJU RAVINDRAN,

PROFESSOR-

FIGURE 5.7 Illustrating the effect of noise perturbation, depicted in (a), on the location of the received signal point, depicted in (b).

- Noise cloud / Gaussian distributed cloud.
- Aim is to set a decoding method to detect the msg symbol from the rxd s/g.

 • Detection should be error free or with least
- error.
- Now we will state the detection problem.
- Given the observation vector perform a mapping from to an estimate of the txd s/g, so that error prob shud be min.
- Suppose given the observation vector make the decision; . The prob of error in this

$$P_e(m_i|\mathbf{x}) = P(m_i \text{ not sent}|\mathbf{x})$$

= 1 - $P(m_i \text{ sent}|\mathbf{x})$

- Decision making criterion is to minimize the prob of error in mapping each given obsvector x into a decision.
- Inorder to minimize $P_e(m_i|x)$, we have to maximize $P(m_i sent|x)$.

So we may state the optimum decision [M. Sent]) P(m, sent]) for all k

That is for eg: if 4 symbols m_1 , m_2 , m_3 and m_4 are txd.

Then we will find each of the probs

```
ie, P(m<sub>1</sub> sent|)
P(m<sub>2</sub> sent|)
```

P(m₃ sent|)

P(m₄ sent|)

Salact the highest problems Say if D/m sently

```
Set; if P(m; sent | ) P(m, sent | )
                 for all k
```

- •This decision rule is known as Maximum a posteriori probability rule (MAD)

$$P(A/B) =$$

Layes theorem, P(A/B) = Apply Bayers rule to $P(m_i sent | x)$ $P(m_i | i) =$

$$P(m_i|) = ----(2)$$

```
Set i
```

• Applying Bayers rule and restating eqn(1) interms of prob density fn. , we get

Set $_{i}$ -----(3)

Where p_{k} is the a priori prob of transmitting

is the conditional pdf of random obs vector X given the txn of symbol m_k and) is the unconditional pdf of X. In eqn (3) \square) is indep of txd symbol

- $\Box p_k = p_i$ when all source symbols are txd with equal prob. It is a constant.

So we can write,

- We know that Likelihood fn

• This 6th eqn is called as maximum likelihood rule and the device for implementing this rule is called max likelihood decoder.

is called max likelihood decoder. Graphical interpretation of max likelihood decision rule

decision rule

Let Z denote N dimensional space for representing all possible obs vectors x and this space is called as observation space.

 m_1 --- x lies in z_1 m_2 --- x lies in z_2 m_3 --- x lies in z_3 $m_4 --- x lies in z_4$

- Detection method:
- If obs vector lies in Z₁, then we can say that txd symbol is m
- symbol is $m_{1.}$ If obs vector lies in Z_2 , then we can say that txd symbol is m₂ and so on.
- Let total obs space Z is divided into M decision region $Z_1, Z_2, ..., Z_M$, the eqn (6) rule can be restated as

Observation vector x lies in region
$$Z_i$$
 for $k=i$. -----(7)

We know that

term should be –ve term so that becomes +ve.
That means we need to minimize term. summation term. RAVING

7th rule is restated as

Observation vector x lies in region Z

for k=i. -----(8)

• We know that

|2

Where | is the Euclidean distance btw rxd s/g pt and msg pt.

rule can be restated as

Observation vector x lies in region Zares for k=i. -----(9)

Eqn (9) states that ML decision rule is simply to choose the msg pt closest to the received s/g point.
 We need to minimize

PREPARED BY RINJU RAVINDRAM.
PREPARED BY RINJU RAVINDRAM.

- E_k is the energy of the transmitted s/g.
- The first summation of this expansion is indep of index k and therefore may be ignored. This term contains only rxd vector.
- We need to minimise RANI
- We need to make it (-ve) term.

• It is equt to maximizing

8th rule can be restated as

Observation vector x lies in region \mathbf{Z}_{i}^{FESOR}

is the inner product of obs vector x and s/g vector .

vector .

This rule is used to implement ML decoder in correlation receiver.

Fig. shows eg: of decision regions for M=4 s/gs and N=2 dimensions, assuming that s/gs are txd with equal energy E and equal probability. Φ_2 Region

FIGURE 5.8 Illustrating the partitioning of the observation space into decision regions for the case when N = 2 and M = 4; it is assumed that the M transmitted symbols are equally likely.