Development and evaluation of a Kubernetes cluster simulator based on Batsim

Presented by: Théo Larue

Supervised by: Olivier Richard & Michael Mercier

Université Grenoble Alpes

August 31, 2020

Table of contents

- 1 Introduction
- 2 Literature review
- 3 Integrating Kubernetes schedulers to Batsim
- 4 Study of the simulator
- 5 Discussion and future work

Introduction

Computer infrastructures

000000

A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another. 1

¹Andrew 2002

Computer infrastructures

A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another. 1

Many domains

Grid, Edge, HPC, Cloud, P2P, Volunteer.

¹Andrew 2002

Studying distributed systems I

Why studying these infrastructures?

Studying distributed systems II

TODO One problem in particular: scheduling.

How to study these infra?

■ Theoretical study.

- Theoretical study.
- Real experiments.

- Theoretical study.
- Real experiments.
- Emulation.

- Theoretical study.
- Real experiments.
- Emulation.
- Simulation.

Contribution

TODO: Our contribution is Batkube, an interface between Batsim and Kubernetes schedulers

Literature review

Domain specific simulators

refs on domain specific simulators (summed up in a table?). Explain briefly the concept behind some of them.

Software specific simulators

YARNSim, SLURM simulator

Publication specific simulators

"Publish and perish" - Milian Poquet

SimGrid

SimGrid: Versatile, scalable, accurate.

Cpu = a computation speed.

Storage = a seek time and a data transfert rate.

Network = a flow model, modeling bandwith sharing behaviors.

Simple models but thoroughly validated.

Batsim

Aimed at studying RJMS. Strong decoupling decision process / simulator.

Related work

GridSim

Alea: modular, extensible.

Accasim: supports additional information (temperature, power consuption). Very efficient in terms of simulation time and memory usage.

Kubernetes

Explain containers real quick.

Container orchestration software, description based.

Kubernetes cluster simulation

k8s-cluster-simulator: open source, student project, delay jobs. Schedulers provided via a Go interface. joySim: closed-source, fully fledged kubernetes cluster simulator, service oriented (mock nodes).

Integrating Kubernetes schedulers to Batsim

Technical challenges

Challenges to tackle

1 Integration with Kubernetes.

Technical challenges

Challenges to tackle

- Integration with Kubernetes.
- 2 Intercepting scheduler time.

Technical challenges

Challenges to tackle

- Integration with Kubernetes.
- 2 Intercepting scheduler time.
- 3 Time synchronization between Batsim and the scheduler.

Batsim concepts

source https://batsim.readthedocs.io

Batsim events and protocol. User defined workloads. (insert json examples?)

Kubernetes concepts

source: https://kubernetes.io/docs/concepts/overview/components/

Kubernetes components.

Kubernetes concepts

source: https://kubernetes.io/docs/concepts/overview/components/

Kubernetes components.

Different paradigms

Batsim: event based, simulation time.

Kubernetes scheduler: asynchronous calls to the API, machine time.

The goal is to make the scheduler event based and relying on simulation time for Batsim, and make Batsim a kube-api-server to the scheduler.

Batkube integration with Kubernetes

Reimplementation of a custom API.

Architeture of Batkube

Global architecture of Batkube.

Similar resources

source: https://kubernetes.io/docs/tutorials/
kubernetes-basics/explore/explore-intro/

Translation between Kubernetes and Batsim

- A Pod = a job.
- A Node = a compute resource.

Time interception

Schedulers are patched to redirect their time.

batsky-go

Exchanges between the scheduler, batsky-go ("time") and Batsim

Time synchronization I

TODO: explain CML

Time synchronization II

Time synchronization between Batsim and the scheduler

Parameters of the synchronization

Parameters of the synchronization

Timeout value

Parameters of the synchronization

Simulation time step \in [base-simulation-timestep, max-simulation-timestep]

Time synchronization breakdown

Time synchronization between Batsim and the scheduler

Study of the simulator

Studied workloads and platforms

TODO

Minimum delay I

Note: inclure ce graphe?

Minimum delay II

Timeout I

Timeout II

Maximum simulation timestep I

Maximum simulation timestep II

Experimentation on a real cluster

Deviation with reality

workload	makespan				mean waiting time			
	emulated		simulated		emulated		simulated	
	μ	σ	μ	σ	μ	σ	μ	σ
burst	2467	28.3	2215 (-252)	0.508	1077	10.6	970 (-107)	12.6
spaced	2468	5.14	2257 (-211)	16.9	146	1.67	48.1 (-97.9)	9.44
realistic	32556	-	32555 (-1)	1.30	2884	-	2020 (-864)	950

Discussion and future work

- delay jobs
- cpu and memory requests
- can patch any kubernetes scheduler written in Go
- the api only supports the default scheduler

Limitations

- memory hungry (in fact, the scheduler is memory hungry)
- some problems with the scheduler
- not scalable

Perspectives for future work

- parallel jobs
- storage
- more complete api: support for more schedulers but also tools (monitoring tools)

References I

Andrew, S (2002). Tanenbaum, Maarten van Steen." Distributed Systems. Principles and paradigms".