《微型计算机原理与接口技术》 第5版

第6章 I/O接口和并行接口 芯片8255A

§6.2 8255A的工作原理

- 8255A是一种通用可编程并行I/O接口芯片 (Programmable Peripherial Interface, PPI)。
- 它是Intel系列CPU的配套电路,也可用于其它 微处理器系统中。
- 通过编程,它可工作于3种不同的数据传输方式。

6.2.1 8255A的结构和功能

- 6.2.2 8255A的控制字
- 6.2.3 8255A的工作方式和C口状态字

6.2.1 8255A的结构和功能

- □ 外部40个引脚
- □ 内部包含:
- ➤ 数据端口A、B、C。 其中,C口分成C口 上半部(C高)和C 口下半部分(C低)
- > A组和B组控制逻辑
- > 数据总线缓冲器
- > 读/写控制逻辑。

1. 数据端口A、B和C

- 端口A:包含1个8位的数据输出锁存器/缓冲器,1个8位的数据输入锁存器。A口作输入或输出时数据均能锁存。
- · 端口B: 包含1个8位的数据输入/输出锁存器/缓冲器, 1个8位的数据输入缓冲器。
- 端口C:
- 包含1个8位的数据输出锁存器/缓冲器,1个8位的数据输入缓冲器,无输入锁存功能,
- > 分成两个4位端口时,每个端口有1个4位的输出锁存器。
- ► C口还可配合A口和B口工作,用来产生A口和B口的输出控制信号、输入到A口和B口的端口状态信号。

2. A组和B组控制逻辑

- A组: 管理A口和C口高,通过PA₇~PA₀以及 PC₇~PC₄引脚与外部联络。
- B组:管理B口和C口低,通过PB₇~PB₀以及 PC₃~PC₀引脚与外部联络。
- 内部有控制寄存器,能接收CPU送来的命令字, 决定A组和B组的工作方式,或对C口的每1位执行 置位/复位操作。

3. 数据总线缓冲器

- 双向三态的8位缓冲器,用作8255A和系统数据总 线间的接口。
- 通过这个缓冲器和8位数据总线 D_{7} $^{2}D_{0}$,接收CPU 送来的数据信息或控制字,外设传送给CPU的数据或状态信息,也要通过数据总线缓冲器和 D_{7} $^{2}D_{0}$ 送给CPU。

4. 读/写控制逻辑

- 有关信号:
- > RESET,系统复位。高电平时使控制字寄存器清0,各 端口工作于输入方式。
- > CS 片选。译码电路产生, 低电平时芯片才选中。
- > RD 读。有效时,可读取8255A的数据或状态信息。
- > WR 与。有效时,可向8255A写入数据或控制字。
- ▶ A₁A₀, 端口选择。

 $A_1A_0=00$, $A\Box$; $A_1A_0=01$, $B\Box$;

 $A_1A_0=10$,C口; $A_1A_0=11$,控制口。

• 在8位系统中,常将A₁A₀与地址总线A₁A₀相连。若 8255A端口基地址为60H,则A口、B口、C口和控制口 分别为60H, 61H, 62H和63H。

表 6.3 8255A 的基本操作	的基本操作	8255A	6.3	表
-------------------	-------	-------	-----	---

A_1	A_0	$\overline{\mathrm{RD}}$	WR	CS	操作
0	0	0	1	0	端口 A 数据总线
0	1	0	1	0	端口 B 数据总线
1	0	0	1	0	端口 C 数据总线
0	0	1	0	0	数据总线 端口 A
0	1	1	0	0	数据总线 端口 B
1	0	1	0	0	数据总线 端口 C
1	1	1	0	0	数据总线 控制字寄存器
×	×	×	×	1	数据总线三态
1	1	0	1	0	非法状态
\times	\times	1	1	0	数据总线三态

- CS = 0, 8255A可进行读/写操作。RD = 0, 可从A口、B口、C口读出数据。WR = 0, 可向这3个端口写入数据。口地址由 A_1A_0 选择,但当 $A_1A_0=11$ 时,只能向控制口写入控制字,否则为非法操作。
- \rightarrow RD 和 WR 不能同时为0。

• 设计电路时要注意:

在16位数据总线的8086系统中,可将地址总线的 A_2A_1 连到8255A的 A_1A_0 端。若它的数据线 $D_7 \sim D_0$ 接在CPU数据总线的低8位上,则要用偶端口地址来寻址8255A;而当 $D_7 \sim D_0$ 接在数据总线的高8位上时,要用奇地址口。

例如。若8255A的基地址为F0H,则

A₂A₁=00, 选A口, 即口地址F0H;

 $A_2A_1=01$,选B口,口地址F2H;

 $A_2A_1=10$ 。选C口,口地址F4H;

 $A_2A_1=11$,选控制字寄存器,口地址F6H。

- 6.2.1 8255A的结构和功能
- 6.2.2 8255A的控制字
- 6.2.3 8255A的工作方式和C口状态字

1. 方式选择控制字

- 运入控制口以定义各端口工作方式,且要求 $D_7=1$ 。
- D_6D_5 选择A口的工作方式(方式0~2),
- D_2 . 选择B口的方式(方式0、1)。
- ▶ D₄D₃D₁D₀ A口、C高、B口、C低的I/O方式。
 1-In(输入), 0-Out(输出), 可有16种组态。

2. 置位/复位控制字 可使C口任一引脚的输出单独置1或清0,格式:

例如:设8255A口地址为60H~63H,PC5平时为低电平,要求从PC5输出一个正脉冲,程序段:

MOV AL, 00001011B

OUT 63H, AL

MOV AL, 00001010B

OUT 63H, AL

;置PC。为高电平

;置PC5为低电平

- 6.2.1 8255A的结构和功能
- 6.2.2 8255A的控制字
- 6.2.3 8255A的工作方式和C口状态字

8255A可工作于3种方式: 方式0-基本输入输出方式 方式1-选通输入输出方式 方式2-双向总线I/O方式

1. 方式0

基本输入输出(Basic Input/Output)方式,适用于不要用应答信号的简单I/O。

- A口、B口用作8位端口; C高和C低各用作2个4位端口,或合在一起构成1个8位端口。
- 输出信号可被锁存,输入不能锁存。

图6.13 各端口均工作于方式0时的控制字

• A口、C高、B口、C低可构成16种不同组态。

例如,设8255A的控制字寄存器的口地址为63H,若要求A口和B口工作于方式0,A口、B口和C口高4位作输入,C口低4位为输出,可用下列指令来设置:

MOV AL, 10011010B OUT 63H, AL

2. 方式1

选通输入/输出(Strobe Input/Output)方式

- A口、B口作数据口,均可工作于输入或输出方式,并能锁存数据。要在联络信号控制下才能工作。
- PC₀~PC₂,PC₃~PC₅用作联络(Handshaking) 信号。
- 又可分3种情况:
 - 1) 选通输入方式
 - 2) 选通输出方式
 - 3) 选通I/O方式组合

1) 选通输入方式

- A口和B口都工作于 选通输入方式时, PC₀-PC₂ PC₃-PC₅ 用作联络信号, PC_{6,7} 还可作输入输 出用。
- A口为输入, PC₃₋₅ 作联络信号。控制 字的D₃位为C高I/O, D₃=1,PC_{6,7}为输入 D₃=0,PC_{6,7}为输出
- B口为输入,PC₀₋₂ 作联络信号

选通输入联络信号

> STB (Strobe), 选通信号

低电平时,将外部输入数据通过PA₇~PA₀(A口)或PB₇~PB₀(B口)打入所选端口的输入缓冲器中。

STB_A: A口选通,从PC₄引入;

STB_B: B口选通,从PC₂引入。

> IBF (Input Buffer Full), 输入缓冲器满信号

高电平时,表示输入设备送来的数据已送到输入缓冲器中,通知外设不要送新数据来。

IBFA: A口缓冲器满,从PC5输出;

IBF_B: B口缓冲器满,从PC₁输出。

选通输入联络信号

- NTE (Interrupt Enable),内置的中断允许信号。在A组和B组控制逻辑中,设有中断请求触发器INTE A、INTE B。只有用软件才能使其置1或清0。用置位复位字使PC4置1时,允许A口中断;使PC2置1时,允许B口中断。
- INTR(Interrupt Request),是8255A向CPU发的中断请求信号 只有当 STB 、IBF、INTR都高时,才能将INTR置为有效高电平。表示选通信号已结束,缓冲器中已有数据,中断是允许的,8255A可向CPU发中断请求信号INTR,要求CPU读取外设送到缓冲器中的数据。

方式1选通输入时序

①外设把1个数据送到A口或B口后,向8255A发选通信号,数据被8255A锁存。②随后IBF变高,指示输入缓冲器已满,外设不要送新数据来。③ STB 复高电平后,若IBF和INTE也同时为高,INTR就会变高,请求中断,CPU响应中断后执行IN指令读取数据(RD变低)。④ RD有效后,经t_{RIT}时间INTR变低,清除中断。⑤ 读信号结束,数据读入累加器;之后IBF变低,缓冲器已空,外设可再送新的数据来。

2) 选通输出方式

- PC₃, PC₆和PC₇作A口的 联络信号
- ► B口输出 PC₀, PC₁和PC₂作B口的 联络信号
- PC₄、PC₅可作输入 或输出

D₃=1,输入

D₃=0,输出

选通输出联络信号

- OBF Output Buffer Full),输出缓冲器满
- OBF=0 表示数据已写到输出口,并已出现在 PA和PB线上,通知外设取走。
- → PC₇用作 OBF_A PC₁用作 OBF_B
- (Acknowledge),外设回答信号
- ,CPU输出到A口或B口的数据已被外设

PC₆用作 ACK_A PC₂用作 ACK_B

选通输出联络信号

- > INTE, 中断允许信号
- → INTE=0,端口允许中断,置1时被屏蔽。
- ✓ INTE A由PC₂控制,INTE B由PC₂控制,它们由 置位/复位字进行设置。
- > INTR,中断请求信号
- 输出设备收到CPU输出的数据后,INTR变高,向 CPU提出中断请求,要求再输出1个数据到外设。
- → 当 ACK OBF INTE均=1时,才能使INTR变高。
- ◇ INTR_A从 PC₃ 引脚输出, INTR_B 从PC₀ 输出。

方式1选通输出时序

- ①CPU响应中断后,执行OUT指令输出数据,WR变低
- ②经twit时间后,清除中断请求信号,使INTR=0
- ③ WR 的后沿使 OBF = 0,通知外设从输出缓冲器中取走数据
- 4外设收到数据后,发回应答信号,ACK = 0
- ⑤ 应答后再经t_{AOB},OBF 无效,指示缓冲器已空
- ⑥ ACK 回到高电平后,经t_{AIT}时间,INTR变高,向CPU发中断请求,让CPU再送一个新数据过来

3) 选通输入/输出方式组合

A口、B口也可单独定义

A口输入, B口输出

PC0~PC5作控制线

A口输出, B口输入

PC₀~PC₃和PC₆、PC₇作控制

D₃=0, PC_{4、5} 为输出

3. 方式2

- · 方式2也称为双向总线方式,只有A口支持方式2。
- A口既能用作输入口,也可以编程为输出口,与 外设双向交换数据。
- 双向数据都能被锁存。

PC3~PC7作A口的联络信号:

输入: STB ACK.

输出: OBF_A IBF_A, ACK_A INTR_A 原理与万式IBJA口选通输入、A口选通输出类同

4. C口状态字

んけいかたご

- 方式1和2时,C口用作联络信号。用IN指令读取C口内容可检测外设状态,这样,就可采用查询方式而不用中断方式实现数据交换。
- 1)方式1(输入或输出)状态字 $D_7 \sim D_3$ 位为A组状态字, $D_2 \sim D_0$ 位为B组状态字。

输入状态字								
D_7	D_6	D_5	D_4	\mathbf{D}_3	D_2	D_1	D_0	
I/O	I/O	IBF_A	INTE A	$INTR_A$	INTE B	$\mathrm{IBF}_{\mathrm{B}}$	INTR _B	
							<u> </u>	

制出状念	3.子						
\mathbf{D}_7	D_6	D_5	$\mathbf{D}_{\!4}$	D_3	D_2	D_1	\mathbf{D}_0
$\overline{\mathrm{OBF}}_{\mathrm{A}}$	INTE A	I/O	I/O	INTR _A	INTE B	$\overline{\mathrm{OBF}}_{\mathrm{B}}$	INTR _B

2) 方式2状态字

▶ D₇~D₃位:A组状态字

 $D_2\sim D_0$ 位:

当B口为方式1,B口状态字 当B口为方式0,用作I/O,不是状态位。

\mathbf{D}_7	D_{5}	D_5	D_4	D_3	D_2	D_1	\mathbf{D}_0
$\overline{\mathrm{OBF}}_{\mathrm{A}}$	INTE 1	$\mathrm{IBF}_{\mathrm{A}}$	INTE 2	INTR _A	×	×	×

