

## **Monte Carlo Simulation**

SYS-611: Simulation and Modeling

Paul T. Grogan, Ph.D.
Assistant Professor
School of Systems and Enterprises



## Agenda



- 1. Review of Process Generators
- 2. Monte Carlo Simulation
- 3. Buffon's Needle Activity

Reading: S.M. Ross, "Statistical Analysis of Simulated Data," Ch. 8 in Simulation, 2012.

J.V. Farr, "Review of Probability and Statistics," Ch. 3 in Simulation of Complex Systems and Enterprises, Stevens Institute of Technology, 2007.



#### **Review of Process Generators**

#### **Process Generator**



Process generators are algorithms that produce random variable values following a known distribution

- Built-in process generators exist in software for common distributions (Uniform, Binomial, etc.)
- Uniform(0,1) generator most useful in this class
- Two methods to generate arbitrary processes:
  - Inverse transform method requires complete CDF
  - Accept-reject method only requires PMF/PDF

#### **Inverse Transform Method**





$$r = F(x)$$

$$\to x = F^{-1}(r)$$



$$r = F(x)$$

$$\to x = F^{-1}(r)$$

# **Inverse Transform for Discrete Processes**



```
import numpy as np
\mathbf{x} = [1, 2, 3, 4, 5, 6]
cdf = [1./6, 2./6, 3./6,
    4./6, 5./6, 6./6]
def gen roll ivt():
   r = np.random.rand()
   for i in range(6):
      if r <= cdf[i]:
          return x[i]
```

|    | Α        | В        | С             |
|----|----------|----------|---------------|
| 1  | cdf      | х        |               |
| 2  | 0.00     | 1        |               |
| 3  | 0.17     | 2        |               |
| 4  | 0.33     | 3        |               |
| 5  | 0.50     | 4        |               |
| 6  | 0.67     | 5        |               |
| 7  | 0.83     | 6        |               |
| 8  |          |          |               |
| 9  | 0.897527 | =VLOOKUF | P(A9,A2:B7,2) |
| 10 |          |          |               |
| 11 |          |          |               |

- CDF lower bounds
- Random variable (X) values
- Uniform (0,1) (=RAND ())
- VLOOKUP function

# **Inverse Transform for Continuous Processes**



```
import numpy as np

def gen_spin_ivt():
    r = np.random.rand()
    return 360*r
```

|    | Α        | В       | С |
|----|----------|---------|---|
| 1  | 0.828353 | =360*A1 |   |
| 2  |          |         |   |
| 3  |          |         |   |
| 4  |          |         |   |
| 5  |          |         |   |
| 6  |          |         |   |
| 7  |          |         |   |
| 8  |          |         |   |
| 9  |          |         |   |
| 10 |          |         |   |
| 11 |          |         |   |

- Uniform (0,1) (=RAND ())
- Inverse CDF

# Accept-Reject Method for Discrete Processes





- Some CDFs are not easy to quantify or express
- Rely only on PMFs



#### **Discrete ARM Flow Chart**





# Accept-Reject Method for Continuous Processes





- Some CDFs do not have closed-form equations
- Rely only on PDFs
  - Use a simpler "enveloping" distribution Y with PDF g(y) where  $c * g(y) \ge f(y) \forall y$
  - Simplest:  $Y \sim \text{uniform}(a, b)$
  - Find maximum f(x) and assign
     c appropriately

# Accept-Reject (Ross p. 73)



- PDF:  $f(x) = 20 \cdot x(1-x)^3$ , 0 < x < 1
- Proposed PDF:  $Y \sim \text{uniform}(0,1)$ , g(y) = 1, 0 < y < 1
- What is the max value of f(x) to ensure enveloping?

$$0 = f'(x) = 20(1 - x)^3 - 60x(1 - x)^2$$

$$= -20(x-1)^2(4x-1)$$

$$\to f(0.25) = \frac{135}{64} \to c = \frac{135}{64} \approx 2.1$$

• 
$$r \le \frac{f(y)}{c \cdot g(y)} = \frac{256}{27}y(1-y)^3$$

• Equivalently:  $r * c \le f(y)$ 



#### **Continuous ARM Flow Chart**







#### **Monte Carlo Simulation**

#### **Monte Carlo Simulation**



Monte Carlo simulation solves a problem (possibly deterministic in nature) by statistically analyzing samples from a stochastic model

- Developed in 1940s classified research by von Neumann, Ulam, Fermi, Metropolis (& others)
- Code named by Ulam and Metropolis in reference to Monte Carlo casino in Monaco
- Early applications limited due to computation (ENIAC: 1<sup>st</sup> general-purpose computer in 1946)

#### **Monte Carlo Approach**



- Identify elementary state variables and random variables with probability distributions
- 2. Identify **derived state variables** and their functional form
- 3. Determine **number of samples** required or other convergence criteria
- 4. For each sample, **generate RVs** and compose and **record derived state variables**
- 5. Compute/visualize statistics from results

### **Dice Fighters Exercise**



#### **Red Team:**

- 2x fighting force size
- Simple weapons



Roll 6 to hit target

#### **Blue Team:**

- Small fighting force
- 3x effective weapons



Roll 4|5|6 to hit target

Q: What is the probability of Red winning?

### **Modeling Dice Fighters**



Elementary random variables

 $h_R$ : number of red hits

$$h_R \sim \text{binomial}\left(p = \frac{1}{6}, n = R\right)$$

 $h_B$ : number of blue hits

$$h_B \sim \text{binomial}\left(p = \frac{2}{3}, n = B\right)$$

Other state variables

 $R_t$ : red team size at time t

 $B_t$ : blue team size at time t

Derived state variable

$$W = \begin{cases} 2 & \text{if } R_f > 0 \\ 1 & \text{if } B_f > 0 \\ 0 & \text{otherwise} \end{cases}$$

Initial conditions

$$R_0 = 20, \qquad B_0 = 10$$

State changes

$$R_{t+1} = R_t - h_B$$

$$B_{t+1} = B_t - h_R$$

Terminal condition

$$R_t \leq 0 \text{ or } B_t \leq 0$$

#### Dice Fighters M.C. Simulation



```
def gen battle():
  global red size, blue size
  red size = 20
  blue size = 10
  while not is complete():
    red hits = gen red hits()
    blue hits = gen blue hits()
    red size -= blue hits
    blue size -= red hits
  if red size > 0:
    return 2
  elif blue size > 0:
    return 1
  else:
    return 0
samples = np.array([gen battle()
         for i in range(10000)])
print np.mean(samples==2)
print 1.96*stats.sem(samples==2)
```



$$P(W = 2) = 0.783 \pm 0.008 (95\% CI)$$

$$P(W = 1) = 0.213 \pm 0.008 (95\% CI)$$

$$P(W = 0) = 0.004 \pm 0.001 (95\% CI)$$



# **Buffon's Needle Activity**

## **Example: Buffon's Needle**



Suppose the floor is made of parallel strips of wood, each the same width t, and we drop a needle of length l onto the floor.

What is the probability that the needle will lie across a line between two strips?

George-Louis Leclerc, Compte de Buffon, c. 1733 Consider "short needle" cases with  $l \leq t$ 



Image: Claudio Rocchini / Wikimedia

### **Buffon's Needle Experiment**



Lines are t=3 in. wide Needles are l=2.5 in. long



Submit at goo.gl/U9Awqj

#### mste.illinois.edu/activity/buffon/



# Modeling Buffon's Needle (1)



- 1. Identify elementary state variables with probability distributions
- Distance from needle midpoint to nearest line

$$d \sim U(0, t/2) \Rightarrow f(d) = 2/t$$

 Acute angle between needle and nearest line

$$\theta \sim U(0, \pi/2) \Rightarrow f(\theta) = 2/\pi$$



# Modeling Buffon's Needle (2)



- 2. Identify derived state variables and their functional form
- X: Needle crosses line

$$X = \begin{cases} 1 & \text{if d} \le \frac{l}{2} \sin \theta \\ 0 & \text{otherwise} \end{cases}$$





# Modeling Buffon's Needle (3)



- 3. Determine number of samples required or other convergence criteria
- Estimate P(X) with 95% confidence and  $\pm 0.01$  accuracy
- Apply Central Limit Theorem:
  - $(1-\alpha)*100\%$  confidence interval:  $\bar{x}\pm z_{1-\alpha/2}\frac{s_x}{\sqrt{n}}$
  - Critical z-score:  $z_{1-\alpha/2} = z_{0.975} = 1.96$
  - $0.01 = z_{1-\alpha/2} \frac{s_x}{\sqrt{n}} \Rightarrow n = \left(\frac{z_{1-\alpha/2}s_x}{0.01}\right)^2 = 38416 \cdot s_x^2$

#### **Buffon's Needle Simulation**



- 4. For each sample, generate primary RVs and compose and record derived state variables
- 5. Visualize statistics from derived state variables



# **Buffon's Needle: Analytical**



$$P(X) = \int_{\theta=0}^{\pi/2} \int_{d=0}^{\frac{l}{2}\sin\theta} f(d\cap\theta) \, dd \, d\theta$$

$$= \int_{\theta=0}^{\pi/2} \int_{d=0}^{\frac{l}{2}\sin\theta} \frac{2}{t} \cdot \frac{2}{\pi} \, dd \, d\theta$$

$$= \int_{\theta=0}^{\pi/2} \frac{2 \cdot l}{t \cdot \pi} \cdot \sin\theta \, d\theta$$

$$= -\frac{2 \cdot l}{t \cdot \pi} \cos\theta \Big|_{\theta=0}^{\frac{\pi}{2}}$$

$$= \frac{2 \cdot l}{t \cdot \pi} = \frac{5}{3\pi} = 0.5305$$

$$\Rightarrow \pi = \frac{2 \cdot l}{t \cdot P(X)}$$

