Wet Shark and Two Subsequences

One day, Wet Shark was given an array $X=\{x_1,x_2,\ldots,x_m\}$. As always, he started playing with its subsequences.

When you came to know about this habit, you presented him a task of finding all pairs of subsequences, (A,B), which satisfies all of the following constraints. We will represent a pair of subsequence as $A=\{x_{a_1},x_{a_2},\ldots,x_{a_n}\}$ and $B=\{x_{b_1},x_{b_2},\ldots,x_{b_n}\}$

- A and B must be of same length, i.e., |A| = |B|.
- $ullet \sum_{i=1}^n (x_{a_i} + x_{b_i}) = r$
- $ullet \sum_{i=1}^n (x_{a_i} x_{b_i}) = s$

Please help Wet Shark determine how many possible subsequences A and B can exist. Because the number of choices may be big, output your answer modulo $10^9 + 7 = 1000000007$.

Note:

- Two segments are different if there's exists at least one index i such that element x_i is present in exactly one of them.
- Both subsequences can overlap each other.
- Subsequences do not necessarily have to be distinct

Input Format

The first line consists of 3 space-separated integers m, r, s, where m denotes the length of the original array, X, and r and s are as defined above.

The next line contains m space-separated integers, x_1, x_2, \ldots, x_m , representing the elements of X.

Constraints

$$1 \le m \le 100$$

 $0 \le r, \ s \le 2000$
 $1 \le x_i \le 2000$

Output Format

Output total number of pairs of subsequences, (A,B), satisfying the above conditions. As the number can be large, output it's modulo $10^9\,+\,7=1000000007$

Sample Input

453 1114

Sample Output

Explanation

For array $X=\{x_1,x_2,x_3,x_4\}=\{1,1,1,4\}$ there are three pairs of subsequences:

1.
$$A = \{x_4\} = \{4\}; B = \{x_1\} = \{1\}$$

2.
$$A = \{x_4\} = \{4\}; B = \{x_2\} = \{1\}$$

3.
$$A = \{x_4\} = \{4\}; B = \{x_3\} = \{1\}$$