HW 7

Задача 1.1. Пусть X схема, $f \in \mathcal{O}_X(X), X_f$ подмножество точек X, где f не обращается в нуль (т е образ f не лежит в максимальном идеале соответствующего локального кольца). Предположим, что X нетерова, или же отделима и квазикомпактна. Покажите, что X_f открыто и гомоморфизм ограничения индуцирует изоморфизм $\mathcal{O}_X(X)_f$ и $\mathcal{O}_X(X_f)$.

Доказательство. O_X - квазикомпактный пучок $\Rightarrow \exists U_i = \operatorname{Spec} A_i$

$$O_X(U_i)= ilde{A}_i$$
 $\bigcup_{i=1}^N U_i=X$ X - нетерово или квазикоспактное $V_{ii}=U_i\cap X_f=D(f_I)$, где f_i ограничение f на U_i так как $(f_i)_p=f_p\Rightarrow V_i$ - открытое $x_f=\bigcup V_i\Rightarrow X_f$ - открытое $O_X(V_i)\simeq O_X(U_i)_f=(A_i)_f$ O_X - пучок $\Rightarrow \exists$ s.e.s $0\to O_X(X)\to \oplus O_X(U_i)\to \oplus O_X(U_i\cap U_j)$

$$0 \longrightarrow O_X(X)_f \stackrel{g}{\longrightarrow} \oplus O_X(U_i)_f \stackrel{h}{\longrightarrow} \oplus O_X(U_i \cap U_j)_f$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\beta} \qquad \qquad \downarrow^{\gamma} \qquad \beta \text{ - ихоморфизм, } \alpha \text{ - инъекция, так как } g, \beta, g' \text{ - }$$

$$0 \longrightarrow O_X(X_f) \stackrel{g'}{\longrightarrow} \oplus O_X(V_i) \stackrel{h'}{\longrightarrow} \oplus O_X(V_i \cap V_j)$$

так как $U_i \cap U_j$ - афф, если X - отделима или покрыта конечным числом афф., если X - нетерова \Rightarrow либо γ - изоморфизм, либо γ - инъекция по той же причине, что и $\alpha \Rightarrow \gamma$ как минимум инъекция \Rightarrow по лемме о гомоморфизме α - сюръекция, а следовательно изомофизм

Задача 1.2. Пусть X схема и f_1,\dots,f_k порождают $\mathcal{O}_X(X)$. Предположим, что X_{f_i} аффинны, докажите, что X тоже аффинно.

Доказательство.

$$arphi: X o \operatorname{Spec}(\Gamma(X, O_X))$$
 $arphi_f: X_{f_i} o \operatorname{Spec}(\Gamma(X, O_X)_{f_i}) \simeq \operatorname{Spec}(\Gamma(X_{f_i}, O_X))$ так как X_{f_i} – аff $\Rightarrow \varphi$ - изоморфизм $O_X = \langle f_1, \dots, f_k \rangle \Rightarrow X = \bigcup X_{f_i}$ $\operatorname{Spec}(\Gamma(X, O_X)) = \bigcup \operatorname{Spec}(\Gamma(X, O_X)_{f_i})$

то есть φ - изоморфизм на базе $\Rightarrow \varphi$ - изоморфизм

Задача 1.3. Выведите отсюда, что аффинность морфизма $f: X \to Y$ можно проверять на покрытии, то есть следующие условия равносильны:

- (а) f аффинный, то есть прообраз любого аффинного открытого подмножества тоже аффинный
- (b) существует открытое аффинное покрытие U_i схемы Y, такое, что все $f^{-1}(U_i)$ аффинны.

Доказательство.

$$(a) \Rightarrow (b)$$
 – очевидно

$$(b) \Rightarrow (a)$$

$$U \subset Y - \text{aff} \qquad U = \operatorname{Spec} A \quad Y = \bigcup U_i = \bigcup \operatorname{Spec} A_i$$

$$U \cap U_i = \bigcup U_{i,j}$$

$$\Rightarrow U_{i,j} = (\operatorname{Spec} A_i)_{g_j} = (\operatorname{Spec} A)_{h_{i,j}}$$

$$f^{-1}(U_i) = V_i = \operatorname{Spec} B_i$$

$$f^{-1}(U_{i,j}) = (\operatorname{Spec} B_i)_{f^{\#}(g_j)}$$

$$(f^{-1}(U))_{f^{\#}(h_{i,j})} = (\operatorname{Spec} B_i)_{f^{\#}(g_j)}$$

$$O_X(f^{-1}(U)) = \langle f^{\#}(h_{i,j}) \rangle$$

$$\Rightarrow f^{-1}(U) - \operatorname{aff} (\text{mo } 2)$$

Задача 1.4. Докажите, что конечность морфизма можно проверять на покрытии.

Доказательство. Тут также $(a)\Rightarrow (b)$ – очев, $(b)\Rightarrow (a)$ по прошлой задаче: $f^{-1}(U)$ – aff. Факт из коммутативной алгебры, если $R=\langle f_1,\ldots,f_n\rangle$, (*) $g:R\to S,$ $R_{f_i}\to S_{g(f_i)}$ - конечно $\Rightarrow g$ - конечно; $O_y(U)_{h_{i,j}}\to O_X(f^{-1}(U))_{f^\#(h_{i,j})}$ - конечно $\Rightarrow f^{-1}(U)\to U$ - конечно

 $(*)\colon g:R\to S$ - конечно $\,g$ - целый морфизм и S - R-алгебра кон. типа Зафиксируем $s\in S\quad I\subset R[x]\quad\forall p\in T\quad p(s)=0$ $J\subset R$ - коэфф. при старших степенях у элем. I

$$s \in S \Rightarrow \frac{s}{1} \in S_{f_i} \Rightarrow \exists p_i \in R_{f_i}[x] : \ p_i(\frac{s}{1}) = 0$$
$$\exists n_i : (f_i^{n_i} p_i) \in R[x] \Rightarrow f_i^{n_i} p_i \in I$$

так как $1=\sum a_if_i$ то $\exists N$ - достаточно большой что: $1=1^N=(\sum a_if_i)^N\in J\Rightarrow g$ -целый

$$\begin{split} S_{f_i} &= \langle s_{i1}, \dots, s_{in} \rangle \text{ - как } R_{f_i} \text{ - алг} \\ &\Rightarrow \frac{s}{1} = \sum_{i=1}^n a_{ij} s_{ij} \Rightarrow \exists n_i : \frac{f_i^{n_i} s}{1} = \sum_{i=1}^n f_i^{n_i} a_{ij} s_{ij} \in S \\ &\Rightarrow s = 1 \cdot s = 1^N \cdot s = (\sum b_i f_i)^N s = (\sum b_i f_i)^N \sum a_{ij} s_{ij} \in S \end{split}$$

Задача 1.5. Пусть X схема и $\mathcal F$ пучок $\mathcal O_X$ -модулей. Докажите что $\mathcal F$ квазикогерентный тогда и только тогда, когда у любой точки есть окрестность U и точная последовательность пучков $\mathcal O_X$ -модулей

$$\mathcal{O}_U^{\oplus I} \to \mathcal{O}_U^{\oplus J} \to \mathcal{F}|_U \to 0.$$

Здесь I, J - некоторые множества индексов.

Доказательство.

$$(\Rightarrow)$$

$$\begin{aligned} \mathcal{F}\big|_{U_i} &= \tilde{M}_i \qquad O_x\big|_{U_i} = U_{U_i} = \tilde{A}_i \\ X &= \cup U_i = \cup \operatorname{Spec} A_i \end{aligned}$$

 M_i - модуль над $A_i \Rightarrow \exists$ точная последовательность

 $A_i^{\oplus J} \to A_i^{\oplus I} \to M \to 0,$ где |I| - количество порождающих у M

и |J| - количество соотношений на эти порождающие

$$\Rightarrow \forall q \in U_i = A_i$$

$$(A_i^{\oplus J})_q \simeq (A_i)_q^{\oplus J} \to (A_i^{\oplus I})_q \to M_q \to 0$$
 - точная последовательность $\Rightarrow (\tilde{A}_i)_q^{\oplus J} \simeq (O_{U_i})_q^{\oplus J} \to (\tilde{A}_i)_q^{\oplus I} \simeq (O_{U_i})_q^{\oplus I} \to \tilde{M}_q \simeq (\mathcal{F}\big|_{U_i})_q \to 0$

точная последовательноть $\forall U_i$ $\Rightarrow O_{U_i}^{\oplus J} o O_{U_i}^{\oplus I} o \mathcal{F}ig|_{U_i} o 0$ - точная последовательность

$$(\Leftarrow)$$

зафиксируем
$$x \in X \quad \exists U^x \ni x \quad O_U^J \to O_U^I \to \mathcal{F}\big|_U \to 0$$

 $\exists U_i^x:\ U^x=\cup U_i^x=\cup\operatorname{Spec} A_i$ без ограничения общности $x\in U_1^x$

$$O_{U_1^x}^J o O_{U_1^x}^I o \mathcal{F}ig| + U_1^x o 0$$
 точная

$$M = \operatorname{coker} f_{U_1^x} = \frac{A_1^I}{f(A_1^J)} \quad \forall p \in U_1^x$$

$$M_p = \left(\frac{A_1^I}{f(A_1^J)}\right)_p = \frac{(A_1^I)_p}{f(A_1^J)_p} = \frac{(A_1)_p^I}{f((A_1)_p^J)} = \operatorname{coker} f_p = \mathcal{F}_p$$

$$\Rightarrow \mathcal{F}_p \sim \tilde{M}$$

этот процесс не зависит от выбора $x\Rightarrow$ у них есть аффинное покрытие $X=\cup U_1^x$ и ${\mathcal F}$ огранич. на $\forall U_1^x = \operatorname{Spec} A_1^x$ - это модуль над A_1^x

Задача 1.6. Пусть $f:X \to Y$ аффинный морфизм, проверьте, что для квазикогерентного $\mathcal F$ на X и $\mathcal G$ на Y верно $f_*(\mathcal{F} \otimes f^*\mathcal{G}) = f_*\mathcal{F} \otimes \mathcal{G}.$

Доказательство.