Data and Information Resources, Role of Hypothesis, Exploration and Distributions

Thilanka Munasinghe

Data Analytics

ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960 MGMT-4962/6962 BCBP 4960

Group 1 Module 3(a), ~ Feb 01st, 2021

Contents

- Data sources
 - Cyber
 - Human
- "Munging"
- Exploring
 - Distributions...
 - Summaries
 - Visualization
- Testing and evaluating the results (beginning)

Lower layers in the Analytics Stack

"Human Data" ...

Statistics Review – Probability

You have learned this in your Statistics class.

- Before dive into the Naïve Bayes lecture in upcoming classes, lets go over some definitions in probability.
- Probability is the measure of the likelihood that an event will occur.
- In other words, probability is a measurement of how likely an event occurs.
- Probability of event A:

$$P(A) = \frac{Number\ of\ ways\ for\ A}{Total\ number\ of\ possible\ outcomes}$$

 Before we do a deep dive, You should know/understand the two probability concepts:

- 1) Joint Probability
- 2) Conditional Probability

Joint Probability: specifies the probability of event A and event B occurring together.

Joint Probability A and B

Joint Probability: specifies the probability of event A and event B occurring together.

If the two events are independent,

What is the probability of getting two 6's when you roll two dice?

The probability of rolling(getting) two 6's:

$$P(A,B) = P(A) * P(B) = \frac{1}{6} * \frac{1}{6} = \frac{1}{36}$$

Conditional Probability: probability of event A occurring, given that event B occurred.

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 = Probability of A, given B; P(B)>0

Bayes Theorem...

 The relationship between conditional probabilities, P(B|A) and P(A|B) can be expressed using the Bayes Theorem.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

EPI data set from previous lecture...

<u>Name</u>	<u>Last modified</u> <u>Size</u> <u>Description</u>
Parent Directory	-
2010EPI data.csv	05-Feb-2016 00:28 10M
2010EPI data.xls	05-Feb-2016 00:35 11M
2016 EPI Wastewater Data Appendix.xls	19-Jan-2018 16:01 907K
2016EPI Backcasted Scores.xls	19-Jan-2018 16:01 1.3M
2016EPI Full Report opt.pdf	19-Jan-2018 16:02 15M
2016EPI Raw Data.xls	19-Jan-2018 16:02 1.5M
2016 epi framework indicator scores friendi	l <u>y.xls</u> 19-Jan-2018 16:02 740K
2016epi weightings 0.xls	19-Jan-2018 16:02 660K
EPI data.csv	05-Feb-2016 00:28 232K
EPI data.xls	05-Feb-2016 00:36 11M
Fisheries Penalties.xls	19-Jan-2018 16:02 120K
OnlyEPI data.csv	05-Feb-2016 00:29 10M
OnlyEPI data.xls	05-Feb-2016 00:37 11M
filters materiality for 2016epi.xls	19-Jan-2018 16:02 64K

https://aquarius.tw.rpi.edu/html/DA/EPI/

2010EPI_data.xls

2010EPI dataset in R

Before:

	> A T Filter			Q	
•		x =	x.1	x.2	X.3
1	code	ISO3V10	Country	EPI_regions	GEO_subrec
2	352	ISL	Iceland	Europe	Western Eur
3	756	CHE	Switzerland	Europe	Western Eur
4	188	CRI	Costa Rica	Latin America and Caribbean	Meso Ameri

We want this: Change the first row to be the header:

•	code	ISO3V10	†	EPI_regions	GEO_subregion		
2	352	ISL	Iceland	Europe	Western Europe		
3	756	CHE	Switzerland	Europe	Western Europe		
4	188	CRI	Costa Rica	Latin America and Caribbean	Meso America		

How to change the first row to be the header in 2010EPI?

```
# How to change the first row to be the header in R? names(data_2010EPI) <- as.matrix(data_2010EPI[1, ]) data_2010EPI <- data_2010EPI[-1, ] data_2010EPI[] <- lapply(data_2010EPI, function(x) type.convert(as.character(x))) data_2010EPI View(data_2010EPI)
```

```
# How to change the first row to be the header in R?
names(data_2010EPI) <- as.matrix(data_2010EPI[1, ])
data_2010EPI <- data_2010EPI[-1, ]
data_2010EPI[] <- lapply(data_2010EPI, function(x) type.convert(as.character(x)))
data_2010EPI
View(data_2010EPI)</pre>
```

Data Prepared for Analysis = Munging

- Missing values, null values, etc.
- E.g. in the EPI data they use "--"
 - Most data applications provide built ins for these higherorder functions - in R "NA" is used and functions such as is.na(var), etc. provide powerful filtering options (we'll cover these on next class)
- Of course, different variables often are missing "different" values
- In R higher-order functions such as: Reduce, Filter, Map, Find, Position and Negate will become your enemies and then your friends:

http://www.johnmyleswhite.com/notebook/2010/09/2

3/higher-order-functions-in-r/

Explore the "Missing values" -- NA

ISL	Iceland	59039821	NA	100
CHE	Switzerland		NA	100
CRI	Costa Rica	61820969	75	100
SWE	Sweden	.16391001	NA	100
NOR	Norway	88187967	NA	100
MUS	Mauritius	45367567	83.333333	88.4616
FRA	France	.73853548	50	100
AUT	Austria		NA	100
CUB	Cuba	76040364	47.058824	100
COL	Colombia	22333964	47.142857	NA
MLT	Malta	49471766	NA	100
FIN	Finland	87493735	NA	100
SVK	Slovakia		NA	100
GBR	United Kingdom	24868389	66.666667	100
NZL	New Zealand	33441573	78.571429	NA
CHL	Chile	61701405	28.571429	100
DEU	Germany	100	NA	100
ITA	Italy	.67003818	100	100
PRT	Portugal	93377589	100	100
JPN	Japan	38311329	45	100
LVA	Latvia	72311585	NA	100
CZE	Czech Republic		NA	100
ALB	Albania	24993836	NA	100
PAN	Panama	.66377944	50	77.4416

Getting started – summarize data

- Summary statistic
 - Ranges, "hinges"
 - Tukey's five numbers
- Look for a distribution match
- Tests...for...
 - Normality shapiro-wilks and a p-value – what is the null hypothesis here?
 - > shapiro.test(EPI_data\$EPI)
 Shapiro-Wilk normality test
 data: EPI_data\$EPI
 p-value = 0.1188

Accept or Reject?

 Reject the null hypothesis if the p-value is less than the level of significance.

 You will fail to reject the null hypothesis if the p-value is greater than or equal to the level of significance.

Typical significance 0.05 (!)

Another variable in EPI

> shapiro.test(EPI_data\$DALY)

Shapiro-Wilk normality test

data: EPI_data\$DALY

W = 0.9365, p-value = 1.891e-07

Read: [1] https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test

- [2] http://www.sthda.com/english/wiki/normality-test-in-r
- [3] <u>https://www.dummies.com/programming/r/how-to-test-data-normality-in-a-formal-way-in-r/</u>
 - [4] https://emilkirkegaard.dk/en/?p=4452

Distribution tests

most distributions have tests

- Wilcoxon (Mann-Whitney)
 - Comparing populations

Two data samples are independent if they come from distinct populations and the samples do not affect each other. Using the Mann-Whitney-Wilcoxon Test, we can decide whether the population distributions are identical without assuming them to follow the normal distribution. http://www.r-tutor.com/elementary-statistics/non-parametric-methods/mann-whitney-wilcoxon-test

- Kolmogorov-Smirnov (KS)
- It got out of control when people realized they can name the test after themselves, v. someone else...

Getting started – look at the data

Visually

- What is the improvement in the understanding of the data as compared to the situation without visualization?
- Which visualization techniques are suitable for one's data?
 - Scatter plot diagrams
 - Box plots (min, 1st quartile, median, 3rd quartile, max)
 - Stem and leaf plots
 - Frequency plots
 - Group Frequency Distributions plot
 - Cumulative Frequency plots
 - Distribution plots

Why visualization?

- Reducing amount of data, quantization
- Patterns
- Features
- Events
- Trends
- Irregularities
- Leading to presentation of data, i.e. information products
- Exit points for analysis

Exploring the distribution

90

20

> summary(EPI) # stats

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 32.10 48.60 59.20 58.37 67.60 93.50 68

> boxplot(EPI)

> fivenum(EPI,na.rm=TRUE)

[1] 32.1 48.6 59.2 67.6 93.5

Tukey: min, lower hinge, median, upper hinge, max

Stem and leaf plot

> stem(EPI) # like-a histogram

The decimal point is 1 digit(s) to the right of the | - but the scale of the stem is 10... watch carefully..

```
3 | 234
```

- 3 | 66889
- 4 | 0001111222223344444
- 4 | 5555677788888999
- 5 | 0000111111111244444
- 5 | 55666677778888999999
- 6 | 00000111111112223333344444
- 6 | 5555666666677778888889999999
- 7 | 000111233333334
- 7 | 5567888
- 8 | 11
- 8 | 669
- 9 | 4

Grouped Frequency Distribution aka binning > hist(EPI) #defaults

Distributions

- Shape
- Character
- Parameter(s)

Which one fits?

Figure 2-1. A bunch of continuous density functions (aka probability distributions)

Histogram of EPI

29

Histogram of EPI

> hist(EPI, seq(30., 95., 1.0), prob=TRUE)

> lines (density(EPI,na.rm=TR UE,bw="SJ"))

Why are histograms so unsatisfying?

Histogram of EPI

- > xn < -seq(30,95,1)
- > qn<dnorm(xn,mean=63,
 sd=5,log=FALSE)</pre>
- > lines(xn,qn)
- > lines(xn,.4*qn)
- > In<-dnorm(xn,mean=44, sd=5,log=FALSE)
- > lines(xn,.26*ln)

Exploring the distribution

> summary(DALY) # stats

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 37.19 60.35 53.94 71.97 91.50 39

> fivenum(DALY,na.rm=TRUE)

More munging

 Bad values, outliers, corrupted entries, thresholds ...

Noise reduction – low-pass filtering, binning

Modal filtering

 REMEMBER: when you munge you MUST record what you did (and why) and save copies of pre- and post- operations...

Plot Zoom

Populations within populations

- In the EPI example:
 - Geographic regions (GEO_subregion)
 - EPI_regions
 - Eco-regions
 - Primary industry(ies)
 - Climate region

What would you do to start exploring?

EPI	ENVHEALTH NA	ECOSYSTEM	DALY	AID II									
NIA	MA		DALL	AIR_H	WATER_H	AIR_E	WATER_E	BIODIVERSITY	FORESTRY	FISHERIES	AGRICULTURE	CLIMATE	DALY
NA	IVA	NA	NA	NA	100.00	33.13	NA	0.23	100.00	92.86	40.00	NA	NA
NA	11.55	NA	0.00	35.49	10.72	72.03	57.43	3.11	22.63	NA	39.59	NA	0.000
36.3	18.29	54.40	0.00	43.47	29.70	40.13	64.76	58.43	94.79	86.74	54.55	53.85	0.000
NA	NA	NA	NA	NA	NA	86.54	NA	0.26	100.00	NA	40.00	NA	NA
71.4	69.93	72.92	65.50	52.97	95.73	49.16	91.24	77.02	100.00	62.54	54.55	68.97	65.50
NA	90.21	NA	84.77	91.28	100.00	52.41	NA	57.16	100.00	NA	40.00	NA	84.77
NA	NA	NA	NA	79.04	NA	18.19	NA	52.05	100.00	68.27	40.00	NA	NA
40.7	81.29	0.06	89.10	48.63	98.32	34.00	5.27	1.17	100.00	50.00	39.09	20.58	89.09
61.0	74.49	47.60	71.63	63.21	91.50	48.24	72.91	31.25	82.81	48.08	95.45	49.58	71.63
60.4	71.63	49.26	62.31	68.66	93.23	61.96	50.52	55.34	63.02	NA	92.84	49.85	62.31
NA	NA	NA	NA	NA	NA	46.47	NA	25.25	95.02	94.36	40.00	NA	NA
69.8	83.21	56.38	73.01	97.37	89.44	36.03	70.87	27.61	100.00	75.54	54.55	61.88	73.01
65.7	91.73	39.58	84.77	97.37	100.00	29.46	57.95	77.86	96.89	96.53	97.19	27.64	84.77
78.1	89.47	66.80	86.86	84.15	100.00	39.83	97.55	100.00	100.00	NA	84.54	50.07	86.86
59.1	62.72	55.43	57.61	65.86	69.81	54.33	51.40	67.57	100.00	NA	44.13	58.09	57.60
43.9	22.56	65.25	4.09	40.17	41.89	51.96	69.90	51.50	0.00	NA	100.00	78.02	4.089
58.1	89.05	27.09	80.96	94.30	100.00	21.44	56.53	20.20	100.00	48.74	70.00	36.65	80.95
39.6	22.94	56.24	16.40	28.43	30.55	50.30	68.62	74.20	22.24	91.50	99.80	54.71	16.39
47.3	12.24	82.33	4.94	12.04	27.04	58.68	59.90	100.00	79.12	NA	81.00	76.31	4.939
44.0	32.33	55.57	39.85	2.78	46.84	42.98	79.96	14.92	87.64	26.02	54.55	70.72	39.85
62.5	73.21	51.85	65.50	63.26	98.58	41.33	68.68	66.94	100.00	93.20	95.44	39.92	65.50

Or, a twist – n=1 but many attributes?

EPI	ENVHEALTH	ECOSYSTEM	DALY	AIR_H	WATER_H	AIR_E	WATER_E	BIODIVERSITY	FORESTRY	FISHERIES	AGRICULTURE	CLIMATE	DALY
NA	NA	NA	NA	NA	100.00	33.13	NA	0.23	100.00	92.86	40.00	NA	NA
NA	11.55	NA	0.00	35.49	10.72	72.03	57.43	3.11	22.63	NA	39.59	NA	0.000
36.3	18.29	54.40	0.00	43.47	29.70	40.13	64.76	58.43	94.79	86.74	54.55	53.85	0.000
NA	NA	NA	NA	NA	NA	86.54	NA	0.26	100.00	NA	40.00	NA	NA
71.4	69.93	72.92	65.50	52.97	95.73	49.16	91.24	77.02	100.00	62.54	54.55	68.97	65.50
NA	90.21	NA	84.77	91.28	100.00	52.41	NA	57.16	100.00	NA	40.00	NA	84.77
NA	NA	NA	NA	79.04	NA	18.19	NA	52.05	100.00	68.27	40.00	NA	NA
40.7	81.29	0.06	89.10	48.63	98.32	34.00	5.27	1.17	100.00	50.00	39.09	20.58	89.09
61.0	74.49	47.60	71.63	63.21	91.50	48.24	72.91	31.25	82.81	48.08	95.45	49.58	71.63
60.4	71.63	49.26	62.31	68.66	93.23	61.96	50.52	55.34	63.02	NA	92.84	49.85	62.31
NA	NA	NA	NA	NA	NA	46.47	NA	25.25	95.02	94.36	40.00	NA	NA
69.8	83.21	56.38	73.01	97.37	89.44	36.03	70.87	27.61	100.00	75.54	54.55	61.88	73.01
65.7	91.73	39.58	84.77	97.37	100.00	29.46	57.95	77.86	96.89	96.53	97.19	27.64	84.77
78.1	89.47	66.80	86.86	84.15	100.00	39.83	97.55	100.00	100.00	NA	84.54	50.07	86.86
59.1	62.72	55.43	57.61	65.86	69.81	54.33	51.40	67.57	100.00	NA	44.13	58.09	57.60
43.9	22.56	65.25	4.09	40.17	41.89	51.96	69.90	51.50	0.00	NA	100.00	78.02	4.089
58.1	89.05	27.09	80.96	94.30	100.00	21.44	56.53	20.20	100.00	48.74	70.00	36.65	80.95
39.6	22.94	56.24	16.40	28.43	30.55	50.30	68.62	74.20	22.24	91.50	99.80	54.71	16.39
47.3	12.24	82.33	4.94	12.04	27.04	58.68	59.90	100.00	79.12	NA	81.00	76.31	4.939
44.0	32.33	55.57	39.85	2.78	46.84	42.98	79.96	14.92	87.64	26.02	54.55	70.72	39.85
62.5	73.21	51.85	65.50	63.26	98.58	41.33	68.68	66.94	100.00	93.20	95.44	39.92	65.50

The item of interest in relation to its attributes

Summary: exploration

Going from preliminary to initial analysis...

- Determining if there is one or more common distributions involved - i.e. parametric statistics (assumes or asserts a probability distribution)
- Fitting that distribution -> provides a model!
- Or NOT
 - A hybrid model or
 - Non-parametric (statistics) approaches are needed - more on this to come

Summary

- Cyber and Human data; quality, uncertainty and bias – you will often spend a lot of time with the data
- Distributions the common and not-so common ones and how cyber and human data can have distinct distributions
- How simple statistical distributions can mislead us
- Populations and samples and how inferential statistics will lead us to model choices (no we have not actually done that yet in detail)
- Munging toward exploratory analysis
- Toward models!

Reminder: finish Lab 0

- Reminder to finish the last week intro to Lab (Lab 0)
- R! (how is your learning/coding in R going?) keep learning/coding...
- Create the Github repository for this class if you have not created so far and share the Data Analytics Class Github repo URL with the TA (please email TA your Github repo URL)