Codierung und Verschlüsselung

Prof. P. Hauck¹

WS 2009

¹Mitschrift: Christian Stegmann und Sebastian Brandt

Inhaltsverzeichnis

1	Kry	ptologie	1	1
	1.1	Grundb	pegriffe und einfache Verfahren	1
		1.1.1	Verschlüsselung erfordert	1
		1.1.2		2
		1.1.3	Prinzip von Kerkhoffs (1835-1903)	2
		1.1.4	Arten von Angriffen	3
	1.2	One-Ti	me-Pad und perfekte Sicherheit	3
		1.2.1		3
		1.2.2	Perfekte Sicherheit	3
	1.3	Symme	etrische Blockchiffre	4
		1.3.1	Blockchiffre	4
		1.3.2	Vorbemerkung	5
		1.3.3	Affin-lineare Chiffren	5
	1.4	Der Ad	Ivanced Encryption Standard (AES)	3
		1.4.1	Mathematische Methoden gebraucht für AES 8	3
		1.4.2	SubBytes-Transfer)
		1.4.3	Shift Rows Transformation	1
		1.4.4	Mix Columns Transformation	1
		1.4.5	Schlüsselerzeugung	1
		1.4.6	Public-Key-Systeme	2
		1.4.7	Grundidee	2
	1.5	RSA-V	Yerfahren	2
		1.5.1	Schlüsseslerzeugung	3
		1.5.2	Verschlüsselung	3
		1.5.3	Entschlüsselung	3
		1.5.4	Sicherheit vom RSA-Verfahren	5
		1.5.5	Wie bestimmt man große Primzahlen?	5
		1.5.6	Fermat-Test	5
		1.5.7	Miller-Rabin-Test	5
		1.5.8	Diffie-Hellman-Verfahren zur Schlüsselvereinbarung 16	5
		1.5.9	Sicherheit	7
		1.5.10	Man-in-the-Middle	7
	1.6	ElGam	al-Public Key Verfahren (1984)	7

		1.6.1	Schlüsselerzeugung	7
		1.6.2	Verschlüsselung	7
		1.6.3	Entschlüsselung	8
	1.7	Signatu	uren, Hashfunktionen, Authentifizierung	8
		1.7.1	Anforderung an digitale Signaturen	8
		1.7.2	RSA-Signatur (vereinfachte Version)	8
		1.7.3	Wie lassen sich lange RSA-Signaturen vermeiden? 1	8
		1.7.4	RSA-Signatur mit HASH-Funktion	8
		1.7.5	Angriffsmöglichkeiten	9
		1.7.6	Satz: Geburtstagsparadoxon	9
		1.7.7	Hashfunktion	0
		1.7.8	Authentifizierung	0
		1.7.9	Challenge-Response-Authentifizierung 2	1
	1.8	Secret	Sharing Scheme	1
		1.8.1	(k,n) - Schwellenwertsysteme	1
2		ierungst		
	2.1		pegriffe und einfache Beispiele	
		2.1.1	Codierung	
		2.1.2	Ziele	
	2.2	Grundp	prinzip	
		2.2.1	FEC-Verfahren (Forward Error Correction) 2	
		2.2.2	ARQ-Verfahren (Automatic Repeat Request) 2	
	2.3		odes	
		2.3.1	Definition	
		2.3.2	Definition: Hamming-Abstand	
		2.3.3	Definition	
		2.3.4	Definition: Perfekter Code	
		2.3.5	Gibt es perfekte Codes?	
		2.3.6	Lemma	
		2.3.7	Binärer Hamming-Code der Länge 7	
	2.4	Lineare	e Codes	
		2.4.1	Definition: linearer Code	
		2.4.2	Definition: Informationsrate	
		2.4.3	Bemerkung über endliche Körper	3
		2.4.4	Bsp	4
		2.4.5	Definition: Gewicht und Minimalgewicht	
		2.4.6	Satz	
		2.4.7	Definition: Erzeugermatrix	
		2.4.8	Satz	
		2.4.9	Bemerkung	5
		2.4.10	Beispiel: Hamming-[7,4]-Code über $\mathbb{Z}_2 \dots 3$	5
		2.4.11	Definition: Standardform	6
		2.4.12	Satz	6

	2.4.13	Beweis	36
	2.4.14	Bermerkung	37
	2.4.15	Beispiel	37
	2.4.16		38
	2.4.17	Beispiel: $[7,4]$ -Hamming-Code über \mathbb{Z}_2	38
	2.4.18	-	38
	2.4.19		
		en)	39
2.5	Syndro	om-Decodierung linearer Code	39
	2.5.1	Beispiel	40
2.6	Beispie	ele guter linear Codes	41
	2.6.1	Hamming-Codes	41
	2.6.2	Beispiel	42
	2.6.3	Decodierung binärer Hamming-Codes	43
2.7	Reed-S	Solomon-Codes	43
	2.7.1	Reed-Solomon-Code (Auswertungscode)	44
2.8	MDS-0	Codes	44
2.9	Codier	ung von Audio-CDs	45
	2.9.1	Lemma: $[n, k, d]$ -Code	46
	2.9.2	Interleaving (Spreizung)	46
	2.9.3	Cross-Interleaving	46
	294	Audio-CD	47

Kapitel 1

Kryptologie

1.1 Grundbegriffe und einfache Verfahren

Abbildung 1.1: Schaubild der Kryptologie

1.1.1 Verschlüsselung erfordert

- Verschlüsselungsverfahren, Algorithmus (Funktion)
- Schlüssel k_e (encryption key)

$$E(m, k_e) = c$$

E=Verschlüsselungs Funktion, m=Klartext, c=Chiffretext

$$E(m_1, k_e) \neq E(m, k_e)$$
 für $m_1 \neq m_2$

$$D(c, k_d) = m$$

 $(k_d \text{ zu } k_e \text{ gehöriger Dechiffrierschlüssel!})$

 $k_d = k_e$ (oder k_d leicht aus k_e zu berechnen):

symmetrisches Verschlüsselungsverfahren, ansonsten asymmetrische Verschlüsselungsverfahren. Ist k_d nur sehr schwer (oder gar nicht) zu k_e berechenbar, so kann k_e veröffentlicht werden:

Public-Key-Verfahren.

1.1.2 Beispiel für (nicht sicheres) symmetrische Verfahren

a) $R = S = \{0, 1, \dots, 25\}$

Verfahren: Verschiebechiffre

Schlüssel: $i \in \{0, 1, ..., 25\}$

Verfahren $x \in \mathbb{R} \longrightarrow x + i \mod 26 = y$

 $y \longmapsto y - i \mod 26 = y$

 $m = x_1...x_2 \longrightarrow c = (x_1 + i \mod 26)...(x_n + i \mod 26), E(m, i)$

Unsicher, weil Schlüsselmenge klein ist (Brute Force Angriff).

b) R,S, Schlüsselmenge=Menge aller Permutationen von $\{1, \dots, 25\} = S_{26}$

Verschl.: Wähle Permuation π

 $x \in \mathbb{R} \longrightarrow \pi(x) = y$

Entschl.: $y \longrightarrow \pi^{-1}(y) = x$

 $m = x_1 \dots x_r \rightarrow c = \pi(x_1) \dots \pi(x_r)$

$$\begin{pmatrix} 0 & 1 & 2 & \dots & 25 \\ 3 & 17 & 4 & \dots & 13 \end{pmatrix} \longrightarrow \pi(0) = 3, \text{ u.s.w.}$$

Anzahl der Permutationen: $|S_{26}| = 26! \approx 4 \cdot 10^{26} \longrightarrow \text{Brute-Force Angriff nicht mehr möglich!}$

Warum? Man muss im Schnitt 50% der Permutationen testen. Angenommen man könnte 10^12 Perm. pro Sekunde testen.

Aufwand: $2 \cdot 10^{14}$ Sekunden $\approx 6.000.000$ Jahre

Trotzdem unsicher!

Grund: Charakteristisches Häufigkeitsverteilung von Buchstaben in natürlichsprachigen Texten.

Verfahren beinhalten viele Verschlüsselungsmöglichkeiten, abhängig von der Auswahl des Schlüssels.

Verfahren bekannt, aber Schlüssel k_d geheim!

1.1.3 Prinzip von Kerkhoffs (1835-1903)

Sicherheit eines Verschlüsselungsverfahren darf nicht von der Geheimhaltung des Verfahrens, sondern nur von der Geheimhaltung des verwendeten Schlüssels abhängen!

Kryptologie besteht aus Kryptographie (Entwurf) und der Kryptoanalyse (Angriff). Angriffserfolge:

- Schlüssel k_d wird gefunden
- Eine zu der Dechiffrierfunktion $D(\cdot, k_d)$ äquivalente Funktion finden ohne Kenntnis von k_d
- gewisse Chiffretexte werden entschlüsselt

1.1.4 Arten von Angriffen

- Ciphertext-Only Angriff
- Known-Plaintext Angriff
- Chosen-Plaintext Angriff
- Chosen-Ciphertext Angriff

1.2 One-Time-Pad und perfekte Sicherheit

Lauftextverschlüsselung

Alphabet $\mathbb{Z}_k = \{0, 1, ..., k - 1\}$

In \mathbb{Z}_k kann man addieren und multiplizieren mit mod k.

Klartext
$$x_1, x_2, ..., x_n$$

Schlüsselwort $k_1, k_2, ..., k_n$
 $x_1 + k_1 \mod k, x_n + k_n \mod k \leftarrow \text{Chiffretext}$

Mit natürlichsprachlichen Texten ist das Verfahren unsicher.

$$\mathbb{Z}_2 = \{0, 1\}, 1 \oplus 1 = 0 = 0 \oplus 0, 0 \oplus 1 = 1 = 1 \oplus 0 \Rightarrow XOR$$

Klartext in $\mathbb{Z}_2^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{Z}_2\}$ Schlüssel: Zufallsfolge über \mathbb{Z}_2 der Länge n. m Klartext, k Zufallsfolge (beide Länge n)

$$c = m \oplus k, (x_1, \dots, x_n) \oplus (k_1, \dots, k_n) := (x_1 \oplus k_1, \dots, x_n \oplus k_n)$$

1.2.1 One-Time-Pad

Schlüssel k darf nur einmal verwendet werden!

$$m_1 \oplus k = c_1, m_2 \oplus k = c_2, c_1 \oplus c_2 = m_1 \oplus k \oplus m_2 \oplus k = m_1 \oplus m_2$$

Wieder nur Lauftext → unsicher!

 m_1 und m_2 lässt sich ermitteln.

Zufallsfolge der Länge n: eigentlich unsinniger Begriff. Da jedes Bit unabhängig von anderen mit Wahrscheinlichkeit $\frac{1}{2}$ erzeugt wird (Output einer binär symmetrischen Quelle)

Jede Folge der Länge n ist gleich wahrscheinlich (Wahrscheinlichkeit $\frac{1}{2}n$ One-Time-Pad ist perfekt sicher.

1.2.2 Perfekte Sicherheit

Ein Verschlüsselungsverfahren ist perfekt sicher, falls gilt: Für jeden Klartext m und jedem Chiffretext c (der festen Länge n)

$$pr(m|c) = pr(m)$$

 $pr(m|c) \to A$ -posteriori-Wahrscheinlichkeit (Wahrscheinlichkeit, dass m Klartext, wenn c empfangen wurde)

 $pr(m) \rightarrow A$ -priori-Wahrscheinlichkeit

Beispiel: Substitutionschiffre aus Kapitel 2.

n = 5, m = HALLO, pr(m) > 0

Ang:c = QITUA wird empfangen, $LL \neq TU \rightarrow pr(m|c) = 0$ nicht perfekt sicher.

One-Time-Pad ist perfekt sicher.

(Bayes'sche Formel) $m \oplus k$

Jede Folge c lässt sich mit geeignetem k in der Form $c = m \oplus k$ erhalten.

Wähle $k = m \oplus c$, $m \oplus k = m \oplus m \oplus c = c$

Bei gegebenem m und zufällige gewählten Schlüssel k ist jeder Chiffretext gleichwertig.

1.3 Symmetrische Blockchiffre

1.3.1 Blockchiffre

Zerlege Klartext in Blöcke (Strings) der Länge *n*. Jeder Block wird einzeln verschlüsselt (in der Regel wieder in einem Block der Länge *n*). Gleiche Blöcke werden gleich verschlüsselt.

Wie viele Blockchiffren der Länge n gibt es?

Alphabet
$$\mathbb{Z}_2 = \{0, 1\}$$

$$|\{(0,\ldots,0),(0,\ldots,1),\ldots,(1,\ldots,1)\}|=2^n$$

Blockchiffre = Permutation der 2^n Blöcke.

 $(2^n)!$ Blockchiffre

Wenn alle verwendet werden:

Schlüssel = Permutation der 2^n Blöcke

$$(x_{1,1},\ldots,x_{1,n},x_{2,1},\ldots,x_{2,n},\ldots)$$
 $n\cdot 2^n$ Bit

Zur Speicherung eines Schlüssels werden $n \cdot 2^n$ Bit benötigt.

Zum Beispiel:

n = 64, $64 \cdot 2^{64} = 2^{70} = 1$ ZiB ≈ 1 Milliarde Festplatten à 1 TB

Illusional!

Konsequenz: Verwende Verfahren, wo nur ein kleiner Teil der Permutation als Schlüssel verwendet wird und so sich die Schlüssel dann in kürzerer Form darstellt.

1.3.2 Vorbemerkung

 $n \times m$ -Matrix

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix}$$

 $1 \times n = \text{Zeilenvektor} = (a_1, \dots, a_m)$

$$n \times 1 = \text{Spaltenvektor} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

z.B. $a_{ij} \in \mathbb{R}$, $a_{ij} \in \mathbb{Z}$ oder $a_{ij} \in R$, R Ring $n \times m$ -Matrix A,B

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1m} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nm} \end{pmatrix} := \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1m} + b_{1m} \\ \vdots & & \vdots \\ a_{n1} + b_{n1} & \dots & a_{nm} + b_{nm} \end{pmatrix}$$

$$A = n \times m, B = m \times k,$$

$$A \cdot B \begin{pmatrix} c_{1l} & \dots & c_{1k} \\ \vdots & & \vdots \\ c_{m1} & \dots & c_{mk} \end{pmatrix} = n \times k$$

$$c_{1l} = (a_{i1} \cdot b_{ij}) + (a_{i2} \cdot b_{2j}) + \dots + (a_{im} \cdot b_{mj})$$

 $(A + B) \cdot C = A \cdot B + B \cdot C$

Im Allgemeinem: $A \cdot B \neq B \cdot A$

Quadritsche Matrix $(n \times n)$

$$E_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

$$A = n \times n, \ A \cdot E_n = E_n \cdot A = A$$

A $n \times n$ -Matrix über kommutativen Ring R mit Eins. Wann existiert Matrix A^{-1} (Inverse Matrix) mit $A^{-1} \cdot A = A \cdot A^{-1} = E_n$? $det(A) \in R$ Determinante von A

$$2 \times 2$$
-Matrix: $det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{21} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

A besitzt inverse Matrix $\Leftrightarrow det(A)$ in R ein inverses besitzt

(z.B. R Körper, \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_p , $det(A) \neq 0$

$$A^{-1} = \begin{pmatrix} \frac{1}{det(A)} \cdot b_{11} & \dots & \frac{1}{det(A)} \cdot b_{1m} \\ \vdots & & \vdots \\ \frac{1}{det(A)} \cdot b_{n1} & \dots & \frac{1}{det(A)} \cdot b_{nm} \end{pmatrix}$$

$$b_{ij} = (-1)^{i+j} \det(A_{ii})$$

 $A_{ji} = (n-1) \times (n-1)$ -Matrix, die aus A durchstreichen der j-ten Zeile und i-ten Spalte entsteht.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} A^{-1} = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

$$R = \mathbb{Z}_k \{0, 1, \dots, k\}$$

Addition und Multiplikation in $\mathbb{Z}_k(\oplus, \odot)$ normale Add. und Mult. mit mod k

1.3.3 Affin-lineare Chiffren

Klartextalphabet = Chiffretextalphabet = \mathbb{Z}_k (k = 2, k = 26)

Wähle $n \times n$ -Matrix A über \mathbb{Z}_k und Zeilenvektor b der Länge n über \mathbb{Z}_k . Dies wird der Schlüssel sein für die Chiffrierung.

Blockchiffre der Länge n.

Block = Zeilenvektor der Länge n über \mathbb{Z}_k .

Klartextblock v

Chiffretextblock

$$v \cdot A + b =: w$$

 $v \rightarrow v \cdot A + b =: w$
 $w - b = v \cdot A$

benötigen: A^{-1} existiert (d.h. ggT(det(A), k) = 1)

Dechiffrierung:

$$(w - b) \cdot A^{-1} = v \cdot A \cdot A^{-1} = v \cdot E_n = v$$

(wenn immer b=0 gewählt wird, dann lineare Chiffren, Hill-Chiffren) Beispiel:

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}, \quad \mathbb{Z}_6$$

Blockchiffre der Länge $n \det(A) = 1 \cdot 2 - 3 \cdot 3 = -7 = 5$ inverse in \mathbb{Z}_6

$$\frac{1}{\det(A)} = \det(A)^{-1} = 5$$

$$A^{-1} = 5 \cdot \begin{pmatrix} 2 & -3 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 10 & -15 \\ -15 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix}$$

Test:

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 4+9 & 3+15 \\ 12+6 & 9+10 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Verschlüsselung: Schlüssel:

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} \quad b = (3, 5)$$

Klartextblock: (1, 2)

Chiffretextblock:

$$w = (1,2) \cdot \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} + (3,5) = (1,1) + (3,5) = (4,0)$$

Entschlüsselung:

$$(w-b) \cdot A^{-1} = (1,1) \cdot \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix} = (1,2)$$

 $\mathbb{Z}_2: n^2 + n$ Bit zur Speicherung eines Schlüssels.

Wie viele inverse Matrizen über \mathbb{Z}_2 mit n = 64?

$$(2^{64}-1)\cdot(2^{64}-2)\cdot\ldots\cdot(2^{64}-2^{63})\approx 0.29\cdot 2^{4096}$$

Verfahren ist unsicher gegenüber Known-Plaintext-Angriffe.

(A, b) Schlüssel, A inverse $n \times n$ -Matrix über $\mathbb{Z}_k, b \in \mathbb{Z}_k^n$

Angenommen Angreifer kennt n + 1 Klartext/Chiffretextpaare verschlüsselt mit $(A, b), v_0, v_1, \dots, v_n, w_0, \dots, w_n$

Dann kann er häufig (A, b) bestimmen.

$$V = \begin{pmatrix} v_1 - v_0 \\ v_2 - v_0 \\ \vdots \\ v_n - v_0 \end{pmatrix} n \times n - \text{Matrix}$$

Angenommen: V ist invertierbar. Setze $W = \begin{pmatrix} w_1 - w_0 \\ \vdots \\ w_n - w_0 \end{pmatrix}$

$$V \cdot A = \begin{pmatrix} (v_1 - v_0) \cdot A \\ \vdots \\ (v_n - v_0) \cdot A \end{pmatrix} = \begin{pmatrix} v_1 \cdot A + b - v_0 \cdot A + b \\ \vdots \\ v_n \cdot A + b - v_0 \cdot A + b \end{pmatrix} = \begin{pmatrix} w_1 - w_0 \\ \vdots \\ w_n - w_0 \end{pmatrix} = W$$

 $V \cdot A$ bekannt, also auch V^{-1} :

$$A = V^{-1} \cdot w$$

$$b = w_0 - v_0 \cdot A$$

Beispiel: $n = 2, k = 25 \{A, ..., Z\} = \{0, ..., 25\}$

$$V = \begin{pmatrix} 10 & -3 \\ 11 & 15 \end{pmatrix} = \begin{pmatrix} 10 & 23 \\ 11 & 15 \end{pmatrix}, \quad W = \begin{pmatrix} 14 & 7 \\ 21 & 2 \end{pmatrix}$$

$$det(V) = 10 \cdot 15 + 33 = 183 \equiv 1 \pmod{26}$$

$$V^{-1} = \begin{pmatrix} 15 & 3 \\ -11 & 10 \end{pmatrix} = \begin{pmatrix} 15 & 3 \\ 15 & 10 \end{pmatrix}$$

$$A = V^{-1} \cdot W = \begin{pmatrix} 15 & 3 \\ 15 & 10 \end{pmatrix} \cdot \begin{pmatrix} 14 & 7 \\ 21 & 2 \end{pmatrix} = \begin{pmatrix} 210 + 63 & 105 + 6 \\ 210 + 210 & 105 + 20 \end{pmatrix} = \begin{pmatrix} 13 & 7 \\ 4 & 21 \end{pmatrix}$$

$$b = w_0 - v_0 \cdot A = (13, 4) - (7, 4) \cdot \begin{pmatrix} 13 & 7 \\ 4 & 21 \end{pmatrix} = (10, 1)$$

Test:

$$v_1 \cdot A + b = w_1, \quad v_2 \cdot A + b = w_2$$

1.4 Der Advanced Encryption Standard (AES)

1.4.1 Mathematische Methoden gebraucht für AES

Seit 70er Jahren gab es DES (Blocklänge 64 Bit, Schlüssellänge 56 Bit)

Nachfolger des DES: Daemen, Rijmen (Belgier) Rijndael-Verfahren → AES (2002 FIPS 197)

Iterierte Blockchiffre

Version mit 128 Bit Block und Schlüsselänge.

Vorbemerkung: 128-Bit Blöcke werden dargestellt als:

$$\begin{pmatrix} a_{00} & a_{01} & \dots & a_{03} \\ a_{10} & a_{11} & \dots & a_{13} \\ \vdots & \vdots & \vdots & \vdots \\ a_{30} & \dots & \dots & a_{33} \end{pmatrix}$$

Abbildung 1.2: Eine Runde vom AES

Jedes a_{ij} = Byte 128er Block $\stackrel{\wedge}{=} a_{00}a_{10}a_{20} \dots a_{01}a_{11} \dots a_{33}$ (spaltenweise gelesen)

endlicher Körper: einfachste Möglichkeit \mathbb{Z}_p (p Primzahl) \mathbb{F}_{2^8} Körper mit $2^8=256$ Elementen

Menge: Polynome vom Grad < 8 über \mathbb{Z}_2 $b_7x^7 + \ldots + b_1x + b_0, b_i \in \mathbb{Z}_2$ (b_7, b_6, \ldots, b_0) Byte

Addition = normale Addition von Polynomen Multiplikation = normale Multiplikation von Polynomen + Reduktion modulo irreduzibler Polynom vom Grad 8. $(x^8 + x^4 + x^3 + x + 1)$

Bsp.
$$(x^{7} + x + 1) \odot (x^{3} + x) = x^{10} + x^{8} + x^{4} + x^{3} + x^{2} + x$$

$$x^{10} + x^{8} + x^{4} + x^{3} + x^{2} + x \mod x^{8} + x^{4} + x^{3} + x + 1$$

$$x^{10} + x^{8} + x^{4} + x^{3} + x^{2} + x \div x^{8} + x^{4} + x^{3} + x + 1 = x^{2} + 1$$

$$\frac{x^{10} + x^{6} + x^{5} + x^{3} + x^{2}}{x^{8} + x^{6} + x^{5} + x^{4} + x}$$

$$x^{8} + x^{4} + x^{3} + x + 1$$

1.4. DER ADVANCED ENCRYPTION STANDARD (AES)

$$x^6 + x^5 + x^3 + 1 \leftarrow$$

$$(x^7 + x + 1) \odot (x^3 + x) = x^6 + x^5 + x^3 + 1$$

In \mathbb{F}_{2^8} hat jedes Element $\neq 0$ ein Inverses bzgl. \odot : $g \neq 0.Ex.g^{-1} \in \mathbb{F}_{2^8} : g \odot g^{-1} = 1$

Erweiterte Euklid. Algo. für Polynome:

$$g \neq 0$$
 (Grad ≤ 7) $h = x^8 + x^4 + x^3 + x + 1$ irred. $ggT(g, h) = 1$

EEA: $u, v \in \mathbb{Z}_2[x] : u \cdot g + v \cdot h = 1$

 $u \mod h =: g^{-1}$

 $g^{-1} \odot g = ((u \mod h) \cdot g) \mod h = u \cdot g \mod h = (1 - vh) \mod h = 1 \mod h = 1$

1.4.2 SubBytes-Transfer

$$S_{i-1} = \begin{pmatrix} a_{00} & a_{01} & \dots & a_{03} \\ a_{10} & a_{11} & \dots & a_{13} \\ \vdots & \vdots & \vdots & \vdots \\ a_{30} & \dots & \dots & a_{33} \end{pmatrix}, a_{ij} \text{ Bytes}$$

Sei g eines dieser Bytes, $g = (b_7b_6 \dots b_0), b_i \in \mathbb{Z}_2$

- 1. Schritt: Fasse g als Element in \mathbb{F}_{2^8} auf. Ist g = (0, ..., 0), so lasse g unverändert. Ist $g \neq (0, ..., 0)$, so ersetzte g durch g^{-1} .
- 2. Schritt: Ergebnis nach Schritt 1: \tilde{g} wird folgenderm. Transformiert $\tilde{g} \cdot A + b = \tilde{\tilde{g}}$ (affin-lin. Transformation) (\tilde{g} : g-schlange, $\tilde{\tilde{g}}$:g-doppel-schlange)

A wird durch zyklischer Shift der vorherigen Zeile um 1 Stelle nach rechts erzeugt.

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Schritt 1 und 2 werden kombiniert, nicht jedes mal berechnet. Alle möglichen Sub-Bytes (2⁸ viele) sind in einer 16x16 Matrix und wird per Table-Lookup nachgeschlagen.

$$g = (b_7b_6b_5b_4b_3b_2b_1b_0)$$
 $b_7b_6b_5b_4 = 0$ bis 15 (Zeile) $b_3b_2b_1b_0$ (Spalte)

1.4.3 Shift Rows Transformation

4x4-Matrix von Bytes:

1.4.4 Mix Columns Transformation

4x4-Matrix, Einträge als Elemente in \mathbb{F}_{2^8} auffassen. Multiplikation von links mit Matrix (Mult. der Eintr. in \mathbb{F}_{2^8}):

$$\begin{pmatrix} x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x \end{pmatrix}$$
$$x \stackrel{\triangle}{=} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

1.4.5 Schlüsselerzeugung

Ausgangsschlüssel hat 128 Bit. (16er String in Hexcode)

Schreibe als 4x4-Matrix von Bytes. 4 Spalten w(0), w(1), w(2), w(4). Definiere weitere 40 Spalten à 4 Bytes.

w(i-1) sei schon definiert.

$$4 \nmid i : w(i) := w(i-4) \oplus w(i-1)$$
 (byteweise *XOR*)
 $4 \mid i : w(i) := w(i-4) \oplus T(w(i-1))$ (*T* Transformation)

T?

$$w(i-1) = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}, \quad a, \dots, d$$
Bytes

Wende auf b, c, d, a SubBytes-Transformation an $\rightarrow e, f, g, h$

$$r(i) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}^{\frac{(i-4)}{4}} \quad \text{Potenz. in } \mathbb{F}_{2^8}$$

$$T(w(i-1)) = \begin{pmatrix} e \oplus r(i) \\ f \\ g \\ h \end{pmatrix}$$

Rundenschlüssel K_i : 4x4-Matrix mit Spalten w(4i), ; w(4i+1), ; w(4i+2), ; w(4i+3)

(Nebenbemerkung: Linear heißt f(x + y) = f(x) + f(y))

1.4.6 Public-Key-Systeme

1.4.7 Grundidee

Diffie, Hellman, 1976 Jeder Teilenehmer hat ein Paar von Schlüsseln:

- öffentlichen Schlüssel PA
- geheimen Schlüssel G_A

Zu P_A gehört öffentlich bekannte Verschlüsselungsfunktion E_{P_A} (= $E(\cdot, P_A)$ $B \xrightarrow{m} A : E_{P_A}(m) = c$

1. m darf mit "realistischen Aufwand" nicht aus $E_{P_A}(m)$ berechenbar sein. E_{P_A} ist **Einwegfunktion**

 $(E_{P_A}$ muss effizient berechenbar sein, aber $E_{P_A}^{-1}$ nicht!)

2. A muss mit Hilfe einer Zusatzinformation (= G_A) in der Lage sein, $E_{P_A}^{-1}$ effizient zu berechnen.

$$D_{G_A}(c) = m = E_{P_A}^{-1}(c)$$

Injektive Einwegfunktionen, die mit Zusatzinformation effizient invertierbar sind: **Geheimtürfunktion** (trapdoor function)

Aus 1) und 2) folgt:

3 G_A darf aus P_A nicht schnell berechenbar sein!

Es ist unbekannt ob Einwegfunktion existieren! Notwendig für die Existenz von Einwegfunktionen:

$$P \neq NP$$

Es gibt Kandidaten für Einwegfunktionen.

1.5 RSA-Verfahren

(Rivest, Shamir, Adleman, 1977)

Beruht auf Schwierigkeit große Zahlen zu faktorisieren!

1.5.1 Schlüsseslerzeugung

Wähle zwei große Primzahlen $p, q(p \neq q)$ (mindestens 500 Bit Länge) Bilde $n = p \cdot q$

$$\varphi(n) = \|\{a \in \mathbb{N} : 1 \le a < n, ggt(a, n) = 1\}\|$$

$$n = p \cdot q : \varphi(n) = (p - 1) \cdot (q - 1)$$

[nicht teilerfremd zu $n:1 \cdot p, 2 \cdot p, \dots, (q-1) \cdot p = n = 1 \cdot q, 2 \cdot q, \dots, (p-1) \cdot q$ (p-1) + (q-1) + 1

$$\varphi(n) = n - (p-1) - (q-1) - 1 = n - p - q + 1 = p \cdot q - p - q + 1 = (p-1) \cdot (q-1)$$

Wähle $e, 1 < e < \varphi(n)$ mit $ggT(e, \varphi(n)) = 1$

Zufallswahl, bestimme $ggT(e, \varphi(n))$ mit Euklidischer Algorithmus, so lange, bis e mit $ggT(e, \varphi(n)) = 1$ gefunden ist.)

öffentlicher Schlüssel

$$(n, e) = P_A$$

Wähle $d < \varphi(n)$ mit $e \cdot d \equiv 1 \pmod{n}$ (d.h. $\varphi(n) \mid e \cdot d - 1, e \cdot d = 1 + k \cdot \varphi(n)$ für $k \in \mathbb{N}$)

(Wende erweiterten Euklidischen Algorithmus auf e, $\varphi(n)$ an:

Liefert
$$u, v \in \mathbb{Z}$$
 mit $u \cdot e + v \cdot \varphi(n) = ggT(e, \varphi(n)) = 1$

 $d = u \mod \varphi(n)$

$$u \cdot e + v \cdot \varphi(n) \mod \varphi(n) = 1$$

$$(\underbrace{u \mod \varphi(n)}_{d} \cdot e) \mod \varphi(n) = 1)$$

Geheimerschlüssel

$$G_A = d$$

1.5.2 Verschlüsselung

B Nachrichtan *A*. Codiere Nachricht als Zahl. Zerlege in Blöcke deren Zahlwert < n. Sei m so ein Block. (m < n) $m^e \mod n = c$

1.5.3 Entschlüsselung

$$c^d \mod n = m$$

Gültigkeit basiert auf kleinem Satz von Fermat:
 r Primzahl, $ggT(a, r) = 1$ (d.h. $r \nmid a$)
 $a^{r-1} \equiv 1 \pmod{r}$

Sei $m < n = p \cdot q$

$$c = m^e \mod n, \ c^d \mod n = m^{e \cdot d} \mod n$$
$$e \cdot d = 1 + k \cdot \varphi(n)$$
$$= 1 + k \cdot (p - 1) \cdot (q - 1)$$

Ist $p \nmid m$, so

$$m^{e \cdot d} = m^{1 + k \cdot (p-1) \cdot (q-1)}$$

$$= m \cdot \underbrace{(m^{p-1})}_{\equiv 1 \mod p}^{k \cdot (q-1)}$$

$$\stackrel{\text{mod } p}{\Rightarrow} m \cdot 1^{k \cdot (q-1)} (\text{mod } p)$$

$$\equiv m (\text{mod } p)$$

Ist *p* | *m*:

$$m \equiv 0 \equiv m^{e \cdot d} \pmod{p}$$

In jedem Fall:

$$m^{e \cdot d} \equiv m \pmod{p}$$

Genauso:

$$m^{e \cdot d} \equiv m \pmod{q}$$

$$p \mid m^{e \cdot d} - m, \ q \mid m^{e \cdot d} - m, \ p \neq q \Rightarrow n = p \cdot q \mid m^{e \cdot d} - m$$

$$m^{e \cdot d} \equiv m \pmod{n}, \ m^{e \cdot d} \mod n = m$$

Schnelle Berechnung von modularen Potenzen ($m^e \mod n$)

$$e = \sum_{i=0}^{k} e_i \cdot 2^k, \quad e_i \in \{0, 1\}, \quad e_k = 1$$

$$m^e = m^{2 \cdot k + e_{k-1} \cdot 2^{k-1} + \dots + e_1 \cdot 2 + e_0}$$

$$((\dots((m^2\cdot m^{e_{k-1}})^2\cdot m^{e_{k-2}})^2\dots)^2\cdot m^{e_1})^2\cdot m^{e_0}$$

gelöst im worst case mit $2 \cdot k$ Multiplikationen.

$$k = \lfloor log_2(e) \rfloor$$

Nach jedem Rechenschritt mod *n* reduzieren!

1.5.4 Sicherheit vom RSA-Verfahren

Falls p, q bekannt $\Rightarrow \varphi(n)$, d bekannt. $\varphi(n)$ bekannt $\Rightarrow p$, q bekannt. $\varphi(n) = n - q - p + 1$ bekannt $\Rightarrow p + q = s$ bekannt, $p \cdot q = n$ bekannt. $p \cdot (s - p) = n p^2 - s \cdot p + n = 0$ quadratische Gleichung für p

Es gilt auch: Bestimmung von d ist "genauso schwierig" wie die Faktorisierung von n.

Komplexität der besten Faktorisierungsalgorithmen:

$$O(e^{c \cdot (\log n)^{\frac{1}{3}} \cdot ((\log \log n)^{\frac{2}{3}})})$$

Um eine 640 Bit Zahl zu faktorisieren braucht man 30-CPU-Jahre auf einer 2.2 GHz CPU.

Häufig wird e = 3 gewählt.

$$A \xrightarrow{m} (n_1, 3) B_1$$

$$A \xrightarrow{m} (n_2, 3) B_2$$

$$A \xrightarrow{m} (n_3, 3) B_2$$

 $ggT(n_i, n_j) = 1$

$$c_1 = m^3 \mod n_1$$

$$c_2 = m^3 \mod n_2$$

$$c_3 = m^3 \mod n_3$$

Eve fängt c_1 , c_2 , c_3 ab: Chinesisches Restsatz:

$$0 \le x \le n_1 \cdot n_2 \cdot n_3$$
mit $x = c_i \mod n_i$, $i = 1, 2, 3$
 x ist eindeutig bestimmbar
$$m^3 \equiv c_i \mod n_i$$
, $m^3 < n_1 \cdot n_2 \cdot n_3$

$$\Rightarrow x = m^3 \Rightarrow m = \sqrt[3]{x}$$

Wenn e = 5, dann braucht man 5 Nachrichten.

1.5.5 Wie bestimmt man große Primzahlen?

$$p$$
 Primzahl, $a \in \mathbb{Z}$, $ggT(a, p) = 1$
 $a^{p-1} \equiv 1 \pmod{p}$ [kl. Satz von Fermat]

gegeben: n, ggT(a, n) = 1 $a^{n-1} \equiv 1 \pmod{n}$?

1.5.6 Fermat-Test

Wenn nicht, so ist *n* keine Primzahl. Wenn ja, so keine Aussage möglich. Wähle neues a!

Es gibt zusammengesetze Zahlen n (Carmichael-Zahlen) mit:

$$a^{n-1} \equiv 1 \pmod{n} \quad \forall \ a \ \text{mit} \ ggT(a, n) = 1$$

1.5.7 Miller-Rabin-Test

$$ggT(a, p) = 1$$

$$p \text{ Primzahl } p - 1 = 2^{s} \cdot t, \quad 2 \nmid t$$

$$a^{2^{s} \cdot t} \equiv 1 \pmod{p}$$

$$(a^{2^{s-1} \cdot t})^{2} = b$$

$$a^{2^{s-1} \cdot t} = \begin{cases} 1 \mod p \\ -1 \mod p \end{cases}$$

$$b^{2} \equiv 1 \pmod{p}$$

$$(b \mod p)^{2} = 1 \in \mathbb{Z}_{p}$$

$$x^{2} - 1 \in \mathbb{Z}_{p}[x]$$

Entweder $a^t \equiv 1 \pmod{p}$ oder $a^{s^i \cdot t} \equiv -1 \pmod{p}$ für ein $0 \le i \le s$

Teste dies mit n statt p.

Wenn *n* keine Primzahl ist, dann gibt es mindestens $\frac{3}{4}\varphi(n)$ viele *a*, so dass der Test fehlschlägt.

→ probabilistischer Primzahltest

p Primzahl $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ Gruppe bezüglich Multiplikation (zyklisch)

$$\exists g \in \mathbb{Z}_p^* : \{g^0, g^1, g^2, \dots, g^{p-2}\} = \mathbb{Z}_p$$

 $g^{p-1} \equiv 1 \pmod{p}$

Primitivwurzel mod p

 $0 \le a \le p-2 : a \mapsto g^a \mod p$ Kandidat für Einwegfunktion. $g^a \mod p \to a$ (diskreter Logarithmus) ist nach heutigem Stand schwer!

1.5.8 Diffie-Hellman-Verfahren zur Schlüsselvereinbarung

A, B wollen gemeinsamen Schlüssel K für ein symmetrische Verfahren vereinbaren; es steht nur unsichere Kommuniaktionskanal zur Verfügung.

Lösung: p, g (Bitlänge von p > Bitlänge von K) (können öffentlich bekannt sein).

- 1. A wählt zufällig $a \in \{2, ..., p-2\}$ A berechnet $x = g^a \mod p$ (a geheim halten)
- 2. *B* wählt zufällig $b \in \{2, ..., p-2\}$ *B* berechnet $y = g^b \mod p$ (*b* geheim halten)
- 3. $A \xrightarrow{x=g^a} B$ $B \xrightarrow{y=g^b} A$ $A: y^a \mod p = g^{b \cdot a} \mod p = K$ $B: x^b \mod p = g^{a \cdot b} \mod p = K$

1.5.9 Sicherheit

Angreifer: $p, g, g^a \mod p, g^b \mod p$

gesucht: $g^{a \cdot b} \mod p$

Einzig bekannte Möglichkeit ist das Berechnen a aus g^a : $(g^b)^a \mod p = K$ müsste diskretes Logarithmus-Problem lösen.

1.5.10 Man-in-the-Middle

M fängt g^a und g^b ab und wählt $c \in \{2, \ldots, p\}$ und schickt $g^c \mod p$ an A und B. $A: g^{c \cdot a} \mod p$, $B: g^{c \cdot b} \mod p$. Beide Schlüssel kennt auch M

1.6 ElGamal-Public Key Verfahren (1984)

1.6.1 Schlüsselerzeugung

A wählt p, g wie bei Diffie-Hellman. Wählt $a \in \{2, ..., p-2\}, x = g^a \mod p$. Öffentlicher Schlüssel: (p, g, x) Geheimer Schlüssel: a

1.6.2 Verschlüsselung

Klartext $m: 1 \le m \le p-1$ $B \xrightarrow{m} A$ B wählt zufällig $b \in \{2, ..., p-2\}$ $y = g^b \mod p$ Er berechnet $x^b \mod p$ und $f = m \cdot x^b \mod p$, sendet (y, f) an A,

1.6.3 Entschlüsselung

$$y^{a} \mod p \ (= x^{b} \mod p)$$
Berechnet $(y^{a})^{-1} \mod p \ [(y^{a})^{-1} = (y^{p-1} - a)]$
 $f \cdot (y^{a})^{-1} \mod p = m$

Nachteil zu RSA

Doppelte Länge wird gebraucht, da Nachricht (Chiffre) und Teilschlüssel versendet werden.

1.7 Signaturen, Hashfunktionen, Authentifizierung

1.7.1 Anforderung an digitale Signaturen

Identitätseigenschaft: ID des Unterzeichners des Dokuments wird sichergestellt

Echtheitseigenschaft: des signiertem Dokument

Verifikationseigenschaft: Jeder Empfänger muss digitale Signatur verifizieren können.

1.7.2 RSA-Signatur (vereinfachte Version)

A will Dokument m signieren.

A besitzt öffentlichen RSA-Schlüssel (n, e), geheimen Schlüssel d. Signatur: $m^d \mod n$ sendet $(m, m^d \mod n)$ an B.

$$(m^d \mod n)^e = m^{e \cdot d} \mod n = m \pmod n$$

m < n

Wenn $m^{e \cdot d} \mod n = m$, dann akzeptiert B die Signatur.

 $m > n \ m^d \mod n \ B \mod n$. Ist $m' \mod n = m \mod n$, dann $(m', m^d \mod n)$ gültige Signatur.

1.7.3 Wie lassen sich lange RSA-Signaturen vermeiden?

Definition Sei *R* ein endliches Alphabet.

Hashfunktion $H: \mathbb{R}^* \to R^k (k \in \mathbb{N} \text{ fest })$ soll effizient berechenbar sein.

1.7.4 RSA-Signatur mit HASH-Funktion

H öffentlich bekannte Hashfunktion.

A will Nachricht m signieren.

Bildet H(m) und signiert H(m): $H(m)^d \mod n$ sendet $(m, H(m)^d \mod n)$

Verifikation durch $B: m \to H(m)$ $(H(m)^d \mod n)^e \mod n = H(m)$

1.7.5 Angriffsmöglichkeiten

- Angreifer kann H(m) bestimmen wenn es ihm gelingt, $m' \neq m$ zu finden, so $(m', H(m)^d \mod n)$ gültige Signatur von m durch A.
- Angreife wählt zufällig y und berechnet $y^e \mod n = z$

Gelingt es ihm, m zu finden mit H(m) = z, dann ist (m, y) gütlige Signatur von m durch A

H(m) $y^e = H(m)$

Definition: Eine **kryptographische Hashfunktion** ist eine Hashfunktion, die folgende Bedinungen erfüllt.

- 1. H ist Einwegfunktion (um Angriffe des zweiten Typs zu vermeiden)
- 2. H ist **schwach kollisionsresistent**, d.h. zu gegebenem $m \in R^*$, soll es effizient nicht möglich sein ein $m' \neq m$, mit H(m) = H(m'), zu finden. (um Angriffe des ersten Typs zu vermeiden)

Verschärfung von 2.

2' *H* ist **stark kollisionsresistent**, wenn es effizient nicht möglich ist $m \neq m'$ zu finden, mit H(m) = H(m').

Da R^* unendlich und $|R^k| = |R|^k$ endlich ist, existiert unendlich viele Paare (m, m'), $m \neq m'$ mit H(m) = H(m').

(Bilde $|R|^k + 1$ viele Hashwerte: Kollision)

Kollisionen lassen sich nicht vermeiden, sie sollten aber nicht schnell herstellbar sein.

1.7.6 Satz: Geburtstagsparadoxon

Ein Merkmal komme in m verschiedenen Ausprägungen vor. Jede Person besitze genau eine dieser Merkmalsausprägungen. Ist $c \ge \frac{1+\sqrt{1+8\cdot m\cdot \ln 2}}{2} \approx 1.18 \sqrt{m}$, so ist die Wahrscheinlichkeit, dass unter l Personen zwei die gleiche Merkmalsausprägung haben, mindestens $\frac{1}{2}$ (Geburtstage: m = 366, l = 23).

Beweis *l* Personen

Alle Möglichkeiten $(g_1, g_2, \dots, g_l), g_i \in \{1, \dots, m\}$ m^l Möglichkeiten. Alle Merkmalausprägungen verschieden: $m \cdot (m-1) \cdot (m-2) \cdot \dots \cdot (m-(l-1))$ Wahrscheinlichkeit, dass l Personen lauter verschiedene Geburtstage haben.

$$q = \frac{m \cdot (m-1) \cdot (m-2) \cdot \dots \cdot (m-(l-1))}{m^{l}} = \prod_{i=0}^{l-1} 1 - \frac{i}{m}$$

Wann ist
$$q \le \frac{1}{2}$$
? $e^x \ge 1 + x$

$$\prod_{0}^{l-1} 1 - \frac{i}{m} \le \prod_{0}^{l-1} e^{-\frac{i}{m}} = e^{\prod_{0}^{l-1} - \frac{i}{m}}$$

$$= e^{-\frac{1}{m} \sum_{0}^{l-1} i}$$

$$= e^{-\frac{1}{m} \cdot \frac{l \cdot (l-1)}{2}}$$

$$\ln a \le -\frac{1}{m} \cdot \frac{l \cdot (l-1)}{2} = -\frac{l^2 - l}{2 \cdot m}$$

1.7.7 Hashfunktion

 $H(m) = H(m'), m \neq m'$

 $H: \mathbb{Z}_2^* \to \mathbb{Z}_2^n (2^n \text{ Hashwerte})$

Bei Erzeugung von circa $2^{\frac{n}{2}}$ Hashwerten ist die Wahrscheinlichkeit, dass zwei gleich sind ungefähr $\frac{1}{2}$.

 $n = 64 : 2^{32}$ Hashwerte ($4 \cdot 10^9$) unsicher.

Weit verbreitet waren und sind:

MD5 (message digest / Ron Rivest, 1991, 128 Bit)

SHA-1 (Secure Hash Algorithm, NSA, 1992/1993, 160 Bit)

1.7.8 Authentifizierung

Nachweise bzw. Überprüfung, dass jemand derjenige ist für den er sich ausgibt. Möglichkeiten der Authentifizierung durch:

Wissen

Besitz

biometrische Merkmale

gängiste Methode: Passwort

Im Allgemeinem: Passwort w abgespeichert als f(w) f Einwegfunktion.

 $w f^n(w) = w_0 \xrightarrow{sicher} Id$. überprüfer f Einweg.

1. Auth. $w_1 = f^{n-1}(w) \to f(f^{n-1}(w)) = w_0$ ersetzt w_0 durch w_1

2. Auth. $w_2 = f^{n-2}(w) \to ...$

Passwortsicherheit: http://www.schneier.com/crypto-gram-0701.html

1.7.9 Challenge-Response-Authentifizierung

RSA-Verfahren $A \xrightarrow{auth.} B$

Öffentlicher Schlüssel: (n, e)

geheimer Schlüssel: d

$$A \xleftarrow{\text{Zufallszahl } r} B, \ r < n \leftarrow \textbf{Challenge}$$

$$A \xrightarrow{r^d \mod n} B$$
 überprüft, ob $r^{d^e} \mod n = r \leftarrow \mathbf{Response}$

Damit B sich sicher seien kann, dass es wirklich A ist, kann B so oft wie es für nötig hält neue r schicken und dadurch die Chance verringern, dass A nicht A ist.

1.8 Secret Sharing Scheme

Geheimnis wird auf mehrere Teilnehmer verteilt (Teilgeheimnisse), so dass gewisse Teilmengen der Teilnehmer das Geheimnis mit ihren Teilgeheimnissen rekonstruieren können, die anderen nicht.

$$T = \{t_1, \dots, t_n\}, \quad k < n \quad \text{(T Menge der Teilnehmer)}$$

Jede Teilmenge von T mit mindestens k Teilnehmer sollen Geheimnis rekonstruieren können, Teilmengen von T mit weniger als k Teilnehmer nicht.

1.8.1 (k, n) - Schwellenwertsysteme

1979 Shamir (How to share a secret)

Konstruktion

Vereinbarung von großer Primzahl p, mindestens $p \ge n + 1$

$$g \in \mathbb{Z}_p = \{0, \dots, p-1\}$$

Verteilung der Teilgeheimnisse

Dealer wählt zufällig $a_1, \ldots, a_{k-1} \in \mathbb{Z}_p, a_{k-1} \neq 0, k =$ Schwelle

$$f(x) = g + a_1 x + \ldots + a_{k-1} x^{k-1} \in \mathbb{Z}_p[x]$$

 (a_1, \ldots, a_{k-1}) hält er geheim, natürlich auch g)

Dealer wählt zufällig $x_1, \ldots, x_n \in \mathbb{Z}_p$ (paarweise verschieden). Teilnehmer t_i erhält als Teilgeheimnis $(x_i, f(x_i))$ (Punkt auf Polynom) Bei x = 0 hast du g.

Rekonstruktion(sversuch) des Geheimnisses

k Teilnehmer $(x_{i_1}, f(x_{i_1})), \dots, (x_{i_k}, f(x_{i_k}))$

Durch diese Punkte ist f eindeutig bestimmt, z.B. durch Lagrange-Interpol.:

$$f(x_{i_j}) = g_{i_j}$$

$$f(x) = \sum_{j=1}^k g_{i_j} \cdot \frac{(x - x_{i_1}), \dots, (x - x_{i_{j-1}})(x - x_{i_{j+1}}), \dots, (x - x_{i_k})}{(x_{i_j} - x_{i_1}), \dots, (x_{i_j} - x_{i_{j-1}})(x_{i_j} - x_{i_{j+1}}), \dots, ((x_{i_j} - x_{i_k}))}$$

$$f(0) = g$$

$$g = \sum_{j=1}^k g_{i_j} \prod_{l \neq j} \frac{x_{i_l}}{(x_{i_l} - x_{i_j})}$$

Bei mehr als k Teilnehmer selbe Ergebnis.

Weniger als k Teilnehmer (k'): Anderes Polynom wegen weniger Punkte, also wahrscheinlich anderer g.

Erzeugen Polynom vom Grad $\leq k' - 1$

Für alle $k \in \mathbb{Z}_p$ existiert gleich viele Polynome vom Grad $\leq k' - 1$ durch die vorgegebene k' Punkte, die bei h durch y-Achse gehen.

Kapitel 2

Codierungstheorie

2.1 Grundbegriffe und einfache Beispiele

2.1.1 Codierung

(Kanalcodierung)

Sicherung von Daten/Nachrichten gegen zufällig auftretenden Fehler bei Speicherung/Übertragung.

Abbildung 2.1: Schaubild der Codierung

2.1.2 Ziele

- Möglichst viele Fehler erkennen und gegebenenfalls korrigieren.
- Aufwand für Codierung und Decodierung möglichst gering.

2.2 Grundprinzip

Hinzufügen von Redundanz

Es gibt zwei Typen um Redundanz zu erzeugen.

2.2.1 FEC-Verfahren (Forward Error Correction)

Aufgetretene Fehler sollen erkannt <u>und</u> korrigiert werden. Vorteil: keine Verzögerung der Übertragung aber ggf. große Redundanz notwendig.

2.2.2 ARQ-Verfahren (Automatic Repeat Request)

Aufgetretene Fehler sollen erkannt werden, werden nicht korrigiert. Stattdessen wiederholt die Übertragung beim Sender anfordern.

Vorteil: geringe Redundanz, aber Verzögerung.

Beispiele

1. Parity-Check-Codes z.B. Nachrichten: 00, 01, 10, 11 Codierung:

(gerade Anzahl von Einsen in den Codewörtern)

- 1 Fehler wird erkannt, nicht korrigiert.
- 2 Fehler werden nicht erkannt.
- 2. Wiederholungscode Nachrichten wie in 1.

Codierung:

 $00 \rightarrow 000000$ $01 \rightarrow 010101$ $10 \rightarrow 101010$ $11 \rightarrow 111111$

(3-Fache Wiederholung)

1 Fehler wird erkannt und korrigiert. $\underline{01}11\underline{01} \stackrel{\text{Decod}}{\curvearrowleft} 010101 \stackrel{\frown}{\curvearrowright} 01$

3. Nachrichten wie in 1. und 2.

Codierung:

$$00 \rightarrow 00000$$
 $01 \rightarrow 01101$
 $10 \rightarrow 10110$
 $11 \rightarrow 11011$

Je zwei Codewörter unterscheiden sich an mindestens 3 Positionen.

Angenommen 1 Fehler tritt bei Übertragung auf. Dann gibt es genau ein Codewort, dass sich vom empfangenen Wort an genau einer Stelle unterscheidet; in das wird decodiert.

4. (ehmaliger) ISBN-Code

International Standard Book Number

10-Stelliger Code

Erste 9 Ziffern haben inhaltliche Bedingung (

Nachricht)

10. Ziffer: Prüfziffer

Beispiel: 3-540-26121-? (Land - Verlag - Buchnummer - Prüfziffer)

Uncodierte Wörter sind gebildet über $R = \{0, ..., 9\}$

Codierte Wörter sind gebildet über $S = \{0, ..., 9, X\}$

ISBN-Wort $C_{10}C_9 \dots C_2C_1$

 $C_{10} \dots C_2$ inhaltliche Bedeutung, C_1 wird so gewählt, dass

$$\sum_{k=1}^{10} k \cdot C_k \equiv 0 \pmod{11}$$

$$10 \cdot C_{10} + \ldots + 2 \cdot C_2 + C_1 \equiv 0 \pmod{11}$$

falls $C_1 = 10$ so setzte $C_1 = X$

 C_1 vom Beispiel ausrechnen.

$$10 \cdot 3 + 9 \cdot 5 + 8 \cdot 4 + 7 \cdot 0 + 6 \cdot 2 + 5 \cdot 6 + 4 \cdot 1 + 3 \cdot 2 + 2 \cdot 1 + C_1 \equiv 0 \pmod{11}$$
$$161 + C_1 \equiv 0 \pmod{11} \Rightarrow C_1 = 4$$

Ändern einer Ziffer wird erkannt:

$$C_{10}C_9 \dots C_2C_1 \curvearrowright C_i \text{ wird } X_i \neq C_i \text{ ersetzt}$$

$$C_{10} \dots C_{i+1} X_i C_{i-1} \dots C_1$$

$$\sum_{k=1,k\neq i}^{10} k \cdot C_k + i \cdot x_i = \underbrace{\sum_{k=1,k\neq i}^{10} k \cdot C_k}_{\equiv 0 \pmod{11}} + \underbrace{i}_{j} \underbrace{(\underbrace{x_i - c_i})}_{\equiv 0 \pmod{11}} \not\equiv 0 \pmod{11}$$

Fehler wird erkannt, Korrektur nicht möglich.

$$3 - 540 - 26121 - 4 \equiv 0 \pmod{11}$$

$$3 - 540 - 26121 - 6$$

 $3 - 540 - 26122 - 4$ Prüfsumme 2.

Vertauschung von Zwei Ziffern wird erkannt.

 C_i und C_j vertauscht.

O.B.d.A
$$C_i \neq C_j$$

 $C_{10} \dots C_j \dots C_i \dots C_1$

$$\sum_{k=1, k \neq i, j}^{10} k \cdot C_k + i \cdot C_j + j \cdot C_i = \sum_{k=1}^{10} k \cdot C_k + i(C_j - C_i) + j(C_i - C_j)$$

$$= \sum_{k=1}^{10} k \cdot C_k + \underbrace{(C_j - C_i)}_{\neq 0 \pmod{11}} \underbrace{(i - j)}_{\neq 0 \pmod{11}} \not\equiv 0 \pmod{11}$$

Vertauschung wird durch gewichtete Quersummen erkannt.

5. EAN-13-Code

European Article Number

13-Stelliger Code, erste 12 Ziffer sind inhaltlich festgelegt. 13. Ziffer ist Prüfziffer.

$$R = S = \{0, \dots, 9\}$$

$$C_1 \dots C_{12} C_{13}$$

 $C_1 \dots C_{12}$ inhaltliche Angabe (in der Regel):

C₁C₂ Herstellerland (40-43 Deutschland)

 $C_6 \dots C_7$ Hersteller $C_8 \dots C_{12}$ interne Produktions Nummer

 C_{13} so gewählt, dass

$$C_1 + 3 \cdot C_2 + C_3 + 3 \cdot C_4 + \ldots + 3 \cdot C_{12} + C_{13} \equiv 0 \pmod{10}$$

1 Fehler wird erkannt. $x \to 3 \cdot x \pmod{10}$ Permutation auf \mathbb{Z}_{10} , da ggT(3, 10) =

1, Vertauschung werden nicht immer erkannt.

Übersetzung in Barcode:

$$C_1C_2\ldots C_7C_8\ldots C_{13}$$

Jede der Ziffern C_2, \ldots, C_{13} wird durch einen 0-1-String der Länge 7 binär codiert.

0 - weißer Balken, 1 - schwarzer Balken.

Abbildung 2.2: EAN-13 Barcode

Codierung sorgt dafür, dass nie mehr als 4 weiße oder schwarze Balken nebeneinander stehen.

Schmalen Balken in Mitte und am Rand, sind nur Abtrennzeichen, die nichts mit EAN zu tun haben und nur beim einscannen helfen.

5 zu 0110001₂

 C_2, \ldots, C_7 werden nach Code A oder Code B codiert. C_1 bestimmt welcher dieser beiden Codes verwendet wird.

 C_8, \ldots, C_{13} werden nach Code C codiert.

 C_1 ergibt sich aus der Art der Codierung von C_2, \ldots, C_7

	Ziffern C ₂ – C ₇		Ziffern C ₈ – C ₁₃	bestimmt
				durch C ₁
Zeichen	Code A	Code B	Code C	Code D
0	0001101	0100111	1110010	AAAAAA
1	0011001	0110011	1100110	AABABB
2	0010011	0011011	1101100	AABBAB
3	0111101	0100001	1000010	AABBBA
4	0100011	0011101	1011100	ABAABB
5	0110001	0111001	1001110	ABBAAB
6	0101111	0000101	1010000	ABBBAA
7	0111011	0010001	1000100	ABABAB
8	0110111	0001001	1001000	ABABBA
9	0001011	0010111	1110100	ABBABA

Codewörter von Code A,B oder C kommen nur einmal vor. Daher treten nie mehr als 4 gleiche Balken nebeneinander auf.

2.3 Blockcodes

$$00 \to 00000$$

 $01 \to 01101$

 $10 \to 10110$

 $11 \to 11011$

2.3.1 Definition

S endl. Menge (=Alphabet), $n \in \mathbb{N}$.

Ein Blockcode C der (Block-)Länge n über S ist Teilmenge von $S^n = S \times ... \times S$

Elemente von C heißen Codewörter.

Ist |S| = 2 (i.d.R. $S = \{0, 1\}$, so **binär** Code.

|C| = m, so ist $m \le |S|^n$.

Dann lassen sich *n* Informationssymbole (oder Strings von Informationssymbolen) codieren (Codierungsfunktion). Folge von Informationssymbolen (oder Strings) werden dann in Folge von Codewörtern codiert.

2.3.2 Definition: Hamming-Abstand

S endl. Alphabet, $n \in \mathbb{N}$.

$$a, b \in S^n$$
 $a = (a_1, \dots, a_n), b = (b_1, \dots, b_n)$

 $d(a,b) = \sharp \{i : a_i \neq b_i\}$

Hamming-Abstand von *a* und *b* (Anzahl der unterschiedlichen Stellen).

(Richard W. Hamming, 1915-1998, Begründer der Codierungstheorie)

Eigenschaften

- **a)** $d(a,b) = 0 \Leftrightarrow a = b$
- **b**) d(a,b) = d(b,a)
- c) $d(a,b) \le d(a,c) + d(c,b)$ (Dreiecksungleichung) $(a_i \ne b_i \Rightarrow a_i \ne c_i \text{ oder } b_i \ne c_i)$
- **d)** Wenn (S, +) komm. Gruppe, dann auch S^n

$$[(a_1, ..., a_n) + (b_1, ..., b_n) = (a_1 + b_1, ..., a_n + b_n)]$$

 $d(a, b) = d(a + c, b + c)$ (Translationsinvarianz)

Also: Wird $x \in C$ gesendet und $y \in S^n$ wird empfangen und d(x, y) = k, so sind k Fehler aufgetreten.

2.3.3 Definition

a) Hamming-Decodierung

für Blockcode $C \subseteq S^n$

Wird $y \in S^n$ empfangen, so wird y zu einem Codewort $x' \in C$ decodiert, das unter allen Codewörtern minimalen Hamming-Abstand zu y hat.

$$d(x', y) = min \ d(x, y), x \in C$$

(x') muss nicht eindeutig bestimmt sein)

z.B.
$$C = \{(0000), (1111)\}$$

Empfangen: 0011 x' nicht eindeutig in diesem Fall.

(|S| = 2: Hamming-Decodierung ist bestmöglich, falls jedes Symbol in einem Codewort mit der gleichen Wahrscheinlichkeit $p < \frac{1}{2}$ verändert wird und wenn jedes Codewort gleich wahrscheinlich ist.)

b) Minimalabstand

C Blockcode in S^n , Minimalabstand von C:

$$d(C) = min \ d(x, x'), \ x, x' \in C, x \neq x'$$

(Ist
$$|C| = 1$$
, so $d(C) = n$)
 $|Bsp: C = \{(00000), (01101), (10110), (11011)\}, d(C) = 3\}$

c)

Ein Blockcode C ist **t-Felder-korrigierend**, falls $d(C) \ge 2t + 1$, und er heißt **t-Fehler-erkennend**, falls $d(C) \ge t + 1$.

Begründung für die Bezeichnung in c)

"Kugel" vom Radius
$$t$$
 um $x \in C$: $K_t(x) = \{y \in S^n : d(x, y) \le t\}$

Ist $d(C) \ge 2t + 1$, so sind Kugelm vom Radius t um Codewörter disjunkt.

Angenommen es existiert $y \in S^n$ mit $y \in K_t(x) \cap K_t(x')$, $x, x' \in C$, $x \neq x'$. Dann $d(x, x') \le d(x, y) + d(y, x') \le t + t = 2t$. Widerspruch

 $x \in C$ gesendet, y wird empfangen, und angenommen maximal t-Fehler sind aufgetreten, dann $y \in K_t(x)$ und Abstand zu jedem anderem Codewort ist > t \Rightarrow Hamming-Decodierung ist korrekt.

 $d(C) \ge t + 1$ und es treten maximal t minimal 1 Fehler auf, so ist y kein Codewort.

Bsp:

a) n-fach Wiederholungscode

$$S_{n} \rightarrow S_{1}S_{1}...S_{1}$$

$$\vdots$$

$$S_{k} \rightarrow S_{k}S_{k}...S_{k}$$

$$C = \{(s, s, ..., s) : s \in S\} \subseteq S^{n}$$

$$d(C) = n$$

$$\left| \frac{n-1}{2} \right| \text{-Fehler-korr.}$$

b) ISBN, EAN-Codes, d(C) = 2, 1-Fehler-erkennend.

2.3.4 Definition: Perfekter Code

Code $C \subseteq \mathbb{R}^n$ heißt perfekt, falls es ein $t \in \mathbb{N}_0$ gibt, mit der Eigenschaft:

$$R^n = \bigcup_{x \in C} K_t(x)$$
 und $K_t(x) \cap K_t(x') = \emptyset$ für $x, x' \in C, x \neq x'$

Dann ist $d(C) = 2 \cdot t + 1$, falls |C| > 1: Ang. $d(C) \le 2 \cdot t$. Wähle $x, x' \in C$, $x \ne x'$, mit $d(x, x') = d(C) \le 2 \cdot t$. Wähle $y \in R^n$ mit d(x, y) = t, $d(y, x') \le t$ $y \in K_t(x) \cap K_t(x')$ Widerspruch $d(C) \le 2 \cdot t + 1$

Wähle $x \in C$, wähle $y \in R^n$ mit d(x, y) = t + 1. Nach Vorraussetzung existiert $x' \in C$ mit $y \in K_t(x')$.

$$d(x, x') \le d(x, y) + d(y, x') \le t + 1 + t = 2 \cdot t + 1$$

$$d(C) \le 2 \cdot t + 1$$

2.3.5 Gibt es perfekte Codes?

Trivial Beispiele:

- einelementige Codes (t=n)
- $C = R^n$ (t=0) (Jedes Element ist ein Codewort)
- *n*-fache Wiederholungscode über Z_2 $n = 2 \cdot t + 1$ $C = \{(0, \dots, 0), (1, \dots, 1)\}$ $\longleftarrow n \longrightarrow \longleftarrow n \longrightarrow$

2.3.6 Lemma

$$|R| = q, \ x \in R^n, \ t \in \mathbb{N}$$

Dann ist $|K_t(x)| = \sum_{i=0}^t \binom{n}{i} \cdot (q-1)^i$
$$\left(\binom{n}{i} = \frac{n!}{i! \cdot (n-i)!}\right)$$

Beweis

Abstand 0 zu x: 1 Wort (nämlich x): $\binom{n}{0} \cdot (q-1)^0 = 1$

Abstand i > 0 zu x:

Anzahl der Auswahl von i Positionen aus n Positionen: $\binom{n}{i}$

An jeder Position q - 1 Änderungsmöglichkeiten.

 \rightarrow insgesamt $(q-1)^i$ Möglichkeiten,

Anzahl der Wörter vom Abstand i von x: $\binom{n}{i} \cdot (q-1)^i$

Satz

Sei C ein Code der Länge n über R, |C|>1, |R|=q. Sei $t\in\mathbb{N}_0$ maximal mit $d(C) \ge 2 \cdot t + 1, \ t = \left| \frac{d(C) - 1}{2} \right|.$

a) (Kugelpackungsschranke)

$$|C| \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} \cdot (q-1)^i}$$

b) C ist perfekt \Leftrightarrow in a) gilt Gleichheit, d.h. $|C| = \frac{q^n}{\sum_{i=0}^t \binom{n}{i!} \cdot (q-1)^i}$

$$|C| = \frac{q^n}{\sum_{i=0}^t \binom{n}{i} \cdot (q-1)^{-i}}$$

Beweis

a)
$$d(C) \geq 2 \cdot t + 1, \text{ daher } K_t(x) \cap K_t(x') = \emptyset, \ x \neq x', \ x, x' \in C$$

$$R^n \geq \bigcup_{x \in C}^{\bullet} K_t(x)$$

$$q^n = \left| R^n \right| \geq \left| \bigcup_{x \in C}^{\bullet} K_t(x) \right| = \sum_{x \in C} |K_t(x)| \underset{Lemma}{=} |C| \cdot \sum_{i=0}^{t} \binom{n}{i} \cdot (q-1)^i$$

b)
$$\Rightarrow: d(C) = 2 \cdot t + 1$$

$$R^n = \bigcup_{x \in C} K_t(x) \Rightarrow \text{Gleichheit in a}$$

$$\Leftarrow: \text{Gleichheit} \Rightarrow R^n = \bigcup_{x \in C} K_t(x) \Rightarrow C \text{ perfekt.}$$

2.3.7 Binärer Hamming-Code der Länge 7

$$R = \mathbb{Z}_2 = \{0, 1\}, C \text{ perfekt}, d(C) = 3, |C| = 16, (korrigiert 1 Fehler)$$

$$C = \{(C_1, \dots, C_7) : C_i \in \mathbb{Z}_2, C_1 + C_4 + C_6 + C_7 = 0, C_2 + C_4 + C_5 + C_7 = 0, C_3 + C_5 + C_6 + C_7 = 0, C_7 + C_8 +$$

C ist Unterraum von \mathbb{Z}_2^7 $(C_1,\ldots,C_7)\in C,\ (C_1',\ldots,C_7')\in C$ $(C_1+C_1',\ldots,C_7+C_7')\ (C_1+C_1')+(C_4+C_4')+(C_6+C_6')+(C_7+C_7')=0$ $dim(C)=4,\ C_4,C_5,C_6,C_7$ frei wählbar $\sim C_1,C_2,C_3$ festgelegt Basis:

$$(\dots 1000) \rightarrow (1101000)$$

 $(\dots 0100) \rightarrow (0110100)$
 $(\dots 0010) \rightarrow (1010010)$
 $(\dots 0001) \rightarrow (1110001)$
 $|C| = 2^4 = 16$

d(C) = 3:

Ang. d(C) = d. Wähle $x, x' \in C$ mit d(x, x') = dTranslationsinvarianz der Metrik:

$$d = d(x, x') = d(x + x, x + x') = d(0, x + x')$$

$$wt(x) = \text{Anzahl der Einsen in } x$$

$$= d(0, x)$$

$$d(C) = \min wt(x), \quad x \in C, \quad x \neq \vec{0}$$

Zeige: Jeder Vektor $\neq \vec{0}$ in C enthält mind. 3 Einsen.

d(C) = 3 weist man nach durch überprüfen aller 15 von $\vec{0}$ verschiedenen Co-

dewörtern oder durch Analyse der Gleichung.

 $d(C) \le 3$, $d(C) = 3 = 2 \cdot 1 + 1$

$$(C_1, \dots, C_7) \in C$$
 Ang. $C_7 = 1$
 $\Rightarrow C_1 + C_4 + C_6 = 1$. Wenn alle Eins \checkmark , sonst 3 Fälle:
 $C_1 = 1, C_4 = C_6 = 0$
 $C_4 = 1, C_1 = C_6 = 0$
 $C_6 = 1, C_1 = C_4 = 0$
Addition alle Gleichungen $\Rightarrow C_1 + C_2 + C_3 + C_7 = 0$
 C_1, C_2 oder $C_3 = 1$
2. Fall: $C_7 = 1, C_4 = 1, C_1 = 0, C_2$ oder $C_3 = 1$
3. Fall: analog zu Fall 2.
1. Fall: $C_1 = 1, C_4 = C_6 = 0, C_7 = 1$, o.B.d.A. $C_2 = C_3 = 0 \Rightarrow C_5 = 1$

Prüfe nach, ob bei Kugelpackungsschranke Gleichheit gilt:

$$|C| = 16$$

$$|C| \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} \cdot (q-1)^i} \quad (q=2, t=1, n=7)$$

$$= \frac{2^7}{1 + \binom{7}{1}} = \frac{2^7}{2^3} = 2^4 = 16$$

$$C \text{ perfekt!}$$

2.4 Lineare Codes

2.4.1 Definition: linearer Code

Sei K ein endlicher Körper, $n \in \mathbb{N}$. Ein linearer Code C der Länge n ist ein Unterraum von K^n . (Zeilenvektoren) [Alphabet = K]

Ist dim(C) = k, so heißt C[n, k]-Code.

Ist d(C) = d, so [n, k, d]-Code.

Beachte: $|K| = q \Rightarrow |C| = q^k$.

2.4.2 Definition: Informations rate

Informations rate (Rate) von $C: \frac{k}{n}$.

2.4.3 Bemerkung über endliche Körper

a) p Primzahl, \mathbb{Z}_p ist Körper der Ordnung p

- b) K endlicher Körper $\Rightarrow |K| = p^m$, p Primzahl, $m \in \mathbb{N}$.
- c) Zu jeder Primzahlpotenz p^m existiert (bis auf Isomorphie) genau ein Körper der Ordnung p^m .
- d) f sei irreduzibles Polynom vom Grad m über \mathbb{Z}_p . $K = \{g \in \mathbb{Z}_p[x] : Grad(g) \le m-1\}, \quad |K| = p^m$ K wird Körper: Addition = übliche Addition von Polynomen Multiplikation = normale Multiplikation + Reduktion mod f (AES: $|K| = 2^8$)

2.4.4 Bsp

- a) n-facher Wiederholungscode über \mathbb{Z}_p $C = \{(0, \dots, 0), (1, \dots, 1), \dots, (p-1, \dots, p-1)\}$ C ist linearer Code, $C = <(1, \dots, 1) > [n, 1, n]$ -Code
- b) Hamming-Code ist linearer [7,4,3]-Code über \mathbb{Z}_2
- c) $C = \{(C_1, \dots, C_n) : C_i \in \mathbb{Z}_p, \sum_{i=1}^n C_i = 0\}$ (p = 2 : Parity Check Code)linear [n, n - 1, 2]-Code über \mathbb{Z}_p Basis von $C : (1, 0, \dots, 0, p - 1), (0, 1, 0, \dots, 0, p - 1), \dots, (0, \dots, 0, 1, p - 1)$

2.4.5 Definition: Gewicht und Minimalgewicht

K endl. Körper

a) $x \in K^n$, so Gewicht von x, wt(x), definiert durch

$$wt(x) = \sharp \{i : x_i \neq 0\}$$

b) $\{\vec{0}\} \neq C \subseteq K^n$, so ist das Minimalgewicht von C definiert durch

$$wt(C) = \min_{x \in C, x \neq \vec{0}} wt(x)$$

2.4.6 Satz

Ist $C \neq \{\vec{0}\}$ ein linearer Code, so ist d(C) = wt(C). (Beweis wie beim [7,4,3]-Hamming Code)

2.4.7 Definition: Erzeugermatrix

Sei C ein [n,k]-Code über K, sei $g_1 = (g_{11}, \ldots, g_{1n}), \ldots, g_k = (g_{k1}, \ldots, g_{kn})$ eine Basis von C.

Dann heißt die
$$k \times n$$
 -Matix $G = \begin{pmatrix} g_1 \\ \vdots \\ g_k \end{pmatrix} = \begin{pmatrix} g_{11} & \cdots & g_{1n} \\ \vdots & & \vdots \\ g_{k1} & \cdots & g_{kn} \end{pmatrix}$ Erzeugermatrix von G

2.4.8 Satz

Sei G ein Erzeugermatrix von C. Dann ist $C = \{\underbrace{u \cdot G}_{1 \times k \cdot k \times n} : u \in K^k \}$

Beweis:

$$u = (u_1, \dots, u_k), u_i \in K$$

$$uG = (u_1, \dots, u_k) \cdot (g_1, \dots, g_k)^t = u_1 g_1 + \dots + u_k g_k \in C$$

2.4.9 Bemerkung

- a) Die Abb $\begin{cases} K^k & \longrightarrow C \\ u & \longmapsto uG \end{cases}$ ist bijektiv. $u \in K^k \text{ Informationswörter}$ Codiert in Codewörter durch uG.
- b) Elementare Zeilenumformungen an Erzeugermatrix liefern Erzeugermatrix.

2.4.10 Beispiel: Hamming-[7, 4]-Code über \mathbb{Z}_2

$$C = \{(C_1, \dots, C_7) : C_i \in \mathbb{Z}_2, C_1 + C_4 + C_6 + C_7 = 0,$$

$$C_2 + C_4 + C_5 + C_7 = 0,$$

$$C_3 + C_5 + C_6 + C_7 = 0$$

$$\} \subseteq \mathbb{Z}_2^7$$

Erzeugermatrix:

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Codierung eines Informationswort (u_1, u_2, u_3, u_4) mit G

$$(u_1, u_2, u_3, u_4) \rightarrow (u_1, u_2, u_3, u_4) \cdot G = (\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}, u_1 + u_3 + u_4, u_2 + u_3 + u_4, u_1 + u_2 + u_3)$$

2.4.11 Definition: Standardform

C[n,k]-Code Erzeugermatrix C ist in Standardform, falls sie folgende Gestalt hat.

$$G = \begin{pmatrix} 1 & & 0 & \\ & \ddots & & * \\ 0 & & 1 & \end{pmatrix}$$

Codierung $(u_1, ..., u_k) \cdot G = (u_1, ..., u_k, *, ..., *)$

2.4.12 Satz

Sei C ein [n,k]-Code über K. Dann existiert $(n-k) \times n$ -Matrix H über K mit folgenden Eigenschaften:

Sei $y \in K^n$. Dann: $y \in C \Leftrightarrow H \cdot y^t = \vec{0}$

H heißt Kontrollmatrix von $C \iff y \cdot H^t = \vec{0}$

Es ist rg(H) = n - k (Dann ist $H \cdot G^t = 0$)

2.4.13 Beweis

Sei
$$g_1, \ldots, g_k$$
 Basis von $C, G = \begin{pmatrix} g_1 \\ \vdots \\ g_2 \end{pmatrix}$

 $g_i = (g_{i1}, \ldots, g_{in})$

Betrachte LGS:

$$g_{11}x_1 + \dots + g_{1n}x_n = 0$$

$$\vdots$$

$$g_{k1}x_1 + \dots + g_{kn}x_n = 0$$

d.h.
$$G \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$$
. Koeffizientmatrix G hat Rang k .

Dimension des Löungsraums dieses LGS = n - k

Sei $h_1, \ldots, h_{n-k} \in K^n$ Basis des Lösungsraums dieses LGS.

$$H = \begin{pmatrix} m \\ \vdots \\ h_{n-k} \end{pmatrix}, \quad H \cdot g_i^t = \begin{pmatrix} h_1 g_i^t \\ \vdots \\ h_{n-k} g_i^t \end{pmatrix} = 0, i = 1, \dots, k$$

 $Hy^t = 0$ für alle $y \in C$.

 $rg(H) = n - k \Rightarrow dim \ Kern(H) = k = dim(C)$

C = Kern(H)

2.4.14 Bermerkung

- Kontrollmatrix kann zur Fehlererkennung verwendet werden.
- Beweis liefert Verfahren: Erzeugermatrix → Kontrollmatrix
- Umgekehrt: Kontrollmatrix \rightarrow Erzeugermatrix (Bilde Basis des Lösungsraums von $Hy^t = 0$)

2.4.15 Beispiel

a) Parity-Check-Code über \mathbb{Z}_p $C = \{(c_1, \dots, c_n) : \sum_{i=1}^n c_i = 0\}$ $H = (1, 1, \dots, 1)$ $H \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = 0 \Leftrightarrow c_1 + \dots c_n = 0 \Leftrightarrow (c_1, \dots, c_n) \in C$

b) [7,4]-Hamming-Code

$$C = \{(C_1, \dots, C_7) : C_i \in \mathbb{Z}_2, C_1 + C_4 + C_6 + C_7 = 0, C_2 + C_4 + C_5 + C_7 = 0, C_3 + C_5 + C_6 + C_7 = 0 \} \subseteq \mathbb{Z}_2^7$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

c) C Code mit Erzeugermatrix

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \quad [4, 2]\text{-Code "uber } \mathbb{Z}_2 \quad G \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_4 \end{pmatrix} = 0$$

$$x_1 + x_2 + x_4 = 0$$
$$x_2 + x_4 = 0$$

 x_5, x_4 frei wählen, x_1, x_2 fesgelegt.

Basis (0010), (0101)
$$Kontrollmatrix H = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$C\{(c_1, \dots, c_4) : c_3 = 0, c_2 + c_4 = 0\}$$

2.4.16 Satz

C[n,k]-Code, $C \neq \{\vec{0}\}$, K^n , Kontrollmatrix H.

$$d(C) = wt(C) = \min\{r : \text{ in H gibt es } r \text{ linear abhänige Spalten}\}\$$

= $\max\{r : \text{ je } r - 1 \text{ Spalten linear unabhängig}\}\$

Beweis

 s_1, \ldots, s_n Spalten von H, Länge n - k.

 $C \neq \{\vec{0}\}, k > 1, n - k < n \Rightarrow s_1, \dots, s_n \text{ lin. abhängig.}$

Sei min $\{r: \ldots\} = w. s_{i_1}, \ldots, s_{i_w}$ lin. abhängig.

Existiert $c_{i_1}, \ldots, c_{i_w} \in K$, nicht alle = 0, $c_{i_1}s_{i_1} + \ldots + c_{i_w}s_{i_w} = 0$

 $w \min \Rightarrow \text{alle } c_{i_1}, \ldots, c_{i_w} \neq 0.$

Def. $c = (c_1, ..., c_n)$ mit den c_{i_i} an den Stellen i_j , übrige $c_i = 0$

$$\sum_{i=1}^{n} c_{i} s_{i} = c_{i_{1}} s_{i_{1}} + \ldots + c_{i_{w}} s_{i_{w}} = 0$$

$$\sum_{i=1}^{n} c_{i} s_{i}^{t} = 0$$

$$Hc^{t} = 0, \quad c \in C.$$

wt(c) = w, Min. Gewicht von $C \le wt(c) = w$

Ang. es ex. $0 \neq c' \in C$, wt(c') = w' < w. $Hc'^{t} = 0$

 $c' = (c'_1, \dots, c'_n)$ $\sum c'_i s_{i=1}^n = 0 \Rightarrow w'$ der Spalten c_1, \dots, c_n sind linear abhänging. Widerspruch!

$$wt(C) = w$$

2.4.17 Beispiel: [7,4]-Hamming-Code über \mathbb{Z}_2

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$
Kontrollmatrix

Keine Spalte ist Nullspalte, keine zwei Spalten sind gleich, 1.,2.,4. Spalte sind linear abhänging.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad d(C) = 3$$

2.4.18 Korollar: (Singleton-Schranke)

Ist *C* ein linearer [n, k]-Code, d(C) = d, so gilt:

$$d \le n - k + 1$$

Beweis

2. Gleichheit: $d \le rg(H) + 1 = n - k + 1$ (Zeilen von H sind lin. unabhängig)

2.4.19 Bemerkung: (Nebenklassen von Unterräumen in Vektorräumen)

C ein Umterraum von Vektorraum V. Für jedes $v \in V$:

$$v + C = \{v + x : x \in C\}$$

Nebenklasse von C zu v.

- a) $v_1, v_2 \in V$. Dann: $v_1 + C = v_2 + C$ oder $(v_1 + C) \cap (v_2 + C) = \emptyset$
- b) $v_1 + C = v_2 + C \Leftrightarrow v_1 v_2 \in C$ $(v + C = C(= \vec{0} + C) \Leftrightarrow v \in C)$
- c) Wähle aus jeder Nebenklasse einen Vektor v_i :

$$V = \bigcup_{i=1}^{\bullet} (v_i + C)$$

- d) V Vektorraum über endl. Körper: |v + C| = |C|
- e) C[n,k]-Code $(V = K^n, dim(C) = k, |C| = q^k, \text{ falls } |K| = q)$ Anzahl der Nebenklassen ist q^{n-k}

2.5 Syndrom-Decodierung linearer Code

C[n,k]-Code über K, |K| = q, Kontrollmatrix $H, (n-k) \times n$ -Matrix. Ist $y \in K^n$, so heißt $Hy^t \in K^{n-k}$ **Syndrom** von y.

- a) $x \in C \Leftrightarrow Hx^t = 0$ (x hat Syndrom 0)
- b) $y_1, y_2 \in K^n$. y_1, y_2 liegen in der gleichen Nebenklasse zu C (d.h. $y_1 + C = y_2 + C$) $\Leftrightarrow y_1, y_2$ haben gleiches Syndrom (d.h. $Hy_1^t = Hy_2^t$)

$$[y_1 + C = y_2 + C \Leftrightarrow y_1 - y_2 \in C \Leftrightarrow 0 = H(y_1 - y_2)^t = Hy_1^t - Hy_2^t \Leftrightarrow Hy_1^t = Hy_2^t]$$

c) Jedes $z \in K^{n-k}$ tritt als Syndrom auf.

Ang. $x \in C$ wird gesendet, y = x + f, wird empfangen. f "Fehlervektor". y + C = f + C, y und f haben das gleiche Syndrom, nämlich Hy^t . Bestimmt in der Nebenklasse von y ein e mit kleinstmögliche Gewicht (**Nebenklassenführer**) Decodierung: $y \to y - e \in C$ (Hamming-Decodierung)

Ordne die Nebenklassenführer nach der lexikogr. ihrer Syndome. Speicherbedarf: q^{n-k} Nebenklassenführer, jeder hat Länge n(Besser als Durchforsten der Liste aller Codewörter (q^k) , falls $k \ge \frac{n}{2}$) C [70, 50]-Code über \mathbb{Z}_2 . 2^{20} Nebenklassenführer, je 70 BitLänge.

Speicher: $70 \cdot 2^{20}Bit \approx 8,75$ MegaByte

Speicher für Codewörter: $70 \cdot 2^{50}$ Bit = 9 PetaByte

2.5.1 Beispiel

C [5, 2]-Code über \mathbb{Z}_2 , Kontrollmatrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$d(C) = 3$$
$$(x_1, \dots, x_5) \in C \Leftrightarrow x_1 + x_5 = 0$$
$$x_2 + x_3 = 0$$
$$x_2 + x_4 + x_5 = 0$$
$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Nebenklassen von C.

$$C = (00000) + C = \{(00000), (11101), (01110), (10011)\}$$

$$(10000) + C = \{(10000), (01101), (11110), (00011)\}$$

$$Nebenklassenführer: (10000)$$

$$(01000) + C = \{(01000), (10101), (00110), (11011)\}$$

$$Nebenklassenführer: (01000)$$

$$(00100) + C = \{(00100), (11001), (01010), (10111)\}$$

$$Nebenklassenführer: (00100)$$

$$(00010) + C = \{(00010), (11111), (01100), (10001)\}$$

$$Nebenklassenführer: (00010)$$

$$(00001) + C = \{(00001), (11100), (01111), (10010)\}$$

$$Nebenklassenführer: (00001)$$

$$(00111) + C = \{(00111), (11010), (01001), (10100)\}$$

$$Mögliche Nebenklassenführer: (01001), (10100)$$

$$(00101) + C = \{(00101), (11000), (01011), (10110)\}$$

$$Mögliche Nebenklassenführer: (00101), (11000)$$

Angenommen als Nebenklassenführer werden gewählt:

$$f_0 = (00000), f_1 = (10000), \dots, f_5 = (00001), f_6 = (01001), f_7 = (00101)$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{split} Hf_0^t &= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, Hf_1^t = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, Hf_2^t = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, Hf_3^t = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, Hf_4^t = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \\ Hf_5^t &= \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, Hf_6^t = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, Hf_7^t = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \end{split}$$

(Ordnung: f_0 , f_4 , f_3 , f_2 , f_1 , f_5 , f_6 , f_7)

Empfangen: y = (10110)

$$Hy^t = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Decodierung: $y \rightarrow y + f_7 = (10011) \in C$

(Hätte man für die Nebenklasse $f_7 + C$ als Nebenklassenführer (11000) gewählt, so wäre decodiert worden in $y + (11000) = (01110) \in C$

2.6 Beispiele guter linear Codes

Hamming-Codes

Sei q ein Primzahlpotenz, K Körper mit |K| = q

Sei
$$l \in \mathbb{N}, \ l \ge 2$$
. $n = \frac{q^{l}-1}{q-1}, \ k = n-l$

Sei $l \in \mathbb{N}$, $l \ge 2$. $n = \frac{q^l - 1}{q - 1}$, k = n - lDenn ex. perfekter [n, k]-Code C über K, d(C) = 3. Hamming-Code.

Konstruktion

 $|K^l \setminus \{\vec{0}\}| = q^l - 1$, je q - 1 von 0 versch. Vektoren erzeugen den gleichen 1-dim. Unterräume in K^l , d.h.

$$n = \frac{q^l - 1}{q - 1}$$
 1-dim Unterraum

Bilde $l \times n$ -Matrix H: Wähle aus jedem der 1-dim. Unterräume von K^l einen Vektor $\neq 0$ aus und schreibe ihn als Spalte in H.

$$C = \{x \in K^n : Hx^t = 0\}$$

rg(H) = l, denn H enthält l lin. unabhängige Spalten. dim(C) = n - l = k, $|C| = q^k$ d(C) = 3

Nach Konstruktion von H sind je zwei Spalten linear unabhänging. Es gibt drei linear abhängige Spalten:

$$\begin{pmatrix} a \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ b \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} c \\ c \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad a, b, c \neq 0$$

$$\frac{c}{a} \begin{pmatrix} a \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \frac{c}{b} \begin{pmatrix} 0 \\ b \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} c \\ c \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Kugelpackungsbed.:

$$\sum_{j=0}^{n} \binom{n}{j} (q-1)^{i} = 1 + n \cdot (q-1) = 1 + \frac{q^{l} - 1}{q - 1} = q^{l}$$

$$\frac{q^{n}}{q^{l}} = q^{n-l} = q^{k} = |C|$$
C perfekt.

2.6.2 Beispiel

a)
$$q = 2(K = \mathbb{Z}_2), l = 3, n = 7$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

[7, 4]-Hamming-Code über \mathbb{Z}_2

b)
$$q = 3(K = \mathbb{Z}_3), l = 3, n = \frac{3^3 - 1}{3 - 1} = 13$$

$$dim(C) = 10$$
 [13, 10]-H.C. über $\mathbb{Z}_3 |C| = 3^{10} = 59049$

dim(C) = 11, [15, 11]-Code über Z_2 , $|C| = 2^{11} = 2048$ Ang. y = (110101110000110) empfangen. Ist $y \in C$?

$$H \cdot y^t = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow y \notin C$$

Decodierung : $y \to x \in C$ (d(x, y) = 1)y unterscheidet sich von x an genau einer Stelle i, statt y_i steht in $x : y_i + 1$.

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = H \cdot y^{t}$$

$$= H \cdot (x^{t} + (0, \dots, 1, 0, \dots, 0)^{t})$$

$$= \underbrace{H \cdot x^{t}}_{\vec{0}} + H \cdot (0, \dots, 0, 1, 0, \dots, 0)^{t}$$

$$= \begin{pmatrix} h_{1i} \\ h_{2i} \\ h_{3i} \\ h_{4i} \end{pmatrix} \Rightarrow i = 2$$

$$x = (100101110000110) \in C$$

2.6.3 Decodierung binärer Hamming-Codes

y empfangen. Ist $Hy^t = 0$ so ist $y \in C$ Ist $Hy^t \neq 0$, so wähle in H diejenige Spalte, die mit Hy^t übereinstimmt. Ist dies die i - te Spalte von H, so wird y an Stelle i geändert $\sim x \in C$.

2.7 Reed-Solomon-Codes

K Körper, |K| = q, $1 \le k \le n \le q$ $K[x]_{k-1} = \{f \in K[x] : grad(f) \le k - 1\}$ K-Vektorraum der Dimension kWähle $M = \{a_1, \dots, a_n\} \subseteq K$, $a_i \ne a_j$, für $i \ne j$ (geht, da $n \le q$) $C = C_M = \{(f(a_i), \dots, f(a_n) : f \in K[x]_{k-1}\}$

2.7.1 **Reed-Solomon-Code** (Auswertungscode)

(Besonderes wichtiger Fall: n = q - 1 $a_i = a^i$, wobei a ein Erzeuger von K^* , d.h. $K^* = \langle a \rangle = \{a^1, a^2, \dots, a^{q-1}\}$

(1)
$$dim(C) = k$$
:

$$\alpha \begin{cases} K[x]_{k-1} & \longrightarrow C \\ f & \longmapsto (f(a_1), \dots, f(a_n)) \end{cases}$$

 α ist K-lineare Abbildung, surjektiv.

 $f \in Kern(\alpha), d.h. (f(a_1), ..., f(a_n)) = (0, ..., 0)$

$$f = 0 \Leftarrow \begin{cases} f \text{ hat mind. } n \text{ Nullstellen} \\ Grad(f) = k - 1 < n \end{cases}$$

 $Kern(\alpha) = \{\vec{0}\}, \alpha \text{ bijektiv. } dim(C) = dim(K[x]_{k-1}) = k$

(2) d(C) = n - k + 1:

Jedes $f \neq 0$ in $K[x]_{k-1}$ hat höchstens k-1 Nullstellen, d.h., mind. n-(k-1)Einträge jedes Codeworts $\neq 0$ sind $\neq 0$, $d(C) = wt(C) \ge n - k + 1$

$$f \prod_{i=1}^{k-1} x - a_i \in K[x]_{k-1}, \ f(a_1) = \dots = f(a_{k-1}) = 0$$

$$f \longmapsto c = (0, \dots, 0, \underbrace{*, \dots, *}_{\neq 0}) \ wt(c) = n - k + 1$$

$$d(C) = n - k + 1$$

- (3) Reed-Solomon-Codes sind MDS-Codes (für q = 2 nur triviale Codes)
- (4)

$$G = \begin{pmatrix} 1 & \dots & 1 \\ a_1 & \dots & a_n \\ a_1^2 & \dots & a_n^2 \\ & \vdots & & \\ a_1^{k-1} & \dots & a_n^{k-1} \end{pmatrix} \text{ ist Erzeugermatrix von } C$$

 $K[x]_{k-1} = C$

Basis:
$$1, x, x^2, \dots, x^{k-1} \xrightarrow{\alpha} (\underbrace{1, \dots, 1), (a_1, \dots, a_n), \dots, (a_1^{k-1}, \dots, a_n^{k-1})}_{\text{Basis von } C}$$

2.8 **MDS-Codes**

(1)

$$\tilde{G} = \begin{pmatrix} 1 & \dots & 1 & 0 \\ a_1 & \dots & a_n & 0 \\ a_1^2 & \dots & a_n^2 & 0 \\ & \vdots & & \vdots \\ a_1^{k-1} & \dots & a_n^{k-1} & 1 \end{pmatrix}$$

|K| = q

 \tilde{C} der Code mit Erzeugermatrix \tilde{G} .

Länge: n + 1, Dim. k

 $d(\tilde{G}) = n - k + 2$

 $d(\tilde{G}) \le (n+1) - k + 1 = n - k + 2$

 $0 \neq \tilde{x} \in \tilde{C}$

Falls \tilde{x} Linearkombination des ersten k-1 Zeilen von \tilde{G} , so

$$\tilde{x} = (x, 0), x \in C$$

 $x = (f(a_1), \dots, f(a_n))$, wobei f Polynom von Grad $\leq k - 2$

$$wt(\tilde{x}) = wt(x) \ge n - (k - 2) = n - k + 2$$

Falls die letzte Zeile von \tilde{G} in der Linearkombination von \tilde{x} vorkommt, so

$$\tilde{x}=(x,a),\ x\in K,\ a\neq 0,\ x\in C.$$

$$wt(\tilde{x}) = wt(x) + 1 \ge n - k + 1 + 1 = n - k + 2$$

$$d(\tilde{C}) = n - k + 2 = (n + 1) - k + 1$$
 MDS-Code.

Wähle n = q. \tilde{C} MDS-Code der Länge q + 1

(2)

$$\overline{G} = \begin{pmatrix} 1 & \dots & 1 & 0 & 0 \\ a_1 & \dots & a_n & 1 & 0 \\ a_1^2 & \dots & a_n^2 & 0 & 1 \end{pmatrix}$$

Code \overline{C} der Länge q + 2 Dimension 3.

$$d(\overline{C}) = q = (q+2) - 3 + 1$$
 MDS-Code, falls $q = 2^l$

(3) MDS-Vermutung

Falls C[n, k]-Code über K, |K| = q, mit d(C) = n - k + 1 (MDS-Code), so

$$n \le q + 2$$
 (und falls $q = 2^l \operatorname{sogar} n \le q + 1$)

(4) Ist C[n, k]-MDS-Code, $n \ge 2$, d = d(C) = n - k + 1

$$\check{C} = \{(C_1, \dots, C_{n-1} : (C_1, \dots, C_{n-1}, 0) \in C\} \text{ (Verkürzung von } C)$$
 ist $[n-1, k-1, d]$ -Code

$$d = (n-1) - (k-1) + 1$$

Č MDS-Code.

2.9 Codierung von Audio-CDs

Auslöschung: Bit kann nicht mehr gelesen werden. (Man weiß wo der Fehler liegt) Bündelfehlern:

2.9.1 Lemma: [n, k, d]-Code

kann Bündelfehler bis zur Länge d-1 korrigieren (pro Codewort). (Ebenso: d-1 Auslöschungen)

Bew: c gesendet, y empfangen $(c_1 \dots c_i|* \dots *|c_j \dots c_n)$ Sei $c' \in C$, das um Stelle $1, \dots, i, j, \dots, n$ mit y übereinstimmen. $d(c, c') \leq a \leq d-1$

2.9.2 Interleaving (Spreizung)

Def: Sei C ein [n, k] – Code.

Interleaving von C zur Tiefe s liefert lin. Code $C(s) \subseteq K^{n \cdot s}$ auf folgende Art: Wähle s Codewörter von C, schreibe diese als Spalten einer Matrix:

$$c_1 = (c_{11}, \dots, c_{n1}, \dots, c_s = (c_{1s}, \dots, c_{ns}) \begin{pmatrix} c_{11} & \dots & c_{1s} \\ \vdots & & \vdots \\ c_{n1} & \dots & c_{ns} \end{pmatrix}$$

s Codewörter aus $C \to \boxed{\text{Interleaver}} \to \text{Codewörter der Länge } ns.$ C(s) [ns, ks]-Code, d(C(s)) = d(C)

In C(s) können Bündelfehler der Länge $b \le (d-1) \cdot s$ korrigieren.

$$\begin{pmatrix} c_{11} & \dots & c_{1s} \\ \vdots & & \vdots \\ c_{n1} & \dots & c_{ns} \end{pmatrix}$$

Bündelfehler der Länge $b \le (d-1) \cdot s$ bewirkt Bündelfehler der Länge $\le d-1$ zu jedem der ursprünglichen Codewörter aus C. Korrigierbar nach Lemma.

2.9.3 Cross-Interleaving

Def: C_1 , C_2 [n_i , k_i]-Code (i = 1, 2) über K, C_1 besitzt Erzeugermatrix in Standard-form ($E_{k_1}|A$). Das Cross-Interleaving des inneren Codes C_1 mit äußern Code C_2 ist ein Code $C \subseteq K^{n_1 n_2}$, der so entsteht:

Wähle k_1 Codewörter c_1, \ldots, c_{k_1} aus $C_2 \subseteq K^{n_2}$ $c_i = (c_{1i}, \ldots, c_{n_2i}), i = 1, \ldots, k_1$, und schreibe sie spaltenweise in eine Matrix:

$$\begin{pmatrix} c_{11} & \dots & c_{1k_1} \\ \vdots & & \vdots \\ c_{n_21} & \dots & c_{n_2k_1} \end{pmatrix}$$

Codiere jede Zeile mit $(E_{k_1}|A)$ zu Codewörtern zu C_1 . $C \cdot (E_{k_1}|A)$: Letzte $n_1 - k_1$ Spalten dieser Matrix sind L.K., der ersten k_1 Spalten. Lese zeilenweise aus! Liefert $[n_1 \cdot n_2, k_1 \cdot k_2, d_1 \cdot d_2]$ -Code.

 k_1 Codewörter aus $C_1 \rightarrow \boxed{\text{Cross-Interleaver}} \rightarrow \text{Codewörter}$ aus C der Länge $n_1 \cdot n_2$

 $(n_2$ hintereinander folgende Codewörter aus C_1). C kann Bündelfehler der Länge $(d2-1) \cdot n_1$ korrigieren.

Das lässt sich durch sogenanntes Cross-Interleaving mit t-facher Verzögerung mit Burst der Länge $(d_2-1)\cdot n_1\cdot t$ erhöhen.

2.9.4 Audio-CD

Ausgangscode Reed-Solomon-Code R = [255, 251, 5] über \mathbb{F}_{2^8}

 C_1 [32, 28, 5]-Code 223-fache Verkürzung von R.

 C_2 [28, 24, 5]-Code 227-fache Verkürzung von R.

Cross-Interleaving mit C_1 , C_2 mit 4-facher Verzögerung. (CIRC = Cross Interleave Reed-Solomon Code)

Kann Bursts bis zur Länge $4 \cdot 32 \cdot 4 = 512$