CS 225

Data Structures

April 23 — Dijkstra's Algorithm Wade Fagen-Ulmschneider

Partition Property

Consider an arbitrary partition of the vertices on **G** into two subsets **U** and **V**.

Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

Partition Property

The partition property suggests an algorithm:

Prim's Algorithm


```
PrimMST(G, s):
     Input: G, Graph;
            s, vertex in G, starting vertex
     Output: T, a minimum spanning tree (MST) of G
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
     Q.buildHeap(G.vertices())
12
13
     Graph T
                       // "labeled set"
14
15
     repeat n times:
16
       Vertex m = Q.removeMin()
17
       T.add(m)
       foreach (Vertex v : neighbors of m not in T):
18
19
         if cost(v, m) < d[v]:
20
           d[v] = cost(v, m)
21
           p[v] = m
22
23
     return T
```

Prim's Algorithm

```
PrimMST(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
10
     d[s] = 0
11
12
     PriorityQueue Q // min distance, defined by d[v]
13
     Q.buildHeap(G.vertices())
     Graph T
14
                     // "labeled set"
15
16
     repeat n times:
17
       Vertex m = Q.removeMin()
18
       T.add(m)
19
       foreach (Vertex v : neighbors of m not in T):
20
         if cost(v, m) < d[v]:
21
           d[v] = cost(v, m)
22
           p[v] = m
```

	Adj. Matrix	Adj. List
Неар		
Unsorted Array		

Prim's Algorithm

```
16    repeat n times:
        Vertex m = Q.removeMin()
18        T.add(m)
19        foreach (Vertex v : neighbors of m not in T):
20          if cost(v, m) < d[v]:
21          d[v] = cost(v, m)
22          p[v] = m</pre>
```

Prim's Algorithm Sparse Graph:

Dense Graph:

```
PrimMST(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
12
     PriorityQueue Q // min distance, defined by d[v]
     Q.buildHeap(G.vertices())
13
                     // "labeled set"
14
     Graph T
15
16
     repeat n times:
17
       Vertex m = Q.removeMin()
18
       T.add(m)
19
       foreach (Vertex v : neighbors of m not in T):
20
         if cost(v, m) < d[v]:
21
           d[v] = cost(v, m)
22
           p[v] = m
```

	Adj. Matrix	Adj. List
Неар	O(n ² + m lg(n))	O(n lg(n) + m lg(n))
Unsorted Array	O(n ²)	O(n ²)

MST Algorithm Runtime:

Kruskal's Algorithm:

 $O(n + m \lg(n))$

• Prim's Algorithm:

 $O(n \lg(n) + m \lg(n))$

 What must be true about the connectivity of a graph when running an MST algorithm?

How does n and m relate?

MST Algorithm Runtime:

Kruskal's Algorithm:

$$O(n + m \lg(n))$$

• Prim's Algorithm:

$$O(n \lg(n) + m \lg(n))$$

MST Algorithm Runtime:

Upper bound on MST Algorithm Runtime:
 O(m lg(n))

Suppose I have a new heap:

	Binary Heap	Fibonacci Heap
Remove Min	O(lg(n))	O(lg(n))
Decrease Key	O(lg(n))	O(1)*

What's the updated running time?

```
PrimMST(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
     p[v] = NULL
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
     Q.buildHeap(G.vertices())
12
13
                    // "labeled set"
     Graph T
14
15
     repeat n times:
16
       Vertex m = Q.removeMin()
17
       T.add(m)
18
       foreach (Vertex v : neighbors of m not in T):
19
         if cost(v, m) < d[v]:
20
           d[v] = cost(v, m)
21
           p[v] = m
```

End of Semester Logistics

Lab: Your final CS 225 lab is this week.

No lab sections next week (partial week).

Final Exam: Final exams start on Reading Day (May 3)

- Last day of office hours is Wednesday, May 2.
- No office/lab hours once the first final exam is given.

Grades: There will be a "Pre-Final" grade update posted next week with all grades except your final.

- MP7's grace period extends until Tuesday, May 1
- Goal: Have "Pre-Final" grade on Wednesday/Thursday

Shortest Path


```
DijkstraSSSP(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
     p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
13
     Graph T // "labeled set"
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if
                            < d[v]:
20
           d[v] =
21
           p[v] = m
```

What about negative weight cycles?

What about negative weight edges, without negative weight cycles?

What is the running time?

```
DijkstraSSSP(G, s):
     foreach (Vertex v : G):
      d[v] = +inf
     p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat n times:
16
      Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if
            < d[v]:
20
          d[v] =
21
          p[v] = m
```