Modelos y simulación - Trabajo especial

FAMAF - UNC

Juliana García - Santiago López Pereyra

May 29, 2025

1 Descripción del problema

Sea

$$\lambda(t) = 20 + 10\cos\left(\frac{\pi t}{12}\right) \tag{1}$$

1.1 Caracterizando propiedades del sistema

Como el coseno oscila en [-1, 1], $\lambda(t)$ tiene máximo 30 y mínimo 10. Más aún, $\pi\left(\frac{\pi t}{12}\right)$ completa un ciclo cuando $\pi t/12 = 2\pi \iff t = 24$. Se sigue que en t = 12 alcanza su mínimo (mitad del ciclo recorrido).

Nos interesa caracterizar los períodos donde el servidor tendrá mayor y menor actividad. Los caracterizaremos como las regiones de t en que $\lambda(t)$ está por encima y por debajo de su punto medio, respectivamente. No es difícil ver que $\lambda(t) > 20 \iff \cos(\pi t/12) > 0$. Pero el coseno es positivo si su argumento pertenece a $[-\pi/2, \pi/2]$. Por ende,

$$\lambda(t) > 20 \iff -\pi/2 + 2k\pi \le \frac{\pi t}{12} \le \pi/2 + 2k\pi$$
 (2)

$$\iff -6 + 24k \le t \le 6 + 24k \tag{3}$$

Si restringimos $t \in [0, 48]$, esto vale si y solo si

$$t \in (0,6) \cup (18,30) \cup (42,48)$$
 (4)

El complemento de este conjunto sobre el universo [0, 48] nos da los periodos de menor actividad. El valor medio de llegadas en las 48 horas es:

$$\int_0^{48} \lambda(t) dt = \int_0^1 20 + 10 \cos(\frac{\pi t}{12}) dt = 960$$
 (5)

Esto implica que $\frac{960}{48}$ = 20 es el valor medio de llegadas por hora. Incluso en períodos de máxima actividad, la cantidad esperada de llegadas por hora es prácticamente la misma:

$$\frac{1}{6} \int_0^6 \lambda(t) dt = 21 \tag{6}$$

Como se atiende 35 personas por hora, esto significa que incluso en los períodos de mayor actividad se espera que el servidor atienda a todas las personas.