东南大学学生会

Students' Union of Southeast University

2003 级(非电类)高等数学(下)期中试卷 A.卷

填空题.

1. 直线
$$L_1$$
: $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$ 与 L_2 : $\begin{cases} x-y=6 \\ 2y+z=3 \end{cases}$ 的夹角 $\theta = \underline{\qquad}$

3. 已知级数
$$\sum_{n=1}^{\infty} \frac{\arctan \frac{1}{n}}{n^p}$$
 收敛,则 p 应满足的条件是______

4. 级数
$$\sum_{n=1}^{\infty} \frac{2^n}{n} (x+1)^n$$
 的收敛域为______

5. 设级数
$$\sum_{n=1}^{\infty} a_n (x+1)^n$$
 在 $x=3$ 处条件收敛,则该幂级数的收敛半径为______.

7. 设
$$f(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2}, \\ 2 - 2x, \frac{1}{2} < x < 1, \end{cases}$$
 $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x, -\infty < x < +\infty$, 其 中

$$f_n = d_0^1$$
 $f_n^2 \pi(n) o ds \alpha = (0, \dots) \cdot \mathbb{N} S(-\frac{5}{2}) = \underline{\qquad}$

二 单项选择题

1. 设 \bar{a},\bar{b},\bar{c} 均为非零向量,则与 \bar{a} 不垂直的向量是

(A)
$$(\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$
; (B) $\vec{b} - \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}\vec{a}$; (C) $\vec{a} \times \vec{b}$; (D) $\vec{a} + (\vec{a} \times \vec{b}) \times \vec{a}$.

2. 点
$$(1,1,1)$$
 到平面 $2x + y + 2z + 5 = 0$ 的距离 $d = \underline{\hspace{1cm}}$ ()

(A)
$$\frac{10}{3}$$
; (B) $\frac{3}{10}$; (C) 3;

3. 直线 L:
$$\frac{x+3}{-2} = \frac{y+4}{-7} = \frac{z}{3}$$
 与平面 $\Pi: 4x-2y-2z+4=0$ 的关系为

(A) 平行,但直线不在平面上; (B) 直线在平面上;

)

东南大学学生会

Students' Union of Southeast University

(C) 垂直相交;

(D) 相交但不垂直.

4. 下面说法中正确的是

(A) 若级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,且 $u_n \ge v_n$,则 $\sum_{n=1}^{\infty} v_n$ 也收敛;

(B) 若
$$\sum_{n=1}^{\infty} |u_n v_n|$$
收敛,则 $\sum_{n=1}^{\infty} u_n^2 \pi \sum_{n=1}^{\infty} v_n^2$ 都收敛;

(C) 若正项级数
$$\sum_{n=1}^{\infty} u_n$$
 发散,则 $u_n \ge \frac{1}{n}$;

(D) 若
$$\sum_{n=1}^{\infty} u_n^2$$
和 $\sum_{n=1}^{\infty} v_n^2$ 都收敛,则 $\sum_{n=1}^{\infty} (u_n + v_n)^2$ 收敛.

三 解答题.

1. 设函数

$$f(x) = \begin{cases} 1, & 0 \le x < \frac{\pi}{4}, \\ 0, & \frac{\pi}{4} \le x \le \pi. \end{cases}$$

把 f(x) 展开为以 2π 为周期的余弦级数,并写出该级数和函数 S(x) 的表达式.

2. 已知直线
$$L_1: \frac{x-1}{1} = \frac{y+1}{2} = \frac{z-1}{\lambda}$$
 和直线 $L_2: x+1 = y-1 = z$ 相交,求 λ 的值.

3. 讨论级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt[n]{a}}{n} (a > 0)$$
 的敛散性,若收敛,是绝对收敛还是条件收敛?

四 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n \cdot 2^n}$ 的收敛域与和函数.

五 求过点 M(2, 1, 3) 且与直线 L:
$$\begin{cases} 2x - 3y + 5 = 0 \\ x + 3z + 1 = 0 \end{cases}$$
 垂直相交的直线方程.

六 将
$$f(x) = \arctan \frac{1-2x}{1+2x}$$
 展成 x 的幂级数,并求级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ 的和.

七 设
$$f(x)$$
 在 $x = 0$ 的某邻域内有连续的二阶导数,且 $\lim_{x \to 0} \frac{f(x)}{x} = 0$. 证明: $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 绝对收敛.