Université de Lorraine Analyse complexe

TD 1: Fonctions holomorphes

[Dans cette feuille, \mathbb{R}^2 et \mathbb{C} sont identifiés de la manière habituelle. On doit parfois supposer que les fonctions holomorphes sont de classe \mathscr{C}^1 ou \mathscr{C}^2 . On montrera dans les chapitres suivants que c'est automatiquement le cas.]

Exercice 1. Pour x, y réels et z = x + iy, on pose $f(z) = x + iy^2$.

- 1. Montrer que f est \mathbb{R} -différentiable sur \mathbb{C} et calculer la différentielle de f.
- 2. En quels points f est-elle \mathbb{C} -dérivable? Existe-t-il un ouvert non vide U sur lequel la fonction f est holomorphe?

Exercice 2. La fonction $f: \mathbb{C} \setminus \{x = 0\} \to \mathbb{C}, x + iy \mapsto \ln(x^2 + y^2) + 2i \arctan(y/x)$ est-elle holomorphe? Reconnaître la fonction.

Exercice 3. Soit f = u + iv une fonction holomorphe et de classe \mathscr{C}^2 sur un ouvert Ω . Montrer que u et v sont harmoniques, c'est-à-dire que $\Delta u = 0 = \Delta v$. (Où Δ désigne le laplacien classique.)

Exercice 4. Soit U un ouvert de \mathbb{C} et f une fonction holomorphe sur U. Soit $V = \{z \in \mathbb{C} \mid \bar{z} \in U\}$. Pour tout $z \in V$, on pose $g(z) = \overline{f(\bar{z})}$. Montrer que g est holomorphe sur V.

Exercice 5. Soit Ω un ouvert connexe de $\mathbb C$ et f une fonction holomorphe sur Ω . On écrit f = u + iv, avec u et v à valeurs réelles. Montrer que les propositions suivantes sont équivalentes :

- 1. *f* est constante;
- 2. *u* est constante;
- 3. ν est constante:
- 4. f est holomorphe;
- 5. |f| est constante.

Exercice 6. Soient a, b et c des réels. Pour z = x + iy, on pose $P(z) = ax^2 + 2bxy + cy^2$. Donner une condition nécessaire et suffisante sur a, b et c pour qu'il existe une fonction holomorphe f sur $\mathbb C$ dont P soit la partie réelle. Lorsque cette condition est remplie, donner toutes les solutions f.

Exercice 7. Soit f = u + iv une fonction holomorphe sur un ouvert Ω . Montrer que les familles de courbes u =cste et v =cste sont orthogonales. Plus précisément, montrer qu'en tout point $z_0 = x_0 + y_0$ de ces deux courbes tel que $f'(z_0) \neq 0$, leurs tangentes respectives sont perpendiculaires.

Exercice 8. Obtenir la forme polaire des conditions de Cauchy-Riemann :

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \text{ et } \frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$$

En déduire que la fonction définie sur le demi-plan Ré(z) > 0 par $z \mapsto \ln|z| + i \operatorname{Arg}_0(z)$, est holomorphe. (L'argument Arg_0 désigne l'argument principal.)

Exercice 9. Soit f une fonction complexe différentiable définie sur un ouvert connexe $\Omega \subset \mathbb{C}$.

- 1. Montrer que $\frac{\partial \bar{f}}{\partial \bar{z}} = \frac{\overline{\partial f}}{\partial z}$.
- 2. On dit que f est antiholomorphe si \overline{f} est holomorphe. Montrer que f est antiholomorphe ssi $\frac{\partial f}{\partial z} = 0$.
- 3. Si f est de classe \mathscr{C}^2 , montrer que $\Delta f = 4 \frac{\partial^2}{\partial z \partial \bar{z}} f$.
- 4. On suppose de plus que f est holomorphe. Montrer que $\Delta(|f|^2) = 4|f'(z)|^2$.
- 5. Soient $f_1, ..., f_p$ des fonctions holomorphes de classe \mathscr{C}^2 sur Ω telles que $|f_1|^2 + ... + |f_p|^2$ soit constante. Montrer que *toutes* les fonctions sont constantes!