C:/Users/torsten/GitHub/colore/ontologies/multidim_space_codib/codib.clif

1.
$$\forall x \, \forall y \, \left[\left[SC(x, y) \to C(x, y) \right] \right]$$

2.
$$\forall x \ \forall y \ \left[\left[\mathrm{SC}(x,y) \to \neg \exists z \ \left[\left(\mathrm{Cont}(z,x) \land \mathrm{P}(z,y) \right) \right] \right] \right]$$

3.
$$\forall x \ \forall y \ \left[\left[\mathrm{SC}(x,y) \to \neg \exists z \ \left[\left(\mathrm{P}(z,x) \wedge \mathrm{Cont}(z,y) \right) \right] \right] \right]$$

4.
$$\forall x \ \forall y \ \left[\left(\operatorname{C}(x,y) \land \forall z \ \left[\left(\neg \left(\operatorname{Cont}(z,x) \right) \lor \neg \left(\operatorname{Cont}(z,y) \right) \lor \left(\neg \left(\operatorname{P}(z,x) \right) \land \neg \left(\operatorname{P}(z,y) \right) \right) \right) \right] \right) \to \operatorname{SC}(x,y) \right]$$

5.
$$\forall x \left[\neg \left(SC(x, x) \right) \right]$$

6.
$$\forall x \ \forall y \ \left[\left[SC(x,y) \to SC(y,x) \right] \right]$$

7.
$$\forall x \ \forall y \ \left[\left[\mathrm{SC}(x,y) \to \exists z \ \left[\left(\mathrm{lt}(z,x) \land \mathrm{lt}(z,y) \land \mathrm{Cont}(z,x) \land \mathrm{Cont}(z,y) \right) \right] \right] \right]$$

8.
$$\forall x \ \forall y \ \left[SC(x,y) \leftrightarrow \left(\exists z \ \left[\left(Cont(z,x) \land Cont(z,y) \right) \right] \land \forall z \ \left[\left[\left(Cont(z,x) \land Cont(z,y) \right) \rightarrow \left(leq(z,x) \land Cont(z,y) \right) \right] \right] \right] \right]$$

9.
$$\forall x \, \forall y \, \left[\left[\operatorname{EqDim}(x, y) \leftrightarrow \left(\operatorname{leq}(x, y) \wedge \operatorname{leq}(y, x) \right) \right] \right]$$

10.
$$\forall x \ \forall y \ \left[\left[\operatorname{leq}(x, y) \to \operatorname{S}(x) \right] \right]$$

11.
$$\forall x \ \forall y \ \left[\left[\operatorname{leq}(x, y) \to \operatorname{S}(y) \right] \right]$$

12.
$$\forall x \left[\left[ZEX(x) \to S(x) \right] \right]$$

13.
$$\forall x \left[\left[S(x) \to leq(x, x) \right] \right]$$

14.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{leq}(x,y) \land \operatorname{leq}(y,z) \right) \rightarrow \operatorname{leq}(x,z) \right] \right]$$

15.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{ZEX}(x) \land \operatorname{ZEX}(y) \right) \to =(x,y) \right] \right]$$

16.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{ZEX}(x) \wedge \operatorname{S}(y) \right) \to \operatorname{leq}(x, y) \right] \right]$$

17.
$$\forall x \ \forall y \ \left[\left[\operatorname{Cont}(x, y) \to \operatorname{leq}(x, y) \right] \right]$$

18.
$$\exists x \ [MinDim(x)]$$

19.
$$\forall x \left[\left[\operatorname{MaxDim}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\left[\left[\operatorname{S}(y) \rightarrow \operatorname{leq}(y, x) \right] \right] \right) \right] \right]$$

20.
$$\forall x \left[\left[\operatorname{MinDim}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\left[\left(\operatorname{S}(y) \land \neg \left(\operatorname{ZEX}(y) \right) \right) \rightarrow \operatorname{leq}(x, y) \right] \right] \right) \right] \right]$$

21.
$$\forall x \left[\left[\left(S(x) \land \neg \left(ZEX(x) \right) \right) \leftrightarrow Cont(x, x) \right] \right]$$

22.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{Cont}(x,y) \wedge \operatorname{Cont}(y,x) \right) \to =(x,y) \right] \right]$$

23.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{Cont}(x,y) \wedge \operatorname{Cont}(y,z) \right) \to \operatorname{Cont}(x,z) \right] \right]$$

24.
$$\forall x \ \forall y \ \left[\left[\operatorname{ZEX}(x) \to \left(\operatorname{S}(x) \land \neg \left(\operatorname{Cont}(y, x) \right) \land \neg \left(\operatorname{Cont}(x, y) \right) \right) \right] \right]$$

25.
$$\forall x \, \forall y \, \left[\left[\left(\operatorname{ZEX}(x) \wedge \operatorname{ZEX}(y) \right) \to = (x, y) \right] \right]$$

26.
$$\forall x \ \forall y \ \left[\left[P(x,y) \leftrightarrow \left(Cont(x,y) \land EqDim(x,y) \right) \right] \right]$$

27.
$$\forall x \ \forall y \ \left[\left[\mathrm{C}(x,y) \leftrightarrow \exists z \ \left[\left(\mathrm{Cont}(z,x) \land \mathrm{Cont}(z,y) \right) \right] \right] \right]$$

28.
$$\forall x \left[\neg \left(\operatorname{Inc}(x, x) \right) \right]$$

29.
$$\forall x \ \forall y \ \left[\left[\operatorname{Inc}(x,y) \to \operatorname{Inc}(y,x) \right] \right]$$

30.
$$\forall x \ \forall y \ \left[\left[\operatorname{EqDim}(x, y) \to \neg \left(\operatorname{Inc}(x, y) \right) \right] \right]$$

31.
$$\forall x \ \forall y \ \left[\left[\operatorname{Inc}(x,y) \to \left(\operatorname{lt}(x,y) \lor \operatorname{lt}(y,x) \right) \right] \right]$$

32.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{Cont}(x,y) \wedge \operatorname{lt}(x,y) \right) \to \operatorname{Inc}(x,y) \right] \right]$$

33.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{Inc}(x,y) \wedge \mathrm{P}(y,z) \right) \to \operatorname{Inc}(x,z) \right] \right]$$

34.
$$\forall x \ \forall y \ \left[\operatorname{Inc}(x,y) \leftrightarrow \left(\exists z \ \left[\left(\operatorname{leq}(z,x) \land \neg \left(\operatorname{EqDim}(z,x) \right) \land \operatorname{Cont}(z,x) \land \operatorname{P}(z,y) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,y) \land \neg \left($$

35.
$$\forall x \left[\left[\left(S(x) \land \neg \left(ZEX(x) \right) \right) \rightarrow PO(x, x) \right] \right]$$

36.
$$\forall x \ \forall y \ \Big[[PO(x,y) \to PO(y,x)] \Big]$$

37.
$$\forall x \ \forall y \ \left[\left[PO(x, y) \to EqDim(x, y) \right] \right]$$

38.
$$\forall x \ \forall y \ \left[\left[\operatorname{PO}(x,y) \leftrightarrow \exists z \ \left[\left(\operatorname{P}(z,x) \land \operatorname{P}(z,y) \right) \right] \right] \right]$$

39.
$$\forall x \left[\left[\operatorname{Max}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\neg \left(\operatorname{PP}(x, y) \right) \right] \right) \right] \right]$$

40.
$$\forall x \left[\left[\operatorname{Min}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\neg \left(\operatorname{PP}(y, x) \right) \right] \right) \right] \right]$$

41.
$$\forall x \ \forall y \ \left[\left[PP(x,y) \leftrightarrow \left(P(x,y) \land \neg \left(=(x,y) \right) \right) \right] \right]$$

42.
$$\forall x \ \forall y \ \left[\left[\operatorname{BCont}(x,y) \to \left(\operatorname{Cont}(x,y) \land \neg \left(\operatorname{EqDim}(x,y) \right) \right) \right] \right]$$

43.
$$\forall x \ \forall y \ \forall v \ \forall z \ \left[\left[\left(\mathrm{SC}(x,y) \land \mathrm{Min}(x) \land \mathrm{P}(x,v) \land \mathrm{Cont}(y,v) \land \mathrm{Cont}(z,x) \land \mathrm{Cont}(z,y) \right) \rightarrow \mathrm{BCont}(z,x) \right] \right]$$

44.
$$\forall x \ \forall y \ \forall z \ \forall v \ \left[\left[\left(\operatorname{SC}(x,y) \land \operatorname{P}(x,v) \land \operatorname{P}(y,v) \land \operatorname{Cont}(z,x) \land \operatorname{Cont}(z,y) \land \operatorname{Covers}(v,z) \right) \rightarrow \neg \left(\operatorname{BCont}(z,v) \right) \right] \right]$$

45.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{BCont}(x,y) \land \operatorname{P}(y,z) \land \forall v \ \forall w \ \left[\left[\left(\operatorname{P}(v,z) \land \neg \left(\operatorname{PO}(v,y) \right) \land \operatorname{P}(w,x) \right) \rightarrow \neg \left(\operatorname{Cont}(w,v) \right) \right] \right] \right] \right]$$

46.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\mathrm{BCont}(x,y) \wedge \mathrm{Cont}(z,x) \right) \to \mathrm{BCont}(z,y) \right] \right]$$

47.
$$\forall x \ \forall y \ \left[\left[\text{Covers}(x,y) \leftrightarrow \left(\text{lt}(y,x) \land \forall z \ \left[\left[\text{S}(z) \rightarrow \neg \left(\text{lt}(y,z) \land \text{lt}(z,x) \right) \right] \right] \right) \right] \right]$$

48.
$$\forall x \ \forall y \ \left[\left[\operatorname{gt}(x,y) \leftrightarrow \operatorname{lt}(y,x) \right] \right]$$

49.
$$\forall x \ \forall y \ \left[\left[\gcd(x,y) \leftrightarrow \operatorname{leq}(y,x) \right] \right]$$

50.
$$\forall x \ \forall y \ \left[\left[\operatorname{lt}(x,y) \leftrightarrow \left(\operatorname{leq}(x,y) \land \neg \left(\operatorname{EqDim}(x,y) \right) \right) \right] \right]$$

51.
$$\forall x \left[\left[\text{Closed}(x) \leftrightarrow \forall y \left[\neg \left(\text{BCont}(y, x) \right) \right] \right] \right]$$