Particle spectrograph

Wave operator and propagator

$\Delta_{1}^{\#1}{}_{lphaeta}$	$\Delta_{1}^{\#2}{}_{lphaeta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1}^{\#1}{}_{lpha}$	$\Delta_{1-lpha}^{\#2}$	$\Delta_{1-lpha}^{\#3}$	$\Delta_{1}^{\#4}{}_{lpha}$	$\Delta_{1}^{\#5}{}_{lpha}$	$\Delta_{1}^{\#6}{}_{lpha}$	${\mathcal T}_{1^-lpha}^{\sharp 1}$
$\Delta_{1}^{\#1} \dagger^{\alpha\beta}$ 0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
$\Delta_{1}^{\#2} \dagger^{\alpha\beta} - \frac{2\sqrt{2}}{a_0}$	$\frac{2(a_0^2 - 14a_0a_1k^2 - 35a_1^2)}{a_0^2(a_0 - 29a_1k^2)}$	$\frac{k^4)}{a_0^2 - 29 a_0 a_1 k^2} $	0	0	0	0	0	0	0
$\Delta_{1}^{#3} \dagger^{\alpha\beta}$ 0	$\frac{40\sqrt{2} a_1 k^2}{a_0^2 - 29 a_0 a_1 k^2}$	$\frac{4}{a_0-29a_1k^2}$	0	0	0	0	0	0	0
$\Delta_1^{\#1} \uparrow^{\alpha}$ 0	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$-\frac{2k^2}{\sqrt{3} a_0 (2+k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$	0	$-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$
$\Delta_1^{\#2} \uparrow^{\alpha}$ 0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{a_0^2 (4+k^2)^2 - 30 a_0 a_1 k^2 (4+k^2) (4+3 k^2) + a_1^2 k^4 (6416 + 7928 k^2 + 1901 k^4)}{2 a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{k^2 (a_0^2 (-2+k^2) + a_0 a_1 (560 + 302 k^2 + 71 k^4) - 2 a_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+a_1 (40-31 k^2))}{2 a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{k^2 (2 a_0^2 (5+2 k^2)-a_0 a_1 (880+778 k^2+199 k^4)+a_1^2 k^2 (9440+1901 k^2 (4+k^2)))}{2 \sqrt{3} a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$	$\frac{k^2 \left(-a_0 + a_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{i k (-30 a_0 a_1 k^4 + a_0^2 (4 + k^2) + 27 a_1^2 k^4 (-28 + 3 k^2))}{a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$
$\Delta_1^{\#3} \uparrow^{\alpha} 0$	0	0	$-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$	$\frac{k^2 (a_0^2 (-2+k^2) + a_0 a_1 (560 + 302 k^2 + 71 k^4) - 2 a_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{-a_0^2 (76+52 k^2+3 k^4)+4 a_0 a_1 k^2 (472+214 k^2+19 k^4)+4 a_1^2 k^4 (5120+7280 k^2+1901 k^4)}{12 a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$	$\frac{\sqrt{5} (10 a_0 + (3 a_0 - 328 a_1) k^2 - 62 a_1 k^4)}{12 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{2a_0^2 (-2+k^2) + a_0 a_1 k^2 (472 + 934 k^2 + 289 k^4) - 2a_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{6 \sqrt{2} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$-\frac{2 a_0 + (3 a_0 - 56 a_1) k^2 + 86 a_1 k^4}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{i k (54 a_1^2 k^4 (40 + 3 k^2) + a_0^2 (6 + 5 k^2) - 3 a_0 a_1 k^2 (86 + 23 k^2))}{\sqrt{6} a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$
$\Delta_{1}^{\#4} \uparrow^{\alpha}$ 0	0	0	0	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+a_1 (40-31 k^2))}{2 a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{\sqrt{5} (10 a_0 + k^2 (3 a_0 - 2 a_1 (164 + 31 k^2)))}{12 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	1 12 a ₀ -396 a ₁ k ²	$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + a_1 k^2 \left(164 + 31 k^2\right)\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{i\sqrt{\frac{5}{6}}k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$
$\Delta_1^{\#5} \uparrow^{\alpha} = 0$	0	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	$\frac{k^2 \left(2 a_0^{ 2} (5 + 2 k^2) - a_0 a_1 (880 + 778 k^2 + 199 k^4) + a_1^{ 2} k^2 (9440 + 1901 k^2 (4 + k^2))\right)}{2 \sqrt{3} a_0^{ 2} (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{2 a_0^2 (-2+k^2) + a_0 a_1 k^2 (472 + 934 k^2 + 289 k^4) - 2 a_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{6 \sqrt{2} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + a_1 k^2 \left(164 + 31 k^2\right)\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$\frac{4a_0^2 (17 + 14k^2 + 3k^4) - 4a_0 a_1 k^2 (236 + 287k^2 + 77k^4) + a_1^2 k^4 (5120 + 7280k^2 + 1901k^4)}{6a_0^2 (2 + k^2)^2 (a_0 - 33a_1 k^2)}$	$-\frac{a_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{i k (2 a_0^2 (3+k^2)-27 a_1^2 k^4 (40+3 k^2)+3 a_0 a_1 k^2 (34+7 k^2))}{\sqrt{3} a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$
$\Delta_1^{\#6} \uparrow^{\alpha} = 0$	0	0	0	$\frac{k^2 \left(-a_0 + a_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} \ a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{2 a_0 + (3 a_0 - 56 a_1) k^2 + 86 a_1 k^4}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{a_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{5}{3(a_0-33a_1k^2)}$	$-\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$
$\mathcal{T}_{1}^{\sharp 1}\dagger^{lpha}$ 0	0	0	$\frac{2i\sqrt{2}k}{2a_0+a_0k^2}$	$\frac{i(-30a_0a_1k^5 + a_0^2k(4+k^2) + 27a_1^2k^5(-28+3k^2))}{a_0^2(2+k^2)^2(a_0-33a_1k^2)}$	$-\frac{i(54a_1^2k^5(40+3k^2)+a_0^2k(6+5k^2)-3a_0a_1k^3(86+23k^2))}{\sqrt{6}a_0^2(2+k^2)^2(a_0-33a_1k^2)}$	$\frac{i\sqrt{\frac{5}{6}} k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	$-\frac{i(2a_0^2k(3+k^2)-27a_1^2k^5(40+3k^2)+3a_0a_1k^3(34+7k^2))}{\sqrt{3}a_0^2(2+k^2)^2(a_0-33a_1k^2)}$	$\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	$\frac{2 k^2 (a_0^2 + 30 a_0 a_1 k^2 - 459 a_1^2 k^4)}{a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$

_	$\Gamma_{1}^{\#1}_{lphaeta}$	$\Gamma_{1}^{\#2}_{\alpha\beta}$	$\Gamma_{1}^{\#3}{}_{\alpha\beta}$	$\Gamma_{1}^{\#1}{}_{lpha}$	$\Gamma_{1}^{\#2}\alpha$	$\Gamma_{1}^{#3}\alpha$	$\Gamma_{1}^{\#4}{}_{lpha}$	$\Gamma_{1}^{\#5}{}_{lpha}$	$\Gamma_{1^{-}\alpha}^{\#6}$	$h_{1}^{\#1}{}_{\alpha}$
$\Gamma_1^{\#1} \dagger^{lphaeta}$	$\frac{1}{4} \left(-a_0 - 15 a_1 k^2 \right)$	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	0	0	0	0	0
$\Gamma_1^{\#2} \dagger^{\alpha\beta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_{1}^{#3} \dagger^{\alpha\beta}$	$5a_1k^2$	0	$\frac{1}{4}(a_0-29a_1k^2)$	0	0	0	0	0	0	0
$\Gamma_{1}^{#1} \dagger^{\alpha}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 a_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2} \sqrt{3} a_1 k^2$	$-\frac{5}{2} \sqrt{\frac{5}{3}} a_1 k^2$	$5\sqrt{\frac{3}{2}}a_1k^2$	$-\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{2}}$
$\Gamma_{1}^{#2} \uparrow^{\alpha}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_{1}^{\#3} \dagger^{\alpha}$	0	0	0	$\frac{5}{2} \sqrt{3} a_1 k^2$	0	$-\frac{a_0}{3}$	$\frac{1}{6} \sqrt{5} (a_0 - 8 a_1 k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	$\frac{i a_0 k}{4 \sqrt{6}}$
$\Gamma_{1}^{\#4} + \alpha$	0	0	0	$-\frac{5}{2} \sqrt{\frac{5}{3}} a_1 k^2$	0	$\frac{1}{6} \sqrt{5} (a_0 - 8 a_1 k^2)$	$\frac{1}{3}(a_0 + 7 a_1 k^2)$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 a_1 k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	$-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$
$\Gamma_1^{\#5} \uparrow^{\alpha}$	0	0	0	$5\sqrt{\frac{3}{2}}a_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 a_1 k^2)$	<u>a₀</u> 3	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$
$\Gamma_1^{\#6} \uparrow^{\alpha}$	0	0	0	$-\frac{5a_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12}$ $(a_0 - 17 a_1 k^2)$	$\frac{i a_0 k}{4 \sqrt{6}}$
$h_{1}^{#1} + ^{\alpha}$	0	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{1}{4}i\sqrt{\frac{5}{6}}a_0k$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0

	$\Gamma_{2}^{\#1}_{lphaeta}$	$\Gamma_{2}^{\#2}_{+ \ \alpha \beta}$	$\Gamma_{2}^{\#3}_{\alpha\beta}$	$h_{2}^{\#1}_{\alpha\beta}$	$\Gamma_{2}^{\#1}_{\alpha\beta\chi}$	$\Gamma_{2}^{\#2}_{ \alpha\beta\chi}$
$^{-#1}_{2}$ † $^{\alpha\beta}$	$\frac{1}{4} (a_0 + 11 a_1 k^2)$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\frac{5 a_1 k^2}{\sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0
$^{-#2}_{2}$ † $^{\alpha\beta}$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\frac{1}{6} \left(-3 a_0 + a_1 k^2 \right)$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	0	0
$^{-#3}_{2}$ $^{+}\alpha^{\beta}$	$\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{1}{12} \left(3 a_0 + a_1 k^2 \right)$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	0
$\eta_2^{\#1} \dagger^{\alpha\beta}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$\frac{1}{2}$ † $\alpha\beta\chi$	0	0	0	0	$\frac{1}{4}(a_0-a_1k^2)$	0
$\frac{\#2}{2}$ † $^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{1}{4}(a_0-5a_1k^2)$

_	$\Delta_0^{\#1}$	Δ ₀ #2	Δ ₀ #3	$\Delta_0^{\#4}$	${\mathcal T}_0^{\#1}$	${\cal T}_0^{\#2}$	$\Delta_0^{\#1}$	- 0-	, 0, 0, 1	h_{0+1}^{*}		Γ ₀ #3	Γ#2	Γ#1 0+	
$\Delta_{0}^{\#1}$ †	0	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$-\frac{2i\sqrt{2}}{a_0k}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	0	ſ	+ -	+ +	+	10	+	$\frac{1}{2} + \frac{1}{2} (-a_0)$	1
Δ ₀ ^{#2} †	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{48 (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	$\frac{16(19a_0 + (3a_0 + 197a_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8i\sqrt{3}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{24 i k (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	0	c		$\begin{array}{c c} & \frac{2\sqrt{2}}{\sqrt{2}} \\ & 0 \end{array}$	$-\frac{10a_1k^2}{\sqrt{3}}$	3 12	0	ı ₀ + 25	Γ ₀ ^{#1}
Δ ₀ ^{#3} †	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{16(19a_0 + (3a_0 + 197a_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{16 (35 a_0 + (6 a_0 + 197 a_1) k^2)}{3 a_0^2 (16 + 3 k^2)^2}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$\frac{8i(a_0-65a_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8ik(19a_0+(3a_0+197a_1)k^2)}{a_0^2(16+3k^2)^2}$	0				17	$a_1 k^2$		$5a_1k^2$	
Δ ₀ ^{#4} †	$-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$\frac{32 (13 a_0 + (3 a_0 - 197 a_1) k^2)}{3 a_0^2 (16 + 3 k^2)^2}$	$\frac{8i\sqrt{\frac{2}{3}}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{4i\sqrt{2}k(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	0	c		0	$\frac{\mu_0}{2\sqrt{2}}$	2 2	0		Γ ₀ ^{#2}
${\cal T}_{0}^{\#1} \dagger$	$\frac{2 i \sqrt{2}}{a_0 k}$	$\frac{8i\sqrt{3}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$-\frac{8i(a_0-65a_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8 i \sqrt{\frac{2}{3}} (a_0-65 a_1 k^2)}{a_0^2 k (16+3 k^2)}$	$\frac{4(a_0-25a_1k^2)}{a_0^2k^2}$	$\frac{4\sqrt{3}(a_0-65a_1k^2)}{a_0^2(16+3k^2)}$	0	c	4 0	$\frac{1}{4}\sqrt{3}$	$\frac{3a_0+46a_1}{6\sqrt{2}}$	23 <i>a</i> 1 <i>k</i> ²	2 2	$10\sqrt{\frac{2}{3}}a_1$	Γ ₀ #3
${\cal T}_{0}^{\#2}\dagger$	$\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	$-\frac{24 i k (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	$\frac{8ik(19a_0 + (3a_0 + 197a_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{4i\sqrt{2}k(10a_0+(3a_0-394a_1)k^2)}{{a_0}^2(16+3k^2)^2}$	$\frac{4\sqrt{3}(a_0-65a_1k^2)}{a_0^2(16+3k^2)}$	$-\frac{12 k^2 (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	0		+		6	5		1 k ²	
$\Delta_{0}^{\#1}$ †	0	0	0	0	0	0	$-\frac{2}{a_0-a_1k^2}$		4	4 · ·	$(3a_0 + \frac{1}{6a_0})$	- ^{3a₀+} 6	2	- 10	

Quadratic (free) action
$S_{F} == \iiint (\frac{1}{4} \left(2a_0 \Gamma^{\alpha}_{\ \alpha}{}^{\beta} \Gamma^{\chi}_{\beta\chi} + 4 h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \left(-2a_0 \Gamma_{\beta\chi\alpha} + 4 \Delta_{\alpha\beta\chi} \right) - \mathcal{T}_{\alpha\beta} + \mathcal{T}_{\alpha\beta} +$
$a_0 \ h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} + a_0 \ h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} - 2 a_0 \ h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + 22 a_1 \partial^{\alpha} \Gamma_{\delta}^{\chi\delta} \partial_{\beta} \Gamma_{\chi\alpha}^{\beta} +$
$2 a_1 \partial^{\alpha} \Gamma_{\chi \alpha}^{\ \beta} \partial_{\beta} \Gamma^{\chi \delta}_{\ \delta} - 76 a_1 \partial^{\alpha} \Gamma^{\chi \delta}_{\ \chi} \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} + 2 a_0 h_{\beta \chi} \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}^{\ \beta} -$
$2 a_1 \partial_{\beta} \Gamma_{\chi \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - 2 a_1 \partial_{\beta} \Gamma_{\delta \chi}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} + 2 a_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} -$
$2a_1\partial_\chi \Gamma^\delta_{\beta\delta}\partial^\chi \Gamma^\alpha_{\alpha}{}^\beta - 2a_1\partial_\chi \Gamma^\delta_{\delta\beta}\partial^\chi \Gamma^\alpha_{\alpha}{}^\beta - 22a_1\partial_\beta \Gamma^{\delta}_{\delta}\partial^\chi \Gamma^{\alpha\beta}_{\alpha} +$
$38 a_1 \partial_{\beta} \Gamma^{\delta}_{\chi \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} + 22 a_1 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - 2 a_1 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} +$
$4a_1\partial_\alpha \Gamma_{\chi\delta}^{\delta}\partial^\chi \Gamma^{\alpha\beta}_{\beta} - 4a_1\partial_\chi \Gamma_{\alpha\delta}^{\delta}\partial^\chi \Gamma^{\alpha\beta}_{\beta} - 2a_1\partial_\chi \Gamma^{\alpha\beta\chi}_{\delta}\partial_\delta \Gamma_{\alpha\beta}^{\delta} -$
$2a_1\partial_\beta \Gamma^{\alpha\beta\chi}\partial_\delta \Gamma_{\alpha\chi}^{ \delta} - 2a_1\partial_\beta \Gamma^{\alpha\beta\chi}\partial_\delta \Gamma_{\alpha\ \ \chi}^{ \delta} + 38a_1\partial_\chi \Gamma^{\alpha\beta\chi}\partial_\delta \Gamma_{\beta\alpha}^{ \delta} +$
$4a_1\partial^\chi\Gamma^\alpha_{\alpha}{}^\beta\partial_\delta\Gamma^{\alpha}_{\chi} + 2a_1\partial^\chi\Gamma^\alpha_{\alpha}{}^\beta\partial_\delta\Gamma_{\chi\beta}{}^\delta + 2a_1\partial^\chi\Gamma^{\alpha\beta}_{\alpha}\partial_\delta\Gamma_{\chi\beta}{}^\delta -$
$2 a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\chi \alpha}^{\ \delta} + 2 a_1 \partial^{\chi} \Gamma_{\beta\alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta\alpha} + 4 a_1 \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi \beta}^{\ \delta} -$
$2a_1\partial_\beta \Gamma^\alpha_{\alpha}{}^\beta\partial_\delta \Gamma^\chi_{}{}^\delta + 4a_1\partial_\beta \Gamma^\alpha_{\alpha}{}^\beta\partial_\delta \Gamma^{\chi\delta}_{} - 2a_1\partial_\beta \Gamma^{\alpha\beta}_{\alpha}\partial_\delta \Gamma^{\chi\delta}_{} +$
$2 a_1 \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + 4 a_1 \partial_{\alpha} \Gamma_{\beta \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + 4 a_1 \partial_{\alpha} \Gamma_{\chi \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$
$2 a_1 \partial_{\alpha} \Gamma_{\chi \delta \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + 4 a_1 \partial_{\alpha} \Gamma_{\delta \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + 4 a_1 \partial_{\alpha} \Gamma_{\delta \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$
$2a_1\partial_\beta \Gamma_{\alpha\chi\delta}\partial^\delta \Gamma^{\alpha\beta\chi} - 2a_1\partial_\beta \Gamma_{\alpha\delta\chi}\partial^\delta \Gamma^{\alpha\beta\chi} - 2a_1\partial_\beta \Gamma_{\chi\delta\alpha}\partial^\delta \Gamma^{\alpha\beta\chi} -$
$2 a_1 \partial_\chi \Gamma_{\alpha\beta\delta} \partial^\delta \Gamma^{\alpha\beta\chi} - 2 a_1 \partial_\chi \Gamma_{\beta\alpha\delta} \partial^\delta \Gamma^{\alpha\beta\chi} + 4 a_1 \partial_\chi \Gamma_{\beta\delta\alpha} \partial^\delta \Gamma^{\alpha\beta\chi} -$
$4a_1\partial_\delta\Gamma_{\alpha\beta\chi}\partial^\delta\Gamma^{\alpha\beta\chi} - 4a_1\partial_\delta\Gamma_{\alpha\chi\beta}\partial^\delta\Gamma^{\alpha\beta\chi} - 2a_1\partial_\delta\Gamma_{\beta\alpha\chi}\partial^\delta\Gamma^{\alpha\beta\chi} -$
$2a_1\partial_\delta\Gamma_{\beta\chi\alpha}\partial^\delta\Gamma^{\alpha\beta\chi} - 2a_1\partial_\delta\Gamma_{\chi\beta\alpha}\partial^\delta\Gamma^{\alpha\beta\chi} - 22a_1\partial_\beta\Gamma_{\delta\alpha}^{ \beta}\partial^\delta\Gamma^{\alpha\chi}_{ \ \chi} -$
$2a_1\partial^\alpha\Gamma_{\delta\alpha}^{\beta}\partial^\delta\Gamma_{\beta\chi}^{\chi} + 2a_1\partial_\beta\Gamma_{\delta\alpha}^{\beta}\partial^\delta\Gamma^{\chi\alpha}_{\chi}))[t,x,y,z]dzdydxdt$

Source constraints/gauge generators	Γ ₃ 1	
SO(3) irreps	Multiplicities	_αβχ
$2\mathcal{T}_{0^{+}}^{\#2} - \bar{\imath}k\Delta_{0^{+}}^{\#2} == 0$	1	1/2 (-
$\Delta_{0^{+}}^{\#3} + 2 \Delta_{0^{+}}^{\#4} + 3 \Delta_{0^{+}}^{\#2} == 0$	1	$\Gamma_{3}^{#1}$
$6 \mathcal{T}_{1}^{\#1\alpha} - i k (3 \Delta_{1}^{\#2\alpha} - \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0$	3	$\alpha \beta \chi$ $7 a_1 k^2$
$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$	3	²)
Total constraints:	8	

$6 \mathcal{T}_{1}^{\#1\alpha} - i k (3 \Delta_{1}^{\#2\alpha} - \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0$	3
$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$	3
Total constraints:	8
$\Delta_{3}^{\#1}{}_{lphaeta\chi}$	
$\Delta_{3}^{\#1} + \alpha \beta \chi \left[-\frac{2}{a_0 + 7 a_1 k^2} \right]$	

	a_0+/a_1					
	$\Delta_{2}^{\#1}{}_{lphaeta}$	$\Delta^{\#2}_{2}{}^{+}{}_{lphaeta}$	$\Delta^{\#3}_{2}{}^{+}_{lphaeta}$	${\cal T}^{\#1}_{2^+lphaeta}$	$\Delta_{2}^{\#1}{}_{\alpha\beta\chi}$	$\Delta_{2-\alpha\beta\chi}^{\#2}$
$_{2}^{\#1}$ † $^{\alpha\beta}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{4}{\sqrt{3} \ a_0}$	$\frac{4i\sqrt{2}}{a_0k}$	0	0
$\chi_{2}^{\#2} + \alpha^{\beta}$	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{8(a_0+13a_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2}(a_0+52a_1k^2)}{3a_0^2}$	$-\frac{4i(a_0+31a_1k^2)}{\sqrt{3}a_0^2k}$	0	0
$^{#3}_{2}$ † $^{\alpha\beta}$	$\frac{4}{\sqrt{3} a_0}$	$-\frac{2\sqrt{2}(a_0+52a_1k^2)}{3a_0^2}$	$\frac{8(a_0-26a_1k^2)}{3a_0^2}$	$-\frac{4i\sqrt{\frac{2}{3}}(a_0+31a_1k^2)}{a_0^2k}$	0	0
$f_{2}^{\#1} + \alpha^{\beta}$	$-\frac{4i\sqrt{2}}{a_0k}$	$\frac{4i(a_0 + 31a_1k^2)}{\sqrt{3}a_0^2k}$	$\frac{4i\sqrt{\frac{2}{3}}(a_0+31a_1k^2)}{a_0^2k}$	$-\frac{8(a_0+11a_1k^2)}{a_0^2k^2}$	0	0
$t^{1} + \alpha \beta \chi$	0	0	0	0	$\frac{4}{a_0 - a_1 k^2}$	0
$t^{2} + \alpha \beta \chi$	0	0	0	0	0	$\frac{4}{a_0-5a_1k^2}$

 $\Gamma_{0+}^{\#4}$ $\frac{10a_1k^2}{\sqrt{3}}$ $-\frac{a_0}{2\sqrt{2}}$ $-\frac{3a_0+46a_1k^2}{6\sqrt{2}}$ $\frac{1}{6}(3a_0+23a_1k^2)$ $\frac{ia_0k}{4\sqrt{6}}$ $-\frac{ia_0k}{4\sqrt{2}}$ 0

Massive and massless spectra

** MassiveAnalysisOfSector...Null

Unitarity conditions