Design and Analysis of Algorithms: Homework #4

Due in class on March 27, 2018

Professor Kasturi Varadarajan

Alic Szecsei

Consider the following randomized algorithm for generating biased random bits. The subroutine FairCoin returns either 0 or 1 with equal probability; the random bits returned by FairCoin are mutually independent.

```
1: function OneInThree
2: if FairCoin = 0 then
3: return 0
4: else
5: return 1-OneInThree
6: end if
7: end function
```

- (a) Prove that **ONEINTHREE** returns 1 with probability $\frac{1}{3}$.
- (b) What is the *exact* expected number of times that this algorithm calls FAIRCOIN?
- (c) Now suppose you are *given* a subroutine OneInThree that generates a random bit that is equal to 1 with probability $\frac{1}{3}$. Describe a FairCoin algorithm that returns either 0 or 1 with equal probability, using OneInThree as your only source of randomness.
- (d) What is the *exact* expected number of times that your FairCoin algorithm calls OneInThree?

Consider the following algorithm for finding the smallest element in an unsorted array:

```
1: function OneInThree(A[1..n])
2:
       \min \leftarrow \infty
       for i \leftarrow 1 to n in random order do
3:
            if A[i] < min then
4:
                min \leftarrow A[i]
                                                                                                                                   \triangleright (\star)
5:
            end if
6:
        end for
7:
        return min
9: end function
```

- (a) In the worst case, how many times does RANDOMMIN execute line (\star) ?
- (b) What is the probability that line (\star) is executed during the nth iteration of the for loop?
- (c) What is the *exact* expected number of executions of line (\star) ?

Suppose we have a circular linked list of numbers, implemented as a pair of arrays, one storing the actual numbers and the other storing successor pointers. Specifically, let X[1..n] be an array of n distinct real numbers, and let N[1..n] be an array of indices with the following property: If X[i] is the largest element of X, then X[N[i]] is the smallest element of X; otherwise, X[N[i]] is the smallest among the set of elements in X larger than X[i]. For example:

Describe and analyze a randomized algorithm that determines whether a given number x appears in the array X in $O(\sqrt{n})$ expected time. Your algorithm may not modify the arrays X and N.

A majority tree is a complete binary tree with depth n, where every leaf is labeled either 0 or 1. The value of a leaf is its label; the value of any internal node is the majority of the values of its three children. Consider the problem of computing the value of the root of a majority tree, given the sequence of 3^n leaf labels as input. For example, if n = 2 and the leaves are labeled 1, 0, 0, 0, 1, 0, 1, 1, 1, the root has value 0.

Figure 1: A majority tree with depth n=2.

- (a) Prove that *any* deterministic algorithm that computes the value of the root of a majority tree *must* examine every leaf. [Hint: Consider the special case n = 1. Recurse.]
- (b) Describe and analyze a randomized algorithm that computes the value of the root in worst-case expected time $O(c^n)$ for some constant c < 3. [Hint: Consider the special case n = 1. Recurse.

Suppose you are given a graph G with weighted edges, and your goal is to find a cut whose total weight (not just number of edges) is smallest.

- (a) Describe an algorithm to select a random edge of G, where the probability of choosing edge e is proportional to the weight of e.
- (b) Prove that if you use the algorithm from part (a), instead of choosing edges uniformly at random, the probability that GuessminCut returns a minimum-weight is still $\Omega(1/n^2)$.
- (c) What is the running time of your modified GuessMinCut algorithm?