STOR 565 Spring 2018 Homework 2

Due on 01/31/2018 in Class

YOUR NAME

Remark. This homework aims to help you go through the necessary preliminary from linear regression. Credits for **Theoretical Part** and **Computational Part** are in total 100 pt. For **Computational Part**, please complete your answer in the **RMarkdown** file and summit your printed PDF homework created by it.

Computational Part

1. (35 pt) Consider the dataset "Boston" in predicting the crime rate at Boston with associated covariates.

head (Boston)

```
##
        crim zn indus chas
                                               dis rad tax ptratio black
                                       age
                             nox
                                    rm
## 1 0.00632 18 2.31
                         0 0.538 6.575 65.2 4.0900
                                                     1 296
                                                               15.3 396.90
## 2 0.02731
                7.07
                         0 0.469 6.421 78.9 4.9671
                                                     2 242
                                                               17.8 396.90
## 3 0.02729 0 7.07
                         0 0.469 7.185 61.1 4.9671
                                                     2 242
                                                              17.8 392.83
             0
                         0 0.458 6.998 45.8 6.0622
## 4 0.03237
                2.18
                                                     3 222
                                                              18.7 394.63
                         0 0.458 7.147 54.2 6.0622
## 5 0.06905
             0
                2.18
                                                     3 222
                                                               18.7 396.90
## 6 0.02985
                 2.18
                         0 0.458 6.430 58.7 6.0622
                                                     3 222
                                                              18.7 394.12
             0
##
     1stat medv
## 1 4.98 24.0
     9.14 21.6
## 2
     4.03 34.7
## 4 2.94 33.4
## 5 5.33 36.2
## 6 5.21 28.7
```

Suppose you would like to predict the crime rate with explantory variables

- medv Median value of owner-occupied homes
- dis Weighted mean of distances to employement centers
- indus Proportion of non-retail business acres

Run with the linear model

```
mod1 <- lm(crim ~ medv + dis + indus, data = Boston)
summary(mod1)</pre>
```

```
##
## Call:
## lm(formula = crim ~ medv + dis + indus, data = Boston)
## Residuals:
##
       Min
                                 30
                                        Max
                1Q
                    Median
## -11.625
                    -1.242
                                     78.994
           -3.345
                              1.608
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.67738
                            2.12190
                                      5.503 5.95e-08 ***
               -0.26061
                            0.04204
                                     -6.199 1.19e-09 ***
## medv
## dis
               -0.96320
                            0.22758 -4.232 2.75e-05 ***
```

```
## indus    0.13145    0.07728    1.701    0.0896 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.519 on 502 degrees of freedom
## Multiple R-squared: 0.2404, Adjusted R-squared: 0.2358
## F-statistic: 52.95 on 3 and 502 DF, p-value: < 2.2e-16</pre>
```

Answer the following questions.

- (i) What do the following quantities that appear in the above output mean in the linear model? Provide a breif description.
 - t value and Pr(>|t|) of medv

Answer: YOUR ANSWER.

• Multiple R-squared Answer: YOUR ANSWER.

 $\bullet\,$ F-statistic, DF and corresponding p-value

Answer: YOUR ANSWER.

(ii) Are the following sentences True of False? Briefly justify your answer.

• indus is not a significant predictor of crim, and we can drop this from the model.

Answer: YOUR ANSWER.

- Multiple R-squared is preferred to Adjusted R-squared as it takes into account all the variables. Answer: YOUR ANSWER.
 - medv has a negative effect on the response.

Answer: YOUR ANSWER.

• Our model residuals appear to be normally distributed.

Hint. You need to access to the model residuals in justifying the last sentence. The following commands might help.

```
# Obtain the residuals
res1 <- residuals(mod1)

# Normal QQ-plot of residuals
plot(mod1, 2)

# Conduct a Normality test via Shapiro-Wilk and Kolmogorov-Smirnov test
shapiro.test(res1)
ks.test(res1, "pnorm")</pre>
```

Answer: YOUR ANSWER.

2. (35 pt, Textbook Exercises 3.10) This question should be answered using the Carseats data set.

head(Carseats)

##		Sales	CompPrice	Income	Advertising	Population	Price	${\tt ShelveLoc}$	Age
##	1	9.50	138	73	11	276	120	Bad	42
##	2	11.22	111	48	16	260	83	Good	65
##	3	10.06	113	35	10	269	80	Medium	59
##	4	7.40	117	100	4	466	97	Medium	55
##	5	4.15	141	64	3	340	128	Bad	38

## 6	3 10.81	124	11	3 13	501	72	Bad	78
##	Educati	on Urban	US					
## :	L	17 Yes	Yes					
## 2			Yes					
## 3			Yes					
## 4			Yes					
## 5		13 Yes						
## 6			Yes					
(a)	Fit a mu	ltiple regr	ession 1	model to predict	Sales using P	rice, Urb	an, and t	JS.
Ans	wer: YOU	JR ANSV	VER.					
(b)	Provide a			of each coefficie	ent in the mod	lel. Be ca	reful—sc	ome of the variables in the
Ans	wer: YOU	JR ANSV	VER.					
		_						
(\mathbf{c})	Write ou	t the mod	lel in eq	uation form, beir	ng careful to h	andle the	qualitati	ive variables properly.
Ans	wer: YOU	JR ANSV	VER.					
(1)	. To	C +1	1:		4111 1	1 <i>II</i>	. 0 02	
				rs can you reject	тин пурот	mesis n_0	$p_j = 0$:	
Ans	wer: YOU	JR ANSV	VER.					
(e)				nse to the previous of association w			model th	nat only uses the predictors
Ans	wer: YOU	JR ANSV	VER.					
>								
(f)	How well	do the m	nodels in	a (a) and (e) fit t	she data?			
Ans	wer: YOU	JR ANSV	VER.					
()		110	()	10504	C.1	1 C +1	m ·	.()
(\mathbf{g})	Using the	e model fi	rom (e)	obtain 95% conf	ndence interva	ls for the	coefficier	t(s).
Ans	wer: YOU	JR ANSV	VER.					
(h)				ross-validation and (e). What can				ues to compare the perfor-
Hin	t. Functio	ns updat e	e (with	option subset) a	and predict.			
	wer: YOU	_	`	,				
A115	WEI. IU	TI TIND A	v 1216.					
			-					