Capstone Project-3

Exploratory Data Analysis (EDA) Project

Project-Heart Failure Analysis

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

1) Load the file

hf=pd.read_csv("/content/heart_failure_clinical_records_dataset.csv")

2) Print first 5 rows of data

hf.head()

→		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine
	0	75.0	0	582	0	20	1	265000.00	1.9
	1	55.0	0	7861	0	38	0	263358.03	1.1
	2	65.0	0	146	0	20	0	162000.00	1.3
	3	50.0	1	111	0	20	0	210000.00	1.9
	4	65.0	1	160	1	20	0	327000.00	2.7
	3	50.0	1	111	_	20	0	210000.00	1.

Next steps: Generate code with hf View recommended plots New interactive sheet

3) Print last 5 rows of data

hf.tail()

₹		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinin
	294	62.0	0	61	1	38	1	155000.0	1.
	295	55.0	0	1820	0	38	0	270000.0	1.:
	296	45.0	0	2060	1	60	0	742000.0	0.1
	297	45.0	0	2413	0	38	0	140000.0	1.4
	298	50.0	0	196	0	45	0	395000.0	1.0

4) Basic cleaning of data (Checking null values, Missing values)

Check for null values
hf.isnull().sum()


```
0
                           0
           age
         anaemia
                           0
 creatinine_phosphokinase
         diabetes
                           0
     ejection_fraction
                           0
   high_blood_pressure
                           0
         platelets
                           0
     serum_creatinine
                           0
      serum_sodium
                           0
           sex
                           0
         smoking
           time
                           0
      DEATH_EVENT
                           0
dtvne: int64
```

Drop rows with missing values hf=hf.dropna()

5) Some information:

- 1.Anemia ----> 0-No; 1-Yes
- 2.diabetes----> 0-No; 1-Yes
- 3.high_blood_preasure----> 0-No; 1-Yes
- 4.Sex----> 0-Female; 1-Male
- 5.Smoking----> 0-No; 1-Yes
- 6.DEATH_EVENT----> 0-No; 1-Yes

6) Get some info on the data set:

hf.info()

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 299 entries, 0 to 298 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype			
0	age	299 non-null	float64			
1	anaemia	299 non-null	int64			
2	creatinine_phosphokinase	299 non-null	int64			
3	diabetes	299 non-null	int64			
4	ejection_fraction	299 non-null	int64			
5	high_blood_pressure	299 non-null	int64			
6	platelets	299 non-null	float64			
7	serum_creatinine	299 non-null	float64			
8	serum_sodium	299 non-null	int64			
9	sex	299 non-null	int64			
10	smoking	299 non-null	int64			
11	time	299 non-null	int64			
12	DEATH_EVENT	299 non-null	int64			
dt 51tc4(2)						

dtypes: float64(3), int64(10)

memory usage: 30.5 KB

7) Remove un-needed data-time column:

Start coding or generate with AI.

8) Get some description of the data:

hf.describe()

_								
		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets
	count	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000
	mean	60.833893	0.431438	581.839465	0.418060	38.083612	0.351171	263358.029264
	std	11.894809	0.496107	970.287881	0.494067	11.834841	0.478136	97804.236869
	min	40.000000	0.000000	23.000000	0.000000	14.000000	0.000000	25100.000000
	25%	51.000000	0.000000	116.500000	0.000000	30.000000	0.000000	212500.000000
	50%	60.000000	0.000000	250.000000	0.000000	38.000000	0.000000	262000.000000
	75%	70.000000	1.000000	582.000000	1.000000	45.000000	1.000000	303500.000000
	max	95.000000	1.000000	7861.000000	1.000000	80.000000	1.000000	850000.000000

9) Shape of the dataset:

(hf.shape)

→ (299, 13)

10) Find how many records are there (value_counts)

- 1.gender
- 2.high blood pressure
- 3.diabetes
- 4.smoking
- 5.death_event

#1-gender

hf['sex'].value_counts()

#2-high blood pressure hf['high_blood_pressure'].value_counts()

Visualization:

dtyne: int64

import seaborn as sns
import matplotlib.pyplot as plt

1) Pairplot with relation to death event:

```
sns.pairplot(hf,hue='DEATH_EVENT')
plt.title('DEATH_EVENT',color='pink')
plt.show()
```


2) Bar plot for 'sex':

```
sns.countplot(x='sex',data=hf,color='orange')
plt.title('SEX',color='green')
plt.show()
```


3) Bar plot for 'DEATH_EVENT':

```
sns.countplot(x='DEATH_EVENT',data=hf,color='red')
plt.title('DEATH EVENT',color='blue')
plt.show()
```


4) Death event per each sex using barplot:

```
sns.countplot(x='sex',hue='DEATH_EVENT',data=hf)
plt.title('DEATH EVENT PER EACH SEX',color='red')
plt.show()
```


5) Sex correlated with Death rate using heatmap:

```
corr=hf.corr()
sns.heatmap(corr,annot=True,cmap='coolwarm')
plt.title('SEX CORRELATED WITH DEATH RATE',color='red')
plt.show()
```


6) Smoking against Death using barplot:

sns.countplot(x='smoking',hue='DEATH_EVENT',data=hf)
plt.title('SMOKING AGAINST DEATH',color='violet')
plt.show()

7) High blood pressure with age using catplot:

sns.catplot(x='high_blood_pressure',y='age',data=hf)
plt.title('HIGH BLOOD PRESSURE WITH AGE',color='green')
plt.show()

