Spring 2012 ICS621 Graph Algorithms

Lipyeow Lim

Data Structures for Graphs

BFS for Graphs

```
BFS(V, E, s)
 for each u \in V - \{s\}
      u.d = \infty
 s.d = 0
 Q = \emptyset
 ENQUEUE(Q, s)
 while Q \neq \emptyset
      u = \text{DEQUEUE}(Q)
      for each v \in G.Adj[u]
           if v.d == \infty
                v.d = u.d + 1
                ENQUEUE(Q, v)
```

BFS Trace 1/3

BFS Trace 2/3

BFS Trace 3/3

DFS for Graphs

```
DFS-VISIT(G, u)
DFS(G)
 for each u \in G.V
                            time = time + 1
     u.color = WHITE
                            u.d = time
 time = 0
                            u.color = GRAY
 for each u \in G.V
                            for each v \in G.Adi[u]
     if u.color == WHITE
                                if v.color == WHITE
         DFS-VISIT(G, u)
                                    DFS-VISIT(\nu)
                            u.color = BLACK
                            time = time + 1
                            u.f = time
```

DFS Trace 1/4

DFS Trace 2/4

DFS Trace 3/4

DFS Trace 4/4

DFS Timestamps

Topological Sort

(watch) 9/10

- Input: directed acyclic graph G=(V,E)
- Output: a linear ordering of the vertices s.t. if (u,v) in E, then u precedes v

Topological-Sort(G)

call DFS(G) to compute finishing times v.f for all $v \in G.V$ output vertices in order of *decreasing* finishing times

Strongly Connected Components

- Input: Directed Graph G=(V,E)
- Output: A collection of all strongly connected components (SCC) of G
- A SCC of G is a maximal set of vertices C subset of V s.t. for all pair (u,v) in C, there is a path from u to v and from v to u.

Finding Strongly Connected Components

Algorithm for finding SCC

- 1. DFS(G) to compute finishing times for each vertex
- 2. Compute G' transpose of G (reverse edges)
- 3. DFS(G') using decreasing order of finishing times
- 4. Output vertices of each tree in DFS forest formed in DFS(G')

Minimum Spanning Trees

- Input: undirected graph G=(V,E) with edge weights w(u,v)
- Output: a tree T=(V', E') s.t.
 - T is a tree
 - V' = V (hence spanning V)
 - Sum of w(u,v) for all (u,v) in E' is minimal

Kruskal's Algo

```
KRUSKAL(G, w)
A = \emptyset
for each vertex v \in G.V
MAKE-SET(v)
```

Keep adding edges

- with smallest weight
- $A=\emptyset$ does not form cycles Until V-1 edges are added.

sort the edges of G.E into nondecreasing order by weight w for each (u, v) taken from the sorted list

if FIND-SET $(u) \neq$ FIND-SET(v)

$$A = A \cup \{(u, v)\}$$

UNION (u, v)

return A

- Disjoint Set Ops = $O(\alpha(V))$ (Ch21)
- E = O(V*V)
- O(E lg V)

Prim's Algo

```
Grow a tree by adding edges
Q = \emptyset
for each u \in G.V

    with smallest weight

    u.key = \infty

    does not form cycles

    u.\pi = NIL
    INSERT(Q, u)
DECREASE-KEY (Q, r, 0)
                                // r.key = 0
while Q \neq \emptyset
                                           Fib Heap
    u = \text{EXTRACT-MIN}(Q)
                                           •Dec Key = O(1)
    for each v \in G.Adi[u]
                                           •Ext Min = O(lg V)
         if v \in Q and w(u, v) < v. key
                                           => O(E + V | g V)
              \nu.\pi = u
              DECREASE-KEY(Q, v, w(u, v))
```

PRIM(G, w, r)

Generic Framework

GENERIC-MST(G, w)

$$A = \emptyset$$

while A is not a spanning tree find an edge (u, v) that is safe for A $A = A \cup \{(u, v)\}$

return A

Kruskal: safe edge connects 2 components Prim: safe edge connects A to a new vertex

Prim: A is a tree