MAT-032: Cálculo de probabilidades

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Preliminares: Teoría de conjuntos

Definición 1 (Espacio muestral):

El conjunto Ω , de todos los resultados posibles de un experimento, es llamado espacio muestral para el experimento.

Ejemplos:

Lanzar una moneda, en cuyo caso tenemos sólo 2 resultados posibles

$$\Omega = \{\mathsf{Cara}, \mathsf{Sello}\}$$

Notas de MAT021 para un grupo de estudiantes escogidos al azar

$$\Omega = \{0, 1, \dots, 99, 100\}$$

Vida útil de un artículo y se determina su tiempo de duración

$$\Omega = [0, \infty)$$

Preliminares: Teoría de conjuntos

Definición 2 (Evento):

Un evento (suceso) es cualquier colección de resultados posibles del experimento, esto es, cualquier subconjunto de $\Omega.^1$

Observación:

Sea $A\subseteq\Omega$ diremos que A ocurre si $\omega\in A$ con $\omega\in\Omega$ es un resultado asociado a un experimento.

 $^{^{\}mathbf{1}}$ incluyendo el propio Ω

Operaciones sobre conjuntos

Inclusión e igualdad:

La inclusión e igualdad entre conjuntos se definen como:

$$A \subset B \iff x \in A \Rightarrow x \in B$$
, $A = B \iff A \subset B \lor B \subset A$.

Unión:

La unión entre A y B denotada por $A \cup B$ es definida como

$$A\cup B=\{x:x\in A\text{ o }x\in B\}.$$

Intersección:

La intersección entre A y B escrita como $A\cap B$ se define como

$$A\cap B=\{x:x\in A\text{ y }x\in B\}.$$

Complemento:

El complemento de A, escrito como A^c es el conjunto de todos los elementos que no están en ${\cal A}$

$$A^c = \{x : x \not\in A\}.$$

Operaciones sobre conjuntos

Propiedades:

- (a) $A \cup B = B \cup A$, $A \cap B = B \cap A$.
- (b) $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$.
- (c) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (d) $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$ (Leyes de De Morgan).

Las operaciones anteriores de unión e intersección se pueden extender a colecciones infinitas de conjuntos

$$\bigcup_{i=1}^{\infty}A_{i}=\{x\in\subset:x\in A_{i}\text{ para algún }i\},$$

$$\bigcap_{i=1}^{\infty}A_{i}=\{x\in\subset:x\in A_{i}\text{ para todo }i\}.$$

Operaciones sobre conjuntos

Definición 3:

Dos eventos A y B son disjuntos (excluyentes) si:

$$A \cap B = \emptyset$$

Los eventos A_1, A_2, \ldots son disjuntos por pares² si

$$A_i \cap A_j = \emptyset$$
, si $i \neq j$.

Definición 4:

Si A_1,A_2,\ldots son disjuntos por pares y $\cup_{i=1}^\infty A_i=\Omega$, entonces la colección se llama una partición de Ω .

Ejemplos:

- Los conjuntos $A_i = [i, i+1), i = 0, 1, 2, ...$ forman una partición de $[0, \infty)$.
- $ightharpoonup \Omega = A \cup A^c$ es partición.

²o mutuamente excluyentes

Para todo $A\subset \Omega$, deseamos asociar un número entre 0 y 1, llamado probabilidad de A.

Definición 5:

Una colección de subconjuntos de Ω es llamado σ -álgebra denotada por $\mathcal A$ si satisface las propiedades

- (a) $\varnothing \in \mathcal{A}$.
- (b) Si $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$.
- (c) Si $A_1, A_2, \dots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{A}$.

Observación

Note que $\varnothing\subset\Omega$ y $\Omega=\varnothing^c$, así por (a) y (b), sigue que $\Omega\in\mathcal{A}.$

Además, si $A_1,A_2,\dots\in\mathcal{A}$, entonces $A_1^c,A_2^c,\dots\in\mathcal{A}$ y de este modo

$$\bigcup_{i=1}^{\infty} A_i^c \in \mathcal{A},$$

por las leyes de De Morgan, tenemos

$$\left(\bigcup_{i=1}^{\infty} A_i^c\right)^c = \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}.$$

Observación

Asociado al espacio muestral Ω puede haber muchas σ -álgebras. Por ejemplo, la colección $\{\varnothing,\Omega\}$ es σ -álgebra (minimal).

Definición 6 (Probabilidad):

Dado un espacio muestral Ω y una σ -álgebra asociada $\mathcal A$, una función de probabilidad $\mathsf P:\mathcal A\to\mathbb R$ satisface:

- (a) $P(A) \ge 0$, para todo $A \in \mathcal{A}$.
- (b) $P(\Omega) = 1$
- (c) Si A_1, A_2, \ldots son disjuntos por pares, entonces

$$\mathsf{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathsf{P}(A_i).$$

Observación:

La terna $(\Omega, \mathcal{A}, \mathsf{P})$ se denomina espacio de probabilidad.

Resultado 1:

Si P es una función de probabilidad y A es cualquier conjunto en A. Entonces,

- (a) $P(\emptyset) = 0$, donde \emptyset es el conjunto vacío.
- (b) $P(A) \le 1$.
- (c) $P(A^c) = 1 P(A)$.

Resultado 2:

Si P es una función de probabilidad y $A,B\in\mathcal{A}.$ Entonces,

- (a) $P(B \cap A^c) = P(B) P(A \cap B)$.
- (b) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- (c) Si $A \subseteq B \Rightarrow P(A) \le P(B)$.

Resultado 3:

Si P es función de probabilidad. Entonces,

- (a) $P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$ para cualquier partición C_1, C_2, \dots
- (b) $P\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}P(A_{i})$ para conjuntos A_{1},A_{2},\ldots cualquiera.³

Observación:

Usando la desigualdad de Boole, tenemos

$$\mathsf{P}\left(\bigcup_{i=1}^{n} A_{i}^{c}\right) \leq \sum_{i=1}^{n} \mathsf{P}(A_{i}^{c}).$$

³desigualdad de Boole

Principio de multiplicación:

Suponga que un experimento consta de 2 etapas, y que la 1ra se realiza en n_1 maneras, mientras que la 2da en n_2 maneras. Es decir, el experimento se puede desarrollar en

 $n_1 \cdot n_2$ maneras.

Observación:

Esto puede extenderse a experimentos con \boldsymbol{k} etapas. De este modo, el experimento se puede desarrollar de

$$n_1 \cdot n_2 \cdots n_k = \prod_{i=1}^k n_i,$$

maneras.

Principio de adición:

Suponga que un experimento consta de 2 etapas, y que la 1ra se realiza en n_1 maneras, mientras que la 2da en n_2 maneras. Además, suponga que ambas etapas no se pueden desarrollar juntas. Entonces, el experimento se puede desarrollar en

$$n_1 + n_2$$
 maneras.

Observación:

Esto puede extenderse a k etapas. En cuyo caso tenemos

$$n_1 + n_2 + \dots + n_k = \sum_{i=1}^k n_i,$$

maneras para desarrollar el experimento.

Suponga el conjunto $A=\{a,b,c\}$. Deseamos conocer el número de permutaciones de los 3 elementos de A. Podemos notar que

es decir, tenemos 6 permutaciones.

Definición 7 (Permutaciones):

Sea $A \neq \varnothing$ un conjunto finito tal que #(A) = n. Se denomina permutación a todo subconjunto de k elementos (distinguiendo el orden) que se pueden formar desde los n objetos. De este modo, el número total de permutaciones es:

$$p_{nk} = n(n-1)\cdots(n-k+1).$$

Observación:

El número total de permutaciones de un conjunto con n objetos es

$$p_{nn} = n(n-1)\cdots 2\cdot 1.$$

Escribimos por simplicidad $p_{nn} = p_n$ y podemos notar que $p_n = np_{n-1}$.

Observación:

 p_n es llamado n factorial y es dado por:

$$n! = 1 \cdot 2 \cdots (n-1) \cdot n = \prod_{k=1}^{n} k.$$

Además,4

$$n! = (n-1)! n, \qquad 0! = 1.$$

Por otro lado, podemos escribir

$$p_{nk} = \frac{n!}{(n-k)!}.$$

⁴para n no entero podemos hacer $n! = \Gamma(n+1) = n\Gamma(n)$.

Considere $A=\{a,b,c,d\}$ y suponga que deseamos todas las combinaciones de 2 elementos desde el conjunto A. De este modo,

$$ab$$
 ac , ad , bc , bd , cd ,

es decir, tenemos 6 combinaciones.⁵

Definición 8 (Combinaciones):

Sea $A \neq \emptyset$ conjunto finito tal que #(A) = n. Llamamos combinación de k elementos a todo conjunto diferente de k elementos tomado desde n. De esta manera el número de combinaciones es

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1} = \frac{p_{nk}}{k!} = \frac{n!}{k!(n-k)!}.$$

 $^{^{\}mathbf{5}}a\ b\ y\ b\ a$ sólo difieren en el orden.

Propiedades:

(a) Condición de simetría:

$$\binom{n}{k} = \binom{n}{n-k}$$
.

(b) Fórmula para adición

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \qquad k \text{ entero}$$

(c) Fórmulas para sumatorias

$$\sum_{k=0}^{n} {k \choose m} = {0 \choose m} + {1 \choose m} + \dots + {n \choose m} = {n+1 \choose m+1}.$$

(d) Teorema del binomio

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Espacios muestrales finitos

Suponga

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_k\}.$$

Deseamos caracterizar $\mathsf{P}(A)$ para eventos elementales. Es decir, $A=\{\omega_i\}$ y consideramos

$$p_i = P(\{\omega_i\}), \qquad i = 1, \dots, k.$$

De este modo,

- (a) $p_i \geq 0$, para $i = 1, \ldots, k$.
- (b) $p_1 + p_2 + \cdots + p_k = 1$.

Espacios muestrales finitos

Suponga que cada $\{\omega_i\}$ es igualmente probable. Entonces

$$p_i = \mathsf{P}(\{\omega_i\}) = \frac{1}{k}.$$

Luego, para un evento

$$A = \{\omega_{j_1}, \dots, \omega_{j_r}\},\$$

sigue que

$$\mathsf{P}(A) = \frac{r}{k},$$

o bien

$$\mathsf{P}(A) = \frac{\#(A)}{\#(\Omega)}.$$

Observación:

Esta no es una definición general de probabilidad, sino apropiada sólo para nuestro contexto.

Ejemplo (problema del cumpleaños):

Suponga un grupo de k personas. Se desea calcular la probabilidad de que 2 personas cumplan años el mismo día. Entonces tenemos

$$\frac{p_{365,k}}{365^k} = \frac{365 \cdot 364 \cdots (365-k+1)}{365^k},$$

y por la regla del complemento

P({al menos un par de personas cumplan el mismo día}) =
$$1 - \frac{p_{365,k}}{365^k}$$
.

Por ejemplo,

