Comparaison des modes de convergence

Dans tout le problème, $\sum_{n\geqslant 1} f_n$ est une série de fonctions définies sur un intervalle I de \mathbb{R} et à valeurs réelles.

Partie I

Une série de fonctions $\sum_{n\geqslant 1} f_n$ converge absolument sur I lorsque, pour tout $x\in I$, la série $\sum_{n\geqslant 1} |f_n(x)|$ converge. Dans les deux premières questions on supposera, pour simplifier les démonstrations, que toutes les fonctions (f_n) sont bornées sur I.

- 1. (a) Rappeler la définition de la convergence normale de la série de fonctions $\sum_{n\geq 1} f_n$ sur I.
 - (b) On suppose que la série de fonctions $\sum_{n\geqslant 1}f_n$ converge normalement sur I, démontrer que $\sum_{n\geqslant 1}f_n$ converge absolument sur I.
- 2. On suppose que la série de fonctions $\sum_{n\geqslant 1}f_n$ converge normalement sur I, démontrer que $\sum_{n\geqslant 1}f_n$ converge uniformément sur I.
- 3. On pose pour $x \in [0,1]$, $f_n(x) = (-1)^n \left(\frac{x^2 + n}{n^2}\right)$.

Démontrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge simplement puis converge uniformément sur [0,1] mais elle ne converge absolument en aucune valeur de [0,1].

4. Si la série de fonctions $\sum_{n\geqslant 1} f_n$ converge absolument sur I a-t-on nécessairement $\sum_{n\geqslant 1} f_n$ qui converge uniformément sur I?

<u>Indication</u>: On pourra considérer $\sum_{n\geqslant 1} f_n$, avec $f_n: x\in]-1,1[\longrightarrow x^n$.

Partie II

Soit $(\alpha_n)_{n\geqslant 1}$ une suite décroissante de réels postifs, I=[0,1[et pour tout $x\in I,$ $f_n(x)=\alpha_n x^n(1-x).$

- 5. Justifier que la suite $(\alpha_n)_{n\geqslant 1}$ est bornée et que la série de fonctions $\sum_{n\geqslant 1}f_n$ converge simplement sur I.
- 6. (a) Calculer pour $n \ge 1$, $|| f_n ||_{\infty} = \sup_{x \in I} |f_n(x)|$
 - (b) Démontrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge normalement sur I si et seulement si, la série de réels positifs $\sum_{n\geqslant 1} \frac{\alpha_n}{n}$ converge.
- 7. (a) Soit $x \in I$. Calculer $\sum_{k=n+1}^{+\infty} x^k$
 - (b) Si on suppose que la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0, démontrer que la série de fonctions $\sum_{n\geqslant 1}f_n$ converge uniformément sur I.

<u>Indication</u>: On pourra observer que pour $k \ge n+1$, $\alpha_k \le \alpha_{n+1}$.

Comparaison des modes de convergence

- (c) Réciproquement, démontrer que si la série de fonctions $\sum_{n\geqslant 1s} f_n$ converge uniformément sur I alors la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0.
- 8. Dans chacun des cas suivants, donner, en détaillant, un exemple de suite décroissante de réels postifs $(\alpha_n)_{n\geqslant 1}$ telle que :
 - (a) La série de fonctions $\sum_{n\geqslant 1}f_n$ converge normalement sur I.
 - (b) La série de fonctions $\sum_{n\geqslant 1} f_n$ ne converge pas uniformément sur I.
 - (c) La série de fonctions $\sum_{n\geqslant 1}f_n$ converge uniformément sur I mais ne converge pas normalement sur I.
- 9. Résumer à l'aide d'un schéma toutes les implications possibles, pour une série de fonctions quelconque, entre les convergences : normale, uniforme, absolue et simple.

COMPARAISON DES MODES DE CONVERGENCE

Partie I

- 1. (a) La série de fonctions $\sum_{n\geqslant 1} f_n$ converge normalement sur I si et seulement si la série numérique $\sum_{n\geqslant 1} \|f_n\|_{\infty}$ converge sur \mathbb{R}_+ , où $\|f_n\|_{\infty} = \sup\{|f_n(x)|/x \in I\}$, appelée norme de la convergence uniforme. (pour que cette définition ait un sens, il faut que les fonctions soient bornées sur I, de manière à pouvoir parler de la norme infinie)
 - (b) $\forall x \in I, \ 0 \leq |f_n(x)| \leq ||f_n||_{\infty}$ et par comparaison de séries à termes positifs, on en déduit que si $\sum f_n$ converge normalement, alors pour tout x de I, la série $\sum |f_n(x)|$ converge, i.e. la série $\sum f_n$ converge absolument
- 2. Pour x dans I notons $R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$. Alors $|R_n(x)| \leq \sum_{k=n+1}^{+\infty} ||f_k||_{\infty}$. La série $\sum f_n$ convergeant normalement, la suite $\left(\sum_{k=n+1}^{+\infty} ||f_k||_{\infty}\right)_n$ converge vers 0 indépendamment de x, ce qui prouve que la suite des restes $(R_n(x))_n$ converge uniformément vers 0 sur I, i.e. la série $\sum f_n$ converge uniformément sur I.
- 3. Pour x fixé dans I = [0,1], $|f_n(x)| = \frac{x^2}{n} + \frac{1}{n}$ et donc la suite $(|f_n(x)|)_n$ décroît et converge vers 0. Le CSSA est applicable, ce qui prouve que la série $\sum f_n$ converge simplement sur I = [0,1].

 Le CSSA nous dit que, pour tout x de I, $|R_n(x)| \le |f_{n+1}(x)| = \frac{x^2}{(n+1)^2} + \frac{1}{n} \le \frac{1}{(n+1)^2} + \frac{1}{n}$. $\lim \frac{1}{(n+1)^2} + \frac{1}{n} = 0$ donc la suite $(R_n(x))_{n \in \mathbb{N}^*}$ converge uniformément vers 0, c'est à dire la série $\sum f_n$ converge uniformément sur I = [0,1].

Enfin, pour x fixé, $|f_n(x)| = \frac{x^2}{n^2} + \frac{1}{n}$. La série $\sum \frac{x^2}{n^2}$ converge (série de Riemann) mais la série $\sum \frac{1}{n}$ diverge (série harmonique), et donc la série $\sum |f_n(x)|$ diverge, i.e. la série $\sum f_n$ ne converge pas absolument sur I.

4. Considérons la fonction f_n définie sur I=[0,1[par $f_n(x)=x^n.$ Pour x dans I, la série $\sum |f_n(x)|=\sum x^n$ converge vers $\frac{1}{1-x}.$ Cette série $\sum f_n$ converge absolument sur I=[0,1[. Alors $R_n(x)=\sum_{k=n+1}^{+\infty}f_k(x)=\sum_{k=n+1}^{+\infty}=\frac{x^{n+1}}{1-x}.$ Montrons que cette suite de fonctions $(R_n(x))$ ne converge pas

uniformément vers 0. En effet $R_n(1-\frac{1}{n})=n\left(1-\frac{1}{n}\right)^{n+1}=ne^{(n+1)\ln(1-\frac{1}{n})}\sim \frac{n}{e}$ qui tend vers $+\infty$ avec n. Donc la suite (R_n) ne converge pas uniformément vers 0, et ainsi la série $\sum f_n$ est une série qui converge absolument sur I=[0,1[mais qui ne converge pas uniformément sur I.

Partie II

- 5. La suite (α_n) décroît et est positive, donc $\forall n, \ 0 \leqslant \alpha_n \leqslant \alpha_0$. La suite $(\alpha_n)_n$ est donc bornée. Soit $x \in I$. La série $\sum x^n$ converge (série géométrique de raison x avec $0 \leqslant x < 1$) et donc la série $\sum \alpha_0 (1-x) x^n$ converge (linéarité). $\forall n \geqslant 1, \forall x \in I, \ 0 \leqslant \alpha_n x^n (1-x) \leqslant \alpha_0 (1-x) x^n$. Ainsi, par comparaison de séries à termes positifs, on conclut que la série $\sum f_n$ converge simplement sur I.
- 6. (a) $\forall x \in I$, $f'_n(x) = \alpha_n (nx^{n-1} (n+1)x^n) = \alpha_n x^{n-1} (n-x(n+1))$. En construisant le tableau de variations de f_n on établit que la fonction f_n positive admet sur I un maximum (absolu) au point $\frac{n}{n+1}$ qui vaut $f_n(\frac{n}{n+1}) = \alpha_n \frac{n^n}{(n+1)^{n+1}}. \text{ Donc } ||f_n||_{\infty} = \alpha_n \frac{n^n}{(n+1)^{n+1}}.$

Comparaison des modes de convergence

(b)
$$||f_n||_{\infty} = \frac{\alpha_n}{n} \cdot \left(\frac{n}{n+1}\right)^{n+1}$$
.
Or $\left(\frac{n}{n+1}\right)^{n+1} = \left(1 - \frac{1}{n+1}\right)^{n+1} = e^{(n+1)\ln(1 - \frac{1}{n+1})}$, et $(n+1)\ln(1 - \frac{1}{n+1}) \sim (n+1)(-\frac{1}{n+1}) \sim -1$. Donc $\lim \left(\frac{n}{n+1}\right)^{n+1} = e^{-1}$.

Ainsi, $||f_n||_{\infty} \sim \frac{\alpha_n}{ne}$; de plus $||f_n|| \ge 0$ et donc, par comparaison de séries positives,

$$\sum \|f_n\|_{\infty}$$
 converge $\iff \sum \frac{\alpha_n}{n}$ converge.

7. (a)
$$\sum_{k=n+1}^{+\infty} x^k = \frac{x^{n+1}}{1-x}.$$

(b) On sait que la suite (α_n) décroît. Donc pour $k \ge n+1$, $\alpha_k \le \alpha_{n+1}$.

Alors $\forall k \geqslant n+1, \ \alpha_k x^k (1-x) \leqslant \alpha_{n+1} (1-x) x^k$, et donc par inégalités sur les séries convergentes,

$$0 \leqslant \sum_{k=n+1}^{+\infty} \alpha_k x^k (1-x) \leqslant \alpha_{n+1} (1-x) \sum_{k=n+1}^{+\infty} x^k = \alpha_{n+1} (1-x) \frac{x^{n+1}}{1-x} = \alpha_{n+1} x^{n+1} \leqslant \alpha_{n+1}.$$

La suite des restes $R_n(x) = \sum_{k=n+1}^{+\infty} \alpha_k x^k (1-x)$ est donc positive et majorée par une suite qui ne dépend

pas de x et qui converge vers 0 , ce qui prouve que la série $\sum f_n$ converge uniformément.

(c) La suite (α_n) décroît et est minorée par 0, donc elle converge vers une limite positive ou nulle. Si cette limite ℓ est non nulle, alors pour tout n, $\alpha_n \ge \ell > 0$.

Dans ces conditions pour tout x dans I, $R_n(x) = \sum_{k=n+1}^{+\infty} \alpha_k x^k (1-x) \geqslant \ell(1-x) \sum_{k=n+1}^{\infty} x^k = \ell x^{n+1}$.

Mais alors, $R_n(1+\frac{1}{n+1}) \ge \ell(1-\frac{1}{n+1})^{n+1}$ qui converge vers $\frac{\ell}{e}$ (voir question 6.a.)donc ne converge pas vers 0, c'est à dire que la suite des restes ne converge pas uniformément vers la fonction nulle, ce qui contredit l'hypothèse.

Donc $\sum f_n$ converge uniformément sur I, si et seulement si la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0.

- 8. (a) Avec $\alpha_n = \frac{1}{n}$, la question 6.b. montre que la série $\sum f_n$ converge normalement (car $\frac{\alpha_n}{n} = \frac{1}{n^2}$ et la série $\sum \frac{1}{n^2}$ converge)
 - (b) Il suffit de prendre $\alpha_n = 1$: la suite est constante, donc elle décroît (au sens large), et elle ne converge pas vers 0. Si on veut absolument une suite strictement décroissante, il suffit de prendre $\alpha_n = \frac{1}{2} + \frac{1}{n}$
 - (c) Il nous faut trouver une suite $(\alpha_n)_n$ positive décroissante, convergeant vers 0, mais telle que la série $\sum \frac{\alpha_n}{n}$ diverge.

La suite définie par $\alpha_n = \frac{1}{\ln(n)}$ pour $n \ge 2$ et $\alpha_1 = \alpha_2$ convient (elle est bien définie pour $n \ge 1$). Cette suite est décroissante et converge vers 0. Il reste à montrer que la série $\sum_{n=1}^{\infty} \frac{\alpha_n}{n}$ diverge.

La fonction $g: x \to \frac{2}{x \ln(x)}$ décroît sur $[2, +\infty[$ et est positive. La série $\sum_{n\geqslant 2} g(n)$ est donc de même nature

que l'intégrale $\int_2^\infty g(x) dx$. Or $\int_1^M g(x) dx = \int_1^M \frac{1}{x \ln(x)} dx = [\ln(\ln x)]_2^M = \ln(\ln M) - \ln(\ln 2)$ qui a pour limite $+\infty$ quand M tend vers $+\infty$. L'intégrale diverge, donc la série $\sum \frac{\alpha_n}{n}$ diverge, et donc $\sum f_n$

converge uniformément sur I mais ne converge pas normalement sur I.

9. CV Normale \Rightarrow CV Absolue \Rightarrow CV simple (\mathbb{R} est complet)

CV Normale \Rightarrow CV Uniforme \Rightarrow CV simple.

Aucune des réciproques n'est vraie. Et de plus :

CV absolue \Rightarrow CV uniforme, et de même : CV uniforme \Rightarrow CV absolue

Toutes les autres implications sont fausses.

