sethia@iitk.ac.in

Assignment 9

Question 12

Q12 (a) If $f, g : \mathbb{R} \to \mathbb{R}$ s.t. f and g are uniformly continuous and bounded, then show that $f \cdot g$ is also uniformly continuous.

Solution:

To prove that $f \cdot g$ is uniformly continuous, it suffices to show that, $\forall \varepsilon$, there exists a δ such that $|x - y| < \delta \implies |f(x)g(x) - f(y)g(y)| < \varepsilon \ \forall x, y \in \mathbb{R}$.

Consider $\alpha > 0$.

f and g are uniformly continuous

$$\implies \exists \delta_1 > 0 \text{ s.t. } |x - y| < \delta_1 \implies |f(x) - f(y)| < \alpha \forall x, y \in \mathbb{R}$$

$$\implies \exists \delta_2 > 0 \text{ s.t. } |x - y| < \delta_2 \implies |g(x) - g(y)| < \alpha \forall x, y \in \mathbb{R}$$

Take $\delta = \min\{\delta_1, \delta_2\}$ and assume $|x - y| < \delta$.

Then, $|f(x) - f(y)| < \alpha$ and $|g(x) - g(y)| < \alpha$

Now, |f(x)g(x) - f(y)g(y)| = |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)|

But by triangle inequality,

$$|f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)| \le |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(y)|$$

$$\implies |f(x)g(x) - f(y)g(y)| \le |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(y)|$$

$$\implies |f(x)g(x) - f(y)g(y)| \le |f(x)| \cdot |g(x) - g(y)| + |g(y)| \cdot |f(x) - f(y)|$$

But $|f(x) - f(y)| < \alpha$ and $|g(x) - g(y)| < \alpha$ (from above)

Also, f and g are bounded (given). Let their upper bounds be M_1 and M_2

i.e. $|f(x)| < M_1 \forall x \in \mathbb{R}$

and $|g(x)| < M_2 \forall x \in \mathbb{R}$

So we have, $|f(x)g(x) - f(y)g(y)| < M_1 \cdot \alpha + M_2 \cdot \alpha$

Let $\varepsilon = M_1 \cdot \alpha + M_2 \cdot \alpha$.

So, for this ϵ , we have a δ (=min{ δ_1, δ_2 }) s.t.

$$|x-y| < \delta \implies |f(x)g(x) - f(y)g(y)| < \varepsilon \ \forall x,y \in \mathbb{R}$$

Since this holds for all $\alpha > 0$, it holds for all $\varepsilon > 0$ as well.

Hence, $f \cdot g$ is uniformly continuous.

Q12 (b) Suppose $f:(M,d)\to (N,\rho)$ is continuous.

Prove or disprove: f is uniformly continuous $\iff f$ maps Cauchy sequence to Cauchy sequence.

Solution:

We will disprove the statement by giving a counterexample.

Consider the function $f: \mathbb{R} \to \mathbb{R}: f(x) = x^2$

If (x_n) is a Cauchy sequence in $(\mathbb{R}, |\cdot|)$

 \implies (x_n) is a convergent sequence in $(\mathbb{R}, |\cdot|)$

$$\implies (x_n^2)$$
 is a convergent sequence in $(\mathbb{R}, |\cdot|)$
 $\implies (x_n^2)$ is a Cauchy sequence in $(\mathbb{R}, |\cdot|)$

$$\implies (x_n^2)$$
 is a Cauchy sequence in $(\mathbb{R}, |\cdot|)$

Hence, f maps a Cauchy sequence to a Cauchy sequence.

Now, we will prove that f is not uniformly continuous. We prove this by contradiction. So assume that f is uniformly continuous.

$$\implies \forall \varepsilon > 0, \ \exists \delta \text{ s.t. } |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon \ \forall x, y \in \mathbb{R}$$

Take
$$\varepsilon = 1$$
 and $y = x + \frac{\delta}{2}$.

Clearly,
$$|x-y| = \frac{\delta}{2} < \delta \forall x \in \mathbb{R}$$

Clearly,
$$|x - y| = \frac{\delta}{2} < \delta \forall x \in \mathbb{R}$$

 $\implies |f(x) - f(y)| = |x^2 - y^2| < 1$
 $\implies |x^2 - (x + \frac{\delta}{2})^2| < 1 \forall x \in \mathbb{R}$

$$\implies |x^2 - (x + \frac{\delta}{2})^2| < 1 \forall x \in \mathbb{R}$$

$$\implies |x \cdot \delta + \frac{\delta^4}{4}| < 1 \forall x \in \mathbb{R}$$
$$\implies |x \cdot \delta| < 1 \forall x \in \mathbb{R}.$$

$$\implies |x \cdot \delta| < 1 \forall x \in \mathbb{R}$$

This is a contradiction. Hence, our assumption was false i.e. f is not uniformly continu-

Therefore, f is a function which maps a Cauchy sequence to Cauchy sequence but is not uniformly continuous.

One counterexample, suffices to disprove the statement given in the question.