ÜBUNGEN ZU "PARTIELLE DIFFERENTIALGLEICHUNGEN" WS 2020 BLATT 5 (29. 10. 2020), SKRIPTUM BIS ABSCHNITT 4.2

EDUARD NIGSCH, CLAUDIA RAITHEL

(spätere Korrekturen in blau)

1. Bestimmen Sie für L(u) = u' - au $(a \in \mathbb{R})$ eine Greensche Funktion G auf $\Omega = (0, \infty)$, d.h. für festes $x \in \Omega$ gelten

$$LG(x,\cdot) = \delta_x$$
 in Ω , $G(x,\cdot) = 0$ auf $\partial\Omega$.

2. Bestimmen Sie für das Randwertproblem

$$-\frac{\mathrm{d}}{\mathrm{d}x} \left(k(x) \frac{\mathrm{d}u}{\mathrm{d}x} \right) = f(x), \quad 0 < x < 1$$
$$u(0) = u(1) = 0$$

mit k(x) > 0 für $0 \le x \le 1$ eine Funktion g(x,y) (genannt greensche Funktion) sodass

$$u(x) = \int_0^1 g(x, y) f(y) \, \mathrm{d}y$$

das Randwertproblem löst. Gehen Sie dazu wie folgt vor:

(i) Multiplizieren Sie die Differentialgleichung mit einer Funktion K(x), welche das homogene Problem

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(k(x)\frac{\mathrm{d}u}{\mathrm{d}x}\right) = 0$$

löst und die Randbedingung bei x = 1 erfüllt.

- (ii) Integrieren Sie die erhaltene Gleichung von x = 0 bis x = 1, um einen Ausdruck für u'(0) zu erhalten.
- (iii) Leiten Sie daraus eine Formel für u'(x) und dann u(x) her.
- (iv) Bringen sie die Formel für u(x) auf die gewünschte Form.

Überprüfen Sie am Ende, dass

$$-\frac{\mathrm{d}}{\mathrm{d}y}\left(k(y)\frac{\mathrm{d}g(x,y)}{\mathrm{d}y}\right) = \delta(x-y),$$

$$g(x,0) = g(x,1) = 0$$

gilt.

Hinweis: die Methode ist im Spezialfall k(x) = 1 mit K(x) = 1 - x etwas einfacher.

3. Berechnen Sie die greensche Funktion $G(x,y,\xi,\eta)$ für Δ auf der Viertelebene $\Omega=\{(x,y)\in\mathbb{R}^2:x>0,\,y>0\}$ mit Hilfe der Spiegelungsmethode. Stellen Sie mit dieser greenschen Funktion die Lösung des Dirichlet-Problems

$$\Delta u = 0$$
 in Ω , $u(x,0) = f(x)$ für $x > 0$, $u(0,y) = g(y)$ für $y > 0$

dar, wobei f und g stetig und beschränkt auf $(0, \infty)$ sind. Ist diese Lösung eindeutig?

4. Betrachten Sie die Helmholtz-Gleichung

$$(\Delta + k^2)u = f \text{ in } \mathbb{R}^3$$

mit der Wellenzahl k > 0, der Wellenquelle $f \in \mathcal{D}(\mathbb{R}^3)$ und dem Wellenfeld $u : \mathbb{R}^3 \to \mathbb{C}$.

(i) Berechnen Sie eine radialsymmetrische Funktion $G(x,\xi) = g(|x-\xi|)$, für die $(\Delta_x + k^2)G = \delta_\xi$ gilt, und die der sommerfeldschen Ausstrahlungsbedingung

$$\lim_{r \to \infty} r \left(\frac{\partial}{\partial r} - ik \right) g(r) = 0$$

genügt.

Anmerkung: Diese Bedingung stellt eine Randbedingung (im Unendlichen) dar, weshalb man G auch eine greensche Funktion nennt.

- (ii) Stellen Sie die/eine Lösung u der Helmholtz-Gleichung mit Hilfe von $G(x,\xi)$ dar. Zeigen Sie, dass für eine radialsymmetrische Funktion f diese Lösung auch radialsymmetrisch ist
- (iii) Konstruieren Sie aus G zwei weitere Funktionen G_{Dir} und G_{Neu} , welche greensche Funktionen auf $\Omega := \mathbb{R}^2 \times \mathbb{R}_+$ sind und auf $\partial \Omega$ homogene Dirichlet- bzw. homogene Neumann-Randbedingungen erfüllen.
- **5.** Betrachten Sie den Differentialoperator $Lu = u_{tt} c^2 u_{xx}$ für $c \in \mathbb{R}_+$ und $(x,t) \in \mathbb{R}^2$.
 - (i) Zeigen Sie, dass

$$G(x,t) = \frac{1}{2c}H(t)[H(x+ct) - H(x-ct)]$$

eine Fundamentallösung von L mit Pol in (x,t)=(0,0) ist, wobei H die Heaviside-Funktion ist.

- (ii) Bestimmen Sie eine Fundamentallösung von L mit Pol in $(x,t)=(\xi,\tau)$.
- (iii) Berechnen Sie $\partial_t G(x,t)$.
- 6. Bestimmen Sie mit der Spiegelungsmethode eine greensche Funktion für das Dirichlet-Problem für Δ auf dem Keil

$$\Omega \coloneqq \{(x, y) \in \mathbb{R}^2 \mid 0 < x \text{ und } 0 < y < x\}.$$