Assignment NO: 2

· JITLE 3 Vector and Matrix oferations · · · · Problem : Design farallel algorithm to Statement i] Add two sarge Vectrons ing Multiply Vector and Matrix gorden exportio uxu out phillon fin The devent of cropassors for the total puncher

ous iobjective : contrap visible bas desident

i) To understand Verton and Matrix

oferations

ii) To implement farallel Algorithm to

perform noteix and Verton operations

: Another serial and boo.

· COUT COMES DE MAN + CONTROPE DIVER 29

i) Understand Vector and Matrix derations.

· Gostware and : Asystem with configuration:
Hardware 466 fam, 500 GB HDD, is above CPU fequixements GPO junctionalitées, CUDA jxamavante C++ framework, Google Colab.

Winter storber bernordinge i sould despressible

to tred too one took wallen was well

Date Of Completion 1:

Theory:

While executing the Parallel algorithm

of Matrix Vector Multiplication it is receptory

to distribute not only the Matrix A but

also the Vector b and the result Vector c.

If the Processor holds the Matrix fow and all

the element of Vector b and c the total number

of used menory is the same order o(n)

Matrices and Matrix oferations are widely.

When motheratical modeling of Varians

Processes, Phenomenon and system Matrix based

on Many scientific and engineering columbians.

Computational Mathematics physics enanomics are only

some of the Areas of their applications.

The efficiency of carrying out Matrix computation

is highly imfortant many standard libraries.

Contain Procedure for Varians Matrix applications.

S: OH Marjarias

· Add two large vectors:

when added together in this

clifferent order these same three Vectors shy

froduce a resultant with the same magnitude

and direction as before. The order in which

vector are added using the head to tail

Methods insignificant.

Jector implements a dynamic curray

It is similar to Array list but with two

differences. Vector is synchronized vector contains

mary regacy methods that are not fart of

· Collection francwork Two add or substract 2 vectors to Corresponding Vectors , components. Let U-><U, UZ) and V-7. (v., v2) be two vectors the sum of two or note vector is called the Resultant. The resultant of two vector can be found wings either the farallelogion method for the triargle pretuod a sample to reduce of college to for ex: vector1: [10, 20, 80, 40, 50] Verton 2: [2, 3, 4, 5, 6]

Result: [12, 23, 84, 45, 56]. · Multiply Vector and Matrix:

This is the same as standard Matrix Multiplication, fet Multiply the sow of vector with column of Matrix which is some as normal Matrix Multiplication Oberations. Here we have to Person vector and Matrix mothphication where vector is a 1 sow vector and Matrix is nxm Matric so the resultant will be a p row vector: FOT ex: Matrix: 2 h 3: 1-2 West out 18 1 1 1 1 1 1 1 2

trough dry Primary out Harry Ame

Volton: 43 247

Repult 1 26 47 30+ 35 30]

	The state of the s		-				
Moltiply two nxn	arrays :	8+	Si	Simi	Tol	to	
MolfiPly two							
of first Matrix	is multiplie	d	wil	1-35	Column	25 0	1
second Matrix							
and n columns is							
n rows the of							
the hourser of							
by similar to n							
Matrix.	all: Islansv	: N3	Ro				
For ex: MI:	4.7.8	6	M2:	2	9	8	
. [33 , 64 , H3 , 85]	4 6	3		(0)	3		
	10 2 3						
	10 104	10719	1	6	10110	3,	
bante an emil an	12 72 3	7					
a 60% sit 1197410				X	4 x 3		
23 draw Vistom	10 anulo	124	300	aby	taau.		
100 do 100 p= 138	3 , 149 12	Mary	Les	13:00	10		
Exten bas cots 10'							
000000000000000000000000000000000000000							
Hoser and of ts							

CUDA foograming:

Jet M & N be two infut Vector

and P be seput Gotain from M & N

P: M + N ... adding two Vectors

P: M * N ... vector × Makix

P: M * N ... vector × makix

I: M * N ... vector × makix

uning (UDA Programming each elevent in P car be

5 x 3

123 112 60

obtained som one thread.

Test cases.

1					
	Operation	gapot size	sequentia!	Parallel	
			Time	3MiT	
	i) Matrix, Vertor	veiton :			
	Multiplication	1 ×100			
		matrix:	0.231	0.0213	
		100 ×50			
		Repot:			
		verton: 1×50			
	ii) vector Addition	vector 1:			
3	1×100				
		Vector: 1x100	0.1070	0.0179	
		result: 1x100			
	WEND WEND (iii)	Mateix1:			
	Multiplication	10 X 30	Carlotte Marie		
	Matrix 2:				
	30×10				
		Lesult:	0.039	0.01945	
		loxio			
		中国			
					_

Conclusion: Jus we have gourssjully fersonned the vector and Matrix oferations using CODA frogramming.