Day 5: Generalized Additive Models

Linear and Nonlinear Models

Linear Models (ARIMA and VAR)

- Make strong assumptions about the relationships between dependent and independent variables
- But they are easily interpretable

Non-linear Models

- Reduce (or eliminate) these assumptions
- But this is often done at the cost of interpretability

Non-linear Modeling

Non-linear models can be written generally as

$$y = g(x) + \epsilon$$

where $g(\cdot)$ can be **any** function.

- Tremendous flexibility
- Low likelihood of interpretability

Non-linear Modeling

If $g(\cdot)$ is a function of more than one parameter, interpretation may quickly become difficult.

$$y=x_1^2x_2^2+\epsilon$$

In this case, the marginal effect of x_1 on y is

$$rac{\partial y}{\partial x_1} = 2x_1x_2^2$$

and depends on the values of both x_1 and x_2 .

Generalized Additive Models

GAMs allow us much of the flexibility of non-linear models, without the difficulty of interpretation.

- Each parameter's effect on the dependent variable is modeled as its own function
- Since the model is additive, interpretation is straightforward, and parameter effects can be isolated

Generalized Additive Models

GAMs allow us much of the flexibility of non-linear models, without the difficulty of interpretation.

$$y = \sum_{i=1}^N f_i(x_i) + \epsilon$$

For two parameters, this could be expressed as

$$y=f_1(x_1)+f_2(x_2)+\epsilon$$

Dangers of Overfitting

Dangers of Overfitting

On the previous slide, a high-order polynomial was fitted to a parameter.

- Was the fit perfect? **Yes**
- Was it likely to fit the true data-generating process? No

Non-linearity and Smoothness

Non-linearity and Smoothness

This time, our high-order polynomial actually seems to represent the true relationship between the input and the output.

- Take care not to overfit your model
- Our true test will be when we fit a model, and use it to make predictions out-of-sample
- In sample, we can never do worse by applying a more complex functional form
- Out of sample, excess complexity can ruin our predictions

GAM Fitting Procedure

If we want to fit an additive model, we need to create a loss function that we can optimize. For one parameter, we need to optimize

$$y = a + f(x) + \epsilon$$

Sum of squared errors for this function is

$$SSE = \sum_{i=1}^n (y_i - a - f(x_i))^2$$

Choosing GAM Smoothness

In addition to minimizing the SSE term, we need to include a term that will regulate how smooth our function is, penalizing our model for "less smooth" functional forms.

Our *Penalized* Sum of Squared Errors (PSSE) is

$$\sum_{i=1}^n (y_i - a - f(x_i))^2 + \lambda \int_0^1 (f''(x))^2 dx$$

Choosing GAM Smoothness

 λ is the parameter that we can adjust in order to choose how much we want to penalize our function for increased complexity.

$$\int_0^1 (f''(x))^2 dx$$

The integral term takes into account how quickly the slope of our function is changing over the interval [0,1], and penalizes our SSE when this value is high.

Fitting Functional Forms

In order to fit a GAM to the data, we need to be able to choose an arbitrary function from among nearly infinite options.

Splines are a way for us to generate these functions without having to use computationally expensive searches through the function space (the group of possible function matches to the true function)

Using Splines

Implementing a GAM

We can use either of two libraries to implement our GAM models, depending on our specific needs:

- Time series models: prefer Facebook's Prophet library
- General predictive analytics: prefer pyGAM library

```
#Import statements
import pandas as pd
import numpy as np
from fbprophet import Prophet
# Prep the dataset
# Make the data set a single line again!!
data = pd.read csv(
    "https://github.com/dustywhite7/Econ8310/raw/master/
    DataSets/chicagoBusRiders.csv")
# Keep only the dates and the y value
route3 = data[data.route=='3'][['date','rides']]
# Format the date
route3.date = pd.to datetime(route3.date,
    infer_datetime_format=True)
# Recreate the data frame with correct labels
route3 = pd.DataFrame(route3.values, columns = ['ds','y'])
```



```
# Initialize Prophet instance and fit to data

m = Prophet(changepoint_prior_scale=0.5)
# Higher prior values will tend toward overfitting
# Lower values will tend toward underfitting

m.fit(route3)
```

In order to adapt the flexibility of our model, we are able to change the value of changepoint_prior_scale. We can use this to make a more flexible or rigid model, depending on our needs.

```
# Create timeline for 1 year in future,
# then generate predictions based on that timeline

future = m.make_future_dataframe(periods=365)
forecast = m.predict(future)
```

```
# Create plots of forecast and truth,
# as well as component breakdowns of the trends

plt = m.plot(forecast)
plt.show()

comp = m.plot_components(forecast)
comp.show()
```


Yearly trend:

Weekday trend:

Day-of-year trend:

Prophet Summary

Great if you only care about time variables. But what if you want to explore more than just y regressed on time?

```
from pygam import LinearGAM, s, f
import pandas as pd
import patsy as pt
import numpy as np
from plotly import tools
import plotly.offline as py
import plotly.graph_objs as go
# Prep the dataset
# Put this back on one line!!
data = pd.read csv(
    "https://github.com/dustywhite7/Econ8310/raw/master/
    DataSets/HappinessWorld.csv")
```

```
# Generate x and y matrices
eqn = """happiness ~ -1 + freedom + family +
        year + economy + health + trust"""
y,x = pt.dmatrices(eqn, data=data)

# Initialize and fit the model
gam = LinearGAM(s(0) + s(1) + s(2) + s(3) + s(4) + s(5))
gam = gam.gridsearch(np.asarray(x), y)
```

We create our x and y matrices using patsy, then we construct our GAM model.

```
# Generate x and y matrices
eqn = """happiness ~ -1 + freedom + family +
    year + economy + health + trust"""
y,x = pt.dmatrices(eqn, data=data)

# Initialize and fit the model
gam = LinearGAM(s(0) + s(1) + s(2) + s(3) + s(4) + s(5))
gam = gam.gridsearch(np.asarray(x), y)
```

The LinearGAM object requires a functional argument (1, s or f) for each variable in our data

Use 1 for linear functions, s for "smooth" functions of a variable, and f for "factor"-type variables (binary or step variables)

To plot our marginal effects jointly, we need to create subplots, and assign a subplot to each of our variables.

Here, we prepare the canvas by creating the grid and shape of the overall figure.

```
for i, title in enumerate(titles):
 XX = gam.generate_X_grid(term=i)
 pdep, confi = gam.partial dependence(term=i, width=.95)
 trace = go.Scatter(x=XX[:,i], y=pdep, mode='lines',
        name='Effect')
 ci1 = go.Scatter(x = XX[:,i], y=confi[:,0],
        line=dict(dash='dash', color='grey'),
        name='95% CI')
 ci2 = go.Scatter(x = XX[:,i], y=confi[:,1],
        line=dict(dash='dash', color='grey'),
    name='95% CI')
```

First, we iterate over each variable, creating the traces of the marginal effect and confidence interval

```
for i, title in enumerate(titles):
  if i<3:
    fig.append_trace(trace, 1, i+1)
    fig.append trace(ci1, 1, i+1)
    fig.append trace(ci2, 1, i+1)
  else:
    fig.append_trace(trace, 2, i-2)
    fig.append_trace(ci1, 2, i-2)
    fig.append trace(ci2, 2, i-2)
py.plot(fig)
```

Then we put the traces in their place on our grid, and plot the figure.

Forecasting with pyGAM Models

```
# Making a Forecast

# predicting the outcome of the UAE in 2015
gam.predict([[0.64, 1.13, 2015, 1.47, 0.81, 0.38]])
```

We need to provide a 2-dimensional array of parameters for generating forecasts (this is why there are double brackets [[and]])

Forecasting with pyGAM Models

```
# Making a Forecast

# predicting the outcome of the UAE in 2015
gam.predict([[0.64, 1.13, 2015, 1.47, 0.81, 0.38]])
```

Our predicted happiness of 6.89 compares VERY favorably with the true value of 6.90

Lab Time!