PyDTS: A Toolkit for Deep Time-Series Prediction

DR. PASCAL SCHIRMER

AIMS & GOAL

The heart of machine learning and Al is signal processing and the language of its modelling is mathematics.

IEEE ICASSP 2023

Structure of the talk

Presentation: 30 min

Questions: 20 min

• Toolkit: 10 min

This talk will be about

- Providing a cooking receipt for time-series modeling -> Architecture
- How to systematically improve the architecture -> Methodology
- How to interpret the results
- This talk will not be about
 - The fanciest solution for time-series modeling -> Generalised solution
 - Generative models and transformers

Content

- 1) Short Introduction
- 2) PyDTS an Overview
- 3) Exemplary Workflow
- 4) Advanced Functionalities
- 5) Outlook and Conclusion

SHORT INTRODUCTION

Modeling Domain (Relation to the physical problem)

TEMPORAL DOMAIN

- Natural language processing
- Time series forecasting
- Non-linear regression

SPATIAL DOMAIN

- Image recognition
- Image to image learning
- Spatial transformers

Modeling Approaches (Relation to the solution)

Property	Statistics	Linear Algebra	Machine Learning
Runtime	+	0	-
Memory	+	0	-
Interpretation	0	+	-
Dimension	-	0	+
Transfer	-	0	+
Non-linear	-	0	+
Parameter	+	0	-
Data	0	+	-

[2]-[4]

- Statistical Modeling
 - Autoregressions
 - Moving average processes
- Linear Algebra Modeling
 - State space systems and discrete PDE
 - Matrix and Tensor factorisations
- Machine/Deep Learning
 - Generic regression
 - Generic classification

Modeling Improvement (Relation to the performance)

ARCHITECTURAL LEVEL

- Feedback
- Pre-processing
- Post-processing

FEATURE LEVEL

- Time-Domain
- Frequency-Domain
- Statistical

LAYER OR SOLVER LEVEL

- Loss functions
- Learning rate updates
- Convergence criteria
- New layers

Model Applications (Areas where we should use ML)

ILL-DEFINED PROBLEMS

Physical model and boundary conditions are known, but system equations are ill-defined

- Inverse Problems
- Blind Sources
- Separations

MODEL OR BOUNDARY FREE PROBLEMS

Physical model or its boundary condition are unknown or cannot be predicted.

- Medical monitoring
- Anomaly detection
- Transfer learning

HUMAN LIKE PROBLEMS

Input and output is generated by humans, thus neither a model or boundary conditions exist.

8

- Text
- Audio
- Images

B

PYDTS AN OVERVIEW [5]

Considered Problems

PROBLEM DESCRIPTION

- Denoising
- Forecasting
- Non-linear Modeling
- Anomaly Detection
- Degradation Modeling

MATHEMATICAL FORMULATION

•
$$y(t) = x(t) + \epsilon$$

•
$$y(t) = \alpha y(t-1) + \beta x(t) + \epsilon$$

•
$$y(t) = f_{\theta}(x(t))$$

•
$$y(t) = \varphi\left(f_{\theta}(x(t))\right)$$

•
$$y(t) = y_0 + \beta x(t) + \epsilon$$

Implemented high-level architecture

MATHEMATICAL FORMULATION

• True Function:
$$y(t) = f_{\theta}(x(t))$$

• Approx. Function:
$$\hat{y}(t) = g(x(t))$$
 s.t. $\min \|y - \hat{y}\|_2^2$ $g \approx f_{\theta}$

Model Configurations

OPEN LOOP

- Input (X)
 - T samples
 - F features
- Output (y)
 - T samples
 - L channels

SHORT FORECAST CLOSED LOOP

- Input (y, X_H, X_F)
 - W previous samples
 - W exogenous samples
 - H horizon samples
- Output (y)
 - H horizon samples

- Input (X, y)
 - T samples
 - F features
 - **Delayed Output**
- Output
 - T samples with 1 channel

12

Operating Modes

CONVENTIONAL REGRESSION

- Constant Split
- K-Fold Validation
- Transfer Learning

EXHAUSTIVE GRID SEARCH

- Window Length
- Sampling
- Filtering

HYPERPARAMETER OPTIMISATION

- Number Layers
- Number Neurons
- Activation Fnc.

Included Modules

Multi-Dimensional Time Series Input

Predicte

٥

er:

es

Output

Data Pipeline

EXEMPLARY WORKFLOW

Problem Description

DESCRIPTION

Based on the observation of previous three years of regenerative energy generation the aim is to predict the generation of the following year.

Inputs

- Average Temperature (°C)
- Average Solar Irradiance (W/m²)
- Average Wind speed (m/sec)

Outputs

- Regenerative solar generation (MWh)
- Regenerative wind generation (MWh)

Initial Parameters

INPUT PARAMETERS AND CONFIGURATION

• Sampling rate: 60 min

Window length: 24 samples (24 hrs)

Overlap: 23 samples

• Method: Seq2Point

Focus sample: Last (causal)

Normalisation X: mean-std

Normalisation y: 0-1

MODEL AND HYPERPARAMETERS

Model: DNN (3-layers, 32-nodes)

Solver: Adam

Epochs: 100 (15 patience)

• Loss: MAE

• Batch: 1000

• Learning rate: 1e-3

• Beta: 0.9 / 0.999

Initial Results (Solar)

- General good correlation between true and predicted values
- Two types of errors
 - Average error (mismatch in the predicted energy)
 - Shape error (mismatch in the shape of the predicted energy)

Optimisation by "Thinking"

WINDOW LENGTH

- Observation: error shows daily and yearly temporal influence
- Reason: solar irradiance has a short term cycle (1 day) and a long term cycle (1 year)
- Action: input window length (12 hrs = 12 samples)

MODEL ARCHITECTURE

- Observation: error distribution is not mean centred
- Reason: additional PV capacity is added, which is cannot be captured by the DNN
- Action: adding two LSTM layers to capture long term changes

Optimisation by "Thinking" (Opti-1)

- Significant improvement over baseline system
 - Average error reduced
 - Shape is modelled better
- Only for the 5th of June the performance decreased

ADVANCED FUNCTIONALITIES

Choosing Input Features

FEATURE CORRELATION

DESCRIPTION

Feature ranking methods rank the importance of a input with respect to the output

- Linear techniques: PCA, Cor
- Non-linear techniques: RF
- Leave-One-Out: ReliefF [1]

Optimising Input Parameters (Opti 2)

OPTIMISATION SPACE

- Input window length is varied
 - Minimum: 3 hrs (3 samples)
 - Maximum: 72 hrs (72 samples)
 - Step: 3 hrs (3 samples)
- Best solution
 - 15 hrs (15 samples)
 - Shortest window capturing a full day of sunshine during summer

Optimising Model Architecture (Opti 3)

OPTIMISED ARCHITECTURE

LSTM(15, 48)

LSTM(15, 64)

LSTM(112)

DNN(96)

DNN(1)

- Number of LSTM layers (1 3)
- Number of DNN layers (1 4)
- Number of Neurons (16 256)
- Dropout (0.0 0.5)
- Learning rate (1e-5 1e-2)
- 16-1024 Batch Size

Optimal Results (Solar): Average

IMPROVEMENTS

	Base	Opti 1	Opti 2	Opti 3
MAE	1212.7	912.4	718.1	640.9
RMSE	2142.5	1670.8	1339.3	1252.9
SAE	11.54%	8.22%	8.30%	8.50%
TECA	89.07%	91.78%	93.53%	94.22%
R ²	93.58%	96.09%	97.49%	97.80%

- Strategic optimisation leads to almost 50% reduction of error for MAE and RMSE
- SAE cannot be improved due to installation of new capacity
- Signal correlations for TECA and R² are increasing by 4-5%

Optimal Results (Solar): Time Domain

ERROR DISTRIBUTION

Fit Error Gaussian Distribution 0.0005 0.0004 0.0002 0.0001 -8000 -6000 -4000 Error (MW)

TIME DOMAIN ERROR

E

OUTLOOK AND CONCLUSION

Outlook and Conclusion

WHAT IT CAN DO

- Serve as a baseline system for time-series problems
- Help to understand correlations and select features
- Optimise existing architectures and parameters

WHAT IT CANNOT DO

- Does not produce cutting edge results
- Does not release you from thinking about your problem
- Does not support yet generative models and transformers

References

- [1] Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69.
- [2] Zheng, H.S.; Liu, Y.Y.; Hsu, C.F.; Yeh, T.T. StreamNet: Memory-Efficient Streaming Tiny Deep Learning Inference on the Microcontroller. In Proceedings of the Thirty-Seventh Conference on Neural Information Processing Systems, 2023.
- [3] Schirmer, P.A.; Mporas, I. Device and Time Invariant Features for Transferable Non-Intrusive Load Monitoring. IEEE Open Access J. Power Energy 2022, 9, 121–130.
- [4] Chen, X.W.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525.
- [5] Schirmer, P.A.; Mporas, I. PyDTS: A Python Toolkit for Deep Learning Time Series Modelling. Entropy 2024, 26, 311. https://doi.org/10.3390/e26040311