Al Project2 Final Presentation

- Stock Price Prediction Using Al Models -

2020095178 최윤선

Table of Contents

- Introduction
- Model
- Experiment
- Challenge
- Future Work

Introduction

- Background
 - Train real data with some of the time series models I've theoretically studied so far
- Motivation
 - Increase in individual investors after COVID-19 → A lot of impact on the economy
 - Stock price prediction is expected to play an important role in establishing economic flows and financial strategies.
- → Decide to utilize **stock price data** among many time series data
- → Comparison of predictive performance of typical time series models DLinear, Pyraformer, PatchTST, ESTIMATE

Model - DLinear

- Most LTSF models have been based on the transformer architecture.
 - → The authors raised doubts about the effectiveness of transformer-based models due to their high time and memory complexity.
- Implementation for a simpler linear model.
- DLinear is a **fusion of decomposition** techniques from Autoformer and FEDformer.
- Raw input data is divided into a trend component and a seasonal component.
- DLinear boosts the performance compared to a basic linear model.

Model - Pyraformer

- Nodes are constructed in a pyramid shape: Finer data to Coarser data
 - The upper nodes: information over a longer period. → Better understanding of long-range correlations.
 - The lower nodes: information over shorter periods → Better understanding of short-range correlations.
- Coarser-Scale Construction Module (**CSCM**): Form a pyramidal structure of nodes.
- Pyramidal Attention Module (**PAM**): Exchange information between the nodes of the tree passed on by CSCM.

Model - PatchTST

(a) PatchTST Model Overview

(b) Transformer Backbone (Supervised)

(c) Transformer Backbone (Self-supervised)

- Channel-independence patch
 - Each variable can be independently learned
 - Reduce the computation
 - Incorporate locality
 - Capture comprehensive semantic information
- Vanilla transformer encoder

Model - ESTIMATE

- Considerations
 - Multi-dimensional data integration(다변량), Non-stationary awareness(외부 시장 요인),
 Analysis of multi-order dynamics(주식 간 동적 요인), Analysis of internal dynamics(기업 내부 요인)
- Local trends CNN → mitigate the issue of long-term dependencies
- Temporal dependencies LSTM
- Interdependence between stock Industry hypergraph
- Aggregate the extracted temporal information of the individual stocks Wavelet Hypergraph Convolution

Experiment – Data

• Data (S&P500)

0 2012-05-14 00:00:00 POOL 36.299999 36.360001 36.840000 35.979999 230900.0 32.23 1 2012-05-15 00:00:00 POOL 36.750000 36.139999 37.119999 36.139999 328500.0 32.63	
1 2012-05-15 00:00:00 POOL 36.750000 36.139999 37.119999 36.139999 328500.0 32.633	/132
	752
2 2012-05-16 00:00:00 POOL 36.619999 36.950001 37.080002 36.549999 220300.0 32.52	984
3 2012-05-17 00:00:00 POOL 34.979999 36.540001 36.540001 34.830002 418400.0 31.06	506
4 2012-05-18 00:00:00 POOL 35.139999 34.900002 35.660000 34.779999 200300.0 31.207	592
1197319 2022-05-19 00:00:00 RTX 90.250000 91.379997 92.459999 89.540001 5234700.0 90.250	000
1197320 2022-05-20 00:00:00 RTX 90.080002 90.839996 91.169998 88.430000 6585500.0 90.080	002
1197321 2022-05-23 00:00:00 RTX 91.830002 90.599998 92.019997 90.000000 4701300.0 91.830	002
1197322 2022-05-24 00:00:00 RTX 93.209999 91.199997 93.419998 90.470001 5932000.0 93.209	999
1197323 2022-05-25 00:00:00 RTX 93.559998 93.320000 94.099998 92.589996 3742000.0 93.559	998

1197324 rows × 8 columns

- Training (80)
 - 2012-05-14 ~ 2020-05-20
- Validation (10)
 - 2020-05-21 ~ 2021-05-21
- Testing (10)
 - 2021-05-22 ~ 2022-05-25

Experiment – Baseline & Evaluation

Baseline

	Lookback Window (input sequence length)	Lookahead Window (prediction sequence length)
Short-Term Prediction	20	1
Long-Term Prediction	96	5

Evaluation Metrics

- MSE (Mean Squared Error), MAE (Mean Absolute Error), RMSE (Root Mean Squared Error)
- RankIC (Rank Information Coefficient): Spearman correlation coefficient
 - Measure the rank correlation between two variables
 - (-1, 1)
- RankIR (Rank Information Ratio): Pearson correlation coefficient
 - Quantify the linear correlation between two variables X and Y
 - (-1, 1)

• Experiment - Results

(seq, pred)	(20,1)				(96,5)					
Metrics Models	MSE	MAE	RMSE	RankIC	RankIR	MSE	MAE	RMSE	RankIC	RankIR
DLinear	0.070	0.147	0.264	0.968	0.974	0.485	0.250	0.696	0.589	0.656
Pyraformer	0.072	0.123	0.268	0.946	0.876	0.087	0.138	0.295	0.922	0.846
PatchTST	0.025	0.053	0.237	0.972	0.971	0.030	0.065	0.257	0.966	0.966

0.516

Exp	Paper results			
Metrics Models	MAE	RMSE	RankIC	RankIC
				•

0.034

Comparison

• (seq, pred) = $(20, 1) \rightarrow PatchTST > DLinear > Pyraformer$

0.572

- $(seq, pred) = (96, 5) \rightarrow PatchTST > Pyraformer > DLinear$
- (20, 1) > (96, 5)

ESTIMATE

Cannot compare ESTIMATE results

0.053

Challenge

- CUDA Memory problem
 - → Colab GPU, Lab Server GPU
- Because of difficulty in modifying ESTIMATE code, it is impossible to experiment under the same conditions.
 - → I'm trying to adjust the length of (seq, pred) by studying the architecture of ESTIMATE

Future Work

- Modify ESTIMATE code
- Visualization of prediction results

Thank you Q & A

