CLAIMS

Having thus described the invention, what is claimed is:

1	1. A method of fabricating at least a pair of local interconnects with
2	one interconnect on each side of a gate of a field effect transistor (FET) in an
3	integrated circuit on a semiconductor substrate comprising the steps of:
4	forming on a semiconductor substrate a thick insulating layer;
5	forming at least a pair of spaced apart openings in the insulating layer
6	adjacent the semiconductor substrate;
7	forming a source in one of the openings and a drain in the other of
8	the openings;
9	filling each of the openings with a conductive material to form local
10	interconnects to the source and drain;
11	removing a portion of the insulating layer to form a gate opening
12	between the local interconnects;
13	forming a gate dielectric on the semiconductor substrate in the gate
14	opening; and
15	forming a gate on the gate dielectric oxide in the gate opening
16	between the local interconnects.
÷	
. 1	2. The method of Claim 1, wherein the space between the pair of
2	openings is one minimum photolithographic feature and the local interconnects are
3	each one minimum photolithographic feature.
i	3. The method of Claim 1, wherein insulating spacers are each
2	disposed on an interconnect wall adjacent the gate to separate each of the local
3	interconnects from the gate.

i	4. The method of Claim 1, wherein the source and drain are forme
2	by implanting impurities in the pair of openings in the insulating layer.
1	5. The method of Claim 1, wherein the portion of insulating layer
2	removed to form the gate opening is removed by using a masking material with an
3	opening in the masking material positioned between the pair of local interconnects.
1	6. The method of Claim 5, wherein the opening in the masking
2	material extends over but not beyond each of the pair of local interconnects.
1	7. The method of Claim 6, wherein the spaced apart openings are
2	positioned over an active region in the semiconductor substrate, the active region
3	being surrounded by an isolation region, the openings extending to or beyond the
4	active region.
1	8. The method of Claim 1, wherein a conductive layer is formed on
2	the walls of the spaced apart openings to line the openings and a remainder of the
3 .	local interconnect openings are filled with another conductive material.
1	9. The method of Claim 8, wherein the conductive layer is
2	polysilicon and the other conductive material is tungsten.
1	10. The method of Claim 9, wherein the polysilicon is the origin for
2	the impurities for the source and drain.
1	11. The method of Claim 1, wherein a barrier layer is formed on
2	walls of the local interconnect openings to line the opening and a remainder of the
3	local interconnect opening is filled with a conductive material.

.1	12. The method of Claim 11, wherein the barrier layer includes
2	titanium nitride.
1	13. The method of Claim 1, wherein an insulating etch stop layer is
2	formed on semiconductor substrate before forming the thick insulating layer.
1	14. The method of Claim 13, wherein the etch selectivity of the etch
2	stop layer is different from the etch selectivity of the insulating layer.
1	15. The method of Claim 14, wherein the etch stop layer is a nitride
2	of silicon.
. 1	16. The method of Claim 1, wherein the gate is calcuted from the
1	16. The method of Claim 1, wherein the gate is selected from the
2	group of polysilicon, refractory metal and metal.
1	17. In a method of fabricating, in an integrated circuit on a
2	semiconductor substrate, a field effect transistor (FET) having a source, drain and
3	gate and with one interconnect on each side of a gate of the FET comprising the
4	steps of:
5	forming on a semiconductor substrate a thick insulating layer;
6	forming a pair of spaced apart openings in the insulating layer
7	adjacent the semiconductor substrate, each opening being the size of a minimum
8	lithographic feature;
9	forming a source in one of the openings and a drain in the other of
10	the openings;
11	filling each of the openings with a conductive material to form local
12	interconnects to the source and drain;

13	removing a portion of the insulating layer to form a gate opening of a
14	minimum lithographic feature between the local interconnects; and
15	forming a gate in the gate opening between the local interconnects,
16	whereby the size of the FET transistor is three minimum lithographic features.
1	18. The method of Claim 17, wherein openings in the insulating
2	material are positioned over an active region in the semiconductor substrate, the
3	active region being surrounded by an isolation region, and the openings extending
4	to or beyond the active region.
1	19. An integrated circuit including at least one transistor, the
2	integrated circuit comprising:
3	a pair of local interconnects spaced from each other by a minimum
4	lithographic feature and each being a minimum lithographic feature; and
5	a gate of the transistor disposed in the space between the local
6	interconnects and separated from each of the local interconnects by an insulating
7	liner, whereby the width of the transistor is not greater than three lithographic
8	features.
1	20. The integrated circuit of Claim 19, wherein insulating spacers
2	are each disposed on a interconnect wall adjacent the gate to separate each of the
3 .	local interconnects from the gate.
1	21. An integrated circuit including at least one transistor, the
2	integrated circuit comprising:
3	a pair of local interconnects spaced from each other; and

- a gate of the transistor disposed in the space between the local
- 5 interconnects and separated from each of the local interconnects by an insulating
- 6 / liner.
- 1 22. The integrated circuit of Claim 21, wherein the pair of local
- 2 interconnects are spaced from each other by a minimum lithographic feature.