第十三次习题课

方法提要、习题讲解和内容扩充

助教: 邓先涛

2023年12月11日

重点知识提要

重点知识提要

- ▶ 分圆域与分圆多项式
- ▶ Galois 群子群的固定子域:了解固定子域的概念;能够计算简单的子群的固定子域.
- ► Artin 引理: 了解域扩张相对固定子域的 Galois 群;能够应用该引理计算一些多项式在扩域上的 Galois 群.

分圆扩张与分圆多项式

分圆扩张与分圆多项式的基本事实

- ▶ 分圆扩张的定义: 若 n 与域 F 的特征互素,则称 $F(\zeta_n)$ 为 F 的 n 次分圆扩张,其中 ζ_n 为 n 次本原单位根. 它的极小多项式记作 $\Phi_n(x)$.
- ▶ 有理数域上分圆扩张的群: 设 n 为正整数,则 $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) = (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- ▶ 有理数域上分圆扩张之间的关系: $\mathbb{Q}(\zeta_m)\mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_{lcm(m,n)})$, $\mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_{gcd(m,n)})$.
- ▶ 有理数域上分圆多项式: $\Phi_n(x) = \prod_{\sigma \in Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})} (x \sigma(\zeta_n)) = \prod_{m \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (x \zeta_n^m) \in \mathbb{Z}[x].$
- ▶ 有理数域上分圆多项式公式: $x^n 1 = \prod_{d|n} \Phi_d(x)$, $\Phi_n(x) = \prod_{d|n} (x^d 1)^{\mu(n/d)}$, 其中 μ 是莫比乌斯函数.

n 次本原单位根的极小多项式

设 C_n 是 C_n 上固定的 C_n 次本元根,证明: C_n 的极小多项式 C_n 等于 C_n 等于 C_n C_n C_n

多项式模 p 法

证明

- ▶ 注意到 ζ_n 的共轭元落在 $S = \{\zeta_n^m | m \in (\mathbb{Z}/n\mathbb{Z})^{\times}\}$,因此 $m(x) \mid \Phi_n(x)$.
- ▶ 任给素数 $p \nmid n$, 设 ζ_p^p 的极小多项式为 $h(x) \neq m(x)$, 有 $m(x)h(x) \mid x^n 1$ 且 $h(x^p) = m(x)q(x)$.
- ▶ $x^n 1 \mod p$ 无重根推出 m(x) 和 h(x) 模 p 也是互素,因此 $m(x)q(x) \equiv (h(x))^p \mod p$ 矛盾.
- ▶ 上述结论表明 C^{p} 也是 m(x) 的根,因此 S 中的元素均是 m(x) 的根,推出 $\deg(m(x)) = \varphi(n)$.

思维拓展

仿造 244 页 22 题的证明方法,利用莫比乌斯反演公式证明第五点有理数域上分圆多项式公式

第七章第 32 题第 1 问

设
$$n = p_1^{r_1} \cdots p_s^{r_s}$$
, 则 $\Phi_n(x) = \Phi_{p_1 \cdots p_s}(x^m)$, 其中 $m = \frac{n}{p_1 \cdots p_n}$.

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$$

- ▶ 注意到 $\mu(n/d)$ 只有在 $n/d \mid p_1 \cdots p_s$ 时不取零,因此 $\Phi_n(x) = \prod_{d|p_1 \cdots p_s} (x^{dm} 1)^{\mu(p_1 \cdots p_s/d)}$.
- ▶ 注意到 $\Phi_{p_1\cdots p_s}(x) = \prod_{d|p_1\cdots p_s} (x^d 1)^{\mu(p_1\cdots p_s/d)}$
- ▶ 因此 $\Phi_{p_1 \cdots p_s}(x^m) = \prod_{d \mid p_1 \cdots p_s} (x^{md} 1)^{\mu(p_1 \cdots p_s/d)} = \Phi_n(x)$ 是恒等式.

第七章第 32 题第 2 问

若 n 为正奇数,则 $\Phi_{2n}(x) = \Phi_n(-x)$.

数论函数的初等变形

证明

- ▶ 注意到 $\prod_{d|n} (x^d 1)^{\mu(2n/d)} \prod_{d|n} (x^d 1)^{\mu(n/d)} = 1.$
- ▶ 由于 $\sum_{d|n} \mu(n/d) = 0 (n > 1)$, 因此 $\prod_{d|n} (-1)^{\mu(n/d)} = (-1)^{\sum_{d|n} \mu(n/d)} = 1$.

思维拓展

试用一般多项式相等的证明方法证明该结论. 即证明 $\Phi_{2n}(x) \mid \Phi_{n}(-x)$ 和 $\Phi_{n}(-x) \mid \Phi_{2n}(x)$.

第七章第 32 题第 3 问

设 p 为素数且 $p \nmid n$, 则 $\frac{\Phi_n(x^p)}{\Phi_n(x)} = \Phi_{pn}(x)$.

数论函数的初等变形

证明

- ▶ 利用公式 $\Phi_n(x) = \prod_{d \mid n} (x^d 1)^{\mu(n/d)}$
- ▶ 得到 $\Phi_{pn}(x) = \prod_{d|pn} (x^d 1)^{\mu(pn/d)} = \prod_{d|n} (x^d 1)^{\mu(pn/d)} \cdot \prod_{d|n} (x^{pd} 1)^{\mu(n/d)}$.
- $\Phi_{n}(x^{p}) = \prod_{d|n} (x^{d} 1)^{-\mu(n/d)} \cdot \prod_{d|n} (x^{pd} 1)^{\mu(n/d)}$.
- ▶ 莫比乌斯函数 μ 是乘性函数, $p \nmid n$ 和 $d \mid n$ 推出 $\mu(pn/d) = \mu(p)\mu(n/d) = -\mu(n/d)$.

思维拓展

利用第一问可以看出,若 $p \mid n$,则 $\Phi_{vn} = \Phi_n(x^p)$. 事实上,上述结论显示,只需要计算素数次分圆

多项式就可以计算一般分圆多项式表达.

第七章第 33 题

设 ζ_n 是复数域中的本原 n>2 次单位根,证明: $[\mathbb{Q}(\zeta_n+\zeta_n^{-1}):\mathbb{Q}]=\frac{\varphi(n)}{2}$.

扩张次数的传递性: [E:F] = [E:K][K:F].

证明

- ▶ 注意到 ζ_n 满足方程 $x^2 (\zeta_n + \zeta_n^{-1})x + 1 = 0$, 因此 $[\mathbb{Q}(\zeta_n) : \mathbb{Q}(\zeta_n + \zeta_n^{-1})] \le 2$.
- ▶ 注意到 $\zeta_n + \zeta_n^{-1} \in \mathbb{R}$,且 $\zeta_n \notin \mathbb{R}$,因此 $[\mathbb{Q}(\zeta_n) : \mathbb{Q}(\zeta_n + \zeta_n^{-1})] = 2$.
- ▶ 利用 $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$ 和扩张次数传递性,得到 $[\mathbb{Q}(\zeta_n + \zeta_n^{-1}):\mathbb{Q}] = \frac{\varphi(n)}{2}$.

思维拓展

能否找到代数数 α 使得 $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha + \alpha^{-1})$? 能否找到虚代数数 α 使得 $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha + \alpha^{-1})$?

第八章第 20 题

设 F 是特征不为 2 的域,若 F 包含一个 n 次本原单位根且 n 为奇数,则 F 包含一个 2n 次本原单位根.

本原根的基本定义

思维拓展

32 题及教材中关于 Φ_n 的结果,添加什么限制可以放在正特征的域上?

- ▶ $\partial \zeta_n$ 为 F 中的一个 n 次本原单位根.
- ▶ 令 $t = -\zeta_n$, 设 m 是最小使得 $t^m = 1$ 成立的的正整数.
- ▶ 注意到 $t^{2n} = 1$, 因此 $m \mid 2n$.
- ▶ 注意到 $\zeta_n^{2m} = 1$, 因此 $n \mid 2m$.
- ▶ n 为奇数, 因此 m=2n.
- ▶ 易错点: 直接使用 $\Phi_n(-x) = \Phi_{2n}(x)$.

第八章第 21 题

设 $F \in \mathbb{Q}$ 上的一个有限扩张,证明 F 只包含有限多个单位根.

欧拉函数的粗略估计

思维拓展

设 F 是 $\mathbb Q$ 上的有限扩张,是否存在中间域 K 使 得 K 中不包含 n>2 次单位根,且 $F=K(\zeta_m)$.

- ▶ 若 $\zeta_n \in F$, 则 $[F:\mathbb{Q}] \geq [\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$
- ▶ 直接利用公式验证 $\varphi(n) \geq \frac{\sqrt{n}}{2}$.
- ▶ $S_r := \{x \in \mathbb{C} | \exists n \leq r, x^n = 1\}$ 是有限的.
- ▶ 若 F 中有无限多个单位根,则存在 $\zeta_m \in F$, 这里 $m > 4[F: \mathbb{O}]^2$.
- ▶ $[F:\mathbb{Q}] > \varphi(m) \ge \sqrt{m}/2 > [F:\mathbb{Q}]$ 矛盾.

给定子群的固定子域

第八章第 11 题

设 $E = \mathbb{F}_p(t)$ 为单超越扩张, $\sigma \in \operatorname{Gal}(E/\mathbb{F}_p)$ 使得 $\sigma(t) = t + 1$,令 $G = <\sigma>$,决定 G 的不动域 E^G .

不动域定义: $E^G = \{ \alpha \in E | \tau(\alpha) = \alpha, \forall \tau \in G \}$

总结

Artin 引理的作用是确定寻找不动元素的范围, 否则无法确定是否已经找完了所有的不动元.

- ▶ 确定群的大小:由于 $\sigma^m(t) = t + m$,因此 $G \neq p$ 阶群,Artin 引理表明 $[E:E^G] = p$.
- ▶ 确定不动元素: 注意到 $\sigma(t^p t) = (t+1)^p (t+1) = t^p t, \text{ 因此}$ $\mathbb{F}_p(t^p t) \subset E^G.$
- ▶ 检验: $p \ge [E : \mathbb{F}_p(t^p t)] \ge [E : E^G] = p$ 推出二者相等.

第八章第 12 题

设 $E = \mathbb{C}(t)$, $\sigma, \tau \in \operatorname{Gal}(E/\mathbb{C})$ 满足

$$\sigma(t) = \omega t, \tau(t) = t^{-1}$$
,其中 ω 是 3 次本原根. 证

明: $G = <\sigma, \tau>$ 是 6 阶群, $E^G = \mathbb{C}(t^3 + t^{-3})$.

Artin 引理

思维拓展

将题中 ω 改为 ζ_n , 即 n 次本原单位根, 那么 G的表现如何?固定子域是什么?

- ▶ 验证得到 $\sigma^3 = 1 = \tau^2$, $\tau \sigma = \sigma^2 \tau$, 因此 G中元素形如 $\sigma^i \tau^j$ 为 6 阶群. $[E:E^G]=6$.
- ▶ 进一步有 $\mathbb{C}(t^3+t^{-3})\subset E^G$
- ▶ 因此 $6 > [E : \mathbb{C}(t^3 + t^{-3})] > [E : E^G] = 6$, 推出二者相等.

Lüroth 定理

设 F 是一个域, t 是未定元, 则域扩张 F(t)/F的每一个中间域均形如 F(u), 其中 $u \in F(t)$.

超越扩张中的不可约多项式

思维拓展

L 的固定子群 Gal(F(t)/L) 应该如何通过 L = F(u) 和 $u = \frac{f(t)}{g(t)}$ 去刻画?

- ▶ 设 $L \neq F$ 是中间域, $u = \frac{f(t)}{g(t)} \in L \setminus F$ 是集 合 $L \setminus F$ 中次数最低的元素,这里次数定义 为 $\max\{\deg(f(t)),\deg(g(t))\}$,且二者互素.
- ▶ $h(T) = f(T) ug(T) \in L[T]$ 是 t 在 L 上的 零化多项式, f(T) 和 g(T) 互素推出 h(T)在 L 中不可约, [F(t):L] = deg(h(T)).
- ▶ $h(T) \in F(u)[T]$ 是不可约的, 推出 h(T) 在 F(u) 中不可约, $[F(t):F(u)] = \deg(h(T)).$
- ▶ $F(u) \subset L$ 推出 F(u) = L.

固定子域与 Galois 子群的对应

设 \mathbb{F}_{a^m} 为有限域, 证明 $\operatorname{Gal}(\mathbb{F}_{a^m}/\mathbb{F}_a)$ 的子群 H所对应的固定子域 $\mathbb{F}_{q^m}^H$ 恰好给出了 $\mathbb{F}_{q^m}/\mathbb{F}_q$ 的 所有中间域.

有限域上有限扩张的 Galois 群

总结

该结论推至一般的域上。就是域扩张的 Galois 基本定理. 即 Galois 扩张的中间域与扩张的 Galois 群的子群——对应.

- ▶ $Gal(\mathbb{F}_{a^m}/\mathbb{F}_a)$ 是 m 阶循环群,循环群的生 成元为 $\sigma: x \to x^q$.
- ▶ 作为循环群,任给 $n \mid m$ 恰有一个 m/n 阶 子群 $H_n = <\sigma^n>$.
- ▶ 可以验证 $\mathbb{F}_{a^m}^{H_n} = \mathbb{F}_{a^n}$, 这与 $\mathbb{F}_{a^m}/\mathbb{F}_a$ 的中间 域——对应.

计算 Galois 群

第八章第 17 题第 3 问

计算 $x^4 - 2$ 在 $\mathbb{Q}(\sqrt{-1})$ 上的群.

Artin 引理及其推论: $Gal(K/K^H) = H$

思维拓展

试用教材 P262 定理 6 直接解决该问题.

- ▶ 彭老师 week13 课件上给出了 $x^4 2$ 在 ℚ 上的群为 $D_4 = < \sigma, \tau >$.
- ▶ 作用方式:

$$\sigma(\sqrt{-1}) = \sqrt{-1}, \sigma(\sqrt[4]{2}) = \sqrt{-1}\sqrt[4]{2};$$

$$\tau(\sqrt{-1}) = -\sqrt{-1}, \tau(\sqrt[4]{2}) = \sqrt[4]{2}.$$

- ▶ 现在需要确定固定 $\mathbb{Q}(\sqrt{-1})$ 的子群 H, 可以验证 $H = <\sigma>$.
- ▶ $x^4 2$ 在 $\mathbb{Q}(\sqrt{-1})$ 上的群为 H, 是四阶循 环群.

第八章第 35 题

写出 $f(x) = x^5 - 2$ 在 \mathbb{Q} 上的 Galois 群.

生成元的代数关系

思维拓展

任给素数 p 确定 x^p-2 在 $\mathbb Q$ 上的 Galois 群.

- ▶ f 在 \mathbb{Q} 上的分裂域为 $K = \mathbb{Q}(\sqrt[5]{2}, \zeta_5)$.
- ▶ $x^4 + x^3 + x^2 + x + 1$ 在 $\mathbb{Q}(\sqrt[5]{2})$ 上不可约, 这是因为 $\mathbb{Q}(\sqrt[5]{2})/\mathbb{Q}$ 没有非平凡中间域.
- ▶ $[K: \mathbb{Q}] = 20$, 表明 ζ_5 与 $\sqrt[5]{2}$ 是互不影响.
- ▶ 确定群中的元素: σ_i : $\sqrt[5]{2} \rightarrow \sqrt[5]{2} \cdot \zeta_5^i$, τ_j : $\zeta_5 \rightarrow \zeta_5^j$, 其中 $0 \le i \le 4$, $1 \le j \le 4$.

第八章第 35 题第 2 问

写出 $f(x) = x^5 - 2$ 在 $\mathbb{Q}(\sqrt{5})$ 上的 Galois 群.

Artin 引理及其推论

思维拓展

 $\mathbb{Q}(\sqrt{5})$ 是 $\mathbb{Q}(f)$ 的二次子域,还有其他不同的二次子域吗? 对于素数 p,令 $f(x) = x^p - 2$,试确定 $\mathbb{Q}(f)$ 的所有二次子域.

- ▶ $s = \zeta_5 + \zeta_5^4$ 满足 $s^2 = \zeta_5^2 + \zeta_5^3 + 2 = -s + 1$, 因此 $s = \frac{-1 \pm \sqrt{5}}{2}$.
- ▶ 这表明 $\sqrt{5} \in K = \mathbb{Q}(f)$, 且 $\tau_4(\sqrt{5}) = \sqrt{5}$.
- ▶ 这表明 $\sigma_i \tau_j (0 \le i \le 4, j = 1, 4)$ 固定 $\sqrt{5}$

置换群 S_n 的生成元

第二章第 10 题

证明 S_n 可由 n-1 个对换 $(1i)(2 \le i \le n)$ 生成, S_n 也可由 n-1 个对换 $(i \ i+1)(1 \le i \le n-1)$ 生成.

S_n 中元素运算法则

思维拓展

 S_n 中的元素均可写作对换的乘积, $\sigma \in S_n$,那么 σ 必可用最少的对换的乘积进行表达,此时对换的数量如何刻画?如 (12) = (12)(34)(34),前者就是最少的.

- $ightharpoonup S_n$ 中任一元素均可写作不相交的轮换乘积.
- $(i_1 \ i_2 \cdots i_k) = (1 \ i_1)(1 \ i_k) \cdots (1 \ i_1),$ 其中 i_j 是两两不同的数,且 $i_j \neq 1(j \neq 1)$.
- ▶ 这表明 S_n 中的任一元素可以写作 (1 i) 型 对换乘积.
- ▶ 注意到 $(1 \ i) =$ $(12)(23)\cdots(i-1 \ i)(i-1 \ i-2)\cdots(32)(21),$ 因此命题成立.

第二章第 11 题

 S_n 可由 (12) 和 (123 · · · n) 生成.

 S_n 中元素运算法则

思维拓展

是否任给对换和 n 轮换均可生成 S_n ?

- ▶ 只需要去生成 $(i i + 1)(1 \le i \le n 1)$.
- ► $(12 \cdots n)(i \ i+1)(12 \cdots n)^{-1} = (i+1 \ i+2),$ 其中 $i \boxtimes 1 \boxtimes n-2$
- ▶ 将 (12) 代入即可生成 (23),···, (n-1 n).

问题补充和方法扩张

问题 1

设 L/F 是域扩张, $f(x) \in F[x]$ 是不可约多项式, 若已知 f 在 F 上的群, 如何考虑 f(x) 在 L 上的群?

简要说明

- ▶ 设 $E \neq f$ 在 $F \neq F$ 上的分裂域,则 f 在 $E \neq F$ 上的分裂域为 $E \neq E$ $E \neq F$
- ▶ 有 $Gal(EL/L) \cong Gal(E/E \cap L)$,即 f(x) 在 L 上的群为 Gal(E/F) 中保持 $E \cap L$ 元素不动的元素 全体、特别的、若 $E \cap L = F$,则二者相同.

问题 2

Kronecker-Weber 定理表明每一个有限 Abel 数域 (即 Galois 群为交换群的 $\mathbb Q$ 上有限 Galois 扩张) 均含于某一个分圆域中. $\mathbb Q$ 上的二次扩张总是一个 Abel 数域,那么如何寻找包含它的分圆域呢?

简要说明

- ▶ 回顾 $\zeta_5 + \zeta_5^4 = \frac{-1 \pm \sqrt{5}}{2}$. 类似的, $1 + \zeta_p + \dots + \zeta_p^{p-1} = 1 + \sum_{a=1}^{(p-1)/2} \zeta_p^{a^2} + \sum_{b=1}^{(p-1)/2} \zeta_p^{rb^2}$,其中 r 是模 p 的非平凡剩余.
- ▶ 进行变形得到 $1 + 2\sum_{a=1}^{(p-1)/2} \zeta_p^{a^2} = \sum_{a=1}^{(p-1)} \left(\frac{a}{p}\right) \zeta_p^a = s.$
- ▶ 因此 $\sqrt{p} \in \mathbb{Q}(\zeta_{4p})$, 进一步的 $\sqrt{d} \in \mathbb{Q}(\zeta_{4d})$.