Imaging through turbulence (2)

EC 522 Computational Optical Imaging

Lei Tian

Admins

- » HWs
 - » HW 6: posted, due 4/17
- » Group lecture
 - » Reach out to me & your student mentor for discussions if needed
 - » All questions are good questions
 - » Grades are based on the demonstration of technical comprehension during the presentation

Group lectures begin					
2/10	Group rec	tures begin			
3/18 (M)	Selected Topic in computational imaging		Group 1	HW 5: inverse problem 2	HW 4
3/20 (W)	Selected Topic in computational imaging		Group 2		
3/25 (M)	Selected Topic in computational imaging		Group 3		
3/27 (W)	Selected Topic in computational imaging		Group 4		
4/1 (M)	Selected Topic in computational imaging		Group 5	HW 6: inverse problem 3	HW 5
4/3 (W)	Selected Topic in computational imaging		Group 6		
4/8 (M)	Selected Topic in computational imaging		Group 7		
4/10 (W)	Selected Topic in computational imaging		Group 8		
4/15 (M)	Patriots' Day Holiday				
4/17 (W)	Selected Topic in computational imaging		Group 9		HW 6
4/22 (M)	Cancelled				
4/24 (W)	Final Projects		Group 1-3		
4/29 (M)	Final Projects		Group 4-6		
5/1 (W)	Final Projects		Group 7-9		

Theme: Computational photography

Team 4 - 3/27 (W) / / 4/29 (M)

Paper: CLIP

- Saini Ye
- Chen Qian
- Yuxiang Su

Student mentor: **Qianwan Yang**

Group Lecture / Class Project 5: Computational 3D photography

Team 5 - 4/1 (M) / 4/29 (M)
Paper: Depth from defocus

- Ian Lee
- Susan Zhang
- Wangyi Chen

Student Mentor: Qianwan Yang

Group Lecture / Class Project 9:
Computational imaging in complex media

Synthetic Input 15yn

Basis w

Physics-based differentiable simulator

Loss

Redegraded 15yn

Redegrade

Team 6 - 4/3 (W) / 4/29 (M)

Paper: Turbulence

- Shuyue Jia
- Hua Tong
- Yujie Zheng

Student mentor: Tongyu Li

Team 7 - 4/8 (M) / 5/1 (W)

Paper: NeuWS

- Noa Margolin
- Nolan Vild
- Adhithi Ramasubramanian

Student Mentor: **Hao Wang**

Theme: computational microscopy

Team 8 - 4/10 (W) / 5/1 (W)

- · Yi Shen
- Deming Li
- Kara Stratton

Student mentor:

Tongyu Li

Team 9 - 4/17 (W) / 5/1 (W)

- Rachel Chan
- Qilin Deng

Student Mentor:

Joe Greene

Why imaging through turbulence

Introduction to Adaptive Optics

Precursor: rays & wavefront

rays & wavefront

diverging spherical wave

converging spherical wave

Remember: wave-fronts ⊥ to rays

Rays travel left → right

Rays of light bend when index of refraction Wavefront is also bent accordingly

 Light travels slower in more optically dense (higher index of refraction n) materials

» Causes rays to bend at the interface of two materials

Atmospheric perturbations cause distorted wavefronts

Turbulence leads to fuzzy images

Turbulence in earth's atmosphere makes stars twinkle

More importantly, turbulence spreads out light; makes it a blob rather than a point

Solution? → Adaptive Optics

Infra-red images of a star, from Lick Observatory adaptive optics system

Solution? → Adaptive Optics

How Adaptive Optics works?

Feedback loop:
next cycle
corrects the
(small) errors of
the last cycle

How Adaptive Optics works?

Measure details of blurring from "guide star" near the object you want to observe

Calculate (on a computer) the shape to apply to deformable mirror to correct blurring

Light from both guide star and astronomical object is reflected from deformable mirror; distortions are removed

How Adaptive Optics works? Need for "guide star"

If there's no close-by "real" star, create one with a laser

» Use a laser beam to create artificial — "star" at altitude of 100 km in atmosphere

How Adaptive Optics works? Need for "guide star"

Four lasers on Mauna Kea: Keck 1 and 2, Gemini, Subaru telescopes

How Adaptive Optics works? How to measure the wavefront? → wavefront sensing

Shack-Hartmann wavefront sensor

How Adaptive Optics works? How to measure the wavefront? → wavefront sensing

Shack-Hartmann wavefront sensor

How Adaptive Optics works? How to physically correct for the wavefront?

Emerging idea: Computational Adaptive Optics