Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Белгородский государственный технологический университет им. В.Г. Шухова»

(БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №6

По дисциплине: «Основы программирования»

Тема: «Введение в функции»

Выполнил: студент группы ВТ-231

Борченко Александр Сергеевич

Проверили:

Черников Сергей Викторович

Новожен Никита Викторович

Цель работы: получение навыков написания функций при решении простых задач. Закрепление навыков разработки алгоритмов разветвляющейся и циклической структуры. Получение навыков формулирования спецификаций к разрабатываемым функциям.

Содержание работы:

Вадача №1: Напишите функцию abs для вычисления модуля вещественного числа x 4
Вадача №2: Напишите функцию <i>max</i> 2, которая возвращает максимальное вначение из двух целочисленных переменных типа <i>int</i>
Вадача №3: Напишите функцию <i>max</i> 3, которая возвращает максимальное вначение из трёх целочисленных переменных типа <i>int</i>
Вадача №4: Напишите функцию $getDistance$, которая вычисляет расстояние между двумя точками, заданными целочисленными координатами $(x1, y1)$, $(x2, y2)$
Вадача №5: Напишите функцию $solveX2$, которая выводит корни квадратного уравнения: $ax2 + bx + c = 0$ ($a \neq 0$) Найденные корни должны быть выведены в теле функции. Если действительных корней нет, выведите соответствующее сообщение
Вадача №6: Напишите функцию $isDigit$, которая возвращает значение истина', если символ x является цифрой, 'ложь' - в противном случае 10
Вадача №7: Напишите функцию $swap$, которая принимает две переменные гипа $float$ и обменивает их значения11
Вадача №8: Напишите функцию $sort2$, которая упорядочивает значения a и b гипа $float$. Т.е. если $a > b$ то после выполнения функции значение переменной a должно быть не больше значения переменной b
Вадача №9: Напишите функцию <i>sort</i> 3, которая упорядочивает значения переменных a, b, c типа $float$ таким образом, чтобы: $a \le b \le c$
Вадача №10: Напишите функцию, которая возвращает значение 'истина', если можно составить треугольник с целочисленными сторонами a, b, c ($a, b, c \in N$), 'ложь' - в противном случае
Вадача №11: Напишите функцию getTriangleTypeLength, которая возвращает значение 0, если треугольник со сторонами a, b, c является остроугольным, 1 — если прямоугольным, 2 — тупоугольным, -1 — если преугольник с такими сторонами не существует

'истина', если число является простым, иначе — 'ложь'. Приложите 3 вариации:	
(а) Без оптимизаций	17
(b) С оптимизацией перебора до \sqrt{N}	18
(c) С оптимизацией перебора до \sqrt{N} и шагом 2	19
Задача №13: Натуральное число называется совершенным, если оно равно сумме всех своих делителей, за исключением самого себя. Число $6-$ совершенное, т.к. $6=1+2+3$. Число $8-$ не совершенное, т.к. $8 \neq 1+2+4$. Дано натуральное число n . Получить все совершенные числа, меньшие n	
Задача №14: Найти количество чисел-палиндромов от 1 до <i>n</i>	21
Задача №15: В шестизначных автобусных билетах найти счастливые	22

Задача №12: Напишите функцию isPrime, которая возвращает значение

Задача №1: Напишите функцию abs для вычисления модуля вещественного числа x

Код задачи:

```
#include <stdio.h>
float abs(float x) {
    if (x < 0) {
        return -x;
    }
    else {
        return x;
    }
}
int main() {
    float n;
    scanf("%f", &n);
    printf("%f", abs(n));
    return 0;
}</pre>
```

Входные данные	Выходные данные	Примечание
-7.5	7.5	Вывод модуля
		вещественного числа

Задача №2: Напишите функцию max2, которая возвращает максимальное значение из двух целочисленных переменных типа int

Код задачи:

```
#include <stdio.h>
int max2(int a, int b) {
    return a > b ? a : b;
}
int main()
{
    int n, m;
    scanf("%d %d", &n, &m);
    printf("%d", max2(n,m));
}
```

Входные данные	Выходные данные	Примечание
77 50	50	Вывод максимального
		значения
-569 0	0	Проверка с
		отрицательными
		значениями

Задача №3: Напишите функцию max3, которая возвращает максимальное значение из трёх целочисленных переменных типа int.

Код задачи:

```
#include <stdio.h>
int max2(int a, int b) {
    return (a > b) ? a : b;
}
int max3(int a, int b, int c) {
    return max2(max2(a, b), c);
}
int main() {
    int x, y, z;
    scanf("%d %d %d", &x, &y, &z);
    printf("%d", max3(x, y, z));
}
```

Входные данные	Выходные данные	Примечание
-7 10 2	10	Работа с
		отрицательными
		значениями
7 777 900	900	Правильный поиск
		максимума из 3х
		значений

Задача №4: Напишите функцию *getDistance*, которая вычисляет расстояние между двумя точками, заданными целочисленными координатами (x1, y1), (x2, y2).

Код задачи:

```
#include <stdio.h>
#include <math.h>

double getDistance(int x1, int y1, int x2, int y2) {
    int dx = x2 - x1;
    int dy = y2 - y1;
    float distance;
    distance = sqrt(dx*dx + dy*dy);
    return distance;
}

int main() {
    int x1, y1, x2, y2;
    float distance;
    scanf("%d %d", &x1, &y1);
    scanf("%d %d", &x2, &y2);
    distance = getDistance(x1, y1, x2, y2);
    printf("%f", distance);
    return 0;
}
```

Входные данные	Выходные данные	Примечание
2 5 -3 7	$5,38516 \approx \sqrt{29}$	Поиск
		нецелочисленного
		расстояния
-6 -7 -9 -3	5	Поиск целочисленного
		расстояния

Задача №5: Напишите функцию solveX2, которая выводит корни квадратного уравнения: ax2 + bx + c = 0 ($a \neq 0$) Найденные корни должны быть выведены в теле функции. Если действительных корней нет, выведите соответствующее сообщение.

Блок-схема:

Код задачи:

```
#include <math.h>
#include <math.h>
#include <windows.h>

void solveX2(float a, float b, float c) {
    SetConsoleOutputCP(CP_UTF8);

    float D = b * b - 4 * a * c;

    if (D == 0) {
        float sqrtD = sqrt(D);
        float x = (-b - sqrtD) / (2 * a);

        printf("%f", x);

    } else if (D < 0) {
        printf("Действительных корней нет");

    } else {
        float root_D = sqrt(D);
        float x1 = (-b + root_D) / (2 * a);
        float x2 = (-b - root_D) / (2 * a);

        printf("%f %f", x1, x2);
    }
}
int main() {
    float x, y, z;
    scanf("%f %f %f", &x, &y, &z);
    solveX2(x,y,z);
    return 0;
```

Входные данные	Выходные данные	Примечание
1 -5 4	4 1	Правильный поиск
		корней, при D > 0
16 -40 25	1,25	Поиск корня при D = 0
2 1 5	Действительных корней	Проверка на D < 0
	нет	

Задача №6: Напишите функцию isDigit, которая возвращает значение 'истина', если символ x является цифрой, 'ложь' - в противном случае.

Код задачи:

```
#include <stdio.h>
#include <stdbool.h>

bool isDigit(char x) {
    return x >= '0' && x <= '9';
}

int main()
{
    char x = getchar();
    printf("%d", isDigit(x));
    return 0;
}</pre>
```

Входные данные	Выходные данные	Примечание
Z	0	Проверка заглавной
		буквы
a	0	Проверка строчной
		буквы
9	1	Проверка цифры

Задача №7: Напишите функцию *swap*, которая принимает две переменные типа *float* и обменивает их значения.

Код задачи:

```
#include <stdio.h>

float swap(float *a, float *b) {
    float t = *a;
    *a = *b;
    *b = t;
}

int main() {
    float a, b;
    scanf("%f %f", &a, &b);
    swap(&a, &b);
    printf("%f %f", a, b);
    return 0;
}
```

Входные данные	Выходные данные	Примечание
2.5 7.8	7.8 2.5	Правильный обмен
		значениями
		вещественных чисел

Задача №8: Напишите функцию sort2, которая упорядочивает значения a и b типа float. Т.е. если a > b то после выполнения функции значение переменной a должно быть не больше значения переменной b.

Код задачи:

```
#include <stdio.h>

float swap(float *a, float *b) {
    float t = *a;
    *a = *b;
    *b = t;
}

float sort2(float *a, float *b) {
    if (*a > *b)
        swap(a, b);
}

int main() {
    float a, b;
    scanf("%f %f", &a, &b);
    sort2(&a, &b);
    printf("%f %f", a, b);

    return 0;
}
```

Входные данные	Выходные данные	Примечание
9.5 -4.4	-4.4 9.5	Проверка с
		отрицательными
		числами
7.2 9.9	7.2 9.9	Правильное
		упорядочивание с
		положительными
		числами

Задача №9: Напишите функцию *sort* 3, которая упорядочивает значения переменных a, b, c типа float таким образом, чтобы: $a \le b \le c$

Код задачи:

```
#include <stdio.h>
float swap(float *a, float *b) {
    float t = *a;
    *a = *b;
    *b = t;
}

float sort2(float *a, float *b) {
    if (*a > *b)
        swap(a, b);
}

float sort3(float *a, float *b, float *c) {
    sort2(a, b);
    sort2(b, c);
    sort2(a, b);
}

int main() {
    float a, b, c;
    scanf("%f %f %f", &a, &b, &c);
    sort3(&a, &b, &c);
    printf("%f %f %f", a, b, c);
    return 0;
}
```

Входные данные	Выходные данные	Примечание
1.2 2.4 5.6	1.2 2.4 5.6	Проверка условия $a \le b$
		\leq c
12.5 5.9 -7.7	-7.7 5.9 12.5	Проверка с
		отрицательными
		числами
674	4 6 7	Работа алгоритма «Без
		багов»

Задача №10: Напишите функцию, которая возвращает значение 'истина', если можно составить треугольник с целочисленными сторонами a, b, c ($a, b, c \in N$), 'ложь' - в противном случае.

Код задачи:

```
#include <stdio.h>
#include <stdbool.h>
int swap(int *a, int *b) {
    int t = *a;
    *a = *b;
    *b = t;
}

int sort2(int *a, int *b) {
    if (*a > *b)
        swap(a, b);
}

int sort3(float *a, float *b, float *c) {
    sort2(a, b);
    sort2(b, c);
    sort2(a, b);
}

bool isTrianglePossible (int a, int b, int c) {
    sort3(&a, &b, &c);
    return a + b - c > 0;
}

int main() {
    int a, b, c;
    scanf("%d %d %d", &a, &b, &c);
    printf("%d", isTrianglePossible(a, b, c));
    return 0;
}
```

Входные данные	Выходные данные	Примечание
2 5 70	0	Треугольник с такими
		сторонами нельзя
		составить
3 4 5	1	Треугольник с такими
		сторонами можно
		составить

Задача №11: Напишите функцию *getTriangleTypeLength*, которая возвращает значение 0, если треугольник со сторонами a, b, c является остроугольным, 1 — если прямоугольным, 2 — тупоугольным, -1 — если треугольник с такими сторонами не существует

Код задачи:

```
#include <stdio.h>
#include <stdbool.h>
   int type_triangle;
       int hypotenuse = c*c;
       if (hypotenuse < square_sum_sides) {</pre>
        } else if (hypotenuse == square_sum_sides) {
           type_triangle = 1;
           type triangle = 2;
       type triangle = -1;
   return type triangle;
   printf("%d", getTriangleTypeLenght(a, b, c));
```

Входные данные	Выходные данные	Примечание
569	2	Тупоугольный
		треугольник
4 5 6	0	Остроугольный
		треугольник
8 6 10	1	Прямоугольный
		треугольник
82 6 10	-1	Треугольник с такими
		сторонами нельзя
		составить

Задача №12: Напишите функцию *isPrime*, которая возвращает значение 'истина', если число является простым, иначе — 'ложь'. Приложите 3 вариации:

(а) Без оптимизаций

Код задачи:

```
#include <stdio.h>
#include <stdbool.h>

int isPrime(int n) {
    if (n <= 1) {
        return false;
    }
    for (int i = 2; i < n; i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}

int main()
{
    int x;
    scanf("%d", &x);
    printf("%d", isPrime(x));
    return 0;
}</pre>
```

(b) С оптимизацией перебора до \sqrt{N}

Код задачи:

```
#include <stdio.h>
#include <stdbool.h>
#include <math.h>

bool isPrime(long long n) {
    if (n <= 1) {
        return false;
    }
    for (long long i = 2; i <= sqrt(n); i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}

int main() {
    long long x;
    scanf("%lld", &x);
    printf("%lld", isPrime(x));
    return 0;
}</pre>
```

(c) С оптимизацией перебора до \sqrt{N} и шагом 2

Код задачи:

```
#include <stdio.h>
#include <stdbool.h>
#include <math.h>

bool isPrime(long long n) {
    int max_d = sqrt(n);
    int d = 3;
    int is_prime = !(n == 1 || n % 2 == 0 && n != 2);
    while (d <= max_d && is_prime) {
        is_prime = n % d;
        d += 2;
    }
    return is_prime;
}

int main() {
    long long x;
    scanf("%lld", &x);
    printf("%lld", isPrime(x));
    return 0;
}</pre>
```

Входные данные	Выходные данные	Примечание
2147483647	1	Проверка огромного
		простого числа
1324165494654688587	0	Проверка огромного
		непростого числа
2	1	Проверка
		единственного, четного
		простого числа

Задача №13: Натуральное число называется совершенным, если оно равно сумме всех своих делителей, за исключением самого себя. Число 6 — совершенное, т.к. 6=1+2+3. Число 8 — не совершенное, т.к. $8 \neq 1+2+4$. Дано натуральное число n. Получить все совершенные числа, меньшие n.

Код задачи:

```
#include <stdio.h>
#include <windows.h>

// Функция для проверки, является ли число х совершенным
int isPerfect(long long x) {
    long long sum = 0;
    for (long long i = 1; i <= x/2; i++) {
        if (x % i == 0) {
            sum += i;
        }
    }
    return sum == x;
}

// Функция для вывода всех совершенных чисел меньше n
void printPerfectNumbers(long long n) {
    for (long long i = 1; i < n; i++) {
        if (isPerfect(i)) {
            printf("%lld", i);
        }
    }
    printf("\n");
}
int main() {
    SetConsoleOutputCP(CP_UTF%);
    long long n;
    scanf("%lld", &n);
    printPerfectNumbers(n);
    return 0;
}</pre>
```

Входные данные	Выходные данные	Примечание
1000	6 28 496	Правильный поиск
		совершенных чисел

Задача №14: Найти количество чисел-палиндромов от 1 до n.

Код задачи:

```
#include <stdio.h>
#include <stdbool.h>
int countPalindromes(int n) {
   int palindromeCount = countPalindromes(n);
```

Входные данные	Выходные данные	Примечание
12	10 (19, 11)	Правильный поиск
		чисел-палиндромов
4000	138	Поиск большого
		количества чисел-
		палиндромов

Задача №15: В шестизначных автобусных билетах найти счастливые.

Код задачи:

```
#include <stdio.h>
int sumFirstThreeDigits(int n) {
    int num1 = n / 1000;
    int sum1 = 0;
    for(size_t i = 0; i < 3; i++) {
        sum1 += num1 % 10;
        num1 /= 10;
    }
    return sum1;
}
int sumLastThreeDigits(int n) {
    int num2 = n % 1000;
    int sum2 = 0;
    for(size_t i = 0; i < 3; i++) {
        sum2 += num2 % 10;
        num2 /= 10;
    }
    return sum2;
}
int findLuckyTickets(int x) {
    return sumFirstThreeDigits(x) == sumLastThreeDigits(x);
}
int main() {
    int n;
    scanf("%d", &n);
    printf("%d", findLuckyTickets(n));
    return 0;
}</pre>
```

Тестовые данные:

Входные данные	Выходные данные	Примечание
122320	1	Вывод 1 при
		счастливом билете
		(1+2+2=3+2)
369810	0	Вывод 0 при отсутствии
		счастливого билета
		$(3+6+9 \neq 8+1)$

Вывод: в ходе проведения лабораторной работы я получил навыки написания функций для решения задач и закрепил навыки написания тестовых данных к программам.