MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

0. Los Números Complejos

0.1. Halla el módulo y el argumento de los números complejos:

$$3+4i$$
, $(3+4i)^{-1}$, $(1+5i)^5$ y $\frac{1+i}{1-i}$.

0.2. Dibuja los conjuntos de números complejos que verifican las siguientes condiciones:

a)
$$|z| < 1 - Rez$$

a)
$$|z| < 1 - Rez$$
 b) $Re \frac{z - a}{z - b} = 0$ c) $|\frac{z - 3}{z + 3}| = 2$ d) $|z - 1| = 1$ e) $|z - 1| = |z + 1|$ f) $\overline{z} = z^{-1}$

c)
$$\left| \frac{z-3}{z+3} \right| = 2$$

d)
$$|z - 1| = 1$$

e)
$$|z-1| = |z+1|$$

f)
$$\overline{z} = z^{-1}$$

0.3. Prueba las siguientes igualdades:

a)
$$|z| = |\overline{z}|$$

b)
$$\overline{\overline{z}} = z$$

a)
$$|z| = |\overline{z}|$$
 b) $\overline{\overline{z}} = z$ c) $\overline{z+w} = \overline{z} + \overline{w}$ d) $\overline{zw} = \overline{z} \overline{w}$ e) $\overline{-z} = -\overline{z}$ f) $\overline{z^{-1}} = (\overline{z})^{-1}$

d)
$$\overline{zw} = \overline{z} \, \overline{u}$$

e)
$$-z = -\bar{z}$$

$$f) \ \overline{z^{-1}} = (\overline{z})^{-}$$

- 0.4. Para cualquier número complejo $z \in \mathbb{C} \setminus \{0\}$, prueba que: $z, -z, \overline{1/z}, \overline{-1/z}$ y 0 están alineados (o lo que es lo mismo, están sobre una misma recta).
- 0.5. a) Sea $z \neq 1, -1$ y con |z| = 1. Prueba que $\frac{1+z}{1-z}$ es un complejo imaginario puro. b) Sea z un complejo de módulo 1. Prueba que $z+z^{-1}$ es un número real.
- 0.6. Determina los números complejos z que verifican:

a)
$$z^2 = 3 - 4i$$

b)
$$z^2 + zi + 2 = 0$$

a)
$$z^2 = 3 - 4i$$
 b) $z^2 + zi + 2 = 0$ c) $z^4 - 2z^2 + 4 = 0$

0.7. Calcula: a)
$$\sqrt[5]{-1}$$
 b) $\sqrt[3]{i}$ c) $\sqrt[3]{1+i}$ d) $\sqrt[5]{-4+3i}$

b)
$$\sqrt[3]{i}$$

c)
$$\sqrt[3]{1+i}$$

d)
$$\sqrt[5]{-4+3}$$

- 0.8. a) Halla todas las raíces cuartas de i.
- b) Determina los números complejos tales que su cuadrado coincide con alguna de sus raíces cuadradas.
- c) Demuestra que las raíces n-ésimas de un número complejo no nulo se obtienen multiplicando una de ellas por las raíces n-ésimas de 1.
- d) Prueba que el producto de dos raíces n-ésimas de la unidad es de nuevo una raíz n-ésima de la unidad.
- 0.9. Demuestra que las raíces n-ésimas de 1 distintas de 1 son las soluciones de la ecuación polinómica:

$$z^{n-1} + z^{n-2} + \ldots + z + 1 = 0$$

- 0.10. Prueba que si m y n son dos números enteros y m divide a n, entonces el polinomio x^m-1 divide al polinomio $x^n - 1$.
- 0.11. Sean 1, z_1 y z_2 las tres raíces cúbicas de 1. Calcula α para que $\alpha z_2 = 1$. ¿Y para qué $\alpha z_1 = 1$?

- 0.12. Expresa $\cos 3t$ y sen 3t como polinomios de sen t y $\cos t$.
- 0.13. Si n = 2, 3, 3, 4,; prueba que:

a)
$$\cos \frac{2\pi}{n} + \cos \frac{4\pi}{n} + \dots + \cos \frac{2(n-1)\pi}{n} = -1$$
. b) $\sin \frac{2\pi}{n} + \sin \frac{4\pi}{n} + \dots + \sin \frac{2(n-1)\pi}{n} = 0$.

0.14. Sea $\sum_{n=1}^{\infty} z_n$ una serie de números complejos. Decimos que la serie es convergente si las series de números reales $\sum_{n=1}^{\infty} Rez_n$ y $\sum_{n=1}^{\infty} Imz_n$ son convergente. Y se dice que la serie converge

$$\sum_{n=1}^{\infty} z_n = \sum_{n=1}^{\infty} Rez_n + i \sum_{n=1}^{\infty} Imz_n.$$

- a) Si $\sum_{n=1}^{\infty} |z_n|$ es convergente, prueba que $\sum_{n=1}^{\infty} z_n$ también lo es. b) Prueba que $e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$ converge para todo $z \in \mathbb{C}$. c) Comprueba que $e^{it} = \cos t + i \sin t$ para todo $t \in \mathbb{R}$. Deduce que $-1 = e^{i\pi}$.
- 0.15. Para $t \in \mathbb{R}$, prueba las siguientes igualdades: a) $e^{i(t+2\pi)} = e^{it}$ b) $|e^{it}| = 1$ c) $\overline{e^{it}} = e^{-it}$

d)
$$\cos nt = \frac{e^{int} + e^{-int}}{2}$$
 e) $\sin nt = \frac{e^{int} - e^{-int}}{2i}$ f) $\int_{-\pi}^{\pi} e^{int} dt = \frac{e^{int}}{in} \Big|_{-\pi}^{\pi}$

(Indicación: Se define $\int f(t) + ig(t)dt := \int f(t)dt + i \int g(t)dt$).

- 0.16. a) Si z es una raíz del polinomio con coeficientes reales $z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$, prueba que \overline{z} también lo es.
- b) Utiliza la ecuación $z^2 + zi + 2 = 0$, para ver que el apartado anterior no es cierto en general si los coeficientes son complejos.
- 0.17. Encuentra las soluciones de la ecuación $z^3 (2+3i)z^2 z + (2+3i) = 0$, si se sabe que 2 + 3i es una solución de la misma.
- 0.18. Se pide descomponer el polinomio $x^4 + 1$ en
 - a) producto de polinomios con coeficientes en Q.
 - b) producto de polinomios con coeficientes en \mathbb{R} .
 - c) producto de polinomios con coeficientes en \mathbb{C} .

Haz lo mismo para los polinomios: $x^3 - x^2 - x - 2$ y $x^4 + x^2 + 1$.