CSE2312-001 (Fall 2020)

Homework #1

Notes:

All numbers are in base-10 unless otherwise noted. If part of a problem is not solvable, explain why in the answer area. Print out the form and handwrite your answers in the spaces below. Submit a copy with handwritten answers to Canvas before 11:59:00pm on September 17, 2020.

1. Convert the following numbers between bases:

c.
$$0x5249 = 5249$$
 (base-16) = _____(base-2)

d.
$$0x5249 = 5249$$
 (base-16) = _____(base-10)

f.
$$4095 =$$
_____(base-16)

2.	What is the range of the following C99 variable types assuming the processor uses two's compliment arithmetic for signed number representation?							
	a.	uint8_t		to				
	b.	uint16_t		to				
	c.	uint32_t		to				
	d.	int8_t		to				
	e.	int16_t		to				
	f.	int32_t		to				

3. Write the binary representation of the C99 variables given below. Example: for uint8_t x = 13, the answer would be answer is: 0000 1101 (base-2)

a. uint8_t
$$x = 27$$
;

b. uint8_t
$$x = 122$$
;

c. uint8_t
$$x = 215$$
;

d. uint8_t
$$x = 40$$
;

e. int8_t
$$x = -40$$
;

f. int8_t
$$x = -103$$
;

g. int8_t
$$x = 103$$
;

h.
$$uint16_t x = 13000;$$

i.
$$int16_t x = 13000;$$

```
j. int16_t x = -13000;
```

I.
$$int32_t x = -50;$$

m. int32_t
$$x = 50$$
;

4. Write the status of the Carry (C), Zero (Z), and Sign (S) flags after an 8-bit ALU performs an ADD operation on the following 8-bit arguments (a and b):

Hint: Remember that the ALU just sees bits and does not know if the numbers represent signed or unsigned numbers.

a.
$$uint8_t a = 91$$
, $uint8_t b = 23$

b.
$$uint8_t a = 102$$
, $uint8_t b = 3$

d. int8_t a =
$$-32$$
, int8_t b = 22

e. int8_t a =
$$100$$
, int8_t b = -100

f. int8_t a =
$$-130$$
, int8_t b = 100

5. Show the status of the Zero (Z), and Sign (S) flags and the result after each operation. Note the bases carefully.

a.
$$arg1 = 33$$
, $arg2 = 2$; $result = arg1 OR arg2$

b.
$$arg1 = 0x23$$
, $arg2 = 0x14$; $result = arg1 OR arg2$

c.
$$arg1 = 0x2C$$
, $arg2 = 0x78$; $result = arg1 AND arg2$

d.
$$arg1 = 0xA5$$
; $result = NOT arg1$

represen	tation (e.g., If R0	= 16384, then R0 LSR #1 = 81	192).				
	•	ne that the register R0 contain h a value of 2048 (0x00000800	_				
a.	R0 LSR #8:						
b.	R0 LSR #9:						
C.	R0 LSR #10:						
d.	R0 LSR #11:						
e.	R0 LSR #12:						
f.	R0 LSL #20:						
g.	R0 LSL #21:						
h.	R0 LSL #22:						
i.	R0 ASR #8:		(abnormal ASR usage)				
For these questions, assume that the register R0 contains an unsigned 32-bit integer (e.g., uint32_t) with a value of 3758096384 (0xE0000000).							
j.	R0 LSL #1:						
k.	R0 LSR #1:						
I.	R0 ASR #1:		(abnormal ASR usage)				

6. For each of the following operations, show the value of R0 in <u>base-10 unsigned</u>

<u>represe</u>	$\frac{\text{ntation}}{\text{ntation}}$ (e.g., If R0 = -64,	then R0 ASR $#1 = -32$).	
	se questions, assume tha t32_t) with a value of -4 (t the register R0 contains a sigr (0xFFFFFFFC)	ned 32-bit integer
a	. R0 ASR #2:		
b	. R0 ASR #3:		
С	. R0 ASL #2:		
d	. R0 ASL #3:		
е	. R0 ASL #28:		
f.	R0 ASL #29:		
g	. R0 ASL #30:		
h	. R0 LSR #2: usage)		(note abnormal LSR
	that the register R0 con 4 8 (0x00000008).	tains a signed 32-bit integer (e.	g., int32_t) with a
i.	R0 ASR #3:		
j.	R0 ASR #4:		
k	. R0 ASL #3:		
I.	R0 ASL #4:		
n	n. R0 LSR #3: usage)		(note abnormal LSR

7. For each of the following operations, show the value of R0 in <u>base-10 signed</u>