Twisted L-values of elliptic curves

David Ang

London School of Geometry and Number Theory

Wednesday, 19 June 2024

Let E be an elliptic curve over \mathbb{Q} .

Recall that the L-function of E is

$$L(E,s) := \prod_{p} \frac{1}{\det(1 - p^{-s} \cdot \operatorname{Fr}_{p}^{-1} \mid \rho_{E,q}^{\vee I_{p}})}.$$

Let E be an elliptic curve over \mathbb{Q} .

Recall that the L-function of E is

$$L(E,s) := \prod_{\rho} \frac{1}{\det(1 - \rho^{-s} \cdot \operatorname{Fr}_{\rho}^{-1} \mid \rho_{E,q}^{\vee I_{\rho}})}.$$

Conjecture (Birch–Swinnerton-Dyer)

- ▶ The order of vanishing r of L(E, s) at s = 1 is rk(E).
- ▶ The leading term of L(E, s) at s = 1 is

$$\lim_{s\to 1}\frac{L(E,s)}{(s-1)^r}\cdot\frac{1}{\Omega(E)}=\frac{\operatorname{Reg}(E)\cdot\operatorname{Tam}(E)\cdot\#\operatorname{III}(E)}{\#\mathrm{tor}(E)^2}.$$

Let E be an elliptic curve over \mathbb{Q} .

Recall that the L-function of E is

$$L(E,s) := \prod_{p} \frac{1}{\det(1 - p^{-s} \cdot \operatorname{Fr}_{p}^{-1} \mid \rho_{E,q}^{\vee I_{p}})}.$$

Conjecture (Birch–Swinnerton-Dyer)

- ▶ The order of vanishing r of L(E, s) at s = 1 is rk(E).
- ▶ The leading term of L(E, s) at s = 1 is

$$\underbrace{\lim_{s \to 1} \frac{L(E,s)}{(s-1)^r} \cdot \frac{1}{\Omega(E)}}_{\mathcal{L}(E)} = \underbrace{\frac{\operatorname{Reg}(E) \cdot \operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}}_{\operatorname{BSD}(E)}.$$

Let E be an elliptic curve over \mathbb{Q} . Let K be finite Galois over \mathbb{Q} .

Recall that the L-function of E/K is

$$L(E/K,s) := \prod_{\mathfrak{p}} \frac{1}{\det(1 - \operatorname{Nm}(\mathfrak{p})^{-s} \cdot \operatorname{Fr}_{\mathfrak{p}}^{-1} \mid \rho_{E,q}^{\vee I_{\mathfrak{p}}})}.$$

Conjecture (Birch-Swinnerton-Dyer)

- ▶ The order of vanishing r of L(E/K, s) at s = 1 is rk(E/K).
- ▶ The leading term of L(E/K, s) at s = 1 is

$$\underbrace{\lim_{s\to 1} \frac{L(E/K,s)}{(s-1)^r} \cdot \frac{\sqrt{\Delta(K)}}{\Omega(E/K)}}_{\mathcal{L}(E/K)} = \underbrace{\frac{\mathrm{Reg}(E/K) \cdot \mathrm{Tam}(E/K) \cdot \#\mathrm{III}(E/K)}{\#\mathrm{tor}(E/K)^2}}_{\mathrm{BSD}(E/K)}.$$

Artin's formalism for L-functions gives

$$L(E/K, s) = \prod_{\rho: \operatorname{Gal}(K/\mathbb{Q}) \to \mathbb{C}^{\times}} L(E, \rho, s)^{\dim \rho}.$$

Artin's formalism for L-functions gives

$$L(E/K,s) = \prod_{\rho: \operatorname{Gal}(K/\mathbb{Q}) \to \mathbb{C}^{\times}} L(E,\rho,s)^{\dim \rho}.$$

Here the L-function of E twisted by an Artin representation ρ is

$$L(E,\rho,s) := \prod_{p} \frac{1}{\det(1-p^{-s} \cdot \operatorname{Fr}_{p}^{-1} \mid (\rho_{E,q}^{\vee} \otimes \rho^{\vee})^{l_{p}})}.$$

Artin's formalism for L-functions gives

$$\mathit{L}(\mathit{E}/\mathit{K}, \mathit{s}) = \prod_{\rho: \mathrm{Gal}(\mathit{K}/\mathbb{Q}) \to \mathbb{C}^{\times}} \mathit{L}(\mathit{E}, \rho, \mathit{s})^{\dim \rho}.$$

Here the L-function of E twisted by an Artin representation ρ is

$$L(E, \rho, s) := \prod_{p} \frac{1}{\det(1 - p^{-s} \cdot \operatorname{Fr}_{p}^{-1} \mid (\rho_{E,q}^{\vee} \otimes \rho^{\vee})^{I_{p}})}.$$

If K is abelian, then ρ corresponds to a Dirichlet character χ , and

$$L(E,s) = \sum_{n \in \mathbb{N}} \frac{a_n}{n^s} \quad \stackrel{\chi}{\leadsto} \quad L(E,\chi,s) = \sum_{n \in \mathbb{N}} \frac{a_n \chi(n)}{n^s}.$$

Artin's formalism for L-functions gives

$$L(E/K,s) = \prod_{\rho: \operatorname{Gal}(K/\mathbb{Q}) \to \mathbb{C}^{\times}} L(E,\rho,s)^{\dim \rho}.$$

Here the L-function of E twisted by an Artin representation ρ is

$$L(E, \rho, s) := \prod_{p} \frac{1}{\det(1 - p^{-s} \cdot \operatorname{Fr}_{p}^{-1} \mid (\rho_{E,q}^{\vee} \otimes \rho^{\vee})^{I_{p}})}.$$

If K is abelian, then ρ corresponds to a Dirichlet character χ , and

$$L(E,s) = \sum_{n \in \mathbb{N}} \frac{a_n}{n^s} \quad \stackrel{\chi}{\leadsto} \quad L(E,\chi,s) = \sum_{n \in \mathbb{N}} \frac{a_n \chi(n)}{n^s}.$$

What can be said about $L(E, \rho, s)$ algebraically and analytically?

Algebraic result: twisted conjectures

Conjecture (Deligne-Gross)

The order of vanishing of $L(E, \rho, s)$ at s = 1 is $\langle \rho, E(K) \otimes_{\mathbb{Z}} \mathbb{C} \rangle$.

Algebraic result: twisted conjectures

Conjecture (Deligne-Gross)

The order of vanishing of $L(E, \rho, s)$ at s = 1 is $\langle \rho, E(K) \otimes_{\mathbb{Z}} \mathbb{C} \rangle$.

What is the conjectural leading term? Assuming $L(E,1) \neq 0$, define

$$\mathcal{L}(E,\chi) := L(E,\chi,1) \cdot \frac{p}{\tau(\chi) \cdot \Omega(E)},$$

for any primitive Dirichlet character χ of conductor p.

Algebraic result: twisted conjectures

Conjecture (Deligne-Gross)

The order of vanishing of $L(E, \rho, s)$ at s = 1 is $\langle \rho, E(K) \otimes_{\mathbb{Z}} \mathbb{C} \rangle$.

What is the conjectural leading term? Assuming $L(E,1) \neq 0$, define

$$\mathcal{L}(E,\chi) := L(E,\chi,1) \cdot \frac{p}{\tau(\chi) \cdot \Omega(E)},$$

for any primitive Dirichlet character χ of conductor p.

Example (Dokchitser–Evans–Wiersema 2021)

Let E_1 and E_2 be the elliptic curves given by 1356d1 and 1356f1, and let χ be the cubic character of conductor 7 given by $\chi(3) = \zeta_3^2$. Then

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1,$$

for
$$K = \mathbb{Q}$$
 and $K = \mathbb{Q}(\zeta_7)^+$, but $\mathcal{L}(E_1, \chi) = \zeta_3^2$ and $\mathcal{L}(E_2, \chi) = -\zeta_3^2$.

Algebraic result: determining units

Assume E has conductor N and satisfies $c_1(E)=1$, and assume χ has odd prime conductor $p \nmid N$ and odd prime order $q \nmid \#E(\mathbb{F}_p) \cdot \mathrm{BSD}(E)$.

Algebraic result: determining units

Assume E has conductor N and satisfies $c_1(E)=1$, and assume χ has odd prime conductor $p \nmid N$ and odd prime order $q \nmid \#E(\mathbb{F}_p) \cdot \mathrm{BSD}(E)$.

Theorem (Dokchitser-Evans-Wiersema 2021)

Let $\zeta := \chi(N)^{(q-1)/2}$. Then $\mathcal{L}(E,\chi) \cdot \zeta \in \mathbb{Z}[\zeta_q]^+ \setminus \{0\}$, and has norm

$$\operatorname{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_q)^+}(\mathcal{L}(E,\chi)\cdot\zeta) = \pm \underbrace{\sqrt{\frac{\operatorname{BSD}(E/K)}{\operatorname{BSD}(E)}}}_{\mathcal{B}},$$

where K is the degree q subfield of $\mathbb{Q}(\zeta_p)$ cut out by χ .

Algebraic result: determining units

Assume E has conductor N and satisfies $c_1(E)=1$, and assume χ has odd prime conductor $p \nmid N$ and odd prime order $q \nmid \#E(\mathbb{F}_p) \cdot \mathrm{BSD}(E)$.

Theorem (Dokchitser-Evans-Wiersema 2021)

Let $\zeta:=\chi(N)^{(q-1)/2}$. Then $\mathcal{L}(E,\chi)\cdot\zeta\in\mathbb{Z}[\zeta_q]^+\setminus\{0\}$, and has norm

$$\operatorname{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_q)^+}(\mathcal{L}(E,\chi)\cdot\zeta) = \pm \underbrace{\sqrt{\frac{\operatorname{BSD}(E/K)}{\operatorname{BSD}(E)}}}_{B},$$

where K is the degree q subfield of $\mathbb{Q}(\zeta_p)$ cut out by χ .

Theorem (A. 2024)

If q = 3, then

$$\mathcal{L}(E,\chi)\cdot\zeta = \begin{cases} B & \text{if } \#E(\mathbb{F}_p)\cdot\mathrm{BSD}(E)\cdot B^{-1}\equiv 2 \mod 3\\ -B & \text{if } \#E(\mathbb{F}_p)\cdot\mathrm{BSD}(E)\cdot B^{-1}\equiv 1 \mod 3 \end{cases}.$$

Assume E as before, and let q be an odd prime. As p varies over odd primes $p \equiv 1 \mod q$, how does $\mathcal{L}(E,\chi)$ vary, for some uniform choice of primitive Dirichlet characters χ of conductor p and order q?

Assume E as before, and let q be an odd prime. As p varies over odd primes $p \equiv 1 \mod q$, how does $\mathcal{L}(E,\chi)$ vary, for some uniform choice of primitive Dirichlet characters χ of conductor p and order q?

Assume E as before, and let q be an odd prime. As p varies over odd primes $p \equiv 1 \mod q$, how does $\mathcal{L}(E,\chi)$ vary, for some uniform choice of primitive Dirichlet characters χ of conductor p and order q?

Example $(E = 20a1, q = 3)$											
p	7	13	19	31	37	43	61	67	73	7	79
$\mathcal{L}(E,\chi)$	2	$-2\zeta_3$	-4 -	$-6\zeta_3$	$-6\zeta_3$			$-2\zeta_3$	0	-6	$\bar{5}\zeta_3$
mod 3	2	1	2	0	0	0	2	1	0		0
p	97	103	109	127	139	1	51	157	163	18	1
$\mathcal{L}(E,\chi)$	-4	-6ζ ₃	$6\zeta_3$	6	18ζ	3 -	4	$30\zeta_3$	$4\zeta_3$	-20	<u>-</u> -3
mod 3	2	0	0	0	0		2	0	1	1	
p	193	199	211	. 2	23 2	229	241	27	1 2	277	283
$\mathcal{L}(E,\chi)$	-4	$4\zeta_3$	10ζ	3 -2	$4\zeta_3$	0	-14(-6G	,3	0	$6\zeta_3$
mod 3	2	1	1		0	0	1	0		0	0

Assume E as before, and let q be an odd prime. As p varies over odd primes $p \equiv 1 \mod q$, how does $\mathcal{L}(E,\chi)$ vary, for some uniform choice of primitive Dirichlet characters χ of conductor p and order q?

Kisilevsky–Nam 2022 gave heuristic predictions on the asymptotic distribution of $\mathcal{L}(E,\chi)$, and computed data for the six elliptic curves given by 11a1, 14a1, 15a1, 17a1, 19a1, and 37b1.

Analytic result: residual densities

Let $X_{E,q}^{< n}$ be the set of order q primitive Dirichlet characters χ of conductor $p_{\chi} < n$ such that $\chi_1 \equiv \chi_2$ whenever $p_{\chi_1} = p_{\chi_2}$. Define

$$\delta_{E,q}(\lambda) := \lim_{n \to \infty} \frac{\#\{\chi \in X_{E,q}^{\leq n} \mid \mathcal{L}(E,\chi) \equiv \lambda \mod (1 - \zeta_q)\}}{\#X_{E,q}^{\leq n}}.$$

Analytic result: residual densities

Let $X_{E,q}^{< n}$ be the set of order q primitive Dirichlet characters χ of conductor $p_{\chi} < n$ such that $\chi_1 \equiv \chi_2$ whenever $p_{\chi_1} = p_{\chi_2}$. Define

$$\delta_{E,q}(\lambda) := \lim_{n \to \infty} \frac{\#\{\chi \in X_{E,q}^{< n} \mid \mathcal{L}(E,\chi) \equiv \lambda \mod (1 - \zeta_q)\}}{\#X_{E,q}^{< n}}.$$

Theorem (A. 2024)

Let $m = 1 - \operatorname{ord}_q(\mathrm{BSD}(E))$. Then $\delta_{E,q}$ counts certain matrices in

$$\mathcal{G}_{E,q^m}:=\{M\in \mathrm{im}\overline{
ho_{E,q^m}}\mid \det(M)\equiv 1\mod q\}.$$

Analytic result: residual densities

Let $X_{E,q}^{< n}$ be the set of order q primitive Dirichlet characters χ of conductor $p_{\chi} < n$ such that $\chi_1 \equiv \chi_2$ whenever $p_{\chi_1} = p_{\chi_2}$. Define

$$\delta_{E,q}(\lambda) := \lim_{n \to \infty} \frac{\#\{\chi \in X_{E,q}^{< n} \mid \mathcal{L}(E,\chi) \equiv \lambda \mod (1 - \zeta_q)\}}{\#X_{E,q}^{< n}}.$$

Theorem (A. 2024)

Let $m = 1 - \operatorname{ord}_q(\mathrm{BSD}(E))$. Then $\delta_{E,q}$ counts certain matrices in

$$\mathcal{G}_{E,q^m}:=\{M\in \mathrm{im}_{\overline{
ho_{E,q^m}}}\mid \det(M)\equiv 1\mod q\}.$$

If $\overline{\rho_{E,q}}$ is surjective, then

$$\delta_{E,q}(\lambda) = \begin{cases} \frac{1}{q-1} & \text{if } L_0(q)L_4(q) = 1 \\ \frac{q}{q^2-1} & \text{if } L_0(q)L_4(q) = 0 \\ \frac{1}{d+1} & \text{if } L_0(q)L_4(q) = -1 \end{cases}, \qquad L_n(q) := \left(\frac{\frac{\lambda}{\mathrm{BSD}(E)} + n}{q}\right).$$

Analytic result: explicit algorithm

Theorem (A. 2024)

If q = 3, then $\delta_{E,3}$ only depends on $\operatorname{im} \overline{\rho_{E,9}}$ and $b := 3\mathrm{BSD}(E) \bmod 9$.

Analytic result: explicit algorithm

Theorem (A. 2024)

If q=3, then $\delta_{E,3}$ only depends on $\operatorname{im} \overline{\rho_{E,9}}$ and $b:=3\mathrm{BSD}(E)$ mod 9.

$\mathrm{im}_{\overline{\rho_{E,3}}}$ or $\mathrm{im}_{\overline{\rho_{E,9}}}$	Ь	$\delta_{E,3}(0)$	$\delta_{E,3}(1)$	$\delta_{E,3}(2)$	example	
$\mathrm{GL}_2(\mathbb{F}_3)$	3	3/8	1/4	3/8	11a2	
GL2(±3)	6	3/8	3/8	1/4	11a1	
3B, 3Cs	3	1/2	0	1/2	50b3	
JB, 3Cs	6	1/2	1/2	0	50b1	
3Nn	3	1/8	3/4	1/8	704e1	
Sivii	6	1/8	1/8	3/4	245b1	
3Ns	3	1/4	1/2	1/4	1690d1	
3143	6	1/4	1/4	1/2	338d1	
3.8.0.1	any	5/9	2/9	2/9	20a1	
9.24.0.2,	1, 4, 7	1/3	2/3	0	108a1	
9.72.0.(8,9,10),	1, 4, 7	1/3	2/3	0		
27.648.18.1,	2, 5, 8	1/3	0	2/3	36a1	
27.1944.55.(43,44)	2, 3, 6	1/3		2/3		
any	1	0	0	14a1		

Manin's formalism for modular symbols compares L(E,1) and $L(E,\chi,1)$.

Manin's formalism for modular symbols compares L(E,1) and $L(E,\chi,1)$.

The Hecke action on the space of modular symbols gives

$$-L(E,1) \cdot \#E(\mathbb{F}_p) = \sum_{z=1}^{p-1} \int_0^{\frac{z}{p}} 2\pi i f_E(z) dz.$$

Manin's formalism for modular symbols compares L(E, 1) and $L(E, \chi, 1)$.

The Hecke action on the space of modular symbols gives

$$-L(E,1)\cdot \#E(\mathbb{F}_p) = \sum_{a=1}^{p-1} \int_0^{\frac{a}{p}} 2\pi i f_E(z) \mathrm{d}z.$$

On the other hand, Birch's formula can be modified to give

$$L(E,\chi,1) = \frac{\tau(\chi)}{n} \sum_{a=1}^{p-1} \overline{\chi(a)} \int_0^{\frac{d}{p}} 2\pi i f_E(z) dz.$$

Manin's formalism for modular symbols compares L(E,1) and $L(E,\chi,1)$.

The Hecke action on the space of modular symbols gives

$$-L(E,1)\cdot \#E(\mathbb{F}_p) = \sum_{a=1}^{p-1} \int_0^{\frac{a}{p}} 2\pi i f_E(z) \mathrm{d}z.$$

On the other hand, Birch's formula can be modified to give

$$L(E,\chi,1) = \frac{\tau(\chi)}{n} \sum_{a=1}^{p-1} \overline{\chi(a)} \int_0^{\frac{a}{p}} 2\pi i f_E(z) dz.$$

Scaling appropriately gives a $\mathbb{Z}[\zeta_q]$ congruence

$$-\mathcal{L}(E) \cdot \#E(\mathbb{F}_p) \equiv \mathcal{L}(E, \chi) \mod (1 - \zeta_q),$$

which proves the algebraic result.

For the analytic result, note that $\mathcal{L}(E,\chi)$ varies according to

$$\#E(\mathbb{F}_p) = 1 + \det(\rho_{E,q}(\operatorname{Fr}_p)) - \operatorname{tr}(\rho_{E,q}(\operatorname{Fr}_p)) \mod q.$$

For the analytic result, note that $\mathcal{L}(E,\chi)$ varies according to

$$\# E(\mathbb{F}_p) = 1 + \det(\rho_{E,q}(\operatorname{Fr}_p)) - \operatorname{tr}(\rho_{E,q}(\operatorname{Fr}_p)) \mod q.$$

Chebotarev's density theorem says that $ho_{{\cal E},q}({\rm Fr}_{\it p})$ varies uniformly in

$$G_{E,q^{\infty}} := \{ M \in \operatorname{im} \rho_{E,q} \mid \det(M) \equiv 1 \mod q \}.$$

For the analytic result, note that $\mathcal{L}(E,\chi)$ varies according to

$$\#E(\mathbb{F}_p) = 1 + \det(\rho_{E,q}(\operatorname{Fr}_p)) - \operatorname{tr}(\rho_{E,q}(\operatorname{Fr}_p)) \mod q.$$

Chebotarev's density theorem says that $\rho_{E,q}(\operatorname{Fr}_p)$ varies uniformly in

$$\mathcal{G}_{E,q^\infty} := \{M \in \mathrm{im}
ho_{E,q} \mid \det(M) \equiv 1 \mod q\}.$$

The following result reduces the computation from $G_{E,q^{\infty}}$ to G_{E,q^2} .

Theorem (A. 2024)

Let q be an odd prime. Then $\operatorname{ord}_q(\mathcal{L}(E)) \geq -1$.

For the analytic result, note that $\mathcal{L}(E,\chi)$ varies according to

$$\#E(\mathbb{F}_p) = 1 + \det(\rho_{E,q}(\operatorname{Fr}_p)) - \operatorname{tr}(\rho_{E,q}(\operatorname{Fr}_p)) \mod q.$$

Chebotarev's density theorem says that $\rho_{E,q}(\operatorname{Fr}_p)$ varies uniformly in

$$G_{E,q^{\infty}} := \{M \in \operatorname{im} \rho_{E,q} \mid \det(M) \equiv 1 \mod q\}.$$

The following result reduces the computation from $G_{E,q^{\infty}}$ to G_{E,q^2} .

Theorem (A. 2024)

Let q be an odd prime. Then $\operatorname{ord}_{a}(\mathcal{L}(E)) \geq -1$.

Proof.

- Cancellation of torsion and Tamagawa numbers (Lorenzini 2011)
- ▶ Classification of $im(\rho_{E,3})$ (Rouse–Sutherland–Zureick-Brown 2022)

