Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Н. И. Дубровин, А. Ю. Тухтамирзаев

ЗАДАЧНИК ПО МАТЕМАТИКЕ. 1-й СЕМЕСТР

Рецензенты:

Доктор физико-математических наук, профессор, зав. кафедрой геометрии и методики преподавания математики Владимирского государственного гуманитарного университета $\emph{Ю.А. Алхутов}$

Доктор физико-математических наук, профессор кафедры функционального анализа и его приложений Владимирского государственного университета В.И. Данченко

Печатается по решению редакционного совета Владимирского государственного университета

Дубровин, Н. И.

Д79 Задачник по математике. 1-й семестр / Н. И. Дубровин, А. Ю. Тухтамирзаев ; Владим. гос. ун-т. – Владимир : Изд-во Владим. гос. ун-та, 2011.-67 с.

ISBN 978-5-9984-0159-9

Приведены индивидуальные задания к типовым расчетам по следующим разделам: линейная алгебра и аналитическая геометрия, введение в анализ, дифференциальное исчисление функции одной переменной, функции нескольких переменных.

Предназначен для студентов первого семестра обучения всех инженерных специальностей, а также бакалавров.

Рекомендовано для формирования профессиональных компетенций в соответствии с ФГОС 3-го поколения.

Ил. 7. Табл. 1. Библиогр.: 3 назв.

УДК 51 ББК 22.1

ISBN 978-5-9984-0159-9

© Владимирский государственный университет, 2011

ПРЕДИСЛОВИЕ

Материал задачника соответствует программе первого семестра по высшей математике инженерных специальностей. Каждый раздел имеет свою нумерацию; в каждом задании — 30 вариантов. В начале раздела приведены решения некоторых наиболее трудных типовых задач, которые призваны помочь справиться с типовым расчетом.

В издании использованы следующие обозначения. Поле действительных чисел отмечается символом R. В разделе 1 через (X, Y, Z) обозначаются координаты вектора, а через (x, y, z) – координаты точки трехмерного евклидова пространства, например x_A есть первая координата точки А. Знаки ⊥ и ∥ обозначают перпендикулярность и коллинеарность (т.е. параллельность или совпадение) прямых и плоскостей; i, j, k — стандартный базис трехмерного евклидова пространства, т.е. векторы единичной длины, направленные по осям Ox, Oy, Oz соответственно. Знаки скалярного и векторного произведения обозначаются точкой и крестиком – " -, × ". Расстояние между точками, прямыми и (или) плоскостями отмечается так: ρ (... , ...). В третьем разделе $y_x^{'}$ означает производную функции y(x) по переменной x, а $y(x)\mid_{x=x_0}$ — результат подстановки в функцию y(x) числа x_0 вместо переменной x (т.е. $y(x_0)$). В последнем, четвертом разделе символом Е обозначается принадлежность элемента множеству, а символ ⇔ заменяет слова «тогда и только тогда» или «в том и только том случае».

При составлении заданий и задач было использовано пособие Н.И. Дубровина «Задания к типовым расчетам по математике».

Раздел 1. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА

Примеры решения задач

Задача 1. Найти площадь ΔABC , если A(1,-3,2), B(4,0,-5), C(1,0,-1).

Pешение. Найдем координаты векторов \overrightarrow{AB} и \overrightarrow{AC} :

$$\overrightarrow{AB} = \{4 - 1, 0 + 3, -5 - 2\} = \{3; 3; -7\}; \overrightarrow{AC} = \{0; 3; -3\}.$$

Вычислим векторное произведение:

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} i & j & k \\ 3 & 3 & -7 \\ 0 & 3 & -3 \end{vmatrix} = \begin{vmatrix} 3 & -7 \\ 3 & -3 \end{vmatrix} i - \begin{vmatrix} 3 & -7 \\ 0 & -3 \end{vmatrix} j + \begin{vmatrix} 3 & 3 \\ 0 & 3 \end{vmatrix} k = 12i + 9j + 9k = \{12; 9; 9\}.$$

Тогда площадь ДАВС равна

$$S = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{12^2 + 9^2 + 9^2} = \frac{3\sqrt{34}}{2} \approx 8,746.$$

Ответ: $S \approx 8,746$.

<u>Задача 2</u>. Найти уравнение высоты, опущенной из точки P(5, -3, 1) на плоскость π : 2x + 7y - z + 4 = 0.

Peшение. Вектор $\vec{n} = \{2, 7, -1\}$ перпендикулярен плоскости π и, значит, коллинеарен искомой прямой l.

Ответ: каноническое уравнение прямой l:

$$\frac{x-5}{2} = \frac{y+3}{7} = \frac{z-1}{-1}.$$

<u>Задача 3</u>. Найти уравнение плоскости, проходящей через точки M(1,0,2), N(3,-1,4) и перпендикулярной плоскости π : 7x-2y++3z=0.

Решение. $\vec{n} = 7i - 2j + 3k \perp \pi$, поэтому $\vec{n} \parallel \tau$, где τ – искомая плоскость. Вектор $\overrightarrow{MN}(2,-1,2)$ также коллинеарен проскости τ . Следовательно, вектор

$$\overrightarrow{MN} \times \overrightarrow{n} = \begin{vmatrix} i & j & k \\ 2 & -1 & 2 \\ 7 & 2 & 3 \end{vmatrix} = i + 11j + 3k$$

перпендикулярен этой плоскости. Тогда задача сводится к стандартной: найти уравнение плоскости τ , проходящей через точку M и перпендикулярной вектору с координатами (1,11,3). Получаем уравнение плоскости

$$\tau: 1 \cdot (x-1) + 11 \cdot (y-0) + 3 \cdot (z-2) = 0.$$

Otbet: τ : x + 11y + 3z - 7 = 0.

 $\frac{3 \text{адача 4}}{1}$. Найти расстояние между скрещивающимися прямыми $l_1: \frac{x-1}{3} = \frac{y+2}{0} = \frac{z}{5}$ и $l_2: \frac{x+1}{4} = \frac{y-9}{1} = \frac{z-8}{3}$ и уравнение их общего перпендикуляра.

Решение. Общая точка прямой l_1 есть A(3t+1,-2,5t), а прямой $l_2-B(4u-1,u+9,3u+8)$. Здесь $t,u\in \mathbf{R}$. Находим параметры t и u так, чтобы вектор \overrightarrow{AB} был перпендикулярен к l_1 и l_2 одновременно. Так как вектор \overrightarrow{AB} имеет координаты (4u-3t-2,u++11,3u-5t+2) и $\mathbf{n}=3\mathbf{i}+5\mathbf{k},$ $\mathbf{m}=4\mathbf{i}+\mathbf{j}+3\mathbf{k}-$ направляющие векторы прямых l_1 и l_2 соответственно, то для u и t получаем систему двух линейных уравнений: $\overrightarrow{AB}\cdot\overrightarrow{n}=\overrightarrow{AB}\cdot\overrightarrow{m}=0$ или

$$\begin{cases}
(4u - 3t - 2) \cdot 3 + (3u - 5t + 3) \cdot 5 = 0, \\
(4u - 3t - 2) \cdot 4 + (u + 11) \cdot 1 + (3u - 5t + 3) \cdot 3 = 0,
\end{cases}$$

откуда находим u=0, t=1; A(4,-2,5), B(-1,9,8). Тогда $\overrightarrow{AB}=-5\textbf{\textit{i}}+11\textbf{\textit{j}}+3\textbf{\textit{k}}.$ Расстояние между прямыми l_1 и l_2 равно

$$\rho(l_1, l_2) = \sqrt{(-5)^2 + 11^2 + 3^2} = \sqrt{155} \approx 12,45.$$

Ответ: $\rho(l_1, l_2) \approx 12,45$. Каноническое уравнение общего перпендикуляра: $\frac{x-4}{-5} = \frac{y+2}{11} = \frac{z-5}{3}$.

3адача 5. В ромб с диагоналями $2d_1$, $2d_2$ вписан эллипс $(d_1 \ge d_2)$ (рисунок). Точка касания делит сторону ромба в отношении m:n. Найти каноническое

уравнение эллипса.

Решение. Выберем систему координат, как указано на рисунке; координаты точки касания в первом квадранте обозначим x_0 , y_0 . Так как BF:FC=m:n по условию, то $\frac{x_0}{d_1-x_0}=\frac{m}{n}$. Отсюда $x_0=\frac{d_1m}{m+n}$.

Аналогично $y_0 = \frac{d_2 n}{m+n}$. Пусть каноническое уравнение эллипса.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\tag{1}$$

Требуется найти a и b. Тангенс угла наклона прямой BC равен d_2/d_1 , что совпадает с производной в точке x_0 функции y(x), заданной

неявно соотношением (1). Дифференцируя (1) по x, считая y функцией переменной x и подставляя $x=x_0$ и $y^{'}(x_0)=-d_2/d_1$, получим

$$\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0 \Rightarrow \frac{x_0}{a^2} - \frac{y_0}{b^2} \cdot \frac{d_2}{d_1} = 0.$$
 (2)

Кроме того,

$$\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1. {3}$$

Соотношения (2) и (3) представляют линейную систему двух уравнений относительно неизвестных $1/a^2$, $1/b^2$. Решая ее, получим

$$a^{2} = x_{0}^{2} + x_{0}y_{0} \cdot \frac{d_{2}}{d_{1}} = \frac{d_{1}^{2}m^{2}}{(m+n)^{2}} + \frac{d_{1}d_{2}mn}{(m+n)^{2}} \cdot \frac{d_{2}}{d_{1}} = \frac{d_{1}^{2}m^{2} + d_{2}^{2}mn}{(m+n)^{2}};$$

$$b^{2} = y_{0}^{2} + y_{0}x_{0} \cdot \frac{d_{1}}{d_{2}} = \frac{d_{2}^{2}n^{2} + d_{1}^{2}mn}{(m+n)^{2}}.$$

Otbet:
$$a = \frac{\sqrt{d_1^2 m^2 + d_2^2 m n}}{m+n}$$
, $b = \frac{\sqrt{d_2^2 n^2 + d_1^2 m n}}{m+n}$.

<u>Задача 6</u>. Написать уравнение биссектрисы угла *ABC*, где A(1,3), B(-2,0), C(5,-1).

Pешение. Найдем $\overrightarrow{BA} = 3i + 3j$, $\overrightarrow{BC} = 7i - j$. Пусть вектор $\overrightarrow{a} = Xi + Yj$ коллинеарен биссектрисе угла \overrightarrow{ABC} . Тогда косинус угла между векторами \overrightarrow{a} и \overrightarrow{BA} будет равен косинусу угла между векторами \overrightarrow{a} и \overrightarrow{BC} ; откуда

$$\frac{3X + 3Y}{\sqrt{3^2 + 3^2}\sqrt{X^2 + Y^2}} = \frac{7X + (-1)Y}{\sqrt{7^2 + (-1)^2}\sqrt{X^2 + Y^2}}$$

или $3\sqrt{50}(X+Y) = 3\sqrt{2}(7X-Y)$, откуда 3Y = X. Следовательно, в качестве направляющего вектора биссектрисы можно взять 3i + j. Тогда $\frac{x+2}{3} = \frac{y}{1}$ - каноническое уравнение биссектрисы.

Ответ: $y = \frac{1}{3}x + \frac{2}{3}$ - уравнение биссектрисы.

Задача 7. Решить систему линейных уравнений

$$\begin{cases} x + 2y + 3z = 4, \\ 2x + 2y - z = 3, \\ 3x + 3y + 2z = 7. \end{cases}$$

Решение. Сначала систему приводим к ступенчатому виду. Для этого первое уравнение умножаем на -2, -3 и прибавляем ко второ-

му и третьему уравнению соответственно:

$$\begin{cases} x + 2y + 3z = 4, \\ -3y - 7z = -5, \\ -3y - 7z = -5 \end{cases} \Leftrightarrow \begin{cases} x + 2y + 3z = 4, \\ 3y + 7z = 5. \end{cases}$$

Далее, вычитая из третьего уравнения второе, получаем ступенчатый вид. Число ненулевых уравнений (= 2) меньше, чем число неизвестных (= 3); отсюда следует, что система неопределена. Для того чтобы записать формулу общего решения, объявим неизвестную z свободной; x и y выражаются тогда через z.

Otbet:
$$\begin{cases} x = \frac{5}{3}z + \frac{2}{3}, \\ y = -\frac{7}{3}z + \frac{5}{3}, \end{cases} z \in \mathbf{R}.$$

Задача 8. Найти собственные числа и собственные векторы линейного оператора пространства \mathbf{R}^3 , заданного матрицей $A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}$.

$$A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

Решение. Составляем и решаем характеристическое уравнение

$$\begin{vmatrix} 3 - \lambda & 2 & 0 \\ 2 & 2 - \lambda & 2 \\ 0 & 2 & 1 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow (3 - \lambda)(2 - \lambda)(1 - \lambda) - 4(1 - \lambda) + 4(3 - \lambda) = 0$$

$$\Leftrightarrow (3 - \lambda)(2 - \lambda)(1 - \lambda) - 8(2 - \lambda) = 0 \Leftrightarrow (2 - \lambda)(\lambda^2 - 4\lambda - 5) = 0,$$

$$\lambda_1 = 2, \lambda_2 = -1, \lambda_3 = 5.$$

Определяем собственные векторы $\vec{p}_1,\ \vec{p}_2,\ \vec{p}_3,$ соответствующие найденным характеристическим числам λ_1 , λ_2 , λ_3 из системы однородных уравнений $(A - \lambda_i E)\vec{p}_i = 0$ (i = 1, 2, 3). Здесь E — единичная 3×3 — матрица.

Получаем

1)
$$\lambda_1 = 2$$
 2) $\lambda_2 = -1$ 3) $\lambda_3 = 5$ $\begin{cases} x + 2y = 0, \\ 2x + 2y = 0, \\ 2y - z = 0; \end{cases}$ $\begin{cases} 4x + 2y = 0, \\ 2x + y + 2z = 0, \\ 2y + 2z = 0; \end{cases}$ $\begin{cases} -2x + 2y = 0, \\ 2x - 3y + 2z = 0, \\ 2y - 4z = 0. \end{cases}$ $\begin{cases} x = 2t, \ y = -1, \ z = -2t; \ x = t, \ y = -2t, z = 2t; \ x = 2t, \ y = 2t, \ z = t; \end{cases}$ $\vec{p}_1 = (2\mathbf{i} - \mathbf{j} - 2\mathbf{k})t;$ $\vec{p}_2 = (\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})t;$ $\vec{p}_3 = (2\mathbf{i} + 2\mathbf{j} + \mathbf{k})t.$

Ответ. Собственные числа $\lambda_1=2,\ \lambda_2=-1,\ \lambda_3=5;$ соответствующие им собственные векторы – $\vec{p}_1 = (2i - j - 2k)t$, $\vec{p}_2 = (i - 2j + 2k)t$, $\vec{p}_3 = (2i + 2j + k)t, (t \in R, t \neq 0).$

Задания

1. Даны декартовы прямоугольные координаты вершин пирами-

ды *A*₁*A*₂*A*₃*A*₄. Найти:

- 1) угол α между ребрами $A_1 A_2$ и $A_1 A_4$;
- 2) площадь S грани $A_1A_2A_3$;
- 3) объем V пирамиды;
- 4) уравнение плоскости π грани $A_1A_2A_3$;
- 5) угол β между ребром A_1A_4 и гранью $A_1A_2A_3$;
- 6) уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$.
 - 1.1. $A_1(-2; 0; 2)$, $A_2(2; 3; 14)$, $A_3(-6; -3; 14)$, $A_4(1; -4; 14)$.
 - 1.2. $A_1(-1; -1; 0), A_2(11; 2; -4), A_3(11; -4; 4), A_4(1; 3; 3).$
 - 1.3. $A_1(-2; 0; 0)$, $A_2(-1; 2-2)$, $A_3(-12; -2; 11)$, $A_4(1; -3; 3)$.
 - 1.4. $A_1(-2; 0; 1), A_2(0; 1; -1), A_3(-4; 2; 0), A_4(-1; 3; 2).$
 - 1.5. $A_1(2;-1;1)$, $A_2(1;1;-1)$, $A_3(4;-2;-1)$, $A_4(2;3;2)$.
 - 1.6. $A_1(2;1;-2)$, $A_2(4;-4;12)$, $A_3(-8;-10;0)$, $A_4(3;-3;-1)$.
 - $1.7. A_1(-2; -1; -2), A_2(-1; 1; 0), A_3(0; -3; -1), A_4(1; 0; -3).$
 - 1.8. $A_1(0;1;1)$, $A_2(2;0;-1)$, $A_3(2;-9;-10)$, $A_4(2;-2;6)$.
 - 1.9. $A_1(-2; 0; 2), A_2(-4; -1; 4), A_3(0; -2; 3), A_4(0; 5; 5).$
 - 1.10. $A_1(-2; 2; 0), A_2(12; 4; 5), A_3(-4; -9; 10), A_4(0; -4; -2).$
 - 1.11. $A_1(0; 1; 1), A_2(2; -4; -13), A_3(10; 12; 3), A_4(3; -1; 0).$
 - 1.12. $A_1(1; 2; -2), A_2(3; 3; -4), A_3(2; 4; 0), A_4(3; -3; 2).$
 - 1.13. $A_1(0; -1; 2), A_2(12; -21; 11), A_3(16; -22; 14), A_4(-3; 0; 6).$
 - 1.14. $A_1(0; -1; 2), A_2(-1; -3; 4), A_3(-5; 13; 0), A_4(3; 4; 1).$
 - 1.15. $A_1(-2; 0; -2), A_2(-3; 2; -4), A_3(-7; -14; 0), A_4(-1; 2; 7).$
 - 1.16. $A_1(2; 0; -2), A_2(-2; 8; -3), A_3(9; 4; 2), A_4(10; 1; -8).$
 - 1.17. $A_1(0; -2; -2)$, $A_2(-4; 10; -5)$, $A_3(-12; 6; -11)$, $A_4(-9; 6; 10)$.
 - 1.18. $A_1(-2; 1; 0), A_2(-4; 0; -2), A_3(-12; -10; 2), A_4(-2; 2; 7).$
 - 1.19. $A_1(2; 2; 0)$, $A_2(4; 3; 2)$, $A_3(-8; -9; 2)$, $A_4(2; -2; 1)$.
 - 1.20. $A_1(2; 1; 2), A_2(-3; -13; 4), A_3(12; -1; 13), A_4(-1; 3; 7).$
 - 1.21. $A_1(-1; 1; 0), A_2(0; 3; 2), A_3(1; 2; -2), A_4(5; -3; -2).$
 - 1.22. $A_1(3; 0; 2), A_2(2; 2; 0), A_3(5; -1; 0), A_4(3; 4; 3).$
 - 1.23. $A_1(-1; 2; 0), A_2(1; 3; 2), A_3(-6; 4; -14), A_4(-1; 5; 3).$
 - 1.24. $A_1(2; 2; 10), A_2(4; -3; 15), A_3(-8; 9; 3), A_4(3; -2; 2).$
 - 1.25. $A_1(2; 0; -2), A_2(6; 2; -6), A_3(-2; 4; -4), A_4(-2; 10; -8).$
 - 1.26. $A_1(0; 1; 2), A_2(4; 3; -2), A_3(-4; 5; 0), A_4(2; 7; 4).$
 - 1.27. $A_1(-1;1;2)$, $A_2(3;3;-2)$, $A_3(-5;5;0)$, $A_4(1;7;4)$.
 - 1.28. $A_1(-1;3;2)$, $A_2(1;4;4)$, $A_3(-6;5;-12)$, $A_4(-1;6;5)$.
 - $1.29. A_1(-1; -2; -2), A_2(1; -1; -4), A_3(0; 0; 0), A_4(4; -3; 4).$
 - 1.30. $A_1(-2; -1; -2), A_2(-1; 1; -4), A_3(-12; -3; 9), A_4(1; -4; 1).$
- 2. Заданы плоскость π и точка M. Написать уравнение плоскости τ , проходящей через точку M параллельно плоскости π . Найти

расстояние ρ между плоскостями.

$$2.1.\pi: x + 2y + 2z + 1 = 0, M(6,7,-3).$$

$$2.2. \pi: -4x + 3z - 3 = 0, M(5, -9, -9).$$

$$2.3.\pi:8x + y - 4z - 6 = 0, M(4,7,6).$$

$$2.4. \pi: 3x - 6y - 2z + 5 = 0, M(-1, -9, 7).$$

$$2.5. \pi: -2x - y - 2z + 6 = 0, M(-8, -8, 0).$$

$$2.6. \pi: -4x - 8y - z + 6 = 0, M(2, 3, -8).$$

$$2.7. \pi: 4x + 4y + 2z - 1 = 0, M(2, -1, 0).$$

$$2.8. \pi: -3x + 6y - 2z - 2 = 0, M(9, -8, -7).$$

$$2.9. \pi: -4x - 8y - z + 1 = 0, M(-8, -6, 0).$$

$$2.10. \pi: 4x + 8y - z - 1 = 0, M(9, 4, 4).$$

$$2.11. \pi: -6x - 3y + 6z - 6 = 0, M(-8, -3, -4).$$

$$2.12. \pi: 2x - 4y + 4z - 3 = 0, M(2, 5, 1).$$

2.13.
$$\pi$$
: $-2x - 9y - 6z = 0$, $M(2, 1, -4)$.

$$2.14. \pi: -6x - 8z + 5 = 0, M(-8, 0, -4).$$

$$2.15. \pi: -6x - 9y - 2z = 0, M(-4, 5, 6).$$

$$2.16. \pi: 6x - 3y + 2z - 3 = 0, M(3, 7, -4).$$

$$2.17. \pi: 4x + 4y + 2z + 5 = 0, M(1, -9, -9).$$

$$2.18. \pi: 4x - 8y - z - 9 = 0, M(6, 3, 0).$$

$$2.19. \pi: -9x - 6y - 2z + 4 = 0, M(-6, -8, -2).$$

$$2.20. \pi: -6x + 8y - 9 = 0, M(-3, -3, -7).$$

2.21.
$$\pi$$
: $-8x + y + 4z - 7 = 0$, $M(9, -9, 4)$.

2.22.
$$\pi$$
: $6x - 2y + 3z + 4 = 0, M(6, -3, -6)$.

2.23.
$$\pi$$
: $-8x + 6y + z - 8 = 0$, $M(-2, -8, -8)$.

$$2.24. \pi: 6x - 2y - 9z - 1 = 0, M(4, -3, -9).$$

$$2.25. \pi: 4x - 2y + 4z = 0, M(4, 0, -7).$$

$$2.26. \pi$$
: $2x - 6y + 3z - 4 = 0, M(-5, 6, -9).$

$$2.27. \pi: -4x + 7y + 4z - 7 = 0, M(3, 8, 2).$$

$$2.28. \pi: -8x + 4y - z + 6 = 0, M(6, -6, -3).$$

2.29.
$$\pi$$
: $-6x + 3y - 6z + 3 = 0$, $M(-3, -4, 3)$.

$$2.30. \pi: 8x + 6y - 6 = 0, M(3, 7, -7).$$

3. Написать уравнение плоскости τ , проходящей через точки M_1 и M_2 перпендикулярно заданной плоскости π .

3.1.
$$\pi$$
: $4x - 4y + z + 1 = 0$, $M_1(2; -4; 2)$, $M_2(-4; 5; 0)$.

$$3.2. \pi: 4x - 3y - z - 3 = 0, M_1(-4; 5; -4), M_2(-1; -4; -4).$$

$$3.3. \pi: 4x - 4y + z + 1 = 0,$$
 $M_1(2; -4; 2),$ $M_2(-4; 5; 0).$ $3.4. \pi: 4x + 2y - 5z = 0,$ $M_1(-4; 4; -5),$ $M_2(-3; 3; 0).$

$$3.4. \pi: 4x + 2y - 5z = 0,$$
 $M_1(-4; 4; -5),$ $M_2(-3; 3; 0).$

- 4. Даны прямая l и точка M Написать:
- 1) уравнение плоскости π , проходящей через прямую l и точку M;
- 2) уравнение плоскости τ , проходящей через точку M перпендикулярно прямой l;
- 3) канонические уравнения прямой h, проходящей через точку M перпендикулярно к l.

4.1.
$$l: \frac{x-2}{2} = \frac{y-1}{-1} = \frac{z-1}{2}, \quad M(2; 0; 2).$$

4.2. $l: \frac{x}{4} = \frac{y}{-7} = \frac{z-1}{-4}, \quad M(1; -1; -3).$

4.3.
$$l: \frac{x}{25} = \frac{y+2}{-2} = \frac{z-1}{-10}, \quad M(1; -3; 1).$$

4.4.
$$l: \frac{x+2}{2} = \frac{y+1}{10} = \frac{z-1}{11}, \quad M(-4; 1; 2).$$

4.5.
$$l: \frac{x+2}{1} = \frac{y-2}{2} = \frac{z+1}{-2}, \quad M(-1; 3; -1).$$

4.6.
$$l: \frac{x}{-25} = \frac{y-1}{-2} = \frac{z}{10}, \quad M(-1; 0; 0).$$

4.7.
$$l: \frac{x+2}{1} = \frac{y-2}{-2} = \frac{z}{-2}$$
, $M(-1; 1; 0)$.

4.8.
$$l: \frac{x-2}{1} = \frac{y-2}{2} = \frac{z}{-2}$$
, $M(3; 2; -1)$.

4.9.
$$l: \frac{x+1}{18} = \frac{y}{-1} = \frac{z}{-6}, \quad M(0; -1; 0).$$

4.10.
$$l: \frac{x+2}{10} = \frac{y+1}{-11} = \frac{z+1}{-2}, \quad M(-1; -3; -3).$$

4.11.
$$l: \frac{x+1}{-2} = \frac{y-1}{-1} = \frac{z}{-2}, \quad M(-2; 2; -4).$$

4.12.
$$l: \frac{x+2}{1} = \frac{y}{8} = \frac{z+1}{-4}, \qquad M(-1; 1; -1).$$

4.13.
$$l: \frac{x}{2} = \frac{y-2}{-10} = \frac{z+1}{-11}, \qquad M(2; 1; -3).$$

4.14.
$$l: \frac{x}{5} = \frac{y-2}{-10} = \frac{z}{14}$$
, $M(1; 3; 0)$.

4.15.
$$l: \frac{x+2}{-2} = \frac{y+2}{-14} = \frac{z+1}{5}, \quad M(-1; -2; 0).$$

4.16. *l*:
$$\frac{x+1}{2} = \frac{y-2}{-5} = \frac{z-2}{-14}$$
, $M(0; 1; -2)$.

4.17.
$$l: \frac{x-2}{0} = \frac{y-1}{2} = \frac{z+2}{6}, \quad M(1; 0; -2).$$

4.18. *l*:
$$\frac{x+2}{9} = \frac{y}{-2} = \frac{z+2}{6}$$
, $M(-1; -1; -2)$.

4.19.
$$l: \frac{x+2}{16} = \frac{y+2}{12} = \frac{z+2}{15}, \quad M(2; 1; -1).$$

4.20.
$$l: \frac{x+2}{8} = \frac{y-1}{-1} = \frac{z}{4}, \qquad M(-1; 0; 0).$$

4.21.
$$l: \frac{x}{-2} = \frac{y-2}{14} = \frac{z-1}{-5}, \qquad M(1; 2; 0).$$

4.22.
$$l: \frac{x-1}{12} = \frac{y+1}{3} = \frac{z+1}{4}, \quad M(1; 0; -5).$$

4.23. l:
$$\frac{x-2}{z-7} = \frac{y}{z-4} = \frac{z+2}{4}$$
, $M(1; -4; -1)$.

4.24.
$$l: \frac{x}{-5} = \frac{y}{-2} = \frac{z-1}{14}, \qquad M(-1; 1; 1).$$

4.25.
$$l: \frac{x-1}{z} = \frac{y}{10} = \frac{z}{5}, \qquad M(1; 1; -1).$$

4.26.
$$l: \frac{x-1}{2} = \frac{y+1}{-2} = \frac{z+1}{-1}, \quad M(2; -5; 0).$$

4.27.
$$l: \frac{x}{-6} = \frac{y+2}{6} = \frac{z-2}{-18}, \quad M(0; -1; 1).$$

4.28.
$$l: \frac{x+2}{-1} = \frac{y-2}{-2} = \frac{z+2}{2}, \qquad M(-3; 1; -2).$$
4.29. $l: \frac{x+2}{-1} = \frac{y-1}{2} = \frac{z-2}{-2}, \qquad M(-3; 1; 1).$
4.30. $l: \frac{x-2}{2} = \frac{y-1}{-5} = \frac{z-2}{-14}, \qquad M(2; 0; 0).$

- 5. Даны уравнения прямых l_1 и l_2 .
- 1) убедиться в том, что прямые l_1 и l_2 скрещивающиеся;
- 2) составить уравнение плоскости π , проходящей через l_1 параллельно l_2 ;
 - 3) найти расстояние ρ между прямыми l_1 и l_2 ;
- 4) составить канонические уравнения общего перпендикуляра h прямых l_1 и l_2 .

$$5.1. \ l_1: \frac{x}{-2} = \frac{y-2}{14} = \frac{z-1}{-5}, \quad l_2: \frac{x+1}{5} = \frac{y-3}{-14} = \frac{z-6}{2}.$$

$$5.2. \ l_1: \frac{x-1}{1} = \frac{y-2}{2} = \frac{z}{-2}, \quad l_2: \frac{x+16}{-14} = \frac{y-13}{2} = \frac{z-7}{-5}.$$

$$5.3. \ l_1: \frac{x-1}{-9} = \frac{y-2}{12} = \frac{z}{-20}, \quad l_2: \frac{x+6}{12} = \frac{y-3}{-16} = \frac{z+1}{21}.$$

$$5.4. \ l_1: \frac{x}{2} = \frac{y-1}{1} = \frac{z+1}{-2}, \quad l_2: \frac{x-14}{14} = \frac{y-2}{-2} = \frac{z}{-5}.$$

$$5.5. \ l_1: \frac{x}{10} = \frac{y-1}{2} = \frac{z+2}{25}, \quad l_2: \frac{x-23}{10} = \frac{y-38}{-25} = \frac{z-15}{-2}.$$

$$5.6. \ l_1: \frac{x-1}{4} = \frac{y}{-3} = \frac{z-1}{-12}, \quad l_2: \frac{x-25}{8} = \frac{y}{-9} = \frac{z-2}{12}.$$

$$5.7. \ l_1: \frac{x+2}{-1} = \frac{y+1}{12} = \frac{z-2}{-12}, \quad l_2: \frac{x+3}{12} = \frac{y-28}{-8} = \frac{z-7}{-9}.$$

$$5.8. \ l_1: \frac{x-1}{6} = \frac{y-2}{9} = \frac{z}{-2}, \quad l_2: \frac{x-8}{6} = \frac{y-7}{-2} = \frac{z+17}{9}.$$

$$5.9. \ l_1: \frac{x}{3} = \frac{y-2}{2} = \frac{z-2}{6}, \quad l_2: \frac{x+13}{12} = \frac{y-12}{6} = \frac{z+3}{-3}.$$

$$5.10. \ l_1: \frac{x-2}{2} = \frac{y}{1} = \frac{z+2}{-2}, \quad l_2: \frac{x+13}{1} = \frac{y-12}{2} = \frac{z+8}{2}.$$

$$5.11. \ l_1: \frac{x-1}{4} = \frac{y-1}{1} = \frac{z}{-8}, \quad l_2: \frac{x-2}{7} = \frac{y+10}{4} = \frac{z+11}{4}.$$

$$5.12. \ l_1: \frac{x}{2} = \frac{y+2}{-1} = \frac{z-2}{2}, \quad l_2: \frac{x-1}{1} = \frac{y+1}{-2} = \frac{z+3}{-2}.$$

$$5.13. \ l_1: \frac{x-1}{-6} = \frac{y-2}{-1} = \frac{z-2}{2}, \quad l_2: \frac{x+18}{7} = \frac{y-1}{-6} = \frac{z}{6}.$$

$$5.14. \ l_1: \frac{x-1}{2} = \frac{y-1}{-3} = \frac{z-1}{2}.$$

$$5.15. \ l_1: \frac{x-1}{1} = \frac{y-1}{12} = \frac{z+1}{12}, \quad l_2: \frac{x-1}{11} = \frac{y+3}{-24} = \frac{z-2}{12}.$$

$$5.16. \ l_1: \frac{x-1}{-8} = \frac{y-1}{-1} = \frac{z}{4}, \quad l_2: \frac{x-1}{1} = \frac{y+3}{8} = \frac{z-2}{4}.$$

$$5.17. \ l_1: \frac{x-2}{2} = \frac{y}{14} = \frac{z+2}{5}, \quad l_2: \frac{x-15}{-5} = \frac{y+5}{-14} = \frac{z-5}{-2}.$$

$$5.18. \ l_1: \frac{x-2}{2} = \frac{y-2}{2} = \frac{z+2}{-1}, \quad l_2: \frac{x+7}{1} = \frac{y+1}{-2} = \frac{z+17}{-2}.$$

$$5.19. \ l_1: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z+2}{2}, \quad l_2: \frac{x-10}{2} = \frac{y+11}{-5} = \frac{z-10}{14}.$$

$$5.20. \ l_1: \frac{x+1}{1} = \frac{y-2}{-4} = \frac{z}{8}, \quad l_2: \frac{x-4}{4} = \frac{y-9}{8} = \frac{z-13}{1}.$$

$$5.21. \ l_1: \frac{x-2}{4} = \frac{y+1}{-1} = \frac{z}{-2}, \quad l_2: \frac{x-9}{4} = \frac{y-4}{8} = \frac{z-13}{1}.$$

$$5.22. \ l_1: \frac{x-2}{-2} = \frac{y-1}{-1} = \frac{z}{2}, \quad l_2: \frac{x-15}{10} = \frac{y+12}{2} = \frac{z-11}{11}.$$

$$5.23. \ l_1: \frac{x-1}{4} = \frac{y+1}{-12} = \frac{z}{3}, \quad l_2: \frac{x-18}{-9} = \frac{y}{12} = \frac{z+7}{-8}.$$

$$5.24. \ l_1: \frac{x+2}{4} = \frac{y}{-1} = \frac{z-2}{-8}, \quad l_2: \frac{x+1}{-7} = \frac{y-11}{4} = \frac{z+9}{-4}.$$

$$5.25. \ l_1: \frac{x+2}{2} = \frac{y+2}{1} = \frac{z}{2}, \quad l_2: \frac{x+1}{-4} = \frac{y-3}{-2} = \frac{z-1}{-1}.$$

$$5.26. \ l_1: \frac{x-2}{4} = \frac{y-2}{-8} = \frac{z}{1}, \quad l_2: \frac{x-1}{-4} = \frac{y-13}{-1} = \frac{z-11}{8}.$$

$$5.27. \ l_1: \frac{x+2}{-12} = \frac{y-2}{-1} = \frac{z}{12}, \quad l_2: \frac{x-3}{9} = \frac{y-1}{-12} = \frac{z-29}{8}.$$

$$5.28. \ l_1: \frac{x+2}{4} = \frac{y-1}{-3} = \frac{z-1}{12}, \quad l_2: \frac{x-3}{8} = \frac{y-4}{9} = \frac{z-14}{4}.$$

$$5.29. \ l_1: \frac{x-1}{5} = \frac{y}{3} = \frac{z+1}{-8}, \quad l_2: \frac{x-3}{8} = \frac{y-4}{9} = \frac{z-14}{4}.$$

$$5.30. \ l_1: \frac{x}{1} = \frac{y+1}{1} = \frac{z-1}{4}, \quad l_2: \frac{x-1}{-4} = \frac{y+9}{-1} = \frac{z-14}{8}.$$

- 6. В ромб с диагоналями d_1 и d_2 вписан эллипс так, что больший из диаметров эллипса лежит на большей из диагоналей ромба. Сторона ромба в точке касания с эллипсом делится в отношении n: m. Вычислить:
 - 1) координаты фокусов эллипса;
 - 2) полуоси эллипса;
 - 3) эксцентриситет эллипса;
 - 4) длины фокальных радиусов, проведенных в точку касания;
- 5) угол между указанными фокальными радиусами с точностью до 1 градуса;
 - 6) координаты точки касания в І-м квадранте.

Написать уравнения прямых, проходящих через указанную точку касания, и фокусы эллипса.

6.1.
$$d_1 = 80$$
, $d_2 = 16$, $n = 1$, $m = 7$.

- 6.2. $d_1 = 36$, $d_2 = 18$, n = 5, m = 4.
- 6.3. $d_1 = 20$, $d_2 = 10$, n = 2, m = 3.
- 6.4. $d_1 = 16$, $d_2 = 8$, n = 1, m = 3.
- 6.5. $d_1 = 54$, $d_2 = 18$, n = 1, m = 8.
- 6.6. $d_1 = 36$, $d_2 = 18$, n = 2, m = 7.
- 6.7. $d_1 = 90$, $d_2 = 36$, n = 8, m = 1.
- 6.8. $d_1 = 70$, $d_2 = 10$, n = 1, m = 4.
- 6.9. $d_1 = 80$, $d_2 = 48$, n = 5, m = 3.
- 6.10. $d_1 = 160$, $d_2 = 120$, n = 9, m = 11.
- 6.11. $d_1 = 12$, $d_2 = 4$, n = 1, m = 1.
- 6.12. $d_1 = 30$, $d_2 = 10$, n = 1, m = 4.
- 6.13. $d_1 = 140$, $d_2 = 20$, n = 1, m = 9.
- 6.14. $d_1 = 54$, $d_2 = 36$, n = 4, m = 5.
- 6.15. $d_1 = 80$, $d_2 = 16$, n = 1, m = 7.
- 6.16. $d_1 = 128$, $d_2 = 32$, n = 1, m = 15.
- 6.17. $d_1 = 72$, $d_2 = 18$, n = 2, m = 7.
- 6.18. $d_1 = 90$, $d_2 = 18$, n = 5, m = 4.
- 6.19. $d_1 = 80$, $d_2 = 10$, n = 2, m = 3.
- $6.20. d_1 = 64, d_2 = 32, n = 5, m = 11.$
- 6.21. $d_1 = 48$, $d_2 = 16$, n = 1, m = 7.
- $6.22. d_1 = 96, d_2 = 64, n = 5, m = 11.$
- 6.23. $d_1 = 40$, $d_2 = 30$, n = 2, m = 3.
- $6.24. d_1 = 56, d_2 = 32, n = 1, m = 3.$
- $6.25. d_1 = 250, d_2 = 300, n = 16, m = 9.$
- 6.26. $d_1 = 36$, $d_2 = 28$, n = 1, m = 1.
- $6.27. d_1 = 144, d_2 = 18, n = 2, m = 7.$
- 6.28. $d_1 = 70$, $d_2 = 40$, n = 4, m = 1.
- $6.29. d_1 = 180, d_2 = 108, n = 5, m = 13.$
- 6.30. $d_1 = 90$, $d_2 = 20$, n = 4, m = 1.
 - 7. Даны координаты вершин четырехугольника АВСО.
 - 1) проверить без построения чертежа, что четырехугольник выпуклый;
 - 2) в каком отношении диагонали делятся в точке пересечения?
- 7.1. A(5;-1), B(1;-1), C(2;5), D(22;13).
- 7.2. A(17; 6), B(0; -3), C(-16; -5), D(-4; 9).
- 7.3. A(-1;7), B(-14;7), C(17;-17), D(14;0).
- 7.4. A(-1; 23), B(12; 5), C(6; -5), D(-12; -1).

```
7.5. A(0; -3),
            B(-10;-5), C(-9;6), D(0;5).
                B(-9; 15), C(-5; -3), D(-2; 1).
7.6. A(-1; 9),
7.7. A(2;8), B(8;0),
                     C(-7; -10), D(-16; -8).
            B(15, -5), C(-11, -3), D(-18, 6).
7.8. A(-1; 2),
7.9. A(-3; -10), B(6; -13), C(5; -2), D(-1; 8).
7.10. A(-2;-6), B(2;-4), C(4;12), D(-6;12).
7.11. A(-2;3), B(11;16), C(2;-9), D(-16;-20).
7.12. A(-12; -8), B(-5; 1), C(12; 0), D(5; -9).
7.13. A(-6; -12), B(11; -10), C(2; 4), D(-16; 8).
7.14. A(-6; -14), B(12; -10), C(1; 0), D(-15; 8).
7.15. A(-4; 1), B(-4; -6), C(2; -5), D(20; 12).
7.16. A(4;3), B(-3;4), C(-4;-5), D(5;-4).
              B(-11;-17), C(0;4), D(13;19).
7.17. A(3; -5),
7.18. A(-9;-1), B(-1;8), C(27;-10), D(7;-16).
7.19. A(3;13), B(10;-3), C(-6;-5), D(-10;7).
7.20. A(6;8),
               B(2;8), C(-5;-14), D(6;-28).
              B(2;-15), C(-21;-6), D(-5;6).
7.21. A(0; 1),
7.22. A(6;4), B(20;-7), C(-4;-6), D(-24;4).
7.23. A(13; 13), B(3; -2), C(-20; -9), D(-5; 6).
7.24. A(-10;0), B(1;7), C(6;-8), D(-8;-11).
7.25. A(-2;-2), B(-6;4), C(4;4), D(18;-12).
7.26. A(-12;-19), B(3;-14), C(10;14), D(-5;2).
7.27. A(-10; -3), B(-3; 10), C(18; 4), D(4; -4).
7.28. A(-10; 2), B(-7; -4), C(8; -7), D(0; 3).
7.29. A(-1; 12), B(-5; 1), C(-10; -24), D(-2; -2).
7.30. A(2;-1), B(1;2), C(8;5), D(19;-4).
```

- 8. Дана гипербола $y = \frac{ax+b}{cx+d}$
- 1) построить график;
- 2) привести уравнение к каноническому виду и вычислить параметры гиперболы;
 - 3) найти координаты фокусов в исходной системе координат.

8.1.
$$y = \frac{8x-38}{x-5}$$
. 8.2. $y = \frac{-8x+80}{x-9}$. 8.3. $y = \frac{2x+34}{x+8}$. 8.4. $y = \frac{7x-54}{x-8}$. 8.5. $y = \frac{-5x-17}{x+7}$. 8.6. $y = \frac{2x+4}{x+1}$. 8.7. $y = \frac{-2x+26}{x-4}$. 8.8. $y = \frac{-3x+53}{x-7}$. 8.9. $y = \frac{-8x+18}{x-2}$. 8.10. $y = \frac{-6x-22}{x+4}$. 8.11. $y = \frac{8x-54}{x-7}$. 8.12. $y = \frac{-9x+27}{x-1}$.

8.13.
$$y = \frac{-7x - 24}{x + 6}$$
. 8.14. $y = \frac{-3x + 35}{x - 1}$. 8.15. $y = \frac{2x + 48}{x + 8}$. 8.16. $y = \frac{-5x + 17}{x + 3}$. 8.17. $y = \frac{-4x - 4}{x + 3}$. 8.18. $y = \frac{-9x + 44}{x - 4}$. 8.19. $y = \frac{8x + 42}{x + 3}$. 8.20. $y = \frac{-3x + 39}{x - 7}$. 8.21. $y = \frac{-3x + 14}{x + 6}$. 8.22. $y = \frac{-6x - 4}{x + 6}$. 8.23. $y = \frac{-8x + 72}{x - 8}$. 8.24. $y = \frac{-4x + 38}{x - 5}$. 8.25. $y = \frac{4x - 18}{x - 9}$. 8.26. $y = \frac{-2x - 8}{x + 5}$. 8.27. $y = \frac{-8x + 42}{x - 5}$. 8.28. $y = \frac{7x + 38}{x + 4}$. 8.29. $y = \frac{8x - 54}{x - 9}$. 8.30. $y = \frac{-4x + 20}{x - 3}$.

9. Найти координаты фокуса и указать систему координат, в которой уравнение заданной параболы имеет канонический вид.

9.1.
$$y = 2,5x^2 + 5x + 4,5$$
.
9.2. $y = x^2 - 3x + 2$.
9.3. $y = -1,5x^2 - 3x - 2,5$.
9.5. $y = 0,5x^2 - 4x + 8$.
9.6. $y = 2x^2 + 6x + 4$.
9.7. $y = -0,5x^2 - 2x - 0,5$.
9.8. $y = -x^2 + 2x + 8$.
9.9. $y = -0,5x^2 + x + 7,5$.
9.10. $y = x^2 + 4x + 3$.
9.12. $y = 2,5x^2 - 2,5x - 5$.
9.14. $y = x^2 + 4x + 6$.
9.15. $y = -x^2 - 2x - 6$.
9.16. $y = -0,5x^2 + x - 3,5$.
9.17. $y = -x^2 + 2x - 2$.
9.18. $y = 0,5x^2 - 2x + 3$.
9.19. $y = x^2 - 4x - 5$.
9.20. $y = -2x^2 - 8x - 6$.
9.21. $y = 0,5x^2 - 2x - 6$.
9.22. $y = -x^2 - 4x - 9$.
9.23. $y = -0,5x^2 - 2x - 6$.
9.24. $y = -x^2 + 5x - 4$.
9.26. $y = 0,5x^2 - 0,5x - 6$.
9.27. $y = -2,5x^2 - 5x - 3,5$.
9.28. $y = 0,5x^2 + 3x + 4$.
9.30. $y = -0,5x^2 + x - 5,5$.

- 10. Даны три точки А, В, С:
- 1) проверить, что эти три точки не лежат на одной прямой, т.е. образуют треугольник;
- 2) вычислить параметры треугольника (площадь, периметр, величину угла (*C*) с точностью до одного градуса);
 - 3) написать уравнение описанной окружности;
 - 4) написать уравнение биссектрисы угла (C);
- 5) написать уравнения двух перпендикуляров, опущенных из точек A и B на биссектрису угла (C), и вычислить расстояние между ними.

11. Решить системы линейных уравнений методом Крамера:

$$11.1. \begin{cases} -2x_1 + x_2 + x_3 = 24, \\ 8x_1 - 9x_2 + x_3 = -126, \\ 9x_1 + 5x_2 - 5x_3 = -33. \end{cases}$$

$$11.2. \begin{cases} -5x_1 - 4x_2 - 5x_3 = 35, \\ -4x_1 + 5x_2 + x_3 = -18, \\ 4x_1 - 8x_2 - 7x_3 = 39. \end{cases}$$

$$11.3. \begin{cases} -2x_1 + x_2 + x_3 = -41, \\ -7x_1 + 4x_2 + 6x_3 = -27, \\ x_1 + x_2 - 7x_3 = -41. \end{cases}$$

$$11.4. \begin{cases} 2x_1 - 5x_2 - 9x_3 = -3, \\ -9x_1 + 7x_2 + 4x_3 = -1, \\ -7x_1 + 6x_2 - 9x_3 = 40. \end{cases}$$

11.5.
$$\begin{cases}
5x_1 - 9x_2 - 6x_3 = -63, \\
-7x_1 + 9x_2 - 5x_3 = 63, \\
-3x_1 + x_2 + 3x_3 = 7.
\end{cases}$$

11.7.
$$\begin{cases} 6x_1 + 2x_2 - 8x_3 = -64, \\ -7x_1 - 3x_2 + 5x_3 = 50, \\ -6x_1 + 7x_2 + x_3 = 4. \end{cases}$$

11.9.
$$\begin{cases} x_1 - x_2 - 5x_3 = -48, \\ 2x_1 + 3x_2 + x_3 = 2, \\ 2x_1 - 3x_2 + x_3 = -10. \end{cases}$$

11.11.
$$\begin{cases} 6x_1 + 6x_2 - 6x_3 = -36, \\ -8x_1 - 3x_2 + 2x_3 = 41, \\ 4x_1 - 8x_2 + 7x_3 = -31. \end{cases}$$

11.13.
$$\begin{cases} -5x_1 + 8x_2 - x_3 = 2, \\ 7x_1 + x_2 + 2x_3 = 49, \\ -7x_1 + 4x_2 + 6x_3 = 11. \end{cases}$$

11.15.
$$\begin{cases} -5x_1 + 6x_2 + 5x_3 = 34, \\ 5x_1 + x_2 - x_3 = 2, \\ 9x_1 - 2x_2 - x_3 = -10. \end{cases}$$

11.17.
$$\begin{cases} -4x_1 + 8x_2 + 5x_3 = 115, \\ 2x_1 + 2x_2 - 6x_3 = -14, \\ 8x_1 + 9x_2 - 5x_3 = 10; \end{cases}$$

11.19.
$$\begin{cases} 5x_1 - x_2 + x_3 = -4, \\ -4x_1 + 4x_2 - 5x_3 = 24, \\ -7x_1 + 2x_2 + x_3 = -16. \end{cases}$$

11.21.
$$\begin{cases} -7x_1 + 7x_2 - x_3 = 17; \\ 4x_1 + x_2 - x_3 = 4; \\ -6x_1 + 7x_2 + 5x_3 = 42. \end{cases}$$

11.23.
$$\begin{cases} 7x_1 - x_2 - 9x_3 = 21, \\ 3x_1 - 7x_2 - x_3 = -39, \\ 8x_1 - 2x_2 - 2x_3 = -6. \end{cases}$$

11.25.
$$\begin{cases} 8x_1 + 9x_2 - 3x_3 = 37, \\ 3x_1 - 7x_2 + 9x_3 = 44, \\ 8x_1 + 2x_2 + 6x_3 = 66. \end{cases}$$

$$11.27. \begin{cases} -7x_1 - 5x_2 + 6x_3 = 28, \\ 6x_1 - 7x_2 + 9x_3 = 123, \\ -8x_1 - 6x_2 - 9x_3 = -94. \end{cases}$$

11.29.
$$\begin{cases} 4x_1 + 6x_2 + 8x_3 = 0, \\ -7x_1 + 4x_2 + 7x_3 = -21, \\ -6x_1 + 3x_2 - 6x_3 = -6. \end{cases}$$

$$11.6. \begin{cases} -3x_1 + 2x_2 + 2x_3 = -38, \\ 5x_1 + 5x_2 - 6x_3 = 8, \\ -7x_1 + 7x_2 - 2x_3 = 75. \end{cases}$$

11.8.
$$\begin{cases}
-2x_1 - 6x_2 - 8x_3 = -88, \\
-6x_1 + 8x_2 - x_3 = -54, \\
3x_1 + 6x_2 + 6x_3 = 81.
\end{cases}$$

11.10.
$$\begin{cases} -x_1 - 3x_2 - 2x_3 = 51, \\ 3x_1 - 7x_2 - 9x_3 = -36, \\ 8x_1 + 5x_2 - x_3 = -84. \end{cases}$$

11.12.
$$\begin{cases} x_1 - 8x_2 - 7x_3 = 29, \\ -7x_1 - 9x_2 + 4x_3 = 157, \\ -6x_1 - 3x_2 + 9x_3 = 120. \end{cases}$$

11.14.
$$\begin{cases} 8x_1 + 4x_2 - x_3 = 51, \\ 6x_1 - 3x_2 + 4x_3 = 50, \\ 2x_1 + 7x_2 + 6x_3 = 56. \end{cases}$$

11.16.
$$\begin{cases} 9x_1 + x_2 - 7x_3 = 35, \\ x_1 + 6x_2 - 2x_3 = -15, \\ -6x_1 + 5x_2 + 4x_3 = -41. \end{cases}$$

11.18.
$$\begin{cases} -3x_1 + 6x_2 + 9x_3 = 15, \\ 9x_1 + 4x_2 - 4x_3 = 107, \\ -7x_1 - 9x_2 + 8x_3 = -146. \end{cases}$$

11.20.
$$\begin{cases} -4x_1 + 4x_2 - 4x_3 = 28, \\ x_1 + 8x_2 + 6x_3 = -86, \\ 2x_1 + 3x_2 - 7x_3 = 1. \end{cases}$$

11.22.
$$\begin{cases} -x_1 - x_2 - 8x_3 = 14, \\ -9x_1 + 8x_2 + 9x_3 = 66, \\ 2x_1 + 4x_2 - 2x_3 = 20. \end{cases}$$

11.24.
$$\begin{cases} 4x_1 - 8x_2 + 7x_3 = -2, \\ 9x_1 + x_2 - 7x_3 = 56, \\ 9x_1 - x_2 + x_3 = 16. \end{cases}$$

11.26.
$$\begin{cases} -3x_1 + x_2 - 4x_3 = -17, \\ 8x_1 - 3x_2 + 4x_3 = 21, \\ 9x_1 + 9x_2 - 7x_3 = -109. \end{cases}$$

11.28.
$$\begin{cases} -5x_1 - 2x_2 + 3x_3 = 36, \\ x_1 + 4x_2 + x_3 = 4, \\ 5x_1 + x_2 + x_3 = -8. \end{cases}$$

11.30.
$$\begin{cases} -9x_1 + 9x_2 - 5x_3 = 19, \\ -4x_1 - 6x_2 - 7x_3 = -95, \\ 6x_1 - 5x_2 - 2x_3 = -43. \end{cases}$$

12. Решить системы линейных уравнений методом I аусса:

12.1.
$$\begin{cases} 7x_1 - x_2 - 7x_3 - 9x_4 = -51, \\ -2x_1 + 7x_2 + 3x_3 + 5x_4 = -21, \\ -x_1 - 8x_2 + x_3 - x_4 = 46, \\ 4x_1 - 2x_2 - 3x_3 - 4x_4 = -26. \end{cases}$$

12.3.
$$\begin{cases}
-x_1 - 8x_2 - 8x_3 - x_4 = 38, \\
-9x_1 - 5x_2 - x_3 - 5x_4 = 70, \\
-6x_1 - 8x_2 - 5x_3 - 2x_4 = 65, \\
-7x_1 + 6x_2 - 5x_3 - 2x_4 = 29.
\end{cases}$$

$$12.5. \begin{cases} 2x_1 - 6x_2 - 8x_3 + 5x_4 = 51, \\ 3x_1 + 2x_2 + 3x_3 + 6x_4 = 41, \\ -4x_1 + 9x_2 + 6x_3 + 3x_4 = -16, \\ x_1 + 5x_2 + x_3 + 14x_4 = 76. \end{cases}$$
$$12.6. \begin{cases} -6x_1 - 3x_2 + 8x_3 - 2x_4 = -36, \\ 6x_1 + 8x_2 - 3x_3 + 9x_4 = 4, \\ 7x_1 + 8x_2 - 6x_3 - 5x_4 = 35, \\ 7x_1 + 13x_2 - x_3 + 2x_4 = 3. \end{cases}$$

12.7.
$$\begin{cases}
-5x_1 - 5x_2 + 5x_3 + 4x_4 = -40, \\
7x_1 + 9x_2 + 2x_3 - 3x_4 = 75, \\
-6x_1 + 3x_2 - 2x_3 - 2x_4 = -11, \\
-4x_1 + 7x_2 + 5x_3 - x_4 = 24.
\end{cases}$$

12.9.
$$\begin{cases} 9x_1 + 4x_2 + 4x_3 + 8x_4 = -100, \\ -9x_1 + x_2 + 8x_3 + 4x_4 = 51, \\ 5x_1 - 8x_2 - x_3 - x_4 = 2, \\ x_1 + x_2 + 7x_3 - 7x_4 = -27. \end{cases}$$

12.11.
$$\begin{cases}
-4x_1 + 8x_2 - 4x_3 + x_4 = -41, \\
-4x_1 - 2x_2 + 4x_3 + 6x_4 = 10, \\
5x_1 + 2x_2 - 8x_3 - 8x_4 = -13, \\
5x_1 + 8x_2 - 8x_3 - x_4 = -44.
\end{cases}$$

$$12.13. \begin{cases} 3x_1 + 8x_2 - x_3 - x_4 = -22, \\ 3x_1 + x_2 + 6x_3 + x_4 = -6, \\ -2x_1 + 3x_2 + 6x_3 - 5x_4 = -12, \\ -6x_1 - 2x_2 + 3x_3 - 9x_4 = 24. \end{cases}$$

$$12.13. \begin{cases} 3x_1 + 8x_2 - 8x_3 - x_4 = -44. \\ 3x_1 + 8x_2 - x_3 - x_4 = -22, \\ 3x_1 + x_2 + 6x_3 + x_4 = -6, \\ -2x_1 + 3x_2 + 6x_3 - 5x_4 = -12, \\ -6x_1 - 2x_2 + 3x_3 - 9x_4 = 24. \end{cases}$$

$$12.14. \begin{cases} -6x_1 + x_2 - 2x_3 + 6x_4 = -17, \\ -2x_1 - 9x_2 + 2x_3 - 8x_4 = -75, \\ -9x_1 - 5x_2 + 6x_3 + 8x_4 = 12, \\ -4x_1 - 6x_2 - 4x_3 + x_4 = -68. \end{cases}$$

$$12.15. \begin{cases} 6x_1 + 3x_2 - x_3 + 5x_4 = -1, \\ 2x_1 + 7x_2 - 4x_3 - 6x_4 = 103, \\ 3x_1 + 3x_2 + 6x_3 + 6x_4 = -18, \\ -2x_1 - 6x_2 - 2x_3 + 9x_4 = -120. \end{cases}$$

$$12.16. \begin{cases} 7x_1 - 9x_2 - 6x_3 + 3x_4 = -48, \\ -4x_1 + 9x_2 + 2x_3 - 3x_4 = 56, \\ -8x_1 + 3x_2 - 6x_3 + 6x_4 = 39, \\ -5x_1 + 3x_2 - 10x_3 + 6x_4 = 47. \end{cases}$$

$$12.17. \begin{cases} -8x_1 - 9x_2 - 5x_3 - 2x_4 = 60, \\ 4x_1 + 6x_2 + 4x_3 - x_4 = -46, \\ -7x_1 + 9x_2 + 6x_3 + 8x_4 = -11, \\ -11x_1 + 6x_2 + 5x_3 + 5x_4 = 3. \end{cases}$$

$$12.18. \begin{cases} 7x_1 - 9x_2 - 3x_3 - 2x_4 = -21, \\ -6x_1 + 9x_2 + 9x_3 - 9x_4 = 72, \\ 4x_1 + 2x_2 + 9x_3 + 2x_4 = -76, \\ 7x_1 + 9x_2 - 2x_3 + 3x_4 = 52. \end{cases}$$

$$12.2.\begin{cases} -4x_1 - x_2 - 3x_3 + 5x_4 = 57, \\ 7x_1 - x_2 - 7x_3 + 2x_4 = -75, \\ 5x_1 - 6x_2 + 9x_3 - 9x_4 = -111, \\ -2x_1 - 9x_2 - x_3 - 5x_4 = -65. \end{cases}$$

12.4.
$$\begin{cases}
-3x_1 - 4x_2 - 4x_3 + 8x_4 = -67, \\
7x_1 - 7x_2 + 8x_3 + 8x_4 = -175, \\
-3x_1 + 3x_2 - 7x_3 + 7x_4 = -1, \\
x_1 - 8x_2 - 3x_3 + 23x_4 = -243.
\end{cases}$$

12.6.
$$\begin{cases} -6x_1 - 3x_2 + 8x_3 - 2x_4 = -36, \\ 6x_1 + 8x_2 - 3x_3 + 9x_4 = 4, \\ 7x_1 + 8x_2 - 6x_3 - 5x_4 = 35, \\ 7x_1 + 13x_2 - x_3 + 2x_4 = 3. \end{cases}$$

12.8.
$$\begin{cases} x_1 + 7x_2 + 4x_3 - 4x_4 = 26, \\ -5x_1 - 9x_2 - 5x_3 + 5x_4 = -55, \\ 7x_1 + 8x_2 - 3x_3 - 7x_4 = 77, \\ 3x_1 + 6x_2 - 4x_3 - 6x_4 = 48. \end{cases}$$

$$12.10.\begin{cases} 9x_1 - 2x_2 + 6x_3 + 8x_4 = -149, \\ -6x_1 + 5x_2 + 8x_3 + 6x_4 = -85, \\ -3x_1 - 3x_2 + 9x_3 - 6x_4 = -45, \\ 2x_1 + 8x_2 + 5x_3 - 4x_4 = 45. \end{cases}$$

2.12.
$$\begin{cases} -4x_1 - 9x_2 - x_3 - 8x_4 = 5, \\ -9x_1 - 9x_2 + 7x_3 - 9x_4 = 45, \\ 7x_1 - 8x_2 - 7x_3 + x_4 = -80, \\ 2x_1 + 2x_2 - 4x_3 + 4x_4 = -10. \end{cases}$$

12.14.
$$\begin{cases} -6x_1 + x_2 - 2x_3 + 6x_4 = -17, \\ -2x_1 - 9x_2 + 2x_3 - 8x_4 = -75, \\ -9x_1 - 5x_2 + 6x_3 + 8x_4 = 12, \\ -4x_1 - 6x_2 - 4x_3 + x_4 = -68. \end{cases}$$

12.16.
$$\begin{cases} 7x_1 - 9x_2 - 6x_3 + 3x_4 = -48, \\ -4x_1 + 9x_2 + 2x_3 - 3x_4 = 56, \\ -8x_1 + 3x_2 - 6x_3 + 6x_4 = 39, \\ -5x_1 + 3x_2 - 10x_3 + 6x_4 = 47 \end{cases}$$

12.18
$$\begin{cases} 7x_1 - 9x_2 - 3x_3 - 2x_4 = -21, \\ -6x_1 + 9x_2 + 9x_3 - 9x_4 = 72, \\ 4x_1 + 2x_2 + 9x_3 + 2x_4 = -76, \\ 7x_1 + 9x_2 - 2x_3 + 3x_4 = 52. \end{cases}$$

12.21.
$$\begin{cases} -7x_1 + 3x_2 - 6x_3 - 5x_4 = 21, \\ 6x_1 - 8x_2 - 7x_3 - 3x_4 = -130, \\ 6x_1 - 9x_2 - 6x_3 - 3x_4 = -132, \\ -6x_1 + 4x_2 - 5x_3 - 7x_4 = 40. \end{cases}$$
12.23.
$$\begin{cases} 3x_1 - 2x_2 + 6x_3 - 5x_4 = -63, \\ 2x_1 + 7x_2 + 9x_3 - 8x_4 = -79, \\ -6x_1 + 7x_2 - 3x_3 - 5x_4 = 0, \\ 7x_1 + 4x_2 + 7x_3 + 7x_4 = 14. \end{cases}$$
12.25.
$$\begin{cases} -9x_1 + 5x_2 - 6x_3 - 9x_4 = -1, \\ -3x_1 - 9x_2 - 9x_3 - 6x_4 = 60, \\ -x_1 + 5x_2 + 5x_3 - 8x_4 = 60, \\ 5x_1 - 8x_2 + x_3 + 9x_4 = -6. \\ 9x_1 - 4x_2 - 2x_3 - 5x_4 = 25, \end{cases}$$

12.23.
$$\begin{cases} 3x_1 - 2x_2 + 6x_3 - 5x_4 = -65, \\ 2x_1 + 7x_2 + 9x_3 - 8x_4 = -79, \\ -6x_1 + 7x_2 - 3x_3 - 5x_4 = 0, \\ 7x_1 + 4x_2 + 7x_3 + 7x_4 = 14. \end{cases}$$

12.25.
$$\begin{cases} -9x_1 + 5x_2 - 6x_3 - 9x_4 = -1, \\ -3x_1 - 9x_2 - 9x_3 - 6x_4 = 60, \\ -x_1 + 5x_2 + 5x_3 - 8x_4 = 60, \\ 5x_1 - 8x_2 + x_3 + 9x_4 = -6. \end{cases}$$

$$12.27.\begin{cases} 9x_1 - 4x_2 - 2x_3 - 5x_4 = 25, \\ 5x_1 - 3x_2 + 5x_3 - 9x_4 = -41, \\ 2x_1 - 8x_2 + 4x_3 + 7x_4 = 48, \\ -x_1 - 7x_2 + 5x_3 + 9x_4 = 41. \end{cases}$$

$$12.29. \begin{cases} -5x_1 - 4x_2 - x_3 + 2x_4 = 42, \\ -2x_1 + 6x_2 - 9x_3 + x_4 = 118, \\ -x_1 - x_2 + x_3 + 5x_4 = 20, \\ -5x_1 - 2x_2 - 8x_3 + 2x_4 = 111. \end{cases}$$

12.22.
$$\begin{cases} -3x_1 - 6x_2 + x_3 - 5x_4 = 37, \\ 7x_1 - 8x_2 + 6x_3 + 2x_4 = 58, \\ 2x_1 + 2x_2 + 2x_3 - 7x_4 = 47, \\ 8x_1 + 2x_2 - 8x_3 - 2x_4 = 100. \end{cases}$$
12.24.
$$\begin{cases} 4x_1 - 8x_2 - 5x_3 - 9x_4 = 96, \\ x_1 + 6x_2 - 8x_3 - 8x_4 = 32, \\ -7x_1 + 8x_2 + x_3 - 3x_4 = -10, \\ 2x_1 + 5x_2 + 8x_3 + 7x_4 = -87. \end{cases}$$
12.26.
$$\begin{cases} -3x_1 + 3x_2 + 7x_3 - 6x_4 = 62, \\ -3x_1 + 9x_2 - 2x_3 + x_4 = 77, \\ 8x_1 + x_2 + 4x_3 - x_4 = 12, \\ -3x_1 - 8x_2 + 4x_3 - 7x_4 = -40. \end{cases}$$
12.28.
$$\begin{cases} -2x_1 + 3x_2 + 2x_3 - 3x_4 = -7, \\ 7x_1 + x_2 + 5x_3 - 7x_4 = -23, \\ -6x_1 - 4x_2 - x_3 + 3x_4 = 4, \\ -x_1 + 6x_3 - 7x_4 = -26. \end{cases}$$

12.24.
$$\begin{cases} x_1 + 6x_2 - 8x_3 - 8x_4 = 32, \\ -7x_1 + 8x_2 + x_3 - 3x_4 = -10, \\ 2x_1 + 5x_2 + 8x_3 + 7x_4 = -87. \end{cases}$$

12.26.
$$\begin{cases} -3x_1 + 3x_2 + 7x_3 - 6x_4 = 62, \\ -3x_1 + 9x_2 - 2x_3 + x_4 = 77, \\ 8x_1 + x_2 + 4x_3 - x_4 = 12, \\ -3x_1 - 8x_2 + 4x_3 - 7x_4 = -40. \end{cases}$$

$$12.28.\begin{cases} -2x_1 + 3x_2 + 2x_3 - 3x_4 = -7, \\ 7x_1 + x_2 + 5x_3 - 7x_4 = -23, \\ -6x_1 - 4x_2 - x_3 + 3x_4 = 4, \\ -x_1 + 6x_3 - 7x_4 = -26. \end{cases}$$

12.30.
$$\begin{cases} -3x_1 + 6x_2 + 2x_3 - 9x_4 = 35, \\ 8x_1 - 9x_2 + 4x_3 - 8x_4 = -121, \\ 4x_1 + 7x_2 - x_3 - x_4 = 43, \\ 9x_1 + 4x_2 + 5x_3 - 18x_4 = -43. \end{cases}$$

$$\begin{vmatrix}
2 & -5 & -4 & 2 \\
-5 & -2 & 4 & 4 \\
4 & 1 & 2 & 5 \\
-5 & 4 & 3 & -2
\end{vmatrix}$$

$$13.5. \begin{vmatrix} 5 & -2 & 3 & 2 \\ 4 & 5 & 2 & 1 \\ 5 & -1 & 5 & -1 \\ -2 & -4 & 1 & -4 \end{vmatrix}$$

13.1.
$$\begin{vmatrix} 2 - 2 & -2 & -5 \\ 2 - 3 & -2 & -2 \\ -2 & 4 & 5 & -4 \\ 3 & 1 & -1 & -4 \end{vmatrix}$$
13.3.
$$\begin{vmatrix} 2 - 5 & -4 & 2 \\ -5 & -2 & 4 & 4 \\ 4 & 1 & 2 & 5 \\ -5 & 4 & 3 & -2 \end{vmatrix}$$
13.5.
$$\begin{vmatrix} 5 - 2 & 3 & 2 \\ 4 & 5 & 2 & 1 \\ 5 - 1 & 5 & -1 \\ -2 & -4 & 1 & -4 \end{vmatrix}$$
13.7.
$$\begin{vmatrix} 3 & 5 & -5 & 5 \\ -1 & 2 & 4 & -1 \\ 1 & -2 & -2 & -1 \\ -3 & -4 & -1 & 1 \end{vmatrix}$$
13.9.
$$\begin{vmatrix} 2 & 4 & -1 & 4 \\ 2 & 4 & -3 & -3 \\ 4 & 3 & -5 & 2 \end{vmatrix}$$

$$13.9. \begin{vmatrix} -2 & 4 & 5 & 4 \\ 2 & 4 & -1 & 4 \\ 2 & 4 & -3 & -3 \\ 4 & 3 & -5 & 2 \end{vmatrix}$$

13. 2.
$$\begin{vmatrix} -5 & 1 & -2 & -5 \\ 3 & 2 & -2 & 3 \\ 5 & -2 & -1 & 5 \\ -5 & 4 & -2 & -1 \end{vmatrix}$$

13.4.
$$\begin{vmatrix}
-3 & -2 & 5 & -4 \\
5 & -2 & 1 & -4 \\
4 & -3 & 3 & 1 \\
3 & -5 & 5 & -1
\end{vmatrix}$$

$$13.8. \begin{vmatrix} 5 & -2 & -1 & 1 \\ 5 & -5 & 3 & 5 \\ -3 & 4 & 4 & 1 \\ -3 & 5 & 4 & -1 \end{vmatrix}$$

13.10.
$$\begin{vmatrix} 1 & -2 & 1 & 2 \\ -4 & 5 & 1 & -4 \\ -1 & 5 & 2 & -5 \\ 5 & -5 & 2 & 2 \end{vmatrix}$$

14. Найти обратную матрицу.

$$14.1. \begin{pmatrix} -6 & 5 & -4 \\ -4 & 4 & 1 \\ -5 & -5 & 2 \end{pmatrix} \qquad 14.2. \begin{pmatrix} -5 & 2 & 1 \\ 5 & -2 & -2 \\ -2 & -1 & 5 \end{pmatrix}$$

$$14.3. \begin{pmatrix} 4 & -3 & -5 \\ 1 & -5 & -6 \\ -4 & 2 & -3 \end{pmatrix}$$

$$14.3. \begin{pmatrix} 4 & -3 & -5 \\ 1 & -5 & -6 \\ -4 & 2 & -3 \end{pmatrix} \qquad 14.4. \begin{pmatrix} -2 & -1 & -4 \\ 5 & 3 & -3 \\ -2 & -2 & 3 \end{pmatrix}$$

$$14.5. \begin{pmatrix} 3 & -2 & -1 \\ 3 & -4 & 6 \\ 2 & -3 & -2 \end{pmatrix}$$

$$14.5. \begin{pmatrix} 3 & -2 & -1 \\ 3 & -4 & 6 \\ 2 & -3 & -2 \end{pmatrix} \qquad 14.6. \begin{pmatrix} -6 & -4 & -2 \\ -5 & 1 & 4 \\ 4 & -3 & 5 \end{pmatrix}$$

$$14.7. \begin{pmatrix} 1 & -2 & -2 \\ -6 & 4 & 5 \\ 1 & -4 & -3 \end{pmatrix}$$

$$14.7. \begin{pmatrix} 1 & -2 & -2 \\ -6 & 4 & 5 \\ 1 & -4 & -3 \end{pmatrix} \qquad 14.8. \begin{pmatrix} 5 & 6 & -6 \\ -6 & 1 & -3 \\ -2 & -6 & 5 \end{pmatrix}$$

$$14.9. \begin{pmatrix} -6 & -2 & -4 \\ 1 & -6 & -6 \\ 1 & -6 & 4 \end{pmatrix} \qquad 14.10. \begin{pmatrix} 5 & 1 & 5 \\ -6 & 5 & 6 \\ 2 & 4 & 1 \end{pmatrix}$$

$$14.10. \begin{pmatrix} 5 & 1 & 5 \\ -6 & 5 & 6 \\ 2 & 4 & 1 \end{pmatrix}$$

$$14.11. \begin{pmatrix} -2 & 2 & 2 \\ -6 & 3 & -3 \\ 4 & 6 & -6 \end{pmatrix}$$

$$14.11. \begin{pmatrix} -2 & 2 & 2 \\ -6 & 3 & -3 \\ 4 & 6 & -6 \end{pmatrix} \qquad 14.12. \begin{pmatrix} -4 & -2 & -1 \\ 5 & -5 & -4 \\ 6 & 5 & 6 \end{pmatrix}$$

$$14.13. \begin{pmatrix} -4 & 6 & -3 \\ 3 & 5 & -1 \\ -5 & 2 & 1 \end{pmatrix}$$

$$14.14. \begin{pmatrix} -3 & 2 & 1 \\ -1 & 4 & -3 \\ 4 & 1 & -1 \end{pmatrix}$$

$$14.15. \begin{pmatrix} -5 & 1 & -2 \\ -1 & 6 & -1 \\ 6 & -5 & -1 \end{pmatrix} \qquad 14.16. \begin{pmatrix} 1 & -1 & 2 \\ -1 & 6 & -6 \\ 1 & 1 & 5 \end{pmatrix}$$

$$14.16. \begin{pmatrix} 1 & -1 & 2 \\ -1 & 6 & -6 \\ 1 & 1 & 5 \end{pmatrix}$$

$$14.17. \begin{pmatrix} 2 & 6 & 2 \\ 5 & 6 & 4 \\ 4 & 3 & 2 \end{pmatrix}$$

$$14.18. \begin{pmatrix} 3 & 4 & 6 \\ 5 & 2 & -3 \\ 4 & -6 & 6 \end{pmatrix}$$

$$14.19. \begin{pmatrix} 2 & 4 & -5 \\ -6 & 5 & -3 \\ -3 & -1 & 1 \end{pmatrix}$$

$$14.19. \begin{pmatrix} 2 & 4 & -5 \\ -6 & 5 & -3 \\ -3 & -1 & 1 \end{pmatrix} \qquad 14.20. \begin{pmatrix} -6 & 6 & -5 \\ 1 & -3 & 4 \\ 4 & 3 & -1 \end{pmatrix}$$

$$14.21. \begin{pmatrix} 4 & 5 & 4 \\ -6 & -3 & 2 \\ -3 & -5 & -6 \end{pmatrix} \qquad 14.22. \begin{pmatrix} -1 & -2 & 1 \\ 3 & 6 & 1 \\ 1 & -5 & -6 \end{pmatrix}$$

$$14.22. \begin{pmatrix} -1 & -2 & 1 \\ 3 & 6 & 1 \\ 1 & -5 & -6 \end{pmatrix}$$

$$14.23. \begin{pmatrix} -5 & -5 & -1 \\ -2 & 2 & 3 \\ 5 & -1 & 4 \end{pmatrix} \qquad 14.24. \begin{pmatrix} 5 & -6 & 1 \\ 6 & 5 & 2 \\ -4 & 2 & 3 \end{pmatrix}$$

$$14.24. \begin{pmatrix} 5 & -6 & 1 \\ 6 & 5 & 2 \\ -4 & 2 & 3 \end{pmatrix}$$

$$14.25. \begin{pmatrix} -1 & -5 & 3 \\ 4 & 6 & 1 \\ -4 & -6 & 1 \end{pmatrix}$$

$$14.25. \begin{pmatrix} -1 & -5 & 3 \\ 4 & 6 & 1 \\ -4 & -6 & 1 \end{pmatrix} \qquad 14.26. \begin{pmatrix} 2 & -5 & 1 \\ -2 & 3 & -4 \\ -2 & 1 & -2 \end{pmatrix}$$

$$14.27. \begin{pmatrix} 6 & -3 & -1 \\ 2 & -6 & -1 \\ -3 & 5 & -5 \end{pmatrix} \qquad 14.28. \begin{pmatrix} -3 & -5 & -4 \\ -3 & -5 & -1 \\ 3 & 6 & -4 \end{pmatrix}$$

$$14.29. \begin{pmatrix} 1 & 2 & 5 \\ 2 & 2 & 6 \\ -3 & -4 & 1 \end{pmatrix} \qquad 14.30. \begin{pmatrix} 5 & 6 & -3 \\ 6 & 3 & -2 \\ -4 & 4 & -2 \end{pmatrix}$$

15. Найти собственные числа и собственные векторы матрицы.

$$15.1. \begin{pmatrix} 3 & 4 & 4 \\ 1 & 4 & 3 \\ -1 & 4 & 5 \end{pmatrix} \qquad 15.2. \begin{pmatrix} -1 & 1 & 4 \\ -2 & 2 & 4 \\ 4 & 5 & 5 \end{pmatrix} \qquad 15.3. \begin{pmatrix} 1 & 4 & 4 \\ -2 & -5 & 3 \\ 3 & 3 & -5 \end{pmatrix}$$

$$15.4. \begin{pmatrix} -5 & -2 & 1 \\ 1 & 1 & -5 \\ 2 & 1 & -2 \end{pmatrix} \qquad 15.5. \begin{pmatrix} 1 & 1 & -1 \\ 1 & -5 & -3 \\ 3 & -3 & -5 \end{pmatrix} \qquad \qquad 15.6. \begin{pmatrix} -3 & 2 & 2 \\ 2 & 1 & -3 \\ -2 & 1 & 5 \end{pmatrix}$$

$$15.7. \begin{pmatrix} 1 & -4 & -3 \\ -1 & 4 & -3 \\ -1 & 4 & -5 \end{pmatrix} \qquad 15.8. \begin{pmatrix} 1 & 3 & 2 \\ 2 & -5 & -5 \\ -1 & -3 & -2 \end{pmatrix} \qquad \qquad 15.9. \begin{pmatrix} 1 & -2 & 2 \\ 4 & -5 & 4 \\ -4 & -1 & 4 \end{pmatrix}$$

$$15.10. \begin{pmatrix} -4 & -2 & 2 \\ 4 & 2 & -2 \\ -5 & -5 & 2 \end{pmatrix} \quad 15.11. \begin{pmatrix} 1 & 3 & 3 \\ 2 & 1 & -4 \\ -1 & -1 & 1 \end{pmatrix} \qquad 15.12. \begin{pmatrix} -5 & -1 & 3 \\ 1 & 5 & 1 \\ 5 & -3 & -3 \end{pmatrix}$$

$$15.13. \begin{pmatrix} -2 & -3 & 1 \\ 3 & -2 & 5 \\ 2 & 1 & 1 \end{pmatrix} \qquad 15.14. \begin{pmatrix} 3 & 5 & -2 \\ -1 & -3 & 4 \\ 1 & 1 & 3 \end{pmatrix} \qquad 15.15. \begin{pmatrix} -3 & 3 & 2 \\ -5 & 5 & 2 \\ 2 & -4 & -5 \end{pmatrix}$$

$$15.16. \begin{pmatrix} 5 & -2 & 2 \\ -2 & 3 & 2 \\ -3 & 1 & 4 \end{pmatrix} \qquad 15.17. \begin{pmatrix} -3 & -4 & -1 \\ 5 & -4 & 5 \\ 3 & 4 & 1 \end{pmatrix} \qquad 15.18. \begin{pmatrix} -4 & -5 & 4 \\ 2 & -2 & 2 \\ 5 & 5 & -3 \end{pmatrix}$$

$$15.19. \begin{pmatrix} -1 & 5 & 1 \\ 1 & 3 & 2 \\ 2 & -2 & 1 \end{pmatrix} \qquad 15.20. \begin{pmatrix} -3 & -3 & 5 \\ -4 & 2 & 3 \\ -3 & 3 & 4 \end{pmatrix} \qquad \qquad 15.21. \begin{pmatrix} 3 & -3 & 3 \\ -4 & -1 & -4 \\ -5 & 3 & -5 \end{pmatrix}$$

$$15.22. \begin{pmatrix} -2 & 1 & 5 \\ -1 & -4 & 4 \\ 4 & 4 & -3 \end{pmatrix} \quad 15.23. \begin{pmatrix} -3 & 2 & 1 \\ -4 & 3 & 4 \\ 1 & -1 & -3 \end{pmatrix} \qquad 15.24. \begin{pmatrix} -1 & -4 & 3 \\ -4 & -1 & 3 \\ 4 & 3 & -1 \end{pmatrix}$$

$$15.25. \begin{pmatrix} -3 & -3 & -2 \\ 2 & 5 & 5 \\ -5 & 1 & 4 \end{pmatrix} \quad 15.26. \begin{pmatrix} 1 & -2 & -2 \\ -5 & -5 & -1 \\ 2 & 5 & 1 \end{pmatrix} \qquad 15.27. \begin{pmatrix} -2 & -5 & 1 \\ -3 & -5 & 3 \\ 1 & 3 & -2 \end{pmatrix}$$

$$15.28. \begin{pmatrix} 1 & -1 & -1 \\ -4 & 4 & 4 \\ -5 & 4 & 1 \end{pmatrix} \quad 15.29. \begin{pmatrix} 3 & 1 & 1 \\ 2 & 2 & 4 \\ -5 & -3 & -5 \end{pmatrix} \qquad \qquad 15.30. \begin{pmatrix} -2 & -4 & 4 \\ -1 & 1 & 2 \\ 5 & 5 & -2 \end{pmatrix}$$

Раздел 2. ВВЕДЕНИЕ В АНАЛИЗ

Примеры решения задач

Напомним, что графики функций а) f(-x), б) -f(x), в) f(x-a), г) f(x+A), д) f(kx), е) |f(x)| получаются из графика функции f(x) с помощью следующих геометрических преобразований: а) отражения относительно оси OY, б) отражения относительно оси OX, в) сдвига вдоль оси OX на A единиц, A единиц, A гомотетии вдоль оси A в A единиц, A гомотетии вдоль оси A в A единиц, A гомотетии вдоль оси A в A единиц, A единиц, A гомотетии вдоль оси A в A единиц, A единиц, A гомотетии вдоль оси A в A единиц, A единиц, A гомотетии вдоль оси A в A единиц, A единиц,

<u>Задача 1</u>. Используя элементарные преобразования, построить график функции $y = \left| x^2 - 3x \right| + 2$.

Решение. Сначала строим график параболы $f(x) = x^2 - 3x$ (рис. 1). Затем применяем последовательно преобразования «е» и «г» - сдвиг по оси на 2 единицы (рис. 1).

Puc. 1

Puc. 2

Приведем некоторые арифметические формулы, которые можно

доказать методом математической индукции:

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2},\tag{1}$$

$$1 + 3 + 5 + \dots + (2n - 1) = n^2, \tag{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6},$$
 (3)

$$1 + a + a^2 + \dots + a^n = \frac{a^{n+1} - 1}{a - 1}, \qquad (a \neq 1). (4)$$

Задача 2. Вычислить предел

$$\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}.$$

Решение. Используя формулу (3) получим

$$\frac{1^2 + 2^2 + \dots + n^2}{n^3} = \frac{1}{6} \cdot \frac{n(n+1)(2n+1)}{n^3} = \frac{1}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right).$$

Так как

$$\lim_{n\to\infty}\frac{1}{n}=0,$$

TO

$$\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} = \lim_{n \to \infty} \frac{1}{6} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right) =$$

$$= \frac{1}{6} \left(1 + \lim_{n \to \infty} \frac{1}{n} \right) \left(2 + \lim_{n \to \infty} \frac{1}{n} \right) = \frac{1}{6} \cdot 1 \cdot 2 = \frac{1}{3}.$$
Other: 1/3.

Напомним, что порядком малости бесконечно малой величины (далее б.м.) $\beta(x)$ относительно бесконечно малой $\alpha(x)$ ($x \to a$) называется такое натуральное число n, что существует, и предел отношения $\frac{\beta(x)}{\alpha(x)^n}$ при $x \to a$ не равен 0. Обозначим через $V_{\alpha}(\beta)$ порядок малости б.м. β относительно б.м. α .

Тогда

$$V_{\alpha}(\beta_1 \beta_2) = V_{\alpha}(\beta_1) + V_{\alpha}(\beta_2) \tag{5}$$

для любых б.м. β_1 , β_2 , для которых определены порядки малости относительно α . Действительно, если $n_1 = V_{\alpha}(\beta_1)$, $n_2 = V_{\alpha}(\beta_2)$, то

$$\lim_{x \to a} \frac{\beta_1 \beta_2}{\alpha^{n_1 + n_2}} = \lim_{x \to a} \frac{\beta_1}{\alpha^{n_1}} \cdot \lim_{x \to a} \frac{\beta_2}{\alpha^{n_2}} \neq 0,$$

что доказывает равенство (5).

<u>Задача 3</u>. Определить порядок малости б.м. $\beta(x) = (\cos 2x - \cos 2x)$

-1) $(e^x - -e^{-x})$ ($\sin x - \operatorname{tg} x$) относительно $\alpha(x) = x$ при $x \to 0$.

Решение. Соѕ $2x-1=-2\sin^2 x$. Так как $V_x(\sin x)=1$ согласно первому замечательному пределу, то $V_x(\cos 2x-1)=V_x(\sin x)+V_x(\sin x)=$ = 2. Далее, $e^x-e^{-x}=e^{-x}(e^{2x}-1)$, т. к. $\lim_{x\to 0}\frac{e^{2x}-1}{x}=2$, то $V_x(e^x-e^{-x})=$ 1. Функцию $\sin x-\operatorname{tg} x$ преобразуем так: $\sin x-\operatorname{tg} x==\frac{1}{\cos x}(\cos x-1)\sin x$. Уже доказано, что $V_x(\cos x-1)=2$. Так как $\lim_{x\to 0}\frac{1}{\cos x}=1$ в силу непрерывности функции $\cos x$ и $V_x(\sin x)=1$, то $V_x(\sin x-\operatorname{tg} x)=2+1=3$ ввиду равенства (1). Окончательно $V_x(\beta)=V_x(\cos 2x-1)+V_x(e^x-e^{-x})+V_x(\sin x-\operatorname{tg} x)=2+1+3=6$. Ответ: порядок малости $\beta(x)$ относительно $x(x\to 0)$ равен 6.

 $\frac{3$ адача 4. Вычислить $\lim_{x\to 0}\left(\frac{x^2-2x+3}{x^2-3x+2}\right)^{\frac{\sin x}{x}}$. Решение. Обозначим $\alpha(x)=\frac{x^2-2x+3}{x^2-3x+2},\, \beta(x)=\frac{\sin x}{x}$. Тогда $\lim_{x\to 0}\alpha(x)=\frac{0^2-2\cdot 0+3}{0^2-3\cdot 0+2}=\frac{3}{2},\quad \lim_{x\to 0}\beta(x)=1$

в силу непрерывности функции $\alpha(x)$ и первого замечательного предела. Следовательно,

$$\lim_{x \to 0} \ln(\alpha(x)^{\beta(x)}) = \lim_{x \to 0} [\beta(x) \ln \alpha(x)] = 1 \cdot \ln \frac{3}{2} = \ln \frac{3}{2};$$
$$\lim_{x \to 0} \alpha(x)^{\beta(x)} = e^{\ln \frac{3}{2}} = \frac{3}{2},$$

где использована непрерывность функций $\ln x$ и e^x .

Ответ: 3/2.

Задача 5. Локализовать какой-либо корень уравнения $e^x = x + 2$ с точностью до 0,1.

Решение. Локализовать корень x_0 с точностью до ε — значит найти такое число x^* , что $x_0 \in (x^* - \varepsilon, x^* + \varepsilon)$. Тогда $x_0 \approx x^*$ с точностью ε . Заметим, что

$$|e^x|_{x=0} < (x+2)|_{x=0}$$
 и $|e^x|_{x=2} < (x+2)|_{x=2}$.

Так как функции e^x и x+2 непрерывны, то по теореме Больцано-Коши существует корень $x_0 \in (0,2)$ уравнения $e^x = x+2$. Для локализации этого корня будем использовать метод дихотомии (деления

пополам). Вычисления сведем в таблицу.

x	0	2	1	1,5	1,25	1,125	•••
e ^x	1	7,39	2,72	4,48	3,49	3,08	
x + 2	2	4	3	3,5	3,25	3,125	
$e^{x} ? x + 2$	<	>	<	>	>	<	

В таблице, начиная со столбца x = 1, выбор значения осуществляется по правилу x = (a + b)/2, где a, b - значения переменной x в предыдущих столбцах с условием, что неравенства в последней строке, соответствующие a и b, - разного смысла и разность |b-a| при этом наименьшая. Так как $x_0 \in (1,125;1,25)$ и интервал (1,125;1,25)содержится в интервале (1,15 – 0,1; 1,15 + 0,1), то $x^* = 1,15$ - искомая точка.

Ответ: один из корней уравнения $e^x = x + 2$ содержится в интервале (1,15-0,1; 1,15+0,1).

Задания

- 1. Для заданной функции f(x) и числа x_0 :
- 1) найти область допустимых значений (ОДЗ) функции f(x);
- 2) элементарными преобразованиями (см. задачу 1) построить график функции f(x);
- 3) если x_0 принадлежит ОДЗ, то найти число δ такое, что $|f(x) - f(x_0)| < 0$,1, как только $|x - x_0| < \delta$; если же x_0 не принадлежит ОДЗ, то найти число δ такое, что |f(x)| > 50, как только $|x - x_0| < \delta$, $x \neq x_0$.

1.1.
$$f(x) = \left| \frac{x-1}{x+1} \right|, \qquad x_0 = -1.$$

1.2.
$$f(x) = \sin \left| 2x + \frac{\pi}{3} \right|$$
, $x_0 = \frac{\pi}{6}$.

1.3.
$$f(x) = x^2 - 3|x| + 2$$
, $x_0 = 0$.

1.3.
$$f(x) = x^2 - 3|x| + 2$$
, $x_0 = 0$.
1.4. $f(x) = \frac{|x-1|}{x+1}$, $x_0 = -1$.
1.5. $f(x) = \sin\left|\frac{x}{2} - \frac{\pi}{6}\right|$, $x_0 = \frac{\pi}{3}$.

1.5.
$$f(x) = \sin\left|\frac{x}{2} - \frac{\pi}{6}\right|, \qquad x_0 = \frac{\pi}{3}.$$

1.6.
$$f(x) = |x^2 - 3x + 2|, \quad x_0 = 2.$$

1.6.
$$f(x) = |x^2 - 3x + 2|, \quad x_0 = 2.$$

1.7. $f(x) = \frac{x-1}{|x+1|}, \quad x_0 = -1.$

1.8.
$$f(x) = \sin\left(2|x| - \frac{\pi}{3}\right), \quad x_0 = \frac{\pi}{4}$$
.

1.9.
$$f(x) = x^2 + |3x - 2|, \quad x_0 = 1.$$

1.10.
$$f(x) = \frac{|x|-1}{x+1}$$
, $x_0 = 1$.

1.11.
$$f(x) = \left| \sin \left(2x - \frac{\pi}{3} \right) \right|, \quad x_0 = \frac{\pi}{6}$$

1.12.
$$f(x) = |x^2 + 3x| - 2$$
, $x_0 = -2$.

1.13.
$$f(x) = \left| \frac{x+2}{x-2} \right|$$
, $x_0 = 2$.

1.14.
$$f(x) = \cos\left(\frac{\pi}{6} - \frac{x}{2}\right), \qquad x_0 = -\frac{2\pi}{3}.$$

1.15.
$$f(x) = |x^2 + 5x - 6|, \quad x_0 = 0.$$

1.16.
$$f(x) = \frac{|x+2|}{x-2}$$
, $x_0 = 2$.

1.17.
$$f(x) = \left| \cos \left(\frac{x}{2} + \frac{\pi}{3} \right) \right|, \quad x_0 = 0.$$

1.18.
$$f(x) = x^2 + 5|x| - 6$$
, $x_0 = -1$.

1.19.
$$f(x) = \frac{x+2}{|x+2|},$$
 $x_0 = 2.$

1.20.
$$f(x) = \cos\left(|x| + \frac{\pi}{4}\right), \quad x_0 = \frac{\pi}{4}.$$

1.21.
$$f(x) = x^2 - |5x - 6|, \quad x_0 = 1.$$

1.22.
$$f(x) = \frac{|x|+2}{x-2}$$
, $x_0 = 3$.

1.23.
$$f(x) = \cos\left(\frac{\pi}{3} - 2|x|\right), \quad x_0 = -\frac{\pi}{6}$$

1.24.
$$f(x) = |x^2 + 5x| - 6$$
, $x_0 = -3$.

1.24.
$$f(x) = |x^2 + 5x| - 6$$
, $x_0 = -3$.
1.25. $f(x) = \frac{x+2}{|x|-2}$, $x_0 = 2$.

1.26.
$$f(x) = \sqrt{x^2}$$
, $x_0 = 0$.

1.27.
$$f(x) = \operatorname{tg} |x|, \qquad x_0 = 0.$$

1.28.
$$f(x) = \left| \frac{x+1}{x-2} \right|$$
, $x_0 = 2$.
1.29. $f(x) = e^{-|x|}$, $x_0 = 0$.

1.29.
$$f(x) = e^{-|x|}, x_0 = 0.$$

1.30.
$$f(x) = e^{-\frac{1}{x}}, x_0 = 1.$$

2. Вычислить предел последовательности.

$$2.1. \frac{1}{n^2} \sum_{k=1}^{n} (2k-1).$$

2.3.
$$\frac{1}{n+1}\sum_{k=1}^{n}(2k+1)-\frac{2n+3}{2}$$
.

$$2.5. \frac{1}{\sqrt{9n^4+1}} \sum_{k=1}^{n} (k+1).$$

2.7.
$$\frac{1}{n+3}\sum_{k=1}^{n}(2k-1)-n$$
.

2.9.
$$\frac{(n+4)!-(n+2)!}{(n+3)!}$$
.

$$2.11.\frac{2^{n}-5^{n+1}}{2^{n+1}+5^{n+2}}.$$

2.13.
$$\frac{1}{\sqrt{n^2+n+1}} \sum_{k=0}^{n} (-1)^k (4k+3)$$
.

$$2.2. \frac{(2n+1)!+(2n+2)!}{(2n+3)!}$$

$$2.4. \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}}.$$

2.2.
$$\frac{(2n+1)!+(2n+2)!}{(2n+3)!}$$
2.4.
$$\frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}}$$
2.6.
$$\frac{1+3+\cdots+(2n-1)}{1+2+\cdots+n}$$

2.8.
$$\frac{1+4+...+(3n-2)}{\sqrt{5n^4+n+1}}.$$
2.10.
$$\frac{(3n-1)!+(3n+1)!}{(n-1)(3n)!}.$$

$$2.10. \frac{(3n-1)!+(3n+1)!}{(n-1)(3n)!}$$

2.12.
$$\sum_{k=1}^{n} \left(\frac{1}{3}\right)^{k} / \sum_{k=1}^{n} \left(\frac{1}{5}\right)^{k}$$
.

2.14.
$$\frac{1}{n}\sum_{k=0}^{2n}(-1)^k(2k+1)$$
.

$$2.15. \frac{\sqrt[3]{n^3+5} - \sqrt{3n^4+2}}{1+3+5+\dots+(2n-1)}.$$

$$1+3+5+\dots+(2n-1)$$

$$2 \ 17 \ \frac{2}{3} - \frac{1}{3} \sum_{k=1}^{n} k$$

$$2.17. \frac{2}{3} - \frac{1}{(n+2)^3} \sum_{k=1}^{n} k$$

$$2.18. \sum_{k=1}^{n} \frac{3^{k+2}}{6^k}.$$

$$2.19. \frac{1}{n+3} \sum_{k=0}^{n} (-1)^k (3k+2).$$

$$2.20. \frac{(2n+1)! + (2n+2)!}{(2n+3)! - (2n+2)!}.$$

$$2.21.\frac{2+4+...+2n}{1+3+\cdots+(2n-1)}$$

$$2.23. \frac{1}{n^2 + \sqrt{n}} \sum_{k=1}^{n} (5n - 3) \qquad 2.24. \sum_{k=0}^{n} \frac{2^k + 5^k}{10^k}.$$

$$2.25. \frac{1 - 2 + 3 - 4 + \dots - 2n}{\sqrt[3]{n^3 + 2n + 2}}. \qquad 2.26. \frac{5^{n+2} + 3^{n+2}}{5^{n} + 3^n}.$$

$$2.25. \frac{1-2+3-4+...-2n}{\sqrt[3]{n^3+2n+2}}$$

2.27.
$$\frac{1}{n^3} \sum_{k=1}^{n} (2k-1)^2$$
. 2.28. $\frac{1+3+5+...+(2n-1)}{2+4+6+...+2n}$. 2.29. $\frac{1}{n^2} \sum_{k=1}^{n} (3k+2)$. 2.30. $\frac{1}{n^2} \sum_{k=1}^{2n} (-1)^k k^2$.

$$2.29. \frac{1}{n^2} \sum_{k=1}^{n} (3k+2).$$

$$2.16. \frac{3^{n}-2^{n}}{3^{n-1}+2^{n}}$$

$$2.18. \sum_{k=1}^{n} \frac{3^{k} + 2^{k}}{6^{k}}.$$

$$2.20. \frac{(2n+1)!+(2n+2)!}{(2n+3)!-(2n+2)!}$$

$$2.22. \sum_{k=1}^{n} (2^k + 1)/4^k.$$

$$2.24. \sum_{k=0}^{n} \frac{2^{k} + 5^{k}}{10^{k}}.$$

$$2.26. \, \frac{5^{n+2} + 3^{n+2}}{5^n + 3^n}.$$

$$2.28. \frac{1+3+5+...+(2n-1)}{2+4+6+...+2n}$$

$$2.30. \frac{1}{n^2} \sum_{k=1}^{2n} (-1)^k k^2.$$

- 3. Дана числовая последовательность α_n . Необходимо:
- 1) исследовать α_n на монотонность;
- 2) найти $A = \lim_{n\to\infty} \alpha_n$;
- 3) указать натуральное число $N(\varepsilon)$ такое, начиная с которого выполняется неравенство $|\alpha_n - A| < \varepsilon$. выполняется неравенство $|\alpha_n - A| < \varepsilon$. $3.1. \frac{3-n^2}{1+2n^2}.$ $3.2. \frac{4n-1}{2n+1}.$ $3.3. \frac{1-2n^2}{2+4n^2}.$ $3.4. -\frac{5n}{n+1}.$ $3.5. \frac{4+2n}{1-3n}.$ $3.6. \frac{5n+15}{6-n}.$ $3.7. \frac{1+3n}{6-n}.$ $3.8. \frac{2n+1}{7n-1}.$ $3.9. \frac{7n+4}{2n+1}.$ $3.10. \frac{2n-5}{3n+1}.$ $3.11. \frac{n+1}{1-2n}.$ $3.12. \frac{2n+1}{3n-5}.$ $3.13. \frac{3n-2}{2n+1}.$ $3.14. \frac{2n-1}{2-3n}.$ $3.15. \frac{3n-1}{2n+1}.$ $3.16. \frac{8-3n^3}{1+2n^3}.$ $3.17. \frac{n+1}{7n-1}.$ $3.18. \frac{4n^2+1}{3n^2+2}.$ $3.19. \frac{1-2n^3}{n^3+3}.$ $3.20. \frac{3n^2}{2-n^2}.$ $3.21. \frac{3n-1}{5n+1}.$ $3.22. \frac{4n-3}{2n+1}.$ $3.23. \frac{5n+1}{3n-5}.$ $3.24. \frac{4n^3}{n^3+1}.$ $3.25. \frac{9-n^3}{1+2n^3}.$ $3.26. \frac{4n-3}{2n+1}.$ $3.27. \frac{n}{3n-1}.$ $3.28. \frac{3n^3}{n^3-2}.$ $3.29. \frac{2-3n^2}{5n^2+4}.$ $3.30. \frac{3n^3+2}{4n^3-1}.$

$$3.1. \frac{3-n^2}{1+2n^2}.$$

$$3.2. \frac{4n-1}{2n+1}$$

$$3.3. \frac{1-2n^2}{2+4n^2}$$

$$3.4. -\frac{1}{n+1}$$

$$3.5. \frac{4+2n}{1-3n}$$

3.6.
$$\frac{5n+15}{6-n}$$

$$3.7. \frac{100}{6-n}$$

$$3.8. \frac{2n+1}{7n-1}$$

3.9.
$$\frac{7n+4}{2n+1}$$

$$3.10.\frac{2n-5}{3n+1}$$

$$\frac{3.11}{1-2n}$$

$$3.12.\frac{2n+1}{3n-5}$$

$$3.13.\frac{3n-2}{2n+1}$$

$$3.14. \frac{2n-1}{2-3n}$$

$$3.15.\frac{3n-1}{2n+1}$$

$$3.16. \frac{3.16}{1+2n^3}.$$

$$\frac{3.17.}{7n-1}$$

$$3.18. \frac{4n+1}{3n^2+2}$$

$$3.19. \frac{1-2n^3}{n^3+3}.$$

$$3.20.\frac{3n^2}{2-n^2}$$

$$3.21.\frac{3n-1}{5n+1}$$

$$3.22. \frac{4n-3}{2n+1}$$

$$3.23. \frac{5n+1}{3n-5}$$

$$3.24. \frac{4n^3}{n^3+1}$$

$$3.25. \frac{9-n^3}{1+2n^3}$$

$$3.26. \frac{4n-3}{2n+1}$$

$$3.27. \frac{n}{3n-1}$$

$$3.28. \frac{3n^3}{n^3-2}$$

$$3.29. \frac{2-3n^2}{5n^2+4}$$

$$3.30. \frac{3n^3+2}{4n^3-1}$$

4. Вычислить предел последовательности.

$$4.1.\left(\frac{3n^2+4n}{3n^2-2n}\right)^{2n+5}$$
. $4.2.\left(\frac{n^2+n+1}{n^2+n-1}\right)^{-n^2}$. $4.3.\left(\frac{2n+3}{2n+1}\right)^{n+1}$.

$$4.2. \left(\frac{n^2+n+1}{n^2+n-1}\right)^{-n^2}$$
.

4.3.
$$\left(\frac{2n+3}{2n+1}\right)^{n+1}$$

$$4.4. \left(\frac{n-1}{n+3}\right)^{n+2}$$
.

$$4.5. \left(\frac{2n^2 + 5n + 7}{2n^2 + 5n + 3}\right)^n.$$

$$4.6. \left(\frac{5n^2+3n-1}{5n^2+3n+3}\right)^{n^2}.$$

$$4.7. \left(\frac{n-1}{n+3}\right)^{n^2}$$

$$4.8. \left(\frac{10n-3}{10n+1}\right)^{2n+1}$$

$$4.4. \left(\frac{n-1}{n+3}\right)^{n+2}. \qquad 4.5. \left(\frac{2n^2+5n+7}{2n^2+5n+3}\right)^n. \qquad 4.6. \left(\frac{5n^2+3n-1}{5n^2+3n+3}\right)^{n^2}.$$

$$4.7. \left(\frac{n-1}{n+3}\right)^{n^2}. \qquad 4.8. \left(\frac{10n-3}{10n+1}\right)^{2n+1}. \qquad 4.9. \left(\frac{n^2+21n-7}{n^2+18n+9}\right)^{2n+1}$$

$$4.10 \left(\frac{3n^2-5n}{n^2+3n+3}\right)^{n+1} \qquad 4.11 \left(\frac{n+4}{n+3}\right)^{2n-1}. \qquad 4.12 \left(\frac{2n-1}{n+3}\right)^{n+1}$$

$$4.10. \left(\frac{3n^2 - 5n}{3n^2 - 5n + 7} \right)^{n+1}$$

$$4.11.\left(\frac{n+4}{n+2}\right)^{2n-1}$$

$$4.12. \left(\frac{2n-1}{2n+1}\right)^{n+1}$$

$$4.13. \left(\frac{n^2 - 6n + 5}{n^2 - 5n + 5}\right)^{3n + 1}$$

$$4.10. \left(\frac{3n^2 - 5n}{3n^2 - 5n + 7}\right)^{n+1} \cdot 4.11. \left(\frac{n+4}{n+2}\right)^{2n-1} \cdot 4.12. \left(\frac{2n-1}{2n+1}\right)^{n+1} \cdot 4.13. \left(\frac{n^2 - 6n + 5}{n^2 - 5n + 5}\right)^{3n+2} \cdot 4.14. \left(\frac{7n^2 + 18n - 15}{7n^2 + 11n + 2}\right)^{n+3} \cdot 4.15. \left(\frac{6n - 7}{6n + 4}\right)^{3n+2} \cdot 4.15. \left(\frac{6n - 7}{6n + 4}\right)^{3n+2} \cdot 4.16 \cdot \left(\frac{$$

$$4.15. \left(\frac{6n-7}{6n+4}\right)^{3n+2}.$$

$$4.16. \left(\frac{3n^2 - 6n + 7}{3n^2 + 20n}\right)^{-n+1} \cdot 4.17. \left(\frac{n^2 - 3n + 6}{n^2 + 5n + 1}\right)^{\frac{n}{2}} \cdot 4.18. \left(\frac{n - 10}{n + 1}\right)^{3n + 1}$$

$$4.17. \left(\frac{n-3n+6}{n^2+5n+1}\right)^2$$

$$4.18. \left(\frac{n-10}{n+1}\right)^{3n+1}$$

$$4.19. \left(\frac{3n+1}{3n-1}\right)^{2n+3}$$

$$4.20. \left(\frac{2n^2+2}{2n^2-1}\right)^{n^2}.$$

$$4.19. \left(\frac{3n+1}{3n-1}\right)^{2n+3}. \qquad 4.20. \left(\frac{2n^2+2}{2n^2-1}\right)^{n^2}. \qquad 4.21. \left(\frac{2n^2-3n+7}{2n^2-5n+1}\right)^{-n^2}$$

$$4.22. \left(\frac{n+3}{n+5}\right)^{n+4}$$

$$4.22. \left(\frac{n+3}{n+5}\right)^{n+4}. \qquad 4.23. \left(\frac{13n+3}{13n-10}\right)^{n-3}. \qquad 4.24. \left(\frac{n-7}{n+5}\right)^{\frac{n}{6}+1}.$$

$$4.24. \left(\frac{n-7}{n+5}\right)^{\frac{n}{6}+1}$$

$$4.25. \left(\frac{4n^2+4n-1}{4n^2+2n+3}\right)^{1-2n}. \quad 4.26. \left(\frac{3n-2}{3n+1}\right)^{n-4}. \quad 4.27. \left(\frac{n^2+1}{n^2-3}\right)^{-n^2}.$$

$$4.28. \left(\frac{n+3}{n-1}\right)^{n+2}. \quad 4.29. \left(\frac{n+2}{n+4}\right)^{6n+1}. \quad 4.30. \left(\frac{2n+1}{2n-1}\right)^{n+4}.$$

$$4.29. \left(\frac{n+2}{3n+1}\right)^{6n+1}$$

$$4.27. \left(\frac{n^2+1}{n^2-3}\right)^{n+4}$$

$$4.28. \left(\frac{n+3}{n-1}\right)^{n+3}$$

$$4.29. \left(\frac{n+2}{n+4}\right)^{6n+1}$$

$$4.30. \left(\frac{2n+1}{2n-1}\right)^{n+4}$$
.

5. Вычислить предел функции.

5.1.
$$\lim_{x \to -1} \frac{(x^3 - 2x - 1)(x + 1)}{x^4 + 4x^2 - 5}$$
.

5.1.
$$\lim_{x \to -1} \frac{(x^3 - 2x - 1)(x + 1)}{x^4 + 4x^2 - 5}$$
.
5.3. $\lim_{x \to -3} \frac{(2x^2 + 7x + 3)^2}{x^3 + 4x^2 + 3x}$.

5.5.
$$\lim_{x \to -3} \frac{x^3 + 4x^2 + 3x}{x^3 + 4x^2 + 3x}$$
.
5.5. $\lim_{x \to -3} \frac{(x^2 + 2x - 3)^2}{x^3 + 4x^2 + 3x}$.
5.7. $\lim_{x \to 0} \frac{(1+x)^3 - 1 - 3x}{x^5 + x}$.
5.9. $\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^3 + x + 2}$.
5.11. $\lim_{x \to 2} \frac{x^3 - 5x^2 + 8x - 4}{x^3 - 3x^2 + 4}$.
5.13. $\lim_{x \to 2} \frac{x^3 - 3x - 2}{x^2 - 4}$.

5.7.
$$\lim_{x\to 0} \frac{(1+x)^3 - 1 - 3x}{x^5 + x}$$
.

5.9.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^3 + x + 2}$$
.

5.11.
$$\lim_{x\to 2} \frac{x^3 - 5x^2 + 8x - 4}{x^3 - 3x^2 + 4}$$
.

5.13.
$$\lim_{x\to 2} \frac{x^3 - 3x - 2}{x^2 - 4}$$
.

5.15.
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$$
.

5.17.
$$\lim_{x\to 1} \frac{1-x^2}{2x^3-x^2-1}$$
.

5.17.
$$\lim_{x \to 1} \frac{1-x^2}{2x^3-x^2-1}$$
.
5.19. $\lim_{x \to 3} \frac{x^3-4x^2-3x+18}{x^3-5x^2+3x+9}$.
5.21. $\lim_{x \to 1} \frac{x^3-3x+2}{x^3-x^2-x+1}$.
5.23. $\lim_{x \to -1} \frac{x^3+4x^2+5x+2}{x^3-3x-2}$.

5.21.
$$\lim_{x\to 1} \frac{x^3-3x+2}{x^3-x^2-x+1}$$
.

5.23.
$$\lim_{x \to -1} \frac{x^3 + 4x^2 + 5x + 2}{x^3 - 3x - 2}$$

5.2.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x + x^2}$$
.

5.4.
$$\lim_{x\to 1} \frac{(2x^2-x-1)^2}{x^3+2x^2-x-2}$$
.

5.6.
$$\lim_{x \to -1} \frac{(x^3 - 2x - 1)^2}{x^4 + 2x + 1}$$
.

5.8.
$$\lim_{x\to 1} \frac{x^2-2x+1}{2x^2-x-1}$$
.

5.10.
$$\lim_{x \to -1} \frac{x^3 + 5x^2 + 7x + 3}{x^3 + 4x^2 + 5x + 2}$$

5.12. $\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^3 + 2x + 1}$

5.12.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^3 + 2x + 1}$$
.

5.14.
$$\lim_{x \to -1} \frac{x^{\frac{7-2x+1}{3}}}{(x^2-x-2)^2}$$

5.16.
$$\lim_{x\to 1} \frac{x^3-2x+1}{x^4-2x+1}$$
.

5.18.
$$\lim_{x\to -3} \frac{x^2+2x-3}{x^3+4x^2+3x}$$

$$5.16. \lim_{x \to 1} \frac{x^3 - 2x + 1}{x^4 - 2x + 1}.$$

$$5.18. \lim_{x \to -3} \frac{x^2 + 2x - 3}{x^3 + 4x^2 + 3x}.$$

$$5.20. \lim_{x \to -3} \frac{x^3 + 7x^2 + 15x + 9}{x^3 + 8x^2 + 21x + 18}.$$

$$5.22. \lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{x^3 - x^2 - x + 1}.$$

$$5.24. \lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}.$$

5.22.
$$\lim_{x\to 1} \frac{x^3 + x^2 - 5x + 3}{x^3 - x^2 - x + 1}$$

5.24.
$$\lim_{x\to 1} \frac{x^4-1}{2x^4-x^2-1}$$

5.25.
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 3x^2 - 4}$$
.

5.27.
$$\lim_{x\to 1} \frac{2x^4 - x^2 - 1}{x^4 - 1}$$
.

5.29.
$$\lim_{x \to -1} \frac{x + x^2}{x^3 - 3x - 2}$$

5.26.
$$\lim_{x \to -3} \frac{x^3 + 4x^2 + 3x}{(2x^2 - x + 1)^2}$$
.

5.28.
$$\lim_{x \to -1} \frac{x^2 - x - 1}{x^3 - 3x - 2}$$
.
5.30. $\lim_{x \to 1} \frac{2x^2 - x - 1}{x^2 - 1}$.

5.30.
$$\lim_{x\to 1} \frac{2x^2-x-1}{x^2-1}$$
.

6. Вычислить предел функции.

6.1.
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$
.

6.3.
$$\lim_{x \to 1} \frac{\sqrt{x-1}}{\sqrt[3]{x^2-1}}$$
.

6.5.
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$$

6.7.
$$\lim_{x \to 8} \frac{\sqrt{9+2x}-5}{\sqrt[3]{x}-2}$$
.

6.9.
$$\lim_{x \to 0} \frac{\sqrt[3]{x-2}}{\sqrt[3]{8+3x+x^2}-2}$$
.

6.11.
$$\lim_{x \to 1} \frac{\sqrt[3]{x-1}}{\sqrt{x+1} - \sqrt{2x}}$$

6.13.
$$\lim_{x \to 2} \frac{\sqrt[3]{4x} - 2}{\sqrt{2x} - \sqrt{x} + 2}$$

6.15.
$$\lim_{x \to 4} \frac{\sqrt[3]{16x-4}}{\sqrt{4+x}-\sqrt{2x}}$$

6.17.
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} + \sqrt[3]{11x-1}}{\sqrt[3]{x}}$$
.

6.19.
$$\lim_{x \to 4} \frac{2 - \sqrt{x}}{\sqrt[3]{x^2 - 16}}$$
.

6.21.
$$\lim_{x \to 8} \frac{\sqrt{2x+9}-5}{\sqrt[3]{x}-2}$$
.

6.23.
$$\lim_{x \to -8} \frac{10 - x - 6\sqrt{1 - x}}{2 + \sqrt[3]{x}}$$
.

6.25.
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{\sqrt{1 + 2x} - 3}$$
.

6.27.
$$\lim_{x \to 1} \frac{\sqrt{x}-1}{1-x^2}$$
.

6.29.
$$\lim_{x \to 1} \frac{1-x}{\sqrt[4]{x}-1}$$
.

6.2.
$$\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt{x}}$$
.

6.4.
$$\lim_{x \to 3} \frac{\sqrt{x+13}-2\sqrt{x+1}}{x^2-9}$$
.

6.6.
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{4 - \sqrt{x}}$$
.

6.8.
$$\lim_{x \to 0} \frac{\sqrt{1-2x+x^2}-1-x}{x}$$
.

6.10.
$$\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{x + 2\sqrt[3]{x^4}}$$
.

6.12.
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{x+1} - \sqrt[3]{1-x}}$$

6.14.
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6+2}}{x+2}$$
.

6.16.
$$\lim_{x \to 8} \frac{\sqrt{9+2x}-5}{\sqrt[3]{x^2-4}}$$
.

6.18.
$$\lim_{x \to 16} \frac{\sqrt[4]{x-2}}{(\sqrt{x}-4)^{\frac{2}{3}}}$$

6.20.
$$\lim_{x \to 3} \frac{\sqrt{x+13}-2\sqrt{x+1}}{\sqrt[3]{x^2-9}}$$
.

6.22.
$$\lim_{x \to -2} \frac{\sqrt[3]{8+x^3}}{\sqrt[3]{8+x^3}}$$

6.24.
$$\lim_{x \to 8} \frac{\sqrt[3]{x} - 2}{\sqrt{9 + 2x} - 5}$$

6.26.
$$\lim_{x \to -2} \frac{x+2}{\sqrt[3]{x-6}+2}$$
.

6.28.
$$\lim_{x \to 3} \frac{\sqrt[3]{9x} - 3}{\sqrt{3 + x} - \sqrt{2x}}$$

6.30.
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{\sqrt[4]{x} - 2}$$
.

7. Вычислить предел выражения $[\alpha(x)]^{\beta(x)}$ при $x \to 0$.

7.1.
$$\lim_{x\to 0} (1 + \sin^2 3x)^{\frac{1}{\ln \cos x}}$$

7.2.
$$\lim_{x\to 0} (2 - e^{x^2})^{1-\cos \pi x}$$
.

7.3.
$$\lim_{x\to 0} (2-\cos 3x)^{\frac{1}{\ln(1+x^2)}}$$
.

7.5.
$$\lim_{x\to 0} (\cos x)^{\frac{1}{\ln(1+\sin^2 x)}}$$
.

7.7.
$$\lim_{x\to 0} (2 - e^{x^2})^{\operatorname{ctg}^2(\frac{\pi x}{3})}$$

7.9.
$$\lim_{x\to 0} (6-5\sec x)^{\cot 2x}$$

7.11.
$$\lim_{x\to 0} (3-2\sec x)^{\csc x^3}$$
.

7.13.
$$\lim_{x\to 0} (1 - \ln \cos x)^{\operatorname{ctg}^2 x}$$
.

7.15.
$$\lim_{x\to 0} (1-\sin^2 2x)^{\frac{1}{\arccos^2 3x}}$$
.

7.17.
$$\lim_{x\to 0} (1 - \ln(1+x^3))^{\frac{3}{x^2\sin x}}$$

$$7.19. \lim_{x\to 0} \left(2 - 3^{\arctan\sqrt{x}}\right)^{2 \csc x}$$

7.21.
$$\lim_{x\to 0} (1 + \sin x (\cos x - \cos 2x))^{\cot^3 x}$$
.7.22. $\lim_{x\to 0} (\cos \sqrt{x})^{\frac{1}{x}}$.

7.23.
$$\lim_{x\to 0} (5-4\sec x)^{(\csc 3x)^2}$$
.

7.25.
$$\lim_{x\to 0} (1 - \ln(1 + \sqrt[3]{x}))^{x (\operatorname{cosec} \sqrt[3]{x})^4}$$
.

7.27.
$$\lim_{x\to 0} (3-2\cos x)^{-\csc^2 x}$$

7.29.
$$\lim_{x\to 0} (1-x\sin^2 x)^{\frac{1}{\ln(1+\pi x^2)}}$$
.

7.4.
$$\lim_{x\to 0} (2 - e^{\sin x})^{\cot \pi x}$$
.

7.6.
$$\lim_{x\to 0} (2-\cos x)^{\frac{1}{x^2}}$$
.

7.8.
$$\lim_{x\to 0} (2-3^{\sin^2 x})^{\frac{1}{\ln\cos x}}$$

7.10.
$$\lim_{x\to 0} (2-5^{\sin x^3})^{\frac{\csc^2 x}{x}}$$

7.12.
$$\lim_{x\to 0} \left(\operatorname{tg} \left(\frac{\pi}{4} - x \right) \right)^{\operatorname{ctg} x}$$
.

7.14.
$$\lim_{x\to 0} (2 - e^{\arcsin\sqrt{x}})^{\frac{3}{x}}$$
.

7.16.
$$\lim_{x\to 0}(\cos\pi x)^{\frac{1}{x\sin\pi x}}.$$

7.18.
$$\lim_{x\to 0} \left(\frac{x^2+3^x}{x^3+2^x}\right)^{\frac{1+\sin x}{x}}$$
.

7.20.
$$\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}}$$
.

7.7.22.
$$\lim_{x\to 0} (\cos \sqrt{x})^x$$
.

7.24.
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$$
.

7.26.
$$\lim_{x\to 0} \left(\frac{1+x\cdot 2^x}{1+x\cdot 3^x}\right)^{\frac{1}{x^2}}$$
.

7.28.
$$\lim_{x\to 0} (x^2 + 1)^{\frac{2}{\sin x}}$$

7.30.
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x}}$$
.

8. Определить порядок малости бесконечно малой величины $\beta(x)$ относительно $\alpha(x) = x$ при $x \to 0$.

8.1.
$$\beta(x) = \ln(e - x^2) - 1$$
.

8.3.
$$\beta(x) = 7^{2x} - 5^{3x}$$
.

8.5.
$$\beta(x) = e^x - e^{-x}$$
.

8.7.
$$\beta(x) = \sin(2\pi(x+10))$$
.

8.9.
$$\beta(x) = \cos 7x - \cos 3x$$
.

8.11.
$$\beta(x) = \ln(1 - \arcsin 7x^2)$$
.

8.13.
$$\beta(x) = (e^{\pi x} - 1)(\sqrt[3]{x+1} - 1).$$

$$8.15. \beta(x) = \sin 3x (1 - \cos 3x).$$

8.17.
$$\beta(x) = tg(\pi(x+2))$$
.

8.2.
$$\beta(x) = \sqrt{2 + x} - \sqrt{2}$$
.

8.4.
$$\beta(x) = \sin 3x - \sin 5x$$
.

8.6.
$$\beta(x) = \sqrt{4+x} - 2$$
.

8.8.
$$\beta(x) = \sin(e^{3x} - 1)$$
.

8.10.
$$\beta(x) = \operatorname{tg} x \cos\left(x + \frac{5\pi}{2}\right).$$

8.12.
$$\beta(x) = e^x + e^{-x} - 2$$
.

8.14.
$$\beta(x) = \operatorname{tg}(e^{2x} - 1)$$
.

$$8.16. \beta(x) = \cos 2x - \cos x.$$

$$8.18. \, \beta(x) = 2 - \sqrt{\cos x} - 3^x.$$

$$8.19. \beta(x) = \sin 3x (3x^2 - 5x).$$

8.20.
$$\beta(x) = \arctan(e^{x^2} - 1)$$
.

8.21.
$$\beta(x) = \ln(1 - 2x) \arctan 3x$$
.

8.21.
$$\beta(x) = \ln(1 - 2x) \arctan 3x$$
. 8.22. $\beta(x) = \ln\left(\operatorname{tg}\left(\frac{\pi}{4} - 2x\right)\right)$.

8.23.
$$\beta(x) = \ln(x^2 + 1)(\sqrt{x^2 + 1} - 1)$$
. 8.24. $\beta(x) = \sin^2 x - \operatorname{tg}^2 x$.

8.24.
$$\beta(x) = \sin^2 x - tg^2 x$$
.

8.25.
$$\beta(x) = \operatorname{tg}\left(\pi\left(1 + \frac{x}{2}\right)\right) - \ln(x+1)$$
. 8.26. $\beta(x) = 1 - \sqrt{3x+1}$.

8.26.
$$\beta(x) = 1 - \sqrt{3x + 1}$$
.

8.27.
$$\beta(x) = (4^x - 9^{-x})(x + \lg x^2)$$
.

$$8.28. \beta(x) = \operatorname{tg} x - \sin x.$$

8.29.
$$\beta(x) = (1 - \cos 2x)(\operatorname{tg} x - \sin x)$$
. 8.30. $\beta(x) = 1 - \cos^3 2x$.

$$8.30. \beta(x) = 1 - \cos^3 2x.$$

9. Локализовать с точностью до 0,1 какой-либо корень уравнения.

$$9.1. x^2 = \cos x$$

$$9.2. \ x = \sqrt[3]{5 - x}.$$

9.3.
$$(x + 1)^3 = 2x$$
.

9.4.
$$x^2 \cdot \arctan x = 1$$
.

$$9.5. x^2 - 2 = e^x.$$

9.6.
$$x^2 = \ln(x + 1)$$
.
9.8. $e^{-x} = \ln x$.

$$9.7. x^3 - 2x - 5 = 0.$$

$$9.10. x^3 + 2x - 8 = 0.$$

$$9.9. x^4 + 2x - 24 = 0.$$

$$9.11. x^3 - 3x + 1 = 0.$$

$$9.12. x = \operatorname{arctg}(\sqrt[3]{x}).$$

9.11.
$$x = 5x + 1 = 0.12^{-x} = \ln x$$

$$9.14. x^4 - 4x + 1 = 0.$$

$$9.13.\frac{x}{5} = \ln x.$$

$$9.16. e^x = 3x.$$

$$9.15. x + \sin x = 2.$$

$$9.17. 4x = 2^{x}$$

$$9.10.e^{x} = 3x$$

9.19.
$$\ln x = \operatorname{arctg} x$$
.

9.18.
$$x^2 = -\ln x$$
.
9.20. $x = 2 + \sqrt[4]{x}$.

$$9.21. x^3 - 5x + 1 = 0.$$

$$9.22. x^x = 10.$$

$$9.23. x = 2 - \lg x.$$

$$9.24. x^3 + 60x - 80 = 0.$$

$$9.25. x = \cos 2x.$$

$$9.26. \frac{\lg x}{r} = 1.$$

$$9.27. x^4 - 2x = 2.$$

$$9.28. x = 10 \lg x.$$

$$9.29. x^6 - 3x^2 = 1 - x.$$

$$9.30. x^5 + x + 1 = 0.$$

10. Исследовать точки разрыва функции и дать схематический чертеж в окрестности исследуемой точки.

10.1.
$$y = (x - 1)\sin\frac{1}{x^2 - 1}$$
.

$$10.2. y = \frac{(x+1)^2}{\sin(x+1)}.$$

10.3.
$$y = (x + 1) \arctan \frac{1}{x}$$
.

$$10.4. \ y = 4^{\frac{1}{3+x}}$$

$$\cos x - 1$$

10.5.
$$y = (x + 2) \csc(x^2 - 4)$$
.

$$10.6. y = \frac{\cos x - 1}{x^2}.$$

$$10.7. y = \frac{-x^3 + \pi x^2}{2\sin x - 2\tan x}.$$

10.8.
$$y = \frac{\frac{1}{x} - \frac{1}{x+1}}{\frac{1}{x-1} - \frac{1}{x}}$$

10.9.
$$y = \frac{|x-4|\sin(x+4)}{\arcsin(16-x^2)}$$
.

10.11.
$$y = (1 - 2^{\lg x})^{-1}$$
.

$$10.13. y = 7^{\frac{1}{2-x^2}}.$$

10.15.
$$y = \frac{\frac{1}{2x} + 1}{\frac{1}{2x} - 2}$$
.

10.17.
$$y = \frac{\arcsin(\pi x)}{\lg(x^2 - 1)}$$
.

10.19.
$$y = \frac{e^{x}-1}{x}$$
.

10.21.
$$y = \arctan \frac{11+x}{x-1}$$
.

$$10.23. y = \left(x - \frac{\pi}{2}\right) \sec x.$$

$$10.25. \ y = \frac{\arccos x}{x^2 - 1}.$$

10.27.
$$y = \frac{\ln(1-x^2)}{\cos 2x - 1}$$

10.27.
$$y = \frac{\ln(1-x^2)}{\cos 2x - 1}$$
.
10.29. $y = \frac{1}{x^2}(\cos 3x - \cos x)$.

$$10.10. \ y = \left(2^{\frac{x}{1-x}} - 1\right)^{-1}.$$

10.12.
$$y = \frac{1}{\lg|x-2|}$$
.

$$10.14. \ y = \frac{1}{\ln \sin x}.$$

$$10.16. \ y = \frac{\frac{3}{x} - 1}{\frac{1}{3} - \sqrt{3}}.$$

$$10.18. \ y = e^{-\frac{1}{x^2}}.$$

10.20.
$$y = e^{-\frac{1}{x}}$$
.

10.22.
$$y = \arctan \frac{\pi}{2(1-x)}$$
.

10.24.
$$y = e^{\sec x}$$
.

$$10.26. \ y = \frac{1}{x} \ln \frac{1-x}{1+x}.$$

$$10.28. \ y = \frac{1}{\ln \cos x}.$$

$$10.30. \ y = \sin\frac{1}{x}.$$

Раздел 3. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Примеры решения задач

<u>Задача 1</u>. Вычислить производную функции $y = x^{3^x} \cdot x^{\sqrt{x}}$.

Решение. Найдем сначала логарифмическую производную функции у:

$$(\ln y)' = (3^x \ln x + \sqrt{x} \ln x)' = (3^x + \sqrt{x})' \ln x + \frac{3^x + \sqrt{x}}{x} =$$
$$= (3^x \ln 3 + \frac{1}{2\sqrt{x}}) \ln x + \frac{3^x + \sqrt{x}}{x}.$$

Так как $(\ln y)' = \frac{y'}{y}$, то $y' = y \cdot (\ln y)'$.

Otbet:
$$y' = x^{3^x + \sqrt{x}} \left[\left(3^x \ln 3 + \frac{1}{2\sqrt{x}} \right) \ln x + \frac{3^x + \sqrt{x}}{x} \right].$$

3адача 2. Найти $y_{xx}^{"}$ от функции, заданной параметрически:

$$\begin{cases} x = \overline{\ln(1 + t^2)}, \\ y = t - \operatorname{arctg} t. \end{cases}$$

Решение. Имеем:

$$y_{x}' = \frac{y_{t}'}{x_{t}'} = \frac{1 - \frac{1}{1 + t^{2}}}{\frac{2t}{1 + t^{2}}} = \frac{1 + t^{2} - 1}{2t} = \frac{t}{2};$$

$$y_{xx}'' = \frac{(y_{x}')_{t}'}{x_{t}'} = \frac{\frac{1}{2}}{\frac{2t}{1 + t^{2}}} = \frac{1 + t^{2}}{4t}.$$

Other: $y_{xx}^{"} = \frac{1+t^2}{4t}$.

3адача 3. Вычислить приближенно с помощью дифференциала y(1,77), где $y(x) = \sqrt{4x+3}$.

Решение. Рассмотрим точку $x_0=1,75$, в которой $y(1,75)=\sqrt{4\cdot 1,75+3}=\sqrt{9}=3$ и $\Delta x=1,77-1,75$ мало. Заменяя $\Delta y=y(1,77)-y(1,75)$ на дифференциал в точке $x_0=1,75$ и при $\Delta x=0,02$ получим:

$$y(1,77) \approx y(1,75) + dy = 3 + y_x'(1,75) \cdot 0,02 =$$

= $3 + \frac{2}{\sqrt{4x+3}} \Big|_{x=1.75} \cdot 0,02 = 3 + \frac{2}{3} \cdot 0,02 \approx 3,01$.

Ответ: 3,01.

<u>Задача 4</u>. Найти производную первого и второго порядка функции y(x), заданной неявно соотношением $x^3 + y^3 = 3xy$.

Решение. Дифференцируем заданное соотношение по x, считая y функцией от x; получаем $3x^2 + 3y^2y' = 3y + 3xy'$. Сокращаем на 3 и решаем полученное соотношение относительно y':

$$y' = \frac{y - x^2}{y^2 - x}$$
.

Этот ответ можно использовать для вычисления производной второго порядка, но лучше продифференцировать соотношение $x^2 + y^2y' = y + xy'$ еще раз по x:

$$2x + 2y(y')^2 + y^2y'' = y' + y' + xy''$$

Отсюда получаем

$$y'' = \frac{2y' - 2y(y')^2 - 2x}{y^2 - x} = \frac{2\left(\frac{y - x^2}{y^2 - x}\right) - 2y\left(\frac{y - x^2}{y^2 - x}\right)^2 - 2x}{y^2 - x} =$$

$$= 2\frac{(y - x^2)(y^2 - x) - y(y - x^2)^2 - x(y^2 - x)^2}{(y^2 - x)^3} =$$

$$= 2\frac{y^3 - x^2y^2 - yx + x^3 - y^3 + 2y^2x^2 - yx^4 - xy^4 + 2x^2y^2 - x^3}{(y^2 - x)^3} =$$

$$= 2\frac{-xy^4 + 3y^2x^2 - y(x + x^4)}{(y^2 - x)^3} = -2xy\frac{y^3 - 3yx + 1 + x^3}{(y^2 - x)^3} =$$

$$= \frac{-2xy}{(y^2 - x)^3}.$$

В последнем равенстве мы сократили $y^3 - 3yx + x^3$ в числителе дроби, используя основное соотношение между x и y.

Otbet:
$$y' = \frac{y - x^2}{y^2 - x}$$
; $y'' = \frac{2xy}{(x - y^2)^3}$.

Существует следующий план исследования функции с параллельным построением графика:

а) общие особенности функции: область допустимых значений,

четность – нечетность, периодичность, ограниченность, положительность и т.п.;

- б) точки разрыва функции и их классификация;
- в) исследование функции по первой производной-участки возрастания и убывания, точки экстремума;
- г) исследование функции по второй производной-участки выпуклости-вогнутости, точки перегиба;
 - д) асимптотическое поведение функции на $\pm \infty$.

<u>Задача 5</u>. Исследовать функцию $y = \ln \left| \frac{x-1}{x+1} \right|$ и построить ее график.

Решение.

А. Функция $\frac{x-1}{x+1}$ не определена в точке x=-1. Так как функция $\ln z$ определена, только если z>0, а $\left|\frac{x-1}{x+1}\right|\geq 0$, причем $\frac{x-1}{x+1}=0$ лишь в одной точке x=1, то получаем еще одну особенность -x=1 функции y(x). Итак, ОДЗ - вся числовая ось, кроме точек ± 1 .

Далее

$$y(-x) = \ln \left| \frac{-x-1}{-x+1} \right| = \ln \left| \frac{x+1}{x-1} \right| = -\ln \left| \frac{x-1}{x+1} \right| = -y(x)$$

поэтому y(x) - нечетная функция, а ее график симметричен относительно начала координат. Найдем точки пересечения графика функции y(x) с осью OX: $y(x) = 0 \Leftrightarrow \left| \frac{x-1}{x+1} \right| = 1 \Leftrightarrow \frac{x-1}{x+1} = \pm 1 \Leftrightarrow x = 0$.

Определим знаки функции y(x) в интервалах знакопостоянства $(-\infty, -1)$; (-1, 0); (0, 1); $(1, +\infty)$ (рис. 1).

Б. Так как $\lim_{x\to -1}\left|\frac{x-1}{x+1}\right|=+\infty$ и $\ln z$ - монотонно возрастающая неограниченная функция, то x=-1 - вертикальная асимптота и $\lim_{x\to -1}y(x)=+\infty$. В силу нечетности x=1 - также вертикальная

асимптота и $\lim_{x\to 1} y(x) = -\infty$.

Находим решения уравнения y'(x) = 0:

$$\frac{x-1}{x+1} \ge 0 \iff x > 1$$
 или $x < -1 \iff |x| > 1$.

Тогда
$$y'(x) = \frac{x+1}{x-1} \cdot \left(\frac{x-1}{x+1}\right)' = \frac{x+1}{x-1} \cdot \frac{2}{(x+1)^2} = \frac{2}{x^2-1}$$
.

Если же
$$|x| < 1$$
, то $y'(x) = \frac{1+x}{1-x} \cdot \left(\frac{1-x}{1+x}\right)' = \frac{1+x}{x-1} \cdot \left(\frac{x-1}{x+1}\right)' = \frac{2}{x^2-1}$.

Следовательно, $y'(x) \neq 0$ в области допустимых значений. Знаки производной y'(x) и участки монотонности функции y(x) будут следующими (рис. 2):

Заметим, что y'(0) = -2 - тангенс угла наклона касательной графика функции y(x) в точке (0,0).

В. Вычисляем $y'' = \left(\frac{2}{x^2-1}\right)' = \frac{-2 \cdot 2x}{(x^2-1)^2} = -\frac{4x}{(x^2-1)^2}$ и находим решения уравнения y''(x) = 0. Получаем один корень x = 0. Знаки y'' и участки выпуклости будут следующими (рис. 3):

Puc. 3

Г. Так как
$$\lim_{x \to \pm \infty} \left| \frac{x-1}{x+1} \right| = 1$$
, то $\lim_{x \to \pm \infty} y(x) = \ln 1 = 0$, поэтому

– горизонтальная асимптота на .Эскиз графика представлен на рис. 4.

Задания

1. Найти производную функции.

1.1. —.	1.2.
1.3. ——.	1.4. – ——.
1.5. – ——.	1.6.
1.7. ——.	1.8.
1.9. —	1.10. — .
1.11. —	1.12
1.13. —	1.14
1.15.——.	1.16.
1.17. ——.	1.18.
1.19.	1.20
1.21.	1.22. — ——.

1.23.
$$\ln \sin x + \frac{\sin^2 15x}{5\cos 3x}$$
.

1.23.
$$\ln \sin x + \frac{\sin^2 15x}{5\cos 3x}$$
.
1.25. $\sin \sqrt{x^3} - \frac{\cos^2 20x}{10\sin 10x}$.
1.27. $\sqrt{\sin 2x} - \frac{\cos^2 24x}{6\sin 6x}$.

1.27.
$$\sqrt{\sin 2x} - \frac{\cos^2 24x}{6\sin 6x}$$
.

$$1.29. \frac{1}{\ln x} - \frac{\cos^2 28x}{14\sin 14x}.$$

1.24.
$$\operatorname{tg} \sqrt{x^3} - \frac{\cos^2 18x}{9 \sin 9x}$$

1.26. $\sqrt{\ln x} - \frac{\cos^2 22x}{11 \sin 11x}$
1.28. $\sqrt{\operatorname{tg} x} - \frac{\cos^2 26x}{2 \sin 2x}$

1.26.
$$\sqrt{\ln x} - \frac{\cos^2 22x}{11\sin 11x}$$

1.28.
$$\sqrt{\lg x} - \frac{\cos^2 26x}{2\sin 2x}$$

1.30.
$$\sqrt{\lg x} - \frac{2 \sin 2x}{10 \sin 10x}$$

2. Найти производную функции.

$$2.1.\frac{2x-1}{4}\sqrt{2+x-x^2} + \frac{9}{8}\arcsin\frac{2x-1}{3}.$$

2.3.
$$\left(2x^2 - x + \frac{1}{2}\right) \arctan \left(\frac{x^2 - 1}{x\sqrt{3}} - \frac{x^3}{2\sqrt{3}} - \frac{\sqrt{3}}{2}\right)$$

2. 5.
$$\frac{2x-5}{4}\sqrt{5x-4-x^2} + \frac{9}{4}\arcsin\sqrt{\frac{x-1}{3}}$$
.

2.7.
$$\sqrt{\ln x} + \frac{1}{3} \operatorname{arctg} \sqrt{\ln x} - \frac{8}{3} \operatorname{arctg} \frac{\sqrt{\ln x}}{2}$$
.

2.9.
$$\sqrt{1+2x-x^2} \arcsin \frac{x\sqrt{2}}{x+1} - \sqrt{2} \ln(1+x)$$
. 2.10. $\arctan \frac{\sqrt{1-9^x}}{1-3^x}$.

$$2.11.\sqrt{1-\ln^2 x} - \ln x \arcsin \sqrt{1-\ln^2 x}.$$

$$2.13.\frac{1}{4}\ln\frac{e^{x}-1}{e^{x}+1}-\frac{1}{2}\operatorname{arctg} e^{x}.$$

$$2.15. \frac{(x-4)\sqrt{8x-x^2-7}}{2} - 9\arccos\sqrt{\frac{x-1}{6}}.$$

2.17.
$$\frac{1}{2\sqrt{x}} + \frac{1+x}{2x} \arctan \sqrt{x}$$
.

$$2.19. \frac{x-3}{2} \sqrt{6x - x^2 - 8} + \arcsin \sqrt{\frac{x-2}{2}}.$$

$$2.21.\frac{2\sqrt{1-4^x}\arcsin 2^x}{4^x}+2^{1-x}$$

$$2.23. \frac{x}{2\sqrt{1-4x^2}} \arcsin 2x + \frac{1}{8} \ln(1-4x^2).$$

$$2.25. \frac{3+x}{2}\sqrt{2x-x^2} + 3\arccos\sqrt{\frac{x}{2}}. \qquad 2.26. \frac{x^3}{3}\arccos x - \frac{2+x^2}{9}\sqrt{1-x^2}.$$

2.27. 6
$$\arcsin \frac{\sqrt{x}}{2} - \frac{6+x}{2} \sqrt{4x - x^2}$$
.

2.29.
$$\left(2x^2 - x + \frac{1}{2}\right) \operatorname{arctg} \frac{x+1}{x+2} - x$$
. 2.30. $\operatorname{arctg} \frac{e^{\frac{x}{2}-1}}{2} + e^{\frac{x}{2}} \sqrt{e^x - 1}$.

3.1.
$$\arcsin^3(\ln x) \arccos^2 \frac{1}{\ln x}$$
.

2.2.
$$\frac{\arctan 2^x}{4^x} + \frac{1}{3 \cdot 8^x}$$
.

2.4.
$$\arcsin \frac{e^x - 2}{\sqrt{5}e^x}$$
.

2.6.
$$\arccos \frac{x^2-4}{\sqrt{x^4+16}}$$
.

2.8.
$$\arcsin \frac{3^{x}-2}{(3^{x}-1)\sqrt{2}}$$
.

(2). 2.10.
$$\arctan \frac{\sqrt{1-9^x}}{\frac{1-3^x}{2^x-2^{-x}}}$$
.

2.12.
$$\arctan \frac{e^{\frac{1-3}{x}}-e^{-x}}{\sqrt{2}}$$
.

2.14.
$$\arctan \frac{\sqrt{1+e^{2x}-1}}{x}$$
.

2.16.
$$\sqrt{\frac{2}{3}} \arctan \frac{3e^x - 1}{\sqrt{6e^x}}$$

2.18.
$$\frac{4+x^4}{x^3}$$
 arctg $\frac{x^2}{2} + \frac{4}{x}$.

$$2.20. \frac{\sqrt{1-9^x}}{2} - \frac{\arccos 3^x}{2.9^x}.$$

2.22.
$$\arctan 2^x + \frac{5}{6} \ln \frac{4^x + 1}{4^x + 4}$$

$$2.24. \frac{(1+3^{2x}) \arctan 3^{x} - 3^{x}}{3^{2x}}.$$

$$2.26. \frac{x^3}{3} \arccos x - \frac{2+x^2}{9} \sqrt{1-x^2}.$$

2.28.
$$\arcsin \sqrt{\frac{x}{x+1}} + \arctan \sqrt{x}$$
.

2.30.
$$\arctan \frac{e^{\frac{x}{2}-1}}{2} + e^{\frac{x}{2}} \sqrt{e^x - 1}$$
.

3.2.
$$\sqrt[3]{\arctan \frac{1}{x^2}\arccos^2 \sqrt{x}}$$
.

3.3. $\sqrt{\arcsin^3(\ln x)} \cdot e^{-\operatorname{tg}^3 x}$.

3.5.
$$\sqrt[3]{\arcsin^4 \frac{2}{x}} \cdot \arccos^3 \frac{x}{2}$$
.

3.7. $\sqrt{\operatorname{arctg}^3 \ln x} \operatorname{arcctg}^5 \left(\frac{1}{\ln x}\right)$.

3.9. $\sqrt{\ln(\operatorname{arctg} 2x)} \cdot \operatorname{arcctg}^2(2x)$.

3.11. $\operatorname{arctg}^{5}\left(\frac{1}{5x}\right)\sqrt{\ln^{3}(10x)}$.

3.13. $\sqrt[3]{\arccos^5\left(\frac{2}{x}\right)} \cdot e^{-2\cos 2x}$.

 $3.15. \sqrt{\arccos^3(2 \ln x)} \cdot e^{- \operatorname{tg}^4 4x}$

3.17. $\ln^5(\arccos 3x) \cdot \arccos^3 \frac{3}{\ln x}$.

3.19. $\sqrt[3]{\ln^2(3\arcsin x)} \cdot \arccos^3 \frac{3}{x}$.

3.21. $\arcsin^6 \sqrt{\ln x} \cdot \arccos^2 \left(\frac{1}{\ln x}\right)$

3.23. $2^{\lg^3(2x)} \cdot \arcsin^4(\operatorname{ctg} 2x)$.

 $3.25. \operatorname{tg}^5(3 \ln x) \cdot \arcsin^2 \sqrt{\ln x}$.

3.27. $\sqrt[5]{\ln^4(1 + \lg 2x)} \cdot \arctan^2(\frac{1}{2x})$.

3.29. $\arcsin^5(3\ln^3 x) \cdot \arccos^3\left(\frac{3}{\ln x}\right)$.

3.4. $\arcsin^2(4^x) \cdot 4^{\sqrt{\operatorname{tg} 2x}}$

3.6. $ctg^4 8x \cdot \sqrt[4]{arctg^3 \frac{1}{8x}}$.

3.8. $tg^3(4^x) ln^2(\sin 4x)$.

 $3.10.2^{-\text{tg}^3 2x} \cdot \arcsin^4 \frac{1}{2x}$

3.12. $tg^5 \frac{3}{x^2} \cdot arctg^3 (3x^2)$.

3.14. $tg^4(2^{-x^2}) \arcsin^3\left(\frac{2}{x^2}\right)$.

3.16. $\arccos^4\left(\frac{7}{x}\right) \cdot \sqrt{\arctan 7x}$.

3.18. $\arcsin^3(\ln^2 x) \cdot \sqrt{\operatorname{tg}^3 3x}$.

3.20. $4^{-\arctan 4x} \cdot \operatorname{arcctg} \frac{4}{x^2}$.

3.22. $\sqrt[4]{\arctan^5 \frac{5}{x^2}} \cdot \arctan^2(5x^2)$.

3.24. $3^{-\sqrt{\operatorname{ctg} 3x^2}} \cdot \operatorname{arctg}^3\left(\frac{3}{x^3}\right)$.

 $3.26.\ 2^{-\sqrt{\operatorname{ctg}2x}} \cdot \arcsin^3\left(\frac{1}{2x}\right).$

3.28. $2^{\operatorname{ctg}^4 8x} \cdot \arcsin^4 \left(\frac{1}{8x}\right)$.

3.30. $3^{\lg^3(3x)} \cdot \sqrt[3]{\arccos^2 \frac{1}{3x}}$.

4. Найти производную функции.

 $4.1. (x \cdot \sin x)^{\sin(x \cdot \sin x)}.$

4.3. $(\operatorname{tg} 2x)^{\frac{1}{4}\ln \operatorname{tg} 2x}$.

4.5. $(\cos 2x)^{\frac{1}{4}\ln\cos 2x}$.

 $4.7. \left(\arcsin\sqrt{1-x^2}\right)^{\operatorname{ctg} x}.$

 $4.9. \left(\cos\sqrt{1-5x}\right)^{\mathrm{tg}x}.$

4.11. $(\operatorname{arctg} x)^{\frac{1}{2}\ln \operatorname{arctg} 2x}$.

 $4.13. \left(\arcsin\frac{3x}{\sqrt{3}}\right)^{\sin 3x}.$

 $4.15. \left(\sin\sqrt{x}\right)^{\ln\sin\sqrt{x}}.$

 $4.17. \left(\cos\frac{1}{x}\right)^{\arctan\sqrt{x}}$.

 $4.2. \ \chi^{\frac{1}{x}} \cdot \chi^{\frac{1}{\ln x}}.$

4.4. $(\sin 2x)^{\operatorname{tg} 2x}$.

4.6. $x^{e^{\operatorname{arctg} x}}$

 $4.8. x^{2^x} \cdot 2^x$

4.10. $(\arctan 3x)^{\ln \sqrt[3]{x}}$

 $4.12. x^{x^2} \cdot x^2$

4.14. $x^{2^{\cos^3 \sqrt{x}}}$

4.16. $(\operatorname{tg} 3^{x})^{e^{\cos^{2} \frac{1}{x}}}$

4.18. $\left(\arctan \sqrt{x}\right)^{e^{-\frac{1}{x}}}$

4.19.
$$(\cos x^3)^{\ln \cos x^3}$$
.

4.21.
$$(\arctan 2x)^{\sin \frac{2}{x}}$$
.

4.23.
$$(1-x^2)^{\text{ctg}^2 3x}$$
.

$$4.25. \left(\sin\frac{1}{x}\right)^{\arcsin\sqrt{x}}$$

4.27.
$$(\arcsin 2x)^{e^{\sqrt{2x}}}$$
.

4.29.
$$(\arcsin x)^{\sqrt{1-x^2}}$$
.

5. Найти производную y'_{x} .

5.1.
$$\begin{cases} x = \frac{t}{\sqrt{1 - t^2}}, \\ y = \frac{1 + \sqrt{1 - t^2}}{t}. \end{cases}$$

5.3.
$$\begin{cases} x = (1 + \cos^2 t)^2, \\ y = \frac{\cos t}{\sin^2 t}. \end{cases}$$

5.5.
$$\begin{cases} x = \arccos\left(\frac{1}{t}\right), \\ y = \sqrt{(t^2 - 1) + \arcsin\frac{1}{t}}. \end{cases}$$

5.7.
$$\begin{cases} x = \ln(1 - t^2), \\ y = \arcsin\sqrt{1 - t^2}. \end{cases}$$

5.9.
$$\begin{cases} x = \ln(t + \sqrt{1 + t^2}), \\ y = \sqrt{1 + t^2} - \ln\frac{1 + \sqrt{1 + t^2}}{t}. \end{cases}$$

5.11.
$$\begin{cases} x = \ln(t + \sqrt{t^2 + 1}), \\ y = t \cdot \sqrt{t^2 + 1}. \end{cases}$$

5.13.
$$\begin{cases} x = \ln\left(\frac{1}{\sqrt{1-t^4}}\right), \\ y = \arcsin\frac{1-t^2}{1+t^2}. \end{cases}$$

5.15.
$$\begin{cases} x = \frac{1}{\sqrt{1+t^2}} - \ln \frac{1+\sqrt{1+t^2}}{t}, \\ y = \frac{t}{\sqrt{1+t^2}}. \end{cases}$$

$$4.20. x^{3^{x^2}} \cdot 2^{\frac{1}{x}}$$

$$4.22. x^{2^x} \cdot x^{\frac{1}{x}}$$
.

$$4.24. \left(\sin\sqrt{2x}\right)^{e^{2x}}.$$

$$4.26.\frac{x^x}{x^{\ln x}}$$

4.28.
$$(\sin \sqrt{x})^{e^{\frac{1}{x}}}$$
.

$$4.30. \left(\sin\frac{2}{x}\right)^{5\,\overline{2}}.$$

$$5.2. \begin{cases} x = \ln \operatorname{ctg} t, \\ y = \frac{1}{\cos^2 t}. \end{cases}$$

5.4.
$$\begin{cases} x = \arctan\left(e^{\frac{t}{2}}\right), \\ y = \sqrt{e^t + 1}. \end{cases}$$

5.6.
$$\begin{cases} x = (\arcsin t)^2, \\ y = \frac{t}{\sqrt{1 - t^2}}. \end{cases}$$

5.8.
$$\begin{cases} x = \ln \frac{1-t}{1+t'}, \\ y = \sqrt{1 - t^{2}}. \end{cases}$$

5.10.
$$\begin{cases} x = \sqrt{1 - t^2}, \\ y = \lg \sqrt{1 + t}. \end{cases}$$

5.12.
$$\begin{cases} x = \sqrt{2t - t^2}, \\ y = \arcsin(t - 1). \end{cases}$$

$$5.14. \begin{cases} x = \ln \sqrt{\frac{1-t}{1+t}}, \\ y = \sqrt{1-t^2}. \end{cases}$$

$$5.16. \begin{cases} x = \sqrt{1 - t^2}, \\ y = \frac{t}{\sqrt{1 - t^2}}. \end{cases}$$

$$5.17. \begin{cases} x = \arcsin\sqrt{1 - t^2}, \\ y = (\arccos t)^2. \end{cases}$$

5.19.
$$\begin{cases} x = \arctan \frac{t+1}{t-1}, \\ y = \arcsin \sqrt{1 - t^2}. \end{cases}$$

5.21.
$$\begin{cases} x = \ln \sqrt{\frac{1-\sin t}{1+\sin t}}, \\ y = \frac{1}{2} \operatorname{tg}^2 t + \ln \cos t. \end{cases}$$

5.23.
$$\begin{cases} x = \sqrt{t - t^2} - \arctan \sqrt{\frac{1 - t}{t}}, \\ y = \sqrt{t} - \sqrt{1 - t} \arcsin \sqrt{t}. \end{cases}$$

$$5.25. \begin{cases} x = \frac{t^2 \cdot \ln t}{1 - t^2} + \ln \sqrt{1 - t^2}, \\ y = \frac{t}{\sqrt{1 - t^2}} \arcsin t + \ln \sqrt{1 - t^2}. \end{cases}$$

5.27.
$$\begin{cases} x = e^{\sec^2 t}, \\ y = \operatorname{tg} t \cdot \ln \cos t + \operatorname{tg} t - t. \end{cases}$$

5.29.
$$\begin{cases} x = \frac{t}{\sqrt{1 - t^2}} \arcsin t + \ln \sqrt{1 - t^2}, \\ y = \frac{t}{\sqrt{1 - t^2}}. \end{cases}$$

5.18.
$$\begin{cases} x = \sqrt{2t - t^2}, \\ y = \frac{1}{\sqrt[3]{(t-1)^2}}. \end{cases}$$

$$5.20. \begin{cases} x = \arcsin \sqrt{t}, \\ y = \sqrt{1 + \sqrt{t}}. \end{cases}$$

5.22.
$$\begin{cases} x = \frac{1}{\ln t}, \\ y = \ln \frac{1 + \sqrt{1 - t^2}}{t}. \end{cases}$$

5.24.
$$\begin{cases} x = \operatorname{ctg}(2e^t), \\ y = \ln \operatorname{tg} e^t. \end{cases}$$

$$5.26. \begin{cases} x = \ln \operatorname{tg} t, \\ y = \frac{1}{\sin^2 t}. \end{cases}$$

5.28.
$$\begin{cases} x = t \cdot \sqrt{t^2 + 1}, \\ y = \ln \frac{1 + \sqrt{1 + t^2}}{t}. \end{cases}$$

5.30.
$$\begin{cases} x = \arctan t, \\ y = \ln \frac{\sqrt{1+t^2}}{t+1}. \end{cases}$$

6. Найти производную второго порядка $y_{xx}^{\prime\prime}$ от функции, заданной параметрически.

6.1.
$$\begin{cases} x = t + \sin t, \\ y = 2 - \cos t. \end{cases}$$

$$6.3. \begin{cases} x = \operatorname{tg} t, \\ y = \frac{1}{\sin 2t}. \end{cases}$$

$$6.5. \begin{cases} x = \arccos\sqrt{t}, \\ y = \sqrt{t - t^2}. \end{cases}$$

6.7.
$$\begin{cases} x = \frac{\cos t}{1 + 2\cos t}, \\ y = \frac{\sin t}{1 + 2\cos t}. \end{cases}$$
6.9.
$$\begin{cases} x = \sinh t, \\ y = \tanh^2 t. \end{cases}$$

$$6.9. \begin{cases} x = \sinh t, \\ y = \tanh^2 t. \end{cases}$$

6.2.
$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t). \end{cases}$$

6.4.
$$\begin{cases} x = \sqrt{1 - t^2}, \\ y = \frac{1}{t}. \end{cases}$$

$$6.6. \begin{cases} x = \sin t, \\ y = \sec t. \end{cases}$$

6.8.
$$\begin{cases} x = e^t \cos t, \\ y = e^t \sin t. \end{cases}$$

$$6.10. \begin{cases} x = \cos^2 t, \\ y = tg^2 t. \end{cases}$$

$$6.11. \begin{cases} x = \sqrt{t - 1}, \\ y = \frac{1}{\sqrt{t}}. \end{cases}$$

6.13.
$$\begin{cases} x = \sqrt{t - 3}, \\ y = \ln(t - 3). \end{cases}$$

6.13.
$$y = \ln(t - 3)$$
.
6.15. $\begin{cases} x = \sin t, \\ y = \ln \cos t. \end{cases}$
6.17. $\begin{cases} x = t + \sin t, \\ y = 2 + \cos t. \end{cases}$

$$6.17. \begin{cases} x = t + \sin t, \\ y = 2 + \cos t. \end{cases}$$

6.19.
$$\begin{cases} x = t - \sin t, \\ y = 2 - \cos t. \end{cases}$$

$$6.21. \begin{cases} x = \cos t, \\ y = \ln \sin t. \end{cases}$$

$$6.23. \begin{cases} x = \cos t + t \sin t, \\ y = \sin t - t \cos t. \end{cases}$$

$$6.25. \begin{cases} x = \cos t, \\ y = \sin^4\left(\frac{t}{2}\right). \end{cases}$$

$$6.27. \begin{cases} x = \operatorname{arctg} t, \\ y = \frac{t^2}{2}. \end{cases}$$

6.29.
$$\begin{cases} x = \sin t - t \cos t, \\ y = \cos t + t \sin t. \end{cases}$$

6.12.
$$\begin{cases} x = \frac{1}{t'}, \\ y = \frac{1}{1+t^2}. \end{cases}$$
6.14.
$$\begin{cases} x = \sqrt{t-1}, \\ y = \frac{t}{\sqrt{t-1}}. \end{cases}$$
6.16.
$$\begin{cases} x = 2(t-\sin t), \\ y = 4(2+\cos t). \end{cases}$$
6.18.
$$\begin{cases} x = \cos 2t, \\ y = 2\sec^2 t. \end{cases}$$
6.20.
$$\begin{cases} x = \sqrt{t}, \\ y = \frac{7}{\sqrt{1-t}}. \end{cases}$$
6.22.
$$\begin{cases} x = \cos t + \sin t, \\ y = \sin 2t. \end{cases}$$
6.24.
$$\begin{cases} x = \sin^2 t, \\ y = \frac{1}{\cosh^2 t}. \end{cases}$$

6.14.
$$\begin{cases} x = \sqrt{t - 1}, \\ y = \frac{t}{\sqrt{t - 1}}. \end{cases}$$

6.16.
$$\begin{cases} x = 2(t - \sin t), \\ y = 4(2 + \cos t). \end{cases}$$

$$6.18. \begin{cases} x = \cos 2t, \\ y = 2 \sec^2 t \end{cases}$$

6.20.
$$\begin{cases} x = \sqrt{t}, \\ y = \frac{7}{\sqrt{1-t}}. \end{cases}$$

$$6.22. \begin{cases} x = \cos t + \sin t \\ y = \sin 2t. \end{cases}$$

$$6.24. \begin{cases} x = \sinh^2 t, \\ y = \frac{1}{\cosh^2 t}. \end{cases}$$

$$6.26. \begin{cases} x = \ln t, \\ y = \operatorname{arctg} t. \end{cases}$$

6.28.
$$\begin{cases} x = \arctan t, \\ y = \ln(1 + t^2). \end{cases}$$

6.30.
$$\begin{cases} x = \arcsin t, \\ y = \ln(1 - t^2). \end{cases}$$

7. Найти производную y'_x функции y(x), заданной неявно.

7.1.
$$x - y + \text{arctg } y = 0$$
.

$$7.2. \frac{y}{x} = \operatorname{arctg} \frac{x}{y}.$$

$$7.3. xy^2 = e^{\frac{y}{x}}.$$

7.4.
$$x - y + a \sin y = 0$$
.

7.5.
$$x - y + e^y \arctan x = 0$$
.

7.6.
$$e^{xy} - x^2 + y^2 = 0$$
.

7.7.
$$\cos(x - y) - 2x + 4y = 0$$
.
7.8. $\cos(xy) = \frac{y}{x}$.
7.9. $e^{x+y} = \sin\frac{y}{x}$.

7.8.
$$\cos(xy) = \frac{y}{x}$$

$$7.9. e^{x+y} = \sin\frac{x}{y}.$$

7.10.
$$y \ln x - x \ln y = x + y$$
.

$$7.11. x \sin y + y \sin x = 0.$$

- $7.12.2^{x} + 2^{y} = 2^{x+y}.$
- 7.13. $xy = \operatorname{arctg} \frac{x}{y}$.
- $7.14. e^x \sin y e^y \cos x = 0.$
- $7.15.\sqrt{x^2 + y^2} = ae^{\arctan\frac{y}{x}}.$
- 7.16. $y \sin x = \cos(x^2 y)$.
- 7.17. $e^{x-y} = x \cdot y$.
- $7.18. x^3 + y^3 3axy = 0.$
- 7.19. $\ln y = \operatorname{arctg} \frac{x}{y}$.
- 7.20. $x \sin y y \cos x = 0$.
- 7.21. $y \sin x + \cos(x y) = \cos y$.
- $7.22. xe^y + ye^x = xy.$
- $7.23. xy + \ln y 2 \ln x = 0.$
- 7.24. $\arctan \frac{x}{y} = \ln(x^2 + y^2)$.
- 7.25. $x^y = y^x$.
- $7.26. e^x + e^y 2^{xy} = 1.$
- 7.27. $\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$.
- 7.28. $e^{xy} = x + y$.
- 7.29. $\sqrt[x]{y} = \sqrt[y]{x}$.
- 7.30. $y \sin x \cos(x y) = 0$.
- 8. Найти производную второго порядка от функции y(x), заданной неявно.
- 8.1. $y = \cos(x + y)$.
- 8.3. y = tg(x + y).
- $8.5.\cos(x+y) + x = 0.$
- 8.7. $\ln(x + y) = x y$.
- 8.9. arctg(x + y) y = 0.
- $8.11. x + y = e^{x-y}.$
- 8.13. ln(x + y) = y + a.
- $8.15. \ln(y x) = x y.$
- $8.17.\sqrt{x^2+y^2}=e^{\arctan\frac{y}{x}}.$
- 8.19. $\arctan y = x + y$.
- 8.21. $x y + \operatorname{arctg} y = 0$.
- 8.23. $\arctan \frac{x}{y} = \ln(x^2 + y^2)$.
- $8.25. x^3 + y^3 3xy = 0.$

- 8.2. $e^x e^y = y x$.
- $8.4. xy = \ln y.$
- 8.6. $ye^x + e^y = 0$.
- 8.8. $e^y + xy = e$.
- $8.10. e^{x-y} = y.$
- $8.12. y = x + \ln y.$
- $8.14. xy = e^y$.
- $8.16. \, xy \ln y = 1.$
- $8.18. y = 1 + xe^y$.
- $8.20. x^2 y = e^y$.
- $8.22. e^{x-y} = x \cdot y.$
- $8.24. e^{x+y} = x.$
- $8.26. x y = e^{x+y}.$

$$8.27. \ln(x - y) = x + y.$$

$$8.28. x + y = e^{x+y}.$$

8.27.
$$\ln(x - y) = x + y$$
.
8.29. $\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$.

8.30.
$$e^{x+y} = xy$$
.

9. Найти дифференциал функции y(x).

9.1.
$$y = x \arcsin \frac{1}{x} + \ln(x + \sqrt{x^2 - 1})$$
.

9.2.
$$y = \sqrt{1 + 2x} - \ln(x + \sqrt{1 + 2x})$$
.

9.3.
$$y = \arccos \frac{1}{\sqrt{1+2x^2}}$$
.

9.3.
$$y = \arccos \frac{1}{\sqrt{1+2x^2}}$$
.
9.4. $y = x\sqrt{1-x^2} + \operatorname{arctg} \frac{x}{\sqrt{1-x^2}}$.

9.5.
$$y = \ln(\cos^2 x + \sqrt{1 + \cos^4 x})$$
.

9.6.
$$y = \arcsin \frac{a}{x} + \ln \sqrt{x^2 + a^2}$$
.

9.7.
$$y = x\sqrt{4 - x^2} + 4 \arcsin \frac{x}{2}$$
.

9.8.
$$y = \ln \frac{x + \sqrt{x^2 + 1}}{2x}$$
.

9.9.
$$y = e^{\arctan(2x+3)}$$

9.10.
$$y = x \arctan x - \ln \sqrt{1 + x^2}$$

9.11.
$$y = \ln(2x + 2\sqrt{x^2 + x} + 1), x > 0.$$

9.12.
$$y = x \ln(x + \sqrt{x^2 + a^2}) - \sqrt{x^2 + a^2}$$
.

9.13.
$$y = x^2 \arctan \sqrt{x^2 - 1} - \sqrt{x^2 - 1}$$
.

9.14.
$$y = x \ln(x + \sqrt{x^2 + 3}) - \sqrt{x^2 + 3}$$
.

9.15.
$$y = \arccos \frac{x^2 - 1}{x^2 \sqrt{2}}$$

9.16.
$$y = \ln(x + \sqrt{1 + x^2}) - \sqrt{1 - x^2} \arctan x$$
.

9.17.
$$y = \ln(e^x + \sqrt{e^{2x} - 1}) + \arcsin e^{-x}$$
.

9.18.
$$y = \ln \lg \frac{x}{2} - \frac{x}{\sin x}$$

9.18.
$$y = \ln \lg \frac{x}{2} - \frac{x}{\sin x}$$
.
9.19. $y = \arctan \frac{x}{\sqrt{1 - x^2}} - \ln(1 + x\sqrt{1 - x^2})$.

9.20.
$$y = \arctan \frac{x^{2-1}}{x}$$
.

9.21.
$$y = \operatorname{arcctg} \frac{x}{\sqrt{1-x^2}}$$
.

9.22.
$$y = e^{-\cos^2(1-\frac{1}{x})^3}$$
.

9.23.
$$y = x \arccos x - \sqrt{1 - x^2}$$
.

$$9.24. y = x(\sin \ln x - \cos \ln x).$$

9.25.
$$y = \cos x \ln \lg x - \ln \lg \frac{x}{2}$$
.

9.26.
$$y = \sqrt{x} - (1+x) \arctan \sqrt{x}$$
.
9.27. $y = e^x (\cos 2x + 2 \sin 2x)$.
9.28. $y = e^x \arctan e^x - \ln \sqrt{1 + e^{2x}}$.
9.29. $y = \sqrt{3 + x^2} - x \ln(x + \sqrt{3 + x^2})$.
9.30. $y = \arctan \frac{x}{\sqrt{1 - x^2}} + \arccos x$.

10. Для заданной функции y(x) и заданного числа \bar{x} вычислить приближенно $y(\bar{x})$ с помощью дифференциала первого порядка.

10.1.
$$y = \sqrt[3]{x}$$
; $\bar{x} = 27,54$.
10.2. $y = \sqrt[3]{x}$; $\bar{x} = 7,76$.
10.3. $y = \frac{1}{2}(x + \sqrt{5 - x^2})$; $\bar{x} = 0,98$.
10.4. $y = \sqrt[3]{x^2 + 2x + 5}$; $\bar{x} = 0,97$.
10.5. $y = \arctan (y x)$; $\bar{x} = 0,98$.
10.6. $y = \sqrt[3]{x}$; $\bar{x} = 0,98$.
10.8. $y = \sqrt[3]{x^2}$; $\bar{x} = 1,021$.
10.8. $y = \sqrt[3]{x^2}$; $\bar{x} = 1,03$.
10.9. $y = x^6$; $\bar{x} = 2,01$.
10.10. $y = x^7$; $\bar{x} = 1,996$.
10.11. $y = \frac{1}{\sqrt{2x^2 + x + 1}}$; $\bar{x} = 1,016$.
10.12. $y = \frac{1}{\sqrt{x}}$; $\bar{x} = 4,16$.
10.13. $y = \sqrt[3]{3x + \cos x}$; $\bar{x} = 0,01$.
10.14. $y = x^5$; $\bar{x} = 2,997$.
10.15. $y = \frac{1}{\sqrt{2x + 1}}$; $\bar{x} = 1,58$.
10.16. $y = \sqrt[4]{x}$; $\bar{x} = 1,58$.
10.17. $y = \sqrt[3]{x^3 + 7x}$; $\bar{x} = 1,568$.
10.19. $y = \sqrt[3]{x}$; $\bar{x} = 0,08$.
10.20. $y = \sqrt{x^2 + x + 3}$; $\bar{x} = 0,08$.
10.21. $y = \arctan (y x)$; $\bar{x} = 1,97$.
10.22. $y = \sqrt[3]{x}$; $\bar{x} = 1,97$.
10.23. $y = x^{21}$; $\bar{x} = 0,998$.
10.24. $y = \sqrt[3]{x}$; $\bar{x} = 0,998$.
10.25. $y = \sqrt{4x - 1}$; $\bar{x} = 0,998$.
10.27. $y = x^7$; $\bar{x} = 0,01$.
 $\bar{x} = 2,56$.
10.28. $y = \sqrt{x^3}$; $\bar{x} = 0,998$.

10.29.
$$y = \sqrt[4]{2x - \sin\frac{\pi x}{2}};$$
 $\bar{x} = 1.02.$
10.30. $y = \sqrt{x^2 + 5};$ $\bar{x} = 1.97.$

11. Составить уравнение нормали и касательной к графику заданной функции f(x) в заданной точке x_0 .

11.1.
$$f(x) = \frac{4x - x^2}{4}$$
; $x_0 = 2$.
11.2. $f(x) = x - x^3$; $x_0 = -1$.
11.3. $f(x) = x + \sqrt{x^3}$; $x_0 = 4$.
11.4. $f(x) = \frac{1 + \sqrt{x}}{1 - \sqrt{x}}$; $x_0 = 4$.
11.5. $f(x) = 2x^2 - 3x + 1$; $x_0 = 1$.
11.6. $f(x) = \sqrt{x} - 3\sqrt[3]{x}$; $x_0 = 64$.
11.7. $f(x) = 2x^2 + 3$; $x_0 = -1$.
11.8. $f(x) = x^2 - 4x$; $x_0 = 1$.
11.9. $f(x) = \frac{x^5 - 1}{x^4 + 1}$; $x_0 = 1$.
11.10. $f(x) = 3(\sqrt[3]{x} - 2\sqrt{x})$; $x_0 = 1$.
11.11. $f(x) = \frac{x}{x^2 + 1}$; $x_0 = -2$.
11.12. $f(x) = \frac{x^2}{3 + x^2}$; $x_0 = 1$.
11.13. $f(x) = \frac{1 + 3x^2}{3 + x^2}$; $x_0 = 1$.
11.14. $f(x) = 3\sqrt[4]{x} - \sqrt{x}$; $x_0 = 1$.
11.15. $f(x) = \frac{x^2}{10} + 3$; $x_0 = 2$.
11.16. $f(x) = 2x^2 + 3x - 1$; $x_0 = -2$.
11.17. $f(x) = x^2 + 8\sqrt{x} - 32$; $x_0 = 4$.
11.18. $f(x) = \sqrt[3]{x^2} - 20$; $x_0 = -8$.
11.19. $f(x) = 8\sqrt[4]{x} - 70$; $x_0 = 16$.
11.20. $f(x) = \frac{x^2 - 3x + 6}{x^3}$; $x_0 = 3$.
11.21. $f(x) = \frac{x^3 + 2}{x^3 - 2}$; $x_0 = 2$.
11.22. $f(x) = \frac{x^2 - 3x + 6}{x^4 + 1}$; $x_0 = 1$.
11.23. $f(x) = 2x + \frac{1}{x}$; $x_0 = 1$.
11.24. $f(x) = \frac{x^{16} + 9}{1 - 5x^2}$; $x_0 = 1$.
11.25. $f(x) = \frac{1}{3x + 2}$; $x_0 = 2$.
11.26. $f(x) = \frac{1}{3}(x^2 - 3x + 3)$; $x_0 = 3$.

11.27.
$$f(x) = -2(\sqrt[3]{x} + 3\sqrt{x});$$
 $x_0 = 1.$

11.28.
$$f(x) = 14\sqrt{x} - 15\sqrt[3]{x} + 2$$
; $x_0 = 1$.

11.29.
$$f(x) = \frac{1}{3}(3x - 2x^3);$$
 $x_0 = 1.$

11.30.
$$f(x) = \frac{1}{4}(x^2 - 2x - 3);$$
 $x_0 = 4.$

12. Применяя правило Лопиталя, найти предел функции.

12.1.
$$\lim_{x \to \frac{\pi}{2}} \frac{2^{\cos^2 x} - 1}{\ln \sin x}$$
.

12.3.
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2}{\sin^2 x}$$
.

12.5.
$$\lim_{x\to 2\pi} \frac{(x-2\pi)^2}{\operatorname{tg}(\cos x-1)}$$

12.7.
$$\lim_{x\to 0} \frac{\sqrt{1+x\sin x}-1}{e^{x^2}-1}$$
.

12.9.
$$\lim_{x \to \pi} \frac{e^{x} - 1}{\left(1 - \frac{\pi}{x}\right)^2}.$$

12.11.
$$\lim_{x\to\pi} \frac{\ln\cos 2x}{\ln\cos 4x}$$
.

12.13.
$$\lim_{x\to 0} \frac{1-\cos x\sqrt{\cos 2x}}{x^2}$$
.

12.15.
$$\lim_{x\to 0} \frac{1-\cos x}{(e^{3x}-1)^2}$$
.

12.17.
$$\lim_{x\to 0} \frac{\ln(x^2+1)}{1-\sqrt{x^2+1}}$$
.

12.19.
$$\lim_{x\to 0} \frac{1-\cos 2x + tg^2 x}{x \sin 3x}$$
.

12.21.
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$

12.21.
$$\lim_{x\to 0} \frac{e^{x} - e^{-x} - 2x}{x - \sin x}$$
.
12.23. $\lim_{x\to \pi} \frac{e^{x} - e^{-x} - 2x}{\log 3x - \cos x}$.

12.25.
$$\lim_{x\to 0} \frac{\sin 2x - 2\sin x}{x \ln \cos 5x}$$

12.27.
$$\lim_{x\to 0} \frac{e^{x} + e^{-x} - 2}{1 - \cos 2x}$$

12.29.
$$\lim_{x\to\pi} \frac{\cos 5x - \cos 3x}{\sin^2 x}$$
.

12.2.
$$\lim_{x\to 0} \frac{1+x\sin x - \cos 2x}{\sin^2 x}$$
.

12.4.
$$\lim_{x\to \frac{\pi}{6}} \frac{\ln \sin 3x}{(6x-\pi)^2}$$
.

12.6.
$$\lim_{x \to \frac{1}{2}} \frac{(2x-1)^2}{e^{\sin \pi x} - e^{-\sin 3\pi x}}$$

12.8.
$$\lim_{x\to 0} \frac{x(e^x - e^{-x})}{e^{x^2 + 1} - e}$$
.

12.10.
$$\lim_{x\to\pi} \frac{\ln(2+\cos x)}{(3^{\sin x}-1)^2}$$
.

12.12.
$$\lim_{x\to\frac{\pi}{2}}\frac{\ln\sin x}{(2x-\pi)^2}$$
.

12.14.
$$\lim_{x\to 0} \frac{1-\sqrt{\cos x}}{x \sin x}$$
.

12.16.
$$\lim_{x\to 0} \frac{\lg x - \sin x}{x(1-\cos 2x)}$$

12.18.
$$\lim_{x\to 0} \frac{2x \sin x}{1-\cos x}$$
.

12.20.
$$\lim_{x\to 0} \frac{e^{3x}-3x-1}{\sin^2 5x}$$
.

12.22.
$$\lim_{x\to 0} \frac{e^{x^2}-1}{\cos x-1}$$
.

12.24.
$$\lim_{x\to 0} \frac{x-\operatorname{arctg} x}{x^3}$$

12.26.
$$\lim_{x\to 0} \frac{\sqrt{\cos x} - 1}{\sin^2 2x}$$
.

12.28.
$$\lim_{x\to 0} \frac{x(1-\cos\sqrt{x})}{1-\cos x}$$

12.30.
$$\lim_{x\to 0} \frac{1-\cos^3 x}{x\sin 2x}$$

13. Провести полное исследование функций и построить графики.

13.1.
$$y = \frac{3x^2 - 6x}{x - 1}$$
; $y = xe^{x + 1}$.

13.1.
$$y = \frac{3x^2 - 6x}{x - 1}$$
; $y = xe^{x + 1}$.
13.2. $y = x^2 \ln x$; $y = \frac{(x - 1)(x - 2)}{x}$.

$$13.3. \ y = \frac{1}{(x-1)^2} - \frac{1}{(x+1)^2}; \qquad y = x \ln x.$$

$$13.4. \ y = \frac{1}{\sqrt{x^2-1}}; \qquad y = \sqrt[3]{12x - 4x^3}.$$

$$13.5. \ y = e^{x^2 - 6x}; \qquad y = \frac{4x - 8}{(x-1)^2}.$$

$$13.6. \ y = \sqrt[3]{1 - x^3}; \qquad y = \sqrt{\frac{x-1}{x+1}}.$$

$$13.7. \ y = \frac{x^2}{x^2 + 3}; \qquad y = arctg \ x - x.$$

$$13.8. \ y = -\frac{x^3}{(x+1)^2}; \qquad y = (x-1)e^{x-1}.$$

$$13.9. \ y = \frac{x^2}{x^2 - 4}; \qquad y = \frac{4x}{(x+1)(2-x)}.$$

$$13.10. \ y = \frac{x}{x^2 + 1}; \qquad y = \frac{4x}{(x+1)(2-x)}.$$

$$13.11. \ y = \frac{x^3}{x^2 + 3}, \qquad y = \frac{1}{x^2 - 6x + 5}.$$

$$13.12. \ y = \frac{x^4 + 8}{(x+2)^2}; \qquad y = 2x.$$

$$13.13. \ y = \frac{1}{(x+1)^2}; \qquad y = \sqrt{4x^2 + 7}.$$

$$13.14. \ y = x + 2 \operatorname{arctg} x; \qquad y = (x-1)e^{1-x}.$$

$$13.15. \ y = \frac{x + \sqrt{2}}{(x-2)^2}; \qquad y = (x-1)e^{1-x}.$$

$$13.16. \ y = \frac{x + \sqrt{2}}{x^2 - 1}; \qquad y = (x-1)e^{1-x}.$$

$$13.17. \ y = \frac{x^2 - 1}{x^2 - 1}; \qquad y = (1 + x^2)e^{-x^2}.$$

$$13.18. \ y = \sqrt[3]{x+1}; \qquad y = (13 + 4x^2)e^{-x^2}.$$

$$13.19. \ y = \frac{e^{-x^2}}{x^2}; \qquad y = \frac{x-1}{(2x-1)(2-x)}.$$

$$13.20. \ y = \sqrt[3]{6x^2 - x^3}; \qquad y = \frac{x-1}{(2x-1)(2-x)}.$$

$$13.21. \ y = \frac{x^3}{\sqrt{x^2 - 1}}; \qquad y = \frac{x-1}{(2x-1)(2-x)}.$$

$$13.22. \ y = (x-1)^2 e^x; \qquad y = \frac{x-1}{(2x-1)(2-x)}.$$

$$13.23. \ y = \frac{x}{\sqrt{x^2 - 1}}; \qquad y = \frac{x^2 + x^2}{(x-3)^2}.$$

$$13.24. \ y = \frac{x}{\sqrt{x^2 - 1}}; \qquad y = \frac{x^2 + x^2}{(x-3)^2}.$$

$$13.25. \ y = \frac{1}{x^2}; \qquad y = \frac{x^2 + x^2}{(x-3)^2}.$$

$$13.26. \ y = \frac{x^3}{x^2}; \qquad y = xe^{-x}.$$

$$13.27. \ y = \frac{x^3}{x^2}; \qquad y = xe^{-x}.$$

$$13.28. \ y = \frac{|x-1|}{x}; \qquad y = \frac{x}{(x+3)(1-x)}.$$

$$13.29. \ y = x^3 - 3x; \qquad y = \frac{(x+3)(1-x)}{(x+3)(1-x)}.$$

$$13.30. \ y = \sqrt[3]{(x-1)^2} - \sqrt[3]{(x+1)^2}; \qquad y = (3x+5)e^{3x-1}.$$

Раздел 4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

Примеры решения задач

<u>Задача 1</u>. Исследовать на экстремум функцию $z = x^3 + y^3 - 3xy$. *Решение*. Найдем частные производные первого порядка и воспользуемся необходимым условием экстремума:

$$\begin{cases} \frac{\partial z}{\partial x} = 3x^2 - 3y = 0, \\ \frac{\partial z}{\partial y} = 3y^2 - 3x = 0, \end{cases} \Leftrightarrow \begin{cases} x^2 - y = 0, \\ y^2 - x = 0. \end{cases}$$

Решая эту систему, получим две стационарные точки: $P_1(0,0)$ и $P_2(1,1)$. Найдем частные производные второго порядка:

$$A = \frac{\partial^2 z}{\partial x^2} = 6x$$
, $B = \frac{\partial^2 z}{\partial x \partial y} = -3$, $C = \frac{\partial^2 z}{\partial y^2} = 6y$.

Затем вычислим дискриминант $D = AC - B^2 = 36xy - 9$ для каждой стационарной точки:

$$D|_{P_1} = 36 \cdot 0 \cdot 0 - 9 = -9 < 0;$$

 $D|_{P_2} = 36 \cdot 1 \cdot 1 - 9 = 27 > 0;$ $A|_{P_2} = 6 > 0.$

Следовательно, в силу достаточного условия экстремума в точке P_1 экстремума нет, а в точке P_2 – локальный минимум.

Ответ: (1,1) - точка локального минимума.

Точка $P(x_0,y_0)$ называется условным максимумом (минимумом) функции z=f(x,y) с условием связи $\varphi(x,y)=0$, если существует окрестность U точки P такая, что $f(x_1,y_1) \leq f(x_0,y_0)$, $(f(x_1,y_1) \geq f(x_0,y_0))$, как только $\begin{cases} (x_1,y_1) \in U \\ \varphi(x_1,y_1) = 0. \end{cases}$

Задача о вычислении условного экстремума сводится к исследованию на обычный экстремум функции Лагранжа $L(x,y,\lambda) == f(x,y) + \lambda \phi(x,y)$. Итак, система трех уравнений $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$, $\frac{\partial L}{\partial x} = 0$ выражает необходимое условие условного экстремума. Пусть (x_0,y_0,λ_0) - решение этой системы, а

$$\Delta = - \begin{vmatrix} 0 & \varphi_{x}^{'}(P) & \varphi_{y}^{'}(P) \\ \varphi_{x}^{'}(P) & L_{xx}^{''}(P,\lambda_{0}) & L_{xy}^{''}(P,\lambda_{0}) \\ \varphi_{y}^{'}(P) & L_{xy}^{''}(P,\lambda_{0}) & L_{yy}^{''}(P,\lambda_{0}) \end{vmatrix}$$

Если $\Delta < 0$, то $P(x_0, y_0)$ - условный максимум; в случае $\Delta > 0$ $P(x_0, y_0)$ - условный минимум.

<u>Задача 2</u>. Найти условный экстремум функции z = x + 2y при условии $x^2 + y^2 = 5$.

Решение. Составим функцию Лагранжа $L(x, y, \lambda) = x + 2y + \lambda(x^2 + y^2 - 5)$ и воспользуемся необходимым условием условного экстремума:

$$\begin{cases} \frac{\partial L}{\partial x} = 1 + 2\lambda x = 0, \\ \frac{\partial L}{\partial y} = 2 + 2\lambda y = 0, \\ \frac{dL}{d\lambda} = x^2 + y^2 - 5 = 0, \end{cases} \Leftrightarrow \begin{cases} x = -\frac{1}{2\lambda}, \\ y = -\frac{1}{\lambda}, \\ x^2 + y^2 = 5. \end{cases}$$

Решая эту систему, получим две точки: $x_1=-1,\ y_1=-2,$ $\lambda_1=1/2; x_2=1, y_2=2, \lambda_2=-1/2.$ Так как $\frac{\partial^2 L}{\partial x^2}=2\lambda, \frac{\partial^2 L}{\partial x \partial y}=0, \frac{\partial^2 L}{\partial y^2}=2\lambda, \ \varphi_x^{'}=2x, \ \varphi_y^{'}=2y;$

TO

$$\Delta = - \begin{vmatrix} 0 & 2x & 2y \\ 2x & 2\lambda & 0 \\ 2y & 0 & 2\lambda \end{vmatrix} = -8(-x^2\lambda - y^2\lambda) = 8\lambda(x^2 + y^2).$$

Имеем: $\Delta(x_1, y_1, \lambda_1) = 8 \cdot \frac{1}{2}(1+4) = 20 > 0$ и $\Delta(x_2, y_2, \lambda_2) = 8\left(-\frac{1}{2}\right)(1+4) = -20 < 0$. Следовательно, $P_1(-1, -2)$ - точка условного минимума, а $P_2(1, 2)$ - точка условного максимума.

Ответ: (-1,-2) - точка условного минимума, (1,2) - точка условного максимума.

 $\frac{3 \text{ адача } 3}{z = x^2 y}$. Найти наибольшее и наименьшее значения функции $z = x^2 y (4 - x - y)$ в треугольнике, ограниченном прямыми x + y = 6, x = 0, y = 0.

Решение. Во-первых, отметим, что z - непрерывная функция, а $\Delta \textit{OAB}$ (рисунок) - ограниченная замкнутая область.

Следовательно, по теореме Вейерштрасса, существуют наибольшее и наименьшее значения функции z в Δ OAB. Точка, в ко-

торой достигается наибольшее (наименьшее) значение, является либо стационарной точкой функции z, лежащей внутри Δ OAB, либо стационарной точкой сужения функции z на одну из сторон Δ OAB, либо, наконец, совпадает с одной из вершин O, A, B.

Найдем стационарные точки внутри Δ *OAB*:

$$\begin{cases} \frac{\partial z}{\partial x} = 8xy - 3x^2y - 2xy^2 = 0, \\ \frac{\partial z}{\partial y} = 4x^2 - x^3 - 2x^2y = 0, \end{cases} \Leftrightarrow \begin{cases} 8 - 3x - 2y = 0, \\ 4 - x - 2y = 0, \end{cases} \Leftrightarrow \begin{cases} x = 2, \\ y = 1. \end{cases}$$

Ввиду того, что x>0 и y>0 внутри Δ OAB, мы смогли сократить на x и y. Точка $P_1(1,2)$ действительно лежит внутри Δ OAB и z(1,2)=4.

Далее, сужая функцию z на стороны OA и OB, находим, что $z|_{OA}=z|_{OB}=0$. На стороне AB зависимость y от x такова: y=6-x; поэтому

$$z|_{AB} = x^2(6-x)(4-x-6+x) =$$

= -12x² + 2x³.

Находим стационарные точки этой функции в интервале (0, 6):

$$(-12x^2 + 2x^3)' = 0 - 24x + 6x^2 =$$

= 0 \Leftrightarrow $x_1 = 0$, $x_2 = 4$.

Из этих двух точек интервалу

(0,6) принадлежит только вторая, для которой $y_2 = 6 - 4 = 2$ и $z(x_2,y_2) = 4^2 \cdot 2(4-4-2) = -64$.

Наибольшее значение функции z в Δ OAB совпадает с наибольшим значением в точках P_1 , P_2 , O, A, B, а также значением 0 в любой из внутренних точек сторон OA и OB. Не составляет труда вычислить последнее наибольшее значение: $z_{max} = 4$, так как z(0) = z(A) = z(B) = 0 и 0 < 4; -64 < 4. Аналогично $z_{min} = -64$.

Otbet:
$$z_{max} = z(1,2) = 4;$$

 $z_{min} = z(4,2) = -64.$

Заметим, что при решении третьей задачи мы не пользовались достаточным условием экстремума.

Задания

1. Найти дифференциал второго порядка.

1.1.
$$z = e^{xy}$$
.

1.3.
$$z = \frac{x}{y}$$
.

1.5.
$$z = x^2 + 2y^2 - 3xy + 4x + 2y$$
.

1.7.
$$z = x^y$$
.

1.9.
$$z = \arcsin xy$$
.

$$1.11. z = \ln(x^2 + y^2).$$

$$1.13. z = \cos x^2 y.$$

$$1.15. z = e^y \sin x.$$

1.17.
$$z = \frac{x}{v^2}$$

1.19.
$$z = \text{ctg}(x^2 - y^2)$$
.

1.21.
$$z = y \arccos x^2$$
.

$$1.23. z = xy^x.$$

1.25.
$$z = y/(x^2 + y^2)$$
.

1.27.
$$z = \frac{x-y}{x+y}$$

1.29.
$$z = 5x^3 + 4y^3 + 5x^2y - 7xy^2 - 2xy$$
. 1.30. $z = \cos\frac{x+y}{x-y}$.

$$1.2. z = e^x \cos y.$$

$$1.4. z = x \cos y + y \sin x.$$

1.6.
$$z = \operatorname{arctg} xy$$
.

1.8.
$$z = \ln xy$$
.

$$1.10. z = \arccos xy.$$

$$1.12. z = \sin xy^2.$$

$$1.14. z = tg xy.$$

$$1.16. z = e^x \sin y.$$

1.18.
$$z = tg(x^2 + y^2)$$
.

1.20.
$$z = x \arcsin y^2$$
.

$$1.22. z = yx^y.$$

$$1.24. z = \frac{x}{x^2 + y^2}.$$

1.26.
$$z = \frac{x+y}{x-y}$$
.

$$1.28. z = \sin \frac{xy}{x+y}.$$

$$1.30. z = \cos \frac{xy}{x-y}.$$

2. Исследовать на экстремум функцию двух переменных.

$$2.1.2x^2 - 2xy + y^2 - x + 1.$$

$$2.3. 2x^3 - 3xy - y^2 + 5x - 4y.$$

$$2.5.(x+2)^2 + (2y-1)^2 - x.$$

2.5.
$$(x + 2)^2 + (2y - 1)^2 - x$$
.

$$2.7. 4x^2 + 8xy - 4y^2 + 16x - 16y.$$

$$2.9. -2x^2 + 8xy + 8y^2 + 8x + 16y.$$

$$2.11. - x^2 - xy + 8y^2 + 6x - 9y.$$

$$2.13.3x^2 - 2xy + y^2 + x - y.$$

$$2.15. x^2 + y^2 - 2x + y.$$

$$2.17.4x^2 - 2y^2 + 3xy + 2x - y$$
.

$$2.19. -2x^2 + 3xy - y^2 - y + 2.$$

2.21.
$$xy + \frac{50}{x} + \frac{20}{y}$$
 $(x > 0, y > 0)$.

$$2.23. - x^2 + 4xy - 2y^2 + y.$$

$$2.25. -3x^2 - 6xy - 12y^2 - 6x + 6y.$$

$$2.27.5x^2 - 10xy + 5y^2 + 10x - 15y$$
. $2.28.x^2 - (3y + 2)^2 - x - y$.

$$2.29. -6x^2 + 12xy - 6y^2 - 6x + 6y.$$

$$2.2. x^2 + xy + y^2 - 2x - y.$$

$$2.4. 3x^2y - 2xy^2 - x$$
.

$$2.6. - x^2 + xy - y^2 + x - 2y$$
.

2.8.
$$(1-2x)^2 - y^2 + y - 2x$$
.

$$2.10. x^3y^2(a-x-y).$$

$$2.12.3x^2 - 3xy + 6y^2 - x$$
.

$$2.14. -2x^2 - xy - 2x + 3y$$
.

$$2.16.3x^2 + 2xy + x - y$$
.

$$2.18. - x^2 + xy - y^2 + y + 2.$$

$$2.20. x^2 + xy + y^2 + \frac{1}{x} + \frac{1}{y}$$

$$2.22. e^{x-y}(x^2-y^2).$$

$$2.24.(3x-1)^2-y^2+2x+y.$$

$$2.26. e^{x+y}(x^2+xy).$$

$$2.28. x^2 - (3y + 2)^2 - x - y$$

2.30.
$$(2x+1)^2 + y^2$$
.

3. Определить наибольшее и наименьшее значения функции двух переменных в указанных областях.

3.1.
$$z = 1 + x + 2y$$
; $x \ge 0, y \ge 0, x + y \le 1$.
3.2. $z = 1 - x + 3y$; $x \ge 0, y \ge 0, x + y \le 1$.
3.3. $z = 2 + 2x - y$; $0 \le x \le 2, -1 \le y \le 2$.
3.4. $z = 3 - x + y$; $0 \le x \le 2, 0 \le y \le 2$.
3.5. $z = \frac{1}{2} + 2x - 3y$; $x \ge 0, y \le 0, x - y \le 1$.
3.6. $z = 1 - x + 2y$; $0 \le x \le 3, -2 \le y \le 2$.
3.7. $z = 5 + 3x - 2y$; $x \le 0, y \ge 0, -x + y \le 1$.
3.8. $z = -2 + 2x - 3y$; $x \le 0, y \ge 0, -x + y \le 1$.
3.9. $z = -1 + x - 2y$; $x \le 0, y \le 0, -x - y \le 2$.
3.10. $z = xy$; $x \le 0, y \ge 0, -x + y \le 1$.
3.11. $z = 2 - xy$; $x \le 0, y \ge 0, -x + y \le 1$.
3.12. $z = 5 - x - y$; $x \le 0, y \ge 0, -x + y \le 3$.
3.14. $z = 1 - 8xy$; $x \ge 0, y \ge 0, -x + y \le 3$.
3.15. $z = -3 + 2x - y$; $x \ge 0, y \ge 0, -x + y \le 1$.
3.16. $z = 2 - x + 3y$; $x \ge 0, y \ge 0, -x + y \le 1$.
3.17. $z = (x - 1)^2 + y$; $x \ge 0, y \ge 0, x + y \le 2$.
3.18. $z = x - (y + 2)^2$; $x \ge 0, y \ge 0, x + y \le 2$.
3.19. $z = 2x + 3y - 1$; $x \ge 0, y \ge 0, -x + y \le 2$.
3.20. $z = 3x - 2y + 1$; $x \ge 0, y \ge 0, -x + y \le 5$.
3.21. $z = 4x + 2y - 5$; $x \ge 0, y \le 0, -x - y \le 2$.
3.22. $z = x + (2y - 3)^2$; $x \ge 0, y \ge 0, -x + y \le 5$.
3.23. $z = 4x - 5y + 2$; $x \le 0, y \ge 0, -x + y \le 5$.
3.24. $z = -x - y - 6$; $x \ge 0, y \ge 0, -x + y \le 1$.
3.25. $z = -2x + 4y - 1$; $x \ge 0, y \ge 0, -x - y \le 4$.
3.26. $z = xy + x$; $x \ge 0, y \ge 0, -x - y \le 4$.
3.27. $z = xy + y$; $x \ge 0, y \ge 0, -x + y \le 1$.
3.29. $z = 2xy - y$; $x \ge 0, y \ge 0, -x + y \le 1$.

4. Определить условные экстремумы функции двух переменных (справа указаны условия).

4.1.
$$z = xy$$
; $x + y = 2$.
4.2. $z = x + 3y$; $x^2 + y^2 = 1$.
4.3. $z = x^2 + y^2$; $x + y = 1$.

5. Найти производные сложных функций.

5.1.
$$z = x^{2} + xy + y^{2}$$
, $x = t^{2}$, $y = t$.
5.2. $z = \sqrt{x^{2} + y^{2}}$, $x = \sin t$, $y = \cos t$.
5.3. $z = \frac{y}{x}$, $x = e^{t}$, $y = 1 - e^{2t}$.
5.4. $z = xe^{y}$, $y = x^{2}$.
5.5. $z = x^{3} - 3yx$, $y = e^{x}$.
5.6. $z = \frac{y}{x} - \frac{x}{y}$, $y = \cos x$.
5.7. $z = \frac{x^{2}}{y}$, $x = u - 2v$, $y = v + 2u$.

5.8.
$$z = \frac{x}{y^2}$$
, $x = u + 2v, y = v - 2u$.
5.9. $z = 2y + x - 1$, $x = 2u - v, y = 3v + u$.
5.10. $z = 3x^3 - 2xy + 3$, $x = 3t - 1, y = 2t^2 + t$.
5.11. $z = \arctan(\frac{x}{y})$, $x = t, y = t^2$.
5.12. $z = \arcsin(xy)$, $x = 2t, y = 3t - 1$.
5.13. $z = \frac{x+y}{x-y}$, $y = e^{2x}$.

5.13.
$$z = \frac{x+y}{x-y}$$
, $y = e^{2x}$.
5.14. $z = x^2 - 4y^2$, $y = \ln x$.

5.15.
$$z = \frac{xy+1}{x}$$
, $y = 3x^2 + 2x - 1$.

5.15.
$$z = \frac{xy+1}{x}$$
, $y = 3x^2 + 2x - 1$.
5.16. $z = \frac{(2y+3)}{x}$, $y = \frac{1}{x}$.
5.17. $z = x^2 - y$, $x = 3u - 4v$, $y = 2u^2$.

5.18.
$$z = xy$$
, $x = \frac{u}{v}$, $y = u - v$.
5.19. $z = \sqrt{x + y}$, $x = u^2 + v$, $y = 2u + 3v$.

5.20.
$$z = \frac{\dot{x}y}{x-y}$$
, $x = uv, y = u - v$.

5.21.
$$z = e^{xy}$$
, $x = t, y = 2t$.

5.22.
$$z = \arcsin \frac{x}{y}$$
, $x = t + 1$, $y = t^2$.

5.23.
$$z = xe^{y}$$
, $x = 5t^{2} - 1$, $y = 6t$.
5.24. $z = \frac{xy}{x-y}$, $x = \cos t$, $y = \sin t$.

5.25.
$$z = e^{\frac{x}{y^2}}$$
, $x = 3t + 1$, $y = 2t - 1$.

5.26.
$$z = \ln \sin(x - y)$$
, $y = x^3$.

5.27.
$$z = \frac{x}{3y-2x}$$
, $y = 6x + 3$.

5.28.
$$z = y \ln x$$
, $y = x^2$.

5.29.
$$z = x \ln y$$
, $y = x$.

5.30.
$$z = x^y$$
, $x = u + v$, $y = u - v$.

6. Найти производные z_x', z_y' (либо y_x') неявно заданных функций.

6.1.
$$2\cos(x-2y) = 2y - x$$
. 6.2. $\ln(x+y) = xy$.

6.3.
$$\cos(ax + by - cz) = ax + by - cz$$
. 6.4. $z^2 = xy$.

6.5.
$$\arcsin(x+y) = 2x - y$$
. 6.6. $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.

6.7.
$$arccos(x + z) = z^2 + x - y$$
. 6.8. $ctg\frac{x}{y} = sin x$.

6.9.
$$z^2 - 3z + y - x = 0$$
. 6.10. $z^3 = x + y + z$.

6.11.
$$x^3 + y^2 + 2x - 2y = 2$$
. 6.12. $x^2 - 4y^2 = 4$.

 $6.13.5x^2 + 6y^2 - 3x + y = 0.$

 $6.15. x^2 + y^2 + z^2 - 6x = 0.$

 $6.17. x^2 + y^2 + z^2 - 2zx = a^2.$

6.19. $2\sin(x + 2y - 3z) = x + 2y - 3z$.

 $6.21.3x^3 - 6xy^2 + 5x^2y - 6y = 0.$

 $6.23. x^4 - 2xz^2 + 3y^2 - 4xz = 0.$

 $6.25. z + xy = z^2 - x + y.$

6.27. $3x^2 - 6xy + y^2 - z^2 - z = 0$. 6.29. $x^3 - 7x^2y + y^2 - 2y = 0$.

6.14. arctg y = x + y.

6.16. $xy + \ln y + \ln x = 0$.

6.18. $y + x = e^{\frac{y}{x}}$.

6.20. $xyz = a^3$. 6.22. $\frac{x+y}{x} = y^2$.

 $6.24. \frac{x}{x+y} = y - 1.$

 $6.26. x^2 + y^2 - 4x + 6y = 0.$

6.28. tg xy = y.

6.30. $y^2 = \ln(x + y)$.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Дубровин, Н. И. Задания к типовым расчетам по математике / Н. И. Дубровин. – Владимир : Изд-во ВПИ, 1993. – 64 с.
- 2. Демидович, Б. П. Сборник задач и упражнений по математическому анализу: учеб. пособие / Б. П. Демидович. – 13-е изд., испр. – М.: Изд-во Моск. ун-та : ЧеРо, 1997. – 624 с. – ISBN 5-211-03645-X.
- 3. Кузнецов, Л. А. Сборник задач по высшей математике. Типовые расчеты: учеб. пособие / Л. А. Кузнецов. – 3-е изд., испр. – СПб.: Лань, 2005. – 240 с. – ISBN 5-8114-0574-X.

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ	3
Раздел 1. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА	4
Раздел 2. ВВЕДЕНИЕ В АНАЛИЗ	24
Раздел 3. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ	35
Раздел 4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ	51
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	586

Учебное издание

ДУБРОВИН Николай Иванович ТУХТАМИРЗАЕВ Адхам Юлбарсмирзаевич

ЗАДАЧНИК ПО МАТЕМАТИКЕ. 1-Й СЕМЕСТР

Подписано в печать 20.04.11. Формат 60х84/16. Усл. печ. л. 3,49. Тираж 150 экз. Заказ

Издательство Владимирского государственного университета 600000, Владимир, ул. Горького, 87.