Finite-State Machines (FSMs) and Controllers

FSM design -examples

FSM design -examples

Consider the Program

```
main()
{
    i=5; j=6; k=0;
    k=i+j;
    if (k>0) i=0;
    else j=0;
}
```

Can this program be modeled with a FSM?

Initial State

State 1

State 2

State 3

FSM Representing the Program

Compare with Flow Chart

FSM

Step 1: Fetch (MOV AX, a)

Step 2: Decode (MOV AX,a)

Step 3: Execute (MOV AX,a)

Concept of the State Machine

FSM of the Computer

 For this highly simplified computer, the controller can be described by a FSM

Each state will generate certain control signals to control the datapath 16