02A - INFORMATION RETRIEVAL

CS 1656 Introduction to Data Science

Alexandros Labrinidis – http://labrinidis.cs.pitt.edu
University of Pittsburgh

What is Information Retrieval?

- Information organized into documents
 - Large number of documents
 - Data in documents is unstructured
- Our mission, should we choose to accept it:
 - Locate documents that match a user's needs
 - How:
 - Keywords
 - Sample documents
- Like finding a needle in a haystack ©
 - Or worse: a hay-colored needle!
 - this isn't mission difficult, it's mission impossible!

August 25, 2020

Info Retrieval vs Database Systems

- Database Systems
 - Structured data
 - Complex data models
 - Data updates
 - Transactions and concurrency control
 - Exact Answers
 - Sorted results

- Information Retrieval
 - Unstructured data
 - Collection of documents
 - Mostly static

- Approximate answers
- Ranking of results

How to retrieve information

- One way:
 - Get keywords from user
 - Scan entire collection of documents
 - Return documents that match
 - Problems?
- Will not scale to large document collections
 - E.g., the Web
- Will not rank results
 - E.g., too many matches for "Labrinidis"

Classic Information Retrieval

- Collection of documents D_i, where 0 < i < N
- One or more keywords k_x , where 0 < x < t

Task:

- Given keywords from user
- Identify documents from collection that contain keywords
- Rank documents in some way, with most relevant documents first

Sample Document

The Cleveland Browns stunned the Pittsburgh Steelers with an epic second-half turnaround to tie the score in the fourth quarter. But Shaun Suisham kicked a 41-yard field goal with no time left to pull out a 30-27 victory Sunday at Heinz Field that seemed assured at halftime.

- Q1: Should we use all words?
- A1: Should remove stopwords (articles and connectives)
 - E.g., the, with, an, to, in, a, at, that, ...
- Q2: Should we preprocess any words?
- A2: Should perform stemming
 - Reduce words to common grammatical root, e.g., stunned -> stun

Are all terms equally relevant?

- Imagine two documents:
 - Document A:
 - The University of Pittsburgh is located in Pittsburgh.
 - Document B:
 - Carnegie Mellon University is located in Pittsburgh.
- Q: Is one of the two documents more "relevant" with respect to a certain keyword?
 - (i.e., expect it higher in the ranked results)
- Q: Which keyword?

Relevance Ranking – Single Keyword

How relevant is document d_i to keyword k_i?

- Approach #1 -- Frequency
 - Use the number of occurrences of k_i in d_i (frequency)
 - $f(\mathbf{k}_i, \mathbf{d}_i)$
- Approach #2 Term Frequency

•
$$tf(\mathbf{k}_i, \mathbf{d}_j) = 1 + log_2 f(\mathbf{k}_i, \mathbf{d}_j)$$
, if $f(\mathbf{k}_i, \mathbf{d}_j) > 0$
= 0, otherwise

Term-Document Matrix

- The occurrence of a term k_i in a document d_j establishes a relation between k_i and d_j
- A term-document relation between k_i and d_j can be quantified by the frequency of term k_i in document d_i

• In matrix form, this can be written as:

where F_{i,j} is the frequency of keyword i in document j

Example

Assume the following four documents:

To be or not to be.
I am what I am.

I think therefore I am.

Do be do be do.

d₃

Do do do, da da da. Let it be, let it be.

[Source: Modern Information Retrieval, 2nd Edition]

#	Term	F i, 1	F i, 2	F i,3	F i, 4	TF i, 1	TF i, 2	TF i,3	TF i, 4
1	to								
2	do								
3	is								
4	be								
5	or								
6	not								
7	1								
8	am								
9	what								
10	think								
11	therefore								
12	da								
13	let								
14	it								
Doc	Size (# words)								

#	Term	F i, 1	F i, 2	F i,3	F i, 4	TF i, 1	TF i, 2	TF i,3	TF i, 4
1	to	4	2			3	2		
2	do	2		3	3	2		2.585	2.585
3	is	2				2			
4	be	2	2	2	2	2	2	2	2
5	or		1				1		
6	not		1				1		
7	I		2	2			2	2	
8	am		2	1			2	1	
9	what		1				1		
10	think			1				1	
11	therefore			1				1	
12	da				3				2.585
13	let				2				2
14	it				2				2
Doc	Size (# words)	10	11	10	12			14 6	

What is result of query with keyword = "to"?

How to handle multiple keywords?

- Most queries involve more than one keywords.
- Q: How can we implement relevance ranking over a collection of documents using multiple keywords?
- A1 Simple approach:
 - Compute independent relevance measures
 - Add them up
- A2 Better approach:
 - Determine importance (weight) of each keyword
 - Compute independent relevance measures
 - Compute weighted sum

How to determine weights?

Idea:

keywords that do not appear in many documents should be more important than those that do

- <u>Def</u>: Inverse document frequency (IDF_i) for keyword k_i
 - $IDF_i = log_2 (N / n_i)$
 - where
 - n_i = number of documents where ki appears
 - N total number of documents

Putting it all together

Term weight associated with pair k_i, d_i:

TF (ki, dj) IDF (ki)

• W
$$_{i, j} = (1 + log_2 f_{i,j}) \times log_2 (N / n_i)$$
, if $f_{i,j} > 0$ otherwise

- Variants for first part:
 - {0, 1}
 - f_{i,j}
 - 1 + log₂ f_{i,j}

- Variants for second part:
 - 1
 - log₂ (N / n_i)

#	Term	n i	IDF i	d 1	d 2	d 3	d 4
1	to	2	1				
2	do	3	0.415				
3	is	1	2				
4	be	4	0				
5	or	1	2				
6	not	1	2				
7	I	2	1				
8	am	2	1				
9	what	1	2				
10	think	1	2				
11	therefore	1	2				
12	da	1	2				
13	let	1	2				
14	it	1	2				

#	Term	n i	IDF i	d 1	d 2	d 3	d 4
1	to	2	1	3	2		
2	do	3	0.415	0.830		1.073	1.073
3	is	1	2	4			
4	be	4	0				
5	or	1	2		2		
6	not	1	2		2		
7	I	2	1		2	2	
8	am	2	1		2	1	
9	what	1	2		2		
10	think	1	2			2	
11	therefore	1	2			2	
12	da	1	2				5.170
13	let	1	2				4
14	it	1	2				4

Another Example

Document #1:

The University of Pittsburgh is located in Pittsburgh.

Document #2:

Carnegie Mellon University is located in Pittsburgh.

Document #3

Pittsburgh was voted most livable city. Steelers. Steelers!

Document #4:

The Steelers won over the Cleveland Browns.

Document #5:

The Pittsburgh Steelers have won 6 Super Bowls.

Document #6:

Cleveland is located in Ohio.

For keyword = Pittsburgh

	Doc #1	Doc #2	Doc #3	Doc #4	Doc #5	Doc #6
F(Pittsburgh,j)	2	1	1	0	1	0
TF(Pittsburgh,j)	1+log 2=2	1	1	0	1	0

n (Pittsburgh) = 4

IDF (Pittsburgh) = $\log_2 (6 / 4) = 0.585$

	Doc #1	Doc #2	Doc #3	Doc #4	Doc #5	Doc #6
w(Pittsburgh, j)	1.170	0.585	0.585	0	0.585	0

Handout & Pop Quiz

Understanding Question

Question:

What is the IDF for the keyword steelers?

Possible Answers:

- 2.585
- 2.322
- 2
- 1.585
- 1

Handout Solutions

Q1	Doc #1	Doc #2	Doc #3	Doc #4	Doc #5	Doc #6
F(Steelers. j)	0	0	2	1	1	0
TF(Steelers. j)	0	0	2	1	1	0

Q2:
$$n (Steelers) = 3$$

IDF (Steelers) =
$$log_2 (6 / 3) = 1 (answer)$$

Q3	Doc #1	Doc #2	Doc #3	Doc #4	Doc #5	Doc #6
w(Steelers, j)	0	0	2	1	1	0

Query= Pittsburgh + Steelers

	Doc #1	Doc #2	Doc #3	Doc #4	Doc #5	Doc #6
w(Pittsburgh, j)	1.170	0.585	0.585	0	0.585	0
	Doc #1	Doc #2	Doc #3	Doc #4	Doc #5	Doc #6
w(Steelers, j)	0	0	2	1	1	0

	Doc #1	Doc #2	Doc #3	Doc #4	Doc #5	Doc #6
w(Pittsburgh+S teelers, j)	1.170	0.585	2.585	1	1.585	0

Another Example – Results

Query = Pittsburgh + Steelers

Document #1: 1.170

The University of Pittsburgh is located in Pittsburgh.

Document #2: 0.585

Carnegie Mellon University is located in Pittsburgh.

Document #3 2.585

Pittsburgh was voted most livable city. Steelers. Steelers!

Document #4: 1.0

The Steelers won over the Cleveland Browns.

Document #5: 1.585

The Pittsburgh Steelers have won 6 Super Bowls.

Document #6:

Cleveland is located in Ohio.

Another Example – Sorted Results

Query = Pittsburgh + Steelers

Document #3 2.585

Pittsburgh was voted most livable city. Steelers. Steelers!

Document #5: 1.585

The Pittsburgh Steelers have won 6 Super Bowls

Document #1: 1.170

The University of Pittsburgh is located in Pittsburgh.

Document #4: 1.0

IDF(Steelers) = 1

The Steelers won over the Cleveland Browns.

Document #2: 0.585

IDF(Pittsburgh) = 0.585

Carnegie Mellon University is located in Pittsburgh.

Document #6:

Cleveland is located in Ohio.

HOW TO MAKE IR SCALE?

Scaling to large collections

- Effective index structure is crucial
- Documents containing a specific term are located using an inverted index
 - Each keyword maps to a list of documents that contain it.
- How to support or/and semantics?
 - OR: compute union of sets
 - AND: compute intersection of sets

Small Example

Document #1:

The University of Pittsburgh is located in Pittsburgh.

Document #2:

Carnegie Mellon University is located in Pittsburgh.

Document #3

Pittsburgh was voted most livable city. Steelers. Steelers!

Document #4:

The Steelers won over the Cleveland Browns.

Document #5:

The Pittsburgh Steelers have won 6 Super Bowls.

Document #6:

Cleveland is located in Ohio.

Preprocessing – stop-word removal

Document #1:

The University of Pittsburgh is located in Pittsburgh.

Document #2:

Carnegie Mellon University is located in Pittsburgh.

Document #3

Pittsburgh was voted most livable city. Steelers. Steelers!

Document #4:

The Steelers won over the Cleveland Browns.

Document #5:

The Pittsburgh Steelers have won 6 Super Bowls.

Document #6:

Cleveland is located in Ohio.

Preprocessing – lower case

Document #1:

university pittsburgh located pittsburgh

Document #2:

carnegie mellon university located pittsburgh

Document #3

pittsburgh voted livable city steelers steelers

Document #4:

steelers won cleveland browns.

Document #5:

pittsburgh steelers won 6 super bowls

Document #6:

cleveland located ohio

Preprocessing – stemming

Document #1:

university pittsburgh locat pittsburgh

Document #2:

carnegie mellon university locat pittsburgh

Document #3

pittsburgh vot livable city steeler steeler

Document #4:

steeler won cleveland brown

Document #5:

pittsburgh steeler won 6 super bowl

Document #6:

cleveland locat ohio

More efficient approach, that considers sparsity.

Store frequency counts for each (keyword, document) combination

Store frequency counts for each (keyword, document) combination

