p-adic representations and simplicial distance in Bruhat-Tits buildings

Xu Gao

March 16, 2023

University of California, Santa Cruz

TABLE OF CONTENTS

p-adic representations and stable lattices

What are Bruhat-Tits buildings?

What can we say about fixed-point sets?

Simplicial distance

Simplicial balls

Simplicial volume

p-adic representations and

STABLE LATTICES

p-ADIC REPRESENTATIONS

p-adic representation

$$\rho \colon \mathsf{G} \longrightarrow \mathsf{GL}_{\mathsf{K}}(\mathsf{V}),$$

- · V is a finite-dimensional vector space over
- *K*, a local field with residue characteristic *p*.

*p***-ADIC REPRESENTATIONS**

p-adic representation

$$\rho: \mathbf{G} \longrightarrow \mathsf{GL}_{K}(\mathbf{V}),$$

- · V is a finite-dimensional vector space over
- K, a local field with residue characteristic p.

p-adic representation

$$\rho: \mathbf{G} \longrightarrow \mathsf{GL}_{K}(\mathbf{V}),$$

- · V is a finite-dimensional vector space over
- K, a local field with residue characteristic p.

NOTATIONS

- K = a non-Archimedean local field;
- val = the valuation on K (assuming val(K^{\times}) = \mathbb{Z});
- K° = the ring of integers $\{x \in K \mid val(x) \ge 0\}$;
- ϖ = a uniformizer, namely ϖK° is the maximal ideal of K° ;
- κ = the residue field $K^{\circ}/\varpi K^{\circ}$;
- q =the cardinality of κ .

• *lattice* = f. g. K° -submodule L of V spanning the entire V.

- *lattice* = f. g. K° -submodule L of V spanning the entire V.
- **stable lattice** = lattice stable under the action of $\rho(G)$.

- *lattice* = f. g. K° -submodule L of V spanning the entire V.
- **stable lattice** = lattice stable under the action of $\rho(G)$.
- A stable lattice $L \sim$ a modular representation on $L \otimes_{K^{\circ}} \kappa$.
 - $L \otimes_{K^{\circ}} \kappa$ depends on the choice of L,
 - · its semisimplification doesn't.

The later is called the **mod** ϖ **reduction** V_{κ} of V.

Question

When does such a stable lattice exist? What can we say about the set of stable lattices?

Question

When does such a stable lattice exist? What can we say about the set of stable lattices?

1. has a stable lattice ← precompact

Question

When does such a stable lattice exist? What can we say about the set of stable lattices?

- 1. has a stable lattice \iff precompact
- 2. "stable" maintained through homothety

- 1. has a stable lattice \iff precompact
- 2. "stable" maintained through homothety

$$S(\rho)^0 := \{ \text{stable lattices of } \rho \} /_{\text{homothety}}$$

 $h(\rho) := |S(\rho)^0|$ class number

$$S(\rho)^0 := \{ \text{stable lattices of } \rho \} /_{\text{homothety}}$$

 $h(\rho) := |S(\rho)^0|$ class number

Compare with:

$$Cl(F) := \{ fractional ideas in F \} / homothety.$$

- (Iwasawa, 1973) ${\it Cl}({\it F}_n)^{(p)}$ a tower of cyclic ${\it F}_n/{\it F}$

- (Iwasawa, 1973) $Cl(F_n)^{(p)}$ a tower of cyclic F_n/F
- $h(\rho \otimes_K E_n)$ a tower of totally ramified E_n/K

- (Iwasawa, 1973) $Cl(F_n)^{(p)}$ a tower of cyclic F_n/F
- $h(\rho \otimes_K E_n)$ a tower of totally ramified E_n/K
- But: no natural composition law on $S(\rho)^0$

- (Iwasawa, 1973) $Cl(F_n)^{(p)}$ a tower of cyclic F_n/F
- $h(\rho \otimes_K E_n)$ a tower of totally ramified E_n/K
- But: no natural composition law on $S(\rho)^0$
- algebra of Galois modules geometry of Bruhat-Tits buildings

•
$$\mathfrak{X}(V)$$
 = (reduced) **Bruhat-Tits building** of $GL_K(V)$

- $\mathfrak{X}(V)$ = (reduced) **Bruhat-Tits building** of $GL_K(V)$
- lattices in $V \longleftrightarrow \text{vertices (0-simplicies) } \mathcal{X}(V)$

- $\mathfrak{X}(V)$ = (reduced) **Bruhat-Tits building** of $GL_K(V)$
- lattices in $V \longleftrightarrow \text{vertices (0-simplicies) } \mathcal{X}(V)$
- $S(\rho)$ = fixed-point set of $\rho(G)$ convex + simplicial

- $\mathfrak{X}(V)$ = (reduced) **Bruhat-Tits building** of $GL_K(V)$
- lattices in $V \longleftrightarrow \text{vertices (0-simplicies) } \mathcal{X}(V)$
- $S(\rho)$ = fixed-point set of $\rho(G)$ convex + simplicial
- $S(\rho)^0 \longleftrightarrow \text{set of vertices in } S(\rho)$

FIXED-POINT SET IN $\mathcal{X}(V)$

Theorem (Junecue, 2021)

(i) $S(\rho)$ is compact \iff $h(\rho)$ is finite \iff ρ is irreducible.

FIXED-POINT SET IN $\mathfrak{X}(V)$

Theorem (Junecue, 2021)

- (i) $S(\rho)$ is compact \iff $h(\rho)$ is finite \iff ρ is irreducible.
- (ii) $S(\rho)$ has dimension $r(\rho)$ 1 where $r(\rho)$ is **reduction rank** (= the number of irreducible components in the reduction V_{κ}).

Theorem (Junecue, 2021)

- (i) $S(\rho)$ is compact $\iff h(\rho)$ is finite $\iff \rho$ is irreducible.
- (ii) $S(\rho)$ has dimension $r(\rho)$ 1 where $r(\rho)$ is **reduction rank** (= the number of irreducible components in the reduction V_{κ}).
- (iii) $h(\rho \otimes_K E)$ is a polynomial of [E:K] for any totally ramified extension $E/K \iff \rho$ has **regular reduction**.

REDUCTIVE GROUPS

What if replace $GL_K(V)$ by other groups?

Example

V has a non-degenerate symplectic (resp. orthogonal) form and the action of G respects it. Then ρ lands in Sp(V) (resp. O(V)).

REDUCTIVE GROUPS

What if replace $GL_K(V)$ by other groups?

Example

V has a non-degenerate symplectic (resp. orthogonal) form and the action of G respects it. Then ρ lands in Sp(V) (resp. O(V)).

Consider stable (almost) self-dual lattices

REDUCTIVE GROUPS

In general, we can consider group homomorphisms to the groups of *K*-rational points of *reductive groups*:

$$\rho \colon \mathbf{G} \longrightarrow \mathfrak{G}(\mathbf{K}).$$

Expect: the study of fix-point set of $\rho(G)$ in the Bruhat-Tits building of $\mathcal G$ can aid the research of ρ .

• \mathfrak{G} reductive group \leadsto $\mathfrak{B}(\mathfrak{G})$ **Bruhat-Tits building** metric space + polysimplicial complex

- \mathfrak{G} reductive group \leadsto $\mathfrak{B}(\mathfrak{G})$ **Bruhat-Tits building** metric space + polysimplicial complex
- T maximal split torus of $\mathfrak{G} \leadsto \mathscr{A}(\mathfrak{T})$ affine apartment depends on root datum + val (\cdot)

- \mathfrak{G} reductive group \leadsto $\mathfrak{B}(\mathfrak{G})$ **Bruhat-Tits building** metric space + polysimplicial complex
- T maximal split torus of $\mathcal{G} \leadsto \mathscr{A}(T)$ affine apartment depends on root datum + val(\cdot)
- building = gluing apartments cleverly

EXAMPLES OF APARTMENTS

EXAMPLES OF APARTMENTS

EXAMPLES OF APARTMENTS

EXAMPLES OF APARTMENTS

EXAMPLES OF APARTMENTS

EXAMPLES OF APARTMENTS

EXAMPLES OF BUILDINGS: BRUHAT-TITS TREES

The Bruhat-Tits tree (building of $GL_K(2)$) with an apartment specified by red color.

FIXED-POINT SETS?

WHAT CAN WE SAY ABOUT

• We require ρ **type-preserving** isometries (**precompact** representations)

- We require ρ **type-preserving** isometries (**precompact** representations)
- $S(\rho)$ is convex + simplicial

- We require ρ **type-preserving** isometries (**precompact** representations)
- $S(\rho)$ is convex + simplicial
- $S(\rho)$ is compact $\iff h(\rho)$ is finite

- We require ρ **type-preserving** isometries (**precompact** representations)
- $S(\rho)$ is convex + simplicial
- $S(\rho)$ is compact $\iff h(\rho)$ is finite
- (Prasad and Yu, 2002) if $\rho(G)$ contains no p-torsions, then $S(\rho)$ is a Bruhat-Tits building.

WHAT CAN WE ASK

We may ask the following questions

Question

• How does $S(\rho)$ change along totally ramified extensions?

WHAT CAN WE ASK?

We may ask the following questions

Question

- How does $S(\rho)$ change along totally ramified extensions?
- Can we have a concrete description of $S(\rho)$?

We may ask the following questions

Question

- How does $S(\rho)$ change along totally ramified extensions?
- Can we have a concrete description of $S(\rho)$?
- Given an interesting convex simplicial subset of the building, can we realize it as $S(\rho)$ for some ρ ?

FIXED-POINT SETS

The behavior of a "regular" fixed-point set.

The behavior of a "irregular" fixed-point set.

FIXED-POINT SETS

The behavior of a "regular" fixed-point set.

The behavior of a "irregular" fixed-point set.

FIXED-POINT SETS

The behavior of a "regular" fixed-point set.

The behavior of a "irregular" fixed-point set.

- Simplicial structure \leadsto vertices \leadsto incident geometry

- Simplicial structure \sim vertices \sim incident geometry
- (Garrett, 1997) Interpret Bruhat-Tits buildings as the incident geometry of lattices

(where vertices = homothety classes of certain lattices)

- Simplicial structure → vertices → incident geometry
- (Garrett, 1997) Interpret Bruhat-Tits buildings as the incident geometry of *lattices* (where vertices = homothety classes of certain lattices)
- → *simplicial distance* (=distance by incidents)

- Simplicial structure → vertices → incident geometry
- (Garrett, 1997) Interpret Bruhat-Tits buildings as the incident geometry of lattices
- (where vertices = homothety classes of certain lattices)
- → simplicial distance (=distance by incidents)
- ullet \sim simplicial balls, simplicial volume, simplicial curvature etc.

A path of length 3.

Simplicial ball of radius 3.

However, the incident relations in (Garrett, 1997) are complicated. → difficult to study simplicial distance

Question

However, the incident relations in (Garrett, 1997) are complicated. → difficult to study simplicial distance

Question

 Can we have a more concrete, computable description of simplicial distance? of simplicial balls?

However, the incident relations in (Garrett, 1997) are complicated. → difficult to study simplicial distance

Question

- Can we have a more concrete, computable description of simplicial distance? of simplicial balls?
- Are view simplicial balls fixed-point sets?

However, the incident relations in (Garrett, 1997) are complicated. → difficult to study simplicial distance

Question

- Can we have a more concrete, computable description of simplicial distance? of simplicial balls?
- · Are view simplicial balls fixed-point sets?
- · How does simplicial balls grow?

SIMPLICIAL DISTANCE IN CLASSICAL TYPE BUILDINGS

 Φ the root system: irreducible and classical (i.e. A_n , B_n , C_n , or D_n)

Theorem (G., 2022)

d(x, y) - 1 = maximum of numbers of walls between them; in particular, the simplicial distance from the origin o to x is

$$d(x,o) = \lceil a_0(x-o) \rceil,$$

where a_0 = highest root rel. Weyl chamber covering x.

SIMPLICIAL BALLS IN CLASSICAL TYPE BUILDINGS

The two blues are separated by 3 walls and have distance 4.

The blue is separated by 2 walls from the red and has distance 3.

SIMPLICIAL BALLS IN CLASSICAL TYPE BUILDINGS

The two blues are separated by 3 walls and have distance 4.

The blue has value 3 under a_0 and is of distance 3 from the red.

SIMPLICIAL BALLS IN CLASSICAL TYPE BUILDINGS

A path of length 3.

SIMPLICIAL DISTANCE IN CLASSICAL TYPE BUILDINGS

Corollary

If
$$\Phi = A_n$$
 or C_n , then $d(x,y) \leqslant r \iff \exists L \in x, L' \in y$ such that
$$L \supset L' \supset \varpi^r L.$$

When $\Phi = B_n$ or D_n , the simplicial distance could be shorter due to the oriflamme construction.

23

B(x, r) = simplicial ball of radius r at x

Theorem (G., 2022)

B(x, r) = fixed-point set of the Moy-Prasad subgroup $P_{x,r}$.

B(x, r) = simplicial ball of radius r at x

Theorem (G., 2022)

B(x,r) = fixed-point set of the Moy-Prasad subgroup $P_{x,r}$.

• (Moy and Prasad, 1996) **Moy-Prasad subgroups** $(P_{x,r})_{r\geqslant 0}$ generalizing principal congruence subgroups

B(x, r) = simplicial ball of radius r at x

Theorem (G., 2022)

B(x, r) = fixed-point set of the Moy-Prasad subgroup $P_{x,r}$.

- (Moy and Prasad, 1996) **Moy-Prasad subgroups** $(P_{X,r})_{r\geqslant 0}$ generalizing principal congruence subgroups
- (Yu, 2015) the machinery of concave functions

PARAHORIC SUBGROUPS AND CONCAVE FUNCTIONS

Bruhat-Tits theory

• parahoric subgroup $P_X \approx$ stabilizer of X

PARAHORIC SUBGROUPS AND CONCAVE FUNCTIONS

Bruhat-Tits theory

- parahoric subgroup $P_x \approx$ stabilizer of x
- \rightsquigarrow (connected) smooth model \mathfrak{G}_X of \mathfrak{G} such that $\mathfrak{G}_X(K^\circ) = P_X$

PARAHORIC SUBGROUPS AND CONCAVE FUNCTIONS

Bruhat-Tits theory

- parahoric subgroup $P_x \approx$ stabilizer of x
- \leadsto (connected) smooth model \mathfrak{G}_X of \mathfrak{G} such that $\mathfrak{G}_X(K^\circ) = P_X$

(Yu, 2015)

• concave function f = function on $\widetilde{\Phi} := \Phi \cup \{0\}$ s.t.

$$\forall a,b\in\widetilde{\Phi},a+b\in\widetilde{\Phi}\implies f(a)+f(b)\geqslant f(a+b).$$

PARAHORIC SUBGROUPS AND CONCAVE FUNCTIONS

Bruhat-Tits theory

- parahoric subgroup $P_x \approx$ stabilizer of x
- \sim (connected) smooth model \mathfrak{G}_X of \mathfrak{G} such that $\mathfrak{G}_X(K^\circ) = P_X$ (Yu, 2015)
 - concave function f = function on $\widetilde{\Phi} := \Phi \cup \{0\}$ s.t.

$$\forall a, b \in \widetilde{\Phi}, a + b \in \widetilde{\Phi} \implies f(a) + f(b) \ge f(a + b).$$

• $\sim \mathfrak{G}_f$ s.t. $P_f = \mathfrak{G}_f(K^\circ)$ is bounded

EXAMPLES

• Any point $x \in \mathcal{B}(\mathfrak{G})$ defines a concave function $f_x : a \mapsto -a(x)$, and we have $P_{f_x} = P_x$.

- Any point $x \in \mathcal{B}(\mathfrak{G})$ defines a concave function $f_x : a \mapsto -a(x)$, and we have $P_{f_x} = P_x$.
- If $r \ge 0$, the shifting f + r is again a concave function.

- Any point $x \in \mathcal{B}(\mathfrak{G})$ defines a concave function $f_x : a \mapsto -a(x)$, and we have $P_{f_x} = P_x$.
- If $r \ge 0$, the shifting f + r is again a concave function.
- In general, $P_f \subseteq P_{f'} \iff f \geqslant f'$.

- Any point $x \in \mathcal{B}(\mathfrak{G})$ defines a concave function $f_x : a \mapsto -a(x)$, and we have $P_{f_x} = P_x$.
- If $r \ge 0$, the shifting f + r is again a concave function.
- In general, $P_f \subseteq P_{f'} \iff f \geqslant f'$.
- In particular, $(P_{f_x+r})_{r\geqslant 0}$ are the Moy-Prasad subgroups.

 $\cdots \subset P_{\bullet,2} \subset P_{/} \subset P_{\bullet} \subset P_{\bullet} \subset P_{\bullet}.$

SV(r) := |B(o, r)| (simplicial volume)

Theorem (G., 2022)

$$\mathsf{SV}(r) = \sum_{I \subset \Delta} \frac{\mathscr{P}_{\Phi;I}(q)}{q^{\deg(\mathscr{P}_{\Phi;I})}} \sum_{x \in B(r,\mathcal{C},I)} \prod_{a(x)>0} q^{\lceil a(x) \rceil}$$

- $\mathcal{P}_{\Phi;l}$ = Poincaré polynomial
- C = Weyl chamber
- $B(r, C, I) = B(o, r) \cap inn(\bigcap_{a \in I} ker(a))$

THE INDEX SET B(r, C, I)

THE FORMULA

$$\mathsf{SV}(r) = \sum_{I \subset \Delta} \frac{\mathscr{P}_{\Phi;I}(q)}{q^{\deg(\mathscr{P}_{\Phi;I})}} \sum_{x \in B(r,C,I)} \prod_{a(x)>0} q^{\lceil a(x) \rceil},$$

THE FORMULA

$$\mathsf{SV}(r) = \sum_{I \subset \Delta} \frac{\mathscr{P}_{\Phi;I}(q)}{q^{\deg(\mathscr{P}_{\Phi;I})}} \sum_{x \in B(r,C,I)} \prod_{a(x)>0} q^{\lceil a(x) \rceil},$$

 We have a concrete description of vertices. (However, they DO NOT form a lattice.)

$$\mathsf{SV}(r) = \sum_{I \subset \Delta} \frac{\mathscr{P}_{\Phi;I}(q)}{q^{\deg(\mathscr{P}_{\Phi;I})}} \sum_{\mathbf{x} \in B(r,C,I)} \prod_{a(\mathbf{x}) > 0} q^{\lceil a(\mathbf{x}) \rceil},$$

- We have a concrete description of vertices.
 (However, they DO NOT form a lattice.)
- With such a description, we can describe the index set B(r, C, I) in terms of linear inequalities.

THE INDEX SET

If
$$\mathcal{B}$$
 is of type A_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B(r,C,I) = \left\{ o + c_1 \omega_{\ell_1} + \cdots + c_t \omega_{\ell_t} \mid c_i \in \mathbb{Z}_{>0}, c_1 + \cdots + c_t \leqslant r \right\},\,$$

where ω_i are the fundamental coweights.

If \mathcal{B} is of type A_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B(r,C,I) = \{o + c_1\omega_{\ell_1} + \cdots + c_t\omega_{\ell_t} \mid c_i \in \mathbb{Z}_{>0}, c_1 + \cdots + c_t \leqslant r\},\$$

where ω_i are the fundamental coweights.

If \mathcal{B} is of type C_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B(r,C,I) = \left\{ o + c_1 \omega'_{\ell_1} + \dots + c_t \omega'_{\ell_t} \middle| c_i \in \mathbb{Z}_{>0}, c_1 + \dots + c_t \leqslant r \right\},\,$$

where $\omega_i' = h_i^{-1} \omega_i$ with $a_0 = \sum_i h_i a_i$.

If \mathcal{B} is of type A_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B(r,C,I) = \{o + c_1\omega_{\ell_1} + \cdots + c_t\omega_{\ell_t} \mid c_i \in \mathbb{Z}_{>0}, c_1 + \cdots + c_t \leqslant r\},\$$

where ω_i are the fundamental coweights.

If \mathcal{B} is of type C_n and $I = \Delta \setminus \{\ell_1, \dots, \ell_t\}$:

$$B(r,C,I) = \Big\{ o + c_1 \omega'_{\ell_1} + \cdots + c_t \omega'_{\ell_t} \, \Big| \, c_i \in \mathbb{Z}_{>0}, c_1 + \cdots + c_t \leqslant r \Big\},\,$$

where $\omega_i' = h_i^{-1} \omega_i$ with $a_0 = \sum_i h_i a_i$.

If \mathcal{B} is of type B_n or D_n , then the description is complicated.

Vertices in B_n building

Vertices in D_n building

ASYMPTOTIC ESTIMATION

Theorem (G., 2022)

We have the following asymptotic dominant relation as $r \to \infty$:

$$SV(r) \times r^{\epsilon(n)} q^{\pi(n)r}$$

where $\epsilon(n)$ and $\pi(n)$ are in the following table.

ASYMPTOTIC ESTIMATION

Theorem (G., 2022)

We have the following asymptotic dominant relation as $r \to \infty$:

$$SV(r) \times r^{\epsilon(n)} q^{\pi(n)r}$$

where $\epsilon(n)$ and $\pi(n)$ are in the following table.

X _n	$\epsilon(n)$	$\pi(n)$
A_n (n is odd)	0	$(\frac{n+1}{2})^2$
A_n (n is even)	1	$\frac{n}{2}(\frac{n}{2}+1)$
$B_n (n = 3)$	0	5
$B_n (n \geqslant 4)$	0	$\frac{n^2}{2}$
$C_n (n \geqslant 2)$	0	$\frac{n(n+1)}{2}$
D_n $(n=4)$	2	6
$D_n (n \geqslant 5)$	1	$\frac{n(n-1)}{2}$

LEADING COEFFICIENTS

Theorem (G., 2022)

Leading coefficients have the following rationality properties:

1. If \mathcal{B} is of type A_n , C_n , B_3 , or D_4 , then we have

$$SV(r) \sim c(n) \cdot r^{\epsilon(n)} q^{\pi(n)r}$$

where c(n) is a positive number that is a rational function of q.

Theorem (G., 2022)

Leading coefficients have the following rationality properties:

1. If \mathcal{B} is of type A_n , C_n , B_3 , or D_4 , then we have

$$SV(r) \sim c(n) \cdot r^{\epsilon(n)} q^{\pi(n)r}$$
,

where c(n) is a positive number that is a rational function of q.

2. If \mathcal{B} is of type B_n ($n \ge 4$) or D_n ($n \ge 5$), then we have

$$SV(2r) \sim c_0(n) \cdot r^{\epsilon(n)} q^{2\pi(n)r},$$

$$SV(2r+1) \sim c_1(n) \cdot r^{\epsilon(n)} q^{2\pi(n)r},$$

where $c_0(n)$ and $c_1(n)$ are positive numbers that are rational functions of q.

• Exceptional types

REMARKS

Exceptional types

• Non-irreducible buildings

REMARKS

Exceptional types

• Non-irreducible buildings

• non-split types

REMARKS

Exceptional types

• Non-irreducible buildings

non-split types

concave functions and fixed-point sets (conjectured)

REFERENCES

Iwasawa, Kenkichi. 1973. On **Z**_l-extensions of algebraic number fields, Ann. of Math. (2) **98**, 246–326, DOI 10.2307/1970784. MR349627

Suh, Junecue. 2021. Stable lattices in p-adic representations i. regular reduction and schur algebra, Journal of Algebra **575**, 192–219.

Prasad, Gopal and Jiu-Kang Yu. 2002. On finite group actions on reductive groups and buildings, Invent. Math. **147**, no. 3, 545–560. MR1893005

Garrett, Paul. 1997. Buildings and classical groups, Chapman & Hall, London.

Moy, Allen and Gopal Prasad. 1996. *Jacquet functors and unrefined minimal K-types*, Comment. Math. Helv. **71**, no. 1, 98–121.

Yu, Jiu-Kang. 2015. Smooth models associated to concave functions in Bruhat-Tits theory, Autour des schémas en groupes, pp. 227–258.

Gao, Xu, Simplicial volumes in bruhat-tits buildings of split classical type (2022), arXiv 2210.03328