ATIVIDADE

Regra de Crammer para 3 incógnitas

ALUNO	IZAEL ALVES DA SILVA
PROFESSOR	JOÃO VAGNER PEREIRA DA SILVA
DISCIPLINA	PESQUISA OPERACIONAL

Pesquise sobre o calculo de determinante (regra de Crammer) para 3 incógnitas

O que é a Regra de Cramer?

A **Regra de Cramer** é um método para resolver sistemas lineares do tipo:

$$egin{cases} a_{11}x+a_{12}y+a_{13}z=b_1\ a_{21}x+a_{22}y+a_{23}z=b_2\ a_{31}x+a_{32}y+a_{33}z=b_3 \end{cases}$$

onde:

- a_{ij} são os coeficientes do sistema,
- b_i são os termos independentes,
- x, y, z são as incógnitas.

O método se aplica quando o determinante da matriz dos coeficientes (Δ) é **diferente de zero**.

Determinante de ordem 3

Para calcular o determinante de uma matriz 3×3 :

$$\Delta = egin{array}{cccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{array}$$

Existem dois métodos principais:

Regra de Sarrus (mais prática para matrizes 3×3):

1. Reescreve-se as duas primeiras colunas ao lado da matriz:

2. Faz-se a soma dos produtos das diagonais principais (১):

$$(a_{11}a_{22}a_{33}) + (a_{12}a_{23}a_{31}) + (a_{13}a_{21}a_{32})$$

3. Subtrai-se a soma dos produtos das diagonais secundárias (∠):

$$\left[\left(a_{13}a_{22}a_{31}\right)+\left(a_{11}a_{23}a_{32}\right)+\left(a_{12}a_{21}a_{33}\right)\right]$$

Assim,

$$\Delta = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Aplicando a Regra de Cramer

Depois de calcular o determinante principal Δ , definimos:

- Δ_x : substituímos a **1º coluna** de Δ pelos termos independentes (b_1,b_2,b_3) .
- Δ_y : substituímos a **2º coluna** por (b_1,b_2,b_3) .
- Δ_z : substituímos a **3**ª **coluna** por (b_1,b_2,b_3) .

Assim:

$$x=rac{\Delta_x}{\Lambda}, \quad y=rac{\Delta_y}{\Lambda}, \quad z=rac{\Delta_z}{\Lambda}$$

Exemplo prático

Resolver:

$$\left\{ egin{aligned} x + y + z &= 6 \ 2x - y + z &= 3 \ 3x + 2y - 2z &= 1 \end{aligned}
ight.$$

Matriz dos coeficientes:

$$A = egin{bmatrix} 1 & 1 & 1 \ 2 & -1 & 1 \ 3 & 2 & -2 \end{bmatrix}$$

Determinante principal:

$$\Delta = egin{array}{ccc|c} 1 & 1 & 1 \ 2 & -1 & 1 \ 3 & 2 & -2 \ \end{array} = 14$$

Determinantes auxiliares:

$$\Delta_x = egin{array}{ccc|c} 6 & 1 & 1 \ 3 & -1 & 1 \ 1 & 2 & -2 \ \end{array} = 14, \quad \Delta_y = 28, \quad \Delta_z = 42$$

Portanto:

$$x = 1, \ y = 2, \ z = 3$$

