Pitkä matematiikka 17.9.2008, ratkaisut:

1. a)
$$\frac{1}{2} - \frac{x}{3} > \frac{3}{4} \iff \frac{x}{3} < \frac{1}{2} - \frac{3}{4} \iff \frac{x}{3} < -\frac{1}{4} \iff x < -\frac{3}{4}$$
.

b)
$$\frac{1}{x} - \frac{1}{x^2} + \frac{1+x}{x^2} = \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x} = \frac{2}{x}$$
.

c) Koska $3x - 5y = 11 \iff y = \frac{3}{5}x - \frac{11}{5}$, on suoran kulmakerroin $\frac{3}{5}$. Pisteen (6,8) kautta kulkevan suoran yhtälö on $y - 8 = \frac{3}{5}(x - 6)$ eli 3x - 5y + 22 = 0.

2. a)
$$D \frac{1-2x^2}{1+x^2} = \frac{-4x(1+x^2)-2x(1-2x^2)}{(1+x^2)^2} = -\frac{6x}{(1+x^2)^2}.$$

- **b)** Funktiot ovat muotoa $\int (e^{3x} x) dx = \frac{1}{3}e^{3x} \frac{1}{2}x^2 + C$.
- c) Koska $5^n + 5^n + 5^n + 5^n + 5^n = 5 \cdot 5^n = 5^{n+1}$, saadaan yhtälö muotoon $5^{n+1} = 5^{25}$. Se toteutuu, kun n+1=25. Yhtälö pätee siis arvolla n=24.

3. a)
$$\int_0^{\pi} (1+\sin x)dx = \int_0^{\pi} x - \cos x = \pi - \cos \pi - 0 + \cos 0 = \pi + 2.$$

b)
$$4x^3 - 5x^2 = 2x - 3x^3 \iff x(7x^2 - 5x - 2) = 0 \iff x = 0 \text{ tai } 7x^2 - 5x - 2 = 0.$$
 Jälkimmäinen ehto pätee, kun $x = \frac{5 \pm \sqrt{25 + 56}}{14} = \frac{5 \pm 9}{14}$ eli kun $x = 1 \text{ tai } x = -\frac{2}{7}.$

Vastaus: a) $\pi + 2$, b) $x = -\frac{2}{7} \tan x = 0 \tan x = 1$.

4. Puu ja sen latvaosa ovat yhdenmuotoisia kartioita. Latvaosan korkeudelle h m pätee $\frac{h}{14} = \frac{0,10}{0,35}$, josta saadaan h=4. Tukin keskipituudeksi tulee 14 m – 4 m = 10 m. Tukin tilavuus on $V=\frac{1}{3}\pi\cdot(\frac{0,35}{2})^2\cdot 14-\frac{1}{3}\pi\cdot(\frac{0,10}{2})^2\cdot 4\approx 0,438514 \text{ (m}^3)$. Palstalta kaadettujen tukkipuiden määrä oli $\frac{200}{V}\approx 456,086$.

Vastaus: Tukin keskimääräinen pituus oli 10 m. Palstalta kaadettiin 456 puuta.

5. Kolmiot ovat tasakylkisiä kyljen pituuden ollessa 5. Pythagoran lauseesta saadaan ensimmäisen kolmion korkeudeksi $h=\sqrt{5^2-2^2}=\sqrt{21}$. Kummankin kolmion pintaala on $\frac{1}{2}\cdot 4\cdot \sqrt{21}=2\sqrt{21}$. Jos toisen kolmion kannan pituus on 2x ja korkeus y, on $xy=2\sqrt{21}$ ja $x^2+y^2=5^2$. Kun edellisestä saatu $y=\frac{2\sqrt{21}}{x}$ sijoitetaan jälkimmäiseen, saadaan yhtälö $x^4-25x^2+84=0$. Tämän mukaan $x^2=\frac{25\pm\sqrt{25^2-4\cdot84}}{2}=\frac{25\pm17}{2}$ eli $x^2=4$ tai $x^2=21$. Edellisestä saatu 2x=4 on annetun kannan pituus. Jälkimmäisestä saadaan toisen kolmion kannan pituudeksi $2x=2\sqrt{21}\approx 9,165$.

Vastaus: Kolmannen sivun pituus on $2\sqrt{21}$.

6. Olkoon suorakulmion kärkipisteet akseleilla $(x_0,0)$ ja $(0,y_0)$. Koska kärkipiste (x_0,y_0) on paraabelilla $y=x^2$, on $y_0=x_0^2$. Suorakulmion ala $A=x_0y_0=x_0^3$. Paraabelin alapuolisen osan ala $A_1=\int_0^{x_0}x^2dx=\int_0^{x_0}\frac{1}{3}x^3=\frac{1}{3}x_0^3$. Paraabelin yläpuolisen osan ala on $A_2=A-A_1=\frac{2}{3}x_0^3$. Tämän suhde alapuolella olevan osan alaan on $\frac{A_2}{A_1}=\frac{2}{1}$. *Vastaus:* Suhteessa 2:1.

- 7. Yhtälö on määritelty, kun $2-x\geq 0$ ja $x+2\geq 0$ eli kun $-2\leq x\leq 2$. Korotetaan yhtälö puolittain toiseen potenssiin. Saadaan $2-x=(x+2)^2$ eli $x^2+5x+2=0$. Tämän yhtälön ratkaisu on $x=\frac{-5\pm\sqrt{25-8}}{2}=\frac{-5\pm\sqrt{17}}{2}$ eli $x=\frac{-5+\sqrt{17}}{2}\approx -0,438$ tai $x=\frac{-5-\sqrt{17}}{2}\approx -4,562$. Näistä vain edellinen kuuluu yhtälön määrittelyalueeseen. Vastaus: $x=\frac{-5+\sqrt{17}}{2}$.
- **8.** Eri vaihtoehtojen todennäköisyydet ovat $P(\text{valkoinen}, \text{valkoinen}) = \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{10},$ $P(\text{valkoinen}, \text{musta}) = \frac{2}{5} \cdot \frac{3}{4} + \frac{3}{5} \cdot \frac{2}{4} = \frac{6}{10},$ $P(\text{musta}, \text{musta}) = \frac{3}{5} \cdot \frac{2}{4} = \frac{3}{10}.$ Näin ollen $P(X = 0) = \frac{1}{10},$ $P(X = 1) = \frac{6}{10},$ $P(X = 2) = \frac{3}{10}.$ Odotusarvo $E(X) = \frac{1}{10} \cdot 0 + \frac{6}{10} \cdot 1 + \frac{3}{10} \cdot 2 = \frac{12}{10} = 1,2.$
- 9. Jos α on jäljelle jääneen sektorin asteluku, merkitään $t=\frac{\alpha}{360}$, jolloin $0 \le t \le 1$. Jos kartion korkeus on h ja pohjaympyrän säde R, on $2\pi R = 2\pi rt$, joten R = tr. Kartion korkeus $h = \sqrt{r^2 R^2} = r\sqrt{1 t^2}$. Kartion tilavuus $V = \frac{1}{3}\pi R^2 h = \frac{1}{3}\pi r^3 t^2 \sqrt{1 t^2} = \frac{1}{3}\pi r^3 \sqrt{t^4 t^6}$. Etsitty t:n arvo on se, jolla juurrettava $f(t) = t^4 t^6$ saa suurimman arvonsa. Funktion f derivaatta $f'(t) = 4t^3 6t^5 = 2t^3(2 3t^2)$ häviää, kun t = 0 tai $2 3t^2 = 0$ eli arvoilla 0, $t_1 = -\sqrt{\frac{2}{3}}$ ja $t_2 = \sqrt{\frac{2}{3}}$. Näistä t_1 ei kuulu tarkasteluvälille. Koska f(0) = f(1) = 0 ja $f(t_2) = \frac{4}{27}$, antaa t_2 funktion f ja samalla tilavuuden V suurimman arvon. Poisleikatun sektorin keskuskulma on $360(1 t_2) \approx 66,061231$. $Vastaus: 66^\circ$.
- 10. Olkoon $f(x) = (1-x)^8 + 8x 1$. On osoitettava, että jokaisella $x \in \mathbb{R}$ on $f(x) \ge 0$. Funktion derivaatta on $f'(x) = -8(1-x)^7 + 8 = 8(1-(1-x)^7)$. Nyt $f'(x) = 0 \iff (1-x)^7 = 1 \iff 1-x = 1 \iff x = 0$. Lisäksi f'(x) > 0, kun x > 0 ja f'(x) < 0, kun x < 0. Näin ollen f saa pienimmän arvonsa kohdassa x = 0. Koska $f(0) = 1^8 1 = 0$, on väite todistettu.
- **11.** Kolmion OAB sivun AB pituuden neliö on $|\overline{a} \overline{b}|^2 = (\overline{a} \overline{b}) \cdot (\overline{a} \overline{b}) = \overline{a} \cdot \overline{a} 2\overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{b}$. Oletuksen mukaan $\overline{a} \cdot \overline{a} = 2\overline{a} \cdot \overline{b}$. Näin ollen $|\overline{a} \overline{b}|^2 = \overline{b} \cdot \overline{b} = |\overline{b}|^2$. Tämän mukaan sivut AB ja OB ovat yhtä pitkät, joten kolmio OAB on tasakylkinen.
- 12. Funktion nimittäjä x+2=0, kun x=-2. Kun x=-2, osoittaja $3x^3-x^2-12x+a=-4+a$. Funktiolla voi olla raja-arvo kohdassa x=-2 vain, jos -4+a=0 eli vain jos a=4. Edelleen $3x^3-x^2-12x+4=(x+2)(3x^2-7x+2)$. Näin ollen arvolla a=4 funktion lauseke sievenee muotoon $f(x)=3x^2-7x+2$. Tästä nähdään, että on olemassa $\lim_{x\to -2} f(x)=3\cdot (-2)^2-7\cdot (-2)+2=28$. Vastaus: Funktiolla on raja-arvo kohdassa x=-2, kun a=4. Raja-arvo on 28.
- *vastaus:* Funktiolia on raja-arvo kondassa x = -2, kun a = 4. Raja-arvo on 28.
- **13.** Kun $f(x) = x^3$, keskeisdifferenssi on $\frac{(x+h)^3 (x-h)^3}{2h} = \frac{6x^2h + 2h^3}{2h} = 3x^2 + h^2$.

Tarkastellaan sitten keskeisdifferenssin lauseketta derivoituvalle funktiolle f.

$$\frac{f(x+h) - f(x-h)}{2h} = \frac{f(x+h) - f(x) + f(x) - f(x-h)}{2h} = \frac{1}{2} \left[\frac{f(x+h) - f(x)}{h} + \frac{f(x-h) - f(x)}{-h} \right] \longrightarrow_{h \to 0} \frac{1}{2} [f'(x) + f'(x)] = f'(x).$$

- *14. Reaaliluvun x itseisarvo $|x| = \begin{cases} x, & \text{kun } x \ge 0, \\ -x, & \text{kun } x < 0 \end{cases}$.
 - a) Jos $x \ge 0$, on $x \le x = |x|$. Jos x < 0, on -x > 0 ja x < -x = |x|.
 - **b)** Kohdan a) perusteella $x \leq |x|$ ja $y \leq |y|$. Näin ollen myös $x + y \leq |x| + |y|$.
 - c) Määritelmän ja kohdan a) perusteella $-|x| \le x \le |x|$ ja $-|y| \le y \le |y|$. Siis $-(|x|+|y|) \le x+y \le |x|+|y|$ Jos $x+y \ge 0$, on $|x+y|=x+y \le |x|+|y|$. Jos x+y<0, on $|x+y|=-(x+y) \le |x|+|y|$ edellisen epäyhtälön perusteella. Siis aina $|x+y| \le |x|+|y|$.
 - **d)** Jos $|x| |y| \ge 0$, niin $||x| |y|| = |x| |y| \le |x| + |y|$. Jos |x| |y| < 0, niin $||x| |y|| = -|x| + |y| \le |x| + |y|$. Siis aina $||x| |y|| \le |x| + |y|$.