- 1.3 Determine whether or not each of the following signals is periodic. In case a signal is periodic, specify its fundamental period.
 - (a) $x_a(t) = 3\cos(5t + \pi/6)$
 - **(b)** $x(n) = 3\cos(5n + \pi/6)$
 - (c) $x(n) = 2 \exp[j(n/6 \pi)]$
 - (d) $x(n) = \cos(n/8)\cos(\pi n/8)$
 - (e) $x(n) = \cos(\pi n/2) \sin(\pi n/8) + 3\cos(\pi n/4 + \pi/3)$
- 1.4 (a) Show that the fundamental period N_p of the signals

$$s_k(n) = e^{j2\pi kn/N}, \qquad k = 0, 1, 2, \dots$$

is given by $N_p = N/\text{GCD}(k, N)$, where GCD is the greatest common divisor of k and N.

- **(b)** What is the fundamental period of this set for N = 7?
- (c) What is it for N = 16?
- 1.5 Consider the following analog sinusoidal signal:

$$x_a(t) = 3\sin(100\pi t)$$

- (a) Sketch the signal $x_a(t)$ for $0 \le t \le 30$ ms.
- **(b)** The signal $x_a(t)$ is sampled with a sampling rate $F_s = 300$ samples/s. Determine the frequency of the discrete-time signal $x(n) = x_a(nT)$, $T = 1/F_s$, and show that it is periodic.
- (c) Compute the sample values in one period of x(n). Sketch x(n) on the same diagram with $x_a(t)$. What is the period of the discrete-time signal in milliseconds?
- (d) Can you find a sampling rate F_s such that the signal x(n) reaches its peak value of 3? What is the minimum F_s suitable for this task?
- 1.6 A continuous-time sinusoid $x_a(t)$ with fundamental period $T_p = 1/F_0$ is sampled at a rate $F_s = 1/T$ to produce a discrete-time sinusoid $x(n) = x_a(nT)$.
 - (a) Show that x(n) is periodic if $T/T_p = k/N$ (i.e., T/T_p is a rational number).
 - **(b)** If x(n) is periodic, what is its fundamental period T_p in seconds?
 - (c) Explain the statement: x(n) is periodic if its fundamental period T_p , in seconds, is equal to an integer number of periods of $x_a(t)$.
- 1.7 An analog signal contains frequencies up to 10 kHz.
 - (a) What range of sampling frequencies allows exact reconstruction of this signal from its samples?
 - (b) Suppose that we sample this signal with a sampling frequency $F_s = 8 \text{ kHz}$. Examine what happens to the frequency $F_1 = 5 \text{ kHz}$.
 - (c) Repeat part (b) for a frequency $F_2 = 9$ kHz.

- 1.8 An analog electrocardiogram (ECG) signal contains useful frequencies up to 100 Hz.
 - (a) What is the Nyquist rate for this signal?
 - **(b)** Suppose that we sample this signal at a rate of 250 samples/s. What is the highest frequency that can be represented uniquely at this sampling rate?
- 1.9 An analog signal $x_a(t) = \sin(480\pi t) + 3\sin(720\pi t)$ is sampled 600 times per second.
 - (a) Determine the Nyquist sampling rate for $x_a(t)$.
 - (b) Determine the folding frequency.
 - (c) What are the frequencies, in radians, in the resulting discrete time signal x(n)?
 - (d) If x(n) is passed through an ideal D/A converter, what is the reconstructed signal $y_a(t)$?
- 1.10 A digital communication link carries binary-coded words representing samples of an input signal

$$x_a(t) = 3\cos 600\pi t + 2\cos 1800\pi t$$

The link is operated at 10,000 bits/s and each input sample is quantized into 1024 different voltage levels.

- (a) What are the sampling frequency and the folding frequency?
- **(b)** What is the Nyquist rate for the signal $x_a(t)$?
- (c) What are the frequencies in the resulting discrete-time signal x(n)?
- (d) What is the resolution Δ ?
- Consider the simple signal processing system shown in Fig. P1.11. The sampling periods of the A/D and D/A converters are T = 5 ms and T' = 1 ms, respectively. Determine the output $y_a(t)$ of the system, if the input is

$$x_a(t) = 3\cos 100\pi t + 2\sin 250\pi t \qquad (t \text{ in seconds})$$

The postfilter removes any frequency component above $F_s/2$.

Figure P1.11

- 1.12 (a) Derive the expression for the discrete-time signal x(n) in Example 1.4.2 using the periodicity properties of sinusoidal functions.
 - **(b)** What is the analog signal we can obtain from x(n) if in the reconstruction process we assume that $F_s = 10 \text{ kHz}$?
- 1.13 The discrete-time signal $x(n) = 6.35 \cos(\pi/10)n$ is quantized with a resolution (a) $\Delta = 0.1$ or (b) $\Delta = 0.02$. How many bits are required in the A/D converter in each case?