

Critical Design Review

Honda Modular Packaging Capstone ME4901.02 Spring 2022

Cade Haiby, Jacob Hoffman, Noah Kidwell, Junnan Wang

Background

- Honda currently uses corrugated plastic dunnage to protect parts during transport to, from, and within their facilities for assembly
- This dunnage does not have a long lifespan and is expensive to produce
- The implementation of a reusable, reconfigurable, and modular system may help reduce waste and cost

"C-Tote"

Blue corrugated plastic dunnage

Background

- The current design requires new dunnage to be designed and manufactured for each component
- The new corrugated plastic dunnage requires an expensive prototyping fee charged by the manufacturer
- A modular packaging system will reduce dunnage manufacturing costs via improved lifespan and adjustability to accommodate components of different sizes and shapes

Purpose

- Develop a modular packing system that is adjustable in size
- The system prevents contained components from sustaining damage during transportation
- Less waste will be produced from custom corrugated plastic dunnage
- The system will be able to accommodate parts of multiple sizes, reducing the need for storage of custom dunnage
- The system will collapse when not in use, reducing space needed for dunnage storage

Approach

- Honda desires a dunnage pack that is both reusable and reconfigurable to contain parts of different sizes
- Team began by analyzing geometry, material properties, and mechanisms possible for creating a modular cell pack using corrugated plastic
- Dividers and layered dunnage packs were initially thought of being the module that can be adjusted or swapped out

Objectives & Metrics

Objective	Metric	Values: Excellent	Good	Okay	Poor / Fail
Increase minimum usage period	Years in service the product can withstand	5 years	3-4 years	1-2 years	<1 year
Increase flexibility of packaging	Number of possible configurations	Infinite number of configurations	50+ discrete configurations	25-49 discrete configurations	<25 configurations
Minimize space dunnage takes up in collapsed form	Volume	< 1 ft^3	1-2 ft^3	2-3 ft^3	> 3 ft^3
Minimize number of tools required to adjust compartments	Number of tools	0	1	1	2

Scope

In Scope:

- Develop a concept design of a modular packaging system
- Complete detailed design and proof of concept prototype of the modular packaging system
- Dynamic Testing
- Shaker Table Testing

Out of Scope:

Professionally manufactured dunnage prototype (Will be completed by Honda's dunnage manufacturer,
 PrimeX for future mass production)

Deliverables:

- Prototype modular packaging product
- Testing Reports
- Prototype Drawing
- Prototype BOM
- Prototype User Manual

Functionality and Requirements

ID ·	STATUS	IMPORTANCE	TYPE	REQUIREMENT DISCRIPTION	UNIT OF MEASURE	MARGINAL (TARGET) VALUE	IDEAL (OJBECTIVE) VALUE
S3	ON TRACK	HIGH	FUNCTIONAL / PERFORMANCE	The user be able to adjust comaprtment sizes	NA	NA	N/A
S 5	ON TRACK	MED		The user should be able to store multiple layers of components inside the container	Layers	1	3
S6	ON TRACK	HIGH	FUNCTIONAL / PERFORMANCE	The user should not be able to remove internal compartments/dividers	NA	N/A	N/A
S14	ON TRACK	MED	FUNCTIONAL / PER	User should be able to collapse dunnage when not in use	N/A	N/A	N/A

Project Management

Budget

BUDGET (BY I	PHASE) PROJECT NAME: Honda Modular Pac	kaging COHORT: AU2021					
LV Approval Status	Category and Item	Item Notes	Quantity	Budget	Actual	Receipt #	Purchaser
1	PROBLEM DEFINTION		NA	NA	NA	NA	NA
	Travel- Tour at Honda MAP		1	\$50.00	\$48.00		Jacob
	↑ Do Not Delete - Click this line for insert Ab	ove ↑					
1	CONCEPT DEVELOPMENT		NA	NA	NA	NA	NA
	Corrugated plastic for material selection		1	\$25.00	\$22.00		Cade
	↑ Do Not Delete - Click this line for insert Ab	ove ↑					
1	PRELIMINARY DESIGN		NA	NA	NA	NA	NA
	3D Printer filament for divider clips		1	\$20.00	\$19.00		Jacob
	↑ Do Not Delete - Click this line for insert Ab	ove ↑					
1	FABRICATION, ASSEMBLY, AND INTEGRATION		NA	NA	NA	NA	NA
	First ABS purchase (Iterations 1 and 2)		1	\$200.00	\$138.00		Noah
	Second ABS purchase (Iterations 3 and 4)		1	\$200.00	\$143.00		Noah
	↑ Do Not Delete - Click this line for insert Ab	ove ↑					
1	FULL SYSTEM TESTING AND EVALATION		NA	NA	NA	NA	NA
	Simulated parts for shaker table/dynamic testing		1	\$20.00	\$19.00		Jacob
	Paint marker for number/lettering dividers		1	\$7.00	\$6.00		Noah
	↑ Do Not Delete - Click this line for insert Ab	ove ↑					
1	PROJECT CLOSEOUT		NA	NA	NA	NA	NA
	Travel- Closeout meeting at Honda MAP		1	\$50.00	\$48.00		Jacob
Total				\$572.00	\$443.00		

Main Risks

RIS	KTABLE PROJE	ECT NAME: Honda Modular Packaging COHORT: AU	J2021			
Risk ID	Area / Subsystem	Description of Risk	Impact (1-5)	Likelihood (1-5)	Rating	Status / Mitigation
3	Failure	Material mechanically fails due to stress (normal or shear)	5	1	5	10-20-2021: Analysis will be performed to make sure that the materials used can withstand the stresses to which they are exposed 11-29-2021: Solid plastic such as PVC or HDPE will be used instead of corrugated plastic (Likelihood: 5->3) 2-11-2022: Deflection analysis and FEA were performed to determine how much how much stress and deflection the dividers will experience (Likelihood: 3->2) 3-21-2022: Retaining clips have quickly become the largest area of concern for mechanical failure. Multiple have broken in the same place after use. (Likelihood: 2->4) 4-6-2022: Problem with mechanical failure in retaining clips has been resolved via thickening and the addition or a radius. No other areas have shown signs of mechanical failure. (Likelihood: 4->1)
7	Compartments	Compartment size will be difficult to adjust	5	1	5	10-20-2021: Product will be designed to be adjustable without tools Compartments will be adjusted using a pin (Likelihood: 3->2) 1-20-2022: Dunnage will be reconfigurable and held in place with clips (Likelihood: 2->1) 3-25-2022: Dunnage will be reconfigurable but held in place by hooks and slots.
8	Weight	Product is too heavy to be practical according to Honda rules and standards	5	1	5	10-20-2021: Lightweight materials will be used where possible 11-29-1021: Plastic thickness will be minimized in order to reduce weight (Likelihood: 53) 2-7-2022: Material analysis performed, including 2D density calculations (Likelihood: 5>2) 3-10-2022: The dunnage has been confirmed to be light enough to remain below the weight limit with multiple layers (Likelihood: 2->1)
9	Lifetime	Product lasts less than 5 years	3	4	12	10-20-2021: Durable materials will be used 11-29-2021: Hard plastic will be used as opposed to corrugated plastic (Likelihood: 5->4)

Schedule

Date	Goal(s)	Description
3/3/2022	Laser cut in-house prototype	Fabrication of the components of modular packaging prototype
3/4/2022	Design review with PrimeX	Reviewing the design with PrimeX to identify the potential manufacturing problems of the design
3/9/2022	Complete fabrication of first prototype	Original prototype was complete and assembled
3/14/2022	Second iteration of prototype manufactured	An iteration similar to the original prototype, but with a different joining method used on the border corners was complete
3/25/2022	Third iteration of prototype manufactured	A third iteration of the team's prototype that does not utilize any divider clips was manufactured
4/11/2022	Fourth iteration of prototype manufactured	A fourth iteration corrected a bad dimension on one of the dividers and introduced a new retaining clip design
4/12/2022	Shaker table test date	Original date planned for shaker table testing
4/13/2022	Functional Demonstration	Final product demonstration
4/18/2022	Dynamic testing performed	Substitute test since shaker table test was not possible

Design Decisions

Concept Generation

Individual Brainstorming

- With the requirements in mind, individual ideas and concepts were evaluated and initially combined to best suit functionality goals
- The most pressing requirements were modularity, ability to store components safely, and weight reduction

Sharing and Evaluating Ideas

- Morph chart was used to organize functionality and solutions. Subsystems were evaluated utilizing pairwise comparison chart.
- The team worked with Honda engineering to determine strategies for accomplishing functionality

Designing for Manufacturability

- The dunnage, when used in industry, is mass produced
- Ease of manufacturing, component uniformity, and ultimately cost reduction

Concept Generation

Individual Brainstorming

Initial Concept

- This design consisted of slotted dividers made of rigid plastic
- The dividers mesh with each other to form a matrix that can be adjusted to many discrete sizes
- The dividers along one axis are held in place by clips that fit into notches on the edge of the dunnage and travels in a slot
- Difficult to manipulate and adjust the dividers- too many complex interactions with tight tolerances to maintain rigidity
- Reference Test 2 detailed in following slides for additional reason to change

Initial Concept

- Dividers can be rotated and slid along a track to change their position and allow access to lower layers in the tote
- Takes too much time and struggle to access lower layers

Design Changes

- Lap joint at dunnage wall corner intersection replaced by hook-in-slot
 - 1. Maintains rigidity of outer wall better than glued lap joint
 - 2. Does not require glue or other fastener, reducing number of parts required within the dunnage
- Retainer clip, used in securing dividers in place, was updated multiple times as failure at base of clip was very common
 - 1. Clip each end tapered to further reduce stress at base
 - 2. Clip at each end lengthened to allow for larger deflection at tip, reducing stress at base to remove from pack
- Divider clip dimensions increased to allow for 3D printer error tolerance
 - 1. Increases ease of use allowing for clip to slide along track better
 - 2. Allows for better contact between clip portion and the connected divider
- Rotating divider clip eliminated and replaced with hook-in-slot system to maintain rigidity of dividers
 - 1. Manipulation of rotating divider system deemed too difficult and meticulous
 - 2. Hook-in-slot allows for dunnage to be reconfigured, but not on the fly on the assembly line without removing dividers from pack
 - 3. This change led to the development of the final prototype

Design Documentation

Assembly Drawing

- Single Layer Assembly Drawing
 - Overall Dimensions
 - All Layer Components
- Excluding
 - C Tote
 - Foam Shims
 - Layer Divider

Assembly Exploded View

Notable Individual Part Drawing

- Important Aspects of Design
 - Well fitted slot sizes for ease of assembly
 - Retaining clip slot allows for retention in layer
 - Incorporates allowance of CO2 laser overburn and kerf
 - Hook designed to fit easily into the slots of mating components

Notable Individual Part Drawing

- Important Aspects of Design
 - Securely clips to 3/32 ABS
 - Ensures fit in slots
 - Tapered clip to allow for easy bending
 - Round edges to reduce stress concentrations

Purchased Parts – Raw Materials

- 4mm corrugated plastic sign board for separating cell pack layers (1)
- 3/32" ABS extruded sheet stock for laser cutting the dividers and retaining clip (2)
- Expanded polyethylene foam used for shimming cell pack within tote

(1)

Bill of Materials per Cell Pack Layer

Part Name	Material	Quantity
Divider X	3/32" ABS	1-6
Divider Y	3/32" ABS	1-6
Border X	3/32" ABS	2
Border Y	3/32" ABS	2
Border Z	4 mm Corrugated Plastic	1
Retaining Clip	3/32" ABS	2
Foam Shims	Polyethylene Foam	12

Detailed Engineering Analysis

Engineering Analysis

- The majority of the analysis performed by the team on this project pertained to material selection
- This analysis consisted of three main sections:
 - 1. Weight/planar density analysis
 - 2. Deflection analysis
 - 3. FEA analysis of dividers

Weight Analysis

- Several thicknesses and materials were considered for the dividers that provide most of the dunnage's function
- Dimensions and weights of available materials were measured in order to determine the planar density of those plastics
- Main purpose was to work towards the objective of reducing weight

Туре	Material	Length (ft)	Width (ft)	Thickness (ft)	Weight (lb)	Density (lb/ft^3)	Area Density (lb/ft^2)
1/16 ABS	ABS	2	1	0.005208333	0.616	59.136	0.308
3/32 ABS	ABS	2	1	0.0078125	0.979	61.776	0.4895
1/8 ABS	ABS	2	1	0.010416667	1.342	64.416	0.671
1/16 Acrylic	Acrylic	2	1	0.005208333	0.736	70.656	0.368
5/64 Acrylic	Acrylic	2	1	0.006510417	0.99	76.032	0.495
3/32 Acrylic	Acrylic	2	1	0.0078125	1.124	71.936	0.562
7/64 Acrylic	Acrylic	2	1	0.009114583	1.506	82.61485714	0.753
1/8 Acrylic	Acrylic	2	1	0.010416667	1.592	76.416	0.796
4 mm Corrugated Plastic	coroplast	2	1.5	4 mm	0.444		0.148
bubble x	bub-x	1	1	2.6 mm	0.156		0.156

Deflection Analysis

 The dividers were modeled as a beam between two hinges with a single load in the center

• The magnitude of the load was modeled as two different values as can be seen

below

 Performed in order to reduce weight, while still meeting the requirement of protecting the components from sustaining any damage

Material	Elastic Modulus (psi)	Thickness (in)	Moment of Inertia (in^4)	Braking Force Deflection (in)	Centripetal Force Deflection (in)
1/16" ABS	1.60E+05	0.06250	2.54E-04	0.9258	2.6684
3/32" ABS	1.60E+05	0.09375	8.58E-04	0.2743	0.7906
1/8" ABS	1.60E+05	0.12500	2.03E-03	0.1157	0.3336
1/16" Acrylic	4.00E+05	0.06250	2.54E-04	0.3703	1.0674
3/32" Acrylic	4.00E+05	0.09375	8.58E-04	0.1097	0.3163
1/8" Acrylic	4.00E+05	0.12500	2.03E-03	0.0463	0.1334

Starting Speed (mph):	65
Stopping Distance (ft):	525
Turn Speed (mph):	15
Turn Radius (ft):	19.4
Part Weight (lb):	3.444
Active Divider Length	
(in):	12.5

Deceleration (ft/s^2):	8.65566531
Braking Force (lb):	0.925779855
Centripetal Force	
(lb):	2.668401034
Part Mass (lbm):	0.106956522

FEA Analysis

- The team also conducted the finite element analysis on the design using Ansys.
- The boundary condition for the analysis based on the worst condition the design would experience: a block weighted 5 lb. hit the center of the wall of the packaging system with a configuration of 4 cells during a sudden brake on a truck. The truck decelerates from 65mph to 0 mph in 525ft.

FEA Analysis on Divider

Von-Mises Stress: 3290psi

Deflection: 0.4288in

FEA Analysis on Clips

Von-Mises 2757 PSI, Safety Factor 1.45

Manufacturing Plan

Manufacturing Plan for Laser Cut Component Fabrication

- Material: 3/32 ABS Sheet Stock
- Machines: In-house Epilog 75 W CO2 Laser

Manufacturing Plan for Razor Cut Component Fabrication

Material: 4mm Corrugated Plastic

Machines: Foot Shear

Scoring Bends: Razor Blade

Potential Risks and Mitigations For Manufacturing Plan

Potential Risks	Mitigation Strategy
Interstate ABS sheet stock for production cuts differently from Primex ABS used in mockup test phase	Assess cut quality before manufacturing components and adjust dimensions accordingly
Retaining clip breaking when being forced on	Modify the retaining clip to be more durable and clearly define any limitations in the use manual
Semi-permanent layer dividers made from corrugated plastic being hard to install or work with	Have precut/scored corrugated plastic before gluing and velcroing in place

Manufacturing Plan Schedule

Component Fabrication Process	Completion Date
Laser Cut Dividers	4/14/22
Razor Cut Corrugated Plastic	4/17/22
Razor Cut Foam Shims	4/17/22

Assembly/Integration Process	Completion Date
Layer System	4/19/22
Final Assembly in Tote	4/19/22

Testing and Evaluation

Test #1 – Retaining Clip Strength Test

- The retaining clips will experience vertical loading while performing their function of maintaining divider position
- To ensure that the clips do not come off during use, the amount of force that one clip can withstand was measured
- A test-cut clip was tied to a bolt on one end and a fish scale on the other
- The scale was pulled until the clip came unattached
- Goal was for the clips to hold 7.5 lb
- Average force was 11.64 lb

Test #2 – Divider Clip Strength Test

• This test was performed in a similar way to the first test, but in 3 different load cases

 Load case 2 met the requirement barely- noticed this was a common issue when manipulating dunnage in the initial concept prototype, clip would pop off if under a load like this case.

Load Case 1-Required: 5 lb Actual: 16.5 lb

Load Case 2-Required: 3 lb Actual: 4.4 lb

Load Case 3-Required: 10 lb Actual: 18.5 lb

Test Plan #3 – Shaker Table Test

- Not yet performed
- Requested by Honda at the beginning of the project
- Main purpose is to validate against requirement S1 that the user should be able to transport components without them sustaining damage
- Representative parts will be placed inside the dunnage and the system placed on a shaker table
- Honda cannot give exact criteria for testing, but recommends referencing ASTM and ISTA testing standards for packaging (ASTM-D999)
- Through research on ASTM-D999 the team found that 0.25 g from 2-100 Hz were appropriate
- Test cannot be completed due to time constraints and oversight of risk mitigation

Test #4 – Dynamic Testing

- Test suggested by Honda
- Representative parts are placed within the dunnage in the C-tote
- C tote placed in truck of vehicle
- Vehicle transports packaging and subjects packaging to varying accelerations
- Test will highlight any sensitive weak points in packaging but does not test for long term fatigue failure
- Accelerations experienced will me measured and logged with an accelerometer
- Also validates against requirement S1

Test #4 – Dynamic Testing – Longitudinal Acceleration

Test #4 – Dynamic Testing – Lateral Acceleration

Test #4 – Dynamic Testing – Vertical Acceleration

Test #4 – Dynamic Testing Results

Before After

Dynamic testing yielded no visible damage to the dunnage or the parts. Parts contained in dunnage were significantly displaced within each cell, but all remained within their designated cell. Desired results were achieved except for significant part displacement

46

Verification and Validation

- Tests 1 and 2 were performed to evaluate the ability to create a clip from ABS that can effectively attach to a sheet of ABS. Important to project development, but do not verify/validate any specific requirement.
- Tests 3 and 4 both served the same purpose in validating that the main stakeholder requirement was met
- Once the final iteration of the prototype was complete, each requirement was verified/validated one at a time and each objective's success was measured according to its metric

Verification and Validation

- · For most requirements, it was a simple yes or no
- There were only two stakeholder requirements and two system requirements that required further evaluation:

L1	S4	ON TRACK	HIGH	LOGISTICAL	F1	Compartments are collapsable and container fits well with other containers	ft^3	1	2	TEST
U1	S2	ON TRACK	HIGH	USABILITY		Container weight with parts	lbs	30	30	TEST
S4	ON TRACK	HIGH L	.OGISTICAL	The user should be	The user should be able to easily store the containers				1	TEST
S2	ON TRACK	HIGH S	SAFETY	The user should be	ontainer without injury	lb	30	30	TEST	

- Collapsed Volume: 0.214 ft^3
- Single Layer Dunnage Weight without Tote: 1.91 lb

Conclusions and Recommendations

Conclusions

 Requirements were able to be mostly or wholly met, highlighting a few key requirements below

The modular dunnage can be:

- 1. Theoretically reused for an extended period of time
- 2. Reconfigured to accept multiple shapes and size
- 3. Collapsed to allow for efficient storage with a 96% reduction in volume

The modular dunnage can be improved by:

- 1. Increasing number of configurations
- 2. Allowing for long vertically oriented parts in tote
- 3. Redesign slot indexing to improve ease of assembly
- 4. Modify the retaining clip to latch more securely and have reduced deflection

Key Lessons Learned

- Multiple specific stakeholder requirements can make determining system requirements and design decisions difficult
- Testing of whole systems should be planned well in advance
- Justifying design decisions and changes are important to understand improvements over previous designs

Overall Performance

- The team is mostly satisfied with the outcomes of the project
- Most requirements were fully met, but the design can be greatly improved upon and refined to better suit the purpose of the modular dunnage
- The team is satisfied with design effort and decisions
- By maintaining a focus on simplicity of manufacturing, the team was able to make educated critical design decisions to develop a system that is very inexpensive to produce
- The team could have improved by broadening manufacturing methods as PrimeX does not need to be only dunnage manufacturer

Recommendations for Future Work

- 1. Explore the use of injection molded parts or different material dunnage
- Allows for more complex shapes of dunnage, allowing for new methods of moving and securing dividers
- Different material could yield better fatigue life properties for critically components like the retaining clip
- 2. Use of temporary fastening methods in corrugated plastic dunnage
- Corrugated plastic is being fastened to one side of the dunnage to be a semi-permanent layer divider
- Could investigate sonic welding the permanent side and varying the attachment side to be velcro
- 3. Improve retaining clip
- Make retaining clip out of a different material that handles bending and fatigue loading better than ABS
- The ABS retaining clips had many failures during initial development due to the fatigue loading and large deflection of being clipped over another sheet
- Possibly even change how the clip attaches to the borders to improve logevity

Questions

Appendices

Appendix A: Objectives & Metrics

Objective	Metric	Values: Excellent	Good	Okay	Poor / Fail
Increase minimum usage period	Years in service the product can withstand	5 years	3-4 years	1-2 years	<1 year
Maximize flexibility of packaging	Number of possible configurations	Infinite number of configurations	50+ discrete configurations	25-49 discrete configurations	<25 configuration s
Minimize space dunnage takes up in collapsed form	Volume	< 1 ft^3	1-2 ft^3	2-3 ft^3	> 3 ft^3
Minimize number of tools required to adjust compartments	Number of tools	0	1	1	2

Appendix B: Stakeholders Requirements Table

#REF!								
ID •		IMPORTANCE	TYPE	REQUIREMENT DISCRIPTION	UNIT OF MEASURE	MARGINAL (TARGET) VALUE	IDEAL (OJBECTIVE) VALUE	METHOLD OF VALIDATION
S1	ON TRACK	HIGH	SAFETY	The user should be able to transport components without them sustaining damage	N/A	N/A	N/A	TEST
S2	ON TRACK	HIGH	SAFETY	The user should be able to lift container without injury	lb	30	30	TEST
S3	ON TRACK	HIGH	FUNCTIONAL / PERFORMANCE	The user be able to adjust comaprtment sizes	N/A	N/A	N/A	DEMONSTRATION
S4	ON TRACK	HIGH	LOGISTICAL	The user should be able to easily store the containers	ft^3	2	1	TEST
S5	ON TRACK	MED	FUNCTIONAL / PERFORMANCE	The user should be able to store multiple layers of components inside the container	Layers	1	3	DEMONSTRATION
S6	ON TRACK	HIGH	FUNCTIONAL / PERFORMANCE	The user should not be able to remove internal compartments/dividers	N/A	N/A	N/A	DEMONSTRATION
S7	ON TRACK	LOW	DEPLOYMENT	The user should experience a seamless transition during the implementation of the new packaging system	N/A	N/A	N/A	ANALYSIS
S8	ON TRACK	HIGH	USABILITY	The user needs to be able to access components quickly and easily	N/A	N/A	N/A	DEMONSTRATION
S9	ON TRACK	MED	RELIABILITY	The user needs the container to last a minimum of 5 years	Years	5	7	ANALYSIS
S10	ON TRACK	MED	TRAINING	The user needs to be able to manipulate cell storage system without extensive training	Training time (in hours)	1	0.5	DEMONSTRATION
S11	ON TRACK	MED	INTERFACE	The user is unable to discard individual cells	N/A	N/A	N/A	DEMONSTRATION
S12	ON TRACK	MED	INTERFACE	User is able to fit existing components in modular cell system in C-crate	N/A	N/A	N/A	TEST
S13	ON TRACK	LOW	USABILITY	User should not need tools to adjust packaging	N/A	N/A	N/A	DEMONSTRATION
S14	ON TRACK	MED	FUNCTIONAL / PER	User should be able to collapse dunnage when not in use	N/A	N/A	N/A	DEMONSTRATION

Appendix C: Systems Requirements Table

#REF!										
ID ~	STAKEHOLDER REQUIREMENT ID		IMPORTANTCE	TYPE	RELATED FXN(S)		UNIT OF MEASURE	MARGINAL (TARGET) VALUE		METHOD OF VERIFICATION
U1	S2	ON TRACK	HIGH	USABILITY		Container weight with parts	lbs	30	30	TEST
F1	S3	ON TRACK	HIGH	FUNCTIONAL		Compartments are adjustable to provide varying cell sizes				DEMONSTRATION
L1	\$4	ON TRACK	HIGH	LOGISTICAL	F1	Compartments are collapsable and container fits well with other containers	ft^2	1	2	TEST
MS1	S5	ON TRACK	MED	MODE AND/OR STATES REQUIREMENTS	F1	Cell divider levels are layered horizontally within crate	#	1	3	INSPECTION
11	S6/S11	ON TRACK	HIGH	INTERFACE		Dividers are nonremovable				TEST
12	S10	ON TRACK	MED	INTERFACE		Dividers and cells are easily configurable				TEST
F2	S7/S12	ON TRACK	HIGH	FUNCTIONAL		System is integrated into the C crate which is already part of the existing system				INSPECTION
U2	S8	ON TRACK	HIGH	USABILITY		Parts easily accessable	N/A	N/A	N/A	DEMONSTRATION
P1	S9	ON TRACK	HIGH	PERFORMANCE		Lasting 5 years	Years	5	7	TEST
U3	S13	ON TRACK	MED	USABILITY		System does not require tools to adjust	Tools	1	0	DEMONSTRATION
F3	S14	ONTRACK	MED	FUNCTIONAL		The dunnage within the tote is able to fold into itself				DEMONSTRATION

Appendix D: Concept Generation & Evaluation

- Document component, subsystem, and system level concept generation and evaluation process.
- Document the evaluation process in detail including each step of the screening and evaluation process.
- Ensure tools such as PCC, Morph Charts, and Decision Matrices are correctly applied.

Concept Evaluation- Pair Wise Comparison

PAIR WISE COMPARISO	ON PROJECT NA	AME: Honda Modula	ar Packaging CO	HORT: AU2021								
	INFINITELY ADJUSTABLE	PORTABILITY	DURABILITY	ERGONOMIC	COLLAPSIBLITY	PROTECTION	SPACE EFFICIENCY	DIVIDER STABILITY	USABILITY	AESTHETIC!	RO₩ TOTAL	₩EIGHT
INFINITELY ADJUSTABLE	×	5	5	10	10	0.2	5	1	5	10	51.2	17%
PORTABILITY	0.2	×	0.2	1	1	0.1	5	0.1	5	10	22.6	8%
DURABILITY	0.2	5	×	10	1	0.2	1	1	5	10	33.4	11%
ERGONOMIC	0.1	1	0.1	×	0.1	0.1	1	0.2	1	10	13.6	5%
COLLAPSIBLITY	0.1	1	1	10	×	0.2	5	1	5	10	33.3	11%
PROTECTION	5	10	5	10	5	×	10	10	10	10	75	25%
SPACE EFFICIENCY	0.2	0.2	1	1	0.2	0.1	×	0.2	5	10	17.9	6%
DIVIDER STABILITY	1	10	1	5	1	0.1	5	×	5	10	38.1	13%
USABILITY	0.2	0.2	1	1	0.2	0.1	0.2	0.2	×	10	13.1	4%
AESTHETICS	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	×	0.9	0%
COLUMN TOTAL	7.1	32.5	14.4	48.1	18.6	1.2	32.3	13.8	41.1	90	299.1	

MORPH CHART PROJEC	T NAME: Honda Modular Packaging	COHORT: AU2021								
	MEANS 1	MEANS 2	MEANS 3	MEANS 4	MEANS 5					
Contains Components	Pouches	Cubic/Rectangular cell	Net	Other Prismatic Cell	Wedge between deforable solid					
Collapsible Cell Pack	Rails	Flexible elements	Hinges	Telescopic	Compressible					
Protect Components	Lined Corrugated Plastic	Fabric Pouch	Foam Insert/Dividers	Rigid Dividers	Plain Corrugated Plastic					
Cells Adjusts in Size	Stretch	Slide	Fold	Pivot						
Maintains Shape of Cell Pack	Tab/Slot	Velcro	Magnet	Clip	Threaded Fastener					

	Weights	Foldable Dividers				Rails and Fabric Rails and Rigid Pouches Dividers				Cylindrical Cell Pack					
			Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score			
econfigurable (0.35)	0.35														
Cell Size Variation	0.15		6	0.9	5	0.75	8	1.2	5	0.75					
Cell Number Variation	0.20		7	1.4	8	1.6	7	1.4	4	0.8					
obust (0.20)	0.20														
Impact Resistance	0.10		6	0.6	2	0.2	8	0.8	8	0.8					
Vibration Resistance	0.10		6	0.6	6	0.6	8	0.8	8	0.8					
ase of Use (0.15)	0.15														
Light Weight	0.05		7	0.35	6	0.3	6	0.3	6	0.3					
Simple to Use	0.10		6	0.6	9	0.9	9	0.9	4	0.4					
art Protection (0.30)	0.30														
Scratch Resistant	0.15		9	1.35	9	1.35	9	1.35	8	1.2					
Limited Part Mobility	0.15		7	1.05	4	0.6	9	1.35	6	0.9					

Appendix E: Sizing and Analysis

Size Analysis
performed by
Chris using
Honda's software
for optimizing
rectangular cell
sizes (zoom in to
read)

Layers *	BASE 8	▼ PART - LEN ▼ PAR	RT - WID - PART -	HEIG + I	PART - CON	TA II Contain v Projec	▼ PAk Rai	Best HH Co	Best HH Dens v Best HH Ori v Best Large Ci v	Best Large Dens v Best Large Or v	 Best Overall Co 	Best Over V Best Orientati	Containers per Tra v Cun	rent Propc v O	DI Container 🔻 O	DI Pro V D	Affere v Is	Bene 🔻	
	3 17391308	7.3	6.4		0.970034 C	12 NEW	BR		A1	60 Orientation 1		60 Orientation 1	624	7488	104	6240			0.833333
	3 194206NH A000	13.88	4.96		0.892872 C	15 NEW	BR	C	6 Orientation 3 L4	60 Orientation 1		6 Orientation 3	624	9360	624	3744	-5616		0.4
	3 281006MM	4.8	3		0.793664 C	30 C/O	BR	c	20 Orientation 2 A5	60 Orientation 2		20 Orientation 2	624	18720	624	12480	-6240		0.666667
	3 35730/750/76030A	6.4	3.2		0.630522 C	30 NEW	BR	c	20 Orientation 1 A5	60 Orientation 1	c	20 Orientation 1	624	18720	624	12480	-6240		0.666667
	3 35730/750/76030A	5.4	2.6		0.35274 C	30 NEW	BR	c	30 Orientation 3 A5	60 Orientation 1	c	30 Orientation 3	624	18720	624	18720		TRUE	1
	3 35730/750/76030A	4.4	2.52		0.220462 C	30 NEW	BR	c	60 Orientation 1 A5	60 Orientation 1		60 Orientation 1	624	18720	624	37440	18720		2
	3 3820030A 3 6391030A AMO	7.978	6.005	2.854	17.63698 C 1.710787 C	15 NEW	BR		AS 14	60 Orientation 3		60 Orientation 3 60 Orientation 1	624	9360	196 54	9360	-3000	TRUE	0.519231
		11.44	4.16			10 C/O				60 Orientation 1			624			3240			
	3 7114130A	11.574	4.404		0.328489 C	30 NEW	BR	C	6 Orientation 3 A5	30 Orientation 1		30 Orientation 1	624	18720	156	4680	-14040		0.25
	3 7212080A	5.17	2.46		0.399037 C	15 C/O	BR	c	15 Orientation 2 AS	60 Orientation 2		15 Orientation 2	624	9360	624	9360		TRUE	1
	3 7243030A	16.63	1.22		0.209439 C	30 C/O	BR	82	15 Orientation 2 A5	15 Orientation 1		15 Orientation 2	624	18720	624	9360	-9360		0.5
	3 72640,680-3A0 A000 3 72640,680-3A0 A000	3.2	2.5	1.1	0.02 C	20 NEW 20 NEW	C	C2	60 Orientation 1 AS 60 Orientation 1 AS	60 Orientation 1 60 Orientation 1		60 Orientation 1 60 Orientation 1	624 624	12480 12480	1248 1248	74880 74880	62400 62400	TRUE	
	3 72640,680-SAU AU00 3 7272130A	12.5	2.5	1.1	0.02 C 0.253532 C	20 NEW 30 C/O	BR	C2	6 Orientation 2 A5	30 Orientation 1		6 Orientation 1	624	18720	1248	74880	-11232		0.4
	3 727213UA 3 729303OA	12.5	0.02	2.20	0.253532 C 0.209439 C	30 C/O	RR	R2	5 Orientation 2 AS	30 Orientation 2 15 Orientation 1		15 Orientation 2	624	18720	1248 624	9360	-11232 -9360		0.4
	3 7293080A 3 7622080A	5.95	1.88		0.110231 C	30 C/O	RR	0.2	20 Orientation 2 AS	60 Orientation 2		20 Orientation 2	624	18720	624	12490	-6240		0.666667
	3 76400-30A	9.5	1.88	3.95	0.110231 C 0.595248 C	30 C/O	RR	C	20 Orientation 2 AS 12 Orientation 1 AS	60 Orientation 2	C .	20 Orientation 2 60 Orientation 3	624	9360	156	9360		TRUE	0.666667
	3 76400-30A 3 76400-30A	5.272	10.142		1.146404 C	15 C/O	RR		6 Orientation 1 AS	60 Orientation 1		60 Orientation 1	624	9360	196	9360		TRUE	1
	3 7641030A A000	9.01	8.06		0.396832 C	15 (.)0	BR	L	6 Universation 1 AS	60 Orientation 1		60 Orientation 1	624	9360	78	4680	-4680		0.5
	3 77215304 V000	12 143	7.833		0.596832 C	30 Naw	RR		6 Orientation 3 A5	30 Orientation 1		30 Orientation 1	624	18770	196	4680	-14040		0.5
	3 7721530A V000 3 7730530A V000	83	5.939		0.187551 C	30 new	RR	L	A1	60 Orientation 3		60 Orientation 3	624	18720	104	6240	-12480		0.333333
	3 79610 T20	2.92	13.3		1.080265 C	15 New	BR		6 Orientation 1 AS	20 Orientation 1		6 Orientation 1	624	9360	624	3744	-5616		0.333333
	3 90316 308	2.92	8.7	9	0.58 C	30 C/O	C		6 Unentation 1 AS	20 Onentation 1		6 Onentation 1	624	18770	0.24	3/44		TRUE	0.4
	3 83111 161-3A0 A000	13.02	9.32	3.99	0.32 C	15 C/O	c	_	A1	30 Orientation 3		30 Orientation 3	624	9360	104	3120	-6240		0.333333
	3 83111,161-340 A000 3 83111 161-340 A000	13.02	9.32	3.99	0.32 C	15 C/O	c	_	A1	30 Orientation 3		30 Orientation 3	624	9360	104	3120	-6240		0.333333
	3 8323030A A000	15.71	2.57		1.245612 C	12 C/O	BE		AS	15 Orientation 2	AS	15 Orientation 2	624	7488	156	2340	-5148		0.33333
	3 8354090A AUGU	10.4	3.26		0.330693 C	30.00	RR	c	6 Orientation 3 45	60 Orientation 3		60 Orientation 3	624	18720	196	9360	-9340		0.3125
	3 8A420T20 A000	7.2	5.2b 6.71		0.530693 C 0.639341 C	30 C/O 12 C/O	BR	c	12 Orientation 1 AS	60 Orientation 1		60 Orientation 3	624	7488	156	9360	-9360 1872		1.25
	2 1739130R	7.2	6.71		0.970034 C	12 U/U	RR	c	12 Orientation 3 AS	60 Orientation 1	45	60 Orientation 1	624	7488	196	9360	1872		1.25
	2 17391308 2 194206NH A000	13.88	496		0.970034 C	12 NEW 15 NEW	RR	C	6 Orientation 3 AS	20 Orientation 1		6 Orientation 1	624	9360	1248	7488	-1872		0.8
	2 194206NH A000 2 281006MM	13.88	4.96		0.892872 C 0.793664 C	15 NEW 30 C/O	BR	C	6 Orientation 3 AS 30 Orientation 1 AS	20 Orientation 3 60 Orientation 1		30 Orientation 3	624	18720	1248 624	18720		TRUE	U.S
	2 35730/750/76030A	64	3 2		0.793004 C	30 C/O	RR	0	30 Orientation 1 AS	60 Orientation 1		30 Orientation 1	624	18720	1248	37440	18720		- 1
	2 35730/750/76090A 2 35730/750/76090A	5.4	2.6		0.630522 C 0.35274 C	30 NEW 30 NEW	BR	C2	30 Orientation 1 AS 30 Orientation 1 AS	60 Orientation 1	C2	30 Orientation 1	624	18720	1248	37440		TRUE	2
	2 35730/750/76030A	4.4	2.52	2.5	0.220462 C	30 NEW	RR	C2	30 Orientation 1 AS	60 Orientation 1		30 Orientation 1	624	18720	1248	37440	18720		2
	2 3820080A	7.978	6.005		17.63698 C	15 NEW	BR	C2	A1	60 Orientation 5		60 Orientation 5	624	9360	104	6240	-3120		0.666667
	2 6391030A A000	11.44	4.16	4.69	1.710787 C	10 C/O	RR		45	30 Orientation 2	A.C	30 Orientation 2	624	6240	196	4680	-1560		0.6666657
	7114130A	11.574	4.404		0.328489 C	30 NEW	BR	C2	6 Orientation 3 AS	30 Orientation 1		6 Orientation 3	624	18720	1248	7488	-11232		0.4
	2 7212080A	5.17	2.46		0.328489 C 0.399037 C	15 C/O	BR	C2	12 Orientation 2 A3	60 Orientation 1		12 Orientation 2	624	9360	1248	14976	5616		1.6
	2 7243080A	16.63	1.22		0.399037 C 0.209439 C	30 C/O	BR	C	6 Orientation 3 AS	12 Orientation 1		6 Orientation 3	624	18720	624	3744	-14976		0.2
	2 72640.680-3A0 A000	3.2	2.5	1.1	0.02 C	20 NEW	c c	C2	60 Orientation 1 AS	60 Orientation 1		60 Orientation 1	624	12480	1248	74880	62400		- 0.2
	2 72640,680-3A0 A000 2 72640,680-3A0 A000	3.2	2.5	11	0.02 C	20 NEW	c	C2	60 Orientation 1 AS	60 Orientation 1		60 Orientation 1	624	12480	1248	74880	62400		- 0
	2 7204U,08U-3AU AUUU 2 7272130A	12.5	1		0.02 C	30 C/O	RR	82	12 Orientation 2 AS	30 Orientation 2		12 Orientation 2	624	18720	624	7488	-11232		0.4
	2 7293030A	16.6	0.02		0.209439 C	30 C/O	RR	6	6 Orientation 3 AS	12 Orientation 1		6 Orientation 3	624	18720	624	3744	-14976		0.2
	2 7293030A 2 7622080A	5.95	1.88		0.209439 C	30 C/O	RR	82	90 Orientation 2 AS	60 Orientation 2		30 Orientation 2	624	18720	624	18720		TRUE	0.2
	75400.30A	9.5	4.97		0.595248 C	15 C/O	RR	6	6 Orientation 3 A5	30 Orientation 1		30 Orientation 1	624	9360	156	4680	-4680		0.5
	2 75400 30A	5 272	10.142		1 146404 C	15 (/0	RR	c	6 Orientation 1 A3	60 Orientation 2		60 Orientation 2	624	9360	78	4680	-4680		0.5
	2 26410804 4000	9.01	8.06		0.396832 C	15	RR	-	AS AS	30 Orientation 1	AS	30 Orientation 1	624	9360	156	4680	-4680		0.5
	2 7721530A V000	12.143	7.833		0.167551 C	30 New	BR	82	12 Orientation 1 AS	30 Orientation 1		12 Orientation 1	624	18720	624	7488	-11232	EAICE	0.4
	2 7730530A V000	83	5.939		0.11905 C	30 new	RR	C	12 Orientation 3 A1	60 Orientation 5		12 Orientation 3	624	18720	624	7488	-11232		0.4
	2 79610 T20	2.92	13.3		1.080265 C	15 New	BR	c	6 Orientation 1 AS	20 Orientation 1		6 Orientation 1	624	9360	624	3744	-5616		0.4
	2 80316-308	2.02	87		0.58 C	30 C/O	C		A1	20 Orientation 2		20 Orientation 2	624	18720	104	2090	-16640		0.111111
	2 83111.161-3A0 A000	13.02	9.32	3.99	0.32 C	15 C/O	C		AS	20 Orientation 2		20 Orientation 3	624	9360	196	3120	-6240		0.333333
	83111 161-3A0 A000	13.02	9.32	3.99	0.32 C	15 (70	c		AS	20 Orientation 3		20 Orientation 3	624	9360	196	3120	-6240		0.333333
	2 8323030A A000	15.71	2.57		1.245612 C	12 C/O	BE		AS	12 Orientation 2		12 Orientation 2	624	7488	156	1872	-5616		0.25
	2 8354030A	10.4	3.26		0.330693 C	30 C/O	BR	C2	6 Orientation 3 A5	30 Orientation 1		6 Orientation 3	624	18720	1248	7488	-11232		0.4
	2 8A420 T20 A000	7.2	6.71		0.639341 C	12 C/O	BR	82	20 Orientation 1 AS	60 Orientation 1		20 Orientation 1	624	7488	624	12480	4992		1.666667
	1 17391308	7.3	6.4		0.970034 C	12 NEW	BR	82	15 Orientation 1 AS	30 Orientation 1		15 Orientation 1	624	7488	624	9360		TRUE	1.25
	1 194206NH 4000	13.88	496		0.892872 C	15 NEW	RR		A1	60 Orientation 5		60 Orientation 5	624	9360	104	6240	-3120		0.666667
	1 281006MM	4.8	3		0.793664 C	30 C/O	BR	82	30 Orientation 1 A5	60 Orientation 3		15 Orientation 1	624	18720	1248	18720		TRUE	1
	1 35730/750/76030A	6.4	3.2		0.630522 C	30 NEW	BR	c	30 Orientation 5 AS	60 Orientation 3		15 Orientation 1	624	18720	1248	18720		TRUE	1
	1 35730/750/76030A	5.4	2.6		0.35274 C	30 NEW	BR	82	60 Orientation 5 AS			30 Orientation 5	624	18720	1248	37440	18720		2
	1 35730/750/76030A	4.4	2.52	2.4	0.220462 C	30 NEW	BR	82	60 Orientation 5 AS	60 Orientation 3		30 Orientation 5	624	18720	1248	37440	18720		2
	1 3820080A	7.978	6.005		17.63698 C	15 NEW	BR		AS	60 Orientation 5		60 Orientation 5	624	9360	156	9360		TRUE	1
	1 6391030A A000	11.44	4.16	6.53	1.710787 C	10 C/O	BR	82	6 Orientation 2 AS	30 Orientation 5	AS	30 Orientation 5	624	6240	156	4680	-1560	FALSE	0.75
	1 7114130A	11.574	4.404		0.328489 C	30 NEW	BR	c	12 Orientation 5 AS	60 Orientation 5		60 Orientation 5	624	18720	156	9360	-9360		0.5
	1 7212080A	5.17	2.46		0.399037 C	15 C/O	BR	c	15 Orientation 1 A5	60 Orientation 3	AS	60 Orientation 3	624	9360	156	9360		TRUE	1
	1 7243080A	16.63	1.22		0.209439 C	30 C/O	BR		A1	60 Orientation 5		60 Orientation 5	624	18720	104	6240	-12480		0.333333
	1 72640,680-3A0 A000	3.2	2.5	1.1	0.02 C	20 NEW	C	82	60 Orientation 1 AS	60 Orientation 1		60 Orientation 5	624	12480	1248	74880	62400		6
	1 72640,680-3A0 A000	3.2	2.5	1.1	0.02 C	20 NEW	c	82	60 Orientation 1 AS	60 Orientation 1	C2	60 Orientation 5	624	12480	1248	74880	62400	TRUE	6
	1 7272130A	12.5	1		0.253532 C	30 C/O	BR	82	6 Orientation 2 A1	30 Orientation 5		6 Orientation 2	624	18720	624	3744	-14976		0.2
	1 7293080A	16.6	0.02	3.38	0.209439 C	30 C/O	BR		A1	60 Orientation 5	A1	60 Orientation 5	624	18720	104	6240	-12480	FALSE	0.333333
	1 7622030A	5.95	1.88	5.95	0.110231 C	30 C/O	BR	c	15 Orientation 1 A5	60 Orientation 3		60 Orientation 3	624	18720	156	9360	-9360	FALSE	0.5
	1 76400-30A	9.5	4.97	2.79	0.595248 C	15 C/O	BR	c	12 Orientation 5 A5	60 Orientation 5	AS	60 Orientation 5	624	9360	156	9360	0	TRUE	1
	1 76400-30A	5.272	10.142		1.146404 C	15 C/O	BR	c	15 Orientation 2 AS	60 Orientation 4		60 Orientation 4	624	9360	156	9360		TRUE	1
	1 7641030A A000	9.01	8.06	5.05	0.396832 C	15	BR	c	6 Orientation 4 AS	20 Orientation 1	c	6 Orientation 4	624	9360	624	3744	-5616	FALSE	0.4
	1 7721530A V000	12.143	7.833	1.636	0.167551 C	30 New	BR	c	6 Orientation 5 AS	20 Orientation 5	c	6 Orientation 5	624	18720	624	3744	-14976		0.2
	1 7730530A V000	8.3	5.939		0.11905 C	30 new	BR	c	12 Orientation 5 A5	30 Orientation 5		6 Orientation 3	624	18720	1248	7488	-11232		0.4
	1 79610 T20	2.92	13.3	3	1.080265 C	15 New	BR		A1	60 Orientation 2	A1	60 Orientation 2	624	9360	104	6240	-3120	FALSE	0.666667
	1 80316-308	9	8.7	9	0.58 C	30 C/O	c		AS	12 Orientation 1		12 Orientation 1	624	18720	156	1872	-16848		0.1
	1 83111,161-3A0 A000	13.02	9.32	3.99	0.32 C	15 C/O	c	82	6 Orientation 1 A5	15 Orientation 2		6 Orientation 1	624	9360	624	3744	-5616		0.4
	1 83111,161-3A0 A000	13.02	9.32	3.99	0.32 C	15 C/O	C	82	6 Orientation 1 AS	15 Orientation 2		6 Orientation 1	624	9360	624	3744	-5616		0.4
	1 8323080A A000	15.71	2.57	7.75	1.245612 C	12 C/O	BE		A1	20 Orientation 5		20 Orientation 5	624	7488	104	2080	-5408		0.277778
	1 8354080A	10.4	3.26		0.330693 C	30 C/O	BR	c	30 Orientation 5 A5	60 Orientation 5		30 Orientation 5	624	18720	624	18720		TRUE	1
	1 8A420 T20 A000	7.2																	
			6.71		0.639341 C	12 C/O	BR	82	10 Orientation 1 AS	60 Orientation 5	AS	60 Orientation 5	624	7488	156	9360	1872		1.25

Rigid Dunnage fit and form test

Result: Adequate rigidity from this form of slotted connection, can be used with rigid material

Rigid Dunnage modularity and feasibility test

Result: Concept model and initial tests show many advantages over current solution and other concepts

Corrugated plastic fastening test

Results: limited forms of fastening, difficult to incorporate into a prototype

Corrugated plastic bending/geometry tests

Results: Bending isn't a reliable form of cell size adjustment for modularity

Appendix G: Risk Table

RI	SK TABLE PR	OJECT NAME: Honda Modular Packaging CO	DHORT: AU2021			
Ris	Area / Subsystem	Description of Risk	Impact (1-5)	Likelihood (1-5)	Rating	Status / Mitigation
1	Meetings	Scheduling conflicts create limited times when a team members can meet		1	5	9-7-2021: Created a "when2meet" to determine the best time to have group meetings. Found multiple times a week that team is free outside of open labs.
2	Deadlines	Being unable to complete components of the project due to long lead times for parts	5	1	5	9-7-2021: Meeting multiple times a week to work on assignments.
3	Failure	Material mechanically falls due to stress (normal shear)	al or 5	1	5	10-20-2021: Analysis will be performed to make sure that the materials used can whiteliand the sitesses to which they are 11-28-2021: Solip plants such as PrO or HDPE will be used instead of corrugated plants (Likelihood; 5-3) 2-11-2022: Deliction analysis and FEA were performed to determine how much how much stress and deflection the diddens will september (Likelihod 2-3)-concer the isrgest area of concern for mechanical failure. Multiple have broken in the same place after use. (Likelihod: 2-3)-concer the isrgest area of concern for mechanical failure. Multiple have broken in the same place after use. (Likelihod: 2-44-4-2022: Problem with mechanical failure in retaining disp has been resolved with trickening and the addition or a radius. No other areas have shown signs of mechanical failure. (Likelihood: 4-51)
4	Ergonomics	Product is uncomfortable/difficult to hold	2	1	2	10-20-2021: Product will be designed to be easy to hold 11-3-2021: Product will be designed to fit inside existing totes (Likelihood: 3->1)
5	Budget	Product is expensive to manufacture	3	1	3	10-20-2021: Product will be designed to be manufactured cost- effectively 2-28-2022: Budget and bill of materials has been monitored to maintain a low cost (Likelihood: 4->1)
6	Usability	Product is difficult to use (functions are not eas utilized)	ily 3	1	3	10-20-2021: Product will be designed with assembly line workers' input in mind 3-10-2022. Tolerances in initial prototype are restrively tight, ease of use is not amazing. No charge in likelihood, miligation is necessary. 3-25-2022. Newer version of prototype without clips is easier to manupulate, but tolerances are still too tight. (Likelihood: 3-2) 4-18-2022. Final version of prototype has appropriate better that greatly improve ease of assembly and use (Likelihood: 2-3-3) 4-18-2022. Final version of prototype has appropriate better that greatly improve ease of assembly and use (Likelihood: 2-3-3)
7	Compartments	Compartment size will be difficult to adjust	5	1	5	10-20-2021: Product will be designed to be adjustable without tools Compartments will be adjusted using a pin (Likelhood: 3->2) 1-20-2022: Dunnage will be reconfirguarble and held in place with clips (Likelihood: 2->1)
8	Weight	Product is too heavy to be practical according t Honda rules and standards	⁰ 5	1	5	10-20-2021: Lightweight materials will be used where possible 11-29-1021: Plastic thickness will be minimized in order to reduce weight (Likelihood: 5-53) 27-2022: Material analysis performed, including 2D density calculations (Likelihood: 5-22) 3-10-2022: The durrage has been confirmed to be light enough to remain below the weight limit with multiple layers (Likelihood: 2->1)
9	Lifetime	Product lasts less than 5 years	3	4	12	10-20-2021: Durable materials will be used 11-29-2021: Hard plastic will be used as oppposed to corrugated plastic (Likelihood: 5->4)
10	Storage	Product takes up too much space when being stored	2	2	4	10-20-2021: Product will be designed to be collapsable 11-29-2021: Compartments will be designed to fit around other layers when durnage is empty (Likelihod: 3-22) 3-21- 2022: Product reduces volume by -93% when stored (Likelihod: 2->1)
10	Communication	Team is unable to effectively communicate with PrimeX and exact capabilities/prices are unknown		5	5	1-26-2022. Team is working to get another meeting with PrimaX that will give the raum better idea of their capabilities. 2-24-2022. Team had second meeting with PrimaX rep. They informed us they can only manufacture features below 5022. Team may not be able to manufacture a prototype through them (Likelhood: 4-5). 3-24-2022 it was decided after conversation between team of hrodir representative that a professional prototype was no fonger

Appendix H: Budget

BUDGET (BY P	PHASE)	PROJECT NAME: Honda Modular Packaging	COHORT: AU2021					
Approval V Status	Category and Item		Item Notes	Quantity	Budget	Actual	Receipt#	Purchase
1	PROBLEM DEFII	NTION		NA	NA	NA	NA	NA
	Travel- tour wit	h honda and dunnage co.			\$ 250.00			
	1	Do Not Delete - Click this line for insert Above ↑						
1	CONCEPT DEVE	LOPMENT		NA	NA	NA	NA	NA
	Concept Design	Laser Cut			\$ 100.00			
	1	Do Not Delete - Click this line for insert Above ↑						
1	PRELIMINARY D	PESIGN		NA	NA	NA	NA	NA
	Material selecti	,			\$ 50.00			
	Manufacturing	methods analysis			\$ 100.00			
		ign verification, laser cut			\$ 100.00			
	1	Do Not Delete - Click this line for insert Above 1						
1	PROTOTYPING			NA	NA	NA	NA	NA
	Prototype 1 fab	rication (C tote)			\$ 1,000.00			
	Prototype 2 fab	rication (A-5)			\$ 1,300.00			
	1	Do Not Delete - Click this line for insert Above ↑						
1	TESTING			NA	NA	NA	NA	NA
	Arduino Testing	Data Recorder			\$ 200.00			
	<u> </u>	Do Not Delete - Click this line for insert Above ↑						
	N/A							
	1	Do Not Delete - Click this line for insert Above 1						
Total					\$ 3,100.00	\$ -		

Appendix I: Schedule

WBS	Task Name	Duration	Start	Finish	Predec	% Complete
1	Requirements Defintion	26 days	Mon 9/6/21	Fri 10/8/21		43%
1.1	Project Kickoff	1 day	Mon 9/6/21 Mon 9/6/21			100%
1.2	Questions to ask Chris	1 day	Fri 9/24/21 Fri 9/24/21			100%
1.3	Meet with Chris at Honda	1 day	Fri 9/24/21	Fri 9/24/21 Fri 9/24/21		0%
1.4	Clarify Requirements	1 day	Mon 9/27/21	Mon 9/27/21		0%
1.5	Risk	9 days	Thu 9/16/21	Mon 9/27/21		100%
1.6	Schedule	9 days	Thu 9/16/21	Mon 9/27/21		50%
1.7	Project Charter	3 days	Mon 9/27/21	Wed 9/29/21	4	50%
1.8	Budget	3 days	Mon 9/27/21	Wed 9/29/21	4	0%
1.9	Background Research	26 days	Mon 9/6/21	/lon 9/6/21 Fri 10/8/21		25%
1.10	Requirements Review	1 day	Fri 10/8/21 Fri 10/8/21			0%
2	Concept Design	44 days	Fri 10/8/21	Wed 12/8/21	1	0%
2.1	Project Updates	24 days	Fri 10/8/21			0%
2.2	Thumbnail Sketches	3 days	Thu 10/7/21 Mon 10/11/21			0%
2.3	First Design Meeting with Chris	0 days	Sun 10/10/21 Sun 10/10/21			0%
2.4	Morph Chart	1 day	Mon 10/11/21	Mon 10/11/21		0%
2.5	Decision Matrix	1 day	Wed 10/13/21	Wed 10/13/21		0%
2.6	CAD Modeling/Early Prototyping	60 days	Fri 10/15/21 Thu 1/6/22			0%
2.7	Design Concept Review	3 days	Mon 12/6/21 Wed 12/8/21		14	0%
3	Winter Break	17 days	Thu 12/16/21	Fri 1/7/22		0%
4	Preliminary Design	24 days	Mon 1/31/22	Thu 3/3/22	13	0%
4.1	Project Status Updates	5 days	Mon 1/31/22			0%
4.2	Preliminary Design Reviews	1 day	Thu 3/3/22	Thu 3/3/22		0%
5	Fabrication, Assembly, and Integration	40 days?	Thu 3/3/22	Wed 4/27/22		0%
5.1	Laser Cut Prototype	2 days	Mon 3/7/22 Tue 3/8/22			0%
5.2	3D Clip Printing	2 days	Mon 3/7/22 Tue 3/8/22			0%
5.3	Prototype Assembly	1 day	Wed 3/9/22 Wed 3/9/22		29	0%
5.4	PrimeX Design Review	1 day	Thu 3/10/22 Thu 3/10/22		28	0%
5.5	Prototype Assembly	1 day?	Wed 3/9/22 Wed 3/9/22		28	0%
5.6	Second Iteration Assembly	1 day?	Mon 3/14/22	Mon 3/14/22		0%
5.7	Third Iteration Assembly	1 day?	Fri 3/25/22	Fri 3/25/22		0%
5.8	Fourth Iteration Assembly	1 day?	Mon 4/11/22	Mon 4/11/22		0%
5.9	Shaker Table Test	1 day?	Tue 4/12/22 Tue 4/12/22			0%
5.10	Functional Demonstration	1 day?	Wed 4/13/22	Wed 4/13/22		0%
5.11	Dynamic Testing	1 day?	Mon 4/18/22	Mon 4/18/22		0%
5.12	Critical Design Review	1 day	Wed 4/20/22	Wed 4/20/22	32	0%

Appendix J: BOM

	BILL OF MATERIALS		RIALS PROJECT NAME: Honda Modular Packaging	COHORT: AU2021			
	LV	PART NUMBER	DESCRIPTION	REVISION	QTY	UNIT OF NOTES	
Line #	1	10001100	ASSEMBLY 1	А	1	EACH	
1	2	10001100	Upper Track Cell Pack Wall	А	2	EACH	
2	2	10001101	Lower Track Cell Pack wall	А	2	EACH	
3	2	10001102	Upper Divider	А	1-33	EACH	
4	2	10001103	Lower Divider	А	1-34	EACH	
5	2	10001104	Divider Slide Clip	A	4-134	EACH	
6	2	10001105	Dicider Retainer Clip	А	2	EACH	
7	2	10001106	Cell Pack Retainer Clip	А	2	EACH	
8	2	10001107	Layer Divider	А	1	EACH	

Appendix K: Concept Generation and Brainstorming

