Exercici 23.

- (a) Demostreu que per a tot nombre enter a, existeixen nombres enters únics q, r tals que a = 7q + r i $r \in \{0, 3, 6, 9, 12, 15, 18\}$.
- (b) Demostreu que per a tot nombre enter a, existeixen nombres enters únics q, r tals que a = 7q + r i $r \in \{0, 3, 6, 9, -3, -6, -9\}$.
- (c) Demostreu que per a tot nombre enter a, existeixen nombres enters únics q, r tals que a = 7q + r i $r \in \{0, 3, 9, 27, 81, 243, 729\}$.

Solució 20.

(a) Demostreu que per a tot nombre enter a, existeixen nombres enters únics q, r tals que a = 7q + r i $r \in \{0, 3, 6, 9, 12, 15, 18\}$.

Renombrem la variable a com a x.

Tenint en compte aquestes implicacions:

$$1. \ x \equiv 0 \pmod{7}$$

$$2. \ x \equiv 3 \pmod{7}$$

$$3. \ x \equiv 6 \pmod{7}$$

$$4. \ x \equiv 9 \pmod{7} \Leftrightarrow x \equiv 2 \pmod{7}$$

$$5. \ x \equiv 12 \pmod{7} \Leftrightarrow x \equiv 5 \pmod{7}$$

$$6. \ x \equiv 15 \pmod{7} \Leftrightarrow x \equiv 1 \pmod{7}$$

$$7. \ x \equiv 18 \pmod{7} \Leftrightarrow x \equiv 4 \pmod{7}$$

Farem una demostració per casos:

Sigui
$$z \in \mathbb{Z}$$

Si $x = 7z \Rightarrow x \equiv 0 \pmod{7} \Rightarrow x = 7z$
Si $x = 7z + 1 \Rightarrow x \equiv 1 \pmod{7} \Rightarrow x \equiv 15 \pmod{7} \Rightarrow x = 7(z - 2) + 15$
Si $x = 7z + 2 \Rightarrow x \equiv 2 \pmod{7} \Rightarrow x \equiv 9 \pmod{7} \Rightarrow x = 7(z - 1) + 9$
Si $x = 7z + 3 \Rightarrow x \equiv 3 \pmod{7} \Rightarrow x = 7z + 3$
Si $x = 7z + 4 \Rightarrow x \equiv 4 \pmod{7} \Rightarrow x \equiv 18 \pmod{7} \Rightarrow x = 7(z - 2) + 18$
Si $x = 7z + 5 \Rightarrow x \equiv 5 \pmod{7} \Rightarrow x \equiv 12 \pmod{7} \Rightarrow x = 7(z - 1) + 12$
Si $x = 7z + 6 \Rightarrow x \equiv 6 \pmod{7} \Rightarrow x = 7z + 6$

Hem demostrat l'enunciat tenint en compte què tot nombre enter es pot descompondre de forma única en 7z + r on $r \in \{0, 1, 2, 3, 4, 5, 6\}$.

(b) Demostreu que per a tot nombre enter a, existeixen nombres enters únics q, r tals que a = 7q + r i $r \in \{0, 3, 6, 9, -3, -6, -9\}$.

Renombrem la variable a com a x.

Tenint en compte aquestes implicacions:

1.
$$x \equiv 0 \pmod{7}$$

2.
$$x \equiv 3 \pmod{7}$$

3.
$$x \equiv 6 \pmod{7}$$

4.
$$x \equiv 9 \pmod{7} \Leftrightarrow x \equiv 2 \pmod{7}$$

5.
$$x \equiv -3 \pmod{7} \Leftrightarrow x \equiv 4 \pmod{7}$$

6.
$$x \equiv -6 \pmod{7} \Leftrightarrow x \equiv 1 \pmod{7}$$

7.
$$x \equiv -9 \pmod{7} \Leftrightarrow x \equiv 5 \pmod{7}$$

Farem una demostració per casos:

Sigui $z \in \mathbb{Z}$

Si
$$x = 7z \Rightarrow x \equiv 0 \pmod{7} \Rightarrow x = 7z$$

Si
$$x = 7z + 1 \Rightarrow x \equiv 1 \pmod{7} \Rightarrow x \equiv -6 \pmod{7} \Rightarrow x = 7(z+1) - 6$$

Si
$$x = 7z + 2 \Rightarrow x \equiv 2 \pmod{7} \Rightarrow x \equiv 9 \pmod{7} \Rightarrow x = 7(z - 1) + 9$$

Si
$$x = 7z + 3 \Rightarrow x \equiv 3 \pmod{7} \Rightarrow x = 7z + 3$$

Si
$$x = 7z + 4 \Rightarrow x \equiv 4 \pmod{7} \Rightarrow x \equiv -3 \pmod{7} \Rightarrow x = 7(z+1) - 3$$

Si
$$x = 7z + 5 \Rightarrow x \equiv 5 \pmod{7} \Rightarrow x \equiv -9 \pmod{7} \Rightarrow x = 7(z+2) - 9$$

Si
$$x = 7z + 6 \Rightarrow x \equiv 6 \pmod{7} \Rightarrow x = 7z + 6$$

Hem demostrat l'enunciat tenint en compte què tot nombre enter es pot descompondre de forma única en 7z + r on $r \in \{0, 1, 2, 3, 4, 5, 6\}$.

(c) Demostreu que per a tot nombre enter a, existeixen nombres enters únics q, r tals que a = 7q + r i $r \in \{0, 3, 9, 27, 81, 243, 729\}$.

Renombrem la variable a com a x.

Tenint en compte aquestes implicacions:

1.
$$x \equiv 0 \pmod{7}$$

2. $x \equiv 3 \pmod{7}$
3. $x \equiv 9 \pmod{7} \Leftrightarrow x \equiv 2 \pmod{7}$
4. $x \equiv 27 \pmod{7} \Leftrightarrow x \equiv 6 \pmod{7}$
5. $x \equiv 81 \pmod{7} \Leftrightarrow x \equiv 4 \pmod{7}$
6. $x \equiv 243 \pmod{7} \Leftrightarrow x \equiv 5 \pmod{7}$
7. $x \equiv 729 \pmod{7} \Leftrightarrow x \equiv 1 \pmod{7}$

Farem una demostració per casos:

Sigui
$$z \in \mathbb{Z}$$

Si
$$x = 7z \Rightarrow x \equiv 0 \pmod{7} \Rightarrow x = 7z$$

Si $x = 7z + 1 \Rightarrow x \equiv 1 \pmod{7} \Rightarrow x \equiv 729 \pmod{7} \Rightarrow x = 7(z - 104) + 729$
Si $x = 7z + 2 \Rightarrow x \equiv 2 \pmod{7} \Rightarrow x \equiv 9 \pmod{7} \Rightarrow x = 7(z - 1) + 9$
Si $x = 7z + 3 \Rightarrow x \equiv 3 \pmod{7} \Rightarrow x = 7z + 3$
Si $x = 7z + 4 \Rightarrow x \equiv 4 \pmod{7} \Rightarrow x \equiv 81 \pmod{7} \Rightarrow x = 7(z - 11) + 81$
Si $x = 7z + 5 \Rightarrow x \equiv 5 \pmod{7} \Rightarrow x \equiv 243 \pmod{7} \Rightarrow x = 7(z - 34) + 243$
Si $x = 7z + 6 \Rightarrow x \equiv 27 \pmod{7} \Rightarrow x = 7(z - 3) + 27$

Hem demostrat l'enunciat tenint en compte què tot nombre enter es pot descompondre de forma única en 7z + r on $r \in \{0, 1, 2, 3, 4, 5, 6\}$.