資料科學導論 HW2

【資料集說明】

目標:透過每首歌曲的特徵資料,將歌曲資料進行分群。

資料集中的每個 row 代表一首歌曲,每首歌曲有自己獨立的 song_id,並附有 13 個特徵,請利用這些特徵將歌曲分群,盡量將相同種類的歌曲分在同一群中。歌曲種類可能有電子樂、嘻哈、搖滾等類型,而同一種類型的歌曲,通常具有較相似的特徵。

以下為各特徵所代表的意思:

Feature 1:歌曲的原聲程度。越接近 1,表示歌曲所包含的電子音樂成份越少。

Feature 2:歌曲表現的強度。強度較高的歌曲,會讓人感到有活力、響亮、甚至吵雜。

Feature 3:根據歌曲的節奏與穩定性,來評斷歌曲是否適合作為舞曲。越接近 0 的值,

越不適合;越接近1的值越適合。

Feature 4:歌曲的流行度,數值是根據播放次數作為依據,數值越高表示越流行。

Feature 5:歌曲的速度,以每分鐘節拍數 (BPM) 為單位。

Feature 6: 歌曲在有現場觀眾的情況下進行錄製的機率。數值越高表示歌曲越有可能是現場即時錄製,或是演唱會版本。

Feature 7: 歌曲傳達的情緒。數值越高,表示歌曲聽起來越積極 (快樂、輕快);數值越低,表示歌曲聽起來越消極 (憤怒、悲傷)。

Feature 8:歌曲的持續時間,單位為毫秒。

Feature 9:歌曲的響度,以分貝為單位 (dB)。

Feature 10:歌曲中是否存在「口語」。若數值偏高,可能是脫口秀、Podcast;若數值偏低,則可能是純音樂。

Feature 11: 歌曲的調性 (大調=0,小調=1)。

Feature 12:歌曲中的樂器演奏所佔比例,數值越高,表示歌曲的樂器演奏佔比越大。

Feature 13:歌曲的音高·內容是依據標準的 Pitch class 來進行映射。

【檔案說明】

Train.csv

song_id	Feature 1	Feature 2	Feature 3	Feature 4	Feature 5	Feature 6	Feature 7	Feature 8	Feature 9	Feature 10	Feature 11	Feature 12	Feature 13
0	0.147	0.798	0.745	46	111.016	0.197	0.388	240000	-5.436	0.0384	1	0.651	F
1	0.0658	0.804	0.521	66	143.952	0.0521	0.553	224700	4.395	0.0569	0	0	C
2	0.0395	0.96	0.755	67	99.023	0.332	0.661	170440	-3.189	0.123	1	2.43E-05	E
3	0.359	0.769	0.592	40	171.94	0.122	0.223	226520	-7.127	0.19	1	0.0143	D
4	0.16	0.838	0.769	83	93.996	0.0935	0.602	249609	-5.238	0.0633	0	0	D
5	0.209	0.632	0.511	39	135.971	0.145	0.342	225813	-5.462	0.0286	0	0	Α
6	0.0368	0.403	0.226	40	163.959	0.201	0.294	265200	-16.024	0.0445	1	0.205	F
7	0.934	0.127	0.31	10	135.423	0.109	0.298	349533	-23.284	0.0498	0	0.387	A#
8	0.697	0.37	0.41	55	76.926	0.211	0.33	318846	-15.757	0.0766	1	0.000144	E
9	0.0441	0.737	0.809	77	80.025	0.341	0.367	226938	-5.186	0.108	0	0	C#
10	0.0486	0.717	0.842	51	81.495	0.292	0.552	204387	4.158	0.241	1	0	В

song_id 為每首歌曲的編號,每首歌曲共有 13 個特徵,全部有 40,114 首歌曲。

Test.csv

id	col_1	col_2
0	16868	39362
1	7661	30499
2	35255	18705
3	23946	31785
4	13606	25069
5	27050	25981
6	25157	3309
7	20049	4075
8	25019	6067
9	13643	10546
10	32135	23058

在測試資料中·需要判斷 col_1 和 col_2 的歌曲編號 (song_id)·是否屬於同一群。

例如:

id=0·要判斷歌曲編號 16,868 和 39,362 的兩首歌曲是否屬於同一群。

Submit.csv

id	ans
0	
1	
2	
2	
4	
5 6	
б	
7	
8	
9	
10	

在繳交檔案中·需要將判斷結果寫入 Submit.csv·若兩首歌曲是屬於同一群·則寫入 1;若不屬於同一群·則寫入 0。

例如:

id=0 的 ans 欄位,需要寫入歌曲編號 16,868 和 39,362,是 否為同一種類的判斷結果。依此類推,共預測 3000 首歌曲。