证明: 先证: $R \upharpoonright B$ 是反自反的。 $\forall x$	
$x \in B$	
$\Rightarrow x \in A$	$(B \subseteq A)$
$\implies \langle x, x \rangle \notin R$	(R是反自反的)
$\iff \neg \langle x, x \rangle \in R$	(≹定义)
$\implies \neg \langle x, x \rangle \in R \implies \neg \langle x, x \rangle \in R \lor \neg \langle x, x \rangle \in B \times B$	(命题逻辑附加律)
$\implies \neg \langle x, x \rangle \in R \lor \neg \langle x, x \rangle \in B \times B$ $\iff \neg (\langle x, x \rangle \in R \land \langle x, x \rangle \in B \times B)$	(命题逻辑德·摩根律)
	(集合交定义)
$\iff \neg(\langle x, x \rangle \in R \cap B \times B)$	
$\iff \neg(\langle x, x \rangle \in R \upharpoonright B)$	(R ↑ B 定义)
$\iff \langle x, x \rangle \notin R \upharpoonright B$ 再证: $R \upharpoonright B$ 是传递的。	(∉ 定义)
$\forall x,y,z$	
$\langle x,y \rangle \in R \upharpoonright B \wedge \langle y,z \rangle \in R \upharpoonright B$	
$\iff \langle x, y \rangle \in R \cap B \times B \land \langle y, z \rangle \in R \cap B \times B$	$(R \upharpoonright B$ 定义)
$\iff \langle x, y \rangle \in R \land \langle x, y \rangle \in B \times B \land$	
$\langle y, z \rangle \in R \land \langle y, z \rangle \in B \times B$	(集合交定义)
$\iff \langle x, y \rangle \in R \land x \in B \land y \in B \land$	
$\langle y, z \rangle \in R \land y \in B \land z \in B$	(卡氏积定义)
$\iff \langle x,y\rangle \in R \land \langle y,z\rangle \in R \land x \in B \land y \in B \land z \in B$	(命题逻辑交换律、幂等律)
$\Longrightarrow \langle x, z \rangle \in R \land x \in B \land y \in B \land z \in B$	(R 是传递的)
$\Longrightarrow \langle x, z \rangle \in R \land x \in B \land z \in B$	(命题逻辑化简律)
$\iff \langle x, z \rangle \in R \land \langle x, z \rangle \in B \times B$	(卡氏积定义)
$\iff \langle x, z \rangle \in R \upharpoonright B$	$(R \upharpoonright B$ 定义)
综上所述,可知 $R \mid B$ 是拟序关系。	
(2)	
证明: 先证: <i>R</i> ↑ <i>B</i> 是自反的。	
$\forall x$	
$x \in B$	
$\iff x \in B \land x \in B$	(命题逻辑幂等律)
$\implies x \in A \land x \in B$	$(B \subseteq A)$
$\Longrightarrow \langle x, x \rangle \in R$	(R是自反的)
$\Longleftrightarrow \langle x, x \rangle \in R \land \langle x, x \rangle \in B \times B$	(卡氏积定义)
$\Longleftrightarrow \langle x, x \rangle \in R \cap B \times B$	(集合交定义)
$\iff \langle x, x \rangle \in R \upharpoonright B$	$(R \upharpoonright B$ 定义)
再证: $R \upharpoonright B$ 是反对称的。	
orall x,y	