Improved Approximation Algorithms for Bipartite Correlation Clustering

Nir Ailon Noa Avigdor-Elgrabli Edo Liberty Anke van Zuylen

Correlation clustering

Input for correlation clustering

Output of correlation clustering

Cost of a correlation clustering solution

Cost of a correlation clustering solution

Correlation clustering results

	approx const	running time		
Bansal, Blum, Chawla	$\approx 20,000$	$\Omega(n^2)$		
Demaine, Emanuel, Fiat, Immorlica	4 log(n)	LP		
Charikar, Guruswami, Wirth	4	LP		
Ailon, Charikar, Newman, Alantha	2.5	LP		
Ailon, Charikar, Newman, Alantha	3	O(m)		
Ailon, Liberty	< 3	O(n) + cost(OPT)		

n and m are the number of nodes and edges in the graph.

Correlation bi-clustering

Input for correlation bi-clustering

The input is an undirected unweighted bipartite graph.

Output of correlation bi-clustering

The output is a set of bi-clusters.

Cost of a correlation bi-clustering solution

The cost is the number of erroneous edges.

Correlation bi-clustering results

	approx const	running time	
Demaine, Emanuel, Fiat, Immorlica	$O(\log(n))*$	LP	
Charikar, Guruswami, Wirth	$O(\log(n))*$	LP	
Noga Amit	12	LP	
This work	4	LP (deterministic)	
This work	4	O(m) (randomized)	

^{*} The first two results hold for general weighted graph. n and m are the number of nodes and edges in the graph.

Consider the following graph

Choose ℓ_1 uniformly at random from the left side.

Add the neighborhood of ℓ_1 to the cluster

For each other node on the left (ℓ_2) do the following:

w.p. $\min(|R_{1,2}|/|R_2|,1)$ add ℓ_2 to the cluster if $|R_{1,2}| \ge |R_1|$.

Here ℓ_2 joins the cluster because $R_{1,2} \geq R_1$.

Let's consider another example

Let's consider another example

Since $|R_{1,2}|/|R_2|=1/2$ with probability 1/2 we decide what to do with ℓ_2

Since $|R_{1,2}| < |R_1|$ that decision should be to make ℓ_2 a singleton

Otherwise (w.p. 1/2) we decide nothing about ℓ_2 and continue.

We remove the clustered nodes from the graph and repeat.

Lemma

Let OPT denote the best possible bi-clustring of G. Let B be a random output of PivotBiCluster. Then:

$$E_{B \sim PivotBiCluster} [cost(B)] \le 4cost(OPT)$$

Let's see how to prove this...

Tuples, bad events, and violated pairs

A "bad event" (X_T) happens to tuple $T = (\ell_1, \ell_2, R_1, R_{1,2}, R_2)$.

Tuples, bad events, and violated pairs

We "blame" bad event X_T for the violated (red) pairs, $\mathbb{E}[cost(T)|X_T] = 3$.

Tuples, bad events, and violated pairs

Since every violated pair can be blamed on (or colored by) one bad event happening we have:

$$\mathbb{E}_{B \sim PivotBiCluster}\left[cost(B)\right] \leq \sum_{T} q_{T} \cdot \mathbb{E}[cost(T)|X_{T}]$$

where q_T denotes the probability that a bad event happened to tuple T.

Note: the number of tuples is exponential in the size of the graph.

Proof sketch

We have (previous slide)

$$ALG \leq \sum_{T} q_{T} \cdot \mathbb{E}[cost(T)|X_{T}]$$

2 Write the dual linear program

$$OPT \geq \sum_{T} \beta(T)$$
 s.t. constrains on $\beta(T)$

- **3** Set a feasible solution $\beta(T) \leftarrow q_T f(T)$.
- 4 Show that:

$$\mathbb{E}[cost(T)|X_T] + E[cost(\overline{T})|X_{\overline{T}}] \le 4(f(T) + f(\overline{T}))$$

5 Which gives

$$ALG \leq \sum_{T} q_{T} \cdot \mathbb{E}[cost(T)|X_{T}] \leq 4 \sum_{T} q_{T}f(T) \leq 4 \cdot OPT$$

In a bad square, any clustering must err at least once.

Let $x_{\ell,r}$ be equal 1 if the clustering errs on pair (ℓ,r) and 0 otherwise.

For $r_2 \in R_2$ and $r_{1,2} \in R_{1,2}$ we have $x_{\ell_1,r_2} + x_{\ell_1,r_{1,2}} + x_{\ell_2,r_2} + x_{\ell_2,r_{1,2}} \ge 1$

Since each tuple corresponds to $|R_2^T| \cdot |R_{1,2}^T|$ bad squares, we get the following constraint:

$$\forall T: \sum_{\substack{r_2 \in R_2^T, r_{1,2} \in R_{1,2}^T \\ r_2 \in R_2^T | R_{1,2}^T | \cdot (x_{\ell_1^T, r_2} + x_{\ell_2^T, r_2}) + \sum_{\substack{r_{1,2} \in R_{1,2}^T \\ r_{1,2} \in R_2^T} | R_{1,2}^T | \cdot (x_{\ell_1^T, r_2} + x_{\ell_2^T, r_2}) + \sum_{\substack{r_{1,2} \in R_{1,2}^T \\ \geq |R_2^T | \cdot |R_{1,2}^T |} | R_2^T | \cdot (x_{\ell_1^T, r_{1,2}} + x_{\ell_2^T, r_{1,2}})$$

Minimizing the cost corresponds to a minimization over $\sum x_{\ell,r}$ and subject to $x_{\ell,r} \ge 0$.

The dual of which is as follows:

$$\max \sum_{T} \beta(T)$$

$$\begin{split} &\text{s.t. } \forall \, (\ell,r) \in E: \\ &\sum_{T:\, \ell_2^T = \ell, r \in R_2^T} \frac{\beta(T)}{|R_2^T|} + \sum_{T:\, \ell_1^T = \ell,\, r \in R_{1,2}^T} \frac{\beta(T)}{|R_{1,2}^T|} + \sum_{T:\, \ell_2^T = \ell,\, r \in R_{1,2}^T} \frac{\beta(T)}{|R_{1,2}^T|} \leq 1 \\ &\text{and } \forall \, (\ell,r) \not \in E: \sum_{T:\, \ell_1^T = \ell,\, r \in R_2^T} \frac{1}{|R_2^T|} \beta(T) \leq 1 \end{split}$$

Feasibilty

Lemma

The solution

$$\beta(T) = q_T \cdot f(T)$$

is a feasible solution to the dual of the linear program when:

$$f(T) = \min\{|R_{1,2}^T|, |R_2^T|\} \min\left\{1, \frac{|R_{1,2}^T|}{\min\{|R_{1,2}^T|, |R_1^T|\} + \min\{|R_{1,2}^T|, |R_2^T|\}}\right\}$$

Lemma

For any tuple T,

$$\mathbb{E}[\mathsf{cost}(T)|X_T] + \mathbb{E}[\mathsf{cost}(\bar{T})|X_{\bar{T}}] \leq 4 \cdot \left(f(T) + f(\bar{T})\right).$$

We will not show these here, they are very technical...

Conclusion and discussion

	PivotBiCluster	LP based
Running time	O(m)	Solves LP on n^3 constraints
Takes advantage of bipartiteness	Yes	no
Approximation factor	4	4
Symmetric	No	Yes
Deterministic	No	Yes

- Can a combinatorial algorithm bit the 4 approximation factor?
- Maybe it should take advantage of the symmetry?
- Can this algorithm be derandomized?

Things I'll be happy discuss

(Some of which I don't know the answers for...)

- The rest of the proof
- Why we believe the analysis must use tuples and bad squares are not enough
- The running time of the algorithm (easily seen to be O(m))
- An LP based 4-approximation deterministic algorithm
- Is there a tight bad example for which the algorithm achieves the approximation bound
- Is there a combinatorial and deterministic algorithm with this bound (or better)
- Is there an approximation hardness result? (for what factor)

Thank you

