Sheet 12: Uniform Continuity

Definition 1 Let f be a real function and let $a \in \mathbb{R}$. We say that f approaches a at l from the left, or

$$\lim_{x \to a^{-}} f(x) = l$$

if for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in \mathbb{R}$ with $0 < a - x < \delta$ we have $|l - f(x)| < \varepsilon$. We say that f approaches a at l from the right, or

$$\lim_{x \to a^+} f(x) = l$$

if for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in \mathbb{R}$ with $0 < x - a < \delta$ we have $|l - f(x)| < \varepsilon$.

Definition 2 A real function $f:[a;b] \to \mathbb{R}$ is continuous on [a;b] if it is continuous for every $x \in (a;b)$, $\lim_{x\to a^+} f(x) = f(a)$ and $\lim_{x\to b^-} f(x) = f(b)$.

Theorem 3 Let f be a real function and let $a \in \mathbb{R}$. Then $\lim_{x\to a} f(x) = l$ if and only if $\lim_{x\to a^+} f(x) = l$ and $\lim_{x\to a^-} f(x) = l$.

Proof. Suppose that $\lim_{x\to a^+} f(x) = l$ and $\lim_{x\to a^-} f(x) = l$. Then for all $\varepsilon > 0$ there exist $\delta_1 > 0$ and δ_2 such that for all $x \in \mathbb{R}$ when $0 < a - x < \delta_1$ and $0 < x - a < \delta_2$ we have $|l - f(x)| < \varepsilon$. Let $\delta = \min(\delta_1, \delta_2)$. Then for all $x \in \mathbb{R}$ when $0 < |a - x| < \delta$ we have $|l - f(x)| < \varepsilon$. Thus $\lim_{x\to a} f(x) = l$.

Conversely, assume $\lim_{x\to a} f(x) = l$. Then for all $\varepsilon > 0$ there exists some $\delta > 0$ such that for all $x \in \mathbb{R}$ with $0 < |a-x| < \delta$ we have $|l-f(x)| < \varepsilon$. But then for all $x \in \mathbb{R}$ with $0 < x-a < \delta$ we have $|l-f(x)| < \varepsilon$ and so $\lim_{x\to a^+} f(x) = l$ and likewise for all $x \in \mathbb{R}$ with $0 < a-x < \delta$ we have $|l-f(x)| < \varepsilon$ and so $\lim_{x\to a^-} f(x) = l$.

Definition 4 A function $f: \mathbb{R} \to \mathbb{R}$ is increasing if for all $x \leq y$ we have $f(x) \leq f(y)$.

Theorem 5 Let $f: \mathbb{R} \to \mathbb{R}$ be an increasing real function. Then for all $a \in \mathbb{R}$ the limits $\lim_{x \to a^+} f(x)$ and $\lim_{x \to a^-} f(x)$ both exist.

Proof. Let $L = \{f(x) \mid a < x\}$. Since f is defined for all x > a, $L \neq \emptyset$ and since L is bounded below by f(a), inf L exists. For all $\varepsilon > 0$ we have $\varepsilon + \inf L > \inf L$. So there exists some $y \in L$ such that $y \leq \inf L + \varepsilon$. Since $y \in L$, there exists some x' > a such that y = f(x'). For $\varepsilon > 0$ let $\delta = x' - a > 0$. Now consider all $x \in \mathbb{R}$ such that 0 < x - a < x' - a. Then we have x < x' so $f(x) < f(x') \leq \inf L + \varepsilon$. So we have $|f(x) - \inf L| < \varepsilon$ when $0 < x - a < x' - a = \delta$. Thus inf L is the right hand limit of f. A similar proof holds for the left hand limit.

Theorem 6 (Intermediate Value Theorem) Let $f : [a;b] \to \mathbb{R}$ be continuous. Then f takes on every value between f(a) and f(b) on [a;b].

Proof. Let $f:[a;b] \to \mathbb{R}$ be continuous. Without loss of generality suppose that f(a) < f(b). For all $y \in (f(a); f(b))$ let g(x) = f(x) - y. We have f(a) < y < f(b) for all $y \in (f(a); f(b))$ and so g(a) < 0 and 0 < g(b). But then for all $y \in (f(a); f(b))$ there exists $c \in [a;b]$. Such that g(c) = f(c) - y = 0. Then f(c) = y and so for all $y \in (f(a); f(b))$ there exists $x \in [a;b]$ such that f(x) = y.

Theorem 7 (Positive Continuous Functions are Bounded Away From Zero) Let $f:[a;b] \to \mathbb{R}$ be continuous. If f(x) > 0 for all $x \in [a;b]$ then there exists C > 0 such that f(x) > C for all $x \in [a;b]$.

Proof. From Theorem 10.8 we know that there exists some $c \in [a; b]$ such that $f(c) \leq f(x)$ for all $x \in [a; b]$. Let C = f(c)/2. Then we have C < f(x) for all $x \in [a; b]$.

Theorem 8 A real function $f:[a;b] \to \mathbb{R}$ is continuous on [a;b] if and only if for all $x \in [a;b]$ and for all $\varepsilon > 0$ there exists $\delta(x,\varepsilon) > 0$ such that for all $y \in [a;b]$ with $|x-y| < \delta(x,\varepsilon)$ we have $|f(x) - f(y)| < \varepsilon$.

Proof. Let f be continuous on [a;b]. Then for all $y \in (a;b)$ and all $\varepsilon > 0$ there exists $\delta > 0$ so that for all $x \in \mathbb{R}$ when $|y-x| < \delta$ we have $|f(y)-f(x)| < \varepsilon$. We can then confine our delta so that our definition holds only for $x \in [a;b]$. Let $\delta' = \min(\delta, |y-b|, |y-a|)$. But also $\lim_{x\to a^+} f(x) = f(a)$ so for all $\varepsilon > 0$ there exists $\delta > 0$ so that for all $x \in \mathbb{R}$, if $0 < x-a < \delta$ we have $|f(a)-f(x)| < \varepsilon$. But if $0 < x-a < \delta$ then $|a-x| < \delta$. Again truncate the δ so that $\delta' = \min(\delta,b)$. A similar statement can be said for the left hand limit and f(b). Thus we have for all $y \in [a;b]$ and all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in [a;b]$ with $|y-x| < \delta$ we have $|f(y)-f(x)| < \varepsilon$.

Conversely suppose that for all $x \in [a;b]$ and for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $y \in [a;b]$ with $|x-y| < \delta$ we have $|f(x) - f(y)| < \varepsilon$. Then the statement is true for all $x \in (a;b)$ as well. Note that for continuity we need to be able to choose y's from \mathbb{R} , not just [a;b], but as we've shown we can make equivalent statements about continuity for closed intervals if we restrict δ to be within the confines of [a;b]. We also have for x = a, there exists $\delta > 0$ such that for all $y \in [a;b]$ with $|a-y| < \delta$ we have $|f(a) - f(y)| < \varepsilon$. But if $|a-y| < \delta$ then $x-a < \delta$. So $\lim_{x\to a^+} f(x) = f(a)$. A similar statement can be made about f(b). So we have these conditions implying continuity.

Exercise 9 Calculate some good $\delta(x,\varepsilon)$ for the following real functions: 1) f(x) = 17 $(x \in \mathbb{R})$ 2) f(x) = x $(x \in \mathbb{R})$ 3) $f(x) = x^2$ $(x \in \mathbb{R})$ 4) f(x) = 1/x $(x \in \mathbb{R} \setminus \{0\})$.

- 1) δ can be any value because for all $x \in \mathbb{R}$ we have f(x) = 17. Then for all $a \in \mathbb{R}$ when $|a x| < \delta$ we have $|f(a) f(x)| = 0 < \varepsilon$.
- 2) Let $\delta = \varepsilon$. Then for all $a \in \mathbb{R}$ if $|a x| < \delta = \varepsilon$ we have $|f(a) f(x)| = |a x| < \varepsilon = \delta$.
- 3) Let $\delta = \sqrt{\varepsilon}$. Then for all $a \in \mathbb{R}$ if $|a x| < \delta$ we have $|f(a) f(x)| = |a^2 x^2| < \varepsilon$.
- 4) Let $\delta = 1/\varepsilon$. Then for all $a \in \mathbb{R}$ if $|a x| < \delta = 1/\varepsilon$ we have $|f(a) f(x)| = |1/a 1/x| < \varepsilon$.

Definition 10 Let f be a real function and let A be a subset of the domain of f. Then f is uniformly continuous on A if for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that for all $x, y \in A$ with $|x - y| < \delta(\varepsilon)$ we have $|f(x) - f(y)| < \varepsilon$.

Theorem 11 (Continuous Functions on Closed Intervals are Uniformly Continuous) Let $f: [a;b] \to \mathbb{R}$ be continuous. Then f is uniformly continuous on [a;b].

Proof. Let $\varepsilon > 0$. Then for all $x \in [a;b]$ there exists $\delta_x > 0$ such that for all $y \in [a;b] \cap (x-\delta;x+\delta)$ we have $f(y) \in (f(x) - \varepsilon; f(x) + \varepsilon)$. Create an open cover for [a;b] using $(x - \delta_x; x + \delta_x)$ for all $x \in [a;b]$. Then [a;b] is compact so there exist finitely many of these regions which will cover [a;b]. Choose the region with the smallest δ_x and call it δ , note that δ will work for all the other regions in our cover since it is smaller than all of them. Then for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in [a;b]$ if $|x-y| < \delta$ then $|f(x) - f(y)| < \varepsilon$.

Theorem 12 Let $f:[a;b] \to \mathbb{R}$ be continuous and let $\varepsilon > 0$. For $x \in [a;b]$ let

$$\Delta(x) = \sup\{\delta \mid \text{for all } y \in [a; b] \text{ with } |x - y| < \delta, |f(x) - f(y)| < \varepsilon\}.$$

Then Δ is a continuous function of x.