De wereld achter transformaties: RD, ETRS89, ITRS en WGS84

Lennard Huisman

Mini-seminar:
RD en open Source Software
20 oktober 2016

Nederlandse Samenwerking Geodetische Infrastructuur (NSGI)

Onderwerpen in deze presentatie

- ITRS, WGS84, ETRS89 en RD
- Bijhouden van RD
- towgs84 or not towgs84?
- Activiteiten van de NSGI

Coördinaatreferentiesystemen van wereldwijd naar nationaal

International Terrestrial Reference System

- Basis voor internationale referentiestelsels
- Gebruikt voor Geodesie en Geofysica, bepalen
 - Variaties in aardrotatie
 - Variaties massamiddelpunt
 - Nauwkeurige satellietbanen
 - Beschrijven platentektoniek

ITRF2014: Snelheden van stations

World Geodetic System 1984

- Wereldwijd referentiesysteem, realisatie van ITRS
- Posities van GPS-satellieten
- Uitwisseling van wereldwijde datasets
 - Weersinformatie
 - Zee-waterhoogte

 - •
- Doel: Stabiel massamiddelpunt
- 'Rekenbasis' voor sommige GIS-software
- Bron van veel verwarring

European Terrestrial Reference System 1989

- ETRS89 is het Europese coördinaatreferentiestelsel
- Realisatie van ITRS op epoche 1989.0 en beweegt vanaf dat epoche mee met Europa
- ETRS89 is ook een officieel stelsel in Nederland
- Doel: Stabiele coördinaten in Europa
- Wordt nu vooral gebruikt voor
 - Uitwisseling van Europese geo-informatie
 - Vastlegging van data op de Noordzee
 - Geodynamische studies in Europa
- Basis voor nauwkeurige GNSS-plaatsbepaling in Nederland (inwinning BGT, BRK, AHN, Beeldmateriaal, ...)

ETRS89: Snelheden van stations

Stelsel van de Rijksdriehoeksmeting

- Het RD is het nationale stelsel voor de ligging
- Wordt gebruikt voor de vastlegging van geoinformatie op land
- Veel basisregistraties gebruiken RD

Nationale realisatie ETRS89: AGRS.NL

Bijhouding: Lokale metingen

Bijhouding van de relatie ETRS89-RD

Bijhouding van de relatie ETRS89-RD

Nationale realisatie ETRS89: AGRS.NL

AGRS.NL maakt het mogelijk iedere 30 seconden ETRS89 opnieuw te realiseren

Keuze nationale realisatie:

- Gemiddelde van 1 jaar 'gepubliceerde jaaroplossing'
- Wanneer nieuwe jaaroplossing 3*σ afwijkt van gepubliceerde jaaroplossing aanpassing

Nationale realisatie ETRS89: AGRS.NL

- De nationale realisatie van ETRS89 wordt gebruikt voor:
 - Vastleggen relatie RD en ETRS89 (RDNAPTRANS™)
 - 2. Certificering GNSS-referentiestations
 - 3. GNSS-kernnetpunten
 - 4.
- Inwinnen van geo-informatie met behulp van GNSS gebeurt ten opzichte van 2. of 3. (of verdichtingen daarvan) direct in ETRS89.
- Omrekenen van ETRS89 naar RD gaat met behulp van RDNAPTRANS™, of door inpassing in bestaande kaarten/bestanden.

RDNAPTRANS™2008

Bijhouding RDNAPTRANS

RDNAPTRANS kan jaarlijks worden bepaald

 Alleen bij verschillen groter dan 10 mm wordt een nieuwe versie gepubliceerd

 Een aanpassing van RDNAPTRANS levert nieuwe transformatieparameters op

Verschillende transformatieparameters

RDNAPTRANS2004-RDNAPTRANS2000

<2005: +towgs84=565.0400,49.9100,465.8400,-0.409394,0.359705,-1.868491,4.0772
2005-2008 +towgs84=565.2369,50.0087,465.6580,-0.406857,0.350733,-1.870347,4.0812
>=2009: +towgs84=565.4171,50.3319,465.5524,-0.398957,0.343988,-1.877402,4.0725

Het correctiegrid...

Het correctiegrid...

Constatering systematische afwijkingen in RD door opkomst GPS

Diverse scenario's gewogen (herziening RD, overgang naar ETRS89 en UTM)

- Inschatting complexiteit en kosten voor conversie: hoog
- Oplossing: Transformatie en correctiegrid
- Gevolg: RD-coördinaten voor na 2000 'gelijk'
- Destijds aangegeven dat een homogeen stelsel wenselijk is voor de lange termijn

correctiegrid zelden geïmplementeerd in GISpaketten

Grid weglaten (benaderde transformatie)


```
+proj=sterea +lat_0=52.156160556 +lon_0=5.387638889 + k=0.9999079
+x_0=155000 +y_0=463000 +ellps=bessel
+towgs84=565.4171,50.3319,465.5524,-0.398957,0.343988,-1.877402,4.0725
+units=m +no_defs <>
```


Verbeterde benaderde transformatieprocedure

+proj=sterea +lat_0=52.156160556 +lon_0=5.387638889 + k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +wktext +nadgrids=<path-to>/rdtrans2008.gsb +units=m +no_defs <>

Verschil RDNAPTRANS en verbeterde benaderde procedure voor AHN 25 meter grid

[m]

Beperkingen van de verbeterde benaderde procedure t.o.v. RDNAPTRANS

- 1) Het NTv2-grid geeft alleen binnen 1 millimeter gelijke resultaten als RDNAPTRANSTM2008 op maaiveld niveau voor het vaste land en 0 meter NAP voor wateroppervlakken. De afwijking ten opzichte van RDNAPTRANSTM2008 is circa 1 millimeter per 50 meter hoogteverschil.
- 2) De uitzondering op 1) is de contour van het RD-correctiegrid, op en in de directe nabijheid van deze contour, zijn er afwijkingen tot twintig centimeter in ligging.
- 3) Het VDatum-grid kan niet worden gebruikt voor het bepalen van schietloodafwijkingen, zoals het NLGEO2004 grid van RDNAPTRANS™.
- 4) Het VDatum-grid geldt ten opzichte van de Bessel1841-ellips, hierdoor kan het alleen worden gebruikt in combinatie met het NTv2-grid.

Samenvatting tot nu toe

- WGS84 is een realisatie van het ITRS
- WGS84 heeft een stabiel nulpunt en een stabiele rotatie-as
- ETRS89 is een realisatie van ITRS op 1-1-1989
- ETRS89 beweegt mee met Europa
- NSGI onderhoudt de relatie tussen RD/NAP en ETRS89
- Verschillende realisaties d.m.v. RDNAPTRANS (2000,2004,2008)
- RDNAPTRANS en Verbeterde benaderde transformatie

Verschillen in ETRS89 en WGS84

Behalve RDNAPTRANS hebben ook WGS84 en ETRS89 verschillende realisaties

De juiste manier om van RD naar WGS84 te transformeren

Een goede manier om van RD naar WGS84 te transformeren

Voorbeeld voor 1 januari 2016

Uitrekenen 7 parameters uit 15 parameters

http://itrf.ign.fr/doc_ITRF/Transfo-ITRF2008_ITRFs.txt

```
 \begin{array}{l} \text{cs2cs +proj=longlat +ellps=GRS80} \\ \underline{\text{+towgs84=0.0537,0.0509,-0.0873,0.002187,0.013230,-}} \\ \underline{\text{0.021384,0.00262}} \\ \text{+to +proj=sterea +lat\_0=52.156160556} \\ \text{+lon\_0=5.387638889} \\ \text{+k=0.9999079} \\ \text{+x\_0=155000} \\ \text{+y\_0=463000 +ellps=bessel +nadgrids=rdtrans2008.gsb} \\ \text{+geoidgrids=naptrans2008.gtx} \\ \text{+units=m} \end{array}
```

Frame	d_x	d_y	d_z	S	r_x	r_y	r_z	\dot{d}_x	\dot{d}_u	\dot{d}_z	š	\dot{r}_x	\dot{r}_y	\dot{r}_z	t_0
	mm	mm	mm	ppb	mas	mas	mas	mm/yr	mm/yr	mm/yr	ppb/yr	mas/yr	mas/yr	mas/yr	yr
ETRF2000(R08)	52.1	49.3	-58.5	1.34	0.891	5.390	-8.712	0.1	0.1	-1.8	0.09	0.081	0.490	-0.792	2000

with:

 d_x , d_y and d_z :;Translation parameters r_x , r_y and r_z ;Rotation parameters s;Increment to scale ...;Rates of parameters

$$\mathbf{d}(t) = \mathbf{d}(t_0) + (t - t_0)\dot{\mathbf{d}}(t_0)$$

$$\mathbf{R}(t) = \mathbf{R}(t_0) + (t - t_0)\dot{\mathbf{R}}(t_0)$$

$$\Delta s(t) = \Delta s(t_0) + (t - t_0) \Delta \dot{s}(t_0)$$

Wat is de NSGI van plan in relatie tot transformaties?

Meerjarenplan 2016 - 2020

voor de

Nederlandse Samenwerking Geodetische Infrastructuur

2013-2015 "Grip op ETRS89"

(http://www.geonovum.nl/onderwerpen/coördinaatsystemen/nieuws/overstap-naar-etrs89-rapport-online)

Volledige herziening RDNAPTRANS™

Bijhouden en updaten PCTRANS

 Realisatie van een 'transformatievalidatieservice'

De wereld achter transformaties: RD, ETRS89, ITRS en WGS84

Lennard Huisman

Mini-seminar:
RD en open Source Software
20 oktober 2016

Nederlandse Samenwerking Geodetische Infrastructuur (NSGI)

