Lecture 15 Chi-Squared Tests

These slides are the property of Dr. Wendy Rummerfield ©

agenda

Reminders	Midterm 1 revisions (read the directions!); HW 5 due Thursday			
lecture part 1	chi-squared tests for goodness of fit			
lecture part 2	chi-squared tests for independence			
R activity	hypothesis testing for goodness of fit and independence (ht_chi_squared.Rmd)			

Chi-squared distribution

the chi-squared (χ^2) distribution with k degrees of freedom is the sum of squares of k independent standard normal random variables, i.e.,

$$\chi_k^2 = \sum_{i=1}^k Z_i^2$$

Chi-squared distribution

If
$$V = \sum_{i=1}^k Z_i^2$$
 then,

- \bullet E[V] = k
- Var[V] = 2k

To plot a χ^2 - distribution, use the code:

```
x <- seq(0, 20, 0.1)
chi3 <- dchisq(x, df = 3)
chi5 <- dchisq(x, df = 5)
chi10 <- dchisq(x, df = 10)</pre>
```

```
plot(x, chi3, type = "l", ylim = c(0, 0.3))
lines(x, chi5, lty = 2)
lines(x, chi10, lty = 3)
```


Chi-squared probabilities

Let
$$V = \sum_{i=1}^{k} Z_i^2$$
, where $k = 13$ $\mathbb{Z} \sim N(O_1)$, $V \sim \chi_{13}^2$
1) Find $P(V > 10)$
Pchisq(IO_1I3_1 , $Iower.+ail = FALSE$)

Chi-squared test for Goodness of Fit

- 1) Hypotheses
- Ho: the data follow a particular probability distribution
- H_a: the data do not follow the H_o dist.
- 2) Test conditions:
 - o Independence
 - Expected counts
- 3) Calculate test statistic $\chi^2 = \sum_{i=1}^{I} \frac{(O_i E_i)^2}{E_i}$

categorical var w/ (x) 2 categories

- 4) Compute p-value
- > pchisq(test_stat, df,

lower.tail = FALSE)

- *where df = # groups 1
- 5) Decision and conclusion in context

Consider a standard package of milk chocolate M&Ms. There are six different colors: **red**, **orange**, **vellow**, **green**, **blue** and **brown**. Suppose that we are curious about the distribution of these colors and ask, do all six colors occur in equal proportion?

Suppose that we have a simple random sample of 600 M&M candies with the following distribution:

- 212 of the candies are **blue**.
- 147 of the candies are orange.
- 103 of the candies are green.
- 50 of the candies are red.
- 46 of the candies are yellow.
- 42 of the candies are brown.

Hypothesis Testing

null

Ho: proportion of all 4 mam colors is the same

alternative

HA: at least one of the proportions is different

Ho: PBL = PR = Po = PG = PBR = Py=1

HA: Ho not true

Check Conditions

Independence

observational units are randomly selected

random sample

Expected counts

expected counts are all greater than 5

$$nP_{R} = 400 \times 4 = 100$$
 $nP_{0} = 100$
 $nP_{9} = 100$
 $nP_{BL} = 100$
 $nP_{BL} = 100$
 $nP_{BL} = 100$

$$\chi^{2} = \sum_{\text{all cells}} \frac{(\text{Observed - Expected})^{2}}{Expected}$$

$$= \sum_{i=1}^{I} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$= \frac{(50 - 100)^{2} + (147 - 100)^{2} + (46 - 100)^{2}}{100} + \dots$$

$$= \frac{(235.42)}{Calculate test statistic}$$

Calculate test statistic

Compute p-value

pchisq(235.42, 5, 10wer. +ail = FALSE)

Conclusion in Context

Reject the null: We have enough evidence that distribution of differs from the distribution specified in the null.

Fail to reject the null: We do not have enough evidence that distribution of _____ differs from the distribution specified in the null.

of M&m colors are not all equal.

Break time!

Two-way Tables

Var 2

		j = 1	j = 2		j = J	Total
٨	i = 1	n ₁₁	(n ₁₂)	•••	n _{ıյ}	n _{1.}
varz	i = 2	n ₂₁	n ₂₂	•••	n _{2J}	n ₂ .
		•••	•••	•••	•••	•••
	i = I	n _{I1}	n _{I2}	•••	n _{IJ}	n _{J.}
	Total	n _{.1}	n _{.2}	•••	n _{.J}	n

n 21

Chi-squared test for Independence

- 1) Hypotheses
- H_o: var1 and var2 are independent
- H_A: var1 and var2 are not independent
- 2) Test conditions:
 - Independence
 - Expected counts
- 3) Calculate test statistic

$$\chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- associated 4) Compute p-value
 - > pchisq(test_stat, df,

- *where df = (# rows 1) x (# cols 1) df = (T-1)x(J-1)5) Decision and conclusion in context

Independence

Suppose 2 events: A, B

A and B are indep. if $P(A \cap B) = P(A) \times P(B)$

Ho: Pij = Pi. x P.; Hi.j Ha: Ho not true Suppose 395 people are randomly selected, and are "cross-classified" into one of eight cells, depending into which age category they fall and whether or not they support legalizing marijuana.

Ho: no & age grap

Are marijuana support and age group independent?

Age Groups

HA:	mj 8	. age g	rap
	not	indep.	195500

	18-24	25-34	35-49	50-64	Total
Yes	60	54	46	41	201
No	40	44	53	57	194
Total	100	98	99	98	395

Check Conditions

Independence

observational units are randomly selected

Expected counts

expected counts are all greater than 5

	j = 1	j = 2		j =]	Total
i = 1	n ₁₁	n ₁₂	•••	n _{1J}	n _{1.}
i = 2	n ₂₁	n ₂₂	•••	n _{2J}	n ₂ .
	•••	•••	•••	•••	•••
i = I	n _{I1}	n _{I2}	•••	n _{IJ}	n _{J.}
Total	n _{.1}	n _{.2}	•••	n _{.J}	n

Expected counts $E_{ij} = \frac{n_{i.} * n_{.j}}{}$

$$r_i = \frac{n_{i.} * n_{.j}}{n}$$

Observed Counts

	18-24	25-34	35-49	50-64	Total	
Yes	60	54	46	41	201	
No	40	44	53	57	194	
Total	100	98	99	98	395	
50.89 49.87 Expected Counts						

	Expected Counts						
	18-24	25-34	35-49	50-64	Total		
Yes	100 × 201 395	395.	99×201 395	98 × 20) 895	201		
No	395	98 × 194	395	98 × 194	194		
Total	100	98	99	98	395		

Calculate expected counts

$$\chi^{2} = \sum_{\text{all cells}} \frac{(\text{Observed - Expected})^{2}}{Expected}$$

$$= \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

$$= \underbrace{\frac{(60 - 50.89)^{2}}{50.89}}_{\text{So.89}} + \underbrace{\frac{(54 - 49.87)^{2}}{49.87}}_{\text{49.87}} + ...$$

Compute p-value

Conclusion in context

Reject the null: We have enough evidence that var1 and var2 are not independent.

Fail to reject the null: We do not have enough evidence that var1 and var2 are not independent.