Intervalos en $\mathbb R$

Análisis Real

1. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo abierto

- 1. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo abierto
- 2. $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ Intervalo Cerrado

- 1. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo abierto
- 2. $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ Intervalo Cerrado
- 3. $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$ Intervalo Semiabierto o Semicerrado

- 1. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo abierto
- 2. $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ Intervalo Cerrado
- 3. $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$ Intervalo Semiabierto o Semicerrado
- 4. $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$ Intervalo Semiabierto o Semicerrado

- 1. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo abierto
- 2. $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ Intervalo Cerrado
- 3. $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$ Intervalo Semiabierto o Semicerrado
- 4. $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$ Intervalo Semiabierto o Semicerrado

- 1. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo abierto
- 2. $[a, b] = \{x \in \mathbb{R} : a < x < b\}$ Intervalo Cerrado
- 3. $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$ Intervalo Semiabierto o Semicerrado
- 4. $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$ Intervalo Semiabierto o Semicerrado
- 1. $(a, +\infty) = \{x \in \mathbb{R} : a < x\}$

- 1. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo abierto
- 2. $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ Intervalo Cerrado
- 3. $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$ Intervalo Semiabierto o Semicerrado
- 4. $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$ Intervalo Semiabierto o Semicerrado
- 1. $(a, +\infty) = \{x \in \mathbb{R} : a < x\}$
- 2. $(-\infty, b) = \{x \in \mathbb{R} : x < b\}$

- 1. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo abierto
- 2. $[a, b] = \{x \in \mathbb{R} : a < x < b\}$ Intervalo Cerrado
- 3. $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$ Intervalo Semiabierto o Semicerrado
- 4. $[a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo Semiabierto o Semicerrado
- 1. $(a, +\infty) = \{x \in \mathbb{R} : a < x\}$
- 2. $(-\infty, b) = \{x \in \mathbb{R} : x < b\}$
- 3. $[a, +\infty) = \{x \in \mathbb{R} : a < x\}$

- 1. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo abierto
- 2. $[a, b] = \{x \in \mathbb{R} : a < x < b\}$ Intervalo Cerrado
- 3. $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$ Intervalo Semiabierto o Semicerrado
- 4. $[a,b) = \{x \in \mathbb{R} : a < x < b\}$ Intervalo Semiabierto o Semicerrado
- 1. $(a, +\infty) = \{x \in \mathbb{R} : a < x\}$
- 2. $(-\infty, b) = \{x \in \mathbb{R} : x < b\}$
- 3. $[a, +\infty) = \{x \in \mathbb{R} : a < x\}$
- 4. $(-\infty, b] = \{x \in \mathbb{R} : x \le \}$

1. $+\infty$ y $-\infty$ no son números reales, son símbolos

$$2. \ (-\infty, +\infty) = \mathbb{R}$$

3.
$$[a, a] = \{a\}$$

4.
$$(a, a) = \emptyset$$

Teorema (Caracterización de los Intervalos)

Sea S un subconjunto de \mathbb{R} con al menos dos puntos. S satisface la propiedad:

Si
$$x, y \in S$$
 y $x < y$ entonces $[x, y] \subset S$

sí y sólo si S es un intervalo

Definición

Sean $I_1, I_2, I_3, ..., I_n, ...; n \in \mathbb{Z}_+$ intervalos, se dice que estos intervalos son encajados si $I_1 \supset I_2 \supset I_3 \supset ...$, es decir $I_n \supset I_{n+1}$

Teorema (Intervalos Encajados de Cantor)

Sean $I_1,I_2,I_3,...,I_n,...;n\in\mathbb{Z}_+$ intervalos cerrados, acotados y encajados entonces $\bigcap_{n\in\mathbb{Z}_+}I_n\neq\emptyset$

Ejercicios

- 1. Sea S un subconjunto no vacío de \mathbb{R} . Muestre que S es acotado sí y solo si existe un intervalo cerrado y acotado I tal que $S \subset I$
- 2. Si $I_1 \supset I_2 \supset I_3 \supset ...$ son intervalos encajados y si $I_n = [a_n, b_n]$ muestre que: $a_1 \leq a_2 \leq a_3 \leq ... \leq a_n \leq a_{n+1} \leq ...$ y que $b_1 > b_2 > b_3 > \dots > b_n > b_{n+1} > \dots$
- 3. Sea $K_n=(n.+\infty)$; $n\in\mathbb{Z}_+$. Muestre que $\bigcap_{n\in\mathbb{Z}_+}K_n=\emptyset$

MACC Matemáticas Aplicadas y Ciencias de la Computación

