1. Um fabricante de radioisótopos tem de expedir uma solução de ¹⁸FDG[†] para um hospital situado a 1,5 horas de caminho. Se a encomenda é de 200 mCi, qual deve ser a sua actividade ao sair das instalações do fabricante?

A: 410 mCi B: 442 mCi C: ·353 mCi D: 380 mCi

$$h = 1,5h$$
 $Q_1 = 200 \text{ m/C}; \quad T_{4/2} = \frac{Lm2}{\lambda} = 0,379 \text{ h}^{-1}$
 $Q_0 = ?$

$$Q(1) = Q(0) \cdot e^{-\lambda t} = 200 = Q(0) \cdot e^{-0.379 \cdot 1.5}$$
 (=) $Q(0) = 353 \text{ mC}$

2. Qual destes dispositivos é adequado para exames PET?

Âλ	B: B	C: C	D: D			

3. Que afirmação está certa?

A: A relação contraste-ruído dum sistema imagiológico melhora com a redução da resolução espacial do mesmo.	
C: O ruído de contagem é independente do conteúdo da	D: A função de espalhamento da aresta é a transformada de Fourier da relação sinal-ruído.

6. Para aquisição desta imagem MRI através duma sequência spin-echo, o gradiente de selecção da fatia deve ser aplicado na direcção?

A: x		
By		
C: z		

7 – A figura da esquerda representa uma lente acústica esférica fixa com diâmetro de 2 cm e ponto focal a 10 cm. A figura da direita representa um transdutor linear segmentado do mesmo diâmetro, a que se aplicam impulsos com atrasos relativos. A lente acústica é feita de um material com velocidade do som 3000 m/s.

a) Qual é o raio R da lente fixa?

D: simultaneamente x e z

A:	9,46	cm

B: 11,6 cm

C: 13,7 cm

$$f# = \frac{R}{2\alpha} = \frac{R}{2}$$

$$F = \frac{R}{1 - \frac{1}{B_z}} (=) R = 7,24 cm$$

b) Qual deve ser o atraso entre os impulsos aplicados aos segmentos centrais e os impulsos aplicados aos segmentos mais periféricos do transdutor segmentado para obter o mesmo efeito.

A: 218 ns

B: 166 ns

C: 136 ns

D: 115 ns

$$X = \sqrt{0.724^2 - 0.1^2} = 0.717 m$$

$$V = \frac{d}{d} = 0.717 m$$

$$V = \frac{d}{d}$$
 (=) $J = \frac{d}{V}$

$$d=R=$$
 $t_1=\frac{R}{V}=\frac{0.724}{3000}=241,3\mu s$ $t_1-t_2=230 \text{ ms}$ $t_2=\frac{\mu}{V}=\frac{0.717}{3000}=239 \mu s$

c) Qual é a resolução lateral em ambos os casos para uma frequência de operação de 5 MHz?

A: 1,97 mm		B: 2,32 mm		C)1,23 1	C1,23 mm		D: 1,61 mm		
FWHM ~	1.1	154C • 50∞ 0	<u>_</u> · 0,	0724	~ 1,23	Mini -	→O		
		2.	0.01						