PROGRAMMING IN HASKELL

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Equational Reasoning and Induction

Assignment Project Exam Help

Equhttps://eduassistpro.github.ig/

Functional Programming

- What is functional programming? Some possible answers:
 - Programming with first colors Exactions p
 - map (\x -https://eduassistpro.github.ip/3,4]
 - Add WeChat edu_assist_pro
 Programming with mathe ctions
 - No side-effects (no global mutable state, no IO)
 - Calling a function with the same arguments, always returns the same output (not true in most languages!)

Reasoning about Purely Functional Programs

- When programs behave as mathematical functions, standard mathematical techniques can be used to reason about significant Exam Help
- Such techniqu https://eduassistpro.github.io/
 - Equational reasoning: Inte-Add We Char edu_assist_pro equations; substitute equ Is
 - Structural induction: The use of recursion means that reasoning techniques such as induction are useful.

 Whenever we have a system of mathematical equations, we can use equational reasoning to reason about such equations. Agriexample Project Exam Help

Suppose we want to find the value of x

Using annotated steps we proceed as follows

https://eduassistpro.github.io/

 Using equational reasoning and structural induction we can show that the Option instance

Assignment Project Exam Help

```
instance Monad
return x

None >>= f
(Some x) >>= f f x
```

satisfies the monad laws:

```
return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h
```

• First law:

```
return a >>=Aksignment Project Exam Help

[?}

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
```

Second law:

Third law:

Third law:

Assignment Project Exam Help

Strhttps://eduassistpro.github.io/

Induction in mathematics

Induction decomposes a proof into two parts:

• Base case(s): Prove that Ptheproperty holds for the base cases.

https://eduassistpro.github.io/

• Inductive step(s): Prove that edu_assist_prove the recursive cases.

Induction in mathematics

The simplest and most common type of induction is induction on natural numbers.

Assignment Project Exam Help

- Base case: Sh ttps://eduassistpro.github.io/
- Inductive step: Assuming that edu_assist_pro show that the property holds

In the inductive step, the assumption is called the Induction Hypothesis.

Structural Induction

In functional programming, we can use induction to reason about functions defined over datatypes. For example, given the list Alatatypeent Project Exam Help

```
data [a] = [ https://eduassistpro.github.io/
```

we obtain the following inducti edu_assist_pro

- Base case: Show that the property holds for xs = [].
- Inductive step: Assuming that the property holds for xs, show that the property holds for (x:xs).

Structural Induction

Consider the map function:

```
map :: (a -> \lambda) sign[a] ent [b] ject Exam Help map f [] | jd x = x map f (x:xs) = f https://eduassistpro.github.io/
```

It should be clear that mappi
 It should be clear that mappi
 Tity function returns the same list back:

```
map id xs \equiv xs
```

Can we prove it?

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Consider the map function again:

```
map :: (a -> A) signment Phoject Exam Help
map f [] = [
map f (x:xs) = f https://eduassistpro.github.io/

(f . g) x = f (g x)

Add WeChat edu_assist_pro
```

• Do you think the following is true?

```
map f (map g xs) \equiv map (f . g) xs — map fusion
```

Can we prove it?

```
map f (map g xs)

={?}

2)

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
```

Functors

It turns out that the map function, together with the laws:

```
map f (map gass)i snime professe Exama profession map id xs ≡ xs ap identity https://eduassistpro.github.io/
```

Can be generalized: dd WeChat edu_assist_pro

```
class Functor f where fmap :: (a -> b) -> f a -> f b

— Laws
```

- fmap f (fmap q fa) \equiv fmap (f.q) fa
- fmap id fa ≡ fa

List Functor

Given the map function and our two proofs, it is easy to create an instance for Functor:

Assignment Project Exam Help

instance Functor

fmap = map https://eduassistpro.github.io/

Other Functors

```
Functors are quite common, nearly all parametrised types (Example: [a], Maybe a, IO a, ...) are functors

Assignment Project Exam Help

— data Maybe a

https://eduassistpro.github.io/
instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)
```

Maybe Functor

Maybe Functor

Assignment Project Exam Help

https://eduassistpro.github.io/

1) Consider the definitions:

```
map :: (a - Ab) ignifient Project Exam Help
map f [] =
map f (x:xs) = https://eduassistpro.github.io/

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs
```

Prove that:

length (map f xs) \equiv length xs

```
length (map f xs)
■ {Induction on xs}
1) Base case: xs = []
length (map f [])
■ {definition of map}
length []
2) Inductive case ex Exam Help
length (map f (y: https://eduassistpro.github.io/
■ {definition of m
length (f y: map fAyd) WeChat edu_assist_pro
■ {definition of length}
1 + length (map f ys)
■ {Induction Hypothesis}
1 + length ys
■ {definition of length}
length (y:ys)
```

2) Consider the definitions:

```
map :: (a ->Ab)ight@ht Project Exam Help
map f [] =
map f (x:xs) = https://eduassistpro.github.io/

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
```

Prove that:

map $f(xs ++ ys) \equiv map f xs ++ map f ys$

```
map f(xs ++ ys)
■ {Induction on xs}
1) Case xs = []
map f([] ++ ys)
■ {definition Assignment Project Exam Help
map f ys
[] ++ map f ys Add WeChat edu_assist_pro
■ {definition of map}
map f [] ++ map f ys
```

3) Consider the definitions:

3) Prove that:

```
mapT id \equiv id Assignment Project Exam Help mapT f (mapT g https://eduassistpro.github.io/ Add WeChat edu_assist_proflatten . mapT f \equiv map f . flatte
```