

ENGENHARIA DE SOFTWARE

41492-ES

Nuno Sá Couto

(nuno.sacouto@ua.pt)

Department of Electronics, Telecommunications and Informatics (DETI)

UNIVERSITY OF AVEIRO (UA), PORTUGAL

2022

Cloud Computing fundamentals

Agenda

- AWS Educate
 - + AWS Academy Cloud Foundations [27857]
 - + Module 1: Cloud Concepts Overview
 - + Module 2: Cloud Economics and Billing
 - Module 3: AWS Global Infrastructure Overview
 - Module 4: AWS Cloud Security
 - Module 5: Networking and Content Delivery
 - + Module 6: Compute
 - + Module 7: Storage
 - + Module 8: Databases
 - + Module 9: Cloud Architecture
 - Module 10: Automatic Scaling and Monitoring

Week #10

CLOUD ARCHITECTURE

Module 9: Cloud Architecture

Section 1: AWS Well-Architected Framework

Architecture: designing and building

What is the AWS Well-Architected Framework?

- A guide for designing infrastructures that are:
 - ✓ Secure
 - √ High-performing
 - ✓ Resilient
 - ✓ Efficient
- A consistent approach to evaluating and implementing cloud architectures
- A way to provide best practices that were developed through lessons learned by reviewing customer architectures

Operational Excellence pillar

Operational Excellence pillar

Operational Excellence pillar

Deliver business value

Focus

• Run and monitor systems to deliver business value, and to continually improve supporting processes and procedures.

Key topics

- Automating changes
- Responding to events
- Defining standards to manage daily operations

Operational excellence design principles

Operational Excellence pillar

Deliver business value

- Perform operations as code
- Make frequent, small, reversible changes
- Refine operations procedures frequently
- Anticipate failure
- Learn from all operational events and failures

Operational excellence questions

Organization

- How do you determine what your priorities are?
- How do you structure your organization to support your business outcomes?
- How does your organizational culture support your business outcomes?

Prepare

- How do you design your workload so that you can understand its state?
- How do you reduce defects, ease remediation, and improve flow into production?
- How do you mitigate deployment risks?
- How do you know that you are ready to support a workload?

Operate

- How do you understand the health of your workload?
- How do you understand the health of your operations?
- How do you manage workload and operations events?

Evolve

How do you evolve operations?

Security pillar

Security pillar

Security pillar

Protect and monitor systems

Focus

 Protect information, systems, and assets while delivering business value through risk assessments and mitigation strategies.

Key topics

- Protecting confidentiality and integrity of data
- Identifying and managing who can do what
- Protecting systems
- Establishing controls to detect security events

Security design principles

Security pillar

Protect and monitor systems

- Implement a strong identity foundation
- Enable traceability
- Apply security at all layers
- Automate security best practices
- Protect data in transit and at rest
- Keep people away from data
- Prepare for security events

Security questions

Security

How do you securely operate your workload?

Identity and access management

- How do you manage identities for people and machines?
- How do you manage permissions for people and machines?

Detection

 How do you detect and investigate security events?

Infrastructure protection

- How do you protect your network resources?
- How do you protect your compute resources?

Data protection

- How do you classify your data?
- How do you protect your data at rest?
- How do you protect your data in transit?

Incident response

 How do you anticipate, respond to, and recover from incidents?

Reliability pillar

Reliability pillar

Reliability pillar

Recover from failure and mitigate disruption.

Focus

• Ensure a workload performs its intended function correctly and consistently when it's expected to.

Key topics

- Designing distributed systems
- Recovery planning
- Handling change

Reliability design principles

Reliability pillar

Recover from failure and mitigate disruption.

- Automatically recover from failure
- Test recovery procedures
- Scale horizontally to increase aggregate workload availability
- Stop guessing capacity
- Manage change in automation

Reliability questions

Foundations

- How do you manage service quotas and constraints?
- How do you plan your network topology?

Workload architecture

- How do you design your workload service architecture?
- How do you design interactions in a distributed system to prevent failure?
- How do you design interactions in a distributed system to mitigate or withstand failures?

Change management

- How do you monitor workload resources?
- How do you design your workload to adapt to changes in demand?
- How do you implement change?

Failure management

- How do you back up data?
- How do you use fault isolation to protect your workload?
- How do you design your workload to withstand component failures?
- How do you test reliability?
- How do you plan for disaster recovery?

Performance Efficiency pillar

Performance Efficiency pillar

Performance Efficiency pillar

Use resources sparingly.

Focus

 Use IT and computing resources efficiently to meet system requirements and to maintain that efficiency as demand changes and technologies evolve.

Key topics

- Selecting the right resource types and sizes based on workload requirements
- Monitoring performance
- Making informed decisions to maintain efficiency as business needs evolve

Performance efficiency design principles

Performance Efficiency pillar

Use resources sparingly.

- Democratize advanced technologies
- Go global in minutes
- Use serverless architectures
- Experiment more often
- Consider mechanical sympathy

Performance efficiency questions

Selection

- How do you select the best performing architecture?
- How do you select your compute solution?
- How do you select your storage solution?
- How do you select your database solution?
- How do you configure your networking solution?

Review

 How do you evolve your workload to take advantage of new releases?

Monitoring

 How do you monitor your resources to ensure they are performing?

Tradeoffs

 How do you use tradeoffs to improve performance?

Cost Optimization pillar

Cost Optimization pillar

Cost Optimization pillar

Eliminate unneeded expense.

Focus

Avoid unnecessary costs.

Key topics

- Understanding and controlling where money is being spent
- Selecting the most appropriate and right number of resource types
- Analyzing spend over time
- Scaling to meeting business needs without overspending

Cost optimization design principles

Cost Optimization pillar

Eliminate unneeded expense.

- Implement Cloud Financial Management
- Adopt a consumption model
- Measure overall efficiency
- Stop spending money on undifferentiated heavy lifting
- Analyze and attribute expenditure

Cost optimization questions

Practice cloud financial management

How do you implement cloud financial management?

Expenditure and usage awareness

- How do you govern usage?
- How do you monitor usage and cost?
- How do you decommission resources?

Cost-effective resources

- How do you evaluate cost when you select services?
- How do you meet cost targets when you select resource type, size, and number?
- How do you use pricing models to reduce cost?
- How do you plan for data transfer changes?

Manage demand and supply resources

How do you manage demand and supply resources?

Optimize over time

How do you evaluate new services?

Section 1 key takeaways

- The AWS Well-Architected Framework provides a consistent approach to evaluate cloud architectures and guidance to help implement designs.
- The AWS Well-Architected Framework documents a set of foundational questions that enable you to understand if a specific architecture aligns well with cloud best practices.
- The AWS Well-Architected Framework is organized into five pillars.
- Each pillar includes a set of design principles and best practices.

Reliability & Availability

"Everything fails, all the time."

Werner Vogels, CTO, Amazon.com

Reliability

- A measure of your system's ability to provide functionality when desired by the user.
- System includes all system components: hardware, firmware, and software.
- Probability that your entire system will function as intended for a specified period.
- Mean time between failures
 (MTBF) = total time in service/number of failures

Reliability

System brought online (system available)

Availability

- Normal operation time / total time
- A percentage of uptime (for example, 99.9 percent) over time (for example, 1 year)
- Number of 9s Five 9s means 99.999 percent availability

High availability

- System can withstand some measure of degradation while still remaining available.
- Downtime is minimized.
- Minimal human intervention is required.

Availability tiers

Availability	Max Disruption (per year)	Application Category
99%	3 days 15 hours	Batch processing, data extraction, transfer, and load jobs
99.9%	8 hours 45 minutes	Internal tools like knowledge management, project tracking
99.95%	4 hours 22 minutes	Online commerce, point of sale
99.99%	52 minutes	Video delivery, broadcast systems
99.999%	5 minutes	ATM transactions, telecommunications systems

Factors that influence availability

Fault tolerance

 The built-in redundancy of an application's components and its ability to remain operational.

Scalability

 The ability of an application to accommodate increases in capacity needs without changing design.

Recoverability

 The process, policies, and procedures that are related to restoring service after a catastrophic event.

Section 2 key takeaways

- Reliability is a measure of your system's ability to provide functionality when desired by the user, and it can be measured in terms of MTBF.
- Availability is the percentage of time that a system is operating normally or correctly performing the operations expected of it (or normal operation time over total time).
- Three factors that influence the availability of your applications are fault tolerance, scalability, and recoverability.
- You can design your workloads and applications to be highly available, but there is a cost tradeoff to consider.

Module 9: Cloud Architecture

Section 3: AWS Trusted Advisor

AWS Trusted Advisor

Potential monthly savings

- Online tool that provides real-time guidance to help you provision your resources following AWS best practices.
- Looks at your entire AWS environment and gives you real-time recommendations in five categories.

Activity: Interpret AWS Trusted Advisor recommendations

Trusted Advisor Dashboard

Cost Optimization

\$0.00 Potential monthly savings Performance

9 2 1 4 0 0

Security

13 🛂 2 🛕 2 🕕

Fault Tolerance

14 **2** 2 **A** 1 **0**

Service Limits

48 **2** 0 **A** 0 **0**

Section 3 key takeaways

- AWS Trusted Advisor is an online tool that provides real-time guidance to help you provision your resources by following AWS best practices.
- AWS Trusted Advisor looks at your entire AWS environment and gives you real-time recommendations in five categories.
- You can use AWS Trusted Advisor to help you optimize your AWS environment as soon as you start implementing your architecture designs.

Additional resources

- AWS Well-Architected website
- AWS Well-Architected Framework whitepaper
- AWS Well-Architected Labs
- AWS Trusted Advisor Best Practice Checks

Thank you

aws academy