Stochastik I 13. Übung

Aufgabe 49 (3 Punkte)

Es seien $X_1, X_2, ...$ unabhängige, Bernoulli-verteilte Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$ mit $\mathbb{P}[X_n = 1] = 1 - \mathbb{P}[X_n = 0] = p_n \in (0, 1)$. Geben Sie für jede der folgenden Aussagen jeweils eine äquivalente Bedingung an die Folge $(p_n)_{n \in \mathbb{N}}$ an:

- (i) $X_n \stackrel{\mathsf{p}}{\longrightarrow} 0$.
- (ii) $X_n \xrightarrow{L^p} 0$.
- (iii) $X_n \xrightarrow{\mathsf{f.s.}} 0$.

Aufgabe 50 (4 Punkte)

Es seien (E, d) und (E', d') zwei metrische Räume und $f : E \to E'$ eine beliebige Abbildung. Zeigen Sie, dass die Menge $D_f := \{x \in E : f \text{ ist unstetig in } x\}$ in der Borel- σ -Algebra $\mathcal{B}(E)$ liegt.

 $\mathit{Hinweis:}$ Man zeige zunächst, dass für $\varepsilon>0$ und $\delta>0$ die Menge

 $D_f^{\varepsilon,\delta} := \left\{ x \in E : \text{ es gibt } y, z \in E \text{ mit } d(x,y) < \delta, \ d(x,z) < \delta \text{ und } d'(f(y),f(z)) \ge \varepsilon \right\}$ offen ist und konstruiere dann D_f aus solchen Mengen.

Aufgabe 51 (5 Punkte)

Es seien $\mu \in \mathcal{M}_1(\mathbb{R})$ und F_{μ} dessen Verteilungsfunktion. Die linksstetige Inverse $F_{\mu}^{\leftarrow}:[0,1] \to \overline{\mathbb{R}}$ von F_{μ} ist definiert durch $F_{\mu}^{\leftarrow}(t):=\inf\{x\in\mathbb{R}:F_{\mu}(x)\geq t\}$ unter Verwendung der Konventionen inf $\mathbb{R}:=-\infty$ und inf $\emptyset:=\infty$.

- (i) Zeigen Sie, dass $F_{\mu}(F_{\mu}^{\leftarrow}(t)) \geq t$ und $F_{\mu}^{\leftarrow}(F_{\mu}(x)) \leq x$ für alle $t \in (0,1)$ und $x \in \mathbb{R}$.
- (ii) Zeigen Sie, dass für $t \in (0,1)$ und $x \in \mathbb{R}$ genau dann $F_{\mu}^{\leftarrow}(t) \leq x$ gilt, wenn $t \leq F_{\mu}(x)$.
- (iii) Zeigen Sie, dass $\mu_n \xrightarrow{\mathsf{w}} \mu$, wobei $\mu_n(\cdot) := \frac{1}{n} \sum_{i=1}^n \delta_{F_{\mu}^{\leftarrow}(i/(n+1))}(\cdot), n \in \mathbb{N}$.
- (iv) Spezifizieren Sie μ_n aus Teil (iii) für das Lebesgue-Maß $\mu := \ell|_{[0,1]}$ auf ([0,1], $\mathcal{B}([0,1])$).

Hinweis für (ii): Sie können Teil (i) verwenden.

Hinweis für (iii): Sie können Bemerkung 3.10.14 und Teil (ii) verwenden.

Aufgabe 52 (4 Punkte)

Sei $(X_n)_{n\in\mathbb{N}}$ eine beliebige Folge von Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$ mit der Eigenschaft, dass $\sup_{n\in\mathbb{N}} \mathbb{E}[|X_n|] < \infty$. Prüfen Sie, ob die folgenden Familien $\mathcal{M} \subset \mathcal{M}_1(\mathbb{R})$ straff sind:

- (i) $\mathcal{M} := \{ \mathbb{P}_{X_n} : n \in \mathbb{N} \}.$
- (ii) $\mathcal{M} := \{\delta_n : n \in \mathbb{N}\}.$
- (iii) $\mathcal{M} := \{ GL_{[0,n]} : n \in \mathbb{N} \}.$