信号与图像处理基础

Basics of Digital Image Processing

中国科学技术大学 自动化系 曹 洋

数字图像处理基础

• 图像结构

• 图像的空间变换

• 图像的亮度变换

• 图像结构

图像并不是一组随机像素的集合

• 图像结构-邻域特性

4-adjacency, 8-adjacency, m-adjacency

• 图像结构-边缘

Edge = Connected pixels with high gradient values

• 图像结构-轮廓

Region = Connected set of pixels Contour = Region boundary

• 图像结构-前景/背景

• 图像的空间变换

•Similarity (translation, scale, rotation)

Affine

Projective (homography)

• 图像的相似性变换

$$(x', y') = T\{(x, y)\}$$

$$\left[\begin{array}{c} x'\\y'\\1\end{array}\right]=T\left[\begin{array}{c} x\\y\\1\end{array}\right]$$

homogeneous coordinates

• 图像的平移变换

$$P' = P + t$$

$$\Rightarrow P' \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

translation matrix

• 图像的尺度变换

图像的平移+尺度变换

$$P' = S \cdot P$$

 $P'' = T \cdot P'$ \Rightarrow $P'' = (T \cdot S) \cdot P$

$$\begin{bmatrix} x'' \\ y'' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
 scaling + translation matrix

• 图像的旋转变换

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
rotation matrix

• 图像的旋转+平移+尺度变换

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

至少需要多少个点对才能保证求出矩阵T?

$$\begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

$$x \cdot t_{11} + y \cdot t_{12} + 1 \cdot t_{13} + 0 \cdot t_{21} + 0 \cdot t_{22} + 0 \cdot t_{23} = x'$$

$$0 \cdot t_{11} + 0 \cdot t_{12} + 0 \cdot t_{13} + x \cdot t_{21} + y \cdot t_{22} + 1 \cdot t_{23} = y'$$

$$\begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix} \begin{bmatrix} t_{11} \\ t_{12} \\ t_{21} \\ t_{22} \\ t_{23} \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

x_1	y_1	1	0	0	0] [$\begin{bmatrix} x_1' \end{bmatrix}$
0	0	0	x_1	y_1	1	$\left \begin{array}{c} t_{11} \\ t_{1} \end{array} \right $		y_1'
x_2	y_2	1	0	0	0	$\begin{bmatrix} t_{12} \end{bmatrix}$		x_2'
0	0	0	x_2	y_2	1	$\begin{bmatrix} t_{13} \\ t_{13} \end{bmatrix}$	=	y_2'
:						$\begin{bmatrix} t_{21} \end{bmatrix}$:
x_N	y_N	1	0	0	0	$\begin{vmatrix} t_{22} \\ t_{-} \end{vmatrix}$		x'_N
0	0	0	x_N	y_N	1	$\begin{bmatrix} t_{23} \end{bmatrix}$		y'_N

$$AX = B$$

if
$$det(A) \neq 0 \Rightarrow X = A^{-1}B$$

or

if
$$det(A^TA) \neq 0 \Rightarrow X = (A^TA)^{-1}A^TB$$
 最小二乘法的矩阵形式

输入图像(变换前)

反变换图像

输出图像 (变换后)

估计误差

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c}I\mid t\end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} s\boldsymbol{R} & t\end{array}\right]_{2\times 3}$	4	angles	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

• 基于图像插值的空间变换

original

resampling

shrinking

zooming

• 基于图像插值的空间变换

IMAGE EXPANDED TO LARGER DIMENSIONS

• 图像插值-最近邻插值

前向映射

• 图像插值-最近邻插值

后向映射

• 图像插值-双线性插值

$$f(x,y) = ax + by + cxy + d$$

coefficients that need to be estimated

• 图像插值-双线性插值

$$f(x,y) = ax + by + cxy + d$$

coefficients that need to be estimated

• 图像插值-双线性插值

$$f(x,y) = ax + by + cxy + d$$

coefficients that need to be estimated

• 图像插值-双线性插值

nearest neighbor

$$f(x,y) = ax + by + cxy + d$$

coefficients that need to be estimated

$$ax_1 + by_1 + cx_1y_1 + d = f(x_1, y_1)$$

$$ax_2 + by_2 + cx_2y_2 + d = f(x_2, y_2)$$

$$ax_3 + by_3 + cx_3y_3 + d = f(x_3, y_3)$$

$$ax_4 + by_4 + cx_4y_4 + d = f(x_4, y_4)$$

a, b, c, d

• 图像插值-双线性插值

$$f(x,0) = f(0,0)+x[f(1,0)-f(0,0)]$$

$$f(x,1) = f(0,1)+x[f(1,1)-f(0,1)]$$

$$f(x,y) = f(x,0)+y[f(x,1)-f(x,0)]$$

$$f(x,y) = [f(1,0)-f(0,0)]x+[f(0,1)-f(0,0)]y + [f(1,1)+f(0,0)-f(0,1)-f(1,0)]xy+f(0,0)$$

· 最近邻插值 vs 双线性插值

zoomed in images

nearest neighbor

bilinear

• 图像插值

- Bilinear N = 1
- Bicubic N = 3

estimated from the known neighboring locations

图像的亮度变换

• 图像的亮度变换

- gamma

- brightness

original

+ brightness

+ gamma

histogram mod

contrast

original

+ contrast

histogram EQ

图像的亮度变换

• 图像的亮度变换

图像的亮度变换

• 亮度归一化(尺度变换)

$$g(x,y) = K \frac{f(x,y) - \min[f(x,y)]}{\max[f(x,y)] - \min[f(x,y)]}$$

input output

• 亮度局部平均(平滑处理)

$$g(x,y) = \frac{1}{mn} \sum_{(x',y') \in N_{xy}} f(x',y')$$

• 亮度局部平均(平滑处理)

$$g(x,y) = \frac{1}{mn} \sum_{(x',y')\in N_{xy}} f(x',y')$$

• 图像取反

$$g(x,y) = L - 1 - f(x,y)$$

• 图像亮度拉伸

• 图像伽马校正

• 图像伽马校正

• 图像直方图

16-level (4-bit) image

black marks pixels with intensity g

• 图像直方图

Plot of histogram: number of pixels with intensity *g*

• 图像直方图

• 彩色图像直方图

There is one histogram per color band R, G, & B. Luminosity histogram is from 1 band = (R+G+B)/3

- 通过增加直方图分布区域,提高图像对比度
- 会产生artifact

• 直方图均衡化(PDF 和CDF)

PDF: Probability Distribution Function 概率密度函数

CDF: Cumulative Distribution Function累积分布函数

$$P(X \leq x_0) = \int_{-\infty}^{x_0} p_X(x) dx$$
 cumulative probability distribution density function

example:
$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
 Gauss

• 直方图均衡化(PDF和CDF)

$$Y = T(X)$$

$$P_Y(y < Y \le y + \Delta y) = \sum_i P_X(x_i < X \le x_i + \Delta x_i)$$

• 直方图均衡化(PDF 和CDF)

$$Y = T(X)$$

$$p_Y(y)dy = \sum_i p_X(x_i)dx$$

• 直方图均衡化(PDF 和CDF)

$$Y = T(X)$$

$$p_Y(y)dT(x) = \sum_i p_X(x_i)dx$$

• 直方图均衡化(PDF 和CDF)

$$Y = T(X)$$

$$dT(x) = \sum_{i} \frac{p_X(x_i)}{p_Y(y)} dx$$

• 直方图均衡化(PDF 和CDF)

$$Y = T(X)$$

$$T(x) = \int_{-\infty}^{x} \frac{p_X(w)}{p_Y(w)} dw$$

$$s = T(r) = \int_{-\infty}^{r} \frac{p_r(w)}{p_s(w)} dw$$

$$s = T(r) = \int_{-\infty}^{r} \frac{p_r(w)}{p_s(w)} dw$$

• 直方图均衡化

$$s = T(r) = \int_{-\infty}^{r} p_r(w)dw$$

continuous pdf

• 直方图均衡化

input output

$$s = T(r) = \sum_{i = -\infty}^{r} P_r(i)$$

discrete probability mass

intensity-level histogram (red); cumulative histogram (black)

• 直方图均衡化

用p表示输入图像灰度、q表示变换后的输出图像灰度,则根据对均衡化处理的要求,变换后的图像灰度分布g(q)应为

$$\mathbf{g}(\mathbf{q}) = \frac{N/K}{N} = \frac{1}{K}$$

这里,K是图像的量化灰度级数,而N为 图像中像素的总数目。因此,N/K为图 像中灰度级为q的像素数目。

根据h(p)和g(q)的分布可确定输出灰度 q和输入灰度p之间的映射关系。 设所需的灰度变换关系为

$$q = f(p)$$

• 直方图均衡化

对灰度变换式两端求微分,有

$$dq = f'(p)dp$$

即
$$f'(p) = \frac{dq}{dp}$$

这里,dp和dq分别表示输入灰度和输出灰度的微分区间。由于要求对输入图像进行灰度均衡化变换前后,其相应的微分区间dp和dq中所包含的像素数应相等,故有

$$h(p)dp = g(q)dq$$

$$\frac{\mathrm{dq}}{\mathrm{dp}} = \frac{\mathrm{h(p)}}{\mathrm{g(q)}}$$

• 直方图均衡化

因此,有

$$f'(p) = \frac{dq}{dp} = \frac{h(p)}{g(q)} = Kh(p)$$

求上式关于p的积分,有

$$f(p) = K \int_0^p h(p) dp$$

由于h(p)为正值函数,所以, f(p)是单值的、并且是单调增加 的函数,满足所需要的变换特性。

实例: 直方图均衡化

• 直方图规定化

Example: Histogram Matching

• 直方图规定化

Example: Histogram Matching
Image CDF

• 直方图规定化

Example: Histogram Matching

Target pdf
Target with

• 直方图规定化

Example: Histogram Matching
Target CDF

• 直方图规定化

original target remapped

• 直方图规定化

original

target

luminosity remapped