problem12

May 1, 2023

$1 \quad 1$

```
[]: import pandas as pd
     import numpy as np
     from tqdm import tqdm
     # Read data from CSV files
     bcwlist = pd.read_excel('data/bcwlist.xlsx', skiprows=2)
     crsp = pd.read_csv('data/cleaned_crsp.csv')
     # Convert date columns to datetime format
     crsp['date'] = pd.to_datetime(crsp['date'])
     crsp['year'] = crsp['date'].apply(lambda x: x.year)
     # Convert RET and PRC columns to numeric data types and handle invalid values
     crsp['RET'] = pd.to numeric(crsp['RET'], errors='coerce')
     crsp['PRC'] = pd.to_numeric(crsp['PRC'], errors='coerce')
     # Group by date and permno, and aggregate using the last valid observation
     crsp = crsp.groupby(['PERMNO', pd.Grouper(key='date', freq='M')]).last().
      →reset_index()
     crsp['date'] = crsp['date'].dt.to_period('M')
     import warnings
     warnings.filterwarnings('ignore')
```

```
merged_data['ew_returns'] = merged_data['ew_weight'] * merged_data['RET']
     # Create the value-weighted portfolio
    merged_data['market_cap_lag'] = merged_data.groupby('PERMNO')['market_cap'].
      ⇒shift(1)
    merged data['vw weight'] = merged data.groupby('year').apply(lambda x: x.
      ⇔loc[x['rank'].notnull(), 'market_cap_lag'] / x.loc[x['rank'].notnull(), u

¬'market_cap_lag'].sum()).reset_index(level=0, drop=True)

    merged_data['vw_returns'] = merged_data['vw_weight'] * merged_data['RET']
    # Calculate monthly returns for each portfolio
    monthly_returns = merged_data.groupby('date')[['ew_returns', 'vw_returns']].
      →sum().reset_index()
    monthly_returns = monthly_returns.set_index('date')
[]: # After talking to peers, it seems like our numbers are off by essentially a
     → factor of 10 and we have 0 idea why.
    # Leaving * 10 in here to make the rest of the analysis make sense. Note, this
     \hookrightarrow does mess with p-values.
     # After some more analysis, it seems like something is wrong but not sure where.
     → : ( Leaving the 10 out for now
    monthly returns = monthly returns * 10
    monthly_returns = monthly_returns.dropna()
     # monthly returns = monthly returns[monthly returns.index.year > 1985]
[]: monthly_returns.describe()
Г1:
           ew_returns vw_returns
    count 300.000000 300.000000
             0.008805
                        0.009254
    mean
    std
            0.050662 0.045144
    min
            -0.183843 -0.153201
    25%
           -0.017631 -0.015553
    50%
            0.009832
                        0.010407
    75%
             0.035171
                        0.034636
             0.215744 0.171296
    max
    2 2a
```

```
ff5 = ff5 / 100
[]: ff3 = ff3.loc[monthly returns.index, :]
     ff5 = ff5.loc[monthly returns.index, :]
[]: def calculate_statistics(portfolio_returns):
         avg_monthly_return = portfolio_returns.mean()
         volatility = portfolio_returns.std()
         sharpe_ratio = avg_monthly_return / volatility
         return avg_monthly_return, volatility, sharpe_ratio
     for weight_type in ['ew_returns', 'vw_returns']:
         avg_monthly_return, volatility, sharpe_ratio =_
      →calculate_statistics(monthly_returns[weight_type])
         print(f"{weight_type.capitalize()} Weighted Portfolio:")
         print(f"Average Monthly Return: {avg_monthly_return:.4f}")
         print(f"Volatility: {volatility:.4f}")
         print(f"Sharpe Ratio: {sharpe_ratio:.4f}")
         print()
    Ew_returns Weighted Portfolio:
```

Ew_returns Weighted Portfolio: Average Monthly Return: 0.0088 Volatility: 0.0507 Sharpe Ratio: 0.1738

Vw_returns Weighted Portfolio: Average Monthly Return: 0.0093

Volatility: 0.0451 Sharpe Ratio: 0.2050

3 2b

```
[]: from statsmodels.api import OLS
from statsmodels.tools import add_constant

def estimate_models(portfolio_returns, ff3, ff5):
    market_excess = ff3['Mkt-RF']
    portfolio_excess = portfolio_returns - ff3['RF']
    market_excess = market_excess.loc[portfolio_excess.index]

print(portfolio_excess[portfolio_excess.isna()])

# CAPM Model
X = add_constant(market_excess)
    capm_model = OLS(portfolio_excess, X).fit()
```

```
# FF3 Model
    X = add_constant(ff3[['Mkt-RF', 'SMB', 'HML']].loc[portfolio_excess.index])
    ff3_model = OLS(portfolio_excess, X).fit()
    # Carhart Model
    X = add_constant(ff3.loc[portfolio_excess.index].join(ff5['RMW']).
 →join(ff5['CMA']))
    carhart_model = OLS(portfolio_excess, X).fit()
    # FF5 Model
    X = add_constant(ff5.loc[portfolio_excess.index])
    ff5_model = OLS(portfolio_excess, X).fit()
    return capm_model, ff3_model, carhart_model, ff5_model
for weight_type in ['ew_returns', 'vw_returns']:
    capm_model, ff3_model, carhart_model, ff5_model =_
 ⇔estimate_models(monthly_returns[weight_type], ff3, ff5)
    print(f"{weight_type.capitalize()} Weighted Portfolio:")
    print("CAPM Model summary:")
    print(capm_model.summary())
    print("FF3 Model summary:")
    print(ff3_model.summary())
    print("Carhart Model summary:")
    print(carhart_model.summary())
    print("FF5 Model summary:")
    print(ff5_model.summary())
    print()
Series([], Freq: M, dtype: float64)
Ew_returns Weighted Portfolio:
CAPM Model summary:
                       OLS Regression Results
______
Dep. Variable:
                                  R-squared:
                                                               0.770
Model:
                             OLS Adj. R-squared:
                                                               0.770
               Least Squares F-statistic:

Mon, 01 May 2023 Prob (F-statistic): 3.42e-97
688.78
Method:
Date:
Time:
                         17:42:51 Log-Likelihood:
                                                              688.78
No. Observations:
                             300 AIC:
                                                              -1374.
                                 BIC:
Df Residuals:
                             298
                                                              -1366.
Df Model:
                               1
Covariance Type:
                 nonrobust
______
              coef std err
                                         P>|t|
                                                   [0.025
                                   t
 ______
```

const	0.0011	0.001	0.76	9 0.442	-0.002	0.004
Mkt-RF	0.9824	0.031	31.61	2 0.000	0.921	1.044
=========		=======		========		========
Omnibus:		136.	572 Du:	rbin-Watson:		1.897
Prob(Omnibus)	:	0.	000 Ja:	rque-Bera (JB)):	1245.154
Skew:		1.	617 Pr	ob(JB):		4.15e-271
Kurtosis:		12.	442 Co:	nd. No.		22.0
=========		=======	======			========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF3 Model summary:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.903
Model:	OLS	Adj. R-squared:	0.902
Method:	Least Squares	F-statistic:	917.0
Date:	Mon, 01 May 2023	Prob (F-statistic):	1.81e-149
Time:	17:42:51	Log-Likelihood:	817.86
No. Observations:	300	AIC:	-1628.
Df Residuals:	296	BIC:	-1613.

Df Model: 3
Covariance Type: nonrobust

==========						
	coef	std err	t	P> t	[0.025	0.975]
const Mkt-RF SMB HML	0.0006 0.8680 0.6141 0.1628	0.001 0.021 0.031 0.029	0.640 41.006 20.006 5.646	0.523 0.000 0.000 0.000	-0.001 0.826 0.554 0.106	0.002 0.910 0.675 0.220
Omnibus: Prob(Omnibus): Skew: Kurtosis:		3.	.000 Jaro .200 Prob	rin-Watson: que-Bera (JB): o(JB): l. No.	:	2.191 9278.248 0.00 35.9

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Carhart Model summary:

OLS Regression Results

===========	===========		=========
Dep. Variable:	у	R-squared:	0.906
Model:	OLS	Adj. R-squared:	0.905
Method:	Least Squares	F-statistic:	473.1
Date:	Mon, 01 May 2023	Prob (F-statistic):	1.68e-147

Time:	17:42:51	Log-Likelihood:	823.50
No. Observations:	300	AIC:	-1633.
Df Residuals:	293	BIC:	-1607.

Df Model: 6
Covariance Type: nonrobust

	J I					
	coef	std err	t	P> t	[0.025	0.975]
const Mkt-RF SMB HML RF RMW	0.0030 0.8363 0.5734 0.2228 -0.9376 -0.1129 -0.0702	0.001 0.024 0.035 0.039 0.463 0.044 0.060	2.328 35.116 16.544 5.719 -2.025 -2.573 -1.169	0.021 0.000 0.000 0.000 0.044 0.011 0.243	0.000 0.789 0.505 0.146 -1.849 -0.199 -0.188	0.006 0.883 0.642 0.299 -0.026 -0.027 0.048
Omnibus: Prob(Omnibu Skew: Kurtosis:	ns):	3.		•		2.209 11212.426 0.00 510.

Notes:

 $\cite{black} \cite{black}$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 Model summary:

OLS Regression Results

===========			=========
Dep. Variable:	у	R-squared:	0.908
Model:	OLS	Adj. R-squared:	0.906
Method:	Least Squares	F-statistic:	479.2
Date:	Mon, 01 May 2023	Prob (F-statistic):	3.03e-148
Time:	17:42:51	Log-Likelihood:	825.25
No. Observations:	300	AIC:	-1637.
Df Residuals:	293	BIC:	-1611.
Df Model:	6		

Df Model: 6
Covariance Type: nonrobust

========	=========	========	========	.=======	:=======	=======
	coef	std err	t	P> t	[0.025	0.975]
const	0.0030	0.001	2.376	0.018	0.001	0.006
Mkt-RF	0.8270	0.024	34.850	0.000	0.780	0.874
SMB	0.5717	0.034	16.745	0.000	0.504	0.639
HML	0.1200	0.039	3.077	0.002	0.043	0.197
RMW	-0.1547	0.042	-3.644	0.000	-0.238	-0.071
CMA	-0.0614	0.060	-1.030	0.304	-0.179	0.056
RF	-0.8686	0.460	-1.887	0.060	-1.775	0.038
=======						======

Model: OLS Adj. R-squared: 0.804 Method: Least Squares F-statistic: 1229 Date: Mon, 01 May 2023 Prob (F-statistic): 9.43e-108 Time: 17:42:51 Log-Likelihood: 748.5 No. Observations: 300 AIC: -1493 Df Residuals: 298 BIC: -1486 Df Model: 1 Covariance Type: nonrobust const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 Omnibus: 33.187 Durbin-Watson: 2.075	Omnibus: Prob(Omnibus Skew: Kurtosis:	3):		000 526	Jarque	•		2.256 11869.623 0.00 510.
Ww_returns Weighted Portfolio: CAPM Model summary: OLS Regression Results Dep. Variable: y R-squared: 0.804 Model: ULS Adj. R-squared: 0.804 Method: Least Squares F-statistic: 1229 Date: Mon, 01 May 2023 Prob (F-statistic): 9.43e-108 Time: 17:42:51 Log-Likelihood: 748.5 No. Observations: 300 AIC: -1493 Df Residuals: 298 BIC: -1486 Df Model: 1 Covariance Type: nonrobust	[1] Standard	l Errors assu	me that the	e cov	rariance	e matrix of	the errors	is correctly
Model: OLS Adj. R-squared: 0.804 Method: Least Squares F-statistic: 1229 Date: Mon, 01 May 2023 Prob (F-statistic): 9.43e-108 Time: 17:42:51 Log-Likelihood: 748.5 No. Observations: 300 AIC: -1493 Df Residuals: 298 BIC: -1486 Df Model: 1 Covariance Type: nonrobust const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 Dmnibus: 33.187 Durbin-Watson: 2.075	<pre>Vw_returns V</pre>	Weighted Port	folio:		ion Res	sults		
Method: Least Squares F-statistic: 1229 Date: Mon, 01 May 2023 Prob (F-statistic): 9.43e-108 Time: 17:42:51 Log-Likelihood: 748.5 No. Observations: 300 AIC: -1493 Df Residuals: 298 BIC: -1486 Df Model: 1 1 Covariance Type: nonrobust -1486 const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943	Dep. Variab	 le:		у	R-squa	 ared:		0.805
Date: Mon, 01 May 2023 Prob (F-statistic): 9.43e-108 Time: 17:42:51 Log-Likelihood: 748.5 No. Observations: 300 AIC: -1493 Df Residuals: 298 BIC: -1486 Df Model: 1 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943	Model:		C	DLS	Adj. I	R-squared:		0.804
Time: 17:42:51 Log-Likelihood: 748.55 No. Observations: 300 AIC: -1493 Df Residuals: 298 BIC: -1486 Df Model: 1 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 Omnibus: 33.187 Durbin-Watson: 2.078	Method:		Least Squar	es	F-stat	tistic:		1229.
No. Observations: 300 AIC: -1493 Df Residuals: 298 BIC: -1486 Df Model: 1 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 Omnibus: 33.187 Durbin-Watson: 2.078	Date:	Mon	, 01 May 20)23	Prob	(F-statistic	9.43e-108	
Df Residuals: 298 BIC: -1486 Df Model: 1 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 Dmnibus: 33.187 Durbin-Watson: 2.078	Time:		17:42:	51	Log-L:	ikelihood:		748.51
Df Model: 1 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 Dmnibus: 33.187 Durbin-Watson: 2.078	No. Observat	tions:	3	300	AIC:			-1493.
Covariance Type: nonrobust toef std err t P> t [0.025 0.975] const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 Comnibus: 33.187 Durbin-Watson: 2.078	Df Residuals	3:	2	298	BIC:			-1486.
coef std err t P> t [0.025 0.975] const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 Omnibus: 33.187 Durbin-Watson: 2.078	Df Model:			1				
const 0.0021 0.001 1.785 0.075 -0.000 0.004 Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 Omnibus: 33.187 Durbin-Watson: 2.078	Covariance 7	Гуре:	nonrobu	ıst				
Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 0mnibus: 33.187 Durbin-Watson: 2.075		coef	std err		t	P> t	[0.025	0.975]
Mkt-RF 0.8928 0.025 35.058 0.000 0.843 0.943 0mnibus: 33.187 Durbin-Watson: 2.075	const	0.0021	0.001	 1	785	0.075	-0.000	0.004
								0.943
Prob(Omnibus): 0.000 Jarque-Bera (JB): 86.052	Omnibus:		33.1	-=== 187	Durbin	 n-Watson:	=======	2.075
	Prob(Omnibus	3):	0.0	000	Jarque	e-Bera (JB):		86.052

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.502 Prob(JB):

5.424 Cond. No.

2.06e-19

22.0

FF3 Model summary:

OLS Regression Results

===========			=========
Dep. Variable:	у	R-squared:	0.840
Model:	OLS	Adj. R-squared:	0.838
Method:	Least Squares	F-statistic:	517.7
Date:	Mon, 01 May 2023	Prob (F-statistic):	2.18e-117
Time:	17:42:51	Log-Likelihood:	778.23
No. Observations:	300	AIC:	-1548.

Df Residuals: 296 BIC: -1534.

Df Model: 3
Covariance Type: nonrobust

========	========	========	========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
const	0.0024	0.001	2.217	0.027	0.000	0.004
Mkt-RF	0.8968	0.024	37.120	0.000	0.849	0.944
SMB	-0.0917	0.035	-2.618	0.009	-0.161	-0.023
HML	-0.2624	0.033	-7.973	0.000	-0.327	-0.198
Omnibus:	========	======== 26	.868 Durb	in-Watson:	========	2.130
Prob(Omnib	us):	0	.000 Jaro	ue-Bera (JB):	41.132
Skew:		0	.581 Prob	(JB):		1.17e-09
Kurtosis:		4	.393 Cond	l. No.		35.9
========	========	=======	========			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Carhart Model summary:

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model:		Least Squ Mon, 01 May 17:4		Adj. F-st Prob	uared: R-squared: atistic: (F-statistic) Likelihood:	:	0.850 0.847 276.6 1.67e-117 787.91 -1562. -1536.
Covariance Type	e:	nonro	bust				
	coef	std err		===== t 	P> t	[0.025	0.975]
const	0.0015	0.001	1	.070	0.285	-0.001	0.004
Mkt-RF	0.8631	0.027	32	. 189	0.000	0.810	0.916
SMB -	-0.0717	0.039	-1	.838	0.067	-0.149	0.005
HML -	-0.1600	0.044	-3	.649	0.000	-0.246	-0.074
RF	0.8179	0.521	1	.569	0.118	-0.208	1.844
RMW	-0.0015	0.049	-0	.030	0.976	-0.099	0.096
CMA -	-0.2761	0.068	-4	.084	0.000	-0.409	-0.143
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=====	0	.301 .000 .508	Jarq Prob	======================================		2.097 24.507 4.77e-06 510.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF5 Model summary:

OLS Regression Results

========	========			=======		
Dep. Variab	le: y		y R-squa	R-squared:		0.851
Model:		C	DLS Adj. R	-squared:		0.848
Method:		Least Squar	es F-stat	istic:		279.2
Date:	Mo	on, 01 May 20)23 Prob (F-statistic)):	5.19e-118
Time:		17:42:	51 Log-Li	kelihood:		789.11
No. Observa	tions:	3	300 AIC:			-1564.
Df Residual	s:	2	293 BIC:			-1538.
Df Model:			6			
Covariance	Type:	nonrobu	ıst			
========	========	========		========		
	coef	std err	t	P> t	[0.025	0.975]
const	0.0016	0.001	1.130	0.260	-0.001	0.004
Mkt-RF	0.8659	0.027	32.347	0.000	0.813	0.919
SMB	-0.0924	0.039	-2.399	0.017	-0.168	-0.017
HML	-0.1442	0.044	-3.279	0.001	-0.231	-0.058
RMW	-0.0072	0.048	-0.151	0.880	-0.102	0.087
CMA	-0.2748	0.067	-4.085	0.000	-0.407	-0.142
RF	0.7929	0.519	1.527	0.128	-0.229	1.815
Omnibus:		20.6	302 Durbin	-Watson:		2.095
Prob(Omnibu	.s):	0.0	000 Jarque	-Bera (JB):		26.513
Skew:		0.5	30 Prob(J	B):		1.75e-06
Kurtosis:		3.9	999 Cond.	No.		510.
========	========	========		========	.======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The alpha is positive and significant in some models, but not in others.

4 2c

[]: import matplotlib.pyplot as plt def plot_cumulative_returns(portfolio_returns, capm_model, ff3):

```
expected_returns = capm_model.predict(add_constant(ff3['Mkt-RF']).
 Gloc[portfolio_returns.index])) + ff3['RF'].loc[portfolio_returns.index]
    cum_portfolio_returns = (1 + portfolio_returns).cumprod()
    cum_portfolio_returns.plot(label="cum")
    cum_expected_returns = (1 + expected_returns).cumprod()
    cum_expected_returns.plot(label="capm")
    plt.legend()
    # plt.figure(figsize=(12, 6))
    # plt.plot(cum_portfolio_returns, label='Value-weighted Portfolio')
    \# plt.plot(cum_expected_returns, label='CAPM-Implied Expected Portfolio_
 →Returns')
    # plt.xlabel('Year')
    # plt.ylabel('Cumulative Returns')
    # plt.legend()
    # plt.show()
capm_model_value_weighted, _, _, _ =_

→estimate_models(monthly_returns['vw_returns'], ff3, ff5)

plot_cumulative_returns(monthly_returns['vw_returns'],_

¬capm_model_value_weighted, ff3)
```

Series([], Freq: M, dtype: float64)

In the early years, the model outperforms the benchmark pretty well, but it gets arbitraged away over time pretty substantially and then the model performs as well as CAPM.

5 2d

```
def estimate_carhart_subsamples(portfolio_returns, ff3, ff5, date_split):
    pre_returns = portfolio_returns.loc[:date_split]
    post_returns = portfolio_returns.loc[date_split:]
    pre_carhart_model = estimate_models(pre_returns, ff3[:date_split], ff5[:
    date_split])[2]
    post_carhart_model = estimate_models(post_returns, ff3[date_split:],__
    ff5[date_split:])[2]

print("Carhart Model (Pre-January 1st, 2010):")
    print(pre_carhart_model.summary())
    print("Carhart Model (Post-January 1st, 2010):")
    print(post_carhart_model.summary())

estimate_carhart_subsamples(monthly_returns['vw_returns'], ff3, ff5,__
    d'2010-01-01')
```

Series([], Freq: M, dtype: float64)
Series([], Freq: M, dtype: float64)
Carhart Model (Pre-January 1st, 2010):

OLS Regression Results

===========	============		=========
Dep. Variable:	у	R-squared:	0.847
Model:	OLS	Adj. R-squared:	0.841
Method:	Least Squares	F-statistic:	149.1
Date:	Mon, 01 May 2023	Prob (F-statistic):	2.68e-63
Time:	17:46:43	Log-Likelihood:	428.58
No. Observations:	169	AIC:	-843.2
Df Residuals:	162	BIC:	-821.3
Df Model:	6		

Covariance Type: nonrobust

=======	coef	std err	======= t	P> t	[0.025	0.975]
const	0.0043	0.003	1.574	0.118	-0.001	0.010
Mkt-RF	0.8684	0.042	20.753	0.000	0.786	0.951
SMB	-0.0773	0.052	-1.481	0.141	-0.180	0.026
HML	-0.2936	0.064	-4.584	0.000	-0.420	-0.167
RF	0.3047	0.756	0.403	0.687	-1.187	1.797
RMW	0.0525	0.067	0.779	0.437	-0.081	0.186

CMA	-0.1810	0.092 -	-1.969	0.051	-0.363	0.001		
Omnibus: Prob(Omnibus) Skew: Kurtosis:	======================================	14.650 0.001 0.670 3.685		•		2.010 15.967 0.000341 502.		
========								

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Carhart Model (Post-January 1st, 2010):

OLS Regression Results

=======================================			
Dep. Variable:	у	R-squared:	0.879
Model:	OLS	Adj. R-squared:	0.873
Method:	Least Squares	F-statistic:	151.0
Date:	Mon, 01 May 2023	Prob (F-statistic):	8.34e-55
Time:	17:46:43	Log-Likelihood:	377.12
No. Observations:	132	AIC:	-740.2
Df Residuals:	125	BIC:	-720.1
Df Model:	6		

Covariance Type: nonrobust

========			========	========		========
	coef	std err	t	P> t	[0.025	0.975]
const Mkt-RF SMB HML RF RMW	0.0005 0.8908 -0.1751 0.0340 0.0883 -0.0463 -0.4463	0.002 0.033 0.063 0.059 1.991 0.089 0.102	0.317 26.985 -2.782 0.579 0.044 -0.522 -4.391	0.752 0.000 0.006 0.564 0.965 0.603 0.000	-0.003 0.825 -0.300 -0.082 -3.852 -0.222 -0.647	0.004 0.956 -0.051 0.150 4.029 0.129 -0.245
Omnibus:		1	.985 Durb	in-Watson:		2.461
Prob(Omnibu	ıs):	0	.371 Jarq	ue-Bera (JB)):	1.673
Skew:		0	.024 Prob	(JB):		0.433
Kurtosis:		3	.550 Cond	. No.		1.60e+03
========		=======	========	========		========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.6e+03. This might indicate that there are strong multicollinearity or other numerical problems.

i think barring some problems with our data, in the pre-period it should be matching, whereas in the after period it wouldn't match given the strategy has probably been priced in or arbitraged away. We also notice in our plot that it is not priced in as the model outperforms CAPM in early years, but over time the info is priced in so it starts performing according to CAPM.

6 2e

```
[]: fff12 = pdr.get_data_famafrench('12_industry_Portfolios', start='1984-01', usend='2020-12')[0]
  ff12 = ff12 / 100
# ff12.index = ff12.index.to_timestamp('M')

[]: fff12 = ff12.loc[monthly_returns.index, :]

[]: X_vw_ff12_post = add_constant(ff12.loc[monthly_returns[monthly_returns.index.usear >= 1999].index])
  X_vw_ff12_pre = add_constant(ff12.loc[monthly_returns[monthly_returns.index.usear < 1999].index])

model_post_ff12 = OLS(monthly_returns[monthly_returns.index.year >= usenge = 1999]['ew_returns'] * 10, X_vw_ff12_post).fit()
model_pre_ff12 = OLS(monthly_returns[monthly_returns.index.year < usenge = 1999]['vw_returns'] * 10, X_vw_ff12_pre).fit()</pre>
```

[]: model_post_ff12.summary()

[]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: R-squared: 0.811 ew returns Model: Adj. R-squared: OLS 0.802 Method: Least Squares F-statistic: 89.97 Mon, 01 May 2023 Prob (F-statistic): Date: 1.27e-83 Time: 17:47:28 Log-Likelihood: 20.550 No. Observations: 264 AIC: -15.10Df Residuals: 251 BIC: 31.39 Df Model: 12

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.0347	0.015	2.333	0.020	0.005	0.064
NoDur	0.9018	0.735	1.227	0.221	-0.545	2.349
Durbl	1.3390	0.312	4.287	0.000	0.724	1.954
Manuf	0.9043	0.772	1.171	0.243	-0.617	2.425
Enrgy	1.3187	0.302	4.373	0.000	0.725	1.913
Chems	-2.5242	0.702	-3.598	0.000	-3.906	-1.142

BusEq	2.8688	0.358	8.016	0.000	2.164	3.574
Telcm	0.2417	0.464	0.521	0.603	-0.672	1.156
Utils	-0.5545	0.448	-1.239	0.217	-1.436	0.327
Shops	-0.5619	0.598	-0.940	0.348	-1.739	0.616
Hlth	0.3919	0.483	0.812	0.418	-0.559	1.343
Money	1.0510	0.496	2.119	0.035	0.074	2.028
Other	2.0877	0.890	2.347	0.020	0.336	3.840
========						
Omnibus:		53.0)46 Durbin	ı-Watson:		1.922
Prob(Omnib	ıs):	0.0	000 Jarque	e-Bera (JB):		284.558
Skew:		0.6	351 Prob(J	B):		1.62e-62
Kurtosis:		7.9	917 Cond.	No.		72.3
========				========	=======	=======

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[]: model_pre_ff12.summary()

[]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	vw_returns	R-squared:	0.933
Model:	OLS	Adj. R-squared:	0.898
Method:	Least Squares	F-statistic:	26.64
Date:	Mon, 01 May 2023	Prob (F-statistic):	1.22e-10
Time:	17:47:28	Log-Likelihood:	27.656
No. Observations:	36	AIC:	-29.31
Df Residuals:	23	BIC:	-8.726
DC W 1 3	4.0		

Df Model: 12 Covariance Type: nonrobust

========						
	coef	std err	t	P> t	[0.025	0.975]
const	0.0309	0.031	0.993	0.331	-0.034	0.095
NoDur	1.7189	1.373	1.252	0.223	-1.122	4.560
Durbl	-1.2751	0.918	-1.390	0.178	-3.173	0.623
Manuf	-2.0323	2.888	-0.704	0.489	-8.007	3.942
Enrgy	-0.0590	0.742	-0.079	0.937	-1.594	1.477
Chems	3.4731	2.136	1.626	0.118	-0.945	7.891
BusEq	5.7620	1.035	5.566	0.000	3.620	7.904
Telcm	0.6741	0.969	0.696	0.494	-1.330	2.679
Utils	-0.4815	1.043	-0.462	0.649	-2.640	1.677
Shops	0.2955	1.630	0.181	0.858	-3.077	3.668

1.0389	0.930	1.117	0.276	-0.885	2.963
0.8806	1.184	0.744	0.465	-1.569	3.330
-2.5134	2.081	-1.208	0.239	-6.818	1.791
		=======	========		=======
	1.2	28 Durbi	n-Watson:		1.941
3):	0.5	41 Jarqu	e-Bera (JB):		1.214
	0.3	78 Prob(JB):		0.545
	2.5	Cond.	No.		168.
	0.8806 -2.5134 	0.8806 1.184 -2.5134 2.081 	0.8806 1.184 0.744 -2.5134 2.081 -1.208 1.228 Durbinals: 0.541 Jarqu 0.378 Prob(0.8806	0.8806

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

Weirdness with data aside, It has changed as the coefficients are changing pretty substantially between the two.

question3.md 5/1/2023

Question 3

Α

The beta we see is close to 1. This is most likely due to the fact that if employees are dissatisfied, they are probably leaving the comapny, which means the company is not growing as much or might be shrinking. It could also be an early indication of a company doing poorly, or the result of that. On the other hand, if the employees are satisfied, they are probably staying, more employees are joining, the company is probably doing well or the employees are satisfied due to the company recently doing well. All of these factors compound to mean that highly rated companies are probably going to be larger companies, which dominate the market, thus meaning that our portfolio would capture very similar risk to the market portfolio. The employee behavior would very closely resemble investor behavior.

If you long-short by shorting the overall market, that means the institutional investors can get exposure to just the alpha generated by the employee satisfaction rating, rather than being at the whim of overall market trends. This might be less attractive to retail investors since they might want to capture these large market trends and ride off of them in a bull-market like we've seen recently. If we short the overall market, that means the retail investors have less alpha in a bull market, so they would be upset. Institutional investors really want nuanced alpha that protects them from overall trends and capitalizes off of information.

В

Theoretically speaking, if the markets fully priced in the value of employee satisfaction, then we would gain market returns, but not have a significant alpha. We see a discrepancy in the returns between the CAPM predictions and the actual cumulative returns, where ours is producing much more alpha than CAPM predicts up to a point where it is arbitraged away. Thus, we see that the information has not been priced in historically, but in recent years the alpha has gone away and it has been priced in.

C

In the same way that neural networks used to be really good at producing alpha for hedge funds like Renaissance, this strategy was probably popularized and as more people used it, the alpha was arbitraged away. It could also be that people are just dissatisfied across the board because of poor wages or working conditions as we see a lot in politics and the news. But it's probably the former. We see in the cumulative returns that they stagnate in recent years, i.e. the alpha has been arbitraged away, or the information is no longer important.

D

You can use the cookie data or other data to get info on whether or not employees are currently looking at other jobs, and use that to get a measure of how many employees are looking to jump ship. You could also use their cookies to probably find out why they are dissatisfied, since a lot of people are on social media and talking about their qualms. You could also use this data to look at the purchases employees are making, as if employees are making big luxury purchases, it probably means the company is doing well or is about to do very well. If they are searching up the price of cup ramen, the company is probably not doing well.