

Lim Lip Yeow

University of Hawai'i at Mānoa

Archan Misra

Singapore Management University

Telehealth Scenario

Wearable sensors transmit vitals to cell phone via wireless (eg. bluetooth)

Phone runs a complex event processing (CEP) engine with rules for alerts

Alerts can notify emergency services or caregiver

IF Avg(Window(HR)) > 100 AND Avg(Window(Acc)) < 2 THEN SMS(doctor)

Continuous/Streaming Evaluation

if Avg(S2, 5) > 20 AND SI < 10 AND Max(S3, 10) < 4 then email(doctor).

- SI 3
- **S2**
- S3 0

Algorithm

When t_i of Si arrives Enqueue t_i into W_i If Q is true, Then output alert

Energy Consumption

Is there a better way to perform such complex event processing that

 Minimizes energy consumption at the phone, and/or

Maximizes operational lifetime of the system.

Key Ideas

- Pull model
 - Evaluate a query every ω seconds
 - Acquire only data that is needed
- Evaluation order of predicates matter!
 - Shortcircuiting can avoid data acquisition
- Batching

Assuming fairly smart sensors capable of buffering and supporting "pull"

Sensor Data Acquisition

Bluetooth Or 802.11 Or 802.15

- Constant sampling rate
- 802.11 (wifi) uses 2 power modes: active, idle
- Bluetooth has 3 modes: active, idle, sleep (not relevant).
- Time needed to switch modes
- Energy expended to switch

Sensor Type	Bits/	Channels/	Typical
	sensor	device	sampling
	channe1		frequency (Hz)
GPS	1408	1	1 Hz
SpO2	3000	1	3 Hz
ECG (cardiac)	12	6	256 Hz
Accelero-meter	64	3	100 Hz
Temperature	20	1	256 Hz

Pulling N Tuples from Sensor

- Idle mode consumes P_i mW
- Active mode consumes P_a mW
- Sensor rate is f Hz
- A tuple is S bits
- Bandwidth is B Mbps

	IEEE 802.11	Bluetooth 2.0+EDR
P_a	947 mW	60mW
P_i	231 mW	5 mW
\boldsymbol{B}	54 Mbps	1 Mbps
E_{switch}	14 μ Joule	
Th_{idle}	100 ms	_
T_{switch}	_	6 msec

Query Model

AVG(SPO2, 5s) < 98%

SPREAD(Acc, 10s) < 2g

AVG(HR, 10s) < 75

AVG(SPO2, 5s) < 95%

SPREAD(Acc, 10s) > 4g

AVG(HR, 10s) > 100

AND

- A query is a boolean combination of predicates
- Predicates
 - Aggregation functions over a time-based window of sensor data
- Traditional push model
 - A given query is evaluated whenever a new sensor reading arrives

Pull-based Evaluation

if Avg(S2, 5) > 20 AND SI < 10 AND Max(S3, 10) < 4 then email(doctor).

Pull Loop every ω seconds For each sensor Si Acquire data for Si Enqueue data into W_i EndFor If Q is true,

Then output alert

- Complex interaction between ω , stream rates, and predicate windows
- If predicate \$I < 10 is false, why bother to acquire data for \$2 nand \$3?

Example: $\omega = 7$

- Time 5: eval order is P3,P1,P2
- P3
- Time 12: eval order is P1,P2,P3
- Time 19: eval order is P2,P3,P1

Evaluation Order

if Avg(S2, 5) > 20 AND SI < I0 AND Max(S3, I0) < 4 then email(doctor).

Predicate	Avg(S2, 5)>20	SI<10	Max(S3,10)<4
Acquisition	5 * .02 = 0.1 nJ	0.2 nJ	10 * .01 = 0.1 nJ
Pr(false)	0.95	0.5	0.8
Acq./Pr(f)	0.1/0.95	0.2/0.5	0.1/0.8

- Evaluate predicates with lowest energy consumption first
- Evaluate predicates with highest false probability first
- Hence, evaluate predicate with lowest normalized acquisition cost first.

Example: $\omega = 3$

AND
AVG(A,5)<70 OR
PI
MAX(B,4)>100 C<3

- Time 5: P1,P2,P3
- Time 8: acquisition cost for A becomes cheaper, because some tuples are already in

buffer

Acquisition cost depends on state of the buffer at time t

Algorithm Sketch

At each ω

- Calculate normalized acquisition cost (NAC) based on buffer state and P(pred=true)
- 2. Find evaluation order using NAC
- 3. Acquire sensor data and eval pred using eval order with shortcircuiting.

What happens if >2 predicates operate on the same sensor data stream?

Simulation Setup

- Naive
 - data from all sensors acquired in batches
- ASRS-static
 - Evaluation order determined once at initialization and never changes
- ASRS-dynamic
 - Evaluation order determined at each ω time period.
- Simulation duration is 1 hour
- P(pred=true) distributions obtained from half the data streams themselves

Simulation Data & Query

- Data streams generated using independent Gaussian distribution
 - SPO2 ~ N(96,4), 3 Hz, 3000 bits
 - \circ HR \sim N(80,40), 0.5 Hz, 32 bits
 - Accel ~ N(0,10), 256 Hz, 196 bits

Simulation Results

Conclusion

- Pull-based processing paradigm can have a significant impact on data acquisition energy consumption
- Ordered evaluation of predicates can help shortcircuit the evaluation and avoid costly data acquisition
- We proposed evaluation algorithms based on these two observations to minimize data acquisition cost at CEP engine
- Results on synthetic traces show that savings up to 70% are possible.

Future Work

- Improve simulator
 - Disjunctive normal form query representation
 - More realistic data generators
- Estimation algorithms for P(pred=true)
- Batching: wait say 3 ω before query evaluation
- End-to-end evaluation on Android phone
 - Maximize operational lifetime of phone+sensors