

A Not So Short iSCSI Tutorial

Ming Zhang (mingz@ele.uri.edu)
HPCL, University of Rhode Island
10/03

Outline

- Reexamine SCSI and SAN.
- Why do we need iSCSI?
- What is iSCSI?
- Go deeper - examine the iSCSI protocol.
- Live example – UNH iSCSI reference implementation
- Nothing is perfect: iSCSI limitation.

SCSI Protocol

- SCSI - Small Computer System Interface;
- SCSI became an ANSI standard in 1986;
- SCSI is both a bus hardware specification and a command set;
- SCSI makes computer systems complete device independent.
- SCSI has high speed range from 1MB/s – 320MB/s

Common words in SCSI

- **SCSI Initiators** are the SCSI devices that start the I/O process and **SCSI Targets** are the SCSI devices that respond to a request to perform an I/O process.
- CDB - Command Descriptor Block
- LUN - Logical Units (max 8 LUNs per device)
- LBA - Logical Block Address
 - A linear address space mode to mask the details.

8 SCSI Command Phases

- BUS FREE, ARBITRATION, SELECTION, RESELECTION,
- Information Transfer Phases:
 - COMMAND, DATA, STATUS, MESSAGE;

SCSI Commands

- Several important SCSI commands:
 - TEST UNIT READY,
 - READ CAPACITY,
 - READ 6, 10, 12,
 - WRITE 6, 10, 12,
 - REQUEST SENSE.

Bit Byte	7	6	5	4	3	2	1	0						
0	Operation Code (08h)													
1	Logical Unit Number		Logical Block Address (MSB)											
2	Logical Block Address													
3	Logical Block Address													
4	Transfer Length													
5	Vendor Unique	Reserved		NACA	Obsolete	Link								

SAN vs. (Direct-attached) SCSI

- Any to any;
- Consolidation;
- Availability
- Scalability
- Bandwidth

Sample LAN Configuration

Sample SAN Configuration

Why do we need iSCSI?

- Limitation of SCSI
 - Point to point;
 - # of devices (8/16 or 7/15) and # of LUNs
 - Cable length; (25m in SCSI or 12m in Ultra SCSI)
- Limitation of FC-SAN
 - Interoperability issues and incompatibility with existing infrastructure;
 - Interoperability issues and incompatibility among different FC-SAN from different vendors;
 - Very expensive to install and maintain;

What is iSCSI?

- iSCSI – Internet SCSI protocol;
- A mapping of the SCSI over the TCP protocol.

Important Concepts in iSCSI

- ***Connection*** - A connection is a TCP connection. Communication and target occurs over one or more TCP connections. The TCP connections carry control messages, SCSI commands, parameters, and data within iSCSI Protocol Data Units (iSCSI PDUs).
- ***Session*** - The group of TCP connections that link an initiator with a session (loosely equivalent to a SCSI I-T nexus). TCP connections can be added and removed from a session. Across all connections within a session, an initiator sees one and the same target.
- ***Command*** - iSCSI Commands, SCSI Commands.
- ***CID, SSID, CmdSN***.

More about iSCSI Session/Connection

- Different session/connection phases
 - Login Phase
 - Creates a TCP connection;
 - Authenticates each party;
 - Negotiates operational parameters;
 - Creates or marks connection to a session;
 - Full Feature Phase
 - Data transfer
- Different session types:
 - Normal
 - Discovery

iSCSI Initiator Connection State Diagram

- **S1: FREE**
- **S2: XPT_WAIT**
- **S4: IN_LOGIN**
- **S5: LOGGED_IN**
- **S6: IN_LOGOUT**
- **S7: LOGOUT_REQUEST**
- **S8: CLEANUP_WAIT**

iSCSI Target Connection State Diagram

- **S1: FREE**
- **S3: XPT_UP**
- **S4: IN_LOGIN**
- **S5: LOGGED_IN**
- **S6: IN_LOGOUT**
- **S7: LOGOUT_REQUESTED**
- **S8: CLEANUP_WAIT**

iSCSI Session State Diagram

Initiator

Target

Q1: FREE, Q2: ACTIVE, Q3: LOGGED_IN,

Q4: FAILED, Q5: IN_CONTINUE,

Negotiable Parameters

- Security parameters and operational parameters;
- “key=<value>” pairs;
- Some important operational parameters:
 - SessionType,
 - MaxConnections and MaxOutstandingR2T;
 - InitialR2T and ImmediateData;
 - MaxRecvDataSegmentLength, MaxRecvPDULength, DataPDULength,..

iSCSI PDU

- PDU (Protocol Data Unit):
The initiator and target divide their communications into messages. The term "iSCSI protocol data unit" (iSCSI PDU) is used for these messages.

iSCSI Basic Header Segment

SCSI Command PDU

Byte/	0	1	2	3	
	/				
0	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	
0 . I 0x01	F R W . . ATTR	Reserved			
4 TotalAHSLength	DataSegmentLength				
8 Logical Unit Number (LUN)					
12					
16 Initiator Task Tag					
20 Expected Data Transfer Length					
24 CmdSN					
28 ExpStatSN					
32/ SCSI Command Descriptor Block (CDB)				/	
+/				/	
48/ AHS (Optional)				/	
x/ Header Digest (Optional)				/	
y/ (DataSegment, Command Data) (Optional)				/	
+/				/	
z/ Data Digest (Optional)				/	

SCSI Response PDU

Simple Read

Initiator Function	PDU Type	Target Function
Command request (read)	SCSI Command (READ)>>>	
		Prepare Data Transfer
Receive Data	<<< SCSI Data-in	Send Data
Receive Data	<<< SCSI Data-in	Send Data
Receive Data	<<< SCSI Data-in	Send Data
	<<< SCSI Response	Send Status and Sense
Command Complete		

Simple Write

Initiator Function	PDU Type	Target Function
Command request (write)	SCSI Command (WRITE) >>>	Receive command and queue it
		Process old commands
	<<< R2T	Ready to process WRITE command
Send Data	SCSI Data-out >>>	Receive Data
	<<< R2T	Ready for data
	<<< R2T	Ready for data
Send Data	SCSI Data-out >>>	Receive Data
Send Data	SCSI Data-out >>>	Receive Data
	<<< SCSI Response	Send Status and Sense
Command Complete		

Read with DataSN

Initiator Function	PDU Type	Target Function
Command request (read)	SCSI Command (READ)>>>	
		Prepare Data Transfer
Receive Data	<<< SCSI Data-in DataSN = 0, F=0	Send Data
Receive Data	<<< SCSI Data-in DataSN = 1, F=0	Send Data
Receive Data	<<< SCSI Data-in DataSN = 2, F=1	Send Data
	<<< SCSI Response ExpDataSN = 3	Send Status and Sense
Command Complete		

Write with DataSN

Initiator Function	PDU Type & Content	Target Function
Command request (write)	SCSI Command (WRITE) >>> <<< R2T R2TSN = 0	Receive command and queue it Process old commands Ready for data
	<<< R2T R2TSN = 1	Ready for more data
Send Data for R2TSN 0	SCSI Data-out >>> DataSN = 0, F=0	Receive Data
Send Data for R2TSN 0	SCSI Data-out >>> DataSN = 1, F=1	Receive Data
Send Data for R2TSN 1	SCSI Data >>> DataSN = 0, F=1	Receive Data
	<<< SCSI Response ExpDataSN = 0	Send Status and Sense
Command Complete		

Bidirectional DataSN

Initiator Function	PDU Type	Target Function
Command request (Read-Write)	SCSI Command >>> Read-Write	
		Process old commands
	<<< R2T R2TSN = 0	Ready to process WRITE command
* Receive Data	<<< SCSI Data-in DataSN = 0, F=0	Send Data
* Receive Data	<<< SCSI Data-in DataSN = 1, F=1	Send Data
* Send Data for R2TSN 0	SCSI Data-out >>> DataSN = 0, F=1	Receive Data
	<<< SCSI Response ExpDataSN = 2	Send Status and Sense
Command Complete		

Unsolicited and Immediate Write

Initiator Function	PDU Type & Content	Target Function
Command request (write) + immediate data	SCSI Command (WRITE)>>> F=0	Receive command and data and queue it
Send Unsolicited Data	SCSI Write Data >>> DataSN = 0, F=1	Receive more Data
		Process old commands
	<<< R2T R2TSN = 0	Ready for more data
Send Data for R2TSN 0	SCSI Write Data >>> DataSN = 0, F=1	Receive Data
	<<< SCSI Response	Send Status and Sense
Command Complete		

PDU Trace of a Read Request

- A READ request: 32768 bytes of data (64 * 512 bytes) starting LBA = 18572, ending LBA = 18635. Current initiator's CmdSN = 22264. Current target's StatSN counter is 67. MaxRecvPDULength = 12288, so we have 3 separate DataIn PDUs having DataSN numbers 0, 1, 2: the first 12288 bytes; the second 12288 bytes; the last 8192 bytes. DataPDUInOrder = yes.
- I->T: opcode = 0x01, F = 1, R = 1, DSL = 0, ITT = 88931, EDTL = 32768, CmdSN = 22264, ExpStatSN = 67, CDBopcode = 0x28, CDBlba = 18572, CDBlength = 64;
- T->I: opcode = 0x25, I = 1, F = 0, DSL = 12288, ITT = 88931, ExpCmdSN = 22265, DataSN = 0, BufferOffset = 0;
- T->I: opcode = 0x25, I = 1, F = 0, DSL = 12288, ITT = 88931, ExpCmdSN = 22265, DataSN = 1, BufferOffset = 12288;
- T->I: opcode = 0x25, I = 1, F = 0, DSL = 8192, ITT = 88931, ExpCmdSN = 22265, DataSN = 2, BufferOffset = 24576;
- T->I: opcode = 0x21, I = 1, F = 1, Response = 0, Status = 0, DSL = 0, ITT = 88931, StatSN = 67, ExpCmdSN = 22265;

UNH iSCSI Reference Implementation

- Two-layer structure
 - SCSI middle layer (SIML, STML)
 - the common portions of what these Initiators and Targets need to do in terms of a logical unit of code that is responsible for processing SCSI commands, data and responses.
 - FED (FETD)
 - A relatively simpler front-end driver can be written that handles the details of the SCSI Transport Protocol itself.

UNH Implementation Overview

UNH Implementation Architecture

UNH Initiator Host Interface

UNH Initiator Code

UNH Target Code Piece (READ)

UNH Target Code Piece (WRITE)

UNH Target Storage Devices

- UNH code supports 3 storage modes: MEMORYIO, FILEIO, DISKIO;
- DISKIO mode can choose to operate on 3 different layers;

Limitation of iSCSI

- TCP/IP protocol overhead
 - Performance
 - Qos
- Network Latency
- Protocol overhead

Conclusion

- iSCSI is ...

Reference & More Information

- Most of the stuff in this presentation can be found from
 - iSCSI Standard:
 - <http://www.haifa.il.ibm.com/satran/ips/draft-ietf-ips-iscsi-20.txt>
 - University of New Hampshire Implementation:
 - <Http://www.iol.unh.edu/consortiums/iscsi/>
- Feel free to contact Ming Zhang (mingz@ele.uri.edu) if you have any question about the content in this presentation.