Vector Fields and Line Integrals

Section 16.1-16.3

Outline

- Vector Field, Gradient Vector Fields
- Line Integrals
 - With Respect to Arc Length
 - With Respect to Variables
 - Integrate Vector Fields Along a Curve
- The Fundamental Theorem for Line Integrals
 - Independence of Path

- A vector field is a function whose domain is a set of points in R^2 (or R^3) and whose range is a set of vectors in R^2 (or R^3).
- ▶ Definition: A vector field on $D \subset R^2$ is a function \vec{F} that assigns to each point $(x,y) \in D$ a two-dimensional vector $\vec{F}(x,y)$.
- ▶ Definition: A vector field on $E \subset R^3$ is a function \vec{F} that assigns to each point $(x,y,z) \in E$ a three-dimensional vector $\vec{F}(x,y,z)$.

Calculus 4

Since $\vec{F}(x,y)$ (or $\vec{F}(x,y,z)$) is a two (three)-dimensional vector, we can write it in terms of its **component functions** P and Q (and R) as follows:

$$\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j} = (P(x,y), Q(x,y))$$

 $\vec{F}(x,y,z) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$

 $\blacktriangleright P,\ Q,\ R$ are sometimes called scalar fields to distinguish them from vector fields.

Ex: A particle of mass M is placed at Xo = (xo, yo, 26). Find the gravitational force field due to this particle.

sol:

Ex: The velocity field of a solid notating about the z-axis with angular velocity wik is

$$\overrightarrow{V}(x,y,z) = \omega \overrightarrow{k} \times (x \overrightarrow{z} + y \overrightarrow{j} + z \overrightarrow{k})$$

$$(x,y,z)$$

- As with the vector functions, we can define continuity of vector fields and show that \vec{F} is continuous if and only if its component functions P, Q, and R are continuous.
- ▶ Example: $\vec{F}(x,y) = -y\vec{i} + x\vec{j}$.
- ▶ Example: The Gravitational Force:

$$\vec{F}(\vec{x}) = -\frac{mMG}{|\vec{x}|^3} \vec{x}$$

Gradient Vector Fields

- If f is a scalar function of two variables, ∇f is a vector field on R^2 and is called a **gradient** vector field.
- Likewise, if f is a scalar function of three variables, its gradient is a vector field on \mathbb{R}^3 .

Gradient Vector Fields

- Definition: A vector field \vec{F} is called a conservative vector field if it is the gradient of some scalar function, that is, if there exists a function f such that $\vec{F} = \nabla f$.
- In this situation f is called a **potential** function for \vec{F} .

Ex: Compute $\overrightarrow{\nabla} f(x,y,z)$, where $f(x,y,z) = \frac{GMm}{\sqrt{x^2+y^2+z^2}}$. Sol: