CSCI 556 Data Analysis & Visualization

Input: concepts, instances, attributes

Instructor: Dr. Jinoh Kim

Some contents have been imported/modified from the Weka materials.

Components of the input

- Concepts: things that can be learned
 - The output produced by a learning scheme is the concept description
- Instances: the individual, independent examples of a concept to be learned
 - More complicated forms of input with dependencies between examples are possible
- Attributes: measuring aspects of an instance
 - Will focus on nominal (categorical) and numeric ones

What's a concept?

- Concept: thing to be learned
- Concept description: output of learning scheme
- Styles of learning:
 - Classification learning: predicting a discrete class
 - Association learning: detecting associations between features
 - Clustering: grouping similar instances into clusters
 - Numeric prediction: predicting a numeric quantity

Classification learning

- Classification learning is supervised
 - Scheme is provided with actual outcome
- Outcome is called the class of the example (instance)
- Measure success on fresh data for which class labels are known (test data)
- In practice success is often measured subjectively

	Sepal length	Sepal width	Petal length	Petal width	Туре
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versicolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	Iris virginica

Clustering

- Finding groups of items that are similar
- Clustering is unsupervised
 - The class of an example (instance) is not known
- Success often measured subjectively

	Sepal length	Sepal width	Petal length	Petal width	Туре
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris ve sicolor
101	6.3	3.3	6.0	2.5	Ms virgin ca
102	5.8	2.7	5.1	1.9	Iris virginica

Numeric prediction

- Variant of classification learning where "class" is numeric (also called "regression")
- Learning is supervised
 - Scheme is being provided with target value
- Measure success on test data

Outlook	Heat	Moisture	Windy	Play-time
Sunny	Hot	High	False	5
Sunny	Hot	High	True	0
Overcast	Hot	High	False	55
Rainy	Mild	Normal	False	40

What's in an example?

- Instance: specific type of example
 - Thing to be classified, associated, or clustered
 - Individual, independent example of target concept
 - Characterized by a predetermined set of attributes
- Input to learning scheme: set of instances/dataset
 - Represented as a single relation/flat file
- Rather restricted form of input
 - No relationships between objects

What's in an attribute?

- Each instance is described by a fixed predefined set of features, its "attributes"
 - Number of attributes may vary in practice
 - Possible solution: "irrelevant value" flag
- Related problem: existence of an attribute may depend on value of another one
- Possible attribute types ("levels of measurement"):
 - Nominal, ordinal, interval and ratio

Nominal levels of measurement

- Values are distinct symbols
 - Values themselves serve only as labels or names
 - Nominal comes from the Latin word for name
- Example: attribute "outlook" from weather data
 - Values: "sunny", "overcast", and "rainy"
- No relation is implied among nominal values (no ordering or distance measure)
- Only equality tests can be performed

Ordinal levels of measurement

- Impose order on values
 - But no distance between values defined
- Example: attribute "Heat" in weather data
 - Values: "hot" > "mild" > "cool"
- Note: addition and subtraction don't make sense
- Example rule:
 - Heat \leq hot \Rightarrow play = yes
- Distinction between nominal and ordinal not always clear (e.g., attribute "outlook")

Interval quantities

- Interval quantities are not only ordered but measured in fixed and equal units
- Example: attribute "year"
- Difference of two values makes sense
- Sum or product don't make sense
- Zero point is not defined!

Ratio quantities

- Ratio quantities are ones for which the measurement scheme defines a zero point
- Example: attribute "distance"
 - Distance between an object and itself is zero
- Ratio quantities are treated as real numbers
 - All mathematical operations are allowed

Attribute types used in practice

- Practically just two levels of measurement: nominal and ordinal
- Nominal attributes are also called "categorical", "enumerated", or "discrete"
 - But: "enumerated" and "discrete" imply order
- Special case: dichotomy ("boolean" attribute)
- Ordinal attributes are sometimes coded as "numeric" or "continuous"
 - "continuous" implies mathematical continuity

ARFF data format

```
% ARFF file for weather data with some numeric features
@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {true, false}
@attribute play? {yes, no}
@data
sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
```

Additional attribute types

ARFF data format also supports string attributes:

```
@attribute description string
```

- Similar to nominal attributes but list of values is not prespecified
- Additionally, it supports date attributes:

```
@attribute today date
```

 Uses the ISO-8601 combined date and time format yyyy-MM-dd-THH:mm:ss

Sparse data

- In some applications most attribute values are zero and storage requirements can be reduced
- ARFF supports sparse data storage

```
0, 26, 0, 0, 0, 0, 63, 0, 0, 0, "class A"
0, 0, 0, 42, 0, 0, 0, 0, 0, "class B"
```

```
{1 26, 6 63, 10 "class A"}
{3 42, 10 "class B"}
```

- This also works for nominal attributes (where the first value of the attribute corresponds to "zero")
- Some learning algorithms work very efficiently with sparse data

Nominal vs. ordinal

Attribute "age" nominal

```
If age = young and astigmatic = no
    and tear production rate = normal
    then recommendation = soft

If age = pre-presbyopic and astigmatic =
    no
    and tear production rate = normal
    then recommendation = soft
```

 Attribute "age" ordinal (e.g. "young" < "pre-presbyopic" < "presbyopic")

```
If age \le pre-presbyopic and astigmatic =
   no
   and tear production rate = normal
   then recommendation = soft
```

Missing values

- Missing values are frequently indicated by out-of-range entries for an attribute
 - There are different types of missing values: unknown, unrecorded, irrelevant
 - Reasons:
 - malfunctioning equipment
 - changes in experimental design
 - collation of different datasets
 - measurement not possible
- Missing value may have significance in itself (e.g., missing test in a medical examination)
 - Most schemes assume that is not the case and "missing" may need to be coded as an additional, separate attribute value

Inaccurate values

- Reason: data has not been collected for mining it
- Result: errors and omissions that affect the accuracy of learning (mining)
- These errors may not affect the original purpose of the data (e.g., age of customer)
- Typographical errors in nominal attributes \Rightarrow values need to be checked for consistency
- Typographical or measurement errors in numeric attributes
 outliers need to be identified
- Errors may be deliberate (e.g., wrong zip codes)
- Other problems: duplicates, stale data

Unbalanced data

- Unbalanced data is a well-known problem in classification problems
 - One class is often far more prevalent than the rest
 - Example: detecting a rare disease
- Class imbalance problem: simply predicting the majority class yields high accuracy but is not useful
 - Predicting that no patient has the rare disease gives high classification accuracy
- Unbalanced data requires techniques that can deal with unequal misclassification costs
 - Misclassifying an afflicted patient may be much more costly than misclassifying a healthy one

Getting to know your data

- Simple visualization tools are very useful
 - Nominal attributes: histograms (Is the distribution consistent with background knowledge?)
 - Numeric attributes: graphs (Any obvious outliers?)
- 2-D and 3-D plots show dependencies
- May need to consult domain experts
- Too much data to inspect manually? Take a sample!

Summary

- Components of input concepts, instances, attributes
- Concepts classification, clustering, prediction
- Examples (instances)
- Attributes types, levels of measurements
- ARFF format
- Missing, inaccurate values, unbalanced data