COMPITO DI CONTROLLI AUTOMATICI e FONDAMENTI DI AUTOMATICA

Ingegneria dell'Informazione - Ingegneria Elettronica 25 Gennaio 2021

Esercizio 1. [11.5 punti] Data la funzione di trasferimento

$$G(s) = \frac{(1+s^2)(1-s)}{s\left(1+\frac{s^2}{100}\right)}$$

è richiesto di

- i) tracciare il diagramma di Bode di G(s);
- ii) tracciare il diagramma di Nyquist di G(s), individuando asintoti (per quelli obliqui è sufficiente il coefficiente angolare) ed intersezioni con gli assi;
- iii) studiare la stabilità BIBO del sistema $W(s) = \frac{KG(s)}{1+KG(s)}$ al variare del parametro reale K, ricorrendo al Criterio di Nyquist. Per i valori di K per cui non c'è stabilità, si discuta il numero di poli a parte reale positiva e/o nulla.

Esercizio 2. [8 punti] Data la funzione di trasferimento

$$G(s) = \frac{s-1}{(s-2)^2(s+4)}$$

è richiesto il tracciamento del luogo delle radici positivo e negativo, calcolando punti doppi, asintoti, intersezioni con l'asse immaginario e studiando di conseguenza la stabilità BIBO al variare di K sui numeri reali del sistema retroazionato $W(s) = \frac{KG(s)}{1+KG(s)}$.

È anche richiesta l'analisi della stabilità BIBO, se possibile, mediante la tabella di Routh-Hurwitz.

Esercizio 3. [7 punti] Data il sistema di funzione di trasferimento

$$G(s) = \frac{1}{(1+s)(1+10s)}$$

è richiesto

- i) il progetto di un controllore stabilizzante $C_1(s)$ proprio che garantisca che il risultante sistema retroazionato sia di tipo 0, con errore di regime permanente al gradino $e_{rp}^{(1)} \simeq 10^{-3}$, mentre il sistema in catena aperta abbia pulsazione di attraversamento $\omega_a \simeq 1 \text{ rad/s}$ e margine di fase $m_\phi \simeq 90^\circ$;
- ii) il progetto di un controllore stabilizzante $C_2(s)$ di tipo PID (eventualmente solo P, PI, o PD) che garantisca che il risultante sistema retroazionato sia di tipo 1, con errore di regime permanente alla rampa lineare $e_{rp}^{(2)} \simeq 0.01$, mentre il sistema in catena aperta abbia pulsazione di attraversamento $\omega_a \simeq 1000$ rad/s e margine di fase $m_{\phi} \simeq 90^{\circ}$.

Teoria. [4.5 punti] Sia $G(s) \in \mathbb{R}(s)$ una funzione razionale propria con guadagno di Evans $K_E=1,$ ovvero

$$G(s) = \frac{n(s)}{d(s)},$$

con $n(s), d(s) \in \mathbb{R}[s]$ monici e deg $d(s) \ge \deg n(s)$. Si dica che cos'è un punto doppio del luogo delle radici e si derivi l'equazione dei candidati punti doppi.

Si spieghi perchè una soluzione di tale equazione può non essere un punto doppio del luogo distinguendo i vari casi.

SOLUZIONI

Esercizio 1. i) Il diagramma di Bode è illustrato in figura

Il diagramma dei moduli asintotico parte con una pendenza di $-20 {\rm db/dec}$ e arriva nell'origine per $\omega=1$ rad/s, poi sale con pendenza $+40 {\rm db/dec}$ fino a $\omega=10$ rad/s dove diventa piatto con valore dell'ordinata pari a $+40 {\rm db}$. Il diagramma dei moduli reale esibisce un picco di antirisonanza infinito per $\omega=1$ rad/s ed un picco di risonanza infinito per $\omega=10$ rad/s. Il diagramma delle fasi asintotico parte da -90° e sale a 0° per $\omega=1$ rad/s; poi scende a -180° per $\omega=10$ rad/s. Il diagramma delle fasi reale scende da -90° fino a -135° , per poi risalire a $+45^{\circ}$ con una prima discontinuità, poi ridiscende verso 0° , ma prima di raggiungere 0° una seconda discontinuità lo porta a quasi -180° , che vengono poi raggiunti asintoticamente.

ii) Il diagramma di Nyquist arriva dall'infinito verticalmente dal basso (III quadrante), attraversa l'origine con tangente la bisettrice (I quadrante) e va all'infinito con direzione quasi orizzontale verso destra, per poi rispuntare dall'infinito a sinistra (III quadrante), e terminare nel punto s=-100.

Dettaglio per valori di $|\omega|$ piccoli (0.02 < $|\omega| < 7)$:

Dettaglio per valori di $|\omega|$ grandi (12 < $|\omega| < +\infty)$:

Il calcolo delle intersezioni con gli assi porge

$$G(j\omega) = \frac{1 - \omega^2}{1 - \frac{\omega^2}{100}} \left(-1 - \frac{j}{\omega} \right) = \left[\frac{\omega^2 - 1}{1 - \frac{\omega^2}{100}} \right] + j \left[\frac{\omega^2 - 1}{\omega (1 - \frac{\omega^2}{100})} \right]$$

e prova che l'asintoto verticale è centrato in s=-1 $(-1-j\infty)$, e che parte reale ed immaginaria si annullano solo contemporaneamente e solo per $\omega=1$. Per $\omega=10$ abbiamo due asintoti obliqui con coefficiente angolare $\frac{1}{10}$ (asintoti quasi orizzontali).

iii) Chiudendo con i cerchi all'infinito ed analizzando la posizione del diagramma di Nyquist rispetto al punto critico $-\frac{1}{K}$, si hanno i seguenti casi (notando che $n_{G_+}=0$ e quindi che $n_{W_+}=-N$)

$$\begin{array}{lll} K < 0 & \Rightarrow & n_{W_+} = 3 \\ 0 < K < \frac{1}{100} & \Rightarrow & n_{W_+} = 0 \\ K = \frac{1}{100} & \Rightarrow & W(s) \text{ impropria} \\ K > \frac{1}{100} & \Rightarrow & n_{W_+} = 1 \end{array}$$

Quindi la W(s) è BIBO stabile se e solo $0 < K < \frac{1}{100}$, mentre per $K = \frac{1}{100}$ il denominatore diventa $s^2 + 99s + 1$ ed ha quindi due poli negativi, tuttavia l'essere non BIBO stabile deriva dall'essere W(s) impropria.

Esercizio 2. L'equazione dei punti doppi porge

$$(s-2)(2s^2 + s + 2) = 0$$

che ha come radici s=2 ed altre due radici complesse coniugate. Il punto doppio s=2 è banale (K=0), mentre i due complessi non sono accettabili (dal momento che il grado del denominatore è <4 non ci possono essere punti doppi complessi). Quindi, in definitiva, non ci sono punti doppi nel luogo.

Il centro della stella di asintoti è in $\left(-\frac{1}{2},0\right)$; gli asintoti hanno direzioni $\pi/2$ e $3\pi/2$ nel luogo positivo, $0 \in \pi$ nel luogo negativo. Le intersezioni con gli assi porgono

$$d(j\omega) + Kn(j\omega) = (16 - K) + j\omega(4 - \omega^2 + K - 16) = 0 \implies K = 16, \ \omega = 0, \pm 2$$

Il luogo negativo ha solo tratti sull'asse reale: uno va da +2 verso $+\infty$, un altro da +2 verso +1, il terzo da -4 verso $-\infty$. Quindi abbiamo sempre due poli positivi ed uno negativo.

Il luogo positivo ha un ramo reale che va da -4 verso +1, attraversando l'asse immaginario per K=16 in s=0, mentre gli altri due, complessi, partono da +2 e vanno verso gli asintoti verticali centrati in $s=-\frac{1}{2}$, attraversando l'asse immaginario sempre per K=16 in $s=\pm 2j$. Quindi abbiamo due poli a parte reale positiva ed uno negativo per $0 \le K < 16$, uno positivo e due a parte reale negativa per K>16, mentre per K=16 abbiamo tre poli sull'asse immaginario $(s=0,\pm 2j,$ che corrisponde al polinomio $d(s)+Kn(s)=s(s^2+4)$).

Il polinomio d(s) + Kn(s) vale

$$s^3 + (K - 12)s + (16 - K)$$

e quindi non possiamo MAI ottenere alcuna informazione da Routh (che non sia l'assenza di stabilità per ogni K), in quanto la tabella non è mai completabile, essendo sempre nullo il termine di secondo grado.

Esercizio 3. i) Assumiamo come precompensatore C'(s)=1000 per sistemare l'errore a regime (invece il tipo è già a posto), dopodichè il diagramma di Bode esibisce una $\omega_a \simeq 10$ rad/s e il margine di fase alla pulsazione desiderata $m_{\phi}(\omega_a^*)$ è circa 45°.

È necessario quindi il ricorso ad una rete a sella, che in ω_a^* faccia scendere di $M=40{\rm db}$ il modulo ed alzi la fase di $\Phi=45^{\circ}$. Questa seconda richiesta implica che lo zero della rete anticipatrice vada posizionato sopra il polo in s=-1 di G(s), visto che in quel punto vogliamo l'attraversamento. Il relativo polo -p deve avere punto di spezzamento molto alla destra di 10^0 (ad esempio -100). Si noti che la rete anticipatrice non modifica M, quindi la rete attenuatrice deve abbassare di $40{\rm db}$ e per ottenere ciò deve avere il polo che precede lo zero di 2 decadi. Possiamo ad esempio posizionare il polo 3 decadi prima di ω_a^* e lo zero in -0.1. Quindi una possibile soluzione (che porta a due cancellazioni lecite) è

$$C(s) = \frac{1000(1+s)(1+10s)}{(1+1000s)\left(1+\frac{s}{100}\right)}.$$

Il sistema risultante è BIBO stabile per il criterio di Bode.

ii) Per soddisfare le specifiche su tipo ed errore a regime inseriamo il precompensatore $C'(s) = \frac{100}{s}$.

Si vede che per soddisfare le specifiche su tipo ed errore a regime è necessario alzare il modulo in $\omega_a^* = 10^3$ rad/s di ben M = 160db, oltre a incrementare il margine di fase di quasi $\Phi = 180^\circ$. È necessaria quindi l'inserzione di due zeri a sinistra di $\omega_a^* = 10^3$ rad/s, ad esempio entrambi 4 decadi prima della ω_a^* , da cui

$$C(s) = \frac{100(1+10s)^2}{s}$$

(che introduce una cancellazione zero-polo lecita). Il sistema risultante è BIBO stabile per il criterio di Bode.

Teoria. Si veda il libro di testo, Capitolo 8, pagine 233-234.

Un punto $\alpha \in \mathbb{C}$ è un punto doppio o in generale multiplo del luogo (positivo o negativo) se è un punto del luogo per cui passano 2 o più rami.

 $\alpha \in \mathbb{C}$ è un punto multiplo del luogo se e solo se esiste un valore di $K \in \mathbb{R}$, finito e non nullo, per cui α è zero di d(s) + Kn(s) di molteplicità 2 o superiore a 2.

Ciò si verifica se e solo se esiste un valore di $K \in \mathbb{R}, K \neq 0$, per cui vale

$$\left\{ \begin{array}{rcl} d(s) + Kn(s)|_{s=\alpha} & = & 0 \\ \frac{d}{ds}[d(s)] + K\frac{d}{ds}[n(s)]|_{s=\alpha} & = & 0 \end{array} \right.$$

Di conseguenza per trovare i punti multipli del luogo occorre e basta risolvere il sistema di equazioni nelle incognite s e K:

$$\left\{ \begin{array}{rcl} d(s) + Kn(s) & = & 0 \\ \frac{d}{ds}[d(s)] + K\frac{d}{ds}[n(s)] & = & 0. \end{array} \right.$$

Dalla prima equazione otteniamo

$$K = -\frac{d(s)}{n(s)}$$

che sostituita nella seconda porta a

$$\frac{d}{ds}[d(s)] - \frac{d(s)}{n(s)}\frac{d}{ds}[n(s)] = 0$$

da cui segue la cosiddetta equazione dei candidati punti multipli/doppi

$$n(s) \cdot \frac{d}{ds}[d(s)] - d(s) \cdot \frac{d}{ds}[n(s)] = 0.$$

Si chiama equazione dei candidati punti doppi perché tra le sue soluzioni troviamo anche le seguenti che non sono punti doppi del luogo:

- gli zeri di d(s) (e quindi i poli di G(s)) che corrispondono a K=0;
- gli zeri di n(s) (e quindi gli zeri di G(s)) che corrispondono a $K=\pm\infty$;
- eventuali radici (complesse) α per le quali $K=-\frac{d(\alpha)}{n(\alpha)}$ è un numero complesso in senso stretto.

Se α è una soluzione dell'equazione dei candidati punti doppi e $K=-\frac{d(\alpha)}{n(\alpha)}>0$ allora α è un punto doppio del luogo positivo; se α è una soluzione dell'equazione dei candidati punti doppi e $K=-\frac{d(\alpha)}{n(\alpha)}<0$ allora α è un punto doppio del luogo negativo.