Solving Bomberman

WITH Q-TABLE AND NEURAL NETWORKS

Behrooz Montazeran Jannis Heising Tomáš Sláma

20. 12. 2023

Introduction

PROBLEM STATEMENT

PROBLEM STATEMENT

- 6 actions 4 movement directions + wait + place bomb
- destructible crates, indestructible walls
- \blacksquare +1 for coin, +5 for killing opponent

Q-learning – optimizing action-value Q-function:

- **Q-table:** store each input/output in a table
- Neural Network: learn function via a neural network

Q-learning – optimizing action-value Q-function:

- **Q-table:** store each input/output in a table
- Neural Network: learn function via a neural network

TD update – Use best possible predicted value in next step:

$$Y_t \leftarrow R_t + \gamma \cdot \max_{a} Q(s_{t+1}, a),$$
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \mu \cdot (Y_t - Q(s_t, a_t)).$$

Q-learning – optimizing action-value Q-function:

- **Q-table:** store each input/output in a table
- Neural Network: learn function via a neural network

TD update – Use best possible predicted value in next step:

$$Y_t \leftarrow R_t + \gamma \cdot \max_{a} Q(s_{t+1}, a),$$
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \mu \cdot (Y_t - Q(s_t, a_t)).$$

Stability can be improved with policy/target model:

- target: trained on the results of actions
- policy: updated slowly / replaced periodically

Infrastructure

Infrastructure

Evaluation with elo.py:

- comparing relative strengths of agents using the elo system
- agents start with 1 000 elo, updated after win/loss/draw

Infrastructure

Evaluation with elo.py:

- comparing relative strengths of agents using the elo system
- agents start with 1 000 elo, updated after win/loss/draw

Training with train.py:

- subcommands for training traits (coin picking, agent hunting)
- periodically calculates strength with elo.py
- useful training flags: --infinite <n>, --continue

TRAINING COMMAND EXAMPLE

TRAINING COMMAND EXAMPLE

```
TASKS = {
    "complete": [
        # first learn to pick up coins
        (["--scenario", "coin-heaven", "--n-rounds", "100"], False),
        # then learn to hunt/evade the rule-based agent
        (["rule based agent", "--scenario", "empty", "--n-rounds", "1000"], False),
        # then learn to work with crates
        (["--scenario", "classic", "--n-rounds", "1000"], False),
        # then learn to work with crates + hard agent
        (["rule based agent", "--scenario", "classic", "--n-rounds", "200"], True),
        # then learn to work with crates + really hard agent
        (["binary agent v3", "--scenario", "classic", "--n-rounds", "200"], True),
        # finally play against itself (None gets substituted)
        ([None, "--scenario", "classic", "--n-rounds", "200"], True),
   ],
```

Neural Networks

Overview

5 | 12

OVERVIEW

Network structure: fully connected layers with ReLU

■ uses TD for Q-value updating

OVERVIEW

Network structure: fully connected layers with ReLU

■ uses TD for Q-value updating

Main idea – carefully crafted binary state vector:

- 1... 5: direction to the nearest **coin**
- 6...10: direction to the nearest **crate**
- 11...15: direction to where a bomb will **kill opponent**
- 16...20: direction to **safety** (if in danger of dying)
 - 21: can place a bomb and there is a way to escape it

OVERVIEW

Network structure: fully connected layers with ReLU

■ uses TD for Q-value updating

Main idea – carefully crafted binary state vector:

- 1... 5: direction to the nearest **coin**
- 6...10: direction to the nearest **crate**
- 11...15: direction to where a bomb will **kill opponent**
- 16...20: direction to **safety** (if in danger of dying)
 - 21: can place a bomb and there is a way to escape it

Calculated by searching state space (other players stand still)

- \Rightarrow finds path even in ongoing explosions
- \Rightarrow shortest on-board path \neq shortest path stepwise

Q-VECTOR EXAMPLE (1)

Q-VECTOR EXAMPLE (1)

Q-VECTOR EXAMPLE (2)

Q-VECTOR EXAMPLE (2)

TRAINING PARAMETERS

Training Parameters

Hyperparameters

```
BATCH SIZE = 256
MEMORY_SIZE = 1000
# chances of picking random action
# happens per-round, not per-epoch!
EPS START = 0.99
EPS_END = 0.05
EPS_DECAY = 10
# (soft) update rate of target network
TAII = 1e-3
# LR of the optimizer
I.R = 1e-4
# discount for future states
GAMMA = 0.99
OPTIMIZER = optim.Adam
LAYER SIZES = [1024, 1024]
```

Event Rewards

```
# hunt coins
MOVED_TOWARD_COIN: 50
DID_NOT_MOVE_TOWARD_COIN: -100
# hunt people
MOVED TOWARD PLAYER: 25
DID_NOT_MOVE_TOWARD_PLAYER: -10
# blow up crates
MOVED_TOWARD_CRATE: 1
# basic stuff
e.INVALID_ACTION: -100
DID_NOT_MOVE_TOWARD_SAFETY: -500
# be active!
USELESS WAIT: -100
# meaningful bombs
PLACED USEFUL BOMB: 50
PLACED_SUPER_USEFUL_BOMB: 150
DID NOT PLACE USEFUL BOMB: -500
```

TRAINING LOOP

Training Loop

- 1. train.py with the "complete" task and --infinite 2
- 2. pick the best-performing model based on calculated elo
- 3. decrease EPS_START, EPS_END, TAU and LR hyperparameters
- 4. go to step 1 (with --continue to not overwrite the model)

9 | 1

Training Loop

- 1. train.py with the "complete" task and --infinite 2
- 2. pick the best-performing model based on calculated elo
- 3. decrease EPS_START, EPS_END, TAU and LR hyperparameters
- 4. go to step 1 (with --continue to not overwrite the model)

9 | 12

Q-table

STORING Q-TABLE

)

STORING Q-TABLE

- Theoretically $207 \times 2^{21} \times 6 = 2.60466278e9$ possible states
- 207 free tiles for the agent to go
- \blacksquare 2²¹ possible actions-state pairs
- 6 actions

States

STORING Q-TABLE

In practice, agent encounters much fewer states

Scenario	Opponent(s)	Number of Rounds	Maximum new encountered states	Encountered states	Run time	Total run time
Coin-heaven		5,000	~100	100	~00:03:40	00:03:40
Sparse-crate		30,000	~560	660	~00:20:30	00:24:10
Sparse-crate	Peaceful-agent	40,000	~2290	2950	~00:47:35	01:11:45
classic	Peaceful-agent	40,000	0	2950	~00:27:28	01:39:13
classic	Peaceful-agent & rule-based-agent	40,000	~2530	5480	~01:15:17	02:54:30
classic	rule-based-agent & rule-based-agent & rule-based-agent	100,000	~5315	10795	~05:44:10	08:38:40
Doubled	Above in order	255,000	~16	10811	~04:20:40	12:59:20

Conclusion

RESULTS

RESULTS

THANKS FOR YOUR ATTENTION!

SPECIAL THANKS TO ULLRICH KÖTHE AND TUTORS

References

Behrooz Montazeran, Jannis Heising, T. S.

BombermanML.

https://github.com/xiaoxiae/BombermanML.

Accessed: 2023-11-28.

Munroe, R.

XKCD 1838.

https://xkcd.com/1838/.

Accessed: 2023-11-28.

RE-LOGIC.

Terraria.

https://www.terraria.org/.

Played: 2023-12-20.