Chap. 3 – Analyse amortie, analyse d'algorithmes probabilistes HAI503I – Algorithmique 4

Bruno Grenet

Université de Montpellier - Faculté des Sciences

- 1.1 Exemple 1: le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1: QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

- 2. Analyse d'algorithmes probabilistes
- 2.1 Exemple 1: QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

- 2. Analyse d'algorithmes probabilistes
- 2.1 Exemple 1: QuickSelect
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Incrémenter un entier de $0 \text{ à } 2^k - 1$

Représentation

- ► Tableau *T* de *k* bits (ou *mot binaire de longueur k*)
- ► Entier *N* représenté : $\sum_{i=0}^{k-1} T_{[i]} 2^i$

Incrément (T):

Entrée: Tableau T de taille k représentant un entier N Sortie: Le même T, représentant N+1 modulo 2^k

$$(2^k-1)+1\to 0$$

- 1. $i \leftarrow 0$
- 2. Tant que i < k et $T_{[i]} = 1$:
- 3. $T_{[i]} \leftarrow 0$
- 4. $i \leftarrow i + 1$
- 5. Si $i < k : T_{[i]}$ ← 1
- **6.** Renvoyer *T*

Propriétés d'Incrément

Correction

▶ Si T représente N, alors après INCRÉMENT, T représente $N' = N + 1 \mod 2^k$

Preuve

- ▶ Si $N = 2^k 1$, $T_{[i]} = 1$ pour tout i et après incrément $T_{[i]} = 0$ pour tout i
- ► Sinon, soit *i* tel que $T_{[i]} = 0$ et $T_{[i]} = 1$ pour i < i:
 - Après Incrément : $T_{[i]} = 1$, $T_{[j]} = 0$ pour j < i et $T_{[k]}$ inchangé pour k > i
 - ▶ Donc $N' = N + 2^i \sum_{j < i} 2^j = N + 1$

Complexité

Incrément a complexité O(k)

Preuve

▶ Pire cas \rightarrow on parcourt une fois tout le tableau *T*

Peut-on dire mieux?

La complexité d'Incrément est-elle vraiment O(k)?

- ▶ 01...11 \rightarrow 10...00 : demande effectivement *k inversions* de bits
- ▶ $10...00 \rightarrow 10...01$: ne demande qu'une inversion de bit!

Comment prendre en compte les variations?

- Les Incréments peuvent coûter 1, 2, ..., k
- Lesquels sont les plus *fréquents* ?
- → Fixer une suite d'Incréments

Suite d'Incréments

On incrémente T de 0 à N-1: quel est le coût *global*?

Analyse pire cas

- ▶ T est de taille $k \rightarrow$ chaque Incrément coûte O(k)
- ▶ On effectue N Incréments \rightarrow coût global O(Nk)
- ▶ Remarque : si $N \ll 2^k$, chaque Incrément coûte $O(\log N) \rightarrow O(N \log N)$

Analyse amortie

- $ightharpoonup T_{[0]}$ est inversé à chaque fois
- ► *T*_[1] est inversé une fois sur deux
- **.**..
- $ightharpoonup T_{[k-1]}$ est inversé une fois sur 2^{k-1}
- ightarrow Coût global : $\sum_{i=0}^{k-1} \lfloor \frac{N}{2^i} \rfloor < N \sum_{i=0}^{+\infty} \frac{1}{2^i} = 2N$

Bilan sur Incrément

Coût d'un appel à Incrément

- ▶ Pire cas : on doit parcourir tout le tableau $T \rightarrow O(k)$
- ► On ne peut pas dire mieux *a priori*!

Coût de N appels à Incréments

- ▶ Pire cas : $N \times O(k) = O(Nk)$
- Coût global : O(N) car certains INCRÉMENTS peu chers
- Remarque : valable aussi pour N Incréments quelconques

Coût amorti d'Incrément

Le coût amorti de l'algorithme Incrément est O(1) par appel à Incrément

1.1 Exemple 1: le compteur binaire

1.2 L'analyse amortie

1.3 Exemple 2: les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1: QuickSelect
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Analyse pire cas et analyse amortie

Scénario

- Algorithme Algo de complexité C(n) pour une entrée de taille n, dans le pire cas
- Séquence de N appels à ALGO : coût $c_i \leq C(n)$ sur l'entrée n° i

Deux analyses possibles

- ► Analyse pire cas : le coût global est borné par $N \times C(n)$ ► Analyse amortie : le coût global est $\leq \sum_{i=1}^{N} c_i$

Remarques

- L'analyse pire cas reste valide ; l'analyse amortie est meilleure
- Estimation directe du coût c_i difficile, voire impossible
- Plusieurs méthodes d'analyse :
 - méthode de l'agrégat
 - méthode de l'accompte
 - méthode du potentiel

Méthode de l'agrégat

Idée: si le coût global pour N appels est $C^{tot}(N)$, le coût amorti est $C^{tot}(N)/N$

lacktriangle Agrégat : mot compliqué pour une idée simple ightarrow on somme les coûts et on divise

Mise en œuvre

- ▶ Regarder globalement les *N* appels comme une seule exécution
- Regrouper des opérations venant de différents appels pour mieux compter

Exemple pour Incrément

► Compter le nombre total d'inversions du bit $T_{[0]}$, du bit $T_{[1]}$, etc.

Méthode de l'accompte

Idée: payer plus que le vrai coût à certains appels, et moins à d'autres

Accompte : on imagine que les coûts sont de l'argent, et le compte doit être en positif

Mise en œuvre

- À chaque appel,
 - fixer une taxe à payer (éventuellement nulle pour certains appels)
 - utiliser l'accompte pour payer le coût de l'appel
- L'accompte doit toujours rester positif
- Coût amorti par opération : taxe maximale payée
- Remarque : plus difficile que l'agrégat, mais plus puissant

Exemple pour Incrément

- ► Chaque passage de bit de 0 à 1 coûte 2, et chaque passage de 1 à 0 est gratuit
- À chaque appel : prélèvement de 1 par inversion de bits
- Coût amorti : 2

Méthode du potentiel

Idée: associer aux appels les plus chers une augmentation de potentiel

▶ Potentiel : métaphore de l'énergie potentielle en physique

Mise en œuvre

- ▶ Définir une *fonction potentiel* Φ ≥ 0 sur l'objet manipulé
 - Valeur initiale Φ₀
 - ► Valeur après *i* appels : $Φ_i ≥ Φ_0$
- ► Si le coût d'un appel est c_i , son *coût amorti* est $a_i = c_i + \Phi_i \Phi_{i-1}$
- Le coût total amorti de N appels est $\sum_{i=1}^{N} a_i = \sum_{i=1}^{N} c_i + \Phi_N \Phi_0$

Exemple pour Incrément

- Potentiel du tableau T : Φ(T) = nombre de 1 dans T
- ► Si Incrément(T) remet ℓ bits à 0 :
 - ightharpoonup coût $c_i = \ell + 1$
 - ▶ différence de potentiel : $\Phi_i \Phi_{i-1} = \ell 1$
 - coût amorti : $\ell + 1 (\ell 1) = 2$

Bilan sur les trois méthodes

Techniques plus ou moins faciles

- Méthode de l'agrégat : idée la plus évidente... mais demande une compréhension globale
- ► Méthodes de l'accompte et du potentiel : plus difficile à mettre en œuvre, mais compréhension *locale*

Idées communes aux méthodes de l'accompte et du potentiel

- Calcul direct d'un coût amorti pour chaque appel
- Preuve globale que le coût amorti défini est valide
- Forme d'analyse pire cas avec une notion de coût modifiée

Utilisation principale : structures de données

- ► Ensemble d'algorithmes de manipulation de la structure (ajout, suppression, etc.)
- ightharpoonup Coûts variables ightarrow analyse amortie pour avoir un *coût moyen par opérations*

- 1.1 Exemple 1: le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

- 2. Analyse d'algorithmes probabilistes
- 2.1 Exemple 1: QuickSelect
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Exemple des list en Python

```
def test(n):
    L = []
    for i in range(n): L.append(i)
    for i in range(n//2): L[i], L[n-i-1] = L[n-i-1], L[i]
```


Quelle structure de données ?

- ► Ajout en fin de liste en O(1) → liste chaînée ?
- Accès à $L_{[i]}$ en temps $O(1) \rightarrow$ tableau ?

Les tableaux dynamiques

Idée de base

- Structure de donnée sous-jacente : un tableau
- Deux tailles :
 - ► taille effective N du tableau en mémoire
 - nombre n d'éléments stockés

Conditions à respecter

- ► Il faut toujours $N \ge n$ pour avoir assez de place
- ► Il ne faut pas $N \gg n$: utilisation de place inutile

Objectifs

- Assurer $N = O(n) \rightarrow$ en pratique $n \le N \le 4n$
- Accès à un élément en temps O(1): immédiat
- Ajout et suppression en fin de tableau en O(1)

Ajout et suppression

Ajout d'un élément x à la fin

- ► Si $N > n : T_{[n]} \leftarrow x ; n \leftarrow n+1$
- ► Sinon, doubler la taille de *T* :
 - ► Nouveau tableau *U* de taille 2*N*
 - Recopie de T dans U
 - ightharpoonup Ajout de x à U

Suppression d'un élément x à la fin

- ▶ Pas de difficulté : $n \leftarrow n-1$
- Pour éviter $N \gg n$, il faut (parfois) réduire la taille de T
 - ▶ Idée 1 : si n < N/2 on réduit de moitié \rightarrow mauvaise idée !
 - ► Idée 2 : si n < N/4 on réduit de moitié \rightarrow bonne idée !

Remarque

- ▶ N toujours ≥ 1
 - Suppression du dernier élément : pas de modification de T

Les algorithmes

AJOUT
$$(T, N, n, x)$$
:

- 1. Si n < N:
- 2. $T_{[n]} \leftarrow x$
- 3. $n \leftarrow n + 1$
- 4. Renvoyer (T, N, n)
- 5. $U \leftarrow \text{tableau de taille } 2N$
- 6. Pour i = 0 à N 1: $U_{[i]} \leftarrow T_{[i]}$
- 7. $U_{[n]} \leftarrow x$
- 8. $(N, n) \leftarrow (2N, n+1)$
- 9. Renvoyer (U, N, n)

Suppression(T, N, n):

- 1. Si n = 1 ou n > N/4:
- 2. $n \leftarrow n-1$
- 3. Renvoyer (T, N, n)
- 4. $U \leftarrow \text{tableau de taille } N/2$
- 5. Pour i = 0 à n 2: $U_{[i]} \leftarrow T_{[i]}$
- 6. $(N, n) \leftarrow (N/2, n-1)$
- 7. Renvoyer (U, N, n)

Dans le pire cas, Ajout et Suppression effectuent chacun O(n) affectations

Analyse amortie 1: uniquement des Ajouts

Coût de m Ajouts dans un tableau initialement vide?

Analyse pire cas

▶ Un Ajout dans un tableau de taille k coûte O(k) o coût total $O(m^2)$

Méthode de l'agrégat

- ► Deux types de coût :
 - Affectations $T_{[n]} \leftarrow x$ quand on Ajoute x
 - Réaffectations quand on double la taille de T
- N = 1 initialement, et on double la taille quand nécessaire $\rightarrow N = 2^k$
- ► Taille de *T* doublée quand *n* est une puissance de 2
- ightarrow coût total des réaffectations : $\sum_{k=1}^{\lfloor \log m \rfloor} 2^k < 2^{\lfloor \log m \rfloor + 1} \leq 2m$

Théorème

Le coût amorti de m Ajouts dans un tableau initialement vide est de 3 affectations par opération

Analyse amortie 2: Ajouts et Suppressions

Coût de *m* opérations AJOUT/SUPPRESSION dans un tableau initialement vide ?

Notations

Après la ième opération,

- ▶ *n_i* : nombre d'élément dans le tableau
- ► N_i: taille du tableau
- $ightharpoonup \alpha_i = n_i/N_i$: coefficient de remplissage
- $ightharpoonup c_i$: coût de la $i^{\text{ème}}$ opération (nombre d'affectations)

Fonction potentiel

$$\Phi_i = \begin{cases} 2n_i - N_i & \text{si } \alpha_i \ge \frac{1}{2} \\ N_i/2 - n_i & \text{si } 0 < \alpha_i \le \frac{1}{2} \\ 0 & \text{si } \alpha_i = 0 \end{cases}$$

Objectif: Montrer que le coût amorti $a_i = c_i + \Phi_i - \Phi_{i-1}$ de chaque opération est constant

Preuve de l'analyse amortie

Le coût amorti $a_i = c_i + \Phi_i - \Phi_{i-1}$ de la $i^{\text{ème}}$ opération est ≤ 3 pour tout i

$$\frac{4}{300\pi} \cdot n_{i} = n_{i-1} + 1$$

$$\frac{1}{1} \cdot x_{i-1} \cdot x_{i} < \frac{1}{2} \cdot 1 + \frac{n_{i}}{2} \cdot n_{i} - \frac{n_{i-1}}{2} = 0$$

$$\frac{2}{1} \cdot x_{i-1} \cdot \frac{1}{2} \cdot x_{i} : 1 + (2n_{i} - n_{i}) - (n_{i} \cdot \frac{1}{2} - n_{i-1}) = 3 + 3n_{i-1} - \frac{3}{2}n_{i-1} \cdot \frac{3}{2}n_{i-1}$$

$$\frac{3}{1} \cdot x_{i-1} \cdot x_{i} > \frac{1}{2} \text{ wois pos doublement: } 1 + (2n_{i} - n_{i}) - (2n_{i-1} - n_{i-1}) = 3$$

$$\frac{4}{1} \cdot x_{i-1} = \frac{1}{2} \cdot \frac{1}{2}$$

$$= n_{i-1} + 3 - 2n_{i-1} + 3 - n_{i-1} = n_{i-1} + 3 - n_{i-1}$$

$$= n_{i-1} + 3 - 2n_{i-1} + n_{i-1} = n_{i-1} + 3 - n_{i-1}$$

Preuve de l'analyse amortie

Le coût amorti $a_i = c_i + \Phi_i - \Phi_{i-1}$ de la $i^{\text{ème}}$ opération est ≤ 3 pour tout i

Suppression
$$n_{i} = n_{i-1} - 1$$

1. $d_{i,1}d_{i-1} \ge 1/2$: $O + (2n_{i-1}-N_{i}) - (2n_{i-1}-N_{i-1}) = -2$

2. $\alpha_{i,n} \ge 1/2 > d_{i}$: $O + (N_{i,2}-n_{i}) - (2n_{i-1}-N_{i-1}) = 1-3n_{i-1}+\frac{3}{2}N_{i-1} \le 1$

3. $\alpha_{i-1}d_{i} < 1/2$ mais de réduction: $O + (N_{i,2}-n_{i}) - (N_{i,2}-n_{i-1}) = 1$

4. $\alpha_{i-1}=1/4$, $\alpha_{i} \le 1/2$: $n_{i} + (N_{i,2}-n_{i}) - (N_{i,2}-n_{i-1}) = n_{i-1} - N_{i-1} = 0$

Bilan sur les tableaux dynamiques

Principes

- ► Tableau de taille variable
 - Mémoire *allouée* supérieure à celle utilisée
 - ► Remplissage : $\frac{1}{4} \le \alpha \le \frac{1}{2}$
 - ► Taille doublée ou divisée par deux quand nécessaire
- Accès direct et Ajout en fin de tableau en temps constant

Complexité amortie

- lacktriangle Chaque opération coûte \leq 3 affectations o coût constant par opération
- Mais tout de même : si on connaît à l'avance la taille, coût triplé!

Autres utilisations

- ightharpoonup Création de pile \rightarrow idem!
- ightharpoonup Création de file ightharpoonup travail supplémentaire, cf TD

Performance des list Python

Conclusion sur l'analyse amortie

Technique avancée d'analyse d'algorithmes

- Dépasser l'analyse pire cas
- ▶ Prendre en compte les variations de temps entre différents appels

Trois techniques

- Méthode de l'agrégat
- Méthode de l'accompte
- Méthode du potentiel

Utilisation principale : structures de données

- Chaque opération peut coûter cher
- Mais peu d'opérations coûtent cher
- ightharpoonup Si on utilise plusieurs fois la structure de donnée ightarrow coût amorti faible