001.		refers to the task of determining	now	much computing time and storage an	В
	algo	rithm requires			
	Α	Validate Algorithms	В	Analyze algorithms	
	С	Devise Algorithms	D	Test Algorithms	
002.	Whic	ch of the following condition belongs to	termi	nation of an algorithm after a limited	В
	num	ber of steps			
	Α	Definiteness	В	Finiteness	
	С	Infiniteness	D	Effectiveness	
003.	Whic	ch of the following not a criteria for all ty	pes o	of algorithms.	C
	Α	Definiteness	В	Finiteness	
	С	Infiniteness	D	Effectiveness	
004.	The	purpose of theis to	assui	res that this algorithm will work	D
		ectly independently of the issues conce			
		tually be written in.	Ū		
	Α	Performance analysis	В	Debugging	
	С	Deploying	D	Validation	
005.		· · · · · · · · · · · · · · · · · · ·	s on	sample data sets to determine whether	Α
		y results occur and, if so, to correct the		·	
	Α	Debugging	В	Profiling	
	С	Validation	D	program proving	
006.	The	measure of the longest amount of time	poss	ibly taken to complete an algorithm is	D
		essed as	•	, ,	
	Α΄	Little-O	В	Little-Omega	
	С	Big-Omega	D	Big-O	
007.	Find	•	algoi	rithm Algorithm AB(A, n)//A is an array	Α
		ze n {	_		
	Α	returns the maximum of n given			
		numbers		numbers	
	С	returns the average of n given	D		
		numbers		3	
008.	The	following statement comes under		type of category a:=a + b*e;	С
	Α	Declaration of variables	В	Loop statement	
	С	Assignment of expression	D	Conditions statements	
009.	In al	gorithm specification blocks are indicate	ed wi		D
	Α	Parenthesis braces()	В	Square braces[]	
	С	angular braces<>	D	Matching braces{}	
010.	The	following example comes under	da		Α
		1; Datatype2data2; node *link; }		, , , , , , , , , , , , , , , , , , , ,	
	Α	Compound	В	Derived	
	С	Simple	D	Ternary	
011.	The	of an algorithm is the amount	of co		В
		pletion		•	
	Α	Space Complexity	В	Time complexity	
	С	Factor Complexity	D	Eigen complexity	
012.	The	amortized complexity to perform insert	, dele	te, and search operations in splay	В
	trees			•	
	Α	O(n^3)	В	O(logn)	
	С	O(n^2)	D	O(n)	
013.		is defined as a set of well-defined instru	uction	is used to accomplish a particular task.	Α
	<u>—</u>			, ,	
	Α	Algorithm	В	Function	
	С	Program	D	Procedure	
014.		•	is the	amount of memory it needs to run to	Α
	com	pletion		·	

015	A C O(1)	Space Complexity Factor Complexity to mean a computing time is	B D	Time complexity Eigen complexity	В
015.		Linear	В	Constant	D
	С	Exponential	D	Cubic	
016.		ntial function method is the technique t	hat pe	erforms an amortized analysis based	D
	on _		D	Computational model	
	A C	Financial model Algorithm analysis	B D	Computational model Energy model	
017.	_	sider the experiment of throwing three of	_		С
• • • • • • • • • • • • • • • • • • • •	occu		JOII 10,	many possible editermes will	
	Α		В	6	
	С	8	D	10	
018.	If f(n)=a _m n ^m +a ₁ n+a ₀ ,then f(n)=O()			С
	Α	O(n)	В	O(m)	
	С	O(n ^m)	D	O(m ⁿ⁾	
019.	Whic	ch of the following is not a method to ar	rive a	`	С
0.01	Α	Aggregate Method	В	Potential Method	
	С	Actual Cost Method	D	Accounting Method	
020.		only requirement is that the sum of the			В
	any	sequence of operations be	to t		
	Α	Less than or equal to	В	Greater than or equal to	
	C	Less than	D	Greater than	_
021.		ch of the following is not an algorithmic			D
	A	Dynamic Programming	B D	Greedy Approach	
ດວວ	C	Divide and Conquer is	ט	0/1 knapsack	D
UZZ.	A	linear complexity	В	factorial complexity	ט
	C	exponential time	D	Polynomial complexity	
023.		within the limit deals with the behavior			Α
		arameter.		, 3	
	Α	Asymptotic notation	В	Big-Oh notation	
		Omega notation	D	Theta notation	
024.		•	_		
		$_$ is the maximum amount of time an a	_		С
	inpu	_ is the maximum amount of time an a	lgoritl	hm takes to execute a specific set of	С
	A [.]	_ is the maximum amount of time an a ts. Running time	lgoritl B	hm takes to execute a specific set of Average case time complexity	С
025	A C	_ is the maximum amount of time an a is. Running time Worst case time complexity	B D	hm takes to execute a specific set of Average case time complexity Best case time complexity	
025.	A C An a	_ is the maximum amount of time an a ts. Running time Worst case time complexity Igorithm that uses random numbers to	B D	hm takes to execute a specific set of Average case time complexity	
025.	A C An a is ca	is the maximum amount of time an a ts. Running time Worst case time complexity Igorithm that uses random numbers to Iled	B D decid	hm takes to execute a specific set of Average case time complexity Best case time complexity le what to do next anywhere in its logic	
025.	A C An a is ca A	is the maximum amount of time an a is. Running time Worst case time complexity Igorithm that uses random numbers to Iled Dynamic approach	B D decid	hm takes to execute a specific set of Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach	
	A C An a is ca A C	is the maximum amount of time an a is. Running time Worst case time complexity Igorithm that uses random numbers to Iled Dynamic approach Dynamic Programming	B D decid B D	hm takes to execute a specific set of Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm	
	A C An a is ca A C	is the maximum amount of time an a is. Running time Worst case time complexity Igorithm that uses random numbers to Iled Dynamic approach	B D decid B D	hm takes to execute a specific set of Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm	D
	A C An a is ca A C algorithm	is the maximum amount of time an a is. Running time Worst case time complexity Igorithm that uses random numbers to Illed Dynamic approach Dynamic Programming presents the upper and the interithm	B D decid B D he low	hm takes to execute a specific set of Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm	D
026.	A C An a is ca A C algorithm A C	is the maximum amount of time an ats. Running time Worst case time complexity Igorithm that uses random numbers to Illed Dynamic approach Dynamic Programming presents the upper and the rithm Theta Notation (-notation) Big-O Notation (O-notation)	B D decid B D he low B	hm takes to execute a specific set of Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm ver bound of the running time of an Omega Notation (-notation) Asymptotic notation	D A
026.	A C An a is ca A C algorithm A C Two	is the maximum amount of time an ats. Running time Worst case time complexity Igorithm that uses random numbers to Illed Dynamic approach Dynamic Programming presents the upper and the rithm Theta Notation (-notation) Big-O Notation (O-notation) events E1 and E2 are said to be mutual	B D decident B D he low	Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm ver bound of the running time of an Omega Notation (-notation) Asymptotic notation elusive if and only if existed	D A
026.	A C An a is ca A C algorian A C Two A	is the maximum amount of time an ats. Running time Worst case time complexity Igorithm that uses random numbers to Illed Dynamic approach Dynamic Programming presents the upper and the rithm Theta Notation (-notation) Big-O Notation (O-notation) events E1 and E2 are said to be mutual No common sample points	B D decident B D he lowed B D he lowed B D he lowed B D he lowed B	hm takes to execute a specific set of Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm ver bound of the running time of an Omega Notation (-notation) Asymptotic notation clusive if and only if existed common sample points	D A
026. 027.	A C An a is ca A C algorithm A C Two A C	is the maximum amount of time an a is. Running time Worst case time complexity Igorithm that uses random numbers to Iled Dynamic approach Dynamic Programming presents the upper and the rithm Theta Notation (-notation) Big-O Notation (O-notation) events E1 and E2 are said to be mutual No common sample points Equal sample points	B D decid B D he low B D cal exc	Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm ver bound of the running time of an Omega Notation (-notation) Asymptotic notation clusive if and only if existed common sample points At least one sample point	D A
026. 027.	A C Algo A C Two A C A	is the maximum amount of time an ats. Running time Worst case time complexity Igorithm that uses random numbers to Illed Dynamic approach Dynamic Programming presents the upper and the rithm Theta Notation (-notation) Big-O Notation (O-notation) events E1 and E2 are said to be mutual No common sample points Equal sample points _ is a compact, informal, and environmals.	B D decid B D he low B D cal exc	hm takes to execute a specific set of Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm ver bound of the running time of an Omega Notation (-notation) Asymptotic notation clusive if and only if existed common sample points	D A
026. 027.	A C An a is call A C Algorithm A C Two A C A prog	is the maximum amount of time an ats. Running time Worst case time complexity Igorithm that uses random numbers to Illed Dynamic approach Dynamic Programming presents the upper and thrithm Theta Notation (-notation) Big-O Notation (O-notation) events E1 and E2 are said to be mutual No common sample points Equal sample points _ is a compact, informal, and environmand algorithm.	B D he low B D all exc	Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm ver bound of the running time of an Omega Notation (-notation) Asymptotic notation clusive if and only if existed common sample points At least one sample point independent description of a computer	D A
026. 027.	A C An a is ca A C algo A C Two A C A prog A	is the maximum amount of time an ats. Running time Worst case time complexity Igorithm that uses random numbers to Illed Dynamic approach Dynamic Programming presents the upper and the rithm Theta Notation (-notation) Big-O Notation (O-notation) events E1 and E2 are said to be mutual No common sample points Equal sample points _ is a compact, informal, and environmals.	B D decid B D he low B D cal exc	Average case time complexity Best case time complexity le what to do next anywhere in its logic Greedy approach Randomized Algorithm ver bound of the running time of an Omega Notation (-notation) Asymptotic notation clusive if and only if existed common sample points At least one sample point	D A

	A C	linear complexity exponential time	B D	factorial complexity Polynomial complexity	
030.	Tow	ers of Hanoiis a famous problem that h	as a r	ecursive solution running in	C
	Α	$O(n^3)$	В	$O(n^2)$	
	С	O(2 ⁿ)	D	$O(n^2)$	
031.	Flip	a coin four times and then the sample s	space		Α
	Α	16	В	8	
	С	12	D	24	
032.	` •	n) is?	_		В
	A	- · · · · · · · · · · · · · · · · · · ·		logarithmic asymptotic notations	
022	C	polynomial asymptotic notations		quadratic asymptotic notations	^
U 33.	A	probability of the sum of two faces (six 1/36	B	2/36	С
	Ĉ	3/36	D	10/36	
034.	_	sing three coins, The probability of the ϵ	_		В
	Α	0.1245	В	0.25	_
	С	0.375	D	0.5	
035.	The	number of possible outcomes generate	ed by	rolling two (six-faced) dice	D
	Α	6	В	12	
	С	24	D	36	
036.		st Case indicates maximum time requir		-	Α
	A	Yes	В	No	
027	C	Can be yes or no	D	Can not say	D
U37.		nptotic analysis is bound.	В	Input	В
	A C	Output Outer	D	inner	
038.		is linear asymptotic notations	_	IIII IGI	С
	A	(1)	В	(log n)	
	С	(n)	D	(n log n)	
039.	The	Theta notation is the formal way to exp	ress		C
	runn	ing time.			
	Α	upper bound	В	lower bound	
0.40	С	lower bound and upper bound	D	None of the above	
040.		case indicates the minimum time			Α
	A C	best case worst case	B D	average case None of the above	
041.	C		_	found prior to implementation and time	R
U T 1.	is no	of any such time units. Instead		· · · · · · · · · · · · · · · · · · ·	
		are carried out while executing the algo			
	A	Posteriori analysis	В	Priori analysis	
	С	Asymptotic analysis	D	Symptotic analysis	
042.	In	analysis, algorithm is implemen	ted a	nd executed on certain fixed hardware	Α
	and	software. Then the algorithm is selecte	d whi	ch takes the least amount of time to	
	exec				
	A	Posteriori analysis	В	Priori analysis	
0.40	C	Asymptotic analysis	D	Symptotic analysis	_
043.		otal amortized costof insertion in the R			В
	A C	O(1)	B D	O(N) O(NlogN)	
044.	C	O(logN)		the mathematical foundation/framing of	D
U44.	its rı	or an algorithm relers to deli in-time performance.	ımıy ı	ne mamemanda loundanon/itaming of	ט
	A	Symptotic analysis	В	Asymptotic analysis	
	C	PosteriorAnalysis	D	PrioriAnalysis	
045.		•	na th	e node value in a binomial heap.	С

	A C	O(1) O(logN)	B D	O(N) O(NlogN)	
046.	_	ogn) is known as linear complexity	В	logarithmic complexity	С
047	С	loglinear complexity	D	constant complexity	В
U4 <i>1</i> .	Α	de and Conquer principle is naturally ex Non Recursive algorithm	В	Recursive algorithm	В
048.	C Find	Iterations the order of best case time complexities	D es	Object Oriented	D
	A C	O(n),O(1),O(logn),O(n logn) O(logn),O(n logn),O(n),O(1)	B D	O(1),O(logn),O(n logn),O(n) O(1), O(logn),O(n),O(nlogn)	
049.		types of asymptotic notations ex	isted B	in analyzing algorithms 2	С
050.	С	3of the following is case does not	D	4	D
030.	A C	Best Case	B D	Worst Case Null Case	
051.	_	Average Case fective chessboard is a 2 ^{k *} 2 ^k board of	_		Α
	A C	Exactly one defective square Exactly three defective squares	B D	Exactly two defective squares Any number of defective squares	
052.	In th	·		ed to tile a defective chessboard using	С
	A C	triangle Triominoes	B D	Square orientations	
053.	Time	e Complexity of Binary Search Algorithr	_		С
	appi A	oach of divide and conquer O(n)	В	O(n log ₂ n)	
	С	O(log ₂ n).	D	O(n^2log ₂ n)	
054.		case complexity for successful search quer approach	es in	binary search tree using divide and	В
	Α	O(n)	В	O(1)	
055.	C The	O(logn) following recurrence relation using recu	D ursior	O(nlogn) tree method shows that T(n) =	Α
	2T(n	n/2) + n A problem of size n will get divided	В	A problem of size n will get divided	
		into 2 sub-problems of size n/2.		into 2 sub-problems of size n.	
	С	A problem of size n/2 will get divided into 2 sub-problems of size n	D	A problem of size n/4 will get divided into 2 sub-problems of size n	
056.		auxiliary space complexity of merge so		· 	С
	A C	O(1) O(n)	B D	O(log n) O(n log n)	
057.	Cho	ose the correct code for merge sort.			В
	Α	Algorithm merge_sort(int arr[], int left, int right) {	В	Algorithm merge_sort(int arr[], int left, int right) {	
		if (left > right) {		if (left < right) {	
		<pre>int mid = (right-left)/2; merge_sort(arr, left, mid); merge_sort(arr, mid+1, right);</pre>		<pre>int mid = left+(right-left)/2; merge_sort(arr, left, mid); merge_sort(arr, mid+1, right);</pre>	
		merge(arr, left, mid, right); //function to merge sorted arrays		merge(arr, left, mid, right); //function to merge s orted arrays	
	<u> </u>	}	Б	}	
	С		D		

```
Algorithm merge_sort(int arr[], int left, int right)
            Algorithm merge_sort(int arr[], int left, int right)
                                                              if (left < right)
              if (left < right)
                                                               int mid = (right-left)/2;
               int mid = left+(right-left)/2;
                                                            merge(arr, left, mid, right); //function to merge s orted arr ays
            merge(arr, left, mid, right); //function to merge sorted arr qus
                                                               merge_sort(arr, left, mid);
               merge_sort(arr, left, mid);
                                                               merge_sort(arr, mid+1, right);
                merge_sort(arr, mid+1, right);
                                                               }
              }
058. The average case time complexity of merge sort
                                                                                                       Α
           O(n log n)
                                                            O(n^2)
     Α
     C
                                                      D
           O(n<sup>2</sup>loa n)
                                                            O(n \log n^2)
059. The following recurrence relation using recursion tree method shows that T(n) = T(n/5) A
      + T(4n/5) + n
           A problem of size n will get divided
                                                      В
                                                            A problem of size n will get divided
           into 2 sub-problems- one of size n/5
                                                            into 2 sub-problems- one of size n/5
           and another of size 4n/5.
                                                            and another of size n.
     C
           A problem of size n will get divided
                                                      D
                                                            A problem of size n will get divided
           into 2 sub-problems- one of size 4n
                                                            into 2 sub-problems- one of size 4n/5
           and another of size 4n/5
                                                            and another of size n
060. Merge sort uses which of the following technique to implement sorting?
                                                                                                       C
                                                            greedy algorithm
           backtracking
     C
           divide and conquer
                                                      D
                                                            dynamic programming
061. Which of the below-given sorting techniques has the highest best-case runtime
                                                                                                       В
     complexity.
           Quick sort
                                                      В
      Α
                                                            Selection sort
           Insertion sort
     C
                                                      D
                                                            Bubble sort
062. A sorting technique is called stable if:
                                                                                                       В
           It takes O(n log n) time.
                                                      В
                                                            It maintains the relative order of
                                                            occurrence of the same elements.
     C
           It uses a divide andconquer
                                                      D
                                                            It takes O(n) space.
           approach.
063. In quick sort, for sorting n elements, we choose the n/4<sup>th</sup>smallest element as a pivot
                                                                                                       В
     with an O(n) time algorithm. What is the worst-case time complexity for the guick sort
           (n)
                                                      В
                                                            (n log n)
      Α
     C
                                                      D
           (n^2)
                                                            (n<sup>2</sup>log n)
                 is the worst case time complexity of a quick sort algorithm?
064.
                                                                                                       C
     Α
           O(N)
                                                      В
                                                            O(N log N)
     C
                                                      D
                                                            O(log N)
           O(N^2)
                pivoting improve the expected or average time complexity to O (N log N).
                                                                                                       D
065.
      Α
           First element
                                                      В
                                                            last element
      C
           middle element
                                                      D
                                                            random element
066. Which of the following algorithms is NOT a divide & conquer algorithm by nature?
                                                                                                       D
           Quick Sort
                                                            Merge Sort
     Α
                                                      В
     C
           Binary Search
                                                      D
                                                            Heap Sort
067. More than one feasible solution is generated in
                                                                                                       Α
                                                                        approach
      Α
           Greedy
                                                      В
                                                            Divide and Conquer
      C
           Dynamic Programming
                                                      D
                                                            Iterative
068. What is the worst case complexity of binary search using divide and conquer master
                                                                                                       В
     theorem?
           O(nlogn)
                                                      В
                                                            O(logn)
      Α
```

	C	O(n)	D	$O(n^2)$		
069.	Whic	ch is the best sorting algorithm to use if	the e		С	
		million in general?		•		
	Α	Merge sort.	В	Bubble sort.		
	С	Quick sort.	D	Insertion sort.		
070.	Wha	t is the average case time complexity of	of bina		В	
0.0.	A	O(nlogn)	В	O(logn)		
	C	O(n)	D	$O(n^2)$		
074				`	_	
0/1.	_	sider a complete graph G with 4 vertice	_		С	
	A	15	В	8		
	C	16	D	13	_	
072.	_	s algorithm istype of approa			В	
	A	Divide and conquer algorithm	В	Greedy algorithm		
	С	Dynamic Programming	D	Approximation algorithm	_	
073.		ch of the following is false in the case o	-		D	
		It is tree that spans G	В	O 1		
	С	It includes every vertex of the G				
074.		ptimal solution is a feasible solution for			Α	
	Α	maximized	В	minimized		
	С	equal	D	zero		
075.	Cons	sider the following instance of the knap	sack	problem: n = 3,m= 20,(pi,p2,P3) =	В	
	(25,2)	24,15), and (w,w2,w3)= (18,15,10).Find	I the o	optimal solution of maximum profit		
	Α	31	В	31.5		
	С	32	D	32.5		
076.	Optir	mal merge patternis a pattern that relat	es to	the merging of two or more	В	
	files	in a single sorted file				
	Α	Unsorted files	В	Sorted files		
	С	binary files	D	character files		
077.	If we		m re	cords respectively then they could be	Α	
		ged together, to obtain one sorted file ir				
	Α	O (n+m).	В	O (n).		
	С	O(m)	D	O(mlogn)		
078.	78. Let us consider the given files, f ₁ , f ₂ , f ₃ , f ₄ and f ₅ with 20, 30, 10, 5 and 30 number of					
		ents respectively. Find the total number				
		rding to the ascending order.		1 3		
	Α	270	В	230		
	С	210	D	190		
079.			of Pr	ims algorithm if adjacency matrix is	В	
	used?					
	A	O(log V)	В	$O(V^2)$		
	С	$O(E^2)$		O(V log E)	_	
080.		sider the files x1,x2, x3 with the length			Α	
	num	ber of moves required to merge the thr	ee file	es according to the given order		
	Α	110	В	60		
	С	85	D	120		
081.			_	n, each with a weight and a value, the		
	goal	is to find the number of items that	the to	otal weight and the total value.Ans:		
	Α	Minimizes, Minimizes	В	Maximizes, Maximizes		
	С	Maximizes, Minimizes	D	Minimizes, Maximizes		
082.	With	respect to finding the time complexity	of Kru	uskals algorithm, which operation	C	
	keep	s track of the parent pointer until it read	ches	the root parent?		
	Α	Makeset	В	Union		
	С	Find	D	Merge		

083.		is less than or equal to the values of its		ed as a min-heap. and the value in the dren, in this case the time complexity is	D
	Α	O(n^2)	В	O(n)	
004	C	O(logn)	. D	O (n log n).	
084.				reasing order according to the weight	Α
	_	e in the roots and insertion performed o	•	• •	
	A	O(n^2)	В	O(n)	
00E	С ^ Ц.	O(logn) uffman code: A = 1, B = 000, C = 001, I	D D = 0′	O (n log n).	В
000.		on = 0.3 The average number of bits per			D
	Α	8.0 bit	В	1.9 bit	
	C	2.0 bit	D	2.1 bit	
086	_	ing maximum and minimum numbers f	_		Α
000.		parisons in the case of divide and cond		•	^
	A	(3n/2) 2	В	2(n-1)	
	C	n ²	D	logn	
007			_		С
UO1.		kals Algorithm for finding the Minimum Dynamic programming	Spar B		C
	A C	Greedy approach	D D	Divide and Conquer Adhoc Approach	
ΛQQ	_	many printable characters does the A		• •	С
000.	A	120	В	128	C
	Ĉ	100	D	98	
089.	_		_	minimal weighted external path length	R
000.		obtain an optimal set of codes for mes			
		ry string that is used for transmission o	_		
	A	A.Single Source shortest path		Huffman coding	
	С	Binary Search tree	D	Merge Sort	
090.	The	given graphG=(V,E) is represented as	an ac	-	В
		tht of edge(u, v). The priority queueQ is			
		V be the number of edges and vertice			
		plexity is			
	Α	O(V^3)	В	O(V^2)	
	С	O(E+V)	D	O(E + V *log V)	
091.	Whic	ch of the following algorithms is the bes	st app	roach for solving Huffman codes?	В
	Α	exhaustive search	В	greedy algorithm	
	С	brute force algorithm	D	divide and conquer algorithm	
092.	Whic	ch of the following is not related to Dijks	stras a	-	В
	Α	Dijkstras algorithm works only for	В	It works for graphs that contain any	
		connected graphs.		edges with positive and negative	
	_			weights.	
	С	It only provides the value or cost of	D	The algorithm works for directed and	
	_	the shortest paths.		undirected graphs.	_
093.			nt con	nparisons in the best, average & worst	В
	case	26			

```
Algorithm straight MaxMin (a, n, max, min)
         // Set max to the maximum & min to the minimum of a [1: n]
         Max = Min = a [1];
         For i = 2 to n do
         If (a [i] > Max) then Max = a [i];
         If (a [i] < Min) then Min = a [i];
         }}
         n^2
                                              В
                                                   2(n-1)
    Α
    C
                                              D
                                                   (3n/2)2
094. Which of the following is the most commonly used data structure for implementing
                                                                                        D
    Dijkstras Algorithm?
         Max priority queue
                                              В
    Α
                                                   Stack
    С
         Circular queue
                                              D
                                                   Min priority queue
095. Advantage of finding maximum and minimum using divide and conquer method instead C
    of using conditional operators is _____
         Less space complexity
                                                   Accuracy
    C
                                              D
          Reduced Time Complexity
                                                   Less number of calculation
096. With respect to finding the time complexity of Kruskals algorithm, which operation
                                                                                        C
    keeps track of the parent pointer until it reaches the root parent?
         Makeset
                                                   Union
    Α
    C
         Find
                                              D
                                                   Merge
097. Merge sort is _____type of sorting
                                                                                        Α
         External Sorting
                                              В
                                                   Insertion Sorting
    Α
         Internal Sorting
                                              D
                                                   Exponential Sorting
098. Dijkstras Algorithm is used to solve
                                                                                        В
                                                     problems.
         All pair shortest path
                                              В
                                                   Single source shortest path
    C
         Network flow
                                              D
                                                   Sorting
```