离散数学——第三周作业

计83 刘轩奇 2018011025 2019.09.27

- 1.6 将下列公式写成波兰式和逆波兰式。
 - (1) $P \to Q \lor R \lor S$
 - (2) $P \land \neg R \leftrightarrow P \lor Q$
 - $(3) \neg \neg P \lor (W \land R) \lor \neg Q$
- 解 (1) 波兰式 $\rightarrow P \lor \lor QRS$, 逆波兰式 $PQR \lor S \lor \rightarrow$ 。
 - (2) 波兰式 $\leftrightarrow \land P \neg R \lor PQ$, 逆波兰式 $PR \neg \land PQ \lor \leftrightarrow \circ$
 - (3) 波兰式 $\vee \vee \neg \neg P \wedge WR \neg Q$, 逆波兰式 $P \neg WR \wedge \vee Q \wedge \vee \circ$
- 2.1 证明下列等值公式。

(1)
$$P \to (Q \land R) = (P \to Q) \land (P \to R)$$

(3)
$$((P \rightarrow \neg Q) \rightarrow (Q \rightarrow \neg P)) \land R = R$$

(5)
$$P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$$

证 (1)

$$\begin{split} P \rightarrow (Q \wedge R) &= \neg P \vee (Q \wedge R) \\ &= (\neg P \vee Q) \wedge (\neg P \vee R) \\ &= (P \rightarrow Q) \wedge (P \rightarrow R) \end{split}$$

(3)

$$((P \to \neg Q) \to (Q \to \neg P)) \land R = ((\neg P \lor \neg Q) \to (\neg Q \lor \neg P)) \land R = R$$

(5)

$$P \to (Q \to R) = P \to (\neg Q \lor R)$$
$$= \neg P \lor (\neg Q \lor R)$$
$$= (\neg P \lor \neg Q) \lor R$$
$$= \neg (P \land Q) \lor R$$
$$= (P \land Q) \to R$$

2.2 由下列真值表,分别从T和F来列写出A, B和O的表达式,并分别以符号 m_i 和 M_i 表示。

\overline{P}	Q	A	B	C
\mathbf{F}	F	Τ	Τ	T
\mathbf{F}	${ m T}$	${\rm T}$	\mathbf{F}	\mathbf{F}
${ m T}$	\mathbf{F}	Τ	\mathbf{F}	\mathbf{F}
T	Τ	\mathbf{F}	\mathbf{T}	\mathbf{F}

解

$$\begin{split} A &= (\neg P \wedge \neg Q) \vee (\neg P \wedge Q) \vee (P \wedge \neg Q) \\ &= m_0 \vee m_1 \vee m_2 \\ &= (\neg Q \vee \neg P) \\ &= M_0 \\ B &= (\neg P \wedge \neg Q) \vee (P \wedge Q) \\ &= m_0 \vee m_3 \\ &= (P \vee \neg Q) \wedge (\neg P \vee Q) \\ &= M_1 \wedge M_2 \\ C &= (\neg P \wedge \neg Q) \\ &= m_0 \\ &= (P \vee \neg Q) \wedge (\neg P \vee Q) \wedge (\neg P \vee \neg Q) \\ &= M_0 \wedge M_1 \wedge M_2 \end{split}$$

2.3 用 \uparrow 和 \downarrow 分别表示出 \neg , \land , \lor , \rightarrow 和 \leftrightarrow 。

解 (1) 用↑

$$\neg P = \neg (P \land P)$$

$$= P \uparrow P$$

$$P \land Q = \neg (\neg (P \land Q))$$

$$= \neg (P \uparrow Q)$$

$$= (P \uparrow Q) \uparrow (P \uparrow Q)$$

$$P \lor Q = \neg (\neg P \land \neg Q)$$

$$= \neg P \uparrow \neg Q$$

$$= (P \uparrow P) \uparrow (Q \uparrow Q)$$

$$P \to Q = \neg P \lor Q$$

$$= (\neg P \uparrow \neg P) \uparrow (Q \uparrow Q)$$

$$= P \uparrow (Q \uparrow Q)$$

$$P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$$

$$= \neg \neg ((P \land Q) \lor (\neg P \land \neg Q))$$

$$= \neg (P \uparrow Q) \land (\neg P \uparrow Q)$$

$$= (P \uparrow Q) \uparrow (\neg P \uparrow \neg Q)$$

$$= (P \uparrow Q) \uparrow ((P \uparrow P) \uparrow (Q \uparrow Q))$$

(2) 用↓

$$\neg P = \neg (P \lor P)$$

$$= P \downarrow P$$

$$P \land Q = \neg (\neg P \lor \neg Q)$$

$$= \neg P \downarrow \neg Q$$

$$= (P \downarrow P) \downarrow (Q \downarrow Q)$$

$$P \lor Q = \neg \neg (P \lor Q)$$

$$= \neg (P \downarrow Q)$$

$$= (P \downarrow Q) \downarrow (P \downarrow Q)$$

$$P \rightarrow Q = \neg P \lor Q$$

$$= (\neg P \downarrow Q) \downarrow (\neg P \downarrow Q)$$

$$= ((P \downarrow P) \downarrow Q) \downarrow ((P \downarrow P) \downarrow Q)$$

$$= = ((P \downarrow P) \downarrow Q) \downarrow ((P \downarrow P) \downarrow Q)$$

$$= = ((P \lor P) \lor Q) \lor (\neg P \land \neg Q)$$

$$= (\neg (\neg P \lor \neg Q) \lor (\neg (P \lor Q))$$

$$= (\neg P \downarrow \neg Q) \lor (P \downarrow Q)$$

$$= \neg \neg ((\neg P \downarrow \neg Q) \lor (P \downarrow Q))$$

$$= \neg ((P \downarrow P) \downarrow (Q \downarrow Q)) \downarrow (P \downarrow Q))$$

$$= \neg (((P \downarrow P) \downarrow (Q \downarrow Q)) \downarrow (P \downarrow Q))$$

$$= (((P \downarrow P) \downarrow (Q \downarrow Q)) \downarrow ((P \downarrow Q)) \downarrow ((P \downarrow Q)) \downarrow ((P \downarrow Q)) \downarrow (P \downarrow Q))$$

2.4 证明

- (1) $A \to B 与 B^* \to A^*$ 同永真、同可满足。
- (2) $A \leftrightarrow B = A^* \leftrightarrow B^*$ 同永真、同可满足。

$$A \to B = \neg B \to \neg A = B^{*-} \to A^{*-}$$

而 $B^{*-} \to A^{*-}$ 与 $B^* \to A^*$ 同永真、同可满足。

 $:A \to B = B^* \to A^*$ 同永真、同可满足。

(2)

$$\begin{split} A \leftrightarrow B &= \neg \neg (A \leftrightarrow B) \\ &= \neg (A \leftrightarrow \neg B) \\ &= (\neg A) \leftrightarrow (\neg B) \\ &= (A^{*-}) \leftrightarrow (B^{*-}) \end{split}$$

 $\overline{\mathbf{n}}(A^{*-}) \leftrightarrow (B^{*-})$ 与 $A^* \leftrightarrow B^*$ 同永真、同可满足。

 $:A \leftrightarrow B = A^* \leftrightarrow B^*$ 同永真、同可満足。