

Inteligencia Artificial Avanzada

Grupo 10

Entrega N°04

INTEGRANTES DEL GRUPO

Apellido y Nombres	E-Mail
lakantas, Gabriel Maximiliano	giakantas@frba.utn.edu.ar
Anzorandía, Matías Leandro	manzoranda@frba.utn.edu.ar
Maksymon, Lucas	lmaksymon@frba.utn.edu.ar

|--|

Muy bien!

El trabajo está bien realizado, y documentado. Que bueno que lograron mejorar los resultados...

Reconocedor de Medios de Transporte

Resumen. Alumnos de último año de Ingeniería en sistemas de información nos reunimos con el propósito de implementar un modelo de Machine Learning capaz de categorizar distintos medios de transporte a partir de imágenes. En este documento, correspondiente a la cuarta parte, se encontrará el detalle de cómo fue llevada a cabo la implementación del sistema inteligente.

Introducción

El presente informe, realizado en el marco de la cátedra de Inteligencia Artificial Avanzada, materia de quinto nivel de Ing. en Sistemas de Información de la UTN FRBA, refleja nuestro progreso en la implementación de un modelo de Machine Learning capaz de categorizar medios de transporte a partir de imágenes tomadas desde distintos ángulos.

A tal fin, partiendo de un dataset de acceso público, se confeccionaron tres prototipos con diferentes tecnologías y se contrastaron los resultados, para luego implementar un sistema inteligente partiendo de la base de uno de ellos. Esto último fue volcado en esta entrega.

Secciones correspondientes a esta Entrega

Sobre la Tecnología y la Arquitectura:

Nuevamente realizamos el desarrollo con Python a través de Google Colab. Partimos de la base del primer prototipo, una RNA de tipo Convolucional, volviendo al framework Keras que nos resultó más cómodo para dicha tecnología y nos dio resultados levemente mejores.

Adicionalmente, se incorporó el callback "Early Stopping", a los fines de prevenir un sobreentrenamiento. Esto consiste en dar por finalizado el entrenamiento en cuanto empieza a aumentar el error de validación en relación con los datos propios del mismo. En distintas corridas del algoritmo la cantidad de épocas alcanzadas fue variando entre 65 y 75, obteniendo resultados semejantes.

Sobre los datos:

Se repitió el dataset de las iteraciones anteriores, con las clases balanceadas y los mismos porcentajes destinados a entrenamiento, validación y testing.

Para normalizar las imágenes, al igual que en las entregas anteriores, se dividieron los valores entre 255, lo que restringe los valores a un rango entre 0 y 1. Este proceso garantiza que todas las imágenes tengan una escala similar y facilita el entrenamiento del modelo.

Además aplicaron Data-Augmentation

A su vez se volvió a utilizar el optimizador SGD (que con esta configuración nos dio mejores resultados que Adam) y la técnica de data augmentation, ambas incorporadas en la segunda versión pero esta vez con las herramientas provistas por el framework Keras:

```
22s import numpy as np
         import matplotlib.pyplot as plt
         from keras.preprocessing.image import ImageDataGenerator
         # Definir las transformaciones de aumento de datos con una semilla
         datagen = ImageDataGenerator(
             rotation range=RANGO ROTACION, # Rango de rotación
             width_shift_range=CAMBIO_MAXIMO_ANCHO_IMAGEN, # Cambio máximo en el ancho de la imagen (10%) height_shift_range=CAMBIO_MAXIMO_ALTO_IMAGEN, # Cambio máximo en la altura de la imagen (10%)
             zoom_range=RANGO_ZOOM, # Rango de zoom (10%)
             horizontal_flip=VOLTEAR_HORIZONTAL, # Volteo horizontal
             fill mode=MODO RELLENO TRANSFORMACIONES # Modo de relleno para las transformaciones
         datagen.fit(x_train_final, augment=True, seed=RANDOM_STATE)
         num_augmented_samples = len(x_train_final)
         # Generar datos aumentados
augmented_data = []
         for \ x\_batch, \ y\_batch \ in \ datagen.flow (x\_train\_final, \ y\_train\_final, \ batch\_size = num\_augmented\_samples, \ seed=RANDOM\_STATE, \ shuffle=False):
             augmented_data.append((x_batch, y_batch))
         augmented_x_train, augmented_y_train = augmented_data[0]
         x_train_final = np.concatenate([x_train_final, augmented_x_train])
         y_train_final = np.concatenate([y_train_final, augmented_y_train])
         print(f"Número de datos de entrenamiento después de aumentar: {len(x_train_final)}")
    Número de datos de entrenamiento después de aumentar: 22950
```

Algunas transformaciones en el Dataset Aumentado:

Topología

A los fines de mejorar la topología utilizada en prototipos anteriores, se evaluaron distintas combinaciones de capas, resultando la mejor la que se detalla a continuación:

Model: "sequential_4"					
	Layer (type)	Output Shape	Param #		
	conv2d_24 (Conv2D)	(None, 32, 32, 32)	896		
	conv2d_25 (Conv2D)	(None, 32, 32, 32)	9248		
Ojo, en	<pre>max_pooling2d_12 (MaxPooli ng2D)</pre>	(None, 16, 16, 32)	0		
general no se recomienda usar Drop-Out	dropout_16 (Dropout)	(None, 16, 16, 32)	0		
con capas convolucionales	conv2d_26 (Conv2D)	(None, 16, 16, 64)	18496		
(puede generar que el	conv2d_27 (Conv2D)	(None, 16, 16, 64)	36928		
entrenamiento no sea muy estable)	<pre>max_pooling2d_13 (MaxPooli ng2D)</pre>	(None, 8, 8, 64)	9		
	dropout_17 (Dropout)	(None, 8, 8, 64)	0		
	conv2d_28 (Conv2D)	(None, 8, 8, 128)	73856		
Está sí se recomienda usar	conv2d_29 (Conv2D)	(None, 8, 8, 128)	147584		
	<pre>max_pooling2d_14 (MaxPooli ng2D)</pre>	(None, 4, 4, 128)	9		
	dropout_18 (Dropout)	(None, 4, 4, 128)	0		
	flatten_4 (Flatten)	(None, 2048)	0		
	dense_8 (Dense)	(None, 128)	262272		
	dropout_19 (Dropout)	(None, 128)	0		
	dense_9 (Dense)	(None, 3)	387		
	Total params: 549667 (2.10 M Trainable params: 549667 (2. Non-trainable params: 0 (0.0	B) 10 MB)			

- El modelo consta de:
 - 3 grupos en serie de capas:
 - Convolución (2): realizan operaciones matemáticas para extraer características relevantes, como bordes o texturas.
 - Max Pooling (1): Reduce dimensiones seleccionando valores máximos en regiones, útil para reconocer objetos trasladados/rotados.
 - Dropout (1): Durante entrenamiento, apaga aleatoriamente neuronas (ver comentario para evitar sobreajuste en la red, haciendo que se vuelva menos dependiente de ciertas conexiones.
 - Capa Flatten (1), que se ocupa de adaptar la matriz de entrada a un vector para la siguiente.

arriba, igual está bien)

- o Capa densa (1), similar a las ocultas de multi perceptrón
- Capa dropout
- Capa de salida (1), con 3 neuronas correspondientes a las 3 clases reconocidas por el modelo.

Resultados Obtenidos De la Construcción del prototipo

Gráficos de precisión y error por cantidad de épocas:

- En la validación, ambos indicadores se ven algo inestables pero a medida que va ciclando, la oscilación es mucho más atenuada. (ver arriba sobre capas drop-out, igual bien que lo detectaron)
- En el entrenamiento, en cambio, se forman curvas mucho más suaves de principio a fin.
- Las dos precisiones continúan creciendo mucho después que los prototipos anteriores, a la inversa que la pérdida, por lo que esta vez hizo falta colocar un mayor número de épocas. De igual manera, con la cantidad que se había usado anteriormente, ya había alcanzado resultados relativamente buenos.

Informes de Métricas de esta entrega (Keras, CNN)

Informe de mét	ricas para e	el coniunt	o de entre	enamiento
	precision	_		
Auto	0.99	0.98	0.98	7694
Barco	0.99	0.99	0.99	7602
Camión	0.97	0.98	0.98	7654
accuracy			0.98	22950
macro avg	0.98	0.98	0.98	22950
weighted avg	0.98	0.98	0.98	22950
Accuracy Total				
Informe de mét		_		
	precision	recall	f1-score	support
Auto	0.93	0.93	0.93	662
Barco	0.97	0.95	0.96	691
Camión	0.92	0.95	0.93	672
accuracy			0.94	2025
macro avg	0.94	0.94	0.94	2025
weighted avg	0.94	0.94	0.94	2025
Accuracy Total	(Validación	n): 0.9412		
Informe de mét				
	precision			
Auto	0.94	0.94	0.94	1491
Barco	0.97	0.95	0.96	1508
Camión	0.92	0.94	0.93	1501
accuracy			0.94	4500
macro avg	0.94	0.94	0.94	4500
weighted avg	0.94	0.94	0.94	4500
Accuracy Total	(Prueba): 0	9.9429		

Resumiendo:

	Entrenamiento		Validación			Testeo			
	F1-Score	Precision	Recall	F1-Score	Precision	Recall	F1-Score	Precision	Recall
Autos	98%	99%	98%	93%	93%	93%	94%	94%	94%
Barcos	99%	99%	99%	96%	97%	95%	96%	97%	95%
Camiones	98%	97%	98%	93%	92%	95%	93%	92%	94%

Igual, aprendió bien, generaliza muy bien...

Se pueden ver mucho mejores resultados que en la entrega 2 (también Keras, CNN):

Informe de mé	tricas para	el conjun	to de entr	enamiento:
	precision	recall	f1-score	support
Auto	0.94	0.93	0.93	3847
Barco	0.94	0.97	0.95	3801
Camión	0.93	0.91	0.92	3827
accuracy			0.93	11475
macro avg	0.93	0.93	0.93	11475
weighted avg	0.93	0.93	0.93	11475
Accuracy Tota	l (Entrenami	ento): 0.9	9344	
Informa do más	tnicas nama	al candum	to do vol:	dación.
Informe de mé	precision			
	precision	Lecall	T1-Score	Support
Auto	0.88	0.86	0.87	662
Barco	0.91	0.93	0.92	691
Camión	0.88	0.87	0.87	672
accuracy			0.89	2025
macro avg	0.89	0.89	0.89	2025
weighted avg	0.89	0.89	0.89	2025
			_	
Accuracy Tota	l (Validació	n): 0.889	9	
	=======	======	=======	=====
Informe de mé	tricas para	el conjun	to de prue	ba:
	precision			
Auto	0.86	0.87	0.86	1491
Barco	0.89	0.93	0.91	1508
Camión	0.87	0.82	0.85	1501
accuracy			0.87	
	0.87			4500
weighted avg	0.87	0.87	0.87	4500
Accuracy Tota	l (Prueba):	0.8731		

Y mejores resultados que en la entrega 3, la Resnet-18 (que calculamos distinto porque usamos PyTorch)

```
Finished Training:
Training Accuracy: 0.97, Training Loss: 0.11
Validation Accuracy: 0.93, Validation Loss: 0.22
Validation F1 Score: 0.93, Validation Recall: 0.93
```

Se puede ver que en esta entrega, se mejoraron significativamente todos los valores.

Del testeo del prototipo

Matriz de confusión tanto para entrenamiento, validación y testeo. Keras, CNN

Tablas de predicciones por clase (entendemos que no tiene mucho sentido poner las de todas las entregas):

Info del d	dataset:			
	Cantidad en Entrenamient	co Cantidad en Validación	Cantidad en Testeo	Total
Auto	7694	662	1491	[9847]
Barco	7602	691	1508	[9801]
Camión	7654	672	1501	[9827]
Total	22950	2025	4500	29475
Tabla de F	Predicciones (Entrenamient	co):	•	
Clase	Predicciones Correctas	Predicciones Incorrectas	Porcentaje de Acierto	os
Auto	7527	167	97.83%	
Barco	7514	88	98.84%	i i
Camión	7509	145	98.11%	- <u>I</u>
Total	22550	400	98.26%	- 1
Tabla de F	Predicciones (Validación):	•		
Clase	Predicciones Correctas	Predicciones Incorrectas	Porcentaje de Acierto	os
Auto	615	47	92.90%	+
Barco	654	37	94.65%	i
Camión	637	35	94.79%	
Total	1906	119	94.12%	
Tabla de F	Predicciones (Testeo):			+
Clase	Predicciones Correctas	Predicciones Incorrectas	Porcentaje de Acierto	os
Auto	1399	92	93.83%	
Barco	1426	82	94.56%	_ i
Camión	1418	83	94.47%	Ţ
Total	4243	257	94.29%	
+	+	·		+

Algunas de las imágenes clasificadas incorrectamente por el modelo:

Análisis de Resultados y Comparación de resultados entre prototipos

Las 3 clases performan de manera similar en entrenamiento, aunque la de autos obtuvo un desempeño ligeramente más bajo. En validación y testing, la de todas es algo menor al entrenamiento, lo que es esperable. La de los autos vuelve a ser ligeramente menor a las otras. ¿tal vez sea porque los autos tienen formas y colores más diversos?

En relación con los modelos anteriores, se observan incrementos considerables en las métricas, y en la clasificación de las imágenes de las 3 clases.

Problemas e Inconvenientes encontrados Sí, ¿se basaron en algún paper / artículo / tutorial, o fue inspiración de ustedes? Cuentenlo en la presentación por favor.

Fue un desafío encontrar una topología de CNN que pudiera mejorar a la entrega anterior, la Resnet-18. Teniendo de referencia ese modelo, armamos algo más complejo que lo que teníamos en la primera entrega. Esto fue lo principal para obtener mejores resultados, así como la optimización de los distintos parámetros. Volvimos a aplicar data augmentation como en la entrega anterior.

Conclusiones

Con cerca de 95 de cada 100 datos clasificados correctamente por el modelo en cada clase de testeo, podemos decir que el mismo satisface los objetivos propuestos, superando ampliamente los demás prototipos. Dicho esto, concluimos que se logró a través del mismo resolver el problema planteado inicialmente, pero debemos tener en cuenta que el dataset es de 2009, por (en general lo que no podemos garantizar que se adapte a vehículos actuales. Sin embargo, no se observan cambios demasiado pronunciados en la forma de estos medios de transporte que dieran lugar a confusión por lo que suponemos que obtendría un buen desempeño.

se puede asumir

En futuras investigaciones para mejorar el modelo, sugerimos considerar como posibles cursos de acción, incrementar el dataset, incluir datos más actualizados y evaluar otros optimizadores modificando los parámetros.

En cuanto a las lecciones aprendidas, podemos dar cuenta de la importancia del trabajo previo con los datos, por ejemplo, viendo la mejora de performance con data augmentation. Lo mismo se puede decir de la normalización, y del balanceo. Por otro lado, destacar la necesidad de adecuar la topología al problema, logrando encontrar un término medio entre una demasiado simple, que fuera incapaz de aprender bien los datos lo cual se manifiesta en una mala performance, y una demasiado compleja, que tarde mucho en entrenar y sufra sobreajuste.

Finalmente, podemos comentar que las CNN son una herramienta muy poderosa a la hora de pensar este tipo de problemas, complejos de abordar de forma eficiente con tecnologías tradicionales.

Referencias

Código Fuente. https://github.com/643riel/IAA

Dataset. Alex Krizhevsky, Vinod Nair, Geoffrey Hinton (2009).Cifar-10 https://www.cs.toronto.edu/~kriz/cifar.html