

CAM-MIPI327RAW UserManual

1. General

CAM-MIPI327RAW is a low-cost fisheye Lens excellent low illumination and wide dynamic camera module, designed for whole series Raspberry(P4/Pi3B+/PI3A+/PI3/CM3/CM3+). Plug into the CSI-2 Pi camera interface directly.

On-board IMX327LQR-C is a diagonal 6.46 mm (Type 1/2.8) CMOS active pixel type solid-state image sensor with a square pixel array and 2.13 M effective pixels. This chip operates with analog 2.9 V, digital 1.2 V, and interface 1.8 V triple power supply, and has low power consumption. High sensitivity, low dark current and no smear are achieved through the adoption of R, G and B primary color mosaic filters. This chip features an electronic shutter with variable charge integration time.

2. Features

- 1. Raspberry Pi Camera CAM-MIPI327RAW is an Industrial Camera Module for Raspberry Pi 4,3B+3B, 3A+ CM3+, CM3, Pi zero.
- 2. Sensor Type: STARVIS IMX327LQR Color CMOS Active Pixel type Solid-state Image Sensor with Square Pixel Array 2.13 M Effective Pixels. Diagonal 6.46 mm (Type 1/2.8). Pixel count: 1920x1080. High to 60 fps.
- 3. This IMX327LQR module connects to the CSI connector on the Raspberry Pi directly. CSI-2 output: 2 lanes/RAW10 or RAW12. Support V4L2 and libcamera.
- 4. Match a wide angle Lens. Fov(D)=148 degrees, Fov(H)=118 degrees. Focal distance is adjustable.
- 5. Comes with user manual, test demo and friendly technology support. We offer custom design service.

3. Hardware Description

3.10verview

Features		
Size	39mm x 39mm	
Weight	4g	
Still Resolution	2.07M pixels	
Video Modes	1920x1080 60fps, SRGGB10P	
Linux integration	V4L2	
	Libcamera	
Sensor	IMX327LQR-C	
Sensor Resolution	1920 (H) × 1080 (V)	
Sensor image area	5568 μm (H)*3132 μm (V)	
Pixel size	2.9 μm (H) × 2.9 μm (V)	
Optical size	1/2.8"	
S/N ratio	55dB	
Dynamic range	120db	
Output interface	global shutter	
Output formats	RAW10/RAW12	
Field of view	Fov(D) = 148 degrees , Fov(H) = 118 degrees	
Focal Length	2.8 mm	
Focal Distance	Adjustable	
TV DISTORTION	<-17%	
F(N) /Aperture	2.2	

3.2 Size

3.2.1 PCB Size

3.2.2 Len Size

3.3 Connection Of The Hardware

3.4 Pin-Out

3.4.1 Signal/Power Connector J1

The J1 pin map is same Raspberry Pi camera.

PIN	Symbol	Description	
1	GND	Ground Pin	
2	CON_CSI_DON	Pixel Data LaneO Negative	
3	CON_CSI_DOP	Pixel Data LaneO Positive	
4	GND	Ground Pin	
5	CON_CSI_D1N	Pixel Data Lanel Negative	
6	CON_CSI_D1P	Pixel Data LanelPositive	
7	GND	Ground Pin	
8	CON_CSI_CLKN	Pixel Clock Output Form Sensor Negative	
9	CON_CSI_CLKP	Pixel Clock Output Form Sensor Positive	
10	GND	Ground Pin	
11	None	None	
12	None	None	
13	SCL	CLK input, SIO_C of SCCB	
14	SDA	DATA input, SIO_D of SCCB	
15	3.3V Power	Power Supply	

4. Using Raspbian Build-In Driver

4.1 Load Raspberry Pi image

Prepare a capacity of more than 8GB TF card(16Gb Class10 is better) and a card reader. Load the image file on to the SD card, using the instructions provided on the Raspberry Pi website for Linux, Mac or PC:

https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Raspbian Image download:

https://www.raspberrypi.org/downloads/

4.2 Driver Sources Codes

The existing IMX290 driver and overlay also work fine with IMX327 and IMX426.

The open source driver on Raspbian:

https://github.com/raspberrypi/linux/blob/rpi-5.10.y/drivers/media/i2c/imx290.c

Reference codes:

https://github.com/torvalds/linux/blob/master/drivers/media/i2c/imx290.c

4.3 Dtoverlay on Raspberry Pi board (RPI4/3/Zero)

(1) Open the config.txt on Raspbian:

sudo nano /boot/config.txt

(2) Add the dtoverlay into the config.txt file, dtoverlay=imx290,clock-frequency=74250000

```
[cm4]
# Enable host mode on the 2711 built-in XHCI USB controller.
# This line should be removed if the legacy DWC2 controller is required
# (e.g. for USB device mode) or if USB support is not required.
otg_mode=1
[all]
[pi4]
# Run as fast as firmware / board allows
arm_boost=1
[all]
dtoverlay=imx290, clock-frequency=74250000
```

(3) And then press ctrl+ x to exit nad press 'y' to save.

(4) Rebooted your Pi sudo reboot

(5) Use below command to check the camera is ready.

ls /dev/video0

Successful:

```
pi@raspberrypi: ~

File Edit Tabs Help

pi@raspberrypi:~ $ ls /dev/video0

/dev/video0

pi@raspberrypi:~ $
```

Unsuccessful:

4.4 Dtoverlay on CM4

(1) Open the config.txt on Raspbian:

sudo nano /boot/config.txt

```
pi@raspberrypi:~

Eile Edit Tabs Help

pi@raspberrypi:~ $ sudo nano /boot/config.txt
```

(2) Add the dtoverlay into the config.txt file, CAM1 is the default camera same as Raspberry Pi.

dtoverlay=imx290,clock-frequency=74250000 dtoverlay=imx290,clock-frequency=74250000,cam0

```
# Enable DRM VC4 V3D driver
dtoverlay=vc4-kms-v-3d
max_framebuffers=2

# Disable compensation for displays with overscan
disable_overscan=1

[cmd]

# Enable host mode on the 2711 built-in XHCI USB controller.
# This line should be removed if the legacy DWC2 controller is required

# (e.g. for USB device mode) or if USB support is not required.

# (e.g. for uSB device mode) or if USB support is not required.

# [pi4]

# Run as fast as firmware / board allows
arm_boost=1

[all]

# dtoverlay=imx290, clock-frequency=74258000
# dtoverlay=imx290, clock-frequency=74258000, came
```

(6) And then press ctrl+ x to exit nad press 'y' to save.

(7) Rebooted your Pi sudo reboot

(8) Use below command to check the camera video0 and video1 are available. Is /dev/video *

```
pi@raspberrypi:~ 5 ls /dev/video*
/dev/video@ /dev/video11 /dev/video14 /dev/video18 /dev/video22
/dev/video1 /dev/video12 /dev/video15 /dev/video20 /dev/video23
/dev/video10 /dev/video13 /dev/video16 /dev/video21 /dev/video31
pi@raspberrypi:~ 5
```

4.5 Frame Rate(fps) Test

Use below command, you can see frames-per-second information of your camera. v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

30 fps:

```
pi@raspberrypi:~ $ v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --str
eam-to=/dev/null
<<<<<<<< 30.02 fps
<<<<<<<<< <<< << 30.02 fps
<<<<<<<<< 30.02 fps
.
<<<<<<<<< 30.02 fps
<<<<<<<< << < < < < 30.02 fps
<<<<<<<<< <<< << 30.02 fps
<<<<<<<<< 30.02 fps
<<<<<<<<< 30.02 fps
:<<<<<<<< 30.02 fps
<<<<<<<<< 30.02 fps
<<<<<<<< << << << 30.02 fps
<<<<<<<<<<<><<<< 30.02
```

60 fps:

5. Libcamera On Raspbian

libcamera is an open source Linux community project. More information is available at the libcamera website:

https://libcamera.org/

The libcamera source code can be found and checked out from the official libcamera repository. https://git.linuxtv.org/libcamera.git/

When running a Raspberry Pi OS based on Bullseye, the 5 basic libcamera-apps are already installed. In this case, official Raspberry Pi cameras will also be detected and enabled automatically. Below we only take 'libcamera-hello' for example. For more information, please refer to below link:

https://www.raspberrypi.com/documentation/accessories/camera.html#binary-packages

In addition, Below test base on Raspberry Pi 4, If you want libcamera apps on Bullseye running on Pi 0 - 3, please refer to below link:

https://forums.raspberrypi.com/viewtopic.php?t=323547

5.1 Libcamera-hello

libcamera-hello is the equivalent of a "hello world" application for the camera. It starts the camera, displays a preview window.

5.1.1 Preview

Use below command to start the preview.

libcamera-hello -t 0

If you are using dual camera on the CM4 module ,please use below command, you could see two camera are available in you system.

libcamera-hello --list-camera

```
pi@frapberrypi:- $ Libcamera-hello --List-camera
[2:20:55.709517765] [188] IMPO Camera camera_manager.cpp:293 libcamera v9.6.0+3424-e68e0fle
[2:20:55.720691879] [1484] WARR (CameraSensor/Properties camera_sensor_properties.cpp:141 No static properties available for 'imx290'
[2:20:55.720742803] [1844] WARR (CameraSensor/Properties camera_sensor_properties.cpp:142 Please consider updating the camera sensor properties database
[2:20:55.720777284] [1848] ERROR (CameraSensor/Camera_sensor_properties.cpp:142 Please consider updating the camera sensor properties database
[2:20:55.733184656] [1484] WARR (CameraSensor/Properties camera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.73338821] [1484] WARR (CameraSensor/Properties camera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733308448] [1484] WARR (CameraSensor/Properties camera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733308448] [1484] ERROR (CameraSensor/Properties camera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733308448] [1484] ERROR (CameraSensor) examera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733308448] [1484] ERROR (CameraSensor) examera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733308448] [1484] ERROR (CameraSensor) examera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733308448] [1484] ERROR (CameraSensor) examera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733308448] [1484] ERROR (CameraSensor) examera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733184565] [1484] WARR (CameraSensor) examera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733184656] [1484] WARR (CameraSensor) examera_sensor_properties.cpp:142 No static properties available for 'imx290'
[2:20:55.733184656] [1484] WARR (CameraSensor) examera_sens
```


Enable camera 1

libcamera-hello -t 0 --camera 1

5.1.2 Set the Frame Rate

The IMX327 modue can support up 60fps.

 $\frac{https://github.com/raspberrypi/linux/pull/4398/commits/192569ee019ad4bd642dc7012e176d1}{aa87ccd2c}$

https://github.com/raspberrypi/linux/pull/4398

libcamera-hello --framerate 60

5.1.2 Set the Bit-Depth

libcamera-hello -t 10000 --mode 1920:1080:12:U

Above command set IMX327 work on 12bit , 1920(W) * 1080(H) unpacked mode. For more detail

--mode arg :Camera mode as W:H:bit-depth:packing, where packing is P (packed) or U(unpacked)

6. User Manual Version Descriptions

Version	Description	Date	E-mail
V1.0		2021.11.25	support@inno-maker.com sales@inno-maker.com
V1.1	Add camera runing on the CM4	2022.07.22	support@inno-maker.com sales@inno-maker.com

If you have any suggestions, ideas, codes and tools please feel free to email to me. I will update the user manual and record your name and E-mail in list. Look forward to your letter and kindly share.