Ring of Fire

Simulating Wildfire Spread Using Evolved Cellular Automata

Isaac Caruso, Oliver Baldwin Edwards, and Martin Glusker

Why Evolution?

Massive wildfires over the past year in Australia,
 California, the Amazon

- All existing simulations rely on same equations predicting fire spread
- What if these are missing something big?

Why Cellular Automata?

- Traditional wildfire simulation is computationally expensive
- Cell2Fire uses cellular automata to simulate wildfire
- We sought to do better with evolution ("Rules for Fire")

Cell2Fire: A Cell Based Forest Fire Growth Model

Cristobal Pais a , Jaime Carrasco b , David L. Martell c , Andres Weintraub b , David L. Woodruff d May 24, 2019

The Data

- 10 fires with the following data:
 - Weather (FWI, BUI, ISI)
 - Terrain (Ignition Point, Slope, Forest Composition)
 - Final "Fire Scar"
- 7 fires for train set, 3 for test set
- New variables:
 - Net time neighbors burning
 - Net burning direction
- All used as instructions for our Rules

Sample Fire Scar

Mica Creek Fire 1

Methodology

Rules

```
(def fire-instructions
 (list
   'slope
   'ISI ;; Initial Spread Index
   'BUI ;; Buildup Index
   'FWI ;; Fire Weather Index
   'NT
         ;; Neighbor Average Time Burning
   'NBD ;; Net Burning Direction
   'WS ;; Wind Speed
   'WD ;; Wind Direction
   'TB
        ;; Time Burning
   ':split
   ;; and some propel ones...
   1)
(def a-program '(exec_dup (boolean_and WS boolean_not NT WD))
```

Our Implementation

```
(defn fire-error-function
 "Calls run-fire on each fire in test set... and more on next slide ")
      ("kootenay1" {:k1 [[0 0 1 0] :a2
      "arrohead2")
                           [1 1 1 0]
                                                  [0 1 1 1]
                               [0 1 0 0] [1 0 1 0]
                               [0 1 0 0]]
                                             [0 1 1 1] }
       Fire names -> Map of fire scars
(defn run-fire
 "Runs a fire for 24 hours and returns the final fire scar. ")
      [[0 0 0 0]]
                        [[0 0 1 0]
       [0\ 1\ 0\ 0] \longrightarrow [1\ 1\ 1\ 0]
       [0 0 0 0] [0 1 0 0]
       [0 0 0 0]]
                [0 1 0 0]]
       Ignition pt. --> Fire scar
```

Our Implementation

```
(defn update-grid
 "Updates a fire grid from one time step to the next")
  ;; [[0 0 0 0]
                      [[0 0 0 0]]
  ;; [0 1 0 0] -> [0 1 1 0]
  ;; [0 0 0 0] [0 0 0 0]
  ;; [0 0 0 0]]
                       [0 0 0 0]]
      Minute 1 -> Minute 2
(defn update-cell
 "Updates a cell to its next state by interpreting a push program")
                  → 0 | 1
         Unburned --> Unburned or Burning
  ;;
         1 -> 1 || 2
         Burning --> Burning or Burned
```

Sample Evaluate Error

Run-fire output

Fire Scar

Error Vector

Our output: [0010111101000100]

Fire scar: [0010111011001000]

Error Vector: [000000110001100]

Results

Number of Fires: 4 Population size: 10

Best program:

```
(exec_dup (boolean_and WS boolean_not 2 integer_* integer_= TB
integer_% NT WD WD) 0 WD boolean_not FWI FWI exec_dup (1 integer_+ TB
false) exec dup (WS))
```

```
Best total error: 6877
```

Total number of cells: 24280

Best percent error: 0.28323722

Fires evaluated: (r1 g2 m1 k2)

Training set:

Arrowhead 1 - Results

35.5% Error

Glacier Creek 1 - Results

40.3% Error

Fire Scar

Our Output

Limitations

```
Report for Generation 15
155 Best plushy: (ISI TB false false integer = NBD boolean = :split NBD 1 :split boolean = integer -)
    Best program: (ISI TB false false integer_= NBD boolean_= :split NBD 1 :split boolean_= integer_-)
157 Best total error: 3270
158 Total number of cells: 12284
159 Best percent error: 0.26619995
    Fires evaluated: (k2 m2)
                   Report for Generation 16
165 Best plushy: (ISI TB boolean_and 0 integer = integer = exec_if :split integer = NBD NBD)
166 Best program: (ISI TB boolean_and 0 integer_= integer_= exec_if (:split integer_= NBD NBD) ())
    Best total error: 3270
168 Total number of cells: 12284
169 Best percent error: 0.26619995
170 Fires evaluated: (m2 k2)
                   Report for Generation 17
175 Best plushy: (ISI TB TB false integer = :split NBD :split NBD 1 1 :split)
176 Best program: (ISI TB TB false integer = :split NBD :split NBD 1 1 :split)
177 Best total error: 2631
178 Total number of cells: 7532
179 Best percent error: 0.34930962
180 Fires evaluated: (m1 r1)
```

- Not enough generations run
- Complicated to reduce time-complexity with larger programs
- Only final fire-scars, no intermediate time steps
- Only weather data by the hour

Looking Forward

- KEEP EVOLVING!!
- Continue optimizing run time
- Look at implementing ROS metric as instruction
- Continue refining instructions used for each cell

Thank you!

