

软件分析

关系型抽象域

熊英飞 北京大学

非关系抽象

- 大量的分析是关于变量中有什么值的
 - 指向分析
 - 区间分析
 - 符号分析
- 这些分析单独对每个变量进行抽象,不考虑变量之间的关系。
- 这类不考虑变量之间关系的抽象称为非关系抽象。

非关系抽象的问题

- 考虑区间分析
 - x:[0, 1]
 - a=x;b=x;c=a-b;
- •区间分析结果:
 - c:[-1, 1]
- 精确结果:
 - c:[0, 0]
- 如果知道a和b相等,我们就能根据a-b推出这一 精确结果

非关系抽象的问题

- 考虑区间分析
 - x=0; y=0; while (x<10){ x++; y--; }
- •区间分析结果:
 - x:[10, 10]
 - $y:[-\infty, 0]$
- 精确结果:
 - x:[10, 10]
 - y:[-10, -10]

• 如果知道a=-b相等,我们就能推出y的精确范围

关系抽象

- 考虑变量之间关系的抽象称为关系抽象。
- 一种基础关系抽象的表示方式
 - 抽象域: 一阶逻辑表达式组成的空间
 - 抽象值 c_1 和 c_2 的并: $c_1 \vee c_2$
 - 语句的转换函数,如x=a+b:
 - $OUT = (\exists x. IN) \land x = a + b$
 - 条件的压缩函数,如x>0
 - $OUT = IN \land x > 0$
- 问题:
 - 抽象域无限,也很难定义出widen算子
 - 分析不收敛
 - 分析结果是一个巨大的逻辑表达式,难以从中导出
 - 逻辑表达式基本和原程序等价,分析难度几乎没变

关系抽象

- 实际中的关系抽象通常限定逻辑约束的形式
 - 使得分析可以收敛
 - 使得可以从逻辑约束中导出结果
- 本课介绍两种关系抽象
 - 简单仿射关系抽象
 - 八边形抽象
 - 谓词抽象

简单仿射关系抽象

- 简单仿射关系抽象是对区间抽象的一种改进
 - 仿射关系=线性关系,来源于线性代数的仿射变换
 - 由北大张煜皓同学等在分析神经网络时提出
 - 是完整仿射关系抽象的化简版本
 - 完整版本涉及较多线性代数知识,可参考原始论文
- 通过记录变量和抽象符号之间的线性等价关系计算更精确的区间

北京大学张煜皓 简单仿射关系抽象提出者

	仿射关系	抽象符号区间	推导出的区间
	x=s	s:[0, 1]	x:[0, 1]
a=x;	a=s, x=s	s:[0, 1]	a:[0, 1]
b=x;	b=s, a=s, x=s	s:[0, 1]	b:[0, 1]
c=a-b;	c=s-s=0,	s:[0, 1]	c:[0, 0]

简单仿射关系抽象一抽象域

- 给定抽象符号集合 $\{s_{v,x} \mid v: 控制流节点, x:$ 变量名 $\}$,抽象域由(申, 酉)组成
 - 申: 从变量到抽象符号线性表达式 $\Sigma w_{ij}s_{ij}$ 的部分映射
 - 酉: 从抽象符号到区间的部分映射,未定义的符号默认为空区间
- 抽象域的含义
 - 变量之间的关系满足申,且变量的值在基于酉和申计算出的区间内

简单仿射关系抽象 转换函数

- 赋值语句x=a+b
 - $OUT^{\ddagger}(x) = IN^{\ddagger}(a) + IN^{\ddagger}(b)$
 - $OUT^{\ddagger}(y) = IN^{\ddagger}(y) \quad \forall y \neq x$
 - $OUT^{\overline{\Box}} = IN^{\overline{\Box}}$
- 节点v的赋值语句x=a*b
 - $OUT^{\ddagger}(x) = s_{vx}$
 - $OUT^{\overline{G}}(s_{vx}) = 根据a和b的区间计算$
 - 其他不变
- 节点v的IN的计算
 - $IN^{\oplus}(x) = \begin{cases} e & \text{如果所有前驱都为}e$ 或未定义 $s_{vx} & \text{否则} \\ \text{in } S_{ij} = \begin{cases} s_{ij} & \text{if } i \neq v \\ \text{根据前驱对应申和酉计算} & i = v \end{cases}$

简单仿射关系抽象 安全性和收敛性

- 安全性: 简单仿射关系抽象保证安全性
- 收敛性:
 - 节点v的申对于变量x的值只会按这样的链变化: 未定义,特定表达式, S_{vx}
 - 但酉中的区间和区间分析类似,可以一直增加
 - 可以对酉中的区间加上加宽来保证收敛

简单仿射关系抽象的不足

• 仍然不能解决第二个程序的问题

```
    x=0;
    y=0;
    while (x<10){</li>
    x++; y--; }
```

• x和y之间没有互相赋值,无法建立起关系

关系抽象举例: 八边形

假设程序中只有x和y两个变量

区间抽象形成一个矩形

加上4条45度的线来形成八边形

关系抽象举例: 八边形

假设程序中只有x和y两个变量

加上4条45度的线来形成八边形

x的上界 a_1 : $x \le a_1$

x的下界 a_2 : $x \ge a_2$

y的上界 a_3 : y $\leq a_3$

y的下界 a_4 : y ≥ a_4

x+y的上界 a_5 : $x+y \le a_5$

x+y的下界 a_6 : $x+y \ge a_6$

x-y的上界 a_7 : $x-y \leq a_7$

x-y的下界 a_8 : $x - y ≥ a_8$

关系抽象举例: 八边形

x的上界 a_1 : $x \leq a_1$

x的下界 a_2 : $x \ge a_2$

y的上界 a_3 : $y \leq a_3$

y的下界 a_4 : y ≥ a_4

x+y的上界 a_5 : $x+y \leq a_5$

x+y的下界 a_6 : $x+y \ge a_6$

x-y的上界 a_7 : $x-y \le a_7$

x-y的下界 a_8 : $x - y \ge a_8$

统一化

x的上界 $\frac{1}{2}a_1$: + $x + x \le a_1$ x的下界- $\frac{1}{2}a_2$: $-x - x \le a_2$ y的上界 $\frac{1}{2}a_3$: +y + y \le a_3 y的下界 $-\frac{1}{2}a_4$: $-y - y \le a_4$ x+y的上界 a_5 : $+x+y \le a_5$ **x**+**y**的下界- a_6 : $-x - y \le a_6$ x-y的上界 a_7 : +x - y ≤ a_7 **x-y**的下界- a_8 : -x + y ≤ a_8

即 $\pm v_1 \pm v_2 \le a$,其中 $v_1, v_2 \in \{x, y\}$

对多个变量进行抽象

- 对任意两个变量记录八边形
- $\pm v_1 \pm v_2 \le a$,其中 v_1, v_2 为程序上的任意变量
- 即对任意两个变量记录八个值

	+x	- X	+y	-у
+x	10	-	-	-
-X	-	0	-	-
+y	10	5	20	-
-у	-2	5	-	-10

八边形上的计算

- x = x + 1
 - 将x有关的八边形沿x轴移动1个单位
- $z = x \cup y$
 - 对于任意变量v, 令<z,v>的八边形为包住<x,v>和<y,v>的最小八边形
- $z = x \cap y$
 - 对于任意变量v, 令<z,v>的八边形为包住<x,v>和<y,v>公共部分的最小八边形
- 更多计算方法参考原始论文:
 - Miné A. The octagon abstract domain[J]. Higher-Order and Symbolic Computation, 2006, 19(1):31-100.

其他数值常用抽象

Collecting semantics: partial traces

Octagons:

$$\pm x \pm y \leqslant a$$

Intervals.

$$\mathbf{x} \in [a,b]$$

Ellipses.

$$\pm \mathbf{x} \pm \mathbf{y} \leqslant a$$
 $\mathbf{x}^2 + b\mathbf{y}^2 - a\mathbf{x}\mathbf{y} \leqslant d$ $-a^{bt} \leqslant \mathbf{y}(t) \leqslant a^{bt}$

Simple congruences:

$$x \equiv a[b]$$

Exponentials:

$$-a^{bt} \leqslant y(t) \leqslant a^{bt}$$

谓词抽象

- 用一系列布尔表达式的值作为抽象域
- 其他很多抽象形式可以看做谓词抽象的一种

• 需要针对谓词设计转换函数

- 如,符号分析可以用谓词抽象表达
 - 对任意变量x,有如下谓词
 - x > 0, x < 0, x = 0

在线抽象解释工具

- Interproc
 - http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
 - 开源工具
 - 用于展示开源抽象域库APRON的静态分析工具
 - 支持整型、浮点型等运算的分析
 - 支持过程间分析(包括递归函数)
 - 不支持数组、结构体等复杂数据结构、也不支持动态内存 分配等

THE TRANSPORT OF THE PROPERTY OF THE PROPERTY

This is a web interface to the <u>Interproc</u> analyzer connected to the <u>APRON Abstract Domain Library</u> and the <u>Fixpoint Solver Library</u>, whose goal is to demonstrate the features of the APRON library and, to a less extent, of the Analyzer fixpoint engine, in the static analysis field.

There are two compiled versions: <u>interprocweb</u>, in which all the abstract domains use underlying multiprecision integer/rational numbers, and <u>interprocwebf</u>, in which box and octagon domains use underlying floating-point numbers in safe way.

This is the Interproc version

Arguments

Please type a program, upload a file from your hard-drive, or choose one the provided examples:

Analysis Result

Run <u>interprocweb</u> or <u>interprocwebf</u>?

Result

) 4 I F (

```
Annotated program after forward analysis
proc MC (n : int) returns (r : int) var t1 : int, t2 : int;
begin
 /* (L6 C5) top */
  if n > 100 then
    /* (L7 C17) [|n-101>=0|] */
    r = n - 10; /* (L8 C14)
                    [-n+r+10=0; n-101>=0] */
  else
   /* (L9 C6) [|-n+100>=0|] */
   t1 = n + 11; /* (L10 C17)
                    [-n+t1-11=0; -n+100>=0] */
    t2 = MC(t1); /* (L11 C17)
                    [-n+t1-11=0; -n+100>=0; -n+t2-1>=0; t2-91>=0|1 */
    r = MC(t2); /* (L12 C16)
                   [-n+t1-11=0; -n+100>=0; -n+t2-1>=0; t2-91>=0; r-t2+10>=0;
                     r-91>=0 | 1 */
 endif; /* (L13 C8) [|-n+r+10>=0; r-91>=0|] */
end
var a : int, b : int;
begin
 /* (L18 C5) top */
  b = MC(a); /* (L19 C12)
                |-a+b+10>=0; b-91>=0|1 */
end
```

Source

end

```
/* exact semantics:
   if (n>=101) then n-10 else 91 */
proc MC(n:int) returns (r:int)
var t1:int, t2:int;
begin
 if (n>100) then
    r = n-10;
 else
    t1 = n + 11;
    t2 = MC(t1);
     r = MC(t2);
 endif;
end
var
a:int, b:int;
begin
 b = MC(a);
```

作业

- 在Interproc中构造一个程序,使得:
 - 八边形抽象的结果精度>区间抽象的结果精度
 - 最理想的结果精度>八边形抽象的结果精度

• 提交:

- Interproc的运行截图
- 解释你的结果,包括
 - 最理想的结果精度是什么
 - 为什么八边形的结果不如最理想结果精确
 - 为什么区间抽象的结果不如八边形的结果精确

参考资料

- 简单仿射关系抽象: Yuhao Zhang, Luyao Ren, Liqian Chen, Yingfei Xiong, Shing-Chi Cheung, Tao Xie. Detecting Numerical Bugs in Neural Network Architectures. ESEC/FSE'20: ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, November 2020.
- 仿射关系抽象: Michael Karr. Affine Relationships Among Variables of a Program. Acta Informatica 6, 133--151 (1976)
- 八边形抽象: Miné A. The octagon abstract domain[J]. Higher-Order and Symbolic Computation, 2006, 19(1):31-100.