

Lab no : 4 Date : 2081/ /

Title: Correlation and Regression

PROJECT 4.1 (Simple Linear Regression):

Enter the following values in SPSS and find the regression equation of Y on X:

X	1	2	3	4	5	6	7
Y	6	7	5	4	3	1	2

WORKING EXPRESSION:

Regression Equation is given by:

$$Y = a + bX$$

where,

a = intercept

b = regression coefficient

y = dependent variable

x = independent variable

PROCEDURE:

1. Enter the values of variables X and Y

2. Select Analyze => Regression => Linear.

3. Move X into independent and Y into Dependent.

4. Click Continue => OK.

Calculation (From SPSS):

	Coefficients ^a										
	Unstandardized Model Coefficients		-	Standardized Coefficients	t	Sig.					
		В	Std. Error	Beta							
1	Constant	7.714	.742		10.392	.000					
1	X	929	.166	929	-5.594	.003					

CONCLUSION:

The regression line is Y = 7.714 - 0.929X

PROJECT 4.2 (Simple Correlation):

Enter the following values in SPSS and find the correlation between X and Y:

X	1	2	3	4	5	6	7
Y	6	7	5	4	3	1	2

WORKING EXPRESSION:

Karl Pearson's Correlation Coefficient (r) =
$$\frac{n\Sigma xy - \Sigma x\Sigma y}{\sqrt{n\Sigma x^2 - (\Sigma x)^2} \sqrt{n\Sigma y^2 - (\Sigma y)^2}}$$

Spearman's Rank Correlation Coefficient (R) =
$$1 - \frac{6\Sigma d^2}{n(n^2-1)}$$

Kendall's Tau-b Correlation Coefficient
$$(\tau B) = \frac{n_c - n_d}{\sqrt{(n_0 - n_1)(n_0 - n_2)}}$$

PROCEDURE:

- 1. Enter the values of variables X and Y
- 2. Select Analyze => Correlate => Bivariate.
- 3. Move X and Y into variables.
- 4. Select Pearson, Kendall's tau-b, Spearman.
- 5. Click Continue => OK.

Calculation (From SPSS):

Karl Pearson's Rank Correlation:

Correlations								
			X	Y				
		Correlation Coefficient	1	-0.929**				
	X	Sig. (2-tailed)		0.003				
Karl		N	7	7				
Pearson's		Correlation Coefficient	-0.929**	1				
	Y	Sig. (2-tailed)	0.003					
		N	7	7				
**. Correlation i	**. Correlation is significant at the 0.01 level (2-tailed).							

Spearman's Rank Correlation:

Correlations							
			X	Y			
		Correlation Coefficient	1.000	-0.929**			
	X	Sig. (2-tailed)		0.003			
a		N	7	7			
Spearman's	Y	Correlation Coefficient	-0.929**	1.000			
		Sig. (2-tailed)	0.003				
		N	7	7			

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Kendall's Tau-b Correlation:

		Correlation	S	
			X	Y
		Correlation Coefficient	1.000	-0.810**
	X	Sig. (2-tailed)		0.011
Kendall's		N	7	7
Tau-b		Correlation Coefficient	-0.810**	1.000
	Y	Sig. (2-tailed)	0.011	
		N	7	7

^{*.} Correlation is significant at the 0.05 level (2-tailed).

CONCLUSION:

Karl Pearson's Correlation coefficient (r) = -0.929 Similarly, Spearman's Rank Correlation coefficient (R) = -0.929 Then, Using Kendall's Tau-b Correlation coefficient (τB) = -0.810

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{**.} Correlation is significant at the 0.01 level (2-tailed).

PROJECT 4.3 (Rank for Non-repeated Observations):

Calculate Spearman's Rank Correlation Coefficient from the following data.

Mark by A(X)	60	34	40	50	45	41	22	43	42	46	64	66
Mark by B(Y)	75	32	34	40	45	43	12	30	36	57	41	72

WORKING EXPRESSION:

Spearman's Rank Correlation Coefficient:

$$R = 1 - \frac{6[\Sigma d^2 + \frac{m_1(m_1^2 - 1)}{12} + \frac{m_2(m_2^2 - 1)}{12} + \cdots]}{n(n^2 - 1)}$$

PROCEDURE:

- 1. Enter the values of the variables X and Y.
- 2. Select Transform => Rank Cases.
- 3. Move X and Y into Variables.
- 4. Select Largest value.
- 5. Select Analyze => Correlate => Bivariate.
- 6. Move Rank of X and Rank of Y into Variables.
- 7. Select Spearman => Two-tailed => Flag significant correlations.
- 8. Click OK.

Calculation (From SPSS):

Correlations									
			Rank of	Rank of					
			Marks by_A	Marks by_B					
	Dank of	Correlation Coefficient	1.000	0.748**					
	Rank of Mark by A	Sig. (2-tailed)		0.005					
Cnaauman's	Murk_by_A	N	12	12					
Spearman's	Rank of Mark by B	Correlation Coefficient	0.748**	1.000					
		Sig. (2-tailed)	0.005						
	WIUIK_DY_D	N	12	12					
**. Correlatio	**. Correlation is significant at the 0.01 level (2-tailed).								

CONCLUSION:

The Spearman's Rank correlation coefficient is: r = 0.748