Parcours Data Scientist: Projet 3

Concevez une application au service de la santé publique

Sommaire

- Idée d'application
- Nettoyage des données.
- Analyse uni-variée des différentes variables importantes
- Analyse multivariée
- Pertinence et faisabilité

Idée d'application

Grâce à la détection de code-barres, vous obtiendrez le Nutri-score du produit

Idée d'application

Principe:

- Des données numériques :
 - Des nutri-scores disponibles pour un grand jeu de donnée
 - Une grande partie de données numériques sur la composition et les valeurs énergétiques des produits
- Régression linéaires sur les données des aliments pour obtenir le nutri-score entre -15 et 40

- Présentation des données
 - Général :

```
1 raw_data.shape
(1481675, 182)
```

- Features :
 - Une dizaine de données générales : On va garder « code » et « nom de produit »
 - 25 catégories essentiellement des strings sur les origines des produits, leurs labels, le packaging...
 - 25 sur les ingrédients, les allergènes, les additifs... On va conserver les colonnes nutriscore-score et nutriscore-grade et le nova-group qui est une donnée chiffrée également
 - Les données nutritives (float) avec leurs poids pour 100g de produit

 On commence par supprimer les colonnes qui ne nous seront pas utiles :

```
L=['code','product_name','nutriscore_score','nutriscore_grade','nova_group']
for i in raw_data.columns:
    if '_100g' in i and 'carbon-footprint' not in i:
        L.append(i)
data=raw_data[L]
```

On supprime les lignes qui ne sont pas labellisées :

```
data.dropna(subset=['nutriscore_score'],inplace=True)
data.shape
(590618, 114)
```

 On regarde la disponibilité des informations pour les variables restantes et on ne garde que celles disponibles pour plus de la moitié de l'échantillon:

- On voit que dans les features « energy » les données sont dupliquées et seule la colonne « energy_100g » est importante (cf fichier Jupyter)
 - On ne garde donc que « energy_100g »

 On voit qu'il n'y a aucune corrélation directe entre le nutriscore_score et le nutriscore_grade ou entre le nutriscore_score et le nova_group ce sont des données probablement également corrélées aux données chiffrés d'ingrédients, on va donc les supprimer également.

Répartition des nutriscores par grade

Répartition des nutriscores par nova group

On supprime donc le nutriscore_grade et le nova_group de notre jeu de données

Suppressions des doublons :

```
data3=data2.copy()
#Je cherche les produit ayant meme code barre
dupl=data3[data3.duplicated(subset='code',keep=False)].sort values(by='code')
#Je complète les éventuelles cellules vides par les valeurs du doublon
for i in dupl.code.unique():
    na=data3[data3['code']==i].isnull()
    L=na.index.tolist()
    for k in na.columns:
        for j in range(2):
            if na.loc[L[j],k]:
                if not na.loc[L[(j+1)%2],k]:
                    data3.loc[L[j],k]=data3.loc[L[(j+1)^{1}2], k]
#Je supprime les doublons sur les codes barres:
data3.drop duplicates(subset='code',inplace=True)
```

- Gestion des outliers
 - On supprime tous les ingrédients qui n'ont aucune précisions en ingrédients : data3.dropna(subset=data3.columns[3:],how='all',inplace=True)
 - On supprime toutes les valeurs au dessus de 100g et en dessous de 0g pour les ingrédients : data4=data3.copy() #Je considère que les Nan sont des 0

#Je considère que les Nan sont des 0
data4.fillna(0,inplace=True)
for i in data4.columns.tolist()[4:]:
 data4=data4[data4[i]>=0]
 data4=data4[data4[i]<=100]

 Maintenant, pour supprimer les autres valeurs extrêmes on va tracer les histogramme de ces variables et par tâtonnement établir un seuil pour chaque variable

0.9435181665127899

```
fig=plt.figure(figsize=(28,56))
x=np.array(data5['nutriscore_score'])
k=1
for i in data5.columns.tolist()[3:]:
    fig.add_subplot(8,2,k)
    y=np.array(data5[i])
plt.hist(y,bins=20)
plt.title(i)
k+=1
```


Analyse uni-variée des différentes variables importantes

Nutriscore en fonction des compositions

Analyse uni-variée

 Les courbes du sel et du sodium semblent également étrangement similaire. On calcule leur coefficient de corrélation et en effet elles sont extrêmement corrélées:

```
#Le potassium et les carbohydrates semblent inutiles
#Le sel et le sodium ont exactement les mêmes courbes:
import scipy.stats as st
st.pearsonr(data5['salt_100g'],data5['sodium_100g'])[0]
0.9999827946133235
```

- On a deux variables bi-modales : les protéines et les fibres
- Le sel, les graisses saturées et le sucre sont plutot uni-modales
- Les autres variables sont plus dispersées.
- On voit une corrélation entre la valeur énergétique du produit et le nutriscore (plus le produit est énergétique plus le nutriscore est important)
- De même avec le sucre, le sel et les graisses
- Les fibres ont plutot tendances à faire baisser le nutriscore.
- Les carbohydrates ne semblent pas avoir d'impact sur le nutriscore.

Analyse uni-variée

- Avant de passer à une analyse multivariée, on va compléter les valeurs manquantes.
- On a utilisé plusieurs options :
 - Des zéros en admettant que si un ingrédient n'avait aucune valeur pour certains ingrédients mais pas pour d'autres c'était que les valeurs étaient nulles
 - Deux KNN imputers (en séparant ingrédient et énergie):
 - 1nn
 - 3nn
- On compare les données avant et après nettoyage/imputation :

Analyse uni-variée

Diagrammes en boite avant-après nettoyage

Analyse Multivariée

- On part sur le 3nn imputer, les données des fibres y sont moins écrasées que pour les autres.
- On regarde les coefficients de corrélation entre les différentes variables

Analyse multi-variée

```
col=final.columns.tolist()[2:]
corel=pd.DataFrame(col)
correlation=[]
for i in col:
    corele=[abs(st.pearsonr(final[i],final[j])[0]) for j in col if j not in correlation]
    corele=[0 for i in range(len(correlation))]+corele
    corel[i]=np.array(corele)
    correlation.append(i)

corel.set_index(0)
corel.style.background_gradient(cmap='Blues')
```

0	nutriscore_score	energy_100g	fat_100g	saturated-fat_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
nutriscore_score	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
energy_100g	0.628983	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
fat_100g	0.600338	0.771090	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
saturated-fat_100g	0.666869	0.583960	0.747319	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000
carbohydrates_100g	0.279391	0.577551	0.003733	0.000527	1.000000	0.000000	0.000000	0.000000	0.000000
sugars_100g	0.466238	0.374054	0.048953	0.156138	0.642175	1.000000	0.000000	0.000000	0.000000
fiber_100g	0.103952	0.401660	0.210517	0.007838	0.384202	0.081319	1.000000	0.000000	0.000000
proteins_100g	0.121183	0.323396	0.373075	0.304915	0.197114	0.300756	0.100274	1.000000	0.000000
salt_100g	0.329705	0.105241	0.194505	0.101140	0.170973	0.282526	0.064406	0.377972	1.000000

Analyse multi-variée

- On avait pas vu de lien entre les carbohydrates et le nutriscore et ces derniers semblent relativement corrélés avec les sucres.
- De même le lien graisses-nutriscores étaient beaucoup moins prononcés que les lien graisses saturées et nutri-scores. Et graisses et graisses saturées sont bien corrélés ainsi que graisses et énergie.
- Conclusion :
 - Pour éviter un sur-apprentissage on va effectuer la regression linéaire sur les données en ne prennant pas en compte ni les graisses ni les carbohydrates

Régressions linéaires

• Estimation de la taille de l'échantillon pour une simple régression linéaire :

xtrain, xtest, ytrain, ytest = train_test_split(final[features], final[['nutriscore_score']],test_size=0.2)

Régressions linéaires

Comparaison avec des régressions Ridge et Lasso sur 5 folds

On a aucune différence on va donc prendre la régression linéaire simple

Bilan

- Pas de sur-apprentissage, la régression normale est donc plus adaptées.
- Manque de précision pour une application. Donne simplement des indications sur le score-nutritionnel. Une erreur moyenne de plus de 4 points.
- Besoin de plus de données pour affiner les résultats. Peutêtre une prise en compte de données non chiffrées sur des catégories de produits.

Présentation de l'application

1 : On scanne le produit

2 : Une application obtient le code barre

3 : On récupère les informations produit dans la base de donnée :

produit=raw_data[raw_data.code=code_barre]

4 :On remplit les données manquante et on effectue le calcul du nutri-score

```
#Je selectionne uniquement les colonnes qui m'intéresse:
 2 ingredients=['saturated-fat 100g','sugars 100g','fiber 100g','proteins 100g','salt 100g']
    product=produit[['energy 100g']+ingredients]
    #Je regarde si des cases sont vides:
   if product.isnull().anv().anv():
   #si que des nan
        if product.isnull().anv().all():
           print("impossible à calculer, aucune valeur d'ingrédient ni valeur énergétique disponible")
10 #Je regarde si j'ai qq chose qui manque dans les ingrédients et effectue si besoin le knn imputer:
            if product[ingredients].isnull().any().any():
                df=final[ingredients]
                df=pd.concat([df.product[ingredients]])
                #j'effectue le knn imputer
                prod=imputer3.fit transform(df)[-1,:]
                energy=np.array([product.iloc[0].values[0]]+list(prod))
            else:
                energy=product.values
    #Je regarde si j'ai qq chose qui manque en énergie et effectue si besoin le knn imputer:
           if np.isnan(energy).any():
               df=final[['energy 100g']+ingredients]
                df=pd.concat([df,energy])
                #i'effectue le knn imputer
                produitplein=imputer3.fit transform(df)[-1,:]
26
                produitplein=energy
28 #J'ai maintenant dans produitplein toutes les valeurs dont j'ai besoin.
    #J'effectue ma régression linéaire et renvois le résultat
30 print(linreg.predict([produitplein]).round()[0][0])
19.0
```

5 : Une application affiche ce code proprement