

DEMANDE INTERNATIONALE PUBLIEX EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

- (51) Classification internationale des brevets 7: C07D 487/04, A61K 31/505
- (11) Numéro de publication internationale:

WO 00/66584

- (43) Date de publication internationale: 9 novembre 2000 (09.11.00)
- (21) Numéro de la demande internationale:

PCT/FR00/01174

A1

(22) Date de dépôt international:

28 avril 2000 (28.04.00)

(30) Données relatives à la priorité:

99/05398

28 avril 1999 (28.04.99)

- FR
- (71) Déposant (pour tous les Etats désignés sauf US): WARNER-LAMBERT COMPANY [US/US]; 201 Tabor Road, Morris Plains, NJ 07950 (US).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (US seulement): GAUDILLIERE. Bernard [FR/FR]; 28, rue de Zillina, F-92000 Nanterre (FR). LAVALETTE, Rémi [FR/FR]; 5, rue Léontine Sohier, F-91160 Longjumeau (FR). ANDRIANJARA, Charles [FR/FR]; 3, rue Auguste Daix, F-94260 Fresnes (FR). BREUZARD, Francine [FR/FR]; 42, rue Fontaine Cornaille, F-91400 Quincy sous Senart (FR).
- (74) Mandataires: POCHART, François etc.; Cabinet Hirsch-Desrousseaux-Pochart, 34, rue de Bassano, F-75008 Paris (FR).

(81) Etats désignés: AE, AG, AL, AU, BA, BB, BG, BR, CA, CN, CR, CU, CZ, DM, DZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MA, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont

- (54) Title: 1-AMINO TRIAZOLO¢4,3-a! QUINAZOLINE-5-ONES AND OR -5-THIONES INHIBITING PHOSPHODIESTERASE
- (54) Titre: 1-AMINO TRIAZOLO¢4,3-a! QUINAZOLINE-5-ONES ET/OU -5-THIONES INHIBITRICES DE PHOSPHODI-ESTERASES IV

(57) Abstract

The invention relates to triazolo[4,3-a]quinazoline-5-ones and/or 5-thiones of formula (I) or (II), whereby (I) and (II) are position isomers of group R on nitrogen 3 or 4. Optionally, the invention also relates to the racemic forms, isomers and pharmaceutically acceptable salts thereof. The invention further relates to a method for the production thereof and to compositions containing said derivatives. The compounds act as inhibitors of phosphodiesterase IV (PDE-4).

(57) Abrégé

La présente invention concerne des dérivés de Triazolo[4,3-a]quinazoline-5-ones et/ou -5-thiones de formule (I) ou (II): (I) et (II) étant des isomères de position du groupe R sur les azotes 3 ou 4, et éventuellement leurs formes racémiques et leurs isomères, ainsi que leur sels pharmaceutiquement acceptables, leur procédé de préparation et les compositions en contenant. Ces composés sont des inhibiteurs des phosphodiestérases 4 (PDE-4).

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaīdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israēl	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

1-AMINO TRIAZOLO¢4,3-a! QUINAZOLINE-5-ONES ET/OU -5-THIONES INHIBITRICES DE PHOSPHODI-ESTERASES IV

Domaine de l'invention

La présente invention est relative à de nouvelles triazolo [4,3-a] quinazoline-5-ones et/ou -5thiones utiles pour la préparation de médicaments permettant de traiter des affections relevant d'une thérapie par un inhibiteur de phosphodiestérases 4. Ces médicaments sont utiles notamment comme anti-inflammatoires, anti-allergiques, bronchodilatateurs, antiasthmatiques, ou inhibiteurs de TNFα.

10

15

Arrière-plan technologique de l'invention

L'adénosine 3', 5'-monophosphate cyclique (AMPc) est un second messager intracellulaire ubiquitaire, intermédiaire entre un premier messager (hormone, neurotransmetteur, ou autacoïde) et les réponses fonctionnelles cellulaires : le premier messager stimule l'enzyme responsable de la synthèse de l'AMPc; l'AMPc intervient alors, selon les cellules en cause, dans de très nombreuses fonctions : métaboliques, contractiles, ou sécrétoires.

Les effets de l'AMPc prennent fin lorsqu'il est dégradé par les phosphodiestérases des nucléotides cycliques, enzymes intracellulaires qui catalysent son hydrolyse en adénosine 5'-monophosphate inactive.

- On distingue chez les mammifères au moins sept grandes familles de phosphodiestérases des nucléotides cycliques (PDE) numérotées de 1 à 7 selon leur structure, leur comportement cinétique, leur spécificité de substrat, ou leur sensibilité à des effecteurs (Beavo J.A. et al. (1990) Trends Pharmacol. Sci. 11, 150-155. Beavo J.A. et al. (1994) Molecular Pharmacol. 46, 399-405). Les PDE4 sont spécifiques de l'AMPc.
- Des composés inhibiteurs non spécifiques de phosphodiestérases sont connus, qui inhibent plusieurs familles d'enzymes. C'est le cas de certaines méthylxanthines comme la théophylline. Ces composés ont un index thérapeutique faible, notamment en raison de leur action sur des types de PDE présents dans des cellules autres que les cellules cibles. A l'inverse, certaines familles de PDE peuvent être inhibées sélectivement par divers agents pharmacologiques : l'hydrolyse des nucléotides cycliques est ralentie et donc leur concentration augmente dans les seules cellules où se trouve le type de PDE sensible à l'inhibiteur.

Un intérêt particulier se manifeste pour les phosphodiestérases 4 (PDE4), qui ont été identifiées dans de nombreux tissus dont le système nerveux central, le cœur, l'endothélium

vasculaire, le muscle lisse vasculaire et celui des voies aériennes, les lignées myéloïdes et lymphoïdes.

Une augmentation de l'AMPc dans les cellules impliquées dans l'inflammation inhibe leur activation : inhibition de la synthèse et de la libération de médiateurs au niveau des mastocytes, des monocytes, des polynucléaires éosinophiles et basophiles, inhibition du chimiotactisme et de la dégranulation des polynucléaires neutrophiles et éosinophiles, inhibition des divisions et de la différenciation des lymphocytes.

Les cytokines, notamment TNF et interleukines, produites par différents types de leukocytes comme les lymphocytes T et les polynucléaires éosinophiles, jouent un rôle important dans le déclenchement des manifestations inflammatoires en particulier en réponse à une stimulation par un allergène au niveau des voies respiratoires.

D'autre part, l'AMPc diminue le tonus des fibres musculaires lisses des voies aériennes ; les inhibiteurs de PDE4 déterminent une bronchorelaxation.

La pneumopathie obstructive chronique (chronic obstructive pulmonary disease ou COPD en anglais) est une pathologie chronique, d'évolution lente, se caractérisant par l'obstruction des voies respiratoires (associée à une inflammation des voies respiratoires et à une numération élevée des neutrophiles). L'altération de la fonction pulmonaire est en grande partie irréversible (bien que des améliorations soient possibles avec un traitement par des bronchodilatateurs).

La présentation clinique de la pneumopathie obstructive chronique peut varier selon la gravité de l'atteinte, allant d'une simple bronchite chronique non invalidante à un état très invalidant à type d'insuffisance respiratoire chronique. Les caractéristiques cliniques principales des patients souffrant d'une pneumopathie obstructive chronique sont la bronchite chronique et/ou l'emphysème (associés à une inflammation des voies respiratoires et/ou une numération élevée des neutrophiles).

Au cours de ces dernières années, des inhibiteurs sélectifs de la phosphodiestérase 4 de seconde génération ont été proposés en tant qu'agents potentiellement efficaces dans le traitement de la pneumopathie obstructive chronique. Voir, entre autres, Doherty, Chemical Biology 1999, 3:466-473; Mohammed et al, Anti-inflammatory & Immunodilatory Investigational Drugs 1999 1(1):1-28; Schmidt et al, Clinical and Experimental Allergy, 29, supplement 2, 99-109.

30

Ariflo, un inhibiteur de la PDE 4 actif par voie orale, a été proposé pour le traitement de la pneumopathie obstructive chronique. Voir, entre autres : Nieman et al, Am J Respir Crit Care Med-1998, 157 :A413 ; Underwood et al, Eur Respir J 1998, 12 :86s ; Compton et al,

Am J Respir Crit Care Med 1999, 159 :A522. Voir également l'exposé oral de Compton lors de la réunion de l'"European Respiratory Society" qui s'est tenue à Madrid, le 12 octobre 1999, ainsi que celui de Torphy et Underwood lors du 4^{ème} congrès mondial sur l'inflammation qui s'est tenu à Paris, du 27 au 30 juin 1999. Ariflo est actuellement à l'étude, dans des essais cliniques de phase III, pour le traitement de la pneumopathie obstructive chronique.

Toutefois, il convient de préciser qu'Ariflo présente quelques inconvénients. En effet, des effets indésirables significatifs, de type nausées et vomissements, ont été rapportés après administration d'une dose de 20 mg en prise unique. Voir Murdoch et al, Am J Respir Crit Care Med 1998, 157:A409. L'apparition d'effets indésirables à des doses si faibles limitera le recours à Ariflo et empêchera l'utilisation de formes pharmaceutiques à dosage unique quotidien, conduisant ainsi à l'inconfort du patient.

10

15

30

L'ostéoporose est une maladie se caractérisant par une diminution de la masse osseuse et la perte de l'architecture squelettique, entraînant ainsi la fracture de l'os. Un grand nombre de femmes, au stade de la post-ménopause, souffrent de cette maladie et le nombre des patients ne cesse de croître.

Il existe deux types de cellules distinctes dans l'os: les ostéoblastes, qui participent à la formation de l'os; et les ostéoclastes, qui jouent un rôle dans la résorption osseuse. Plus particulièrement, la masse osseuse résulte de la somme de la formation de l'os par les ostéoblastes et de la résorption de l'os par les ostéoclastes. Par conséquent, les molécules inhibant la résorption osseuse induite par les ostéoclastes sont efficaces dans le traitement de l'ostéoporose. La calcitonine, les biphosphonates et vraisemblablement les estrogènes sont des agents luttant contre la résorption et ils sont utilisés en clinique. Les molécules stimulant la formation de l'os par les ostéoblastes constituent également des agents prometteurs dans le traitement de l'ostéoporose. Voir aussi, Yoshihiro et al. Jpn. J. Pharmacolog. 1999, 79, 477 – 483.

Depuis quelques années une recherche extensive a été menée pour l'obtention et la mise au point d'inhibiteurs puissants de PDE4. Elle s'avère difficile du fait que beaucoup des inhibiteurs potentiels de PDE4 ne sont pas dénués d'activité sur les phosphodiestérases des autres familles.

A ce jour, le manque de sélectivité des inhibiteurs de PDE4 représente donc un problème important, étant donné l'étendue des fonctions régulées par l'AMPc. Il existe donc un besoin

pour des inhibiteurs puissants et sélectifs de PDE4, c'est-à-dire n'ayant pas d'action vis-à-vis des PDE appartenant à d'autres familles.

Le brevet européen EP 0076199 décrit des composés ayant la formule générale suivante :

- dans laquelle R et R', identiques ou différents, représentent H, halogène, alkyle C₁₋₃, alcoxy ou nitro; Y représente un groupe alkyle, cycloalkyle C₃₋₈, alkenyle C₂₋₄, aryle ou aralkyle et B représente (CH₂)_n avec n = 1, 2, 3 ou CH(CH₃). L'utilisation de ces composés est proposée pour le traitement de l'asthme, la bronchite et les désordres allergiques.
- 10 Le brevet DDR158549 décrit des composés ayant la formule générale suivante :

15

dans laquelle R_1 représente H, alkyle ou aryle ; R_2 et R_3 représentent H, alkyle, halogène, OH, SH, O-alkyle, S-alkyle ; R_4 représente H, alkyle, halogénoalkyle, OH, SH, O-alkyle, S-alkyle, SO₂-alkyle, NH₂, SCN, aryle, $(CH_2)_n$ COOalkyle et n = 0 à 2. L'utilisation de ces composés est proposée à titre de diurétiques et d'antianaphylactiques.

Ram et al., dans J.Prakt.Chem, 1990, 332(5), 629-39 décrivent des composés ayant la formule générale suivante :

L'utilisation de ces composés est proposée pour le traitement de l'hypertension.

5 Sommaire de l'invention

L'invention concerne les triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones de formule I ou II :

$$R_4$$
 R_5
 R_4
 R_5
 R_4
 R_4
 R_5
 R_4
 R_4

- 10 I et II étant des isomères de position du groupe R sur les azotes 3 ou 4, dans lesquelles :
 - A₁ est O ou S;
 - X₁ et X₂, semblables ou différents, représentent :
 - hydrogène, hydroxy, halogène, amino, nitro, mercapto, cyano, carboxy,
- alkyle inférieur, alcoxy inférieur ou -S(O)_mR₈ dans lequel m est 0, 1 ou 2 et R₈ est
 un alkyle inférieur, éventuellement substitués par un ou plusieurs atomes halogènes,
 - -CO-Q₁-Q₂-Q₃ dans lequel:

-Q₁- est : une liaison de valence simple, -O-,

5

15

20

où p est un nombre entier pouvant

varier de 0 à 3, et Z₁ est CH, N, O ou S,

 $-Q_2$ - est:

a) $-(CH_2)_{q^-}$, q étant égal à 0, 1, 2, 3, ou 4, ou

b) $-(CH_2-CH_2-O)_r$, r étant égal à 2, 3, ou 4, et

-Q₃ est: -H, -OH, alkoxy inférieur, -O-CO- X₃ -NHX₃ ou

dans lequel X_3 et X_4 , semblables ou différents, représentent un groupement alkyle inférieur, X_3 et X_4 pouvant être liés pour former un cycle, comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N,

- NH-R₁ dans lequel R₁ représente un groupement alkyle inférieur, éventuellement substitué par un ou plusieurs groupements choisis parmi halogène, hydroxy, cyano, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃, ou
 - NR₂R₃ dans lequel R₂ et R₃, semblables ou différents, représentent un alkyle inférieur, éventuellement substitué par un ou plusieurs groupements hydroxy, halogène, cyano, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃, R₂ et R₃ pouvant être liés pour former un cycle, comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃;

- R représente:

 alkyle inférieur, alcényle inférieur, alcynyle inférieur, aryl alcynyle, 2-, 3- ou 4pyridylalkyle

éventuellement substitué par un alkyle inférieur, un alcoxy inférieur, un

$$Y1$$
 $Y2$
 $Y3$
 $Y1$
 $Y1$
 $Y2$
 $Y3$
 $Y3$

ou Y

groupement hydroxy, halogène ou amino,

dans lesquels:

- n est un nombre entier de 1 à 5,
- Ar est un cycle aromatique comprenant 5 ou 6 atomes incluant de 0 à 3 hétéroatomes choisis parmi O, S ou N.
- Y1, Y2 et Y3, semblables ou différents représentent :
 - hydrogène, hydroxy, mercapto, amino, nitro, halogène,-NHR₁, -NHR₂R₃,
 -(CH₂)_s CN, -(CH₂)_s CO-Q₁-Q₂-Q₃ dans lesquels s est un nombre entier de 0 à 6;
 - alkyle inférieur, alcoxy inférieur ou -S(O)_mR₈ dans lequel m est 0, 1 ou 2
 et R₈ est un alkyle inférieur, chacun pouvant être éventuellement substitué
 par un ou plusieurs atomes halogènes; et

15

20

10

5

- R₄ et R₅, représentent :

- alkyle inférieur lorsque R4 et R5 sont semblables, aralkyle, cycloalkyle ou cycloalkyl alkyle, lorsque R4 et R5 sont différents,
- alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement substitué par un alkyle inférieur, un hydroxy ou un alkoxy inférieur ou ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur, phényle alkyle ou CO-Q₁-Q₂-Q₃, deux des atomes du cycle ainsi formé pouvant également faire partie d'un autre cycle choisi parmi phényle ou hétéroaryle comportant de 4 à 8 atomes incluant 1 à 4 hétéroatomes;

éventuellement leurs formes racémiques et leurs isomères, ainsi que leurs sels pharmaceutiquement acceptables.

25

Les composés de la présente invention sont utiles à titre d'inhibiteurs, notamment d'inhibiteurs sélectifs, de l'enzyme phosphodiestérase, et plus particulièrement l'enzyme PDE4.

L'invention concerne également des composés utilisés principalement à titre d'intermédiaires de synthèse des composés de formule I ou II.

Une première série d'intermédiaires comprend les composés ayant la formule générale III suivante :

$$X_{1}$$
 X_{2}
 X_{1}
 X_{2}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{5}
 X_{7}
 X_{7}
 X_{8}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{7}
 X_{8}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5

10 dans laquelle:

- X₁, X₂ et A₁ sont tels que définis précédemment;
- les traits pointillés représentent des doubles liaisons optionnelles ;
- R₆ est hydrogène; et
- R₇ est S ou hydrazino;
- R₇ pouvant être lié à l'azote en R₆ pour former un cycle, particulièrement un triazole, éventuellement substitué par un groupement thioalkyle inférieur, mercapto ou halogène.

Une deuxième série d'intermédiaires comprend les composés ayant la formule générale IV suivante :

5

dans laquelle X₁, X₂, A₁, R₄ et R₅ sont tels que définis précédemment.

Une troisième série d'intermédiaires comprend les composés ayant la formule générale V suivante :

dans laquelle X_1 , X_2 , A_1 et R sont tels que définis précédemment et X_5 est un groupement halogène, particulièrement F, Br ou Cl, $-OCOX_7$, $-OSO_2X_7$ ou $-SO_2X_7$ dans lesquels X_7 est un groupement alkyle inférieur ou aryle.

Une quatrième série d'intermédiaires comprend les composés ayant la formule générale VI suivante :

dans laquelle X2, X5, A1 et R sont tels que définis précédemment.

Une cinquième série d'intermédiaires comprend les composés ayant la formule générale VII suivante :

dans laquelle X2, A1, R2 et R3 sont tels que définis précédemment X5 est un groupement halogène, particulièrement F, Br ou Cl, -OCOX7, -OSO2X7 ou -SO2X7 dans lesquels X7 est un groupement alkyle inférieur ou aryle.

5

L'invention concerne également un procédé de fabrication des composés de formule I et II. Le procédé est caractérisé en ce qu'il comprend la réaction d'un composé de formule

générale IV:

dans laquelle X₁, X₂, A₁, R₄ et R₅ sont tels que définis précédemment,

avec un composé de formule générale 10

dans laquelle R est tel que défini précédemment et X' est un groupement halogène, particulièrement F, Br ou Cl, -OCOX7 ou -OSO2X7 dans lesquels X7 est un groupement alkyle inférieur ou aryle;

pour obtenir un mélange des composés de formule générale I et II qui sont ensuite éventuellement séparés.

Les composés de formule générale I peuvent également être préparés par un procédé caractérisé en ce qu'il comprend la réaction d'un composé de formule générale V:

$$X_{1}$$
 X_{2}
 X_{3}
 X_{4}
 X_{2}
 X_{4}
 X_{2}
 X_{4}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{1}
 X_{2}
 X_{4}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{8}
 X_{9}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{9}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{8}
 X_{9}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{5}
 X_{7}
 X_{7

10

15

dans laquelle X_1 , X_2 , A_1 et R sont tels que définis précédemment et X_5 est un groupement halogène, particulièrement F, Br ou Cl, $-OCOX_7$, $-OSO_2X_7$ ou $-SO_2X_7$ dans lesquels X_7 est un groupement alkyle inférieur ou aryle ;

s avec un composé de formule générale :

HNR₄R₅

dans laquelle R₄ et R₅ sont tels que définis précédemment, pour obtenir un composé de formule générale I.

De façon particulière, lorsque X_1 est $-NR_2R_3$ et $-NR_2R_3$ et $-NR_4R_5$ sont identiques, les composés de formule I répondant à cette définition peuvent être obtenus en faisant réagir un composé de formule générale VI :

$$X_5$$
 X_5
 X_5
 X_5
 X_5
 X_7
 X_8
 X_9
 X_9

dans laquelle X_2 , X_5 , A_1 et R sont tels que définis précédemment, avec un composé de formule générale :

HNR₂R₃

dans laquelle R₂ et R₃ sont tels que définis précédemment, pour obtenir un composé de formule générale (I):

Egalement de façon particulière, lorsque X_1 est $-NR_2R_3$ et $-NR_2R_3$ et $-NR_4R_5$ sont différents, les composés de formule I répondant à cette définition peuvent être obtenus en faisant réagir un composé de formule générale VII :

dans laquelle X_2 , X_5 , A_1 , R, R_2 et R_3 sont tels que définis précédemment,

5 avec un composé de formule générale :

HNR₄R₅

dans laquelle R₄ et R₅ sont tels que définis précédemment, pour obtenir un composé de formule générale (I):

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{1}
 R_{1}

Egalement de façon particulière, lorsque X₁ est H et X₂ est OH, les composés de formule I répondant à cette définition peuvent être obtenus en soumettant un composé de formule générale Ia₁:

dans laquelle A₁, R, R₄ et R₅ sont tels que définis précédemment et P est un groupement protecteur,

à des conditions permettant l'élimination du groupement protecteur P pour obtenir un composé de formule générale I.

5

Egalement de façon particulière, lorsque X₁ est H et X₂ est NH₂, les composés de formule I répondant à cette définition peuvent être obtenus en soumettant un composé de formule générale Ia₂:

dans laquelle A₁, R, R₄ et R₅ sont tels que définis précédemment et P₁ est un groupement protecteur,

à des conditions permettant l'élimination du groupement protecteur P₁ pour obtenir un composé de formule générale I.

Egalement de façon particulière, lorsque X₁ est H et X₂ est NHR₂ dans lequel R₂ est tel que défini précédemment, les composés de formule I répondant à cette définition peuvent être obtenus en faisant réagir un composé de formule générale Ib :

dans laquelle A₁, R, R₄ et R₅ sont tels que définis précédemment,

avec un composé de formule R_2X_5 dans laquelle R_2 et X_5 sont tels que définis précédemment, pour obtenir un composé de formule générale I.

De plus, lorsque X₁ est H et X₂ est NHR₂ dans lequel R₂ est tel que défini précédemment, les composés de formule I répondant à cette définition peuvent également être obtenus en soumettant un composé de formule générale Ib₂:

dans laquelle A₁, R, R₄ et R₅ sont tels que définis précédemment et P₁ est un groupement protecteur,

10 à des conditions permettant l'élimination du groupement protecteur, pour obtenir un composé de formule générale I.

Egalement de façon particulière, lorsque X_1 est H et X_2 est NR_2R_x dans lequel R_2 est tel que défini précédemment et R_x , représente R_2 ou R_3 tels que définis précédemment, les composés de formule I répondant à cette définition peuvent être obtenus en faisant réagir un composé de formule générale Ic :

dans laquelle A₁, R, R₂, R₄ et R₅ sont tels que définis précédemment,

15

avec un composé de formule R_xX_5 dans laquelle R_x et X_5 sont tels que définis précédemment, pour obtenir un composé de formule générale I.

Egalement de façon particulière, lorsque R est

5

les composés de formule I répondant à cette définition peuvent être obtenus en déshydratant un composé de formule générale Ig :

10

(lg)

dans laquelle X₁, X₂, A₁, R₄ et R₅ sont tels que définis précédemment, pour obtenir le composé de formule générale I.

Egalement de façon particulière, lorsque R est

les composés de formule I répondant à cette définition peuvent être obtenus en faisant réagir un composé de formule générale If :

(If)

dans laquelle X₁, X₂, A₁, R₄ et R₅ sont tels que définis précédemment, avec de l'ammoniaque pour obtenir le composé de formule générale I.

Egalement de façon particulière, lorsque R est

5

les composés de formule I répondant à cette définition peuvent être obtenus en faisant réagir un composé de formule générale If avec de l'hydroxylamine pour obtenir le composé de formule générale I.

10 Egalement de façon particulière, lorsque R est

les composés de formule I répondant à cette définition peuvent être obtenus en faisant réagir un composé de formule générale If avec le composé de formule $R_{11}NH_2$ dans laquelle R_{11} a la même signification que R_2 , pour obtenir le composé de formule générale I.

15 Egalement de façon particulière, lorsque R est

les composés de formule I répondant à cette définition peuvent être obtenus en faisant réagir un composé de formule générale If avec le composé de formule HNR₁₂R₁₃ dans laquelle R₁₂ et R₁₃ ont la même signification que R₄ et R₅ respectivement, pour obtenir le composé de formule générale I.

20

L'invention concerne également une composition pharmaceutique comprenant un composé de formule I ou II et un excipient acceptable en pharmacie.

L'invention concerne également l'utilisation d'un composé de formule I ou II pour la préparation d'un médicament destiné au traitement d'une maladie ou d'une affection

relevant d'une thérapie par l'inhibition de phosphodiestérases, et plus particulièrement de la PDE4.

L'invention concerne également une méthode de traitement d'une maladie ou d'une affection relevant d'une thérapie par l'inhibition de phosphodiestérases, et plus particulièrement de la PDE4, ladite méthode comprenant l'administration à un patient d'une concentration efficace d'un composé de formule I ou II.

10 Description détaillée de l'invention

La présente invention concerne donc les composés de formule générale I ou II :

$$R_{4}$$
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{4}
 R_{5}
 R_{5

dans lesquels X₁, X₂, A₁, R, R₄ et R₅ sont tels que définis précédemment.

L'invention concerne particulièrement les composés de formule générale I ou II dans lesquels :

A₁ représente un atome d'oxygène;

X₁ représente un atome d'hydrogène et X₂ est un groupement halogène, amino, alkyle inférieur, hydroxy ou -NHR₁, R1 étant tel que défini précédemment.

R représente :

25

- un groupement alkyle inférieur, alcényle inférieur, aryl alcynyle, 2-, 3- ou 4-pyridylalkyl éventuellement substitué sur le noyau pyridine par un alkyle inférieur, un halogène ou un hydroxy;

dans lequel:

- n est un nombre entier de 1 à 3,
- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène ou un groupement alcoxy inférieur, plus particulièrement méthoxy,
- Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 représente un groupement alcoxy inférieur, un groupement amino, nitro, hydroxy, un groupement -(CH₂)_sCO-Q₁-Q₂-Q₃, un groupement (CH₂)_s-CN dans lesquels s, Q₁, Q₂, Q₃ sont tels que définis précédemment, ou un groupement alkyle inférieur éventuellement substitué par un ou plusieurs atomes d'halogène, la position particulièrement préférée du substituant Y3 étant la position 4, ou,
- Y1 représente un atome d'hydrogène et Y2 et Y3, semblables ou différents, représentent un groupement hydroxy, halogène ou alcoxy inférieur, ou

15

20

25

10

5

dans lequel:

- Ar est tel que défini précédemment ;
- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène, ou
- Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 est alcoxy inférieur ou halogène;

R₄ et R₅, représentent :

- alkyle inférieur lorsque R4 et R5 sont semblables, aralkyle, cycloalkyle ou cycloalkyl alkyle, lorsque R4 et R5 sont différents,
- alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement substitué par un

alkyle inférieur, un hydroxy ou un alkoxy inférieur ou ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur, phényle alkyle ou CO-Q₁-Q₂-Q₃, deux des atomes du cycle ainsi formé pouvant également faire partie d'un autre cycle choisi parmi phényle ou hétéroaryle comportant de 4 à 8 atomes incluant 1 à 4 hétéroatomes;

L'invention concerne plus particulièrement les composés de formule générale I dans lesquels :

10

5

X₁ représente un atome d'hydrogène,

X₂ représente un groupement halogène, amino, alkyle inférieur, hydroxy ou --NHR₁;

R représente:

15

20

25

30

dans lequel:

- n est un nombre entier de 1 à 3,
- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène ou un groupement alcoxy inférieur, plus particulièrement méthoxy et en particulier le 3, 4, 5-triméthoxy,
- Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 représente un groupement alcoxy inférieur, amino, nitro, ou hydroxy, un groupement alkyle inférieur éventuellement substitué par un ou plusieurs atomes d'halogène, un groupement -(CH₂)_sCO-Q₁-Q₂-Q₃ dans lequel s est 0 ou 1, Q₁ est O, -NH- ou une liaison de valence, Q₂ est -(CH₂)_q-, q étant égal à 0, 1, 2, 3 ou 4 et Q₃ est H, OH ou -NX₃X₄ dans lequel X₃ et X₄ sont tels que définis précédemment, un groupement (CH₂)_s-CN dans lequel s est 0 ou 1, la position particulièrement préférée du substituant Y3 étant la position 4, ou
- Y1 représente un atome d'hydrogène et Y2 et Y3, semblables ou différents, représentent un groupement hydroxy, halogène ou alcoxy inférieur; ou

$$Ar_1 \xrightarrow{Y1}_{Y3}$$

dans lequel:

5

10

15

- Ar₁ est un cycle aromatique comprenant 6 atomes pouvant inclure un atome d'azote en position 2, 3 ou 4 et de préférence en position 3;
- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène, ou
- Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 est un groupement alcoxy inférieur ou un groupement halogène lorsque Ar₁ ne comprend pas d'atome d'azote; et

R₄ et R₅, représentent :

- alkyle inférieur lorsque R4 et R5 sont semblables, aralkyle, cycloalkyle ou cycloalkyl alkyle, lorsque R4 et R5 sont différents,
- alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement substitué par un alkyle inférieur, un hydroxy ou un alkoxy inférieur ou ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur, phényle alkyle ou CO-Q₁-Q₂-Q₃, deux des atomes du cycle ainsi formé pouvant également faire partie d'un autre cycle choisi parmi phényle ou hétéroaryle comportant de 4 à 8 atomes incluant 1 à 4 hétéroatomes;

25

20

L'invention concerne également des composés de formule générale I ou II dans lesquels :

X₁, X₂, A₁, R₄ et R₅ sont tels que définis dans le sommaire de l'invention ; et

30 R représente:

alcynyle inférieur, aryl alcynyle, 2-, 3- ou 4-pyridylalkyle éventuellement substitué par un alkyle inférieur, un alcoxy inférieur, un groupement hydroxy ou halogène,

$$Y1$$
 $Y2$
 $Y3$
 $Y1$
 $Y1$
 $Y1$
 $Y2$
 $Y3$
 $Y3$

5 dans lesquels:

10

- n est un nombre entier de 1 à 5 et m est un nombre entier de 3 à 5;
- Ar est un cycle aromatique comprenant 5 ou 6 atomes incluant de 0 à 3 hétéroatomes choisis parmi O, S ou N;
- Y1, Y2 et Y3, semblables ou différents représentent :
 - hydroxy, mercapto, amino, nitro, halogène, -(CH₂)_sCO-Q₁-Q₂-Q₃, (CH₂)_s-CN, dans lesquels s est un nombre entier de 0 à 6, alkyle inférieur, alcoxy inférieur ou thioalkyle inférieur, éventuellement substitués par un ou plusieurs atomes halogènes.
- Dans une autre de ses réalisations, la présente invention concerne des composés de formule générale I ou II dans lesquels :

 X_1 , X_2 , R_4 et R_5 sont tels que définis dans le sommaire de l'invention ; et

20 R représente:

dans lequel:

- Ar est un cycle aromatique comprenant 5 ou 6 atomes incluant de 0 à 3 hétéroatomes choisis parmi O, S ou N (les cycles aromatiques comprenant 6 atomes, dont éventuellement un atome d'azote en position 2, 3 ou 4, de préférence en position 3, étant particulièrement préférés);
- Y1, Y2 et Y3, semblables ou différents représentent :
 - hydrogène, hydroxy, mercapto, amino, nitro, halogène, cyano, (CH₂)_sCO-Q₁-Q₂-Q₃ dans lequel s est un nombre entier de 0 à 6, alkyle inférieur, alcoxy inférieur ou thioalkyle inférieur, éventuellement substitués par un ou plusieurs atomes halogènes.

De façon préférée :

5

- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène, ou
- Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 est alcoxy inférieur ou halogène.
- Dans une autre de ses réalisations, la présente invention concerne des composés de formule générale I ou II dans lesquels :

X₁, X₂, A₁, R₄ et R₅ sont tels que définis dans le sommaire de l'invention ; et

20 R représente:

dans lequel:

- n est un nombre entier de 1 à 3;
- Y1, Y2 et Y3, semblables ou différents représentent :
 - hydroxy, mercapto, amino, nitro, halogène, -(CH₂)_sCO-Q₁-Q₂-Q₃, (CH₂)_s-CN dans lesquels s est un nombre entier de 0 à 6, alkyle inférieur, alcoxy inférieur ou thioalkyle inférieur, éventuellement substitués par un ou plusieurs atomes halogènes.

30

25

De façon préférée :

n est un nombre entier de 1 à 3,

- Y1, Y2 et Y3 représentent chacun un groupement alcoxy inférieur, plus particulièrement méthoxy et en particulier le 3, 4, 5-triméthoxy,
- Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 représente un groupement alcoxy inférieur, cyano, amino, nitro ou hydroxy, un groupement alkyle inférieur éventuellement substitué par un ou plusieurs atomes d'halogène ou un groupement -(CH₂)_sCO-Q₁-Q₂-Q₃ dans lequel s est 0 ou 1, Q₁ est O, -NH- ou une liaison de valence, Q₂ est -(CH₂)_q-, q étant égal à 0, 1, 2, 3 ou 4 et Q₃ est H, OH ou -NX₃X₄ dans lequel X₃ et X₄ sont tels que définis précédemment, la position particulièrement préférée du substituant Y3 étant la position 4, ou
- Y1 représente un atome d'hydrogène et Y2 et Y3, semblables ou différents, représentent un groupement hydroxy, halogène ou alcoxy inférieur.
- Dans une autre de ses réalisations, la présente invention concerne des composés de formule générale I ou II dans lesquels :

X₁, X₂, A₁, R₄ et R₅ sont tels que définis dans le sommaire de l'invention ; et

20 R représente:

5

10

dans lesquels:

25

- Y1, Y2 et Y3, semblables ou différents représentent :
 - hydrogène, hydroxy, mercapto, amino, nitro, halogène, -(CH₂)_sCO-Q₁-Q₂-Q₃, (CH₂)_s-CN, dans lesquels s est un nombre entier de 0 à 6, alkyle inférieur, alcoxy inférieur ou thioalkyle inférieur, éventuellement substitués par un ou plusieurs atomes halogènes.

30 De façon préférée :

- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène, ou

Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 est alcoxy inférieur ou halogène.

Dans une autre de ses réalisations, la présente invention concerne des composés de formule générale I ou II dans lesquels :

X₁, X₂, A₁, R, R₄ et R₅ sont tels que définis dans le sommaire de l'invention ; et :

- lorsque X₁ et X₂ représentent hydrogène, R n'est pas alkyle, phényle, benzyle ou allyle,
- lorsque X₁ représente hydrogène et X₂ représente 7-Cl ou CH₃, R n'est pas un alkyle ; et
- lorsque X₁ représente hydrogène, X₂ n'est pas 8-Cl.

L'invention concerne également un groupe de composés de formule I ou II particulièrement actifs à titre d'inhibiteurs de TNF α et dans lesquels :

- A₁ est O ou S;

10

20

- X₁ et X₂, semblables ou différents, représentent :
 - hydrogène, hydroxy, halogène, amino, nitro, mercapto, cyano, carboxy,
 - alkyle inférieur, alcoxy inférieur ou -S(O)_mR₈ dans lequel m est 0, 1 ou 2 et R₈ est un alkyle inférieur éventuellement substitués par un ou plusieurs atomes halogènes.
 - De façon préférée, X₁ est H et X₂ est halogène, notamment, 7-Br, ou alkyle inférieur, notamment 7-CH₃.

R représente:

$$Y1$$
 $Y2$
 $Y3$
 $Y1$
 $Y1$
 $Y1$
 $Y2$
 $Y3$
 $Y3$
 $Y4$
 $Y4$
 $Y5$

dans lesquels :

- n est un nombre entier de 1 à 5,
- Ar est un cycle aromatique comprenant 5 ou 6 atomes incluant de 0 à 3 hétéroatomes choisis parmi O, S ou N,
- Y1, Y2 et Y3, semblables ou différents représentent :

- hydrogène, hydroxy, mercapto, amino, nitro, halogène, -(CH₂)_sCO-Q₁-Q₂-Q₃, (CH₂)_s-CN dans lesquels s est un nombre entier de 0 à 6;
- alkyle inférieur, alcoxy inférieur ou -S(O)_mR₈ dans lequel m est 0, 1 ou 2 et R₈ est un alkyle inférieur, éventuellement substitués par un ou plusieurs atomes halogènes.

Les substituants particulièrement préférés formant le groupement R incluent cinnamyl, 3-pyridyl allyl, paracyano benzyle, diméthoxy benzyle et 3-pyridyl méthyl.

- R₄ et R₅, semblables ou différents, représentent :

alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou
comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs
hétéroatomes choisis parmi O, S ou N et éventuellement ponté par un alkyle
inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi
hydroxy, kéto, alkyle inférieur, alcoxy inférieur, phényle alkyle ou CO-Q₁-Q₂-Q₃.

Les substituants particulièrement préférés formant le groupe NR₄R₅ incluent
diméthylamino, pyrrolidine et azepanyl.

Les composés particulièrement préférés à titre d'inhibiteurs de $TNF\alpha$ incluent les molécules suivantes :

20

5

10

15

- 3 7-Bromo-1-dimethylamino-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 94 4-(3,4-Dimethoxy-benzyl)-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(1-Dimethylamino-7-methyl-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 98 7-Methyl-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 79 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile

- 91 1-Azepan-1-yl-7-methyl-4-pyridin-3-ylmethyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 93 4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 1-Dimethylamino-7-methyl-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 35 1-Azepan-1-yl-7-bromo-4-(3,4-dimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

Parmi les groupements définis ci-dessus les substituants suivants sont particulièrement préférés :

- De façon générale pour les groupements X₁, X₂, X₃, X₄, R, R₁, R₂, R₃, R₄, R₅:
 - halogène : F, Cl, Br, I, de préférence Br et Cl,

5

10

15

20

- alkyle inférieur : linéaire ou ramifié comportant de 1 à 6, de préférence de 1 à
 3 atomes de carbone,
- alcoxy inférieur : linéaire ou ramifié comportant de 1 à 5, de préférence de 1 à 3 atomes de carbone,
- alkylthio inférieur : linéaire ou ramifié comportant de 1 à 5, de préférence de 1 à 3 atomes de carbone,
 - alcényle inférieur : comportant de 3 à 6, de préférence de 3 à 4 atomes de carbone, plus particulièrement allyle,
 - alcynyle inférieur : comportant de 3 à 9 atomes de carbone, plus particulièrement propargyle et phényl-propargyle,
 - 2-, 3- ou 4-pyridylalkyle dans lequel l'alkyle comporte de 1 à 5, de préférence de 1 à 3 atomes de carbone,
 - aryle : comportant de 5 à 8, de préférence 5 ou 6 atomes,
- aralkyle dans lequel l'alkyle comporte de 1 à 6, de préférence de 1 à 4 atomes de carbone,
 - cycloalkyle : comportant de 3 à 8, de préférence de 3 à 6 atomes de carbone,
 - cycloalkyl alkyle dans lequel l'alkyle comporte de 1 à 6, de préférence de 1 à 3 atomes de carbone et le cycloalkyle comporte de 3 à 8, de préférence de 3 à 6 atomes de carbone,

- alkyle inférieur, alcoxy inférieur ou alkylthio inférieur éventuellement substitués par un ou plusieurs atomes halogènes: on préférera les groupements trisubstitués de type -(CH₂)_p-CF₃, -O-(CH₂)_p-CF₃ ou -S-(CH₂)_p-CF₃, dans lesquels p est un nombre entier de 0 à 3.

5

10

15

- De façon particulière pour les groupements X₁ et X₂:
 - -NH-R₁, ou -NR₂R₃: lorsque l'alkyle inférieur est substitué par un ou plusieurs groupements choisis parmi halogène, hydroxy, cyano, alcoxy inférieur ou CO-Q₁-Q₂-Q₃, le nombre de substituants varie entre 1 et 4, de préférence entre 1 et 2,
 - -NR₂R₃ : lorsque R₂ et R₃ sont liés pour former un cycle, ce cycle est caractérisé en ce qu'il comprend de préférence :
 - entre 1 et 4, plus particulièrement entre 1 et 2 hétéroatomes choisis parmi O, S ou N, les substituants cycliques de ce type étant, de façon préférée, les cycles saturés de type C_mN dans lequel m est un nombre entier de 2 à 7, de préférence de 4 à 6, les cycles particulièrement préférés étant choisis parmi le groupe comportant pyrrolidine, piperidine, homopipéridine ou cyclooctylamine et

20

30

- entre 0 et 4, de façon préférée entre 0 et 2, plus particulièrement entre 1 et
 2 substituants choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃,
- les groupements X₁ et X₂ sont particulièrement situés en position 7 et 8 du cycle aromatique des composés de formule I et II auquel ils sont liés.

25 - De façon particulière pour le groupement R:

- les substituants Y1, Y2 et Y3 sont particulièrement situés en position 3 et/ou 4 du cycle aromatique auquel ils sont liés.
- De façon particulière pour les groupements R₄ et R₅:
- lorsque R₄ et R₅ sont liés pour former un cycle, ce cycle est caractérisé en ce qu'il comprend de préférence :
 - entre 1 et 4 hétéroatomes choisis parmi O, S ou N, les substituants cycliques de ce type étant, de façon préférée, les cycles saturés de type C_mN, m étant un nombre entier de 2 à 7, les cycles particulièrement

5

- préférés étant choisis parmi le groupe comportant pyrrolidine, piperidine, homopipéridine ou cyclooctylamine, et
- entre 0 et 4, de façon préférée entre 0 et 2 substituants choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃.

Parmi les composés préférés de la présente invention, on retrouve les composés suivants :

- 1 1-(Azepan-1-yl)-7-chloro-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 2 l-(azepan-1-yl)-7-chloro-3-(3-phenylallyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 3 7-Bromo-1-dimethylamino-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4 7-Bromo-4-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 5 7-Bromo-3-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 6 1-Azepan-1-yl-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7 l-(azepan-1-yl)-7-chloro-4-allyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 8 l-(azepan-1-yl)-7-chloro-4-(4-methylbenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 9 l-(azepan-1-yl)-7-chloro-4-(2-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 10 1-(azepan-1-yl)-7-chloro-4-(3-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 11 1-(azepan-1-yl)-7-chloro-4-(4-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 12 1-(azepan-1-yl)-7-chloro-4-(4-bromobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 13 1-(azepan-1-yl)-7-chloro-4-(4-fluorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-(trifluoromethyl)benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 15 1-(azepan-1-yl)-7-chloro-4-(4-cyanobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(2-methoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 17 l-(azepan-1-yl)-7-chloro-4-(3-methoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 18 1-(azepan-1-yl)-7-chloro-4-(4-methoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 19 1-(azepan-1-yl)-7-chloro-4-(3,4-dichlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 20 1-(azepan-1-yl)-7-chloro-4-(3,4-dimethoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 21 1-(azepan-1-yl)-7-chloro-4-(2-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 22 1-(azepan-1-yl)-7-chloro-4-(3-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 23 1-(azepan-1-yl)-7-chloro-4-(4-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 24 1-(azepan-1-yl)-7-chloro-4-(2-phenylethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 25 1-(azepan-1-yl)-7-chloro-4-[2-(4-methoxyphenyl)ethyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 26 1-(azepan-1-yl)-7-chloro-4-(3-phenylpropyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 27 1-Azepan-1-yl-7-chloro-4-(2-oxo-2-phenyl-ethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 28 1-(azepan-1-yl)-7-chloro-4-[2-(4-methoxyphenyl)-2-oxoethyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 29 1-(azepan-1-yl)-7-chloro-4-[2-(4-chlorophenyl)-2-oxoethyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 5-[(1-(azepan-1-yl)-7-chloro-5-oxo-5H-[1,2,4]triazolo[4,3-a]-quinazolin-4-yl)acetyl]-2-methoxybenzoic acid methyl ester
- 7-Chloro-4-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

WO 00/66584 PCT/FR00/01174

- 32 1-(azepan-1-yl)-7-bromo-4-(4-chloro-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 33 1-Azepan-1-yl-7-bromo-4-(4-fluoro-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 34 4-(1-Azepan-1-yl-7-bromo-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 35 1-Azepan-1-yl-7-bromo-4-(3,4-dimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 36 1-(azepan-1-yl)-7-bromo-4-(3-pyridinylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 37 1-(azepan-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 38 1-Azepan-1-yl-7-bromo-4-[3-(4-chloro-phenyl)-allyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 39 1-Azepan-1-yl-7-bromo-4-[3-(4-methoxy-phenyl)-allyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 40 1-Azepan-1-yl-7-bromo-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 41 1-Azepan-1-yl-7-bromo-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-methyl-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-chloro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-fluoro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 45 3-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 47 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 7-Bromo-4-(4-nitro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 7-Bromo-4-(4-methoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- Acetic acid 4-(7-bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl ester
- 7-Bromo-4-(4-hydroxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzo[1,3]dioxol-5-ylmethyl-7-bromo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,5-dimethoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-pyrrolidin-1-yl-4-(3,4,5-trimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 56 [4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- 57 1-(pyrrolidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[(E)-3-(4-chloro-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[3-(4-methoxy-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-((E)-3-pyridin-4-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(1H-imidazol-4-ylmethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,5-dimethyl-isoxazol-4-ylmethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-cyclopentylmethyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 7-Bromo-4-butyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-pyrrolidin-1-yl-4-(2,2,2-trifluoro-ethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(2-hydroxy-ethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(2-diethylamino-ethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 70 7-Bromo-4-prop-2-ynyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 71 7-Bromo-4-(2-phenoxy-ethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 72 7-Bromo-4-(2-phenylsulfényl-ethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 73 (7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-yl)-phenyl-acetic acid methyl ester
- 4-(7-Bromo-5-oxo-1-piperidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 75 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-piperidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 76 1-(piperidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 77 7-Bromo-4-(3-pyridin-3-yl-allyl)-1-thiomorpholin-4-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 78 Bromo-dimethylamino-(4-methyl-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 79 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 7-Bromo-1-dimethylamino-4-(4-hydroxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 82 [4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid

- 83 [4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetonitrile
- 7-Bromo-1-dimethylamino-4-pyridin-3-ylmethyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-alquinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-prop-2-ynyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-prop-2-ynyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 90 (7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-yl)-phenyl-acetic acid methyl ester
- 91 1-Azepan-1-yl-7-methyl-4-pyridin-3-ylmethyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 92 1-Azepan-1-yl-7-methyl-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-alquinazolin-5-one
- 93 4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 94 4-(3,4-Dimethoxy-benzyl)-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 95 4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 96 [4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- 97 7-Methyl-4-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Methyl-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 99 [4-(7-Methyl-5-oxo-1-thiomorpholin-4-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid

100	7-Methyl-4-(3-pyridin-3-yl-allyl)-1-thiomorpholin-4-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
101	4-(1-Dimethylamino-7-methyl-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
102	[4-(1-Dimethylamino-7-methyl-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
103	1-Dimethylamino-7-methyl-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
104	1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
105	1-Dimethylamino-7-methyl-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
106	1-(azepan-1-yl)-8-methyl-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
107	4-(4-Cyano-benzyl)-1-dimethylamino-5-oxo-4,5-dihydro- [1,2,4]triazolo[4,3-a]quinazoline-7-carbonitrile
108	7-Hydroxy-4-((E)-3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
109	1-(azepan-1-yl)-3-(3-phenylallyl)- 3H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
110	3-Allyl-1-azepan-1-yl-7-chloro-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
111	1-(azepan-1-yl)-7-chloro-3-benzyl-3H-[1,2,4]triazolo[4,3-a]-quinazolin-5-one
112	1-Azepan-1-yl-7-chloro-3-(4-methyl-benzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
113	1-(azepan-1-yl)-7-chloro-3-(2-chlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
114	1-(azepan-1-yl)-7-chloro-3-(3-chlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
115	1-(azepan-1-yl)-7-chloro-3-(4-chlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
116	1-(azepan-1-yl)-7-chloro-3-(4-bromobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 117 1-(azepan-1-yl)-7-chloro-3-(4-fluorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 118 l-(azepan-1-yl)-7-chloro-3-(4-(trifluoromethyl)benzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(4-cyanobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(2-methoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3-methoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(4-methoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3,4-dichlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3,4-dimethoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(2-pyridylmethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3-pyridylmethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(2-phenylethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-[2-(4-methoxyphenyl)ethyl]-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3-phenylpropyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 130 1-Azepan-1-yl-7-chloro-3-(2-oxo-2-phenyl-ethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 131 1-(azepan-1-yl)-7-chloro-3-[2-(4-methoxyphenyl)-2-oxoethyl]-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-[2-(4-chlorophenyl)-2-oxoethyl]-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 5-[(1-(azepan-1-yl)-7-chloro-5-oxo-5H-[1,2,4]triazolo[4,3-a]-quinazolin-3-yl)acetyl]-2-methoxybenzoic acid methyl ester

WO 00/66584 PCT/FR00/01174

- 134 l-(azepan-1-yl)-7-bromo-3-(4-chlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 135 l-(azepan-1-yl)-7-bromo-3-(4-fluorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(1-(azepan-1-yl)-7-bromo-5-oxo-5H-[1,2,4]triazolo[4,3-a]- quinazolin-3-ylmethyl)- benzonitrile
- 1-(azepan-1-yl)-7-bromo-3-(3,4-dimethoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 138 [4-(7-Bromo-5-oxo-1-perhydro-azepin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-ylmethyl)-phenyl]-acetic acid
- 1-(azepan-1-yl)-7-bromo-3-(pyridin-3-ylmethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-bromo-3-((E)-3-phenyl-allyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-3-((E)-3-phenyl-allyl)-1-piperidin-1-yl-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-bromo-3-(4-chlorobenzyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-bromo-3-(4-fluorobenzyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-bromo-5-oxo-1-(pyrrolidin-1-yl)-5H-[1,2,4]triazolo[4,3-a]-quinazolin-3-ylmethyl)- benzonitrile
- 4-(7-bromo-5-oxo-1-(pyrrolidin-1-yl)-5H-[1,2,4]triazolo[4,3-a]-quinazolin-3-ylmethyl)benzoic acid methyl ester
- 7-Bromo-3-(4-methoxy-benzyl)-1-pyrrolidin-1-yl-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- Acetic acid 4-(7-bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-ylmethyl)-phenyl ester
- 7-Bromo-1-dimethylamino-3-(4-hydroxy-benzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 3-(benzo[1,3]dioxol-5-ylmethyl)-7-bromo-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-bromo-3-(3,5-dimethoxy-benzyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo-[4,3-a]quinazolin-5-one

- 7-bromo-1-(pyrrolidin-1-yl)-3-(3,4,5-trimethoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-3-(1H-imidazol-4-ylmethyl)-1-pyrrolidin-1-yl-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-bromo-3-(n-butyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]-quinazolin-5-one
- 154 (7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-yl)-phenyl-acetic acid methyl ester
- 7-Bromo-1-dimethylamino-3-(3-phenyl-allyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 156 (7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-yl)-phenyl-acetic acid methyl ester
- 1-(azepan-1-yl)-7-methyl-3-(3-phenylallyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-methyl-3-(3-phenylallyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 159 1-(azepan-1-yl)-3,8-dimethyl-3H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 1-Azepan-1-yl-8-methyl-3-((E)-3-phenyl-allyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-hydroxy-3-(3-phenylallyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1,8-bis(azepan-1-yl)-3-(3-phenylallyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 163 1-(azepan-1-yl)-4-benzyl-7-bromo-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 4-benzyl-7-bromo-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]-quinazolin-5-one
- 4-Benzyl-7-bromo-1-(butyl-methyl-amino)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-benzyl-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-chloro-1-dibutylamino-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

- 7-chloro-4-methyl-1-(piperidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]-quinazolin-5-one
- 7-Chloro-4-methyl-1-(4-methyl-piperazin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Chloro-4-methyl-1-(1,8,8-trimethyl-3-aza-bicyclo[3.2.1]oct-3-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 171 1-(azepan-1-yl)-7-chloro-4-phenyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 1-(azepan-1-yl)-4-benzyl-7-chloro-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 4-benzyl-7-chloro-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]-quinazolin-5-one
- 4-benzyl-7-chloro-1-(piperidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]-quinazolin-5-one
- 175 1-(azepan-1-yl)-8-chloro-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 1-(azepan-1-yl)-4-benzyl-8-chloro-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 1-(azepan-1-yl)-7-bromo-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 4-benzyl-7-bromo-1-(piperidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]-quinazolin-5-one
- 4-Benzyl-7-bromo-1-dimethylamino-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-morpholin-4-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-thiomorpholin-4-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-(4-methyl-piperazin-1-yl)-4H-[1,2,4]triazolo[4,3-alquinazolin-5-one
- 4-Benzyl-7-bromo-1-(4-phenyl-piperazin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-1-(4-benzyl-piperazin-1-yl)-7-bromo-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 4-Benzyl-7-bromo-1-(3,6-dihydro-2H-pyridin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-(2,5-dihydro-pyrrol-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-(3-hydroxy-pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-methylamino-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-iodo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 190 l-Azepan-1-yl-4-benzyl-7-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-1-dimethylamino-7-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methyl-1-thiomorpholin-4-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 194 1-Azepan-1-yl-4-benzyl-8-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 195 1-Azepan-1-yl-4-benzyl-7-methoxy-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methoxy-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-5-oxo-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazoline-7-carbonitrile
- 198 l-Azepan-1-yl-4-benzyl-7-nitro-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 199 1-(azepan-1-yl)-4-benzyl-7-chloro-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 200 1-(azepan-1-yl)-4-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 201 1-(azepan-1-yl)-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

5-one

one

alquinazolin-5-one

217

218

202 1-(azepan-1-yl)-6-chloro-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one 203 1-(azepan-1-yl)-7-chloro-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one 204 1-(azepan-1-yl)-7-chloro-4-ethyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-205 7-chloro-4-methyl-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one 206 7-chloro-4-methyl-1-(morpholin-4-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one 207 1-(azocan-1-yl)-7-chloro-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one 208 7-chloro-1-(3,4-dihydro-2H-quinolin-1-yl)-4-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one 209 7-chloro-1-(3,4-dihydro-1H-isoquinolin-2-yl)-4-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one 210 1-(4-benzylpiperidin-1-yl)-7-chloro-4-methyl-4H-[1,2,4]triazolo[4,3a]quinazolin-5-one 211 7-chloro-4-methyl-1-(1,3,3-trimethyl-6-azabicyclo[3,2,1]oct-6-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one 212 1-(azepan-1-yl)-7-fluoro-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one 213 1-(azepan-1-yl)-7-iodo-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5one 214 1-(azepan-1-yl)-7-methoxy-4-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one 215 4-Benzyl-7-bromo-1-(ethyl-methyl-amino)-4H-[1,2,4]triazolo[4,3alquinazolin-5-one 216 4-Benzyl-1-diethylamino-7-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-

4-Benzyl-7-bromo-1-pyrrol-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-

4-(4-Amino-benzyl)-7-bromo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-

- 4-Benzyl-7-hydroxy-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Hydroxy-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- N-(4-Benzyl-5-oxo-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-7-yl)-acetamide
- N-[5-Oxo-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-7-yl]-acetamide
- 7-Amino-4-((E)-3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-1-azepan-1-yl-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-4-benzyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Amino-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 7-Amino-4-((E)-3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Amino-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 7-Amino-1-dimethylamino-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Methylamino-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-Benzyl-8-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-ethylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-isopropylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- N-(4-Benzyl-5-oxo-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-7-yl)-methanesulfonamide

- 4-Benzyl-7-dimethylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-1-dimethylamino-5-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazoline-7-carbonitrile
- 4-Benzyl-5-oxo-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazoline-7-carboxylic acid
- 239 [4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid methyl ester
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-methyl-acetamide
- 2-[4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetamide
- 242 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N,N-dimethyl-acetamide
- 243 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-hydroxy-acetamide
- 4-(1-Dimethylamino-7-methyl-5-thioxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-(7-Bromo-1-dimethylamino-5-thioxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazoline-5-thione
- 4-benzyl-7-(N,N-dimethylsulfonylamino)-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one

Parmi les composés mentionnés ci-dessus, les composés suivants sont préférés :

- 1 l-(Azepan-1-yl)-7-chloro-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 3 7-Bromo-1-dimethylamino-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 13 1-(azepan-1-yl)-7-chloro-4-(4-fluorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 20 1-(azepan-1-yl)-7-chloro-4-(3,4-dimethoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 22 1-(azepan-1-yl)-7-chloro-4-(3-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 32 1-(azepan-1-yl)-7-bromo-4-(4-chlorophenylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(1-Azepan-1-yl-7-bromo-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 35 1-Azepan-1-yl-7-bromo-4-(3,4-dimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 37 1-(azepan-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 40 1-Azepan-1-yl-7-bromo-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 41 1-Azepan-1-yl-7-bromo-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-methyl-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-chloro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-fluoro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 48 7-Bromo-4-(4-nitro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-alquinazolin-5-one
- 7-Bromo-4-(4-methoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- Acetic acid 4-(7-bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl ester

- 7-Bromo-4-(4-hydroxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 57 l-(pyrrolidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[(E)-3-(4-chloro-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[3-(4-methoxy-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-((E)-3-pyridin-4-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 75 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-piperidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 76 l-(piperidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 78 7-Bromo-1-dimethylamino-4-(4-methyl-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 79 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 7-Bromo-1-dimethylamino-4-(4-hydroxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 83 [4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetonitrile
- 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-prop-2-ynyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 92 1-Azepan-1-yl-7-methyl-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 4-(3,4-Dimethoxy-benzyl)-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
 [4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]
- 96 [4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- 7-Methyl-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 102 [4-(1-Dimethylamino-7-methyl-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- 1-Dimethylamino-7-methyl-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 138 [4-(7-Bromo-5-oxo-1-perhydro-azepin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-ylmethyl)-phenyl]-acetic acid
- 4-benzyl-7-bromo-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]-quinazolin-5-one
- 4-Benzyl-7-bromo-1-(2,5-dihydro-pyrrol-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-iodo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 190 1-Azepan-1-yl-4-benzyl-7-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(4-Amino-benzyl)-7-bromo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-4-((E)-3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-1-azepan-1-yl-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-4-((E)-3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-1-dimethylamino-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 4-(7-Methylamino-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-Benzyl-8-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-ethylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-isopropylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 239 [4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid methyl ester
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-methyl-acetamide
- 2-[4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetamide
- 242 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N,N-dimethyl-acetamide
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-hydroxy-acetamide
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazoline-5-thione

Parmi les composés mentionnés ci-dessus, les composés suivants sont particulièrement préférés :

- 3 7-Bromo-1-dimethylamino-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 20 1-(azepan-1-yl)-7-chloro-4-(3,4-dimethoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 22 l-(azepan-1-yl)-7-chloro-4-(3-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 34 4-(1-Azepan-1-yl-7-bromo-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 35 1-Azepan-1-yl-7-bromo-4-(3,4-dimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 37 l-(azepan-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 40 1-Azepan-1-yl-7-bromo-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 41 1-Azepan-1-yl-7-bromo-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-methyl-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-chloro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 57 1-(pyrrolidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 76 l-(piperidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 79 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-(Bromo-dimethylamino-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-prop-2-ynyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 92 1-Azepan-1-yl-7-methyl-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 94 4-(3,4-Dimethoxy-benzyl)-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 98 7-Methyl-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-4-((E)-3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

227	7-Amino-4-((E)-3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-
	[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 4-Benzyl-7-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Methylamino-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- [4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid methyl ester
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-methyl-acetamide
- 242 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N,N-dimethyl-acetamide
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazoline-5-thione

L'invention concerne également les sels acceptables en pharmacie des composés de formule I ou II. On trouvera une revue des sels acceptables en pharmacie dans J. Pharm. Sci., 1977, 66, 1-19. Toutefois, par sel pharmacologiquement acceptable d'un composé de formule I ou II présentant une fonction basique on entend les sels d'addition des composés de formule I ou II que l'on forme à partir d'acides minéraux ou organiques non toxiques comme par exemple les sels d'acides bromhydrique, chlorhydrique, sulfurique, phosphorique, nitrique, acétique, succinique, tartrique, citrique, maléique, hydroxymaléique, benzoïque, fumarique, toluène-sulfonique, isethionique et autres. Les divers sels d'ammonium quaternaires des dérivés I ou II sont également inclus dans cette catégorie des composés de l'invention. Et par sel pharmacologiquement acceptable d'un composé de formule I ou II présentant une fonction acide on entend les sels usuels des composés de formule I ou II que l'on forme à partir de bases minérales ou organiques non toxiques comme par exemple les hydroxydes des métaux alcalins et alcalino-terreux (sodium, potassium, magnésium et calcium), les amines (dibenzyléthylènediamine, triméthylamine, pipéridine, pyrrolidine, benzylamine et autres) ou encore hydroxydes d'ammoniums quaternaires comme l'hydroxyde tétraméthylammonium.

WO 00/66584 PCT/FR00/01174

Tels que mentionnés précédemment, les composés de formule I et II de la présente invention sont des inhibiteurs de l'enzyme phosphodiestérase et particulièrement de l'enzyme phosphodiestérase 4 (PDE4).

A ce titre, leur utilisation est préconisée dans le traitement de maladies ou d'affections relevant d'une thérapie par l'inhibition de PDE4. A titre d'exemple, l'utilisation des composés de la présente invention peut être préconisée lors du traitement de la septicémie, de la défaillance polyviscérale, de l'asthme, de la bronchite chronique, de l'emphysème, de la pneumopathie obstructive chronique (ou COPD), de la rhinite allergique, de la dermatite atopique, de l'hypertension pulmonaire, de l'insuffisance cardiaque ou pulmonaire, de l'insuffisance cardiaque congestive, du psoriasis, de maladies inflammatoires du système digestif telles que la rectocolite hémorragique et la maladie de Crohn, de maladies liées à un taux élevé de TNF-α telles que le syndrome de détresse respiratoire aiguë chez l'adulte et la pancréatite aiguë, de l'arthrite rhumatoïde, de l'ostéoporose, de la sclérose en plaques et de la dépression.

10

15

25

30

Les inhibiteurs de PDE4 de la présente invention peuvent également être utilisés pour le traitement de l'atteinte pulmonaire aigüe, de l'atteinte neuronale causée par ischémie (ischemia-induced neuronal damage), du diabète, de la leucémie lymphoïde chronique, et pour atténuer le développement de phénomènes de tolérance ou de dépendance à la morphine. Les composés de l'invention peuvent également contribuer à diminuer les pertes de mémoire du comportement (behavioral memory) telles qu'observées par exemple chez les patients souffrant de la maladie d'Alzheimer.

On peut aussi envisager l'utilisation des composés de la présente invention dans le domaine de l'urologie, plus particulièrement dans le traitement d'affections de la prostate telle que l'hypertrophie bénigne de la prostate ou pour la prévention d'accouchements prématurés, par exemple en inhibant le déclenchement de contractions avant terme, de préférence par l'action d'un inhibiteur de PDE4 au niveau du myomètre.

Analyse structure-activité des composés de formule I et II

Les inventeurs, sans souhaiter être liés de manière formelle par une théorie définitive, sont d'avis que les paramètres structurels évoqués ci-dessous peuvent être considérés afin de guider la personne versée dans l'art dans le choix de la combinaison de substituants qui, au-delà des composés préférés décrits dans la présente demande, pourrait permettre non

seulement une optimisation de l'activité inhibitrice de PDE4, mais également une meilleure optimisation de paramètres additionnels importants tels que la solubilité, la biodisponibilité et la toxicité des composés envisagés.

Tout d'abord, les inventeurs sont d'avis que le site catalytique de l'enzyme PDE4 est de taille suffisamment importante pour accommoder globalement un éventail assez varié de changements structuraux au niveau des substituants des composés de l'invention pouvant se lier à ce site. A cet égard, les inventeurs considèrent que les composés de la présente invention ont probablement la capacité d'interagir au moins en trois points distincts du site catalytique de l'isoenzyme PDE4. Un premier point d'interaction se situerait au niveau du noyau aromatique comportant les substituants X₁ et X₂. Un deuxième point d'interaction se trouve vraisemblablement au niveau du substituant R alors que le troisième point d'interaction est probablement situé au niveau du groupement NR₄R₅. La fonctionnalité potentielle de chacun de ces points de liaison est proposée ci-dessous.

15

25

Il est cependant important de préciser ici que les points d'interaction évoqués ci-dessus ne le sont pas nécessairement par ordre croissant ou décroissant d'importance au niveau de leur incidence sur l'activité inhibitrice des composés de l'invention. En fait, il semble possible que chacun de ces points d'interaction participe de manière différente aux propriétés pharmacologiques globales de ces composés.

Le premier point d'interaction évoqué précédemment se situerait donc au niveau du noyau aromatique comportant les substituants X_1 et X_2 . Ce noyau aromatique participerait à la liaison des composés de l'invention au site catalytique de l'enzyme PDE4, liaison qu'il semble possible de moduler par le choix des substituants X_1 et X_2 .

Les expériences effectuées jusqu'à présent par les inventeurs tendent à démontrer que les substituants X_1 et X_2 présentement préférés sont ceux pour lesquels X_1 est hydrogène et X_2 est choisi parmi halogène, plus particulièrement Br et Cl, méthyle, hydroxy, amino et alkylamino. On constate donc que parmi les substituants préférés de X_2 , on retrouve à la fois des donneurs (e.g. méthyl) et des attracteurs (e.g. Br, Cl) d'électrons. Il semble donc improbable que X_2 puisse être choisi uniquement en fonction des propriétés électroniques du substituant préconisé. Les inventeurs sont d'avis que les critères de sélection importants se situent d'abord au niveau de la position du substituant sur le noyau aromatique et

ensuite au niveau de certains paramètres tels que l'encombrement stérique du substituant ou la présence d'un atome donneur ou accepteur de proton.

Il semble cependant acquis que la position des substituants X_1 et X_2 sur le noyau aromatique puisse avoir une influence sur l'activité finale des composés de l'invention. A titre d'exemple, les composés comportant un substituant autre que l'hydrogène en position 7 sont en général plus actifs que les mêmes composés comportant ce substituant en position 8. Il semble donc probable que le choix et la position des substituants X_1 et X_2 permette de déplacer le noyau aromatique à l'intérieur d'une cavité du site catalytique de PDE4 et par voie de conséquence de moduler l'activité inhibitrice des composés de l'invention. De plus, il semble que les composés comportant un substituant en position 7 soient plus sélectifs du sous type PDE4 vis à vis des autres isoenzymes PDE5, PDE3 et PDE1 que les composés comportant un substituant en position 8. Ces derniers ont une activité inhibitrice de PDE4 (bien qu'inférieure) mais ils semblent moins sélectifs vis à vis des autres isoenzymes. Cependant, il semble aussi assez clair que bien que X_1 et X_2 puissent être choisis parmi un nombre considérable de substituants, on obtiendra une meilleure tolérance au niveau de ce choix si le substituant R est bien ciblé.

10

20

25

30

Le deuxième point d'interaction des composés de la présente invention à l'enzyme PDE4 se situerait au niveau du substituant R. Les inventeurs pensent qu'il s'agit vraisemblablement du point d'ancrage le plus important de la molécule sur l'enzyme. Il semble en effet probable que ce deuxième point d'interaction se situe au niveau d'une vaste cavité à l'intérieur du site catalytique de PDE4. Il est donc primordial que le substituant R puisse s'ancrer au site catalytique. Cependant, le choix des groupements inclus dans la définition de R donnée ci-dessus, semble démontrer une certaine flexibilité au niveau de l'ancrage de R à ce deuxième site de liaison. Autrement dit, il semblerait possible d'obtenir une activité inhibitrice de PDE4 avec des composés possédant des substituants R assez différents d'un point de vue structural. A titre d'exemple, on préférera l'utilisation d'un substituant comprenant un noyau aromatique, de préférence lui-même substitué, et séparé de l'hétérocycle principal par une chaîne comportant entre 1 et 4 atomes, notamment des atomes de carbone, ledit substituant présentant une orientation dans l'espace relativement variable. Cette observation semble ouvrir la voie à la possibilité de moduler de façon plus subtile les propriétés globales des composés de l'invention.

Les inventeurs sont en effet d'avis que bien que le substituant R demeure vraisemblablement un élément déterminant de l'activité inhibitrice de PDE4 des composés de l'invention, il est probablement possible de le varier et ainsi agir sur des paramètres pharmacologiques supplémentaires importants sans altérer de façon substantielle cette activité inhibitrice. A titre d'exemple, des composés comportant respectivement au niveau du substituant R un groupement –CH₂CH = CH-C₆H₅ ou un groupement benzyle substitué, de préférence en position 4 (les autres substituants étant identiques pour les deux composés), ont une activité inhibitrice de PDE4 du même ordre de grandeur.

Le troisième site d'interaction des composés de l'invention à la PDE4 se situe vraisemblablement au niveau du groupement –NR₄R₅. Les inventeurs sont d'avis qu'il s'agit probablement d'un site de liaison beaucoup plus spécifique que les deux sites décrits ci-dessus bien que le déplacement du substituant R dans la cavité enzymatique puisse cependant influer sur la spécificité de ce troisième site. Les composés de l'invention possédant les meilleures activités inhibitrices sont ceux pour lesquels R₄ et R₅, qui représentent chacun un alkyle inférieur, sont liés pour former un cycle, de préférence un cycle possédant entre 5 et 8 atomes de carbone, plus particulièrement un cycle possédant 5 ou 7 atomes de carbone. La marge de manœuvre de la personne versée dans l'art au niveau de la variation de ce groupement semble donc plus limitée.

20

25

10

15

En résumé, les expérimentations effectuées par les inventeurs avec les composés de la présente invention semblent démontrer que la taille du site catalytique de la PDE4 est suffisamment importante pour accommoder plusieurs changements structuraux au niveau des trois sites de liaison décrits précédemment. Toutefois, la marge de manœuvre la plus importante semble tout de même se situer au niveau de la variation du substituant R.

Formulation galénique des composés de l'invention

Les composés de l'invention sont administrés sous forme de compositions appropriées à la nature et à l'importance de l'affection à traiter. La posologie journalière chez l'homme est habituellement comprise entre 2 mg et 1 g de produit qui peut être absorbé en une ou plusieurs prises. Les compositions sont préparées par des méthodes courantes pour

l'homme de l'art et comprennent de façon générale 0,5 à 60 % en poids de principe actif (composé de formule I) et 40 à 99,5 % en poids de véhicule pharmaceutique approprié. Les compositions de la présente invention sont donc préparées dans des formes compatibles avec la voie d'administration souhaitée. A titre d'exemple, les formes pharmaceutiques suivantes peuvent être envisagées, bien que la liste fournie ci-dessous ne soit pas limitative :

- 53 -

1) Formes pour administration par voie orale:

Solutions buvables, suspensions, sachets de poudre pour solution buvable, sachets de poudre pour suspension buvable, gélules, gélules gastro-résistantes, formes à libération prolongée, émulsions, capsules ou gélules HPMR, lyophilisats à faire fondre sous la langue.

2) Formes pour administration par voie parentérale :

Voie intraveineuse:

10

30

Solutions aqueuses, solutions eau / co-solvant, solutions utilisant un ou des solubilisants, suspensions colloïdales, émulsions, suspensions nanoparticulaires utilisables pour l'injection de formes à libération prolongée, formes dispersées et liposomes

Voie sous-cutanée / intramusculaire :

En plus des formes utilisables en voie intraveineuse qui sont également utilisables pour les voies sous-cutanées et intramusculaires, d'autres types de formes telles que les suspensions, les formes dispersées, les gels à libération prolongée ainsi que les implants à libération prolongée peuvent également être utilisés.

25 3) Formes pour administration par voie topique:

Parmi les formes topiques les plus habituelles, on distingue les crèmes, les gels (phases aqueuses gélifiées par des polymères), les patchs, qui sont des pansements à coller directement sur la peau et qui peuvent être utilisés pour traiter des dermatoses sans pénétration percutanée de la substance active, les sprays, les émulsions et les solutions.

4) Formes pour administration par voie pulmonaire:

On distingue dans cette catégorie des formes de type solutions pour aérosols, poudres pour inhaleurs, et autres formes appropriées.

5) Formes pour administration par voie nasale:

Il s'agit surtout ici de solutions pour gouttes.

6) Formes pour administration par voie rectale:

5 On retiendra entre autres les suppositoires et les gels.

On peut également envisager l'utilisation de formes permettant l'administration de solutions ophtalmiques ou permettant l'administration du principe actif par voie vaginale.

Une autre catégorie importante de forme pharmaceutique pouvant être utilisée dans le contexte de la présente invention concerne les formes permettant d'améliorer la solubilité du principe actif. A titre d'exemple, on peut envisager l'utilisation de solutions aqueuses de cyclodextrine, et plus particulièrement des formes comprenant l'hydroxypropyle beta cyclodextrine. Une revue détaillée de ce type de forme pharmaceutique est présentée dans l'article paru sous la référence Journal of Pharmaceutical Sciences, 1142-1169, 85 (11), 1996, et incorporé par référence à la présente demande.

Les différentes formes pharmaceutiques préconisées ci-haut sont décrites de façon détaillée dans l'ouvrage « Pharmacie galénique » de A. LEHIR (Ed. Masson, 1992 (6ème édition) incorporé par référence à la présente demande.

Composés intermédiaires

20

La présente invention concerne également les composés intermédiaires de formule générale III :

$$X_1$$
 R_6
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7

dans lesquels X₁, X₂, A₁, R₆ et R₇ sont tels que définis précédemment.

L'invention concerne particulièrement les composés intermédiaires de formule générale III dans lesquels :

5 X₁ et X₂ sont tels que définis précédemment, et R₇ est lié à l'azote en R₆ pour former un triazole, substitué en position 1 par un groupement Br, Cl, mercapto ou thioalkyle inférieur, de préférence CH₃-S-.

Parmi les groupements définis ci-dessus les substituants suivants sont particulièrement préférés :

- De façon générale pour les groupements $X_1,\, X_2,\, R_6$ et R_7 :
 - halogène : F, Cl, Br, I, de préférence Br et Cl,
 - alkyle inférieur : linéaire ou ramifié comportant de 1 à 6, de préférence de 1 à
 3 atomes de carbone,
- 15 alcoxy inférieur : linéaire ou ramifié comportant de 1 à 5, de préférence de 1 à 3 atomes de carbone,
 - thioalkyle inférieur : linéaire ou ramifié comportant de 1 à 5, de préférence de 1 à 3 atomes de carbone.
- 20 De façon particulière pour les groupements X_1 et X_2 :

 X_1 et X_2 sont particulièrement situés en position 6 et 7 du cycle quinazolinone principal.

- De façon particulière pour les groupements R₆ et R₇ :
- lorsque R₇ est lié à l'azote en R₆ pour former un cycle, le cycle formé est de préférence un triazole, substitué en position 1 par un groupement Br, Cl, mercapto ou thioalkyle inférieur, de préférence CH₃-S-.

Une deuxième série d'intermédiaires comprend les composés ayant la formule générale IV suivante :

15

dans laquelle X₁, X₂, A₁, R₄ et R₅ sont tels que définis précédemment.

Pour les groupements ci-dessus, les substituants suivants sont particulièrement préférés :

- 5 De façon générale pour les groupements X₁, X₂, R₄ et R₅:
 - halogène : F, Cl, Br, I, de préférence Br et Cl,
 - alkyle inférieur : linéaire ou ramifié comportant de 1 à 6, de préférence de 1 à
 3 atomes de carbone,
 - alcoxy inférieur : linéaire ou ramifié comportant de 1 à 5, de préférence de 1 à
 3 atomes de carbone ,
 - alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur, phényle alkyle ou CO-Q₁-Q₂-Q₃, deux des atomes du cycle ainsi formé pouvant également faire partie d'un autre cycle choisi parmi phényle ou hétéroaryle comportant de 4 à 8 atomes incluant 1 à 4 hétéroatomes.
- 20 De façon particulière pour les groupements X_1 et X_2 :

 X_1 et X_2 sont particulièrement situés en position 6 et 7 du cycle quinazolinone principal.

- De façon particulière pour les groupements R₄ et R₅:
- 25 R₄ et R₅ sont alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N, substitué par un ou plusieurs groupements

choisis parmi hydroxy, kéto, alkyle inférieur ou alcoxy inférieur. Les substituants particulièrement préférés formant le groupe NR₄R₅ incluent pyrrolidine, 3-hydroxy pyrrolidine, thiamorpholine, diméthyl amino, azepanyl et pipéridinyl.

Une troisième série d'intermédiaires comprend les composés ayant la formule générale V suivante :

dans laquelle X₁, X₂, X₅, A₁ et R sont tels que définis précédemment.

- 10 Pour les groupements ci-dessus, les substituants suivants sont particulièrement préférés :
 - De façon générale pour les groupements X_1, X_2 et X_5 :
 - halogène: F, Cl, Br, I, de préférence Br et Cl,
 - alkyle inférieur : linéaire ou ramifié comportant de 1 à 6, de préférence de 1 à 3 atomes de carbone,
 - alcoxy inférieur : linéaire ou ramifié comportant de 1 à 5, de préférence de 1 à 3 atomes de carbone.
 - De façon particulière pour les groupements X_1 et X_2 :

X₁ et X₂ sont particulièrement situés en position 6 et 7 du cycle quinazolinone principal.

- De façon particulière pour le groupement X_5 : X_5 est F, Br ou Cl.
- Une quatrième série d'intermédiaires comprend les composés ayant la formule générale VI suivante :

dans laquelle X₂, X₅, A₁ et R sont tels que définis précédemment.

Pour les groupements ci-dessus, les substituants suivants sont particulièrement préférés :

- De façon générale pour les groupements X₂ et X₅ :
 - halogène : F, Cl, Br, I, de préférence Br et Cl,
 - alkyle inférieur : linéaire ou ramifié comportant de 1 à 6, de préférence de 1 à 3 atomes de carbone,
 - alcoxy inférieur : linéaire ou ramifié comportant de 1 à 5, de préférence de 1 à 3 atomes de carbone.
 - De façon particulière pour le groupement X₂:

X₂ est particulièrement situé en position 7 du cycle quinazolinone principal.

- De façon particulière pour le groupement X₅ : X₅ est F, Br ou Cl.

Une cinquième série d'intermédiaires comprend les composés ayant la formule générale VII suivante :

20 dans laquelle X2, X5 A1, R2 et R3 sont tels que définis précédemment.

Pour les groupements ci-dessus, les substituants suivants sont particulièrement préférés :

10

15

- De façon générale pour les groupements X2, X5, R2 et R3:
 - halogène : F, Cl, Br, I, de préférence Br et Cl,
 - alkyle inférieur : linéaire ou ramifié comportant de 1 à 6, de préférence de 1 à 3 atomes de carbone,
 - alcoxy inférieur : linéaire ou ramifié comportant de 1 à 5, de préférence de 1 à 3 atomes de carbone
 - hydrogène, alkyle inférieur, éventuellement substitué par un ou plusieurs groupements hydroxy, halogène, cyano, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃, R₂ et R₃ pouvant être liés pour former un cycle, comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃.
- De façon particulière pour le groupement X₂:
 - X₂ est particulièrement situé en position 7 du cycle quinazolinone principal.
- De façon particulière pour le groupement X₅ : X₅ est F, Br ou Cl.
- De façon particulière pour les groupement R₂ et R₃:
- R₂ et R₃, semblables ou différents, sont hydrogène, alkyle inférieur ou R₂ et R₃ sont liés pour former un cycle, comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃. Parmi les réalisations particulièrement préférées du substituant NR₂R₃, on retrouve les groupements azepanyl, pyrrolidine, NH₂ et NHCH₃.

Procédés de synthèse des composés de formules I et II

A) Les composés de la présente invention peuvent être obtenus par la mise en œuvre de 30 plusieurs procédés de synthèse. Quelques-uns de ces procédés de synthèse sont décrits cidessous.

Les composés de la présente invention peuvent d'abord être obtenus de façon convergente par la méthode représentée sur le schéma 1.

SCHEMA 1

dans lequel X1, X2, A1, R, R4 et R5 sont tels que définis précédemment, et R8 représente Cl, Br, OSO2CH3, OSO2CF3 ou OSO2Ar.

5

15

La 4-benzyl 1-amino triazolo [4,3-a] quinazoline-5-one et/ou -5-thione (IVa) est traitée par du trichlorure d'aluminium dans un solvant aromatique tel que le benzène ou le toluène pour donner le composé correspondant N-débenzylé (IV). Celui-ci est ensuite traité par un halogénure ou un sulfonate choisi en fonction du substituant R désiré en conditions basiques ; par exemple de l'hydrure de sodium dans un solvant tel que le 1, 2-diméthoxyéthane (DME) ou du carbonate de césium dans le diméthylformamide, pour conduire aux 1-amino triazolo [4,3-a] quinazoline-5-ones de formule (I) et (II).

En fait, en fonction des conditions basiques utilisées, l'alkylation est peu régiosélective dans certains cas. On obtient alors un mélange de N₄ et N₃, régioisomères, respectivement (I) et (II).

Les 2 composés sont généralement séparés par des méthodes classiques de chromatographie.

B) Un autre exemple d'une méthode de synthèse utilisée pour construire le motif triazolo [4,3-a] quinazoline-5-one et/ou -5-thione de formule (I) convenablement substitué est illustré au schéma 2 :

SCHEMA 2 R-N=C=S COA₁R' (Va) (Vb) NH_2 NH2-NH2, H2O EtO-C(=S)SK ou CS2 Α_ι (Vc) CH₃S HS (CH3)2SO4 (Vd) (Ve) CI2 HNR₄R₅ **(I)** (V)

dans lequel X1, X2, A1, R, R4, et R5 sont tels que définis précédemment, et,

10 R' représente un groupement alkyle inférieur linéaire ou ramifié comportant de 1 à 6, de préférence de 1 à 3 atomes de carbone.

Un acide ou ester anthranilique convenablement substitué sur le cycle aromatique (Va) est d'abord transformé en 2-thio quinazoline-4-one et/ou -4-thione correspondante (Vb) par cyclisation au moyen d'isothiocyanate d'alkyle, d'aryle ou d'aralkyle, dans un solvant tel que l'acide acétique ou la pyridine.

La thio quinazoline-4-one et/ou -4-thione (Vb) est traitée par de l'hydrate d'hydrazine pour fournir la 2-hydrazino quinazoline-4-one et/ou -4-thione (Vc) qui est à son tour cyclisée en 1-mercapto triazolo [4,3-a] quinazoline-5-one et/ou -5-thione (Vd) par action de xanthogenate de potassium ou d'autres réactifs tels que CS₂.

Par action d'un agent alkylant tel que le sulfate de diméthyle, le thiol (VI) est transformé en 1-méthylthio dérivé (Ve) lequel est ensuite converti au moyen de chlore, en 1-chloro triazolo [4,3-a] quinazoline-5-one et/ou -5-thione (V).

Ce dernier est traité par une amine primaire ou secondaire pour conduire finalement à la 1-amino triazolo [4,3-a] quinazoline-5-one de formule (I).

15 C) Une autre méthode avantageuse dans certains cas est représentée sur le schéma 3.

dans lequel X₁, X₂, A₁, R, R₄ et R₅ sont tels que définis précédemment, et

WO 00/66584 PCT/FR00/01174 - 63 -

R" représente un alkyle inférieur linéaire ou ramifié comportant de 1 à 6, de préférence de 1 à 3 atomes de carbone, tel que CH₃ ou C₂ H₅.

La 2-hydrazino quinazoline-4-one et/ou -4-thione (Vc), obtenue à partir d'un anthranilate en 2 étapes (comme illustré dans le schéma 2), est cyclisée au moyen d'un orthoformiate d'alkyle, en milieu acide, en triazolo [4,3-a] quinazoline-5-one et/ou -5-thione (Vf).

Celui-ci est ensuite bromé par du Brome ou du N-Bromosuccinimide (NBS) pour donner la

1-bromotriazolo [4,3-a] quinazoline-5-one et/ou -5-thione (V). Ce dérivé bromé est finalement traité par une solution éthanolique d'une amine primaire ou secondaire pour conduire à la 1-amino triazolo [4,3-a] quinazoline-5-one et/ou -5-thione

de formule (I).

10

20

D) Quand X1 représente H et X2 représente une fonction phénolique réactive OH, ce groupement doit en général être protégé pendant les dernières étapes de la synthèse des composés (I). A titre d'exemple, le schéma 4 montre la synthèse d'un tel composé hydroxylé en position 7. La 4-benzyl-7-hydroxy-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one et/ou -5-thione(Vg), obtenue par une méthode représentée sur le schéma 3, est traitée par un composé permettant l'insertion d'un groupement protecteur d'oxygène (P) sur la fonction OH. L'homme du métier pourra choisir sans difficulté le groupement protecteur approprié. Le groupement protecteur peut être choisi entre autres parmi triméthyl silyl, méthoxyméthyl, tolylsulfonyl, méthylsulfonyl (mésyl) ou encore méthoxyéthylméthoxy (MEM). A titre d'exemple, le composé (Vg) est traité par du chlorure de tosyle, dans un solvant tel que le chlorure de méthylène, en présence d'une base ou d'une amine telle que la triéthylamine, pour donner le phénol O-tosylé correspondant (Vf). Celui-ci est traité par du brome pour conduire à la 4-benzyl-1-bromo-7-(4-tolylsulfonyl)-4H-[1,2,4]triazolo[4,3alquinazolin-5-one et/ou -5-thione (V3), lequel réagit avec une amine HNR4R5 au reflux, de préférence en présence d'une base comme le bicarbonate de sodium, dans un solvant tel que le diméthylformamide, pour fournir la 1-amino-4-benzyl-7-(4-tolylsulfonyl) -4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one et/ou -5-thione (IVa₁).

30

On peut alors remplacer le groupe benzyle en position 4 par un autre groupe R, par exemple en débenzylant le composé (IVa₁) obtenu précédemment au moyen de chlorure d'aluminium dans un solvant comme le benzène, puis en alkylant l'intermédiaire obtenu (IV₁) par traitement avec un halogénure ou un sulfonate R-X₅, dans des conditions

basiques, pour obtenir les 1-amino-7-(4-tolylsulfonyl) -4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one et/ou -5-thione (Ia) diversement substituées en position 4. Celles-ci sont de préférence détosylées en dérivés 7-hydroxy (I) par exemple par chauffage pendant quelques heures dans de la pyrrolidine.

5

SCHEMA 4

dans lequel A₁, R₄ et R₅ sont tels que définis précédemment.

E) Quand X1 représente H et X2 représente une fonction anilino réactive : NH2, NHR2 ou NR₂R_x (R2 tel que défini précédemment et R_x représente R₂ ou R₃ tels que définis précédemment), le groupement amino NH2 doit en général être protégé pendant les dernières étapes de la synthèse des composés (I). A titre d'exemple, le schéma 5 montre la synthèse d'un tel composé aminé en position 7. La 7-acétamido-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one et/ou -5-thione (Vf₁), obtenue par une méthode représentée sur le schéma 3, est traitée par du brome pour conduire à la 7-acétamido-4-benzyl-1-bromo-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one et/ou -5-thione (V₄). Celle-ci est mise à réagir avec une amine HNR4R5 au reflux, de préférence en présence d'une base comme le bicarbonate de sodium, dans un solvant tel que le diméthylformamide, pour fournir la 7-acétamido-1-amino-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one et/ou -5-thione (IVa₂). Dans l'exemple décrit ci-dessus, le groupement protecteur (P₁) de la fonction NH est un groupement acétyle. L'homme du métier peut cependant choisir un autre groupement protecteur, par exemple le méthylsulfonyl, le tolylsulfonyl ou le phtalimido.

10

15

On peut alors remplacer le groupe benzyle en position 4 par un autre groupe R, par exemple en débenzylant le composé (IVa₂) obtenu précédemment, au moyen de formiate d'ammonium et de Palladium sur Charbon, dans un solvant tel que le tétrahydrofuranne, puis en alkylant l'intermédiaire obtenu (IV₂) par traitement avec un halogénure ou un sulfonate R-X₅, dans des conditions basiques, pour obtenir les 7-acétamido-1-amino-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one et/ou -5-thione (I) diversement substituées en position 4. Celles-ci peuvent être N-déacétylées en composés finaux (Ib) portant une fonction NH2 en position 7, par des méthodes classiques comme par exemple un chauffage à reflux dans une solution aqueuse d'acide chlorhydrique. Ces composés peuvent être à leur tour traités, suivant le cas, par un réactif R2-X5 (R2 et X5 ayant la signification donnée précédemment) pour conduire à un composé final (Ic) N-monosubstitué, qui peut lui-même ensuite être traité par un réactif R_xX₅ pour conduire à un composé final (1d) N,N-disubstitué. Il est également possible de traiter les 7-acétamido-1-amino-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one et/ou -5-thione (I) diversement substituées en position 4 d'abord par un réactif R₂X₅ pour obtenir le composé (1b₂) qui est ensuite Ndéacétylé pour obtenir le composé (Ic).

F) Quand le substituant R en position 4 des composés (I) représente un groupe 4-(carboxyméthyl)-benzyle, il peut être avantageux de transformer la fonction acide carboxylique en dérivé ester, amide, nitrile ou acide hydroxamique. Pour cela, les méthodes représentées sur le schéma 6 peuvent être appliquées à un acide de formule générale (Id). Celui-ci est transformé en chlorure d'acide (Ie), lequel est directement condensé soit avec l'ammoniaque pour donner un amide primaire (If), soit avec une amine primaire ou secondaire pour donner respectivement un amide secondaire (Ih) ou tertiaire (Ii) (Dans ces structures, R11 a la même signification que R2 et R12, R13 ont les mêmes significations que R4, R5 respectivement).

L'acide hydroxamique (Ij) peut être obtenu par réaction du chlorure d'acide (Ie) avec l'hydroxylamine. L'amide primaire (If) peut aussi être déshydraté par des méthodes classiques et connues en soi, comme par exemple au moyen du pentoxyde de phosphore, pour conduire au nitrile correspondant (Ig).

SCHEMA 6

dans lequel X₁, X₂, A₁, R₄ et R₅ sont tels que définis précédemment.

G) Les composés de structure (I) dans laquelle X_1 ou X_2 représente un groupe amino NR_2R_3 en position 8 identique au groupement NR_4R_5 , peuvent également être obtenus par chauffage de l'intermédiaire 1-bromo correspondant (VI; X_5 = hal) en présence d'un excès d'amine HNR_4R_5 , sans solvant ou dans un solvant tel que le diméthylformamide comme illustré au schéma 7.

SCHEMA 7

$$X_5$$
 X_5
 X_7
 X_8
 X_8
 X_8
 X_8
 X_8
 X_8
 X_9
 X_9

dans lequel X2, X5, A1, R, R4 et R5 sont tels que définis précédemment.

- Il est cependant préférable d'éviter pour ce type de réaction les substituants R comportant un groupement halogène susceptible de réagir de façon compétitive avec le réactif HNR₄R₅.
- H) Dans le cas où les 2 groupes amino NR₂R₃ et NR₄R₅ sont différents, une voie de
 synthèse légèrement modifiée est indiquée sur le schéma 8.

SCHEMA 8

$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

dans lequel X₂, A₁, R, R₂, R₃, R₄ et R₅ sont tels que définis précédemment. Le substituant amino NR₂R₃ se trouve en position 8.

Une 1-Bromo 8-chlorotriazolo [4,3-a] quinazoline-5-one et/ou -5-thione (VIa) convenablement substituée en 4, et préparée comme précédemment par bromation du dérivé non substitué en 1, est traitée par un léger excès d'amine HNR₂R₃, dans un solvant tel que le diméthylformamide pour conduire à l'intermédiaire (VII).

Cet intermédiaire est à son tour chauffé dans un excès d'amine HNR₄R₅, dans un solvant tel que le diméthylformamide pour conduire au composé (I).

De façon surprenante, les inventeurs ont constaté que la réactivité de l'atome d'halogène en position 8 est beaucoup plus importante que la réactivité de l'autre atome d'halogène de l'intermédiaire. Ceci permet donc une première réaction sélective au niveau de cet halogène en position 8, qui peut être suivie par une réaction au niveau du deuxième halogène. L'exemple ci-dessus illustre l'utilisation du chlore en position 8. Il est cependant possible d'utiliser d'autres halogènes tels que le brome et le fluor, ce dernier s'étant avéré particulièrement réactif.

Exemples

A. Composés de type (I) et (II)

10 Exemples 1 et 2

METHODE A: 1-Azepanyl-7-chloro-4-(3-phénylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one (ex. 1)

(I): $X_1 = 7 - Cl$; $X_2 = H$;

15

1-Azepanyl-7-chloro-3-(3-phénylallyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one (ex. 2) (II): $X_1 = 7 - Cl$; $X_2 = H$;

R=
$$NR_4R_5 = N$$
 et

20

Dans un réacteur protégé de l'humidité, on place 2,5 g (7,87 mmol) de 1-Azepan-yl-7-chloro-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one, en suspension dans 35 ml de 1,2-diméthoxyéthane puis on agite.

Sous atmosphère inerte, on additionne alors 240 mg d'une suspension d'hydrure de sodium à 75 % (représentant 7,90 mmol NaH).

Le mélange est chauffé à 60° C, sous agitation, pendant 6 heures.

On additionne alors 1,56 g (7,90 mmol) de bromure de cinnamyle par fractions.

Le mélange obtenu est chauffé ensuite à 60° C pendant 20 heures, sous agitation.

30 Après refroidissement, la suspension est versée dans 200 ml d'eau glacée.

On extrait 3 fois à l'acétate d'éthyle; les phases organiques réunies sont lavées avec une solution aqueuse saturée de chlorure de sodium, séchées sur sulfate de sodium puis le solvant est évaporé sous vide.

On obtient 3,5 g de mélange brut des 2 régio isomères (théorie : 3,4 g).

Les 2 isomères sont séparés par chromatographie flash sur colonne de silice avec élution au mélange chlorure de méthylène 99 / méthanol 1.

On obtient, dans l'ordre d'élution :

1) 0,58 g du composé de l'exemple 1

5 Rendement = 17 %

F (Tottoli) = 125°C

 $CCM (CH_2 Cl_2 98 / CH_3 OH 2) = 0,60$

RMN¹ H δ (ppm) CDCl₃ : 1,7 - 2,0 (m, 8H) ; 3,3 - 3,5 (m, 4H) ; 5,05 (d, 2H) ; 6,45 (dt, 1H) ; 6,9

10 (d, 1H); 7,15 – 7,3 (m, 3H); 7,35 (d, 2H); 7,75 (d, 1H); 8,35 (s, 1H); 8,4 (d, 1H).

2) 2,1 g du composé de l'exemple 2

Rendement = 61,5 %

F (Tottoli) = 188°C

CCM (CH₂ Cl₂ 98 / CH₃ OH 2) : Rf = 0.35.

15 RMN ¹H δ (ppm) CDCl₃:

1,7 – 2,0 (m, 8H); 3,4 (m, 4H); 4,9 (d, 2H); 6,35 (dt, 1 H); 6,75 (d, 1H); 7,2 – 7,45 (m, 5H); 7,65 (d, 1H); 8,2 (d, 1H); 8,45 (s, 1H)

Exemple 3:

20 **METHODE B**: 7-bromo-1-(N,N-dimethylamino)-4-[3-(3-pyridyl)-allyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one (ex. 3)

(I): $X_1 = 7 - Br$; $X_2 = H$;

25

Dans un réacteur équipé d'une agitation magnétique et d'un réfrigérant, on place 7,4 g (0,024 mol) de 7-bromo-1-(N,N-dimethylamino)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one en solution dans 200 ml de 1,2-diméthoxyéthane puis on agite. On additionne 17,0g (0.052mol) de carbonate de césium puis agite à température ambiante pendant 15 minutes.

30 4,5g ((0,024mol) de chlorhydrate de chlorure de 3-(3-pyridyl)-allyle sont alors ajoutés par fractions, puis le mélange est chauffé à 70°C, sous agitation, pendant 3 heures. Le solvant

est évaporé sous vide puis le résidu est mis en suspension dans 300 ml d'eau glacée. Après extractions répétées à l'acétate d'éthyle, les phases organiques réunies sont lavées avec une solution aqueuse saturée de chlorure de sodium, séchées sur sulfate de sodium puis le solvant est évaporé sous vide.

Le résidu est chromatographié sur une colonne de silice avec élution au mélange CH2Cl2 98 / CH3OH 2 / NH4OH 0,2. On récupère 6,3g d'isomère (I) pur en CCM. Celui-ci est recristallisé dans 20ml d'isopropanol pour donner 5,3g de composé de l'exemple 3 :

Rendement = 52%

RMN¹ H δ (ppm) CDCl₃: 2,95 (s, 6H); 5,1 (d, 2H); 6,45 (dt, 1H); 6,8 (d, 1H); 7,15 (m, 1H); 7,65 (d, 1H); 7,9 (d, 1H); 8,25 (d, 1H); 8,4 – 8,6 (m, 3H).

Exemples 4 et 5:

METHODE C: 7-bromo-1-(pyrrolidin-1-yl)-4-[(3-pyridyl)-methyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one (ex. 4)

(I):
$$X_1 = 7 - Br$$
; $X_2 = H$;

15

10

7-bromo-1-(pyrrolidin-1-yl)-3-[(3-pyridyl)-methyl]-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one (ex. 5)

(II):
$$X1 = 7$$
-Br; $X2 = H$;

Dans un réacteur protégé de l'humidité, équipé d'un système d'agitation, on place 2,0g (0,006 mol) de 1-(pyrrolidin-1-yl)-7-bromo-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one en solution dans 125 ml de dimethylsulfoxyde (DMSO) puis on additionne 1,0g (0,018 mol) de potasse finement broyée. Le mélange est agité à température ambiante pendant 1h30, jusqu'à obtention d'une solution légèrement trouble. On ajoute alors 0,82g (0,005 mol) de chlorhydrate de chlorure de 3-picolyle en une fois puis maintient l'agitation à température ambiante pendant 4 heures.

Le mélange obtenu est versé dans de l'eau glacée et la suspension résultante extraite 3 fois à l'acétate d'éthyle. Les extraits organiques joints sont lavés avec une solution saturée de

NaCl, séchés sur Na2SO4 puis concentrés sous vide. On obtient 2,0g de mélange brut des 2 régioisomères qui sont séparés par chromatographie sur colonne de silice avec élution au mélange CH2Cl2 98 - CH3OH 2 - NH4OH 0,4.

On obtient, dans l'ordre d'élution :

1) 1,2g du produit majoritaire qui est recristallisé dans le méthanol pour donner, après séchage sous vide, 1,1g du composé de l'exemple 4

Rendement = 57 %

 $F \text{ (Tottoli)} = 206-207^{\circ}\text{C}$

CCM (CH₂ Cl₂ 97 / CH₃ OH 3 / NH4OH 0,3): Rf = 0,30

- RMN¹ H δ (ppm) CDCl₃: 1,95 2,1 (m, 4H); 3,35 3,45 (m, 4H); 5,45 (s, 2H); 7,2 7,3 (dd, 1H); 7,85 (d, 1H); 8,0 (d, 1H); 8,2 (d, 1H); 8,45 8,55 (m, 2H); 8,9 (s, 1H).
 - 2) 0,25g du produit minoritaire qui est recristallisé dans le méthanol pour donner, après séchage sous vide, 0,17g du composé de l'exemple 5
- 15 Rendement = 12%

F (Tottoli) = 261-262°C

CCM (CH₂ Cl₂ 97 / CH₃ OH 3 / NH4OH 0,3) : Rf = 0,20

RMN¹ H δ (ppm) CDCl₃: 1,9 - 2,05 (m, 4H); 3,2 - 3,4 (m, 4H); 5,25 (s, 2H); 7,1 - 7,2 (m, 1H); 7,7 (d, 1H); 7,8 (d, 1H); 7,9 (d, 1H); 8,45 - 8,60 (m, 2H); 8,65 (s, 1H).

20

25

Les composés (I) des exemples 6 à 108 et les composés (II) des exemples 109 à 162, dans lesquels $X_2 = H_1$ sont préparés selon le procédé de l'exemple 1 :

Composés (I): Tableau 1

Composés (II) : Tableau 2

TABLEAU 1

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
6	Н	(E) C6H5CH=CHCH2	\bigcap_{N}	11	144	A
7	7-Cl	CH2=CHCH2	\bigcap_{N}	9	•	A
8	7-Cl	4-CH3C6H4CH2	\bigcap_{N-}	16	163	A
9	7-Cl	2-CIC6H4CH2	\bigcap_{N}	6	160-162	A

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
10	7-Cl	3-CIC6H4CH2	N-	35	157	А
11	7-C1	4-CIC6H4CH2	N_	20	166	А
12	7-Cl	4-BrC6H4CH2	N_	25	104-110	А
13	7-Cl	4-FC6H4CH2	N-	48	150	A
14	7- Cl	4-CF3C6H4CH2	\bigcap_{N}	22	138	A
15	7-CI	4-CNC6H4CH2	\bigcap_{N-}	49	165-168	A
16	7-Cl	2-(CH3O)C6H4CH2	\bigcirc	6	98-100	A
17	7-Cl	3-(CH3O)C6H4CH2	\bigcap_{N-1}	22	138	А
18	7-Cl	4-(CH3O)C6H4CH2	\bigcap_{N}	26	138	A
19	7-C1	3,4-Cl2C6H3CH2	\bigcap_{N-}	19	<u>-</u>	A
20	7-C1	3,4-(CH3O)2C6H3CH2	N-	41	172	А
21	7-Cl	(2-pyridyl)CH2	\bigcap_{N}	16	152	А
22	7-Cl	(3-pyridyl)CH2	\bigcirc	29	155	А
23	7-Cl	(4-pyridyl)CH2		64	137	А
24	7-Cl	C6H5CH2CH2	\bigcap_{N}	5	105	А
25	7-Cl	4-(CH3O)C6H4(CH2)2	N−	12	136	А
26	7-Cl	. C6H5(CH2)3		17	-	A
27	7-Cl	C6H5C(=O)CH2		26,5	105-107	A

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
28	7-Cl	4- (CH3O)C6H4C(=O)CH2	N_	30	191	A
29	7-Cl	4-CIC6H4C(=O)CH2	N-	36	190	A
30	7-Cl	4-(CH3O)-3-(COOCH3)- C6H3C(=O)CH2	\bigcap_{N}	18	140	A
31	7-Cl	(3-pyridyl)-CH2	\sim	39	176	С
32	7-Br	4-ClC6H4CH2	\bigcap_{N}	8	179	A
33	7-Br	4-FC6H4CH2	\bigcap_{N-}	21	158	A
34	7-Br	4-CNC6H4CH2	\bigcap_{N}	21	190	A
35	7-Br	3,4-(CH3O)2C6H3CH2	\bigcap_{N}	23,5	185	A
36	7-Br	(3-pyridyl)-CH2	\bigcap_{N}	4	180	С
37	7-Br	(E) C6H5CH=CHCH2	\bigcap_{N}	64	155	В
38	7-Br	(E) 4-CI- C6H4CH=CHCH2	\bigcap_{N}	25	176	В
39	7-Br	(E) 4- (CH30)C6H4CH=CHCH2		30	129	В
40	7-Br	(E) (3- pyridyl)CH=CHCH2		12	185	В
41	7-Br	(E) (4- pyridyl)CH=CHCH2	\bigcirc	39	216	В
42	7-Br	4-CH3C6H4CH2	\bigcap_{N}	53	215	В
43	7-Br	4-CIC6H4CH2	N-	12	105	A
44	7-Br	4-FC6H4CH2	\bigcap_{N}	42	166	A
45	7-Br	3-CNC6H4CH2	\bigcap_{N}	52	206	В

Nº Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
46	7-Br	4-CNC6H4CH2	N →	19	116	А
47	7-Br	4-(COOCH3)C6H4CH2	\sim	54	205	А
48	7-Br	4-NO2C6H4CH2	N−	52	200	В
49	7-Br	4-(CH3O)C6H4CH2	\sim	39	169	В
50	7-Br	4-(OCOCH3)C6H4CH2	N—	21	195	В
51	7-Br	4-OHC6H4CH2	\bigcap_{N}	13	288	В
52	7-Br	3,4-(CH3O)2C6H3CH2	N-	15	151	A
53	7-Br	3,4-(OCH2O)C6H3CH2	N_	21	194	A
54	7-Br	3,5-(CH3O)2C6H3CH2	N-	31	-	A
55	7-Br	3,4,5-(CH3O)3C6H2CH2	\sim	35	141-143	A
56	7-Br	4-(CH2COOH)C6H4CH2	N	17	260	В
57	7-Br	(E) C6H5CH=CHCH2	\bigcap_{N}	57	152-155	A
58	7-Br	(Z) C6H5CH=CHCH2		24	110	В
59	7-Br	(E) (4-ClC6H4)- CH=CHCH2	\sim	45	187	В
60	7-Br	(E) (4- CH3O)C6H4CH=CHCH2	\sim	32	171	В
61	7-Br	(E) (3-pyridyl)- CH=CHCH2	\bigcirc	10	102	В
62	7-Br	(E) (4-pyridyl)- CH=CHCH2		38	167	В
63	7-Br			4	290(dec)	В

Nº Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
64	7-Br	Jon No.	N →	60	221	В
65	7-Br	$\bigcirc \bigcirc$	N-	32	155	В
66	7-Br	n-butyl	N—	39	135	В
67	7-Br	CH2CF3	N-	14	202	В
68	7-Br	СН2СН2ОН	\bigcap_{N}	25	240	В
69	7-Br	CH2CH2N(C2H5)2	N-	50	215 (HCl)	С
70	7-Br		N-	36	204	В
71	7-Br	CH2CH2OC6H5	N-	25	171	В
72	7-Br	CH2CH2SC6H5	\bigcap_{N}	20	122	В
73	7-Br	СН(С6Н5)СООСН3	\bigcap_{N}	14	184	В
74	7-Br	4-CNC6H4CH2	\sim	72	200	В
75	7-Br	3,4-(CH3O)2C6H3CH2	\sim	67	178	В
76	7-Br	(E) C6H5CH=CHCH2	\sim	8	•	А
77	7-Br	(E) (3- pyridyl)CH=CHCH2	S	48	177	В
78	7-Br	4-CH3C6H4CH2	CH ₃ N CH ₃	56	223	В
79	7-Br	4-CNC6H4CH2	CH ₃ N CH ₃	56	207	В
80	7-Br	4-OHC6H4CH2	СН³ N СН³	15	284	В
81	7-Br	4-(COOCH3)C6H4CH2	CH ₃ N_CH ₃	35	197	В

Nº Composé	Х1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
82	7-Br	4-(CH2COOH)C6H4CH2	CH₃ N CH₃	8	246	В
83	7-Br	4-(CH2CN)C6H4CH2	CH ₃ N CH ₃	<1	230	В
84	7-Br	(3-pyridyl)-CH2	CH ₃ N CH ₃	28	142	В
85	7-Br	(E) C6H5CH=CHCH2	CH ₃ N CH ₃	63	171	В
86	7-Br	(Z) C6H5CH=CHCH2	CH ₃ N_CH ₃	28	167	В
87	7-Br	(E) (4-pyridyl)- CH=CHCH2	CH ₃ N_CH ₃	48	115	В
88	7-Br		CH ₃ I N CH ₃	<1	234	В
89	7-Br	C6H5C=CCH2	CH ₃ N CH ₃	15	159	В
90	7-Br	CH(C6H5)COOCH3	CH ₃ N CH ₃	18	243	В
91	7-CH3	(3-pyridyl)-CH2	\bigcap_{N}	64	175	С
92	7-CH3	(E) C6H5CH=CHCH2	\bigcap_{N}	16	195	A
93	7-CH3	4-CNC6H4CH2	N	84	166	В
94 -	7-CH3	3,4-(CH3O)2C6H3CH2	N	52	184	В
95	7-CH3	4-(COOCH3)C6H4CH2	$\overline{\bigcap}$	44	230	В
96	7-CH3	4-(CH2COOH)C6H4CH2	\sim	21	262	В
97	7-CH3	(3-pyridyl)-CH2	\bigcap_{N}	10	139	С
98	7-CH3	(E) C6H5CH=CHCH2	N −	17	173	A
99	7-CH3	4-(CH2COOH)C6H4CH2	S	10	-	В

Nº Composé	XI	R	NR4R5	Rdt (%)	PF (°C)	Méthode
100	7-CH3	(E) (3- pyridyl)CH=CHCH2	S N	51	230	В
101	7-CH3	4-CNC6H4CH2	CH ₃ N CH ₃	73	201	В
102	7-CH3	4-(CH2COOH)C6H4CH2	CH ₃ I N CH ₃	3	-	В
103	7-CH3	(E) C6H5CH=CHCH2	CH ₃ N_CH ₃	50	171	В
104	7-CH3	(E) (3- pyridyl)CH=CHCH2	CH ₃ N CH ₃	53	155	В
105	7-CH3	(E) (4-pyridyl)- CH=CHCH2	CH ₃ N CH ₃	66	119	В
106	8-CH3	(E) C6H5CH=CHCH2	N	52	-	A
107	7-CN	4-CNC6H4CH2	CH ₃ N CH ₃	43	147-149	В
108	7-OH	(E) C6H5CH=CHCH2	\bigcap_{N}	3	295(dec)	A

- Composé 6:

R.M.N. ¹H δ (ppm): 1,7 – 1,85 (m, 8H); 3,3 – 3,4 (m, 4H); 4,95 (d, 2H); 6,4 – 6,5 (dt, 5 1H); 6,7 – 6,75 (d, 1H); 7,25 (t, 1H); 7,3 (t, 2H); 7,45 (d, 2H); 7,6 (t, 1H); 7,95 (t, 1H); 8,25 (d, 1H); 8,4 (d, 1H)

Solvant : DMSO

- Composé 7:

10 R.M.N.¹H δ (ppm): 1,5 – 1,9 (m, 8H); 3,3 (m, 4H); 4,8 (d, 2H); 5,2 (d, 1H); 5,4 (d, 1H); 5,95 (m, 1H); 7,65 (d, 1H); 8,25 (s, 1H); 8,3 (d, 1H)

Solvant: CDCl₃

- Composé 8:

15 R.M.N. H δ (ppm): 1,7 – 2,0 (m, 8H); 2,3 (s, 3H); 3,35 (m, 4H); 5,4 (s, 2H); 7,1 (d, 2H); 7,6 (d, 2H); 7,7 (d, 1H); 8,35 (m, 2H)

Solvant: CDCl₃

```
- Composé 9:
```

R.M.N. 1 H δ (ppm) : 1,75 – 1,95 (m, 8H) ; 3,4 (m, 4H) ; 5,6 (s, 2H) ; 7,05 – 7,25 (m, 3H) ; 7,4 (d, 1H) ; 7,75 (d, 1H) ; 8,35 (s, 1H) ; 8,45 (d, 1H)

Solvant: CDCl₃

5

- Composé 10:

R.M.N. 1 H δ (ppm) : 1,6 - 2,0 (m, 8H) ; 3,35 (m, 4H) ; 5,4 (s, 2H) ; 7,2 (m, 2H) ; 7,55 (s, 1H) ; 7,65 (s, 1H) ; 7,7 (d, 1H) ; 8,35 (m, 2H)

Solvant: CDCl₃

10

- Composé 11:

R.M.N. 1 H δ (ppm) : 1,65 - 1,9 (m, 8H) ; 3,3 (m, 4H) ; 5,35 (s, 2H) ; 7,2 (d, 2H) ; 7,55 (d, 2H) ; 7,65 (d, 1H) ; 8,25 (m, 2H)

Solvant: CDCl₃

15

- Composé 12:

R.M.N. 1 H δ (ppm) : 1,7 – 2 (m, 8H) ; 3,4 (m, 4H) ; 5,4 (s, 2H) ; 7,4 (d, 2H) ; 7,55 (d, 2H) ; 7,7 (d, 1H) ; 8,3 (s, 1H) ; 8,35 (d, 1H)

Solvant: CDCl₃

20

- Composé 13:

R.M.N. ^{1}H δ (ppm) : 1,75 - 1,95 (m, 8H) ; 3,4 (m, 4H) ; 5,4 (s, 2H) ; 7,0 (m, 2H) ; 7,7 (m, 3H) ; 8,35 (m, 2H)

Solvant: CDCl3

25

- Composé 14:

R.M.N. 1 H δ (ppm) : 1,7 - 1,95 (m, 8H); 3,4 (m, 4H); 5,5 (s, 2H); 7,55 (d, 2H); 7,7 (d, 1H); 7,8 (d, 2H); 8,3 - 8,45 (m, 2H)

Solvant: CDCl₃

30

- Composé 15:

R.M.N. 1 H δ (ppm) : 1,65 - 2 (m, 8H) ; 3,4 (m, 4H) ; 5,45 (s, 2H) ; 7,55 (d, 2H) ; 7,7 - 7,85 (m, 3H) ; 8,25 - 8,45 (m, 2H)

Solvant: CDCl₃

- Composé 16:

R.M.N. 1 H δ (ppm) : 1,75 - 1,95 (m, 8H); 3,4 (m, 4H); 3,9 (s, 3H); 5,5 (s, 2H); 6,8 (t, 1H); 6,9 (d, 1H); 7,1 (d, 1H); 7,2 (t, 1H); 8,35 (s, 1H); 8,4 (d, 1H)

5 Solvant: CDCl₃

- Composé 17:

R.M.N. 1 H δ (ppm) : 1,75 – 1,95 (m, 8H) ; 3,4 (m, 4H) ; 3,8 (s, 3H) ; 5,5 (s, 2H) ; 6,8 (m, 1H) ; 7,25 (m, 3H) ; 7,75 (d, 1H) ; 8,4 (m, 2H)

10 Solvant: CDCl₃

- Composé 18:

R.M.N. 1 H δ (ppm) : 1,75 – 1,95 (m, 8H) ; 3,4 (m, 4H) ; 3,75 (s, 3H) ; 5,4 (s, 2H) ; 6,85 (d, 2H) ; 7,7 (m, 3H) ; 8,35 (m, 2H)

15 Solvant: CDCl₃

- Composé 19:

R.M.N. 1 H δ (ppm) : 1,7 - 2,0 (m, 8H); 3,35 (m, 4H); 5,4 (s, 2H); 7,3 (d, 1H); 7,5 (d, 1H); 7,75 (m, 2H); 8,3 (s, 1H); 8,35 (d, 1H)

20 Solvant: CDCl₃

- Composé 20:

R.M.N. 1 H δ (ppm) : 1,75 – 1,95 (m, 8H) ; 3,4 (m, 4H) ; 3,85 (s, 3H) ; 3,90 (s, 3H) ; 5,4 (s, 2H) ; 6,75 (d, 1H) ; 7,35 (m,2H) ; 7,7 (d, 1H) ; 8,35 (m, 2H)

25 Solvant: CDCl₃

- Composé 21:

R.M.N. H δ (ppm): 1,7 – 1,95 (m, 8H); 3,4 (m, 4H); 5,6 (s, 2H); 7,15 (m, 1H); 7,4 (d, 1H); 7,6 (m, 1H); 7,75 (d, 1H); 8,35 (s, 1H); 8,4 (d, 1H); 8,45 (m, 1H)

30 Solvant: CDCl₃

- Composé 22:

R.M.N. 1 H δ (ppm) : 1,6 - 1,95 (m, 8H); 3,35 (m, 4H); 5,4 (s, 2H); 7,2 (m, 1H); 7,7 (d, 1H); 8,0 (m, 1H); 8,3 (m, 2H); 8,5 (m, 1H); 8,9 (s, 1H)

- <u>Composé 23</u>:

R.M.N.¹H δ (ppm): 1,6 – 1,9 (m, 8H); 3,3 (m, 4H); 5,35 (s, 2H); 7,4 (d, 2H); 7,65 (d, 1H); 8,25 (s, 1H); 8,3 (d, 1H); 8,45 (d, 2H) Solvant: CDCl₃

- Composé 24:

R.M.N. 1 H δ (ppm): 1,7 - 2,1 (m, 8H); 3,15 (t, 2H); 3,4 (m, 4H); 4,5 (t, 2H); 7,2-7,45 (m, 5H); 7,7 (d, 1H); 8,35 (s, 1H); 8,35 (s, 1H); 8,4 (d, 1H) Solvant: CDCl₃

- Composé 25:

R.M.N.¹H δ (ppm): 1,7 – 1,95 (m, 8H); 3,05 (t, 2H); 3,4 (m, 4H); 3,8 (s, 3H); 4,45 (t, 2H); 6,85 (d, 2H); 7,25 (d, 2H); 7,7 (d, 1H); 8,3 (s, 1H); 8,4 (d, 1H) Solvant: CDCl₃

- Composé 26:

R.M.N.¹H δ (ppm): 1,7 – 2,0 (m, 8H); 2,2 (qn, 2H); 2,75 (t, 2H); 3,35 (m, 4H); 4,35 (t, 2H); 7,0 – 7,2 (m, 5H); 7,7 (d, 1H); 8,3 (s, 1H); 8,35 (d, 1 H) Solvant: CDCl₃

- Composé 27 :

25 R.M.N.1H δ (ppm): 1.65-1.85(m,8H); 3.35(m,4H); 5.7(s,2H); 7.6(t,2H); 7.75(t,1H); 8.05(d,1H); 8.15(m,3H); 8.4(d,1H) Solvant: DMSO

- Composé 28:

30 R.M.N. H δ (ppm): 1,75 – 1,95 (m, 8H); 3,4 (m, 4H); 3,9 (s, 3H); 5,7 (s, 2H); 7,0 (d, 2H); 7,8 (d, 1H); 8,05 (d, 2H); 8,35 (s, 1H); 8,45 (d, 1 H)

Solvant: CDCl₃

- Composé 29:

R.M.N. 1 H δ (ppm) : 1,75 – 1,95 (m, 8H) ; 3,4 (m, 4H) ; 5,7 (s, 2H) ; 7,45 (d, 2H) ; 7,8 (d, 1H) ; 8 (d, 2H) ; 8,3 (s, 1H) ; 8,4 (d, 1H) Solvant : CDCl₃

5

- <u>Composé 30</u>:

R.M.N. H δ (ppm): 1,75 – 1,95 (m, 8H); 3,4 (m, 4H); 3,9 (s, 3H); 4 (s, 3H); 5,7 (s, 2H); 7,1 (d, 1H); 7,8 (d, 1H); 8,2 (d, 1 H); 8,35 (s, 1H); 8,45 (s, 1H); 8,5 (s, 1H) Solvant: CDCl₃

10

- Composé 31:

R.M.N. 1 H δ (ppm) : 2,0 - 2,1 (m, 4H); 3,35 - 3,45 (m, 4H); 5,45 (s, 2H); 7,2 - 7,3 (dd, 1H); 7,75 (d, 1H); 8,05 (d, 1H); 8,25 (d, 1H); 8,35 (s, 1 H); 8,55 (d, 1H); 8,9 (s, 1H) Solvant : CDCl₃

15

- Composé 32:

 $R.M.N.^{1}H\ \delta\ (ppm): 1,7-1,95\ (m,\ 8H)\ ;\ 3,4\ (m,\ 4H)\ ;\ 5,45\ (s,\ 2H)\ ;\ 7,25\ (d,\ 2H)\ ;\ 7,75\ (d,\ 2H)\ ;\ 7,9\ (d,\ 1H)\ ;\ 8,25\ (d,\ 1H)\ ;\ 8,45\ (s,\ 1H)$ Solvant: CDCl₃

20

- Composé 33:

R.M.N. 1 H δ (ppm) : 1,7 - 2,0 (m, 8H); 3,3 - 3,45 (m, 4H); 5,4 (s, 2H); 6,9 - 7,0 (m, 2H); 7,65 - 7,75 (m, 2H); 7,9 (d, 1H); 8,3 (d, 1H); 8,5 (s, 1H) Solvant : CDCl₃

25

- Composé 34:

R.M.N. 1 H δ (ppm) : 1,8 - 2 (m, 8H) ; 3,35 - 3,5 (m, 4H) ; 5,5 (s, 2H) ; 7,6 (dd, 2H) ; 7,8 (dd,2H) ; 7,9 (m, 1H) ; 8,3 (dd, 1H) ; 8,5 (d, 1H) Solvant : CHCl₃

30

- Composé 35:

R.M.N. 1 H δ (ppm): 1,7 – 2 (m, 8H); 3,3 – 3,45 (m, 4H); 3,8 (s, 3H); 3,85 (s, 3H); 5,4 (s, 2H); 6,8 (d, 1H); 7,25 – 7,35 (m, 2H); 7,8 (d, 1H); 8,3 (d, 1H); 8,5 (s, 1H)

- Composé 36:

R.M.N. ¹H δ (ppm): 1,8 – 1,95 (m, 8H); 3,4 (m, 4H); 5,45 (s, 2H); 7,25 (m, 1H); 7,9 (d, 1H); 8,1 (d, 1H); 8,35 (d, 1H); 8,5 (m, 2H); 8,95 (s, 1H)

Solvant: CDCl₃

- Composé 37:

R.M.N. ¹H δ (ppm): 1,7 – 1,95 (m, 8H); 3,4 (m, 4H); 5,05 (d, 2H); 6,45 (dt, 1H); 6,9 (d, 1H); 7,15 – 7,3 (m, 3H); 7,35 (d, 2H); 7,9 (d, 1H); 8,3 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 38:

R.M.N.¹H δ (ppm): 1,7 – 2 (m, 8H); 3,3 – 3,5 (m, 4H); 5,05 (d, 2H); 6,35 – 6,45 (m, 1H); 6,75 – 6,85 (d, 1H); 7,2 – 7,35 (m, 4H); 7,85 (m, 1H); 8,3 (m, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 39:

R.M.N.¹H δ (ppm): 1,7 – 1,95 (m, 8H); 3,3 – 3,45 (m, 4H); 3,75 (s, 3H); 5,05 (m, 2H); 6,25 – 6,35 (m, 1H); 6,8 (m, 3H); 7,3 (m, 2H); 7,85 (m, 1H); 8,3 (m, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 40:

R.M.N.¹H δ (ppm): 1,7 – 2 (m, 8H); 3,3 – 3,5 (m, 4H); 5,05 (d, 2H); 6,45 – 6,55 (m, 1H); 6,85 (d, 1H); 7,2 (m, 1H); 7,65 (m, 1H); 7,9 (m, 1H); 8,35 (d, 1H); 8,45 (m, 1H); 8,5 (d, 1H); 8,6 (d, 1H)

Solvant: CDCl₃

- Composé 41 :

30 R.M.N. 1 H δ (ppm): 1,7 - 2 (m, 8H); 3,3 - 3,5 (m, 4H); 5,05 (d, 2H); 6,55 - 6,7 (m, 1H); 6,8 (d, 1H); 7,2 (d, 2H); 7,9 (m, 1H); 8,3 (d, 1H); 8,5 (m, 3H)

- Composé 42:

R.M.N. ¹H δ (ppm) : 2 - 2,1 (m, 4H); 2,3 (s, 3H); 3,3 - 3,45 (m, 4H); 5,4 (s, 2H); 7,1 (d, 2H); 7,6 (d, 2H); 7,8 (d, 1H); 8,1 (d, 1H); 8,5 (s, 1H)

Solvant : CDCl₃

- Composé 43:

R.M.N. ¹H δ (ppm): 1,9 – 2,05 (m, 4H); 3,25 – 3,4 (m, 4H); 5,35 (s, 2H); 7,2 (d, 2H); 7,6 (d, 2H); 7,8 (d, 1H); 8,1 (d, 1H); 8,4 (s, 1H)

Solvant: CDCl₃

- Composé 44:

R.M.N. 1 H δ (ppm): 2,0 - 2,1 (m, 4H); 3,35 - 3,45 (m, 4H); 5,4 (s, 2H); 6,9 - 7,0 (m, 2H); 7,6 - 7,7 (m, 2H); 7,85 (d, 1H); 8,1 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 45:

R.M.N.¹H δ (ppm): 2 – 2,15 (m, 4H); 3,35 – 3,5 (m, 4H); 5,45 (s, 2H); 7,45 (t, 1H); 7,55 (d, 1H); 7,85 – 8,0 (m, 3H); 8,2 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 46:

R.M.N.¹H δ (ppm): 1,95 – 2,1 (m, 4H); 3,35 – 3,5 (m, 4H); 5,45 (s, 2H); 7,6 (d, 2H); 7,8 (d, 2H); 7,9 (d, 1H); 8,15 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

- Composé 47:

R.M.N.¹H δ (ppm) : 2 – 2,1 (m, 4H); 3,35 – 3,45 (m, 4H); 3,9 (s, 3H); 5,5 (s, 2H); 7,7 (d, 2H); 7,9 (d, 1H); 8,0 (d, 2H); 8,15 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl3

- Composé 48:

R.M.N. 1 H δ (ppm) : 2 - 2,15 (m, 4H) ; 3,3 - 3,45 (m, 4H) ; 5,5 (s, 2H) ; 7,75 - 7,9 (m, 5 3H) ; 8,1 - 8,2 (m, 3H) ; 8,5 (s, 1H)

Solvant: CDCl₃

- Composé 49:

R.M.N. ¹H δ (ppm): 2 – 2,15 (m, 4H); 3,35 – 3,5 (m, 4H); 3,75 (s, 3H); 5,4 (s, 2H); 6,8 (d, 2H); 7,65 (d, 2H); 7,8 (d, 1H); 8,15 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 50:

R.M.N.¹H δ (ppm): 2 – 2,15 (m, 4H); 2,25 (s, 3H); 3,35 – 3,45 (m, 4H); 5,45 (s, 2H); 7,0 (d, 2H); 7,75 (d, 2H); 7,85 (d, 1H); 8,15 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 51:

R.M.N.¹H δ (ppm): 1,9 – 2,1 (m, 4H); 3,2 – 3,45 (m, 4H); 5,2 (s, 2H); 6,7 (d, 2H); 7,35 (d, 2H); 8 (d, 1H); 8,2 (d, 1H); 8,3 (s, 1H); 9,25 (s, 1H) Solvant: CDCl₃

- Composé 52 :

R.M.N.¹H δ (ppm): 2,0 – 2,1 (m, 4H); 3,35 – 3,45 (m, 4H); 3,85 (s, 3H); 3,9 (s, 3H); 5,4 25 (s, 2H); 6,8 (d, 1H); 7,2 – 7,35 (m, 2H); 7,8 (d, 1H); 8,15 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 53:

R.M.N. 1 H δ (ppm) : 2,0 - 2,1 (m, 4H); 3,3 - 3,4 (m, 4H); 5,35 (s, 2H); 5,9 (s, 2H); 6,7 (d, 1H); 7,15 - 7,3 (m, 2H); 7,85 (d, 1H); 8,1 (d, 1H); 8,5 (s, 1H)

Composé 54:

R.M.N. H δ (ppm): 2 – 2,1 (m, 4H); 3,35 – 3,4 (m, 4H); 3,75 (s, 6H); 5,4 (s, 2H); 6,35 (s, 1H); 6,8 (s, 2H); 7,85 (d, 1H); 8,2 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 55:

R.M.N. ¹H δ (ppm) : 2 – 2,1 (m, 4H); 3,35 – 3,45 (m, 4H); 3,8 (s, 3H); 3,85 (s, 6H); 5,4 (s, 2H); 7 (s, 2H); 7,85 (d, 1H); 8,2 (d, 1H); 8,5 (s, 1H) Solvant : CDCl₃

- Composé 56:

R.M.N. ¹H δ (ppm): 1,95 - 2,1 (m, 4H); 3,25 - 3,45 (m, 4H); 3,55 (s, 2H); 5,4 (s, 2H); 7,25 (d, 2H); 7,35 (d, 2H); 8,15 (d, 1H); 8,2 (d, 1H); 8,35 (s, 1H); 12,2 - 12,5 (m, 1H) Solvant: CDCl₃

- Composé 57:

R.M.N.¹H δ (ppm): 2,1 (m, 4H); 3,4 (m, 4H); 5,05 (d, 2H); 6,4 (dt, 1H); 6,9 (d, 1H); 7,15 – 7,3 (m, 3H); 7,35 (d, 2H); 7,9 (d, 1H); 8,15 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 58:

R.M.N. H δ (ppm): 2,0 – 2,15 (m, 4H); 3,35 – 3,5 (m, 4H); 5,2 (d, 2H); 5,7 – 5,8 (m, 25 H); 6,7 (d, 1H); 7,2 – 7,45 (m, 5H); 7,9 (d, 1H); 8,2 (d, 1H); 8,6 (s, 1H) Solvant: CDCl₃

- Composé 59:

30 R.M.N. H δ (ppm): 2,05 (m, 4H); 3,4 (m, 4H); 5 (d, 2H); 6,4 (m, 1H); 6,85 (d, 1H); 7,15 – 7,3 (m, 4H); 7,85 (m, 1H); 8,15 (d, 1H); 8,45 (s, 1H)

Solvant: CDCl₃

- Composé 60:

R.M.N.¹H δ (ppm) : 1,95 – 2,10 (m, 4H) ; 3,4 (m, 4H) ; 3,75 (s, 3H) ; 4,95 (m, 2H) ; 6,25 – 6,35 (m, 1H) ; 6,75 – 6,9 (m, 3H) ; 7,2 – 7,3 (m, 2H) ; 7,85 (m, 1H) ; 8,15 (m, 1H) ; 8,45 (m, 1H)

5 Solvant: CDCl₃

- Composé 61:

R.M.N. ¹H δ (ppm): 1,95 – 2,15 (m, 4H); 3,3 – 3,5 (m, 4H); 5,05 (m, 2H); 6,45 – 6,55 (m, 1H); 6,75 – 6,9 (d, 1H); 7,2 (m, 1H); 7,6 – 7,7 (m, 1H); 7,85 – 7,95 (m, 1H); 8,15 (m, 1H); 8,4 (m, 1H); 8,5 (m, 1H); 8,6 (m, 1H) Solvant: CDCl₃

- Composé 62:

15 R.M.N. H δ (ppm): 1,9 – 2,05 (m, 4H); 3,3 – 3,45 (m, 4H); 5,05 (d, 2H); 6,55 – 6,7 (m, 1H); 6,8 (d, 1H); 7,25 (m, 2H); 7,9 (m, 1H); 8,2 (m, 1H); 8,45 - 8,55 (m, 3H)

Solvant: CDCl₃

- Composé 63:

20 R.M.N. H δ (ppm): 1,8 – 1,9 (m, 2H); 3,25 (m, 2H); 5,1 (s, 2H); 6,9 (s, 1H); 7,4 (s, 1H); 8 (d, 1H); 8,1 (d, 1H); 8,2 (s, 1H); 11, 8 (m, 1H)

Solvant: DMSO

- Composé 64:

25 R.M.N. H δ (ppm): 2,05 – 2,15 (m, 4H); 2,4 (s, 3H); 2,6 (s, 3H); 3,4 (m, 4H); 5,2 (s, 2H); 7,9 (d, 1H); 8,2 (d, 1H); 8,4 (s, 1H)

Solvant: CDCl₃

- Composé 65:

30 R.M.N. H δ (ppm): 1,25 – 1,75 (m, 8H); 1,9 – 2,05 (m, 4H); 2,5 – 2,7 (m, 1H); 3,3 – 3,4 (m, 4H); 4,2 (d, 2H); 7,8 (d, 1H); 8,1 (d, 1H); 8,45 (s, 1H)

Solvant: CDCl₃

```
- Composé 66:
```

R.M.N. 1 H δ (ppm) : 1 (t, 3H); 1,4 - 1,55 (m, 2H); 1,8 - 1,9 (m, 2H); 2,0 - 2,1 (m, 4H); 3,4 - 3,5 (m, 4H); 4,3 (t, 2H); 7,9 (d, 1H); 8,2 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

5

- Composé 67:

R.M.N. 1 H δ (ppm) : 2 – 2,15 (m, 4H) ; 3,35 – 3,5 (m, 4H) ; 5,0 (q, 2H) ; 7,9 (d, 1H) ; 8,2 (d, 1H) ; 8,55 (s, 1H)

Solvant: CDCl₃

10

- Composé 68:

R.M.N. 1 H δ (ppm) : 2 (m, 4H); 3,15 (m, 1H); 3,3 (m, 4H); 4,05 (m, 2H); 4,5 (m, 2H); 7,08 (m, 1H); 8,15 (m, 1H); 8,4 (s, 1H)

Solvant: CDCl₃

15

- Composé 69:

R.M.N. 1 H δ (ppm) : 1,1 (t, 6H) ; 2,0 – 2,1 (m, 4H) ; 2,65 (q, 4H) ; 2,9 (t, 2H) ; 3,35 – 3,45 (m, 4H) ; 4,4 (t, 2H) ; 7,9 (d, 1H) ; 8,2 (d, 1H) ; 8,5 (s, 1H) Solvant : CDCl₃

20

- Composé 70:

R.M.N. 1 H δ (ppm) : 2 – 2,15 (m, 4H) ; 2,3 (s, 1H) ; 3,35 – 3,5 (m, 4H) ; 5,1 (s, 2H) ; 7,9 (d, 1H) ; 8,2 (d, 1H) ; 8,5 (s, 1H)

Solvant: CDCl₃

25

- Composé 71 :

R.M.N. 1 H δ (ppm) : 2,1 (m, 4H) ; 3,4 (m, 4H) ; 4,45 (m, 2H) ; 4,75 (m, 2H) ; 6,9 (m, 3H) ; 7,2 – 7,3 (m, 2H) ; 7,9 (m, 1H) ; 8,2 (m, 1H) ; 8,5 (s, 1H)

Solvant: CDCl₃

30

- Composé 72:

R.M.N. H δ (ppm): 2,1 (m, 4H); 3,45 (m, 6H); 4,6 (m, 2H); 7,1 (m, 1H); 7,2 (m, 2H); 7,4 (m, 2H); 7,85 (m, 1H); 8,1 (m, 1H); 8,45 (s, 1H)

- <u>Composé 73</u>:

R.M.N. ¹H δ (ppm): 1,9 - 2,05 (m, 4H); 3,3 - 3,4 (m, 4H); 3,08 (s, 3H); 6,7 (s, 1H); 7,2 - 7,35 (m, 3H); 7,7 - 7,85 (m, 3H); 8,1 (d, 1H); 8, 4 (s, 1H)

Solvant: CDCl₃

- Composé 74:

R.M.N. H δ (ppm): 1,4 – 1,6 (m, 1H); 1,7 - 2 (m, 5H); 3 – 3,1 (m, 2H); 3,3 – 3,4 (m, 2H); 5,5 (s, 2H); 7,6 (d, 2H); 7,8 (d, 2H); 7,9 (d, 1H); 8,3 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 75:

R.M.N. ¹H δ (ppm): 1,4 (m, 1H); 1,7 – 1,95 (m, 5H); 3 – 3,1 (m, 2H); 3,3 – 3,4 (m, 2H); 3,8 (s, 3H); 3,9 (s, 3H); 5,4 (s, 2H); 6, 8 (d, 1H); 7,25 – 7,35 (m, 2H); 7,9 (d, 1H); 8,3 (d, 1H); 8,40 (s, 1H)

Solvant: CDCl₃

- Composé 76:

20 R.M.N. ¹H δ (ppm): 1,35 – 2,1 (m, 6H); 3,05 (t, 2H); 3,35 (m, 2H); 5,1 (d, 2H); 6,5 (dt, 1H); 6,9 (d, 1H); 7,1 – 7,5 (m, 5H); 7,9 (d, 1H); 8,3 (d, 1H); 8,55 (s, 1H)

Solvant: CDCl₃

- Composé 77 :

25 R.M.N. H δ (ppm): 2,9 (m, 4H); 3,45 (m, 2H); 3,6 (m, 2H); 5,1 (m, 2H); 6,5 (m, 1H); 6,85 (d, 1H); 7,2 (m, 1H); 7,65 (m, 1H); 7,9 (m, 1H); 8,25 (m, 1H); 8,45 (m, 1H); 8,55 (m, 1H); 8,55 (s, 1H)

Solvant: CDCl₃

30 - Composé 78:

R.M.N. 1 H δ (ppm) : 2,3 (s, 3H) ; 2,9 (s, 6H) ; 5,4 (s, 2H) ; 7,1 (d, 2H) ; 7,6 (d, 2H) ; 7,85 (d, 1H) ; 8,2 (d, 1H) ; 8,5 (s, 1H) . Solvant : CDCl₃

```
- Composé 79:
```

R.M.N. 1 H δ (ppm) : 2,95 (s, 6H); 5,45 (s, 2H); 7,55 (d, 2H); 7,75 (d, 2H); 7,9 (d, 1H); 8,2 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

5

- Composé 80:

R.M.N. 1 H δ (ppm) : 2,85 (s, 6H); 5,2 (s, 2H); 6,7 (d, 2H); 7,3 (d, 2H); 8 (d, 1H); 8,2 – 8,3 (m, 2H); 9,3 (s, 1H)

Solvant: CDCl₃

10

- Composé 81:

R.M.N. 1 H δ (ppm) : 2,9 (s, 6H); 3,9 (s, 3H); 5,45 (s, 2H); 7,7 (m, 2H); 7,85 (m, 1H); 7,9 (m, 2H); 8,2 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

15

- Composé 82:

R.M.N. H δ (ppm): 2,85 (s, 6H); 3,6 (s, 2H); 5,35 (s, 2H); 7,25 (d, 2H); 7,5 (d, 2H); 8,15 (d, 1H); 8,3 (d, 1H); 8, 35 (s, 1H); 12,2 – 12,45 (m, 1H)

Solvant: DMSO

20

- Composé 83:

R.M.N. 1 H δ (ppm) : 2,9 (s, 6H); 3,7 (s, 2H); 5,45 (s, 2H); 7,25 (m, 2H); 7,7 (m, 2H); 7,85 (m, 1H); 8,2 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

25

- Composé 84:

R.M.N. 1 H δ (ppm) : 2,9 (s, 6H); 5,5 (s, 2H); 7,25 (m, 1H); 7,85 (m, 1H); 8,05 (m, 1H); 8,25 (d, 1H); 8,5 (m, 2H); 8,9 (s, 1H)

Solvant: CDCl₃

30

- Composé 85:

R.M.N. H δ (ppm): 2,9 (s, 6H); 5,05 (d, 2H); 6,4 – 6,55 (dt, 1H); 6,9 (d, 1H); 7,2 – 7,4 (m, 5H); 7,9 (d, 1H); 8,25 (d, 1H); 8,55 (s, 1H)

- Composé 86:

R.M.N. 1 H δ (ppm) : 2,95 (s, 6H); 5,29 (d, 2H); 5,7 – 5,8 (m, 1H); 6,7 (d, 1H); 7,2 – 7,45

5 (m, 5H); 7,9 (d, 1H); 8,25 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

- Composé 87_:

R.M.N. 1 H δ (ppm) : 2,9 (s, 6H); 5,05 (d, 2H); 6,55 – 6,7 (m, 1H); 6,85 (d, 1H); 7,2 (m,

10 2H); 7,85 (m, 1H); 8,25 (d, 1H); 8,5 (m, 3H)

Solvant: CDCl₃

- Composé 88:

R.M.N. 1 H δ (ppm) : 2,8 (s, 6H); 3,2 (s, 1H); 4,9 (s, 2H); 8,1 (m, 1H); 8,2 (d, 1H); 8,3 (s,

15 1H)

Solvant: DMSO

- Composé 89:

R.M.N. 1 H δ (ppm) : 2,9 (s, 6H); 5,2 (s, 2H); 7,2 (m, 3H); 7,4 (m, 2H); 7,85 (m, 1H); 8,2

20 (d, 1H); 8,55 (s, 1H)

Solvant: CDCl₃

- Composé 90:

R.M.N. H δ (ppm): 2,95 (s, 6H); 3,85 (s, 3H); 6,8 (s, 1H); 7,3 – 7,4 (m, 3H); 7,75 – 7,9

25 (m, 3H); 8,2 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

- Composé 91:

R.M.N. 1 H δ (ppm): 1,75 – 1,9 (m, 8H); 2,5 (s, 3H); 3,4 – 3,5 (m, 4H); 5,5 (s, 2H); 7,2 –

7,3 (dd, 1H); 7,6-7,65 (d, 1H); 8,05-8,01 (d, 1H); 8,2 (s, 1H); 8,3-8,35 (d, 1H);

8,55 (d, 1H); 8,95 (s, 1H)

Solvant: CDCl₃

- Composé 92:

R.M.N. H δ (ppm): 1,75 – 2 (m, 8H); 2,5 (s, 3H); 3,4 – 3,5 (m, 4H); 5,1 (d, 1H); 5,4 – 5,55 (dt, 1H); 6,9 – 7 (d, 1H); 7,2 – 7,3 (m, 4H); 7,4 (d, 2H); 7,6 (d, 1H); 8,2 (s, 1H); 8,3 (d, 1H)

5 Solvant: CDCl₃

- Composé 93:

R.M.N. ¹H δ (ppm) : 2 – 2,1 (m, 4H); 2,5 (s, 3H); 3,3 – 3,4 (m, 4H); 5,5 (s, 2H); 7,6 (m, 3H); 7,8 (d, 2H); 8,1 - 8,2 (m, 2H)

Solvant : CDCl₃

- Composé 94:

R.M.N. 1 H δ (ppm) : 2 – 2,1 (m, 4H); 2,5 (s, 3H); 3,4 – 3,5 (m, 4H); 3,8 (s, 3H); 3,9 (s, 3H); 5,4 (s, 2H); 6,8 (d, 1H); 7,3 - 7,4 (m, 2H); 7,5 (d, 1H); 8,1 – 8,2 (m, 2H) Solvant : CDCl₃

- Composé 95:

20 R.M.N. 1 H δ (ppm) : 2,1 – 2,2 (m, 4H) ; 2,5 (s, 3H) ; 3,4 – 3,5 (m, 4H) ; 3,9 (s, 3H) ; 5,5 (s, 2H) ; 7,6 (m, 1H) ; 7,7 (m, 2H) ; 7,95 - 8 (m, 2H) ; 8,1 – 8,2 (m, 2H) Solvant : CDCl₃

- Composé 96:

25 R.M.N. ¹H δ (ppm): 2 (m, 4H); 2,5 (s, 3H); 3,3 – 3,4 (m, 4H); 3,6 (s, 2H); 5,3 (s, 2H); 7,3 (m, 2H); 7,45 (m, 2H); 7,8 (m, 2H); 8,1 (s, 1H); 8,2 (d, 2H); 12,4 (m, 1H) Solvant: DMSO

- Composé 97:

30 R.M.N. H δ (ppm): 1,95 (m, 4H); 2,5 (s, 3H); 3,35 (m, 4H); 5,4 (s, 2H); 7,35 (dd, 1H); 7,55 (d, 1H); 8,05 (s, 1H); 8,15 (d, 1H); 8,5 (d, 1H); 8,7 (s, 1H)

Solvant: DMSO

- Composé 98:

R.M.N.¹H δ (ppm) : 2 – 2,1 (m, 4H); 2,45 (s, 3H); 3,3 – 3,45 (m, 4H); 5,05 (d, 2H); 6,4 – 6,5 (dt, 1H); 6,85 – 6,95 (d, 1H); 7,1 – 7,45 (m, 5H); 7,6 (d, 1H); 8,1 – 8,2 (m, 2H) Solvant : CDCl₃

5

- <u>Composé 99</u>:

R.M.N. 1 H δ (ppm) : 2,4 - 3,75 (m, 13H) ; 5,35 (s, 2H) ; 7,1 - 7,5 (m, 4H) ; 7,8 (d, 1H) ; 8,1 (s, 1H) ; 8,25 (d, 1H)

Solvant: DMSO

10

- Composé 100 :

R.M.N. 1 H δ (ppm) : 2,5 (s, 3H) ; 2,9 (m, 4H) ; 3,45 (m, 2H) ; 3,65 (m, 2H) ; 5,1 (m, 2H) ; 6,5 (m, 1H) ; 6,85 (d, 1H) ; 7,2 (m, 1H) ; 7,6 (m, 1H) ; 7,7 (m, 1H) ; 8,2 (m, 2H) ; 8,45 (d, 1H) ; 8,6 (1s, 1H)

15 Solvant: CDCl₃

- Composé 101:

R.M.N.¹H δ (ppm) : 2,5 (s, 3H); 2,95 (s, 6H); 5,5 (s, 2H); 7,6 (m, 3H); 7,8 (m, 2H); 8,15 -8,25 (m, 2H)

20 Solvant: CDCl₃

- Composé 102:

R.M.N. H δ (ppm): 2,2 (s, 3H); 2,6 (s, 6H); 3,25 (s, 2H); 5,1 (s, 2H); 7 (m, 2H); 7,15 (m, 2H); 7,5 (m, 1H); 7,8 (s, 1H); 8 (d, 1H); 12 (m, 1H)

25 Solvant: DMSO

- Composé 103:

R.M.N. 1 H δ (ppm) : 2,5 (s, 3H); 3 (s, 6H); 5,1 (d, 2H); 6,4 – 6,5 (dt, 1H); 6,9 (d, 1H); 7,15 – 7,4 (m, 6H); 7,6 (d, 1H); 8,2 (m, 1H)

30 Solvant: CDCl₃

- Composé 104 :

R.M.N. 1 H δ (ppm) : 2,5 (s, 3H); 2,95 (s, 6H); 5,1 (d, 2H); 6,45 – 6,55 (dt, 1H); 6,8 – 6,85 (d, 1H); 7,2 (m, 1H); 7,6 (dd, 1H); 7,7 (dd, 1H); 8,2 – 8,25 (m, 2H); 8,4 (d, 1H); 8,6 (s, 1H)

5 Solvant: CDCl₃

- Composé 105:

R.M.N. 1 H δ (ppm) : 2,5 (s, 3H); 2,95 (s, 6H); 5,1 (d, 2H); 6,6 - 6,7 (dt, 1H); 6,8 (d, 1H); 7,2 (d, 2H); 7,6 (d, 1H); 8,2 - 8,25 (dd, 2H); 8,5 (d, 2H)

10 Solvant: CDCl₃

- Composé 106:

R.M.N. 1 H δ (ppm) : 1,7 - 2 (m, 8H) ; 2,55 (m, 3H) ; 3,35 - 3,6 (m, 4H) ; 5,1 (d, 2H) ; 6,45 (dt, 1H) ; 6,85 (d, 1H) ; 7,1 - 7,45 (m, 6H) ; 8,25 (m, 2H)

15 Solvant: CDCl₃

- Composé 107 : R.M.N. 1 H δ (ppm) : 2,9 (d, 6H) ; 5,5 (s, 2H) ; 7,6 (m, 2H) ; 7,7 (m, 2H) ; 8,0 (m, 1H) ; 8,4 (m, 1H) ; 8,7 (s, 1H)

Solvant: CDCl₃

20

25

- Composé 108:

R.M.N. 1 H δ (ppm) : 1,9 (m, 4H) ; 3,25 (m, 4H) ; 6,85 (d, 2H) ; 6,3 – 6,4 (dt, 1H) ; 6,6 – 6,7 (d, 1H) ; 7,15 – 7,3 (m, 4H) ; 7,35 – 7,4 (d, 2H) ; 7,5 (s, 1H) ; 8,05 (d, 1H) ; 10,1 (m, 1H),

Solvant: DMSO

TABLEAU 2

Nº Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
109	H	(E) C6H5CH=CHCH2	\bigcap_{N}	28	176	A
110	7-Cl	СН2=СНСН2	\bigcap_{N}	24	173	A
111	7-Cl	C6H5CH2		58	148	A

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
112	7-CI	4-CH3C6H4CH2	___\	50	182	A
113	7-Cl	2-ClC6H4CH2		77	228	A
114	7-Cl	3-CIC6H4CH2		31	166	A
115	7-Cl	4-C1C6H4CH2	\bigcap_{N}	60	245	A
116	7-Cl	4-BrC6H4CH2	\bigcap_{N}	38	244	A
117	7-Cl	4-FC6H4CH2	N-	42,5	224	A
118	7-Cl	4-CF3C6H4CH2	\bigcap_{N-}	39	232	A
119	7-C1	4-CNC6H4CH2	\bigcap_{N}	46	> 260	A
120	7-C1	2-(OCH3)C6H4CH2	N-	57	184	A
121	7-Cl	3-(OCH3)C6H4CH2	\bigcap_{N}	46	163	A
122	7-Cl	4-(OCH3)C6H4CH2	\bigcap_{N-}	32,5	164-165	А
123	7-Cl	3,4-Cl2C6H3CH2	\bigcap_{N}	60	212	A
124	7-Cl	3,4-(OCH3)2C6H3CH2	\bigcap_{N}	39	153	A
125	7-C1	(2-pyridyl)CH2	N_	9	153	A
126	7-Cl	(3-pyridyl)CH2	\bigcap_{N-1}	8	184	С
127	7-Cl	C6H5CH2CH2	\bigcap_{N}	7	196	A
128	7-Cl	4(CH3O)C6H4(CH2)2	N-	61	196	A

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
129	7-Cl	C6H5(CH2)3	\bigcap_{N}	36	130	A
130	7-Cl	C6H5C(=O)CH2	\bigcap_{N-}	38,5	230-232	A
131	7-C1	4(CH3O)C6H4C(=O)CH2	\bigcap_{N}	42	238	Α
132	7-Cl	4-ClC6H4C(=O)CH2	\bigcap_{N-}	59	238	A
133	7-Cl	4(CH3O)-3-(COOCH3)- C6H3C(=O)CH2	\bigcirc	30	136	A
134	7-Br	4-ClC6H4CH2		57	247	A
135	7-Br	4-FC6H4CH2	\bigcap_{N}	54	216	A
136	7-Br	4-CNC6H4CH2		53	293	A
137	7-Br	3,4-(CH3O)2C6H3CH2	\bigcap_{N}	61	174	A
138	7-Br	4-(CH2COOH)C6H4CH2	N-	1	269	В
139	7-Br	(3-pyridyl)CH2	\bigcirc	4	192	С
140	7-Br	(E) C6H5CH=CHCH2	\bigcirc	70	198	А
141	7-Br	(Z) C6H5CH=CHCH2	N −	57	187	Α
142	7-Br	4-ClC6H4CH2	\searrow	18	185	A
143	7-Br	4-FC6H4CH2	N-	16	233	A
144	7-Br	4-CNC6H4CH2	N-	52	222	A
145	7-Br	4-(COOCH3)C6H4CH2	N−	31	193	A
146	7-Br	4-(CH3O)C6H4CH2	N-	14	164	В
147	7-Br	4-(OCOCH3)C6H4CH2	N—	24	199	В

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
148	7-Br	4-OHC6H4CH2	$\langle $	15	283	В
149	7-Br	3,4-(OCH2O)C6H4CH2	$\langle $	57	234	A
150	7-Br	3,5-(CH3O)2C6H4CH2	$\langle \rangle$	21	168	A
151	7-Br	3,4,5-(CH3O)3C6H2CH2	\bigcap_{N}	21	199-201	A
152	7-Br		$\langle \rangle$	4	-	В
153	7-Br	n-butyl	$\langle \rangle$	13	130	В
154	7-Br	СН(С6Н5)СООСН3	$\langle $	55	187	A
155	7-Br	(E) C6H5CH=CHCH2	CH ₃ N_CH ₃	10	206	В
156	7-Br	СН(С6Н5)СООСН3	CH ₃ N _{CH₃}	32	83	В
157	7-CH3	(E) C6H5CH=CHCH2		43	193	A
158	7-CH3	(E) C6H5CH=CHCH2	$\langle $	35	225	A
159	8-CH3	СНЗ	$\langle \rangle$	70	•	A
160	8-CH3	(E) C6H5CH=CHCH2		18	-	A
161	7-OH	(E) C6H5CH=CHCH2	\sim	10	255	A
162	7- N	(E) C6H5CH=CHCH2	N-	28	•	А

Composé 109:

R.M.N. 1 H δ (ppm) : 1,7 - 1,85 (m, 8H); 3,3 - 3,45 (m, 4H); 5,85 (d, 2H); 6,35 - 6,45 (dt, 1H); 6,65 - 6,75 (d, 1H); 7,25 (t, 1H); 7,35 (t, 1H); 7,45 (d, 1H); 7,6 (t, 1H); 7,85 (t, 1H); 8,2 (d, 1H); 8,3 (d, 1H)

5 Solvant: CDCl₃

- Composé 110:

R.M.N. 1 H δ (ppm) : 1,65 – 1,95 (m, 8H) ; 3,35 (m, 4H) ; 4,8 (d, 2H) ; 5,25 – 5,4 (m, 2H) ; 5,9 – 6,1 (m, 1H) ; 7,55 – 8,4 (m, 3H)

10 Solvant: CDCl₃

- Composé 111 :

R.M.N. 1 H δ (ppm): 1,7 - 1,9 (m, 8H); 3,35 (m, 4H); 5,25 (s, 2H); 7,2 - 7,4 (m, 3H); 7,45 (d, 2H); 7,6 (d, 1H); 8,15 (d, 1H); 8,4 (s, 1H)

15 Solvant: CDCl₃

- Composé 112:

R.M.N. 1 H δ (ppm) : 1,7 - 1,9 (m, 8H) ; 2,3 (s, 3H) ; 3,35 (m, 4H) ; 5,25 (s, 2H) ; 7,1 - 8,45 (m, 7H)

20 Solvant: CDCl₃

- Composé 113 :

R.M.N. 1 H δ (ppm): 1,7 - 1,95 (m, 8H); 3,4 (m, 4H); 5,45 (s, 2H); 7,15 - 7,3 (m, 3H); 7,4 (d, 1H); 7,65 (d, 1H); 8,2 (d, 1H); 8,45 (s, 1H)

25 Solvant: CDCl₃

- Composé 114:

R.M.N. 1 H δ (ppm) : 1,7 - 1,9 (m, 8H) ; 3,4 (m, 4H) ; 5,25 (s, 2H) ; 7,2 - 7,4 (m, 3H) ; 7,45 (s, 1H) ; 7,6 (d, 1H) ; 8,15 (d, 1H) ; 8,45 (s, 1H)

30 Solvant: CDCl₃

```
- Composé 115 :
```

R.M.N. H δ (ppm): 1,65 – 1,85 (m, 8H); 3,3 (m, 4H); 5,15 (s, 2H); 7,25 (d, 2H); 7,35 (d, 2H); 7,55 (d, 1H); 8,05 (d, 1H); 8,3 (s, 1H)

Solvant: CDCl₃

5

- Composé 116:

R.M.N. H δ (ppm): 1,7 – 1,95 (m, 8H); 3,35 (m, 4H); 5,25 (d, 2H); 7,35 (d, 2H); 7,45 (d, 2H); 7,6 (d, 1H); 8,1 (d, 1H); 8,4 (s, 1H)

Solvant: CDCl₃

10

- Composé 117 :

R.M.N. 1 H δ (ppm) : 1,7 - 1,9 (m, 8H) ; 3,35 (m, 4H) ; 5,35 (s, 2H) ; 7,5 - 7,7 (m, 5H) ; 8,15 (d, 1H) ; 8,4 (s, 1H)

Solvant: CDCl₃

15

- Composé 118:

R.M.N. H δ (ppm): 1,7 – 1,9 (m, 8H); 3,4 (m, 4H); 5,35 (s, 2H); 7,5 – 7,7 (m, 5H); 8,1 (d, 1H); 8,4 (s, 1H)

Solvant: CDCl₃

20

- Composé 119:

R.M.N.¹H δ (ppm): 1,7 – 1,9 (m, 8H); 3,4 (m, 4H); 3,9 (s, 3H); 5,35 (s, 2H); 6,9 (m, 2H); 7,2 (d, 1H); 7,3 (t, 1H); 7,6 (d, 1H); 8,2 (d, 1H); 8,4 (s, 1H)

Solvant: CDCl₃

25

- Composé 120 :

R.M.N. 1 H δ (ppm) : 1,7 - 2,0 (m, 8H) ; 3,35 (m, 4H) ; 3,75 (s, 3H) ; 5,4 (s, 2H) ; 6,8 (m, 1H) ; 7,15 - 7,3 (m, 3H) ; 7,7 (d, 1H) ; 8,35 (m, 2H)

Solvant: CDCl₃

30

- Composé 121 :

R.M.N. 1 H δ (ppm) : 1,7 - 1,9 (m, 8H); 3,35 (m, 4H); 3,8 (s, 3H); 5,2 (s, 2H); 6,85 (d, 2H); 7,45 (d, 2H); 7,65 (d, 1H); 8,15 (d, 1H); 8,45 (s, 1H)

- Composé 122:

5 1,7 - 1,9 (m, 8H); 3,4 (m, 4H); 5,2 (s, 2H); 7,3 (d, 1H); 7,4 (d, 1H); 7,5 (s, 1H); 7,6 (d, 1H); 8,15 (d, 1H); 8,4 (s, 1H)

Solvant: CDCl₃

- Composé 123 :

10 R.M.N.¹H δ (ppm): 1,7 – 1,9 (m, 8H); 3,4 (m, 4H); 3,85 (s, 3H); 3,90 (s, 3H); 5,2 (s, 2H); 6,85 (d, 1H); 7,1 (m, 2H); 7,65 (d, 1H) 8,2 (d, 1H); 8,45 (s, 1H)

Solvant: CDCl₃

- Composé 124:

15 R.M.N.¹H δ (ppm): 1,65 – 195 (m, 8H); 3,4 (m, 4H); 5,45 (s, 2H); 7,2 (m, 1H); 7,3 (d, 1H); 7,65 (m, 2H); 8,2 (d, 1H); 8,4 (s, 1H); 8,55 (d, 1H)

Solvant: CDCl₃

- Composé 125:

20 R.M.N. ¹H δ (ppm): 1,7 – 1,95 (m, 8H); 3,4 (m, 4H); 5,3 (s, 2H); 7,25 (m, 1H); 7,6 (d, 1H); 7,85 (d, 1H); 8,15 (d, 1H); 8,45 (s, 1H); 8,6 (d, 1H); 8,75 (s, 1H)

Solvant: CDCl₃

- Composé 126:

25 R.M.N.¹H δ (ppm): 1,55 – 1,9 (m, 8H); 3,1 (t, 2H); 3,25 (m, 4H); 4,25 (t, 2H); 7,05 – 7,25 (m,5H); 7,55 (d, 1H); 8,1 (d, 1H); 8,35 (s, 1H)

Solvant: CDCl₃

- Composé 127:

30 R.M.N. H δ (ppm): 1,75 – 1,9 (m, 8H); 3,15 (t, 2H); 3,35 (m, 4H); 3,75 (s, 3H); 4,35 (t, 2H); 6,8 (d, 2H); 7,15 (d, 2H); 7,6 (d, 1H); 8,15 (d, 1H); 8,4 (s, 1H)

Solvant: CDCl₃

- Composé 128:

R.M.N. 1 H δ (ppm) : 1,7 - 1,95 (m, 8H) ; 2,2 (m, 2H) ; 2,7 (t, 2H) ; 3,35 (m, 4H) ; 4,2 (t, 2H) ;

7 – 7,3 (m, 5H); 7,65 (d, 1H); 8,1 (d, 1H); 8,45 (s, 1H)

5 Solvant: CDCl₃

- Composé 129 :

R.M.N. H δ (ppm): 1,7 – 1,9 (m, 8H); 3,4 (m, 4H); 3,9 (s, 3H); 5,6 (s, 2H); 7,0 (d, 2H); 7,7 (d, 1H); 8 (d, 2H); 8,25 (d, 1H); 8,45 (s, 1H)

10 Solvant: CDCl₃

- Composé 130 :

R.M.N.1H δ (ppm): 1.6-1.9(m,8H); 3.4(m,4H); 5.8(s,2H); 7.6(t,2H); 7.75(t,1H); 7.95(d,1H); 8.1(m,3H); 8.3(d,1H)

15 Solvant: DMSO

- Composé 131:

R.M.N. 1 H δ (ppm) : 1,7 - 1,95 (m, 8H); 3,4 (m, 4H); 5,55 (s, 2H); 7,45 (d, 2H); 7,65 (d, 1H); 7,9 (d, 2H); 8,2 (d, 1H); 8,4 (s, 1 H)

20 Solvant: CDCl₃

- Composé 132:

R.M.N. 1 H δ (ppm) : 1,7 - 1,9 (m, 8H) ; 3,4 (m, 4H) ; 3,9 (s, 3H) ; 4,0 (s, 3H) ; 5,6 (s, 2H) ; 7,1 (d, 1H) ; 7,7 (d, 1H) ; 8,1 (d, 1H) ; 8,2 (d, 1 H) ; 8,4 (m, 2H)

25 Solvant: CDCl₃

- Composé 133 :

R.M.N.¹H δ (ppm): 1,75 - 1,9 (m, 8H); 3,4 (m, 4H); 3,9 (s, 3H); 4,0 (s, 3H); 5,6 (s, 2H); 7,1 (m, 1H); 7,7 (m, 1H); 8,15 -8,45 (m, 4H)

30 Solvant: CDCl₃

- Composé 134:

R.M.N. 1 H δ (ppm): 1,75 – 1,9 (m, 8H); 3,35 (m, 4H); 5,25 (s, 2H); 7,25 - 8,6 (m, 7 H)

- Composé 135:

R.M.N.¹H δ (ppm): 1,65 – 1,95 (m, 8H); 3,3 – 3,45 (m, 4H); 5,25 (s, 2H); 6,95 – 7,1 (m, 5 2H); 7,4 – 7,55 (m, 2H); 7,8 (d, 1H); 8,1 (d, 1H); 8,6 (s, 1H) Solvant: CDCl₃

- Composé 136:

R.M.N. 1 H δ (ppm) : 1,75 – 1,95 (m, 8H) ; 3,3 – 3,45 (m, 4H) ; 5,3 (s, 2H) ; 7,5 – 7,7 (m, 4H) ; 7,8 (m, 1H) ; 8,1 (dd, 1H) ; 8,6 (s, 1H) Solvant : CDCl₃

- Composé 137:

R.M.N.¹H δ (ppm): 1,7 – 1,9 (m, 8H); 3,25 – 3,4 (m, 4H); 3,8 (s, 3H); 3,82 (s, 3H); 5,2 (s, 2H); 6,8 (d, 1H); 7,05 – 7,1 (m, 2H); 7,75 (d, 1H); 8,05 (d, 1H); 8,6 (s, 1H) Solvant: CDCl₃

- Composé 138:

R.M.N. ¹H δ (ppm): 1,6 – 1,85 (m, 8H); 3,2 - 3,4 (bs, 4H); 3,55 (s, 2H); 5,2 (s, 2H); 7,2 (m, 2H); 7,3 (m, 2H); 8 (m, 1H); 8,2 (m, 1H); 8,25 (s, 1H); 12,3 (bs, 1H) Solvant: DMSO

- Composé 139:

25 R.M.N. H δ (ppm): 1,75 – 1,9 (m, 8H); 3,4 (m, 4H); 5,35 (s, 2H); 7,3 (m, 1H); 7,8 (d, 1H); 7,9 (d, 1H); 8,1 (d, 1H); 8,65 (m, 2H); 8,8 (s, 1H)

Solvant: CDCl₃

- Composé 140:

30 R.M.N.¹H δ (ppm): 1,8 – 1,95 (m, 8H); 3,4 (m, 4H); 4,9 (d, 2H); 6,35 (m, 1H); 6,75 (d, 1H); 7,25 – 7,45 (m, 5H); 7,8 – 8,65 (m, 3H)

Solvant: CDCl₃

- Composé 141 :

R.M.N. H δ (ppm): 1,35 – 2,05 (m, 6H); 2,95 (t, 2H); 3,4 (d, 2H); 4,9 (d, 2H); 6,35 (dt, 1H); 6,75 (d, 1H); 7,25 – 7,45 (m, 5H); 7,85 (d, 1H); 8,15 (d, 1H); 8,65 (s, 1H) Solvant: CDCl₃

5

- Composé 142 :

R.M.N. ¹H δ (ppm) : 2 – 2,1 (m, 4H); 3,3 - 3,4 (m, 4H); 5,25 (s, 2H); 7,25 (d, 2H); 7,4 (d, 2H); 7,75 (d, 1H); 7,95 (d, 1H); 8,55 (s, 1H)

50

Solvant: CDCl₃

10

- Composé 143:

R.M.N. 1 H δ (ppm) : 1,95 - 2,1 (m, 4H) ; 3,3 - 3,45 (m, 4H) ; 5,2 (s, 2H) ; 6,95 - 7,1 (m, 2H) ; 7,35 - 7,5 (m, 2H) ; 7,75 (d, 1H) ; 7,95 (d, 1H) ; 8,6 (s, 1H) Solvant : CDCl₃

15

- Composé 144:

R.M.N. 1 H δ (ppm) : 2 - 2,15 (m, 4H); 3,3 - 3,45 (m, 4H); 5,3 (s, 2H); 7,55 - 7,7 (m, 4H); 7,8 - 7,9 (d, 1H); 8,0 (d, 1H); 8,6 (s, 1H) Solvant : CDCl₃

20

- Composé 145:

R.M.N. 1 H δ (ppm) : 2 – 2,1 (m, 4H); 3,3 - 3,4 (m, 4H); 3,9 (s, 3H); 5,3 (s, 2H); 7,5 (d, 2H); 7,8 (d, 1H); 7,9 – 8,05 (m, 3H); 8,6 (s, 1H) Solvant : CDCl₃

25

- Composé 146:

R.M.N. H δ (ppm): 2 – 2,1 (m, 4H); 3,3 - 3,4 (m, 4H); 3,8 (s, 3H); 5,2 (s, 2H); 6,9 (d, 2 H); 7,45 (d, 2H); 7,8 (d, 1H); 7,95 (d, 1H); 8,6 (s, 1H) Solvant: CDCl₃

30

- Composé 147:

R.M.N. 1 H δ (ppm) : 2 – 2,1 (m, 4H) ; 2,3 (s, 3H) ; 3,3 – 3,4 (m, 4H) ; 5,25 (s, 2H) ; 7,05 (d, 2H) ; 7,5 (d, 2H) ; 7,8 (d, 1H) ; 8,0 (d, 1H) ; 8,6 (s, 1H)

Solvant: CDCl3

- Composé 148:

R.M.N. ¹H δ (ppm) : 2,7 (s, 6H); 5 (s, 2H); 6,6 (d, 2H); 7,1 (d, 2H); 7,9 (d, 1H); 8,0 (d, 5 1H); 8,1 (s, 1H); 9,35 (s, 1H)

Solvant: CDCl₃

- Composé 149:

R.M.N. H δ (ppm): 2 – 2,15 (m, 4H); 3,3 - 3,45 (m, 4H); 5,15 (s, 2H); 5,9 (s, 2H); 6,75 (d, 1H); 6,9 – 7,0 (m, 2H); 7,8 (d, 1H); 7,9 (d, 1H); 8,6 (s, 1H) Solvant: CDCl₃

- Composé 150:

R.M.N. ¹H δ (ppm): 2,0 – 2,1 (m, 4H); 3,3 - 3,4 (m, 4H); 3,75 (s, 6H); 5,2 (s, 2H); 6,4 (s, 1H); 6,65 (s, 2H); 7,8 (d, 1H); 7,95 (d, 1H); 8,65 (s, 1H)

Solvant: CDCl₃

- Composé 151:

R.M.N. ¹H δ (ppm): 2,0 – 2,1 (m, 4H); 3,3 - 3,4 (m, 4H); 3,85 (s, 3H); 3,9 (s, 6H); 5,2 (s, 2H); 6,8 (s, 2H); 7,8 (d, 1H); 7,95 (d, 1H); 8,65 (s, 1H)

Solvant: CDCl₃

- Composé 152 :

R.M.N.¹H δ (ppm) : 2 (m, 4H) ; 3,35 (m, 4H) ; 5,2 (s, 2H) ; 7,15 (s, 1H) ; 7,6 (s, 1H) ; 8 – 8,15 (m, 2H) ; 8,3 (s, 1H) ; 12 (m, 1H) Solvant : DMSO

- Composé 153:

R.M.N.¹H δ (ppm): 0,95 (t, 3H); 1,35 – 1,5 (m, 2H); 1,8 – 1,9 (m, 2H); 2,0 – 2,1 (m, 30 4H); 3,4 - 3,5 (m, 4H); 4,1 (t, 2H); 7,8 (d, 1H); 8,0 (d, 1H); 8,6 (s, 1H) Solvant: CDCl₃

- Composé 154 :

R.M.N. 1 H δ (ppm) : 2,45 - 2,55 (m, 4H) ; 3,25 - 3,4 (m, 4H) ; 3,7 (s, 3H) ; 6,6 (s, 1H) ; 7,35 - 7,50 (m, 3H) ; 7,55 (d, 2H) ; 8 - 8,1 (m, 2H) ; 8,3 (s, 1H)

Solvant: DMSO

5

- Composé 155:

R.M.N. 1 H δ (ppm) : 2,9 (s, 6H); 4,8 (d, 2H); 6,2 - 6,3 (dt, 1H); 6,7 (d, 1H); 7,1 - 7,35 (m, 5H); 7,75 (d, 1H); 8,0 (d, 1H); 8,6 (s, 1H)

Solvant: CDCl₃

10

- Composé 156 :

R.M.N. 1 H δ (ppm) : 2,9 (s, 6H) ; 3,8 (s, 3H) ; 6,6 (s, 1H) ; 7,35 – 7,45 (m, 3H) ; 7,55 (d, 2H) ; 7,8 (d, 1H) ; 8 (d, 1H) : 8,6 (s, 1H) Solvant : CDCl₃

15

- Composé 157:

R.M.N. 1 H δ (ppm) : 1,8 – 1,95 (m, 8H) ; 2,5 (s, 3H) ; 3,4 – 3,5 (m, 4H) ; 4,9 (d, 2H) ; 6,3 – 6,45 (dt, 1H) ; 6,7 – 6,8 (d, 1H) ; 7,2 – 7,3 (m, 3H) ; 7,35 (d, 2H) ; 7,55 (d, 2H) ; 8,1 (d, 1H) ; 8,3 (s, 1H)

20 Solvant: CDCl₃

- Composé 158:

R.M.N. 1 H δ (ppm) : 2,1 (m, 4H); 2,5 (s, 3H); 3,4 (m, 4H); 4,9 (d, 2H); 6,3 - 6,45 (dt, 1H); 6,7 - 6,8 (d, 1H); 7,2 - 7,4 (m, 5H); 7,5 (m, 1H); 8 (d, 1H); 8,3 (d, 1H)

25 Solvant: CDCl₃

- Composé 159:

R.M.N. 1 H δ (ppm) : 1,7 - 1,9 (m, 8H); 2,45 (s, 3H); 3,25 - 3,35 (m, 4H); 3,65 (s, 3H); 7,2 - 7,3 (m, 2H); 8 (m, 1H); 8,2 - 8,3 (m, 1H)

30 Solvant: CDCl₃

- Composé 160:

R.M.N. H δ (ppm): 1,8 - 2 (m, 8H); 2,55 (s, 3H); 3,3 - 3,5 (m, 4H); 4,9 (m, 2H); 6,3 - 6,4 (m, 1H); 6,7 - 6,8 (d, 1H); 7,2 - 7,4 (m, 6H); 8,1 (s, 1H); 8,35 (m, 1H)

Solvant: CDCl₃

- Composé 161:

R.M.N. ¹H δ (ppm): 2 (m, 4H); 3,4 (m, 4H); 4,8 (d, 2H); 6,35 – 6,4 (dt, 1H); 6,7 (d, 1H); 7,2 – 7,4 (m, 4H); 7,45 (d, 2H); 7,55 (s, 1H); 8 (d, 1H); 10 (m, 1H) Solvant: CDCl₃

- Composé 162:

R.M.N. ¹H δ (ppm): 1,5 - 2,1 (m, 16H); 3,3 - 3,7 (m, 8H); 4,9 (d, 2H); 6,3 - 6,4 (dt, 1H); 6,7 - 6,8 (d, 1H); 6,8-6,9 (d, 1H); 7,2 - 7,5 (m, 6H); 8,25 (d, 1H) Solvant: CDCl₃

Exemple 163

METHODE A: 1-Azepanyl-4-benzyl-7-bromo-4H-[1,2,4] triazolo [4,3-a] quinazolin-5one.

(I) : X1 = 7-Br; X2 = H;

Dans un ballon de 50 ml protégé de l'humidité, on place 4,0 g (10,7 mmol) de 4-benzyl-1,7-dibromo-4H-[1,2,4] triazolo [4,3-a]quinazolin-5-one (préparé par la méthode de l'exemple 256) en suspension dans 25 ml d'hexaméthylène imine.

Le mélange est ensuite chauffé à reflux, sous agitation, pendant 16 heures.

Après refroidissement, la solution obtenue est concentrée sous vide pour donner 4,8 g de résidu qui est purifié par chromatographie flash sur colonne de silice, avec élution au mélange CH₂ Cl₂ 99,6 / CH₃ OH 0,4.

Les fractions pures en CCM sont réunies, évaporées à sec et le produit obtenu (4,0 g) est recristallisé dans l'éthanol.

On obtient 3,2 g du composé de l'exemple 163 sous forme de cristaux.

Rendement = 66 %.

25

30 F (Tottoli) = 175° C CCM (CH₂ Cl₂ 99 / CH₃ OH 1) : Rf = 0,40 RMN 1 H δ (ppm) CDCl3 : 1,7 – 1,85 (m, 8H); 3,3 (m, 4H); 5,3 (s, 2H); 7,2 – 7,35 (m, 3H); 7,45 –d, 2H); 8,0 (d, 1H); 8,15 (s, 1H); 8,4 (d, 1H)

Exemple 164

5 **METHODE B**: 1-(Pyrrolidin-1-yl)-4-benzyl-7-bromo-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

(I) : X1 = 7 - Br; X2 = H;

Dans un réacteur protégé de l'humidité, on place 37,0 g (85 mmol) de 4-benzyl-1,7-dibromo-4H-[1,2,4] triazolo [4,3-a]quinazolin-5-one en solution dans 750 ml de diméthylformamide (DMF) et additionne 14,3 g (340 mmol) de bicarbonate de sodium puis 12,1 g (340 mmol) de pyrrolidine.

Le mélange est ensuite chauffé à reflux, sous agitation, pendant 6 heures.

Après refroidissement, le solvant est évaporé sous vide, le résidu obtenu est repris par un mélange eau / acétate d'éthyle et l'insoluble y est trituré puis filtré et séché: on obtient ainsi 18,3g d'un premier jet du composé de l'exemple 164, pur en CCM.

Les phases aqueuse et organique sont séparées, la phase acétate d'éthyle est lavée à l'eau et séchée sur Na2SO4. Après concentration du solvant sous vide, on obtient 14,2g d'un deuxième jet du composé de l'exemple 164, également pur en CCM.

Rendement (en produit brut) = 90%; le produit sera utilisé tel quel pour l'étape suivante. Un échantillon de 0.35g est recristallisé dans le méthanol pour donner 0.32g du composé pur sous forme de cristaux.

F (Tottoli) = 173°C

25 CCM (CH2Cl2 99 / CH3OH 1) = 0.35

R.M.N. H δ (ppm): 2,1 (m, 4H); 3,4 (m, 4H); 5,45 (s, 2H); 7,3 (m, 3H); 7,65 (d, 2H); 7,85 (d, 1H); 8,15 (d, 1H); 8,45 (s, 1H)

Solvant: CDCl₃

30 **Exemple 165**

METHODE C: 1-[N-(n-butyl), N-methylamino]-4-benzyl-7-bromo-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

WO 00/66584 PCT/FR00/01174

$$(I): X1 = 7-Br; X2 = H$$

$$R = \begin{array}{c} & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Dans un réacteur à pression, on place 2,5 g (5,75 mmol) de 4-benzyl-1,7-dibromo-4H-5 [1,2,4] triazolo [4,3-a]quinazolin-5-one en suspension dans 30 ml d'éthanol. On additionne 5,0g de n-butyl-méthylamine (57,5 mmol), ferme hermétiquement le réacteur puis chauffe au bain d'huile à 160°C pendant 8 heures. Après refroidissement et abandon pendant 2 jours, l'huile résiduelle (2,8g) est chromatographiée sur colonne de silice avec élution au mélange CH2Cl2 99,5 – CH3OH 0,5. On obtient 1,8 g du composé de l'exemple 165.

10 Rendement = 70 %.

CCM (CH₂ Cl₂ 98,5 / CH₃ OH 1,5): Rf = 0,45

R.M.N. H δ (ppm): 0,9 (t, 3H); 1,25 – 1,4 (m, 2H); 1,55 – 1,7 (m, 2H); 2,85 (s, 3H); 2,9 – 3,5 (m, 2H); 5,5 (s, 2H); 7,2 – 7,35 (m, 3H); 7,7 (d, 2H); 7,9 (d, 1H); 8,25 (d, 1H); 8,5 (s, 1H)

15 Solvant: CDCl₃

20

Les composés (I) des exemples 166 à 198 (tableau 3) sont préparés selon l'une des méthodes A, B ou C décrites dans les exemples 163 à 165.

TABLEAU 3

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
166	Н	C6H5CH2	\sim	70	167	В
167	7-Cl	СН3	\sim	17	112	А
168	7-Cl	СН3	\sim	35	192	А
169	7-C1	СН3	N CH ₃	50	180-182	А

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
170	7-Cl	СНЗ	-N	60	185	А
171	7-Cl	C6H5	N-	5	179	A
172	7-Cl	C6H5CH2	\bigcap_{N}	88	162	A
173	7-Cl	C6H5CH2	\sim	78	163	В
174	7-Cl	C6H5CH2	\sim	68	178	В
175	8-C1	СНЗ		11	179	A
176	8-C1	C6H5CH2	N.	1	-	В
177	7-Br	СНЗ	\sim	72	174	Α
178	7-Br	C6H5CH2	$\langle \rangle$	67	183-185	A
179	7-Br	C6H5CH2	CH₃ N CH₃	53	171	В
180	7-Br	C6H5CH2	\(\sigma_0^2\)	50	189	В
181	7-Br	C6H5CH2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	49	235	В
182	7-Br	C6H5CH2	N CH ₃	60	230	В
183	7-Br	C6H5CH2		51	238	В
184	7-Br	C6H5CH2		50	226	В
185	7-Br	C6H5CH2		82	172	В
186	7-Br	C6H5CH2	N-	85	210	В

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
187	7-Br	C6H5CH2	N — ОН	79	176	В
188	7-Br	C6H5CH2	NHCH3	52	238	С
189	7-I	С6Н5СН2	\bigcap_{N}	100	184	В
190	7-CH3	C6H5CH2	\bigcap_{N}	90	183	В
191	7-CH3	C6H5CH2	\bigcap_{N}	60	189	В
192	7-CH3	C6H5CH2	CH ₃ N_CH ₃	75	186	В
193	7-CH3	C6H5CH2	(S)	78	265	В
194	8 <i>=</i> CH3	C6H5CH2		50	202	A
195	7-OCH3	C6H5CH2	\bigcirc	42	153	В
196	7-OCH3	C6H5CH2	$\langle \rangle$	65	154	В
197	7-CN	C6H5CH2	\(\rightarrow \)	77	219	В
198	7-NO2	C6H5CH2	\bigcap_{N}	32	206	A

- Composé 166:

5 R.M.N.¹H δ (ppm): 2 (m, 4H); 3,3 (m, 4H); 5,35 (s, 2H); 7,2 – 7,3 (m, 3H); 7,4 (d, 2H); 7,6 (t, 1H); 7,9 (t, 1H); 8,2 (m, 2H)

Solvant : DMSO

- Composé 167:

10 R.M.N. 1 H δ (ppm) : 0,8 (m, 6H) ; 1,15 – 1,25 (m, 4H) ; 1,35 – 1,55 (m, 4H) ; 3 (m, 2H) ; 3,2 (m, 2H) ; 3,7 (s, 3H) ; 7,65 (m, 1H) ; 8,3 (m, 1H) ; 8,45 (m, 1H)

Solvant: CDCl₃

- Composé 168:

 $R.M.N.1H \ \delta \ (ppm): 1,3-1,9 \ (m, \ 6H) \ ; \ 2,9 \ (t, \ 2H) \ ; \ 3,3 \ (m, \ 2H) \ ; \ 3,5 \ (s, \ 3H) \ ; \ 8,0 \ (d, \ 1H) \ ;$

5 8,1 (d, 1H); 8,3 (d, 1H)

Solvant: CDCl3

- Composé 170 :

R.M.N.1H δ (ppm): 0,7 (s, 3H); 0,8 (s, 3H); 1,0 (s, 3H); 1,5-1,9 (m, 5H); 2,55 (d, 1H);

10 2,85 (d, 1H); 3,15 (m, 4H); 3,4 (m, 4H); 7,9 (d, 1 H); 8,0 (s, 1H); 8,4 (m, 1H)

Solvant : DMSO

- Composé 171:

R.M.N. H δ (ppm): 1,7 – 1,8 (m, 8H); 3,3 (m, 4H(+H₂O); 7,45 – 7,6 (m, 5H); 8,05 (m,

15 1H); 8,15 (s, 1H); 8,45 (d, 1H)

Solvant: DMSO

- Composé 172 :

R.M.N. 1 H δ (ppm) : 1,7 - 1,85 (m, 8H); 3,3 (s, 4H); 5,3 (s, 2H); 7,25 - 7,5 (m, 5H); 8,0

20 (m, 1H); 8,15 (d, 1H); 8,4 (d, 1H)

Solvant: DMSO

- Composé 173 :

R.M.N. 1 H δ (ppm) : 2,05 (m, 4H); 3,4 (m, 4H); 5,45 (s, 2H); 7,2 – 7,35 (m, 3H); 7,65 –

25 7,75 (m, 3H); 8,2 (dd, 1H); 8,35 (s, 1H)

Solvant: CDCl₃

- Composé 174 :

R.M.N. H δ (ppm): 1,4 – 1,6 (m, 1H); 1,7 - 2 (m, 4H); 3 - 3,15 (m, 2H); 3,3 – 3,45 (m,

30 2H); 5,45 (s, 2H); 7,25-7,35 (m, 3H); 7,7-7,8 (m, 3H); 8,3-8,4 (m, 2H)

Solvant : CDCl₃

```
- Composé 175 :
```

R.M.N. 1 H δ (ppm) : 1,85 – 1,95 (m, 4H); 3,4 (m, 4H + H₂O); 3,65 (s, 3H); 7,7 (d, 1H); 8,3 (d, 1H); 8,55 (s, 1H)

Solvant : DMSO

5

- Composé 176 :

R.M.N. 1 H δ (ppm): 1,8 – 2 (m, 8H); 3,3 – 3,5 (m, 4H); 5,4 (s, 2H); 7,2 – 7,35 (m, 3H); 7.4 - 7.45 (m, 2H); 7.65 - 7.7 (m, 2H); 8.25 - 8.3 (m, 2H); 8.6 (s, 1H) Solvant: CDCl₃

10

- Composé 177 :

R.M.N. 1 H δ (ppm): 1,7 – 1,85 (m, 8H); 3,4 (m, 4H); 3,7 (s, 3H); 7,75 (m, 1H); 8,25 (m, 1H); 8,4 (m, 1H)

Solvant: CDCl₃

15

- Composé 178:

R.M.N. 1 H δ (ppm) : 1,35 – 1,95 (m, 6H); 3,05 (t, 2H); 3,35 (d, 2H); 5,45 (s, 2H); 7,3 (m, 3H); 7,75 (d, 2H); 7,95 (d, 1H); 8,3 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

20

- Composé 179:

R.M.N. H δ (ppm): 2,9 (s, 6H); 5,5 (s, 2H); 7,25 – 7,35 (m, 3H); 7,7 (d, 2H); 7,85 (d, 1H); 8,2 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

25

- Composé 180 :

R.M.N. H δ (ppm): 3,2 - 3,4 (m, 4H); 3,75 - 3,9 (m, 2H); 3,9 - 4,1 (m, 2H); 5,5 (s, 2H); 7,2 – 7,35 (m, 3H); 7,7 (d, 2H); 7,9 (d, 1H); 8,25 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

30

- Composé 181:

R.M.N. 1 H δ (ppm) : 2,8 - 3,0 (m, 4H) ; 3,35 - 3,5 (m, 2H) ; 3,5 - 3,7 (m, 2H) ; 5,45 (s, 2H); 7,2 - 7,35 (m, 3H); 7,7 (d, 2H); 7,9 (d, 1H); 8,2 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

- Composé 182:

R.M.N.¹H δ (ppm): 2,3 – 2,45 (m, 5H); 2,9 – 3,0 (m, 2H); 3,25 – 3,35 (m, 4H); 5,5 (s, 2H); 7,2 – 7,35 (m, 3H); 7,7 (d, 2H); 7,9 (d, 1H); 8,25 (d, 1H); 8,5 (s, 1H) Solvant: CDCl₃

- Composé 183:

R.M.N. H δ (ppm): 3,0 – 3,2 (m, 2H); 3,35 – 3,5 (m, 4H); 3,6 – 3,75 (m, 2H); 5,5 (s, 2H); 6,9 – 7,05 (m, 3H); 7,2 – 7,35 (m, 5H); 7,7 (d, 2H); 7,85 (d, 1H); 8,3 (d, 1H); 8,55 (s, 1H)

Solvant: CDCl₃

- Composé 184:

15 R.M.N. H δ (ppm): 2,4 (m, 2H); 3 (m, 2H); 3,3 (m, 4H); 5,5 (s, 2H); 7,3 (m, 8H); 7,7 (m, 2H); 7,9 (d, 1H); 8,2 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

- Composé 185 :

20 R.M.N. H δ (ppm): 2,2 – 2,65 (m, 2H); 3,2 – 3,9 (m, 4H); 5,45 (s, 2H); 5,8 – 5,9 (m, 1H); 5,9 – 6,0 (m, 1H); 7,2 – 7,35 (m, 3H); 7,7 (d, 2H); 7,9 (d, 1H); 8,25 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

25 - Composé 186:

R.M.N. H δ (ppm): 4,3 (s, 4H); 5,5 (s, 2H); 5,95 (s, 2H); 7,25 – 7,4 (m, 3H); 7,7 (d, 2H); 7,9 (d, 1H); 8,25 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl₃

30 - Composé 187:

R.M.N. 1 H δ (ppm) : 2 - 2,1 (m, 1H) ; 2,3 - 2,4 (m, 1H) ; 3,2 - 3,6 (m, 5H) ; 4,6 - 4,7 (m, 1H) ; 5,45 (s, 2H) ; 7,2 - 7,3 (m, 3H) ; 7,65 (d, 1H) ; 7,85 (d, 1H) ; 8,3 (d, 2H) ; 8,5 (s, 1H) Solvant : CDCl₃

- Composé 188:

R.M.N. 1 H δ (ppm) : 3,05 (s, 3H) ; 3,9 – 4,0 (m, 1H) ; 5,35 (s, 2H) ; 7,15 – 7,25 (m, 3H) ; 7,6 (d, 2H) ; 7,7 (d, 1H) ; 7,95 (d, 1H) ; 8,4 (s, 1H)

5 Solvant: CDCl₃

- Composé 189:

R.M.N. 1 H δ (ppm) : 2 (m, 4H); 3,4 (m, 4H); 5,3 (s, 2H); 7,3 (m, 3H); 7,4 (m, 2H); 8.0 (m, 1H); 8,2 (m, 1H); 8,5 (m, 1H)

10 Solvant: DMSO

- Composé 190:

R.M.N. 1 H δ (ppm) : 1,75 – 1,95 (m, 8H) ; 2,45 (s, 3H) ; 3,35 – 3,45 (m, 4H) ; 5,45 (s, 2H) ; 7,2 – 7,35 (m, 3H) ; 7,45 (dd, 1H) ; 7,7 (dd, 2H) ; 8,15 (s, 1H) ; 8,3 (d, 1H)

15 Solvant: CDCl₃

- Composé 191:

R.M.N. 1 H δ (ppm) : 2 (m, 4H) ; 2,5 (s, 3H) ; 3,3 (m, 4H) ; 5,3 (s, 2H) ; 7,2 – 7,55 (m, 5H) ; 7,7 (d, 1H) ; 8 (s, 1H) ; 8,15 (d, 1H)

20 Solvant: CDCl₃

- Composé 192:

R.M.N.¹H δ (ppm) : 2,45 (s, 3H); 2,9 (s, 6H); 5,45 (s, 2H); $\bar{7}$,2 – 7,3 (m, 3H); 7,45 (d, 1H); 7,7 (d, 2H); 8,2 (d, 2H)

25 Solvant: CDCl₃

- Composé 193:

R.M.N. 1 H δ (ppm) : 2,5 (s, 3H); 2,8 - 3,05 (m, 4H); 3,35 - 3,75 (m, 4H); 5,5 (s, 2H); 7,15 - 7,4 (m, 3H); 7,6 (d, 1H); 7,7 (d, 2H); 8,1 - 8,25 (m, 2H)

30 Solvant: CDCl₃

- Composé 194:

R.M.N. 1 H δ (ppm) : 1,8 - 1,95 (m, 8H) ; 2,55 (s, 3H) ; 3,4 (m, 4H) ; 5,4 (s, 2H) ; 7,25 - 7,35 (m, 4H) ; 7,7 (m, 2H) ; 8,25 (m, 2H)

Solvant: CDCl₃

5

- Composé 195:

R.M.N. 1 H δ (ppm) : 1,8 - 1,95 (m, 8H) ; 3,35 - 3,40 (m, 4H) ; 3,9 (s, 3H) ; 5,4 (s, 2H) ; 7,25 - 7,35 (m, 4H) ; 7,7 (dd, 2H) ; 7,8 (d, 1H) ; 8,35 (d, 1H)

Solvant: CDCl₃

10

- Composé 196:

R.M.N. 1 H δ (ppm) : 2 (m, 4H) ; 3,35 (m, 4H) ; 3,9 (s, 3H) ; 5,35 (s, 2H) ; 7,25 – 7,35 (m, 3H) ; 7,45 (d, 2H) ; 7,55 (d, 1H) ; 7,7 (s, 1H) ; 8,2 (d, 1H)

Solvant: DMSO

15 - Composé 197:

R.M.N. 1 H δ (ppm) : 2,4 (m, 4H) ; 3,2 (m, 4H) ; 5,2 (s, 2H) ; 7,1 – 7,25 (m, 3H) ; 7,35 (m, 2H) ; 8,25 (m, 2H) ; 8,5 (s, 1H)

Solvant: CDCl₃

20 - Composé 198:

 $R.M.N.^{1}H~\delta~(ppm):~1,7-1,85~(m,~8H)~;~3,3~(s,~4H+H_{2}O)~;~5,35~(s,~2H)~;~7,3~(m,~3H)~;~7,5~(m,~2H)~;~8,55~(d,~1H)~;~8,75~(d,~1H)~;~8,9~(s,~1H)$

Solvant: DMSO

25

Exemple 199: 1-Azepanyl-4-benzyl-7-chloro-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one. (I) X1 = 7-Cl; X2 = H

30

Dans un ballon de 50 ml muni d'une agitation et d'un réfrigérant, on place 0,44 g (1,27 mmol) de 4-benzyl-1,7-dichloro-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one (exemple 254)

- 118 -

en suspension dans 2,5 ml d'hexamethylèneimine. Sous agitation, le mélange est chauffé au reflux pendant 16 heures. La solution brune obtenue est alors abandonnée à la température ambiante jusqu'à complet refroidissement ; on verse dans un mélange d'eau et de chlorure de méthylène, agite et sépare les 2 phases par décantation. La phase organique est lavée 2 fois à l'eau, séchée sur Na₂SO₄ puis évaporée sous vide pour donner 0,59 g de résidu solide brun.

Celui-ci est chromatographié sur colonne de silice avec élution au mélange CH₂ Cl₂ 99,5 / CH₃ OH 0,5.

On obtient, après réunion et évaporation des fractions pures en CCM, 0,46 g du composé de l'exemple 199. Celui-ci est recristallisé dans l'éthanol pour donner 0,4 g de cristaux incolores.

Rendement = 77 %

F (Tottoli) = 162°C

CCM (CH₂ Cl₂ 98,5 / CH₃ OH 1,5): Rf = 0.35

15 R.M.N. H δ (ppm): 1,7 – 1,85 (m, 8H); 3,3 (s, 4H); 5,3 (s, 2H); 7,25 – 7,5 (m, 5H); 8,0 (m, 1H); 8,15 (d, 1H); 8,4 (d, 1H)

Solvant: DMSO

Les composés (I) des exemples 200 à 214 (tableau 4) sont préparés selon le procédé de l'exemple 199.

20

TABLEAU 4

Nº Composé	X1	R	NR4R5	Rdt (%)	PF (°C)	Méthode
200	Н	СН3	N-	40	199 – 203	А
201	н	C6H5CH2	\bigcirc	66	157	А
202	6-Cl	CH3	\bigcap_{N}	8,5	> 275	А
203	7-Cl	СН3	\bigcap_{N-}	77	145	A

N° Composé	X1	R	NR4R5 Rdt (%)		PF (°C)	Méthode
204	7-Cl	СН3СН2	\bigcap_{N}	11	98-100	А
205	7-Cl	СН3	\sim	50	203-205	A
206	7-Cl	СНЗ	N O	25	232	A
207	7-Cl	СН3	N	25	123-125	А
208	7-Cl	СН3	N-	15	204	A
209	7-Cl	СН3		30	272	Α
210	7-Cl	СН3	5	25	180	A
211	7-C1	СН3	T N N N N N N N N N N N N N N N N N N N	25	165	A
212	7-F	СН3	\bigcap_{N}	13	136	A
213	7-I	СН3	N-	47	206	A
214	7-OCH3	СН3	\bigcap_{N}	34	203	A

- Composé 200:

 $R.M.N.1H \ \delta \ (ppm) : 1,75\text{-}1,9 \ (m,\ 8H) \ ; \ 3,4 \ (m,\ 4H) \ ; \ 3,6 \ (s,\ 3H) \ ; \ 7,6 \ (t,\ 1H) \ ; \ 8 \ (t,\ 1$

8,25 (d, 1H); 8,4 (d, 1H)

5 Solvant: DMSO

- Composé 201:

R.M.N.1H δ (ppm): 1,7 - 1,85 (m, 8H); 3,3 (m, 4H); 5,3 (s, 2H); 7,2 - 7,35 (m, 3H);

7,45 (d, 2H); 7,6 (t, 1H); 7,95 (t, 1H); 8,2 (d, 1H); 8,4 (d, 1H)

10 Solvant: DMSO

35 Solvant: CDCl3

```
- Composé 202 :
    R.M.N.1H \delta (ppm) : 1,5 - 1,8 (m, 8H); 3,4 (m, 4H); 3,5 (s,3H); 7,05 (d, 1H); 7,5 (t, 1H);
    8,4 (d, 1H)
    Solvant: DMSO
5
    - Composé 203:
    R.M.N.1H \delta (ppm): 1,7 - 1,85 (m, 8H); 3,3 (m, 4H); 3,5 (s, 3H); 7,95 (d, 1H); 8,1 (s,
    1H); 8,35 (d, 1H)
   Solvant : DMSO
10
    - Composé 204 :
    R.M.N.1H \delta (ppm): 1,3 (t, 3H); 1,7 - 1,9 (m, 8H); 3,3 (m, 4H); 4,15 (q, 2H); 7,95 (d,
    1H); 8,1 (s, 1H); 8,35 (d, 1H)
    Solvant: DMSO
15
    - Composé 205 :
    R.M.N.1H \delta (ppm) : 2,0 (m, 4H); 3,35 (m, 4H); 3,75 (s, 3H); 7,65 (d, 1H); 8,15 (d, 1H);
    8,3 (s, 1H)
    Solvant: CDC13
20
    - Composé 206 :
    R.M.N.1H \delta (ppm) : 3,1 - 3,35 (m, 4H); 3,65 (s, 3H); 3,85 (m, 2H); 4,0 (m, 2H); 7,75 (d,
     1H); 8,35 (m, 2H)
     Solvant: CDCl3
25
    - Composé 207 :
     R.M.N.1H \delta (ppm) : 1,8 (m, 10H); 3,4 (m, 4H); 3,75 (s, 3H); 7,75 (d, 1H); 8,35 (s, 1H);
     8,4 (d, 1H)
     Solvant: CDC13
30
     - Composé 208 :
     R.M.N.1H \delta (ppm): 2,1 (m, 2H); 2,8 - 3,1 (m, 2H); 3,65 (m,1H); 3,75 (s,3H); 3,9
     (m,1H); 6,15 (d,1H); 6,75 (t,1H); 6,85 (t,1H); 7,1 (d,1H); 7,5 (d,1H); 7,85 (d,1H);
     8,3 (s, 1H)
```

WO 00/66584 PCT/FR00/01174

- 121 -

- Composé 209 :

R.M.N.1H δ (ppm) : 2,9 (m, 1H) ; 3,2 (m, 1H) ; 3,4 (m, 1H) ; 3,6 (m, 1H) ; 3,7 (s, 3H) ; 4,3 (d, 1H) ; 4,45 (d, 1H) ; 7,05 (d, 1H) ; 7,2 (m, 3H) ; 7,6 (d, 1H) ; 8,2 (d, 1H) ; 8,3 (s, 1H)

5 Solvant: CDCl3

- Composé 210 :

R.M.N.1H δ (ppm): 1,4 (m, 2H); 1,7 (m, 3H); 2,6 (d, 2H); 2,9 - 3,15 (m, 2H); 3,3-3,5 (m, 2H); 3,65 (s, 3H); 7,0-7,35 (m, 5H); 7,7 (d, 1H); 8,3 (m, 2H)

10 Solvant: CDCl3

- Composé 211:

R.M.N.1H δ (ppm): 1 (s, 3H); 1,1 (s, 3H); 1,25-1,4 (m, 5H); 1,45 (d, 1H); 1,6 (m, 2H); 1,9 (d,1H); 2,05 (m, 1H); 3,35 (d,1H); 3,45 (d, 1H); 3,7 (s, 3H); 4 (m, 1H); 7,65 (d, 1H); 8,3 (s, 1H); 8,6 (d, 1H)

Solvant: CDCl3

- Composé 212 :

R.M.N.1H δ (ppm): 1,7 – 1,8 (m, 8H); 3,3 (m, 4H (+H2O)); 3,5 (s, 3H); 7,8 (m, 1H); 7,9 (m, 1H); 8,4 (m,1H)

Solvant: DMSO

- Composé 213:

 $R.M.N.1H \; \delta \; (ppm) : 1,7 \; - \; 1,9 \; (m, \; 8H) \; ; \; 3,3 \; (m, \; 4H) \; ; \; 3,7 \; (s, \; 3H) \; ; \; 8,0 \; (d, \; 1H) \; ; \; 8,1 \; (d,$

Solvant: CDCl3

- Composé 214:

R.M.N.1H δ (ppm) : 1,7 - 1,85 (m, 8H) ; 3,3 (s, 4H) ; 3,5 (s, 3H) ; 3,9 (s, 3H) ; 7,5 (d, 1H) ;

30 7,6 (s,1H); 8,3 (d, 1H)

Solvant: CDC13

Exemple 215: 4-benzyl-7-bromo-1-(N-ethyl, N-methylamino)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

0,3g (0,8 mmol) de 4-benzyl-7-bromo-1-(N-methylamino)-4H-[1,2,4] triazolo-[4,3-a]quinazolin-5-one (composé de l'exemple 188) est dissous dans 5ml de DMF. On additionne 0,135g (0,85 mmol) d'iodure de méthyle et 0,13g (0,93 mmol) de carbonate de potassium. Le mélange obtenu est agité à température ambiante pendant une nuit puis chauffé à 100°C pendant 6 heures. Après refroidissement, le solvant est évaporé sous vide, le résidu repris par de l'eau et de l'acétate d'éthyle. La phase organique est séparée par décantation, lavée avec une solution saturée de chlorure de sodium, séchée sur Na2SO4 et évaporée sous vide. On obtient 0,3g de produit brut qui est purifié par chromatographie sur colonne de silice avec élution au mélange CH2Cl2 99 / CH3OH 1. Les fractions contenant le produit désiré sont réunies, concentrées sous vide puis le résidu est recristallisé dans du méthanol pour fournir 0,05g de composé de l'exemple 215 pur.

Rendement = 22%

F (Tottoli) = 148°C

CCM (CH₂ Cl₂ 98,5 / CH₃ OH 1,5) : Rf = 0,45

15 R.M.N.1H δ (ppm): 1,25 (t, 3H); 2,9 (s, 3H); 3,2 – 3,4 (m, 2H); 5,45 (s, 2H); 7,2 – 7,35 (m, 3H); 7,7 (d, 2H); 7,9 (d, 1H); 8,3 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl3

Exemple 216: 4-benzyl-1-(N,N-diethyl)- 7-methyl-4H-[1,2,4] triazolo [4,3-a] quinazolin-20 5-one.

2,3g (5,87 mmol) de 4-benzyl-7-methyl-1-(thiamorpholin-4-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (composé de l'exemple 193) sont mis en suspension dans 250ml d'éthanol. On additionne une quantité catalytique de Nickel de Raney et chauffe au reflux, sous agitation, pendant 24 heures. Le catalyseur est éliminé par filtration sur Célite et la solution alcoolique concentrée sous vide : on obtient 1,6g de produit brut qui est purifié par chromatographie sur colonne de silice avec élution au CH2Cl2 et gradient de méthanol à partir de 99,5/0,5 pour donner 0,9g de produit pur en CCM. Un échantillon est recristallisé dans l'éthanol pour la détermination des constantes physiques.

30 Rendement = 42%

F (Tottoli) = 154°C

 $CCM (CH_2 Cl_2 99 / CH_3 OH 1) : Rf = 0.35$

R.M.N.1H δ (ppm) : 1 - 1,3 (m, 6H) ; 2,4 (s, 3H) ; 2,9 - 3,45 (m, 4H) ; 5,4 (s, 2H) ; 7,1 - 7,3 (m, 3H) ; 7,45 (d, 1H) ; 7,6 (d, 2H) ; 8,15 (s, 1H) ; 8,3 (d, 1H)

Solvant: CDCl3

Exemple 217: 4-benzyl-7-bromo-1-(pyrrol-1-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

5

Dans un ballon de 25ml, on place 0,7g (1,8 mmol) de 1-amino-4-benzyl-7-bromo-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (composé intermédiaire 10 de l'exemple 271) en suspension dans 5ml d'acide acétique. On ajoute 0,25g (1,9 mmol) de 2,5-dimethoxytetrahydrofuranne puis chauffe le mélange à reflux pendant 1 heure. Après refroidissement et évaporation de l'acide acétique sous vide, on obtient 0,8g de solide très coloré qui est purifié par chromatographie sur colonne de silice avec élution au mélange CH2Cl2 / CH3OH (99,4/0,6 puis 99/1). Le solide obtenu à partir des fractions pures est recristallisé dans l'éthanol pour donner 0,45g du composé de l'exemple 217.

Rendement = 55%

15 F (Tottoli) = 214°C

CCM (CH₂ Cl₂ 99 / CH₃ OH 1): Rf = 0.5

R.M.N.1H δ (ppm): 5,55 (s, 2H); 5,8 (d, 1H); 6,5 (s, 2H); 6,9 (s, 2H); 7,25 – 7,4 (m, 3H); 7,7 (d, 1H); 7,75 (d, 2H); 8,55 (s, 1H)

Solvant: CDCl3

20

Exemple 218: 4-(4-aminobenzyl)-7-bromo-1-(pyrrolidin-1-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Dans un ballon de 50ml, on charge 0,45g (0,96 mmol) de 7-bromo-4-(4-nitrobenzyl)-1-(pyrrol-1-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (composé de l'exemple 48) dans 10ml d'éthanol. On ajoute 1.08g (24 mmol) de chlorure stanneux dihydrate puis chauffe à 70°C, sous agitation, pendant 30 minutes. Après refroidissement, le mélange est versé dans de l'eau glacée. On extrait plusieurs fois à l'acétate d'éthyle additionné d'un peu de CHCl3, lave la phase organique avec une solution saturée de chlorure de sodium, la sèche sur Na2SO4 puis concentre sous vide. Le résidu solide obtenu (0,35g) est lavé au méthanol (50ml) pour donner 0,25g de produit pur en CCM.

Rendement = 83%

F (Tottoli) = 263°C

CCM (CH₂ Cl₂ 98 / CH₃ OH 2) : Rf = 0.25

R.M.N.1H δ (ppm): 1,9 - 2,05 (m, 4H); 3,3 - 3,4 (m, 4H); 5 (s, 2H); 5,1 (s, 2H); 6,5 (d, 2H); 7,2 (d, 2H); 8,1 (d, 1H); 8,2 (d, 1H); 8,3 (s, 1H)

Solvant: DMSO

5 Exemple 219: 4-(benzyl)-7-hydroxy-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Exemple 219-1/ 4-benzyl-7-(4-tolylsulfonyloxy-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Dans un réacteur équipé d'un système d'agitation, on charge 1,46g (5 mmol) de 4-benzyl-7-hydroxy-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (intermédiaire obtenu par la méthode de l'exemple 255) dans 15ml de chlorure de méthylène sec. On ajoute 0,95g (5 mmol) de chlorure de tosyle puis coule, sous agitation, en 5 minutes, 1ml (7,5 mmol) de triéthylamine, la réaction étant légèrement exothermique. Après agitation supplémentaire à température ambiante pendant 2 heures, la solution organique obtenue est lavée à l'eau et séchée sur Na2SO4 pour donner, après évaporation du solvant, un résidu amorphe coloré qui est purifié par chromatographie sur colonne de silice avec élution à l'acétate d'éthyle. On obtient 1,9g de produit pur en CCM. Celui-ci sera utilisé tel quel dans l'étape suivante.

20 Rendement = 85%

2/ Exemple 219-2/ 4-benzyl-1-bromo-7-(4-tolylsulfonyloxy-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

0,4g de ce composé est obtenu à partir de 0,45g de 4-benzyl-7-(4-tolylsulfonyloxy-4H-25 [1,2,4] triazolo [4,3-a] quinazolin-5-one (exemple 219-1) par la méthode de bromation décrite dans l'exemple 256.

Rendement = 76%

3/ Exemple 219-3/ 4-benzyl-1-(pyrrolidin-1-yl)-7-(4-tolylsulfonyloxy)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one et 4-benzyl-7-hydroxy-1-(pyrrolidin-1-yl)- 4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

0,83g de dérivé bromé obtenu dans l'exemple 219-2 est traité par la pyrrolidine, dans les conditions de l'exemple 164. Après traitement, on obtient 1,0g de mélange brut de 2 composés majoritaires qui sont séparés par chromatographie sur colonne de silice avec

élution au mélange CH2Cl2 98 / CH3OH 2. Les fractions contenant le premier produit pur sont réunies et concentrées pour donner 0,375g de 4-benzyl-1-(pyrrolidin-1-yl)-7-(4-tolylsulfonyloxy-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Rendement = 45%

Les fractions contenant le deuxième produit pur sont réunies et évaporées sous vide pour donner 0,12g de 4-benzyl-7-hydroxy-1-(pyrrolidin-1-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Rendement = 15%

 $F(Tottoli) = 287^{\circ}C$

10 R.M.N.1H δ (ppm): 1,95 (m, 4H); 3,3 (m, 4H); 7,3 (s, 2H); 7,2 – 7, 6 (m, 7H); 8,1 (d, 1H); 10,2 (s, 1H)

Solvant: DMSO

Exemple 220: 4-(4-cyanobenzyl)-7-hydroxy-1-(pyrrolidin-1-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

1/ Exemple 220-1/ 1-(pyrrolidin-1yl)-7-(4-tolylsulfonyloxy)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

1,3g de ce composé est obtenu à partir de 2,4g de 4-benzyl-1-(pyrrolidin-1yl)-7-(4-tolylsulfonyloxy-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (exemple 219-3) par la méthode de débenzylation décrite dans l'exemple 263.

Rendement = 68%

20

2/ Exemple 220-2/ 4-(4-cyanobenzyl)-1-(pyrrolidin-1-yl)-7-(4-tolylsulfonyloxy-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

25 0,48g de ce composé est obtenu à partir de 0,66g de 1-(pyrrolidin-1yl)-7-(4-tolylsulfonyloxy-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (exemple 220-1) par la méthode de N-alkylation décrite dans l'exemple 3.

Rendement = 52%

30 3/ Exemple 220-3/ 4-(4-cyanobenzyl)-7-hydroxy-1-(pyrrolidin-1-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

0,3g (0,55 mmol) de 4-(4-cyanobenzyl)-1-(pyrrolidin-1-yl)-7-(4-tolylsulfonyloxy-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (décrit dans l'exemple 220-2) est dissous dans 1ml de DMF sec. On additionne 0,27ml de pyrrolidine (2,75 mmol) puis chauffe à 140°C, sous

agitation, pendant 6 heures. Le solvant est évaporé sous vide et le résidu est repris par un mélange acétate d'éthyle / solution aqueuse N d'acide chlorhydrique. L'insoluble est séparé par filtration, lavé à l'eau jusqu'à pH neutre et séché sous vide; on obtient 0,13g de produit brut, qui est cristallisé dans 5 ml d'éthanol, filtré et séché pour donner 0,085g de produit pur.

Rendement = 40%

F(Tottoli) = 305°C

R.M.N.1H δ (ppm) : 2 (m, 4H); 3,3 (m, 4H); 5,35 (s, 2H); 7,35 (d, 1H); 7,6 – 7,7 (m, 3H); 7,8 (d, 2H); 8,1 (d, 1H); 10,2 (s, 1H)

10 Solvant: DMSO

Exemple 221: 7-acetamido-4-benzyl-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

15 1/ Exemple 221-1/ 7-acetamido-4-benzyl-1-bromo -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

0,45g de ce composé sont obtenus à partir de 0,5g de 7-acetamido-4-benzyl -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one par la méthode de bromation décrite dans l'exemple 256. Rendement = 72 %

20

2/ Exemple 221-2/ 7-acetamido-4-benzyl-1-(pyrrolidin-1-yl)- 4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

8,7g (21 mmol) de dérivé bromé obtenu dans l'exemple 221-1 sont traités par 3,7 ml (42 mmol) de pyrrolidine et 3,54g (42 mmol) de bicarbonate de sodium dans 80 ml de DMF, dans les conditions de l'exemple 164. Après traitement, on obtient 8,0g de produit brut qui est purifié par chromatographie sur colonne de silice avec élution au mélange CH2Cl2 98 / CH3OH 2. Les fractions contenant le produit pur sont réunies et concentrées puis le résidu est cristallisé dans l'éthanol pour donner 6,6g de 7-acetamido-4-benzyl-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

30 Rendement = 78 %

F(Tottoli) = 265°C

R.M.N.1H δ (ppm) : 2 – 2,1 (m, 4H); 2,25 (s, 3H); 3,4 (m, 4H); 5,45 (s, 2H); 7,2 – 7,3 (m, 3H); 7,6 (d, 2H); 8,1 (s, 1H); 8,2 (m, 2H); 8,4 (d, 1H)

Solvant: CDCl3

Exemple 222: 7-acetamido-4-[(E)-3-phenylallyl]-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

A partir de 1,2g (3,0 mmol) de 7-acetamido-4-benzyl-1-(pyrrolidin-1yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (décrite dans l'exemple 221) débenzylé en 7-acetamido-1- (pyrrolidin-1yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one par la méthode au Palladium/C décrite dans l'exemple 257, puis directement traité par 0,59g de bromure de cinnamyle en présence de 0,98g de carbonate de césium, dans 15 ml de DMF, d'après la méthode décrite dans l'exemple 3, on obtient, après purification par chromatographie sur colonne de silice et recristallisation dans l'éthanol, 0,4g du composé pur de l'exemple 222.

Rendement = 31 %.

 $F (Tottoli) = 248^{\circ} C$

CCM (CH₂ Cl₂ 95 / CH₃ OH 5): Rf = 0.30

15 RMN 1 H δ (ppm) CDCl3:

2,0-2,1 (m,4H); 2,25 (s, 3H); 3,45 (m, 4H); 5 (d, 2H); 6,35-6,4(dt, 1H); 6,8 (d, 1H); 7,15-7.35 (m, 5H); 8,1 (s, 1H); 8,2-8.3 (m, 2H); 8,4 (m, 1H)

Exemple 223: 7-amino-4-[(E)-3-phenylallyl]-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Dans un ballon de 20 ml, on place 0,2g (0,46 mmol) de 7-acetamido-4-[(E)-3-phenylallyl]-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (décrite dans l'exemple 222) dans 5 ml d'une solution 6N d'acide chlorhydrique et chauffe à reflux, sous agitation, pendant 15 minutes. Après refroidissement, la solution obtenue est alcalinisée par une solution de soude, extraite 3 fois au chlorure de méthylène. Les phases organiques jointes sont lavées avec une solution saturée de NaCl, séchées (Na2SO4) puis évaporées sous vide. Le produit brut (0,12g) est recristallisé dans l'éthanol pour donner 0,08g du composé pur de l'exemple 223.

Rendement = 44 %

F(Tottoli) = 199°C

RMN ¹H δ (ppm) CDCl3:

2,1 (m, 4H); 3,4 (m, 4H); 4,0 (m, 2H); 5,1 (d, 2H); 6,5-6,6 (dt, 1H); 6,85 (d, 1H); 7,0-7,3 (m, 3H); 7,6 (m, 1H); 7,7 (m, 1H); 8,1 (m, 1H); 8,45 (s, 1H); 8,6 (s, 1H).

Les composés de formule générale (I) des exemples 224 à 233 du tableau 5 sont préparés par la méthode de l'exemple 223.

5

TABLEAU 5

N° Composé	X1	R	NR4R5	Rdt (%)	PF (°C)
224	7-NH2	С6Н5СН2	N-	40	240 (dec)
225	7-NH2	С6Н5СН2	\sim	60	230
226	7-NH2	4-CNC6H4CH2		67	152
227	7-NH2	(E) (3-pyridyl)-CH=CHCH2	\(\hat{\chi}\)	70	201
228	7-NH2	4-CNC6H4CH2	CH ₃ N CH ₃	68	163
229	7-NH2	(E) C6H5CH=CHCH2	CH₃ N CH₃	67	198
230	7-CH3NH	C6H5CH2	N-	58	171
231	7-СН3NН	4-CNC6H4CH2		91	270
232	8-CH3NH	C6H5CH2		76	-
233	7-C2H5NH	C6H5CH2	N—	67	225

- Composé 224 :

R.M.N.1H δ (ppm): 1,8 - 1,9 (m, 8H); 3,4 - 3,45 (m, 4H); 4 (s, 2H); 5,4 (s, 2H); 7 (m, 1H); 7,25 - 7,35 (m, 3H); 7,55 (s, 1H); 7,65 - 7,80 (m, 2H); 8,15 - 8,2 (m, 1H)

10 Solvant: CDCl3

- Composé 225 :

R.M.N.1H δ (ppm): 2,1 (m, 4H); 3,4 (m, 4H); 4 (s, 2H); 5,45 (s, 2H); 7 (d, 1H); 7,2 – 7,35 (m, 3H); 7,6 (s, 1H); 7,7 – 7,8 (d, 2H); 8 – 8,1 (d, 1H)

Solvant: CDC13

- Composé 226:

R.M.N.1H δ (ppm): 2 - 2,1 (m, 4H); 3,35 - 3,45 (m, 4H); 4,05 (s, 2H); 8,5 (s, 2H); 7,05

5 (m, 1H); 7.4 - 7.5 (m, 3H); 7.8 (s, 1H); 8.05 (d, 1H)

Solvant: CDC13

- Composé 227 :

R.M.N.1H δ (ppm): 2,1 (m, 4H); 3,4 (m, 4H); 4 (m, 2H); 5,1 (d, 2H); 6,4 - 6,5 (dt,

10 1H); 6,9 (d, 1H); 7,05 (m, 1H); 7,2 – 7,3 (m, 2H); 7,35 (d, 2H); 7,6 (s, 1H); 8,1 (d, 1H)

Solvant: CDCl3

- Composé 228:

R.M.N.1H δ (ppm): 2,8 (s, 6H); 5,4 (s, 2H); 5,7 (m, 2H); 7,10 – 7,15 (m, 1H); 7,4 (s,

15 1H); 7,6 (d, 2H); 7,8 (d, 2H); 8,05 (d, 1H)

Solvant: DMSO

- Composé 229:

R.M.N.1H δ (ppm): 2,9 (s, 6H); 4,95 (d, 2H); 5,75 (m, 2H); 6,45 - 6,5 (dt, 1H); 6,7 -

20 6,8 (d, 1H); 7,2 (m, 1H); 7,25 – 7,4 (m, 6H); 8,1 (d, 1H)

Solvant: DMSO

- Composé 230:

R.M.N.1H δ (ppm): 2,1 (m, 4H); 2,95 (s, 3H); 3,4 (m, 4H); 4,1 (m, 1H); 5,4 (s, 2H);

25 6,95 (d, 1H); 7,3 (m, 3H); 7,45 (s, 1H); 7,75 (dd, 2H); 8,1 (d, 1H)

Solvant: CDCl3

- Composé 231:

R.M.N.1H δ (ppm) : 2,1 (m, 4H); 2,9 (s, 3H); 3,4 (m, 4H); 5,5 (s, 2H); 7 (m, 1H); 7,45

30 (s, 1H); 7,6 (m, 2H); 7,8 (m, 2H); 8,1 (d, 1H)

Solvant: CDCl3

- Composé 232 :

R.M.N.1H δ (ppm) : 1,9 - 2 (m, 4H); 2,85 (d, 3H); 3,3 (m, 4H); 5,3 (s, 2H); 6,7 (d, 1H);

35 7,2 (q, 1H); 7,25 – 7,45 (m, 6H); 7,9 (d, 1H)

Solvant: DMSO

- Composé 233:

R.M.N.1H δ (ppm): 1,3 (t, 3H); 2,1 (m, 4H); 3,25 (m, 2H); 3,4 (m, 4H); 3,9 (m, 1H); 5,45 (s, 2H); 7 (m, 1H); 7,2 – 7,3 (m, 3H); 7,45 (s, 1H); 7,7 (m, 2H); 8,1 (d, 1H) Solvant: CDCl3

Exemple 234: 4-benzyl-7-(N-isopropylamino)-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one

Dans un ballon de 20 ml, on place 0,31g (0,86 mmol) de 7-amino-4-benzyl-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (décrite dans l'exemple 225) en suspension dans 10 ml de chlorure de méthylène. On additionne 0,14 ml (1,9 mmol) d'acétone, 0,115 ml (1,9 mmol) d'acide acétique pur puis 0,546g (2,6 mmol) detriacétoxyborohydrure de sodium. Le mélange est agité à température ambiante, sous atmosphère d'azote, pendant 48 heures. Le solvant est évaporé sous vide et le résidu repris par de l'acétate d'éthyle. La phase organique est lavée par une solution de bicarbonate de sodium, puis une solution saturée de NaCl. Après séchage (Na2SO4) et élimination du solvant sous vide, on obtient 0,3g de produit brut qui est purifié par chromatographie sur colonne de silice, avec élution au mélange CH2Cl2 98 / CH3OH 2, pour donner 0,2g de composé de l'exemple 234 pur en CCM.

Rendement = 58%

15

30

 $F(Tottoli) = 208^{\circ}C [EtOH]$

R.M.N.1H δ (ppm): 1,2 (m, 6H); 2,05 (m, 4H); 3,4 (m, 4H); 3,7 - 3,85 (m, 2H); 5,5 (s, 2H); 6,9 (m, 1H); 7,2 - 7,3 (m, 3H); 7,4 (s, 1H); 7,7 (m, 2H); 8,1 (m, 1H)

Solvant: CDC13

Exemple 235: 4-benzyl-7-methylsulfonylamino-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one et exemple 247: 4-benzyl-7-(N,N-dimethylsulfonylamino)-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Dans un ballon de 20 ml, on place 0,55g (1,5 mmol) de 7-amino-4-benzyl-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (décrite dans l'exemple 225) en suspension dans 10 ml de chlorure de méthylène. On additionne 0,42 ml (3,0 mmol) de triéthylamine puis 0,24 ml (3,0 mmol) de chlorure de méthanesulfonyle. La solution obtenue est agitée à température ambiante solution pendant 24 heures. Après refroidissement, la solution obtenue est lavée à l'eau, séchée (Na2SO4) puis évaporée sous vide. Le mélange brut des 2 composés obtenus (0,85g) est chromatographié sur colonne de silice avec élution au mélange CH2Cl2 99 / CH3OH 1 / NH4OH 0,1. Les fractions

contenant le premier produit par ordre d'élution sont réunies et évaporées sous vide pour donner 0,65g de 4-benzyl-7-(N,N-dimethylsulfonylamino)-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

F (Tottoli) = 221°C

5 R.M.N.1H δ (ppm) DMSO: 2,2 – 2,3 (m, 4H); 2,9 (s, 3H); 3,15 (m, 4H); 5,15 (s, 2H); 7,1 – 7,2 (m, 3H); 7,25 (m, 2H); 7,5 – 7,6 (d, 1H); 7,85 (s, 1H); 8,05 – 8,1 (d, 1H); 10,05 (s, 1H)

Les fractions contenant le deuxième produit par ordre d'élution sont traitées d'une façon similaire pour fournir 0,15g de 4-benzyl-7-methylsulfonylamino-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Rendement = 23%

20

F(Tottoli) = 283°C [EtOH]

R.M.N.¹H δ (ppm) DMSO : 2 (m, 4H); 3,45 (m, 4H); 3,5 (s, 3H); 5,45 (s, 2H); 7,3 (m, 3H); 7,7 (m, 3H); 6,35 (m, 2H)

Exemple 236: 7-(N,N-dimethylamino)-4-benzyl-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Dans un ballon, on place 0,75g (2,05 mmol) de 7-amino-4-benzyl-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (décrite dans l'exemple 225) en suspension dans 0,8 ml d'acide formique et 0,8 ml de formol. Sous agitation, le mélange est chauffé à 100°C pendant 1 heure. Après refroidissement, la solution obtenue est versée dans de l'eau glacée, la suspension extraite plusieurs fois à l'acétate d'éthyle; les phases organiques jointes sont lavées avec une solution aqueuse saturée de chlorure de sodium, séchées sur

Le produit brut obtenu (0,8g) est purifié par chromatographie sur colonne de silice avec, élution au mélange chlorure de méthylène 98 / méthanol 2. On obtient 0,23g de produit de l'exemple 236 pur en CCM.

Rendement = 29%

30 F (Tottoli) = 194°C [EtOH]

25 Na2SO4 puis concentrées sous vide.

CCM (CH₂ Cl₂ 97 / CH₃ OH 3) : Rf = 0.65

R.M.N.1H δ (ppm): 2,1 (m, 4H); 3,05 (s, 6H); 3,45 (m, 4H); 5,45 (s, 2H); 7,1 (m, 1H); 7,3 (m, 3H); 7,6 (d, 1H); 7,75 (m, 2H); 8,1 (d, 1H)

Solvant: CDCl3

Exemple 237: 4-benzyl-7-cyano-1-(N,N-dimethylamino)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Dans un ballon de 500 ml muni d'un système d'agitation, d'un réfrigérant et d'une arrivée d'azote, on introduit 10,8g (27,1 mmol) de 4-benzyl-7-bromo-1-(pyrrolidin-1-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (exemple 164) dans 100ml de N-methylpyrrolidinone (NMP). On ajoute 4,4g (49 mmol) de cyanure cuivreux puis chauffe le mélange, sous agitation et sous azote pendant 12 heures. Le solvant est éliminé par évaporation sous vide; le résidu est agité dans 1 mélange de chlorure de méthylène et de solution d'ammoniaque 2N, l'insoluble éliminé par filtration puis les phases séparées par décantation. La phase organique estlavée avec une solution saturée en NaCl, séchée (Na2SO4) et évaporée pour donner 24,0g de produit brut. Celui-ci est purifié par chromatographie sur colonne de silice avec élution au mélange acétate d'éthyle 65 / cyclohexane 35. Les fractions pures en CCM sont réunies et évaporées sous vide : on obtient 8,4g du composé de l'exemple 237.

Rendement = 90%.

F (Tottoli) = 212-214°C

R.M.N.1H δ (ppm): 2,9 (s, 6H); 5,3 (s, 2H); 7,3 (m, 3H); 7,5 (m, 2H); 8,4 (m, 1H); 8,5 (m, 1H); 8,6 (m, 1H)

20 Solvant: DMSO

10

15

Exemple 238: 4-benzyl-7-carboxy-1-(pyrrolidin-1-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

Dans un ballon de 250ml, on place 5,0 g (13,5 mmol) de 4-benzyl-7-cyano-1-(pyrrolidin-1-yl)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one en suspension dans 100ml d'une solution 16 N d'acide chlorhydrique puis chauffe à reflux, sous agitation, pendant 3 heures.

Après refroidissement, le précipité est filtré, lavé plusieurs fois à l'eau, séché et purifié par chromatographie sur colonne de silice, avec élution au mélange CH2Cl2 97 / CH3OH 3,

pour donner 2,3g de composé de l'exemple 238, pur en CCM.

30 Rendement = 44%

F(Tottoli) = 335-337°C

R.M.N.1H δ (ppm): 1,9 (s, 4H); 3,4 (s, 4H); 5,3 (s, 2H); 7,3 (m, 3H); 7,4 (m, 2H); 8,2 (m, 1H); 8,4 (m, 1H); 8,7 (s, 1H)

Solvant: DMSO

Exemple 239: 7-bromo-4-[(4-methoxycarbonylmethyl)benzyl]-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

0,8g (1,65 mmol) de 7-bromo-4-[(4-carboxymethyl)benzyl]-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one (exemple 56) et 0,25g de carbonate de potassium sont mis en suspension dans 10 ml de DMF. On ajoute 0,26g (1,82 mmol) d'iodure de méthyle puis chauffe à 80°C, sous agitation, pendant 2 heures. Le solvant est évaporé sous vide, le résidu est repris par de l'eau, laquelle est extraite 3 fois à l'acétate d'éthyle; les phases organiques jointes sont lavées avec une solution saturée de chlorure de sodium, séchées sur Na2SO4 puis le solvant est évaporé sous vide pour fournir 0,7g de produit brut.

Celui-ci est purifié par chromatographie sur colonne de silice avec élution au mélange CH2Cl2 99 / CH3OH 1. On obtient 0,5g de produit pur en CCM.

Rendement = 61 %

F(Tottoli) = 161-162°C [C2H5OH]

15 R.M.N.1H δ (ppm): 2 - 2,1 (m, 4H); 3,35 – 3,45 (m, 4H); 3,6 (s, 2H); 3,7 (s, 3H); 5,45 (s, 2H); 7,2 (d, 2H); 7,65 (d, 2H); 7,85 (d, 1H); 8,15 (d, 1H); 8,5 (s, 1H)

Solvant: CDCl3

Exemple 240: 7-bromo-4-[(4-(N-methylcarbamoyl)methyl)benzyl]-1-(pyrrolidin-1-yl) - 4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

240-1/ 7-bromo-4-[(4-chloroformylmethyl)benzyl]-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

0,85g (1,76 mmol) de 7-bromo-4-[(4-carboxymethyl)benzyl]-1-(pyrrolidin-1-yl) -4H25 [1,2,4] triazolo [4,3-a] quinazolin-5-one (exemple XX) est placé dans 85 ml de chloroforme sec. Sous courant d'azote, on agite puis additionne 0,42g (3,52 mmol) de chlorure de thionyle en maintenant la température inférieure à +5°C. Après 1h30, la réaction est pratiquement complète et le chlorure d'acide a tendance à précipiter sous forme de cristaux. Cette solution sera utilisée telle quelle pour l'étape suivante.

240-2/ 7-bromo-4-[(4-(N-methylcarbamoyl)methyl)benzyl]-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one.

A une solution refroidie à 0°C de 0,6g (8,8 mmol) de chlorhydrate de methylamine et 1,06g de triethylamine dans 85 ml d'acétone, on additionne lentement la solution obtenue dans l'exemple 240-1 en maintenant la température < +5°C. L'agitation est ensuite

- 134 -

maintenue à 0°C pendant 15 minutes puis la solution obtenue est concentrée sous vide. On dissout le résidu dans du chlorure de méthylène, lave la phase organique 2 fois à l'eau, sèche sur Na2SO4, évapore le solvant sous vide et récupère ainsi 1,0g de produit brut. Celui-ci est chromatographié sur colonne de silice avec élution au mélange CH2Cl2 96 / CH3OH 4 pour donner 0,4g qui est recristallisé dans l'éthanol. On obtient, après séchage, 0,27g de composé pur.

Rendement = 31 %

F (Tottoli) = 240°C

CCM (CH₂ Cl₂ 92 / CH₃ OH 8) : Rf = 0.5

10 R.M.N.1H δ (ppm): 1,95 - 2,1 (m, 4H); 2,7 (d, 3H); 3,35 - 3,45 (m, 4H); 3,5 (s, 2H); 5,3 - 5,5 (m, 3H); 7,15 (d, 2H); 7,65 (d, 2H); 7,9 (d, 1H); 8,2 (d, 1H); 8,5 (s, 1H) Solvant: CDCl3

Les composés (I) des exemples 241 à 243 (tableau 6) sont préparés selon le procédé de 1'exemple 240.

TABLEAU 6

N° Composé	R	NR4R5	Rdt (%)	PF (°C)
241	4-(NH2COCH2)C6H4CH2	$\langle \rangle$	38	268
242	4-(Me2NCOCH2)C6H4CH2	$\langle \rangle$	74	202
243	4-(HONHCOCH2)C6H4CH2	\bigcap_{N}	47	229

20

- Composé 241:

R.M.N.1H δ (ppm): 2,7 (s, 6H); 3,2 (s, 2H); 5,1 (s, 2H); 6,7 (s, 1H); 7,05 (d, 2H); 7,2

(m, 3H); 7,95 (m, 1H); 8,05 (d, 1H); 8,15 (s, 1H)

Solvant: DMSO

- Composé 242:

R.M.N.1H δ (ppm) : 2 - 2,15 (m, 4H); 2,9 (s, 3H); 2,95 (s, 3H); 3,35 - 3,45 (m, 4H); 3,7 (s, 2H); 5,45 (s, 2H); 7,15 (d, 2H); 7,65 (d, 2H); 7,85 (d, 1H); 8,15 (d, 1H); 8,5 (s, 1H) Solvant : CDCl3

5

- Composé 243:

R.M.N.1H δ (ppm) : 1,95 - 2,1 (m, 4H) ; 3,3 (s, 2H) ; 3,3 - 3,4 (m, 4H) ; 5,3 (s, 2H) ; 7,25 (d, 2H) ; 7,45 (d, 2H) ; 8,15 (d, 1H) ; 8,25 (d, 1H) ; 8,35 (s, 1H) ; 8,8 (s, 1H) ; 10,7 (s, 1H) Solvant : DMSO

10

15

25

Exemple 244: 7-methyl-4-(4-cyanobenzyl-1-(N,N-dimethylamino)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-thione.

244-1/ 7-methyl-1-(N,N-dimethylamino)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-thione.

Dans un ballon tricol équipé d'un système d'agitation, d'un réfrigérant et d'un système d'introduction d'azote, on place 1,0g (4,1 mmol) de 7-methyl-1-(N,N-dimethylamino)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one dans 70 ml de toluène et ajoute en une fois 3,3g (8,2 mmol) de réactif de Lawesson. Sous agitation, le mélange est chauffé à reflux pendant 24 heures. Après refroidissement, on additionne 30 ml d'une solution 5% d'acide chlorhydrique puis verse dans 250 ml de méthanol en agitant. On ajoute 250 ml de cyclohexane et élimine l'insoluble par filtration. La phase méthanolique acide est séparée par décantation, concentrée sous vide et le résidu est repris par de la glace et y est trituré plusieurs fois. L'insoluble récupéré sous forme de laque est dissous dans 10 ml d'isopropanol; à partir de la solution obtenue, agitée pendant 30 minutes, les cristaux jaune qui ont précipité sont filtrés, lavés à l'isopropanol puis à l'éther et séchés sous vide.

On obtient 0,98g de produit qui sera utilisé tel quel pour l'étape suivante.

Rendement = 80 %

244-2/ 4-(4-cyanobenzyl)-1-(N,N-dimethylamino)-7-methyl-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-thione.

A partir de 0,5g (1,93 mmol) de 7-methyl-1-(N,N-dimethylamino)-4H-[1,2,4] triazolo [4,3-a] quinazolin-5-thione (exemple 244-2), en utilisant la méthode B décrite à l'exemple 3, on obtient, après recristallisation dans l'éthanol, 0,29g de composé de l'exemple 244.

Rendement = 40 %

F(Tottoli) = 236°C

- 136 -

R.M.N.1H δ (ppm): 2.9(s,6H); 3.7(s,2H); 5.45(s,2H); 7.25(m,2H); 7.7(m,2H);

7.85(m,1H); 8.2(d,1H); 8.5(s,1H)

Solvant: CDCl₃

Les composés (I) des exemples 245 à 246 (tableau 7) sont préparés selon le procédé de l'exemple 244.

TABLEAU 7

Nº Composé	X1	R	NR4R5	Rdt (%)	PF (°C)
245	7-Br	4-CNC6H4CH2	CH ₃ N_CH ₃	13	276
246	7-CH3	(E) (pyridin-3-yl)-CH=CHCH2	CH₃ N CH₃	26	133

10

- Composé 245 :

 $R.M.N.1H\ \delta\ (ppm): 2,9\ (s,\ 6H)\ ;\ 4,7\ (s,\ 2H)\ ;\ 7,65\ (d,\ 2H)\ ;\ 7,75\ (d,\ 2H)\ ;\ 8,1\ (m,\ 2H)\ ;\ 8,4$

(d, 1H)

Solvant: DMSO

15

- Composé 246:

R.M.N.1H δ (ppm): 2,5 (s, 3H); 3,0 (s, 6H); 4,25 (d, 2H); 6,45 (dt, 1H); 6,75 (d, 1H);

7,2 (m, 1H); 7,6 (d, 1H); 7,7 (d, 1H); 7,9 (s, 1H); 8,4 (m, 2H); 8,6 (bs, 1H)

Solvant: CDC13

20

B. Composés intermédiaires

Des réalisations particulièrement préférées des composés intermédiaires de la présente invention peuvent être préparées selon les exemples qui suivent. La personne versée dans l'art pourra cependant facilement modifier les modes opératoires décrits ci-dessous en fonction de l'intermédiaire désiré.

Exemple 250

Intermédiaire 1:

1,2,3,4-tétrahydro-3-benzyl-6-bromo-4-oxo-2-thia-quinazoline à partir de l'acide 5-bromo anthranilique.

Dans un réacteur muni d'une agitation, d'un réfrigérant et d'une ampoule à brome sont placés 150 g (694 mmol) d'acide 5-bromo-2-amino-benzoïque en suspension dans 1,5 l d'acide acétique.

Sous agitation, le mélange est chauffé à reflux, puis 92 ml (103 g; 694 mmol) d'isothiocyanate de benzyle sont additionnés lentement et régulièrement par l'ampoule à brome.

Après fin de l'addition, l'agitation et le chauffage à reflux sont maintenus pendant 6 heures; durant cette période, la solubilisation se fait progressivement.

Après refroidissement, jusqu'à température ambiante le solide qui a précipité est filtré et lavé à l'acide acétique.

Le produit obtenu est séché sous vide, à 60° C, pour donner 125,2 g du composé attendu, pur en CCM (solvant d'élution : CH2Cl2 99,2 / CH3OH 0,8 ; Rf = 0,9)

Rendement = 52 %

Les spectres RMN ¹H et ¹³C sont compatibles avec la structure attendue.

Exemple 251

Intermédiaire 2:

3, 4-Dihydro-3-benzyl-6-bromo-2-hydrazino-quinazolin-4-one.

25

Dans un réacteur muni d'une agitation et d'un réfrigérant sont placés 125,2 g (360 mmol) de 1,2,3,4-tétrahydro-3-benzyl-6-bromo-4-oxo-2-thia-quinazoline (<u>Intermédiaire 1</u>) en suspension dans 3,5 l d'éthanol.

Sous agitation, on additionne 167,6 g (3.348 mmol) d'hydrate d'hydrazine.

La suspension obtenue est chauffée à reflux pendant 18 heures, pendant lesquelles le passage en solution se fait progressivement.

Après refroidissement à la température ambiante, la moitié environ du solvant est évaporée sous vide et la solution résiduelle obtenue est abandonnée dans un bain de glace pendant 1 heure.

WO 00/66584 PCT/FR00/01174

Après filtration du précipité, lavage à l'éthanol froid puis séchage sous vide à 60° C, on obtient 89,7 g du composé attendu, pur en CCM (solvant d'élution : CH2Cl2 99 / CH3OH 1; Rf = 0.1)

Rendement = 72 %

5 les spectres RMN ¹H et ¹³C sont compatibles avec la structure attendue.

Exemple 252

Intermédiaire 3:

4-benzyl-7-chloro-1-mercapto-4H-[1,2,4] triazolo [4, 3-a] quinazoline -5-one

10

Dans un réacteur muni d'une agitation et d'un réfrigérant, on met 47,7 g (158 mmol) de 3,4-dihydro-3-benzyl-6-chloro-2-hydrazino-quinazolin-4-one (préparée de façon similaire à l'intermédiaire 2) en solution dans 600 ml de pyridine.

On additionne alors 25,3 g (158 mmol) de xanthogenate de potassium par fractions, la solution obtenue est chauffée à reflux pendant 7 heures, sous agitation, au cours desquelles un solide précipite progressivement.

Après repos à température ambiante pendant une nuit, le précipité est séparé par filtration puis redissous dans 1,5 litre d'eau.

La solution obtenue est neutralisée par de l'acide acétique, puis le précipité formé est filtré, 20 lavé à l'eau jusqu'à pH neutre et séché.

On obtient 54,0 g de produit brut qui sera utilisé tel quel pour l'étape suivante.

Rendement ≈ 100 %

25 <u>Exemple 253</u>

Intermédiaire 4:

4-benzyl-7-chloro-1-méthylthio-4H-[1,2,4] triazolo [4, 3-a] quinazolin-5-one.

Dans un réacteur muni d'une agitation et d'une ampoule à brome, on place une solution de 6,72g de soude dans 1200 ml d'eau puis additionne 57,0 g (166 mmol) de 4-benzyl-7-chloro-1-mercapto-triazolo [4, 3-a] quinazolin-5-one (<u>Intermédiaire 3</u>).

Sous agitation, on additionne 15,74 ml (166 mmol) de sulfate de diméthyle, à température ambiante, sur une période de 30 minutes. L'agitation est maintenue pendant 7 heures.

Après abandon à température ambiante pendant une nuit, le précipité est filtré, lavé à l'eau puis séché sous vide.

On obtient 51,2 g de solide brut qui est utilisé tel quel pour l'étape suivante.

Rendement = 100%

5

10

Exemple 254

Intermédiaire 5: 4-benzyl-1,7-dichloro-4H-[1,2,4] triazolo [4, 3-a] quinazolin-5-one.

Dans un réacteur muni d'une agitation, d'un tube plongeant et d'un réfrigérant, on place 51,0 g (143 mmol) de 4-benzyl-7-chloro-1-méthylthio-triazolo [4, 3-a] quinazolin-5-one (Intermédiaire 4) dans un mélange de 1,5 l de chloroforme et 0,9 l d'eau.

Sous agitation, on refroidit à 0° C, puis fait passer un courant de chlore, en maintenant la température inférieure à 10° C, pendant 2 heures.

On interrompt alors l'arrivée de chlore, laisse le mélange revenir à la température ambiante puis maintient l'agitation pendant 2 heures.

Les 2 phases sont séparées par décantation, la phase chloroformique est séchée sur Na2SO4 et concentrée sous vide.

On obtient 50,9 g de résidu solide brut. Celui-ci est mis en suspension dans 400 ml d'éthanol et le mélange hétérogène est agité pendant 30 minutes. L'insoluble est filtré, lavé à l'éthanol et séché à 50° C sous vide pour donner 46,5 g du composé attendu, pur en CCM (solvant d'élution : CH2Cl2 99 / CH3OH 1 ; Rf = 0,50)

Rendement = 94 %

Les spectres RMN du proton et du ¹³C sont compatibles avec la structure attendue.

25

Exemple 255

Intermédiaire 6: 4-benzyl-7-bromo-4H-[1,2,4] triazolo [4, 3-a] quinazolin-5-one.

Dans un réacteur de 6 litres, muni d'une agitation, on place 89,7 g (260 mmol) de 3,4-dihydro-3-benzyl-6-bromo-2-hydrazino-quinazolin-4-one (Intermédiaire 2) en suspension dans 2,9 l de chloroforme sec.

On agite, refroidit la suspension à 0° C au moyen d'un bain de glace, puis additionne 216 ml (192,5 g; 1.299 mmol) d'orthoformiate de triéthyle, ce qui entraîne une légère augmentation de température (jusqu'à 6° C).

En maintenant la température en dessous de 5° C, on ajoute en une coulée 8,2 ml d'acide sulfurique concentré. On agite ensuite pendant 15 mn à température < 5° C, puis ôte le bain de glace; l'agitation est maintenue pendant 4 heures supplémentaires pendant lesquelles un solide précipite progressivement.

On additionne 1,5 l d'eau et 0,7 l de chloroforme, agite jusqu'à complète répartition entre les 2 phases puis neutralise la phase aqueuse à pH 7 par du bicarbonate de sodium.

La phase organique est décantée, lavée avec une solution saturée en NaCl, séchée (Na₂SO₄) et évaporée sous vide pour donner 91,3 g du composé attendu, pur en CCM (solvant d'élution : CH2Cl2 97 / CH3OH 3 / NH4OH 0,3 ; Rf = 0,5).

Rendement = 99 %

PF (Tottoli) = 237° C

Les spectres RMN ¹H et ¹³C sont compatibles avec la structure attendue.

Exemple 256

Intermédiaire 7:

4-benzyl-1, 7-dibromo-4H-[1,2,4] triazolo [4, 3-a] quinazolin-5-one.

20

Dans un réacteur de 3 litres équipé d'une agitation, d'un réfrigérant et d'une ampoule à brome, on place 35 g (98,5 mmol) de 4-benzyl-7-bromo-4H-[1,2,4] triazolo [4,3-a]quinazoline-5-one (Intermédiaire 6) en suspension dans 630 ml de chloroforme et 11 ml de pyridine.

Sous agitation, 16,4 ml (320 mmol) de brome sont ensuite additionnés à température ambiante, sur une période de 30 minutes.

Après fin de l'addition, l'agitation à température ambiante est maintenue pendant 1 heure; le milieu réactionnel est alors partagé entre 1 l d'eau et 1,5 l de chloroforme et le mélange hétérogène agité pendant 15 mn.

30 L'insoluble est essoré, lavé à l'eau jusqu'à pH neutre puis trituré dans l'éthanol.

Après séchage sous vide, à 50 ° C, on obtient une première fraction de 8,2 g du composé attendu pur en CCM (solvant d'élution : CH2Cl2 99 / CH3OH 1 ; Rf = 0,6).

Après séparation de la phase chloroformique, lavage avec une solution de bicarbonate de sodium puis avec de l'eau, séchage (Na₂SO₄), évaporation du solvat sous vide puis

WO 00/66584 PCT/FR00/01174

trituration du résidu dans de l'éthanol, filtration et séchage du solide, à 50° C, on obtient 33,1 g d'une seconde fraction du composé attendu, équivalent en CCM à la fraction précédente.

Rendement total (des 2 fractions) = 96%

5 Le spectre RMN ¹H est compatible avec la structure attendue.

Exemple 257

Intermédiaire 8: 1-Azepanyl-4H-[1,2,4] triazolo[4,3-a] quinazolin-5-one

Dans un ballon de 150 ml muni d'une agitation et d'un réfrigérant, on dissout 1,0 g (2,68 mmol) de 1-Azepanyl-4-benzyl-4H-[1,2,4] triazolo[4,3-a] quinazolin-5-one dans 60 ml de tétrahydrofuranne.

On additionne 2,0 g de formiate d'ammonium puis 1,5 g de palladium activé à 10 % sur charbon.

15 Le mélange est agité et chauffé au reflux du solvant pendant 5 heures.

Après refroidissement, la suspension est filtrée puis le solvant évaporé sous vide pour donner 0,55 g de solide résiduel.

Celui-ci est chromatographié sur colonne de silice avec élution au mélange CH₂ Cl₂ 97 / CH₃ OH 3; les fractions pures en CCM sont regroupées et concentrées sous vide pour fournir 0,42 g de résidu solide.

Rendement = 55%

F (Tottoli) = 222 - 224°C

CCM (CH₂ Cl₂ 95 / CH₃ OH 5) : Rf = 0.4

R.M.N. 1 H δ (ppm) : 1,65-1,85 (m, 8H) ; 3,25 (m, 4H) ; 7,5 (t,1H) ; 7,9 (t, 1H) ; 8,15 (d, 1H) ; 8,3 (d,1H) ; 12,6 (m, 1H)

Solvant: DMSO

Les composés (I; R = H) des exemples 258 à 262 (tableau 8) sont préparés selon le procédé de l'exemple 257.

\mathbf{T}	A 1	BL	F	٨	T	Ι :	Q
1 /	•	DI.	(Par	н.	L	, ,	0

Nº Composé	X1	NR4R5	Rdt (%)	PF (°C)
258	7-Bṛ	\bigcirc	96	>290
259	8-CH3	\bigcap_{N}	64	•
260	8- N	\sim	75	-
261	7-Br	\bigcap_{N}	89	>300
262	7-Br	N—	90,5	>300

Exemple 263

5 Intermédiaire 9: 1-Azepanyl-7-chloro-4H-[1,2,4] triazolo[4,3-a] quinazolin-5-one

10,0 g de 1-Azepanyl-4-benzyl-7-chloro-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one (24,5mmol) puis 19,6 g (147 mmol) de chlorure d'aluminium sec sont placés en suspension dans 200 ml de benzène anhydre.

La suspension est agitée et chauffée à 50° C, à l'abri de l'humidité.

Après 1 heure 30, on laisse refroidir, additionne de la glace au mélange réactionnel puis agite vigoureusement le mélange pendant 30 minutes.

Le précipité obtenu est essoré, lavé à l'eau jusqu'à neutralité et séché à 50°C pour donner 7,5 g de solide pur en CCM.

15 Rendement = 96 %

F (Tottoli):>300°C

CCM (CH₂ Cl₂ 95 / CH₃ OH 5) : Rf = 0.35

R.M.N. 1 H δ (ppm) : 1,65-1,9 (m, 8H) ; 3,3 (m, 4H) ; 7,95 (d, 1H) ; 8,05 (s, 1H) ; 8,3 (d, 1H) ; 12,8 (m,1H)

TABLEAU 9

Nº Composé	X1	NR4R5	PF (°C)
264	Н	\sim	283
265	7-CH3	\bigcap_{N}	298
266	7-CH3	\bigcap_{N}	>300
267	7-CH3	CH ₃ N_CH ₃	-
268	7-ОН	\sim	295
269	7-CN	N-	>300
270	7-CN	CH ₃ N CH ₃	-

Exemple 271

5 <u>Intermédiaire 10</u>: 1-amino-4-benzyl-7-bromo-4H-[1,2,4] triazolo[4,3-a] quinazolin-5-one

Dans un réacteur de 500ml muni d'un système d'agitation, d'un réfrigérant équipé d'une garde à potasse, d'un thermomètre plongeant et d'une arrivée d'azote, on place 5,0g (14,5 mmol) de 3, 4-dihydro-3-benzyl-6-bromo-2-hydrazino-quinazolin-4-one (préparé suivant l'exemple XX) en suspension dans 150 ml de méthanol sec. On additionne 1,62g (15,3 mmol) de bromure de cyanogène et agite le mélange hétérogène pendant 1 heure à température ambiante, puis à reflux pendant 5 heures. Après refroidissement, on ajoute goutte à goutte, sous bonne agitation, une solution aqueuse saturée de bicarbonate de sodium jusqu'à pH 8. Le solide insoluble est filtré, lavé plusieurs fois avec de l'eau et séché sous vide pour donner 4,9g de produit brut.

Celui-ci est trituré dans 100 ml de méthanol, la fraction insoluble est séparée par filtration, lavée au méthanol et séchée sous vide. On obtient 4,6g de produit pur en CCM. Les spectres RMN ¹H et ¹³C sont compatibles avec la structure attendue.

WO 00/66584 PCT/FR00/01174

Rendement = 86,5 % F (Tottoli) = 287°C CCM (CH₂ Cl₂ 95 / CH₃ OH 5) : Rf = 0,5

5

20

Evaluation de l'activité in vitro des composés préférés de l'invention

Inhibition de la phosphodiestérase

La capacité des composés de formule (I) de l'invention à inhiber les phosphodiestérases des nucléotides cycliques est évaluée par la mesure de leur CI₅₀ (concentration nécessaire pour inhiber 50 % de l'activité enzymatique).

Les phosphodiestérases de type 4 sont obtenus à partir d'une préparation cytosolique extraite d'une lignée cellulaire d'origine humaine U937 selon la méthode adaptée de T.J.

5 Torphy et al., 1992, J.Pharm.Exp. Ther. <u>263</u>: 1195-1205

Les autres types de phosphodiestérases sont obtenus lors d'une purification partielle par FPLC sur colonne Mono Q (anion exchange column) selon une méthode adaptée de Lavan B. E., Lakey T., Houslay M. D. Biochemical Pharmacology, 1989, 38(22), 4123-4136., et de Silver P.J et al., 1988, Eur.J. Pharmacol. 150: 85-94, soit, à partir de lignées cellulaires d'origine humaine pour PDE 1 (lignée monocytaire TPH1) et PDE5 (lignée issue d'un adénocarcinome MCF7), soit à partir d'aorte de chien pour PDE 3, soit, pour la PDE3A humaine, à partir d'un clonage de gènes dans des cellules d'insectes SF21 dans baculovirus, selon la méthode adaptée de Luckow, V. A. and al., 1991 in Recombinant DNA Technology&Applications.,eds. Prokop, Bajpai,R.K.&Ho,C.S., pp97-152.

- La mesure de l'activité enzymatique des différents types de PDE, et en particulier des PDE 4, est faite selon une méthode adaptée de W.J. Thompson et al. 1979, Advances in Cyclic Nucleotide Research, Vol. 10: 69-92, ed. G. Brooker et al. Raven Press, NY.
 - Pour la détermination de la CI₅₀, l'activité enzymatique est mesurée en présence de l'inhibiteur dans une gamme de concentrations de 0,1 à 100µM.
- 30 Le tableau suivant illustre l'activité inhibitrice de PDE4 sur une préparation d'enzyme obtenue à partir de la lignée U937.

N°		N°		N°	
Composé	IC ₅₀ (μM)	composé	IC ₅₀ (μM)	composé	IC ₅₀ (μM)
1	0,054	59	0,090	190	0,19
3	0,079	60	0,050	218	0,048
11	0,080	61	0,011	223	0,012
13	0,060	62	0,053	224	0,075
20	0,04	75	0,078	227	0,028
22	0,41	76	0,070	229	0,080
32	0,053	78	0,038	230	0,002
34	0,056	79	0,14	231	0,00027
35	0,020	80	0,073	233	0,18
37	0,015	81	0,016	234	2,69
40	0,014	83	0,012	239	0,005
41	0,018	85	0,041	240	0,013
42	0,024	89	0,027	242	0,011
43	0,030	92	0,030	243	0,028
44	0,090	94	0,029	246	0,041
46	0,090	96	0,058		
47	0,050	98	0,029		
48	0,025	102	0,060		
49	0,080	103	0,039		
50	0,035	104	0,077		
51	0,027	164	0,090		· · · · ·
52	0,030	186	0,090		
57	0,014	189	0,078		

L'examen des résultats du tableau ci-dessus montre que les produits préférés de l'invention testés dans l'essai inhibent l'enzyme PDE4 in vitro de manière efficace.

Inhibition de la production du TNFα par des leucocytes humains stimulés par du lipopolysaccharide

Ce test a pour but d'évaluer la capacité des composés de l'invention à inhiber la production de TNFα (tumor necrosis-α) par des leucocytes humains en présence d'une haute

concentration de sérum humain (75%). En effet, il est apparu que nombre de composés ayant la capacité d'inhiber la phosphodiestérase 4 dans des tests enzymatiques ou cellulaires ne présentent plus cette capacité lorsque le test est effectué dans du sang humain. Le test décrit ici est basé sur l'utilisation de leucocytes humains cultivés dans 75% de sérum humain. Il a été préalablement documenté que ces conditions miment la situation observée lorsque le dosage du TNFα est effectué dans du sang humain.

Les composés à tester sont dissous à 20 mM (parfois 6 mM) dans du DMSO. 100 µl de DMSO sont distribués dans 7 puits d'une microplaque à 96 puits (puits B à H). 150 µl de la solution de composés sont distribués dans les puits de la ligne A. 50 µl sont alors séquentiellement transférés 7 fois. 20 µl de ces dilutions sérielles de composés sont transférés séquentiellement deux fois dans des puits contenant 180 µl de RPMI 1640 (Gibco). 50 µl de ces dilutions sont alors transférés dans des puits où seront ajoutées les cellules.

15 Chaque test comprend une série de huit puits sans LPS (100% d'inhibition), huit puits avec LPS (0% d'inhibition) et une série de dilutions de Rolipram afin de pouvoir comparer les tests entre eux et ainsi évaluer leur variabilité.

Une ampoule de leucocytes est décongelée au bain-marie (37°C), son contenu est transféré dans un tube de 15 ml contenant 10 ml de RPMI additionné de 5% de sérum humain (RPMI-5% HS). Les cellules sont sédimentées (800 g, 6 minutes, 4°C), reprises dans 10 ml du même milieu et comptées par dilution dans une solution de Bleu de Trypan. Après centrifugation (800 g, 6 minutes, 4°C), les cellules sont reprises à 2 x 10⁶/ml dans du sérum humain.

A 50 μl des différentes dilutions de composés, 100 μl de cellules sont ajoutés. Les plaques sont alors incubées 30 minutes à 37°C, puis 50 μl d'une solution 4 μg/ml de LPS préparée dans du sérum humain sont ajoutés. Les plaques sont incubées pendant la nuit à 37°C. Après incubation de 15-18 heures, 90 μl de surnageant de culture sont prélevés et transférés dans des puits de microplaque à fonds ronds. La présence de TNFα est alors évaluée par ELISA (Pharmingen) en utilisant 50 μl de surnageant. Le protocole décrit par le fabricant est strictement appliqué.

Les résultats obtenus pour certains des composés préférés de la présente invention sont illustrés dans le tableau suivant.

Composé	Inhibition (leucocytes humains) IC ₅₀ μΜ
3 104	3,4 8,1
94	6,3
101	8,6
85 98	6,8
79	5,2
91	-
93	4,3
103	10,7
46	-
35	-

Evaluation de l'activité in vivo des composés de l'invention

Modèle TNFa in vivo chez le rat Wistar

Le TNFα est une cytokine jouant un rôle central dans les mécanismes de l'inflammation. Sa production peut être induite par une injection de lipopolysaccharide (LPS). Il a été montré que l'augmentation d'AMPc intracellulaire, produite notamment par les inhibiteurs de PDE4, dimininue la production de TNFα dans des modèles *in vitro* et *in vivo*. Il s'agit donc ici, de quantifier *in vivo*, le potentiel anti-inflammatoire des composés de l'invention, administrés par voie orale (p.o.) en mesurant l'inhibition de la production de TNFα dans le plasma de rats, ceux-ci ayant reçu une injection intrapéritonéale (i.p.) de lipopolysaccharide (LPS). Le traitement par les composés de l'invention ou le véhicule

sont administrés par voie orale à des rats mâles Wistar, 30 min. avant l'injection de LPS. Les rats sont sacrifiés 90 min. après la stimulation par le LPS, le sang est recueilli sur EDTA et la concentration en TNFα est mesurée dans chaque échantillon de plasma. Les résultats obtenus sur certains des composés de la présente invention sont présentés dans le tableau ci-dessous.

Composé	% Inhibition à 10 mg/kg		
3	- 98 %		
104	- 94 %		
94	- 87 %		
101	- 80 %		
85	- 77 %		
98	- 75 %		
79	- 72 %		
91	- 70 %		
93	- 67 %		
103	- 64 %		
46	- 58 %		
35	- 51 %		

10 Références

Chen, Y. L., Le Vraux, V., Giroud, J. P. and Chauvelot-Moachon L. (1994). Anti-tumor necrosis factor properties of non-peptide drugs in acute-phase responses. Eur. J. Pharmacol., 271 (2-3), 319-27.

Prabhakar, U., Lipshutz, D., O'Leary Barthus, J., Slivjak, J., Smith III E. F., Lee, J. C. and Esser K. M. (1994). Characterization of cAMP-dependent inhibition of LPS-induced TNFa production by rolipram, a specific phosphodiesterase IV (PDE IV) inhibitor. Int. J. Immunopharmacol., 16 (10), 805-816.

Modèle d'éosinophilie chez le rat

Les études conduites à partir de ce modèle expérimental ont pour but d'évaluer l'action inhibitrice des composés de l'invention sur l'afflux de cellules inflammatoires et en 5 particulier d'éosinophiles dans la lumière de l'arbre trachéo-bronchique de rat. Les éosinophiles jouent un rôle majeur dans la physiopathologie de l'asthme chez l'homme en libérant au niveau du parenchyme pulmonaire des médiateurs proinflammatoires comme les leucotriènes, des protéines et enzymes spécifiques (ECP, EPO, MBP) et des cytokines. Le recrutement massif de ce type cellulaire au niveau des voies aériennes de l'asthmatique conduit à une dégradation progressive du tissu pulmonaire expliquant l'hyperreactivité bronchique, l'aspect chronique de la maladie et les exacerbations en l'absence de traitement. Ce modèle utilise des rats Brown Norway, dont la particularité est de produire, comme chez les patients atopiques, des taux d'immunoglobuline E (IgE) en réponse à une sensibilisation par un antigène. Le protocole utilisé fait intervenir deux sensibilisations à l'ovalbumine à quatorze jours d'intervalle puis un challenge sept jours plus tard avec un aérosol d'ovalbumine. 48 heures après le challenge antigénique, les animaux subissent un lavage bronchoalvéolaire sous anesthésie afin de recueillir l'infiltrat de cellules inflammatoires au niveau des poumons. Ces cellules sont ensuite comptées et différenciées selon des critères morphologiques. Les produits de l'invention sont administrés par voie orale, 1 heure avant le challenge antigénique. La plupart des composés préférés de la présente invention testés dans ce modèle ont également démontré une excellente activité.

Références

20

25

Corrigan et al. (1992) Immunology today 13: 501-507

Elwood et al. (1995) Inflamm Res 44: 83-86

Modèle de neutrophilie chez la souris

Les études conduites à partir de ce protocole expérimental ont pour but d'évaluer l'action modulatrice des composés de l'invention sur l'afflux de cellules pro-inflammatoires (phase précoce) dans la lumière de l'arbre trachéo-bronchique de souris. Cet afflux cellulaire est consécutif à une stimulation mimant une infection bactérienne (Lipopolysaccharide bactérien ou LPS). Ce stade précoce inflammatoire est le résultat d'une combinaison d'événements dont les principaux sont la synthèse et libération de facteurs stimulants

- (TNFαi) et chimiotactiques (IL-8ii), l'accroissement de la perméabilité vasculaire au niveau de la micro-circulation trachéo-bronchique et l'infiltration de polynucléaires neutrophilesiii concomitante à l'exsudation des protéines plasmatiques dans les tissus pulmonaires.
- Ce processus pathologique est retrouvé dans la broncho-pneumopathie chronique obstructive (ou COPD en anglais) où le neutrophile, de concert avec le macrophage, joue un rôle clé dans la mise en place de l'amplification du recrutement des neutrophiles, euxmêmes, mais aussi dans la déstructuration des tissus pulmonaires (déclin des fonctions pulmonaires), l'hypersécrétion de mucus trachéo-bronchique (engorgement des voies aériennes), l'inflammation tissulaire (libération de médiateurs inflammatoires et de radicaux libres) et accroissement du tonus basal des fibres musculaires lisses pulmonaires (gène respiratoire chronique). Certains de composés des exemples ont démontré une activité dans ce modèle.

Références

- i SUTER P.M., SUTER S., GIRARDIN E., ROUX-LOMBARD P., GRAU G.E. and DAYER J.-M. 1992. High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon and elastase, in patients with adult respiratory distress syndrome after trauma, shock or sepsis. Am. Rev. Respir. Dis. 145: 1016-1022.
- ii MARTIN T.R. and GOODMAN R.B. 1999. The role of chemokines in the pathology of the acute respiratory distress syndrome. Chapter 6 in Chemokines in disease: Biology and clinical research edited by: C.A. Hébert, Humana Press Inc., Totowa, NJ.
- iii REPINE J.E. and BEEHLER C.J. 1991. Neutrophils and the adult respiratory distress syndrome: two interlocking perspectives. Am. Rev. Respir. Dis. 144: 251-252.

WO 00/66584 PCT/FR00/01174

Références

Barad, M. et al., PNAS, 1998, Vol. 95(25), p. 15020-15025 Belayev, L. et al., Brain Res., 1998 March 23, Vol. 787(2), p. 277-285

Block, F. et al., Neuroreport, 1997 December 1, Vol. 8(17), p. 3829-3832
 Egawa, T. et al., Jon J. Pharmacol., 1997 November, Vol. 75(3), p. 275-281
 Gonccalves de Moraes, V.-L. et al., Br. J. Pharmacol., 1998 February, Vol. 123(4), p. 631-636

Hasko, G. et al., Eur. J. Immunol., 1998 February, Vol. 28(2), p. 468-472

Herzer, W.-A. et al., J. Cardiovasc. Pharmacol., 1998, Vol. 32(5), p. 769-776
 Itoh, A. et al., Methods and Findings in Exp. and Clin. Pharm., 1998, Vol. 20(7), p. 619-625

Kim, O. H., Lerner A., Blood, 1998 October 1, Vol. 92(7), p. 2484-2494 Lelkas, Z. et al., Pharmacol. Biochem. Behav., 1998 August, Vol. 60(4), p. 835-839

Liang, L. et al., Diabetes, 1998 April, Vol. 47(4), p. 570-575
 Merz, K.-H. et al., J. Med. Chem., 1998 November 19, Vol. 41(24), p. 4733-4743
 Miotta, J.-M. et al., Am. J. Respir. Cell. Mol. Biol., 1998 March, Vol. 18(3), p. 411-420

Revendications

5 1. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones de formule I ou II :

$$R_4$$
 R_5
 R_4
 R_7
 R_7

I et II étant des isomères de position du groupe R sur les azotes 3 ou 4, dans lesquelles :

- A₁ est O ou S;

10

15

20

- X₁ et X₂, semblables ou différents, représentent :
- hydrogène, hydroxy, halogène, amino, nitro, mercapto, cyano, carboxy,
 - alkyle inférieur, alcoxy inférieur ou -S(O)_mR₈ dans lequel m est 0, 1 ou 2 et R₈ est un alkyle inférieur éventuellement substitués par un ou plusieurs atomes halogènes,
 - -CO-Q₁-Q₂-Q₃ dans lequel:

-Q₁- est : une liaison de valence simple, -O-,

varier de 0 à 3, et Z₁ est CH, N, O ou S,

$$(CH_2)_p$$

$$-N-$$

$$Q_2$$

$$H$$

$$Q_3$$
, ou
$$-(CH_2)_p-$$

$$Z_1^-$$
, où p est un nombre entier pouvant

-Q₂- est :

- a) $-(CH_2)_q$ -, q étant égal à 0, 1, 2, 3, ou 4, ou
- b) -(CH₂-CH₂-O)_r-, r étant égal à 2, 3, ou 4, et

-Q₃ est:-H,-OH, alkoxy inférieur, -O-CO-X₃-NHX₃ ou

$$X_3$$

dans lequel X₃ et X₄, semblables ou différents, représentent un groupement alkyle inférieur, X₃ et X₄ pouvant être liés pour former un cycle, comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N,

- NH-R₁ dans lequel R₁ représente un groupement alkyle inférieur, éventuellement substitué par un ou plusieurs groupements choisis parmi halogène, hydroxy, cyano, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃, ou
- NR₂R₃ dans lequel R₂ et R₃, semblables ou différents, représentent un alkyle inférieur, éventuellement substitué par un ou plusieurs groupements hydroxy, halogène, cyano, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃, R₂ et R₃ pouvant être liés pour former un cycle, comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur ou -CO-Q₁-Q₂-Q₃;

15 - R représente:

5

10

20

25

 alkyle inférieur, alcényle inférieur, alcynyle inférieur, aryl alcynyle, 2-, 3- ou 4pyridylalkyle

éventuellement substitué par un alkyle inférieur, un alcoxy inférieur, un

groupement hydroxy, halogène ou amino,

dans lesquels:

- n est un nombre entier de 1 à 5,
- Ar est un cycle aromatique comprenant 5 ou 6 atomes incluant de 0 à 3 hétéroatomes choisis parmi O, S ou N.
- Y1, Y2 et Y3, semblables ou différents représentent :

5

10

15

20

25

- hydrogène, hydroxy, mercapto, amino, nitro, halogène, NHR₁, NR₂R₃,
 -(CH₂)_s- CN, -(CH₂)_sCO-Q₁-Q₂-Q₃ dans lesquels s est un nombre entier de 0 à 6;
- alkyle inférieur, alcoxy inférieur ou -S(O)_mR₈ dans lequel m est 0, 1 ou 2
 et R₈ est un alkyle inférieur, chacun pouvant être éventuellement substitué
 par un ou plusieurs atomes halogènes; et

- R₄ et R₅, représentent :

- alkyle inférieur lorsque R4 et R5 sont semblables, aralkyle, cycloalkyle ou cycloalkyl alkyle, lorsque R4 et R5 sont différents,
- alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement substitué par un alkyle inférieur, un hydroxy ou un alkoxy inférieur ou ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur, phényle alkyle ou CO-Q₁-Q₂-Q₃, deux des atomes du cycle ainsi formé pouvant également faire partie d'un autre cycle choisi parmi phényle ou hétéroaryle comportant de 4 à 8 atomes incluant 1 à 4 hétéroatomes;

éventuellement leurs formes racémiques et leurs isomères, ainsi que leurs sels pharmaceutiquement acceptables.

2. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon la revendication 1, dans lesquelles:

A₁ représente un atome d'oxygène;

 X_1 représente un atome d'hydrogène et X_2 est un groupement halogène, amino, alkyle inférieur, hydroxy ou -NHR₁, R_1 étant tel que défini précédemment.

R représente:

- un groupement alkyle inférieur, alcényle inférieur, aryl alcynyle, 2-, 3- ou 4-pyridylalkyl éventuellement substitué sur le noyau pyridine par un alkyle inférieur, un halogène ou un hydroxy;

5

10

15

20

- n est un nombre entier de 1 à 3,
- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène ou un groupement alcoxy inférieur, plus particulièrement méthoxy,
- Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 représente un groupement alcoxy inférieur, un groupement amino, NHR₁, NR₂R₃, nitro, hydroxy, un groupement -(CH₂)_sCO-Q₁-Q₂-Q₃, un groupement (CH₂)_s-CN dans lesquels s, Q₁, Q₂, Q₃ sont tels que définis précédemment, ou un groupement alkyle inférieur éventuellement substitué par un ou plusieurs atomes d'halogène, la position particulièrement préférée du substituant Y3 étant la position 4, ou,
- Y1 représente un atome d'hydrogène et Y2 et Y3, semblables ou différents, représentent un groupement hydroxy, halogène ou alcoxy inférieur, ou

dans lequel:

- Ar est tel que défini précédemment ;
- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène, ou
- Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 est alcoxy inférieur ou halogène;

R₄ et R₅, représentent :

- alkyle inférieur lorsque R4 et R5 sont semblables, aralkyle, cycloalkyle ou cycloalkyl alkyle, lorsque R4 et R5 sont différents,
- alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement substitué par un alkyle inférieur, un hydroxy ou un alkoxy inférieur ou ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs

groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur, phényle alkyle ou CO-Q₁-Q₂-Q₃, deux des atomes du cycle ainsi formé pouvant également faire partie d'un autre cycle choisi parmi phényle ou hétéroaryle comportant de 4 à 8 atomes incluant 1 à 4 hétéroatomes.

5

3. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon la revendication 1 ou 2, dans lesquelles:

X1 représente un atome d'hydrogène,

10 X₂ représente un groupement halogène, amino, alkyle inférieur, hydroxy ou --NHR₁;

R représente:

dans lequel:

15

- n est un nombre entier de 1 à 3,
- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène ou un groupement alcoxy inférieur, plus particulièrement méthoxy et en particulier le 3, 4, 5-triméthoxy,

20

Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 représente un groupement alcoxy inférieur, amino, NHR₁, NR₂R₃, nitro, ou hydroxy, un groupement alkyle inférieur éventuellement substitué par un ou plusieurs atomes d'halogène, un groupement -(CH₂)_sCO-Q₁-Q₂-Q₃ dans lequel s est 0 ou 1, Q₁ est O, -NH- ou une liaison de valence, Q₂ est -(CH₂)_q-, q étant égal à 0, 1, 2, 3 ou 4 et Q₃ est H, OH ou -NX₃X₄ dans lequel X₃ et X₄ sont tels que définis précédemment, un groupement (CH₂)_s-CN dans lequel s est 0 ou 1, la position particulièrement préférée du substituant Y3 étant la position 4, ou

25

Y1 représente un atome d'hydrogène et Y2 et Y3, semblables ou différents, représentent un groupement hydroxy, halogène ou alcoxy inférieur; ou

$$Ar_1$$
 Y_2 Y_3

dans lequel:

- Ar₁ est un cycle aromatique comprenant 6 atomes pouvant inclure un atome d'azote en position 2, 3 ou 4 et de préférence en position 3;
- Y1, Y2 et Y3 représentent chacun un atome d'hydrogène, ou
- Y1 et Y2 représentent chacun un atome d'hydrogène et Y3 est un groupement alcoxy inférieur ou n groupement halogène lorsque Ar₁ ne comprend pas d'atome d'azote; et

10

15

5

R₄ et R₅, représentent :

- alkyle inférieur lorsque R4 et R5 sont semblables, aralkyle, cycloalkyle ou cycloalkyl alkyle, lorsque R4 et R5 sont différents,
- alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement substitué par un alkyle inférieur, un hydroxy ou un alkoxy inférieur ou ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur, phényle alkyle ou CO-Q₁-Q₂-Q₃, deux des atomes du cycle ainsi formé pouvant également faire partie d'un autre cycle choisi parmi phényle ou hétéroaryle comportant de 4 à 8 atomes incluant 1 à 4 hétéroatomes.

20

30

- 4. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon l'une quelconque des revendications 1 à 3, dans lesquelles :
 - le groupement halogène est choisi parmi F, Cl, Br ou I,
 - le groupement alkyle inférieur est un groupement linéaire ou ramifié comportant de 1 à 6 atomes de carbone,
 - le groupement alcoxy inférieur est un groupement linéaire ou ramifié comportant de 1 à 5 atomes de carbone,

5

10

15

20

25

- le groupement alkylthio inférieur est un groupement linéaire ou ramifié comportant de 1 à 5 atomes de carbone,
- le groupement alcényle inférieur comporte de 3 à 6 atomes de carbone,
- le groupement alcynyle inférieur comporte de 3 à 6 atomes de carbone,
- le groupement 2-, 3- ou 4-pyridylalkyle comprend un alkyle comprenant 1 à 5 atomes de carbone,
- le groupement aryle comporte de 5 à 8 atomes,
- le groupement aralkyle comprend un alkyle comprenant de 1 à 6 atomes de carbone,
- le groupement cycloalkyle comporte de 3 à 8 atomes de carbone,
- le groupement cycloalkyl alkyle comprend un alkyle comprenant de 1 à 6 atomes de carbone,
- les groupements alkyle inférieur, alcoxy inférieur ou alkylthio inférieur substitués par un ou plusieurs atomes halogènes sont choisis parmi les groupements -(CH₂)_p-CF₃, -O-(CH₂)_p-CF₃ ou -S-(CH₂)_p-CF₃, dans lesquels p est un nombre entier de 0 à 3.
- 5. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon la revendication 1, dans lesquelles:
- A₁ est O ou S;
 - X₁ et X₂, semblables ou différents, représentent :
 - hydrogène, hydroxy, halogène, amino, nitro, mercapto, cyano, carboxy,
 - alkyle inférieur, alcoxy inférieur ou -S(O)_mR₈ dans lequel m est 0, 1 ou 2 et R₈ est un alkyle inférieur, éventuellement substitués par un ou plusieurs atomes halogènes;
 - R représente:

$$Y1$$
 $Y2$
 $Y3$
 $Y1$
 $Y1$
 $Y1$
 $Y2$
 $Y3$
 $Y3$
 $Y4$
 $Y4$
 $Y4$
 $Y4$
 $Y5$
 $Y4$
 $Y5$

5

10

dans lesquels:

- n est un nombre entier de 1 à 5,
- Ar est un cycle aromatique comprenant 5 ou 6 atomes incluant de 0 à 3 hétéroatomes choisis parmi O, S ou N,
- Y1, Y2 et Y3, semblables ou différents représentent :
 - hydrogène, hydroxy, mercapto, amino, NHR₁, NR₂R₃,nitro, halogène, (CH₂)_SCO-Q₁-Q₂-Q₃, -(CH₂)_S-CN dans lesquels s est un nombre entier de
 0 à 6 ;
 - alkyle inférieur, alcoxy inférieur ou -S(O)_mR₈ dans lequel m est 0, 1 ou 2
 et R₈ est un alkyle inférieur, chacun pouvant être éventuellement substitué
 par un ou plusieurs atomes halogènes;
- R₄ et R₅, semblables ou différents, représentent :

alkyle inférieur, R₄ et R₅ pouvant être liés pour former un cycle saturé ou comportant une ou plusieurs doubles liaisons comprenant un ou plusieurs hétéroatomes choisis parmi O, S ou N et éventuellement ponté par un alkyle inférieur, gem dialkylé ou substitué par un ou plusieurs groupements choisis parmi hydroxy, kéto, alkyle inférieur, alcoxy inférieur, phényle alkyle ou CO-Q₁-Q₂-Q₃.

- 20 6. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon la revendication 5, choisies parmi le groupe comprenant :
 - 7-Bromo-1-dimethylamino-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
 - 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
 - 4-(3,4-Dimethoxy-benzyl)-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
 - 4-(1-Dimethylamino-7-methyl-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
 - 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
 - 7-Methyl-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
 - 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile

- 1-Azepan-1-yl-7-methyl-4-pyridin-3-ylmethyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- Dimethylamino-methyl-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 1-Azepan-1-yl-7-bromo-4-(3,4-dimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon la revendication 1, 2, 3, ou 4, choisies parmi le groupe comprenant :
- 1-(Azepan-1-yl)-7-chloro-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3-phenylallyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-3-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-allyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-methylbenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(2-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(3-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 1-(azepan-1-yl)-7-chloro-4-(4-bromobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-fluorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-(trifluoromethyl)benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-cyanobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(2-methoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(3-methoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-methoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(3,4-dichlorobenzyl)-4H-[1,2,4]triazolo[4,3-alguinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(3,4-dimethoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(2-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(3-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- l-(azepan-1-yl)-7-chloro-4-(4-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(2-phenylethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-[2-(4-methoxyphenyl)ethyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(3-phenylpropyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-chloro-4-(2-oxo-2-phenyl-ethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-[2-(4-methoxyphenyl)-2-oxoethyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 1-(azepan-1-yl)-7-chloro-4-[2-(4-chlorophenyl)-2-oxoethyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 5-[(1-(azepan-1-yl)-7-chloro-5-oxo-5H-[1,2,4]triazolo[4,3-a]- quinazolin-4-yl)acetyl]-2-methoxybenzoic acid methyl ester
- 7-Chloro-4-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-bromo-4-(4-chlorophenylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-bromo-4-(4-fluoro-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(1-Azepan-1-yl-7-bromo-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 1-Azepan-1-yl-7-bromo-4-(3,4-dimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-bromo-4-(3-pyridinylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-bromo-4-[3-(4-chloro-phenyl)-allyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-bromo-4-[3-(4-methoxy-phenyl)-allyl]-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-bromo-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-bromo-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-methyl-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-chloro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-fluoro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 3-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile

- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 7-Bromo-4-(4-nitro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-methoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- Acetic acid 4-(7-bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl ester
- 7-Bromo-4-(4-hydroxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzo[1,3]dioxol-5-ylmethyl-7-bromo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,5-dimethoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-pyrrolidin-1-yl-4-(3,4,5-trimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- [4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- 1-(pyrrolidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[(E)-3-(4-chloro-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[3-(4-methoxy-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-((E)-3-pyridin-4-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 7-Bromo-4-(1H-imidazol-4-ylmethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,5-dimethyl-isoxazol-4-ylmethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-cyclopentylmethyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-butyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-pyrrolidin-1-yl-4-(2,2,2-trifluoro-ethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(2-hydroxy-ethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(2-diethylamino-ethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-prop-2-ynyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(2-phenoxy-ethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(2-phenylsulfényl-ethyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- (7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-yl)-phenylacetic acid methyl ester
- 4-(7-Bromo-5-oxo-1-piperidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-piperidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(piperidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-pyridin-3-yl-allyl)-1-thiomorpholin-4-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(4-methyl-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile

- 7-Bromo-1-dimethylamino-4-(4-hydroxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- [4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- [4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetonitrile
- 7-Bromo-1-dimethylamino-4-(pyridin-3-ylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-prop-2-ynyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-prop-2-ynyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-yl)-phenyl-acetic acid methyl ester
- 1-Azepan-1-yl-7-methyl-4-pyridin-3-ylmethyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-methyl-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-(3,4-Dimethoxy-benzyl)-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- [4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid

- 7-Methyl-4-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Methyl-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- [4-(7-Methyl-5-oxo-1-thiomorpholin-4-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- 7-Methyl-4-(3-pyridin-3-yl-allyl)-1-thiomorpholin-4-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(1-Dimethylamino-7-methyl-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- [4-(Dimethylamino-methyl-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- 1-Dimethylamino-7-methyl-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Dimethylamino-7-methyl-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-8-methyl-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- (4-Cyano-benzyl)-dimethylamino-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazoline-7-carbonitrile
- 7-Hydroxy-4-((E)-3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- $1\hbox{-(azepan-1-yl)-3-(3-phenylallyl)-} \ 3\hbox{H-[1,2,4]} triazolo[4,3-a]\hbox{- quinazolin-5-one}$
- 3-Allyl-1-azepan-1-yl-7-chloro-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-benzyl-3H-[1,2,4]triazolo[4,3-a]-quinazolin-5-one
- 1-Azepan-1-yl-7-chloro-3-(4-methyl-benzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(2-chlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 1-(azepan-1-yl)-7-chloro-3-(3-chlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(4-chlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(4-bromobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(4-fluorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(4-(trifluoromethyl)benzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(4-cyanobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(2-methoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3-methoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(4-methoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3,4-dichlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3,4-dimethoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(2-pyridylmethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3-pyridylmethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(2-phenylethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-[2-(4-methoxyphenyl)ethyl]-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3-phenylpropyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-chloro-3-(2-oxo-2-phenyl-ethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 1-(azepan-1-yl)-7-chloro-3-[2-(4-methoxyphenyl)-2-oxoethyl]-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- $\label{lem:condition} $$1-(azepan-1-yl)-7-chloro-3-[2-(4-chlorophenyl)-2-oxoethyl]-3H-[1,2,4]triazolo[4,3-a]quinazolin-$
- 5-one
- 5-[(1-(azepan-1-yl)-7-chloro-5-oxo-5H-[1,2,4]triazolo[4,3-a]- quinazolin-3-yl)acetyl]-2-methoxybenzoic acid methyl ester
- 1-(azepan-1-yl)-7-bromo-3-(4-chlorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-bromo-3-(4-fluorobenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(1-(azepan-1-yl)-7-bromo-5-oxo-5H-[1,2,4]triazolo[4,3-a]- quinazolin-3-ylmethyl)- benzonitrile
- 1-(azepan-1-yl)-7-bromo-3-(3,4-dimethoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- [4-(7-Bromo-5-oxo-1-perhydro-azepin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-ylmethyl)-phenyl]-acetic acid
- 1-(azepan-1-yl)-7-bromo-3-(pyridin-3-ylmethyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-bromo-3-((E)-3-phenyl-allyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-3-((E)-3-phenyl-allyl)-1-piperidin-1-yl-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-bromo-3-(4-chlorobenzyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-bromo-3-(4-fluorobenzyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-bromo-5-oxo-1-(pyrrolidin-1-yl)-5H-[1,2,4]triazolo[4,3-a]- quinazolin-3-ylmethyl)- benzonitrile
- 4-(7-bromo-5-oxo-1-(pyrrolidin-1-yl)-5H-[1,2,4]triazolo[4,3-a]- quinazolin-3-ylmethyl)benzoic acid methyl ester
- 7-Bromo-3-(4-methoxy-benzyl)-1-pyrrolidin-1-yl-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- Acetic acid 4-(7-bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-ylmethyl)-phenyl ester

- 7-Bromo-1-dimethylamino-3-(4-hydroxy-benzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 3-(benzo[1,3]dioxol-5-ylmethyl)-7-bromo-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-bromo-3-(3,5-dimethoxy-benzyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo- [4,3-a]quinazolin-5-one
- 7-bromo-1-(pyrrolidin-1-yl)-3-(3,4,5-trimethoxybenzyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-3-(1H-imidazol-4-ylmethyl)-1-pyrrolidin-1-yl-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-bromo-3-(n-butyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- (7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-yl)-phenylacetic acid methyl ester
- 7-Bromo-1-dimethylamino-3-(3-phenyl-allyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-yl)-phenyl-acetic acid methyl ester
- 1-(azepan-1-yl)-7-methyl-3-(3-phenylallyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-methyl-3-(3-phenylallyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-3,8-dimethyl-3H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 1-Azepan-1-yl-8-methyl-3-((E)-3-phenyl-allyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-hydroxy-3-(3-phenylallyl)-1-(pyrrolidin-1-yl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1,8-bis(azepan-1-yl)-3-(3-phenylallyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- $1\hbox{-}(azepan-1\hbox{-}yl)\hbox{-}4\hbox{-}benzyl\hbox{-}7\hbox{-}bromo\hbox{-}4H\hbox{-}[1,2,4]triazolo[4,3\hbox{-}a]\hbox{-} quinazolin\hbox{-}5\hbox{-}one$
- 4-benzyl-7-bromo-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

4-Benzyl-7-bromo-1-(butyl-methyl-amino)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

4-benzyl-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-chloro-1-dibutylamino-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

7-chloro-4-methyl-1-(piperidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

7-Chloro-4-methyl-1-(4-methyl-piperazin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-Chloro-4-methyl-1-(1,8,8-trimethyl-3-aza-bicyclo[3.2.1]oct-3-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

 $1\hbox{-}(azepan-1-yl)\hbox{-}7\hbox{-}chloro\hbox{-}4\hbox{-}phenyl\hbox{-}4H\hbox{-}[1,2,4]triazolo[4,3-a]\hbox{-}quinazolin\hbox{-}5\hbox{-}one$

1-(azepan-1-yl)-4-benzyl-7-chloro-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

4-benzyl-7-chloro-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

 $\hbox{4-benzyl-7-chloro-1-(piperidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one}$

 $1\hbox{-}(azepan-1-yl)\hbox{-}8\hbox{-}chloro\hbox{-}4\hbox{-}methyl\hbox{-}4H\hbox{-}[1,2,4]triazolo[4,3-a]\hbox{-}quinazolin\hbox{-}5\hbox{-}one$

 $1\hbox{-}(azepan\hbox{-}1\hbox{-}yl)\hbox{-}4\hbox{-}benzyl\hbox{-}8\hbox{-}chloro\hbox{-}4H\hbox{-}[1,2,4]triazolo[4,3\hbox{-}a]\hbox{-} quinazolin\hbox{-}5\hbox{-}one$

1-(azepan-1-yl)-7-bromo-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

4-benzyl-7-bromo-1-(piperidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

 $\hbox{$4$-Benzyl-7-bromo-1-dimethylamino-$4H-[1,2,4]$ triazolo[4,3-a] quinazolin-5-one}$

4-Benzyl-7-bromo-1-morpholin-4-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

4-Benzyl-7-bromo-1-thiomorpholin-4-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 4-Benzyl-7-bromo-1-(4-methyl-piperazin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-(4-phenyl-piperazin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-1-(4-benzyl-piperazin-1-yl)-7-bromo-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-(3,6-dihydro-2H-pyridin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-(2,5-dihydro-pyrrol-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-(3-hydroxy-pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-methylamino-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-iodo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-4-benzyl-7-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-1-dimethylamino-7-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- $\hbox{$4$-Benzyl-7-methyl-1-thiomorpholin-4-yl-4H-[1,2,4] triazolo[4,3-a] quinazolin-5-one }$
- 1-Azepan-1-yl-4-benzyl-8-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-4-benzyl-7-methoxy-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methoxy-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-5-oxo-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazoline-7-carbonitrile
- 1-Azepan-1-yl-4-benzyl-7-nitro-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-(azepan-1-yl)-4-benzyl-7-chloro-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
1-(azepan-1-yl)-4-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
1-(azepan-1-yl)-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-(azepan-1-yl)-6-chloro-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

 $1\hbox{-}(azepan-1\hbox{-}yl)\hbox{-}7\hbox{-}chloro\hbox{-}4\hbox{-}methyl\hbox{-}4H\hbox{-}[1,2,4]triazolo[4,3\hbox{-}a]\hbox{-} quinazolin\hbox{-}5\hbox{-}one$

1-(azepan-1-yl)-7-chloro-4-ethyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

7-chloro-4-methyl-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

7-chloro-4-methyl-1-(morpholin-4-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

1-(azocan-1-yl)-7-chloro-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

7-chloro-1-(3,4-dihydro-2H-quinolin-1-yl)-4-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-chloro-1-(3,4-dihydro-1H-isoquinolin-2-yl)-4-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-(4-benzylpiperidin-1-yl)-7-chloro-4-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-chloro-4-methyl-1-(1,3,3-trimethyl-6-azabicyclo[3,2,1]oct-6-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

 $1\hbox{-}(azepan-1\hbox{-}yl)\hbox{-}7\hbox{-}fluoro\hbox{-}4\hbox{-}methyl\hbox{-}4H\hbox{-}[1,2,4]triazolo[4,3\hbox{-}a]\hbox{-} quinazolin\hbox{-}5\hbox{-}one$

 $1\hbox{-}(azepan-1\hbox{-}yl)\hbox{-}7\hbox{-}iodo\hbox{-}4\hbox{-}methyl\hbox{-}4H\hbox{-}[1,2,4]triazolo[4,3\hbox{-}a]\hbox{-} quinazolin\hbox{-}5\hbox{-}one$

1-(azepan-1-yl)-7-methoxy-4-methyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one

4-Benzyl-7-bromo-1-(ethyl-methyl-amino)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 4-Benzyl-1-diethylamino-7-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-bromo-1-pyrrol-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(4-Amino-benzyl)-7-bromo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-hydroxy-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Hydroxy-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- N-(4-Benzyl-5-oxo-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-7-yl)-acetamide
- N-[5-Oxo-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-7-yl]-acetamide
- 7-Amino-4-((E)-3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-1-azepan-1-yl-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-4-benzyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- $\label{eq:continuous} \begin{tabular}{ll} 4-(7-Amino-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile \\ \end{tabular}$
- 7-Amino-4-((E)-3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(Amino-dimethylamino-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 7-Amino-1-dimethylamino-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Methylamino-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-Benzyl-8-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 4-Benzyl-7-ethylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-isopropylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- N-(4-Benzyl-5-oxo-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-7-yl)-methanesulfonamide
- 4-Benzyl-7-dimethylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-1-dimethylamino-5-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazoline-7-carbonitrile
- 4-Benzyl-5-oxo-1-pyrrolidin-1-yl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinazoline-7-carboxylic acid
- [4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid methyl ester
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-methyl-acetamide
- 2-[4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetamide
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N,N-dimethyl-acetamide
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-hydroxy-acetamide
- 4-(1-Dimethylamino-7-methyl-5-thioxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-(7-Bromo-1-dimethylamino-5-thioxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazoline-5-thione
- 4-benzyl-7-(N,N-dimethylsulfonylamino)-1-(pyrrolidin-1-yl) -4H-[1,2,4] triazolo [4,3-a] quinazolin-5-one
- 8. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon l'une quelconque des revendication 1 à 4, choisies parmi le groupe comprenant :

1-(Azepan-1-yl)-7-chloro-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-Bromo-1-dimethylamino-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-(azepan-1-yl)-7-chloro-4-(4-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-(azepan-1-yl)-7-chloro-4-(4-fluorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-(azepan-1-yl)-7-chloro-4-(3,4-dimethoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-(azepan-1-yl)-7-chloro-4-(3-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-(azepan-1-yl)-7-bromo-4-(4-chlorophenylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

4-(1-Azepan-1-yl-7-bromo-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile

1-Azepan-1-yl-7-bromo-4-(3,4-dimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-(azepan-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-Azepan-1-yl-7-bromo-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-Azepan-1-yl-7-bromo-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-Bromo-4-(4-methyl-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-Bromo-4-(4-chloro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-Bromo-4-(4-fluoro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile

- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 7-Bromo-4-(4-nitro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-methoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- Acetic acid 4-(7-bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl ester
- 7-Bromo-4-(4-hydroxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(pyrrolidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[(E)-3-(4-chloro-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[3-(4-methoxy-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-((E)-3-pyridin-4-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-piperidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(piperidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(4-methyl-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 7-Bromo-1-dimethylamino-4-(4-hydroxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(Bromo-dimethylamino-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester

- [4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetonitrile
- 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-prop-2-ynyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-methyl-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(3,4-Dimethoxy-benzyl)-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- [4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- 7-Methyl-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- [4-(Dimethylamino-methyl-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid
- 1-Dimethylamino-7-methyl-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- [4-(7-Bromo-5-oxo-1-perhydro-azepin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-3-ylmethyl)-phenyl]-acetic acid
- 4-benzyl-7-bromo-1-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 4-Benzyl-7-bromo-1-(2,5-dihydro-pyrrol-1-yl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-iodo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-4-benzyl-7-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(4-Amino-benzyl)-7-bromo-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-4-((E)-3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 7-Amino-1-azepan-1-yl-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-4-((E)-3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-1-dimethylamino-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Methylamino-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-Benzyl-8-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- $\hbox{$4$-Benzyl-7-ethylamino-1-pyrrolidin-1-yl-$4H-[1,2,4]$ triazolo[4,3-a] quinazolin-5-one}$
- 4-Benzyl-7-isopropylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- [4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid methyl ester
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-methyl-acetamide
- 2-[4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetamide
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N,N-dimethyl-acetamide
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-hydroxy-acetamide
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazoline-5-thione
- 9. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon l'une quelconque des revendications 1 à 4, choisies parmi le groupe comprenant :

Bromo-dimethylamino-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 1-(azepan-1-yl)-7-chloro-4-(3,4-dimethoxybenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(3-pyridylmethyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(1-Azepan-1-yl-7-bromo-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 1-Azepan-1-yl-7-bromo-4-(3,4-dimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-bromo-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-7-bromo-4-(3-pyridin-4-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-methyl-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-chloro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(pyrrolidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(piperidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-(Bromo-dimethylamino-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 7-Bromo-1-dimethylamino-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(3-phenyl-prop-2-ynyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

1-Azepan-1-yl-7-methyl-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

4-(3,4-Dimethoxy-benzyl)-7-methyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-Methyl-4-(3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-Amino-4-((E)-3-phenyl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

7-Amino-4-((E)-3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

4-Benzyl-7-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

4-(7-Methylamino-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile

[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid methyl ester

2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-methyl-acetamide

2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N,N-dimethyl-acetamide

1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazoline-5-thione

10. Composés intermédiaires de formule générale III :

$$X_1$$
 R_6
 R_7
 R_7
 R_7

III

dans laquelle:

5

10

- X_1 , X_2 et A_1 sont tels que définis à la revendication1;

- les traits pointillés représentent des doubles liaisons optionnelles ;

- R₆ est hydrogène; et

- R₇ est S ou hydrazino;

R₇ pouvant être lié à l'azote en R₆ pour former un cycle, particulièrement un triazole, éventuellement substitué par un groupement thioalkyle inférieur, mercapto ou halogène.

11. Composés intermédiaires de formule générale IV :

$$X_1$$
 X_2
 X_2
 X_3
 X_4
 X_4
 X_4
 X_4
 X_4
 X_4
 X_4
 X_5
 X_4
 X_5
 X_4
 X_5
 X_4
 X_5
 X_4
 X_5
 X_5
 X_7
 X_8
 X_8
 X_8
 X_8
 X_8
 X_9
 X_9

dans laquelle X₁, X₂, A₁, R₄ et R₅ sont tels que définis à la revendication 1.

12. Composés intermédiaires de formule générale V :

15

dans laquelle X_1 , X_2 , A_1 et R sont tels que définis à la revendication 1 et X_5 est un groupement halogène, particulièrement F, Br ou Cl, $-OCOX_7$, $-OSO_2X_7$ ou $-SO_2X_7$ dans lesquels X_7 est un groupement alkyle inférieur ou aryle.

13. Procédé de fabrication des composés de formule générale I et II :

$$R_4$$
 R_5
 R_4
 R_5
 R_4
 R_4
 R_4
 R_5
 R_4
 R_4
 R_5
 R_4
 R_4
 R_5
 R_4
 R_4
 R_4
 R_5
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_4

dans lesquels X₁, X₂, R, R₄ et R₅ sont tels que définis à la revendication 1, ledit procédé étant caractérisé en ce qu'il comprend la réaction d'un composé de formule générale IV:

IV

dans laquelle X₁, X₂, R₄ et R₅ sont tels que définis à la revendication 1, avec un composé de formule générale

R-X'

dans laquelle R est tel que défini précédemment et X' est un groupement halogène, particulièrement F, Br ou Cl, -OCOX₇ ou -OSO₂X₇ dans lesquels X₇ est un groupement alkyle inférieur ou aryle; pour obtenir un mélange des composés de formule générale I et II qui sont ensuite éventuellement séparés.

14. Procédé de fabrication des composés de formule générale I :

dans lesquels X_1 , X_2 , R, R_4 et R_5 sont tels que définis à la revendication 1, ledit procédé étant caractérisé en ce qu'il comprend la réaction d'un composé de formule générale V:

5

$$X_{1}$$
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{8}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{8}
 X_{9}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{8}
 X_{8}
 X_{9}
 X_{9

dans laquelle X_1 , X_2 et R sont tels que définis à la revendication 1 et X_5 est un groupement halogène, particulièrement F, Br ou Cl, -OCOX₇, -OSO₂X₇ ou -SO₂X₇ dans lesquels X₇ est un groupement alkyle inférieur ou aryle ;

10 avec un composé de formule générale :

HNR₄R₅

dans laquelle R₄ et R₅ sont tels que définis à la revendication 1, pour obtenir un composé de formule générale I. 15. Procédé selon la revendication 14, caractérisé en ce que lorsque X_1 est $-NR_2R_3$ et $-NR_2R_3$ et $-NR_4R_5$ sont identiques, les composés de formule I sont obtenus en faisant réagir un composé de formule générale VI :

$$X_5$$
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5
 X_7
 X_7

dans laquelle X₂, X₅ et R sont tels que définis à la revendication 20, avec un composé de formule générale:

HNR₂R₃

dans laquelle R₂ et R₃ sont tels que définis à la revendication 20, pour obtenir un composé de formule générale (I):

10

16. Procédé selon la revendication 14, caractérisé en ce que lorsque X_1 est $-NR_2R_3$ et $-NR_2R_3$ et $-NR_4R_5$ sont différents, les composés de formule I sont obtenus en faisant réagir un composé de formule générale VII :

10

15

20

dans laquelle X_2 , X_5 , R, R_2 et R_3 sont tels que définis à la revendication 20, avec un composé de formule générale :

HNR₄R₅

dans laquelle R₄ et R₅ sont tels que définis à la revendication 20, pour obtenir un composé de formule générale (I):

$$\begin{array}{c|c}
R_3 & R_4 & N \\
\hline
R_2 & N & N \\
\hline
N & N & N \\
\hline
N & N & R
\end{array}$$

- 17. Composition pharmaceutique comprenant un composé selon l'une quelconque des revendications 1 à 9 et un excipient acceptable en pharmacie.
- 18. Utilisation d'un composé selon l'une quelconque des revendications 1 à 9 pour la préparation d'un médicament destiné au traitement d'une maladie ou d'une affection relevant d'une thérapie par l'inhibition de phosphodiestérases, et plus particulièrement de la PDE4.
- 19. Utilisation selon la revendication 18, caractérisée en ce que la maladie est l'asthme.
- 20. Utilisation selon la revendication 18, caractérisée en ce que la maladie est la bronchite chronique ou l'atteinte pulmonaire aigüe.
- 21. Utilisation selon la revendication 18, caractérisée en ce que la maladie est la dermatite atopique.
- 22. Utilisation selon la revendication 18, caractérisée en ce que la maladie est
 l'hypertension pulmonaire.

- 23. Utilisation selon la revendication 18, caractérisée en ce que la maladie est l'insuffisance cardiaque ou pulmonaire.
- 24. Utilisation selon la revendication 18, caractérisée en ce que la maladie est le psoriasis.

- 25. Utilisation selon la revendication 18, caractérisée en ce que la maladie est une maladie inflammatoire du système digestif telle que la rectocolite hémorragique ou la maladie de Crohn.
- 26. Utilisation selon la revendication 18, caractérisée en ce que la maladie est le diabète ou une maladie liée à un taux élevé de TNF-α telles que le syndrome de détresse respiratoire aiguë et la pancréatite aiguë.
- 27. Utilisation selon la revendication 18, caractérisée en ce que la maladie est l'hypertrophie bénigne de la prostate.
 - 28. Utilisation selon la revendication 18, caractérisée en ce que la maladie est choisie parmi l'arthrite rhumatoïde et la sclérose en plaques.
- 20 29. Utilisation selon la revendication 18, caractérisée en ce que la maladie est choisie parmi la dépression, l'atteinte neuronale causée par ischémie et l'ischémie cérébrale partielle.
- 30. Utilisation selon la revendication 18, caractérisée en ce que la maladie est le cancer, plus particulièrement les tumeurs malignes ou la leucémie lymphoïde chronique.
 - 31. Utilisation d'un composé selon l'une quelconque des revendications 1 à 9 pour atténuer le développement de phénomènes de tolérance ou de dépendance à la morphine.
- 30 32. Utilisation d'un composé selon l'une quelconque des revendications 1 à 9 pour diminuer les pertes de mémoire du comportement.
 - 33. Utilisation d'un composé selon l'une quelconque des revendications 1 à 9 pour la prévention d'accouchements prématurés.

34. Utilisation selon la revendication 18, caractérisée en ce que la maladie est la septicémie ou la défaillance polyviscérale.

Intern anal Application No PCT/FR 00/01174

		/FR 00/011/4	
A. CLASSIF IPC 7	FICATION OF SUBJECT MATTER C07D487/04 A61K31/505		
According to	o International Patent Classification (IPC) or to both national class	sification and IPC	
	SEARCHED		
	cumentation searched (classification system followed by classi $C07D$	fication symbols)	
Documentat	ion searched other than minimum documentation to the extent t	hat such documents are included in	the fields searched
Electronic da	ata base consulted during the international search (name of da	ta base and, where practical, search	i terms used)
CHEM A	BS Data, EPO-Internal, PAJ, WPI D	ata	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	ne relevant passages	Relevant to claim No.
A	WO 99 06404 A (ALMIRALL PRODES 11 February 1999 (1999-02-11) the whole document	1,18,23	
A	W0 96 39408 A (PFIZER INC.) 12 December 1996 (1996-12-12) the whole document	1,18,23	
A	EP 0 133 234 A (DAIICHI SEIYA 20 February 1985 (1985-02-20) the whole document	1,18,23	
A	EP 0 076 199 A (ROUSSEL-UCLAF) 6 April 1983 (1983-04-06) cited in the application the whole document		1,18,23
		-/	
X Funt	her documents are listed in the continuation of box C.	Patent family membe	rs are listed in annex.
"A" docume	ategories of cited documents : ent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in	after the international filing date conflict with the application but inciple or theory underlying the
"E" earlier of filing of "L" docume	document but published on or after the international date ent which may throw doubts on priority claim(s) or	"X" document of particular rele cannot be considered no	vance; the claimed invention vel or cannot be considered to when the document is taken alone
citatio	is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means	document is combined wi	vance; the claimed invention nvolve an inventive step when the th one or more other such docu- being obvious to a person skilled
"P" docum	ent published prior to the international filing date but han the priority date claimed	in the art. "&" document member of the s	same patent family
Date of the	actual completion of the international search	Date of mailing of the inte	mational search report
2	August 2000	20/09/2000	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Kyriakakou,	G

Intel mai Application No PCT/FR 00/01174

	PCT/FR 00/01174							
Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.						
- and gody		The state of the s						
A	US 3 865 824 A (JOZE KOBE ET AL.) 11 February 1975 (1975-02-11) the whole document	1,18,23						
A	US 3 850 932 A (FAIZULLA G. KATHAWALA) 26 November 1974 (1974-11-26) the whole document	1,18,23						
A	MALCOLM N. PALFREYMAN ET AL: "phosphodiesterase Type IV Inhibitors" PROGRESS IN MEDICINAL CHEMISTRY, vol. 33, 1996, pages 1-52, XP000650817 page 22 -page 23	1,23						
. 4		,						
	·							

information on patent family members

inter onal Application No PCT/FR 00/01174

			D. Life and a second				'FK 00/01.		
Patent do cited in sea			Publication date		atent family member(s)	′ 	P	ublication date	
WO 9906	5404	Α	11-02-1999	ES	21371			l-12-1999	
				AU	88612	298 A	22	2-02-1999	9
				ΕP	10019	955 A	24	4-05-200	0
				NO	200003	394 A	2	7-03-200	0
				ZA	98062	248 A	0!	5-02-1999	9
WO 9639	9408	A	12-12-1996	CA	22236			2-12-199	
				HU	96015			8-02-199	
				AP		509 A	_	3-09-199	-
				AU		371 B	-	0-07-199	
				AU	54773			9-12-199	
				BG		568 B		9-02-200	
				BG		540 A		1-03-199	
				BR	96026			1-09-199	
				CN		199 A		2-02-199	
				CZ	96016			5-01-199	
				EP		360 A		9-04-199	-
				FI		434 A		5-12-199	
				HR		268 A		1-08-199	
				JP	10510			6-10-199	
				KR		972 B		5-06-199	
				LV		620 A	_	0-12-199	-
				LV		620 B		0-04-199	
				NO		320 A		9-12-199	
				NZ		734 A		6-02-199	
				PL		459 A		9-12-199	
				SG		341 A		6-11-199 0-04-100	
				SI		186 A		0-04-199	
				SK		896 A 185 A		7-05-199 1-03-199	
				TR US		974 A		1-12-199	
EP 133	234	Α	20-02-1985	JP	1729	 820 C	2	 9-01-199	 93
L1 133	L J4			JΡ		996 B		1-03-199	
				JP	60028			4-02-198	
				CA		947 A		6-01-198	
				DE		667 D		8-05-198	
				US		987 A		9-09-198	
EP 761	99	A	06-04-1983	AT	24	509 T	1	5-01-198	37
_,				ΑU		959 B		1-09-198	36
				ΑU		382 A		1-03-198	
				CA		597 A		7-09-198	
				DΕ		860 D		5-02-198	
				DK		682 A		5-03-198	
				ES		904 D		6-10-198	
				ES		440 A		6-01-198	
				FI		278 A	, ,	5-03-198	
				GB		495 A	•	8-05-198	
				GR		044 A		6-09-198	
				HU		975 B		8-10-198	
				ΙE		858 B		9-03-198	
				IL		835 A		1-05-198	
				JP		677 C		1-04-199	
				JP		389 B	-	6-03-199	
				10	FORCE	202 A	. 1	8-04-198	33
				JP	58065				
				MX PT	155	086 A 602 A	. 2	26-01-198 11-10-198	38

information on patent family members

Inte onal Application No PCT/FR 00/01174

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
EP 76199	Α		US 4472400 A ZA 8206891 A	18-09-1984 26-10-1983
US 3865824	Α	11-02-1975	NONE	
US 3850932	A	26-11-1974	NONE	

Form PCT/ISA/210 (patent family annex) (July 1992)

Derr. 3 Internationale No PCT/FR 00/01174

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 C07D487/04 A61K31/505

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 C070

Documentation consuttée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

CHEM ABS Data, EPO-Internal, PAJ, WPI Data

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	WO 99 06404 A (ALMIRALL PRODESFARMA S.A) 11 février 1999 (1999-02-11) 1e document en entier	1,18,23
A	WO 96 39408 A (PFIZER INC.) 12 décembre 1996 (1996-12-12) le document en entier	1,18,23
A	EP 0 133 234 A (DAIICHI SEIYAKU CO. LTD.) 20 février 1985 (1985-02-20) le document en entier	1,18,23
A	EP 0 076 199 A (ROUSSEL-UCLAF) 6 avril 1983 (1983-04-06) cité dans la demande le document en entier	1,18,23
	-/- -	-

"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent	T° document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenemant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention			
"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais	 "X° document particulièrement pertinent; l'inven tion revendiquée ne per être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "Y° document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier *&° document qui fait partie de la même famille de brevets 			
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale			
2 août 2000	20/09/2000			
Nom et adresse postale de l'administration chargée de la recherche internationale	Fonctionnaire autorisé			
Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nt, Fax: (+31-70) 340-3016	Kyriakakou, G			

Dem > Internationale No PCT/FR 00/01174

C (sulta) Di	(suite) DOCUMENTS CONSIDERES COMME PERTINENTS							
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indicationdes passages pertinent	8 no. des revendications visées						
A	US 3 865 824 A (JOZE KOBE ET AL.) 11 février 1975 (1975-02-11) 1e document en entier	1,18,23						
<i>t</i>	US 3 850 932 A (FAIZULLA G. KATHAWALA) 26 novembre 1974 (1974-11-26) 1e document en entier	1,18,23						
1	MALCOLM N. PALFREYMAN ET AL: "phosphodiesterase Type IV Inhibitors" PROGRESS IN MEDICINAL CHEMISTRY, vol. 33, 1996, pages 1-52, XP000650817 page 22 -page 23	1,23						
_								
	·							
		,						

Renseignements relatifs aux membres de familles de brevets

Dom s internationale No PCT/FR 00/01174

Document brevet ci au rapport de recher		Date de publication		embre(s) de la lie de brevet(s)	Date de publication
WO 9906404	A	11-02-1999	ES AU EP NO ZA	2137113 A 8861298 A 1001955 A 20000394 A 9806248 A	01-12-1999 22-02-1999 24-05-2000 27-03-2000 05-02-1999
WO 9639408	A	12-12-1996	CA HU AP AU BG BR CZ EP FIR JP KV NO V NO V NO V SSI STR US	2223624 A 9601541 A 609 A 694871 B 5477396 A 62568 B 100640 A 9602627 A 1142499 A 9601626 A 0837860 A 974434 A 960268 A 10510242 T 191972 B 11620 A 11620 B 962320 A 286734 A 314459 A 54341 A 9600186 A 71896 A 970185 A 6004974 A	12-12-1996 28-02-1997 03-09-1997 30-07-1998 19-12-1996 29-02-2000 31-03-1997 01-09-1998 12-02-1997 15-01-1997 29-04-1998 05-12-1997 31-08-1997 06-10-1998 15-06-1999 20-12-1996 20-04-1997 09-12-1996 26-02-1998 09-12-1996 16-11-1998 30-04-1997 07-05-1997 21-03-1997 21-12-1999
EP 133234	A	20-02-1985	JP JP JP CA DE US	1729820 C 4019996 B 60028979 A 1231947 A 3477667 D 4610987 A	29-01-1993 31-03-1992 14-02-1985 26-01-1988 18-05-1989 09-09-1986
EP 76199	A	06-04-1983	AT AU CA DE DK ES FI GR HU JP JP JP MX PT	24509 T 554959 B 8862382 A 1193597 A 3274860 D 420682 A,B, 515904 D 8400440 A 823278 A,B, 2108495 A,B 78044 A 186975 B 53858 B 66835 A 1657677 C 3022389 B 58065292 A 155086 A 75602 A,B	15-01-1987 11-09-1986 31-03-1983 17-09-1985 05-02-1987 25-03-1983 16-10-1984 25-03-1983 18-05-1983 26-09-1984 28-10-1985 29-03-1989 31-05-1988 21-04-1992 26-03-1991 18-04-1983 26-01-1988 01-10-1982

Renseignements relatifs aux membres de familles de brevets

Dem. Internationale No
PCT/FR 00/01174

	Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s) US 4472400 A ZA 8206891 A		Date de publication 18-09-1984 26-10-1983	
EP	EP 76199 A		1				
US	3865824	Α	11-02-1975	AUCUN			
US	3850932	Α	26-11-1974	AUCUN			

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

) HARIA BINIDIAN NEBIRIH BARK BARK A KINE BARKA BING BIRKA DININ BIRK DININ KARI KARI KAN KAN

(43) Date de la publication internationale 9 novembre 2000 (09.11.2000)

PCT

(10) Numéro de publication internationale WO 00/66584 A1

(51) Classification internationale des brevets⁷:
C07D 487/04, A61K 31/505

(21) Numéro de la demande internationale:

PCT/FR00/01174

- (22) Date de dépôt international: 28 avril 2000 (28.04.2000)
- (25) Langue de dépôt:

français

(26) Langue de publication:

français

- (30) Données relatives à la priorité: 99/05398 28 avril 1999 (28.04.1999) FF
- (71) Déposant (pour tous les États désignés sauf US): WARNER-LAMBERT COMPANY [US/US]; 201 Tabor Road, Morris Plains, NJ 07950 (US).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): GAUDIL-LIERE, Bernard [FR/FR]; 28, rue de Zillina, F-92000 Nanterre (FR). LAVALETTE, Rémi [FR/FR]; 5, rue Léontine Sohier, F-91160 Longiumeau (FR). ANDRIANJARA.

Charles [FR/FR]; 3, rue Auguste Daix, F-94260 Fresnes (FR). BREUZARD, Francine [FR/FR]; 42, rue Fontaine Cornaille, F-91400 Quincy sous Senart (FR).

- (74) Mandataires: POCHART, François etc.; Cabinet Hirsch-Desrousseaux-Pochart, 34, rue de Bassano, F-75008 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AU, BA, BB, BG, BR, CA, CN, CR, CU, CZ, DM, DZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MA, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- Avec rapport de recherche internationale.
- Avec revendications modifiées.

[Suite sur la page suivante]

- (54) Title: 1-AMINO TRIAZOLO¢4,3-a! QUINAZOLINE-5-ONES AND OR -5-THIONES INHIBITING PHOSPHODIESTERASE IV
- (54) Titre: 1-AMINO TRIAZOLO ϕ 4,3-a! QUINAZOLINE-5-ONES ET/OU -5-THIONES INHIBITRICES DE PHOSPHODIES-TERASES IV

(l)

(57) Abstract: The invention relates to triazolo[4,3-a]quinazoline-5-ones and/or 5-thiones of formula (I) or (II), whereby (I) and (II) are position isomers of group R on nitrogen 3 or 4. Optionally, the invention also relates to the racemic forms, isomers and pharmaceutically acceptable salts thereof. The invention further relates to a method for the production thereof and to compositions containing said derivatives. The compounds act as inhibitors of phosphodiesterase IV (PDE-4).

(57) Abrégé: La présente invention concerne des dérivés de Triazolo[4,3-a]quinazoline-5-ones et/ou -5-thiones de formule (I) ou (II): (I) et (II) étant des isomères de position du groupe R sur les azotes 3 ou 4, et éventuellement leurs formes racémiques et leurs isomères, ainsi que leur sels pharmaceutiquement acceptables, leur procédé de préparation et les compositions en contenant. Ces composés sont des inhibiteurs des phosphodiestérases 4 (PDE-4).

Date de publication des revendications modifiées:

15 février 2001

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

REVENDICATIONS MODIFIEES

[reçues par le Bureau international le 17 novembre 2000 (17.11.00); revendications originales 6, 8, 9, 15 et 16 modifiées; nouvelles revendications 35-39 ajoutées; autres revendications inchangées (6 pages)]

- 1-Azepan-1-yl-7-methyl-4-pyridin-3-ylmethyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Methyl-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 1-Dimethylamino-7-methyl-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 1-Azepan-1-yl-7-bromo-4-(3,4-dimethoxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon la revendication 1, 2, 3, ou 4, choisies parmi le groupe comprenant :
- 1-(Azepan-1-yl)-7-chloro-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-3-(3-phenylallyl)-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- $\label{thm:condition} \textbf{7-Bromo-1-} dimethylamino-4-((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one$
- 7-Bromo-4-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-3-pyridin-3-ylmethyl-1-pyrrolidin-1-yl-3H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-Azepan-1-yl-4-(3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-allyl-4H-[1,2,4]triazolo[4,3-a]- quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-methylbenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(2-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(3-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(azepan-1-yl)-7-chloro-4-(4-chlorobenzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

- 4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester
- 7-Bromo-4-(4-nitro-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(4-methoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- Acetic acid 4-(7-bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl ester
- 7-Bromo-4-(4-hydroxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(pyrrolidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[(E)-3-(4-chloro-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-[3-(4-methoxy-phenyl)-allyl]-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-((E)-3-pyridin-4-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-4-(3,4-dimethoxy-benzyl)-1-piperidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 1-(piperidin-1-yl)-7-bromo-4-(3-phenylallyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Bromo-1-dimethylamino-4-(4-methyl-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 7-Bromo-1-dimethylamino-4-(4-hydroxy-benzyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzoic acid methyl ester

- 7-Amino-1-azepan-1-yl-4-benzyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-4-((E)-3-pyridin-3-yl-allyl)-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 7-Amino-1-dimethylamino-4-((E)-3-phenyl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-(7-Methylamino-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-benzonitrile
- 4-Benzyl-8-methylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-ethylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- 4-Benzyl-7-isopropylamino-1-pyrrolidin-1-yl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one
- [4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetic acid methyl ester
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-methyl-acetamide
- 2-[4-(7-Bromo-1-dimethylamino-5-oxo-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-acetamide
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N,N-dimethyl-acetamide
- 2-[4-(7-Bromo-5-oxo-1-pyrrolidin-1-yl-5H-[1,2,4]triazolo[4,3-a]quinazolin-4-ylmethyl)-phenyl]-N-hydroxy-acetamide
- 1-Dimethylamino-7-methyl-4-(3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazoline-5-thione
- 9. Triazolo [4,3-a] quinazoline-5-ones et/ou -5-thiones selon l'une quelconque des revendications 1 à 4, choisies parmi le groupe comprenant :
- 7-Bromo-1-dimethylamino-4((E)-3-pyridin-3-yl-allyl)-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one

15. Procédé selon la revendication 14, caractérisé en ce que lorsque X_1 est $-NR_2R_3$ et $-NR_2R_3$ et $-NR_4R_5$ sont identiques, les composés de formule I sont obtenus en faisant réagir un composé de formule générale VI :

$$X_5$$
 X_5
 X_7
 X_8
 X_8
 X_9
 X_9

dans laquelle X₂ et R sont tels que définis à la revendication 1 et X₅ tel que défini à la revendication 12, avec un composé de formule générale :

HNR₂R₃

dans laquelle R₂ et R₃ sont tels que définis à la revendication 1, pour obtenir un composé de formule générale (I):

10

16. Procédé selon la revendication 14, caractérisé en ce que lorsque X₁ est -NR₂R₃ et -NR₂R₃ et -NR₄R₅ sont différents, les composés de formule I sont obtenus en faisant réagir un composé de formule générale VII :

FEUILLE MODIFIEE (ARTICLE 19)

dans laquelle X_2 , R, R_2 et R_3 sont tels que définis à la revendication 1 et X_5 tel que défini à la revendication 12, avec un composé de formule générale :

HNR₄R₅

dans laquelle R₄ et R₅ sont tels que définis à la revendication 1, pour obtenir un composé de formule générale (I):

17. Composition pharmaceutique comprenant un composé selon l'une quelconque des revendications 1 à 9 et un excipient acceptable en pharmacie.

18. Utilisation d'un composé selon l'une quelconque des revendications 1 à 9 pour la préparation d'un médicament destiné au traitement d'une maladie ou d'une affection

relevant d'une thérapie par l'inhibition de phosphodiestérases, et plus particulièrement

de la PDE4.

15

20

25

19. Utilisation selon la revendication 18, caractérisée en ce que la maladie est l'asthme.

20. Utilisation selon la revendication 18, caractérisée en ce que la maladie est la bronchite

chronique ou l'atteinte pulmonaire aigüe.

21. Utilisation selon la revendication 18, caractérisée en ce que la maladie est la dermatite atopique.

22. Utilisation selon la revendication 18, caractérisée en ce que la maladie est l'hypertension pulmonaire.

- 34. Utilisation selon la revendication 18, caractérisée en ce que la maladie est la septicémie ou la défaillance polyviscérale.
- 5 35. Utilisation selon la revendication 18, caractérisée en ce que la maladie est la pneumopathie obstructive chronique (ou COPD).
 - 36. Utilisation selon la revendication 18, caractérisée en ce que la maladie est l'emphysème.
- 37. Utilisation selon la revendication 18, caractérisée en ce que la maladie est la rhinite allergique.
- 38. Utilisation selon la revendication 18, caractérisée en ce que la maladie est l'insuffisance cardiaque congestive.
 - 39. Utilisation selon la revendication 18, caractérisée en ce que la maladie est l'ostéoporose.

20