Exo 24 p177

- 1. $\lim_{x \to -\infty} x^3 = -\infty$ et $\lim_{x \to -\infty} x = -\infty$ donc, par somme, $\lim_{x \to -\infty} f(x) = -\infty$.
- 2. $\lim_{x \to +\infty} \sqrt{x} = +\infty$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$ donc, par somme, $\lim_{x \to +\infty} g(x) = +\infty$.
- 3. $\lim_{x \to +\infty} \sqrt{x} = +\infty$ d'où $\lim_{x \to +\infty} (\sqrt{x} + 2) = +\infty$ et donc, par quotient, $\lim_{x \to +\infty} h(x) = 0$.
- 4. $\lim_{\substack{x\to 2\\x>2\\x>2}}(x-2)=0^+$ donc, par quotient, $\lim_{\substack{x\to 2\\x>2\\x<2}}k(x)=+\infty$. Puisque $\lim_{\substack{x\to 2\\x<2}\\x<2}}(x-2)=0^-$ alors, par quotient, $\lim_{\substack{x\to 2\\x<2}\\x<2}}k(x)=-\infty$.

Exo 25 p177

- 1. $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} x = +\infty$ donc, par somme, $\lim_{x \to +\infty} (x^2 + x) = +\infty$ et donc, par quotient, $\lim_{x \to +\infty} -\frac{3}{x^2+x} = 0$. D'où, en conclusion, par somme, $\lim_{x \to +\infty} f(x) = 5$.
- 2. $\lim_{\substack{x \to 4 \\ x > 4}} (x 4) = 0^+$ donc, par quotient, $\lim_{\substack{x \to 4 \\ x > 4}} \frac{1}{x 4} = +\infty$. D'autre part, $\lim_{\substack{x \to 4 \\ x < 4}} (x 4) = 0^-$ donc, par quotient, $\lim_{\substack{x \to 4 \\ x < 4}} \frac{1}{x 4} = -\infty$. De plus, $\lim_{\substack{x \to 4 \\ x < 4}} \sqrt{x} = \sqrt{4} = 2$. D'où, par somme, $\lim_{\substack{x \to 4 \\ x > 4}} g(x) = +\infty$ et $\lim_{\substack{x \to 4 \\ x < 4}} g(x) = -\infty$.
- 3. $\lim_{x\to +\infty}\frac{1}{x}=0$ donc, par somme, $\lim_{x\to +\infty}\left(1+\frac{1}{x}\right)=1$. De plus, $\lim_{x\to +\infty}\sqrt{x}=+\infty$ donc, par somme, $\lim_{x\to +\infty}(\sqrt{x}-1)=+\infty$. On a donc au final, par quotient, $\lim_{x\to +\infty}h(x)=0^+$.
- 4. $\lim_{\substack{x\to 0\\x>0}}\frac{1}{x}=+\infty$ donc, par somme, $\lim_{\substack{x\to 0\\x>0}}k(x)=+\infty$. D'autre part, $\lim_{\substack{x\to 0\\x<0}}\frac{1}{x}=-\infty$ donc, par somme, $\lim_{\substack{x\to 0\\x<0}}f(x)=-\infty$.

Exo 26 p177

- 1. $\lim_{x \to 1} (x^3 2x^2) = -1$ et $\lim_{x \to 1} (x 1)^2 = 0^+$ donc, par quotient, $\lim_{x \to 1} f(x) = -\infty$.
- 2. $\lim_{x \to -4} (5x + 2) = -18$ et $\lim_{\substack{x \to -4 \\ x > -4}} (x + 4) = 0^+$ donc, par quotient, $\lim_{\substack{x \to -4 \\ x > -4}} g(x) = -\infty$. D'autre part, $\lim_{\substack{x \to -4 \\ x < -4}} (x + 4) = 0^-$ donc, par quotient, $\lim_{\substack{x \to -4 \\ x < -4}} g(x) = +\infty$.
- 3. $\lim_{\substack{x \to -1 \\ x > -1}} (x^2 1) = 0^- \text{ donc, par quotient, } \lim_{\substack{x \to -1 \\ x > -1}} h(x) = -\infty.$ D'autre part, $\lim_{\substack{x \to -1 \\ x < -1}} (x^2 1) = 0^+ \text{ donc, par quotient, } \lim_{\substack{x \to -1 \\ x < -1}} h(x) = +\infty.$
- 4. $\lim_{\substack{x \to 4 \\ x > 4}} (\sqrt{x} 2) = 0^+$ donc, par quotient, $\lim_{\substack{x \to 4 \\ x > 4}} k(x) = +\infty$. D'autre part, $\lim_{\substack{x \to 4 \\ x < 4}} (\sqrt{x} 2) = 0^-$ donc, par quotient, $\lim_{\substack{x \to 4 \\ x < 4}} k(x) = -\infty$.

Exo 54 p180

1. $\lim_{x\to 3}(x-3)^2 = 0^+$ et $\lim_{x\to 3}(x+1) = 4$ donc, par produit, $\lim_{x\to 3}(x-3)^2(x+1) = 0^+$. Et donc, par quotient, $\lim_{x\to 3} f(x) = +\infty$.

- 2. $\lim_{x \to 2} x^2 + 1 = 5$ et $\lim_{\substack{x \to 2 \\ x < 2}} (x 2) = 0^-$ donc, par quotient, $\lim_{\substack{x \to 2 \\ x < 2}} g(x) = -\infty$. Et $\lim_{\substack{x \to 2 \\ x > 2}} (x 2) = 0^+$ donc, par quotient, $\lim_{\substack{x \to 2 \\ x > 2}} g(x) = +\infty$.
- 3. $\lim_{x \to 2} (\sqrt{x} 3) = \sqrt{2} 3 < 0$ et $\lim_{\substack{x \to 2 \\ x < 2}} 2x 4 = 0^-$ donc, par quotient, $\lim_{\substack{x \to 2 \\ x < 2}} h(x) = +\infty$. Et $\lim_{\substack{x \to 2 \\ x > 2}} 2x 4 = 0^+$ donc, par quotient, $\lim_{\substack{x \to 2 \\ x > 2}} h(x) = -\infty$.
- 4. $\lim_{\substack{x \to \frac{1}{2} \\ x < \frac{1}{2} \\ x > \frac{1}{2}}} (1 2x) = 0^+$ donc, par quotient, $\lim_{\substack{x \to \frac{1}{2} \\ x < \frac{1}{2} \\ x > \frac{1}{2}}} k(x) = -\infty$. Et $\lim_{\substack{x \to \frac{1}{2} \\ x > \frac{1}{2} \\ x > \frac{1}{2}}} (1 2x) = 0^-$ donc, par quotient, $\lim_{\substack{x \to \frac{1}{2} \\ x > \frac{1}{2}}} k(x) = +\infty$.