Breuch - Godfrey Test

t=1,T 9t= B1+ B2 X12 + B2 /2t + U+ Mi = P. U. -1 + + Sp Mt-p + Et Estimate aux. regression Ne = 2, 1 2, X1f + d2 /2t + 814+...+ PNr-ptat L> Paux B6= nlaux ~ 12 1. No limitation on the structure Advantages: 2. No uncertainty zones (unlike DW) 3. Always applicable Lunlin h-Dunbin When neg. values Under root)

4. Test any order of AC.

	5-Alm aplicable dos					
	5-Alm. aplicable for MA-process orrors					
	Mr = Est plant + pg & -g sadrantage 1. large samples					
Dis	sadrantage 1. large samples					
	are required					

Fight Autocorrelation

2) ¿ Co chrain - O rechett transformation AR(I) - transform (GLS) general: red least squares 3) MA(1) - transform 4) Add lagged exp. Uniable B) More complex ADI (D.9)	1)	Correct >pecification
(GLS) general: red Least squares 3) MA(1) - transform 4) Add Lagged exp. Variable	2)	·
(GLS) general: red Least squares 3) MA(1) - transform 4) Add Lagged exp. Variable		AR(1) - transform
3) MA(1) - transform & 4) Add Lagged exp. Vaniable		(GLS)
4) Add Lagged exp. Vaniable		generalised least squares)
,	3)	MA(1) - transform
,	4)	Add Lagged exp. Vaniable
THE	ß)	

CO-transformation (0) yt = j, + j = Xt + UL ur = gux., + ar (*) (1) yt = b, + b, Xt + p U+1 * E+ (galagged (o)) Prom DW - test (1) PM+1 = 881 + 8p2 Xx-1 + 1 M4-1 subtract (1) - 12) MI- Jyr, = B(1-p)+ B2(Xx-JXx1) + Gx (3) X X X Z given g from previous step

) est. DCS y+ | X+ => J New

Itereste until g converges Price-Winster medion: add 1st obs. 1-92 MALL y+ = g+ B2XE + U Ut -1 = (2+-1) + JEK-2 15 - Method correlation matrix of was $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ giver some assum.

4) Adding lagged exp. variable How to test AP(1) vs ADL(1,0) CD-form: MI - Jyr, = B(1-p)+ fr/x-JX+1+ ex (3) (1) 7 = p(1-p) + py+1 + B2 X2 - pp2 X6-1+ E4 ADL (1.1) with non-lih. restr. $\mathcal{N}_{3} = -\mathcal{N}_{1} \cdot \mathcal{N}_{2}$ Test AR(1) form by Common Factor test h los (KSS K/RSS WE) ~ XI

test	Would	Lor	(z	-O, .OL