

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

FIGS. 1. Schematic diagrams of the two-layer structures of preferred EL devices

FIGS. 2. Schematic diagrams of the three-layer structures of preferred EL devices

FIGS. 3. Schematic diagrams of the multi-layer structures of preferred EL devices

Docket No.: ARL 04 16
Inventor: Shi, Jianmin
Fig 4 of 15

FIG. 4 shows the proton NMR spectrum of compound ARLB-39 in CDCl_3

FIG. 5 shows the proton NMR spectrum of compound ARLB-163 in CDCl_3

Docket No. ARL 04 16
Inventor Shi Jianmin
Fig 6 of 15

FIG. 6 shows the absorption and emission spectra of compound ARLB-33 in CH_2Cl_2

Docket No.: ARL 04 16
Inventor Shi, Jianmin
Fig 7 of 15

FIG. 7 shows the absorption and emission spectra of compound ARLB-39 in CH_2Cl_2

FIG. 8 shows the absorption and emission spectra of compound ARLB-40 in CH_2Cl_2

FIG. 9 shows the absorption and emission spectra of compound ARLB-163 in CH_2Cl_2

Fig. 10 EL spectra for undoped TBADN (Example 16) TBADN doped with ARL-39 (Example 17) at a concentration of 1.1%, and TBADN doped with ARL-163 (Example 18) at a concentration of 1.0%. The EL spectra were measured at a drive current density of 20mA/cm².

Fig. 11 Spectra for ARLB-39 as a function of doping concentration measured at a drive current density of 20 mA/cm^2

Fig. 12 illustrated the current density – voltage relation as a function of three doping concentration

Fig. 13 Spectra for ARLB-39 as a function of doping concentration measured at a drive current density of 20 mA/cm^2
($E_{\text{exc}} = 1 \text{ eV}$)

Fig. 14 illustrated the current density – voltage relation as a function of doping concentration.

Fig. 15 illustrated the current density – voltage relation for undoped TBADN layer, TBADN doped with 1.1% (v/v) ARLB-163 and 1000 \AA thick ARLB-163 with no doping