

000 «Компания АКОН» Украина, г. Киев, 03058 ул. Лебедева-Кумача 5, оф. 319 (+38067) 442-33-89 (+38044) 496-29-60 sales@akon.com.ua www.akon.com.ua

Skype: wadbus

Модули ввода-вывода серии ЕСО

WAD-DIO24-ECO

ТУ У 33.2-33056998-001:2009 АКОН.426440.001

Техническое описание

24 канала дискретного ввода-вывода Входы: «сухой контакт», постоянные токи, переменные токи Выходы: открытый коллектор (Imax = 500мA), реле 5A/250B Групповая гальваническая развязка Интерфейс RS485 (Modbus RTU)

Содержание

СОВМЕСТИМОСТЬ МОДУЛЕЙ АКОН С МИРОВЫМИ АППАРАТНО-ПРОГРАММН	ЫМИ БРЕНДАМИ3
АППАРАТНОЕ ОБЕСПЕЧЕНИЕ	
Назначение и устройство модуля	5 -
Технические характеристики	
Структурная схема и принцип работы	8 -
Назначение контактов разъемов	9 -
Схемы подключенияПодключенияПодключение к сети RS485	10 ·
Подключение к сети RS485	11 ·
ПРОГРАММНАЯ НАСТРОЙКА	12
Конфигурирование модуля и программа «Администратор»	- 12 ·
ПРОГРАММИРОВАНИЕ	13
Протокол обмена Modbus RTU	13 ·
Функция 0х03 - чтение регистров	13 ·
Функция 0x10 – запись регистров	15 ·
Функция 0х06 – запись регистра	16 ·
Карты регистров модуля	
Карта регистров системного объекта	
Карта регистров «Канал дискретного ввода»	20 -
Карта регистров «Канал дискретного вывода»	
Карта регистров «Контроллер исправности системы»	
KADTA DEFUCTDOD DESVILTATOD	. 22

Совместимость модулей АКОН с мировыми аппаратно-программными брендами.

Протестировано со следующими продуктами:

Интерфейсы

RS232, RS485, USB, Ethernet, Current LOOP, 1-Wire

Протоколы обмена

MODBUS RTU - открытый коммуникационный протокол, основанный на архитектуре «клиент-сервер». Основные достоинства стандарта — открытость, простота программной реализации и элегантность принципов функционирования. Практически все промышленные системы контроля и управления имеют программные драйвера для работы с MODBUS-сетями.

SCADA

TRACE MODE. Инструментальный программный комплекс класса SCADA HMI. Предназначен для разработки программного обеспечения АСУТП, систем телемеханики, автоматизации зданий, систем учёта электроэнергии (АСКУЭ, АИИС КУЭ), воды, газа, тепла, а также для обеспечения их функционирования в реальном времени. Обладает функциями программирования промышленных контроллеров.

SCADA-система **InTouch** является наиболее популярным в мире программным пакетом визуализации для промышленных применений, установленным более чем на 600.000 объектах во всем мире. InTouch обеспечивает интеграцию со всеми основными поставщиками систем автоматизации, включая Siemens, Rockwell, Omron, Metso, ABB и др. InTouch обеспечивает беспрецедентные мощность, гибкость, простоту в использовании имасштабируемость при построении систем — от малых НМІ приложений до крупнейших систем автоматизации предприятий.

PROMOTIC это комплекс инструментов для разработки приложений для мониторинга, управления и визуализации технологических процессов в самых различных отраслях промышленности. PROMOTIC предназначена для ОС Windows 8/7/Vista/XP/XPe/2003-8Server и выше. В систему PROMOTIC встроены все необходимые компоненты для создания простых и сложных систем визуализации и управления.

MasterSCADATM — это не просто один из современных SCADA- и SoftLogic-пакетов, это принципиально новый инструмент разработки систем автоматизации и диспетчеризации. В нем реализованы средства и методы разработки проектов, обеспечивающие резкое сокращение трудозатрат и повышение надежности создаваемой системы.

OPC Server

Основной продукт Керware — **KEPServerEX**: модульный ОРС-сервер, который обеспечивает связь с более чем 100 различных контроллеров, приводов и программных модулей, подгружая конкретный драйвер. KEPServerEX поддерживает последовательные и Ethernet-соединения с широчайшим диапазоном промышленных устройств. Сейчас KEPServerEX применяется в тысячах SCADA-системах по всему миру.

 Modbus
 Universal
 MasterOPCServer
 это:
 расширенная

 функциональность
 в рамках технологии OPC, гибкие
 возможности

 пользовательского
 интерфейса, повышенная надежность и развитая
 и развитая

 диагностика, средства работы через Интернет, открытость и следование
 стандартам, рабочие демоверсии для загрузки.

Инструментальные средства

Основной продукт Керware — **KEPServerEX**: модульный ОРС-сервер, который обеспечивает связь с более чем 100 различных контроллеров, приводов и программных модулей, подгружая конкретный драйвер. KEPServerEX поддерживает последовательные и Ethernet-соединения с широчайшим диапазоном промышленных устройств. Сейчас KEPServerEX применяется в тысячах SCADA-системах по всему миру.

Программируемые логические контроллеры

Одной из важных особенностей продукции **VIPA** является поддержка открытых интерфейсов, широко применяемых в промышленности. Это создаёт возможность для подключения дополнительных аппаратных средств и облегчает интеграцию отдельных производственных участков в информационную сеть предприятия.

Система **DeltaV** это полностью цифровая архитектура, обеспечивающая цифровую точность и цифровое быстродействие. Встроенное ведение архива облегчает ввод в эксплуатацию и обслуживание. Сам контроллер занимает мало места, обеспечивает резервирование и отличается прочностью.

Датчики

B, C, E, J, K, L, N, R, S, T, BP5/20 Γp.38, BP5/20 Γp.68, A1, A2, A3

TCM50, TCП50, TCП1006 TCП500, TCП1000, TCП1088, TCM53,TCП46, Pt100, Pt1000

DS18B20

Аппаратное обеспечение

Назначение и устройство модуля

Модуль WAD-DIO24-ECO предназначен для ввода-вывода дискретных электрических сигналов, их обработки и обмена данными с главным вычислителем сети (компьютером) по линиям последовательного трехпроводного интерфейса RS485.

В своём составе модуль имеет: загрузчик прошивок, 24 канала ввода-вывода, DC/DC преобразователь для питания гальванически развязанных частей, интерфейсную часть, а также может оснащаться разными типами плат индикации (LED, семисегментные индикаторы) и клавиатуры.

Каналы дискретного ввода изготавливаются для работы с потенциальными уровнями постоянного и/или переменного напряжения, а также в режиме «Сухой контакт».

Каналы дискретного вывода имеют два исполнения:

- 1) отрытый коллектор (Imax = 500 мA)
- 2) реле (5A/250B)

Встроенная индикация позволяет визуально контролировать срабатывание каналов.

При питания от источника постоянного тока входов питания два, основной и для резервного источника. Выход из строя любого из них никак не сказывается на работе системы.

Все наружные цепи модулей (входы, питание, интерфейс) надёжно защищены от перегрузок. Защита - двухуровневая: при кратковременной перегрузке срабатывает первый уровень защиты, при длительном превышении напряжения выше нормы срабатывает второй, размыкающий цепь. При исчезновении перегрузки работоспособность модуля восстанавливается автоматически.

Корпус модуля выполнен из высококачественного ударопрочного пластика, отличается надёжностью, высокой точностью изготовления, термостойкостью, отличным дизайном. Устанавливается на DIN-рейку.

Технические характеристики

Страница каталога:

(С полной версией каталога можно ознакомиться на сайте www.akon.com.ua в разделе "Документация")

D	DIN-рейка/RS485/Modbus RTU ДИСКРЕТНЫЙ ВВОД/ВЫВОД Серия ЕСО					
	ПАРАМЕТР	WAD-DIO24-ECO-12DI-12R				
	Внешний вид	ecoccoc correspond socialists				
	Краткое описание	24-х канальный модуль дискретного ввода/вывода на RS-485. Из них 12 каналов дискретного ввода и 12 независимых групп контактов на замыкание с током нагрузки до 5А. Защита всех входов/выходов.				
	Количество каналов	8				
IQ	Входные уровни логической «1»	Постоянное напряжение; 2,5В500В (указывается при заказе)				
	Контроль обрыва линии в конфигурации "сухой контакт"	Включен/выключен				
	Количество каналов	16 (нормально разомкнутые)				
	Максимальный коммутируемый ток	До 5А				
D0	Максимальное коммутируемое напряжение	До 250В				
	Контроллер исправности системы	В случае отсутствия запросов хоста к этому (или к другим модулям-настраивается) более чем установленное значение таймаута, контроллер исправности системы устанавливает выходы в указанное состояние. Время таймаута и состояние каналов конфигурируются.				
	Гальваноразвязка	Групповая 1,5кВ (по требованию 2,5кВ)				
	Рабочий температурный диапазон	По умолчанию: -20+75 °C; расширенный: -40+75 °C				
	Габариты	155,5х90х56,5 мм				
	Bec	120r				
	Клеммы	Винтовые зажимные клеммы; сечение провода: 0.2-2.5 мм²				
	Связь	RS485, протокол Modbus RTU				
	Потребляемая мощность	Не более 5,0Вт при максимальной нагрузке				
	Питание	Постоянное (можно не стабилизированное) напряжение от 10В до 30В				

DIN-рейка/RS485/Modbus RTU		ДИСКРЕТНЫЙ ВВОД Серия ЕСО		
	ПАРАМЕТР	WAD-DIO24-ECO-24DI		
	Внешний вид	ecoccoc coccesor socsesses		
	Краткое описание	24 канала дискретного ввода. Входы: «сухой контакт», постоянные уровни. Защита всех входов/выходов.		
	Количество каналов	24		
DI	Входные уровни логической «1»	Постоянное напряжение; 2,5В500В (указывается при заказе)		
	Контроль обрыва линии в конфигурации "сухой контакт"	Включен/выключен		
	Гальваноразвязка	Групповая 1,5кВ (по требованию 2,5кВ)		
	Рабочий температурный диапазон	По умолчанию: -20+75 °С; расширенный: -40+75 °С		
	Габариты	155,5х90х56,5 мм		
	Bec	250r		
Клеммы Винтовые зажимные клеммы; сечение провода: 0.2-2.5 мм ²				
	Связь	RS485, протокол Modbus RTU		
	Потребляемая мощность	Не более 4,5Вт при максимальной нагрузке		
Питание Постоянное (можно не стабилизированное) напряжение от 10В до 30В				

	DIN-рейка/RS485/Modbus RTU ДИСКРЕТНЫЙ ВЫВОД Серия I				
	ПАРАМЕТР	WAD-DIO24-ECO-24R			
	Внешний вид	ecoccoc coccesor soccesor			
	Краткое описание	24-х канальный релейный блок на RS-485. 24 независимых групп контактов на замыкание с током нагрузки до 5А. Защита всех входов/выходов.			
	Количество каналов	24 (нормально разомкнутые)			
	Максимальный коммутируемый ток	5A			
D0	Максимальное коммутируемое напряжение	До 250В			
	Контроллер исправности системы	В случае отсутствия запросов хоста к этому (или к другим модулям-настраивается) более чем установленное значение таймаута, контроллер исправности системы устанавливает выходы в указанное состояние. Время таймаута и состояние каналов конфигурируются.			
	Гальваноразвязка	Поканальная 1,5кВ (по требованию 2,5кВ)			
	Рабочий температурный диапазон	По умолчанию: -20+75 °C; расширенный: -40+75 °C			
	Габариты	155,5x90x56,5 мм			
	Bec	350r			
Клеммы Винтовые зажимные клеммы; сечение провода: 0.2-2.5 мм ²					
	Связь	RS485, протокол Modbus RTU			
	Потребляемая мощность	Не более 6,5Вт при максимальной нагрузке			
	Питание	Постоянное (можно не стабилизированное) напряжение от 10В до 30В			

Структурная схема и принцип работы

Модуль состоит из следующих узлов: блок питания, каналы ввода-вывода, микроконтроллер и цепи формирования сигналов интерфейса RS485. Опционально может быть установлена плата индикации и клавиатуры.

Рис 1. Структурная схема модуля WAD-DIO24-ECO.

Количество каналов и их типы определяются индивидуально при заказе - либо вход, либо выход. Эти характеристики закладываются аппаратно на этапе изготовления.

Каналы дискретного ввода могут работать с потенциальными уровнями постоянного и/или переменного напряжения или в режиме «Сухой контакт».

Каналы дискретного вывода представляют собой либо открытый коллектор (Imax=500mA), либо нормально разомкнутое реле с коммутируемым током до 5A и напряжением до 250B.

Схема светодиодной индикации предназначена для контроля значения канала. Для дискретных входов:

- 1) светодиод выключен логический ноль (удаленный контакт разомкнут)
- 2) светодиод включен логическая единица (удаленный контакт замкнут)
- 3) светодиод мерцает обрыв линии

Для дискретных выходов:

- 1) светодиод выключен реле разомкнуто
- 2) светодиод включен реле замкнуто

Со стороны интерфейса RS485 значения всех каналов доступны для чтения/записи по протоколу Modbus RTU. Адрес устройства и скорость обмена настраиваются с помощью программы АКОН Администратор и сохраняются в Flash.

Назначение контактов разъемов

Ниже приведен пример подачи питания и подключения модуля к хосту. Каналы дискретного ввода используют свой К2 как общий контакт, а К1 как вход. Для каналов дискретного вывода с исполнением «релейный выход», контакты К2 и К1 являются равноценными, так как на них выходят нормально разомкнутые контакты реле. Для исполнения «открытый коллектор», контакт К2 общий, а контакт К1 выход.

Рекомендация:

При выборе основного и резервного источников питания нужно учитывать, что мощность каждого из них должна быть достаточной для питания всех блоков системы. Когда включены два источника питания, они не нагружены поровну: вся нагрузка будет приходиться на тот, выходное напряжение которого больше. Распределение нагрузки между двумя блоками возможно лишь тогда, когда розбаланс выходных напряжений составляет менее 50мВ. Но не нужно стремиться распределить нагрузку – скажем, основной источник может быть на 24В, а резервный – на 12В.

Схемы подключения

Подключение удаленных ключей без возможности контроля обрыва линии

Подключение датчиков с активным выходом в режиме «Потенциальный вход»

Подключение линий дискретного вывода типа «Открытый коллектор»

Подключение удаленных ключей и резисторов тока покоя для контроля обрыва линии

Подключение датчиков с активным выходом в режиме «Переменный вход»

Смешанное подключение различных типов сигналов

Подключение к сети RS485

Подключение к сети заключается в одноимённом соединении двух линий DATA+ и DATA- головного вычислителя (компьютера, или выхода преобразователя RS232/RS485) и модуля WAD-...-ECO (или группы модулей, соединённых по системной шине).

Модуль WAD-DIO24-ECO предназначен для работы в сетях типа Master-Slave при этом, выступая всегда в роли Slave. При подключении нескольких устройств к сети нужно позаботиться о том, чтобы адрес каждого модуля в пределах сети был уникальным, и у всех модулей была установлена одинаковая скорость обмена. Поэтому, если адреса и скорости обмена неизвестны, рекомендуется производить настройку каждого модуля в отменьности, используя программу «АКОН Администратор» и лишь потом подключить их в одну сеть.

Программная настройка

Конфигурирование модуля и программа «Администратор»

Настройка модуля производится посредством интерфейса RS485. Для настройки рекомендуется использовать стандартный инструментарий, которым является программа «Администратор». Или можно использовать, опираясь на описание протокола обмена, собственные средства. Программа «Администратор» предназначена для настройки и проверки работоспособности модулей, разработанных компанией. В «Администраторе» настройка модуля производится посредством наглядных графических структур, относящихся к настраиваемому объекту. По умолчанию «Администратор» отображает все прочитанные из модуля свойства: заводские установки и откалиброванные аппаратные пределы. "Администратор" отображает ВСЕ доступные в ДАННОМ экземпляре устройства пределы измерения, позволяет выбрать для дальнейшей работы любой из них, установить частоту среза фильтра, пределы индикации, адрес в сети, скорость обмена и т.д., т.е. — настроить модуль для дальнейшей самостоятельной работы. При обнаружении отсутствия необходимого Вам предела измерения - обращайтесь к изготовителю для проведения дополнительной калибровки.

При отсутствии модуля, при возникновении необходимости проверить, как должна проходить исправная настройка изделия в "Администраторе", в программе встроен эмулятор блоков производства АКОН.

Для настройки модуля с помощью «Администратора» необходимо выполнить следующие шаги:

- 1. Подключить устройство к компьютеру. (См. раздел «Подключение к сети RS485»)
- 2. Запустить программу "Администратор" из комплекта поставки.
- 3. Выбрать "Шина", "Настройки", задать СОМ-порт и скорость обмена.
- 4. Выбрать "Шина", "Подключить".
- **5.** Выбрать "Устройства", "Обнаружение устройств". Двойным щелчком выбрать нужное устройство из найденных на шине.
- 6. В открывшемся окне двойным щелчком выберите нужный объект модуля.
- 7. Используя функции «Администратора» произвести настройку устройства.
- 8. Выходя из программы, записать настройки во Флэш-память модуля.

Программа "Администратор" поддерживает весь спектр устройств серии BUS, MAXPro и ECO. Функции «Администратора» по настройке конкретной модели устройства приводятся в техническом описании на данное устройство.

Общие функции «Администратора» приведены в разделе "Помощь" программы «Администратор».

Программирование

Протокол обмена Modbus RTU

В своих устройствах Компания АКОН использует стандартный протокол Modbus RTU. Протокол применяется в сетях, в которых контроллеры соединяются, используя технологию master-slave, при которой только одно устройство (master) может инициировать передачу (сделать запрос). Другие устройства (slave) передают запрашиваемые главным устройством данные, или производят запрашиваемые действия. Главный контроллер может адресоваться к индивидуальному подчиненному или может широковещательную сообщения на все подчиненные инициировать передачу устройства. Подчиненное устройство возвращает сообщение в ответ адресуемый именно ему. Ответы не возвращаются при широковещательном запросе от главного контроллера. При запросе от главного контроллера код функции говорит подчиненному устройству, какое действие необходимо провести. Байты данных содержат информацию необходимую для выполнения запрошенной функции. Для чтения используется функция 0х03, а для записи 0х06 и 0х10.

Функция 0х03 – чтение регистров

Формат запроса:

Название поля	Назначение		
Address	Адрес модуля в сети		
Function	Функция		
Start register, H	Номер начального регистра (старший байт)		
Start register, L	Номер начального регистра (младший байт)		
Register number, H	Количество регистров (старший байт)		
Register number, L	Количество регистров (младший байт)		
CRC, H	Контрольная сумма запроса (старший байт)		
CRC, L	Контрольная сумма запроса (младший байт)		

Формат ответа:

Название поля	Назначение		
Address	Адрес модуля в сети		
Function	Функция		
Byte counter, H	Счетчик байт		
Data 0, H	Содержимое регистра X (старший байт)		
Data 0, L	Содержимое регистра X (младший байт)		
Data 1, H	Содержимое регистра X + 1 (старший байт)		
Data 1, L	Содержимое регистра X + 1 (младший байт)		
Data N, H	Содержимое регистра X + N (старший байт)		
Data N, L	Содержимое регистра X + N (младший байт)		
CRC, H	Контрольная сумма ответа (старший байт)		
CRC, L	Контрольная сумма ответа (младший байт)		

Пример. Нужно прочитать результат измерения канала аналогового ввода. Результат находится в регистре 0x0100 и занимает два регистра.

Запрос:

Address	Function	Start register	Number registers	CRC
0x01	0x03	0x0100	0x0002	0xC5F7

Ответ:

Address	Function	Byte counter	Data	CRC
0x01	0x03	0x04	0x41483127	0x3B98

Data = 0x41483127 = 12.512

Ниже предоставлена функция для вычисления CRC на языке Си.

```
unsigned short mbCrc(unsigned char *buf, unsigned short size)
        unsigned short crc;
        unsigned char bit_counter;
        crc = 0xFFFF;
                                                     // initialize crc
         while ( size > 0 )
                 crc ^= *buf++ :
                                                     // crc XOR with data
                 bit_counter = 0;
                                                     // reset counter
                 if ( crc & 0x0001 )
                          {
                                   crc >>= 1;
                                                     // shift to the right 1 position
                                   crc ^= 0xA001; // crc XOR with 0xA001
                          }
                          else
                          {
                                                     // shift to the right 1 position
                                   crc >>= 1;
                          bit_counter++;
                                                     // increase counter
                 }
                                                     // adjust byte counter
                 size--;
                                                     // final result of crc
        return crc;
}
```


Функция 0х10 – запись регистров

Формат запроса:

Название поля	Назначение			
Address	Адрес модуля в сети			
Function	Функция			
Start register, H	Номер начального регистра (старший байт)			
Start register, L	Номер начального регистра (младший байт)			
Register number, H	Количество регистров (старший байт)			
Register number, L	Количество регистров (младший байт)			
Byte Counter	Счетчик байт			
Data 0, H	Содержимое регистра X (старший байт)			
Data 0, L	Содержимое регистра Х (младший байт)			
Data 1, H	Содержимое регистра X + 1 (старший байт)			
Data 1, L	Содержимое регистра X + 1 (младший байт)			
Data N, H	Содержимое регистра X + N (старший байт)			
Data N, L	Содержимое регистра X + N (младший байт)			
CRC, H	Контрольная сумма запроса (старший байт)			
CRC, L	Контрольная сумма запроса (младший байт)			

Формат ответа:

Название поля	Назначение		
Address	Адрес модуля в сети		
Function	Функция		
Start register, H	Номер начального регистра (старший байт)		
Start register, L	Номер начального регистра (младший байт)		
Register number, H	Количество регистров (старший байт)		
Register number, L	Количество регистров (младший байт)		
CRC, H	Контрольная сумма ответа (старший байт)		
CRC, L	Контрольная сумма ответа (младший байт)		

Пример. Нужно установить четыре канала дискретного вывода в единицу. Каналы располагаются с адреса 0х4000 и на каждый канал отведен свой собственный регистр.

Запрос:

Address	Function	Start register	Number registers	Data	Data	Data	Data	CRC
0x01	0x10	0x4000	0x0004	0x0001	0x0001	0x0001	0x0001	0x1BAF

Ответ:

Address	Function	Start register	tart register Number registers	
0x01	0x03	0x4000	0x0004	0xD40A

Функция 0х06 – запись регистра

Формат запроса:

Название поля	Назначение	
Address	Адрес модуля в сети	
Function	Функция	
Start register, H	Номер регистра (старший байт)	
Start register, L	Номер регистра (младший байт)	
Data, H	Содержимое регистра (старший байт)	
Data, L	Содержимое регистра (младший байт)	
CRC, H	Контрольная сумма запроса (старший байт)	
CRC, L	Контрольная сумма запроса (младший байт)	

Формат ответа:

Название поля	Назначение	
Address	Адрес модуля в сети	
Function	Функция	
Start register, H	Номер регистра (старший байт)	
Start register, L	Номер регистра (младший байт)	
Data, H	Содержимое регистра (старший байт)	
Data, L	Содержимое регистра (младший байт)	
CRC, H	Контрольная сумма ответа (старший байт)	
CRC, L	Контрольная сумма ответа (младший байт)	

Пример. Нужно установить канал дискретного вывода в единицу. Адрес регистра 0х4000.

Запрос:

Address	Function	Start register	Data	CRC
0x01	0x06	0x4000	0x0001	0x5DCA

Ответ:

Address	Function	Start register	Data	CRC
0x01	0x06	0x4000	0x0001	0x5DCA

Карты регистров модуля

Устройство содержит карты регистров для следующих объектов

Номер объекта	Название объекта
0	Системный объект
1	Канал дискретного ввода 1
2	Канал дискретного ввода 2
3	Канал дискретного ввода 3
4	Канал дискретного ввода 4
5	Канал дискретного вывода 1
6	Канал дискретного вывода 2
7	Канал дискретного вывода 3
8	Канал дискретного вывода 4
9	Менеджер дискретного В/В
10	Контроллер исправности системы

Так же имеется отдельная карта регистров (карта результатов), в которой собраны только значения состояний каналов.

Для всех карт регистров, кроме карты результатов, доступ осуществляется только к двум регистрам одновременно и при этом номер первого регистра должен быть обязательно четным. Адресное пространство карты регистров результатов доступно для чтения/записи пакетами произвольной длины, используя функции 0x03 и 0x10 соответственно.

Карта регистров системного объекта

Код операции	Адрес регистра	Наименование параметра	Диапазон изменений
		Системный объект	
03	0x0000	Код изделия	uint32_t
03	0x0002	Серийный номер изделия	uint32_t
03	0x0004	Маска каналов	uint32_t
03/10	0x0006	Адрес устройства	1-255
03/10	0x0008	Сохранение в Flash текущих настроек системы	uint32_t
03/10	0x000A	Чтение с Flash настроек системы	uint32_t
03/10	0x0020	Номер версии прошивки	uint32_t
03	0x0022	Резерв	uint32_t
03	0x0024	Машинное время	uint32_t

Карта регистров для объекта «Канал дискретного ввода»

Код операции	Адрес регистра	Наименование параметра	Диапазон изменений
		Канал №n	
03	0x0n10	Состояние линии	uint32_t
03	0x0n12	Значение напряжения на входе канала	float
03/10	0x0n14	Уровень контроля обрыва линии	float
03/10	0x0n16	Уровень логической единицы	float
03/10	0x0n20	Разрешение/запрещение контроля обрыва линии	uint32_t
03/10	0x0n24	Время отклика	uint32_t

Карта регистров для объекта «Канал дискретного вывода»

1 1			
Код операции	Адрес	Наименование параметра	Диапазон изменений
	регистра		
		Канал №п	
03/10	0x0n10	Установка состояния	0, 1
03	0x0n12	Контроль состояния	0 – Ok
			1 – неисправность в канала
03	0x0n14	Код разрешения установки	uint32_t
03/10	0x0n16	Выбор режима установки выхода	0 – обычный
			1 – защищенный
10	0x0n18	Сгенерировать последовательность	0 – запрос на генерирование
			последовательности
03/10	0x0n1A	Начальный уровень	0, 1
03/10	0x0n1C	Количество периодов	0 – 15
10	0x0n1E	Индекс элемента массива периодов	0 – 15
03/10	0x0n20	Массив периодов	uint32_t

Карта регистров для объекта «Менеджер дискретного ввода/вывода»

Код операции	Адрес регистра	Наименование параметра	Диапазон изменений
		Канал №9	
03	0x0910	Состояние всех каналов	uint32
03/10	0x0912	Установка каналов DO	uint32
03	0x0914	Код разрешения установки	uint32
03/10	0x0916	Выбор режима установки выхода	0 – обычный
			1 – защищенный
03	0x0918	Состояние всех каналов (старшие 8 бит; если они есть)	uint32

Карта регистров для объекта «Контроллер исправности системы»

Код операции	Адрес регистра	Наименование параметра	Диапазон изменений
		Канал №10	
03/10	0x0A10	Значение таймаута	uint32
03/10	0x0A12	Условие сброса таймаута	uint32
03/10	0x0A14	Состояние каналов DO	uint32
03/10	0x0A16	Маска каналов DO	uint32

Карта регистров системного объекта

Код типа устройства содержит код устройства. Для модуля WAD-DIO24-ECO его значение равно 0x0040.

Серийный номер устройства содержит серийный номер устройства.

Маска каналов указывает, какие каналы есть в модуле.

Адрес устройства, скорость обмена.

Диапазон адресов устройств лежит в пределах от 0x01 до 0xFF. Адрес 0x00 является широковещательным. Ответ от устройства при широковещательном запросе не формируется, за исключением чтения кода типа устройства.

Поля свойства:

3-й байт	2-й байт	1-й байт	0-й байт
Parity ID	Reserve	Baudrate ID	Address

Коды скоростей:

No	Скорость обмена	Код скорости обмена
1	BR_1200	0x03
2	BR_2400	0x04
3	BR_4800	0x05
4	BR_9600	0x06
5	BR_14400	0x07
6	BR_19200	0x08
7	BR_38400	0x09
8	BR_56000	0x0A
9	BR_57600	0x0B
10	BR_115200	0x0C

Коды четностей:

№	Четность	Код четности
1	None	0
2	Odd	1
3	Even	2
4	Mark	3
5	Space	4

Версия ПО устройства указывает номер версии программного обеспечения устройства.

Поля свойства:

_	•			
	3-й байт	2-й байт	1-й байт	0-й байт
	0	Version Hi	Version Middle	Version Lo

Машинное время это длинное целое беззнаковое число, указывающее количество секунд прошедших с момента последнего перезапуска устройства.

Сохранение в Flash текущих настроек системы. Чтение с Flash ранее сохраненных настроек в ОЗУ. Эти свойства применяются для работы с флэш-памятью и доступны только для записи. При записи выше перечисленных свойств будет выполнена соответствующая команда.

Карта регистров «Канал дискретного ввода»

Состояние линии это целое беззнаковое число, указывающее состояние входа канала. Если значение канала равно нулю, то на вход канала подан логический ноль, если значение канала равно единице, то на вход канала подана логическая единичка.

Уровень напряжения на входе канала - действительное число, указывающее уровень напряжение на входе в данный момент времени.

Уровень контроля обрыва линии — действительное число, указывающее порог уровня контроля обрыва линии. Используется только в случае, если контроль обрыва линии разрешен. В обычном режиме не используется.

Уровень логической единицы - действительное число, указывающее порог для уровня логической единицы.

Контроль обрыва линии — число типа boolean, указывающее режим работы канала. Если false, то модуль работает в обычном режиме, если true — режим контроля обрыва линии.

Время отклика – целое беззнаковое число, указывающее в миллисекундах время отклика канала. Данный параметр применяется для повышения достоверности показаний и/или подавления дребезга контактов.

Карта регистров «Канал дискретного вывода»

Значение канала - длинное целое беззнаковое число, указывающее состояние выхода канала.

Контроль срабатывания реле — число типа boolean, указывающее состояние аппаратуры канала. Если false, то это значит, что выход установлен в соответствии с требуемым значением. Если true, то это значит, что в канале неисправность.

Разрешающий код — длинное целое беззнаковое число, содержащее код который действителен для данной транзакции записи значения канал.

Режим установки выхода канала. Канал может работать в двух режимах — обычный режим и защищенный режим. Если в данное свойство записать true, то канала переводится в защищенный режим. Защищенный режим предназначен для обеспечения дополнительной надежности и защиты от ложных записей в канал. Для установки канала в требуемое состояние в защищенном режиме нужно выполнить следующие шаги:

- 1. запросить у модуля разрешающий код для текущей транзакции (свойство «Разрешающий код»)
- 2. произвести логическое сложение разрешающего кода и требуемого состояния канала
- 3. полученное значение записать в свойство «Значение канала»

Пример:

- 1. читаем значение с свойства «Разрешающий код» = 0x12345600
- 2. пусть нужно установить на выходе логическую единицу, тогда:

result = 0x12345600 or 1;

3. значение result записываем в свойство «Значение канала»

В обычном режиме шаги 1 и 2 не используются.

Генерирование последовательности. Запись нуля в это свойство вызывает генерирование последовательности.

Последовательность предназначена для управления выходом канала в автоматическом режиме. Порядок настройки последовательности:

- 1. Выбирается начальный уровень уровень, с которого начнется генерирование последовательности.
- 2. Указывается количество периодов последовательности. («Количество периодов»)
- 3. С помощью свойств «Индекс элемента массива периодов» и «Массив периодов» заполняется массив периодов.

Генерирование последовательности происходит следующим образом: после записи в свойство «Генерирование последовательности» нуля выход канала устанавливается в тот уровень, который указан в свойстве «Начальный уровень». После этого происходит перебор и выдержка периодов, из которых состоит последовательность. По окончании выдержки периода выход канала инвертируется.

Начальный уровень. Свойство содержит начальное состояние выхода канала при генерировании последовательности.

Количество периодов. Свойство содержит количество периодов последовательности.

Индекс элемента массива периодов. Свойство предназначено для указания индекса текущего элемента массива периодов.

Массив периодов. Массив, который содержит длительности периодов последовательности. Доступ к элементам массива осуществляется с помощью свойства «Индекс массива периодов». Значение периода указывается в 100милисекундных интервалах. Таким образом, максимальное значение периода составляет: 1 час, 49 минут, 13 секунд и 500 миллисекунд.

Карта регистров «Контроллер исправности системы»

Контроллер исправности системы, это логический узел модуля, предназначенный для принятия решения модулем об исправности системы, в которой он работает. Механизм работы базируется на отслеживании длительности интервалов между запросами к текущему устройству или к любым другим устройствам на этой на шине. Тип отслеживаемого трафика конфигурируется параметром «Условие сброса таймаута». В случае отсутствия запросов более чем установленное значение таймаута, контроллер исправности системы устанавливает в требуемое состояние указанные каналы дискретного вывода (задается состояние каналов и маска каналов).

Значение таймаута – указывается в миллисекундных интервалах. Если равно нулю, то контроллер исправности отключен.

Условие сброса таймаута – указывает условие сброса таймаута. Может принимать два значения:

Значение	чение Условие сброса	
0	Любой обмен по шине	
1	Обращение к модулю	

Если в этот параметр прописан ноль, то при любом трафике на шине счетчик отслеживающий таймаут будет сбрасываться. Если прописана единичка, то сброс счетчика будет производиться только при запросах адресуемых этому устройству.

Если контроллер исправности настроен на отслеживание трафика (Параметр «Значение таймаута» не равен нулю), то отсчет таймаута после подачи питания на модуль начнется только после первого запроса по шине удовлетворяющего условию сброса (Параметр «Условие сброса таймаута»).

Карта регистров результатов

Карта регистров результатов носит собирательный характер и содержит в себе только самые необходимые регистры для работы с модулем. В каких-то детальных описаниях ее поля не имеют нужды, так как из их названий ясна их суть.

Адрес регистра, НЕХ	Название	Тип данных	Назначение	
4000	CPU Temp	int16_t	Температура контроллера, °С	
4001	FreqMeasureT	int16_t	Время измерения (частоты)	
4002-4003	CounterToDI	uint32_t	Проекция значения счетчика канала на битовое значение Проекция значения частоты канала на битовое значение	
4004-4005	FreqToDI	uint32_t		
4006	DIO 3116	int16_t	Все каналы DI/DO (Старшая часть)	
4007	DIO 1500	int16_t	Все каналы DI/DO (Младшая часть)	
4008	DIBreakLineH	int16_t	Состояние «Обрыв линии» для всех DI-Каналов (Н - 3116 и L - 1500)	
4009	DIBreakLineL	int16_t		
400A	DIO 1	uint16_t	Значение канала DIO 1	
400B	DIO 2	uint16_t	Значение канала DIO 2	
400C	DIO 3	uint16_t	Значение канала DIO 3	
400D	DIO 4	uint16_t	Значение канала DIO 4	
400E	DIO 5	uint16_t	Значение канала DIO 5	
400F	DIO 6	uint16_t	Значение канала DIO 6	
4010	DIO 7	uint16_t	Значение канала DIO 7	
4011	DIO 8	uint16_t	Значение канала DIO 8	
4012	DIO 9	uint16_t	Значение канала DIO 9	
4013	DIO 10	uint16_t	Значение канала DIO 10	
4014	DIO 11	uint16_t	Значение канала DIO 11	
4015	DIO 12	uint16_t	Значение канала DIO 12	
4016	DIO 13	uint16_t	Значение канала DIO 13	
4017	DIO 14	uint16_t	Значение канала DIO 14	
4018	DIO 15	uint16_t	Значение канала DIO 15	
4019	DIO 16	uint16_t	Значение канала DIO 16	
401A	DIO 17	uint16_t	Значение канала DIO 17	
401B	DIO 18	uint16_t	Значение канала DIO 18	
401C	DIO 19	uint16_t	Значение канала DIO 19	
401D	DIO 20	uint16_t	Значение канала DIO 20	
401E	DIO 21	uint16_t	Значение канала DIO 21	
401F	DIO 22	uint16_t	Значение канала DIO 22	
4020	DIO 23	uint16_t	Значение канала DIO 23	
4021	DIO 24	uint16_t	Значение канала DIO 24	

Карта регистров изделия может быть переконфигурирована на произвольный порядок. Для этого предназначена программа UMMC.

Скачать программу http://akon.com.ua/download/soft/UMMC.zip
Скачать описание http://akon.com.ua/download/soft/UMMC.Docx

 $\langle CounterToDI \rangle \rangle$ определяют, будет Разряды параметра ЛИ значение счетчика соответствующего канала определять битовое значение канала. Если разряд включен и значение счетчика больше нуля, то битовое значение канала равное единице. Если при включенном разряде значение счетчика равно нулю, то и битовое значение канала равно нулю. Если разряд выключен, то значение счетчика не влияет на битовое значение канала. Разряды параметра «FreqToDI» имеют тоже свойство, что и разряды параметра «CounterToDI» только относительно значений частоты импульсов каналов. Параметры «FreqToDI» и «CounterToDI» имеют одинаковый формат. Первый разряд управляет первым каналом дискретного ввода устройства, второй разряд вторым каналом и так далее.

Модуль разработан и изготовлен Компанией АКОН.
Предлагаем к поставке модули АЦП, модули ЦАП,
устройства ввода-вывода цифровой информации,
модули нормирующих преобразователей с гальванической развязкой, модули
для распределённых систем и другое оборудование.

Украина, г. Киев, ул. Лебедева-Кумача 5, оф. 319 тел. +38(044) 496-29-60, +38(067) 442-33-89

E-mail: sales@akon.com.ua Caйт: www.akon.com.ua Skype: wadbus