Assume that everything is smooth unless the contrary is explicitly stated.

- 1. Let M be a connected manifold and let $f: M \to M$ be a map such that $f \circ f = f$. Show that f(M) is an embedded submanifold of M.
- 2. Let M be a manifold and let $f: M \to M$ be a map such that $f \circ f = \mathrm{id}_M$. Show that f(M) is an embedded submanifold of M.
- 3. Show that the action of the diffeomorphism group of a connected manifold is transitive. (Hint: Show that, if p and q are in the open unit ball of \mathbb{R}^n , then there exists a compactly-supported vector field whose flow takes p to q.)
- 4. Let X and Y be vector fields on a smooth manifold M, with flows denoted by φ_t and ψ_t , respectively. Fix a point p of M, and, whenever it makes sense, define

$$c(t) = (\psi_t \circ \varphi_t \circ \psi_{-t} \circ \varphi_{-t})(p).$$

Show that c'(0) = 0, and deduce from this that $f \mapsto (f \circ c)''(0)$ defines an element of T_pM . Prove that this element is precisely $2[X,Y]_p$.

- 5. Let D be a distribution on a manifold M, and let X be a (locally defined) vector field on M with flow φ_t . Show that the following are equivalent.
 - (i) For all p in M and t for which it makes sense, $d(\varphi_t)_p(D_p) = D_{\varphi_t(p)}$.
 - (ii) \mathcal{L}_X takes local sections of D to local sections of D.
 - (iii) \mathcal{L}_X takes local annihilating forms for D to local annihilating forms for D.

If any of these hold, then we say that X is an *infinitesimal symmetry* of D.

- 6. Let $\pi: M \to M'$ be a surjective submersion with connected fibres.
 - (a) Show that $\ker d\pi$ is an involutive distribution on M, and describe the corresponding foliation.
 - (b) Let D be a distribution on M containing $\ker d\pi$, and suppose that every local section of $\ker d\pi$ is also an infinitesimal symmetry of D. Show that there exists a unique distribution D' on M' such that $D'_{\pi(p)} = d\pi_p(D_p)$ for each p in M. (The next part of the problem outlines the proof of smoothness.)
 - (c) Show that, for each p in M, it is possible to find an open neighbourhood U of p, local sections Y_1, \ldots, Y_r of D on U, and a local frame Y'_1, \ldots, Y'_r of D' on $\pi(U)$ such that each Y_i is π -related to Y'_i . Deduce from this that D' is smooth, and involutive if D is.

- 7. Let $\pi: M \to M'$ be a surjective submersion with connected fibres, and let ω be a k-form on M. Show that ω is the pullback of a k-form on M' by π , if and only if $i_X\omega=0$ and $\mathcal{L}_X\omega=0$ for every section X of ker $d\pi$. Interpret this geometrically and give a counterexample if the assumption that the fibres are connected is dropped
- 8. Consider the (n-1)-form ω on $\mathbb{R}^n \setminus \{0\}$ defined by

$$\omega = \frac{1}{|x|^n} \sum_{i=1}^n (-1)^{i-1} x^i \, dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n.$$

- (a) Show that $\omega|_{S^{n-1}}$ is the standard volume form for S^{n-1} .
- (b) Show that ω is closed, but not exact.
- 9. Consider \mathbb{R}^{2n} with the standard coordinates denoted by $x^1, y^1, \dots, x^n, y^n$, and define ω by

$$\omega = \sum_{i=1}^{n} \left(-y^i \, dx^i + x^i \, dy^i \right).$$

Show that ω restricts to a nowhere-vanishing 1-form on S^{2n-1} . Compare this with the easy direction of the hairy ball theorem.

- 10. Let ω be a volume form on a manifold M. Show that, for each vector field X on M, there exists a unique function f on M such that $\mathcal{L}_X \omega = f \omega$. Give the local coordinate expression for f in terms of X and ω . What happens if ω is the standard volume form on \mathbb{R}^n ?
- 11. Let M be a compact manifold, and suppose that ω_0 , ω_1 are two volume forms on M inducing the same orientation and volume. Show that there exists a diffeomorphism $f: M \to M$ such that $f^*\omega_1 = \omega_0$.
- 12. Let E be a vector bundle over a manifold M, and let X be the Euler vector field on E. (The flow of X is given by multiplication by e^t .) Let $F: E \to E$ be a smooth mapping for which X is F-related to itself. Prove that F is actually a bundle map.
- 13. Use the previous problem to show that a diffeomorphism of a cotangent bundle which preserves the tautological 1-form is actually a cotangent lift.
- 14. (Milnor's exercise) For any manifold M, show that

$$M \to \operatorname{Hom}_{\operatorname{alg}}(C^{\infty}(M), \mathbb{R}), \quad p \mapsto \operatorname{ev}_p$$

is a bijection. (Do it in the compact case first.)

- 15. With the previous problem in mind, construct a bijection between TM and $\operatorname{Hom}_{\operatorname{alg}}(C^{\infty}(M), \mathbb{R}[\varepsilon]/(\varepsilon^2))$. What if $\mathbb{R}[\varepsilon]/(\varepsilon^2)$ is replaced with $\mathbb{R}[\varepsilon]/(\varepsilon^{n+1})$? What if the domain and range of the set of algebra homomorphisms are swapped?
- 16. Let G be a Lie group acting by isometries on a Riemannian manifold. Show that each component of its fixed point set is an embedded, totally geodesic submanifold.
- 17. Let G be a Lie group admitting a bi-invariant metric g.
 - (a) Show that the curvature tensor R acts on left-invariant vector fields by

$$R(X,Y)Z = \frac{1}{4}[Z,[X,Y]].$$

(b) Show that

$$\sec(X,Y) = \frac{1}{4} \left| [X,Y] \right|^2$$

for every pair X, Y of orthonormal left-invariant vector fields, and conclude that, in the connected case, G is flat if and only if it is abelian.

- 18. Use the Gauss-Bonnet theorem and the previous problem to show that every compact, connected Lie group of dimension two is a torus.
- 19. (Credit to Ibsen on Discord for this one.) Consider a manifold M with a connection ∇' . Let ∇ be the standard flat connection in a local coordinate patch U; going forward, we will assume that M = U. Define a map $A \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ by

$$A(X,Y) = A_X Y = \nabla_X' Y - \nabla_X Y.$$

Show that A is a (1,2)-tensor. Now, by curring, we can identify A with an $\operatorname{End}(TM)$ -valued 1-form on M given by $X \mapsto A_X$.

The flat connection ∇ induces a connection in $\operatorname{End}(TM)$, given by

$$\nabla_X(T)(Z) = \nabla_X(T(Z)) - T(\nabla_X Z).$$

This allows us to differentiate A to get an $\operatorname{End}(TM)$ -valued 2-form dA on M given by

$$(dA)(X,Y) = \nabla_X A_Y - \nabla_Y A_X - A_{[X,Y]}.$$

dA is not quite the curvature, but we can add a "correction term" $A \wedge A$ to it to get the curvature tensor. (This is defined by the typical matrix multiplication expression, but with wedge products in the sum.) Prove this, and interpret the result geometrically using Stokes's theorem.