Similarity: Numerical Data

Mining Massive Datasets

Prof. Carlos Castillo

Topic 06

Main Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapter 3) + slides by Lijun Zhang
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Section 2.4)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapter 2)
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 3)

Example: scene completion

Scene completion problem

10 closest items in a collection of 20K images

10 closest items in a collection of 2M images

Computing similarity

Computing similarity is important

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in high-dimensional space
- Examples:
 - Pages with similar words
 - For duplicate detection or for classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Users who visited similar websites

Similarity computation task

• Given two objects u and v, determine the value of:

```
similarity(u,v) and distance(u,v)
(Often one is defined in terms of the other)
```

- Similar objects should have large similarity and small distance
- Dissimilar objects should have small similarity and large distance
- Closed-form functions (e.g., euclidean distance) or algorithm

Simple single-attribute similarity

$ \begin{array}{ccc} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{array} $	(1 : C
0 if x = y	(1
1 if $x \neq y$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
x-y /(n-1) is mapped to integers 0 to $n-1$, in is the number of values)	s = 1 - d
x-y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$
	n is the number of values)

Euclidean distance: L₂ norm

point	X	y
p 1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p 2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_p norm, $p \ge 1$

- p=1: Manhattan norm
 - Sum of absolute values
- p=2: Euclidean norm
 - Square root of sum of squares
 - Rotation-invariant
- p=∞: Infinity norm
 - Largest absolute value

$$\operatorname{dist}(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\overline{p}}$$

Exercise: compute Lp distance

Given vectors

$$u = (22, 1, 42, 10)$$

 $v = (20, 0, 36, 8)$

Compute:

 L_1 distance

 L_2 distance

 $L_{\scriptscriptstyle \infty}$ distance

Answer in Nearpod Collaborate Code to be given in class

Generalized L_p norm, $p \ge 1$

 Useful when some features are more important than others

$$\operatorname{dist}(x,y) = \left(\sum_{i=1}^{d} a_i |x_i - y_i|^p\right)^{\overline{p}}$$

- E.g., in credit scoring, salary is more important than gender
- a_i are domain-specific non-negative coefficients

- When the dimensionality is high, all points are at similar L_D distances from each other
- Example: A unit cube of dimensionality d in the nonnegative quadrant \bar{X} is a random point in the cube Manhattan distance ybetween $\bar{0}$ and \bar{X}

• Example (cont.):

Manhattan distance between \bar{O} and \bar{X}

$$Dist(\overline{O}, \overline{X}) = \sum_{i=1}^{d} (Y_i - 0).$$

where $\bar{X} = [Y_1, ..., Y_d]$

 $Dist(\bar{O}, \bar{X})$ is a random variable

- ✓ Since \bar{X} is a random variable
- ✓ Mean is $\mu = d/2$
- ✓ Standard deviation $\sigma = \sqrt{d/12}$

Applying Chebyshev's inequality:

$$Pr(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

$$Pr(|\operatorname{Dist}(\overline{O}, \overline{X}) - \mu| \ge 3\sigma) \le \frac{1}{3^2}$$

$$Pr(\operatorname{Dist}(\overline{O}, \overline{X}) \in [\mu - 3\sigma, \mu + 3\sigma]) > 8/9$$

Applying Chebyshev's inequality:

$$Pr(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

$$Pr(|Dist(\overline{O}, \overline{V}) - \mu| \ge 2\sigma) \le \frac{1}{k^2}$$

$$Pr(|\operatorname{Dist}(\overline{O}, \overline{X}) - \mu| \ge 3\sigma) \le \frac{1}{3^2}$$
$$Pr(\operatorname{Dist}(\overline{O}, \overline{X}) \in [\mu - 3\sigma, \mu + 3\sigma]) > 8/9$$

Contrast(d) =
$$\frac{D_{\text{max}} - D_{\text{min}}}{u} = \sqrt{12/d}$$

Irrelevant features

- Many features are probably irrelevant for your purposes, specially in high-dimensional data
- L_p norm suffers from irrelevant features
- Contrast worsens for large p

Match-based similarity

Idea: to compute similarity(u,v) ignore dimensions in which they are "too far apart"

- 1) Discretize each dimension into k_d equi-depth buckets
- 2) For two objects u, v, determine the dimensions in which they map to the same bucket
- 3) Compute L_p norm on those dimensions only

Match-based similarity (cont.)

$$PSelect(\overline{X}, \overline{Y}, k_d) = \left[\sum_{i \in \mathcal{S}(\overline{X}, \overline{Y}, k_d)} \left(1 - \frac{|x_i - y_i|}{m_i - n_i} \right)^p \right]^{1/p}$$

- $S(\overline{X}, \overline{Y}, k_d)$ is the set of features for which \overline{X} and \overline{Y} map to the same bucket
- m_i , n_i are the max and min value of that bucket
- $k_d \propto d$ achieves a constant level of contrast in high dimensions for certain data distributions

Distances and orientation

Useful distances, in general, depend on data distributions

Points A and B are equidistant from the origin

However, point A should be considered closer to the origin than point B (think of a perfectly circular cloud of points)

Useful distances, in general, depend on data distributions (cont.)

The Mahalanobis distance, with Σ covariance matrix

$$Maha(\overline{X},\overline{Y}) = \sqrt{(\overline{X} - \overline{Y})\Sigma^{-1}(\overline{X} - \overline{Y})^T}.$$

is equivalent to applying PCA, dividing each coordinate by the standard deviation of that feature, and computing Euclidean distance

Non-linear distributions

Which point would you consider as closer to A?

ISOMAP (general idea)

ISOMAP (1/3)

The first step is to connect each point to its k nearest neighbors (here k=7)

ISOMAP (2/3)

Now, shortest path or *geodesic* distances can be computed on the graph (red color)

ISOMAP (3/3)

It is, however, more effective to project the graph and compute Euclidean distances in the projected graph (blue color)

Local variations

Which distance should be larger? A-B or C-D?

Which distance should be larger? A-B or C-D?

Solution for local variations

- Partition the data into a set of local regions
 - (Nontrivial, which distance to use?)
- For any pair of objects, determine the most relevant region for the pair
- If they belong to the same region
 - Compute the pairwise distances using the local statistics of that region
 - E.g., local Mahalanobis distance
- If they belong to different regions
 - Global statistics or averaged statistics

Summary

Things to remember

- Distance/similarity is a key component of many data mining algorithms
- Sensitive to dimensionality, global/local nature of data distribution

Exercises for TT06-TT07

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises 3.9 on similarity measures
- Introduction to Data Mining 2^{nd} edition (2019) by Tan et al.
 - Exercises 2.6 → 14-28
- Mining of Massive Datasets 2^{nd} edition (2014) by Leskovec et al.
 - Exercises 3.5.7 on distance measures
- Data Mining Concepts and Techniques, 3rd ed. (2011) by Han et al.
 - Exercises 2.6 → 2.5-2.8