Rechnernetze - Computer Networks

Lecture 1: Foundation

Prof. Dr.-Ing. Markus Fidler

Institute of Communications Technology Leibniz Universität Hannover

April 5, 2024

Outline

Organization

Structures and Components of Communications Networks

Overview of the Internet

Communication links

Network topologies

Routing and addressing

Circuit and packet switching

Network Architecture Reference model

Topics of the lecture

Schedule

Lecture (V2)

- ► Friday 08:00-09:30
 - except for May 30 and 31
- ► e-Classroom eNIFE, Schneiderberg 32
- ► Course cycle: Every summer term

Exercise (Ü2)

- ► Instructor: Lukas Prause, Mark Akselrod
- ► Monday 08:30-10:00
- ► e-Classroom eNIFE, Schneiderberg 32
- ► Start: April 8

Exam and consultation hours

Exam

- ▶ written, 90 minutes
- Only the lecture/exercise are relevant for the exam
- Usually 5 credit points unless specified otherwise in your examination regulations

Consultation hours

- ► Instructor: Lukas Prause, Mark Akselrod
- ► Monday 10:15-11:15
- ► Room 1432

General information

Prerequisites

- ▶ Basic course, no prior knowledge of networking required
- Some basics of probability are needed
- Interest in computer networks

References and further reading

- ▶ References to current literature will be provided in the lecture
- ► Further reading is optional
- ► Attending the lecture/exercise and taking notes is beneficial
- ► Course material will be provided on the Stud.IP course page https://studip.uni-hannover.de/
- ► Video recordings via flowcasts https://flowcasts.uni-hannover.de/

The topics of this course are also covered by the textbooks

- ▶ James F. Kurose, Keith W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, 7th Edition, Pearson, 2016 (also available in German).
- Andrew S. Tanenbaum, David J. Wetherall, Computer Networks, 5th Edition, Pearson, 2013 (also available in German).
- ► Larry L. Peterson, Bruce S. Davie: Computer Networks: A Systems Approach, 5th Edition, Morgan Kaufmann, 2011.
- ► Kevin R. Fall, Richard Stevens: TCP/IP Illustrated: The Protocols, 2nd Edition, Addison-Wesley, 2011.

Outline

Organization

Structures and Components of Communications Networks

Overview of the Internet

Communication links

Network topologies

Routing and addressing

Circuit and packet switching

Network Architecture Reference model

Topics of the lecture

Internet overview

Nodes

- hosts/end systems run network application programs
 - personal computers, workstations, servers, etc.
 - ▶ notebooks, personal digital assistants, cellphones
- ► routers/intermediate systems forward data to destination hosts

Links connect nodes

- ▶ wired, e.g. copper or fibre
- ▶ wireless, e.g. radio or infrared

Delineation

Computer networks

- ▶ interconnection of a collection of computers
- ▶ implement procedures for data exchange

The Internet is a network of networks.

Distributed systems

- collection of computers that appear as a single system
- ▶ uses
 - ► a computer network
 - a unifying layer of software on top of the operating system, so called middleware
- presents a well-defined application to its users

The World Wide Web (WWW) is a well-known distributed system providing access to web pages, that runs on top of the Internet.

Internetworking

Internet service providers (ISPs)

- autonomous systems
 - ► can operate on their own
 - ▶ internals of an autonomous system are hidden from other ISPs
 - ▶ internals need not be changed when connected to other ISPs

Internetworking

- ► ISPs form a loosely coupled hierarchy: local, regional, etc.
- ▶ peering agreements between ISPs

Spatial dimension

- ► LAN: Local area network
 - ► small spatial dimension, 10-1000 meter
 - typically managed by a single switch
 - ▶ medium data rates (1Gb/s), small delays (< 1 ms)
 - typically company or privately owned network
- ► MAN: metropolitan area network
 - ► campus, city, regional network, several kilometer
 - medium data rates, small delays
 - owned by a network provider, used by several organizations
- ► WAN: wide area network
 - country wide, worldwide interconnection of networks
 - substantial infrastructure, numerous routers
 - owned by a single or several network providers
 - ▶ high data rates (10 Gb/s and more), some delay (< 100 ms)

Protocols

Protocols

- ► rules for communication and data exchange
 - end-to-end: between hosts respectively end systems
 - ▶ hop-by-hop: between routers; between hosts and routers
- ▶ examples: HTTP, FTP, SMTP, TCP, UDP, IP

Standardization

- ► IETF: Internet Engineering Task Force: RFC
- ► ITU, IEEE, ETSI, 3GPP, ...

Protocols: an analogy

Protocols define

- ▶ the format
- ▶ the order

of messages and

► the actions

taken in response

Basic communications relations

A communications relation between two (or more) peers can be

- unidirectional: information flows in one direction only
 - ► simplex
- bidirectional: information flows in both directions
 - ► half duplex: the direction of the information flow alternates in time
 - full duplex: information can flow in both directions simultaneously

moreover bidirectional channels can be distinguished as

- symmetric: same properties, e.g. data rate, delay, etc., in both directions
- asymmetric: directional properties, e.g. more download than upload capacity in ADSL

Cardinality

The cardinality of communications relations can be distinguished as:

Examples

Classify: telephony, pay-per-view TV, DVB, video-conference

Examples

Classify: telephony, pay-per-view TV, DVB, video-conference

unicast bidirectional full duplex symmetric

0

pay-per-view

multicast bidirectional half/full duplex asymmetric digital video broadcast

broadcast unidirectional simplex video-conference

multipoint-tomultipoint bidirectional full duplex symmetric

900

Physical channels

Two types of transmission technology exist:

- ► broadcast channels
- ► point-to-point channels

Broadcast channels

- ▶ a single, shared communication channel with many users
 - ▶ guided transmission media: e.g. copper cable, fibre
 - unguided transmission media: e.g. radio/air
- transmitted messages are received by all users (broadcast)

Implementation of other communications relations

Physical channels

Two types of transmission technology exist:

- ► broadcast channels
- ▶ point-to-point channels

Broadcast channels

- ▶ a single, shared communication channel with many users
 - ▶ guided transmission media: e.g. copper cable, fibre
 - unguided transmission media: e.g. radio/air
- transmitted messages are received by all users (broadcast)

Implementation of other communications relations

- messages are labeled with a destination address
- receivers can filter received messages based on the address
- ► can be used to implement unicast and multicast

4ロト 4団ト 4 三ト 4 三 4 9 9 9

Physical channels continued

Point-to-point channels

- ► a single connection between a pair of computers
 - ▶ guided transmission media: e.g. copper cable, fibre
 - ▶ unguided transmission media: e.g. infrared/air
- messages can only be received by the connected peer (unicast)

Implementation of other communications relations

Physical channels continued

Point-to-point channels

- ► a single connection between a pair of computers
 - ▶ guided transmission media: e.g. copper cable, fibre
 - unguided transmission media: e.g. infrared/air
- messages can only be received by the connected peer (unicast)

Implementation of other communications relations

- ▶ a network comprises several point-to-point links
- messages are labeled with a destination address
- computers can route messages to their destination
- computers can duplicate messages if needed
- can be used to implement multicast and broadcast

Channel access

Centralized control

- simple resource allocation, central scheduler has full information
- less reliable, single point of failure
- ► example: switched Ethernet

Distributed control

- difficult resource allocation, incomplete information
- more robust, can be implemented without infrastructure
- examples: shared Ethernet, Wifi access

Topologies: broadcast channels

- ▶ wired
 - ► ring (logical)
 - e.g. token ring
 - ▶ bus
 - ► e.g. shared Ethernet
- wireless
 - ► e.g. Wifi, satellite communications, etc.

Topologies: point-to-point channels

fully connected mesh

hierarchical tree

- fully connected mesh
 - ► full connectivity, no routing required
 - not practical for many nodes
 - used in first telephony systems
- ▶ hierarchical tree
 - simple hierarchical routing
 - less reliable, no redundant paths in its basic form
 - used in today's telephony systems

Topologies: point-to-point channels continued

- ▶ star
 - ► simple, one central piece of infrastructure
 - no redundancy, single point of failure
 - ▶ used in switched Ethernets
- ► ring
 - ► simple routing
 - two redundant paths between any two nodes
 - ► used in backbone networks

- ► arbitrary/random topology
 - requires more complex routing algorithms
 - typically redundant paths
 - example: Internet and its predecessor the Arpanet
 - ▶ location of nodes and existence of links depends on many factors like geography, economical factors, etc.
 - redundant paths are a key design criterion, the Arpanet was built initially as a military network that could survive the destruction of parts of the network

German Research Network: DFN X-WiN

Optical platform

- Dense Wavelength Division Multiplex (DWDM)
- ► equipment from Huawei
- ► 10000 km fibre, leased from, e.g., Gasline, KPN, Global Connect
- ▶ inter-connected optical rings
- ▶ working + protection paths

Internet platform

- ► Routers from Cisco
- ► 10-40 Gb/s Ethernet
- ▶ redundant access links

Example: Traceroute

traceroute www.rwth-aachen.de (tracert in a DOS box) allows you to trace the route of packets through the Internet.

- 1 <1 ms <1 ms <1 ms gateway.ikt.uni-hannover.de [172.23.42.42]
- 2 <1 ms <1 ms <1 ms 130.75.73.246
- 3 <1 ms <1 ms <1 ms bwingate.rrzn.uni-hannover.de [130.75.1.253]
- 4 1 ms <1 ms <1 ms xwingate.rrzn.uni-hannover.de [130.75.9.254]
- 5 1 ms <1 ms 1 ms xr-han1-te1-3.x-win.dfn.de [188.1.232.205]
- 6 1 ms 1 ms 1 ms zr-han1-te0-7-0-1.x-win.dfn.de [188.1.145.250]
- 7 6 ms 6 ms 6 ms xr-dui1-te1-3.x-win.dfn.de [188.1.145.22]
- 8 9 ms 9 ms 9 ms xr-aac1-te1-1.x-win.dfn.de [188.1.145.26]
- 9 11 ms 9 ms 9 ms kr-rwth-aachen.x-win.dfn.de [188.1.43.110]
- 10 * * * time out
- 11 10 ms 9 ms 9 ms c6k-rwth.noc.RWTH-Aachen.DE [134.130.9.254]
- 12 9 ms 9 ms 9 ms c6k-hg.noc.RWTH-Aachen.DE [137.226.139.26]
- 13 * * * time out
- 14 9 ms 9 ms 9 ms www.RWTH-Aachen.DE [134.130.103.182]

Routing and Addressing

How are paths from the sender to the receiver through the network determined?

- end-systems have unique addresses
 - unstructured: MAC addresses
 - (hierarchically) structured: IP-addresses, telephony numbers
- the network performs routing, i.e. it determines the path to the receiver
 - routing algorithms find the best path according to a given metric
 - structured addresses can greatly simplify the task of routing

IP addresses

Class C IP address (example)

IP addresses have a structure of

- network identifier
- ▶ host identifier

All hosts on the same sub-network have the same network ID

- ► Internet routing uses only the network ID to forward data to the sub-network of the host
 - ightharpoonup reduces the task from at most 2^{29} to 2^{21} relevant network IDs
 - for comparison Ethernet uses unstructured MAC addresses of 48 bit length, i.e. distinguishes 2^{48} addresses
- within the sub-network only the host ID is relevant

ISDN addresses

ISDN number

ISDN numbers are strictly structured

- country code
- national destination code
- subscriber number (extension)

The hierarchical structure matches a tree topology

► routing can be reduced to tree traversal

How are resources allocated along a network path?

Fundamental design decision

- ► circuit switching
 - ► dedicated circuit
 - ► e.g. established for each call in telephony networks
- packet switching
 - ▶ data are sent through the network in discrete units, i.e. packets
 - ▶ no dedicated resources but first-come first-serve principle

Circuit switching

Circuit switching: Classical method used in telecommunications

- ► Connection establishment
- ► Data transmission (exclusive access to the connection)
- ► Connection termination

Need to divide a link into multiple 'circuits': Multiplexing

- ► Time division multiplexing
- ► Frequency division multiplexing
- ► Wavelength division multiplexing
- ► Code division multiplexing

Multiplexing

Multiplexing

- ► Frequency division multiplex (FDM)
 - ightharpoonup n frequency bands
 - each frequency band is assigned to one circuit
 - ► multiplexed signals are transmitted in parallel
- ► Time division multiplex (TDM)
 - ightharpoonup recurrent frame pattern of n timeslots
 - each timeslot is assigned to one circuit
 - multiplexed signals take turns in the medium

Packet switching

Packet switching: Typical method in computer networks

- ▶ before transmission data are divided into packets
- packets carry control information in the header which are used to determine the outgoing interface of the switching fabric
- packets are received and forwarded hop-by-hop
- no fixed capacity allocation
- ▶ input and output queues compensate short term overload

90 Q C

Statistical multiplexing

- ► Packets are forwarded by the network independently of each other
- ► Packets of different hosts share and compete for resources
 - ► During transmission a packet uses all resources of a link
 - ► If a link is busy subsequent packets have to queue for service
 - ► Packets are multiplexed on a link statistically

Comparison of switching technologies

Circuit switching

- Advantages
 - constant, computable quality of service, e.g. bandwidth, delay
 - no interference by third, data loss occurs rarely
- Disadvantages
 - resources remain allocated even if no data is transmitted
 - must establish connection before data transmission
 - connection establishment succeeds only if unused channels exist at every hop

Packet switching

- Advantages
 - queuing and scheduling achieves a flexible resource allocation
 - resources are (theoretically) available to all customers
 - ► much more efficient resource utilization
- ▶ Disadvantages
 - quality of service, e.g. bandwidth, delay, can hardly be ensured
 - applications with defined, fixed resource requirements are difficult to support

Outline

Network topologies

Network Architecture Reference model

ISO/OSI and TCP/IP reference models

Bitübertragung

ISO/OSI reference model		TCP/IP reference model		
Application	Anwendung			
Presentation	Präsentation	Application	Anwendung	
Session	Sitzung			
Transport	Transport	Transport	Transport	
Network	Vermittlung	Network	Vermittlung	
Data link	Sicherung	Data link	Sicherung	

Physical

Physical

Bitübertragung

TCP/IP model and protocol suite

4□ > 4□ > 4 = > 4 = > = 990

Topics of the lecture

Overview of the lecture

- ► Foundation
- ▶ Direct Link Networks
- ▶ Packet Switching
- ► Internetworking
- ► End-to-End Protocols
- ► Applications

