Tibshirani, Walther and Hastie gap index

Step 1. Cluster the observed data $X = \{x_{ij}\}, i = 1, ..., n; j = 1, ..., m$ (via e.g. any hierarchical clustering method, pam, k-means), varying the total number of clusters from u = 1, ..., n, giving within-dispersion measures:

$$W_{u} = \operatorname{trace}(\mathbf{W}_{u})$$

 $W_u = \operatorname{trace}(\mathbf{W}_u),$ where: $W_u = \sum_r \sum_{i \in C_r} (\mathbf{x}_{ri} - \bar{\mathbf{x}}_r) (\mathbf{x}_{ri} - \bar{\mathbf{x}}_r)^T$ — within-group dispersion matrix for data clustered into u

 x_{ri} – m-dimensional vector of observations of the i-th object in cluster r,

 \bar{x}_r – centroid or medoid of cluster r,

r = 1, ..., u – cluster number,

u – number of clusters (u = 1, ..., n),

n – number of objects,

m – number of variables,

 C_r – the indices of objects in cluster r.

Step 2. Generate *B* reference data sets, using the uniform prescription:

a) generate each reference variable uniformly over the range of the observed values for that variable,

or

b) generate the reference variables from a uniform distribution over a box aligned with the principal components of the data. In detail, if $X = \{x_{ij}\}$ is our $n \times m$ data matrix, assume that the columns have mean 0 and compute the singular value decomposition $X = UDV^T$. We transform via X' = XV and then draw uniform features Z' over the ranges of the columns of X', as in method a) above. Finally we back-transform via $\mathbf{Z} = \mathbf{Z}'\mathbf{V}^T$ to give reference data \mathbf{Z} ,

and cluster each one (using the same clustering method) giving within-dispersion measures W_{ub} (b = $1, \dots, B; u = 1, \dots, n - 1$). Compute the (estimated) gap statistic:

$$Gap(u) = \frac{1}{B} \sum_{b=1}^{B} log W_{ub} - log W_{u}$$

Step 3. Compute the standard deviation of
$$\{log W_{ub}\}, b = 1, ..., B$$
:
$$sd_u = \sqrt{\frac{1}{B} \sum_{b=1}^{B} (log W_{ub} - \bar{l})^2},$$

where: $\bar{l} = \frac{1}{B} \sum_{b=1}^{B} \log W_{ub}$,

and define

$$s_u = s d_u \sqrt{1 + 1/B}$$

Step 4. Finally choose the number of clusters via finding the smallest u such that:

$$Gap(u) \ge Gap(u+1) - s_{u+1} (u = 1, ..., n-2)$$

References

Tibshirani R., Walther G., Hastie T. (2001), Estimating the number of clusters in a data set via the gap statistic, "Journal of the Royal Statistical Society", ser. B, vol. 63, part 2, 411-423.