

## Advanced Logic Design Finite State Machine

Mingoo Seok Columbia University

BV: Secs. 6.1-6.3, 6.5, 6.7

#### Sequential Circuits (aka FSM)

- In a combinational circuit, the values of the outputs are determined solely by the present values of its inputs
- In a sequential circuit, the values of the outputs depend on the past behavior of the circuit, as well as the present values of its inputs
- A sequential circuit has states, which in conjunction with the present values of inputs determine its behavior.
- Sequential circuits can be:
  - Synchronous where flip-flops are used to implement the states, and a clock signal is used to control the operation
  - Asynchronous where no clock is used
- Sequential circuit is formally called a finite state machine (FSM) since it has a finite number of states
- It controls the operation (sequencing) of digital circuits

#### General Form of a Sync. FSM



- w/o the blue line: Moore FSM
- w/ the blue line: Mealy FSM.

## FSM Design

| Clockcycle: w: | $t_0$ | $t_1$ | $t_2$ | t <sub>3</sub> | $t_4$ | t <sub>5</sub> | $t_6$ | t <sub>7</sub> | t <sub>8</sub> | t <sub>9</sub> | $t_{10}$ |
|----------------|-------|-------|-------|----------------|-------|----------------|-------|----------------|----------------|----------------|----------|
| w:             | 0     | 1     | 0     | 1              | 1     | 0              | 1     | 1              | 1              | 0              | 1        |
| z:             | 0     | 0     | 0     | 0              | 0     | 1              | 0     | 0              | 1              | 1              | 0        |

- Example: consider an application where the speed of an automatically-controlled vehicle has to be regulated
  - Input w is 1 if the speed is higher than the target; 0 otherwise
  - The output z is equal to 1 if during two immediately preceding clock cycles the input w was equal to 1; 0 otherwise.
  - Output z is 1 to decelerate
  - All changes in the logic circuit occur on the positive edge of the clock signal

## FSM Design



#### State Table

| Present | Next  | Output |   |
|---------|-------|--------|---|
| state   | w = 0 | w=1    | z |
| Α       | A     | В      | 0 |
| В       | Α     | C      | 0 |
| C       | Α     | С      | 1 |



#### State Table

| Present | Next  | Output |   |
|---------|-------|--------|---|
| state   | w = 0 | w=1    | z |
| Α       | A     | В      | 0 |
| В       | Α     | C      | 0 |
| C       | Α     | С      | 1 |

| Present                       | Next s   |          |        |
|-------------------------------|----------|----------|--------|
| state                         | w = 0    | w = 1    | Output |
| y <sub>2</sub> y <sub>1</sub> | $Y_2Y_1$ | $Y_2Y_1$ | Z      |
| 00                            | 00       | 01       | 0      |
| 01                            | 00       | 10       | 0      |
| 10                            | 00       | 10       | 1      |
| 11                            | dd       | dd       | d      |

A

E

 $\mathbf{C}$ 

## Logic Synthesis



Ignoring don't cares

$$Y_1 = w\bar{y}_1\bar{y}_2$$

$$Y_1 = w\bar{y}_1\bar{y}_2$$

$$y_2y_1$$
00 01 11 10
0 0 0 d 0
1 0 1 d 1

$$Y_2 = wy_1 \bar{y}_2 + w\bar{y}_1 y_2$$

$$Y_2 = wy_1 + wy_2$$
  
=  $w(y_1 + y_2)$ 

$$y_2$$
 $y_1$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 

$$z = \bar{y}_1 y_2$$

$$z = y_2$$

# Logic Synthesis



#### Summary of Design Steps

- 1. Obtain the specification of the desired circuit.
- 2. Derive a state diagram.
- 3. Derive the corresponding state table.
- 4. Reduce the number of states if possible.
- 5. Decide on the number of state variables.
- 6. Choose the type of flip-flops to be used.
- 7. Derive the logic expressions needed to implement the circuit.

#### Moore to Mealy



#### State Table

| Present | Next  | state | Output z |       |  |
|---------|-------|-------|----------|-------|--|
| state   | w = 0 | w = 1 | w = 0    | w = 1 |  |
| A       | A     | В     | 0        | 0     |  |
| В       | A     | В     | 0        | 1     |  |

| Present | Next  | state | Output |               |  |
|---------|-------|-------|--------|---------------|--|
| state   | w = 0 | w = 1 | w = 0  | w = 1         |  |
| у       | Y     | Y     | z      | $\mathcal{Z}$ |  |
| 0       | 0     | 1     | 0      | 0             |  |
| 1       | 0     | 1     | 0      | 1             |  |

## Logic Synthesis



- Significantly simpler than the Moore implementation
- Faster
- A bit more complex to analyze

#### Better State Assignment

| Present                       | Next     | state    |        |
|-------------------------------|----------|----------|--------|
| state                         | w = 0    | w = 1    | Output |
| y <sub>2</sub> y <sub>1</sub> | $Y_2Y_1$ | $Y_2Y_1$ | Z      |
| 00                            | 00       | 01       | 0      |
| 01                            | 00       | 10       | 0      |
| 10                            | 00       | 10       | 1      |
| 11                            | dd       | dd       | d      |

| Present               | Next     |          |        |
|-----------------------|----------|----------|--------|
| state                 | w = 0    | w = 1    | Output |
| <i>y</i> 2 <i>y</i> 1 | $Y_2Y_1$ | $Y_2Y_1$ | Z      |
| 00                    | 00       | 01       | 0      |
| 01                    | 00       | 11       | 0      |
| 11                    | 00       | 11       | 1      |
| 10                    | dd       | dd       | d      |

$$Y_1 = w\overline{y}_1\overline{y}_2$$

$$Y_2 = w(y_1 + y_2)$$

$$z = y_2$$

$$Y_1 = D_1 = w$$

$$Y_2 = D_2 = wy_1$$

$$z = y_2$$

## Better State Assignment



#### FSM Optimization



- The smaller # of states reduces # of flip-flops, logic circuits complexity, and delay
- $S_0$  and  $S_2$  are equivalent
  - Same outputs
  - Same state transitions
- Row matching method
- Implication chart method

```
X = 0010 \ 0110 \ 1100 \ 1010 \ 0011 \dots
```

$$Z = 0000 \ 0001 \ 0000 \ 0001 \ 0000 \ ...$$

- Input X and Output Z
- Output is asserted if each 4-bit input sequence is either 0110 or 1010
- Row matching method: quick but not the optimum



|                |                 | Next State  |             | Output |     |
|----------------|-----------------|-------------|-------------|--------|-----|
| Input Sequence | Present State   | <i>X</i> =0 | <i>X</i> =1 | X=0    | X=1 |
| Reset          | $S_0$           | $S_1$       | $S_2$       | 0      | 0   |
| 0              | $S_1$           | $S_3$       | $S_4$       | 0      | 0   |
| 1              | $S_2$           | $S_5$       | $S_6$       | 0      | 0   |
| 00             | $S_3$           | $S_7$       | $S_8$       | 0      | 0   |
| 01             | $S_4$           | $S_9$       | $S_{10}$    | 0      | 0   |
| 10             | $S_5$           | $S_{11}$    | $S_{12}$    | 0      | 0   |
| 11             | $S_6$           | $S_{13}$    | $S_{14}$    | 0      | 0_  |
| 000            | $S_7$           | $S_0$       | $S_0$       | 0      | 0   |
| 001            | $S_8$           | $S_0$       | $S_0$       | 0      | 0   |
| 010            | $S_9$           | $S_0$       | $S_0$       | 0      | 0_  |
| 011            | $S_{10}$        | $S_0$       | $S_0$       | 1      | 0   |
| 100            | S <sub>11</sub> | $S_0$       | $S_0$       | 0      | 0_  |
| 101            | $S_{12}$        | $S_0$       | $S_0$       | 1      | 0   |
| 110            | $S_{13}$        | $S_0$       | $S_0$       | 0      | 0   |
| 111            | $S_{14}$        | $S_0$       | $S_0$       | 0      | 0   |

|                |                 |          | Next State  |     | Output      |  |
|----------------|-----------------|----------|-------------|-----|-------------|--|
| Input Sequence | Present State   | X=0      | <i>X</i> =1 | X=0 | <i>X</i> =1 |  |
| Reset          | $S_0$           | $S_1$    | $S_2$       | 0   | 0           |  |
| 0              | $S_1$           | $S_3$    | $S_4$       | 0   | 0           |  |
| 1              | $S_2$           | $S_5$    | $S_6$       | 0   | 0           |  |
| 00             | $S_3$           | $S_7$    | $S_8$       | 0   | 0           |  |
| 01             | $S_4$           | $S_9$    | $S_{10}$    | 0   | 0           |  |
| 10             | $S_4 \\ S_5$    | $S_{11}$ | $S_{10}$    | 0   | 0           |  |
| 11             | $S_6$           | $S_{13}$ | $S_{14}$    | 0   | 0           |  |
| 000            | $S_7$           | $S_0$    | $S_0$       | 0   | 0           |  |
| 001            | $S_8$           | $S_0$    | $S_0$       | 0   | 0           |  |
| 010            | $S_9$           | $S_0$    | $S_0$       | 0   | 0           |  |
| 011 or 101     | S'10            | $S_0$    | $S_0$       | 1   | 0           |  |
| 100            | $S_{11}$        | $S_0$    | $S_0$       | 0   | 0           |  |
| 110            | $S_{13}$        | $S_0$    | $S_0$       | 0   | 0           |  |
| 111            | S <sub>14</sub> | $S_0$    | $S_0$       | 0   | 0           |  |

|                  |               | Next           | Next State   |   | put |
|------------------|---------------|----------------|--------------|---|-----|
| Input Sequence   | Present State |                | X=1          |   |     |
| Reset            | $S_0$         | $S_1$          | $S_2$        | 0 | 0   |
| 0                | $S_1$         | $S_3$          | $S_4$        | 0 | 0   |
| 1                | $S_2$         | $S_5$          | $S_6$        | 0 | 0   |
| 00               | $S_3$         | $S_7$          | $S_7^{!}$    | 0 | 0   |
| 01               | $S_4$         | S <sub>7</sub> | $S_{10}^{.}$ | 0 | 0   |
| 10               | $S_5$         | $S_7$          | $S_{10}^{-}$ | 0 | 0   |
| 11               |               | $S_7$          | $S_7$        | 0 | 0   |
| not (011 or 101) | $S_7$         | $S_0$          | $S_0$        | 0 | 0   |
| 011 or 101       | $S_{10}$      | $S_0$          | $S_0$        | 1 | 0   |

|                 | Next                                                                                         | State                                                  | Output                                             |                                                        |
|-----------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|
| Present State   | X=0                                                                                          | <i>X</i> =1                                            | X=0                                                | <i>X</i> =1                                            |
| $S_0$           | $S_1$                                                                                        | $S_2$                                                  | 0                                                  | 0                                                      |
| $S_1$           | $S_3$                                                                                        | $S_4$                                                  | 0                                                  | 0                                                      |
| $S_2$           | $S'_4$                                                                                       | $S_3$                                                  | 0                                                  | 0                                                      |
| $S_3$           | $S_7$                                                                                        | $S_7$                                                  | 0                                                  | 0                                                      |
| S' <sub>4</sub> | $S_7$                                                                                        | $S_{10}$                                               | 0                                                  | 0_                                                     |
| S' <sub>7</sub> | $S_0$                                                                                        | $S_0$                                                  | 0                                                  | 0                                                      |
| $S_{10}$        | $S_0$                                                                                        | $S_0$                                                  | 1                                                  | 0                                                      |
|                 | S <sub>0</sub> S <sub>1</sub> S <sub>2</sub> S' <sub>3</sub> S' <sub>4</sub> S' <sub>7</sub> | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### Implication Chart Method

|                |               | Next State |             | Output |     |
|----------------|---------------|------------|-------------|--------|-----|
| Input Sequence | Present State | X=0        | <i>X</i> =1 | X=0    | X=1 |
| Reset          | $S_0$         | $S_1$      | $S_2$       | 0      | 0   |
| 0              | $S_1$         | $S_3$      | $S_4$       | 0      | 0   |
| 1              | $S_2$         | $S_5$      | $S_6$       | 0      | 0   |
| 00             | $S_3$         | $S_0$      | $S_0$       | 0      | 0   |
| 01             | $S_4$         | $S_0$      | $S_0$       | 1      | 0   |
| 10             | $S_5$         | $S_0$      | $S_0$       | 0      | 0   |
| 11             | $S_6$         | $S_0$      | $S_0$       | 1      | 0   |

• 3-bit sequence detector that will output a 1 whenever the machine has observed the serial sequence 010 or 110 at the inputs

#### Implication Chart Method



Write the possible equivalent state pairs in each slot



Eliminate the slots that have been proved definitely not equivalent

## Implication Chart Method

|                |               | Next   | State | Out         | put |
|----------------|---------------|--------|-------|-------------|-----|
| Input Sequence | Present State | X=0    | X=1   | <i>X</i> =0 | X=1 |
| Reset          | $S_0$         | $S_1$  | $S_1$ | 0           | 0   |
| 0 or 1         | $S_1'$        | $S_3'$ | $S_4$ | 0           | 0   |
| 00 or 10       | $S_3'$        | $S_0$  | $S_0$ | 0           | 0   |
| 01 or 11       | $S_4'$        | $S_0$  | $S_0$ | 1           | 0   |

- State # reduces from 7 to 4
- 3 flip-flops to 2 flip-flops
- Associated logic reduction

# Counter as an FSM: Modulo-8 Counter



#### Modulo-8 Counter

| Present | Next  | Output |   |
|---------|-------|--------|---|
| state   | w = 0 | w = 1  | 1 |
| A       | A     | В      | 0 |
| В       | В     | C      | 1 |
| C       | C     | D      | 2 |
| D       | D     | E      | 3 |
| Е       | E     | F      | 4 |
| F       | F     | G      | 5 |
| G       | G     | Н      | 6 |
| Н       | Н     | A      | 7 |

#### Modulo-8 Counter

|   | Present                          | Next state  |             |                                  |
|---|----------------------------------|-------------|-------------|----------------------------------|
|   | state                            | w = 0       | w = 1       | Count                            |
|   | <i>y</i> 2 <i>y</i> 1 <i>y</i> 0 | $Y_2Y_1Y_0$ | $Y_2Y_1Y_0$ | <i>Z</i> 2 <i>Z</i> 1 <i>Z</i> 0 |
| A | 000                              | 000         | 001         | 000                              |
| В | 001                              | 001         | 010         | 001                              |
| C | 010                              | 010         | 011         | 010                              |
| D | 011                              | 011         | 100         | 011                              |
| E | 100                              | 100         | 101         | 100                              |
| F | 101                              | 101         | 110         | 101                              |
| G | 110                              | 110         | 111         | 110                              |
| Н | 111                              | 111         | 000         | 111                              |

#### Modulo-8 Counter







 $Y_2 = \overline{wy_2} + \overline{y_0y_2} + \overline{y_1y_2} + \overline{wy_0y_1y_2}$