Agrégation Interne

L'anneau $\mathbb{Z}/n\mathbb{Z}$

1

Ce problème est en relation avec les leçons d'oral suivantes :

- 101 : Groupes monogènes, groupes cycliques. Exemples.
- 103 : Congruences dans \mathbb{Z} , anneau $\mathbb{Z}/n\mathbb{Z}$. Applications.

On pourra consulter les ouvrages suivants.

- F. Combes Algèbre et géométrie. Bréal (2003).
- S. Francinou, H. Gianella, S. Nicolas : Exercices de mathématiques. Oraux X-ENS. Algèbre 1. Cassini (2001).
- S. Francinou, H. Gianella. Exercices de mathématiques pour l'agrégation. Algèbre 1. Masson (1994).
- X. GOURDON. Les Maths en tête. Algèbre. Ellipses.
- K. Madere. Préparation à l'oral de l'agrégation. Leçons d'algèbre. Ellipses (1998).
- P. Ortiz. Exercices d'algèbre. Ellipses (2004).
- D. Perrin. Cours d'algèbre. Ellipses (1996).
- A. Szpirglas. Mathématiques L3. Algèbre. Pearson (2009).

1 Énoncé

Pour tout entier naturel $n \geq 0$, on note $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ l'anneau des classes résiduelles modulo n. Si k est un entier relatif, on note $\overline{k} = k + n\mathbb{Z}$ la classe de k dans \mathbb{Z}_n .

Pour tout couple (a,b) d'entiers relatifs, on note $a \wedge b$ le pgcd de a et b et $a \vee b$ leur ppcm.

- I - Ordre d'un élément dans un groupe

On se donne un groupe additif (G, +) non nécessairement commutatif et on note 0 son élément neutre. Le cardinal de G est aussi appelé l'ordre de G.

Si H est une partie non vide G, on note, pour tout $g \in G$:

$$g + H = \{g + h \mid h \in H\}$$

Pour tout g dans G, on note $\langle g \rangle = \{kg \mid k \in \mathbb{Z}\}$ le sous groupe de G engendré par g. Ce sous-groupe $\langle g \rangle$ est l'image du morphisme de groupes :

$$\varphi_g: \begin{tabular}{lll} $\varphi_g: & $\mathbb{Z} & \to & G \\ & k & \mapsto & kg \end{tabular}$$

L'ordre d'un élément g de G est l'élément $\theta(g) \in \mathbb{N}^* \cup \{+\infty\}$ défini par :

$$\theta(q) = \operatorname{card}(\langle q \rangle)$$

Si $\theta(g)$ est dans \mathbb{N}^* , on dit alors que g est d'ordre fini, sinon on dit qu'il est d'ordre infini.

1. Rappeler la démonstration du théorème de Lagrange : pour tout sous-groupe H d'un groupe fini G, l'ordre de H divise l'ordre de G.

^{1.} Le 22/09/2013

2. Montrer que:

$$(\theta(g) = +\infty) \Leftrightarrow (\forall k \in \mathbb{Z}^*, kg \neq 0) \Leftrightarrow (\langle g \rangle \text{ est infini isomorphe à } \mathbb{Z})$$

(dans ce cas, on dit que $\langle g \rangle$ est monogène infini) et :

$$(\theta(g) = n \in \mathbb{N}^*) \Leftrightarrow (\langle g \rangle = \{ rg \mid 0 \le r \le n - 1 \})$$

$$\Leftrightarrow (k \in \mathbb{Z} \text{ et } kg = 0 \text{ \'equivaut \`a } k \equiv 0 \mod(n))$$

$$\Leftrightarrow (n \text{ est le plus petit entier naturel non nul tel que } nq = 0)$$

(dans ce cas, $\langle g \rangle$ est dit cyclique d'ordre n et il est isomorphe à \mathbb{Z}_n).

3. Soient n un entier naturel non nul, $d \in \mathbb{N}^*$ un diviseur de n et $q = \frac{n}{d}$. Montrer que l'ensemble des éléments de \mathbb{Z}_n d'ordre divisant d est le groupe cyclique :

$$H = \langle \overline{q} \rangle = \{ \overline{0}, \overline{q}, \cdots, (d-1) \overline{q} \}$$

engendré par \overline{q} , ce groupe étant d'ordre d.

- 4. Pour $n \geq 1$, on désigne par Γ_n le groupe multiplicatif des racines complexes de l'unité.
 - (a) Montrer que pour $n \ge 1$ et $m \ge 1$, on a $\Gamma_n \cap \Gamma_m = \Gamma_{n \wedge m}$.
 - (b) Montrer que $(X^n-1) \wedge (X^m-1) = X^{n \wedge m} 1$ dans $\mathbb{C}[X]$. Expliquer pourquoi ce résultat est encore vrai dans $\mathbb{R}[X]$.

- II - Morphismes de groupes, d'anneaux de \mathbb{Z}_n dans \mathbb{Z}_m

On s'intéresse dans cette parties aux morphismes de groupes et d'anneaux de \mathbb{Z}_n dans \mathbb{Z}_m pour tout couple (n,m) d'entiers naturels.

Pour tout entier relatif k, on note respectivement \overline{k} la classe de k modulo n et k sa classe modulo m.

On suppose qu'un morphisme d'anneaux commutatifs unitaires $\varphi: \mathbb{A} \to \mathbb{B}$ est tel que $\varphi(1_{\mathbb{A}}) = 1_{\mathbb{B}}$.

On note $\operatorname{Hom}_{gr}(\mathbb{Z}_n, \mathbb{Z}_m)$ [resp. $\operatorname{Hom}_{Ann}(\mathbb{Z}_n, \mathbb{Z}_m)$] l'ensemble des morphismes de groupes [resp. d'anneaux] de \mathbb{Z}_n dans \mathbb{Z}_m .

- 1. Étudier le cas (n, m) = (0, 0).
- 2. Étudier le cas $n \ge 1$ et m = 0.
- 3. Étudier le cas n = 0 et $m \ge 1$.
- 4. Étudier le cas où $n \ge 1, m \ge 1$ sont premiers entre eux.
- 5. Étudier le cas où $n \ge 1$, $m \ge 1$ sont non premiers entre eux.
- 6. Montrer que pour tout entier $n \geq 2$, le groupe $(\operatorname{Aut}(\mathbb{Z}_n), \circ)$ des automorphismes du groupe additif \mathbb{Z}_n est isomorphe au groupe $(\mathbb{Z}_n^{\times}, \cdot)$ des éléments inversibles de \mathbb{Z}_n .

- III - Éléments inversibles de \mathbb{Z}_n , fonction indicatrice d'Euler

Pour tout entier $n \geq 2$, on note \mathbb{Z}_n^{\times} le groupe multiplicatif des éléments inversibles de \mathbb{Z}_n .

La fonction indicatrice d'Euler est la fonction qui associe à tout entier naturel non nul n, le nombre, noté $\varphi(n)$, d'entiers compris entre 1 et n qui sont premiers avec n (pour n = 1, on a $\varphi(1) = 1$).

- 1. Soit k un entier relatif. Montrer que les propriétés suivantes sont équivalentes :
 - (a) \overline{k} est inversible dans \mathbb{Z}_n ;
 - (b) k est premier avec n;
 - (c) \overline{k} est un générateur de $(\mathbb{Z}_n, +)$.
- 2. Montrer que, pour tout entier relatif k premier avec n, on a $k^{\varphi(n)} \equiv 1$ (n) (théorème d'Euler).

- 3. Soit p un entier naturel premier. Montrer que pour tout entier relatif k premier avec n, on a $k^{p-1} \equiv 1$ (p) et pour tout entier relatif k, on a $k^p \equiv k$ (p) (petit théorème de Fermat).
- 4. Montrer que pour $n \geq 3$, $\varphi(n)$ est un entier pair.
- 5. Calculer le reste dans la division euclidienne de 5^{2008} par 11.

6.

- (a) Soient a, b des entiers relatifs et $(n_k)_{1 \le k \le r}$ une suite finie d'entiers naturels non nuls. Monter que si $a \equiv b \mod (n_k)$ pour tout k compris entre 1 et r, alors $a \equiv b \mod (n_1 \vee \cdots \vee n_r)$.
- (b) Montrer que pour tout entier relatif a premier avec 561, on a $a^{560} \equiv 1 \pmod{561}$, alors que 561 n'est pas premier (on dit que 561 est un nombre de Carmichaël).
- 7. Montrer qu'il y a équivalence entre :
 - (a) n est premier;
 - (b) \mathbb{Z}_n est un corps;
 - (c) \mathbb{Z}_n est un intègre.
- 8. Montrer qu'un entier p est premier si et seulement si $(p-1)! \equiv -1$ (p) (théorème de Wilson).
- 9. Montrer qu'un entier p supérieur ou égal à 2 est premier si, et seulement si, (p-2)! est congru à 1 modulo p.
- 10. Montrer que les entiers n et m sont premiers entre eux si, et seulement si, les anneaux \mathbb{Z}_{nm} et $\mathbb{Z}_n \times \mathbb{Z}_m$ sont isomorphes.
- 11. Montrer que si \mathbb{A} , \mathbb{B} sont deux anneaux commutatifs unitaires et φ est un isomorphisme d'anneaux de \mathbb{A} sur \mathbb{B} , il réalise alors un isomorphisme de groupes de \mathbb{A}^{\times} (groupe des éléments inversibles de \mathbb{A}) sur \mathbb{B}^{\times} .
- 12. Montrer que si n et m sont deux entiers naturels non nuls premiers entre eux, on a alors $\varphi(nm) = \varphi(n) \varphi(m)$.
- 13. Montrer que si $n \geq 2$ a pour décomposition en facteurs premiers $n = \prod_{i=1}^r p_i^{\alpha_i}$ avec $2 \leq p_1 < \cdots < p_r$ premiers et les α_i entiers naturels non nuls, on a alors :

$$\varphi(n) = \prod_{i=1}^{r} p_i^{\alpha_i - 1} (p_i - 1) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)$$

14. Pour tout entier $n \geq 2$, on note \mathcal{D}_n l'ensemble des diviseurs positifs de n et pour tout $d \in \mathcal{D}_n$, on note :

$$S_d = \left\{ k \in \{1, \cdots, n\} \mid k \land n = \frac{n}{d} \right\}$$

Pour d = n, S_n est l'ensemble des entiers k compris entre 1 et n premier avec n.

- (a) Montrer que les S_d , pour d décrivant \mathcal{D}_n , forment une partition de $\{1, \dots, n\}$ et que pour tout $d \in \mathcal{D}_n$ on a card $(S_d) = \varphi(d)$.
- (b) Montrer que pour tout entier $n \geq 2$, on a :

$$n = \sum_{d \in \mathcal{D}_n} \varphi\left(d\right)$$

(formule de Möbius).

15. Soit p un nombre premier.

Pour tout $d \in \mathcal{D}_{p-1}$, on note $\psi(d)$ le nombre d'éléments d'ordre d dans le groupe multiplicatif \mathbb{Z}_p^{\times} .

- (a) Montrer que $\psi(d) = \varphi(d)$ pour tout $d \in \mathcal{D}_{p-1}$.
- (b) Montrer que le groupe \mathbb{Z}_p^{\times} est cyclique.

- 16. Soient p un nombre premier impair et α un entier supérieur ou égal à 2. On se propose de montrer que le groupe multiplicatif $\mathbb{Z}_{p^{\alpha}}^{\times}$ est cyclique.
 - (a) Montrer que pour tout entier k compris entre 1 et p-1, C_p^k est divisible par p.
 - (b) Montrer qu'il existe une suite d'entiers naturels non nuls $(\lambda_k)_{k\in\mathbb{N}}$ tous premiers avec p tels que :

$$\forall k \in \mathbb{N}, \ (1+p)^{p^k} = 1 + \lambda_k p^{k+1}$$

- (c) Montrer que la classe résiduelle modulo p^{α} , $\overline{1+p}$ est d'ordre $p^{\alpha-1}$ dans $\mathbb{Z}_{p^{\alpha}}^{\times}$.
- (d) Montrer que si $x=k+p\mathbb{Z}$ un générateur du groupe cyclique \mathbb{Z}_p^{\times} , alors $y=k^{p^{\alpha-1}}+p^{\alpha}\mathbb{Z}$ est d'ordre p-1 dans $\mathbb{Z}_{p^{\alpha}}^{\times}$.
- (e) En déduire que $\mathbb{Z}_{p^{\alpha}}^{\times}$ est cyclique.
- 17. Montrer que \mathbb{Z}_2^{\times} et $\mathbb{Z}_{2^2}^{\times}$ sont cycliques.
- 18. On s'intéresse ici au groupe multiplicatif $\mathbb{Z}_{2^{\alpha}}^{\times}$ pour $\alpha \geq 3$.
 - (a) Montrer qu'il existe une suite $(\lambda_k)_{k\in\mathbb{N}}$ d'entiers impairs tels que :

$$\forall k \in \mathbb{N}, \ 5^{2^k} = 1 + \lambda_k 2^{k+2}$$

- (b) Montrer que la classe résiduelle de 5 modulo 2^{α} est d'ordre $2^{\alpha-2}$ dans $\mathbb{Z}_{2^{\alpha}}^{\times}$.
- (c) On désigne par ψ l'application qui à toute classe résiduelle modulo 2^{α} , $k+2^{\alpha}\mathbb{Z}$, associe la classe résiduelle modulo 4, $k+4\mathbb{Z}$. Montrer que cette application est bien définie, qu'elle induit un morphisme surjectif de groupes multiplicatifs de $\mathbb{Z}_{2^{\alpha}}^{\times}$ sur \mathbb{Z}_{4}^{\times} et que son noyau est un groupe cyclique d'ordre $2^{\alpha-2}$.
- (d) Montrer que l'application :

$$\pi: \ \mathbb{Z}_{2^{\alpha}}^{\times} \to \ \mathbb{Z}_{4}^{\times} \times \ker(\psi)$$
$$x \mapsto (\psi(x), \psi(x)x)$$

est un isomorphisme de groupes. En déduire que $\mathbb{Z}_{2^{\alpha}}^{\times}$ est isomorphe à $\mathbb{Z}_2 \times \mathbb{Z}_{2^{\alpha-2}}$. Le groupe $\mathbb{Z}_{2^{\alpha}}^{\times}$ est-il cyclique?

$$- ext{ IV} - ext{Id\'eaux de } \mathbb{Z}_n = rac{\mathbb{Z}}{n\mathbb{Z}}.$$

- 1. Soit $\varphi : \mathbb{A} \to \mathbb{B}$ un morphisme d'anneaux commutatifs, unitaires.
 - (a) Montrer que pour tout idéal J de \mathbb{B} , $\varphi^{-1}(J)$ est un idéal de \mathbb{A} .
 - (b) On suppose que φ est surjectif. Montrer que pour tout idéal I de \mathbb{A} , $\varphi(I)$ est un idéal de \mathbb{B} , puis que l'application Φ qui associe à tout idéal J de \mathbb{B} l'idéal $\varphi^{-1}(J)$ de \mathbb{A} réalise une bijection de l'ensemble des idéaux de \mathbb{B} dans l'ensemble des idéaux de \mathbb{A} qui contiennent $\ker(\varphi)$.
- 2. Soit I un idéal de \mathbb{A} . Montrer qu'il y a une bijection entre les idéaux de $\frac{\mathbb{A}}{I}$ et les idéaux de \mathbb{A} qui contiennent I.

3.

- (a) Soient \mathbb{A} un anneau principal et I est un idéal non trivial de \mathbb{A} (i. e. $I \neq \{0\}$ et $I \neq \mathbb{A}$). Montrer que tous les idéaux de $\frac{\mathbb{A}}{I}$ sont principaux. L'anneau $\frac{\mathbb{A}}{I}$ est-il principal?
- (b) Montrer que, pour tout entier naturel n, les idéaux de l'anneau $\mathbb{Z}_n = \frac{\mathbb{Z}}{n\mathbb{Z}}$ sont ses sous-groupes additifs.
- (c) Déterminer tous les idéaux de \mathbb{Z}_n , où $n \geq 2$ est un entier.
- 4. Quels sont les idéaux premiers de $\mathbb{Z}_n = \frac{\mathbb{Z}}{n\mathbb{Z}}$ pour $n \geq 2$?