Quantum Computing: An Applied Approach

Chapter 9 Problems: Quantum Computing Methods

- 1. This problem guides you through how expectation values of single qubit operators can be computed on a quantum computer.
 - (a) Let $|\psi\rangle$ be the state of a qubit. From Born's rule, show that the probability of measuring the zero state is $p(0) = |\langle 0|\psi\rangle|^2$.
 - (b) Similar to above, what is the probability of measuring the one state, p(1)?
 - (c) Define the projectors $\Pi_0 = |0\rangle\langle 0|$ and $\Pi_1 = |1\rangle\langle 1|$. Show that $p(0) = \langle \psi | \Pi_0 | \psi \rangle$ and $p(1) = \langle \psi | \Pi_1 | \psi \rangle$.
 - (d) Prove that $Z = \Pi_0 \Pi_1$.
 - (e) Prove that $\langle \psi | Z | \psi \rangle = p(0) p(1)$. Thus, by measuring in the Z-basis (many times), we can estimate the expectation of Pauli Z by subtracting the frequency of the outcomes.
 - (f) Suppose now we wanted to measure $\langle \psi | X | \psi \rangle$. Show that this can be done with the above steps by adding a Hadamard gate before measuring in the computational basis. Hint: HZH = X.
 - (g) The same idea above can be applied to measuring $\langle \psi | Y | \psi \rangle$. What gate(s) should be added before measuring in the computational basis to achieve this?
- 2. Problem 1 demonstrates how we can measure single qubit expectation values. Consider the qubit state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ where $\alpha = 3/5$ and $\beta = 4/5$.

- (a) Compute analytically $\langle X \rangle$, $\langle Y \rangle$, and $\langle Z \rangle$ where angled brackets denote expectation value in ψ .
- (b) Design a quantum circuit to prepare the state $|\psi\rangle$.
- (c) Design a quantum circuit to estimate $\langle X \rangle$. How does the accuracy improve as you increase the number of repetitions of the circuit?
- (d) Do the above for Y and Z.
- 3. For Hamiltonians on multiple qubits, we will have to measure expectation values of operators such as $X \otimes Z$ or $Y \otimes Y \otimes Z$. These are known as *generalized Pauli operators*.
 - (a) Consider for simplicity the generalized Pauli operator $X \otimes Z$. We know how to compute the expectation value of each term via the technique in Problem 1. Show that we can compute $\langle X \otimes Z \rangle$ by implementing $H \otimes I$ then measuring in the Z basis, and computing

$$p(00) - p(01) - p(10) + p(11) \tag{1}$$

where p(00) is the probability of measuring bitstring 00, etc.

- (b) Prove that generalized Pauli operators form a basis for all unitaries. Combined with problems 1-3, this shows that we can estimate expectation values of any unitary matrix (although we may not be able to do so efficiently).
- (c) Express the following single-qubit unitaries as a sum of Pauli operators.
 - i. H.
 - ii. S.
 - iii. T.
 - iv. $R_Y(\theta)$ for $\theta = \pi/4$.
- 4. Suppose we wish to use quantum phase estimation (QPE) to estimate an eigenvalue of a unitary U, and that controlled-U can be implemented in a circuit with u gates. If we use n qubits of precision, how many total gates are required in the circuit? Make a plot of the number of gates for, say, $1 \le n \le 10$.
- 5. Iterative quantum phase estimation (IQPE) is a modification of the phase estimation algorithm to use fewer resources. In phase estimation, we use a *single* circuit with n qubits of precision to estimate an eigenvalue using n bits. In iterative quantum phase estimation, we use n circuits with one qubit of precision to estimate an eigenvalue using n bits.

For the following three parts, let U be a unitary on m qubits, and let

$$U|u\rangle = e^{2\pi i\phi}|u\rangle. \tag{2}$$

Further, suppose that ϕ has the binary decimal expansion

$$\phi = 0.\phi_1 \phi_2 \cdots \phi_n,\tag{3}$$

i.e. $\phi = \sum_{j=1}^{n} \phi_j 2^{-j}$

(a) Show that the following circuit estimates ϕ_1 .

(b) Show that the following circuit estimates ϕ_2 .

(c) Show that the following circuit estimates ϕ_k .

- (d) Argue that n circuits with the above structure are sufficient to estimate $\phi = \phi_1 \phi_2 \cdots \phi_n$.
- (e) What is the largest number of gates required in a single circuit? Assume that controlled-U can be implemented in a circuit with u gates. How does this answer compare with Question 7? Explain.
- (f) What is the total number of gates required across all n circuits? How does this answer compare with Question 7? Explain.
- 6. Design a biased quantum random bit generator algorithm which produces $|0\rangle$ with probability 25 percent and $|1\rangle$ with probability 75 percent.
- 7. Describe how a classical computer generates "random" numbers. How can we test for the randomness of a bitstring created in this manner?
- 8. Suggest at least two more methods of generating a random number if you did not have access to a quantum computer

Literature questions

- 1. The authors of Variational quantum factoring (https://arxiv.org/abs/1808.08927) present an near-term quantum algorithm for prime factorization. This algorithm can be understood as an implementation of QAOA—which we discussed in this chapter—for a specific factoring Hamiltonian H_f . How is this Hamiltonian constructed from a given integer to be factored?
- 2. In Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms (https://arxiv.org/abs/1901.05374), the authors advocate the following finite-difference approximation for the gradient of a function:

 $\frac{\partial f}{\partial \theta_i}(\theta) \approx \frac{1}{2\epsilon} (f(\theta + \epsilon \hat{e}_i) - f(\theta - \epsilon \hat{e}_i))$

Why is this formula preferred over the alternative formula $\frac{\partial f}{\partial \theta_i}(\theta) \approx (f(\theta + \epsilon \hat{e}_i) - f(\theta))/\epsilon$?

- 3. Harrow and Napp define particular black-box models of gradient and non-gradient oracles. How are these black-box models the same or different from a real quantum computer?
- 4. Do the theorems in this paper settle the case of gradient vs non-gradient optimization? How might you get around the assumptions?
- 5. One of the main results of For Fixed Control Parameters the Quantum Approximate Optimization Algorithm's Objective Function Value Concentrates for Typical Instances (https://arxiv.org/abs/1812.04170 is that the expectation value of the cost function for MaxCut on 3-regular graphs in the QAOA algorithm at fixed p is independent of the graph, as long as the graph size is large. Explain why this is the case. How would the result change if we looked at 4-regular graphs?