Abschlussprüfung 2017

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Name:	Vorname:		
Klasse:	Platzziffer:	Punkte:	

Aufgabe A 1

Nachtermin

A 1.0 Trapeze AB_nCD rotieren um die Achse AD.

Die Winkel DCB_n haben das Maß φ mit $\varphi \in \left]45^\circ;90^\circ\right[$

Es gilt: $\overline{AD} = 4 \text{ cm}$; $\overline{CD} = 4 \text{ cm}$; $\angle ADC = \angle B_n AD = 90^\circ$.

Die Zeichnung zeigt das Trapez AB_1CD für $\phi = 80^{\circ}$.

A 1.1 Zeichnen Sie das Trapez AB_2CD für $\phi = 55^{\circ}$ in die Zeichnung zu A 1.0 ein.

1 P

A 1.2 Bestätigen Sie die untere Intervallgrenze für ϕ und begründen Sie sodann, dass für das Volumen V der Rotationskörper gilt: $V > \frac{64}{3}\pi \, \text{cm}^3$.

2 P

A 1.3 Zeigen Sie, dass für die Länge der Strecken $\left[AB_{n}\right]$ in Abhängigkeit von ϕ gilt:

$$\overline{AB_n}(\phi) = \left(4 - \frac{4}{\tan \phi}\right) cm$$
.

Aufgabe A 2

Nachtermin

A 2.0 Der Punkt A(1|-2) ist gemeinsamer Eckpunkt von gleichschenkligen Dreiecken AB_nC_n mit den Schenkeln $\left[AB_n\right]$ und $\left[AC_n\right]$.

Die Mittelpunkte $M_n(x \mid -0.4x + 2)$ der Schenkel $[AC_n]$ liegen auf der Geraden g mit der Gleichung y = -0.4x + 2 ($G = IR \times IR$). Es gilt: $\angle B_nAC_n = 35^\circ$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Zeichnen Sie die Gerade g sowie die Dreiecke AB_1C_1 für x = -1,5 und AB_2C_2 für x = 3,5 in das Koordinatensystem ein.

A 2.2 Zeigen Sie, dass für die Länge der Strecken $\left[AC_n\right]$ gilt: $\overline{AC_n} = 1,66 \cdot \overline{B_nC_n}$.

2 P

A 2.3 Unter den Dreiecken AB_nC_n hat das Dreieck AB_3C_3 die kürzesten Schenkel.

Berechnen Sie die Koordinaten des zugehörigen Mittelpunktes $\,M_3^{}\,$ des Schenkels $\big[AC_3^{}\big].$

4 P

A 3.0 Das radioaktive Isotop Cäsium-137 zerfällt mit einer Halbwertszeit von 30 Jahren, d. h. nach dieser Zeit ist von einer bestimmten Anfangsmasse dieses Isotops nur noch die Hälfte an Cäsium-137 vorhanden.

Der Zusammenhang zwischen der Anzahl x der Jahre seit Beginn des Zerfalls und der Masse y mg lässt sich näherungsweise durch eine Funktion der Form $y = y_0 \cdot 0.5^{\frac{x}{30}}$ ($\mathbb{G} = IR_0^+ \times IR_0^+$; $y_0 \in IR^+$) darstellen, wobei y_0 mg die Masse zu Beginn eines Versuches darstellt. Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 3.1 Bei einem Langzeitversuch sind nach sechs Jahren noch 39 mg des Isotops Cäsium-137 nachweisbar. Bestimmen Sie rechnerisch die Masse, die zu Beginn des Versuches vorhanden war.

A 3.2 In einem anderen Versuch lässt sich der Zerfallsprozess durch die Funktion mit der Gleichung $y = 13, 5 \cdot 0, 5^{\frac{x}{30}}$ ($G = IR_0^+ \times IR_0^+$) darstellen.

Berechnen Sie, im wievielten Jahr erstmals weniger als 8 mg des Isotops nachweisbar sind.

A 3.3 Wie viel Prozent der ursprünglichen Masse des Isotops Cäsium-137 sind nach zehn Jahren noch vorhanden?

Kreuzen Sie die zutreffende Lösung an.

□ 20,63 % □ 33,33 % □ 66,67 % □ 79,37 % □ 83,33 %

2 P

Abschlussprüfung 2017

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Aufgabe B 1

Nachtermin

- B 1.0 Die Funktion f_1 hat eine Gleichung der Form $y = -\log_3(x+b) + 2$ mit $G = \mathbb{R} \times \mathbb{R}$ und $b \in \mathbb{R}$. Der Graph der Funktion f_1 schneidet die x-Achse im Punkt P(8|0). Runden Sie im Folgenden auf zwei Stellen nach dem Komma.
- B 1.1 Zeigen Sie durch Rechnung, dass die Funktion f_1 die Gleichung $y = -\log_3(x+1) + 2$ hat. Geben Sie sodann die Definitionsmenge der Funktion f_1 an und zeichnen Sie den Graphen zu f_1 für $x \in [-0,5;9]$ in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-2 \le x \le 10$; $-1 \le y \le 7$

4 P

B 1.2 Der Graph der Funktion f_1 wird durch orthogonale Affinität mit der x-Achse als Affinitätsachse und dem Affinitätsmaßstab k=2 und anschließende Parallelverschiebung mit dem Vektor $\overrightarrow{v} = \begin{pmatrix} 1 \\ 0.5 \end{pmatrix}$ auf den Graphen der Funktion f_2 abgebildet. Zeigen Sie rechnerisch, dass die Funktion f_2 die Gleichung $y=-2\cdot\log_3 x+4.5$ hat

($\mathbb{G} = \mathbb{R} \times \mathbb{R}$) und zeichnen Sie sodann den Graphen zu f_2 in das Koordinatensystem zu B 1.1 ein.

4 P

B 1.3 Punkte A_n (x $|-log_3(x+1)+2$) auf dem Graphen zu f_1 und Punkte D_n (x $|-2\cdot log_3x+4,5$) auf dem Graphen zu f_2 haben dieselbe Abszisse x und sind zusammen mit Punkten B_n und C_n für 0 < x < 16,53 die Eckpunkte von Trapezen $A_nB_nC_nD_n$.

Es gilt: $\overline{A_n B_n} = 2 LE$; $\angle B_n A_n D_n = 90^\circ$; $\angle A_n D_n C_n = 125^\circ$; $[A_n D_n] \parallel [B_n C_n]$.

Zeichnen Sie die Trapeze $A_1B_1C_1D_1$ für x=1 und $A_2B_2C_2D_2$ für x=5,5 in das Koordinatensystem zu B 1.1 ein.

2 P

B 1.4 Zeigen Sie rechnerisch, dass für die Länge der Strecken $\left[B_{n}C_{n}\right]$ in Abhängigkeit von der Abszisse x der Punkte A_{n} gilt: $\overline{B_{n}C_{n}}(x) = \left(\log_{3}\frac{x+1}{x^{2}} + 3{,}90\right)LE$.

Teilergebnis: $\overline{A_nD_n}(x) = \left(\log_3 \frac{x+1}{x^2} + 2,5\right) LE$

3 P

B 1.5 Bestätigen Sie, dass für den Flächeninhalt A der Trapeze $A_nB_nC_nD_n$ in Abhängigkeit von der Abszisse x der Punkte A_n gilt: $A(x) = \left(2 \cdot \log_3 \frac{x+1}{x^2} + 6,40\right)$ FE.

1 P

B 1.6 Das Trapez A₃B₃C₃D₃ hat einen Flächeninhalt von 8 FE.

Bestimmen Sie rechnerisch die Koordinaten des Punktes A₃.

3 P

Abschlussprüfung 2017

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Aufgabe B 2 Nachtermin

B 2.0 Das Rechteck ABCD ist die Grundfläche der Pyramide ABCDS. Der Punkt E ist der Mittelpunkt der Strecke [AD], der Punkt F ist der Mittelpunkt der Strecke [BC]. Die Spitze S liegt senkrecht über dem Punkt E.

Es gilt: $\overline{AB} = 6.5 \text{ cm}$; $\overline{AD} = 8 \text{ cm}$; $\overline{ES} = 5.5 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei [EF] auf der Schrägbildachse und der Punkt E links vom Punkt F liegen soll.

Für die Zeichnung: $q = \frac{1}{2}$; $\omega = 45^{\circ}$

Berechnen Sie sodann die Länge der Strecke [FS] sowie das Maß des Winkels SFE.

4 P

B 2.2 Punkte P_n liegen auf der Strecke [FS] und bilden zusammen mit dem Punkt $G \in [EF]$ Winkel FGP_n mit dem Maß $\phi \in \left]0^\circ; 118,61^\circ\right]$. Es gilt: $\overline{EG} = 3 \text{ cm}$.

Die Punkte P_n sind die Spitzen von Pyramiden BCGP_n mit der Grundfläche BCG und den Höhen $[P_nL_n]$ mit $L_n \in [EF]$.

Zeichnen Sie die Pyramide $BCGP_1$ für ϕ = 110° und die zugehörige Höhe $\left[P_1L_1\right]$ in das Schrägbild zu B 2.1 ein.

B 2.3 Begründen Sie die obere Intervallgrenze für ϕ .

2 P

B 2.4 Zeigen Sie durch Rechnung, dass für die Länge der Strecken $[GP_n]$ in Abhängigkeit von ϕ gilt: $\overline{GP_n}(\phi) = \frac{2,26}{\sin(\phi+40,24^\circ)}$ cm .

B 2.5 Berechnen Sie das Volumen V der Pyramiden $BCGP_n$ in Abhängigkeit von ϕ .

Ergebnis:
$$V(\varphi) = \frac{10,55 \cdot \sin \varphi}{\sin(\varphi + 40,24^{\circ})} \text{cm}^3$$

B 2.6 Das Dreieck GFP₂ ist gleichschenklig mit der Basis [FP₂].

Berechnen Sie den prozentualen Anteil des Volumens der Pyramide BCGP₂ am Volumen der Pyramide ABCDS.