	Utech
Name :	
Roll No.:	To Character (y Exercisely 2nd Explored
Invigilator's Signature :	

CS/B.Tech (BT)/SEM-7/BT-703A/2010-11 2010-11 BIOPHYSICS OF MACROMOLECULES

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - i) Which pair of amino acids will have the highest absorbance at 280 nm ? (assume equimolar concentrations)
 - a) Thr & His
 - b) Phe & Pro
 - c) Trp & Tyr
 - d) Phe & His.
 - ii) The example of a sulphur containing amino acid is
 - a) Methionine
- b) Aspartic acid

c) Lysine

d) Histidine.

7315 [Turn over

- iii) The phenomenon of fluorescence occurs when
 - a) a molecule absorbs energy and moves from a ground state energy level to excited state
 - b) an excited molecule returns to ground state by emitting light
 - c) an excited molecule returns to ground state by non-radiative transition
 - d) a molecule collides with another molecule in the excited state.
- iv) N-terminal amino acids are usually determined by Sanger's method using
 - a) Ninhydrin reagent
 - b) 2, 4 dinitro-fluorobenzene
 - c) Hydrazine
 - d) Concentrated nitric acid.
- v) In the helix what would be the angle of ϕ and ψ ?

a)
$$\varphi = -57^{\circ}$$
 and $\psi = -47^{\circ}$

b)
$$\varphi = -67^{\circ}$$
 and $\psi = -37^{\circ}$

c)
$$\varphi = -57^{\circ}$$
 and $\psi = -37^{\circ}$

d)
$$\varphi = -47^{\circ} \text{ and } \psi = -57^{\circ}.$$

- vi) Glycosidic bonds are found in
 - a) DNA

- b) RNA
- c) Sucrose
- d) all of these.

- weak interaction?

Peptide bond

a)

b)

van der Walls forces

- c) Hydrogen bonds
- d) Ionic interactions.
- viii) The Michaelis-Menten constant *Km* is a measure of
 - a) the rate of the reaction
 - b) the affinity of the enzyme for the substrate
 - c) the concentration of the enzyme-substrate (ES) intermediate
 - d) none of these.
- ix) The length of an α -helical polypeptide chain of 25 amino acids is
 - a) 36 nm

b) 37.5 nm

c) 40 nm

- d) none of these.
- x) How many base pairs are present per turn of Z-DNA?
 - a) 10

b) 8

c) 12

d) None of these.

(Short Answer Type Questions)

Answer any three of the following.

- Draw a hairpin structure and cruciform structure for a single stranded nucleic acid. State three differences between A and B forms of DNA.
- 3. Discuss the major stabilising forces of an alpha helix.
- 4. What are hydrophobic amino acid residues ? Give an example. Explain why they are found at the core of a protein molecule. 1+1+3
- 5. What are amphipathic molecules? Discuss their interactions with water. 2+3
- 6. Discuss the role of IR spectroscopy in determination of molecular structure.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. What are Stokes and anti-stokes shift in fluorescence? What are intrinsic and extrinsic fluorophores that are used in our biological studies? What is florescence quenching? Give some examples of fluorescence quenchers and its advantages & disadvantages during the biomolecular study. Describe the signifiance of Tryptophan fluorescence in protein. Write short note on FRET?

2 + 2 + 3 + 3 + 3

7315 4

- 8. a) State the Lambert and Beer's law and its limitation during UV/VIS spectroscopy.
 - b) Illustrate different absorption spectra with simple example.
 - c) A solution of reduced cytochrome c, concentration of $10~\mu\text{M}$, in a 1 cm path length cell absorbs 44% of the incident radiation at 550 μM . On oxidation, the solution absorbs about 17% of the incident radiation. Calculate the molar extinction coefficients of the 2 forms of cytochrome c.
 - d) A mixture of reduced and oxidised cytochrome c in a 1 cm cell, a total protein concentration of 10 μ M absorbed 38% of the incident radiation at 550 μ M. Calculate the concentration of the oxidised and reduced spectra present. 4+3+4+4

- 9. Describe the effects during spectroscopic analysis of biological macromolecules: Bathochromic, Hypsochromic, Hyperchromic and Hypochromic effects. What is cot curve? Define Isosbestic points of two absorbing species A & B. A solution of a protein whose sequence includes three tryptophan residues, no tyrosine residues, and no phenylalanine residues has an absorbance of 0.1 at 280 nm in a cell with a path length of 1 cm. Estimate the concentration of the protein in units of molarity. If the protein has a molecular mass of 100 kDa, estimate the concentration in units of milligrams of protein per millilitre of solution.
- 10. Predict with justification where the following amino acid residues are likely to be found on the surface or at the interior of a protein molecule:
 - a) Histidine
 - b) Valine
 - c) Aspartic acid
 - d) Serine
 - e) Proline
 - f) Glycine
 - g) Tryptophan
 - h) Cysteine
 - i) Phenylalanine
 - j) Tyrosine.

11. Describe the procedures to grow crystal of biological macromolecules. Describe X-ray diffraction and Bragg's law. Write short notes on Axial Ratios, Weiss Parameters, Miller Indices during X-ray diffraction of crystallography. 5+5+5

12. How can NMR spctroscopy be used for the structure determination of biopolymer? Describe the basic principle of circular dichroism (CD) and optical rotatory dispersion (ORD). What are negative cotton effects and positive cotton effects in CD and ORD? Write brief application of CD and ORD in biological macromolecules. 5+5+2+3

7315 7 [Turn over