Uma Plataforma de Software para o Estudo Interativo de Métodos e Algoritmos Econométricos

Carlos Duarte do Nascimento

Instituto de Matemática e Estatística Universidade de São Paulo

4 de Março de 2009

Introdução

Apresentações

Banca Avaliadora

- Prof Cicely Moitinho Amaral (orientador)
- Prof. Claudio Possani
- Prof. Sergio Muniz Oliva Filho

O que este trabalho não é

- Análise de um Problema Matemático
- Um Estudo Profundo de Métodos Numéricos
- Apologia (ou Crítica) do Ensino à Distância

O Problema

O Ensino de Econometria

- Teoria + Prática: É importante experimentar!
- Opções para experimentar:
 - Softwares específicos de Estatística/Econometria (EViews, SPSS, Stata)
 - Pacotes Matemáticos "puros" (Mathematica, Gnu R, Matlab, Octave)
 - Linguagens de Programação (C, Java, Pascal, Fortran, etc.)
 - Desenvolvimento pelo Professor
 - Desenvolvimento pelo Aluno

Um Problema Econométrico

(Judge) Estimação de Parâmetros no Modelo:

$$y_t = \theta_1 + \theta_2 x_{t2} + (\theta_2)^2 x_{t3} + e_t, t = 1, 2, ..., 20$$

 $y = f(\theta) + e$

$$f(\theta) = \begin{pmatrix} \theta 1 + \theta_2 x_{12} + \theta_2^2 x_{13} \\ \theta 1 + \theta_2 x_{22} + \theta_2^2 x_{23} \\ \vdots \\ \theta 1 + \theta_2 x_{20,2} + \theta_2^2 x_{20,3} \end{pmatrix}$$

Função objetivo (soma quadrática do erro):

$$H(\theta) = [y - f(\theta)]'[y - f(\theta)]$$

Modelo de Solução

Proposta Funcional

- Duas Categorias de Usuários:
 - Professores (cadastram aulas)
 - Alunos (interagem com aulas)
- Aulas Divididas em Passos
- Passos Divididos em:
 - Parte Teórica: Texto/HTML
 - Parte Prática: Algoritmo interativo

Casos de Uso

Diagramas de Classe

Arquitetura de Software

Escolha da Linguagem

Cada uma apresenta suas vantagens:

- C/C++: Performance
- Pascal: Simplicidade
- Fortran: Material Acadêmico
- Java: Equilíbrio destes fatores; facilidade para compilação dinâmica: JAMA

Padrões de Projeto

- Mapeamento Objeto-Relacional
- Model / View / Controller
- Inversão de Controle / Injeção de Dependências

Componentes

Compilação Dinâmica de Algoritmos

- Idéia: usar a própria linguagem para executar os algoritmos
- Cadastro do Algoritmo (ex.: Cálculo de Juros):
 - Parâmetros de Entrada (taxa, valor)
 - Parâmetros de Saída (juros)
 - Algoritmo
 (juros = valor*(1+taxa); valor = valor + juros)
 - Código Auxiliar (opcional) (função para Tabela Price)
- O sistema monta o código em tempo real usando estes elementos, e o javac se encarregad o resto.

Demonstração

Uma Aula Prática

Um Problema Econométrico (retomando)

Modelo:

$$y_t = \theta_1 + \theta_2 x_{t2} + (\theta_2)^2 x_{t3} + e_t, t = 1, 2, ..., 20$$

 $y = f(\theta) + e$

Função-Objetivo:

$$H(\theta) = [y - f(\theta)]'[y - f(\theta)]$$

Métodos Numéricos

Idéia Geral

$$\theta_{n+1} = \theta_n - t_n P_n \gamma_n$$

- P_n: direção
- t_n: "distância"
- γ_n : gradiente de H

Condições de Parada

- 1. $(\theta_{n+1} \theta_n)'(\theta_{n+1} \theta_n) < \epsilon$
- 2. $H(\theta_n) H(\theta_{n+1}) < \epsilon$
- 3. $\left[\frac{\partial H}{\partial \theta}|_{\theta_n}\right]'\left[\frac{\partial H}{\partial \theta}|_{\theta_n}\right] < \epsilon$

Newton-Rhapson

Gauss-Newton

Demonstração

Conclusão

Conclusões e Continuidade

