

Respuesta Impulsorial Finita

CARACTERÍSTICAS PRINCIPALES

Ecuaciones características

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

$$H(z) = \sum_{k=0}^{N-1} h(k)z^{-k}$$

- Pueden tener exactamente una respuesta lineal en fase
- Simples de implementar
 - DSP

- Filtro modifica amplitud y fase de la señal filtrada.
 - Características de amplitud y fase del filtro.
- Retraso (Señal multicomponente)
 - De fase:
 - Tiempo de retraso de cada componente de frecuencia.
 - De grupo:
 - Tiempo promedio de retraso de la señal compuesta.

- Retraso
 - De fase

$$T_p = \frac{-\theta(\omega)}{\omega}$$

• De grupo

$$T_{s} = \frac{-d\theta(\omega)}{d\omega}$$

RESPUESTA EN FASE

No lineal

- Componentes no se retrasan proporcionalmente
 - Modifican sus relaciones armónicas
 - No deseable en:
 - Música
 - Transmisión de datos
 - Video
 - Biomedicina.

• Relaciones del filtro

$$\theta(\omega) = -\alpha\omega$$

$$\theta(\omega) = \beta - \alpha\omega$$

 β , α constantes

Relaciones del filtro

$$\theta(\omega) = -\alpha\omega$$

- Respuesta de retraso lineal de fase y de grupo.
- Respuesta al impulso del filtro con simetría positiva.

$$h(n) = h(N - n - 1),$$

$$\begin{cases} n = 0, 1, \dots (N - 1)/2 & (N \text{ impar}) \\ n = 0, 1, \dots (N - 1) - 1 & (N \text{ par}) \end{cases}$$

$$\alpha = (N-1)/2$$

FASE

RESPUESTA LINEAL EN

• Relaciones del filtro

$$\theta(\omega) = \beta - \alpha\omega$$

- Respuesta de retraso lineal de grupo solamente.
- Respuesta al impulso del filtro con simetría negativa.

$$h(n) = -h(N - n - 1)$$

$$\alpha = (N - 1)/2$$

$$\beta = \pi/2$$

TIPOS DE FASE LINEAL FILTRO FIR (4 TIPOS)

Simetría de la respuesta al impulso	Núm. coef. N	Respuesta en frecuencia	Fase lineal tipo
Simetría positiva	Non	$e^{-j\omega(N-1)/2} \sum_{n=0}^{(N-1)/2} h(n) \cos(\omega n)$	1
h(n) = h(N - n - 1)	Par	$e^{-j\omega(N-1)/2}\sum_{n=1}^{N/2}h(n)\cos\left[\omega\left(n-\frac{1}{2}\right)\right]$	2
Simetría negativa	Non	$e^{-j[\omega(N-1)/2-\pi/2]} \sum_{n=1}^{(N-1)/2} h(n) \sin(\omega n)$	3
h(n) = -h(N - n - 1)	Par	$e^{-j[\omega(N-1)/2-\pi/2]} \sum_{n=1}^{N/2} h(n) \sin\left[\omega\left(n-\frac{1}{2}\right)\right]$	4

- Tipo 1
 - Simetría positiva, N impar

- Tipo 2
 - Simetría positiva, N par

- Tipo 3
 - Simetría negativa, N impar

- Tipo 4
 - Simetría negativa, N par

- Tipos 1 y 2
 - Retraso de fase

$$T_p = \left(\frac{N-1}{2}\right)T$$

- Tipos 3 y 4
 - Retraso de fase

$$T_{S} = \left(\frac{N-1-\pi}{2}\right)T$$