Multiple Regression

November 30, 2022

Today

- Extension of Linear Regression to multiple IVs
 - Why include other IVs?
 - Prediction with multiple IVs
 - Interpreting the effects of individual coefficients
 - Interpreting statistical significance
 - Evaluating Model fit
 - R^2
 - F-test
- *Note*: You will spend most of next semester (722) on multiple linear regression

Linear Regression--Review

- Linear regression gives the equation for the "best fit" line
 - Only appropriate for linear relationships
 - Line minimizes the squared residuals
- Gives regression equation $Y = \beta_0 + \beta_1 X$
 - β_0 ="constant" or "intercept"
 - β_1 ="slope"
- Can use regression equation to generate predicted values for y (i. e., \hat{y})
 - $\hat{y} = \beta_0 + \beta_1 X_i$
- Can compare predicted values to observed values
 - $Y_i = \beta_0 + \beta_1 X_i + e_i$
- Residual (e_i) is the difference between the observed value and the predicted value

Regression and Means--Review

- Regression equation predicts the mean value of *Y* in sub-populations
 - Sub-populations are those with different values of *X*
- Individual observations for Y vary around the mean of Y in subpopulations
- Linear relationship assumes that these means fall along a line
 - A one-unit change in X has the same effect on the mean of Y across the entire range of X

Regression and Inference

- In the population, there is a regression equation
- The regression equation that we generate in our sample is an estimate of the population regression equation
 - $\hat{\beta}_0$ is an estimate of the "true" β_0 in the population
 - $\hat{\beta}_1$ is an estimate of the "true" β_1 in the population
- When we test hypotheses we are interested in whether *X* has an effect on Y in the population
- Test the **null hypothesis** that *X* has "no effect" on *Y*
 - If true, then $\beta_1 = 0$
- Need to determine how likely it is that we would observe $\hat{\beta}_1$ of the size that we find in the sample if $\beta_1 = 0$

Rejecting the null hypothesis

- Determining this requires knowing the **standard error**
 - You know how to compute this using the model RMSE—also given by statistical software
- With the coefficient and s.e., we can find a t-statistic
 - $t = \frac{\beta_1}{SE_{\beta_1}}$
- Then, **use the t-distribution chart** to determine the p-value
 - Remember, degrees of freedom = n-k-1
 - Decide whether you are looking at one or two tails
- P-value tells you the probability you would get a coefficient of the observed magnitude if the null hypothesis were true
- Compare to the level of statistical significance chosen
 - Ex: if $p \le .05$, statistically significant at the .05 level; can reject null hypothesis with 95% confidence

Confidence Intervals—Review

- Statistical significance is a test of how confident we are that, in the population, β_1 does not equal 0
- Also interested in estimating a range within which we think β_1 lies
- To generate a confidence interval, find the *t* for a specific level of confidence
 - From the t-distribution with degrees of freedom n-k-1
- Multiply this by the standard error, add and subtract from coefficient
- A level C confidence interval for β_1 is:
 - $\beta_1 + /-(t)(SE_{\beta_1})$

Regression Example

```
Call:
lm(formula = Obama2012 ~ reppct_m, data = states)
Residuals:
              10 Median 30
    Min
                                       Max
-21.9484 -5.1864 0.8801 5.0077 13.7267
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 80.7026
                       5.5661 \quad 14.499 \quad < 2e-16 ***
reppct_m -1.0415
                       0.1745 -5.968 2.81e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.875 on 48 degrees of freedom
Multiple R-squared: 0.426, Adjusted R-squared: 0.414
F-statistic: 35.62 on 1 and 48 DF, p-value: 2.805e-07
```

Model Fit

- $Y_i = \hat{Y}_i + \hat{e}_i$
- Total Sum of Squares (TTS): sum of difference between observed Y and mean of Y, squared
- Explained Sum of Squares (ESS): sum of difference between predicted Y and mean of Y, squared
- Residual sum of squares (RSS): sum of the squared residuals
- TSS=ESS + RSS
- Can judge goodness-of-fit using R^2
- $R^2 = \frac{ESS}{TSS} = \frac{\sum (\hat{Y}_i \bar{Y})^2}{\sum (Y_i \bar{Y})^2}$
- R^2 indicates the fraction of the variation in Y that is explained by X

Regression Example

```
Call:
lm(formula = Obama2012 ~ reppct_m, data = states)
Residuals:
              10 Median 30
    Min
                                       Max
-21.9484 -5.1864 0.8801 5.0077 13.7267
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 80.7026
                       5.5661 \quad 14.499 \quad < 2e-16 ***
reppct_m -1.0415
                       0.1745 -5.968 2.81e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.875 on 48 degrees of freedom
Multiple R-squared: 0.426, Adjusted R-squared: 0.414
F-statistic: 35.62 on 1 and 48 DF, p-value: 2.805e-07
```

F-test

- When we have only one IV, we can use an F-test to test the null hypothesis that $B_1=0$
- The F-test uses the F-statistic, which is based on the "mean squares"
- Mean square (MS) = sum of squares divided by degrees of freedom
- Each part of the model has degrees of freedom
 - Model Degrees of Freedom (DFM) = # of IVs
 - Error Degrees of Freedom (DFE) = n k 1
 - Total Degrees of Freedom (DFT) = DFM + DFE = n-1
- So:
 - Mean Square Model (MSM)= $\frac{ESS}{DFM}$
 - Mean Square Error (MSE) = $\frac{RSS}{DFE}$
 - Mean Square Total (MST) = $\frac{TSS}{DFT}$

F-test—Bivariate Regression

- The F-statistic is equal to MSM divided by MSE
 - $F = \frac{MSM}{MSE}$
- When the null hypothesis is true, the F-statistic follows an F-distribution with:
 - *k* degrees of freedom in the numerator
 - n k 1 degrees of freedom in the denominator
- With only one IV, the p-value is the probability that a random variable having the F(1, n-2) distribution is ≥ the calculated value of the F-statistic (if the null were true)
- When only one IV, $t^2 = F$, and the t-statistic and the F-statistic will tell us the same thing
 - The F-test is really only useful with multiple IVs

F-distribution

F-Distribution Table

Source: From Table V of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Revearch, published by Longman Group Ltd., London, 1974. (Previously published by Oliver & Boyd, Edinburgh.) Reprinted by permission of the authors and publishers.

Regression Example

```
Call:
lm(formula = Obama2012 ~ reppct_m, data = states)
Residuals:
              10 Median 30
    Min
                                       Max
-21.9484 -5.1864 0.8801 5.0077 13.7267
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 80.7026
                       5.5661 \quad 14.499 \quad < 2e-16 ***
reppct_m -1.0415
                       0.1745 -5.968 2.81e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.875 on 48 degrees of freedom
Multiple R-squared: 0.426, Adjusted R-squared: 0.414
F-statistic: 35.62 on 1 and 48 DF, p-value: 2.805e-07
```

Multiple Regression

- One important advantage of regression—easy to incorporate additional independent variables
- Why would we control for additional variables?
 - Worried about omitted variable bias
 - Problem if some underlying (unobserved) factor (X_2) is driving the relationship between X_1 and Y
 - A problem if (1) X_1 and X_2 are correlated; & (2) X_2 is correlated with Y
- Example—the proportion of a state's citizens that are smokers is predictive of state voting returns for Mitt Romney in 2012
 - Its unlikely that this is a causal relationship (and thus not spurious)
 - Rather, it's likely that states with more smokers share other features associated with voting for Romney


```
Call:
lm(formula = Romney2012 ~ Smokers12 + Conserv_advantage, data =
states)
Residuals:
    Min
              10 Median
                                      Max
-10.0544 -3.0022 -0.2395 2.8293 9.3041
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 35.18002 3.82681 9.193 4.5e-12 ***
Smokers12
                 -0.06831
                            0.19565 -0.349
                                              0.729
Conserv_advantage 0.90652
                            0.06733 13.464 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 4.406 on 47 degrees of freedom
Multiple R-squared: 0.8211, Adjusted R-squared: 0.8135
F-statistic: 107.9 on 2 and 47 DF, p-value: < 2.2e-16
```

Multiple Regression

- When we have multiple IVs, we have a regression equation with multiple predictors:
 - $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots \beta_k X_k$
- The multiple regression is still the linear equation that minimizes the sum of squared residuals
- Multiple regression is still a prediction about the mean of Y in sub-populations
- But, sub-populations are those who share the same value on all X's $(X_1, X_2, ... X_k)$
- A one-unit change in each individual IV has the same effect on the mean of *Y*, holding all other IVs constant
 - A one-unit change in X_1 has a b_1 -unit effect on Y, on average and holding all else constant

The Multiple Regression Equation

- How do we determine the coefficient estimates?
 - Don't worry about the math this semester (...yeah!)
 - Will touch on this in 722 (....doh!)

- What about the standard errors?
 - Likewise...

- R will generate coefficients & standard errors for us
 - Just focus on interpretation this semester

```
Call:
lm(formula = Romney2012 ~ Smokers12 + Conserv_advantage, data =
states)
Residuals:
    Min
              10 Median
                                      Max
-10.0544 -3.0022 -0.2395 2.8293 9.3041
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 35.18002 3.82681 9.193 4.5e-12 ***
Smokers12
                 -0.06831
                            0.19565 -0.349
                                              0.729
Conserv_advantage 0.90652
                            0.06733 13.464 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 4.406 on 47 degrees of freedom
Multiple R-squared: 0.8211, Adjusted R-squared: 0.8135
F-statistic: 107.9 on 2 and 47 DF, p-value: < 2.2e-16
```

Multiple Regression and Prediction

- We can generate predicted values for individual observations
- Now, we have to substitute values for **all** of the IVs into the regression equation
- Example—(1) Massachusetts has a -2.2 for Conservative Advantage in Mass Public in 2012 and 17% smokers; and (2) Virginia has a 18.4 for Conservative Advantage and 19% smokers
 - What are the predicted values?
- Can compare predicted values to observed values
 - Romney received 37.51% of the vote in Massachusetts and 47.28% in Virginia
- Residual is the difference between the predicted value and observed value
 - What are the residual values?

Interpreting Coefficients

- Coefficient (β_1) is the effect of a one-unit change in X_1 on Y, holding all other X's at constant values
 - Example: the effect of an additional one-percentage-point increase in a conservative public advantage at constant values of the state's proportion of smokers
- This is important if, for example, X_1 and X_2 are correlated
 - If states with more smokers also have more conservative citizens, then states at higher values of X_1 will generally be more clustered at the higher values of X_2
- If X_1 and X_2 are completely uncorrelated, then adding X_2 to the model will have no effect on the coefficient for X_1

Confidence Intervals

- Each individual regression coefficient in the model has a corresponding standard error
- We can use the standard error and the t-statistic to compute confidence intervals
 - Degrees of freedom equal to n k 1
- For β_1 , a level-C confidence interval is:
 - $\beta_1 \pm (t)(SE_{b_1})$
- Remember, this tell us our estimate of the effect of X_1 on Y in the population, holding all other IVs constant

Statistical Significance

• Interpret the statistical significance of variables in similar way

•
$$t = \frac{\beta_1}{SE_{\beta_1}}$$

- Statistical significance tells us whether we can reject the null hypothesis that $\beta_1 = 0$ at constant values of other IVs in the model
- If the relationship between X_1 and Y is entirely driven by lurking variable Z, and we control for Z, we should not find statistical significance for β_1

```
Call:
lm(formula = Romney2012 ~ Smokers12 + Conserv_advantage, data =
states)
Residuals:
    Min
              10 Median
                                      Max
-10.0544 -3.0022 -0.2395 2.8293 9.3041
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 35.18002 3.82681 9.193 4.5e-12 ***
Smokers12
                 -0.06831
                            0.19565 -0.349
                                              0.729
Conserv_advantage 0.90652
                            0.06733 13.464 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 4.406 on 47 degrees of freedom
Multiple R-squared: 0.8211, Adjusted R-squared: 0.8135
F-statistic: 107.9 on 2 and 47 DF, p-value: < 2.2e-16
```

Model Fit

- Can compute sums of squares with multiple IVs
- Same basic calculation:
 - Total Sum of Squares (TSS): Sum of difference between observed y and mean of y, squared
 - Model Sum of Squares (ESS): Sum of difference between predicted y and mean y, squared
 - Residual sum of squares (RSS): squared residuals
 - TSS=ESS + RSS
- One difference, again, is the number of degrees of freedom:
 - DFM = # of IVs in model (i.e., k)
 - DFE = n # of IVs in model 1 (i.e., n k 1)

R-squared

- R-squared is calculated the same way
 - $R^2 = \frac{ESS}{TSS}$
- Now, however, R-squared tells us the total amount of variation in *Y* explained by the model (i.e., all *X*'s rather than by an individual *X*)

```
Call:
lm(formula = Romney2012 ~ Smokers12 + Conserv_advantage, data =
states)
Residuals:
    Min
              10 Median
                                      Max
-10.0544 -3.0022 -0.2395 2.8293 9.3041
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 35.18002 3.82681 9.193 4.5e-12 ***
Smokers12
                 -0.06831
                            0.19565 -0.349
                                              0.729
Conserv_advantage 0.90652
                            0.06733 13.464 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 4.406 on 47 degrees of freedom
Multiple R-squared: 0.8211, Adjusted R-squared: 0.8135
F-statistic: 107.9 on 2 and 47 DF, p-value: < 2.2e-16
```

F-test

- In simple linear regression (with one IV), an F-test was not useful
- But, it is more useful in multiple regression
- Can be used to test whether all of the coefficients in the population are equal to zero
 - H_0 : $\beta_1 = \beta_2 = \beta_3 = \dots \beta_k = 0$
- The F statistic is again $F = \frac{MSM}{MSE}$
 - Based on the F(k, n-k-1) distribution
- Thus, we have an omnibus test of whether the whole model fits well:
 - H_0 : model does not fit at the 1- α level
 - H_1 : model fits at the 1- α level

Inference on Multiple (Partial) Regression Coefficients

- Suppose you want to test a hypothesis about more than one coefficient at once.
- Estimate a *restricted* model as if the null hypothesis is true and an *unrestricted* model that does not impose that assumption.
- For example, consider the unrestricted model:

•
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \mu_1$$

- You state the null hypothesis: H_0 : $\beta_1 = \beta_2 = 0$
- If the null hypothesis is true, then the restricted model is:

•
$$Y_i = \beta_0 + \beta_3 X_{3i} + \mu_1$$

• The unrestricted model will explain more variance in Y_i . Does it have a *significantly* better fit?

General F-Testing

- Provided the restricted model is *nested within* the unrestricted model, we can use an *F*-ratio to test whether the null hypothesis is true.
- Record the RSS for the unrestricted model (RSS_{UR}) and for the restricted model (RSS_R) and use them to calculate the test statistic:

•
$$F = \frac{\frac{RSS_R - RSS_{UR}}{m}}{\frac{RSS_{UR}}{n - k - 1}}$$

- In this equation, *n* is the sample size, *k* is the number of parameters in the unrestricted model, and *m* is the number of parameters (predictors) omitted in the restricted model.
- This test statistic follows a *F*-distribution with $\frac{m}{n-k-1}$ degrees of freedom.

```
Call:
lm(formula = Romney2012 ~ Smokers12 + Conserv_advantage, data =
states)
Residuals:
    Min
              10 Median
                                      Max
-10.0544 -3.0022 -0.2395 2.8293 9.3041
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 35.18002 3.82681 9.193 4.5e-12 ***
Smokers12
                 -0.06831
                            0.19565 -0.349
                                              0.729
Conserv_advantage 0.90652
                            0.06733 13.464 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 4.406 on 47 degrees of freedom
Multiple R-squared: 0.8211, Adjusted R-squared: 0.8135
F-statistic: 107.9 on 2 and 47 DF, p-value: < 2.2e-16
```

Substantive Significance—Very Critical

- In multiple regression, we can compare the magnitude of the effects of different variables
- But, remember that coefficient is the predicted impact of a one-unit change, and a *one-unit change means different things depending on how variable is measured/scaled*
- Can make similar comparisons to evaluate substantive significance:
 - Effect of a one-standard deviation change—a more "common" variation in the data
 - Min-to-max changes—interprets the full (observed) range of predicted effects, but may not be a reasonable (i.e., common) change
 - Generally a good idea to report both

Additive & Interactive Effects

- Multiple regression model assumes that the effect of IVs are additive
 - X_1 has the same effect (magnitude) on Y across all different values of X_2
- But, that may not be true—especially theoretically
- If the effect of X_1 on Y changes across different values of X_2 , then there is an interactive effect of X_1 and X_2
 - The effect of X_1 on Y is conditional on X_2
- We can model interactive effects by including a multiplicative term:
 - $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$

Next Steps

- Finished with the substantive material for the final exam
- Next time, we will (briefly) discuss logistic regression)
 - Not covered in this course or the exam
 - But, you will likely encounter it—will discuss the basic logic
- Final homework due next week
- Final exam distributed through elms