1. Datenbankmodelle für den

Entwurf

1. Datenbankmodelle für den Entwurf

- Grundlagen von Datenbankmodellen
- Entity-Relationship-Modell
- Erweiterungen des ER-Modells

1. DB-Entwurfsmodell 1 / 75

Phasen des Datenbankentwurfs

Datenmodelle

konzeptuelle Datenmodelle:

- implementierungsunabhängiges Modell zur Beschreibung von Objekten und ihren Beziehungen
- Beispiele: Entity-Relationship-Modell, UML-Diagramm

logische Datenmodelle:

- · Darstellung von Instanzen, geeignet für Implementierung
- Beispiele: **Relationenmodell**, Hierarchisches Modell, Netzwerkmodell, ...

physische Datenmodelle:

· Speicherungs- und Zugriffstrukturen

Historische Einordnung und Bezüge

Grundlagen von Datenbankmodellen

Datenbankmodell

Ein Datenbankmodell ist ein System von Konzepten zur Beschreibung von Datenbanken.

- Definition der Datenbankstruktur
- · Operatoren zur Abfrage und Änderung von Daten
- Integritätsbedingungen

Grundlagen von Datenbankmodellen

Datenbankschema (= Datenbankbeschreibung)

- Struktur von Datenobjekten (inkl. Datentypen) und Beziehungen zwischen Objekten
- · Integritätsbedingungen
- \rightarrow ändert sich selten

Datenbankinstanz (Datenbankausprägung, Datenbankzustand)

- · Daten, die zu einem bestimmten Zeitpunkt in einer Datenbank gespeichert sind
- \rightarrow ändert sich häufig

Entity-Relationship-Modell

- P. P. Chen im Jahre 1976
- · konzeptuelles Datenmodell
- Hauptbestandteile:
 - Entitäten/Gegenstände (entities)
 - Beziehungen (relationships)
 - Attribute

Entity-Relationship-Modell

- Entity: Objekt der realen oder Vorstellungswelt, über das Informationen zu speichern sind
 - z.B. ein:e bestimmte:r Professor:in, eine bestimmte Vorlesung
- Beziehung: Beziehung zwischen Entities
 z.B. ein:e bestimmte:r Professor:in hält eine bestimmte Vorlesung
- Attribut: Eigenschaften von Entities oder Beziehungen z.B. Geburtstag, Adresse, Titel, Semester
- Entity-Typ: Zusammenfassung von Entities mit gleichen Attributen z.B. Professor:in, Vorlesung, etc.
- Beziehungstyp: Zusammenfassung von Beziehungen z.B. Professor:in hält Vorlesung

Ein einfaches Beispiel

ER-Modellierungskonzepte i

Entities

Entity-Typen, etwa E_1, E_2, \ldots ; Notation:

Ε

- steht für die Menge der möglichen Entities vom Typ E
 [wird hier nicht festgelegt; aber im Prinzip unendlich viele]
- In einem Datenbank-Zustand wird eine Menge von aktuellen Entities vom Typ E gespeichert
- Aktuelle Entities müssen immer mögliche Entities sein; ferner gefordert: Menge der aktuellen Entities ist endlich

ER-Modellierungskonzepte ii

Beziehungen

Beziehungstypen; etwa R_1 , R_2 , ...; Notation n-stelliger Beziehungstypen:

- mögliche Ausprägungen: jede Kombination möglicher Entities (je eines für jeden beteiligten Entity-Typ)
- aktuelle Beziehungen nur zwischen aktuellen Entities: also nur zwischen in dem Datenbank-Zustand vorhandenen/gespeicherten Entities

ER-Modellierungskonzepte iii

Attribute

Ein Attribut A eines Entity-Typen E ordnet in jedem Datenbank-Zustand jedem aktuellen Entity einen Wert (aus dem Wertebereich D des Attributs) zu. In verschiedenen Datenbank-Zuständen können demselben Entity unterschiedliche Werte zugeordnet werden.

Werte

```
int: der Wertebereich \mathbb{Z} (die ganzen Zahlen)
```

string: der Wertebereich \mathcal{C}^* (Folgen von Zeichen aus der Menge \mathcal{C})

•

ER-Modellierungskonzepte iv

Beziehungsattribute

- Ein Beziehungsattribut A ordnet (in einem Datenbank-Zustand) jeder konkreten aktuellen Beziehung einen Wert zu.
- textuelle Notation für Attribute und Beziehungsattribute:
 - $E(A_1:D_1,\ldots,A_m:D_m)$ oder kurz $E(A_1,\ldots,A_m)$
 - $R(E_1,\ldots,E_n;A_1,\ldots,A_p)$

Identifizierung durch Schlüssel

Für einen Entity-Typ $E(A_1, ..., A_m)$ sei eine spezielle Teilmenge $\{S_1, ..., S_k\} \subseteq \{A_1, ..., A_m\}$ der gesamten Attribute gegeben, die Schlüsselattribute.

In jedem Datenbankzustand identifizieren die aktuellen Werte der Schlüsselattribute eindeutig Instanzen des Entity-Typs *E* (Schlüsseleigenschaft):

 In jedem möglichen Datenbank-Zustand gilt, dass für jedes Paar von Entities gilt, dass, wenn die beiden Entities in allen Attributwerten der Schlüsselattribute S₁,..., S_k übereinstimmen, es dann dasselbe Entity ist.

Notation: Markieren durch Unterstreichen:

$$\textit{E}(\ldots,\underline{S_1},\ldots,\underline{S_{\underline{i}}},\ldots)$$

Stelligkeit von Beziehungen i

Dreistellige Beziehung:

Stelligkeit von Beziehungen ii

Mögliche Umwandlung in zweistellige Beziehungen:

Stelligkeit von Beziehungen iii

Korrekte Ausprägung der dreistelligen Beziehung

empfiehlt	Professor	Vorlesung	Buch (ISBN)
	Heuer	DB 1	1-234
	Heuer	DB 2	9-876
	Saake	DB 1	9-876
	Saake	DB 2	9-876

Stelligkeit von Beziehungen iv

Ausprägungen der drei 2-stelligen Beziehungstypen

P-V	Prof.	Vorl.
	Heuer	DB 1
	Heuer	DB 2
	Saake	DB 1
	Saake	DB 2

P-B	Prof.	Buch
	Heuer	1-234
	Heuer	9-876
	Saake	9-876

V-B	Vorl.	Buch
	DB 1	1-234
	DB 2	9-876
	DB 1	9-876

...entsprechen aber auch:

empfiehlt	Prof	Vorlesung	Buch (ISBN)
	Heuer	DB 1	1-234
	Heuer	DB 1	9-876
	Heuer	DB 2	9-876
	Saake	DB 1	9-876
	Saake	DB 2	9-876

Stelligkeit von Beziehungen v

Jetzt außerdem möglich:

P-V	Prof.	Vorl.
	Heuer	DB 1
	Heuer	DB 2
	Saake	DB 1
	Saake	DB 2

P-B	Prof.	Buch
	Heuer	1-234
	Heuer	9-876
	Saake	9-876

V-B	Vorl.	Buch
	DB 1	1-234
	DB 2	9-876
	DB 1	9-876
	DB 3	4-242

Kardinalitäten von Beziehungen i

1:1-Beziehung

1:n-Beziehung

n:m-Beziehung

Kardinalitäten von Beziehungen ii

	[min ₁ , max ₁]	[min ₂ , max ₂]
1:1	[O, 1]	[O, 1]
1:N	[O,*]	[O, 1]
N:M	[O,*]	[O,*]

- Notation für Kardinalitätsangaben an einem Beziehungstyp $R(E_1, ..., E_i[min_i, max_i], ..., E_n)$
- Kardinalitätsbedingung: $min_i \leq |\{r \mid r \in R \land r.E_i = e_i\}| \leq max_i$
- Spezielle Wertangabe für max_i ist * (= beliebig)
- [0, *] ist Standardannahme.
- zwingende Teilnahme: $min \ge 1$

Kardinalitäten: Beispiele

```
arbeitet_in(Mitarbeiter:in[0,1], Raum[0,3])
```

- Jedem:jeder Mitarbeiter:in ist in der Regel ein Raum zugeordnet, aber einige (externe) Mitarbeiter:innen haben kein Arbeitszimmer.
- Pro Zimmer arbeiten maximal drei Mitarbeiter:innen.

```
verantwortlich(Mitarbeiter:in[0,*],Rechner[1,1])
```

• Jedem Rechner ist genau ein:e Mitarbeiter:in zugeordnet, der:die für die Betreuung verantwortlich ist.

Funktionale Beziehungen i

Funktionale Beziehung: $R: E_1 \rightarrow E_2$

- Bei n:1-Beziehungen
 (bei 1:1-Beziehung liegen 2 funktionale Beziehungen vor)
- partielle funktionale Beziehung: durch $R(E_1[0,1], E_2)$ modelliert Jede Instanz aus E_1 ist maximal einer Instanz aus E_2 zugeordnet.
- totale funktionale Beziehung: durch $R(E_1[1,1],E_2)$ modelliert Jede Instanz aus E_1 ist *genau* einer Instanz aus E_2 zugeordnet.

Funktionale Beziehungen ii

Beispiel: Professor:in \rightarrow Zimmer

• In jedem Datenbank-Zustand wird jeder aktuellen Entity vom Typ E_1 (hier: Professor:in) maximal/genau eine aktuelle Entity vom Typ E_2 (hier: Zimmer) zugeordnet.

Abhängige Entity-Typen i

- auch schwache oder existenzabhängige Entity-Typen genannt
- funktionale Beziehung zu einem identifizierenden Entity-Typ
- partielles Schlüsselattribut (gestrichelt unterstrichen)
- Identifikation zusammen mit Schlüssel des identifizierenden Entity-Typ

Abhängige Entity-Typen ii

Mögliche Ausprägung für abhängige Entities

Die ist-Beziehung i

- Spezialfall einer funktionalen Beziehung: Jede Professor:in-Instanz ist genau einer Mitarbeiter:in-Instanz zugeordnet.
- Aber nicht alle Mitarbeiter:innen sind auch Professor:innen

Die ist-Beziehung ii

- Attribute des Obertyps (hier Mitarbeiter:in) vererben sich auf die Untertypen Professor:in(Name, PersonalNr_{von Mitarbeiter:in}, Lehrstuhl)
 Nicht nur Deklarationen vererben sich, sondern auch aktuelle Werte.
- Die Menge der aktuellen Entities von Professor:in ist immer eine Teilmenge der aktuellen Entities von Mitarbeiter:in.

Für die Beziehung E_1 IST E_2 gilt: IST $(E_1[1,1],E_2[0,1])$

Weitere Konzepte i

Erweiterungen des ER-Modells (exemplarisch)

Optionalität von Attributen

Verwenden wir auch nicht! Kann man anders (besser?) modellieren!

Weitere Konzepte ii

• strukturierte Attributwerte im ER-Modell

Weitere Konzepte iii

abgeleitete Attributwerte im ER-Modell

1.3. Erweiterungen des ER-Modells i

- · Spezialisierung und Generalisierung
 - Spezialisierung entspricht IST-Beziehung:
 Professor Spezialisierung von Mitarbeiter
 - Generalisierung: Entities in einen allgemeineren Kontext.

 Person oder Institut als Ausleiher
 - Partitionierung: Spezialfall der Spezialisierung, mehrere disjunkte Entity-Typen. Partitionierung von Büchern in Monographien und Sammelbändern.

1.3. Erweiterungen des ER-Modells ii

komplexe Objekte

- Aggregierung: Entity aus einzelnen Instanzen anderer Entity-Typen zusammengesetzt.
 Fahrzeug zusammengesetzt aus Motor, Karosserie...
- Sammlung oder Assoziation: Mengenbildung.
 Team als Gruppe von Personen.

· Beziehungen höheren Typs

- Spezialisierung und Generalisierung auch für Beziehungstypen.
 Beispiel: Beziehung Ausleihe zu Kurzausleihe spezialisiert.
- Beziehungen zwischen Beziehungsinstanzen:
 Beziehungen zweiter und höherer Ordnung