Университет ИТМО Факультет ПИиКТ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

I CEMECTP

Лектор: Екатерина Станиславовна Трифанова

Автор: Александр Калиев Проект на GitHub

Содержание

1	2023-09-04						
	1.1	Intro	3				
	1.2	Logical symbolic	3				
	1.3	Sets	4				
	1.4	Operations between sets	4				
2	2023-09-10 (NAL)						
	2.1	De Morgan laws	5				
	2.2	Distribution laws	6				
	2.3	Injection, surjection and biection	7				
	2.4	Properties of images and prototypes	7				
	2.5	Superposition of mapping	8				
3	2023-09-11						
	3.1	Defining \mathbb{R}	8				
	3.2	Corrolaries	9				
4	2023-09-15						
	4.1	Expanding \mathbb{R}	11				
	4.2	Defining $\mathbb N$	11				
	4.3	Properties of $n \in \mathbb{N}$	12				
5	2023-09-18						
	5.1	Бином Ньютона	13				
	5.2	Defining intervals on $\mathbb R$	13				
	5.3	Absolute value	14				
	5.4	Bounds of the set in \mathbb{R}	14				
6	2023-09-22						
	6.1		15				
	6.2	Archimed's axiom	16				
	6.3	Canthor's theorem about line segments	17				
7	2023-09-25						
	7.1	Borrel-Lebeg lemma	17				
	7.2	closedness of sets	18				

8	2023-09-29				
	8.1	cardin	ality of a set	18	
		8.1.1	Properties of countable sets	19	
		8 1 2	Canthor's theorem	19	

1 2023-09-04

1.1 Intro

Lecturer: Trifanova Ekaterina Stanislavovna

Telegram: @estrifanova

The whole semester is splitted by 3 parts, each of them contains:

- 1. control test
- 2. theory test (on GeoLin)
- 3. hometask
- 4. colloquium

Summary: 100 p.

The course is linked to A. Boytsev's course.

1.2 Logical symbolic

Определение 1.1. A statement is a sentence that is either true or false.

- $\triangleright \forall$ for all
- $\triangleright \exists exists$
- \triangleright ! single
- $ightarrow \Box let$

Пример. $\forall a \in \mathbb{N} \exists ! b \in \mathbb{N} : a + b = 0$

$$A \Rightarrow B, A \Leftarrow B, A \Leftrightarrow B$$

$$A = a : 6B = a : 3A \implies B$$

 \wedge - conjunction, \vee - dis junction.

$$A \iff B \lor C$$

Лемма 1.1. A is true $\iff \neg A$ is false

1.3 Sets

Определение 1.2. A set is a group of an objects, with defined rule which can define, is object in a set or not

Парадокс Рассела (множество множеств, которое не содержит себя в качестве элемента)

$$a \in A$$

$$b \notin A \iff \neg (b \in A)$$

Определение 1.3. $A \subset B \iff \forall a \in A \implies a \in B$

Определение 1.4. $A = B \iff A \subset B \land B \subset A$

1.4 Operations between sets

- 1. Union $A \cup B = \{x : x \in A \lor x \in B\}$
- 2. Intersection $A \cap B = \{x : x \in A \land x \in B\}$

Let A be a set of indexes. $\alpha \in A$. $\alpha \mapsto G_{\alpha}$. We want do define a union of n sets.

Определение 1.5.

$$\bigcup_{\alpha \in A} G_{\alpha} = \{x : \exists \alpha : x \in G_{\alpha}\} = G_{A_1} \cup G_{A_2} \cup G_{A_3} \cup \dots \cup G_{A_n}\}$$

Определение 1.6.

$$\bigcap_{\alpha \in A} G_{\alpha} = \{x : \forall \alpha : x \in G_{\alpha}\} = G_{A_1} \cap G_{A_2} \cap G_{A_3} \cap \dots \cap G_{A_n}$$

Определение 1.7.

$$A \setminus B = \{x : x \in A \land x \notin B\}$$

We define U is an universal set: $\forall x : x \in U$.

 $U \setminus A = A^c$ – complement ion.

 $A \times B$ – desert multiplication of sets. $A \times B = \{(x, y) : x \in A, y \in B\}$

Лемма 1.2 (Свойства операций). $\forall A, B, C$:

- 1. $A \cup B = B \cup A$ (коммутативность)
- 2. $A \cap B = B \cap A$ (коммутативность)
- 3. $A \cup (B \cup C) = (A \cup B) \cup C$ (ассоциативность)
- 4. $A \cap (B \cap C) = (A \cap B) \cap C$ (accoquamивность)

5.
$$A \cup A = A \cup \emptyset = A$$

6.
$$A \cap \emptyset = \emptyset$$

7.
$$A \cap A = A$$

8.
$$A \cup A^c = U$$

9.
$$A \cap A^c = \emptyset$$

10.
$$(A^c)^c = A$$

Упражнение. Доказать верхние 10 свойств. Доказательство достаточно тривиально.

Замечание. Доказательство следует из определения.

Теорема 1.1 (великая теорема Ферма). $\forall x,y,z \in \mathbb{Z} : x,y,z > 2 : x^n + y^n = z^n$ не имеет решений.

2 2023-09-10 (NAL)

(not a lecture)

2.1 De Morgan laws

Утверждение 2.1 (De Morgan laws).

$$A \setminus \bigcup_{i \in I} X_i = \bigcap_{i \in I} (A \setminus X_i)$$

$$A \setminus \bigcap_{i \in I} X_i = \bigcup_{i \in I} (A \setminus X_i)$$

Доказательство. Let's proof the first formula. Using the definition:

$$A \setminus \bigcup_{i \in I} X_{\alpha} = A \setminus \{x \in U : \exists i \in I : x \in X_i\}$$

$$= \{x : x \in A \& \forall i \in I : x \notin X_i\}$$

$$= \{x : \forall i \in I : x \in A \& x \notin X_i\}$$

$$= \bigcap_{i \in I} (A \setminus X_i)$$

Similarly, proving the second formula, but with a little bit different approach:

$$A \setminus \bigcap_{i \in I} X_i = A \setminus \{x \in U : X_1 \cap X_2 \cap \dots \cap X_n\}$$
$$= \{x \in U : x \in A \land x \notin (X_1 \cap X_2 \cap \dots \cap X_n)\}$$
$$= \{\}$$

It's enough for x to not be in any of X_i (this statement is trivial). Then, the set is: $\{x \in U : \exists i \in I : x \in A \land x\}$

This is equal to:

$$\bigcup_{i\in I} (A\setminus X_i)$$

2.2 Distribution laws

Утверждение 2.2 (Distribution).

$$Y \cap \bigcup_{i \in I} X_i = \bigcup_{i \in I} (Y \cap X_i)$$

$$Y \cup \bigcap_{i \in I} X_i = \bigcap_{i \in I} (Y \cup X_i)$$

Доказательство. Proving the first law:

$$Y \cap \bigcup_{i \in I} X_i = \{x \in U : x \in Y \land x \in (X_1 \cup X_2 \cup \dots \cup X_N)\}$$

$$= \{x \in U : x \in Y \land \exists i \in I : x \in X_i\}$$

$$= \{x \in U : \exists i \in I : x \in Y \cap X_i\}$$

$$= \bigcup_{i \in I} (Y \cap X_i)$$

Similarly, proving the second law:

$$Y \cup \bigcap_{i \in I} X_i = \bigcap_{i \in I} (Y \cup X_i)$$

$$= \{x \in U : x \in Y \lor \forall i \in I : x \in X_i\}$$

$$= \{x \in U : \forall i \in I : x \in (Y \cup X_i)\}$$

$$= \bigcap_{i \in I} (Y \cup X_i)$$

2.3 Injection, surjection and biection

Определение 2.1 (mapping). A mapping is a rule $f: \forall x \in X \exists ! y \in Y: f(x) = y$.

Определение 2.2 (injection). A mapping $f: X \mapsto Y$ is called **an injection**, if $\forall x_1, x_2 \in X: x_1 \neq x_2 \land f(x_1) \neq f(x_2)$

Определение 2.3 (surjection). A mapping $f: X \mapsto Y$ is called a surjection, if $\forall y \in Y: \exists x \in X: f(x) = y$

Определение 2.4 (biection). We call f a biection if f is both an injection and a surjection.

2.4 Properties of images and prototypes

We define $A,B \in X, A',B' \in Y$.

Определение 2.5 (an image). $f^{-1}(Y) = \{x \in X : f(x) \in Y\}$

- 1. $A \subset B \Rightarrow f(A) \subset f(B)$. It's obvious.
- 2. $f(A \cup B) = f(A) \cup f(B)$.

Доказательство. Let
$$y \in f(A \cup B) \Rightarrow \exists x \in A \cup B : f(x) = y \Rightarrow x \in A \lor x \in B \Rightarrow f(x) \in f(A) \lor f(x) \in f(B) \Rightarrow f(x) \in f(A) \cup f(B)$$
.

3. $f(A \cap B) = f(A) \cap f(B)$.

Доказательство. Let
$$y \in f(A \cap B) \Rightarrow \exists x \in A \cap B : f(x) = y \Rightarrow f(x) \in f(A) \land f(x) \in f(B) \Rightarrow y \in A \land y \in B \Rightarrow f(x) \in A \land f(x) \in B \Rightarrow f(A \cap B) = f(A) \cap f(B)$$

- 4. $A' \subset B' \Rightarrow f^{-1}(A') \subset f^{-1}(B')$. Obviously, true.
- 5. $f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$.

Доказательство. Let
$$x \in f^{-1}(A' \cup B') \Rightarrow y \in A' \lor y \in B' \Rightarrow x \in f^{-1}(A') \lor x \in f^{-1}(B') \Rightarrow f^{-1}(A' \cup B') \in f^{-1}(A) \cup f^{-1}(B)$$

6.
$$f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B')$$

Let $f: X \mapsto Y$ be a biection. Then:

Определение 2.6 (reverse map). $f^{-1}: Y \mapsto X$ is called **reverse map** if $\forall y \in Y \exists ! x \in X: f^{-1}(y) = x$

2.5 Superposition of mapping

Теорема 2.1 (associativity). $f \circ (g \circ h) = (f \circ g) \circ h$

Доказательство. Left side: $f \circ g(h) = f(g(h))$. Right side: $f(g) \circ h = f(g(h))$

3 2023-09-11

⊲ talked about mappings (and will be in the 1st semester)

3.1 Defining \mathbb{R}

Мы выбираем аксиоматический подход.

Определение 3.1 (\mathbb{R}). We call a set an \mathbb{R} if:

▶ Addition

def " + " : $\mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ is satisfied:

- 1. (commutativity): a + b = b + a
- 2. (associativity): a + (b + c) = (a + b) + c
- 3. $\exists 0 : \forall a + 0 = a$. We call 0 a **neutral** element.
- 4. $\forall a \in \mathbb{R} : \exists (-a) : a + (-a) = 0$
- ▶ Multiplication

def " \cdot ": $\mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ is satisfied:

- 1. (commutativity): $a \cdot b = b \cdot a$
- 2. (associativity): $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. $\exists 1 \neq 0 : \forall a \in A : a \cdot 1 = a$
- 4. $\forall a \in A : \exists a^{-1} \in A : a \cdot a^{-1} = 1$
- \triangleright (distributivity): $\forall a,b,c \in \mathbb{R} : a \cdot (b+c) = a \cdot b + a \cdot c \& (a+b) \cdot c = a \cdot c + b \cdot c$
- \triangleright (axioms of order) $\forall a,b \in \mathbb{R}$ mapping of order \leqslant set if:
 - 1. $x \leqslant x$
 - 2. $(x \le y \land y \le x) \Rightarrow x = y$
 - 3. (transitivity) $x \le y \land y \le z \Rightarrow x \le z$
 - 4. $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$
- \triangleright (Connection between \leq , +) $\forall x,y,z \in \mathbb{R} : x \leq y \Rightarrow x+z \leq y+z$ (this is not implied by previous conditions)

- \triangleright (Connection betwen \cdot and \leqslant): $0 \leqslant x \land 0 \leqslant y \Rightarrow 0 \leqslant x \cdot y$
- ightharpoonup (Axiom of continuity (completeness)): Let $X,Y\subset\mathbb{R}: \forall x\in X: \forall y\in Y: x\leqslant y$. Then $\exists c\in\mathbb{R}: x\leqslant c\leqslant y$

Пример (This axiom doesn't work on \mathbb{Q}). Let $X = \{x \in \mathbb{Q} : x \cdot x \leq 2\}$, $Y = \{y \in \mathbb{Q} : y \cdot y \geqslant 2\}$. Then, $\exists ! a \notin \mathbb{Q} \ (a = \sqrt{2}) :$ satisfies this axiom.

Замечание. Definition of \mathbb{R} just contains the conditions that satisfy the **field**.

3.2 Corrolaries

Следствие (Corrolaries on Axioms 1-3).

1. $\exists !0, \exists !1.$

Доказательство для θ . Let there be $0_1, 0_2$. Then:

$$0_1 = 0_1 + 0_2 = 0_2$$

- $2. \exists !(-x) \forall x$
- 3. $\forall x \neq 0 \exists ! x^{-1}$

Доказательство. Let there be $-x_1$ and $-x_2$. Then:

$$(-x_1) = (-x_1) + (x + (-x_2)) = (x + (-x_1)) + (-x_2) = (-x_2)$$

- 4. $\forall a,b \in \mathbb{R}$ an equality x+a=b is set. Then there is only one solution x=b+(-a).
- 5. $x \cdot a = b(a, b \in \mathbb{R})$. Then, $\exists ! x = b \cdot a^{-1}$
- 6. $\forall x : x \cdot 0 = 0$

Доказательство.
$$x \cdot 0 = x \cdot (0+0) = 0 \cdot x + 0 \cdot x = 0 \Rightarrow 0 = x \cdot 0$$

7. $x \cdot y = 0 \Leftrightarrow x = 0 \lor y = 0$

Доказательство. \Leftarrow is proven.

$$\Rightarrow : x \neq 0 \Rightarrow \exists x^{-1} : x \cdot y \cdot x^{-1} = 0 \Rightarrow y = 0$$
. Proof for y is similar.

8. $-x = -1 \cdot x$

Доказательство.
$$-1 \cdot x + x = -1 \cdot x + 1 \cdot x = x(-1+1) = x \cdot 0 = 0$$

9. $-1 \cdot (-x) = x$. Proof is trivial based on previous)

10. $(-x) \cdot (-x) = x \cdot x$. Proof is also trivial.

Определение 3.2.

$$x \leqslant y \Leftrightarrow \geqslant x$$

$$x < y \Leftrightarrow x \leqslant y \land x \neq y$$

$$x > y \Leftrightarrow y \geqslant x \land y \neq x$$

Следствие (Corrolaries on axioms 4-6).

1. $\forall x,y \in \mathbb{R}$: the only one statement is true

$$\triangleright x < y$$

$$\triangleright x = y$$

$$\triangleright x > y$$

$$2. \ x < y \land y \leqslant z \Rightarrow x < z$$

3. ...

4. $x > 0 \Leftrightarrow -x < 0$. The proof is obvious.

5.
$$x < 0 \land y < 0 \Rightarrow xy > 0$$

6. Can add to strict inequality.

7.
$$x \le y \land z \le w \Rightarrow x + z \le y + w$$

8.
$$0 < x \land 0 < y \Rightarrow 0 < xy$$

9.
$$0 < x \land y < z \Rightarrow xz < yz$$

10. 1 > 0

Доказательство. Let $1 \leq 0 \Rightarrow 1 < 0 \Rightarrow 1 \cdot 1 > 0$!?. Then, 1 > 0.

4 2023-09-15

4.1 Expanding \mathbb{R}

Определение 4.1 $(\overline{\mathbb{R}})$. $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$.

Свойство 4.1.1. $\forall x \in \mathbb{R}$:

$$\triangleright x + (+\infty) = +\infty := x + \infty$$

$$\Rightarrow x + (-\infty) = -\infty := x - \infty$$

$$\triangleright \ x \cdot (\pm \infty) = \begin{cases} \pm \infty, & \text{if } x > 0 \\ \mp \infty, & \text{if } x < 0 \\ undefined, & \text{if } x = 0 \end{cases}$$

$$> \frac{x}{\pm \infty} = 0$$

$$\triangleright \ \frac{\pm \infty}{x} = \begin{cases} \pm \infty, & \text{if } x > 0 \\ \mp \infty, & \text{if } x < 0 \end{cases}$$

$$(+\infty) + (+\infty) = +\infty$$

 $(-\infty) + (-\infty) = -\infty$

$$(-\infty) + (-\infty) = -\infty$$

$$(+\infty) \cdot (+\infty) = (-\infty) \cdot (-\infty) = +\infty$$

$$(+\infty)\cdot(-\infty)=(-\infty)\cdot(+\infty)=-\infty$$

$$\forall x : -\infty < x < +\infty$$

Actions undefined in \mathbb{R} :

$$\triangleright 0 \cdot (\pm \infty)$$

$$\triangleright (+\infty) + (-\infty)$$

$$\triangleright 1^{\infty}$$

$$\triangleright \quad \frac{\pm \infty}{\pm \infty}$$

$$\triangleright \frac{0}{0}$$

$$\triangleright 0^0$$

4.2Defining \mathbb{N}

Определение 4.2 (Inductive set). A set $X \subset \mathbb{R}$ is *inductive*, if $\forall x \in X : x+1 \in X$

Лемма 4.1. Let X_1, X_2, \ldots, X_n be inductive sets. Then, $X_1 \cap X_2 \cap \ldots X_n$ is also inductive.

Доказательство. Trivially proof the $x \mapsto x+1$

Определение 4.3. \mathbb{N} is an intersection of every inductive sets: $\forall i: 1 \in A_i$

Замечание. \mathbb{N} is minimal inductive set, that contains 1.

Теорема 4.1 (Math. induction principle). Let $X \subset \mathbb{N}, 1 \in X, X$ is inductive. Then, $\mathbb{N} = X$

Упражнение. Proof that $\forall n > -1, n \in \mathbb{N}, x \in \mathbb{R} : (1+x)^n \geqslant 1+nx$

4.3 Properties of $n \in \mathbb{N}$

Лемма 4.2. $\forall a,b \in \mathbb{N} : a+b \in \mathbb{N}, ab \in \mathbb{N}$

Замечание. Proof using math. induction.

Определение 4.4 (\mathbb{Z}). $\mathbb{Z} := \mathbb{N} \cup \{0\} \cup \{x : -x \in \mathbb{N}\}$

Определение 4.5 (\mathbb{Q}). $\mathbb{Q}:=\left\{\frac{m}{n}:=m\cdot n^{-1}, m\in\mathbb{Z}, n\in\mathbb{N}\right\}$

Теорема 4.2 (Existence of irrational number). A set $\mathbb{R} \setminus \mathbb{Q} = \mathbb{I}$ is not empty.

Let's proof that $\sqrt{2}$ is irrational.

Доказательство. Plan:

- 1. Prove that $\exists c \in \mathbb{R} : c^2 = 2$.
- 2. Prove that c is irrational.
- 2. Let $c = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$. Then $c^2 \cdot n^2 = m^2 \Rightarrow 2n^2 = m^2$!?
- 1. Using axiom of continuity. Let $X = \{x \in \mathbb{R}_{x>0} : x^2 < 2\}$, $Y = \{y \in \mathbb{R}_{y>0} : y^2 > 2\}$. Then $x \leqslant y \Rightarrow \exists c \in \mathbb{R} : x \leqslant c \leqslant y \forall x \in X, y \in Y$

Proving that $c \notin X$. Let $c \in X$, i.e. $c^2 < 2$. Consider $c + \frac{2-c^2}{3c} = c + \frac{\Delta}{3c} = \xi$ $(c + \frac{\Delta}{3c})^2 = c^2 + \frac{2}{3}\Delta + \frac{\Delta \cdot \Delta}{9c^2} \leqslant c^2 + (\frac{2}{3} + \frac{1}{3})\Delta = 2 \Rightarrow \xi \in X$, but $\xi > c!$? $\Rightarrow c \notin X$. Similarly, we proof for Y.

$$\Rightarrow \exists c \in \mathbb{R} : c^2 = 2 \Rightarrow |\mathbb{I}| \neq 0$$

5 2023-09-18

5.1 Бином Ньютона

Определение **5.1** (Binomial coefficients). $C_n^k = \frac{n!}{k!(n-k)!}, n \in \mathbb{N}, k \in \mathbb{N} \setminus \{0\}, k \leqslant n$ Упражнение. Вывести.

Свойство 5.1.1.

1.
$$C_n^0 = C_n^n = 1$$
 (trivial)

2.
$$C_n^1 = C_n^{n-1} = n$$

$$3. C_n^k = C_n^{n-k}$$

4.
$$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$$

Упражнение. Proof using Pascal's triangle (trivial).

Доказательство.
$$C_n^k + C_n^{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{n!}{k!(n-k-1)!} \cdot \left(\frac{1}{n-k} + \frac{1}{k+1}\right) = \frac{(n+1)!}{(k+1)!\cdot(n-k)!} = C_{n+1}^{k+1}$$

Теорема 5.1 (Binomial theorem). $\forall a,b \in \mathbb{R}, \forall n \in \mathbb{N} : (a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$

Доказательство. Proving using induction.

$$> n = 1 : (a+b)^1 = C_1^0 a^1 + C_1^1 b^1 = a+b$$

$$\triangleright$$
 let $n = k : (a+b)^k = \sum_{m=0}^k C_k^m a^m b^{k-m}$

5.2 Defining intervals on \mathbb{R}

Определение 5.2. отрезок: $[a,b] = \{x \in \mathbb{R} : a \leqslant x \leqslant b\}$

interval:
$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

semi-interval:
$$(a,b], [a,b) = \{x \in \mathbb{R} : a < x \leqslant b\}, \{x \in \mathbb{R} : a \leqslant x < b\}$$

луч:
$$(-\infty, a), (-\infty, a], [b, +\infty), (b, +\infty)$$

Определение 5.3 (Окрестность точки x_0). $x_0 \in (a,b) = U(x_0)$ (including $(-\infty,a),(b,+\infty)$) ε -neighbourhood: $(x_0 - \varepsilon, x_0 + \varepsilon) = U_{\varepsilon}(x_0)$

Определение 5.4 (ε -neighbourhood for $\overline{\mathbb{R}}$). $\triangleright +\infty : (a; +\infty) = U(+\infty)$

$$\triangleright -\infty : (-\infty, a) = U(-\infty)$$

$$\triangleright \infty = U(+\infty) \cup U(-\infty)$$

$$\triangleright U_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}; +\infty); U_{\varepsilon}(-\infty) = (-\infty, -\frac{1}{\varepsilon})$$

5.3 Absolute value

Определение 5.5. $\forall x \in \mathbb{R} : |x| = \begin{cases} x, & \text{if } x > 0 \\ -x, & \text{if } x \leqslant 0 \end{cases}$

Свойство 5.3.1. 1. |x| = |-x|

2.
$$|x|^2 = x^2$$

3.
$$|x| \geqslant 0$$
; $|x| = 0 \Leftrightarrow x = 0$

4.
$$|xy| = |x||y|$$

$$5. \ \frac{|x|}{|y|} = \left| \frac{x}{y} \right|$$

6.
$$-|x| \leqslant x \leqslant |x|$$

$$7. |x+y| \leqslant |x| + |y|$$

Доказательство. $(x+y)^2 \leqslant x^2 + y^2 + 2|xy| \Leftrightarrow 2xy \leqslant |2xy|$

8.
$$|x| \leqslant a \Leftrightarrow -a \leqslant x \leqslant a$$

9.
$$|x| \geqslant b \Leftrightarrow x \leqslant -b \lor x \geqslant b$$

10.
$$|x-y| \ge ||x|-|y||$$

5.4 Bounds of the set in \mathbb{R}

Let $X \subset \mathbb{R}$

Определение 5.6. We say that X is bounded above, if $\exists M \in \mathbb{R} : x \leqslant M \forall x \in X$ (M is upper bound)

We say that X is bouded below, if $\exists m \in \mathbb{R} : m \leqslant x, \forall x \in X \ (m \text{ is lower bound})$

We assume that X is **bounded**, if its bounded both below and above.

Пример. Let X = [0, 1)

Определение 5.7 (min and max element). max. element: $x_{\text{max}} = \max X : x_{\text{max}} \in X, \forall x \in X : x \leqslant x_{\text{max}}$

Замечание. X doesn't have max. element.

Доказательство. Let $M = \max X$. Then, $\exists M_0 \in \frac{M+1}{2} > M!$?

Определение 5.8 (supremum and infremum of the set). $S \in \mathbb{R}$ is called an exact upper bound, (or a supremum of X), if S = lowest upper bound

We denote is as $\sup X = S = \min \{M : x \leq M \forall x \in X\}$

If X is not bounded above, then $\sup X = +\infty$

 $s \in \mathbb{R}$ is called an exact lower bound, (or an infremum of X), if S = highest lower bound. We denote it as $s = \inf X = \max \{m : x \ge m, \forall x \in X\}$

Замечание. $X = \{x \in \mathbb{Q} : x^2 < 2\} \Rightarrow \sup X$ is undefined.

Лемма 5.1. X is bounded $\Leftrightarrow \exists c \in \mathbb{R} : |x| \leqslant c, \forall x \in X$

Упражнение. Proof.

6 2023-09-22

6.1

Let $X \subset \mathbb{R}$

Замечание. If X is not bounded, then $\sup X = +\infty$ & $\inf X = -\infty$. Let i = [0; 1). We will proof that there is a supremum of i.

Лемма 6.1. If $\exists \max X$, then $\sup X = \max X$.

If $\exists \min X$, then $\inf X = \min X$.

Implication only!

Доказательство. \triangleright Obviously, let $M = \max X$. Then M is upper bound by definition of max. Let there be M' < M such that M' is an upper bound. Then it's not an upper bound by definition.

 \triangleright Same story for min X

Лемма 6.2 (different definition of supremum and infremum). $M = \sup X \Leftrightarrow M : \forall x \in X : x \leqslant M \& \forall \varepsilon > 0 \exists x \in X : x > M - \varepsilon$

 $m = \inf X \Leftrightarrow m : \forall x \in X : x \geqslant m \& \forall \varepsilon > 0 \exists x \in X : x > m + \varepsilon$

ИТМО, ФПИиКТ, осень 2023

Доказательство. By definition.

Теорема 6.1 (Exact bound principle). $\forall X: X \text{ is upper bounded} \Rightarrow \exists \sup X. \text{ Same for } \forall X: X \text{ is lower bounded} \Rightarrow \exists \inf X$

Доказательство. If the set is upper bounded, then \exists an upper bound. Let B be a set of upper bounds: $B = \{M \in \mathbb{R} : x \leq M, x \in X\}$. Then $\forall M, x : x \leq M$. By continuity axiom, $\exists c \in \mathbb{R} : x \leq c \leq M \forall x \in X, M \in B$. Let's proof that c is a supremum of X. c is an upper bound of X and it's lower that every other upper bounds in M. Then, $c = \sup X$

Замечание. Even if X is not upper bounded. Then $\forall X \neq \emptyset \exists c \in \mathbb{R} : c = \sup X$

6.2 Archimed's axiom

Лемма 6.3. Let $X \subset \mathbb{N}, X \neq \emptyset, X$ is bounded. Then, the maximum exists.

Доказательство. $\exists M = \sup X = k \in \mathbb{R} \text{ for } \varepsilon = 1.$ Then $\exists x \in X : k-1 < x \leqslant k.$ Then $x \in \mathbb{N}$. Proving that x = k. k < x+1 then $\forall y \in X : y \leqslant x$, because of $y \leqslant k < x+1 \Rightarrow y < x+1 \Rightarrow y \leqslant x \Rightarrow x = \max X$.

Следствие. 1. № is not bounded above.

- 2. \mathbb{Z} is bounded nor below and above.
- 3. $X \subset \mathbb{Z}$ if X is bounded below then $\exists \min X$; if X is bounded above the $\exists \max X$

Теорема 6.2 (Archimed's axiom). Let $x \in R, x > 0$. Then $\forall y \in \mathbb{R} \exists k \in \mathbb{Z} : (k-1)x \leqslant y \leqslant kx$.

Interpretation: we can fill a segment of length y with a segments of length x.

Доказательство. Consider $T = \{t \in \mathbb{Z} : \frac{y}{x} \leqslant t\}$. $T \neq \emptyset$ & is bounded below. Then $\exists k = \min T : \frac{y}{x} < k \Rightarrow y < kx \Rightarrow k-1 \leqslant \frac{y}{x}$, cuz if it's false then $k-1 \in T$ but $k-1 < k = \min T$!? \Box

Следствие. 1. $\forall \varepsilon > 0 \exists n \in \mathbb{N} : 0 < \frac{1}{n} < \varepsilon$

Доказательство. $y = 1, x = \varepsilon \Rightarrow \exists n : 1 < n\varepsilon$

2. If $x \ge 0$ and $\forall \varepsilon > 0$ $x < \varepsilon \Rightarrow x = 0$

Доказательство. $0 \le x < \varepsilon$. Let there be $x > 0 \Rightarrow \varepsilon = \frac{x}{2}$ the statement is false.

3. $\forall x \in \mathbb{R} \exists ! k = [x] \in \mathbb{Z} : k \leqslant x < k+1$

Доказательство. $x=1, \varepsilon=x$

Лемма 6.4 (density of \mathbb{Q} and \mathbb{I} in \mathbb{R}). Let there be a < b. Then on $(a,b)\exists q \in \mathbb{Q}, j \in \mathbb{I}$

Доказательство. $\exists n \in \mathbb{N}: \frac{1}{n} < b-a, [na] \leqslant na < [na] + 1 \Rightarrow a < \frac{[na]+1}{n} = q \leqslant \frac{na+1}{n} < b$

 $\sqrt{2}\in\mathbb{I}$. Consider $q\in(a-\sqrt{2},b-\sqrt{2})$. Then, $q+\sqrt{2}\in(a,b)$. Из-за замкнутости $q+\sqrt{2}\in\mathbb{I}$. Let $q+\sqrt{2}\in\mathbb{Q}$. Then, $q+\sqrt{2}-q=\sqrt{2}\in\mathbb{Q}$!?

6.3 Canthor's theorem about line segments

Let $I_n = [a_n, b_n], a_n \leqslant b_n$

We assume that $\cdots \subset I_n \subset I_{n-1} \subset \cdots \subset I_2 \subset I_1$

Теорема 6.3. If there is this system of line segments, then:

$$\triangleright \bigcap_{n=1}^{\infty} I_n \neq \emptyset(i.e. \exists c \in \bigcap I_n$$

$$\triangleright If \forall \varepsilon > 0 \exists I_n : b_n - a_n < \varepsilon, then \bigcap I_n = \{c\}, i.e. \exists !c$$

Доказательство. $\triangleright A = \{a_n\}, B = \{b_n\}, a_n \leqslant b_m \Rightarrow_{\text{continuity A.}} \exists c : a_n \leqslant c \leqslant b_n \Rightarrow c \in I_n \forall n \in \mathbb{N}$

$$\triangleright$$
 Let $c_1, c_2 \in I_n \ \forall n$. Let $c_1 < c_2 \Rightarrow \text{ for } \varepsilon = c_2 - c_1 \exists (a_n b_n) : b_n - a_n < \varepsilon!$?

7 2023-09-25

7.1 Borrel-Lebeg lemma

Consider G_{α} as a sets.

 G_{α} is forming a cover of a set X if $X \subset \bigcup_{\alpha} G_{\alpha}$

Лемма 7.1 (Borrel-Lebeg lemma (GBL lemma)). From any coverage of a segment by interval we can choose a finite one.

Доказательство. Consider $[a_0,b_0]$. Let there be no option to choose a finite coverage from $\bigcup_{\alpha} G_{\alpha}$. Split the segment by half and we get $[a_1,b_1]$ - a cover where we cant choose a finite covering. ... $[a_2,b_2] \subset [a_1,b_1] \subset [a_0,b_0]$. $b_n - a_n = \frac{b_0-a_0}{2^n} < \frac{b_0-a_0}{n} < \frac{1}{\varepsilon} \Rightarrow \forall \varepsilon > 0 \exists n \Rightarrow \exists ! c : c \in [a_i,b_i]$

$$\exists G = (k,l) : c \in G \Rightarrow \exists n_0 : [a_{n_0}, b_{n_0}] \subset (k,l)!?$$

Замечание. Basically proving Canthor's theorem and getting!? for this.

Лемма 7.2 (limit point).

Определение 7.1. A dot x_0 is called **limited** point of this set E if $\forall \overset{\circ}{U}(x_0) \cap E \neq \varnothing$, i.e. $U(x_0) \cap E$ is infinite.

Пример. Consider [0,1) A set of limit points E'=[0,1]

Пример. Consider $E = \left\{\frac{1}{n}, n \in \mathbb{N}\right\} E' = \{0\}$

Определение 7.2. If $x_0 \in E \& x_0$ is not a limit point, then x_0 is **isolated** point of E, i.e. $\exists U(x_0) : \overset{\circ}{U}(x_0) \cap E = \varnothing$.

(Lemma) Let E is an infinite and bounded $E \subset \mathbb{R}$. Then $\exists x_0 : x_0$ is limit point of E.

Доказательство. E is bounded $\Rightarrow \exists [a,b] : E \subset [a,b]$. Let there be no limit points in [a,b], i.e. $\forall x \in [a,b]$ is not limit point for E, i.e. there is a finite number of points in $E \in U(x)$

$$\{U(x)\}\$$
is cover of a segment by intervals $\Rightarrow_{BGL\ lemma} \exists \{U(x_1), \dots, U(x_n)\}$

 $E \subset \bigcup_{i=1}^n U(x_i)$, but a subset contains a finite number of points from E!?

Замечание. We can select limit points in $\overline{\mathbb{R}}$

e.g.
$$\mathbb{N}' = \{+\infty\}$$

7.2 closedness of sets

Определение 7.3. A set E is close d (in $\mathbb R$) if it contains every it's limit point, i.e. $E' \subset E$.

An \varnothing is closed by definition.

Пример. E = [0,1) isn't closed

[0,1] is closed

$$E = \left\{\frac{1}{n}, n \in \mathbb{N}\right\} \cup \{0\}$$
 is closed.

Лемма 7.3. Let $E \subset \mathbb{R}$, E is closed and bounded above (below). Then $\exists \max E(\min E)$

Доказательство. By exact bound principle $\exists M = \sup E \in \mathbb{R}$. Proving that $M \in E$. Let $M \notin E$. Then, we consider any neighbourhood $(\alpha, \beta) \ni M$. For $\varepsilon_1 = M - \alpha > 0 : \exists x_1 \in E \cap (\alpha, M)$. For $\varepsilon_2 = M - x_1$, for $\varepsilon_3 = M - x_2, \dots \Rightarrow$ there is infinite amount of dots in E, i.e. M is a limit point of $E \Rightarrow M \in E$

Следствие. Any finite set has it's maximum and minimum. (it has no limit points).

Следствие. For any $(\alpha, \beta) \subset \mathbb{R}$: infinite number of numbers of \mathbb{Q} , \mathbb{I}

8 2023-09-29

8.1 cardinality of a set

Определение 8.1. Consider 2 sets A, B. We call them equal-powered, if a biection exists.

Пример. $\mathbb{N} \sim 2\mathbb{N}$

Определение 8.2. The class of equality that our element are in is called a cardinality of a set.

If a set is finite, then we assume it's cardinality as a number of elements.

A set is *countable* if a biection $f: A \mapsto \mathbb{N}$ exists. (i.e. we can enum a set)

8.1.1 Properties of countable sets

- 1. Any infinite set has a countable set inside.
- 2. Any infinite subset of countable set is countable.

Доказательство. Consider \mathbb{N} , $A \subset \mathbb{N}$, A is finite. Then A is bounded below $\Rightarrow \exists \min A = a_1$. A set is bounded and closed $\Rightarrow \exists \min(A \setminus \{a_1\}) = a_2$, and so on...

Let
$$a \in A, \{x \in A : x < a\}$$
 is finite

- 3. $\mathbb{N} \times \mathbb{N}$ is a countable set. Proof is trivial. (BY PASTOR A.V.)
- 4. \mathbb{Z} is countable. Super trivial.
- 5. Q is countable. Proof is also trivial (BY PASTOR A.V.)
- 6. A,B is NMTC $\Rightarrow A \cup B, A \cap B, A \times B$ is also NMTC
- 7. A_1, A_2, \ldots, A_n are NMTC. Then $\bigcup_{i=0}^n A_i$ is NMTC. Proven by Pastor A. V.

8.1.2 Canthor's theorem

Теорема 8.1. [0,1] is uncountable.

Доказательство. Let there be a biection $[0,1] \mapsto \mathbb{N}$. Then $\exists [a_1,b_1] \subset [0,1] : x_1 \notin [a_1,b_1] ; \exists [a_2,b_2] \subset [0,1] : x_2 \notin [a_2,b_2] ; \dots$. By Canthor's theorem $\exists c : c \in \text{ all segments } \Rightarrow c \neq x_i$

Лемма 8.1. *Continuums:* $\langle a,b \rangle$, $\langle a,+\infty \rangle$, $(-\infty,a)$, \mathbb{R}

Доказательство. 1. $y(x) = a + x \cdot (b - a), x \in [0,1]$

2. $[0,1] \mapsto (0,1] : \frac{1}{n} \mapsto \frac{1}{n+1}, n \geqslant 2$