University of Southern California

Viterbi School of Engineering

EE577A VLSI System Design

Static Timing Analysis

References: syllabus textbook, online resources

Shahin Nazarian

Spring 2013

Background

Objective

Delay dependencies

Timing models

Steps in Static Timing Analysis

- Circuit is broken down into sets of timing paths
- Delay of each path is calculated
- Path delays are checked to see if timing constraints have been met

Delay Models

- Delay Model Classification
 - Linear
 - Nonlinear

K-Factor Gate Delay

- K-factor equation
 - Delay t_d=k(t_{r/f}, C_{total})
 - Output transition time t'_{r/f}=k'(t_{r/f}, C_{total})
- Example of K-factor form:
 - Delay= a*t+b*C_{total}+c*t*C_{total}+d
 - Obtained from SPICE simulation

NLDM Lookup Tables

```
cell_fall(delay_template_3x4) {
index_1 ("0.1, 0.4, 0.9"); /* Input transition */
index_2 ("0.11, 0.25, 1.31, 2.55"); /* Output capacitance */
values (/* 0.11 0.25 1.31 2.55 */ \
/* 0.1 */ "0.0617, 0.1537, 0.5280, 0.9338", \
/* 0.4 */ "0.0918, 0.2027, 0.5676, 0.9547", \
/* 0.9 */ "0.1034, 0.2273, 0.6452, 1.0984");
```

NLDM Lookup Tables (Cont.)

Interpolation

$$T_{IP}$$
 = x20 * y20 * T11 + x20 * y01 * T12 + x01 * y20 * T21 + x01 * y01 * T22

where

$$x01 = (x0 - x1) / (x2 - x1)$$

 $x20 = (x2 - x0) / (x2 - x1)$
 $y01 = (y0 - y1) / (y2 - y1)$
 $y20 = (y2 - y0) / (y2 - y1)$

NLDM Lookup Tables (Cont.)

- Slew derating
 - Slew to represent the linear portion
 - Current vs old slew measurement
 - Example: Derating factor of 0.5 for (10%, 90%)
 measurement to (30%,70%)

Effective Capacitance

$$C_{eff} = C_1 + kC_2$$

0<k<1

Because of the shielding effect of the interconnect resistance, the driver will only "see" a portion of the far-end capacitance C2

$$R_{\pi} \longrightarrow 0 \qquad k = 1$$

$$R \longrightarrow \infty \qquad k = 0$$

Timing Models - Combinational Cells

 Timing arcs: represent the propagation delays through the cell

Positive vs negative unate

Timing Models - Sequential Cells

- Synchronous inputs
- Synchronous outputs

Sequential Elements

- Synchronous inputs
- Synchronous outputs

Sequential Cells - Latch

Sequential Cells - Latch (Cont.)

Sequential Cells - Metastability

 Being in a metastable state, the flip-flop may be unable to stabilize and this may finally result in a faulty output

Sequential Cells - D Flip-Flop

Sequential Cells - D Flip-Flop

Clock-to-Q Delay and Timing Constraints

Setup and Hold Checks

For SETUP:

Delay in Data path = max(wire delay to the clock input of FF1) + max(Clk-to-Q delay of FF1) + max(cell delay of inverter) + max(2 wire delay- "Q of FF1-to-inverter" and "inverter-to-D of

$$FF2"$$
)= $Td = 2+11+9+(2+2) = 26ns$

Clock path Delay = (Clock period) + min(wire delay from CLK to Buffer input) + min(cell

delay of Buffer) + min(wire delay from Buffer output to FF2/CLK pin) - (Setup time of FF2)

$$=$$
Tclk $= 15+2+5+2-4=20$ ns

Setup Slack = Tclk - Td = 20ns - 26ns = -6ns.

Since Setup Slack is negative -> Setup violation.

Setup and Hold Checks (Cont.)

For HOLD:

Delay in Data path = min(wire delay to the clock input of FF1) + <math>min(Clk-to-Q delay of FF1)+min(cell delay of inverter) + <math>min(2 wire delay-"Q of FF1-to-inverter" and "inverter-to-D of FF2") = Td = 1+9+6+(1+1)=18ns

Clock path Delay = $\max(\text{wire delay from CLK to Buffer input}) + \max(\text{cell delay of Buffer}) + \max(\text{wire delay from Buffer output to FF2/CLK pin}) + (\text{hold time of FF2}) = Tclk = 3+9+3+2 =$

17 ns

Hold Slack = Td - Tclk = 18ns -17ns = 1ns

Since Hold Slack is positive-> No hold Violation.

Output required time

- Output required time
 - Specifies the data required time on output ports

Slack and Critical path

- Slack is the difference between the required (constraint) time and the arrival time (inputs and delays)
 - Negative slack indicates that constraints have not been met, while positive slack indicates that constraints have been met
 - Slack analysis is used to identify timing critical paths in a design by the static timing analysis tool
- Critical path
 - Any logical path in the design that violates the timing constraints
 - Path with a negative slack

Interconnect (Net) Delay

- "Net Delay" refers to the total time needed to charge or discharge all of the parasitics of a given net
- Total net parasitics are affected by
 - Net length
 - Net fanout
- Net delay and parasitics are typically
 - Back-Annotated (Post-Layout) from data obtained from
 - An extraction tool
 - Estimated (Pre-Layout)

Optional: Transmission Line Equations

Drop across R and L is :

$$\frac{\partial V}{\partial x} = RI + L \frac{\partial I}{\partial t}$$

Current through C and G is :

$$\frac{\partial I}{\partial x} = GV + C \frac{\partial V}{\partial t}$$

Infinitesimal Model of a Transmission Line

The resulting equation is as follows:

$$\frac{\partial^2 V}{\partial x^2} = RGV + (RC + LG)\frac{\partial V}{\partial t} + LC\frac{\partial^2 V}{\partial t^2}$$

Mutual Inductance and Capacitance

- Crosstalk is the coupling of energy from one line to another via:
 - Mutual capacitance (electric field)
 - Mutual inductance (magnetic field)

Mutual (Cont.)

 The circuit element that represents this transfer of energy are the following familiar equations

$$V_{Lm} = L_m \frac{dI}{dt} \qquad I_{Cm} = C_m \frac{dV}{dt}$$

- The mutual inductance will induce current on the victim line opposite of the driving current (Lenz's Law)
- The mutual capacitance will pass current through the coupling (mutula) capacitance that flows in both directions on the victim line

Crosstalk Induced Noise

 The near and far end victim line currents sum to produce the near and the far end crosstalk noise

$$I_{near} = I_{Cm} + I_{Lm} \qquad I_{far} = I_{Cm} - I_{Lm}$$

Crosstalk Induced Noise (Cont.)

$$C_{1g}$$
 C_{1g}
 C_{m}
 C_{2g}

$$I_{1} = C_{1g} \frac{dV_{1}}{dt} + C_{m} \frac{d(V_{1} - V_{2})}{dt} = (C_{1g} + C_{m}) \frac{dV_{1}}{dt} - C_{m} \frac{dV_{2}}{dt}$$

$$I_{2} = C_{2g} \frac{dV_{2}}{dt} + C_{m} \frac{d(V_{2} - V_{1})}{dt} = (C_{2g} + C_{m}) \frac{dV_{2}}{dt} - C_{m} \frac{dV_{1}}{dt}$$

False Paths

- Paths that physically exist in a design but are not logic/functional paths
- These paths never get sensitized under any input conditions

Multi-cycle paths

 Data Paths that require more than one clock period for execution

