Data Science and Visualization (DSV, F23)

6. Regression

Hua Lu

https://luhua.ruc.dk; luhua@ruc.dk

PLIS, IMT, RUC

Agenda

- Regression Fundamentals
- Linear Regression
- Polynomial Regression
- Decision Tree Regression
- Logistic Regression

Classification vs. Regression

Classification

- Predict a discrete value (class label) from a pre-defined set (all classes)
 - E.g., given a loan applicant, predict if she/he is a good or bad client.
- Models: Rule-based, Decision tree, Random forest, KNN, SVM, Bayes...

Regression

- To predict a value from a continuous range
 - E.g., to predict a stock's price.
- We want to predict y for unseen X, based on the training data of known (X, y) pairs.
- From the training data, we learn a function f(.) s.t. f(X) approximates the real y for each X.
 - Different types of **f**, and different ways to learn it.
 - For an X in the training data, f(X) may not be the same as the corresponding y!
- For an unseen X, we predict its corresponding y value is $\hat{y} = f(X)$
 - ŷ is the predicted y value for the given X

Regression can *also* be evaluated using CV!

Regression in General

- Supervised learning
- Training data is needed for regression
 - (x, y) pairs for 2D regression
 - E.g., (age, weight) value pairs if you want to build a regressor for age and weight

Notation:

- Ground truth: y
- Predicted value: ŷ

Regression Types

- Linear regression
- Polynomial regression
- Decision tree regression
- Logistic Regression
 - For classification!
- Python libraries
 - statsmodels
 - scikit-learn.linear_model
 - sklearn.preprocessing
 - sklearn.tree

Evaluating Regression Model f(.)

- Ground truth: y_i for X_i
- Predicted value: $\hat{y}_i = f(X_i)$
- Mean Absolute Error (MAE): The mean of the absolute value of the errors.
 - $\frac{1}{n}\Sigma|y_i-\hat{y}_i|$
- Mean Squared Error (MSE): The mean of the squared errors.
 - $\frac{1}{n}\Sigma(yi-\widehat{y}_i)^2$
- Root Mean Squared Error (RMSE): The square root of the mean of the squared errors

•
$$\sqrt{\frac{1}{n}\Sigma(yi-\widehat{y}_i)^2}$$

- Notes:
 - These metrics are absolute, not normalized w.r.t. the range of groundtruth y
 - You may compare different models' metrics on the same basis

from sklearn import metrics
import numpy as np
metrics.mean_absolute_error(y_test, y_pred)
metrics.mean_squared_error(y_test, y_pred)
np.sqrt(metrics.mean_squared_error(y_test, y_pred))

Agenda

- Regression Fundamentals
- Linear Regression
- Polynomial Regression
- Decision Tree Regression
- Logistic Regression

Linear Regression

When you're fundraising, it's Al. When you're hiring, it's ML. When you're implementing, it's Regression.

- Linear Regression is a basic yet popular predictive analytics technique that uses historical data to predict an output variable.
- Assumption: there exists a 'linear relationship' between input (independent) variables and their output (dependent) variables.
 - $\hat{y} = f(X) = \alpha + \beta X$
 - X is the **input** or independent variable (scalar value or vector).
 - ŷ is the **output variable** that we want to predict for a given X.
 - y is the groundtruth variable dependent on the X.
- A core step in Linear regression is to learn the coefficients α and β from training data, s.t. the difference between \hat{y} and y is minimized.

Linear Regression Types

Linear function: $\hat{y} = f(X) = \alpha + \beta X$

- Simple linear regression
 - X is a scaler value

Multiple linear regression

• X is a vector

Ordinary Least Squares (OLS)

- Linear function: $\hat{y} = f(X) = \alpha + \beta X = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \beta_n x_n$ (n>=1)
- OLS decides α and β according to Principle of Least Squares
 - To minimize sum of squared residuals (SSR): $\sum e^2 = \sum (y \hat{y})^2$
 - I.e., the sum of the squares of the differences between the observed dependent variable (y) and the output variable (\hat{y}) predicted by the linear function of the independent variable (X).

- Training data object
- Learned linear function
- Prediction for the variable $X_{?}$

Example in Jupyter Notebook

- Advertising dataset
 - 200 data objects of 4 columns/attributes
 - Available in Moodle
- What is the relationship between advertising costs (on TV, Radio and Newspaper) and sales?
 - Simple linear regression
 - Multiple linear regression
- Lecture6_LR_advertising.ipynb
 - Statsmodels and scikit-learn libraries
 - Visualization of linear models

	TV	Radio	Newspaper	Sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9

Agenda

- Regression Fundamentals
- Linear Regression
- Polynomial Regression
- Decision Tree Regression
- Logistic Regression

Polynomial Regression Functions

- Polynomial function: $\hat{y} = \alpha + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_n x^n$
 - Degree n
- A generalization of linear regression
- Find a curve that best fits a set of values
 - n-1 turning points

http://www.math.glencoe.com/

Back to Linear Regression

- Linear function: $\hat{y} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \beta_n x_n$
- Polynomial function: $\hat{y} = \alpha + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_n x^n$
- What can you see from these two equations?
- A polynomial function can be transformed into a Linear one!

•
$$x_1 = x$$
, $x_2 = x^2$, $x_3 = x^3$, ..., $x_n = x^n$

$$X_poly = [x^0, x^1, x^2, x^3, x^4]$$

Train a multiple linear regressor

Predict ŷ using the linear model

```
from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree=4)

X_poly = poly_reg.fit_transform(X)

Ir_2 = LinearRegression()

Ir_2.fit(X_poly, y)

y_poly = Ir_2.predict(X_poly)
```

Example in Jupyter Notebook

- position_salaries dataset
 - 10 data objects of 3 columns/attributes
 - Available in Moodle
- What is the relationship between Level and Salary?
 - Try regressors with different degrees to fit the data

Lecture6_PR_salaries.ipynb

	Position	Level	Salary
0	Business Analyst	1	45000
1	Junior Consultant	2	50000
2	Senior Consultant	3	60000
3	Manager	4	80000
4	Country Manager	5	110000
5	Region Manager	6	150000
6	Partner	7	200000
7	Senior Partner	8	300000
8	C-level	9	500000
9	CEO	10	1000000

Agenda

- Regression Fundamentals
- Linear Regression
- Polynomial Regression
- Decision Tree Regression
- Logistic Regression

A Motivation Example

Decision Tree Regressor

- A special type of decision tree
- Each internal node asks an 'Is' question
 - More options can always be converted to binary

Learning

Algorithm

- Each leaf node gives a predicted value
- It also supports multiple features

Dosage	Age	Sex	Effect
10	25	Female	98
20	73	Male	0
35	54	Female	6
5	12	Male	44
•••	•••	•••	•••

Decision Tree Regressor Generation

1. On each column, find the best (binary) split that results in the smallest SSR.

Advanced

- 2. Choose the column with the (globally) smallest SSR, and use its split as the root node.
- 3. Repeat 1 and 2 on each subset recursively, until no further split is needed or possible.

Dosage	Age	Sex	Effect
10	25	Female	98
20	73	Male	0
35	54	Female	6
5	12	Male	44
***		•••	

Example in Jupyter Notebook

- Boston Housing dataset
 - 506 data objects of 14 columns/attributes
 - We only focus on LSTAT and MEDV
 - Available in Moodle
- What is the relationship between LSTAT and MEDV?
 - Linear regression does not work well

Lecture6_DTR_boston.ipynb

Notes on DT Regressors

- DT regressors in general are unable to *extrapolate* to any kind of data that they haven't seen before.
- DT regressors are used in regression problems *iff* the target variable is inside the range of values that have been seen in the training data.
- DT regressors are prone to overfitting.

Agenda

- Regression Fundamentals
- Linear Regression
- Polynomial Regression
- Decision Tree Regression
- Logistic Regression

A Motivation Example

- A general case: To predict a binary, categorical dependent variable
 - 1 (yes, success, positive, ...) or 0 (no, failure, negative, ...)
- A fictional dataset about social hours per week and COVID-19 test result
 - A linear regressor fails
 - So does a polynomial regressor
 - A decision tree regressor might work, but not when the two subsets of points overlap or cross each other
- A S-shape curve may fit such data

Sigmoid Function

- A sigmoid function is characterized by a S-shaped curve or sigmoid curve.
- A common example of a sigmoid function is the logistic function:

•
$$S(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{e^{x}+1} = 1 - S(-x)$$

- S(x) returns y values in the range of 0 and 1
 - $S(-\infty) = 0$; $S(+\infty) = 1$
 - Probabilities!
- S(x) can predict probabilities continuously, but for convenience we stipulate
 - 1 if S(x) >= 0.5
 - 0 if S(x) < 0.5

Regression -> Classification!

Logit and Logistic Regression

Advanced

- A distribution of 0s and 1s
 - The mean of the distribution is equal to the proportion of 1s in the distribution.
 - It is also the *probability P* of drawing a label of 1 at random from the distribution.
 - The proportion (and probability) of 0s is (1 P).
 - The odds of being 1 is $odds = \frac{P}{1-P}$
- In logistic regression, the dependent variable y is a *logit*, the natural log of the odds:
 - $\log(odds) = \log(t(P)) = \ln(\frac{P}{1-P})$
 - We find logit(P) = a + bX, i.e. the log(odds) or logit is assumed to be linearly related to X

•
$$\ln\left(\frac{P}{1-P}\right) = a + bX, \frac{P}{1-P} = e^{a+bX}$$

$$\bullet \quad P = \frac{1}{1 + e^{-(a+bX)}}$$

Sigmoid/logistic function

Example in Jupyter Notebook

- Heart attack patient dataset
 - 20 data objects of 3 columns/attributes
 - Available in Moodle
- Will a patient have the 2nd heart attack?

•	$Lecture6_{_}$	Logit	patient	s.ipynk)
---	-----------------	-------	---------	---------	---

	2nd_Heart_Attack	Treatment_of_Anger	Trait_Anxiety
0	1	1	70
1	1	1	80
2	1	1	50
3	1	0	60
4	1	0	40

Notes on Logistic Regression

- Given a set of independent (continuous or categorical) variables, Logistic
 Regression predicts binary, categorical (not continuous) dependent variables.
- The goal of logistic regression is to estimate the probability of occurrence of a value, not the value of the variable itself.
 - It's for classification, not for regression ©
- The range of values for the prediction is restricted to the range between 0 and 1.
 - This is ensured by using the logistic function.
- A generalization of the linear regression model

Summary

- Regression
 - General form
 - Evaluation
- Linear regression
 - Simple vs. multiple
- Polynomial regression
 - Conversion to linear regression
- Decision tree regression
 - Special decision tree structure
- Logistic Regression
 - For classification
 - Relation to linear regression

https://www.reddit.com/r/ProgrammerHumor/

References

- Mandatory reading
 - Andreas C. Muller and Sarah Guido: Introduction to Machine Learning with Python, O'Reilly, 2016
 - Chapter 2: Regression, Linear Models
 - Chapter 4: Interactions and Polynomials
- Further readings
 - Linear regression
 - Tutorial: https://towardsdatascience.com/introduction-to-linear-regression-in-python-c12a072bedf0
 - Decision tree regression
 - https://gdcoder.com/decision-tree-regressor-explained-in-depth/
 - https://www.youtube.com/watch?v=g9c66TUylZ4
 - Logistic regression
 - https://www.youtube.com/watch?v=OCwZyYH14uw
 - https://www.youtube.com/watch?v=0m-rs2M7K-Y
 - http://faculty.cas.usf.edu/mbrannick/regression/Logistic.html (Advanced)

Exercises (1)

- 1. Using the Diamonds dataset (available in Moodle), do the following in Jupyter Notebook
 - 1. Select columns carat, depth and table as independent variables. Use them to predict column price.
 - 2. Split the data into training and test sets.
 - 3. Use the training set to construct a *linear regressor*.
 - 4. Use the same training set to construct a decision tree regressor.
 - 5. Apply the two regressors on the test set, and show their **MAE**, **MSE** and **RMSE**.
 - 6. Visualize the two regressors.
 - 7. Decide which regressor is better based on 5 and 6.

Exercises (2)

- 2. Using the Boston dataset (available in Moodle), do the following in Jupyter Notebook
 - 1. Select LSTAT (independent variable) and MEDV (dependent variable)
 - 2. Split the data into training and test sets.
 - 3. Use the same training set to construct a few *polynomial regressors* with degree of 2 to 8 respectively.
 - 4. Apply all these regressors on the test set, and show their **MAE**, **MSE** and **RMSE**.
 - 5. Decide which regressor is the best.
 - 6. Visualize the best polynomial regressor.

Exercises (3)

- 3. Using the **cleaned Titanic** dataset (available in Moodle), do the following in Jupyter Notebook
 - 1. Split the data into training and test sets
 - 2. Use the **Pclass, Sex**, and **Age** columns as the independent variable, build a logistic regressor to predict the **Survived** column, and validate the model