Прикладные модели оптимизации

Доцент, к.ф.-м.н., доцент кафедры № 43 *Фаттахова Мария Владимировна mvfa@yandex.ru*

Тема 5. Моделимногокритериальнойоптимизации

Лекция 11

Структура оптимизационных задач Проблема принятия решения да нет Одна цель Одно лицо Определенность нет да нет Принятие решения в условиях да неопределенности Линейность Многонет критериальная оптимизация да Нелинейное Целочисленность программирование нет Теория игр да Линейное Целочисленное программирование программирование

Параметр	Daewoo Nexia	Kia Rio	Opel Corsa	Skoda Fabia	VW Pointer
Дизайн	75	105	130	120	105
Внешность	40	55	65	60	50
Интерьер	35	50	65	60	55
Эргономика	100	120	125	125	130
Место водителя	40	55	60	75	55
Обзорность	60	65	65	50	75
Динамика	205	220	210	210	205
Разгонная динамика	65	70	55	55	55
Тормозная динамика	75	75	75	70	80
Управляемость	65	75	80	85	70
Ездовой комфорт	140	165	155	155	145
Плавность хода	55	65	60	60	60
Акустический комфорт	45	55	50	50	40
Микроклимат	40	45	45	45	45
Комфорт салона	90	145	140	130	100
Пассажирские места	45	45	55	45	30
Багажник	45	55	45	45	40
Трансформация салона	0	45	40	40	30

Проблема оптимальности в многокритериальных задачах

- Наличие нескольких критериев (целевых функций), достигающих экстремумов в разных точках.
- «Конфликтующие» критерии.

Формальная постановка задачи многокритериальной оптимизации

$$H_k(x) \to \max, k = 1,..., r,$$

 $x = (x_1, x_2, ..., x_n) \in D_x$

 D_{x} — множество (область) допустимых решений $H_{k}(x)$ — критерии (цели), $r \geq 2$

$$H_1(x) \to \max,$$
 $H_2(x) \to \max,$
 \vdots
 $H_r(x) \to \max,$
 $x = (x_1, x_2, ..., x_n) \in D_x$

$$H(x) = (H_1(x), ..., H_r(x)) \to \max,$$

 $x = (x_1, x_2, ..., x_n) \in D_x$

Векторная оценка решения

$$H_1(x) \rightarrow \max,$$
 $H_2(x) \rightarrow \max,$
 \vdots
 $H_r(x) \rightarrow \max,$
 $x = (x_1, x_2, ..., x_n) \in D_x$

$$x^0 = (x_1^0, x_2^0, ..., x_n^0) \in D_x$$
 – допустимое решение

$$H(x^{0}) = (H_{1}(x^{0}), ..., H_{r}(x^{0}))$$
$$x^{0} = (x_{1}^{0}, x_{2}^{0}, ..., x_{n}^{0}) \in D_{x}$$

векторная оценка
 допустимого решения
 $x^0 ∈ D_x$

Решения, оптимальные (эффективные) по Парето

Решение *А* называется **парето-оптимальным** (**оптимальным по Парето, эффективным**), если НЕ СУЩЕСТВУЕТ другого решения *В*, которое *по всем* критериям <u>не хуже</u>, чем *А*, а хотя бы по одному – строго лучше.

Решения, оптимальные (эффективные) по Парето

- Если такое решение В СУЩЕСТВУЕТ, то
 решение А не является оптимальным ни в
 каком смысле. Говорят, что решение В
 доминирует решение А по Парето.
- Парето-оптимальные решения множество недоминируемых по Парето решений.

Параметр	Daewoo Nexia	Kia Rio	Opel Corsa	Skoda Fabia	VW Pointer
Дизайн	75	105	130	120	105
Внешность	40	55	65	60	50
Интерьер	35	50	65	60	55
Эргономика	100	120	125	125	130
Место водителя	40	55	60	75	55
Обзорность	60	65	65	50	75
Динамика	205	220	210	210	205
Разгонная динамика	65	70	55	55	55
Тормозная динамика	75	75	75	70	80
Управляемость	65	75	80	85	70
Ездовой комфорт	140	165	155	155	145
Плавность хода	55	65	60	60	60
Акустический комфорт	45	55	50	50	40
Микроклимат	40	45	45	45	45
Комфорт салона	90	145	140	130	100
Пассажирские места	45	45	55	45	30
Багажник	45	55	45	45	40
Трансформация салона	0	45	40	40	30

Определение оптимальности по Парето

Решение x^* называется **парето-оптимальным** (**оптимальным по Парето, эффективным**), если **не существует** другого решения x, для которого

$$H_i(x) \ge H_i(x^*), i = 1, ..., r,$$

 $\exists i_0 : H_{i_0}(x) > H_{i_0}(x^*)$

Основные преимущества множества Парето

- Никакие решения из области допустимых решений **не доминируют** решения, принадлежащие множеству Парето.
- Оптимальные по Парето решения, как правило, **существуют** в практическом классе задач.

Основные недостатки множества Парето

- Парето оптимальных решений, как правило, бесконечно много.
- Различные парето-оптимальные решения **несравнимы** между собой.

Общие свойства множества Парето

- При переходе от одной точки множества Парето к другой точке множества Парето происходит увеличение значений одних критериальных функций и уменьшение других.
- Множеству Парето принадлежат **все** решения, при которых достигаются единственные (глобальные) экстремумы *хотя бы одной* из критериальных функций.

Выводы

• Определение.

Оптимальным решением в задаче многокритериальной оптимизации называется то *Парето-оптимальное* решение, которое выбрало лицо, принимающее решение (ЛПР).

• Проблема многокритериального выбора объективно неразрешима.

Переход от множества допустимых решений к множеству всевозможных векторных оценок

 $H_1(x) \to \max$ $H_2(x) \to \max$, $x = (x_1, x_2) \in D_x \subset R^2$

Взаимнооднозначное соответствие множеств

$$H_1(x) \to \max$$
 $H_2(x) \to \max$,
 $x = (x_1, x_2) \in D_x \subset R^2$

Максимизация по двум критериям

$$H_1(x) \to \max$$
 $H_2(x) \to \max$,
 $x = (x_1, x_2) \in D_x \subset R^2$

Утопическая точка

Парето-оптимальные решения (графический метод)

Парето-оптимальные решения

- Парето-оптимальные решения лежат на северо-восточной границе множества допустимых оценок H_{χ} .
- Ни одна внутренняя точка множества H_x не может быть оптимальной по Парето.
- *Вся граница* никогда не бывает Паретооптимальной.

Теорема (о Парето-оптимальных решениях)

Для того, чтобы решение $x \in D_x$ являлось оптимальным по Парето в задаче МКО, необходимо и достаточно, чтобы оно было решением следующей задачи:

$$\max_{x \in D_x} \sum_{k=1}^r \lambda_k H_k(x),$$

где параметры $\lambda_k, k = 1,...,r$, удовлетворяют условиям:

$$\sum_{k} \lambda_{k} = 1, \lambda_{k} \in [0,1].$$

Арбитражные решения

Рассмотрим задачу МКО:

$$H_k(x) \to \max, k = 1, ..., r,$$

 $x \in D_r$

Пусть $x_0 \in D_x$ – некоторое «подходящее» решение Тогда

$$H(x_0) = (H_1(x_0),...,H_r(x_0))$$

– векторная оценка этого «подходящего» решения, называемая **точкой «статус-кво»**.

Арбитражные решения

Арбитражной схемой в задаче МКО называется правило φ , которое каждому множеству возможных оценок H(x) и каждой точке «статус-кво» $H(x_0)$ ставит в соответствие единственное парето-оптимальное решение.

Решение, полученное в задаче МКО в соответствии с выбранной арбитражной схемой, называется **арбитражным решением** этой задачи.

Арбитражные схемы

- Метод главного критерия
- Арбитражная схема Нэша

• ...

(известно порядка 40 арбитражных схем)

Метод главного критерия

Рассмотрим ЗМКО в общем виде:

$$H(x) = (H_1(x),...,H_r(x)),$$

 $H_i \to \max, i = 1,...,r,$
 $x \in D_r$

- 1. Фиксируем точку «*статус-кво*» $H(x_0)$
- 2. Выберем главный критерий. ($H_{
 m 1}$)

Метод главного критерия

3. Решаем оптимизационную задачу:

$$H_1(x) \rightarrow \max,$$
 $x \in D_x,$
 $H_i \ge H_i(x_0), i = 2,..., r,$
 $\Rightarrow x^* = (x_1^*, ..., x_n^*)$

 x^* – оптимальное решение по методу главного критерия (главный критерий – первый) при заданной точке «статус-кво» $H(x_0)$.

Метод главного критерия для двух критериев.

Главный критерий – первый.

$$H_1(x) \to \max,$$

 $H_2(x) \to \max,$
 $x \in D_x \subset R^n$

$$H_1(x) \to \max,$$

 $x \in D_x$
 $H_2(x) \ge H_2^0$

$$\begin{cases}
H_1(x) = H_1^* \\
H_2(x) = H_2^0
\end{cases}$$

$$x_C \subset D_x$$

Метод главного критерия для двух критериев.

Главный критерий второй.

$$H_1(x) \to \max$$
,
 $H_2(x) \to \max$,
 $x \in D_x \subset R^n$

$$H_2(x) \rightarrow \max,$$

 $x \in D_x$
 $H_1(x) \ge H_1^0$

$$\begin{cases} H_1(x) = H_1^0 \\ H_2(x) = H_2^* \end{cases}$$

Построение эффективной кривой с помощью метода главного критерия.

$$H_1(x) \to \max,$$

 $H_2(x) \to \max,$
 $x \in D_x \subset R^n$

Пусть главный критерий - первый

1.
$$H(x_0) = (0,0)$$

$$H_1(x) \rightarrow \max$$

$$x \in D_{x}$$

$$H_2(x) \ge 0$$

2.
$$H(x_0) = (0, \Delta)$$

$$H_1(x) \rightarrow \max$$

$$x \in D_{x}$$

• • •

$$H_{2}(x) \geq \Delta$$

Арбитражная схема Нэша

Рассмотрим ЗМКО в общем виде:

$$H(x) = (H_1(x), ..., H_r(x)),$$

 $H_i \to \max, i = 1, ..., r,$
 $x \in D_x$

1. Фиксируем точку «*статус-кво*»

$$H(x) = (H_1(x_0),...,H_r(x_0))$$

Арбитражная схема Нэша

2. Введем в рассмотрение функцию Нэша:

$$H^{N}(x) = \prod_{i=1}^{r} (H_{i}(x) - H_{i}(x_{0})).$$

Рассматривается следующая ЗНЛП:

$$\max_{x \in D_x} H^N(x)$$

$$H_{i}(x) \ge H_{i}(x_{0}), i = 1,...,r$$

Арбитражное решение Нэша

 x^* , которое решает эту ЗНЛП, называется арбитражным решением Нэша при точке статус-кво $H(x_0)$

Замечание. Арбитражное решение Нэша оптимально по Парето.

Теорема (о существовании арбитражного решения Нэша)

Если множество допустимых решений в задаче многокритериальной оптимизации является выпуклым и замкнутым, то существует единственное арбитражное решение Нэша