TRANSPORTATION ENGINEERING – I (SEMESTER - 6)

CS/B.TECH (CE-N)/SEM-6/CE-602/09

1													c#	\geq	2	
1.	Signature of Invigilator															
2.	Signature of the Officer-in-Charge).														
	Roll No. of the Candidate															
	CS/B.TECH (ENGINEERING & MANAG TRANSPORTATION EN	EM	IEN	T I	EX.	AM	IIN	ATI	ONS	, JI	JNE			 5)		
Tir	ne : 3 Hours]											[]	Ful	1 M:	ark	s:70

INSTRUCTIONS TO THE CANDIDATES:

- 1. This Booklet is a Question-cum-Answer Booklet. The Booklet consists of **32 pages**. The questions of this concerned subject commence from Page No. 3.
- 2. a) In **Group A**, Questions are of Multiple Choice type. You have to write the correct choice in the box provided **against each question.**
 - b) For **Groups B** & **C** you have to answer the questions in the space provided marked 'Answer Sheet'. Questions of **Group B** are Short answer type. Questions of **Group C** are Long answer type. Write on both sides of the paper.
- 3. **Fill in your Roll No. in the box** provided as in your Admit Card before answering the questions.
- 4. Read the instructions given inside carefully before answering.
- 5. You should not forget to write the corresponding question numbers while answering.
- 6. Do not write your name or put any special mark in the booklet that may disclose your identity, which will render you liable to disqualification. Any candidate found copying will be subject to Disciplinary Action under the relevant rules.
- 7. Use of Mobile Phone and Programmable Calculator is totally prohibited in the examination hall.
- 8. You should return the booklet to the invigilator at the end of the examination and should not take any page of this booklet with you outside the examination hall, **which will lead to disqualification**.
- 9. Rough work, if necessary is to be done in this booklet only and cross it through.

No additional sheets are to be used and no loose paper will be provided

FOR OFFICE USE / EVALUATION ONLY Marks Obtained Group - A Group - B Group - C Question Number Marks Obtained Dotained

Head-Examiner/Co-Ordinator/Scrutineer

2

3

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 TRANSPORTATION ENGINEERING - I SEMESTER - 6

Time: 3 Hours]	[Full Marks : 70
----------------	-------------------

GROUP - A

(Multiple Choice Type Questions)

1.	Choo	se the	e correct alternatives for any ten	of the	following:	10 × 1 = 10
	i)	Nagr	our road plan formulae were pre	pared	by assuming	
		a)	rectangular or block road patte	ern		
		b)	radial or star and block road p	attern		
		c)	radial or star and circular road	d patte	rn	
		d)	radial or star and grid road pa	ttern.		
	ii)	Cam	ber in the road is provided for			
		a)	effective drainage	b)	counteracting the centrifu	igal force
		c)	having proper sight distance	d)	none of these.	
	iii)		ntific planning of transportation	n syste	em and mass transit facilit	cies in cities
		a)	spot speed data	b)	origin and destination da	ta
		c)	traffic volume data	d)	accident data.	
	iv)		per IRC recommendations, the	maxin	num limit of superelevatio	n for mixed
		a)	1 in 15	b)	1 in 12·5	
		c)	1 in 10	d)	equal to camber.	

CS/B.TECH	(CE-N)/SEM-6/	CE-602/09

4

v)	Whic	ch one of the following give	s inte	rmediate sight distance as j	per IRC
	Stan	dards ? (SSD : Stopping	Sight	Distance ; ODD : Overtakin	ng Sight
	Dista	ance ;)			
	a)	2 SSD	b)	(SSD + OSD) / 2	
	c)	(OSD – SSD) / 2	d)	2 OSD.	
vi)	For	circular curve of radius 200 m,	the co	o-efficient of lateral friction is 0	0·15 and
	the o	design speed is 40 kmph. The e	quilibr	ium superelevation (for equal p	pressure
	on ir	nner and outer wheels) would b	e		
	a)	21·3	b)	7	
	c)	6.3	d)	4.6.	
vii)	If a	descending gradient of 1 in 25	meets	an ascending gradient of 1 in	40, then
	the l	ength of valley curve required fo	or a he	ad light distance of 100 m will b	oe
	a)	30 m	b)	130 m	
	c)	310 m	d)	630 m.	
viii)	Whic	ch one of the following binders i	s recon	nmended for a wet and cold clir	nate ?
	a)	80/100 penetration asphalt	b)	tar	
	c)	cutback	d)	emulsion.	
ix)	The	general requirement in constru	cting a	a reinforced concrete road is to	place a
	singl	le layer of reinforcement			
	a)	near the bottom of the slab			
	b)	near the top of the slab			
	c)	at the middle			
	d)	equally distributed at the top	and bo	ttom.	

CS	B.TECH	(CE-N)	/SEM-6	CE-602	/09
	DILLOII	(02 11)	, CDIVI C,	CD CCD	, 00

5

x)	If th	e CBR value obtained at 5 mm	n penet	ration is higher than that at 2	·5 mm,
	then	the test is repeated for checl	king; a	nd if the check test reveals a	similar
	tren	d, then the CBR value is to be re	eported	as the	
	a)	mean of the values for 5 mm &	½ 2·5 m	m penetration	
	b)	higher value minus the lower	value		
	c)	lower value corresponding to 2	2·5 mm	penetration	
	d)	higher value obtained at 5 mm	ı penet	ration.	
xi)	Expa	ansion joints in cement concre	ete pav	vement are provided at an inte	erval of
	sing	le layer of reinforcemnt			
	a)	10 m	b)	15 m	
	c)	18 m to 21 m	d)	25 m to 30 m.	
xii)	The	thickness of bituminous carpet	varies	from	
	a)	20 to 25 mm	b)	50 to 75 mm	
	c)	75 to 100 mm	d)	100 to 125 mm.	
xiii)	The	method of design of flexible pav	ement	as recommended by IRC is	
	a)	Group index method	b)	CBR method	
	c)	Water guard method	d)	Benkelman beam method.	
xiv)	The	maximum limit of water a	bsorpti	on for aggregate suitable fo	r road
	cons	struction is			
	a)	0.4%	b)	0.6%	
	c)	0.8%	d)	1.0%.	

6

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following questions.

 $3 \times 5 = 15$

- 2. a) What is valley curve?
 - b) Design with neat sketches the factors on which length of a valley curve depends. 2+3
- 3. Write short notes on highway planning survey.

5

4. What is WBM? Discuss the construction procedure of WBM.

2 + 3

5. Discuss the various factors affecting sight distance of a road.

5

- 6. A valley curve is found at the junction of descending gradient of 1 in 25 and an ascending gradient of 1 in 30. Calculate the length of the curve from night travel (head light) consideration only with a design speed of 35 kmph.
- 7. What is serviceability of pavement? Define PSI and TSI.

5

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following questions.

 $3 \times 15 = 45$

- 8. a) What is Camber?
 - b) Discuss the factors on which Camber depends.
 - c) Calculate the minimum sight distance required avoiding a head on collision of two cars approaching from opposite directions at 80 & 50 kmph. Assume a reaction time of 2.0 seconds, co-efficient of traction of 0.70 and a brake efficiency of 50 per cent. 3 + 4 + 8

7

- 9. a) What do you mean by "Classification of Road"?
 - b) Mention different types of Urban Roads.
 - c) Discuss the various road patterns with neat sketches.

5 + 3 + 7

10. A state highway passing through a rolling terrain has a horizontal curve of radius equal to ruling minimum radius. Design the superelevation, transition curve and extraindexing for the curve. Data given:

Ruling design speed = 80 kmph

Number of lanes = 2

Assume pavement to be rotated about the centre.

Assume reasonable values of data not given.

6 + 5 + 4

11. While designing a horizontal road curve of radius 200 m through a built-up area it is found that available set bank distance for the road is 25 m.

Width of the road 7.5 m

Length of the road curve 300 m

Estimate design of speed for the road. Design superelevation, transition curve and over taking site distance for the road.

Assume reasonable values of data not given.

5 + 4 + 3 + 3

- 12. a) Name the four major strength related tests of road aggregates. What is the basic difference among them in context to the type of load? 2+2
 - b) For a soil sample with 60% finer than 75 μ , L_1 = 46% and PI = 15, find the group index.

8

c) The following results have been obtained in a laboratory CBR test. Draw the loadpenetration curve and find the CBR value. 5 + 3

Penetration (mm)	0	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0	7.5	10.0	12.0
Load (kg)	0	2.3	12.8	30.0	41	50	58	70	77.7	93.2	102.5	110.8

13. a) What is grade separated interchange? Explain what weaving angle and weaving length mean. For what type of intersection are these important and how?

1 + 3 + 3

- b) Name and define the types of pavement. Draw a neat labelled diagram of the cross-section of the flexible pavement. What is the function of the topmost layer? 1+3+2+2
- 14. Discuss various factors, which are to be considered for pavement design.

END