CSL 759 – Cryptography and Network Security

Jan 22, 2014

Lecture 8: Applications of hardcore bits and Introduction to PRG

Instructor: Shweta Agrawal Scribe: Ujjwal Kumar Gupta

1 Applications of Hardcore Bit

1.1 Using hardcore bit for coin tossing on the telephone

How can two parties A and B toss a fair random coin over the phone?

• Solution-1

A tosses the coin and tell the result to B.

Analysis - If only one of them actually tosses a coin, then person who tosses coin may tell lie.

• Solution-2

Both players toss a coin and they take the XOR as the shared coin

Analysis -(1) Even if B does not trust A to use a fair coin, he knows that as long as his bit is random, the XOR is also random.

(2) Whoever reveals his result first has a disadvantage: the other person can adjust his answer to his favor.

• Solution-3

Assume that A and B can not invert OWP then Scheme is as follows:

- 1. Alice sends $g_f(x_A, r_A) = f(x_A), r_A$ to Bob.
- 2. Bob sends $g_f(x_B,r_B)=f(x_B), r_B$ to Alice.
- 3. A sends $x_A \langle x_A, r_A \rangle$
- 4. B sends $x_B \langle x_B, r_B \rangle$
- 5.A verifies x_B by computing $f(x_B)$ and use $x_B \oplus x_A$ as shared coin.
- 6.B verifies x_A by computing $f(x_A)$ and use $x_B \oplus x_A$ as shared coin.

Analysis -

- 1. B can verify that x_A is the same as in the first message by applying f_n , therefore A cannot change his result after learning B's result. Similarly, A can verify for x_B . Therefore we say A's first message as his commitment to $\langle x_A, r_A \rangle$.
- 2. B can not cheat because he can not get $\langle x_A, r_A \rangle$ from first message of A and hence can not change his result. Similarly A can not cheat. Hence Both parties (A and B) can toss a fair random coin over the phone

1.2 Using hardcore bit for one bit encryption

Bob(B) wants to send a bit b to Alice(A). Eve(E) tries to get b. Then scheme is as follows: 1. Alice has TDP f as her public key and its trapdoor information t as her secret key. 2. Bob selects a random $x \in \{0,1\}^k$ and sends Alice cipher text $c = \langle f(x), h(x) \oplus b \rangle$. 3. Alice gets x from f(x) using the trapdoor t;h(x) is computed from x;b is obtained from $(h(x) \oplus b)$ using h(x).

Analysis - (Security from E) - To learn anything about b, Eve must learn about h(x). Here Eve only knows f(x). Since, h(x) is a hardcore and Eve cannot predict h(x) given f(x) better than flipping a coin, so b is completely secure.

2 Computational Indistinguishability

Definition 1 Two ensembles x_k and x'_k are computationally indistinguishable if $\forall PPT \ distinguisher \ D$,

$$Pr_{x \leftarrow x_k}[D(x) \rightarrow 1] - Pr_{x \leftarrow x_{k'}}[D(x) \rightarrow 1] \leq negl(k)$$

Informally, if given two samples to any polynomial time distinguisher D, it does not change its behavior then these samples are called computationally indistinguishable.

3 Pseudorandom Generator (PRG)

A PRG stretches a short random input to a longer output such that output still looks same.

Definition 2 A PRG is a deterministic polynomial computational function in $G : \{0,1\}^k \to \{0,1\}^{P(k)}$ such that

1.
$$P(k) > k$$

2.
$$\forall PPT \ distinguisher \ D,$$

$$Pr_{x \leftarrow \{0.1\}^{P(k)}}(G(x) \rightarrow 1) - Pr_{y \in \{0.1\}^{P(k)}}(y \rightarrow 1) \leq negl(k)$$

Theorem 1 If f be a OWP with h be its hardcore bit then the function $G: \{0,1\}^k \to \{0,1\}^{P(k)}$ defined by G(x) = f(x) || h(x) is a PRG.

Proof. Proof By Contradiction Assume that G(x) is not a PRG.

This means that \exists a distinguisher C s.t.

$$Pr(C(U_{k+1}) \rightarrow 1) - Pr(C(G(x) \rightarrow 1))$$

is not negligible.

Here, U_{k+1} is Uniformly distributed string of k+1 bits.

Now we will use C to construct a PPT algorithm A that "breaks" hardcore bit h of f i.e. we will use a PPT algorithm A which computes h(x) from f(x) with non-negligible advantage $(\frac{1}{2} + \varepsilon)$

We construct algorithm $A(f(x) \to h(x))$ which on input y = f(x), choose a random bit $b \xleftarrow{Rand.} \{0,1\}$ and run C(y,b). If $(C(y,b) \to 1)$ (represent that C has identified that string is output of G(x)), then C outputs h(x) = b else it outputs h(x) = 1 - b.

Clearly, $(y,b)\epsilon U_{k+1}$ because f(x),b are both uniform with probability $\frac{1}{2}$.

Let $Pr(C(U_{k+1}) \to 1) = p$ then $Pr(C(G(k)) \to 1) \le p - \varepsilon$ and

$$Pr(C(y,b) \rightarrow 1) = \frac{1}{2} * Pr(C(y,h(x)) \rightarrow 1) + \frac{1}{2} * Pr(C(y,\overline{h(x)}) \rightarrow 1) \tag{1}$$

where $\overline{h(x)}$ means $b \neq h(x)$

Thus with probability $\frac{1}{2}$ we choose b = h(x) and output b with probability $also with probability <math>\frac{1}{2}$ we choose $b = \overline{h(x)}$ and output b with probability $> 1 - (p - \varepsilon)$ i.e.

$$Pr(C(y, h(x)) \to 1) \le p - \varepsilon$$
 (2)

$$Pr(C(y, \overline{h(x)}) \to 1) > 1 - (p - \varepsilon)$$
 (3)

Therefore, overall probability that A outputs h(x) correctly

$$Pr(C(y,b) \to 1)) > \frac{1}{2}(p - \varepsilon + (1 - (p - \varepsilon)))$$

$$= \frac{1}{2} + \varepsilon$$
(4)

Thus if C can break G then A can computes h(x) from f(x) with probability non-negligible $(\frac{1}{2} + \varepsilon)$. This is contradiction to the statement that h is hardcore bit of f.

In the next lecture we will look towards stretching of PRG outputs.