Hematopathology

Dave Chandra, DMD, PhD
OPTH 727

Hematological Diseases that we will cover

- Lymphoid hyperplasia
- Bleeding disorders
 - Hemophilia
 - Von Willebrand's disease
 - Thrombocytopenia
- Anemia
 - Acquired
 - Inherited
 - Sickle cell anemia
 - Thalassemia

We covered these We will not repeat this year.

last year in IB class.

- Blood dyscrasias
 - Neutropenia
 - Agranulocytosis
 - Cyclic neutropenia
 - Aplastic anemia

- Malignancies/myeloproliferative diseases
 - Leukemia
 - Myelodysplastic disorders
 - Hodgkin Lymphoma
 - Non-Hodgkin Lymphoma
 - Burkitt Lymphoma
 - Multiple myeloma
 - Plasmacytoma
 - Polycythemia Vera
 - Langerhans Cell Histiocytosis

Hematologic disorders

- Who treats?
 - Hematologists/Oncologists

White Blood Cell Count	15.2 K/UL	4.0 - 10.0 K/UL
Red Blood Cell Count	3.58 MIL/UL	4.50 - 5.90 MIL/UL
Hemoglobin	10.3 GM/DL	13.6 - 17.0 GM/DL
Hematocrit	31.5 %	42.0 - 50.0 %
Mean Corpuscular Volume	88.0 FL	80.0 - 96.0 FL
Mean Corpuscular Hemoglobin	28.8 PG	27.0 - 34.0 PG
Mean Corpuscular Hgb Concen	32.7 GM/DL	31.0 - 36.0 GM/DL
Red Cell Distribution List	19.1%	11.5 - 14.5 %
Platelet Count	229 K/UL	150 - 400 K/UL
Mean Platelet Volume	9.4 FL	9.6 - 12.8 FL
Neutrophils (Auto Diff %)	68.5 %	40.0 - 75.0 %
Lymphocytes (Auto Diff%)	15.3 %	20.0 - 48.0 %
Monocytes (Auto Diff%)	9.7 %	4.0 - 12.0 %
Eosinophils (Auto Diff %)	4.9 %	0 - 6.0 %
Basophils (Auto Diff%)	1.6 %	0 - 1.0 %
Neutrophils (Auto Diff#)	10.41 K/UL	1.5 - 6.6 K/UL

- Blood testing
 - Blood cell counts (CBC)
 - Many, many more advanced tests
- Bone marrow biopsies
- Clinical/Radiographic examination
 - Splenomegaly
 - History

Head and Neck Exam: What is going on here?

Question? Why palpate head and neck during your examinations?

- Reason #1: Look for enlarged lymph nodes
 - Regular sized lymph nodes not palpable
 - Lymphadenopathy = enlarged nodes
 - Sometimes enlarged nodes = very bad things (i.e. metastatic disease or primary cancers)

• Reason #2: Look for other swellings/asymmetries: any number of pathologic entities may present in the head and neck area: epidermoid cysts, lipomas, developmental cysts etc.

Enlarged lymph nodes <u>usually</u> a response to infection (lymphoid hyperplasia).

Acutely inflamed nodes

- Soft
- Movable
- Tender (pain on palpation)
- Usually resolve

Chronically inflamed nodes

- Rubbery/firm
- Non-movable
- Non-tender
- Mimic malignancy!
 - Lymphomas
 - Metastatic disease

Q: What is done about a persistently enlarged lymph node?

A: Evaluate for malignancy.

- Clinical examination
 - Follow up (does the lymph node stay enlarged or does it resolve?)
 - Symptomatic (lymphomas often present with fever/malaise)
- Imaging-
 - From imaging, may be able to discern cancerous behavior (radiographic borders)
 - Imaging modalities
 - Ultrasound
 - CT
 - PET
- Biopsy
 - Techniques?
 - Fine needle aspiration, core biopsy or excisional biopsy
 - Lymphoid hyperplasia
 - Histopathology will show "normal looking" lymphoid tissue, germinal centers, etc.

Lymphoid hyperplasia -

- Q: What is it?
 - A: Proliferation of lymphoid tissue in response to insult (usually infection)
 - Remember... Hyperplasia IS NOT CANCER. IT IS NOT A NEOPLASM.
- Q. Where do we see lymphoid hyperplasia?
 - Anywhere there is a collection of lymphoid tissue... tonsils, spleen, lymph nodes,
 MALT (mucosa associated lymphoid tissue)

Histopathology will show "normal looking" lymphoid tissue, germinal centers, etc.

Where do we see lymphoid hyperplasia intraorally?

- Waldeyer's ring- lymphoid tissue in oropharynx
 - Tonsils- filled with lymphoid tissue
 - Pharyngeal, palatine, lingual,
 - Soft palate
- Where else?
 - Floor of mouth
 - Posteriolateral tongue

Enlarged tonsil

Examples of hematopoetic <u>neoplasia</u> (we have

established that lymphoid hyperplasia is not neoplastic, right?!?!)

- Leukemia
- Lymphoma
 - Hodgkins
 - Non-Hodgkins
- Multiple myeloma
- Myelodysplasia
- Langerhans cell histiocytosis
- Polycythemia vera

These **may** be highly aggressive

Leukemia – malignancy of bone marrow stem cells

- Uncontrollable cell division inside bone marrow
 - Non-functional immune cells created
 - Normal blood cells are displaced by malignant cells
 - This may lead to:
 - Anemia due to fewer red blood cells
 - Increased infections due to fewer white blood cells
 - Reduced clotting ability due to fewer platelets (thrombocytopenia)
- Treated with <u>chemotherapy</u>
 - Chemotherapy may further diminish blood counts
 - Bone marrow transplant can replenish bone marrow stem cells destroyed by chemotherapy.
- Cells may spill out in circulation and produce tumor like masses
 - In oral cavity, gingival enlargement can be seen (see next slides)

Leukemia- proliferating cells crowd out normal marrow.

Oral manifestations of leukemia- Cells may spill out in circulation – and produce tumor like masses – In oral cavity, gingival enlargement is seen.

Four main types of leukemia

- Classified based on clinical behavior and histiogenesis
 - Acute vs chronic
 - Acute leukemias are usually aggressive while chronic forms are more indolent
 - Lymphocytic vs. myelogenous (myelocytic, myeloid)
- The four types are:
 - Acute lymphocytic leukemia
 - Mostly kids... one of the most common childhood malignancies
 - Acute myelogenous leukemia
 - Chronic lymphocytic leukemia
 - Most common type of leukemia overall affects mostly adults
 - Chronic myelogenous leukemia
 - Associated with Philadelphia chromosome (see next slide) translocation of genetic material between chromosome 9 and 22 that produces oncogene
- Myelodysplasia not leukemia perse, but considered to be a low-grade malignancy
 - abnormal growth/maturation in bone marrow

Richard Lehman, DMD

1973 - 2004

Philadelphia Chromosome- translocation of genetic material from chromosome 9 to 22.

Chromosomal translocation leads

To fusion of two genes – uncontrolled expression
of a cell-cycle gene which leads to non-stop
cell division – tumor formation

Hodgkins Disease (Hodgkins Lymphoma)

- Malignancy of lymph nodes (and spleen)
- Malignant cells are Reed-Sternberg Cells
- Cervical and supraclavicular nodes are most common sites
- Bimodal age peak. Peak #1 between 15 35, Peak #2, older than 50
- Many subtypes
 - All carry different prognosis, treatment regimen

Hodgkin's Disease

Non-Hodgkin's Lymphoma

- Diverse group of lymphocytic malignancies (nearly 100 subtypes)
 - Highly variable clinical behavior
 - Some indolent and some extremely aggressive
 - May be B-cell or T-cell origin
 - Characterized based on
 - Histomorphology of lymphocytes
 - Cell surface antigen profile
 - Genetic modifications
- Usually arise in lymph nodes
 - Grow as solid masses
- Can have "extra-nodal" presentation, i.e. found outside lymphoid tissue (bone or soft tissues)
 - Oral lymphoma
 - 2nd most common malignancy in oral cavity (#1 is squamous cell carcinoma)

Oral lymphoma

Burkitt lymphoma

- Very aggressive lymphoma (initially described in Africa)
 - Associated with EBV
- Tends to involve jaws
- Often multifocal
- Usually seen in young children

 Fig. 13-37 Burkitt Lymphoma. This 4-year-old child had evidence of bone destruction with tooth mobility in all four quadrants of his jaws. Note the patchy, ill-defined loss of bone. (Courtesy of Dr. Gregory Anderson.)

"Starry night sky" appearance histologically

Multiple Myeloma

- Malignancy of plasma cell origin
- Presents in bone
- Multifocal
- Almost always in Adults!
- Radiographically, multiple, well-defined, "punched out" radiolucencies.
- MM is characterized by the presence of Bence-Jones proteins in urine or serum
 - What are Bence-Jones proteins? Immunoglobulin light chains
 - Remember... plasma cells produce antibodies... so, a neoplasm of plasma cells will produce A LOT of circulating antibodies.

Multiple myeloma

Langerhans Cell Histiocytosis

- Tumor of histiocytic cells
 - Histologically a proliferation of histiocytes and eosinophils is seen
- Single or multi-organ involvement
- Wide age range high percentage of cases found in kids under 15 y/o
- Jaws often affected
 - Scooped out appearance when alveolar bone is destroyed
 - May look like severe perio disease
 - "Teeth floating in air" appearance
 - Could be in periapical position may look like periapical pathology i.e. cyst or granulation tissue associated with dental infection
 - Disease can break out of bone and into gingiva and create a soft tissue mass

Polycythemia vera

- Uncontrolled proliferation of red blood cells
 - Often has concurrent proliferation of platelets also
- Almost always in adults
- Problems?
 - Greater propensity for thrombus formation
 - Excess cells thicken the blood slows down flow leads to increased propensity for thrombus formation

Bleeding disturbances (too much bleeding because of insufficient clotting)

- Most often clotting "issues" are drug related
 - Use of anti-clotting medications. Why may someone be on clotting medications?
 - When blood becomes too "thin", hemorrhage more easily
- Acquired conditions
 - Thrombocytopenia- not enough platelets generated
 - Vitamin K deficiency
 - Liver disease many clotting factors produced in the liver
- Inherited
 - Von Willebrand's disease
 - Affects both males and females
 - Hemophilia A
 - Males only
 - Hemophilia B
 - Males only

Thrombocytopenia

- Marked decrease in circulating platelets (normal is 150-400K/ul)
- Platelet count < 100, may see symptoms
- Causes
 - Leukemia
 - Reduces number of platelets produced
 - Chemotherapy
 - Reduces number of platelets produced
 - Drug reaction (heparin is one such drug)
 - Causes immune mediated destruction of platelets
 - Diseases that cause splenomegaly
 - Portal hypertension secondary to liver disease
 - Leukemia
 - Enlarged spleen = dysfunctional spleen. Spleen stores platelets... when spleen enlarges, blood supply/drainage is compromised and platelets not available for body to use for clotting

Thrombocytopenia

• Remember the terminology that describes these?

Von Willebrands Disease

- Inherited (genetic)
 - Far more common than hemophilia
 - Usually mild bleeding disease
 - VW disease is autosomal dominant therefore, both males and females affected.
 - Hemophilia is X-linked recessive, therefore only males are affected.
- Abnormal von Willebrand's factor
 - VW Factor aids platelet adhesion at bleeding site

Hemophilia- is caused by mutations in clotting factor genes

- Hemophilia A Clotting factor 8 deficiency
 - Far more common than Hemophilia B
- Hemophilia B Clotting factor 9 deficiency
- Both are X-linked recessive. Only males have disease! Females are carriers.
- Highly variable clinical presentation- not all hemophiliacs "bleed out"
 - Some have very mild disease (clinically insignificant)
 - 25% of clotting factor is enough for normal function
 - 1% have very severe disease
 - Why might there be such a wide range of clinical presentation?

Hemophilia

 Clinically – similar to thrombocytopenia – hematoma, ecchymoses, purpura. Uncontrolled bleeding in <u>severe</u> cases

- Treatment?
 - Clotting factor replacement therapy (as needed)
 - Mild hemophiliacs may need clotting factor supplementation when undergoing surgery
 - Severe hemophiliacs take clotting factor replacement regularly
 - May have bleeding into joints hemarthrosis
- Dental implications be very careful get medical consult for patients with clotting diseases (thrombocytopenia, von Willebrands disease, hemophilia, liver disease, patients on anti-clotting medications).

• Fig. 13-4 Hemophilia. The enlargement of the knees of this patient with factor VIII deficiency is due to repeated episodes of bleeding into the joints (hemarthrosis). Inflammation and scarring have resulted.

• Fig. 13-5 Hemophilia. Hemorrhage in a patient with factor IX deficiency occurred after routine periodontal curettage.

Neutropenia

General

- Decrease in number of circulating neutrophils.
- Many causes
 - Leukemia
 - Chemotherapy
 - Infections exacerbated by immune compromise
- Results in infections
 - Fever, malaise
 - Especially bacterial
 - Often times, no abcess (remember: need neutrophils for acute inflammation)
- Oral?
 - Frequently ulcerated gingiva (Necrotizing Ulcerative Gingivostomatitis)
 - Can see ulcers on tongue, buccal mucosa
 - Early periodontal disease

Necrotizing ulcerative gingivitis – common sequalae of immune compromise

Necrotic lesions in other oral soft tissues may also be present... but why is gingiva so commonly affected?

Cyclic neutropenia

- Cyclic reduction of neutrophils
- Children
- 21 day cycle, very low neutrophils for a few days then back to normal
- Leads to constant illness
- Oral manifestations are same as generalized neutropenia- (NUG)

Agranulocytosis

- Granulocytes severely lowered
 - What are granulocytes? Neutrophils, basophils, eosinophils
- Clinical manifestiations very similar to neutropenia
 - Increased infections including oral infections
- Causes?
 - Often drug induced. Chemotherapy

Aplastic anemia

- Rare and life threatening
- Causes
 - Environmental toxins
 - Antibiotic chloramphenicol
- Pancytopenia
 - Failure of bone marrow to produce all of the blood cells
 - RBCs, WBCs, platelets
- Oral manifestations?
 - Take a guess?

What is Anemia?

- WHO definition low blood concentration of hemoglobin (<13.0 g/dL)
 - Most often a <u>sign/symptom</u> of another underlying disease
 - Often seen in elderly but not due to "old age" usually another reason
 - Main <u>symptoms</u> are WEAKNESS and FATIGUE
 - Due to less oxygen
- MOST anemias are ACQUIRED (not inherited)
 - Nutritional deficiencies most common cause worldwide (iron, B12, folate)
 - Inflammatory diseases, chronic infections, liver or kidney disease
 - Diseases of spleen (splenomegaly)
 - Blood cancers (leukemia), cancer treatment (chemotherapeutic drugs)
 - Internal bleeding
- Thalassemia and Sickle cell disease are <u>inherited</u> anemias
 - Defects (or polymorphisms) in genes that produce hemoglobin
 - Hence, called "hemoglobinopathies"

Hemoglobin levels; normal vs anemic

- 13.0 17.0 Normal range (men, women slightly lower)
- 11.0 13.0 Mild anemia, mostly unnoticeable (asymptomatic)
- 7.0 11.0 Noticeable weakness symptoms are worse with lower levels.
- Under 7.0 –Transfusions necessary to stay alive (heart does not receive enough oxygen to function)