```
A = \begin{pmatrix} 24 & 7 & 5 & 2 & -1 \\ 7 & 21 & 6 & 3 & -2 \\ 5 & 2 & 17 & -2 & 1 \\ 2 & 3 & -7 & 11 & 8 \\ -1 & -2 & 1 & 4 & 15 \end{pmatrix}; b = \begin{pmatrix} 3.0 \\ 1.5 \\ -2.5 \\ 2.0 \\ 1.0 \end{pmatrix}; x = \{\{0, 0, 0, 0, 0, 0\}\};
In[1]:=
            T = Input ["请输入迭代次数"]; m = Dimensions [A] [[1]];
            M1 = Table \left[ \begin{array}{c} \text{If} \left[ i \neq j, \frac{-A[i, j]}{A[i, i]}, 0 \right], \{i, m\}, \{j, m\} \right];
            g1 = Table \left[\frac{b[i]}{A[i,i]}, \{i, m\}\right];
            Print["Jacobi迭代矩阵M1:", M1 // MatrixForm];
            Print["迭代余项g1: ", g1 // MatrixForm];
            \label{eq:formula} For [i = 1, i \leq T, i++, AppendTo[x, N[M1.x[i]] + (g1// Transpose)[1]], 5]]]
                                                              数值运算
                                             _附加
                                                                                     转置
            TableForm[x, TableHeadings \rightarrow \{Automatic, \{"x_1", "x_2", "x_3", "x_4", "x_5"\}\}] \ //
            表格形式表格标头
             Print["迭代结果x<sub>n+1</sub>=M1.x<sub>n</sub>+g1:\n", #]&
            40; Null
```

Out[2]=

Jacobi迭代矩阵M1:
$$\begin{pmatrix} 0 & -\frac{7}{24} & -\frac{5}{24} & -\frac{1}{12} & \frac{1}{24} \\ -\frac{1}{3} & 0 & -\frac{2}{7} & -\frac{1}{7} & \frac{2}{21} \\ -\frac{5}{17} & -\frac{2}{17} & 0 & \frac{2}{17} & -\frac{1}{17} \\ -\frac{2}{11} & -\frac{3}{11} & \frac{7}{11} & 0 & -\frac{8}{11} \\ \frac{1}{15} & \frac{2}{15} & -\frac{1}{15} & -\frac{4}{15} & 0 \end{pmatrix}$$

0.125 0.0714286 迭代余项g1: -0.147059 0.181818 0.0666667

迭代结果x_{n+1}=M1.x_n+g1:

	x ₁	X ₂	X ₃	x_4	X ₅
1	0	0	0	0	0
2	0.125	0.0714286	-0.147059	0.181818	0.0666667
3	0.12243	0.0521539	-0.174758	-0.00245735	0.0458429
4	0.148311	0.0852664	-0.192189	0.000784391	0.0940884
5	0.144025	0.0857514	-0.206153	-0.0591321	0.100526
6	0.152054	0.100343	-0.212378	-0.0720536	0.117214
7	0.150867	0.10288	-0.218957	-0.0935901	0.123555
8	0.153557	0.108836	-0.221814	-0.102865	0.129996
9	0.153456	0.110694	-0.224775	-0.111481	0.133634
10	0.154401	0.113151	-0.226192	-0.116499	0.136369
11	0.154511	0.114218	-0.22751	-0.120232	0.138193
12	0.154862	0.115265	-0.228215	-0.122708	0.139426
13	0.154961	0.115821	-0.228805	-0.124402	0.140296
14	0.155099	0.116281	-0.22915	-0.12558	0.140868
15	0.155159	0.116556	-0.229417	-0.126367	0.141276
16	0.155217	0.116764	-0.229583	-0.126919	0.141544
17	0.155248	0.116897	-0.229705	-0.127287	0.141734
18	0.155273	0.116992	-0.229785	-0.127545	0.14186
19	0.155289	0.117055	-0.229841	-0.127717	0.141948
20	0.1553	0.117099	-0.229879	-0.127838	0.142007
21	0.155308	0.117128	-0.229905	-0.127919	0.142048
22	0.155313	0.117149	-0.229922	-0.127975	0.142076
23	0.155316	0.117163	-0.229935	-0.128013	0.142095
24	0.155319	0.117172	-0.229943	-0.128039	0.142109
25	0.155321	0.117179	-0.229949	-0.128057	0.142117
26	0.155322	0.117183	-0.229952	-0.128069	0.142124
27	0.155322	0.117187	-0.229955	-0.128077	0.142128
28	0.155323	0.117189	-0.229957	-0.128083	0.142131
29	0.155323	0.11719	-0.229958	-0.128087	0.142133
30	0.155324	0.117191	-0.229959	-0.12809	0.142134
31	0.155324	0.117192	-0.22996	-0.128091	0.142135
32	0.155324	0.117192	-0.22996	-0.128093	0.142135
33	0.155324	0.117192	-0.22996	-0.128093	0.142136
34	0.155324	0.117193	-0.22996	-0.128094	0.142136
35	0.155324	0.117193	-0.229961	-0.128094	0.142136
36	0.155324	0.117193	-0.229961	-0.128095	0.142137
37	0.155324	0.117193	-0.229961	-0.128095	0.142137
38	0.155324	0.117193	-0.229961	-0.128095	0.142137
39	0.155324	0.117193	-0.229961	-0.128095	0.142137
40	0.155324	0.117193	-0.229961	-0.128095	0.142137
41	0.155324	0.117193	-0.229961	-0.128095	0.142137