09/09/2024 Det Power Set. Given a Set S, the power Set of S is the Set of all subsets of S. Note: \$ \in B, for all sets P(s) = \{ A : A \(\) \} BCB for all sets Ex: $S = \{1, 2, 3\}$ P(s) = { \$, \langle 13, \langle 23, \langle 33, \langle 1, 23, \langle 1, 33, \langle 2, 33, \langle 1, 2, 33\rangle $|P(S)| = 8 = 2^3$ |S| = 3

Fact, for a given set S, $\binom{n}{r}$ |P(S)| = 2

Theorem! De morgan's Law 1 AUB = AnB If I want to show X=Y, What can I do? a, b EIR $a \le b$ and $a \ge b \Rightarrow a = b$ what if we show

What if we show

D - AUB = A OB.

and

A OB = AUB

1 AUB = AOB

Assume X is an arbitrary element in AUB WTS (want to show) X is in AOB

Statements

XEAUB

X & AUB

Reasoning by assumption by def. of complement

X∉A and X∉B

XEA and XEB

XEAOB

because X & AUB by def of complement by def of M

proved case (1)

an element of $\overline{A} \cap \overline{B}$ Assume y is an element of $\overline{A} \cap \overline{B}$

WTS Y & AUB

Statements XEANB

YEA and YEB

Y&A and Y&B

Reasoning by assumption by def of O by def. of complement

Y & AUB

because YEA and YEB
by def of complement

we proved case 2

Therefore, $\overline{AUB} \subseteq \overline{A}\overline{\Omega}\overline{B}$ and $\overline{A}\overline{\Omega}\overline{B} \subseteq \overline{A}\overline{U}\overline{B}$.

Then $\overline{AUB} = \overline{A}\overline{\Omega}\overline{B}$

De morgan's Law 2

AMB = AUB

The green colored set is the AOB

. 33-Å (2 8 .) Å (4)

add more or fill

Claim', If PCA) = PCB) then Examples B= {23 A= { 13 P(B) = { { } } , { 2 } } P(A) = { {3, {13}} P(A) & P(B) $A = \xi 13$ $B = \xi 1, 23$ $P(A) = \{ \phi, \{13\} \}$ $P(B) = \{ \phi, \{13\}, \{23\}, \{1, 23\} \}$ P(A) C P(B) / => A GB/ Proof Idea! ASB Proof. Given P(A) = PCB), Assume X arbitrary element of A WIS X = B Reasoning

Statement $X \in A$ $\{X\} \subseteq A$ $\{X\} \subseteq A$ $\{X\} \in P(A)$ $\{X\} \in P(B)$ $X \in B$

because $X \in A$ by def. of power set
given that $P(A) \subseteq P(B)$ by def of power set

Any arbitrary element in A exists in B when $P(A) \subseteq P(B)$

Hence A = B