§2.2 有界闭区间上连续函数的性质

2.2.1 零点定理与介值定理

定理 1 (**零点定理**) 设 $f(x) \in C[a,b]$, 且函数在两个端点的值 f(a) 和 f(b) 异号, 即 f(a)f(b) < 0, 则必有一点 $\xi \in (a,b)$, 使 $f(\xi) = 0$.

证明 不妨设 f(a) < 0 < f(b). 根据局部保 号性, 存在 $\delta > 0$, 使得 f 在区间 $[a, a + \delta]$ 上 为负, 而在 $[b - \delta, b]$ 为正, 因此, 集合

$$E = \{x \in [a, b] \mid f \in [a, x] \perp 为负 \}$$

是非空有界集. 设 ξ 是 E 的上确界,则根据函数的连续性有

$$f(\xi)\leqslant 0,\quad \xi\leqslant b-\delta.$$

假设 $f(\xi) < 0$, 则再由保号性存在 $\delta_1 \in (0, \delta)$, 使得 f 在 $(\xi, \xi + \delta_1)$ 上为负, 从而 f 在 $[a, \xi + \delta_1)$ 上为负, 即, $\xi + \delta_1 \in E$. 但这与 ξ 为 E 的上确界矛盾. 假设不成立, 所以 $f(\xi) = 0$. 证毕.

注: 也可以用二分区间法来证明.

当 $f(\frac{a+b}{2}) = 0$ 时, 证明结束. 若 $f(\frac{a+b}{2}) < 0$, 则令 $a_1 = \frac{a+b}{2}$, $b_1 = b$. 若 $f(\frac{a+b}{2}) > 0$, 则令 $a_1 = a$, $b_1 = \frac{a+b}{2}$. 不管哪种情况都有 $f(a_1) < 0 < f(b_1)$, $b_1 - a_1 = \frac{b-a}{2}$.

再考察区间 $[a_1,b_1]$,若 $f(\frac{a_1+b_1}{2})=0$,则证明结束. 若 $f(\frac{a_1+b_1}{2})\neq 0$,则将 $[a_1,b_1]$ 二等分,可得 $[a_2,b_2]$.

继续同样的过程, 得区间序列 $[a_n,b_n]$. 始终有 $f(a_n)<0< f(b_n)$, 以及 $b_n-a_n=\frac{b-a}{2^n}$. 由此可知 $\{a_n\}$ 和 $\{b_n\}$ 有相同的极限 ξ , 满足 $f(\xi)=0$.

定理 2 (介值定理) 设 $f(x) \in C[a,b]$, 且 $f(a) \neq f(b)$, 则 f(x) 在 [a,b] 能取到介于 f(a) 和 f(b) 之间的任意值.

证明 不妨设 f(a) < f(b), 且 r 是介于 f(a) 和 f(b) 之间的一个数: f(a) < r < f(b), 考虑辅助函数 g(x) = f(x) - r, 则 g(x) 也是 [a,b] 上连续函数, 而且

$$g(a) = f(a) - r < 0, \quad g(b) = f(b) - r > 0$$

故满足零点定理的条件, 因而有 $\xi \in (a,b)$ 使 $g(\xi) = 0$, 即 $f(\xi) = r$. 证毕.

注: 根据零点定理, 在一个区间上的连续函数只要在区间内有两点的值是异号的, 就一定有零点. 当然, 在介值定理中, 函数一定能取到介于任意两点之间的值. 介值定理也可以看成是通过将零值定理沿 y 轴向上平移到 y=r 处的情况.

例 1 证明函数 $f(x) = 2^x - 4x$ 在区间 $\left(0, \frac{1}{2}\right)$ 内有零点.

证明 显然, f(x) 在 $\left[0,\frac{1}{2}\right]$ 上连续. 且 f(0) = 1 > 0, $f\left(\frac{1}{2}\right) = \sqrt{2} - 2 < 0$, 所以 $f(x) = 2^x - 4x$ 在区间 $\left(0,\frac{1}{2}\right)$ 内有零点.

例 2 证明任何奇次多项式至少有一个实根.

证明 设 $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ 是一个奇次多项式,即 n 是奇数, $a_n \neq 0$. 不妨设 $a_n > 0$. 则 $P(x) \sim a_n x^n$, $(x \to \infty)$. 因为 n 是奇数, 所以当 $x \to \pm \infty$ 时, $P(x) \to \pm \infty$. 故存在两个数 A < B, 使得 f(A) < 0 < f(B), 由零点定理知 P(x) 一定有零点.

对于偶次多项式结果就不是这样了, 例如 $P(x) = x^2 + 1$, 就没有实根.

例 3 设函数 $f(x) \in C[a,b]$ 且 $a \leq f(x) \leq b$. 则 f(x) 在 [a,b] 有不动点,即存在 $\xi \in [a,b]$ 使得 $f(\xi) = \xi$.

证明 考虑函数 g(x) = f(x) - x. 则 $f(b) \le 0 \le f(a)$. 根据零点定理可得证.

定理 3 若 $f(x) \in C[a,b]$, 则它在整个区间上有界. 即存在一个常数 M, 使得当 $a \leq x \leq b$ 时, 有 $|f(x)| \leq M$.

证明 (反证) 假设 f(x) 在 [a,b] 上无界, 则对于任意自然数 n, 存在 $x_n \in [a,b]$ 使得

$$|f(x_n)|\geqslant n$$
.

因为 $\{x_n\}$ 是有界数列, 所以根据 Bolzano-Weierestrass 定理知存在收敛子列. 设

$$x_{n_k} o x \ (k o \infty)$$

是一个收敛子列. 显然, $x \in [a,b]$. 由 f 的连续性, 得 $f(x_{n_k}) \to f(x)$. 但是根据 x_n 的选择, 有

$$|f(x_{n_k})|\geqslant n_k o +\infty, \ (k o \infty).$$

这是矛盾的. 因此, f(x) 在 [a,b] 上有界. 证毕.

定理 4 (最值定理) 若 $f(x) \in C[a,b]$, 则 f(x)在 [a,b] 上能取到最大值和最小值. 即存在 $x_* \in [a,b]$ 和 $x^* \in [a,b]$, 使得对所有的 $x \in [a,b]$, 有

$$f(x_*)\leqslant f(x)\leqslant f(x^*)$$

证明 因为 f(x) 在 [a,b] 上连续, 所以在 [a,b] 上有界. 设 $M=\sup\{f(x)\,|\,x\in[a,b]\}$. 对任意自然数 n 存在 $x_n\in[a,b]$ 使得

$$M-rac{1}{n} < f(x_n) \leqslant M.$$

这说明 $\{f(x_n)\}$ 收敛到 M. 根据 Bolzano-Weierestrass 定理知存在 $\{x_n\}$ 的收敛子列 $x_{n_k} \to x^* \in [a,b]$. 于是

$$M=\lim_{k o\infty}f(x_{n_k})=f(x^*).$$

这就证明了 f 在 [a,b] 上取到上确界 M. 同理可证 f 在 [a,b] 上取到下确界. 证毕.

这个定理说明连续函数将闭区间映为闭区间.

2.2.2 一致连续性

函数 f(x) 在区间 I 上连续时, 对于 I 中每一点 x_0 , f 在 x_0 连续, 因此, 任意 $\varepsilon > 0$, 存在 $\delta > 0$ 使得只要 $|x - x_0| < \delta, x \in I$, 就有

$$|f(x)-f(x_0)|<\varepsilon.$$

一般来说其中的 δ 不仅依赖于 ε , 也依赖于 x_0 .

观察一个例子

$$f(x)=rac{1}{x},~~x\in(0,1)$$

显然它是区间 (0,1) 上的连续函数, 即 在每一点 $x \in (0,1)$ 都连续.

对于 $x_0 = \frac{1}{n}$, 要使

$$|f(x)-f(x_0)|=\left|rac{1}{x}-rac{1}{x_0}
ight|=\left|rac{1}{x}-n
ight|$$

必须

$$-\frac{\varepsilon}{n(n+\varepsilon)} < x - \frac{1}{n} < \frac{\varepsilon}{n(n-\varepsilon)}$$

因此, 对于 $x_0 = \frac{1}{n}$, 取

$$\delta = rac{arepsilon}{n(n+arepsilon)} \sim rac{arepsilon}{n^2}$$

则当 $|x-x_0| < \delta$, 时有 $|f(x)-f(x_0)| < \varepsilon$.

而对于同一个正数 ε , 在点 $x_0' = 1 - \frac{1}{n}$ 处, 要使

$$|f(x)-f(x_0')|=\left|rac{1}{x}-rac{1}{x_0'}
ight|=\left|rac{1}{x}-rac{n}{n-1}
ight|$$

必须

$$egin{split} &-rac{arepsilon(n-1)^2}{n(n+arepsilon(n-1))} < x-x_0' \ &= x-\left(1-rac{1}{n}
ight) < rac{arepsilon(n-1)^2}{n(n-arepsilon(n-1))}. \end{split}$$

因此, 对于 $x'_0 = 1 - \frac{1}{n}$, 取

$$\delta' = rac{arepsilon(n-1)^2}{n(n+arepsilon(n-1))} \sim arepsilon$$

则当 $|x-x_0|<\delta'$, 时有 $|f(x)-f(x_0)|<\varepsilon$.

显然, 对于同一个正数 ε , 当 x_0 越靠近 0, 对 δ 的要求越严, 而当 x_0 越靠近 1, δ 的选择越宽. 所以对于不同的连续点来说, 对应的 δ 是不一致的.

因此, 对于任何一个给定的正数 ε , 如果对于所有的点 x_0 , 存在统一的正数 δ , 使得 $|x-x_0|<\delta$ 时, 有 $|f(x)-f(x_0)|<\varepsilon$, 则说这样的连续性是"一致"的.

定义 1 设 y = f(x) 在区间 I 上有定义, 对任给的 $\varepsilon > 0$, 如果存在 $\delta > 0$, 使得任取一点 $x_0 \in I$, 只要 $|x - x_0| < \delta$, 就有 $|f(x) - f(x_0)| < \varepsilon$. 则称函数 f 在 I 上是一致连续的.

一个等价的说法是: 对任给的 $\varepsilon > 0$, 存在 $\delta > 0$, 只要 $x_1, x_2 \in I$ 及 $|x_1 - x_2| < \delta$, 就有 $|f(x_1) - f(x_2)| < \varepsilon$, 则称 f(x) 在区间 I 上一致连续.

f(x) 在 I 上不一致连续

存在 $\varepsilon_0 > 0$, 及数列 $x_n, y_n \in I$ 使得

$$|f(x_n)-f(y_n)|\geqslant arepsilon_0, \quad |x_n-y_n|\leqslant rac{1}{n}, \ n=1,2,\cdots$$

例 4 $f(x) = \frac{1}{x}$ 在 (0,1) 不是一致连续的.

这是因为对于 $\varepsilon_0=1$, 有数列 $x_n=\frac{1}{n},\,y_n=\frac{1}{n+1}$ 使得

$$|f(y_n)-f(x_n)|=1, \quad |x_n-y_n|=rac{1}{n(n+1)}\leqslant rac{1}{n}.$$

例 5 $f(x) = \sin x$ 在 $(-\infty, +\infty)$ 上一致连续.

这是因为

$$|\sin x_1 - \sin x_2| = 2 \left| \sin rac{x_1 - x_2}{2} \cos rac{x_1 + x_2}{2}
ight| \leqslant |x_1 - x_2|.$$

所以, 任给 $\varepsilon > 0$, 取 $\delta = \varepsilon$, 则当 $|x_1 - x_2| < \delta$ 时就有

$$|\sin x_1 - \sin x_2| < \varepsilon.$$

问题 1 函数 $f(x) = x^2$ 在 $(-\infty, +\infty)$ 是否一致连续?

答: 不一致连续. 取 $y_n = n + \frac{1}{n}$, $x_n = n$, 则

$$|f(y_n)-f(x_n)|=rac{1}{n}(2n+rac{1}{n})>2,$$

但 $|y_n-x_n|=rac{1}{n}$.

问题 2 函数 $f(x) = \sqrt{x}$ 在 $(0, +\infty)$ 是否一致连续?

答: 一致连续. 因为对于 0 < x < y 有

$$egin{align} 0 < \sqrt{y} - \sqrt{x} &= \sqrt{y} \left(1 - \sqrt{rac{x}{y}}
ight) \ &\leqslant \sqrt{y} \left(1 - rac{x}{y}
ight) \leqslant \sqrt{y} \left(1 - rac{x}{y}
ight)^{1/2} \ &= (y-x)^{1/2}. \end{split}$$

所以对 $\varepsilon > 0$, 可取 $\delta = \varepsilon^2$.

定理 5 (**一致连续定理**) 有限闭区间 [a,b] 上定义的连续函数 f(x), 一定在 [a,b] 上一致连续.

证明 (反证) 若 f(x) 在 [a,b] 上不是一致连续的, 则存在固定的正数 ε_0 使得对任意自然数 n, 都存在 $x_n, y_n \in [a,b]$ 满足 $|x_n - y_n| \leq \frac{1}{n}$, 而且 $|f(x_n) - f(y_n)| \geq \varepsilon_0$. 由 Bolzano-Weierestrass 定理, 数列 $\{x_n\}$ 有子列 $\{x_{n_k}\}$ 收敛于 $x \in [a,b]$. 从 $|x_{n_k} - y_{n_k}| < \frac{1}{n_k}$ 知, $\{y_{n_k}\}$ 也收敛于 x. 由于 f 连续, 有 $\lim_{k \to \infty} \left(f(x_{n_k}) - f(y_{n_k}) \right) = f(x) - f(x) = 0$.

 $\stackrel{\mathbf{HH}}{k o \infty} (\mathbf{J}\left(w n_k
ight) - \mathbf{J}\left(w
ight) - \mathbf{J}\left(w
ight) - \mathbf{J}\left(w
ight)$

这是与 $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon_0$ 矛盾的. 证毕.

例 6 若函数 f(x) 在 $[a, +\infty)$ 连续, 并且 $\lim_{x\to +\infty} f(x)$ 存在有限, 则 f(x) 在 $[a, +\infty)$ 上一致连续.

证明 因为 $\lim_{x\to +\infty}f(x)$,所以对任意 $\varepsilon>0$ 存在 $M>\max\{0,a+1\}$ 使得当 $x,y\geqslant M$ 时有

$$|f(x)-f(y)|<\varepsilon.$$

因为 f(x) 在 [a, M+1] 连续, 因而一致连续, 于是存在 $\delta \in (0,1)$ 使得当 $x, y \in [a, M+1]$ 且 $|x-y| < \delta$ 时, 上面的不等式也成立. 因为当 $|x-y| < \delta$ 时, 必有 $x, y \geqslant M$ 或者 $x, y \in [a, M+1]$, 因此只要 $|x-y| < \delta$ 上面不等式就成立. 证毕.

定义 2 (Lipshitz 连续) 设 f(x) 是定义在区间 I 上的函数. 若存在正常数 L 及 $\alpha \in (0,1]$, 使得对于任意 $x,y \in I$ 有

$$|f(x)-f(y)|\leqslant L|x-y|^{lpha},$$

则称 f(x) 在 I 上满足 α 阶 Lipshitz 连续条件. 特别 $\alpha = 1$ 时, 就称为 Lipshitz 连续条件.

例如, $\sin x$ 在 \mathbb{R} 上满足 Lipshitz 连续条件. x^{α} (0 < $\alpha \leq 1$) 在 $[0, +\infty)$ 上满足 α 阶 Lipshitz 连续条件.

性质 1 若 f(x) 在区间 I 上满足 α 阶 Lipshitz 连续条件, 则 f(x) 在 I 上一致连续.

定义 3 (压缩映射) 设 f(x) 是定义在区间 I 上的函数. 若存在常数 $\alpha \in (0,1)$, 使得对于任意 $x,y \in I$ 有

$$|f(x)-f(y)|\leqslant lpha |x-y|,$$

则称 f(x) 是定义在 I 上的 压缩映射, α 称为压缩因子.

例如, 当 $\alpha \in (0,1)$ 时, $\sin \alpha x$, $\ln(1+\alpha^2x^2)$ 都是实轴上的压缩映射.

性质 2 若 f(x) 是定义在 $(-\infty, +\infty)$ 上的压缩映射, 则 f(x) 有唯一的不动点, 即存在唯一的实数 c, 使得 f(c) = c.

证明 设 $k \in (0,1)$ 是压缩因子, 则对于 $x,y \in (-\infty,+\infty)$ 有

$$|f(x)-f(y)|\leqslant k|x-y|.$$

任取实数 x_0 , 由

$$x_{n+1} = f(x_n), \ n = 0, 1, 2, \cdots$$

归纳地构造数列 $\{x_n\}$. 下证此数列收敛到 f(x) 的不动点.

因为

$$|x_n-x_{n-1}|=|f(x_{n-1}-f(x_{n-2})|\leqslant k|x_{n-1}-x_{n-2}|,\ n=2,3,\cdots$$

所以取 $d = |x_1 - x_0|$, 根据上面这个递推式可得

$$|x_n-x_{n-1}|\leqslant k^{n-1}d.$$

对于任意自然数 p, 有

$$egin{align} |x_{n+p}-x_n| \leqslant |x_{n+p}-x_{n+p-1}| + |x_{n+p-1}-x_{n+p-2}| + \cdots + |x_{n+1}-x_n| \ &\leqslant k^{n+p-1}d + k^{n+p-2}d + \cdots + k^nd \ &= k^n rac{1-k^p}{1-k}d \leqslant rac{d}{1-k}k^n. \end{aligned}$$

由此可知 $\{x_n\}$ 是 Cauchy 数列. 设 $c = \lim_{n \to \infty} x_n$. 由 $x_{n+1} = f(x_n)$ 及 f 的连 续性可得 f(c) = c. 唯一性是显然的.