AINT351: Machine Learning

Lecture 4

Data modelling

2D Gaussian distribution

The joint Gaussian distribution for the vector y with mean μ and covariance matrix Σ is given by

$$p(\overline{y} \mid \overline{\mu}, \Sigma) = |2\pi\Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\overline{y} - \overline{\mu})^T \Sigma^{-1}(\overline{y} - \overline{\mu})\right\}$$

Sometime written as

$$p(\overline{y} \mid \overline{\mu}, \Sigma) = N(\overline{\mu}, \Sigma)$$

This equation says a lot! Expanding the matrices and vectors leads to

$$p(\overline{y} \mid \mu, \Sigma) = \begin{vmatrix} 2\pi \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{vmatrix}^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \right\}^T \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}^{-1} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \right\}$$

2D Gaussian distribution

The covariance determinant and inverse terms can be written as

$$\left| \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array} \right) \right| = \boldsymbol{\Sigma}_{11} \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{21}$$

$$\begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}^{-1} = \frac{1}{\Sigma_{11}\Sigma_{22} - \Sigma_{12}\Sigma_{21}} \begin{pmatrix} \Sigma_{22} & -\Sigma_{12} \\ -\Sigma_{21} & \Sigma_{11} \end{pmatrix}$$

Therefore

$$p(\overline{y} \mid \overline{\mu}, \Sigma) = (2\pi(\Sigma_{11}\Sigma_{22} - \Sigma_{12}\Sigma_{21}))^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \begin{bmatrix} y_1 - \mu_1 \\ y_2 - \mu_2 \end{bmatrix}^T \begin{pmatrix} \frac{\Sigma_{22}}{(\Sigma_{11}\Sigma_{22} - \Sigma_{12}\Sigma_{21})} & \frac{-\Sigma_{12}}{(\Sigma_{11}\Sigma_{22} - \Sigma_{12}\Sigma_{21})} \\ \frac{-\Sigma_{21}}{(\Sigma_{11}\Sigma_{22} - \Sigma_{12}\Sigma_{21})} & \frac{\Sigma_{11}}{(\Sigma_{11}\Sigma_{22} - \Sigma_{12}\Sigma_{21})} \end{pmatrix} \begin{bmatrix} y_1 - \mu_1 \\ y_2 - \mu_2 \end{bmatrix} \right\}$$

2D independent Gaussian distribution

If the two components of the vector y are independent then

$$\Sigma_{12} = 0$$

$$\Sigma_{21} = 0$$

Therefore

$$p(\overline{y} | \overline{\mu}, \Sigma) = (2\pi \Sigma_{11} \Sigma_{22})^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \begin{bmatrix} y_1 - \mu_1 \\ y_2 - \mu_2 \end{bmatrix}^T \begin{pmatrix} \frac{1}{\Sigma_{11}} & 0 \\ 0 & \frac{1}{\Sigma_{22}} \end{pmatrix} \begin{bmatrix} y_1 - \mu_1 \\ y_2 - \mu_2 \end{bmatrix} \right\}$$

Giving

$$p(\overline{y} | \overline{\mu}, \Sigma) = (2\pi \Sigma_{11} \Sigma_{22})^{-\frac{1}{2}} \exp \left(-\frac{1}{2} \left(\frac{(y_1 - \mu_1)^2}{\Sigma_{11}} + \frac{(y_2 - \mu_2)^2}{\Sigma_{22}} \right) \right)$$

Which is the product of two 1D Gaussians

$$p(\overline{y} \mid \overline{\mu}, \Sigma) = \frac{1}{\sqrt{2\pi\Sigma_{11}}} \exp\left(-\frac{1}{2} \frac{(y_1 - \mu_1)^2}{\Sigma_{11}}\right) \frac{1}{\sqrt{2\pi\Sigma_{22}}} \exp\left(-\frac{1}{2} \frac{(y_2 - \mu_2)^2}{\Sigma_{22}}\right)$$

1D Gaussian data with arbitrary μ and σ

To generate 1 iD Gaussian with μ = 0 and σ =1 we can use the Matlab randn function:

```
data = randn(1,1);
```

To change to sample drawn from a distribution with non-zero mean and non-unity standard deviation we need to scale by σ and hen add on μ

```
dataNew = data * \sigma + \mu;
```

Note in 1D case

$$\sigma = \int (var)$$
;

where var is the variance.

In the multidimensional case we have a covariance matrix not a scalar value

Generate a ND Gaussian distribution

Question: If we use randn(N,1) to draw N samples from a 1D distribution x_1 and use if again to draw another N samples from a 1D distribution x_2 and then build a 2D vector X, what is to covariance matrix of the 2D dataset X?

$$\Sigma = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$

What are the covariance terms equal to here?

$$\Sigma_{12} = 0$$

$$\Sigma_{21} = 0$$

So how can we generate a joint Gaussian with covariance matrix 'K' and mean vector 'meanVal'?

Generate correlated ND Gaussian data

To generate a random sample from a 2-dimensional joint Gaussian with covariance matrix 'K' and mean vector 'meanVal'

- First need to decompose the covariance matrix such that $A^TA = K$
- We can use Cholesky decomposition to do this
- Then multiply by A and add on meanVal:

```
% select large number of samples
samples = 1000000;

% example mean and covariance
meanVal = [10 -8]';
K = [3 1; 1 3;];

% generate 2-D uncorrelated data of length 'samples'
uncorrelatedData = randn(2,samples);

% generate correlated data with covariance 'K' and specified mean 'meanVal'
correlatedData= chol(K) * uncorrelatedData + repmat(meanVal,1,samples);
```

```
2D Gaussian data

O uncorrelated Data
+ correlated Data

-10
-15
-20
-5
0
5
10
15
20
```

AINT351: Machine Learning

Lecture 4

Learning from data

Terminology for types of learning

Maximum likelihood (MP) learning

Does not assume a prior over the model parameters. Finds q parameter settings that maximizes the likelihood of the data $P(D|\theta)$

Maximum a posteriori (MAP) learning

Assumes a prior over the model parameters $P(\theta)$. Finds a parameter settings that maximizes the posterior $P(\theta|D) \propto P(\theta) P(D|\theta)$

Bayesian learning

Assumes a prior over the model parameters . Computes the posterior of the parameters $P(\theta|D)$

Simple statistical modeling

- Assume we have a dataset Y= {y_{1, ...} y_N}
- Each data point is a vector of D features $y_i = \{y_{i1, \dots}, y_{iD}\}$
- The data points are I.I.D (independent and identically distributed)
- One of the simplest forms of unsupervised learning is to model the mean and correlations between the D features of the data.
- We can do so using the multivariate Gaussian model

$$p(\overline{y} | \overline{\mu}, \Sigma) = |2\pi \Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\overline{y} - \overline{\mu})^T \Sigma^{-1} (\overline{y} - \overline{\mu})\right\}$$

Joint probability of a dataset

If two events y_1 and y_2 are independent we know that their joint probability is given by:

$$p(y_1,y_2) = p(y_1)p(y_2) = \prod_{n=1}^{2} p(y_n)$$

Similarly if data points in the dataset $Y = \{y_{1, ...}, y_{N}\}$ are I.I.D (independent and identically distributed) then, the likelihood of this dataset is

$$p(Y) = \prod_{n=1}^{N} p(y_n)$$

ML estimation of a Gaussian

Given the dataset Y= $\{y_{1, \dots}, y_{N}\}$, the likelihood of this dataset is

$$p(Y \mid \mu, \Sigma) = \prod_{n=1}^{N} p(y_n \mid \mu, \Sigma)$$

We wish to find the maximum likelihood of the dataset maximize log likelihood (because mathematically its easier)

$$L = \log \prod_{n=1}^{N} p(y_n \mid \mu, \Sigma) = \sum_{n=1}^{N} \log(p(y_n \mid \mu, \Sigma))$$

ML estimation of a Gaussian

Since

$$p(y \mid \mu, \Sigma) = |2\pi \Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(y - \mu)^T \Sigma^{-1}(y - \mu)\right\}$$

Substituting into the expression for likelihood

$$L = \sum_{n=1}^{N} \log(p(y_n \mid \mu, \Sigma))$$

Therefore

$$L = -\frac{N}{2}\log|2\pi\Sigma| - \frac{1}{2}\sum_{N}(y_{n} - \mu)^{T} \Sigma^{-1}(y_{n} - \mu)$$

Minimize -L

We wish to find the maximum likelihood, so minimize -L

$$-L = \frac{N}{2}\log|2\pi\Sigma| + \frac{1}{2}\sum_{N}(y_{n} - \mu)^{T} \Sigma^{-1}(y_{n} - \mu)$$

We differentiate -L w.r.t to the parameters, leading to

$$\frac{\partial L}{\partial \mu} = 0 \Longrightarrow \tilde{\mu} = \frac{1}{N} \sum_{N} y_{n}$$

sample mean

$$\frac{\partial L}{\partial \Sigma} = 0 \Rightarrow \tilde{\Sigma} = \frac{1}{N} \sum_{N} (y_n - \mu)^T (y_n - \mu)$$

sample covariance

Calculate mean and covariance in Matlab

$$\tilde{\mu} = \frac{1}{N} \sum_{N} y_n$$
 sample mean

% compute sum and divide by length mm ≡ sum(AS,2)/length(AS)

% use mean command
m = mean(AS,2)

$$\tilde{\Sigma} = \frac{1}{N} \sum_{n} (y_n - \mu)^T (y_n - \mu)$$
 sample covariance

Why do we care about this?

Can now fit a single Gaussian to our dataset!

```
% use mean command
m = mean(correlatedData,2)
% use cov command
c = cov(correlatedData')
   10.0014
   -7.9995
c =
    3.3294
              0.9368
    0.9368
              2.6680
```


Later we will fit more sophisticated models, so understanding the simplest is very helpful!

Gaussian class-conditional model

$$p(\overline{y} | \overline{\mu}, \Sigma) = |2\pi \Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\overline{y} - \overline{\mu})^T \Sigma^{-1} (\overline{y} - \overline{\mu})\right\}$$

- The maximum likelihood fit of a Gaussian to some data is the Gaussian whose mean is equal to the data mean and whose covariance is equal to the sample covariance.
- One very nice feature of this model is that the maximum likelihood parameters can be found in closed-form, so we don't have to use iterative solutions
- Seems easy.
- And works surprisingly well.
- But we can do even better with some simple regularization

Three limitations

- We cannot account for higher order statistical structure in the data
 - These require nonlinear and hierarchical models

- We need to deal with outliers
 - These require nonlinear and hierarchical models

- The multivariate model uses D(D+1)/2 parameters.
 - If D is very large we need to use dimensionality reduction

AINT351: Machine Learning

Lecture 4

Bayesian learning

Frequentist and Bayesian statistics

Frequentist approach

- Probability is the limit of observed frequency as number of observations goes to infinity
- Considers the model parameters to be fixed (but unknown), and calculates the probability of the data given those parameters

Bayesian approach

- Probability is a "degree of confidence" that one attaches to an uncertain event
- Requires a priori estimation of the model's likelihood, naturally incorporating prior knowledge

ML learning

$$h_{ML} = \underset{h \in H}{argmax} P(D|h)$$

• P (D|h) is often called the likelihood of D given h

 Here it is assumed that every hypothesis is equally probable a priori

ML estimation of coin flip probability

- We have a coin and wish to estimate the outcome (head or tail) from observing a series of coin tosses. Let:
- θ = probability of tossing a head
- Therefore probability of tail= (1θ)
- Let h be the number of heads
- Let n be the total number of trials.
- Assume I.I.D (coin doesn't change between flips)
- The likelihood of throwing h heads, independent or their order is given by:

$$L(\theta) = \theta^h (1 - \theta)^{n - h}$$

$$\Rightarrow \log L(\theta) = h \log \theta + (n-h) \log(1-\theta)$$

ML estimation of coin flip probability

To find the ML estimate for θ we look at when dL/d θ = 0:

$$\frac{d}{d\theta} \log L(\theta) = \frac{h}{\theta} - \frac{n-h}{1-\theta} = 0 \quad \Rightarrow \frac{h}{\theta} = \frac{n-h}{1-\theta} \quad \Rightarrow h(1-\theta) = (n-h)\theta$$

$$\Rightarrow \theta_{ML} = \frac{h}{n}$$

Thus we should divide number of heads by total number of trials.

In a given experiment, the first flip may result in a tails

In this case ML estimate predicts zero probability of seeing heads! But we know this cannot be the case!

Flip coin in a Matlab simulation

Question: How can we simulate a coin flip in Matlab?

```
function wasHeads = FlipCoin(coinBias)
% flip coin and return heads/tails outcome
val = rand(1,1);
if(val < coinBias)</pre>
    wasHeads=1;
else
    wasHeads=0;
end
```

ML estimation of coin flip probability

Use a Matlab simulation with coin bias = 0.6

Might get something like this after 100 trials:

```
% frequentist update
 numberOfFlips = 100;
 trials=0:
 heads=0;
 pHeads=[];
for idx=1:numberOfFlips
     % flip coind
     wasHeads = FlipCoin(coinBias);
     if(wasHeads)
         heads=heads+1;
     end
     trials=trials+1;
     % estimate estimate of heads
     pHeads(idx) = (heads)/ trials;
     flip(idx)=idx;
 end
```


If get several heads in row then can get inappropriate bias to heads Can we do better than this? Here we only have point estimate

Remember Bayes theorem

 Generally we want to find the most probable hypothesis given the training data

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P (h) prior probability of h, represents our belief in what h should be
- P (D) prior probability of D
- P (D|h) probability of observing D given h holds
- P (h|D) posterior probability of h after D has been observed

This leads to MAP learning

Really want the most probable hypothesis given the training data

$$\begin{split} h_{MAP} &= \underset{h \in H}{argmax} \; P(h|D) \\ &= \underset{h \in H}{argmax} \; \frac{P(D|h)P(h)}{P(D)} \\ &= \underset{h \in H}{argmax} \; P(D|h)P(h) \end{split}$$

- P (D) can be dropped, because it is a constant and independent of h
- NB: MAP and ML estimate are identical when the prior is uniformly distributed

MAP estimation of coin flip probability

- Rather than estimating a single θ , we obtain a distribution over possible values of θ
- Consider θ = probability of tossing a head as a random variable
- We want to take our prior belief of what θ should be into account
- Using Bayes theorem we can write the posterior is given by:

$$p(\theta = x \mid D) = \frac{p(D \mid \theta = x) p(\theta = x)}{p(D)}$$

Where

 $p(D \mid \theta = x)$ is the same as expression from ML estimate with θ fixed to value x

And

 $p(\theta = x)$ Is the probability θ around x without seeing the data - the prior

How should be choose the prior?

Since prior is a distribution then:

$$\int_{X} p(\theta = x)dx = 1$$
or
$$\int_{X} p(\theta)d\theta = 1$$
where
$$\theta \in [0,1]$$

How should be choose the prior?

Want function that can represent the following kind of distributions

 A suitable function for the prior is the Beta distribution since It captures some of these important properties

Acknowledgements

- Zoubin Ghahramani
- Patrick Lam
- Wikipedia
- Sam Roweis
- http://nucinkis-lab.cc.ic.ac.uk/HELM/helm_workbooks.html