

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

the opposite. You are given that a is not b, and you wish to prove that c is not d. It is not, because, if it is, then a is b; but a is not b, therefore c is not d.

Second. By a similar proof, if the opposite be true, the converse is true. For example, from the theorem [compare the proof in Wentworth's Revised Geometry, p. 70, Ex. 55]: If two angles of a triangle are not equal, their bisectors are not equal, one may conclude: If the bisectors of two angles of a triangle are equal, the triangle is isosceles. The proof of the first theorem is, indeed, a proof of the second.

DEPARTMENTS.

SOLUTIONS OF PROBLEMS.

GEOMETRY.

203. Proposed by W. J. GREENSTREET, A. M., Editor of The Mathematical Gazette, Stroud; England.

Show that two parabolae can always be drawn through the vertices of a triangle to touch its circumcircle at a vertex, and that the axes of these pairs of curves are orthogonal. Show that any triangle may be circumscribed by a conic so that the tangents at each vertex is parallel to the opposite side.

No solution has been received.

204. Proposed by ELMER SCHUYLER, B. Sc., Professor of German and Mathematics, Boys' High School, Reading, Pa.

Construct a triangle, having given an angle, the length of its bisector, and the sum of the including sides. (Phillips and Fisher).

Solution by G. I. HOPKINS, J. SCHEFFER, and G. B. M. ZERR.

Let AB be the sum of the two sides, CD the bisector, and F the given angle. Make $\angle HGK = \angle F$ and bisector GL = CD. Draw LM parallel to HG and NL parallel to GK. Extend GK making GO = NG. Make OP = AB, and on MP draw the semicircle MSP. Draw the perpendicular MQ = ML, also QR parallel to MP and ST perpendicular to MP. Through L draw TX, then TGX is the required triangle; for $TS^2 = MT.PT = QM^2 = ML^2$. From similar triangles XNL and LMT, XN:LM::NL:MT. Since MLNG is a rhombus LM = NL. $\therefore XN.MT = ML^2$. $\therefore MT.TP = MT.XN$, whence NX = TP. $\therefore GX + GP = OP = AB$.

CALCULUS.

168. Proposed by F. P. MATZ, Sc. D., Ph. D., Professor of Mathematics and Astronomy in Defiance College, Defiance, O.

The tangent of what Cartesian curve makes an x-intercept always m times as long as the corresponding y-intercept.

Solution by J. SCHEFFER.

Let the equation of the tangent be $y-y'=\frac{dy'}{dx'}(x-x')$. Consequently the x-intercept $=x'-y'\frac{dx'}{dy'}$, and the y-intercept $=y'-x'\frac{dy'}{dx'}$; therefore, omitting the accents, by the condition imposed upon the problem

$$-\frac{y}{p}+x=m(y-px); (p=\frac{dy}{dx}),$$

whence $mxp^2 - (my - x)p - y = 0$; or, arranged differently, (px - y)(mp + 1) = 0, whence px - y = 0 and mp + 1 = 0. From the former of these two equations we get y = ax; and from the second my + x = b, where a and b are arbitrary constants. Both equations represent straight lines, the first one of which passes through the origin.

MECHANICS.

159. Proposed by J. E. SANDERS, Hackney, Ohio.

Required the time for a tree, considered as a material line of uniform density, length a=100 feet, to fall; the tree being inclined $\phi=1'$ from perpendicular.

Solution by the PROPOSER.

From Mechanics we find that

$$\frac{\sqrt{(2gh)t}}{l} = \int \frac{d\theta}{\sqrt{\left[1 - (2l/h)\sin^2\frac{1}{2}\theta\right]}} \dots (1),$$