Explicit CN Soundness Proof

Dhruv Makwana

November 18, 2021

1 Weakening

If $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ and $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$ then $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$. 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$.

PROVE: $C'; L'; \Phi'; \mathcal{R}' \vdash J$.

PROOF SKETCH: Consider only the below cases, the rest are functorial in the environment.

- $\langle 1 \rangle 1$. Case: Ty_PVal_Var_{Comp,Log}. Proof: By Weak_Cons_{Comp,Log}, if $x:\beta \in \mathcal{C}$ (or $x:\beta \in \mathcal{L}$) then $x:\beta \in \mathcal{C}'$ (or $x:\beta \in \mathcal{L}$).
- (1)2. Case: Ty_PVal_Error, Ty_Res_Eq_{PointsTo,Term}, Ty_Res_{PointsTo, Var,Conj,Fold}, Ty_Spine_Res_Phi, Ty_PE_AssertUndef, Ty_TPVal_{Undef,Done}, Ty_Action_{Load,Store,Kill}, Ty_Memop_PtrValidForDeref, Ty_TVal_{Phi,Undef}.

Assume: $\operatorname{smt}(\Phi \Rightarrow term')$. Prove: $\operatorname{smt}(\Phi' \Rightarrow term')$.

- $\langle 2 \rangle 1$. If $term \in \Phi$ then $term \in \Phi'$. Proof: By Weak_Cons_Phi.
- $\langle 2 \rangle 2$. Any extra constraints in Φ' (by Weak_Skip_Phi) would either be irrelevant, redundant, or inconsistent.
- $\langle 2 \rangle 3$. In all cases, smt $(\Phi' \Rightarrow term')$ as required.
- - $\langle 2 \rangle$ 1. $\mathcal{R} = \mathcal{R}'$. PROOF: Only Weak_Cons_Res exists, no Weak_Skip_Res.
 - $\langle 2 \rangle 2$. All the rules are otherwise functorial in $\mathcal{C}, \mathcal{L}, \Phi$,.
 - $\langle 2 \rangle 3$. So $C'; L'; \Phi'; R' \vdash J$ as required.

2 Substitution

2.1 Weakening for Substitution

Weakening for substitution: as above, but with $J = (\sigma) : (\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

Assume: 1.
$$C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$$
.
2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROVE:
$$C'; L'; \Phi'; \mathcal{R}' \vdash (\sigma): (C''; L''; \Phi''; \mathcal{R}'').$$

PROOF SKETCH: By weakening and induction over the substitution.

2.2 Substitutions preserve SMT results

ASSUME: 1. smt
$$(\Phi' \Rightarrow term)$$
.
2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$.

PROVE: smt
$$(\Phi \Rightarrow \sigma(term))$$
.

$$\langle 1 \rangle 1$$
. smt $(\Phi' \Rightarrow \sigma(term))$.

PROOF: By assumption 1, which means it is true for all (well-typed) instantiations of its free variables.

$$\langle 1 \rangle 2$$
. smt $(\Phi \Rightarrow \sigma(term))$.

PROOF: By smt $(\Phi \Rightarrow term)$ for each $term \in \Phi'$ (from assumption 2) and $\langle 1 \rangle 1$.

2.3 Resource equality is an equivalence relation

PROOF SKETCH: By induction.

2.4 Resource typing subsumption

Assume: 1.
$$\Phi \vdash res \equiv res'$$
.
2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res$.

PROVE:
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res'$$
.

PROOF SKETCH: Induction over $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res$.

$$\langle 1 \rangle 1$$
. Case: Ty_Res_Emp

PROOF: $res = res' = res_term = emp$.

$\langle 1 \rangle 2$. Case: Ty_Res_PointsTo

 $res = points_to'', res_term = points_to', res' = points_to_1, \mathcal{R} = \cdot, _:points_to.$

$$\langle 2 \rangle 1$$
. $\Phi \vdash points_to \equiv points_to'$ and $\Phi \vdash points_to' \equiv points_to''$ by inversion.

$$\langle 2 \rangle 2$$
. $\Phi \vdash points_to' \equiv points_to_1$ by transitivity (lemma 2.3).

$$\langle 2 \rangle 3. \ C; \mathcal{L}; \Phi; \cdot, :points_to \vdash points_to' \Leftarrow points_to_1 \text{ as required.}$$

 $\langle 1 \rangle 3$. Case: Ty_Res_Var

PROOF: By transitivity (lemma 2.3).

 $\langle 1 \rangle 4$. Case: Ty_Res_SepConj

PROOF: By induction.

 $\langle 1 \rangle$ 5. Case: Ty_Res_Conj

PROOF: We know smt $(\Phi \Rightarrow (term \rightarrow term'))$ (by inversion on the equality) and smt $(\Phi \Rightarrow term)$ (by inversion on the typing rule) so smt $(\Phi \Rightarrow term')$. Rest follows by induction.

 $\langle 1 \rangle 6$. Case: Ty_Res_Pack

 $res_term = pack(pval, res_term'), res = \exists y:\beta. res_1, res' = \exists y:\beta. res_1'.$

- $\langle 2 \rangle 1. \ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term' \Leftarrow pval/y, \cdot (res'_1)$ by induction.
- $\langle 2 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathsf{pack}(pval, res_term') \Leftarrow \exists y : \beta. res'_1 \text{ as required.}$
- $\langle 1 \rangle$ 7. Case: Ty_Res_Fold

PROOF: $res = res' = \alpha(\overline{pval_i}^i)$.

2.5 Substitution Lemma

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ and $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1.
$$C$$
; L ; Φ ; $R \vdash (\sigma)$: $(C'; L'; \Phi'; R')$.
2. C' : L' : Φ' : $R' \vdash J$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

- $\langle 1 \rangle 1$. Case: Ty_PVal_Obj*, Ty_PVal_{Obj,Loaded,Unit,True,False,Ctor_Nil}. Proof: No free variables in J so $\sigma(J)=J$ and the rules do not depend on the environment, so we are done.
- (1)2. Case: Ty_PVal_{List,Tuple,Ctor_Cons,Ctor_Tuple,Ctor_Array,Ctor_Specified}. Proof: By induction and then definition of substitution over values.
- $\langle 1 \rangle 3$. Case: Ty_PVal_Var.

 $\mathcal{C}'; \mathcal{L}'; \Phi' \vdash x \Rightarrow \beta$

- $\langle 2 \rangle 1$. $x:\beta \in \mathcal{C}'$ (or $x:\beta \in \mathcal{L}'$) by inversion.
- $\langle 2 \rangle 2$. So $\exists pval. \ \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \text{ by Ty_Subs_Cons_\{Comp,Log}\}.$
- $\langle 2 \rangle 3$. Since $pval = \sigma(x)$, we are done.
- $\langle 1 \rangle 4$. Case: Ty_PVal_Error.

PROOF: Substitutions preserve SMT results (lemma 2.2).

 $\langle 1 \rangle$ 5. Case: Ty_PVal_Struct.

 $\mathcal{C}'; \mathcal{L}'; \Phi' \vdash (\mathtt{struct}\, tag)\{\overline{.member_i = pval_i}^i\} \Rightarrow \mathtt{struct}\, tag$

- $\langle 2 \rangle 1. \ \overline{C; \mathcal{L}; \Phi \vdash \sigma(pval_i)} \Rightarrow \beta_{\tau_i}^{i}$ by induction.
- $\langle 2 \rangle 2$. $C; \mathcal{L}; \Phi \vdash (\mathtt{struct} \, tag) \{ \overline{.member_i = \sigma(pval_i)}^i \} \Rightarrow \mathtt{struct} \, tag \}$
- $\langle 1 \rangle 6$. Case: Ty_Eq_Emp

PROOF: True trivially (no free variables).

 $\langle 1 \rangle$ 7. Case: Ty_Res_Eq_PointsTo.

PROOF: Substitutions preserver SMT results (lemma 2.2).

 $\langle 1 \rangle 8$. Case: Ty_Res_Eq_SepConj.

PROOF: By induction.

 $\langle 1 \rangle 9$. Case: Ty_Res_Eq_Exists.

PROOF: By induction.

 $\langle 1 \rangle 10$. Case: Ty_Res_Eq_Term.

Proof: By induction and substitutions preserving SMT results (lemma 2.2).

 $\langle 1 \rangle 11$. Case: Ty_Res_Emp.

PROOF: True trivially (no free variables).

 $\langle 1 \rangle 12$. Case: Ty_Res_PointsTo.

 $\mathcal{C}'; \mathcal{L}'; \Phi'; \cdot, _: pt \vdash pt' \Leftarrow pt''.$

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(pt') \Leftarrow \sigma(pt'')$.

- $\langle 2 \rangle 1$. Since $\mathcal{R}' = \cdot, ::pt, \sigma$ was derived using TY_SUBS_CONS_RES.
- $\langle 2 \rangle 2$. $\Phi' \vdash pt \equiv pt'$ and $\Phi' \vdash pt' \equiv pt''$ by inversion on the case.
- $\langle 2 \rangle 3$. So $\Phi \vdash \sigma(pt) \equiv \sigma(pt')$ and $\Phi \vdash \sigma(pt') \equiv \sigma(pt'')$ because substitutions preserve SMT results (lemma 2.2).
- $\langle 2 \rangle 4$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow \sigma(pt)$ by inversion on $\langle 2 \rangle 1$.
- $\langle 2 \rangle 5$. $res_term = pt_3$ for some pt_3 by inversion on $\langle 2 \rangle 4$ (TY_RES_POINTSTO).
- $\langle 2 \rangle 6$. $\Phi \vdash pt_3 \equiv \sigma(pt)$ by inversion on $\langle 2 \rangle 3$.
- $\langle 2 \rangle 7$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(pt') \Leftarrow pt_3$.

PROOF: TY_RES_POINTSTO is symmetric in all its pt arguments (because resource equality is an equivalence relation, lemma 2.3).

 $\langle 2 \rangle 8. \ C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(pt') \Leftarrow \sigma(pt'').$

PROOF: By $\langle 2 \rangle 3$, resource equality an equivalence relation (lemma 2.3) and resource typing subsumption (lemma 2.4).

 $\langle 1 \rangle 13$. Case: Ty_Res_Var.

 $C'; L'; \Phi'; \cdot, r:res \vdash r \Leftarrow res'.$

- $\langle 2 \rangle 1$. From $\mathcal{R}' = \cdot, r:res$, we know σ was derived using Ty_Subs_Cons_Res.
- $\langle 2 \rangle 2$. $\sigma = res_term/r$, σ' and \mathcal{C} : \mathcal{L} : Φ : $\mathcal{R} \vdash res_term \Leftarrow \sigma'(res)$ by inversion on $\langle 2 \rangle 1$.

- $\langle 2 \rangle 3$. $\Phi' \vdash res \equiv res'$ by inversion on Ty_Res_VAR.
- $\langle 2 \rangle 4$. $\Phi \vdash res \equiv res'$ and $\Phi \vdash \sigma(res) \equiv \sigma(res')$ by $\langle 2 \rangle 3$ and substitution lemma over Ty_Res_EQ* cases.
- $\langle 2 \rangle$ 5. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow \sigma'(res)$ by inversion on Ty_Subs_Cons_Res.
- $\langle 2 \rangle 6$. $\sigma(r) = res_term$ by $\langle 2 \rangle 2$.
- $\langle 2 \rangle 7$. $\sigma'(res') = \sigma(res')$ (and same for res) because r cannot occur in either.
- $\langle 2 \rangle 8$. SUFFICES: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow \sigma'(res')$ by $\langle 2 \rangle 3$ and $\langle 2 \rangle 7$. PROOF: Resource typing subsumption (lemma 2.4) and $\langle 2 \rangle 4$.
- $\langle 1 \rangle 14$. Case: Ty_Res_SepConj. Proof: By induction.
- $\langle 1 \rangle 15$. Case: Ty_Res_Conj. \mathcal{C}' ; \mathcal{L}' ; Φ' ; $\mathcal{R}' \vdash res_term \leftarrow term \land res$.
 - $\langle 2 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(res_term) \Leftarrow \sigma(res)$. PROOF: By induction.
 - $\langle 2 \rangle 2$. smt ($\Phi \Rightarrow \sigma(term)$). PROOF: Substitutions preserve SMT results (lemma 2.2).
 - $\langle 2 \rangle 3. \ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(res_term) \Leftarrow \sigma(term \land res)$ as required.
- $\langle 1 \rangle 16$. Case: Ty_Res_Pack. $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \mathsf{pack}(\mathit{pval}, \mathit{res_term}) \Leftarrow \exists y : \beta. \mathit{res}.$
 - $\langle 2 \rangle 1$. By induction, 1. $C; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta$. 2. $C; \mathcal{L}; \Phi \vdash \sigma(res_term) \Leftarrow \sigma, pval/u, \cdot (res)$.
 - $\langle 2 \rangle 2$. So $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathsf{pack}(\mathit{pval}, \mathit{res_term})) \Leftarrow \sigma(\exists y : \beta. \mathit{res}).$
- $\langle 1 \rangle 17$. Case: Ty_Res_Fold $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \mathsf{fold}(\mathit{res_term}) \Leftarrow \alpha(\overline{\mathit{pval}_i}^i)$
 - $\begin{array}{l} \langle 2 \rangle 1. \ \, \text{By induction,} \\ 1. \ \, \alpha \equiv \overline{x_i : \beta_i}^i \mapsto res \in \texttt{Globals} \\ 2. \ \, \overline{\mathcal{C}; \mathcal{L}; \Phi \vdash \sigma(pval_i)} \Rightarrow \beta_i}^i \\ 3. \ \, \Phi \vdash \sigma(res') = \text{strip_ifs} \left(\sigma(\overline{pval_i/x_i, \cdot}^i(res)) \right) \end{array}$
 - 4. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(res_term) \Leftarrow \sigma(res')$
 - $\langle 2 \rangle 2$. So $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{fold}(\mathit{res_term})) \Leftarrow \sigma(\alpha(\overline{\mathit{pval}_i}^i))$.
- $\langle 1 \rangle$ 18. Case: Ty_Spine_Empty. Proof: ret can be anything, including $\sigma(ret)$ and the rule does not depend on the environment, so we are done.
- $\langle 1 \rangle$ 19. Case: Ty_Spine_Comp. \mathcal{C}' ; \mathcal{L}' ; Φ' ; $\mathcal{R}' \vdash x = pval$, $\overline{x_i = spine_elem_i}^i :: \Pi x : \beta. arg \gg pval/x, \psi$; ret.

 $\langle 2 \rangle 1$. By induction,

1.
$$C; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta$$
.

2.
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(arg) \gg \sigma(\psi); \sigma(ret).$$

$$\langle 2 \rangle 2$$
. So $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash x = \sigma(pval), \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(\Pi x : \beta.arg) \gg \sigma(pval/x, \psi); \sigma(ret).$

 $\langle 1 \rangle 20$. Case: Ty_Spine_Log.

PROOF: Similar to TY_SPINE_COMP.

 $\langle 1 \rangle 21$. Case: Ty_Spine_Res.

$$\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'_1, \mathcal{R}_2 \vdash x = \textit{res_term}, \ \overline{x_i = \textit{spine_elem}_i}^i :: \textit{res} \multimap \textit{arg} \gg \textit{res_term}/x, \psi; \textit{ret}$$

 $\langle 2 \rangle 1$. By inversion and then induction,

1.
$$C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash \sigma(res_term) \Leftarrow \sigma(res)$$
.

2.
$$\mathcal{C}$$
; \mathcal{L} ; Φ ; $\mathcal{R}_2 \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res) \multimap \sigma(arg) \gg \sigma(\psi)$; $\sigma(ret)$.

- $\langle 2 \rangle 2$. Hence $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash x = \sigma(res_term), \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res \multimap arg) \gg \sigma(res_term/x, \psi); \sigma(ret)$ as required.
- $\langle 1 \rangle 22$. Case: Ty_Spine_Phi.

$$\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \overline{x_i = spine_elem_i}^i :: term \supset arg \gg \psi; ret$$

- $\langle 2 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res) \multimap \sigma(arg) \gg \sigma(\psi); \sigma(ret)$. PROOF: By induction.
- $\langle 2 \rangle 2$. smt $(\Phi \Rightarrow \sigma(term))$.

PROOF: Substitutions preserve SMT results (lemma 2.2).

- $\langle 2 \rangle 3$. Hence $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash x = \sigma(res_term), \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res \multimap arg) \gg \sigma(res_term/x, \psi); \sigma(ret)$ as required.
- $\langle 1 \rangle 23$. Case: Ty_PE_Val

PROOF: By induction.

 $\langle 1 \rangle 24$. Case: Ty_PE_Array_Shift.

$$\mathcal{C}'$$
; \mathcal{L}' ; $\Phi' \vdash \mathtt{array_shift}(pval_1, \tau, pval_2) \Rightarrow y : \mathtt{loc}. \ y = pval_1 +_{\mathtt{ptr}}(pval_2 \times \mathtt{size_of}(\tau))$

- $\langle 2 \rangle 1$. By induction,
 - 1. $C; \mathcal{L}; \Phi \vdash \sigma(pval_1) \Rightarrow \mathsf{loc}$
 - 2. $C; \mathcal{L}; \Phi \vdash \sigma(pval_2) \Rightarrow \mathtt{integer}$
- $\langle 2 \rangle 2$. So, \mathcal{C} ; \mathcal{L} ; $\Phi \vdash \sigma(\operatorname{array_shift}(pval_1, \tau, pval_2)) \Rightarrow y : \operatorname{loc.} \sigma((y = pval_1 +_{\operatorname{ptr}}(pval_2 \times \operatorname{size_of}(\tau))))$.
- $\langle 1 \rangle 25$. Case: Ty_PE_Member_Shift.

PROOF: Similar to TY_PE_ARRAY_SHIFT.

 $\label{eq:case:ty_PE_{Not,Arith_Binop,Rel_Binop,Bool_Binop}. } $$ (1) 26. Case: Ty_PE_{Not,Arith_Binop,Rel_Binop,Bool_Binop}.$

PROOF: By induction.

 $\langle 1 \rangle 27$. Case: Ty_PE_Call.

See Ty_Seq_E_CCall for more general case and proof.

- (1)28. Case: Ty_PE_{Assert_Undef,Bool_To_Integer,WrapI}. Proof: By induction.
- $\langle 1 \rangle 29.$ Case: Ty_TPVal_Undef See Ty_TVal_Undef for a more general case and proof.
- $\langle 1 \rangle 30$. Case: Ty_TPVal_Done $\mathcal{C}'; \mathcal{L}'; \Phi' \vdash \text{done } pval \Leftarrow y:\beta. term.$
 - $\langle 2 \rangle 1$. $C; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta$. PROOF: By induction.
 - $\langle 2 \rangle 2$. smt $(\Phi \Rightarrow \sigma, pval/y, \cdot (term))$. PROOF: Substitutions preserve SMT results (lemma 2.2).
 - $\langle 2 \rangle 3$. So $C; \mathcal{L}; \Phi \vdash \sigma(\mathtt{done}\, pval) \Leftarrow y:\beta.\, \sigma(term)$.
- $\langle 1 \rangle 31.$ Case: Ty_TPE_{LET,LETT}. See Ty_Seq_TE_{LET,LETT} for a more general case and proof.
- $\langle 1 \rangle 32$. Case: Ty_TPE_IF. Proof: By induction.
- $\langle 1 \rangle 33.$ Case: Ty_TPE_Case. Proof: See Ty_Seq_TE_Case for more general case and proof.
- (1)34. Case: Ty_{Action*,Memop*}.

 Proof: By induction and lemma 2.2 (substitutions preserve SMT results).
- (1)35. Case: Ty_TVal_I Proof: Trivially (no free variables nor requirements on constraint context).
- $\langle 1 \rangle$ 36. Case: Ty_TVal_{Comp,Log}. Only focusing on logical case; computational one is similar. $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \mathtt{done} \ pval, \ \overline{spine_elem_i}^i \Leftarrow \exists \ y:\beta. \ ret.$
 - $\langle 2 \rangle$ 1. By inversion and then induction, 1. $\mathcal{C}; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta$ 2. $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathsf{done} \ \overline{spine_elem_i}^i) \Leftarrow \sigma(pval/y, \cdot (ret))$.
 - $\langle 2 \rangle 2$. Therefore $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\text{done } pval, \overline{spine_elem}_i^i) \Leftarrow \exists y : \beta. \sigma(ret)$.
- $\langle 1 \rangle 37$. CASE: TY_TVAL_PHI \mathcal{C}' ; \mathcal{L}' ; Φ' ; $\mathcal{R}' \vdash \text{done } spine \Leftarrow term \land ret$
 - $\langle 2 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{done} \ spine) \Leftarrow \sigma(ret)$. PROOF: By induction.
 - $\langle 2 \rangle 2$. smt ($\Phi \Rightarrow \sigma(term)$). PROOF: Substitutions preserve SMT results (lemma 2.2).
 - $\langle 2 \rangle 3$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\text{done } spine) \Leftarrow \sigma(term \land ret)$ as required.

- (1)38. Case: Ty_TVal_Res Proof: Similar to Ty_TVal_Phi, except with resource environments being split.
- $\langle 1 \rangle$ 39. Case: Ty_TVal_Undef Proof: ret can be anything, including $\sigma(ret)$.
- $\langle 1 \rangle 40$. Case: Ty_Seq_TE_{TVAL,IF,BOUND}. Proof: By induction.
- ⟨1⟩41. CASE: TY_SEQ_E_{CCALL,PROC,RUN}. Only focusing on CCall, rest are similar.
 - $\langle 2 \rangle 1.$ $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(arg) \gg \sigma(\psi); \sigma(ret).$ PROOF: By induction.
 - $\langle 2 \rangle 2$. $ident:arg \equiv \overline{x_i}^i \mapsto texpr \in Globals$ is unaffected by the substitution.
 - $\langle 2 \rangle 3. \ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \text{ccall}(\tau, ident, \overline{\sigma(spine_elem_i)}^i) \Rightarrow \sigma, \psi(ret) \text{ as required.}$
- $\langle 1 \rangle$ 42. Case: Ty_Is_{MEMOP,Neg_Action,Action} Proof: By induction.
- $\langle 1 \rangle 43$. Case: Ty_Seq_TE_{LETP,LETPT}. PROOF: See Ty_Seq_TE_{LET,LETT}.
- $\langle 1 \rangle$ 44. Case: Ty_Seq_TE_{LET,LETT,LETS}. Only doing Let case, LetT and LetS are similar. $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}''', \mathcal{R}'' \vdash \text{let } \overline{ret_pattern}_i{}^i = seq_expr \text{ in } texpr \Leftarrow ret_2.$
 - $\langle 2 \rangle$ 1. By induction, 1. \mathcal{C} ; \mathcal{L} ; Φ ; $\mathcal{R}' \vdash \sigma(seq_expr) \Rightarrow \sigma(ret_1)$. 2. \mathcal{C} , \mathcal{C}_1 ; \mathcal{L} , \mathcal{L}_1 ; Φ , Φ_1 ; \mathcal{R} , $\mathcal{R}_1 \vdash \sigma(texpr) \Leftarrow \sigma(ret_2)$.
 - $\langle 2 \rangle 2. \ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}', \mathcal{R} \vdash \sigma(\texttt{let} \, \overline{ret_pattern_i}^{\ i} = seq_expr \, \texttt{in} \, texpr) \Leftarrow \sigma(ret_2) \, \, \text{as required}.$
- $\langle 1 \rangle 45$. Case: Ty_Seq_TE_Case. $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \mathsf{case} \ pval \ \mathsf{of} \ \overline{\mid pattern_i \Rightarrow texpr_i}^i \ \mathsf{end} \Leftarrow \mathit{ret}.$
 - $\langle 2 \rangle 1$. By induction, 1. $\mathcal{C}; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta_1$. 2. $\overline{\mathcal{C}, \mathcal{C}_i; \mathcal{L}; \Phi, term_i = \sigma(pval); \mathcal{R} \vdash \sigma(texpr_i) \Leftarrow \sigma(ret)}^i$.
 - $\langle 2 \rangle 2$. $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{case}\,\mathit{pval}\,\mathtt{of}\,\,\overline{\mid\,\mathit{pattern}_i \Rightarrow \mathit{texpr}_i^{\,\,i}}\,\mathtt{end}) \Leftarrow \sigma(\mathit{ret})$ as required.
- $\langle 1 \rangle$ 46. Case: Ty_TE_{Is,Seq}. Proof: By induction.

2.6 Identity Extension

If
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
 then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id): (C, C'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}')$.

PROOF SKETCH: Induction over the substitution.

ASSUME: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id): (C, C'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}').$

- $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash (id): (C; \mathcal{L}; \Phi'; \mathcal{R}_1)$. PROOF: By induction on each of $C; \mathcal{L}; \Phi; \mathcal{R}_1$.
- $\langle 1 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (\mathcal{C}, \mathcal{C}'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}')$ PROOF: By induction on σ with base case as above.

2.7 Let-friendly Substitution Lemma

If
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
 and $C, C'; \mathcal{L}, \mathcal{L}'; \Phi; \mathcal{R}_1, \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Apply identity extension then substitution lemma.

Assume: 1.
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
.
2. $C, C'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$.

PROVE: $C; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

- $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}')$. PROOF: Apply identity extension to 1.
- $\langle 1 \rangle 2$. $C; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1, \mathcal{R} \vdash (\sigma, \mathrm{id})(J)$. PROOF: Apply substitution lemma (2.5) to $\langle 1 \rangle 1$.
- $\langle 1 \rangle 3. \ \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1, \mathcal{R} \vdash \sigma(J).$ PROOF: $\mathrm{id}(J) = J.$

3 Progress

3.1 Ty_Spine_* and Decons_Arg_* construct same substitution and return type

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \text{ and } \overline{x_i = spine_elem_i}^i :: arg \gg \sigma'; ret' \text{ then } \sigma = \sigma' \text{ and } ret = ret'.$

PROOF SKETCH: Induction over arg.

3.2 Progress Statement and Proof

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$ and all patterns in e are exhaustive then either e is a value, or it is unreachable, or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROOF SKETCH: Induction over the typing rules.

Assume: $1. \cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t.$

2. All patterns in e are exhaustive.

PROVE: Either e is a value, or it is unreachable, or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

- (1)1. CASE: TY_PVAL_OBJ*, TY_PVAL*, TY_PE_VAL, TY_TPVAL*, TY_TVAL*, TY_SEQ_TE_TVAL. PROOF: All these judgements/rules give types to syntactic values; and there are no operational rules corresponding to them (see Section 6).
- $\langle 1 \rangle$ 2. Case: Ty_PE_Array_Shift. PROOF: By inversion on $\cdot; \cdot; \cdot \vdash pval_1 \Rightarrow \mathsf{loc}, pval_1 \text{ must be a } mem_ptr \text{ (Ty_PVal_Obj_Ptr)}.$ Similarly $pval_2$ must be a mem_int , so rule Op_PE_PE_ArrayShift applies.
- $\langle 1 \rangle 3$. Case: Ty_PE_Member_Shift. Proof: pval must be a mem_ptr so Op_PE_PE_MemberShift.
- (1)4. CASE: TY_PE_NOT.

 PROOF: pval must be a bool_value so OP_PE_PE_NOT_{TRUE,FALSE}.
- $\langle 1 \rangle$ 5. Case: Ty_PE_{ARITH,REL}_BINOP. PROOF: $pval_1$ and $pval_2$ must be mem_ints so Op_PE_PE_{ARITH,REL}_BINOP respectively.
- $\langle 1 \rangle$ 6. Case: Ty_PE_Bool_Binop. Proof: $pval_1$ and $pval_2$ must be $bool_values$ so Op_PE_PE_Bool_Binop.
- $\langle 1 \rangle$ 7. Case: Ty_PE_Call.

 PROOF: By inversion we have $name:pure_arg \equiv \overline{x_i}^i \mapsto tpexpr \in Globals \text{ and } \cdot; \cdot; \cdot; \cdot \vdash \overline{x_i = pval_i}^i :: pure_arg \gg \sigma; \Sigma y:\beta. \ term \wedge I, \text{ with the latter implying } \overline{x_i = pval_i}^i :: pure_arg \gg \sigma; \Sigma y:\beta. \ term \wedge I \text{ (lemma 3.1)}. \text{ Thus it can step with OP_PE_TPE_Call}.$
- $\langle 1 \rangle$ 8. Case: Ty_PE_Assert_Undef. PROOF: pval must be a $bool_value$ and smt ($\Phi \Rightarrow pval$). If it is False, then by the latter, we have an inconsistent constraints context, meaning the code is unreachable. If it is True, we may step with OP_PE_PE_ASSERT_UNDEF.
- $\langle 1 \rangle$ 9. Case: Ty_PE_Bool_To_Integer. Proof: pval must be a bool_value and so Op_PE_PE_Bool_To_Integer_{True,False}.
- $\langle 1 \rangle 10.$ Case: Ty_PE_WrapI. Proof: pval must be a mem_int and so Op_PE_PE_WrapI.
- $\langle 1 \rangle 11$. Case: Ty_TPE_{IF,Let,LetT,Case}. Proof: See Ty_Seq_TE_{IF,Let,LetT,Case} cases for more general cases and proofs.
- $\langle 1 \rangle$ 12. Case: Ty_Action_Create. Proof: pval must be a mem_int and h must be \cdot , so Op_Action_TVal_Create $(mem_ptr \text{ and } pval: \beta_{\tau} \text{ are free in the premises and so can be constructed to satisfy the requirements).$
- $\langle 1 \rangle 13$. Case: Ty_Action_Load. Proof: $pval_0$ must be a mem_ptr and $h = \cdot + \{pval_1 \stackrel{\checkmark}{\mapsto}_{\tau} pval_2\}$, so Op_Action_TVal_Load.
- $\langle 1 \rangle$ 14. Case: Ty_Action_Store. Proof: $pval_0$ and $pval_2$ must be the same mem_ptr , so Op_Action_TVal_Store.

- $\langle 1 \rangle 15$. CASE: TY_ACTION_KILL_STATIC. PROOF: $pval_0$ and $pval_1$ must be the same mem_ptr , so OP_ACTION_TVAL_KILL_STATIC.
- (1)16. Case: Ty_Memop_Rel_Binop. Proof: Similar to Ty_PE_{Arith,Rel}_Binop.
- $\langle 1 \rangle$ 17. Case: Ty_Memop_IntFromPtr. Proof: pval must be a mem_ptr so Op_Memop_TVal_Rel_IntFromPtr.
- (1)18. Case: Ty_Memop_PtrFromInt. Proof: pval must be a mem_int so Op_Memop_TVal_Rel_PtrFromInt.
- $\langle 1 \rangle$ 19. Case: Ty_Memop_PtrValidForDeref. Proof: pval must be a mem_ptr and h must be $\cdot + \{mem_ptr \xrightarrow{\checkmark}_{\tau}_{-}\}$ so it can take a step with Op_Memop_TVal_Rel_PtrValidForDeref.
- $\langle 1 \rangle$ 20. Case: Ty_Memop_PtrWellAligned. Proof: pval must be a mem_ptr and so Op_Memop_TVal_PtrWellAligned.
- $\langle 1 \rangle 21$. Case: Ty_Memop_PtrArrayShift. Proof: $pval_1$ must be a mem_ptr and $pval_2$ must be a mem_int and so Op_Memop_TVal_PtrArrayShift.
- $\langle 1 \rangle$ 22. Case: Ty_Seq_E_CCall.

 Proof: By inversion we have $ident:arg \equiv \overline{x_i}^i \mapsto texpr \in Globals$ and $\cdot; \cdot; \cdot; \cdot \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret$, with the latter implying $\overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret$ (lemma 3.1. Thus it can step with OP_SE_TE_CCall.
- (1)23. Case: Ty_Seq_E_Proc. Proof: Similar to Ty_Seq_E_CCall.
- $\langle 1 \rangle$ 24. Case: Ty_Is_E_Memop. Proof: By induction, if mem_op is unreachable, then the whole expression is so. Memops are not values. Only stepping cases applies, so Op_IsE_IsE_Memop.
- (1)25. Case: Ty_Is_E_{Neg_}Action.

 Proof: By induction, if *mem_action* is unreachable, then the whole expression is so. Actions are not values. Only stepping case applies, so Op_IsE_IsE_{Neg_}Action.
- (1)26. CASE: TY_SEQ_TE_{LETP,LETPT}.

 PROOF: See TY_SEQ_TE_{LET,LETT} for more general cases and proofs.
- (1)27. Case: Ty_Seq_TE_Let. Proof: By induction, since seq_expr is not value, if it is unreachable, the whole expression is so. If it takes a step, then Op_STE_TE_Let_LetT.
- $\langle 1 \rangle$ 28. Case: Ty_Seq_TE_LetT. Proof: By induction, if texpr is unreachable, so is the whole expression. If if it a tval then Op_STE_TE_LetT_Sub. If if takes a step, then Op_STE_TE_LetT_LetT.

 $\langle 1 \rangle 29$. Case: Ty_Seq_TE_Case.

PROOF: By assumption that all patterns are exhaustive, there is at least one pattern against which *pval* will match, so OP_STE_TE_CASE.

 $\langle 1 \rangle 30$. Case: Ty_Seq_TE_If.

PROOF: pval must be a bool_value and so OP_STE_TE_IF_{TRUE,FALSE}.

 $\langle 1 \rangle 31$. Case: Ty_Seq_TE_Run.

PROOF: Similar to Ty_Seq_E_CCall.

 $\langle 1 \rangle 32$. Case: Ty_Seq_TE_Bound.

PROOF: By OP_STE_TE_BOUND.

 $\langle 1 \rangle 33$. Case: Ty_Is_TE_LetS.

PROOF: Similar to TY_SEQ_TE_LETT.

4 Type Preservation

4.1 Pointed-to values have type β_{τ}

For $pt = \overrightarrow{\rightarrow}_{\tau} pval$, if $C; \mathcal{L}; \Phi; \mathcal{R} \vdash pt \Leftarrow pt$ then $C; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta_{\tau}$.

PROOF SKETCH: Induction over the typing judgements. Only TY_ACTION_STORE create such permissions, and its premise $\mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \beta_{\tau}$ ensures the desired property. TY_ACTION_LOAD simply preserves the property.

4.2 Terms derived from patterns are "equal to" matching values

Assume: 1. $pattern:\beta \leadsto C$ with term.

2. $pattern = pval \leadsto \sigma$.

PROVE: The constraint term = pval holds.

PROOF SKETCH: Induction over pattern.

4.3 strip_ifs is idempotent

PROOF SKETCH: Induction over the definition.

4.4 Deconstructing a stripped resource produces the same environment

Assume: 1. $\Phi \vdash res_pattern:res \leadsto \mathcal{L}; \Phi; \mathcal{R}$.

2. $\Phi \vdash res' = \text{strip_ifs}(res)$.

PROVE: $\Phi \vdash res_pattern:res' \leadsto \mathcal{L}; \Phi; \mathcal{R}.$

 $\langle 1 \rangle 1$. Suffices: $\Phi \vdash res' = \text{strip_ifs}(res')$.

PROOF: By strip_ifs idempotent and assumption 2.

- $\langle 1 \rangle 2$. $\Phi \vdash res'$ as $res_pattern \leadsto \mathcal{L}; \Phi; \mathcal{R}$ by inversion on 1.
- $\langle 1 \rangle 3$. By definition of $\Phi \vdash res_pattern: res \leadsto \mathcal{L}; \Phi; \mathcal{R} \text{ and } \langle 1 \rangle 1 \text{ and } \langle 1 \rangle 2 \text{ we are done.}$

4.5 Deconstructing a pattern leads to a well-typed substitution

First, computational part.

Assume: 1. $\cdot; \cdot; \cdot \vdash pval \Rightarrow \beta_1$.

2. $ident_or_pattern:\beta \leadsto \mathcal{C}$ with term.

3. $ident_or_pattern = pval \leadsto \sigma$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash (\sigma): (\mathcal{C}; \cdot; \cdot; \cdot)$.

PROOF SKETCH: By induction over 2.

PROOF: By TY_SUBS_CONS_COMP and 1.

 $\langle 1 \rangle 2.$ Case: Ty_Pat_No_Sym_Annot and Ty_Pat_Comp_Nil. σ and $\mathcal C$ are empty. Proof: By Ty_Subs_Empty, we are done.

(1)3. Case: Ty_Pat_Comp_{Specified, Cons, Tuple, Array}.

Proof: By induction (and concatenating well-typed substitutions).

Now, resource part (of deconstructing a pattern leads to a well-typed substitution).

2. $\Phi \vdash res_pattern:res \leadsto \mathcal{L}'; \Phi'; \mathcal{R}'$.

3. $res_pattern = res_term \leadsto \sigma$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma): (\cdot; \mathcal{L}; \Phi; \mathcal{R}').$

PROOF SKETCH: By induction over 1.

- $\langle 1 \rangle 1$. Case: Ty_Res_Empty. $res_pattern = res_term = res = emp. \ \sigma, \mathcal{L}, \Phi, \mathcal{R}, \mathcal{R}'$ are all empty. Proof: By Ty_Subs_Empty, we are done.
- $\langle 1 \rangle$ 2. CASE: TY_RES_POINTSTO. $res_pattern = r, res_term = pt, \sigma = pt/r, \cdot, \mathcal{L} = \cdot, \Phi = \cdot, \mathcal{R} = \mathcal{R}' = \cdot, r:pt.$ PROOF: By TY_SUBS_CONS_RES.
- $\langle 1 \rangle 3$. CASE: TY_RES_VAR. $res_pattern = r, \ \sigma = res_term/r, \cdot, \ \mathcal{L} = \cdot, \ \Phi = \cdot, \ \mathcal{R} = \mathcal{R}' = \cdot, r:res.$ PROOF: By TY_SUBS_CONS_RES.
- (1)4. Case: Ty_Res_SepConj. Proof: By induction (and concatenating well-typed substitutions).
- $\langle 1 \rangle$ 5. Case: Ty_Res_Conj. Proof: By smt ($\rightarrow term$) (from 1) and induction with Ty_Sub_Cons_Phi.
- $\langle 1 \rangle$ 6. Case: Ty_Res_Pack. $res_pattern = \texttt{pack}\,(x, res_pattern'), \; res_term = \texttt{pack}\,(pval, res_term'), \; res = \exists\, x : \beta. \; res'.$ $\sigma = pval/x, \sigma', \; \mathcal{L} = \mathcal{L}', x : \beta, \; \mathcal{R} = \mathcal{R}'.$ Proof: By induction and Ty_Subs_Cons_Log.

 $\langle 1 \rangle 7$. Case: Ty_Res_Fold.

 $res_pattern = \mathtt{fold}\,(res_pattern'),\, res_term = \mathtt{fold}\,(res_term'),\, res = \alpha(\,\overline{pval_i}^{\,\,i}\,).$

- $\langle 2 \rangle 1. \ 1. \ \alpha \equiv \overline{x_i : \beta_i}^i \mapsto res' \in Globals.$
 - 2. $\Phi \vdash res'' = \text{strip_ifs}(res')$.
 - 3. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term' \Leftarrow res''$.

PROOF: Inversion on 1.

- $\langle 2 \rangle 2$. $\Phi \vdash res_pattern': \overline{pval_i/x_i}, \stackrel{i}{\cdot} (res') \leadsto \mathcal{L}'; \Phi'; \mathcal{R}'.$ Proof: Inversion on 2.
- $\langle 2 \rangle 3$. $\Phi \vdash res_pattern':res'' \leadsto \mathcal{L}'; \Phi'; \mathcal{R}'$. PROOF: By $\langle 2 \rangle 1.2$, $\langle 2 \rangle 2$ and deconstructing a stripped resource produces the same environment (lemma 4.4).
- $\langle 2 \rangle 4$. $res_pattern' = res_term' \leadsto \sigma$. PROOF: By inversion on 3.
- $\langle 2 \rangle$ 5. $\cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma): (\cdot; \mathcal{L}; \Phi; \mathcal{R}')$. PROOF: By induction on $\langle 2 \rangle$ 1.3, $\langle 2 \rangle$ 3 and $\langle 2 \rangle$ 4.

Now, full proof (of deconstructing a pattern leads to a well-typed substitution).

Assume: 1. $\overline{ret_pattern_i = spine_elem_i}^i \leadsto \sigma$.

- 2. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \text{done } \overline{spine_elem_i}^i \Leftarrow ret.$
- 3. $\Phi \vdash \overline{ret_pattern_i}^i : ret \leadsto C; \mathcal{L}'; \Phi'; \mathcal{R}'.$

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma) : (\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}').$

PROOF SKETCH: Induction on 3.

⟨1⟩1. Case: Ty_Ret_Pat_Empty

PROOF: By TY_SUBS_EMPTY.

 $\langle 1 \rangle 2$. Case: Ty_Ret_Pat_{Comp,Res}

PROOF: By induction, well-typed computational / resource substitutions and concatenating well-typed substitutions.

 $\langle 1 \rangle 3$. Case: Ty_Ret_Path_Log.

PROOF: By induction.

 $\langle 1 \rangle 4$. Case: Ty_Ret_Pat_Phi

PROOF: By induction and inversion on 2 to conclude $smt(\cdot \Rightarrow term)$ (required by TY_SUBS_CONS_PHI).

4.6 Type Preservation Statement and Proof

PROOF SKETCH: Induction over the typing rules.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R}_1 \vdash e \Leftrightarrow t$

2. arbitrary $h: \mathcal{R}_1, f, e', h'$

3.
$$\langle h + f; e \rangle \longrightarrow \langle h'; e' \rangle$$
.

PROVE: $\exists h': \mathcal{R}'_1. \ h' = h' + f \land \cdot; \cdot; \cdot; \mathcal{R}'_1 \vdash e' \Leftrightarrow t.$

 $\langle 1 \rangle 1$. Case: Ty_PE_Array_Shift.

Let: $term = mem_ptr +_{ptr} (mem_int \times size_of(\tau)).$

Assume: 1. $\cdot; \cdot; \cdot \vdash \text{array_shift} (mem_ptr, \tau, mem_int) \Rightarrow y:\text{loc.} y = term.$

2. $\langle array_shift(mem_ptr, \tau, mem_int) \rangle \longrightarrow \langle mem_ptr' \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_ptr' \Rightarrow y: loc. y = term$

(because this is a pure expression, heaps are irrelevant).

PROOF: By TY_PVAL_OBJ_INT, TY_PVAL_OBJ, TY_PE_VAL and construction of mem_ptr' (inversion on 2).

 $\langle 1 \rangle 2.$ Case: Ty_PE_Member_Shift.

PROOF SKETCH: Similar to TY_ARRAY_SHIFT.

 $\langle 1 \rangle 3$. Case: Ty_PE_Not.

Assume: 1. $\cdot; \cdot; \cdot \vdash not(bool_value) \Rightarrow y:bool. y = \neg bool_value.$

2. $\langle \mathtt{not}(\mathtt{True}) \rangle \longrightarrow \langle \mathtt{False} \rangle \text{ or } \langle \mathtt{not}(\mathtt{False}) \rangle \longrightarrow \langle \mathtt{True} \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash bool_value' \Rightarrow y:bool. y = \neg bool_value$

(because this is a pure expression, heaps are irrelevant).

PROOF: By TY_PVAL_{TRUE,FALSE}, TY_PE_VAL and 2.

 $\langle 1 \rangle 4$. Case: Ty_PE_Arith_Binop.

Let: $term = mem_int_1 binop_{arith} mem_int_2$.

Assume: 1. $::: \mapsto mem_int_1 \ binop_{arith} \ mem_int_2 \Rightarrow y$:integer. y = term.

2. $\langle mem_int_1 \ binop_{arith} \ mem_int_2 \rangle \longrightarrow \langle mem_int \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_int \Rightarrow y$:integer. y = term

(because this is a pure expression, heaps are irrelevant).

PROOF: By TY_PVAL_OBJ_INT, TY_PVAL_OBJ, TY_PE_VAL and construction of mem_int (inversion on 2).

 $\langle 1 \rangle$ 5. Case: Ty_PE_{Rel,Bool}_Binop.

PROOF SKETCH: Similar to TY_PE_ARITH_BINOP.

 $\langle 1 \rangle 6$. Case: Ty_PE_Call.

PROOF: See Ty_Seq_E_Call for a more general case and proof.

 $\langle 1 \rangle 7$. Case: Ty_PE_Assert_Undef.

Assume: 1. $\cdot; \cdot; \cdot \vdash assert_undef(True, UB_name) \Rightarrow y:unit. y = unit.$

2. $\langle assert_undef(True, UB_name) \rangle \longrightarrow \langle Unit \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash \texttt{Unit} \Rightarrow y : \texttt{unit}. \ y = \texttt{unit}$

(because this is a pure expression, heaps are irrelevant).

PROOF: By TY_PVAL_UNIT and TY_PE_VAL.

(1)8. Case: Ty_PE_Bool_To_Integer.

Let: $term = if bool_value then 1 else 0$.

Assume: 1. \cdot ; \cdot ; \cdot bool_to_integer (bool_value) \Rightarrow y:integer. y = term.

 $2.\ \langle \texttt{bool_to_integer}\,(\texttt{True})\rangle \longrightarrow \langle 1\rangle \ \text{or} \ \langle \texttt{bool_to_integer}\,(\texttt{False})\rangle \longrightarrow \langle 0\rangle.$

PROVE: $\cdot; \cdot; \cdot \vdash mem_int \Rightarrow y$:integer. y = term

(because this is a pure expression, heaps are irrelevant). PROOF: By cases on *bool_value*, then applying TY_PVAL_{TRUE,FALSE} and TY_PE_VAL.

 $\langle 1 \rangle 9$. Case: Ty_PE_WrapI.

PROOF SKETCH: Similar to TY_PE_BOOL_TO_INTEGER, except by cases on $abbrev_2 \le \max_{t}$, then applying TY_PVAL_OBJ_INT, TY_PVAL_OBJ and TY_PE_VAL.

 $\langle 1 \rangle 10$. Case: Ty_TPE_IF.

PROOF: See Ty_Seq_TE_IF for a more general case and proof.

 $\langle 1 \rangle 11$. Case: Ty_TPE_Let.

PROOF: See Ty_Seq_TE_Let for a more general case and proof.

 $\langle 1 \rangle 12$. Case: Ty_TPE_LETT.

PROOF: See Ty_Seq_TE_LetT for a more general case and proof.

 $\langle 1 \rangle 13$. Case: Ty_TPE_Case.

PROOF: See Ty_Seq_TE_Case for a more general case and proof.

 $\langle 1 \rangle 14$. Case: Ty_Action_Create.

Let: $pt = mem_{pt}r \stackrel{\times}{\mapsto}_{\tau} pval$.

 $term = \texttt{representable} (\tau *, y_p) \land \texttt{alignedI} (mem_int, y_p).$

 $ret = \sum y_n : loc. \ term \land \exists \ y : \beta_\tau. \ y_n \stackrel{\times}{\mapsto}_\tau \ y \otimes I.$

$$h = \cdot \text{ so } h' = \cdot + \{pt\}.$$

Assume: 1. $\cdot; \cdot; \cdot; \cdot \vdash \texttt{create}(mem_int, \tau) \Rightarrow ret$.

2. $\langle f; \mathtt{create}\,(mem_int,\tau) \rangle \longrightarrow \langle f + \{pt\}; \mathtt{done}\,mem_ptr, pval, pt \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot, ... pt \vdash done mem_ptr, pval, pt \Leftarrow ret.$

- $\langle 2 \rangle 1. : ; : ; \cdot \vdash mem_ptr \Rightarrow loc$ by TY_PVAL_OBJ_INT and TY_PVAL_OBJ.
- $\langle 2 \rangle 2$. smt $(\cdot \Rightarrow term)$ by construction of mem_ptr .
- $\langle 2 \rangle 3. : : : \vdash pval \Rightarrow \beta_{\tau}$ by construction of pval.
- $\langle 2 \rangle 4. \ \ ; \cdot ; \cdot ; \cdot ; \cdot ; . : pt \vdash pt \Leftarrow pt \text{ by Ty_Res_PointsTo}.$
- $\langle 2 \rangle$ 5. By TY_TVAL_I and then $\langle 2 \rangle$ 4 $\langle 2 \rangle$ 1 with TY_TVAL_{RES,LOG,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 15$. Case: Ty_Action_Load.

Let: $pt = mem_ptr \xrightarrow{\checkmark} pval$.

$$ret = \sum y : \beta_{\tau}. \ y = pval \land pt \otimes I.$$

$$h = h' = \cdot + \{pt\}.$$

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \text{load}(\tau, mem_ptr, _, pt) \Rightarrow ret$.

2. $\langle f + \{pt\}; \texttt{load}(\tau, mem_ptr, _, pt) \rangle \longrightarrow \langle f + \{pt\}; \texttt{done}(pval, pt) \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \text{done } pval, pt \Leftarrow ret$

- $\langle 2 \rangle 1$. $\mathcal{R} = \cdot, :: pt'$ where $\cdot \vdash pt' \equiv pt$ by inversion on 1.
- $\langle 2 \rangle 2$. smt $(\cdot \Rightarrow pval = pval)$ trivially.
- $\langle 2 \rangle 3. : ; : \vdash pval \Rightarrow \beta_{\tau}$ by $\langle 2 \rangle 1$ and pointed-values have the right type (lemma 4.1).

- $\langle 2 \rangle 4$. By TY_TVAL_I and then $\langle 2 \rangle 1 \langle 2 \rangle 3$ with TY_TVAL_{RES,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 16$. Case: Ty_Action_Store.

Let: $pt = mem_ptr \xrightarrow{\checkmark}_{\tau}$. $pt' = mem_ptr \xrightarrow{}_{\tau} pval$. $ret = \Sigma$ _:unit. $pt' \otimes I$.

 $h = h' = \cdot + \{pt\}.$

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \mathsf{store}(_, \tau, pval_0, pval_1, _, pt) \Rightarrow ret.$ 2. $\langle f + \{pt\}; \mathsf{store}(_, \tau, mem_ptr, pval, _, pt) \rangle \longrightarrow \langle f + \{pt'\}; \mathsf{done}\,\mathsf{Unit}, pt' \rangle.$

PROVE: $\cdot; \cdot; \cdot; \cdot, :: pt' \vdash \text{done Unit}, pt' \Leftarrow ret.$

- $\langle 2 \rangle 1$. $\mathcal{R} = \cdot, :pt''$ where $\cdot \vdash pt'' \equiv pt$, by inversion on the typing assumption.
- $\langle 2 \rangle 2. : ; \cdot ; \cdot \vdash \text{Unit} \Rightarrow \text{unit by TY_PVAL_UNIT}.$
- $\langle 2 \rangle 3. \ \cdot; \cdot; \cdot; \cdot, :: pt' \vdash pt' \Leftarrow pt' \text{ by Ty_Res_PointsTo}.$
- $\langle 2 \rangle 4$. By TY_TVAL_I and $\langle 2 \rangle 2$ and $\langle 2 \rangle 3$ with TY_TVAL_{RES,COMP} respectively, we are done.
- $\langle 1 \rangle 17$. Case: Ty_Action_Kill_Static.

Let: $pt = mem_{-}ptr \mapsto_{\tau}$.

 $\mathcal{R} = \cdot, : pt' \text{ where } \cdot \vdash pt' \equiv pt.$

 $h = \cdot + \{pt\}$ so $h' = \cdot$.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \text{kill} (\text{static} \tau, pval_0, pt) \Rightarrow \Sigma$:unit. I.

 $2. \ \langle f + \{pt\}; \mathtt{kill} \ (\mathtt{static} \ \tau, mem_ptr, pt) \rangle \longrightarrow \langle f; \mathtt{done} \ \mathtt{Unit} \rangle.$

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash \mathtt{done}\,\mathtt{Unit} \Leftarrow \Sigma$ _:unit. I

PROOF: By TY_TVAL_I, TY_PVAL_UNIT and then TY_TVAL_COMP.

 $\langle 1 \rangle 18$. Case: Ty_Memop_Rel_Binop.

PROOF: Similar Ty_PE_Rel_Binop, except with Ty_TVAL_{I,PHI,COMP} at the end.

 $\langle 1 \rangle 19$. Case: Ty_Memop_IntFromPtr.

Let: $ret = \sum y$:integer. $y = \text{cast_ptr_to_int} \ mem_ptr \land I$.

$$h = \cdot \text{ so } h' = \cdot.$$

ASSUME: 1. $\cdot; \cdot; \cdot; \cdot; \cdot \vdash \text{intFromPtr}(\tau_1, \tau_2, mem_ptr) \Rightarrow ret.$

2. $\langle f; \mathtt{intFromPtr}(\tau_1, \tau_2, mem_ptr) \rangle \longrightarrow \langle f; \mathtt{done}\ mem_int \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash \text{done } mem_int \Leftarrow ret$

- $\langle 2 \rangle 1$. smt ($\cdot \Rightarrow mem_int = cast_ptr_to_int mem_ptr$) by construction of mem_int (inversion on 2).
- $\langle 2 \rangle 2. : : : \vdash mem_int \Rightarrow integer by Ty_PVAL_OBJ_INT and Ty_PVAL_OBJ.$
- $\langle 2 \rangle 3.$ By TY_TVAL_I and $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ with TY_TVAL_{PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 20$. Case: Ty_Memop_PtrFromInt.

PROOF: Similar to Ty_MEMOP_INTFROMPTR, swapping base types integer and loc.

(1)21. Case: Ty_Memop_PtrValidForDeref.

Let: $pt = mem_{p}tr \stackrel{\checkmark}{\mapsto}_{\tau}$.

```
ret = \sum y:bool. y = \mathtt{aligned}\left(\tau, mem\_ptr\right) \land pt \otimes \mathtt{I}.
```

 $h = \cdot + \{pt\}$ so h' = h.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \mathsf{ptrValidForDeref}(\tau, mem_ptr, pt) \Rightarrow ret$.

2. $\langle f + \{pt\}; \mathsf{ptrValidForDeref}(\tau, mem_ptr, pt) \rangle \longrightarrow \langle f + \{pt\}; \mathsf{done}\ bool_value, pt \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot, \cdot : pt \vdash done bool_value, pt \Leftarrow ret.$

- $\langle 2 \rangle 1. \ \ \vdots; \ \vdots; \ \vdots; \ \ :: pt' \vdash pt \Leftarrow pt, \text{ by inversion on } 1.$ Note: $\mathcal{R} = \cdot, :: pt' \text{ where } \cdot \vdash pt' \equiv pt.$
- $\langle 2 \rangle 2$. $bool_value = aligned(\tau, mem_ptr)$ by construction of $bool_value$ (inversion on 2).
- $\langle 2 \rangle 3. : : : \vdash bool_value \Rightarrow bool by TY_PVAL_{TRUE,FALSE}.$
- $\langle 2 \rangle 4.$ By TY_TVAL_I, and then $\langle 2 \rangle 1 \langle 2 \rangle 3$ with TY_TVAL_{RES,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 22$. Case: Ty_Memop_PtrWellAligned.

 $\text{Let: } ret = \Sigma \, y \text{:bool.} \, y = \texttt{aligned} \, \big(\tau, mem_ptr\big) \wedge \texttt{I}.$

 $h = \cdot \text{ so } h' = \cdot.$

 $\text{Assume: } 1. \cdot; \cdot; \cdot; \cdot \vdash \texttt{ptrWellAligned} \left(\tau, mem_ptr\right) \Rightarrow ret.$

2. $\langle f; \texttt{ptrWellAligned}(\tau, mem_ptr) \rangle \longrightarrow \langle f; \texttt{done}\ bool_value \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash \text{done } bool_value \Rightarrow ret.$

- $\langle 2 \rangle 1$. smt ($\cdot \Rightarrow bool_value = \mathtt{aligned}(\tau, mem_ptr)$) by construction of $bool_value$ (inversion on 2).
- $\langle 2 \rangle 2. : : : \vdash bool_value \Rightarrow bool by TY_PVAL_{TRUE,FALSE}.$
- $\langle 2 \rangle 3$. By TY_TVAL_I and $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ with TY_TVAL_{PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 23$. Case: Ty_Memop_PtrArrayShift.

PROOF: Similiar to TY_PE_ARRAY_SHIFT, except with TY_TVAL_{I,PHI,COMP} at the end.

 $\langle 1 \rangle 24$. Case: Ty_Seq_E_CCall.

 $\text{Assume: } 1. \ \cdot; \cdot; \cdot; \mathcal{R} \vdash \texttt{ccall} \ (\tau, ident, \overline{spine_elem_i}^{\ i}) \Rightarrow \sigma(ret).$

2. $\langle h+f; \mathtt{ccall}(\tau, ident, \overline{spine_elem_i}^i) \rangle \longrightarrow \langle h+f; \sigma'(texpr): \sigma'(ret) \rangle$.

PROVE: $\cdot; \cdot; \mathcal{R} \vdash \sigma(texpr) \Leftarrow \sigma(ret)$

(because the heap does not change).

- $\langle 2 \rangle 1$. $ident: arg \equiv \overline{x_i}^i \mapsto texpr \in Globals by inversion (on either assumption).$
- $\langle 2 \rangle 2. \ \ ; ; ; ; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \text{ by inversion on } 1.$
- $\langle 2 \rangle$ 3. $\sigma = \sigma'$ and ret = ret' by induction on arg. PROOF: TY_SPINE_* and DECONS_ARG_* construct same substitution and return type (lemma 3.1).
- $\langle 2 \rangle 4$. Let: $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}'$ be the the type of substitution $\sigma: \cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma): (\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}')$. Proof: From $\langle 2 \rangle 2$ we may deduce
 - 1. $C; \mathcal{L}; \Phi \vdash pval_i \Rightarrow \beta_i$ for each $x_i : \beta_i \in C$ or $x_i : \beta_i \in \mathcal{L}$.
 - 2. $C; \mathcal{L}; \Phi; \mathcal{R}' \vdash res_term_i \Leftarrow res_i \text{ for each } res_i \in \mathcal{R}'.$
 - 3. smt $(\cdot \Rightarrow term)$ for each $term \in \Phi$.

- $\langle 2 \rangle$ 5. $\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'' \vdash texpr \Leftarrow ret''$ where $\overline{x_i}^i :: arg \leadsto \mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'' \mid ret''$ formalises the assumption that all global functions and labels are well-typed.
- $\langle 2 \rangle 6$. C = C'', $\Phi = \Phi''$, $\mathcal{L} = \mathcal{L}''$, $\mathcal{R}' = \mathcal{R}''$ and ret = ret''. Proof: By induction on arg.
- $\langle 2 \rangle 7$. Apply substitution lemma (2.5) to $\langle 2 \rangle 4$ and $\langle 2 \rangle 5$ to finish proof.
- (1)25. Case: Ty_Seq_E_Proc. Proof: Similar to Ty_Seq_E_CCall.
- (1)26. Case: Ty_Is_E_Memop. Proof: By induction on Ty_Memop* cases.
- $\langle 1 \rangle$ 27. Case: Ty_Is_E_{Neg_}Action. Proof: By induction on Ty_Action* cases.
- \(\frac{1}{28}\). Case: Ty_Seq_TE_LetP.
- PROOF SKETCH: Only covering case $\langle pexpr \rangle \longrightarrow \langle pexpr' \rangle$ here. See TY_SEQ_TE_LET for a more general version and proof for the remaining $\langle pexpr \rangle \longrightarrow \langle tpexpr:(y:\beta. term) \rangle$ case.
 - ASSUME: 1. $: : : : : \vdash \text{let } ident_or_pattern = pexpr \text{ in } tpexpr \Leftarrow y_2 : \beta_2. \ term_2.$ 2. $\langle \text{let } ident_or_pattern = pexpr \text{ in } tpexpr \rangle \longrightarrow \langle \text{let } ident_or_pattern = pexpr' \text{ in } tpexpr \rangle.$
 - PROVE: $\cdot; \cdot; \cdot \vdash \text{let } ident_or_pattern = pexpr' \text{ in } tpexpr \Leftarrow y_2:\beta_2. \ term_2$ (because this is a pure expression, heaps are irrelevant).
 - $\langle 2 \rangle 1.$ 1. $: : : : \vdash pexpr \Rightarrow y : \beta. term.$ 2. $ident_or_pattern : \beta \leadsto \mathcal{C}_1 \text{ with } term_1.$ 3. $\mathcal{C}_1 : : : : \cdot, term_1/y, \cdot (term), \Phi_1 : \mathcal{R} \vdash texpr \Leftarrow ret.$ PROOF: Invert assumption 1.
 - $\langle 2 \rangle 2$. $\langle pexpr \rangle \longrightarrow \langle pexpr' \rangle$. PROOF: Invert assumption 2.
 - $\langle 2 \rangle 3. : : : \vdash pexpr' \Rightarrow y : \beta. term.$ PROOF: By induction on $\langle 2 \rangle 1.1$ and $\langle 2 \rangle 2.$
- $\langle 1 \rangle 29.$ Case: Ty_Seq_TE_LetPT. Proof: See Ty_Seq_TE_LetT for a more general case and proof.
- $\langle 1 \rangle$ 30. CASE: TY_SEQ_TE_LET.

 ASSUME: $1. : ; : ; : ; \mathcal{R}', \mathcal{R} \vdash \mathtt{let} \, \overline{ret_pattern_i}^{\,i} = seq_expr \, \mathtt{in} \, texpr_2 \Leftarrow ret_2.$ 2. $\langle h+f ; \mathtt{let} \, \overline{ret_pattern_i}^{\,i} = seq_expr \, \mathtt{in} \, texpr_2 \rangle \longrightarrow \langle h+f ; \mathtt{let} \, \overline{ret_pattern_i}^{\,i} : ret_1' = texpr_1 \, \mathtt{in} \, texpr_2 \rangle.$

 - $\begin{array}{ll} \langle 2 \rangle 1. & 1. & \cdot; \cdot; \mathcal{R}' \vdash seq_expr \Rightarrow ret_1. \\ & 2. & \Phi \vdash \overline{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1. \\ & 3. & \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}, \mathcal{R}_1 \vdash texpr \Leftarrow ret_2. \end{array}$

PROOF: By inversion on 1.

- $\langle 2 \rangle 2$. $\langle h; seq_expr \rangle \longrightarrow \langle h; texpr_1 : ret'_1 \rangle$. PROOF: By inversion on 2.
- $\langle 2 \rangle 3. \quad \because \because : \mathcal{R}' \vdash texpr_1 \Leftarrow ret_1.$ PROOF: By induction on $\langle 2 \rangle 1.1$ and $\langle 2 \rangle 2.$
- $\langle 2 \rangle 4$. $ret_1 = ret'_1$. PROOF: By cases TY_SEQ_E_{CCALL,PCALL}.
- $\langle 2 \rangle$ 5. By TY_SEQ_TE_LET with $\langle 2 \rangle$ 1.2,3 and $\langle 2 \rangle$ 3, we are done.
- $\langle 1 \rangle 31$. Case: Ty_Seq_TE_LetT.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}', \mathcal{R} \vdash \sigma(texpr_2) \Leftarrow \sigma(ret_2)$ (because the heap does not change).

- $\langle 2 \rangle 1$. 1. $: : : : : : : \mathcal{R}' \vdash \text{done } \overline{spine_elem_i}^i \Leftarrow ret_1$. 2. $\Phi \vdash \overline{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1 : \mathcal{L}_1 : \Phi_1 : \mathcal{R}_1$. 3. $\mathcal{C}_1 : \mathcal{L}_1 : \Phi_1 : \mathcal{R}_1 : \mathcal{R} \vdash texpr_2 \Leftarrow ret_2$. PROOF: By inversion on 1.
- $\langle 2 \rangle 2$. $\overline{ret_pattern_i = spine_elem_i}^i \leadsto \sigma$. PROOF: By inversion on 2.
- $\langle 2 \rangle 4$. By $\langle 2 \rangle 1.3$ and $\langle 2 \rangle 3$ and the let-friendly substitution lemma 2.7, we are done.
- $\langle 1 \rangle 32$. Case: Ty_Seq_TE_LetT.

ASSUME: 1. $\cdot; \cdot; \cdot; \mathcal{R}', \mathcal{R} \vdash \text{let } \overline{ret_pattern_i}^i : ret_1 = texpr_1 \text{ in } texpr_2 \Leftarrow ret_2.$ 2. $\langle h+f; \text{let } \overline{ret_pattern_i}^i : ret = texpr_1 \text{ in } texpr_2 \rangle \longrightarrow \langle h'; \text{let } \overline{ret_pattern_i}^i : ret = texpr_1' \text{ in } texpr_2 \rangle.$

PROVE: $\exists h'': \mathcal{R}'', \mathcal{R}. \ h' = h'' + f$ $\land \cdot; \cdot; \cdot; \mathcal{R}'', \mathcal{R} \vdash \mathsf{let} \overline{ret_pattern_i}^i : ret_1 = texpr'_1 \mathsf{in} texpr_2 \Leftarrow ret_2.$

- $\langle 2 \rangle 1.$ 1. $\cdot; \cdot; \cdot; \mathcal{R}' \vdash texpr_1 \Leftarrow ret_1.$ 2. $\Phi \vdash \overline{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1.$ 3. $\mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1, \mathcal{R} \vdash texpr_2 \Leftarrow ret_2.$ PROOF: By inversion on 1.
- $\langle 2 \rangle 2$. $\langle h + f; texpr_1 \rangle \longrightarrow \langle h'; texpr_1' \rangle$. PROOF: By inversion on 2.
- $\langle 2 \rangle 3$. $h = h_1 + h_2$ where $h_1: \mathcal{R}'$ and $h_2: \mathcal{R}$. PROOF: By induction on \mathcal{R} .
- $\langle 2 \rangle 4$. $\exists h'_1:R''$. $h' = h'_1 + h_2 + f \wedge \cdot; \cdot; \cdot; \mathcal{R}'' \vdash texpr'_1 \Leftarrow ret_1$. PROOF: By induction with $h_1:\mathcal{R}'$ and $h_2 + f$ as the frame, using $\langle 2 \rangle 1.1$ and $\langle 2 \rangle 2$.

- $\langle 2 \rangle$ 5. By $\langle 2 \rangle$ 3, $\langle 2 \rangle$ 2.2,3 using TY_SEQ_TE_LETT, and $h'' = h'_1 + h_2$ (so $h'':\mathcal{R}'',\mathcal{R}$) we are done.
- $\langle 1 \rangle 33$. Case: Ty_Seq_TE_Case.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \sigma_j(texpr_j) \Leftarrow ret$ (because the heap does not change).

- $\langle 2 \rangle 1.$ 1. \vdots ; \vdots ; $\vdash pval \Rightarrow \beta_1$. 2. $pattern_i:\beta_1 \leadsto \mathcal{C}_i \text{ with } term_i^i$. 3. $\mathcal{C}_i; \cdot; \cdot, term_i = pval; \mathcal{R} \vdash texpr_i \Leftarrow ret^i$. PROOF: By inversion on 1.
- $\langle 2 \rangle 2$. 1. $pattern_j = pval \leadsto \sigma_j$. 2. $\forall i < j$. not $(pattern_i = pval \leadsto \sigma_i)$. PROOF: By inversion on 2.
- $\langle 2 \rangle$ 3. $term_j = pval$. PROOF: By $\langle 2 \rangle$ 1.2 and terms derived from patterns are "equal to" matching values (lemma 4.2).
- $\langle 2 \rangle 4. \quad : : : : : \vdash (\sigma_j) : (\mathcal{C}_j : : : \cdot, term_j = pval; \cdot).$ PROOF: By $\langle 2 \rangle 3$ and lemma 4.5 (deconstructing a pattern produces a well-typed substitution).
- $\langle 2 \rangle$ 5. By $\langle 2 \rangle$ 4, $\langle 2 \rangle$ 1.3 and substitution lemma 2.5, we are done.
- $\langle 1 \rangle 34$. Case: Ty_Seq_TE_If.

Only covering True case, False is almost identical.

Assume: 1. :; :; :; :; : : if True then $texpr_1$ else $texpr_2 \Leftarrow ret$.

2. $\langle h+f \rangle$; if True then $texpr_1$ else $texpr_2 \rangle \longrightarrow \langle h+f \rangle$; $texpr_1 \rangle$.

PROVE: $\cdot; \cdot; \mathcal{R} \vdash texpr_1 \Leftarrow ret$

(because the heap does not change).

PROOF: Invert 1, note $\cdot; \cdot; \cdot; \mathcal{R} \vdash (id): (\cdot; \cdot; \cdot, \mathsf{true} = \mathsf{true}; \mathcal{R})$ and then apply substitution lemma (2.5).

- (1)35. Case: Ty_Seq_TE_Run.

 Proof sketch: Similar to case Ty_Seq_E_{CCall,PCall}.
- ⟨1⟩36. CASE: TY_SEQ_TE_BOUND. PROOF: By inversion on the typing rule.
- $\langle 1 \rangle 37.$ Case: Ty_Is_TE_LetS. Proof sketch: Similar to Ty_Seq_TE_LetT.

5 Typing Judgements

$$\begin{array}{lll} object_value_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi \vdash object_value \Rightarrow \mathsf{obj} \beta \\ \\ pval_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ \\ res_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res \\ & | \quad h; \mathcal{R} \\ \\ \\ spine_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \\ \\ pexpr_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi \vdash pexpr \Rightarrow ident; \beta, term \\ \\ tpval_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi \vdash tpval \Leftarrow ident; \beta, term \\ \\ tpexpr_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident; \beta, term \\ \\ action_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_action \Rightarrow ret \\ \\ memop_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_op \Rightarrow ret \\ \\ seq_expr_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_expr \Rightarrow ret \\ \\ tis_expr_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Rightarrow ret \\ \\ tval_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Leftarrow ret \\ \\ texpr_jtype & ::= \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash tseq_texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret \\ \\ \\ & | \quad C; \mathcal{L}; \Phi; \mathcal{L}; \Phi; \mathcal{L}; \Phi; \mathcal{L}; \Phi$$

6 Opsem Judgements