1

AI1110 ASSIGNMENT-7

DASARI SRINITH (CS21BTECH11015)

Abstract—This document contains the solution for Assignment 7 (NCERT GRADE 11 CHAPTER 16 Exercise 16.2 Question 5)

QUESTION 5:

Three coins are tossed. Describe

- (i) Two events which are mutually exclusive.
- (ii) Three events which are mutually exclusive and exhaustive.
- (iii) Two events, which are not mutually exclusive.
- (iv) Two events which are mutually exclusive but not exhaustive.
- (v) Three events which are mutually exclusive but not exhaustive.

SOLUTION:

- 1) Let us consider the trial of tossing a coin once. And let us label the outcome of the trial with the Bernoulli random variable *Y*.
- 2) Let us label the outcomes 1(Head) and 0(Tail) respectively for success and failure, let

$$\Pr\left(Y=1\right) = p \tag{1}$$

$$\Pr(Y = 0) = 1 - p$$
 (2)

- 3) Now let us consider three Bernoulli trials for tossing a coin. Let X be a binomial random variable for the trials, with parameters n and p, where
 - a) n = No.of trials = 3
 - b) p = Probability with which we get a favourable outcome (here let us consider getting Head as a favourable outcome) = 0.5
- 4) So,
 - a) The possible outcomes when 3 coins are tossed are (or) the sample space contains,

$$S = \{000, 001, 010, 100, 011, 101, 110, 111\}$$
(3)

b)

$$\Pr(X = k) = {}^{n}C_{k}p^{k}(1-p)^{n-k}$$
 (4)

where k = 0, ..., n is number of heads according to this question.

We can tabulate the probabilities of each event into a binomial probability table as shown in Table I

Event	Description of event	Probability of event
X = 0	Zero heads in the trials	$\frac{1}{8}$
X = 1	Exactly one head in the trials	$\frac{3}{8}$
X = 2	Exactly two heads in the trials	$\frac{3}{8}$
X = 3	All three heads in the trials	$\frac{1}{8}$

TABLE I
BINOMIAL PROBABILITY DISTRIBUTION

(i) **Two events which are mutually exclusive**Let us take the two events as shown in Table II.

Event	Probability of event
X = 3	$\frac{1}{8}$
X = 0	$\frac{1}{8}$

TABLE II
EVENTS FOR QUESTION 1

Since,

$$\Pr((X=3) \cap (X=0)) = 0 \tag{5}$$

So ,the two events are mutually exclusive.

(ii) Three events which are mutually exclusive and exhaustive

Let us take the three events as shown in Table III.

Since,

$$\Pr((X=0) \cap (X=1)) = 0 \tag{6}$$

$$\Pr((X = 1) \cap (X \ge 2)) = 0 \tag{7}$$

$$\Pr((X = 0) \cap (X \ge 2)) = 0 \tag{8}$$

Event	Probability of event
X = 0	$\frac{1}{8}$
X = 1	$\frac{3}{8}$
$X \ge 2$	$\frac{1}{2}$

TABLE III EVENTS FOR QUESTION 2

We can say that, the three events are mutually exclusive.

$$\Pr((X = 0) \cup (X = 1) \cup (X \ge 2)) = \Pr((X \ge 0)) \quad (9)$$

And from Table III,

$$\Pr\left((X \ge 0)\right) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1 \quad (10)$$

So, the three events are mutually exclusive and exhaustive.

(iii) Two events ,which are not mutually exclusive

Let us take the two events as shown in Table IV.

Event	Probability of event
X = 3	$\frac{1}{8}$
$X \ge 2$	$\frac{1}{2}$

TABLE IV EVENTS FOR QUESTION 3

Since from Table IV,

$$\Pr((X=3) \cap (X \ge 2) = \Pr((X=3)) \tag{11}$$

$$\Pr((X=3)) = \frac{1}{8} \neq 0$$
 (12)

So ,the two events are not mutually exclusive.

(iv) Two events ,which are mutually exclusive but not exhaustive

Let us take the two events as shown in Table V. Since ,

Event	Probability of event
X = 3	$\frac{1}{8}$
X = 0	$\frac{1}{8}$

TABLE V EVENTS FOR QUESTION 4

$$\Pr((X=3) \cap (X=0)) = 0 \tag{13}$$

So ,the two events are mutually exclusive. And from Table V,

$$\Pr\left((X=3) \cup (X=0)\right) = \frac{1}{8} + \frac{1}{8} \qquad (14)$$

$$=\frac{1}{4}\neq 1 \qquad (15)$$

So , the two events are mutually exclusive but not exhaustive.

(v) Three events which are mutually exclusive but not exhaustive

Let us take the three events as shown in Table VI. Since ,

Event	Probability of event
X = 0	$\frac{1}{8}$
X = 1	$\frac{3}{8}$
X = 2	$\frac{3}{8}$

TABLE VI EVENTS FOR QUESTION 5

$$\Pr((X=0) \cap (X=1)) = 0 \tag{16}$$

$$\Pr((X=1) \cap (X=2)) = 0$$
 (17)

$$\Pr((X = 0) \cap (X = 2)) = 0 \tag{18}$$

We can say that, the three events are mutually exclusive.

And from Table VI,

$$\Pr((X=0) \cup (X=1) \cup (X=2))$$

$$= \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1 \quad (19)$$

So, the three events are mutually exclusive but not exhaustive.