TÓM TẮT KUẾN THỰC TOÁN CẤP IUI

ÔN THI THPT QUỐC GIA

I. CÔNG THỨC LƯỢNG GIÁC								
	1. Hệ thức cơ bản:							
$ \sin^2 \alpha + \cos^2 \alpha = 1 $	L		۲ - ۲	0000		• t	• $\tan \alpha . \cot \alpha = 1$	
$ 1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha} $		$egin{array}{c} rac{1}{\sin^2lpha} \end{array} egin{array}{c} rac{1}{\sin(lpha+k2\pi)} = \sinlpha \ \cos(lpha+k2\pi) = \coslpha \end{array}$		•	$egin{aligned} orall k \in \mathbb{Z} \ an(lpha + k\pi) &= anlpha \ \cot(lpha + k\pi) &= \cotlpha \end{aligned}$			
			2. Cı	ıng liên k	ét:			
Đối: α và -α	Bù:	α và $\pi - \alpha$	Phụ: α v	$ \frac{\pi}{2} - \alpha $	Khác pi: α ; π	$+\alpha$	Khác $\frac{Pi}{2}$: α ; $\frac{\pi}{2}$ + α	
$\sin(-\alpha) = -\sin\alpha$	sin($(\pi - \alpha) = \sin \alpha$	$\sin\left(\frac{\pi}{2} - \alpha\right)$	$=\cos\alpha$	$\sin(\pi + \alpha) = -s$	$\operatorname{in} \alpha$	$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$	
$\cos(-\alpha) = \cos \alpha$	cos($\pi - \alpha) = -\cos \alpha$	$\cos\left(\frac{\pi}{2} - \alpha\right)$	$=\sin\alpha$	$\cos(\pi + \alpha) = -\cos(\pi + \alpha)$	osα	$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$	
$\tan(-\alpha) = -\tan\alpha$	tan($(\pi - \alpha) = -\tan \alpha$	$\tan\left(\frac{\pi}{2} - \alpha\right)$	$= \cot \alpha$	$\tan(\pi + \alpha) = \tan(\pi + \alpha)$	ıα	$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$	
$\cot(-\alpha) = -\cot\alpha$	cot($\pi - \alpha) = -\cot \alpha$	$\cot\left(\frac{\pi}{2} - \alpha\right)$	$= \tan \alpha$	$\cot(\pi + \alpha) = \cot(\pi + \alpha)$	tα	$\cot\left(\frac{\pi}{2} + \alpha\right) = -\tan\alpha$	
Cos Đối		Sin Bù	Phụ (Chéo	Khác pi Tang, Cotai	ng	Khác pi chia 2 Sin bạn cos	
3. Công thức cộng:								
$ *\sin(a+b) = \sin a \cdot \cos b + \sin b \cdot \cos a $ $ *\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b $								
$ *\sin(a-b) = \sin a \cdot \cos b - \sin b \cdot \cos a $ $ *\cos(a-b) = \cos a \cdot \cos b + \sin a \cdot \sin b $								
tan(a+	$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$ $\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$							
4. Công thức nhân đôi, nhân ba:								

$\sin 2\alpha = 2\sin \alpha . \cos \alpha$	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha - \sin^2 \alpha - \sin^2 \alpha - \sin^2 \alpha + \cos^2 \alpha - \cos^2 \alpha$		$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$	
Sin 2a 2sin a.eas a	$=2\cos^2$	$\alpha - 1 = 1 - 2\sin^2 \alpha$	$1-\tan^2\alpha$	
$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$	$\cos 3\alpha = 4\cos \alpha$	$s^3 \alpha - 3\cos \alpha$	$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}$	
	5 Côn	g thức hạ bậc	1–5 $\tan \alpha$	
$1-\cos 2\alpha$			$_{2}$ $1-\cos 2\alpha$	
$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$	$\cos^2 \alpha = \frac{1}{2}$	2	$\tan^2 \alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$	
	6. Công thức bi	ến đổi tổng thà	nh tích:	
$\cos a + \cos b = 2\cos\frac{a+b}{2}.$	$\cos \frac{a-b}{2}$	cos a -	$-\cos b = -2\sin\frac{a+b}{2}.\sin\frac{a-b}{2}$	
$\sin a + \sin b = 2\sin \frac{a+b}{2}.c$	$\cos \frac{a-b}{2}$	sin a	$-\sin b = 2\cos\frac{a+b}{2}.\sin\frac{a-b}{2}$	
$\tan a + \tan b = \frac{\sin(a + a)}{\sin(a + b)}$			$an a - tan b = \frac{\sin(a-b)}{a}$	
$\tan a + \tan b = \frac{1}{\cos a \cdot \cos a}$	$\overline{\operatorname{os} b}$	ι	$an a - tan b = \frac{1}{\cos a \cdot \cos b}$	
$\sin \alpha + \cos \alpha = \sqrt{2}.\sin \left(\alpha + \frac{\pi}{4}\right) = -\frac{\pi}{4}$	$\sqrt{2}.\cos\left(\alpha-\frac{\pi}{4}\right)$	$\sin \alpha - \cos \alpha = \sqrt{2} \sin \left(\alpha - \frac{\pi}{4}\right) = -\sqrt{2} \cos \left(\alpha + \frac{\pi}{4}\right)$		
7. Công thức biến đổi tích thành tổng:				
$\cos a \cdot \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right] \qquad \sin a \cdot \sin b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$		$(a-b)-\cos(a+b)$	$\sin a \cdot \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$	
Cos.Cos thì Cos cộng cộng Cos trừ Sin.Sin thì Cos tr		ừ trừ Cos cộng Sin.Cos thì Sin cộng cộng Sin trừ		
II.	PHƯƠNG TI	RÌNH LƯỢNG	GIÁC	
$\bullet \sin u = \sin v \Leftrightarrow \begin{bmatrix} u = v + k2 \\ u = \pi - v \end{bmatrix}$	$\frac{2\pi}{k2\pi}$ $(k \in \mathbb{Z})$	• cos	$u = \cos v \Leftrightarrow \begin{bmatrix} u = v + k2\pi \\ u = -v + k2\pi \end{bmatrix} (k \in \mathbb{Z})$	
		\	$\cos u = 1 \Leftrightarrow u = k2\pi$ $\cos u = -1 \Leftrightarrow u = \pi + k2\pi (k \in \mathbb{Z})$ $\cos u = 0 \Leftrightarrow u = \frac{\pi}{2} + k\pi$	
$\bullet \tan u = \tan v \Leftrightarrow u = v + k$	π $(k \in \mathbb{Z})$	$\bullet \cot u = \cot v \Leftrightarrow u = v + k\pi (k \in \mathbb{Z})$		
Kỹ thuật 1: Làm mất dấu trừ				
$ \begin{array}{l} \mathbf{Vi} \ \mathbf{dy:} \\ -\sin\alpha = \sin(-\alpha) \\ -\cos\alpha = \cos(\pi - \alpha) \\ -\tan\alpha = \tan(-\alpha) \\ -\cot\alpha = \cot(-\alpha) \end{array} $ $ \begin{array}{l} \mathbf{Vi} \ \mathbf{dy:} \\ \sin\left(x - \frac{\pi}{4}\right) + \sin x = 0 \Leftrightarrow \sin\left(x - \frac{\pi}{4}\right) = -\sin x \Leftrightarrow \sin\left(x - \frac{\pi}{4}\right) = \sin(-x) \\ \Leftrightarrow \left(x - \frac{\pi}{4} = -x + k2\pi\right) \\ \Leftrightarrow \left(x - \frac{\pi}{4} = -x + k2\pi\right) \\ \Leftrightarrow \left(x - \frac{\pi}{4} = \pi + x + k2\pi\right) \\ \Leftrightarrow \left(x - \frac{\pi}{4} = \pi + x + k2\pi\right) \\ \Leftrightarrow \left(x - \frac{\pi}{4} = -x + k2\pi\right) \\ \Leftrightarrow \left(x - \frac{\pi}{4} = $				
$\left x - \frac{\pi}{4} \right $	$\mathcal{X}-rac{\pi}{4}=\pi+\mathcal{X}+k2\pi(ext{v\^{o} nghi\^{e}m})$			

Kỹ thuật 2: Biến đổi chéo

$$\circ \sin lpha = \cos \left(rac{\pi}{2} - lpha
ight) \ \circ \cos lpha = \sin \left(rac{\pi}{2} - lpha
ight) \ \left(\pi
ight)$$

 $\circ \cot \alpha = \tan \left| \frac{\pi}{2} - \alpha \right|$

Ví du:

$$\begin{array}{l} \cos\alpha = \sin\left[\frac{\pi}{2} - \alpha\right] \\ \circ \tan\alpha = \cot\left[\frac{\pi}{2} - \alpha\right] \\ \end{array} \\ \sin2x = \cos x \Leftrightarrow \sin2x = \sin\left[\frac{\pi}{2} - x\right] \Leftrightarrow \begin{bmatrix} 2x = \frac{\pi}{2} - x + k2\pi \\ 2x = \pi - \left(\frac{\pi}{2} - x\right) + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + \frac{k2\pi}{3} \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix} \\ \times \begin{bmatrix} x = \frac{\pi}{6} + \frac{k2\pi}{3} \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix} \end{cases}$$

Phương trình dạng $a\sin x + b\cos x = c$ (với $a^2 + b^2 > c^2$)

Phương trình dạng

 $a\sin^2 x + b\sin x\cos x + c\cos^2 x = d$

 $a\sin x + b\cos x = c$

$$\Leftrightarrow \frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x = \frac{c}{\sqrt{a^2 + b^2}}$$

 $\Leftrightarrow \sin x.\cos \alpha + \cos x.\sin \alpha = \frac{c}{\sqrt{a^2 + b^2}}$

(với
$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}, \sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$$
)

- $\Leftrightarrow \sin(x+\alpha) = \sin\beta \Leftrightarrow \dots \qquad \text{v\'et} \sin\beta = \frac{c}{\sqrt{a^2 + b^2}}$
- **Trường hợp 2:** Xét $\cos x \neq 0$, chia hai vế phương trình cho $\cos^2 x$, ta có: $a \tan^2 x + b \tan x + c = d(1 + \tan^2 x) \Leftrightarrow \dots (2)$
- Hợp nghiệm của (1), (2) ta có tập nghiệm của phương trình đã cho.

Lưu ý: Phương trình $a\sin x + b\cos x = c$ chỉ có nghiệm khi và chỉ khi $a^2 + b^2 \ge c^2$.

III. TỔ HỢP – XÁC SUẤT

QUY TẮC CỘNG

QUY TẮC NHÂN

Nếu phép đếm được chia ra làm nhiều giai đoạn bắt

buộc, ta sẽ nhân các kết quả của mỗi giai đoan ấy.

Nếu phép đếm được chia ra **nhiều trường hợp**, ta sẽ **cộng các kết quả** lai.

• Sắp xếp (đổi chỗ) của n phần tử khác nhau, ta có số cách xếp là $P_n = n!$ với $n \in \mathbb{N}$.

HOÁN VỊ

- Cách tính: n! = 1.2....(n-1)n.
- Quy ước sốc: 0!=1.

Chọn k phần tử từ n phần tử (không sắp xếp thứ tự), ta có số cách chọn là \[\begin{aligned} \begin{aligned} \cdot \cdot \begin{aligned} \cdot \cdot \begin{aligned} \cdot \

TỐ HỢP

- Cách tính: $C_n^k = \frac{n!}{(n-k)!k!}$
 - với $\begin{cases} n, & k \in \mathbb{N} \\ 0 \le k \le n \end{cases}$

Chọn k phần tử từ n phần tử (có sắp xếp thứ tự), ta được số cách chọn là \(A_n^k \).

CHÍNH HƠP

• Cách tính: $A_n^k = \frac{n!}{(n-k)!}$ với $\begin{cases} n, & k \in \mathbb{N} \\ 0 \le k \le n \end{cases}$

XÁC SUẤT

• Công thức: $P(X) = \frac{n(X)}{n(\Omega)}$

Trong đó: n(X): số phần tử của tập biến cố X; $n(\Omega)$: số phần tử không gian mẫu; P(X) là xác suất để biến cố X xảy ra với $X \subset \Omega$

Tính chất:

 $0 \le P(X) \le 1$.

 $P(\emptyset) = 0; P(\Omega) = 1$.

 $P(X) = 1 - P(\overline{X})$ với \overline{X} là biến cố đối của X.

IV. KHAI TRIẾN NHI THỨC NEWTƠN

Khai triển dạng liệt kê:

Trong các công thức bên, ta luôn có $n \in \mathbb{N}$, $n \ge 2$.

- $(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a b^{n-1} + C_n^n b^n.$
- Đặc biệt: $(1+x)^n = C_n^0 + C_n^1 x + C_n^2 x^2 + \dots + C_n^{n-1} x^{n-1} + C_n^n x^n$ (*).
- **Hệ quả 1:** $C_n^0 + C_n^1 + C_n^2 + \dots C_n^{n-1} + C_n^n = 2^n$ (tức là thay x = 1 vào (*)).
- **Hệ quả 2:** Với *n* chẵn, chỉ cần thay x = -1 vào (*), ta có: $C_n^0 - C_n^1 + C_n^2 - \dots - C_n^{n-1} + C_n^n = 0 \Leftrightarrow C_n^0 + C_n^2 + C_n^4 - \dots + C_n^n = C_n^1 + C_n^3 + \dots - C_n^{n-1}$

Khai triển tổng quát:

Trong các công thức bên, ta luôn có $n \in \mathbb{N}$, $n \ge 2$.

- Khai triển: $\left| \left(a+b \right)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k \right|$. Số hạng tổng quát: $T_{k+1} = C_n^k a^{n-k} b^k$
- Phân biệt hệ số và số hạng: $C_n^k(-1)^k a^{n-k} b^k$ x^{α} .

Nhớ rằng **số hạng không chứa** x ứng với $\alpha = 0$.

V. CÁP SỐ CÔNG - CÁP SỐ NHÂN

CẤP SỐ CÔNG

1. Định nghĩa:

- Dãy số (u_n) được gọi là **cấp số cộng** khi và chỉ khi $u_{n+1} = u_n + d$ với $n \in \mathbb{N}^*$, d là hằng số.
- Cấp số cộng như trên có số hạng đầu u_1 , công sai d.
- 2. Số hạng tổng quát:
- 3. Tính chất các số hang:
 - $|u_{k-1} + u_{k+1} = 2u_k | v \acute{o} i k \in \mathbb{N} v \grave{a} k \ge 2.$
- 4. Tổng n số hạng đầu tiên:

1. Định nghĩa:

• Dãy số (u_n) được gọi là **cấp số nhân** khi và chỉ khi $u_{n+1} = u_n \cdot q$ với $n \in \mathbb{N}^*$, q là hằng số.

CẤP SỐ NHÂN

- Cấp số nhân như trên có số hạng đầu u_1 , công **bội** q.
- 2. Số hang tổng quát:
 - $u_n = u_1 \cdot q^{n-1}$ với $n \in \mathbb{N}^*$.
- 3. Tính chất các số hạng:
 - $|u_{k-1}.u_{k+1} = u_k^2|$ với $k \in \mathbb{N}$ và $k \ge 2$.
- 4. Tổng n số hạng đầu tiên:
- $S_n = u_1 + u_2 + ... + u_n = \frac{u_1(1 q^n)}{1 q^n}$ với $q \neq 1$.

VI. CÔNG THỨC ĐẠO HÀM

- k' = 0(với k là hằng số)
- $(x^{\alpha})' = \alpha x^{\alpha 1}$ $\longrightarrow (u^{\alpha})' = \alpha u^{\alpha-1} \underline{u'}$
- $\longrightarrow \left(\sqrt{u}\right)' = \frac{|\underline{u'}|}{2\sqrt{u}}$
- $\left(\frac{1}{r}\right) = -\frac{1}{r^2}$ $= -\frac{1}{u'} = -\frac{u'}{u^2}$

- $\longrightarrow (e^u)' = e^u . \underline{u'}$ $\longrightarrow (a^u)' = a^u . \ln a . \underline{u'}$
- $(\sin x)' = \cos x$
- $(\cos x)' = -\sin x$
- $\longrightarrow (\sin u)' = \underline{u'} \cos u \qquad \longrightarrow (\cos u)' = -\underline{u'} \sin u$

• $(\cot x)' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$

$$\longrightarrow$$
 $(\tan u)' = \frac{\underline{u'}}{\cos^2 u} = \underline{\underline{u'}} (1 + \tan^2 u)$

$$\longrightarrow \left(\cot u\right)' = -\frac{\underline{u'}}{\sin^2 u} = -\underline{u'}\left(1 + \cot^2 u\right)$$

VII. KHẢO SÁT HÀM SỐ & BÀI TOÁN LIÊN QUAN

XÉT TÍNH ĐƠN ĐIỆU

- **HÀM BẬC BA** $y = ax^3 + bx^2 + cx + d \quad (a \neq 0)$
- HÀM NHẤT BIẾN $y = \frac{ax+b}{cx+d} (ad-bc \neq 0, c \neq 0)$

- **Bước 1:** Tìm tập xác định D.
- **Bước 2:** Tính y' = f'(x); cho y' = 0 $\xrightarrow{Tim nghiệm} x_1, x_2...$ Tìm thêm các giá trị x mà y' không xác đinh.
- Bước 3: Lập bảng biến thiên. (Nên chọn giá trị x đại diện cho từng khoảng thay vào y' để tìm dấu của y' trên khoảng đó).
- Bước 4: Dựa vào bảng biến thiên để kết luận về sự đồng biến, nghịch biến của hàm số.

- Đao hàm $y' = 3ax^2 + 2bx + c$.
- Hàm số đồng biến trên tập xác định $\mathbb{R} \Leftrightarrow y' \geq 0, \forall x \in \mathbb{R}$

$$\Leftrightarrow \begin{cases} a > 0 \\ \Delta \le 0 \end{cases}.$$

- Hàm số **nghịch biến trên tập xác định** $\mathbb{R} \Leftrightarrow y' \leq 0, \forall x \in \mathbb{R}$ a < 0
- **Lưu ý:** Nếu a chứa tham số m thì ta xét a = 0, tìm m. Thay m tìm được để kiểm tra dấu y', xem y có **đơn điệu** trên \mathbb{R} không?

- Đạo hàm $y' = \frac{ad bc}{(cx + d)^2}$.
- Hàm số đồng biến trên từng khoảng xác định
 ⇔ad −bc > 0.
- Hàm số nghịch biến trên
 từng khoảng xác định
 ⇔ ad −bc < 0.
- **Lưu ý:** Nếu đề cho **đồng biến** (**nghịch biến**) trên $(\alpha; \beta)$ thì ta xét điều kiện: $-\frac{d}{c} \notin (\alpha; \beta)$.

ĐIỀU KIỆN CỰC TRỊ

- Hàm số có điểm cực trị là $(x_0; y_0) \Leftrightarrow \begin{cases} y'(x_0) = 0 \\ y(x_0) = y_0 \end{cases}.$ (giả thiết là hàm số liên tục tại x_0).
- Nếu $\begin{cases} f'(x_0) = 0 \\ f''(x_0) < 0 \end{cases}$ thì hàm số
 - f(x) đạt cực đại tại $x = x_0$.
- - f(x) đạt cực tiểu tại $x = x_0$.

CỰC TRỊ HÀM BẬC BA $y = ax^3 + bx^2 + cx + d \quad (a \neq 0)$

- Đạo hàm $y' = 3ax^2 + 2bx + c$.
- Hàm số có hai cực trị (tức là có CĐ-CT) \Leftrightarrow $\begin{cases} a \neq 0 \\ \Delta_{n'} > 0 \end{cases}$ (*).
- Hàm số có hai điểm cực trị trái dấu $\Leftrightarrow x_1x_2 < 0 \Leftrightarrow ac < 0$.
- Hàm số có hai điểm cực trị cùng dấu $\Leftrightarrow \begin{cases} a \neq 0, \ \Delta_{y'} > 0 \\ ac > 0 \end{cases}$.
- Phương trình đường thẳng đi qua hai điểm cực trị:

$$y = f(x) - \frac{f'(x).f''(x)}{18a}$$

CỰC TRỊ HÀM BẬC BỐN $y = ax^4 + bx^2 + c \quad (a \neq 0)$

- Đạo hàm $y' = 4ax^3 + 2bx$.
- Điều kiên cực tri

Dica mich các mi		
Ba cực trị	<i>ab</i> < 0	
Một cực trị	$\begin{cases} ab \ge 0 \\ a^2 + b^2 > 0 \end{cases}$	
Có cực trị	$a^2 + b^2 > 0$	

ullet Cho $A,\,B,\,C$ là ba điểm cực trị, ta

có:
$$\cos \widehat{BAC} = \frac{b^3 + 8a}{b^3 - 8a}$$

$$S_{\Delta ABC} = \sqrt{\frac{b^5}{-32a^3}} \ .$$

TÌM MAX-MIN TRÊN ĐOẠN

Tìm Max-Min của f(x) trên đoạn [a;b]

■ **Bước 1:** Tính y' = f'(x).

Tìm các nghiệm $x_i \in (a;b)$ khi cho f'(x) = 0.

TÌM MAX-MIN TRÊN KHOẢNG

Tìm Max-Min của f(x) trên khoảng (a;b)

- **Bước 1:** Tính y' = f'(x).
 - Tìm các nghiệm $x_i \in (a;b)$ khi cho f'(x) = 0. Tìm

Tìm $x_i \in (a;b)$ mà y' không xác định.

- **Bước 2:** Tính các giá trị f(a), f(b) và $f(x_i)$, $f(x_i)$ (nếu có).
- **Bước 3:** So sánh tất cả giá trị trong **bước 2** để kết luận về giá trị lớn nhất, nhỏ nhất.

 $x_i \in (a;b)$ mà y' không xác định.

- **Bước 2:** Cần tính $\lim_{x\to a^+} y$, $\lim_{x\to b^-} y$. (Nếu thay (a;b)bằng $(-\infty; +\infty)$ thì ta tính thêm $\lim y$).
- Bước 3: Lập bảng biến thiên và suy ra giá trị lớn nhất, nhỏ nhất trên khoảng.

ĐĂC BIỆT • Nếu hàm f(x) đồng biến trên [a;b] thì $\max f(x) = f(b)$

Nếu hàm f(x) nghịch biến trên [a;b] thì

TIỆM CẬN ĐỨNG

- **Định nghĩa:** $\begin{cases} x \longrightarrow x_0 \\ v \longrightarrow \pm \infty \end{cases}$ (x hữu hạn, y vô hạn), ta có **tiệm cận đứng** $x = x_0$. **Lưu ý:** điều kiện $x \longrightarrow x_0$ có thể được thay bằng $x \longrightarrow x_0^-$ (giới hạn bên trái) hoặc $x \longrightarrow x_0^+$ (giới hạn bên phải).
- Cách tìm TCĐ: Nếu $x = x_0$ là một nghiệm của mẫu số mà không phải là nghiệm của **tử số** thì $x = x_0$ chính là một **TCĐ** của đồ thị. (với tập xác định có dạng $D = K \setminus \{x_0; x_1; ...\}$).

TIỆM CẬN NGANG

- **Định nghĩa:** $\begin{cases} x \longrightarrow \pm \infty \\ y \longrightarrow y_0 \end{cases}$ (x vô hạn, y hữu hạn), ta có tiệm cận ngang $y = y_0$.
- Cách tìm TCN: Đơn giản nhất là dùng CASIO Bước 1: Nhập hàm số vào máy.

Buốc 2:
$$CALC$$
 \xrightarrow{NEXT} $X = 10 ^ 10$ \xrightarrow{NEXT} $=$ $CALC$ \xrightarrow{NEXT} $X = -10 ^ 10$ \xrightarrow{NEXT} $=$

Bước 3: Nếu kết quả thu được là hữu han (tức là y_0) thì ta kết luận **TCN**: $y = y_0$.

■ Đồ thị hàm số
$$y = \frac{ax + b}{cx + d}$$
 với $(c \neq 0, ad - bc \neq 0)$ có một TCĐ: $x = -\frac{d}{c}$, một TCN: $y = \frac{a}{c}$.

Thên nhớ, mỗi đồ thị chỉ có tối đa là 2 tiệm cận ngang.

SỬ TƯƠNG GIAO GIỮA HAI ĐỔ THI Xét hai đồ thị (C_1) : y = f(x) và (C_2) : y = g(x).

Phương pháp chung tìm giao điểm hai đồ thị

- **Bước 1 :** Lập phương trình hoành độ giao điểm của $(C_1) \& (C_2) : |f(x) = g(x)|$. (*)
- **Bước 2 :** Giải phương trình (*) để tìm các nghiệm $x_1, x_2,...$ (nếu có), suy ra $y_1, y_2...$
- Điều kiện để (C_1) và (C_2) có nđiểm chung là phương trình (*) có n nghiệm khác nhau.
- \blacksquare Điều kiện để (C_1) tiếp xúc (C_2) là phương trình (*) có nghiệm kép hoặc hệ sau có nghiệm : $\begin{cases} f(x) = g(x) \\ f'(x) = g'(x) \end{cases}$

Tìm tham số để $\left\{(C): y = \frac{ax+b}{cx+d} \right\}$ cắt nhau tại hai điểm phân biệt $d: y = \alpha x + \beta$

điểm :
$$\frac{ax+b}{cx+d} = \alpha x + \beta$$
, đưa phương trình về

dạng
$$g(x) = Ax^2 + Bx + C = 0 \left(x \neq -\frac{d}{c}\right)$$
.

■ **Bước 2 :** Giải hệ
$$A \neq 0$$
 $\Delta_g > 0$ $\xrightarrow{Tim} m$? $g\left(-\frac{d}{c}\right) \neq 0$

Tìm tham số để
$$\begin{cases} (C): y=ax^3+bx^2+cx+d \ d: y=\alpha x+eta \end{cases}$$
 cắt nhau tại ba điểm phân biệt

(Ta chỉ áp dụng cho trường hợp phương trình hoành độ giao điểm có nghiệm đẹp)

- **Bước 1 :** Viết phương trình hoành độ giao điểm : $ax^3 + bx^2 + cx + d = \alpha x + \beta$, đưa phương trình về dạng $(x x_0) \left(\underbrace{Ax^2 + Bx + C}_{g(x)}\right) = 0$.
 - (có vận dụng kỹ năng chia Hoocne)
- **Bước 2 :** Giải hệ điều kiện : $\begin{cases} A \neq 0 \\ \Delta_g > 0 & \xrightarrow{Tim} m? \\ g(x_0) \neq 0 \end{cases}$
- **Lưu ý**: Để tìm nghiệm đẹp $x = x_0$, ta nhập vào máy chức năng giải phương trình bậc ba với m = 100.

PHƯƠNG TRÌNH TIẾP TUYẾN

DANG 1

Viết phương trình tiếp tuyến của đồ thị (C): y = f(x) tại điểm $M(x_0; y_0) \in (C)$

- **Bước 1:** Tính đạo hàm y', từ đó có hệ số góc $k = y'(x_0)$.
- **Bước 2 :** Viết phương trình tiếp tuyến của đồ thị dạng $y = k(x x_0) + y_0$.

DANG 2

Viết phương trình tiếp tuyến của đồ thị (C): y = f(x) biết tiếp tuyến có hệ số góc k.

- **Bước 1:** Gọi $M(x_0; y_0)$ là tiếp điểm và tính đạo hàm y'.
- **Bước 2:** Cho $y'(x_0) = k$, tìm được tiếp điểm $(x_0; y_0)$.
- **Bước 3:** Phương trình tiếp tuyến : $y = k(x x_0) + y_0$.

DANG 3

Viết phương trình tiếp tuyến của đồ thị (C): y = f(x) biết tiếp tuyến đi qua $A(x_A; y_A)$.

- **Bước 1:** Tiếp tuyến có dạng : $y = y'(x_0)(x x_0) + y_0 \ (*) \text{ với}$ $y_0 = f(x_0).$
- **Bước 2:** Thay tọa độ điểm A vào (*) để tìm được x_0 .
- Bước 3: Thay x₀ vào (*) để viết phương trình tiếp tuyến.
- **Đặc biệt :** Nếu tiếp tuyến **song song** đường thẳng y = ax + b thì nó có hệ số góc k = a, nếu tiếp tuyến **vuông góc** đường thẳng y = ax + b thì nó có hệ số góc $k = -\frac{1}{a}$ $(a \neq 0)$; nếu tiếp tuyến tạo với trục Ox góc α thì nó có hệ số góc $k = \pm \tan \alpha$.

ĐIỂM ĐẶC BIỆT THUỘC ĐỒ THỊ

Tâm đối xứng (hay điểm uốn) của đồ thị bậc ba $y = ax^3 + bx^2 + cx + d \quad (a \neq 0)$

- **Bước 1:** Tính $\begin{cases} y' = 3ax^2 + 2bx + c \\ y'' = 6ax + 2b \end{cases}.$
- **Bước 2:** Cho y'' = 0— $\xrightarrow{Tim nghiệm} x_0 = -\frac{b}{3a} \Rightarrow y_0$.

Ta có tâm đối xứng (tức điểm uốn): $I(x_0; y_0)$.

Cần nhớ: Tâm đối xứng của đồ thị bậc ba cũng là trung điểm của hai điểm cực trị (nếu có).

Tâm đối xứng của đồ thị hàm nhất biến $y = \frac{ax+b}{cx+d} (c \neq 0, ad-bc \neq 0)$

Tìm tiệm cận đứng $x=-\frac{d}{c}$ và tiệm cận ngang $y=\frac{a}{c}$, ta tìm được tâm đối xứng của đồ thị $I\left(-\frac{d}{c};\frac{a}{c}\right)$ (là giao điểm 2 tiệm cận tìm được).

Điểm có tọa độ nguyên thuộc đồ thị hàm nhất biến $y = \frac{ax+b}{cx+d} \ (c \neq 0, ad-bc \neq 0)$

• Bước 1: Chia đa thức cho đa thức, ta viết	
lại hàm số $y = \alpha + \frac{\beta}{cx + d}$.	

Cách 1: Tư luận

■ **Bước 2:** Yêu cầu bài toán
$$\Leftrightarrow cx+d$$
 là ước số nguyên của β — $x=$, suy ra các

giá trị *y* tương ứng. Từ đây tìm được các điểm có toa đô nguyên thuộc đồ thi.

Cách 2: Trắc nghiệm

Thực hiện trên máy tính bỏ túi như sau:

$$\boxed{MODE} \longrightarrow \boxed{7} \longrightarrow \boxed{F(X) = \frac{aX+b}{cX+d}} \longrightarrow \boxed{START: -19}$$

 $\longrightarrow END:-1 \longrightarrow STEP:1$. Ta dò tìm những hàng có F(X) nguyên thì nhận làm điểm cần tìm. Làm tương tự khi cho $START:0 \longrightarrow END:18 \longrightarrow STEP:1$, ta sẽ bổ sung thêm các điểm nguyên còn lại. $\underline{Luu\ \acute{v}}:$ Học sinh

sung thêm các điểm nguyên còn lại. **Lưu ý**: Học sinh muốn đạt được tính chính xác cao hơn thì có thể dò trên nhiều khoảng, mỗi khoảng có *START* và *END* cách nhau 19 đơn vị. (*Máy tính đời mới sẽ có bộ nhớ lớn hơn*).

PHÉP SUY ĐỔ THỊ TỪ ĐỔ THỊ CÓ SẪN

Phép tịnh tiến và đối xứng đồ thị

Cho hàm y = f(x) có đồ thị (C)

Đồ thị cần tìm	Cách biến đổi	Minh họa
$(C_1): y = f(x) + a$	Tịnh tiến đồ thị (C) theo phương Oy lên phía trên a đơn vị.	$O \qquad \begin{array}{c} (C_1) \\ \text{di,lên} \\ \text{a'don vi} \\ \end{array}$
$(C_2): y = f(x) - a$	Tịnh tiến đồ thị (C) theo phương Oy xuống phía dưới a đơn vị.	O x (C) Ati xuống a đơn vị

$(C_3): y = f(x+a)$	Tịnh tiến đồ thị (C) theo phương Ox qua trái a đơn vị.	O x (C ₃) (C) sang trái a đơn vị
$(C_4): y = f(x-a)$	Tịnh tiến đồ thị (C) theo phương Ox qua phải a đơn vị.	O (C) (C ₄) sang phải a đơn vị
$(C_5): y = -f(x)$	Lấy đối xứng (C) qua Ox.	O (C) x đối xứng (C ₅) nhau qua trục Ox
$(C_6): y = f(-x)$	Lấy đối xứng (C) qua Oy.	(C ₆) O) (C) x dôi xứng nhau qua trục Oy

Đồ thị hàm chứa giá trị tuyệt đối

a) Từ đồ thị
$$(C): y = f(x)$$
 ta suy ra đồ thị $(C_{_{\! 1}}): y = \left|f(x)\right|$.

Ta có
$$y = |f(x)| = \begin{cases} f(x) & \text{nếu } f(x) \ge 0 \\ -f(x) & \text{nếu } f(x) < 0 \end{cases}$$

Bước 1: Giữ nguyên phần đồ thị (C) nằm phía trên Ox, ta được (C').

Bước 2: Lấy đối xứng phần đồ thị (C) phía dưới Ox qua Ox, ta được (C'').

Kết luận: Đồ thị (C_1) : y = |f(x)| là hợp của (C') với (C''). Xem **ví dụ minh họa** sau:

b) Từ đồ thị hàm số (C) : y=f(x) ta suy ra đồ thị $(C_{_2})$: $y=f\left(\left|x\right|\right)$

Ta có
$$y = f(|x|) = \begin{cases} f(x) & \text{n\'eu } x \ge 0 \\ f(-x) & \text{n\'eu } x < 0 \end{cases}$$

Bước 1: Giữ nguyên phần đồ thị (C) nằm bên phải trục O_Y , ta được (C').

Bước 2: Lấy đối xứng phần đồ thi (C') qua truc O_Y , ta được (C'').

(Đây là tính chất đối xứng của đồ thị hàm số chẵn)

Kết luận: Đồ thị (C_2) : y = f(|x|) là hợp của (C') với (C''). Xem ví dụ minh họa sau:

CÔNG THỨC BỔ TRỢ CHO QUÁ TRÌNH GIẢI TOÁN HÀM SỐ

Bổ trợ về tam thức bậc hai

- ** (*) có hai nghiệm phân biệt $\Leftrightarrow \begin{bmatrix} a \neq 0 \\ \Delta > 0 \end{bmatrix}$ ** (*) có hai nghiệm trái dấu $\Leftrightarrow a.c < 0$.

 ** Định lí Vi-ét : $\begin{cases} S = x_1 + x_2 = \frac{-b}{a} & \xrightarrow{Ap \ dyng} x_1^2 + x_2^2 = S^2 2P; \quad x_1^3 + x_2^3 = S^3 3SP; (x_1 x_2)^2 = S^2 4P; \\ P = x_1 x_2 = \frac{c}{a} \end{cases}$

 $\left|x_1-x_2\right|=\sqrt{(x_1-x_2)^2}=\sqrt{S^2-4P} \text{ . Trong trắc nghiệm, ta nên dùng công thức : } \left|x_1-x_2\right|=\frac{\sqrt{\Delta}}{|a|} \right|.$

- (*) có hai nghiệm dương phân biệt $\Leftrightarrow \begin{cases} a \neq 0, \Delta > 0 \\ S > 0, P > 0 \end{cases}$
- (*) có hai nghiệm âm phân biệt $\Leftrightarrow \begin{cases} a \neq 0, \Delta > 0 \\ S < 0, P > 0 \end{cases}$

Bổ trợ hình học giải tích phẳng

$$\begin{tabular}{ll} \blacksquare & \mbox{N\'eu} & \Delta ABC & \mbox{c\'o} & \left\{ \overline{\overrightarrow{AB}} = (b_1;b_2) \\ \overline{\overrightarrow{AC}} = (c_1;c_2) & \mbox{th} i \end{tabular} \right. & \left. S_{\Delta ABC} = \frac{1}{2} \left| b_1 c_2 - b_2 c_1 \right| \right]. \\ \end{tabular}$$

- $\triangle ABC \perp$ tại $A \Leftrightarrow \overrightarrow{AB}.\overrightarrow{AC} = 0 \Leftrightarrow b_1c_1 + b_2c_2 = 0$.
- $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2}$.

 ${\color{red} \bullet}$ Khoảng cách từ điểm $M(x_{\scriptscriptstyle M};y_{\scriptscriptstyle M})$ đến Δ : ax + by + c = 0 là

$$d(M;\Delta) = \frac{|ax_M + by_M + c|}{\sqrt{a^2 + b^2}}.$$

• Đặc biệt: $d(M;Ox) = |y_M|, d(M;Oy) = |x_M|$

VIII. CÔNG THỨC LŨY THỪA

Cho các số dương a, b và $m, n \in \mathbb{R}$. Ta có:			
• $a^0 = 1$	• $\underline{a^n = a.aa}$ với $n \in \mathbb{N}^*$ $n \text{ thừa số}$	$\bullet a^{-n} = \frac{1}{a^n}$	
	$\bullet a^m.a^n = a^{m+n}$		
$\bullet a^n b^n = (ab)^n$		$ \frac{1}{a^{n}} = a^{\frac{n}{m}} / * \sqrt{a} = a^{\frac{1}{2}} \\ * \sqrt[3]{a} = a^{\frac{1}{3}} (m, n \in \mathbb{N}^{*}) $	

CÔNG THỨC LOGARIT

Cho các số a, b > 0, $a \ne 1$ và $m, n \in \mathbb{R}$. Ta có:

$\bullet \log_a b = \alpha \Leftrightarrow a^\alpha = b$	$\bullet \lg b = \log b = \log_{10} b$	$\bullet \ln b = \log_e b$
$\bullet \log_a 1 = 0$	$\bullet \log_a a = 1$	$\bullet \log_a a^n = n$
$\bullet \log_{a^m} b = \frac{1}{m} \log_a b$		$\bullet \log_{a^m} b^n = \frac{n}{m} \log_a b$
$\bullet \log_a(bc) = \log_a b + \log_a c$		$\begin{cases} a^{\log_a b} = b \\ a^{\log_b c} = c^{\log_b a} \end{cases}$
$\bullet \log_a b.\log_b c = \log_a c$		

Công thức lãi kép

Nếu ta gởi tiền vào ngân hàng theo hình thức: hàng tháng tiền lãi được cộng vào tiền gốc cũ để tạo ra tiền gốc mới và cứ tính tiếp như thế, đây gọi là hình thức lãi kép.

Ta có: $\left|T=A(1+r)^n\right|$ với A: tiền gởi ban đầu; <math>r: $l\~ai$ $su\~at$; n: $k\`y$ hạn gởi; T: tổng $s\~o$ tiền nhận saukỳ hạn n. Lưu ý: r và n phải khớp đơn vị; T bao gồm cả A, muốn tính số tiền lời ta lấy T - A.

X. HÀM SỐ LŨY THỪA, MŨ VÀ LOGAGRIT

HÀM LŨY THỪA	HÀM SỐ MŨ	HÀM SỐ LOGARIT	
Dạng: $\begin{cases} y = x^{\alpha} \\ y = u^{\alpha} \end{cases}$ với u là đa	Dạng: $\begin{cases} y = a^x \\ y = a^u \end{cases}$ với $\begin{cases} a > 0 \\ a \neq 1 \end{cases}$.	Dạng: $\begin{cases} y = \log_a x \\ y = \log_a u \end{cases}$ với $\begin{cases} a > 0 \\ a \neq 1 \end{cases}$.	
thức đại số.	• Tập xác định: $D=\mathbb{R}.$	• Đặc biệt: $a = e \longrightarrow y = \ln x$; $a = 10 \longrightarrow y = \log x = \lg x$.	

Tập xác định:

Nếu
$$\alpha \in \mathbb{Z}^+ \xrightarrow{BK} u \in \mathbb{R}$$
.

Nếu
$$\alpha \in \mathbb{Z}^{-} \xrightarrow{DK} u \neq 0$$
.

Nếu
$$\alpha \notin \mathbb{Z} \xrightarrow{BK} u > 0$$
.

Đạo hàm:

$$\begin{cases} y = x^{\alpha} \longrightarrow y' = \alpha x^{\alpha - 1} \\ y = u^{\alpha} \longrightarrow y' = \alpha u^{\alpha - 1} \cdot \underline{u'} \end{cases}$$

Đạo hàm:

$$egin{aligned} y = a^x & \longrightarrow y' = a^x \ln a \ y = a^u & \longrightarrow y' = a^x \ln a \cdot u' \end{aligned}.$$

Đặc biệt:
$$\langle (e^x)' = e^x \rangle \langle (e^u)' = e^u \rangle \langle (e^u)' = e^u \rangle \langle (e^u)' \rangle \langle$$

• Sự biến thiên: $y = a^x$.

Nếu
$$a>1$$
 thì hàm đồng biến trên \mathbb{R} . Nếu $0< a<1$ thì hàm nghich biến trên \mathbb{R} .

- Điều kiện xác định: u > 0.
- Đao hàm:

$$y = \log_a x \longrightarrow y' = \frac{1}{x \ln a}$$

$$y = \log_a u \longrightarrow y' = \frac{u'}{u \ln a}$$

Đặc biệt:
$$\sqrt{(\ln x)' = \frac{1}{x}}$$
 . $(\ln u)' = \frac{\underline{u'}}{u}$

• Sự biến thiên: $y = \log_a x$. Nếu |a>1|: hàm đồng biến trên $(0;+\infty)$. Nếu |0 < a < 1|: hàm nghịch biến trên $(0;+\infty)$.

ĐÔ THỊ HÀM MŨ VÀ HÀM LOGARIT

- Ta thấy: $a^x \downarrow \Rightarrow 0 < a < 1$; $b^x \downarrow \Rightarrow 0 < b < 1$.
- Ta thấy: $c^x \uparrow \Rightarrow c > 1; d^x \uparrow \Rightarrow d > 1.$
- So sánh a với b: Đứng trên cao, bắn mũi tên từ **trái sang phải**, trúng a^x trước nên a > b.
- So sánh c với d: Đứng trên cao, bắn mũi tên từ **trái sang phải**, trúng c^x trước nên c > d.
- Vậy 0 < b < a < 1 < d < c.

ĐÔ THỊ HÀM SỐ LOGARIT $log_b x$

- Ta thấy: $\log_a x \downarrow \Rightarrow 0 < a < 1$; $\log_b x \downarrow \Rightarrow 0 < b < 1$.
- Ta thấy: $\log_c x \uparrow \Rightarrow c > 1$; $\log_d x \uparrow \Rightarrow d > 1$.
- So sánh a với b: Đứng trên cao, bắn mũi tên từ **phải sang trái**, trúng $\log_b x$ trước: b > a.
- So sánh c với d: Đứng trên cao, bắn mũi tên từ **phải sang trái**, trúng $\log_d x$ trước: d > c.
- Vậy 0 < a < b < 1 < c < d.

PHƯƠNG TRÌNH MŨ VÀ LOGAGRIT

Phương trình mũ	Phương trình Logarit		
• Dạng cơ bản: $a^{f(x)} = a^{g(x)} \Leftrightarrow f(x) = g(x)$	• Dạng cơ bản: $\log_a f(x) = \log_a g(x) \Leftrightarrow f(x) = g(x) > 0$		
■ Dạng logarit hóa: $ \begin{bmatrix} a^{f(x)} = b \Leftrightarrow f(x) = \log_a b \\ a^{f(x)} = b^{g(x)} \Leftrightarrow f(x) = g(x).\log_a b \end{bmatrix} (a, b > 0, a \neq 1) $	■ Dạng mũ hóa: $\log_a f(x) = b \Leftrightarrow f(x) = a^b$ (không cần điều kiện)		

XII. BẤT PHƯƠNG TRÌNH MŨ VÀ LOGAGRIT				
Bất Phương trình mữ			_ ,	tơng trình Logarit
Pang cơ bản: $\begin{bmatrix} * \ a^{f(x)} \ge a^{g(x)} \overset{a>1}{\Leftrightarrow} f(x) \ge g(x) \\ * \ a^{f(x)} \ge a^{g(x)} \overset{0 < a < 1}{\Leftrightarrow} f(x) \le g(x) \end{bmatrix}$		■ Dạng co	σ bản: $\left[egin{array}{c} * \log_a \ * \log_a \ \end{array} ight]$	$f(x) \ge \log_a g(x) \stackrel{a>1}{\Leftrightarrow} f(x) \ge g(x) > 0$ $f(x) \ge \log_a g(x) \stackrel{0$
XIII.	CÔNG TH	ức ngư	YÊN HÀM	/I
	$\int f(x)dx = F(x)$	$(x) + C \Leftrightarrow F'(x)$	x) = f(x)	
	$f(x) \pm g(x) dx =$	$\int f(x)dx \pm \int$	g(x)dx	
$1) \int kdx = kx + C$	$\int 2dx =$	=2x+C	$\bullet \int (-3)dx$	=-3x+C
$2) \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C$	$\bullet \int x^3 dx$	$=\frac{x^4}{4}+C$	$\bullet \int \sqrt{x} dx =$	$\int x^{\frac{1}{2}} dx = \frac{x^{\frac{3}{2}}}{3/2} + C = \frac{2}{3} \sqrt{x^3} + C$
$\xrightarrow{MR} \int (ax+b)^{\alpha} dx = \frac{1}{a} \cdot \frac{(ax+b)^{\alpha+1}}{\alpha+1} + \frac{1}{a}$			$\cdot \frac{(1-2x)^{11}}{11} + C$	$C = \frac{(1-2x)^{11}}{-22} + C$
3) $\int \frac{1}{x} dx = \ln x + C \xrightarrow{MR} \int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b + C$ $\int \frac{1}{1-3x} dx = \frac{1}{-3} \ln 1-3x + C$			$z = \frac{1}{-3} \ln 1 - 3x + C$	
4) $\int \frac{1}{x^2} dx = -\frac{1}{x} + C \xrightarrow{MR} \int \frac{1}{(ax+b)^2}$	$dx = \frac{1}{a} \cdot \frac{-1}{ax+b} + \frac{1}{ax+b} + $	- C	$\int \frac{1}{(2x-3)^2}$	$dx = \frac{1}{2} \cdot \frac{-1}{2x - 3} + C = -\frac{1}{4x - 6} + C$
$\int \left(x^2 + \frac{1}{x} + \frac{1}{x^2} - 10\right) dx = \frac{x^3}{3} + \ln x - \frac{1}{3}$	$\frac{1}{x}$ $-10x + C$	$\bullet \int \frac{x^5 + 1}{x}$	$dx = \int \left(x^4 + \frac{1}{2} \right)^{-1} dx$	$-\frac{1}{x}dx = \frac{x^5}{5} + \ln x + C$
$\int e^x dx = e^x + C \xrightarrow{MR} \int e^{ax+b} dx = \frac{1}{a}$	$e^{ax+b}+C$	$\bullet \int e^{-x} dx$	$=\frac{1}{-1}e^{-x}+C$	$=-e^{-x}+C$
$6) \int a^x dx = \frac{a^x}{\ln a} + C$		$\frac{G^x}{15} + C$	$\int 3^{2x} dx =$	$= \int 9^x dx = \frac{9^x}{\ln 9} + C$
$\xrightarrow{MR} \int a^{bx+c} dx = \frac{1}{b} \cdot \frac{a^{bx+c}}{\ln a} + C$				
	$\frac{1}{2}e^{2x-1} - 2e^x + C$	$\bullet \int 2^x . 3^{x-1}$	$\int_{0}^{1} dx = \int_{0}^{\infty} 2^{x} \cdot 3^{x} \cdot dx$	$\frac{1}{3}dx = \frac{1}{3}\int 6^x dx = \frac{6^x}{3\ln 6} + C$
7) $\int \sin x dx = -\cos x + C$ $\int \sin \left(4x - \frac{\pi}{2}\right) dx = -\frac{1}{4} \cos\left(4x - \frac{\pi}{2}\right) dx = -\frac{1}{4} \cos\left(4x - \frac{\pi}{2}\right) dx$			$\cos(4x^{-\pi}) \cdot C$	
$\xrightarrow{MR} \int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b)$)+C	a=4; b=-	$\frac{2}{4}$ $\frac{\pi}{4}$	$\left(\sqrt{2}\right)^{+}$
$8) \int \cos x dx = \sin x + C$	• <u></u>	$\cos\left(\frac{\pi}{3}-x\right)$	$dx = \frac{1}{-1}\sin\left(\frac{x}{x}\right)$	$\left(\frac{\pi}{3} - x\right) + C = -\sin\left(\frac{\pi}{3} - x\right) + C$
$\xrightarrow{MR} \int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + \frac$	+ <i>C</i>	$a=-1; b=\frac{\pi}{3}$	1 (.	

 $\int (3\sin x - 2\cos x) dx = -3\cos x - 2\sin x + C$

9)
$$\int \frac{1}{\cos^2 x} dx = \int (1 + \tan^2 x) dx = \tan x + C$$

$$\xrightarrow{MR} \int \frac{1}{\cos^2(ax+b)} dx = \frac{1}{a} \tan(ax+b) + C$$

$$\xrightarrow{MR} \int \left[1 + \tan^2(ax + b)\right] dx = \frac{1}{a} \tan(ax + b) + C$$

$$\int \frac{1 - 2\cos^2 x}{\cos^2 x} dx = \int \left(\frac{1}{\cos^2 x} - 2\right) dx = \tan x - 2x + C$$

$$\int \frac{1}{\cos^2 3x} dx = \frac{1}{3} \tan 3x + C$$

10)
$$\int \frac{1}{\sin^2 x} dx = \int (1 + \cot^2 x) dx = -\cot x + C$$

$$\xrightarrow{MR} \int \frac{1}{\sin^2(ax+b)} dx = -\frac{1}{a} \cot(ax+b) + C$$

$$\int \frac{1}{\sin^2 8x} dx = -\frac{1}{8} \cot 8x + C$$

$$\xrightarrow{MR} \int \left[1 + \cot^2\left(ax + b\right)\right] dx = -\frac{1}{a}\cot\left(ax + b\right) + C \quad = \int \left[1 + \cot^23x\right] dx = -\frac{1}{3}\cot3x + C$$

10)
$$\int \frac{1}{\sin^2 x} dx = \int (1 + \cot^2 x) dx = -\cot x + C$$
 $\int \frac{x \sin^2 x + 1}{\sin^2 x} dx = \int \left(x + \frac{1}{\sin^2 x}\right) dx = \frac{x^2}{2} - \cot x + C$

$$\int \frac{1}{\sin^2 8x} dx = -\frac{1}{8} \cot 8x + C$$

XIV. DIÊN TÍCH VÀ THỂ TÍCH

• Hình phẳng giới hạn bởi các đường y = f(x), trục Ox, x = a, x = b thì có diện tích:

• Hình phẳng giới hạn bởi các đường y = f(x), y = g(x), x = a, x = b thì có diện tích:

- $\begin{cases} y = f(x) \\ x = a, \ x = b \end{cases}$ quanh Ox, Khi xoay hình phẳng ta được khối trụ tròn có thể tích $V = \pi \int_{a}^{b} f^{2}(x) dx$
- y = f(x)• Khi xoay hình phẳng $\begin{cases} y = g(x) \end{cases}$ quanh Ox, được | x = a, x = b

khối trụ tròn có thể tích $|V = \pi|^{\alpha} |f^{2}(x) - g^{2}(x)| dx|$.

• Xét hình khối được giới hạn bởi hai mặt phẳng x = a, x = b. Khi cắt khối này ta được thiết diện có diện tích S(x) (là hàm liên tục trên [a;b]). Thể tích khối này trên [a;b] là: $V = \int_a^b S(x) dx$.

XV. CÔNG THỨC CHUYỂN ĐỘNG

Xét hàm quảng đường S(t), hàm vận tốc v(t) và hàm gia tốc a(t). Ba hàm này sẽ biến thiên theo t.

 $S(t) = \int v(t)dt \Leftrightarrow v(t) = S'(t)$

• $v(t) = \int a(t)dt \Leftrightarrow a(t) = v'(t)$

SỐ PHỨC VÀ CÁC YẾU TỐ LIÊN QUAN

Số phức có dạng: $z=a+bi$ với $egin{cases} a,b\in\mathbb{R} \ i^2=-1 \end{cases}$	$(i:$ là đơn vị ảo). Ký hiệu tập số phức: $\mathbb C$.
---	---

So phuc co dạng: $z=a+bi$ với $i^2=-1$				
Thành phần	Hình học	Minh họa		
 Phần thực: a. Nếu a = 0 thì z = bi được gọ số thuần ảo. Phần ảo: b. Nếu b = 0 thì z = a là số th Khi a = b = 0 thì z = 0 vừa l thuần ảo vừa là số thực. 	cho z trên hệ trục Oxy . • Mô-đun: $ z = OM = \sqrt{a^2 + b^2}$	M(a;b) b a O		
Số phức liên hợp – Hai số phức bằng nhau	Căn bậc hai	Phương trình bậc hai		
Cho $z = a + bi$ và $z' = a' + b'i$ Khi đó: • Số phức liên hợp của z là $z = a - bi$. • $z = z' \Leftrightarrow \begin{cases} a = a' \\ b = b' \end{cases}$.	■ Căn bậc hai của $a>0$ là $\pm \sqrt{a}$. ■ Căn bậc hai của $a<0$ là $\pm i\sqrt{-a}$. ■ Căn bậc hai của số phức $z=a+bi$ là hai số phức dạng $w=x+yi$ với $\begin{cases} x^2-y^2=a\\ 2m-b \end{cases}$.	Phương trình $z^2=a>0$ có hai nghiệm phức $z=\pm\sqrt{a}$. Phương trình $z^2=a<0$ có hai nghiệm phức $z=\pm i\sqrt{-a}$. Phương trình $az^2+bz+c=0$ $(a\neq 0)$ với $\Delta<0$ sẽ có hai nghiệm		

XVII. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

A – MỘT SỐ HÌNH PHẨNG CƠ BẢN: 1. Tam giác vuông:

•
$$AB^2 + AC^2 = BC^2$$
 • $AB^2 = BH.BC$
• $AC^2 = CH.BC$ • $AH^2 = BH.CH$
• $\frac{1}{AH^2} = \frac{1}{AB^2} + \frac{1}{AC^2}$ \Rightarrow $AH = \frac{AB.AC}{\sqrt{AB^2 + AC^2}}$

 $z = 0 \Leftrightarrow \begin{cases} a = 0 \\ b = 0 \end{cases}$

Tam giác thường:

Giả sử tam giác ABC đều có cạnh a; trọng tâm G; các đường cao (trùng với trung tuyến) gồm AH, BK.

phức là: $z_{1,2} = \frac{-b \pm i\sqrt{-\Delta}}{2a}$

$$ullet$$
 Đường cao: $AH=BK=rac{(canh) imes\sqrt{3}}{2}=rac{a\sqrt{3}}{2}.$

•
$$AG = \frac{2}{3}AH = \frac{2}{3} \cdot \frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}$$
; $GH = \frac{1}{3}AH = \frac{1}{3} \cdot \frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{6}$.

- Diện tích:
$$S_{\Delta\!A\!B\!C}=rac{(canh)^2 imes\sqrt{3}}{4}=rac{a^2\sqrt{3}}{4}.$$

Giả sử tam giác ABC có a=BC, b=AC, c=AB; các đường cao

 h_a,h_b,h_c lần lượt ứng với cạnh a,b,c. Ký hiệu R,r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp Δ .

- Định lí Sin: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$.
- ullet Định lí Cô-sin: $a^2=b^2+c^2-2bc.\mathrm{cos}A$; $b^2=a^2+c^2-2ac.\mathrm{cos}B$; $c^2=a^2+b^2-2ab.\mathrm{cos}C$.

Cho hình vuông ABCD có cạnh a; hai điểm M,N lần lượt là trung điểm của CD,AD; I là tâm hình vuông.

ullet Đường chéo: $egin{dcases} AC\perp BD \ AC=BD=(canh) imes\sqrt{2}=a\sqrt{2} \end{cases}.$

 $IA=IB=IC=ID=rac{a\sqrt{2}}{2}$ nên I là tâm đường tròn đi qua bốn đỉnh hình vuông.

- Diện tích: $S_{ABCD}=(canh)^2=a^2$; chu vi: p=4a.
- Vì $\triangle ABN = \triangle ADM$, ta chứng minh được: $AM \perp BN$.

Cho hình chữ nhật ABCD tâm I có AB = a, AD = b.

5. Hình chữ nhật:

- Đường chéo: $AC=BD=\sqrt{a^2+b^2}$. $IA=IB=IC=ID=\frac{1}{2}\sqrt{a^2+b^2} \quad \text{nên I là tâm đường tròn đi qua}$ bốn điểm A,B,C,D.
- Diện tích: $S_{ABCD}=a.b$; chu vi: p=2(a+b).

6. Hình thoi: Cho hình thoi ABCD có tâm I, cạnh bằng a.

- Đường chéo: $AC \perp BD$; $AC = 2AI = 2AB \cdot \sin \widehat{ABI} = 2a \cdot \sin \widehat{ABI}$.
- Diện tích: $S_{ABCD}=rac{1}{2}AC.BD$; $S_{ABCD}=2S_{\Delta\!ABC}=2S_{\Delta\!ACD}=2S_{\Delta\!ABD}$.

 $\begin{array}{l} \underline{\textbf{Dặc biệt:}} \text{ Nếu hình thoi có góc } \widehat{B} = \widehat{D} = 60^{\circ} \text{ } (\widehat{A} = \widehat{C} = 120^{\circ}) \text{ thì ta} \\ \text{chia hình thoi ra làm hai tam giác đều: } \Delta ABC = \Delta ACD. \ AC = a \text{ và} \\ S_{\Delta ABC} = S_{\Delta ACD} = \frac{a^2\sqrt{3}}{a}; \ S_{ABCD} = 2S_{\Delta ABC} = \frac{a^2\sqrt{3}}{2}. \end{array}$

B – THỂ TÍCH KHỐI CHÓP:

7. Hình chóp:

$$V=rac{1}{3}h.S_{_d}$$

7.2. Tứ diện đều:

• Đây cũng là hình chóp tam giác đều, đặc biệt là canh bên bằng cạnh đáy. Thể

tích:
$$V = \frac{a^3\sqrt{2}}{12}$$
.

7.1. Hình chóp tam giác đều

☆Góc giữa cạnh bên và mặt **đáy:** $(\overline{SA}, (ABC)) = \overline{SAH}$

$$=\left(\widehat{SC,(ABC)}\right)=\widehat{SCH}$$
.

7.3. Hình chóp tứ giác đều:

☆Góc giữa cạnh bên và mặt

đáy:
$$\left(\overline{SA,(ABCD)}\right) = \widehat{SAO}$$

= $\left(\overline{SB,(ABCD)}\right) = \widehat{SBO}$.

Tất cả canh bên bằng nhau.

- Đáy là tam giác đều cạnh a.
- $SH \perp (ABC)$ với H là trong tâm (cũng là trực tam) $\triangle ABC$.

$$egin{align*} oldsymbol{S}_d &= rac{a^2 \sqrt{3}}{4} & ext{Thể tich} \ SH &= h & V &= rac{1}{3}h.rac{a^2 \sqrt{3}}{4} \ \end{bmatrix}$$

☆Góc giữa mặt bên và mặt đáy:

$$\begin{split} \left(\overline{(SAB),(ABC)} \right) &= \widehat{SMH} \\ &= \left(\overline{(SBC),(ABC)} \right) = \widehat{SNH} \; . \end{split}$$

- Tất cả cạnh bên bằng nhau.
- Đáy là hình vuông cạnh a.
- $SO \perp (ABCD)$ với O là tâm hình vuông *ABCD*.
- $ullet egin{cases} S_d = a^2 & \longrightarrow V = rac{1}{3} h.a^2 \ SO = h & \odot \end{cases}.$

☆Góc giữa mặt bên và mặt đáy:

$$\begin{split} \left(\overline{(SAB),(ABCD)} \right) &= \widehat{SMO} \\ &= \left(\overline{(SBC),(ABCD)} \right) = \widehat{SNO} \,. \end{split}$$

7.4. Hình chóp có cạnh bên SA vuông góc với mặt phẳng đáy.

7.5. Hình chóp có mặt bên

Đáy là tam giác

- $\bullet \begin{cases} h = SA \\ S_d = S_{\triangle ABC} \end{cases} \xrightarrow{Th\ell \ tich} V = \frac{1}{3}SA.S_{\triangle ABC} \ . \quad \bullet \begin{cases} h = SA \\ S_d = S_{ABCD} \end{cases} \xrightarrow{Th\ell \ tich} V = \frac{1}{3}SA.S_{ABCD} \ .$
- Góc giữa cạnh bên và mặt đáy:

$$\begin{cases} \left| \widehat{SB,(ABC)} \right| = \widehat{SBA} \\ \left| \widehat{SC,(ABC)} \right| = \widehat{SCA} \end{cases}$$

Đáy là tam giác

Đáy là tứ giác đặc biệt

- Góc giữa cạnh bên và mặt đáy:

$$\begin{cases} \left(\overline{SB, (ABCD)} \right) = \widehat{SBA} \\ \left(\overline{SC, (ABCD)} \right) = \widehat{SCA} \end{cases}$$

Đáy là tứ giác đặc biệt

(SAB) vuông góc với mặt phẳng đáy.

- ullet Đường cao h=SH cũng là đường cao của ΔSAB .
- Góc giữa canh bên và mặt đáy:

$$\begin{cases} \left| \widehat{SA, (ABC)} \right| = \widehat{SAH} \\ \left| \widehat{SC, (ABC)} \right| = \widehat{SCH} \end{cases}$$

- ullet Đường cao h=SH cũng là đường cao của ∆SAB.
- Góc giữa canh bên và mặt đáy:

$$\left| \left(\overline{SA, (ABCD)} \right) = \widehat{SAH} \right|$$
$$\left| \left(\overline{SC, (ABCD)} \right) = \widehat{SCH} \right|$$

Tỉ SỐ THỂ TÍCH

Cho hình chóp có đáy là tam giác ABC. Các điểm M, N, P nằm trên cạnh SA, SB, SC. Ta có:

$$\overline{rac{V_{_{S.MNP}}}{V_{_{S.ABC}}}} = rac{SM}{SA}.rac{SN}{SB}.rac{SP}{SC}$$
 .

Đặc biệt $M \equiv A, N \equiv B$

$$oxed{rac{V_{S.ABP}}{V_{S.ABC}} = rac{SP}{SC}}$$

1. Hình lăng trụ thường:

- Hai đáy là hai hình giống nhau và nằm trong hai mặt phẳng song song.
- Các cạnh bên song song và bằng nhau. Các mặt bên là các hình bình hành.
- Thể tích: $V = h.S_{A}$

2. Hình lăng trụ đứng:

 $V = AH.S_{\Delta\!ABC} = AH.S_{\Delta\!A'B'C'}$

Đáy là tam giác

Đáy là tứ giác

 $V = AH.S_{ABCD} = AH.S_{A'B'C'D'}$

Đáy là tứ giác

- Các canh bên cùng vuông góc với hai mặt đáy nên mỗi cạnh bên cũng là đường cao của lăng tru.
 - Lăng tru tam giác đều: Là **lăng trụ đứng** và có hai đáy là hai tam giác đều bằng nhau.

lacktriangle Thể tích: $V=h.S_{_{d}}$ h = AA' = BB' = CC'.

ullet Thể tích: $\overline{V=h.S_d}$ với

h = AA' = BB' = CC' = DD'.

3. Hình hộp:

Là lăng trụ có tất cả các mặt là hình bình hành.

■ Thể tích: $V = h.S_{d}$

3.1 Hình hộp chữ nhật:

Là lăng trụ đứng có đáy là hình chữ nhật.

• |V = abc| với a,b,c là ba kích thước khác nhau của hình hộp chữ nhật.

3.2. Hình lập phương:

Là hình hộp chữ nhật có tất cả các cạnh bằng nhau.

• $V=a^3$ với a là cạnh của hình lập phương.

MẶT TRỤ - MẶT NÓN - MẶT CẦU XVIII.

MĂT NÓN

FHình thành: Quay Δ vuông SOM quanh truc SO, ta được mặt nón như hình bên

với:
$$egin{cases} h = SO \ r = OM \end{cases}$$

MĂT TRU

Các yếu tố mặt nón:

- Đường cao: |h = SO|. (SO cũng được gọi là **trục** của hình nón).
- Bán kính đáy:

$$r = OA = OB = OM$$

■ Đường sinh:

$$l = SA = SB = SM.$$

- Gốc ở đỉnh: \overrightarrow{ASB} .
- Thiết diện qua truc: $\triangle SAB$ cân tại S.
- Góc giữa đường sinh và mặt $\mathbf{d\acute{a}y}$: $\widehat{SAO} = \widehat{SBO} = \widehat{SMO}$.

Các yếu tố mặt trụ:

Một số công thức:

• Chu vi đáy: $p = 2\pi r$.

- ullet Diện tích đáy: $S_{_{
 m d}}=\pi r^2$.
- **Thể tích**: $V = \frac{1}{3}h.S_d = \frac{1}{3}h.\pi r^2$

(liên tưởng khối chóp).

- ullet Diện tích xung quanh: $S_{_{\!xq}}=\pi rl$
- Diện tích toàn phần:

$$oxed{S_{tp} = S_{_{xq}} + S_{_{ ext{d}}} = \pi r l + \pi r^2}.$$

Một số công thức:

Hình thành: Quay hình chữ nhật *ABCD* quanh đường trung bình *OO'*, ta có mặt trụ như hình bên.

- ullet Đường cao: h = OO'.
- Dường sinh: l = AD = BC.

Ta có: l=h.

■Bán kính đáy:

$$r = OA = OB = O'C = O'D$$
.

- Trục (Δ) là đường thẳng đi qua hai điểm O, O'.
- Thiết diện qua trục: Là hình chữ nhât *ABCD*.

- Chu vi đáy: $p=2\pi r$.
- ullet Diện tích đáy: $S_{_{ullet}} = \pi r^2$
- Thể tích khối trụ:

$$V = h.S_{_{\scriptscriptstyle\mathcal{A}}} = h.\pi r^2$$
.

Diện tích xung quanh:

$$S_{xq}=2\pi r.h$$
 .

Diện tích toàn phần:

$$oxed{S_{tp} = S_{_{xq}} + 2S_{_{ ilde{ ilde{d}}}} = 2\pi r.h + 2\pi r^2}$$

MẶT CẦU

Một số công thức:

Mặt cầu ngoại tiếp đa diện Mặt cầu nội tiếp đa diện

Fhình thành: Quay đường tròn tâm I, bán kính $R=\frac{AB}{2}$ quanh trục AB, ta có mặt cầu như hình vẽ.

- Tâm I, bán kính R = IA = IB = IM.
- Đường kính AB = 2R.
- Thiết diện qua tâm mặt cầu: Là đường tròn tâm I, bán kính R.
- **Diện tích** mặt cầu: $S=4\pi R^2$
- Thể tích khối cầu: $V = \frac{4\pi R^3}{3}$

• Mặt cầu ngoại tiếp đa diện là mặt cầu đi qua tất cả đỉnh của đa diện đó.

2. Hình chóp đều.

• Mặt cầu nội tiếp đa diện là mặt cầu tiếp xúc với tất cả các mặt của đa diện đó.

CÁCH TÌM BÁN KÍNH MẶT CẦU NGOẠI TIẾP HÌNH CHÓP THƯỜNG GẶP

 Hình chóp có các đỉnh nhìn một cạnh dưới một góc vuông.

• Xét hình chóp có $SA \perp (ABC)$ và $\widehat{ABC} = 90^{\circ}$.

- Xét hình chóp có $SA \perp (ABCD)$ và ABCD là hình chữ nhật hoặc hình vuông.
- Ta có: $\widehat{SAC} = \widehat{SBC}$

- Xét hình chóp tam giác đều có cạnh bên bằng b và đường cao SH = h.
- ■Bán kính mặt cầu

- Xét hình chóp tứ giác đều có cạnh bên bằng b và chiều cao SO = h
- Bán kính mặt cầu ngoại tiếp hình chóp trên là

Ta có
$$\widehat{SAC} = \widehat{SBC} = 90^{0}$$
 nên mặt cầu ngoại tiếp hình chóp có tâm I là trung điểm SC , bán kính $R = \frac{SC}{2}$.

$$=\widehat{SDC}=90^0$$

Suy ra mặt cầu ngoại
tiếp hình chóp có tâm
 I là trung điểm SC ,
bán kính $R=\frac{SC}{2}$.

ngoại tiếp hình chóp trên là
$$R = \frac{b^2}{2h}$$
.

$$R=rac{b^2}{2h}$$
 .

3. Hình chóp có cạnh bên vuông góc với mặt phẳng đáy.

• Xét hình chóp có $SA \perp (\text{dáy})$ và SA = h; bán kính đường tròn ngoại tiếp của đáy là r_d .

 Khi đó mặt cầu ngoại tiếp hình chóp có bán

$$k$$
inh $R = \sqrt{\left(rac{h}{2}
ight)^2 + {r_d}^2}$

• Nếu đáy là tam giác đều cạnh a thì $r_d = \frac{a\sqrt{3}}{3} \ .$

 Nếu đáy là hình chữ nhật cạnh a, b thì

$$r_{\scriptscriptstyle d} = rac{\sqrt{a^2 + b^2}}{2} \, .$$

4. Hình chóp có mặt bên vuông góc với mặt đáy.

• Xét hình chóp có mặt bên $(SAB) \perp (\text{đáy})$, bán kính ngoại tiếp đáy là r_d , bán kính ngoại tiếp ΔSAB là $r_b , \ d = AB = (SAB) \cap \ (\text{đáy}).$

Khi đó bán kính mặt cầu ngoại tiếp hình chóp là

$$R = \sqrt{{r_d}^2 + {r_b}^2 - rac{d^2}{4}}$$

XIX. HÌNH HỌC GIẢI TÍCH TRONG KHÔNG GIAN

1. Hệ trục tọa độ Oxyz:

- Hệ trục gồm ba trục *Ox*, *Oy*, *Oz* đôi một vuông góc nhau.
- Trục Ox: **trục hoành**, có vectơ đơn vị $\vec{i} = (1;0;0)$.
- Trục Oy: **trục tung**, có vectơ đơn vị $\vec{j} = (0;1;0)$.
- Truc Oz: **truc cao**, có vecto don vi $\vec{k} = (0;0;1)$.
- Điểm *O*(0;0;0) là **gốc tọa độ**.
- **2. Tọa độ vectơ:** Vectơ $\overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow \overrightarrow{u} = (x;y;z)$. Cho $\overrightarrow{a} = (a_1;a_2;a_3)$, $\overrightarrow{b} = (b_1;b_2;b_3)$. Ta có:

$$\vec{a} \pm \vec{b} = (a_1 \pm b_1; a_2 \pm b_2; a_3 \pm b_3)$$

$$\bullet \quad k\vec{a} = (ka_1; ka_2; ka_3)$$

$$\vec{a} = \vec{b} \Leftrightarrow \begin{cases} a_1 = b_1 \\ a_2 = b_2 \\ a_3 = b_3 \end{cases}$$

$$\vec{a}$$
 cùng phương $\vec{b} \Leftrightarrow \vec{a} = k\vec{b} \ (k \in R)$

$$\Leftrightarrow \begin{cases} a_1=kb_1\\ a_2=kb_2 \Leftrightarrow \frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{b_3},\ (b_1,b_2,b_3\neq 0).\\ a_3=kb_3 \end{cases}$$

$$ec{a}\cdotec{a}\cdotec{b}=a_1.b_1+a_2.b_2+a_3.b_3$$
 $ec{a}\cdotec{a}=\sqrt{a_1^2+a_2^2+a_2^2}$

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_2^2}$$

$$oldsymbol{ec{a}} ec{a}^2 = \leftec{a}
ightert^2 = a_1^2 + a_2^2 + a_3^2$$

$$\vec{a}\perp\vec{b}\Leftrightarrow\vec{a}.\vec{b}=0\Leftrightarrow a_1b_1+a_2b_2+a_3b_3=0$$

$$\bullet \quad \cos(\vec{a}, \vec{b}) = \frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}.\sqrt{b_1^2 + b_2^2 + b_3^2}}$$

3. Tọa độ điểm: $M(x; y; z) \Leftrightarrow \overrightarrow{OM} = (x; y; z)$. Cho $A(x_A; y_A; z_A)$, $B(x_B; y_B; z_B)$, $C(x_C; y_C; z_C)$, ta có:

$$\overrightarrow{AB} = (x_B - x_A; y_B - y_A; z_B - z_A)$$

•
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

■ Toạ độ trung điểm
$$M$$
 của đoạn thẳng AB :
$$M\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}; \frac{z_A+z_B}{2}\right).$$

■ Toạ độ trọng tâm
$$G$$
 của tam giác ABC :
$$G\left(\frac{x_A + x_B + x_C}{3}; \frac{y_A + y_B + y_C}{3}; \frac{z_A + z_B + z_C}{3}\right).$$

QUY TẮC CHIẾU ĐẶC BIỆT

Chiếu điểm trên trục toa đô

$\bullet \ \, \text{Diểm} \ \, M(x_{_{\! M}};y_{_{\! M}};z_{_{\! M}}) \xrightarrow{Chiếu \, vào \, Ox \atop (Giữ \, nguyên \, x)} \hspace{-0.5cm} M_1(x_{_{\! M}};0;0)$

$$\bullet \ \, \text{Diểm} \ \, M(x_{_{\!M}};y_{_{\!M}};z_{_{\!M}}) \xrightarrow{\text{\it Chiếu vào Oy}} M_2(0;y_{_{\!M}};0)$$

Chiếu điểm trên mặt phẳng tọa độ

$$\bullet \ \, \text{Diểm} \ \, M(x_{\scriptscriptstyle M};y_{\scriptscriptstyle M};z_{\scriptscriptstyle M}) \xrightarrow{\begin{array}{c} \text{Chiếu vào } Oxy\\ \hline (Giũ nguyên \, x,y) \end{array}} \hspace{-0.5cm} M_1(x_{\scriptscriptstyle M};y_{\scriptscriptstyle M};0)$$

$$\bullet \ \, \text{Điểm} \ \, M(x_M;y_M;z_M) \xrightarrow{Chiếu vào \ Oxz \ (Giữ nguyênx,z)} M_3(x_M;0;z_M)$$

Đối xứng điểm qua trục tọa độ

$$\hspace{0.3in} \blacksquare \hspace{0.3in} M(x_{M};y_{M};z_{M}) \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Ox} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M}) \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy}} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M}) \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} D\'{o}i \ xi'ng \ qua \ Oxy} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M})} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M};z_{M})} \xrightarrow{\hspace{0.3in} M(x_{M};y_{M};z_{M}$$

$$\qquad \qquad M(x_M;y_M;z_M) \xrightarrow{\ \ \, D \text{ fi xing qua Oy} \\ \ \ \, (G \text{iii nguyên y; d fi d du } x,z)}} M_2(-x_M;y_M;-z_M)$$

Đối xứng điểm qua mặt phẳng tọa độ

$$M(x_M; y_M; z_M) \xrightarrow{D \text{ foi xing qua Oxy}} M_1(x_M; y_M; -z_M)$$

$$\qquad \qquad M(x_M;y_M;z_M) \xrightarrow{\quad D \text{ foi wing qua Oxz} \quad } M_2(x_M;-y_M;z_M)$$

$$\bullet \quad M(x_M; y_M; z_M) \xrightarrow{\text{Dối xứng qua Oyz}} M_3(-x_M; y_M; z_M)$$

4. Tích có hướng của hai vectơ:

Thinh nghĩa: Cho $\vec{a} = (a_1, a_2, a_3)$, $\vec{b} = (b_1, b_2, b_3)$, tích có hướng của \vec{a} và \vec{b} là:

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}; \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}; \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = (a_2b_3 - a_3b_2; a_3b_1 - a_1b_3; a_1b_2 - a_2b_1).$$

Tính chất:

$$[\overset{
ightarrow}{a},\overset{
ightarrow}{b}]\perp\overset{
ightarrow}{a}$$

$$[\overset{
ightarrow}{a},\overset{
ightarrow}{b}]\perp\overset{
ightarrow}{b}$$

$$|\vec{a}, \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a}, \vec{b})$$

- Điều kiện **cùng phương** của hai vecto a & b là |a,b| = 0 với 0 = (0;0;0).
- Điều kiện đồng phẳng của ba vecto \vec{a}, \vec{b} và \vec{c} là [a, b].c = 0.
- Diện tích hình bình hành $ABCD: S_{GABCD} = \|\overrightarrow{AB}, \overrightarrow{AD}\|$.
- Diện tích tam giác ABC: $S_{\triangle ABC} = \frac{1}{2} \left[\overrightarrow{AB}, \overrightarrow{AC} \right]$.
- Thể tích khối hộp: $V_{ABCD.A'B'C'D'} = [\overrightarrow{AB}, \overrightarrow{AD}].\overrightarrow{AA'}].$
- Thể tích tứ diện: $V_{ABCD} = \frac{1}{\epsilon} | \overrightarrow{AB}, \overrightarrow{AC} | . \overrightarrow{AD} |$.

5. Phương trình mặt cầu:

$$\frac{\textbf{Dạng 1:}}{\overset{Mặt \, cầu \, (S) \, c\acute{o}}{\longrightarrow}} \begin{cases} I(a;b;c) \\ R = \sqrt{R^2} \end{cases}$$

Bài toán 5.1. Viết phương trình mặt cầu tâm Bài toán 5.2. Viết phương trình mặt cầu có

I và đi qua điểm M.

- **Bước 1:** Tính bán kính R = IM.
- Bước 2: Viết phương trình mặt cầu dạng 1.

đường kính AB.

- **Bước 1:** Tìm tâm I là trung điểm AB. Bán kính $R = \frac{AB}{2} = IA = IB.$
- Bước 2: Viết phương trình mặt cầu dạng 1.

6. Phương trình mặt phẳng:

Lưu ý: Vectơ pháp tuyến (VTPT) của mặt phẳng là vectơ khác $\vec{0}$ nằm trên đường thẳng vuông góc với mặt phẳng đó.

• Mặt phẳng $(P) / \text{qua } M(x_0; y_0; z_0)$ thì phương trình $(P) / \text{VTPT } \vec{n} = (a; b; c)$

$$(P): \boxed{a(x-x_0) + b(y-y_0) + c(z-z_0) = 0} \ .$$

• Ngược lại, một mặt phẳng bất kỳ đều có phương trình dạng ax+by+cz+d=0 , mặt phẳng này có $\overrightarrow{VTPT\ n}=(a;b;c)$.

 $\overrightarrow{\textbf{Pac biệt:}} \ \overrightarrow{Mp(Oyz)} : x = 0 \xrightarrow{VTPT} \overrightarrow{n_{(Oyz)}} = (1;0;0), \ mp(Oxz) : y = 0 \xrightarrow{VTPT} \overrightarrow{n_{(Oxz)}} = (0;1;0), \ mp(Oxy) : z = 0 \xrightarrow{VTPT} \overrightarrow{n_{(Oxy)}} = (0;0;1)$

Bài toán 6.1. Viết phương trình mặt phẳng trung trực của đoạn thẳng AB.

- **Bước 1:** Tìm trung điểm I của đoạn AB và tính tọa độ \overrightarrow{AB} .
- **Bước 2:** Phương trình mp(P) $\left\langle \begin{array}{c} \text{qua } I \\ \text{VTPT } \vec{n} = \overrightarrow{AB} \end{array} \right.$

<u>Bài toán 6.2.</u> Viết phương trình mặt phẳng đi qua ba điểm *A, B, C*.

- **Bước 1:** Tính tọa độ \overrightarrow{AB} , \overrightarrow{AC} và suy ra $\left[\overrightarrow{AB}, \overrightarrow{AC}\right]$.
- **Bước 2:** Phương trình mp(P) $\left\langle \begin{array}{c} \text{qua } A \\ \text{VTPT } \vec{n} = \left[\overrightarrow{AB}, \overrightarrow{AC} \right] \end{array} \right.$

Bài toán 6.3. Viết phương trình mặt phẳng qua M và chứa đường thẳng d với $M \not\in d$.

- **Bước 1:** Chọn điểm $A \in d$ và một VTCP $\overrightarrow{u_d}$. Tính $\left\lceil \overrightarrow{AM}, \overrightarrow{u_d} \right\rceil$.
- **Bước 2:** Phương trình mp(P) $\sqrt{\text{qua } M}$ $\vec{n} = \left[\overrightarrow{AM}, \overrightarrow{u_d}\right]$

Khoảng cách từ điểm đến mặt phẳng

Bài toán 6.4. Viết phương trình mặt phẳng cắt Ox, Oy, Oz lần lượt tại A(a;0;0), B(0;b;0), C(0;0;c) với a, b, $c \neq 0$.

 Phương trình mặt phẳng được viết theo đoạn chắn

Khoảng cách giữa hai mặt phẳng song song

• Cho
$$\begin{cases} M(x_0; y_0; z_0) \\ mp(P): ax + by + cz + d = 0 \end{cases}$$

• Khi đó:
$$d(M,(P)) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
.

Góc giữa hai mặt phẳng

- Cho hai mặt phẳng (α), (β) có phương trình: $(P): a_1x + b_1y + c_1z + d_1 = 0$ $Q(Q): a_2x + b_2y + c_2z + d_2 = 0$
- Góc giữa (P) & (Q) được tính:

$$\cos((P),(Q)) = \frac{|\overrightarrow{n_P}.\overrightarrow{n_Q}|}{|\overrightarrow{n_P}|.|\overrightarrow{n_Q}|} = \frac{|a_1a_2 + b_1b_2 + c_1c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2}.\sqrt{a_2^2 + b_2^2 + c_2^2}} | \bullet (P) \equiv (Q) \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}.$$

$$\bullet (P) \& (Q) \text{ cắt nhau} \Leftrightarrow a_1 : b_1 : c_1 \neq a_2 : b_2 : c_2.$$

Thú ý: $0^{\circ} \leq (\widehat{(P),(Q)}) \leq 90^{\circ}$.

- Cho hai mặt phẳng $\begin{cases} (P): ax + by + cz + d_1 = 0 \\ (Q): ax + by + cz + d_2 = 0 \end{cases}$
- Khi đó: $d(P), Q = \frac{|d_1 d_2|}{\sqrt{a^2 + b^2 + c^2}}$ với $d_1 \neq d_2$.

Vị trí tương đối giữa hai mặt phẳng

Cho hai mặt phẳng (α) , (β) có phương trình:

$$\begin{cases} (P): a_1x + b_1y + c_1z + d_1 = 0 \\ (Q): a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$$
. Ta có:

- $(P) \| (Q) \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \neq \frac{d_1}{d_2}.$

- $(P) \perp (Q) \Leftrightarrow a_1 a_2 + b_1 b_2 + c_1 c_2 = 0.$
- F Lưu ý: Các tỉ số trên có nghĩa khi mẫu khác 0.

Ví trị tương đối giữa mặt phẳng và mặt cầu

Cho mặt phẳng (P): ax + by + cz + d = 0 và mặt cầu (S) có tâm I và bán kính R.

- Trường hợp 1: $|d(I,(P))>R| \Leftrightarrow (P)$ và (S) không có điểm chung.
- **Trường hợp 2:** $|d(I,(P)) = R| \Leftrightarrow (P)$ và (S) có một điểm chung. Khi đó ta nói (P) tiếp xúc (S) hoặc (P) là **tiếp diện** của (S).

Ta có: $IM \perp (P)$ với M là tiếp điểm.

■ Trường hợp 3: $|d(I,(P)) < R| \Leftrightarrow (P)$ cắt (S) theo giao tuyến là một đường tròn.

Đường tròn giao tuyến có tâm H (là trung điểm AB), bán kính $r = \sqrt{R^2 - IH^2}$ với IH = d(I, (P)).

7. Phương trình đường thẳng:

Pường thẳng $d \left\langle \text{qua } A(x_A; y_A; z_A) \right\rangle$ VTCP $\vec{u} = (u_1; u_2; u_3)$

 $m{\sigma}$ Vecto chỉ phương (VTCP) của đường thẳng d là

• Phương trình tham số $d: | \begin{cases} y = y_A + u_2 t | \text{ với } t \text{ là} \end{cases}$

tham số.

Phương trình chính tắc

$$d: \left[\frac{x - x_A}{u_1} = \frac{y - y_A}{u_2} = \frac{z - z_A}{u_3} \right] \text{ với } u_1.u_2.u_3 \neq 0.$$

vecto khác 0, có giá trùng với d hoặc song song với d.

🔼 Lưu ý: Nếu có cặp vectơ khác 🛈 không cùng phương sao cho

$$\begin{cases} \vec{a} \perp d \\ \vec{b} \perp d \end{cases} \text{ thì } d \text{ có VTCP là: } \overrightarrow{u_d} = \left[\vec{a}, \vec{b} \right]$$

7.1. Ví trị tương đối giữa hai đường thẳng:

Xét vị trí tương đối của hai đường thẳng $d_{_1},d_{_2}$ với $d_{_1}igg |_{ ext{VTCP}}ar{u_{_1}}$, $d_{_2}igg |_{ ext{VTCP}}ar{u_{_2}}$

Bước I	Bước II	Kết luận
$lacktriangledown\left[\overrightarrow{u_1},\overrightarrow{u_2} ight]=ec{0}\longrightarrow ext{Hai đường thẳng}$	$\bullet \left[\overrightarrow{u_1}, \overrightarrow{MN}\right] = \overrightarrow{0}$	$\longrightarrow d_{_1} \equiv d_{_2}$
$d_{\scriptscriptstyle 1}, d_{\scriptscriptstyle 2}$ song song hoặc trùng nhau.	$\bullet \left[\overrightarrow{u_1}, \overrightarrow{MN}\right] \neq \overrightarrow{0}$	$\longrightarrow d_1 \parallel d_2$
$lacktriangledown$ $\left[\overrightarrow{u_1},\overrightarrow{u_2} ight] eq \overrightarrow{0} \longrightarrow$ Hai đường thẳng d_1,d_2		$\longrightarrow d_{\scriptscriptstyle 1}$ cắt $d_{\scriptscriptstyle 2}$
cắt nhau hoặc chéo nhau.	$\bullet \ [\overrightarrow{u_1}, \overrightarrow{u_2}].\overrightarrow{MN} \neq 0$	$\longrightarrow d_{_{\! 1}}\&d_{_{\! 2}}$ chéo nhau

7.2. Ví trị tương đối giữa đường thẳng và mặt phẳng:

 $|z=z_0^2+u_3^2t|$

Bước I:	Bước II:Giải PT (*), ta gặp 1 trong 3 trường hợp sau	Kết luận
	❖ PT (*) vô nghiệm	$\longrightarrow d \parallel (P)$
* Thay phương trình tham số d vào phương trình (P) , ta được PT (*): $a(x_0+u_1t)+b(y_0+u_2t)+c(z_0+u_3t)+d=0$	PT (*) có 1 nghiệm $ \begin{cases} x = x_0 \\ y = y_0 \\ z = z_0 \end{cases} $	$\longrightarrow d$ cắt (P) tại điểm có tọa độ $(x_0;y_0;z_0)$.
	❖ PT (*) có vô số nghiệm	$\longrightarrow d \subset (P)$

7.3. Khoảng cách từ điểm đến đường thẳng:

- ightharpoonup Cho điểm M và đường thẳng d (có phương trình tham số hoặc chính tắc).
- **Bước 1:** Chọn điểm $A \in d$ và một VTCP u_d .
- Bước 2: $d(M,d) = \frac{\left[\overrightarrow{u_d}, \overrightarrow{AM}\right]}{\left|\overrightarrow{u_d}\right|}$

7.4. Góc giữa hai đường thẳng:

- **°** Cho hai đường thẳng d_1, d_2 lần lượt có VTCP là $\overrightarrow{u_1}, \overrightarrow{u_2}$.
- Ta có: $\left|\cos\left(\widehat{d_1,d_2}\right) = \frac{|u_1.u_2|}{|u_1||u_2|}\right|$

7.5. Góc giữa đường thẳng và mặt phẳng:

- The Cho đường thẳng d có VTCP \vec{u} và mặt phẳng (P) có VTPT \vec{n} . \longrightarrow Ta có: $\sin(\vec{d}, (\vec{P}))$

8. Hình chiếu và điểm đối xứng:					
Bài toán		Phương pháp			
8.1. Tìm hình chiếu của điểm A trên mặt phẳng (P) .	số của d với V' \diamondsuit Gọi $H = d \cap$	* Gọi d là đường thẳng $\langle \text{qua } A \rangle$ Viết pt thamsố của d với VTCP của d cũng là VTPT của (P) .* Gọi $H = d \cap (P)$. Thay pt tham số của d vào ptmp (P) ta tìm được tọa độ H .			
8.2. Tìm điểm A' đối xứng với A qu (P) .	a ❖ Ta có H là t	❖ Ta có H là trung điểm AA' ⇒ $\begin{cases} x_{A'} = 2x_H - x_A \\ y_{A'} = 2y_H - y_A \\ z_{A'} = 2z_H - z_A \end{cases}$			
8.3. Tìm hình chiếu của điểm A trên đường thẳng d .	Cách I	Cách I* Gọi H (theo t) (dựa vào pt tham số của d).* $AH \perp d \Leftrightarrow \overrightarrow{AH}.\overrightarrow{u_d} = 0 \longrightarrow \text{Tìm được } t = \dots$			
	Cách II	Cách II \Leftrightarrow Gọi $(P) \langle \text{qua } A \\ (P) \perp d \rangle$ Viết pt $\text{mp}(P)$. \Leftrightarrow Gọi $H = d \cap (P)$. Thay pt tham số của d vào pt mp (P) ta tìm được tọa độ H .			
8.4. Tìm điểm A' đối xứng với A qu đường thẳng d .	a ❖ Ta có H là t	❖ Ta có H là trung điểm AA' ⇒ $\begin{cases} x_{A'} = 2x_H - x_A \\ y_{A'} = 2y_H - y_A \\ z_{A'} = 2z_H - z_A \end{cases}$			
8.5. Viết phương trình đường thẳng d' là hình chiếu của đường thẳng d trên mp (P) .	Trường hợp 1: d song song mp (P) .	Lập phương trình mp(Q) biết (Q) chứa d và (Q) \perp (P): (Q) qua điểm $A \in d$. (Q) có VTPT $\overrightarrow{n_Q} = [\overrightarrow{u_d}, \overrightarrow{n_P}]$. Lập phương trình d' là			
	Trường hợp 2: d cắt mp (P) tại một điểm.	giao tuyến hai mp (P) và (Q) : Chọn hai điểm A, B thuộc d' bằng cách thay $x = 0 \xrightarrow{Tim} y, z$ và thay $y = 0 \xrightarrow{Tim} x, z$ (đối với hệ hai pt $(P), (Q)$). Viết pt d qua A, B .			