MAT497 running notes

Jack Ceroni (Dated: Tuesday 10th September, 2024)

Contents

I.	Connections	1
	A. Basic definitions and local description	1
	B. A digression on parallel transport and holonomy	3
	C. Relationship to sheaves	3
II.	Results of Katz-Oda	3
III.	Monodromy basics	4
	A. The Schlesinger system	4
IV.	Introduction to the Riemann-Hilbert correspondence	4

I. Connections

The goal of this section is to review some background information on abstract connections, defined on Lie algebroids: a key ingredient in the Riemann-Hilbert correspondence.

A. Basic definitions and local description

We take the approach of defining abstract connections on Lie algebroids. The case of a connection on a vector bundle is a special case.

Definition I.1 (Lie algebroid). A vector bundle $\pi_A:A\to M$ over a smooth manifold M, equipped with a bracket $[\cdot,\cdot]$ on the sections $\Gamma(A)$ and an anchor map $\rho:A\to TM$. The anchor map is a vector bundle morphism, meaning that $\pi_A=\pi\circ\rho$. Moreover, the bracket must satisfy a Leibniz rule:

$$[X, fY] = \mathcal{L}_{\rho(X)}(f) \cdot Y + f[X, Y] \tag{1}$$

where $\mathcal{L}_{\rho(X)}$ is the Lie derivative with respect to the vector field $\rho(X) \in \mathfrak{X}(M)$.

Example I.1 (Tangent bundle). The most obvious example of a Lie algebroid is TM itself. The anchor is the identity map and the bracket is the standard Lie bracket between smooth vector fields $X, Y \in \mathfrak{X}(M)$. Indeed,

$$[X, fY] = \mathcal{L}_X(fY) = X(f) \cdot Y + f\mathcal{L}_X(Y) = X(f) \cdot Y + f[X, Y]$$
(2)

as required.

Definition I.2 (Connection). Let $A \to M$ be a Lie algebroid, let E be a vector bundle over M. An Econnection relative to A is an \mathbb{R} -bilinear map $\nabla : \Gamma(A) \times \Gamma(E) \to \Gamma(E)$, $(a, e) \mapsto \nabla_a e$ such that $\nabla_{fa} e = f \nabla_a e$ for all $f \in C^{\infty}(M)$, and

$$\nabla_a f e = \mathcal{L}_{\rho(a)}(f) \cdot e + f \nabla_a e \tag{3}$$

where ρ is the anchor of A. A connection is said to be flat if $\nabla_{[a,b]} = [\nabla_a, \nabla_b]$. Observe that fixing $a \in \Gamma(A)$, ∇_a is a linear map from $\Gamma(E)$ to itself satisfying the Leibniz rule of the above formula.

Example I.2. In the case that A = TM, we recover the definition of a connection on smooth manifold M.

To better contextualize a connection as a "derivative of a vector bundle", we can write down an explicit local form. For simplicity, we will assume that A = TM for the time being.

Remark I.1 (Local form of connection). Let M be a smooth manifold, let us consider first the case of the trivial bundle $E = M \times \mathbb{R}^n$. Any section $\sigma \in \Gamma(E) = \Gamma(M \times \mathbb{R}^n)$ will of course be of the form $\sigma : p \mapsto (f_1(p), \ldots, f_n(p)) = f_1(p)e_1 + \cdots + f_n(p)e_n$, for $f_j \in C^{\infty}(M)$. Pick some $X \in \mathfrak{X}(M)$. By linearity, we simply must determine $\nabla_X(f_j e_j)$ for each j. We have, by definition

$$\nabla_X(f_j e_j) = \mathcal{L}_X(f_j) \cdot e_j + f_j \nabla_X(e_j) = df_j(X) \cdot e_j + f_j \nabla_X(e_j) \tag{4}$$

Note that $\nabla_X(e_j) \in \Gamma(M \times \mathbb{R}^n)$ for each j. Thus, we let $\nabla_X(e_j)(p) = A_{j1}(p)e_1 + \cdots + A_{jn}(p)e_n$. We let A(p) be the matrix with entries $A_{jk}(p)$. It follows from this that we can write ∇_X , with a slight abuse of notation, in the form $\iota_X d + A_X$, where d is the exterior derivative, ι_X is the inner product relative to X, and A_X is an element of $\Gamma(\text{End}(E))$ over $C^{\infty}(M)$. Indeed, we have

$$\nabla_X(\sigma)(p) = \sum_{j=1}^n \nabla_X(f_j e_j)(p) = \sum_{j=1}^n df_j(X)(p)e_j + \sum_{j=1}^n \sum_{k=1}^n f_j(p)A_{jk}(p)e_k$$
 (5)

$$= (df_1(X), \dots, df_n(X))(p) + A(p) \cdot (f_1(p), \dots, f_n(p))$$
(6)

so this notation is justified.

Let us generalize to the case of a general vector bundle E. Let $(U_{\alpha}, \varphi_{\alpha})$ be the local trivialization of E, so $\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$ is a homeomorphism and the fibre maps are linear isomorphisms between vector spaces. Then if $\sigma \in \Gamma(E)$, the restriction $\varphi_{\alpha} \circ \sigma|_{U_{\alpha}} : U_{\alpha} \to U_{\alpha} \times \mathbb{R}^{n}$ is well-defined, and is a section of the trivial bundle $U_{\alpha} \times \mathbb{R}^{n}$ over open submanifold U_{α} , as

$$\operatorname{proj} \circ (\varphi_{\alpha} \circ \sigma|_{U_{\alpha}}) = \pi \circ \varphi_{\alpha}^{-1} \circ \varphi_{\alpha} \circ \sigma|_{U_{\alpha}} = \pi \circ \sigma|_{U_{\alpha}} = \operatorname{id}|_{U_{\alpha}}. \tag{7}$$

It is equally easy to show that if $\sigma \in \Gamma(U_{\alpha} \times \mathbb{R})$, then $\varphi_{\alpha}^{-1} \circ \sigma$ is in $\Gamma(\pi^{-1}(U_{\alpha}))$.

It is important for us to show first that $\nabla: \mathfrak{X}(M) \times \Gamma(E) \to \Gamma(E)$ is a local map. In particular, if σ and σ' are elements of $\Gamma(E)$ which agree on an open subset V of M, then $\nabla_X(\sigma)(p) = \nabla_X(\sigma')(p)$ for all $p \in V$. To prove this, note that for some $p \in V$, we can always take a coordinate ball W with closure contained in V around p, as $V \subset M$, a smooth manifold. We pick a smooth bump function $\chi: M \to \mathbb{R}$ which is 1 inside \overline{W} and vanishes outside V. Clearly, $\chi \sigma = \chi \sigma'$. We then have, from the Leibniz rule,

$$\mathcal{L}_X(\chi)(p) \cdot \sigma(p) + \nabla_X(\sigma)(p) = \nabla_X(\chi\sigma)(p) = \nabla_X(\chi\sigma')(p) = \mathcal{L}_X(\chi)(p) \cdot \sigma'(p) + \nabla_X(\sigma')(p) \tag{8}$$

which means that $\nabla_X(\sigma)(p) = \nabla_X(\sigma')(p)$ as desired. Moreover, suppose X and Y agree on some open neighbourhood V, we take W and χ the same as above, note that $\chi X = \chi Y$, and get

$$\chi(p)\nabla_X(\sigma)(p) = \nabla_{\chi X}(\sigma)(p) = \nabla_{\chi Y}(\sigma)(p) = \chi(p)\nabla_Y(\sigma)(p) \tag{9}$$

so that $\nabla_X(\sigma)(p) = \nabla_Y(\sigma)(p)$. It follows from these locality conditions that given the connection ∇ , we can consider open submanifold U and subbundle $\pi^{-1}(U)$, and conclude that the restricted connection $\nabla|_U : \mathfrak{X}(U) \times \Gamma(\pi^{-1}(U)) \to \Gamma(\pi^{-1}(U))$ given by extending $X \in \mathfrak{X}(U)$ and $\sigma \in \Gamma(\pi^{-1}(U))$ to vector field and section in M and $\Gamma(E)$ respectively and feeding to ∇ , then restricting to U, is well-defined. This map can easily be verified to be a valid connection on the submanifold. Moreover, given $\sigma \in \Gamma(E)$ and $X \in \mathfrak{X}(M)$, the locality results imply that

$$\nabla_X(\sigma)|_U = (\nabla|_U)_{X|_U}(\sigma|_U). \tag{10}$$

It follows from this that to understand the local behaviour of ∇ , we can look at $\nabla|_{U_{\alpha}}$ for each of the trivializations $(U_{\alpha}, \varphi_{\alpha})$. In particular, we will consider the maps $\varphi_{\alpha} \circ \nabla|_{U_{\alpha}} \circ (\mathrm{id} \times \varphi_{\alpha}^{-1}) : \mathfrak{X}(U_{\alpha}) \times \Gamma(U_{\alpha} \times \mathbb{R}^{n}) \to \Gamma(U_{\alpha} \times \mathbb{R}^{n})$,

where in this context, φ_{α}^{-1} is sending section $\sigma \in \Gamma(U_{\alpha} \times \mathbb{R}^{n})$ to $\varphi_{\alpha}^{-1} \circ \sigma \in \Gamma(\pi^{-1}(U_{\alpha}))$, and φ_{α} is doing the opposite. Our claim is that $\varphi_{\alpha} \circ \nabla|_{U_{\alpha}} \circ (\mathrm{id} \times \varphi_{\alpha}^{-1})$ is itself a connection on the trivial bundle $U_{\alpha} \times \mathbb{R}^{n}$. Note that φ_{α}^{-1} is a linear isomorphism when restricted to fibres. Therefore,

$$(\varphi_{\alpha} \circ \nabla|_{U_{\alpha}} \circ (\mathrm{id} \times \varphi_{\alpha}^{-1})(X + fY, \sigma) = \varphi_{\alpha} \circ (\nabla|_{U_{\alpha}})_{X + fY} \varphi_{\alpha}^{-1} \sigma \tag{11}$$

$$= \varphi_{\alpha} \circ \left[(\nabla |_{U_{\alpha}})_{X} \varphi_{\alpha}^{-1} \sigma + f(\nabla |_{U_{\alpha}})_{Y} \varphi_{\alpha}^{-1} \sigma \right]$$

$$\tag{12}$$

$$= f(\varphi_{\alpha} \circ \nabla|_{U_{\alpha}} \circ (\operatorname{id} \times \varphi_{\alpha}^{-1}))(Y, \sigma) + (\varphi_{\alpha} \circ \nabla|_{U_{\alpha}} \circ (\operatorname{id} \times \varphi_{\alpha}^{-1}))(X, \sigma) \quad (13)$$

Moreover, note that $(\varphi_{\alpha}^{-1}g\sigma)(p) = \varphi_{\alpha}^{-1}(p,g(p)\sigma(p)) = g(p)\varphi_{\alpha}^{-1}(p,\sigma(p))$, so $\varphi_{\alpha}^{-1}g\sigma = g\varphi_{\alpha}^{-1}\sigma$. It follows that

$$(\varphi_{\alpha} \circ \nabla|_{U_{\alpha}} \circ (\mathrm{id} \times \varphi_{\alpha}^{-1}))(X, g\sigma) = \varphi_{\alpha} \circ (\nabla|_{U_{\alpha}})_{X} g\varphi_{\alpha}^{-1} \sigma \tag{14}$$

$$= \varphi_{\alpha} \circ \left[\mathcal{L}_{X}(g) \varphi_{\alpha}^{-1} \sigma + g(\nabla|_{U_{\alpha}})_{X} \varphi^{-1} \sigma \right]$$
 (15)

$$= \mathcal{L}_X(g)\sigma + g(\varphi_\alpha \circ (\nabla|_{U_\alpha}) \circ (\mathrm{id} \times \varphi_\alpha^{-1}))(X, \sigma)$$
(16)

so we have the properties needed for a connection.

It follows from the previous argument that $\varphi_{\alpha} \circ \nabla|_{U_{\alpha}} \circ (\operatorname{id} \times \varphi_{\alpha}^{-1})$ can be written in the form $\iota_X d + A_{\alpha,X}$. In other words, up to linear isomorphisms of $\mathfrak{X}(U_{\alpha}) \times \Gamma(U_{\alpha} \times \mathbb{R}^n)$ and $\Gamma(U_{\alpha} \times \mathbb{R}^n)$, which are easy to characterize, we can describe the local form of the connection.

To find the matrix $A_{\alpha,X}$, let $\varphi_{\alpha} = (x_{\alpha}^{1}, \dots, x_{\alpha}^{n})$ be the coordinates associated to the chart. Let e_{1}, \dots, e_{n} be the standard global basis for the trivial bundle. Note that

$$(\varphi_{\alpha} \circ \nabla|_{U_{\alpha}} \circ (\mathrm{id} \times \varphi_{\alpha}^{-1})) \left(\frac{d}{dx_{\alpha}^{i}}, x_{\alpha}^{j} e_{k}\right) = dx_{\alpha}^{j} \left(\frac{d}{dx_{\alpha}^{i}}\right) e_{k} + x_{\beta}^{j} A_{\alpha, X} e_{k} = \delta_{ij} + x_{\beta}^{j} A_{\alpha, X} e_{k}. \tag{17}$$

Thus, we can recover the linear transformation $A_{\alpha,X}$ from this data.

B. A digression on parallel transport and holonomy

C. Relationship to sheaves

In many standard formulations of the Riemann-Hilbert correspondence, connections are described as maps of sheaves rather than sections of vector bundles.

II. Results of Katz-Oda

I will begin these notes by discussing some of the prior art. We begin by considering the ODE

$$\frac{dY}{dz} = A(z)Y\tag{18}$$

where A(z) is a matrix whose entries are rational functions of z relative to some algebraic number field K (a field extension of $\mathbb Q$ such that $[K:\mathbb Q]$ is finite). Some entry of A(z) will be of the form

$$A_{ij}(z) = \frac{A_{ij}^{(n)} z^n + \dots + A_{ij}^{(0)}}{B_{ij}^{(m)} z^m + \dots + B_{ij}^{(0)}}$$
(19)

which of course may be reduced modulo some prime $p \in K$ for almost all primes (namely those which don't divide any of the coefficients $B_{ij}^{(k)}$). The result will be a differential equation over $\mathbb{F}_q[z]$ for some finite field \mathbb{F}_q . As a particular example, suppose $a \in \mathbb{Z} \subset \mathbb{Q}$ and we have the ODE

$$\frac{dy}{dz} = \frac{1}{az}y\tag{20}$$

We can reduce by $p \nmid a$. When we do such a reduction, the equation admits solutions $y = z^b$ for any b such that $ab \equiv 1 \mod p$, clearly.

There is a result concerning ODEs of this form, formulated by Katz and Oda, which we can restate here

Theorem II.1. The ODE of Eq. (18) is an algebraic differential equation, meaning that its solution is an algebraic function. Moreover, there exists sufficiently large N such that for almost all primes p,

$$\left(\frac{d}{dz} - A(z)\right)^{Np} \equiv 0 \mod p \tag{21}$$

III. Monodromy basics

The goal of this section is to exposit the idea of monodromy, also in preparation for a discussion of the Riemann-Hilbert correspondence

A. The Schlesinger system

IV. Introduction to the Riemann-Hilbert correspondence

Goal is to discuss, at a basic level, the Riemann-Hilbert correspondence for vector bundles.