Interacting Bialgebras are Frobenius

Fabio Zanasi

Joint work with Filippo Bonchi and Paweł Sobociński

The theory IB

\mathbb{Z}_2 -subspace Semantics

\mathbb{Z}_2 -subspace Semantics

Semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$

Domain of interpretation: the SMC SV of \mathbb{Z}_2 -sub-vector spaces

- o objects: natural numbers
- \circ SV[n,m] = subspaces of $\mathbb{Z}_2^n \times \mathbb{Z}_2^m$
- o relational composition
- o monoidal product: direct sum

\mathbb{Z}_2 -subspace Semantics

Semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$

Domain of interpretation: the SMC SV of \mathbb{Z}_2 -sub-vector spaces

- o objects: natural numbers
- $\mathbb{SV}[n,m]$ = subspaces of $\mathbb{Z}_2^n \times \mathbb{Z}_2^m$
- o relational composition
- o monoidal product: direct sum

Characterization result

 $\mathbb{IB} \cong \mathbb{SV}$ and $\mathbb{S}_{\mathbb{IB}} \colon \mathbb{IB} \to \mathbb{SV}$ is full and faithful.

PROPs

- PROPs encode algebraic theories in a symmetric monoidal setting.

A PROP is a SMC with

- \circ objects: the natural numbers $\circ n \otimes m = n + m$

 \circ sym_n = permutations of \overline{n}

Example: the PROP M of Commutative Monoids

Arrows are freely generated by operations , and equations

Observations

- $\circ \mathbb{M} \cong \mathbb{F}$ (the PROP of functions)
- \circ Commutative comonoids: $\mathbb{C} = \mathbb{M}^{op} \cong \mathbb{F}^{op}$

Composing PROPs

- Idea: a ring = an abelian group interacting with a monoid

Build a PROP as the composite of two sub-PROPs

PROPs are monads (in a certain bicategory)

PROP composition = Distributive law between monads

S.Lack - Composing PROPs (2004)

A distributive law $\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$ between (white) \mathbb{M} and (black) \mathbb{C}

 $\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$

A distributive law $\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$ between (white) \mathbb{M} and (black) \mathbb{C}

$$\lambda \colon \mathbb{F}; \mathbb{F}^{op} \Rightarrow \mathbb{F}^{op}; \mathbb{F}$$

A distributive law $\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$ between (white) \mathbb{M} and (black) \mathbb{C}

 $\lambda \colon \mathsf{Cospan}(\mathbb{F}) \Rightarrow \mathsf{Span}(\mathbb{F})$

A distributive law λ : \mathbb{M} ; $\mathbb{C} \Rightarrow \mathbb{C}$; \mathbb{M} between (white) \mathbb{M} and (black) \mathbb{C}

$$\lambda \colon \mathsf{Cospan}(\mathbb{F}) \Rightarrow \mathsf{Span}(\mathbb{F})$$

A distributive law λ : \mathbb{M} ; $\mathbb{C} \Rightarrow \mathbb{C}$; \mathbb{M} between (white) \mathbb{M} and (black) \mathbb{C}

$$\lambda \colon \mathsf{Cospan}(\mathbb{F}) \Rightarrow \mathsf{Span}(\mathbb{F})$$

A distributive law λ : \mathbb{M} ; $\mathbb{C} \Rightarrow \mathbb{C}$; \mathbb{M} between (white) \mathbb{M} and (black) \mathbb{C}

$$\lambda \colon \mathsf{Cospan}(\mathbb{F}) \Rightarrow \mathsf{Span}(\mathbb{F})$$

A distributive law λ : $\mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$ between (white) \mathbb{M} and (black) \mathbb{C}

$$\lambda \colon \mathsf{Cospan}(\mathbb{F}) \Rightarrow \mathsf{Span}(\mathbb{F})$$

A distributive law λ : \mathbb{M} ; $\mathbb{C} \Rightarrow \mathbb{C}$; \mathbb{M} between (white) \mathbb{M} and (black) \mathbb{C}

$$\lambda \colon \mathsf{Cospan}(\mathbb{F}) \Rightarrow \mathsf{Span}(\mathbb{F})$$

defined by pullback in \mathbb{F} :

Characterization Result (Lack)

- $\circ \mathbb{B} = \mathbb{C}; \mathbb{M}$
- \circ complete for semantics Span(\mathbb{F})

A distributive law λ : \mathbb{M} ; $\mathbb{C} \Rightarrow \mathbb{C}$; \mathbb{M} between (white) \mathbb{M} and (black) \mathbb{C}

$$\lambda \colon \mathsf{Cospan}(\mathbb{F}) \Rightarrow \mathsf{Span}(\mathbb{F})$$

defined by pullback in \mathbb{F} :

	BW Bialgebra	
D-		
0-	• = Id ₀	
6	= 0	
<u></u>		
		_

Characterization Result (Lack)

- $\circ \mathbb{B} = \mathbb{C}; \mathbb{M}$
- \circ complete for semantics Span(\mathbb{F})
- ∘ factorisation for **B**-nets

AB = BW Bialgebra + Antiseparability axiom

AB = BW Bialgebra + Antiseparability axiom

There is a 1-1 correspondence between AB-nets and \mathbb{Z}_2 -matrices.

AB = BW Bialgebra + Antiseparability axiom

There is a 1-1 correspondence between AB-nets and \mathbb{Z}_2 -matrices.

AB = BW Bialgebra + Antiseparability axiom

There is a 1-1 correspondence between AB-nets and \mathbb{Z}_2 -matrices.

AB = BW Bialgebra + Antiseparability axiom

There is a 1-1 correspondence between AB-nets and \mathbb{Z}_2 -matrices.

AB = BW Bialgebra + Antiseparability axiom

There is a 1-1 correspondence between AB-nets and \mathbb{Z}_2 -matrices.

$$\mapsto \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

AB = BW Bialgebra + Antiseparability axiom

There is a 1-1 correspondence between AB-nets and \mathbb{Z}_2 -matrices.

Composing \mathbb{AB} and \mathbb{AB}^{op}

- \circ AB \sim interaction of black \mathbb{C} and white M
- $\mathbb{AB}^{op} \sim \text{interaction of white } \mathbb{C} \text{ and black } \mathbb{M}$
- Composing \mathbb{AB} and \mathbb{AB}^{op} : we make the two white and the two black (co)monoids interact

Composing \mathbb{AB} and \mathbb{AB}^{op}

Construct the PROP \mathbb{AB}^{op} ; $\mathbb{AB} = \text{Span}(\mathbb{AB})$

Composing AB and AB^{op}

Construct the PROP \mathbb{AB}^{op} ; $\mathbb{AB} = \text{Span}(\mathbb{AB})$

Calculate (in Mat \mathbb{Z}_2) the equations of Span(AB) out of pullbacks:

Comparing Span(\mathbb{AB}) and \mathbb{IB}

Comparing Span(\mathbb{AB}) and \mathbb{IB}

Comparing Span(\mathbb{AB}) and \mathbb{IB}

 $Span(AB) = IB minus White Separability = IB^{-w}$

Composing \mathbb{AB} and \mathbb{AB}^{op}

Cospan(AB) is the "photographic negative" of Span(AB)

Comparing Cospan(\mathbb{AB}) and \mathbb{IB}

 $Cospan(AB) = IB minus Black Separability = IB^{-b}$

- \mathbb{IB} and \mathbb{SV} are pushout objects.

- Unique arrow $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

AB^{op}

wc bm
bc wm
c become

Factorisation of \mathbb{IB}^{-b}

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

Future Work

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

Future Work

Cubes are everywhere.

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

Future Work

Cubes are everywhere.

• Explore the syntactic PROP of Mat \mathbb{R} , where \mathbb{R} is a field/ring.

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

Future Work

o Cubes are everywhere.

- \circ Explore the syntactic PROP of Mat \mathbb{R} , where \mathbb{R} is a field/ring.
- Other directions: full ZX-calculus, Algebra of stateless connectors, Petri Calculus, Stream Calculus.