Question 1: shorties

a. If A is non-regular, then \bar{A} is also non-regular

Because we know that regular language is closed under complement (if X is regular then \bar{X} is also regular).

Then if \bar{A} is regular, then complement of \bar{A} , which is just A, will also be regular. This is a contradiction thus \bar{A} is non-regular

b. If A and B are Non-regular. $(A \cup B)$ could still be regular.

Example: Suppose A is non regular and $B = \bar{A}$. Then B is non-regular (as shown in part a) and $(A \cup B) = \Sigma^*$ will be regular.

c. $N=(Q,\Sigma,\Delta,S,F)$ is an NFA and $N'=(Q,\Sigma,\Delta,S,Q\backslash F),$ L(N') is **not** the complement of L(N)

Suppose $s \in \Sigma^*$ and it end up in a set of states $\{q_1, q_2 | q_1 \in Q \setminus F, q_2 \in Q\}$. Then is accepted by both N and N'. $(s \in L(N))$ and $s \in L(N')$. $L(N) \cap L(N') \neq \emptyset$ so they are not complement of each other.

d.

Question 2: Finite Automata

```
mix(A,B) = \{mix(v,w)|v \in A, w \in B, |v| = |w|\}
Suppose A and B are regular languages, then we have M_A = (Q_A, \Sigma, \delta_A, s_A, F_A)
M_B = (Q_B, \Sigma, \delta_B, s_B, F_B)
where L(M_A) = A and L(M_B) = B
To show that mix(A,B) is also regular, we construct a NFA M = (Q, \Sigma, \delta, s, F)
such that L(M) = mix(A,B)
```

$$Q = Q_A \times Q_B \times \{1, 0\}$$

$$\delta((a, b, 0), x) = (\delta_A(a, x), b, 1)$$

$$\delta((a, b, 1), x) = (a, \delta_B(b, x), 1)$$

$$s = (s_A, s_B, 0)$$

$$F = (f_a, f_b, 0) \quad \text{for } f_a \in F_A, f_b \in F_B$$

The state of M is a 3-tuple with the first element from Q_A , second element from Q_B and third element from $\{0,1\}$ indicating whether next character is from A or from B. In each transition, the third element alternate between 0 and 1, and while it equals to 0 we apply transition Q_A to first element, while it equals to 1 we apply transition Q_B to second element.

A string is accepted if first two elements are from Accepted state of A and B respectively. And third element is 0 indicating that the element if of even length.

Question 3: Machines to Expressions

Add a super start state and super accepted state

eliminate state \mathbf{q}

eliminate state s

eliminate state p

Thus $R = (ba*)((ba*b) \cup (ab*a))*$

Question 4: Non-Regular

Let A be the set of all odd-length strings over {a, b} whose middle character is a. Assume A is regular: then pumping lemma should be true.

```
For any p>0, we pick w=b^paa^p we then write w=xyz where |y|>0 and |xy|<=p Then y must be a string of b's (y=b^k,\,p>=k>1) If we pump y twice, we have w'=b^{p+k}aa^p. If k is odd, then w' is of even length, so it is not in A. If k is even, the middle character of w' should be (p+\frac{k}{2}+1)-th element character which must be a b. So it is not in A. It contradicts to Pumping Lemma. Thus our assumption that A regular is false.
```

Question 5: CFGs

 $S \to aSb|bSa|aAb|bAa$ $A \to a|b|aa|bb|aAa|bAb|aSa|bSb$

Explanation: A non-palindrome string must be asymmetric from center of the string. In my CFG, A will add symmetric part and S will add asymmetric part. Since S can't get to any terminals, we must have a at least one derivation from S to something, which means there will be some asymmetric part in the string and the string is non-palindrome