Automated Epileptic Seizure Detection Using AI and Electroencephalogram Signal Analysis

Mr. Abdul Haq Roll No: 211370 Supervised by Dr. Muhammad Wasim

September 13, 2025

Abstract

Epileptic seizures affect approximately 50 million people worldwide, posing significant health risks due to unpredictable onset. Traditional EEG analysis is slow and error-prone, particularly with complex spatial-temporal patterns and a 56.1% non-seizure/43.9% seizure imbalance. This report presents an automated detection system using a hybrid 1D CNN-LSTM model, trained on the Siena Scalp EEG dataset (19 channels, 128 hours). Preprocessing involves 4-second segments (1024 samples at 256 Hz) with 1-50 Hz filtering and normalization. The model achieves 85% test accuracy, 88% recall, and 0.84 F1-score, validated on 69,755 segments. Results highlight real-time potential for clinical applications.

Introduction

Epilepsy affects 50 million globally, with seizures risking Sudden Unexpected Death in Epilepsy (SUDEP). Manual EEG analysis is inadequate for real-time monitoring due to complexity and imbalance, necessitating AI solutions. This report details a CNN-LSTM approach to enhance detection accuracy.

Methodology

2.1 Data Preprocessing

EEG signals are segmented into 4-second windows (1024 samples at 256 Hz) using $extract_eeg_segments.py$, filtered(1-50Hz)withscipy.signal, and normalized to [0,1].

2.2 Model Architecture

A 1D CNN (32/64 filters, kernel 7/5) extracts spatial-temporal features, followed by an LSTM (hidden size 32) for temporal modeling. Training in train.py uses 50 epochs, batch size 64, and weighted loss.

Results

The model achieves 85% test accuracy, 88% recall, and 0.84 F1-score on $10{,}463$ test segments, with a confusion matrix showing approximately 6873 true positives and 4543 true negatives.

Discussion

The CNN-LSTM outperforms manual analysis, addressing imbalance effectively. Limitations include 4-second window constraints; future work may explore 10-second segments or multiclass detection.

Conclusion

This project demonstrates a robust seizure detection system, offering a foundation for real-time monitoring and clinical integration.