

第九章 EM期望极大算法

EM算法的导出

- 为什么EM算法能近似实现对观测数据的极大似然估计?
- 极大化(不完全数据)Y关于参数Θ的极大似然函数:

$$L(\theta) = \log P(Y | \theta) = \log \sum_{Z} P(Y, Z | \theta)$$
$$= \log \left(\sum_{Z} P(Y | Z, \theta) P(Z | \theta) \right)$$

- 难点:有未观测数据,包含和的对数。
- EM通过迭代逐步近似极大化 $L(\Theta)$,希望 $L(\theta) > L(\theta^{(i)})$

EM算法的导出 log ∑ λ,ν, ≥ ∑ λ, log ν,

• 考虑二者的差:

$$L(\theta) - L(\theta^{(i)}) = \log \left(\sum_{Z} P(Y \mid Z, \theta) P(Z \mid \theta) \right) - \log P(Y \mid \theta^{(i)})$$

• Jason不等式:

$$L(\theta) - L(\theta^{(i)}) = \log \left[\sum_{Z} P(Y|Z,\theta^{(i)}) \frac{P(Y|Z,\theta)P(Z|\theta)}{P(Y|Z,\theta^{(i)})} \right] - \log P(Y|\theta^{(i)})$$

$$\geq \sum_{Z} P(Z|Y,\theta^{(i)}) \log \frac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta^{(i)})} - \log P(Y|\theta^{(i)})$$

$$= \sum_{Z} P(Z|Y,\theta^{(i)}) \log \frac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta^{(i)})P(Y|\theta^{(i)})}$$

EM算法的导出

$$\Rightarrow B(\theta, \theta^{(i)}) \triangleq L(\theta^{(i)}) + \sum_{Z} P(Z \mid Y, \theta^{(i)}) \log \frac{P(Y \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid Y, \theta^{(i)}) P(Y \mid \theta^{(i)})}$$

• 则:
$$L(\theta) \geq B(\theta, \theta^{(i)})$$

$$L(\boldsymbol{\theta}^{(i)}) = B(\boldsymbol{\theta}^{(i)}, \boldsymbol{\theta}^{(i)})$$

任何可以使 $B(\theta, \theta^{(i)})$ 增大的 θ , 也可以使 $L(\theta)$ 增大

• 选择:
$$\theta^{(i+1)} = \arg \max_{\theta} B(\theta, \theta^{(i)})$$

EM算法的导出

• 省去和Θ无关的项:

$$\theta^{(i+1)} = \arg \max_{\theta} \left(L(\theta^{(i)}) + \sum_{Z} P(Z \mid Y, \theta^{(i)}) \log \frac{P(Y \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid Y, \theta^{(i)}) P(Y \mid \theta^{(i)})} \right)$$

$$= \arg \max_{\theta} \left(\sum_{Z} P(Z \mid Y, \theta^{(i)}) \log(P(Y \mid Z, \theta) P(Z \mid \theta)) \right)$$

$$= \arg \max_{\theta} \left(\sum_{Z} P(Z \mid Y, \theta^{(i)}) \log P(Y, Z \mid \theta) \right)$$

$$= \arg \max_{\theta} Q(\theta, \theta^{(i)})$$

EM算法的解释

L(Θ)开始

EM方法

输入:观测变量数据Y,隐变量数据Z, 联合分布P(Y,Z|Θ)

条件分布P(Z|Y,Θ)

输出:模型参数Θ

- (1) 选择参数的初值 $\theta^{(0)}$, 开始迭代;
- (2) E步: 记 $\theta^{(i)}$ 为第i次迭代参数 θ 的估计值,

在第i+1次迭代的E步, 计算

$$Q(\theta, \theta^{(i)}) = E_Z[\log P(Y, Z \mid \theta) \mid Y, \theta^{(i)}]$$
$$= \sum_Z \log P(Y, Z \mid \theta) P(Z \mid Y, \theta^{(i)})$$

给定观测数据Y和当前参数估计Θ

EM方法

(3) M 步: 求使 $Q(\theta, \theta^{(i)})$ 极大化的 θ ,确定第 i+1 次迭代的参数的估计值 $\theta^{(i+1)}$

$$\theta^{(i+1)} = \arg \max_{\theta} Q(\theta, \theta^{(i)})$$

Q函数定义:

完全数据的对数似然函数logP(Y,Z|Θ)关于在给定观测数据Y和当前函数Θ⁽ⁱ⁾下对未观测数据Z的条件概率分布

 $P(Z|Y, \Theta^{(i)})$,的期望称为Q函数,即: $Q(\theta, \theta^{(i)}) = E_z[\log P(Y, Z|\theta)|Y, \theta^{(i)}]$

EM方法

- 算法说明:
- 步骤3,完成一次迭代:Θ⁽ⁱ⁾到Θ⁽ⁱ⁺¹⁾,将证明每次迭代使似然函数增大或达到局部最大值。
- 步骤4, 停止迭代的条件

$$\|\boldsymbol{\theta}^{(i+1)} - \boldsymbol{\theta}^{(i)}\| < \varepsilon_1$$
 $\exists \mathbf{Q}(\boldsymbol{\theta}^{(i+1)}, \boldsymbol{\theta}^{(i)}) - \boldsymbol{Q}(\boldsymbol{\theta}^{(i)}, \boldsymbol{\theta}^{(i)}) \| < \varepsilon_2$

EM在非监督学习中的应用

• 生成模型由联合概率分布P(X,Y)表示,可以认为非监督学习训练数据是联合概率分布产生的数据,X为观测数据,Y为未观测数据。

- 高斯混合模型:
- 概率分布模型; $P(y|\theta) = \sum_{k=1}^{k} \alpha_k \phi(y|\theta_k)$
- 系数: $\alpha_k \ge 0$, $\sum_{k=1}^K \alpha_k = 1$
- 高斯分布密度: $\phi(y|\theta_k)$ $\theta_k = (\mu_k, \sigma_k^2)$
- 第K个分模型: $\phi(y|\theta_k) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{(y-\mu_k)^2}{2\sigma_k^2}\right)$ 可任意高斯模型

高斯混合模型参数估计的EM算法

• 假设观测数据y₁,y₂,....y_N由高斯混合模型生成:

$$P(y \mid \theta) = \sum_{k=1}^{K} \alpha_k \phi(y \mid \theta_k)$$

$$\theta = (\alpha_1, \alpha_2, \dots, \alpha_K; \theta_1, \theta_2, \dots, \theta_K)$$

- 用EM算法估计参数;
- 1、明确隐变量, 写出完全数据的对数似然函数:
 - 设想观测数据yi是依概率 a_k 选择第k个高斯分模型 $\phi(y|\theta_k)$ 生成,隐变量 (1 第 i 个观测来自第 k 个分模型

$$\gamma_{jk} = \begin{cases} 1, & \text{第 } j \land \text{观测来自第 } k \land \text{分模型} \\ 0, & \text{否则} \end{cases}$$

• 1、明确隐变量,写出完全数据的对数似然函数:

• 完全数据:
$$(y_i, \gamma_{i1}, \gamma_{i2}, \cdots, \gamma_{iK})$$
, $j = 1, 2, \cdots, N$
• 似然函数: $P(y, \gamma | \theta) = \prod_{j=1}^{N} P(y_j, \gamma_{j1}, \gamma_{j2}, \cdots, \gamma_{jK} | \theta)$

$$= \prod_{k=1}^{K} \prod_{j=1}^{N} \left[\alpha_{k} \phi(y_{j} \mid \theta_{k}) \right]^{\gamma_{jk}}$$

$$= \prod_{k=1}^{K} \gamma_{jk} \qquad = \prod_{k=1}^{K} \alpha_{k}^{n_{k}} \prod_{j=1}^{N} \left[\phi(y_{j} \mid \theta_{k}) \right]^{\gamma_{jk}}$$

$$= \prod_{k=1}^{K} \alpha_{k}^{n_{k}} \prod_{j=1}^{N} \left[\frac{1}{\sqrt{2\pi}\sigma_{k}} \exp\left(-\frac{(y_{j} - \mu_{k})^{2}}{2\sigma_{k}^{2}}\right) \right]^{\gamma_{jk}}$$

• 1、明确隐变量,写出完全数据的对数似然函数:

$$\log P(y, \gamma | \theta) = \sum_{k=1}^{K} n_k \log \alpha_k + \sum_{j=1}^{N} \gamma_{jk} \left[\log \left(\frac{1}{\sqrt{2\pi}} \right) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2 \right]$$

• 2、EM算法的E步,确定Q函数

$$Q(\theta, \theta^{(i)}) = E[\log P(y, \gamma | \theta) | y, \theta^{(i)}]$$

$$= E\left\{ \sum_{k=1}^{K} n_k \log \alpha_k + \sum_{j=1}^{N} \gamma_{jk} \left[\log \left(\frac{1}{\sqrt{2\pi}} \right) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2 \right] \right\}$$

$$= \sum_{k=1}^{K} \left\{ \sum_{j=1}^{N} (E\gamma_{jk}) \log \alpha_k + \sum_{j=1}^{N} (E\gamma_{jk}) \left[\log \left(\frac{1}{\sqrt{2\pi}} \right) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2 \right] \right\}$$

需要计算 $E(\gamma_{jk}|y,\theta)$, 记为 $\hat{\gamma}_{jk}$

• 第j个观测数据来自第k个分模型的概率,称为分模型k对观测数据y_i的响应度。

• 2、EM算法的E步,确定Q函数

$$\hat{\gamma}_{jk} = E(\gamma_{jk} \mid y, \theta) = P(\gamma_{jk} = 1 \mid y, \theta)$$

$$= \frac{P(\gamma_{jk} = 1, y_j \mid \theta)}{\sum_{k=1}^{K} P(\gamma_{jk} = 1, y_j \mid \theta)}$$

$$= \frac{P(y_j \mid \gamma_{jk} = 1, \theta) P(\gamma_{jk} = 1 \mid \theta)}{\sum_{k=1}^{K} P(y_j \mid \gamma_{jk} = 1, \theta) P(\gamma_{jk} = 1 \mid \theta)}$$

$$= \frac{\alpha_k \phi(y_j \mid \theta_k)}{\sum_{k=1}^{K} \alpha_k \phi(y_j \mid \theta_k)}, \quad j = 1, 2, \dots, N; \quad k = 1, 2, \dots, K$$

• 2、EM算法的E步,确定Q函数

将
$$\hat{\gamma}_{jk} = E \gamma_{jk}$$
 及 $n_k = \sum_{j=1}^N E \gamma_{jk}$ 代入

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) = \sum_{k=1}^{K} n_k \log \alpha_k + \sum_{k=1}^{N} \hat{\gamma}_{jk} \left[\log \left(\frac{1}{\sqrt{2\pi}} \right) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2 \right]$$

- 3、确定EM算法的M步:
- 采用求导的方法:

$$\hat{\mu}_{k} = \frac{\sum_{j=1}^{N} \hat{\gamma}_{jk} y_{j}}{\sum_{j=1}^{N} \hat{\gamma}_{jk}} \qquad \hat{\sigma}_{k}^{2} = \frac{\sum_{j=1}^{N} \hat{\gamma}_{jk} (y_{j} - \mu_{k})^{2}}{\sum_{j=1}^{N} \hat{\gamma}_{jk}} \qquad \hat{\alpha}_{k} = \frac{n_{k}}{N} = \frac{\sum_{j=1}^{N} \hat{\gamma}_{jk}}{N}$$

高斯混合模型参数估计的EM算法

- 输入:观测数据 $y_1,y_2,...y_N$,高斯混合模型
- 输出:高斯混合模型参数
- 1、设定初始值开始迭代
- 2、E步,响应度计算

$$\hat{\gamma}_{jk} = \frac{\alpha_k \phi(y_j | \theta_k)}{\sum_{k=1}^K \alpha_k \phi(y_j | \theta_k)}$$

高斯混合模型参数估计的EM算法

- 输入:观测数据y₁,y₂,...y_N,高斯混合模型
- 输出:高斯混合模型参数
- 3、M步, 计算新一轮迭代的模型参数:

$$\hat{\mu}_{k} = \frac{\sum_{j=1}^{N} \hat{\gamma}_{jk} y_{j}}{\sum_{j=1}^{N} \hat{\gamma}_{jk}} \qquad \hat{\sigma}_{k}^{2} = \frac{\sum_{j=1}^{N} \hat{\gamma}_{jk} (y_{j} - \mu_{k})^{2}}{\sum_{j=1}^{N} \hat{\gamma}_{jk}} \qquad \hat{\alpha}_{k} = \frac{\sum_{j=1}^{N} \hat{\gamma}_{jk}}{N}$$

• 4、重复2, 3步直到收敛

• Q & A

