N.º de aluno: _____ Nome:

Observações:

Responda às questões que se seguem na folha do enunciado da prova.

Submeta no moodle um ficheiro com os cálculos que efetue no scilato.

١	Questão	1	2	3	4	5	6	TOTAL
	Cotação	0,5x4+0,9x2	0,8x3	0,8x3+0,8+1,2	1,2	1,8	1,8+1,4+0,8x4	20

- Considere o conjunto A = {a, c, {∅}, {b}, {a, c}}, com a, b, c ∈ N.
 Indique, se cada uma das seguintes afirmações é verdadeira ou falsa. No caso de ser falsa, corrija a afirmação de forma a torná-la verdadeira.
 - **a)** $\{\emptyset, \{a, c\}\} \subseteq A$

b) $\{\{\emptyset\}\}\in \mathcal{P}(A)$

c) $\{a, \{b\}\}\subseteq \mathcal{P}(A)$

d) $\#\mathcal{P}(\mathcal{P}(A)) = 2^8$

- e) A função $f: A \to \mathcal{P}(A)$ tal que $f(x) = \{x\}$ é injetiva e sobrejetiva.
- f) A relação $R ext{ em } \mathcal{P}(A)$ definida por XRY se e só se $X \subseteq Y$ é uma relação de ordem parcial.

2. Considere o conjunto universo $U = \{x \in \mathbb{Z}_0^+ : x^2 < 51\}$, os seus subconjuntos:

 $A = \{x \in U : 1 \le x < 5\}, B = \{x \in U : x \in A \text{ divisor de } 4\} \in C = \{x \in U : [x + 0.2] \ge 7\},$

Complete as seguintes afirmações de modo a obter proposições verdadeiras.

- a) Seja $f: \mathbb{Z} \to \mathbb{Z}$ tal que $f(x) = \frac{x}{2}$ então $f^{-1}(B) = \frac{1}{2}$
- **b)** B $\times \overline{AUC}$ = ______
- c) $(A \cap B) \oplus \bar{C}$ =______

	ESCOLA Superior	Tipo de Prova Teste 1	Ano letivo 2017/2018	Data 11-04-2017
P.PORTO		^{Curso} Licenciatura em Engenharia Informática		Hora 13:10
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____ Nome: ____

3. Considere as seguintes relações binárias definidas sobre
$$A = \{1,2,3,4\}$$
: $R = \{(2,2),(1,4),(4,2)\}$ e $S = \{(1,1),(2,2),(3,3),(3,1),(1,3),(4,4)\}$.

- a) Determine, se possível:
 - i) O contradomínio de R

ii)
$$(R^{-1} \cap S) \circ S$$

iii) simétrico(R)

b) Diga justificando se *R* é uma relação reflexiva e transitiva.

c) Diga justificando se S é uma relação de equivalência e determine, se possível, $[3]_S$.

	ESCOLA Superior	Tipo de Prova Teste 1	Ano letivo 2017/2018	Data 11-04-2017
P.PORTO		Curso Licenciatura em Engenharia Informática		Hora 13:10
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____ Nome: _____

4. Determine:

$$\sum_{k=11}^{201} \left(\prod_{j=1}^{3} (j^2 + j) \right) - \sum_{i=20}^{21} (-1)^i \times i$$

5. Considere a fórmula de recorrência dada por:

$$\begin{cases}
G(1) = 3 \\
G(n) = 7 G(n-1) - 1, & n > 1
\end{cases}$$

Recorrendo ao algoritmo EGV (Expand, Guess, Verify), encontre a fórmula fechada.

	LOLDING	Tipo de Prova Teste 1	Ano letivo 2017/2018	Data 11-04-2017
P.PORTO		^{Eurso} Licenciatura em Engenharia Informática		Hora 13:10
		Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____ Nome: _____

representado graficamente abaixo e o grafo \vec{G}_3 cuja matriz de adjacências é dada no fragmento de scilaboxedsit:

a) Represente \vec{G}_3 graficamente e indique as matrizes de adjacências de \vec{G}_1 e G_2 .

b) Determine os graus de cada vértice dos grafos G_2 e \vec{G}_3 .

Indique, justificando:

Nota: Apresente os cálculos efetuados no Scilab no ficheiro que submeter no moodle.

i) quantos caminhos de comprimento 3 do segundo para o primeiro vértice, existem no grafo \vec{G}_3 ; _____ ii) quantos circuitos de comprimento 4, existem no grafo \vec{G}_3 ; ______ iii) se possível, para o grafo G_2 , um caminho simples de comprimento 5 do vértice 6 para o vértice 1; _____ iv) se algum dos grafos é fortemente conexo.

> Bom Trabalho Eliana Costa e Silva e Flora Ferreira