

Carrera/ Plan: (Dejar lo que corresponda)

Licenciatura en Informática Plan 2021/Plan 2015/Plan

2012/Plan 2003-07

Matemática 1 Licenciatura en Sistemas Plan 2021/Plan 2015/Plan 2012/Plan

2003-07

Analista Programador Universitario Plan 2021/Plan 2015/Plan

2007

Analista en TIC Plan 2021/Plan 2017

Año: 1ero

Régimen de Cursada: Semestral

Carácter (Obligatoria/Optativa): Obligatoria

Correlativas:

<u>Profesor/es:</u> Natalia Ferre, Andrea Rey Grange, Hernán San Martín, Noemí Lubomirsky, Federico Castez, Eugenia Cejas,

Adriana Galli, Matías Menni, Mario Rocca

Hs. semanales: 3 hs de teoría y 3hs de práctica semanales

FUNDAMENTACIÓN

Año 2023

Los profesionales de la informática necesitan de la metodología y el razonamiento matemático en su profesión. En particular, y teniendo en cuenta que los ordenadores son máquinas finitas por naturaleza, la Matemática Discreta es esencial para resolver problemas por métodos informáticos. El razonamiento lógico juega un papel central en la programación, los conjuntos y sus operaciones aportan a los trabajos en bases de datos, las sucesiones y sus sumas ayudan a analizar los tiempos de ejecución de los algoritmos. Estos son algunos aspectos que se presentan en la materia y que entendemos aportan a la formación de los estudiantes de esta disciplina.

OBJETIVOS GENERALES

Introducir al alumno en los conceptos fundamentales de la matemática básica requerida en Informática, tales como nociones básicas de conjuntos, conceptos de álgebra y geometría analítica y sistemas de ecuaciones lineales.

Se trata de una asignatura de fundamentos, orientada a reforzar el pensamiento lógico del alumno y su capacidad de expresión y resolución de problemas matemáticos.

RESULTADOS DE APRENDIZAJE

1.1. Describir y explicar los conceptos, teorías y métodos matemáticos relativos a la informática, equipamiento informático, comunicaciones informáticas y aplicaciones informáticas de acuerdo con el plan de estudios.

COMPETENCIAS

- CGT4- Conocer e interpretar los conceptos, teorías y métodos matemáticos relativos a la informática, para su aplicación en problemas concretos de la disciplina.

CONTENIDOS MINIMOS (de acuerdo al Plan de Estudios)

- Elementos de Geometría Analítica.
- Conjuntos. Operaciones y propiedades básicas. Funciones.
- Algebras de Boole

- · Sucesiones.
- Principio de Inducción
- Análisis Combinatorio
- Matrices y Sistemas Lineales

PROGRAMA ANALÍTICO

- 1. Geometría plana. Rectas. Secciones cónicas: circunferencia y parábola.
- 2. Elementos de demostraciones matemáticas. Conjuntos, pertenencia e inclusión. Operaciones básicas: unión, intersección, diferencia, complemento. Propiedades. Producto cartesiano. Relaciones binarias. Funciones. Dominio y codominio, imagen. Identificación del dominio. Funciones inyectivas, suryectivas y biyectivas.
- 3. Algebras de Boole. Definición, axiomas. Ejemplos con los conjuntos de Partes de un conjunto, el conjunto {0,1}, conjunto de proposiciones, con las operaciones definidas para cada uno. Leyes de Absorción, Acotación, Idempotencia y De Morgan. Simplificación de expresiones booleanas. Isomorfismos de Algebras de Boole.
- Sucesiones. Fórmulas explícitas y recursivas. Notación sigma y notación pi. Sucesiones aritméticas y geométricas. Suma de los n primeros términos de sucesiones aritméticas y geométricas. Inducción matemática.
- 5. Combinatoria. Principios básicos del conteo. Permutaciones, variaciones y combinaciones.
- Matrices. Matrices diagonales y triangulares. Matriz traspuesta. Suma y producto de matrices con sus propiedades. Matriz Escalonada y reducida por filas. Matrices equivalentes por filas. cálculo de inversas de matrices mediante operaciones elementales por filas (método de reducción). Rango de una matriz.
- 7. Sistemas de ecuaciones lineales y determinantes. Resolución de sistemas lineales por operaciones elementales por filas. Teorema de Rouché-Frobenius. Sistemas compatibles determinados, indeterminados y sistemas incompatibles. Determinantes, propiedades y aplicaciones.

BIBLIOGRAFÏA

Apuntes de la cátedra

BIBLIOGRAFÍA COMPLEMENTARIA

- Johnsonbaugh, Richard Matemáticas discretas, 4ª ed. Prentice Hall, 1999.
- Espinosa Armenta Matemáticas Discretas, 1° ed. Alfaomega, 2010.
- Kolman, Bernard; Busby, Robert y Ross, Sharon <u>Estructuras de matemáticas discretas para la computación</u>, 3ª ed. Prentice may.
- Smith, et al Álgebra, trigonometría y geometría analítica Addison Wesley Longman.

- R. Jimenez Murillo , Matemáticas para la computación, Alfaomega, 2010
- S. Lipschutz y M. Lipson , 2000 problemas resueltos de Matemática discreta, Serie de Compendios Schawm, Mc Graw- Hill, España, 2004
- Swokoski, Earl W. y Cole, Jeffery A., Algebra y trigonometría con geometría analítica, 11ma ed., Thomson, 2006
- Oubiña, Lía, Introducción a la teoría de conjuntos, Eudeba, 2006
- Anton, Howard, Introducción al algebra lineal, 3er ed., Limusa Wiley, 1994
- Ferre, Natalia; Galli, Adriana; Guzmán Mattje, Beatriz, Algebra y Geometría, Una manera de pensar, Edulp, 2018, colección Libros de cátedra, disponible en http://sedici.unlp.edu.ar/handle/10915/87638

METODOLOGÍA DE ENSEÑANZA

Las clases son de teoría y práctica, distribuidas en 2 encuentros semanales de 3 horas cada uno.

Hay un momento de exposición de los temas en el pizarrón donde atendiendo a las competencias, se introducen los conceptos teóricos matemáticos, favoreciendo la comprensión, de manera que permita interpretar y vincular los mismos a la aplicación a temas específicos de informática. En este sentido se mostrarán algunas aplicaciones en los temas más relevantes.

Esta contextualización es informativa y se discuten diferentes casos de aplicación para mostrar la utilidad de las teorías y herramientas matemáticas para resolver diferentes problemas "informáticos" conocidos por el alumno. Se pone a disposición de los alumnos material bibliográfico para profundizar la relación entre los temas matemáticos y las soluciones informáticas. En todos los apuntes hay un anexo con aplicaciones a la informática de los temas más relevantes de cada capítulo.

Luego hay otro momento de trabajo en clase de consulta con el profesor, jefe de trabajos prácticos y ayudantes, resolviendo los ejercicios prácticos y trabajando también sobre consultas de tipo general.

En algunas ocasiones se piden ejercicios para realizar en clase y entregar para ir llevando un control del avance de los alumnos y para que ellos también adviertan donde aparecen sus dificultades.

EVALUACIÓN

La materia consta de dos parciales teórico prácticos, con 1 recuperatorio cada uno y un parcial flotante al final en el que los alumnos pueden rendir sólo uno de los dos parciales. Los parciales serán en forma presencial.

Estos parciales se aprueban con nota superior o igual a 4 y habiendo aprobado los dos parciales deben rendir el examen final donde se evaluarán contenidos teórico-prácticos.

En estos parciales, así como en el examen final, se evaluarán las competencias alcanzadas a través de actividades de contenido teórico que permitan dar cuenta del avance conceptual en los temas que se han desarrollado, se incorporan preguntas específicas tipo sobre "donde cree Ud. que es aplicable este conocimiento/método matemático" y se refleja en la corrección de las pruebas escritas del alumno.

En algunos temas se trabaja también con ejercitaciones de aplicación en clase, que requieren de un ejercicio de integración de conceptos y que complementan la evaluación a través de los parciales.

El siguiente cronograma es tentativo ya que dependemos de la distribución en comisiones que realiza la materia CADP y además se están gestionando cargos docentes para agregar comisiones ya que con la cantidad de ingresantes de este año no es posible funcionar con 10 comisiones.

CRONOGRAMA DE CLASES Y EVALUACIONES

Clase	Fecha	Contenidos/Actividades	
1	20-3	Geometría	
2	23-3	Geometría	
3	27-3	Geometría	
4	30-3	Conjuntos	
5	3-4	Conjuntos	
	<mark>6-4</mark>	Feriado Periado	
6	10-4	Funciones	
7	13-4	Algebras de Boole	
8	17-4	Algebras de Boole	
9	20-4	Algebras de Boole	
10	24-4	Sucesiones	
11	27-4	Sucesiones	
	<mark>1-5</mark>	Feriado Periado	
12	4-5	Suma de aritméticas y geométricas	
13	8-5	REPASO	
	11-5	1ER PARCIAL	
1	15-5	Combinatoria	
2	18-5	Combinatoria	
3	22-5	Matrices	
	<mark>25-5</mark>	Feriado	
4	29-5	Matrices	
5	1-6	Matrices	
6	5-6	RECUPERATORIO 1ER PARCIAL	
7	8-6	Sistemas	
8	12-6	Sistemas	
9	15-6	Determinantes	
	<mark>19-6</mark>	Feriado Periado	
10	22-6	Determinantes	
11	26-6	Repaso	
	29-6	2DO PARCIAL	
	3-7	Consulta	
	6-7	Consulta	

10-7	RECUPERATORIO 2DO PARCIAL
13-7	Consulta
31-7	Consulta
3-8	FLOTANTE

Evaluaciones previstas	Fecha
1er Parcial 1era fecha	11-5
1er Parcial 2da fecha	5-6
2do Parcial 1era fecha	29-6
2do Parcial 2da fecha	10-7
Flotante	3-8

Contacto de la cátedra (mail, sitio WEB, plataforma virtual de gestión de cursos):

Natalia Ferre: nataliaferre66@gmail.com Información de la materia: www.mate1y2.blogspot.com.ar

Firma del/los profesor/es

Natalia Ferre

Matemática 1 (Redictado)

Año 2023

Carrera/ Plan:

Licenciatura en Informática Plan 2021/Plan 2015/Plan

2012/Plan 2003-07

Licenciatura en Sistemas Plan 2021/Plan 2015/Plan 2012/Plan

2003-07

Analista Programador Universitario Plan 2021/Plan 2015/Plan

2007

Analista en TIC Plan 2021/Plan 2017

Año: 1ero

Régimen de Cursada: Semestral

Carácter (Obligatoria/Optativa): Obligatoria

Correlativas:

<u>Profesor/es:</u> Natalia Ferre, Marcela Kladniew, Adriana Galli <u>Hs. semanales</u>: 3 hs de teoría y 3 hs de práctica semanales

FUNDAMENTACIÓN

Los profesionales de la informática necesitan de la metodología y el razonamiento matemático en su profesión. En particular, y teniendo en cuenta que los ordenadores son máquinas finitas por naturaleza, la Matemática Discreta es esencial para resolver problemas por métodos informáticos. El razonamiento lógico juega un papel central en la programación, los conjuntos y sus operaciones aportan a los trabajos en bases de datos, las sucesiones y sus sumas ayudan a analizar los tiempos de ejecución de los algoritmos. Estos son algunos aspectos que se presentan en la materia y que entendemos aportan a la formación de los estudiantes de esta disciplina.

OBJETIVOS GENERALES

Introducir al alumno en los conceptos fundamentales de la matemática básica requerida en Informática, tales como nociones básicas de conjuntos, conceptos de álgebra y geometría analítica y sistemas de ecuaciones lineales.

Se trata de una asignatura de fundamentos, orientada a reforzar el pensamiento lógico del alumno y su capacidad de expresión y resolución de problemas matemáticos.

RESULTADOS DE APRENDIZAJE

1.1. Describir y explicar los conceptos, teorías y métodos matemáticos relativos a la informática, equipamiento informático, comunicaciones informáticas y aplicaciones informáticas de acuerdo con el plan de estudios.

COMPETENCIAS

- CGT4- Conocer e interpretar los conceptos, teorías y métodos matemáticos relativos a la informática, para su aplicación en problemas concretos de la disciplina.

CONTENIDOS MINIMOS (de acuerdo al Plan de Estudios)

- Elementos de Geometría Analítica.
- Conjuntos. Operaciones y propiedades básicas. Funciones.
- Algebras de Boole

- · Sucesiones.
- Principio de Inducción
- Análisis Combinatorio
- Matrices y Sistemas Lineales

PROGRAMA ANALÍTICO

- 1. Geometría plana. Rectas. Secciones cónicas: circunferencia y parábola.
- 2. Elementos de demostraciones matemáticas. Conjuntos, pertenencia e inclusión. Operaciones básicas: unión, intersección, diferencia, complemento. Propiedades. Producto cartesiano. Relaciones binarias. Funciones. Dominio y codominio, imagen. Identificación del dominio. Funciones inyectivas, suryectivas y biyectivas.
- 3. Algebras de Boole. Definición, axiomas. Ejemplos con los conjuntos de Partes de un conjunto, el conjunto {0,1}, conjunto de proposiciones, con las operaciones definidas para cada uno. Leyes de Absorción, Acotación, Idempotencia y De Morgan. Simplificación de expresiones booleanas. Isomorfismos de Algebras de Boole.
- Sucesiones. Fórmulas explícitas y recursivas. Notación sigma y notación pi. Sucesiones aritméticas y geométricas. Suma de los n primeros términos de sucesiones aritméticas y geométricas. Inducción matemática.
- 5. Combinatoria. Principios básicos del conteo. Permutaciones, variaciones y combinaciones.
- Matrices. Matrices diagonales y triangulares. Matriz traspuesta. Suma y producto de matrices con sus propiedades. Matriz Escalonada y reducida por filas. Matrices equivalentes por filas. cálculo de inversas de matrices mediante operaciones elementales por filas (método de reducción). Rango de una matriz.
- 7. Sistemas de ecuaciones lineales y determinantes. Resolución de sistemas lineales por operaciones elementales por filas. Teorema de Rouché-Frobenius. Sistemas compatibles determinados, indeterminados y sistemas incompatibles. Determinantes, propiedades y aplicaciones.

BIBLIOGRAFÏA

Apuntes de la cátedra

BIBLIOGRAFÍA COMPLEMENTARIA

- Johnsonbaugh, Richard Matemáticas discretas, 4ª ed. Prentice Hall, 1999.
- Espinosa Armenta Matemáticas Discretas Alfaomega
- Kolman, Bernard; Busby, Robert y Ross, Sharon <u>Estructuras de matemáticas discretas para la computación</u>, 3ª ed. Prentice may.
- Smith, et al Álgebra, trigonometría y geometría analítica Addison Wesley Longman.

- R. Jimenez Murillo , Matemáticas para la computación, Alfaomega, 2010
- S. Lipschutz y M. Lipson , 2000 problemas resueltos de Matemática discreta, Serie de Compendios Schawm, Mc Graw- Hill, España, 2004
- Swokoski, Earl W. y Cole, Jeffery A., Algebra y trigonometría con geometría analítica, 11ma ed., Thomson, 2006
- Oubiña, Lía, Introducción a la teoría de conjuntos, Eudeba, 2006
- Anton, Howard, Introducción al algebra lineal, 3er ed., Limusa Wiley, 1994
- Ferre, Natalia; Galli, Adriana; Guzmán Mattje, Beatriz, Algebra y Geometría, Una manera de pensar, Edulp,
 2018, colección Libros de cátedra, disponible en http://sedici.unlp.edu.ar/handle/10915/87638

METODOLOGÍA DE ENSEÑANZA

Las clases son de teoría y práctica, distribuidas en 2 encuentros semanales de 3 horas cada uno.

Hay un momento de exposición de los temas en el pizarrón donde atendiendo a las competencias, se introducen los conceptos teóricos matemáticos, favoreciendo la comprensión, de manera que permita interpretar y vincular los mismos a la aplicación a temas específicos de informática. En este sentido se mostrarán algunas aplicaciones en los temas más relevantes.

Esta contextualización es informativa y se discuten diferentes casos de aplicación para mostrar la utilidad de las teorías y herramientas matemáticas para resolver diferentes problemas "informáticos" conocidos por el alumno. Se pone a disposición de los alumnos material bibliográfico para profundizar la relación entre los temas matemáticos y las soluciones informáticas. En todos los apuntes hay un anexo con aplicaciones a la informática de los temas más relevantes de cada capítulo.

Luego hay otro momento de trabajo en clase de consulta con el profesor, jefe de trabajos prácticos y ayudantes, resolviendo los ejercicios prácticos y trabajando también sobre consultas de tipo general.

En algunas ocasiones se piden ejercicios para realizar en clase y entregar para ir llevando un control del avance de los alumnos y para que ellos también adviertan donde aparecen sus dificultades.

En este cuatrimestre programamos las clases totalmente presenciales sujeto al avance de la situación sanitaria.

EVALUACIÓN

La materia consta de dos parciales teórico prácticos, con 1 recuperatorio cada uno y un parcial flotante al final en el que los alumnos pueden rendir sólo uno de los dos parciales. Los parciales serán en forma presencial.

Estos parciales se aprueban con nota superior o igual a 4 y habiendo aprobado los dos parciales deben rendir el examen final donde se evaluarán contenidos teórico-prácticos.

En estos parciales, así como en el examen final, se evaluarán las competencias alcanzadas a través de actividades de contenido teórico que permitan dar cuenta del avance conceptual en los temas que se han

desarrollado, se incorporan preguntas específicas tipo sobre "donde cree Ud. que es aplicable este conocimiento/método matemático" y se refleja en la corrección de las pruebas escritas del alumno.

En algunos temas se trabaja también con ejercitaciones de aplicación en clase, que requieren de un ejercicio de integración de conceptos y que complementan la evaluación a través de los parciales.

Nota: La inscripción en el redictado estará sujeta a las condiciones establecidas en la resolución 183/19 del HCD. Considerando 4 comisiones para el redictado, se estima que podrán atenderse un máximo de 440 alumnos.

CRONOGRAMA DE CLASES Y EVALUACIONES

1	4-0		
	17-8	Geometría	
2	21-8	Feriado	
3	24-8	Geometría	
4	28-8	Geometría	
5	31-8	Conjuntos	
6	4-9	Conjuntos	
7	7-9	Funciones	
8	11-9	Feriado	
9	14-9	Algebras de Boole	
10	18-9	Algebras de Boole	
11	21-9	Feriado	
12	25-9	Algebras de Boole	
13	28-9	Sucesiones	
14	2-10	Sucesiones	
15	5-10	Suma de aritméticas y geométricas	
16	9-10	Repaso	
17	12-10	1er Parcial	
18	16-10	Feriado	
19	19-10	Combinatoria	
20	23-10	Combinatoria	
20	26-10	Matrices	
21	30-10	Matrices	
22	2-11	Matrices	
23	6-11	Recuperatorio 1er Parcial	
24	9-11	Sistemas	
25	13-11	Sistemas	
26	16-11	Determinantes	
	20-11	Feriado	
27	23-11	Repaso	
	27-11	Asueto	
	30-11	2do Parcial	

28	4-12	Consulta	
29	7-12	Consulta	
30	11-12	Recuperatorio 2do Parcial	
31	14-12	Consulta	
32	18-12	Flotante	
33	21-12	Muestra	

Evaluaciones previstas	Fecha
1er Parcial 1era fecha	12-10
1er Parcial 2da fecha	6-11
2do Parcial 1era fecha	30-11
2do Parcial 2da fecha	11-12
Flotante	18-12

Contacto de la cátedra (mail, sitio WEB, plataforma virtual de gestión de cursos):

Natalia Ferre: nataliaferre66@gmail.com

Información de la materia: www.mate1y2.blogspot.com.ar

Firma del/los profesor/es

Natalia Ferre