

YOLO v2

https://www.youtube.com/watch?v=VOC3huqHrss&t=40s

Detection vs Classification

- Classification
 - -Ex: ImageNet Large-scale Visual Recognition Challenge (Classify 1000 categories)

Detection = Binary Classification

Recent Developments of Object Detection

- Deformable Part Model (2010)
- Fast R-CNN (2015)
- Faster R-CNN (2015)
- You Only Look Once: Unified, real-time object detection (2016)
- SSD: Single-Shot Multi-box Detector (2016)
- Mask R-CNN (2017) (Segmentation)
- YOLO9000: Better, Faster, Stronger (2017)
- YOLOv3: An Incremental Improvement (2018)

TITLE

Ross Girshick

✓ FOLLOW

YEAR

CITED BY

Research Scientist, Facebook Al Research (FAIR) Verified email at eecs.berkeley.edu - <u>Homepage</u> computer vision machine learning

Caffe: Convolutional architecture for fast feature embedding Y Jia, E Shelhamer, J Donahue, S Karayev, J Long, R Girshick, Proceedings of the 22nd ACM international conference on Multimedia, 675-678	10729	2014
Faster R-CNN: Towards real-time object detection with region proposal network S Ren, K He, R Girshick, J Sun Advances in neural information processing systems, 91-99	ss 9521	2015
Rich feature hierarchies for accurate object detection and semantic segmentation R Girshick, J Donahue, T Darrell, J Malik Proceedings of the IEEE conference on computer vision and pattern	on 9074	2014
Object detection with discriminatively trained part-based models PF Felzenszwalb, RB Girshick, D McAllester, D Ramanan Pattern Analysis and Machine Intelligence, IEEE Transactions on 32 (9), 1627	7992	2010
Fast R-CNN R Girshick Proceedings of the IEEE International Conference on Computer Vision, 1440-1448	5432	2015
Microsoft coco: Common objects in context TY Lin, M Maire, S Belongie, J Hays, P Perona, D Ramanan, P Dollár, European conference on computer vision, 740-755	4868	2014
You only look once: Unified, real-time object detection J Redmon, S Divvala, R Girshick, A Farhadi Proceedings of the IEEE conference on computer vision and pattern	4197	2016
Mask R-CNN K He, G Gkloxari, P Dollár, R Girshick arXiv preprint arXiv:1703.06870	2183	2017
Feature pyramid networks for object detection TY Lin, P Dollár, R Girshick, K He, B Hariharan, S Belongie Proceedings of the IEEE Conference on Computer Vision and Pattern	1166	2017
Aggregated residual transformations for deep neural networks S Xie, R Girshick, P Dollár, Z Tu, K He Proceedings of the IEEE conference on computer vision and pattern	942	2017

Cited by

	All	Since 2014
Citations	68366	65802
h-index	53	53
i10-index	72	70

Co-authors VIEW ALL

Co-authors		VIEW ALL	
	Kaiming He Research Scientist, Facebook	AI >	
-	Trevor Darrell Professor of Computer Science	», >	
	Jitendra Malik Professor of EECS, UC Berkel	ey >	
	Piotr Dollár Facebook Al Research	>	
1	Jeff Donahue Research Scientist, DeepMind	>	
•	Pedro Felzenszwalb Brown University	>	
(L)	bharath hariharan Cornell University	>	
•	C. Lawrence Zitnick Facebook Al Research	>	
	David McAllester	`	

Professor, Toyota Technological I..

Region Proposal: Multi-scale Objectness Search

Scan all possible locations and scales for objects

Region Proposal + CNN = R-CNN

1. Input image

2. Extract region proposals (~2k)

warped region

4. Classify regions

Problems with R-CNN

- 2000 region proposals per image
- It takes around 47 seconds for testing one image
- The selective search algorithm is a fixed algorithm using shallow architecture

Fast R-CNN

• Instead of running a CNN 2,000 times per image, run just once per image and get all the regions of interest (RoI)

__

Faster R-CNN

 Replace Selective Search with neural networks

Faster R-CNN Architecture

R-CNN Test-Time Speed

Summary

Algorithm	Features	Prediction time	Limitations
RCNN	 Uses selective search to generate regions. Extracts around 2000 regions from each image. 	40-50 secs	High computation time as each region is passed to the CNN separately
Fast RCNN	 Each image is passed only once to the CNN and feature maps are extracted. Selective search is used on these maps to generate predictions. 	2 secs	Selective search is slow and hence computation time is still high.
Faster RCNN	 Replaces the selective search method with region proposal network. 	0.2 secs	Object proposal takes time

YOLO – You Only Look Once

YOLO v1

- Divide an image into S x S grid
- Predict bounding box B as (x, y, w, h, confidence)
- Each grid predicts B bounding boxes and C class probabilities
- Final prediction: S x S x (B*5 + C)

YOLO v2 — YOLO 9000

- Batch normalization
- High-resolution classifier
- Convolutional with Anchor Boxes

Anchor Boxes

- Detecting objects with different shapes
- Detecting overlapping windows

Using K-means Clustering to Find Anchor Boxes

DarkNet

- For ImageNet
 - VGG (30.69 billion FLOPS)
 - GoogLeNet (8.52 billion FLOPS)
 - DarkNet (5.58 billion FLOPS)
- DarkNet uses mostly 3 × 3 filters to extract features and 1 × 1 filters to reduce output channels

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool	200,000	$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1 × 1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7 × 7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7 × 7
Convolutional	512	1×1	7 × 7
Convolutional	1024	3×3	7×7
Convolutional	1000	1 × 1	7 × 7
Avgpool Softmax		Global	1000

Hierarchical Classification

Performance of YOLOv2 on VOC 2007

YOLO v3

YOLO v4

- A. Bochkovskiy, C.-Y. Wang, H.-Y. Mark Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection", 2020
- https://github.com/AlexeyAB/darknet

New Techniques Adopted in YOLO v4

- Weighted-Residual-Connections (WRC),
- Cross-Stage-Partial-connections (CSP)
- Cross mini-Batch
- Normalization (CmBN)
- Self-adversarial-training (SAT)
- Mish-activation
- New features:
 - WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, CmBN,
 DropBlock regularization, and CloU loss

Single-Shot Multi-Box Object Detection (SSD)

Dimensions of SSD Feature Maps

Feature Pyramid Networks (FPN)

Bottom-up and Top-down

SSD (Bottom-Up)

Using only upper layers as feature maps

FPN (Top-Down)

bottom-up top-down conv5 (C5) stride 32 M5 P5 0.5x-3x3-...... 2x conv4 (C4) 1x1 stride 16 p...... M4 P4 -3x3-0.5x ResNet **......** 2x conv3 (C3) 1x1 stride 8 МЗ 0.5x -3x3-2x conv2 (C2) stride 4 1x1 p...... 0.5x M2 P2 -3x3 conv1 stride 2 image 1......

FPN Architecture

predictor head

Focal Loss

Solve class imbalance problem by reducing loss for well-trained class

$$CE(p_t) = -\log(p_t)$$

$$FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t)$$

 p_t is the predicted class probability for ground truth. $\gamma > 0$

RetinaNet

EfficientDet

Based on EfficientNet

- Mingxing Tan Ruoming Pang Quoc V. Le, "EfficientDet: Scalable and Efficient Object Detection", Google Research, Brain Team

PyTorch Version of EfficientDet

- 25.86x faster that original TensorFlow version!
- github.com/zylo117

coefficient	Time	FPS	Ratio
Official D0 (tf postprocess)	0.713s	1.40	1X
Official D0 (numpy postprocess)	0.477s	2.09	1.49X
Yet-Another-EfficientDet-D0	0.028s	36.20	25.86X

Install Prerequisites

- *Create a virtual environment with TensorFlow=1.3 and Keras=2.1
- 1. git clone https://github.com/matterport/Mask RCNN.git
- 2. pip3 install -r requirements.txt
- 3. python3 setup.py install

Download Pre-trained Weights (MS COCO)

https://github.com/matterport/Mask RCNN/releases/download/v2.0/mask rcnn coco.h5

Training Custom Object Detector on Colab

• https://medium.com/analytics-vidhya/custom-object-detection-with-tensorflow-using-google-colab-7cbc484f83d7

Reference

- https://pjreddie.com/
- https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
- https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/
- https://heartbeat.fritz.ai/gentle-guide-on-how-yolo-object-localization-works-with-keras-part-2-65fe59ac12d
- https://towardsdatascience.com/retinanet-how-focal-loss-fixes-single-shot-detection-cb320e3bb0de
- https://medium.com/@jonathan_hui/what-do-we-learn-from-single-shot-object-detectors-ssd-yolo-fpn-focal-loss-3888677c5f4d