Resistência elétrica e resistividade

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

7 de Novembro de 2020

Prof. Flaviano W. Fernandes IFPR-Irati

Sumário

- Resistência elétrica
- 2 A Lei de Ohm
- Associação de resistores
- 4 Apêndice

O que é resitência elétrica?

Corollary

Resistência elétrica

Quando uma diferença de potencial V é aplicada nas extremidades de um condutor, estabelecendo nele uma corrente elétrica i, a resistência desse condutor em ohms (Ω) é dada pela relação

$$R = \frac{V}{i}$$

Esquema de resistividade em um fio.

Corollary

Quanto maior a temperatura, maior será a oposição que o condutor oferecerá a passagem da corrente e maior será o valor de R.

Resistividade de um material

Foi verificado experimentalmente que a resistência R aumenta proporcionalmente com o comprimento L do fio condutor, ou seja,

$$R \alpha L$$
.

Verificou-se também que a resistência é inversamente proporcional a área da secão reta.

$$R \alpha \frac{1}{\Delta}$$

Reunindo ambas as informações podemos definir a resistência de um fio condutor em função da área e comprimento na forma

$$R = \rho \frac{L}{A}$$

onde ρ é denominada resistividade do material, que depende das caraterísticas atômicas de cada material.

0000

Fatores que influenciam na resistência

A resistência de um condutor é tanto maior quanto maior for seu comprimento; A resistência de um condutor é tanto maior quanto menor for a área de sua seção reta (quanto mais fino for o condutor);

A resistência de um condutor depende do material de que ele é feito.

Condutividade elétrica

A substância será tanto melhor condutora elétrica guanto menor for a sua resistividade.

Prof. Flaviano W. Fernandes IEPR-Irati

Resistência elétrica

0000

Reostato

Corollary

Variando o comprimento ou a área de um resistor, podemos variar a sua resistência, e consequentemente a corrente elétrica no circuito. Esse é o princípio de funcionamento do reostato.

Fotografia de um reostato. Sín

to. Símbolo de um reostato.

Resistor ôhmico

Resistência elétrica

A Lei de Ohm

Para um grande número de condutores (como os metais), o valor da resistência permanece constante, não dependendo da diferença de potencial aplicada ao condutor.

$$rac{(V_{AB})_1}{i_1} = rac{(V_{AB})_2}{i_2} = \cdots,$$
 $rac{V_{AB}}{i} = R = ext{constante}.$

Aumentanto a tensão a corrente aumenta proporcionalmente

Gráfico Tensão x Corrente

Resistor ôhmico.

Resistor não-ôhmico.

Corollary

O gráfico tensão versus corrente é uma reta passando pela origem.

Prof. Flaviano W. Fernandes IFPR-Irati

Resistores ligados em série

A mesma corrente i passa pelos resistores R_1 , R_2 e R_3 , portanto

$$V_{AB} = R_1 i,$$

 $V_{BC} = R_2 i,$
 $V_{CD} = R_3 i.$

A diferenca de potencial entre os terminais A e D é dado por

$$V_{AD} = V_{AB} + V_{BC} + V_{CD}.$$

Associação de resistores

•0000

Exemplo de associação em série.

Resistência equivalente em ligações em série

Substituindo V_{AB} , V_{BC} e V_{CD} temos

$$egin{aligned} V_{AD} &= V_{AB} + V_{BC} + V_{CD}, \ V_{AD} &= R_1 i + R_2 i + R_3 i, \ V_{AD} &= (R_1 + R_2 + R_3) i. \ \hline R_{Beg} \end{aligned}$$

Resistência equivalente

$$R_{eq} = R_1 + R_2 + \cdots + R_N.$$

Circuito equivalente.

Prof. Flaviano W. Fernandes IFPR-Irati

A corrente i que atravessa o fio condutor é dividida nos terminais A e B, o que resulta

$$i = i_1 + i_2 + i_3$$
.

Sabendo que $i = \frac{V}{R}$ temos

$$rac{V_{AB}}{R_{eq}} = rac{V_{R_1}}{R_1} + rac{V_{R_2}}{R_2} + rac{V_{R_3}}{R_3}.$$

Associação de resistores

00000

Exemplo de associação em paralelo.

mas a tensão entre os terminais A e B da bateria é a mesma nos terminais dos resistores R₁, R₂ e R_3 , ou seja,

$$V_{AB} = V_{R_1} = V_{R_2} = V_{R_3} = V,$$

portanto

$$\begin{split} \frac{V_{AB}}{R_{eq}} &= \frac{V}{R_{eq}} = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3}, \\ \frac{V}{R_{eq}} &= V \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right), \end{split}$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3},$$

Associação de resistores

00000

$$R_{eq} = \frac{R_2 R_2 R_3}{R_1 R_3 + R_2 R_3 + R_1 R_2}.$$

Resistência equivalente de ligação em paralelo

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}.$$

Prof. Flaviano W. Fernandes IFPR-Irati

Associação mista de resistores

Exemplo de associação mista.

Circuito misto

Associação mista de ligações de resistores em série e paralelo.

Prof. Flaviano W. Fernandes IFPR-Irati

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000.0 = 6.59×10^{15}

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times \textcolor{red}{2}} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5~g=2,5\times 10^{(1) imes 3}~mg
ightarrow 2,5\times 10^3~mg$$

10
$$\mu$$
C = 10 × 10^[(-3)×1+(-1)×3] C \rightarrow 10 × 10⁻⁶ C

Prof. Flaviano W. Fernandes IFPR-Irati

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

10
$$\mu$$
m² = 10 × 10^[(-6)×1+(-2)×3] m² \rightarrow 10 × 10⁻¹² m²

Prof. Flaviano W. Fernandes IFPR-Irati

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

10
$$\mu \text{m}^3 = 10 \times 10^{[(-9) \times 1 + (-3) \times 3]} \text{ m}^3 \rightarrow 10 \times 10^{-18} \text{ m}^3$$

Prof. Flaviano W. Fernandes IFPR-Irati

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	K	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	P	ρ
Sigma	Σ	σ
Tau	T	au
Ípsilon	Υ	v
Fi	Φ	ϕ , φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Apêndice

Referências

Resistência elétrica

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.3, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education