A Book of Abstract Algebra (2nd Edition)

		 	-	-	•		- 1	\			

•

Chapter 16, Problem 4EL

Bookmark

Show all steps: ON

ON

Problem

Let pbea prime number. A p-group is any group whose order is a power of p. It will be shown here that if $|G| = p^k$ then G has a normal subgroup of order p^m for every m between 1 and k. The proof is by induction on |G|; we therefore assume our result is true for all /^-groups smaller than G. Prove parts 1 and 2:

Use Exercise J4 to prove that G has a normal subgroup of order p^m .

Step-by-step solution

Step 1 of 5

Consider a group G whose order is a power of p. That is, G is a p-group and

$$|G| = p^k$$

for some integer k. With the help of mathematical induction on the order of group G, it can be prove that G has a normal subgroup of order p^m for every 1 < m < k.

Consider the induction hypothesis that this statement is true for all *p*-groups whose order is less than *G*.

Objective is to prove that G has a normal subgroup of order p^m .

A nonempty subset H of group G is said to be a normal subgroup of G if $g \in G$ and $h \in H$ $ghg^{-1} \in H$.

Comment

Step 2 of 5

Consider the following statement of referring exercise:

Suppose that *G* is any group. Let the mapping

$$f: G_K \to H$$

is a homomorphism from G onto H with kernel K. Assume that S is any subgroup of H and consider the following set:

$$S^* = \{x \in G : f(x) \in S\}$$

Then the set S^* forms a subgroup of G.

Comment

Step 3 of 5

Consider a natural homomorphism $f: G \to G/\langle a \rangle$ with kernel $\langle a \rangle$. Let S be the normal subgroup of order p^{m-1} of $G/\langle a \rangle$. Now, referring to the above exercise, task is to show that S^* is a normal subgroup of G whose order is p^m .

If one is able to show that $f(gsg^{-1}) \in S$, then this will ensure that $gsg^{-1} \in S^*$ for some $g \in G$ and $g \in S^*$.

Consider $f(gsg^{-1})$ and expand it by the homomorphism rule as:

$$f(gsg^{-1}) = f(g)f(s)f(g^{-1})$$

= $f(g)f(s)[f(g)]^{-1}$.

The second step is the well-known property of homomorphism.

Comment

Step 4 of 5

Since $s \in S^*$, therefore $f(x) \in S$. Also $f(g) \in G/\langle a \rangle$, and S is the subgroup of codomain. So, $f(g) \in S$. By the subgroup property, its inverse will also be the member of S, that is,

$$[f(g)]^{-1} \in S$$

Thus, by the closeness of product, it implies that $f(g)f(s)[f(g)]^{-1} \in S$, or $f(gsg^{-1}) \in S$. And thus, $gsg^{-1} \in S^*$ for some $g \in G$ and $g \in S^*$.

Comment

Step 5 of 5

Hence, G has a normal subgroup S^* whose order is p^m .

Comment