Math 4000/6000 - Homework #7

posted October 19, 2015; due at the start of class on October 26, 2015

Examiner: What is a root of multiplicity m?

Examinee: Well, this is when we plug a number to a function, and obtain zero; then we plug it again, and obtain zero again... and this happens m times. But on the (m+1)-st time we do not obtain zero.

- math joke of the day

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. Exercise 3.2.1.
- 2. Exercise 3.2.2(a,b), + extra part:

Let n be an integer with $n \geq 2$, and let $\sqrt[n]{2}$ denote the positive nth root of 2. Let $\omega = \exp(2\pi i/n)$. Show that $\mathbb{Q}[\sqrt[n]{2}, \omega]$ is a splitting field for $x^n - 2$ over \mathbb{Q} .

Hint for 3.2.2(a,b): First read Examples 2 on p. 97.

- 3. Exercise 3.2.6(a,c,e)
- 4. Exercise 3.2.7.

Hint for (b): Given $f(x) \in \mathbb{R}[x]$, first write $f(x) = c(x - \alpha_1) \cdots (x - \alpha_n)$. Now find a way to use (a) to cleverly pair the factors $x - \alpha_i$.

5. Let F be a subfield of K. Let $\alpha \in K$, and suppose that α is the root of a nonconstant polynomial in F[x]. Under these assumptions, we showed that $F[\alpha]$ is a field. During the course of the proof, we argued that we could find an **irreducible** polynomial $p(x) \in F[x]$ with $p(\alpha) = 0$.

Clearly, if $h(x) \in F[x]$ is divisible by p(x), then $h(\alpha) = 0$. (You are not asked to prove this but you should make sure you see why this is true.) Prove the converse: If $h(x) \in F[x]$ satisfies $h(\alpha) = 0$, then $p(x) \mid h(x)$.

- 6. (continuation) We continue with the assumptions of the previous problem: α is an element of K that is a root of the irreducible polynomial $p(x) \in F[x]$. Assume now that p(x) has degree n.
 - (a) Show that every element of $F[\alpha]$ can be written in the form $a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1}$, where $a_0, \ldots, a_{n-1} \in F$.
 - (b) Show that the expression in (a) is unique. That is, if $\beta \in F[\alpha]$ and $\beta = a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1} = a'_0 + a'_1\alpha + \cdots + a'_{n-1}\alpha^{n-1}$, with all a_i and a'_i in F, then $a_i = a'_i$ for all $i = 0, 1, 2, \ldots, n-1$.
- 7. Exercise 3.2.4. Justify your answers.

Hint for (a): The smallest ring containing \mathbb{Q} and $\sqrt[3]{2}$ is $\mathbb{Q}[\sqrt[3]{2}]$. Argue — perhaps using Exercise (6)(b) — that the set in (a) is not all of $\mathbb{Q}[\sqrt[3]{2}]$.

8. Let K/F be a field extension. Suppose $\alpha \in K$ and α is **not** the root of a nonconstant polynomial in F[x]. Prove that $F[\alpha]$ is **not** a field.

Hint: Show that α is a nonzero element of $F[\alpha]$ that has no inverse in $F[\alpha]$.

Example: It can be proved that π is not the root of any nonconstant polynomial in $\mathbb{Q}[x]$. (This is a strengthened form of the result that π is irrational.) Hence, $\mathbb{Q}[\pi]$ is not a field.

- 9. In Chapter 4, we will construct a field K with 4 elements containing \mathbb{Z}_2 as subfield. In this exercise, assume K is such a field. Then in addition to 0, 1 (which belong to \mathbb{Z}_2), K has two extra elements; call these α and β .
 - (a) Show that $\alpha + 1 = \beta$.
 - (b) Show that $\alpha^2 = \beta$.
 - (c) Prove that K is a splitting field over \mathbb{Z}_2 of the polynomial $x^2 + x + 1 \in \mathbb{Z}_2[x]$.
- 10. Exercise 3.3.4.
- 11. Exercise 3.3.7.

Hint: Argue that the Eisenstein criterion can be applied to f(x+1). Look at Examples 7(c) on p. 110.

- 12. (*) Exercise 3.2.18.
- 13. (*) Exercise 3.3.10.