Criteris de correcció

Química

SÈRIE 5

L'alumne ha de respondre 5 preguntes. Obligatòriament ha de respondre la 1, 2 i 3 i n'escull una entre la 4 i la 5 i una entre la 6 i la 7.

Com a norma general, tingueu en compte que un error no s'ha de penalitzar dues vegades. Si una subpregunta necessita un resultat anterior, i aquest és erroni, cal valorar la resposta independentment del valor numèric, i tenir en compte el procediment de resolució (sempre que els valors emprats i/o els resultats no siguin absurds).

.

Pregunta 1a

Determinació de l'ordre de reacció per a cada reactiu

L'equació de la velocitat de la reacció es pot escriure: $v = k [NO]^a \cdot [O_2]^b$ on "a" i "b" són els ordres de reacció respecte al monòxid de nitrogen i l'oxigen, respectivament.

De la taula de dades experimentals podem deduir que:

- En els experiments 1, 2 i 3 la concentració inicial de NO es manté constant. En **doblar** la concentració inicial d'O₂ (experiments 1 i 2) també **es duplica** la velocitat inicial de la reacció, i en **triplicar** la concentració inicial d'O₂ (experiments 1 i 3) **es triplica** la velocitat inicial de la reacció.
 - \Rightarrow Per tant, la reacció serà d'ordre 1 respecte al O_2 (b=1) [0,3 p]
- En els experiments 3, 4 i 5 la concentració inicial de O₂ es manté constant. En **doblar** la concentració inicial de NO (experiments 3 i 4) **es quadruplica** la velocitat inicial de la reacció, i en **triplicar** la concentració inicial de NO inicial (experiments 3 i 5) **es multiplica per 9** la velocitat inicial de la reacció.
 - ⇒ Per tant, la reacció serà d'ordre 2 respecte al NO (a=2) [0,3 p]

Determinació de la constant de velocitat

L'equació de velocitat de la reacció serà: $v = k [NO]^2 \cdot [Cl_2]$ [0,2 p]

Agafant la velocitat inicial de la reacció i les concentracions inicials de cada reactiu <u>en un experiment</u> (el primer, per exemple) tenim:

Experiment 1:

$$7.0 \times 10^{-6} = k \cdot (1.0 \times 10^{-3})^2 \times (1.0 \times 10^{-3})$$

 $k = 7.0 \times 10^{-6} / (1.0 \times 10^{-3})^3$
 $k = 7.0 \times 10^3 \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$ [0.2 p]

• Si no indiquen unitats (o són errònies) es penalitza 0,1 punts.

Pregunta 1b

Representació gràfica de la reacció (dibuix aproximat):

[0,6 p]

- Es penalitzarà 0,2 punts si no indiquen bé la energia d'activació (E_a) .
- Es penalitzarà 0,2 punts si no indiquen bé l'entalpia de la reacció (ΔH).
- Es penalitzarà 0,2 punts si indiquen que la energia de productes és més gran que la de reactius (cal tenir en compte que la reacció és exotèrmica).

Modificació de l'energia d'activació en afegir un catalitzador

[0,2 p]

Si la reacció es fa en presència d'un **catalitzador**, **es modifica el valor de l'energia d'activació** (**E**_a), ja que la funció del catalitzador és <u>canviar el mecanisme de la reacció</u> i amb això es modifica l'energia d'activació (disminueix) i la velocitat de la reacció (augmenta).

• Si no ho justifiquen, o aquesta justificació és totalment errònia, es penalitza 0,2 punts.

Modificació de l'entalpia de la reacció en afegir un catalitzador

[0,2 p]

Si la reacció es fa en presència d'un catalitzador, <u>la reacció global serà la mateixa</u> i per tant la variació d'entalpia de la reacció no es modifica, ja que <u>només depèn de l'entalpia de reactius i productes.</u>

• Si no ho justifiquen, o aquesta justificació és totalment errònia, es penalitza 0,2 punts.

Pregunta 2a

Reacció de fermentació acètica del vi:

$$CH_3CH_2OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1)$$
 [0,2 p]

• Es considerarà correcte encara que no explicitin l'estat físic (líquid o gas) de cada substància.

Càlcul de l'entalpia de la reacció

Relacionem l'entalpia de la reacció amb l'entalpia de formació de reactius i productes:

$$\Delta H^{o} \text{ (reacció)} = (\Sigma \text{ n}_{p} \Delta H^{o}_{f, \text{ productes}}) - (\Sigma \text{ n}_{r} \Delta H^{o}_{f, \text{ reactius}})$$

$$\Delta H^{o} \text{ (reacció)} = [\Delta H^{o}_{f} \text{ (CH}_{3}\text{COOH)} + \Delta H^{o}_{f} \text{ (H}_{2}\text{O)}] - [\Delta H^{o}_{f} \text{ (CH}_{3}\text{CH}_{2}\text{OH)} + \Delta H^{o}_{f} \text{ (O}_{2})]$$

$$[0,3 \text{ p}]$$

L'entalpia estàndard de formació de l'oxigen és zero.

 $\Delta H^{\circ}(\text{reacció}) = [(-487,0) + (-285,8)] - [(-277,6)]$

$$\Rightarrow \Delta H^{\circ}(\text{reacció}) = -495.2 \text{ kJ} \quad (6 - 495.2 \text{ kJ/mol})$$
 [0.3 p]

- Si no indiquen les unitats de l'entalpia de reacció (o són incorrectes) es penalitzarà 0,1 punts.
- ⇒ <u>La reacció és exotèrmica</u> ja que <u>l'entalpia és negativa</u> (desprèn calor). [0,2 p]

Pregunta 2b

Càlcul de l'energia lliure de la reacció

Relacionem l'energia lliure de la reacció amb l'energia lliure de formació de reactius i productes:

$$\Delta G^{o}(\text{reacci\'o}) = (\Sigma \text{ n}_{p} \Delta G^{o}_{f, \text{ productes}}) - (\Sigma \text{ n}_{r} \Delta G^{o}_{f, \text{ reactius}})$$

$$\Delta G^{o}(\text{reacci\'o}) = [\Delta G^{o}_{f}(\text{CH}_{3}\text{COOH}) + \Delta G^{o}_{f}(\text{H}_{2}\text{O})] - [\Delta G^{o}_{f}(\text{CH}_{3}\text{CH}_{2}\text{OH}) + \Delta G^{o}_{f}(\text{O}_{2})]$$

$$[0,3 \text{ p}]$$

L'energia lliure estàndard de formació de l'oxigen és zero.

$$\Delta G^{\circ}(\text{reacci\'o}) = [(-392,6) + (-237,2)]] - [(-174,9)]$$

$$\Rightarrow \Delta G^{\circ}(\text{reacci\'o}) = -454,9 \text{ kJ} \quad (\acute{o} -454,9 \text{ kJ/mol})$$
[0,4 p]

• Si expliciten el valor de la variació d'energia lliure de la reacció, però no indiquen les seves unitats (o són incorrectes), es penalitzarà 0,2 punts.

Espontaneïtat de la reacció

L'espontaneïtat, a p i T constant, depèn de l'energia lliure de la reacció, ΔG° .

Si
$$\Delta G^{\circ} < 0 \implies$$
 la reacció és espontània ΔG° (reacció) = -454,9 kJ

$$\Rightarrow \Delta G^{o}(\text{reacció}) < 0 \Rightarrow \text{La reacció és espontània}$$
 [0,3 p]

Criteris de correcció

Química

Pregunta 3a

Noms dels punt B i C del diagrama de fases de CO₂

B: punt triple [0,1 p]
C: punt crític [0,1 p]

Explicar línies i punts del diagrama de fases del CO₂

Línia AB. Ens mostra els valors de pressió i temperatura en les quals coexisteixen en equilibri les fases sòlida i gasosa del CO₂. [0,2 p]

Línia BC. Ens mostra els valors de pressió i temperatura en les quals coexisteixen en equilibri les fases líquida i gasosa del CO₂. [0,2 p]

Línia BD. Ens mostra els valors de pressió i temperatura en les quals coexisteixen en equilibri les fases sòlida i líquida del CO₂. [0,2 p]

Punt B. Ens mostra els valors de pressió i temperatura en les quals coexisteixen en equilibri les fases sòlida, líquida i gasosa del CO₂. [0,2 p]

Pregunta 3b

Descripció del procés EF

[0,4 p]

Escalfem el CO₂, a pressió constant (760 mm Hg), des de 100K (sòlid) a 260K (vapor). Es produeix un canvi de fase: **sublimació.**

Descripció del procés FG

[0,3 p]

Augmentem la pressió del CO₂ (comprimim el CO₂), a temperatura constant (260K), des de 760 mm Hg (vapor) a 5000 mm Hg (líquid). Es produeix un canvi de fase: **liquació (o condensació).**

Descripció del procés GH

[0,3 p]

Refredem el CO₂, a pressió constant (5000 mm Hg), des de 260K (líquid) a 180K (sòlid). Es produeix un canvi de fase: solidificació.

Oficina d'Accés a la Universitat		Pàgina 7 de 14
	PAU 2015	Ţ.
Criteris de correcció		Química

Pregunta 4a

Muntatge experimental del procés electrolític

[0,5 p]

Cel·la electrolítica

Elèctrode on col·loquem la reproducció del trofeu i polaritat

La reproducció del trofeu la col·loquem en el càtode.	[0,2 p]
La polaritat d'aquest elèctrode: negativa (-).	[0,1 p]

Semireacció de deposició de l'or sobre la reproducció del trofeu

Semireacció:
$$Au^{3+} + 3e^{-} \rightarrow Au$$
 [0,2 p]

Criteris de correcció

Química

Pregunta 4b

Dades inicials:

$$m (Au) = 23,16 g$$

 $F = 9,65x10^4 C / mol e^-$
 $M (Au) = 197,0 g / mol$

Transformem el temps de minuts a segons:

$$t = 105 \text{ min } x (60 \text{ s} / 1 \text{ min}) = 6300 \text{ s}$$

[0,1 p]

Càlcul de la càrrega elèctrica:

Reacció: $Au^{3+} + 3e^{-} \rightarrow Au$

23,16 g Au x (1 mol Au / 197,0 g Au) x (3 mol d'e
$$^-$$
 / 1 mol Au) x x (9,65x10 4 C / 1 mol d'e $^-$) = 34034,6 C

[0,6 p]

- La puntuació per passos seria:
 - ✓ Càlcul de mol Au: 0,1 p
 - ✓ Càlcul dels mols d'electrons: 0,3 p
 - ✓ Càlcul de la càrrega (en C): 0,2 p
- Si no es plantegen <u>l'estequiometria entre l'Au i els mols d'electrons</u>, o suposen que és 1a 1, es penalitzen 0,3 punts. La resta d'apartats es segueixen puntuant.

Càlcul de la intensitat de corrent:

Intensitat: I = Q / t

I = 34034,6 / 6300

$$\Rightarrow$$
 I = 5,4 A [0,3 p]

• Si no indiquen les unitats (o són errònies) es penalitza 0,1 punts.

Pregunta 5a

pH d'una solució de NaClO

Dades.

$$V = 80 \text{ m}^3 \text{ x} (1000 \text{ dm}^3 / 1 \text{ m}^3) \text{ x} (1 \text{ L} / 1 \text{ dm}^3) = 80000 \text{ L}$$

 $m = 149 \text{ g} \text{ de NaClO}$
 $M \text{ (NaClO)} = 23.0 + 35.5 + 16.0 = 74.5 \text{ g/mol}$
 $n \text{ (mols de NaClO)} = 149 \text{ g NaClO} \text{ x} (1 \text{ mol NaClO} / 74.5 \text{ g NaClO}) = 2.0$

Concentració inicial de NaClO = n / V = $2.0 / 80000 = 2.5 \times 10^{-5} M$ [0.1 p]

Reacció de dissolució de la sal: NaClO → Na⁺ + ClO⁻

Reacció d'equilibri àcid – base de l'ió ClO :

$$ClO^{-} + H_2O \iff HClO + OH^{-}$$

Inicial 2,5x10⁻⁵
Equilibri 2,5x10⁻⁵ - x x x [0,2 p]

$$K_b = [HClO] \cdot [OH^-] / [ClO^-]$$
 [0,2 p]

$$3.3 \times 10^{-7} = [(x) \cdot (x)] / (2.5 \times 10^{-5} - x)$$

Suposant que
$$2.5 \times 10^{-5} - x \approx 2.5 \times 10^{-5}$$

 $\Rightarrow 3.3 \times 10^{-7} = x^2 / 2.5 \times 10^{-5}$

$$x = (3.3x10^{-7} x 2.5x10^{-5})^{1/2}$$

 $x = 2.87 \cdot 10^{-6}$
 $[OH^-] = 2.87 \cdot 10^{-6} M$ [0,2 p]

Ionització de l'aigua: $K_w = [H_3O^+] \cdot [OH^-] = 1,0 \cdot 10^{-14}$

$$[H_3O^+] = 1,0 \cdot 10^{-14} / 2,87 \cdot 10^{-6}$$

 $[H_3O^+] = 3,48 \times 10^{-9} \text{ M}$ [0,1 p]

⇒ pH =
$$-\log [H_3O^+] = -\log (3,48x10^{-9})$$

⇒ pH = 8,5 [0,2 p]

- Si l'equació 1 es resol sense cap aproximació s'arriba a una equació de segon grau que dóna aproximadament la mateixa solució: pH=8,4 (la dècima, 4 o 5, depèn de l'arrodoniment que s'efectuï en els càlculs).
- El procediment és correcte si, després de calcular la concentració d'ions hidròxid, calculen el pOH com: pOH = − log [OH], i seguidament calculen el pH amb l'equació: pH = 14 − pOH.

Pregunta 5b

Càlcul de la concentració de OH-

$$pH = 7,2$$

Si pH =
$$-\log [H_3O^+] \implies [H_3O^+] = 10^{-pH}$$

$$[H_3O^+] = 10^{-7,2} \implies [H_3O^+] = 6.3 \times 10^{-8} \text{ M}$$

[0,1 p]

Ionització de l'aigua: $K_w = [H_3O^+] \cdot [OH^-] = 1,0 \cdot 10^{-14}$

$$[OH^{-}] = 1.0 \cdot 10^{-14} / 6.3 \times 10^{-8}$$

$$[OH^{-}] = 1.6 \times 10^{-7} \text{ M}$$

[0,2 p]

Equilibri de solubilitat de l'hidròxid de coure(II)

$$Cu(OH)_2(s) \leftrightarrows Cu^{2+} + 2OH^{-}$$

$$K_{ps} = [Cu^{2+}][OH^-]^2$$

[0,4 p]

Càlcul de la concentració màxima de Cu²⁺ per evitar la precipitació de l'hidròxid de coure(II)

$$[Cu^{2+}] = K_{ps} / [OH^{-}]^{2}$$

$$[Cu^{2+}] = 6.0 \times 10^{-20} / (1.6 \times 10^{-7})^2$$

$$\Rightarrow$$
 [Cu²⁺] = 2,3x10⁻⁶ M

[0,3 p]

Criteris de correcció

Química

Pregunta 6a

Reacció:
$$2 \text{ NO(g)} + 2 \text{ H}_2(g) \leftrightarrows \text{N}_2(g) + 2 \text{ H}_2\text{O(g)} \Delta H < 0$$

Inicial 1,0 1,0 Equilibri 1,0 - 2x 1,0 - 2x \times 2x

[0,2 p]

Dades en equilibri:

mol de
$$N_2 = 0.3$$

 $\Rightarrow x = 0.3$

Mols en equilibri:

n (NO) =
$$1.0 - 2x = 1.0 - (2 \times 0.3) = 0.4$$

n (H₂) = $1.0 - 2x = 1.0 - (2 \times 0.3) = 0.4$
n (N₂) = $x = 0.3$
n (H₂O) = $2x = 2 \times 0.3 = 0.6$

Concentracions en equilibri:

Volum = 10 L

$$[NO] = 0,4 / 10$$
 $\Rightarrow [NO] = 0,04 M$
 $[H_2] = 0,4 / 10$ $\Rightarrow [H_2] = 0,04 M$
 $[N_2] = 0,3 / 10$ $\Rightarrow [N_2] = 0,03 M$
 $[H_2O] = 0,6 / 10$ $\Rightarrow [H_2O] = 0,06 M$

[0,4 p]

Constant d'equilibri en concentracions:

$$K_c = ([N_2][H_2O]^2) / ([NO]^2 [H_2]^2)$$
 [0,2 p]

Substituïm:

$$K_c = [(0,03) \times (0,06)^2] / [(0,04)^2 (0,04)^2]$$

$$\Rightarrow K_c = 42.2$$
 [0.2 p]

• Es penalitzarà 0,1 punts, si expressen la constant d'equilibri amb unitats.

Criteris de correcció

Química

Pregunta 6b

Reacció:
$$2 \text{ NO(g)} + 2 \text{ H}_2(g) \leftrightarrows \text{N}_2(g) + 2 \text{ H}_2\text{O(g)} \qquad \Delta H < 0$$

Si volem eliminar el NO generat en un reactor químic mitjançant la reacció amb H₂ (segons la reacció anterior), hem de cercar unes condicions que desplacin al màxim l'equilibri químic d'aquesta reacció cap a la <u>formació de productes</u> (<u>desplaçar la reacció cap a la dreta</u>).

[0,2 p]

■ Si aquest raonament el fan quan justifiquen les condicions òptimes de pressió i temperatura, <u>aquests 0,2 punts queden incorporats als subapartats posteriors</u> (0,5 p + 0,5 p)

Variable temperatura: raonament

[0,4 p]

La reacció és exotèrmica ($\Delta H < 0$). Això vol dir que desprèn calor per formar els productes (desplaçar-se cap a la dreta), i absorbeix calor per a formar els reactius.

Si <u>disminuïm la temperatura</u>, estem retirant calor i afavorim la reacció cap a la dreta (formació de productes), millorant el rendiment de la reacció.

⇒ Millor treballar a temperatura baixa.

Variable pressió: raonament

[0,4 p]

Quan la pressió total del recipient augmenta, la reacció es desplaça cap a on hi ha menys mols de gasos, per assolir un nou equilibri.

En la reacció del NO amb H_2 , en els productes tenim menys mols de gasos (2+1=3) que en els reactius (2+2=4).

Per tant, si volem que la reacció es desplaci cap a la dreta (productes) caldrà augmentar la pressió.

⇒ Millor treballar a pressió alta.

Criteris de correcció

Química

Pregunta 7a

Formulació:

Monòxid de carboni: CO Diòxid de carboni CO₂

Aigua: H₂O

[-0,5 punts si no formulen bé alguna de les fórmules]

• Les fórmules són necessàries per a calcular les masses moleculars.

Relació de la velocitat de difusió dels gasos ideals i les masses moleculars [0,5 p]

La llei de Graham, sobre la difusió dels gasos ideals, ens diu que el quocient de les velocitats de difusió de dos gasos, a la mateixa pressió i temperatura, està en relació inversa a l'arrel quadrada de les seves masses moleculars.

Matemàticament: $v_1 / v_2 = (M_2 / M_1)^{1/2}$ on v_1 i v_2 són les velocitats de difusió dels gasos 1 i 2 M_1 i M_2 les masses moleculars dels gasos 1 i 2

En comparar la velocitat de difusió de diferents gasos, <u>el gas que té la massa molecular més gran té menys velocitat de difusió.</u>

Ordre de les velocitats de difusió dels gasos

[0,5 p]

En el cas dels gasos CO, CO₂ i H₂O:

 \Rightarrow $v(CO_2) < v(CO) < v(H_2O)$ (ordre creixent de velocitat de difusió)

• És correcte si ho expressen en <u>ordre decreixent</u> de velocitat de difusió:

$$v(H_2O) > v(CO) > v(\overline{CO_2)}$$

Opcional (càlculs numèrics)

$$v(CO) / v(CO2) = [M(CO2) / M(CO))]^{1/2}$$

$$\Rightarrow v(CO) / v(CO2) = (44.0 / 28.0)^{1/2} = 1.25 \Rightarrow v(CO) > v(CO2)$$

$$v(H2O) / v(CO) = [M(CO) / M(H2O))]^{1/2}$$

$$\Rightarrow v(H2O) / v(CO) = (28.0 / 18.0)^{1/2} = 1.25 \Rightarrow v(H2O) > v(CO)$$

Criteris de correcció

Química

Pregunta 7b

Volum del CO₂ si es comporta com a gas ideal

Dades: T = 273 K

p = 1,0 bar

m (massa) = 1000 g

 $R = 8.3 \times 10^{-2} \text{ bar L K}^{-1} \text{ mol}^{-1}$

Equació dels gasos ideals: $pV = nRT \implies V = nRT / p$

[0,1 p]

Calculem el nombre de mols:

$$n = 1000 \text{ g CO}_2 \text{ x } (1 \text{ mol CO}_2 / 44 \text{ g CO}_2) = 22,727 \text{ mol CO}_2$$

[0,1 p]

Substituïm les dades a l'equació dels gasos:

$$V = (22,727 \times 8,3\times 10^{-2} \times 273) / (1,0)$$

$$\Rightarrow V = 515.0 L$$

[0,2 p]

Justificació amb el model cineticomolecular dels gasos

[0,4 p]

El model cineticomolecular dels gasos considera el gas ideal format per partícules puntuals (és a dir sense volum propi), en constant moviment, que xoquen entre si elàsticament i que no s'exerceixen forces d'interacció.

El volum real de 1000 g de CO₂ (505,9 L) és menor que el volum que ocuparien 1000 g d'aquest gas si tingués un comportament de gas ideal (515,0 L).

Aquesta desviació de comportament com a gas real del CO_2 , en comparar-ho amb el comportament ideal, és deguda al fet que **no es poden negligir totalment**:

- ni el volum ocupat per les seves molècules,
- **ni les interaccions** entre elles.

Comportament del gasos reals semblant als gasos ideals

[0,2 p]

Els gasos reals s'acosten més al comportament dels gasos ideals quan estan sotmesos a **pressions baixes i temperatures altes**