Appendix 7.1

PERT and PERT Simulation Appendix 7.1

PERT—Program Evaluation Review Technique

- Assumes each activity duration has a range that statistically follows a beta distribution.
- Uses three time estimates for each activity: optimistic, pessimistic, and a weighted average to represent activity durations.
 - Knowing the weighted average and variances for each activity allows the project planner to compute the probability of meeting different project durations.

Activity and Project Frequency Distributions

Activity Time Calculations

The weighted average activity time is computed by the following formula:

$$t_e = \frac{a + 4m + b}{6} \tag{7.1}$$

where

 t_e = weighted average activity time

a = optimistic activity time (1 chance in 100 of completing the activity earlier under normal conditions)

b = pessimistic activity time (1 chance in 100 of completing the activity later under*normal*conditions)

m = most likely activity time

Activity Time Calculations (cont'd)

The variability in the activity time estimates is approximated by the following equations:

The standard deviation for the activity:

$$\sigma_{t_e} = \left(\frac{b - a}{6}\right) \tag{7.2}$$

The standard deviation for the project:

$$\sigma_{T_E} = \sqrt{\Sigma \sigma_{t_e}^2} \tag{7.3}$$

Note the standard deviation of the activity is squared in this equation; this is also called variance. This sum includes only activities on the critical path(s) or path being reviewed.

Activity Times and Variances

Activity	а	m	b	t _e	$[(b-a)/6]^2$
1-2	17	29	47	30	25
2–3	6	12	24	13	9
2–4	16	19	28	20	4
3-5	13	16	19	16	1
4–5	2	5	14	6	4
5–6	2	5	8	5	1

Hypothetical Network

Hypothetical Network (cont'd)

FIGURE A7.2 (cont'd)

Possible Project Duration

Probability project is completed before scheduled time (T_s) of 67 units

Probability project is completed by the 60^{th} unit time period (T_s)

$$Z = \frac{T_{S} - T_{E}}{\sqrt{\Sigma \sigma_{t_{e}}^{2}}}$$

$$= \frac{67 - 64}{\sqrt{25 + 9 + 1 + 1}}$$

$$= \frac{+3}{\sqrt{36}}$$

$$= +0.50$$

$$P = 0.69$$

$$Z = \frac{60 - 64}{\sqrt{25 + 9 + 1 + 1}}$$

$$= \frac{-4}{\sqrt{36}}$$

$$= -0.67$$

$$P \approx 0.25$$

$$T_{S} = 67$$

$$T_{E} = 64$$
FIGURE A7.3

Z Values and Probabilities

Probability	Z Value	Probability
.001	+0.0	.500
.003	+0.2	.579
.005	+0.4	.655
.008	+0.6	.726
.014	+0.8	.788
.023	+1.0	.841
.036	+1.2	.885
<mark>.055</mark>	+1.4	.919
.081	+1.6	.945
.115	+1.8	.964
.159	+2.0	.977
.212	+2.2	.986
.274	+2.4	.992
.345	+2.6	.995
.421	+2.8	.997
	.001 .003 .005 .008 .014 .023 .036 .055 .081 .115 .159 .212 .274	$\begin{array}{cccccccccccccccccccccccccccccccccccc$