Does Residuals-on-Residuals Regression Produce Representative Estimates of Causal Effects?

Apoorva Lal ¹ Winston Chou ²

 1 Amazon Web Services, work done while at Netflix

²Netflix

August 1, 2025

Observational Causal Inference at Netflix

- We love A/B testing at Netflix.
- However, many important questions are not directly A/B testable:
 - For example, we want to know how streaming affects subscriber retention...
 - But A/B tests can only *encourage* our members to stream.
- In general, data scientists need nimble tools to explore causal questions.
- At Netflix, we maintain an internal Observational Causal Inference platform.

Residuals-on-Residuals Regression

Initially, our platform implemented residuals-on-residuals regression (RORR):

• Suppose Y_i and T_i are determined by a Partially Linear Model (PLM),

$$Y_i = \theta T_i + g(X_i) + e_i$$
 and $T_i = h(X_i) + u_i$.

• Estimate θ by regressing $\widetilde{Y}_i = Y_i - \widehat{g}(X_i)$ on $\widetilde{T}_i = T_i - \widehat{h}(X_i)$.

Residuals-on-Residuals Regression

Initially, our platform implemented residuals-on-residuals regression (RORR):

• Suppose Y_i and T_i are determined by a Partially Linear Model (PLM),

$$Y_i = \theta T_i + g(X_i) + e_i$$
 and $T_i = h(X_i) + u_i$.

• Estimate θ by regressing $\widetilde{Y}_i = Y_i - \widehat{g}(X_i)$ on $\widetilde{T}_i = T_i - \widehat{h}(X_i)$.

Pros

- Easy to explain
- Scalable to large datasets (OLS is RORR!)
- Appropriate for many questions

Cons

 Only estimates Average Treatment Effects (ATEs) if PLM is correct

Misspecification Bias of RORR for Binary Treatments

Suppose the true model is:

$$Y_i = \frac{\theta_i}{T_i} T_i + g(X_i) + e_i, \qquad T_i \in \{0, 1\},$$

that is, treatment effects are heterogeneous and treatment is binary.

¹E.g., Angrist and Krueger 1999

Misspecification Bias of RORR for Binary Treatments

Suppose the true model is:

$$Y_i = \frac{\theta_i}{T_i} T_i + g(X_i) + e_i, \qquad T_i \in \{0, 1\},$$

that is, treatment effects are heterogeneous and treatment is binary.

The bias of $\widehat{\theta}$ relative to the ATE $E[\theta_i]$ is well understood:

- Units with more variable treatment $(\pi_i \text{ closer to } \frac{1}{2})$ receive higher weights.
- The resulting bias is proportional to the covariance between θ_i and $\pi_i(1-\pi_i)$.
- For example, if units with $\pi \approx \frac{1}{2}$ have larger θ_i , $\widehat{\theta}$ is positively biased.

Misspecification Bias of RORR for Continuous Treatments

• What about continuous treatments?

$$Y_i = f(T_i) + g(X_i) + e_i.$$

- Two potential sources of treatment effect heterogeneity:
 - **1** The dose-response function $f_i(T_i)$ may be heterogeneous.
 - 2 Even if f_i is homogeneous, nonlinearity in f also induces heterogeneity.
- We focus on the latter.

Simple Example

In many practical applications:

- Treatments are right-skewed \rightsquigarrow conditional variance of T is increasing in E[T|X].
- ullet Dose-response functions exhibit diminishing returns, so f' is decreasing in T.
- ullet RORR is variance-weighted, skewing $\widehat{ heta}$ towards f' at larger values of $T\dots$
- ... leading to attenuation bias $E[\widehat{\theta}] < E[f'(T)]$.

Bias Decomposition

Formally, the bias of RORR can be decomposed into two parts:

$$\frac{E[(T_{i} - h(X_{i}))^{2}f'(T_{i}^{*})]}{E[(T_{i} - h(X_{i}))^{2}]} - E[f'(T_{i})] \qquad (1)$$

$$= \underbrace{\frac{E[(T_{i} - h(X_{i}))^{2}f'(T_{i})]}{E[(T_{i} - h(X_{i}))^{2}]} - E[f'(T_{i})]}_{:=A}$$

$$+ \underbrace{\frac{E[(T_{i} - h(X_{i}))^{2}f'(T_{i}^{*})]}{E[(T_{i} - h(X_{i}))^{2}]} - \frac{E[(T_{i} - h(X_{i}))^{2}f'(T_{i})]}{E[(T_{i} - h(X_{i}))^{2}]}}_{:=B}$$

- A is the familiar variance-weighting bias, which also appears in the binary case.
- *B* is unique to multi-valued treatments:
 - $oldsymbol{\widehat{ heta}}$ cannot be interpreted as a weighted average of derivatives at observed treatments.
 - Instead, it is a weighted average of derivatives at interpolated treatments.

Returning to Example

- ullet The RORR estimand $E[\widehat{ heta}]$ is a weighted average of derivatives. . .
- ... evaluated on an "effective" treatment distribution that is not the observed one.

Application at Netflix

- Treatment is skewed √
- Dose-response function exhibits diminishing returns √
- \leadsto RORR skews towards higher values of t, where f' is negative.

Application at Netflix

- Treatment is skewed √
- Dose-response function exhibits diminishing returns √
- → RORR skews towards higher values of t, where f' is negative

Application at Netflix

- Treatment is skewed √
- Dose-response function exhibits diminishing returns √
- → RORR skews towards higher values of t, where f' is negative

RORR Estimate is Actually Negative

RORR	Std. Err.	95% CI
-0.0038	0.001	(-0.005, -0.002)

AIPW Yields a More Representative Estimate...

RORR	Std. Err.	95% CI
-0.0038	0.001	(-0.005, -0.002)
AIPW	Std. Err.	95% CI
5.343	0.010	(5.324, 5.362)

... While Enabling Useful Diagnostics

Figure: Balance in Pre-Treatment Outcomes After Inverse Propensity Score Weighting

Thanks!

Link to paper:

