Lab 9: BJT Amplifier Design

ECEN 325 - 511

TA: Zhiyong Zhang

Date Performed: November 9, 2021

Due Date: November 16, 2021

Purpose

The purpose of this lab was to learn how to develop a multi-stage BJT amplifier.

Calculations

$$R_{12} = (1 + 13) \left(\frac{75 \times 10}{1662} + R_{11}(R_{1}) \right)$$

$$= 100 \left(\frac{25}{17} + 110 \right) |1100 \right)$$

$$R_{12} = 5.39 \times \Omega$$

$$R_{12} = 540 \Omega$$

$$R_{12} = 540 \Omega$$

$$R_{13} = \frac{100}{100} = \frac{26}{640} = 4.81 \text{ m/s}$$

$$R_{13} = \frac{100}{100} = \frac{100}{100} = 207.9 \Omega$$

$$A_{13} = \frac{100}{100} = \frac{100}{100} = 207.9 \Omega$$

$$A_{14} = \frac{100}{100} = \frac{100}{100} = 207.9 \Omega$$

$$A_{15} = \frac{100}{100} = \frac{100}{100} = \frac{540}{1000} = \frac{540}{1000}$$

Vm = Vu - Vet - anu

= 0-66

1.38 K TOGG POLEKEZ

Simulations (on Multisim)

Schematic

DC Operating Point

A_v/R_i

Transient

Fourier

Measurements

_DC Voltages

• DC voltages in Data Tables

Network Analyzer - A_V

Network Analyzer - R_i

Transient

THD

Data Tables

	Calculations	Simulations	Measurements
Gain	20 dB	19.98 dB	28.87 dB
R_{i}	-	1.1266 kΩ	1.1215 kΩ
Transient	N/A	934 mV	1.9205 V
THD	N/A	2.3239%	3.31%

	Simulations	Measurements
$oldsymbol{ m V_{RB2}}$	3.32631 V	3.324 V
$V_{ m RE}$	4.07208 V	4.001 V
$V_{ m RC}$	2.44128 V	2.545 V
$oldsymbol{ m V_o}$	1.70035 V	1.948 V
I_{C1}	4.61384 mA	4.824 mA
I_{C2}	15.21037 mA	16.105 mA

Discussion

For lab 8, students learned to design a multi-stage BJT amplifier. Most of the values between the simulations and measurements were pretty consistent for the circuits. If there were any minor differences, that's probably because of component differences, old breadboards, or loose wires.