ByteTrack: Multi-object Tracking by Associating Every Detection Box

Presentation by: Sara Larson, Ethan Sims

The Problem

- Multi-object tracking
 - Computer vision
 - Object detection in videos
 - Application areas include:
 - Autonomous driving
 - Sports analytics
 - Surveillance
 - etc.
- Most effective paradigm is tracking-by-detection
 - Object detection on each frame
 - Use detections to guide tracking

(a) detection boxes

(b) tracklets by associating high score detection boxes

Tracking by Detection

- True positive / false positive trade off
- Eliminate low confidence boxes
 - Based on some threshold value (0.5 for image)
 - Can lead to missed objects and / or tracking inconsistencies
- Issues arise with motion blur and occlusion
 - Use previous frames to address problem

(a) detection boxes

(b) tracklets by associating high score detection boxes

Detection by Tracking

- Use tracking to help define detection boxes
- Predict tracklet locations in next frame, merge prediction with detection
- Propagate boxes between frames

(a) detection boxes

(b) tracklets by associating high score detection boxes

Key Idea

- Most approaches only keep detection boxes above some threshold
- This loses some objects that are properly tracked but with low confidence
- Keep all detection boxes and associate across all of them
 - Increase recall while maintaining precision

(a) detection boxes

(b) tracklets by associating high score detection boxes

(c) tracklets by associating every detection box

Data Association - BYTE

- Data association is the process of matching objects between frames
- BYTE is this paper's solution to this problem
 - First, associates high scoring detection boxes with tracklets
 - Some tracklets might not match
 - Then, associates low scoring detection boxes with unmatched tracklets
 - Minimizes number of unmatched tracklets
 - Removes detection boxes which are not actually objects
 - Any unmatched tracks at this point are deleted
 - Any unmatched, high scoring boxes are turned into tracks

Algorithm 1: Pseudo-code of BYTE.

```
Input: A video sequence V; object detector Det; detection score
              threshold \tau
    Output: Tracks \mathcal{T} of the video
 1 Initialization: \mathcal{T} \leftarrow \emptyset
 2 for frame f_k in V do
          /* Figure 2(a) */
          /* predict detection boxes & scores */
          \mathcal{D}_k \leftarrow \mathrm{Det}(f_k)
          \mathcal{D}_{high} \leftarrow \emptyset
          \mathcal{D}_{low} \leftarrow \emptyset
          for d in \mathcal{D}_k do
                if d.score > \tau then
                      \mathcal{D}_{high} \leftarrow \mathcal{D}_{high} \cup \{d\}
                end
 10
                else
                      \mathcal{D}_{low} \leftarrow \mathcal{D}_{low} \cup \{d\}
                end
12
          end
13
          /* predict new locations of tracks */
          for t in T do
                t \leftarrow \text{KalmanFilter}(t)
          end
          /* Figure 2(b) */
          /* first association */
          Associate \mathcal{T} and \mathcal{D}_{high} using Similarity#1
          \mathcal{D}_{remain} \leftarrow \text{remaining object boxes from } \mathcal{D}_{high}
          \mathcal{T}_{remain} \leftarrow \text{remaining tracks from } \mathcal{T}
          /* Figure 2(c) */
          /* second association */
          Associate \mathcal{T}_{remain} and \mathcal{D}_{low} using similarity#2
          \mathcal{T}_{re-remain} \leftarrow \text{remaining tracks from } \mathcal{T}_{remain}
          /* delete unmatched tracks */
         \mathcal{T} \leftarrow \mathcal{T} \setminus \mathcal{T}_{re-remain}
          /* initialize new tracks */
          for d in \mathcal{D}_{remain} do
                \mathcal{T} \leftarrow \mathcal{T} \cup \{d\}
24
25
          end
26 end
27 Return: T
```

Track rebirth [70,89] is not shown in the algorithm for simplicity. In green is the key of our method.

Similarity Between Tracklets and Detection Boxes

- New tracklet positions estimated with Kalman Filter
- First: Similarity with high scoring boxes
 - IoU Matching: Intersection over Union
 - Measures overlap of predicted tracklets and the detection boxes
 - Re-ID: neural network for re-identifying people from an image
 - Hungarian Algorithm
 - Algorithm for finding optimal matches based on IoU or Re-ID
 - $O(n^3)$

Similarity Between Tracklets and Detection Boxes

- Second: Similarity with low scoring boxes
 - Typically associated with motion blur or occlusion, so Re-ID doesn't work well
 - IoU alone is used for Hungarian Algorithm

The Full Tracker

- Each frame is given to YOLOX, which returns detection boxes
- BYTE uses these detection boxes and existing tracklets to determine which detection boxes are accurate enough to keep
- Accurate detection boxes are then used to update or create tracklets

Experiments - Datasets

- Training
 - MOT17
 - MOT18
 - CrowdHuman
 - Cityperson
 - ETHZ
- Testing
 - MOT17
 - HiEve
 - BDD100K

All datasets similar

- Crowded places
- Humans are objects of interest
- Mix of indoor and outdoor
- BDD100K includes more than just humans as objects of interest

Experiments - Metrics

- MOTA (Multiple Object Tracking Accuracy)
 - Measures overall accuracy considering:
 - Missed detections
 - False positives
 - ID mismatches
- IDF1 (Identification F1 Score)
 - Measures how well a tracker maintains identity of objects over time
 - True positives
 - False positives
 - False negatives
 - Missed objects

- HOTA (Higher Order Tracking Accuracy)
 - Balances:
 - Detection accuracy (finding objects)
 - Association accuracy (tracking objects)

Experiments - Hardware and Details

Training

- Done on 8 NVIDIA Tesla V100 GPUs
- Batch size: 48
- ~12 hours training time
- SGD (Stochastic Gradient Descent) optimization algorithm

Evaluation

- Single NVIDIA Tesla V100 GPU
- FPS measured with FP16-precision
 - 16-bit floating point
- Image size: 1440x800

NVIDIA Tesla V100

Experiments - Similarity Metrics

- Comparison of different similarity metrics in BYTE algorithm
 - Similarity#1 used for high-scoring detection boxes
 - Similarity#2 used for low-scoring detection boxes

			MOT17			BDD100K	
Similarity#1	Similarity#2	$MOTA\uparrow$	IDF1↑	IDs↓	$mMOTA \!\!\uparrow$	mIDF1↑	$\mathrm{IDs}\!\!\downarrow$
IoU	Re-ID	75.8	77.5	231	39.2	48.3	29172
IoU	IoU	76.6	79.3	159	39.4	48.9	27902
Re-ID	Re-ID	75.2	78.7	276	45.0	53.4	10425
Re-ID	IoU	76.3	80.5	216	45.5	54.8	9140
		Tracking Accuracy	Identity Preservation	ID Switches	BDD100K	BDD100K	BDD100K

Again:

- IoU = Intersection over Union, between existing tracklet and detection box
- Re-ID = Compares appearance of detected object to tracklet's previous frames

Experiments - Other Approaches

Comparison of performance to other approaches

			MOT17			BDD100K		
Method	w/ Re-ID	$MOTA\uparrow$	IDF1↑	$\mathrm{IDs}\!\!\downarrow$	mMOTA↑	mIDF1↑	IDs↓	FPS
SORT		74.6	76.9	291	30.9	41.3	10067	30.1
DeepSORT	✓	75.4	77.2	239	24.5	38.2	10720	13.5
MOTDT	\checkmark	75.8	77.6	273	26.7	39.8	14520	11.1
BYTE (ours)		76.6	79.3	159	39.4	48.9	27902	29.6
BYTE (ours)	\checkmark	76.3	80.5	216	45.5	54.8	9140	11.8

Uses re-identification

Sort: No deep learning, prone to identity switches DeepSORT: Uses deep learning, appearance cues MOTDT: Uses appearance and motion cues Re-identification: continue identifying an object even if it temporarily disappears across frames

Experiments - Detection Score Threshold

- Comparison of performance with different detection score thresholds
 - Shows BYTE is more robust and consistent

"Detection score threshold, τhigh, is a sensitive hyper-parameter and needs to be carefully tuned in the task of multi-object tracking"

Experiments - Analysis On Low Score Detection Boxes

- TP_all (True Positive) and FP_all (False Positive) cover all low-score detection boxes
- TP_BYTE and FP_BYTE cover those that don't get eliminated in BYTE

Experiments - Benchmarks (MOT17)

- Best in all accuracy metrics
- Best in framerate (fastest)
- Not the best in false positives
 - Likely due to considering more of the low-scoring detections (which traditional methods reject)

Tracker	MOTA↑	IDF1↑	НОТА↑	FP↓	FN↓	IDs↓	FPS↑
DAN [61]	52.4	49.5	39.3	25423	234592	8431	< 3.9
Tube_TK [46]	63.0	58.6	48.0	27060	177483	4137	3.0
MOTR [80]	65.1	66.4	2	45486	149307	2049	-
CTracker [48]	66.6	57.4	49.0	22284	160491	5529	6.8
CenterTrack [89]	67.8	64.7	52.2	18498	160332	3039	17.5
QuasiDense [47]	68.7	66.3	53.9	26589	146643	3378	20.3
TraDes [71]	69.1	63.9	52.7	20892	150060	3555	17.5
MAT [25]	69.5	63.1	53.8	30660	138741	2844	9.0
SOTMOT [87]	71.0	71.9	~	39537	118983	5184	16.0
TransCenter [75]	73.2	62.2	54.5	23112	123738	4614	1.0
GSDT [67]	73.2	66.5	55.2	26397	120666	3891	4.9
Semi-TCL [32]	73.3	73.2	59.8	22944	124980	2790	-
FairMOT [85]	73.7	72.3	59.3	27507	117477	3303	25.9
RelationTrack [78]	73.8	74.7	61.0	27999	118623	1374	8.5
PermaTrackPr [63]	73.8	68.9	55.5	28998	115104	3699	11.9
CSTrack [33]	74.9	72.6	59.3	23847	114303	3567	15.8
TransTrack [59]	75.2	63.5	54.1	50157	86442	3603	10.0
FUFET [54]	76.2	68.0	57.9	32796	98475	3237	6.8
SiamMOT [34]	76.3	72.3	-	=	70	ā	12.8
CorrTracker [65]	76.5	73.6	60.7	29808	99510	3369	15.6
TransMOT [15]	76.7	75.1	61.7	36231	93150	2346	9.6
ReMOT [76]	77.0	72.0	59.7	33204	93612	2853	1.8
ByteTrack (ours)	80.3	77.3	63.1	25491	83721	2196	29.6

Experiments - Benchmarks (MOT20)

- Similar performance to MOT17
- MOT20 presents much more crowded areas
 - More opportunities for occlusion
 - Average number of pedestrians in an image is 170

Tracker	МОТА↑	IDF1↑	$HOTA \uparrow$	$\text{FP}\!\!\downarrow$	$FN\downarrow$	$\text{IDs}{\downarrow}$	FPS↑
MLT [83]	48.9	54.6	43.2	45660	216803	2187	3.7
FairMOT [85]	61.8	67.3	54.6	103440	88901	5243	13.2
TransCenter [75]	61.9	50.4	-	45895	146347	4653	1.0
TransTrack [59]	65.0	59.4	48.5	27197	150197	3608	7.2
CorrTracker [65]	65.2	69.1	-	79429	95855	5183	8.5
Semi-TCL [32]	65.2	70.1	55.3	61209	114709	4139	_
CSTrack [33]	66.6	68.6	54.0	25404	144358	3196	4.5
GSDT [67]	67.1	67.5	53.6	31913	135409	3131	0.9
SiamMOT [34]	67.1	69.1		-	2	=	4.3
RelationTrack [78]	67.2	70.5	56.5	61134	104597	4243	2.7
SOTMOT [87]	68.6	71.4	-	57064	101154	4209	8.5
ByteTrack (ours)	77.8	75.2	61.3	26249	87594	1223	17.5

Experiments - Benchmarks (HiEve = Human in Events)

- More complex events and more diverse cameras than MOT17 and 20
- Similar performance

Tracker	MOTA↑	IDF1↑	MT↑	$ML\downarrow$	FP↓	FN↓	IDs↓
DeepSORT [70]	27.1	28.6	8.5%	41.5%	5894	42668	2220
MOTDT [12]	26.1	32.9	8.7%	54.6%	6318	43577	1599
IOUtracker [7]	38.6	38.6	28.3%	27.6%	9640	28993	4153
JDE [69]	33.1	36.0	15.1%	24.1%	9526	33327	3747
FairMOT [85]	35.0	46.7	16.3%	44.2%	6523	37750	995
CenterTrack [89]	40.9	45.1	10.8%	32.2%	3208	36414	1568
ByteTrack (Ours)	61.7	63.1	38.3%	21.6%	2822	22852	1031

MT = Mostly Tracked, higher MT score indicates that the tracker successfully follows objects for most of their existence ML = Mostly Lost, lower ML score means fewer objects are lost early, which indicates better tracking performance

Experiments - Benchmarks (BDD100K)

- Driving Video Dataset (Autonomous Vehicles)
- Multiclass object tracking
- Similar performance
- Worse for IDF1 than ODTrack

Tracker	split	$mMOTA \!\!\uparrow$	$mIDF1 \!\!\uparrow$	$MOTA \!\!\uparrow$	$IDF1 \!\!\uparrow$	FN↓	FP↓	IDs↓	$MT\!\!\uparrow$	$ML\!\!\downarrow$
Yu et al. [79]	val	25.9	44.5	56.9	66.8	122406	52372	8315	8396	3795
QDTrack [47]	val	36.6	50.8	63.5	71.5	108614	46621	6262	9481	3034
ByteTrack(Ours)	val	45.5	54.8	69.1	70.4	92805	34998	9140	9626	3005
Yu et al. [79]	test	26.3	44.7	58.3	68.2	213220	100230	14674	16299	6017
DeepBlueAI	test	31.6	38.7	56.9	56.0	292063	35401	25186	10296	12266
madamada	test	33.6	43.0	59.8	55.7	209339	76612	42901	16774	5004
QDTrack [47]	test	35.5	52.3	64.3	72.3	201041	80054	10790	17353	5167
ByteTrack(Ours)	test	40.1	55.8	69.6	71.3	169073	63869	15466	18057	5107

Strengths

- Handles occlusion and motion blur very well
 - Through inclusion of lower confidence components
 - Common in video tracking
- Reduces false negatives substantially
 - Matching low confidence with existing tracklets
- Highly accurate
 - Outperforms previous methods on examined benchmarks
- Simple and fast
 - Can be integrated into existing pipelines without major overhead

Weaknesses

- More false positives
 - Double-edged sword of including lower confidence detections
 - Noisy and occluded areas inherently tricky, especially in extreme conditions
- More prone to ID switching / mismatching
 - Incorrect associations in complex or cluttered scenes
- Not as strong in multi-class tracking scenarios
 - ByteTrack primarily designed for single-class tracking, where all objects belong to one class (tracking pedestrians, cars, etc.)

Suggestions for Improvement

- Look into different similarity metrics for Similarity#1 and Similarity#2 in the BYTE algorithm
 - Current metrics (IoU, Re-ID) could be suboptimal for types of objects being tracked
- Experiment with other detectors
 - ByteTrack performance heavily dependent on detection algorithm
 - This paper used YOLOX
- Explore more optimizations in multi-class scenarios
 - One example: class-specific tracking algorithms

Our Project

- NVIDIA Xavier NX
 - Xavier: Computing platform designed for AI, robotics, embedded systems
 - Combines ARM-based CPU and NVIDIA GPU
 - Compare Symmetric CPU and GPU
 - CPU → Sequential processing
 - GPU → Parallelize detection and tracking tasks
- Measurements for varying input sizes
 - Framerate
 - FPS on CPU and GPU
 - Power usage
 - MOTA, IDF1, HOTA
 - Accuracy, Consistency, Accuracy and Consistency over time

