TFE4146 - Semiconductor Devices - Fall 2023

Problem Set 7

Peter Pham

2023-10-27

Contents

Problem 1	3
Problem 2	5
Problem 3 - Narrow base diode	6

Problem 1

The component in figure 1 consists of an n-type semiconductor with uniform doping and ohmic contacts at the ends (top/bottom) and sharp (abrupt) $p^+ - n$ junctions with ohmic contacts at the edges. The length of the p^+ regions is L and the istance between these region is marked by d.

- a) Assume that the terminals E-C and B-D are connected, and that $d >> L_p^{-1}$.
- i) What standard semiconductor device does the figure represent under these conditions?

This is a pn junction

ii) Sketch the current I_{EB} as a function of applied voltage V_{EB} between the connected terminal pairs E-C and B-D

- b) Assume now that only the terminals E-C are connected. Assume bias voltage $V_{\it BD}>0$ and $V_{\it EB}<0$.
- i) What standard semiconductor device does the figure represent under these conditions?

JFET

- ii) Sketch the current I_D as a function of the applied voltage V_{DB} for different levels of V_{EB}
- iii) Indicate in the sketched I-V characteristics the effect of avalanche breakdown in the two $p^{+}-n$ junctions.

Problem 2

Draw a simple schematic of a MOSFET with n^+ wells in a p-type substrate. The gate electrode is made of n^+ -polysilicon and is separated from the substrate by a thin ${\rm SiO_2}$ layer. Draw the corresponding band diagram from source to drain in the two scenarios

i) No gate Voltage

ii) $V_G > V_T$

Figure 1: stippled is when $V_G > V_T$

Problem 3 - Narrow base diode

