Diffusion Model and ODE/Flows

Lecture 10

18-789

Common Questions in Homework

VAE loss functions

Common Questions in Homework

- (Vanilla) GAN loss functions
 - They are not very informative!

"Deep Unsupervised Learning using Nonequilibrium Thermodynamics" 2015 "Denoising Diffusion Probabilistic Models" 2020 "Score-Based Generative
Modeling through Stochastic
Differential Equations"
2021

"Flow Matching for Generative Modeling" 2023

• Training: Denoising objective

- Training: Denoising objective
- Inference: Iterative denoising

Training: Denoising score matching

$$s_{\theta}(x;t) = \nabla_x \log p_t(x)$$

Training: Denoising score matching

• Inference: Solve an SDE

$$d\mathbf{x} = (f(\mathbf{x}, t) - g(t)^2 \mathbf{s}_{\theta}(\mathbf{x}; t)) dt + g(t) d\overline{\mathbf{w}}$$

Diffusion Model is an ODE

• Every SDE has a corresponding "probability flow" ODE that has the same marginal distribution at all time t.

SDE:
$$d\mathbf{x} = (f(\mathbf{x}, t) - g(t)^2 \nabla_x \log p_t(\mathbf{x})) dt + g(t) d\overline{\mathbf{w}}$$

ODE:
$$d\mathbf{x} = (f(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_x \log p_t(\mathbf{x}))dt$$

ODE: a deterministic interpretation

- The forward process determines a vector field/flow that connect Gaussian and data distribution. (ODE = flow = vector field = velocity)
- Training: estimate the vector field/tangents of flows.

ODE: a deterministic interpretation

- The forward process determines a vector field/flow that connect Gaussian and data distribution. (ODE = flow = vector field = velocity)
- Training: estimate the vector field/tangents of flows.
- Inference: solve an ODE
 - DDIM [Song 2020]
 - Exponential Integrator [Zhang 2022]
 - DPM-Solver [Lu 2022]
 - Open the door to distillation sampling in **one** step!

Remember: Continuous Normalizing Flows

- Sampling is the same (solving an ODE defined by a neural network)
- Training of CNF is slow:

•
$$\log p(x_0) = \log p(x_1) + \int_0^1 \operatorname{Trace}\left(\frac{\partial f}{\partial z_t}\right) dt$$

•
$$x_1 = x_0 + \int_0^1 f(x_t, t) dt$$
 \int is slow

• Training Diffusion is much more efficient

ODE allows exact likelihood evaluation

•
$$\log p(x_0) = \log p(x_1) + \int_0^1 \text{Trace}\left(\frac{\partial f}{\partial z_t}\right) dt$$

Normalizing Flows

Diffusion (VAE interpretation)

Autoregressive Models

Diffusion (ODE interpretation)

Table 2: NLLs and FIDs (ODE) on CIFAR-10.

	Model	NLL Test ↓	FID ↓
آ	RealNVP (Dinh et al., 2016)	3.49	_
	iResNet (Behrmann et al., 2019)	3.45	-
	Glow (Kingma & Dhariwal, 2018)	3.35	-
ł	MintNet (Song et al., 2019b)	3.32	-
	Residual Flow (Chen et al., 2019)	3.28	46.37
	FFJORD (Grathwohl et al., 2018)	3.40	-
L	Flow++ (Ho et al., 2019)	3.29	-
	DDPM (L) (Ho et al., 2020)	$\leq 3.70^*$	13.51
L	DDPM (L_{simple}) (Ho et al., 2020)	$\leq 3.75^*$	3.17
٢	PixelCNN (Oord et al., 2016)	3.03	
	PixelCNN++ (Salimans et al., 2017)	2.92	
ł	Image Transformer (Parmar et al., 20	018 2.90	
	PixelSNAIL (Chen et al., 2017)	2.85	
L	Sparse Transformer 59M (strided)	2.80	
_	DDPM	3.28	3.37
	DDPM cont. (VP)	3.21	3.69
	DDPM cont. (sub-VP)	3.05	3.56
Į.	DDPM++ cont. (VP)	3.16	3.93
	DDPM++ cont. (sub-VP)	3.02	3.16
	DDPM++ cont. (deep, VP)	3.13	3.08
L	DDPM++ cont. (deep, sub-VP)	2.99	2.92

Let's further simplify it!

ODE:
$$dx_t = (f(x,t) - \frac{1}{2}g(t)^2\nabla_x \log p_t(x))dt$$
 ... why not just learn this?

 $f, g, \nabla_x \log p_t(x)$ all come from the SDE interpretation, do we still need them if we only care about the corresponding ODE?

No!

Flow Matching: a simplified perspective

Diffusion Models:

• Predetermine a flow that transports noise to data (by setting f, g):

$$dx_t = (f(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_x \log p_t(x))dt$$

- Train a neural network to approximate the score: $s_{\theta}(x;t) \approx \nabla_x \log p_t(x)$
- Flow Matching:
 - Predetermine a flow $u_t(x)$ that transports noise to data:

$$dx_t = u_t(x)dt$$

• Train a neural network to approximate the velocity: $v_t^{\theta}(x) \approx u_t(x)$ (flow/vector field)

Flow Matching

Flow Matching

Given a vector field $u_t(x)$ that transports the density p_0 to p_1 , we train a NN to regress the vector field:

$$\min_{\theta} \mathbb{E}_{t, x \sim p_t(x)} \left\| v_t^{\theta}(x) - u_t(x) \right\|^2$$

 \odot We don't know $u_t(x)$

(Conditional) Flow Matching

Construct *conditional* vector fields that are known! e.g., linear interpolation

$$\min_{\theta} \mathbb{E}_{t, x \sim p_{t}(x)} \| v_{t}^{\theta}(x) - u_{t}(x) \|^{2}$$

$$= \min_{\theta} \mathbb{E}_{t, x_{0}, x \sim p_{t}(x|x_{0})} \| v_{t}^{\theta}(x) - u_{t}(x|x_{0}) \|^{2}$$

Denoising score matching

$$\mathbb{E}_{\tilde{x} \sim p(\tilde{x}|x), x \sim p(x)} \|s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log p(\tilde{x})\|^{2}$$

$$= \mathbb{E}_{\tilde{x} \sim p(\tilde{x}|x), x \sim p(x)} \|s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log p(\tilde{x}|x)\|^{2} + C$$

VAE derivation: $\log \frac{p_{\theta}(x_{t-1}|x_t)}{q(x_t|x_{t-1})} \Rightarrow \log \frac{p_{\theta}(x_{t-1}|x_t)}{q(x_t|x_{t-1},x_0)}$

Marginalization

Sampling by solving an ODE

Example: Linear Interpolation Flow Matching

- Sample $x_0 \sim p_{data}$, $x_1 \sim N(0, I)$, $t \sim \text{Uniform}(0, 1)$
- Create $x_t = (1 t)x_0 + tx_1$
- Target vector is $u_t(x|x_0) = x_0 x_1$
- Train the model $v_t^{\theta}(x)$ with the regression loss:

$$||v_t^{\theta}(x) - (x_0 - x_1)||^2$$

Question: Is the target vector field $u_t(x)$ always straight?

Diffusion is Flow Matching

- Create "noisy" data:
 - Flow matching: $x_t = (1 t)x_0 + t \cdot \epsilon$
 - Diffusion: $x_t = \sqrt{\alpha_t}x_0 + \sqrt{1 \alpha_t}\epsilon$
 - More generally: $x_t = \alpha_t x_0 + \sigma_t \epsilon$

- Flow matching: regressing the target $(x_0 \epsilon)$
- Diffusion: normally regressing ϵ , but remember
 - \tilde{x}_{t-1} , x_0 , ϵ or any of their linear combinations are equivalent targets
 - Including $x_0 \epsilon$!

Question: What's the benefit of the Flow Matching interpretation?

Non-Gaussian Flow Matching

 $p_0 = p_{\text{cat}}$

 $p_1 = p_{\text{cat}}$

Diffusion Models

What we haven't covered about Diffusion

- Distillation (guest lecture on March 24)
- Scaling up, applications in visual generation (this Wednesday)
- The coarse-to-fine interpretation: diffusion is spectral autoregression
- Diffusion for discrete data (e.g., Language Modeling): blog

Iterative refinement

is what made GenAl really took off!

- Break the generation into many simpler steps (Divide-and-conquer)
- Provide supervision at each step
- Share model parameters across all steps

5 Minute Quiz

• On Canvas

• Passcode: pooh

