$\underset{\mathrm{Corrig\acute{e}}}{\operatorname{Polynômes}}$

DARVOUX Théo

Mars 2023

E	xercices.	
	Exercice 21.1	2
	Exercice 21.3	2

On note $I =]-\frac{\pi}{2}, \frac{\pi}{2}[.$

1. Montrer que pour tout $n \in \mathbb{N}$, il existe un polynôme $P_n \in \mathbb{R}[X]$ tel que

$$\forall x \in I, \ \tan^{(n)}(x) = P_n(\tan(x)).$$

- 2. Montrer qu'un tel polynôme P_n est unique.
- 3. Donner pour tout entier n le degré et le coefficient dominant de P_n .
- 4. Démontrer que pour tout entier naturel n, les coefficients de P_n sont des entiers.
- 1. Pour $n \in \mathbb{N}$, on note l'énoncé H_n . Montrons le par récurrence.

C'est vrai pour n=0: $\forall x \in I$, $\tan(x)=X(\tan(x))$.

Soit $n \in \mathbb{N}$ tel que H_n .

On a $\tan^{(n+1)}(x) = (1 + \tan^2(x))P'_n(\tan(x))$ donc $P_{n+1} = (1 + X^2)P'_n$

Alors H_{n+1} est vraie et $\forall n \in \mathbb{N}, H_n$ par récurrence.

- 2. Supposons qu'il en existe un autre, Q_n , on a $\forall x \in I$, $P_n(\tan x) Q_n(\tan x) = 0$: rigidité des polynômes.
- 3. Pour $n \in \mathbb{N}$, on note H_n : $(\deg(P_n) = n + 1, \operatorname{cd}(P_n) = n!)$.

C'est vrai pour n=0.

Soit $n \in \mathbb{N}$ tel que H_n .

On a $P_{n+1} = (1 + X^2)P'_n$ donc $\deg(P_{n+1}) = \deg(P_n) - 1 + 2 = n + 1$ car $\deg(P_n) \ge 0$.

On a $cd(P_{n+1}) = cd(P'_n) = (n+1) \cdot cd(P_n) = (n+1)!$

Alors H_{n+1} est vraie et $\forall n \in \mathbb{N}, H_n$ par récurrence.

4. Pour $n \in \mathbb{N}$, on note l'énoncé H_n .

C'est vrai pour n = 0.

Soit $n \in \mathbb{N}$ tel que H_n . On note $(\alpha_k)_{k \in \mathbb{N}}$ les coefficients de P_n , entiers.

On a
$$P_{n+1} = (1+X^2)P'_n = (1+X^2)\sum_{k=0}^n (k+1)\alpha_{k+1}X^k = \sum_{k=0}^n (k+1)\alpha_{k+1}X^k + \sum_{k=2}^{n+2} (k-1)\alpha_{k-1}X^k$$
. Les coefficients de P_{n+1} sont donc des sommes et produits d'entiers, donc sont des entiers.

Par récurrence, $\forall n \in \mathbb{N}, H_n$ est vrai.

Trouver tous les polynômes P de $\mathbb{R}[X]$ tels que $4P = (P')^2$.

Soit P un tel polynôme on suppose P non constant.

On a $\deg(P) = 2 \cdot (\deg(P) - 1)$ donc $\deg(P) = 2 \deg(P) - 2$ donc $\deg(P) = 2$.

Alors $\exists (a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2 \mid P = aX^2 + bX + c$.

Donc $4a^2X^2 + 4abX + b^2 = 4aX^2 + 4bX + 4c$ donc $4a^2 = 4a$, ab = b et $b^2 = 4c$.

Alors $a = 1, b \in \mathbb{R}$ et $c = \frac{b^2}{4}$.

Les solutions sont donc dans $\{0\} \cup \{X^2 + bX + \frac{b^2}{4} \mid b \in \mathbb{R}\}.$