Università degli Studi di Parma - C. L. in Ingegneria I. E. T. Analisi Matematica - Prof. Domenico Mucci Esercizi proposti sul cap.2: Numeri complessi

Numeri complessi

Calcolate $2z + i\bar{z} + (3 - i)z^2 + z^3$ sapendo che z = 1 + i.

Calcolate
$$\frac{\mathbf{i}\bar{z} + 2z}{z - 3\mathbf{i}}$$
 sapendo che $z = \mathbf{i} - 2$.

Calcolate
$$\Im\left(\mathbf{i}z\bar{z} + \frac{|z|^2}{z}\right)$$
 sapendo che $z = 2 + \mathbf{i}$.

Calcolate la parte reale, la parte immaginaria e il modulo di $z=(3+\mathbf{i})(\mathbf{i}-1)-\overline{(1+\mathbf{i})}$.

Trovate le soluzioni dell'equazione $|z + \mathbf{i}| = |\overline{z} + 1 - \mathbf{i}|$.

Esprimete in forma trigonometrica i numeri complessi $3 + \sqrt{3}\mathbf{i}$, $4\mathbf{i}$, $2 - 2\mathbf{i}$, $-\sqrt{2} + \sqrt{6}\mathbf{i}$.

Esprimete in forma algebrica e disegnate nel piano di Gauss il numero complesso che ha modulo ρ e argomento θ , dove

i)
$$\rho = 2 e \theta = 11\pi/6$$

ii)
$$\rho = 3 \ e \ \theta = 7\pi/3$$

iii)
$$\rho = \sqrt{2} e \theta = 7\pi/2$$
.

Trovate tra i numeri complessi di modulo 1 quello più distante da 3 + 4i.

Calcolate il cubo e la settima potenza di $z = -1 + \sqrt{3}\mathbf{i}$, esprimendo poi il risultato sia in forma trigonometrica che in forma algebrica.

Posto $z = 1 - \mathbf{i}$, calcolate $\bar{z} z^{11}$.

- (*) Trovate un intervallo di ampiezza $\pi/6$ al quale appartengono i numeri arg min(9+7i) e arg min(-59+91i).
- (*) Verificate infine che se $z = 3087 4012\mathbf{i}$ e $w = 401 + 399\mathbf{i}$, il loro prodotto zw ha modulo circa tre milioni e parte reale positiva.