Representing Linear Maps through Matrices

Definition 1 Let V, W be finite dimensional vector spaces. Let $\alpha = \{v_1, ..., v_m\}$ be a basis for V and $\beta = \{w_1, ..., w_n\}$ be a basis for W. Let T be a linear map $T: V \to W$. We define a matrix representing T, to be a grid of numbers with n rows and m columns $\beta \mathcal{M}_{\alpha}(T)$ where the entry in the ith row and jth column $c_{ij} = (\beta \mathcal{M}_{\alpha}(T))_{ij}$ is defined via:

$$Tv_j = c_{1j}w_1 + \dots + c_{ij}w_i + \dots + c_{nj}w_n = \sum_{i=1}^n c_{ij}w_i$$
(1)

We can now derive the rules for applying a matrix to a vector. Compute the expansion coefficients in the basis β of Tv for $v = a_1v_1 + ... + a_mv_m$ to be:

$$Tv = b_1 w_1 + \dots + b_n w_n$$

Where

$$b_i = \sum_{j=1}^m c_{ij} a_j$$

Now we let U be a vector space with basis $\gamma = \{u_1, ..., u_l\}$. Let $S: W \to U$ be a linear map. We want to define matrix multiplication such that:

$${}_{\gamma}\mathcal{M}_{\alpha}(S \circ T) = {}_{\gamma}\mathcal{M}_{\beta}(S) \cdot {}_{\beta}\mathcal{M}_{\alpha}(T) \tag{2}$$

Let $c_{ij} = ({}_{\gamma}\mathcal{M}_{\alpha}(S \circ T))_{ij}$ Let $a_{ij} = ({}_{\beta}\mathcal{M}_{\alpha}(T))_{ij}$ Let $b_{ij} = ({}_{\gamma}\mathcal{M}_{\beta}(S)_{ij}$

Compute that

$$c_{ij} = \sum_{k=1}^{n} b_{ik} a_{kj} \tag{3}$$

It is easy to see that to change the input or output basis, you can multiply from left/right by identity martrix in appropriate basis:

$$_{\beta'}\mathcal{M}_{\alpha'}(T) = _{\beta'}\mathcal{M}_{\beta}(Id) \cdot _{\beta}\mathcal{M}_{\alpha}(T) \cdot _{\alpha}\mathcal{M}_{\alpha'}(Id) \tag{4}$$