PRODUCTION OF HYDRAULIC COMPOSITION AND CURED PRODUCT

Publication number: JP4260645 Publication date: 1992-09-16

Inventor:

NAKAMURA NOBUYUKI; KAMURA HISAYA;

KATAYAMA HARUO

Applicant:

NIPPON KOKAN KK

Classification:

- international: C04B14/42; C04B16/06; C04B18/14; C04B20/00;

C04B28/04; C04B28/08; C04B40/02; C04B14/38; C04B16/00; C04B18/04; C04B20/00; C04B28/00; C04B40/02; (IPC1-7): C04B14/42; C04B16/06; C04B18/14; C04B20/00; C04B28/04; C04B28/08;

C04B40/02

- European:

Application number: JP19910018776 19910212 Priority number(s): JP19910018776 19910212

Report a data error here

Abstract of JP4260645

PURPOSE: To provide a composition giving extruded products excellent in flexural strengths and impact resistance by adding an organic thickener, (in)organic fibers, etc., to a mixture of blast furnace slag powder having a relatively coarse particle distribution with a cement. CONSTITUTION:A hydraulic composition comprises 70-10wt.% of a cement (e.g. Portland cement) and 30-90wt.% of a blast furnace glassy slag powder comprising 0-30wt.% of particles having the maximum size of <=500mum and a size of 100-500mum, 15-50wt.% of particles having a size of >=50mum, 65-85wt.% of particles having a size of >=10mum, 80-90wt.% of particles having a size of 5mum and 90-99wt.% of particles having a size of >=1mum as shown in the oblique line region of the figure. 100 pts.wt. of the hydraulic composition is compounded with 0.1-5 pts.wt. of an organic thickening agent (e.g. methyl cellulose) and, if necessary, with 0.001-5.26 pts.wt. of inorganic or organic fibers having a diameter of 1-100mum and a length of 1-20mm to provide the composition for extrusion.

Data supplied from the esp@cenet database - Worldwide

English Translation-in-part of Japanese Unexamined Patent Publication No. 260645/1992

[Title of the Invention]

Production of hydraulic inorganic hardened molded form

[Detailed description of the invention]
[0001]

[Technical field of the invention]

This invention is concerning about the production of hydraulic inorganic hardened molded form. For more detail, this invention is concerning about the new manufacturing method of cement-based inorganic hardened molded form which has high flowability, uniformed filling property, shortened molding time

English Translation-in-part of Japanese Unexamined Patent Publication No. 260645/1992

[Title of the Invention]

Production of hydraulic composition and cured product

[Claim 2]

A hydraulic composition according to Claim 1, comprises a blast furnace glassy slag powder comprising 0-30wt.% of particles having the maximum size of <=500mum and a size of 100-500mum, 15-50wt.% of particles having a size of >=50mum, 65-85wt.% of particles having a size of >=10mum, 80-90wt.% of particles having a size of 5mum and 90-99wt.% of particles having a size of >=1mum.

(Claim 7)

A method for manufacturing the cured product according to Claim 1, 2, 3, 4 or 5, containing a curing process by autoclave at 150-210 degree centigrade under the saturated vapor pressure.

English Translation-in-part of Japanese Unexamined Patent Publication No. 260645/1992

[Title of the Invention]

Formed body of hydraulic composition

[Claim 4]

A formed body of hydraulic composition according to Claims 1-3, comprises a metal coating or a metal compound which are formed by the wet thin coating, thermal spray thin coating, vacuum deposition, spattering, chemical deposition, ion plating, and activated reactive deposition method.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-260645

(43)公開日 平成4年(1992)9月16日

(51) Int.Cl. ⁵ C 0 4 B	28/04 14/42 16/06 18/14 20/00	識別記号 B B A	B 2102-4G	F I	技術表示箇所
	20700		. 2102 10	審查請求 未請求	計球項の数7(全 6 頁) 最終頁に続く
(21) 出顧番号	}	特顯平3-18776		(71)出願人	000004123 日本網管株式会社
(22) 出顧日		平成3年(1991)2	2月12日	(72) 発明者	東京都千代田区丸の内一丁目1番2号 中村 保行 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内
				(72) 発明者	加村 久哉 東京都千代田区丸の内一丁目1番2号 日 本郷管株式会社内
				(72)発明者	片山 治男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内
			:	(74)代理人	弁理士 田中 政浩

(54) 【発明の名称】 水硬性組成物及び硬化体の製造方法

(57) 【要約】

【構成】粒径が $50\,\mu$ m以上のものが高炉スラグ粉末の $15\sim50$ 重量%、 $5\,\mu$ m未満のものが $10\sim20$ 重量%、そして残余の粒径が $50\,\mu$ m未満 $5\,\mu$ m以上であるガラス質の高炉スラグ粉末とセメントからなる水硬性組成物。

[効果] 従来セメント用等に用いられていたガラス質の高炉スラグ粉末及びそれよりも粗いスラグ粉末を大量に使用することができ、それにもかかわらず硬化体の強度を高めることができる。セメントの使用量を水硬性組成物の10~50重量%に節減でき、全体として安価で高強度品が得られる。

20

「神子は、」をなべていっていて

【請求項1】 粒径が50μm以上のものが高炉スラグ粉末の15~50重量%、5μm未満のものが10~20重量%、 そして残余の粒径が50μm未満5μm以上であるガラス 質の高炉スラグ粉末とセメントからなる水硬性組成物

【請求項2】 ガラス質の高炉スラグ粉末の最大粒径が500μm以下であって、粒径が100μm以上500μm以下のものが高炉スラグ粉末の0~30重量%、50μm以上のものが15~50重量%、10μm以上のものが65~85重量%、5μm以上のものが80~90重量%、そして1μm以 10上のものが90~99重量%である請求項1に記載の水硬性組成物

【請求項3】 ガラス質の高炉スラグ粉末が水硬性組成物の30~90重量%で残部がセメントである請求項1に記載の水硬性組成物

【請求項4】 請求項1に記載の水硬性組成物に有機質 増粘剤と水を配合してなる水硬性の押出成形用組成物

【請求項5】 少なくとも無機短線維又は有機短線維を 含有してなる請求項4に記載の水硬性の押出成形用組成 め

【請求項6】 請求項1、2、3、4、5に記載の組成 物を40~80℃において飽和水蒸気下で硬化養生させる硬 化体の製造方法

【請求項7】 請求項1、2、3、4、5に配載の組成 物を150~210℃の飽和水蒸気下でのオートクレープ養生 してなる硬化体の製造方法

[発明の詳細な説明]

[0001]

【産業上の利用分野】本発明は土木、建築用に使用する ガラス質の高炉スラグ粉末を含む水硬性組成物およびそ 30 の硬化方法に関するものである。

[0002]

【従来の技術】ガラス質の高炉スラグ粉末は、本来潜在的に水硬性を有し、従来からセメント、石こう等と混和して高炉セメントとして製造、市販されている。またセメント、ガラス質の高炉スラグ粉末、その他混和材、骨材等をそれぞれパッチャーブラントにて計量し混合、混練して目的に合わせた特別なコンクリートを製造する場合もある。これらに使用されるガラス質の高炉スラグ粉末は、一般にブレーン比表面積で4,000~4,500㎡/度程度のものが使われている。さらに最近、水砕スラグ粉末を分級手段等により積粒化してブレーン比表面積で8,000㎡/度程度の微粉末とし、これを高強度等を得る目的で従来のスラグ粉末の代わりに使われる場合がある(「第8回コンクリート工学年次講演会論文集」、1986、pp289~292)。

[0003]

【発明が解決しようとする課題】 通常のブレーン値4,50 ラグ粉末は、ブレーン比面積で4,000~4,500cm*/g(平均0cm²/g程度のスラグ粉末は、水硬性があるとはいえ普通 粒径10~20 μm) であり、これを原料として用いる場合 ポルトランドセメントに対し高強度が得にくいという欠 50 にはそれより粗粒品、平均粒径で30~200 μm程度、好

点があった。一方、上記のガラス質の高炉スラグ粉末を 分扱して得られる微粉末は高強度が得られるものの分級 の手間に加えて分級した粗粒を別途処分しなければなら ず、その結果コストが高くなるという欠点があった。

2

【0004】本発明は、かかる問題点を解決して通常の ガラス質の高炉スラグ粉末を使用して高強度の硬化体が 得られる手段を提供することを目的としている。

[0005]

【課題を解決するための手段】上記課題は、通常の高炉スラグ粉末にそれより粗粒のスラグ粉末及びそれより微粒のスラグ粉末を一定割合で混合して、微小粒子から粗大粒子までを巾広く合む特定の粒度分布になるように配合したガラス質の高炉スラグを用いることによって解決される。

 $\{0\ 0\ 0\ 6\}$ すなわち、本発明は粒径が $50\,\mu$ m以上のものが高炉スラグ粉末の $15\sim50$ 重量%、 $5\,\mu$ m未満のものが $10\sim20$ 重量%、そして残余の粒径が $50\,\mu$ m未満 $5\,\mu$ m以上であるガラス質の高炉スラグ粉末とセメントからなる水硬性組成物及び該組成物を硬化させて硬化体を製造する方法に関するものである。

【0007】本発明の水硬性組成物は、主成分であるガ ラス質の高炉スラグ粉末の粒度分布に最大の特徴があ る。これは、粗粒と中粒と微粒を適当な割合になるよう に組合せるのである。具体的には、粒径が50μm以上の 粗粒が15~50重量%、好ましくは25~40重量%、粒径が 5μm未満の微粒が10~20重量%、そして残余を粒径が 5 μm以上50μm未満の中粒とするのである。好ましい 粒度分布は、最大粒径が500 µm以下であって粒径が100 μm以上500μm以下のものが0~30重量%、好ましく は10~25重量%、粒径が50μm以上のものが15~50重量 %、好ましくは25~40重量%、10µm以上のものが65~ 85重量%、好ましくは70~80重量%、5 µm以上のもの が80~90重量%、そして1 µm以上のものが90~99重量 %である。この好ましい粒度分布を図1に斜線で示す。 最大粒径が100μmで最密充填を達成させる粒度分布の 理論値(4種の粒径のものを使用した場合)を図1に2 点鎖線で示す。また、ブレーン値が4,500cm²/gの通常の ガラス質の高炉スラグ粉末の粒度分布を実線で、そして プレーン値が8,000cm /gものを1点鎖線でそれぞれ図1 に示す。同図に示すように、本発明のガラス質の高炉ス ラグの粒度分布は、粒径5 μm以上のものの割合を最密 充填と通常のガラス質の高炉スラグ粉末の中間に位置さ せ、5 µm未満の微粒の割合を最密充填及び通常のスラ グ粉末のいずれよりも多くしている。このような粒度分 布のものは、粉砕度の異なる2種以上のガラス質の高炉 スラグ粉末を配合することによって取得することができ る。セメント用として使用されているガラス質の高炉ス ラグ粉末は、ブレーン比面積で4,000~4,500cm²/g(平均 粒径10~20μm) であり、これを原料として用いる場合

3

ましくは50~150μm程度のものと、微粒品、平均粒径 で $1\sim5~\mu$ m程度のものを組合せた 3 種を適当な割合で 配合することによって取得することができる。そのほ か、平均粒径30~70 μm、好ましくは40~60 μmのもの と1~5 µmのものの2種の配合でも本発明の粒度分布 品を取得できる場合がある。上記粒径のガラス質の高炉 スラグ粉末は必要によりスラグ製造条件を適宜調整し、 さらに公知の粉砕機を用いることによって取得すること ができる。

とともに、スラグ粉に対するアルカリ刺激作用をするも のであり、具体的にはポルトランドセメント又は少なく ともポルトランドセメントを30%以上含む混合セメント

【0009】ガラス質の高炉スラグ粉末とセメントとの 割合は、ガラス質の高炉スラグ粉末が30~90重量%、好 ましくは50~70重量%、従ってセメントが70~10重量 %、好ましくは50~30重量%である。10重量%より少な ければスラグの反応刺激材としての役目が果たせない ってしまうためである。割合は対象物により適宜変化さ せうるべきで、そのたびごとに粒度を変える煩雑さをさ けるためである。なお、この水硬性組成物には粉末の無 水、半水、二水等の石膏を15重量%以下の量で添加して もよいし、他のフライアッシュ等の混和材を高炉スラグ 粉末の残部にセメントとともに添加してもよい。

[0010] 本発明の水硬性組成物は密実な押出成形品 を製造することでその特徴を最大限に発揮することがで きる。押出成形をするためには適度な粘度と押出された 組成物としては前述の水硬性組成物に加えて水と有機質 増粘剤が必須である。有機質増粘剤としてはメチルセル ロース、ヒドロキシエチルセルロース、ヒドロキシブロ ヒルセルロース及びそれらの変成品、ポリヒニルアルコ ール及びそれらの変成品などが使用できる。配合割合と しては水硬性組成物100重量部に対し、有機質増粘剤0.1 ~5重量部程度、好ましくは0.5~2重量部程度、そし て水15~40重量部程度、好ましくは20~30重量部程度で ある。さらにこの押出成形用組成物には骨材として川 砂、砕砂、シャモット粉末、タイル粉末等を加えること 40 もできる。骨材の配合割合は水硬性組成物100重量部に*

*対して0~100重量部程度が適当である。

【0011】上記の押出成形組成物の曲げ強度の向上や 耐衝撃性、靭性向上のために無機あるいは有機の短線 雄、もしくはその両方の短繊維を混入することができ る。ここで無機繊維としては石綿が代表的ではあるが、 石綿がじん肺症などとの関連から段々と使われなくなっ ている現状では無石綿建材としてガラス繊維、ワラスト ナイト等も有効である。ガラス繊維は、アルカリ性の混 練物の中で使用するため耐アルカリガラス繊維が適し、 【0008】セメントはそれ自身が水和組織を形成する 10 径1~100μm、長さ1~20mm、添加量は水硬性組成物

に対して0.1~5.0重量%が適する。有機繊維としてはビ ニロン、ポリプロピレン、ポリエステル、塩化ビニル、 塩化ビニリデン、ポリエチレン、ナイロン等が用いら れ、形状は長さ1~20m、径1~100 µm、添加量は粉 体混合物に対して0.1~3.0重量%が適する。

【0012】本発明の水硬性組成物は、有機質増粘剤及 び水等を加えて押出成形用組成物として、あるいは単に 水等を加えて型枠等に流し込んで硬化させる。これらの 含水組成物の養生は湿空中、水中での20℃前後の常温養 し、70.重量%を越えるとスラグの最適密充填の役割が減 20 生でも強度が発現するが、より早く強度を得るためには 40℃~80℃、好ましくは50~70℃での水蒸気接生が適す る。この水蒸気後生は、飽和水蒸気の存在下で前配の温 度で行なうものであり、具体的には飽和水蒸気を保つた めに成型された含水組成物を密室内に置くとかビニール で包むなどして飽和水蒸気状態を養生中維持させる。養 生時間は2時間~24時間が適当で、最適には4~12時間 程度が経済的な面から考えても適する。

[0013]

【作用】一般に粉体の最適充填の目的は密充填、セグリ 製品の保形性が必要である。そのため、この押出成形用 30 ゲーションの防止、添加剤の低下、レオロジーの諸現象 の改善などがあるが、高強度を得るためには最密充填性 の確保が必要である。そこで単に最密充填を得るために は、

 $P = (x/d)^{-1/2^{-n}}$

ここにP:ある粒子径x以下の含有量(%)

d:最大粒子径

を満足するようにすればよい。この式による粒子径と充 填密度との関係を表1に示す。

[0014]

[表1]

表1 粒子の最大充壌度

粒子径の比率	粒子の割合 (ut%)	最大充填密度 (vol%)	
d	100	74	
d 1/7d	85 : 15	86	
d . 1/7d . 1/49 d	75:14:11	95	
d 1/7d 1/49d 1/341d	73:14:10:3	98	
- , -, , -, -, -, -, -, -, -, -, -, -, -, -,			

[0015] しかし、スラグ粉末の場合、最密充填配合 よりも微粉の割合を一定程度増したほうが硬化体の強度 50 通りであると思われる。すなわち、表 1 による粒子がス

が高まることを本発明者らは見出した。その理由は次の

5

ラグ粉末と考えた場合、その反応性はその粒子装面積の 総和と考えられるが、この根密充填配合では水硬反応の 観点から表面積が不足していると思われる。一方、図1 に実験で示すような従来のガラス質の高炉スラグ粉末の 場合、粒度分布の幅が狭く最適な粒度分布にないため空 隙を生じて高強度が得られない。

[0016] 本発明のガラス質の高炉スラグ粉末において粗粒を加えたのは、ガラス質の高炉スラグ粒子そのものに反応性があるため通常より大きい粒子でも反応が可能である。また、大きい粒子を入れることにより密充填 10 に近くなることが期待でき、コスト的にも原料の水砕スラグ粒子25mmからの粉砕において粉砕コストが安くなる。5μm以下の細かい領域で通常のガラス質の高炉スラグ粉末より多く粒子を存在させたのは、反応が早い数粒分を確保させるためである。

【0017】本水硬性組成物は、セメントを混和することが必須要件であるがこれはスラグの反応刺激材の役目とセメント自身の水硬性を必要とするためである。

[0018]

【実施例】実施例1

本発明のガラス質の高炉スラグ粉末は、以下の手順によって作成した。平均粒径1.2mの原料の水砕スラグをボールミルにて平均粒径100μmとした粉末をx1、同じく水砕スラグを粉砕し、通常使用の粒度プレーン値4,50*

*0cm²/g (平均粒径10.5 μm) としたものをx2、x2を 分級手段によりプレーン値12,000cm²/g(平均粒径2.6 μ m) としたものをx3とし、x1:x2:x3=10: 9:1の重畳比率で混合した。その粒度分布を図1に点 線で示すが、本発明の粒度範囲の中間程度に位置したガ ラス質の高炉スラグ粉末が得られた。

[0019] 上記のガラス質の高炉スラグ粉末10重量部 に対し、普通ポルトランドセメント5重量部を混合して 水硬性組成物を得た。

【0020】この水硬性組成物に増粘剤としてメチルセルロース 0.1 重量部と水 2.5 重量部を加えて押出成形用組成物を得た。比較のために上記のガラス質の高炉スラグ粉末の代わりにプレーン値が4,500cm²/gのスラグ粉末又はそれを分級して得たプレーン値が8,000cm²/gのスラグ粉末を用い、いずれも10重量部に対し実施例1と同じ普通ポルトランドセメント5重量部、増粘剤としてメチルセルロース 0.1 重量部及び水 2.5 重量部を加えて押出成形用組成物の比較例品を得た。各実施例品及び比較例品をいずれも押出成形して4cm×4cm×20cmの直方体とし、20℃で28日間養生して硬化させた。各硬化体の曲げ強度を測定した結果を表2c示す。

[0021]

【表2】

	実施例1	比較例1	比較例 2
本発明スラグ粉末	10	l	
ブレーン値4.500cm*/gスラグ粉末		10	
プレーン値8,000cm²/gスラグ粉末			10
登通ポルトランドセメント	5	5	5 -
増粘剤 (メチルセルロース)	0.1	0.1	0.1
水	2.5	2.5	2.5
曲げ強度(kgf/cm²)	280	200	250

[0022] 奥施例2、3

実施例 1 と同じガラス質の高炉スラグ粉末10重量部に、普通ポルトランドセメント 5 重量部、増粘剤としてメチルセルロース 0.1重量部、減水剤 0.1重量部、水 2.8重量部、φ13μm×6 mのガラス繊維 0.3重量部、φ6μm×6 mのピニロン繊維 0.1重量部及びワラストナイト 1.5重量部を混合して押出成形用組成物を得た。

【0023】比較のために上記のガラス質の高炉スラグ 粉末の代わりにプレーン値が4,500cm/gのスラグ粉末を 40 用い、普通ポルトランドセメント5重量部、均粘剤とし てメチルセルロース 0.1重量部、減水剤 0.1重量部及び 水 2.3重量部を混合して押出成形用組成物の比較例品を

得た。

【0024】 実施例品及び比較例品をいずれも押出成形して4cm×4cm×20cmの直方体とし、実施例品は20℃で28日間又は60℃の飽和水蒸気の存在下で12時間養生して硬化させた。60℃の飽和水蒸気の存在下で硬化させたものは、その後7日間放置して乾燥させた。比較例品は20℃で28日間養生して硬化させた。各実施例品及び比較例品の曲げ強度及び耐衡攀エネルギーを測定した結果を表3に示す。

[0025]

[表3]

	实施例 2	比較例3	実施例 3
本発明スラグ粉末	10		10
ブレーン値4,500cm²/gスラグ	T —	10	
普通ポルトランドセメント	5	5	5
増粘剤 (メチルセルロース)	0.1	0.1	0.1
減水剤	0.1	0.1	0.1
*	2.8	2.3	2.8
ガラス繊維(φ13pm×6xm)	0.3		0.3
ビニロン繊維(φ 6 μo× 6 mo)	0.1		0.1
ワラストナイト	1.5		1.5
曲げ強度(kgi/a²)	320	210	350
耐衝撃エネルギー(kgf・cm)	100	20	100
後 生温度×時間	20℃×28日	- 20℃×28日	60℃水蒸気 12時間7日 放置乾燥

[0026]

【発明の効果】以上のように、この発明によればガラス 質の高炉スラグ粉末の粒布分布を広げたので、従来セメ 20 ことができる。 ント用等に用いられていたスラグ粉末より粗い粒径が50 μ m以上のものを15~50重量%使用することができ、そ れにもかかわらず硬化体の強度を高めることができる。 セメントの使用量を水硬性組成物の10~50重量%に節減 でき、全体として安価で高強度品が得られる効果があ る。本発明の水硬性組成物を用いて得られる硬化体は緻 密性が高い。この水硬性組成物を用いた押出成形用組成 物に繊維を配合することにより曲げ強度、耐衝撃性等を 大巾に増加させることができる。また、この水硬性組成

物を硬化させる際の養生方法として、水蒸気養生法を用 いることによりスラグ粉末の反応を効果的に進行させる

【図面の簡単な説明】

[図1] 本発明の水硬性組成物で使用されるガラス質の **高炉スラグ粉末の粒度分布を示すグラフである。**

【符号の説明】

- 1…実施例で用いたスラグ粉末
- 2 …プレーン値4,500cm²/gの従来のスラグ粉末
- 3 … プレーン値8,000cm² /gの従来のスラグ粉末
- 4…密充填粉末例

[図1]

フロントページの統き

(51) Int. Cl. ⁵		識別記号	庁内整理番号	FI		技術表示箇所
C 0 4 B	28/08		2102-4G			
	40/02		7351-4G			
//(C04B	28/04					
	14:02		2102-4G			
	14:42		2102-4G			
	16:06		2102-4G		•	
•	20:00		2102-4G		•	
	24:00		2102-4G		,	
	24:38	В	2102-4G		•	
	18:14)		2102-4G		•	