Lepton Flavour Violating Higgs decays at LHC and CEPC/SppC

Jonathan Parry
CHEP, Tsinghua University

The 9th Workshop of the TeV physics working group
Zhongshan University
Guangzhou
May 16th 2014

Why $h \to \tau \mu$?

- SM forbids Lepton Flavour Violating(LFV) decays of the Higgs
- Beyond SM with one Higgs doublet there are higher dimensional operators, $[H^{\dagger}H][\bar{\ell}_{Li}H]\tau_R$
- Extended Higgs sector models may induce Flavour changing Higgs interactions

Example Models

- 2HDM [Diaz, Martinez, Rodriguez 2000]
- NMSSM [Ellwanger, Hugonie, Teixeira 2009]
- MSSM + v_R [Brignole, Rossi 2004]
- RPV-SUSY [Arhrib, Cheng, Kong 2012]
- •

Predict B
$$r(h \to \tau \mu) \sim 10^{-5} - 10^{-2}$$

Constraints from data

- Relatively weak constraints from low energy data
- Tree-level: $\tau \to 3\mu, \tau \to e\bar{\mu}\mu$ give order 1 constraint on $y_{\tau\mu}$
- Radiative: $\tau \to \mu \gamma$ gives order y_τ constraint

[Harnik, Kopp, Zupan 2012, and many others]

Collider searches

Assume 125 GeV Higgs with SM-like production via gluon-fusion and study the sensitivity at:

- LHC@8TeV
- LHC@13TeV
- CEPC@240GeV
- SppC@100TeV

Using packages: MadGraph5, Pythia8, PGS
Also MadEvent Analysis Routines by David Curtin
Based on Chameleon

LHC @ 8(13) TeV

• Signal: $gg \to h \to \tau^{\pm}\mu^{\mp} \to e^{\pm}\mu^{\mp}\bar{v}v$ $\sigma(gg \to h) \sim 21(48)pb$

Backgrounds:

$$pp \to Z/\gamma^* \to \tau^+\tau^- \to e^{\pm}\mu^{\mp}\bar{v}v\bar{v}v, \quad \sigma \sim 4(6)pb$$

 $pp \to W^+W^- \to e^{\pm}\mu^{\mp}\bar{v}v, \quad \sigma \sim 0.5(0.8)pb$

$$gg \rightarrow h \rightarrow W^+W^-, \tau^+\tau^-, ZZ^*$$

Basic event selection for LHC

- At least one muon(electron) with $p_T > 30(15) GeV$ and $|\eta| < 2.1(2.5)$
- Exactly 2 Opposite Sign leptons
- No jets with $p_T > 30 GeV$ and $|\eta| < 2.5$
- $\Delta \varphi(e, \mu) > 2.7$, and $\Delta \varphi(e, MET) < 0.3$

MET reconstruction

- $gg \to h \to \tau^{\pm}\mu^{\mp} \to e^{\pm}\mu^{\mp}\bar{\nu}v$ the tau is highly boosted, so assume decay to $e^{\pm}\bar{\nu}v$ is collinear $p_{\tau} = \alpha p_e$ and $p_{2v} = (\alpha 1)p_e$
- α p_{μ} . $p_e=p_{\mu}$. $p_{\tau}=\frac{m_h^2}{2}$ such that, $\alpha=\frac{m_h^2}{4E_eE_{\mu}\sin^2\frac{\theta_{e\mu}}{2}}$

and define:

$$\delta MET = \frac{(\alpha - 1)p_T^e - MET}{MET}$$

δMET - p_T^{μ} plot

δMET - p_T^{μ} plot

δMET - p_T^{μ} plot

2-D cut

• Muon p_T tends to be higher for the signal than background, so we make a 2-D cut,

$$\left(\frac{p_T^{\mu} - 60}{25}\right)^2 + \left(\frac{\delta MET}{0.25}\right) < 1$$

[Davidson, Verdier 2012]

Very Preliminary

Results for LHC at 8(13) TeV

• Here we assume: $Br(h \to \tau \mu) \equiv Br(h \to \tau \bar{\tau})$ $\sqrt{s} = 8(13) TeV$ and $\mathcal{L} = 20~(100) fb^{-1}$

Process	# of events
$Z/\gamma o au au$	117±5 (889±27)
$WW \rightarrow e\mu vv$	284 \pm 4 (2165 \pm 21)
Total	401±9 (3054±48)
$h o au \mu$	226±3 (960±12)

- 2σ exclusion: $Br(h \to \tau \mu) < 0.0013 \ (0.0004)$
- 5σ discovery: $Br(h \to \tau \mu) > 0.0034 \ (0.0010)$

Invariant Mass

Invariant Mass

Invariant Mass

Very Preliminary

Results for LHC at 8(13) TeV

- Here we assume: $Br(h \to \tau \mu) \equiv Br(h \to \tau \bar{\tau})$ $\sqrt{s} = 8(13) TeV$ and $\mathcal{L} = 20~(100) fb^{-1}$
- Add Inv Mass cut $50~GeV < m_{LL}^{~e\mu} < 130~GeV$

Process	# of events
$Z/\gamma o au au$	86±4 (650±23)
$WW \rightarrow e\mu vv$	87 \pm 2 (638 \pm 11)
Total	173±6 (1288±34)
$h o au \mu$	226±3 (960±12)

- 2σ exclusion: $Br(h \to \tau \mu) < 0.001 \ (0.0002)$
- 5σ discovery: $Br(h \to \tau \mu) > 0.002 \ (0.0006)$

CEPC/TLEP

	CEPC	TLEP-HZ
Beam energy [GeV]	120	120
Circumference [km]	53.6	80
Luminosity $[10^{34} cm^{-2} s^{-1}]$	1.82	5
# Higgs/yr/IP $[10^5]$	0.4	1.2
# IP	2	4
Int. Lum. $[ab^{-1}yr^{-1}IP^{-1}]$	0.182	0.5

CEPC/TLEP

• Signal:

$$e^+e^- \rightarrow Z^* \rightarrow Zh \rightarrow Z\tau\mu \rightarrow \bar{\mu}\mu \ e^{\pm}\mu^{\mp}\bar{\nu}\nu$$

Background:

$$e^{+}e^{-} \rightarrow Z^{*} \rightarrow Zh \rightarrow ZWW^{*} \rightarrow \bar{\mu}\mu \ e^{\pm}\mu^{+}\bar{\nu}\nu$$

 $e^{+}e^{-} \rightarrow ZZ \rightarrow \bar{\mu}\mu \ \bar{\tau}\tau \rightarrow \bar{\mu}\mu \ e^{\pm}\mu^{+}\bar{\nu}\nu\bar{\nu}\nu$
 $e^{+}e^{-} \rightarrow \bar{\mu}\mu W^{+}W^{-} \rightarrow \bar{\mu}\mu \ e^{\pm}\mu^{+}\bar{\nu}\nu$

• $\sigma(Zh) \sim 0.25pb$ $\sigma(ZZ) \sim 1pb$ $\sigma(\bar{\mu}\mu W^+W^-) \sim 0.1fb$

Selection for CEPC/TLEP

- Just use basic event selection
- At least 3 muon (1 electron) with $p_T > 30(15) GeV$ and $|\eta| < 2.1(2.5)$
- Exactly 2 pairs Opposite Sign leptons
- No jets with $p_T > 30 GeV$ and $|\eta| < 2.5$
- Reconstruct Higgs mass to ± 25 GeV and Z mass to ± 20 GeV

Results for CEPC/TLEP

• Here we assume: $Br(h \to \tau \mu) \equiv Br(h \to \tau \bar{\tau})$ $\sqrt{s} = 240~GeV$ and $\mathcal{L} = 0.364~(2.0)~ab^{-1}$

Process	# of events
$Zh o ZWW^*$	∼0 .1 (0.5)
$ZZ o Z auar{ au}$	∼0.1 (0.5)
$ar{\mu}\mu WW$	~0
Total	\sim 0.2 (1)
$h o au \mu$	∼7 (37)

- 2σ exclusion: $Br(h \to \tau \mu) < 0.006 \ (0.002)$
- 5σ discovery: $Br(h \to \tau \mu) > 0.014 \ (0.006)$

So far

LHC @ 8TeV (13 TeV) and $\mathcal{L} = 20 \ (100) fb^{-1}$

- 2σ exclusion: $Br(h \to \tau \mu) < 0.001 \ (0.0002)$
- 5σ discovery: $Br(h \to \tau \mu) > 0.002 \ (0.0006)$

CEPC/TLEP with $\mathcal{L} = 0.364 \ (2.0) \ ab^{-1}$

- 2σ exclusion: $Br(h \to \tau \mu) < 0.006 \ (0.002)$
- 5σ discovery: $Br(h \to \tau \mu) > 0.014 \ (0.006)$

Only one Z decay channel

Not yet considered

- CEPC including all Z decay channels, $e\bar{e}$, jj, $v\bar{v}$
- HL-LHC
- SppC @ 100 TeV

Thank you