A Tiny Taste of Machine Learning

Clustering

- Partition examples into groups (clusters) such that examples in a group are more similar to each other than to examples in other groups
- •Unlike classification, there is hot typically a "right answer"
 - Answer dictated by feature vector and distance metric, not by a ground truth label

Photo by Jan Willem

Optimization Problem

optimalization

$$variability(c) = \sum_{e \in c} distance(mean(c), e)^{2}$$

$$dissimilarity(C) = \sum_{c \in C} variability(c)$$
 all clusters

- •Why not divide variability by size of cluster?
 - Big and bad worse than small and bad
- •Is optimization problem finding a C that minimizes dissimilarity(C)?
 - No, otherwise could put each example in its own cluster
- Need a constraint, e.g.,
 - Minimum between clusters
 - Number of clusters

K-means Clustering

- Constraint: exactly k non-empty clusters
- Use a greedy algorithm to find an approximation to minimizing objective function

Image by Joshua Strang

Algorithm

```
randomly chose k examples as initial centroids while true:
    create k clusters by assigning each
    example to closest centroid
    compute k new centroids by averaging
    examples in each cluster
    if centroids don't change:
        break
```

An Example

K = 4, Initial Centroids

Unlucky Initial Centroids

Converges On

Mitigating Dependence on Initial Centroids

```
best = kMeans(points)
for t in range(numTrials):
    C = kMeans(points)
    if dissimilarity(C) < dissimilarity(best):
       best = C
return best</pre>
```

A Pretty Example

- Use k-means to cluster groups of pixels in an image by their color
- •Get the color associated with the centroid of each cluster, i.e., the average color of the cluster
- For each pixel in the original image, find the centroid that is its nearest neighbor
- Replace the pixel by that centroid

k = 16

Image by Joshua Strang

Wrapping Up Machine Learning

- Use data to build statistical models that can be used to
 - Shed light on system that produced data
 - Make predictions about unseen data
- Supervised learning
- Unsupervised learning
- Feature engineering
- Goal was to expose you to some important ideas
 - Not to get you to the point where you could apply them
 - Much more detail, including implementations, in text