ESTAT

Revisões e conceitos de Estatística Descritiva

LEEC

2019/2020

Definição: Estatística

É uma ciência dotada de um conjunto de métodos para observar, recolher, analisar e interpretar dados de fenómenos imprevisíveis tendo como objetivo auxiliar a formulação de decisões face à incerteza.

Definição: Estatística descritiva

É um conjunto de métodos cujo objetivo consiste em resumir e representar de forma a tornar compreensível a informação contida nos dados experimentais (extração de informação).

Definição: Estatística inferencial

É um conjunto de métodos com o objetivo de realizar estimativas e tirar conclusões sobre uma população a partir da informação contida num subconjunto dessa população (amostra).

Definição: População

 $\acute{\rm E}$ o conjunto de todos os objetos cuja(s) característica(s) se pretende estudar e analisar

Definição: Amostra

É um subconjunto finito da população

Exemplo:

- População: Todos os alunos do ISEP
- Amostra: Todos os estudantes desta turma

Introdução e terminologia

Relativamente ao tamanho as populações podem ser:

- Finitas (número de filhos, Alunos do ISEP, ...)
- Infinitas (número de lançamentos de uma moeda até obter uma cara, tempo de espera por um autocarro)

Definição: Censo

É o estudo de todos os elementos de uma população (só possível em populações finitas).

Definição: Sondagem

É um estudo (da população) efetuado a partir da informação recolhida de uma amostra.

Definição: Variável estatística

É uma variável que representa uma característica da população e passível de tomar diversos valores. Pode ser qualitativa ou quantitativa.

Tipos de variáveis (dão origem a tipos de dados estatísticos)

- variáveis qualitativas (dados qualitativos)
 São variáveis que traduzem uma característica não numérica
 - variáveis nominais (dados nominais, categorias)
 exemplo:sexo, cor dos olhos, raça,...
 - variáveis ordinais (dados ordinais).
 Exemplo: escolaridade (básica, secundária, superior), qualidade (má, média, boa)
- Variáveis quantitativas (dados quantitativos)
 - São variáveis que resultam de processos de medição ou contagem
 - Variáveis discretas (dados discretos)
 Podem tomar um conjunto numerável ou infinitamente numerável de valores.
 - variáveis contínuas (dados contínuos)
 Podem tomar quaisquer valores num dado intervalo (podem assumir um conjunto não numerável de valores)

Organização dos dados

Definição: Classe de uma variável estatística

É cada um dos diferentes valores que a variável pode tomar (dados quantitativos discretos), qualquer intervalo de valores (dados contínuos) ou categoria (dados qualitativos).

Definição: Frequência absoluta da i-ésima classe (n_i)

É o número de observações que pertencem à classe i

Definição: Frequência relativa da i-ésima classe (f_i)

É a quantidade

$$f_i = \frac{n_i}{n}$$

onde, n o número total de observações e c é o número de classes.

Verifica-se que:

$$\sum_{i=1}^{c} n_i = n, \ \sum_{i=1}^{c} f_i = 1$$

Organização dos dados

Definição: Frequência acumulada até à classe $i(N_i)$

É o número de observações de valor inferior ou igual ao valor que caracteriza a classe i.

$$N_i = \sum_{j=1}^i n_j.$$

Definição: Frequência relativa acumulada até à classe i (F_i)

É a percentagem de observações de valor inferior ou igual ao valor que caracteriza a classe i.

$$F_i = \sum_{i=1}^i f_j.$$

Luís Afonso/Jorge Mendonça (lma@isep.ipp.p

Organização dos dados quantitativos discretos

Os dados quantitativos discretos são obtidos de observações de variáveis quantitativas discretas. Estas estão geralmente associadas a processos de **contagem**.

Definição: Tabela de distribuição de frequências de dados quantitativos discretos

É uma tabela com k linhas (uma para cada valor distinto) e três colunas. A primeira coluna representa cada uma dos diferentes valores observados, a segunda a frequência absoluta e a terceira a frequência relativa.

Exemplo: Observação de 50 peças de artesanato quanto ao número de defeitos

Número de defeitos (x_i)	frequência absoluta (n_i)	frequência relativa (f_i)
0	23	0.46
1	16	0.32
2	7	0.14
3	4	0.08

Representação gráfica: Gráfico de barras.

Tabela de frequências acumuladas

Exemplo: Dados de um inquérito realizado em 50 habitações quanto ao número de elementos do agregado familiar.

Tabela de frequências

Tamanho do	Frequência	Frequência	Freq. Relat.		
agregado (x;)	absoluta (n;)	relativa (f_i)	acumulada (F;)		
1	4	0,08	0,08		
2	10	0,2	0,28		
3	15	0,3	0,58		
4	13	0,26	0,84		
5	6	0,12	0,96		
6	2	0,04	1		
Total	50	1			

Gráfico de barras

Organização dos dados quantitativos contínuos

- Os dados quantitativos contínuos são obtidos a partir da observação de instâncias de uma variável numérica contínua de uma população.
- Em geral, os dados de uma variável contínua apresentam uma diversidade tal que é necessário agrupa-los em classes (intervalos).

Definição: Classe de uma variável quantitativa contínua

É um intervalo na forma [a,b[ou]a,b] que representa um conjunto de valores que a variável pode tomar.

- Amplitude da classe h: h = b a
- Marca da classe é o representante dessa classe para efeitos de cálculo. Por defeito considera-se $marca = x_i = \frac{a+b}{2}$

Número de classes

É habitual escolher entre 4 e 20 classes, dependendo do número de observações. Regra de Sturges: c = int(1 + 3.3log(n)).

Organização dos dados quantitativos contínuos

Representação gráfica

Definição: Histograma

É uma representação gráfica dos dados em que se marcam as classes no eixo dos xx, as frequências no eixo dos yy e em que se usam barras de área proporcional à frequência da classe correspondente. As barras contíguas têm fronteira comum.

Na figura seguinte representa-se um histograma referente aotempo de realização de 34 tarefas, em minutos. Note-se que h_i e n_i representam, respetivamente, a amplitude e a frequência absoluta da classe i: i=1,2,3,4.

Organização dos dados quantitativos contínuos

Tabela de frequências

amplitude	Tempo	Marca da	Freq. abs.	Freq. rel.	Freq. rel. acumulada
classe (h_i)	classe i	$classe(x'_i)$	(n_i)	(f_i)	(F_i)
2	[5, 7[6	5	0.1471	0.1471
2	[7, 9[8	13	0.3824	0.5295
2	[9, 11[10	8	0.2353	0.7648
4	[11, 15]	13	8	0.2353	1.000
		Total	34	1.000	

Histograma

Algumas medidas descritivas

- Medidas de localização
 - Média
 - Mediana, Quartis, Percentis
 - Moda
- Medidas de dispersão
 - Amplitude total, amplitude inter-quartil
 - Variância e desvio padrão
 - Coeficiente de variação

Definição: Média aritmética \bar{x} para dados não classificados

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Definição: Média aritmética \bar{x} para dados classificados

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{c} x_i n_i = \sum_{i=1}^{c} x_i f_i$$

onde c é o número de classes, n o número total de observações, n_i é a frequência absoluta e f_i a frequência relativa. No caso de dados contínuos classificados x_i representa a marca da classe.

Definição: Moda, Mo

É a classe (ou classes) com maior frequência. Para dados discretos, ou contínuos não classificados, é o valor (ou valores) que apresenta(m) a maior frequência.

Definição: Mediana, Me

É o valor que divide uma série de *n* observações em duas partes iguais, tal que 50% das observações tem um valor inferior, ou igual, a *Me*

Mediana para dados não classificados em série ordenada

$$Me = egin{cases} rac{x_{(n/2)} + x_{(n/2+1)}}{2} & , n ext{ par} \ x_{(n+1)/2} & , n ext{ impar} \end{cases}$$

Mediana para dados quantitativos contínuos classificados

$$Me = L_k + \left(\frac{0.5 - F_{k-1}}{f_k}\right) h_k$$

onde, a classe mediana é a primeira classe cuja frequência relativa acumulada ultrapassa, ou iguala 50%, f_k é a frequência relativa da classe mediana, F_{k-1} é a frequência relativa da classe anterior á classe mediana, L_k representa o limite inferior da classe mediana e h_k é a amplitude da classe mediana.

Definição: Quantil de ordem α , z_{α}

É o valor que divide uma série de n observações em duas partes, tal que $\alpha\%$ das observações tem um valor menor, ou igual, a z_{α}

• Quantil para dados não classificados em série ordenada

$$z_{\alpha} = x_k$$

onde x_k é o maior inteiro menor que $n\alpha + 1$

Quantil para dados quantitativos contínuos classificados

$$z_{\alpha} = L_k + \left(\frac{\alpha - F_{k-1}}{f_k}\right) h_k$$

onde, k é a classe do quantil α , tal que $F_{k-1} < \alpha$ e $F_l \ge \alpha$

◆ロ > ◆団 > ◆ き > ◆き > き の < ○

Definição: Percentil de ordem k, p_k

$$p_k, (k = 1, 2, ..., 99) = z_{k/100}$$

Definição: Decil de ordem k, d_k

$$d_k$$
, $(k = 1, 2, ..., 9) = z_{k/10}$

Definição: Quartil de ordem k, d_k

$$q_k$$
, $(k = 1, 2, 3) = z_{k/4}$

Tendo em mente as definições realizadas anteriormente, temos que

$$Me = p_{50} = d_5 = q_2$$

Comparação entre a média moda e mediana (simetria)

Em distribuições simétricas unimodais, média=mediana=moda.

Distribuição assimétrica positiva (enviesada à direita): moda<mediana<média.

Distribuição assimétrica negativa (enviesada à esquerda): moda>mediana>média.

Definição: Amplitude total, "Range"r

É a diferença entre o maior e o menor valor de um conjunto de observações.

- Depende apenas das observações extremas.
- Depende o número de observações
- Para dados classificados, define-se como a diferença entre o valores máximo e mínimo das marcas da classe.

Definição: Amplitude interquartil, "Interquartile Range" r_q

$$r_q = q_3 - q_1$$

Diagrama de extremos e quartis (Boxplot ou caixa de bigodes)

Consiste numa representação gráfica de dados baseado nos seus quartis, mínimo e máximo muito utilizada para analisar a dispersão dos dados.

- O limite inferior da caixa representa o primeiro quartil
- A linha divisória da caixa a mediana e o limite superior o terceiro quartil
- A largura (altura) da caixa representa a amplitude inter-quartil (medida de dispersão)

Outliers

Outliers moderados

Um valor observado $x_i, i = 1, 2, ..., n$, é um candidato a outlier moderado se

$$x_i < q_1 - 1.5(q_3 - q_1)$$

ou

$$x_i > q_3 + 1.5(q_3 - q_1)$$

Outliers severos

Um valor observado x_i , i = 1, 2, ..., n, é um candidato a outlier severo se

$$x_i < q_1 - 3(q_3 - q_1)$$

ОП

$$x_i > q_3 + 3(q_3 - q_1)$$

 A remoção de outliers(valores anómalos) do conjunto de dados requer o conhecimento da área onde o estudo estatístico se insere.

Medidas de dispersão

A variância e o desvio padrão são as medidas de variabilidade, ou dispersão mais utilizadas em estatística.

- Estas medidas têm em conta todos os valores observados.
- O desvio padrão indica a proximidade com que os valores observados se distribuem em torno da média.
- Um valor nulo do desvio padrão implica que todas as observações concentradas em torno do mesmo valor.
- Valores crescentes do desvio padrão indicam que os valores estão cada vez mais "espalhados"ou dispersos em relação à média.
- A variância é o quadrado do desvio padrão.

Definição: Variância de uma amostra s^2

Para dados não classificados: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ Para dados classificados:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{c} (x_{i} - \bar{x})^{2} n_{i}$$

Nota: Para dados contínuos classificados x_i representa a marca da classe.

Definição: Desvio padrão s

É a raiz guadrada positiva da variância

$$s = \sqrt{s^2}$$

Definição: Coeficiente de variação s

O coeficiente de variação de uma amostra é dado pela expressão

$$cv = \frac{s}{\bar{x}}$$

Trata-se de uma medida de dispersão relativa que tem em conta a magnitude dos valores observados.

Medidas de forma

As medidas de localização e as medidas de dispersão embora forneçam informação importante são insuficientes para uma boa caracterização da distribuição dos dados em frequência.

É ainda necessária

- Informação sobre a deformação dos dados
- Informação sobre o peso dos dados nas caudas

Esta informação é fornecida pelas medidas de forma.

Começamos por definir momento centrado.

Definição: Momento centrado de ordem r, m_r

Para dados não classificados: $m_r = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^r$ Para dados classificados:

$$m_r = \frac{1}{n} \sum_{i=1}^{c} (x_i - \bar{x})^r n_i$$

Luís Afonso/Jorge Mendonça (lma@isep.ipp.p

Definição: Coeficiente de assimetria amostral, a₃

$$a_3=\frac{m_3}{s^3}$$

- É uma medida adimensional
- Mede a assimetria da distribuição
- $a_3 > 0$ quando a cauda direita é mais comprida (enviesada à direita)
- $a_3 < 0$ quando a cauda esquerda é mais comprida (enviesada à esquerda)
- $a_3 = 0$ distribuição simétrica

Distribuição enviesada à direita; assimétrica positiva

Distribuição enviesada à esquerda; assimétrica negativa

Definição: Coeficiente de curtose amostral, a4

$$a_4=\frac{m_4}{s^4}$$

- É uma medida adimensional
- Mede o achatamento e o peso das caudas da distribuição.
- A distribuição normal tem $a_4 = 3$
- a₄ > 3 quando a distribuição é mais esguia e as caudas mais pesada do que a distribuição normal.
- $a_4 < 3$ quando a distribuição é mais achatada e as caudas menos pesada do que a distribuição normal.

Verifica-se que $a_4(A) > a_4(B)$ porque a distribuição B é mais achatada e tem caudas menos pesadas

Exercícios propostos

Exercício 1: Dados discretos

Considere a série estatística ordenada que representa as respostas quanto so número de elementos do agregado familiar de amostra aleatória de 50 questionários:

1	1	1	1	2	2	2	2	2	2
2	2	2	2	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	4
4	4	4	4	4	4	4	4	4	4
4	4	5	5	5	5	5	5	6	6

- a) Construa a tabela de frequências.
- b) Represente a distribuição dos dados num gráfico adequado
- c) Calcule o número médio a mediana e a moda do número observado de elementos do agregado familiar.
- d) Calcule a variância e o desvio padrão da amostra.
- e) Classifique os dados da amostra quanto à simetria.

Exercícios propostos

Exercício 2: Dados contínuos

Considere a série estatística ordenada que representa o tempo de realização de 34 tarefas, em minutos.

5.11	5.21	5.62	6.77	6.80	7.01	7.11	7.12	7.21	7.22
-	-		7.52		-				
			10.46						
14.5	14.69	14.89	14.91						

Considerando os dados classificados nas classes [5,7],[7,9],[9,11],[11,15]:

- a) Construa a tabela de frequências.
- b) Represente a distribuição dos dados num histograma.
- c) Calcule o tempo médio de realização das tarefas com base na tabela de frequências.
- d) Represente a função cumulativa e deduza por leitura gráfica o valor da mediana.
- e) Identifique a classe modal e deduza por leitura gráfica uma aproximação pontual.
- f) Calcule a variância e o desvio padrão da amostra.
- g) Classifique os dados da amostra quanto à simetria e curtose.

Bibliografia

- Pedrosa, A. e Gama, S. (2004). Introdução Computacional à Probabilidade e Estatística. Porto Editora. ISBN: 972-0-06056-5
- Montegomery and Runger, Applied Statistics and Probability for Engineers, 4th Ed, John Wiley and Sons, 2007