AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY DHAKA-1208, BANGLADESH.

Department of Computer Science and Engineering Spring 2019

Program: Bachelor of Science in Computer Science and Engineering

Course No: CSE 4108

Course Title: Artificial Intelligence Lab

Term Project: 03

Date of Submission: 14/10/2019

Submitted to

Dr. S.M. Abdullah Al-Mamun

Professor, Department of CSE, AUST.

Md. Siam Ansary

Adjunct Faculty, Department of CSE, AUST.

Submitted By

Name : Robiul Hasan Nowshad

Student ID: 16.01.04.061

Lab Group: B1

Naïve Bayes Classification and Random Forest Classification

1. Random Forest Classification

Dataset: HeartDisease.csv

Source Code:

```
    # -*- coding: utf-8 -*-

2. """
3. Created on Fri Oct 11 00:29:03 2019
4.
@author: nowshad"""
from sklearn.model_selection import train_test_split
8. from sklearn.ensemble import RandomForestClassifier
9. from sklearn import metrics
10. import pandas as pd
11. import numpy
12.
13. dataset = pd.read_csv('HeartDisease.csv')
14. print("\nSize:- ", dataset.shape)
15. print("\n", dataset.head(5))
17. X=dataset[['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 18. 'exang', 'oldpeak', 'slope', 'ca', 'thal']]
19. y=dataset['target']
20. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
21. clf=RandomForestClassifier(n_estimators=100)
22. clf.fit(X_train,y_train)
23. y_pred=clf.predict(X_test)
24. print()
25. df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
26. print(df.head())
28. # Displaying errors
29. print('\nMean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
30. print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
31. print('Root Mean Squared Error:', numpy.sqrt(metrics.mean_squared_error(y_test, y_pr
    ed)))
32. print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Output:

2. Naïve Bayes Classification

Dataset: HeartDisease.csv

Source Code:

```
    # -*- coding: utf-8 -*-

2. """
3. Created on Fri Oct 11 00:29:03 2019
4.

    @author: nowshad
    """

from sklearn.model_selection import train_test_split
8. import pandas as pd
9. from sklearn.naive bayes import GaussianNB
10. from sklearn import metrics
11. import numpy
12.
13. dataset = pd.read_csv('HeartDisease.csv')
14. print("\nSize:- ", dataset.shape)
15. print("\n", dataset.head(5))
16.
19. y=dataset['target']
20. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
21. model = GaussianNB()
22. model.fit(X_train, y_train)
23. model_predictions = model.predict(X_test)
25. df = pd.DataFrame({'Actual': y_test, 'Predicted': model_predictions})
26. print("\n", df.head())
28. # Displaying errors
```

```
29. print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, model_predictions)
)
30. print('Mean Squared Error:', metrics.mean_squared_error(y_test, model_predictions))
31. print('Root Mean Squared Error:', numpy.sqrt(metrics.mean_squared_error(y_test, model_predictions)))
32. print("Accuracy:",metrics.accuracy_score(y_test, model_predictions))
```

Output:

3. Comparison between Naïve Bayes Classification and Random Forest Classification

Metrics	Naïve Bayes	Random Forest
Score	Classification	Classification
Mean Absolute Error	0.17	0.14
Mean Squared Error	0.17	0.14
Root Mean Squared Error	0.4123	0.37
Accuracy Score	83%	86%