Numerik Cheat Sheeto

1 Basics

1.1 Sortieren

1.2 FFT

2 Lineare Gleichungssysteme

2.1 Allgemeine Aufgabenstellung

Geg.: $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^n$ Ges.: $\mathbf{x} \in \mathbb{R}^n$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$

2.2 Dreiecksmatrizen

Untere Dreiecksmatrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ und obere Dreiecksmatrix $\mathbf{R} \in \mathbb{R}^{n \times n}.$

REGULÄRE/INVERTIERBARE/NICHT-SINGULÄRE MATRIX Matrix \mathbf{A} ist regulär, wenn det $\mathbf{A} \neq 0$. Determinante einer Δ Matrix ist das Produkt ihrer Diagonalelemente. \mathbf{L} und \mathbf{R} sind regulär, wenn alle Diagonalelemente $\neq 0$.

Vorwärtseinsetzen

$$Ly = b$$

Rechenaufwand: n^2 AO Um Speicher zu sparen $b_i \leftarrow y_i$.

forward_subst

for
$$j = 1 : n$$

 $x_j \leftarrow b_j/l_{jj}$
for $i = j + 1 : n$
 $b_i \leftarrow b_i - l_{ij}x_j$

RÜCKWÄRTSEINSETZEN

$$\mathbf{R}\mathbf{x} = \mathbf{y}$$

Rechenaufwand: n^2 AO Um Speicher zu sparen $b_i \leftarrow x_i$.

backward_subst

$$\begin{aligned} &\text{for } j = n:1 \\ &x_j \leftarrow b_j/r_{jj} \\ &\text{for } i = 1:j-1 \\ &b_i \leftarrow b_i - r_{ij}x_j \end{aligned}$$

2.3 LR-Zerlegung

Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$ und $\mathbf{L}, \mathbf{R} \in \mathbb{R}^{n \times n}$

A = LR

Ansatz:

Matrizen A, L, R in Teilmatrizen A_{**} , A_{*1} , A_{1*} , L_{**} , L_{*1} , R_{**} , R_{1*} zerlegen.

Es folgen 4 Gleichungen aus A = LR:

$$\begin{aligned} a_{11} &= l_{11}r_{11} \\ \mathbf{A}_{*1} &= \mathbf{L}_{*1}r_{11} \\ \mathbf{A}_{1*} &= l_{11}\mathbf{R}_{1*} \\ \mathbf{A}_{**} &= \mathbf{L}_{*1}\mathbf{R}_{1*} + \mathbf{L}_{**}\mathbf{R}_{**} \end{aligned} \Leftrightarrow \mathbf{R}_{1*} = \mathbf{A}_{1*}$$

Per Def. $l_{11} = 1$ und damit $r_{11} = a_{11}$, sodass

$$\mathbf{A}_{**} - \mathbf{L}_{*1} \mathbf{R}_{1*} = \mathbf{L}_{**} \mathbf{R}_{**}$$

Praktische Umsetzung

Elemente von ${\bf A}$ überschreiben, sodass:

$$\begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ l_{21} & r_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & r_{n-1,n} \\ l_{n1} & \cdots & l_{n,n-1} & r_{nn} \end{pmatrix}$$

Kriterium

Sei $\mathbf A$ regulär, $\mathbf A$ besitzt eine LR-Zerlegung \Leftrightarrow Alle Hauptuntermatrizen regulär.

Modellproblem: Bandmatrix Irgendwas bzgl Effizienz.

LR-Decomp

Aufwand: kubisch

 \downarrow Aufwand: Nur 1x für jede Matrix betreiben. Sobald LR-Decomp vorliegt nur noch *quadratischer* Aufwand \downarrow Aufwand: Tridiagonalmatrix. Erster Schritt mit 3 AOPs. Restmatrix bleibt tridiagonal. Aufwand 3n+6n für R-und F-Einsetzen.

lr_decomp

for
$$k = 1: n$$

for $i = k + 1: n$
 $a_{ik} \leftarrow a_{ik}/a_{kk}$
for $j = k + 1: n$
 $a_{ij} \leftarrow a_{ij} - a_{ik}a_{kj}$

PROBLEM DER EXISTENZ EINER LR-Z

Falls ${\bf A}$ oder ${\bf A}_{**}$ eine 0 auf der Diagonalen hat, existiert keine LR-Zerlegung. Lösung: Permutiere die Zeilen von ${\bf A}$ so, dass das Ergebnis eine LR-Z besitzt.

PERMUTATIONSMATRIX

Sei $\mathbf{P} \in \mathbb{R}^{n \times n}$. Falls in jeder Zeile und Spalte von \mathbf{P} genau ein Eintrag 1 und alle anderen 0, dann ist \mathbf{P} eine Permutationsmatrix. \mathbf{P} ist orthogonal. Ein Produkt zweier Permutationsmatrizen \mathbf{PQ} ist auch eine Permutationsmatrix.

PERMUTATION

Bijektive Abbildung $\pi: \{1, \dots, n\} \to \{1, \dots, n\}$.

LR-Z MIT PIVOTSUCHE

A regulär. Es existiert $\mathbf{P} \in \mathbb{R}^{n \times n}$ sodass $\mathbf{PA} = \mathbf{LR}$ gilt.

Pivotisierung: Finde betragsmaximalstes Element in der aktuellen Spalte, welches unter dem aktuellen Diagonalelement von $\bf A$ liegt und tausche die aktuelle Zeile mit der Zeile in der das betragsmaximalste Element ist, mit Hilfe von $\bf P.$ $a_{11}\neq 0,$ da betragsgrößtes Element.

LÖSEN EINES GLEICHUNGSSYSTEMS MIT PIVOTSUCHE

$$Ax = b \Leftrightarrow PAx = Pb \Leftrightarrow LRx = Pb.$$

1.) $Lv = \tilde{b}$ 2.) $Rx = v$

lr_pivot

p protokolliert, welche Vertauschungen durchgeführt wurden, um sie später auf **b** anwenden zu können. Aufwand: $\frac{2}{3}n^3$.

SONDERFALL: **A** POSITIV DEFINIT TODO.

2.4 Fehlerverstärkung

NORM DES MATRIX-VEKTOR-PRODUKTS

Wie stark ändert sich die Länge eines Vektors wenn er mit \mathbf{A} multipliziert wird. Mapping von Einheitskreis auf Ellipse.. Für $\mathbf{A} \in \mathbb{R}^{n \times n}$ gilt:

$$\alpha_2(\mathbf{A}) = \min\{\|\mathbf{A}\mathbf{y}\|_2 : \mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 = 1\}$$

$$\beta_2(\mathbf{A}) = \max\{\|\mathbf{A}\mathbf{y}\|_2 : \mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 = 1\}$$

und

$$\alpha_2(\mathbf{A})\|\mathbf{z}\|_2 < \|\mathbf{A}\mathbf{z}\|_2 < \beta_2(\mathbf{A})\|\mathbf{z}\|_2$$

Eigenschaften der Norm:

$$\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = 0$$
$$\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$$
$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$

TODO

2.5 QR-Zerlegung

Für jede Matrix gibt es eine QR-Z.

LR-Z: Schlecht konditioniertes Problem

 $\kappa_2(\mathbf{A}) \gg 1, \, \kappa_2(\mathbf{A}) \le \kappa_2(\mathbf{L})\kappa_2(\mathbf{R})$

Kritisch falls $\kappa_2(\mathbf{L})\kappa_2(\mathbf{R}) \gg \kappa_2(\mathbf{A})$.

Ziel: Suche Transformationen $\mathbf{Q} \in \mathbb{R}^{n \times n}$, die die Norm unverändert lassen:

$$\|\mathbf{Q}\mathbf{y}\|_2 = \|y\|_2$$

Mit Hinzunahme des Skalarprodukts:

$$\langle \mathbf{y}, \mathbf{y} \rangle_2 = \|\mathbf{y}\|_2^2 = \|\mathbf{Q}\mathbf{y}\|_2^2 = \langle \mathbf{Q}\mathbf{y}, \mathbf{Q}\mathbf{y} \rangle_2 = \langle \mathbf{y}, \mathbf{Q}^*\mathbf{Q}\mathbf{y} \rangle_2$$

muss $\mathbf{Q}^*\mathbf{Q} = \mathbf{I}$ gelten.

Gesucht: $\mathbf{A} = \mathbf{Q}\mathbf{R}$.

Konditionszahl bzw. Fehlerverstärkung wird nicht verschlechtert: $\alpha_2(\mathbf{A}) = \alpha_2(\mathbf{R}), \beta_2(\mathbf{A}) = \beta_2(\mathbf{R})$

 $\kappa_2(\mathbf{A}) = \kappa_2(\mathbf{R}).$

GIVENS-ROTATION

Mit Hilfe von Givens-Rotationen können wir beliebige $\mathbf{A} \in \mathbb{R}^{m \times n}$ auf obere Δ gestalt bringen.

$$\mathbf{Q} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \text{ und } \mathbf{Q}\mathbf{y} = \begin{pmatrix} cy_1 + sy_2 \\ 0 \end{pmatrix}$$

Konsekutiv Givens-Rotationen \mathbf{Q}_{ij} *i*-te und *j*-te Zeile anwenden um Eintrag a_{ij} zu beseitigen. Bsp. $\mathbf{A} \in \mathbb{R}^{4 \times 3}$:

$$\underbrace{ \begin{aligned} \mathbf{R} &= \mathbf{Q}_{43} \mathbf{Q}_{32} \mathbf{Q}_{42} \mathbf{Q}_{21} \mathbf{Q}_{31} \mathbf{Q}_{41} \mathbf{A} \\ \mathbf{Q}_{41}^* \mathbf{Q}_{31}^* \mathbf{Q}_{21}^* \mathbf{Q}_{42}^* \mathbf{Q}_{32}^* \mathbf{Q}_{43}^* \\ \mathbf{Q} \end{aligned}} \mathbf{R} = \mathbf{A}$$

Kompakte Darstellung

Verwende Nulleinträge von A bzw. R um \mathbf{Q}_{ij} zu beschreiben. Finde Givens-Rotation:

$$\rho = \begin{cases} s = \rho, c = \sqrt{1 - s^2} & \text{falls } |\rho| < 1 \\ c = 1/\rho, s = \sqrt{1 - c^2} & \text{falls } |\rho| > 1 \\ c = 1, s = 0 & \text{falls } \rho = 1 \end{cases}$$

Speichern der QR-Z in A:

$$\begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ \rho_{21} & r_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & r_{n-1,n} \\ \rho_{n1} & \cdots & \rho_{n,n-1} & r_{nn} \end{pmatrix}$$
(3)

Qr Decomp von $\mathbf{A} \in \mathbb{R}^{m imes n}$

for
$$k=1: \min(m,n)$$
 // Loop über Diagonale for $i=k+1:m$ // Loop über Elemente unter Diagonalen if $a_{ik}=0$
$$\rho\leftarrow 1, \ c\leftarrow 1, \ s\leftarrow 0$$
 else if $|a_{kk}|\geq |a_{ik}|$ // Vgl. mit Diag.element
$$\tau\leftarrow a_{ik}/a_{kk}, \ \rho\leftarrow \tau/\sqrt{\tau^2+1}, \ s\leftarrow \rho, \ c\leftarrow \sqrt{1-s^2}$$
 else // Vgl. mit Diag.element
$$\tau\leftarrow a_{kk}/a_{ik}, \ \rho\leftarrow \sqrt{\tau^2+1}/\tau, \ c\leftarrow 1/\rho, \ s\leftarrow \sqrt{1-c^2}$$

// Diag.element aktual., Giv.-Rot. in aktueller It. speichern
$$a_{kk} \leftarrow ca_{kk} + sa_{ik}, \ a_{ik} \leftarrow \rho$$
 for $j = k+1: n$ // Loop über Elemente in der k -ten Zeile // Giv-Rot auf Zeile anwenden $\alpha \leftarrow a_{kj}, \ a_{kj} \leftarrow c\alpha + sa_{ij}, \ a_{ij} \leftarrow -s\alpha + ca_{ij}$

Aufwand: $6n^2 + 2n^3$ (quadratische Matrix) 3x mehr als LR-Z.

LÖSEN GLEICHUNGSSYSTEM $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{b} = \mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{Q}\mathbf{y} \quad \Leftrightarrow \quad 1.) \ \mathbf{y} = \mathbf{Q}^*\mathbf{b} \quad 2.) \ \mathbf{y} = \mathbf{R}\mathbf{x}.$$

1.) Qr_transform: Über einzelne G_{ij} (oben links angefangen) iterieren und auf b multiplizieren.

2.) Rückwärtseinsetzen.

Effizientere QR-Z

Householder-Spiegelungen: Aufwand 2x mehr als LR-Z. Mit Optimierungen bei Speicherzugriffen bei QR-Z ähnlich schnell wie LR-Z.

2.6 Ausgleichsprobleme

Wir suchen ${\bf x}$ so, dass alle Gleichungen möglichst gleich gut erfüllt werden.

3 Nichtlineare Gleichungssysteme

Wir untersuchen nichtlineare Gleichungssysteme der Form

Gegeben eine stetige Funktion $f: \mathbb{R}^n \to \mathbb{R}^n$, finde $\mathbf{x}^* \in \mathbb{R}^n$ mit $f(\mathbf{x}^*) = \mathbf{0}$

Transformieren in ein Nullstellenproblem.

3.1 Bisektionsverfahren

Einfache Technik, das in jedem Schritt den Fehler mindestens halbiert. Basierend auf dem Zwischenwertsatz für stetige Funktionen.

Funkioniert nur für 1D.

ZWISCHENWERTSATZ

Eine reele Funktion f, die in [a,b] stetig ist, nimmt jeden Wert zwischen f(a) und f(b) an. Haben f(a) und f(b) verschiedene Vorzeichen, so ist eine Existenz mindestens einer Nullstelle in [a,b] garantiert.

VERFAHREN IN MATHEMATISCHER NOTATION

$$(a^{(0)}, b^{(0)}) = (a, b)$$

$$x^{(m)} = \frac{a^{(m)} + b^{(m)}}{2}$$

$$(a^{(m+1)}, b^{(m+1)}) = \begin{cases} (a^{(m)}, x^{(m)}) & \text{if } f(a^{(m)}) f(x^{(m)}) < 0 \\ (x^{(m)}, b^{(m)}) & \text{sonst.} \end{cases}$$

Bisection

$$\begin{split} f_a &\leftarrow f(a), \, f_b \leftarrow f(b) \\ \text{while } b-a &> \epsilon \\ x &\leftarrow (a+b)/2 \\ f_x &\leftarrow f(x) \end{split}$$

if
$$f_a f_x < 0$$

 $b \leftarrow x, f_b \leftarrow f_x$
else
 $a \leftarrow x, f_a \leftarrow f_x$

Aufwand: m+2 Auswertungen von f und 2m Rechenoperationen, mit $m=\lceil \log_2((b-a)/\epsilon) \rceil$ Schritten. Hohe Stabilität und jedes konstruierte Intervall muss eine Nullstelle enthalten. Nur auf reelwertige Funktionen auf geeigneten Intervallen anwendbar.

3.2 Allgemeine Fixpunktiterationen

ITERATION

 $U\subseteq\mathbb{R}^n$ eine abgeschlossene Teilmenge und $\Phi:U\to U$ eine (Selbst-)Abbildung. Dann ist Φ eine Iteration auf U. Folge der Iterierten $\mathbf{x}^{(m+1)}=\Phi(\mathbf{x}^{(m)})$. Kontruiere Iteration so, dass Φ gegen gesuchte Lösung \mathbf{x}^* konvergiert. Es soll $\phi(\mathbf{x}^*)=\mathbf{x}^*$ gelten. Die Lösung muss ein Fixpunkt von Φ sein.

MITTELWERTSATZ DER DIFFERENTIALRECHNUNG Zwischen a und b von f gibt es mindestens einen Kurvenpunkt, für den die Tangente an η parallel zur Sekante durch a und b ist: $(b-a)f'(\eta) = f(b) - f(a)$.

TODO: WÄHLEN DER RICHTIGEN ITERATION

FIXPUNKTSATZ VON BANACH

Sei Φ eine Iteration auf einer **abgeschlossenen** Menge $U \subseteq \mathbb{R}^n$ (Selbstabbildung). Sei $L \in [0,1)$ so gegeben, dass: $\|\Phi(\mathbf{x}) - \Phi(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|$ für alle $\mathbf{x}, \mathbf{y} \in U$. Kontraktion. Φ besitzt **genau** einen Fixpunkt und die Folge der Iterierten konvergiert für jeden Startwert $\mathbf{x}^{(0)} \in U$ gegen diesen Fixpunkt.

Fehlerabschätzung a-priori (Vorhersagen wieviele Schritte) und a-posteriori (Prüfen ob Näherung schon genau genug):

$$\|\mathbf{x}^{(m)} - \mathbf{x}^*\| \le \frac{L^m}{1 - L} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$$
$$\|\mathbf{x}^{(m)} - \mathbf{x}^*\| \le \frac{1}{1 - L} \|\mathbf{x}^{(m)} - \mathbf{x}^{(m+1)}\| \quad \forall m \in \mathbb{N}_0$$

3.3 1D-Newton-Verfahren

 $U \subseteq \mathbb{R}^n$ offene Menge und $f: U \to \mathbb{R}^n$ zweimal stetig differenzierbar mit Nullstelle $vx^* \in U$, so dass $f(\mathbf{x}^*) = \mathbf{0}$. Ziel: Konstruiere Iteration Φ , die \mathbf{x}^* als Nullstelle besitzt.

Taylor

TODO

$$0 = f(x^*) = f(x) + f'(x)(x^* - x) + \underbrace{f''(\eta)}_{2} (x^* - x)^2$$

EINDIMENSIONALES NEWTON-VERFAHREN

$$\Phi: U \to \mathbb{R}$$
 $x \to x - \frac{f(x)}{f'(x)}$

Indem der dritte Term der Taylorreihe wegfätst, approximieren wir die Funktion f durch ihre Tangente im Punkt x. Die Nullstelle der Tangente ist die nächste Iterierte $\Phi(x)$.

Konvergenz

Sei $r \in \mathbb{R}_{>0}$ und $U = (x^* - r, x^* + r)$ und gelte $f \in C^2(U)$, $|1/f'(x)| \le C_1 \forall x \in U$, $|f''(x)| \le C_2 \forall x \in U$ und $r \le \frac{2}{C_1 C_2}$, dann ist die Abbildung Φ für das Newton Verfahren eine Selbstabbildung auf U, sodass gilt:

$$|\Phi(x) - x^*| \le \frac{C_1 C_2}{2} |x - x^*|^2 \quad \forall x \in U$$

Newton-Verfahren konvergiert, falls $x^{(0)}$ in U liegt. Konvergenz ist umso schneller, je näher die Iterierten an der Lösung liegen. Quadratische Konvergenz.

3.4 ND-Newton-Verfahren

Hauptsatz der Integral- und Differentialrechnung

$$f(b) - f(a) = \int_{a}^{b} f'(t)dt$$

NEWTON-VERFAHREN

Sei $U \subseteq \mathbb{R}^n$ und $Df(\mathbf{x})$ für alle $\mathbf{x} \in U$ regulär (also invertierbar). Es gilt:

$$\Phi: U \to \mathbb{R}^d, \quad \mathbf{x} \mapsto \mathbf{x} - Df(\mathbf{x})^{-1}f(\mathbf{x})$$

Konvergenz

Sei $r \in \mathbb{R}_{>0}$ und $U = K(\mathbf{x}^*, r)$ und gelte $f \in C^1(U, \mathbb{R}^b)$, $\|Df(\mathbf{x})^{-1}\|_2 \le C_1 \forall \mathbf{x} \in U$, $\|Df(\mathbf{x}) - Df(\mathbf{y})\|_2 \le C_2 |\mathbf{x} - \mathbf{y}\|_2 \forall \mathbf{x}, \mathbf{y} \in U$ und $r \le \frac{2}{C_1 C_2}$.

Dann ist Φ eine Selbstabbildung auf der Kugel U und es gilt

$$\|\Phi(\mathbf{x}) - \mathbf{x}^*\|_2 \le \frac{C_1 C_2}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2 \quad \forall \mathbf{x} \in U$$

Quadratische Konvergenz unter schwächeren Voraussetzungen denn f' muss Lipschitz-stetig sein.

Umsetzung

Anstatt Inverse Jacobimatrix zu berechnen, lineares Gleichungssystem nach ${\bf d}$ lösen (erhöhte numerische Stabilität):

$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \mathbf{d}^{(m)} \qquad \mathbf{d}^{(m)} = -Df(\mathbf{x}^{(m)})^{-1}f(\mathbf{x}^{(m)})$$
$$Df(\mathbf{x}^{(m)})\mathbf{d}^{(m)} = -f(\mathbf{x}^{(m)})$$

GEDÄMPFTES NEWTON-VERFAHREN

Um Divergenz zu vermeiden Newton-Richtung mit Dämpfungsparameter $\sigma^{(m)}$ multiplizieren. Sorgt dafür, dass der Fehler nicht größer als im vorangehenenden Schritt werden kann.

$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \sigma^{(m)} \mathbf{d}^{(m)}$$

4 Eigenwertprobleme

Im Allgemeinen werden Eigenwertprobleme in der Form $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}, \ \mathbf{x} \neq 0$ untersucht.

4.1 Vektoriteration

Eignet sich für die Berechnung des größten Eigenwerts. Eigenwertproblem in die Form eines linearen Gleichungssystems bringen:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

Annahmen: $\mathbf{A} = \mathbf{A}^*$. Mit Hauptachsentransformation auf Diagonalgestalt bringen, sodass eine orthogonale Matrix $\mathbf{U} \in \mathbb{R}^n n$ existiert, wo $\mathbf{U}^* \mathbf{A} \mathbf{U} = \mathbf{D}$ gilt, sodass die Eigenwerte λ_n in absteigendem Betrag auf der Diagonalen von \mathbf{D} liegen. Motivation: Wenn ein Vektor $\hat{\mathbf{x}}^{(0)} \in \mathbb{R}^n$ mit der m-ten Potenz der Matrix \mathbf{D} multipliziert wird, erhält man neue Vektoren

$$\hat{\mathbf{x}}^{(m)} = \mathbf{D}^m \hat{\mathbf{x}}^{(0)} = \begin{pmatrix} \lambda_1^m \hat{x}_1^{(0)} \\ \vdots \\ \lambda_n^m \hat{x}_n^{(0)} \end{pmatrix}$$

sodass sich für große Werte von m (aufgrund der absteigenden Sortierung) die ersten Komponenten gegenüber dem Rest durchsetzen.

Dominanter Eigenwert

Gilt $|\lambda_1| > |\lambda_2| \le ... \le |\lambda_n|$ so werden $\hat{\mathbf{x}}^{(m)}$ gegen ein Vielfaches von $\hat{\mathbf{e}}^{(1)} = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}^*$ konvergieren. Der erste Einheitsvektor ist ein Eigenvektor zu λ_1 , sodass wir Konvergenz gegen einen Eigenvektor erhalten.

Konvergenz

 $\mathbf{e}^{(1)} = \mathbf{U}\hat{\mathbf{e}}^{(1)}$ ist Eigenvektor zu Eigenwert λ_1 . Es gilt $\tan(\mathbf{x}^{(0)},\mathbf{e}^{(1)}) < \infty$, also $\mathbf{x}^{(0)}$ soll nicht senkrecht auf $\mathbf{e}^{(1)}$ stehen. Dann gilt

$$\tan(\mathbf{x}^{(m)}, \mathbf{e}^{(1)}) \le \left(\frac{|\lambda_2|}{|\lambda_1|}\right)^m \tan(\mathbf{x}^{(0)}, \mathbf{e}^{(1)}) \qquad \forall m \in \mathbb{N}_0$$

Sind $|\lambda_2|$ und $|\lambda_1|$ ähnlich groß, gibt es langsame Konvergenz. DIAGONALISIERBARE MATRIZEN

TODO

Numerische Probleme: Iterationsfolge führt zu Vektoren mit sehr großen ($|\lambda_1| > 1$) oder sehr kleinen Einträgen ($|\lambda_1| < 1$).

Lösung: Normalisieren mit der Norm (also nur Skalierung):

$$\mathbf{y}^{(m)} = \mathbf{A}\mathbf{x}^{(m-1)} \quad \gamma^{(m)} = \|\mathbf{y}^{(m)}\|_2 \quad \mathbf{x}^{(m)} = \mathbf{y}^{(m)}/\gamma^{(m)}$$
$$\forall m \in \mathbb{N}$$

Rayleigh-Quotient

Rayleigh-Quotient zu A ist gegeben durch

$$\Lambda_A: \mathbb{R}^n \backslash \{\mathbf{0}\} o \mathbb{R} \qquad \mathbf{x} \mapsto rac{\langle \mathbf{A}\mathbf{x}, \mathbf{x}
angle_2}{\langle \mathbf{x}, \mathbf{x}
angle_2}$$

Falls $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ ein Eigenvektor von \mathbf{A} zu $\lambda \in \mathbb{R}$ ist gilt $\Lambda_A = \lambda$. Mit der Cauchy-Schwarz-Ungleichung

 $|\langle \mathbf{x}, \mathbf{y} \rangle_2| \le \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ lässt sich die Genauigkeit der Näherung des Eigenwerts abschätzen über:

$$|\Lambda_A(\mathbf{x}) - \lambda| \le ||\mathbf{A} - \lambda \mathbf{I}||_2 \sin(\mathbf{x}, \mathbf{e}) \le ||\mathbf{A} - \lambda \mathbf{I}||_2 \tan(\mathbf{x}, \mathbf{e})$$

mit $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ als Näherung des Eigenvektors $\mathbf{e} \in \mathbb{R}^n$ von \mathbf{A} zu $\lambda \in \mathbb{R}$.

Quadratische Konvergenz: Falls $\mathbf{A} = \mathbf{A}^*$, ergibt sich die Abschätzung

$$|\Lambda_A(\mathbf{x}) - \lambda| \le ||\mathbf{A} - \lambda \mathbf{I}||_2 \sin^2(\mathbf{x}, \mathbf{e})$$

Näherung des Eigenwerts kann wesentlich schneller als die des Eigenvektors konvergieren.

power_adaptive

$$\frac{\gamma \leftarrow \|\mathbf{x}\|_{2}, \mathbf{x} \leftarrow \mathbf{x}/\gamma}{\mathbf{y} \leftarrow \mathbf{A}\mathbf{x}} \\
\lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_{2} \\
\text{while } \|\lambda \mathbf{x} - \mathbf{y}\|_{2} > \epsilon \|\mathbf{y}\|_{2} \\
\gamma \leftarrow \|\mathbf{y}\|_{2}, \mathbf{x} \leftarrow \mathbf{y}/\gamma \\
\mathbf{y} \leftarrow \mathbf{A}\mathbf{x} \\
\lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_{2}$$

 ${\bf y}$ wird für die Berechnung von Λ_A , die Prüfung auf Konvergenz und für die Bestimmung der nächsten Iterierten genutzt.

4.2 Inverse Iteration

Eigenet sich für die Berechnung des kleinsten Eigenwerts (geben die niedrigsten Frequenzen für Resonanzeffekte an). Wenn A regulär, gilt:

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \quad \Leftrightarrow \quad \mathbf{x} = \lambda\mathbf{A}^{-1}\mathbf{x} \quad \Leftrightarrow \quad \frac{1}{\lambda}\mathbf{x} = \mathbf{A}^{-1}\mathbf{x}$$

Also ist ein Eigenvektor von ${\bf A}$ zu λ auch ein Eigenvektor von ${\bf A}^{-1}$ zu $1/\lambda$. Damit ist der betragskleinste EW von ${\bf A}$ der Kehrwert des betragsgrößten EWs von ${\bf A}^{-1}$.

Inverse Iteration:

$$\mathbf{y}^{(m)} = \mathbf{A}^{-1}\mathbf{x}^{(m-1)} \quad \gamma^{(m)} = \|\mathbf{y}^{(m)}\|_2 \quad \mathbf{x}^{(m)} = \mathbf{y}^{(m)}/\gamma^{(m)}$$
$$\forall m \in \mathbb{N}$$

Inverse von \mathbf{A} umgehen mit Lösung von $\mathbf{A}\mathbf{y}^{(m)} = \mathbf{x}^{(m-1)}$. MIT SHIFT

Falls $\mu \in \mathbb{R}$ kein Eigenwert von \mathbf{A} , dann ist $\mathbf{B} = (\mathbf{A} - \mu \mathbf{I})$ regulär. Mit EW $\lambda \in \mathbb{R}$ und EV $\mathbf{x} \in \mathbb{R}^n$. Dann ist $\frac{1}{\lambda - \mu}$ ein EW von \mathbf{B}^{-1} . Der betragsgrößte EW von \mathbf{B}^{-1} korrespondiert mit dem EW von \mathbf{A} , der μ am nächsten liegt. Inverse Iteration mit Shift

$$\mathbf{y}^{(m)} = (\mathbf{A} - \mu \mathbf{I})^{-1} \mathbf{x}^{(m-1)} \quad \gamma^{(m)} = \|\mathbf{y}^{(m)}\|_{2}$$
$$\mathbf{x}^{(m)} = \mathbf{y}^{(m)} / \gamma^{(m)} \quad \forall m \in \mathbb{N}$$

invit_adaptive

Faktorisierung von ${f B}$ berechnen.

$$\begin{split} & \gamma \leftarrow \|\mathbf{x}\|_2, \, \mathbf{x} \leftarrow \mathbf{x}/\gamma \\ & \text{L\"ose } (\mathbf{A} - \mu \mathbf{I})\mathbf{y} = \mathbf{x} \\ & \lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2 \\ & \text{while } \|\lambda \mathbf{x} - \mathbf{y}\|_2 > \epsilon \|\mathbf{y}\|_2 \\ & \gamma \leftarrow \|\mathbf{y}\|_2, \, \mathbf{x} \leftarrow \mathbf{y}/\gamma \\ & \text{L\"ose } (\mathbf{A} - \mu \mathbf{I})\mathbf{y} = \mathbf{x} \\ & \lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2 \end{split}$$

QR/LR-Z muss nur einmal berechnet werden, danach relativ geringer Aufwand. Rayleigh-Quotient λ wird gegen EW von \mathbf{B}^{-1} konvergieren - rekonstruieren des originalen EW von \mathbf{A} über $1/\lambda + \mu$.

Konvergenz

$$\tan(\mathbf{x}^{(m)}, \mathbf{e}^{(1)}) \le \left(\frac{|\lambda_1 - \mu|}{|\lambda_2 - \mu|}\right)^m \tan(\mathbf{x}^{(0)}, \mathbf{e}^{(1)})$$

RAYLEIGH-ITERATION

Je näher μ an λ_1 , desto schnellere Konvergenz gegen den EV. Wenn $\mathbf{x}^{(m)}$ eine gute Näherung eines EVs ist, wird $\Lambda_A(\mathbf{x}^{(m)})$ eine gute Näherung des entsprechenden EWs sein (a.k.a **guter Shift-Parameter**).

Rayleigh-Iteration:

$$\mu^{(m)} = \Lambda_A(\mathbf{x}^{(m-1)})$$

$$\mathbf{y}^{(m)} = (\mathbf{A} - \mu^{(m)}\mathbf{I})^{-1}\mathbf{x}^{(m-1)}, \quad \mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{\|\mathbf{y}^{(m)}\|_2}, \quad \forall m \in \mathbb{N}$$

invit_rayleigh

$$\begin{split} & \gamma \leftarrow \|\mathbf{x}\|_2, \, \mathbf{x} \leftarrow \mathbf{x}/\gamma \\ & \text{L\"ose } (\mathbf{A} - \mu \mathbf{I})\mathbf{y} = \mathbf{x} \\ & \lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2 \\ & \mu \leftarrow 1/\lambda + \mu \\ & \text{while } \|\lambda \mathbf{x} - \mathbf{y}\|_2 > \epsilon \|\mathbf{y}\|_2 \\ & \gamma \leftarrow \|\mathbf{y}\|_2, \, \mathbf{x} \leftarrow \mathbf{y}/\gamma \\ & \text{L\"ose } (\mathbf{A} - \mu \mathbf{I})\mathbf{y} = \mathbf{x} \\ & \lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2 \\ & \mu \leftarrow 1/\lambda + \mu \end{split}$$

 μ abhängig von m,daher in jeder Schleife QR/LR-Z berechnen - wesentlich aufwendiger. Allerdings sehr schnelle (quadratische) Konvergenz bei guter Näherung - jeder Schritt verdoppelt Anzahl korrekt berechneter Stellen.

4.3 Orthogonale Iteration

Berücksichtigung k-facher Eigenwerte. Keine Probleme bei mehrfachen oder eng beieinanderliegenden Eigenwerten. Konvergenz gegen von $\mathbf{e}^{(1)},...,\mathbf{e}^{(k)}\in\mathbb{R}^n$ (zu $\lambda_1,...,\lambda_k$) aufgespannten Teilraum. Zusammenfassen von k Iterierten in Matrix $\mathbf{X}^{(m)}\in\mathbb{R}^{n\times k}$

$$\mathbf{X}^{(m)} = \mathbf{A}^m \mathbf{X}^{(0)}$$
 bzw. $\mathbf{X}^{(m+1)} = \mathbf{A} \mathbf{X}^{(m)}$ $\forall m \in \mathbb{N}_0$

Spalten orthogonaler Matrix bilden orthonormale Basis und konvergieren nicht gegen denselben Raum (Einhaltung der LU). $\mathbf{X}^{(m)}$ durch $\mathbf{Q}^{(m)} \in \mathbb{R}^{n \times k}$ und $\mathbf{R}^{(m)} \in \mathbb{R}^{k \times k}$ ersetzen:

$$\mathbf{X}^{(m)} = \mathbf{Q}^m \mathbf{R}^{(m)} \qquad \forall m \in \mathbb{N}_0$$

Vermeiden der QR-Z von instabilen Matrizen $\mathbf{X}^{(m)}$. Daher

$$\mathbf{Y}^{(m+1)} = \mathbf{A}\mathbf{Q}^{(m)}$$
 $\mathbf{Y}^{(m+1)} = \mathbf{Q}^{(m+1)} \widehat{\mathbf{R}}^{(m+1)}$

und

$$\mathbf{X}^{(m+1)} = \mathbf{Q}^{(m+1)}\mathbf{R}^{(m+1)}$$
 $\mathbf{R}^{(m+1)} = \hat{\mathbf{R}}^{(m+1)}\mathbf{R}^{(m)}$

Die Folge $(\mathbf{Q}^{(m)})_{m=0}^{\infty}$ heißt orthogonale Iteration. orthoit_rayleigh

Berechne
$$\mathbf{Q}\mathbf{\hat{R}} = \mathbf{X}$$
 $\mathbf{Y} \leftarrow \mathbf{A}\mathbf{Q}$
 $\mathbf{\Lambda} \leftarrow \mathbf{Q}^*\mathbf{Y}$
while $\|\mathbf{Q}\mathbf{\Lambda} - \mathbf{Y}\|_2 > \epsilon$
Berechne $\mathbf{Q}\mathbf{\hat{R}} = \mathbf{Y}$
 $\mathbf{Y} \leftarrow \mathbf{A}\mathbf{Q}$
 $\mathbf{\Lambda} \leftarrow \mathbf{Q}^*\mathbf{Y}$
 $\mathbf{X} \leftarrow \mathbf{Q}$

Verallgemeinerung der Vektoriteration. Statt einzelnem Vektor - k-spaltige Matrix. Statt Iterierte zu EV zu machen -

Orthonormalbasen verwenden.

Aufwand: nk^2 AO/Schritt

Verfeinerungen

Inverse Iteration, Inverse Iteration mit Shift,

Rayleigh-Iteration

Deflation - entferne bereits konvergierte EV.

4.4 QR-Iteration

Alle EW und EV einer Matrix berechnen.

Aufwand: allgemeiner Fall proportional zu n^3 .

Konvergierte Teilmatrizen werden nicht ausgenutzt und langsame Konvergenz bei nah beieinander liegenden EW.

4.5 Praktische QR-Iteration

5 Approximation von Funktionen

CAD, Bestimmung von Formeln zur nurmerischen Integration, numerische Differentiation, numerisches Lösen von DGL...

5.1 Polynominterpolation

Polynome höchstens m-ten Grades $\Pi_m = \text{span}\{1, x, x^2, ..., x^m\}$ INTERPOLATIONSAUFGABE

Für gegebene Werte $f_0,...,f_m$ und paarweise verschiedene Stützstellen $x_0,...,x_m$ finde ein Polynom $p\in\Pi_m$, das erfüllt:

$$p(x_i) = f_i \qquad \forall i \in \{0, ..., m\}$$

Lagrange-Polynome

Für jedes $i \in \{0, ..., m\}$ ist $l_i : \mathbb{R} \to \mathbb{R}$

$$x \mapsto \prod_{\substack{k=0\\j\neq i}}^{m} \frac{x - x_k}{x_i - x_k}$$

ein Polynom höchstens m-ten Grades.

$$l_i(x_j) = \begin{cases} 1 & \text{falls } i = j \\ 0 & \text{sonst} \end{cases} \qquad l_i(x_i) = \prod_{\substack{k=0 \ i \neq i}}^m \frac{x_i - x_k}{x_i - x_k} = 1$$

Für beliebige $f_0,...,f_m$ löst $p=\sum_{k=0}^m f_k l_k$ das Interpolationsproblem - eindeutig lösbar. Dieser Ansatz ist jedoch ineffizient. Stattdessen... N-A-Verf.

5.2 Neville-Aitken-Verfahren

Idee: Von konstanten Polynomen ausgehend Polynome höheren Grades zu konstruieren. Gut geeignet für Bestimmung an wenigen Stellen.

Für alle $i,j \in \{0,...m\}$ mit $i \leq j$ existiert genau ein Polynom $p_{i,j} \in \Pi_{j-i}$, das $p_{i,j}(x_k) = f_k \quad \forall k \in \{i,...,j\}$ erfüllt . **Idee**: Interpolation höheren Grades lässt sich durch Konvexkombination von Polynomen niedrigeren Grades schreiben.

AITKEN-REKURRENZ

Sei $i, j \in \{0, ...m\}$ mit i < j:

$$\begin{split} p_{i,j}(x) &= \frac{x - x_i}{x_j - x_i} p_{i+1,j}(x) + \frac{x_j - x}{x_j - x_i} p_{i,j-1}(x) \\ &= p_{i+1,j}(x) + \frac{x_j - x}{x_j - x_i} (p_{i,j-1} - p_{i+1,j}(x)) \end{split}$$

- 1. Konstante Polynome $p_{i,i} = f_i$ bestimmen
- 2. Mit Aitken-Rekurrenz lineare, quadratische, etc., Polynome konstruieren
- 3. Bei Grad m ergibt sich $p_{0,m}(x) = p(x)$.

$$\begin{array}{lll} f_0 = p_{0,0}(x) \\ f_1 = p_{1,1}(x) & p_{0,1}(x) \\ f_2 = p_{2,2}(x) & p_{1,2}(x) & p_{0,2}(x) \\ f_3 = p_{3,3}(x) & p_{2,3}(x) & p_{1,3}(x) & p_{0,3}(x) = p(x) \end{array}$$

Algorithmus effizient: Spaltenweise von unten nach oben in-place.

neville

for
$$n=1:m$$
 // Loope über Grad der Polynome for $j=m:n$ // von unten nach oben in einer Spalte $i\leftarrow j-n$ // "Obere Ecke" des Δ $f_j\leftarrow ((x-x_i)f_j+(x_j-x)f_{j-1})/(x_j-x_i)$ return f_m

Aufwand: $\frac{7}{2}m(m+1)$ AO (quadratisch)

5.3 Newtons dividierte Differenzen

Auswertung in einigen Punkten ok bei quadratischem Aufwand. Bei Rendering bspw. jedoch zu aufwendig. Reduzierung des Aufwands durch Berechnung von Hilfsgrößen im Voraus.

Idee: Hat man $p_{i,j-1}$ bereits bestimmt, so sucht man nach einem Korrekturterm, durch dessen Ergänzung man $p_{i,j}$ erhält - Newton-Darstellung:

$$p_{i,j}(x) = p_{i,j-1}(x) + d_{i,j}(x - x_i)...(x - x_{j-1})$$

 $d_{i,j}$ ist abhängig von den Stützstellen x_i .

Per Induktion folgt als Networsche Interpolationsformel:

$$p_{i,j}(x) = \sum_{k=i}^{j} d_{i,k} n_{i,k}(x) \quad \text{mit} \quad n_{i,j}(x) = \begin{cases} 1 & i=j \\ \prod_{k=1}^{j-1} (x - x_k) \end{cases}$$

Effiziente Gestaltung

- 1. $s_m(x) = d_{0,m}$ bestimmen
- 2. $s_{m-1}(x)$ berechnen mit $s_i(x) = d_{0,i} + (x x_i)s_{i+1}(x)$
- 3. Stoppe, wenn $s_0(x) = p(x)$ berechnet

eval_newton

```
\begin{aligned} s &\leftarrow d_m \\ \text{for } i &= m-1:0 \\ s &\leftarrow d_i + (x-x_i)s \\ \text{return } s & // \text{ returns } s_0(x) \end{aligned}
```

mit
$$\mathbf{d} = (d_{0,0}, ..., d_{0,m})$$
.
Aufwand: $3m$ AO.

Newtons dividierte Differenzen

Newtonsche Interpolationsformel in Aitken-Rekurrenz einsetzen ergibt mit Koeffizientenvergleich der führenden Koeffizienten ergibt sich:

$$d_{i,j} = \frac{d_{i+1,j} - d_{i,j-1}}{x_j - x_i} \left(= f_j = \frac{f_j - f_{j-1}}{x_j - x_i} \right)$$

newton_diff

$$\begin{array}{l} \text{for } n=1:m \\ \text{ for } j=m:n \text{ // von unten nach oben in der Spalte} \\ i \leftarrow j-n \\ f_j \leftarrow (f_j-f_{j-1})/(x_j-x_i) \end{array}$$

Überschreibt $f_0, ..., f_m$ mit $d_{0,0}, ..., d_{0,m}$. Aufwand: $\frac{3}{2}m(m+1)$ - also quadratisch. Allerdings nur einmalige Ausführung.

5.4 Approximation von Funktionen

Interpolationsfehler

6 Numerische Integration

- 6.1 Quadraturformeln
- 6.2 Fehleranalyse

Copyright © 2014 Major Ring Ding Ding Dong feat. Jingjong Ba-Dingdong