Lecture 10, Sept. 30

Series

10.1 Definition. A series $\sum_{n=1}^{\infty} a_n$ is **positive** is for all $n \in \mathbb{N}$, if $S_k = \sum_{n=1}^k a_n$, then $S_{k+1} - S_k = a_{k+1} \ge 0$

10.2 Example. Harmonic Series Does $\sum_{n=1}^{\infty} \frac{1}{n}$ converge?

Let $S_k = \sum_{n=1}^k \frac{1}{n}$,

$$\begin{split} S_1 &= 1 = \frac{2}{2} \\ S_2 &= 1 + \frac{1}{2} = \frac{3}{2} \\ S_4 &= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = \frac{4}{2} \\ S_8 &= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ &> 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{5}{2} \\ &\vdots \\ S_{2^k} &> \frac{2 + k}{2} \end{split}$$

Since $\{\frac{2+k}{2}\}$ is not bounded, $\{S_k\}$ is not bounded.

10.3 Example. $\sum_{n=2}^{\infty} \frac{1}{n^2 - n}$

Note.

$$\frac{1}{n^2 - n} = \frac{1}{n(n-1)}$$
$$= \frac{1}{n-1} - \frac{1}{n}$$

Solution.

$$S_{1} = 1 - \frac{1}{2} = 1 - \frac{1}{2}$$

$$S_{2} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = 1 - \frac{1}{3}$$

$$S_{3} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = 1 - \frac{1}{4}$$

$$\vdots$$

$$S_{k} = 1 - \frac{1}{k}$$

As
$$k \to \infty$$
, $\sum_{n=2}^{\infty} \frac{1}{n^2 - n} = 1$

10.4 Example. $\sum_{n=1}^{\infty} \frac{1}{n^2}$

Note. For $n \ge 2$,

$$\frac{1}{n^2} < \frac{1}{n^2 - n}$$

$$T_k = \sum_{n=1}^k \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{k^2}$$

$$< 1 + \frac{1}{2^2 - 2} + \frac{1}{3^2 - 2} + \dots + \frac{1}{k^2 - k}$$

$$< 1 + 1$$

$$= 2$$

Since $T_k \leq 2$ for all k, $\{T_k\}$ is bounded and by the Monotone Convergence Theorem is convergent with $1 \leq \sum_{n=1}^{\infty} \frac{1}{n^2} \leq 2$.

In fact,
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

10.5 Example. Consider $\sum_{n=1}^{\infty} \frac{1}{n!}$, does this converge?

Note that $\frac{1}{n!} < \frac{1}{2^n}$ for $n \ge k$.

In fact,
$$\sum_{n=1}^{\infty} \frac{1}{n!} = e$$

Note.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Arithmetic Rules for Sequences

10.6 Question. Assume $a_n \to 3$, $b_n \to 7$.

What can you say about

- 1) $\{4a_n\}$
- 2) $\{a_n b_n\}$
- 3) $\{a_n + b_n\}$

4)
$$\{\frac{a_n}{b_n}\}$$

10.7 Theorem. Arithmetic Rules for Sequences Let $\{a_n\}$, $\{b_n\}$ be such that $\lim_{n\to\infty} a_n = L$, $\lim_{n\to\infty} b_n = M$. Then

1)
$$\lim_{n\to\infty} ca_n = cL$$
 for all $c \in \mathbb{R}$

2)
$$\lim_{n\to\infty} a_n + b_n = L + M$$

3)
$$\lim_{n\to\infty} a_n b_n = LM$$

4)
$$\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{L}$$
 if $L\neq 0$

5)
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M} \text{ if } M \neq 0$$

Proof. 1) If c=0 then $ca_n=0$ for all n. Hence $\lim_{n\to\infty}ca_n=\lim_{n\to\infty}0=0$ L=cL Suppose $c\neq 0$, Let $\epsilon>0$. We want N so that if $n\geq N$, $|ca_n-cL|<\epsilon\Leftrightarrow |a_n-L|<\frac{\epsilon}{|c|}$

Choose N_0 such that if $n \ge N_0$ we have $|a_n - L| < \frac{\epsilon}{|c|}$

If $n \geq N_0$,

$$|ca_n - cL| \le |a_n - L||c| < \frac{\epsilon}{|c|}|c| = \epsilon$$