✓ Espelho de Corrente (não idealidades)

Espelho de Corrente de Wilson

Espelho de Corrente de Widlar

Fontes de Corrente como carga ativa

Fonte de Corrente ideal

Impedância de Saída

Não idealidades do espelho de Corrente (MOS)

Resistência de saída finita

$$R_o = \frac{\Delta V_o}{\Delta I_o} = r_{o2} = \frac{V_{A2}}{I_o}$$

$$\frac{I_o}{I_{REF}} = \frac{(W/L)_2}{(W/L)_1} \left(1 + \frac{V_o - V_{GS}}{V_{A2}} \right)$$

Razão de espelho considerando o efeito Early

Guias de corrente na tecnologia CMOS

1 – Projetar o espelho de corrente abaixo para se obter uma corrente de polarização de 100 μA. Encontre R considerando $V_{DD}=3$ V, $I_{REF}=100$ μA, transistores casados e com L=1 μm, W=10 μm, $V_t=0.7$ V e $k'_n=200$ μA/ V². Qual o menor valor possível de V_o ? Assuma $V_A'=20$ V/μm. Encontre a impedância de saída da fonte de corrente. Qual o novo valor da impedância se

$$L = 10 \mu m$$
?

Não idealidades do espelho de Corrente (BJT) Corrente da Base

Efeito do β finito.

$$I_{REF} = I_C + 2I_C/\beta = I_C \left(1 + \frac{2}{\beta}\right)$$

$$\frac{I_o}{I_{REF}} = \frac{I_C}{I_C \left(1 + \frac{2}{\beta}\right)} = \frac{1}{1 + \frac{2}{\beta}}$$

$$\frac{I_o}{I_{REF}} = \frac{m}{1 + \frac{m+1}{\beta}}$$

Não idealidades do espelho de Corrente (BJT) Impedância de Saída

$$R_o = \frac{\Delta V_o}{\Delta I_o} = r_{o2} = \frac{V_{A2}}{I_o}$$

$$I_{o} = I_{REF} \frac{m}{1 + \frac{m+1}{\beta}} \left(1 + \frac{V_{o} - V_{BE}}{V_{A2}} \right)$$

Resistência de saída finita

2 - Considere um espelho de corrente com m=1. Se $I_s=10^{-15}$ A, $\beta=100$, $V_A=100$ V e quando $V_o=5$ V, $I_o=1$ mA. Qual o valor de I_{REF} e qual a impedância de saída?

Espelho de Corrente Bipolar com compensação de corrente da base

$$I_{REF} = I_C \left[1 + \frac{2}{\beta(\beta+1)} \right]$$

$$\frac{I_o}{I_{REF}} = \frac{1}{1 + 2/(\beta^2 + \beta)} \cong \frac{1}{1 + 2/\beta^2}$$

3 - O espelho de corrente da figura abaixo deve fornecer $I_1 = 0.5$ mA para um circuito com potência máxima dissipada de 2 mW. Use $\beta >> 1$ e $V_A = \infty$. Determine o valor de I_{REF} e os tamanhos relativos de Q_{REF} e Q_I .

Espelho de Corrente TBJ

4 - Os transistores M_1 e M_2 da figura abaixo são utilizados como fonte de correntes para os circuitos 1 e 2 respectivamente. Projete o circuito abaixo para uma potência máxima dissipada de 3 mW.

Espelho de Corrente MOS

5 - Projete o amplificador fonte comum da figura abaixo para um ganho de tensão de 20 V/V e máxima potência dissipada de 2 mW. Use $(W/L)_1 = 20/0.18$, $\lambda_{\rm n} = 0.1$ V⁻¹ e $\lambda_{\rm p} = 0.2$ V⁻¹, $k'_n = 100$ μ A/V² e Vt = 0.4 V.

Amplificador fonte Comum com espelho de Corrente MOS

Espelho de Corrente (não idealidades)

- ✓ Espelho de Corrente de *Wilson*
- ✓ Espelho de Corrente de *Widlar*
- ✓ Fontes de Corrente como carga ativa

Espelho de Corrente Wilson (BJT)

Diminuir a dependência de β e aumentar a imped. de saída.

$$\frac{I_o}{I_{REF}} = \frac{\beta + 2}{\beta + 2 + \frac{2}{\beta}}$$

$$\frac{I_o}{I_{REF}} = \frac{1}{1 + \frac{2}{\beta(\beta + 2)}} \cong \frac{1}{1 + 2/\beta^2}$$

Impedância de Saída

$$R_o \cong \beta r_o/2$$

Espelho de Corrente Wilson (BJT)

Acrescentando mais um transistor:

- » Equaliza as tensões do coletor de Q_1 e Q_2 (1 V_{BE})
- » Melhora a linearidade.
- » Potência dissipada na junção de Q_1 e Q_2 é a mesma, cancelando os efeitos térmicos em V_{BE} .

6 - Considerando $\beta = 100$ e $r_o = 100$ kΩ, compare o espelho de corrente Wilson com o espelho de corrente simples em relação ao erro devido ao β finito e a impedância de saída.

Wilson Erro = 0.02% $R_o = 5 \text{ M}\Omega$

Espelho de Corrente Wilson (MOS)

Impedância de Saída

$$R_o = r_{o3}(g_{m3}r_{o2} + 2) \cong g_{m3}r_{o3}r_{o2}$$

Espelho de Corrente Wilson (MOS)

Circuito melhorado para evitar erro na corrente I_o causado por valores diferentes de V_{DS} entre Q_1 e Q_2

Espelho de Corrente Widlar Degeneração de emissor ou fonte

Impedância de Saída

$$R_o \cong \left[1 + g_m \left(R_E // r_\pi \right) \right] r_o$$

7 - Determine os valores dos resistores para os espelhos de corrente abaixo para $I_o = 10$ μA. Use $V_{BE} = 0.7$ V em 1 mA e desconsidere o efeito de β.

Amp. operacional 741

Amp. operacional 741

Partes em vermelho: espelhos de corrente

Sugestão de Estudo:

- Sedra & Smith 5ed. Cap. 6, item 6.3 Cap. 6, item 6.12

- Razavi. 2ed. Cap. 9, item 9.2

Exercícios correspondentes.