

Applying Language Models to Language Learning

Duncan Roberts

MPhil in Advanced Computer Science

Digital flash cards!

Popular approach to learning. DTG's own Learn! Android app has sets for:

- Basic chemistry
- US Navy core values
- Career development strategies
- ...Languages?

Language learning through flash cards

Teaching vocab not too hard:

Language learning through flash cards

But grammar?

Teaching grammar

- Need to make it quick and easy to create large sets of examples and counter-examples of arbitrary grammar points, e.g.
 - Future tense
 - Relative clauses
 - The imperative
 - Pretty much anything else code should be task-independent

Approach

- 1. Prompt 'teacher' for:
 - A title for our learning task (uninterpreted)
 - ~5 example sentences
 - 5 counter-example sentences
- 2. Work out what examples have in common (that's not in a counter-example)
- 3. Find many other sentences in a pre-parsed corpus exhibiting this *commonality*

Approach

- 1. Prompt 'teacher' for:
 - A title for our learning task (uninterpreted)
 - ~5 example sentences
 - 5 counter-example sentences
- 2. Work out what examples have in common (that's not in a counter-example)
- 3. Find many other sentences in a pre-parsed corpus exhibiting this *commonality*

Save user typing by suggesting random sentences as counter-examples

Analysing a sentence

- Each word has*:
 - A part of speech (POS) tag: plural noun, adjective, past tense verb...
 - A base form ('lemma'): thought → think

*Most features derived using C&C – Stephen Clark's syntactic parser

Analysing a sentence

Word	Lemma	POS
She	she	Personal pronoun
gave	give	Past tense
apples	apple	Plural common noun
to	to	Preposition
Kim	Kim	Proper noun

Analysing a sentence

We can also extract *grammatical relations* (GRs) between words:

Commonality

What do the example sentences have in common?

Used to find other, similar sentences

Commonality – case study #1

Consider the "going to" future tense, e.g.

- He's going to be rich one day.
- I'm going to think about it.
- Becky is going to read her book.

(But not "I'm going to the shop to buy some tea" - present continuous)

Can't spot imperative using approaches described so far...

Weak commonality

Weak commonality: intersection of features observed in examples

Weak commonality

Weak commonality: intersection of features observed in examples

Strong commonality

Strong commonality: **intersection** of features observed in examples, **minus union** of features in counter-examples

Counter-example #1: He will be a rich man one day.

Counter-example #2: It was when we talked about the meeting.

Commonality – case study #2

Another case study: the imperative mood, e.g.

- Be that way.
- Dream a little dream of me.
- Think about the children.

Can't spot imperative using approaches described so far...

Absence-of commonality

Absence-of commonality: intersection of features observed in counter-examples, minus union of features in examples

Counter-example #1: She wanted to be famous.

Counter-example #2: This is a declarative sentence.

But it's not enough...

- This much works in a few simple cases, but:
 - False positive: "I'm going to the shops to buy some tea"
 - Composite features (e.g. a noun that is the subject of a verb) far more likely to capture commonality...

Analysing a sentence again – dependency structures

GRs + words = *almost* a tree...

(directed graph, but sometimes cyclic)

(Thank you, Google Image Search)

Analysing a sentence again – dependency structures

Break [almost-]tree up into smaller features: 'twigs'

Break [almost-]tree up into smaller features: 'twigs'

Lemma: to

Sometimes this is still not enough...

- What if our learning task is transitive verbs, but we're not interested in the direct/indirect object distinction?
 - Use GR type hierarchy to generate features

Exploiting the GR type hierarchy

- · Go up GR type hierarchy, generate new feature at each level
- Might only find commonality between example sentences at a higher level
- Same approach for POS tags, but requires custom hierarchy: standard Penn-Treebank set is flat

Running LearnGrammar! on Android (Nexus One)

- It works! (Mostly. Formal evaluation outstanding)
- Corpus load is slow
 - ~45s for 1000 pre-parsed sentences after mucking with file format
 - Run in background thread while user enters sentences
- Example sentence parsing via webservice call
- Searching for similar sentences is currently ~85s
 - Heavy pruning of redundant features required
 - Planning on implementing lazy search to avoid long up-front pause

