Релационна алгебра

Мултимножества (Bags)

РА върху мултимножества

- Мултимножество (bag)
 - за разлика от множествата един елемент може да се среща повече от 1 път
 - Multiset, bag
- Пример: {1,2,1,3}
- Редът в мултимножеството не е от значение
 - $-\{1,2,1\}=\{1,1,2\}$ като мултимножества,
 - но [1,2,1] <> [1,1,2] като списъци

Защо се използват мултимножества?

- SQL на практика работи върху мултимножества.
 - SQL елиминира дубликатите при явно посочване
- Някои оператори (проекция) са много по-ефективни върху мултимножества, отколкото върху множества.

Операции върху мултимножества

■ Обединение, сечение и разлика - особености при мултимножества.

Обединение на мултимножества

- Обединение един кортеж се среща толкова пъти в обединението на 2 мултимножества, колкото е сумата от срещанията му във всяко от мултимножествата.
- ■Пример: {1,2,1} ∪ {1,1,2,3,1} = {1,1,1,1,1,2,2,3}

Сечение на мултимножества

- Сечение един кортеж се среща в сечението на на 2 мултимножества, толкова пъти, колкото е минимумът от срещанията му във всяко от мултимножествата.
- Пример: $\{1,2,1\} \cap \{1,2,3\} = \{1,2\}$.

Разлика на мултимножества

■ Разлика - един кортеж се среща толкова пъти в разликата на мултимножествата А – В, колкото е броят на срещанията му в А минус броят на срещанията му в В.

- Пример 1: $\{1,2,1,1\} \{1,2,3\} = \{1,1\}$.
- Пример 2: {1,2,3} {1,2,1,1} = ?

Bag Laws != Set Laws

- Някои, но *не всички* алгебрични закон, които важат за множества не важат за мултимножества.
- ■Пример: комутативен закон при обединение (R ∪ S = S ∪ R) важи и при множества.

Разлика в операциите върху мултимножества и множества

■ Множества: обединение -> ($S \cup S = S$).

Разлика в операциите върху мултимножества и множества

- Множества:обединение -> (S ∪ S = S).
- Мултимножества: ако x се среща n пъти в S, ще се среща 2n пъти в S ∪ S.
- **S** ∪ S <>S

Операции върху мултимножества

- Селекция
- Проекция
- Декартово п-ние (и съединение)

Пример: селекция

R(Α,	В)
	1	2	
	5	6	
	1	2	

$$\sigma_{A+B<5}$$
 (R) =

Α	В
1	2
1	2

Пример: проекция

R(Α,	В)
	1	2	
	5	6	
	1	2	

$$\pi_{A}(R) = A$$

$$1$$

$$5$$

$$1$$

Пример: декартово п-ние

S(В,	C	
	3	4	
	7	8	

$R \times S =$	Α	R.B	S.B	С
	1	2	3	4
	1	2	7	8
	5	6	3	4
	5	6	7	8
	1	2	3	4
	1	2	7	8

Операции върху мултимножества

- Селекция прилага се за всеки кортеж, еднакъв ефект при множества и мултимножества.
- Проекция при мултимножества дубликатите не се елиминират.
- Декартово п-ние (и съединение) всеки кортеж от едната релация се свързва с всеки кортеж от другата, независимо от това дали се повтарят кортежите или не.

Пример: Theta-Join върху мултимножества

R(

Α,	В)
1	2	
5	6	
1	2	

S(

В,	С)
3	4	
7	8	

 $R \bowtie_{R.B < S.B} S =$

Α	R.B	S.B	С
1	2	3	4
1	2	7	8
5	6	7	8
1	2	3	4
1	2	7	8

Релационна алгебра

Допълнителни оператори

Допълнителни оператори

- 1. DELTA (δ) = отстраняване на дубликати от мултимножества.
- 2. TAU (т) = сортиране на кортежи.
- 3. *Разширена проекция* : артитметични операции,преименуване на колони.
- 4. GAMMA (γ) = групиране и агрегиране.
- 5. Външно свързване: предотвратява "висящи кортежи" = кортежи, които не участват в свързването.

Отстраняване на дубликати

- \blacksquare R1 := δ (R2)
- R1 съдържа само по едно копие на всеки кортеж, който се среща в R2 повече от един път.

Пример: Отстраняване на дубликати

$$\delta(R) = \begin{bmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Сортиране

- R1 := τ_L (R2).
 - L списък от атрибути на R2.
- R1 списък от кортежите на R2, сортирани първо по първия атрибут на списъка L, после по втория атрибут на L u m.н.
- TAU е единственият оператор, чийто резултат е списък от кортежи, а не множество от кортежи

Пример: Сортиране

$$TAU_B(R) = [(5,2), (1,2), (3,4)]$$

Разширена проекция

- Използвайки същия π_L оператор, позволяваме списъкът L да съдържа произволни изрази от атрибутите:
 - 1. Единичен атрибут на R
 - 2. Израз: **x -> y** (преименуване на атрибута **x** в y)
 - 3. Аритметика върху атрибутите: *A+B*.

Пример: Разширена проекция

$$\pi_{A+B,A,B}(R) = A+B A B$$

$$3 1 2$$

$$7 3 4$$

$$\pi_{A+B->C,A,B}(R) = \begin{bmatrix} C & A & B \\ 3 & 1 & 2 \\ 7 & 3 & 4 \end{bmatrix}$$

Агрегиращи оператори

- Агрегиращите оператори се прилагат върху целите колони и дават единичен резултат
- Примери:
 - SUM
 - AVG
 - MIN and MAX.
 - COUNT

Пример: агрегиране

Оператор за групиране

- \blacksquare R1 := γ_L (R2).
- L списък от елементи, които са:
 - 1. Индивидуални атрибути (grouping attributes).
 - 2. AGG(A), където AGG е агрегиращ оператор и A е атрибут.

Приложение на $GAMMA_L(R)$

- Групираме R спрямо всички групиращи атрибути от списъка L.
- Във всяка група изчисляваме AGG(A) за всяко агрегиране върху списъка *L*.
- Резултатът с-жа един кортеж за всяка група:
 - 1. Групиращи атрибути и
 - 2. Техните групови агрегации.

Пример: групиране/агрегиране

$$\gamma_{A,B,AVG(C)}(R) = ??$$

I – групиране в R:

Α	В	С
1	2	3
1	2	5
4	5	6

II — средна стойност на C в групата

Α	В	AVG(C)
1	2	4
4	5	6

Външно свързване (Outerjoin)

- $\blacksquare R \bowtie_{C} S.$
- Кортежите от *R*, които не могат да образуват двойка (да се свържат) с кортеж от *S* се наричат "висящи" (dangling).
 - Аналогично за S.
- Outerjoin (⋈) запазва висящите кортежи, като ги включва в резултата, допълвайки ги с NULL values.

Пример: външно свързване

(1,2) се свързва с (2,3), но остават 2 висящи кортежа.

$$R \stackrel{\circ}{\bowtie} S =$$

Α	В	С
1	2	3
4	5	NULL
NULL	6	7

Оператори на релационната алгебра

SELECT	σ	INTERSECT	
PROJ	π	MINUS	_
*	X	TAU	τ
JOIN	\bowtie	DELTA	8
RENAME	ρ	GAMMA	Y
UNION	U	OUTERJOIN	Xo

Ограничения върху релации

Две форми за представяне на ограниченията

- Нека R, S са изрази от PA
 - − R = Ø "релацията R не трябва да съдържа кортежи"
 - R ⊆ S "всеки кортеж от релацията R трябва да присъства като кортеж в S"

Пример 1:външен ключ

Movie(<u>Title, Year</u>, length, filmType, studioName, producerC#)

MovieExec(name,address,Cert#,netWorth)

 producerC# на всеки кортеж за филм трябва да присъства като сеrt# компонент на някои кортежи в MovieExec (референциален интегритет)

Пример 1: външен ключ

Movie(<u>Title, Year</u>, length, filmType, studioName, producerC#)

MovieExec(name,address,Cert#,netWorth)

Чрез релационната алгебра

```
\pi_{\text{producerC\#}} (Movie) \subseteq \pi_{\text{cert\#}} (MovieExec) \pi_{\text{producerC\#}} (Movie) - \pi_{\text{cert\#}} (MovieExec) = \varnothing
```

Пример 2

■ Всеки филм от релацията

StarsIn (movieTitle, movieYear, starName)

се съдържа и в релацията

Movie(title, year, length, inColor, studioN
 ame, producerC#)

Чрез релационната алгебра:

 $\pi_{\text{movieTitle,movieYear}}(\text{StarsIn}) \subseteq \pi_{\text{title,year}}(\text{Movie})$

Пример 3: функционални зависимости

- Изразяване на FD:
 - name → address
 - MovieStar(name,address,gender,birthday)
- Чрез релационната алгебра

```
\sigma_{MS1.name=MS2.name} AND MS1.address≠MS2.address (\rho_{MS1} (MovieStar) x \rho_{MS2} (MovieStar) ) = \varnothing
```

Пример 4: ограничения на домейна

- Допустими значения за атрибута *gender* (пол) са символните константи 'F' (female жена) и 'M' (male мъж).
- В релационната алгебра:

$$\sigma_{\text{gender} \neq \text{'F' AND gender} \neq \text{'M'}} (MovieStar) = \emptyset$$