

SÍLABO Máquinas e Instrumentos

Código	ASUC01400)	Carácter	Obligatorio
Prerrequisito	Ingeniería Eléctrica			
Créditos	4			
Horas	Teóricas	2	Prácticas	4
Año académico	2025-00			

I. Introducción

Máquinas e Instrumentos es una asignatura obligatoria de especialidad, se ubica en el sexto periodo académico de la Escuela Académico Profesional de Ingeniería Industrial. Tiene como prerrequisito a la asignatura de Ingeniería Eléctrica y es prerrequisito de la asignatura Gestión Integral del Mantenimiento. Desarrolla, a nivel intermedio, la competencia transversal de Medioambiente y Sostenibilidad y las competencias específicas: Análisis de Problemas y Uso de Herramientas Modernas. En virtud de lo anterior, su relevancia reside en capacitar al estudiante en componentes de máquinas en forma individual y en mecanismos de aplicación frecuente en la maquinaria industrial.

Los contenidos generales que la asignatura desarrolla son los siguientes: Transmisiones por bandas y por cadenas; Cinemática de los engranes, diseño de engranes rectos; Engranes helicoidales, cónicos y de tornillo sinfín y corona; Cuñas, acoplamientos y sellos; Diseño de ejes; Tolerancias y ajustes; Cojinetes con contacto de rodadura; Terminación del diseño de transmisión de potencia; Cojinetes de superficie plana; Elementos con movimiento lineal; Sujetadores; Resortes bastidores de máquina conexiones atornilladas y uniones soldadas; Motores eléctricos y controles; Embragues y frenos; Proyectos de diseño; Máquinas herramientas, torno, cepillo, fresadora, máquinas de soldadura por arco y autógena de plasma.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de identificar los procesos que intervienen en la fabricación y uso de una máquina.

III. Organización de los aprendizajes

Unidad 1 Duración Máquinas, mecanismos y procesos de fabricación en horas					
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de elaborar e interpretar planos de máquinas, reconociendo los materiales más utilizados en la industria y los principales procesos de manufactura.				
Ejes temáticos	 Elementos de máquinas y mecanismos Materiales de construcción industrial Procesos de manufactura (soldadura, maquiplástica, fundición) Tolerancias y ajustes Utilización de software SolidWorks en el diseñ máquinas. 				

Dise	Duración en horas	24			
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de utilizar la metodología del diseño de máquinas en el desarrollo del proyecto a construir.				
Ejes temáticos	 Metodología del diseño de máquinas, para Comprensión de la solicitud de diseño, pro Proyecto definitivo, elaboración de detalle Motores eléctricos y control de motores 	ecto prelimir			
	 Utilización de software Cade Simu V3.0 en el control de motores eléctricos. 				

	Duración en horas	24	
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será instrumentación industrial para el control de pro	•	usar la
Ejes temáticos	 Introducción a la automatización (instrume digital) Sensores y actuadores Introducción a la programación con PLC Programación básica del PLC Utilización de software Soft Comfort V8 en la PLC 		

Unidad 4 Duración Control de procesos en horas					
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de programar el controlador lógico programable para el control del proyecto desarrollado.				
Ejes temáticos	 Programación del PLC con temporizadores Programación del PLC con contadores Montaje e instalación de proyecto seleccio Presentación del proyecto terminado Utilización de software Tia Portal V15 en la p PLC 		de los		

IV. Metodología

La asignatura se desarrollará incidiendo en la metodología experiencial y colaborativa.

Modalidad Presencial

En el desarrollo de la asignatura se empleará la metodología de enfoque por competencias que permite resolver problemas de la realidad, para lo cual se aplica el Aprendizaje Basado en Proyectos (ABP).

Procedimientos

- 1. La activación del aprendizaje se basa en conocimientos y habilidades previas, cuya estructura organizativa servirá para obtener los nuevos conocimientos o habilidades.
- 2. La demostración consiste en proveer a los estudiantes ejemplos teóricos con problemas reales en la industria.
- 3. La aplicación consiste en asignar tareas de identificación y solución de problemas en la industria para que los estudiantes apliquen nuevos conocimientos y habilidades.
- 4. La integración consiste en transferir los nuevos conocimientos o habilidades a la vida cotidiana mediante la demostración de lo que se ha aprendido, la reflexión y de la búsqueda de nuevas formas de aplicarlos.

Modalidad Semipresencial – Blended

En el desarrollo de la asignatura se empleará la metodología de enfoque por competencias que permite resolver problemas de la realidad, para lo cual se aplica el Aprendizaje Basado en Proyectos (ABP).

Procedimientos

- 1. La activación del aprendizaje se basa en conocimientos y habilidades previas, cuya estructura organizativa servirá para obtener los nuevos conocimientos o habilidades.
- 2. La demostración consiste en proveer a los estudiantes ejemplos teóricos con problemas reales en la industria.
- 3. La aplicación consiste en asignar tareas de identificación y solución de problemas en la industria para que los estudiantes apliquen nuevos conocimientos y habilidades.
- 4. La integración consiste en transferir los nuevos conocimientos o habilidades a la vida cotidiana mediante la demostración de lo que se ha aprendido, la reflexión y de buscar nuevas formas de aplicarlos.

Modalidad A Distancia

En el desarrollo de la asignatura se empleará la metodología de enfoque por competencias que permite resolver problemas de la realidad, para lo cual se aplica el Aprendizaje Basado en Proyectos (ABP).

Procedimientos

- 1. La activación del aprendizaje se basa en conocimientos y habilidades previas, cuya estructura organizativa servirá para obtener los nuevos conocimientos o habilidades.
- 2. La demostración consiste en proveer a los estudiantes ejemplos teóricos con problemas reales en la industria.
- 3. La aplicación consiste en asignar tareas de identificación y solución de problemas en la industria para que los estudiantes apliquen nuevos conocimientos y habilidades.
- 4. La integración consiste en transferir los nuevos conocimientos o habilidades a la vida cotidiana mediante la demostración de lo que se ha aprendido, la reflexión y de buscar nuevas formas de aplicarlos.

V. Evaluación

Modalidad Presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso Parcial	Peso total	
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación grupal / Prueba objetiva	0 %		
Consolida	1	Semana 1-4	Evaluación grupal / Prueba de desarrollo	50 %	20 %	
do 1 C1	2	Semana 5-7	Evaluación grupal / Prueba de desarrollo	50 %		
Evaluación parcial EP	1 y 2	Semana 8	Evaluación grupal / Prueba de desarrollo	20 %		
Consolida do 2 C2	3	Semana 9-12	Evaluación grupal / Prueba de desarrollo	50 %	20 %	
	4	Semana 13-15	Evaluación grupal / Prueba de desarrollo	50 %		
Evaluación final EF	Todas las unidades	Semana 16	Evaluación individual / Rúbrica de evaluación	40 %		
Evaluació n sustitutoria	Todas las unidades	Fecha posterior a la evaluación final	Aplica			

Modalidad Semipresencial – Blended

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación grupal / Prueba objetiva	0 %	
Consolidado 1	1	Semana 1-3	Actividades virtuales Evaluación grupal / Prueba de desarrollo	15 % 85 %	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación grupal / Prueba de desarrollo	20 %	
Consolidado 2 C2	3	Semana 5-7	Actividades virtuales Evaluación grupal / Prueba de desarrollo	15 % 85 %	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual / Rúbrica de evaluación	40 %	
Evaluación sustitutoria	Todas las unidades	Fecha posterior a la evaluación final	Aplica		

Modalidad A Distancia

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación grupal / Prueba objetiva	0 %
Consolidado 1	1	Semana 2	Evaluación grupal / Prueba de desarrollo	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación grupal / Prueba de desarrollo	20 %
Consolidado 2	3	Semana 6	Evaluación grupal / Prueba de desarrollo	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual / Rúbrica de evaluación	40 %
Evaluación sustitutoria	Todas las unidades	Fecha posterior a la evaluación final	Aplica	

Fórmula para obtener el promedio

PF = C1 (20 %) + EP (20 %) + C2 (20 %) + EF (40 %)

VI. Bibliografía

Básica

Creus, A. (2011). Instrumentación industrial. (8.ª ed.). Marcombo. https://bit.ly/3SkUQOV Budynas, R. G. (2021). Diseño en ingeniería mecánica de Shigley. (11.ª ed.). McGraw-Hill. https://bit.ly/3YVNML1

Complementaria

Acedo, J. (2013). Instrumentación y control avanzado de procesos. Díaz de Santos.

Bollaín, M. (2018). Ingeniería de instrumentación de plantas de proceso. Díaz de Santos.

Escaño, J. M., Nuevo, A., y García, J. (2019). Integración de sistemas de automatización industrial. Paraninfo.

Guerrero, J. M. (2019). Programación estructurada de autómatas programables con Grafcet. Paraninfo.

Ogata, K. (2010). Ingeniería de control moderna (5.º ed.). Pearson Educación.

Roldán, J. (2019). Máquinas y herramientas: procesos y cálculos mecánicos. Paraninfo.

Vásquez, J. C., y Cardona, J. P. (2016). Automatización electroneumática: métodos sistemáticos. Ediciones de la U.

VII. Recursos digitales

Cade Simu (Versión 3.0) [Software de computadora].

Soft Comfort (Versión 8.2 SP1) [Software de computadora].

TIA Portal STEP 7 (Versión 15.1) [Software de computadora].

FluidSIM-Neumática. [Software de computadora].