MATH255 - Analysis 2

Basic point-set topology; metric spaces; Hölder-Minkowski Inequalities; compactness.

Based on lectures from Winter, 2024 by Prof. Dimitry Jakobson Notes by Louis Meunier

CONTENTS

INTRODUCTION

_			_	
	1.1	Metric Spaces	3	
2	Point-Set Topology			
	2.1	Definitions	7	
	2.2	Basis	9	
	2.3	Subspaces	10	
	2.4	Continuous Functions	11	
	2.5	Product Spaces	12	
	2.6	Metrizability	15	
	2.7	Compactness, Connectedness	16	
	2.8	Path Components, Connected Components	21	
		2.8.1 Cantor Staircase Function	22	
3	L^p Spaces			
	3.1	Review of ℓ^p Norms	23	
	3.2	ℓ^p Norms, Hölder-Minkowski Inequalities	23	
	3.3	Complete Metric Spaces, Completeness of ℓ_p	27	
	3.4	Contraction Mapping Theorem	29	
	3.5	Equivalent Notions of Compactness in Metric Spaces	32	
4	Derivatives			
	4.1	Introduction	35	
	4.2	Chain Rule	35	
	4.2 4.3	Chain Rule	35 36	

	4.6	L'Hopital's Rules	38
	4.7	Taylor's Theorem	39
	4.8	Convex Sets	40
5	RIEN	mann Integral	40
	5.1	Introduction	40
	5.2	Cauchy Criterion	41
	5.3	Squeeze Theorem	42
	5.4	Fundamental Theorem of Calculus	44
	5.5	Upper and Lower Riemann Sums	45
	5.6	Indefinite Integral	45
	5.7	Lebesgue Integrability Criterion	46
	5.8	Integration by Parts	47
6	Fun	ction Sequences, Series	48
	6.1	Pointwise and Uniform Convergence	48
	6.2	Series	50
	6.3	Tests for Absolute Convergence	51
	6.4	Tests for Non-Absolute Convergence	52
7	Арр	ENDIX	53
	7.1	Notes from Tutorials	53
	7.2	Miscellaneous	56

1 Introduction

1.1 Metric Spaces

→ Definition 1.1: Metric Space

A set *X* is a *metric space* with distance *d* if

- 1. (symmetric) $d(x, y) = d(y, x) \ge 0$
- $2. \ d(x,y) = 0 \iff x = y$
- 3. (triangle inequality) $d(x, y) + d(y, z) \ge d(x, z)$

Remark 1.1. If 1., 3. are satisfied but not 2., d can be called a "pseudo-distance".

○ Definition 1.2: Open Metric Space

Let (X, d) be a metric space. A subset $A \subseteq X$ is open $\iff \forall x \in A, \exists r = r(x) > 0$ s.t. $B(x, r(x)) \subseteq A$.

→ Definition 1.3: Normed Space

Let *X* be a vector space over \mathbb{R} . The norm on *X*, denoted $||x|| \in \mathbb{R}$, is a function that satisfies

- 1. $||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. $||c \cdot x|| = |c| \cdot ||x||$
- 4. $||x + y|| \le ||x|| + ||y||$

If *X* is a normed vector space over \mathbb{R} , we can define a distance *d* on *X* by d(x, y) = ||x - y||.

\hookrightarrow Proposition 1.1

If *X* is a normed vector space over \mathbb{R} , a distance *d* on *X* by d(x, y) = ||x - y|| makes (X, d) a metric space.

Proof. 1. $d(x, y) = ||x - y|| \ge 0$

- 2. $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y=0 \iff x=y$
- 3. $d(x,y) + d(y,z) = ||x-y|| + ||y-z|| \ge ||(x-y) + (y-z)|| = ||x-z|| := d(x,z)$

Solution Example 1.1: L^p distance in \mathbb{R}^n

Let $\overline{x} \in \mathbb{R}^n$, $x = (x_1, x_2, \dots, x_n)$. The L^p norm is defined

$$||x||_p := (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}.$$

In the case p = 2, n = 2, we simply have the standard Euclidean distance over \mathbb{R}^2 .

<u>Unit Balls:</u> consider when $||x||_p$ ≤ 1, over \mathbb{R}^2 .

- $p = 1 : |x_1| + |x_2| \le 1$; this forms a "diamond ball" in the plane.
- $p = 2 : \sqrt{|x_1|^2 + |x_2|^2} \le 1$; this forms a circle of radius 1. Clearly, this surrounds a larger area than in p = 2.

A natural question that follows is what happens as $p \to \infty$? Assuming $|x_1| \ge |x_2|$:

$$||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p})^{\frac{1}{p}}$$

$$= \left[|x_{1}|^{p} \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)\right]^{\frac{1}{p}}$$

$$= |x_{1}| \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)^{\frac{1}{p}}$$

If $|x_1| > |x_2|$, this goes to $|x_1|$. If they are instead equal, then $||x||_p = |x_1| \cdot 2^{\frac{1}{p}} \to |x_1| \cdot 1$ as well. Hence, $\lim_{p\to\infty} ||x||_p = \max\{|x_1|, |x_2|\}$. Thus, the unit ball will approach $\max\{|x_1|, |x_2|\} \le 1$, that is, the unit square.

→ Proposition 1.2

Let $x \in \mathbb{R}^n$. Then, $||x||_p \to \max\{|x_1|, \dots, |x_n|\}$ as $p \to \infty$.

Remark 1.2. This is an extension of the previous example to arbitrary real space; the proof follows nearly identically.

\hookrightarrow <u>Definition</u> 1.4: Convex Set

Let *X* be a normed space, and take $x, y \in X$. The line segment from x to y is the set

$$\{t\cdot x+(1-t)\cdot y:0\leq t\leq 1\}.$$

Let $A \subseteq X$. A is *convex* $\iff \forall x, y \in A$, we have that

$$(t \cdot x + (1 - t) \cdot y) \in A \,\forall \, 0 \leq t \leq 1.$$

Figure 1: Regions of \mathbb{R}^2 where $||x||_p \le 1$ for various values of p.

Figure 2: Convex (left) versus not convex (right) sets.

Remark 1.3. Think of this as saying "a set is convex iff every point on a line segment connected any two points is in the set".

\hookrightarrow **Definition 1.5:** ℓ_p

The space ℓ_p of sequences is defined as

$$\{x = (x_1, x_2, \dots, x_n, \dots) : \sum_{n=1}^{\infty} |x_n|^p < +\infty\} *.$$

Then, * defines the ℓ^p norm on the space of sequences; that is, $||x||_p := \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$.

Solution Example 1.2: ℓ_p , $x_n = \frac{1}{n}$

. Let $x_n = \frac{1}{n}$. For which p is $x \in \ell_p$? We have, raising the norm to the power of p for ease:

$$||x||_p^p = |x_1|^p + |x_2|^p + \dots + |x_n|^p + \dots$$

= $1^p + \left(\frac{1}{2}\right)^p + \dots < \infty \iff p > 1.$

In the case that p = 1, this becomes a harmonic sum, which diverges.

\circledast Example 1.3: L^p space of functions

Let f(x) be a continuous function. We define the norm of f over an interval [a,b]

$$||f||_p = \left[\int_a^b |f(x)|^p dx \right]^{\frac{1}{p}}.$$

Remark 1.4. Triangle inequality for $||x||_p$ or $||f||_p$ is called Minkowski inequality; $||x||_p + ||y||_p \ge ||x + y||_p$. This will be discussed further.

® Example 1.4: Distances between sets in \mathbb{R}^2

Let A, B be bounded, closed, "nice" sets in \mathbb{R}^2 . We define

$$d(A, B) := Area(A \triangle B),$$

where

$$A \triangle B : (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

It can be shown that this is a "valid" distance.

Remark 1.5. \triangle denotes the "symmetric difference" of two sets.

SEXAMPLE 1.5: *p*-adic distance

Let p be a prime number. Let $x = \frac{a}{b} \in \mathbb{Q}$, and write $x = p^k \cdot \left(\frac{c}{d}\right)$, where c, d are not divisible by p. Then, the p-adic norm is defined $||x||_p := p^{-k}$. It can be shown that this is a norm.

Suppose
$$p = 2$$
, $x = 28 = 4 \cdot 7 = 2^2 \cdot 7$. Then, $||28||_2 = 2^{-2} = \frac{1}{4}$; similarly, $||1024||_2 = ||2^{10}||_2 = 2^{-10}$.

More generally, we have that $||2^k||_2 = 2^{-k}$; coversely, $||2^{-k}|| = 2^k$. That is, the closer to 0, the larger the distance, and vice versa, contrary to our notion of Euclidean distance.

→ Proposition 1.3

 $||x||_p$ as defined above is a well-defined norm over \mathbb{Q} .

2 Point-Set Topology

2.1 Definitions

→ **Definition 2.1:** Topological space

A set X is a topological space if we have a collection of subsets τ of X called *open sets* s.t.

- 1. $\emptyset \in \tau, X \in \tau$
- 2. Consider $\{A_{\alpha}\}_{{\alpha}\in I}$ where A_{α} an open set for any α ; then, $\bigcup_{{\alpha}\in I}A_{\alpha}\in \tau$, that is, it is also an open set.
- 3. If *J* is a finite set, and A_{β} open for all $\beta \in J$, then $\bigcap_{\beta \in J} A_{\beta} \in \tau$ is also open.

In other words, 2.: arbitrary unions of open sets are open, and 3.: finite intersections of open sets are open.

→ Definition 2.2: Closed sets

Closed sets are complements of open sets; hence, axioms for closed sets follow appropriately;

- 1.* X, \emptyset closed;
- 2.* B_{α} closed $\forall \alpha \in I \implies \bigcap_{\alpha \in I} B_{\alpha}$ closed.
- 3.* B_{β} closed $\forall \beta \in J$, J finite, then $\bigcup_{\beta \in J} B_{\beta}$ also closed.

← Lecture 01; Last Updated: Tue Feb 13 09:24:32 EST 2024

→ Definition 2.3: Equivalence of Metrics

Suppose we have a metric space X with two distances d_1 , d_2 ; will these necessarily admit the same topology?

A sufficient condition is that, if $\forall x \neq y \in X$, $\exists 1 < C < +\infty$ s.t.

$$\frac{1}{C} < \frac{d_1(x,y)}{d_2(x,y)} < C.$$

That is, the distances are equivalent, up to multiplication by a constant.

Indeed, this condition gives that $d_2 < Cd_1$ and $d_2 > \frac{d_1}{C}$; this gives

$$B_{d_1}(x,\frac{r}{c}) \subseteq B_{d_2}(x,r) \subseteq B_{d_1}(x,C\cdot r).$$

Hence, d_1 , d_2 define the same open/closed sets on X thus admitting the same topologies. We write $d_1 \times d_2$.

Remark 2.1. If $d_1 \times d_2$ and $d_2 \times d_3$, then also $d_1 \times d_3$. Moreover, clearly, $d_1 \times d_1$ and $d_1 \times d_2 \implies d_2 \times d_1$, hence this is a well-defined equivalence relation.

Hence, its enough to show that $\forall 1 , we have <math>||x||_p \approx ||x||_\infty$ to show that any $||x||_q$ norm are equivalent for all q on \mathbb{R}^n .

→ **Definition** 2.4: Interior, Boundary of a Topological Set

Let *X* be a topological space, $A \subseteq X$ and let $x \in X$. We have the following possibilities

1. $\exists U$ -open : $x \in U \subseteq A$. In this case, we say $x \in \text{the } interior \text{ of } A$, denoted

$$x \in Int(A)$$
.

2. $\exists V$ -open : $x \in V \subseteq X \setminus A = A^C$. In this case, we write

$$x \in Int(X^C)$$
.

3. \forall *U*-open : $x \in U$, $U \cap A \neq \emptyset$ AND $U \cap A^C \neq \emptyset$. In this case, we say x is in the *boundary* of A, and denote

$$x \in \partial A$$
.

○ Definition 2.5: Closure

 $x \in \text{Int}(A) \text{ or } x \in \partial A \text{ (that is, } x \in \text{Int}(A) \cup \partial A) \iff \text{ every open set } U \text{ that contains } x \text{ intersects } A.^1\text{Such points are called } I \text{ init points of } A. \text{ The set of all limits points of } A \text{ is called the } closure \text{ of } A, \text{ denoted } \overline{A}.$

$$Int(A) \subseteq A \subseteq \overline{A} = Int(A) \cup \partial A$$
.

\hookrightarrow **Proposition 2.1: Properties of** Int(*A*)

Int(A) is *open*, and it is the largest open set contained in A. It is the union of all U-open s.t. $U \subseteq A$. Moreover, we have that

$$Int(Int(A)) = Int(A).$$

\hookrightarrow Proposition 2.2: Properties of \overline{A}

 \overline{A} is *closed*; \overline{A} is the smallest closed set that contains A, that is, $\overline{A} = \bigcap B$ where B closed and $A \subseteq B$. We have too that

$$\overline{(\overline{A})} = \overline{A}.$$

← Proposition 2.3

- 1. A is open \iff A = Int(A)
- 2. A is closed \iff $A = \overline{A}$

2.2 Basis

Let τ be a topology on X. Let $\mathcal{B} \subseteq \tau$ be a collection of open sets in X such that every open set is a union of open sets in \mathcal{B} .

® Example 2.1: Example Basis

 $X = \mathbb{R}$, and $\mathcal{B} = \{\text{all open intervals } (a, b) : -\infty < a < b < +\infty\}.$

→ Proposition 2.4

Let $\mathcal B$ be a collection of open sets in X. Then, $\mathcal B$ is a basis \iff

- 1. $\forall x \in X, \exists U$ -open $\in \mathcal{B}$ s.t. $x \in U$.
- 2. If $U_1 \in \mathcal{B}$ and $U_2 \in \mathcal{B}$, and $x \in U_1 \cap U_2$, then $\exists U_3 \in \mathcal{B}$ s.t. $x \in U_3 \subseteq U_1 \cap U_2$.

¹"Requires" proof.

⊗ Example 2.2

Consider $X = \mathbb{R}$. Requirement 1. follows from taking $U = (x - \varepsilon, x + \varepsilon)$ for any $\varepsilon > 0$. For 2., suppose $x \in (a,b) \cap (c,d) =: U_1 \cap U_2$. Let $U_3 = (\max\{a,c\}, \min\{b,d\})$; then, we have that $U_3 \subseteq U_1 \cap U_2$, while clearly $x \in U_3$.

← Proposition 2.5

In a metric space, a basis for a topology is a collection of open balls,

$$\{B(x,r): x \in X, r > 0\} = \{\{y \in X: d(x,y) < r\}: x \in X, r > 0\}.$$

Proof. We prove via proposition 2.4. Property 1. holds clearly; $x \in B(x, \varepsilon)$ -open $\subseteq \mathcal{B}$.

For property 2., let $x \in B(y_1, r_1) \cap B(y_2, r_2)$, that is, $d(x, y_1) < r_1$ and $d(x, y_2) < r_2$. Let

$$\delta := \min\{r_1 - d(x, y_1), r_2 - d(x, y_2)\}.$$

We claim that $B(x, \delta) \subseteq U_1 \cap U_2$.

Let $z \in B(x, \delta)$. Then,

$$d(z, y_1) \stackrel{\triangle \neq}{\leq} d(z, x) + d(x, y_1) < \delta + d(x, y_1) \leq r_1 - d(x, y_1) + d(x, y_1) = r_1,$$

hence, as $d(z, y_1) < r_1 \implies z \in B(y_1, r_1) = U_1$. Replacing each occurrence of y_1, r_1 with y_2, r_2 respectively gives identically that $z \in B(y_2, r_2) = U_2$. Hence, we have that $B(x, \delta) \subseteq U_1 \cap U_2$ and 2. holds.

2.3 Subspaces

○→ Definition 2.7

Let *X* be a topological space and let $Y \subseteq X$. We define the subspace topology on *Y*:

1. Open sets in $Y = \{Y \cap \text{ open sets in } X\}$

→ Proposition 2.6: Consequences of Subspace Topologies

Suppose \mathcal{B} is a basis for a topology in X. Then, $\{U \cap Y : U \in \mathcal{B}\}$ forms a basis for the subspace $Y \subseteq X$.

Suppose *X* a metric space. Then, *Y* is also a metric space, with the same distance.

\hookrightarrow Proposition 2.7

Let $Y \subseteq X$ - a metric space. Then, the metric space topology for (Y, d) is the same as the subspace topology.

Proof. (Sketch) A basis for the open sets in X can be written $\bigcup_{\alpha \in I} B(x_\alpha, r_\alpha)$; hence

$$Y \cap (\bigcup_{\alpha \in I} B(x_{\alpha}, r_{\alpha})) = \bigcup_{\alpha \in I} (Y \cap B(x_{\alpha}, r_{\alpha}))$$

is an open set topology for Y.

← Lemma 2.1

Let $A \subseteq X$ -open, $B \subseteq A$; B-open in subspace topology for $A \iff B$ -open in X.

→ Lemma 2.2

Let $Y \subseteq X$, $A \subseteq Y$. Then, \overline{A} in $Y = Y \cap \overline{A}$ in X. We can denote this

$$\overline{A}_Y = \overline{A}_X \cap Y$$
.

2.4 Continuous Functions

→ Definition 2.8: Continuous Function

Let X, Y be topological spaces. Let $f: X \to Y$. f is continuous $\iff \forall$ open $V \in Y$, $f^{-1}(V)$ -open in X.

\hookrightarrow Proposition 2.8

This definition is consistent with the normal ε - δ definition on the real line.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$, continuous; that is, $\forall \varepsilon > 0$, $\forall x \in \mathbb{R} \exists \delta > 0$ s.t. $|x_1 - x| < \delta$, then $|f(x_1) - f(x)| < \varepsilon$.

Let $V \subseteq \mathbb{R}$ open. Let $y \in V$. Then, $\exists \varepsilon : (y - \varepsilon, y + \varepsilon) \subseteq V$. Let y = f(x), hence $y \in f^{-1}(V)$. Now, if $d(x, x_1) < \delta$, we have that $d(f(x_1), f(x)) < \varepsilon$ (by continuity of f), hence $f(x_1) \in (y - \varepsilon, y + \varepsilon) \subseteq V$; moreover, $(x - \delta, x + \delta) \subseteq f^{-1}(V)$, thus $f^{-1}(V)$ is open as required.

The inverse of this proof follows identically.

← Lecture 02; Last Updated: Thu Jan 11 08:52:09 EST 2024

← Proposition 2.9

Suppose \mathcal{B} forms a basis of topology for Y. Then, $f: X \to Y$ is continuous if $f^{-1}(U)$ open $\forall U \in \mathcal{B}$.

Proof. If *U*-open set in *Y*, then $\exists I$ -index set and a collection of open sets $\{A_{\alpha}\}_{{\alpha}\in I}, A_{\alpha}\in \mathcal{B}$, s.t. $U=\cup_{{\alpha}\in I}A_{\alpha}$. Then, we have

$$f^{-1}(U) = f^{-1}(\cup_{\alpha \in I}(A_\alpha)) = \cup_{\alpha \in I} \underbrace{f^{-1}(A_\alpha)}$$

Hence, if each $f^{-1}(A_{\alpha})$ open, then $\bigcup_{\alpha \in I} f^{-1}(A_{\alpha})$ open; hence it suffices to check if $f^{-1}(U) \forall U$ -open in V is open to see if f continuous.

→ Theorem 2.1: Continuity of Composition

If $f: X \to Y$ continuous and $g: Y \to Z$ continuous, then $g \circ f$ continuous as well.

Proof. Let *U*-open in *Z*. Then

$$(g \circ f)^{-1}(U) = \underbrace{f^{-1}(\underline{g}^{-1}(U))}_{\text{open in } Y}$$

→ Proposition 2.10

If $f: X \to Y$ continuous and $A \subseteq X$, A has subspace topology, then $f|_A: A \to Y$ is also continuous.²

Proof. Let *U*-open in *Y*. Then

$$(f|_A)^{-1}(U) = \underbrace{f^{-1}(U)}_{\text{open}} \cap \underbrace{A}_{\text{open}}$$

By the definition of subspace topology, this is an open set and hence $f|_A$ is continuous.

2.5 Product Spaces

□ <u>Definition</u> 2.9: Finite Product Spaces

Let X_1, \ldots, X_n be topological spaces. We define

$$(X_1 \times X_2 \times \cdots \times X_n),$$

and aim to define a *product topology*; a basis of which consists of cylinder sets.

²We denote $f|_A$ as the restriction of the domain of f to A.

→ Definition 2.10: Cylinder Set

A cylinder set has the form

$$A_1 \times A_2 \times \cdots \times A_n$$

where each A_i -open in X_i .

⊗ Example 2.3

Given an open interval (a_1, b_1) , $(a_2, b_2) \subset \mathbb{R}$, the set $(a_1, b_1) \times (a_2, b_2) \subset \mathbb{R}^2$ is a basis for the topology on \mathbb{R}^2 .

○ Definition 2.11: Projection

Let $X_1 \times X_2 \times \cdots \times X_n =: X$. The projection $\pi_j : X \to X_j$ maps $(x_1, \dots, x_n) \to x_j \in X_j$.

Remark 2.3. *One can show* π_i *continuous.*

→ Definition 2.12: Coordinate Function

Given a function $f: Y \to X_1 \times \cdots \times X_n = (x_1(y), x_2(y), \dots, x_n(y))$. The *coordinate function* is

$$f_j = \pi_j \circ f; \quad f_j = x_j(y).$$

→ Proposition 2.11

 $f: Y \to X = X_1 \times \cdots \times X_n$ continuous $\iff f_j: Y \to X_j$ continuous.

<u>Proof.</u> Its enough to show that $\forall U \in \mathcal{B}$ -basis for X-product space, $f^{-1}(U)$ -open in Y. Take $U = A_1 \times \cdots A_n$ open. Then, we claim that

$$f^{-1}(U) = f^{-1}(A_1 \times \dots \times A_n) = f_1^{-1}(A_1) \cap f_2^{-1}(A_2) \cap \dots \cap f_n^{-1}(A_n).$$

If this holds, then as each f_i continuous (being a composition of continuous functions) and each A_i open in X_i , then each $f_i^{-1}(A_i)$ open in Y and hence \star , being the finite intersection of open sets in Y, is itself open in Y.

® Example 2.4: Fourier Transform: Motivation for Infinite Product Toplogies

Let $f \in C([0, 2\pi])$ is real-valued. We write the *n*th Fourier coefficients

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(x)\cos(nx) dx - i\frac{1}{2\pi} \int_0^{2\pi} f(x)\sin(nx) dx.$$

And the Fourier transform of f as the infinite product

$$f(x) \mapsto (\dots, \hat{f}(-n), \hat{f}(-n+1), \dots, \hat{f}(-1), \hat{f}(0), \hat{f}(1), \dots, \hat{f}(n), \dots) \in \prod_{n \in \mathbb{Z}} (\mathbb{C})_n.$$

Hence, this is an (countably, as indexed by integers) infinite product space.

Now, let $f : \mathbb{R} \to \mathbb{R}$. Suppose $f(x) \to 0$ "fast enough" as $|x| \to \infty$ and f continuous. Then, we can define the Fourier coefficients

$$\hat{f}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-itx} \, \mathrm{d}x,$$

where $t \in \mathbb{R}$. We then have the transform

$$f \mapsto \{\hat{f}(t)\}_{t \in \mathbb{R}}.$$

In this case, our index set is \mathbb{R} is (uncountably) infinite.

○ Definition 2.13: Product Topology/Cylinder Sets for ∞ **Products**

Let $X = \prod_{\alpha \in I} X_{\alpha}$. Then, a basis for X is given by cylinder sets of the form $A = \prod_{\alpha \in I} A_{\alpha}$ where A_{α} -open in X_{α} , AND $A_{\alpha} = X_{\alpha}$ except for finitely many indices α .

That is, there exists a finite set $J = (\alpha_1, \dots, \alpha_k) \subseteq I$, such that we can write $A = \prod_{\alpha \in J} A_\alpha \times \prod_{\alpha \notin J} X_\alpha$ (where A_α open in X_α).

← Proposition 2.12

Given $f: Y \to \prod_{\alpha \in I} X_{\alpha} = X$, then (taking $f_{\alpha} = \pi_{\alpha} \circ f$ as before) we have that f is continuous in $X \iff f_{\alpha}: Y \to X_{\alpha}$ continuous in $X_{\alpha} \forall \alpha \in I$.

Remark 2.4. Extension of proposition 2.11 to infinite product space.

Proof. Write $U = \prod_{\alpha \in I} A_{\alpha} \times \prod_{\alpha \notin I} X_{\alpha}$. Then,

$$f^{-1}(U) = \bigcap_{\alpha \in I} f_{\alpha}^{-1}(A_{\alpha})$$

which is open in Y, hence f continuous.

Remark 2.5. The intersection of the entire spaces give no restriction.

← Lecture 03; Last Updated: Fri Jan 19 11:49:27 EST 2024

2.6 Metrizability

← Proposition 2.13

Different metrics can define the same topology.

⊗ Example 2.5

- 1. Different ℓ_p metrics in \mathbb{R}^n (PSET 1)
- 2. Let (X, d) be a metric space. Then,

$$\tilde{d}(x,y) := \frac{d(x,y)}{d(x,y) + 1}$$

is also a metric (the first two axioms are trivial), and defines the same topology. Note, moreover, that $\tilde{d}(x,y) \leq 1 \,\forall \, x,y$; this distance is bounded, and can often be more convenient to work with in particular contexts.

\hookrightarrow Question 2.1

Suppose (X_k, d_k) are metric spaces $\forall k \ge 1$. Then, we can define the product topology τ on

$$X:=\prod_{k=1}^{\infty}X_k.$$

Does the product topology τ come from a metric? That is, is τ *metrizable*?

Remark 2.6. There do indeed exist examples of non-metrizable topological spaces; this question is indeed well-founded.

Answer. Let $\underline{x} = (x_1, x_2, \dots, x_n, \dots), \underline{y} = (y_1, y_2, \dots, y_n, \dots) \in \prod_{k=1}^{\infty}$ (where $x_i, y_i \in X_i$) be infinite sequences of elements. Then, for each metric space X_k take the metric

$$\tilde{d}_k(x_k,y_k) = \frac{d_k(x_k,y_k)}{1+d_k(x_k,y_k)}$$

(as in the example above). Then, we define

$$D(\underline{x},\underline{y}) = \sum_{k=1}^{\infty} \frac{\tilde{d}_k(x_k,y_k)}{2^k},$$

noting that $D(\underline{x}, \underline{y}) \leq \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$ (by our construction, "normalizing" each metric), hence this is a valid, *converging* metric (which wouldn't otherwise be guaranteed if we didn't normalize the metrics). It remains to show whether this metric omits the same topology as τ .

2.7 Compactness, Connectedness

○ <u>Definition</u> 2.14: Compact

A set *A* in a topological space is said to be *compact* if every cover has a finite subcover. That is, if

$$A\subseteq\bigcup_{\alpha\in I}U_{\alpha}$$
 – open,

then $\exists \{\alpha_1, \ldots, \alpha_n \in I\}$ such that $A \subseteq \bigcup_{i=1}^n U_{\alpha_i}$.

→ Proposition 2.14

A closed interval [a, b] is compact.

<u>Proof.</u> If a = b, this is clear. Suppose a < b, and let $[a, b] \subseteq \bigcup_{i \in I} U_i =: \mathcal{U}$ be an arbitrary cover. Then, we proceed in the following steps:

1. **Claim:** Given $x \in [a, b], x \neq b, \exists y \in [a, b]$ s.t. [x, y] has a finite subcover.

Let $x \in [a,b]$, $x \neq b$. Then, $\exists U_{\alpha} \in \mathcal{U} : x \in U_{\alpha}$. Since U_{α} open, and $x \neq b$, we further have that $\exists c \in [a,b]$ s.t. $[x,c) \subseteq U_{\alpha}$.

Now, let $y \in (x, c)$; then, the interval $[x, y] \subseteq [x, c) \subseteq U_{\alpha}$, that is, [x, y] has a finite subcover.

- 2. Define $C := \{y \in [a, b] : y > a, [a, y] \text{ has a finite subcover}\}$. We note that
 - $C \neq \emptyset$; taking x = a in Step 1. above, we have that $\exists y \in [a, b]$ such that [a, y] has a finite step cover, so this $y \in C$.
 - *C* bounded; by construction, $\forall y \in C$, $a < y \le c$.

Thus, we can validly define $c := \sup C$, noting that $a < c \le b$. Ultimately, we wish to prove that c = b, completing the proof that [a, b] has a finite subcover.

3. Claim: $c \in C$.

Let $U_{\beta} \in \mathcal{U} : c \in U_{\beta}$. Then, by the openness of U_{β} , $\exists d \in [a, b]$ s.t. $(d, c] \subseteq U_{\beta}$.

³This proof is adapted from that of Theorem 27.1 in Munkre's Topology, an identical theorem but applied to more general ordered topologies.

Supposing $c \notin C$, then $\exists z \in C$ such that $z \in (d, c)$; if one did not exist, then this would imply that d was a smaller upper bound that c, a contradiction. Thus, $[z, c] \subseteq (d, c] \subseteq U_{\beta}$.

Moreover, we have that, given $z \in C$, [a, z] has a finite subcover; call it $U_z \subseteq \mathcal{U}$. This gives, then:

$$[a,c]=[a,z]\cup [z,c]\subseteq U_z\cup U_\beta.$$

But this is a finite subcover of [a, c], contradicting the fact that $c \notin C$. We conclude, then, that $c \in C$ after all.

4. Claim: c = b.

Suppose not; then, since we have $c \le b$, then assume c < b. Then, applying Step 1. with x = c (which we can do, by our assumption of $c \ne b$!), then we have that $\exists y > c$ s.t. [c, y] has a finite subcover, call this $U_y \subseteq \mathcal{U}$.

Moreover, we had $c \in C$, hence [a, c] has a finite subcover, call this $U_c \subseteq \mathcal{U}$.

Then, this gives us that

$$[a,y] = [a,c] \cup [c,y] \subseteq U_c \cup U_y,$$

that is, [a, y] has a finite subcover, and so $y \in C$. But recall that y > c; hence, this a contradiction to c being the least upper bound of C. We conclude that c = b, and thus [a, b] has a finite subcover, and is thus compact.

Remark 2.7. A similar proof shows that [a, b] is connected; we cannot cover it by two disjoint open sets.

→ Theorem 2.2: On Compactness

Let $A \subseteq \mathbb{R}^n$. Then, A compact \iff A closed and bounded.

→ Proposition 2.15

If X, Y are compact topological spaces, then $X \times Y$ is compact.

Remark 2.8. By induction, if X_1, \ldots, X_n compact, so is $\prod_{i=1}^n X_i$.

→ Proposition 2.16

A closed subset of a compact topological space is compact in the subspace topology.

Proof. (Of theorem 2.2)

(\Leftarrow) If $A \subseteq \mathbb{R}^n$ closed and bounded, then $A \subseteq [-R, +R]^n$ for some R > 0 (it is contained in some "n-cube"). Then, we have that [-R, R] is compact, by proposition 2.14, proposition 2.15, and proposition 2.16, A itself compact.

(\Longrightarrow) Suppose $A \subseteq \mathbb{R}^n$ is compact. Then, $\bigcup_{x \in A} B(x, \varepsilon)$ for some $\varepsilon > 0$ is an open cover of A. As A compact, there must exist a finite subcover of this cover, $A \subseteq \bigcup_{i=1}^N B(x_i, r_i)$. Let $R := \max_{i=1}^N (||x_i|| + r_i)$. Then, $A \subseteq \overline{B(0, R)}$, that is, A is bounded.

Now, suppose x is a limit point of A. Then, any neighborhood of x contains a point in A, so $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$, and so $\overline{B}(x,r)$ also contains a point of A for any r > 0.

Now, suppose $x \notin A$ (looking for a contradiction). Then,

$$U := \bigcup_{r>0} U_r := \bigcup_{r>0} (\mathbb{R}^n \setminus \overline{B(x,r)}) = \mathbb{R}^n \setminus \{x\}$$

is an open cover for the set A. A being compact implies that U has an finite subcover such that $A \subset U_{r_1} \cup U_{r_2} \cup \cdots \cup U_{r_N}$. Let $r_0 = \min_{i=1}^N r_i$. Then, $A \subseteq U_{r_0}$, and $A \cap B(x, r_0) = \emptyset$; but this is a contradiction to the definition of a limit point, hence any limit point x is contained in A and A is thus closed by definition.

→ Proposition 2.17

Compact \implies sequentially compact; that is, every sequence in a compact set has a convergent subsequence.

← Lecture 04; Last Updated: Wed Jan 24 21:27:59 EST 2024

→ Definition 2.15: Connected

A topological space X is not connected if $X = U \cup V$ for two open, nonempty, disjoint sets U, V.

If this does not hold, *X* is said to be *connected*.

A set $A \subseteq X$ is not connected if A is not connected in the subspace topology $\iff A = \subseteq U \cup V$, for U, V-open in $X, (U \cap A) \neq \emptyset, (V \cap A) \neq \emptyset$ and $U \cap V = \emptyset$.

\hookrightarrow Theorem 2.3

Let X be a connected topological space. Let $f: X \to Y$ be a continuous function. Then, f(X) is also connected.

Proof. Suppose, seeking a contradiction, that X is connected, but f(X) is not. Then, we can write $f(X) \subseteq Y$ as $\overline{f(X)} \subseteq U \cup V$, such that U, V open in Y and $U \cap V = \emptyset$. Then,

$$(U\cap f(X))\cap (V\cap f(X))=\varnothing.$$

We also have that

$$X \subseteq \underbrace{f^{-1}(U)}_{\text{open in } X, \neq \varnothing} \cup \underbrace{f^{-1}(V)}_{\text{open in } X, \neq \varnothing}.$$

 $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ (that is, they are disjoint) by our assumption; this is a contradiction to the connectedness of X, as we are able to write it as a subset of two disjoint open sets. Hence, f(X) is indeed connected.

← Lemma 2.3

Any interval (a, b), [a, b], [a, b), ..., $\subseteq \mathbb{R}$ is connected.

Proof.

→ Theorem 2.4: "Intermediate Value Theorem"

Suppose *X* is connected and $f: X \to \mathbb{R}$ is a continuous function. Then, *f* takes intermediate values.

More precisely, let a = f(x), b = f(y) for $x, y \in X$. Assume a < b. Then, $\forall a < c < b$, $\exists z \in X$ s.t. f(z) = c.

Proof. Suppose, seeking a contradiction, that $\exists c : a < c < b \text{ s.t. } c \notin f(X)$ (that is, there exists an intermediate value that is "not reached" by the function).

Let $U = (-\infty, c)$ and $V = (c, +\infty)$; note that these are disjoint open sets. Then, we have that

$$X = f^{-1}(U) \cup f^{-1}(V),$$

by our assumption of $c \notin f(X)$. But this gives that X is not connected, as the union of two open (by continuity), disjoint, nonempty $(f(x) = a \in U \implies x \in f^{-1}(U), \text{ and } f(y) = b \in V \implies y \in f^{-1}(V))$ sets, a contradiction.

\hookrightarrow Theorem 2.5

Suppose *X* is compact, *Y*-topological space, $f: X \to Y$ is a continuous function. Then, f(X) is also compact.

Proof. Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be an open cover of $f(X)\subseteq Y$, that is,

$$f(X) \subseteq \bigcup_{\alpha \in I} U_{\alpha} \implies X \subseteq f^{-1}(\bigcup_{\alpha \in I} U_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(U_{\alpha}) =: \bigcup_{\alpha \in I} V_{\alpha} - \text{open}.$$

Then, this is an open cover of X; X is compact, thus there exists a finite subcover, that is, indices $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$ such that $X = \bigcup_{i=1}^n V_{\alpha_i}$. Thus,

$$f(X)\subseteq\bigcup_{i=1}^n U_{\alpha_i},$$

which is a finite subcover of f(X). Thus, f(X) is compact.

Remark 2.9. Recall the "extreme value theorem": let $f : [a,b] \to \mathbb{R}$ a continuous function; then, a minimum and maximum is obtained for f(x) on this interval for values in this interval.

← Theorem 2.6

Let *X* compact, and $f: X \to \mathbb{R}$ a continuous function. Then,

$$\max_{x \in X} f(x)$$
 and $\min_{x \in X} f(x)$

are both attained.

Proof. $f(X) \subseteq \mathbb{R}$ is compact by theorem 2.5, and so by theorem 2.2, f(X) is closed and bounded. Let, then, $\overline{m} = \inf f(X)$ and $M = \sup f(X)$; these necessarily exist, since f(X) is bounded. Both m and M are limit points of f(X). But f(X) is closed, and hence contains all of its limit points, and thus $m \in f(X)$ and $M \in f(X)$, and thus $\exists y_m : f(y_m) = m$ and $y_M : f(y_M) = M$. ■

→ Definition 2.16: Path Connected

A set $A \subseteq X$ is called *path connected* if $\forall x, y \in A, \exists f : [a, b] \to X$, continuous, s.t. f(a) = x, f(b) = y and $f([a, b]) \subseteq A$.

The set $\{f(t): a \le t \le b\}$ is called a *path* from x to y.

\hookrightarrow Theorem 2.7: Path connected \implies connected

If $A \subseteq X$ is path connected, then A is connected.

Proof. Suppose, seeking a contradiction, that A is path connected, but not connected. Then, we can write $\overline{A \subseteq U} \cup V$, for open, disjoint, nonempty subsets $U, V \subseteq X$.

Let $x \in U \cap A$ and $y \in V \cap A$. Then, $\exists f : [a,b] \to A$ s.t. f(a) = x, f(b) = y, and $f([a,b]) \subseteq A$, by the path connectedness of A. Then,

$$[a,b] \subseteq f^{-1}(A) \subseteq \underbrace{f^{-1}(U \cap A)}_{\text{open}} \cup \underbrace{f^{-1}(V \cap A)}_{\text{open}} =: \underbrace{U_1}_{a \in } \cup \underbrace{U_2}_{b \in },$$

that is, [a, b] is contained in a union of open, nonempty, disjoint sets, contradicting [a, b] the connectedness of [a, b] by lemma 2.3. Thus, A is connected.

Remark 2.10. A counterexample to the opposite side of the implication is the Topologist's sine curve, the set

$$\{(x, \sin\left(\frac{1}{x}\right)) : x \in (0,1]\} \cup \{0\} \times [-1,1].$$

This set is connected in \mathbb{R}^2 , but is not path connected.

→ Proposition 2.18

For open sets in \mathbb{R}^n , path connected \iff connected.

2.8 Path Components, Connected Components

Remark 2.11. Remark that if a metric space X is not connected, then we can write $X = U \cup V$ where U, V are open, nonempty and disjoint. It follows, then, that $U = V^{C}$ (and vice versa) and hence U, V are both open and closed.

→ Definition 2.17: Connected Component

A connected component of $x \in X$ is the largest connected subset of X that contains x.

⊗ Example 2.6

Let $X = (0, 1) \cup (1, 2)$. Here, we have two connected components, (0, 1) and (1, 2)

® Example 2.7: Middle Thirds Cantor Set

Let $C_0 := [0, 1]$, and given C_n , define $C_{n+1} := \frac{1}{3} (C_n \cup (2 + C_n))$ for $n \ge 0$. C_∞ is totally disconnected.

→ Definition 2.18: Path Component

A path component P(x) of $x \in X$ is the largest path connected subset of X that contains x.

→ Proposition 2.19

 $P(x) = \{x \in X : \exists \text{ conintuous path } \gamma : [0,1] \rightarrow X : \gamma(0) = x, \gamma(1) = y\}.$

Remark 2.12. Where we "start" a path does not matter. We write $x \sim y$ if $\exists \gamma$ from x to y; this is an equivalence relation on the elements of X.

Remark 2.13. The choice of [0,1] here is arbitrary; any closed interval is homeomorphic.

← <u>Lemma</u> 2.4

If $P(x) \cap P(y) \neq \emptyset$, then P(x) = P(y).

Proof. $P(x) \cap P(y) \neq \emptyset \implies \exists z : x \sim z \land y \sim z \implies x \sim y.$

← Lemma 2.5

If $A \subseteq X$ is connected, then \overline{A} is also connected.

<u>Comma</u> 2.6

Suppose $A \subseteq X$ is both open and closed. Then, if $C \subseteq X$ is connected and $C \cap A \neq \emptyset$, then $C \subseteq A$.

<u>Proof.</u> If A is both open and closed, then $C \cap A$ is both open and closed in C. If $C \cap A^C \neq \emptyset$, then this is also open and closed in C. Hence, we can write $C = (C \cap A) \cup (C \cap A^C)$, that is, a disjoint union of two nonempty open sets, contradicting the connectedness of C. Hence, $C \cap A^C = \emptyset$, and so $C \subseteq A$.

→ Proposition 2.20

Let $\{C_{\alpha}\}_{{\alpha}\in I}$ be a collection of nonempty connected subspaces of X s.t. $\forall \alpha, \beta \in I, C_{\alpha} \cap C_{\beta} \neq \emptyset$. Then, $\bigcup_{\alpha \in I} C_{\alpha}$ is connected.

→ Proposition 2.21

Suppose each $x \in X$ has a path-connected neighborhood. Then, the path components in X are the same as the connected components in X.

2.8.1 Cantor Staircase Function

→ Definition 2.19: An Explicit Definition

Let
$$x \in C : x = 0.a_1 a_2 a_3 \dots$$
 (base 3), ie $a_j = \begin{cases} 0 \\ 2 \end{cases}$. Define

$$f(x) = \begin{cases} \sum \frac{a_j/2}{2^j} & x \in C \\ \text{extend by continuity} & x \notin C. \end{cases}$$

That is, if $x \notin C$, set $f(y) = \sup_{x \in C, x < y} f(x) = \inf_{x \in C, x > y} f(x)$.

→ <u>Definition</u> 2.20: Complement Definition

To construct the complement of the Cantor set, begin with [0,1] and at a step n, we remove 2^n open intervals from this interval. f(x) will be constant on each of these intervals with values $\frac{k}{2^n}$ where k odd and $0 < k < 2^n$. Extend by continuity to all $x \in C$.

Remark 2.14. Wikipedia's explanation of this is far better than whatever this definition is trying to say.

 $\hookrightarrow Lecture~06; Last~Updated:~Tue~Jan~23~11:03:35~EST~2024$

3 L^p Spaces

3.1 Review of ℓ^p Norms

Remark 3.1. Recall that for $1 \le p \le +\infty$, we define for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ the norm

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}, \quad ||x||_{\infty} = \max_{i=1}^n |x_i|.$$

Similarly, for infinite vector spaces, we had, for $x = (x_1, ..., x_n, ...)$, the norm

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}, \quad ||x||_{\infty} = \sup_{i \geqslant 1} |x_i|.$$

Here, we define

$$\ell_p := \{x = (x_1, \dots, x_n) : ||x||_p < +\infty\}.$$

3.2 ℓ^p Norms, Hölder-Minkowski Inequalities

→ Definition 3.1: Hölder Conjugates

For $1 \le p$, $q \le +\infty$, we say that p, q are said to be *Hölder conjugates* if

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Remark 3.2. We refer to these simply as "conjugates" throughout as no other conception of conjugate numbers will be discussed.

Further, we take by convention $\frac{1}{\infty} = 0$.

→ Proposition 3.1: Hölder's Inequality

Let $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$. Suppose $p, q : 1 \le p, q \le +\infty$ are conjugate. Then,

$$\langle x, y \rangle_{\mathbb{R}^n} := \left| \sum_{i=1}^n x_i y_i \right| \le ||x||_p \cdot ||y||_q$$

⊗ Example 3.1

For the case p = 1 or ∞ (functionally, the same case):

← Lemma 3.1

Let p, q be conjugates, and x, $y \ge 0$. Then,

$$xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}.$$

Remark 3.3. If the inequality holds, then, for some t > 0, let $\tilde{x} = t^{\frac{1}{p}} \cdot x$, $\tilde{y} = t^{\frac{1}{q}}y$. Substituting x for \tilde{x} and y for \tilde{y} , we have

LHS:
$$\tilde{x}\tilde{y} = t^{\frac{1}{p}}x \cdot t^{\frac{1}{q}}y = t^{\frac{1}{p} + \frac{1}{q}} \cdot xy = xy$$

RHS: $\cdots = t(\frac{x^p}{p} + \frac{y^q}{q})$.

That is, we have

$$t \cdot xy \le t \left(\frac{x^p}{p} + \frac{y^q}{q} \right),$$

hence, the inequality is preserved under multiplication by a positive scalar; moreover, the original inequality holds iff this "scaled" version holds. Hence, choosing t such that $\tilde{y} = 1$ (let $t = \left(\frac{1}{y}\right)^q$), it suffices to prove the lemma for y = 1.

<u>Proof.</u> If x = 0 or y = 0, then the entire LHS becomes 0 and we are done; assume x, y > 0; by the previous remark, assume wlog y = 1. Then, we have

$$x \cdot y \le \frac{x^p}{p} + \frac{y^q}{q} \iff x \cdot 1 \le \frac{x^p}{p} + \frac{1}{q}$$
 $\iff \frac{x^p}{p} - x + \frac{1}{q} =: f(x) \ge 0.$

Taking the derivative, we have

$$f'(x) = \frac{px^{p-1}}{p} - 1 = x^{p-1} - 1$$

$$p > 1 \implies p - 1 > 0 \implies \begin{cases} f'(x) > 0 & \forall x > 1 \\ f'(x) = 0 & x = 0 \\ f'(x) < 0 & \forall 0 < x < 1 \end{cases}$$

Hence, x = 1 is a local minimum of the function, and thus $f(x) \ge f(1) \, \forall \, 0 < x \le 1$. But $f(1) = \frac{1^p}{p} - 1 + \frac{1}{q} = 1 - 1 = 0$, hence $f(x) \ge 0 \, \forall \, x \ge 0$, as desired, and the inequality holds.

Proof. Assume $||x||_p = ||y||_q = 1$. Then,

$$\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \sum_{i=1}^{n} |x_{i} y_{i}| \qquad (by triangle inequality)$$

$$\leq \sum_{i=1}^{n} \left|\frac{x_{i}^{p}}{p} + \frac{y_{i}^{q}}{q}\right| \qquad (by lemma 3.1)$$

$$= \frac{1}{p} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right) + \frac{1}{q} \left(\sum_{i=1}^{n} |y_{i}|^{q}\right)$$

$$= \frac{1}{p} ||x||_{p}^{p} + \frac{1}{q} ||y||_{q}^{q} \qquad (by staring)$$

$$= \frac{1}{p} \cdot 1^{p} + \frac{1}{q} \cdot 1^{1} = \frac{1}{p} + \frac{1}{q} = 1 \qquad (by assumption)$$

$$= ||x||_{p} \cdot ||y||_{q},$$

and the proposition holds, in the special case $||x||_p = ||y||_q = 1$.

If $||x||_p = 0$ or $||y||_q = 0$, then $x_1 = \cdots = x_n = 0$ or $y_1 = \cdots = y_n = 0$, resp., then we'd have $(||x||_p = 0 \text{ case})$

$$0\cdot y_1+\cdots+0\cdot y_n\leqslant 0,$$

which clearly holds.

Assume, then, $||x||_p > 0$, $||y||_q > 0$. Let $\tilde{x} := \frac{x}{||x||_p}$, $\tilde{y} := \frac{y}{||y||_q}$. Then,

$$||\tilde{x}||_p^p = \frac{\left(\sum_{i=1}^n |x_i|^p\right)}{||x||_p^p} = \frac{||x||_p^p}{||x||_p^p} = 1 \implies ||\tilde{x}||_p = 1.$$

The same case holds for \tilde{y} , hence $||\tilde{y}||_q = 1$; that is, we have "rescaled" both vectors. Hence, we can use the case we proved above for when the norms were identically 1 on \tilde{x} , \tilde{y} . We have:

$$\left| \sum_{i=1}^{n} \tilde{x}_{i} \tilde{y}_{i} \right| \leq 1$$

But by definition of \tilde{x} , \tilde{y} , we have

$$\left|\sum_{i=1}^n \tilde{x}_i \tilde{y}_i\right| = \left|\frac{1}{||x||_p ||y||_q} \sum_{i=1}^n x_i y_i\right| \le 1 \implies \left|\sum_{i=1}^n x_i y_i\right| \le ||x||_p \cdot ||y||_q,$$

and the proof is complete.

→ Proposition 3.2: Minkowski Inequality

Let $1 \le p \le \infty$, $x, y \in \mathbb{R}^n$. Then,

$$||x + y||_p \le ||x||_p + ||y||_p.$$

Remark 3.4. This is just the triangle inequality for ℓ_p norms.

Proof. The cases $p = 1, \infty$ are left as an exercise.

Assume 1 . Then,

$$||x + y||_{p}^{p} = \sum_{j=1}^{n} |x_{j} + y_{j}|^{p} = \sum_{j=1}^{n} |x_{j} + y_{j}| |x_{j} + y_{j}|^{p-1}$$

$$\leq \sum_{j=1}^{\infty} (|x_{j}| + |y_{j}|) \cdot |x_{j} + y_{j}|^{p-1}$$

$$= \sum_{j=1}^{n} |x_{j}| \cdot |x_{j} + y_{j}|^{p-1} + \sum_{j=1}^{n} |y_{j}| \cdot |x_{j} + y_{j}|^{p-1} \quad \circledast$$

Let $\vec{u} = (|x_1|, \dots, |x_n|)$ and $\vec{v} = (|x_1 + y_1|^{p-1}, \dots, |x_n + y_n|^{p-1})$, then, $A = \vec{u} \cdot \vec{v} = \langle \vec{u}, \vec{v} \rangle_{\mathbb{R}^n}$. We have

$$||\vec{u}||_{p} = \left(\sum_{i=1}^{n} (|x_{i}|^{p})\right)^{\frac{1}{p}} = ||x||_{p}$$

$$||\vec{v}||_{q} = \left(\sum_{i=1}^{n} \left(|x_{i} + y_{i}|^{p-1}\right)^{q}\right)^{\frac{1}{q}}$$

$$= \left[\sum_{i=1}^{n} \left(|x_{i} + y_{i}|^{p-1}\right)^{\frac{p-1}{p}}\right]^{\frac{p-1}{p}}$$

$$= \left[\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right]^{\frac{p-1}{p}}$$

$$= ||x + y||_{p}^{p-1}$$

where the second-to-last line follows from p, q being conjugate, hence $q = \frac{p}{p-1}$. Thus, by Hölder's Inequality, we have that

$$A = \langle \vec{u}, \vec{v} \rangle \le ||u||_p \cdot ||v||_q = ||x||_p \cdot ||x + y||_p^{p-1}.$$

By a similar construction, we can show that

$$B \le ||y||_p \cdot ||x + y||_p^{p-1}.$$

Thus, returning to our original inequality in ⊕, we have

$$||x + y||_p^p \le A + B$$

$$\le ||x||_p \cdot ||x + y||_p^{p-1} + ||y||_p \cdot ||x + y||_p^{p-1}$$

$$\implies ||x + y||_p \le ||x||_p + ||y||_p,$$

and the proof is complete.

← Lecture 07; Last Updated: Tue Jan 30 12:54:59 EST 2024

3.3 Complete Metric Spaces, Completeness of ℓ_p

\hookrightarrow Theorem 3.1

The sequence of centers of balls with monotonically decreasing radii is a Cauchy sequence in *X*.

Proof. Let $\varepsilon > 0$ and let $N : \forall j > N, r_j < \varepsilon$. Then,

$$d(x_i, x_k) < r_{\min(i,k)} = r_i$$

○ <u>Definition</u> 3.2: Complete Metric Space

A metric space is complete if every Cauchy sequence converges to a limit in that space.

® Example 3.2: Examples of Complete Metric Spaces

- 1. \mathbb{R} , *p*-adic integers (\mathbb{Z}_p) /rationals (\mathbb{Q}_p) .
- 2. $\ell_p = \{x = (x_i)_{i=1}^{\infty} : \sum_{i=1}^{\infty} |x_i|^p < +\infty \}, 1 \le p \le +\infty$
- 3. $\ell_{\infty} = \{x = (x_i) : \sup_{i=1}^{\infty} |x_i| < +\infty\}.$

\hookrightarrow Proposition 3.3

Hölder's Inequality and Minkowski Inequality inequalities hold for infinite sequences. that is,

1. if
$$x = (x_i) \in \ell_p$$
 and $y = (y_i) \in \ell_q$ with $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\left|\sum_{i=1}^{\infty} x_i y_i\right| \leqslant ||x_i||_{\ell_p} ||y_i||_{\ell_q}.$$

2. if $x, y \in \ell_p$, then

$$||x + y||_p \le ||x||_p + ||y||_p.$$

Remark 3.5. 2. gives the triangle inequality for the $||x||_p$ norm on ℓ_p .

Moreover,

$$||c \cdot x||_{p} = ||(c_{1}x_{1}, \dots, c_{n}x_{n}, \dots)||_{p}$$

$$= \left(\sum_{i=1}^{\infty} |cx_{i}|^{p}\right)^{\frac{1}{p}} = \left(\sum_{i=1}^{\infty} |c|^{p} |x_{i}|^{p}\right)^{\frac{1}{p}}$$

$$= (|c|^{p})^{\frac{1}{p}} ||x||_{p} = c \cdot ||x||_{p}$$

<u>Proof.</u> (of 2.) If $x, y \in \ell_p$, we have that $\sum_{i=1}^{\infty} |x_i|^p < +\infty$, $\sum_{i=1}^{\infty} |y_i|^p < +\infty$, so $\exists N > 0 : \sum_{i=N+1}^{\infty} |x_i|^p < \epsilon$, $\sum_{i=N+1}^{\infty} |y_i|^p < \epsilon$. Let $x_i^{(n)} = (x_1, \dots, x_n, 0, 0, \dots)$ be (x) truncated after n (finite) coordinates. This gives

$$||(x_i + y_i)^{(n)}||_p \le ||x_i^{(n)}||_p + ||y_i^{(n)}||_p \le ||x||_p + ||y||_p$$

by Minkowski on finite spaces. Taking $n \to \infty$ (ie, "detruncating"), we have $(x + y) \in \ell_p$, and thus $||x + y||_p \le ||x||_p + ||y||_p$.

1. left as an exercise.

← Proposition 3.4

Let $1 \le p \le +\infty$, and $||x||_{\infty} = \sup_{i=1}^{\infty} |x_i| = A < +\infty$, $||y||_{\infty} = \sup_{i=1}^{\infty} |y_i| = B < +\infty$. Then, the triangle inequality $||x+y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$ holds.

Proof. We have

$$\sup_{i=1}^{\infty} |x_i + y_i| \le \sup_{i=1}^{\infty} (|x_i| + |y_i|) \le \sup_{i=1}^{\infty} |x_i| + \sup_{i=1}^{\infty} |y_i| = ||x||_{\infty} + ||y||_{\infty}.$$

← Proposition 3.5

 $||x||_{\infty} := \sup_{i=1}^{\infty} |x_i|$ is a well-defined norm on ℓ_{∞} .

<u>Proof.</u> The triangle inequality is prove in proposition 3.4. The remainder of the requirements are left as an exercise.

← Proposition 3.6

 $\ell_p \subseteq \ell_q \text{ if } p < q.$

Proof. Let $x \in \ell_p$. If $\sum_{i=1}^{\infty} |x_i|^p < +\infty$, then $\exists N : \forall i \ge N, |x_i| \le 1$. Then,

$$\sum_{i \ge N} |x_i|^q \le \sum_{i \ge N} |x_i|^p < \infty$$

$$\implies \sum_{i=1}^{\infty} |x_i|^q < +\infty \implies x \in \ell_q$$

$$\implies \ell_p \subseteq \ell_q$$

← Lecture 08; Last Updated: Thu Mar 28 09:13:10 EDT 2024

3.4 Contraction Mapping Theorem

→ **Definition** 3.3: Contraction Mapping

Let (X, d) be a metric space. A *contraction mapping* on X is a function $f: X \to X$ for which \exists a constant 0 < c < 1 such that

$$d(f(x), f(y)) \le c \cdot d(x, y) \quad \forall x, y \in X.$$

→ **Theorem** 3.2: Contraction Mapping Theorem

Let (X, d) be a complete metric space, and let $f: X \to X$ be a contraction. Then, there exists a unique fixed point z of f such that f(z) = z.

Moreover, $f^{[n]}(x) := f \circ f \circ \cdots \circ f(x) \to z \text{ as } n \to \infty \text{ for any } x \in X.$

Remark 3.6. The "functional construction" of the Cantor set is an example of a contraction mapping, with $f_1(x) = \frac{x}{3}$, $f_2(x) = \frac{x+2}{3}$. The first has a fixed point of 0, and the second a fixed point of 1.

Remark 3.7. This is a generalization of this proof done in Analysis I, an equivalent claim over the reals.

Proof. Fix $x \in X$. Consider the sequence $\{x_0, x_1, x_2, \dots, x_n, \dots\} := \{x, f(x), f \circ f(x), \dots, f^{[n]}(x), \dots\}$ (we call $f^{[n]}$ the *orbit* of x under iterations of f). We claim that this is a Cauchy sequence. Let $n \in \mathbb{N}$ arbitrary, then we have, by the property of the contraction mapping,

$$d(f^{[n+1]}(x) - f^{[n]}(x)) \le c \cdot d(f^{[n]}(x) - f^{[n-1]}(x)) \le c^2 d(f^{[n-1]}(x) - f^{[n-2]}(x)).$$

Arguing inductively, it follows that

$$d(f^{[n+1]}(x) - f^{[n]}(x)) \le c^n d(f(x), x).$$
 *

Let now $m, k \in \mathbb{N}, m, k > 0$. It follows that

$$\begin{split} d(f^{[m]},f^{[m+k]}(x) & \leq d(f^{[m]})(x),f^{[m+1]}(x)) + d(f^{[m+1]}(x),f^{[m]}(x)) + \cdots + d(f^{[m+k-1]}(x),f^{m+k}(x)) \\ & \stackrel{\star}{\leq} d(x,f(x))[c^m + c^{m+1} + \cdots + c^{m+k-1}] \\ & \leq c^m d(x,f(x))[1+c+\cdots + c^k + c^{k+1} + \cdots] = \frac{c^m d(x,f(x))}{1-c} \end{split}$$

Now, given $\varepsilon > 0$, choose N such that $\frac{c^N d(x, f(x))}{1-c} < \varepsilon$. It follows, then, that $\{f^{[n]}(x)\}_{n \in \mathbb{N}}$ a Cauchy sequence, and thus converges, $f^{[n]}(x) \to z$ as $n \to \infty$ for some z.

We further have to show that f(z) = z. It is easy to show that f continuous due to the contraction mapping (it is clearly Lipschitz with constant c), and it thus follows that

$$\lim_{n \to \infty} f(f^{[n]}(x)) = \lim_{n \to \infty} f^{[n]}(x) \implies f(z) = z,$$

by sequential characterization of continuous functions.

Finally, we need to show that this limit is unique. Suppose $\exists y_1 \neq y_2$, ie two fixed points with $f(y_1) = y_1$ and $f(y_2) = y_2$. Then, by the property of the contraction mapping,

$$d(f(y_1), f(y_2)) \le c \cdot d(y_1, y_2),$$

but by assumption of being fixed points,

$$d(f(y_1), f(y_2)) = d(y_1, y_2),$$

implying $d(y_1, y_2) \le c \cdot d(y_1, y_2)$. This is only possible if $d(y_1, y_2) = 0$, and thus $y_1 = y_2$ and the fixed point is indeed unique.

\hookrightarrow Theorem 3.3: ℓ_p complete

The space ℓ_p is complete for all $1 \le p \le +\infty$.

Equivalently, if (x^1) , (x^2) , ..., (x^n) is a Cauchy sequence in ℓ^p , $\exists y \in \ell^p$ s.t. $x^n \to y$ as $n \to \infty$.

Proof. (Sketch) We suppose first $p < +\infty$. Consider an arbitrary number of Cauchy sequences in ℓ_p :

$$x^{(1)} = (x_1^{(1)}, \dots, x_n^{(1)}, \dots)$$

$$x^{(2)} = (x_1^{(2)}, \dots, x_n^{(2)}, \dots)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$x^{(k)} = (x_1^{(k)}, \dots, x_n^{(k)}, \dots) \in \ell_p$$

We claim that, for any $k \in \mathbb{N}$, the $(x_k^{(n)})_{n \in \mathbb{N}}$ is a Cauchy sequence; note that in this definition we are taking a *fixed-index* (namely, the kth) element from different sequences (namely, the nth sequence).

Since $x^{(1)}, x^{(2)}, \ldots, x^{(n)}, \ldots$ are Cauchy sequences in ℓ^p , we have for a fixed $\varepsilon > 0$, $\exists N \in \mathbb{N} : \forall m, n > N$, $d_v(x^{(m)}, x^{(n)}) < \varepsilon$:

$$\begin{split} d_{p}(x^{(m)}, x^{(n)})^{p} &= ||x^{(m)} - x^{(n)}||_{p}^{p} = \sum_{i=1}^{\infty} \left|x_{i}^{(m)} - x_{i}^{(n)}\right|^{p} < \varepsilon^{p} \\ \left|x_{k}^{(m)} - x_{k}^{n}\right|^{p} &\leq \sum_{i=1}^{\infty} \left|x_{i}^{(m)} - x_{i}^{(n)}\right|^{p} \implies \left|x_{k}^{(m)} - x_{k}^{n}\right|^{p} < \varepsilon^{p} \\ &\implies \left|x_{k}^{(m)} - x_{k}^{(n)}\right| < \varepsilon, \end{split}$$

since we are taking "less of the summands in the second line". It follows, then, that for each k, $\exists z_k : x_k^{(n)} \to z_k$ as $n \to \infty$. Let $z = (z_1, \ldots, z_n, \ldots)$. We claim that $x^{(n)} \to z \in \ell_p$ as $n \to \infty$.

First, we show that $d_p(x^{(n)}, z) \to 0$ as $n \to 0$ (that is, $x^{(n)} \to z$ as $n \to \infty$). Fix $\varepsilon > 0$, and choose $N \in \mathbb{N}$ for which $d_p(x^{(m)}, x^{(n)}) < \varepsilon \ \forall m, n \ge N$ (by Cauchy). Fix $K \in \mathbb{N}$, K > 0.

$$d_p^p(x^{(n)}, z) = ||x^{(n)} - z||_p^p = \sum_{i=1}^{\infty} \left| x_i^{(n)} - z_i \right|^p$$
$$||x^{(m)} - x^{(n)}||_p^p < \varepsilon^p \implies \sum_{i=1}^K \left| x_i^{(m)} - x_i^{(n)} \right|^p \le \varepsilon^p$$

Let $m \to \infty$; then $x_i^{(m)} \to z_i$ (note that *i* fixed!), and we have

$$\sum_{i=1}^K \left| z_i - x_i^{(n)} \right|^p \leqslant \varepsilon^p.$$

Let $K \to \infty$; then,

$$\sum_{i=1}^{\infty} \left| z_i - x_i^{(n)} \right|^p \leqslant \varepsilon^p \implies ||z - x||_p \leqslant \varepsilon \implies d_p(z, x^n) \leqslant \varepsilon,$$

and thus $x^n \to z$ as $n \to \infty$.

It remains to show that $z \in \ell_p$, ie $||z||_p < +\infty$. We have:

$$||z||_p \le \underbrace{||z - x^{(n)}||_p}_{\to 0} + ||x^{(n)}||_p.$$

For sufficiently large n, $||z - x^{(n)}|| \le 1$ (for instance); $x^{(n)} \in \ell_p$, hence $||x^{(n)}||_p < +\infty$ (say, $||x^{(n)}||_p \le M$). Thus:

$$||z||_v \le 1 + M < +\infty \implies z \in \ell_v$$

and the proof is complete.

3.5 Equivalent Notions of Compactness in Metric Spaces

→ Definition 3.4: Totally Bounded

Let (X, d) be a metric space. If for every $\varepsilon > 0$, $\exists x_1, \dots, x_n \in X$, $n = n(\varepsilon)$: $\bigcup_{i=1}^n B(x_1, \varepsilon) = X$, we say X is totally bounded.

\hookrightarrow Theorem 3.4

Let (X, d) be a metric space. TFAE:

- 1. *X* is complete and totally bounded;
- 2. *X* is compact;
- 3. *X* is sequentially compact (every sequence has a convergent subsequence).

<u>Proof.</u> (1. \Longrightarrow 2.) Suppose X complete and totally bounded. Assume towards a contradiction that X not compact, ie there exists an open cover $\{U_{\alpha}\}_{{\alpha}\in I}$ of X with no finite subcover.

X being totally bounded gives that it can be covered by finitely many open balls of radius $\frac{1}{2}$. It must be that at least one of these open balls cannot be finitely covered, otherwise we would have a finite subcover. Let F_1 be the closure of this ball. F_1 closed, with diameter diam(F_1) ≤ 1 . X.

We also have that X can be covered by finitely many balls of radius $\frac{1}{4}$; again, there must be at least one ball B_1 such that $B_1 \cap F_1$ cannot be covered by finitely many open sets from the cover. Let $F_2 = \overline{B_1} \cap F_1$ -closed, with diam $(F_2) \leq \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$.

Arguing inductively, at some step n, X can can be covered by finitely many balls of radius $\frac{1}{2^n}$; at least one of these balls B cannot be covered by a finite subcover hence $B \cap F_{n-1}$ cannot be covered by finitely many U_{α} 's. Let $F_n = \overline{B} \cap F_{n-1}$ -closed, with diam $(F_n) \leq \frac{1}{2^{n-1}}$.

As such, we have a nested sequence $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed sets, where diam $(F_k) \le \frac{1}{2^{k-1}} \to 0$ as $k \to \infty$.

 \hookrightarrow Lemma 3.1 (Cantor Intersection Theorem). $\bigcap_{k=1}^{\infty} F_k \neq \emptyset$.

Proof. (Of Lemma) Let $x_k \in F_k$. Then, $\{x_k\}_{k \in \mathbb{N}}$ is a Cauchy sequence, since

$$d(x_n, x_{n+k}) \leq \operatorname{diam}(F_n) + \dots + \operatorname{diam}(F_{n+k}) \leq \frac{1}{2^{n-1}},$$

by the nested property, which can be made arbitrarily small for sufficiently large n, k. Hence, $x_n \to y \in X$ for some y, as X complete. The tail of x_n lies in F_n for all sufficiently large n, and as each F_n closed, the limit must lie in F_n for all sufficiently large n. We conclude the intersection nonempty.

 $^{{}^4}B_1$ has radius $\frac{1}{4}$ and hence diameter $\frac{1}{2}$. The intersection of B_1 with a set with a larger diameter must have diameter leq $\frac{1}{2}$

This y from the lemma is covered by some U_{α_0} -open for some $\alpha_0 \in I$. Being open, $\exists \varepsilon > 0 : B(y, \varepsilon) \subseteq U_{\alpha_0}$. Let $n: \frac{1}{2^n-1} < \varepsilon$. Then, $y \in F_n$, and as $\operatorname{diam}(F_n) \leq \frac{1}{2^{n-1}}$, we have that $F_n \subseteq B(y, \frac{1}{2^{n-1}}) \subseteq B(y, \varepsilon) \subseteq U_{\alpha_0}$. But then, we have that F_n covered by a single open set U_{α_0} , a contradiction to our inductive construction of F_n . We conclude X compact.

(2. \Longrightarrow 3.) Suppose X compact. Let $\{x_n\}_{n\in\mathbb{N}}\in X$. Let $F_n=\overline{\bigcup_{k\geqslant n}\{x_k\}}$ -closed; we have too that $F_1\supseteq F_2\supseteq\cdots\supseteq F_n\supseteq\cdots$.

○ Definition 3.5: Finite Intersection Property

 \mathcal{F} has finite intersection property provided any finite subcollection of sets in \mathcal{F} has a non-empty intersection.

 \hookrightarrow <u>Lemma</u> 3.2 (Finite Interesection Formulation of Compactness). *X-compact* \iff *every collection* $\mathcal F$ *of closed subsets of* X *with finite intersection property has non-empty intersection.*

Proof.

This lemma directly gives that $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$, $\{F_n\}_{n \in \mathbb{N}}$ being a collection of closed subsets with any subset having nonempty intersection (by the nestedness). Let $y \in \bigcap_{n=1}^{\infty} F_n$. Take $B(y, \frac{1}{k})$, which thus has nonempty intersection with $\{x_k\}_{k \geq n} \forall n$, ie $\exists n_1 : d(y, x_{n_1}) < 1$ and $\exists n_2 > n_1 : d(y, x_{n_2}) < \frac{1}{2}$. Arguing inductively, $\exists n_j > n_{j-1} : d(y, x_{n_j}) < \frac{1}{j}$ for any given n_{j-1} . It follows that $\lim_{j \to \infty} x_{n_j} = y$, and thus $\{x_{n_j}\}$ is a convergent subsequence of $\{x_n\}$ that converges within X, and thus X is sequentially compact.

(3. \Longrightarrow 1.) Suppose X sequentially compact. Let $\{x_n\} \in X$ be a Cauchy sequence in X, which thus have a convergent subsequence $\{x_{n_k}\} \to y$.

 \hookrightarrow Lemma 3.3. Let $\{x_n\}$ be a Cauchy sequence in X where X sequentially compact. Then, if $\{x_{n_k}\} \to y$, so does $\{x_n\} \to y$

Proof.

Then, $\{x_n\}_n \to y$ and so X complete.

Suppose X not totally bounded, ie $\exists \varepsilon > 0 : X$ cannot be covered by a finite union of balls of $B(x_j, \varepsilon)$. Let $x_1 \in X$ s.t. $B(x_1, \varepsilon) \not\supseteq X$; $\exists x_2 \in X \setminus B(x_1, \varepsilon)$, and so $X \not\subseteq B(x_1, \varepsilon) \cup B(x_2, \varepsilon)$ by assumption. Then, choose $x_3 \in X \setminus (B(x_1, \varepsilon) \cup B(x_2, \varepsilon))$. Arguing inductively, we have that $\exists x_n \in X \setminus (\bigcup_{i=1}^n B(x_i, \varepsilon))$, noting that $d(x_n, x_j) \geqslant \varepsilon \ \forall \ 1 \leqslant j \leqslant n$.

Consider the sequence $\{x_j\}_{j\in\mathbb{N}}$:

 \hookrightarrow **Lemma** 3.4. $\{x_j\}$ cannot have a convergent subsequence.

<u>Proof.</u> Follows by $d(x_m, x_n) \ge \varepsilon \forall m, n$.

This contradicts our assumption that *X* sequentially compact, and we conclude *X* must be totally bounded.

← Lecture 10: Last Updated: Tue Feb 6 09:50:59 EST 2024

Solution Example 3.3: Complete Metric Space Example: L^p **norm**

Let $f \in C([a,b])$. We define the norm

$$||f||_p := \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}.$$

As desired, $||f||_p \ge 0$; $||f||_p = 0 \iff f \equiv 0$; $||c \cdot f||_p = c \cdot ||f||_p$.

Hölder's and Minkowski's inequalities for functions also hold; for $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p$, $q \le \infty$,

$$\int |fg| \le ||f||_p \cdot ||g||_q; \quad ||f + g||_p \le ||f||_p + ||g||_q,$$

respectively.

We similarly have the L^{∞} norm, namely, for a function $f:[a,b] \to \mathbb{R}$,

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|,$$

which obeys all the necessary properties as well.

Let $f_n \to f$ in C([a,b]), wrt $||\cdots||_{\infty}$, where $\{f_n\}_{n\in\mathbb{N}}$ a sequence of functions. Namely, we say that

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \ge N, \sup_{x \in [a,b]} |f_n(x) - f(x)| < \varepsilon.$$

If this holds, we say that f_n uniformly converges.

We say that $f_n(x) \to f(x)$ pointwise on [a,b] if $\forall x \in [a,b], f_n(x) \to f(x)$. Note that uniform convergence implies pointwise convergence, but not the converse.

\hookrightarrow Theorem 3.5

Suppose $f_n(x)$ continuous, and $f_n(x) \to f(x)$ uniformly on [a,b]. Then, f(x) also continuous on [a,b].

Proof. Fix $\varepsilon > 0$, $x_0 \in [a,b]$. We have that $\exists N : n \ge N$, $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$, $\forall x \in [a,b]$.

Let $n \ge N$. $f_n(x)$ continuous at x_0 , hence $\exists \delta(x_0) > 0 : |y - x_0| \implies |f_n(y) - f_n(x_0)| < \frac{\varepsilon}{3}$. We have

$$|f(x_0) - f(y)| \le |f(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(y)| + |f_n(y) - f(y)|$$

 $\le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$

completing the proof.

Remark 3.8. *This does not hold with pointwise convergence.*

Remark 3.9. We will prove later that C([a,b]) is complete for $||f||_{\infty}$, but not for arbitrary $||f||_p$, $1 \le p < +\infty$. To "complete" C([a,b]) for $p \ne \infty$, we will need to consider measurable functions and redefine our notion of integration.

← Lecture 11; Last Updated: Thu Feb 8 09:51:13 EST 2024

4 Derivatives

4.1 Introduction

→ Definition 4.1: Differentiable

We say f(x) differentiable at c if $\exists \lim_{x\to c} \frac{f(x)-f(c)}{x-c}$. If so, we denote the limit f'(c).

Remark 4.1. For x close to c, then $f(x) \approx f(c) + f'(c)(x - c)$; this is a linear approximation of f at c.

SEXAMPLE 4.1: Weierstrass

 $f(x) = \sum_{n=1}^{\infty} \frac{\cos(3^n)x}{2^n}$ is continuous in \mathbb{R} , but nowhere differentiable.

○→ Definition 4.2

The derivative, dx, is a linear map $C^{([a,b])} \rightarrow C^{([a,b])}$.

4.2 Chain Rule

Remark 4.2. See Analysis I notes as well.

— Theorem 4.1: Caratheodory's Theorem

Let $f: I \to \mathbb{R}$, $c \in I$. f is differentiable at x = c iff $\exists \varphi(x) : I \to \mathbb{R}$ s.t. φ continuous at c and $f(x) - f(c) = \varphi(x)(x - c)$.

Proof. If f'(c) exists, let

$$\varphi(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & x \neq c \\ f'(c) & x = c. \end{cases}$$

which is well defined. Moreover, for $x \neq c$, $\varphi(x)(x-c) = \frac{f(x)-f(c)}{x-c}(x-c) = f(x)-f(c)$ as desired; the case for x=c is clear. Continuity at c:

$$\lim_{x \to c} \varphi(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c) = \varphi(c).$$

4.2 Derivatives: Chain Rule 35

⁵If not stated otherwise, sets named *I* or *J* are intervals.

Conversely, suppose such a φ exists. Then, by continuity,

$$\exists \varphi(c) = \lim_{x \to c} \varphi(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

which gives directly that f differentiable at c.

→ Theorem 4.2: Chain Rule

Let $f: J \to \mathbb{R}$, $g: I \to \mathbb{R}$, $f(J) \subseteq I$. If f(x) differentiable at c and g(y) is differentiable at y = f(c), then $g \circ f(x)$ is also differentiable at c, and

$$(g \circ f)'(c) = g'(f(c))f'(c).$$

Proof. Using Caratheodory's Theorem, $\exists \varphi : f(x) - f(c) = \varphi(x)(x - c)$ with $\varphi(c) = f'(c)$. Let d = f(c), then similarly $\exists \psi : g(y) - g(d) = \psi(y)(y - d)$ with $\psi(d) = g'(d)$, with φ, ψ continuous at c, d resp. Then,

$$g(f(x)) - g(f(c)) = \psi(f(x))(f(x) - f(c)) = (\psi \circ f)(x) \cdot (\phi(x)(x - c))$$

 $\psi \circ f$ is continuous at c, as a composition of continuous functions (ψ , ϕ continuous by construction, f differentiable and thus continuous). It follows, then, that

$$\lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c} = \lim_{x \to c} (\psi \circ f)(x) \cdot \varphi(x) = \psi(f(c))\varphi(c) = g'(f(c)) \cdot f'(c),$$

by construction.

4.3 Critical Points

→ Definition 4.3

 $f: I \to \mathbb{R}$ has a max/min c if $\exists J \subseteq I: x \in J$ s.t. $\max_{x \in J} f(x) / \min_{x \in J} f(x) = f(c)$.

← Theorem 4.3: Rolle's

Let $f:[a,b]\to\mathbb{R}$ continuous. Suppose f'(x) exists for all $x\in(a,b)$ and f(a)=f(b)=0. Then, $\exists c\in(a,b):f'(c)=0$.

Remark 4.3. A "complex-version" of Rolle's:

→ Theorem 4.4: Gauss-Lucas

Let P(z) be a complex-valued polynomial. Then, the roots of P'(z) lie inside the convex hull of roots of P(z), where a convex hull is the smallest polygon with vertices at the roots of P(z).

4.3 Derivatives: Critical Points 36

○→ Definition 4.4

Consider $P(z) = z^n - 1$ for some $n \in \mathbb{N}$. If z a root, we can show that $(|z|)^n = 1$, hence all roots lie on the unit circle in the complex plane at multiples of the same angle. This gives us a regular n-gon in the complex plane. We then have that $P'(z) = nz^{n-1}$, with has root z = 0, which clearly lies within the n-gon hull.

← Theorem 4.5: Mean Value

Let f be continuous on [a, b] and differentiable on (a, b). Then, $\exists c \in (a, b)$ s.t. f(b) - f(a) = f'(c)(b - a).

Proof. Let
$$\varphi(x) = f(x) - f(a) = \frac{f(b) - f(a)}{(b-a)}(x-a)$$
, where $\varphi(a) = 0 = \varphi(b)$. By Rolle's theorem, $\exists c \in (a,b)$: $\varphi'(c) = 0 = f'(c) - \frac{f(b) - f(a)}{(b-a)}$, as desired.

← Lecture 12; Last Updated: Thu Feb 15 09:47:18 EST 2024

4.4 Aside: Continued Fractions

We have that, for any $x \in \mathbb{R}$, $x = \lfloor x \rfloor + \{x\}$, with $\{x\} \in (0,1)$; $\lfloor x \rfloor$ and $\{x\}$ are the integral and fractional parts of x respectively.

Fix $x \in \mathbb{R}$, assuming $x \neq 0$.

Let $x_1 := \frac{1}{\{x\}}$. We can write

$$x = \lfloor x \rfloor + \frac{1}{x_1}.$$

If $\{x_1\} \neq 0$, let $x_2 := \frac{1}{\{x_1\}}$ and write

$$x = \lfloor x \rfloor + \frac{1}{\lfloor x_1 \rfloor + \frac{1}{x_2}}.$$

Continuing in this manner, this process stops if $\{x_i\} = 0$ for some i; if $x \in \mathbb{Q}$, this process will stop, else, it will continue infinitely. For instance, the Golden Ratio $x = \frac{\sqrt{5}\pm 1}{2}$ has continued fraction expansion

$$x = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}.$$

More succinctly, we can denote $a_0 := \lfloor x \rfloor$ and $a_i = \lfloor x_i \rfloor$, $i \ge 1$, and write

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}.$$

We notate, accordingly, $x := (a_1, a_2, a_3, ...)$; in this case, the Golden Ratio can be notated (1, 1, 1, ...).

We denote $\frac{p_n}{q_n}$ as the nth continued fraction of a given x. It turns out that this is the best possible rational approximation for $x \notin \mathbb{Q}$.

4.5 Back To Derivatives

→ Theorem 4.6

 $f: I \to \mathbb{R}$, differentiable. f is increasing (resp decreasing) iff $f'(x) \ge 0 \ \forall \ x \in I$ (resp $f'(x) \le 0 \ \forall \ x \in I$).

→ Proposition 4.1

Let f continuous on I = [a, b]. Let a < c < b and suppose f differentiable on (a, c) and (c, b). Suppose $f'(x) \ge 0$ on $(c - \delta, c)$ and $f'(x) \le 0$ on $(c, c + \delta)$ for some $\delta > 0$. Then, f has local max at x = c.

← Lemma 4.1

Let $I \subseteq \mathbb{R}$, and assume $f: I \to \mathbb{R}$ is differentiable at $x = c \in I$.

- 1. If f'(c) > 0, then $\exists \delta > 0 : f(x) > f(c) \forall x \in I, x \in (c, c + \delta)$.
- 2. (Reverse statement for f'(c) < 0)

→ Theorem 4.7: Darboux

Suppose f differentiable on I := [a, b] and f'(a) < k < f'(b). Then, $\exists c \in (a, b)$ such that f'(c) = k.

 $\hookrightarrow Lecture~13; Last~Updated:~Thu~Feb~15~09:49:55~EST~2024$

4.6 L'Hopital's Rules

\hookrightarrow Proposition 4.2

Suppose $f(x), g(x) : [a, b] \to \mathbb{R}$ with f(a) = g(a) = 0, and $g(x) \neq 0 \,\forall \, a < x < b$. Suppose f, g are differentiable at x = a and $g'(a) \neq 0$. Then, $\lim_{x \to a^+} \frac{f(x)}{g(x)}$ exists, and moreover, it is equal to f'(a)g'(x).

Proof.

$$\lim_{x \to a^+} \left(\frac{f(x) - f(a)}{x - a} \right) / \left(\frac{g(x) - g(a)}{x - a} \right) = \lim_{x \to a^+} \frac{f(x)}{x - a} \frac{x - a}{g(x)} = \lim_{x \to a^+} \frac{f(x)}{g(x)},$$

but the original line is simply $\frac{f'(a)}{g'(a)}$.

⊗ Example 4.2

 $\lim_{x\to 0} \frac{\sin x}{x} = \frac{\cos(0)}{1} = 1.$

→ Theorem 4.8: Cauchy Mean Value

Let $f(x), g(x) : [a, b] \to \mathbb{R}$ where f, g continuous on [a, b] and differentiable on (a, b). Assuming $g'(x) \neq 0, \forall x \in (a, b)$, then $\exists c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

→ Proposition 4.3: More General L'Hopital

let $-\infty \le a < b \le +\infty$ and f, g differentiable on (a,b). Suppose $\lim_{x\to a^+} f(x) = 0 = \lim_{x\to a^+} g(x)$.

- 1. If $\exists L := \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$ where L some real number, then $\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$ as well.
- 2. If $\exists L := \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$ where $L = +\infty$ or $-\infty$, then $\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$ as well.

← Proposition 4.4

Let $-\infty \le a < b \le +\infty$, f, g differentiable on (a,b) and $g'(x) \ne 0 \ \forall \ x \in (a,b)$. Suppose $\lim_{x\to a^+} g(x) = \pm \infty$.

- 1. If $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} =: L$ exists and is some finite real number, then $\lim_{x\to a^+} \frac{f(x)}{g(x)} = L$ as well.
- 2. If $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} =: L$ exists and is $\pm \infty$, then $\lim_{x\to a^+} \frac{f(x)}{g(x)} = L$ as well.

4.7 Taylor's Theorem

<u>Carte of the State of Theorem</u> 4.9: Taylor's Theorem

Let $I = [a, b] \subseteq \mathbb{R}$, $f : I \to \mathbb{R}$, $f \in C^n(I)$ and suppose $f^{(n+1)}(x)$ exists on (a, b). Let $x_0 \in [a, b]$. Then, for any $x \in [a, b]$, $\exists c$ between x, x_0 such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

← Lecture 14; Last Updated: Thu Mar 28 09:07:11 EDT 2024

→ Theorem 4.10: Relative Extrema

⁶Let $I \subseteq \mathbb{R}$ be an open interval, $x_0 \in I$, and $n \ge 2$. Suppose $f', f'', \dots, f^{(n)}$ are continuous in a neighborhood of x_0 , and $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$ and $f^{(n)}(x_0) \ne 0$. Then:

- 1. if *n* is even and $f^{(n)}(x_0) > 0$, then *f* has a local minimum at x_0 ;
- 2. if *n* is even and $f^{(n)}(x_0) < 0$, then *f* has a local maximum at x_0 ;
- 3. if n is odd, then f has neither a local minimum nor maximum at x_0 .

Proof. If n := 2m-even and $f^{(2m)}(x_0) > 0$, then $f^{(n)}(c) > 0$ so $f(x) - f(x_0) = f^{(2m)}(c)(x - x_0) > 0$.

4.8 Convex Sets

→ Definition 4.5: Convex Set

 $A \subseteq V$ -vector space over \mathbb{R} is *convex* if for any $x, y \in A$ and any $0 \le t \le 1$, $t \cdot x + (1 - t) \cdot y \in A$.

→ Definition 4.6: Convex Function

Let $f: I \to \mathbb{R}$. f is convex if $\forall x_1, x_2 \in I$ and $0 \le t \le 1$,

$$f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2).$$

← Lecture 15; Last Updated: Thu Feb 22 21:53:23 EST 2024

5 RIEMANN INTEGRAL

5.1 Introduction

\hookrightarrow **Definition** 5.1: Partitions

A partition is a division of an interval (a, b), denoted

$$\mathcal{P} = \{a = x_0, x_1, \dots, x_{n-1}, x_n = b\}.$$

We define diam(\mathcal{P}) := max_n |x_i - x_{i-1}|.

A marked partition, denoted \dot{P} , is one in which, for each interval we choose some $t_i \in (x_i, x_{i+1}]$.

⁶Bartle-Sherbert, Theorem 6.4.4

→ Definition 5.2: Riemann Sum

We denote

$$S(f, \dot{\mathcal{P}}) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}).$$

→ Definition 5.3: Riemann Integrable

A function f is *Riemann Integrable* if [a,b] if $S(f,\dot{\mathcal{P}}) \to L$ as diam $(\dot{\mathcal{P}}) \to 0$ for any choice of $t_i \in [x_i,x_{i+1}]$.

That is, $\forall \varepsilon > 0, \exists \delta$: if diam(\mathcal{P}) < δ , then for any choice of $t_i \in [x_i, x_{i+1}]$ we have $|L - S(f, \dot{\mathcal{P}})| < \varepsilon$.

\hookrightarrow Proposition 5.1

- 1. If *L* exists, it is unique.
- 2. The integral is linear in f(x); if $\int_a^b f(x) dx$ and $\int_a^b g(x) dx$ exist, then $\int_a^b (c_1 f + c_2 g) dx = c_1 \int_a^b f dx + c_2 \int_a^b g dx$.
- 3. If $f \le g$ are Riemann integrable on [a,b], then $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

← Proposition 5.2

If f(x) integrable on [a, b], the f(x) is bounded on [a, b].

<u>Proof.</u> Suppose $\int_a^b f$ exists. Let $\varepsilon > 0$, and δ such that if $\operatorname{diam}(\dot{\mathcal{P}}) < \delta$ then $|L - S(f, \dot{\mathcal{P}})|$. Let $\varepsilon = 1$. Then, $\overline{S(f, \dot{\mathcal{P}})} \leqslant |L| + 1$.

Let $Q = \{a = x_0, ..., x_n = b\}$ be a partition of [a, b] such that $\operatorname{diam}(Q) < \delta$. Suppose towards a contradiction that f is not bounded on [a, b]. Then, f is unbounded on at least one interval $[x_i, x_{i+1}]$, say, on $[x_k, x_{k+1}]$. Let $t_i = x_i$ for $i \neq k$ and choose $t_k \in [x_k, x_{k+1}]$ such that $|f(t_k)|(x_{k+1} - x_k) > |L| + 1 + |\sum_{i \neq k} f(t_i)(x_{i+1} - x_i)|$ (which we can do by assumption of f being unbounded).

By assumption, $|S(f, \dot{Q})| \le |L| + 1$, but we have that

$$S(f, \dot{Q}) = \underbrace{\sum_{i \neq k} f(t_i)(x_{i+1} - x_i) + |f(t_k)| (x_{k+1} - x_k) > 2N + |L| + 1,}_{:=N}$$

contradiction.

5.2 Cauchy Criterion

→ Proposition 5.3: Cauchy Criterion for Integrability

 $f \in \mathcal{R}[a,b] \iff \forall \varepsilon > 0, \exists \delta > 0 : \text{if } \dot{P} \text{ and } \dot{Q} \text{ are tagged partitions of } [a,b] \text{ s.t. diam } \dot{P} < \delta \text{ and diam } \dot{Q} < \delta \text{, then } |S(f,\dot{P}) - S(f,\dot{Q})| < \varepsilon.^7$

5.3 Squeeze Theorem

\hookrightarrow Theorem 5.1

Let $f:[a,b]\to\mathbb{R}$. Then $\int_a^b f$ exists \iff $\forall \, \varepsilon>0, \exists \alpha_\varepsilon(x), \omega_\varepsilon(x)\in\mathcal{R}[a,b], \alpha_\varepsilon\leqslant f\leqslant \omega_\varepsilon$, and

$$\int_a^b (\omega_\varepsilon - \alpha_\varepsilon) < \varepsilon$$

Proof. If $f \in \mathcal{R}[a,b]$ then take $\alpha_{\varepsilon} = f = \omega_{\varepsilon}$.

Conversely, let $\varepsilon > 0$. Since α_{ε} , $\omega_{\varepsilon} \in \mathcal{R}[a,b]$, then, $\exists \delta > 0$ such that for any tagged partition with $\dim \dot{P} < \delta$, then $\left| S(\alpha_{\varepsilon}, \dot{P}) - \int_a^b \alpha_{\varepsilon} \right| < \varepsilon$ and $\left| S(\omega_{\varepsilon}, \dot{P}) - \int_a^b \omega_{\varepsilon} \right| < \varepsilon$, thus

$$\int_{a}^{b} \alpha_{\varepsilon} - \varepsilon < S(\alpha_{\varepsilon}, \dot{P}) \leq S(f, \dot{P}) \leq S(\omega_{\varepsilon}, \dot{P}) < \int_{a}^{b} \omega_{\varepsilon} + \varepsilon.$$

Let \dot{Q} be any other tagged partition with diam $\dot{Q} < \delta$; then, the same inequality holds ie $\int_a^b \alpha_\varepsilon - \varepsilon < S(f, \dot{Q}) < \int_a^b \omega_\varepsilon + \varepsilon$. Subtracting one from the other, we see that

$$|S(f,\dot{P}) - S(f,\dot{Q})| < \int_a^b \omega_{\varepsilon} - \int_a^b \alpha_{\varepsilon} + 2\varepsilon < 3\varepsilon,$$

and thus $f \in \mathcal{R}[a, b]$ by Cauchy Criterion.

← Lecture 16; Last Updated: Tue Feb 27 13:18:19 EST 2024

← Lemma 5.1: BS-7.2.4

Let $J \subseteq [a, b]$ an invterval with endpoints c < d. If

$$\varphi_J(x) := \begin{cases} 1 & x \in J \\ 0 & x \notin J \end{cases}.$$

Then, $\varphi_J \in \mathcal{R}[a,b]$ and $\int_a^b \varphi_J = d - c$.

⁷Note that $\mathcal{R}[a,b]$ is the set of all real-valued functions integrable on the interval [a,b].

\hookrightarrow Theorem 5.2

Let $\varphi : [a, b] \to \mathbb{R}$, $\varphi \in \mathcal{R}[a, b]$; that is, step functions are integrable.

\hookrightarrow Theorem 5.3

f continuous on [a, b] implies $f \in \mathcal{R}[a, b]$.

<u>Proof.</u> (Sketch) f uniform continuous; use this to construct step functions that "bound" f from above and below. Apply the squeeze theorem.

 $\hookrightarrow Lecture~17; Last~Updated:~Thu~Mar~28~09:32:42~EDT~2024$

← Theorem 5.4: BS-7.2.7

Monotone functions on [a, b] are integrable.

Proof. We show only for increasing. Let $f : [a, b] \to \mathbb{R}$ be monotone increasing. If f constant, then it is a step function and we are done.

Otherwise, f(b) - f(a) > 0. Let $\varepsilon > 0$ and $q \in \mathbb{N}$ such that $h := \frac{f(b) - f(a)}{q} < \frac{\varepsilon}{b - a}$, effectively subdividing the y-axis into q equal-sized parts. Then, let

$$y_i \coloneqq f(a) + ih, \quad 0 \le i \le q,$$

and take

$$A_k := f^{-1}([y_{k+1}, y_k)) = \begin{cases} \emptyset \\ \{x\} \end{cases} .$$

$$I_i$$

We disregard each $A_k: A_k = \emptyset$, and adjoin the isolated points $\{x\}$ to the I_i 's, and hence have a partition $\bigcup_k A_k = [a,b]$. Letting $\alpha(x) = y_{k-1}$ and $\omega(x) = y_k$ for $x \in A_k$, then $\alpha(x) \le f(x) \le \omega(x) \, \forall \, x \in [a,b]$ (effectively, we are created a "series of squeezes"). Then,

$$\int_{a}^{b} \omega(x) - \alpha(x) dx = \sum_{k=1}^{q} (y_k - y_{k-1})(x_k - x_{k-1}) = h(b-a) < \varepsilon,$$

and the proof is completed by applying the squeeze theorem.

→ Theorem 5.5: Additivity; BS-7.2.8

Let $f:[a,b] \to \mathbb{R}$ and a < c < b. Then, $f \in \mathcal{R}[a,b] \iff f \in \mathcal{R}[a,c]$ and $f \in \mathcal{R}[c,b]$. Moreover, $\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$.

Proof. See book. Remark that this holds for finite summations of integrals as such by induction.

5.4 Fundamental Theorem of Calculus

→ Definition 5.4

Call F(x) a primitive of f(x) if F differential and F'(x) = f(x).

→ Theorem 5.6: Fundamental Theorem of Calculus

Let F, f: $[a,b] \to \mathbb{R}$ and $E \subseteq [a,b]$ a finite set s.t.

- 1. F continuous on [a, b]
- 2. $F'(x) = f(x) \forall x \in [a, b] \setminus E$; ie they agree for all but finitely many points
- 3. $f \in \mathcal{R}[a,b]$

Then,
$$\int_a^b f(x) = F(b) - F(a)$$
.

<u>Proof.</u> (Sketch) Remark first that it suffices to prove for $E := \{a, b\}$; using additivity, we can subdivide any other such E into such subsets of 1 or 2 elements.

Fix $\varepsilon > 0$ and take $\delta > 0$ such that for any \dot{P} of [a,b] s.t. diam $\dot{P} < \delta$, $\left| S(f,\dot{P}) - \int_a^b f(x) \right| < \varepsilon$. Applying the mean value theorem to F on each $[x_{i-1},x_i]$ of \dot{P} :

$$F(x_i) - F(x_{i-1}) = F'(u_i)(x_i - x_{i-1}), \quad u_i \in [x_{i-1}, x_i]$$
$$= f(u_i)(x_i - x_{i-1})$$

Hence, summing over each of these,

$$F(x_1) - F(x_0) + F(x_2) - F(x_1) + \dots + F(x_n) - F(x_{n-1}) = f(u_1)(x_1 - a) + \dots + f(u_n)(x_n - x_{n-1})$$

$$\implies F(b) - F(a) = \sum_{i=1}^n f(u_i)(x_i - x_{i+1}) =: S(f, \dot{P}_1)$$

by construction, diam $(\dot{P_1}) < \delta$ since the only change we have made from \dot{P} is the tags, hence $\left| S(f, \dot{P_1}) - \int_a^b f(x) \right| < \varepsilon$. Thus,

$$\left| S(f, \dot{P}_1) - \int_a^b f(x) \right| = \left| F(b) - F(a) - \int_a^b f(x) \right| < \varepsilon$$

$$\implies F(b) - F(a) = \int_a^b f(x) \quad \text{as } \varepsilon \to 0.$$

← Lecture 18; Last Updated: Thu Mar 28 09:07:47 EDT 2024

5.5 Upper and Lower Riemann Sums

→ **Definition** 5.5: Upper/Lower Riemann Sums

For a partition *P*,

- $\overline{S}(f, P) := \sum_{i=1}^{n} (\sup_{t \in [x_{i-1}, x_i]} f(t)) \cdot (x_i x_{i-1})$
- $\underline{S}(f, P) := \sum_{i=1}^{n} (\inf_{t \in [x_{i-1}, x_i]} f(t)) \cdot (x_i x_{i-1})$

\hookrightarrow Proposition 5.4

For any tagged partition \dot{P} ,

$$\underline{S}(f, P) \leq S(f, \dot{P}) \leq \overline{S}(f, P).$$

Moreover, $f \in \mathcal{R}[a,b]$ if $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\operatorname{diam}(P) < \delta \implies \left| \overline{S}(f,P) - \underline{S}(f,P) \right| < \varepsilon$.

Proof. (Sketch) Remark that this is a similar idea to saying that $\inf = \sup \implies \liminf$ exists.

→ Proposition 5.5

Let P_1 , P_2 be partitions of [a, b], and let P_3 be the *common refinement* of P_1 , P_2 . Then

$$\underline{S}(f,P_i) \leq \underline{S}(f,P_3) \leq \overline{S}(f,P_3) \leq \overline{S}(f,P_i), \quad i=1,2,$$

that is, the finer refinement always gives a better approximation.

5.6 Indefinite Integral

\hookrightarrow **Definition** 5.6

For $f \in \mathcal{R}[a, b]$ and any $z \in [a, b]$, define

$$F(z) := \int_a^z f(x) \, \mathrm{d}x.$$

← Theorem 5.7

F(z) continuous on [a, b].

Proof. $f \in \mathcal{R}[a,b] \implies f$ bounded $\implies \exists M \text{ s.t. } |f(x)| \leq M \, \forall \, x \in [a,b]$, so (assuming z < w),

$$|F(z) - F(w)| = \left| \int_a^z f(x) \, \mathrm{d}x - \int_a^w f(x) \, \mathrm{d}x \right| = \left| \int_z^w f(x) \, \mathrm{d}x \right| \le M \cdot |z - w|,$$

so taking $w \to z$, $|F(z) - F(w)| \to 0$.

→ Theorem 5.8: Another Fundamental Theorem of Calculus

Let $f \in \mathcal{R}[a,b]$, f-continuous at $c \in [a,b]$. Then F(z) differentiable at c and F'(c) = f(c).

⇔ Corollary 5.1

If f(x) continuous on [a,b] $F'(x) = f(x) \forall x \in [a,b]$.

→ **Theorem** 5.9: Substitution/Change of Variables

Let $J := [\alpha, \beta], \varphi : J \to \mathbb{R}, \varphi \in C^1([a, b])$. Suppose $\varphi(J) \subseteq I \subseteq \mathbb{R}$, and let $f : I \to \mathbb{R}$ be continuous on I. Then,

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt.$$

Proof. Left as a (homework) exercise; make use of the chain rule!

⊗ Example 5.1

Compute $\int_1^4 \frac{\sin(\sqrt{t})}{\sqrt{t}} dt$ using the previous theorem.

5.7 Lebesgue Integrability Criterion

→ Definition 5.7: Lebesgue Measure 0

 $A \subseteq \mathbb{R}$ has *Lebesgue measure* 0 iff $\forall \varepsilon > 0$, A can be covered by a countable union of intervals $J_k := [a_k, b_k]$ such that $\sum_{k=1}^{\infty} |J_k| \le \varepsilon$. We also call such an A a null set.

For some set $S \subseteq \mathbb{R}$ and statement P, we say "P holds for almost every $x \in S$ " if $\{x \in S : P \text{ false }\}$ has Lebesgue measure 0.

⊗ Example 5.2

- 1. Any countable set is a null set.
- 2. The Cantor set is a null set.

→ Theorem 5.10: Lebesgue Integrability Criterion

Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Then

$$f \in \mathcal{R}[a,b] \iff f$$
 – continuous for almost every $x \in [a,b]$ $\iff \{z \in [a,b] : f \text{ discontinuous}\}\$ has Lebesgue measure 0 .

Remark 5.1. The proof is rather involved, but is in the appendix of Bartle. Its important to remark that this is a necessary and sufficient condition.

⊗ Example 5.3

- 1. Let $f:[0,1] \to \mathbb{R}$, $f(x) := \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. f discontinuous everywhere, so $f \notin \mathcal{R}[a,b]$.
- 2. Let $f(x) := \begin{cases} \frac{1}{b} & x = \frac{a}{b} \in \mathbb{Q} \text{ s.t. } (a,b) = 1 \\ 0 & x \notin \mathbb{Q} \end{cases}$. One can show that f continuous on $x \in \mathbb{R} \setminus \mathbb{Q}$ and only discontinuous on \mathbb{Q} . But this is a countable set so certainly has Lebesgue measure 0 and so $f \in \mathcal{R}[0,1]$.

← Lecture 19; Last Updated: Thu Mar 28 09:11:46 EDT 2024

→ Theorem 5.11: Composition

 $f \in \mathcal{R}[a,b], f([a,b]) \subseteq [c,d], \varphi : [c,d] \to \mathbb{R}$ continuous, then $\varphi \circ f \in \mathcal{R}[a,b]$.

Proof.

$$\{x \text{ s.t. } \varphi \circ f \text{ discontinuous at } x\} \subseteq \{x : f \text{ discontinuous at } x\}$$

since φ continuous. The RHS has Lebesgue measure 0, and thus so does the LHS, hence the proof.

← Theorem 5.12: Product Theorem

$$f,g\in\mathcal{R}[a,b]\implies f\cdot g\in\mathcal{R}[a,b].$$

<u>Proof.</u> $f \cdot g = \frac{1}{4} \left[(f+g)^2 - (f-g)^2 \right]$. $f \pm g \in \mathcal{R}[a,b]$ and so so is $(f \pm g)^2$ by taking $\varphi(x) := x^2$ as in the previous theorem. It follows that $f \cdot g \in \mathcal{R}[a,b]$.

5.8 Integration by Parts

← Theorem 5.13

Let F, G be differentiable on [a,b], with f := F', g := G'. Suppose f, $g \in \mathcal{R}[a,b]$, then

$$\int_a^b f(x)G(x) dx = F(x)G(x)|_a^b - \int_a^b F(x)g(x) dx.$$

Proof. Remark that (FG)' = F'G + FG' = fG + Fg, so on the one hand

$$\int_{a}^{b} (FG)' \, \mathrm{d}x = \int_{a}^{b} (fG + Fg) \, \mathrm{d}x = \int_{a}^{b} fG \, \mathrm{d}x + \int_{a}^{b} Fg \, \mathrm{d}x \,,$$

but on the other hand, by the fundamental theorem of calculus,

$$\int_{a}^{b} (FG)' \, \mathrm{d}x = [F \cdot G](a) - [F \cdot G](b) = F(x)G(x)|_{a}^{b},$$

and so

$$F(x)G(x)|_a^b = \int_a^b fG \, \mathrm{d}x + \int_a^b Fg \, \mathrm{d}x$$

$$\implies \int_a^b f(x)G(x) \, \mathrm{d}x = F(x)G(x)|_a^b - \int_a^b F(x)g(x) \, \mathrm{d}x,$$

and hence the result.

→ Theorem 5.14: Taylor's Theorem, Remainder's Version

Suppose $f', f'', \dots, F^{(n)}$ exist on [a, b] and $f^{(n+1)} \in \mathcal{R}[a, b]$.8Then,

$$f(b) = f(a) + \frac{f'(a)}{1!}(b-a) + \frac{f''(a)}{2!} + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + R_n,$$

with $R_n := \frac{1}{n!} \int_a^b f^{(n+1)}(t)(b-t)^n dt$.

Proof. See Bartle; makes use of integration by parts.

6 Function Sequences, Series

6.1 Pointwise and Uniform Convergence

⁸Remark that this is a weaker condition than continuity as was used in our previous statement of Taylor's theorem.

→ Definition 6.1: Pointwise vs Uniform Convergence

We say a sequence of functions $f_n \to f$ pointwise on a set E if $\forall x \in E$, $f_n(x) \to f(x)$ as $n \to \infty$.

On the other hand, $f_n \to f$ uniformly of E if $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n \ge N$ and $x \in E$, $|f_n(x) - f(x)| < \varepsilon$.

Remark 6.1. *Notice that uniformly implies pointwise convergence.*

⊗ Example 6.1

Let $f_n := \begin{cases} 2nx & 0 \le x \le \frac{1}{2n} \\ 0 & x > \frac{1}{2n} \end{cases}$. Show that $f_n \to 0$ pointwise but not uniformly (hint: $f_n(\frac{1}{2n}) = 1 \,\forall n$).

\hookrightarrow Theorem 6.1

Suppose $\lim_{n\to\infty} f_n$ continuous on [a,b] where each f_n also continuous on [a,b]. Then, the space of function C([a,b]) equipped with the sup norm is complete.

Proof. Proven in tutorials.

→ **Theorem** 6.2: Interchange of Limits

Let $J \subseteq \mathbb{R}$ be a bounded interval such that $\exists x_0 \in J : f_n(x_0) \to f(x_0)$. Suppose $f'_n(x) \to g(x)$ uniformly $\forall x \in J$. Then, $\exists f : f_n(x) \to f(x)$ uniformly on J, f(x) differentiable on J, and $f'(x) = g(x) \forall x \in J$.

<u>Proof.</u> This is a rather painful proof; one needs to make use of the "multiple epsilons" from each given continuity/convergence/differentiability statement.

← Lecture 20; Last Updated: Thu Mar 28 11:59:48 EDT 2024

\hookrightarrow Theorem 6.3

Let $f_n \in \mathcal{R}[a,b]$, $f_n \to f$ uniformly on [a,b]. Then, $f \in \mathcal{R}[a,b]$ and $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.

→ Theorem 6.4: Bounded Convergence Theorem

 $f_n \in \mathcal{R}[a,b], f_n \to f \in \mathcal{R}[a,b],$ not necessarily uniformly. Suppose $\exists B > 0$ s.t. $|f_n(x)| \leq B \,\forall \, x \in [a,b].$ Then, $\int_a^b f_n \to \int_a^b f$ as $n \to \infty$.

→ Theorem 6.5: Dimi's Theorem/Monotone Convergence

 $f_n \in C([a,b]), f_n(x)$ monotone (as a sequence). Suppose $f_n \to f \in C([a,b])$. Then, $f_n \to f$ uniformly on [a,b].

← Lecture 21; Last Updated: Thu Mar 28 11:58:26 EDT 2024

6.2 Series

→ Definition 6.2: Absolute Convergence

Let $\{x_i\} \in X$ where X a normed vector space (say, \mathbb{R}). We say

$$\sum_{j=1}^{\infty} x_j \text{ converges absolutely } \iff \sum_{j=1}^{\infty} ||x_j|| < +\infty.$$

← Theorem 6.6

Any rearrangement of absolutely convergent series given the same sum.

→ Definition 6.3: Conditional Convergence

 $\sum_{j=1}^{\infty} \vec{x}^{(j)}$ conditionally convergent if $\sum_{j=1}^{\infty} x^{(j)}$ converges (ie each component converges) but $\sum_{j=1}^{\infty} ||\vec{x}^{(j)}|| = \infty$.

\hookrightarrow Theorem 6.7

If $\sum_{i=1}^{\infty} a_i \in \mathbb{R}$ conditionally convergent, you can change the order of summation such that $\forall x \in \mathbb{R}$, $\exists \sigma$ -permutation such that $\sum_{i=1}^{\infty} a_{\pi(i)} = x$.

Proof. (Sketch) Separate a_i into positive, negative parts. Since conditionally convergent, $\sum_{a_j>0} a_j = +\infty$ and $\sum_{a_j<0} a_j = -\infty$. Add positive a_i 's until the partial sum $\geq x$, then add negative a_i 's until the partial sum $\leq x$, and repeat. The final rearrangement will converge as desired. ■

 $\hookrightarrow Lecture~22; Last~Updated:~Thu~Mar~28~12:14:46~EDT~2024$

→ Theorem 6.8

Suppose $\sum_{i=1}^{\infty} \vec{v}_i, \vec{v}_i \in \mathbb{R}^n$, converges, but $\sum_{i=1}^{\infty} ||\vec{v}_i|| = +\infty$. Then, the set of rearranged sums $\sum_{i=1}^{\infty} \vec{v}_{\sigma(i)}$ for each $\sigma : \mathbb{N} \leftrightarrow \mathbb{N}$ permutation form an *affine subspace* of \mathbb{R}^n .

6.3 Tests for Absolute Convergence

→ Proposition 6.1

Let x_n , y_n be sequences and $r := \lim_{n \to \infty} \left| \frac{x_n}{y_n} \right|$.

- 1. If $r \neq 0$, $\sum_{n=1}^{\infty} x_n$ converges absolutely iff $\sum_{n=1}^{\infty} y_n$ converges absolutely. In addition, if $0 < r_1 := \lim \inf \left| \frac{x_n}{y_n} \right| \le \lim \sup \left| \frac{x_n}{y_n} \right| =: r_2 < +\infty$, this still holds.
- 2. If r = 0, and if $\sum y_n$ converges absolutely, so does $\sum x_n$.

→ Proposition 6.2: Root Test

If there $\exists r < 1$ such that $|x_n|^{1/n} \le r$ for sufficiently large $n \ge K$, then $\sum_{n=K}^{\infty} |x_n| \le \sum_{n=K}^{\infty} r^{-n}$ converges. If $|x_n|^{1/n} \ge n$ for $n \ge K$, $\sum x_n$ does not converge absolutely.

→ Proposition 6.3: Ratio Test

Let $x_n \neq 0$. If $\exists 0 < r < 1$, $\left| \frac{x_{n+1}}{x_n} \right| \leq r$ for sufficiently large n, $\sum x_n$ absolutely convergent. If $\left| \frac{x_{n+1}}{x_n} \right| \geqslant 1$ for $n \geqslant K$, $\sum x_n$ diverges.

→ Proposition 6.4: Integral Test

Let $f(x) \ge 0$ be non-increasing/non-decreasing function of $x \ge 1$. Then $\sum_{k=1}^{\infty} f(k)$ converges \iff $\lim_{k\to\infty} \int_1^k f(x) \, \mathrm{d}x$ finite.

Let $x_n \neq 0$.

- 1. Suppose $\exists a > 1$ s.t. $\left| \frac{x_{n+1}}{x_n} \right| \le 1 \frac{1}{n}$, $n \ge K$. Then $\sum x_n$ converges absolutely.
- 2. If $\exists a \leq 1$ s.t. $\left|\frac{x_{n+1}}{x_n}\right| \geq 1 \frac{1}{n}$, $n \geq K$. Then $\sum x_n$ does not converge absolutely.

⇔ Corollary 6.1

Let $a := \lim n(1 - \left| \frac{x_{n+1}}{x_n} \right|)$, if such a limit exists. Then, if a > 1, $\sum x_n$ converges absolutely, and if a < 1, $\sum x_n$ does not.

6.4 Tests for Non-Absolute Convergence

→ Proposition 6.6: Alternating Series

If $x_n > 0$, $x_{n+1} \le x_n$, $\lim_{n \to \infty} x_n = 0 \implies \sum (-1)^n x_n$ converges.

→ Lemma 6.1: Abel's Lemma

Let $x_n, y_n \in \mathbb{R}$. Let $s_0 := 0, s_n := \sum_{k=1}^n y_k$. Then, for m > n,

$$\sum_{k=n+1}^{m} x_k y_k = x_m s_m - x_{n+1} s_{n+1} + \sum_{k=n+1}^{m} (x_k - x_{k+1}) s_k$$

 $\hookrightarrow Lecture~23; Last~Updated:~Thu~Mar~28~12:36:05~EDT~2024$

7 APPENDIX

7.1 Notes from Tutorials

\hookrightarrow Theorem 7.1

Let (X, d) be a compact metric space. ${}^9\mathrm{Let}\ C(X) := \{f : X \to \mathbb{R} : f \text{ continuous}\}\$ be a vector space. Take the uniform norm $||f|| := \sup_{x \in X} |f(x)|$ on C(x). Then, $(C(x), || \bullet ||)$ is complete. 10

Proof. Denote the "canonical norm" $\rho(f,g) := ||f - g||$.

Let $(f_n) \in C(X)$ be a Cauchy sequence. Then, $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall m, n \ge N, \rho(f_n, f_m) < \varepsilon$.

Fix $x \in X$, noting that

$$|f_n(x) - f_m(x)| \le \sup_{y \in X} |f_n(y) - f_m(y)| = \rho(f_n, f_m) < \varepsilon. \quad *^1$$

Define, for this fixed x, a sequence in \mathbb{R} $\{f_n(x)\}_{n\in\mathbb{N}}$. By $*^1$, we have that this sequence is Cauchy in \mathbb{R} , but as \mathbb{R} complete, $f_n(x)$ hence converges, to some limit we call $f(x) := \lim_{n\to\infty} f_n(x)$. Note that x is still fixed at this point; these are but real numbers we are working with here.

Now, as x was completely arbitrary, we can repeat this process for all of X, and define a function $f: X \to \mathbb{R}$ where $f(x) := \lim_{n \to \infty} f_n(x)$.

For a fixed x, we have that $f_m(x) \to f(x)$ as $m \to \infty$. This implies:

$$0 \leq \lim_{m \to \infty} |f_n(x) - f_m(x)| \leq \lim_{m \to \infty} \varepsilon = \varepsilon$$

$$\implies |f_n(x) - f(x)| \leq \varepsilon \,\forall \, n \geq N$$

$$\implies \rho(f_n, f) = \sup_{x \in X} |f_n(x) - f(x)| \leq \varepsilon \implies f_n \to f$$

It remains to show that $f \in C(X)$. Let $c \in X$ and $\varepsilon > 0$, and the corresponding $N \in \mathbb{N}$: $\rho(f_n, f) < \frac{\varepsilon}{3} \, \forall \, n \ge N$. By construction, $f_N \in C(X)$, and is thus continuous at c. This gives that $\exists \delta > 0 : |f_N(x) - f_N(c)| < \frac{\varepsilon}{3}$ whenever $d(x, c) < \delta$.

Hence, if $d(x, c) < \delta$, we have

$$\begin{split} |f(x)-f(c)| &\leq |f(x)-f_N(x)| + |f_N(x)-f_N(c)| + |f_N(c)-f(c)| \\ &\leq \rho(f,f_N) + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon, \end{split}$$

¹⁰In this proof, the compactness is necessary for the norm to be well-defined.

¹⁰In this way, this becomes a Banach Space: a complete, normed vector space.

¹¹Be careful here, there are three different metrics going on; ρ from the vector space, d from the underlying metric space, and $|\cdots|$ from \mathbb{R} .

hence f continuous at c, which was completely arbitrary, and thus $f \in C(X)$.

→ Theorem 7.2

Let (X, d)-complete. Let $\{F_n\}$ be a decreasing family of non-empty closed sets with $\lim_{n\to\infty} \operatorname{diam}(F_n) = 0$. Then, $\exists z : \bigcap_{n\in\mathbb{N}} F_n = \{z\}$.

\hookrightarrow Theorem 7.3

Let (X, d)-complete, and $f: X \to X$ an "expanding map", such that $d(x, y) \le d(f(x), f(y)) \ \forall x, y \in X$. Then, f is a surjective isometry, ie, f(X) = X and $d(f(x), f(y)) = d(x, y) \ \forall x, y \in X$.

→ Lemma 7.1

Differentiable \implies Continuous.

Proof. Let $f: I \to \mathbb{R}$, and $c \in I$ arbitrary. Notice that $\forall x \neq c \in I$, $f(x) - f(c) = (x - c) \frac{f(x) - f(c)}{x - c}$. Hence,

$$\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} (x - c) \frac{f(x) - f(c)}{x - c}$$

$$= \lim_{x \to c} (x - c) \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

$$= 0 \cdot f'(x) = 0$$

$$\implies \lim_{x \to c} f(x) = f(c),$$

hence *f* continuous, noting that the splitting of the limits is valid as both are defined.

⊗ Example 7.1

Let
$$f : \mathbb{R} \to \mathbb{R}$$
, $f(x) := \begin{cases} x^2 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$

Claim: f discontinuous at all $x \neq 0$.

<u>Proof.</u> Let $x \neq 0 \in \mathbb{R}$. By density of $\mathbb{Q} \subseteq \mathbb{R}$, there exist sequences $(r_n) \in \mathbb{Q}$ s.t. $r_n \to x$ and $(z_n) \in \mathbb{R} \setminus \mathbb{Q}$ s.t. $z_n \to x$. Then:

$$\lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} r_n^2 = x^2$$
$$\lim_{n \to \infty} f(z_n) = \lim_{n \to \infty} 0,$$

hence f discontinuous by the sequential criterion at $x \neq 0$.

Claim: f'(0) = 0.

Proof. Let $\varepsilon > 0$ and $\delta = \varepsilon$. Notice that $f(x) \le x^2 \, \forall x$. Then, we have that $\forall |x| < \delta$,

$$\left| \frac{f(x) - f(0)}{x - 0} - 0 \right| = \left| \frac{f(x)}{x} \right|$$

$$\leq \left| \frac{x^2}{x} \right| = |x| < \delta = \varepsilon$$

\hookrightarrow Definition 7.1

Let $f: I \to \mathbb{R}$. A point $c \in I$ is a local max (resp min) if $\exists \delta > 0$ s.t. $f(x) \leq f(c)$ (resp $f(x) \geq f(c)$) $\forall x \in (c - \delta, c + \delta) \cap I$.

← Lemma 7.2

Let $f: I \to \mathbb{R}$ be differentiable at $c \in I^{\circ}$. If c a local extrema of f, then f'(c) = 0.

Proof. Assume wlog that c a local max; if a local min, take $\tilde{f} := -f$ and continue.

Since I° open, $\exists \delta_1 > 0 : (c - \delta_1, c + \delta_1) \subseteq I^{\circ} \subseteq I$. We also have that $\exists \delta_2 > 0 : f(x) \leq f(c) \forall x \in (c - \delta_2, c + \delta_2) \cap I$, by c an extrema.

Let $\delta := \min\{\delta_1, \delta_2\}$. Then, we have both $(c - \delta, c + \delta) \subseteq I$ and $f(x) \le f(c) \forall x \in (c - \delta, c + \delta)$.

Since f'(c) exists, $\lim_{x\to c^+} \frac{f(x)-f(c)}{x-c} = \lim_{x\to c^-} \frac{f(x)-f(c)}{x-c}$. But we have from the property of being a maximum

that

$$\lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} \ge 0, \qquad \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \le 0,$$

hence, as these two limits must agree, they must equal 0 and thus f'(c) = 0.

7.2 Miscellaneous

⊗ Example 7.2: Rudin, Chapter 7: Differentiability

1. Let f be defined $\forall x \in \mathbb{R}$, and suppose that $|f(x) - f(y)| \le (x - y)^2$, $\forall x, y \in \mathbb{R}$. Prove that f is constant.¹²

Proof. Let $x > y \in \mathbb{R}$. Then, as |x - y| = x - y, we have

$$|f(x) - f(y)| \le (x - y)^2 \implies \left| \frac{f(x) - f(y)}{x - y} \right| \le x - y = |x - y| \to 0 \text{ as } y \to x$$

$$\implies \left| \frac{f(x) - f(y)}{x - y} \right| \to 0$$

This implies, then, that f'(x) is defined $\forall x \in \mathbb{R}$, and moreover, that $f'(x) = 0 \forall x \in \mathbb{R}$. We conclude, then, that f(x) constant $\forall x \in \mathbb{R}$.

2. Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b), and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)}$$
 $(a < x < b).$

<u>Proof.</u> Fix $x > y \in (a, b)$. Then, by the mean value theorem, $\exists z \in (x, y) : f'(z) = \frac{f(x) - f(y)}{x - y}$. Since f'(z) > 0, it follows that

$$\frac{f(x) - f(y)}{x - y} > 0 \implies f(x) - f(y) > x - y > 0 \implies f(x) > f(y),$$

hence, f increasing, as x > y arbitrary.

Let now $g := f^{-1}$.

7.2 Appendix: Miscellaneous 56

¹²Note that this means that *f Hölder continuous* with constant α = 2. Indeed, Hölder continuous functions with α > 1 are always constant by a similar proof. For 0 < α ≤ 1, we have the inclusion continuously differentiable \implies Lipschitz \implies α -Hölder \implies uniformly continuous \implies continuous.

7.3 Class Midterm Solutions

\hookrightarrow Question 7.1

Let X be a topological space, and let $f,g:X\to\mathbb{R}$ be two continuous functions. Show that the set $\{x\in X:f(x)>g(x)\}$ is an open subset of X.

<u>Proof.</u> Let $A := \{x \in X : f(x) > g(x)\}$. Letting $\varphi(x) := f(x) - g(x) = (f - g)(x)$, then remark that $\overline{A} \equiv \{x \in X : \varphi(x) > 0\}$, and since differences of continuous functions are continuous, φ continuous. Letting $B := (0, \infty) \subseteq \mathbb{R}$, then, we have that $A = \varphi^{-1}(B)$. But B an open set, and the inverse images of open sets by continuous functions are open, hence A open.

\hookrightarrow Question 7.2

- (a) List three equivalent properties (definitions) of compact sets in metric spaces; you don't need to prove anything.
- (b) Is the unit ball¹³in the space ℓ^2 of infinite sequences compact? Prove or disprove. You may use any of the properties from (a).
- $\underbrace{\frac{\textit{Proof.}}{}}$ (a) Every open cover admits a finite subcover \iff sequentially compact \iff complete and totally bounded.
 - (b) Denote the closed unit ball centered at $(0,0,\ldots)$ in ℓ^2 , $B:=\{x\in \ell^2: d_2^2(0,x)=\sum_{i=1}^\infty |x_i|\leqslant 1\}$. Consider the sequence of "unit sequences"

$$\{e^n\}_{n\in\mathbb{N}}\in B, \qquad e^n_i:=\delta_{in}.$$

Then, for any $i \neq j$, $d_2(e^n, e^m) = \sqrt{2} > 1$. It follows that, although $e^n \in B$ for any n, there cannot exist a subsequence of x^n that converges within B (verify why this is!). Thus, B cannot be sequentially compact and thus not compact.

¹³Jakobson said in class this is supposed to be a closed ball.

\hookrightarrow Question 7.3

- (a) Define a complete metric space.
- (b) State (without proof) the contraction mapping theorem.
- (c) Let $f:(0,1) \to (0,1)$ be defined by f(x) = x/2. Is f a contraction?
- (d) Does f have a fixed point in the open interval I = (0,1)? Does that contradict the contraction mapping theorem?
- <u>Proof.</u> (a) A complete metric space is a metric space in which every Cauchy sequence converges within that space.
 - (b) Let (X, d) be a complete metric space, and let $f: X \to X$ be a contraction mapping, ie for any $x, y \in X$, $d(f(x), f(y)) \le c \cdot d(x, y)$ for some $c \in (0, 1)$. Then, the contraction mapping states that f has a unique fixed point $z \in X$, ie f(z) = z and $\lim_{n \to \infty} f^{(n)}(x) = z$ for any x.
 - (c) For any $x, y \in (0, 1)$, we have

$$d(f(x), f(y)) = |f(x) - f(y)| = \left| \frac{x - y}{2} \right| = \frac{1}{2} |x - y| = c \cdot d(x, y),$$

so *f* indeed a contraction mapping with $c := \frac{1}{2}$.

(d) We have that for any $x \in I$, $f^{(n)}(x) = \frac{x}{2^n}$ so x a fixed point iff $\frac{x}{2^n} = \frac{x}{2^{n-1}}$ for some n, which is only possible if x = 0, but $0 \notin I$, so indeed f has no fixed point in I. This is not a contradiction to the contraction mapping theorem since I := (0,1) not complete (indeed, $\frac{1}{n} \in I \forall n \text{ but } \frac{1}{n} \to 0 \notin I$).

7.3 Appendix: Class Midterm Solutions

○ Question 7.4

Let $x = (x_1, x_2,...)$ and $y = (y_1, y_2,...)$ be infinite real sequences satisfying $||x||_2 \le 2$ and $||y||_2 \le 3$, where $|| \cdot \cdot \cdot ||_2$ the ℓ^2 norm.

- (a) State Holder's inequality and Minkowski inequality for sequences.
- (b) Give an upper bound for $x \cdot y = \sum_i x_i y_i$, and for ||x + y||.

Proof. (a) Holder's inequality: for p, q Holder conjugates and $x \in \ell^p$, $y \in \ell^q$ we have

$$\left| \sum_{i=1} x_i y_i \right| \leqslant ||x||_p ||y||_q.$$

Minkowski inequality: for $x, y \in \ell^p$,

$$||x + y||_p \le ||x||_p + ||y||_p.$$

(b) For x, y as given; by Holders, $x \cdot y \le ||x||_p ||y||_q = 2 \cdot 3 = 6$, and by Minkowski's, $||x + y|| \le ||x|| + ||y|| = 2 + 3 = 5$, so 6, 5 are upper bounds for $x \cdot y$, ||x + y|| respectively.

_

\hookrightarrow Question 7.5

- (a) State (without proof) Taylor's theorem.
- (b) Let $f \in C^4([0,2])$, and let f'(1) = f''(1) = f'''(1) = 0 while $f^{(4)}(1) = 2$. Use (a) to show that f(x) has a local extremum at x = 1, and determine its type.
- <u>Proof.</u> (a) Let $I := [a, b] \subseteq \mathbb{R}$ and let $f : I \to \mathbb{R}$ such that $f \in C^n(I)$, and $f^{(n+1)}(x)$ exists on (a, b). Then, for $x_0 \in [a, b]$, there exists some $c \in (\min(x, x_0), \max(x, x_0))$ such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.$$

(b) By Taylor's, for any $x \in [0, 2]$, there exists some c between x and 1 such that

$$f(x) = f(1) + \underbrace{f'(1)(\cdots) + f''(1)(\cdots) + f'''(1)(\cdots)}_{=0} + \underbrace{\frac{f^{(4)}(c)}{4!}(x-1)^4}_{=0}$$

$$= f(1) + \underbrace{\frac{f^{(4)}(c)}{4!}(x-1)^4}_{=0}$$

$$\implies f(x) - f(1) \ge \frac{f^{(4)}(c)}{4!}(x-1)^4 \, \forall \, x \in [0,2]$$

By continuity of $f^{(4)}$, there exists some neighborhood V of $x_0 = 1$ such that $f^{(4)}(c)$ has the same sign of $f^{(4)}(1)$. So, for any $x \in V$, $\frac{f^{(4)}(c)}{4!} \ge 0$, since $\frac{f^{(4)(1)}}{4!} = \frac{2}{4!} \ge 0$. Thus, since $(x - 1)^4 \ge 0$, we have that for such x in V,

$$f(x) - f(1) \ge 0 \implies f(x) \ge f(1).$$

Hence, we have a neighborhood of 1 such that for all x in the neighborhood $f(x) \ge f(1)$. It follows that 1 a local minimum of f.

7.3 Appendix: Class Midterm Solutions