

Cálculo I (M1001)	(Modelo) - 1ª parte	11/12/2020
	0 ← Indique o seu número de es em cada coluna o quadrado à esq 2 correspondente. Para eventual confirmação, preenc	uerda do algarismo
	4 Nome completo:	
	5 6 7 8 8	
Duração: 7	5 minutos	Cotação: 12 valores
Pode utilizar uma calculadora científica não g permitido o uso de qualquer equipamento eletrónico A resposta a cada questão de resposta à escolha o leitura automática. Na ausência de indicação, as notações são as habi	o, incluindo telemóvel. deve ser dada preenchendo o quadrado res _i	
Questões de tipo verdadeiro ou falso. (2 Cada resposta correta vale 0.5 valores, valendo tem a cotação de 0 pontos.	•	da questão não respondida
Questão 1 "Se $\lim_{x \to 3} f(x) = 1$ e $\lim_{x \to 3} g(x) = 0$), então $\lim_{x\to 3} \frac{f(x)}{g(x)}$ não existe." é uma afi	rmação
falsa.	verdadeira.	
Justificação: O limite não existe porque $f(x)/g$ de 3, já que o denominador se aproxima de 0 n		real quando x se aproxima
Questão 2 "Se f é contínua em $[-1,1]$ e f $f(r)=\pi$." é uma afirmação	f(-1) = 4 e $f(1) = 3$, então existe um	número r tal que $ r < 1$ e
falsa.	verdadeira.	
$Justificação$: Como $3 < \pi < 4$, a existência de	e r é garantida pelo Teorema dos Valore	s Intermédios.
Questão 3 "Se $f(x) = (x^6 - x^4)^5$, então f^6	$f^{(31)}(x)=0$." é uma afirmação	
verdadeira.	falsa.	
Justificação: $f(x) = (x^6 - x^4)^5$ é um polinóm	nio de grau 30; a sua derivada de ordem	31 é 0.

	Enunciado com justifica "Existe uma função f derivável no intervalo $I=0$ é uma afirmação	AÇÕES SUCINTAS $(0,5) \text{ tal que } f(1) = -2, f(3) = 0 \text{ e } f'(x) > 1 \text{ para}$
verdadei	ira.	falsa.
	Suponhamos que existe uma tal função f . Então $\frac{(3)-f(1)}{3-1}=\frac{0-(-2)}{2}=1$. Isto contradiz o ter-se $f'(3)=\frac{1}{2}$	o, pelo Teorema do Valor Médio existe $c \in (1,3)$ tal $x > 1$ para todo o x .

Enunciado com justificações sucintas

Questões de tipo resposta múltipla. (6 valores)

Cada resposta correta vale 1 valor. Não há qualquer desconto por resposta errada.

Calcule $\lim_{x \to 0} \frac{\operatorname{tg} 4x}{x + \operatorname{sen} 2x}$ Questão 1

- não existe

Justificação: São satisfeitas as condições para aplicar a regra de L'Hôpital.

 $\lim_{x \to 0} \frac{\operatorname{tg} 4x}{x + \sin 2x} \stackrel{\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)}{=} \lim_{x \to 0} \frac{4 \sec^2 4x}{1 + 2 \cos 2x} = \frac{4 \cdot 1}{1 + 2 \cdot 1} = \frac{4}{3}.$

Calcule $\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 5x - 6}$ Questão 2

não existe

1

 $\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 5x - 6} = \lim_{x \to 1} \frac{\left(x^2 - 1\right)}{x^2 + 5x - 6} = \lim_{x \to 1} \frac{(x+1)(x-1)}{(x+6)(x-1)} = \lim_{x \to 1} \frac{x+1}{x+6} = \frac{2}{7}.$ Alternativamente,

Questão 3 Sendo $f(x) = \ln(x \ln x)$, calcule $f'(e^2)$.

 $above 2e^2$

- $\Box -\frac{1}{e^2} \qquad \qquad \Box \frac{1}{2e^2}$

Justificação: $f'(x) = \frac{1}{x \ln x} (x \ln x)' = \frac{1}{x \ln x} \left(\ln x + x \cdot \frac{1}{x} \right) = \frac{1 + \ln x}{x \ln x}$. Assim, $f'(e^2) = \frac{1 + \ln e^2}{e^2 \cdot \ln e^2} = \frac{3}{2e^2}$.

Questão 4 Sendo $f(x) = \sqrt{\arctan x}$, calcule f'(1).

Justificação: $f'(x) = \frac{1}{2}(\arctan x)^{-1/2} \frac{d}{dx}(\arctan x) = \frac{1}{2\sqrt{\arctan x}(1+x^2)}$. Assim, $f'(1) = \frac{1}{2\sqrt{\pi/4} \cdot 2} = \frac{1}{2\sqrt{\pi}}$.

Calcule o declive da tangente à curva $xe^y = y \operatorname{sen} x + \pi e^4$ no ponto $(\pi, 4)$. Questão 5

- $\Box \frac{1}{2e^2}$

 πe^4

Justificação: Usando derivação implícita, tem-se:

Assim, no ponto $(\pi,4)$ tem-se que y' vale $\frac{d}{dx}(xe^y) = \frac{d}{dx}(y \sin x + \pi e^4) \Rightarrow xe^y y' + e^y \cdot 1 = y \cos x + \sin x \cdot y' \Rightarrow xe^y y' - \sin x \cdot y' = y \cos x - e^y \Rightarrow y' = \frac{y \cos x - e^y}{xe^y - \sin x}$.

Encontre o máximo absoluto da função $f(x) = x\sqrt{1-x}$ no intervalo [-1,1]. Questão 6

 $\begin{aligned} &\textit{Justificação:} \quad f'(x) = \sqrt{(1-x)} + x \cdot \frac{-1}{2\sqrt{1-x}} = \frac{1}{\sqrt{1-x}} \left((1-x) - \frac{1}{2}x \right) = \frac{1-\frac{3}{2}x}{\sqrt{1-x}}. \\ &f'(x) = 0 \Rightarrow x = \frac{2}{3}; \quad f'(x) \quad \text{não existe se e só se} \quad x = 1. \end{aligned}$

f'(x) > 0 para $-1 < x < \frac{2}{3}$ e f'(x) < 0 para $\frac{2}{3} < x < 1$, pelo que $f\left(\frac{2}{3}\right) = \frac{2}{3}\sqrt{\frac{1}{3}} = \frac{2}{9}\sqrt{3}$ é um máximo local.

Nos extremos do intervalo tem-se $f(-1) = -\sqrt{2}$ e f(1) = 0. Logo, $f(-1) = -\sqrt{2}$ é o mínimo absoluto e $f\left(\frac{2}{3}\right) = \frac{2}{9}\sqrt{3}$ é o máximo absoluto.

Nome complete:		
Nome completo:		
1		

Responda por extenso (de modo sucinto).

Questão 1 (4 valores) (Para responder use o espaço abaixo ou o verso da folha.)

Considere a função $f(x) = \frac{1+x \ln x}{x}$. O objetivo deste exercício é esboçar o gráfico de f. Para o efeito, deve fazer o indicado em cada uma das seguintes alíneas (onde também se indica a parte cotação total da pergunta que lhe corresponde.)

- 1. (1 valor) encontre as assíntotas verticais e as assíntotas horizontais ao gráfico de f;
- 2. (1 valor) encontre os intervalos onde f é crescente e onde f é decrescente;
- 3. (0.25 valores) encontre os máximos e os mínimos locais de f;
- 4. (1 valor) encontre os intervalos onde o gráfico de f tem a concavidade voltada para cima e aqueles onde o gráfico de f tem a concavidade voltada para baixo;
- 5. (0.25 valores) encontre os pontos de inflexão do gráfico de f;
- 6. (0.5 valores) use as informações das alíneas anteriores para esboçar o gráfico de f.

	$1.5 \square \square 2 \square \square 2.5 \square$	
Instificação:		

Justificação:

1. O domínio de f é $(0, +\infty)$, o domínio de $\ln x$. A função é contínua, pelo que a única candidata a assíntota vertical é a reta de equação x = 0.

Tem-se $\lim_{x\to 0^+} \frac{1+x\ln x}{x} = +\infty$, pelo que x=0 é assíntota vertical.

Não há nenhuma assíntota horizontal, pois: $\lim_{x\to +\infty} \frac{1+x\ln x}{x} \stackrel{\left(\frac{\infty}{\infty}\right)}{=} \lim_{x\to +\infty} \frac{x+x/x}{1} = \lim_{x\to +\infty} (x+1) = +\infty$

2. Tem-se $f'(x) = \frac{(\ln x + 1) \cdot x - (1 + x \ln x)}{x^2} = \frac{x - 1}{x^2}$. Como x^2 é positivo para todo o x do domínio de f, o sinal de f'(x) depende apenas do sinal de x - 1. Obtemos então a tabela seguinte onde estão indicados os intervalos de crescimento e de decrescimento:

Intervalo	x-1	f'(x)	f
(0,1)	_	_	×
$(1,+\infty)$	+	+	7

- 3. Da alínea anterior sabe-se que f decresce em (0,1) e cresce em $(1,+\infty)$, pelo que f(1)=1 é um mínimo local, o qual é único.
- 4. Tem-se $f''(x) = \frac{x^2 2x(x-1)}{x^4} = \frac{-x^2 + 2x}{x^3} = \frac{-x+2}{x^3}$. Como $x \in (0, +\infty)$ tem-se que x^3 é positivo, pelo que o sinal de f''(x) depende apenas do final de -x+1. Obtemos a tabela seguinte, onde se indicam as concavidades:

Intervalo	-x+1	$\int f''(x)$	f
(0, 2)	+	+	$\overline{}$
$(2,+\infty)$	_	_	

- 5. Da alínea anterior sabe-se que o gráfico de f tem a concavidade voltada para cima em (2,0) e voltada para baixo em $(2,+\infty)$, pelo que $(2,f(2))=(2,1+\ln 2)$ é um ponto de inflexão, o qual é único.
- 6. Note-se que $1 + \ln 2 \simeq 1.7$ e que o gráfico não interseta os eixos coordenados.

