ТИПЫ ЗАДАЧ И МЕТОДЫ ИХ РЕШЕНИЯ

ЗАДАЧИ НА ДОКАЗАТЕЛЬСТВО ДОКАЖИТЕ, ЧТО...

1) ПРЯМЫЕ ПАРАЛЛЕЛЬНЫ	- теорема фалеса (2) - подобие (2) - признаки параллельности прямых
2) ПРЯМАЯ ПАРАЛЛЕЛЬНА ПЛОСКОСТИ	ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ПРЯМОЙ И ПЛОСКОСТИ (5) (Найти в плоскости прямую, параллельную данной)
3) ПЛОСКОСТИ ПАРАЛЛЕЛЬНЫ	ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ПЛОСКОСТЕЙ (5) (две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости)
4) ПРЯМЫЕ ПЕРПЕНДИКУЛЯРНЫ	- теорема о трех перпендикулярах (6) - одна прямая перпендикулярна плоскости, в которой лежит другая (6) - координатно (скалярное произведение равно нулю) (7)
5) ПРЯМАЯ ПЕРПЕНДИКУЛЯРНА ПЛОСКОСТИ	признак перпендикулярности прямой и плоскости (6) (прямая перпендикулярна двум пересекающимся прямым из плоскости)
6) ПЛОСКОСТИ ПЕРПЕНДИКУЛЯРНЫ	признак перпендикулярности плоскостей (6) (одна плоскости содержит в себе перпендикуляр к другой плоскости)
7) ПЛОСКОСТЬ ДЕЛИТ ОТРЕЗОК В ОТНОШЕНИИ	- теорема фалеса (2) - подобие (2) - теорема Менелая (2)

ЗАДАЧИ НА ВЫЧИСЛЕНИЯ НАЙДИТЕ...

1) УГОЛ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ (%)	- геометрически: построить пересекающиеся прямые, параллельные данным и найти угол по теореме косинусов из треугольника
	- координатно: по формуле косинуса угла между векторами - если прямые перпендикулярны, то доказать это
2) УГОЛ МЕЖДУ ПРЯМОЙ	- геометрически: это угол между прямой и ее проекцией на плоскость
и плоскостью (%)	- координатно: найти угол между прямой и нормалью к плоскости
	- если прямая перпендикулярна плоскости, то доказать это
3) УГОЛ МЕЖДУ ПЛОСКОСТЯМИ (40)	- геометрически: угол между перпендикулярами к линии пересечения
	 координатно: угол между нормалями метод площадей: отношение площади проекции фигуры и площади самой фигуры
4) РАССТОЯНИЕ ОТ ТОЧКИ	геометрически: длина высоты треугольника,
ДО ПРЯМОЙ (44)	составленного из точки и прямой
5) РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ (41)	- геометрически: длина перпендикуляра, опущенного из точки на плоскость - координатно: формул расстояния от точки до плоскости - метод объемов: через объем пирамиды
6) РАССТОЯНИЕ МЕЖДУ	- Геометрически: длина общего перпендикуляра к прямым
СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ (12)	- через одну прямую провести плоскость, параллельную друго прямой и свести к расстоянию от точки до плоскости
7) ПЛОЩАДЬ СЕЧЕНИЯ (13)	- сумма площадей стандартных фигур
	- через площадь проекции и косинус угла наклона сечения к основанию
8) ОБЪЕМ МНОГОГРАННИКА	- формулы объемов стандартных многогранников
	- свойства объемов

от @prosto_math

ПЛАНИМЕТРИЯ

ТЕОРЕМА ПИФАГОРА

$$\alpha^{2} + \beta^{2} = C^{2}$$

$$C = \sqrt{\alpha^{2} + \beta^{2}}$$

$$\alpha = \sqrt{c^{2} - \beta^{2}}$$

$$\beta = \sqrt{c^{2} - a^{2}}$$

TEOPEMA KOCHHYCOB

$$c^{2} = a^{2} + b^{2} - 2ab \cos y$$

$$\cos y = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$\cos y = 0 \implies y - npenser$$
 $\cos y > 0 \implies y - ocrponer$
 $\cos y < 0 \implies y - ocrponer$

ОБРАТНАЯ ТЕОРЕМА ПИФАГОРА

$$a^2 + b^2 = c^2 \rightarrow \Delta$$
 repersoyronsurei

КВАДРАТ

Все стороны а Все углы 90°

$$d = a\sqrt{2}$$

$$\frac{d}{2} = \frac{a\sqrt{2}}{2}$$

ПРАВИЛЬНЫЙ ТРЕУГОЛЬНИК

Все стороны а Все углы 60°

$$h = \frac{a\sqrt{3}}{2}$$

$$R = \frac{2}{3}h = \frac{a\sqrt{3}}{3}$$

$$r = \frac{1}{3}h = \frac{a\sqrt{3}}{6}$$

ПРАВИЛЬНЫЙ WECTUУГОЛЬНИК

Все стороны а Все углы 120°

$$D = 2a$$

$$d = a\sqrt{3}$$

МОНИПОЛУОМЯЯ В АТОЭИВ ТРЕУГОЛЬНИКЕ

ПЛОЩАДЬ ПРОИЗВОЛЬНОГО ТРЕУГОЛЬНИКА ПО ТРЕМ СТОРОНАМ

ФОРМУЛА ГЕРОНА $S = \sqrt{p(p-a)(p-b)(p-c)}$ p = a+b+c -ломуперинетр

ЧЕРЕЗ ДВЕ СТОРОНЫ И УГОЛ

1) Maire cos y no T. Kocunycob

МЕЖДУ НИМИ

2) Hairu sing

3) $S = \frac{1}{2}a6 \sin \beta$

СРЕДНЯЯ ЛИНИЯ ТРЕУГОЛЬНИКА

ПРиЗНАКИ ПОДОБИЯ

ПОПУЛЯРНЫЕ ПОДОБНЫЕ ТРЕУГОЛЬНИКИ

ТЕОРЕМА ФАЛЕСА

ПЕРЕХОД МЕЖДУ ТРИГОНОМЕТРИЧЕСКИМИ ФУНКЦИЯМИ

$$\sin^2 d + \cos^2 d = 1$$

$$1 + 4g^2 d = \frac{1}{\cos^2 d}$$

$$1 + c4g^2 d = \frac{1}{\sin^2 d}$$

от @prosto_math

ТЕОРЕМА МЕНЕЛАЯ

ТИПЫ ОБЪЕМНЫХ ФИГУР

КУБ

все грани – квадраты все плоские углы - прямые

ПРЯМОУГОЛЬНЫЙ ПАРАЛЛЕЛЕПИПЕД

Все грани - прямоугольники все плоские углы - прямые

пРизМы

1) ТРЕУГОЛЬНЫЕ

ПРАВИЛЬНАЯ ТРЕУГОЛЬНАЯ ПРИЗМА (в основании правильный треугольник)

ТРЕУГОЛЬНАЯ ПРИЗМА (в основании прямоугольный треугольник)

ТРЕУГОЛЬНАЯ ПРИЗМА (в основании равнобедренный треугольник)

ТРЕУГОЛЬНАЯ пРизМА (в основании произвольный треугольник)

НАКЛОННАЯ ТРЕУГОЛЬНАЯ пРизМА

2) ЧЕТЫРЕХУГОЛЬНЫЕ

ЧЕТЫРЕХУГОЛЬНАЯ пРизМА

ПРАВИЛЬНАЯ

пРизМА (в основании ромб)

ЧЕТЫРЕХУГОЛЬНАЯ

ЧЕТЫРЕХУГОЛЬНАЯ пРи3МА (в основании прямоугольник)

3) WECTUУГОЛЬНАЯ

ПРАВИЛЬНАЯ **WECTИУГОЛЬНАЯ ПРИЗМА** (в основании правильный **wecтиугольник**)

(в основании квадрат)

ЧЕТЫРЕХУГОЛЬНАЯ пРизмА (в основании

параллелограмм)

ЧЕТЫРЕХУГОЛЬНАЯ пРи3МА (в основании

трапеция)

НАКЛОННАЯ ЧЕТЫРЕХУГОЛЬНАЯ пРизМА

OT @prosto_math

пиРАМиды

1) ТРЕУГОЛЬНЫЕ

(в основании треугольник любой формы, высота попадает в точку, заданную условием задачи)

пРАВИЛЬНАЯ
ТРЕУГОЛЬНАЯ ПИРАМИДА
(в основании правильный
Треугольник)

ТРЕУГОЛЬНАЯ ПИРАМИДА (высота попадает в вершину А)

ТЕТРАЭД (все ребра равны)

2) ЧЕТЫРЕХУГОЛЬНЫЕ

(в основании четырехугольник любой формы, высота попадает в точку, заданную условием задачи)

чЕТЫРЕХУГОЛЬНАЯ
ПИРАМИДА
(В основании квадрат,
высота попадает в центр)

пиРАМИДА (в основании прямоугольник, высота попадет в вершину В)

ЧЕТЫРЕХУГОЛЬНАЯ

3) WECTUУГОЛЬНАЯ

КАНИГИВАЧП КАНИГОЛУИТЭЭШ АДИМАЧИП

от @prosto_math

ФИГУРЫ ВРАЩЕНИЯ

ЦилиНДР

V= TTR2 h

Sook = 2TTRh

Snown nog = 2TTRh + 2TTR2

КОНУС

V = $\frac{1}{3} \pi R^2 h$ Sook = $\pi R \ell$ Snow. $no6 = \pi R \ell + \pi R^2$

R

WAP

$$V = \frac{4}{3}\pi R^3$$
$$S = 4\pi R^2$$

СТЕРЕОМЕТРИЯ

ТРИ ОСНОВНЫХ ПОНЯТИЯ

СПОСОБЫ ЗАДАНИЯ ПЛОСКОСТИ

виды прямых в пространстве

ДВУГРАННЫЙ УГОЛ

ПАРАЛЛЕЛЬНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ

пРизНАК

плоскости)

КАК ДОКА\$АТЬ, ЧТО ПРЯМАЯ ПРЯМЕЛЬНА ПЛООХОСТИ)

Если прямая, не принадлежащая плоскости, параллельна некоторой прямой в этой плоскости, то она параллельна и самой плоскости

6 c d 1 => a 11 d

СВОЙСТВО

(ЕСЛИ ПРЯМАЯ ПАРАЛЛЕЛЬНА ПЛОСКОСТИ, ТО...)

Если плоскость проходит через прямую, параллельную второй плоскости, и пересекает эту вторую плоскость, то линия пересечения параллельна первой прямой.

ПАРАЛЛЕЛЬНОСТЬ ПЛОСКОСТЕЙ

СВОЙСТВА

ПРИЗНАК (КАК ДОКАЗАТЬ, ЧТО ПЛОСКОСТИ ПАРАЛЛЕЛЬНЫ)

Если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то такие плоскости параллельны.

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны

Отрежи параллельных прямых, заключенные между параллельными плоскостями, равны.

211p 3 => AB = A, B,

ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ

пРизНАК

(КАК ДОКАЗАТЬ, ЧТО ПРЯМАЯ ПЕРПЕНДИКУЛЯРНА ПЛОСКОСТИ)

Если прямая, перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна всей плоскости

$$\begin{array}{c|c}
a, 6 \subset 2 \\
c \perp a \\
c \perp 6
\end{array}$$

свойство

(ЕСЛИ ПРЯМАЯ ПЕРПЕНДИКУЛЯРНА ПЛОСКОСТИ, ТО...)

Если прямая перпендикулярна плоскости, то она перпендикулярна ЛЮБОЙ прямой, лежащей в этой плоскости

НАКЛОННАЯ, ПРОЕКЦИЯ, ПЕРПЕНДИКУЛЯР

ТЕОРЕМА О ТРЕХ ПЕРПЕНДИКУЛЯРАХ

ПЕРПЕНДИКУЛЯРНОСТЬ ПЛОСКОСТЕЙ

ПРИЗНАК

(КАК ДОКАЗАТЬ, ЧТО ПЛОСКОСТИ ПЕРПЕНДИКУЛЯРНЫ) ПРИМЕРЫ ПЕРПЕНДИКУЛЯРНЫХ ПЛОСКОСТЕЙ

МЕТОД КООРДИНАТ

КООРДИНАТЫ ВЕКТОРА

ИЩЕМ РАЗНОСТЬ МЕЖДУ КООРДИНАТАМИ КОНЦА И НАЧАЛА
ИЗ КОНЦА ВЫЧИТАЕМ НАЧАЛО

ДЛИНА ВЕКТОРА

$$AB$$
 AB
 (x', y', z)
 $|AB| = \sqrt{x^2 + y^2 + z^2}$

ДЛИНА ВЕКТОРА - ЭТО КОРЕНЬ ИЗ СУММЫ КВАДРАТОВ КООРДИНАТ

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

unu

|\bar{a}| - gruna \bar{a}
|\bar{b}| - gruna \bar{b}
|\delta - gruna \bar{b}| - \bar{a} \bar{b}
|\delta - gruna \bar{b}| - \bar{a} \bar{b}| - \bar{b}| - \bar{b} \delta \de

ПРОИЗВЕДЕНИЕ ДЛИН НА КОСИНУС УГЛА МЕЖДУ ВЕКТОРАМИ

 $\frac{\overline{a}}{6} (x_1; y_1; \pm 1) \\
\overline{b} (x_2; y_2; \pm 2) \\
\overline{a} \cdot \overline{b} = x_1 x_2 + y_1 y_2 + \pm_1 \pm_2$

СУММА ПРОИЗВЕДЕНИЕ КООРДИНАТ

УГОЛ МЕЖДУ ВЕКТОРАМИ

$$\overline{\alpha}(x_{1}, y_{1}, \pm 1) \quad \overline{\delta}(x_{2}, y_{2}, \pm 2)$$

$$(0) (\overline{\alpha}, \overline{\delta}) = \frac{\overline{\alpha} \cdot \overline{\delta}}{|\overline{\alpha}| \cdot |\overline{\delta}|}$$

$$(0) (\overline{\alpha}, \overline{\delta}) = \frac{X_{1}X_{2} + y_{1}y_{2} + 2_{1}z_{2}}{|\overline{X_{1}}|^{2} + y_{1}|^{2} + 2_{1}z_{2}} \cdot |\overline{X_{2}}|^{2} + y_{2}|^{2} + 2_{2}z_{2}|^{2}$$

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ, ДЕЛЕННОЕ НА ПРОИЗВЕДЕНИЕ ДЛИН

СВОЙСТВО СКАЛЯРНОГО ПРОИЗВЕДЕНИЯ

ЕСЛИ СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ РАВНО НУЛЮ, ТАКИЕ ТАКИЕ ВЕКТОРЫ ПЕРПЕНДИКУЛЯРНЫ

$$\overline{a} \cdot \overline{b} = 0$$

$$\overline{a} \perp \overline{b}$$

УРАВНЕНИЕ ПЛОСКОСТИ И ВЕКТОР НОРМАЛИ

$$d: Ax + By + (2 + D = 0)$$

$$(A, B, C, D - ruena)$$

$$\overline{n} (A; B; C) - beurop wopmany$$

$$\overline{n} \perp d$$

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ

$$M(x_{0}; y_{0}; z_{0})$$

$$\Delta: Ax + By + Cz + D = 0$$

$$P(M; \lambda) = \frac{|Ax_{0} + By_{0} + Cz_{0} + D|}{\sqrt{A^{2} + B^{2} + C^{2}}}$$

ВВЕДЕНИЕ СИСТЕМЫ КООРДИНАТ ДЛЯ КАЖДОЙ ФИГУРЫ

Если две какие-либо стороны основания перпендикулярны, то оси х и у пускаем по этим сторонам, а ось z из их точки пересечения вертикально вверх.

Если диагонали основания перпендикулярны, то оси х и у идут по диагоналям, ось z – вертикально вверх

Если в основании wестиугольник, то одна ось идет по длинной диагонали, а вторая - через середины параллельных сторон. Ось z - из их точки пересечения вертикально вверх.

Если в основании правильный или равнобедренный треугольник, то оси х и у идут по стороне и медиане, проведенной к этой стороне. Ось z - из их точки пересечения вертикально вверх.

Если в пирамиде основание – прямоугольник, то х и у идут через центр параллельно сторонам. Ось z из точки их пересечения вертикально вверх по высоте.

В остальных случаях система координат подбирается индивидуально. Главное, чтобы оси х, у, z были перпендикулярны!

УГОЛ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ

РАВЕН ОСТРОМУ УГЛУ МЕЖДУ ПАРАЛЛЕЛЬНЫМИ ИМ ПЕРЕСЕКАЮЩИМИСЯ ПРЯМЫМИ

ГЕОМЕТРИЧЕСКИЙ МЕТОД

- 1) построить прямые, параллельные данным скрещивающимся так, чтобы они пересекались. Угол между новыми прямыми и будет искомым плоским углом.
- 2) нарисовать треугольник, содержащий искомый плоский угол, найти все его стороны и определить форму
- 3) Найти угол либо по теореме косинусов, либо (если треугольник прямоугольный) через любую тригонометрическую функцию.

КООРДИНАТНЫЙ **МЕТОД**

- 1) ввести систему координат
- 2) найти координаты концов отрежов
- 3) найти координаты векторов (прямых)
- 4) найти косинус угла между векторами
- 5) если косинус больше нуля, то искомый угол равен арккосинусу
- 6) если косинус меньше нуля, то мы по ошибке нашли тупой угол. Искомый острый угол равен арккосинусу положительного числа

ЕСЛИ ПРЯМЫЕ ПЕРПЕНДИКУЛЯРНЫ

Доказать перпендикулярность:

- по теореме о трех перпендикулярах
- используя признак и свойство перпендикулярности прямой и плоскости
- через свойство скалярного произведения векторов

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ

РАВЕН УГЛУ МЕЖДУ ПРЯМОЙ И ЕЕ ПРОЕКЦИЕЙ НА ПЛОСКОСТЬ

ГЕОМЕТРИЧЕСКИЙ МЕТОД

- 1) если прямая и плоскость не пересекаются, то найти новые прямую и плоскость, параллельные старым, но такие, чтобы они пересекались
- 2) найти общую точку прямой и плоскости, это будет один конец проекции (А)
- 3) через какую-нибудь точку прямой (В) опустить перпендикуляр (ВС) на плоскость и доказать перпендикулярность
- 4) провести проекцию (АС) (основание перпендикуляра это второй конец проекции)
- 5) найти угол между прямой и проекцией, рассмотрев полученный прямоугольный треугольник (треугольник АВС)

КООРДИНАТНЫЙ МЕТОД

 $Sin \angle (a,d) = cos \angle (\overline{a},\overline{n})$

- 1) ввести систему координат
- 2) найти координаты двух точек на прямой и координаты соответствующего
- 3) найти координаты трех точек на плоскости
- 4) найти уравнение плоскости
- 5) найти координаты вектора нормали
- 6) вычислить косинус угла между вектором-прямой и нормалью
- 7) данное значение будет равно синусу угла между прямой и плоскостью

от @prosto_math

ЕСЛИ ПРЯМАЯ И ПЛОСКОСТЬ ПЕРПЕНДИКУЛЯРНЫ

Доказать перпендикулярность по признаку перпендикулярности прямой и плоскости

пРизНАК

(КАК ДОКАЗАТЬ, ЧТО ПРЯМАЯ ПЕРПЕНДИКУЛЯРНА ПЛОСКОСТИ)

Если прямая, перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна всей плоскости

 $\begin{array}{ccc}
a, 6 & c & \lambda \\
c & 1 & a \\
c & 1 & b
\end{array}$ $\begin{array}{cccc}
 & c & 1 & d \\
c & 1 & b & d
\end{array}$

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

РАВЕН УГЛУ МЕЖДУ ПЕРПЕНДИКУЛЯРАМИ К ЛИНИИ ПЕРЕСЕЧЕНИЯ

ГЕОМЕТРИЧЕСКИЙ МЕТОД

- 1) если плоскости не пересекаются, то найти новые плоскости, параллельные старым, но такие, чтобы они пересекались
- 2) найти линию пересечения плоскостей
- 3) в каждой плоскости построить перпендикуляры к линии пересечения так, чтобы они образовали угол
- 4) рассмотреть треугольник, содержащий искомый угол и найти все его стороны
- 5) найти угол из треугольника по теореме косинусов

КООРДИНАТНЫЙ МЕТОД

- 1) ввести систему координат
- 2) найти координаты трех точек на первой плоскости и составить уравнение плоскости
- 3) найти координаты вектора нормали п1
- 4) найти координаты трех точек на второй плоскости и составить уравнение плоскости
- 5) найти координаты вектора нормали n2
- 6) вычислить косинус угла между векторами нормали n1 и n2
- 7) данное значение будет равно косинусу угла между плоскостями

МЕТОД ПЛОЩАДЕЙ

- 1) спроецировать одну плоскость (или ее часть) на другую плоскость
- 2) найти площади изначальной плоскости (S) и ее проекции (S')
- 3) косинус угла между плоскостями равен отношению площади проекции к площади изначальной фигуры.

$$(0) z(d, \beta) = \frac{S_{A'b'c'}}{S_{Abc}}$$

ЕСЛИ ПЛОСКОСТИ ПЕРПЕНДИКУЛЯРНЫ

Доказать перпендикулярность по признаку перпендикулярности плоскостей

пРизНАК

(КАК ДОКА\$АТЬ, ЧТО ПЛОСКОСТИ ПЕРПЕНДИКУЛЯРНЫ)

Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

С Д Д З => В Д Д

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ

ЭТО ДЛИНА ПЕРПЕНДИКУЛЯРА, ОПУЩЕННОГО ИЗ ТОЧКИ НА ПРЯМУЮ

- 1) соединяем точку и прямую в треугольник
- 2) находим все стороны треугольника и определяем его вид
- 3) находим высоту треугольника с помощью теоремы Пифагора (прямоугольный и равнобедренный треугольник) или с помощью площади (треугольник другого вида)

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ

ЭТО ДЛИНА ПЕРПЕНДИКУЛЯРА, ОПУЩЕННОГО ИЗ ТОЧКИ НА ПЛОСКОСТЬ

ГЕОМЕТРИЧЕСКИЙ МЕТОД

1 СПОСОБ:

1) провести из точки перпендикуляр к плоскости (доказать, что это действительно перпендикуляр по признаку!!!)
2) найти длину этого перпендикуляра как высоту некоторого треугольника

2 СПОСОБ:

- 1) через точку провести плоскость, перпендикулярную данной (доказать перпендикулярность плоскостей по признаку!!!)
- 2) найти линию пересечения двух плоскостей (а)
- 3) искомое расстояние перпендикуляр из точки на линию пересечения (AH \(\text{AH} \)
- 4) найти длину перпендикуляра (АН) как высоту треугольника

КООРДИНАТНЫЙ МЕТОД

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ

$$M(x_0; y_0; z_0)
 d: Ax + By + Cz + D = 0$$

$$G(M; d) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{|A^2 + B^2 + C^2|}$$

- 1) ввести систему координат
- 2) найти координаты точки (М)
- 3) найти координаты трех точек на плоскости (<) и составить уравнение плоскости
- 4) найти расстояние от точки (М) до плоскость (\checkmark) по формуле—

МЕТОД ОБЪЕМОВ

- 1) найти в плоскости треугольник (на рисунке для примера взят треугольник АВС)
- 2) соединить точку М со всеми вершинами треугольника и получить пирамиду (МАВС)
- 3) искомое расстояние высота пирамиды, опущенная из вершины М (высота МН)
- 4) каким-то образом вычислить объем этой пирамиды
- 5) вычислить площадь основания (треугольника АВС)
- 6) найти расстояние (МН) из формулы объема пирамиды

VMAGC = 1 SABC MY

g(M; d) = MU - brucosa rupanugh NABC

РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ

ЭТО ДЛИНА ОБЩЕГО ПЕРПЕНДИКУЛЯРА К ЭТИМ ПРЯМЫМ

1 СПОСОБ:

- 1) построить перпендикуляр к обеим прямым (и доказать, что это действительно общий перпендикуляр
- 2) найти его длину

2 СПОСОБ:

- 1) Через прямую в провести плоскость, параллельную прямой а. Для этого необходимо построить прямую а', параллельную а так, чтобы она пересеклась с b. Прямые а и в образуют плоскость «.
- 2) так как прямая а параллельна плоскости \checkmark , то расстояние от прямой а до плоскости равно расстоянию от <u>любой точки</u> прямой а до плоскости
- 3) задача сведена к задаче по поиску расстояния от точки до плоскости (см предыдущий раздел)

от @prosto_math

СЕЧЕНИЕ МНОГОГРАННИКА

ЭТО ПЛОСКОСТЬ, ПЕРЕСЕКАЮЩАЯ МНОГОГРАННИК.

РЕЗУЛЬТАТОМ ПОСТРОЕНИЯ СЕЧЕНИЯ ЯВЛЯЕТСЯ МНОГОУГОЛЬНИК, ВСЕ СТОРОНЫ КОТОРОГО ЛЕЖАТ В ГРАНЯХ МНОГОГРАННИКА, А ВЕРШИНЫ — НА РЕБРАХ

НЕ СЕЧЕНИЕ 🗙

СЛЕДЫ СЕЧЕНИЯ НЕ МОГУТ РАСПОЛАГАТЬСЯ ВНУТРИ ФИГУРЫ, ТОЛЬКО НА ГРАНЯХ.

ПЛОСКОСТЬ СЕЧЕНИЯ И ПЛОСКОСТИ ГРАНЕЙ БЕСКОНЕЧНЫ, ПОЭТОМУ МЫ ИМЕЕМ ПРАВО ИХ ПРОДОЛЖАТЬ

ПОСТРОЕНИЕ СЕЧЕНИЙ

- 1) соединить точки, лежащие в одной грани
- 2) продолжить след сечения до пересечения с каким-нибудь ребром для перехода из одной грани в другую (метод следов)
- 3) если нет точек, лежащих в одной грани, то спроецировать 2 точки на плоскость, содержащую третью точку (метод проецирования), пересечь прямую, принадлежащую сечению, и ее проекцию, а дальше действовать методом следов.
- 4) если плоскость сечения должна быть параллельна некоторой прямой, то в сечении должна содержаться прямая, параллельная данной
- 5) если плоскость сечения должна быть перпендикулярна плоскости, то сечение должно содержать в себе перпендикуляр к плоскости.

СВОЙСТВО СЕЧЕНИЯ

СЛЕДЫ СЕЧЕНИЯ, ЛЕЖАЩИЕ В ПАРАЛЛЕЛЬНЫХ ГРАНЯХ, ПАРАЛЛЕЛЬНЫ

площадь сечения через площадь проекции

Scerence = Suppersum
cosd

угол между плоскостью сечения и плоскостью основания

ОБЪЕМ МНОГОГРАННИКА

пРизМА

ПИРАМИДА

УСЕЧЕННАЯ ПИРАМИДА

ПОЛЕЗНЫЕ СВОЙСТВА ОБЪЕМОВ

Плоскость, параллельная основанию многогранника, отсекает от него подобный многогранник, причем отношение объемов равно кубу коэффициента подобия

$$(A_1G_1G_1)$$
 (ABC)
 $k = \frac{AA_1}{AC} = \frac{A_1G}{AC} = \frac{200}{200}$

$$(A, B, G) | (ABC) \Delta A_1 B_1 G \sim \Delta A_2 B_2 C$$

$$k = \frac{\Delta A_1}{\Delta A} = \frac{A_1 G}{AC} = \frac{\Delta O_1}{\Delta D} \frac{V_D A_1 B_1 G}{V_D A_2 B_2 C} = k^3$$

Если две пирамиды имеют общую высоту, то отношение их объемов равно отношению площадей их оснований

Если две пирамиды имеют общее основание, то отношение их объемов равно отношению их высот, проведенных к общему основанию.

Если плоскость пересекает боковые ребра SA, SB и SC треугольной пирамиды SABC в точках A, B, C, соответсвенно, то отношение объемов пирамид можно записать так:

Объем треугольной примы можно вычислить по формуле:

площадь боковой грани (капример СВС, С)

Расстояние от этой грани до противоположного ребра призмы (nanpumer AM)

ТЕЛА ВРАЩЕНИЯ

ЦилиНДР

V = TTR2 h Sook = 2TTRh Snown nog = 2TTRh + 2TTR2

КОНУС

V = $\frac{1}{3}\pi R^2 h$ Sook = $\pi R\ell$ Snow. $no6 = \pi R\ell + \pi R^2$

WAP

 $V = \frac{4}{3}\pi R^3$ $S = 4\pi R^2$

ОПИСАННЫЙ WAP

- 1) касается все вершин пирамиды
- 2) центр равноудален от всех вершин пирамиды
- 3) центр wapa находится над центром описанной окружности основания

ВПИСАННЫЙ WAP

- 1) касается всех граней пирамиды
- 2) центр равноудален от всех граней пирамиды
- 3) центр wapa находится над центром вписанной окружности основания