1 Schroeder-Bernsteins sætning (Kap. 1-7 opg.6)

1.1

Det skal vises at hvis $B \subset A$ og $f: A \to B$ er injektiv så har A og B samme kardinalitet.

Inspireret af det givne vink definerer vi

$$A_1 = A \qquad B_1 = B$$

$$A_n = f(A_{n-1}) \quad B_n = f(B_{n-1})$$

endvidere definerer vi $h:A\to A$ ved

$$h(x) = \begin{cases} f(x) & x \in \bigcup_{n=1}^{\infty} (A_n \setminus B_n) \\ x & \text{ellers} \end{cases}$$

og vi vil gå efter at vise at h er en bijektion fra A til B.

For at vise surjektivitet viser vi at $h(A) \subset B$ og at $B \subset h(A)$. Først $h(A) \subset B$

$$h(A) = h\Big(\Big(A \cap \bigcup_{n=1}^{\infty} (A_n \setminus B_n)\Big) \cup \Big(A \setminus \bigcup_{n=1}^{\infty} (A_n \setminus B_n)\Big)\Big)$$
$$= h\Big(\Big(A \cap \bigcup_{n=1}^{\infty} (A_n \setminus B_n)\Big)\Big) \cup h\Big(A \setminus \bigcup_{n=1}^{\infty} (A_n \setminus B_n)\Big)$$

da $A\supset \bigcup_{n=1}^\infty (A_n\setminus B_n)$ og h=f på $\bigcup_{n=1}^\infty (A_n\setminus B_n)$, og da h er identiteten på $A\setminus \bigcup_{n=1}^\infty (A_n\setminus B_n)$ får vi

$$= f\Big(\bigcup_{n=1}^{\infty} (A_n \setminus B_n)\Big) \cup \Big(A \setminus \bigcup_{n=1}^{\infty} (A_n \setminus B_n)\Big)$$
 (1)

da f tager værdier i B og da $A \setminus B = A_1 \setminus B_1 \subset \bigcup_{n=1}^{\infty} (A_n \setminus B_n)$ kan vi vurdere opad ved

$$\subset B \cup (A \setminus (A \setminus B))
= B \cup B
= B$$

Altså er $h(A) \subset B$.

Vi mangler altså $B \subset h(A)$.

Hvis vi går ud fra (1) får vi

$$f\Big(\bigcup_{n=1}^{\infty} (A_n \setminus B_n)\Big) \cup \Big(A \setminus \bigcup_{n=1}^{\infty} (A_n \setminus B_n)\Big)$$
$$= \bigcup_{n=1}^{\infty} f(A_n \setminus B_n) \cup \Big(A \setminus \bigcup_{n=1}^{\infty} (A_n \setminus B_n)\Big)$$

og da f er injektiv bevarer billedet af f mængdedifferens

$$= \bigcup_{n=1}^{\infty} \left(f(A_n) \setminus f(B_n) \right) \cup \left(A \setminus \bigcup_{n=1}^{\infty} (A_n \setminus B_n) \right)$$
$$= \bigcup_{n=2}^{\infty} (A_n \setminus B_n) \cup \left(A \setminus \bigcup_{n=1}^{\infty} (A_n \setminus B_n) \right)$$

det betyder altså at vi kan skrive A som

$$A = (A_1 \setminus B_1) \cup h(A) = (A \setminus B) \cup h(A)$$

og da vi ved at $B \subset A$ og $B \cap (A \setminus B) = \emptyset$ da må $B \subset h(A)$. Ergo er h(A) = B hvilket vil sige at h er surjektiv på B.

Vi mangler stadig at vise injektivitet af h.

Lad $a, a' \in A \text{ så } h(a) = h(a')$

Der er tre (fire) tilfælde

Tilfælde 1: $a, a' \in \bigcup_{n=1}^{\infty} (A_n \setminus B_n)$

Vi har at f(a) = h(a) = h(a') = f(a') og da f er injektiv må a = a'

Tilfælde 2: $a \in \bigcup_{n=1}^{\infty} (A_n \setminus B_n)$ og $a' \notin \bigcup_{n=1}^{\infty} (A_n \setminus B_n)$

Vi har at f(a) = h(a) = h(a') = a' men i forbindelse med tidligere omskrivninger har vi at $f\left(\bigcup_{n=1}^{\infty}(A_n \setminus B_n)\right) = \bigcup_{n=2}^{\infty}(A_n \setminus B_n) \subset \bigcup_{n=1}^{\infty}(A_n \setminus B_n)$ hvilket medfører at $a' = f(a) \in \bigcup_{n=1}^{\infty}(A_n \setminus B_n)$, men det havde vi netop antaget ikke var tilfældet, altså er dette tilfælde ikke muligt.

Tilfælde 2a: $a' \in \bigcup_{n=1}^{\infty} (A_n \setminus B_n)$ og $a \notin \bigcup_{n=1}^{\infty} (A_n \setminus B_n)$ Foregår ligesom 2

Tilfælde 3: $a, a' \notin \bigcup_{n=1}^{\infty} (A_n \setminus B_n)$ Vi har, pga. definitionen af h, at a = h(a) = h(a') = a'

altså er h også injektiv, hvilket betyder h er bijektiv, som igen er ækvivalent med at A og B har samme kardinalitet.

1.2

Det skal vises at hvis $f:A\to C$ og $g:C\to A$ er injektioner så har A og C samme kardinalitet.

Vi har at $f(A) \subset C$ og derfor er $g(f(A)) \subset g(C) \subset A$, og da g og f begge er injektive vil

$$g \circ f : A \to g(C)$$

definere en injektiv funktion. Dette betyder ifølge det tidligere viste at A og g(C) har samme kardinalitet. Der eksisterer altså en bijektive afbildning

$$h: A \rightarrow q(C)$$

Derudover har vi at g betragtet som funktion på dens billede er bijektiv. Altså at funktionen

$$\tilde{g}: C \to g(C)$$

er bijektiv, og som en konsekvens vil

$$\tilde{q}^{-1}:q(C)\to C$$

være en veldefineret og bijektiv funktion.

Hvis man nu betragter funktionen

$$\varphi:A\to C$$

givet ved $\varphi = \tilde{g}^{-1} \circ h$.

Så er dette en sammensætning af bijektive afbildninger, og derfor igen bijektiv, og dette er altså ensbetydende med at A og B har samme kardinalitet.

Jakob Boyhus