Fundamentos de Termodinámica Aplicada

Dr. Sergio Palma M.
Departamento de Física
Universidad Técnica Federico Santa María

Proyecto de Simulación

2° semestre 2025

1 Deducción de la Ecuación del Calor con Fuente en un Medio Homogéneo e Isotrópico

Objetivo

Deducir la ecuación de conducción de calor con generación interna para un material homogéneo e isotrópico, partiendo del balance de energía y la ley de Fourier. Se presenta la forma vectorial y sus expresiones en coordenadas cartesianas y cilíndricas. No se resuelve la ecuación.

Hipótesis

- ullet Medio continuo, homogéneo e isotrópico: la conductividad térmica es escalar y constante, denotada por k.
- Calor específico a presión constante c y densidad ρ constantes en el espacio y el tiempo.
- No hay convección ni trabajo mecánico; sólo conducción y una fuente volumétrica uniforme o espacialmente variable \dot{q} [W/m³].
- No hay cambios de fase ni efectos radiativos volumétricos.

Balance de energía en un volumen de control

Considérese un volumen de control fijo V con frontera ∂V y normal exterior \hat{n} . El balance de energía interna (primera ley) establece

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \rho c \, T \, \mathrm{d}V = -\oint_{\partial V} \mathbf{q} \cdot \hat{n} \, \mathrm{d}S + \int_{V} \dot{q} \, \mathrm{d}V,$$

donde T es la temperatura [K] y \mathbf{q} el vector de flujo de calor [W/m²]. Por la ley de Fourier para un medio isotrópico,

$$\mathbf{q} = -k \, \mathbf{\nabla} T.$$

Aplicando el teorema de la divergencia al flujo conducido,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \rho c \, T \, \mathrm{d}V = \int_{V} \boldsymbol{\nabla} \cdot (k \, \boldsymbol{\nabla} T) \, \mathrm{d}V + \int_{V} \dot{q} \, \mathrm{d}V.$$

Como el volumen de control es arbitrario, se obtiene la forma local:

$$\rho c \, \frac{\partial T}{\partial t} = \boldsymbol{\nabla} \cdot (k \, \boldsymbol{\nabla} T) + \dot{q}.$$

Para k constante (medio homogéneo),

$$\rho c \frac{\partial T}{\partial t} = k \nabla^2 T + \dot{q}.$$

Definiendo la difusividad térmica $\alpha=\frac{k}{\rho c}$ [m²/s], se tiene la forma más usada:

$$\frac{\partial T}{\partial t} = \alpha \, \nabla^2 T + \frac{\dot{q}}{\rho c}.$$

Forma en coordenadas cartesianas (x, y, z)

El operador Laplaciano en cartesianas es

$$\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}.$$

Por tanto,

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{\dot{q}(x, y, z, t)}{\rho c}.$$

Forma en coordenadas cilíndricas (r, θ, z)

El Laplaciano en cilíndricas es

$$\nabla^2 T = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2}.$$

Así, la ecuación del calor con fuente queda

$$\frac{\partial T}{\partial t} = \alpha \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right] + \frac{\dot{q}(r,\theta,z,t)}{\rho c}.$$

Definiciones y unidades

$$T[K], t[s], k[W/(mK)], \rho[kg/m^3], c[J/(kgK)], \alpha = \frac{k}{\rho c}[m^2/s], \dot{q}[W/m^3].$$

Observaciones

- Si $\dot{q} = 0$, se recupera la ecuación de difusión térmica homogénea.
- Para medios no homogéneos o anisotrópicos, la forma general es $\rho c \partial T/\partial t = \nabla \cdot (\mathbf{k} \nabla T) + \dot{q}$, donde \mathbf{k} sería un tensor simétrico positivo definido; esta generalización no aplica bajo las hipótesis presentes.
- La formulación anterior requiere condiciones iniciales $T(\mathbf{x}, 0)$ y condiciones de borde (Dirichlet, Neumann o Robin) para un problema bien planteado, pero no se abordan aquí.

2 Proyecto de Simulación

Objetivos de aprendizaje

- Formular y resolver la ecuación de conducción de calor no estacionaria en dos dimensiones para un medio homogéneo e isotrópico.
- Obtener una solución analítica por separación de variables (caso sin fuente) y una solución numérica por diferencias finitas (casos con y sin fuente).
- Comparar rigurosamente ambas soluciones cuantificando el error y analizando estabilidad y convergencia.
- Realizar un estudio paramétrico que evidencie la sensibilidad del sistema a propiedades y discretización.

Planteamiento del problema

Considere un dominio rectangular de dimensiones $L_x=0.5\,\mathrm{m}$ y $L_y=0.3\,\mathrm{m}$, ocupado por un material homogéneo e isotrópico con propiedades térmicas constantes:

$$k = 45 \,\mathrm{W \, m^{-1} \, K^{-1}}, \qquad \rho = 7800 \,\mathrm{kg \, m^{-3}}, \qquad c_p = 460 \,\mathrm{J \, kg^{-1} \, K^{-1}}.$$

La difusividad térmica es $\alpha = k/(\rho c_p)$.

La ecuación de calor transitoria en 2D con posible fuente volumétrica q'''(x, y, t) es

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \frac{q'''(x, y, t)}{\rho c_p}.$$
 (1)

Se estudiarán dos casos:

Caso A (sin fuente): q''' = 0.

Caso B (con fuente): $q''' = q_0$ constante, con $q_0 = 5 \times 10^5 \,\mathrm{W \, m^{-3}}$.

Condiciones de borde (ambos casos). Dirichlet en x = 0: T = 100 °C; Dirichlet en $x = L_x$: T = 50 °C. En y = 0 y $y = L_y$: condición de flujo nulo $\partial T/\partial y = 0$ (Neumann).

Condición inicial. T(x, y, 0) = 20 °C.

Horizonte temporal. Simule hasta $t_{\text{max}} = 60 \,\text{s}$.

Parte 1 — Solución analítica (Caso A)

Emplee el método de separación de variables para el Caso A (q''' = 0).

- a) Plantee el cambio de variable que elimine la inhomogeneidad debida a las condiciones de Dirichlet en x = 0 y $x = L_x$, separando temperatura en un perfil estacionario y una perturbación transitoria.
- b) Derive el problema modal resultante (formas propias en x y y) bajo las condiciones mixtas (Dirichlet-Neumann).
- c) Escriba la solución en serie y evalúe los primeros términos para $t=5\,\mathrm{s}$ y $t=20\,\mathrm{s}$ en los puntos $(x,y)=(0.25\,\mathrm{m},0.15\,\mathrm{m})$ y $(0.4\,\mathrm{m},0.05\,\mathrm{m})$.

Parte 2 — Solución numérica (Casos A y B)

Implemente un esquema de diferencias finitas 2D explícito o implícito (p. ej., FTCS, BTCS o Crank-Nicolson). Justifique su elección.

a) Discretice el dominio con pasos Δx , Δy y un paso temporal Δt . Indique y verifique el criterio de estabilidad de Fourier para 2D:

$$Fo \equiv \frac{\alpha \Delta t}{\Delta x^2} + \frac{\alpha \Delta t}{\Delta y^2} \le 1 \quad \text{(FTCS)};$$
 (2)

o el criterio correspondiente al esquema elegido.

- b) Programe los Casos A y B. Reporte mapas de calor de T(x, y, t) para t = 10 s, 30 s, 60 s.
- c) Documente el tratamiento de bordes y, si aplica, el ensamblaje matricial (implícitos) y el solucionador lineal usado.

Parte 3 — Comparación y análisis (Caso A)

- a) Compare la solución numérica con la analítica en los puntos indicados; calcule el *error* relativo porcentual y discútalo.
- b) Estudie el efecto de $\Delta x, \Delta y, \Delta t$ en la precisión (convergencia) y el costo computacional (tiempo de cómputo o número de iteraciones).

Parte 4 — Estudio paramétrico

- a) Varíe la difusividad térmica α en $\pm 50\%$ respecto del caso base; analice el impacto en la evolución transitoria y en el estado casi estacionario.
- b) Para el Caso B, explore $q_0 \in [2.5 \times 10^5 \,\mathrm{W\,m^{-3}}, \, 1 \times 10^6 \,\mathrm{W\,m^{-3}}]$ y discuta la sensibilidad de las temperaturas máximas y gradientes.

Entregables

- 1) **Presentación** (PPTX o PDF).
- 2) Código en MATLAB o Python, claro y comentado, con instrucciones breves de ejecución.

Notas

- Trabajo de grupos de 2 o 3 personas.
- Puede emplear librerías estándar (p.ej., NumPy/SciPy/Matplotlib o MATLAB base). Cite cualquier recurso externo.
- Incluya un anexo breve con pruebas de convergencia (p. ej., refinamiento de malla).
- Si elige un esquema implícito, documente el solucionador lineal y la tolerancia de parada.