Naturalna Funkcja Sklejana - Pierwiastki

Pracownia 2.11

Antoni Tomaszewski

16 grudnia 2018

1 Opis problemu

Tematem zadania jest konstrukcja algorytmu będącego w stanie wyznaczyć pierwiastki równiania f(x) = c. Dla zadanych n+1 współrzędnych należy zbudować naturalną funkcję sklejaną trzeciego stopnia. Zadanie polega de facto na obliczeniu wartości funkcji odwrotnej $f^{-1}(y)$ w punkcie y=c. Niestety funkcja f wcale nie musi być różnowartościowa (ani jakakolwiek z funkcji cząstkowych $s_k(x)$). Dlatego do tego problemu zabierzemy się poprzez konstrukcję funkcji sklejanej $s_k(x)$ i dla każdego przedziału $[x_k, x_{k+1}]$ obliczymy pierwiastki równania $s_k(x)-c=0$

Implementacja algorytmu została wykonana w języku Julia w pliku "program.jl". Funkcje pomocnicze zawarte są w pliku "funkcje.jl". Wykresy zostały wygenerowane korzystając z biblioteki "Plots". Do wygodnego używania wielomianów użyta została biblioteka "Polynomials".

2 Naturalnej Funkcji Sklejanej 3 st. - Wyprowadzenie Wzorów

Mając n+1 punktów $(x_1,y_1),(x_2,y_2)...(x_{n+1},y_{n+1})$ chcemy na każdym z przedziałów $[x_k,x_{k+1}]$ skonstruować wielomian 3 st. Niech

$$s_k(x) = A_k + B_k(x - x_k) + C_k(x - x_k)^2 + D_k(x - x_k)^3$$
(2.1)

$$s'_{k}(x) = B_{k} + 2C_{k}(x - x_{k}) + 3D_{k}(x - x_{k})^{2}$$
(2.2)

$$s_k''(x) = 2C_k + 6D_k(x - x_k)$$
(2.3)

$$h_k = x_{k+1} - x_k (2.4)$$

Chcemy więc mieć n funkcji i dla każdej z nich 4 warunki, co daje w sumie 4n warunków. n+1 punktów daje nam 2n warunków (n-1 podwójnych oraz dwa pojedyncze (brzegowe)) Żądamy również, aby pierwsze oraz drugie pochodne na krańcach przedziałów były sobie równe (kolejne 2(n-1) warunków).

$$s'_{k+1}(x_{k+1}) = s'_k(x_{k+1})$$
(2.5)

$$s_{k+1}''(x_{k+1}) = s_k''(x_{k+1})$$
(2.6)

Brakuje nam jeszcze dwóch warunków, które zapewniamy sobie ustawiając wartości drugich pochodnych w punktach brzegowych na 0.

$$s_1''(x_1) = s_n''(x_{n+1}) = 0 (2.7)$$

Skoro $s_k(x_k) = y_k$ mamy więc

$$A_k = \gamma_k \tag{2.8}$$

Korzystając z (2.7) otrzymujemy

$$C_1 = 0 (2.9)$$

$$C_n + 3D_n h_n = 0 (2.10)$$

Licząc 2 pochodną $s_{k+1}^{\prime\prime}(x_{k+1})$ oraz $s_k^{\prime\prime}(x_{k+1})$ mamy $2C_{k+1}=2C_k+6D_kh_k.$ Co daje nam

$$D_k = \frac{1}{3h_k}(C_{k+1} - C_k) \tag{2.11}$$

przy czym $C_{n+1} = 0$

Licząc 1 pochodną $s_{k+1}^\prime(x_{k+1}) = B_{k+1}$ oraz $s_k^\prime(x_{k+1}) = B_k + 2C_kh_k + 3D_kh_k^2$

Z warunku (2.5) oraz (2.9) mamy

$$B_{k+1} = B_k + h_k (C_{k+1} + C_k) (2.12)$$

Licząc wartości $s_{k+1}(x_{k+1}) = A_{k+1}$ oraz $s_k(x_{k+1}) = A_k + B_k h_k + C_k h_k^2 + D_k h_k^3$

Co daje wraz z (2.8)

$$y_{k+1} = y_k + B_k h_k + C_k h_k^2 + D_k h_k^3$$
 (2.13)

Po skorzystaniu z (2.11) i (2.9) i rozwiązaniu ze względu na B_k otrzymujemy:

$$B_k = \frac{1}{h_k} (y_{k+1} - y_k) - \frac{h_k}{3} (C_{k+1} + 2C_k)$$
 (2.14)

Korzystając z (2.12) rozpisujemy B_{k+1} i dla wstawiamy obliczone B_{k+1} oraz B_k do (2.10)

$$B_{k+1} = \frac{1}{h_{k+1}} (y_{k+2} - y_{k+1}) - \frac{h_{k+1}}{3} (C_{k+2} + 2C_{k+1})$$

$$\frac{y_{k+2}-y_{k+1}}{h_{k+1}} - \frac{y_{k+1}-y_k}{h_k} = \frac{h_{k+1}}{3}C_{k+2} + \frac{2(h_{k+1}+h_k)}{3}C_{k+1} + \frac{h_k}{3}C_k$$

$$h_{k+1} + h_k = (x_{k+2} - x_{k+1}) + (x_{k+1} - x_k) = x_{k+2} - x_k$$

Po podzieleniu przez $h_{k+1}+h_k$ i oznaczeniu $f(x,y,z)=\frac{f(y,z)-f(x,y)}{z-x}$ oraz $f(x,y)=\frac{f(y)-f(x)}{y-x}$ Otrzymujemy dla $k\in \{1,2,...,n-1\}$

$$3f(x_k, x_{k+1}, x_{k+2}) = \frac{h_{k+1}}{h_{k+1} + h_k} C_{k+2} + 2C_{k+1} + \frac{h_k}{h_{k+1} + h_k} C_k$$
 (2.15)

3 PIERWIASTKI
$$f(x) = c$$

Aby znaleźć wszystkie rozwiązania tego równania możemy przeprować dla każdego z przedziałów $[x_k, x_{k+1}]$, poszukiwanie pierwiastków $s_k(x) - c = 0$. A ten problem nie jest trudny. Dzięki wzorom Cardana możemy to zrobić w łatwy sposób.

Rówanie $a+bx+cx^2+dx^3=0$ możemy sprowadzić do równania $q+py+y^3=0$ (o współczynnikach zespolonych).

Przy czym

$$\begin{cases} p = \frac{b}{d} - \frac{c^2}{3a^2} \\ q = \frac{2c^3}{27d^3} + \frac{a}{d} - \frac{bc}{3d^2} \\ y = x + \frac{c}{3d} \end{cases}$$
(3.1)

Należy jescze rozwiązać układ równań

$$\begin{cases} p = -3uv \\ q = -u^3 - v^3 \end{cases}$$
 (3.2)

Rozwiązania naszego bazowego równania znaleźć teraz możemy aplikując obliczone wartości do wzorów:

$$\begin{cases} x_0 = u + v - \frac{c}{3d} \\ x_1 = \frac{-u(1+i\sqrt{3})}{2} - \frac{v(1-i\sqrt{3})}{2} - \frac{d}{3d} \\ x_2 = \frac{-u(1-i\sqrt{3})}{2} - \frac{v(1+i\sqrt{3})}{2} - \frac{c}{3d} \end{cases}$$
(3.3)

Ostatnim etapem w tym rozwiązaniu jest sprawdzenie, które z tych rozwiązań (x_0, x_1, x_2) mają część urojoną równą 0. Tak obliczone wartości uznajemy za przybliżone wartości spełniające równanie f(x) = c.

Rysunek 3.1: Wykres pierwiastków dla funkcji Rungego

4 LICZBA ROZWIĄZAŃ f(x) = c

Rozważmy inny problem. Niech zadaniem nie będzie znalezienie wszytkich pierwiastków tak zadanego równania, a jedynie wyznaczenie ich ilości.

Zauważmy, że na tak sformułowane pytanie jesteśmy w stanie bez trudu odpowiedzieć o ile funkcja jest ciągła i różnowartościowa.

Weźmy przedział [x_a , x_b].

Teraz skoro funkcja jest różnowartościowa, wiemy że wartości $f(x_a)$, $f(x_b)$ stanowią minimum oraz maksimum na przedziale.

Bez straty ogólności ustalmy $min = f(x_a)$ oraz $max = f(x_b)$. Z ciągłości funkcji f wiemy, że musi ona zawierać wszystkie wartości na przedziale [min, max], a z jej różnowartościowości to że każda z tych wartości występuje dokładnie raz. Skoro to już wiemy, jedyne co nam pozostaje to sprawdzić czy $min \le c \le max$. Jeśli tak, na przedziale $[x_a, x_b]$ istnieje dokładnie jedno rozwiązanie równania f(x) = c, w przeciwnym przypadku nie ma go wcale.

Nasza funkcja s(x) jest ciągła, ale różnowartościwości nie mamy zapewnionej. Wiemy jednak, że na każdym z przedziałów $[x_k, x_{k+1}]$ funkcja s równa jest pewnemu wielomianowi 3 st. $s_k(x)$. Zauważmy teraz że każdy wielomian 3 st. możemy zawsze podzielić na 3 przedziały, takie że na każdym z nich będzie on różnowartościowy.

Weźmy dowolny wielomian g stopnia 3 określony dla wszystkich liczb rzeczywistych, ze współczynnikiem przy najwyższej potędze większym od 0.

Przedziały o które nam chodzi to:

```
[-\infty, x_{max}], [x_{max}, x_{min}], [x_{min}, \infty],
```

gdzie x_{max} i x_{min} to punkty w których g przyjmuje odpowiednio lokalne maximum oraz minimum

Wartości x_{max} i x_{min} możemy uzyskać licząc pierwiastki pochodnej g', która jest wielomianem stopnia 2.

(dla współczynniku przy najwyższej potędze < 0 *max* zamieniamy z *min*, reszta analogiczna)

Mając funkcję s_k oraz jej x_{max} , x_{min} wystarczy więc sprawdzić czy x_{max} , $x_{min} \in [x_k, x_{k+1}]$. Odpowiednio podzielić ją na 1, 2 lub 3 przedziały i dla każdego z nich przeprowadzić rozumowanie czy $c \in [s_k(x_a), s_k(x_b)]$. Czyli de facto sprawdzić czy $(s_k(x_a) - c) * (s_k(x_b - c)) \le 0$

Przeprowadzając ten algorytm dla $k \in 1,2,...,n$ otrzymujemy liczbę rozwiązań s(x) = c na przedziale $[x_1,x_{n+1}]$.

Zauważmy że mimo tego, iż algorytm ten nie daje nam odpowiedzi dla jakich x, f(x) = c, a jedynie ich liczbę, to nie przeszkadza nam w żaden sposób, w razie potrzeby szybko je policzyć ze wzorów wyżej opisanych. Ma on jednak tę wielką zaletę, że jeśli chodzi nam o szybkie wyznaczanie ilości rozwiązań jest on znacznie lepszy, ponieważ pochodne wraz z ich miejscami zerowymi wystarczy policzyć raz i na zapytanie możemy odpowiadać znacznie szybciej. Wystarczy mianowicie dla każdego z maksymalnie 3n przedziałów sprawdzić do ilu z nich c należy. Rozwiązanie to daje nam również odpowiedź które to przedziały.

Uwaga!: Algorytm ten liczy pierwiastki podwójne 2 razy, aby uniknąć powtórzeń wystarczy sprawdzać osobno czy zachodzi równość dla lewego punktu brzegowego, dla x_{n+1} oraz nierówność ostra dla punktów wewnątrz przedziału.

Rysunek 4.1: Przedziały na których f(x) = c

5 WNIOSKI

Przedstawione zostały dwa algorytmy: pierwszy bezpośrednio znajdujący miejsca zerowe funkcji f(x) - c, drugi - wyznaczający przedziały na których f(x) = c o długości nie większej niż zadane. Odpowiadają one na inne pytania, a więc wybór metody będzie zależeć od potrzeb. Dla testowanych przykładów, dla żadnego z algorytmów, ani czas, ani pamięć nie stanowiły problemów, ponieważ konstrukcja funkcji sklejanej działa w czasie O(n), a znajdowanie pierwiastków w jednym przedziale w czasie stałym, co daje również złożoność O(n).

LITERATURA

- [1] Ake Bjorck, Germund Dahlquist, *Metody Numeryczne*, Państwowe Wydawnictwo Naukowe, p. 277-280, Warszawa 1983
- [2] David Kincaid, Ward Cheney, *Analiza Numeryczna*, Wydawnictwo Naukowo-Techniczne, Warszawa 2006