COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS PHYSICS AND INFORMATICS

AUTOMATIC GENERATION OF ENEMIES IN A SURVIVAL COMPUTER GAME

Master thesis

2026 Michal Baránek

COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS PHYSICS AND INFORMATICS

AUTOMATIC GENERATION OF ENEMIES IN A SURVIVAL COMPUTER GAME

Master thesis

Study program: Applied informatics Branch of study: Applied informatics

Department: Department of Applied Informatics

Supervisor: Ing. Alexander Šimko, PhD.

Bratislava, 2025 Michal Baránek

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Michal Baránek

Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor:informatikaTyp záverečnej práce:diplomováJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Automatické generovanie nepriateľov pre počítačovú hru typu hra o prežitie

Automatic generation of enemies in a survival computer game

Anotácia: Hra o prežitie je žáner počítačových hier, v ktorý je cieľom hráča prežiť

v hernom prostredí čo najdlhšie. Hráč typicky zbiera z prostredia rôzne zdroje, buduje príbytok a uspokojuje životné potreby virtuálnej postavy. Súčasťou prostredia bývajú taktiež nepriatelia, ktorí prežitie hráčovi sťažujú. Hráč je s nimi nútený bojovať a po ich zničení môže hráč získať nejaké zdroje. Na druhej strane, nepriatelia nesmú na hráča útočiť neustále, nakoľko hráč má v hre aj iné aktivity. Aby bola hra pre hráča zaujímavá, je žiadúce, aby správanie nepriateľov bolo rôznorodé. Štandardným prístupom je navrhnúť nepriateľov

ručne.

Ciel': Ciel'om tejto práce je navrhnúť a implementovať algoritmus na automatické

generovanie správania nepriateľov v počítačovej hre typu hra o prežitie. Zámerom algoritmu je, aby slúžil ako pomocný nástroj pre herných dizajnérov pri vytváraní nepriateľov. Algoritmus bude teda spúšťaný v procese návrhu hry. Generované správanie má byť rôznorodé. Reprezentácia správania má byť zvolená tak, aby bola vysvetliteľná a zároveň, aby dizajnér mohol správanie dodatočne ručne upravovať. Súčasťou práce bude experimentálne vyhodnotenie

vlastností algoritmu, kvality generovaného správania a pod.

Vedúci: Ing. Alexander Šimko, PhD.

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 28.11.2024

Dátum schválenia: 04.12.2024 prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent	vedúci práce

	I hereby declare that I have written this thesis by myself, only with help of referenced literature, under the careful supervision of my thesis advisor.
Bratislava, 2025	Michal Baránek

Acknowledgement

Abstract

Keywords:

Abstrakt

Kľúčové slová:

Contents

1	\mathbf{Intr}	roduction	1
	1.1	Motivation	1
	1.2	Problem Statement	1
	1.3	Goals of the Thesis	1
	1.4	Structure of the Thesis	1
2	Bac	ekground and Related Work	2
	2.1	Survival Games: Genre Overview	2
	2.2	Enemy Design in Games	2
	2.3	Procedural Content Generation (PCG)	2
	2.4	Behavior Modeling Techniques	2
		2.4.1 Rule-based Systems	2
		2.4.2 Behavior Trees and Finite State Machines	2
		2.4.3 Evolutionary Algorithms in Game Design	2
	2.5	Summary	2
3	Des	ign of the Enemy Behavior Generator	3
	3.1	Design Objectives and Requirements	3
	3.2	Behavior Representation	3
		3.2.1 Explainability and Manual Adjustability	3
	3.3	Behavior Diversity and Gameplay Balance	3
	3.4	Overview of the Generation Pipeline	3
	3.5	Designer Interaction and Control Parameters	3
	3.6	Design Considerations	3
4	Evo	lutionary Algorithm Design	4
	4.1	Overview of Evolutionary Algorithms	4
		4.1.1 Genetic Algorithms	4
		4.1.2 Representation of Individuals (Behaviors)	4
		4.1.3 Fitness Function Design	4
	4 2	Mutation and Crossover Strategies	4

	4.3	Selection and Population Management	4
	4.4	Termination Criteria	4
	4.5	Adaptation to Game Design Constraints	4
5	Imp	lementation	5
	5.1	Technology Stack	5
	5.2	System Architecture	5
	5.3	Key Modules	5
		5.3.1 Behavior Encoding and Decoding	5
		5.3.2 Evolution Engine	5
		5.3.3 Integration with Game Prototype	5
	5.4	Example Generated Behaviors	5
6	Exp	erimental Evaluation	6
	6.1	Experiment Setup	6
		6.1.1 Test Scenarios and Inputs	6
		6.1.2 Evaluation Metrics	6
	6.2	Results	6
		6.2.1 Behavior Diversity and Novelty	6
		6.2.2 Behavior Quality and Playability	6
		6.2.3 Performance Analysis	6
	6.3	Discussion	6
7	Con	clusion	7
	7.1	Summary of Contributions	7
	7.2	Limitations and Challenges	7
	7.3	Suggestions for Future Work	7

List of Figures

List of Tables

Introduction

- 1.1 Motivation
- 1.2 Problem Statement
- 1.3 Goals of the Thesis
- 1.4 Structure of the Thesis

Background and Related Work

- 2.1 Survival Games: Genre Overview
- 2.2 Enemy Design in Games
- 2.3 Procedural Content Generation (PCG)
- 2.4 Behavior Modeling Techniques
- 2.4.1 Rule-based Systems
- 2.4.2 Behavior Trees and Finite State Machines
- 2.4.3 Evolutionary Algorithms in Game Design
- 2.5 Summary

Design of the Enemy Behavior Generator

- 3.1 Design Objectives and Requirements
- 3.2 Behavior Representation
- 3.2.1 Explainability and Manual Adjustability
- 3.3 Behavior Diversity and Gameplay Balance
- 3.4 Overview of the Generation Pipeline
- 3.5 Designer Interaction and Control Parameters
- 3.6 Design Considerations

Evolutionary Algorithm Design

- 4.1 Overview of Evolutionary Algorithms
- 4.1.1 Genetic Algorithms
- 4.1.2 Representation of Individuals (Behaviors)
- 4.1.3 Fitness Function Design
- 4.2 Mutation and Crossover Strategies
- 4.3 Selection and Population Management
- 4.4 Termination Criteria
- 4.5 Adaptation to Game Design Constraints

Implementation

- 5.1 Technology Stack
- 5.2 System Architecture
- 5.3 Key Modules
- 5.3.1 Behavior Encoding and Decoding
- 5.3.2 Evolution Engine
- 5.3.3 Integration with Game Prototype
- 5.4 Example Generated Behaviors

Experimental Evaluation

- 6.1 Experiment Setup
- 6.1.1 Test Scenarios and Inputs
- 6.1.2 Evaluation Metrics
- 6.2 Results
- 6.2.1 Behavior Diversity and Novelty
- 6.2.2 Behavior Quality and Playability
- 6.2.3 Performance Analysis
- 6.3 Discussion

Conclusion

- 7.1 Summary of Contributions
- 7.2 Limitations and Challenges
- 7.3 Suggestions for Future Work

Bibliography

- [1] Leonardo T Pereira, Breno MF Viana, and Claudio FM Toledo. Procedural enemy generation through parallel evolutionary algorithm. In 2021 20th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 126–135. IEEE, 2021.
- [2] Jacob Schrum and Risto Miikkulainen. Constructing complex npc behavior via multi-objective neuroevolution. In *Proceedings of the AAAI conference on Artificial intelligence and interactive digital entertainment*, volume 4, pages 108–113, 2008.