UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

Matija Kocbek **REDKEJŠI GRAFI Z VELIKIM KROMATIČNIM ŠTEVILOM**

Delo diplomskega seminarja

Mentor: prof. dr. Riste Škrekovski

Kazalo

1	Uvod	7
2	Grafi brez trikotnikov s poljubno velikim kromatičnim številom	7
	2.1 Tuttejeva konstrukcija	7
	2.2 Konstrukcija Mycielskega	9
	2.3 Zamični grafi	10
	2.4 Ramseyjevi grafi	10
3	Grafi s poljubno veliko ožino in poljubno velikim kromatičnim šte	_
	vilom	10

Redkejši grafi z velikim kromatičnim številom ${\it Povzetek}$

...

Sparse graphs with high chromatic number $$\operatorname{Abstract}$$

...

Math. Subj. Class. (2020): ..., ... Ključne besede: ..., ... Keywords: ..., ...

1 Uvod

Grafi ponazarjajo relacije med različnimi objekti. Ena od ključnih lastnosti za razumevanje grafa je, koliko so vozlišča v njem šoodvisna". Kot eno izmed glavnih mer šoodvisnosti "vozlišč lahko vzamemo kromatično število grafa.

Definicija 1.1. Naj bo G = (V, E) (neusmerjen) graf. Naj bo K poljubna neprazna množica moči k. Tedaj preslikavi $c: V \to K$ pravimo k-barvanje vozlišč grafa G. Če sta poljubni sosednji vozlišči v G pobarvani z različnimi barvami, tj. če za sosednji u in v velja, da je $c(u) \neq c(v)$, potem pravimo, da je takšno k-barvanje dobro. Kromatično število G je najmanjše število k, za katerega obstaja dobro k-barvanje grafa G. Označimo ga z $\chi(G)$.

Tema tega diplomskega dela so grafi, ki imajo veliko ožino tj. velikost najmanjšega cikla.

Definicija 1.2. Dolžini največjega cikla v grafu G pravimo ožina in jo označimo z girth(G).

Takšni grafi so lokalno izredno enostavni. Če je ožina grafa g, bo podgraf porojen s poljubnih g-1 vozlišč dejansko gozd, ker ne more imeti ciklov. Pokazali pa bomo, da so lahko takšni grafi globalno zelo kompleksni, če za mero kompleksnosti vzamemo kromatično število. Videli bomo, da ima lahko graf s poljubno veliko ožino prav tako poljubno veliko kromatično število. Razvoj razumevanja takšnih grafov bomo predstavili skozi primere.

2 Grafi brez trikotnikov s poljubno velikim kromatičnim številom

Najmanjši možen cikel v grafu je cikel dolžine tri in takšnim ciklom pravimo trikotniki. Če nas zanima, ali lahko graf s poljubno veliko ožino ima poljubno veliko kromatično število, moramo začeti na prvem koraku in se vprašati, ali lahko ima sploh graf brez trikotnikov poljubno veliko ožino. Pokazali bomo, da lahko, s tem da bomo predstavili nekaj konstrukcij takšnih grafov.

TU ALI PA NA KONCU RAZDELKA DODAJ TRDITEV IN DOKAZ, DA SO SKORAJ VSI GRAFI BREZ TRIKOTNIKOV DEJANSKO DVODELNI GRAFI (V mapi imaš članek "Almost all triangle-free graphs are bipartite") IN IMAJO KOT TAKŠNI KROMATIČNO ŠTEVILO 2 IN DA ZATO REZULTATI IZ TEGA RAZDELKA RES NISO OČITNI!!!!!!! DODAJ PRAV TAKO KARAKTERIZACIJO DVODELNIH GRAFOV KOT GRAFOV BREZ LIHIH CIKLOV!!!!!

2.1 Tuttejeva konstrukcija

Prvi, ki je pokazal, da obstajajo grafi brez trikotnikov, ki imajo poljubno veliko kromatično število, je bil William Thomas Tutte, ki je pisal pod psevdonimom Blanche Descartes. Podal je sledečo induktivno konstrukcijo.

Indukcijo delamo na kromatičnem številu k. Začnemo z grafom G_1 , ki vsebuje samo eno vozlišče. Denimo sedaj, da poznamo graf G_k , ki ima n vozlišč. Graf G_{k+1}

zgradimo tako, da vzamemo množico Y z k(n-1)+1 vozlišči in brez kakršnihkoli povezav med njimi. Za vsak $X\subseteq Y$, ki vsebuje n vozlišč vzamemo kopijo grafa G_k , ki jo označimo z G_X in povežemo to kopijo z X tako, da je vsako vozlišče iz X povezano z natanko enim vozliščem iz G_X . Različnih kopij grafa G_k med seboj ne povezujemo, tj. med nobenima vozliščema iz G_X in $G_{X'}$ ne obstaja povezava, če je $X \neq X'$. S tem smo zgradili G_{k+1} .

Pokažimo, da je $\chi(G_k) = k$ in da G_k ne vsebuje trikotnikov.

Trditev 2.1. Graf G_k iz Tuttejeve konstrukcije ne vsebuje trikotnikov in velja $\chi(G_k) = k$.

Dokaz. Dokazujemo z indukcijo. Graf z enim vozliščem ima kromatično število 1 in je brez trikotnikov, torej je baza indukcije izpoljnena. Denimo, da trditev za G_k in pokažimo, da velja za G_{k+1} .

Najprej s protislovjem pokažimo, da je $\chi(G_{k+1}) \geq k+1$. Denimo nasprotno, da je $\chi(G_{k+1}) \leq k$. Tedaj obstaja c, ki je pravilno k-barvanje grafa g_{k+1} . Recimo, da G_k ima n vozlišč. Tedaj po konstrukciji velja, da ima množica Y iz konstrukcije k(n-1)+1 vozlišč, ki so pobarvana pravilno z večjemu k različnimi barvami. Zato mora obstajati vsaj ena barva b, s katero je pobarvanih vsaj n vozlišč iz Y. Vzemimo poljubnih n vozlišč iz Y pobarvanih s b in označimo to množico z X. Ker je po indukcijski predpostavki $\chi(G_k) \geq k$, bo c pobarval G_X , ki je kopija G_k z natanko k barvami, saj je c pravilno barvanje. Ker je vsako vozlišče v K povezano z natanko enim v K1 in ker je K2 pravilno barvanje, je K3 različna barva od vseh K4 barv, s katerimi smo pobarvali K3. Torej je K4 pobarval K4 pa je protislovje.

Prav tako je $\chi(G_{k+1}) \leq k+1$. Po indukcijski predpostavki lahko namreč vsako kopijo G_k pobarvamo sk barvami, saj različne kopije niso med seboj povezane. Tedaj lahko vzamemo poljubno novo barvo, ki je nismo uporabili za kopije G_k in z njo pobarvamo Y, saj elementi Y nimajo med seboj povezav. S tem smo dokazali želeno, saj smo dobili pravilno (k+1)-barvanje grafa, in je res $\chi(G_{k+1}) = k+1$.

Denimo, da v G_{k+1} obstaja trikotnik. V trikotniku so vsa vozlišča paroma povezana, zato lahko v njem leži kvečjemu eno vozlišče iz Y, saj med vozlišči v Y ni povezav. Prav tako preostali dve vozlišči morata ležati v isti kopiji G_k , saj nimamo povezav med različnimi kopijami. To pa pomeni, da imamo vozlišče v Y, ki je povezano z dvema različnima vozliščema iz iste kopije G_k , kar pa je v protislovju s konstrukcijo. Torej G_{k+1} res ne vsebuje trikotnikov.

Opomba 2.2. Če definiramo G_k le za $k \geq 3$ in za G_3 vzamemo cikel dolžine sedem, ob zgornji trditvi velja celo, da je $girth(G_k) \geq 6$ za vsak $k \geq 3$. DOKAŽI TO!!!!!!!!!!

Tuttejeva konstrukcija torej res dokazuje, da lahko imajo grafi brez trikotnikov poljubno veliko kromatično število. Vendar so grafi v Tuttejevi konstrukciji izredno veliki (če ima G_k recimo n vozlišč, ima G_{k+1} potem $\binom{k(n-1)+1}{n}n+k(n-1)+1$ vozlišč) in je v resnici kromatično število zelo majhno v razmerju s številom vozlišč. Iz tega aspekta je bolj zanimiva konstrukcija Mycielskega. Glavna prednost Tuttejeve konstrukcije je ta, da dokazuje, da lahko imajo tudi grafi brez ciklov dolžine manjše ali enake 4 ali 5 poljubno velika kromatična števila.

2.2 Konstrukcija Mycielskega

Jan Mycielski je leta 1955 podal konstrukcijo, ki iz začetnega grafa z n vozlišči zgradi graf z 2n+1 vozlišči, ki ima večje kromatično število kot začetni graf, hkrati pa nima trikotnikov, če jih začetni graf nima. Konstrukcija je podana na naslednji način.

Denimo, da imamo graf G na n vozliščih v_1, \ldots, v_n . Potem definiramo M(G) kot graf z 2n+1 vozlišči $a_1, \ldots, a_n, b_1, \ldots, b_n, c$. Za vse i, j, za katere obstaja povezava $v_i v_j$ v G, tvorimo povezave $a_i a_j, a_i b_j$ in $a_j b_i$ v M(G). Ob tem za vsak i med 1 in n tvorimo povezavo $b_i c$ v M(G). Takšnemu grafu M(G) pravimo graf Mycielskega grafa G.

Trditev 2.3. Če graf G nima trikotnikov, potem nima trikotnikov niti njegov graf $Mycielskega\ M(G)$.

Dokaz. Naj bo G brez trikotnikov. Dokazujemo s protislovjem. Denimo, da ima M(G) nek trikotnik. Vsa vozlišča znotraj trikotnika so med seboj povezana. Ker v M(G) ni povezav med b_i in b_j za nobena i in j, je lahko v ciklu kvečjemu eno vozlišče oblike b_i . To pomeni, da mora biti vsaj eno vozlišče oblike a_i v trikotniku. Ker c ni povezan z nobenim vozliščem te oblike, c ne more biti v trikotniku. Torej imamo v trikotniku a_j in a_k za neka različna j in k. Če bi imeli v trikotniku še vozlišče a_i za nek i različen od j in k, bi to pomenilo, da imamo trikotnik v G, saj je podgraf M(G) porojen z vozlišči a_1, \ldots, a_n izomorfen G po konstrukciji, kar je protislovje. Torej je v trikotniku še vozlišče b_i za nek i. To pa po konstrukciji M(G) pomeni, da imamo v G povezave $v_i v_k$, $v_i v_j$ in $v_j v_k$, kar je trikotnik. Ker G po predpostavki nima trikotnikov, smo prišli do protislovja.

Trditev 2.4. Velja $\chi(M(G)) = \chi(G) + 1$.

Dokaz. Pokažimo najprej, da je $\chi(M(G)) \geq \chi(G) + 1$. Dokazujemo s protislovjem. Denimo, da je $\chi(M(G)) \leq \chi(G) = k$. Tedaj obstaja pravilno k-barvanje M(G), recimo mu f. Brez škode za splošnost je f(c) = k. Zaradi pravilnosti f, ni nobeno vozlišče oblike b_i pobarvano s k. Barvanje f porodi pravilno k-barvanje grafa G, recimo mu q, podano z $q(v_i) = f(a_i)$. Če je kakšno vozlišče v_i v G pobarvano s k, lahko spremenimo barvo v $f(b_i)$ in je barvanje grafa G še vedno pravilno. Namreč, če imamo povezavo $v_i v_j$ v G, imamo tudi povezavo $b_i a_j$ v M(G), kar pomeni, da je $f(b_i) \neq f(a_i) = g(a_i)$ zaradi pravilnosti barvanja f. Torej tudi v spremenjenem barvanju nimamo nobenih sosedov z enako barvo, torej je to pravilno barvanje G. Vsa vozlišča v G, ki so bila pobarvana s k, smo na novo pobarvali z neko barvo iz $\{1,\ldots,k-1\}$, ker je $f(b_i)\neq k$ za vse i. To pa pomeni, da smo našli pravilno (k-1)barvanje G, kar je v protislovju z $\chi(G) = k$. Dokažimo še $\chi(M(G)) \leq \chi(G) + 1$. Naj bo $k = \chi(G)$ in naj bo q pravilno k-barvanje grafa G. Definiramo potem f kot (k+1)-barvanje grafa M(G). Naj bo $f(a_i) = f(b_i) = g(v_i)$ za vse i. Naj bo f(c) = k + 1. Pokažimo, da je f pravilno barvanje. Ker je $f(b_i) \neq k + 1$ za vse i, c nima enake barve z nobenim sosedom. Če pa imamo v M(G) povezavo oblike $a_i a_i$ ali pa $a_i b_i$ za neka različna i in j, vemo, da imamo v G povezavo $v_i v_i$. Ker je $f(a_i) = g(v_i) \neq g(v_i) = f(a_i) = f(b_i)$, pri čemer smo upoštevali pravilnost g, vemo, da niti sosedi oblike a_i in a_j ali a_i in b_j ne bodo imeli enake barve. Torej je f res pravilno (k+1)-barvanje M(G) in je res $\chi(M(G)) = \chi(G) + 1$.

Posledica 2.5. Naj bo G_3 cikel dolžine 5. Naj bo $G_{k+1} = M(G_k)$ za vsak $k \geq 3$. Tedaj je G_k brez trikotnikov in $\chi(G_k) = k$ za vsak $k \geq 3$.

Dokaz. Dokažemo z indukcijo. G_3 je cikel lihe dolžine, torej ima kromatično število 3, in nima trikotnikov, saj cikel dolžine 3. Baza indukcije je s tem izpolnjena. Indukcijski korak dokažemo enostavno s prejšnjima trditvama.

Konstrukcija Mycielskega nam torej porodi še eno družino grafov brez trikotnikov, katerih kromatično število neomejeno narašča. Grafi iz te družine so dosti manjši kot grafi iz Tuttejeve konstrukcije, in sicer bi z indukcijo lahko enostavno dokazali, da je število vozlišč v G_k enako $3 \cdot 2^{k-2} - 1$ za $k \geq 3$. Torej kromatično število narašča logaritemsko glede na število vozlišč. To je še vedno dosti majhno, vendar veliko boljše kot v Tuttejevi konstrukciji.

2.3 Zamični grafi

2.4 Ramseyjevi grafi

Vsi grafi iz prejšnjih podrazdelkov so dejansko imeli precej majhna kromatična števila glede na velikosti grafov. V tem podrazdelku pa bomo obravnavali grafe z dosti večjim kromatičnim številom, torej globalno dosti bolj kompleksne grafe.

Graf G_k zgradimo tako, da pogledamo končno projektivno ravnino reda k, torej projektivno ravnino s k^2+k+1 točkami. Za vozlišča vzamemo vse urejene pare točk in premic (p,L), za katere velja, da p leži na L. Vozlišča opremimo s poljubno linearno urejenostjo <. Vozlišči (p,L) in (p',L') povežemo, če velja, da je (p,L) < (p',L'), da sta p in p' različni ter L in L' različni in da p leži na L'. Tedaj velja, da G_k ne vsebuje trikotnikov in da je $\alpha(G_k) \leq 2 \cdot (k^2 + k + 1)$. Ker ima graf $(k^2 + k + 1)(k + 1)$ vozlišč, je posledično $\chi(G_k) \geq k + 1$. Če ima G_k n vozlišč, je torej $\chi(G_k) = \Omega(n^{\frac{1}{3}})$, kar je občutno večje kromatično število kot v prejšnjih konstrukcijah in kaže, da je lahko graf globalno res precej kompleksen kljub odsotnosti trikotnikov.

To je dejansko zelo blizu največjemu kromatičnemu številu, ki ga lahko dosežemo v grafu brez trikotnikov. Za vse grafe brez trikotnikov G velja namreč meja $\chi(G) \leq 2\sqrt{n} + 1$ (lažji dokaz na Mathematics stack exchange). Dejansko velja za takšne grafe še strožja meja $\chi(G) \leq (2 + o(1))\sqrt{\frac{n}{\log n}}$ (težji dokaz v članku "The χ -Ramsey problem for triangle-free graphs").

TU JE TREBA ŠE VELIKO DODELATI!!!!!!!!!!

3 Grafi s poljubno veliko ožino in poljubno velikim kromatičnim številom

V prejšnjem razdelku smo pokazali, da odsotnost trikotnikov ne omejuje kromatičnega števila grafa. Prav tako smo poskušali ugotoviti, kako globalno kompleksen je lahko graf, ki nima trikotnikov, torej graf, ki je lokalno na poljubnih treh vozliščih izredno enostaven. V tem razdelku bomo najprej pokazali, da ožina sama po sebi ne more omejiti kromatičnega števila, tj. da za poljubno veliko fiksno ožino vedno obstaja graf s poljubno velikim kromatičnim številom. Nato pa bomo poskusili analizirati, kako skupaj velikost grafa in njegova ožina omejujeta kromatično število.

Pogledali bomo, koliko kompleksen je lahko nek graf globalno v odvisnosti od tega, koliko enostaven je lokalno.

Najprej definiramo pojem naključnega grafa:

Definicija 3.1. Verjetnostni prostor slučajnih grafov G(n,p) je podan z množico vseh grafov na n vozliščih kot množico elementarnih izidov, dogodek je poljubna množica grafov na n vozliščih, verjetnost vsakega grafa G z m povezavami pa je enaka $P(G) = p^m(1-p)^{\binom{n}{2}-m}$.

Opomba 3.2. Verjetnost posameznega grafa v prostoru slučajnih grafov lahko interpretiramo tako, da za vsako posamezno povezavo neodvisno izbiramo, ali je vsebovana v grafu, in p je verjetnost, da je posamezna povezava vsebovana v grafu.

Naslednja lema je pomembna za dokaz glavnega izreka:

Lema 3.3. Naj bo slučajna spremenljivka $X:G(n,p)\to\mathbb{R}$ število k-ciklov v $G=(V,E)\in G(n,p)$. Potem je:

$$E(X) = \frac{n^{\underline{k}}}{2k} p^k,$$

 $kjer\ je\ n^{\underline{k}} = n(n-1)\dots(n-k+1).$

Dokaz. Preštejmo število ciklov dolžine k v polnem grafu na n=|V| vozliščih. Pomagamo si z zaporedji vozlišč $C=v_1,v_2,\ldots,v_k$. Število zaporedji z različnimi elementi dolžine k na n-elementni množici je $n^{\underline{k}}$, vsak cikel pa ustreza 2k takšnim zaporedjem, saj cikel porodi k možnih začetnih točk zaporedji in imamo dve možni smeri premikanja po ciklu. Število možnih ciklov je torej $\frac{n^{\underline{k}}}{2k}$. Za vsak cikel C_i , $1 \leq i \leq \frac{n^{\underline{k}}}{2k}$, definiramo indikatorsko slučajno spremenljivko X_i :

$$X_i = \begin{cases} 1, & C_i \subseteq G \\ 0, & \text{sicer} \end{cases}.$$

Velja $E[X_i] = P(X_i = 1) = p^k$, saj je po zgornji opombi to verjetnost, da je vseh k povezav iz C_i vsebovanih v G. Prav tako velja, da je $X = \sum_{i=1}^{\frac{n^k}{2k}} X_i$, saj oba izraza preštejeta vse cikle dolžine k v grafu G. Torej po linearnosti pričakovane vrednosti velja:

$$E[X] = E[\sum_{i=1}^{\frac{n^k}{2k}} X_i] = \sum_{i=1}^{\frac{n^k}{2k}} E[X_i] = \sum_{i=1}^{\frac{n^k}{2k}} p^k = \frac{n^k}{2k} p^k.$$

Slovar strokovnih izrazov