Technical Report: 4G Cellular Network Deployment Planning and Economic Analysis

Ilias Bezzaz

March 30, 2025

1 Introduction

As an engineering student, my project involves planning and dimensioning a 4G cellular network deployment at 2.6 GHz for both urban and rural zones. Key parameters include:

- Urban area: 105.4 km^2 , 1,750,000 inhabitants ($10\% \text{ penetration} \rightarrow 175,000 \text{ users}$)
- Rural area: 5,176 km², 17,500 inhabitants (10% penetration \rightarrow 1,750 users)
- Traffic model: 10 minutes/user/hour = 0.1667 Erlang
- Bandwidth options: 5/10/15/20 MHz (25/50/75/100 PRBs)
- Quality targets: C/I = 1.14, Blocking probability = 2%

2 Maximum Tolerated Path-loss (Uplink & Down-link)

Downlink Calculation (BS \rightarrow UE)

$$PL_{DL} = P_{BS} + G_{BS} - L_{cable} - L_{duplexer} + G_{div} - L_{LNA} - S_{UE}$$
$$= 46 + 17 - 3 - 2 + 5 - 2 - (-105)$$
$$= 166 \,dB$$

Uplink Calculation (UE \rightarrow BS)

$$PL_{UL} = P_{UE} + G_{UE} - (G_{BS} - L_{cable} - L_{duplexer}) - S_{BS}$$
$$= 21 + 0 - (17 - 3 - 2) - (-120)$$
$$= 129 \,dB$$

3 Radio Coverage Radius Calculation

Propagation Models

- Urban: $PL = 113 + 35 \log_{10}(d) + 10 \,\mathrm{dB}$ (8dB shadowing + 2dB fading)

Effective Coverage Radius

$$d = 10^{\frac{PL-A-L_{env}}{35}}$$

Environment	Uplink Radius	Downlink Radius
Urban Rural		$10^{\frac{166-113-10}{35}} = 16.93 \mathrm{km}$ $10^{\frac{166-100-6}{35}} = 51.79 \mathrm{km}$

4 Cell Dimensioning According to Bandwidth

Erlang-B Capacity Analysis

Bandwidth (MHz)	5	10	15	20
PRBs/cell	25	50	75	100
Capacity (Erlangs)	17.51	35	52.5	70
Max users/cell	105	210	315	420

Required Cell Count

Area	Number of Cells			
	$5 \mathrm{MHz}$	$10 \mathrm{MHz}$	$15 \mathrm{MHz}$	$20 \mathrm{MHz}$
Urban	1,667	834	556	417
Rural	17	9	6	5

Cell Radius vs Capacity

Bandwidth	Urban Radius (km)	Rural Radius (km)
5 MHz	0.156	4.54
$10 \mathrm{\ MHz}$	0.236	4.54
$15~\mathrm{MHz}$	0.298	4.54
$20 \mathrm{\ MHz}$	0.349	4.54

5 Optimized Transmission Power

Urban Cells (20MHz Case)

$$\begin{split} PL &= 113 + 35 \log_{10}(0.349) + 10 \approx 96.02 \, \mathrm{dB} \\ P_{tx} &= -105 + 96.02 - 17 + 3 + 2 = \textbf{-21 dBm} \end{split}$$

Rural Cells

$$\begin{split} PL &= 100 + 35 \log_{10}(4.54) + 6 = 129 \, \mathrm{dB} \\ P_{tx} &= -105 + 129 - 17 + 3 + 2 = \mathbf{12} \, \, \mathbf{dBm} \end{split}$$

2

6 Network Cost Analysis

Cost Formulas

- CAPEX = (Number of sites × 15 k€) + Frequency license + (Microwave links × 100 k€)
- OPEX/year = Number of sites \times 5 k \in
- Revenue/year = Number of subscribers \times 20 \times 12 months

Cost Parameters

• 2.6 GHz license: 2500 k€ per 5MHz block (UL+DL)

• 18 GHz microwave links: 100 k€ per connection

• Site installation (CAPEX): 15 k€ per site

• Site operation (OPEX): 5 k€ per site/year

• Subscription fee: 20€/month per user

Urban Deployment Costs (k€) - Detailed Calculation

Component	Bandwidth			
	$5 \mathrm{MHz}$	$10 \mathrm{MHz}$	$15 \mathrm{MHz}$	$20 \mathrm{MHz}$
License	2,500	5,000	7,500	10,000
Sites $(N \times 15k \oplus)$	$1,667 \times 15 = 25,005$	$834 \times 15 = 12,510$	$556 \times 15 = 8,340$	$417 \times 15 = 6,255$
Microwave (N×100k€)	$1,667 \times 0.1 = 166.7$	$834 \times 0.1 = 83.4$	$556 \times 0.1 = 55.6$	$417 \times 0.1 = 41.7$
Total CAPEX OPEX/year	$27,671.7$ $1,667 \times 5 = 8,335$	17,593.4 $834 \times 5 = 4,170$	15,895.6 $556 \times 5 = 2,780$	$16,296.7 \\ 417 \times 5 = 2,085$

Rural Deployment Costs (k€) - Detailed Calculation

Component	Bandwidth			
	$5 \mathrm{MHz}$	$10 \mathrm{MHz}$	$15 \mathrm{MHz}$	$20 \mathrm{MHz}$
License	2,500	5,000	7,500	10,000
Sites $(N \times 15k \bigcirc)$	$17 \times 15 = 255$	$9 \times 15 = 135$	$6 \times 15 = 90$	$5 \times 15 = 75$
Microwave (N×100k€)	$17 \times 0.1 = 1.7$	$9 \times 0.1 = 0.9$	$6 \times 0.1 = 0.6$	$5 \times 0.1 = 0.5$
Total CAPEX	2,756.7	5,135.9	7,590.6	10,075.5
OPEX/year	$17 \times 5 = 85$	$9 \times 5 = 45$	$6 \times 5 = 30$	$5 \times 5 = 25$

7 Network Cost Analysis

Cost Formulas

• CAPEX = (Number of sites \times 15 k \oplus) + License + (Microwave links \times 100 k \oplus)

• OPEX/year = Number of sites \times 5 k \in

• Annual revenue = Subscribers \times 20 \times 12

Cost Parameters

• 2.6 GHz license: 2500 k€ per 5 MHz block (UL+DL)

• 18 GHz microwave links: 100 k€ per connection

• Site installation: 15 k€ (CAPEX)

• Site operation: 5 k€/year (OPEX)

• Customer subscription: 20€/month

Urban Costs (k€) - Detailed Calculations

Component	Bandwidth			
	5 MHz	10 MHz	15 MHz	20 MHz
License Sites	2500 $1667 \times 15 = 25005$	5000 $834 \times 15 = 12510$	7500 $556 \times 15 = 8340$	$ \begin{array}{r} 10000 \\ 417 \times 15 = 6255 \end{array} $
Microwave	$1667 \times 0.1 = 166.7$	$834 \times 0.1 = 83.4$	$556 \times 0.1 = 55.6$	$417 \times 0.1 = 41.7$
Total CAPEX OPEX/year	$ 27671.7 1667 \times 5 = 8335 $	$ \begin{array}{c} 17593.4 \\ 834 \times 5 = 4170 \end{array} $	$15895.6 \\ 556 \times 5 = 2780$	$ \begin{array}{r} 16296.7 \\ 417 \times 5 = 2085 \end{array} $

Rural Costs (k€) - Detailed Calculations

Component	Bandwidth			
	5 MHz	10 MHz	15 MHz	20 MHz
License	2 500	5 000	7 500	10 000
Sites	$17 \times 15 = 255$	$9 \times 15 = 135$	$6 \times 15 = 90$	$5 \times 15 = 75$
Microwave	$17 \times 0.1 = 1.7$	$9 \times 0.1 = 0.9$	$6 \times 0.1 = 0.6$	$5 \times 0.1 = 0.5$
Total CAPEX	2756.7	5 135.9	7590.6	10 075.5
OPEX/year	$17 \times 5 = 85$	$9 \times 5 = 45$	$6 \times 5 = 30$	$5 \times 5 = 25$

8 Conclusion

Key technical and economic insights:

• Urban Deployment:

- Cell radius: 156-349m (traffic-limited)

- Optimal bandwidth: 20MHz (€1.01B profit)

- BS power: -21dBm

• Rural Deployment:

- Cell radius: 4.54km (uplink-limited)

Only 5MHz viable (€2.7M profit)

- BS power: 12dBm

• Cross-cutting:

- Frequency reuse pattern: 1

- C/I ratio: 1.14 maintained

- Microwave backhaul adds 0.5-2% to CAPEX

This analysis demonstrates the critical need for environment-specific optimization in cellular network planning, balancing spectral efficiency with economic viability.