PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7 H01L 21/208, C01B 33/02

A1

(11) 国際公開番号

WO00/59014

(43) 国際公開日

2000年10月5日(05.10.00)

(21) 国際出願番号

PCT/JP00/01987

(22) 国際出願日

2000年3月29日(29.03.00)

(30) 優先権データ

特願平11/90311

1999年3月30日(30.03.99)

(71) 出願人(米国を除くすべての指定国について) セイコーエプソン株式会社

(SEIKO EPSON CORPORATION)[JP/JP]

〒163-0811 東京都新宿区西新宿2丁目4番1号 Tokyo, (JP) ジェイエスアール株式会社(JSR CORPORATION)[JP/JP]

〒104-0045 東京都中央区築地2丁目11番24号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

関 俊一(SEKI, Shunichi)[JP/JP]

下田達也(SHIMODA, Tatsuya)[JP/JP]

宮下 悟(MIYASHITA, Satoru)[JP/JP]

古沢昌宏(FURUSAWA, Masahiro)[JP/JP]

湯田坂一夫(YUDASAKA, Ichio)[JP/JP]

〒392-8502 長野県諏訪市大和3丁目3番5号

セイコーエプソン株式会社内 Nagano, (JP)

松木安生(MATSUKI, Yasuo)[JP/JP]

竹内安正(TAKEUCHI, Yasumasa)[JP/JP]

〒104-0045 東京都中央区築地2丁目11番24号

ジェイエスアール株式会社内 Tokyo, (JP)

(74) 代理人

Л

鈴木喜三郎,外(SUZUKI, Kisaburo et al.)

〒392-8502 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社 知的財産部内 Nagano, (JP)

(81) 指定国 CN, JP, KR, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)

添付公開書類

国際調査報告書

(54)Title: METHOD FOR FORMING A SILICON FILM AND INK COMPOSITION FOR INK JET

(54)発明の名称 シリコン膜形成方法およびインクジェット用インク組成物

(57) Abstract

A method for forming a silicon film which comprises discharging an ink composition (11) selectively onto a predetermined region of a substrate using an ink jet head (12) to form a pattern of a silicon precursor, and then subjecting the pattern to a treatment by heat and/or light to convert the silicon precursor to an amorphous silicon film or a poly-crystal silicon film. The method can be used for providing a silicon film pattern on a large area portion of a substrate with saving energy with a low cost.

シリコン前駆体を含有するインク組成物(11)をインクジェット ヘッド(12)により基板上の所定領域に選択的に吐出し、シリコン 前駆体のパターンを形成した後、熱及び/または光処理を施し、該シ リコン前駆体をアモルファス状のシリコン膜又は多結晶シリコン膜に 変換する。こうして、大面積上に、省エネルギー且つ低コストでシリ コン膜パターンを得る。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ首長国連邦 AG アンティグア AL アルバニア AM アルメニア AT オーストラリア AU オーストラリア AU オーストラリア AU オーストラリア BB ボルバドス BB バルバドス BA BB BB BF バルルン・ バルルン・ バギギガンジルグアゴス・ア ス・ア シ リ ボン・ア シ リ ボンーナリンルー フー ジー・ ア ガン・ ア カ ア ルル・ ア カ ア ルル・ RI BR BY CA CF CG 中国コスタ・リカ コキファ・リ キプロップ キアンツ ドンマーク

ドミニカ アルジェニカ リア エスインニン フィンン ファンド ノガ国 グレナダ グルジア GA GB GD GE DGGGGGG 日本 日本 ケニア キルギスタン

北朝维

40/LFC1加血型を PIAC y 2 PIAC y LC LI LK MA MC MD MG 共和国マリ

ポルトガル ルーマニア

スワジランド チャード トーゴー TTTTTTTUUUUVY -タジキスタン トルクメニスタン

明 細書

シリコン膜形成方法およびインクジェット用インク組成物

技術分野

本発明は、LSI、薄膜トランジスタ、及び感光体用途でのシリコン膜をインクジェット法でパターン形成するためのシリコン前駆体含有インク組成物およびインクジェット法によるシリコン膜形成方法に関する。

背景技術

従来、アモルファスシリコン膜やポリシリコン膜の形成方法としては、モノシランガスやジシランガスの熱CVD(Chemical Vapor Deposition)法やプラズマCVD、光CVD等が利用されており、一般的にはポリシリコンは熱CVD(J. Vac. Sci. Technology., 14巻1082頁(1977年)参照)で、またアモルファスシリコンはプラズマCVD(Solid State Com., 17巻1193頁(1975年)参照)が広く用いられており、薄膜トランジスターを有する液晶表示素子、太陽電池などの製造に利用されている。

しかしこれらのCVD法によるシリコン膜の形成においては、プロセス面では以下の点で更なる改良が待たれていた。①気相反応を用いるため気相でシリコンの粒子が発生するため装置の汚染や異物の発生による生産歩留まりが低い。②原料がガス状であるため、表面に凹凸のある基板上には均一膜厚のものが得られにくい。③膜の形成速度が遅いため生産性が低い。④プラズマCVD法においては複雑で高価な高周波発生装置や真空装置などが必要である。

また、材料面では毒性、反応性の高いガス状の水素化ケイ素を用いるため取り扱いに難点があるのみでなく、ガス状であるため密閉状の真空装置が必要である。一般にこれらの装置は大掛かりなもので装置自体が高価であるのみでなく、真空系やプラズマ系に多大のエネルギーを消費するため製品のコスト高に繋がっている。

近年、これに対して真空系を使わずに液体状の水素化ケイ素を塗布する方法が 提案されている。特開平 1 — 2 9 6 6 1 号公報にはガス状の原料を冷却した基板 上に液体化して吸着させ、化学的に活性名原子状の水素と反応させてシリコン系 の薄膜を形成する方法が開示されているが、以下のような問題点がある。①原料 の水素化ケイ素を気化と冷却を続けて行うため複雑な装置が必要になるのみでな く、膜厚の制御が困難である。

一方、固体状の水素化ケイ素ポリマーの例が英国特許GB-2077710A に報告されているが、溶媒に不溶なためコーティングによる膜を形成することが できない。

更に、太陽電池の製造を目的として特開平9-237927号公報にはポリシランの溶液を大面積基板に噴霧し塗布した後、熱分解してシリコン膜を遊離させる方法が開示されている。しかし、炭素を含有するケイ素化合物では、熱分解或いは紫外線照射による光分解では炭素が不純物として多量に残ってしまうため電気特性の優れたアモルファス或いは多結晶シリコン膜を得ることが困難である。

上記シリコン半導体膜は通常、周期律表の第3族元素や第5族元素でドーピングし、p型またはネn型の半導体として使用される。これらのドーピングは通常、シリコン膜を形成した後、熱拡散やイオン注入法により行われる。これらのドーピングは真空中で行われるため、プロセスコントロールが繁雑で、特に大型基板上に均一のドープされたシリコン膜を形成するのは困難であった。

これに対し既記述特開平9-237927号公報にはp型、n型の導電型を与えるアルキル化合物をポリシラン溶液に添加し塗布する方法或いはドーパント源を含有する雰囲気中でポリシラン溶液を塗布した膜を熱分解する方法が開示されている。しかし、前者ではポリシランとドーパント含有アルキル化合物の溶解性の違いから均一にドープされた膜が得られなかったり、炭素を含有しているため上述したように最終的に形成された膜に多量の炭素が不純物として残ってしまう。また、後者ではドープ量の制御が困難である。

そして、従来はシリコン膜のパターンを形成する場合には、上述したような方法で基板全体に形成したシリコン膜を形成した後、所望のパターンをフォトリソグラフィー、エッチング法により形成する方法が採用されている。しかしなが

PCT/JP00/01987

ら、大面積にわたってシリコン膜パターンを形成し、多数の素子を形成する場合 には、工程数も多く、高価な装置や多種の材料を使用し多大のエネルギーを消費 するために生産コストが高くなるという欠点があった。

3

発明の開示

本発明の目的は、特に大面積の基板にシリコン膜の所望のパターンを有するデバイスの製造において、従来の真空プロセス、フォトリソグラフィー、エッチング、などを行わずに、省エネルギーかつ低コストで安定的にシリコン膜の所望のパターンを形成するための材料となる組成物及びシリコン膜形成方法を提供することである。また、ホウ素もしくはリンでドーピングされたシリコン膜を形成するデバイスの製造において、溶液を用いてシリコン膜前駆体として変性ケイ素化合物からなる膜を形成した後、該シリコン前駆体膜を不活性雰囲気中で熱および/または光処理により半導体のシリコンに変換するとともにドーピングも同時に行うことができるシリコン前駆体含有組成物およびシリコン膜(パターン)形成方法を提供するものである。

本発明によれば、ケイ素化合物を含有するインク組成物をインクジェット法により基板上にパターン塗布することを特徴とするシリコン膜形成方法が提供される。

更に本発明者らは、上記の目的を達成するために鋭意研究した結果、下記一般式(I)又は(II)で表されるケイ素化合物を含むインク材料組成物が優れた材料安定性、吐出安定性およびインクジェット法による塗布均一性を有し、さらに該溶液によるシリコン前駆体塗膜を熱および/または光処理することにより溶媒を取り込むことなく良好なシリコン膜に変換し、所望のシリコン膜のパターンを基板上に形成できることを見出した。

即ち、本発明によれば、下記一般式(I)又は(II)で表わされるケイ素化合物を含有する組成物をインクジェット法により基板上にパターン塗布することを特徴とするシリコン膜形成方法が提供される。

(ここで、nは3以上の整数を表しmはnまたは2n-2または2nまたは2n

+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)

 $Si_aX_bY_c$ (II)

PCT/JP00/01987

(ここで、Xは水素原子および/またはハロゲン原子を表し、Yはホウ素原子またはリン原子を表し、aは 3以上の整数を表し、bはa以上で 2 a + c + 2以下の整数を表し、c は 1以上でa以下の整数を表す)

また、一般式(I)で表わされるケイ素化合物及び一般式(II)で表わされるケイ素化合物を混合して用いることが好ましい。

一方、本発明によれば、上記一般式(I)で表わされるケイ素化合物、及び/ 又は上記一般式(II)で表わされるケイ素化合物と該ケイ素化合物を溶解するための溶媒からなり、該溶液が特定の粘度、表面張力、固形分濃度を有するインクジェット用のケイ素化合物含有溶液組成物が提供される。

図面の簡単な説明

第1図は、実施例1に係るインクジェット法によるシリコン薄膜のパターン形成工程を示す図である。

第1図は、実施例2に係るインクジェット法によるシリコン薄膜のバターン形成工程を示す図である。

第3図は、実施例3に係るインクジェット法によるp型シリコン薄膜のパターン形成工程を示す図である。

第4図は、実施例4に係るインクジェット法によるn型シリコン薄膜のパターン形成工程を示す図である。

第5図は、実施例5に係るインクジェット法によるシリコン薄膜のパターン形成工程を示す図である。

第6図は、実施例6に係るインクジェット法によるn型およびp型シリコン薄膜のパターン形成工程を示す図である。

第7図は、実施例7に係るインクジェット法によるシリコン薄膜のパターン形成工程を示す図である。

発明を実施するための最良の形態

以下、本発明の実施の形態を詳細に説明する。

本発明にシリコン膜の形成方法において使用されるケイ素化合物は、好ましくは、

一般式(I) Si_nX_n

(ここで、nは3以上の整数を表しmはnまたは2 n - 2または2 n + 2

一般式(II)SiaXbY。

これら一般式(I)、(II)において、nは 3以上の整数であり、a+cは 4以上の整数であるが、熱力学的安定性、溶解性、精製の容易性などの点で、一般式(I)については、nが $5\sim2$ 0程度、特に 5 あるいは 6 の環状ケイ素化合物が、一般式(II)については、a+cが $5\sim2$ 0程度、特に 5 あるいは 6 のケイ素化合物が好ましい。5 より小さい場合にはケイ素化合物自体が環による歪みにより不安定になるため取り扱いに難点が生じる。またn およびa+c が 2 0 より大きい場合にはケイ素化合物の凝集力に起因する溶解性の低下が認められ使用する溶媒の選択が狭まる。

また、本発明に使用するケイ素化合物の一般式(I)、(II)において、Xは水素原子および/またはハロゲン原子である。これらのケイ素化合物はシリコン膜への前駆体化合物であるため、熱および/または光の処理で最終的にはアモルファス或いは多結晶状シリコンにする必要があり、ケイ素ー水素結合、ケイ素ーハロゲン結合は上記の処理で開裂し新たにケイ素ーケイ素結合が生じ最終的にシリコンへと変化されるものである。ハロゲン原子としては、通常フッ素原子、塩素原子、臭素原子、沃素原子であり、上記結合開裂の点で塩素、臭素が好ましい。Xは水素原子単独またはハロゲン原子単独でもよいし、水素原子とハロゲン

原子の総和が一般式(I)または(II)を満たすような部分ハロゲン化ケイ素化合物でもよい。

本発明において使用される一般式(I)SinXiで表されるケイ素化合物の例 を示す。まず、m=2n+2である化合物の具体例としては、トリシラン、テト ラシラン、ペンタシラン、ヘキサシラン、ヘプタシランなどの水素化シラン、ま たこれらの水素原子の一部またはすべてをハロゲン原子に置換したものが挙げら れる。m=2nである具体例としては、シクロトリシラン、シクロテトラシラ ン、シクロペンタシラン、シリルシクロペンタシラン、シクロヘキサシラン、シ リルシクロヘキサシラン、シクロヘプタシラン、などの一個の環系を有する水素 化ケイ素化合物およびこれらの水素原子の一部またはすべてをハロゲン原子に置 換したヘキサクロルシクロトリシラン、トリクロルシクロトリシラン、オクタク ロルシクロテトラシラン、テトラクロルシクロテトラシラン、デカクロルシクロ ペンタシラン、ペンタクロルシクロペンタシラン、ドデカクロルシクロヘキサシ ラン、ヘキサクロルシクロヘキサシラン、テトラデカクロルシクロヘブタシラ ン、ヘプタクロルシクロヘプタシラン、ヘキサブロモシクロトリシラン、トリブ ロモシクロトリシラン、ペンタブロモシクロトリシラン、テトラブロモシクロト リシラン、オクタブロモシクロテトラシラン、テトラブロモシクロテトラシラ ン、デカブロモシクロペンタシラン、ペンタブロモシクロペンタシラン、ドデカ ブロモシクロヘキサシラン、ヘキサブロモシクロヘキサシラン、テトラデカブロ モシクロヘプタシラン、ヘプタブロモシクロヘプタシランなどのハロゲン化環状 ケイ素化合物が挙げられる。m=2n-2である化合物の具体例としては、1、 1'ーピスシクロプタシラン、1、1'ーピスシクロペンタシラン、1、1'ー ピスシクロヘキサシラン、1、1'ーピスシクロヘプタシラン、1、1'ーシク ロプタシリルシクロペンタシラン、1、1'ーシクロプタシリルシクロヘキサシ ラン、1、1'ーシクロブタシリルシクロヘプタシラン、1、1'ーシクロペン タシリルシクロヘキサシラン、1、1'ーシクロペンタシリルシクロヘプタシラ ン、 1 、 1 ' ーシクロヘキサシリルシクロヘプタシラン、スピロ [2 、 2] ペン タシラン、スピロ[3、3]ヘプタタシラン、スピロ[4、4]ノナシラン、ス $\mathsf{L}^{\mathsf{L}} \mathsf{D} \left[4 \times 5 \right] \mathcal{F}$ カシラン、ス $\mathsf{L}^{\mathsf{L}} \mathsf{D} \left[4 \times 6 \right]$ ウンデカシラン、ス $\mathsf{L}^{\mathsf{L}} \mathsf{D} \left[5 \right]$

5] ウンデカシラン、スピロ [5,6] ドデカシラン、スピロ [6,6] トリデカシランなどの 2 個の環系を有する水素化ケイ素化合物およびこれらの水素原子の一部またはすべてをS i H $_3$ 基やハロゲン原子に置換したケイ素化合物が挙げられる。また、m=n である化合物の具体例としては下記式の化合物 1 ~化合物5 のような多環系を有する水素化ケイ素化合物およびこれらの水素原子の一部またはすべてを部分的にS i H $_3$ 基やハロゲン原子に置換したケイ素化合物を挙げられる。これら化合物は2 種以上を混合して使用することができる。

一方、本発明において使用される一般式(II) $Si_aX_bY_c$ で表わされる化合物の具体例としては、下記式の化合物 6 ~化合物 2 7 で示す変性シラン化合物を挙げることができる。

$$Cl_2Si$$
 Cl_2Si Cl_2Si $SiCl_2$ Cl_2Si BH Cl_2Si Si Cl_2Si BH Cl_2Si $Cl_$

化合物 19

化合物20

化合物21

化合物23

化合物24

$$H_3Si - \left(SiH_2 - \right)_m BH_2$$
 $Cl_3Si - \left(Si - \right)_m BCl_2$

化合物26

$$Cl_3Si - Cl_2 \longrightarrow_m BCl_2$$

化合物 2 7

ここで、化合物8、9、10、18、19および20中のnは0以上の整数を表し、化合物26および27中のmは2以上の整数を表す。なお、これらの式ではホウ素による変性シラン化合物のみを挙げたが、リンによる変性シラン化合物としてもホウ素による変性シラン化合物と同様の骨格を有する変性シラン化合物を挙げることができる。

本発明では、上述したような変性シラン化合物を溶液中のケイ素化合物として単独で使用してもよいし、変性されていない前記シラン化合物と混合して使用することができる。変性シラン化合物と変性されていないシラン化合物との混合割合はホウ素あるいはリンの変性元素の含有率により異なるが、ケイ素原子に対して変性元素が1ppb~25%程度である。

本発明では、上述したようなケイ素化合物を溶媒に溶解した溶液をインクジェット法に適用する。本発明で使用する溶媒は室温での蒸気圧が0.001~50mmHgであることが好ましい。蒸気圧が50mmHgより高い場合には、インクジェット法で液滴を吐出する際に乾燥によるノズル詰まりが起こりやすく、安定な吐出が困難となることがある。一方、蒸気圧が0.001mmHgより低い場合には吐出したインクの乾燥が遅くなりケイ素化合物に溶媒が残留し易くなり、後工程の熱および/または光処理後にも良質のシリコン膜が得られ難いことがある。

本発明で使用する溶媒としては、ケイ素化合物を溶解し溶媒と反応しないものであれば特に限定されないが、nーヘブタン、nーオクタン、デカン、トルエン、キシレン、シメン、デュレン、インデン、ジペンテン、テトラヒドロナフタレン、デカヒドロナフタレン、シクロヘキシルベンゼンなどの炭化水素系溶媒の他、エチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジェチルエーテル、ジエチレングリコールメチルエチルエーテル、リニチレングリコールジェチルエーテル、ジェチレングリコールメチルエチルエーテル、1,2ージメトキシエタン、ビス(2ーメトキシエチル)エーテル、pージオキサンなどのエーテル系溶、さらにプロピレンカーボネート、アーブチロラクトン、Nーメチルー2ーピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサノンなどの極性溶媒を挙げることができる。

これらの内、ケイ素化合物の溶解性と該溶液の安定性の点で炭化水素系溶媒、エーテル系溶媒が好ましく、さらに好ましい溶媒としては炭化水素系溶媒を挙げることができる。これらの溶媒は、単独でも、或いは2種以上の混合物としても使用できる。特に炭化水素系溶媒は、ケイ素化合物の溶解性を向上させ、後述する熱処理や光処理時のケイ素化合物の残留を抑制する観点で好適である。

本発明では、インクジェット法に適用されるインク組成物(溶液)は、溶質として上記ケイ素化合物および/または変性ケイ素化合物との混合物と、また溶媒として上記例示のものを混合して調製されるが、溶質の濃度は所望のシリコン膜厚に応じて調製することができる。好ましくは、0.01~10wt%とする。0.01%より薄い場合は、均一な塗布膜が得られず、必要膜厚を得るためには吐出回数を増やす必要がある。10%より濃い場合は粘度が高くなり、吐出に影響を与える。

これらの溶液は目的の機能を損なわない範囲で必要に応じてフッ素系、シリコーン系、ノニオン系などの表面張力調節材を微量添加することができる。これらの溶液は目的の機能を損なわない範囲で必要に応じてフッ素系、シリコーン系、ノニオン系などの表面張力調節材を微量添加することができる。このノニオン系表面張力調節材は、溶液の塗布対象物への濡れ性を良好化し、塗布した膜のレベルリング性を改良し、塗膜のぶつぶつの発生、ゆず肌の発生などを防止しに役立つものである。

かかる非イオン性界面活性剤としては、フッ化アルキル基もしくはパーフルオロアルキル基を有するフッ素系界面活性剤、又はオキシアルキル基を有するポリエーテルアルキル系界面活性剤を挙げることができる。前記フッ素系界面活性剤としては、 $C_9F_{19}CONHC_{12}H_{25}$ 、 $C_8F_{17}SO_2NH-(C_2H_4O)_6$ H、 $C_9F_{17}O($ プルロニックL $-35)C_9F_{17}$ 、 $C_9F_{17}O($ プルロニックP $-84)C_9F_{17}$ 、 $C_9F_7O($ テトロニック $-704)(C_9F_{17})_2$ などを挙げることができる。(ここで、プルロニックL-35:旭電化工業(株)製、ボリオキシプロピレンーボリオキシエチレンブロック共重合体、平均分子量 1,900; プルロニックP-84:旭電化工業(株)製、ボリオキシプロピレンーボリオキシエチレンブロック共重合体、平均分子量 1,

これらのフッ素系界面活性剤の具体例としては、エフトップEF301、同EF303、同EF352 (新秋田化成 (株) 製)、メガファックF171、同F173 (大日本インキ (株) 製)、アサヒガードAG710 (旭硝子 (株) 製)、フロラードFC-170C、同FC430、同FC431 (住友スリーエム (株) 製)、サーフロンS-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106 (旭硝子 (株) 製)、BM-1000、同1100 (B. MーChemie社製)、Schsego-F1uor (Schwegmann社製)などを挙げることがでる。

又ポリエーテルアルキル系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアリルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、オキシエチレンオキシプロピレンブロックポリマーなどを挙げることができる。

これらのポリエーテルアルキル系界面活性剤の具体例としては、エマルゲン105、同430、同810、同920、レオドールSP-40S、同TW-L120、エマノール3199、同4110、エキセルP-40S、ブリッジ30、同52、同72、同92、アラッセル20、エマゾール320、ツィーン20、同60、マージ45(いずれも(株)花王製)、ノニボール55(三洋化成(株)製)などを挙げることができる。上記以外の非イオン性界面活性剤としては、例えばポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリアルキレンオキサイドブロック共重合体などがあり、具体的にはケミスタット2500(三洋化成工業(株)製)、SN-EX9228(サンノブコ(株)製)、ノナール530(東邦化学工業(株)製)などを挙げることができる。

かくして調製したケイ素化合物含有溶液の粘度は $1\sim50\,\mathrm{mPa\cdot s}$ の範囲に入ることが好ましい。粘度が $1\,\mathrm{mPa\cdot s}$ より小さい場合にはインクジェット法におけるノズル周辺部がインクの流出により汚染され易く、また粘度が $50\,\mathrm{mPa\cdot s}$ a・sより大きい場合は、ノズル孔での目詰まり頻度が高くなり円滑な液滴の吐出が困難となり得る。

さらに、かくして調製したケイ素化合物含有溶液の表面張力は $20\sim70\,\mathrm{dy}$ $\mathrm{n/cm}$ の範囲に入るものとすることが好ましい。表面張力が $20\,\mathrm{dyn/cm}$ 未満であると、インク組成物のノズル面に対する濡れ性が増大するため飛行曲がりが生じ易くなる。また、 $70\,\mathrm{dyn/cm}$ を超えるとノズル先端でのメニスカスの形状が安定しないためインク組成物の吐出量、吐出タイミングの制御が困難になる。

本発明で溶液の供給に使用するインクジェット方式の液滴吐出装置は任意の液滴を一定量吐出できるものであれば如何なる機構のものでもよく、特に数十ng程度の液滴を形成、吐出できる圧電素子を用いたインクジェット方式、ヒーターの熱エネルギーを利用して気泡を発生させるバブルジェット方式などいずれの方式のものでも構わない。さらに必要に応じてスピンコート、ディップコート、スプレーコート、ロールコート、カーテンコート等の一般的な塗布方式を組み合わせることもできる。上記インクジェット方式でシリコン前駆体を含有するインク組成物を塗布するときの雰囲気は通常アルゴン、ヘリウム、窒素などの不活性ガス中であり、温度はインク材料の特性により室温から100℃程度まで適宜選ぶことができる。

本発明において、インクジェット方式でケイ素化合物含有溶液の吐出に使用する基板については特に限定されないが、通常の石英、ホウ珪酸ガラス、ソーダガラスの他、ITOなどの透明電極、金、銀、銅、ニッケル、チタン、アルミニウム、タングステンなどの金属基板、さらにこれらの金属を表面に有するガラス、プラスチック基板などを使用することができる。

本発明では、インクジェット法により形成されたケイ素化合物溶液の塗膜は、 熱処理および/または光処理に供される。これらの処理を行う場合の雰囲気とし ては、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気中で行うが必要に応じ て水素などの還元性ガスをこれらに少量混合して使用することもできる。熱処理は、インク (溶液)を塗布後、溶媒の除去と金属シリコン膜への変換を目的に行うものである。乾燥処理は溶媒の沸点 (蒸気圧)、圧力およびケイ素化合物の熱的挙動により適宜定めれば良く、特に限定されるものではない。金属シリコン膜への変換は通常アルゴン雰囲気あるいは水素を含有したアルゴン中で100~800℃程度で、好ましくは200~600℃程度で、さらに好ましくは300℃~500℃程度で処理され、一般に到達温度が約550℃以下の温度ではアモルファス状、それ以上の温度では多結晶状のシリコン膜が得られる。到達温度が300℃未満の場合は、ケイ素化合物の熱分解が十分に進行せず、十分な厚さのシリコン膜を形成できない場合がある。多結晶状のシリコン膜を得たい場合は、上記で得られたアモルファス状シリコン膜にレーザーを照射して多結晶シリコン膜に変換することができる。上記レーザーを照射する場合の雰囲気も、ヘリウム、アルゴンなどの不活性ガス、もしくはそれらに水素などの還元性ガスを混入したものを用いることがが好ましい。

本発明では、インクジェット法により形成したケイ素化合物の塗膜は、塗膜中の溶媒を除去する前または/および溶媒を除去した後に、不活性ガス雰囲気中で光処理に供されることも可能である。溶媒可溶性のケイ素化合物は本光処理による開環反応により溶媒不溶性の強靱な塗膜になるだけでなく、光処理の後で行われる熱処理または/および光処理と同時に行われる熱処理によって光学的、電気的特性に優れたシリコン塗膜に変換される。

本発明で使用する光の光源としては、低圧あるいは高圧の水銀ランプ、重水素ランプあるいはアルゴン、クリプトン、キセノン等の希ガスの放電光の他、YAGレーザー、アルゴンレーザー、炭酸ガスレーザー、XeF、XeC1、XeBr、KrF、KrC1、ArF、ArC1などのエキシマレーザーなどを光源として使用することができる。これらの光源は一般には、10~5000Wの出力のものが用いられるが、通常100~1000Wで十分である。これらの光源の波長はケイ素化合物および光開環ケイ素化合物塗膜が多少でも吸収するものであれば特に限定されないが通常170mm~600mmである。また、多結晶状シリコン膜への変換効率の点でレーザー光の使用が特に好ましい。これらの光処理

時の温度は通常室温~500℃であり、得られるシリコン膜の半導体特性に応じて適宜選ぶことができる。

以下に、本発明を下記実施例により詳細に説明するが、本発明はこれら実施例 に限定されるものではない。

尚、これら実施例においてインク組成物の粘度および表面張力は20℃での値である。

(実施例1)

シクロペンタシラン 0.05 gをデカヒドロナフタレン7g、テトラヒドロナ フタレン3gの混合溶媒に溶かしたケイ素化合物含有溶液 (インク) を調製し た。この溶液の粘度は3.2mPa·s、表面張力は 33dyn/cmであっ た。第1図は本実施例におけるインクジェット法によるシリコン薄膜のパターン 形成を示したものである。上記ケイ素化合物含有インク11を圧電素子からなる インクジェットヘッド12を用いてアルゴン雰囲気下で石英基板13にパターン 塗布を行った。この基板をアルゴン雰囲気中で200℃で乾燥した後、500℃ で熱分解を行ったところ、第1図(b)および(c)に示した膜厚35nmの金 属シリコン膜(直径50 μ mの膜領域)15のパターンが得られた。(b)は断 面図であり、(c)は(b)を上から見た図である。このシリコン膜のESCA による表面組成分析をおこなったところケイ素原子のみを検出した。さらにこの シリコン膜のラマンスペクトルによる結晶状態を測定したところ、100%アモ ルファス状態であった。さらにこのアモルファス状シリコン膜にアルゴン雰囲気 中で波長308nmのエキシマレーザーをエネルギー密度300mJ/cm²で 照射し、第1図(d)に示した多結晶シリコン膜(直径50μmの膜領域)16 のパターンを得た。ラマンスペクトルの結果から結晶化率は80%であった。

(実施例2)

へキサクロルシクロへキシラン 0.2 gをシクロへキシルベンゼン 5 g、シメン 5 gの混合溶媒に溶かしたケイ素化合物含有溶液 (インク)を調製した。この溶液の粘度は 4.8 m P a・s、表面張力は 3 2 d y n / c m であった。第 2 図は本実施例におけるインクジェット法によるシリコン薄膜のパターン形成を示したものである。上記ケイ素化合物含有インク 2 1 を圧電素子からなるインクジェ

ットヘッド22を用いてアルゴン雰囲気下で石英基板23にパターン塗布を行った。この基板を5%水素を含むアルゴン雰囲気中で250℃で乾燥した後、さらに500Wの高圧水銀ランプで30分間紫外線を照射しながら450℃にて熱処理を行ったところ、第2図(b)および(c)に示した膜厚80nmの金属シリコン膜(50×50μmの膜領域)25のパターンが得られた。このシリコン膜をESCAによる表面組成分析を行ったところケイ素原子のみを検出した。さらにこのシリコン膜のラマンスペクトルによる結晶状態を測定したところ、100%アモルファス状態であった。このアモルファス状シリコン膜をアルゴン/水素雰囲気中でさらに800℃の熱処理を行い、第2図(d)に示した結晶化率50%の多結晶シリコン膜(50×50μmの膜領域)26のパターンを得た。(実施例3)

1-ボラヘキサプリズマン(化合物11)0.1gをテトラヒドロナフタレン 7g、シクロヘキシルベンゼン3gの混合溶媒に溶かしたケイ素化合物含有溶液 (インク)を調製した。この溶液の粘度は4.2mPa・s、表面張力は36d yn/cmであった。第3図は本実施例におけるインクジェット法によるシリコ ン薄膜のパターン形成を示したものである。上記ケイ素化合物含有インク31を 圧電素子からなるインクジェットヘッド32を用いてアルゴン雰囲気下で石英基 板33にパターン塗布を行った。この基板をアルゴン雰囲気中で250℃で乾燥 した後、500℃で熱分解を行ったところ、第3図(b)および(c)に示した 膜厚70nmの金属シリコン膜(直径50μmの膜領域)35のパターンが得ら れた。このシリコン膜のESCAによる表面組成分析をおこなったところケイ素 原子とホウ素原子のみを検出し、その比は5:1であった。このシリコン膜のラ マンスペクトルによる結晶状態を測定したところ、100%アモルファス状態で あった。さらにこのアモルファス状シリコン膜にアルゴン雰囲気中で波長308 nmのエキシマレーザーをエネルギー密度350mJ/ cm^2 で照射し、第3図 (d)に示した多結晶シリコン膜(直径50μmの膜領域)36のパターンを得 た。ラマンスペクトルの結果から結晶化率は75%であった。

(実施例4)

1-ホスホシクロペンタシラン0.05gをデカヒドロナフタレン8g、シク

ロヘキシルベンゼン 2 gの混合溶媒に溶かしたケイ素化合物含有溶液 $(\text{4.0mPa} \cdot \text{s} \cdot \text{s}$

図4は本実施例におけるインクジェット法によるシリコン薄膜のパターン形成を示したものである。上記ケイ素化合物含有インク41を圧電素子からなるインクジェットへッド42を用いてアルゴン雰囲気下で石英基板43にパターン塗布を行った。この基板を5%水素を含むアルゴン雰囲気中で150℃で乾燥させながら、同時に500Wの高圧水銀ランプで10分間紫外線を照射したところ、開環反応により溶媒不溶性のポリシランの強靱な塗膜が形成された。この塗膜をさらにアルゴン雰囲気中で500℃で熱分解を行い、第4図(b)および(c)に示した膜厚25nmの金属シリコン膜(50×50μmの膜領域)45のパターンが得られた。このシリコン膜をESCAによる表面組成分析を行ったところケイ素原子とリン原子のみを検出し、その比は5:1であった。このシリコン膜のラマンスベクトルによる結晶状態を測定したところ、100%アモルファス状態であった。さらにこのアモルファス状シリコン膜にアルゴン雰囲気中で波長308nmのエキシマレーザーをエネルギー密度300mJ/cm²で照射し、第4図(d)に示した多結晶シリコン膜(50×50μmの膜領域)46のパターンを得た。ラマンスベクトルの結果から結晶化率は75%であった。

(実施例5)

シリルシクロベンタシラン 0.5gをデカヒドロナフタレン 5g、テトラヒドロナフタレン 5gの混合溶媒に溶かしたケイ素化合物含有溶液(インク)を調製した。この溶液の粘度は 5.2m Pa·s、表面張力は 34d y n/c mであった。第 5 図は本実施例におけるインクジェット法によるシリコン薄膜のパターン形成を示したものである。上記ケイ素化合物含有インク 51 を圧電素子からなるインクジェットへッド 52 を用いてアルゴン雰囲気下でポリイミドフィルム基板 53 にパターン塗布を行った。この基板をアルゴン雰囲気中で 200 で乾燥した後、 500 Wの高圧水銀灯を照射しなが 5350 で光分解と熱分解を行ったところ、第 5 図(b)に示した膜厚 80 n mの金属シリコン膜(直径 70 μ mの膜領域) 55 のパターンを得た。このシリコン膜を E S E C A による表面組成分

析をおこなったところケイ素原子のみを検出した。さこのシリコン膜のラマンスペクトルによる結晶状態を測定したところ、100%アモルファス状態であった。

(実施例6)

1-ボラシクロベンタシラン 0.01 gとシクロベンタシラン 0.1 gをテト ラヒドロナフタレン5g、シクロヘキシルベンゼン5gの混合溶媒に溶かしたケ イ素化合物 (p型) 含有溶液 (インク) を調製した。この溶液の粘度は 3.8 mPa・s、表面張力は35dyn/cmであった。次に、1-ホスホシクロペ ンタシラン 0. 01gとシクロペンタシラン 0. 1gをテトラヒドロナフタレン 5g、シクロヘキシルベンゼン5gの混合溶媒に溶かしたケイ素化合物(n型) 含有溶液(インク)を調製した。この溶液の粘度は 3.7mPa・s、表面張 力は36dyn/cmであった。第6図は本実施例におけるインクジェット法に よるn型およびp型シリコン薄膜のパターン形成を示したものである。ケイ素化 合物(n型)含有インク61ならびにケイ素化合物(p型)含有インク64を圧 電素子からなるインクジェットヘッド62を用いてアルゴン雰囲気下で石英基板 63にパターン塗布を行った。この基板を5%水素を含むアルゴン雰囲気中で2 50℃で乾燥した後、500℃で熱分解を行い、第6図(b)および(c)に示 したn型シリコン膜 (50×50 μ mの膜領域) 25n、p型シリコン膜 (50 \times 50 μ mの膜領域)25pのパターンを得た。このシリコン膜をESCAによ る表面組成分析を行ったところn型においてはケイ素原子とリン原子の比が5 0:1、p型においてはケイ素原子とリン原子の比が50:1であった。このシ リコン膜のラマンスペクトルによる結晶状態を測定したところ、100%アモル ファス状態であった。さらにこのアモルファス状シリコン膜にアルゴン雰囲気中 で波長308nmのエキシマレーザーをエネルギー密度320mJ/cm2で照 射し、第6図(d)に示したn型およびp型多結晶シリコン膜($50 \times 50 \mu m$ の膜領域)のパターン(26nおよび26p)を得た。ラマンスペクトルの結果 から結晶化率は75%であった。

(実施例7)

オクタシラキュバン (化合物2) 0. 05 gをデカヒドロナフタレン5 g、テ

トラヒドロナフタレン5gの混合溶媒に溶かしたケイ素化合物含有溶液 (イン ク) を調製した。この溶液の粘度は5.5mPa·s、表面張力は 34dyn /cmであった。第7図は本実施例におけるインクジェット法によるシリコン薄 膜のパターン形成を示したものである。上記ケイ素化合物含有インク71を圧電 素子からなるインクジェットヘッド72を用いて水素3%含有アルゴン雰囲気下 で石英基板73にパターン塗布を行った。この基板を基板温度は室温のまま水素 3%含有アルゴン雰囲気下で500Wの高圧水銀灯を5分間照射した。その結 果、溶剤不溶のポリヒドロシランの膜が形成された。この膜を引き続き水素3% 含有アルゴン雰囲気下で500℃で熱分解を行ったところ、第7図(b)および (c) に示した膜厚35nmの金属シリコン膜(直径50μmの膜領域)75の パターンが得られた。(b)は断面図であり、(c)は(b)を上から見た図で ある。このシリコン膜のESCAによる表面組成分析をおこなったところケイ素 原子のみを検出した。さらにこのシリコン膜のラマンスペクトルによる結晶状態 を測定したところ、100%アモルファス状態であった。さらにこのアモルファ ス状シリコン膜にアルゴン雰囲気中で波長308nmのエキシマレーザーをエネ ルギー密度 $300 \, \text{mJ/cm}^2$ で照射し、第7図(d)に示した多結晶シリコン 膜(直径50μmの膜領域)76のパターンを得た。ラマンスペクトルの結果か ら結晶化率は80%であった。

(実施例8)

実施例7と同じケイ素化合物含有溶液を調製し、圧電素子からなるインクジェットへッドを用いて水素3%含有アルゴン雰囲気下で石英基板にパターン塗布を行った。この基板を水素3%含有アルゴン雰囲気下で150℃で乾燥しながら、500Wの高圧水銀灯を5分間照射した。その結果、溶剤不溶のポリヒドロシランの膜が形成された。この膜を実施例7と同じ熱分解を行ったところ、実施例7と同様のアモルファス状金属シリコン膜パターンが得られた。さらにこのアモルファス状シリコン膜に大気中で実施例7と同じ波長とエネルギー密度のエキシマレーザーを照射したところ、第7図(d)に示した多結晶シリコン膜(直径50μmの膜領域)76のパターンを得た。ラマンスペクトルの結果から結晶化率は60%であった。

以上詳述したように本発明によれば、シリコン前駆体材料を含有する組成物をインクジェット法でパターン塗布し、熱および/または光のエネルギーにより、従来のシリコン膜形成方法とは異なる新しい液相プロセスで、電子材料として所望のシリコン膜(パターン)を形成することができる。

産業上の利用可能性

本発明では、従来のCVD法と異なりシリコン膜形成時に粉末の発生を防止でき、大掛かりな真空プロセスを用いないので、高価な装置を必要としないのみならず大面積の基板上にも容易にかつ必要最低限量の材料で成膜できる。さらにホトリソグラフィー・エッチングのプロセスを経ることなくシリコン膜パターンを形成することができるので、シリコン膜を有するLSI、薄膜トランジスター、光電変換装置、及び感光体などの半導体デバイスを低コストかつ省エネルギープロセスで製造することが可能になる。

請求の範囲

- (1)ケイ素化合物を含有するインク組成物をインクジェット法により基板上に パターン塗布することを特徴とするシリコン膜形成方法。
- (2) 前記インク組成物の塗布を不活性雰囲気中でおこなうことを特徴とする請求の範囲第1項記載のシリコン膜形成方法。
- (3) 基板上にインクジェット法により前記ケイ素化合物を含有するインク組成物を塗布した後、該組成物の溶媒を除去する乾燥工程と該塗布膜内で熱分解および/または光分解する工程を経ることを特徴とする請求の範囲第1項又は第2項記載のシリコン膜形成方法。
- (4)前記熱および/または光処理により形成されたシリコン膜を更に、レーザー照射処理することによりアモルファスから多結晶状シリコン膜に変換する工程を含むことを特徴とする請求の範囲第3項記載のシリコン膜形成方法。
- (5)前記ケイ素化合物が下記一般式(I)で表されるケイ素化合物であることを特徴とする請求の範囲第1項記載のシリコン膜形成方法。

 Si_nX_n ····· (I)

(ここで、nは3以上の整数を表しmはnまたは2n-2または2nまたは2n+2の整数を表し、Xは水素原子および/またはNロゲン原子を表す)

(6) 前記ケイ素化合物が一般式(II) で表されるケイ素化合物であることを特徴とする請求の範囲第1項記載のシリコン膜形成方法。

 $Si_aX_bY_c$ (II)

(7) 前記ケイ素化合物として下記一般式(I)で表されるケイ素化合物及び下記一般式(II)で表わされるケイ素化合物を含有する組成物を用いることを特徴とする請求の範囲第1項記載のシリコン膜形成方法。

 Si_nX_n ····· (I)

(ここで、nは3以上の整数を表しmはnまたは2n-2または2nまたは2n

+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)

 $Si_aX_bY_c$ ····· (II)

(こで、Xは水素原子および/またはハロゲン原子を表し、Yはホウ素原子またはリン原子を表し、aは 3以上の整数を表し、bはa以上で2 a + c + 2以下の整数を表し、cは1以上でa以下の整数を表す)

- (8) 前記一般式(I) において、nが5以上で20以下であることを特徴とする請求の範囲第5項又は第7項記載のシリコン膜形成方法。
- (9) 前記一般式(II) において、a+cが5以上で20以下であることを特徴とする請求の範囲第6項又は第7項記載のシリコン膜形成方法。
- (10) 前記組成物において、前記ケイ素化合物を蒸気圧が $0.001\sim50m$ mHg(室温)の少なくとも一つの溶媒に溶解していることを特徴とする請求の範囲第1項乃至第9項のいずれかに記載のシリコン膜形成方法。
- (11)前記溶媒が炭化水素系溶媒であることを特徴とする請求の範囲第10項 記載のシリコン膜形成方法。
- (12) 前記組成物における前記ケイ素化合物の濃度が $0.01\sim10$ wt%であることを特徴とする請求の範囲第1項乃至第11項のいずれかに記載のシリコン膜形成方法。
- (13) 前記組成物の粘度が $1\sim50$ mPa·s、表面張力が $20\sim70$ dyn/cmであることを特徴とする請求の範囲第1 項乃至第12 項のいずれかに記載のシリコン膜形成方法。
- (14) 下記一般式 (I) で表されるケイ素化合物を含有することを特徴とするシリコン膜を形成するためのインクジェット用インク組成物。

 Si_nX_{\bullet} ···· (I)

(ここで、nは3以上の整数を表しmはnまたは2n-2または2nまたは2n+2の整数を表し、Xは水素原子および/またはNロゲン原子を表す)

(15)下記一般式 (II) で表されるケイ素化合物を含有することを特徴とするシリコン膜を形成するためのインクジェット用インク組成物。

 $Si_{\bullet}X_{b}Y_{c}$ ····· (II)

(こで、Xは水素原子および/またはハロゲン原子を表し、Yはホウ素原子また

(16)下記一般式(I)で表されるケイ素化合物及び下記一般式(II)で表わされるケイ素化合物を含有することを特徴とするシリコン膜を形成するためのインクジェット用インク組成物。

 Si_nX_n ···· (I)

(ここで、nは3以上の整数を表しmはnまたは2n-2または2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)

 $Si_aX_bY_c$ (II)

(こで、Xは水素原子および/またはハロゲン原子を表し、Yはホウ素原子またはリン原子を表し、 α は 3以上の整数を表し、 α は 3以上の整数を表し、 α 0 とは 1以上で α 3以下の整数を表す)

- (17) 前記一般式(I) において、nが5以上で20以下であることを特徴とする請求の範囲第14項又は16記載のインク組成物。
- (18) 前記一般式 (II) において、a+cが5または6であることを特徴とする請求の範囲第15項又は第16項記載のインク組成物。
- (19)前記ケイ素化合物を蒸気圧が0.001~50mmHg(室温)の少なくとも一つの溶媒に溶解していることを特徴とする請求の範囲第14乃至第18項のいずれかに記載のインク組成物。
- (20) 前記溶媒が炭化水素系溶媒であることを特徴とする請求の範囲第19項 記載のインク組成物。
- (.21) 前記ケイ素化合物の濃度が0.01~10wt%であることを特徴とする請求の範囲第14項乃至第20項のいずれかに記載のインク組成物。
- (22) 粘度が $1\sim50$ mPa・s、表面張力が $20\sim70$ dyn/cmであることを特徴とする請求の範囲第14 項乃至第21 項のいずれかに記載のインク組成物。

THIS PAGE ELEMENT (USPTO)

第 1 図

第 2 図

第 3 図

第 4 図

第 5 図

第 6 図

第 7 図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/01987

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H01L21/208, C01B33/02									
Acco	According to International Patent Classification (IPC) or to both national classification and IPC								
В.	FIELDS	SEARCHED		·					
Mini	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H01L21/208, 21/205, 21/20 Int.Cl ⁷ C01B33/02, 33/03, 33/04								
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo shinan Koho 1926-1996 Jitsuyo Shinan Toroku Koho 1996-2000 Kokai Jitsuyo Shian Koho 1971-2000 Toroku Jitsuyo Shinan Koho 1994-2000								
Elect	ronic da	ata base consulted during the international search (nam	e of data base and, where practicable, sear	rch terms used)					
C. 1	DOCU	MENTS CONSIDERED TO BE RELEVANT							
Cate	gory*	Citation of document, with indication, where ap		ant passages Relevant to claim No.					
	X Y	JP, 10-321536, A (Sharp Corpora 04 December, 1998 (04.12.98), Full text Full text (Family: none)	ation),	14,17,19,20 1-5,8,10,11					
3	Y	JP, 3-215941, A (Hitachi Ltd.), 20 September, 1991 (20.09.91), Claims (Family: none)		1-5,8,10,11					
7	Y	JP, 8-8179, A (Sharp Corporation), 12 January, 1996 (12.01.96), Full text (Family: none)		4					
1	A	JP, 11-79727, A (Sharp Corporation), 23 March, 1999 (23.03.99), Full text (Family: none)		1-22					
12 July, 199		<pre>JP, 6-191821, A (Showa Denko K. 12 July, 1994 (12.07.94), Full text (Family: none)</pre>	(12.07.94),						
	A.	JP, 5-144741, A (Showa Denko K.	K.),	1-22					
\boxtimes	Further	documents are listed in the continuation of Box C.	See patent family annex.						
*A"		categories of cited documents: ant defining the general state of the art which is not	"T" later document published after the inter priority date and not in conflict with th						
"E"	conside	red to be of particular relevance	understand the principle or theory unde "X" document of particular relevance; the c	erlying the invention					
"L"	earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is		considered novel or cannot be considered to involve an inventive step when the document is taken alone						
	cited to establish the publication date of another citation or other special reason (as specified)		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is						
"O"	document referring to an oral disclosure, use, exhibition or other means		combined with one or more other such documents, such combination being obvious to a person skilled in the art						
"P"		ent published prior to the international filing date but later priority date claimed	"&" document member of the same patent f	amily					
Date		ctual completion of the international search une, 2000 (20.06.00)	Date of mailing of the international search report 04 July, 2000 (04.07.00)						
Name and mailing address of the ISA/ Japanese Patent Office			Authorized officer						
Facsimile No			Telephone No.						

International application No.

PCT/JP00/01987

ategory*	Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No		
	11 June, 1993 (11.06.93),		
	Full text (Family: none)	ļ	
ĺ			
Í			
1			
-			
		ļ	
İ	•		
1			
ļ			
1			
ŀ			
- 1			

	国際調査報告	国際出願番号	PCT/JPO	0/01987				
A. 発明の属する分野の分類 (国際特許分類 (IPC))								
Int. Cl' H01L 21/208, C01B33/02								
B. 調査を行った分野								
	最小限資料(国際特許分類(IPC))							
Int. Cl' H01L 21/208, 21/205, 21/20,								
Int. Cl' C01B 33/02, 33/03, 33/04								
	外の資料で調査を行った分野に含まれるもの							
•	本国実用新案公報 1926-19 本国公開実用新案公報 1971-20							
	本国公開実用新案公報 1971-2(本国実用新案登録公報 1996-2(
日	本国登録実用新案公報 1994-20	00年						
国際調査で使	用した電子データベース(データベースの名称	、調査に使用した用語)					
C. 関連す	ると認められる文献							
引用文献の カテゴリー*	引用文献名 及び一部の祭売が開連→で	1. th. 7 of 183 to 1. th.	***	関連する				
, , , , , , , , , , , , , , , , , , ,	引用文献名 及び一部の箇所が関連する JP, 10-321536, A (シャープ株式会社			請求の範囲の番号				
X	51,10 321336, A (シャーノ株式芸社) 全文,)4.12月.1998(04.	. 12. 98),	14 17 10 00				
Y	全文			14, 17, 19, 20 1-5, 8, 10, 11				
	(ファミリーなし)			1-5, 6, 10, 11				
Y	TP 3-2150/1 A /烘土会社日 空制//23	E) 00 0 B 1001 (0)	> 00 01\ 4#					
	JP,3-215941,A (株式会社日立製作所 許請求の範囲,(ファミリーなし)	7) 20.9月.1991(20). 09. 91),符	1-5, 8, 10, 11				
Y	JP,8-8179,A(シャープ株式会社)12	2.1月.1996(12.01.	96),全文,	4				
	(ファミリーなし)							
X C欄の続き	にも文献が列挙されている。	□ パテントファ	 ミリーに関する別	紙を参昭				
* 引用文献の	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・							
	極のある文献ではなく、一般的技術水準を示す	の日の後に公え 「T」国際出願日又に		された文献であって				
もの		て出願と矛盾で	上るものではなく、	発明の原理又は理				
	日前の出願または特許であるが、国際出願日 会表されたもの	論の理解のたる 「X」特に関連のある	りに引用するもの S 文献でなって	4該分部の7、20世界				
「L」優先権主	張に疑義を提起する文献又は他の文献の発行	の新規性又は近	単歩性がないと考え	えられるもの				
日右しく 文献(田	は他の特別な理由を確立するために引用する。	「Y」特に関連のある						
「〇」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの								
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献								
国際調査を完了した日 20.06.00 国際調査報告の発送日 04.07.00								
国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4R 963								
日本国	特許庁 (ISA/JP)	酒井 英						
	「使番号100-8915 「千代田区霞が関三丁目4番3号	電話番号 03-35	81-1101	rto sta				
mr	· · · · · · · · · · · · · · · · · · ·		, o r = r 1 O I	7 3 形状				

電話番号 03-3581-1101 内線

国際調査報告

国際出願番号 PCT/JP00/01987

	当 灰料	国际山嶼衛等 PC1/JP0	0/01987
C(続き).	関連すると認められる文献	-	
引用文献の カテゴリー*		は、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 11-79727, A(シャープ株式会社)23.3) 文, (ファミリーなし)		1-22
A	JP,6-191821,A(昭和電工株式会社)12.7) 文,(ファミリーなし)	月.1994(12.07.94),全	1-22
A	JP,5-144741,A(昭和電工株式会社)11.6J 文, (ファミリーなし)	月. 1993 (11. 06. 93),全	1-22
·			
			,