| AdaGrad 算法,如算法8.4所示,独立地适应所有模型参数的学习速率,放缩每个参数反比于其所有梯度历史平方值总和的平方根 (Duchi et al., 2011) 具有损                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 失最大偏导的参数相应地有一个快速下降的学习速率,而具有小偏导的参数在学习                                                                                                                      |
| 速率上有相对较小的下降。净效果是在参数空间中更为平缓的倾斜方向会取得更大                                                                                                                      |
| 的进步。                                                                                                                                                      |
|                                                                                                                                                           |
| <b>算法 8.4</b> AdaGrad 算法                                                                                                                                  |
| Require: 全局学习速率 $\epsilon$                                                                                                                                |
| Require: 初始参数 $\theta$                                                                                                                                    |
| Require: 小常数 $\delta$ , 为了数值稳定大约设为 $10^{-7}$                                                                                                              |
| 初始化梯度累积变量 $r=0$                                                                                                                                           |
| while 没有达到停止准则 do                                                                                                                                         |
| 从训练集中采包含 $m$ 个样本 $\{ {m x}^{(1)}, \ldots, {m x}^{(m)} \}$ 的 $minibatch$ ,对应目标为 ${m y}^{(i)}$ 。                                                            |
| 计算梯度: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ |
| 累积平方梯度: $r \leftarrow r + g \odot g$                                                                                                                      |
|                                                                                                                                                           |
| 应用更新: $oldsymbol{	heta} \leftarrow oldsymbol{	heta} + \overline{\Delta oldsymbol{	heta}}$                                                                 |
| end while                                                                                                                                                 |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |



