Cast time: We started showing that UNSATEIP. By Dri-thmetization, we reduced the pushers of cheeking of yo & voisin (3-CNF) to cheeking Σ Pp (b1, b2,--,bm) = 0 b1, b2,--,bn + 50,13 where Pp (x1/x21-, Xn) -) is a polynomial of deg & 3m (m= # o) clauses in p), and -> can be evaluated in fine poly (141) on agries input-

The o	same protorol that we will now
	will also help us solve a more
geneo	l publics:
#54	5= {(\pi,x) \pa3cNF formula
	with emactly K satis
	- fying assignments }
[ye	UNSAT (=>) (4,0) C#SATD]
(4,1	(c) E#SAFD
-	
	\leq $R(b, b) = K$
7	$\sum_{\nu} P_{\varphi}(b_{1}, \dots, b_{n}) = K.$

SUM	CHECK protocol:
Wart	to chech: \(\sigma_{\mu} \cdot \cdot \sigma_{\mu} \cdot \cdot \sigma_{\mu} \cdot \cdot \cdot \sigma_{\mu} \cdot \cdot \cdot \sigma_{\mu} \cdot \cdot \cdot \cdot \sigma_{\mu} \cdot
wh	ue ghas degree 4d l can
be	evoluated efficiently.
-> If	n21, check g(6)+g(1)=14 &
	accept if so. Reject otherwise-
-> lf	n>1, let
	h(xi) = 5 g(xi,b21,bn)
	univariate polynomial of degree \(d \)
i) Prov	re sends s(x,) which is
	supposedly h(x,).
tii) Ve	eifier cheeks that s(0)+s(1)= K
	rejects if this is not true'

((iií	Verifier choose a random
-		a, E {1,, M} & sends to Proce
C	eghi	ing the Prover to ghow
(×	F):	2,9(a,b2,,bn)= s(a,) b21-1,bn(50,1)
-	000-	(x) is the same kind of
	lai	n about the polynomial
		g(a,, x2,, x0)
	Wh	ich
_	→	has degree \(\d.
-	_	can also be evaluated in
		time poly (141).
-		depends on n-1 variables
-		

Con	uee	Iners:
	_	eteress: Assume that
		5 g (b1,b2,,bn) = K
		br-169013 [ie the proviso] dain is true]
Th	un	, if the prover sends
		s(x1) = h(x1)
t	ner.	the Verifier accepts in Stepti
		eursively asks the prover to
	8	how
	<	5 g(a1,b21-1,bn) = h(a) 1-1,bn=20,8
	bz	,,bn={0,8
(Sh	ich is another true clairs.
(ar	tia	eving thus way, as honest peover
		convince the Verifier with prob. 1.

Sound	lness: Now we assume that
	voucies claims is Jalse.
	5 g (b,,-,bn) 7 K.
	かりかららつり
This 1	time, we want to show that
	the what the prove sends the
verifi	er réjects with good probabili
	: The verifier rejects with
	probability (1-d).
	[Induction]
nal	: Easy because the verifier
	checks the claim directly.

n) - If the prove sends 8 (x,) = h(x,) trun the Verifier computes S(0)+S(1)=h(0)+h(1) = 5 9 (b),b21-,bn) ≠1/2. b1-1.bn ∈ (0,13 & immediately rejects with pubabi-- luty 1. (Step (Ii)) If the prover sends S(X) + h(X) such that s(0) + s(1) = K, then the Veeifier downst reject in Step (ii).

In	Step (iii), the verifier asks
	e prove to show
(*)	$\sum g(a_1,b_2,-,b_n) = 8(a_1)$
	same as $h(a_i)$
	t) is false as long as
0 [$h(a_i) \neq 8(a_i)$.
a,	_h(a,)-s(a,)+0] > 1-d(t)
	because the two distinct
	polynomials h, s of deque ≤d
	con agree at &d points
	This is the base case of the
	Der Clipton-Schwartz-Zippel Lenna

	A80	uning h(ai) \$ s(ai), the
		n has to prove another false
		is (X) this time with n-1
		Wables. By induction, the puba.
		ty the verifier rejects is ?
		(1-d) -2 (II)
_	Thus	, the overall probability of
	reje	etion is
	>	$(1-\frac{d}{d})\cdot (1-\frac{d}{d})^{-2} = (1-\frac{d}{d})^{-1}$
_	This	proves the inductive step &
		hence the lemma.

So we have shown:
UNSAT & more generally.
#SATD CIP
NID C T P
=) (O-NPCIP
A similar idea also works for
PSPACE, starting with TOURF
constead of UNSAT Cone more
trich needed:))

Zeev-Kaonsledge Proofs So for, we have the situation Jan unbounded Prove that wants to consince the Verifier of something. Verifice ashs the prover for a certificate that the provu can compute. But what if the prover does not went to reveal the certificate? Relevant & Crypto! Eg: certificate = password & Provu is a usu of) a system that d'équires Provu to authenticate.

let I be a language in NP. A Zero-Knowledge Boot- for Lis a pour of probabilistic ply time Try P&V along with a protocol between them such that: 1) Completeners: If all &Phas a valid certificate y showing this, then PV Vaecepts] > 2/3. (2) Soundners: If x & L, then even of Pir replaced by an autitrany comparationally unbounded Pt Pr [Vaccepts] 5 1/3

Tatui	itive meaning of 3:
The	Veirfier learns nothing about
y f	on the protocol even of the
Veri,	je deviates from the prescri-
-bed	strategy V, as long as the
Provi	er Sticks to the prescribed
85-1	ategy P.
-	

Soundness: If G & H, then the ploorer newst follow some of their Strategy P*. No matter what geath R is sent in steple, R connot be in both Gol G, E because they are dis--joral] So with published lity at least 1/2, in 8rep 3, V chooses b for which Pt has no valid response.

Zew Knowledge: First æssume fra both Prove & Verifier follow the proseribed Gralegies. Then the output of the protocol is (R, b, TT') -) Ris a random graph in G. -> b is a random but independent -> b=0=) Tí is an isomarbhism between R&G b=1 =) Ti is an isomorphism between R&H.

Simulator S -> Choose a random but b E {0, i} -> If b=0, choose a vandom bijetion Tí: 81,-1, n3 -> [1,-,n] & apply it to G to get h -> 1Fb=1, do the same with H Output (R, b, Ti).

Now, What 'y Verifier deviates & follows strategy V*? - Choose (R,b,Ti') as before. -> Rem Veinfier V* on R & get bit bi. -> If 6 = b, output (R, b, T'). -> Otherwise, repeat. Why does this work? No matter what the value of b, R is always uniformly distributed over G. This means that R is

crolependent 8) b. Hence, v*(R)=b with pub 1. Repeating this many Times gives an algorithm that succeeds with high probability. In the end, the Simulations is not exactly a prhy-time also but rather an expected poly-time aljouther. I lied (abit) in the definition:)