附录 AT89C51 单片机说明

附录一

一、AT89C51 引脚说明

图 2-1 51 系列单片机的引脚图

图 2-1 是 AT89C51 的引脚图,引脚说明如下

VCC'

AT89C51 电源正极输入,接+5V 电压。

GND

电源接地端。

XTAL1

接外部晶振的一个引脚。在单片机内部,它是一反相放大器输入端,这个放大器构成了片内振荡器。它采用外部振荡器时,些引脚应接地。

XTAL2

接外部晶振的一个引脚。在片内接至振荡器的反相放大器输出端和内部时钟发生器输入端。 当采用外部振荡器时,则此引脚接外部振荡信号的输入。

RST

AT89C51 的复位信号输入引脚,高电位工作,当要对芯片又时,只要将此引脚电位提升到高电位,并持续两个机器周期以上的时间,AT89C51 便能完成系统复位的各项工作,使得内部特殊功能寄存器的内容均被设成已知状态。

ALE/PROG

ALE 是英文"ADDRESS LATCH ENABLE"的缩写,表示允许地址锁存允许信号。当

访问外部存储器时,ALE 信号负跳变来触发外部的8位锁存器(如74LS373),将端口P0的地址总线(A0-A7)锁存进入锁存器中。在非访问外部存储器期间,ALE引脚的输出频率是系统工作频率的1/16,因此可以用来驱动其他外围芯片的时钟输入。当问外部存储器期间,将以1/12振荡频率输出。

EAVPP

该引脚为低电平时,则读取外部的程序代码 (存于外部 EPROM 中)来执行程序。因此在 8031 中,EA 引脚必须接低电位,因为其内部无程序存储器空间。如果是使用 AT89C51或其它内部有程序空间的单片机时,此引脚接成高电平使程序运行时访问内部程序存储器,当程序指针 PC 值超过片内程序存储器地址(如 8051/8751/89C51 的 PC 超过 0FFFH)时,将自动转向外部程序存储器继续运行。

此外,在将程序代码烧录至 8751 内部 EPROM、89C51 内部 FALSH 时,可以利用此引脚来输入提供编程电压 (8751 为 2IV、AT89C51 为 12V、8051 是由生产厂方一次性加工好)。

PSEN

此为"Program Store Enable"的缩写。访问外部程序存储器选通信号,低电平有效。在访问外部程序存储器读取指令码时,每个机器周期产生二次 PSEN 信号。在执行片内程序存储器指令时,不产生 PSEN 信号,在访问外部数据时,亦不产生 PSEN 信号。

P0

P0 口(P0.0~P0.7)是一个 8 位漏极开路双向输入输出端口,当访问外部数据时,它是地址总线(低 8 位)和数据总线复用。外部不扩展而单片应用时,则作一般双向 I / O 口用。P0 口每一个引脚可以推动 8 个 LSTTL 负载。

P2

P2 口(P2.0~P2.7)口是具有内部提升电路的双向 I/0 端口(准双向并行 I/O 口),当访问外部程序存储器时,它是高 8 位地址。外部不扩展而单片应用时,则作一般双向 I / O 口用。每一个引脚可以推动 4 个 LSTL 负载。

P1

P1 口(P1.0~P1.7)口是具有内部提升电路的双向 I/0 端口(准双向并行 I/O 口), 其输出可以推动 $4 \land LSTTL$ 负载。仅供用户作为输入输出用的端口。

P3

P3 口(P3.0~P3.7)口是具有内部提升电路的双向 I/0 端口(准双向并行 I/O 口),它还提供特殊功能,包括串行通信、外部中断控制、计时计数控制及外部随机存储器内容的读取或写入控制等功能。其特殊功能引脚分配如下:

- P3.0 RXD 串行通信输入
- P3.1 TXD 串行通信输出
- P3.2 INTO 外部中断 0 输入, 低电平有效
- P3.3 INT1 外部中断 1 输入,低电平有效
- P3.4 T0 计数器 0 外部事件计数输入端
- P3.5 T1 计数器 1 外部事件计数输入端
- P3.6 WR 外部随机存储器的写选通,低电平有效
- P3.7 RD 外部随机存储器的读选通,低电平有效

二、AT89C51 内存空间

- 1、内部程序存储器 (FLASH) 4K 字节。
- 2、外部程序存储器(ROM)64K字节。
- 3、内部数据存储器(RAM)256字节。
- 4、外部数据存储器(RAM)64K字节。

附录 AT89C51 单片机说明

图 2-2 只读程序存储器

图 2-3 外部数据存储器

直接地址

2FH	7F	7E	7D	7C	7B	7A	79	78
2EH	77	76	75	74	73	72	71	70
2DH	6F	6E	6D	6C	6B	6A	69	68
2CH	67	66	65	64	63	62	61	60
2BH	5F	5E	5D	5C	5B	5A	59	58
2AH	57	56	55	54	53	52	51	50
29H	4F	4E	4D	4C	4B	4A	49	48
28H	47	46	45	44	43	42	41	40
27H	3F	3E	3D	3B	3C	3A	39	38
26H	37	36	35	34	33	32	31	30
25H	2F	2E	2D	2B	2C	2A	29	28
24H	27	26	25	24	23	22	21	20
23H	1F	1E	1D	1C	1B	1A	19	18
22H	17	16	15	14	13	12	11	10
21H	0F	0E	0D	0C	0B	0A	09	08
20H	07	06	05	04	03	02	01	00
1FH								
			工作	寄	存 器	组 3		
18H								
17H								
			工作	寄	存 器	组 2		
10H								
0FH								
			工作	寄	存 器	组 1		
08H								
07H								
			工作	寄	存 器	组 0		
00H								

图 2-4 内部低 128 个字节地址 RAM 空间

位寻址区

寄存器符号	名	称	字节地址			
ACC	累加器	E0H				
В	B 寄存器	F0H				
PSW	程序状态字	程序状态字				
SP	堆栈指针		81H			
DPTR	数据指针	DPH	83H			
DITK	XXJ/自3日で1	DPL	82H			
P0	P0 口锁存器		80H			
P1	P1 口锁存器		90H			
P2	P2 口锁存器		A0H			
P3	P3 口锁存器	B0H				
IP	中断优先级控制	中断优先级控制寄存器				
ΙE	中断允许控制	寄存器	A8H			
TMOD	定时器 / 计数	器方式控制寄存器	C8H			
TCON	定时器/计数	器控制寄存器	88H			
TH0	定时器 / 计数	器 0 (高字节)	8CH			
TL0	定时器/计数	器0(低字节)	8AH			
TH1	定时器 / 计数	器1(高字节)	8DH			
TL1	定时器 / 计数	8BH				
SCON	串行控制寄存	98H				
SBUF	串行数据缓冲		99H			
PCON	电源控制寄存	器	97H			

图 2-5 内部高 128 个字节地址空间的特殊功能寄存器区

直接地	!址								符号
F0H	F7	F6	F5	F4	F3	F2	F1	F0	В
E0H	E7	E6	E5	E4	E3	E2	E1	E0	ACC
	CY	AC	F_0	RS_1	RS_0	OV		P	
D0H	D7	D6	D5	D4	D3	D2	D1	D0	PSW
			PT ₂	PS	PT_1	PX_1	PT_0	PX_0	
B8H	-	-	BD	BC	BB	BA	B9	B8	IP
B0H	B7	B6	B5	B4	В3	B2	B1	B0	P3
	EA		ET ₂	ES	ET ₁	EX_1	ET_0	EX_0	
A8H	AF		AD	AC	AB	AA	A9	A8	ΙE
A0H	A7	A6	A5	A4	A3	A2	A1	A0	P2
	SM_0	SM_1	SM_2	REN	TB_8	RB_8	TI	RI	
98H	9F	9E	9D	9C	9B	9A	99	98	SCON
90H	97	96	95	94	93	92	91	90	P1
	TF_1	TR_1	TF_0	TR_0	IE ₁	IT_1	TE_0	IT_0	
88H	8F	8E	8D	8C	8B	8A	89	88	TCON
80H	87	86	85	84	83	82	81	80	P0

图 2-6 特殊功能寄存器位地址空间

附录 AT89C51 单片机说明

三、AT89C51 复位后内部各寄存器的数据值变成如图 2 - 7 示:

寄存器	数据值	寄存器	数据值
PC	0000H	TMOD	00H
A	00H	TCON	H00
В	00H	TH0	00H
PSW	00H	TL0	H00
SP	07H	TH1	00H
DPTR	H0000	TL1	00H
P0 - P3	0FFH	SCON	00H
IP	***00000	SBUF	不变
ΙE	0**00000	PCON	0

图 2-7 复位后内部各寄存器的数据值

四、AT89C51 各中断源向量地址如图 2-8 所示:

 中断源	向量地址
外部中断 0 (INT0)(IE0)	0003H
定时/计数器0(TF0)	000BH
外部中断 1 (INT1)(IE1)	0013H
定时/计数器1(TF1)	001BH
串行通讯 (RI+TI)	0023H

图 2-8 各中断源向量地址

五、主要特殊功能寄存器说明

PSW (Program Status Word)程序状态字

位地址	D7	D6	D5	D4	D3	D2	D1	D0
符号	CY	AC	F0	RS1	RS0	OV	-	P

CY (PSW.7) : 高位进位标志位。常用"C"表示。

AC (PSW.6) : 辅助进位木标志。

F0 (PSW.5) : 用户标志位。 RS1 (PSW.4) : 寄存器组选择位 1。

RS0 (PSW.3) : 寄存器组选择位 0。

OV (PSW.2) : 溢出标志位。

- (PSW.1) :保留位,无定义。

P(PSW.0): 奇偶校验位,在每一个指令周期中,若累加器(A)中的"1"的

位个数是奇数个则 P=1, 偶数个则 P=0。

寄存器组的选择:

RS1	RS0	寄存器组	RAM 中的地址
0	0	0	00H~07H
0	1	1	08H~0FH
1	0	2	10H~17H
1	1	3	18H~1FH

IE 中断允许寄存器

AT89C51 单片机说明

位地址	AF	-	AD	AC	AB	AA	A9	A8
符号	EA	-	ET2	ES	ET1	EX1	ET0	EX0

EA(IE.7) : EA = 0 时, 所有中断停用(禁止中断)。

EA = 1 时,各中断的产生由个别的允许位决定。

- (IE.6) :保留位,无定义。

ET2(IE.5) : 允许计时器 2 溢出的中断 (8052 使用)。

ES(IE.4) : 允许串行端口的中断(ES=1允许, ES=0禁止)。 ET1(IE.3) : 允许计时器1中断(ET1=1允许, ET1=0禁止)。

EX1(IE.2) : 允许外部中断 INT1 的中断(EX1=1 允许, EX1=0 禁止)。

ETO(IE.1) : 允许计时器 0 中断(ETO = 1 允许, ETO = 0 禁止)。

EXO(IE.0) : 允许外部中断 INTO 的中断(EXO = 1 允许, EXO = 0 禁止)。

IP 中断优先次序寄存器

位地址	-	-	BD	BC	BB	BA	B9	В8
符号	-	-	PT2	PS	PT1	PX1	PT0	PX0

- (IP.7):保留位,无定义。

- (IP.6) :保留位,无定义。

PT2(IP.5):设定计时器 2的优先次序(8052使用)。

PS(IP.4): 设定串行端口的中断优先次序。 PT1(IP.3): 设定时/计时器1的优先次序。 PX1(IP.2): 设定外部中断 INT1 的优先次序。

PT0(IP.1):设定计时器 0 的优先次序。

PX0(IP.0):设定外部中断 INT0 的优先次序。

上述每位 IP.* = 1 时,则定义为高优先级中断,IP.* = 0 时,则定义为低优先级中断。如果同时有两个或两个以上优先级相同的中断请求时,则由内部按查询优先顺序来确定该响应的中断请求,其优先顺序由高向低顺序排列。优先顺序排列如下:

顺序	中断请求标志	中断源	优先图示
1	IE0	外部中断 0 (INT0)	 最高
2	TF0	定时/计数器0溢出中断	Ī
3	TE1	外部中断 1 (INT1)	
4	TF1	定时/计数器1溢出中断	▼
5	RI + TI	串行通讯中断	最低

TMOD 定时 / 计数器工作方式控制寄存器

位地址			不	可(立寻:	址		
符号	GATE	C/T	M1	M0	GATE	C/T	M1	M0
类别		定时 /				定时 / i	十数器 2	

GATE : 当 GATE = 1 时, INT0 或 INT1 引脚且为高电平, 同时 TCON 中的 TR0 或 TR1 控制位如为 1 时, 定时 / 计数器 0 或 1 才会工作。 若 GATE = 0, 同时只要 TCON 中的 TR0 或 TR1 控制位如为 1 时, 定时 / 计数器 0 或 1 即可工作。

C/T : 选择定时或计数器模式。当 C/T=1 为计数器,由外部引脚 T0 或 T1 输入 计数脉冲。C/T=0 时为计时器,由内部系统时钟提供计时工作脉冲。

AT89C51 单片机说明

M1 : 方式选择位 1。 M0 : 方式选择位 0。

M1、M2 的操作方式选择定义如下:

M1	M0	操作方式	功能说明
0	0	方式 0	13 位定时 / 计数器
0	1	方式 1	16 位定时 / 计数器
1	0	方式 2	自动再装入的8位定时/计数器
1	1	方式 3	定时/计时器 1 无效,将定时/
			计数器 0 分成两个 8 位计数器

TCON 定时/计数器工作方式控制寄存器

位地址	8FH	8EH	8DH	8CH	8BH	8AH	89H	88H
符号	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

TF1(TCON.7) : 计时器 1 溢出标志, 当计时溢出时, 由硬件设定为 1, 在执行

相对的中断服务程序后则自动清 0。

TR1(TCON.6): 计时器 1 启动控制位,可以由软件来设定或清除。TR1 时启

动计时器工作,TRI=0时关闭。

TF0(TCON.5) : 计时器 0 溢出标志, 当计时溢出时, 由硬件设定为 1, 在执行

相对的中断服务程序后则自动清 0。

TR0(TCON.4) : 计时器 0 启动控制位,可以由软件来设定或清除。TR0=1 时,

启动计时器工作,TR0=时关闭。

IE1(TCON.3) : 外部中断 1 工作标志, 当外部中断被检查出来时, 硬件自动设

定此位,在执行中断服务程序后,则清0。

IT1(TCON.2) : 外部中断1工作形式选择,IT1=1时,由下降缘产生外部中断,

IT1=0时,则为低电位产生中断。

IEO (TCON.1) :外部中断 0 工作标志, 当外部中断被检查出来时, 硬件自动设

定此位,在执行中断服务程序后,则清0。

ITO (TCON.0) : 外部中断 0 工作形式选择, IT1=1 时, 由下降缘产生外部中断,

IT1=0 时,则为低电位产生中断。

SCON 定时 / 计数器工作方式控制寄存器

位地址	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H
符号	SM0	SM1	SM2	REN	TB8	RB8	TI	RI

SM0 (SCON.7) : 串行通讯工作方式设定位 0。 SM1 (SCON.6) : 串行通讯工作方式设定位 1。

SM2 (SCON.5) : <mark>允许方式 2 或方式 3 多机通讯控制位。在方式 2 或方式 3 时,如</mark>

SM2=1,REN=1,则从机处于只有接收到 RB8=1(地址帧)才激发中断请求标志位 RI=1,向主机请求中断处理。被确认为寻址的从机复位 SM2=0,才能接收 RB8=0 的数据帧;在方式 1 时,如 SM2=1,则只有在接收到有效停止位时才置位中断请求标志位 RI=1;在方式 0 时,SM2 应为 0。

REN (SCON.4) : REN , 允许/禁止串行接收控制位。由软件置位 REN=1 为允许串行接收状态 , 可启动串行接收器 RXD , 开始接收信息。软件复位 REN=0 , 则禁止接收。

TB8(SCON.3):在方式2或方式3,它为要发送的第9位数据,按需要由软件置位

AT89C51 单片机说明

或清 0。例如,可用作数据的校验位或多机通讯中表示地址帧/数据帧的标志位。

RB8(SCON.2) : 在方式 2 或方式 3,是接收到的第9位数据。在方式 1,若 SM2 = 0,则 RB8 是接收到的停止位。方式 0 不用 RB8。

TI (SCON.1) : 发送中断请求标志位。在方式 0 , 当串行发送数据第 8 位结束时 , 由内部硬件自动置位 TI=1 , 向主机请求中断 , 响应中断后必须用软件复位 TI=0。在其他方式中 , 则在停止位开始发送时由内部硬件置位 , 必须用软件复位。

RI(SCON.0):<mark>接收中断请求标志位</mark>。在方式 0,当串行接收到第 8 位结束时由内部 硬件自动置位 RI=1,向主机请求申断,响应中断后必须用软件复位 RI=0。 在其他方式中,串行接收到停止位的中间时刻由内部硬件置位 RI=1(例 外情况见 SM2 说明),必须由软件复位 RI=0。

其中 SM0、SM1 按下列组合确定串行通讯的工作方式:

SM0	SM1	工作方式	功能说明	波特率
0	0	方式 0	移位寄存器方式	1 / 12f _{osc}
0	1	方式 1	8 位 UART 方式	可变
1	0	方式 2	9 位 UART 方式	1/64或1/32 f _{osc}
1	1	方式 3	9 位 UART 方式	可变

PCON 电源控制寄存器

位地址			不	可	位	,	址		
符号	SMOD	-	-	-		GF1	GF0	PD	IDL

SMOD : 双倍波特率控制位。

- : 保留。GF1 : 通用标志。GF0 : 通用标志。

PD : PD = 1 时, 进入掉电方式。 IDL : IDL = 1 时, 进入冻结方式。

六、定计器初值及串行通讯波特率的计算

1、定时器初值的计算

公式:TC=M-(T/T ++数)

其中 TC 为初值, M 为计数器模值, T 定时器定时时间, T 计数为 fosc/12

工作方式	M 模值	T 计数	最大定时时间		
方式 0	2^{13}		$2^{13} \times \text{fosc}/12$		
方式 1	2^{16}	fosc/12	$2^{16} \times \text{fosc/12}$		
方式 2	2^{8}	1080/12	$2^8 \times \text{fosc/12}$		
方式 3	2^{8}		2 × 108C/12		

2、串行通讯波特率的计算

2.1 公式:

方式 0: 波特率 = $\frac{1}{12} \times fosc$

方式 2: 波特率 = $\frac{2^{SMOD}}{64} \times fosc$

方式 1、3: 波特率 = $\frac{2^{SMOD}}{32}$ ×(定时 / 计数器I的溢出率)

2.2 定时 / 计数器 1 的溢出率计算

波特率 =
$$\frac{2^{SMOD}}{32} \times \frac{fosc}{12} \times \frac{1}{M - TC}$$

注: SMOD 见电源控制寄存器 PCON 中 SMOD 位的设置, SMOD = 1 或 SMOD = 0

2.3 常用波特率与定时 / 计数器 1 各参数关系

方式	波特率	fosc	SMOD	定时器 1			
7110	似竹竿		SIVIOD	C/T	方式	重装初值	
方式 0	O. 5M	6MHz	×	×	×	×	
71170	1M	12MHz	×	×	×	×	
方式 2	187.5M	6MHz	1	×	×	×	
73102	375M	12MHz	1	×	×	×	
	62.5K	12MHz	1	0	2	FFH	
	19.2K	6MHz	1	0	2	FEH	
	19.2K	11.059 MHz	1	0	2	FDH	
	9. 6K	6MHz	1	0	2	FDH	
* * 1	9. 6K	11.059 MHz	0	0	2	FDH	
方式 1	4.8K	6MHz	0	0	2	FDH	
和	4.8K	11.059 MHz	0	0	2	FAH	
小 山	2. 4K	6MHz	0	0	2	FAH	
方式 3	2. 4K	11.059 MHz	0	0	2	F4H	
73.20	1. 2K	6MHz	0	0	2	F4H	
	1. 2K	11.059 MHz	С	0	2	F8H	
	110	6MHz	0	0	2	72H	
	110	12M	0	0	1	FFFBH	
	55	6MHz	0	0	1	FFFBH	