WHAT IS CLAIMED IS:

1. A racemate, diastereoisomer, or optical isomer of a compound of formula (I):

wherein ${\bf B}$ is (C_{1-10}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-4}) alkyl- (C_{3-7}) cycloalkyl,

- a) wherein said cycloalkyl and alkyl-cycloalkyl may be mono-, di- or trisubstituted with (C_{1-3}) alkyl; and
- b) wherein said alkyl, cycloalkyl, and alkyl-cycloalkyl may be mono- or disubstituted with substituents selected from hydroxy and O-(C₁₋₄)alkyl; and
- c) wherein each of said alkyl groups may be mono-, di- or tri-substituted by halogen; and
- d) wherein in each of said cycloalkyl groups being 5-, 6- or 7-membered, one or two -CH₂-groups not being directly linked to each other may be replaced by -O- such that the O-atom is linked to the group X via at least two C-atoms;

X is O or NH;

- R³ is (C₂₋₈)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl, wherein each of said alkyl and cycloalkyl groups may be mono-, di- or trisubstituted with (C₁₋₄)alkyl;
- R²¹ is H, halogen, -OH, (C₁₋₆)alkyl, (C₃₋₆)cycloalkyl, -(C₁₋₄)alkyl- (C₃₋₆)cycloalkyl, (C₁₋₆)alkoxy, -O-(C₃₋₆)cycloalkyl, -O-(C₁₋₄)alkyl- (C₃₋₆)cycloalkyl or -N(\mathbb{R}^{24})₂, wherein each \mathbb{R}^{24} is independently: H, (C₁₋₆)alkyl, -(C₃₋₆)cycloalkyl, or -(C₁₋₄)alkyl-(C₃₋₆)cycloalkyl;

R²² is -NR^{N2}COOR⁰ or -NR^{N2}CONR^{N3}R^{N1}, wherein
R⁰ is selected from (C₁₋₈)alkyl, (C₃₋₇)cycloalkyl, and (C₁₋₄)alkyl(C₃₋₇)cycloalkyl, wherein said cycloalkyl and alkyl-cycloalkyl may be mono-, di- or tri-substituted with (C₁₋₃)alkyl;
R^{N1} is H or R⁰ as defined above; and
R^{N2} and R^{N3} are independently selected from H and methyl;

- R¹ is ethyl or vinyl;
- is hydroxy or NHSO₂R^s wherein R^s is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, phenyl, naphthyl, pyridinyl, (C₁₋₄)alkyl-phenyl, (C₁₋₄)alkyl-naphthyl or (C₁₋₄)alkyl-pyridinyl; each of which optionally being mono-, di- or tri-substituted with substituents selected from halogen, hydroxy, cyano, (C₁₋₄)alkyl, O-(C₁₋₆)alkyl, -CO-NH₂, -CO-NH((C₁₋₄)alkyl), -CO-N((C₁₋₄)alkyl)₂, -NH₂, -NH((C₁₋₄)alkyl), -N((C₁₋₄)alkyl)₂, wherein (C₁₋₄)alkyl and O-(C₁₋₆)alkyl are optionally mono-, di- or trisubstituted with halogen; and each of which optionally being monosubstituted with nitro;

or a pharmaceutically acceptable salt or ester thereof.

- 2. The compound according to claim 1, wherein
 - B is (C_{1-10}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-4}) alkyl- (C_{3-7}) cycloalkyl,
 - a) wherein said cycloalkyl and alkyl-cycloalkyl may be mono-, di- or trisubstituted with (C₁₋₃)alkyl; and
 - b) wherein said alkyl, cycloalkyl and alkyl-cycloalkyl may be mono- or di-substituted with substituents selected from hydroxy and O-(C₁₋₄)alkyl; and
 - c) wherein each of said alkyl-groups may be mono-, di- or trisubstituted by halogen; and
 - d) wherein in each of said cycloalkyl-groups being 5-, 6- or 7-membered, one or two -CH₂-groups not being directly linked to each other may be replaced by -O- such that the O-atom is linked to the group **X** via at least two C-atoms;

- X is O or NH;
- R³ is (C₂₋₈)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl, wherein said cycloalkyl groups may be mono-, di- or tri-substituted with (C₁₋₄)alkyl;
- R²¹ H, halogen, -OH, (C₁₋₆)alkyl, (C₃₋₆)cycloalkyl, -(C₁₋₄)alkyl- (C₃₋₆)cycloalkyl, (C₁₋₆)alkoxy, -O-(C₃₋₆)cycloalkyl, -O-(C₁₋₄)alkyl- (C₃₋₆)cycloalkyl or -N(\mathbb{R}^{24})₂, wherein each \mathbb{R}^{24} is independently: H, (C₁₋₆)alkyl, -(C₃₋₆)cycloalkyl, or -(C₁₋₄)alkyl-(C₃₋₆)cycloalkyl;
- R²² is -NR^{N2}COOR⁰ or -NR^{N2}CONR^{N3}R^{N1}, wherein
 R⁰ is selected from (C₁₋₈)alkyl, (C₃₋₇)cycloalkyl and (C₁₋₄)alkyl(C₃₋₇)cycloalkyl, wherein said cycloalkyl, alkyl-cycloalkyl may be mono-,
 di- or tri-substituted with (C₁₋₃)alkyl;
 R^{N1} is H or R⁰ as defined above; and
 R^{N2} and R^{N3} are independently selected from H and methyl;
- R¹ is ethyl or vinyl;
- is hydroxy or NHSO₂R^s wherein R^s is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, phenyl, naphthyl, pyridinyl, (C₁₋₄)alkyl-phenyl, (C₁₋₄)alkyl-naphthyl or (C₁₋₄)alkyl-pyridinyl; all of which optionally being mono-, di- or tri-substituted with substituents selected from halogen, hydroxy, cyano, (C₁₋₄)alkyl, O-(C₁₋₆)alkyl, -CO-NH₂, -CO-NH((C₁₋₄)alkyl), -CO-N((C₁₋₄)alkyl)₂, -NH₂, -NH((C₁₋₄)alkyl), -N((C₁₋₄)alkyl)₂; and all of which optionally being monosubstituted with nitro;

or a pharmaceutically acceptable salt or ester thereof.

3. The compound according to claim 1, wherein R^{21} is selected from halogen, - OH, $(C_{1:3})$ alkoxy or $N(R^{24})_2$, wherein each R^{24} is independently: H or $(C_{1:4})$ alkyl.

- 4. The compound according to claim 3, wherein R²¹ is selected from -OH, -OCH₃ and -N(CH₃)₂.
- The compound according to claim 1, wherein R²² is
 NHCOOR⁰ or NHCONHR^{N1}, wherein R^{N1} and R⁰ are defined as in claim 1.
- 6. The compound according to claim 5, wherein R⁰ and R^{N1}, are selected from the group consisting of methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl and cyclohexylmethyl; wherein said cycloalkyl and alkyl-cycloalkyl groups optionally being substituted by 1 to 3 substituents selected from methyl and ethyl.
- 7. The compound according to claim 1, wherein **B** is selected from (C_{1-4}) alkyl, (C_{3-7}) cycloalkyl and (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl,
 - a) wherein said cycloalkyl and alkyl-cycloalkyl may be mono-, di- or trisubstituted with (C_{1-3})alkyl; and
 - b) wherein said alkyl, cycloalkyl and alkyl-cycloalkyl may be mono- or disubstituted with substituents selected from hydroxy and O-(C_{1.4})alkyl; and
 - c) wherein each of said alkyl groups may be mono-, di- or tri-substituted with fluorine or mono-substituted by chlorine or bromine; and
 - d) wherein in each of said cycloalkyl groups being 5-, 6- or 7-membered, one or two -CH₂-groups not being directly linked to each other may be replaced by -O- such that the O-atom is linked to the group **X** via at least two C-atoms.
- 8. The compound according to claim 7, wherein **B** is selected from ethyl, n-propyl, i-propyl, n-butyl, 1-methylpropyl, 2-methylpropyl, *tert*-butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl and cyclohexylmethyl,
 - a) wherein each of said cycloalkyl and alkyl-cycloalkyl groups optionally being substituted by 1 to 3 substituents selected from methyl and ethyl;
 - b) wherein each of said groups optionally being mono- or di-substituted with

- substituents selected from hydroxy, methoxy and ethoxy; and
- c) wherein each of said alkyl groups may be mono-, di- or tri-substituted with fluorine or mono-substituted by chlorine or bromine and
- d) wherein in each of said cycloalkyl-groups being 5-, 6- or 7-membered, one or two -CH₂-groups not being directly linked to each other may be replaced by -O- such that the O-atom is linked to the group **X** via at least two C-atoms.
- The compound according to claim 8, wherein B is selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 1-methylcyclopentyl and 1methylcyclohexyl.
- 10. The compound according to claim 1, wherein R³ is selected from ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, each of which optionally being substituted by 1 to 3 substituents selected from methyl, ethyl and propyl.
- The compound according to claim 10, wherein R³ is selected from 1-methylethyl, 1,1-dimethylethyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, cyclopentyl, cyclopentyl, cyclopentyl, 1-methylcyclopentyl, 1-methylcyclopentyl, cyclopentylmethyl, cyclohexylmethyl, (1-methylcyclopentyl)methyl and (1-methylcyclohexyl)methyl.
- 12. The compound according to claim 1, wherein R¹ is vinyl.
- 13. The compound according to claim 1, wherein R^c is selected from hydroxy or NHSO₂R^s wherein R^s is methyl, ethyl, n-propyl, i-propyl, n-butyl, 1-methylpropyl, 2-methylpropyl, tert-butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, phenyl, naphthyl, pyridinyl, phenylmethyl, naphthylmethyl or pyridinylmethyl,
 - a) each of which optionally being mono-, di- or tri-substituted with substituents

selected from fluorine and methyl; and

- b) each of which optionally being mono- or disubstituted with substituents selected from hydroxy, trifluoromethyl, methoxy and trifluoromethoxy; and
- c) each of which optionally being monosubstituted with substituents selected from chlorine, bromine, cyano, nitro, -CO-NH₂, -CO-NHCH₃, -CO-N(CH₃)₂, -NH₂, -NH(CH₃) and -N(CH₃)₂.
- 14. The compound according to claim 13 wherein R^c is hydroxy, NHSO₂-methyl, NHSO₂-ethyl, NHSO₂-(1-methyl)ethyl, NHSO₂-propyl, NHSO₂-cyclopropyl, NHSO₂-cyclopropylmethyl, NHSO₂-cyclobutyl, NHSO₂-cyclopentyl or NHSO₂-phenyl.
- 15. The compound according to claim 14 wherein the group **R**^c is hydroxy.
- **16.** The compound according to claim 14 wherein the group R^c is NHSO₂-cyclopropyl.
- 17. The compound according to claim 1, wherein X is O.
- 18. The compound according to claim 1, wherein X is NH.
- 19. The compound according to claim 1, represented by formula:

wherein \mathbb{R}^{21} is $-OCH_3$ or $N(CH_3)_2$;

R²² is -NHCOOR⁰ or -NHCONHR^{N1}, wherein

R⁰ and R^{N1} is each independently selected from (C₁₋₄)alkyl or (C₃₋₆)cycloalkyl;

- **B** is (C_{4-6}) cycloalkyl;
- X is O or NH;
- R³ is tert-butyl or cyclohexyl;
- R^c is hydroxy or NHSO₂ R^s wherein R^s is (C₁₋₄)alkyl, (C₃₋₆)cycloalkyl or

phenyl;

or a pharmaceutically acceptable salt or ester thereof.

- 20. The compound according to claim 19, wherein R^{21} is -OCH₃; R^{22} is NHCOOR⁰ wherein R^0 is isopropyl or cyclopentyl; and R^c is NHSO₂ R^s wherein R^s is cyclopropyl; and wherein R^s , R^{22} , and R^s are defined as in claim 19.
- 21. The compound according to claim 19 wherein $\mathbb{R}^{\mathbb{C}}$ is hydroxy and wherein \mathbb{B} , \mathbb{X} , \mathbb{R}^{21} , \mathbb{R}^{22} , and \mathbb{R}^3 are defined as in claim 19.
- 22. The compound according to claim 21 wherein R²¹ is -OCH₃ and R²² is NHCOOR⁰ wherein R⁰ is isopropyl or cyclopentyl, and wherein B, X, R^c, and R³ are defined as in claim 21.
- 23. The compound according to claim 1 of the formula

wherein the substituents B, R^3 , R^{21} , R^{22} and R^c are defined according to the following table

Cpd	В	R³	R ²¹	. R ²²	R ^C
101	5	4	-OCH₃	√N° ~ ✓	-ОН
102	5	<u>+</u>	-OCH₃	× N O	· -OH

Cpd	В	R ³	R ²¹	R ²²	R ^c
103	5	Y	-OCH₃	√ _H ^Δ _H ∕	-ОН
104		<u>Y</u>	-OCH₃	∠ _N L _o ∠>	-OH
105	5	<u>\</u>	-OCH₃	Kn No L	-ОН
106	Ţ.	<u>Y</u> .	-OCH₃	in the second se	-ОН
[.] 107	T.	Y	-OCH₃	~ _H → .	-OH
108	J	1	-OCH₃	~HO_	-OH
109	5		-OCH₃	~ Hot	-ОН
110	J		-OCH₃	- Hold	-ОН
111	J	1	-OCH₃	~ _N L _o C	-ОН
112			-OCH₃	~ Lo	-он

Cpd	В	R ³	R ²¹	R ²²	R ^c
113	5	\bigcirc	-OCH₃	∠ _N L _o ∠>	-ОН
114			-OCH₃	∠ _N L _o √	-OH
115	\(\frac{1}{\chi} \)	<u>Y</u>	N(CH ₃) ₂	~ _N Å _o ∠	-OH
116	5	Y.	N(CH ₃) ₂	KN O	-ОН
117	T	\	N(CH ₃) ₂	~ Hot	-OH
118	Ŭ,	\bigcirc	N(CH ₃) ₂	~ H o L	-OH
119	5		N(CH ₃) ₂	~NO.	-OH
120			N(CH ₃) ₂	~ Hod	-OH
121	Ţ	1	N(CH ₃) ₂	~ Lo	-ОН
122	5	<u>+</u>	N(CH ₃) ₂	∠ _N L _o √	-ОН

Cpd	В	R ³	R ²¹	R ²²	R ^c
123		<u>\</u>	N(CH₃)₂	~ _N L _o √	-OH
124	\(\frac{1}{2} \)		N(CH₃)₂	i, i, c	-ОН
125	5	\bigcirc	N(CH ₃) ₂	∴ _N L _o √	-OH
126			N(CH ₃) ₂	~ Ho√	-OH
127	7	¥.	N(CH ₃) ₂	i, lo√	-OH

24. The compound according to claim 1 of the formula

wherein the substituents B, R^3 , R^{21} , R^{22} and R^C are defined according to the following table

Cpd	В	R ³	R ²¹	R ²²	R ^c
201	5	<u>Y</u>	-OCH₃	∴NT o →	-OH

Cpd	В	R³	R ²¹	R ²²	R ^c
202		<u>Y</u> .	-OCH₃	∴ _N C.	-ОН
203	5	<u>Y</u>	-N(CH ₃) ₂	~ Lo	-OH

- 25. A pharmaceutical composition comprising an anti-hepatitis C virally effective amount of a compound of formula I according to claim 1 or a pharmaceutically acceptable salt or ester thereof, in admixture with at least one pharmaceutically acceptable carrier medium or auxiliary agent.
- 26. The pharmaceutical composition according to claim 25 further comprising a therapeutically effective amount of at least one other antiviral agent.
- 27. The pharmaceutical composition according to claim 26, wherein said other antiviral agent is ribavirin.
- 28. The pharmaceutical composition according to claim 26, wherein said other antiviral agent is selected from another anti-HCV agent, HIV inhibitor, HAV inhibitor and HBV inhibitor.
- 29. The pharmaceutical composition according to claim 28 wherein said other anti-HCV agent is selected from immunomodulatory agents, other inhibitors of HCV NS3 protease, inhibitors of HCV polymerase and inhibitors of another target in the HCV life cycle.
- 30. The pharmaceutical composition according to claim 29 wherein said immunomodulatory agent is selected from α -interferon and pegylated α -interferon.
- 31. The pharmaceutical composition according to claim 29, wherein said inhibitor of another target in the HCV life cycle is selected from inhibitors of: helicase,

- NS2/3 protease and internal ribosome entry site (IRES).
- 32. A method for the treatment or prevention of a hepatitis C viral infection in a mammal by administering to the mammal an anti-hepatitis C virally effective amount of a compound of formula I according to claim 1, or a pharmaceutically acceptable salt or ester thereof.
- 33. A method for the treatment or prevention of a hepatitis C viral infection in a mammal by administering thereto an anti-hepatitis C virally effective amount of a compound of formula I according to claim 1, or a pharmaceutically acceptable salt or ester thereof, in combination with at least one other antiviral agent.
- 34. The method according to claim 33, wherein said antiviral agent is ribavirin.
- **35.** The method according to claim 33, wherein said other antiviral agent is selected from another anti-HCV agent, HIV inhibitor, HAV inhibitor and HBV inhibitor.
- 36. The method according to claim 35, wherein said other anti-HCV agent is selected from immunomodulatory agents, other inhibitors of HCV NS3 protease, inhibitors of HCV polymerase and inhibitors of another target in the HCV life cycle.
- 37. The method according to claim 36, wherein said immunomodulatory agent is selected from α -interferon and pegylated α -interferon.
- 38. The method according to claim 36, wherein said inhibitor of another target in the HCV life cycle is selected from inhibitors of: helicase, NS2/3 protease and internal ribosome entry site (IRES).