«Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И.Ульянова (Ленина)» (СПБГЭТУ «ЛЭТИ»)

Направление 09.03.04 - Программная инженерия

Профиль

Факультет ФКТИ

Кафедра МО ЭВМ

К защите допустить Зав. кафедрой

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

Тема: ИССЛЕДОВАНИЕ АЛГОРИТМОВ ЛОКАЛЬНОГО ПЛАНИРОВАНИЯ ТРАЕКТОРИЙ КОЛЕСНЫХ РОБОТОВ

Студент(ка)			Гришин К. И.
		подпись	
Руководитель			Кринкин К. В.
	(Уч. степень, уч. звание)	подпись	
Консультанты			Чайка К. В.
	(Уч. степень, уч. звание)	подпись	
			Иванов А. Н.
	(Уч. степень, уч. звание)	подпись	

Санкт-Петербург 2022

АННОТАЦИЯ

Для автоматизации движения мобильных роботов необходимо решить три основные задачи: выбор глобального маршрута, определение своего положения в пространстве, выбор локального маршрута и построение траектории движения. В данной работе подробно разобраны различные способы решения последней задачи, а именно локального планирования. Выявлены критерии оценки методов локального планирования. Произведено сравнение различных по своей структуре и идее методов.

ABSTRACT

Mobile robot movement automation consists of three main tasks: Global route selection; robot position determination; local route selection and building a movement trajectory. In this work, various methods for solving the local route selection, otherwise – local planning or motion planning are analyzed in detail. Criteria for evaluating methods of local planning have been defined. Methods different in their structure and idea are compared.

ВВЕДЕНИЕ

Навигация автономных мобильных роботов — быстроразвивающаяся область. За последние десятилетия произошел огромный рост данной отрасли. Автономные роботы или транспортные средства значительно снижают вклад человеческих ошибок. Роботы все чаще работают в закрытых помещениях, предназначенных для людей, в среде, в которой необходимо избегать неожиданные препятствия. Автономные роботы должны безопасно и эффективно перемещаться из точки A в точку B с учетом времени, расстояния, энергии и других факторов.

При выполнении навигационных задач роботизированные системы используют возможности, которые включают моделирование окружающей среды и локализацию положения системы в окружающей среде, управление движением, обнаружение и предотвращение препятствий, а также движение в динамических средах.

В автономной навигации выделяется три основные задачи: выбор глобального маршрута, определение своего положения, выбор локального маршрута. Первая заключается в том, чтобы построить глобальный маршрут из одной точки в другую на статической карте; Вторая — точное определение местоположения робота в текущей среде. Последняя заключается в том, чтобы правильно вычислить команды, которые направятся роботу, для движения, чтобы отслеживать глобальный путь и избегать столкновений с препятствиями.

В данной работе уделено внимание локальным планировщикам, в частности реализациям и внедрению некоторых планировщиков в Robot Operating System (ROS) для роботов с дифференциальным приводом.

ROS – это фреймворк, широко используемый в сообществе робототехники. Его основная цель – сделать разработку ПО для роботов более гибкой. ROS — это набор инструментов, библиотек и соглашений, используемых для взаимодействия с роботизированными платформами.

В данной работе разобраны все, используемые в ROS, локальные планировщики, а также же те, которые скоро будут добавлены.

В качестве среды для испытаний, использовалось ПО для симуляции пространства и робота Gazebo. Данная платформа крайне популярна в ROS сообществе, имеет поддержку физики и полноценно интегрирована в ROS. Она представляет собой виртуальный мир, в котором расположен робот. Интерфейс взаимодействия с предоставляется ROS будто это настоящий робот.

Цель данной работы: Рассмотреть существующие алгоритмы локального планирования колесных роботов. Определить необходимое оборудование для реализации алгоритмов, а также провести оценку их быстродействия.

Задачи данной работы:

- 1. Изучение существующих алгоритмов локального планирования для мобильных роботов.
- 2. Сравнение аппаратных и программных требований существующих алгоритмов локального планирования.
- 3. Определение эффективности применения существующих алгоритмов локального планирования роботов в неизвестной среде.
- 4. Разработка ПО для автономного управления колесным роботом.
- 5. Проверка качества работы разработанного ПО.

Объектом исследования являются алгоритмы локального планирования мобильных роботов.

Предмет исследования — скорость генерации и качество локальных маршрутов, составленных алгоритмами локального планирования.

Практическая ценность работы: Заранее составленная траектория движения робота не позволяет полностью автоматизировать перемещение.

Окружение и препятствия постоянно изменяются, может ухудшаться видимость или поверхность передвижения, в таком случае необходимо прибегать к методам локального планирования.

Необходимо провести анализ существующих алгоритмов для определения их быстродействия и применимости к маленьким маневренным колесным роботам.

Помимо программных ограничений, также существуют и аппаратные, устанавливаемые сенсоры могут иметь плохое разрешение или шумы, стоит учитывать стоимость оборудования для использования того или иного алгоритма.

В дополнение, готовая реализация алгоритма на реальном роботе позволит более удобно проводить дальнейшие исследования построения глобальных маршрутов и SLAM-алгоритмов.