

primitive recursive vector-valued function

Canonical name PrimitiveRecursiveVectorvaluedFunction

Date of creation 2013-03-22 19:06:38 Last modified on 2013-03-22 19:06:38

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771) Entry type Definition Classification msc 03D20 Recall that a primitive recursive function is an operation on \mathbb{N} , the set of all natural numbers (0 included here). In other words, it is a mapping into the set \mathbb{N} , mimicking a computation whose outcome has only one value. However, it is possible to extend this notion, so that a computation yields an outcome with several values simultaneously (imagine a URM where the contents of the output are found in first n tape cells). This is equivalent to a mapping $\mathbb{N}^m \to \mathbb{N}^n$ (provided with m inputs).

For this entry, $S := \{f : \mathbb{N}^m \to \mathbb{N} \mid \text{ any } m \geq 1\}, \ \mathcal{V} := \{f : \mathbb{N}^m \to \mathbb{N}^n \mid \text{any } m, n \geq 1\}, \text{ and for specific } m, n \geq 1, \text{ we set } \mathcal{V}(m, n) := \{f : \mathbb{N}^m \to \mathbb{N}^n\}.$

Definition. A function $f \in \mathcal{V}$ is *primitive recursive* iff each of its components is. In other words, if $f = (f_1, \ldots, f_n)$, where each $f_i : \mathbb{N}^m \to \mathbb{N}$, then f is primitive recursive if each f_i is (in the traditional sense).

It is evident that primitive recursiveness in this generalized version is closed under composition: if $f \in \mathcal{V}(m,n)$ and $g \in \mathcal{V}(n,p)$ are primitive recursive, then so is $g \circ f$.

In addition, it is also closed under iterated composition:

Proposition 1. If $f \in \mathcal{V}(n,n)$ is primitive recursive, then so is the function $g \in \mathcal{V}(n+1,n)$ such that

$$g(\boldsymbol{x},0) = \boldsymbol{x}$$
 and $g(\boldsymbol{x},n) = f^n(\boldsymbol{x}).$

The technique of mutual recursion is used to prove this fact.

Proof. Suppose $f = (f_1, \ldots, f_n)$ with each $f_i \in \mathcal{V}(n, 1)$, and $g = (g_1, \ldots, g_n)$ with each $g_i \in \mathcal{V}(n+1, 1)$. Then

$$f^n(\boldsymbol{x}) = (g_1(\boldsymbol{x},n),\ldots,g_n(\boldsymbol{x},n)).$$

From this we compute

$$(g_1(\mathbf{x}, n+1), \dots, g_n(\mathbf{x}, n+1))$$
= $f^{n+1}(\mathbf{x}) = f(f^n(\mathbf{x}))$
= $(f_1(g_1(\mathbf{x}, n), \dots, g_n(\mathbf{x}, n)), \dots, f_n(g_1(\mathbf{x}, n), \dots, g_n(\mathbf{x}, n))).$

So $g_i(\boldsymbol{x}, n+1) = f_i(g_1(\boldsymbol{x}, n), \dots, g_n(\boldsymbol{x}, n))$. This shows that the functions g_i are defined by mutual recursion via the functions f_i and the identity function p_1^1 . Since each of the f_i is primitive recursive, so is each of the g_i , and hence so is g.

Example. We give an alternative proof that the function F(n) denoting the n-th Fibonacci number is primitive recursive.

Let

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = (x, x + y).$$

Clearly, f is primitive recursive. Now define g(x, y, n) such that g(x, y, 0) = (x, y) and $g(x, y, n) = f^n(x, y)$. By what we have just shown, g is primitive recursive too. Since

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^n = \begin{bmatrix} F(n-1) & F(n) \\ F(n) & F(n+1) \end{bmatrix}$$

for any n > 1, we see that

$$g(x, y, n) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} F(n-1) & F(n) \\ F(n) & F(n+1) \end{bmatrix} = (xF(n-1) + yF(n), xF(n) + yF(n+1)).$$

Therefore, the function h(x, y, n) = xF(n) + yF(n+1) is primitive recursive, and hence F(n) = h(1, 0, n) is primitive recursive also.

The example above is but a more general phenomenon: the operation of matrix multiplication is primitive recursive. To see what this means, we define:

Definition. Let $M(\mathbf{x})$ be an $m \times n$ matrix whose cells $M_{ij}(\mathbf{x}) \in \mathcal{V}(k, 1)$. We say that $M(\mathbf{x})$ is *primitive recursive* if each of its cells is primitive recursive.

If $M(\boldsymbol{x})$ and $N(\boldsymbol{x})$ are $m \times n$ and $n \times p$ primitive recursive matrices, then clearly so is their product $M(\boldsymbol{x})N(\boldsymbol{x})$, for each of its cell is just a finite sum of products of primitive recursive functions. More over, we have the follow:

Proposition 2. If $M(\mathbf{x})$ is an $m \times m$ primitive recursive matrix, so is its n-fold power $M(\mathbf{x})^n$, where each cell is a function of \mathbf{x} and n.

Proof. We employ the same trick given in the example. Define, for any $\mathbf{y} \in \mathbb{N}^m$, the function $f(\mathbf{x}, \mathbf{y}) := \mathbf{y} M(\mathbf{x})$, where the right hand side is product of the matrices \mathbf{y} (considered as a $1 \times m$ matrix) and $M(\mathbf{x})$. So f is primitive recursive because M is. Next, define $g(\mathbf{x}, \mathbf{y}, n)$ such that $g(\mathbf{x}, \mathbf{y}, 0) = (\mathbf{x}, \mathbf{y})$, and $g(\mathbf{x}, \mathbf{y}, n) = f^n(\mathbf{x}, \mathbf{y})$. Then g is primitive recursive by proposition 1 above. But then $g(\mathbf{x}, \mathbf{y}, n)$ is just $\mathbf{y} M(\mathbf{x})^n$. Applying $\mathbf{y} = (1, 0, \dots, 0)$ to g, we get $g(\mathbf{x}, 1, \dots, 0, n)$, which is just the first row of $M(\mathbf{x})^n$, and is clearly primitive recursive. By the same token, the other rows are primitive recursive too, completing the proof.