Algoritmo di Grover

Un approccio quantistico alla ricerca in un database

Candidato: Ninivaggi Luca Relatore: Prof. Solinas Paolo

Ricerca in un Database <u>non strutturato</u>

Database Non Strutturato

Descrive un insieme di tuple in cui l'ordinamento è irrilevante, ovvero non fornisce indizi sul contenuto delle stesse.

Nome	Cognome
Angelo	Bianchi
Filippo	Verdi
Elisa	Marrone
Mario	Rossi
	•••
Giacomo	Neri

Oracolo

Risolve un problema decisionale:

dando in input una riga, verifica se soddisfa una condizione.

Formalmente, descrive una query sul DB.

Es: "il nome è Mario?"

Soluzione Classica

Complessità temporale

•Caso peggiore: N

•Caso medio: $\frac{N}{2}$

•Caso migliore: 1

Algoritmo

- 1. Estrai casualmente una tupla.
- 2. Usa l'oracolo e verificane la validità.
- 3. Se non è valida, torna al passo 1.

Qubit & sovrapposizione di stati Quantistici

Come descriviamo un Quantum bit?

Rispetto a un bit classico (deterministico e con valore 0 oppure 1), un qubit possiede le proprietà della sovrapposizione quantistica.

Ovvero lo possiamo descrivere come una sovrapposizione di stati $|0\rangle$ e $|1\rangle$:

$$|Q\rangle = \sin(\alpha) \cdot |1\rangle + \cos(\alpha) \cdot |0\rangle$$

Come si misura un Qubit?

"Misurare" un Qubit, cioè "estrarne" il valore 0 o 1, è un processo in cui la **probabilità** di ottenere ciascun stato è proporzionale al quadrato della lunghezza della sua componente nel vettore di sovrapposizione.

Il vantaggio della sovrapposizione

Quanto è costoso studiare <u>tutte le tuple</u>?

Oracolo Classico

In algoritmi classici utilizziamo N volte l'oracolo, dando in input ogni tupla.

Oracolo quantistico

Nella controparte quantistica utilizziamo 1 chiamata all' oracolo (utilizza in input il DB) per 'marcare' tutte le tuple accettate.

Preparazione dell' Algoritmo

Mappiamo in modo univoco ognuna delle N tuple con uno stato quantistico, utilizzando $n = log_2(N)$ qubit.

Nel nostro caso, utilizziamo **5 qubit** per mappare 32 tuple.

Stato	Nome	Cognome
00000}	Angelo	Bianchi
00001}	Filippo	Verdi
00010}	Elisa	Marrone
10101}	Mario	Rossi
•••		
11111)	Giacomo	Neri

Inizializziamo il sistema con una **perfetta sovrapposizione** degli stati, denominata |Ψ⟩.

Un osservazione geometrica

Consideriamo il nostro stato come sovrapposizione di:

• $|R\rangle$, somma diretta degli stati soluzione.

• |W>, somma diretta degli stati errati.

$$|\Psi\rangle = \sin(\theta) \cdot |R\rangle + \cos(\theta) \cdot |W\rangle$$

Similmente alla misurazione di un singolo qubit, misurare l'intero sistema significa ottenere uno stato che può essere componente di $|R\rangle$ o $|W\rangle$.

Ottenere $|R\rangle$ dalla misurazione indica che abbiamo trovato uno **stato soluzione**, mentre $|W\rangle$ ha come componenti esclusivamente **stati non-soluzione**.

>|W⟩

Applicare l'operatore G

L' algoritmo utilizza un "operatore di Grover", il quale modifica i coefficienti del sistema.

Osserviamo come a ogni applicazione dell' operatore, il sistema aumenti progressivamente le probabilità di misurare uno stato soluzione.

UniGe DIBRIS

8

Quando fermarsi?

Si noti come il sistema "ruoti" di 2θ a ogni applicazione dell' **operatore G**.

Possiamo quindi descriverlo in funzione del numero di iterazioni eseguite K:

$$G^K |\Psi\rangle = \sin(\theta + 2\theta K) \cdot |R\rangle + \cos(\theta + 2\theta K) \cdot |W\rangle$$

Uni**Ge** | DIBRIS

Il valore **ottimale** di K, che massimizza il seno e quindi la probabilità di trovare la soluzione, si può ricavare:

$$K = \frac{\pi}{4}\sqrt{N} - \frac{1}{2}$$

Verifica del risultato

Dopo k iterazioni, nel nostro esempio l'algoritmo di Grover restituisce uno stato soluzione nel **99.9%** dei casi.

Indipendentemente dal DB di partenza, esiste però una piccola possibilità di errore, quindi la tupla ottenuta va verificata con un **oracolo classico** : se necessario, l'algoritmo va ripetuto.

UniGe | DIBRIS

Implementazione – Python & Qiskit

```
#La tupla di cui voglio mostrare le probabilità
marked_state = 21 # | 10101>
####### INIZIALIZZAZIONE #######
#Inizializzo i qubit tutti in |0)
state = Statevector.from label('00000')
#rendo tutti gli stati equiprobabili
state = state.evolve(hadamards)
#stampo la probabilità iniziale
print probability(state, marked state)
####### ITERAZIONI #######
k = round((np.pi / 4) * np.sqrt(N) - 1/2)
for i in range(k): #applico l' Operatore di Grover
    #marco gli stati soluzione
    state = state.evolve(mark)
    #amplifico la loro probabilità
    state = state.evolve(diffuse)
    #stampo la probabilità dello stato
    print probability(state, marked state, i)
#mostro la tupla con maggiore probabilitá
print_best_row(state)
```

Stato	Nome	Cognome
00000}	Angelo	Bianchi
00001}	Filippo	Verdi
00010⟩	Elisa	Marrone
10101⟩	Mario	Rossi
11111)	Giacomo	Neri

Uni**Ge** | DIBRIS

Complessità e Speed-up

- La soluzione classica ha complessità media O(N).
- L'algoritmo di Grover è di complessità paragonabile a $O(\sqrt{N})$.

Otteniamo quindi uno **speed-up** quadratico rispetto all' algoritmo classico.

UniGe | DIBRIS

Applicazioni pratiche - SAT

Cosa è il SAT?

Per SAT intendiamo il problema (NP-Completo) di determinare se una formula booleana sia **soddisfacibile**.

Es. " (A or B) and not (C and A) " è soddisfatta da (A, B, C) = (1,0,0)

In che modo si risolve con l'algoritmo di Grover?

Utilizzando un oracolo che ne descrive la formula, ovvero che marca tutte le **configurazioni** (se esistono) che la soddisfano.

Nella pratica, che vantaggi produce?

Supponiamo una formula booleana con **70 variabili** e un frequenza di chiamate all' oracolo di **1GHz** (1 miliardo di volte al secondo).

• Algoritmo classico (Brute-force con 2^{70} chiamate):

~12,500 anni

Algoritmo di Grover (2³⁵ chiamate):

~12 secondi

Grazie per l'attenzione