# Regresión univariable

- Muestreo
  - Hold-out
  - Cros-validación
- Hipótesis
  - Regresión lineal (sin offset)
  - Regresión lineal
  - Regresión polinómica
- Función de coste
  - Cuadrática
  - Regularización (regresión de arista)
- Optimización
  - Ecuación normal
  - Gradiente descendente
- Evaluación
  - Bootstrap

# Ejemplo en el sector eléctrico

- Una compañía eléctrica tiene una extensa base de datos con información muy diversa sobre sus clientes. Se desea explotar dicha información para dar respuesta a 3 cuestiones:
  - ¿Que energía demandará un nuevo cliente? (predicción)
  - ¿Es potencial comprador de un vehículo eléctrico?
     (clasificación)

### Ejemplo en el sector eléctrico Predicción

- En el momento de hacer un contrato con un cliente nuevo, la empresa realiza un perfil del usuario para lo que le solicita diversos datos.
  - Con esa información y en base a la experiencia acumulado sobre otros clientes, desea conocer el consumo previsto de energía a lo largo de un año.
  - Ello le permitirá realizar una mejor planificación y gestión de la red eléctrica

### Población y muestra

1. Extracción de una muestra



# Pasos del machine learning

- Extracción de un dataset
- Determinación de las features
- Formulación de una hipótesis
  - Elección de la función de coste
  - Optimización del coste
  - Evaluación del resultado

# Elementos de la muestra y objetivos

### 2. Determinación de features

Muestra  $\mathcal{M}$  (dataset)

i-ésimo elemento



n elementos

Caracterizado por 1 feature (rasgo):

•  $x^{(i)}$ : ingresos anuales

Valor del objetivo (target):

•  $y^{(i)}$ : consumo anual de electricidad

$$x = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(n)} \end{bmatrix}$$

$$y^{(i)} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

### Elementos de la muestra y objetivos

### 2. Determinación de *features*

| Cliente | Ingresos anuales (miles de $\mathfrak{E}$ ) $x^{(i)}$ | Consumo anual de electricidad (MW-h) $y^{(i)}$ |
|---------|-------------------------------------------------------|------------------------------------------------|
| 1       | 44.6                                                  | 9.81                                           |
| 2       | 73.4                                                  | 12.4                                           |
| 3       | 5.0                                                   | 1.63                                           |
| 4       | 33.7                                                  | 8.17                                           |
| 5       | 18.9                                                  | 4.87                                           |
| :       | <b>:</b>                                              | <b>:</b>                                       |

### Elementos de la muestra y objetivos

### 2. Determinación de features



# Pasos del machine learning

- Extracción de un dataset
- Determinación de las features
- Formulación de una hipótesis
  - Elección de la función de coste
  - Optimización del coste
  - Evaluación del resultado

### Regresión lineal (sin offset)

#### 3. Formulación de hipótesis



La posición de la recta depende del parámetro w

Hipótesis  $h_w(x) = wx$ 

Recta que pasa por el origen

# Pasos del machine learning

- Extracción de un dataset
- Determinación de las features
- Formulación de una hipótesis
  - Elección de la función de coste
  - Optimización del coste
  - Evaluación del resultado



$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} (h_w(x^{(i)}) - y^{(i)})^2$$

$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} (h_w(x^{(i)}) - y^{(i)})^2$$

$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} \frac{wx^{(i)} - y^{(i)}}{v^{(i)}}^2$$
Parámetro (variable)

$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} \frac{(wx^{(i)} - y^{(i)})^2}{(variable)}$$

| $x^{(i)}$ | $y^{(i)}$ |
|-----------|-----------|
| 44.6      | 9.81      |
| 73.4      | 12.4      |
| 5.0       | 1.63      |
| 33.7      | 8.17      |
| 18.9      | 4.87      |
| :         | :         |

$$J(h_w(x), y) = \frac{1}{n} \begin{bmatrix} (w \cdot 44.6 - 9.81)^2 + \\ (w \cdot 73.4 - 12.4)^2 + \\ (w \cdot 5.0 - 1.63)^2 + \\ (w \cdot 33.7 - 8.17)^2 + \\ (w \cdot 18.9 - 4.87)^2 + \\ \vdots \end{bmatrix}$$

$$J(h_w(x), y) = J(w) = \frac{1}{n} \sum_{i=1}^{n} (wx^{(i)} - y^{(i)})^2$$

# Pasos del machine learning

- Extracción de un dataset
- Determinación de las features
- Formulación de una hipótesis
  - Elección de la función de coste
  - Optimización del coste
  - Evaluación del resultado

#### 5. Optimización del coste

$$w^* = \arg\min_{w} J(h_w(x), y) = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} (wx^{(i)} - y^{(i)})^2$$

$$\frac{d}{dw}J(h_w(x),y) = 0$$

$$\frac{d}{dw} \frac{1}{n} \sum_{i=1}^{n} \left( wx^{(i)} - y^{(i)} \right)^2 = 0$$

### 5. Optimización del coste

$$\frac{1}{n} \sum_{i=1}^{n} \frac{d}{dw} \left( wx^{(i)} - y^{(i)} \right)^{2} = 0$$

$$\sum_{i=1}^{n} 2(w^*x^{(i)} - y^{(i)})x^{(i)} = 0$$

$$w^* \sum_{i=1}^n x^{(i)^2} - \sum_{i=1}^n x^{(i)} y^{(i)} = 0$$

### 5. Optimización del coste



$$w^* = \frac{\sum_{i=1}^{n} x^{(i)} y^{(i)}}{\sum_{i=1}^{n} x^{(i)}^2} = 0.20 \longrightarrow J = 1.30$$

#### 5. Optimización del coste



Algunas funciones de coste pueden ser NO CONVEXAS El error cuadrático medio es una función de coste CONVEXA

# Pasos del machine learning

- Extracción de un dataset
- Determinación de las features
- Formulación de una hipótesis
  - Elección de la función de coste
  - Optimización del coste
  - Evaluación del resultado

### Generalización



### Generalización

#### 6. Evaluación del resultado

Riesgo: 
$$R_{\mathcal{P}}[h] = E_{\mathcal{P}}[J(h(x), y)] = \frac{1}{N} \sum_{i=1}^{N} J(h(x_i), y_i)$$

#### Riesgo experimental

$$R_{\mathcal{M}}[h] = E_{\mathcal{M}}[J(h(x), y)] = \frac{1}{n} \sum_{i=1}^{n} J(h(x_i), y_i)$$

$$R_{\mathcal{P}}[h] = (R_{\mathcal{P}}[h] - R_{\mathcal{M}}[h]) + R_{\mathcal{M}}[h]$$
Riesgo

Error de Riesgo
generalización experimental

### Generalización

#### 6. Evaluación del resultado

$$R_{\mathcal{P}}[h] = (R_{\mathcal{P}}[h] - R_{\mathcal{M}}[h]) + R_{\mathcal{M}}[h]$$

$$R_{\mathcal{P}}[h] = R_{\mathcal{M}}[h] + \varepsilon_{gen}[h]$$

Riesgo Error de experimental generalización

~Test Training error error

Bias Variance

#### 6. Evaluación del resultado

| Cliente | Ingresos x | Consumo |
|---------|------------|---------|
| 1       | 44.6       | 9.81    |
| 2       | 73.4       | 12.4    |
| 3       | 5.0        | 1.63    |
| 4       | 33.7       | 8.17    |
| 5       | 18.9       | 4.87    |
| 6       | 13.8       | 3.54    |
| 7       | 22.7       | 5.94    |
| 8       | 37.8       | 8.59    |
| 9       | 42.7       | 9.47    |
| 10      | 56.2       | 11.1    |

| Cliente | Ingresos<br>x | Consumo |
|---------|---------------|---------|
| 6       | 13.8          | 3.54    |
| 9       | 42.7          | 9.47    |
| 6       | 13.8          | 3.54    |
| 1       | 44.6          | 9.81    |
| 1       | 44.6          | 9.81    |
| 2       | 73.4          | 12.4    |
| 8       | 37.8          | 8.59    |
| 7       | 22.7          | 5.94    |
| 3       | 5.0           | 1.63    |
| 4       | 33.7          | 8.17    |

J = 1.30

$$J = 1.29$$









$$n = 10$$

$$n = 100$$



$$n = 100$$





$$R_{\mathcal{P}}[h] = R_{\mathcal{M}}[h] + \varepsilon_{gen}[h]$$