Architecture des processeurs RISC-V(RV32I) Architecture monocycle

```
Michel Agoyan (michel.agoyan@thalesgroup.com),
Clément Fanjas (clement.fanjas@cea.fr),
Théophile Gousselot (theophile.gousselot@emse.fr),
Marc Lacruche (marc.lacruche@st.com),
Louis Noyez (louis.noyez@emse.fr),
Simon Pontié (simon.pontier@cea.fr),
Olivier Potin(olivier.potin@emse.fr),
Jean-Baptiste Rigaud (rigaud@emse.fr).
```

26 novembre 2022

- Architecture du Microprocesseur
 - Introduction
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire
 - Format des instructions
 - Retour TD1
 - Construction du chemin de données
 - La mémoire instructions
 - Les instructions de type R
 - Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporelle
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Plan

- Introduction
- Les composants du chemin de données
- Le banc de registres
- L'unité arithmétique et logique
- La mémoire
- Format des instructions
- Retour TD1
- Construction du chemin de données
- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- Analyse temporelle
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
- Analyse temporelle : fin
- Analyse de performance : fin

- Architecture du Microprocesseur
 Introduction
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Synoptique Général

Plan

- Architecture du Microprocesseur
 - Introduction

- Le banc de registres
- L'unité arithmétique et logique
- La mémoire

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

- 1 Architecture du Microprocesseu
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Introduction

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Le banc de registres

Caractéristiques

- 32 registres de 32 bits
- Dans l'architecture RISC-V, R_0 est cablé à 0 sans écriture possible.

Le banc de registres

Lecture

- asynchrone
- 2 sorties de 32 bits de registre : Rs_1_o et Rs_2_o à destination de l'ALU pour l'opérande 1 (Op_1) et l'opérande 2 (Op_2)
- Rs₁_o et Rs₂_o sont indexés par Rs₁_add_i et Rs₂_add_i

Le banc de registres

Écriture

- synchrone (sur front montant de l'horloge)
- qualifié par we_i actif à l'état haut
- la valeur sur l'entrée de 32 bits Rd_i est copiée dans le registre indexé par Rd_add_i.

- 1 Architecture du Microprocesseur
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Introduction

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

L'ALU

Caractéristiques

Dans l'architecture RISC-V RV(32I), l'ALU réalise des opérations simples $(1 \text{ cycle horloge}) \Rightarrow \text{pas de multiplication ni de division}.$

L'ALU

Entrées

- 2 opérandes sur 32 bits : Op₁_i et Op₂_i
- une sélection de fonction 4 bits : func_i (addition , soustraction, décalage, comparaison)

L'ALU

Sorties

- d_o sur 32bits
- résultats sur 1 bit de la fonction de comparaison :
 - zero_o
 - It_o (less than)

- 1 Architecture du Microprocesseul
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Introduction

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

La mémoire

Caractéristiques

- utilisée pour les instructions et les données
- lecture asynchrone
- écriture synchrone (ie : sur front montant de l'horloge) qualifiée par we_i . Largeur 32 bits, profondeur $4096 = 2^{12}$ mots
- dans le de l'architecture RISC-V simplifiée : pas d'accès demi-mot ou octet mais l'adressage reste un adressage sur octet

Plan

- Architecture du Microprocesseur
 - Introduction
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire
 - Format des instructions
 - Retour TD1
 - Construction du chemin de données
 - La mémoire instructions
 - Les instructions de type R
 - Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Format des instructions (RV32I)

31	30 25	5 24 21	20	19	15 14	12	11 8	7	6 0			
f	unct7	rs	s2	rs1	funct	t3	re	l	opcode			
									0110011	R-type		
										_		
	imm[1	1:0]	rs1	funct	funct3 re			opcode				
									0010011	I-type		
										_		
im	m[11:5]	rs	s2	rs1	funct	funct3 imm[4:0]		opcode				
									0100011	S-type		
imm[12]	imm[10:5]	rs	s2	rs1	funct	t3	imm[4:1]	imm[11]	opcode			
									1100111	B-type		
										_		
		imm[3	[1:12]				re	i	opcode			
										U-type		
imm[20]	imm[1	0:1]	imm[11]	imi	n[19:12]		re	1	opcode			
									1101111	J-type		

Plan

- Architecture du Microprocesseur
 - Introduction
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire
 - Format des instructions

Retour TD1

- Construction du chemin de données
- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule DAnalyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Test bench du TD1 : Banc de registres et ALU

Plan

- Architecture du Microprocesseur
 - Introduction
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire
 - Format des instructions
 - Retour TD1
 - Construction du chemin de données
 - La mémoire instructions
 - Les instructions de type R
 - Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- Analyse temporell
- La bascule D
- Analyse de performance format R-I
- Analyse de performance format S : SW
- Analyse de performance format I : LW
- Analyse temporelle : fin
- Analyse de performance : fin

- Architecture du Microprocesseur
 - Introduction
 Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire
 - Format des instructions
 - Retour TD1
 - Construction du chemin de données
 - La mémoire instructions
 - Les instructions de type R
 - Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

La mémoire instructions

Basic Block

 Pour l'execution d'un bloc basique, c'est à dire une séquence d'instructions successives sans rupture du flot d'execution, les instructions sont lues à des adresses consécutives (distantes de 4.)

- 1 Architecture du Microprocesseur
 - Introduction
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Format des instructions

Retour TD1

- Construction du chemin de données
- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Les instructions arithmétiques et logiques de format R

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0 funct7 rs2 rs1 funct3 rd 0110011 R-type

Logique de contrôle du chemin de données

Le "Control_Path" est constitué de fonctions logiques combinatoires :

- Dont les entrées sont :
 - l'instruction qui contient l'opcode, funct
 - les bits de statut de l'ALU
- Les sorties contrôlent le "Data Path"
 - Pour les instructions registre-registre, le but est de traduire funct dans le bon mot de contrôle de l'ALU
 - de commander l'écriture dans le banc de registres.

```
\begin{array}{c} \textit{alu control o} [3:0] \\ \textit{instruction s} [31:0] \\ \textit{reg write o} \\ \\ \textit{alu zero i} \\ \\ \textit{alu It i} \\ \\ \textbf{Control\_Path} \end{array}
```

- Architecture du Microprocesseur
 - Introduction
 I as composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire
 - Format des instructions
 - Retour TD1
 - Construction du chemin de données
 - La mémoire instructions
 - Les instructions de type R
 - Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Les instructions arithmétiques et logiques de format l

- Architecture du Microprocesseur
 - Introduction
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Format des instructions

Retour TD1

- Construction du chemin de données
- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

Les instructions de type U

- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Les instructions de format U : LUI

31	30	25 24	$21 \ 20$	19	15 14 12		7	6 0	
		imm[31:12]			rd		0110111	U-type

Logique de contrôle pout les instructions de type I et U

On ajoute à la logique du "Control_Path" :

- Le décodage des instructions de type I et U qui va permettre de :
 - générer le signal de pilotage alu_src1 et alu src2
 - choisir le traitement de la valeur immédiate *imm_gen_sel*[1 : 0]

```
alu_control_o[3:0]
instruction_s[31:0] reg_write_o
imm_gen_sel_o[1:0]
alu_zero_i alu_src_1_o
alu_src_2_o
alu_lt_i

Control_Path
```

- Architecture du Microprocesseur
 - Introduction
 Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Format des instructions

Retour TD1

- Construction du chemin de données
- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Extraction des valeurs immédiates

- Pourquoi l'encodage des valeurs immédiates semble si étrange et complexe?
- Le bit 1 de la valeur immédiate ne peut venir que du bit 8 pour une instruction S ou B D, 21 d'une instruction I ou J ou être fixé à 0 pour une instruction U
- Le bit 0 de la valeur immédiate ne peut venir du bit 7 pour une instruction
 S, 20 pour une instruction I ou être à 0
- Limiter la complexité des multiplexeurs qui agencent la valeur immédiate

31	30	25	24 21		20	19		15	14	12	11	8		7	6	0	
funct7			rs2			rs1	funct		3	rd		011	0011	R-type			
																	•
imm[11:0]							rs1		funct3			rd			001	0011	I-type
																	•
i	imm[11:5]			rs2			rs1		funct3 imm[4:0]			010	0011	S-type			
																	-
imm[12]	2] imm[10:	5]	rs	2			rs1		funct3	3	imn	n[4:1]	imn	n[11]	110	0111	B-type
			imm[3														
						rd			011	0111	U-type						
imm[20)] im	m[10]	:1]	im	m[11]		imm	[19]	:12]	П		rc	l		110	1111	J-type
																	_

Extraction des valeurs immédiates

Détail du traitement des valeurs immédiates

- Pour les instructions de type I d'opérations arithmétiques et les instructions d'opérations logiques (ADDI,ORI...):
 - La valeur immédiate 12 bits est considérée comme signée et est étendue à 32 bits => les bits 31 à 12 sont égaux à la valeur du bit 11
- Pour les instructions de type U (LUI ...) :
 - Les 20 bits de poids fort sont ceux de l'instruction, les 12 bits de poids faibles sont à zéro

- Architecture du Microprocesseur
 - Introduction
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Format des instructions

Retour TD1

- Construction du chemin de données
- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporell
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Chargement de valeur immédiate 32 bits

- Le chargement d'une valeur immédiate de 32 bits dans un registre se fait à l'aide de la séquence d'instruction LUI et ADDI, symbolisée en assembleur par LI:
- LUI <=> Rd = imm[31 :12] & [000000000000]
 - Exemple : LUI R1,#0x12345 <=> R1 = 0x12345000
- ADDI <=> Rd = Rs1 + sigext(imm[11 :0])
 - Exemple : ADDI R1,R1,#0x678 <=> R1= 0x12345678
- Quelle est la séquence LUI, ADDI pour charger la valeur 0xDEADBEEF dans R1?(TD2)

- Architecture du Microprocesseur
 - Introduction
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire
 - Format des instructions
 - Retour TD1
 - Construction du chemin de données
 - La mémoire instructions
 - Les instructions de type R
 - Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporelle
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Instructions Load W et Store W

pc_next_s

• L'architecture mono-cycle impose une architecture mémoire Harvard : instructions et données disjointes

• L'ALU est ré-utilisée pour le calcul de l'adresse de destination

- - Introduction
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

 - Construction du chemin de données
 - La mémoire instructions
 - Les instructions de type R
 - Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Instructions Store W (format S)

Logique de contrôle pout l'instruction Store W (format S)

On ajoute à la logique du "Control_Path" :

- Le décodage des instructions de type S qui va permettre de :
 - générer le signal de pilotage alu_src2
 - choisir le traitement de la valeur immédiate imm gen sel[1:0]
 - générer le signal de demande d'écriture dans la mémoire de données

```
alu\_control\_o[3:0]
instruction\_s[31:0]
                          reg\_write\_c
                 imm\_qen\_sel\_o[1:0]
alu zero i
                           alu\_src_1\_o
                           alu\_src_2\_o
                           mem\_we\_o
alu_lt_i
      Control_Path
```

- 1 Architecture du Microprocesseur
 - Introduction
 Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire
 - Format des instructions
 - Retour TD1
 - Construction du chemin de données
 - La mémoire instructions
 - Les instructions de type R
 - Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse ter
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Instructions Load W (format I)

Logique de contrôle pout l'instruction Laod W (format I)

On ajoute à la logique du "Control_Path" :

- Le décodage des instructions de type I qui va permettre de :
 - générer le signal de pilotage alu_src2
 - choisir le traitement de la valeur immédiate imm_gen_sel[1:0]
 - générer le signal de demande d'écriture dans la mémoire de données
 - piloter le signal du mux pour le wb wb sel[1:0]

```
alu\_control\_o[3:0]
instruction\_s[31:0]
reg\_write\_o
imm\_gen\_sel\_o[1:0]
alu\_src_1\_o
alu\_src_2\_o
mem\_we\_o
alu\_lt\_i
wb\_sel\_o[1:0]
Control\_Path
```

Plan

- Architecture du Microprocesseur
 - Introduction

Les composants du chemin de données

- Le banc de registres
- L'unité arithmétique et logique
- La mémoire

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I

Analyse temporelle

- La bascule DAnalyse de performance format R-I
- Analyse de performance format S : SW
- Analyse de performance format I : LW
- Analyse temporelle : fin
- Analyse de performance : fin

- 1 Architecture du Microprocesseu
 - Introduction

Les composants du chemin de données

- Le banc de registres
- L'unité arithmétique et logique
- La mémoire

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporelle
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

La bascule D

La bascule D

La bascule D

- Architecture du Microprocesseur
 - Introduction
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporelle
 - La bascule D
 - Analyse de performance format R-I
 - lacksquare Analyse de performance format S:SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

- 1 Architecture du Microprocesseur
 - Introduction
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporelle
 - La bascule D
 - Analyse de performance format R-I
 - ullet Analyse de performance format S:SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

- 1 Architecture du Microprocesseu
 - Introduction
 I as composants du chemin de dennées
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Format des instructions

Retour TD1

- Construction du chemin de données
- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporelle
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

◄□▷
□▷
□▷
□▷
□▷
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□○
□

- 1 Architecture du Microprocesseu
 - Introduction
 - Les composants du chemin de données
 - Le banc de registres
 - L'unité arithmétique et logique
 - La mémoire

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporelle
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Analyse temporelle : fin

Mise à jour du PC et de la mémoire de données

- ullet $T > t_{ifetch} + t_{opfetch} + t_{ALU} + t_{MEM} + t_{WB} + t_{setup} + t_{hold}$
- T > instruction la plus longue

- 1 Architecture du Microprocesseu
 - Introduction

Les composants du chemin de données

- Le banc de registres
- L'unité arithmétique et logique
- La mémoire

Format des instructions

Retour TD1

Construction du chemin de données

- La mémoire instructions
- Les instructions de type R
- Les instructions de type I

- Les instructions de type U
- Extraction des valeurs immédiates
- Chargement de valeur immédiate 32 bits
- Instructions Load W et Store W
- Les instructions de type S
- Les instructions de type I
- 6 Analyse temporelle
 - La bascule D
 - Analyse de performance format R-I
 - Analyse de performance format S : SW
 - Analyse de performance format I : LW
 - Analyse temporelle : fin
 - Analyse de performance : fin

Analyse de performance : fin

Temps d'execution d'une instruction

- nombre de cycles par instruction CPI
- période d'horloge = temps de cycle
- $t_i = CPI * T$

Temps d'execution d'un programme

• $\sum CPI_i * T \simeq E(CPI) * T$

Architecture mono-cycle

 CPI=1, mais T n'est pas optimum il est le majorant des chemins critiques

Architectrure mémoire

- L'architecture est de type Harvard : mémoire instructions et mémoire données sont séparées
- Peut-on se ramener à une architecture Von-Neumann?
 - A priori si on reste sur un cycle / instruction, il y a une dépendance structurelle (structural hazard) dans l'architecture mono-cycle : concurrence entre le chargement d'instruction (« fetch ») et le transfert de donnée pour l'adressage de la mémoire
 - ullet Mémorisation de l'adresse instruction 1 cycle ightarrow 2 cycles