Al Engineer Training: VII In the Era of Deep Learning

IT21 Learning Alvin Jin

Weekly Al News

- Demis Hassabis(DeepMind), was appointed as an advisor to the UK government national AI strategy.
- OpenAI Five plays against itself every day to beat human team at video game Dota 2.
- The 35th ICML is on going in Sweden with 600 accepted papers, many from Chinese researchers. Google:43, DeepMind:33, Google AI:24, Tencent: 11

Agenda

- Deep Learning in Computer Visions:
 - Transfer Learning
 - Network Design Patterns
- Case Studies:
 - Cats vs. Dogs: VGGNet

Transfer Learning

- Using a pre-trained network model to classify classes by learning patterns from new data it **wasn't** originally trained on.
- Feature Extraction
 - Treating networks as feature extractors, propagate the inputs until a given layer
 - Take these activations as feature vectors for new dataset.
- Fine-tuning
 - Removing the FC layers of an existing network, placing new FC layers, and fine-tuning their weights (and optionally previous layers) to specific classification task.

Feature Portability

- CONV layers come earlier in the model extract local, highly generic feature maps about the inputs, whereas layers that are higher up extract more abstract concepts about the targets.
- The representations learned by the classifier are specific to the classes on which the model is trained.
- The portability of learned features across different problems is a key advantage of deep learning.

Feature Extraction

- Feature extraction consists of taking the CONV base of a pre-trained network, running the new data only once through it.
- Activating feature maps to quantify the content of an image.
- Training a new model with either a standard ML classifier or a FC classifier on top of the CNN extracted features.

Feature Extraction Steps

- Cutting off the final set of FC layers from a pre-trained ConvNet
- Replacing the head with a new set of FC layers with random initializations. Normally, the new FC head will have fewer parameters than the original one.
- All layers below the head are frozen, so their weights cannot be updated during the training.
- Training the network using a small learning rate, so the new set of FC layers can learn discriminative filters from the previously learned CONV layers.

VGGNet

- ImageNet Dataset:
 - 1.2M training images
 - 50K validation and 100k testing images
 - 1000 object categories
- VGG won the 1st place of LSVRC2014
- VGG Network Size:
 - 16, 19 stands for the number of weight layers.
 - VGG16 model size 533MB

VGG16 Architecture

VGGNet Characteristics

- Using only 3x3 convolutional layers stacked on top of each other in increasing depth.
- Stacking multiple CONV => RELU layer sets before applying a single POOL layer.
- This allows the network to learn more rich features from the CONV layers prior to **downsampling** the spatial input size via POOL layer.
- Two fully-connected layers each with 4,096 nodes are then followed by a softmax classifier.
- The network weights are quite larger due to its depth and number of fully-connected nodes, and slow to train.

Downsampling

- Downsampling is to reduct the number of parameters ensures higher computational speeds.
- To downsample the feature maps by a factor of 2.
 - Max pooling is usually done with 2x2 windows and stride 2,
 - While convolution is typically done with 3x3 windows and stride 2.

Persisting Models in HDF5

- Feature Vectors/Model Weights are persisted into HDF5 format
- HDF5 is binary format to store large numerical datasets on disk.
- Data in HDF5 is stored hierarchically in groups, where a group is a container-like structure holding datasets and other groups.

• A dataset can be thought of as a multi-dimensional array of a homogeneous data type.

Fine-tuning

- Fine-tuning consists of:
 - Unfreeze a few top layers of a frozen base model
 - Jointly train these top layers and a new FC classifier.
- It slightly adjusts the abstract representations of the model being reused, to make them more relevant for the problem.
- The new classifier has to be trained in advance. Otherwise, the error signal propagating through the network is too large to train the unfrozen top layers.

Freezing Layers

- Training data is forward propagated through the network; The new added FC layers are randomly initialized.
- Freezing a set of layers means preventing their weights from being updated during training.
- Otherwise, large weight updates will be propagated through the network and destroy the representations previously learned.
- The back-propagation is stopped before the frozen layers, which allows unfrozen and new added layers to use patterns from the highly discriminative CONV layers

Fine-tuning Steps

- Replace the head with a new set of FC layers with fewer parameters and random initializations.
- Freeze the base network to avoid weights update.
- Train the FC layers(classifier) just added for warm-up.
- Unfreeze a few top CONV layers in the base network.
- Jointly train both the unfrozen CONV layers and the warm-up classifier layer.

Transfer Learning or Learn from Scratch?

 Considering dataset size and similarity with the pre-trained model was trained on.

	Similar Dataset	Different Dataset
Small Dataset	Feature extraction using FC layers + classifier	Feature extraction using lower level CONV layers+classifier
Large Dataset	Fine-tuning likely to work, but might have to train from scratch	Fine-tuning worth trying, but likely have to train from scratch

CNN Architecture Patterns

- INPUT
- => ((CONV => RELU) * N => POOL) * M
- => (FC => RELU) * K
- => FC
- $0 \le N \le 3$; $M \ge 0$; $0 \le K \le 2$
- Stacking multiple CONV layers before applying a POOL layer allows the CONV layers to develop more complex features before the destructive pooling operation is performed.
- The depth of the feature maps progressively increases in the network, whereas the size of the feature maps decreases
- Dense layers learn global patterns in their input feature space, whereas convolution layers learn local patterns.

Rules of Thumb

- Using square inputs to take advantage of linear algebra optimization libraries.
- CONV layers should use smaller filter sizes 3x3 and 5x5.
- Using a stride 1 enables our CONV layers to learn filters, while the POOL layer is responsible for downsampling.
- Applying zero-padding when stacking multiple CONV layers increases classification accuracy.

Rules of Thumb

- Most commonly, max pooling applied over a 2x2 receptive field size and a stride 2.
- Increasing the network capacity until overfitting becomes the primary obstacle. Then, fighting with overfitting to achieve high accuracy.

Recipes for Training

 Make sure your training data is representative of your validation and testing sets.

Q&A