MI-SPOL-16

Testování statistických hypotéz. T-testy, testy nezávislosti, testy dobré shody.

Náhodný vektor $X=(X_1,...,X_n)^T$, který má nějaké rozdělení.

Tvrzení o tomto rozdělení, jehož platnost je neznámá, je hypotéza.

Testování hypotéz: Mechanismus, jak na základě napozorovaných hodnot X ověrovat platnost hypotéz

Vždy se pracuje se dvěma hypotézami:

- Nulová hypotéza H_0 : označuje tvrzení, o kterém chceme rozhodovat
- Alternativní hypotéza H_A : opačné tvrzení, které se v rozhodovacím procesu staví proti H_0

Předpoklad: ve skutečnosti platí buď H_0 , nebo H_A

Test nulové hypotézy H_0 proti alternativní hypotéze H_A je rozhodovací proces založený na hodnotě X, na jehož základě **zamítneme** nebo **nezamítneme** H_0

Chyby při testování

Chyba prvního druhu: Zamítneme H_0 , i když platí

Chyba druhého druhu: Nezamítneme H_0 , i když neplatí

Nelze kontrolovat pravděpodobnost obou chyb $\Rightarrow H_0$ je volena tak, aby chyba **1. druhu byla** závažnější než chyba 2. druhu

Hladina významnosti testu: Hodnota lpha určující maximální pravděpodobnost chyby 1. druhu (běžně lpha=5% nebo lpha=1%)

Nejsilnější test: Test, který má mezi všemi testy na stejné hladině významnosti nejmenší pravděpodobnost chyby 2. druhu

Výsledky testování

Říkáme, že: Testujeme hypotézu H_0 proti alternativě H_A na hladině významnosti lpha.

Zamítnutí H_0 ve prospěch H_A je silný výsledek

ullet Pokud je H_0 zamítnuta, je tvrzení H_A **statisticky významné** (jinak je statisticky nevýznamné)

Hypotézu, kterou chceme dokázat, tedy volíme jako **alternativní** hypotézu H_A . Pokud je výsledkem testu zamítnutí H_0 , víme, že H_A platí s pravděpodobností aspoň $1-\alpha$

Matematická formulace

Test hypotézy H_0 proti alternativě H_A založený na pozorování náhodného vektoru X, jehož rozdělení je z nějaké množiny možných rozdělení $\mathcal{P}=\{P_{\theta}|\theta\in\Theta\}$, kde Θ je množina všech možných hodnot indexu θ .

Nulová a alternativná hypotéza jsou **podmnožiny** ${\mathcal P}$ tvořící jeho disjunktní rozklad: $H_0 \cup H_A = {\mathcal P}$

V indexové množine jim odpovídají podmnožiny $\Theta_0=\{\theta|P_{\theta}\in H_0\}$ a $\Theta_A=\{\theta|P_{\theta}\in H_A\}$. Takže $\Theta_0\cup\Theta_A=\Theta$

Nulová hypotéza H_0 platí, právě když X má rozdělení $P_{ heta}$ pro nějaké $heta \in \Theta_0$

Kritický obor

Množina realizací X, pro které testování na hladině lpha skončí zamítnutím H_0

Značení: W_{lpha}

Pokud naměříme **data z** W_{lpha} , **zamítáme** H_0 na hladině lpha:

- ullet $X\in W_{lpha}\Leftrightarrow$ Zamítáme H_0 na hIadině lpha
- ullet $X
 otin W_{lpha}\Leftrightarrow$ Nezamítáme H_0 na hladině lpha

P-hodnota

Minimální hladina významnosti \hat{p} , na které lze **zamítnout** hypotézu H_0

$$\hat{p} \equiv \hat{p}(X) = \inf\{lpha | X \in W_lpha\}$$

Význam: Pokud je p-hodnota menší než požadovaná hladina významnosti, zamítá se H_0 Velikost p-hodnoty říká, jak silné je zamítnutí H_0 (čím menší p, tím významnější zamítnutí)

 \hat{p} má rovnoměrné rozdělení na intervali $(0,1), \hat{p} \sim Unif(0,1)$

Typy hypotéz

Dělení podle toho, do jaké míry známě rozdělení X:

- ullet parametrické: rozdělení X určeno parametrem $heta\in\Theta\subset\mathbb{R}^d$. Tvrzení se týkají hodnot heta
- **neparametrické:** X má obecné rozdělení. Tvrzení se týkají různých vlastností rozdělení (medián, nezávislost...) nebo jeho tvaru (test dobré shody)

Dělení podle množství rozdělení uvedených v hypotézách:

- jednoduchá hypotéza: pouze jedno rozdělení
- složená hypotéza: více rozdělení

Intervaly spolehlivosti

Náhodný výběr $X=(X_1,...,X_n)^T$ z rozdělení určeného parametrem $heta\in\Theta\subset\mathbb{R}$

Chceme testovat jednoduchou parametrickou hypotézu $H_0: heta= heta_0$ proti **oboustranné alternativě** $H_A: heta
eq heta_0$ pro konkrétní hodnotu $heta_0$

(L(X),U(X)) je **oboustranný** $100\cdot(1-\alpha)\%$ **interval spolehlivosti** pro parametr θ , sestavený na základě náhodného výběru X

Pro každé $heta \in \Theta: P_{ heta}(heta \in (L,U)) = 1-lpha$

Testování:

- Zamítneme H_0 , pokud $\theta_0 \notin (L,U)$
- ullet Nezamítneme H_0 , pokud $heta_0 \in (L,U)$

Kritický obor testu: $W_{lpha} = \{x | heta_0
otin (L(x), U(x)) \}$

Jednostranná alternativa: Testuje se $H_0: heta \leq heta_0$ proti $H_A: heta > heta_0$

- ullet Horní interval spolehlivosti: Pro každé $heta\in\Theta:P_{ heta}(heta\in(L,+\infty)=P_{ heta}(heta>L)=1-lpha$
- ullet Zamítneme H_0 , pokud $heta_0
 otin (L,+\infty)$
- ullet Kritický obor: $W_lpha=\{x| heta_0\leq L(x)\}$

Testy o normálním rozdělení

V důsledku Centrální limitní věty.

Test $H_0: \mu = \mu_0$ proti $H_A: \mu
eq \mu_0$ na hladině významnoti lpha:

• Při známém rozptylu σ^2 zamítneme H_0 , pokud μ_0 neleží v intervalu

$$\left(ar{X}_n - z_{lpha/2}rac{\sigma}{\sqrt{n}}, ar{X}_n + z_{lpha/2}rac{\sigma}{\sqrt{n}}
ight)$$

ullet Při neznámém rozptylu σ^2 zamítneme H_0 , pokud μ_0 neleží v intervalu

$$\left(ar{X}_n - t_{lpha/2,n-1} rac{s_n}{\sqrt{n}}, ar{X}_n + t_{lpha/2,n-1} rac{s_n}{\sqrt{n}}
ight)$$

Testování hypotéz pomocí statistik

Testová statistika: $T\equiv T(X)$, funkce náhodného vektoru X, u které při platnosti nulové hypotézy známe její rozdělení

Kritický obor testové statistiky: Množina S_{α} -- podmnožina možných hodnot T, pro kterou platí $\sup_{\theta\in\Theta_0}P_{\theta}(T\in S_{\alpha})\leq \alpha$ (když platí H_0 , má T hodnoty v S_{α} s pravděpodobností nejvýše α)

Provedení testu:

- ullet Zamítneme H_0 , pokud $T\in S_lpha$
- ullet Nezamítneme H_0 , pokud $T
 otin S_lpha$

Kritický obor testu W_lpha implicitně $W_lpha = \{x | T(x) \in S_lpha \}$

T-testy: Testy o hodnotách parametrů normálního rozdělení

Testy o střední hodnotě normálního rozdělení (jednovýběrový t-test)

Známý rozptyl

Náhodný výběr $X_1,...,X_n$ z normálního rozdělení $N(\mu,\sigma^2)$, rozptyl je **známý**

Testuje se hodnota μ a porovnává se s μ_0 . Statistika:

$$T=rac{ar{X}_n-\mu_0}{\sigma/\sqrt{n}}$$

Statistika má při platnosti $\mu=\mu_0$ rozdělení $T\sim N(0,1)$

Testování: $H_0: \mu = \mu_0$ proti $H_A: \mu
eq \mu_0$ na hladině lpha

- $ullet S_lpha = (-\infty, -z_{lpha/2}] \cup [z_{lpha/2}, +\infty)$
- ullet $T\in S_lpha\Leftrightarrow |T|\geq z_{lpha/2}$

Podmínka zamítnutí je stejná jako by byla při testu založeném na konfidenčních intervalech.

Test $H_0: \mu \leq \mu_0$ proti $H_A: \mu > \mu_0$ na hladině α :

- $S_{\alpha} = [z_{\alpha}, +\infty)$
- $T \in S_{\alpha} \Leftrightarrow T \geq z_{\alpha}$

Neznámý rozptyl

Statistika:

$$T=rac{ar{X}_n-\mu_0}{s_n/\sqrt{n}}$$

Kritický obor:

- ullet Oboustranný: $|T| \geq t_{lpha/2,n-1}$
- ullet Jednostranný ($H_0: \mu \leq \mu_0$): $T \geq t_{lpha,n-1}$

Test o rozptylu normálního rozdělení

Statistika:

$$T=rac{(n-1)s_n^2}{\sigma_0^2}$$

Kritický obor:

- ullet Oboustranný: $T \leq \chi^2_{1-lpha/2,n-1} ee T \geq \chi^2_{lpha/2,n-1}$
- ullet Jednostranný ($\sigma^2 \leq \sigma_0^2$): $T \geq \chi^2_{lpha,n-1}$

Párový t-test

Náhodný výběr $(X_1,Y_1)^T,...,(X_n,Y_n)^T$ z dvourozměrného rozdělení s neznámým vektorem středních hodnot $(\mu_1,\mu_2)^T$

Testujeme hypotézu $H_0: \mu_1 = \mu_2$ proti $H_A: \mu_1
eq \mu_2$

Položme $Z_i=X_i-Y_i$. Veličiny $Z_1,...,Z_n$ jsou i.i.d se střední hodnotou $\mu_\Delta=\mu_1-\mu_2$. Předpoklad: $Z_i\sim N(\mu_\Delta,\sigma^2)$, kde σ^2 neznáme

 \Rightarrow převedení testu na **jednovýběrový t-test** $H_0: \mu_\Delta = 0$ proti $H_A: \mu_\Delta
eq 0$

Statistika:

$$T=rac{ar{Z}_n}{s_Z/\sqrt{n}}$$

 s_Z -- odmocnina výběrového rozpylu veličiny Z

Kritický obor:

- ullet Oboustranný: $|T| \geq t_{lpha/2,n-1}$
- ullet Jednostranný ($\mu_1 < \mu_2$): $T \geq t_{lpha,n-1}$

Dvouvýběrový t-test

Výběr $X_1,...,X_n$ z normálního rozdělení $N(\mu_1,\sigma_1^2)$ a nezávislý náhodný výběr $Y_1,...,Y_m$ z

normálního rozdělení $N(\mu_2,\sigma_2^2)$ (předpoklad, že σ neznáme)

Test: $H_0: \mu_1 = \mu_2$ proti $H_A: \mu_1
eq \mu_2$

Statistika (moc dlouhá) má při platnosti $\mu_1=\mu_2$ studentovo rozdělení s určitým počtem stupňů volnosti (závisí na tom, zda $\sigma_1^2=\sigma_2^2$, nebo ne)

Test dobré shody (χ^2)

Test shodnosti diskrétních rozdělení

Náhodný výběr $X=X_1,...,X_n$ z diskrétního rozdělení p' (vektor pravděpodobností $p_1,...,p_k$, kterými nastávají jednotlivé výsledky náhodného pokusu o k možných výsledcích). Četnosti $N_1,...,N_k$ jednotlivých hodnot X mají multinomické rozdělení M(n,p')

Test: H_0 : skutečné hodnoty pravděpodobností jsou $p_1,...,p_k$

Statistika:

$$\chi^2 = \sum_{i=1}^k rac{(N_i-np_i)^2}{np_i}$$

Kritický obor: $\chi^2 \geq \chi^2_{lpha,k-1}$

Test je asymptotický -- nutné mít dostatečně velký rozsah výběru

Test dobré shody při **neznámých parameterch**: skutečné hodnoty $p_1,...,p_k$ mohou záviset na m-rozměrném parametru $\theta=(\theta_1,...,\theta_m)^T$, jehož hodnota se také odhaduje

Kritický obor: $\chi^2 \geq \chi^2_{lpha,k-m-1}$

Test nezávislosti v kontingenčních tabulkách

Náhodný vektor $X=(Y,Z)^T$ s diskrétním rozdělením. Veličina Y nabývá hodnot 1,...,r, veličina Z nabývá 1,...,c.

Sdružené pravděpodobnosti: $p_{ij}=P(Y=i,Z=j)$ Marginální pravděpodobnosti: $p_{iullet}=\sum_j p_{ij}, p_{ullet}j=\sum_i p_{ij}$

Náhodný výběr z rozdělení X o velikosti n.

 N_{ij} -- počet výsledků, kdy nastala dvojice (i,j): $N_{ij}=|\{k|Y_k=i,Z_k=j\}|$ N_{ij} mají sdružené multinomické rozdělení s parametrem n a pravděpodobnostmi p_{ij}

Kontingenční tabulka: náhodná matice N rozměru r imes c se složkami N_{ij}

Kontingenční tabulka

		Z		
Y	1		c	Σ
1	N_{11}		N_{1c}	N_{1ullet}
r	N_{r1}		N_{rc}	N_{rullet}
Σ	$N_{ullet 1}$		$N_{ullet c}$	n

Test: Nezávislost veličin Y a Z, $H_0: p_{ij} = p_{iullet} p_{ullet j}$ pro každé i,j

• Aplikuje se χ^2 test

Statistika:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c rac{\left(N_{ij} - rac{N_{iullet}N_{ullet j}}{n}
ight)^2}{rac{N_{iullet}N_{ullet j}}{n}}$$

Kritický obor: $\chi^2 \geq \chi^2_{lpha,(r-1)(c-1)}$

NIST: Runs above/below

Náhodné veličiny $X_1,...,X_n$ se stejným rozdělením s $\mu=EX_i, P(X_i=\mu)=0$ a μ je medián

Test: $H_0: X_i$ jsou nezávislé

 $N_n=\#$ bloků hodnot nepřekračujících μ

Statistika:

$$T=rac{2N_n-n-1}{\sqrt{n-1}}$$

8 z 9

Kritický obor: $|T| \geq z_{lpha/2}$

NIST: Runs up/down

 $X_1,...,X_n$ posloupnost náhodných veličin se stejným rozdělením, $P(X_i=X_i+1)=0$ pro každé i < n

Test: $H_0: X_i$ jsou nezávislé

 $N_n = \#blok \mathring{u}monot \acute{o}nn \acute{i}chhodnot$

Statistika: $T=rac{3N_n-2n+1}{\sqrt{1,6n-2,9}}$

Kritický obor: $|T| \geq z_{lpha/2}$

