Applied Data Analysis (ADA)

Erhard Cramer, Maria Kateri

Institute of Statistics Pontdriesch 14-16

erhard.cramer@rwth-aachen.de, maria.kateri@rwth-aachen.de www.isw.rwth-aachen.de

■ A preliminary note – Update

- Please read carefully once more the slides on the course concept uploaded in RWTHmoodle!
- The lecture is split into two parts:
 - Part I: Linear Models (Cramer)
 Lectures from April 13 to May 19
 Tutorials: April 23, May 7, 21
 - Break: May 24–28 (Pentecost week)
 - Part II: Generalized Linear Models (Kateri) Lectures from June 8 to July 14 Tutorials: June 18, July 2, 16
- Part I was held as a distance teaching course
- Part II will be held as a distance teaching course as well

Just to let you know who is talking to you on generalized linear models...

- Prof. Dr. Maria Kateri
 - Institute of Statistics
 Pontdriesch 14-16
 Office: Room no. 308, third floor
 - maria.kateri@rwth-aachen.de
- In the second part, we consider...
 generalized linear models,

$$g[\mathsf{E}(Y)] = \mathbf{X}\boldsymbol{\beta}$$

with

- $oldsymbol{\mathfrak{D}}$ random component: $oldsymbol{Y}=(Y_1,\ldots,Y_n)'$
- Iinear predictor: $\mathbf{X}\boldsymbol{\beta}$, \mathbf{X} $n \times p$ model matrix $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)'$ parameter vector
- link function: g (relates E(Y) to the linear predictor).

GLMs extend LMs to embrace non-normal response distributions and possibly nonlinear functions for the mean response.

1.3

Part II: Generalized Linear Models

Chapter II.1

Preliminaries

Notation, Linear Algebra & Probability, Likelihood, Linear Models

Topics

- To be discussed/refreshed...
 - properties of vectors & matrices (see Chapter I.1: Linear Algebra)
 - random vectors, expectations, covariance matrix (see Chapter I.1: Probability)
 - selected probability distributions (see also Chapter I.1: Probability)
 - likelihood & basic results useful for statistical inference
 - linear models (Part I)

Notation & basic definitions

II.1.1 Notation (vectors and matrices)

- lacktriangle \mathbb{R}^p : p-dimensional Euclidean space
- $ightharpoonup \mathbb{R}^{p \times q}$: set of all $(p \times q)$ -matrices
- vectors are written in bold italics: $x = (x_i)_{1 \le i \le p} = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$
- random vectors are written in capital bold italics: $\boldsymbol{X}=(X_i)_{1\leq i\leq p}=\begin{pmatrix} X_1\\ \vdots\\ X_p \end{pmatrix}$

Notation & basic definitions

- matrices of higher dimension are written analogously: $\mathbf{B}=(b_{ijk})_{1\leq i\leq p,1\leq j\leq q,1\leq k\leq r}$, etc.
 - sums of entries of a matrix over one (or more) dimensions are denoted by replacing the corresponding indicator(s) through '+':

$$a_{i+} = \sum_{j=1}^{q} a_{ij}$$
, $b_{++k} = \sum_{i=1}^{p} \sum_{j=1}^{q} b_{ijk}$

Probability distributions for continuous random variables

II.1.2 Remark (probability density functions (pdf) of distributions on \mathbb{R})

Normal distribution $\mathcal{N}(\mu, \sigma^2)$ with parameters $\mu \in \mathbb{R}$, $\sigma > 0$:

$$f(y;\mu,\sigma^2) = \varphi_{\mu,\sigma^2}(y) = \frac{1}{\sqrt{2\pi}\,\sigma} \,\,\exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\}, \quad y \in \mathbb{R}; \quad \varphi_{0,1} = \varphi$$

 λ^2 -distribution $\chi^2(p)$ with $p \in \mathbb{N}$ degrees of freedom:

$$f(y;p) = \frac{1}{2^{p/2}\Gamma(p/2)} y^{p/2-1} e^{-y/2}, \quad y > 0$$

Solution Exponential distribution $\text{Exp}(\lambda)$ with parameter $\lambda > 0$:

$$f(y;\lambda) = \lambda e^{-\lambda y}$$
, $y > 0$

Solution $\mathcal{G}(\alpha,\beta)$ with parameters $\alpha>0$, $\beta>0$:

$$f(y; \alpha, \beta) = \frac{\alpha^{\beta}}{\Gamma(\beta)} y^{\beta - 1} e^{-\alpha y} , \quad y > 0$$

$$\beta = 1$$
: Exponential distribution ($\alpha = \lambda$)

Probability distributions for discrete random variables

II.1.3 Remark (probability mass functions (pmf) of distributions on \mathbb{R})

 $oldsymbol{\mathfrak{D}}$ Bernoulli distribution $\mathcal{B}(1,\pi)$ with parameter $\pi\in[0,1]$:

$$p_y = f(y; \pi) = \pi^y (1 - \pi)^{1 - y}, \quad y \in \{0, 1\}$$

 $oldsymbol{\mathfrak{D}}$ Binomial distribution $\mathcal{B}(n,\pi)$, with $n\in\mathbb{N}$ and parameter $\pi\in[0,1].$

$$p_y = f(y; n, \pi) = \binom{n}{y} \pi^y (1 - \pi)^{n-y}, \quad 0 \le y \le n, \ y \in \mathbb{N}_0$$

Poisson distribution $\mathcal{P}(\mu)$ with parameter $\lambda > 0$:

$$p_y = f(y; \lambda) = \frac{\lambda^y}{y!} e^{-\lambda}, \quad y \in \mathbb{N}_0$$

Negative Binomial distribution $\mathcal{NB}(\mu,k)$ with parameters $\mu > 0$ and k > 0:

$$p_y = f(y; \mu, k) = \frac{\Gamma(y+k)}{\Gamma(k)\Gamma(y+1)} \left(\frac{\mu}{\mu+k}\right)^y \left(\frac{k}{\mu+k}\right)^k, \quad y \in \mathbb{N}_0$$

Probability distributions for discrete random vectors

- II.1.4 Remark (probability mass function (pmf) of a distribution on \mathbb{R}^m , m>1)
 - Multinomial distribution $\mathcal{M}(n, \pi)$ with $n \in \mathbb{N}$ and parameters $\pi_1, \dots, \pi_{m+1} \in [0, 1]$ such that $\sum_{j=1}^{m+1} \pi_j = 1$ (i.e. $\pi = (\pi_1, \dots, \pi_{m+1})'$ is a probability vector):

$$p_{\mathbf{y}} = f(y_1, \dots, y_{m+1}) = \binom{n}{y_1, \dots, y_{m+1}} \prod_{j=1}^{m+1} \pi_j^{y_j},$$

$$\mathbf{y} = (y_1, \dots, y_{m+1})' \in \{(i_1, \dots, i_{m+1})' \in \mathbb{N}_0^m | \sum_{j=1}^{m+1} i_j = n\}$$

Connections of probability distributions

II.1.5 Proposition

- **1** Let $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{B}(1, \pi)$. Then, $\sum_{j=1}^n Y_j \stackrel{\text{iid}}{\sim} \mathcal{B}(n, \pi)$.
- **2** Let $Y \sim \mathcal{M}(n, \pi)$. Then,
 - $Y_j \sim \mathcal{B}(n, \pi_j)$, for $j \in \{1, \dots, m+1\}$

 - $\mathbf{Y}_{J} = (Y_{J_{1}}, \dots, Y_{J_{k}}, n \sum_{j \in J} Y_{J_{j}})' \sim \mathcal{M}(n, \boldsymbol{\pi}_{J}),$ with $\boldsymbol{\pi}_{J} = (\pi_{J_{1}}, \dots, \pi_{J_{k}}, 1 \sum_{j \in J} \pi_{J_{j}})'$ for $J = \{J_{1}, \dots, J_{k}\} \subset \{1, \dots, m+1\}$
- **3** Let Y_1,\ldots,Y_k be independent Poisson random variables with $Y_j\sim \mathcal{P}(\lambda_j),\ j\in\{1,\ldots,k\}$ and consider the random vector $\boldsymbol{Y}=(Y_1,\ldots,Y_k)'.$ Then, $\boldsymbol{Y}\left|\sum_{j=1}^kY_j=n\sim\mathcal{M}(n,\pi),$ where $\boldsymbol{\pi}=(\pi_1,\ldots,\pi_k)'$ with $\pi_j=\frac{\lambda_j}{\sum_{j=1}^k\lambda_j}$, i.e the conditional distribution of \boldsymbol{Y} given $\sum_{j=1}^kY_j=n$ is $\mathcal{M}(n,\boldsymbol{\pi}).$

Likelihood

► II.1.6 Definition (likelihood function)

Given an observed sample $y=(y_1,\ldots,y_n)',\ n\in\mathbb{N}$, and assuming a statistical model $f_Y(y;\vartheta)$ depending on an unknown parameter $\vartheta\in\Theta\subseteq\mathbb{R}^p$, the likelihood $L(\vartheta|y)$ is defined as $L(\vartheta|y)=f_Y(y;\vartheta)$.

In case of discrete data, the likelihood $L(\boldsymbol{\vartheta}|\boldsymbol{y})$ is the probability of the observed data \boldsymbol{y} under the specific model assumption.

II.1.7 Definition (likelihood function based on iid random variables)

Given a realization $\boldsymbol{y}=(y_1,\ldots,y_n)'$ of $\boldsymbol{Y}=(Y_1,\ldots,Y_n)'$, $n\in\mathbb{N}$, if the components of \boldsymbol{Y} are stochastically independent and identically distributed (iid) having a pdf or pmf f_{Y_1} , for continuous or discrete random variables, respectively, i.e. $Y_1,\ldots,Y_n\overset{\text{iid}}{\sim} f_{Y_1}(\cdot;\boldsymbol{\vartheta})$, then it holds

$$L(\boldsymbol{\vartheta}|\boldsymbol{y}) = f_{\boldsymbol{Y}}(\boldsymbol{y}) = \prod_{i=1}^{n} f_{Y_1}(y_i; \boldsymbol{\vartheta}) .$$

12

Quantities derived from the likelihood

► II.1.8 Definition (score function)

Given an observed sample $y \in \mathbb{R}^n$ and the log-likelihood $\ell(\vartheta|y) = \ln{(L(\vartheta|y))}$, with $\vartheta \in \Theta \subset \mathbb{R}^p$, the score function is defined as the gradient of the log likelihood

$$S(\boldsymbol{\vartheta}) = S(\boldsymbol{\vartheta}|\boldsymbol{y}) := \nabla_{\boldsymbol{\vartheta}} \{ \ell(\boldsymbol{\vartheta}|\boldsymbol{y}) \} = \left(\frac{\partial \ell(\boldsymbol{\vartheta}|\boldsymbol{y})}{\partial \vartheta_1}, \dots, \frac{\partial \ell(\boldsymbol{\vartheta}|\boldsymbol{y})}{\partial \vartheta_p} \right)'.$$

II.1.9 Remark

In most regular problems (where the likelihood is of quadratic form), the analysis of the likelihood function can focus on the *location* of the maximum and the *curvature* around it.

In such cases, the maximum likelihood estimate $\hat{\vartheta}(y)$ is the solution of the score equation(s):

$$S(\boldsymbol{\vartheta}) = 0$$
.

The corresponding maximum likelihood estimator (MLE) is then $\hat{\vartheta}(Y)$.

► II.1.10 Definition (Fisher Information)

For $Y \in \mathbb{R}^n$ and under a statistical model $f_Y(Y; \vartheta)$ with unkown parameter $\vartheta \in \Theta \subset \mathbb{R}$, the (expected) Fisher information $\mathcal{I}_n(\vartheta)$ is defined as

$$\mathcal{I}_n(\vartheta) = \mathsf{E}(I_n(\vartheta)) := \mathsf{E}\left[\left(\frac{\partial \ell(\vartheta)}{\partial \vartheta}\right)^2\right] = \mathsf{E}\left[\left(\frac{\partial \log f_{|\boldsymbol{Y}}(\boldsymbol{Y};\vartheta)}{\partial \vartheta}\right)^2\right].$$

Under mild conditions^a it can equivalently be defined as

$$\mathcal{I}_n(\vartheta) = \mathsf{E}(I_n(\vartheta)) = \mathsf{E}\left[-rac{\partial^2 \log f^{\mathbf{Y}}(\mathbf{Y};\vartheta)}{\partial \vartheta^2}\right].$$

The curvature of the loglikelihood at $\hat{\vartheta}$ is $I_n(\hat{\vartheta})$, called the **observed Fisher information** at $\hat{\vartheta}$ $[I_n(\hat{\vartheta}) = I_n(\hat{\vartheta}(\boldsymbol{y}))]$.

 $\slash\hspace{-0.6em}$ A large curvature is associated with a strong peak, indicating less uncertainty about ϑ .

^asee Casela and Berger (2002, Section 7.3)

The Cramer-Rao lower bound gives the minimal possible variance for an estimator and is linked to the Fisher Information.

II.1.11 Definition (Cramer-Rao Lower Bound)

Under 'certain' regularity conditions^a, the variance of any unbiased estimator $\hat{\vartheta}$ of ϑ with finite variance satisfies $\mathsf{V}ar(\hat{\vartheta}) \geq \frac{1}{\mathcal{T}_{rr}(\vartheta)} \; .$

^asee Casela & Berger (2002, Theorem 7.3.9)

If additional to the assumptions required in II.1.11, it holds
$$Y_1,\ldots,Y_n \stackrel{\text{iid}}{\sim} f_{Y_1}(\cdot;\vartheta)$$
, then* $\operatorname{Var}(\hat{\vartheta}) \geq \frac{1}{n \operatorname{E}(I(\vartheta))}$, with $\operatorname{E}(I(\vartheta)) = \operatorname{E}\left(\frac{\partial \log f_{Y_1}(Y;\vartheta)}{\partial \vartheta}\right)^2$.

II.1.12 Definition (asymptotically efficient estimator)

A sequence of estimators $(\hat{\vartheta}_n)_n$ is said to be asymptotically efficient for a parameter ϑ , if it holds $\sqrt{n}(\hat{\vartheta}_n-\vartheta)\longrightarrow \mathcal{N}(0,v(\vartheta))$ in distribution and $v(\vartheta)=\frac{1}{\mathcal{I}_n(\vartheta))}$. That is, the asymptotic variance of $\hat{\vartheta}_n$ achieves the Cramer-Rao Lower Bound.

^{*}see Casela & Berger (2002, Corollary 7.3.10)

№ II.1.13 Definition (Fisher Information Matrix)

For $\vartheta \in \Theta \subset \mathbb{R}^p$, the (expected) Fisher information matrix $\mathcal{I}_n(\vartheta)$ is the $p \times p$ matrix with his elements defined as

$$(\mathcal{I}_n(\boldsymbol{\vartheta}))_{ij} := \mathsf{E} I_n(\boldsymbol{\vartheta}) = \mathsf{E} \left[\left(\frac{\partial \log f_{oldsymbol{Y}}(oldsymbol{Y}; \boldsymbol{\vartheta})}{\partial \vartheta_i} \right) \left(\frac{\partial \log f_{oldsymbol{Y}}(oldsymbol{Y}; \boldsymbol{\vartheta})}{\partial \vartheta_j} \right) \right] \,.$$

Under certain regularity conditions, the elements of the Fisher information matrix may also be written as $(\mathcal{I}_n(\boldsymbol{\vartheta}))_{ij} := -\mathsf{E}\left[\left(\frac{\partial^2 \log f_{\boldsymbol{Y}}(\boldsymbol{Y};\boldsymbol{\vartheta})}{\partial \vartheta_i \partial \vartheta_j}\right)\right]$.

II.1.14 Proposition

Under some conditions^a, the score function has the following properties

$$\mathsf{E} S(\boldsymbol{\vartheta}) = 0 ,$$

$$\mathsf{Cov} S(\boldsymbol{\vartheta}) = \mathcal{I}_n(\boldsymbol{\vartheta}) .$$

^asee Cassela & Berger (2002, Sections 7.3, 10.3)

■ II.1.15 Proposition of MLEs

Let $Y_1,\ldots,Y_n\stackrel{\mathrm{iid}}{\sim} P_{\vartheta}$, $\vartheta\in\Theta\subset\mathbb{R}^p$, and $\boldsymbol{y}=(y_1,\ldots,y_n)'$ be an observed sample, $n\in\mathbb{N}$. Let further $\vartheta_0\in\Theta$ be the true parameter value and $\widehat{\boldsymbol{\vartheta}}_n=\widehat{\boldsymbol{\vartheta}}(y_1,\ldots,y_n)$ a solution of the likelihood equations (score equations). Then, under 'certain' regularity conditions' it holds:

- $\widehat{\vartheta}_n \stackrel{P}{\longrightarrow} \vartheta_0$, $n \to \infty$ (consistent; also strong consistency is possible)
- $2 \sqrt{n}(\widehat{\boldsymbol{\vartheta}}_n \boldsymbol{\vartheta}_0) \xrightarrow{P} \mathcal{N}_p(0, \mathcal{I}_0^{-1}) \text{ with } \mathcal{I}_0 = \lim_{n \to \infty} \frac{1}{n} \mathcal{I}_n(\boldsymbol{\vartheta}_0).$
- $\lim_{n \to \infty} E_{\boldsymbol{\vartheta}} \widehat{\boldsymbol{\vartheta}}_n = \boldsymbol{\vartheta}_0$ (asymptotic unbiased)
- $(\widehat{\vartheta}_n)_n$ asymptotic efficient

► II.1.16 Invariance Principle of MLEs

Let $g:\Theta\longrightarrow\mathbb{R}^k$ and $\widehat{\boldsymbol{\vartheta}}$ the MLE for $\boldsymbol{\vartheta}$. Then $g(\widehat{\boldsymbol{\vartheta}})$ is the MLE for $g(\boldsymbol{\vartheta})$.

^aCasela & Berger (2002, Section 10.6.2)