Kapitel 9.

Jacobifelder

Für $p, q \in M$ sei Ω_{pq} der Raum aller glatten Kurven $c : [0, 1] \to M$ mit c(0) = p und c(1) = q.

Definition 9.1 Eine (glatte) Variation einer glatten Kurve $c:[a,b] \rightarrow M$ ist eine glatte Abbildung

$$h: (-\varepsilon, \varepsilon) \times [a, b] \to M$$
 $h_s(t) = h(s, t)$

 $mit \ h_0 = c. \ Gilt \ h(\cdot, a) \equiv c(a) \ und \ h(\cdot, b) \equiv c(b), \ so \ heißt \ h \ eine \ Variation \ mit \ festen \ Endpunkten \ oder \ eigentliche \ Variation. \ Man \ schreibt \ c_s \ für \ eine \ Variation \ h \ von \ c.$

Ist c_s eine glatte Variation von c, so ist

$$Y(t) := \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} c_s(t)$$

$$= \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} h(s,t) = h_{*(0,t)} \left(\frac{\partial}{\partial s}\right)$$

ein Vektorfeld entlang c. Ist c_s eigentlich, so gilt $Y(a) = 0 \in T_{c(a)} M$ und $Y(b) = 0 \in T_{c(b)} M$.

Tatsächlich ist jedes Vektorfeld ein solches Variationsfeld einer Variation von c: Ist Y ein Vektorfeld entlang c, so definiert $h(s,t) = \exp_{c(t)}(sY(t))$ eine Variation von c und es gilt:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s}\bigg|_{s=0} h(s,t) &= \exp_{c(t)*0}(Y(t)) \\ &= \operatorname{id}_{\mathrm{T}_{c(t)}} {}_{M}(Y(t)) = Y(t). \end{split}$$

Falls Y in den Endpunkten von c verschwindet, so ist die so definierte Variation eigentlich. Bestimme $\frac{d}{ds}\Big|_{s=0} E(c_s)$ und $\frac{d}{ds}\Big|_{s=0} \mathcal{L}(c_s)$:

$$\begin{split} \frac{1}{2} \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} \langle \dot{c}_s, \dot{c}_s \rangle &= \langle \nabla_s \dot{c}(s), \dot{c}(s) \rangle \\ &= \left\langle \nabla_s \frac{\mathrm{d}}{\mathrm{d}t} c_s, \dot{c}(s) \right\rangle = \left\langle \nabla_t \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c}_s \right\rangle \\ &= \left\langle \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} c_s, \dot{c}_s \right\rangle' - \left\langle \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} c_s, \nabla_t \dot{c}_s \right\rangle \\ &= \left\langle Y, \dot{c} \right\rangle' - \left\langle Y, \nabla_t \dot{c} \right\rangle \end{split}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{s=0} \|\dot{c}_s\| = \frac{1}{2\|c_s\|} \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \langle \dot{c}_s, \dot{c}_s \rangle$$
$$= \frac{\langle Y, \dot{c} \rangle' - \langle Y, \nabla_t \dot{c} \rangle}{\|\dot{c}\|}$$

Damit folgt:

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} E(c_s) = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \int_a^b \frac{1}{2} ||\dot{c}_s|| = \langle Y, \dot{c} \rangle|_a^b - \int_a^b \langle Y, \nabla_t \dot{c} \rangle$$

Betrachte $E: \Omega_{pq} \to \mathbb{R}$. Dann ist $c \in \Omega_{pq}$ genau dann eine Geodätische, wenn c ein kritischer Punkt von E ist, das heißt $\frac{d}{ds}\Big|_{s=0} E(c_s) = 0$ für jede eigentliche Variation von c. Ist c ein kritischer Punkt von E, so sei c_s die von $Y = f\nabla_t \dot{c}$ mit f(0) = 0 = f(1) erzeugte Variation. Dann ist c_s eigentlich und es gilt

$$0 = \frac{d}{ds} \Big|_{s=0} E(c_s) = -\int_a^b f \|\nabla_t \dot{c}\|^2$$

also $\nabla_t \dot{c} = 0$. Ist c nach der Bogenlänge parametrisiert, so gilt

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \mathcal{L}(c_s) = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} E(c_s)$$

Eine Kurve $c \in \Omega_{pq}$ ist genau dann ein kritischer Punkt von \mathcal{L} , wenn c eine umparametrisierte Geodätische ist.

1. Ausblick: Hesse & Morse - Theorie

Sei $f \in C^{\infty}(M)$, sei nach Konvention $\nabla_X f = X(f) = \mathrm{d}f(X)$, und $\nabla f = \mathrm{d}f \in \Omega^1(M) = \Gamma(\mathrm{T}\,M^*)$. Für die Hessesche $\mathrm{H}_f = \nabla^2 f$ gilt nach Proposition 7.3:

$$\nabla^{2} f(X,Y) = (\nabla_{X} df)(Y) = X(df(Y)) - df(\nabla_{X} Y)$$

$$= X(Yf) - (\nabla_{X} Y)(f) \qquad (= \nabla_{X,Y}^{2} \text{ in Kapitel 7})$$

$$= [X,Y]f + Y(Xf) - (\nabla_{X} Y - \nabla_{Y} X)f - (\nabla_{Y} X)f$$

$$[X,Y] \text{ Torsionsfreiheit}$$

$$= Y(Xf) - (\nabla_{Y} X)(f) = \nabla^{2} f(Y,X) = H_{f}(Y,X)$$

Die Hessesche ist also eine symmetrische \mathbb{R} -Bilinearform $H_f: \mathcal{V}(M) \times \mathcal{V}(M) \to C^{\infty}(M)$. Sie ist im Allgemeinen nicht $\mathbb{C}^{\infty}(M)$ -bilinear. Ist $p \in M$ ein kritischer Punkt von f, das heißt $\mathrm{d}f|_p = 0$, dann hängt $H_f|_p$ nur von $\xi = X_p$ und $\eta = Y_p$ ab: Ist \tilde{X} ein Vektorfeld mit $\tilde{X}_p = \xi = X_p$, so gilt:

$$H_f|_p(\tilde{X}, Y) = \tilde{X}_p(Yf) - \underbrace{\mathrm{d}f|_p(\nabla_{\tilde{X}}Y)}_{=0} = \tilde{X}_p(Yf) = \xi(Yf)$$
$$= X_p(Yf) = \dots = H_f|_p(X, Y)$$

 $\mathrm{H}_f|_p$ ist eine Bilinearform auf $\mathrm{T}_p M$. Insbesondere hängt $\mathrm{H}_f|_p$ nur von der differenzierbaren Struktur von M und nicht von der Riemannschen Struktur ab. Ist H_f nicht ausgeartet, so heißt die Anzahl der negativen Eigenwerte der **Index** von f in p. Ist $v \in \mathrm{T}_p M$ der Eigenvektor zu einem negativen Eigenwert k und γ eine Kurve mit $\gamma(0) = p$ und $\dot{\gamma}(0) = v$. Dann gilt

$$0 > \lambda ||v||^2 = H_f|_p(v, v) = v((f \circ \gamma)') = \frac{d^2}{dt^2}\Big|_{t=0} f(\gamma(t))$$

Entlang der Kurve γ nimmt f also ein striktes Maximum an.

Tatsächlich ist jeder nicht ausgeartete kritische Punkt von solcher Gestalt.

Morse-Lemma Es sei $p \in M$ ein nicht ausgearteter kritischer Punkt von $f \in C^{\infty}(M)$ mit Index α . Dann existiert eine Karte (φ, U) um p mit $\varphi(p) = 0$ und $f = f(p) - (\varphi^1)^2 - (\varphi^2)^2 - \ldots - (\varphi^{\alpha})^2 + (\varphi^{\alpha+1})^2 + \ldots + (\varphi^m)^2$.

Morse-Theorie

Die Topologien von M^a und M^b sind identisch, wenn zwischen a und b keine kritischen Werte auftreten. "Rekonstruktion": Klebe sukzessive für die nicht ausgearteten kritischen Punkte p Zellen der Dimension $\operatorname{Ind}_f(p)$, das heißt $\mathbb{B}_1(0) \subseteq \mathbb{R}^{\operatorname{Ind}_f(p)}$.

Auf jeder glatten Mannigfaltigkeit existiert eine sogenannte **Morse-Funktion**, das heißt eine Funktion mit isolierten kritschen Punkten, die alle nicht entartet sind und für die $f^{-1}([a,b])$ kompakt ist. Ist f(p)=a ein kritischer Wert, so unterscheiden sich $M^{\alpha-\varepsilon}$ und $M^{\alpha+\varepsilon}$ durch das Ankleben einer $\operatorname{Ind}_f(p)$ -Zelle.

Weitere Informationen zu diesem Thema lassen sich im Buch "Morse Theory" von J. Milnor [6] finden.

2. Zweite Ableitung des Energiefunktionals (in kritischen Punkten)

Es sei c eine nach Bogenlänge parametrisierte Geodätische, c_s eine Variation von c und $Y(t) = \frac{d}{ds}\Big|_{s=0} c_s(t)$. Dann gelten die folgenden Gleichungen:

$$E(c_s) = \frac{1}{2} \int_0^{\mathcal{L}} \|\dot{c}_s\|^2$$

$$\frac{\mathrm{d}}{\mathrm{d}s} \langle \dot{c}_s, \dot{c}_s \rangle = 2 \langle \nabla_s \dot{c}_s, \dot{c}_s \rangle$$

$$= 2 \langle \nabla_t \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c}_s \rangle$$

$$= 2 \langle \nabla_s \nabla_t \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c}_s \rangle$$

$$= 2 \langle \nabla_s \nabla_t \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c}_s \rangle + 2 \langle \nabla_t \frac{\mathrm{d}}{\mathrm{d}s} c_s, \nabla_s \dot{c}_s \rangle$$

$$= 2 \langle \nabla_s \nabla_t \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c}_s \rangle + 2 \|\nabla_t \frac{\mathrm{d}}{\mathrm{d}s} c_s\|^2$$

$$\nabla_s \nabla_t \frac{\mathrm{d}}{\mathrm{d}s} c_s = \nabla_t \nabla_s \frac{\mathrm{d}}{\mathrm{d}s} c_s + R \left(\frac{\mathrm{d}}{\mathrm{d}s} c_s, \frac{\mathrm{d}}{\mathrm{d}t} c_s\right) \frac{\mathrm{d}}{\mathrm{d}s} c_s$$

Zur Übersichtlichkeit setzen wir nun $\nabla_t Y =: Y'$

$$\frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}s^2} \Big|_{s=0} \langle \dot{c}_s, \dot{c}_s \rangle = \left\langle \nabla_t \nabla_s \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c}_s \right\rangle + \left\langle R(Y, \dot{c}) Y, \dot{c} \right\rangle + \|\nabla_t Y\|^2$$

$$= \left\langle \nabla_s \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c} \right\rangle' - \left\langle R(Y, \dot{c}) \dot{c}, Y \right\rangle + \|Y'\|^2$$

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} E(c_s) = \left\langle \nabla_s \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c}_s \right\rangle \Big|_0^{\mathcal{L}} + \int_0^{\mathcal{L}} \|Y'\|^2 - \left\langle R(Y, \dot{c}) \dot{c}, Y \right\rangle$$

$$\frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}\Big|_{s=0} \|\dot{c}_{s}\| = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \left(\frac{1}{2\|\dot{c}_{s}\|} \frac{\mathrm{d}}{\mathrm{d}s}\|\dot{c}\|^{2}\right)$$

$$= -\frac{1}{4} \left(\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \|c_{s}\|^{2}\right)^{2} + \frac{1}{2} \left.\frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}\right|_{s=0} \|\dot{c}_{s}\|^{2}$$

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} \Big|_{s=0} \mathcal{L}(c_s) = \frac{\mathrm{d}^2}{\mathrm{d}s^2} \Big|_{s=0} E(c_s) - \frac{1}{4} \int \left(\frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \|\dot{c}_s\|^2 \right)^2$$

$$= \left\langle \nabla_s \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c}_s \right\rangle \Big|_0^{\mathcal{L}} + \int_0^{\mathcal{L}} \|Y'\|^2 - \left\langle R(Y, \dot{c})\dot{c}, Y \right\rangle - (\left\langle Y', \dot{c} \right\rangle)^2$$

Bezeichnet $Y^{\perp}=Y-\langle\dot{c},Y\rangle\dot{c}$ den Normalenanteil von Y bezüglich $\dot{c},$ so gilt:

$$Y^{\perp \prime} = Y' - \langle \nabla_t \dot{c}, Y \rangle \dot{c} - \langle \dot{c}, Y' \rangle \dot{c} - \langle \dot{c}, Y \rangle \nabla_t \dot{c}$$
$$= Y' - \langle \dot{c}, Y' \rangle \dot{c} = (Y')^{\perp}$$

$$\begin{split} \|Y'^{\perp}\| - \langle R(Y^{\perp}, \dot{c})\dot{c}, Y^{\perp} \rangle &= \langle Y' - \langle \dot{c}, Y' \rangle \dot{c}, Y' - \langle \dot{c}, Y' \rangle \dot{c} \rangle - \langle R(Y, \dot{c})\dot{c}, Y \rangle \\ + \langle R(Y, \dot{C})\dot{c}, \langle \dot{c}, Y \rangle \dot{c} \rangle \\ + \langle R(\langle \dot{c}, Y \rangle \dot{c}, \dot{c})\dot{c}, Y - \langle \dot{c}, Y' \rangle \dot{c} \rangle \\ &= \|Y'\|^2 - \langle R(Y, \dot{c})\dot{c}, Y \rangle - (\langle Y', \dot{c} \rangle)^2 \end{split}$$

Es gilt:

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2}\bigg|_{s=0} \mathcal{L}(c_s) = \left\langle \nabla_s \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c} \right\rangle \bigg|_0^{\mathcal{L}} + \int_0^{\mathcal{L}} \|Y'^{\perp}\|^2 - \left\langle R(Y^{\perp}, \dot{c}) \dot{c}, Y^{\perp} \right\rangle$$

Erinnerung Für eine glatte Funktion f auf M gilt in kritischen Punkten p:

$$H_f(v,v) = \frac{\mathrm{d}^2}{\mathrm{d}t^2}\bigg|_{t=0} f(\gamma(t))$$

mit $\gamma(0) = p, \dot{\gamma}(0) = v$. Diese Eigenschaft verwenden wir in der folgenden Definition als Ausgangspunkt.

Definition 9.2 Es sei Y ein Vektorfeld entlang einer nach Bogenlänge parametrisierte geodätische Kurve c und c_s die von Y erzeugte Variation. Die durch

$$\mathcal{I}(Y,Y) = \left. \frac{\mathrm{d}^2}{\mathrm{d}s^2} \right|_{s=0} E(c_s)$$

auf dem Vektorraum der Vektorfelder entlang c definierte symmetrische Bilinearform heißt die ${\bf Index form}$ von c.

Sind X, Y Vektorfelder entlang c, welche in den Endpunkten verschwinden, so gilt

$$\mathcal{I}(X,Y) = -\int_0^{\mathcal{L}} \langle X'' + R(X,\dot{c})\dot{c}, Y \rangle$$

denn bezeichnet c_s die von Y erzeugte eigentliche Variation, so gilt

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2}\Big|_{s=0} E(c_s) = \left\langle \nabla_s \frac{\mathrm{d}}{\mathrm{d}s} c_s, \dot{c} \right\rangle \Big|_0^{\mathcal{L}} + \int_0^{\mathcal{L}} ||Y'||^2 - \left\langle R(Y, \dot{c}) \dot{c}, Y \right\rangle
= \int_0^{\mathcal{L}} \left\langle Y', Y \right\rangle' - \left\langle Y'', Y \right\rangle - \left\langle R(Y, \dot{c}) \dot{c}, Y \right\rangle
= \left\langle Y', Y \right\rangle \Big|_0^{\mathcal{L}} - \int_0^{\mathcal{L}} \left\langle Y'', Y \right\rangle + \left\langle R(Y, \dot{c}) \dot{c}, Y \right\rangle
= -\int_0^{\mathcal{L}} \left\langle Y'' + R(Y, \dot{c}) \dot{c}, Y \right\rangle.$$

Die Indexform um eine Geodätische c ist genau dann ausgeartet, wenn ein in den Endpunkten verschwindendes Vektorfeld entlang c existiert mit

$$Y'' + R(Y, \dot{c})\dot{c} \equiv 0. \tag{9.1}$$

Definition 9.3 Ein Vektorfeld entlang einer Geodätischen c heißt **Jacobifeld**, wenn es die obige Differentialgleichung (9.1) erfüllt.

Lemma 9.4 Es sei $c: [0,1] \to M$ eine Geodätische, p = c(0). Dann existiert für alle $v, w \in T_p M$ genau ein Jacobifeld \mathcal{J} entlang c mit $\mathcal{J}(0) = v$, $\mathcal{J}'(0) = w$.

Beweis Es sei $e_1, \ldots, e_m \in T_p M$ eine Orthonormalbasis des Tangentialraums in p und es bezeichnen E_1, \ldots, E_m die entlang c parallelen Vektorfelder mit $E_i(0) = e_i$. Dann ist jedes Vektorfeld Y entlang c von der Form $Y = \sum_i \eta^i E_i$ und es gilt:

$$Y' = \sum_{i} (\dot{\eta}^{i} E_{i} + \eta^{i} \nabla_{t} E_{i}) = \sum_{i} \dot{\eta}^{i} E_{i}$$

sowie $Y'' = \sum \ddot{\eta}^i E_i$. Setzt man $R(E_j, \dot{c})\dot{c} = \sum_i \varrho_j^i E_i$, so ist (9.1) zum System linearer Differentialgleichungen zweiter Ordnung

$$\ddot{\eta}^i + \sum_i \eta^i \varrho^i_j = 0.$$

Existens und Eindeutigkeit folgen mit der Lösungstheorie gewöhnlicher Differentialgleichungen. $\hfill\Box$

Beispiel (Jacobifelder des \mathbb{R}^n) Die Geodätischen des \mathbb{R}^n sind genau die Geraden. Ein Vektorfeld Y entlang einer Geraden ist genau dann ein Jacobifeld, wenn Y'' = 0 gilt; jedes solche ist der Form Y(t) = v + tw.

Sind die Startwerte eines Jacobifeldes tangential an c, etwa $\mathcal{J}(0) = \lambda \dot{c}(0)$ und $\mathcal{J}'(0) = \mu \dot{c}(0)$, so gilt

$$\mathcal{J}(t) = (\lambda + t\mu)\dot{c}(t),$$

denn

$$\mathcal{J}''(t) = \nabla_t(\mu \dot{c}(t) + (\lambda + t\mu) \underbrace{\nabla_t \dot{c}(t)}_{=0}) = \mu \nabla_t \dot{c} = 0,$$
$$R(\mathcal{J}, \dot{c}) \dot{c}|_t = (\lambda + t\mu) R(\dot{c}, \dot{c}) \dot{c} = 0.$$

Zu c tangentiale Jacobifelder tragen keine geometrischen Informationen; vgl. zweite Ableitung des Längenfunktionals. Gilt für die Startwerte eines Jacobifeldes $\mathcal{J}(0)$ und $\mathcal{J}'(0) = \dot{c}(0)^{\perp}$

$$\langle \mathcal{J}', \dot{c} \rangle' = \langle \mathcal{J}'', \dot{c} \rangle + \langle \mathcal{J}', \nabla_t \dot{c} \rangle = -\langle R(\mathcal{J}, \dot{c}) \dot{c}, \dot{c} \rangle = 0,$$

also $\mathcal{J}'(t) \perp \dot{c}(t)$ für alle Zeiten t und $\langle \mathcal{J}, \dot{c} \rangle' = \langle \mathcal{J}', \dot{c} \rangle = 0$, somit $\mathcal{J}(t) \perp \dot{c}(t)$ für alle t.

Der \mathbb{R} -Vektorraum der Jacobifelder entlang einer Geodätischen c hat die Dimension $2\dim(M)$ und die zu c normalen Jacobifelder bilden einen Vektorraum der Dimension $2\dim(M)-2$.

Satz 9.5 Es sei $c: [0,1] \to M$ eine Geodätische und c_s eine Variation von c, so dass alle Kurven c_s Geodätische sind. Dann ist das zugehörige Variationsfeld ein Jacobifeld entlang c. Jedes Jacobifeld ist von dieser Gestalt.

Beweis Es sei c_s eine Variation von c und alle c_s seien Geodätische. Dann gilt:

$$Y'' = \nabla_t \left(\nabla_t \frac{\mathrm{d}}{\mathrm{d}s} c_s \right) \Big|_{s=0}$$

$$= \nabla_t \left(\nabla_s \frac{\mathrm{d}}{\mathrm{d}t} c_s \right) \Big|_{s=0}$$

$$= \nabla_s \underbrace{\nabla_t \frac{\mathrm{d}}{\mathrm{d}t} c_s}_{=0} + R \underbrace{\left(\underbrace{\frac{\mathrm{d}}{\mathrm{d}t} c_s}_{=\dot{c}}, \underbrace{\frac{\mathrm{d}}{\mathrm{d}s} c_s}_{=\dot{c}} \right)}_{=\dot{c}} \underbrace{\frac{\mathrm{d}}{\mathrm{d}t} c_s}_{=\dot{c}} \Big|_{s=0}$$

$$= -R(Y, \dot{c}) \dot{c}$$

Es sei umgekehrt \mathcal{J} ein Jacobifeld entlang c, γ die durch $\gamma(0) = c(0)$, $\dot{\gamma}(0) = \mathcal{J}(0)$ definierte Geodätische, sowie V und W die entlang γ parallelen Vektorfelder mit $V(0) = \dot{c}(0)$ und $W(0) = \mathcal{J}'(0)$. Dann ist

$$c_s(t) = \exp_{\gamma(s)}(t(V(s) + sW(s)))$$

eine Variation von c und alle Kurven c_s sind Geodätische. Das zugehörige Variationsfeld $Y = \frac{d}{ds}\Big|_{s=0} c_s$ ist nach dem oben Bewiesenen ein Jacobifeld. Es gilt

$$Y(0) = \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \exp_{\gamma(s)}(0) = \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} \gamma(s) = \mathcal{J}(0).$$

und

$$Y'(0) = \nabla_t \frac{d}{ds} \Big|_{s=0} c_s \Big|_{t=0}$$

$$= \nabla_s \frac{d}{dt} \Big|_{t=0} \exp_{\gamma(s)} (t(V(s) + sW(s))) \Big|_{s=0}$$

$$= \nabla_s (V(s) + sW(s)) \Big|_{s=0}$$

$$= V'(0) + W(0) + 0W'(0)$$

$$= W(0) = \mathcal{J}'(0)$$

Nach Lemma 9.4 stimmen \mathcal{J} und Y überein.

Erinnerung (Korollar 8.12 (iii)) Die zusammengesetzte Kurve oben ist kürzer als die durchgezogene Kurve unten.

Definition 9.6 Ein Punkt $p \in M$ heißt zu q konjugiert, wenn q ein singulärer Wert von \exp_p ist. p heißt konjugiert zu q entlang der Geodätischen c, wenn $\exp_{p*\dot{c}(0)}$ singulär ist, das heißt $\operatorname{Kern} \exp_{p*\dot{c}(0)} \neq \{0\}$.

Proposition 9.7 Ein Punkt p ist genau dann konjugiert zu q entlang einer Geodätischen c, wenn es ein nichttriviales Jacobifeld entlang c gibt, welches in den Endpunkten verschwindet.

Beweis Nach Satz 9.5 ist jedes Jacobifeld \mathcal{J} entlang c mit $\mathcal{J}(0) = 0$ von der Gestalt $\mathcal{J}(t) = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \exp_p(t(\dot{c}(0) + s\,\mathcal{J}'(0)), \text{ oder allgemein } \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \exp_{\gamma(s)}(t(V(s) + sW(s))).$ Es gilt dann

$$\mathcal{J}(1) = \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \exp_p(\dot{c}(0) + s \,\mathcal{J}'(0)) = \exp_{p*\dot{c}(0)}(\mathcal{J}'(0))$$

Damit existiert genau dann ein nichttriviales Jacobifeld \mathcal{J} entlang c mit $\mathcal{J}(0) = 0$, $\mathcal{J}(1) = 0$, wenn Kern $\exp_{p*\dot{c}(0)} \neq \{0\}$.

Bemerkung 1) Der Raum der nichttrivialen Jacobifelder mit verschwindenden Endpunkten entlang c hat genau die Dimension dim Kern $\exp_{n*\hat{c}(0)}$.

- 2) Ist p konjugiert zu q, so ist q konjugiert zu p.
- 3) Für jedes Jacobifeld \mathcal{J} entlang c mit $\mathcal{J}(0) = 0 = \mathcal{J}(1)$ gilt $\langle \mathcal{J}, \dot{c} \rangle = \langle \mathcal{J}', \dot{c} \rangle = 0$, denn

$$\langle \mathcal{J}', \dot{c} \rangle' = \langle \mathcal{J}'', \dot{c} \rangle = -\langle R(\mathcal{J}, \dot{c}) \dot{c}, \dot{c} \rangle = 0,$$

also ist $\langle \mathcal{J}', \dot{c} \rangle = \langle \mathcal{J}, \dot{c} \rangle'$ konstant. Ferner gilt $\langle \mathcal{J}(0), \dot{c}(0) \rangle = 0 = \langle \mathcal{J}(1), \dot{c}(1) \rangle$, also ist $\langle \mathcal{J}, \dot{c} \rangle \equiv 0$.

- 4) Sind p und q nicht entlang c zueinander konjugiert, dann ist jedes Jacobifeld \mathcal{J} entlang c eindeutig durch $\mathcal{J}(0)$ und $\mathcal{J}(1)$ bestimmt, denn sind \mathcal{J} und $\tilde{\mathcal{J}}$ Jacobifelder mit identischen Randwerten, so ist $\mathcal{J}-\tilde{\mathcal{J}}$ ein Jacobifeld welches in den Endpunkten verschwindet.
- 5) Zwei Punkte sind genau dann konjugiert entlang der Geodätischen c, wenn eine eigentliche geodätische Variation von c existiert.

Satz 9.8 Es seien $p, q \in M$ und sei $c : [0,1] \to M$ eine Geodätische von p nach q.

- (i) Ist entlang c kein Punkt zu p konjugiert, dann existiert eine Umgebung U von c in Ω_{pq} , so dass $\mathcal{L}(\tilde{c}) > \mathcal{L}(c)$ und $E(\tilde{c}) \geq E(c)$ für alle $\tilde{c} \in U$ gelten.
- (ii) Falls ein $t_0 \in (0,1)$ existiert, so dass p = c(0) zu $c(t_0)$ entlang c konjugiert ist, so existiert eine eigentliche Variation c_s von c mit $\mathcal{L}(c_s) < \mathcal{L}(c)$ und $E(c_s) < E(c)$ für hinreichend kleine s.

Lemma 9.9 (globales Gauß Lemma) Es seien $v, w \in T_p M$ und $c(t) = \exp_p(t \cdot v)$. Dann gilt

$$\langle \exp_{p*tv}(v), \exp_{p*tv}(w) \rangle = \langle v, w \rangle.$$

Insbesondere ist jede Geodätische in p orthogonal zu der Abstandssphäre

$$S_r(p) = \{ q \mid d(p,q) = r \}.$$

Beweis Y sei das durch die Startwerte Y(0) = 0 und $Y'(0) = \frac{w}{t}$ bestimmte Jacobifeld entlang c. Dann gilt:

$$Y(t) = \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \exp_{\gamma(s)}(t(V(s) + sW(s))) \qquad \gamma(0) = p, \dot{\gamma}(0) = Y(0) = 0$$

$$= \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \exp_p\left(t\left(v + s\frac{w}{t}\right)\right) \qquad V(s) = V(0) = \dot{c}(0) = v$$

$$= \exp_{p*tv}(w) \qquad W(s) = \dots = \frac{w}{t}$$

Es sei $\frac{w}{t} = \lambda v + u$ mit $u \perp v$. Der zu c tangentiale Anteil von Y ist dann

$$Y^T(s) = \lambda s \dot{c}(s),$$

denn $Y^{T''}=0$ und $R(Y^T,\dot{c})\dot{c}=\lambda sR(\dot{c},\dot{c})\dot{c}=0$. Also gilt $Y(t)=\lambda t\dot{c}(t)+Y^\perp(t)$, wobei Y^\perp der zu c orthogonale Anteil von Y ist. Es folgt

$$\langle \exp_{p*tv}(v), \exp_{p*tv}(w) \rangle = \left\langle \frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\exp_p(tv)}_{=c}, Y(t) \right\rangle$$
$$= \langle \dot{c}(t), \lambda t \dot{c}(t) + Y^{\perp}(t) \rangle$$
$$= \lambda t \|\dot{c}(t)\|^2 = \lambda t \|v\|^2$$

$$\langle v, w \rangle = \langle v, t(\lambda v + w) \rangle = t\lambda ||v||^2$$

Lemma 9.10 Es sei $c: [0,1] \to M$ eine Geodätische, $v = \dot{c}(0) \in T_p M$ und ψ (stückweise) glatte Kurve in $T_p M$ mit $\psi(0) = 0$ und $\psi(1) = v$, dann gilt

$$\mathcal{L}(\exp_p \circ \psi) \geq \mathcal{L}(c),$$

wobei Gleichheit genau dann gilt, wenn ψ eine monotone Reparametrisierung von $t\mapsto tv$ ist.

Beweis Es seien ϱ und ϑ glatt, so dass $\psi = \varrho \vartheta$ mit $\|\vartheta\| \equiv 1$ (Polarkoordinaten).

$$\begin{aligned} \|(\exp_{p} \circ \psi)'\|^{2} &= \|\exp_{p*\varrho\vartheta}(\varrho'\vartheta + \varrho\vartheta')\|^{2} \\ &= \varrho'^{2} \underbrace{\langle \exp_{p*\varrho\vartheta}(\vartheta), \exp_{p*\varrho\vartheta}(\vartheta) \rangle}_{=\langle\vartheta,\vartheta\rangle = 1} \\ &+ 2\varrho\varrho' \underbrace{\langle \exp_{p*\varrho\vartheta}(\vartheta), \exp_{p*\varrho\vartheta}(\vartheta') \rangle}_{=\langle\vartheta,\vartheta'\rangle = \frac{1}{2}\|\vartheta\|^{2'} = 0} \\ &+ \varrho^{2} \langle \exp_{p*\varrho\vartheta}(\vartheta'), \exp_{p*\varrho\vartheta}(\vartheta') \rangle \\ &= \varrho'^{2} + \varrho^{2} \|\exp_{p*\varrho\vartheta}(\vartheta')\|^{2} \end{aligned}$$

Damit folgt

$$\mathcal{L}(\exp_p \circ \psi) \ge \int_0^1 |\varrho'| \ge |\varrho(1) - \varrho(0)| = ||v|| = \mathcal{L}(c)$$

Gleichheit gilt genau dann, wenn ϑ konstant und ϱ monoton ist.

Beweis (von Satz 9.8) (i) Es sei $c : [0,1] \to M$ eine Geodätische, seien p = c(0) und q = c(1) und es existieren keine zu p konjugierten Punkte entlang c. Es bezeichne $\varphi : [0,1] \to \mathrm{T}_p M$ mit $\varphi(t) = tv$. Für jedes $t \in [0,1]$ ist nach Voraussetzung $\exp_{p*\varphi(t)}$ regulär, also eine lokaler Diffeomorphismus. Es sei $\{W_i\}$ eine endliche offene Überdeckung von $\varphi([0,1])$, so dass $\exp_p|_{W_i} : W_i \to \exp_p(W_i) = U_i$ ein Diffeomorphismus ist.

Ziel: Lifte Variationen von M nach $T_p M$.

Es sei t_i eine Partition von [0,1], so dass $\varphi([t_{i-1},t_i]) \subseteq W_i$. Ist c_s eine Variation von c, so kann $\varepsilon > 0$ so gewählt werden, dass

$$c_s: [t_{i-1}, t_i] \times (-\varepsilon, \varepsilon) \to U_i = \exp_n(W_i)$$

gilt. Dies definiert eine Variation ψ_s von φ wie folgt: Ist ψ_s bis t_{i-1} definiert und gilt $\psi_s(t_{i-1}) \in W_i$, so setzt man $\psi_s(t) = \exp_p |_{W_i}^{-1}(c_s(t))$. Nach Lemma 9.10 gilt also

$$\mathcal{L}(\exp_p \circ \psi_s) = \mathcal{L}(c_s) \ge \mathcal{L}(c)$$

für alle s. Mit der Cauchy-Schwarz Ungleichung folgt dann:

$$E(c_s) \ge \frac{1}{2}\mathcal{L}(c_s)^2 \ge \frac{1}{2}\mathcal{L}(c)^2 = E(c)$$

(ii) Es sei $c(t_0)$ entlang c zu p = c(0) konjugiert.

Behauptung: Dann existiert ein zu c orthogonales Vektorfeld Y entlang der Geodätischen c mit Y(0) = 0, Y(1) = 0 und $\mathcal{I}(Y,Y) = 0$.

Dann gilt für die zugehörige eigentliche Variation c_s von c:

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \mathcal{L}(c_s) = \lambda \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} E(c_s) = 0$$

und, da Y normal ist,

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2}\bigg|_{s=0} \mathcal{L}(c_s) = \left. \frac{\mathrm{d}^2}{\mathrm{d}s^2} \right|_{s=0} E(c_s) = \mathcal{I}(Y, Y) < 0$$

Somit ist c lokales Maximum.

Beweis der Behauptung: Es existiert ein nichttriviales (zu c orthogonales) Jacobifeld \mathcal{J} entlang $c|_{[0,t_0]}$ mit $\mathcal{J}(0)=0$ und $\mathcal{J}(t_0)=0$. Erinnerung: Ist $c\in\Omega_{pq}$ eine Geodätische und $t_o\in(0,1)$, so dass $c(t_0)$ zu p=c(0) entlang c konjugiert ist, so existiert ein Vektorfeld Y entlang c mit $\mathcal{I}(Y,Y)<0$. Beweis der Existenz von Y: Da $c(t_0)$ zu p entlang c konjugiert ist, existiert ein nichttriviales Jacobifeld J entlang $c|_{[0,t_0]}$ mit $J(0)=0,J(t_0)=0$. Es sei X das entlang c parallele Vektorfeld mit $X(t_0)=-J'(t_0)$ (nach Lemma 9.4 ist $J'(t_0)\neq 0$) und $\alpha\colon [0,1]\to\mathbb{R}$ mit $\alpha(0)=0=\alpha(1)$ und $\alpha(t_0)=1$. Für $z=\alpha\cdot X$ und $\eta>0$ sei

$$Y(t) = \begin{cases} J(t) + \eta \cdot Z(t) & \text{für } 0 \le t \le t_0 \\ \eta \cdot Z(t) & \text{für } t_0 < t \le 1 \end{cases}$$

Y ist nun stückweise glatt, die Variationsformeln für \mathcal{L} und E, beziehungsweise die Indexform lassen sich aber ganz analog für stückweise glatte Vektorfelder beziehungsweise Variationen formalisieren. Es gilt, da Y orthogonal zu c ist, für die zu Y gehörigen Variationen c_s :

$$J(Y,Y) = \frac{\mathrm{d}^2}{\mathrm{d}s^2} \bigg|_{s=0} E(c_s) = \frac{\mathrm{d}^2}{\mathrm{d}s^2} \bigg|_{s=0} \mathcal{L}(c_s)$$

$$= \int_0^1 ||Y'||^2 - \langle R(Y,\dot{c})\dot{c}, Y \rangle$$

$$= \int_0^{t_0} \langle J', J' \rangle - \langle R(J,\dot{c})\dot{c}, J \rangle$$

$$+ 2\eta \int_0^{t_0} \langle J', Z' \rangle - \langle R(J,\dot{c})\dot{c}, Z \rangle$$

$$+ \eta^2 \int_0^1 \langle Z', Z' \rangle - \langle R(Z,\dot{c})\dot{c}, Z \rangle$$

und mit

$$\begin{split} \left\langle J', J \right\rangle' &= \left\langle J', J' \right\rangle + \left\langle J'', J \right\rangle \\ &= \left\langle J', J' \right\rangle - \left\langle R(J, \dot{c}) \dot{c}, J \right\rangle \\ \left\langle J', Z \right\rangle' &= \left\langle J', Z' \right\rangle + \left\langle J'', Z \right\rangle \\ &= \left\langle J', Z' \right\rangle - \left\langle R(J, \dot{c}) \dot{c}, Z \right\rangle \end{split}$$

folgt

$$J(Y,Y) = \langle J', J \rangle |_{0}^{t_{0}} + 2\eta \langle J', Z \rangle |_{0}^{t_{0}} + \eta^{2} J(Z, Z)$$

$$= 0 + 2\eta \left(\langle J'(t_{0}), Z(t_{0}) \rangle - \langle J'(0), Z(0) \rangle \right) + \eta^{2} J(Z, Z)$$

$$= -2\eta ||J'(t_{0})||^{2} + \eta^{2} J(Z, Z)$$

Für hinreichend kleines $\eta > 0$ ist damit $\mathcal{J}(Y,Y) < 0$.

Betrachte die Sphäre vom Radius r > 0, $S_r^n \subseteq \mathbb{R}^{n+1}$:

Als differenzierbare Mannigfaltigkeit ist S_r^n diffeomorph zur Standardsphäre $S^n = S_1^n$, vermöge der Abbildung $p \mapsto \frac{1}{r}p$. Bezeichnet $\langle \cdot, \cdot \rangle_r$, die von \mathbb{R}^{n+1} auf S_r^n induzierte Riemannsche Metrik, so sind $(S_r^n, \langle \cdot, \cdot \rangle_r)$ und $(S^n, r^2 \langle \cdot, \cdot \rangle_1)$ isometrisch. Es folgt

also diam $(S_r^n,\langle\cdot,\cdot\rangle_r)=\pi r=r\,\mathrm{diam}(S^n,\langle\cdot,\cdot\rangle_1)$. Für die Schnittkrümmung einer von $v,w\in T_p\,M$ aufgespannte Ebene

$$\begin{split} \sec_{p}^{S_{r}^{n}}(\{v,w\}) &= \frac{\langle R(v,w)w,r\rangle_{r}}{\|v\|_{r}^{2}\|w\|_{r}^{2} - \langle v,w\rangle_{r}} = \frac{r^{2}\langle R(v,w)w,v\rangle_{1}}{r^{4}(\|v\|_{1}^{2}\|w\|_{1}^{2} - \langle v,w\rangle_{1})} \\ &= \frac{1}{r^{2}}\sec_{p}^{S^{n}}(\{v,w\}) = \frac{1}{r^{2}}. \end{split}$$

Insbesondere gilt für die Ricci-Krümmung:

$$\operatorname{ric}_{p}^{S_{r}^{n}}(v,v) = \sum_{i} \left\langle R\left(e_{i}, \frac{v}{\|v\|_{1}}\right) \frac{v}{\|v\|_{1}}, e_{i} \right\rangle$$

$$= \|v\|_{1}^{2} \sum_{i \geq 2} \sec_{p}^{S_{r}^{n}}(\{v, e_{i}\}) = \|v\|_{1}^{2} \frac{1}{r^{2}}(n-1)$$

$$= (n-1) \frac{1}{r^{2}} \left\langle v, v \right\rangle_{1}.$$

wobei $\{\frac{v}{\|v\|_1}, e_2, \dots, e_n\}$ eine Orthonormalbasis ist.

Satz 9.11 (Bonnet-Myers) Es sei (M,g) eine vollständige m-dimensionale Riemannsche Mannigfaltigkeit mit

$$\operatorname{ric}_p \ge (m-1)\frac{1}{r^2}g$$

 $f\ddot{u}r \ ein \ r > 0$. Dann gilt

$$\operatorname{diam}(M, g) \leq \pi r = r \operatorname{diam}(S^m, \langle \cdot, \cdot \rangle_1).$$

Insbesondere ist M kompakt.

Beweis Es sei $l < \operatorname{diam}(M,g)$. Dann existieren $p,q \in M$ mit (p,q) = l und nach dem Satz von Hopf-Rinow eine minimale Geodätische $c : [0,l] \to M$ von p nach q. Für jedes Vektorfeld Y entlang c, welches in den Endpunkten verschwindet, ist $J(Y,Y) \geq 0$. Es sei $\dot{c}(0) = e_1, \ldots, e_m \in T_p M$ eine Orthonormalbasis und E_i die entlang c parallelen Vektorfelder mit $E_i(0) = e_i$ für $i \leq m$. Für

$$Y_{i}(t) = \sin\left(\frac{\pi}{l}t\right) E_{i}(t)$$

$$0 \le J(Y_{i}, Y_{i}) = -\int_{0}^{l} \left\langle Y_{i}'' + R(Y_{i}, \dot{c})\dot{c}, Y_{i} \right\rangle$$

$$= -\int_{0}^{l} \left\langle -\frac{\pi^{2}}{l^{2}} \sin\left(\frac{\pi}{l}t\right) E_{i}(t) + \sin\left(\frac{\pi}{l}t\right) R(E_{i}, \dot{c})\dot{c}|_{t}, \sin\left(\frac{\pi}{l}t\right) E_{i}(t) \right\rangle$$

$$= \int_{0}^{l} \sin^{2}\left(\frac{\pi}{l}t\right) \left(\frac{\pi^{2}}{l^{2}} - \left\langle R(E_{i}, \dot{c})\dot{c}, E_{i}(t) \right\rangle \right).$$

Es folgt

$$0 \le \sum_{i \ge 2} J(Y_i, Y_i) = \int_0^l \sin^2\left(\frac{\pi}{l}t\right) \left(\underbrace{(m-1)\frac{\pi^2}{l^2} - \mathrm{ric}(\dot{c}(t), \dot{c}(t))}_{\le (m-1)\left(\frac{\pi^2}{l^2} - \frac{1}{r^2}\right)}\right)$$

und somit $\frac{\pi^2}{l^2} - \frac{1}{r^2} \ge 0$, also $l \le \pi r$.

Bemerkung (1) Die Existenz einer uniformen positiven Krümmungsschranke ist entprechend

$$M = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 - x_3^2 = -1, x_3 > 0\}$$

Es gilt:

$$\sec_x(M,g) = \frac{1}{\|x\|^4}$$

Dies ist nicht \mathbb{H}^2

also $\sec > 0$, aber $\sec_x \xrightarrow{\|x\| \to \infty} 0$ und M ist nicht kompakt.

(2) Die Durchmesserschranke im Satz von Bonnet-Myers ist scharf in dem Sinne, dass falls (M,g) eine vollständige Riemannsche Mannigfaltigkeit mit ric $\geq (m-1)\frac{1}{r^2}$ ist und diam $(M,g)=\pi r$ gilt, so folgt (M,g) ist isometrisch zu S_r^m . (Cheng, 1975 [3])

3. Exkurs: Überlagerungen, Fundamentalgruppe und Gruppenwirkungen

Erinnerung Zwei Wege, stetige Abbildungen, $c_0, c_1 : [0, 1] \to M$ heißen **homotop**, wenn eine stetige Abbildung

$$H: [0,1] \times [0,1] \to M$$

existiert mit $H(0,\cdot)=c_0$ und $H(1,\cdot)=c_1$. Gilt $H(\cdot,0)\equiv c_0(0)=c_1(0)=p$ und $H(\cdot,1)\equiv c_0(1)=c_1(1)=q$, so heißt H eigentlich.

Bemerkung Sind zwei glatte Wege homotop, so kann eine glatte Homotopie gewählt werden. Die Fundamentalgruppe $\pi_1(M,p)$ ist die Menge der Homotopie-klassen von Wegen $c \in \Omega_{pq}$ bezüglich eigentlicher Homotopien mit der durch die Verkettung von Wegen induzierten Gruppenstruktur.

Für eine zusammenhängende Mannigfaltigkeit sind $\pi_1(M, p)$ und $\pi_1(M, q)$ isomorph, schreibe $\pi_1(M)$. Eine Mannigfaltigkeit heißt **einfach zusammenhängend**, falls M zusammenhängend ist und $\pi_1(M) = 0$ gilt.

Eine glatte Abbildung $\pi: \tilde{M} \to M$ heißt **Überlagerung**, wenn für alle $p \in M$ eine Umgebung U existiert, so dass $\pi^{-1}(U) = \dot{\bigcup} U_i$ eine disjunkte Vereinigung offener Mengen U_i ist und für alle $U_i: \pi|_{U_i}: U_i \to U$ ein Diffeomorphismus ist. Sind M und \tilde{M} Riemannsch, so heißt eine Überlagerung π Riemannsche **Überlagerung**, falls π eine lokale Isometrie ist.

Proposition 9.12 Es seien M und \tilde{M} zusammenhängende Riemannsche Mannigfaltigkeiten, \tilde{M} vollständig und $\pi: \tilde{M} \to M$ eine lokale Isometrie. Dann ist π eine Riemannsche Überlagerung.

Beweis Für $p \in M$ und $v \in T_p M$ seien $\tilde{p} \in \pi^{-1}(p)$, $\tilde{v} = \pi_{*p}^{-1}(v) \in T_{\tilde{p}*} \tilde{M}$ und \tilde{c} die Geodätische von \tilde{M} mit $\tilde{c}(0) = \tilde{p}$, $\dot{\tilde{c}}(0) = \tilde{v}$. Dann existiert \tilde{c} für alle Zeiten. Da π eine lokale Isometrie ist, ist $c = \pi \circ \tilde{c}$ eine auf ganz \mathbb{R} definierte Geodätische von M mit $c(0) = \pi(\tilde{p}) = p$ und $\tilde{c}(0) = \pi_{*\tilde{p}}(\tilde{v}) = v$. Nach dem Satz 8.11 von Hopf-Rinow ist M damit vollständig. Es sei $p = \pi(\tilde{p})$ und sei $p \in M$. Dann existiert eine Geodätische $p \in C$: $p \in$

$$\mathbb{B}_{\varepsilon}(0_{\tilde{p}}) \xrightarrow{\exp_{\tilde{p}}} \mathbb{B}_{\varepsilon}(\tilde{p})$$

$$\pi_{*\tilde{p}} \downarrow \qquad \# \qquad \qquad \downarrow \pi \qquad \tilde{p} \in \pi^{-1}(p)$$

$$T_{p} M \supseteq \mathbb{B}_{\varepsilon}(0_{p}) \xrightarrow{\exp_{p}} \mathbb{B}_{\varepsilon}(p) \subseteq M$$

Für hinreichend kleines $\varepsilon > 0$ ist exp ein Diffeomorphismus und das folgende Diagramm kommutiert. Damit ist $\pi_{\mathbb{B}_{\varepsilon}(\tilde{p})}$ ein Diffeomorphismus. Wären für \tilde{p}_1 und \tilde{p}_2 die ε -Bälle nicht disjunkt und es existiere eine nichttriviale Geodätische der Länge $< 2\varepsilon$ von \tilde{p}_1 nach \tilde{p}_2 und damit eine Geodätische von p nach p der Länge $< 2\varepsilon$, also in $\mathbb{B}_{\varepsilon}(p)$. Also sind $\mathbb{B}_{\varepsilon}(\tilde{p}_1)$ und $\mathbb{B}_{\varepsilon}(\tilde{p}_2)$ für $\tilde{p}_1 \neq \tilde{p}_2$ disjunkt.

Proposition 9.13 Es seien \tilde{M} und M zusammenhängenden Riemannsche Mannigfaltigkeiten und $\pi: \tilde{M} \to M$ eine Riemannsche Überlagerung . Dann ist \tilde{M} genau dann vollständig, wenn M vollständig ist.

Beweis "⇒": Folgt nach Proposition 9.12

" \Leftarrow ": Es sei M vollständig und \tilde{p}_i eine Cauchy-Folge in \tilde{M} . Dann ist $p_i = \pi(\tilde{p}_i)$ auch eine Cauchy-Folge, denn π ist 1-Lipschitz, konvergiert also gegen $p \in M$. Dann liegen fast alle p_i in einer Umgebung U, so dass $\pi_{U_k}: U_k \to U$ eine Isometrie ist. Sei U_k so, dass fast alle \tilde{p}_i in U_k liegen. Dann konvergiert \tilde{p}_i gegen $\tilde{p} \in U_i$, mit $\tilde{p} \in \pi^{-1}(p)$.

Für jede zusammenhängende Riemannsche Mannigfaltigkeit M existiert eine bis auf Isometrie eindeutige einfach zusammenhängende Riemannsche Überlagerung \tilde{M} . Betrachte die topologisch universelle Überlagerung \tilde{M} von M. Zieht man die differenzierbare und geometrische Struktur von M auf \tilde{M} zurück, so wird \tilde{M} zu einer Riemannschen Mannigfaltigkeit und die Überlagerungsabbildung zu einer Riemannschen Überlagerung,

Problem: Es ist nicht klar, warum \tilde{M} eine abzählbare Basis der Topologie hat. Es gibt dabei zwei Auswege, zum Einen kann man zeigen dass $\pi_1(M)$ abzählbar ist (Diplomarbeit von M. Herrmann), die andere Möglichkeit ist in "Foundations of Differential Geometry", Band I, Appendix 2 [4] beschrieben.

Die Fundamentalgruppe $\pi_1(M)$ ist isomorph zur Gruppe der Decktransformationen:

Jede Decktransformation ist glatt, also ein Diffeomorphismus, und sogar eine Isometrie, da π eine lokale Isometrie ist. Jedes Element von $\pi_1(M)$ induziert eine Isometrie von \tilde{M} .

4. Wirkung diskreter Gruppen

Es seien Γ eine diskrete Gruppe und X eine Menge. Eine **Wirkung** von Γ auf X, geschrieben $\Gamma \curvearrowright X$, ist ein Gruppenhomomorphismus $\varrho : \Gamma \to \operatorname{Sym}(X)$, schreibe $\varrho(\gamma)(x) = \gamma.x$, und insbesondere gilt $\gamma.(\delta.x) = (\gamma\delta).x$ und $1_{\Gamma}.x = x$. Ist $\Gamma \curvearrowright X$ eine Wirkung, so bezeichnet $\Gamma.x = \{\gamma.x \mid \gamma \in \Gamma\}$ die **Bahn** oder den **Orbit** von x und $\Gamma_x = \{\gamma \in \Gamma \mid \gamma.x = x\}$ die **Isotropieuntergruppe** von Γ in x. Jede Wirkung induziert eine Äquivalenzklassenrelation auf X:

$$x \sim y \Leftrightarrow \exists \gamma \in \Gamma : \gamma . x = y \Leftrightarrow y \in \Gamma . x$$

Die Äquivalenzklasse $[x]_{\sim}$ ist also genau die Bahn durch x. Der Quotient $X/_{\Gamma} = x/_{\sim} = \bigcup \Gamma.x$ heißt **Bahnenraum** der Wirkung , die Abbildung $X \to X/_{\Gamma}, x \mapsto [x]_{\sim}$ die **kanonische Projektion**. Eine Wirkung heißt **frei**, wenn für alle $x \in X$ $\Gamma_x = \{1_{\Gamma}\}$ gilt. Es sei M eine Riemannsche Mannigfaltigkeit und Γ eine glatte oder isometrische Wirkung, das heißt $\varrho: \Gamma \to \mathrm{Diff}(M)$ oder $\varrho: \Gamma \to \mathrm{Iso}(M)$. Eine solche Wirkung heißt **eigentlich diskontinuierlich**, wenn für jedes Kompaktum $K \subseteq M$ mit $\#\{\gamma \in \Gamma \mid \gamma.K \cap K \neq \emptyset\} < \infty$; in diesem Fall ist $M/_{\Gamma}$ hausdorffsch. Ist diese Wirkung zudem frei, so ist der Bahnenraum $M/_{\Gamma}$ in natürlicher Weise eine (Riemannsche) Mannigfaltigkeit und die kanonische Projektion $\pi: M \to M/_{\Gamma}$ eine Riemannsche Überlagerung.

Beispiel 9.14 (1) Ist $\pi: \tilde{M} \to M$ eine universelle Riemannsche Überlagerung, so ist $\pi_1(M) \curvearrowright \tilde{M}$ frei und eigentlich diskontinuierlich und isometrisch, der Quotient $\tilde{M}/\pi_1(M)$ ist isometrisch zu M.

(2) Betrachte die Wirkung $\mathbb{Z}^2 \curvearrowright \mathbb{R}^2$ durch Translationen (a,b).(x,y) = (x+a,y+b). Die Wirkung von \mathbb{Z}^2 auf \mathbb{R}^2 ist isometrisch, frei und eigentlich diskontinuierlich.

Beweis Der Quotient $\mathbb{R}^2/\mathbb{Z}^2$ ist diffeomorph zum Torus $T^2=S^1\times S^1$. Die glatte Abbildung $\mathbb{R}^2\to T^2,\ (x,y)\mapsto (e^{2\pi ix},e^{2\pi ix})$ faktorisiert über die Wirkung und induziert einen Diffeomorphismus.

Die durch die Wirkung auf T^2 induzierte Metrik ist flach, in dem Sinne dass die Krümmung konstant Null ist. Die Geodätischen des flachen Torus sind genau die Bilder von Geodätischen des \mathbb{R}^2 , also von Geraden, unter der kanonischen Projektion.

(3) Der n-dimensionale reell-projektive Raum \mathbb{RP}^n : betrachte $\mathbb{Z}/_{2\mathbb{Z}} \curvearrowright S^n$, $\gamma p = -p, \gamma \neq 1 \in \mathbb{Z}/_{2\mathbb{Z}}$.

Es sei (M,g) vollständig und $\operatorname{ric}_{(M,g)} \geq (n-1)\frac{1}{r^2}g$ für ein r>0. Dann erfüllt auch \tilde{M} diese Voraussetzungen; insbesondere ist \tilde{M} (ebenfalls) kompakt. Da $\pi_1(M) \curvearrowright \tilde{M}$ eigentlich diskontinuierlich wirkt, gilt

$$\#\pi(M) = \#\{\gamma \in \pi_1(M) \mid \gamma.\tilde{M} \cap \tilde{M} \neq \emptyset\} < \infty$$

Korollar (zum Satz von Bonnet-Myers) Unter den Voraussetzungen des Satzes hat M eine endliche Fundamentalgruppe.

Satz 9.15 (Hadamard-Cartan) Es sei (M,g) eine vollständige Riemannsche Mannigfaltigkeit mit $\sec_{(M,g)} \leq 0$. Dann ist für alle $p \in M$ die Exponentialabbildung $\exp_p : T_p M \to M$ eine Überlagerung. Insbesondere ist jede einfach zusammenhängende vollständige Riemannsche Mannigfaltigkeit mit $\sec \leq 0$ diffeomorph zu \mathbb{R}^m .

Beweis Es sei c eine Geodätische und Y ein Jacobifeld entlang c mit Y(0) = 0. Dann gilt für $f(t) = ||Y(t)||^2$:

$$f'(0) = 2\langle Y'(0), Y(0) \rangle = 0$$

und

$$f'' = 2(\langle Y'', Y \rangle + \langle Y', Y' \rangle)$$
$$= 2(\|Y'\|^2 - \langle \underbrace{R(Y, \dot{c})\dot{c}, Y}_{=\lambda \sec(\dot{c}, Y) \le 0}) \ge 0$$

Also ist f nichtnegativ und konvex. Wäre Y ein nichttriviales Jacobifeld, welches in Punkten 0 und t_0 verschwindet, so folgte aus f(0) = 0 und $f(t_0) = 0$, dass f, und damit Y verschwindet. Somit existieren auf M keine zueinander konjugierten Punkte. Die Exponentialabbildung ist also ein lokaler Diffeomorphismus. Die Metrik $\tilde{g} = \exp_{p*}(g)$ auf $T_p M$ ist nach dem Gauß-Lemma und dem Satz von Hopf-Rinow vollständig. Nach Proposition 9.12 ist damit $\exp_p(T_p M, \tilde{g}) \to (M, g)$ eine Riemannsche Überlagerung.

Erinnerung (Blatt 12, Aufgabe 2) Seien γ_1 und γ_2 Geodätische mit $\gamma_i(0) = p$, $v = \dot{\gamma}_1(0)$, $w = \dot{\gamma}_2(0)$ und $\mathcal{L}(t) = d(\gamma_1(t), \gamma_2(t))$. Dann gilt:

$$\mathcal{L}(t) = t \|v - w\| \left(1 - \frac{1}{12} \sec(v, w) (1 + \langle v, w \rangle) t^2 \right) + o(t^3)$$

$$\left(1 - \frac{1}{12} \sec(v, w) (1 + \langle v, w \rangle) t^2 \right) + o(t^3) \begin{cases} > 1 & \text{für sec} < 0 \\ = 1 & \text{für sec} = 0 \\ < 1 & \text{für sec} > 0 \end{cases}$$

Ziel: Wir suchen ein globales Analogum.

5. Krümmungsschranken und Trigonometrie

Es bezeichne d_p die Abstandsfunktion $d_p(q) = d(p,q)$. Diese ist, in einer punktierten Umgebung von p, glatt und es gilt $d_p(q) = \|\exp_p^{-1}(q)\|$. Es folgt dann

$$\begin{split} X(\mathbf{d}_p)(q) &= \frac{\mathbf{d}}{\mathbf{d}t} \| \exp_p^{-1}(\exp_p(tX)) \| \\ &= \underbrace{\frac{1}{\| \underbrace{\exp_p^{-1}(q)} \|} \langle \exp_{p*v}^{-1}(X), v \rangle}_{=v} \\ &\stackrel{\mathrm{G.L.}}{=} \underbrace{\frac{1}{\|v\|} \langle X, \underbrace{\exp_{p*v}(v)}_{\hat{c}_v(1)} \rangle}_{\hat{c}_v(1)} \quad \text{(nach Gauß-Lemma)} \end{split}$$

Für eine glatte Funktion f heißt das durch $X(f) = \langle \operatorname{grad} f, X \rangle$ definierte Vektorfeld der **Gradient** von f. Es ist $X(f) = \operatorname{d} f(X)$ und $\langle \operatorname{grad} f, \cdot \rangle = \operatorname{d} f$. Für den Gradienten von d_p gilt nach der obigen Rechnung:

$$\operatorname{grad} d_p = \frac{\exp_{p*v}(v)}{\|v\|} = \frac{\dot{c}(1)}{\|\dot{c}(0)\|} = \frac{\dot{c}(1)}{\|\dot{c}(1)\|},$$

also $\|\operatorname{grad} d_p\| \equiv 1$. Eine Funktion $f: U \to \mathbb{R}$, U offen in M, heißt **lokale Abstandsfunktion**, wenn $\|\operatorname{grad} f\| \equiv 1$ gilt. Für $p \in U$ sei c_p die Integralkurve von grad f mit $c_p(f(p)) = p$. Ist c eine (stückweise) glatte Kurve von p nach q, so gilt

$$\mathcal{L}(c) = \int_0^1 \|\dot{c}\| \stackrel{C.S.}{\geq} \left| \int_0^1 \langle \operatorname{grad} f, \dot{c} \rangle \right| = |f(q) - f(p)|$$

wobei Gleichheit genau dann gilt, wenn c eine monotone Reparametrisierung von c_p ist. Damit ist c_p eine (minimale) Geodätische, welche die Niveaumengen von f durchläuft. Es gilt

$$H_f(X,Y) = X(Yf) - (\nabla_X Y)(f)$$

$$= X \langle \operatorname{grad} f, Y \rangle - \langle \operatorname{grad} f, \nabla_X Y \rangle$$

$$= \langle \nabla_X \operatorname{grad} f, Y \rangle$$

und mit $\|\operatorname{grad} f\| \equiv 1$ folgt

$$0 = \frac{1}{2} X \| \operatorname{grad} f \|^{2}$$
$$= \langle \nabla_{X} \operatorname{grad} f, \operatorname{grad} f \rangle$$
$$= H_{f}(X, \operatorname{grad} f).$$

Für ein $r \in \mathbb{R}$ sei $M_r = f^{-1}(r)$ eine Niveaufläche von f. Ist X tangential zu M_r , das heißt existiert eine Integralkurve γ von X in M_r , dann gilt

$$0 = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} (f(\gamma(t))) = X(f) = \langle \operatorname{grad} f, X \rangle,$$

also ist grad f orthogonal zu M_r . Für zu M_r tangentiale Vektorfelder X und Y gilt dann

$$0 = X \langle \operatorname{grad} f, Y \rangle = \langle \nabla_X \operatorname{grad} f, Y \rangle + \langle \operatorname{grad} f, \nabla_X Y \rangle$$

also $H_f(X,Y) = -\langle \operatorname{grad} f, \nabla_X Y \rangle$. Für $p \in U$ wird durch $X \mapsto \nabla_X \operatorname{grad} f$ ein linearer Endomorphismus $A_p : \operatorname{grad} f^{\perp} \to \operatorname{grad} f^{\perp}$ definiert. Es bezeichne

$$A_t = A_{c_p(t)} : \dot{c}_p(t)^{\perp} \to \dot{c}_p(t)^{\perp}$$

$$\operatorname{grad} f|_{c_p(t)}$$

eine Einschränkung auf c_p . Es sei $\sigma: (-\varepsilon, \varepsilon) \to M_r$ eine glatte Kurve mit $\sigma(0) = p$.

Dann ist $(t,s) \mapsto c_{\sigma(s)}(t)$ glatt und für alle $s \in (-\varepsilon,\varepsilon)$ ist dann $c_{\sigma(s)}$ eine Geodätische durch $\sigma(s)$; also ist $c_s = c_{\sigma(s)}$ eine geodätische Variation von $c_0 = c_p$. Es bezeichne \mathcal{J} das zugehörige Jacobifeld entlang c_p mit $\mathcal{J}'(t) = A_t \cdot \mathcal{J}(p)$.

Sei $f = d_p$ die Abstandsfunktion zu $p \in M$ und c eine Geodätische von p nach q = c(r) (nicht konjugiert zu c), das heißt $q \in M_r = d_p^{-1}(r)$. Dann ist jedes Jacobifeld \mathcal{J} entlang c mit $\mathcal{J}(0) = 0$ und $\mathcal{J} \perp \dot{c}$ von obiger Gestalt: \mathcal{J} wird von einer geodätischen Variation c_s erzeugt. Jede Geodätische $t \mapsto c_s(t)$ ist minimierend, also

- $c_s(r) \in M_r = \mathrm{d}_p^{-1}(r)$
- $d_p(c_s(t)) = t \Rightarrow c_s$ ist eine Integralkurve von grad d_p

Für $\sigma(s) = c_s(r)$ stimmt dann \mathcal{J} mit obiger Konstruktion überein.

$$A' \mathcal{J} = (A \mathcal{J})' - A \mathcal{J}' = \mathcal{J}'' - A^2 \mathcal{J} = -R(\mathcal{J}, \dot{c})\dot{c} - A^2 \mathcal{J}$$

Setzt man $R_t = R(\cdot, \dot{c})\dot{c}$, so gilt

$$A_t' + A_t^2 + R_t = 0,$$

die sogenannte **Riccatigleichung**. Ist E ein entlang c paralleles Vektorfeld mit ||E|| = 1 und $E \perp \dot{c}$, so gilt

$$\langle AE,E\rangle' = \langle A'E,E\rangle = -\langle R(E,\dot{c})\dot{c},E\rangle - \langle A^2E,E\rangle = -\sec(E,\dot{c}) - \|AE\|^2$$

Ist die Krümmung von (M, g) nach unten beschränkt, $\sec_{(M,g)} \geq \kappa$, so folgt die sogenannte **Riccatiungleichung**:

$$\langle AE, E \rangle' = -\sec(E, i) - ||AE||^2 \le -\kappa - \langle AE, E \rangle^2$$

Setzt man $a = \langle AE, E \rangle$, so gilt

$$a' < -\kappa - a^2$$

6. Räume konstanter Krümmung

Es bezeichne M_{κ}^n den endlich zusammenhängenden n-dimensionalen Raum mit konstanter Krümmung κ , also für $\kappa=-1$ den hyperbolischen Raum \mathbb{H}^n , für $\kappa=0$ die Ebene \mathbb{R}^n und die Sphäre S^n im Falle $\kappa=1$. Dann ist ein Jacobifeld entlang einer Geodätischen c in M_{κ}^n eine Linearkombination von Jacobifeldern $j\cdot E$, wobei E ein entlang c paralleles Einheitsfeld ist und j eine Lösung der eindimensionalen Jacobigleichung

$$j'' + \kappa j = 0$$

Es bezeichnen $\operatorname{sn}_{\kappa}$ und $\operatorname{cs}_{\kappa}$ die Lösungen mit $\operatorname{sn}_{\kappa}(0) = 0$, $\operatorname{sn}'_{\kappa}(0) = 1$ und $\operatorname{cs}_{\kappa}(0) = 1$, $\operatorname{cs}'_{\kappa}(0) = 0$, das heißt

$$\operatorname{sn}_{\kappa}(t) = \begin{cases} \frac{1}{\sqrt{-\kappa}} \sinh(\sqrt{-\kappa}t) & \text{für } \kappa < 0 \\ t & \text{für } \kappa = 0 \\ 1/\sqrt{\kappa} \sin(\sqrt{\kappa}t) & \text{für } \kappa > 0 \end{cases}$$
$$\operatorname{cs}_{\kappa}(t) = \begin{cases} \cosh(\sqrt{-\kappa}t) & \text{für } \kappa < 0 \\ t & \text{für } \kappa = 0 \\ \cosh(\sqrt{\kappa}t) & \text{für } \kappa > 0 \end{cases}$$

Dabei gilt $\operatorname{sn}'_{\kappa} = \operatorname{cs}_{\kappa}$ und $\operatorname{cs}'_{\kappa} = -\kappa \operatorname{sn}_{\kappa}$. Setzt man $\operatorname{ct}_{\kappa}(t) = \frac{\operatorname{cs}_{\kappa}(t)}{\operatorname{sn}_{\kappa}(t)}$ (= $(\ln \operatorname{sn}_{\kappa})'$), so gilt $\operatorname{ct}'_{\kappa} = -\kappa - \operatorname{ct}^{2}_{\kappa}$. Allgemeiner gilt für eine Lösung j von $j'' + \kappa j = 0$ und $b = (\ln j)'$

$$b' = \left(\frac{j'}{j}\right)' = \frac{j''j - j'^2}{j^2} = \frac{-\kappa j^2 - j'^2}{j^2} = -\kappa - b^2$$

das heißt b löst die eindimensionale Riccatigleichung. Es sei \mathcal{J} ein Jacobifeld entlang einer Geodätischen c in M_{κ}^n mit $\mathcal{J}(0) = 0$ und $\mathcal{J} \perp \dot{c}$. Dann ist $\mathcal{J} = \operatorname{sn}_{\kappa} Y$, wobei Y ein zu c orthogonales und entlang c paralleles Vektorfeld ist.

$$AY = A \frac{1}{\operatorname{sn}_{\kappa}} \mathcal{J} = \frac{1}{\operatorname{sn}_{\kappa}} \mathcal{J}' = \frac{\operatorname{sn}_{\kappa}'}{\operatorname{sn}_{\kappa}} Y = \frac{\operatorname{cs}_{\kappa}}{\operatorname{sn}_{\kappa}} Y = \operatorname{ct}_{\kappa} Y.$$

Ziel: Wir suchen eine Abschätzung für Eigenwerte, beziehungsweise Operatornorm von A_t und für das Wachstum von Jacobifeldern bei unteren Krümmungsschranken.

Lemma 9.16 Es seien $a, b: \mathcal{I} \to \mathbb{R}$ glatt für ein Interval \mathcal{I} , sowie

- $a' < -\kappa a^2$
- $b' = -\kappa b^2$

• $a(t_0) \leq b(t_0)$ für ein $t_0 \in \mathcal{I}$.

Dann gilt:

- (i) $a(t) \leq b(t)$ für alle $t \geq t_0$
- (ii) Gilt $a(t_0) = b(t_0)$ und $a(t_1) = b(t_1)$ für $t_1 > t_0$, so folgt $a|_{[t_0,t_1]} = b|_{[t_0,t_1]}$.
- (iii) Gilt $\mathcal{I} = (0, t_1]$ und $\lim_{t \to 0} a(t) = \infty$, so folgt $a \le \operatorname{ct}_{\kappa}$ und falls $a(t_0) = \operatorname{ct}_{\kappa}(t_0)$, so gilt $a = \operatorname{ct}_{\kappa}$ auf \mathcal{I} .

Beweis Es gilt

$$((b-a)e^{\int b+a})' = ((b'-a') + (b-a)(b+a))e^{\int b+a}$$
$$= (\underbrace{b'+b^2}_{=-\kappa} - \underbrace{(a'+a^2)}_{<-\kappa})e^{\int b+a} \ge 0$$

Also ist $(b-a)e^{\int b+a}$ monoton wachsend, das heißt $b-a\geq 0$ und es gilt (i). (ii) folgt sofort aus der Monotonie. Gilt $a(t)\xrightarrow{t\to 0}\infty$, so existiert ein $\varphi\colon\mathcal{I}\to\mathbb{R}$ mit $a(t)=(\operatorname{ct}_\kappa\circ\varphi)(t)$ und $\varphi(0)=0$. Nun gilt $a'=\varphi'(\operatorname{ct}'_\kappa\circ\varphi)$, also

$$0 = -\kappa + \kappa = (\operatorname{ct}'_{\kappa} + \operatorname{ct}^{2}_{\kappa}) \circ \varphi - (a' + a^{2})$$

$$= \operatorname{ct}'_{\kappa} \circ \varphi + (\operatorname{ct}_{\kappa} \circ \varphi)^{2} - \varphi'(\operatorname{ct}'_{\kappa} \circ \varphi) - (\operatorname{ct}_{\kappa} \circ \varphi)^{2}$$

$$= (1 - \varphi') \underbrace{(\operatorname{ct}'_{\kappa} \circ \varphi)}_{<0}$$

und es folgt $\varphi' \geq 1$. Da $\varphi(0) = 0$, folgt $\varphi(t) \geq t$. Da $\operatorname{ct}_{\kappa}$ monoton falled ist, gilt

$$a = (\operatorname{ct}_{\kappa} \circ \varphi) \leq \operatorname{ct}_{\kappa}$$
.

Die Gleichheit wird wie oben gezeigt.

Es gelte $\sec_{(M,g)} \geq \kappa$ und es sei c eine nach Bogenlänge parametrisierte Geodätische mit c(0) = p. Wie oben bezeichne A_t das symmetrische Endomorphismenfeld $A_t : \dot{c}(t)^{\perp} \to \dot{c}(t)^{\perp}, X \mapsto \nabla_X \operatorname{grad} d_p$. Für ein entlang c paralleles Vektorfeld E mit ||E|| = 1 und $E \perp \dot{c}$ sei $a = \langle AE, E \rangle$. Dann gilt:

$$a' = \langle A'E, E \rangle = -\langle R(E, \dot{c})\dot{c}, E \rangle - \langle A^2E, E \rangle \le -\kappa - \langle AE, E \rangle^2 = -\kappa - a^2.$$

An jeder Stelle, solange kein konjugierter Punkt vorliegt, kann E als normalisiertes Jacobifeld $\frac{\mathcal{J}}{\|\mathcal{J}\|}(t)$ realisiert werden, wobei $\mathcal{J}(0) = 0$ und $\mathcal{J} \perp \dot{c}$.

$$a = \left\langle A \frac{\mathcal{J}}{\parallel \mathcal{J} \parallel}, \frac{\mathcal{J}}{\parallel \mathcal{J} \parallel} \right\rangle = \frac{\langle \mathcal{J}', \mathcal{J} \rangle}{\langle \mathcal{J}, \mathcal{J} \rangle} = (\underbrace{\ln \underbrace{\parallel \mathcal{J} \parallel}_{\rightarrow \infty}}^{\rightarrow 0})' \rightarrow \infty$$

Mit $a \xrightarrow{t \to 0} \infty$ und Lemma 9.16 folgt $a \le \operatorname{ct}_{\kappa}$ (bis zum ersten konjugierten Punkt). Insbesondere folgt

$$||A|| = \sup_{||E||=1} \langle AE, E \rangle \le \operatorname{ct}_{\kappa}.$$

Definition Ein (geodätisches) **Dreieck** $\Delta(a, b, c)$ in M besteht aus drei geodätischen Segmenten a, b und c mit a(0) = b(0), a(1) = c(0) und c(1) = b(1). Es bezeichnen α , β und γ die inneren Winkel in Δ . Ferner sei $|a| = \mathcal{L}(a)$ die Länge von a (analog für b und c).

Ein Vergleichsdreieck in M_{κ}^2 , der einfach zusammenhängenden vollständigen Riemannschen Mannigfaltigkeit mit sec $\equiv \kappa$, ist ein Dreieck $\overline{\Delta}(\overline{a}, \overline{b}, \overline{c})$ mit $|\overline{a}| = |a|$, $|\overline{b}| = |b|$ und $|\overline{c}| = |c|$. Es existiert ein (bis auf Isomorphie) eindeutiges Vergleichsdreieck, wenn gilt:

- (i) $|a| + |b| \ge |c|$, $|b| + |c| \ge |a|$, $|c| + |a| \ge |b|$
- (ii) $U(\Delta(a,b,c)) = |a| + |b| + |c| < \frac{2\pi}{\sqrt{\kappa}}$ (für $\kappa > 0$)

Satz 9.17 (Alexandrov-Toponogov) Es sei (M,g) eine vollständige Riemannsche m-Mannigfaltigkeit mit $\sec_{(M,g)} \ge \kappa$ und im Falle $\kappa > 0$ gelte $M \not\cong S^m_{1/\sqrt{\kappa}}$. Ist dann $\Delta(a,b,c)$ ein geodätisches Dreieck mit $|c| \le |a| + |b|$, sowie, im Falle $\kappa > 0$, $|c| < \frac{\pi}{\sqrt{\kappa}}$ und a und b seien minimierende Geodätische. Dann gilt für das Vergleichsdreieck $\overline{\Delta}(\overline{a},\overline{b},\overline{c})$ in M^2_{κ} : $\overline{d}_{\overline{p}} \le d_p$

(i)
$$d(\overline{p}, \overline{c}(t)) \le d(p, c(t))$$

(ii) $\overline{\alpha} \leq \alpha \text{ und } \overline{\beta} \leq \beta$.

Bemerkung Das Aussschließen von $S^m_{1/\sqrt{\kappa}}$ ist nach dem Satz von Cheng[3] keine Einschränkung.

Es seien a, b und c nach Bogenlänge parametrisiert und p = a(0) = b(0). Es existiere zu jedem c(t) eine eindeutige Geodätische von p. Dann ist insbesondere d_p um c(t) glatt. Die Abstandsfunktion wird nun so modifiziert, dass in der Abschätzung nicht zwischen dem zu grad d_p kollinearen Anteil und dem zur Abstandssphäre tangentialen Teil unterschieden werden muss.

Karchers Trick Es sei

$$m_{\kappa}(r) = \int_0^r \operatorname{sn}_{\kappa} = \begin{cases} \frac{1}{\kappa} (1 - \operatorname{cs}_{\kappa}(r)) & \kappa \neq 0\\ \frac{1}{2} r^2 & \kappa = 0 \end{cases}$$

dann ist $m_{\kappa}(0) = 0, m_{\kappa}' = \operatorname{sn}_{\kappa}$, also m_{κ} streng monoton auf $[0, \frac{\pi}{\sqrt{\kappa}}]$, und es gilt $\operatorname{cs}_{\kappa} + \kappa m_{\kappa} \equiv 1$. Es sei $r(t) = \operatorname{d}(p, c(t))$ und $e = m_{k} \circ r$. Dann ist

$$r' = \frac{\mathrm{d}}{\mathrm{d}t} (\mathrm{d}_p \circ c) = \dot{c}(\mathrm{d}_p) = \langle \operatorname{grad} \mathrm{d}_p, \dot{c} \rangle,$$
$$r'' = \langle \nabla_{\dot{c}} \operatorname{grad} \mathrm{d}_p, \dot{c} \rangle = H_{\mathrm{d}_p}(\dot{c}, \dot{c})$$

Zerlegt man \dot{c} orthogonal in $\dot{c} = v + w$ mit $w \perp \operatorname{grad} d_p$, so folgt aus $H_{d_p}(\operatorname{grad} d_p, \cdot) \equiv 0$ gerade

$$H_{d_p}(\dot{c},\dot{c}) = H_{d_p}(w,w) = ||w||^2 \left\langle A \frac{w}{||w||}, \frac{w}{||w||} \right\rangle \le (\operatorname{ct}_{\kappa}) ||w||^2.$$

Somit gilt

$$e'' = (m''_{\kappa} \circ r)r'^2 + (m'_{\kappa} \circ r)r'' = (\operatorname{cs}_{\kappa} \circ r) \langle \operatorname{grad} d_p, \dot{c} \rangle^2 + (\operatorname{sn}_{\kappa} \circ r) H_{d_p}(\dot{c}, \dot{c})$$

$$\leq (\operatorname{cs}_{\kappa} \circ r) \|v\|^2 + (\operatorname{sn}_{\kappa} \circ r) (\operatorname{ct}_{\kappa} \circ r) \|w\|^2 = (\operatorname{cs}_{\kappa} \circ r) (\|v\|^2 + \|w\|^2) = (\operatorname{cs}_{\kappa} \circ r)$$

$$= 1 - \kappa (m_{\kappa} \circ r) = 1 - \kappa e,$$

also $e'' + \kappa e \leq 1$.

Im Fall konstanter Krümmung gilt für eine analog definierte modifizierte Abstandsfunktion

$$\overline{e} = (m_{\kappa} \circ \overline{r}), \ \overline{e}'' + \kappa \overline{e} \equiv 1.$$

Ist wie oben $\dot{\overline{c}} = \overline{v} + \overline{w}$ (mit $w, \overline{w} \neq 0$), so existiert ein Jacobifeld entlang der Geodätischen von p nach c(t) von der Form $J = \operatorname{sn}_{\kappa} E$, wobei E die parallele Fortsetzung von \overline{w} ist, und es gilt $J(\operatorname{d}_{\overline{p}}(\overline{c}(t))) = w$. Damit folgt

$$H_{\mathrm{d}_{\overline{p}}}(\dot{\overline{c}},\dot{\overline{c}})|_{r} = \langle AJ,J\rangle|_{r} = \langle J',J\rangle|_{r} = \mathrm{cs}_{\kappa}(r)\langle E,w\rangle = \mathrm{ct}_{\kappa} \|w\|^{2}$$

und in der obigen Abschätzung gilt die Gleichheit.

Beweisskizze (zum Satz von Alexandrov-Toponogov 9.17)

(i) Annahme: Es gelte $|a| + |b| + |c| < \frac{2\pi}{\sqrt{\kappa}}$. Der Fall |a| + |b| = |c| ist trivialerweise korrekt. Es gelte also |a| + |b| > |c|, dann ist jedenfalls $p \notin c$. Es seien $r = d_p \circ c$ und $e = m_\kappa \circ r$ wie oben, sowie \overline{r} und \overline{c} für das Vergleichsdreieck. Betrachte $f = e - \overline{e}$.

Fall 1: Zu jedem c(t) existiert eine eindeutige minimierende Geodätische, damit ist r und damit auch f differenzierbar. Es gilt

$$f'' = e'' - \overline{e}'' \le 1 - \kappa e - (1 - \kappa \overline{e}) = -\kappa f.$$

Angenommen es gäbe ein $s \in (0, l), l = |c|$ mit f(s) < 0. Weiter sei $\varepsilon > 0$ so, dass gilt

$$l + \varepsilon < \frac{\pi}{\sqrt{\kappa + \varepsilon}}.$$

Es sei $g(t) = \operatorname{sn}_{\kappa+\varepsilon}(t+\varepsilon)$ die, auf [0,l] positive, Lösung von $g''+(\kappa+\varepsilon)g=0$. Betrachte $h=\frac{f}{g}$. Dann gilt h(s)<0 und h(0)=0=h(l) und somit nimmt h ein negatives Minimum, etwa t_0 , an.

Es gilt also $h(t_0) < 0$, $h'(t_0) = 0$ und $h''(t_0) \ge 0$. Dann folgt

$$f'' + \kappa f = g''h + 2g'h' + gh'' + \kappa gh = -(\kappa + \varepsilon)gh + 2g'h' + gh'' + \kappa gh$$

$$\lim_{t \to 0} t_0 = \underbrace{-\varepsilon gh}_{>0} + \underbrace{2g'h'}_{\geq 0} + \underbrace{gh''}_{\geq 0} > 0$$

im Widerspruch zu $f'' + \kappa f \leq 0$.

Fall 1 gilt nicht: Es gibt nun keine eindeutige Geodätische und für den Umfang gilt $||a|| + ||b|| + ||c|| \ge \frac{2\pi}{\sqrt{\kappa}}$

Es sei $t_0 = \sup\{t \mid \operatorname{Umfang} \Delta(a, b_t, c_t) < \frac{2\pi}{\sqrt{\kappa}}\}$. Für $t \to t_0$ konvergiert $\Delta(a, b_t, c_t)$ gegen ein Dreieck mit Umfang $\frac{2\pi}{\sqrt{\kappa}}$, das heißt das Vergleichsdreieck konvergiert gegen einen Großkreis. Insbesondere folgt mit dem ersten Teil aus (i):

$$\max_{s \in [0,t]} d(p, c(s)) \xrightarrow{t \to t_0} \frac{\pi}{\sqrt{\kappa}}.$$

Damit existiert ein $q \in M$ mit $d(p,q) = \frac{\pi}{\sqrt{\kappa}}$, im Widerspruch zur Voraussetzung $M \not\cong S^n_{\frac{1}{\sqrt{\kappa}}}$ (siehe Cheng [3]).

(ii) Variationsfeld:

Es sei c_s die minimierende, nach Bogenlänge parametrisierte Geodätische von p nach c(s) und Y das von c_s erzeugte Varationsfeld. Dann gilt

$$-\cos\beta = \langle \dot{c}(0), \dot{a}(|a|) \rangle = \langle Y(|a|), \dot{a}(|a|) \rangle = \int_{0}^{|a|} \langle Y, \dot{a} \rangle' = \mathcal{L}'(c_s) \stackrel{\text{(i)}}{\geq} \mathcal{L}'(\overline{c}_s)$$
$$= \dots = -\cos\overline{\beta}$$

Also insgesamt: $\overline{\beta} \leq \beta$.

 (\Box)

7. Anwendung

Satz 9.18 (Gromov) Es existieren Konstanten c(n), $c(n, \lambda, D)$, so dass gilt:

- (i) Hat M^n die Schnittkrümmung sec ≥ 0 , so läßt sich $\pi_1(M^n)$ mit $\leq c(n)$ Elementen erzeugen.
- (ii) Hat M^n die Schnittkrümmung sec $\geq -\lambda^2$ und diam $(M) \leq D$, so lässt sich $\pi_1(M)$ mit $\leq c(n, \lambda, D)$ Elementen erzeugen.

Beweisskizze Es sei $\Gamma = \pi_1(M, p_0) \curvearrowright \tilde{M}$ und sei $x_0 \in \pi^{-1}(p_0)$.

Für $\gamma \in \Gamma$ sei $|\gamma| = \mathrm{d}(x_0, \gamma.x_0)$. Ist dann c_γ minimal von x_0 nach $\gamma.x_0$, so ist eine Projektion $\overline{c}_\gamma = \pi \circ c_\gamma$ eine Schleife in γ . Ferner gilt $\#\{\gamma \in \Gamma \mid |\gamma| \leq r\} < \infty$, denn andernfalls gäbe es eine (nichtkonstante) Folge $\gamma_i \in M$ mit $|\gamma_i| \leq r$, das heißt $\gamma_i.x_0 \in \overline{B}_r(x_0)$, also ohne Einschränkung $\gamma_i.x_0 \xrightarrow{i \to \infty} y$ und $q = \pi(y)$. Dann gälte

$$\pi^{-1}(B_{\delta}(q)) = \dot{\bigcup}_{i} B_{\delta} = \dot{\bigcup}_{\gamma \in \Gamma} \gamma . B_{\delta}(y)$$
 4

Wähle $\gamma_1 \in \Gamma$ mit $|\gamma_1| = \min\{|\gamma| \mid \gamma \in \Gamma \setminus \{1_p\}\}$. Sind $\gamma_1, \ldots, \gamma_k$ gewählt mit $|\gamma_1| \leq |\gamma_2| \leq \cdots \leq |\gamma_k|$, so bezeichne $G_k = \langle \gamma_1, \ldots, \gamma_k \rangle$. Ist $G_k \neq \Gamma$, so sei $\gamma_{k+1} \in \Gamma$ mit $|\gamma_{k+1}| = \min\{|\gamma| \mid \gamma \in \Gamma \setminus G_k\}$.

Es bezeichne $l_i = |\gamma_i|, l_{ij} = \mathrm{d}(\gamma_i.x_0, \gamma_j.x_0) = \mathrm{d}(x_0, \gamma_i^{-1}\gamma_j.x_0) = |\gamma_i^{-1}\gamma_j|$. Dann gilt für i < j:

$$l_i \leq l_j \leq l_{ij}$$
.

Wäre $l_{ij} < l_j = |\gamma_j|$, so gälte für $\tilde{\gamma}_j = \gamma_i^{-1} \gamma_j$:

$$|\tilde{\gamma}_j| < |\gamma_j| \text{ und } \langle \gamma_1, \dots, \gamma_j \rangle = \langle \gamma_1, \dots, \tilde{\gamma}_j \rangle$$

im Widerspruch zur Wahl von γ_i .

Nach Topogonov folgt $\overline{\alpha} = \overline{\alpha}_{ij} \leq \alpha_{ij}$.

(i) Von nun an sei sec ≥ 0 .

$$\cos \overline{\alpha}_{ij} = \frac{l_i^2 + l_j^2 - l_{ij}^2}{2l_i l_j} \le \frac{l_i^2 + l_j^2 - l_j^2}{2l_i^2} = \frac{1}{2} = \cos \frac{\pi}{3}$$

Daraus folgt $\alpha_{ij} \geq \overline{\alpha}_{ij} \geq \frac{\pi}{3}$

 $\{v_i\} \subseteq \overline{B_1(0)} \subseteq T_{x_0}\tilde{M} \text{ und } \#\{v_i\} = \#\{\gamma_i\} \text{ endlich.}$

 $r=\sin\frac{\pi}{6}=\frac{1}{2}$, also sind die Bälle $B_{\frac{1}{2}}(v_i)$ disjunkt. Betrachte das Volumen der "unteren Hälfte", diese liegt in $B_{\frac{\sqrt{5}}{2}}(0)$. Damit gilt

$$\frac{\kappa}{2}\operatorname{vol}(B_{\frac{1}{2}}(0)) \leq \operatorname{vol}B_{\frac{\sqrt{5}}{2}}(0),$$

also

$$\kappa \le 2 \frac{\operatorname{vol}\left(B_{\frac{\sqrt{5}}{2}}(0)\right)}{\operatorname{vol}\left(B_{\sqrt{\frac{5}{2}}}\right)} = 2\sqrt{5}^n (=c(n))$$

(ii) Fall: $\kappa \ge -\lambda^2$.

Gibt es eine Durchmesserschranke?

 $\pi_1(\sum g)$ wird erzeugt von 2g Elementen und es gilt

$$\cos \overline{\alpha}_{ij} = \frac{\cosh(\lambda l_i)^2 + \cosh(\lambda l_j)^2 - \cosh(\lambda l_{ij})^2}{\sinh(\lambda l_i)\sinh(\lambda l_j)}$$

 $\overline{\alpha}_{ij}$ fällt monoton in l_i , also wächst $\cos \overline{\alpha}_{ij}$ monoton in in l_i und es lässt sich folge Abschätzung verwenden:

$$\cos \overline{\alpha}_{ij} \le \dots \le \frac{\cosh(\lambda l_j)}{\cosh(\lambda l_j) + 1} \le \frac{\cosh(2\lambda D + 1)}{\cosh(2\lambda D + 1) + 1}$$

Jedes $\gamma \in \pi_1(M)$ ist Produkt von Klassen von Schleifen der Länge $\leq 2D + \varepsilon$.

Damit funktioniert des Rest des Beweises ähnlich wie oben.

 (\Box)