2/19/2 003526031 WPI Acc No: 1982-74016E/ 198235 Film and fibre forming polyarylate prepn. - from aliphatic dicarboxylic acid ester by reaction with bisphenol and tert.-amine in Patent Assignee: AS GEOR PHYSIOL INS (AGPH-R) Inventor: KATSARAVA R D; KHARADZE D P; ZAALISHVIL M M Number of Countries: 001 Number of Patents: 001 Patent Family: Patent No Kind Date Kind Week Applicat No Date SU 876663 19811030 198235 B. Priority Applications (No Type Date): SU 2854671 A 19791111 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes SU 876663 В Abstract (Basic): SU 876663 B Polyarylates based on aliphatic dicarboxylic acids and bis-phenols, are made by reaction in an organic solvent in presence of a tert-amine. The process is simplified and final prod. yield is increased to 91-98% by using the acid diesters and a reaction temp. of 25-26 deg. C. The esters are of formula: X-OCO-R-OCO-X, (where R is (CH2)n, n is 1-8), and X is p-nitro-phenylene, or 2,4-dinitro-phenylene or gp. of formula (I) or pentachloro-phenyl gp.). (6pp) Title Terms: FILM; FIBRE; FORMING; POLYARYLATE; PREPARATION; ALIPHATIC; DI; CARBOXYLIC; ACID; ESTER; REACT; DI; PHENOL; TERT; AMINE; SOLVENT Derwent Class: A23 International Patent Class (Additional): C08G-063/16 File Segment: CPI Manual Codes (CPI/A-N): A05-E02; A10-D; A12-S05K; A12-S06 Plasdoc Codes (KS): 0016 0034 0226 0230 1291 1369 1373 1377 1384 1407 1448 1450 1452 1454 2043 2064 2151 2172 2382 2394 2513 2524 2528 Polymer Fragment Codes (PF): *001* 013 02% 04% 081 143 144 151 155 157 159 160 161 162 220 221 222 239

Derwent WPI (Dialog® File 351): (c) 2004 Thomson Derwent. All rights reserved.

262 273 293 344 345 355 400 402 405 417 435 481 483 689

BEST AVAILABLE COPY

Союз Советских Социалистических Республик

Государственный комитет СССР по делам изобретений и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву-

(22) Заявлено 11.11.79 (21) 2854671/23-05

с присоединением заявки № --

(23) Приоритет

Опубликовано 3010.81. Бюллетень № 40

Дата опубликования описания 30.10.81

(11) 876663

(51) М. Кл.³

C 08 G 63/16

(53) УДК _{678.674} (088.8)

(72) Авторы изобретения

м.М.Заалишвили, Р.Д.Кацарава, Д.П.Харадзе и Л.М.Авалишвили

(71) Заявитель

Институт физиологии им. акад. И.С.Беританвили АН Грузинской ССР

BCECOPOSHAD HATESTNO- 1 CO H TEXTSHADONIA TO ESSUSCITICA

(54). СПОСОБ ПОЛУЧЕНИЯ ПОЛИАРИЛАТОВ

Изобретсние относится к синтезу высокомолекулярных полиарилатов на основе алифатических дикарбоновых кислот и бис-фенолов, которые могут найти применение в различных областях народного хозяйства, как пленко-и волокнообразующие полимеры.

Известен способ получения полиарилатов на основе бис-фенолов и дихлорангидридов алифатических дикарбоновых кислот в условиях межфазной поликонденсации [1]

Полиарилаты, полученные этим способом, имеют низкие вязкостные характеристики из-за высокой скорости гидро- 15 лиза хлорангилридных групп алифатических дикарбоновых кислот водно-щелочным раствором, что приводит к остановке роста цепи макромолекул.

Наиболее близким к предлагаемому по технической сущности и достигаемому эффекту является способ получения полиарилатов путем взаимодействия производных дикарбоновых кислот в среде органического растворителя в присутствии третичного амина [2].

Этим способом (метод растворной поликонденсации) полиарилаты на основе дихлорангидридов ароматической кислоты и бис-фенола имеют высокие вяз- 30

костные характеристики и обладают хороымми пленко- и волокнообразующими свойствами.

На основе дихлорангидридов алифатических кислот методом растворной поликонденсации получают полнарилаты с ниэкими вязкостными характеристиками, что обусловлено протеканием побочных процессов образования кетена при взаимодействии кислот с третичными аминами, и имеющие неоднородное, разнозвенное строение полимерных цепей.

Цель изобретения - упрощение технологии процесса.

Поставленная цель достигается тем, что в способе получения полиарилатов путем взаимодействия производных дикарбоновых кислот в среде органического растворителя в присутствии третичного амина, в качестве производных дикарбоновых кислот используют диэфиры алифатических дикарбоновых кислот общей формулы.

X - OCO - R - OCO - X, где $R = -(CH_2)_{\eta}$ (n=1-8);

$$x = -\langle O \rangle - NO_2$$
, $-\langle O \rangle - NO_2$

3

и процесс проводят при 25-65°C.

Вязкостные характеристики полученных полиэфиров составляют 0,22 -0,94 дл/г в зависимости от природы активирующей группы и условий синтеза 10 полиэфира.

Полученные полиэфиры растворимы в 1,2-дихлорэтане, NN-диметилацета-миде, гексаметилфосфорамиде, N-метил-2-пирролидоне, диметилсульфоксиде, образуя высококонцентрированные растворы.

Их 10%-ных растворов полиэфиров в 1,2-дихлорэтане методом полива на стеклянные подложки получают пленки, имеющие прочность на разрыв 800-1200 кг/см² и удлинение 5-10%.

Пример 1. К 2,39 г 0,005 моль) бис-2,4-динитрофениладипината добавляют 1,59 г (0,005 моль) фенолфталеина, 5,5 мл 1,2-дихлорэтана и 2,8 мл триэтиламина (концентрация 0,6 моль/л). Реакционную смесь перемешивают при 25°С в течение 3 ч. Вязкий реакционный раствор выливают в спирт, выпавший полимер отфильтровывают и экстрагируют этилацетатом в аппарате Сокслетта, затем сушат. Выход 97%, $\chi_{пр} = 0.94$ дл/г в 1,2-дихлорэтане при 25°С, С = 0,5 г/дл.

Пример 2. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, но в качестве диэфира используют бис-2,4-динитрофениловый эфир янтарной кислоты. Реакционную смесь перемешивают при 60°С в течение 1 ч, а затем при 40 25°С в течение 2 ч. Выход полимера 97%, % пр = 0,46 дл/г в 1,2-дихлорзтане при 25°С С=0,5 г/дл.

Пример 3. Синтез полимера проводят в соответствии с методикой, 45 приведенной в примере 1, но в качестве растворителя используют метилэтил-кетон. Реакционную смесь перемениватот при 50°С в течение 0,5 ч, а затем при 25°С в течение 2,5 ч. Выход полимера 98%, 1 пр = 0,82 дл/г в 1,2-дихлорэтане при 25°С, С = 0,5 г/дл.

Примера 4. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, но в качестве растворителя используют бензол. Реакционную смесь перемешивают при 60°С в течение 1 ч, а затем при 25°С в течение 2 ч. Выход полимера 97%; Пр = 0,58 дл/г в 1,2диклорэтане при 25°С, С = 0,5 г/дл.

Пример 5. Синтез полимера осуществляют в сортветствии с мето-дикой, приведенной в примере 1, но в качестве диэфира используют бис-п--нитрофениладипинат. Реакционную смесь

перемешивают при 65° С в течение 1 ч, а затем при 25° С в течение 2 ч. Выход полимера 92° , $\chi_{\text{пр}} = 0.38$ дл/г в 1.2-дихлорэтане при 25° С, С= =0.5 г/дл.

Пример 6. Синтез полимера осуществляют в соответствии с методи-кой приведенной в примере 1, но в качестве диэфира используют бис-пентахлорфениладипинат. Реакционную смесь перемешивают при 65°C в течение 2 ч, а затем при 25°C в течение 1 ч. Выход полимера 93%, дпр = =0,29 дл/г в 1,2-дихлорэтане при 25°C, С = 0,5 г/дл.

Пример 7. Синтез полимера осуществляют аналогично методике, приведенной в примере 1, но в качестве диэфира используют бис-N-оксисук-цинимидадипинат. Выход полимера 94%, тр = 0,28 дл/г в 1,2-дихлорэтане при 25°C, С = 0,5 г/дл.

Пример 8. Синтез полимера осуществляют аналогично методике, приведенной в примере 1, но в качестве растворителя используют диметилсульфоксид. Выход полимера 93%, 1 пр = 0.26 дл/г в 1,2-дихлорэтане при 25°C, С = 0,5 г/дл.

Пример 9. Синтез полимера осуществляют в соответствии с методи-кой, приведенной в примере 1, но в качестве растворителя используют N,N-диметилацетамид. Выход полимера 91%, 7 пр = 0,22 дл/г в 1,2-дихлорэтане при 25 С, С=0,5 г/дл.

Пример 10. Синтез полимера осуществляют в соответствии с методи-кой, приведенной в примере 1, но в качестве бис-фенола используют диан. Выход полимера 96%, lnp = 0,82 дл/г в 1,2-дихлорэтане при 25°С, С=0,5 г/дл.

Примеры 11-16. Синтев полиэфиров осуществляют в соответствии с примером 1, но в качестве диэфира используют бис-2,4- динитрофениловые эфиры малоновой, глутаровой, пимелиновой, пробковой, азелаиновой, себациновой кислот.

Пример 17. Синтез полизфира осуществляют в присутствии алифатического 1,3-пропандиола. К смеси 2,39 г (0,005 моль) бис-2,4-динитрофениладипината, 1,59 г (0,005 моль) фенолфталеина 2,8 мл. триэтиламина в 5,5 мл 1,2-дихлорэтана добавляют 0,76 г (0,01 моль) 1,3-пропандиола и реакционную смесь перемешивают при 25°C в течение 3 ч. Получают полимер с выходом 96%, тпр = 0,88 дл/г в 1,2-дихлорэтане при 25°C, С=0,5 г/дл.

Образование высокомолекулярного полиэфира при соотношении диол: ак
тивированный эфир = 3:1 свидетельствует об отсутствии взаимодействия между активированным диэфиром и алифатическими гидроксильными группами.
В противном случае в результате нарушения эквимолярности должны были бы

4

BEST AVAILABLE COPY

876663

образоваться лишь ниэкомолекулярные продукты.

Данный пример свидетельствует о высокой селективной ацилирующей спо-

собности активированных диэфиров по сравнению с дихлорангидридами. Условия синтеза и характеристики полнарилатов, полученных по примерам 1-17, приведены в таблице.

BEST AVAILABLE COPY

	. •	876663

1 1 1 1 1 1			1	4					
Тример	Диэфир-общей формулы	в формулы	Бис-фенол	Реакционная смесь	темпе-	BM-	1.2-nxxnop-	Свояства пленок	ОК
	 	×	:		ра реак- ций,	Φ	этане, t = 25°C, C=0,5	6, Kr/cm ²	60 pm
:					(Вре- мя ре- акции,			•	
		0.00			7				
	- †(⁷ H2)-	10v-00 -	Фенолфтале- ин	1,2-дихлор- этан	25(3)	97	0,94	. 1200	0 H .
?	(сн ₂) ₂	1	фенолфтале- ин	1,2-дихлор- этан	60(1) 25(2)	. 76	0,46	. 008	ν.
m [']	-(cH ₂)4-	 - 	Фенолфтале- ин	Метилкетон	50 (0,5) · 25 (2,5)	86	0,82	. 1100	 60
•	- (CH ₂)4-	 - 	Фенолфтале ин	Бензол	60(1) 25(2)	76	85.0	880	S
vs	-(CH ₂)4-	- (0) 102 G. G.	Фенолфтале- ин	1,2-дихлор- этан	65(1) 25(2)	.6	. 0,38		: · 1
	- (CH2)+-	E C	фенолфтале- ин	1,2-дихлор- этан	65(2) 25(1)	93	0,29		
~ .	- (CH ₂)-	-* CO- CH2	Фенолфтале- ин	1,2-дихлор- этан	25(3)	46	0,28	•	
co	-(cH ₂) ₄	Par (i)	Фенолфтале- ин	Диметилсуль-25(3) Фоксид	25(3)	6	0,26	,	
6	- (CH ₂)+	!	Фенолфтале- ни	N,N-диметил-25(3) ацетамид	25(3)	91	0,22	\$	J .
	- (CH ₂)4 -	1	Диан	1,2-дихлор- этан	25(3)	96	0,82	1050	10
. 11	- (cH ₂) -	1 = -1	Фенол- Фталеин	1,2-диклор этан	60 (1) 25 (2)	91	0,18	*	' .
		•	٠.						•

ο-	"	c	c	2
0/	, 0	o	o	

						. 1	Concorn	продолжение тасулите	пленок	
	лиэфир-общ 1, гле	пиэфир-общей формулы Бифенол	Бисфенол	СМЕСЬ	ратура	XOX	1,2-DHXHOD-	Ø,	6,	
Пример	α,	# *			ос, (Время реакции, ч)		25°C,Ce0,5	Kr/cm.		
12	- (cH2)-				60(1) 25(2)	· 6.	0,44	1		
13	- g(LH2)-	•	Диан	1 ·	60(1)	g ·	0,65	·. ·:	•	•
14	- 9(CH ²)-	1 = 1	i :	* * * * * * * * * * * * * * * * * * *	60(1).	9.	0,62		•	
15	- (CHJ)-	.i 2	Фенолфта- леин) = . 'f .	60(1) 25(2)	95	0,72	•	•	
. , .	-(CH ₂) ₈ -	(0) Year	. I = I	i . <u>s</u>	60(1) 25(2)	96	85.0	ţ		
11	- (CH ₂).	\$ 000 Proof	Фенолфта- ленн	1 = 1	25(3)	96	0,88		· · · · · · · · · · · · · · · · · · ·	
•		· . ·	+H0(CH ₂) ₃ -0H (1 : 2)	но		•		•		٠

10

Предлагаемый способ позволяет синтезировать высокомолекулярные полиэфиры на основе алифатических дикарбоновых кислот, высокая селективность способа (ацилируются ароматические гидроксильные группы и не
затрагиваются алифатические) дает
возможность синтезировать регулярные
полиэфиры, обладающие пленко- и волокнообразующими свойствами (из-за
отсутствия протекания побочных процессов взаимодействия диэфиров с третичными аминами и реакций гидролиза
функциональных групп).

Таким образом, использование в качестве производных дикарбоновых кислот диэфиров алифатических дикарбоновых кислот общей формулы ! в способе получения полиарилатов позволяет упростить технологию процесса.

Формула изобретения

Способ получения полиарилатов путем взаимодействия производных дикарбоновых кислот в среде органического растворителя в присутствии третичного амина, о т л и ч а ю - м и й с я тем, что, с целью упрощения технологии процесса, в качестве производных дикарбоновых кислот используются дизфиры влифатических дикарбоновых кислот общей формулы

5
$$X - OCO - R := OCO - X$$
,
rge $R = -(CH_2)_h$ $(n=1-8)$,

10
$$X = -\bigcirc -NO_2$$
, $-\bigcirc -NO_2$,

и процесс проводят при $25-65^{\circ}$ С. Источники информации,

принятые во внимание при экспертизе
1. Морган П.У. Поликонденсационные процессы синтеза полимеров. М., "Хи-мия", 1970, с. 312.

мия", 1970, с. 312. 2. Коршак В.В. и др. Неравновесная поликонденсация, М., "Наука", 1972 с. 164 (прототип).

Составитель И.Чернова Редактор Н.Безродная Техред С.Мигунова корректор Н.Швыдкая

Заказ 9498/30 Тираж 533 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва,ж-35, Раушская наб.,д.4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4