Aufgabe 19:

Sei M eine Menge und T für M als Speicherplatz vorgesehene Tabelle.

$$M := \{17, 42, 26, 11, 54, 5, 14\}, |T|=7$$

 $h_1(x) := x \mod 7$

$$h(x,0) := h_1(x)$$

$$h(x,i) := (h(x,0) - s(x,i)) \mod 7$$

a) offenes Hashverfahren mit linearem Sondieren:

$$s(x,i):=i$$

1 h(17 i) aibt · 2

1. h(17, i) gibt : 3								
			17						
2. h(42, i) gibt : 0								
42	giot . 0		17						
3 h(26 i	3. h(26, i) gibt : 5								
42	giot . 3		17		26				
4. h(11, i) gibt : 4								
42) giot : i		17	11	26				
5 h(54 i) gibt : 5, 4, 3,	2.							
42) giot : 5, 1, 5,	54	17	11	26				
6. h(5, i) gibt: 5, 4, 3, 2, 1									
42	5	54	17	11	26				
7. h(14, i) gibt: 0, 6								

^{=&}gt; 8 Kollisionen

54

b) offenes Hashverfahren mit quadratischem Sondieren mit Vorzeichenwechsel:

17

11

26

14

$$s(x,i) := \left[\frac{i}{2}\right]^2 \cdot (-1)^i$$

1. h(17, i) gibt : 3

42

				17		
_			ı		ı	<u>I</u>
	2. h(42, i) gib	4 · Λ				

42		17		

3. h(26, i)) gibt : 5			
42		17	26	

4. h(11, 1)) gibt : 4				
42		17	11	26	

5. h(:	54, i) gibt : 5,	6				
42			17	11	26	54
6 h(5 i) aibt : 5 6	1.2				
42	5, i) gibt : 5, 6	5	17	11	26	54
	I				I	
	$\frac{14, i) \text{ gibt: } 0, 1}{14}$	5	1.7	11	26	5.4
42	14	3	17	11	26	54
	=> 5 Kol	lisionen				
На	ashfunktion.	fahren mit do $=i \cdot g(x)$	ppeltem Hashi	ng und $g(x) =$	$(1 + (x \mod 5)$	i)) als zweiter
			17			
2. h(4	42, i) gibt: 0	·				
42			17			
3 h('	26, i) gibt: 5		·			
42	20, 1) giot. 3		17		26	
4. h(11, i) gibt: 4					
42			17	11	26	
5 h(f	54, i) gibt: <mark>5, (</mark>) 5 3 1	'	<u> </u>	<u>'</u>	<u>'</u>
42	54, 1) glot. 5, (, J, J, 1	17	11	26	
	5, i) gibt: 5, 4,	3 2	I	<u> </u>		
42	54 54	5	17	11	26	
7. h()	14, i) gibt: 0, 5	5	17	11	26	14
7 2	J+	3	1 /	11	20	14

=> 11 Kollisionen