CHEM 361B - Lecture 11 Activity

The Rigid Rotator and Angular Momentum

1. Table 1 shows the observed microwave adsorption spectrum of $\mathrm{H}^{127}\mathrm{I}$ and $\mathrm{D}^{127}\mathrm{I}$ between 60 cm⁻¹ and 90 cm⁻¹. Take the mass of $^{127}\mathrm{I}$ to be 126.904 m_u and the mass of D to be 2.013 m_u .

Table 1: Spectral lines for $H^{127}I$ and $D^{127}I$.

	$\frac{1}{\lambda} \text{ (cm}^{-1})$			
$\mathrm{H}^{127}\mathrm{I}$	64.275	77.130	89.985	
$\mathrm{D}^{127}\mathrm{I}$	65.070	71.577	78.084	84.591

- (a) Is the spacing between each spectral line equal? Is this what you expect?
- (b) Based on the spectra, show that the moment of inertia, I, for $H^{127}I$ is 4.355×10^{-47} kg m² and for $D^{127}I$ is 8.60×10^{-47} kg m².
- (c) Show that the interatomic distance between $\mathrm{H}^{127}\mathrm{I}$ is 1.626×10^{-10} m and for $\mathrm{D}^{127}\mathrm{I}$ is 1.616×10^{-10} m.
- 2. The results we derived for a rigid rotator apply to linear polyatomic molecules as well as to diatomic molecules.
 - (a) Given that the moment of inertia, I, for $\mathrm{H^{12}C^{14}N}$ is $1.89\times10^{-46}~\mathrm{kg}~\mathrm{m^2}$, show that the wavenumber of the transition between the rotational ground state and the first excited state is $2.962~\mathrm{cm^{-1}}$.
 - (b) Show that the wavenumber between the $\ell=1$ to $\ell=2$ states is 5.924 cm⁻¹
 - (c) Using the answer above, sketch the rotational spectrum of $\mathrm{H^{12}C^{14}N}$.
 - (d) If $H^{12}C^{14}N$ is in the $\ell=2$ and m=-1 state
 - i. Show that

$$Y_2^{-1} = \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta e^{-i\phi}$$

Note: $P_{\ell}^{|m|}(\cos\theta)$ means take the appropriate solution to the Legendre functions as a function of $\cos\theta$.

- ii. Show that its energy, $E=1.767\times 10^{-22}$ J.
- iii. Show that its total angular momentum, $L = \sqrt{6}\hbar$.
- iv. Show that the z-component to its angular momentum, $L_z = -\hbar$.

Hint: Use the eigenfunction/eigenvalue relationship to calculate these values.

3. Show that $P_1^0 = x$ is a solution to the Legendre differential equation

$$(1-x^2)\frac{d^2P}{dx^2} - 2x\frac{dP}{dx} + \left[\ell(\ell+1) - \frac{m^2}{1-x^2}\right]P(x) = 0$$

1