Stability analysis of linear systems

University of Ulsan

Prof. KIM

©2025 All rights reserved

Contents

- Hurwitz stability criterion (for linear systems)
- Lyapunov stability criterion (for linear systems)
- Robust stability criterion (for uncertain linear systems)
- \mathcal{H}_{∞} stability criterion (for linear systems with disturbances)

1.4 \mathcal{H}_{∞} stability criterion

• The \mathcal{H}_{∞} stability criterion is applied to the following system:

$$\begin{cases} \dot{x}(t) = Ax(t) + Nw(t) \\ z(t) = Gx(t) \end{cases}$$
 (18)

where $w(t) \in \mathbb{R}^d$ denotes the external disturbances, and $z(t) \in \mathbb{R}^q$ denotes the performance output.

- The \mathcal{H}_{∞} stability criterion is used to verify whether
 - system (18) is asymptotically stable, and
 - system (18) has an \mathcal{H}_{∞} performance level.
- To handle the \mathcal{H}_{∞} performance problem, it is essential to assume $w(t) \in \mathcal{L}_2$ as follows:

- Let us recall the asymptotic stability criterion and the \mathcal{H}_{∞} performance condition.
 - Asymptotical stability criterion:

$$\dot{V}(t) < 0$$

which is valid for the case where $x(0) \neq 0$ and w(t) = 0.

 $\circ \mathcal{H}_{\infty}$ performance condition:

$$\int_0^\infty z^T(\tau)z(\tau)d\tau \le \gamma^2 \int_0^\infty w^T(\tau)w(\tau)d\tau$$

which is valid for the case where x(0) = 0 and $w(t) \neq 0$.

The following lemma provides the \mathcal{H}_{∞} stability criterion for system (18).

Lemma 5. System (18) is asymptotically stable and has an \mathcal{H}_{∞} performance level, if the following condition holds:

$$\dot{V}(t) + z^{T}(t)z(t) - \gamma^{2}w^{T}(t)w(t) < 0$$
(19)

where γ denotes the \mathcal{H}_{∞} performance level (or disturbance attenuation level).

Proof:

(i) Asymptotic stability:

- In the context of asymptotic stability analysis, the influence of disturbances is typically disregarded.
- Thus, letting w(t) = 0, it follows from (19) that

$$\dot{V}(t) < \boxed{} < 0 \tag{20}$$

which guarantees the asymptotic stability of system (18).

(ii) \mathcal{H}_{∞} performance:

• By integrating both sides of (19), we obtain the following expression:

$$\int_0^\infty z^T(\tau)z(\tau)d\tau - \gamma^2 \int_0^\infty w^T(\tau)w(\tau)d\tau < \boxed{}$$

• In the context of \mathcal{H}_{∞} performance analysis, the influence of the initial condition is disregarded. That is, letting x(0) = 0, it follows that

$$V(0) = x^{T}(0)Px(0) =$$

• Thus, it holds that

$$\int_0^\infty z^T(\tau)z(\tau)d\tau - \gamma^2 \int_0^\infty w^T(\tau)w(\tau)d\tau < \boxed{} < 0 \quad (21)$$

which ensures the \mathcal{H}_{∞} performance condition.

• Therefore, following up on (i) and (ii), it can be concluded that inequality (19) serves as the \mathcal{H}_{∞} stability criterion.

The following theorem provides a set of linear matrix inequalities (LMIs) corresponding to the \mathcal{H}_{∞} stability criterion in (19).

Theorem 2. System (18) is asymptotically stable and has an \mathcal{H}_{∞} performance level, if there exist a symmetric matrix $P \in \mathbb{R}^{n \times n}$ and a positive scalar γ satisfying

$$P > 0 \tag{22}$$

$$\begin{bmatrix} \mathbf{He}\{PA\} + G^T G & PN \\ N^T P & -\gamma^2 I \end{bmatrix} < 0$$
 (23)

where the value of γ quantifies the \mathcal{H}_{∞} performance level, which corresponds to the system's disturbance attenuation capability.

Proof:

• By incorporating (18), the \mathcal{H}_{∞} stability criterion in (19) is expressed as follows:

$$x^{T}(t)P() + ()^{T}Px(t)$$

 $+ x^{T} x(t) - \gamma^{2}w^{T}(t)w(t) < 0.$ (24)

• Furthermore, condition (24) can be rearranged as follows:

$$\begin{bmatrix} x(t) \\ w(t) \end{bmatrix}^T \begin{bmatrix} PN \\ N^TP & -\gamma^2 I \end{bmatrix} \begin{bmatrix} x(t) \\ w(t) \end{bmatrix} < 0.$$

• Finally, condition (23) follows as a result.

Example 1.13. Using the robust control toolbox in MATLAB, analyze the \mathcal{H}_{∞} stability of system (8) with

$$A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}, \ N = \begin{bmatrix} 1 \\ 0.1 \end{bmatrix}, \ G = \begin{bmatrix} 1 & 0 \end{bmatrix}, \ \gamma = 0.64.$$

What happens when γ becomes less than 0.64?

Example 1.14. Let us consider the following uncertain linear system with disturbances:

$$\begin{cases} \dot{x}(t) = (A + \Delta A)x(t) + Nw(t) \\ z(t) = Gx(t). \end{cases}$$

Please **obtain** a set of linear matrix inequalities (LMIs) that ensures the robust \mathcal{H}_{∞} stability for this system.