انجیبنتری حساب (جلد اول)

خالد خان يوسفر. كي

جامعه کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

# عنوان

| хi         |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         |                |                |          |        | پ             | د يبا |
|------------|---|--|--|--|--|--|--|--|--|-----|-----|-----|-------|------|-----|------|------|------|-------|--------|--------|-------|-------|------|-------------------|------------|--------------|-------------|---------|----------------|----------------|----------|--------|---------------|-------|
| xiii       |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         | اچ             | کادیہ          | <u>_</u> | ي كتا  | پيا<br>نا جوا | مير د |
| 1          |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            | ت            | باوار       | ي مي    | تفر ف          | ساده           | ول       | . جدا  | ور            | 1     |
| 2          |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         | ئى<br>مەسىي    | نموز           |          | 1.     | 1             |       |
| 14         |   |  |  |  |  |  |  |  |  | ولر | ب   | کید | رز    | اور  | مت  | ے سر | ن کی | رال  | ميا.  |        | طلد    | ئى م  | زياؤ  | ومية | كاجيو             | 'y'        | ' =          | = ;         | f(      | x, y           | <sub>/</sub> ) |          | 1.     | 2             |       |
| 23         |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         | ،<br>پاعلیی    |                |          | 1.     | 3             |       |
| 39         |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         | ۔<br>پاساد     |                |          | 1.4    | 4             |       |
| 51         |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         | ی مار<br>اساده |                |          | 1.:    | •             |       |
| 68         |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         | ی جائے<br>ی خط |                |          | 1.     |               |       |
|            | • |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      | يت   | بتائ | بر یک | تاو    | دین    | وجو   | ما کی | حل   | ت:                | ب<br>ساوا، | يىر<br>نى مى | ں<br>تفر ف  | رر<br>ت | ِ<br>ائی قیم   | ر.<br>ابتد     |          | 1.     | _             |       |
| <b>-</b> 0 |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         |                |                |          |        |               | _     |
| 79         |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         | ، تفرق         |                | وم       | . جه د | נו            | 2     |
|            |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   | -          |              |             |         | یں خو          | •              |          | 2.     | 1             |       |
| 95         |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         |                |                |          | 2.     | 2             |       |
| 110        |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         |                |                |          | 2.     | 3             |       |
| 114        |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         |                |                |          | 2.     | 4             |       |
| 130        |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              | وات         | مسا     | كوشى           | يولر           |          | 2.     | 5             |       |
| 138        |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       | L     | ونسح | ؛ور               | تائی       | وريكأ        | تاو         | ۇرىي    | کی وج          | حل             |          | 2.     | 6             |       |
| 147        |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       | ت    | أوار              | ) مسر      | فر <b>ق</b>  | اده ته      | ی سا    | متجانس         | غير            |          | 2.     | 7             |       |
| 159        |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            | ٦            | رگر         | ناثر    | ن ار ت         | جبرة           |          | 2.     | 8             |       |
| 165        |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       | ىك     | ملی م  | ۶_    | يطه.  | كاج  | حل                | عال        | زار          | برق         |         | 2.8            | 3.1            |          |        |               |       |
| 169        |   |  |  |  |  |  |  |  |  |     |     |     |       |      |     |      |      |      |       |        |        |       |       |      |                   |            |              |             |         | ادوار          |                |          | 2.     | _             |       |
| 180        |   |  |  |  |  |  |  |  |  | ىل  | کاح | ت   | باوار | مــه | رقی | تف   | اده  | ) سر | نطح   | :<br>س | متجانه | نير • | سے غ  | تج   | ر<br><del>ا</del> | کے ط       | خ_           | <u>بر ل</u> | لوم     | ارمع           | مقد            | 2        | 2.1    | 0             |       |

iv

| نظى ساده تفر قى مساوات                                                                                         |                                                                           | 3 |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|
| متجانس خطی ساده تفرقی مسادات                                                                                   | 3.1                                                                       |   |
| مستقلّ عدد کی سروا کے متجانس خطی سادہ تفرقی مساوات                                                             | 3.2                                                                       |   |
| غير متجانس خطی ساده تفرقی مساوات                                                                               | 3.3                                                                       |   |
| غیر متجانس خطی سادہ تفر قی مساوات                                                                              | 3.4                                                                       |   |
|                                                                                                                |                                                                           |   |
|                                                                                                                | نظامِ تفرق                                                                | 4 |
| قالب اور سمتىيە كے بنیادی حقائق                                                                                |                                                                           |   |
| سادہ تفر تی مساوات کے نظام بطورانجینئر کی مسائل کے نمونے                                                       | 4.2                                                                       |   |
| نظرىيە نظام سادە تفرقى مساوات اور ورونسكى                                                                      | 4.3                                                                       |   |
| 4.3.1 نظی نظام                                                                                                 |                                                                           |   |
| ستقل عددی سروالے نظام۔ سطح مرحلہ کی ترکیب                                                                      |                                                                           |   |
| نقطہ فاصل کے جانچ کڑتال کامسلمہ معیار۔استحکام                                                                  |                                                                           |   |
| ي في تراكيب برائے غير خطي نظام                                                                                 |                                                                           |   |
| ع د میب ایک در جی مساوات میں تباد کہ                                                                           |                                                                           |   |
| ۱۰۰۲ مارون کو حتایت کا موقعات کی بازند                                                                         | 4.7                                                                       |   |
| نادو کرن عرف کے بیر ہو جی من کا من کا ہے۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔                                  | 1.,                                                                       |   |
| 2)1                                                                                                            |                                                                           |   |
| ں ہے سادہ تفر تی مساوات کاحل۔اعلٰی تفاعل                                                                       | طاقق تسلسا                                                                | 5 |
| ى كى مادى مادى مادى ئارى ئارى ئارى ئارى ئارى ئارى ئارى ئار                                                     |                                                                           | ٥ |
| رىي <b>ب ن</b> ى داردى                                                                                         |                                                                           |   |
| مبَسُوط طاقتى تسلىل ـ تركيب فَرومنيوس                                                                          | <i>5</i> 2                                                                |   |
| taran da antara da a | 5.3                                                                       |   |
| 5.3.1 علملى استعال                                                                                             | 5.3                                                                       |   |
| مسادات بىيىل اور بىيىل تفاعل                                                                                   | 5.4                                                                       |   |
| ساوات بىيل اور بىيل تفاعل                                                                                      | 5.4<br>5.5                                                                |   |
| مساوات بىيىل اور بىيىل نفاعل                                                                                   | 5.4<br>5.5<br>5.6                                                         |   |
| مساوات بيسل اور بيسل نفاعل                                                                                     | 5.4<br>5.5<br>5.6<br>5.7                                                  |   |
| مساوات بىيىل اور بىيىل نفاعل                                                                                   | 5.4<br>5.5<br>5.6<br>5.7                                                  |   |
| مساوات بيمبل اور بيمبل نفاعل                                                                                   | 5.4<br>5.5<br>5.6<br>5.7<br>5.8                                           | 6 |
| مساوات ببیل اور ببیل نفاعل                                                                                     | 5.4<br>5.5<br>5.6<br>5.7<br>5.8                                           | 6 |
| مساوات بيسل اور بيسل نفاعل                                                                                     | 5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>لا پلاس تاد<br>6.1                     | 6 |
| مساوات بيمبل اور بيمبل نفاعل                                                                                   | 5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>ال پياس تاباد<br>6.1<br>6.2            | 6 |
| مساوات بيسل اور بيسل نفاعل                                                                                     | 5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>ال پاس تا<br>6.1<br>6.2<br>6.3         | 6 |
| مساوات بيل اور بيل نفاعل                                                                                       | 5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>ال پاس جاد<br>6.1<br>6.2<br>6.3<br>6.4 | 6 |
| مساوات بيل اور بيل نفاعل                                                                                       | 5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>ال پاس جاد<br>6.1<br>6.2<br>6.3<br>6.4 | 6 |
| مساوات بيسل اور بيسل نفاعل                                                                                     | 5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6 | 6 |

عـــنوان V

| لایلاس بدل کے عمومی کلیے                                                                                       | 6.8      |    |
|----------------------------------------------------------------------------------------------------------------|----------|----|
| مرا: سمتيات                                                                                                    | خطىالجه  | 7  |
| برر.<br>غير سمتيات اور سمتيات                                                                                  | 7.1      | •  |
| سر سیال از اور سایال ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۶ میل | 7.2      |    |
| سمتيات كالمجموعه، غير سمتى كے ساتھ ضرب                                                                         | 7.3      |    |
| ي مناه و خطح تابعيت اور غير تابعيت                                                                             | 7.4      |    |
| ل صلاح کا بلیت و میر مابیت                                                                                     | 7.5      |    |
| الدروني شرب فضا                                                                                                | 7.6      |    |
| ستي ضرب                                                                                                        | 7.7      |    |
| ن رب                                                                                                           | 7.8      |    |
| غير سمق سه ضرب اورديگر متعدد ضرب                                                                               | 7.9      |    |
| ير ن شه سرب اورو ير مسرو سرب                                                                                   | 1.9      |    |
| برا: قالب، سمتىي، مقطع يه خطى نظام                                                                             | خطىالجبر | 8  |
| قالب اور سمتیات به مجموعه اور غیر سمق ضرب                                                                      | 8.1      |    |
| قالبی ضرب "                                                                                                    | 8.2      |    |
| 8.2.1 تېدىلىمى كى                                                                                              |          |    |
| خطی مساوات کے نظام۔ گاو تی اسقاط                                                                               | 8.3      |    |
| 8.3.1 صف زيند دار صورت                                                                                         |          |    |
| خطى غير تالعيت در حبه قالب ـ سمتي فضا                                                                          | 8.4      |    |
| خطی نظام کے حل: وجو دیت، کیتائی                                                                                | 8.5      |    |
|                                                                                                                | 8.6      |    |
| مقطع۔ قاعدہ کریم                                                                                               | 8.7      |    |
| معكوس قالب_گاوُس جار دُن اسقاط                                                                                 | 8.8      |    |
| سمتی فضا،اندرونی ضرب، خطی تبادله                                                                               | 8.9      |    |
|                                                                                                                |          |    |
| برا: امتيازي قدر مسائل قالب                                                                                    | خطىالجب  | 9  |
| بردانسیادی خدر مسائل قالب امتیازی اقدار اورامتیازی سمتیات کا حصول                                              | 9.1      |    |
| امتیازی مسائل کے چنداستعال 🐪 👢 🗓 👢 🗓 👢 🗓 دیں دیا ہے۔ دیا ہے جنداستعال 👚 دیا ہے 672                             | 9.2      |    |
| تشاكلي، منحرف تشاكلي اور قائمه الزاويه قالب                                                                    | 9.3      |    |
| امتیازی اساس، وتری بناناه دودرجی صورت                                                                          | 9.4      |    |
| مخلوط قالب اور خلوط صورتیں                                                                                     | 9.5      |    |
|                                                                                                                |          |    |
| ر قی علم الاحصاء ـ سمتی تفاعل 711                                                                              | سمتی تفر | 10 |
|                                                                                                                | 10.1     |    |
|                                                                                                                | 10.2     |    |
| منحتي                                                                                                          |          |    |
| · · · · · · · · · · · · · · · · · · ·                                                                          | 10.4     |    |
| •••••••••••••••••••••••••••••••••••••••                                                                        | 10.5     |    |
| ستتحار فآراوراسراط                                                                                             | 10.6     |    |

vi

| 745            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
|----------------|--|---|---|---|-------|---|---|---|---|---|-------|---|---|---|---|---|---|---|---|---|-----|------|--------|--------|--------|--------|--------|---------|---------------|----------------|---------------------|------|---|
| 751 .          |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   | ن   | لوال | ) ۋھ   | ن کم   | ميدا   | سمتی   | غير    | رق،     | متی تفا       | س              | 10.8                | 3    |   |
| 764            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   | يات | سمتب | كاك    | رار    | رتبادا | ماور   | بانظا  | نددې    | إدل م         | ت              | 10.9                | )    |   |
| 769            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        | بميلاو | کی کیج | بران    | متی مب        | <del>-</del> 1 | 0.10                | )    |   |
| 777 .          |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        | . (    | رو شر  | کی گر  | عل      | متى تفا       | ر<br>1         | 0.11                |      |   |
|                |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        | ,       |               |                | 6                   |      |   |
| 781            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                | سمتی تکم            |      | Ĺ |
| 782            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        | ل       | طی تکم        | <i>;</i>       | 11.1                |      |   |
| 782 .<br>787 . |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        | حل     | ل کا    | طی تکم        | <i>;</i>       | 11.2                | 2    |   |
| 796            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        | ىل      | وہرائکم       | ,              | 11.3                | ;    |   |
| 810            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      | لہ .   | ا تباد | میں    | أتكمل  | خطى    | ل کا    | وہر اکم       | ,              | 11.4                | ļ    |   |
| 820            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 825            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 837            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        | ل       | طحی تک        |                | 11.7                | 7    |   |
| 845            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 850            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      | . ر    | تتعا   | اورا   | تائج   | کے و   | يلاو.   | سُله کچ       | م              | 11.9                | )    |   |
| 861 .<br>866 . |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     | •    |        | ء ،    | ٠,     |        | ر      | نوتسر   | سكله سن       | 1 م            | 1.10                | )    |   |
|                |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 869            |  | • | • | • |       | • | • | • | • | • |       | • | • | • | • | • | • | • |   | • | •   |      |        | ٠      | ٠ (    | الكمل  | لتحطى  | آزاد    | اہسے          | 1را            | 1.12                | 2    |   |
| 883            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         | ,             | نلىر           | فوريئر <sup>ت</sup> | 12   | , |
| 884            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        | ىل     | , تىل  | و نياق | ، تکو  | فاعل    | •             |                | /                   |      | • |
| 889            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 902            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 907            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 916            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 923            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      | ول     | ا حصا  | بتكمل  | ابغير  | اسرک   | ردې     | رييزء         | فو             | 12.6                | )    |   |
| 931 .<br>936 . |  |   |   | • |       | • | • |   | • | • |       |   | • | • | • |   |   |   |   | • |     |      | ٠,     |        | •      |        | ں ر    | إنعاث   | بر کاار<br>په | ?              | 12.7                | ,    |   |
| 936            |  | ٠ | ٠ | • | <br>• | ٠ | ٠ | ٠ | • | • | <br>• | ٠ | • | ٠ | • | ٠ |   | • | • |   | علل | ب    | _ مكعر | ۔ کئی  | لتثيرا | نگونی  | لعبه   | ببذر    | قريب<br>خ     | υ              | 12.8                | 3    |   |
| 940            |  |   |   |   |       |   |   |   | • |   |       |   |   | • |   |   |   |   |   |   |     |      |        |        | •      |        |        | مل      | ريئر          | فو             | 12.9                | )    |   |
| 953            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        | ا. •• . | رمد اه        | نة ټ           | جزوی <sup>آ</sup>   | . 13 | 2 |
| 953 .          |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                | .رون<br>13.1        |      | , |
| 958            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 960            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 973            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 979            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     |      |        |        |        |        |        |         |               |                |                     |      |   |
| 987            |  |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |     | رت   | وحرا   | ر بها  | خ میر  | سلار   | آیکی   | الساف   | متنابح        | IJ             | 13.6                | )    |   |

vii

|     | 13.7                       | 1 نمونه کشی:ار تعاش پذیر جھلی۔ دوابعادی مساوات موج ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، | 993 .       | •  |
|-----|----------------------------|------------------------------------------------------------------------------------------|-------------|----|
|     |                            |                                                                                          |             |    |
|     | 13.9                       | 1    قطبی محدد میں لایلاس .   .   .   .   .   .   .   .   .   .                          | 006 .       | 1  |
|     |                            | 13 دائری جیلی۔ مساوات بیبل                                                               |             |    |
|     | 13.11                      | 13 مساوات لا پلاس- نظر بير مخفّى قوه                                                     | 018.        | 1  |
|     |                            | 13 کروی محدد میں مساوات لاپلاس۔مساوات لیزاندر ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،      |             |    |
|     | 13.13                      | 13 لا پلاس تبادل برائے جزوی تفرقی مساوات                                                 | 030 .       | 1  |
|     |                            | , re                                                                                     |             |    |
| 14  | مخلوط اعداد                | مداديه مخلوط تخليل نفاعل<br>                                                             | 1037        |    |
|     | 14.1                       | مداد سوط سان ها ن<br>1 مخلوطاعداد                                                        | 038 .       | 1  |
|     |                            |                                                                                          |             |    |
|     | 14.3                       | 1 مخلوط سطح میں منحنیات اور خطیے                                                         | 054 .       | 1  |
|     | 14.4                       | 1 - مخلوط تفاعل ـ حد ـ تفرق ـ شخلیلی تفاعل                                               | 059 .       | 1  |
|     |                            | 1 كوشي ريمان مساوات ـ                                                                    |             |    |
|     |                            | 1                                                                                        |             |    |
|     | 14.7                       | 1    قوت نمائی تفاعل                                                                     | 084 .       | 1  |
|     | 14.8                       | 1 تىكونىاتى اور بذلولى تفاعل                                                             | 089 .       | 1  |
|     | 14.9                       | 1 لوگار تقم به عمومی طاقت                                                                | 095 .       | 1  |
|     |                            | ٠ ک <del>ۀ</del>                                                                         |             |    |
| 15  |                            | راويه نقشه کشي<br>عرب                                                                    | 1103        |    |
|     |                            | 1 تشته گثی                                                                               | 104 .       | 1  |
|     |                            | 1 محافظ زاوییه نقش                                                                       |             |    |
|     |                            | 1 مخطی کسری تبادل                                                                        |             |    |
|     |                            | 1 مخصوص خطی کسری تبادل                                                                   |             |    |
|     |                            | 1 نقش زیردیگر تفاعل                                                                      |             |    |
|     | 15.6                       | 1 ريمان سطين                                                                             | 149 .       | 1  |
| 16  | مخلوط تكملاب               | (A                                                                                       | 1157        |    |
| 10  | 16.1                       | نات<br>1 مخلوط مستوی میں خطی تکمل                                                        | 157         | 1  |
|     |                            | ۔                                                                                        |             |    |
|     | 16.2                       | 1 کوشی کا کا موال                                                                        | 172         | 1  |
|     | 10.5                       | ا مون قامستگه شن                                                                         | 1/2.        | 1  |
|     | 10.4                       | ا من من ما ميت قاصلول بدر يعه غير من                 | 184.        | 1  |
|     | 16.5                       | 1 كوشى كاكلية تكمل                                                                       | 189 .       | 1  |
|     | 16.6                       | 1 تحلیلی نفاعل کے تفرق                                                                   | 194 .       | 1  |
| 17  | ر<br>ترتیباور <sup>ن</sup> | . تبا                                                                                    | 1201        |    |
| 1 / |                            | اور سن<br>1 ترتیب                                                                        |             |    |
|     | 17.1                       | 1 رئيب<br>1 شكل                                                                          | 201.        | 1. |
|     | 17.2                       | ا کس                                                                                     | ∠∪8.<br>213 | 1. |
|     | 1 /)                       | ا   و العول م وربت رائے رسیادر   رن                                                      | 41.7.       | 1  |

viii

| 1220 | یک سرحقیق زتیب لیبنشرآ زماکش برائے حقیق تسلسل                                                                          | 17.4                 |     |
|------|------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
| 1225 | تسلسل کی مر کوزیت اورا نفراج کی آزمائشیں                                                                               | 17.5                 |     |
| 1236 | شلسل پراعمال                                                                                                           | 17.6                 |     |
|      |                                                                                                                        |                      |     |
| 1243 | لمسل، ٹیلیر شکسل اور اوغوں تسلسل                                                                                       | طاقتی <sup>نشا</sup> | 18  |
| 1243 | طاقتى شكسل                                                                                                             | 18.1                 |     |
| 1256 | کن، پیر سن اور تو تول سن<br>طاقتی شکسل                                                                                 | 18.2                 |     |
| 1263 | ئىر شلىل                                                                                                               | 18.3                 |     |
| 1268 | بنیادی تفاعل کے ٹیکر نسکسل                                                                                             | 18.4                 |     |
| 1274 | طاقتی شلسل حاصل کرنے کے عملی تراکیب                                                                                    | 18.5                 |     |
|      | يكسال استمرار                                                                                                          |                      |     |
|      | لوغون شكيل                                                                                                             |                      |     |
| 1303 | لامتنائی پر تحلیل پذیری۔ صفراور ندرت                                                                                   | 18.8                 |     |
|      |                                                                                                                        |                      |     |
| 1317 | ريعه تركيب بقيه                                                                                                        |                      | 19  |
|      |                                                                                                                        |                      |     |
|      | متلد بقیبر                                                                                                             |                      |     |
|      | حقیقی تکمل بذریعه مسئله بقیه                                                                                           |                      |     |
| 1337 | حقیقی تکمل کے دیگراقسام                                                                                                | 19.4                 |     |
|      |                                                                                                                        | عن                   |     |
| 1345 | لميل تفاعل اور نظريه مخفی قوه<br>                                                                                      |                      | 20  |
|      | ئے ساکن برقی سکون                                                                                                      |                      |     |
|      | ز دوبعدی بهاوسیال                                                                                                      |                      |     |
|      | ز ہار مونی تفاعل کے عمومی خواص                                                                                         |                      |     |
| 1366 | ئے پوسول کلیہ تکمل                                                                                                     | 20.4                 |     |
| 1373 | <del>,</del>                                                                                                           | اعداد ی              | 21  |
|      | ا هزریبه<br>از خلل اور غلطهال-کمپیوٹر                                                                                  | اعدادی<br>1 1 2      | Z I |
|      | ن اور مصلیات پیونر                                                                                                     |                      |     |
|      | ر ورر کے ساوت کا من                                                                |                      |     |
|      | ر به می تحریف                                                                                                          |                      |     |
|      |                                                                                                                        |                      |     |
| 1410 | اُ اعدادی تکمل اور تفرق                                                                                                | 21.6                 |     |
|      | ا مقارب اتباع                                                                                                          |                      |     |
|      | •                                                                                                                      |                      |     |
| 1435 | براکے اعداد ی تراکیب                                                                                                   | خطىالجب              | 22  |
| 1435 | برائے اعداد میں مرابیب<br>'' خطی مساوات کا نظام۔ گاو سی اسقاط، معکوس قالب میں مساوات کا نظام۔ گاو سی اسقاط، معکوس قالب | 22.1                 |     |
|      | · خطی میاوات کا نظام <sup>- حی</sup> ل بذریعه اعاد ه                                                                   |                      |     |

| 1453.  | 22.3 تخطى مساوات كانظام : ببدخو كن                            |           |
|--------|---------------------------------------------------------------|-----------|
|        | 22.4 تركيب كمتر مر لع                                         |           |
| 1463.  | 22.5 قالب کے امتیازی اقدار کی شمول                            |           |
| 1472 . | 22.6 امتيازى اقدار كا حصول بذريعه اعاده                       |           |
|        | " .*                                                          |           |
| 1477   | اعدادی تراکیب برائے تفرقی مساوات<br>و درور سرور میں تاریخ     | 23        |
|        | 23.1 کیک در جی تفرقی مساوات کے اعدادی تراکیب                  |           |
|        | 23.2 وودر جي تفرقي مساوات کے اعدادي تراکيب                    |           |
|        | 23.3 اعدادی تراکیب برائے بیضوی جزوی تفرقی مساوات              |           |
| 1498   | 23.3.1 مئله ڈرشلے                                             |           |
| 1500   |                                                               |           |
|        | 23.44                                                         |           |
| 1515.  | 23.5 اعدادی تراکیب برائے قطع مکافی مساوات                     |           |
| 1524 . | 23.6 اعدادی تراکیب برائے قطع زائد مساوات                      |           |
| 1529   | احتال اور شاريات                                              | 24        |
|        | المهان اور شاریات<br>24.1 حسابی شاریات کی نوعیت اوراس کا مقصد | <b>24</b> |
| 1529.  | 24.1 سباب عربیات مل و میصا و ادار آن ه منعمد                  |           |
|        | 24.2 نونه فاسپار بدر جید میدون اور ریم می میدون اور میداد کرد |           |
|        | د.24.5 سمون اوسطاور سوی شیریت                                 |           |
|        | 24.4 بلا سوبه جربات انجام، و توعات                            |           |
| 1562   | 24.5 النهال                                                   |           |
| 1502.  | 24.0 عرب ببعات اور میر مرب ببعات                              |           |
|        |                                                               |           |
|        | 24.8 تقتیم کالوسطاوران کی تغیریت                              |           |
|        | 24.9 شاكى، پو كن، اور ميش مهندى تقسيم                         |           |
| 1592 . | 24.10 عموی تقسیم                                              |           |
|        |                                                               |           |
| 1597   | اضافی شبرت                                                    | 1         |
| 1.601  | مفير معلوبات                                                  |           |
| 1601   | مفیر متعلومات<br>1۔ اعلی تفاعل کے مساوات                      | ب         |
| 1001.  | 1.ب الملى نفاش کے مساوات                                      |           |
| 1611   | <i>جدو</i> ل                                                  | •         |
| 1011   | ٠,٠٠٠                                                         | -         |

# میری پہلی کتاب کادیباچہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلیٰ تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلٰی تعلیم کا نظام انگریزی زبان میں رائج ہے۔دنیا میں تحقیقی کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لا تعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کرتے ہیں۔

مارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بوں بیہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کہ اسکول کی سطح پر نصاب میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں کھی اس کتاب اور انگریزی میں اسی مضمون پر کھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیرُ نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں برقی انجنیرُ نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی سر زد ہوئی ہیں البتہ انہیں درست کرنے میں بہت اوگوں کا ہاتھ ہے۔میں ان سب کا شکریہ اداکرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے پر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکرید ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

28 اكتوبر 2011

## باب24

## احتمال اور شاريات

بڑے پیانے پر مصنوعات کی پیداوار اور تجرباتی مواد کے تجزید کے لئے حسابی شاریات بہت اہم ہے۔ اس باب کی شروع میں مواد کا جدول اور ترسیم سے اظہار پر غور کیا جائے گا۔چونکہ شاریات کی بنیاد حسابی احمال ہے للذا اس کے بعد حسابی احمال کے بنیادی تصورات اور اصولوں پر غور کیا جائے گا۔ باب کا باقی حصہ شاریات کے اہم ترین تراکیب پر مشمل ہے۔

#### 24.1 حسانی شاریات کی نوعیت اوراس کا مقصد

انجینئری شاریات میں ہمیں ایسے تجربات کی بناوٹ اور تشخیص سے غرض ہو گا جو عملی مسائل کے بارے میں معلومات فراہم کر سکے، مثلاً، خام مال یا تیار کردہ مصنوعات کے معیار کی جانج پڑتال، مشین اور آلات یا مصنوعات کی تیاری میں استعال تراکیب کا آپس میں موازنہ، مزدور کی پیداوار، صارفین کا نئی مصنوعات کے لئے رد عمل، مختلف حالات میں کیمیائی عمل سے حاصل پیداوار، خام لوہا کی کثافت اور اس میں لوہے کی مقدار کا تعلق، مختلف درجہ حرارت پر ایئر کنڈشنر نظام کی کارکردگی، فولاد میں کاربن کی مقدار اور فولاد کی داک ویل آسختی کا تعلق، وغیرہ وغیرہ۔

مثال کے طور پر، بڑے پیانے پر (پیچ، بلب، موبائل فون وغیرہ کی) پیداوار کے عمل میں عموماً بیے عیب2 اجزاء، جو درکار خواص کے معیار پر یورا نہیں اترتے ہیں، درکار خواص کے معیار پر یورا نہیں اترتے ہیں،

 $m Rockwell^1$   $m nondefective^2$   $m defective^3$ 

پائے جائیں گے۔ درکار خواص میں وھراکا قطر، بلب کی کم سے کم عوصہ زندگھی4، برقیاتی مصنوعات میں استعال برقی مزاحمت کی قیمت کے حدود، کتاب میں استعال کاغذکی موٹائی، خود کار بھری گئی بوتل میں مشروب کی کم سے کم مقدار، برقی سونچ کا زیادہ سے زیادہ دورانیہ ردعمل، اور کیڑے کی کم سے کم مضبوطی شامل ہیں۔

مصنوعات کی معیار میں فرق متعدد وجوہات (مثلاً خام مال ، خود کار مشین کی کارکردگی، کاریگر کی کاریگری) کی بنا ممکن ہے جن کو قبل از وقت جاننا ممکن نہیں ہے لہذا انہیں ہے تو تیب تبدیلیاں <sup>5</sup> تصور کیا جات ہے۔پیداوار کے تراکیب کی کارکردگی اور متذکرہ بالا دیگر مثالوں میں مجمی صورت حال ایسا ہی ہو گا۔

ہر ایک پیدا کردہ رکن کو پر کھنے کے لئے عموماً بہت وقت درکار ہو گا اور ایبا کرنا خاصہ مہنگا ہو گا۔اگر پر کھنے کے دوران رکن ضائع ہوتا ہو تب ہر رکن کو پر کھنا ممکن نہیں ہو گا۔ائی لئے تمام ارکان کو پر کھنے کی بجائے چند ارکان کو بطور نمونہ کو پر کھا جاتا ہے اور اس نمونہ کے نتائج سے کل تعداد (آبادی 7) کے بارے میں رائے بنائی جاتی ہے۔ اگر 10000 بیچوں کی کھیپ سے 100 بیچوں کے نمونہ کو پر کھا جائے اور اس میں 5 بیچوں کی کھیپ سے 100 بیچوں کے نمونہ کو پر کھا جائے اور اس میں 5 بیچ عیب دار نکلیں تب ہم کہہ سکتے ہیں کہ اس کھیپ میں % 5 بیچ عیب دار ہوں گے، پس اتنا ضروری ہے کہ نمونہ کو بلا منصوبہ 8 چنا جائے یعنی کھیپ میں موجود ہر تیچ کا بطور نمونہ منتخب ہونے کا امکان 9 ایک جیسا ہو۔ ظاہر ہے کہ الی رائے مکمل طور پر درست نہیں ہو گا لیکن عام طور پر درست نہیں ہو گا لیکن عام طور پر اتنا زیادہ اتنا کی درست رائے (یا نتیجہ) کی ضرورت پیش نہیں آئے گی۔جینے زیادہ ارکان کو پر کھا جائے ہمیں نتائج پر اتنا زیادہ اعتباد ہوتا ہے۔ حسابی احتمال کا نظریہ ان خیالات کو ٹھوس شکل دیتا ہے اور نتائج پر کتنا اعتباد کیا جائے، اس کی ناپ بھی پیش کرتا ہے۔ حسابی احتمال کا نظریہ ان خیالات کو ٹھوس شکل دیتا ہے اور نتائج پر کتنا اعتباد کیا جائے، اس کی ناپ بھی پیش کرتا ہے۔ یوں شاریات کی بنیاد نظریہ احتمال ہے۔

اسی طرح خام لوہا میں لوہے کی فی صد مقدار  $\mu$  جاننے کی خاطر نہم بلا منصوبہ n تعداد کے نمونے لیتے ہوئے ان میں لوہے کی فی صد مقدار تجرباتی خان خام لوہا میں دریافت کریں گے۔ ان  $x_1, \dots, x_n$  کی خین ہوگی۔ اوسط  $\bar{x} = \frac{x_1 + \dots + x_n}{n}$  لوسط  $\bar{x} = \frac{x_1 + \dots + x_n}{n}$ 

مختلف نوعیت کے مسائل کے لئے مختلف تراکیب اور تکنیک درکار ہوں گے البتہ مسلے کی تشکیل سے حل تک کے قدم عوماً ایک جیسے ہوتے ہیں۔

 $\begin{array}{c} {\rm lifetime^4} \\ {\rm random~variation^5} \\ {\rm sample^6} \end{array}$ 

population<sup>7</sup> at random<sup>8</sup>

t random° chance<sup>9</sup>

- مسئلے کی تشکیل۔ مسئلے کو ٹھیک ٹھیک بیان کرنا اور تفتیشی عمل کے حدود تعین کرنا ضروری ہے تا کہ شاریاتی تفتیش کی لاگت، تفتیش کار کی مہارت اور دستیاب سہولیات کو مد نظر رکھتے ہوئے مخصوص وقت میں قابل استعال نتائج حاصل ہوں۔اس قدم میں واضح تصورات سے حسابی نموند 10 کی تخلیق 11 بھی شامل ہے۔ (مثال کے طور پر ہم نے تعین کرنا ہو گا کہ عیب دار رکن سے کیا مراد ہے۔)
- تجربه کی تخلیق۔ آخری مرطے میں استعال ہونے والی شاریاتی ترکیب کا انتخاب، نمونہ کی جمامت (جتنے ارکان کا تجربه یا ان پر تجربه کیا جائے گا، وغیرہ) اور طبعی تراکیب اور سکنیک جو بروئے کار لائے جائیں گے کا انتخاب اس قدم میں کیا جائے گا۔ کم سے کم وقت اور لاگت کے ساتھ زیادہ سے زیادہ معلومات حاصل کرنا مقصد ہے۔
  - تجربه یا مواد جمع کرنے کا عمل۔ اس قدم میں قواعد پر سختی سے عمل کرنا ضروری ہے۔
- جدول بندی۔ اس قدم میں تجرباتی نتائج کو واضح اور سادہ جدول کی شکل میں لکھا جاتا ہے اور ساتھ ہی انہیں ترسیم کیا جا سکتا ہے۔ اس قدم میں نمونہ کی اوسط اور قیتوں میں پھیل کے تخمین کا حساب بھی کیا جاتا ہے۔
- شاریاتی رائے زنی۔ اس قدم میں کوئی مخصوص شاریاتی ترکیب کو نمونہ سے حاصل نتائج پر لا گو کرتے ہوئے نامعلوم خواص کے بارے میں رائے قائم کی جاتی ہے تاکہ ہم مطلوبہ جواب حاصل کر سکیں۔

#### 24.2 نمونه كااظهار بذريعه جدول اورترسيم

شاریاتی تجربہ کے دوران عموماً مشاہدوں (زیادہ تر صورتوں میں اعداد) کا سلسلہ حاصل ہوتا ہے جنہیں ہم اسی ترتیب سے لکھتے ہیں جس میں انہیں حاصل کیا گیا ہو۔ایک مثال جدول 24.1 میں دی گئی ہے۔ سینٹ اور بجری (کنگریٹ) سے لکھتے ہیں جس بیلن (قطر 15.24 cm) اور لمبائی 30.48 cm ) بنا کر 28 دن 13 بعد انہیں چیرا گیا۔یوں ہمیں ایک نمونہ حاصل ہوا جو 100 نمونہ اعداد پر مشتمل ہے۔یوں نمونہ کی جسامت<sup>14</sup> 100 سے۔

mathematical model<sup>10</sup>

الفظ "نمونه" اور لفظ" صابی نمونه "علیحده معنی رکھتے ہیں۔ای لئے صابی نمونه کو بطوراصطلاح لیتے ہوئے پورا کھاجائے گایعنی "صابی نمونه"۔ د. .

bar graph<sup>12</sup>

<sup>13</sup> سینٹ کو مکمل مضبوط ہونے کے لئے اتنے دن در کار ہوتے ہیں۔

 $<sup>\</sup>rm size^{14}$ 

#### $(N \, cm^{-2})$ جدول $(24.1)^{1/2}$ کنگریٹ بیلن چرنے کے لئے در کار فی مربع سنٹی میٹر قوت

| 320 | 380 | 340 | 410 | 380 | 340 | 360 | 350 | 320 | 370 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 350 | 340 | 350 | 360 | 370 | 350 | 380 | 370 | 300 | 420 |
| 370 | 390 | 390 | 440 | 330 | 390 | 330 | 360 | 400 | 370 |
| 320 | 350 | 360 | 340 | 340 | 350 | 350 | 390 | 380 | 340 |
| 400 | 360 | 350 | 390 | 400 | 350 | 360 | 340 | 370 | 420 |
| 420 | 400 | 350 | 370 | 330 | 320 | 390 | 380 | 400 | 370 |
| 390 | 330 | 360 | 380 | 350 | 330 | 360 | 300 | 360 | 360 |
| 360 | 390 | 350 | 370 | 370 | 350 | 390 | 370 | 370 | 340 |
| 370 | 400 | 360 | 350 | 380 | 380 | 360 | 340 | 330 | 370 |
| 340 | 360 | 390 | 400 | 370 | 410 | 360 | 400 | 340 | 360 |

اس جھے میں ہم نمونہ کو جدول اور ترسیم کی صورت میں ظاہر کرنا سیکھتے ہیں۔ہم ان تراکیب کو جدول 24.1 کی مدد سے سیکھتے ہیں۔

جدول 24.1 میں دی گئی معلومات جانے کی خاطر ہم مواد کو ترتیب دیتے ہیں۔ ہم (کم سے کم قیمت) 310 ، 330 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ، 310 ،

<sup>19</sup> تعدد کا مجموعہ لیتے ہوئے مجموعہ تعدد اور x اور اللہ ہوتی ہے جس کو پانچویں قطار میں درج کیا جاتا ہے۔ مثال کے طور پر 350 x کا مطابقی مجموعی تعدد 37 ہے جس کے تحت 350 اور اس سے کم قیمتوں کی تعداد 37 ہے۔اس کو جسامت x سے تقسیم کرنے 37 ہے۔

tally mark<sup>15</sup>

absolute frequency<sup>16</sup>

frequency<sup>17</sup>

relative frequency<sup>18</sup>

cumulative frequency<sup>19</sup>

جدول 24.2: جدول تقتيم برائے جدول 24.1 کانمونہ

| 1      | 2                    | 3           | 4          | 5           | 6                 |
|--------|----------------------|-------------|------------|-------------|-------------------|
| مضبوطي | تمی تعدد<br>نشان شار | <i>&gt;</i> | اضافی تعدد | مجموعی تعدد | مجموعی اضافی تعدد |
| 300    |                      | 2           | 0.02       | 2           | 0.02              |
| 310    |                      | 0           | 0.00       | 2           | 0.02              |
| 320    |                      | 4           | 0.04       | 6           | 0.06              |
| 330    |                      | 6           | 0.06       | 12          | 0.12              |
| 340    | '                    | 11          | 0.11       | 23          | 0.23              |
| 350    |                      | 14          | 0.14       | 37          | 0.37              |
| 360    |                      | 16          | 0.16       | 53          | 0.53              |
| 370    |                      | 15          | 0.15       | 68          | 0.68              |
| 380    |                      | 8           | 0.08       | 76          | 0.76              |
| 390    |                      | 10          | 0.10       | 86          | 0.86              |
| 400    |                      | 8           | 0.08       | 94          | 0.94              |
| 410    |                      | 2           | 0.02       | 96          | 0.96              |
| 420    |                      | 3           | 0.03       | 99          | 0.99              |
| 430    |                      | 0           | 0.00       | 99          | 0.99              |
| 440    |                      | 1           | 0.01       | 100         | 1.00              |

سے چھٹی قطار میں درج مجموعی اضافی تعدد<sup>20</sup> حاصل ہوتی ہے۔مثال کے طور پر چھٹی قطار سے ہم دکھتے ہیں کہ نمونہ میں %76 قیمتیں 380 کے برابر یا اس سے کم ہیں۔

اگر نمونه میں کوئی قیت نه پائی جاتی ہو تب اس قیت کی تعدد 0 ہوگی۔اگر نمونه میں تمام قیمتیں ایک جیسی ہوں تب اس قیمت کی تعدد کی دو انتہائی قیمتیں ہیں للذا درج ذیل حاصل ہوتا ہے۔

مسکلہ 24.1: (اضافی تعدد) اضافی تعدد کی کم سے کم قیمت 0 اور زیادہ سے زیادہ قیمت 1 ہے۔

 $x_1, x_2, \cdots, x_m$  فرض کریں کہ جسامت n کنونہ میں درج ذیل m مختلف قیمتیں پائی جاتی ہیں  $x_1, x_2, \cdots, x_m$ 

جن کے مطابقتی اضافی تعدد

 $\tilde{f}_1, \tilde{f}_2, \cdots, \tilde{f}_m$ 

ہیں۔تب ہم درج ذیل تفاعل <sup>21</sup> متعارف کر سکتے ہیں

(24.1) 
$$\tilde{f}(x) = \begin{cases} \tilde{f}_j & \text{so } x = x_j & \text{for } j = 1, 2, \dots, m \\ 0 & \text{soliton} \end{cases}$$

جس کو نمونہ کا تعددی تفاعل<sup>22</sup> کہتے ہیں۔ یہ نمونہ میں قیمتوں کی تقسیم (پھیل) دیتا ہے۔ اس لئے ہم کہتے ہیں کہ یہ تفاعل نمونہ کی تعددی تقسیم <sup>23</sup> دیتا ہے۔

 $ilde{f}(300) = 0.02$  مثال کے طور پر جدول 24.2 میں تعددی تفاعل کی قیمتیں قطار 4 میں دکھائی گئی ہیں جہاں  $ilde{f}(320) = 0.04$  ،  $ilde{f}(310) = 0$  ،

جسامت الم کے نمونہ میں تمام تعدد کا مجموعہ اللہ کے برابر ہو گا۔ (کیول؟) اس سے درج ذیل اخذ ہوتا ہے۔

cumulative relative frequency<sup>20</sup>

<sup>21</sup> بم تم استعال کرتے ہیں چونکہ ل کو تعددی تفاعل کے لئے استعال کیا جائے گا جس کا استعال کثرت سے ہوگا۔

frequency function of the sample  $^{22}$ 

frequency distribution<sup>23</sup>



مئلہ 24.2: اضافی تعدد کا مجموعہ کسی بھی نمونہ میں تمام اضافی تعدد کا مجموعہ 1 کے برابر ہو گا، یعنی:

$$\sum_{j=1}^{m} \tilde{f}(x_j) = \tilde{f}(x_1) + \tilde{f}(x_2) + \dots + \tilde{f}(x_m) = 1$$

نمونہ کا توسیمی اظہار شکل 24.1-الف تا شکل 24.1-ت میں دکھایا گیا ہے۔شکل 24.1-پ میں ہر مستطیل کا رقبہ مطابقی اضافی تعدد کے برابر ہو گا لہذا عمودی محدد پر اضافی تعدد فی اکائی رقبہ ہو گا۔چونکہ شکل 24.1-پ میں تمام



24.2 اور مجمو عن تعددی نفاعل  $ilde{f}(x)$  اور مجمو عن تعددی نفاعل  $ilde{f}(x)$  برائے جدول  $ilde{f}(x)$ 

مستطیل کی چوڑائی ایک جیسی ہے لہذا عمودی محدد پر قیمتیں  $\tilde{f}(x)$  کے راست متناسب ہوں گی۔ البتہ مستطیل کو چوڑائیاں مختلف ہونے کی صورت میں ایسا نہیں ہو گا۔ شکل 24.1-ت میں بھی یہی صورت حال ہو گی۔

ہم اب درج ذیل تفاعل متعارف کرتے ہیں

 $\tilde{F}(x) = 2$  اور x اور x متمام قیمتوں کے اضافی تعدد کا مجموعہ x

جس کو نمونے کا مجموعی تعددی تفاعل  $^{24}$  یا مختراً تقسیمی تفاعل نمونہ  $^{25}$  کہتے ہیں۔ شکل 24.2 میں مثال دی گئے ہے۔

 $\tilde{f}(x)$  سیڑھی تفاعل (کُلڑوں میں مستقل تفاعل) ہے جس میں ٹھیک ان x پر جہاں  $0 \neq 0$  ہو  $\tilde{f}(x)$  سیڑھی تفاعل (کُلڑوں میں مستقل تفاعل) ہے جس کی ٹیت اور آخری چھلانگ نمونہ کی زیادہ سے زیادہ قیت پر بائی جائے گی۔ آخری چھلانگ کے بعد  $\tilde{f}(x) = 1$  رہے گا۔

cumulative frequency function of the sample  $^{24}$  sample distribution function  $^{25}$ 

| میں) | ت(نيوڻن | <u> لئے در کار قو</u> | و توڑنے کے | ن دھاگے ک | پاس کے سوفی | :24.3ر | جدول |  |
|------|---------|-----------------------|------------|-----------|-------------|--------|------|--|
| 18   | 86      | 107                   | 87         | 94        | 82          | 81     | 98   |  |

| 114 | 118 | 86  | 107 | 87  | 94 | 82  | 81  | 98  | 84  |
|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|
| 120 | 126 | 98  | 89  | 114 | 83 | 94  | 106 | 96  | 111 |
| 123 | 110 | 83  | 118 | 83  | 96 | 96  | 74  | 91  | 81  |
| 102 | 107 | 103 | 80  | 109 | 71 | 96  | 91  | 86  | 129 |
| 130 | 104 | 86  | 121 | 96  | 96 | 127 | 94  | 102 | 87  |

اور  $\tilde{F}(x)$  کا تعلق درج ذیل ہے  $\tilde{f}(x)$ 

(24.2) 
$$\tilde{F}(x) = \sum_{t \le x} \tilde{f}(t)$$

جہاں  $x \leq x$  کا مطلب ہے کہ کسی بھی x کے لئے ان تمام f(x) کا مجموعہ لیا جائے گا جن کے لئے کہ کی قیمت  $x \leq x$  کا مطلب ہے کہ ہو۔

ا گر کسی نمونہ میں مختلف اعداد کی تعداد بہت زیادہ ہو تب اس کا جدولی اور ترسیمی اظہار غیر ضروری طور پر مشکل ہو گا جس کو گیروہ بندی<sup>26</sup> سے آسان بنانا ممکن ہے۔آئیں گروہ بندی کے عمل کو سمجھیں۔

دیے گئے نمونہ کے لحاظ سے ہم ایبا وقفہ I منتخب کرتے ہیں جس میں تمام نمونی قیمتیں شامل ہوں۔ہم I کو کروں میں تقسیم کرتے ہیں جنہیں جماعتی وقفہ I کہتے ہیں۔ان جماعتی وقفوں کے وسطی نقطوں کو جماعتی وسطی نقطے I کھی نشان I کہتے ہیں۔ہر جماعتی وقفہ میں پائے جانے والے نمونی قیمتیں کو طبقہ I کہتے ہیں۔ طبقہ میں نقطے I میں نمونی قیمتوں کی تعداد کو جماعتی تعدد I کہتے ہیں جس کو جسامت نمونہ I سے تقسیم کرنے سے اضافی جماعتی تعدد I کو جو جماعتی نشان کے تابع ہے گروہ بند نمونہ کا تعددی تفاعل I ہیں۔ اس طرح مجموعی اضافی جماعتی تعدد I جو جماعتی نشان کے تابع ہے گروہ بند نمونہ کا تقسیمی تفاعل I کہاتا ہے۔ جدول I کہ اور جدول I کہ میں مثال دیا گیا ہے۔

grouping<sup>26</sup>

class intervals<sup>27</sup>

class midpoints<sup>28</sup>

class marks<sup>29</sup>

 $<sup>{\</sup>rm class}^{30}$ 

 $<sup>{\</sup>rm class}\ {\rm frequency}^{31}$ 

relative class frequency<sup>32</sup>

frequency function of the grouped sample<sup>33</sup>

distribution!function of the grouped sample<sup>34</sup>

| جماعتی وقفه | جماعتی نشان $x$ | نی تعدد<br>نشان شار | <i>&gt;</i> | $\tilde{f}(x)$ | $\tilde{F}(x)$ |
|-------------|-----------------|---------------------|-------------|----------------|----------------|
| 65 - 75     | 70              |                     | 2           | 0.04           | 0.04           |
| 75 - 85     | 80              |                     | 8           | 0.16           | 0.20           |
| 85 - 95     | 90              |                     | 11          | 0.22           | 0.42           |
| 95 - 105    | 100             |                     | 12          | 0.24           | 0.66           |
| 105 - 115   | 110             |                     | 8           | 0.16           | 0.82           |
| 115 - 125   | 120             |                     | 5           | 0.10           | 0.92           |
| 125 - 135   | 130             |                     | 4           | 0.08           | 1.00           |
|             |                 | مجموعه              | 50          | 1.00           |                |

جدول 24.4: تعددي جدول برائے جدول 24.3 (گروہ ہند)

جماعتوں کی تعداد جتنی کم رکھی جائے، گروہ بند نمونہ کی تقسیم اتنی سادہ ہو گی اور اتنی ہی زیادہ معلومات کھوئی جائے گی چونکہ اصل نمونی قیمتیں اب صریحاً نظر نہیں آئیں گی۔ گروہ بندی کرتے وقت دھیان رکھیں کہ صرف غیر ضروری معلومات کھوئی جائے۔ گروہ بند نمونہ استعال کرتے ہوئے مشکلات سے بچنے کی خاطر درج ذیل اصولوں کا خیال رکھیں۔

- جماعتی وقفے برابر رکھیں۔
- جماعتی نشان یوں منتخب کریں کہ جماعتی نشان سادہ اعداد (جن میں غیر صفر ہندسوں کی تعداد کم سے کم ہو) پر واقع ہوں۔
- $x_j$  اگر نمونی قیت  $x_j$  دو جماعتوں کی سرحد پر واقع ہو تب یہ قیت اس طبقہ میں شامل کیا جائے گا جو  $x_j$  ہے شروع ہوتا ہو۔

#### سوالات

سوال 24.1 تا سوال 24.9 میں دیے گئے نمونہ کا تعددی جدول بنائیں اور نمونہ کو تعددی نقطہ ترسیم، ڈبہ ترسیم اور مستطیل ترسیم کی صورت میں دکھائیں۔ سوال 24.1: مزاحمت کی قیمت اوہم Ω میں۔

99 100 102 101 98 103 100 102 99 101 100 100 99 101 100 102 99 101 98 100

سوال 24.2:

6 2 4 1 2 4 3 3 2 1 6 5 6 3 4

سوال 24.3: برقی سون کا سینڈوں میں دورانیہ ردعمل

1.3 1.4 1.1 1.5 1.4 1.3 1.2 1.4 1.5 1.3 1.2 1.3 1.5 1.4 1.4 1.6 1.3 1.5 1.1 1.4

سوال 24.4: خام كوئله مين كوئله كي في صد مقدار

87 86 85 87 86 87 86 81 77 85 86 84 83 83 82 84 83 79 82 73

سوال 24.5: چادری فولاد کی تنشی مضبوطی [kg mm<sup>-2</sup>]

44 43 41 41 44 44 43 44 42 45 43 43 44 45 46 42 45 41 44 44 43 44 46 41 43 45 45 42 44 44

سوال 24.6: خود کار نظام سے 100 کاغذ کے گھٹے بنانے میں کی بیشی 0 - 1 + 0 = 0 کاغذ کے گھٹے بنانے میں کی بیشی

سوال 24.7: ایک ہی قسم کے گاڑیوں کا تیل کا خرچہ۔ [کلومیٹر فی لیٹر]
12 11.5 11 12.5 11 12

سوال 24.8: خود کار نظام سے بھری گئی تھیلوں کا گرام میں وزن 200 201 198 198 201 200 201

سوال 24.9: اندرون شہر چلتی ریل گاڑی کا اڈے پر ٹھیک وقت پر چینچنے سے انحراف (منٹوں میں)<sup>35</sup>

سوال 24.10: سوال 24.3 کے نمونہ کی مجموعی تعددی تفاعل کا ترسیم کھیپنیں۔

سوال 24.11: جدول 24.4 کے گروہ بند نمونہ کا ڈبہ ترسیم، مستطیل ترسیم اور تعددی کثیر الاضلاع ترسیم کھپنیں۔

سوال 24.12: جدول 24.1 میں جماعتی و قفوں کے جماعتی نشان 300 ، 320 ، 340 ، ۰۰۰ پر لیتے ہوئے مطابقتی تعددی جدول بنائیں۔اس کے مستطیل ترسیم تھینچ کا شکل 24.1 پ کے ساتھ موازنہ کریں۔

سوال 24.13: جدول 24.3 میں جماعتی نشان 75 ، 85 ، 95 ، ... کے کر مطابقتی تعددی جدول بنائیں۔اس کے مستطیل ترسیم کا سوال 24.10 کے ترسیم سے موازنہ کریں۔

سوال 24.14: تجرباتی نتائج میں سب سے کم ناپ 10.8 cm اور سب سے زیادہ ناپ 11.9 cm تھی۔اس مواد کی گروہ بندی لے لئے جماعتی وقفہ تجویز کریں۔

<sup>35</sup>مید کی جاسکتی ہے کہ ایک دن ہمار ی ریل گاڑیاں بھی وقت کی اتنی یابند ہوں گی۔

### 24.3 نمونی اوسطاور نمونی تغیریت

تعددی تفاعل (یا تقسیمی تفاعل) نمونہ کی صحیح تصویر کشی کرتا ہے۔اس تفاعل سے ہم نمونہ کے کئی خواص کا حساب لگا سکتے ہیں مثلاً نمونی قیتوں کی اوسط جسامت، پھیل، تفاکل، وغیرہ۔ اس حصہ میں ہم ایسے اہم ترین دو قیتوں، نمونی اوسط اور نمونی تغیریت، پر غور کریں گے۔

نمونہ  $x_1, x_2, \cdots, x_n$  کی اوسط قیمت یا مختصراً نمونی اوسط $\overline{x}$  سے ظاہر کیا جاتا ہے جس کی تعریف درج زیل کلیہ دیتی ہے۔

(24.3) 
$$\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

تمام نمونی قیمتوں کے مجموعہ کو جسامت n سے تقسیم کرتے ہوئے نمونی اوسط حاصل ہو گا۔ظاہر ہے کہ یہ نمونی قیمتوں کی اوسط جسامت دے گا۔

نمونہ  $x_1, x_2, \cdots, x_n$  کی نمونی تغیریت $x_1, x_2, \cdots, x_n$  کیا جاتا ہے جس کی تعریف درج ذیل کلیہ دیتی ہے۔

(24.4) 
$$s^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (x_{j} - \bar{x})^{2}$$
$$= \frac{1}{n-1} [(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}]$$

نمونی اوسط  $\bar{x}$  سے نمونی قیتوں کے انحراف کے مربعوں کو n-1 سے تقسیم کرتے ہوئے نمونی تغیریت عاصل ہو گا۔ یہ نمونی قیتوں کی انحراف یا پھیل کی ناپ ہے۔ نمونی تغیریت غیر منفی عدد ہو گا۔ نمونی تغیریت  $^{8}$  کا مثبت جذر معیاری انحراف  $^{8}$  کہلاتا ہے جس کو  $^{8}$  سے ظاہر کیا جاتا ہے۔

مثال 24.1: نمونی اوسط اور نمونی تغیریت بے ترتیب منتخب کیے گئے کیلوں کی (سنٹی میٹروں میں) لمبائیاں درج ذیل ہیں۔

 $0.80 \quad 0.81 \quad 0.81 \quad 0.82 \quad 0.81 \quad 0.82 \quad 0.80 \quad 0.82 \quad 0.81 \quad 0.81$ 

sample mean<sup>36</sup> sample variance<sup>37</sup>

standard deviation<sup>38</sup>

مساوات 24.3 سے نمونی اوسط

 $\bar{x} = \frac{1}{10}(0.80 + 0.81 + 0.81 + 0.82 + \dots + 0.81) = 0.811 \,\text{cm}$ 

اور مساوات 24.4 سے نمونی تغیریت

 $s^2 = \frac{1}{9}[(0.80 - 0.811)^2 + \dots + (0.81 - 0.811)^2] = 0.000054 \,\text{cm}^2$ 

ہے۔ایک جیسی نمونی قیتوں کو اکھا لکھنے سے حساب نسبتاً آسان بنایا جا سکتا ہے جیسے

 $\bar{x} = \frac{1}{10}(2 \cdot 0.80 + 5 \cdot 0.81 + 3 \cdot 0.82) = 0.811 \,\mathrm{cm}$ 

جہاں قوسین میں تین مختلف نمونی قیتوں  $x_3=0.80$  ،  $x_1=0.81$  ،  $x_1=0.80$  کو ان کی تعدد سے خرب ویا گیا ہے۔اس طرح

 $s^2 = \frac{1}{9}[(2(0.800 - 0.811)^2 + 5(0.810 - 0.811)^2 + 3(0.820 - 0.811)^2] = 0.000054$ 

ار گا\_

اس مثال میں ہم نے  $\bar{x}$  اور  $\bar{s}^2$  کو نمونہ کے تعددی تفاعل  $\bar{f}(x)$  کی مدد سے حاصل کرنا دیکھا۔اگر ایک نمونہ میں ٹھیک m میں ٹھیک m مختلف اعدادی قیمتیں

 $x_1, x_2, \cdots, x_m$ 

پائی جاتی ہوں جن کے مطابقتی اضافی تعدد

 $\tilde{f}(x_1), \tilde{f}(x_2), \cdots, \tilde{f}(x_m)$ 

ہوں تب حساب کے لئے در کار تعدد درج ذیل ہوں گے

 $n\tilde{f}(x_1), n\tilde{f}(x_2), \cdots, n\tilde{f}(x_m)$ 

جنہیں استعال کرتے ہوئے مساوات 24.3 اور مساوات 24.4 سے

(24.5)  $\bar{x} = \frac{1}{n} \sum_{i=1}^{m} x_i n \tilde{f}(x_i)$ 

اور

(24.6) 
$$s^{2} = \frac{1}{n-1} \sum_{j=1}^{m} (x_{j} - \bar{x})^{2} n \tilde{f}(x_{j})$$

حاصل ہو گا۔ دھیان رہے کہ مساوات 24.3 اور مساوات 24.4 میں ہم تمام نمونی قیتوں پر مجموعہ لیتے ہیں جبکہ مساوات 24.5 اور مساوات 24.6 میں ہم اعدادی طور مختلف نمونی قیتوں پر مجموعہ حاصل کرتے ہیں۔ حتی تعدد  $n \tilde{r}(x_i)$  عدد صحیح ہوں گے جبکہ اضافی تعدد  $n \tilde{r}(x_i)$  عموماً غیر عدد صحیح ہوں گے۔

چونکہ  $x_j - \bar{x}$  کی حتمی قیمت نمونی اوسط کی نسبت بہت کم ہو سکتی ہے لہذا  $s^2$  کے مذکورہ بالا کلیات کی استعال ہے (خود کار حساب میں) ملحوظ ہندسے ضائع ہوں گے۔ہم  $s^2$  کا ایک ایسا کلیہ اخذ کرتے ہیں جو ان مشکلات سے دو چار نہ ہو۔ہم مساوات 24.4 میں

$$(x_j - \bar{x})^2 = x_j^2 - 2x_j\bar{x} + \bar{x}^2$$

پر کرتے ہوئے تین مجموعے

$$\sum (x_j - \bar{x})^2 = \sum x_j^2 - 2\bar{x} \sum x_j + \sum \bar{x}^2$$

 $\bar{x}=24.3$  حاصل کرتے ہیں جہاں آخری مجموعہ  $n\bar{x}^2$  کے برابر ہے۔ مساوات  $\bar{x}=24.3$  کی قیمت پر کرتے ہوئے

$$-2\bar{x}\sum x_j = -\frac{2}{n}(\sum x_j)^2$$
 let  $n\bar{x}^2 = \frac{1}{n}(\sum x_j)^2$ 

لکھا جا سکتا ہے جنہیں استعال کرتے ہوئے

(24.7) 
$$s^{2} = \frac{1}{n-1} \left[ \sum_{j=1}^{n} x_{j}^{2} - \frac{1}{n} \left( \sum_{j=1}^{n} x_{j} \right)^{2} \right]$$

حاصل ہو گا۔ اس طرح مساوات 24.6 کو تبدیل کرتے ہوئے

(24.8) 
$$s^{2} = \frac{1}{n-1} \left[ \sum_{j=1}^{m} x_{j}^{2} n \tilde{f}(x_{j}) - \frac{1}{n} \left( \sum_{j=1}^{m} x_{j} n \tilde{f}(x_{j}) \right)^{2} \right]$$

حاصل کیا جا سکتا ہے۔

 $\bar{x}=\bar{x}=0$  مثال کے طور پر مثال 24.1 میں مساوات 24.5 اور مساوات 24.8 (جدول 24.5) سے پہلے کی طرح  $\frac{8.11}{10}=0.811$ 

$$s^2 = \frac{1}{9} \left( 6.5777 - \frac{8.11^2}{10} \right) = \frac{0.00049}{9} = 0.000054$$

حاصل ہوتے ہیں۔

| نغیریت کا حساب برائے مثال 24.1 | جدول 24.5:اوسطاور آ |
|--------------------------------|---------------------|
|--------------------------------|---------------------|

| $x_j$ | $10\tilde{f}(x_j)$ | $x_j \cdot 10\tilde{f}(x_j)$ | $x_j^2$ | $x_j^2 \cdot 10\tilde{f}(x_j)$ |
|-------|--------------------|------------------------------|---------|--------------------------------|
| 0.80  | 2                  | 1.60                         | 0.6400  | 1.2800                         |
| 0.81  | 5                  | 4.05                         | 0.6561  | 3.2805                         |
| 0.82  | 3                  | 2.46                         | 0.6724  | 2.0172                         |

سوالات

سوال 24.15: گزشته حصے کی سوال 24.2 کے لئے نمونی اوسط اور نمونی تغیریت علاش کریں۔  $\bar{x}=3.47,\ s^2=2.98$ 

سوال 24.16: گزشته حصے کی سوال 24.4 کے لئے نمونی اوسط اور نمونی تغیر بہت تلاش کریں۔  $\bar{x}=84,\ s^2=\frac{1251}{95}$  .

سوال 24.17: نمونه 2,1,4,5 کا مستطیل ترسیم کیپنیں۔ترسیم کو دیکھ کر  $\bar{x}$  اور s کی قیمتوں کا اندازہ لگائیں۔  $s^2$  ،  $\bar{x}$  ، اور s کی قیمتوں کا حباب لگائیں۔  $\bar{x}=3,\ s^2=3.3,\ s=1.817$ 

سوال 24.18: وکھائیں کہ کم سے کم اور زیادہ سے زیادہ نمونی قیمتوں کے 🕏 🛪 ہو گا۔

سوال 24.19: نمونه كا

نمونہ میں سب سے بڑی قیمت اور سب سے جھوٹی قیمت کے فرق کو نمونہ کا <sup>39</sup> کہتے ہیں۔مثال 24.1 میں دیے گئے نمونہ کا تلاش کریں۔ جواب: 0.02

سوال 24.20: صدویه، وسطانیه

> ${\rm range^{39}}$ percentile<sup>40</sup>

 ${
m median}^{41}$ 

کو نصف چو تھائی $^{42}$  بھی کہتے ہیں۔جدول 24.2 کے نمونہ کا وسطانیہ  $\widetilde{x}$  تلاش کریں۔ جواب: 360

سوال 24.21: نمونه کی  $Q_{25}$  اور  $Q_{75}$  صدوبیہ کو بالترتیب نچلی چو تھائی  $^{44}$  اور بالائی چو تھائی  $^{44}$  کہتے ہیں۔ جدول 24.2 کے نمونہ کا کی  $Q_{75}$  ،  $Q_{25}$  جکبہ  $Q_{75}-Q_{25}$  علی خونہ کا کی ناپ ہے کو چو تھائی  $^{45}$  کہتے ہیں۔ جدول 24.2 کے نمونہ کا کی  $Q_{75}-Q_{25}$  اور  $Q_{75}-Q_{25}$  علی  $Q_{75}-Q_{25}$  جواب  $Q_{75}-Q_{25}$  علی  $Q_{75}-Q_{25}-Q_{25}$  علی  $Q_{75}-Q_{25}-Q_{25}$  علی  $Q_{75}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}-Q_{25}$ 

سوال 24.22: جدول 24.3 کے لئے سوال 24.21 کو حل کریں۔ جواب:  $\frac{345}{4}$ ,  $\frac{439}{4}$ ,  $\frac{47}{2}$ 

سوال 24.23: عاده

نمونہ میں سب سے زیادہ بار آنے والی قیمت کو نمونہ کی عادہ<sup>46</sup> کہتے ہیں۔ یہ سب سے عام قدر ہوتی ہے۔ درج ذیل نمونہ کی اوسط، وسطانیہ اور عادہ تلاش کریں۔ ان پر تبصرہ کریں۔

جواب: 100 = 3ده 1000 = 9 وسطانيه 1000 = 10

سوال 24.24: مبدا كام

اگر  $x_j=x_j^*+c$  اور  $j=1,\cdots,n$  ہو جہاں  $x_j=x_j^*+c$ 

$$ar{x} = c + ar{x}^*, \quad \left( ar{x}^* = \frac{1}{n} \sum_{j=1}^n x_j^* \right)$$
 Jet  $s^2 = s^{*2}$ 

ہوں گے جہاں  $x_j^*$  قیمتوں کی تغیریت  $s^{*2}$  ہے۔ $(s^{*2})$  ہوں کے جہاں متخب کیا جاتا ہے کہ  $s^{*2}$  کی حتمی قیمتیں چھوٹی ہوں۔جیومیٹریائی طور پر یہ مبدا کی تبدیلی کے مترادف ہے للذا اس کو ترکیب مبدا کام  $s^{*4}$  کہتے ہیں۔)

سوال 24.25: ترکیب مبدا کام کو مثال 24.1 کے نمونہ پر لا گو کریں۔

middle quartile<sup>42</sup>

lower quartile<sup>43</sup>

upper quartile<sup>44</sup>

interquartile range<sup>45</sup>

 $mode^{46}$ 

method of working origin<sup>47</sup>

سوال 24.26: مكمل رمز نويسي

 $c_1$  اور  $c_2$  مستقل ہیں تب و کھائیں کہ  $j=1,\cdots,n$  ہو جہال  $ar{x}=c_1ar{x}^*+c_2$  ہو جہال  $ar{x}=c_1ar{x}^*+c_2$  ہو جہال میں تب د کھائیں کہ

 $^{48}$ ہوں گے جہاں  $^{**}$  اور  $^{**}$  کی معنی سوال 24.24 میں پیش کی گئی ہیں۔اس کو ترکیب مکمل رمز نویسی  $^{48}$  کہتے ہیں۔(اس ترکیب سے قلم و کاغذ استعال کرتے ہوئے نتائج کی جلد جانچ پڑتال کی جا سکتی ہے۔)

سوال 24.27: اس تركيب كو مثال 24.1 كے نمونہ پر لا گو كريں۔

سوال 24.28: کسی بھی نمونہ کی گروہ بندی سے عموماً نمونی اوسط متاثر ہو گا۔ دکھائیں کہ نمونی اوسط میں تبدیل  $\frac{1}{2}$  سے زیادہ نہیں ہو سکتی ہے جہال ہر ایک جماعتی وقفہ کی لمبائی 1 ہے۔

سوال 24.29: جدول 24.3 کی غیر گروہ بند نمونہ کی گروہ بندی جدول 24.4 میں کی گئی ہے۔دونوں مواد کی اوسط اور تغیریت تلاش کریں۔نتائج کا آپس میں موازنہ کریں۔

جواب:  $\bar{x}=99.2,\ s^2=234.7$ ; گروہ بند :  $\bar{x}=99.4,\ s^2=254.7$ 

### 24.4 بلامنصوبه تجربات، انجام، وقوعات

شاریاتی تجربات یا شاریاتی مشاہدے سے ہمیں نمونے حاصل ہوں گے جن کی مدد سے ہم متعلقہ آبادی کے بارے میں نتائج افذ کرنا چاہیں گے۔ایسا کرنے سے پہلے حسابی اختال کی مدد سے ہمیں آبادی کے حسابی نمونے بنانے ہوں گے۔یہ نظریہ حسابی شاریات کی بنیاد ہے جس کی گہرائی میں ہم اپنی ضرورت کے مطابق جائیں گے۔اس حصہ میں کی بنیادی تصورات کو متعارف کیا جائے گا۔

ایک بلا منصوبہ تجربہ یا بلا منصوبہ مشاہدہ، جنہیں ہم مخضراً تجربہ 49 یا مشاہدہ 50 کہیں گے، سے مراد وہ عمل ہے جو درج ذمل خواص رکھتا ہو۔

> method of full coding<sup>48</sup> experiment<sup>49</sup>

observation<sup>50</sup>

- اس کو طے شدہ قواعد کے تحت سرانجام دیا جاتا ہے جو عمل کو مکمل طور پر بیان کرتے ہیں۔
  - اس عمل کو جتنی بار چاہیں دوبارہ انجام دیا جا سکتا ہے۔
- ہر مرتبہ عمل کا نتیجہ اتفاق پر منحصر ہو گا (یعنی نتیجہ ان اثرات پر منحصر ہے جنہیں ہم قابو نہیں کر سکتے ہیں) لہذا قبل از وقت یکنا طور پر نتیجہ جاننا ممکن نہیں ہو گا۔

ایک مرتبہ تجربے کے عمل سے حاصل نتیجہ کو اس کوشش  $^{51}$  کا انجام  $^{52}$  کہتے ہیں۔

اس کی مثال (کرکٹ کی کھیل کی آغاز میں) سکہ پھیکنا، لوڈو <sup>53</sup> کی کھیل میں پانسہ <sup>54</sup> پھیکنا، 100 پیچ کی ڈبی سے 10 پیچوں کا انتخاب یا مختلف حالات میں کیمیائی عمل کی پیداوار تعین کرنا اور دیگر تجربات مثلاً بلا منصوبہ 20 افراد کا انتخاب اور ان کا فشار خون <sup>55</sup> تعین کرنا یا کسی موضوع پر ان کی رائے جانتا ہیں۔

کسی تجربہ کے تمام مکنہ انجام کے سلسلہ کو اس تجربہ کی نمونی فضا<sup>56</sup> کہتے ہیں جس کو S سے ظاہر کیا جائے گا۔ ہر ایک انجام کو S کا رکن <sup>57</sup> یا نقطہ <sup>58</sup> کہتے ہیں۔ متناہی تعداد کے ارکان پر مشتمل سلسلہ متناہی جبکہ لامتناہی کہلائے گا۔ کے ارکان پر مشتمل سلسلہ لامتناہی کہلائے گا۔

مثال کے طور پر پانسہ بھینکنے کے بلا منصوبہ تجربہ کے ساتھ درج ذیل نمونی سلسلہ منسلک کیا جا سکتا ہے،

 $S = \{1, 2, 3, 4, 5, 6\}$ 

چونکہ یانسہ بھینکنے کے بعد (چھ ممکنات میں سے) کسی ایک رخ رکے گا۔

D دو ارکان S دو ارکان S دو ایک رکن نکال کر دیکھ سکتے ہیں کہ آیا وہ بے عیب یا عیب دار ہے۔ یوں S دو ارکان S دو ارکان S دو ارکان S دو دار) اور S دارکان S د

trial<sup>51</sup> outcome<sup>52</sup>

 $ludo^{53}$ 

<sup>&</sup>lt;sup>54</sup>ایک مکعب جس کی چھ سطحوں پرایک تاچھ نقطے ہوتے ہیں۔ ءء

blood pressure<sup>55</sup> sample space<sup>56</sup>

element<sup>57</sup>

point<sup>58</sup>

ظاہر کیا جا سکتا ہے۔اب اگر ہم ایک سے زیادہ اقسام کے عیب میں تمیز کریں تب نمونی فضا دو سے زائد نقطوں پر مشتمل ہو گا۔

کیاس کی مضبوطی کے تجربہ (جدول 24.3) میں نمونی فضا لا متناہی ہو گا چونکہ دھاگہ توڑنے کے لئے درکار قوت کسی مخصوص میں کوئی بھی مثبت قیت ہو کتی ہے۔

عملی مسائل میں ہمیں انفرادی انجام سے زیادہ دلچینی نہیں ہو گی بلکہ ہم صرف اتنا جانا چاہیں گے کہ آیا اس کا کسی مخصوص سلسلہ انجام سے تعلق ہے (یا نہیں ہے)۔ ظاہر ہے کہ ایبا ہر سلسلہ A پوری نمونی فضا S کا ذیلی سلسلہ ہو گا۔اس کو وقوعہ 59 کہتے ہیں۔

چونکہ کوئی بھی انجام S کا ذیلی سلسلہ ہو گا لہذا ہے ایک مخصوص قشم کا وقوعہ ہو گا جس کو بنیادی وقوعہ کہتے ہیں۔اسی طرح یوری فضا S بھی ایک مخصوص وقوعہ ہے۔

مثال 24.2: پانی کے نکوں (جنہیں ایک تا پانچ سے ظاہر کیا جاتا ہے) میں سے دو نککے منتخب کیے جاتے ہیں۔ نمونی فضا درج ذیل دس مکنہ انجام پر مشتمل ہو گی۔

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

اب اگر ہم عیب دار نلکوں میں دلچین رکھتے ہوں تب ہمیں درج ذیل تین انجاموں میں فرق کرنا ہو گا۔

A: -(1, 2, 3) دونوں عیب دار ہیں C: -(1, 2, 3) دونوں عیب دار ہیں ہے ۔ (1, 2, 3) عیب دار ہیں تب درج ذیل ہو گا۔

نمونی فضا S اور تجربہ کے انجام کو وین اشکال  $^{60}$  سے ظاہر کیا جا سکتا ہے۔ فرض کریں کہ شکل 24.3 میں چکور کے اندر نقطوں کا سلسلہ S کو ظاہر کرتے ہے۔ تب مستطیل کے اندر بند منحنی کا اندرون کسی و قوعہ کو ظاہر کرنے گا جس کو ہم E سے ظاہر کرتے ہیں۔ ان تمام ارکان (انجاموں) کا سلسلہ جو E میں شامل نہیں ہیں کو E میں گا جس کو ہم کہتے ہیں جس کو E سے ظاہر کیا گیا ہے۔

event<sup>59</sup>

Venn diagram<sup>60</sup>

<sup>61</sup> تے خاہر کیاجاتاہے جس کوہم استعال نہیں کریں گے چونکہ اس کو کسی دوسرے مقصد (بندش سلسلہ) کے لئے مختص کیا گیاہے۔



 $E^{C}$  اورو توعات E اورو توعات  $E^{C}$  و کھائے گئے ہیں E

مثال کے طور پر یانسہ تھینکنے کے تجربہ میں

جب جفت عدد حاصل ہو E:

کا متمم

 $E^C$ :  $= e^{-1}$ 

ہو گا۔اییا وقوعہ جس میں کوئی انجام نہ پایا جاتا ہو کو خالی وقوعہ<sup>62</sup> یا نا ممکن وقوعہ<sup>63 کہتے</sup> ہیں جس کو  $\varnothing$  سے ظاہر کیا جاتا ہے۔

فرض کریں کہ کسی تجربہ میں A اور B کوئی دو وقوعات ہیں۔ تب وہ وقوعہ جو S میں ان تمام ارکان پر مشتمل ہو جو A یا B یا دونوں میں پائے جاتے ہوں کو A اور B کا اشتراک  $^{64}$  کہلاتا ہے جس کو درج ذیل سے ظاہر کیا جاتا ہے۔

#### A + + B

وہ و قوعہ جو S میں ان تمام ارکان پر مشتمل ہو جو A اور B دونوں میں پائے جاتے ہوں کو A اور B اور B کا تقاطع A کہلاتا ہے جس کو درج ذیل سے ظاہر کیا جاتا ہے۔ شکل A 24.4 میں اشتر اک اور تقاطع کو وین شکل پر دکھایا گیا ہے۔ A

 $A \cap B$ 

B اور B میں کوئی و توعہ مشترک نہ ہو تب B=0 ہو گا اور ہم کہیں گے کہ A اور B اور جم بیں۔ بیے ربط و قوع $^{66}$  یا باہمی بلا شرکت و قوعہ $^{67}$  ہیں۔

empty event<sup>62</sup>

impossible event<sup>63</sup>

 $union^{64}$ 

 $intersection^{65}$ 

disjoint events<sup>66</sup>

mutually exclusive events<sup>67</sup>





 $A \cup B$  (الف)اشتراك (

 $B \cdot A$  اور (گهری سیابی میں)ان کی اشتر اک اور نقاطع کی وین شکل  $B \cdot A$ 



شكل 24.5: وين شكل برائے مثال 24.3

مثال کے طور پر مثال 24.2 میں  $P = B \cap C = \emptyset$  ہیں۔  $P = B \cup C$  ایک یا دو عیب دار نلکیاں ہیں۔

مثال 24.3: پانسہ کھینکنے کے ایک تجربہ میں درج ذیل و قوعہ

4 سے حیموٹا عدد نہ ہو: A

 $B: \mathcal{B}$  عدد ہو 3

اگر و قوعہ A کے تمام ارکان و قوعہ B میں پائے جاتے ہوں تب A کو B کا ذیلی و قوعہ  $^{68}$  کہتے ہیں جس کو درج ذیل کھا جاتا ہے۔

 $A \subset B \quad \iota \quad B \supset A$ 

ظاہر ہے کہ  $A\subset B$  کی صورت میں اگر B واقع پذیر ہو تب لازماً A بھی وقوع پذیر ہو گا۔ مثال کے طور پر وقوعہ  $D=\{4,6\}$  پر وقوعہ  $D=\{4,6\}$  کا ذیلی وقوعہ ہے۔

 ${
m subevent}^{68}$ 

فرض کریں کہ نمونی فضا S میں کئی وقوعات  $A_1, \cdots, A_m$  ہیں۔ تب ان m وقوعات میں سے ایک میں یا ایک سے زیادہ میں پائے جانے والے تمام ارکان پر مشتمل وقوعہ ان m وقوعات کا اشتراک ہو گا جس کو

$$\bigcup_{j=1}^m A_j$$
 أي  $A_1 \cup A_2 \cup \cdots \cup A_m$ 

کھا جاتا ہے۔ان تمام وقوعات میں پائے جانے والے ارکان پر مشتمل وقوعہ میں  $A_1,\cdots,A_m$  کا نقاطع ہو گا جس کو

$$\bigcap_{j=1}^m A_j$$
  $\bigcap_{j=1}^m A_j$   $A_1 \cap A_2 \cap \cdots \cap A_m$ 

لکھا جاتا ہے۔

زیادہ عمومی طور پر فرض کریں کہ S میں لامتنائی ارکان  $A_1, \dots, A_m, \dots$  یائے جاتے ہیں۔تب اشتراک

$$\bigcup_{j=1}^{\infty} A_j$$
 أَي  $A_1 \cup A_2 \cup \cdots$ 

ان تمام ارکان پر مشتمل و قوعہ ہو گا جو کم سے کم کسی ایک مذکورہ بالا و قوعہ میں پائے جاتے ہوں۔اسی طرح تقاطع

$$\bigcap_{j=1}^{\infty} A_j \quad \text{fixed } \qquad A_1 \cap A_2 \cap \cdots$$

ان تمام ارکان پر مشتل و قوعه ہو گا جو مذکورہ بالا تمام و قوعہ میں پائے جاتے ہوں۔

اگر و قوعات  $A_1,\cdots,A_m,\cdots$  یوں ہوں کہ ان میں سے کسی ایک کا واقع ہونے سے باقی کسی و قوعہ کا واقع ہونے سے باقی کسی و قوعات یا ہونا نا ممکن ہو تب کسی مجلی  $A_j\cap A_k=\varnothing$  کے لئے  $A_j\cap A_k=\varnothing$  ہونگا اور ایسی و قوعات کو بسے ربط و قوعات یا باہمی بلا شرکت و قوعات کہا جاتا ہے۔

مثال کے طور پر مثال 24.2 میں A, B, C بے ربط و قوعات ہیں۔

فرض کریں کہ ہم بے منصوبہ تجربہ n مرتبہ کرتے ہوئے n قیمتوں پر مشتمل نمونہ حاصل کرتے ہیں۔فرض کریں کہ ان n کوششوں میں وقوعہ A اور وقوعہ B کے اضافی تعدد بالترتیب f(B) اور f(B) ہیں۔تب وقوعہ  $B \cup B$  کی اضافی تعدد

(24.9) 
$$\tilde{f}(A \cup B) = \tilde{f}(A) + \tilde{f}(B) - \tilde{f}(A \cap B)$$

ور کار اگر A اور B با جمی بلا شرکت ہوں تب  $\tilde{f}(A\cap B)=0$  اور  $\tilde{f}(A\cup B)=\tilde{f}(A)+\tilde{f}(B)$  (24.10)

ہو گا۔ یہ کلیات شکل 24.4 میں دکھائے گئے وین شکل سے صاف ظاہر ہیں۔ ان کا با ضابطہ ثبوت آپ سے سوال 24.34 میں مانگا گیا ہے۔

سوالات

سوال 24.30: روسکے چھیکنے کے نمونی فضا کا ترسیم کھیجیں۔

سوال 24.31: پانسہ کی جوڑی ایک مرتبہ تھینگی جاتی ہے۔اس تجربہ کا نمونی فضا بنائیں جس میں تمام ارکان ہوں۔اس شکل پر درج ذیل و قوعات کی نشاندہی کریں۔ (الف) دونوں کیساں عدد ہیں۔ (ب) دونوں اعداد کا مجموعہ 7 سے زیادہ ہے۔ (پ) دونوں اعداد کا مجموعہ 5 ہے۔

سوال 24.32: تین بر قیاتی پرزوں کا عرصہ زندگی کا نمونی فضا تلاش کریں۔ جواب: غیر منفی اعداد کے تمام مرتب تین اعداد کا فضا۔

سوال 24.33: ایک تجربہ میں چادر میں سوراخ کر کے سوراخ کا قطر ناپا جاتا ہے۔سوراخ کا قطر 2.9 cm اور 3.1 cm کے جے۔ ع کا متم تلاش کریں۔

سوال 24.34: مساوات 24.9 کو ثابت کریں۔

جواب:  $A \cup B$  صرف اور صرف اس صورت ہو گا جب  $A \cap B$  یا  $A \cap B^C$  یا  $A \cap B$  ہو۔ یہ تینوں  $\tilde{f}(A) = \frac{n_1 + n_2}{n}$  ہو۔ تب بین بیل شرکت ہیں۔ فرض کریں کہ نمونہ میں متعلقہ حتمی تعدد 1 ہوں 1 ہوں 1 ہوں گے۔ ان سے مساوات 1 ہوں گے۔ ان سے مساوات 1 ہوں عاصل ہوتا ہے۔ 1 ہوں عاصل ہوتا ہے۔ 1 ہوں عاصل ہوتا ہے۔

سوال 24.35: ایک ڈبیا میں 20 قلم ہیں جن میں سے 10 قلم بے عیب ہیں۔ 8 قلموں میں عیب A نوالا 20. قلموں میں عیب B اور B قلموں میں دونوں عیب پائے جاتے ہیں۔ فرض کریں کہ بلا منصوبہ ایک قلم نکالا جاتا ہے۔ متعلقہ نمونی فضا B کی وین شکل بنائیں جس میں A قسم کے عیب کا وقوعہ B اور B قسم کے جاتا ہے۔ متعلقہ نمونی فضا B کی وین شکل بنائیں جس میں A

24.5 احتال.

 $E_A \cup E_B$  ،  $E_A^C \cap E_B^C$  ،  $E_A^C \cap E_B$  ،  $E_A \cap E_B^C$  ،  $E_A \cap E_B$  ، خريد وقوم على انجام كى تعداد بتائيل  $E_A \cup E_B^C$  ،  $E_A^C \cup E_B^C$  ،  $E_A^C$ 

سوال 24.36: وین شکل کی مدد سے درج ذیل قواعد کو پر کھیں۔

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 

 $(A \cup B)^C = A^C \cap B^C$  قوانين ڏي مارگن وين اشکال بناتے ہوئے درج ذیل ڏي مارگن قوانين 69 کی تصدیق کریں۔  $(A \cup B)^C = A^C \cap B^C$   $(A \cap B)^C = A^C \cup B^C$ 

سوال 24.38: متم کی تعریف سے درج ذیل اخذ کریں جہاں نمونی فضا S کا A کوئی ذیلی سلسلہ ہے۔  $(A^C)^C = A$ ,  $S^C = \varnothing$ ,  $\varnothing^C = S$ ,  $A \cup A^C = S$ ,  $A \cap A^C = \varnothing$ 

سوال 24.39: وین شکل استعال کرتے ہوئے دکھائیں کہ  $B \subset B$  صرف اور صرف تب ہو گا جب  $A \subset B$  مورت میں شرط تلاش کریں۔  $A \cap B$  کے لئے  $A \cap B$  کے کے لئے وادر میں شرط تلاش کریں۔

#### 24.5 احتال

تجربہ سے ثابت ہوتا ہے کہ عموماً بلا منصوبہ تجربات کی اضافی تعدد میں شاریاتی کیسانیت پائی جاتی ہے۔ یعنی ایسے تجربہ کے مختلف کمبی تسلسل میں کسی و قوعہ کے مطابقتی اضافی تعدد تقریباً ایک جیسے ہوں گے۔ اس کی مثالیں جدول 24.6 اور شکل 24.6 میں دکھائی گئی ہیں۔ (سکہ بھینکئے سے شیر یا خط حاصل ہوتا ہے۔) شکل 24.6 میں یوں معلوم ہوتا ہے کہ جیسے جیسے لڑکوں کی قداد بڑھتی ہے ویسے ویسے لڑکوں کی فی صد میں اتر چڑھاہ کم ہوتی جاتی ہے۔ عیب دار اشاء کا فی صد بھی ایسا ہی رویہ رکھتا ہے اور اس طرح کے دیگر مثال بھی دیے جا سکتے ہیں۔

De Morgan's laws<sup>69</sup>

| جدول24.6: سکہ پھینکنے کے نتائج |
|--------------------------------|
|--------------------------------|

| تجربہ کرنے والا | جتنی مرتبه سکه پھینکا گیا | جتنی مرتبه شیر حاصل ہوا | شیر کی اضافی تعدد |
|-----------------|---------------------------|-------------------------|-------------------|
| امجد            | 4040                      | 2048                    | 0.5069            |
| مشرف            | 12 000                    | 6019                    | 0.5016            |
| مشرف            | 24 000                    | 12 012                  | 0.5005            |



شكل 24.6: وقوعه "لڑكے كى پيدائش"

چونکہ عموماً بلا منصوبہ تجربہ میں شاریاتی کیسانیت پائی جاتی ہے ہم دعوکا کرتے ہیں کہ ایسے تجربہ میں وقوعہ P(E) کے ایسا عدد P(E) پایا جاتا ہے کہ تجربہ بہت زیادہ مرتبہ سرانجام دینے سے E کا اضافی تعدد تخییناً E کا محتمی خاصیت ہوگا۔ ہم E کو بلا منصوبہ تجربہ میں E کا احتمال E کہ ہیں۔ دھیان رہے کہ یہ عدد E کی حتمی خاصیت نہیں ہے بلکہ کسی نمونی فضا E یعنی کسی بلا منصوبہ تجربہ سے متعلق ہے۔

جب ہم کہتے ہیں کہ E کا اختمال P(E) ہے، اس سے ہمارا مطلب یہ ہے کہ اگر اس تجربہ کو بہت زیادہ مرتبہ سرانجام دیا جائے تب اضافی تعدد f(E) عملی طور پر لازماً P(E) کے تخییناً برابر ہو گا۔ (یہاں "تخییناً برابر" کو ہم نے "شحیک برابر" بنانا ہو گا۔ اس کے لئے ہمیں انتظار کرنا ہو گا۔)

متعارف کردہ اخمال یوں تجربی اضافی تعدد سے وابستہ ہے۔اس طرح ضروری ہے کہ یہ اضافی تعدد کی چند بنیادی خواص رکھتا ہو۔یہ خواص مسئلہ 24.1، مسئلہ 24.2 اور مساوات 24.10 سے اخذ کیے جا سکتے ہیں جنہیں حسابی احتمال کیے مسلمات کہتے ہیں۔

### حسابی احتمال کے مسلمات

 ${\rm probability}^{70}$ 

24.5. احتال

(الف) اگر نمونی فضا 
$$S$$
 میں  $E$  میں  $E$  میں  $S$  ایک و توجہ ہو تب درج ذیل ہو گا۔ 
$$0 \leq P(E) \leq 1$$

• (ب) تمام نمونی فضا کے لئے درج ذیل ہو گا۔

$$(24.12) P(S) = 1$$

• (پ) اگر A اور B باہمی بلا شرکت و قوعات (حصہ 24.4) ہوں تب درج ذیل ہو گا۔

(24.13) 
$$P(A \cup B) = P(A) + P(B)$$
 U with  $P(A \cup B) = P(A) + P(B)$  U with  $P(A \cup B) = P(A) + P(B)$ 

و (پ\*) اگر  $E_2$  ،  $E_1$  برای بلا شرکت و قوعات ہوں تب درج ذیل ہو گا۔ • (24.13\*)  $P(E_1 \cup E_2 \cup \cdots) = P(E_1) + P(E_2) + \cdots$ 

مسلمہ -پ سے الكراجى ماخوذ كے ذريعه درج ذيل حاصل ہوتا ہے۔

مسکہ 24.3: (قاعدہ جمع برائے باہمی بلا شرکت وقوعات) اگر  $E_m$   $\cdots$   $E_1$  گا۔

(24.14)  $P(E_1 \cup E_2 \cup \cdots \cup E_m) = P(E_1) + P(E_2) + \cdots + P(E_m)$ 

آپ مساوات 24.9 كا درج ذيل مماثل ثابت كر سكتے ہيں۔

مسکہ 24.4: (قاعدہ جمع برائیے صوابدیدی وقوعات) S نمونی فضا S میں وقوعات S اور S کے لئے درج ذیل ہو گا۔

(24.15) 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

مزيد و قوعه  $E \cup E^C = S$  اور اس كا متم و قوعه  $E^C$  (حصه 24.4) بلا شركت بين للذا  $E \cup E^C = S$  هو گاليون

$$P(E \cup E^C) = P(E) + P(E^C) = 1$$

حاصل ہو گا جس سے درج ذیل اخذ ہوتا ہے۔

مسكر 24.5: (قاعده اتمام)

نمونی فضا S میں وقوعہ E اور اس کے متم وقوعہ E<sup>C</sup> کے احتمال کا تعلق درج ذیل کلیہ دیتا ہے۔  $P(E) = 1 - P(E^C)$ (24.16)

اس کلیہ کو وہاں استعال کیا جا سکتا ہے جہاں  $P(E^{C})$  کا حساب P(E) کے حساب سے زیادہ آسان ہو۔ مثال 24.5 میں اس کی استعال د کھائی جائے گی۔

ہم نمونی فضا ۶ میں وقوعات کے احتمال کی قیت کس طرح مقرر کر سکتے ہیں؟

k انجام کا امکان ایک جیبا ہے اگر k متنابی ہو اور k انجام کا امکان ایک جیبا ہے تب ہم ہر انجام کے احمال کو یکساں قیمت مختص کر سکتے ہیں اور مسلمہ -ب کے تحت یہ احمال لازماً  $\frac{1}{k}$  ہو گا۔ اس صورت میں احمال کا حساب، و قوعات کے ارکان کی گنتی کے مترادف ہو گا۔

مثال 24.4: منصفانہ پانسہ مثال 24.4: منصفانہ پانسہ منطقانہ پانسہ کے تجربہ میں  $S = \{1,2,3,4,5,6\}$ جے۔یوں  $P(1) = \frac{1}{6}$  ،  $P(1) = \frac{1}{6}$  ،  $P(1) = \frac{1}{6}$  ،  $P(1) = \frac{1}{6}$  ، و کیست

> و قوعه جس میں بالائی سطح پر جفت نقطے ہوں : A  $P(A) = P(2) + P(4) + P(6) = \frac{1}{2}$  کا اختمال احتمال احتمال کا اختمال کا اختمال احتمال کا اختمال کا اختمال احتمال کا اختمال کا اختمال کا اختمال کا احتمال کا احتما و قوعہ جس میں بالائی سطح سر 4 نقطوں سے زیادہ نقطے ہوں : B

24.5 احتال.

کا اختمال  $P(B) = P(5) + P(6) = \frac{1}{3}$  کو وغیره، وغیره، وغیره، وغیره، وغیره وغیره کی جائیں کی جائیں کی جائیں  $P(B) = P(5) + P(6) = \frac{1}{3}$  کی۔

مثال 24.5: سكم اچهالنا

پانچ سکے ایک ساتھ اچھا نے جاتے ہیں۔ کم از کم ایک خط حاصل ہونے کا اختال تلاش کریں۔ حل: چونکہ ہر ایک سکہ خط یا شیر دے سکتا ہے للذا نمونی فضا  $2^5=2^5$  ارکان پر مشتمل ہے۔منصفانہ سکہ کی صورت میں ہر انجام کو ایک جیسا اختال  $\frac{1}{32}$  مختص کیا جا سکتا ہے۔تب وقوعہ  $A^C$  جس میں کوئی بھی خط حاصل نہ ہو صرف 1 رکن پر مشتمل ہو گا للذا  $P(A^C)=\frac{31}{32}$  ہو گا۔ اس طرح  $P(A^C)=\frac{31}{32}$  ہی حاصل ہوتا ہے۔

اگر تجربہ کی نوعیت سے ایسا ظاہر نہ ہو کہ متناہی انجام یکسال برابر امکان رکھتے ہیں یا اگر نمونی فضا متناہی نہ ہو تب، حسابی احتمال کے مسلمات پر پورا اترتے ہوئے، ہم کمبی تواتر میں کوشش دہرا کر اضافی تعدد کو استعال کرتے ہوئے احتمال کی قیمتیں مخص کرتے ہیں۔

اس طرح ہمیں تخمینی قیمتیں حاصل ہوں گی لیکن اس سے کوئی فرق نہیں پڑے گا۔کلایکی طبیعیات میں ہمیں عموماً ایسی صورت حال کا سامنا ہوتا ہے مثلاً ہم جانتے ہیں کہ مادہ کی کوئی کمیت ہوتی ہے لیکن اس کمیت کی ٹھیک قیمت جاننا ممکن نہیں ہوتا ہے۔ نظریہ بنانے میں یہ رکاوٹ پیدا نہیں کرتی ہے۔

اگر ہمیں شک ہو کہ ہم نے درست طریقہ سے احمال کی قیمتیں مختص نہیں کی ہیں تب ہم شاریاتی پر کھ کا سہارا لے سکتے ہیں۔

عوماً یہ جانتے ہوئے کہ وقوعہ A ہو چکا ہے ہمیں وقوعہ B کا اختمال درکار ہو گا۔اس کو دیے گیے A کی صورت میں B کا مشروط احتمال D(B|A) ہیں جس کو D(B|A) سے ظاہر کیا جاتا ہے۔الی صورت میں D(B|A) کا مشروط احتمال کردار ادا کرتا ہے اور یہ اختمال D(A) کا وہ (کسری) حصہ ہو گا جو D(A) کا مطابقتی ہو۔یوں

(24.17) 
$$P(B|A) = \frac{P(A \cap B)}{P(A)} \qquad [P(A) \neq 0]$$

conditional probability<sup>71</sup>

ہو گا۔ای طرح دیے گیے B کی صورت میں A کا مشروط احمال

(24.18) 
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad [P(B) \neq 0]$$

ہو گا۔

مساوات 24.17 اور مساوات 24.18 کو  $P(A \cap B)$  کے لئے حل کرتے ہوئے درج ذیل حاصل ہو گا۔

مسّله 24.6: قاعده ضرب

P(B) 
eq 0 اور P(A) 
eq 0 ہوتب P(A) 
eq 0 اور P(B) 
eq 0 اور P(B) 
eq 0

(24.19) 
$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

ہو گا۔

اگر A اور B ایسے و قوعات ہوں کہ

$$(24.20) P(A \cap B) = P(A)P(B)$$

ہو تب انہیں غیر تابع وقوعات $^{72}$  کہتے ہیں۔اب اگر  $P(A) \neq 0$  اور  $P(B) \neq 0$  ہوں تب مساوات 24.17 مساوات 24.18 کے تحت

$$P(A|B) = P(A), \quad P(B|A) = P(B)$$

ہوں گے جس کا مطلب ہے کہ A کا اختمال B کے انجام یا غیر انجام پر منحصر نہیں ہو گا اور اسی طرح B کا اختمال A کے انجام یا غیر انجام پر منحصر نہیں ہو گا۔

 $A_1, \dots, A_k$  ای طرح m و قوعات m و قوعات m ای طرح m ای طرح m و قوعات m ای طرح m ای طرح m و قوعات m و قوعات m و آبیا و آبیا و m و آبیا و آبیا و m و m و آبیا و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m و m

دھیان کریں کہ چیزوں کے سلسلہ سے چیز نکالنے، یعنی آبادی سے نمونہ حاصل کرنے، کے دو طریقے پائے جاتے ہیں۔

independent events<sup>72</sup>

24.5 احتال.

• نمونہ واپس رکھتے ہوئے نمونے کا حصول۔ ہم کل سے جس چیز کو بلا منصوبہ نکالتے ہیں، اس چیز کو واپس کل میں رکھ کر کل کو اچھی طرح گڈ لڈ کرتے ہیں۔اس کے بعد اگلا نمونہ نکالا جاتا ہے۔

• غونہ واپس نہ رکھتے ہوئے غونے کا حصول ۔ ہم نمونہ نکال کر ایک طرف رکھ دیتے ہیں۔

مثال 24.6: واپس رکھتے ہوئے اور بغیر واپس رکھتے ہوئے نمونے کا حصول ایک ڈبیا میں 10 پیچ پائے جاتے ہیں جن میں سے 3 عیب دار ہیں۔دو پیچ بلا منصوبہ نکالے جاتے ہیں۔دونوں پیچ بے عیب ہونے کا احمال تلاش کریں۔ہم درج زیل وقوعات پر غور کرتے ہیں۔

 $A: _{-}$ پہلا نکالا گیا نیچ بے عیب ہے۔  $B: _{-}$ 

 $\frac{1}{10}$  چونکہ 10 میں سے 7 پیچ بے عیب ہیں اور ہم بلا منصوبہ پیچ نکالتے ہیں للذا ہر پیچ کا نکالے جانے کا امکان ور ہے۔ یوں  $P(A)=\frac{7}{10}$  ہو گا۔ اگر ہم اس پیچ کو واپس ڈبیا میں رکھ دیں تب دوسری مرتبہ پیچ نکالنے میں اور کہا مرتبہ پیچ نکالنے میں کوئی فرق نہیں ہو گا للذا  $P(B)=\frac{7}{10}$  ہو گا۔یہ وقوعات غیر تالع ہیں اور

 $P(A \cap B) = P(A)P(B) = 0.7 \cdot 0.7 = 0.49 = 49 \%$ 

ہو گا۔اس کے بر عکس اگر ہم نمونہ واپس نہ رکھیں تب A وقوع پذیر ہونے کے بعد دوسری مرتبہ ڈبیا میں کل و گا۔اس کے بر عکس اگر ہم نمونہ واپس نہ رکھیں تب  $P(B|A) = \frac{6}{9} = \frac{2}{3}$  ہو گا۔مسکلہ 24.6 کے تحت درج ذیل ہو گا۔

 $P(A \cap B) = \frac{7}{10} \cdot \frac{2}{3} \approx 47\%$ 

П

سوالات

سوال 24.40:  $\frac{31}{32}$  منصفانہ سکے اچھال کر کم سے کم  $\frac{31}{32}$  خط حاصل کرنے کا کیا احتمال ہے؟

سوال 24.41: تین منصفانه پانسه اچھالے جاتے ہیں۔وقوعہ E جس میں کم از کم دو اعداد مختلف حاصل ہوتے ہیں کا اختال تلاش کریں۔

سوال 24.42: 000 پنچ کی کھیپ میں 10 عیب دار ہیں۔اس کھیپ سے 3 پنچ بلا منصوبہ نکالے جاتے ہیں۔(الف) بغیر واپس رکھے، (ب) واپس رکھتے ہوئے، تینوں پنچ بے عیب ہونے کا احمال تلاش کریں۔ جواب: (الف)  $0.93 = 72.98 \cdot \frac{89}{100} \cdot \frac{90}{100} \cdot \frac{89}{98} \cdot \frac{88}{99} \cdot \frac{90}{100}$ 

سوال 24.43: تین برتن ہیں اور ہر برتن میں 5 مرچ ہیں جن پر 1 تا 5 کھا گیا ہے۔ ہر برتن سے ایک مرچ نکالا جاتا ہے۔ وقوعہ E جس میں نکالے گئے مرچ پر کھے اعداد کا مجموعہ 3 سے زیادہ ہو کا احمال تلاش کریں۔

سوال 24.44: 100 لوہے کے سلاخوں کے جتما میں 25 سلاخ زیادہ لمبے، 25 کم لمبے اور 50 سیح لمبائی کے ہیں۔ اگر 2 سلاخ بلا منصوبہ نکالے جائیں اور انہیں واپس نہ رکھا جائے تب (الف) دونوں ٹھیک لمبائی کے، (ب) ایک ٹھیک لمبائی کا، (پ) دونوں غلط لمبائی کے، (ت) دو کم لمبائی کے سلاخ نکالنے کے اخمال تلاش کریں۔ جواب: (الف) % 24.75 ، (ب) % 50.5 ، (پ) % 24.75 ، (ت) % 6.06

سوال 24.45: کافی عرصہ سے ایک کارخانے میں گلاس بنائے جا رہے ہیں جن میں عیب دار گلاسوں کی شرح برقرار %2 ہے۔ ہر آدھا گھنٹہ بعد دو گلاس نکال کر پر کھے جاتے ہیں۔اس وقوعہ کا کیا اختمال ہے کہ (الف) دونوں گلاس بے عیب ہوں، (ب) ایک گلاس بے عیب ہوں، (پ) دونوں گلاس عیب دار ہوں؟ تینوں صور توں کے اختمال کا مجموعہ کیا ہے؟

سوال 24.46: ایک ڈیزل انجن سے برقی جزیٹر چلایا جاتا ہے۔ 30 دن کے عرصہ میں ڈیزل انجن میں مرمت کی ضرورت کا اختال %6 ہے۔ کسی مخصوص دورانیہ میں دونوں کے مرمت کی ضرورت کا اختال کیا ہو گا؟ دونوں کے مرمت کی ضرورت کا اختال کیا ہو گا؟ جواب: % 10.7

سوال 24.47: کسی مثین میں ہوا کا دباو خود کار نظام سے قابو کیا جاتا ہے۔ یہ خود کار نظام 6 ٹرانزسٹر <sup>73</sup> پر مبنی ہے۔ کسی دورانیہ میں ہر ایک ٹرانزسٹر کے خراب ہونے کا اخمال 0.05 ہے۔ خود کار نظام صرف اس صورت کام کر سکتا ہے جب تمام ٹرانزسٹر ٹھیک ہوں۔ کسی دورانیہ میں خود کار نظام کے خراب ہونے کا اخمال کیا ہوگا؟

 ${\rm transistor}^{73}$ 

24.5 احتال.

B سوال 24.48: ایک ڈییا میں 100 پتج ہیں جن میں سے 10 پتجوں میں A قسم کا عیب، 5 میں 5 وسم کا عیب پایا جاتا قسم کا عیب اور 2 میں دونوں اقسام کے عیب پایے جاتے ہیں۔ پہلے نکالے گئے پتج میں A قسم کا عیب پایا جاتا ہے۔ اس پتج میں B قسم کے عیب کا اختمال کیا ہو گا؟ جواب:  $P(E_B|E_A) = \frac{P(E_A \cap E_B)}{P(E_A)} = \frac{0.02}{0.10} = 20\%$ 

سوال 24.49: دو منصفانہ پانسہ اچھالے جاتے ہیں۔ایک پانسہ 5 دیتا ہے۔دونوں کا مجموعہ 9 سے زیادہ ہونے کا اختال تلاش کریں۔

وں تب  $P(A \cap B^C) = 0.4$  اور P(B) = 0.5 ،  $P(A^C) = 0.2$  .  $P(A \cap B^C) = 0.4$  . P(B) = 0.5 ،  $P(A^C) = 0.4$  .  $P(B|A \cup B^C)$  .  $P(B|A \cup$ 

سوال 24.51: مسكله 24.4 كو ثابت كريل

سوال 24.52: مسكله 24.3 كو ثابت كرين ـ

سوال 24.53: مسئله 24.6 کو وسعت دینے ہوئے درج ذیل دکھائیں۔  $P(A\cap B\cap C)=P(A)P(B|A)P(C|A\cap B)$ 

 $P(B) \leq P(A)$  ہو گا۔ وکھائیں کہ اگر A کا ذیلی سلسلہ B ہو تب  $P(B) \leq P(A)$  ہو گا۔ جواب:  $P(B) \leq P(A \cap B^C) = P(A \cap B^C)$  ہو گا۔  $P(A \cap B^C) \geq P(B)$  ہے۔  $P(A \cap B^C) \geq P(B)$  ہے۔  $P(B) \leq P(B)$ 

## 24.6 مرتب اجتماعات اور غير مرتب اجتماعات

گزشتہ حصہ سے ہم جانتے ہیں کہ k مساوی انجام پر مشتمل متناہی نمونی فضا S میں ہر انجام کا احمال k ہے اور وقوعہ S کا احمال حاصل کرنے کی خاطر ہم S وقوعات کو گنتے ہیں۔ یوں اگر وقوعہ S مرتبہ سرانجام ہو تب S ہوگر وقوعہ S ہوگر فابت ہوتے ہیں۔ S ہوگر انجام کی گنتی کے لئے درج ذیل کلیات مردگار ثابت ہوتے ہیں۔

فرض کریں کہ چیزوں یا ارکان کی تعداد n ہے۔ انہیں کسی بھی ترتیب سے ایک صف میں رکھا جا سکتا ہے۔ایسی ہر ترتیب ان چیزوں کی ایک موقب اجتماع<sup>74</sup> کہلاتی ہے۔

مسكله 24.7: موتب اجتماعات

n مختلف چیزوں کی مرتب اجتماعات کی تعداد درج ذیل ہو گی جہاں تمام چیزیں مرتب اجتماعات میں شامل ہیں۔

$$(24.22)$$
  $n! = 1 \cdot 2 \cdot 2 \cdot 3 \cdot \cdot \cdot n$  "پڑھیں  $n!$  "  $n!$ 

مرتب اجتماع میں پہلی جگہ کو n مختلف طریقوں سے پر کیا جا سکتا ہے۔ پہلی جگہ پر کرنے کے بعد n-1 ارکان رہ جاتے ہیں للذا دوسری جگہ کو n-1 مختلف طریقوں سے پر کیا جا سکتا ہے۔ اسی طرح چلتے ہوئے درج ذیل متیجہ حاصل ہو گا۔

مسكه 24.8: موتب اجتماعات

اگر n چیزوں کو c مختلف جماعتوں میں تقسیم کیا جا سکتا ہو جہاں ہر ایک جماعت میں تمام چیزیں بالکل کیساں ہوں جبکہ ہر جماعت میں چیزیں دوسری تمام جماعتوں کی چیزوں سے مختلف ہوں تب ان چیزوں کی مرتب اجتماعات کی تعداد

(24.23) 
$$\frac{n!}{n_1 1 n_2! \cdots n_c!} \qquad (n_1 + n_2 + \cdots + n_c = n)$$

ہو گی جہاں تمام چیزیں کی گئی ہیں اور j ویں جماعت میں چیزوں کی تعداد  $n_j$  ہے۔

k چیزوں سے ایک وقت میں k چیزیں منتخب کونے سے ایک مرتب اجتماعات حاصل ہوں گی جن میں صرف k چیزیں شامل ہوں گی۔ایک ہی k ارکان کی دو مرتب اجتماعات جن میں ارکان کی ترتیب مختلف ہو،

permutation<sup>74</sup>

تعریف کی رو، سے مختلف مرتب اجتماعات ہوں گی۔ مثال کے طور پر تین حروف a,b,c میں سے ایک وقت دو حروف منتخب کرتے ہوئ حروف منتخب کرتے ہوئے cb ، ca ، ba ، bc ، ac ، ab مرتب اجتماعات ملتی ہیں۔

k چیزوں میں سے k چیزوں کی مرتب اجتماعات، جہاں چیز واپس رکھی جائے، حاصل کرتے ہوئے کہ کسی بھی چیز کو پہلی مقام پر رکھ کر، دوسری جگہ کوئی بھی چیز بشمول پہلی چیز رکھی جا گئی ہے۔ اس طرح باقی جگہ پر کے جاتے ہیں۔ مثال کے طور پر a,b,c میں سے ایک وقت میں 2 حروف منتخب کر کے واپس رکھتے ہوئے کل cc ، bb ، aa مرتب اجتماعات واصل ہوں گی جس میں مذکورہ بالا b مرتب اجتماعات اور bb ، bb ،

مسّله 24.9: مرتب اجتماعات

بغیر واپس رکھے، n مختلف چیزوں میں سے ایک وقت میں k چیزیں منتخب کرتے ہوئے مرتب اجماعات کی تعداد

(24.24) 
$$n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

عاصل ہو گی جبکہ منتخب چیز واپس رکھتے ہوئے مرتب اجتاعات کی تعداد درج ذیل ہو گ۔

$$(24.24^*)$$
  $n^k$ 

مرتب اجتماعات (کی تعداد) میں نا صرف چیزیں اہمیت رکھتی ہیں بلکہ ان چیزوں کی ترتیب بھی اہمیت رکھتی ہے۔اس کے برعکس دی گئے چیزوں کے غیر موتب اجتماعات<sup>75</sup> سے مراد ایک یا ایک سے زیادہ چیزوں کی وہ انتخاب ہے جس میں چیزوں کی ترتیب کو رد کیا جاتا ہے۔دو قتم کے غیر ترتیبی اجتماعات یائے جاتے ہیں۔

بغیر واپس رکھتے ہوئے، ایک وقت میں n چیزوں میں سے k چیزیں منتخب کرتے ہوئے سلسلے بنائے جا سکتے ہیں۔ ہیں۔ ہیں۔ ہیں۔ ہیں۔ ہیں۔ ہی اور کسی بھی دو سلسلوں میں بالکل ایک جیسی چیزیں نہیں پائی جائیں گ۔

اس کے علاوہ، چیزوں کو واپس رکھتے ہوئے، ایک وقت میں n چیزوں میں سے k چیزیں منتخب کرتے ہوئے سلسلے بنائے جا سکتے ہیں۔

combinations<sup>75</sup>

مثال کے طور پر 3 حروف a,b,c میں سے ایک وقت میں 2 حروف منتخب کر کے بغیر واپس رکھے ab ، مثال کے طور پر 3 حروف cc ، bb ، aa ، bc ، ac ، ab عاصل bc ، ac عاصل کیے جا سکتے ہیں جبکہ چیزیں واپس رکھتے ہوئے bc ، ac کے جا سکتے ہیں۔

مسئلہ 24.10: غیر موتب اجتماعات بغیر واپس رکھے، n چیزوں میں سے ایک وقت میں k چیزیں منتف کرتے ہوئے

(24.25) 
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{1\cdot 2\cdots k}$$

غیر مرتب اجتماعات حاصل ہوں گے جبکہ چیزیں واپس رکھتے ہوئے غیر مرتب اجتماعات کی تعداد درج ذیل ہو گی۔

$$\binom{n+k-1}{k}$$

k ساوات 24.25 کے ساتھ منسلک فقرہ مسئلہ 24.9 کے پہلے جھے سے اخذ ہوتا ہے لینی n چیزوں میں سے k چیزیں منتخب کرتے ہوئے ان k چیزوں کے مرتب اجتماعات k ہوں گے جن میں صرف چیزوں کی ترتیب مختلف ہو گی (مسئلہ 24.7) کیکن مسئلہ 24.10 کے پہلے فقرے کے تحت ان k چیزوں کا صرف ایک غیر مرتب اجتماع پایا جاتا ہے۔ مسئلہ 24.10 کا آخری فقرہ الکراجی ماخوذ سے حاصل کیا جا سکتا ہے (سوال 24.64)۔

مثال 24.7: مسئله 24.7 اور مسئله 24.8 كا استعمال

ایک ڈبیا میں 10 مختلف قسم کے بیچ ہیں جنہیں ایک مخصوص ترتیب سے مشین میں لگایا جانا ہے۔ان بیچوں کو ڈبیا سے بلا منصوبہ نکالا جاتا ہے۔انہیں ڈبیا سے درکار ترتیب میں نکالنے کا احمال P بہت کم (مسلم 24.7) یعنی

$$P = \frac{1}{10!} = \frac{1}{3628800} \approx 0.00003\%$$

ہو گا۔ اگر ڈبیا میں 6 دائیں ہاتھ اور 4 بائیں ہاتھ بنتی ہوں اور 6 دائیں ہاتھ بنتی پہلے اور 4 بائیں ہاتھ بنتی بعد میں درکار ہوں تب اس ترتیب میں بنتی نکالنے کا اخمال P (مسئلہ 24.8) درج ذیل ہو گا۔

$$P = \frac{6!4!}{10!} = \frac{1}{210} \approx 0.5 \%$$

مثال 24.8: مسئلہ 24.9 کا استعمال ایک خفی خط میں حروف کو 5 کی گروہ (الفاظ) میں لکھا جاتا ہے۔مساوات 24.24\* سے ہم دیکھتے ہیں کہ کل

$$26^5 = 11881376$$

مختلف الفاظ ممکن ہیں۔ مساوات 24.24 کے تحت ایسے الفاظ جن میں ہر حرف زیادہ سے زیادہ ایک مرتبہ استعال ہو کی تعداد درج ذبل ہو گی۔

$$\frac{26!}{(26-5)!} = 26 \cdot 25 \cdot 24 \cdot 23 \cdot 22 = 7893600$$

П

مثال 24.9: مسئلہ 24.10کا استعمال 500 بیچوں میں سے 5 بیچ بلا منصوبہ منتخب کرتے ہوئے

$$\binom{500}{5} = \frac{500!}{5!495!} = \frac{500 \cdot 499 \cdot 498 \cdot 497 \cdot 496}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 255244687600$$

نمونے حاصل کے جاسکتے ہیں۔

آئیں عدد ضربہ تفاعل کے بار میں کچھ ماتیں کریں۔صفر کا عدد ضربہ (!0) کی تعریف

$$(24.26) 0! = 1$$

ے۔ باتی عدد صحیح کے عدد ضربہ درج ذیل کلیہ سے حاصل کیے جاتے ہیں۔

$$(24.27) (n+1)! = (n+1)n!$$

بڑی عدد کے لئے بیہ کلید بہت بڑے اعداد دیتا ہے۔ ہم بڑے عدد n کی صورت میں عموماً درج ذیل کلیہ مسٹر لنگ<sup>76</sup> استعال کرتے ہیں 77

(24.28) 
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \qquad (e = 2.718\cdots)$$

Stirling formula<sup>76</sup> <sup>77</sup>انگلىتانى رياضى دان جيمس سٹر لنگ[1770-1692] جہاں  $\sim$  سے مرادیہ ہے کہ n کی قیت لامتناہی کے نزدیک تر ہونے سے مساوات 24.28 کی دونوں ہاتھ کا  $\sim$  تناسب 1 کے قریب تر ہو گا۔

ثنائی عددی سو 78 کی تعریف درج ذیل کلیہ ہے۔

شار کنندہ میں لا اجزاء ہیں۔مزید ہم درج ذیل تعریف پیش کرتے ہیں۔

(24.30) 
$$\binom{a}{0} = 1 \implies \binom{0}{0} = 1$$

a=n کے لئے مساوات 24.29 سے a=n

(24.31) 
$$\binom{n}{k} = \binom{n}{n-k} \qquad (n \ge 0, 0 \le k \le n)$$

حاصل ہو گا۔ چونکہ

(24.32) 
$${a \choose k} + {a \choose k+1} = {a+1 \choose k+1} \qquad (k \ge 0, \xi^{\infty})$$

لکھا جا سکتا ہے لہذا ثنائی عددی سر کو تکرار سے حاصل کیا جا سکتا ہے۔مساوات 24.29 سے درج ذیل بھی حاصل ہوتا ہے۔

متعدد ویگر کلیات اخذ کیے جا سکتے ہیں جن میں سے ہم

اور

(24.35) 
$$\sum_{k=0}^{r} \binom{p}{k} \binom{q}{r-k} = \binom{p+q}{r}$$

پیش کرتے ہیں۔

binomial coefficients<sup>78</sup>

سوالات

سوال 24.55: تمام چار اعداد 1,2,3,4 ليتے ہوئے كتنے مرتب اجتماعات حاصل ہوں گے؟

سوال 24.56: تمام پانچ حروف تبجی د، ڈ، ذ، ر، ڑ لیتے ہوئے کتنے مرتب اجتماعات حاصل ہوں گے؟

سوال 24.57: وس افراد میں سے تین افراد کے کتنے پنچایت بنائی جا سکتی ہیں؟ جواب:  $\binom{10}{3}=120$ 

سوال 24.58: گاڑی کے نمبر پلیٹ پر دو حروف تیجی اور تین اعداد لکھ کر کتنے مختلف نمبر پلیٹ بنائے جا سکتے ہیں؟ ہیں؟

 $^\circ$  سوال 24.59:  $^\circ$  کی کھیپ سے 3 چیزوں کے کتنے نمونے حاصل کیے جا سکتے ہیں  $^\circ$  جواب:  $^\circ$   $^\circ$  161 700:  $^\circ$ 

سوال 24.60: ایک لوٹے میں 2 سیاد، 3 سفید، اور 4 سرخ گیند پڑے ہیں۔ ہم بلا منصوبہ ایک گیند نکال کر ایک طرف رکھ دیتے ہیں۔ اس کے بعد دوسرا گیند نکل کر ایک طرف رکھ دیتے ہیں اور اس طرف رکھ دیتے ہیں۔ اس کا اختال تلاش کریں کہ پہلے 2 سیاہ، اس کے بعد 3 سفید اور آخری گیند نکال کر ایک طرف رکھ دیتے ہیں۔ اس کا اختال تلاش کریں کہ پہلے 2 سیاہ، اس کے بعد 3 سفید اور آخر میں 4 سرخ گیند نکلیں۔

سوال 24.61: ہمارے پار 6 مختلف رنگ ہیں۔ہم کتنے طریقوں سے (الف) 2 ، (ب) 3 رنگ منتخب کر سکتے ہیں؟

جواب: 15,15

سوال 24.62: 10 کی کھیپ میں 2 چیزیں عیب دار ہیں۔ان میں سے چار چیزوں کے کتنے نمونے حاصل کیے جا سکتے ہیں؟ ان میں سے چار چیزوں کے ایسے کتنے نمونے حاصل کیے جا سکتے ہیں کہ ان میں کوئی بھی چیز عیب دارہ؟ دارنہ ہوں؟ ان میں سے چار چیزوں کے ایسے کتنے نمونے حاصل کیے جا سکتے ہیں کہ ان میں 1 چیزعیب دارہوں؟ ان میں سے چار چیزوں کے ایسے کتنے نمونے حاصل کیے جا سکتے ہیں کہ ان میں 2 چیزیں عیب دار ہوں؟

سوال 24.63: مسكله 24.9 ثابت كرين-

جواب: ثبوت کا طریقہ کار وہی ہے جو مسلہ 24.7 میں استعال کیا گیا ہے لیکن اب n کی جگہ ہم جگہیں پر کرتے ہیں۔ اگر واپس رکھنا ممکن ہو تب k میں سے ہر ایک کو n اشیاء سے پر کیا جا سکتا ہے۔

سوال 24.64: مسئله 24.10 كا آخرى فقره ثابت كرين اشاره مساوات 24.34 استعال كرين ـ

سوال 24.65: مساوات 24.28 استعال كرتے ہوئے !4 اور !8 كى تخيينى قيمتيں حاصل كريں۔ان تخيينى قيمتيں حاصل كريں۔ان تخيينى قيمتوں كا حتى اور اضافی خلل كيا ہے؟ جواب: % 23.5, 0.5, 2 ; 39 902, 400, 1

سوال 24.66: ایک کھیپ سے 4 چیزوں کا نمونہ، بغیر واپس رکھے حاصل کیا جاتا ہے۔ مرتب اجتماعات اور غیر مرتب اجتماعات کی تعداد کا آپس میں کیا تعلق ہو گا؟

سوال 24.67: مساوات 24.29 سے مساوات 24.32 حاصل کریں۔

سوال 24.68: (مسئلہ ثنائی) مسئلہ ثنائی 7<sup>9</sup> کے تحت

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

ہو گا۔ یوں  $a^kb^{n-k}$  کا عددی سر  $\binom{n}{k}$  ہے۔ کیا مسئلہ 24.10 سے آپ یہ اخذ کر سکتے ہیں یا آپ سمجھتے ہیں کہ یہ محض انفاق ہے۔

سوال 24.69: مسئله ثنائی (سوال 24.68) کو

 $(1+b)^p(1+b)^q = (1+b)^{p+q}$ 

ير لا گو كرتے ہوئے مساوات 24.35 ثابت كريں۔

24.7 بلامنصوبه متغيرات غير مسلسل اوراستمراري تقسيم

دو پانسے اچھال کر 2 تا 12 عدد صحیح مجموعہ X حاصل ہو گالیکن اگلے اچھال میں حاصل X کی پیش گوئی نہیں کر سکتے ہیں لہذا ہم کہہ سکتے ہیں کہ X "امکان" پر منحصر ہے۔اسی طرح اگر ہم پیچوں کی کھیپ سے 5 کا

binomial theorem<sup>79</sup>

نمونہ لے کر ان کی لمبائی ناپنا چاہیں تو ہم پیش گوئی نہیں کر سکتے ہیں کہ ان میں سے کتنے عیب دار ہوں گے؛ یوں عیب دار پیچوں کی تعداد X "امکان" پر منحصر ہو گی۔

بلا منصوبہ متغیر 80 X سے مراد ایبا تفاعل ہے جس کی قیت حقیقی اعداد اور "امکان" پر منحصر ہوں۔ بلا منصوبہ متغیر کو امکانی متغیر کو است ہو گا کہ تفاعل X درج ذیل خواص رکھتا ہے۔

- تجربه کی نمونی فضا S پر X معین ہے اور اس کی قیمتیں حقیقی اعداد ہیں۔
- فرض کریں کہ a کوئی حقیقی عدد اور I کوئی وقفہ ہیں۔تب S میں ان تمام انجام کا سلسلہ جن کے لئے X=a ہو کا احمال پوری طرح معین ہو گا اور یہی کچھ S میں ان تمام انجام کے لئے درست ہو گا جن X=a کے لئے X کی قیت X میں ہو۔بیہ احمال حصہ 24.5 میں دی گئی مسلمات کے تحت ہوں گی۔

ا گرچہ یہ تعریف عمومی ہے جس میں بہت سے تفاعل شامل ہیں، ہم دیکھیں گے کہ عملًا اہم بلا منصوبہ متغیرات کے اقسام اور ان کی مطابقتی "تقسیم احتمال" کی تعداد بہت کم ہیں۔

اگر ہم بلا منصوبہ تجربہ سرانجام دیں اور عدد a کا مطابقی وقوعہ حاصل ہو تب ہم کہتے ہیں کہ اس تجربہ کی کوشش میں بلا منصوبہ متغیر X قیمت a اختیار x کرتا ہے۔ہم سے بھی کہتے ہیں کہ ہم نے قیمت x اختیار x کا مطابقی وقوعہ " کہنے کے ہم مختصراً کہتے ہیں، "وقوعہ x "۔ مطابقی احمال مشاہدہ x اعدد x کا مطابقی وقوعہ " کہنے کے ہم مختصراً کہتے ہیں، "وقوعہ x اللہ کیا جاتا ہے۔اس طرح وقوعہ x کے ہم مختصراً کہتے ہیں، "وقوعہ x اللہ کیا جاتا ہے۔اس طرح وقوعہ

میں کوئی قیمت اختیار کرتا ہے a < X < b

کا احتمال P(a < X < b) سے ظاہر کیا جاتا ہے۔وقوعہ

 $X \le x$  (ح کرتا ہے کم قیمت X افتیار کرتا ہے C

کا اختال  $P(X \leq c)$  سے ظاہر کیا جائے گا اور و قوعہ

X>x (حت زیادہ قیمت X اختیار کرتا ہے C

random variable<sup>80</sup> stochastic variable<sup>81</sup>

 $\begin{array}{c} {\rm assume}^{82} \\ {\rm observed}^{83} \end{array}$ 

کا اختمال p(X>c) سے ظاہر کیا جائے گا۔

مندرجہ بالا دو آخری و قوعات باہمی بلا شرکت ہیں للذا حصہ 24.5 کے مسلمہ-پ سے درج ذیل حاصل ہو گا۔

$$P(X \le c) + P(X > c) = P(-\infty < X < \infty)$$

چونکہ  $0 < X < \infty$  پورانمونی فضا کو ظاہر کرتا ہے للذا مسلمہ-ب کے تحت دایاں ہاتھ  $0 < X < \infty$  جس سے درج ذیل اہم نتیجہ اخذ ہوتا ہے۔

(24.36) 
$$P(X > c) = 1 - P(X \le c)$$
 (24.36)

مثال کے طور پر، اگر X وہ عدد ہو جو پانسہ اچھال کر حاصل ہوتا ہو، تب

$$P(X = 1) = \frac{1}{6}$$
,  $P(X = 2) = \frac{1}{6}$ ,  $P(1 < X < 2) = 0$ ,  $P(1 \le X \le 2) = \frac{1}{3}$ ,  $P(0 \le X \le 3.2) = \frac{1}{2}$ ,  $P(X > 4) = \frac{1}{3}$ ,  $P(X \le 0.5) = 0$ , ...

ہوں گے۔

عموماً صورتوں میں بلا منصوبہ متغیرات غیر مسلسل<sup>84</sup> یا استموادی 85 ہوں گے۔ان دونوں پر باری باری غور کرتے ہیں۔ ہیں۔

بلا منصوبه متغیر X اور اس کا مطابقتی تقییم اس صورت غیر مسلسل کہلاتے ہیں جب X درج ذیل خواص رکھتا ہو۔

• ان قیتوں کا تعداد جن کے لئے X کا احمال غیر 0 ہو متناہی یا قابل شار لا متناہی ہوں۔

بو گا۔  $P(a < X \leq b) = 0$  بین ایبا قیمت نہ پایا جاتا ہو، تب  $a < X \leq b$  ہو گا۔ فرض کریں کہ

 $x_1, \quad x_2, \quad x_3, \quad \cdots$ 

وہ قیمتیں ہیں جن کے لئے X کا مثبت احمال پایا جاتا ہو اور فرض کریں کہ مطابقتی احمال درج ذیل ہیں۔

$$p_1$$
,  $p_2$ ,  $p_3$ ,  $\cdots$ 

تب  $P(X=x_1)=P_1$  ، وغیره ہو گا۔ ہم اب تفاعل

(24.37) 
$$f(x) = \begin{cases} p_j & x = x_j \\ 0 & x \neq x_j \end{cases} \quad (j = 1, 2, \cdots)$$

متعارف کرتے ہیں۔ f(x) کو X کا تفاعل احتمال 86 کہتے ہیں۔

 $discrete^{84}$ 

continuous<sup>85</sup>

probability function<sup>86</sup>

چونکہ P(S)=1 (حصہ 24.5 مسلمہ-ب) ہے لمذا لازی طور پر درج ذیل ہو گا۔

(24.38) 
$$\sum_{j=1}^{\infty} f(x_j) = 1$$

اگر ہمیں بلا منصوبہ غیر مسلسل متغیر X کا اختال معلوم ہو، تب ہم کسی بھی وقفہ  $a < X \leq b$  کے لحاظ سے  $P(a < X \leq b)$ 

(24.39) 
$$P(a < X \le b) = \sum_{a < x_j \le b} f(x_j) = \sum_{a < x_j \le b} p_j$$

ہو گا جو اس وقفہ میں تمام  $x_j$  کے لئے اختمال  $p_p$  کا مجموعہ ہے۔بند، کھلا یا لا تناہی وقفہ کے لئے صورت حال تقریباً اسی طرح ہے۔اس حقیقت کو ہم یوں بیان کرتے ہیں کہ بلا منصوبہ متغیر X کے لئے نفاعل اختمال f(x) ، تقسیم احتمال f(x) ، تقسیم 88 کو کیکا طور پر تغین کرتا ہے۔

اگر X کوئی بلا منصوبہ متغیر ہو، جو ضروری نہیں کہ غیر مسلسل ہو، تب کسی بھی حقیقی عدد X = X کے لئے X = X X = X اختیار کر سکتا ہے)

کا مطابقتی اختال  $P(X \leq x)$  پایا جائے گا۔ ظاہر ہے کہ  $P(X \leq x)$  کی قیمت X کے انتخاب پر منحصر ہو گی: یہ X کا تفاعل ہو گا جس کو X کا تفاعل تقسیم X کا تفاعل تفاعل

$$(24.40) F(x) = P(X \le x)$$

ہو گا۔ چونکہ کسی بھی a اور b > a کے لئے

$$P(a < X \le b) = P(X \le b) - P(X \le a)$$

ہے للذا

(24.41) 
$$P(a < X \le b) = F(b) - F(a)$$

probability distribution<sup>87</sup> distribution<sup>88</sup>

distribution function<sup>89</sup>

- کو تجاوی نفاعل احمال کتے ہیں، خصوصاً وہ جو f(x) کو تعامل احمال کتے ہیں۔ حصوصاً وہ جو f(x) کو نفاعل احمال کتے ہیں۔

ہو گا جس سے ظاہر ہے کہ X کی تقسیم کو تفاعل تقسیم مکتا طور پر تعین کرتا ہے لہٰذا اس کو احمال کے حساب کے لئے استعال کیا جا سکتا ہے۔ لئے استعال کیا جا سکتا ہے۔

فرض کریں کہ X ایک غیر مسلسل متغیر ہے۔ تب ہم تفاعل تقسیم F(x) کو تفاعل احتمال f(x) کی صورت میں ظاہر کر سکتے ہیں۔ یقیناً مساوات 24.39 ( $a=-\infty$ ) اور b=x اور b=x ساتھ) پر کرتے ہوئے

(24.42) 
$$F(x) = \sum_{x_j \le x} f(x_j)$$

حاصل ہو گا جہاں دایاں ہاتھ  $x \leq x$  کے لئے ان تمام  $f(x_j)$  کا مجموعہ ہے۔ سادہ مثالیں شکل 24.7 اور شکل 24.8 میں دکھائی گئ ہیں جو دو پانسہ کو ایک بار اچھال کر حاصل ہوا ہے۔ دونوں اشکال میں f(x) کو ڈبہ ترسیم کی صورت میں دکھایا گیا ہے۔ شکل 24.7 میں 6,  $x = 1, 2, \cdots$  اور اس کے علاوہ کی صورت میں دکھایا گیا ہے۔ شکل 24.7 میں  $x = 1, 2, \cdots$  اور اس کے علاوہ  $x = 1, 2, \cdots$  کے جو پانسہ اچھال کر حاصل ہوئے ہیں جبکہ شکل 24.8 میں  $x = 1, 2, \cdots$  کی قیمتیں درج ذیل ہیں جو دو پانسہ کا حاصل مجموعہ ہے۔

دو پانسہ کے تجربہ میں چونکہ  $6 \cdot 6 = 6 \cdot 6$  مکنہ مساوی امکانی انجام ہیں لہذا ہر ایک کا اختال  $\frac{1}{36}$  ہے۔ صرف (1,1) کے لئے (جہاں پہلا عدد ایک پانسہ اور دوسرا عدد دوسرے پانسہ کا نتیجہ ہے) X = 2 ہو گا؛ اسی طرح X = 4 ہو X = 4 ہو گا؛ X = 4 ہو گا، وغیرہ۔ X = 4 ہو گا، وغیرہ۔

صرف وہ  $x_1, x_2, x_3, \dots$  قیمتیں جن کے لئے بلا منصوبہ غیر مسلسل متغیر X مثبت اخمال رکھتا ہو X کی محکنہ قیمتیں F(x) ہمکنہ قیمتیں F(x) ہمکنہ قیمتیں F(x) ہمکنہ قیمتیں وقفہ میں کوئی مکنہ قیمت نہ پائی جاتی اس وقفہ میں تفاعل تقسیم F(x) مستقل ہو گا۔اس طرح F(x) مسیر همی تفاعل (کلووں میں مستقل تفاعل) ہو گا جس میں F(x) مسیر اوپر رخ F(x) میں مسیر F(x) میں جب کے گئی جبکہ دو چھلانگوں کے نتیج یہ مستقل ہو گا۔ شکل F(x) اور شکل F(x) میں ایسا صاف ظاہر ہے۔

X اور X اور کرتے ہیں۔ایک بلا منصوبہ متغیر کی تعریف پیش کرتے ہیں اور اس پر غور کرتے ہیں۔ایک بلا منصوبہ متغیر X اور اس کا مطابقتی تفاعل تقسیم تب استمرادی کہلاتے ہیں جب اس کا تفاعل تقسیم  $F(x) = P(X \leq x)$  مثبت ہو

possible values<sup>91</sup>







F(x) اور تفاعل تقسیم f(x) اور تفاعل تقسیم :24.7

اور اسے درج ذیل تکمل کی صورت میں لکھنا ممکن ہو <sup>92</sup>

$$(24.43) F(x) = \int_{-\infty}^{x} f(v) \, \mathrm{d}v$$

حاصل ہو گا۔اس لحاظ سے تفاعل تقسیم کا تفرق کثافت ہے۔

مساوات 24.43 اور حصہ 24.5 کے مسلمہ -ب کے تحت درج زیل ہو گا۔

$$(24.44) \qquad \qquad \int_{-\infty}^{\infty} f(v) \, \mathrm{d}v = 1$$

مساوات 24.41 اور مساوات 24.43 سے درج زیل کلیہ حاصل ہوتا ہے۔

(24.45) 
$$P(a < X \le b) = F(b) - F(a) = \int_{a}^{b} f(v) \, dv$$

۔ 24.43 استمراری ہے لیکن F(x) کے استمراری ہونے ہے مساوات 24.43 کی موجود گی ثابت نہیں ہوتی ہے۔ چونکہ ایسے استمراری نفاعل تقتیم جنہیں مساوات 24.43 کی موجود گی ثابت نہیں ہوتی ہے۔ چونکہ ایسے استمراری نفاعل تقتیم جنہیں مساوات کا استمال کی جاتی ہیں لیکنا اصطلاحات "استمراری با منصوبہ متنیر "اور "استمراری تقسیم" جوہبت زیادہ استعال کی جاتی ہیں لیڈ اصطلاحات "استمراری با منصوبہ متنیر "اور "استمراری تقسیم" جوہبت زیادہ استعال کی جاتی ہیں لیڈ اصطلاحات "استمراری با منصوبہ متنیر "اور "استمراری تقسیم" ہوگا۔



شكل 24.45: شكل برائے مساوات 24.45

یوں جیسا شکل 24.9 میں دکھایا گیا ہے، کثافت f(x) کے منحنی کے پنچ x=a اور x=b کا تھی رقبہ احتمال کے برابر ہوگا۔

اور a < X < b ،  $a < X \leq b$  وقفہ  $a < X \leq b$  اور  $a \leq X \leq b$  اور  $a \leq X \leq b$ 

استمراری تقسیم کے مثال (سوالات) اگلے جھے کے سوالات اور آنے والے حصوں میں پیش کئے جائیں گے۔

سوالات

سوال 24.70: تفاعل احتمال احتمال  $f(x)=rac{x^2}{14}\;(x=1,2,3)$  اور تفاعل تقسیم کی ترسیم کھینیں۔

 $f(4)=f(5)=rac{1}{8}$  ،  $f(3)=rac{1}{4}$  ،  $f(2)=rac{1}{2}$  کا تفاعل اختمال اختمال اختمال ہے کہ X کیا اختمال ہے کہ X کیا اختمال ہے کہ X کی قیمت X ہو گی؟

f(1)=0.3 سوال 24.72: ایک مشین کو X سالوں کے بعد تبدیل کرنا ضروری ہے۔ X کا تفاعل احتمال X سوال 24.72: ایک مشین کو X سالوں کے بعد تبدیل کرنا ضروری ہے۔ X اور X کو ترسیم کریں۔ X بادر X کو ترسیم کریں۔

سوال 24.73: کسی پٹرول پہپ میں ایک دن کی درکار پٹرول بلا منصوبہ متغیر X ہے۔ فرض کریں کہ f(x)=k کی کثافت X کی کثافت X کی کثافت X کی کثافت کی کہ جادتہ کی جادتہ کی جادتہ کی جادتہ کی کہ خوانہ کی کہ خوانہ کی کہ خوانہ کی کہ کا فیصل کریں اور تفاعل

تقیم F(x) ترسیم کریں۔ جواب:

$$k = \frac{1}{4000}, \quad F(x) = \begin{cases} 0 & x < 2000 \\ \frac{x}{4000} - 0.5 & 2000 \le x < 6000 \\ 1 & x \ge 6000 \end{cases}$$

c ہے۔ f(x)=0 کے لئے  $f(x)=ce^{-x}$  کیا ہے۔ f(x)=0 کی ہوت کا میں ہوت کی ہے۔ f(x)=0 کی

سوال 24.75: 3 پانسہ اچھال کر ان کا مجموعہ لے کر بلا منصوبہ متغیر X حاصل کیا جاتا ہے۔ تفاعل اختمال f(x) ترسیم کریں۔ f(x) جواب:  $f(x) = \frac{1}{216}$ ,  $f(x) = \frac{3}{216}$ ,  $\dots$ 

سوال 24.76: کافذ کے گئے کی موٹائی X ملی میٹر ہے۔ فرض کریں کہ 1.9 < x < 2.1 کے لئے کا موٹائی f(x) = 0 ہے۔ f(x) = 0 تلاش کریں۔اس کا کیا اختال ہے کہ گئے کی موٹائی f(x) = 0 اور f(x) = 0 ہو؟

سوال 24.77: ایک سکہ کو اتنی مرتبہ (X) اچھالا جاتا ہے جب تک خط حاصل نہ ہو۔ دکھائیں کہ اس تجربہ کا تفاعل اختمال f(x) مساوات 24.38 کو مطمئن کرتا ہے۔ f(x) ہو گا۔ دکھائیں کہ f(x) مساوات 24.38 کو مطمئن کرتا ہے۔

موال 24.78 k = 0 کے لئے  $f(x) = kx^2$  ہے۔ f(x) = 0 ہو۔  $f(x) = kx^2$  ہو۔ f(x) = 0 ہو۔ f

سوال 24.79: بلب کی عرصہ زندگی X بلا منصوبہ متغیر ہے جس کی کثافت

$$f(x) = 6[0.25 - (x - 1.5)^{2}] 1 \le x \le 2$$

اور باتی x = 1 کے گئے f(x) = 0 ہے، جہاں f(x) = 0 ہے مراد 1000 گھنٹے ہیں۔ کیا اخمال ہے کہ سڑک f(x) = 0 ہور بیش نہ آئے؟ کے اشارے پر پہلے 1200 گھنٹوں میں تین میں سے کسی ایک بھی بلب کی تبدیل کرنے کی ضرورت پیش نہ آئے؟  $P(X > 1200) = \int_{1.2}^{2} 6[0.25 - (x - 1.5)^{2}] dx = 0.896^{3} = 72\%$ 

سوال 24.80: کسی وکان کی فروخت اور منافع کی نسبت X ہے۔ فرض کریں کہ X کی تفاعل تقسیم عوال 24.80: کسی وکان کی فروخت اور منافع کی نسبت  $F(x) = \frac{x^2-4}{5}$  اور X < 2 کے لئے X < 2 ور X < 3 اور X < 2 کے لئے X < 2 کی قیت 2.5 ( %40% منافع) اور X < 2 منافع) کے نتی میں ہونے کا کیا احتمال ہے؟

 $X \leq b$  وتوعہ کے ایک بلا منصوبہ متغیر ہے جو کوئی بھی حقیقی قیمت اختیار کر سکتا ہے۔ وقوعہ  $X \leq b$  ہوں گے؟  $b < X \leq x$  و  $b \leq X \leq c$  و  $a \leq x$ 

سوال 24.82: ایک ڈبہ میں 4 دائیں ہاتھ پتی اور 6 بائیں ہاتھ پتی پائے جاتے ہیں۔ بغیر واپس رکھے، دو پتی P(X=1) ، P(X=0) ، P(X=1) ، P(X=0) ، نظر منصوبہ نکالے جاتے ہیں۔ نکالے گئے بائیں ہاتھ پیچوں کی تعداد P(X=1) ، P(X=1) ،

 $P(X \le b) \le P(X \le c)$  سے مراد b < c ہے۔ b < c ہے۔ b < c

# 24.8 تقسيم كااوسطاوراس كى تغيريت

تقسیم کے اوسط $^{93}$  و سے ظاہر کیا جاتا ہے اور اس کی تعریف درج ذیل ہے۔

(24.46) 
$$\mu = \sum_{j} x_{j} f(x_{j}) \qquad (قیر مسلسل تقییم)$$

$$(24.46) \qquad \qquad (ب) \qquad \mu = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x \qquad (ستمراری تقییم)$$

مساوات 24.46-الف میں زیر غور بلا منصوبہ متغیر X کا نفاعل اخمال f(x) ہے اور ہم تمام مکنہ قیمتوں (حصہ 24.7) پر مجموعہ لیتے ہیں۔مساوات 24.46-ب میں X کی کثافت f(x) ہے۔اوسط کو X کی حسابی توقعہ 94

mean<sup>93</sup>

mathematical expectation<sup>94</sup>

-24.46 بیں جس کو E(X) سے ظاہر کیا جاتا ہے۔ تعریف کی رو سے ہم فرض کرتے ہیں کہ مساوات 24.46۔ الف کی تسلسل حتی مر تکز ہو گی اور  $-\infty$  سے  $\infty$  تک |x| f(x) کا تکمل موجود ہو گا۔ اگر یہ تکمل موجود نہ ہو تب ہم کہتے ہیں کہ اس تقسیم کی اوسط نہیں ہائی جاتی ہے؛ الیی صورت عملی انجینئری میں شاذ و نادر پائی جاتی ہے۔

x=c کے لحاظ سے ایک تقسیم کو اس صورت تشاکلی کہتے ہیں جب ہر حقیقی x کے لئے درج ذیل مطمئن ہوتا ہو۔

(24.47) 
$$f(c+x) = f(c-x)$$

آپ درج ذیل مسله ثابت کر سکتے ہیں (سوال 24.84)۔

مسکہ 24.11: (تشاکلی تقسیم کا اوسط) اگرایک تقسیم  $\mu=c$  کے کاظ سے تشاکلی ہو اور اس کا اوسط  $\mu$  ہو تب  $\mu=c$  ہو گا۔

تقسیم کی تغیریت $^{95}$  کو  $\sigma^2$  سے ظاہر کیا جاتا ہے اور اس کی تعریف درج ذیل کلیہ دیتی ہے

(24.48) 
$$\sigma^{2} = \sum_{j} (x_{j} - \mu)^{2} f(x_{j})$$
 (الف) 
$$(24.48)$$
 
$$(\varphi^{2} = \sum_{j} (x_{j} - \mu)^{2} f(x_{j})$$
 (ب) 
$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$
 (ب) 
$$(\varphi^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

جہاں تعریف کی رو سے ہم فرض کرتے ہیں کہ مساوات 24.48-الف میں دی گئی تسلسل حتی مر تکز ہے اور مساوات 24.48-الف میں دی گئی تسلسل حتی مر تکز ہے اور مساوات 24.48-ب کا تکمل موجود ہے۔

غیر مسلسل تقسیم کی صورت میں اگر کسی ایک نقطہ پر f(x)=1 اور باقی ہر جگہ g(x)=0 ہو تب غیر مسلسل تقسیم کی صورت میں درج ذیل ہو گا۔ g(x)=0 ہو گا جو عملًا غیر دلچیپ صورت ہے۔اس غیر دلچیپ صورت کے علاوہ ہر صورت میں درج ذیل ہو گا۔ g(x)=0 g(x)=0 (24.49)

تغیر بیت کا مثبت جذر معیاری انحواف $^{96}$  کہلاتا ہے جس کو  $\sigma$  سے ظاہر کیا جاتا ہے۔

 $<sup>\</sup>begin{array}{c} \text{variance}^{95} \\ \text{standard deviation}^{96} \end{array}$ 

بلا منصوبہ متغیر X جن قیمتوں کو اختیار کر سکتا ہے، تغیریت کو ان قیمتوں کی پھیل کی ناپ تصور کیا جا سکتا ہے۔

مثال 24.10: (اوسط اور تغیریت) بلا منصوبہ متغیر

X = Mسکه احیمال کر شیر کا حاصل ہونا

 $P(X=1)=rac{1}{2}$  اور X=1 اور X=1 ہیں جن کا احتمال Y=1 اور Y=1 ا

$$\sigma^2 = (0 - \frac{1}{2})^2 \cdot \frac{1}{2} + (1 - \frac{1}{2})^2 \cdot \frac{1}{2} = \frac{1}{4}$$

مثال 24.11: يكسان تقسيم وه تقسيم جس كى كثافت a < x < b كے لئے

$$f(x) = \frac{1}{b-a} \qquad (a < x < b )$$

اور باقی x کے لئے f=0 ہو، وقفہ a< x < b میں یکساں تقسیم a< x < b ہو، وقفہ a< x < b اور مساوات a< x < b بیں۔ مساوات 24.48-الف سے  $a= a+b \over 2$  اور مساوات 24.48-ب سے تغیریت حاصل کرتے ہیں۔

$$\sigma^{2} = \int_{a}^{b} (x - \frac{a+b}{2})^{2} \frac{1}{b-a} dx = \frac{(b-a)^{2}}{12}$$

 $\Box$  پین کی ناپ ہے۔  $\sigma^2$  کی ہیں جو دکھاتی ہیں کہ  $\sigma^2$  کی ناپ ہے۔  $\sigma^2$  کی بین جو دکھاتی ہیں کہ انگر 24.10 میں چند خصوصی مثالیں پیش کی گئی ہیں جو دکھاتی ہیں ہیں جو دکھاتی ہیں جو دکھا

مسکلہ 24.12: (خطبی تبادل) مسکلہ  $X^*=c_1X+c_2\ (c_1\neq 0)$  مسکلہ تغیر  $X^*=c_1X+c_2\ (c_1\neq 0)$  ہو تب بلا منصوبہ متغیر X کی اوسط  $\mu$  اور تغیر بیت  $\sigma^2$  ہو تب بلا منصوبہ متغیر  $\sigma^2$  کی اوسط کی اوسط

$$\mu^* = c_1 \mu + c_2$$

uniform distribution  $^{97}$ 



 $\sigma^2$  کیاں تقسیم جن کی ایک جیسی اوسط (0.5) کیکن مختلف تغیریت  $\sigma^2$  ہے

اور تغيريت

(24.51) 
$$\sigma^{*2} = c_1^2 \sigma^2$$

ہو گی۔

ثبوت: ہم پہلے  $c_1>0$  فرض کرتے ہوئے مساوات 24.50 کو استراری صورت کے لئے ثابت کرتے ہوئے مساوات  $X^*$  ہیں۔چونکہ X کور پر چھوٹے سے وقفہ  $\Delta x$  کا مطابقتی اختمال (تخمیناً)  $f(x)\Delta x$  ہو گا جو ہر صورت  $X^*$  ہیں۔ چونکہ X کور پر مطابقتی چھوٹے وقفہ  $\Delta x^*=c_1\Delta x$  پر اختمال  $X^*=c_1\Delta x$  ہو گا لہذا  $X^*=c_1\Delta x$  اور  $X^*=c_1\Delta x$  کی کثافت  $X^*=c_1\Delta x$  کی کثا

$$\mu^* = \int_{-\infty}^{\infty} x^* f^*(x^*) \, \mathrm{d}x^* = \int_{-\infty}^{\infty} (c_1 x + c_2) f(x) \, \mathrm{d}x$$
$$= c_1 \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x + c_2 \int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$$

جہاں آخری تکمل مساوات 24.44 کے تحت 1 کے برابر ہو گا۔یوں مساوات 24.50 ثابت ہوتی ہے۔چو تکہ  $x^*-\mu^*=(c_1x+c_2)-(c_1\mu+c_2)=c_1x-c_1\mu$ 

ہے لہذا تغیریت کی تعریف سے

$$\sigma^{*2} = \int_{-\infty}^{\infty} (x^* - \mu^*)^2 f^*(x^*) \, \mathrm{d}x^* = \int_{-\infty}^{\infty} (c_1 x - c_1 \mu)^2 f(x) \, \mathrm{d}x = c_1^2 \sigma^2$$

x=1 حاصل ہو گا۔ x=1 سے نتائج تبدیل نہیں ہوتے ہیں چونکہ اس سے دو اضافی منفی کی علامتیں ملتی ہیں، ایک میں کمل کے رخ کی تبدیلی کی بنا (دھیان رہے کہ x=1 کا مطابقتی x=1 اور دوسرا x=1 کی بنا؛ یہاں x=1 درکار ہو گا چونکہ کثافت غیر منفی قیمت ہے۔ x=1

غیر مسلسل کثافت کے لئے مسلے کا ثبوت بھی بالکل ایبا ہی ہے۔

П

مساوات 24.50 اور مساوات 24.51 سے ہم درج ذیل اخذ کر سکتے ہیں۔

مسکلہ 24.13: (معیاری متغیر) اگر بلا منصوبہ متغیر  $Z=rac{X-\mu}{\sigma}$  کی اوسط  $Z=rac{X-\mu}{\sigma}$  ہو، تب مطابقتی متغیر  $Z=rac{X-\mu}{\sigma}$  کی اوسط Z=1 اوسط Z=1 تغیر بیت Z=1 ہو گی۔

کو X کا مطالقتی معیاری متغیر $^{98}$ کہتے ہیں۔

X کوئی بلا منصوبہ متغیر اور g(X) کوئی استمراری تفاعل ہو جو تمام حقیقی X کے لئے معین ہو تب عدد

(24.52) 
$$E(g(X)) = \sum_{j} g(x_{j}) f(x_{j}) \qquad (X فير مسلسل X)$$

$$((24.52) \qquad ((24.52) \qquad E(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) \, \mathrm{d}x \qquad (X \otimes \mathbb{C})$$

کو g(X) کی حسابی توقع $^{99}$  کہتے ہیں۔ یہاں f بالترتیب تفاعل اخمال یا کثافت ہے۔

ماوات 24.52 میں  $g(X) = X^k \ (k = 1, 2, \cdots)$  میں  $g(X) = X^k \ (k = 1, 2, \cdots)$  مماوات  $E(X^k) = \int_{-\infty}^{\infty} x^k f(x) \, \mathrm{d}x$  اور  $E(X^k) = \sum_{j=0}^{\infty} x^j f(x_j)$ 

standardized variable  $^{98}$  mathematical expectation  $^{99}$ 

(24.54)

$$E([X - \mu]^k) = \int_{-\infty}^{\infty} (x - \mu)^k f(x) \, \mathrm{d}x$$
 for  $E([X - \mu]^k) = \sum_j (x_j - \mu)^k f(x_j)$ 

 $\lambda$  ویں وسطی معیار اثر  $\lambda$  کے ہیں۔ آپ درج ذیل ثابت کر سکتے ہیں۔  $\lambda$  ویں وسطی معیار اثر

$$(24.55) E(1) = 1$$

$$(24.56) \mu = E(X)$$

(24.57) 
$$\sigma^2 = E([X - \mu]^2)$$

سوالات

سوال 24.84: مسئله 24.11 ثابت كرير-جواب:

$$\begin{split} \mu &= \int_{-\infty}^{c} t f(t) \, \mathrm{d}t + \int_{c}^{\infty} t f(t) \, \mathrm{d}t \\ &= -\int_{\infty}^{0} (c-x) f(c-x) \, \mathrm{d}x + \int_{0}^{\infty} (c+x) f(c+x) \, \mathrm{d}x = 2c \int_{0}^{\infty} f(c+x) \, \mathrm{d}x = c \end{split}$$
غير مسلس تقسيم کے لئے بھی ثبوت اسی طرح حاصل کیا جا سکتا ہے۔

سوال 24.85: ایک تقشیم کی کثافت  $f(x)=rac{1}{2}e^{-|x|}$  ہے۔اس کی اوسط اور تغیریت تلاش کریں۔  $\mu=0,\sigma^2=2$  جواب:

X سوال X سوال X کی اوسط اور تغیریت تلاش کریں۔ بلا منصوبہ متغیر X سوال 24.86 کیں دیا گیا ہے۔

 $\begin{array}{c} {\rm kth~moment^{100}} \\ {\rm kth~central~moment^{101}} \end{array}$ 

ریں۔ سوال 24.88: سوال 24.86 کے X کا مطابقتی معیاری بلا منصوبہ متغیر تلاش کریں۔  $\frac{x-\frac{4}{3}}{\sqrt{\frac{2}{9}}}$ 

سوال 24.89: مسئلہ 24.12 کو غیر مسلسل صورت کے لئے ثابت کریں۔

سوال 24.90: مسئلہ 24.13 کو مساوات 24.50 اور مساوات 24.51 سے اخذ کریں۔  $c_1=\frac{\mu}{\sigma}$  روب اور مساوات 24.51 میں مساوات 24.51 اور مساوات 24.51 میں مساولت 24.51 میں مساوات 24.51 میں مساولت 24.51 م

سوال 24.91: ایک مخصوص قسم کے ٹائر بلا منصوبہ متغیر X (ہزار کلو میٹر) چلتے ہیں۔ X کی کثافت  $f(x) = \theta e^{-\theta x}$  کی کثافت  $\theta > 0$  مقدار معلوم ہے۔ (الف) ایسے ایک ٹائر  $\theta > 0$  مقدار معلوم ہے۔ (الف) ایسے ایک ٹائر  $\theta > 0$  ہو تب کم سے کم  $\theta = 0.05$  کلومیٹر تک پہنچنے کا احتمال کیا ہو گا؟

سوال 24.93: سوال 24.92 میں اگر کیل کے وتر کا 1 cm سے انحراف 0.06 cm بڑھ جائے تب اس کو عیب دار تصور کیا جاتا ہے۔کتنے فی صد کیل عیب دار ہوں گے؟

X سوال 24.94: ایک پیڑول پمپ کو ہر جمعرات دو پہر کے وقت پیڑول مہیا کیا جاتا ہے۔ فروخت پیڑول کا مجم f(x)=6x(1-x) گی کثافت احمال f(x)=6x(1-x) ورنہ f(x)=6x(1-x) اور تغیریت تلاش کریں۔  $g(x)=\frac{1}{2}$  ورنہ  $g(x)=\frac{1}{2}$  ورنہ  $g(x)=\frac{1}{2}$  ورنہ  $g(x)=\frac{1}{2}$  ورنہ  $g(x)=\frac{1}{2}$  ورنہ ویک جواب:  $g(x)=\frac{1}{2}$ 

سوال 24.95: سوال 24.94 میں پٹرول کی ٹینکی کا حجم کتنا ہو گا اگر ایک ہفتہ میں ٹینکی خالی ہونے کا اخمال % 10 ہو؟

سوال 24.96: مساوات 24.55، مساوات 24.56 اور مساوات 24.57 ثابت كرين-

 $\sigma^2 = E(X^2) - \mu^2$  اور  $E(X - \mu) = 0$  ہوں گے۔  $E(X - \mu) = 0$ 

f(x)=2 ورنہ f(x)=0 کی گافت f(x)=0 کے لئے f(x)=0 ورنہ f(x)=0 عوال 19.49 معیار اثر تلاش کریں۔ سوال 24.97 میں دیے گئے کلیہ سے  $\sigma^2$  حاصل کریں۔  $\sigma^2=\frac{1}{k+2},\ \sigma^2=\frac{1}{k+2}$ 

a سوال E(ag(X)+bh(X))=aE(g(X))+bE(h(X)) بو گا جہاں ہو E(ag(X)+bh(X))=aE(g(X))+bE(h(X)) بو گا جہاں اور b مستقل ہیں۔

 $C_{x}=0$  یر کیساں تقسیم کے معیار اثر تلاش کریں۔  $E(X^{k})=rac{1}{k+1}$  جواب:  $E(X^{k})=rac{1}{k+1}$ 

سوال 24.101: (توچھاپن) عدد  $\gamma = \frac{1}{\sigma^3} E([X-\mu]^3)$  کو X کا توچھاپن  $\gamma = \frac{1}{\sigma^3} E([X-\mu]^3)$  عدد اصطلاح کا جواز پیش کرنے کی خاطر دکھائیں کہ  $\mu$  کے لحاظ سے تشاکلی  $\chi$  کے لئے اگر تیسرا وسطی معیار اثر موجود ہو تب ہے معیار اثر صفر ہو گا۔

سوال 24.102: t=0 کی صورت میں کثافت تقسیم  $f(x)=xe^{-x}$  ورنہ f=0 کی صورت میں کثافت تقسیم کا ترچیاپن تلاش کریں۔  $f(x)=xe^{-x}$  کو ترسیم کریں۔

 $\sigma^2=2, \gamma=rac{4}{2\sqrt{2}}=\sqrt{2}$  پواب: حکمل بالحصص لیں

سوال 24.103: (معيار اثر كا پيدا كار تفاعل) بلا منصوبه غير مسلس با استمراري متغير X كے معيار اثر كا پيدا كار نفاعل درج ذيل كليات ديت بيں

$$G(t)=E(e^{tX})=\sum_{j}e^{tx_{j}}f(x_{j})$$
 of  $G(t)=E(e^{tX})=\int_{-\infty}^{\infty}e^{tx}f(x)\,\mathrm{d}x$ 

جہاں فرض کیا گیا ہے کہ مجموعہ کی علامت کے اندر اور تکمل کی علامت کے اندر تفرق لیا جا سکتا ہے۔ دکھائیں کہ جہاں فرض کیا گیا ہے کہ مجموعہ کی علامت کے لخاظ سے  $G^{(k)}(t)$  ہو گا اور بالخصوص  $G^{(k)}(t)$  ہو گا جہاں  $G^{(k)}(t)$  سے مراد  $G^{(k)}(t)$  کا G کا G وال تفرق ہے۔

 $skewness^{102}$ 

# 24.9 ثنائی، پو نسن، اور بیش ہندسی تقسیم

ہم اب چند مخصوص غیر مسلسل تقسیم پر غور کرتے ہیں جو شاریات کے لئے اہم ہیں۔

ثنائى تقسيم

ہم ایک تجربہ کو n مرتبہ بلا منصوبہ سرانجام دینے میں وقوعہ A کے واقع ہونے کی تعداد سے حاصل ثنائی تقسیم پر غور کرتے ہیں جہاں ایک کوشش میں A کا احمال P(A)=p فرض کیا جائے گا۔ تب ایک کوشش میں پر غور کرتے ہیں جہاں ایک کوشش میں q=1-p ہو گا۔ یہ تجربہ p مرتبہ سرانجام دیتے ہوئے ہم بلا منصوبہ متغیر A

$$X = 3$$
واقع ہونے کی تعداد  $A$ 

(24.58) 
$$\underbrace{AA\cdots A}_{z^{n}/x}\underbrace{BB\cdots B}_{z^{n}/n-x}$$

نظر آئے گا۔ پہاں  $B=A^{C}$  ہے؛ یعنی A واقع نہیں ہوا ہے۔ ہم فرض کرتے ہیں کہ تمام کوششیں بلا منصوبہ ہے یعنی ہے ایک دوسرے پر اثر انداز نہیں ہوتی ہیں۔ تب چونکہ P(A)=p اور P(B)=q ہیں للذا مساوات P(A)=p کا مطابقتی اختال

$$\underbrace{pp\cdots p}_{z^{n}/x}\underbrace{qq\cdots q}_{z^{n}/n-x}=p^{x}q^{n-x}$$



n=5 اور p=10 کے لئے مساوات 24.59میں دی گئی تثنائی تقسیم p=10

(24.59) 
$$f(x) = \binom{n}{x} p^x q^{n-x} \qquad (x = 0, 1, \dots, n)$$

ہو گا جبکہ x کے کسی دوسری قیمت کے لئے f(x) = 0 ہو گا۔ n کو ششوں میں ٹھیک x مرتبہ A واقع ہونا کا احتمال مساوات 24.59 دیتی ہے جہاں ایک کو شش میں A واقع ہونے کا احتمال p ہونا کا احتمال مساوات 24.59 میں دی گئی تقسیم کو ثنائی تقسیم 103 کہتے ہیں۔ A کے واقع ہونے کو کامیابی جبکہ اس کے n=5 نا واقع ہونے کو ناکامی کہتے ہیں۔ p کو ایک کو شش میں کامیابی کا احتمال کہتے ہیں۔ شکل 24.11 میں p اور مختلف p کے لئے مساوات 24.59 ترسیم کیا گیا ہے۔

ثنائی تقسیم کی اوسط (سوال 24.107)

$$(24.60) \mu = np$$

اور تغيريت (سوال 24.107)

$$(24.61) \sigma^2 = npq$$

ہے۔ دھیان رہے کہ p=0.5 پر  $\mu$  کے لحاظ سے تشیم تشاکل ہے۔

 $binomial\ distribution^{103}$ 



p اور n=5 کے لئے مساوات 24.62میں دی گئی یو کئن تقسیم p

يونس تقسيم

الى غير مسلسل تقسيم جس كا تفاعل احمال درج ذيل ہو پوئسن تقسيم 104 كہلاتي 105 ہے۔

(24.62) 
$$f(x) = \frac{\mu^x}{x!} e^{-\mu}$$

 $\mu$  اور مختلف  $\mu$  کے لئے مساوات 24.62 میں دی گئی یونس تقسیم ترسیم کی گئی ہے۔ n=5ایک متناہی قیمت کے قریب تر ہوگی اور ثنائی تقسیم کی  $\mu=n$  ایک متناہی تیمت کے قریب تر ہوگی اور ثنائی تقسیم کی p o 0تحدیدی صورت یو سن تقسیم دیتی ہے۔ یو سن تقسیم کی اوسط س اور تغیریت (سوال 24.108) درج ذیل ہے۔  $\sigma^2 = u$ (24.63)

اکائی دورانیہ (وقت) میں کسی چوک ہے گزرتی گاڑیوں کی تعداد، اکائی لمپائی کے تار میں عیبوں کی تعداد، کاغذ کے اکائی رقبہ میں عیبوں کی تعداد، وغیرہ یونسن تقسیم سے حاصل کیے جاتے ہیں۔

واپیں رکھ کراور واپس نہ رکھ کرنمونے کا حصول۔ بیش ہند سی تقسیم

والیں رکھ کر نمونہ حاصل کرنے میں ثنائی تقسیم (مثال 24.6) اہم ہے۔ مثال کے طور پر ایک ڈیا میں اس ہیں جن میں سے M بیچ عیب دار ہیں۔اگر ہم ڈبے سے ایک بیج بلا منصوبہ نکالیں تب عیب دار بیج کے حصول کا

Poisson distribution 104

<sup>&</sup>lt;sup>105</sup>سميول د نې پوسول

احتمال

$$p = \frac{M}{N}$$

ہو گا۔ یوں واپس رکھ کر حاصل، x پیچوں کے نمونہ میں عیب دار پیچوں کی تعداد x ہونے کا اخمال (مساوات 24.59)

(24.64) 
$$f(x) = {n \choose x} \left(\frac{M}{N}\right)^x \left(1 - \frac{M}{N}\right)^{n-x} \qquad (x = 0, 1, \dots, n)$$

ہو گا۔واپس نہ رکھ کر حاصل نمونہ میں احمال

(24.65) 
$$f(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} \qquad (x = 0, 1, \dots, n)$$

بو گار مساوات 24.65 مين دي گئي تقيم كو بيش بهندسي تقسيم 106 كت 107 بين-

مساوات 24.65 ثابت کرنے کی خاطر ہم دیکھتے ہیں کہ مساوات 24.25 کے تحت

- (الف N اشیاء میں سے N اشیاء کے انتخاب کے N مختلف طریقے ہیں •
- وب) میں سے x عیب دار کے انتخاب کے  $\binom{M}{x}$  مختلف طریقے ہیں، M
- $( \ \ \ \ \ \ \ \ \ \ \ )$  ہنتا ہیں ہے (N-M) ہنتا ہیں ہے (N-M) ہنتا ہیں ہے (N-M) ہنتا ہیں ہمتان ہیں ہے ہیں ہمتان ہوں ہیں ہمتان ہوں ہیں ہمتان ہوں ہمتان ہوں ہمتان ہمتا

اور (+) میں ہر طریقہ کے ساتھ (+) کا ہر طریقہ لے کر، بغیر واپس رکھتے ہوئے (+) میں سے (+) عیب دار کی انتخاب کرتے ہیں انتخاب کرتے ہیں کی طریقے حاصل ہوں گے۔ چونکہ (الف) تمام و توعات کا مجموعہ ہے اور ہم بلا منصوبہ انتخاب کرتے ہیں لہٰذا اس طرح کے ہر طریقہ کا اختال (+) ہوگا۔ یوں مساوات 24.65 ثابت ہوتا ہے۔

بیش ہندسی تقسیم کی اوسط (سوال 24.121)

hypergeometric distribution<sup>106</sup> 1<sup>07</sup> چونکہ اس تشیم کے معدار اثر کے پیداکار نقائل کو ٹیش ہندی تفائل کی صورت ٹیں لکھا ماسکتا ہے۔

اور تغيريت

(24.67) 
$$\sigma^2 = \frac{nM(N-M)(N-n)}{N^2(N-1)}$$

-4

مثال 24.12: واپس رکھ کو اور نا رکھ کو نمونے کا حصول ایک ڈبہ میں 10 تصاویر ہیں جن میں سے 3 عیب دار ہیں۔ہم بلا منصوبہ 2 تصاویر ڈب سے نکالتے ہیں۔بلا منصوبہ منظیر

X=3نمونه میں عیب دار کی تعداد

کا تفاعل احتمال تلاش کریں۔

حل: يبال N-M=7 ، M=3 ، N=10 اور n=2 بين والپن ركھ كر نمونہ حاصل كرتے ہوئے ماوات N-M=3 تحت

$$f(x) = {2 \choose x} \left(\frac{3}{10}\right)^x \left(\frac{7}{10}\right)^{2-x}, \quad f(0) = 0.49, \quad f(1) = 0.42, \quad f(2) = 0.09$$

حاصل ہوتا ہے۔ واپس نہ رکھ کر نمونہ حاصل کرتے ہوئے مساوات 24.65 سے

$$f(x) = \frac{\binom{3}{x}\binom{7}{2-x}}{\binom{10}{2}}, \quad f(0) = f(1) = \frac{21}{45} \approx 0.47, \quad f(2) = \frac{3}{45} \approx 0.07$$

حاصل ہوتا ہے۔

n = 1 کو خواظ ہے n = 1 اور n = 1 بہت بڑی مقدار ہوں تب واپس رکھتے ہوئے اور واپس نہ رکھتے ہوئے واس نہ رکھتے ہوئے حاصل کردہ نمونے تقریباً ایک جیسے ہول گے للذا ایسی صورت میں بیش ہندی تقسیم کی جگہ  $p = \frac{M}{N}$  لیتے ہوئے ثنائی تقسیم استعال کی جاسکتی ہے، جو نسبتاً سادہ تفاعل ہے۔

یوں بہت بڑی آبادی (لامتناہی آبادی) سے، واپس رکھتے ہوئے یا واپس نہ رکھتے ہوئے، نمونہ حاصل کرتے ہوئے شائی تقسیم استعال کی جاسکتی ہے۔

سوالات

سوال 24.104: چار سکے ایک ساتھ اچھالے جاتے ہیں۔بلا منصوبہ متغیر " X =تعداد خط " کا تفاعل اخمال الماث کریں؟ 0 خط، 1 خط، 1 خط، 1 خط اور زیادہ سے زیادہ 3 خط کا اخمال حاصل کریں۔ جواب: 0.0625, 0.25, 0.9375, 0.9375

سوال 24.105: نثانے پر تیر مارنے کا امکان % 10 ہے۔ 10 تیر چلائے جاتے ہیں۔ کم سے کم ایک بار نثانہ لگنے کا اختال کیا ہو گا؟

سوال 24.106: 24 گھنٹوں کے پر کھ میں p=1 امکان ہے کہ ایک خاص قتم کا بلب زائل ہو جائے گا۔ ایسے 10 بلبوں کا ،کوئی بھی بلب خراب ہوئے بغیر ، مسلسل 10 گھنٹے روشنی دینے کا اخمال کیا ہو گا۔ جواب: 90.4% 90.4%

سوال 24.107: مسئلہ ثنائی استعال کرتے ہوئے دکھائیں کہ ثنائی تقسیم کے معیار اثر کا پیدا کار تفاعل (سوال 24.103) درج ذیل ہے اور مساوات 24.60 کو ثابت کریں۔

$$G(t) = \sum_{x=0}^{n} e^{tx} \binom{n}{x} p^{x} q^{n-x} = \sum_{x=0}^{n} \binom{n}{x} (pe^{t})^{x} q^{n-x} = (pe^{t} + q)^{n}$$

سوال 24.108: دکھائیں کہ پوکئن تقسیم کے معیار اثر کا پیدا کار تفاعل درج ذیل ہے اور مساوات 24.63 کو ثابت کریں۔

$$G(t) = e^{-\mu} e^{\mu e^t}$$

سوال 24.109: وکھائیں کہ  $E([X-\mu]^3) = E(X^3) - 3\mu E(X^2) + 2\mu^3$  ہو گا۔اس کو اور سوال 24.109: وکھائیں کہ پوکس تقسیم کا ترچھائین  $\gamma = \frac{1}{\sqrt{\mu}}$  ہو گہتا ہے کہ  $\gamma = \frac{1}{\sqrt{2}}$  کی بڑی قبیت کے لئے یہ تقسیم تقریباً تشاکل ہے (شکل 24.12)۔

سوال 24.110: وکھائیں کہ پوکئن تقسیم کا تفاعل تقسیم  $F(\infty)=1$  کو مطمئن کرتا ہے۔

سوال 24.111: ایک ٹیلیفون تقسیم کار شختی اوسطاً 600 ٹیلیفون کے لئے کافی ہے۔ یہ ایک منٹ میں زیادہ سے زیادہ 10 نئے ٹیلیفون ملا سکتی ہے۔ پو نُسن تقسیم استعال کرتے ہوئے اس بات کا احمال علاش کریں کہ کسی ایک منٹ میں یہ تقسیم کار شختی ناکافی ثابت ہو گا۔

سوال 24.112: ایک کارخانے میں  $\Omega$  50 کے برقی مزاحمت پیدا کیے جاتے ہیں جن میں سے وہ مزاحمت بی 0.2 عیب نصور کیے جاتے ہیں جن کی مزاحمت  $\Omega$  45  $\Omega$  اور  $\Omega$  55 کے آج ہو۔ عیب دار مزاحمت کا احمال  $\Omega$  50 کے ساتھ فروخت کیا جاتا ہے۔ تقسیم پوکس استعال کرتے ہوئے ایک کھیپ میں عیب دار مزاحمت نکلنے کا احمال حاصل کریں۔  $\Omega$  50 جواب:  $\Omega$  100 کے احمال حاصل کریں۔  $\Omega$  50 جواب:  $\Omega$  100 کا حاصل کریں۔

سوال 24.113: فرض کریں کہ ایک مشین کے پیدا کردہ پیچوں میں سے % 3 عیب دار ہوتے ہیں۔ایک ڈیا میں ہے 50 بینے دار بیچ نکنے کا احمال ڈیا میں 50 بیچ بھرے جاتے ہیں۔تقسیم پوکن استعال کرتے ہوئے ایک ڈیا میں x عیب دار بیچ نکنے کا احمال تلاش کریں۔

سوال 24.114: ایک پل سے جمع کے دن صبح 8 تا 10 بج نی منٹ X گاڑیاں گزرتی ہیں۔ فرض کریں X کو پوئس تقییم ظاہر کرتی ہے جس کا اوسط 5 ہے۔ کسی ایک منٹ میں 3 یا 3 سے کم گاڑیاں گزرنے کا احتمال تلاش کریں۔ جواب: 0.265

سوال 24.115: ایک مقناطیسی پٹی کے 100 میٹر لمبائی میں اوسطاً 2 عیب پائے جاتے ہیں۔ 300 میٹر لمبائی میں اوسطاً 2 عیب پائے جاتے ہیں۔ 300 میٹر کمبی پٹی (الف) میں x عیب کا احتمال کیا ہوگا، (ب) بلا عیب ہونے کا احتمال کیا ہوگا؟

سوال 24.116: گئے کے ڈبا میں 20 فتیلہ ہیں جن میں سے 5 عیب دار ہیں۔ اس ڈبا سے بلا منصوبہ 3 فتیے بغیر واپس رکھے بطور نمونہ نکالے جاتے ہیں۔ اس نمونہ میں x عیب دار فتیلے ہونے کا اختال کیا ہوگا؟

سوال 24.117: ایک تقسیم کار 100 قلم کے ڈبوں فروخت کرتا ہے۔وہ اس بات کی ضانت دیتا ہے کہ کسی ایک ڈب میں سے زیادہ سے زیادہ 100 قلم عیب دار ہوں گے۔ایک خریدار ہر ڈب میں سے 10 قلم بغیر واپس رکھے نکال کر پر کھتا ہے۔کوئی بھی قلم عیب دار نہ ہونے کی صورت میں وہ ڈبا خرید لیتا ہے ورنہ وہ ڈب کو نہیں خریدتا۔اس کا کیا احمال ہے کہ ایک ڈب میں 10 عیب دار قلم ہوں (للذا یہ ضانت پر پورا اترتا ہے) اور خریدار اس ڈب کو نہ خریدے؟

سوال 24.118: سوال 24.117 میں کیا احمال ہے کہ ایک ڈب میں 20 عیب دار قلم ہونے کے باوجود خریدار اسے خرید لیتا ہے؟

سوال 24.119: ایک کارخانے میں پیچوں کی پیداوار کی جاتی ہے۔ ہر گھنٹہ بلا منصوبہ n پیچ کا نمونہ حاصل کر کے پر کھا جاتا ہے۔ ایک یا ایک سے زیادہ عیب دار پیچ حاصل ہونے کی صورت میں کام روک کر مشینوں کی کار کردگی تملی بخش بنائی جاتی ہے۔ n کتنا ہو گا اگر n 10 عیب دار پیچ کی صورت میں n 95 احمال ہے کہ کام روکا جائے گا؟

سوال 24.120: 1 سے لے کر 13 تک عدد کو علیحدہ علیحدہ کاغذ پر ککھا جاتا ہے۔ان میں سے بلا منصوبہ تین کاغذ نکالے جاتے ہیں جبکہ ایک شخص بغیر دیکھے تینوں پر لکھے اعداد بتاتا ہے۔ کیا اختال ہے کہ وہ (الف) کوئی بھی درست عدد نہ بتائے، (ب) ایک عدد شمیک بتائے، (پ) دو عدد شمیک بتائے، (ت) تینوں اعداد شمیک بتائے، جواب:  $\frac{1}{280}$ ,  $\frac{30}{280}$ ,  $\frac{30}{280}$ ,  $\frac{30}{280}$ ,  $\frac{30}{280}$ ,  $\frac{30}{280}$ ,  $\frac{30}{280}$ 

سوال 24.121: مساوات 24.66 كو ثابت كرين ـ

سوال 24.122: (متعدد رکنی تقسیم) k باہمی بلا شرکت وقوعات  $A_1, \dots, A_k$  کے اخمال بالترتیب  $p_1 + \dots + p_k = 1$  بین جہاں  $p_1 + \dots + p_k = 1$  ہیں۔ دکھائیں کہ ان میں  $p_1$  کی تعداد  $p_1 + \dots + p_k$  کی تعداد  $p_2 + \dots + p_k$  کی تعداد  $p_1 + \dots + p_k$  کی تعداد  $p_2 + \dots + p_k$ 

$$f(x_1,\dots,x_n) = \frac{n!}{x_1!\dots x_k!}p_1^{x_1}\dots p_k^{x_k}$$

ہو گا جہاں  $x_1+\cdots+x_n=n$  ہو گا جہاں  $x_1+\cdots+x_n=n$  ہو گا جہاں ہو کو متعدد رکنی تقسیم جس کی تفاعل تقسیم درج بالا ہو کو متعدد رکنی تقسیم  $x_1+\cdots+x_n=n$ 

سوال 24.123: برقی مزاحت کی پیداوار میں % 3 کی مزاحت  $R < 198 \Omega$  اور % 5 کی مزاحت  $R > 201 \Omega$  اور  $x_1 \in R < 198 \Omega$  اور  $x_1 \in R > 201 \Omega$  اور  $x_2 \in R > 201 \Omega$  کے نمونہ میں  $x_1 \in R < 198 \Omega$  اور  $x_2 \in R > 201 \Omega$  کے  $x_2 \in R > 201 \Omega$ 

 ${\rm multinomial\ distribution^{108}}$ 

### 24.10 عموى تقسيم

الیی تقسیم جس کی کثافت

(24.68) 
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \qquad (\sigma > 0)$$

ہو کو عمومی نقسیم 109 یا گاوسی تقسیم 110 کہتے ہیں۔اس طرح تقسیم والا بلا منصوبہ متغیر عمومی 111 یا عمومی بانظ ہوا 112 کہلاتا ہے۔ عملی ولچیں کے بہت سارے بلا منصوبہ متغیرات عمومی یا تخییناً عمومی ہیں اور یا ان کا تبادلہ با آسانی عمومی بلا منصوبہ متغیرات میں کیا جا سکتا ہے۔ اس کے علاوہ کئی پیچیدہ تقسیم کو تخییناً عمومی تقسیم سے ظاہر کیا جا سکتا ہے۔شاریاتی پر کھ کے کئی ثبوت میں بھی بیہ تقسیم کردار اداکرتی ہے۔

مساوات 24.68 میں تقسیم کی اوسط  $\mu$  اور اس کا معیاری انحراف  $\sigma$  ہے۔ f(x) کی منحنی  $\mu$  کے لحاظ سے تشاکلی ہے اور اس کو قبوس جرس ہوں  $\mu$  113 میں۔ قوس جرس کو شکل 24.13 میں  $\mu=0$  اور  $\sigma$  کئی قیمتوں کے لئے دکھایا گیا ہے۔ 0  $\mu>0$   $\mu>0$  کے لئے قوس کی شکل تبدیل نہیں ہوتی البتہ ہے  $\mu$  اکائیاں دائیں (ہائیں) منتقل ہوتا ہے۔  $\sigma$  کی قیمت جتنی کم ہو،  $\sigma$   $\mu=0$  پر قوس کی چوٹی اتنی زیادہ بلند ہو گی اور چوٹی کے دونوں اطراف ڈھلوان اتنی زیادہ ہو گی (شکل 24.13) جو تغیریت کے تصور کے عین مطابق ہے۔

مساوات 24.68 سے ہم دیکھتے ہیں کہ عمومی تقسیم کا تقسیمی تفاعل

(24.69) 
$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}(\frac{v-\mu}{\sigma})^2} dv$$

ہو گا۔ یوں مساوات 24.45 سے درج ذیل حاصل ہو گا۔

(24.70) 
$$P(a < X \le b) = F(b) - F(a) = \frac{1}{\sigma \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2}(\frac{v-\mu}{\sigma})^2} dv$$

 ${\rm normal\ distribution^{109}}$ 

Gauss distribution<sup>110</sup>

normal<sup>1</sup>

normally distributed  $^{112}$ 

 $<sup>\</sup>rm bell\ curve^{113}$ 

24.10. نــوى تقــيم



 $\sigma$  اور محتلف  $\mu=0$  اور محتلف  $\mu=0$  اور محتلف  $\mu=0$  اور محتلف  $\mu=0$ 

مساوات 24.69 کا تکمل بنیادی طریقوں سے حاصل کرنا ممکن نہیں ہے البتہ اس کو درج ذیل تکمل کی صورت میں لکھا جا سکتا ہے

(24.71) 
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{u^2}{2}} du$$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{u^2}{2}} \sigma \, \mathrm{d}u$$

 $z=rac{x-\mu}{\sigma}$  عاصل ہو گا جس میں  $\sigma$  کٹ جاتا ہے اور جس کا دایاں ہاتھ مساوات 24.71 دیتا ہے جہاں  $\sigma$  کٹ جاتا ہے اور جس کا دایاں ہاتھ

(24.72) 
$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

اس سے اور مساوات 24.70 سے درج ذیل ایک اہم کلیہ اخذ ہوتا ہے۔

(24.73) 
$$P(a < X \le b) = F(b) - F(a) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

بالخصوص  $\phi(1)-\Phi(-1)$  اور  $\phi(1)=\mu+\sigma$  کی صورت میں دایاں ہاتھ  $\phi(1)=\mu+\sigma$  کے برابر ہے؛  $\phi(1)=\mu+\sigma$  اور  $\phi(1)=\mu+\sigma$  کی صورت میں دایاں ہاتھ  $\phi(1)=\mu+\sigma$  کے برابر ہے، وغیرہ،  $\phi(1)=\mu+\sigma$  کی صورت میں دایاں ہاتھ  $\phi(1)=\mu+\sigma$  کی برابر ہے، وغیرہ،

وغیرہ۔تفاعل  $\Phi(z)$  کی قیمتیں جدول سے دکھتے ہوئے درج ذیل حاصل ہوتا ہے۔

(الف) 
$$P(\mu - \sigma < X \le \mu + \sigma) \approx 68\%$$

(24.74) 
$$(-1) \quad P(\mu - 2\sigma < X \le \mu + 2\sigma) \approx 95.5\%$$

(\_\_) 
$$P(\mu - 3\sigma < X \le \mu + 3\sigma) \approx 99.7\%$$

یوں ہم توقع کرتے ہیں کہ بلا منصوبہ عمومی متغیر X کی بہت ساری قیمتیں درج ذیل طرح بانٹی گئی ہوں گی۔

- (الف) تقریبًا  $\frac{2}{3}$  قیمتیں  $\mu-\sigma$  اور  $\mu+\sigma$  کے جج ہوں گی،
- اور  $\mu + 2\sigma$  اور  $\mu + 2\sigma$  ہوں گی،  $\mu 2\sigma$  قیمتیں 95% (ب) •
- ور  $\mu + 3\sigma$  اور  $3\sigma$  ہوں گی  $\mu 3\sigma$  اور  $99\frac{3}{4}\%$  ہوں گی  $\theta$

جس کو درج ذیل طریقہ سے بھی بیان کیا جا سکتا ہے۔

وہ قیمت جس کی  $\mu$  سے دوری  $\sigma$  سے زیادہ ہو، 8 کو ششوں میں تقریباً 1 مرتبہ واقع ہو گی، جبکہ وہ قیمت جس کی  $\mu$  سے دوری  $2\sigma$  یا  $3\sigma$  یا  $3\sigma$  سے زیادہ ہو، بالترتیب 20 اور 400 کو ششوں میں تقریباً 1 مرتبہ واقع ہو گی۔ یوں عملی طور پر تمام قیمتیں  $3\sigma$  اور  $3\sigma$  اور  $3\sigma$  یائی جائیں گی۔ اس دو اعداد کو تین سگما حدود 400 کہتے ہیں۔

اسی طرح درج ذیل حاصل ہو گا۔

(الف) 
$$P(\mu - 1.96\sigma < X \le \mu + 1.96\sigma) = 95\%$$

(24.75) 
$$(24.75) \qquad P(\mu - 2.58\sigma < X \le \mu + 2.58\sigma) = 99\%$$

(
$$\downarrow$$
)  $P(\mu - 3.29\sigma < X \le \mu + 3.29\sigma) = 99.9\%$ 

درج ذیل مثال ضمیمہ ج میں دیے گیے عموی تقسیم کی جدول کا استعال سمجھنے میں مدد دیں گا۔

سوال 24.124: درج ذیل اختال ضمیمہ ج کی مدد سے تلاش کریں جہاں X معمومی ہے جس کی اوسط 0 اور تغیریت 1 ہے۔

(الف) 
$$P(X \le 2.44)$$
, (ب)  $P(X \le -1.16)$ , (ب)  $P(X \ge 1)$ , (باف)  $P(X \le X \le 10)$ 

three-sigma  $limits^{114}$ 

24.10 نسوى تقسيم 1595

(الف) 0.9927, (ب) 0.1230, (پ) 
$$1 - P(X \le 1) = 1 - 0.8413 = 0.1587$$
, (پ)  $\Phi(10) = 1.0000$  (کیوں),  $\Phi(2) = 0.9772$ ,  $\Phi(10) - \Phi(2) = 0.0228$ 

مثال 24.13: گزشتہ مثال کو دوبارہ حل کریں۔اس مرتبہ فرض کریں کہ X عمومی ہے جس کی اوسط 0.8 اور تغیریت 4 ہے۔ جواب: ضمیمہ جاور مساوات 24.73 استعال کرتے ہوئے درج ذیل حاصل ہو گا۔

(الغن) 
$$F(2.44) = \Phi(\frac{2.44 - 0.80}{2}) = \Phi(0.82) = 0.7939$$

(
$$-$$
)  $F(-1.16) = \Phi(-0.98) = 0.1635$ 

(
$$\downarrow$$
)  $1 - P(X \le 1) = 1 - F(1) = 1 - \Phi(0.1) = 0.4602$ 

(
$$\Box$$
)  $F(10) - F(2) = \Phi(4.6) - \Phi(0.6) = 1 - 0.7257 = 0.2743$ 

مثال 24.14: فرض کریں کہ X عمومی ہے جس کی اوسط 0 اور تغیریت 1 ہے۔اییا متعقل c تالش کریں جو درج ذیل کو مطمئن کرتا ہو۔

(الف) 
$$P(X \ge c) = 10\%$$
, (ب)  $P(X \le c) = 5\%$   
(ب)  $P(0 \le X \le c) = 45\%$ , (ت)  $P(-c \le X \le c) = 99\%$ 

حل: ضممه وسے درج ذیل حاصل ہو گا۔

(الغ) 
$$1 - P(X \le c) = 1 - \Phi(c) = 0.1, \Phi(c) = 0.9, c = 1.282,$$

$$(-)$$
  $c = -1.645,$ 

$$(\mathbf{r})$$
  $\Phi(c) - \Phi(0) = \Phi(c) - 0.5 = 0.45, \Phi(c) = 0.95, c = 1.645,$ 

$$(=)$$
  $c = 2.576$ 

سوال 24.125: فرض کریں کہ X عمومی ہے جس کی اوسط 2 اور تغیریت 0.25 ہے۔الیا c تلاش کریں جو درج ذیل کو مطمئن کرتا ہو۔

(الف) 
$$P(X \ge c) = 0.2$$
, (ب)  $P(-c \le X \le -1) = 0.5$  (ب)  $P(-2 - c \le X \le -2 + c) = 0.9$ , (پ)  $P(-2 - c \le X \le -2 + c) = 99.6\%$ 

حل: ضميمه جسے درج ذيل حاصل ہو گا۔

$$(1-2c) + (1-2c) = 1 - \Phi(\frac{c+2}{0.5}) = 0.2,$$

$$\Phi(2c+4) = 0.8, 2c + 4 = 0.842, c = -1.579$$

$$(1-2) + \Phi(\frac{-1+2}{0.5}) - \Phi(\frac{-c+2}{0.5}) = 0.9772 - \Phi(4-2c) = 0.5,$$

$$\Phi(4-2c) = 0.4772, 4 - 2c = -0.057, c = 2.03$$

$$(1-2) + \Phi(\frac{-2+c+2}{0.5}) - \Phi(\frac{-2-c+2}{0.5})$$

$$= \Phi(2c) - \Phi(-2c) = 0.9, 2c = 1.645, c = 0.823$$

$$(1-2) + \Phi(2c) - \Phi(-2c) = 99.6\%, 2c = 2.878, c = 1.439$$

## اضافی ثبوت

صفحہ 139 پر مسکلہ 2.2 بیان کیا گیا جس کا ثبوت یہاں پیش کرتے ہیں۔

ثبوت: کیتائی (مئله 2.2) تصور کریں که کھلے وقفے I پر ابتدائی قیت مئلہ

$$(1.1) y'' + p(x)y' + q(x)y = 0, y(x_0) = K_0, y'(x_0) = K_1$$

کے دو عدد حل  $y_1(x)$  اور  $y_2(x)$  یائے جاتے ہیں۔ہم ثابت کرتے ہیں کہ  $y_1(x)$ 

$$y(x) = y_1(x) - y_2(x)$$

کمل صفر کے برابر ہے۔ یوں  $y_1(x) \equiv y_2(x)$  ہو گا جو کیتائی کا ثبوت ہے۔

یو نکہ مساوات 1.1 خطی اور متجانس ہے للذا y(x) پر y(x) جمی اس کا حل ہو گا اور چونکہ  $y_1$  اور ونوں یکسال ابتدائی معلومات پر پورا اترتے ہیں للذا الله ورج ذیل ابتدائی معلومات پر پورا اترے گا۔

$$(0.2) y(x_0) = 0, y'(x_0) = 0$$

ہم تفاعل

$$(1.3) z = y^2 + y'^2$$

1598 معیب النصافی ثبوت

اور اس کے تفرق

$$(1.4) z' = 2yy' + 2y'y''$$

پر غور کرتے ہیں۔ تفرقی مساوات 1.1 کو

$$y'' = -py' - qy$$

لکھتے ہوئے اس کو z' میں پر کرتے ہیں۔

$$(1.5) z' = 2yy' + 2y'(-py' - qy) = 2yy' - 2py'^2 - 2qyy'$$

اب چونکه y اور y حقیقی تفاعل بین للذا ہم

$$(y \mp y')^2 = y^2 \mp 2yy' + y'^2 \ge 0$$

لعيني

(1.7) 
$$(1.7) 2yy' \le y^2 + y'^2 = z, -2yy' \le y^2 + y'^2 = z,$$

لکھ سکتے ہیں جہاں مساوات 1.1 کا استعال کیا گیا ہے۔مساوات 1.7-ب کو z-z' کلھے ہوئے مساوات 1.7 کھو سکتے ہیں جہاں مساوات 5.1 کے دونوں حصوں کو z' کی استعال کیا گھا جا سکتا ہے۔ یوں مساوات 1.5 کے آخری جزو کے لئے

$$-2qyy' \le \left| -2qyy' \right| = \left| q \right| \left| 2yy' \right| \le \left| q \right| z$$

کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ ساتھ  $p \leq |p|$  استعال کرتے ہوئے اور مساوات 1.7-الف کو مساوات 1.5 کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ کے جزو میں استعال کرتے ہوئے

$$z' \le z + 2|p|y'^2 + |q|z$$

ماتا ہے۔اب چونکہ  $y'^2 \leq y^2 + y'^2 = z$  ہنتا اس سے

$$z' \leq (1+\big|p\big|+\big|q\big|)z$$

ملتا ہے۔ اس میں 1+|q|+|p|=h کھتے ہوئے

$$(0.8) z' \le hz x \checkmark I$$

حاصل ہوتا ہے۔اسی طرح مساوات 1.5 اور مساوات 7.1 سے درج ذیل بھی حاصل ہوتا ہے۔

(i.9) 
$$-z' = -2yy' + 2py'^2 + 2qyy'$$
$$\leq z + 2|p|z + |q|z = hz$$

مساوات 8. ا اور مساوات 9. ا کے غیر مساوات درج ذیل غیر مساوات کے متر ادف ہیں 
$$z'-hz \leq 0, \quad z'+hz \geq 0$$

جن کے بائیں ہاتھ کے جزو تکمل درج ذیل ہیں۔

 $F_1 = e^{-\int h(x) \, dx}, \qquad F_2 = e^{\int h(x) \, dx}$ 

چونکہ h(x) استمراری ہے للذا اس کا تکمل پایا جاتا ہے۔ چونکہ  $F_1$  اور  $F_2$  مثبت ہیں للذا انہیں مساوات 1.10 کے ساتھ ضرب کرنے سے

 $(z'-hz)F_1 = (zF_1)' \le 0, \quad (z'+hz)F_2 = (zF_2)' \ge 0$ 

حاصل ہوتا ہے۔اس کا مطلب ہے کہ I پر  $zF_1$  بڑھ نہیں رہا اور  $zF_2$  گھٹ نہیں رہا۔مساوات  $zF_1$  تحت  $x \leq x_0$  کی صورت میں  $x \leq x_0$  کی صورت میں

$$(.11) zF_1 \ge (zF_1)_{x_0} = 0, zF_2 \le (zF_2)_{x_0}$$

ہو گا اور اسی طرح  $x \geq x_0$  کی صورت میں

$$(0.12) zF_1 \leq 0, zF_2 \geq 0$$

ہو گا۔اب انہیں مثبت قیتوں F<sub>1</sub> اور F<sub>2</sub> سے تقسیم کرتے ہوئے

$$(0.13)$$
  $z \le 0$ ,  $z \ge 0$   $z \ge 0$   $z \le 1$ 

 $y_1 \equiv y_2$  کی  $y \equiv 0$  پ  $y \equiv 0$  ہاتا ہے جس کا مطلب ہے کہ  $y \equiv 0$  پ  $z = y^2 + y'^2 \equiv 0$  پر  $y \equiv 0$  ماتا ہے جس کا مطلب ہے کہ  $y \equiv 0$  باتا ہے جس کا مطلب ہے کہ  $y \equiv 0$  باتا ہے جس کا مطلب ہے کہ ایک مطلب

1600 صمير المنافى ثبوت

# صميمه ب مفيد معلومات

### 1.ب اعلی تفاعل کے مساوات

e = 2.718281828459045235360287471353

(4.1) 
$$e^x e^y = e^{x+y}, \quad \frac{e^x}{e^y} = e^{x-y}, \quad (e^x)^y = e^{xy}$$

قدرتی لوگارهم (شکل 1.ب-ب)

(....) 
$$\ln(xy) = \ln x + \ln y, \quad \ln \frac{x}{y} = \ln x - \ln y, \quad \ln(x^a) = a \ln x$$

$$-\ln x = e^{\ln \frac{1}{x}} = \frac{1}{x} \quad \text{if } e^{\ln x} = x \quad \text{if } e^x$$

 $\log x$  اساس دس کا لوگارهم  $\log_{10} x$  اساس دس کا لوگارهم

(....3)  $\log x = M \ln x$ ,  $M = \log e = 0.434294481903251827651128918917$ 

$$(-.4) \quad \ln x = \frac{1}{M} \log x, \quad \frac{1}{M} = 2.302585092994045684017991454684$$



شكل 1. ب: قوت نمائي تفاعل اور قدرتي لو گار تھم تفاعل



شكل2.ب:سائن نما تفاعل

 $10^{-\log x} = 10^{\log x} = 10^{\log \frac{1}{x}} = \frac{1}{x}$  اور  $10^{\log x} = 10^{\log x}$  کیاں۔  $10^{\log x} = 10^{\log x}$  کیاں۔

سائن اور کوسائن تفاعل (شکل 2.ب-الف اور ب)۔ احصائے کملات میں زاویہ کو ریڈئیں میں ناپا جاتا ہے۔ یوں  $\sin x$   $\sin x$   $\sin x$  کا دور کی عرصہ  $\sin x$  ہو گا۔  $\sin x$  طاق ہے لینی  $\sin x$   $\sin x$  و گا جبکہ  $\cos x$  منت ہے لینی  $\cos x$  موگا۔  $\cos x$ 

 $1^{\circ} = 0.017453292519943 \text{ rad}$   $1 \text{ radian} = 57^{\circ} 17' 44.80625'' = 57.2957795131^{\circ}$   $\sin^{2} x + \cos^{2} x = 1$ 

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \sin(x - y) = \sin x \cos y - \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$
$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$(-.7) \sin 2x = 2\sin x \cos x, \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin x = \cos\left(x - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - x\right)$$

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2} - x\right)$$

$$(-.9) \sin(\pi - x) = \sin x, \cos(\pi - x) = -\cos x$$

(-.10) 
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\sin x \sin y = \frac{1}{2} [-\cos(x+y) + \cos(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\sin u + \sin v = 2\sin\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos v - \cos u = 2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$$

(...13) 
$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x \mp \delta)$$
,  $\tan \delta = \frac{\sin \delta}{\cos \delta} = \pm \frac{B}{A}$ 

(ب.14) 
$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\sin(x \mp \delta)$$
,  $\tan \delta = \frac{\sin \delta}{\cos \delta} = \mp \frac{A}{B}$ 

### ٹینجنٹ، کوٹینجنٹ، سیکنٹ، کوسیکنٹ (شکل 3.ب-الف، ب)

$$(-.15) \tan x = \frac{\sin x}{\cos x}, \cot x = \frac{\cos x}{\sin x}, \sec x = \frac{1}{\cos x}, \csc = \frac{1}{\sin x}$$

$$(-.16) \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$



شكل 3.ب: ٹىنجنٹ اور كو ٹىنجنٹ

بذلولي تفاعل (بذلولي سائن sin hx وغيره مشكل 4.ب-الف، ب)

$$\sinh x = \frac{1}{2}(e^x - e^{-x}), \quad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

$$\cosh x + \sinh x = e^x, \quad \cosh x - \sinh x = e^{-x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

(-.19) 
$$\sinh^2 = \frac{1}{2}(\cosh 2x - 1), \quad \cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$$

$$\sinh(x \mp y) = \sinh x \cosh y \mp \cosh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$

(21) 
$$\tanh(x \mp y) = \frac{\tanh x \mp \tanh y}{1 \mp \tanh x \tanh y}$$

گیما نفاعل (شکل 5.ب) کی تعریف درج زیل کمل ہے 
$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} \, \mathrm{d}t \qquad (\alpha>0)$$





(ب) تفوس خط x tanh ع جبكه نقطه دار خط coth x ہے۔

(الف) تھوس خط sinh x ہے جبکہ نقطہ دار خط cosh x ہے۔

شكل 4.ب: ہذلولی سائن، ہذلولی تفاعل۔

جو صرف مثبت ( $\alpha>0$ ) کے لئے معنی رکھتا ہے (یا اگر ہم مخلوط  $\alpha$  کی بات کریں تب ہے  $\alpha$  کی ان قیمتوں کے لئے معنی رکھتا ہے جن کا حقیقی جزو مثبت ہو)۔ حکمل بالحصص سے درج ذیل اہم تعلق حاصل ہوتا ہے۔

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

مساوات 22.ب سے  $\Gamma(1)=1$  ملتا ہے۔ یوں مساوات 23.ب استعال کرتے ہوئے  $\Gamma(2)=1$  حاصل ہوگا جے دوبارہ مساوات 23.ب میں استعال کرتے ہوئے  $\Gamma(3)=2\times1$  ملتا ہے۔ای طرح بار بار مساوات 23.ب استعال کرتے ہوئے  $\kappa$  کی کئی بھی عدد صحیح مثبت قیت  $\kappa$  کے لئے درج ذیل حاصل ہوتا ہے۔

$$\Gamma(k+1) = k!$$
  $(k = 0, 1, 2, \cdots)$ 

مساوات 23.ب کے بار بار استعال سے درج ذیل حاصل ہوتا ہے

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)} = \cdots = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$$

جس کو استعال کرتے ہوئے ہم می کی منفی قیمتوں کے لئے گیما تفاعل کی درج ذیل تعریف پیش کرتے ہیں

$$(-.25) \qquad \Gamma(\alpha) = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)} \qquad (\alpha \neq 0, -1, -2, \cdots)$$

جہاں k کی ایسی کم سے کم قیت چی جاتی ہے کہ  $\alpha+k+1>0$  ہو۔ مساوات 22. ب اور مساوات 25. ب مل کر  $\alpha$  کی تمام مثبت قیمتوں اور غیر عددی صحیحی منفی قیمتوں کے لئے گیما تفاعل دیتے ہیں۔



شكل 5.ب: سيما تفاعل

گیما تفاعل کو حاصل ضرب کی حد بھی فرض کیا جا سکتا ہے لینی

$$\Gamma(\alpha) = \lim_{n \to \infty} \frac{n! n^{\alpha}}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n)} \qquad (\alpha \neq 0, -1, \cdots)$$

مساوات 25.ب اور مساوات 26.ب سے ظاہر ہے کہ مخلوط  $\alpha$  کی صورت میں  $\alpha=0,-1,-2,\cdots$  پر علی مساوات 26. میں مساوات کے بیں۔

e کی بڑی قیت کے لئے سیما تفاعل کی قیت کو درج ذیل کلیہ سٹرلنگ سے حاصل کیا جا سکتا ہے جہاں e قدرتی لوگار تھم کی اساس ہے۔

$$\Gamma(\alpha+1) \approx \sqrt{2\pi\alpha} \left(\frac{\alpha}{e}\right)^{\alpha}$$

آخر میں گیما تفاعل کی ایک اہم اور مخصوص (درج ذیل) قیت کا ذکر کرتے ہیں۔

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

نا مكمل گيما تفاعل

$$(-.29) \qquad P(\alpha, x) = \int_0^x e^{-t} t^{\alpha - 1} dt, \quad Q(\alpha, x) = \int_x^\infty e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

(...30) 
$$\Gamma(\alpha) = P(\alpha, x) + Q(\alpha, x)$$

بيئا تفاعل

$$(-.31) B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt (x > 0, y > 0)$$

بیٹا تفاعل کو سیما تفاعل کی صورت میں بھی پیش کیا جا سکتا ہے۔

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

تفاعل خلل(شكل 6.ب)

(-.33) 
$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

ماوات 33.ب کے تفرق  $x=rac{2}{\sqrt{\pi}}e^{-t^2}$  کی مکلارن شکسل

$$\operatorname{erf}' x = \frac{2}{\sqrt{\pi}} \left( x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

کا تکمل لینے سے تفاعل خلل کی تسلسل صورت حاصل ہوتی ہے۔

(...34) 
$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \left( x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

ے۔ مکملہ تفاعل خلل  $\operatorname{erf} \infty = 1$ 

(ب.35) 
$$\operatorname{erfc} x = 1 - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

فرسنل تكملات (شكل 7.س)

(-.36) 
$$C(x) = \int_0^x \cos(t^2) dt, \quad S(x) = \int_0^x \sin(t^2) dt$$



شكل 6. ب: تفاعل خلل بـ



$$1$$
اور  $\frac{\pi}{8}$  اور  $S(\infty)=\sqrt{rac{\pi}{8}}$  اور  $C(\infty)=\sqrt{rac{\pi}{8}}$ 

$$c(x) = \frac{\pi}{8} - C(x) = \int_{x}^{\infty} \cos(t^2) dt$$

$$(-.38) \qquad \qquad s(x) = \frac{\pi}{8} - S(x) = \int_{x}^{\infty} \sin(t^2) dt$$

تكمل سائن (شكل 8.ب)

$$(-.39) Si(x) = \int_0^x \frac{\sin t}{t} dt$$

کے برابر ہے۔ تکملہ تفاعل Si  $\infty = \frac{\pi}{2}$ 

(.40) 
$$\operatorname{si}(x) = \frac{\pi}{2} - \operatorname{Si}(x) = \int_{x}^{\infty} \frac{\sin t}{t} \, \mathrm{d}t$$

complementary functions  $^1$ 



تكمل كوسائن

(i.41) 
$$\operatorname{ci}(x) = \int_{x}^{\infty} \frac{\cos t}{t} \, \mathrm{d}t \qquad (x > 0)$$

تكمل قوت نمائي

تكمل لوگارتهمي

(i.43) 
$$\operatorname{li}(x) = \int_0^x \frac{\mathrm{d}t}{\ln t}$$

ضمیمه *ج* جدول