

Outline

Understanding Kubernetes architecture

- Introduction to Kubernetes
- Kubernetes Architecture
- Start a Single node cluster locally with Docker Desktop for Windows
- Using the Kubernetes dashboard
- Basic Commands of Kubectl

M.Romdhani, 2020

2

Introduction to Kubernetes

3

What is Kubernetes?

Understanding Kubernetes architecture

- Kubernetes is an open source system for managing containerized applications across multiple hosts.
- *
- It provides basic mechanisms for deployment, maintenance, and scaling of applications.
- Kubernetes builds upon a decade and a half of experience at Google running production workloads at scale using a system called Borg, combined with best-of-breed ideas and practices from the community.
 - Created by three Google employees initially during the summer of 2014; grew exponentially and became the first project to get donated to the Cloud Native Computing Foundation (CNCF).
 - Hit the first production-grade version v1.0.1 in **July 2015**. Has continually released a new minor version every three months since v1.2.0 in March 2016. Lately v1.18.0 was released in March 2020

Greek for "pilot" or "Helmsman of a ship". Kubernetes is also the abbreviated with K8S.

Kubernets Key features

Understanding Kubernetes architecture

- Kubernetes is an orchestration system. It runs containerized applications (such as microservices) on a cluster.
 - It's a sort of meta-process that grants the ability to automate the deployment and scaling of several containers at once
 - These containers act as replicas, and serve to load balance incoming requests. A container orchestrator, then, supervises these groups, ensuring that they are operating correctly.

Kubernetes features

- Scale-in and scale-out workload
- Self-healing
- Service discovery/load balancing
- Automate Rollouts/Rollbacks
- Secret and Configuration management

M.Romdhani, 2020

5

5

Basic things we can ask Kubernetes to do

Understanding Kubernetes

- Suppose we have a 3-tier e-commerce app:
 - web frontend
 - Restful API backend
 - database
 - We have built images for our frontend and backend components
- Let's see how we would deploy our app on Kubernetes!
 - Start 5 containers using image myeshop/api:1.2
 - Place an internal load balancer in front of these containers
 - Start 10 containers using image myeshop/api:1.2
 - Place a public load balancer in front of these containers
 - It's Black Friday (or Christmas), traffic spikes, grow our cluster and add containers
 - New release! Replace my containers with the new image myeshop/webfront:v1.3
 - Autoscaling
 - Advanced rollout patterns (blue/green deployment, canary deployment)

M.Romdhani, 2020

6

Kubernetes Architecture

7

The kubernetes Master Compoents Kubernetes Master Compoents

■ The API Server

■ The apiserver provides a facing REST interface into the kubernetes control plane and datastore. All clients, including nodes, users and other applications interact with kubernetes strictly through the API Server.

Etcd

Etcd acts as the cluster datastore; providing a strong, consistent and highly available key-value store used for persisting cluster state.

■ The Controller Manager

Controller managers are in charge of regulating the state of the system. They implement a set of the control loops that allows for Kubernetes to enforce the target desired state.

The Scheduler

■ The Kubernetes scheduler is in charge of scheduling pods onto nodes. It needs to take into account individual and collective resource requirements, quality of service requirements, ...

M.Romdhani, 2020

10

Node Components

Understanding Kubernetes architecture

Kubelet

- Acts as the node agent responsible for managing pod lifecycle on its host. Kubelet understands YAML container manifests that it can read from several sources:
 - File path
 - HTTP Endpoint
 - HTTP Server mode accepting container manifests over a simple API.

Kube-proxy

- Manages the network rules on each node and performs connection forwarding or load balancing for Kubernetes cluster services.
 - Creates the rules on the host to map and expose services
 - Uses a combination of iptables to manage networking/loadbalancing

Container Runtime

- With respect to Kubernetes, a container runtime is a CRI (Container Runtime Interface) compatible application that executes and manages containers.
 - Containerd (docker)/Cri-o/rkt/Kata (formerly clear and hyper)

M.Romdhani, 2020

.....

11

Kubectl, the CLI

Understanding Kubernetes architecture

12

- The Kubernetes API is RESTful
- kubectl is (almost) the only tool we'll need to talk to Kubernetes
 - It is a rich CLI tool around the Kubernetes API (Everything you can do with kubectl, you can do directly with the API)
 - On our machines, there is a ~/.kube/config file with: the Kubernetes API address, the path to our TLS certificates used to authenticate

M.Romdhani, 2020

How Kubernetes works?

This triggers the ReplicaSet controller in the controller manager, who watches for creations, updates, and deletions of ReplicaSet resources.

WORKER NODE

M.Romdhani, 2020

Understanding Kubernetes architecture

Worker

Worker Node**

WORKER NODE

**M.Romdhani, 2020

Understanding Kubernetes architecture

Worker

Worker**

**Nondhani, 2020

WORKER NODE

**M.Romdhani, 2020

**M.Romdhani, 2020

WORKER NODE

**M.Romdhani, 2020

**M.Romdhani, 2020

WORKER NODE

**M.Romdhani, 2020

WORKER NODE

**M.Romdhani, 2020

**M.Romdhani, 2020

WORKER NODE

**M.Romdhani, 2020

**M.Romdhani, 2020

**M.Romdhani, 2020

WORKER NODE

**M.Romdhani, 2020

*

How Kubernetes works?

This triggers the scheduler who watches for Pods that have not yet been assigned to a worker node.

**CHARGE FOR PODE TO BE TO PODE TO

How Kubernetes works?

This triggers the kubelet on the worker node that the Pods have been scheduled to, who watches for Pods that have been scheduled to its worker node.

**Moreon Control of The Service S

Kubernetes Concepts

Core Concepts

Understanding Kubernetes architecture

Namespace

A logical cluster or environment. Primary method of dividing a cluster or scoping access.

Label

 Key-value pairs that are used to identify, describe and group together related sets of objects. Labels have a strict syntax and available character set

Selector

Selectors use labels to filter or select objects.

M.Romdhani, 2020

21

21

Workload Concepts

Understanding Kubernetes

Pod

A pod is the smallest unit of work or management resource within Kubernetes. It is comprised of one or more containers that share their storage, network, and context (namespace, cgroups, etc).

Replica Set

Method of managing pod replicas and their lifecycle. Their scheduling, scaling, and deletion. Next Generation Replication Controller.

Deployment

A declarative method of managing stateless Pods and Replica Sets. Provides rollback functionality in addition to more granular update control mechanisms.

Service

Services provide a method of exposing and consuming Pod network accessible resources.

M.Romdhani, 2020

What is a Pod?

Understanding Kubernetes

- A Pod is the basic building block of Kubernetes-the smallest and simplest unit in the Kubernetes object model that you create or deploy.
 - A Kubernetes pod is a group of containers that are deployed together on the same host and share storage and networking resources. it's very common to have a group of containers work together to produce Pod
- Containers within a Pod share an IP address and port space, and can find each other via localhost.

an artifact or process a set of work.

- Pods aren't intended to be treated as durable entities. They are ephemeral.
- Pods serve as unit of deployment, horizontal scaling, and replication.

M.Romdhani, 2020

23

23

What is a deployment?

Understanding Kubernetes

ReplicaSets

A ReplicaSet is a set of Pod templates that describes a set of Pod replicas. It uses a template that describes what each Pod must contain. The ReplicaSet ensures that a specified number of Pod replicas are running at any time. As such, it is often used to guarantee the availability of a specified number of identical Pods.

Deployment

- A Deployment provides declarative updates for Pods and ReplicaSets.
- You describe a desired state in a Deployment, and the Deployment Controller changes the actual state to the desired state at a controlled rate. You can define Deployments to create new ReplicaSets, or to remove existing Deployments and adopt all their resources with new Deployments.

Deployment create ReplicaSet 1 rollback rollout ReplicaSet 2

24

M.Romdhani, 2020

Start a Single node cluster locally with Docker Desktop for Windows

29

Kubernetes installation Options

Understanding Kubernetes architecture

- There are many installation options
 - Local installation
 - Managed installation
 - Amazon Elastic Container Service for Kubernetes
 - Azure Kubernetes Service
 - Google Kubernetes Engine
- Local Installation Options on Windows
 - Minikube
 - HyperV not required, unable to support Windows Containers
 - Docker Desktop for Windows
 - HyperV Required, supports Windows containers

Docker Desktop for Windows Community Edition

- Docker Desktop is the fastest and simplest way to get a Kubernetes cluster running on your desktop machine
- It still give the freedom to choose Docker Swarm if you prefer.

M.Romdhani, 2020

30

Installing Docker Desktop/Kubernetes architecture

Enabling Kubernetes:

- Kubernetes can then be enabled by simply clicking "Enable Kubernetes" and then "Apply & Restart".
- This will then download and initialise all the k8s containers required to get a local one node k8s cluster running on your local machine. Go and make a coffee this can take a long time(15–20min)

You can test that k8s is all running by using the kubectl command below.

> kubectl get nodes

NAME STATUS ROLES AGE VERSION docker-desktop Ready master 167m v1.15.5

M.Romdhani, 2020

32

Using the Kubernetes dashboard

33

Basic Commands of Kubectl

Understanding Kubernetes architecture

Kubectl commands format

Use the following syntax to run kubectl commands from your terminal window:

kubectl [command] [TYPE] [NAME] [flags]

- where command, TYPE, NAME, and flags are:
 - command: Specifies the operation that you want to perform on one or more resources, for example create, get, describe, delete.
 - TYPE: Specifies the resource type. Resource types are case-insensitive and you can specify the singular, plural, or abbreviated forms

kubectl get pod pod1

kubectl get pods pod1

kubectl get po pod1

- NAME: Specifies the name of the resource. Names are case-sensitive. If the name is omitted, details for all resources are displayed, for example kubectl det pods.
- flags: Specifies the additional flags, which are either specific for a command or global for kubectl. For example –namespace kube-system
- Some commands, such as get or create, allow you to specify the output format using the -o or --output flag . For example -o json to force json output format

M.Romdhani, 2020

37

Kubectl command examples

Understanding Kubernetes architecture

Getting Information about Cluster

kubect1 version Prints the client and server versions.

kubectl cluster-info Prints information about the control plane and add-ons.

kubectl config get-contexts Displays the list of cluster contexts

Getting information about resources

kubect1 get nodes/pods/deployements/secrets Prints information about resources
kubect1 describe nodes/pods/deployements/secrets Prints detailed information about resources

Creating/Updating a Resource from Manifest

kubect1 create/apply -f my-nginx-deployment.yam1 Creates/Updates resources described in mynginx-deployment.yaml

kubect1 delete -f f my-nginx-deployment.yam1 Deletes resources described in my-nginx-deployment.yaml

Editing resources

kubect1 edit deployment my-nginx Opens NotePad (on the editor configured in EDITOR ou KUBE_EDITOR env variable) with the current state of the resource. After editing and saving the resource will be updated.

Accessing Pod Container Logs

kubectl logs etcd-docker-desktop -n kube-system Prints the log of the etcd pod

M.Romdhani, 2020

38

Understanding Kubernetes

Kubernets manifests examples

The required fields in the .yaml file:

- apiVersion Which version of the Kubernetes API you're using to create this object
- kind What kind of object you want to create
- metadata Data that helps uniquely identify the object, including a name string, UID, and optional namespace
- spec What state you desire for the object

```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
matchLabels:
  app: nginx template:
    metadata:
      labels:
        app: nginx
    spec:
containers:
       - name: nginx
        image: nginx:1.14.2
         - containerPort: 80
```

M.Romdhani, 2020

39

39

Installing Kubernetes Dashboard Vinderstanding Kubernetes Pashboard

To deploy it, run the following command:

- To access Dashboard from your local workstation, run the following command:
 - \$ kubectl proxy
 - It will proxy server between your machine and Kubernetes API server.
- To view the dashboard in the browser, navigate to the following address in the browser of your Master VM:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/

You will then be prompted with this page, to enter the credentials

M.Romdhani, 2020

Understanding Kubernetes architecture

Installing Kubernetes Dashboard

- Create An Authentication Token
 - Create the dashboard service account
 - > kubectl create serviceaccount admin-user -n kubernetes-dashboard
 - Assign the cluster-admin role to the service account
 - > kubectl create clusterrolebinding admin-user --clusterrole=cluster-admin --serviceaccount=kubernetes-dashboard:admin-user
 - List secrets using
 - > kubectl -n kubernetes-dashboard get secret
 - Use kubectl describe to get the access token:
 - > kubectl -n kubernetes-dashboard describe secret admin-user-token-hpz44

M.Romdhani, 2020

41