#### Data mining & Machine Learning

CS 373 Purdue University

Dan Goldwasser dgoldwas@purdue.edu

#### Why is learning possible?

- Learning is removal of remaining uncertainty
  - If we know that the function is a "m-out-of-n",
     data can help find a function from that class
- Finding a good hypothesis class is essential!
  - You can start small, and enlarge it until you can find a hypothesis that fits the data

**Question**: Can there be more than one function that is consistent with the data?

How do you choose between them?

#### KNN analysis

- We discussed the importance of the model space
  - Expressive (we can represent the right model)
  - Constrained (we can search effectively, using available data)
- Let's try to characterize the model space, by looking at the decision boundary
- How would it look if K=1?

We define the model space to be our choice of K.

Does the complexity of the model space increase of decrease with K?



#### KNN analysis

- Which model has a higher K value?
- Which model is more complex?
- Which model is more sensitive to noise?





#### Determining the value of K

- Higher K result in less complex functions (less expressive)
- Lower K values are more complex (more expressive)
  - How can we find the right balance between the two?
- Option 1: Find the K that minimizes the training error.
  - Training error: after learning the classifier, what is the number of errors we get on the training data. Is this a good idea?
  - What will be this value for k=1, k=n, k=n/2?
- Option 2: Find K that minimizes the validation error.
  - Validation error: set aside some of the data (validation) set). what is the number of errors we get on the validation data, after training the classifier.

#### Determining the value of K



In general – using the training error to tune parameters will always result in a more complex hypothesis! (why?)

#### Questions

 Is KNN a supervised or unsupervised learning algorithm?

 We defined learning as search, "where" is the search in KNN?

#### Today's Lecture

# Now that we understand machine hypotheses better, let's go back to hypotheses humans make

- We all see data, all the time.
- We all reach conclusions based on it, all the time.

Can we trust this mechanism?

### Primer on hypotheses



#### What is a hypothesis?

- Hypotheses are tentative statements of the expected relationships between two or more variables
  - Inductive hypotheses are formed through inductively reasoning from many specific observations to tentative explanations (bottom-up)
  - Deductive hypotheses are formed through deductively reasoning implications of theory (top-down)

#### Reasons for using hypotheses

- Provides focus and directs research investigation
- Allows the investigator to confirm or not confirm relationships
- Provides a useful framework for organizing and summarizing results and conclusions

## Stronger

#### Types of hypotheses

#### **Broad categories**

- Descriptive: propositions that describe a characteristic of an object
- Relational: propositions that describe the relationship between 2+ variables
- Causal: propositions that describe the effect of one variable on another

#### Specific characteristics

- Non-directional: a differential outcome is anticipated but the specific nature of it is not known (e.g., the tuning parameter will affect algorithm performance)
- **Directional**: a specific outcome is anticipated (e.g., the use of pruning will increase accuracy of models compared to no pruning)

Descriptive Hypothesis

Non-Directional Relational Hypothesis

Directional Relational Hypothesis

Directional Causal Hypothesis

#### From claims to testable hypotheses

- Ever since 1980, when Ronald Reagan inspired more men than women, the difference in the way men and women vote has been a significant part of American politics.
- **Step 1**: Express data as random variables

X := gender $Y := \% \ voted \ Democrat$ 

- **Step 2**: Restate claim as a hypothesis about the relationship between the random variables, e.g.,
  - (X=male) is associated with smaller Y
- **Step 3**: Determine type of hypothesis (and consider whether you can make it stronger), e.g.,
  - Directional-relational

#### From claims to testable hypotheses

• Ever since 1980, when Ronald Reagan inspired more men than women, the difference in the way men and women vote has been a significant part of American politics.

#### Types of hypotheses:

- Descriptive: Voting practices vary throughout the population (i.e., Y varies).
- Non-directional relational: Voting behavior varies based on gender (i.e., X and Y are associated)
- Directional-relational: Women vote more for democrats (i.e., X=female is associated with larger Y)
- Causal-relational: Women vote more for democrats because they are more likely to be poor (i.e., X=female is associated with larger Y, but if you control for salaries this effect may disappear)

#### Example

- The Princeton researchers say the experiments suggest that high-fructose corn syrup prompts more weight gain than sucrose, at least in rats, even when the animals eat the same number of calories over all.
  - Define the random variables:
  - Descriptive:
  - Non-directional relational:
  - <u>Directional-relational:</u>
  - Causal-relational:

### Decision making

#### Are A and B the same color?



The trick uses the "biases" in the human visual system





#### **Selective Attention Test**

from Simons & Chabris (1999)

#### Heuristics and biases

- Tversky & Kahneman, psychologists, propose that people often do not follow rules of probability when making decisions
- Instead, decision making may be based on heuristics
  - Lowers cognitive load but may lead to systematic errors and biases

Can you find an example of such heuristics?

- Examples:
  - Representativeness heuristic
  - Availability heuristic
  - Confirmation bias
  - Conjunction fallacy (we will not cover this)
  - Numerosity heuristic (we will not cover this)

#### Gambler's fallacy

- Definition: belief that if deviations from expected behavior are observed in repeated independent trials, then future deviations in the opposite direction are then more likely
- This is an example of the representativeness heuristic where the probability of an event is judged by its similarity to the population from which sample is drawn
- The sequence "H T H T T H" is seen as more representative of a prototypical coin sequence. Why?
  - When people are asked to make up random sequences, they tend to make the proportion of H and T closer to 50% than would be expected by random chance
- **T&K interpretation**: people believe that short sequences should be representative of longer ones

## Base Rate Study (Kahneman & Tversky '73)

- Participants told that for a set of 100 people are either:
  - 30% engineers/70% lawyers, or
  - 70% engineers/30% lawyers
- Given: A description of a person Jack, which is representative of a prototypical engineer (e.g., likes carpentry and mathematical puzzles, careful, conservative)
- Question: Is Jack more likely to be a lawyer or engineer?
- Results: Participants in the 30% condition judged Jack just as likely to be an engineer as participants in the 70% condition.

#### Base rate study (cont)

- People use the representative heuristic to make inferences...
  - Inferences is based solely on similarity of target to category members
  - Base rates (70%-30%) are ignored
- ...rather than using formal statistical rules to make inferences
  - Inferences should be based on similarity of target to category members AND base rates (70%-30%)
- Representative heuristic: categorizations made on the basis of similarity between instance and category members

#### Neglecting base rates

- Taxi-cab problem (Tversky & Kahneman '72)
  - 85% of the cabs are Green
  - 15% of the cabs are Blue
  - An accident eyewitness reports a Blue cab
  - But she is wrong 20% of the time.
- What is the probability that the cab is Blue?
  - Participants tend to overestimate probability, most answer 80%
  - They ignore baseline prior probability of blue cabs.

#### A priori (beforehand)

$$P(green) = 0.85$$
 85% 15% P(blue) = 0.15

$$P(seeBlue|blue) = 0.80$$
  
 $P(seeBlue|green) = 0.20$ 

#### After accident (only cars reported as being blue)



#### More on neglecting base rates

How to compute probability

$$\begin{split} P(blue|seeBlue) &= \frac{P(blue \land seeBlue)}{P(seeBlue)} \\ &= \frac{P(seeBlue|blue)P(blue)}{P(seeBlue)} \\ &= \frac{P(seeBlue|blue)P(blue)}{P(seeBlue|blue)P(blue) + P(seeBlue|green)P(green)} \\ &= \frac{0.80 \cdot 0.15}{(0.80 \cdot 0.15) + (0.20 \cdot 0.85)} \\ &= 0.41 \end{split}$$

#### **The Upshot**



#### A Quick Puzzle to Test Your Problem Solving

By DAVID LEONHARDT and YOU JULY 2, 2015

A short game sheds light on government policy, corporate America and why no one likes to be wrong.

#### Here's how it works:

We've chosen a rule that some sequences of three numbers obey — and some do not. Your job is to guess what the rule is.

We'll start by telling you that the sequence 2, 4, 8 obeys the rule:

2 4 8 Obeys the rule

Now it's your turn. Enter a number sequence in the boxes below, and we'll tell you whether it satisfies the rule or not. You can test as many sequences as you want.

#### Enter your first sequence here:



I don't want to play; just tell me the answer.



#### Arthritis study (Redelmeier & Tversky '96)

- Common belief:
  - Arthritis pain is associated with changes in weather
- Experiment:
  - Followed 18 arthritis patients for 15 months
  - 2 x per month assessed: (1) pain and joint tenderness,
     and (2) weather
- Results:
  - No correlation between pain/tenderness and weather
  - Patients saw correlation that did not exist... why?

#### Arthritis study (cont)

- Patients noticed when bad weather and pain cooccurred, but failed to notice when they didn't.
  - Better memory for times that bad weather and pain co-occurred.
  - Worse memory for times when bad weather and pain did not co-occur
- Confirmation bias: People often seek information that confirms rather than disconfirms their original hypothesis

## Estimating probabilities (Tversky & Kahneman '73/'74)

- **Question**: Is the letter **R** more likely to be the 1st or 3rd letter in English words?
- Results: Most said R more probable as 1st letter
- Reality: R appears much more often as the 3rd letter, but it's easier to think of words where R is the 1st letter

#### Estimating probabilities (cont)

- Question: Which causes more deaths in developed countries?
   (a) traffic accidents or (b) stomach cancer
- **Typical guess**: traffic accident = 4X stomach cancer
- Actual: 45,000 traffic, 95,000 stomach cancer deaths in US
- Ratio of newspaper reports on each subject:
   137 (traffic fatality) to 1 (stomach cancer death)
- Availability heuristic: Tendency for people to make judgments of frequency on basis of how easily examples come to mind

#### Pie math



#### Science Confirms: Politics Wrecks Your Ability to Do Math

Farewell, Enlightenment: New research suggests that people even solve math problems differently if their political ideology is at stake.

-By Chris Mooney | Wed Sep. 4, 2013 12:59 PM EDT



A new study finds that even how you solve a difficult math problem can depend on your politics. AlenKadr/Shutterstock

Everybody knows that our political views can sometimes get in the way of thinking clearly. But perhaps we don't realize how bad the problem actually is. According to a <u>new psychology paper</u>, our political passions can even undermine our very basic reasoning skills. More specifically, the study finds that people who are otherwise very good at math may totally flunk a problem that they would otherwise probably be able to solve, simply because giving the right answer goes against their political beliefs.

**Kahan et al.** (2013) "Motivated numeracy and enlightened self-government." *Social Science Research Network*.

1000+ participants were asked about their political views and also asked a series of questions to gauge their mathematical reasoning ability.

Participants were then asked to solve a fairly difficult problem that involved interpreting the results of a (fake) scientific study.

One group was given a problem involving the effectiveness of a new **skin cream**. The other group was given a mathematically similar problem, but the data involved the effectiveness of a **gun control** measure.

What was the result?

Highly numerate people were <u>more</u> <u>susceptible</u> to letting politics skew their reasoning than were those with less mathematical ability.

#### Does this look familiar?



- Economist Dan Arieli showed that we are willing to pay more for a product when something free is involved
  - "we'll throw in X for free, if you buy Y"
- Advertisers make sophisticated use of these biases!

## Relevant TED talks

Informal, but interesting!

- Daniel Kahneman: The riddle of experience vs. memory
- https://www.ted.com/talks/daniel kahneman the rid dle of experience vs memory
- Dan Ariely: Are we in control of our own decisions?
  - https://www.ted.com/talks/dan ariely asks are we in c ontrol of our own decisions

# Interpretation of these findings

- People do not use proper statistical/probabilistic reasoning... instead people use heuristics which can bias decisions
- Heuristics can often be very effective (and efficient) for social inferences and decisionmaking
  - E.g., the book "Simple Heuristics That Make Us Smart" summarizes research by Gigerenzer and Todd
- ... but be aware that heuristics can bias results from exploratory data analysis and other modeling efforts

# Is data the answer?

Well, yes and no...



## Is data the answer?

Data driven analogies between concepts, based on word embedding

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$$

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$$
.

#### Gender stereotype she-he analogies.

| sewing-carpentry    | register-nurse-physician    | housewife-shopkeeper      |
|---------------------|-----------------------------|---------------------------|
| nurse-surgeon       | interior designer-architect | softball-baseball         |
| blond-burly         | feminism-conservatism       | cosmetics-pharmaceuticals |
| giggle-chuckle      | vocalist-guitarist          | petite-lanky              |
| sassy-snappy        | diva-superstar              | charming-affable          |
| volleyball-football | cupcakes-pizzas             | hairdresser-barber        |
|                     |                             |                           |

### Gender appropriate she-he analogies.

| queen-king      | sister-brother                 | mother-father     |
|-----------------|--------------------------------|-------------------|
| waitress-waiter | ovarian cancer-prostate cancer | convent-monastery |

# And now – Diggin' into Data!

# Measurement



Goal: map domain entities to symbolic representations

# What is data?

- Collection of entities and their attributes
- Attribute: property or characteristic of an entity (e.g., eye color, temperature)
- Entity: collection of attributes
   Aka: record, point, case, sample, object, or instance

**Attributes** 

|   | <i></i> |                         |                                |                             |               |                           |                                    |                    | 1                            |
|---|---------|-------------------------|--------------------------------|-----------------------------|---------------|---------------------------|------------------------------------|--------------------|------------------------------|
|   | Name    | Thread<br>pitch<br>(mm) | Minor<br>diameter<br>tolerance | Nominal<br>diameter<br>(mm) | Head<br>shape | Price<br>for 50<br>screws | Available<br>at factory<br>outlet? | Number<br>in stock | Flat or<br>Phillips<br>head? |
|   | M4      | 0.7                     | 4g                             | 4                           | Pan           | \$10.08                   | Yes                                | 276                | Flat                         |
|   | M5      | 0.8                     | 4g                             | 5                           | Round         | \$13.89                   | Yes                                | 183                | Both                         |
|   | M6      | 1                       | 5g                             | 6                           | Button        | \$10.42                   | Yes                                | 1043               | Flat                         |
|   | M8      | 1.25                    | 5g                             | 8                           | Pan           | \$11.98                   | No                                 | 298                | Phillips                     |
|   | M10     | 1.5                     | 6g                             | 10                          | Round         | \$16.74                   | Yes                                | 488                | Phillips                     |
|   | M12     | 1.75                    | 7g                             | 12                          | Pan           | \$18.26                   | No                                 | 998                | Flat                         |
|   | M14     | 2                       | 7g                             | 14                          | Round         | \$21.19                   | No                                 | 235                | Phillips                     |
|   | M16     | 2                       | 8g                             | 16                          | Button        | \$23.57                   | Yes                                | 292                | Both                         |
|   | M18     | 2.1                     | 8g                             | 18                          | Button        | \$25.87                   | No                                 | 664                | Both                         |
|   | M20     | 2.4                     | 8g                             | 20                          | Pan           | \$29.09                   | Yes                                | 486                | Both                         |
|   | M24     | 2.55                    | 9g                             | 24                          | Round         | \$33.01                   | Yes                                | 982                | Phillips                     |
|   | M28     | 2.7                     | 10g                            | 28                          | Button        | \$35.66                   | No                                 | 1067               | Phillips                     |
|   | M36     | 3.2                     | 12g                            | 36                          | Pan           | \$41.32                   | No                                 | 434                | Both                         |
| _ | M50     | 4.5                     | 15g                            | 50                          | Pan           | \$44.72                   | No                                 | 740                | Flat                         |
|   |         |                         |                                |                             |               |                           |                                    |                    |                              |

# Hierarchy of measurements



## Discrete and continuous attributes

#### Discrete

- Has only a finite or countably infinite set of values
- Examples: zip codes, set of words in a collection of documents
- Often represented as integer variables

#### Continuous

- Has real numbers as attribute values
- Examples: temperature, height
- Continuous attributes are typically represented as floatingpoint variables

# Naming conventions



# Tabular data

 Collection of records, each of which consists of a fixed set of attributes

| Name | Thread<br>pitch<br>(mm) | Minor<br>diameter<br>tolerance | Nominal<br>diameter<br>(mm) | Head<br>shape | Price<br>for 50<br>screws | Available<br>at factory<br>outlet? | Number<br>in stock | Flat or<br>Phillips<br>head? |
|------|-------------------------|--------------------------------|-----------------------------|---------------|---------------------------|------------------------------------|--------------------|------------------------------|
| M4   | 0.7                     | 4g                             | 4                           | Pan           | \$10.08                   | Yes                                | 276                | Flat                         |
| M5   | 0.8                     | 4g                             | 5                           | Round         | \$13.89                   | Yes                                | 183                | Both                         |
| M6   | 1                       | 5g                             | 6                           | Button        | \$10.42                   | Yes                                | 1043               | Flat                         |
| M8   | 1.25                    | 5g                             | 8                           | Pan           | \$11.98                   | No                                 | 298                | Phillips                     |
| M10  | 1.5                     | 6g                             | 10                          | Round         | \$16.74                   | Yes                                | 488                | Phillips                     |
| M12  | 1.75                    | 7g                             | 12                          | Pan           | \$18.26                   | No                                 | 998                | Flat                         |
| M14  | 2                       | 7g                             | 14                          | Round         | \$21.19                   | No                                 | 235                | Phillips                     |
| M16  | 2                       | 8g                             | 16                          | Button        | \$23.57                   | Yes                                | 292                | Both                         |
| M18  | 2.1                     | 8g                             | 18                          | Button        | \$25.87                   | No                                 | 664                | Both                         |
| M20  | 2.4                     | 8g                             | 20                          | Pan           | \$29.09                   | Yes                                | 486                | Both                         |
| M24  | 2.55                    | 9g                             | 24                          | Round         | \$33.01                   | Yes                                | 982                | Phillips                     |
| M28  | 2.7                     | 10g                            | 28                          | Button        | \$35.66                   | No                                 | 1067               | Phillips                     |
| M36  | 3.2                     | 12g                            | 36                          | Pan           | \$41.32                   | No                                 | 434                | Both                         |
| M50  | 4.5                     | 15g                            | 50                          | Pan           | \$44.72                   | No                                 | 740                | Flat                         |

# Document data

 Each document is represented as a term vector, where each attribute records the number of times the term occurs in the document

| Terms         |    |    |    |    |    |    | Do | сите | nts |     |     |     |     |     |
|---------------|----|----|----|----|----|----|----|------|-----|-----|-----|-----|-----|-----|
|               | MI | M2 | M3 | M4 | M5 | M6 | M7 | M8   | M9  | M10 | MII | M12 | M13 | MI4 |
| abnormalities | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1    | 0   | 1   | 0   | 0   | 0   | 0   |
| age           | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0   | 0   | 0   | 1   | 0   | 0   |
| behavior      | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 0    | 0   | 0   | 0   | 0   | 0   | 0   |
| blood         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1    | 0   | 0   | 1   | 0   | 0   | 0   |
| close         | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0    | 0   | 0   | 1   | 0   | 0   | 0   |
| culture       | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 1    | 1   | 0   | 0   | 0   | 0   | 0   |
| depressed     | 1  | 0  | 1  | 1  | 1  | 0  | 0  | 0    | 0   | 0   | 0   | 0   | 0   | 0   |
| discharge     | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 0    | 0   | 0   | 0   | 0   | 0   | 0   |
| disease       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 1   | 0   | 1   | 0   | 0   | 0   |
| fast          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0   | 1   | 0   | 1   | 1   | 1   |
| generation    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 1   | 0   | 0   | 0   | 1   | 0   |
| oestrogen     | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0    | 0   | 0   | 0   | 0   | 0   | 0   |
| patients      | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 1    | 0   | 0   | 0   | 0   | 0   | 0   |
| ргезвиге      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0   | 0   | 1   | 0   | 0   | 1   |
| rats          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0   | 0   | 0   | 0   | 1   | 1   |
| respect       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1    | 0   | 0   | 0   | 1   | 0   | 0   |
| rise          | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0    | 0   | 0   | 0   | 0   | 0   | 1   |
| study         | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0    | 1   | 0   | 0   | 0   | 0   | 0   |

## Transaction data

- Each record corresponds to a transaction involving a set of items
- E.g., in a grocery store purchase, the set of products purchased by a customer constitute a transaction, while the individual products that were purchased are the items

| Table 6.22  | . Example of market bask | cet transactions. |  |  |  |  |
|-------------|--------------------------|-------------------|--|--|--|--|
| Customer ID | Transaction ID           | Items Bought      |  |  |  |  |
| 1           | 0001                     | {a,d,e}           |  |  |  |  |
| 1           | 0024                     | {a,b,c,e}         |  |  |  |  |
| 2           | 0012                     | $\{a,b,d,e\}$     |  |  |  |  |
| 2           | 0031                     | $\{a,c,d,e\}$     |  |  |  |  |
| 3           | 0015                     | {b,c,e}           |  |  |  |  |
| 3           | 0022                     | {b.d.e}           |  |  |  |  |
| 4           | 0029                     | {c,d}             |  |  |  |  |
| 4           | 0040                     | {a,b,c}           |  |  |  |  |
| 5           | 0033                     | {a,d,e}           |  |  |  |  |
| 5           | 0038                     | {a,b,e}           |  |  |  |  |



# Ordered data

Genomic sequence data

# Graph data

Nodes correspond to entities, edges correspond to relationships

 E.g.: Web graph with HTML links, molecules with atoms and bonds



## Measurement



Does the data representation provide the appropriate abstraction for answering questions about the real world?

# Document Data

Document = words frequencies

| Terms         |    |    | Documents |    |    |    |    |    |    |     |     |     |     |    |
|---------------|----|----|-----------|----|----|----|----|----|----|-----|-----|-----|-----|----|
|               | MI | M2 | M3        | M4 | M5 | M6 | M7 | M8 | M9 | M10 | MII | M12 | M13 | MI |
| abnormalities | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 1  | 0  | 1   | 0   | 0   | 0   | 0  |
| age           | 1  | 0  | 0         | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 1   | 0   | 0  |
| behavior      | 0  | 0  | 0         | 0  | 1  | 1  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0  |
| blood         | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 1  | 0  | 0   | 1   | 0   | 0   | 0  |
| close         | 0  | 0  | 0         | 0  | 0  | 0  | 1  | 0  | 0  | 0   | 1   | 0   | 0   | 0  |
| culture       | 1  | 1  | 0         | 0  | 0  | 0  | 0  | 1  | 1  | 0   | 0   | 0   | 0   | 0  |
| depressed     | 1  | 0  | 1         | 1  | 1  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0  |
| discharge     | 1  | 1  | 0         | 0  | 0  | 1  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0  |
| disease       | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0  | 1  | 0   | 1   | 0   | 0   | 0  |
| fast          | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0   | 1   | 1   | 1  |
| generation    | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0  | 1  | 0   | 0   | 0   | 1   | 0  |
| oestrogen     | 0  | 0  | 1         | 1  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0  |
| patients      | 1  | 1  | 0         | 1  | 0  | 0  | 0  | 1  | 0  | 0   | 0   | 0   | 0   | 0  |
| pressure      | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1   | 0   | 0   | 1  |
| rats          | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 1   | 1  |
| respect       | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 1  | 0  | 0   | 0   | 1   | 0   | 0  |
| rise          | 0  | 0  | 0         | 1  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 1  |
| study         | 1  | 0  | 1         | 0  | 0  | 0  | 0  | 0  | 1  | 0   | 0   | 0   | 0   | 0  |

**Task 1**: based on this representation, identify the "hot topics" in the media, in the span of a month.

**Task 2**: based on this representation, identify the general sentiment about the new IPhone in the 12 hours after its release

# Take Home Quiz

- Nodes are users in a social network, edges represent interactions between users.
- Edges are weighted as follows:
  - No interaction: no edge
  - Otherwise edge weight: # interactions.

Will be posted on Piazza.
Please respond (privately) until **Monday 12:30pm** 



# Take Home Quiz

### You should:

- Find one example of a question (task) that can be answered using this representation, and one that cannot.
- How would you modify the network representation to answer the second question?
  - What should you consider when changing the representation? What are the tradeoffs involved?

Will be posted on Piazza.

Please respond (privately) until Monday 12:30pm