PCT/AU2004/000920

CLAIMS:

5

10

20

25

30

- 1. A method of forming a patterned conductive element for an implantable medical device, the method comprising the steps of:
- (i) depositing a supplementary material on a sheet of conductive, parent material to form a sheet of composite material;
- (ii) applying a carrier material over the supplementary material of the composite sheet to form a sheet of semi-finished material;
- (iii) removing portions from at least the conductive parent material of the sheet of semi-finished material in accordance with a desired pattern corresponding to a patterned conductive element to be formed; and
 - (iv) releasing at least the carrier material from the sheet of semi-finished material.
- 2. A method according to claim 1, wherein the step of applying the carrier material to form the sheet of semi-finished material comprises co-rolling.
 - 3. A method according to claim 1 or claim 2, wherein the conductive parent material is biocompatible.
 - 4. A method according to claim 3, wherein the conductive parent material is platinum.
 - 5. A method according to claim 3, wherein the conductive parent material is platinum/iridium.
 - 6. A method according to any one of the preceding claims, wherein the conductive parent material of the sheet of semi-finished material is no greater than 2mm thick before the co-rolling step.
 - 7. A method according to claim 6, wherein the conductive parent material of the sheet of semi-finished material is no greater than 400µm thick before the co-rolling step.
 - 8. A method according to claim 7, wherein the conductive parent material of the sheet of semi-finished material is no greater than 200µm thick before the co-rolling step.

WO 2005/004978 PCT/AU2004/000920

- 9. A method according to claim 8, wherein the conductive parent material of the sheet of semi-finished material is no greater than 150µm thick after the co-rolling step.
- 10. A method according to claim 9, wherein the conductive parent material of the sheet of semi-finished material is no greater than 50µm thick after the co-rolling step.

5

10

15

20

25

30

- 11. A method according to any one of the preceding claims, wherein the supplementary material is selected from any one of the group consisting of TiN, Ta, Nb, Ni and Ir.
- 12. A method according to any one of the preceding claims wherein the carrier material is conductive.
- 13. A method according to claim 12, wherein the carrier material is copper or steel.
- 14. A method according to any one of the preceding claims, wherein the removing step is performed by micro-machining.
- 15. A method according to claim 14, wherein the micromachining includes any one selected from the group consisting of EDM, milling and cutting.
- 16. A method according to any one of the preceding claims, further comprising the step of coating the patterned parent material with a layer of resiliently flexible material before the releasing step.
 - 17. A method according to any one of the preceding claims, wherein the releasing step is by dissolution.
 - 18. A method according to any one of the preceding claims, wherein the patterned clement of parent material after the releasing step, is at least 99.95% pure.

WO 2005/004978 PCT/AU2004/000920

19. A method of making a sheet of scmi-finished material, the method comprising the steps of:

depositing a supplementary material on a platinum sheet to form a composite sheet; and

applying a carrier material over the supplementary material, to form a sheet of semifinished material;

5

10

15

20

30

wherein the platinum sheet on the sheet of semi-finished material has a thickness being no greater than $100\mu m$.

- 20. A method according to claim 19, wherein the platinum sheet on the semi-finished material has a thickness no greater than 40 µm
- 21. A method according to claim 19 or 20, wherein the semi-finished material is no greater than 1000 µm thick.

22. A method according to claim 19, wherein the semi-finished material is no greater than $200\mu m$ thick.

- 23. A method according any one of claims 17 to 20, wherein the supplementary material is any one selected from the group consisting of TiN, Ta, Nb and Ir.
 - 24. A method according to any one of claims 17 to 21, wherein the carrier material is conductive.
- 25. A method according to claim 22, wherein the carrier material is copper or steel.
 - 26. A method according to any one of claims 17 to 19, wherein the platinum sheet on the semi-finished material is at least 99.95% purc.
 - 27. A method of forming an electrode array for an implantable medical device, the method comprising the steps of:
 - (i) preparing a semi-finished sheet by depositing a supplementary material on a platinum sheet and then applying a carrier material over the supplementary material;

WO 2005/004978 PCT/AU2004/000920

- (ii) removing portions from at least the platinum sheet in accordance with a predetermined pattern, the pattern including a linear array of stimulating or recording pads and at least one electrical conduction means extending away from each one of the pads to a location distal from the pad; and
 - (iii) releasing the carrier material.

5

ìO

15

Ī

20

25

30

- 28. A method according to claim 27, wherein the electrical conduction means each have an average width of lcss than 100µm.
- 29. A method according to claim 28, wherein each stimulating or recording pad has an area of less than 0.5mm².
- 30. A method according to claim 29, wherein each electrical conduction means is electrically insulated from its neighbour, the spacing between neighbouring wires being less than 100µm.
- 31. A method according to claim 30, further comprising the step of coating the platinum sheet with a layer of resiliently flexible material before the releasing step.
- 32. A method according to claim 31, wherein the step of applying the carrier material comprises co-rolling.
- 33. A method according to claim 32, wherein the supplementary material is any one selected from the group consisting of TiN, Ta, Nb, Ni and Ir.
 - 34. A method according to claim 33, wherein the carrier material is conductive.
- 35. A method according to claim 34, wherein the carrier material is copper or steel.
- 36. A method according to claim 35, wherein the removing step is performed by any one selected from the group consisting of EDM, milling and cutting.
 - 37. A method according to claim 36, wherein the releasing step is by dissolution.

38. A method according to claim 37, wherein the platinum sheet is at least 99.95% pure.