Super-Resolution using GANs for Medical Imaging

Course Project (CS 736)

By: Ank Kumar Gupta (22B0623) & Veenus (22B0704)

Outline

- Introduction
- Background
- Problem Statement
- Motivation
- Mathematical Formulation
- Model Architecture
- Improved SE Block
- Loss & Optimization
- Training Strategy
- Results
- Conclusion
- References

Introduction

- We have implemented and fine-tuned a GAN based super resolution pipeline (Embedding an improved SE block and fusion loss) to upsample retinal images by 4x, 8x and 16x, achieving good PSNR/SSIM values.
- Motivation:
 - High-resolution detail (microvasculature, soft exudates) is critical for early disease detection in retinal and other medical scans
 - Simple interpolations (bicubic) introduce blurring and lose sharp edges
- Goal: Reviewing and Reproducing the results of "Medical Image SR using Improved GAN" (Bing et. al., IEEE Access 2019).
- Dataset: STARE (397 HR Retinal Images: 377 train/ 20 test)

Background

- Classical SR Approaches (Bicubic): Fast, but smooths out fine details.
- CNN-based SR:
 - SRCNN: 3 conv layers, trains end to end with MSE loss
 - VDSR: 20 layer residual CNN, adds global skip-connection
 - EDSR: Removes batch-norm, uses 64-channel residual blocks
- GAN-based SR:
 - SRGAN: Adds adversarial loss for perceptual realism
 - ESRGAN: Residual-in-residual dense blocks, improved texture fidelity
 - P-GAN: Progressive GAN specifically for medical images
- Squeeze-and-Excitation (SE) Blocks:
 - Recalibrates channel wise features via a learned sigmoid gate over global context
 - Limitation: Original (0, 1) scaling can attenuate features excessively when deeply stacked.

Problem Statement

• Let $I_{HR} \in R^{H \times W \times 3}$ be a ground truth high-resolution (HR) retinal image. We obtain the low-resolution (LR) input by bicubic downsampling:

$$I_{LR} = D_S(I_{HR}) \in R^{H/s \times W/s \times 3}, \quad s \in \{4, 8, 16\}.$$

Where H & W are height and width of the HR image, s is the scaling factor and $D_{\rm S}$ represents downsampling operator.

Our task is to learn a generator G such that

$$I_{SR} = G(I_{LR}) \in R^{H \times W \times 3}$$
, such that $I_{SR} \approx I_{HR}$

- Baseline: Bicubic upsampling of I_{IR} back to R^{H x W x 3}.
- Evaluation Metrics:
 - PSNR (dB): Measures pixel-wise fidelity
 - SSIM(0-1): Quantifies perceptual/structural similarity
 - Visual Inspection to ensure qualitative results

Motivation for the Approach

- Approach: Embedding residual scaled SE blocks into a simplified EDSR-GAN with fusion loss for sharper, detail-preserving medical super-resolution.
- Alone GAN+Pixel wise loss ensures high PSNR but reproduce over-smoothed output, while adversarial GAN loss sharpen textures but also introduce hallucinated artifacts.
- Original SE recalibrates each channel x_c by:

$$y_c = 1/HW \sum_{ij} x_c(i, j), s^{org} = \sigma(W_2 \delta(W_1 y)) \in (0, 1), x_c bar = s_c^{org} x_c$$

- \circ Limitation: $s_c^{org} < 1$ always shrinks feature magnitudes leading to cumulative suppression when many SE blocks are stacked.
- Improved SE introduces a residual connection and allow scale up to 2, which preserves important features rather than attenuating them.
- Simplified EDSR generator strips out batch norm, add global residuals and embeds improved SE blocks to boost trainability and prominent vital anatomical features.
- Fusion loss balances pixel fidelity, perceptual similarity, and adversarial realism thus, preventing both over-smoothing and spurious artifacts.

Mathematical Formulation

Improved SE:

2)

A residual Connection is introduced and scale up to 2 is allowed.

$$S^{imp} = [k_1 \sigma(W_2 \delta(W_1 y)) + k_2 \sigma(y)] \times 2, k_1 = 0.8, k_2 = 0.2, x_c bar = s_c^{org} x_c, s_c^{imp} \in (0, 1)$$

Where $[k_1 \sigma(W_2\delta(W_1y))+k_2\sigma(y)]$ is original SE.

 Benefit: Preserves or even amplifies important features rather than only attenuating them, improving gradient flow in deep SR networks.

Fusion Loss:

```
 \begin{array}{l} \circ \quad L_{Fusion} = L_{VGG} + w_{1}L_{1} + w_{RG}L_{RG} + w_{MSE}L_{MSE} \\ \text{Where, } L_{VGG} = \text{Perceptual Loss (VGG-based) for semantic content} \\ L_{RG} = \text{Relativistic GAN loss for realistic textures} \\ L_{1}, L_{MSE} = \text{Pixel losses for Pixel level fidelity (PSNR)} \\ w_{i} = \text{Scaler Weights (Ensures not a single term dominates training)} \end{array}
```

Model Architecture

- Generator: Simplified EDSR+Improved SE
 - Conv → Improved SE → 16 ResBlocks (Conv-ReLU-Conv-SE)
 - Global residual skip connects input to deep features
 - log₂(s) × [PixelShuffle upsampling + Improved SE]
 - Final Conv outputs the super-resolved image
- Discriminator: Feature Fusion + Improved SE
 - Conv + LeakyReLU → 8 Conv-SE blocks with downsampling
 - Last 3 feature maps fused via spatial alignment
 - Global pooling → 1×1 Convs → Sigmoid output

Fig 1: Generator for SE Model (Adopted from [1])

Fig 2: Discriminator for SE Model (Adopted from [1])

Loss & Optimization

Loss weights (In Fusion Loss):

$$W_1 = 1$$
, $W_{RG} = 0.005$, $W_{MSF} = 0.5$

- Optimizers: Adam (lr = 1e-4, betas=(0.9,0.999), eps=1e-8)
- Training schedule:
 - Pretrain baselines only for inference
 - Train Proposed model: 100 epochs, batch 16 on 1024×1024 patches
 - Augment: random flip & rotations
- Hardware constraint: fits in 15 GB GPU (Colab T4 GPU)

Results

• 4x Upscaling:

o Bicubic:

■ PSNR: 40.03 dB

■ SSIM: 0.9512

o Proposed:

■ PSNR: 42.65 dB

■ SSIM: 0.9567

Results

• 8x Upscaling:

Bicubic:

■ PSNR: 35.41 dB

■ SSIM: 0.9195

o Proposed:

■ PSNR: 39.88 dB

■ SSIM: 0.9330

Results

- 16x Upscaling:
 - Bicubic:

■ PSNR: 31.60 dB

■ SSIM: 0.8915

o Proposed:

■ PSNR: 36.62 dB

■ SSIM: 0.9181

Conclusion

- Key Comparisons:
 - 4x: PSNR Increased by 2.6 dB (42.65 vs. 40.03), SSIM Increased by 0.9567
 - 8×: PSNR Increased by 4.5 dB (39.88 vs. 35.41), SSIM Increased by 0.9330
 - 16×: PSNR Increased by 5.0 dB (36.62 vs. 31.60), SSIM Increased by 0.9181
- Sharper edges are produced using proposed method even at high scaling factors
- Therefore, it can be concluded that Improved SE blocks preserve essential channels in deep networks, and Fusion loss balances fidelity, realism, and perceptual quality.
- Further work can be in direction of integrating more data, and even it can be extended to 3D medical SR for CT/MRI applications.

Reference

[1] Xinyang Bing, Wenwu Zhang, Liying Zheng and Yanbo Zhang, "Medical Image Super-Resolution Using Improved Generative Adversarial Networks," IEEE Access, 10.1109/ACCESS.2019.2944862, Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8854062

[2] Structured Analysis of the Retina. Accessed: 2000. [Online]. Available: http://cecas.clemson.edu/~ahoover/stare/

Thank You!