MP*1

Fiche n°2: Les forces de frottements

Vitesse de glissement du solide S_1 par rapport au solide S_2 en contact ponctuel en I:

$$\vec{v}_g(I) = \vec{v}_{/R}(I\epsilon S_1) - \vec{v}_{/R}(I\epsilon S_2)$$

La réaction se décompose : $\vec{R} = \vec{T} + \vec{N}$

Lois de Coulomb

*La réaction normale de S_2 sur S_1 est dirigée de S_2 vers S_1 .

*Si $\vec{v}_g = \vec{0}$, $\|\vec{T}\| > f_s \|\vec{N}\|$, f_s coefficient de frottement statique

Pour un point matériel ou un solide en translation il s'agit du cas statique.

*Si $\vec{v}_g \neq \vec{0}$, $\|\vec{T}\| = f_d \|\vec{N}\|$, f_d coefficient de frottement dynamique et $\vec{T}.\vec{v}_g < 0$

La plupart du temps on fait l'hypothèse $f_s \sim f_d \sim f$

Travail des forces de frottement

Pour le système { point matériel M ou solide en translation}, $\delta W_{/R}(\vec{R}) = \vec{T} \cdot \vec{v}_{/R}(M) < 0$

Pour le système { solide S_1 + solide S_2 en contact ponctuel en I}, $\delta W(\vec{R}) = \vec{T} \cdot \vec{v}_g(I) < 0$