

Model Development Phase Template

Date	23 september 2024	
Team ID	LTVIP2024TMID25030	
Project Title	FAKE NEWS ANALYSIS IN SOCIAL MEDIA	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:


```
# Initialize and train the model
model = MultinomialNB()
model.fit(X_train, y_train)

# Make predictions
y_pred = model.predict(X_test)

# Accuracy Score
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')

# Classification Report
print(classification_report(y_test, y_pred))

# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title('Confusion Matrix')
plt.show()
```

```
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
# Initialize CountVectorizer
vectorizer = CountVectorizer(stop_words='english')

# Fit and transform the cleaned text data
X = vectorizer.fit_transform(df['cleaned_text'])

# Converting the labels into binary format (1 for FAKE, 0 for REAL)
df['label_num'] = df['label'].apply(lambda x: 1 if x == 'FAKE' else 0)
y = df['label_num']
```


Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Multinomial Naïve Bayes	print(classification_report(y_test, y_pred)) precision recall f1-score support 0 0.92 0.88 0.90 1247 1 0.78 0.85 0.81 610 accuracy 0.87 1857 macro avg 0.85 0.87 0.86 1857 weighted avg 0.88 0.87 0.87 1857		cm = confusion_matrix(y_test, y_pred) Confusion Matrix [[1103 144] [94 516]]