Arhitectura Calculatoarelor

Oprițoiu Flavius flavius.opritoiu@cs.upt.ro

16 Octombrie 2024

Cap. 2 Analiza funcțională și sinteza dispozitivelor de adunare și scădere, binară și zecimală

2.1 - Sumatoare seriale

Sumator serial:

- Adună o pereche de biți ai celor 2 operanzi, în fiecare ciclu de ceas.
- Avantaje:
 - Suprafața ↓; consum de energie ↓; frecvența de operare ↑;
- Dezavantaj:
 - ► Latența rezultatului final ↑;

```
Tipuri de sumatoare seriale : 

LSDF (Least significant digit first)

MSDF (Most significant digit first)
```

LSDF:

Simbolul sumatorului serial:

Propagarea transportului: utilizează starea internă a adunătorului

$$\Rightarrow$$
 2 stări interne $<$ S_0 : fără propagare de carry din rangul anterior S_1 : cu propagare de carry din rangul anterior

Etapele sintezei unui sumator serial

(A) Diagrama de tranziție:

(B) Tabelul de stări:

Cfg. intrare	(x,y)			
Stare	00	01	11	10
S ₀	S_0 0	S_0 1	S_1 0	S_0 1
S ₁	S_0 1	S_1 0	S_1 1	S_1 0

- (C) Codificarea stărilor:
- numărul minim de variabile de stare care pot codifica stările
 - ▶ pentru s stări, numărul minim de variabile de stare este $\lceil log_2s \rceil$
 - ▶ ⇒ pentru sumatorul serial (având s=2), este necesară doar o variabilă de stare ($\lceil log_2 s \rceil = \lceil log_2 2 \rceil = 1$)

 $w < 0 : \operatorname{codifică} S_0$ $1 : \operatorname{codifică} S_1$

(D) Tabel de tranziție:

Cfg. intrare	(x,y)			
Var. stare, w	00	01	11	10
0	0 0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1 0	0 1
1	0 1	1 0	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

- E) Tabele de excitație:
- ▶ dependent de tipul elementelor de stocare utilizate

Q(t+1	1)=D
-------	------

Intrări			leşiri		
W	X	y	D	Z	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

$Q(t+1)=J\cdot\overline{Q(t)}+\overline{K}\cdot Q(t)$						
Ir	Intrări		leşiri			
W	X	y	J	K	Z	
0	0	0	0	*	0	
0	0	1	0	*	1	
0	1	0	0	*	1	
0	1	1	1	*	0	
1	0	0	*	1	1	
1	0	1	*	0	0	
1	1	0	*	0	0	
1	1	1	*	0	1	

(F) Ecuațiile de ieșire și feedback:

Ecuatiile de iesire:

$$Z = \overline{w} \cdot \overline{x} \cdot y + \overline{w} \cdot x \cdot \overline{y} + w \cdot \overline{x} \cdot \overline{y} + w \cdot x \cdot y$$

$$= \overline{w} \cdot (\overline{x} \cdot y + x \cdot \overline{y}) + w \cdot (\overline{x} \cdot \overline{y} + x \cdot y)$$

$$= \overline{w} \cdot (x \oplus y) + w \cdot (\overline{x} \oplus y)$$

$$Z = w \oplus x \oplus y$$

Ecuațiile feedback:

G Sinteza sumatorului serial:

Folosind flip-flop-uri de tip J-K

2.2 - Sumatoare și scăzătoare paralele

2.2.1 - Sumatoare paralele bazate pe propagarea serială a transportului

Ripple Carry Adder (RCA): utilizează celule dedicate de însumare pentru fiecare rang binar

propagarea carry-ului: către poziția mai semnificativ (la stânga) Arhitectură RCA pe n biți:

Simbolul unui sumator RCA pe n biți:

2.2.1- Sumatoare paralele bazate pe propagarea serială a transportului (contin.)

Full Adder Cell (FAC):

► simbol:

 $q_{i+1} \longleftarrow \overbrace{ FAC }_{X_i} \longleftarrow q_i$

		x_i	y _i	
I	Inputs		Outputs	
Xi	Уi	Ci	Zi	c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

tabel de adevăr:

ecuatiile iesirilor:

$$\begin{cases}
z_i = x_i \oplus y_i \oplus c_i \\
c_{i+1} = x_i \cdot y_i + x_i \cdot c_i + y_i \cdot c_i
\end{cases}$$

2.2.1- Sumatoare paralele bazate pe propagarea serială a transportului (contin.)

Sinteza FAC:

(A) porți de tip EXOR, AND, OR:

B porți de tip EXOR, NAND:

2.2.1- Sumatoare paralele bazate pe propagarea serială a transportului (contin.)

Sinteza FAC:

(C) multiplexoare:

D porți de tip NAND:

