IMID 2025

HDR Display Picture Quality Assessment

Dale Stolitzka
Samsung Display America Lab, San Jose, CA

2025 Aug 22

Acknowledgements for contributions to: Farnaz Agahian, PhD and Charles Poynton, PhD

HDR problem statement

H-K effect revisited

Computational model 2D

Volumetric model

Perceptual attribute terminology

Relative scales

• **Lightness** (*J*): brightness of stimulus relative to scene white point.

- Chroma (C): colorfulness relative to scene white point.
- Saturation (s): colorfulness relative to stimulus brightness

Absolute scales

• Brightness (Q): perceived amount of light emitted by stimulus.

• Colorfulness (M): perceived chromaticness of stimulus

Claude Monet, Impression Sunrise. Concept from Margaret Livingstone.

Failure of luminance to predict perceived colors

Claude Monet, *Impression Sunrise*. Concept from Margaret Livingstone.

Helmholtz-Kohlrausch Effect

At constant luminance, perceived brightness increases with increasing colorfulness or saturation

Well reported; only recently have HDR-appropriate models appeared

Decoding subjective data results for one hue (330°)

- Lines connect pairs of stimuli that were matched in brightness by observers (spacing by ΔChroma = 20)
- H-K Effect:

Higher chroma, lower luminance stimuli are equally bright to lower chroma, higher luminance stimuli.

H-K strength ∞ negative slope of loci

Data testing included 3 studies across 171 stimuli; viewed by 50 observers

modCAM16 model with H-K effect

Trends represented by a differential equation:

$$\frac{dJ_A}{dC} = \frac{-a}{J - k}$$

 J_A : Achromatic lightness

C: Chroma

Proposed modCAM16 Model [1,2]

$$J_{HK} = \sqrt{J_A^2 + 66C}$$

 J_{HK} : Perceived lightness

^{1.} Hellwig and Stolitzka, "An Advanced Color Model for Evaluating New Display Technologies, Info. Disp., 39, #3, pp 11-15 (May/June 2023).

^{2.} Hellwig, Stolitzka and Fairchild, "The brightness of chromatic stimuli', Color Res. Appl., 49, #1, pp 113-123 (January 2024).

Hue dependency moved into modCAM16

Hue comparison CIECAM16 vs. modCAM16

• CIECAM16

$$e_t = \frac{1}{4} \cos\left(\frac{\pi}{180}h + 2\right) + 3.8$$

Proposed modCAM16

$$e_t = -0.0582 \cos h - 0.0258 \cos 2h -$$

$$0.1347 \cos 3h + 0.0289 \cos 4h - 0.1457 \sin h -$$

$$0.0308 \sin 2h + 0.0385 \sin 3h + 0.0096 \sin 4h + 1$$

What about perceived brightness rather than lightness

CIECAM16

Average conditions
White background 400 cd/m²

Warning: $Q \propto f(\sqrt{J})$ has an intrinsic perception error

modCAM16 [3] brightness

 modCAM16 conversion from lightness to brightness – linear

modCAM16

CIECAM16 & CIECAM02

$$Q = \left(\frac{2}{c}\right) \left(\frac{J}{100}\right) A_W \qquad Q = \left(\frac{4}{c}\right) \sqrt{\frac{J}{100}} (A_W + 4)$$

with H-K compensation

$$Q_{HK} = \left(\frac{2}{c}\right) \left(\frac{J_{HK}}{100}\right) A_w$$

 Q_{HK} : Perceived brightness

 A_w : Brightness of white

c: Viewing conditions

^{3.} Hellwig, Stolitzka and Fairchild, "Improvements to CIECAM16 and Future Directions", *Proceedings of the 30th Session of the CIE* (Dec 2023).

eXperienced Color Range (XCR)

Example of applying XCR – 2D color attribute class

Accuracy

CIECAM16-based models							
Data set	Proposed	Hellwig '22	Kim '19	CIECAM16			
Current	-0.37	-8.4	-2.3	-12			
High '23	-0.087	-1.1	-3.4	-4.8			
Seong '23	-4.7	-11.2	-21.5	-18.1			
Xie '21	-3.0	-8.4	0.030	-14			
Fairchild '91	5.6	1.2	5.4	-1.9			
Wyszecki '67	3.7	-1.3	3.6	-4.3			
Sanders '63	3.3	-1.6	4.4	-4.3			

Tested in HDR conditions

Data set	Lightness range	White luminance (cd/m²)
Current	30-90	400, 500
High '23	80-100	120
Seong '23	100	30, 95, 300
Xie '21	100	50, 100, 200
Fairchild '91	30-70	382
Wyszecki '67	50	159
Sanders '63	50	100

 $wp = 200 \text{ cd/m}^2$, condition "dark"

XCR showing desaturation

Effect when luminance is increased beyond one full primary toward the white point

 $wp = 200 \text{ cd/m}^2$; Condition "dim"

Volumetric representations

SDR volumetric option using CIELAB

CIELAB (SDR)

Underlying formulae

$$X Y Z \qquad \qquad L^* = 116 f\left(\frac{Y}{Y_n}\right) - 16$$

$$a^* \dots$$

$$b^* \dots$$

- Soluminance is not a good predictor of lightness
- $\otimes \left(\frac{Y}{Y_n}\right) \le 1$; no extension beyond ref. white
- $\triangle E_{ab}$ not competitive with the uniformity in $\triangle E_{00}$ & CAM16-UCS by weighted STRESS performance [4,5]

Color	Color Difference Dataset					
Difference Metric	COM- BVD	RIT- DuPont	Witt	Leeds	BFD	
Proposed J'a'b'	28.2	22.9	32.3	23.8	28.8	
Proposed Q'p't'	28.6	22.5	31.7	24.5	28.5	
CIEDE2000	<u>24.2</u>	<u>19.5</u>	30.1	<u>19.2</u>	<u>23.4</u>	
CAM16- UCS	28.1	20.6	30.9	25.4	28.5	
CIELAB ΔE _{ab}	45.3	33.4	51.9	40.1	44.8	
DIN99	31.8	24.2	36.3	29.8	30.7	

4. C. Li, M. R. Luo, G. Cui, "Colour-Differences Evaluation Using Colour Appearance Models" *Proc.* 11th CIC (2003): 127-131.

5. Hellwig, L., & Fairchild, M.D. (2022). Revising CAM16-UCS. 30th Color and Imaging Conference Final Paper and Proceedings. Scottsdale, Ariz.

IC_TC_P behavior with expanding intensity and color

Larger gamut

BT.2020 1000 cd/m² inner: P3 1000 cd/m² 700 600 300 200 100 -100 200 -200

Larger intensity and gamut

P3 only viewed by IC_TC_P

Higher intensity

Issues also persist

- ΔE_{ITP} recommended by BT.2124 for small color differences
- Lacks increasing colorfulness at low I
- Nevertheless, the plots faithfully show an ability to render colors across a range of intensity

Coincident surfaces

CAM16-UCS J' a' b' side view (sRGB / SDR example)

a' and b' grow relative to J'

CAM16-UCS Q'p't'

Brightness

Underlying formulae

Volumetric lightness and brightness

$$J' = \frac{1.7J}{1 + 0.007J}$$
 $Q' = 0.86 \frac{1.7Q}{1 + 0.007J}$ $p' = M'\cos h; t' = M'\sin h$

Use tools for their intended application

"The characteristic nonlinearities in [J' and Q'] warp the uniform perceptual attribute scales of CIECAM16. The resulting uniform color spaces are thus uniform only in their prediction of color differences, not in their prediction of perceptual attributes."

- Hellwig, Fairchild Revising CAM16-UCS (2022)

Take-aways from volumetric discussion

- CIELAB is not appropriate for HDR displays
 - Not designed to model Hunt, Stevens or H-K Effect
- IC_TC_P also has issues but does show what an HDR display is capable of rendering, even if the observer cannot see the all colors all the time
- CAM16-UCS is quite uniform, a good color space
 - Great job modeling more complex color effects with added modeling parameters
 - Also designed for color difference
 - Warping of the space leads to perceptual inaccuracy not intended for absolute color counting

Conclusions

- Reviewed
 - CIELAB
 - modCAM16 and XCR
 - $-IC_TC_P$
 - CAM16-UCS
- HDR modeling needs to be taken seriously
 - Perceptual testing is a requirement, using a wide variety of chromatic stimuli
 - Industry should question whether volumetric analysis provides "the answer"
- Color scales, like XCR can tell us a lot about HDR displays
- Watch CIE developments, for example:
 - TC1-99 (revitalized) Modelling Two-Dimensional Colour Appearance Scales
 - TC1-100 To recommend CAM16-UCS as the CIE Uniform Colour Space

Thank you

Dale Stolitzka, San Jose, CA USA d.stolitzka@samsung.com