《知识图谱: 概念与技术》

第11讲基于知识图谱的语言理解

肖仰华 复旦大学 shawyh@fudan.edu.cn

本章大纲

- 语言理解概述
- 理解实体
- 理解概念
- 其他理解

概述

Why language understanding is so important?

- Language understanding is one of the important thinking activity
- Language is the tool of thinking
- It is the ability of language speaking and undistinguish us from animals

Enabling machine to understand human language is the essential path to realize intelligent information processing and smart robot brain.

Why language understanding is so hard?

Language is complicated

- Ambiguous, contextual and implicit
- Seemingly infinite number of ways to express the same meaning

Language understanding is difficult

- Grounded only in human cognition
- Needs significant background knowledge

Machine language understanding needs good background knowledge

- Language understanding of machines needs knowledge bases
 - Large scale
 - Semantically rich
 - Friendly structure
- Traditional knowledge representations can not satisfy
 - Ontology
 - Semantic network
 - Texts

Knowledge graph is a good choice

- Knowledge graph is a large scale semantic network consisting of entities/concepts as well as the semantic relationships among them
- Advantage
 - Higher coverage over entities and concept
 - Richer semantic relationships
 - Usually organized as RDF
 - Quality insurance by Crowdsourcing

语言理解

实体理解

实体理解

• 理解指代: 同一个实体存在不同指代 (mention)

Barack Obama
Barack H. Obama
President Obama
Senator Obama
President of the United States

• 实体消歧/实体链接:同一个指代词可能指代多个不同实体 NBA <u>Michael Jordan</u> Machine Learning <u>Michael Jordan</u>

理解实体指代

• 利用在线百科丰富的结构化信息构建实体-指代映射表

实体链接: 问题描述

- 将文本中的实体指代链接到知识库中特定实体
 - 主要问题: 指代词歧义

[李娜]唱的[青藏高原]很好听

李娜(中国女子网球名将)

李娜, 1982年2月26日出生于湖北省武汉市, 中国女子网球运动员。2008年北京奥运会女子单打第四名, 2011年法国网球公开赛、2014年澳大利亚网球公开赛女子单打冠军, 亚洲第一位大满贯女子单打冠军, …

李娜 (流行歌手、 佛门女弟子)

李娜(1963年7月25日 -),原名牛志红,出生于河南省郑州市,毕业于河南省戏曲学校,曾是中国大陆女歌手,出家后法名释昌圣。

毕业后曾从事于豫剧演出 1997年皈依佛门,法号 "昌圣"。…

青藏高原 (亚洲 内陆高原)

青藏高原(Qinghai-Tibet Plateau)是中国 最大、世界海拔最高原,被称为"世界屋 育"、"第三极",南星 喜马拉雅山脉南缘。山 至昆仑山、阿尔金部为 北和城东。 张尔高原和喀喇昆仑山脉,…

青藏高原 (李娜演唱歌曲)

《青藏高原》,发行于 1993年,是中国女高高 歌唱家李娜的代表作品, 由张千一作词作曲,是 1993年电视剧《天路》 的片头曲,后又作为 2005年电视剧《雪域情》 的片尾曲。2001年《青 藏高原》获得首届中国实验

12

知识图谱

.

实体链接: 基本流程

实体链接: 基本模型

• 输入: 文本; 以及上下文已识别指代集 $M = (m_1, m_2, ..., m_n)$

• 输出: 链接实体列表 $\Gamma = (e_1, e_2, ..., e_n)$

• 模型:

$$\Gamma_{\text{best}} = \arg \max_{\Gamma} \left(\sum_{i=1}^{n} \varphi(m_i, e_i) + \psi(\Gamma) \right)$$

局部匹配函数:刻画实体与上下文的匹配程度计算

$$\varphi(m_i, e_i) = \sum_k w_k f_k(e_i, m_i)$$

全局匹配函数: 考虑上下文里实体对之间的语义关联强度

$$\psi(\Gamma) = \sum_{e_i \in \Gamma, e_j \in \Gamma} r(e_i, e_j)$$

实体链接:模型示例

φ 局部特征

- 上下文无关特征
 - 指代与实体名的字符相似度
 - 实体的指代与实体名通常是有一定相 似度的
 - Eg: "周杰伦"与"杰伦"、"周董"
 - 实体流行度(popularity)
 - p(e = 北京(中华人民共和国首都)) >
 - p(e = 北京(北宋时期行政区划))>
 - p(e = 北京(诗歌))
 - 百科锚文本先验概率
 - p(e|A = '李娜')
 - 从百科文本中统计出来,依赖大量锚文本

- 上下文有关特征
 - 文本相似度: 候选实体相关文本与上下文文本的文本相似度
 - Eg,利用候选实体及上下文的词袋向量或概念向量,计算相应的cosine similarity

$$f(m, e) = \frac{\sum_{w \in Context(m) \cup Text(e)} \text{TF}IDF_m(w) \times \text{TF}IDF_e(w)}{\sqrt{\sum_{w \in Context(m)} \text{TF}IDF_m(w)} \times \sqrt{\sum_{w \in Text(e)} \text{TF}IDF_e(w)}}$$

ψ 全局特征

- 候选实体(e1)与上下文实体(e2)之间的语义相关度
- 基于实体在知识图谱中的邻居集合 U_1 和 U_2 进行评估
 - Jaccard相似度: $JACC(u_1, u_2) = \frac{|U_1 \cap U_2|}{|U_2 \cup U_2|}$
 - 互信息: $PMI(u_1, u_2) = \frac{|U_1 \cap U_2|/|W|}{|U_1|/|W|*|U_2|/|W|}$ (联合概率除以各自独立的概率)
 - 规范化谷歌距离: $NGD(u_1, u_2) = 1 \frac{\log(\max(|U_1|, |U_2|)) \log(|U_1 \cap U_2|)}{\log(|W|) \log(\min(|U_1|, |U_2|))}$ (对集合大小偏差做规范化)
 - Adamic Adar 相似度: $AA(u_1, u_2) = \sum_{n \in A \cap B} \log \left(\frac{1}{dearee(n)} \right)$ (对popular的公共邻居进行惩罚)

复杂度

- 最优实体链接问题是NP难问题
- 链接方案 Γ 的搜索空间为 $O(N^2 \times M^N)$
- 近似算法
 - 局部化
 - 图算法

$$\Gamma_{best} = argmax_{\Gamma} \sum_{i=1}^{N} \left(\varphi(m_i, e_i) + \sum_{e_j \in \Gamma} r(e_i, e_j) \right)$$

$$O(M^N) \qquad O(N^2)$$

局部近似计算

• 原目标函数

$$\Gamma_{best} = argmax_{\Gamma} \sum_{i=1}^{N} \left(\varphi(m_i, e_i) + \sum_{e_j \in \Gamma} r(e_i, e_j) \right)$$

• 先只利用局部函数 φ 算出一个局部最优方案

$$\Gamma_{\text{local}} = argmax_{\Gamma} \sum_{i=1}^{\infty} \varphi(m_i, e_i)$$

• 然后新的目标函数

$$\Gamma_{best} \approx argmax_{\Gamma} \sum_{i=1}^{N} \left(\varphi(m_i, e_i) + \sum_{e_j \in \Gamma_{local}} r(e_i, e_j) \right)$$

• 复杂度: *O*(*N*² × *M*)

图算法

- Mention-Entity Graph
 - 点: 指代与实体
 - 边
 - 指代-实体边权: 局部分数 $\varphi(m_i,e_i)$
 - 实体-实体边权: 实体相关度 $r(e_i,e_i)$
- 问题模型
 - Given a mention-entity graph, find a subgraph with maximal accumulative weight
 - Such that contain all mention nodes and exactly one mention-entity edge for each mention
- NP难(Steiner-tree problem): 贪心算法

图修剪算法

- 输入: 实体与指代的加权图
- 输出: 每个指代只有一条边的子图
- 算法流程
 - 对于每个实体,计算它们距离所有指代节点的距离
 - 保留最近的(5×指代数量)个实体, 舍 弃其他的
 - 当图中存在非唯一实体时
 - 删除掉加权度最小的非唯一实体以及相邻边
 - 如果删掉的是加权度最小的点,则将当前剩下的图加入解的集合
 - 在最后解的集合里暴力枚举搜索最优的方案

深度实体链接模型

- 无需人工构造特征
- 能够捕捉隐式特征

• 与传统模型优化目标相同

• $o(\Gamma) = \sum_{i=1}^{n} \varphi(m_i, e_i) + \psi(\Gamma)$

• φ 与 ψ 均由深度方法计算

利用注意力机制,上下文中只有少部分词对消岐有影响

2018/8/30 第 11 章: 基于知识图谱的语言理解 22

概念理解

概念理解Understanding

Single Instance

- Each isA relation is associated with a frequency
 - that the isA pair is observed in corpus
- Typicality
 - How likely a real human will think up with c (or e) given e (or c)

•
$$p(fruit|apple) = \frac{n(apple,fruit)}{n(apple,fruit)+\cdots+n(apple,food)}$$

•
$$p(e|c) = \frac{n(e,c)}{\sum_{e_i} n(e_i,c)}$$

•
$$p(dog|pet) = \frac{n(dog,pet)}{n(dog,pet) + \dots + n(bird,pet)}$$

Single Instance - Basic level categorization

software company

Microsoft

Model:

$$Rep(e,c) = P(c|e) * P(e|c)$$

A process of finding *concept nodes* having shortest expected distance with *e*

Given *e*, the *c* should be its typical concept (shortest distance)

Given *c*, the *e* should be its typical entity (shortest distance)

Verb, adj ··· + instance

Verb、adj ··· + instance

• Understanding Queries: to rank the concepts and find $\arg\max_{c} p(c|t,q)$

The offline semantic network

Random walk with restart [Sun et al., 2005] on the online subgraph

Rich context

Problem:

How do we understand short text?

Example:

- Text Segmentation
- Type Detection
- Instance Disambiguation

Multi instance

Problem:

Head, Modifier, and Constraint Detection in Short Texts

Model1: Non-Constraint Modifiers Mining: Construct Modifier Networks

"Large" and "Top" are pure modifiers

Example: Popular_[modifier] smart cover_[head] iphone 5s_[constraint]

Model2: Head-Constraints Mining: Acquiring Concept Patterns

Understanding a bag of words

- Humans understand a bag of words (a set of entities) at the appropriate concept level
- Problems: find a set of concepts for a bag of words (or a set of entities)

Understanding a bag of words

Challenge

- Coverage: cover as many as possible the tags
- Minimality: use the most specific concepts
- Idea
 - Using the isA taxonomy Probase to get the candidate concepts
 - Using minimal description length to select the best concepts

Applications

- Topic labelling
 - A topic is a bag of words that do not have explicit semantics
 - Conceptual labeling turns each topic into a small set of meaningful concepts

Language understanding

 Verb role labeling, summarize verb eat's direct objects apple, breakfast, pork, beef, into a small set of concepts, such as fruit, meal, meat, bullet

Probase

MDL based conceptual labelling

• Problem Model: Given a bag of tags X, find

$$C^* = \operatorname{argmin} CL(X, C)$$

$$CL(X,C) = L(C) + L(X|C)$$

Minimality: The description length to code concepts

Coverage: The description length to code words by concepts

Improvement

- Noise tolerant
 - Example: {apple, banana, breakfast, dinner, pork, beef, bullet}

$$L^*(x|C) = \min \begin{cases} L(x), & \text{encode directly} \\ \log |C| + L(x|c), & \text{encode using } c \in C \end{cases}$$

- Integrating attribute information
 - Example: {population, president, location}, which triggers the concept country

$$P(c|x) = 1 - (1 - P_e(c|x))(1 - P_a(c|x))$$

其他

Understanding a Concept/Category

What is a **bachelor**?

A man that is unmarried {Type=human, Sex=man, Marriage status=unmarried}

Problem Statement

- Input: a category
- Output: a set of <u>defining features</u>
 - A most specific type and a set of Property-Value pairs.
 - E.g., Category "Jay Chou albums" is defined by type album, and PV feature (Singer, Jay Chou).

• Defining features are assumed to establish the <u>necessary</u> and <u>sufficient</u> conditions to characterize the meaning of the category.

[Multicellular, Eukaryotic, Kingdom Animalia]

Applications: build Semantic memory for machines

Defining Feature Mining

Framework

- A bootstrapping approach
 - Step 1: Using a score function to find DFs of some categories
 - Step 2 & 3: Using a rule-based method to get more DFs of categories
 - Step 4: Populate DBpedia by using DFs of categories discovered so far

Problem Model

Problem model

$$\hat{\mathbf{f}}(c) = \underset{\mathbf{f}}{\operatorname{arg\,max}} score(c, \mathbf{f})$$

• The "goodness" of a feature set **f** to be the DFs for a category **c** is defined as following:

$$P(\mathbf{f}|c) = \frac{\# \text{ of entities in } c \text{ that have } \mathbf{f}}{\# \text{ of entities in } c}$$

$$score(c, \mathbf{f}) = P(\mathbf{f}|c) \times P(c|\mathbf{f})$$

$$P(c|\mathbf{f}) = \frac{\# \text{ of entities in } c \text{ that have } \mathbf{f}}{\# \text{ of entities that have } \mathbf{f}}$$

- Challenge
 - Naïve solution needs to compute the 'goodness' score for each possible feature sets $(2^N 1)$, where N is the number of candidate features
 - Frequent itemset mining is used for pruning

Inference Rule of Defining Features

C	DFs
Films directed by Christopher Nolan	{(Type, Film), (director, Christopher Nolan)}
Films directed by James Cameron	{(Type, Film), (director, James Cameron)}
Films directed by Steven Spielberg	{(Type, Film), (director, Steven Spielberg)}
Films directed by David Fincher	{(Type, Film), (director, David Fincher)}
Films directed by Ben Affleck	{(Type, Film), (director, Ben Affleck)}
C Pattern	DFs Pattern
Films directed by (.*)	{(Type, Film), (director, (.*))}
	rdfs:range _{Person}
Left part of rule	Right part of rule
Films directed by <person></person>	{(Type, Film), (director, <person>)}</person>

Understanding Verb Phrase

E.g. I watched The Amazing Spider-man 2 and thought it's impressive.

How to understand "The Amazing Spider-man 2" using verb "watch"?

Pattern: watch \$movie -> "The Amazing Spider-man 2" is A movie

Linguists [Sinclair 1990] found two principles for verb phrases:

- idiom patterns: Kick the ass/ watch step
- conceptualized patterns: eat fruit (apple/banana etc.) drink beverage (wine, tea etc.)

Model: extract the patterns of verb phrases

API.AI

Applications:

Conceptualization using verbs

The apple(object) he ate(verb) yesterday has a bad taste.

Pattern: eat \$food -> apple isA \$food Parsing: Finding subjective/objective/etc. of a verb

Understanding Verb Phrases

Challenge: trade-off between generality and specificity

Generality: One general pattern is better than several specific pattern.

Specificity: A pattern's assigned entities and the pattern itself should be matched.

By using MDL:

$$\operatorname*{arg\,min} L(f)$$

$$L(f) = \sum_{p}^{f} P(p)L(p) = \sum_{p} P(p)[l(p,f) + r(p,f)]$$

References

- Ratinov, Lev-Arie et al. "Local and Global Algorithms for Disambiguation to Wikipedia." ACL (2011).
- Hoffart, Johannes et al. "Robust Disambiguation of Named Entities in Text." *EMNLP*(2011).
- Ganea, Octavian-Eugen and Thomas Hofmann. "Deep Joint Entity Disambiguation with Local Neural Attention." EMNLP (2017).
- Bo Xu, Chenhao Xie, Yi Zhang, **Yanghua Xiao***, Haixun Wang and Wei Wang, Learning Defining Features for Categories, (*IJCAI 2016*)
- Zhongyuan Wang, Haixun Wang, Jirong Wen and Yanghua Xiao, An Inference Approach to Basic Level of Categorization, (CIKM 2015)
- Xiangyan Sun, Yanghua Xiao*, Haixun Wang, Wei Wang, On Conceptual Labeling of a Bag of Words, (*IJCAI 2015*)
- Wanyun Cui, Xiyou Zhou, Hangyu Lin, Yanghua Xiao*, Seungwon Hwang, Haixun Wang and Wei Wang, Verb Pattern: A Probabilistic Semantic Representation on Verbs, (AAAI 2016)
- Zhongyuan Wang and Haixun Wang, <u>Understanding Short Texts</u>, in the Association for Computational Linguistics (ACL) (Tutorial), August 2016.
- Wen Hua, Zhongyuan Wang, Haixun Wang, Kai Zheng, and Xiaofang Zhou, <u>Understand Short Texts by Harvesting and Analyzing Semantic Knowledge</u>, in *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, Volume: PP, Issue: 99, May 23, 2016.
- Zhiyi Luo, Yuchen Sha, Kenny Zhu, Seung-Won Hwang, and Zhongyuan Wang, <u>Commonsense Causal Reasoning between Short Texts</u>, in *the 15th International Conference on Principles of Knowledge Representation and Reasoning (KR 2016)*, April 2016.
- Peipei Li, Haixun Wang, Kenny Q Zhu, Zhongyuan Wang, Xuegang Hu, and Xindong Wu, <u>A Large Probabilistic Semantic Network Based Approach to Compute Term Similarity</u>, in *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, Volume: 27, Issue: 10, October 1 2015.

References

- Zhongyuan Wang, Haixun Wang, Ji-Rong Wen, and Yanghua Xiao, <u>An Inference Approach to Basic Level of Categorization</u>, in *ACM International Conference on Information and Knowledge Management (CIKM)*, ACM Association for Computing Machinery, October 2015.
- Jianpeng Cheng, Zhongyuan Wang, Ji-Rong Wen, Jun Yan, and Zheng Chen, <u>Contextual Text Understanding in Distributional Semantic Space</u>, in *ACM International Conference on Information and Knowledge Management (CIKM)*, ACM Association for Computing Machinery, October 2015.
- Zhongyuan Wang, Fang Wang, Ji-Rong Wen, and Zhoujun Li, <u>Bring User Interest to Related Entity Recommendation</u>, in *the 4th IJCAI International Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR 2015)*, July 2015.
- Zhongyuan Wang, Kejun Zhao, Haixun Wang, Xiaofeng Meng, and Ji-Rong Wen, <u>Query Understanding through Knowledge-Based Conceptualization</u>, in *IJCAI*, July 2015.
- Wen Hua, Zhongyuan Wang, Haixun Wang, Kai Zheng, and Xiaofang Zhou, <u>Short Text Understanding Through Lexical-Semantic Analysis</u>, in *International Conference on Data Engineering (ICDE)*, April 2015. **Best Paper Award**
- Fang Wang, Zhongyuan Wang, Senzhang Wang, and Zhoujun Li, <u>Exploiting Description Knowledge for Keyphrase Extraction</u>, in *PRICAI*, December 2014.
- Fang Wang, Zhongyuan Wang, Zhoujun Li, and Ji-Rong Wen, Concept-based Short Text Classification and Ranking, in ACM International Conference on Information and Knowledge Management (CIKM), ACM Association for Computing Machinery, October 2014.
- Zhongyuan Wang, Haixun Wang, and Zhirui Hu, <u>Head, Modifier, and Constraint Detection in Short Texts</u>, in *International Conference on Data Engineering (ICDE)*, 2014.
- Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang, <u>A Distributed Graph Engine for Web Scale RDF Data</u>, in *PVLDB*, August 2013.
- Taesung Lee, Zhongyuan Wang, Haixun Wang, and Seung-won Hwang, <u>Attribute Extraction and Scoring: A Probabilistic Approach</u>, in *International Conference on Data Engineering (ICDE)*, , 2013.
- Peipei Li, Haixun Wang, Kenny Q. Zhu, Zhongyuan Wang, and Xindong Wu, Computing Term Similarity by Large Probabilistic is A Knowledge, in ACM International Conference on Information and Knowledge Management (CIKM), 2013.

44