Trabajo regresión lineal múltiple

Estudiantes

Rojas Martinez, Ivan Santiago Hernandez Ruiz, Juan Sebastian Londoño Montoya, Wilson Duván Perez Garcia, Pablo

Docente

Isabel Cristina Ramirez Guevara

Asignatura

Análisis de Regresión

Sede Medellín Enero de 2022

Índice

1.	Base de datos]
	1.1. Breve Descripción de los Datos]
2.	Análisis descriptivo	2
	2.1. Grafico de dispersión con Matriz de Correlaciones y conclusiones	2
3.	Modelo Ajustado de Regresion Lineal múltiple (MRLM)	3
	3.1. Tabla de parámetros ajustados	5
	3.2. Ecuación Ajustada	3
	3.3. Tabla ANOVA	3
	3.4. Prueba de significancia del Modelo	4
	3.5. Coeficiente de determinación R^2 : proporción de la variabilidad total de la respuesta explicada por el modelo y opiniones al respecto	4
4.	Coeficientes de regresión estandarizados	4
	4.1. Tabla de coeficientes estandarizados	4
5.	Significancia individual de los parámetros del modelo	5
	5.1. Tabla de la significancia individual de los parámetros $\dots \dots \dots \dots$	-
	5.2. Pruebas de hipótesis	5
6.	Sumas de cuadrados extras	6
	6.1. Prueba de hipótesis	6
	6.2. Modelo completo y reducido	7
	6.3. Estadístico de prueba	7
	6.4. Tabla del Test lineal general	7
7.	Sumas de cuadrados tipo I y tipo II	7
	7.1. Sumas de cuadrados secuenciales	8
	7.2. Tabla anova	8
	7.3. Sumas de cuadrados parciales	8
	7.4. Tabla Anova	8
	7.5. Prueba de hipótesis	Ć

8.	Res	siduales estudentizados vs. Valores ajustados	9
	8.1.	Gráfico de los residuales estudentizados vs. Valores ajustados	10
9.	Grá	áfico q-norm residuales estudentizados	11
	9.1.	Pruebas de hipótesis	11
10		gnostico sobre la presencia de observaciones atípicas , de balanceo y/o uenciales y conclusiones	12
11	.Eje	rcicio11	15
12	.Eje	rcicio 12	17
	12.1	. Matriz de correlación de las variables predictoras	18
	12.2	2. VIF's	18
	12.3	8. Proporciones de varianza	19
13	.Eje	ricio13	19
	13.1	. Selección según el R^2_{adj}	21
	13.2	2. Selección según el estadístico C_p	22
	13.3	S. Stepwise	23
	13.4	. Selección hacia adelante o forward	30
	13.5	5. Selección hacia atrás o backward	35
14	.Sele	ección del modelo	38
Ír	ıdio	ce de figuras	
Ír	ıdio	ce de cuadros	
	2.	Resumen de los coeficientes	3
	3.	Resumen de los coeficientes	5
	4.	Valores ajustados VS Residuales Estudentizados	12
	6.	Resumen de los coeficientes	21
	8.	Resumen de los coeficientes	23

Se realizará una análisis de regresión lineal múltiple(RLM):

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \varepsilon_i, \ \varepsilon \stackrel{iid}{\sim} N(0, \sigma^2)$$

Con la intención de validar si dicho modelo es adecuado para explicar la posibilidad de ser admitido a una carrera de postgrado en la india teniendo en cuenta determinadas pruebas de aptitud.

1. Base de datos

1.1. Breve Descripción de los Datos

La base de datos disponible en Kaggle corresponde a puntajes de admision creados para la predicción de las admisiones de posgrado en La India. Cuenta con 400 observaciones y 9 variables. De las cuales se consideran los primeros 100 estudiantes y 6 variables de interes por indicación de la docente.

Variables	Descripción
Chance.of.Admit:	Posibilidad de ser admitido. Variable numérica
	continua de 0-1.
GRE Score:	Puntaje de Examen que proporciona a las
	escuelas una medida común para la
	comparación de la capacidad de razonamiento
	verbal, razonamiento cuantitativo, y habilidades
	para pensar y escribir de forma analítica.
	Variable numérica que toma valores de 294 -
	340.
TOEFL Score:	Puntaje en prueba estandarizada de dominio
	del idioma inglés. Variable numérica que toma
	valores del 93 - 120.
SOP:	Puntaje en Ensayo de admisión o solicitud de
	postgrado. Variable numérica que toma valores
	del 1 - 5, tomando el valor medio entre cada par
	de enteros en el intervalo.
LOR:	Puntaje en Carta de recomendación. Variable
	numérica que toma valores del 1.5 - 5, tomando
	el valor medio entre cada par de enteros en el
	intervalo.
CGPA:	Promedio general acumulado en el pregrado.
	Variable numérica que toma valores del 6.8 -
¬	9.8.

Renombrando las variables:

- GRE Score = X_1
- TOEFL Score = X_2
- $SOP = X_3$
- LOR = X_4
- $CGPA = X_5$

2. Análisis descriptivo

2.1. Grafico de dispersión con Matriz de Correlaciones y conclusiones

- Se observan relaciones de interés.
- La variable Chance.of.Admit (Posibilidad de ser admitido) se encuentran altamente correlacionada con las variables GRE.Score, TOFL.Score, SOP, LOR y CGPA con correlaciones de 0.808, 0.780, 0.614, 0.743 y 0.833 respectivamente. Con relaciones del tipo lineales positivas.

- La variable CGPA (Promedio general acumulado en el pregrado) se encuentran altamente correlaciona con las variables GRE.Score, TOFL.Score, SOP y LOR con correlaciones de 0.804, 0.812,0.652y 0.739 respectivamente. Con relaciones del tipo lineales positivas. Esto nos puede indicar redundancia en el modelo o multicolinealidad lo cual validaremos más adelante.
- La variable GRE.Score se encuentra altamente correlacionadas con las variables TOFL.Score y CGPA. Y moderadamente con las variables SOP y LOR.

3. Modelo Ajustado de Regresion Lineal múltiple (MRLM)

3.1. Tabla de parámetros ajustados

Valor P Estimación Error estándar T_0 -1.77230.3007-5.89390.0000 β_0 0.00410.00172.4400 0.0166 β_1 0.0029 0.0031 0.9417 0.3488 β_3 0.0120 0.01191.0098 0.31520.0428 0.01433.0023 0.00340.0263 0.07572.8756 0.0050

Cuadro 2: Resumen de los coeficientes

3.2. Ecuación Ajustada

Con base en la tabla de parámetros estimados se obtiene la ecuación de regresión ajustada:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \hat{\beta}_2 X_{i2} + \dots + \hat{\beta}_5 X_{i5}, \quad i = 1, 2, \dots, 100$$

3.3. Tabla ANOVA

Donde F-value =
$$F_0 = \frac{\text{MSR}}{MSE} \sim F_{5,94}$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FO(GRE.Score, TOEFL.Score, SOP, LOR, CGPA)	5	2.3674478	0.4734896	65.99381	0
Residuals	94	0.6744272	0.0071748	NA	NA

3.4. Prueba de significancia del Modelo

$$\begin{cases} H_0: \beta_1 = \dots = \beta_5 = 0 \\ H_1: \text{Al menos un } \beta_j \neq 0 \end{cases}$$

Analizando el **p-valor** = 2.2e-16 = 0 de la tabla ANOVA y con una confianza del 95% hay evidencia suficiente para rechazar la **hipótesis nula**. Esto quiere decir que el modelo es globalmente significativo y por lo tanto al menos una de las pruebas de aptitud ayuda a explicar la variabilidad de ser admitido a un curso de postgrado.

3.5. Coeficiente de determinación \mathbb{R}^2 : proporción de la variabilidad total de la respuesta explicada por el modelo y opiniones al respecto

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

$$R^{2} = \frac{2.3674478}{2.3674478 + 0.6744272} = 0.7782857$$

El 77.83 % de la variabilidad de la posibilidad de ser admitido es explicada por la relación con las variables GRE.Score, TOEFL.Score, SOP, LOR y CGPA.

4. Coeficientes de regresión estandarizados

4.1. Tabla de coeficientes estandarizados

	Estimación	Limites.2.5	Limites.97.5	Vif	Coef.Std
(Intercept)	-1.7722651	-2.3693009	-1.1752294	0.000000	0.0000000
GRE.Score	0.0041091	0.0007654	0.0074528	5.691210	0.0495542
TOEFL.Score	0.0029116	-0.0032277	0.0090508	5.858052	0.0194023
SOP	0.0120402	-0.0116343	0.0357148	1.928844	0.0119389
LOR	0.0428307	0.0145058	0.0711556	2.519579	0.0405706
CGPA	0.0757081	0.0234330	0.1279833	4.615227	0.0525903

Gracias a esta tabla, se puede deducir con una diferencia en el valor muy pequeña que, las variables que más aportan según el valor de sus coeficientes estandarizados son CGPA y GRE.Score

5. Significancia individual de los parámetros del modelo

5.1. Tabla de la significancia individual de los parámetros

	Estimación	Error estándar	T_0	Valor P
β_0	-1.7723	0.3007	-5.8939	0.0000
β_1	0.0041	0.0017	2.4400	0.0166
β_2	0.0029	0.0031	0.9417	0.3488
β_3	0.0120	0.0119	1.0098	0.3152
β_4	0.0428	0.0143	3.0023	0.0034
β_5	0.0757	0.0263	2.8756	0.0050

Cuadro 3: Resumen de los coeficientes

De la tabla anterior, se puede observar que a nivel marginal, las variables **GRE Score**(β_1), **LOR**(β_4) y **CGPA**(β_5) son significativas en la respuesta, con un nivel de significancia de $\alpha = 0.05$.

Con el estadístico de prueba
$$T_0 = \frac{\hat{\beta}_j}{se(\hat{\beta}_i)} \sim t_{94}$$

Dicha afirmaciones serán contrastadas con las siguientes pruebas de hipótesis y analizando el **p-valor**.

5.2. Pruebas de hipótesis

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$$

Analizando el valor- $\mathbf{p} = \mathbf{0.0166}$ del parámetro β_1 y con una confianza del $\mathbf{95\%}$ hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_1 es significativo. Esto quiere decir que **GRE Score** ayuda a explicar la posibilidad de ser admitido a una carrera de postgrado dado que las demas pruebas de aptitud se encuentran en el modelo.

$$\begin{cases} H_0: \beta_2 = 0 \\ H_1: \beta_2 \neq 0 \end{cases}$$

Analizando el valor-p = 0.3488 del parámetro β_2 y con una confianza del 95 % no hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_2 no es significativo. Esto quiere decir que **TOEFL.Score** no ayuda a explicar la posibilidad de ser admitido a una carrera de postgrado dado que las demas pruebas de aptitud se encuentran en el modelo.

$$\begin{cases} H_0: \beta_3 = 0 \\ H_1: \beta_3 \neq 0 \end{cases}$$

Analizando el valor- $\mathbf{p} = \mathbf{0.3152}$ del parámetro β_3 y con una confianza del $\mathbf{95}$ % no hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_3 no es significativo. Esto quiere decir que \mathbf{SOP} no ayuda a explicar la posibilidad de ser admitido a una carrera de postgrado dado que las demas pruebas de aptitud se encuentran en el modelo.

$$\begin{cases} H_0: \beta_4 = 0 \\ H_1: \beta_4 \neq 0 \end{cases}$$

Analizando el valor- $\mathbf{p}=\mathbf{0.0034}$ del parámetro β_4 y con una confianza del $\mathbf{95\,\%}$ no hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_4 es significativo. Esto quiere decir que \mathbf{LOR} ayuda a explicar la posibilidad de ser admitido a una carrera de postgrado dado que las demas pruebas de aptitud se encuentran en el modelo.

$$\begin{cases} H_0: \beta_5 = 0 \\ H_1: \beta_5 \neq 0 \end{cases}$$

Analizando el **valor-p** = 0.0050 del parámetro β_5 y con una confianza del 95 % hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_5 es significativo. Esto quiere decir que **CGPA** ayuda a explicar la posibilidad de ser admitido a una carrera de postgrado dado que las demas pruebas de aptitud se encuentran en el modelo.

6. Sumas de cuadrados extras

Teniendo en cuenta los resultados anteriores, realice una prueba con sumas de cuadrados extras con test lineal general; especifique claramente el modelo reducido y completo, estadístico de la prueba, su distribución, cálculo de valor P, decisión y conclusión a la luz de los datos. Justifique la hipótesis que desea probar en este numeral.

$$SSR(X_1, X_4, X_5 | X_2, X_3) = SSR(X_1, X_2, X_3, X_4, X_5) - SSR(X_2, X_3)$$

6.1. Prueba de hipótesis

$$\begin{cases} H_0: \beta_2 = 0, \beta_3 = 0 \\ H_1: \beta_2 \neq 0 \lor \beta_3 \neq 0 \end{cases}$$

6.2. Modelo completo y reducido

$$MF: Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_5 X_{i5} + \varepsilon_i, \quad i = 1, 2, \dots, 100$$

 $MR: Y_i = \beta_0 + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i, \quad i = 1, 2, \dots, 100$

6.3. Estadístico de prueba

$$F_0 = \frac{[SSR(X_1, X_4, X_5 | X_2, X_3)]/2}{MSE}$$

$$= \frac{[SSE(X_2, X_3) - SSE(X_1, X_2, X_3, X_4, X_5)]/2}{\frac{SSE(MF)}{n-k-1}} = \frac{[0.6915854 - 0.6744272]/2}{0.6744272/94}$$

$$= 1.1957338$$

6.4. Tabla del Test lineal general

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
96	0.6915854	NA	NA	NA	NA
94	0.6744272	2	0.0171582	1.195733	0.3070405

Con un nivel de significancia de $\alpha = 0.05$ el valor crítico es $f_{0.05,2,94} = 3.093266$.

Como $F_0 = 1.1957338 < f_{0.05,2,94} = 3.093266$, No hay evidencia para rechazar la **hipótesis nula**. por lo tanto $X_2(\mathbf{TOEFL.Score})$ y $X_3(\mathbf{SOP})$ no ayudan a explicar la posibilidad de ser admitido a una carrera de postgrado dado que en el modelo estan presentes **GRE.Score**, **LOR** y **CGPA**.

Tomamos esta prueba de hipótesis con la finalidad de mirar si dicho modelo era significativo globalmente. Con las pruebas de significancia individual de los parámetros y mirando la magnitud de los parámetros estandarizados sabíamos que $X_2(\mathbf{TOEFL.Score})$ y $X_3(\mathbf{SOP})$ no eran significativos y no ayudaban a explicar la posibilidad de ser admitidos a una carrera de postgrado. Dicha hipótesis nos permitió descartar este modelo y de esta manera poder continuar en búsqueda del modelo más adecuado.

7. Sumas de cuadrados tipo I y tipo II

Calcule las sumas de cuadrados tipo I (secuenciales) y tipo II (parciales) ¿Cuál de las variables tienen menor valor en tales sumas? ¿Qué puede significar ello?

7.1. Sumas de cuadrados secuenciales

7.2. Tabla anova

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
GRE.Score	1	1.9853655	1.9853655	276.715340	0.000000
TOEFL.Score	1	0.0559996	0.0559996	7.805092	0.006314
SOP	1	0.1181923	0.1181923	16.473354	0.000102
LOR	1	0.1485633	0.1485633	20.706392	0.000016
CGPA	1	0.0593270	0.0593270	8.268855	0.004989
Residuals	94	0.6744272	0.0071748	NA	NA

SS1

- X_1 $SSR(X_1) = 1.98537$ Dicho modelo tiene mayor **aumento** del **SSR**
- $X_2|X_1 SSR(X_2|X_1) = 0.05600$
- $X_3|X_1, X_2 SSR(X_3|X_1, X_2) = 0.1181923$
- $X_4|X_1, X_2, X_3|(X_4|X_1, X_2, X_3) = 0.14856$
- $X_5|X_1,X_2,X_3,X_4$ $SSR(X_5|X_1,X_2,X_3,X_4)=0.05933$ Dicho modelo tiene la mayor **disminución** del **SSR**. Esto nos indica que es el modelo

7.3. Sumas de cuadrados parciales

7.4. Tabla Anova

	Sum Sq	Df	F value	$\Pr(>F)$
GRE.Score	0.0427161	1	5.9536667	0.0165615
TOEFL.Score	0.0063619	1	0.8867053	0.3487854
SOP	0.0073158	1	1.0196631	0.3151912
LOR	0.0646740	1	9.0141001	0.0034318
CGPA	0.0593270	1	8.2688553	0.0049890
Residuals	0.6744272	94	NA	NA

SS2

- \bullet $X_1|X_2, X_3, X_4, X_5 SSR(X_1|X_2, X_3, X_4, X_5)$
- $X_3|X_1, X_2, X_4, X_5 SSR(X_3|X_1, X_2, X_4, X_5)$
- $X_4|X_1, X_2, X_3, X_5|SSR(X_4|X_1, X_2, X_3, X_5)$

7.5. Prueba de hipótesis

$$\begin{cases} H_0: \beta_j = 0 conj = 1, \dots, 5 \\ H_1: \beta_j \neq 0 \end{cases}$$

- Analizando el **p-valor** se puede concluir que el efecto parcial de incluir $X_1(GRE.Score)$ dado que en modelo se encuentra X_2, X_3, X_4, X_5 es significativa de esta manera aumentando el SSR = 0.0427161.
- Analizando el **p-valor** se puede concluir que el efecto parcial de incluir $X_4(LOR)$ dado que en modelo se encuentra X_1, X_2, X_3, X_5 es significativa de esta manera aumentando el SSR = 0.0646740.
- Analizando el **p-valor** se puede concluir que el efecto parcial de incluir $X_5(CGPA)$ dado que en modelo se encuentra X_1, X_2, X_3, X_4 es significativa de esta manera aumentando el SSR = 0.0593270.
- Se observa que $X_4(LOR)$ tiene el efecto parcial mas grande con un SSR = 0.0646740.
- Analizando el **p-valor** se puede concluir que el efecto parcial de incluir X_2 (TOEFL.Score) dado que en modelo se encuentra X_1, X_3, X_4, X_5 no es significativa de esta manera disminuye el SSR = 0.0063619.
- Analizando el **p-valor** se puede concluir que el efecto parcial de incluir $X_3(SOP)$ dado que en modelo se encuentra X_1, X_2, X_4, X_5 es significativa de esta manera aumentando el SSR = 0.0073158.

8. Residuales estudentizados vs. Valores ajustados

Construya y analice gráficos de los residuales estudentizados vs. Valores ajustados y contra las variables de regresión utilizadas. ¿Qué información proporcionan estas gráficas?

8.1. Gráfico de los residuales estudentizados vs. Valores ajustados

■ En los gráficos de las variables GRE.Score, TOEFL.Score, SOP, LOR, CGPA y además de la gráfica de los valores ajustados no se observa ningún tipo de patrón, por lo tanto se cumple el supuesto de varianza constante. Se aprecian algunos valores atípicos, información que se verificará más adelante.

9. Gráfico q-norm residuales estudentizados

9.1. Pruebas de hipótesis

$$\begin{cases} H_0 : \varepsilon \sim Normal \\ H_1 : \varepsilon \not\sim Normal \end{cases}$$

Aunque muchos residuales se concentren cerca de la recta ajustada, se puede observar cantidad considerable que se aleja de esta generando una asimetría hacia la derecha, además al realizar la prueba de Shapiro-Wilk tenemos un p valor de 0.00099 por lo que podemos rechazar la hipótesis nula, concluyendo de esta manera que hay evidencia para decir que no tienen un comportamiento normal.

Cuadro 4: Valores ajustados VS Residuales Estudentizados

	Ajustados	Errores
10	0.6911442	-3.010410
65	0.7310632	-2.598320
66	0.7566507	-2.533292
11	0.7212283	-2.506545
93	0.5221676	-2.274321
92	0.5288087	-1.921725

	dfb.1	dfb.GRE.	dfb.TOEF	dfb.SOP	dfb.LOR	dfb.CGPA	dffit	cov.r	cook.d	hat
10	0.3312129	-0.3365468	0.2641299	-0.0776585	0.3234579	-0.1008349	-0.5199544	0.6285422	0.0414993	0.0289676
11	0.2748995	-0.4352307	0.3325789	-0.0384741	-0.1568373	0.2077023	-0.5823847	0.7592033	0.0535208	0.0512194
32	-0.0514907	0.0853945	-0.0761287	0.0342908	0.0053108	-0.0281974	0.1009979	1.2189200	0.0017171	0.1291027
37	0.0883736	-0.0895248	0.0584789	-0.0014274	0.0466126	-0.0006190	0.0990952	1.2318929	0.0016531	0.1378627
53	-0.1601062	0.1422062	0.0820887	0.0995052	-0.0341875	-0.2546427	0.3279626	1.2150773	0.0180058	0.1549517
65	0.1757763	-0.0875596	-0.0480967	0.2399782	0.0003671	-0.0104244	-0.4079735	0.7175194	0.0261410	0.0240603
66	0.1292378	-0.0190079	-0.0466489	0.1141425	0.1003505	-0.1116136	-0.3533659	0.7283787	0.0196772	0.0190858
92	-0.3421799	0.0334767	0.1701959	-0.5818706	-0.1450394	0.2592579	-0.7764099	0.9818877	0.0976705	0.1403247

10. Diagnostico sobre la presencia de observaciones atípicas, de balanceo y/o influenciales y conclusiones

```
kable styling(k infl, full width=FALSE, font size=8)
```

```
##
       dfb.1_ dfb.GRE. dfb.TOEF dfb.SOP dfb.LOR dfb.CGPA dffit cov.r cook.d
                                                                                  hat
## 1
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
## 2
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
## 3
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
## 4
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
## 5
        FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                 FALSE
                                                                         FALSE FALSE
## 6
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
## 7
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
                                                     FALSE FALSE FALSE
## 8
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                                         FALSE FALSE
## 9
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
                                                     FALSE FALSE
        FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                                   TRUE
                                                                         FALSE FALSE
## 10
                 FALSE
## 11
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE
                                                                   TRUE
                                                                         FALSE FALSE
## 12
        FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                 FALSE
                                                                         FALSE FALSE
## 13
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
## 14
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
## 15
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
                                                     FALSE FALSE FALSE
## 16
        FALSE
                 FALSE
                           FALSE
                                   FALSE
                                            FALSE
                                                                         FALSE FALSE
```

##	17	FALSE			
##	18	FALSE			
##	19	FALSE			
##	20	FALSE			
##	21	FALSE			
##	22	FALSE			
##	23	FALSE			
##	24	FALSE			
##	25	FALSE			
##	26	FALSE			
##	27	FALSE			
##	28	FALSE			
##	29	FALSE			
##	30	FALSE			
##	31	FALSE			
##	32	FALSE	TRUE	FALSE	FALSE
##	33	FALSE			
##	34	FALSE			
##	35	FALSE			
##	36	FALSE			
##	37	FALSE	TRUE	FALSE	FALSE
##	38	FALSE			
##	39	FALSE			
##	40	FALSE			
##	41	FALSE			
##	42	FALSE			
##	43	FALSE			
##	44	FALSE			
##	45	FALSE			
##	46	FALSE			
##	47	FALSE			
##	48	FALSE			
##	49	FALSE			
##	50	FALSE			
##	51	FALSE			
##	52	FALSE			
##	53	FALSE	TRUE	FALSE	FALSE
##	54	FALSE			
##	55	FALSE			
##	56	FALSE			
##	57	FALSE			
##	58	FALSE			
##	59	FALSE			
##	60	FALSE			
##	61	FALSE			

##	62	FALSE									
##	63	FALSE									
##	64	FALSE									
##	65	FALSE	TRUE	FALSE	FALSE						
##	66	FALSE	TRUE	FALSE	FALSE						
##	67	FALSE									
##	68	FALSE									
##	69	FALSE									
##	70	FALSE									
##	71	FALSE									
##	72	FALSE									
##	73	FALSE									
##	74	FALSE									
##	75	FALSE									
##	76	FALSE									
##	77	FALSE									
##	78	FALSE									
##	79	FALSE									
##	80	FALSE									
##	81	FALSE									
##	82	FALSE									
##	83	FALSE									
##	84	FALSE									
##	85	FALSE									
##	86	FALSE									
##	87	FALSE									
##	88	FALSE									
##	89	FALSE									
##	90	FALSE									
##	91	FALSE									
##	92	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
##	93	FALSE									
##	94	FALSE									
##	95	FALSE									
##	96	FALSE									
##	97	FALSE									
##	98	FALSE									
##	99	FALSE									
##	100	FALSE									

- \blacksquare La observación ${\bf 10}$ es un ${\bf outlier}$ ya que el valor absoluto de su residual estudentizado es ${\bf 3.01}$, mayor a ${\bf 3}$.
- De acuerdo al COVRATIO y el DFFITS, las observaciones 10,11, 32, 37, 53, 65, 66 y 92 son influenciables.

- Para evaluar las observaciones de **balanceo** miramos las que superan la cota de $\frac{2(k+1)}{n} = \frac{2(5+1)}{100} = 0.12$. Las observaciones **32**, **37**, **38**, **53** y **92** superan dicha cota y por lo tanto, son de balanceo.
- En conclusión, las observaciones 10, 11, 53, 65 y 66 son influenciables; la observación 38 es de balanceo y las observaciones 32, 37, 53 y 92 son influenciables y de balanceo.

11. Ejercicio11

Ajuste el modelo de regresión sin las observaciones 10, 38 y 92, suponga que se establece que hay un error de digitación con estas dos observaciones, presente sólo la tabla de parámetros ajustados resultante ¿Cambian notoriamente las estimaciones de los parámetros, sus errores estándard y/o la signficancia? ¿Qué concluye al respecto? Evalúe el gráfico de normalidad para los residuales estudentizados para este ajuste ¿mejoró la normalidad?

Concluya sobre los efectos de este par de observaciones.

```
## Analysis of Variance Table
##
## Response: Chance.of.Admit
                                                  Sum Sq Mean Sq F value
                                                                            Pr(>F)
## FO(GRE.Score, TOEFL.Score, SOP, LOR, CGPA)
                                               5 2.31585 0.46317
                                                                 74.498 < 2.2e-16
## Residuals
                                              91 0.56577 0.00622
##
## FO(GRE.Score, TOEFL.Score, SOP, LOR, CGPA) ***
## Residuals
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Call:
## lm(formula = Chance.of.Admit ~ ., data = AdmissionPredict sin influencias)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    30
                                            Max
## -0.21685 -0.03972 0.01428
                               0.05500 0.13928
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.8564761 0.2897498 -6.407 6.42e-09 ***
## GRE.Score
                0.0053985 0.0016314
                                       3.309 0.00134 **
## TOEFL.Score 0.0001168 0.0030020
                                       0.039
                                              0.96904
## SOP
                0.0267458 0.0121536
                                       2.201 0.03029 *
```

```
## LOR
                0.0400539
                           0.0133955
                                       2.990
                                              0.00359 **
## CGPA
                0.0681658
                           0.0248061
                                       2.748
                                              0.00723 **
## ---
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 0.07885 on 91 degrees of freedom
## Multiple R-squared: 0.8037, Adjusted R-squared: 0.7929
## F-statistic: 74.5 on 5 and 91 DF, p-value: < 2.2e-16
```


Normal Q-Q Plot

12. Ejercicio 12

Para el modelo con todas las variables y sin las observaciones $10,\ 38$ y 92, realice diagnósticos de multicolinealidad mediante

12.1. Matriz de correlación de las variables predictoras

	GRE.Score	TOEFL.Score	SOP	LOR	CGPA	Chance.of.A
GRE.Score	1.0000000	0.8907133	0.5405067	0.6538861	0.7984379	0.818
TOEFL.Score	0.8907133	1.0000000	0.6237639	0.5963160	0.8091454	0.780
SOP	0.5405067	0.6237639	1.0000000	0.5988709	0.6826010	0.670
LOR	0.6538861	0.5963160	0.5988709	1.0000000	0.7440234	0.758
CGPA	0.7984379	0.8091454	0.6826010	0.7440234	1.0000000	0.839
Chance.of.Admit	0.8184117	0.7808914	0.6706553	0.7580440	0.8390995	1.000

Entre las pruebas GRE - TOEFL, GRE - CGPA, TOEFL - CGPA y finalmente LOR - CGPA se observan correlaciones fuertes, esto puede indicar problemas de multicolinealidad.

Se observa que entre GRE - SOP, GRE - LOR, TOEFL - SOP, TOEFL - LOR se tienen correlaciones moderadas.

12.2. VIF's

GRE.Score	TOEFL.Score	SOP	LOR	CGPA
5.859487	6.190994	2.108352	2.497704	4.599604

■ En los factores de **inflación** de **varianza** no se concluye que existan problemas de **multicolineadlidad**, pues nos indica que ninguna estimación **supera** el valor de **10**.

12.3. Proporciones de varianza

```
## Condition
## Index
            Variance Decomposition Proportions
               intercept GRE.Score TOEFL.Score SOP
##
                                                             CGPA
                                                       LOR
## 1
                                    0.000
                                                0.001 0.001 0.000
        1.000 0.000
                         0.000
## 2
       10.083 0.002
                         0.000
                                    0.001
                                                0.173 0.161 0.001
## 3
       14.645 0.000
                         0.000
                                    0.000
                                                0.597 0.490 0.000
                                                0.179 0.235 0.399
## 4
       60.699 0.197
                         0.003
                                    0.036
## 5
       83.509 0.092
                         0.009
                                    0.368
                                                0.001 0.025 0.593
## 6
      189.536 0.710
                         0.988
                                    0.596
                                                0.049 0.088 0.007
```

- La raíz del número condición es de 189. Lo cual nos indica que se tienen problemas graves de multicolinealidad.
- Examinando la descomposión de varianza se visualiza que existe problemas de multicolinealidad entre las pruebas GRE - TOEFL y las pruebas SOP - LOR

13. Ejericio13

En el modelo ajustado sin las observaciones 10, 38 y 92, construya modelos de regresión utilizando los métodos de selección (muestre de cada método sólo la tabla de resumen de este y la tabla ANOVA y la de parámetros estimados del modelo finalmente resultante):

0.6 -

0.5 -

3

-160 **-**

-200 **-**

-180 -

page 2 of 2

# de covariables	modelo	R2_adj
1	(1) y~CGPA	0.75
2	(6) y~GRE.Score+CGPA	0.81
3	(16) y~GRE.Score+LOR+CGPA	0.83
4	(26) y~GRE.Score+SOP+LOR+CGPA	0.83
5	(31) y~GRE.Score+TOEFL.Score+SOP+LOR+CGPA	0.83

■ De acuerdo al **principio de parsimonia** un buen modelo bajo el criterio del **R2_adj** es el modelo (6) y~GRE.Score+CGPA

13.1. Selección según el R_{adj}^2

Cuadro 6: Resumen de los coeficientes

	Estimación	Error estándar	T_0	Valor P
Intercepto	-2.290156730	0.264865653		1.000000e-13
GRE.Score	0.005941449	0.001205231		3.533574e-06
CGPA	0.127527762	0.020684755		1.747250e-08

```
##
## Call:
## lm(formula = Chance.of.Admit ~ GRE.Score + CGPA, data = AdmissionPredict_sin_influence
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                            Max
## -0.23031 -0.04277 0.01477 0.05736 0.13309
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.290157
                          0.264866 -8.646 1.38e-13 ***
                                     4.930 3.53e-06 ***
## GRE.Score
               0.005941
                          0.001205
## CGPA
                0.127528
                          0.020685
                                     6.165 1.75e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0849 on 94 degrees of freedom
## Multiple R-squared: 0.7649, Adjusted R-squared: 0.7599
## F-statistic: 152.9 on 2 and 94 DF, p-value: < 2.2e-16
```

Ecuacion Ajustada

$$\hat{Y}i = -2.290157 + 0.005941X_i + 0.127528X_i$$

Tabla anova

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FO(GRE.Score, CGPA)	2	2.2040778	1.1020389	152.8941	0
Residuals	94	0.6775387	0.0072079	NA	NA

13.2. Selección según el estadístico C_p

# de covariables	modelo	abs(Cp - p)
1	(1) y~CGPA	45.00-1 = 44
2	(6) y~GRE.Score+CGPA	15.39-2 = 13.39
3	(16) y~GRE.Score+LOR+CGPA	4.17-3 = 1.17
4	(26) y~GRE.Score+SOP+LOR+CGPA	4.00-4 = 0.00
5	(31) y~GRE.Score+TOEFL.Score+SOP+LOR+CGPA	6-5 = 1

■ De acuerdo al Cp el mejor modelo es el (26) y~GRE.Score+SOP+LOR+CGPA

```
##
## Call:
```

```
## lm(formula = Chance.of.Admit ~ GRE.Score + LOR + CGPA + SOP,
      data = AdmissionPredict sin influencias)
##
##
## Residuals:
       Min
                1Q
                     Median
                                 3Q
                                        Max
## -0.21728 -0.03976 0.01443 0.05516 0.13902
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.860801
                        0.266142 -6.992 4.24e-10 ***
## GRE.Score
              0.005444
                        0.001127 4.832 5.37e-06 ***
## LOR
              2.891 0.00479 **
## CGPA
              0.068438
                        0.023673
                        0.011603 2.316 0.02275 *
## SOP
              0.026878
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.07842 on 92 degrees of freedom
## Multiple R-squared: 0.8037, Adjusted R-squared: 0.7951
## F-statistic: 94.14 on 4 and 92 DF, p-value: < 2.2e-16
```

Cuadro 8: Resumen de los coeficientes

	Estimación	Error estándar	T_0	Valor P
Intercepto	-1.86080061	0.26614162	-6.991769	4.235000e-10
GRE.Score	0.00544423	0.00112664	4.832273	5.374931e-06
LOR	0.03993901	0.01299522	3.073362	2.785099e-03
CGPA	0.06843760	0.02367305	2.890951	4.791586e-03
SOP	0.02687834	0.01160322	2.316455	2.275417e-02

Ecuacion ajustada

$$\hat{Y}i = -1.860801 + 0.005444X_{i1} + 0.026878X_{i3} + 0.039939X_{i4} + 0.068438X_{i5}$$

Tabla anova

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FO(GRE.Score, LOR, CGPA, SOP)	4	2.3158387	0.5789597	94.14348	0
Residuals	92	0.5657778	0.0061498	NA	NA

13.3. Stepwise

Stepwise Selection Method

```
## -----
##
## Candidate Terms:
##
## 1. GRE.Score
## 2. TOEFL.Score
## 3. SOP
## 4. LOR
## 5. CGPA
## We are selecting variables based on p value...
##
##
## Stepwise Selection: Step 1
##
## - CGPA added
##
##
               Model Summary
## -----
               0.839 RMSE
## R
                                  0.095
               0.704
                      Coef. Var
                                 13.749
## R-Squared
## Adj. R-Squared 0.701 MSE
## Pred R-Squared 0.694 MAE
                                  0.009
                                  0.075
## -----
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
##
                   ANOVA
## -----
##
          Sum of
        Squares DF Mean Square F Sig.
## -----
                 1
## Regression 2.029
                         2.029
                              226.041 0.0000
## Residual
          0.853
                  95
                          0.009
          2.882 96
## Total
## -----
##
##
                     Parameter Estimates
## -----
    model Beta Std. Error Std. Beta t Sig lower upp
##
## ------
## (Intercept) -1.095
                  0.119
                                -9.198 0.000 -1.331 -0.8
  CGPA 0.209 0.014 0.839 15.035 0.000 0.181 0.2
##
```

```
##
##
##
## Stepwise Selection: Step 2
## - GRE.Score added
##
##
                   Model Summary
## R
                    0.875
                          RMSE
                                           0.085
                0.765 Coef. Var 12.321
0.760 MSE 0.007
## R-Squared
## Adj. R-Squared
                          MAE
## Pred R-Squared 0.752
                                           0.066
## -----
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
##
                        ANOVA
            Sum of
          Squares DF Mean Square F Sig.
##
## -----
## Regression 2.204 2
## Residual 0.678 94
                               1.102 152.894 0.0000
                              0.007
                     96
## Total
             2.882
##
                          Parameter Estimates
## -----
     model Beta Std. Error Std. Beta t Sig lower upp
## (Intercept) -2.290 0.265 -8.646 0.000 -2.816 -1.7
## CGPA 0.128 0.021 0.512 6.165 0.000 0.086 0.1
## GRE.Score 0.006 0.001 0.410 4.930 0.000 0.004 0.0
##
##
##
##
                  Model Summary
                   0.875 RMSE
## R
                                          0.085
                0.765 Coef. Var
0.760 MSE
## R-Squared
                                         12.321
## Adj. R-Squared
                                          0.007
## Pred R-Squared
                  0.752
                           MAE
                                          0.066
```

```
RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
                     ANOVA
##
           Sum of
          Squares DF Mean Square F Sig.
##
## -----
                          1.102 152.894 0.0000
           2.204 2
0.678 94
## Regression 2.204
## Residual
                           0.007
## Total
           2.882
                 96
##
                       Parameter Estimates
## ------
    model Beta Std. Error Std. Beta
                                   t Sig lower upp
## ------
## (Intercept) -2.290 0.265
                                  -8.646 0.000 -2.816 -1.7
   CGPA 0.128 0.021 0.512 6.165 0.000 0.086 0.1 GRE.Score 0.006 0.001 0.410 4.930 0.000 0.004 0.0
  CGPA
##
##
## Stepwise Selection: Step 3
##
## - LOR added
##
##
                 Model Summary
## -----
                0.890 RMSE
## R
                                     0.080
## R-Squared
                                    11.645
                0.792
                        Coef. Var
                0.786
                        MSE
## Adj. R-Squared
                                     0.006
## Pred R-Squared 0.775 MAE
                                      0.063
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
##
                   ANOVA
##
           Sum of
##
           Squares DF Mean Square F Sig.
```

# -								
! I	Regression Residual Total	2.283 0.599 2.882	3 93 96	0.761	118.188			
‡ ‡			P	Parameter Estim	ates			
		Beta	Std. Error	Std. Beta				upp
	(Intercept)	-1.931	0.271	1		0.000		
	GRE.Score	0.005	0.001	0.359 0.368 0.250	4.638	0.000	0.003	0.0
: -								
			Model Summa	arv				
I	R		0.890	RMSE	0.0			
I	R-Squared Adj. R-Square Pred R-Square	ed	0.786		11.6 0.0 0.0	006		
: -		lean Square Juare Error	 e Error r					
:			ANOV	JA 				
		Sum of Squares	DF	Mean Square	F	Sig.		
I I	Regression Residual Total	2.283 0.599 2.882	3 93 96	0.761	118.188	0.0000		
<u>:</u>			P	Parameter Estim	ates			
ŧ	model	Beta	Std. Error	Std. Beta	t	Sig	lower	upp
	(Intercept)	-1.931	0.271		-7.140	0.000	-2.469	-1.3

## ##		0.046	0.013	0.368		0.000 0.001		0.0
## ## ## ##								
##	Stepwise Sele	ection: Ste	p 4					
## ##	- SOP added							
##								
## ##			Model Summa	•				
##			0.896		0.0	78		
##	R-Squared		0.804	Coef. Var	11.3	81		
	Adj. R-Square				0.0			
##	Pred R-Square	ed	0.784	MAE 	0.0	60		
## ##	RMSE: Root M MSE: Mean Sc	-						
##	MAE: Mean Ab	-						
##								
##			ANOV					
## ##		Sum of	DE	Mean Square	F	Sia		
##		-		rean square		•		
##	Regression	2.316	4	0.579	94.143	0.0000		
	Residual							
		2.882	96					
##								
## ##			F	Parameter Estim	nates			
##								
## ##			Std. Error	Std. Beta	t	Sig	lower	upp
##	(Intercept)				-6.992	0.000	-2.389	-1.3
##	-	0.068	0.024		2.891	0.005	0.021	0.1
##	GRE.Score	0.005	0.001	0.375	4.832	0.000	0.003	0.0
##		0.040	0.013			0.003	0.014	0.0
##	SOP	0.027	0.012	0.149	2.316	0.023	0.004	0.0
## ##								
##								
##								

Model Summary

##

#							
## R		0.896	RMSE	0.0	78		
## R-Squared		0.804		11.3	81		
## Adj. R-Squar		0.795		0.0			
## Pred R-Squar	ed	0.784	MAE 	0.0	60		
## RMSE: Root ## MSE: Mean S ## MAE: Mean A	Mean Square quare Error	e Error					
## ##			NOVA				
;#	Sum of						
‡# ‡#	Squares	DF	Mean Square 	F	Sig. 		
## Regression	2.316	4		94.143	0.0000		
## Residual ## Total		92 96	0.006				
## 100a1 ##							
# #							
‡# ‡#			Parameter Esti	mates			
гπ	Beta	Std. Er	ror Std. Beta	t	Sig	lower	upp
## ## (Intercept)			 266	-6.992	0.000	-2.389	-1.3
## CGPA	0.068	0.	0.275	2.891	0.005	0.021	0.1
## GRE.Score	0.005	0.	0.375	4.832	0.000	0.003	0.0
# LOR	0.040	0.	0.219	3.073	0.003	0.014	0.0
# SOP	0.027	0.	0.149	2.316	0.023	0.004	0.0
‡# ‡#							
+# + #							
; ;; ; #							
## No more vari	ables to be	added/re	moved.				
# #							
##							
## Final Model	Output						
‡#							
‡# ‡#		Model Su	mməru				
## R		0.896	RMSE	0.0	78		
## R-Squared		0.804	Coef. Var	11.3			
## Adj. R-Squar	ed	0.795	MSE	0.0			
## Pred R-Squar	ed	0.784	MAE	0.0	60		
_							

##												
## ##	MSE: Mean	t Mean Square Err	ror									
##		Absolute E	Error									
## ##				ANOV	'A							
##												
##		Sum of		_	_			_				
	Regression											
	Residual											
	Total											
## ##				F) arame	eter E	stim:	ates				
	mode						Beta	t		Sig	lower	upp
	(Intercept			0.266						0.000		 -1.3
##	_	A 0.068					275				0.021	
##	GRE.Scor	e 0.005	5	0.001		0.	375	4.8	832	0.000	0.003	0.0
	LO	R 0.040)	0.013	3	0.	219	3.0	073	0.003	0.014	
##												0.0
##												
##												
##				Stepw	rise S	Select	ion :	Summar	V			
##				-					•			
##			Added/				Ad,	•				
	Step Va	riable 	Removed	R-	·Squar	ce 	R-Sq	uare	C(p)	AIC	RMS
## ##		CGPA	addition		0.70)4	0	.701	 44.	1520	-177.9290	0.09
##		E.Score				35		.760			-198.2339	0.08
##	3		addition		0.79	92	0	.786			-208.2209	0.08
##	4	SOP	addition		0.80)4	0	.795	4.	0020	-211.7196	0.07
##												

13.4. Selección hacia adelante o forward

Forward Selection Method
----##
Candidate Terms:

```
##
## 1. GRE.Score
## 2. TOEFL.Score
## 3. SOP
## 4. LOR
## 5. CGPA
## We are selecting variables based on p value...
##
##
## Forward Selection: Step 1
##
## - CGPA
##
##
                 Model Summary
## -----
                 0.839 RMSE
                                     0.095
                0.704
## R-Squared
                       Coef. Var
                                    13.749
## Adj. R-Squared
                0.701
                       MSE
            0.701
0.694 MAE
                                     0.009
## Pred R-Squared
                                     0.075
## -----
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
                    ANOVA
##
           Sum of
         Squares DF Mean Square F
##
                                         Sig.
## -----
## Regression 2.029
                   1
                           2.029
                                226.041 0.0000
                            0.009
## Residual
           0.853
                   95
           2.882 96
## Total
##
                     Parameter Estimates
    model Beta Std. Error Std. Beta t Sig lower upp
## -----
## (Intercept) -1.095
                                   -9.198 0.000
                                              -1.331
                    0.119
                                                     -0.8
   CGPA 0.209 0.014 0.839 15.035 0.000 0.181 0.2
##
##
##
```

##

```
## Forward Selection: Step 2
##
## - GRE.Score
##
##
                   Model Summary
                           RMSE
## R
                    0.875
                                           0.085
                 0.765 Coef. Var 12.321
0.760 MSE 0.007
## R-Squared
## Adj. R-Squared
                                           0.007
## Pred R-Squared
                  0.752
                           MAE
                                           0.066
## -----
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
##
                        ANOVA
##
            Sum of
          Squares DF Mean Square F Sig.
##
## -----
                      2
## Regression 2.204
## Residual 0.678
                                1.102 152.894 0.0000
                     94
                               0.007
## Total
             2.882
                    96
##
                          Parameter Estimates
                                        t Sig lower upp
     model Beta Std. Error Std. Beta
## ------
## (Intercept) -2.290 0.265 -8.646 0.000 -2.816
## CGPA 0.128 0.021 0.512 6.165 0.000 0.086
## GRE.Score 0.006 0.001 0.410 4.930 0.000 0.004
                                        -8.646 0.000 -2.816 -1.7
                                                              0.1
                                                              0.0
##
##
## Forward Selection: Step 3
##
## - LOR
##
                    Model Summary
##
## -------
                   0.890 RMSE 0.080
0.792 Coef. Var 11.645
## R
                  0.890
## R-Squared
```

0.006

Adj. R-Squared 0.786 MSE

Sum of Squares DF Mean Square F Sig.		Square Error Absolute Err								
Sum of Squares DF Mean Square F Sig.										
Regression 2.283 3 0.761 118.188 0.0000 Residual 0.599 93 0.006 Total 2.882 96		Sum of								
Parameter Estimates Parameter Estimates										
Parameter Estimates	Residual Total	0.599 2.882	9	93 96			118.188	0.0000		
(Intercept) -1.931				P			nates			
(Intercept) -1.931										
GRE.Score 0.005 0.001 0.368 4.638 0.000 0.003 LOR 0.046 0.013 0.250 3.498 0.001 0.020 Forward Selection: Step 4 - SOP Model Summary R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error	(Intercept)	-1.931		0.271	1		-7.140	0.000	-2.469	
LOR 0.046 0.013 0.250 3.498 0.001 0.020 Forward Selection: Step 4 - SOP Model Summary R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error										
Forward Selection: Step 4 - SOP Model Summary R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error										
- SOP Model Summary R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error		U.U 1 U			, 	∪.∠⊍∪ 	J.430 	0.001	U.UZU 	
- SOP Model Summary R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error										
Model Summary R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error										
Model Summary R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error	Forward Sele	ection: Step	4							
Model Summary R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error										
R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error	- SOP									
R 0.896 RMSE 0.078 R-Squared 0.804 Coef. Var 11.381 Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error										
Adj. R-Squared 0.795 MSE 0.006 Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error		· 			RMSE			8		
Pred R-Squared 0.784 MAE 0.060 RMSE: Root Mean Square Error MSE: Mean Square Error	R-Squared					. Var				
RMSE: Root Mean Square Error MSE: Mean Square Error	-									
RMSE: Root Mean Square Error MSE: Mean Square Error	Pred K-Squar	:ea 	0.784		MAL			0		
	RMSE: Root MSE: Mean S MAE: Mean A	Mean Square Square Error	Error							

upp

-1.3 0.1 0.0

0.0

## ## ##		_	DF	Mean Square	F	Sig.	
## ## ##	Regression Residual Total	2.316 0.566 2.882	92 96	0.579 0.006			
## ##				Parameter Est			
## ##	model			or Std. Bet	a t 	Sig	lower
## ##	(Intercept)	-1.861	0.2			0.000	
				01 0.37			
## ##	LOR	0.040	0.0	13 0.21 12 0.14	9 3.073	0.003	0.014
## ## ## ##	No more varia	ables to be	added.				
##	Variables En	tered:					
##	+ GRE.Score + LOR + SOP						
## ##	Final Model	_					
## ##			Model Sum	•			
## ##	R-Squared Adj. R-Square Pred R-Square	ed ed	0.896 0.804 0.795 0.784	RMSE Coef. Var MSE MAE	0.0 11.3 0.0 0.0	381 006	
## ## ## ##	RMSE: Root MSE: Mean So	Mean Square quare Error	Error				

upp

-1.3 0.1 0.0 0.0

##	ANOVA											
## ##		of										
## ##		Squar 		DF 1	Mean Squ 	are 	F 	Sig.				
##	Regressio	on 2.3		4			94.143	0.0000				
	Residual Total			92 96	0.	006						
## ##				De	arameter	Eatima	.+					
##						ESUIMA 	ites 					
##		lel Be		. Error	Std.	Beta	t	Sig	lower			
## ##		ot) -1.8		0.266			-6.992	0.000	-2.389			
##		GPA 0.0		0.024		0.275						
##	GRE.Sco			0.001		0.375			0.003			
## ##	I			0.013			3.073		0.014			
##		SOP 0.0		0.012		0.149 	2.316	0.023	0.004			
""												
##												
##		Selection Summary										
## ##		Variable				 dj.						
##		Entered	R-Square		•	C(p))	AIC	RMSE			
## ##	1 (CGPA	0.704	 1 (0.7010	44.15	 518 -17	7.9290	0.0947			
##		GRE.Score			7599			8.2339	0.0849			
##	3 I	LOR	0.7922	2 (7855	7.30	092 -20	8.2209	0.0802			

0.7951

4.0015

-211.7196

0.0784

13.5. Selección hacia atrás o backward

0.8037

```
## Backward Elimination Method
## -----
##
## Candidate Terms:
##
## 1 . GRE.Score
## 2 . TOEFL.Score
## 3 . SOP
## 4 . LOR
```

SOP

```
## 5 . CGPA
##
## We are eliminating variables based on p value...
## - TOEFL.Score
##
## Backward Elimination: Step 1
## Variable TOEFL.Score Removed
##
##
                    Model Summary
## R
                    0.896
                           RMSE
                                            0.078
                    0.804 Coef. Var
                                          11.381
## R-Squared
                            MSE
## Adj. R-Squared
                   0.795
                                           0.006
## Pred R-Squared
                    0.784 MAE
                                            0.060
## -----
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
##
                        ANOVA
             Sum of
          Squares DF Mean Square F Sig.
##
## -----
## Regression 2.316 4
## Residual 0.566 92
                      4
                                       94.143 0.0000
                                0.579
                                0.006
             2.882
## Total
                       96
##
                           Parameter Estimates
     model Beta Std. Error Std. Beta
                                         t Sig
                                                        lower
                                                              upp
  ______
                                        -6.992 0.000
                                                       -2.389 -1.3
## (Intercept) -1.861
                      0.266
                                                       0.003
0.004
   GRE.Score
             0.005
                     0.012 0.149 2.316 0.023 0.004
0.013 0.219 3.073 0.003 0.014
0.024 0.275 2.891 0.005
                       0.001
                                 0.375 4.832 0.000
                                                              0.0
##
       SOP 0.027
LOR 0.040
##
                                                              0.0
                                                              0.0
##
      CGPA
             0.068
                                                              0.1
##
##
```

No more variables satisfy the condition of p value = 0.05

##

```
##
##
## Variables Removed:
## - TOEFL.Score
##
##
## Final Model Output
##
##
                   Model Summary
## R
                   0.896
                           RMSE
                                         0.078
                        Coef. Var
## R-Squared
                   0.804
                                       11.381
## Adj. R-Squared
                          MSE
                  0.795
                                        0.006
## Pred R-Squared
                   0.784
                        MAE
                                         0.060
## -----
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
##
                       ANOVA
            Sum of
          Squares DF Mean Square F Sig.
##
## -----
## Regression 2.316 4
## Residual 0.566 92
                              0.579
                                     94.143 0.0000
                              0.006
            2.882
## Total
                     96
##
                         Parameter Estimates
     model Beta Std. Error Std. Beta
                                       t Sig
                                                    lower
                                                          upp
 ______
                                      -6.992 0.000
                     0.266
                                                          -1.3
## (Intercept) -1.861
                                                    -2.389
##
  GRE.Score
            0.005
                      0.001
                               0.375 4.832 0.000
                                                   0.003
                                                          0.0
    SOP 0.027
LOR 0.040
                              0.149 2.316 0.023
0.219 3.073 0.003
##
                      0.012
                                                   0.004
                                                          0.0
                     0.013
                                                          0.0
##
                                                    0.014
                     0.024
     CGPA
                               0.275 2.891
##
            0.068
                                              0.005
                                                          0.1
                                                    0.021
```

##

##

Elimination Summary

##							
##		Variable		Adj.			
##	Step	Removed	R-Square	R-Square	C(p)	AIC	RMSE
##							
##	1	TOEFL.Score	0.8037	0.7951	4.0015	-211.7196	0.0784
##							

14. Selección del modelo

Con base en los anteriores numerales, ¿Cuál modelo sugiere para la variable respuesta? ¿por qué?