

Photonics

Geometric Optics

Ray concept
Refraction and propagation of light
Matrix formalism
Optical systems

Ray theory - geometric optics

- Light ≈ bundle of "rays"
- Ray:
 - straight in a uniform medium
 - refracts or reflects at an interface between media
- Validity of the ray concept
 - ray ~ local plane wave
 - \blacksquare approx. valid in structures $\gg \lambda$
 - high frequency approximation
 - → wavelength-independent
 - no diffraction and interference effects
- Useful for analysis of large, complex optical systems, in particular, lens systems

Ray presentation of radiating objects

- Radiance L^e (or luminance L) is known in each point
- Discretize
 - surface S
 - \blacksquare solid angle Ω
- Discretize
 - as finely as possible (high accuracy)
 - smaller than dSdΩ $\approx \lambda^2$ is useless (diffraction theory)

Postulates of ray optics (1)

Light propagates as rays

- Homogeneous optical medium: refractive index n
 - speed of light in vacuum $c = 2.998 \times 10^8 \text{ m/s}$
 - speed of light in a medium v = c/n
 - Time required to go from *P* to *P*′:

$$\Delta t_{P \to P'} = \frac{d}{v} = \frac{nd}{c}$$

• Optical path length $L_0 = nd$

P'

Postulates of ray optics (2)

- Inhomogeneous optical medium: refractive index n(r)
 - Optical path length

$$L_0 = \int_P^{P'} n(r) ds$$
$$= c\Delta t \qquad P$$

Fermat's principle:

The path taken by a ray of light has a minimum optical path length with respect to neighboring paths

Reflection at the surface

- Metallic mirror: light is reflected
- Reflected ray
 - is in plane with
 - the incident ray
 - the normal to the surface
 - at the same angle with the normal as the incident ray $\theta'' = \theta'$

(independent of the local curvature of the surface)

(Metallic) Mirrors

- Flat mirrors: Reflected light rays from *P* converge in *P'*
- Parabolic mirror: rays parallel to the axis converge to the focus *f*
- Elliptic mirror: Rays from focus P_1 are focused in P_2

Refraction at an interface between media

- Optical system: piecewise constant *n*
 - refraction at an interface
 - reflection at an interface
- Interface between media:
 - refracted and reflected rays are in the plane of the incident ray and the normal
 - refraction is according to **Snell's law** $n \sin \theta = n' \sin \theta'$
 - reflection is at the same angle as the incident ray

$$\theta^{\prime\prime} = \theta$$

(independent on the local curvature of the surface)

Reflection and transmission

- Reflection and Transmission at the interface
 - Depends on the angle of incidence and polarization (see chapter *Electromagnetism*)
 - Perpendicular incidence ($\theta = 0$):

$$R = \left(\frac{n-n'}{n+n'}\right)^2 \qquad T = \frac{4nn'}{(n+n')^2}$$

- Application:
 - beamsplitter
 - beam combiners

Exercise: calculate reflection and transmission

- Calculate the power fraction of light (in air, n = 1) reflecting from glass (n = 1.5)
- Also calculate the power transmission fraction

Exercise: calculate reflection and transmission

- Calculate the power fraction of light (in air, n = 1) reflecting from glass (n = 1.5)
- Also calculate the power transmission fraction

What about the inverse?

Total Internal Reflection

- Snell's law: $n \sin \theta = n' \sin \theta'$
 - If n' > n: $\sin \theta' < \sin \theta < 1$ refraction is always possible
 - If n' < n: $\sin \theta' > \sin \theta$

Refraction is only possible if $\sin \theta \le \frac{n'}{n}$

Total internal reflection if $\theta > \theta_{TIR}$

with
$$\theta_{\text{TIR}} = \arcsin \frac{n'}{n}$$

Reflection at angle $\theta'' = \theta$

Curved surfaces

- Flat surface: rays remain divergent
- Curved surfaces: possible to focus rays
 - Application: lenses

Imaging systems

- Imaging systems: rays from one point of an object are converging to one point at some distance (="stigmatic imaging")
- Any deviation: aberrations
- Most imaging systems:
 - 3D is projected on the 2D image plane
 - Loss of information about depth
- Humans: information about depth from the parallax

Photonics Geometric Optics

Camera obscura

- Perfect projecting imaging system
 - Just "one" ray from each point
- Advantage
 - everything is imaged sharply

- Disadvantage
 - Very small amount of light is collected
 - \rightarrow Add a lens

Camera obscura with lens

- Lens:
 - Focuses rays from the point on the object to the film surface
 - Possible only for the points at a certain distance from the camera

Real and virtual image

- Real image
 - divergent rays recombine
 - Real light present
 - e.g. photo camera
- Virtual image
 - rays remain divergent
 - Object seems to be at a different location
 - e.g. magnifying glass

Graphical construction

Paraxial approximation

- Paraxial = small angle with the optical axis
 - $= \sin \theta \simeq \theta$ (series expansion)
 - perfect stigmatic imaging is possible with a spherical refracting surface
- Snell's law

$$n\theta = n'\theta'$$

Refraction in the paraxial approximation

- Incident ray
 - Angle with *z*-axis (α, β)
 - Incidence point (x, y)
- After refraction
 - Angle with *z*-axis (α', β')
 - \blacksquare Starting point (x', y')

$$x' = x$$

$$y' = y$$

$$n'\alpha' = n\alpha + \frac{n - n'}{R}x$$

$$n'\beta' = n\beta + \frac{n - n'}{R}y$$

Propagation in the paraxial approximation

- Original ray
 - Angle with *z*-axis (α, β)
 - \blacksquare Starting point (x, y)
- Ray after propagation
 - Angle with *z*-axis (α', β')
 - \blacksquare End point (x', y')

$$\alpha' = \alpha$$

$$\beta' = \beta$$

$$x' = x + D\alpha$$

$$y' = y + D\beta$$

Paraxial approximation

Refraction: change of angle

$$x' = x$$

$$y' = y$$

$$n'\alpha' = n\alpha + \frac{n - n'}{R}x$$

$$n'\beta' = n\beta + \frac{n - n'}{R}y$$

Propagation: change of position

$$\alpha' = \alpha$$

$$\beta' = \beta$$

$$x' = x + D\alpha$$

$$y' = y + D\beta$$

- Linear equations
- Separated for (x, α) and (y, β)

Paraxial approximation

- A ray from P_0
 - starting angle α_0
 - starting point x_0
- Ray undergoes
 - \blacksquare propagation in n
 - refraction at P₁
 - **propagation** in n'

Imaging

Transformation:

$$\alpha_{2} = \left(\frac{n - n'}{n'R_{1}}\right)x_{0} + \left(\frac{n}{n'} + \frac{(n - n')S}{n'R_{1}}\right)\alpha_{0}$$

$$x_{2} = \left(\frac{(n - n')S'}{n'R_{1}} + 1\right)x_{0} + \left(S + \frac{nS'}{n'}\frac{(n - n')SS'}{n'R_{1}}\right)\alpha_{0}$$

• Imaging: all rays from x_0 arrive at x_2 , regardless of the angle α_0

$$\Rightarrow S + \frac{nS'}{n'} + \frac{(n - n')SS'}{n'R_1} = 0$$

$$\Leftrightarrow \frac{n}{S} + \frac{n'}{S'} = \frac{n' - n}{R_1}$$

Magnification

• Lateral magnification m_x

$$m_{\chi} \triangleq \frac{x_2}{x_0} = -\frac{nS'}{n'S}$$

ullet Angular magnification m_lpha

$$m_{\alpha} \triangleq \frac{\Delta \alpha_2}{\Delta \alpha_0} = -\frac{S}{S'}$$

We see that

$$m_x \cdot m_\alpha = \frac{n}{n'}$$

Matrix formalism

- Ray equations
 - \blacksquare 2 variables: x and α
 - linear
- Matrix form
 - variables: 2 × 1 column matrix

$$r = \begin{bmatrix} x \\ n\alpha \end{bmatrix}$$

■ Transformations: 2×2 matrix

Refraction in the matrix formalism

Incident ray

$$\mathbf{r} = \begin{bmatrix} x \\ n\alpha \end{bmatrix}$$

After refraction

$$\mathbf{r}' = \begin{bmatrix} x' \\ n'\alpha' \end{bmatrix}$$

Transformation

$$\mathbf{r}' = \mathbf{R}\mathbf{r}$$

with
$$\mathbf{R} = \begin{bmatrix} 1 & 0 \\ -P & 1 \end{bmatrix}$$

• Refractive power $P = \frac{n'-n}{R}$

$$x' = x$$

$$n'\alpha' = n\alpha + \frac{n - n'}{R}x$$

Translation in the matrix formalism

Original ray

$$\mathbf{r} = \begin{bmatrix} x \\ n\alpha \end{bmatrix}$$

Ray after propagation

$$\mathbf{r}' = \begin{bmatrix} \chi' \\ n'\alpha' \end{bmatrix}$$

Transformation

$$\mathbf{r}' = \mathbf{T}\mathbf{r}$$

with
$$\mathbf{T} = \begin{bmatrix} 1 & D/n \\ 0 & 1 \end{bmatrix}$$

$$x' = x + D n\alpha/n$$

 $n'\alpha' = n\alpha, \quad n' = n$

Imaging

•
$$\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$
 with $\det(\mathbf{M}) = 1$

• Position-position map: $M_{12} = 0$

• Position-angle map: $M_{22} = 0$

• Angle-angle map: $M_{21} = 0$

• Angle-position map: $M_{11} = 0$

Examples of imaging

- $\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$ with $\det(\mathbf{M}) = 1$
- Photo camera: position-position: $M_{12} = 0$

• Headlight: position-angle: $M_{22} = 0$

• Prism: angle-angle: $M_{21} = 0$

• Telescope: angle-position: $M_{11} = 0$

A lens in the matrix formalism

Refractive power of the interfaces

$$P = \frac{n_{\ell} - n}{R} \qquad P' = \frac{n' - n_{\ell}}{R'}$$

- Vertices V and V'
- System matrix M

$$\mathbf{M} = \mathbf{R}'\mathbf{T}\mathbf{R}$$

$$= \begin{bmatrix} 1 & 0 \\ -P' & 1 \end{bmatrix} \begin{bmatrix} 1 & D_{\ell}/n_{\ell} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -P & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - P D_{\ell}/n_{\ell} & D_{\ell}/n_{\ell} \\ PP' D_{\ell}/n_{\ell} - P - P' & 1 - P' D_{\ell}/n_{\ell} \end{bmatrix}$$

A thin lens in the matrix formalism (1)

System matrix M

$$\mathbf{M} = \begin{bmatrix} 1 - P D_{\ell}/n_{\ell} & D_{\ell}/n_{\ell} \\ PP' D_{\ell}/n_{\ell} - P - P' & 1 - P' D_{\ell}/n_{\ell} \end{bmatrix}$$

• Thin lens: $D_{\ell} = 0$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ -P' - P & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -P_{\text{thin}} & 1 \end{bmatrix}$$

• Refractive power P_{thin} (if n = n' = 1)

$$P_{\text{thin}} = (n_{\ell} - 1) \left(\frac{1}{R} - \frac{1}{R'} \right)$$

A thin lens in the matrix formalism (2)

• Refractive power P_{thin} (if $n \neq n'$)

$$P_{\text{thin}} = \frac{n_{\ell} - n}{R} - \frac{n_{\ell} - n'}{R'}$$

from medium n into medium n'

• Refractive power P'_{thin} (if $n \neq n'$)

$$P'_{\text{thin}} = \frac{n_{\ell} - n'}{-R'} - \frac{n_{\ell} - n}{-R}$$

from medium n' into medium n (radius R and R' have opposite sign)

• $P_{\text{thin}} = P'_{\text{thin}}$

Focal length of a thin lens

- Refractive power
 - the only quantity which characterizes a thin lens
 - unit: diopter = 1/m
- Focal length
 - A point to which all rays with $\alpha = 0$ or $\alpha' = 0$ converge

$$n'\alpha' = -P_{\text{thin}}x + p\alpha,$$
 $\alpha = 0$ $\alpha' = -x'/f',$ $x' = x$

• Focal length f and f'

$$f' = \frac{n'}{P_{\text{thin}}}$$
 $f = \frac{n}{P'_{\text{thin}}}$

$$\begin{bmatrix} x' \\ n'\alpha' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -P_{\text{thin}} & 1 \end{bmatrix} \begin{bmatrix} x \\ n\alpha \end{bmatrix} = \begin{bmatrix} x \\ -P_{\text{thin}}x + n\alpha \end{bmatrix}$$

Imaging with a thin lens

- Transformations:
 - translation over a distance S
 - refraction at the lens (power P)
 - \blacksquare translation over a distance S'

$$\mathbf{M} = \begin{bmatrix} 1 & S'/n' \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -P & 1 \end{bmatrix} \begin{bmatrix} 1 & S/n \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 - \frac{PS'}{n'} & \frac{S}{n} + \frac{S'}{n'} - P \frac{SS'}{nn'} \\ -P & 1 - \frac{PS}{n} \end{bmatrix}$$

• Imaging: $M_{12} = 0$

$$\frac{n}{S} + \frac{n'}{S'} = P_{\text{thin}} = \frac{n'}{f'}$$
$$= P'_{\text{thin}} = \frac{n}{f}$$

Complex lens system = thin lens (1)

System matrix M

$$\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$

 Transformation into a "thin lens" by the translations T and T'

$$\mathbf{M}' = \mathbf{T}'\mathbf{M}\mathbf{T}$$

with
$$\mathbf{T} = \begin{bmatrix} 1 & D/n \\ 0 & 1 \end{bmatrix}$$

and
$$\mathbf{T}' = \begin{bmatrix} 1 & D'/n' \\ 0 & 1 \end{bmatrix}$$

Complex lens system = thin lens (2)

System matrix M'

Photonics

$$\mathbf{M}' = \begin{bmatrix} M_{11} + M_{21} D'/n' & M_{22} D'/n' + M_{21} D/n \cdot D'/n' + M_{12} + M_{11} D/n \\ M_{21} & M_{22} + M_{21} D/n \end{bmatrix}$$

Thin lens matrix

$$\mathbf{M}' = \begin{bmatrix} 1 & 0 \\ M_{21} & 1 \end{bmatrix}$$

Solution for D and D'

$$D/n = \frac{1 - M_{22}}{M_{21}}$$

$$D'/n' = \frac{1 - M_{11}}{M_{21}}$$

• Principal planes H and H'

Principal planes

- Physical
 - Propagation through the optical system

- Mathematical
 - Incoming ray in *H*
 - Thin lens
 - Outgoing ray from H'

The graphical formalism

- Definition of the principal planes
 - The area between *H* and *H'* is not considered
- Rules for rays
 - An incident ray parallel to the axis passes through F'
 - A ray coming through point H leaves from H' and has the same direction (apart from a factor n/n'): chief ray
 - A ray coming through F leaves plane H' parallel to the axis

Location of the principal planes

Thick convex lens Plano-convex lens Meniscus lens H' H'HV'

Exercise: double lens

- Optical system with 2 lenses in air:
 - lens 1 with focal length f
 - lens 2 with focal length f/2
 - distance *f* between the lenses

- Wanted:
 - The system matrix of the optical system
 - Location of the principal planes
 - Magnification of an object at a distance f from the first lens
 - Construct this image with and without the principal planes

Spherical mirrors

Paraxial approximation:

$$\begin{bmatrix} x' \\ n\alpha' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -P & 1 \end{bmatrix} \begin{bmatrix} x \\ n\alpha \end{bmatrix}$$

with
$$P = \frac{2n}{R}$$

- Expansion of the sign convention
 - concave mirror: R > 0
 - take into account the propagation direction
- Focal length f = n/P

$$f = \frac{R}{2}$$

Numerical aperture and f-number

• *f*-number (relative aperture)

$$f$$
-number = $\frac{f}{D}$

$$D = \frac{f}{f - \text{number}}$$

Numerical aperture

$$NA = \sin \alpha$$

$$= \frac{1}{2(f-\text{number})}$$

Example *f*-number:

2, 2.8, 4, 5.6, 8, 11

Denoted as: *f*/2, *f*/2.8, *f*/4, ...

Aberrations

- Imaging differs from the paraxial imaging
 - \blacksquare paraxial = 1^{st} order approximation of sine
- Seidel: 3rd order approximation
 - aberrations, which result in non-stigmatic image (spherical aberration, astigmatism, coma)
 - aberrations with distorted stigmatic image (field curvature, distorsion)
 - chromatic aberrations (dispersion of the material)
- Aberrations depend on
 - the lens system
 - choice of the object plane (or magnification): optimization is only possible for one magnification

Spherical aberration (1)

Ideal lens

Spherical lens small diameter large *f*-number

Spherical lens large diameter small *f*-number

Spherical aberration

- Imaging on the optical axis:
 - focus point on the axis ~ angle (= Longitudinal S.A.)
 - deviation in the focal plane (= Transversal S.A.)
- \sim (Lens diameter)²
 - strong for small f-numbers
- Solution
 - lens with the best shape
 - combination of lenses
 - aspherical lens

Lens with the best shape

• Shape factor *q*

$$q = \frac{R_2 + R_1}{R_2 - R_1}$$

 Best shape factor depends on the required magnification

Lens with the best shape

Achromatic doublet

- Achromatic doublet
 - positive lens
 - meniscus with other *n*
- Spherical aberrations of lenses compensate each other
- Chromatic aberration can also be corrected
- Good for magnification of 0 and ∞
 - Parallel beam is incident on the most convex side.

Symmetric doublets

- For replacement of a symmetric double-convex lens
 - magnification 1
- Identical plano-convex lenses:
 - convex sides facing each other
- Identical achromats
 - correction of the chromatic aberration

Aspheric lenses

- Spherical aberration can be completely eliminated
 - works only for one specific magnification
- Technologically different
 - poured in a mold instead of polishing
- Used also for mirrors

Astigmatism

- Non-meridional ray does not behave as a superposition of the meridional rays
- Tangential plane: plane through the object point and optical axis
 - meridional rays
- Sagittal plane:
 plane through both object and image planes
 perpendicular to the tangential plane

Coma

- Object points located not on the optical axis:
 - rays through the edge of the lens have other lateral magnification
 - \rightarrow image point moves
 - meridional rays have other magnification than sagittal rays
 - \rightarrow image point enlarges
- Comet-like image

Field curvature

- Stigmatic lens system
 - no spherical aberrations
 - no coma
 - no astigmatism
 - still deviate from paraxial imaging:
 - longitudinal: field curvature
 - lateral: distortion
- Flat object is imaged on a curved surface (Petzval surface)

Distortion

- Variation of the lateral magnification of the image:
 - symmetric lens system (1:1 magnification): no distortion
 - pincushion or barrel shape

Chromatic aberration (1)

- Refractive index n depends on the wavelength (material dispersion)
- Abbe number *V*:

$$V = \frac{n_{\rm Y} - 1}{n_{\rm B} - n_{\rm R}}$$

- Glass:
 - stronger refraction for smaller λ
 - V > 0
- Compensated with achromatic doublets

Chromatic aberration (2)

- Longitudinal chromatic aberration
 - focus point on the axis depends on the wavelength
- Transversal chromatic aberration
 - lateral magnification depends on the wavelength

Depth of field

- Lens system: sharp image for one object surface
- Depth of field *z*: distance through which one may move the image plane to view the object still sharply.
- Larger aperture
 - gathering more light (= larger intensity)
 - more aberrations
 - lower focus depth

Material properties

- Important material properties
 - \blacksquare refractive index n
 - direction dependence (anisotropy)
 - wavelength dependence (dispersion)
 - absorption
 - hardness
 - uniformity
 - thermal expansion coefficient
 - chemical resistance

Absorption (1)

- Glass:
 - Visible light: low absorption
 - UV: quickly increasing absorption
 - IR: strong absorption from $\lambda = 2 3 \mu m$
 - n = 1.4 1.8
- Synthetic quartz
 - Amorphous SiO₂
 - Harder, low thermal expansion
 - Good between $\lambda = 200$ nm and $\lambda = 3.5$ μm
 - Absorption peaks in IR range
 - n = 1.46

Absorption (2)

- Sapphire:
 - Crystalline Al₂O₃
 - Hard, strong, chemically inert
 - Good between $\lambda = 200$ nm and $\lambda = 5$ μ m
 - n = 1.76
- Semiconductors
 - Si or Ge, mono- or polycrystalline
 - Good for IR: $\lambda = 1 \, \mu \text{m} 5 \, \mu \text{m}$
 - High refractive index: n > 3
- Zinc selenide
 - Good for visible and IR
 - n = 2.5

Anti-reflection coating

- High refractive index
 - Strong refraction
 - Large reflection

$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

- Thickness $d = \frac{\lambda}{4}$
- Refractive index $n_{AR} = \sqrt{n_1 n_2}$
- Better results achieved with multiple layers

Imaging systems

- Theoretical parameters
 - magnification
 - real or virtual image
- Parameters depending on the application
 - constant or variable magnification
 - field of view
 - brightness
 - monochromatic and chromatic aberrations
 - size and shape of the system
 - sensitivity to changes in geometry (resulting from thermal expansion, shocks,...)

The eye

- Refraction
 - Curved cornea (n = 1.34)
 - Lens (n = 1.37 1.42)
 - Refractive power: $P_{\text{eye}} = 58 \text{ m}^{-1} \text{ (58 diopter)}$
- Lens
 - Adjustable: extra 10 diopter
 - Adaptive power decreases with age
- Adjustment to intensity
 - Size of the iris
 - Two types of receptors

Nearsightedness and farsightedness

- Nearsightedness
 - refraction too strong
 - focusing in front of retina
 - correction with a negative lens

- Farsightedness
 - refraction too weak
 - focusing behind retina
 - correction with a positive lens

Magnifying glass and eyepiece

- Eyepiece (ocular):
 - a magnifying glass which is held closely to the eye
 - In optical instruments: magnification of a real image
- Object between the focal point and lens system → virtual image
- Magnification depends on object distance s

$$M = -\frac{s'}{s} = \frac{|s'|}{s} = 1 + \frac{|s'|}{f}$$

Not useful definition: says nothing about *perceived* magnification

Magnification of an eyepiece (1)

- Visual magnification: Relation between α and α'
 - \blacksquare α : Maximum angle of the object without lens
 - α' : Angle for the virtual image (eyepiece: lens in front of eye: $D_{\ell} = 0$)

$$\alpha = \frac{x}{D_{\rm m}}$$

$$\alpha' = \frac{x'}{D_{\ell} + |s'|} = \frac{x \frac{|s'|}{s}}{D_{\ell} + |s'|} = \frac{x|s'|}{D_{\ell} + |s'|} \left(\frac{1}{f} + \frac{1}{|s'|}\right)$$

$$M = \frac{\alpha'}{\alpha} = D_{\rm m} \left(\frac{1}{f} + \frac{1}{|s'|} \right)$$

Magnification of an eyepiece (2)

Magnification M:

$$M = \frac{\alpha'}{\alpha} = D_{\rm m} \left(\frac{1}{f} + \frac{1}{|s'|} \right)$$

 $D_{\rm m}$ is standardized at 25 cm

- Selection of the image distance: $|s'| = D_{\rm m}$
 - minimal distance:

$$M = \frac{D_{\rm m}}{f} + 1 \approx \frac{D_{\rm m}}{f}$$

■ infinite distance: $|s'| = \infty$

$$M = \frac{D_{\rm m}}{f} = \frac{25 \text{ cm}}{f}$$

= nominal magnification

Ramsden eyepiece

- Eyepiece with one lens
 - Very strong chromatic aberration
- Ramsden eyepiece:
 - two identical lenses at a focal length from each other
- Two lenses (focal length f_1 and f_2) behave achromatically if distance between them D is an average of f_1 and f_2 :

$$D = \frac{f_1 + f_2}{2}$$

Disadvantage: dust on the first lens is imaged sharply

Objectives

- Create a real inverted image of the object
 - on the film surface
 - or can be viewed by an eyepiece
- Microscope
 - magnification of the object
- Telescope
 - making the object smaller
 - magnification of the angles

Microscope

Magnification of the objective

$$M_{\rm ob} = -\frac{s'}{s} = 1 - \frac{s'}{f_1}$$

- strong magnification: $s' \gg f_1$ object is located close to the focal plane
- standard: s' = 16 cm

$$M_{\rm ob} \approx -\frac{s'}{f_1} = -\frac{16}{f_1}$$

Total magnification

$$M_{\text{tot}} = M_{\text{ob}} \cdot M_{\text{oc}}$$
$$= -\frac{16}{f_1} \cdot \frac{25}{f_2}$$

Telescope

Magnification of the angles:

$$M = \frac{\alpha'}{\alpha}$$

- Intermediate image: in the common focal plane
- Eyepiece: virtual image at a large distance

$$M = \frac{f_1}{f_2}$$

Total refractive power of zero (angle-angle transformation)

Galilean telescope

- Regular telescope:
 - inverted image
- Galilean telescope:
 - negative eyepiece
 - eyepiece is located in front of the focal plane of the objective
 - gives positive magnification

Camera objective

- Similar to the telescope
 - object distance >> image distance
 - typical: f = 50 mm
- Teleobjective
 - large focal distance → impractical
 - adding more lenses
- Additional lenses:
 - larger focal length
 - short system: principal planes are located in front of the objective

Fiber bundles

- Challenging circumstances:
 - limited space
 - flexible system
- Limitation in resolutions:number of fibers = number of pixels
- Application:
 - Endoscope (medicine)
 - Transformation of a light source shape

Fresnel lenses

- Refraction:
 only the angle with the surface
 is important
- Fresnel lens:
 - discontinuous surface
 - angle changes continuously

- Application:
 - large lenses (which otherwise would be too thick)
 - concentration of light, where fine imaging is not important
- e. g. light house, car lights, traffic lights, overhead,...

"Cat's eye"

- "Cat's eye" = Corner Cube Reflector
 - Reflects (almost) all light back to the source
 - Three mirrors at right angles (or total internal reflection)
 - Different CCR near each other
 - Phase front is distorted
- Applications:
 - reflectors in traffic
 - distance measurements e.g. Earth-Moon

Distance to the moon

APOLLO: Apache Point Observatory Lunar Laser-ranging Operation

