Game Theoretical Modelling and PrEP Adoption Agent Based Simulation

SID: 470534005

November 29, 2020

• COIVD-19 is a global epidemic outbreak.

- COIVD-19 is a global epidemic outbreak.
- Declined HIV infections (Grulich et al. 2018).

Section 1

Compartment Modelling

SIRV Model

Epidemic Parameters

- α Adoption rate (vaccine/ treatment)
- β Transmission rate
- γ Recovery rate
- δ Removal rate
- ϕ Vaccine/ treatment wear off
- τ COVID-19 testing rate
- $R_0 = \frac{\beta}{\gamma}$ Basic reproduction rate (COVID-19: ~ 2.6)

Factors to COVID-19

Socio-economical factors:

- Social contact
- Certain jobs (e.g. health worker, essential worker)
- Age
- Gender

Purpose of Study

To study:

- Prediction of pandemic upon the factors.
- Different socio-economical effects upon vaccine adoption.

Section 2

Methods

Simulation

Simulation:

- $N \ge 10000$
- Initial values

•
$$\beta = 0.14$$

•
$$\gamma = 0.02$$

•
$$\phi = 0.000005$$

Available on Github.

Time steps

Agents may

- 1 infect disease
- 2 take vaccine
- 3 recover
- 4 wear-off vaccine
- 5 take COVID-19 test

in each time step.

Immune Time

- Not able to reinfect after recovered some time.
- 0 days, 60 days, 180 days and 210 days tested.

- Preferential attachment (Babarasi-Albert network).
- Update: Xulvi-Brunet–Sokolov algorithm
 - Preserve degree distribution
 - Assortativity/ disassortativity rewiring
 - Rewiring probability controls assortativity/ disassortativity changes

Probability to vaccinate:

$$P_i(X) = \frac{e^{\alpha \lambda r_s}}{\sum_s e^{\alpha \lambda_i r_s}} = \frac{e^{\alpha \lambda r_s}}{e^{\alpha \lambda_i r_V} + e^{\alpha \lambda_i r_{-V}}}$$
(1)

- λ rationality parameter
 - $oldsymbol{\lambda}
 ightarrow 0$ random decision
 - $\lambda \to \infty$ Nash equilibrium

Opinion Dynamics

Local Majority Rule

- Population form local info network.
- Generate consensus based on local majority
- Personality:
 - Inflexible Position fixated
 - Balancer Contrary to group consensus

Section 3

Results

Immunity Period

Immunity Period

- Immunity period make realistic.
- 60 days produce decay oscillation.
- More than 60 days produces subsequent waves.

Low number of links

Figure: Low links and average degree

High number of links

Figure: High links and average degree

Analysis

- · High links has higher epidemic peak.
- One peak (not always with second waves).

 $\alpha = 0.01$

 $\alpha = 0.8$

Figure: Time series

Analysis

- Very quick adoption.
- Lower bound P(X) = 0.5.

Opinion Dynamics

Different inflexible and balancer proportion.

(a) Effect on infection

(b) Effect on vaccination

Figure: Results of infection and vaccinated proportion at time t = 500.

Discussion and Conclusion

- Immune period is realistic.
- Cost of infection boosts vaccine adoption.
- Adoption rate is very fast (bounded rationality).
- Low balancer and inflexible boosts pro-vaccine proportion.

Critical Evaluation and Outlook

- Combination of factors.
 - Contact network and overseas travel (external infection).
 - Game theory and opinion dynamics.
- Bounded rationality has lower bound P(X) = 0.5.
- Realistic value of vaccination and infection remains unknown.