Document Title

32Kx8 bit Low Power CMOS Static RAM

Revision History

Revision No	<u>History</u>	<u>Draft Data</u>	Remark
0.0	Initial draft	May 18, 1997	Design target
0.1	First revision $ \begin{array}{l} \text{- KM62256DL/DLI Isb1} = 100 \rightarrow 50 \mu \text{A} \\ \text{KM62256DL-L Isb1} = 20 \rightarrow 10 \mu \text{A} \\ \text{KM62256DLI-L Isb1} = 50 \rightarrow 15 \mu \text{A} \\ \text{- CIn} = 6 \rightarrow 8 \text{pF}, \text{CIo} = 8 \rightarrow 10 \text{pF} \\ \text{- KM62256DL/DLI Family} \\ \text{tOH} = 5 \rightarrow 10 \text{ns} \\ \text{- KM62256DL/DLI Idr} = 50 \rightarrow 30 \mu \text{A} \\ \text{KM62256DL-L/DLI-L Idr} = 30 \rightarrow 15 \mu \text{A} \\ \end{array} $	April 1, 1997	Preliminily
1.0	Finalize - Remove Icc write value - Improved operating current Icc2 = $70 \rightarrow 60$ mA - Improved standby current KM62256DL/DLI IsB1 = $50 \rightarrow 30$ μ A KM62256DL-L IsB1 = $10 \rightarrow 5$ μ A KM62256DLI-L IsB1 = $15 \rightarrow 5$ μ A - Improved data retention current KM62256DL/DLI IdR = $30 \rightarrow 5$ μ A KM62256DL-L/DLI-L IdR = $15 \rightarrow 3$ μ A - Remove 45ns part from commercial product and 100ns part from industrial product. Replace test load 100pF to 50pF for 55ns part	November 11, 1997	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserves the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

32Kx8 bit Low Power CMOS Static RAM

FEATURES

Process Technology : TFTOrganization : 32Kx8

Power Supply Voltage: 4.5~5.5V
Low Data Retention Voltage: 2V(Min)
Three state output and TTL Compatible
Package Type: 28-DIP-600B, 28-SOP-450 28-TSOP1-0813.4 F/R

GENERAL DESCRIPTION

The K6T0808C1D families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature ranges and have various package types for user flexibility of system design. The families also support low data retention voltage for battery backup operation with low data retention current.

PRODUCT FAMILY

				Power Dissipation					
Product Family	Operating Temperature	Vcc Range	Speed	Standby (ISB1, Max)	Operating (Icc2, Max)	PKG Type			
K6T0808C1D-L	Commercial (0~70°C)	- 4.5 to 5.5V		55 ¹⁾ /70ns	30μΑ		28-DIP,28-SOP		
K6T0808C1D-B	Commercial (0~70 C)		55 770HS	5μΑ	60mA	28-TSOP1-F/R			
K6T0808C1D-P	Industrial (-40~85°C)	4.5 10 5.5	4.5 to 5.5				30μΑ	OOMA	28-SOP
K6T0808C1D-F			70115	5μΑ		28-TSOP1-F/R			

^{1.} The parameter is tested with 50pF test load.

PIN DESCRIPTION

FUNCTIONAL BLOCK DIAGRAM

Pin Name	Function	Pin Name	Function
CS	Chip Select Input	I/O1~I/O8	Data Inputs/Outputs
ŌE	Output Enable Input	Vcc	Power
WE	Write Enable Input	Vss	Ground
A0~A14	Address Inputs	NC	No connect

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Temp	perature Products(0~70°C)	Industrial Temperature Products(-40~85°C)			
Part Name	Function	Part Name	Function		
K6T0808C1D-DL55	28-DIP, 55ns, L-pwr	K6T0808C1D-GP70	28-SOP, 70ns, L-pwr		
K6T0808C1D-DB55	28-DIP, 55ns, LL-pwr	K6T0808C1D-GF70	28-SOP, 70ns, LL-pwr		
K6T0808C1D-DL70	28-DIP, 70ns, L-pwr	K6T0808C1D-TP70	28-TSOP1 F, 70ns, L-pwr		
K6T0808C1D-DB70	28-DIP, 70ns, LL-pwr	K6T0808C1D-TF70	28-TSOP1 F, 70ns, LL-pwr		
K6T0808C1D-GL55	28-SOP, 55ns, L-pwr	K6T0808C1D-RP70	28-TSOP1 R, 70ns, L-pwr		
K6T0808C1D-GB55	28-SOP, 55ns, LL-pwr	K6T0808C1D-RF70	28-TSOP1 R, 70ns, LL-pwr		
K6T0808C1D-GL70	28-SOP, 70ns, L-pwr				
K6T0808C1D-GB70	28-SOP, 70ns, LL-pwr				
K6T0808C1D-TL55	28-TSOP1 F, 55ns, L-pwr				
K6T0808C1D-TB55	28-TSOP1 F, 55ns, LL-pwr				
K6T0808C1D-TL70	28-TSOP1 F, 70ns, L-pwr				
K6T0808C1D-TB70	28-TSOP1 F, 70ns, LL-pwr				
K6T0808C1D-RL55	28-TSOP1 R, 55ns, L-pwr				
K6T0808C1D-RB55	28-TSOP1 R, 55ns, LL-pwr				
K6T0808C1D-RL70	28-TSOP1 R, 70ns, L-pwr				
K6T0808C1D-RB70	28-TSOP1 R, 70ns, LL-pwr				

FUNCTIONAL DESCRIPTION

CS	OE	WE	1/0	Mode	Power
Н	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	High-Z	Output Disabled	Active
L	L	Н	Dout	Read	Active
L	X ¹⁾	L	Din	Write	Active

^{1.} X means don't care (Must be in high or low states)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to 7.0	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to 7.0	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
Operating Temperature	TA	0 to 70	°C	K6T0808C1D-L
Operating reinperature	IA	-40 to 85	°C	K6T0808C1D-P
Soldering temperature and time	TSOLDER	260°C, 10sec (Lead Only)	-	-

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input high voltage	ViH	2.2	-	Vcc+0.5V ²⁾	V
Input low voltage	VIL	-0.5 ³⁾	-	0.8	V

Note:

- 1. Commercial Product: T_A=0 to 70°C, otherwise specified Industrial Product: T_A=-40 to 85°C, otherwise specified

- 2. Overshoot : Vcc+3.0V in case of pulse width≤30ns
 3. Undershoot : -3.0V in case of pulse width≤30ns
 4. Overshoot and undershoot are sampled, not 100% tested

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	Cin	Vin=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

^{1.} Capacitance is sampled not, 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions			Тур	Max	Unit
Input leakage current	I⊔	VIN=Vss to Vcc	-1	-	1	μΑ	
Output leakage current	ILO	CS=VIH or OE=VIH or WE=VIL, VIO=Vss to	-1	-	1	μΑ	
Operating power supply current	Icc	IIO=0mA, CS=VIL, VIN=VIH or VIL, Read	-	5	10	mA	
	Icc1	Cycle time=1µs, 100% duty, lio=0mA	Read	-	2	5	mA
Average operating current	ICC1	CS≤0.2V, VIN≤0.2V, VIN≥Vcc -0.2V	Write		-	20	IIIA
	ICC2	Cycle time=Min,100% duty, Iio=0mA, CS=VIL, VIN=VIH or VIL			45	60	mA
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V
Output high voltage	Vон	Iон=-1.0mA		2.4	-	-	V
Standby Current(TTL)	Isb	CS=VIH, Other inputs=VIH or VIL				1	mA
Standby Current (CMOS)	les.		Low Power	-	1	30	μΑ
	ISB1	OS=VCC-0.2V, Other inputs=0~VCC	Low Low Power	-	0.2	5	μΑ

AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Test Input/Output Reference)

Input pulse level : 0.8 to 2.4V
Input rising and falling time : 5ns
Input and output reference voltage : 1.5V
Output load (See right) :CL=100pF+1TTL
CL=50pF+1TTL

1. Including scope and jig capacitance

AC CHARACTERISTICS (Vcc=4.5~5.5V, K6T0808C1D-L Family:TA=0 to 70°C, K6T0808C1D-P Family:TA=-40 to 85°C)

	Parameter List	Symbol	55	¹)ns	70ns		Units
Dood grale time			Min	Max	Min	Max	
	Read cycle time	trc	55	-	70	-	ns
	Address access time	taa	-	55	-	70	ns
	Chip select to output	tco	-	55	-	70	ns
	Output enable to valid output	toE	-	25	-	35	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	ns
	Output enable to low-Z output	toLz	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	30	ns
	Output disable to high-Z output	tonz	0	20	0	30	ns
	Output hold from address change	tон	10	-	10	-	ns
	Write cycle time	twc	55	-	70	-	ns
	Chip select to end of write	tcw	45	-	60	-	ns
	Address set-up time	tas	0	-	0	-	ns
	Address valid to end of write	taw	45	-	60	-	ns
Write	Write pulse width	twp	40	-	50	-	ns
VVIIIC	Write recovery time	twr	0	-	0	-	ns
	Write to output high-Z	twnz	0	20	0	25	ns
	Data to write time overlap	tow	25	-	30	-	ns
	Data hold from write time	tDH	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns

^{1.} The parameter is tested with 50pF test load.

DATA RETENTION CHARACTERISTICS

Item	Symbol	Test Condition		Min	Тур	Max	Unit
Vcc for data retention	VDR	CS ≥Vcc-0.2V		2.0	-	5.5	V
Data retention current	IDR	Vcc=3.0V, CS≥Vcc-0.2V	L-Ver	ı	1	15	μА
Data retention current			LL-Ver	-	0.2	3	
Data retention set-up time	tsdr	See data retention waveform	0	-	-	ms	
Recovery time	trdr	See data retention wavelonii	5	-	-	1115	

TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = VIL, \overline{WE} = VIH)$

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

NOTES (READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$. A write begins at the latest transition among $\overline{\text{CS}}$ going Low and $\overline{\text{WE}}$ going low: A write end at the earliest transition among $\overline{\text{CS}}$ going high and $\overline{\text{WE}}$ going high, twp is measured from the begining of write to the end of write.
- 2. tcw is measured from the CS going low to end of write.
- 3. tAS is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.

DATA RETENTION WAVE FORM

PACKAGE DIMENSIONS

Units: millimeter(inch)

28 PIN PLASTIC SMALL OUTLINE PACKAGE(450mil)

PACKAGE DIMENSIONS

Units: millimeter(inch)

28 PIN THIN SMALL OUTLINE PACKAGE TYPE1 (0813.4F)

28 PIN THIN SMALL OUTLINE PACKAGE TYPE1 (0813.4R)

