

Week 12 Term structure of interest rates

Bond Markets (Lancaster University)

Scan to open on Studocu

Week 12: Term structure of interest rates 2

	Lecture
Materials	Week 12_Topic 2 (part 2)_Term Structure of Interest Rates.pptx
☑ Reviewed	
chapter	Financial Markets and Institutions Global Edition (Chapter_5_How_Do_Risk_and_Term_Structure_Affect_Interest_Rates_) _Knowt.pdf Chapter 12 - bond market summary.pdf

▼ Expectations theory

Key assumptions: bonds of different maturities are **perfect substitutes**

• the interest rates on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond.

Expectations theory and term structure facts

 pure expectations theory explains fact 1 - that short and long rates move together

Short rate rises are persistent If $i_t \uparrow$ today, i_{t+1}^e , i_{t+2}^e etc. $\uparrow \Rightarrow$ average of future rates $\uparrow \Rightarrow i_{nt} \uparrow$ Therefore: $i_t \uparrow \Rightarrow i_{nt} \uparrow$ (i.e., short and long rates move together)

- explains fact 2 that yield curves tend to have steep slope when short rates are low and downward slope when short rates are high
- \rightarrow when short rates are low, they are expected to rise to normal level, and long rate \Rightarrow average of future short rates which will be well above today's short rate; yield curve will have steep upward slope.
- → when short rates are high, they will be expected to fall in future, and long rate will be below current short rate; yield curve will have downward slope.
 - doesn't explain fact 3 that yield curve usually has upward slope
- → short rates are as likely to fall in future as rise, so average of expected future short rates will not usually be higher than current short rate: therefore, yield curve will not usually slope upward

▼ Market Segmentation theory

Key assumption: bonds of different maturities are not substitutes at all

Implication: markets are completely segmented; interest rate at each maturity are determined separately

- explain fact 3 people typically prefer short holding periods and thus have higher demand for short term bonds, which have higher prices and lower interest rates than long bonds
- does not explain fact 1 or fact 2 because it assumes long-term bonds and short-term rates are determined independently

▼ Liquidity Premium theory

Key assumption: bonds of different maturities are <u>substitutes</u>, but are <u>not perfect</u> <u>substitutes</u>

Implication: modifies pure expectations theory with features of market segmentation theory

- investors prefer short-term rather than long-term bonds. This implies that investors must be paid positive liquidity premium, to hold long term bonds
- liquidity premium theory produces yield curves more steeply upward sloped

Figure 5.5 The Relationship Between the Liquidity Premium and Expectations Theories

- · explains all 3 facts
- explains fact 3 that usual upward sloped curve yield curve by liquidity premium for long-term bonds
- explain fact 1 and 2 because it has average of future short rates as determinant of long rate (using pure expectations theory explanation)

Week 12(b): Bond markets

