

COMPUTER VISION Locating Interesting Points

Le Thanh Ha, Ph.D

Assoc. Prof. at University of Engineering and Technology, Vietnam National University

ltha@vnu.edu.vn; lthavnu@gmail.com; 0983 692 592

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features

Step 2: match features

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images

- Overview of correspondence and alignment
- Interesting points
- Harris detector
- Hessian detector

TODAY LECTURE

This section: correspondence and alignment

Correspondence: matching points, patches, edges, or regions across images

This section: correspondence and alignment

 Alignment: solving the transformation that makes two things match better

Example: fitting an 2D shape template

Example: fitting a 3D object model

Example: estimating "fundamental matrix" that corresponds two views

Example: tracking points

Interest points

 Note: "interest points" = "keypoints", also sometimes called "features"

- Many applications
 - tracking: which points are good to track?
 - recognition: find patches likely to tell us something about object category
 - 3D reconstruction: find correspondences across different views

Human eye movements

Yarbus eye tracking

This class: interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?

Overview of Keypoint Matching

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Goals for Keypoints

Detect points that are repeatable and distinctive

Choosing interest points

Where would you tell your friend to meet you?

Choosing interest points

Where would you tell your friend to meet you?

Many Existing Detectors Available

Hessian & Harris

Laplacian, DoG

Harris-/Hessian-Laplace

Harris-/Hessian-Affine

EBR and IBR

MSER

Salient Regions

Others...

[Beaudet '78], [Harris '88]

[Lindeberg '98], [Lowe 1999]

[Mikolajczyk & Schmid '01]

[Mikolajczyk & Schmid '04]

[Tuytelaars & Van Gool '04]

[Matas '02]

[Kadir & Brady '01]

Interesting points detection

Harris Detector [Harris88]

Second moment matrix

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

Intuition: Search for local neighborhoods where the image content has two main directions (eigenvectors).

Harris Detector [Harris88]

Second moment matrix

$$\mu(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
 1. Image derivatives (optionally, blur first)

2. Square of derivatives

3. Gaussian filter $g(\sigma_i)$

4. Cornerness function – both eigenvalues are strong

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] =$$

$$g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

Harris Detector: Mathematics

$$M = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

1. Want large eigenvalues, and small ratio $\frac{\lambda_1}{\lambda_2} < t$

$$\det M = \lambda_1 \lambda_2$$

trace
$$M = \lambda_1 + \lambda_2$$

3. Leads to

$$\det M - k \cdot \operatorname{trace}^2(M) > t$$

(k:empirical constant, k = 0.04-0.06)

Harris Detector – Responses [Harris88]

Effect: A very precise corner detector.

Harris Detector - Responses [Harris88]

Hessian Detector [Beaudet78]

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

Intuition: Search for strong curvature in two orthogonal directions

Hessian Detector [Beaudet78]

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

$$\det(Hessian(I)) = I_{xx}I_{yy} - I_{xy}^{2}$$

In Matlab:

$$I_{xx}.*I_{yy}-(I_{xy})^2$$

Hessian Detector – Responses [Beaudet78]

Effect: Responses mainly on corners and strongly textured areas.

Hessian Detector – Responses [Beaudet78]

So far: can localize in x-y, but not scale

