Section 3.8

Exercise (3.121). Let Y denote a random variable that has a Poisson distribution with mean $\lambda = 2$. Find:

(a) P(Y = 4)

Solution: Poisson distribution function is

$$P(Y = y) = \frac{e^{-\lambda} \lambda^y}{y!}$$

$$P(Y = 4) = \frac{e^{-2}(-2)^4}{4!} = 0.09022352$$

(b) $P(Y \ge 4)$

Solution:

$$P(Y \ge 4) = 1 - [P(Y = 3) + P(Y = 2) + P(Y = 1) + P(Y = 0)]$$

$$= 1 - \left[\frac{e^{-2}(-2)^3}{3!} + \frac{e^{-2}(-2)^2}{2!} + \frac{e^{-2}(-2)^1}{1!} + \frac{e^{-2}(-2)^0}{0!}\right]$$

$$= 1 - \left[0.180447 + 0.2706706 + 0.2706706 + 0.1353353\right]$$

$$= 0.1428765$$

(table gives me 1-0.857 = 0.143 but wanted to do it full at least once) \Box

(c) P(Y < 4)

Solution:

$$P(Y < 4) = P(Y \le 3) = 0.857$$

 \Box

(d) $P(Y \ge 4 \mid Y \ge 2)$

$$P(Y \ge 4 \mid Y \ge 2) = \frac{P(Y \ge 4) \cap P(Y \ge 2)}{P(Y \ge 2)} = \frac{P(Y \ge 4)}{P(Y \ge 2)} = \frac{0.143}{1 - 0.406} = 0.241$$

(table and prev prob)

Exercise (3.122). Customers arrive at a checkout counter in a department store according to a Poisson distribution at an average of seven per hour. During a given hour, what are the probabilities that:

(a) no more than three customers arrive?

Solution:

$$P(Y \le 3) = 0.082$$

 \Box

(b) at least two customers arrive?

Solution:

$$P(Y \ge 2) = 1 - P(Y \le 1) = 1 - 0.007 = 0.993$$

(c) exactly five customers arrive?

Solution:

$$P(Y=5) = \frac{e^{-7}7^5}{5!} = 0.1277167$$

Exercise (3.125). Refer to Exercise 3.122. If it takes approximately ten minutes to serve each customer, find the mean and variance of the total service time for customers arriving during a 1-hour period. (Assume that a sufficient number of servers are available so that no customer must wait for service.) Is it likely that the total service time will exceed 2.5 hours?

Solution: Note that 10 minutes = 1/6 of an hour, $E(Y) = \lambda$ and $V(Y) = \lambda$ for Poisson.

$$E(\frac{1}{6}Y) = \frac{1}{6}E(Y) = \frac{1}{6} * 7 = 1.166667$$

$$V(\frac{1}{6}Y) = (\frac{1}{6})^2 V(Y) = \frac{1}{36} * 7 = 0.1944444$$

Not likely to exceed 2.5 hours of total service time since the variance is already so small, the standard deviation would be smaller \Box

Exercise (3.127). The number of typing errors made by a typist has a Poisson distribution with an average of four errors per page. If more than four errors appear on a given page, the

typist must retype the whole page. What is the probability that a randomly selected page does not need to be retyped?

Solution: $\lambda = 4$ and $Y \leq 4$ for this one.

$$P(Y < 4) = 0.629$$

$$\Box$$
 (table)

Exercise (3.131). The number of knots in a particular type of wood has a Poisson distribution with an average of 1.5 knots in 10 cubic feet of the wood. Find the probability that a 10cubic-foot block of the wood has at most 1 knot.

Solution: $\lambda = 1.5$ and Y < 1.

$$P(Y < 1) = 0.558$$

(table really has everything doesn't it)

Exercise (3.134). Consider a binomial experiment for n=20, p=.05. Use Table 1, Appendix 3, to calculate the binomial probabilities for Y = 0, 1, 2, 3, and 4. Calculate the same probabilities by using the Poisson approximation with $\lambda = np$. Compare.

Solution: Binomial Distribution for $P(Y \le 4)$ for n = 20 and p = 0.5 is 0.997 according to back table. For our Poisson Distribution $\lambda = 20 * 0.05 = 1$, we refer to the table in the back and calculate it.

$$P(Y \le 4) = 0.996 \text{ (table)}$$

$$P(Y \le 4) = P(Y = 0) + P(Y = 1) + P(Y = 2) + P(Y = 3) + P(Y = 4)$$

$$= e^{-1} \left[\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} \right]$$

$$= 0.9963402 \text{ (full calculation)}$$

Depending on who you are, they are pretty close.

Exercise (3.135). A salesperson has found that the probability of a sale on a single contact is approximately .03. If the salesperson contacts 100 prospects, what is the approximate probability of making at least one sale?

Solution: We use Poisson Approximation

$$P(Y \ge 1) = 1 - P(Y = 0) = 1 - \frac{e^{-3}3^0}{0!} = e^{-3} = 0.9502129$$

Exercise (3.139). In the daily production of a certain kind of rope, the number of defects per foot Y is assumed to have a Poisson distribution with mean $\lambda = 2$. The profit per foot when the rope is sold is given by X, where $X = 50 - 2Y - Y^2$. Find the expected profit per foot.

Solution:

$$E(X) = E[50 - 2Y - Y^{2}]$$

$$= E(50) - 2E(Y) - E(Y^{2})$$

$$= 50 - 2(2) - [V(Y) + [E(Y)]^{2}]$$

$$= 50 - 4 - (2 + 4)$$

$$= 40$$

Exercise (3.141). A food manufacturer uses an extruder (a machine that produces bite-size cookies and snack food) that yields revenue for the firm at a rate of \$200 per hour when in operation. However, the extruder breaks down an average of two times every day it operates. If Y denotes the number of breakdowns per day, the daily revenue generated by the machine is $R = 1600 - 50Y^2$. Find the expected daily revenue for the extruder.

$$E(R) = E[1600 - 50Y^{2}]$$

$$= E[1600] - 50E[Y^{2}]$$

$$= 1600 - 50[V(Y) + E(Y)^{2}]$$

$$= 1600 - 50[2 + 4]$$

$$= 1300$$

Section 3.9

Exercise (3.145). If Y has a binomial distribution with n trials and probability of success p, show that the moment-generating function for Y is

$$m(t) = (pe^t + q)^n$$
, where $q = 1 - p$.

Solution: The moment-generating function is $m(t) = E(e^{tY})$.

For binomial distribution:

$$m(t) = E(e^{tY}) = \sum_{y=0}^{n} e^{ty} \binom{n}{y} p^{y} q^{n-y}$$
$$= \sum_{y=0}^{n} \binom{n}{y} (pe^{t})^{y} q^{n-y}$$
$$= (pe^{t} + q)^{n} \text{ by the binomial theorem}$$

Exercise (3.146). Differentiate the moment-generating function in Exercise 3.145 to find E(Y) and $E(Y^2)$. Then find V(Y).

Solution: $m(t) = (pe^t + q)^n$.

First derivative:

$$m'(t) = n(pe^t + q)^{n-1} \cdot pe^t$$

$$m'(0) = n(p+q)^{n-1} \cdot p = np = E(Y)$$

Second derivative:

$$m''(t) = n(n-1)(pe^t + q)^{n-2}(pe^t)^2 + n(pe^t + q)^{n-1}pe^t$$
$$m''(0) = n(n-1)p^2 + np = E(Y^2)$$

Therefore:

$$V(Y) = E(Y^{2}) - [E(Y)]^{2}$$

$$= n(n-1)p^{2} + np - n^{2}p^{2}$$

$$= n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$$

$$= np - np^{2} = np(1-p) = npq$$

Exercise (3.147). If Y has a geometric distribution with probability of success p, show that the moment-generating function for Y is

$$m(t) = \frac{pe^t}{1 - qe^t}$$
, where $q = 1 - p$.

Solution: For geometric distribution, $P(Y = y) = pq^{y-1}$ for y = 1, 2, 3, ...

$$m(t) = E(e^{tY}) = \sum_{y=1}^{\infty} e^{ty} p q^{y-1}$$

$$= p e^t \sum_{y=1}^{\infty} (q e^t)^{y-1}$$

$$= p e^t \sum_{k=0}^{\infty} (q e^t)^k \text{ (let } k = y - 1)$$

$$= p e^t \cdot \frac{1}{1 - q e^t} \text{ (geometric series, } |q e^t| < 1)$$

$$= \frac{p e^t}{1 - q e^t}$$

Exercise (3.149). Refer to Exercise 3.145. Use the uniqueness of moment-generating functions to give the distribution of a random variable with moment-generating function m(t) = $(0.6e^t + 0.4)^3$.

Solution: Comparing $m(t) = (0.6e^t + 0.4)^3$ with the binomial MGF $m(t) = (pe^t + q)^n$:

We have
$$p = 0.6$$
, $q = 0.4$, and $n = 3$.

Therefore, Y has a binomial distribution with n=3 and p=0.6.

Exercise (3.151). Refer to Exercise 3.145. If Y has moment-generating function $m(t) = (0.7e^t + 0.3)^{10}$, what is P(Y < 5)?

Solution: From the MGF, Y has a binomial distribution with n = 10 and p = 0.7.

Using Table 1 (Binomial table) with n = 10 and p = 0.7:

$$P(Y \le 5) = 0.150$$

Exercise (3.153). Find the distributions of the random variables that have each of the following moment-generating functions:

(a)
$$m(t) = [(1/3)e^t + (2/3)]^5$$

Solution: This is a binomial MGF with p = 1/3, q = 2/3, and n = 5.

Therefore,
$$Y \sim \text{Binomial}(n = 5, p = 1/3)$$
.

(b)
$$m(t) = \frac{e^t}{2-e^t}$$

Solution: Rewrite: $m(t) = \frac{e^t}{2-e^t} = \frac{(1/2)e^t}{1-(1/2)e^t}$

This matches the geometric MGF with p = 1/2 and q = 1/2.

Therefore,
$$Y \sim \text{Geometric}(p = 1/2)$$
.

(c)
$$m(t) = e^{2(e^t - 1)}$$

Solution: The Poisson MGF is $m(t) = e^{\lambda(e^t - 1)}$.

Comparing with $m(t) = e^{2(e^t - 1)}$, we have $\lambda = 2$.

Therefore,
$$Y \sim \text{Poisson}(\lambda = 2)$$
.

Exercise (3.155). Let $m(t) = \frac{1}{6}e^t + \frac{2}{6}e^{2t} + \frac{3}{6}e^{3t}$. Find the following:

(a) E(Y)

Solution:
$$m'(t) = \frac{1}{6}e^t + \frac{4}{6}e^{2t} + \frac{9}{6}e^{3t}$$

 $E(Y) = m'(0) = \frac{1}{6} + \frac{4}{6} + \frac{9}{6} = \frac{14}{6} = \frac{7}{3}$

(b) V(Y)

Solution:
$$m''(t) = \frac{1}{6}e^t + \frac{8}{6}e^{2t} + \frac{27}{6}e^{3t}$$

 $E(Y^2) = m''(0) = \frac{1}{6} + \frac{8}{6} + \frac{27}{6} = \frac{36}{6} = 6$

$$V(Y) = E(Y^2) - [E(Y)]^2 = 6 - \left(\frac{7}{3}\right)^2 = 6 - \frac{49}{9} = \frac{54 - 49}{9} = \frac{5}{9}$$

(c) The distribution of Y

Solution: The MGF has the form $m(t) = \sum p(y)e^{yt}$.

Comparing:
$$p(1) = 1/6$$
, $p(2) = 2/6 = 1/3$, $p(3) = 3/6 = 1/2$

Therefore, Y is a discrete random variable with probability function:

$$p(y) = \begin{cases} 1/6, & y = 1 \\ 1/3, & y = 2 \\ 1/2, & y = 3 \\ 0, & \text{otherwise} \end{cases}$$

Section 3.11

Exercise (3.167). Let Y be a random variable with mean 11 and variance 9. Using Tchebysheff's theorem, find:

(a) a lower bound for P(6 < Y < 16)

Solution: $\mu = 11$, $\sigma^2 = 9$, so $\sigma = 3$.

The interval (6, 16) is $\mu \pm 5 = 11 \pm 5$.

So k = 5/3 standard deviations.

By Tchebysheff's theorem:

$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2} = 1 - \frac{1}{(5/3)^2} = 1 - \frac{9}{25} = \frac{16}{25} = 0.64$$

(b) the value of C such that $P(|Y-11| \ge C) \le 0.09$

Solution: By Tchebysheff's theorem: $P(|Y - \mu| \ge k\sigma) \le \frac{1}{k^2}$

We want
$$\frac{1}{k^2} = 0.09$$
, so $k^2 = \frac{1}{0.09} = \frac{100}{9}$, thus $k = \frac{10}{3}$.

Therefore:

$$C = k\sigma = \frac{10}{3} \cdot 3 = 10$$

Exercise (3.168). Would you rather take a multiple-choice test or a full-recall test? If you have absolutely no knowledge of the test material, you will score zero on a full-recall test. However, if you are given 5 choices for each multiple-choice question, you have at least one chance in five of guessing each correct answer! Suppose that a multiple-choice exam contains 100 questions, each with 5 possible answers, and you guess the answer to each of the questions.

(a) What is the expected value of the number Y of questions that will be correctly answered?

Solution:
$$Y \sim \text{Binomial}(n = 100, p = 1/5 = 0.2)$$

$$E(Y) = np = 100(0.2) = 20$$

(b) Find the standard deviation of Y.

Solution:
$$V(Y) = npq = 100(0.2)(0.8) = 16$$

$$\sigma = \sqrt{16} = 4$$

(c) Calculate the intervals $\mu \pm 2\sigma$ and $\mu \pm 3\sigma$.

Solution:
$$\mu \pm 2\sigma = 20 \pm 2(4) = 20 \pm 8 = (12, 28)$$

 $\mu \pm 3\sigma = 20 \pm 3(4) = 20 \pm 12 = (8, 32)$

(d) If the results of the exam are curved so that 50 correct answers is a passing score, are you likely to receive a passing score? Explain.

Solution: 50 is $\frac{50-20}{4} = 7.5$ standard deviations above the mean.

By Tchebysheff's theorem, $P(|Y - 20| \ge 30) \le \frac{1}{(7.5)^2} = \frac{1}{56.25} \approx 0.018$.

Therefore, it is **very unlikely** to receive a passing score (probability less than

$$2\%$$
).

Exercise (3.171). For a certain type of soil the number of wireworms per cubic foot has a mean of 100. Assuming a Poisson distribution of wireworms, give an interval that will include at least 5/9 of the sample values of wireworm counts obtained from a large number of 1-cubic-foot samples.

Solution: For Poisson: $\mu = \lambda = 100$ and $\sigma^2 = \lambda = 100$, so $\sigma = 10$.

By Tchebysheff's theorem:
$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$

We want
$$1 - \frac{1}{k^2} = \frac{5}{9}$$
, so $\frac{1}{k^2} = \frac{4}{9}$, thus $k^2 = \frac{9}{4}$ and $k = \frac{3}{2}$.

The interval is:

$$\mu \pm k\sigma = 100 \pm \frac{3}{2}(10) = 100 \pm 15 = (85, 115)$$

4.2

Exercise (4.1). Let Y be a random variable with p(y) given in the table below.

(a) Give the distribution function, F(y). Be sure to specify the value of F(y) for all y, $-\infty < y < \infty$.

Solution:

$$F(y) = P(Y \le y) = \begin{cases} 0, & y < 1 \\ 0.4, & 1 \le y < 2 \\ 0.7, & 2 \le y < 3 \\ 0.9, & 3 \le y < 4 \\ 1, & y \ge 4 \end{cases}$$

(b) Sketch the distribution function given in part (a).

Distribution Function for Exercise 4.1

Solution:

Exercise (4.3). A Bernoulli random variable is one that assumes only two values, 0 and 1 with p(1) = p and $p(0) = 1 - p \equiv q$.

(a) Sketch the corresponding distribution function.

Bernoulli Distribution Function (p = 0.6)

Solution:

(b) Show that this distribution function has the properties given in Theorem 4.1. Solution: Theorem 4.1 properties:

(a)
$$F(-\infty) = 0$$
: Yes, $\lim_{y \to -\infty} F(y) = 0$

- (b) $F(\infty) = 1$: Yes, $\lim_{y \to \infty} F(y) = 1$
- (c) F is non-decreasing: $0 \le q \le 1$ since q = 1 p and $0 \le p \le 1$
- (d) F is right-continuous: At each point, F equals its right-hand limit

Exercise (4.5). Suppose that Y is a random variable that takes on only integer values 1, 2, ... and has distribution function F(y). Show that the probability function p(y) = P(Y = y) is given by

$$p(y) = \begin{cases} F(1), & y = 1, \\ F(y) - F(y - 1), & y = 2, 3, \dots \end{cases}$$

Solution: For y=1: $P(Y=1)=P(Y\leq 1)=F(1)$ since Y takes integer values ≥ 1 . For $y\geq 2$:

$$P(Y = y) = P(Y \le y) - P(Y \le y - 1)$$
$$= F(y) - F(y - 1)$$

Exercise (4.7). Let Y be a binomial random variable with n = 10 and p = 0.2.

(a) Use Table 1, Appendix 3, to obtain P(2 < Y < 5) and $P(2 \le Y < 5)$. Are the probabilities that Y falls in the intervals (2,5) and [2,5) equal? Why or why not?

Solution:
$$P(2 < Y < 5) = P(Y = 3) + P(Y = 4) = P(Y \le 4) - P(Y \le 2) = 0.967 - 0.678 = 0.289$$

$$P(2 \le Y < 5) = P(Y = 2) + P(Y = 3) + P(Y = 4) = P(Y \le 4) - P(Y \le 1) = 0.967 - 0.376 = 0.591$$
 not equal because Y is discrete. For discrete variables, $(2,5)$ excludes 2 while

[2,5) includes 2.

(b) Use Table 1, Appendix 3, to obtain $P(2 < Y \le 5)$ and $P(2 \le Y \le 5)$. Are these two probabilities equal? Why or why not?

Solution:
$$P(2 < Y \le 5) = P(Y = 3) + P(Y = 4) + P(Y = 5) = P(Y \le 5) - P(Y \le 2) = 0.994 - 0.678 = 0.316$$

 $P(2 \le Y \le 5) = P(Y \le 5) - P(Y \le 1) = 0.994 - 0.376 = 0.618$

not equal because including/excluding Y=2 makes a difference for discrete variables.

(c) Earlier in this section, we argued that if Y is continuous and a < b, then P(a < Y < b < b < b > b) $(a) = P(a \le Y < b)$. Does the result in part (a) contradict this claim? Why?

Solution: no this does not contradict the claim. The claim is specifically for continuous random variables, where P(Y = a) = 0 for any specific value a. Here, Y is **discrete**, so $P(Y=2) \neq 0$, and therefore the inclusion/exclusion of endpoints matters.

Exercise (4.9). A random variable Y has the following distribution function:

$$F(y) = P(Y \le y) = \begin{cases} 0, & \text{for } y < 2, \\ 1/8, & \text{for } 2 \le y < 2.5, \\ 3/16, & \text{for } 2.5 \le y < 4, \\ 1/2, & \text{for } 4 \le y < 5.5, \\ 5/8, & \text{for } 5.5 \le y < 6, \\ 11/16, & \text{for } 6 \le y < 7, \\ 1, & \text{for } y \ge 7. \end{cases}$$

(a) Is Y a continuous or discrete random variable? Why?

Solution:

(b) What values of Y are assigned positive probabilities?

Solution:

(c) Find the probability function for Y.

Solution:

(d) What is the median, $\phi_{.5}$, of Y?

Solution:

Exercise (4.11). Suppose that Y possesses the density function

$$f(y) = \begin{cases} cy, & 0 \le y \le 2, \\ 0, & \text{elsewhere.} \end{cases}$$

(a) Find the value of c that makes f(y) a probability density function.

Solution: For f(y) to be a pdf: $\int_{-\infty}^{\infty} f(y)dy = 1$

$$\int_{0}^{2} cy \, dy = c \left[\frac{y^{2}}{2} \right]_{0}^{2} = c \cdot 2 = 1$$

Therefore, c = 1/2.

(b) Find F(y).

Solution: For y < 0: F(y) = 0

For $0 \le y \le 2$:

$$F(y) = \int_0^y \frac{1}{2}t \, dt = \frac{1}{2} \cdot \frac{y^2}{2} = \frac{y^2}{4}$$

For y > 2: F(y) = 1

$$F(y) = \begin{cases} 0, & y < 0 \\ y^2/4, & 0 \le y \le 2 \\ 1, & y > 2 \end{cases}$$

(c) Graph f(y) and F(y).

Solution:

(d) Use F(y) to find $P(1 \le Y \le 2)$.

$$P(1 \le Y \le 2) = F(2) - F(1) = 1 - \frac{1}{4} = \frac{3}{4}$$

(e) Use f(y) and geometry to find $P(1 \le Y \le 2)$.

Solution:

$$P(1 \le Y \le 2) = \int_{1}^{2} \frac{y}{2} dy = \frac{1}{2} \left[\frac{y^{2}}{2} \right]_{1}^{2} = \frac{1}{4} (4 - 1) = \frac{3}{4}$$

Geometrically, this is the area of a trapezoid with parallel sides f(1) = 1/2 and f(2) = 1, and height 1:

Area =
$$\frac{1}{2}(1/2+1)(1) = \frac{3}{4}$$

Exercise (4.13). A supplier of kerosene has a 150-gallon tank that is filled at the beginning of each week. His weekly demand shows a relative frequency behavior that increases steadily up to 100 gallons and then levels off between 100 and 150 gallons. If Y denotes weekly demand in hundreds of gallons, the relative frequency of demand can be modeled by

$$f(y) = \begin{cases} y, & 0 \le y \le 1, \\ 1, & 1 < y \le 1.5, \\ 0, & \text{elsewhere.} \end{cases}$$

(a) Find F(y).

Solution: For y < 0: F(y) = 0

For
$$0 \le y \le 1$$
: $F(y) = \int_0^y t \, dt = \frac{y^2}{2}$
For $1 < y \le 1.5$: $F(y) = \int_0^1 t \, dt + \int_1^y 1 \, dt = \frac{1}{2} + (y - 1) = y - \frac{1}{2}$ For $y > 1.5$: $F(y) = 1$

$$F(y) = \begin{cases} 0, & y < 0 \\ y^2/2, & 0 \le y \le 1 \\ y - 1/2, & 1 < y \le 1.5 \\ 1, & y > 1.5 \end{cases}$$

(b) Find $P(0 \le Y \le 0.5)$.

Solution:

$$P(0 \le Y \le 0.5) = F(0.5) - F(0) = \frac{(0.5)^2}{2} - 0 = \frac{0.25}{2} = 0.125$$

(c) Find $P(0.5 \le Y \le 1.2)$.

Solution:

$$P(0.5 \le Y \le 1.2) = F(1.2) - F(0.5) = \left(1.2 - \frac{1}{2}\right) - \frac{(0.5)^2}{2} = 0.7 - 0.125 = 0.575$$

Exercise (4.17). The length of time required by students to complete a one-hour exam is a random variable with a density function given by

$$f(y) = \begin{cases} cy^2 + y, & 0 \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

(a) Find c.

Solution: For f(y) to be a pdf: $\int_{-\infty}^{\infty} f(y)dy = 1$

$$\int_0^1 (cy^2 + y) dy = \left[\frac{cy^3}{3} + \frac{y^2}{2} \right]_0^1 = \frac{c}{3} + \frac{1}{2} = 1$$
$$\frac{c}{3} = \frac{1}{2} \implies c = \frac{3}{2}$$

(b) Find F(y).

Solution: For y < 0: F(y) = 0

For $0 \le y \le 1$:

$$F(y) = \int_0^y \left(\frac{3}{2}t^2 + t\right) dt = \left[\frac{t^3}{2} + \frac{t^2}{2}\right]_0^y = \frac{y^3}{2} + \frac{y^2}{2} = \frac{y^2(y+1)}{2}$$

For y > 1: F(y) = 1

$$F(y) = \begin{cases} 0, & y < 0 \\ \frac{y^2(y+1)}{2}, & 0 \le y \le 1 \\ 1, & y > 1 \end{cases}$$

(c) Graph f(y) and F(y).

Distribution Function F(y) = y²(y+1)/2

y (hours)

Solution:

(d) Use F(y) in part (b) to find F(-1), F(0), and F(1).

Solution:

$$F(-1) = 0$$

$$F(0) = 0$$

$$F(1) = \frac{1^2(1+1)}{2} = 1$$

(e) Find the probability that a randomly selected student will finish in less than half an hour.

Solution:

$$P(Y < 0.5) = F(0.5) = \frac{(0.5)^2(0.5+1)}{2} = \frac{0.25 \cdot 1.5}{2} = \frac{0.375}{2} = 0.1875$$

Note: At

(f) Given that a particular student needs at least 15 minutes to complete the exam, find the probability that she will require at least 30 minutes to finish.

Solution: 15 minutes = 0.25 hours, 30 minutes = 0.5 hours

$$P(Y \ge 0.5 | Y \ge 0.25) = \frac{P(Y \ge 0.5)}{P(Y \ge 0.25)} = \frac{1 - F(0.5)}{1 - F(0.25)}$$

$$F(0.25) = \frac{(0.25)^2(1.25)}{2} = \frac{0.078125}{2} = 0.0390625$$

$$P(Y \ge 0.5 | Y \ge 0.25) = \frac{1 - 0.1875}{1 - 0.0390625} = \frac{0.8125}{0.9609375} \approx 0.846$$

Exercise (4.19). Let the distribution function of a random variable Y be

$$F(y) = \begin{cases} 0, & y \le 0, \\ \frac{y}{8}, & 0 < y < 2, \\ \frac{y^2}{16}, & 2 \le y < 4, \\ 1, & y \ge 4. \end{cases}$$

(a) Find the density function of Y.

Solution:

 $y=2,\ F$ is not differentiable (there's a corner), so the density is undefined there.

(b) Find $P(1 \le Y \le 3)$.

Solution:

$$P(1 \le Y \le 3) = F(3) - F(1) = \frac{9}{16} - \frac{1}{8} = \frac{9}{16} - \frac{2}{16} = \frac{7}{16}$$

(c) Find $P(Y \ge 1.5)$.

Solution:

$$P(Y \ge 1.5) = 1 - F(1.5) = 1 - \frac{1.5}{8} = 1 - \frac{3}{16} = \frac{13}{16}$$

(d) Find $P(Y \ge 1 | Y \le 3)$.

$$P(Y \ge 1 | Y \le 3) = \frac{P(1 \le Y \le 3)}{P(Y \le 3)} = \frac{F(3) - F(1)}{F(3)} = \frac{9/16 - 1/8}{9/16} = \frac{7/16}{9/16} = \frac{7}{9}$$