Building a Content-Based Youtube Video Recommender System

Capstone Project 2
Anna Apa

Goal:

Build a content-based recommender system that recommends similar Youtube videos based on the video's features

Data

The following JSON and CSV files were ownloaded from Kaggle.

- GB_category_id.json
- GBvideos.csv
- US_category_id.csv
- USvideos.json

The datasets provide information on the top trending videos in Great Britain and the United States from 11/14/17 to 06/14/18. Each day, there are around 150-200 videos included on that list for each country.

GBvideos.csv & USvideos.csv

video id trending_date title channel title category_id publish time tags views likes dislikes comment_count thumbnail link comments disabled ratings_disabled video error or removed description

- Both csv files were converted to Pandas DataFrames. Both DFs contain the columns shown on the left
- Null values: the Great Britain data has some null values, but since this is just 0.23% of the data, we simply drop it
- The trending_date column contains the date when that video was on the trending list. It initially had an object type. To convert this to a datatime type, we first changed its current format from year/day/month to year/month/day

GB_category_id.json & US_category_id.json

Both JSON files were read as Pandas DataFrames and had the following format:

100	kind	etag	ite	ems
0	youtube#videoCategoryListResponse	"m2yskBQFythfE4irbTleOgYYfBU/1v2mrzYSYG6onNLt2		tag': n2
1	youtube#videoCategoryListResponse	"m2yskBQFythfE4irbTleOgYYfBU/1v2mrzYSYG6onNLt2		tag': n2

Since the GBvideos and USvideos DFs from the previous slide only contain the category_id of each video, we need to get corresponding category name for those category IDs. We are only interested in the "items" column of this DF.

Feature Engineering (continued)

We extract the information found on the "items" column and create the dataframe on the bottom. We then merge this with existing main dataframes.

```
{'kind': 'youtube#videoCategory',
'etag': 'm2yskBOFythfE4irbTIeOgYYfBU/XylmB4 yLrHy BmKmPBggty2mZO"',
'id': '1'.
'snippet': {'channelId': 'UCBR8-60-B28hp2BmDPdntcQ',
  'title': 'Film & Animation',
  'assignable': True}}
                            category id
                                            category
                                    1 Film & Animation
                         0
                                    2 Autos & Vehicles
                         2
                                              Music
                                   10
                                        Pets & Animals
                         4
                                   17
                                              Sports
```

Feature Engineering (continued)

We count how many tags were used in each video and add it on a new column

	tags	tag_count
0	SHANtell martin	1
1	last week tonight trump presidency "last week	4
2	racist superman "rudy" "mancuso" "king" "bach"	23
3	rhett and link "gmm" "good mythical morning" "	27
4	ryan "higa" "higatv" "nigahiga" "i dare you" "	14

Main DataFrames

1) We merge our US and GB dataframes horizontally

2) Since videos can appear be on the trending list for more than just a day, we get the final stats for each video-- such as its number of views, comments, likes and dislikes

Exploratory Data Analysis

Which categories have the most trending videos?

Which categories are more popular in each country?

Which categories have the lowest like/dislike ratio?

Which categories usually have more comments?

Which categories had the most views?

Do videos with more tag counts have more views?

Word Cloud plots for each category

```
Recording Reggaeton Te dype Video alternative Bote indie Flow Daddy Ozuna Plankee Plankee Pixel Records Movie Bad Code Amorfoda Dura Code Sans Cod
```

```
Bartier lizza Bard Bike Migos Jenner Drip O ur danielle Ganner Drip O
```

```
highlights stereotypes

push anvil

VS florida

college

Seminole

martial

Name hands

Ducks

grandmaster Length

fr NFL mlg give

oregon

oregon

oregon

perfect

Browns

grandmaster Length

fr NFL mlg give

oregon

oregon

perfect

perfect

Browns
```

```
Category: Entertainment

none
geeky kamr masterson commercial
wase COM1 Cadvertising danny
Length
Name
Complete Solve Complete Solve Complete
Complete Complete Complete
Complete Complete
Complete Complete
Complete Complete
Complete Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Compl
```

Word Cloud Plots (continued)

```
livestock adventurous o dogs pets incubating who polar bird bra viralhog who polar bird brave brave birdnest adventure cactus brave wildlifecamels
```



```
Producti Bik Deadpool samurai Freestyle Sons selenaracing Environment Name Trailer backs deprivat 20th dtype Some Zong Length BMX Francois China Recycling Mountain Plxar Arnaud sleep States tags United Bishaijordan Peter
```

```
late jay kimmel downtown justinlyric hard none youtube ft tags hear anitta Name rewind poo pewdiepie electronica balvin
```

Word Cloud Plots (continued)

```
Bus markus taiwan bikepacking viralhog airplanes
Bus advertSuperbowl

slow deed kindness vostok private

slow deed kindne
```


Word Cloud Plots (continued)

```
Category: Science & Technology

Category: Science & Technology

Address of Science & Technology

Address of Science & Technology

Robotics

Robotics

Robotics

Robotics

Robotics

Robotics

Prosperity

Furgpe

Intuit

Robots

Liquid

Robots

Liquid

Robots

Liquid

Liguid

Ligu
```


Inferential Statistics

Do features such as the number of views, comments, likes, dislikes and etc. vary significantly among categories? We apply inferential statistics techniques to answer this. In this case, we use F-tests to statistically test the equality of means in each category.

Inferential Statistics (continued)

For each feature, our null hypothesis is that they are not statistically different from each other across categories; and our alternative hypothesis is that the differences are statistically significant from each other.

Inferential Statistics (results)

Feature	F-Stat	P-Value	Statistically Significant*?
Views	29.91	0.0000	Yes
Likes	544.82	0.0000	Yes
Dislikes	60.06	0.0000	Yes
Comment Count	148.42	0.0000	Yes
Tag Count	51.10	0.000	Yes

^{*} at a 5% level

Building the Recommender System

We will use NLP techniques to base our recommender system on the tags used (as well as other features). The more tags used in common, the more likely it is to be recommended to the user.

To do this, we create a TF-IDF model. TF-IDF stands for "Term-Frequency X Inverse Document Frequency". TF-IDF is "essentially a measure of term importance, and how discriminative a word is in a corpus".

$$(t, d) = (t, d) \times (t) = n_{td} \log \left(\frac{|D|}{|d: t \in d|} + 1 \right)$$

Building the Recommender System(continued)

After building a TF-IDF model, we quantify the similarity between the vectors by calculating their cosine similarities.

$$\cos(\theta) = \frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}$$

Recommender 1 - Based on Tags

com					
	title	channel_title	views	category	comment_count
162	Drake - God's Plan (Official Music Video)	OVO Sound	19586636	Music	66540
1660	Gods Plan - Drake (William Singe Cover)	William Singe	2004311	Music	3007
709	Guillermo - God's Plan	Jimmy Kimmel Live	4720264	Entertainment	3541
37	Drake - Nice For What	OVO Sound	60635812	Music	55653
6654	Drake's Dad Claps Back At Wendy Williams! He C	Lailah Lynn	118828	Entertainment	741
3726	The epic late-night Fortnite stream featuring	ESPN	636473	Sports	1355
1263	DRAKE & NINJA PLAY DUOS ON FORTNITE! Fortnit	Twitch Moments	2663507	Gaming	1796

Recommender 2 - Videos from Different Categories

Result from our first recommender system:

Recom	mendations f	or "The	End of	the	F**king	World 0	Official	Trailer [HD] Netflix":
					title	channel_title	views	category	comment_count
2027	THE CLOVERFIEL	LD PARADO	X WATC	H NOW	NETFLIX	Netflix	1575608	Entertainment	3032
459	The K	issing Boot	n Official	Trailer [HD] Ne	Netflix	7308023	Entertainment	5790
6508	Derren	Brown: The	Push I Of	ficial Tra	ailer [HD]	Netflix	135325	Entertainment	395
5128	Irrep	laceable Yo	u Official	Trailer [HD] Ne	Netflix	316756	Entertainment	506
6991	The Moment G	eorge Cloo	ney Met A	mal My	y Next G	Netflix	91193	Entertainment	82

Recommender 2:

Recomme	ndations for "The End of the F**king	World	Official Tra	ailer [HD]
	title	views	category	comment_count
4072	Bright: What Went Wrong? - Wisecrack Edition	533207	Education	4618
5059	Reboot: The Guardian Code Official Trailer	326871	Film & Animation	5071
8085	'I have dad moves': Barack Obama discusses dan	21700	News & Politics	70
2251	Ep4 It's on you and I BTS: Burn the Stage	1378098	Music	1376
5194	HIS & HERS BOUJEE NIGHT OUT! VLOGMAS WEEK 1	304917	Howto & Style	1204

Recommender 3 - Based on Description

Recommendations for "Drake - God's Plan":										
	title	channel_title	views	category	comment_count					
156	Nicki Minaj - Barbie Tingz (Lyric Video)	NickiMinajAtVEVO	20262996	Music	40235					
79	Nicki Minaj - Chun-Li	NickiMinajAtVEVO	36759844	Music	93136					
1086	N.E.R.D, Rihanna - Lemon (Drake Remix - Audio)	NERDVEVO	3126660	Music	2640					
681	Nicki Minaj - Chun-Li (Live on SNL / 2018)	NickiMinajAtVEVO	4945185	Music	18683					
13	Post Malone - Psycho ft. Ty Dolla \$ign	PostMaloneVEVO	105629911	Music	45784					

Recommender 4 - Based on Tags, Description and Channel ID

'Drake new music|"Drake Gods Plan"|"Drake God's Plan"|"Scary Hours"|"Drake Charity Giveaway"|"Drake in Miami"'

'God's Plan (Official Video)\\n\\nSong Available Here: https://Drake.lnk.to/ScaryHoursYD\\n\\n \\n\\nDirected by Kare na Evans\\n\\nExecutive Producers Director X & Taj Critchlow\\n\\nProduced by Fuliane Petikyan\\n\\nFor Popp Rok\\n \\n\\nMusic video by Drake performing God's Plan. © 2018 Young Money Entertainment/Cash Money Records\\n\\nhttp://vevo.ly/Z6Unb9'

'Drake new music|"Drake Gods Plan"|"Drake God's Plan"|"Scary Hours"|"Drake Charity Giveaway"|"Drake in Miami" God's Plan (Official Video)\\n\\nSong Available Here: https://Drake.lnk.to/ScaryHoursYD\\n\\n\\nDirected by Karena Evans \\n\\nExecutive Producers Director X & Taj Critchlow\\n\\nProduced by Fuliane Petikyan\\n\\nFor Popp Rok\\n\\n \\n\\n Music video by Drake performing God's Plan. © 2018 Young Money Entertainment/Cash Money Records\\n\\nhttp://vevo.ly/Z6Unb9 DrakeVEVO DrakeVEVO '

Recommender 4 - Based on Tags, Description and Channel ID

Recomm	Recommendations for "Drake - God's Plan":								
	title	channel_title	views	category	comment_count				
1086	N.E.R.D, Rihanna - Lemon (Drake Remix - Audio)	NERDVEVO	3126660	Music	2640				
7329	Drake Bell - Rewind	DrakeBellVEVO	65973	Music	836				
156	Nicki Minaj - Barbie Tingz (Lyric Video)	NickiMinajAtVEVO	20262996	Music	40235				
37	Drake - Nice For What	OVO Sound	60635812	Music	55653				
79	Nicki Minaj - Chun-Li	NickiMinajAtVEVO	36759844	Music	93136				

Conclusion

In this project, I have built four content-based recommender systems based on different features.

- For the first two, we focus on the tags used in each video.
- For the second one, I only allow for recommendations outside the category. We see that this does not do very well because the videos don't seem to be very similar, except for the fact that they had very broad tags (such as "Netflix") in common.
- For the third one, we focus solely on the description. This can be more helpful for show or movie trailers since actors, directors and plots are often included in the description. Although, there is a higher chance of videos with little to no description will be paired with unrelated videos.
- For our fourth recommender system, we try to address all of these problems by combining the tags used, description, and channel title all in one string.

Limitations

- The videos in the dataset are only videos that were included in the daily "Top Trending List" in the United States and Great Britain for six months.
- Data on the videos the user has liked would improve the content-based recommendation model