MA582 Homework 4

Alan Zhou

Due 2025-04-13

1 Problems 1-2

Suppose for the family $\mathcal{F} = \{f_{\theta} : \theta \in \Theta\}$ we have a CAN estimator $\hat{\theta}_n$ with an ANV of $v(\theta)$ which is continuous with respect to θ .

- 1. Show step-by-step how to find a reparameterization function $g: \Theta \to \mathbb{R}$ such that the new ANV for the new estimator of the new parameter is completely parameter-free.
- 2. Show how, for your new parameter/estimator's CI, the margin of error is quite simplified.

Solution. 1. By the reparameterization lemma (Δ method), if $g:\Theta\to\mathbb{R}$ is 1-1 and differentiable, $\hat{\delta}_n=g(\hat{\theta}_n)$ is a CAN estimator of $\delta=g(\theta)$ with ANV $v(\theta)\cdot g'(\theta)^2$. Without loss of generality, we can aim for this to be constantly 1, which is achieved if $g'(\theta)=v(\theta)^{-1/2}$ for all θ . Therefore, we can take as a candidate reparameterization function any of the antiderivatives specified by

$$g(\theta) = \int v(\theta)^{-1/2} d\theta.$$

To see that any such g meets the hypotheses of the reparameterization lemma, observe that v being continuous tells us that g is differentiable by the fundamental theorem of calculus, and v > 0 tells us that g is a strictly increasing function, hence 1-1.

2. From homework 3, since $\hat{\delta}_n$ is a CAN estimator for δ with ANV 1, our CI for δ is

$$\hat{\delta}_n - \frac{z_{\alpha/2}}{\sqrt{n}} \le \delta \le \hat{\delta}_n + \frac{z_{\alpha/2}}{\sqrt{n}}.$$

2 Problem 3

For $\text{Exp}(\lambda)$, where $\lambda > 0$, we found a CAN estimator in lectures. Apply variance stabilization.

Solution. The CAN estimator we found in lectures is $\hat{\lambda}_n = 1/\overline{X_n}$ with ANV $v(\lambda) = \lambda^2$, so we let

$$g(\lambda) = \int v(\lambda)^{-1/2} d\lambda = \int d\lambda/\lambda = \log \lambda.$$

That is, $\log(\hat{\lambda}_n) = -\log \overline{X_n}$ is a CAN estimator for $\log \lambda = -\log(\text{mean})$ with constant ANV 1. \square