大学物理习题精选 答案

光电技术系物理教研室 二〇〇七年二月

目 录

目 录		1
第一章	质点运动学	2
第二章	牛顿运动定律	6
第三章	动量和能量	10
第四章	刚体力学	15
第五章	机械振动	19
第六章	机械波	22
第七章	热力学	28
第八章	气体动理论	33
第九章	静电场	36
第十章	静电场中的导体和介质	42
第十一章	稳恒磁场	46
第十二章	电磁感应	53
第十三章	波动光学	61
第十四章	狭义相对论	68
第十五章	量子物理基础	72

第一章 质点运动学

一、选择题

- 1, B 2, D 3, D 4, B
- 5、D

- 7, A

二、填空题

$$1, \quad -\frac{g}{2} \qquad , \frac{2\sqrt{3}v^2}{3g} \circ$$

- 2, 3

$$4 \cdot 10 \text{ m/s}^2 - 15 \text{ m/s}^2$$
 .

5.
$$Ae^{-\beta t} \left[\left(\beta^2 - \omega^2 \right) \cos \omega t + 2\beta \omega \sin \omega t \right]$$

 $\frac{1}{2} \left(2n + 1 \right) \pi / \omega$ (s) $(n = 0, 1, 2,...)$.

- 6、 $A \neq t = 1.19 \text{ s}$ t = 0.67 s .
- 7、 变速率曲线运动, 变速率直线运动。

$$8 \cdot \frac{v_0^2 \cos^2 \theta_0}{g}$$

9.
$$B$$
, $\frac{A^2}{R} + 4\pi B$

10,
$$\frac{1}{3}ct^3$$
, $2ct$, $\frac{c^2t^4}{R}$

11.
$$\sqrt{v_1^2 + v_2^2 - 2v_1v_2\cos\alpha}$$

$$12, \quad \overrightarrow{v_1} + \overrightarrow{v_2} + \overrightarrow{v_3} = 0$$

13,
$$\vec{r_1}$$
, $\Delta \vec{r}$

三、计算题

1.解:设质点的加速度为 $a = a_0 + \alpha t$

$$t = \tau$$
 时, $a = 2 a_0$

$$\therefore \alpha = a_0/\tau$$

即
$$a=a_0+a_0t/\tau$$
 ,

由
$$a = dv/dt$$
 , 得 $dv = add$

由
$$a = dv/dt$$
 , 得 $dv = adt$
$$\int_{0}^{v} dv = \int_{0}^{t} (a_0 + a_0 t/\tau) dt$$

$$\therefore \quad v = a_0 t + \frac{a_0}{2\tau} t^2$$

$$\pm v = ds/dt$$
 , $ds = v ds$

$$s = \frac{a_0}{2}t^2 + \frac{a_0}{6\tau}t^3$$

$$t = n\tau$$
 时,质点的速度

$$s=rac{a_0}{2}t^2+rac{a_0}{6 au}t^3$$
 $t=n au$ 时,质点的速度 $v_{n au}=rac{1}{2}n(n+2)a_0 au$

质点走过的距离
$$s_{n\tau} = \frac{1}{6}n^2(n+3)a_0\tau^2$$

2.#: (1)
$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BC}$$

= $30\overrightarrow{i} + (-10\overrightarrow{j}) + 18(-\cos 45^{\circ} \overrightarrow{i}) + \sin 45^{\circ} \overrightarrow{j})$

$$=17.27\vec{i}+2.73\vec{j}$$

$$\overrightarrow{OC}$$
 =17.48 m,方向 ϕ =8.98° (东偏北)

$$\left| \overrightarrow{v} \right| = \left| \Delta \vec{r} / \Delta t \right| = \left| \overrightarrow{OC} / \Delta t \right| = 0.35 \text{ m/s}$$

方向东偏北 8.98°

(2) (路程)
$$\Delta S = (30 + 10 + 18) \text{ m=58m}$$
,

$$\overline{v} = \Delta S / \Delta t = 1.16$$
 m/s

3.解:以 θ 表示物体在运动轨道上任意点P处其速度与水平方向的夹角,则有

$$\upsilon\cos\theta=\upsilon_0\cos\alpha\,,$$

$$v^2 = \frac{v_0^2 \cos^2 \alpha}{\cos^2 \theta}$$

又 因
$$a_n = g \cos \theta$$
 故

$$u_n - g cc$$

$$\rho = \frac{v^2}{a_n} = \frac{v_0^2 \cos^2 \alpha}{g \cos^3 \theta}$$

因为 $\theta \le \alpha$, 所以地面上方的轨道各点均有 $\cos \theta \ge \cos \alpha$, 上式的分母在 $\theta = \alpha$ 处最小, 在 $\theta = 0$ 处最大,

故
$$\rho_{\text{max}} = v_0^2 / (g \cos \alpha)$$

$$\rho_{\min} = v_0^2 \cos^2 \alpha / g$$

4.解:选取如图所示的坐标系,以 \vec{V} 表示质点的 对地速度,其x、y方向投影为:

$$V_x = v_x + u = \sqrt{2gy}\cos\alpha + u \,,$$

$$V_{v} = v_{v} = \sqrt{2gy} \sin \alpha$$

当 v=h 时, \bar{V} 的大小为:

$$V = \sqrt{V_x^2 + V_y^2} = \frac{\left(u^2 + 2gh + 2u\sqrt{2gh}\cos\alpha\right)}{2}$$

 \bar{V} 的方向与x 轴夹角为 γ ,

$$\gamma = tg^{-1} \frac{V_y}{V_x} = tg^{-1} \frac{\sqrt{2gh} \sin \alpha}{\sqrt{2gh} \cos \alpha + u}$$

5.解:以出发点为坐标原点,向东取为x轴,向北取为y轴,因流速为-y方向,由题意可得

$$u_x = 0$$
 $u_y = a(x-l/2)^2 + b$

$$\Rightarrow x = 0, \quad x = l \not \triangle u_y = 0, \quad x = l/2 \not \triangle u_y = -u_0$$

$$u_y = -\frac{4u_0}{l^2}(l-x)x$$

船相对于岸的速度 $\bar{v}(v_x, v_y)$ 明显可知是

$$v_x = v_0 / \sqrt{2}$$

$$v_{y} = (v_{0}/\sqrt{2}) + u_{y},$$

将上二式的第一式进行积分,有

$$x = \frac{v_0}{\sqrt{2}}t$$

还有,
$$v_y = \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{v_0}{\sqrt{2}} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v_0}{\sqrt{2}} - \frac{4u_0}{l^2} (l-x)x$$

$$\exists l = \frac{dy}{dx} = 1 - \frac{4\sqrt{2}u_0}{l^2v_0}(l - x)x$$

因此,积分之后可求得如下的轨迹(航线)方程
$$y=x-\frac{2\sqrt{2}u_0}{l\upsilon_0}x^2+\frac{4\sqrt{2}u_0}{3l^2\upsilon_0}x^3$$
 到达东岸的地点(x', y')为 $x'=l$, $y'=y_{x=l}=l\left(1-\frac{3\sqrt{2}u_0}{3\upsilon_0}\right)$

第二章 牛顿运动定律

一、选择题:

- 1, D
- 2, D 3, B 4, B 5, D

- 6 、 D
- 7, A 8, E 9, B

填空题:

$$1, \qquad \frac{F + m_1 g - m_2 g}{m_1 + m_2}$$

$$\frac{F + m_1 g - m_2 g}{m_1 + m_2} \qquad \qquad \frac{m_2}{m_1 + m_2} (F + 2m_1 g)$$

- 2、 5.2 N
- $3, \qquad -(m_3/m_2)g\,\vec{i}$
 - 0
- 4、(1)见图.
 - (2) 见图.

- 5, 0
 - 2 g

三、计算题

1. 解:设地球和月球表面的重力加速度分别为 g_1 和 g_2 , 在月球上A、B 受力如图,则有

$$m_2 g_2 - T = m_2 a$$

 $T-m_1g_2=m_1a$

 ∇ $m_1g_1 = m_2g_2$

3

联立解①、②、③可得

$$a = \frac{g_1 - g_2}{1 + (g_1/g_2)} = 1.18 \text{ m/s}^2$$

即 B 以 1.18 m/s² 的加速度下降.

2. 解: (1) 子弹进入沙土后受力为一 Kv,

由牛顿定律
$$-Kv = m\frac{\mathrm{d}v}{\mathrm{d}t}$$

$$\therefore \quad -\frac{K}{m} dt = \frac{dv}{v}, \qquad \qquad -\int_{0}^{t} \frac{K}{m} dt = \int_{0}^{v} \frac{dv}{v}$$

$$\therefore \qquad v = v_0 e^{-Kt/m}$$

(2) 求最大深度

解法一:
$$v = \frac{\mathrm{d}x}{\mathrm{d}t}$$

$$\mathrm{d} x = \nu_0 \mathrm{e}^{-Kt/m} \, \mathrm{d} x$$

$$\therefore x = (m/K)v_0(1 - e^{-Kt/m})$$

$$x_{\text{max}} = m v_0 / K$$

解法二:
$$-Kv = m\frac{\mathrm{d}v}{\mathrm{d}t} = m(\frac{\mathrm{d}v}{\mathrm{d}x})(\frac{\mathrm{d}x}{\mathrm{d}t}) = mv\frac{\mathrm{d}v}{\mathrm{d}x}$$

$$\therefore dx = -\frac{m}{K}dt$$

$$\therefore dx = -\frac{m}{K}dv \qquad \int_{0}^{x_{\text{max}}} dx = -\int_{v_{0}}^{0} \frac{m}{K} dv$$

$$\therefore x_{\text{max}} = mv_0/K$$

3. 解: 建立x、y 坐标系统的运动中,物体 A、B及小车D的受力如图所示,设小 车 D 受力 \overline{F} 时,连接物体 B 的绳子与 竖直方向成 α 角. 当 A、D 间无相对滑 动时,应有如下方程:

$$T = m_1 a_x$$
 ①

$$T\sin\alpha = m_2 a_x$$
 ②

$$T\cos\alpha - m_2g = 0$$

$$F - T - T\sin\alpha = Ma_x \quad \textcircled{4}$$

联立①、②、③式解出:

$$a_{x} = \frac{m_{2}g}{\sqrt{m_{1}^{2} - m_{2}^{2}}} \, (5)$$

联立①、②、④式解出:
$$F = (m_1 + m_2 + M)a_x$$
 ⑥

⑤代入⑥得:

$$F = \frac{(m_1 + m_2 + M)m_2g}{\sqrt{m_1^2 - m_2^2}}$$

代入数据得

$$F = 784 \text{ N}$$

注:⑥式也可由 A、B、D 作为一个整体系统而直接得到.

$$\frac{m\upsilon\,\mathrm{d}\upsilon}{\mu mg + (C_x - \mu C_v)\upsilon^2} = -\,\mathrm{d}x$$

4. 解:以飞机着地点为坐标原点,飞机滑行方向为x轴正向.设飞机质量为m,着地后地面对飞机 的支持力为 N. 在竖直方向上

$$N + C_v v^2 - mg = 0$$
 \therefore $N = mg - C_v v^2$

飞机受到地面的摩擦力 $f = \mu N = \mu (mg - C_y v^2)$

在 水 平 方 向 上
$$-\mu(mg - C_y v^2) - C_x v^2 = m \frac{\mathrm{d}v}{\mathrm{d}t} = mv \frac{\mathrm{d}v}{\mathrm{d}x}$$

$$\mathbb{E} \frac{m\upsilon\,\mathrm{d}\upsilon}{\mu mg + (C_x - \mu C_y)\upsilon^2} = -\,\mathrm{d}\,x$$

x = 0 时, $v = v_0 = 90$ km/h = 25 m/s . x = S (滑行距离) 时,v = 0

$$\int_{v_0}^{0} \frac{mv \, dv}{\mu mg + (C_x - \mu C_y)v^2} = -\int_{0}^{S} dx = -S$$

$$\frac{\frac{1}{2}m}{C_x - \mu C_y} \int_{v_0}^{0} \frac{d[\mu mg + (C_x - \mu C_y)v^2]}{\mu mg + (C_x - \mu C_y)v^2} = -S$$

 $S = \frac{\frac{1}{2}m}{C - \mu C_{y}} \ln \frac{\mu mg + (C_{x} - \mu C_{y})v_{0}^{2}}{\mu mg}$

: 飞机刚着地前瞬间,所受重力等于升力,即 $mg = C_v v_0^2$

$$\therefore C_y = \frac{mg}{v_0^2}, \qquad C_x = \frac{C_y}{K} = \frac{mg}{5v_0^2}$$

代入 S 表达式中并化简,然后代入数据 $S = \frac{5v_0^2}{2g(1-5u)} \ln \frac{1}{5u} = 221 \text{ m}$

- **5**. 解:未断时对球 2 有弹性力 $f = m_2 \omega^2 (L_1 + L_2)$ 线断瞬间对球 1 有弹性力 $f = m_1 a_1$ 对球 2 有弹性力 $f = m_2 a_2$ 解得 $a_1 = m_2 \omega^2 (L_1 + L_2) / m_1$ $a_2 = \omega^2 (L_1 + L_2)$
- **6**. 解: (1) 设同步卫星距地面的高度为 h,距地心的距离 r=R+h,

由牛顿定律
$$GMm/r^2 = mr\omega^2$$
 ①

由牛顿定律 $GMm/r^2 = mr\omega^2$ 又由 $GMm/R^2 = mg$ 得 $GM = gR^2$,

代入①式得
$$r = (gR^2/\omega^2)^{1/3}$$
 ②

同步卫星的角速度 ω 与地球自转角速度相同,

其值为
$$\omega = 7.27 \times 10^{-5}$$
 rad/s

解得
$$r = 4.22 \times 10^7 \,\text{m}$$
, $h = r - R = 3.58 \times 10^4 \,\text{km}$ (2)

由题设可知卫星角速度 ω 的误差限度为 $\Delta\omega = 5.5 \times 10^{-10}$ rad/s

由②式得
$$r^3 = gR^2/\omega^2$$

取对数
$$3 \ln r = \ln(gR^2) - 2 \ln \omega$$

取 微 分 并 令
$$dr = \Delta r$$
, $d\omega = \Delta \omega$ 且 取 绝 对 值 $3\Delta r/r = 2\Delta \omega/\omega$

7. 解:取距转轴为r处,长为dr的小段绳子,

其质量为 (*M/L*) dr. (取元, 画元的受力图) 由于绳子作圆周运动, 所以小段绳子有径向加速度, 由牛顿定律得:

$$T(r)$$
- $T(r+dr) = (M/L) dr r\omega^2$
令 $T(r)$ - $T(r+dr) = -dT(r)$
得 $dT = -(M\omega^2/L) r dr$

由于绳子的末端是自由端 T(L) = 0

有
$$\int_{T(r)}^{0} dT = -\int_{r}^{L} (M\omega^{2}/L)r dr$$

$$T(r) = M\omega^2(L^2 - r^2)/(2L)$$

第三章 动量和能量

一、选择题:

- 1, A
- 2, C
- 3, D 4, D 5, C

- 6、C
- 7、C
- 8, B
- 9、C
- 10、B 13、C 14、B 15、C
- 11、C 12、D 16、C 17、C

二、填空题:

- 1、 *mv/t* 竖直向下
- $2 \cdot b t \qquad -P_0 + b t$
- $3 \cdot 2\vec{i} m/s$
- $4, \quad (1+\sqrt{2})m\sqrt{gy_0} \qquad \frac{1}{2}mv_0$
- 5 \ 5 m/s
- $6, \quad \frac{F \Delta t_1}{m_1 + m_2}$
- 7, $\vec{i} 5\vec{j}$ $\frac{F\Delta t_1}{m_1 + m_2} + \frac{F\Delta t_1}{m_2}$
- $8, \quad \frac{m_1}{m_1 + m_2}$

 - 参考解: $m_1 v_0 = (m_1 + m_2) v$, $v = \frac{m_1}{m_1 + m_2} v_0$

倍数=
$$\frac{\frac{1}{2}\frac{m_1^2}{m_1+m_2}v_0^2}{\frac{1}{2}m_1v_0^2} = \frac{m_1}{m_1+m_2}$$

- 9、356 N·s
- 160 N⋅s
- 10, 0 $2\pi mg/\omega$
- $2\pi mg/\omega$

11、290 J

- 12, $-F_0R$
- 13、零 正 负
- 14, 1.28×10^4 J
- 15, 100 m/s
- 16、12 J

$$17. \quad \sqrt{2gl - \frac{k(l - l_0)^2}{m}}$$

- 18, -42.4 J
- 19、4000 J
- $20. \quad \sqrt{k/(mr)} \\ -k/(2r)$
- $21, \quad kx_0^2$ $-\frac{1}{2}kx_0^2$ $\frac{1}{2}kx_0^2$
- $2(F \mu mg)^2 / k$
- 23, -0.207

三、计算题

1. 解:子弹射入A未进入B以前,A、B共同作加速运动.

 $F=(m_A+m_B)a$,

$$a=F/(m_A+m_B)=600 \text{ m/s}^2$$

B 受到 A 的作用力

$$N = m_B a = 1.8 \times 10^3 \,\text{N}$$
 方向向右

A 在时间 t 内作匀加速运动,t 秒末的速度 $v_A=at$. 当子弹射入 B 时,B 将加速而 A 则以 v_A 的速度继续向右作匀速直线运动.

$$v_A = at = 6 \text{ m/s}$$

取 A、B 和子弹组成的系统为研究对象,系统所受合外力为零,故系统的动量守恒,子弹留在 B 中后有

$$m v_0 = m_A v_A + (m + m_B) v_B$$

 $v_B = \frac{m v_0 - m_A v_A}{m + m_B} = 22 \text{ m/s}$

2. 解: (1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为*v*′

有
$$mv_0 = mv + Mv'$$
 $v' = m(v_0 - v)/M = 3.13 \text{ m/s}$ $T = Mg + Mv^2/l = 26.5 \text{ N}$

- (2) $f\Delta t = mv mv_0 = -4.7 \,\text{N·s}$ (设 \vec{v}_0 方向为正方向) 负号表示冲量方向与 \vec{v}_0 方向相反.
- 3. 解: 因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.

利用
$$h = v_1 t' + \frac{1}{2} g t'^2$$
, 式中 t' 为第一块在爆炸后落到地面的时间.

可解得 v=14.7 m/s, 竖直向下. 取 y 轴正向向上, 有 $v_{1y}=-14.7$ m/s 设炮弹到最高点时($v_y=0$), 经历的时间为 t, 则有

$$S_1 = v_x t$$

$$h = \frac{1}{2} g t^2$$
(2)

由①、②得 t=2 s , $v_x = 500 \text{ m/s}$

以 \bar{v}_2 表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.

4. 解:以人与第一条船为系统,因水平方向合外力为零. 所以水平方向动量守恒,

则有
$$Mv_1 + mv = 0$$
 $v_1 = -\frac{m}{M}v$

再以人与第二条船为系统,因水平方向合外力为零.所以水平方向动量守恒,则有 $mv = (m+M)v_2$

$$v_2 = \frac{m}{M+m}v$$

- **5.**解:把小车和人组成的系统作为研究对象。由于整个过程中系统所受的合外力为零,所以系统的动量守恒。
 - (1) $m_{\perp}v_{\perp} + m_{\pm}v_{\pm} = (m_{\perp} + m_{\pm}) v'$ $v' = \frac{m_{\perp}v_{\perp} + m_{\pm}v_{\pm}}{m_{\perp} + m_{\pm}} = \frac{60 \times 2 + 80 \times 1}{60 + 80} = 1.43 m/s$

(2)
$$m_{\pm}v_{\pm} - m_{\lambda}v_{\lambda} = (m_{\lambda} + m_{\pm})v'$$

$$\therefore v' = \frac{m_{\pm}v_{\pm} - m_{\perp}v_{\perp}}{m_{\perp} + m_{\pm}} = \frac{80 \times 1 - 60 \times 2}{60 + 80} = -0.286 m/s$$
 \(\frac{\pi}{2}

"一"表示车与原来运动方向相反。

6、解: 选竖直向上为坐标 y 轴的正方向,井中水面处为原点. 由题意知,人匀速提水,所以人所用的拉力 F 等于水桶的重量即: $F=P=P_0-ky=mg-0.2gy=107.8-1.96y(SI)$

人的拉力所作的功为: $W = \int dW = \int_0^H F dy = \int_0^{10} (107.8 - 1.96y) dy = 980 \text{ J}$

7、解: (1) 位矢 $\vec{r} = a\cos\omega t \vec{i} + b\sin\omega t \vec{j}$ (SI)鹭

可写为
$$x = a\cos\omega t$$
 , $y = b\sin\omega t$
$$v_x = \frac{dx}{dt} = -a\omega\sin\omega t$$
 , $v_y = \frac{dy}{dt} = -b\omega\cos\omega t$

在
$$A$$
 点 $(a, 0)$, $\cos \omega t = 1$, $\sin \omega t = 0$
$$E_{KA} = \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2 = \frac{1}{2} m b^2 \omega^2$$

在
$$B$$
 点 $(0, b)$, $\cos \omega t = 0$, $\sin \omega t = 1$
$$E_{KB} = \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2 = \frac{1}{2} m a^2 \omega^2$$

(2)
$$\vec{F} = ma_x\vec{i} + ma_y\vec{j} = -ma\omega^2\cos\omega t \vec{i} - mb\omega^2\sin\omega t \vec{j}$$
 選箋

8、解:根据功能原理有
$$-fH = mgH - \frac{1}{2}mv_0^2$$

$$f = \frac{mv_0^2}{2H} - mg$$

$$f = \frac{0.4 \times 400}{2 \times 16} - 0.4 \times 9.8 \text{ N} \approx 1.1 \text{ N}$$

9、解: (1) 根据功能原理,

有
$$fs = \frac{1}{2}mv_0^2 - mgh$$

$$fs = \frac{\mu Nh}{\sin \alpha} = \mu mgh \frac{\cos \alpha}{\sin \alpha} = \mu mgh \cot \alpha = \frac{1}{2}mv_0^2 - mgh$$

$$h = \frac{v_0^2}{2g(1 + \mu \cot \alpha)} = 4.5 \text{ m}$$

(2) 根据功能原理有

$$mgh - \frac{1}{2}mv^2 = fs$$

$$\frac{1}{2}mv^2 = mgh - \mu mgh \operatorname{ctg} \alpha = 8.16 \text{ m/s}$$

$$v = \left[2gh(1 - \mu \operatorname{ctg} \alpha)\right]^{1/2}$$

10、解: (1) 建立如图坐标.

某一时刻桌面上全链条长为 y,则摩擦力大小为

$$f = \mu m \frac{y}{l} g$$

摩擦力的功
$$W_f = \int_{l-a}^{0} f dy = \int_{l-a}^{0} \mu \frac{m}{l} gy dy$$
$$= \frac{\mu mg}{2l} y^2 \Big|_{l-a}^{0} = -\frac{\mu mg}{2l} (l-a)^2$$

其中
$$\Sigma W = W_P + W_f$$
 , $v_0 = 0$
$$W_P = \int_a^l P dx = \int_a^l \frac{mg}{l} x dx = \frac{mg(l^2 - a^2)}{2l}$$
 由上问知 $W_f = -\frac{\mu mg(l - a)^2}{2l}$ 所以 $\frac{mg(l^2 - a^2)}{2l} - \frac{\mu mg}{2l}(l - a)^2 = \frac{1}{2}mv^2$ 得 $v = \sqrt{\frac{g}{l}\left[(l^2 - a^2) - \mu(l - a)^2\right]^{\frac{1}{2}}}$ 蔼慈蘋

第四章 刚体力学

一、选择题

- 1, C 2, C 3, C 4, C 5, A 6, B 7, D 8, C

二、填空题

- 1. $6.54 \text{ rad} / \text{s}^2$ 4.8 s
- $2 \sqrt{50ml^2}$
- $3, \frac{1}{2}Ma$
- $4, \quad \frac{mg}{\frac{J}{r} + mr}$
- $5, \frac{1}{2}mgl$ 2g/(3l)
- **6.** 4M/(mR) $\frac{16M^2t^2}{m^2R^3}$
- **7**, 0 $\frac{3g}{2l}$
- $8. \quad -\frac{k\omega_0^2}{9J}$ $\frac{2J}{k\omega_0}$
- 9. mvl

$$10, \quad \frac{J\omega_0 - mRv}{J + mR^2}$$

11.
$$0.2\pi \text{rad} \cdot \text{s}^{-1}$$

12.
$$\frac{7l^2\omega_0}{4(l^2+3x^2)}$$

三、计算题

1、解:体系所做的运动是匀速→匀加速→匀减速定轴转动.其中 ω 1。是匀加速阶段的末角速度,也 是匀减速阶段的初角速度,由此可得

$$t=8 \text{ s}$$
 时, $\omega_1 = \omega_0 + 9 = 27 \text{ rad /s}$ 当 $\omega = 0$ 时,得 $t = (\omega_1 + 24)/3 = 17 \text{s}$

所以,体系在17s时角速度为零.

2、解:根据牛顿运动定律和转动定律列方程

据牛顿运动定律和转动定律列方程
对物体:
$$mg-T=ma$$
 ① ① 对滑轮: $TR=J\beta$ ② ② 运动学关系: $a=R\beta$ ③ 将①、②、③式联立得

$$v_0=0$$

$$\therefore v=at=mgt/(m+\frac{1}{2}M)$$

3、解: 各物体受力情况如图.

$$F-T=ma$$
 $T'=ma$
 $(T-T')R=\frac{1}{2}mR^2\beta$
 $a=R\beta$
由上述方程组解得: $\beta=2F/(5mR)=10 \text{ rad} \cdot \text{s}^{-2}$
 $T=3F/5=6.0 \text{ N}$
 $T'=2F/5=4.0 \text{ N}$

4、解:设绳子对物体(或绳子对轮轴)的拉力为 T,则根据牛顿运动定律和转动定律得:

$$mg$$
- $T=ma$ ① ② 由运动学关系有: $a=r\beta$ ③ 由①、②、③式解得: $J=m(g-a)\,r^2/a$ ④ 又根据已知条件 $\nu_0=0$ $\therefore S=\frac{1}{2}at^2$, $a=2S/t^2$ ⑤

将⑤式代入④式得: $J=mr^2(\frac{gt^2}{2S}-1)$

5.
$$\Re:$$
 (1) \therefore $mg-T=ma$

$$TR=J\beta$$

$$a=R\beta$$

$$\beta = mgR / (mR^2 + J) = \frac{mgR}{mR^2 + \frac{1}{2}MR^2} = \frac{2mg}{(2m+M)R} = 81.7 \text{ rad/s}^2$$

方向垂直纸面向外.

物体上升的高度 $h=R\theta=6.12\times10^{-2}$ m

(3)
$$\omega = \sqrt{2\beta\theta} = 10.0 \text{ rad/s}$$
 方向垂直纸面向外.

6、解:撤去外加力矩后受力分析如图所示.

$$m_1g-T=m_1a$$
 $Tr=J\beta$
 $a=r\beta$
 $a=m_1gr/(m_1r+J/r)$
代入 $J=\frac{1}{2}mr^2$, $a=\frac{m_1g}{m_1+\frac{1}{2}m}=6.32~\mathrm{ms}^{-2}$

$$v_0-at=0$$

$$t = v_0 / a = 0.095 \text{ s}$$

7、解: 各物体的受力情况如图所示.

由转动定律、牛顿第二定律及运动学方程,可列出以下联立方程:

$$T_1R = J_1\beta_1 = \frac{1}{2}M_1R^2\beta_1$$
 $T_2r - T_1r = J_2\beta_2 = \frac{1}{2}M_1r^2\beta_2$
 $mg - T_2 = ma$, $a = R\beta_1 = r\beta_2$, $v^2 = 2ah$
求解联立方程,得 $a = \frac{mg}{\frac{1}{2}(M_1 + M_2) + m} = 4$ m/s²
 $v = \sqrt{2ah} = 2$ m/s
 $T_2 = m(g - a) = 58$ N
 $T_1 = \frac{1}{2}M_1a = 48$ N

8、 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得

$$mv_0 \frac{2l}{3} = -m\frac{v_0}{2} \frac{2l}{3} + J\omega \quad (逆时针为正向) \tag{1}$$

$$X J = m(\frac{2l}{3})^2 + 2m(\frac{l}{3})^2$$
 (2)

将②代入①得
$$\omega = \frac{3v_0}{2I}$$

- **9、**解:选棒、小物体为系统,系统开始时角速度为 $ω_1 = 2\pi n_1 = 1.57$ rad/s.
 - (1) 设小物体滑到棒两端时系统的角速度为 ω . 由于系统不受外力矩作用 所以角动量守恒.

故
$$\left(\frac{Ml^2}{12} + 2mr^2\right)\omega_1 = \left(\frac{Ml^2}{12} + \frac{1}{2}ml^2\right)\omega_2$$

$$\omega_2 = \frac{\left(\frac{Ml^2}{12} + 2ml^2\right)\omega_1}{\frac{Ml^2}{12} + \frac{1}{2}ml^2} = 0.628 \text{ rad/s}$$

- (2) 小物体离开棒端的瞬间,棒的角速度仍为 ω . 因为小物体离开棒的瞬间 内并未对棒有冲力矩作用.
- 10、解:(1)以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴 O的角动量守恒.

$$mv_0R = (\frac{1}{2}MR^2 + mR^2)\omega$$
$$\omega = \frac{mv_0}{(1-e^2)^2}$$

 $\omega = \frac{mv_0}{\left(\frac{1}{2}M + m\right)R}$

(2) 设 σ 表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小

为
$$M_f = \int_0^R r \mu g \, \sigma \cdot 2\pi r \, dr = (2/3)\pi \mu \, \sigma \, gR^3 = (2/3)\mu MgR$$

设经过 Δt 时间圆盘停止转动,则按角动量定理有

$$-M_f \Delta t = 0 - J\omega = -(\frac{1}{2}MR^2 + mR^2)\omega = -mv_0R$$

$$\therefore \quad \Delta t = \frac{m v_0 R}{M_f} = \frac{m v_0 R}{(2/3) \mu MgR} = \frac{3m v_0}{2 \mu Mg}$$

11、解:碰撞前瞬时,杆对 O 点的角动量为

$$\int_0^{3L/2} \rho v_0 x \, \mathrm{d} \, x - \int_0^{L/2} \rho v_0 x \, \mathrm{d} \, x = \rho v_0 L^2 = \frac{1}{2} m v_0 L \qquad \qquad \text{式中\rho为杆的线密度}.$$

碰撞后瞬时,杆对 0 点的角动量为

$$J\omega = \frac{1}{3} \left[\frac{3}{4} m \left(\frac{3}{2} L \right)^2 + \frac{1}{4} m \left(\frac{1}{2} L \right)^2 \right] \omega = \frac{7}{12} m L^2 \omega$$

因碰撞前后角动量守恒, 所以

$$7mL^2\omega/12 = \frac{1}{2}mv_0L$$

$$\omega = 6v_0/(7L)$$

第五章 机械振动

一、选择题

- 1, B
- 2, B
- 3、C
- 4、C
- 5、B

- 6、B
- 7、A
- 8、D
- 9、E
- 10、B

二 填空题

- 1、 振动系统本身性质 初始条件
- **2**, π
- $3 \cdot \pm 2\pi/3$
- **4、** 2:1
 - 4:1
 - 2:1
- 5, $0.04\cos(4\pi t \frac{1}{2}\pi)$
- **6.** 1:1
- $7 \cdot 3\pi/4$
- 8, T/8, 3T/8
- **9.** $|A_1 A_2|$

 $x = |A_2 - A_1| \cos(\frac{2\pi}{T}t + \frac{1}{2}\pi)$

- **10**, 0
- 三、计算题
- 1 A = 0.5 cm; $\omega = 8\pi \text{ s}^{-1}$; $T = 2\pi/\omega = (1/4) \text{ s}$; $\phi = \pi/3$
 - (2) $v = \dot{x} = -4\pi \times 10^{-2} \sin(8\pi t + \frac{1}{3}\pi)$ (SI)

$$a = \ddot{x} = -32\pi^{2} \times 10^{-2} \cos(8\pi t + \frac{1}{3}\pi) \quad \text{(SI)}$$

$$(3) \quad E = E_{K} + E_{P} = \frac{1}{2}kA^{2} = \frac{1}{2}m\omega^{2}A^{2} = 7.90 \times 10^{-5} \,\text{J}$$

$$(4) \text{ 平均动能} \quad \overline{E_{K}} = (1/T)\int_{0}^{T} \frac{1}{2}m\upsilon^{2} \,\mathrm{d}t$$

$$= (1/T)\int_{0}^{T} \frac{1}{2}m(-4\pi \times 10^{-2})^{2} \sin^{2}(8\pi t + \frac{1}{3}\pi) \,\mathrm{d}t$$

$$= 3.95 \times 10^{-5} \,\text{J} = \frac{1}{2}E$$
同理
$$\overline{E_{P}} = \frac{1}{2}E = 3.95 \times 10^{-5} \,\text{J}$$

2、解: 设弹簧的原长为
$$l$$
,悬挂 m_1 后伸长 Δl ,则 $k \Delta l = m_1 g$, $k = m_1 g/\Delta l = 2$ N/m 取下 m_1 挂上 m_2 后, $\omega = \sqrt{k/m_2} = 11.2$ rad/s $T = 2\pi/\omega = 0.56$ s $t = 0$ 时, $x_0 = -2 \times 10^{-2}$ m $= A \cos \phi$ $\upsilon_0 = 5 \times 10^{-2}$ m/s $= -A\omega \sin \phi$ 解得 $A = \sqrt{x_0^2 + (\upsilon_0/\omega)^2}$ m $= 2.05 \times 10^{-2}$ m $\phi = \text{tg}^{-1}(-\upsilon_0/\omega x_0) = 180^\circ + 12.6^\circ = 3.36$ rad 也可取 $\phi = -2.92$ rad 振动表达式为 $x = 2.05 \times 10^{-2} \cos(11.2t - 2.92)$ (SI) 或 $x = 2.05 \times 10^{-2} \cos(11.2t + 3.36)$ (SI)

3、解: (1) t=0 时
$$a = 2.5m/s^2$$
 $|F| = ma = 5N$ (2) $|a_{\text{max}}| = 5$, 其时 $|\sin(5t - \pi/6)| = 1$ $|F_{\text{max}}| = m|a_{\text{max}}| = 10N$ $x = \pm 0.2m$ (振幅端点)

4、解:由题意
$$T = 0.5 \text{ s}$$
 , $\omega = 2 \pi / T = 4\pi \text{ rad/s}$ 角振幅 $\theta_0 = 0.1\pi$. 振动表达式为 $\theta = \theta_0 \cos(\omega t + \phi)$ 摆动角速度 $d\theta/dt = -\omega\theta_0 \sin(\omega t + \phi)$. (1) $(d\theta/dt)_{\text{max}} = \omega\theta_0 = 3.95 \text{ rad} \cdot \text{s}^{-1}$ (2) 当 $\theta = \frac{1}{2}\theta_0$ 时, $\cos(\omega t + \phi) = \frac{1}{2}$,

必有 $\sin(\omega t + \phi) = \pm \sqrt{3}/2$, 这时 $d\theta/dt$ 的大小为 $3.95 \times \sqrt{3}/2$ rad • $s^{-1} = 3.42$ rad • s^{-1} .

5、解:建立竖直坐标如图,令微小振动中,两臂水银面相平时,水银面坐标为 0,水银的重力势 能为 0,则以右臂水银面的坐标为准,在振动中任一时刻,水银的运动速度 $v = \frac{\mathrm{d} x}{\mathrm{d} x}$. 这时 振动中水银的动能为 $\frac{1}{2}mv^2$,水银的势能(看作两水银面相平的状态下,从左臂移高度为 x的一段水银柱到右臂,则有质量为 $S\rho x$ 的水银升高了高度 x)为 $S\rho gx^2$. 因振动中机械能 守恒

$$\frac{1}{2}mv^2 + S\rho gx^2 = 常量$$
对 t 求 导 数 可 得 $mv\frac{\mathrm{d}v}{\mathrm{d}t} + 2S\rho gxv = 0$ 化 简 $mv\frac{\mathrm{d}x^2}{\mathrm{d}t^2} + 2S\rho gx = 0$ 这就是简谐振动的微分方程.

由此可得振动角频率
$$\omega = \sqrt{\frac{2S\rho g}{m}}$$
 振动周期
$$T = 2\pi \sqrt{\frac{m}{2S\rho g}} = 1.09 \text{ s}$$

6、解一:(1) 取平衡位置为原点,向下为 x 正方向.设物体在平衡位置时弹簧的伸长量为 ΔI ,则 有 $mg = k\Delta l$, 加拉力 F 后弹簧又伸长 x_0 ,

则
$$F + mg - k(\Delta l + x_0) = 0$$

解得 $F = kx_0$ 由题意, $t = 0$ 时 $v_0 = 0$; $x = x_0$
则 $A = \sqrt{x_0^2 + (v_0/\omega)^2} = x_0$

又由题给物体振动周期 $T = \frac{32}{48}$ s, 可得角频率 $\omega = \frac{2\pi}{T}$, $k = m\omega^2$

$$F = kA = (4\pi^2 m/T^2)A = 0.444 \text{ N}$$

(2) 衡位置以下 1 cm 处:

$$v^2 = (2\pi/T)^2 (A^2 - x^2)$$

$$E_K = \frac{1}{2}mv^2 = 1.07 \times 10^{-2} \text{ J}$$

$$E_p = \frac{1}{2}kx^2 = \frac{1}{2}(4\pi^2m/T^2)x^2 = 4.44 \times 10^{-4} \,\mathrm{J}$$

解二: (1) 从静止释放,显然拉长量等于振幅 A (5 cm),

$$F = kA$$
 $k = m\omega^2 = 4m\pi^2 v^2$, $v = 1.5 \text{ Hz}$
 \therefore $F = 0.444 \text{ N}$

$$F = 0.444 \text{ N}$$

(2) 总能量
$$E = \frac{1}{2}kA^2 = \frac{1}{2}FA = 1.11 \times 10^{-2}$$
 J

当 x = 1 cm 时, x = A/5, E_p 占总能量的 1/25, E_K 占 24/25.

$$\therefore E_K = (24/25)E = 1.07 \times 10^{-2} \text{ J},$$

$$E_p = E/25 = 4.44 \times 10^{-4} \text{ J}$$

第六章 机械波

一、选择题

1、B	2, B	3、C	4、D	5、D
6, C	7、D	8, B	9、A	10、C
11、D	12, D	13、A	14、D	15、B
16. D	17. C	18. B		

二、填空题

1.
$$0.1\cos(4\pi t - \pi)$$
 (SI) -1.26 m/s

参考解: 波的表达式:
$$y = A\cos 2\pi (\frac{t}{T} - \frac{x}{\lambda}) = 0.1\cos 2\pi (2t - 0.1x)$$
 $x = \frac{1}{2}\lambda = 5$ m 处的振动方程: $y = 0.1\cos 2(4\pi t - \pi)$ (SI) 各处质点振动速度 $v = -0.4\pi\sin(4\pi t - 0.2\pi x)$ $x = \lambda/4 = 2.5$ m, $t = T/2 = 0.25$ s , $v = -1.26$ m/s

2,
$$-2\pi L/\lambda + \phi$$

 $L \pm k\lambda$ ($k = 1, 2, 3, \cdots$)
 $L \pm \frac{1}{2}(2k+1)\lambda$ ($k = 0, 1, 2, \cdots$)

3、 答案见图

4.
$$y_{P_2} = 0.04\cos(\pi t + \pi)$$
 (SI)

5.
$$y_{P_2} = 0.04\cos(\pi t + \pi)$$
 (SI)

6.
$$y = A\cos[2\pi \frac{u}{\lambda}(t-2+\frac{x}{u}) - \frac{\pi}{2}]$$

 $y_P = A\cos[2\pi \frac{u}{\lambda}(t-2) + \frac{\pi}{2}]$

7,
$$y_1 = A\cos[2\pi t/T + \phi]$$

 $y_2 = A\cos[2\pi(t/T + x/\lambda) + \phi]$

8、
$$y = A\cos[2\pi(vt + \frac{x+L}{\lambda}) + \frac{\pi}{2}]$$

$$t_1 + \frac{L}{\lambda v} + \frac{k}{v}, \quad k = 0, \pm 1, \pm 2, \cdots \quad [只写 \quad t_1 + L/(\lambda v) \quad 也可以]$$

9、答案见图

注:根据波动的相位传播规律,考虑下列三个相位的传播:

- (1). x=0 点 t=0 时刻的相位,在 t=T 时刻传到 $x=\lambda$ 处.
- (2). x = 0 点在 t = T/4 时刻的相位,在 t = T 时刻传到 $x = (3/4)\lambda$ 点.
- (3). x = 0 点在 t = (3/4)T 时刻的相位,在 t = T 时刻传到 $x = \lambda/4$ 点.

10.
$$y = A\cos(\omega t + \pi - 2\pi x/\lambda)$$

$$y' = A'\cos(\omega t - 4\pi L/\lambda + 2\pi x/\lambda)$$

12,
$$IS\cos\theta$$

14、 S_1 的相位比 S_2 的相位超前 $\pi/2$

15,
$$2k \pi + \pi/2$$
, $k = 0$, ± 1 , ± 2 , ... $2k \pi + 3\pi/2$, $k = 0$, ± 1 , ± 2 , ...

16.
$$2A\cos(2\pi\frac{x}{\lambda}-2\pi\frac{L}{\lambda})\cos(\omega t-2\pi\frac{L}{\lambda})$$

17.
$$x = (k - \frac{1}{2})\frac{1}{2}\lambda$$
, $k = 1, 2, 3, \dots$

三、计算题

1、解:用旋转矢量解此题,如图可得 \overline{A} 为代表P点振动的旋转矢量.

$$y_{P} = \frac{1}{2} (\sqrt{3} \sin \omega t - \cos \omega t) \times 10^{-2}$$

$$= \frac{1}{2} (\sqrt{3} \cos(\omega t - \frac{1}{2}\pi) + \cos(\omega t + \pi)] \times 10^{-2}$$

$$= 1 \times 10^{-2} \cos(\omega t + 4\pi/3) \quad (SI).$$

波的表达式为:

$$y = 1 \times 10^{-2} \cos[\omega t + \frac{4}{3}\pi - 2\pi \frac{x - \lambda/2}{\lambda}]$$

= $1 \times 10^{-2} \cos(\omega t - 2\pi \frac{x}{\lambda} + \frac{1}{3}\pi)$ (SI)

2、解: (1) 设x=0 处质点的振动方程为 $y=A\cos(2\pi vt+\phi)$

由图可知,
$$t = t'$$
 时 $y = A\cos(2\pi \nu t' + \phi) = 0$ $dy/dt = -2\pi \nu A\sin(2\pi \nu t' + \phi) < 0$ 所以 $2\pi \nu t' + \phi = \pi/2$, $\phi = \frac{1}{2}\pi - 2\pi \nu t'$ $x = 0$ 处的振动方程为 $y = A\cos[2\pi \nu (t - t') + \frac{1}{2}\pi]$

(2) 该波的表达式为
$$y = A\cos[2\pi v(t - t' - x/u) + \frac{1}{2}\pi]$$

 $y_0 = 0.06\cos(\frac{2\pi t}{2} + \pi) = 0.06\cos(\pi t + \pi)$ (SI) 3、解: (1) 振动方程

 $\lambda = uT = 4$ m (3) 波长

4、解: (1) 由振动曲线可知, P处质点振动方程为

$$y_P = A\cos[(2\pi t/4) + \pi] = A\cos(\frac{1}{2}\pi t + \pi)$$
 (SI)

(2) 波动表达式为 $y = A\cos[2\pi(\frac{t}{4} + \frac{x-d}{\lambda}) + \pi]$ (SI)

(3) O 处质点的振动方程 $y_0 = A\cos(\frac{1}{2}\pi t)$

5、解: (1) 如图 A, 取波线上任一点 P, 其坐标设为 x,

由波的传播特性,P点的振动落后于 $\lambda/4$ 处质点的振动。

该波的表达式为

$$y = A\cos\left[\frac{2\pi ut}{\lambda} - \frac{2\pi}{\lambda}(\frac{\lambda}{4} - x)\right]$$
$$= A\cos\left(\frac{2\pi ut}{\lambda} - \frac{\pi}{2} + \frac{2\pi}{\lambda}x\right) \quad (SI)$$

t=T 时的波形和 t=0 时波形一样. t=0 时

$$y = A\cos(-\frac{\pi}{2} + \frac{2\pi}{\lambda}x) = A\cos(\frac{2\pi}{\lambda}x - \frac{\pi}{2})$$

按上述方程画的波形图见图 B.

6、解:由图, $\lambda = 2 \text{ m}$, \mathbb{Z} $\therefore u = 0.5 \text{ m/s}$, $\therefore v = 1/4 \text{ Hz}$,

$$T = 4 \text{ s.}$$
 题图中 $t = 2 \text{ s} = \frac{1}{2} T$.

t=0 时,波形比题图中的波形倒退 $\frac{1}{2}\lambda$,见图.

此时 O 点位移 $y_0 = 0$ (过平衡位置) 且朝 y 轴负方向运动,

$$\therefore \qquad \phi = \frac{1}{2}\pi$$

$$\therefore y = 0.5\cos(\frac{1}{2}\pi t + \frac{1}{2}\pi) \quad (SI)$$

7、解: 由题

$$\lambda = 24 \text{ cm}, \qquad u = \lambda v = 24 \times 25 \text{ cm/s} = 600 \text{ cm/s}$$

$$A = 3.0 \text{ cm}, \qquad \omega = 2\pi v = 50 \text{ m/s}$$

$$y_0 = A\cos\phi = 0$$
, $\dot{y}_0 = -A\omega\sin\phi > 0$ $\phi = -\frac{1}{2}\pi$

$$y = 3.0 \times 10^{-2} \cos[50\pi(t - x/6) - \frac{1}{2}\pi]$$
 (SI)

8、解: 这是一个向x轴负方向传播的波.

(1) 由波数
$$k=2\pi/\lambda$$
 得波长 $\lambda=2\pi/k=1$ m 由 $\omega=2\pi\nu$ 得频率 $\nu=\omega/2\pi=2$ Hz 波速 $u=\nu\lambda=2$ m/s

(2) 波峰的位置, 即 y = A 的位置.

由
$$\cos \pi (4t + 2x) = 1$$

有 $\pi (4t + 2x) = 2k\pi$ ($k = 0, \pm 1, \pm 2, \cdots$)
解上式,有 $x = k - 2t$.

当 t = 4.2 s 时, x = (k - 8.4) m.

所谓离坐标原点最近,即|x|最小的波峰. 在上式中取 k=8,可得 x=-0.4 的波峰离坐标原点最近.

(3) 设该波峰由原点传播到 x = -0.4 m 处所需的时间为 Δt ,

则
$$\Delta t = |\Delta x|/u = |\Delta x|/(\nu \lambda) = 0.2 \text{ s}$$

∴ 该波峰经过原点的时刻

$$t = 4$$
 s

9、解: (1) 比较 t=0 时刻波形图与 t=2 s 时刻波形图,可知此波向左传播.

在
$$t=0$$
 时刻, O 处质点

$$0 = A\cos\phi$$
,

$$0 = A\cos\phi , \qquad 0 < v_0 = -A\omega\sin\phi ,$$

故
$$\phi = -\frac{1}{2}\pi$$

又
$$t=2s$$
, O 处质点位移为

又 t = 2 s, O 处质点位移为
$$A/\sqrt{2} = A\cos(4\pi\nu - \frac{1}{2}\pi)$$

所以
$$-\frac{1}{4}\pi = 4\pi\nu - \frac{1}{2}\pi$$
, $\nu = 1/16$ Hz

$$4\pi v - \frac{1}{2}\pi$$
, $v = 1/16 \text{ Hz}$

振动方程为
$$y_0 = A\cos(\pi t/8 - \frac{1}{2}\pi)$$
 (SI)

(2) 波速 u = 20 / 2 m/s = 10 m/s

波长
$$\lambda = u/v = 160 \text{ m}$$

波动表达式
$$y = A\cos[2\pi(\frac{t}{16} + \frac{x}{160}) - \frac{1}{2}\pi]$$
 (SI)

10、解: (1) O 处质点的振动方程为 $y_0 = A\cos[\omega(t+\frac{L}{t})+\phi]$

(2) 波动表达式为
$$y = A\cos[\omega(t + \frac{x+L}{u}) + \phi]$$

(3)
$$x = -L \pm k \frac{2\pi u}{\omega}$$
 ($k = 1, 2, 3, \dots$)

11、解: (1) 由 P 点的运动方向,可判定该波向左传播.

原点
$$O$$
 处质点, $t=0$ 时 $\sqrt{2}A/2 = A\cos\phi$, $\upsilon_0 = -A\omega\sin\phi < 0$ 所以 $\phi = \pi/4$

$$O$$
 处振动方程为 $y_0 = A\cos(500\pi t + \frac{1}{4}\pi)$ (SI)

由图可判定波长λ=200 m, 故波动表达式为

$$y = A\cos[2\pi(250t + \frac{x}{200}) + \frac{1}{4}\pi] \quad (SI)$$

(2) O 点 100 m 处质点的振动方程是 $y_1 = A\cos(500\pi t + \frac{5}{4}\pi)$

振动速度表达式是
$$v = -500\pi A \cos(500\pi t + \frac{5}{4}\pi)$$
 (SI)

12、解: (1) 波的周期 $T = \lambda / u = (40/20) \text{ s= 2 s}$.

 $P \& Q \& \emptyset$ 处质点振动周期与波的周期相等, 故 $P \& \emptyset$ 处质点的振动曲线如图(a) 振动方程为:

$$y_P = 0.20\cos(\pi t - \frac{1}{2}\pi)$$
 (SI)

(2) 处质点的振动曲线如图(b),

振动方程为
$$y_O = 0.20\cos(\pi t + \pi)$$
 (SI)

或
$$y_O = 0.20\cos(\pi t - \pi)$$
 (SI)

13、解:设 S_1 和 S_2 的振动相位分别为 ϕ_1 和 ϕ_2 .在 x_1 点两波引起的振动相位差

$$[\phi_2 - 2\pi \frac{d - x_1}{\lambda}] - [\phi_1 - 2\pi \frac{x_1}{\lambda}] = (2K + 1)\pi$$

$$\mathbb{E} \qquad (\phi_2 - \phi_1) - 2\pi \frac{d - 2x_1}{\lambda} = (2K + 1)\pi \tag{1}$$

在 x2 点两波引起的振动相位差

$$[\phi_2 - 2\pi \frac{d - x_2}{\lambda}] - [\phi_1 - 2\pi \frac{x_2}{\lambda}] = (2K + 3)\pi$$

②一①得
$$4\pi(x_2 - x_1)/\lambda = 2\pi$$
 $\lambda = 2(x_2 - x_1) = 6$ m

当 K = -2、-3 时相位差最小 $\phi_2 - \phi_1 = \pm \pi$

14、解: 选 O 点为坐标原点,设入射波表达式为 $y_1 = A\cos[2\pi(vt - x/\lambda) + \phi]$

$$y_2 = A\cos[2\pi(vt - \frac{\overline{OP} + \overline{DP} - x}{\lambda}) + \phi + \pi]$$

合成波表达式(驻波)为 $y = 2A\cos(2\pi x/\lambda)\cos(2\pi vt + \phi)$

在 t=0 时,x=0 处的质点 $y_0=0$, $(\partial y_0/\partial t)<0$,

故得
$$\phi = \frac{1}{2}\pi$$

因此,D点处的合成振动方程是

$$y = 2A\cos(2\pi \frac{3\lambda/4 - \lambda/6}{\lambda})\cos(2\pi vt + \frac{\pi}{2}) = \sqrt{3}A\sin 2\pi vt$$

第七章 热力学

一、 选择题:

1,	В	2, A	3. D	4、A	5、D
6、	A	7、 A	8. A	9、 B	10、A
11,	D	12、D	13、D	14、A	15、B
16、	C	17 、D	18、C	19、D	20, D

二、 填空题:

- 1、一个点。
 - 一条曲线。
 - 一条封闭曲线。
- 2、不变 变大
- 3、 图如右: 等压 等压

- $4 \cdot -|W_1|$ $-|W_2|$
- 5, >0 >0
- 6、 在等压升温过程中, 气体要膨胀而对外作功, 所以要比气体等体升温过程多吸收一部分热量.
- 7、等压 等压等压
- 8、 33.3% 50% 66.7%

9.
$$33.3\%$$

 $8.31 \times 10^3 \text{ J}$

- 10, 25%
- 11、不变 增加
- 12、大量微观粒子热运动所引起的无序性(或热力学系统的无序性) 增加

三、计算题

1、解: (1)
$$\Delta E = C_V (T_2 - T_1) = \frac{5}{2} (p_2 V_2 - p_1 V_1)$$

(2)
$$W = \frac{1}{2}(p_1 + p_2)(V_2 - V_1),$$
 W 为梯形面积,根据相似三角形有 $p_1V_2 = p_2V_1$,则

$$W = \frac{1}{2}(p_2V_2 - p_1V_1).$$

(3)
$$Q = \Delta E + W = 3(p_2V_2 - p_1V_1).$$

(4) 以上计算对于 $A \rightarrow B$ 过程中任一微小状态变化均成立,故过程中 $\Delta Q = 3 \Delta (pV)$.

由状态方程得
$$\Delta (pV) = R \Delta T$$
,

故
$$\triangle Q = 3R \triangle T$$
,

摩尔热容
$$C=\Delta Q/\Delta T=3R$$
.

2、解: (1) 由
$$\frac{C_p}{C_V} = \frac{5}{3}$$
 和 $C_p - C_V = R$ 可解 $C_p = \frac{5}{2}R$ 和 $C_V = \frac{3}{2}R$

(2) 该理想气体的摩尔数
$$v = \frac{p_0 V_0}{RT_0} = 4 \text{ mol}$$

在全过程中气体内能的改变量为 $\triangle E=\nu C_V(T_1-T_2)=7.48\times 10^3 \text{ J}$

全过程中气体对外作的功为 $W = v RT_1 \ln \frac{p_1}{p_0}$

式中
$$p_1 / p_0 = T_1 / T_0$$
 则 $W = \nu RT_1 \ln \frac{T_1}{T_0} = 6.06 \times 10^3$ J.

全过程中气体从外界吸的热量为 $Q = \triangle E + W = 1.35 \times 10^4 \text{ J}$.

3、解:初态参量 p_0 、 V_0 、 T_0 .末态参量 p_0 、 $5V_0$ 、T.

由
$$p_0V_0/T_0 = p_0(5V_0)/T$$
 得 $T = 5T_0$

p-V图如图所示

等温过程:
$$\Delta E=0$$
 $Q_T=W_T=(M/M_{mol})RT \ln(V_2/V_1)$
 $=3RT_0 \ln 5 = 1.09 \times 10^4 \text{ J}$

4、解: (1) 气体对外作的功等于线段 \bar{ac} 下所围的面积

$$W = (1/2) \times (1+3) \times 1.013 \times 10^5 \times 2 \times 10^{-3} \text{ J} = 405.2 \text{ J}$$

(2) 由图看出
$$P_aV_a=P_cV_c$$
 $\therefore T_a=T_c$ 内能增量 $\Delta E=0$.

- (3) 由热力学第一定律得
- $Q = \Delta E + W = 405.2 \text{ J}$
- 5、解: 由图, p_A =300 Pa, p_B = p_C =100 Pa; V_A = V_C =1 m³, V_B =3 m³.
 - (1) $C \rightarrow A$ 为等体过程,据方程 $p_A/T_{A} = p_C/T_C$ 得 $T_C = T_A p_C / p_A = 100 \text{ K}.$

 $B \to C$ 为等压过程,据方程 $V_B/T_B=V_C/T_C$ 得 $T_{\rm B} = T_{\rm C} V_{\rm B} / V_{\rm C} = 300 \text{ K}.$

(2) 各过程中气体所作的功分别为

$$A \rightarrow B$$
: $W_1 = \frac{1}{2} (p_A + p_B)(V_B - V_C) = 400 \text{ J.}$
 $B \rightarrow C$: $W_2 = p_B (V_C - V_B) = -200 \text{ J.}$
 $C \rightarrow A$: $W_3 = 0$

(3) 整个循环过程中气体所作总功为

$$W = W_1 + W_2 + W_3 = 200 \text{ J.}$$

因为循环过程气体内能增量为 $\Delta E=0$,因此该循环中气体总吸热 $Q = W + \Delta E = 200 \text{ J.}$

6、解: (1) $T_a = p_a V_2 / R = 400 \text{ K}$

$$T_b = p_b V_1 / R = 636 \text{ K}$$

$$T_{\rm c} = p_c V_1 / R = 800 \text{ K}$$

$$T_d = p_d V_2 / R = 504 \text{ K}$$

- $E_c = (i/2)RT_c = 9.97 \times 10^3 \text{ J}$ (2)
- b-c 等体吸热 (3)

$$Q_1 = C_V(T_c - T_b) = 2.044 \times 10^3 \text{ J}$$

d-a 等体放热

$$Q_2 = C_V(T_d - T_a) = 1.296 \times 10^3 \text{ J}$$

$$W = Q_1 - Q_2 = 0.748 \times 10^3 \text{ J}$$

7、解: 水蒸汽的质量
$$M = 36 \times 10^{-3} \text{ kg}$$

水蒸汽的摩尔质量 $M_{mol}=18\times10^{-3}$ kg, i=6

(1)
$$W_{da} = p_a(V_a - V_d) = -5.065 \times 10^3$$
 J

(2)
$$\Delta E_{ab} = (M/M_{mol})(i/2)R(T_b - T_a)$$

= $(i/2)V_a(p_b - p_a)$
= $3.039 \times 10^4 \text{ J}$

(3)
$$T_b = \frac{p_b V_a}{(M/M_{mol})R} = 914 \text{ K}$$

 W_{bc} = $(M/M_{mol})RT_b \ln(V_c/V_b) = 1.05 \times 10^4 \text{ J}$ 净功 $W = W_{bc} + W_{da} = 5.47 \times 10^3 \text{ J}$

(4)
$$W = W_{bc} + W_{da} = 3.47 \wedge 10^{\circ} \text{ J}$$

 $(4) Q_1 = Q_{ab} + Q_{bc} = \Delta E_{ab} + W_{bc} = 4.09 \times 10^4 \text{ J}$

 $q = Q_{ab} + Q_{bc} = \Delta E_{ab} + W_{bc} = 4.09 \times 10^{-3}$ $q = W/Q_1 = 13\%$

8、解:设
$$a$$
 状态的状态参量为 p_0 , V_0 , T_0 ,则 $p_b=9p_0$, $V_b=V_0$, $T_b=(p_b/p_a)T_a=9T_0$

$$\therefore \qquad p_c = \frac{p_0 V_c^2}{V_0^2} \qquad \qquad \therefore \qquad V_c = \sqrt{\frac{p}{p_0}} V_0 = 3V_0$$

$$p_c V_c = RT_c \qquad \qquad \therefore \quad T_c = 27T_0$$

(1) 过程 I
$$Q_V = C_V (T_b - T_a) = \frac{3}{2} R(9T_0 - T_0) = 12RT_0$$

过程 II
$$Q_p = C_p(T_c - T_b) = 45 RT_0$$

过程III
$$Q = C_V (T_a - T_c) + \int_{V_c}^{V_a} (p_0 V^2) dV / V_0^2$$

$$= \frac{3}{2}R(T_0 - 27T_0) + \frac{p_0}{3V_0^2}(V_a^3 - V_c^3)$$

$$= -39RT_0 + \frac{p_0(V_0^3 - 27V_0^3)}{3V_0^2} = -47.7RT_0$$

(2)
$$\eta = 1 - \frac{|Q|}{Q_V + Q_p} = 1 - \frac{47.7RT_0}{12RT_0 + 45RT_0} = 16.3\%$$

9、解: (1) 1-2 任意过程

$$\Delta E_1 = C_V (T_2 - T_1) = C_V (2T_1 - T_1) = \frac{5}{2} RT_1$$

$$W_1 = \frac{1}{2} (p_2 V_2 - p_1 V_1) = \frac{1}{2} RT_2 - \frac{1}{2} RT_1 = \frac{1}{2} RT_1$$

$$Q_1 = \Delta E_1 + W_1 = \frac{5}{2} RT_1 + \frac{1}{2} RT_1 = 3RT_1$$

2-3 绝热膨胀过程

$$\Delta E_2 = C_V (T_3 - T_2) = C_V (T_1 - T_2) = -\frac{5}{2} R T_1$$

$$W_2 = -\Delta E_2 = \frac{5}{2}RT_1$$

$$Q_2 = 0$$
 3-1 等温压缩过程

$$\Delta E_3 = 0$$

$$W_3 = -RT_1 \ln(V_3/V_1) = -RT_1 \ln(8V_1/V_1) = -2.08 RT_1$$

 $Q_3 = W_3 = -2.08 RT_1$

(2)
$$\eta = 1 - |Q_3| / Q_1 = 1 - 2.08RT_1/(3RT_1) = 30.7\%$$

10、解: (1)
$$Q_1 = RT_1 \ln(V_2/V_1) = 5.35 \times 10^3 \text{ J}$$

(2)
$$\eta = 1 - \frac{T_2}{T_1} = 0.25.$$

$$W = \eta Q_1 = 1.34 \times 10^3 \text{ J}$$
(3)
$$Q_2 = Q_1 - W = 4.01 \times 10^3 \text{ J}$$

$$W = \eta Q_1 = 1.34 \times 10^3$$
 J

(3)
$$Q_2 = Q_1 - W = 4.01 \times 10^3 \text{ J}$$

第八章 气体动理论

一、 选择题

1、D 6、A 2、B 7、B 3、C 8、D 4、D 9、C 5、C 10、C

11、A

12 B

13、B

14、D

15、B

16, D

二、填空题

1、 成反比地减小 (图) 成正比地增加 (图)

- 2、 气体分子的大小与气体分子之间的距离比较,可以忽略不计. 除了分子碰撞的一瞬间外,分子之间的相互作用力可以忽略. 分子之间以及分子与器壁之间的碰撞是完全弹性碰撞.
- 3. $1.2 \times 10^{-24} \text{ kg m/s}$ $\frac{1}{3} \times 10^{28} \text{ m}^{-2} \text{ s}^{-1}$ $4 \times 10^{3} \text{ Pa}$
- 4, 1:1:1
- 5、一摩尔理想气体的内能 气体的定体摩尔热容 气体的定压摩尔热容
- 6、 每个气体分子热运动的平均平动动能 .
- $7, \frac{1}{2}ikT$ RT
- 8, 1.28×10^{-7}

$$9, \quad \frac{3}{2}p_{0}V_{0} \\ \frac{5}{2}p_{0}V_{0} \\ \frac{8p_{0}V_{0}}{13R}$$

$$11$$
、 2 $\sqrt{2}$ 鹃 2

三、 计算题

1、解: (1)
$$\overline{w} = \frac{3}{2}kT = 8.28 \times 10^{-21} \text{ J}$$

$$E_K = N\overline{w} = (N_1 + N_2)\frac{3}{2}kT = 4.14 \times 10^5 \text{ J}$$
 (2) $p = nkT = 2.76 \times 10^5 \text{ Pa}$

::氧气分子平均平动动能=氢气分子平均平动动能

(2)
$$T = 2\overline{w}/(3k) = 300 \text{ K}.$$

3、解:
$$\overline{w} = \frac{3}{2}kT$$

$$T = \frac{2\overline{w}}{3k} = 290 \text{ K}$$

$$E_{\text{He}} = \frac{3M_{\text{He}}}{2M_{\text{mol}}}RT = 9.04 \times 10^5 \text{ J}$$

$$\overline{m} \qquad E_{\text{H}_2} = E - E_{\text{He}} = 1.55 \times 10^6 \text{ J}$$

$$\mathbb{Z} \qquad E_{\text{H}_2} = \frac{5}{2}\frac{M}{M_{\text{mol}}}RT$$

$$\therefore \qquad M_{\text{H}_2} = 0.51 \text{ kg}$$

4、解: (1) 由
$$(\overline{v^2})^{1/2} = \sqrt{3RT/M_{\text{mol}}}$$
 而氢核 $M_{\text{mol}} = 1 \times 10^{-3} \text{ kg} \cdot \text{mol}^{-1}$ $\therefore (\overline{v^2})^{1/2} = 1.58 \times 10^6 \text{ m} \cdot \text{s}^{-1}.$ (2) $\overline{w} = \frac{3}{2}kT = 1.29 \times 10^4 \text{ eV}.$

第九章 静电场

一、 选择题

二、填空题

1.
$$-3\sigma/(2\varepsilon_0)$$

 $-\sigma/(2\varepsilon_0)$
 $\sigma/(2\varepsilon_0)$
 $3\sigma/(2\varepsilon_0)$

2、
$$\frac{qd}{4\pi\varepsilon_0R^2(2\pi R - d)} \approx \frac{qd}{8\pi^2\varepsilon_0R^3}$$

从 O 点指向缺口中心点.

$$3$$
、 $\frac{\sigma}{2\varepsilon_0}$ 向右 $\frac{3\sigma}{2\varepsilon_0}$ 向右 $\frac{\sigma}{2\varepsilon_0}$ 向左

4.
$$Q / \varepsilon_0$$

 $\vec{E}_a = 0$, $\vec{E}_b = 5Q\vec{r}_0 / (18\pi\varepsilon_0 R^2)$

$$5, \quad 0 \\ \frac{\sigma R}{\varepsilon_0 r^2} \vec{r}$$

6.
$$(q_2 + q_4)/\varepsilon_0$$

 q_1, q_2, q_3, q_4

$$8, \quad \frac{\lambda}{4\pi\varepsilon_0} \ln\frac{3}{4}$$

9,
$$\sigma R / (2\varepsilon_0)$$

10.
$$(U_0/2)+Qd/(4\varepsilon_0S)$$

11.
$$\frac{q_0q}{4\pi\varepsilon_0}\left(\frac{1}{r_b}-\frac{1}{r_a}\right)$$

13,
$$q/(6\pi\varepsilon_0 R)$$

14.
$$(3\sqrt{3}qQ)/(2\pi\varepsilon_0 a)$$

15、答案见图.

16. 0
$$q\bar{r}/(4\pi\varepsilon_0 r^3)$$

三、计算题

1、解: 取坐标
$$xOy$$
 如图,由对称性可知: $E_x = \int dE_x = 0$

$$dE_{y} = \frac{-dq}{4\pi\varepsilon_{0}a^{2}}\cos\theta = \frac{-\lambda dl}{4\pi\varepsilon_{0}a^{2}}\cos\theta$$

$$= \frac{-\lambda}{4\pi\varepsilon_{0}a^{2}}\cos\theta \cdot a d\theta$$

$$E_{y} = \int_{-\frac{1}{2}\theta_{0}}^{\frac{1}{2}\theta_{0}} \frac{-\lambda}{4\pi\varepsilon_{0}a}\cos\theta d\theta$$

$$= \frac{-\lambda}{2\pi\varepsilon_{0}a}\sin\frac{\theta_{0}}{2} = \frac{-q}{2\pi\varepsilon_{0}a^{2}\theta_{0}}\sin\frac{\theta_{0}}{2}$$

$$\bar{E} = \frac{-q}{2\pi\varepsilon_{0}a^{2}\theta_{0}}\sin\frac{\theta_{0}}{2}\bar{j}$$

2、解:在 0 点建立坐标系如图所示.

半无限长直线 $A \sim \pm O$ 点产生的场强:

误
$$\vec{E}_1 = \frac{\lambda}{4\pi\varepsilon_0 R} (\vec{i} - \vec{j})$$

半无限长直线 $B \sim$ 在 O 点产生的场强:

误
$$\vec{E}_2 = \frac{\lambda}{4\pi\varepsilon_0 R} \left(-\vec{i} + \vec{j} \right)$$

四分之一圆弧段在O点产生的场强:

堤
$$\vec{E}_3 = \frac{\lambda}{4\pi\varepsilon_0 R} (\vec{i} + \vec{j})$$

由场强叠加原理, O 点合场强为:

堤
$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 = \frac{\lambda}{4\pi\varepsilon_0 R} (\vec{i} + \vec{j})$$

3、解: 把所有电荷都当作正电荷处理. 在θ处取微小电荷

$$dq = \lambda dl = 2Qd\theta / \pi$$

它在 O 处产生场强

$$dE = \frac{dq}{4\pi\varepsilon_0 R^2} = \frac{Q}{2\pi^2\varepsilon_0 R^2} d\theta$$

接 θ 角变化,将 dE 分解成二个分量:

$$dE_x = dE \sin \theta = \frac{Q}{2\pi^2 \varepsilon_0 R^2} \sin \theta d\theta$$

$$dE_{y} = -dE\cos\theta = -\frac{Q}{2\pi^{2}\varepsilon_{0}R^{2}}\cos\theta d\theta$$

对各分量分别积分,积分时考虑到一半是负电荷

$$\begin{split} E_x &= \frac{Q}{2\pi^2 \varepsilon_0 R^2} \begin{bmatrix} \int\limits_0^{\pi/2} \sin\theta \,\mathrm{d}\theta - \int\limits_{\pi/2}^{\pi} \sin\theta \,\mathrm{d}\theta \end{bmatrix} = 0 \\ E_y &= \frac{-Q}{2\pi^2 \varepsilon_0 R^2} \begin{bmatrix} \int\limits_0^{\pi/2} \cos\theta \,\mathrm{d}\theta - \int\limits_{\pi/2}^{\pi} \cos\theta \,\mathrm{d}\theta \end{bmatrix} = -\frac{Q}{\pi^2 \varepsilon_0 R^2} \end{split}$$
 所以
$$\vec{E} = E_x \vec{i} + E_y \vec{j} = \frac{-Q}{\pi^2 \varepsilon_0 R^2} \vec{j}$$

4、解: 在φ处取电荷元, 其电荷为

$$dq = \lambda dl = \lambda_0 R \sin \phi \, d\phi$$

它在 O 点产生的场强为

$$dE = \frac{dq}{4\pi\varepsilon_0 R^2} = \frac{\lambda_0 \sin \phi d\phi}{4\pi\varepsilon_0 R}$$

在
$$x \times y$$
 轴上的二个分量

$$dE_x = -dE\cos\phi$$

$$dE_v = -dE\sin\phi$$

对各分量分别求和
$$E_x = \frac{\lambda_0}{4\pi\varepsilon_0 R} \int_0^{\pi} \sin\phi \cos\phi \, d\phi = 0$$

$$E_{y} = \frac{\lambda_{0}}{4\pi\varepsilon_{0}R} \int_{0}^{\pi} \sin^{2} \phi \, d\phi = -\frac{\lambda_{0}}{8\varepsilon_{0}R}$$

$$\vec{E} = E_x \vec{i} + E_y \vec{j} = -\frac{\lambda_0}{8\varepsilon_0 R} \vec{j}$$

5、解:由题意知

 E_x =200 N/C, E_y =300 N/C, E_z =0

平行于 xOv 平面的两个面的电场强度通量

$$\Phi_{a1} = \vec{E} \cdot \vec{S} = \pm E_z S = 0$$

平行于 vOz 平面的两个面的电场强度通量

$$\Phi_{e2} = \vec{E} \cdot \vec{S} = \pm E_x S = \pm 200 \ b^2 \text{N} \cdot \text{m}^2/\text{C}$$

"十", "一"分别对应于右侧和左侧平面的电场强度通量平行于 xOz 平面的两个面的电场强度通量

$$\Phi_{e3} = \vec{E} \cdot \vec{S} = \pm E_{v} S = \pm 300 \ b^2 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}$$

"+","一"分别对应于上和下平面的电场强度通量.

6、解: (1) 在球内取半径为 r、厚为 dr 的薄球壳,该壳内所包含的电荷为

$$dq = \rho dV = qr 4\pi r^2 dr/(\pi R^4) = 4qr^3 dr/R^4$$

则球体所带的总电荷为 $Q = \int_{V} \rho \, \mathrm{d}V = \left(4q/R^4\right) \int_{0}^{r} r^3 \, \mathrm{d}r = q$

(2) 在球内作一半径为 r₁ 的高斯球面,按高斯定理有

$$4\pi r_1^2 E_1 = \frac{1}{\varepsilon_0} \int_0^{r_1} \frac{qr}{\pi R^4} \cdot 4\pi r^2 \, dr = \frac{qr_1^4}{\varepsilon_0 R^4}$$

得
$$E_1 = \frac{qr_1^2}{4\pi\varepsilon_1 R^4}$$
 $(r_1 \leqslant R)$, \bar{E}_1 方向沿半径向外.

在球体外作半径为 r_2 的高斯球面,按高斯定理有 $4\pi r_2^2 E_2 = q / \varepsilon_0$

得
$$E_2 = \frac{q}{4\pi\varepsilon_0 r_2^2}$$
 $(r_2 > R)$, \bar{E}_2 方向沿半径向外.

(3) 球内电势

$$U_{1} = \int_{r_{1}}^{R} \vec{E}_{1} \cdot d\vec{r} + \int_{R}^{\infty} \vec{E}_{2} \cdot d\vec{r} = \int_{r_{1}}^{R} \frac{qr^{2}}{4\pi\varepsilon_{0}R^{4}} dr + \int_{R}^{\infty} \frac{q}{4\pi\varepsilon_{0}r^{2}} dr$$
$$= \frac{q}{3\pi\varepsilon_{0}R} - \frac{qr_{1}^{3}}{12\pi\varepsilon_{0}R^{4}} = \frac{q}{12\pi\varepsilon_{0}R} \left(4 - \frac{r_{1}^{3}}{R^{3}}\right) \qquad (r_{1} \le R)$$

球外电势

$$U_2 = \int_{r_2}^{R} \vec{E}_2 \cdot d\vec{r} = \int_{r_2}^{\infty} \frac{q}{4\pi\varepsilon_0 r^2} dr = \frac{q}{4\pi\varepsilon_0 r_2} \qquad (r_2 > R)$$

7、解: 球心处总电势应为两个球面电荷分别在球心处产生的电势叠加,即

$$\begin{split} U &= \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} \right) = \frac{1}{4\pi\varepsilon_0} \left(\frac{4\pi r_1^2 \sigma}{r_1} + \frac{4\pi r_2^2 \sigma}{r_2} \right) = \frac{\sigma}{\varepsilon_0} \left(r_1 + r_2 \right) \end{split}$$
 故得
$$\sigma &= \frac{\varepsilon_0 U}{r_1 + r_2} = 8.85 \times 10^{-9} \text{ C/m}^2$$

8、解: (1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,即

$$U_{0} = \frac{1}{4\pi\varepsilon_{0}} \left(\frac{q_{1}}{r_{1}} + \frac{q_{2}}{r_{2}} \right) = \frac{1}{4\pi\varepsilon_{0}} \left(\frac{4\pi r_{1}^{2}\sigma}{r_{1}} - \frac{4\pi r_{2}^{2}\sigma}{r_{2}} \right)$$

$$= \frac{\sigma}{\varepsilon_{0}} (r_{1} + r_{2})$$

$$\sigma = \frac{U_{0}\varepsilon_{0}}{r_{1} + r_{2}} = 8.85 \times 10^{-9} \,\text{C} / \text{m}^{2}$$

(2) 设外球面上放电后电荷面密度为 σ' ,则应有

$$U_0' = \frac{1}{\varepsilon_0} (\sigma r_1 + \sigma' r_2) = 0$$

即
$$\sigma' = -\frac{r_1}{r_2}\sigma$$

外球面上应变成带负电, 共应放掉电荷

$$q' = 4\pi r_2^2 (\sigma - \sigma') = 4\pi r_2^2 \sigma \left(1 + \frac{r_1}{r_2} \right)$$
$$= 4\pi \sigma r_2 (r_1 + r_2) = 4\pi \varepsilon_0 U_0 r_2 = 6.67 \times 10^{-9} \text{ C}$$

9、解:设点电荷q所在处为坐标原点O,x轴沿两点电荷的连线.

(1) 设
$$\vec{E} = 0$$
 的 点 的 坐 标 为 x' , 误 $\vec{E} = \frac{q}{4\pi\varepsilon_0 x'^2} \vec{i} - \frac{3q}{4\pi\varepsilon_0 (x'-d)^2} \vec{i} = 0$ 可得 $2x'^2 + 2dx' - d^2 = 0$ 解出 $x' = -\frac{1}{2}(1+\sqrt{3})d$

另有一解 $x_2'' = \frac{1}{2} (\sqrt{3} - 1) d$ 不符合题意,舍去.

(2) 设坐标 x 处 U=0,则

$$U = \frac{q}{4\pi\varepsilon_0 x} - \frac{3q}{4\pi\varepsilon_0 (d - x)}$$
$$= \frac{q}{4\pi\varepsilon_0} \left[\frac{d - 4x}{x(d - x)} \right] = 0$$

得 d-4x=0, x=d/4

10、解:将题中的电荷分布看作为面密度为 σ 的大平面和面密度为 $-\sigma$ 的圆盘叠加的结果.选x轴垂直于平面,坐标原点O在圆盘中心,大平面在x处产生的场强为

圆盘在该处的场强为

$$\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\sigma x}{2\varepsilon_0 \sqrt{R^2 + x^2}} \vec{i} \text{ }$$

该点电势为
$$U = \int_x^0 \frac{\sigma}{2\varepsilon_0} \frac{x \, \mathrm{d} x}{\sqrt{R^2 + x^2}} = \frac{\sigma}{2\varepsilon_0} \left(R - \sqrt{R^2 + x^2} \right)$$

$$U_A = \frac{\lambda R}{2\varepsilon_0 \sqrt{R^2 + 3R^2}} = \frac{\lambda}{4\varepsilon_0}$$

$$U_B = \frac{\lambda R}{2\varepsilon_0 \sqrt{R^2 + 8R^2}} = \frac{\lambda}{6\varepsilon_0}$$

q 由 A 点运动到 B 点电场力作功

$$A = q(U_A - U_B) = q\left(\frac{\lambda}{4\varepsilon_0} - \frac{\lambda}{6\varepsilon_0}\right) = \frac{q\lambda}{12\varepsilon_0}$$

注:也可以先求轴线上一点场强,用场强线积分计算.

12、解: 电偶极子在该位置时受电场作用的顺时针转向力矩

$$M = pE\sin\theta$$

用同样大小的外力矩M'=M克服电场力矩作功

$$A = \int_{\theta}^{\theta + \pi} M' d\theta = pE \int_{\theta}^{\theta + \pi} \sin \theta d\theta$$
$$= pE[\cos \theta - \cos(\theta + \pi)] = 2pE\cos \theta$$

13、解:选杆的左端为坐标原点,x 轴沿杆的方向 . 在 x 处取一电荷元 λdx ,它在点电荷所在处产生场强为:

$$dE = \frac{\lambda dx}{4\pi\varepsilon_0 (d+x)^2}$$

整个杆上电荷在该点的场强为:

$$E = \frac{\lambda}{4\pi\varepsilon_0} \int_0^l \frac{\mathrm{d} x}{(d+x)^2} = \frac{\lambda l}{4\pi\varepsilon_0 d(d+l)}$$

点电荷 qo 所受的电场力为

$$F = \frac{q_0 \lambda l}{4\pi \varepsilon_0 d(d+l)} = 0.90 \text{ N}$$
 沿 x 轴负向

第十章 静电场中的导体和介质

选择题

- 1、D 2, C 3, C 4, C 6, B 7、B
 - 8, D
- 9、B
- 5、D 10、A

- 11、C
- 12, B
- 13、D
- 二、填空题
- 1, U_0 .
- 2、 不变 减小
- 3. $Qd/(2\varepsilon_0 S)$ $Qd/(\varepsilon_0 S)$
- 4, ε_r 1 \mathcal{E}_r
- $5, \sigma$ $\sigma/(\varepsilon_0\varepsilon_r)$
- 6. $-2\varepsilon_0\varepsilon_r E_0/3$ $4\varepsilon_0\varepsilon_r E_0/3$
- 7. $\lambda/(2\pi r)$ $\lambda/(2\pi \ \varepsilon_0 \ \varepsilon_r \ r)$
- 8, ε_r \mathcal{E}_r
- 9、 $2C_0$
- 10, $\varepsilon_r C_0$ $\varepsilon_r W_0$
- 11, 2:1 1:2

三、计算题

1、解: (1) 令无限远处电势为零,则带电荷为 q 的导体球,其电势为

$$U = \frac{q}{4\pi\varepsilon_0 R}$$

将 dq 从无限远处搬到球上过程中, 外力作的功等于该电荷元在球上所具有的电势能

$$dA = dW = \frac{q}{4\pi\varepsilon_0 R} dq$$

(2) 带电球体的电荷从零增加到Q的过程中,外力作功为

$$A = \int dA = \int_{0}^{Q} \frac{q \, dq}{4\pi\varepsilon_{0}R} = \frac{Q^{2}}{8\pi\varepsilon_{0}R}$$

- 2、解: (1) 由静电感应,金属球壳的内表面上有感生电荷-q,外表面上带电荷 q+Q.
 - (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离 O 点的 距离都是 a,所以由这些电荷在 O 点产生的电势为

$$U_{-q} = \frac{\int dq}{4\pi\varepsilon_0 a} = \frac{-q}{4\pi\varepsilon_0 a}$$

(3) 球心 O 点处的总电势为分布在球壳内外表面上的电荷和点电荷 q 在 O 点产生的电势的代数和

$$\begin{split} \boldsymbol{U}_{O} &= \boldsymbol{U}_{q} + \boldsymbol{U}_{-q} + \boldsymbol{U}_{\mathcal{Q}+q} \\ &= \frac{q}{4\pi\varepsilon_{0}r} - \frac{q}{4\pi\varepsilon_{0}a} + \frac{Q+q}{4\pi\varepsilon_{0}b} \ = \frac{q}{4\pi\varepsilon_{0}} (\frac{1}{r} - \frac{1}{a} + \frac{1}{b}) + \frac{Q}{4\pi\varepsilon_{0}b} \end{split}$$

3、解: 设导体球带电 q, 取无穷远处为电势零点, 则

导体球电势:
$$U_0 = \frac{q}{4\pi\varepsilon_0 r}$$
 内球壳电势:
$$U_1 = \frac{Q_1 - q}{4\pi\varepsilon_0 R_1} + \frac{Q_2}{4\pi\varepsilon_0 R_2}$$
 二者等电势,即
$$\frac{q}{4\pi\varepsilon_0 r} = \frac{Q_1 - q}{4\pi\varepsilon_0 R_1} + \frac{Q_2}{4\pi\varepsilon_0 R_2}$$
 解得
$$q = \frac{r(R_2 Q_1 + R_1 Q_2)}{R_2(R_1 + r)}$$

4、解: 设极板上分别带电荷+q和-q; 金属片与 A 板距离为 d_1 , 与 B 板距离为 d_2 ;

与
$$B$$
 极距离为 d_2 ;
金属片与 A 板间场强为 $E_1 = q/(\varepsilon_0 S)$
金属板与 B 板间场强为 $E_2 = q/(\varepsilon_0 S)$
金属片内部场强为 $E' = 0$
则两极板间的电势差为

$$\begin{split} U_A - U_B &= E_1 d_1 + E_2 d_2 \\ &= \frac{q}{\varepsilon_0 S} (d_1 + d_2) = \frac{q}{\varepsilon_0 S} (d_1 - t) \\ &= C = \frac{q}{U_A - U_B} = \frac{\varepsilon_0 S}{d_1 - t} \end{split}$$

因 C 值仅与 d、t 有关,与 d_1 、 d_2 无关,故金属片的安放位置对电容值无影响.

5、解: (1) 设导体球上带电荷 O, 则导体球的电势为

$$U = Q/(4\pi\varepsilon_0 R)$$

按孤立导体电容的定义

$$C = Q/U = 4\pi\varepsilon_0 R$$

(2) 导体球上电荷为Q时,储存的静电能

$$W = Q^2/(2C) = Q^2/(8\pi\varepsilon_0 R)$$

(3) 导体球上能储存电荷 O 时,空气中最大场强

$$E = Q/(4\pi\varepsilon_0 R^2) \le E_g$$

因此,球上能储存的最大电荷值 $Q_{M}=4\pi\varepsilon_{0}R^{2}E_{g}$

6、解: (1) 串联时两电容器的电荷相等

$$W_1 = Q^2 / (2C_1)$$
, $W_2 = Q^2 / (2C_2)$
 $W_1 / W_2 = C_2 / C_1 = 2 / 1 = 2$: 1

(2) 并联时两电容器两端电势差相同

$$W_1 = \frac{1}{2}C_1U^2$$
, $W_2 = \frac{1}{2}C_2U^2$

:
$$W_1/W_2 = C_1/C_2 = 1:2$$

(3) 串联时电容器系统的总电能

$$W_S = \frac{1}{2}C_S U^2 = \frac{1}{2}\frac{C_1 C_2}{C_1 + C_2} U^2$$

并联时电容器系统的总电能

$$W_P = \frac{1}{2}C_P U^2 = \frac{1}{2}(C_1 + C_2)U^2$$
两者之比
$$\frac{W_S}{W_P} = \frac{C_1 C_2}{(C_1 + C_2)^2} = \frac{C_1 C_2}{C_1^2 + 2C_1 C_2 + C_2^2}$$

$$= \frac{1}{\frac{C_1}{C_2} + 2 + \frac{C_2}{C_1}} = 2 : 9$$

7、解: 因保持与电源连接,两极板间电势差保持不变,而电容值由

$$C = \varepsilon_0 S / s \rightarrow C' = \varepsilon_0 S / (nd) = C / n$$

电容器储存的电场能量由 $W = CU^2/2 \rightarrow W' = C'U^2/2 = CU^2/(2n)$

$$\Delta W = W' - W = (U^2/2)[(C/n) - C]$$

$$= \frac{1}{2}CU^{2}[(1-n)/n] < 0$$

在两极板间距增大过程中,电容器上电荷由Q减至Q',电源作功:

$$A_1 = (Q' - Q)U = (C'U - CU)U$$

= $[(C/n) - C]U^2 = CU^2[(n-1)/n] > 0$

设在拉开极板过程中,外力作功为 A_2 ,据功能原理 $A_1 + A_2 = \Delta W$

$$\begin{split} A_2 &= \Delta W - A_1 = \frac{1}{2}CU^2[(1-n)/n] - CU^2[(1-n)/n] \\ &= \frac{1}{2}CU^2[(n-1)/n] > 0 \end{split}$$

在拉开极板过程中,外力作正功.

第十一章 稳恒磁场

选择题

1、D

2, E

3, D

4、C

5、C

6, B

9、C

10、B

11、C 16、D

15、A

22、C

20, D

21、C

7、 A 8、 C 14、 D 17、 C 18、 C 19、 B 24、 B 23, D

24, B

二、填空题

 $1 \cdot \pi R^2 c$

2, 0

$$3, \quad \frac{\mu_0 Ia}{2\pi} \ln 2$$

4、12.4 T

- 5、 $\frac{f_m}{qv\sin\alpha}$; 运动电荷速度矢量与该点磁感强度矢量所组成的平面.
- 6、 两单位矢量 \bar{j} 和 \bar{k} 之和, 即 $(\bar{j} + \bar{k})$ 的方向.

$$7, \frac{\mu_0 I}{4\pi R}$$

$$8, 0 ; -\mu_0 I$$

$$9, \ \frac{\mu_0 \omega_0 q}{2\pi}$$

参考解:由安培环路定理
$$\oint \vec{B} \cdot d\vec{l} = \int_{-\infty}^{+\infty} \vec{B} \cdot d\vec{l} = \mu_0 I$$

$$\qquad \qquad \qquad \text{to} \quad \int_{-\infty}^{+\infty} \vec{B} \cdot d\vec{l} = \frac{\mu_0 \omega_0 q}{2\pi}$$

$$\overrightarrow{m} I = \frac{q\omega_0}{2\pi}$$

故
$$\int_{0}^{+\infty} \vec{B} \cdot d\vec{l} = \frac{\mu_0 \omega_0 q}{2\pi}$$

10, $\mu_0 I$; 0 ; $2\mu_0 I$

- 11, 1:1
- $12 \cdot 3.08 \times 10^{-13} \text{ J}$

参考解:
$$qvB = m\frac{v^2}{r}$$
 $v = \frac{qBr}{m} = 1.92 \times 10^7 \text{ m/s}$

质子动能
$$E_K = \frac{1}{2}mv^2 = 3.08 \times 10^{-13} \text{ J}$$

- 13, 1:2; 1:2
- 14, 0; 0
- 15, $\frac{qR\mu_0nI}{m\sin\alpha}$
- $16 \cdot mg/(lB)$
- $17.5 \times 10^{-3} \,\mathrm{N}$
- 18 \, 0; $1.5 \times 10^{-6} \,\text{N/cm}$; $1.5 \times 10^{-6} \,\text{N/cm}$
- 19、 $I/(2\pi r)$; $\mu I/(2\pi r)$
- 20、铁磁质; 顺磁质; 抗磁质
- 21, $\mu_0 \mu_r nI$; nI

三、 计算题

1、解:如图所示,平面沿z轴正向平行移动 Δz 后,在距离电流的 R_1-R_2 区间的磁感线能穿过该平面.

$$\begin{split} R_1 &= \sqrt{\Delta z^2 + a^2} & R_2 &= \sqrt{\Delta z^2 + (a+b)^2} \\ \text{III} & \varPhi = \int \vec{B} \cdot d\vec{S} = \int B \, dS \\ &= \int_{R_1}^{R_2} \frac{\mu_0 I}{2\pi r} h \, dr = \frac{\mu_0 I h}{2\pi} \ln \frac{R_2}{R_1} \\ &= \frac{\mu_0 I h}{4\pi} \ln \frac{\Delta z^2 + (a+b)^2}{\Delta z^2 + a^2} \end{split}$$

2、解:
$$I = \frac{2\pi R\lambda\omega}{2\pi}$$

$$B = B_y = \frac{\mu_0 R^3 \lambda\omega}{2(R^2 + y^2)^{3/2}}$$

\bar{B} 的方向与y轴正向一致.

3、解:由毕奥一萨伐尔定律可得,设半径为 R_1 的载流半圆弧在O点产生的磁感强度为 B_1 ,则:

$$B_1 = \frac{\mu_0 I}{4R_1}$$

同理, $B_2 = \frac{\mu_0 I}{4R_2}$
 $\therefore R_1 > R_2$;
 $\therefore B_1 < B_2$
故磁感强度 $B = B_2 - B_1$
 $= \frac{\mu_0 I}{4R_2} - \frac{\mu_0 I}{4R_1} = \frac{\mu_0 I}{6R_2}$
可得: $R_1 = 3R_2$

4、解: 将导线分成 1、2、3、4 四部份,各部分在 O 点产生的磁感强度设为 B_1 、 B_2 、 B_3 、 B_4 . 根据 叠加原理 O 点的磁感强度为:

$$\vec{B} = \vec{B}_1 + \vec{B}_2 + \vec{B}_3 + \vec{B}_4$$

$$\vdots \quad \boxed{b} \quad \vec{B}_1 \cdot \vec{B}_4 \quad \boxed{b} \quad \vec{b} \quad \vec{b} \quad \vec{b} = \vec{B}_2 + \vec{B}_3$$

$$B_2 = \frac{1}{4} \left(\frac{\mu_0 I}{2R} \right) \quad \vec{\beta} \quad \boxed{\dot{\beta}} \quad \boxed{\dot$$

5、解: (1) AD、BC 两直线段电流在 O 点处产生的磁场:

$$B_1 = \frac{2\mu_0 I}{4\pi\sqrt{2}R/2}(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}) = \frac{\mu_0 I}{\pi R}$$

AB、CD 两圆弧段电流在 O 点处产生的磁场:

$$B_2 = \mu_0 I / (4R)$$

$$B = \frac{\mu_0 I}{R} (\frac{1}{4} + \frac{1}{\pi}) = 1.43 \times 10^{-5} \,\mathrm{T}$$
 方向垂直纸面向外.

(2) 小线圈磁力矩 $\vec{M}=\vec{p}_m \times \vec{B}$,小线圈平面垂直纸面放置受磁力矩最大 $M=I'SB=3.57\times 10^{-11}\,\mathrm{N\cdot m}$

6、解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密 度 i,

$$i = 2\pi R \sigma \omega / (2\pi) = R \sigma \omega$$

作矩形有向闭合环路如图中所示. 从电流分布的对称性分析 可知, 在 \overline{ab} 上各点 \overline{B} 的大小和方向均相同,

而且 \vec{B} 的方向平行于 \vec{ab} ,在 \vec{bc} 和 \vec{fa} 上各点 \vec{B} 的方向与线元垂直,在 \vec{de} 、 \vec{fe} 、 \vec{cd} 上各点 $\bar{B}=0$. 应用安培环路定理

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \sum I$$

可得:

$$B\overline{ab} = \mu_0 i\overline{ab}$$

$$B = \mu_0 i = \mu_0 R \sigma \omega$$

圆筒内部为均匀磁场,磁感强度的大小为 $B = \mu_0 R \sigma \omega$,方向平行于轴线朝右.

7、解: 圆电流产生的磁场:

$$B_1 = \mu_0 I_2 / (2R)$$
 \odot

长直导线电流的磁场:

$$B_2 = \mu_0 I_2 / (2\pi R)$$
 \odot

导体管电流产生的磁场:
$$B_2 = \mu_0 I_1 / [2\pi(d+R)]$$
 \otimes

圆心 O 点处的磁感强度:

$$B = B_1 + B_2 - B_3$$

$$= \frac{\mu_0}{2\pi} \cdot \frac{I_2(R+d)(1+\pi) - RI_1}{R(R+d)} \quad \odot$$

8、解:在圆柱体内部与导体中心轴线相距为r处的磁感强度的大小,由安培环路定

律可得:

$$B = \frac{\mu_0 I}{2\pi R^2} r \qquad (r \le R)$$

因而,穿过导体内画斜线部分平面的磁通 ϕ 1为

$$\Phi_1 = \int \vec{B} \cdot d\vec{S} = \int B dS = \int_0^R \frac{\mu_0 I}{2\pi R^2} r dr = \frac{\mu_0 I}{4\pi}$$

在圆形导体外,与导体中心轴线相距r处的磁感强度大小为

$$B = \frac{\mu_0 I}{2\pi r} \qquad (r > R)$$

因而,穿过导体外画斜线部分平面的磁通 ϕ ,为

$$\Phi_2 = \int \vec{B} \cdot d\vec{S} = \int_R^{2R} \frac{\mu_0 I}{2\pi r} dr = \frac{\mu_0 I}{2\pi} \ln 2$$

穿过整个矩形平面的磁通量:

$$\Phi = \Phi_1 + \Phi_2 = \frac{\mu_0 I}{4\pi} + \frac{\mu_0 I}{2\pi} \ln 2$$

9、解:经对称性分析知:无限大均匀载流平面两侧距面等远处 \vec{B} 的大小相等,方向相反, 它们都平行于载流平面且与电流方向垂直, 如图所示:

取矩形环路 abcd(oa=od, ad=oo'=cd=h,

ab、cd 平行于平面)

由安培环路定理:

10、解:(1)围绕轴线取同心圆为环路 L,取其绕向与电流成右手螺旋关系,根据安培环路定理,

有
$$\oint \vec{B} \cdot d\vec{l} = B \cdot 2\pi r = \mu_0 \sum I$$

在导线内
$$r > R$$
, $\Sigma I = \frac{I}{\pi R^2} \pi r^2 = \frac{Ir^2}{R^2}$,因而

$$B = \frac{\mu_0 Ir}{2\pi R^2}$$

在导线外r < R, $\Sigma I = I$, 因而

$$B = \frac{\mu_0 I}{2\pi r}$$

(2) 在导线表面磁感强度连续,由 I=50A, $R = \sqrt{S/\pi} = 1.78 \times 10^{-3} \, m$ 得:

$$B_0 = \frac{\mu_0 I}{2\pi R} = 5.6 \times 10^{-3} T$$

11、解:离圆心距离 r 处取 dr 宽的半圆导线,其电流为 nIdr,在 O 点产生的磁场

$$dB = \mu_0 nI dr/(4r)$$

$$\therefore B = \frac{\mu_0 nI}{4} \int_{R}^{2R} \frac{1}{r} dr = \frac{\mu_0 nI}{4} \ln 2$$
方向垂直纸面向里.

12、解: 电流密度 $J = \frac{I}{\pi (R^2 - a^2)}$

P 点场强为充满圆柱并与 I 同向的电流 I_{10} ,及充满孔并与 I 反向的电流 I_{20} 的场叠加而成.取垂直于圆柱轴并包含 P 点的平面,令柱轴与孔轴所在处分别为 O 与 O',P 点与两轴的距离分别为 r_1 与 r_2 ,并建立坐标如图.利用安培环路定理可知 P 点场强为与 I 同向的 I_1 和与 I 反向的 I_2 的场 的叠加,且有

$$B_1 = \frac{\mu_0 I_1}{2\pi r_1} = \frac{\mu_0}{2} r_1 J$$

$$B_2 = \frac{\mu_0 I_2}{2\pi r_2} = \frac{\mu_0}{2} r_2 J$$

 $\bar{B}_1, \ \bar{B}_2$ 方向如图所示,

P 点总场:

$$\begin{split} \vec{B} &= \vec{B}_1 + \vec{B}_2 \\ B_x &= B_2 \sin \theta_2 - B_1 \sin \theta_1 = \frac{\mu_0}{2} J(r_2 \sin \theta_2 - r_1 \sin \theta_1) = 0 \\ B_y &= B_1 \cos \theta_1 + B_2 \cos \theta_2 = \frac{\mu_0}{2} J(r_1 \cos \theta_1 + r_2 \cos \theta_2) = \frac{\mu_0}{2} Jb \\ B &= B_y = \frac{\mu_0}{2} Jb = \frac{\mu_0 bI}{2\pi (R^2 - a^2)} \end{split}$$

 $B 与 r_1$, r_2 无关, 可知圆柱孔内为匀强场, 方向沿y 轴正向.

13、解:取 x 轴向右,那么有

$$\begin{split} B_1 &= \frac{\mu_0 R_1^2 I_1}{2[R_1^2 + (b+x)^2]^{3/2}} \quad \text{沿 x 轴正方向} \\ B_2 &= \frac{\mu_0 R_2^2 I_2}{2[R_2^2 + (b-x)^2]^{3/2}} \quad \text{沿 x 轴负方向} \\ B &= B_1 - B_2 \\ &= \frac{\mu_0}{2} \big[\frac{\mu_0 R_1^2 I_1}{[R_1^2 + (b+x)^2]^{3/2}} - \frac{\mu_0 R_2^2 I_2}{[R_2^2 + (b-x)^2]^{3/2}} \big] \end{split}$$

若 B > 0,则 \bar{B} 方向为沿 x 轴正方向.

若 B < 0,则 \bar{B} 的方向为沿 x 轴负方向.

14、解:导体柱中电流密度
$$J = \frac{I}{\pi r^2 - \pi (r/4)^2} = \frac{16I}{15\pi r^2}$$

用补偿法来求 P 处的磁感强度. 用同样的电流密度把空洞补上, 由安培环路定律, 这时圆柱电流在 P 处产生的磁感强度为:

$$B_1 = \frac{\mu_0 Jr}{6}$$
, 方向为 \otimes

再考虑空洞区流过同样电流密度的反向电流,它在P处产生的磁感强度为

$$B_2 = \frac{\mu_0 Jr}{88}$$
, 方向为①

∴ P 处磁感强度:

$$B = B_1 - B_2 = 41 \mu_0 Jr / 264$$
 方向为8

电子受到的洛伦兹力为:

埃
$$\vec{f}_m = q\vec{v} \times \vec{B} = -e\vec{v} \times \vec{B}$$
 $f_m = evB = \frac{41}{264} \mu_0 Jrev = \frac{82}{495} \frac{\mu_0 Iev}{\pi r}$ 方向向左

15、解: (1) 对 $\theta \sim \theta + d\theta$ 弧元, $dq = \lambda a d\theta$, 旋转形成圆电流

$$dI = \frac{\omega}{2\pi} dq = \frac{\omega \lambda}{2\pi} a d\theta$$

它在O点的磁感强度dB为:

$$dB = \frac{\mu_0 a^2 \sin^2 \theta}{2a^3} \frac{\omega \lambda}{2\pi} a d\theta = \frac{\mu_0 \omega \lambda}{4\pi} \sin^2 \theta d\theta$$

$$B = \int dB = \frac{\mu_0 \omega \lambda}{4\pi} \int_0^{\pi} \sin^2 \theta \, d\theta = \frac{\mu_0 \omega \lambda}{8} = \frac{\mu_0 \omega q}{8\pi a}$$

 \vec{B} 的方向向上.

(2)
$$d p_m = \pi a^2 \sin^2 \theta (\omega \lambda / 2\pi) a d\theta$$

= $\frac{1}{2} \omega \lambda a^3 \sin^2 \theta d\theta$

$$\begin{split} p_{m} &= \int \mathrm{d} p_{m} = \int\limits_{0}^{\pi} \frac{1}{2} \omega \lambda a^{3} \sin^{2} \theta \, \mathrm{d} \theta \\ &= \pi \omega \lambda a^{3} / 4 = \omega q a^{2} / 4 \qquad \quad \bar{p}_{m} \, \text{的方向向上}. \end{split}$$

第十二章 电磁感应

一、 选择题

1、B	2, D	3、C	4、B	5 A
6、C	7、D	8, D	9、C	10, D
11、A	12、E	13、B	14、C	15、C
16、C	17、C	18、C	19、D	20、B
21、C	22, A	23, D	24, D	25、B
26, B	27、B			

二、 填空题

$$2, 5.0 \times 10^{-4}$$
C

$$3 \cdot -\mu_0 n I_m \pi a^2 \omega \cos \omega t$$

$$4 \cdot 3.14 \times 10^{-6} \,\mathrm{C}$$

$$7. -\frac{\mu_0 \pi r^2}{2R} I_0 \omega \cos \omega t$$

$$8 - \mu_0 n S \omega I_m \cos \omega t$$

9
$$\cdot$$
 0.40 V $-0.5 \text{ m}^2/\text{s}$

11,
$$\frac{\mu_0 Ivl}{2\pi} (\frac{1}{r_1} - \frac{1}{r_2})$$

$$\begin{array}{ccc}
12 & \pi B n R^2 \\
O
\end{array}$$

$$14, l^2 \omega B/8$$

18、Oa 段电动势方向由 a 指向 O.

$$-\frac{1}{2}B\omega L^{2}$$

$$0$$

$$-\frac{1}{2}\omega Bd(2L-d)$$

19、
$$\frac{5}{2}B\omega R^2$$

O点

21、答案见图

$$22, \ \frac{\mu_0 b}{2\pi} \ln \frac{a+d}{d}$$

23,
$$\mu nI$$

 $\mu n^2 I^2 / 2$

24.
$$\mu_0 I^2 / (8\pi^2 a^2)$$

25.
$$\oint_{S} \vec{D} \cdot d\vec{S} = \int_{V} \rho \, dV$$

$$\oint_{L} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0$$

$$\oint_{L} \vec{H} \cdot d\vec{l} = \int_{S} (\vec{J} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S}$$

- 26、② ③

27、
$$\iint_{S} \frac{\partial}{\partial t} \vec{D} \cdot d\vec{S} \quad \vec{g} \quad d\Phi_{D} / dt$$
$$-\iint_{S} \frac{\partial}{\partial t} \vec{B} \cdot d\vec{S} \quad \vec{g} \quad -d\Phi_{m} / dt$$

28, 1

29、
$$\frac{\pi r^2 \varepsilon_0 E_0}{RC}$$
e $^{-t/RC}$ 相反

30.
$$\varepsilon_0 \pi R^2 dE/dt$$

31、见图
$$\bar{E}$$

$$\begin{array}{c|c}
 & \downarrow i \\
 & \overline{H} \otimes P \\
 & \downarrow \overline{E} \\
 & \downarrow \\$$

32、垂直纸面向里 垂直 OP 连线向下

三、 计算题

为计算简单,可引入一条辅助线 MN,构成闭合回路 MeNM,闭合回路总电动势

$$\varepsilon_{\mathbb{A}} = \varepsilon_{MeN} + \varepsilon_{NM} = 0$$

$$\varepsilon_{MeN} = -\varepsilon_{NM} = \varepsilon_{MN}$$

$$\varepsilon_{MN} = \int_{MN} (\vec{\mathbf{v}} \times \vec{B}) \cdot d\vec{l} = \int_{a-b}^{a+b} -\mathbf{v} \frac{\mu_0 I}{2\pi x} dx = -\frac{\mu_0 I \upsilon}{2\pi} \ln \frac{a+b}{a-b}$$

负号表示 ε_{MN} 的方向与x轴相反.

$$arepsilon_{\mathit{MeN}} = -rac{\mu_0 \mathit{IV}}{2\pi} \ln rac{a+b}{a-b}$$
 方向 $\mathit{N} {
ightarrow} \mathit{M}$

$$U_{M} - U_{N} = -\varepsilon_{MN} = \frac{\mu_{0} I v}{2\pi} \ln \frac{a+b}{a-b}$$

2、解: (1) 载流为 I 的无限长直导线在与其相距为 r 处产生的磁感强度为:

$$B = \mu_0 I / (2\pi r)$$

以顺时针绕向为线圈回路的正方向,

与线圈相距较远的导线在线圈中产生的磁通量为:

$$\Phi_1 = \int_{2d}^{3d} d \cdot \frac{\mu_0 I}{2\pi r} dr = \frac{\mu_0 I d}{2\pi} \ln \frac{3}{2}$$

与线圈相距较近的导线对线圈的磁通量为:

$$\Phi_2 = \int_{1}^{2d} -d \cdot \frac{\mu_0 I}{2\pi r} dr = -\frac{\mu_0 I d}{2\pi} \ln 2$$

总磁通量

$$\boldsymbol{\Phi} = \boldsymbol{\Phi}_1 + \boldsymbol{\Phi}_2 = -\frac{\mu_0 Id}{2\pi} \ln \frac{4}{3}$$

感应电动势为:
$$\varepsilon = -\frac{\mathrm{d}\,\boldsymbol{\Phi}}{\mathrm{d}\,t} = \frac{\mu_0 d}{2\pi} (\ln\frac{4}{3}) \frac{\mathrm{d}\,I}{\mathrm{d}\,t} = \frac{\mu_0 d}{2\pi} \alpha \ln\frac{4}{3}$$

由 $\varepsilon>0$ 和回路正方向为顺时针,所以 ε 的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向.

3、解:如图。

$$S = \frac{1}{2}a^2 \sqrt{3}/2 = \sqrt{3}a^2/4$$

$$\Phi = BS\cos\omega t, \quad \omega = 2\pi n/60$$

$$\therefore \quad \varepsilon_{OO'} = -(d\Phi/dt) = BS\omega\sin\omega t$$

$$= (2\pi BSn/60)\sin(2\pi nt/60)$$

$$= (\sqrt{3}\pi na^2 B/120)\sin(2\pi nt/60)$$

4、解:建立坐标如图所示,则直角三角形线框斜边方程为 y = -2x + 0.2 (SI)

在直角三角形线框所围平面上的磁通量为

$$\Phi = \int_{0}^{b} \frac{\mu_{0} I y \, dx}{2\pi (x + 0.05)} = \frac{\mu_{0} I}{2\pi} \int_{0}^{b} \left[\frac{-2x + 0.2}{x + 0.05} \right] dx$$

$$= -\frac{\mu_{0} I b}{\pi} + \frac{0.15 \mu_{0} I}{\pi} \ln \frac{b + 0.05}{0.05} = 2.59 \times 10^{-8} I(SI)$$

- 三角形线框中的感应电动势大小为 $\varepsilon = -d\Phi/dt = -2.59 \times 10^{-8} (dI/dt) = -5.18 \times 10^{-8} V$ 其方向为逆时针绕行方向.
- 5、解:取回路正向顺时针,则

$$\Phi = \int B2\pi r \, \mathrm{d}r = \int_0^a B_0 2\pi r^2 \sin \omega t \, \mathrm{d}r
= (2\pi/3)B_0 a^3 \sin \omega t
\varepsilon_i = -\mathrm{d}\Phi/\mathrm{d}t = -(2\pi/3)B_0 a^3 \omega \cos \omega t
当 \varepsilon_i > 0 时,电动势沿顺时针方向.$$

6、解: 两个载同向电流的长直导线在如图坐标 x 处所产生的

磁场为
$$B = \frac{\mu_0}{2\pi} (\frac{1}{x} + \frac{1}{x - r_1 + r_2})$$

选顺时针方向为线框回路正方向,则

$$\Phi = \int BdS = \frac{\mu_0 Ia}{2\pi} \left(\int_{r_1}^{r_1+b} \frac{\mathrm{d}x}{x} + \int_{r_1}^{r_1+b} \frac{\mathrm{d}x}{x - r_1 + r_2} \right)$$

$$= \frac{\mu_0 Ia}{2\pi} \ln \left(\frac{r_1 + b}{r_1} \cdot \frac{r_2 + b}{r_2} \right)$$

$$\therefore \quad \varepsilon = -\frac{\mathrm{d}\Phi}{1 - \epsilon} = -\frac{\mu_0 a}{2\pi} \ln \left[\frac{(r_1 + b)(r_2 + b)}{r_2} \right]$$

$$\therefore \quad \varepsilon = -\frac{\mathrm{d}\,\Phi}{\mathrm{d}\,t} = -\frac{\mu_0 a}{2\pi} \ln\left[\frac{(r_1 + b)(r_2 + b)}{r_1 r_2}\right] \frac{\mathrm{d}I}{\mathrm{d}t}$$
$$= -\frac{\mu_0 I_0 a \omega}{2\pi} \ln\left[\frac{(r_1 + b)(r_2 + b)}{r_1 r_2}\right] \cos \omega t$$

7、解:长直带电线运动相当于电流 $I = v(t) \cdot \lambda$. 正方形线圈内的磁通量可如下求出

$$d\Phi = \frac{\mu_0}{2\pi} \cdot \frac{I}{a+x} a dx$$

$$\Phi = \frac{\mu_0}{2\pi} I a \int_{a}^{a} \frac{dx}{a+x} = \frac{\mu_0}{2\pi} I a \cdot \ln 2$$

$$\left| \varepsilon_{i} \right| = \left| -\frac{\mathrm{d} \, \boldsymbol{\Phi}}{\mathrm{d} \, t} \right| = \frac{\mu_{0} a}{2\pi} \left| \frac{\mathrm{d} \, I}{\mathrm{d} \, t} \right| \ln 2 = \frac{\mu_{0}}{2\pi} \, \lambda a \left| \frac{\mathrm{d} \, \upsilon(t)}{\mathrm{d} \, t} \right| \ln 2$$

$$\left| i(t) \right| = \frac{\left| \varepsilon_{i} \right|}{R} = \frac{\mu_{0}}{2\pi R} \, \lambda a \left| \frac{\mathrm{d} \, \upsilon(t)}{\mathrm{d} \, t} \right| \ln 2$$

8、解:建立坐标系,长直导线为 y 轴, BC 边为 x 轴,原点 在长直导线上,则斜边的方程为

$$y = (bx/a) - br/a$$

式中r是t时刻B点与长直导线的距离。

三角形中磁通量

$$\begin{split} \Phi &= \frac{\mu_0 I}{2\pi} \int\limits_r^{a+r} \frac{y}{x} \mathrm{d}\, x = \frac{\mu_0 I}{2\pi} \int\limits_r^{a+r} (\frac{b}{a} - \frac{br}{ax}) \mathrm{d}\, x = \frac{\mu_0 I}{2\pi} (b - \frac{br}{a} \ln \frac{a+r}{r}) \\ \mathcal{E} &= -\frac{\mathrm{d}\, \Phi}{\mathrm{d}\, t} = \frac{\mu_0 I b}{2\pi a} (\ln \frac{a+r}{r} - \frac{a}{a+r}) \frac{\mathrm{d}\, r}{\mathrm{d}\, t} \\ \stackrel{\text{\tiny \pm}}{=} t = d \ \text{\tiny \mp}, \quad \mathcal{E} &= \frac{\mu_0 I b}{2\pi a} (\ln \frac{a+d}{d} - \frac{a}{a+d}) \text{\tiny V} \quad \text{ } \vec{\mathcal{T}} \ \text{\tiny $\bar{\Pi}$} \colon ACBA(\ \mathbb{P}) \ \text{\tiny \bar{M}} \ \text{\tiny $\bar{\Pi}$} \ \text{\tiny \bar{T}} \ \text{\tiny $\bar{$$

10、解:线框内既有感生又有动生电动势.设顺时针绕向为

 ε_i 的

正方向. 由 $\varepsilon_i = -d\Phi/dt$ 出发, 先求任意时刻 t

再求 $\Phi(t)$ 对t的导数:

$$\frac{\mathrm{d}\,\Phi(t)}{\mathrm{d}\,t} = \frac{\mu_0}{2\pi} (\ln\frac{a+b}{b}) (\frac{\mathrm{d}\,I}{\mathrm{d}\,t} x + I \frac{\mathrm{d}\,x}{\mathrm{d}\,t})$$
$$= \frac{\mu_0}{2\pi} I_0 \mathrm{e}^{-\lambda t} v (1-\lambda t) \ln\frac{a+b}{a} \qquad (x = vt)$$

$$\begin{split} & : \quad \varepsilon_i = -\frac{\mathrm{d}\, \varPhi}{\mathrm{d}\, t} = \frac{\mu_0}{2\pi} \upsilon I_0 \mathrm{e}^{-\lambda t} (\lambda t - 1) \ln \frac{a + b}{a} \\ & \quad \varepsilon_i \, \bar{\jmath} \, \mathrm{fi} \colon \; \lambda t < 1 \; \mathrm{fi} \, , \; \, \dot{\varPsi} \, \mathrm{fif} \, ; \; \, \lambda t > 1 \; \mathrm{fi} \, , \; \, \mathrm{Mpt} \, \mathrm{fi} \, . \end{split}$$

11、解:取顺时针方向回路正向.

$$\varepsilon = vB_1 l - vB_2 l$$

$$B_1 = \frac{\mu_0 I}{2\pi} \left(\frac{1}{a-b} - \frac{1}{a+b} \right)$$

$$B_2 = \frac{\mu_0 I}{2\pi} \left(\frac{1}{a+b} - \frac{1}{a-b} \right) = -B_1$$

$$\varepsilon = 2vB_1 l = \frac{2\mu_0 I b v l}{\pi (a^2 - b^2)}$$

12、解:取顺时针方向回路正向.设动生电动势和感生电动势分别用 ε_1 和 ε_2 表示, 则总电动势 ε

$$\varepsilon = \varepsilon_{1} + \varepsilon_{2}$$

$$\varepsilon_{1} = vB_{1}l - vB_{2}l = vl(\frac{\mu_{0}I}{2\pi a} - \frac{\mu_{0}I}{2\pi(a+b)}) = \frac{\mu_{0}Ibvl}{2\pi a(a+b)}$$

$$\varepsilon_{2} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} = -bl\frac{\partial B}{\partial t}$$

$$\varepsilon = [\frac{\mu_{0}Iv}{2\pi a(a+b)} - \frac{\partial B}{\partial t}]bl$$

动生电动势: $d\varepsilon = (\bar{\mathbf{v}} \times \bar{B}) \cdot d\bar{r}$ 13、解:

大小:
$$\varepsilon = \int_{R_1}^{R_2} \omega r B \, \mathrm{d} \, r = \frac{1}{2} \omega B (R_2^2 - R_1^2)$$
 指向: $C \longrightarrow A$

14 \Leftrightarrow $v_{\perp} = v \sin \theta$ $v_{\parallel} = v \cos \theta$

$$\varepsilon_{i} = \int d\varepsilon_{i} = -\int_{x_{i}}^{x_{2}} \frac{\mu_{0}I}{2\pi x} \upsilon \sin\theta \, dx \qquad (\varepsilon_{i} 指向以A到B为$$

正)

:.

$$\varepsilon_{i} = \int d\varepsilon_{i} = -\int_{x_{1}}^{2} \frac{\mu_{0}I}{2\pi x} \upsilon \sin\theta dx \qquad (\varepsilon_{i} 指向以 A 到 B 为$$
式中:
$$x_{2} = a + l + vt \cos\theta \qquad x_{1} = a + vt \cos\theta$$

$$\varepsilon_{i} = -\frac{\mu_{0}I}{2\pi} \upsilon \sin\theta \ln\frac{a + l + vt \cos\theta}{a + vt \cos\theta}$$
A 端的电势高.

15.
$$M$$
: (1) $U = \frac{q}{C} = \frac{1}{C} \int_{0}^{t} i \, dt = -\frac{1}{C} \times 0.2 e^{-t} \Big|_{0}^{t} = \frac{0.2}{C} (1 - e^{-t})$

- (2) 由全电流的连续性,得 $I_d = i = 0.2e^{-t}$
- 16、解:由静电学计算: \bar{r}_0 代表r方向单位矢量

$$\vec{E} = \frac{q(t)}{4\pi\varepsilon_0\varepsilon_r r^2} \vec{r}_0$$

$$U = \frac{q(t)}{4\pi\varepsilon_0\varepsilon_r} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{q(t)(R_2 - R_1)}{4\pi\varepsilon_0\varepsilon_r R_1 R_2}$$

$$\vec{E} = \frac{UR_1R_2}{r^2(R_2 - R_1)} \vec{r}_0 = \frac{R_1R_2}{r^2(R_2 - R_1)} U_0 \sin \omega t \cdot \vec{r}_0$$

$$\vec{D} = \frac{\partial \vec{D}}{\partial t} = \varepsilon_0\varepsilon_r \frac{\partial \vec{E}}{\partial t} = \frac{\varepsilon_0\varepsilon_r R_1R_2}{r^2(R_2 - R_1)} U_0 \omega \cos \omega t \cdot \vec{r}_0$$

$$\vec{D} = \frac{\partial \vec{D}}{\partial t} = \varepsilon_0\varepsilon_r \frac{\partial \vec{E}}{\partial t} = \frac{\varepsilon_0\varepsilon_r R_1R_2}{r^2(R_2 - R_1)} U_0 \omega \cos \omega t \cdot \vec{r}_0$$

$$\vec{D} = \frac{\vec{D}}{\partial t} \cdot \vec{D} \cdot \vec{D$$

17、解:设坐标如图所示, $\phi = \omega t$. t 时刻点电荷 q 在圆心处产生的电位移为

$$\begin{split} \vec{D} &= \frac{q}{4\pi R^2} (-\vec{r_0}) \\ &= -\frac{q}{4\pi R^2} \left(\cos\phi \,\vec{i} \, + \sin\phi \,\vec{j}\right) \\ \therefore \quad \vec{D} &= -\frac{q}{4\pi R^2} \left(\cos\omega t \,\vec{i} \, + \sin\omega t \,\vec{j}\right) \\ \mathbb{B}$$
心处的位移电流密度为

$$\vec{J} = \partial \vec{D} / \partial t = \frac{q\omega}{4\pi R^2} (\sin \omega t \vec{i} - \cos \omega t \vec{j})$$

第十三章 波动光学

一、选择题

1. A	2, B	3, B	4、A	5, B
6. D	7、C	8, B	9、B	10、B
11、A	12、A	13、B	14、C	15、B
16, D	17、D	18、D	19、C	20, B
21、C	22, B	23, D	24, B	25, D
26, B	27、B	28, B	29、B	30、A
31、C				

二、填空题

1,
$$2\pi \left[d\sin\theta + (n_1 - n_2)e\right]/\lambda$$

$$3, \ \frac{9\lambda}{4n_2}$$

$$4, \frac{3\lambda}{4n_2}$$

$$5, \frac{3\lambda}{2}$$

$$6 \lambda / (2L)$$

$$7, \quad 2d/\lambda$$

8. 0.644mm

10、4

- 12、 2π 暗
- 13、 0.36 mm
- 14、一 三
- 15, 5
- 16、 自然光或(和)圆偏振光 线偏振光(完全偏振光) 部分偏振光或椭圆偏振光
- 17、 2 1/4
- 18、 平行或接近平行
- 19、 54.7°
- 20、 波动 横

三、计算题

1、解: 已知:
$$d=0.2 \text{ mm}$$
, $D=1 \text{ m}$, $l=20 \text{ mm}$
依公式: $S = \frac{d}{D}l = k\lambda$
 $\therefore k\lambda = \frac{dl}{D} = 4 \times 10^{-3} \text{ mm} = 4000 \text{ nm}$
故当 $k=10$ $\lambda_1 = 400 \text{ nm}$
 $k=9$ $\lambda_2 = 444.4 \text{ nm}$
 $k=8$ $\lambda_3 = 500 \text{ nm}$
 $k=7$ $\lambda_4 = 571.4 \text{ nm}$
 $k=6$ $\lambda_5 = 666.7 \text{ nm}$
这五种波长的光在所给观察点最大限度地加强.

- 2、解: (1) $x = 2kD\lambda/d$ $d = 2kD\lambda/\Delta x$ 此处 k = 5 $\therefore d = 10 D\lambda/\Delta x = 0.910 \text{ mm}$
 - (2) 共经过 20 个条纹间距,即经过的距离 $l=20~D\lambda/d=24~{
 m mm}$
 - (3) 不变

- 3、解: 原来, $\delta = r_2 r_1 = 0$ 覆盖玻璃后, $\delta = (r_2 + n_2 d - d) - (r_1 + n_1 d - d) = 5\lambda$ $\therefore (n_2 - n_1) d = 5\lambda$ $d = \frac{5\lambda}{n_2 - n_1} = 8.0 \times 10^{-6} \text{ m}$
- 4、解: (1) 如图,设 P_0 为零级明纹中心 则 $r_2 r_1 \approx d \overline{P_0 O} / D$ ($l_2 + r_2$) $(l_1 + r_1) = 0$ $\therefore r_2 - r_1 = l_1 - l_2 = 3\lambda$ $\therefore \overline{P_0 O} = D(r_2 - r_1) / d = 3D\lambda / d$ (2) 在屏上距 O 点为 x 处,光程差

在此处令 k=0, 即为(1)的结果. 相邻明条纹间距

$$\Delta x = x_{k+1} - x_k = D\lambda/d$$

- 5、解:由公式 $x=kD\lambda/a$ 可知波长范围为 $\Delta\lambda$ 时,明纹彩色宽度为 $\Delta x_k=kD\,\Delta\lambda/a$ 由 k=1 可得,第一级明纹彩色带宽度为 $\Delta x_1=500\times(760-400)\times10^{-6}/0.25=0.72$ mm k=5 可得,第五级明纹彩色带的宽度为 $\Delta x_5=5$ $\Delta x_1=3.6$ mm
- 6、解:若光在反射中增强,则其波长应满足条件 $2ne+rac{1}{2}\lambda=k\lambda$ (k=1、2、3.....) $\mathbb{P}\,\lambda=rac{4ne}{2k-1}$ 在可见光范围内,有 $k=2\;,\;\;\lambda_2=rac{4ne}{2k-1}=6739\;\;\mathrm{\AA}$

7、解: (1) 由光栅衍射主极大公式得

$$(a+b)\sin 30^{\circ} = 3\lambda_{1}$$

$$a+b = \frac{3\lambda_{1}}{\sin 30^{\circ}} = 3.36 \times 10^{-4} \text{ cm}$$

(2)
$$(a+b)\sin 30^{\circ} = 4\lambda_2$$

 $\lambda_2 = (a+b)\sin 30^{\circ} / 4 = 420 \text{ nm}$

8、解: (1) 由题意, λ_1 的 k 级与 λ_2 的(k+1)级谱线相重合, 所以

$$d\sin\varphi_1=k\lambda_1$$
, $d\sin\varphi_1=(k+1)\lambda_2$
或 $k\lambda_1=(k+1)\lambda_2$
 $k=\frac{\lambda_2}{\lambda_1-\lambda_2}=2$

(2) 因x/f很小, tg $\varphi_1 \approx \sin \varphi_1 \approx x/f$

$$\therefore d = k\lambda_1 f / x = 1.2 \times 10^{-3} \text{ cm}$$

9、解: (1) $a \sin \varphi = k\lambda$ $tg \varphi = x/f$

当 x << f时, $\operatorname{tg} \varphi \approx \sin \varphi \approx \varphi$, $ax/f = k\lambda$,

取
$$k=1$$
 有 $x=fl/a=0.03$ m

∴中央明纹宽度为 Δx = 2x= 0.06 m

(2) $(a + b) \sin \varphi = k'\lambda$

$$k' = (a+b) x / (f \lambda) = 2.5$$

取 k'=2, 共有 k'=0, ±1, ±2 等 5 个主极大

10、解: (1) 由单缝衍射暗纹公式得

$$a\sin\theta_1=1\lambda_1$$
 $a\sin\theta_2=2\lambda_2$ 由题意可知 $\theta_1=\theta_2$, $\sin\theta_1=\sin\theta_2$ 代入上式可得 $\lambda_1=2\lambda_2$

(2)
$$a \sin \theta_1 = k_1 \lambda_1 = 2k_1 \lambda_2$$
 $(k_1 = 1, 2, \dots)$
 $\sin \theta_1 = 2k_1 \lambda_2 / a$
 $a \sin \theta_2 = k_2 \lambda_2$ $(k_2 = 1, 2, \dots)$
 $\sin \theta_2 = k_2 \lambda_2 / a$

若 $k_2 = 2k_1$,则 $\theta_1 = \theta_2$,即 λ_1 的任一 k_1 级极小都有 λ_2 的 $2k_1$ 级极小与之重合.

11、解: 由光栅公式 $(a+b)\sin\varphi = k\lambda$

$$k = 1$$
, $\phi = 30^{\circ}$, $\sin \varphi_1 = 1/2$

$$\lambda = (a+b)\sin\varphi_1/k = 625 \text{ nm}$$

若 k=2,则 $\sin \varphi_2=2\lambda/(a+b)=1$, $\varphi_2=90^\circ$,实际观察不到第二级谱线.

12、解: 令第三级光谱中 λ =400 nm 的光与第二级光谱中波长为 λ ′的光对应的衍射角都为 θ ,则 $d\sin\theta=3\lambda$, $d\sin\theta=2\lambda'$

$$\lambda' = 2(d\sin\theta/) = \frac{3}{2}\lambda = 600\text{nm}$$

- ∴第二级光谱被重叠的波长范围是 600 nm----760 nm
- 13、解: 由光栅衍射主极大公式得

$$d \sin \varphi_1 = k_1 \lambda_1$$

$$d \sin \varphi_2 = k_2 \lambda_2$$

$$\frac{\sin \varphi_1}{\sin \varphi_2} = \frac{k_1 \lambda_1}{k_2 \lambda_2} = \frac{k_1 \times 440}{k_2 \times 660} = \frac{2k_1}{3k_2}$$

当两谱线重合时有 $\varphi_1 = \varphi_2$

$$\mathbb{EP} \qquad \frac{k_1}{k_2} = \frac{3}{2} = \frac{6}{4} = \frac{9}{6} \qquad \dots \dots$$

两谱线第二次重合即是

$$\frac{k_1}{k_2} = \frac{6}{4}$$
, $k_1 = 6$, $k_2 = 4$

由光栅公式可知 $d \sin 60^\circ = 6\lambda_1$

$$d = \frac{6\lambda_1}{\sin 60^{\circ}} = 3.05 \times 10^{-3} \,\mathrm{mm}$$

14、解: (1) $(a+b)\sin\varphi = 3\lambda$

$$a + b = 3\lambda / \sin \varphi$$
, $\varphi = 60^{\circ}$

$$a + b = 2\lambda' / \sin \varphi'$$
, $\varphi' = 30^\circ$

$$3\lambda / \sin \varphi = 2\lambda' / \sin \varphi'$$

 $\lambda' = 510.3 \text{ nm}$

(2)
$$(a+b) = 3\lambda / \sin \varphi = 2041.4 \text{ nm}$$

$$\varphi_2' = \sin^{-1}(2 \times 400 / 2041.4)$$
 ($\lambda = 400$ nm)

$$\varphi_2'' = \sin^{-1}(2 \times 760 / 2041.4)$$
 ($\lambda = 760$ nm)

白光第二级光谱的张角

$$\Delta \varphi = \varphi_2'' - \varphi_2' = 25^\circ$$

15、解: (1) 连续穿过三个偏振片之后的光强为

$$I=0.5I_0\cos^2\alpha\cos^2(0.5\pi-\alpha)$$
$$=I_0\sin^2(2\alpha)/8$$

(2) 画出曲线

- 16、解:设入射光中自然光的强度为 I_0 ,则总的入射光强为 $2I_0$.
 - (1) 第一次最后出射光强

$$I_2 = (0.5I_0 + I_0\cos^2 45^\circ)\cos^2 30^\circ$$

第二次出射光强

$$I_2' = (0.5 I_0 + I_0 \cos^2 30^\circ) \cos^2 \theta$$

由
$$I_2=3I_2'$$
 /4 ,得 $\cos^2\theta=4/5$, $\theta=26.6^\circ$

(2) 第一次穿过 P_1 的光强

$$I_1 = 0.5I_0 + I_0 \cos^2 45^\circ = I_0$$

 $I_1 / (2 I_0) = 1 / 2$ \text{ \text{\$\text{!}}}

第二次相应有
$$I'_1 = (0.5I_0) + I_0 \cos^2 30^\circ = 5I_0 / 4$$
,

$$I_1'$$
 /(2 I_0)=5/8

(3) 第一次,
$$I_2/2I_0=I_1\cos^2 30^\circ/(2I_0)=3/8$$

第二次,
$$I_2'/2I_0 = I_1'\cos^2\theta/(2I_0) = 1/2$$

17、解: (1) 透过 P_1 的光强 $I_1 = I_0/2$

设 P_2 与 P_1 的偏振化方向之间的夹角为 θ ,则透过 P_2 后的光强为

$$I_2 = I_1 \cos^2 \theta = (I_0 \cos^2 \theta) / 2$$

透过 P_3 后的光强为

$$I_3 = I_2 \cos^2\left(\frac{1}{2}\pi - \theta\right) = \frac{1}{2} \left(I_0 \cos^2\theta \sin^2\theta\right) = \left(I_0 \sin^22\theta\right)/8$$

由题意可知 $I_3=I_0/8$,则 $\theta=45^\circ$.

(2) 转动 P_2 ,若使 $I_3 = I_0 / 16$,则 P_1 与 P_2 偏振化方向的夹角 $\theta = 22.5^\circ$ P_2 转过的角度为(45°-22.5°)=22.5° .

18、解: (1) 据布儒斯特定律

$$tgi = (n_2 / n_1) = 1.50 / 1.33$$

 $i = 48.44^{\circ} (= 48^{\circ} 26')$

(2) 令介质 II 中的折射角为 r,则 $r = 0.5\pi - i = 41.56$ ° 此 r 在数值上等于在 II、III 界面上的入射角。

若 II 、III界面上的反射光是线偏振光,则必满足布儒斯特定律

$$tg i_0 = n_3 / n_2 = 1 / 1.5$$

 $i_0 = 33.69^{\circ}$

因为 $r\neq i_0$,故 II、III界面上的反射光不是线偏振光.

第十四章 狭义相对论

选择题

8. D

9. D

二、 填空题

2.
$$x^2 + y^2 + z^2 = c^2 t^2$$

 $x'^2 + y'^2 + z'^2 = c^2 t'^2$

3.
$$0.075 \text{ m}^3$$

4.
$$8.89 \times 10^{-8}$$

5.
$$\Delta x/v \\ (\Delta x/v)\sqrt{1-(v/c)^2}$$

6.
$$1.49 \times 10^6$$

7.
$$v = \sqrt{3}c/2$$
$$v = \sqrt{3}c/2$$

8.
$$9 \times 10^{16} \text{ J}$$

 $1.5 \times 10^{17} \text{ J}$

$$9. m_0 c^2 (n-1)$$

10.
$$c\sqrt{1-(l/l_0)^2}$$

$$m_0c^2(\frac{l_0-l}{l})$$

11.
$$5.8 \times 10^{-13}$$

 8.04×10^{-2}

三、计算题

1. 解:设K'相对于K运动的速度为v沿x(x')轴方向,则根据洛仑兹变换公式,有

$$t' = \frac{t - vx/c^{2}}{\sqrt{1 - (v/c)^{2}}}, \quad x' = \frac{x - vt}{\sqrt{1 - (v/c)^{2}}}$$

$$t'_{1} = \frac{t_{1} - vx_{1}/c^{2}}{\sqrt{1 - (v/c)^{2}}}, \quad t'_{2} = \frac{t_{2} - vx_{2}/c^{2}}{\sqrt{1 - (v/c)^{2}}}$$
因两个事件在 K 系中同一点发生, $x_{2} = x_{1}$,则
$$t'_{2} - t'_{1} = \frac{t_{2} - t_{1}}{\sqrt{1 - (v/c)^{2}}}$$
解得 $v = [1 - (t_{2} - t_{1})^{2}/(t'_{2} - t'_{1})]^{1/2}c$

$$= (3/5)c = 1.8 \times 10^{8} \text{ m/s}$$

(2)
$$x'_{1} = \frac{x_{1} - vt_{1}}{\sqrt{1 - (v/c)^{2}}}, \quad x'_{2} = \frac{x_{2} - vt_{2}}{\sqrt{1 - (v/c)^{2}}}$$
由题
$$x_{1} = x_{2}$$

$$y_{1} = x_{2}$$

$$x'_{1} - x'_{2} = \frac{v(t_{2} - t_{1})}{\sqrt{1 - (v/c)^{2}}} = \frac{3}{4}c(t_{2} - t_{1}) = 9 \times 10^{8} \,\text{m}$$
若直接写出
$$t'_{2} - t'_{1} = \frac{t_{2} - t_{1}}{\sqrt{1 - (v/c)^{2}}}$$

$$x'_{1} - x'_{2} = \frac{v(t_{2} - t_{1})}{\sqrt{1 - (v/c)^{2}}}$$

2. 解:设K'系相对于K系的运动速度为v.则根据洛仑兹变换公式可得:

$$t_1' = \frac{t_1 - \nu x_1 / c^2}{\sqrt{1 - (\nu / c)^2}} , \quad t_2' = \frac{t_2 - \nu x_2 / c^2}{\sqrt{1 - (\nu / c)^2}}$$
 乙测得两事件同时发生,则
$$t_1' = t_2'$$
 可得
$$t_2 - t_1 = \nu (x_2 - x_1) / c^2$$
 由题
$$t_2 - t_1 = 2 \times 10^7 \text{ s} , \quad x_2 - x_1 = 500 \text{ m}$$
 则
$$\nu = (t_2 - t_1) c^2 / (x_2 - x_1) = 3.6 \times 10^7 \text{ m/s}$$

3. 解: (1) 观测站测得飞船船身的长度为

$$L = L_0 \sqrt{1 - (v/c)^2} = 54 \text{ m}$$

 $\Delta t_1 = L/v = 2.25 \times 10^{-7} \text{ s}$

(2) 宇航员测得飞船船身的长度为 L_0 ,则 $\Delta t_2 = L_0/v = 3.75 \times 10^{-7} \text{ s}$

4. 解:设两系的相对速度为v,根据洛仑兹变换,对于两事件,有

$$\Delta x = \frac{\Delta x' + v\Delta t'}{\sqrt{1 - (v/c)^2}}$$

$$\Delta t = \frac{\Delta t' + (v/c^2)\Delta x'}{\sqrt{1 - (v/c)^2}}$$
由题意:
$$\Delta x' = 0$$
可得
$$\Delta x = v \Delta t$$
及
$$\Delta t = \frac{\Delta t'}{\sqrt{1 - (v/c)^2}},$$

由上两式可得

$$\Delta t' = \Delta t \sqrt{1 - (\upsilon/c)^2} = ((\Delta t)^2 - (\Delta x/c)^2)^{1/2} = 4 \text{ s}$$

5. 解: 设飞船 A 相对于飞船 B 的速度大小为 v, 这也就是飞船 B 相对于飞船 A 的速度大小. 在飞 船 B 上测得飞船 A 的长度为

$$l = l_0 \sqrt{1 - (\upsilon / c)^2}$$

故在飞船 B 上测得飞船 A 相对于飞船 B 的速度为

壒轍
$$v = l / \Delta t = (l_0 / \Delta t) \sqrt{1 - (v / c)^2}$$
 巘繶環躅鱚

解得

$$v = \frac{l_0 / \Delta t}{\sqrt{1 + (l_0 / c \Delta t)^2}} = 2.68 \times 10^8 \text{ m/s}$$

所以飞船 B 相对于飞船 A 的速度大小也为 2.68×10^8 m/s.

6. 解: (1) 从列车上观察,隧道的长度缩短,其它尺寸均不变。
$$L' = L \sqrt{1 - \frac{\upsilon^2}{c^2}}$$

(2) 从列车上观察,隧道以速度 v 经过列车,它经过列车全长所需时间为

$$t' = \frac{L'}{v} + \frac{l_0}{v} = \frac{L\sqrt{1 - (v/c)^2 + l_0}}{v}$$

这也即列车全部通过隧道的时间。

7. 解:据相对论动能公式
$$E_{K}=mc^{2}-m_{0}c^{2}$$
 得
$$E_{K}=m_{0}c^{2}(\frac{1}{\sqrt{1-(\upsilon/c)^{2}}}-1)$$
 即
$$\frac{1}{\sqrt{1-(\upsilon/c)^{2}}}-1=\frac{E_{K}}{m_{0}c^{2}}=1.419$$
 解得
$$\upsilon=0.91c$$
 平均寿命为
$$\tau=\frac{\tau_{0}}{\sqrt{1-(\upsilon/c)^{2}}}=5.31\times10^{-8}\text{ s}$$

8. 解:根据功能原理,要作的功
$$W = \Delta E$$
 根据相对论能量公式 $\Delta E = m_2 c^2 - m_1 c^2$ 根据相对论质量公式 $m_2 = m_0 / [1 - (v_2 / c)^2]^{1/2}$ $m_1 = m_0 / [1 - (v_1 / c)^2]^{1/2}$ $W = m_0 c^2 (\frac{1}{\sqrt{1 - \frac{v_2^2}{c^2}}} - \frac{1}{\sqrt{1 - \frac{v_1^2}{c^2}}}) = 4.72 \times 10^{-14} \text{ J} = 2.95 \times 10^5 \text{ eV}$ 辖

9. 解:根据
$$E_K = mc^2 - m_0c^2$$

$$m = m_0 + \frac{E_K}{c^2}$$
 回旋周期
$$T = \frac{2\pi m}{qB} = 2\pi \frac{m_0 + \frac{E_K}{c^2}}{qB}$$
 代入数据
$$E_K = 10^4 \text{ MeV} = 10^{10} \text{ eV} = 10^{10} \times 1.6 \times 10^{-19} \text{ J}$$

$$m_0 = 1.67 \times 10^{-27} \text{ kg}; \ \ q = 1.60 \times 10^{-19} \text{ C}; \ \ B = 1 \text{ T}$$
 得
$$T = 7.64 \times 10^{-7} \text{ s}$$

第十五章 量子物理基础

24, B

25、B

选择题:

1、D 2, D 3、C 4、E 5、B 7、C 8, A 9、A 6, B 10、D 11、C 12, A 13、B 14、C 15、A 16、A 17、C 18、D 19、C 20, A 22, D

23、B

二、填空题:

21、C

- 1, 2.5 4.0×10^{14}
- $2, 2.21 \times 10^{-32}$
- 3.82×10^3
- 4, 0.586
- 5. $hc \frac{\lambda' \lambda}{\lambda \lambda'}$ 参考解:

根据能量守恒定律有

$$m_e c^2 + h v = mc^2 + h v'$$
则
$$E_K = mc^2 - m_e c^2 = h v - h v' = \frac{hc}{\lambda} - \frac{hc}{\lambda'} = \frac{hc(\lambda' - \lambda)}{\lambda \lambda'}$$

- 6, 5×10^{14} 2
- 7、10 3
- 8, 1
- 9. $6.56 \times 10^{15} \,\text{Hz}$
- 10、 定态能级 能级跃迁决定谱线频率.

- 11、9
- 12、 量子化定态假设 量子化跃迁的频率法则 $v_{kn}=\left|E_{n}-E_{k}\right|/h$ 角动量量子化假设 $L=nh/2\pi$ $n=1,\ 2,\ 3,\ \cdots$
- 13, 1.8
- 14, -0.85 -3.4
- 15, 2.55
- 16、 13.6 3.4
- 17、150 V
- 18、 1.45 Å $6.63 \times 10^{-19} \text{ Å}$
- 19、1:1 4:1
- 20、 0.1 Å
- 21、 $1/\sqrt{3}$ 碳锗
- 22、 粒子在 t 时刻在(\underline{x} , y, z)处出现的概率密度 单值、有限、连续 $\iiint \left| \boldsymbol{\mathcal{Y}} \right|^2 dx dy dz = 1$
- 23、 1 0 $\frac{1}{2}$ 或 $-\frac{1}{2}$ 貌
- 24, 0, 1, 2, 3 0, ± 1 , ± 2 , ± 3
- 25、 0, $\sqrt{2}\hbar$, $\sqrt{6}\hbar$ 碍鐩
- 26、 泡利不相容 能量最小

三、 计算题

1、解: 光子的能量
$$E=hv=hc/\lambda$$
 若 $\overline{w}=\frac{3}{2}kT=E$ 则 $T=2E/(3K)=2hc/(3k\lambda)=2.4\times10^4~\mathrm{K}$

2、解:设光源每秒钟发射的光子数为n,每个光子的能量为hv

则由
$$P = nh v = nhc/\lambda$$
 得: $n = P\lambda/(hc)$ 令每秒钟落在垂直于光线的单位面积的光子数为 n_0 ,则

 $n_0 = n/S = n/(4\pi d^2) = P\lambda/(4\pi d^2 hc)$

 $m = hv/c^2 = hc/(c^2\lambda) = h/(c\lambda) = 3.33 \times 10^{-36} \text{ kg}$

3、解:由爱因斯坦方程
$$hv = \frac{1}{2}mv^2 + A$$
 和 和 犯 $\frac{1}{2}mv^2 = e|U_a|$ 得 $e|U_a| = (hc/\lambda) - A$ 所以 $e(|U_{a2}| - |U_{a1}|) = hc(\frac{1}{\lambda_2} - \frac{1}{\lambda_1})$

遏止电压改变 $\Delta \left| U_a \right| = (hc/e)(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}) = 0.345 \text{ V}$

数值加大.

4、解: 当铜球充电达到正电势 U时,有

$$hv = eU + A + \frac{1}{2}mv^2$$

当 $hv \le eU + A$ 时,铜球不再放出电子,
即 $eU \ge h \ v - A = \frac{hc}{\lambda} - A = 2.12 \ \mathrm{eV}$

5、解:由于发出的光线仅有三条谱线,按:

$$v = c \cdot \widetilde{v} = cR(\frac{1}{k^2} - \frac{1}{n^2})$$

n=3, k=2 得一条谱线.

n=3, k=1 得一条谱线.

n=2, k=1 得一条谱线.

可见氢原子吸收外来光子后,处于n=3的激发态.以上三条光谱线中,频率最大的一条是:

$$v = cR(\frac{1}{1^2} - \frac{1}{3^2}) = 2.92 \times 10^{15} \text{ Hz}$$

这也就是外来光的频率.

6、解:按题意可知单色光照射的结果,氢原子被激发至n=3的状态(因为它发射三种频率的谱线),故知原照射光子的能量为

$$\varepsilon = E_3 - E_1 = -\frac{13.6}{3^2} - (-13.6) = 12.09 \text{ eV} = 1.93 \times 10^{-18} \text{ J}$$
 该单色光的频率为 $v = \frac{\varepsilon}{h} = 2.92 \times 10^{15} \text{ Hz}$

7、解: $\tilde{v} = R(\frac{1}{k^2} - \frac{1}{n^2})$

令线系极限: n→∞ 可得

 $\tilde{v} = R/k^2$

赖曼系: k=1

 $\tilde{v} = 1.097 \times 10^7 / 1^2 = 1.097 \times 10^7 \,\mathrm{m}^{-1}$

巴耳末系: k=2

 $\tilde{v} = 1.097 \times 10^7 / 2^2 = 0.274 \times 10^7 \,\mathrm{m}^{-1}$

帕邢系: k=3

 $\tilde{\nu} = 1.097 \times 10^7 / 3^2 = 0.122 \times 10^7 \,\mathrm{m}^{-1}$

8、解:因为观察到巴耳末系中的三条光谱线,所以只可能是从n=5、4、3的状态,分别跃迁到n=2的状态而发出的.

 $\tilde{\mathcal{V}}_{2n} = \frac{1}{\lambda_{2n}} = R(\frac{1}{2^2} - \frac{1}{n^2})$

得 $\lambda_{2n} = \frac{1}{R} \cdot \frac{2^2 n^2}{n^2 - 2^2}$

所求的波长为氢原子从由 n=3 的状态跃迁到 n=2 的状态发出的谱线的波长,上式代入 n=3 得

$$\lambda_{23} = 6.56 \times 10^{-7} \text{ m} = 656 \text{ nm}$$

外来光应使氢原子从n=2的状态跃迁到n=5的状态,其频率为:

$$v_{25} = c/\lambda_{25}$$

 $\lambda_{25} = 4.34 \times 10^{-7} \text{ m} = 434 \text{ nm}$
 $v_{25} = c/\lambda_{25} = 6.91 \times 10^{14} \text{ Hz}$

9、解:把一个基态氢原子电离所需最小能量

 $E_i = 13.6 \text{ eV}$

则有 $hv = E_i + \frac{1}{2}m_e v^2$

 $v = \sqrt{2(hv - E_i)/m_e} = 7.0 \times 10^5 \text{ m/s}$

10、解: (1)

而:

$$\Delta E = Rhc(1 - \frac{1}{n^2}) = 13.6(1 - \frac{1}{n^2}) = 12.75 \text{ eV}$$

n = 4

(2) 可以发出λ₄₁、λ₃₁、λ₂₁、λ₄₃、λ₄₂、λ₃₂ 六条谱线. 能级图如图所示.

- 11、 解: (1) $hv = hc/\lambda = 2.86 \text{ eV}$.
 - (2) 由于此谱线是巴耳末线系, 其 k=2

$$E_K = E_1/2^2 = -3.4 \text{ eV} (E_1 = -13.6 \text{ eV})$$

 $E_n = E_1/n^2 = E_K + hv$
 $n = \sqrt{\frac{E_1}{E_K + hv}} = 5.$

n = 3 n = 3 n = 2 n = 1

(3) 可发射四个线系, 共有 10 条谱线

见图

波长最短的是由 n=5 跃迁到 n=1 的谱线.

12、解:远离核的光电子动能为

$$E_K = \frac{1}{2}m_e v^2 = 15 - 13.6 = 1.4$$
 eV
$$v = \sqrt{\frac{2E_K}{m_e}} = 7.0 \times 10^5 \text{ m/s}$$

光电子的德布罗意波长为

$$\lambda = \frac{h}{p} = \frac{h}{m_e v} = 1.04 \times 10^{-9} \text{ m} = 10.4 \text{ Å}$$

13、解: $\lambda = h/p = h/(mv)$

因为若电子在第n玻尔轨道运动,其轨道半径和动量矩分别为

$$r_n = n^2 a$$
 $L = m \upsilon r_n = n h/(2\pi)$ 故 $m \upsilon = h/(2\pi n a)$ 得 $\lambda = h/(m \upsilon) = 2\pi n a$

14、解: 先求粒子的位置概率密度

$$|\psi(x)|^2 = (2/a)\sin^2(\pi x/a) = (2/2a)[1-\cos(2\pi x/a)]$$

当 $\cos(2\pi x/a) = -1$ 时, $\left| \psi(x) \right|^2$ 有最大值. 在 $0 \le x \le a$ 范围内可得 $2\pi x/a = \pi$

$$\therefore x = \frac{1}{2}a.$$

15、解: $dP = |\psi|^2 dx = \frac{2}{a} \sin^2 \frac{\pi x}{a} dx$

粒子位于 0-a/4 内的概率为:

$$P = \int_{0}^{a/4} \frac{2}{a} \sin^{2} \frac{\pi x}{a} dx = \int_{0}^{a/4} \frac{2}{a} \frac{a}{\pi} \sin^{2} \frac{\pi x}{a} d(\frac{\pi x}{a})$$
$$= \frac{2}{\pi} \left[\frac{\frac{1}{2} \pi x}{a} - \frac{1}{4} \sin \frac{2\pi x}{a} \right]_{0}^{a/4} = \frac{2}{\pi} \left[\frac{\frac{1}{2} \pi}{a} \frac{a}{4} - \frac{1}{4} \sin (\frac{2\pi}{a} \frac{a}{4}) \right] = 0.091$$

解:由波函数的性质得 16、

即
$$\int_{0}^{l} |\psi|^{2} dx = 1$$
即
$$\int_{0}^{l} c^{2}x^{2}(l-x)^{2} dx = 1,$$
由此解得
$$c^{2} = 30/l^{5}, c = \sqrt{30/l}/l^{2}$$
设在 0 - $l/3$ 区间内发现该粒子的概率为 P ,则
$$P = \int_{0}^{l/3} |\psi|^{2} dx = \int_{0}^{l/3} 30x^{2}[(l-x)^{2}/l^{5}] dx = \frac{17}{21}$$