Clase 1: 11 de junio de 2019

Fundamentos de Machine Learning.

Parte 1 de 2

EAE 253 B

C Dagnino. cdagnino@gmail.com

Find the next number of the sequence

1, 3, 5, 7, ?

Correct solution 217341

because when

$$f(x) = \frac{18111}{2} x^4 - 90555 x^3 + \frac{633885}{2} x^2 - 452773 x + 217331$$

$$f(1)=1$$

$$f(2)=3$$

$$f(3)=5$$

$$f(4)=7$$

$$f(5)=217341$$

such function

many maths

wow

Fukushima: predecir frecuencia de terremotos

- Entrenaron un modelo de regresión de los últimos 400 años
- Diamantes son datos
- Línea es el modelo (y predicción)

FIGURE 5-7C: TŌHOKU, JAPAN EARTHQUAKE FREQUENCIES CHARACTERISTIC FIT

(Silver, N, 2012)

¿Qué es el sobreajuste?

Otro ajuste de los terremotos en Japón

El terremoto de 2011 fue de 9

• Fukushima fue construída solamente para aguantar hasta 8.6

FIGURE 5-7C: TÖHOKU, JAPAN EARTHQUAKE FREQUENCIES CHARACTERISTIC FIT

Sobre o subajuste?

Ingreso vs edad

Sobre o subajuste?

Ingreso vs edad

© Machine Learning @ Berkeley

Problema de clasificación

• Observamos tamaños de pétalos y sépalos

Bonus (yo tampoco sabía lo que era un sépalo)

Sobreajuste en problemas de clasificación

Sesgo y Varianza

- Sobreajuste / overfitting: alta varianza, alta (demasiada) complejidad
- Subajuste / underfitting: alto sesgo, baja (muy poca) complejidad

Dos ideas:

- 1. Sesgo vs Varianza
- 2. Complejidad: ajuste en la muestra y fuera de la muestra

Modelo (o cómo aproximarnos a este problema)

Observamos una respuesta Y y diferentes predictores $X_1, X_2, ..., X_k$. Los ponemos todos en X. Entonces, de manera bastante general:

$$Y = f(X) + \varepsilon$$

f(X) es desconocido. Si asumimos que es lineal, $f(X)=eta_0+eta_1X_1+...+eta_kX_k$, pero aún así no conocemos los $(eta_0,eta_1,...,eta_k)$

Idea 1: Sesgo vs Varianza

Sesgo vs Varianza

Son dos maneras de fallar en nuestra predicción. Idealmente, tendríamos sesgo y varianza igual a cero.

- $Sesgo[\hat{f}(X)]=E_x[f(X)-\hat{f}(X)]$. Tomando distintas muestras de X , ¿qué tan lejos está \hat{f} de f?
- $Var[\hat{f}(X)]$. ¿Qué tanto varía \hat{f} cuando se aplica a distintas muestras de X?

Descomposición fundamental I: Sesgo vs Varianza

- ullet Realidad: Y=f(X)+arepsilon
- ullet Omitimos las x: $\hat{f}=\hat{f}\left(X
 ight)$

$$E[(y-\hat{f})^2] = Sesgo[\hat{f}]^2 + Var[\hat{f}] + Var[arepsilon]$$

- Var[arepsilon] se llama error irreducible
- Generalmente: disminuir el sesgo implica aumentar la varianza y vice-versa

Idea 2: Ajuste en la muestra, fuera de muestra y complejidad

Posibles Objetivos

Predicción

Obtener una predicción de Y, llamémosla \hat{Y} . ¿De dónde sacarla? $ightarrow \hat{f}$

 \hat{f} representa nuestra mejor aproximación a f

Inferencia (causal)

- Interés en los parámetros de \hat{f}
- Qué variables están asociados con Y?
- ullet ¿Cuál es el efecto causal de X_2 en Y?

$$E[Y|do(X_2=1)] - E[Y|do(X_2=0)]$$

Proceso de predicción

Base de Training

id	edad	salud	Y
Juan	23	3	10
Jacinta	45	1	7
Andrea	29	5	9
Esteban	78	1	2
María	81	3	5

Base de Testing

id	edad	salud	Y
Lucrecio	55	2	?
Adán	22	1	?
Valeria	41	3	?

Evaluación de la predicción

Una comparación entre Y e \hat{Y}

La forma depende de si la variable Y es cardinal o categórica

Cardinal

- Índice de salud de 1 a 10
- Cantidad demandada de chocolitos
- Nivel de polución en Santiago mañana

Categórica:

- Mortalidad
- Tipo de flor
- Spam de e-mail

Evaluación de la predicción - Y cardinal

• Error cuadrático medio (MSE)

$$MSE(Y,\hat{Y}) = rac{1}{n}\sum (y_i - \hat{y}_i)^2$$

Error absoluto medio (MAE)

$$MAE(Y,\hat{Y}) = rac{1}{n} \sum |y_i - \hat{y}_i|$$

Evaluación de la predicción - Y categórica

Queremos evaluar si un implante de cadera funciona (F) o no (NF).
 Las columnas son las predicciones (P), las filas los datos reales de la base de test.

	P: F	P: NF
F	1004	21
NF	7	2122

- Suma de Falsos positivos y falsos negativos / total de observaciones
- Muchas otras métricas: AUC, specificity, recall

Resumen I

$$Y = f(X) + \varepsilon$$

- f(X) puede ser una función muy compleja (no tiene por qué ser lineal)
- ullet El objetivo es predecir Y (en el futuro).
- arepsilon son factores desconocidos, así que lo más razonable es aproximar f(X)
- A la estimación la llamamos $\hat{Y}=\hat{f}$
- ullet La evaluación se realiza mirando Y vs \hat{Y}

Resumen II

 Un buen modelo predictivo encuentra el compromiso preciso entre Sobreajuste (overfit) y subajuste (underfit)

Subajuste	Sobreajuste	
mucho Sesgo	mucha varianza	
muy poca complejidad	demasiada complejidad	

Descomposición fundamental II: en-muestra vs fuera-de-muestra

- Error Real de Predicción = error en-muestra + complejidad del modelo
- Error Real de Predicción = error en-muestra + "optimismo"