Rapport de Progrès : Détection Automatique de Tumeurs Mammaires par Ultrasons

Une Approche Basée sur l'Intelligence Artificielle

Sosane Mahamoud Houssein

HOUS92310307

hous44@uqo.ca

Zeïnab Touré TOUZ63280208 touz08@uqo.ca

Abidé Badjoudoum BADA09349800 bada20@ugo.ca

25 mars 2025

1 Introduction

Ce document présente l'avancement de notre projet de détection de tumeurs mammaires à partir d'images ultrasonores. Conformément à notre proposition initiale, nous avons complété la phase d'analyse exploratoire des données (EDA) et préparé le pipeline de prétraitement.

2 État d'Avancement

2.1 Données Utilisées

Les résultats proviennent de données récentes ¹.

Le jeu de données contient :

- 780 images ultrasonores (format PNG)
- Résolution moyenne : 500×500 pixels
- Répartition initiale :
 - Bénignes : 437 images (56%)
 - Malignes : 210 images (27%)
 - Normales : 133 images (17%)

2.2 Analyse Exploratoire (EDA)

Les résultats clés de notre analyse :

2.2.1 Caractéristiques des Images

Table 1 – Statistiques des dimensions d'images

	Hauteur (px)	Largeur (px)
Minimum	310	190
Maximum	719	1048

^{1.} Al-Dhabyani, W. et al. (2020). *Dataset of breast ultrasound images*. Data in Brief, 28, 104863. DOI: 10.1016/j.dib.2019.104863.

2.2.2 Analyse des Masques

Table 2 – Superficie tumorale moyenne (en pixels)	Table 2 –	Superficie	tumorale	moyenne	(en	pixels)
---	-----------	------------	----------	---------	-----	--------	---

Classe	Moyenne	Médiane	Min	Max
Bénin	20,734	10,263	804	209,121
Malin	$43,\!376$	$34,\!433$	569	$167,\!411$
Normal	0	0	0	0

FIGURE 1 – Exemples d'images avec leurs masques correspondants

3 Adaptations Méthodologiques

Suite à l'EDA, nous avons ajusté notre approche :

3.1 Résolution des Problèmes Identifiés

— Déséquilibre de classes : Implémentation d'une fonction de coût pondérée

$$w_c = \frac{N}{C \times N_c} \tag{1}$$

où N=total, C=classes, $N_c=$ échantillons par classe

- Normalisation des dimensions : Redimensionnement à 256×256 px avec préservation du ratio d'aspect
- Utilisation des masques : Intégration comme 4ème canal d'entrée

3.2 Pipeline de Prétraitement

1. Chargement des paires (image, masque)

- 2. Redimensionnement avec remplissage intelligent
- 3. Augmentation de données :
 - Rotation aléatoire (±15°)
 - Retournement horizontal
 - Ajustement de contraste
- 4. Normalisation : $\mu = [0.485, 0.456, 0.406], \sigma = [0.229, 0.224, 0.225]$

4 Prochaines Étapes

- Implémentation des architectures CNN (ResNet18, EfficientNet)
- Expérimentation avec des mécanismes d'attention
- Évaluation comparative des modèles
- Optimisation des hyperparamètres

Annexe

Exemple de Code

```
# Chargement des données
dataset = BreastUltrasoundDataset(
    image_paths=X_train,
    mask_paths=mask_train,
    labels=y_train,
    transform=train_transform
)
```