

THE FACULTY OF ENGINEERING

www.strath.ac.uk/engineering

Atomistic Simulations of Polymers for Sustainable Food Packaging Design

Nisha Middleton MDAnalysis UGM Sep 2023

Plastic Film Packaging

Polyhydroxybutyrate (PHB)

- Bioderived and biodegradable
- Semicrystalline polymer
- Thermal and barrier properties comparable to conventional plastics
- Pure PHB can be brittle due to high crystallinity
- Can be tailored through copolymerisation and addition of fillers and plasticisers

Research Objective

Use molecular dynamics to investigate barrier properties by simulating diffusion of oxygen and water through the amorphous polymer matrix.

Simulation Method

Simulation Method

- . Berendsen, Herman JC, J. Raul Grigera, and Tjerk P. Straatsma. Journal of Physical Chemistry 91.24 (1987): 6269-6271
- 2. Javanainen, Matti, Ilpo Vattulainen, and Luca Monticelli. The Journal of Physical Chemistry B 121.3 (2017): 518-528.

Post-Simulation Analysis

MDAnalysis.analysis.msd

class MDAnalysis.analysis.msd.EinsteinMSD

Mean squared displacement:

$$MSD(r_d) = \left\langle \frac{1}{N} \sum_{i=1}^{N} |r_d - r_d(t_0)|^2 \right\rangle_{t_0}$$

r = coordinates d = dimensionality N = number of atoms $\langle \rangle_{t0}$ = average over time origins

Post-Simulation Analysis

$$MSD(r_d) = \left\langle \frac{1}{N} \sum_{i=1}^{N} |r_d - r_d(t_0)|^2 \right\rangle_{t_0}$$

from scipy.stats import linregress

Linear regression model used to calculate diffusion coefficient (D)

$$D = \frac{1}{2d} \lim_{t \to \infty} \frac{d}{dt} MSD(r_d)$$

Einstein diffusion regime when R² and log-log slope ≈ 1

Oxygen Diffusion at 500K

Oxygen diffuses more in 10 monomer system due to chain relaxation timescales

Oxygen Diffusion at 300K

At 300K diffusion is limited by polymer chain mobility

Polymer Chain Mobility

- Higher D values at higher temperatures due to increased polymer chain mobility
- At 300K PHB model is below glass transition temperature

Water Diffusion at 300K

Water diffusion is slower in 10 monomer system

Effect of Chain Ends

- D_{water} lower for 10 monomer chain due to interactions with polar chain ends
- D_{oxygen} > D_{water} since oxygen is non-polar

Diffusion Coefficient

Permeant	System	Temp (K)	D (cm²/s)
Oxygen	10 monomers	500	3.76 x10 ⁻⁵
	20 monomers	500	2.46 x10 ⁻⁵
	10 monomers	300	6.05 x10 ⁻⁸
	20 monomers	300	5.45 x10 ⁻⁸
	Experimental ¹	296	5.26 x10 ⁻⁸
Water	10 monomers	300	1.11 x10 ⁻⁸
	20 monomers	300	2.23 x10 ⁻⁸
	Experimental ¹	298	2.17 x10 ⁻⁸

accuracy ± 0.4%

D values in agreement with experiment

 Higher D at 500K due to polymer chain mobility

 D_{oxygen} > D_{water}; PHB stronger barrier against water

Comparison to Other Polymers

	D _{water} (x10 ⁻⁸ cm ² /s)	D _{oxygen} (x10 ⁻⁸ cm ² /s)
PHB	2.23	5.45
PLA ^{1, 2}	6.61	7.6
PET ^{3, 4}	0.85	1.16

PLA = bioderived & biodegradable

PET = petrochemically derived & non-biodegradable

- 1. Yoon, Jin-San, et al. Journal of applied polymer science 77.8 (2000): 1716-1722.
- 2. Bao, Lihong, et al. Journal of membrane science 285.1-2 (2006): 166-172.
- 3. Sammon, C., J. Yarwood, and N. Everall. Polymer 41.7 (2000): 2521-2534
- 4. Lightfoot, Jasmine C., et al Macromolecules 55.2 (2021): 498-510

Conclusions

- Permeant polarity and polymer chain mobility determine diffusion properties
- Diffusion coefficients from simulations are in agreement with experimental values
- PHB is a stronger barrier against water than oxygen
- Barrier properties of PHB make it a promising candidate for food packaging applications

Future Work

- Further analysis of H₂O and O₂ interaction with PHB
- Investigate mechanical properties and crystallinity of PHB films
- Measure barrier properties using a permeation cell with H₂O and O₂
- Study effect of filler particles and plasticisers

Acknowledgements

Supercomputer resources:

PhD funding:

Smart Sustainable Plastic Packaging (SSPP) research group:

Karen Johnston
Paul Mulheran
John Liggat
Vitor Magueijo
Katarzyna Majerczak
Dominic Wadkin-Snaith

Universityof Strathclyde Engineering