SRM Institute of Science and Technology Ramapuram Campus.

Department of Mathematics

ASSIGNMENT QUESTIONS

Sub. Code: 18MAB101T

Sub. Title: Calculus and Linear Algebra

Year: I Year B. Tech. (Common to all Branches)

Date: 22.01.2021

Max. Marks: 19

Semester: I

Unit – **4**

$Part - B (5 \times 2 = 10 Marks)$ (Solution with Full Explanation is Needed.)

1. The radius of curvature of the curve $y = 4 \sin x$ at $x = \frac{\pi}{2}$ is

(A)
$$\frac{1}{2}$$
 (B) $\frac{-1}{2}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

2. The radius of curvature of the curve $r = e^{\theta}$ at any point on it is

(A)
$$2\sqrt{2}$$
 (B) $\sqrt{2}r$ (C) 1 (D) 2

3. Envelope of the curve $y = mx + \frac{a}{m}$ (where *m* is the parameter) is

(A)
$$x^2 + ay = 0$$

(B) $x + 4ay = 0$
(C) $y^2 - 4ax = 0$
(D) $y^2 + 4ax = 0$

4. The value of $\Gamma\left(-\frac{5}{2}\right)$ is _____.

(A)
$$\frac{15}{8}\sqrt{\pi}$$
 (B) $\frac{8}{15}\sqrt{\pi}$ (C) $\frac{15}{8}\pi$ (D) $\frac{-8}{15}\sqrt{\pi}$

5. The value of $B\left(\frac{5}{2}, \frac{1}{2}\right)$ is _____.

(A)
$$\frac{3}{8}\pi$$
 (B) $\frac{5}{8}\pi$ (C) $\frac{5}{8}\sqrt{\pi}$ (D) $\frac{3}{8}\sqrt{\pi}$

$Part - C (3 \times 3 = 09 Marks)$ (Solution with Full Explanation is Needed.)

1. Find the envelope of the family of straight lines represented by $x\cos\alpha + y\sin\alpha = a\sec\alpha$, where α is the parameter.

2. Evaluate $\int_{0}^{1} x^{6} (1-x)^{9} dx$ using Beta Gamma functions.

3. Evaluate $\int_{0}^{\pi/2} \sin^{6}\theta \cos^{6}\theta d\theta$ using Beta Gamma functions.

* * * * *

22/01

Unit D - Assignment Collition)

01) $y = 48 \ln x$ at x = 71/2 $\theta = (1 + y_1^2)^{3/2}$

y = dy = 4 cosx

9 42 = dy = - 480x => Y(x=11/2) = -48/mT1/2=-4

=> y (x = 1/2) = 4 (8) 1/2 = 0

 $\eta = \frac{dr}{d\theta} = e^{\theta} = r$, $\eta_2 = \frac{d^2r}{d\theta^2} = e^{\theta} = r$

 $P = \frac{(\chi^2 + \chi^2)^{3/2}}{(2\chi^2 + \chi^2)^{3/2}} = \frac{(\chi^2 + \chi^2)^{3/2}}{(\chi^2 + \chi^2)^{3/2}} = \frac{(2\chi^2)^{3/2}}{(2\chi^2 + \chi^2)^{3/2}} = \frac{(2\chi^2 + \chi^2)^{3/2}}{(2\chi^2 + \chi^2)^{3/2}} = \frac{(2\chi^2 + \chi$

 $\frac{1}{2} \frac{(2)^{3/2} y^{31}}{4 y^{2}} = \frac{y}{\sqrt{2}} = \frac{e^{0}}{\sqrt{2}} + \frac{e$

2) my 2 m²x + a 3) m²x - my + a = 0

6. A = X, B = - y, C = a

 $D = B^2 - 4AC = 0$ $\Rightarrow y^2 - 4xa = 0$

[[Cu+1) z n [n] [15+1) = -5[-5/2 2) [-3/2 = -5[-5/2 = -2]-5/2 -0 $\Gamma(-3/2+1) = -\frac{3}{2}\Gamma_{-3/2} = \frac{7}{2}\Gamma_{-3/2} = \frac{7}{2}\Gamma_{-3/2}$

 $\Gamma(-1/2+1) = -\frac{1}{2}\Gamma_{1/2} = \Gamma_{1/2} = -\frac{1}{2}\Gamma_{1/2} = -\frac{1}{$

Using O, O, O

2) $\sqrt{3} = \frac{-2}{5} \times \frac{-2}{3} \times -2 \sqrt{\pi} = \frac{-8\pi}{15} \rightarrow option(0)$

05)
$$B(\frac{5}{2}, \frac{1}{2})$$
 $= 2 \int^{92} 8 \int^{98} \frac{105}{2} (0) (88^{3} \frac{1}{2} (0)) d\theta$
 $= 2 \int^{92} 8 \int^{98} \frac{105}{2} (0) (88^{3} \frac{1}{2} (0)) d\theta$
 $= 2 \int^{98} 2 \int^{98} \frac{1}{2} (1 - (8820))^{2} d\theta$
 $= 2 \int^{98} \frac{1}{2} (1 - (8820))^{2} d\theta$
 $= \frac{1}{2} \int^{98} (1 + (88^{2}20 - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{2} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{2} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{2} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820)) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2} + \frac{(8840)}{8} - 2(8820) d\theta$
 $= \frac{1}{2} \int^{98} (1 + \frac{1}{2}$

02) $\int_{0}^{1} x^{6}(1-x)^{9} dx = 0$ using formula, $\int_{0}^{1} x^{6}(1-x)^{9} dx = 0$ $\int_{0}^{1} x^{6}(1-x$