NYU Tandon Bridge

Spring 2024

Homework 6

Student: Shichen Zhang (sz4968)

Question 5

a.

In order to show $5n^3 + 2n^2 + 3n = \Theta(n^3)$, we need to find c_1 , c_2 and n_0 such that for all $n \ge n_0$,

$$c_1 \cdot n^3 \le 5n^3 + 2n^2 + 3n \le c_2 \cdot n^3$$

If we let $c_1 = 5$, $c_2 = 10$ and $n_0 = 1$, we have,

$$5n^3 \le 5n^3 + 2n^2 + 3n \le 10n^3$$
 for all $n \ge 1$

Therefore, $5n^3 + 2n^2 + 3n = \Theta(n^3)$.

b.

In order to show $\sqrt{7n^2 + 2n - 8} = \Theta(n)$, we need to find c_1 , c_2 and n_0 such that for all $n \ge n_0$,

$$c_1 \cdot n \le \sqrt{7n^2 + 2n - 8} \le c_2 \cdot n$$

If we let $n_0 = 4$, then $n \ge 4$, we can square the inequalities to get:

$$c_1^2 \cdot n^2 \le 7n^2 + 2n - 8 \le c_2^2 \cdot n^2$$
 for all $n \ge 4$

Since $n \geq 4$,

$$2n - 8 \ge 0$$
$$7n^2 + 2n - 8 \ge 7n^2$$

$$2n \le 2n^2$$

$$7n^2 + 2n - 8 \le 7n^2 + 2n^2$$

$$7n^2 + 2n - 8 \le 9n^2$$

By combining these two inequalities, we can get,

$$7n^2 \le 7n^2 + 2n - 8 \le 9n^2$$
 for all $n \ge 4$

By taking the square root, we can get,

$$\sqrt{7}n \le \sqrt{7n^2 + 2n - 8} \le 3n$$
 for all $n \ge 4$

Therefore, we show that when $c_1 = \sqrt{7}$, $c_2 = 3$ and $n_0 = 4$, we have $c_1 \cdot n \le \sqrt{7n^2 + 2n - 8} \le c_2 \cdot n$ for all $n \ge n_0$, so $\sqrt{7n^2 + 2n - 8} = \Theta(n)$.