C6 problems

An initially uncharged 1-mF capacitor has the current shown in Fig. 6.11 across it. Calculate the voltage across it at t = 2 ms and t = 5 ms.

Answer: 100 mV, 400 mV.

Practice Problem 6.4

Figure 6.11
For Practice Prob. 6.4.

Under dc conditions, find the energy stored in the capacitors in Fig. 6.13.

Answer: 20.25 mJ, 3.375 mJ.

Figure 6.13 For Practice Prob. 6.5.

Find the equivalent capacitance seen at the terminals of the circuit in Fig. 6.17.

Answer: $40 \mu F$.

Practice Problem 6.6

Figure 6.17
For Practice Prob. 6.6.

Find the voltage across each of the capacitors in Fig. 6.20.

Answer: $v_1 = 45 \text{ V}, v_2 = 45 \text{ V}, v_3 = 15 \text{ V}, v_4 = 30 \text{ V}.$

Practice Problem 6.7

Figure 6.20

For Practice Prob. 6.7.

If the current through a 1-mH inductor is $i(t) = 60 \cos 100t$ mA, find the terminal voltage and the energy stored.

Answer: $-6 \sin 100t \text{ mV}$, $1.8 \cos^2 (100t) \mu \text{J}$.

The terminal voltage of a 2-H inductor is v = 10(1 - t) V. Find the current flowing through it at t = 4 s and the energy stored in it at t = 4 s. Assume i(0) = 2 A.

Answer: −18 A, 320 J.

Figure 6.28 For Practice Prob. 6.10.

Determine v_C , i_L , and the energy stored in the capacitor and inductor in the circuit of Fig. 6.28 under dc conditions.

Answer: 15 V, 7.5 A, 450 J, 168.75 J.

In the circuit of Fig. 6.34, $i_1(t) = 0.6e^{-2t}$ A. If i(0) = 1.4 A, find: (a) $i_2(0)$; (b) $i_2(t)$ and i(t); (c) $v_1(t)$, $v_2(t)$, and v(t).

Answer: (a) 0.8 A, (b) $(-0.4 + 1.2e^{-2t})$ A, $(-0.4 + 1.8e^{-2t})$ A, (c) $-36e^{-2t}$ V, $-7.2e^{-2t}$ V, $-28.8e^{-2t}$ V.

Practice Problem 6.12

Figure 6.34 For Practice Prob. 6.12.

The integrator in Fig. 6.35(b) has $R = 100 \text{ k}\Omega$, $C = 20 \mu\text{F}$. Determine the output voltage when a dc voltage of 2.5 mV is applied at t = 0. Assume that the op amp is initially nulled.

Answer: -1.25t mV.

The differentiator in Fig. 6.37 has $R=100~\mathrm{k}\Omega$ and $C=0.1~\mu\mathrm{F}$. Given that $v_i=1.25t~\mathrm{V}$, determine the output v_o .

Answer: -12.5 mV.

notes

- 6.4 (S6.2)
- 6.5 (S6.2)
- 6.6 (S6.3)
- 6.7 (S6.3)
- 6.8 (S6.4)
- 6.9 (S6.4)
- 6.10 (S6.4)
- 6.12 (S6.5)
- 6.13 (S6.6)
- 6.14 (S6.6)