CSCB63 WINTER 2021

WEEK 6 LECTURE 1

DIJKSTRA'S SHORTEST PATH
ALGORITHM

Anna Bretscher

March 16, 2021

TODAY

Review Prim's Algorithm

Dijkstra's Algorithm for single source shortest paths

vertex	а	b	С	d	е	f	g	h	i
priority	0	∞							
priority pred									

vertex	b	h	С	d	е	f	g	i
vertex priority pred	4	8	∞	∞	∞	∞	∞	∞
pred	а	а						

vertex	h	С	d	е	f	g	i
vertex priority pred	8	8	∞	∞	∞	∞	∞
pred	а	b					

vertex	g	i	С	d	е	f
priority	1	7	8	∞	∞	∞
pred	h	h	b			

vertex	f	i	С	d	е
priority	2	6	8	∞	∞
pred	g	g	b		

vertex	С	i	е	d
priority	4	6	10	14
pred	f	g	f	f

PRIM'S ALGORITHM

```
Prim(V, E)
   S := new container() for edges
   PQ := new min-heap()
   start := pick a vertex
   PQ.insert(start, 0)
                                 11
    for each vertex v # sta
       # initialize pq
       PO.insert(v, \infty)
    while not PQ.is_empty():
       # add least edge to grow the tree
        u := PQ.extract_min()
        S.add({u.pred, u})
        for each z in u's adjacency list:
           # update priorities based on u now in S
           if z in PQ && weight (u,z) < priority of z:
                PQ.decrease_priority(z, weight(u,z))
                 z.pred := u
   return S
```

Q. How many times does a *vertex* enter/leave the *min-heap*?

- Q. How many times does a *vertex* enter/leave the *min-heap*?
- **A.** Every *vertex* enters and leaves min-heap *once*: $\Theta(\lg n)$ per vertex, totalling $\Theta(n \lg n)$

- **Q.** How many times does a *vertex* enter/leave the *min-heap*?
- **A.** Every *vertex* enters and leaves min-heap *once*: $\Theta(\lg n)$ per vertex, totalling $\Theta(n \lg n)$
- Q. How many times can a *vertex's priority* decrease?

- Q. How many times does a *vertex* enter/leave the *min-heap*?
- **A.** Every *vertex* enters and leaves min-heap *once*: $\Theta(\lg n)$ per vertex, totalling $\Theta(n \lg n)$
- Q. How many times can a *vertex's priority* decrease?
- **A.** Every edge may trigger a change of priority: so $\forall v \in V, O(deg(v))$ which is O(m) and takes $O(\lg n)$ for a total of O(mlogn).

- **Q.** How many times does a *vertex* enter/leave the *min-heap*?
- **A.** Every *vertex* enters and leaves min-heap *once*: $\Theta(\lg n)$ per vertex, totalling $\Theta(n \lg n)$
- Q. How many times can a *vertex's priority* decrease?
- **A.** Every edge may trigger a change of priority: so $\forall v \in V, O(deg(v))$ which is O(m) and takes $O(\lg n)$ for a total of O(mlogn).
 - ▶ Everything else, can be done in $\Theta(1)$ per *vertex* or per *edge*

- Q. How many times does a *vertex* enter/leave the *min-heap*?
- **A.** Every *vertex* enters and leaves min-heap *once*: $\Theta(\lg n)$ per vertex, totalling $\Theta(n \lg n)$
- Q. How many times can a *vertex's priority* decrease?
- **A.** Every edge may trigger a change of priority: so $\forall v \in V$, O(deg(v)) which is O(m) and takes $O(\lg n)$ for a total of O(mlogn).
- ▶ Everything else, can be done in $\Theta(1)$ per *vertex* or per *edge*
- ► Total $O((n+m)\lg n)$ time worst case.

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u,v) is the *lowest-cost edge* crossing (S,V-S), then (u,v) is in *every MST* of G.

Proof.

▶ Suppose there exists an *MST T* that does not contain (u, v).

To begin with we will first prove a useful property:

Cut Property: Let *S* be a nontrivial subset of *V* in *G* (i.e. $S \neq \emptyset$ and $S \neq V$). If (u, v) is the *lowest-cost edge* crossing (S, V - S), then (u, v) is in *every MST* of *G*.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u,v) is the *lowest-cost edge* crossing (S,V-S), then (u,v) is in *every MST* of G.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.
- There must exist a *path* from *u* to *v*.

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u, v) is the *lowest-cost edge* crossing (S, V - S), then (u, v) is in *every MST* of G.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.
- There must exist a *path* from *u* to *v*.
- ▶ On this path, there must exist an edge e that crosses between V S into S.

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u, v) is the *lowest-cost edge* crossing (S, V - S), then (u, v) is in *every MST* of G.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.
- There must exist a *path* from *u* to *v*.
- ► On this path, there must exist an edge e that crosses between V S into S.
- Since (u, v) is the least weight edge crossing between V and S − V, swapping (u, v) with e will reduce the weight of T.

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u,v) is the *lowest-cost edge* crossing (S,V-S), then (u,v) is in *every MST* of G.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.
- There must exist a *path* from *u* to *v*.
- ► On this path, there must exist an edge e that crosses between V S into S.
- Since (u, v) is the *least weight edge* crossing between V and S V, swapping (u, v) with e will reduce the weight of T.
- ► Therefore, T is not an MST.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How does the argument go?

A.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How does the argument go?

A.

► Consider *optimal* MST *O* and *Prim's Algorithm* tree *T*.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How does the argument go?

A.

- Consider optimal MST O and Prim's Algorithm tree T.
- Order edges of T according to order they are selected.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How does the argument go?

A.

- Consider optimal MST O and Prim's Algorithm tree T.
- Order edges of T according to order they are selected.
- Consider the first edge e = (u, v) in the ordering that is in T but not in O.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How does the argument go?

Α.

- Consider optimal MST O and Prim's Algorithm tree T.
- Order edges of T according to order they are selected.
- Consider the first edge e = (u, v) in the ordering that is in T but not in O.
- At the stage of *Prim's* when *e* was added there was a set *S* of vertices such that *u* ∈ *S*, *v* ∈ *V* − *S*.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How does the argument go?

Α.

- Consider optimal MST O and Prim's Algorithm tree T.
- Order edges of T according to order they are selected.
- Consider the first edge e = (u, v) in the ordering that is in T but not in O.
- At the stage of *Prim's* when *e* was added there was a set *S* of vertices such that *u* ∈ *S*, *v* ∈ *V* − *S*.
- CASE 1: Edge weights are *unique* so by the **Cut Property**, *e* must belong to *O*. Therefore consider when *edge weights* are *not unique*.

CASE 2: Edge weights not unique.

CASE 2: Edge weights not unique.

▶ $e \notin O$, there exists a path p from u to v such that an edge e' = (x, y) exists on p and $x \in S$ and $y \in V - S$.

- CASE 2: Edge weights not unique.
 - ▶ $e \notin O$, there exists a path p from u to v such that an edge e' = (x, y) exists on p and $x \in S$ and $y \in V S$.
- CASE 2A: w(e') = w(e), so swap e' with e and the tree will still span tree G and be minimal.

- Case 2: Edge weights not unique.
 - ▶ $e \notin O$, there exists a path p from u to v such that an edge e' = (x, y) exists on p and $x \in S$ and $y \in V S$.
- CASE 2A: w(e') = w(e), so swap e' with e and the tree will still span tree G and be minimal.
- CASE 2B: $w(e') \neq w(e)$. Must be that $w(e') \not< w(e)$ since then *Prim's* algorithm would have chosen it.

- Case 2: Edge weights not unique.
 - ▶ $e \notin O$, there exists a path p from u to v such that an edge e' = (x, y) exists on p and $x \in S$ and $y \in V S$.
- CASE 2A: w(e') = w(e), so swap e' with e and the tree will still span tree G and be minimal.
- CASE 2B: $w(e') \neq w(e)$. Must be that $w(e') \not< w(e)$ since then *Prim's* algorithm would have chosen it.
 - If w(e') > w(e) then swapping e' with e reduces the weight of O, which is a contradiction.

COMMON TASK #2 ON WEIGHTED GRAPHS

SINGLE SOURCE SHORTEST PATHS

- Find a *simple path* between two vertices (if any).
- Minimize the sum of the weights of the edges used.

From A to D: $\langle A, C, B, D \rangle$ is a shortest path. Total weight 8. $\langle A, B, D \rangle$ is *not* a shortest path. Total weight 9. X

BRAIN STORMING: SINGLE SOURCE SHORTEST PATHS

Given a start vertex, find the shortest paths to all other vertices. Ideas?

DIJKSTRA'S ALGORITHM: A FEW ITERATIONS

vertex	а	b	С	d	е	f	g	h	i
priority	0	∞							
pred									

DIJKSTRA'S ALGORITHM: A FEW ITERATIONS

vertex priority pred	b	h	С	d	е	f	g	i
priority	4	8	∞	∞	∞	∞	∞	∞
pred	а	а						

vertex	h	С	d	е	f	g	i
priority pred	8	12	∞	∞	∞	∞	∞
pred	а	b					

vertex	g	С	i	d	е	f
priority	9	12	15	∞	∞	∞
pred	h	b	h			

vertex	f	С	i	d	е
priority	11	12	15	∞	∞
pred	g	b	h		

vertex	С	i	е	d
priority	12	15	21	25
pred	b	h	f	f

vertex	i	d	е
priority	14	19	21
pred	С	С	f

We add our *start vertex s* to the set of *reached vertices S* and give it *distance* d[s] = 0.

This creates a *distance tree* rooted at *s*.

Q. What is the *greedy rule* that we follow?

Α.

We add our start vertex s to the set of reached vertices S and give it distance d[s] = 0.

This creates a *distance tree* rooted at *s*.

- Q. What is the *greedy rule* that we follow?
- **A.** At each stage we consider the *next closest vertex* to s from vertices *not in* S, or alternatively, the vertex with next *shortest path* to s...
- Q. How do we use a *priority queue* to determine the shortest path so far?
- A.

We add our *start vertex s* to the set of *reached vertices S* and give it *distance* d[s] = 0.

This creates a *distance tree* rooted at *s*.

- **Q.** What is the *greedy rule* that we follow?
- **A.** At each stage we consider the *next closest vertex* to s from vertices *not in* S, or alternatively, the vertex with next *shortest path* to s...
- Q. How do we use a *priority queue* to determine the shortest path so far?
- **A.** When a new vertex v is added to S,
 - ▶ consider each neighbour u of v such that $u \notin S$

We add our start vertex s to the set of reached vertices S and give it distance d[s] = 0.

This creates a *distance tree* rooted at *s*.

- Q. What is the *greedy rule* that we follow?
- **A.** At each stage we consider the *next closest vertex* to *s* from vertices *not in S*, or alternatively, the vertex with next *shortest path* to *s...*
- Q. How do we use a *priority queue* to determine the shortest path so far?
- **A.** When a new vertex v is added to S,
 - ▶ consider each neighbour u of v such that $u \notin S$
 - update the current best distance (priority p[u]) to d[v] + w(v, u) if it's better.

DIJKSTRA'S ALGORITHM

```
dijkstra(G, s)
   PQ := new min-heap()
   PO.insert(s, 0)
   d[s] := 0
   for each vertex z \neq s:
      # initialize priority queue
      PQ.insert(z, \infty)
      d[z] := \infty
   while PQ not empty:
      #greedy choice of vertex to grow shortest path tree
      v := 0.extract-min()
      for each u in v's adjacency list:
         #Update priorities of adjacent nodes
         if d[v] + w(\{v,u\}) < d[u]:
            PQ.decrease-priority(u, d[v] + w(\{v,u\}))
            d[u] := d[v] + w(\{v,u\})
            pred[u]:= v
```

► Let *T_S* be the *distance tree* constructed by *Dijkstra's Algorithm* starting at *s*.

- ► Let *T_S* be the *distance tree* constructed by *Dijkstra's Algorithm* starting at *s*.
- Let O_s be an *optimal distance tree* rooted at s.

- ► Let *T_S* be the *distance tree* constructed by *Dijkstra's Algorithm* starting at *s*.
- Let O_s be an *optimal distance tree* rooted at s.
- Order the edges $\langle e_1, e_2, \dots, e_m \rangle$ according to how they are added to T_s .

- ► Let *T_S* be the *distance tree* constructed by *Dijkstra's Algorithm* starting at *s*.
- Let O_s be an *optimal distance tree* rooted at s.
- Order the edges $\langle e_1, e_2, \dots, e_m \rangle$ according to how they are added to T_s .
- ▶ Consider the first edge $e_i = (u, v)$ such that $e_i \in T_s$ and $e_i \notin O_s$.

- ► Let *T_S* be the *distance tree* constructed by *Dijkstra's Algorithm* starting at *s*.
- Let O_s be an *optimal distance tree* rooted at s.
- Order the edges $\langle e_1, e_2, ..., e_m \rangle$ according to how they are added to T_s .
- ▶ Consider the first edge $e_i = (u, v)$ such that $e_i \in T_s$ and $e_i \notin O_s$.
- Then e₁,..., e_{i-1} ∈ T_S. Let S be the set of vertices added so far (ie, all endpoints of ⟨e₁...e_{i-1}⟩).

- Let T_s be the distance tree constructed by Dijkstra's Algorithm starting at s.
- Let O_s be an *optimal distance tree* rooted at s.
- Order the edges $\langle e_1, e_2, ..., e_m \rangle$ according to how they are added to T_s .
- ▶ Consider the first edge $e_i = (u, v)$ such that $e_i \in T_s$ and $e_i \notin O_s$.
- ▶ Then $e_1, ..., e_{i-1} \in T_S$. Let S be the set of vertices added so far (ie, all endpoints of $\langle e_1 ... e_{i-1} \rangle$).
- Each node in *S* has *minimum path distance* to *s*, the start vertex.

- ► Let *T_s* be the *distance tree* constructed by *Dijkstra's Algorithm* starting at *s*.
- Let O_s be an *optimal distance tree* rooted at s.
- Order the edges $\langle e_1, e_2, ..., e_m \rangle$ according to how they are added to T_s .
- ▶ Consider the first edge $e_i = (u, v)$ such that $e_i \in T_s$ and $e_i \notin O_s$.
- ▶ Then $e_1, ..., e_{i-1} \in T_S$. Let S be the set of vertices added so far (ie, all endpoints of $\langle e_1 ... e_{i-1} \rangle$).
- Each node in *S* has *minimum path distance* to *s*, the start vertex.
- Since (u, v) ∉ O_s it must be that there is some other shorter path p from s to v.

► Consider the edge $e_j = (x, y), j > i$ on p that has one endpoint in S and one in V - S.

► Consider the edge $e_j = (x, y), j > i$ on p that has one endpoint in S and one in V - S.

CASE 1: $y \neq v$, d[y] < d[v] and our algorithm would have chosen e_j next and not e_j .

- Consider the edge $e_j = (x, y), j > i$ on p that has one endpoint in S and one in V S.
- CASE 1: $y \neq v$, d[y] < d[v] and our algorithm would have chosen e_j next and not e_j .
- CASE 2A: If y = v and $d_O[y] < d_T[v]$ Dijkstra would have selected e_j rather than e_j .

- ► Consider the edge $e_j = (x, y), j > i$ on p that has one endpoint in S and one in V S.
- CASE 1: $y \neq v$, d[y] < d[v] and our algorithm would have chosen e_j next and not e_j .
- CASE 2A: If y = v and $d_O[y] < d_T[v]$ Dijkstra would have selected e_j rather than e_i .
- CASE 2B: Therefore, y = v and $d_O[y] = d_T[v]$, so we can swap (x, v) with (u, v) in O_S and O_S is now closer to T_S .

- ► Consider the edge $e_j = (x, y), j > i$ on p that has one endpoint in S and one in V S.
- CASE 1: $y \neq v$, d[y] < d[v] and our algorithm would have chosen e_j next and not e_j .
- CASE 2A: If y = v and $d_O[y] < d_T[v]$ Dijkstra would have selected e_j rather than e_i .
- CASE 2B: Therefore, y = v and $d_O[y] = d_T[v]$, so we can swap (x, v) with (u, v) in O_S and O_S is now closer to T_S .
 - ⋆ One can also prove this by induction

GENERALIZED ABSTRACT WEIGHTS

Dijkstra's algorithm and correctness need only the following properties:

	Dijkstra	General	Purpose
total order	≤		Path weight comparison
extremes	$0 \le weight \le \infty$	⊥ ⊑ weight ⊑ ⊤	Initialize values etc
associative op.	+	⊕	sum weights → path weight
identity	w+0=w=0+w	$W \oplus \bot = W = \bot \oplus W$	
monotonic	if $w \le w'$ then:	if $w \sqsubseteq w'$ then:	
	$s+w \le s+w'$ and	$s \oplus w \sqsubseteq s \oplus w'$ and	
	$w+s \leq w'+s$	$W \oplus S \sqsubseteq W' \oplus S$	

Use creative choices of *weights*, *total order*, and *associative operator* to solve other problems!