BUNDESREPUBLIK

Offenlegungsschrift ₀ DE 3123743 A1

(51) Int. Cl. 3:

B01F3/08

Aktenzeichen:

P 31 23 743.6 15. 6.81

Anmeldetag:

43 Offenlegungstag:

18. 3.82

DEUTSCHES

PATENTAMT

3 Unionspriorität: 3 3 3

② Erfinder:

Koskela, Eljas, 18100 Heinola, Fl

22.07.80 FI 802305

FinnReg Oy, 18100 Heinola, FI

(74) Vertreter:

(7) Anmelder:

Tiedtke, H., Dipl.-Ing.; Bühling, G., Dipl.-Chem.; Kinne, R., Dipl.-Ing.; Grupe, P., Dipl.-Ing.; Pellmann, H., Dipl.-Ing., Pat.-Anw., 8000 München

M Emulgiergerät

Die Erfindung bezieht sich auf ein Emulgiergerät, insbesondere für Emulgierung von Wasser in schweres Brennöl, in dem das Wasser in gewissem Verhältnis mit Hilfe eines Mundstückes (4) ins erhitzte Öl, um den Brennwirkungsgrad zu verbessern, eingespritzt wird. Der Erfindung gemäß wird das Wasser in einer Wassererhitzungseinrichtung (2) bis 80–120° C erhitzt, bevor die Speisung durch ein zwangsgesteuertes Ventil (3) ins Öl, und die auf diese Weise erzeugte Emulsion wird in einem Mischer (5) behandelt, der aus einigen mit Bezug aufeinander rotierenden homozentrischen und gelochten zylindrischen Flächen besteht, durch welche die Emulsion, um bessere Ölqualität zu erreichen, zu fließen gezwungen ist. (31 23 743)

3123743

Tiedtke - Buhling - Kinne GRUPE - PELLMANN

Patentanwälte und Vertreter beim EPA Dipl.-Ing. H. Tiedtke Dipl.-Chem. G. Bühling Dipl.-Ing. R. Kinne Dipl.-Ing. P. Grupe Dipl.-Ing. B. Pellmann

Bavariaring 4, Postfach 202403 8000 München 2

Tel.: 089-539653 Telex: 5-24 845 tipat

cable: Germaniapatent München

15. Juni 1981

DE 1316 / case 1508 CG

Patentansprüche

Emulgiergerät, inbesonders für Emulgierung von Wasser in schweres Brennöl, in welchem Gerät das Wasser in gewissem Verhältnis durch ein Mundstück ins erhitzten Öl eingespritzt wird um bessere Verbrennungsgütegrad zu erreichen, daduch gekennzeichnet, dass das Wasser in einer Wassererhitzungseinrichtung (2) bis 80-120° C erhitzt wird, bevor die Speisung durch ein zwangsgesteuertes Ventil (3) ins Öl, und dass die auf dieser Weise erzeugte Emulsion in einem Mischer (5) behandelt wird, der aus einige mit Bezug auf einandern rotierende homozentrische und gelöchte zylindrische Flächen (8,9) besteht, durch welche die Emulsion um bessere Ölqualität zu erreichen zu fliessen gezwungen ist.

2. Gerät nach Anspruch 1, dadurch gekennzeichnet, dass der Mischer aus einem zylindrischen geschlossenen Gehäuse (5) besteht, in dem in Richtung der Längsachse am gegenseitigen Ende des Mundstückes (4) eine von einem Motor (6) getriebene Welle (7) geht, an derem Ende im Gehäuse (5) zwei in Richtung der Welle (7) konzentrische mit kleinen radialischen Löchern vorgesehene rotierende Zylinder (8) befestigt sind, zwischen welchen ein in ähnlicher Weise gelöchter fester Zylinder (9) liegt. der auf dem anderen Ende des Gehäuses (5) befestigt ist, wobei die Emulsion durch diese Löcher der Zylinder (8,9) von innen nach aussen fliesst.

3. Gerät nach Ansprüche 1 und 2, dadurch gekennzeichnet, dass das Mundstück (4), das im wesentlichen entlängst derselben Linie mit der Welle (7) sich befindet, mit Gewinden in einem Mundstückhalter (12) befestigt ist und damit umtauschbar ist, und dass die Stellung des Mundstückhalters (12) in der Längs-richtung regulierbar ist.

TIEDTKE - BUHLING - KINNE GRUPE - PELLMANN

3123743

Vertreter beim EPA Dipl.-Ing. H. Tiedtke Dipl.-Chem. G. Bühling

Patentanwälte und

Dipl.-Ing. R. Kinne Dipl.-Ing: P. Grupe Dipl.-Ing. B. Pellmann

Bavariaring 4, Postfach 202403 8000 München 2 · .

Tel.: 089-539653 Telex: 5-24 845 tipat

cable: Germaniapatent München

15. Juni 1981

DE 1316 / case 1508 CG

FinnReg Oy Heinola / Finnland

Emulgiergerät

Die Erfindung bezieht sich auf ein Emulgiergerät, insbesonders für Emulgierung von Wasser in schweres Brennöl, in dem das Wasser in gewissem Verhältnis mit Hilfe einem Mundstück ins Öl eingespritzt wird um den Brennwirkungsgrad zu verbessern.

Da die Ölreichtümer der Welt begrenzt sind, ist die höchstmöglichste Nutzanwendung des rohen Öls aktuell geworden. Dieses ist die Ursache, dass u.a. das als Brennöl geeignete Öl qualitätsmässig schlechter geworden ist, d.h. dass man heute schwereres Öl verwendet. Andererseits sind die allgemeine Umgebungsschutzbestimmungen stränger geworden.

Das Verfahren dieser Art ist schon ziemlich lange gekannt, bei dem ins Öl Wasser eingemischt ist, wo Wasser und Öl möglischt qut mit einander zusammengemischt sind, zu erzeugen. Obgleich das Verfahren schon lange gekannt war, wurde es jodoch am Anfang nicht bedeutend vewendet. Nun, neues Wissen über Öl sowie bessere Emulgierungstechnik haben das Verfahren wieder in Betrieb gebracht und grosses Intresse erweckt. Mit Hilfe der Emulsion werden nämlich einige wichtige Vorteile erreicht:

Verbesserte Verbrennung: Die CO₂-Konzentration wird höher bei der Verbrennung.

Die Endtemperatur des Rauchgases vermindert sich. Die Konzentration der festen Partikeln vermindert sich. Periodendauer der Fegen wird länger.

Um die Emulsion zu erzeugen ist das Wasser versucht zu mischen ins Öl als Tröpfchen in gewissen Grössen und gewissen Massen. Die Tröpfchengrösse ist 2-5 µm zu sein. Die Masse ist verschieden, vom Verfertiger der Verbrennungseinrichtung abhängig, 4-6 Volumen-% aus der Ölmenge. Die teoretische Wassermenge ist 5 Volumen-%.

Wenn die Wassertröpfchen in der Emulsion klein genug sind, sind sie eingebunden in den Öltröpfchen, die in der Ölverbrennungseinrichtung zersplittert werden. Die erzeugende Gase verursachen, dass die Öltröpfchen schnell sich erwärmen und schon, wenn die Temperatur 100°C eingereicht ist, bildet es sich Wasserdampf, der das Öltröpfchen als mehrere Kleintröpfchen "zersprengt". Dieses verursacht eine kürzere Verbrennungszeit und darum vermindert sich auch die Konzentration der festen Partikeln.

Die Öl- und Wasseremulsion wird bei Verwendung verschiedenartige Verfahren erzeugt. Als meist gebräuchlich ist das s.g.
Spritzenverfahren, bei welchem das Wasser durch eine bzw. mehrere
Mundstücke in ein Ölrohr bzw. eine Ölpumpe eingespritzt wird.
Ähnliche sind die Geräte der U.S.-Patente 3,741,712 und
4,048,963 gemäss. Im letztgenannten Fall enthält das Gerät
zusätzlich einen Vibrator, mit dem, mit Hilfe der Tonfrquenzwellen, die Emulsionqualität zu verbessern versucht worden ist.
Diese bekannte Geräte fungieren doch zufriedenstellend im Fall
auf mittelschweres Öl. Dagegen aber, wenn man aus rohem Öl den
noch schwereren und billigeren Anteil zu verwenden versucht,
reicht ihre Effektivität nicht um genügend feingeteilte und
homogenische Emulsion zu erzeugen.

Das Ziel dieses Erfindung ist ein Emulgiergerät zustande zu bringen, mit Hilfe auf welches auch dieser schwerste Anteil des rohen Öls in den Ölverbrennern benutzt werden kann. Der Erfindung gemäss ist dieses möglich zuvor wegen der Zusammenwirkung von zwei Faktoren, nämlich dass das Wasser vor der Einspeisung durch ein zwangsgesteuertes Ventil ins Ölerhitzt wird, und dass die in dieser Weise erzeugte Emulsion vor der Einspeisung in den Verbrenner noch in einem spezialkonstruirten Mischer behandelt wird. Die Kennzechen der Erfindung gehen näher hervor aus den Patentansprüchen.

Nachstehend wird anhand beiliegender Zeichnungen ain Ausführungsbeispiel der Erfindung näher erläutert. Es zeigen:

- Fig. 1 eine schematische Zeichnung des Emulgiergerätes
 der Erfindung gemäss mit dazugehörenden Wassererhitzungseinrichtung und dem Emulsionmischer
 sowie
- Fig. 2 die Seitenansicht und die Ansicht eines Längsschnittes durch die Mitte des Mischers.

Das, möglicherweise erwärmte, Wasser wird durch eine Hochdruckpumpe 1 zum elektrische Wassererhitzer 2 eingeleitet, in dem
das Wasser bis 80-120°C erhitzt wird. Von dort fliesst das
Wasser durch ein zwangsgesteuertes Ventil 3, das stufenlos
die Wassermenge der Ölmenge gemäss regelt, zu einem am Ende
des Mischers befindlichen Wasservernehbelungsmundstück 4.
Der Mischer besteht aus einem zylinderförmigen geschlossenen
Gehäuse 5, wo in Richtung der Längsachse am gegenseitigen
Ende des Mundstückes eine von einem Motor 6 drehende Welle 7
geht. Im Gehäuse 5 auf dem Ende der Welle 7 sind zwei homozentrische mit kleinen radialischen Löchern vorgesehenen rotierende Zylinder 8 befestigt, dazwischen befindet sich ein in
ähnlicher Weise gelöcherter fester Zylinder 9, der auf dem anderen Ende des Gehäuses befestigt ist. Das Mundstück 4 ist von einem als Ansatz des Gehäuses 5 befestigten Zylinderstück 10 um-

geringt, der ein Endblech 11 besitzt, wo einen rohrförmigen in Längsrichtung regelbaren mit Gewinde eingeschraubten und mit einer Mutter 13 verriegelten Mundstückhalter 12 befestigt ist. Das Mundstück 4 ist mit gewinde im Mundstückhalter 12 befestigt, so dass es leicht mit einem grösseren bzw. kleineren Mundstück umgetauscht werden kann.

Im unteren Teil des Zylinderstückes 10 ist ein Rohrverschluss 14 für den Eingang des rohen Öls und im oberen Teil des Gehäuses 5 ist ein Rohrverschluss 15 für den Ausgang der fertigen Emulsion. Die Welle 7 ist mit Hilfe der Packringe 16 und einer Spannhülse (nicht eingezeichnet) im Hülse 10 gelagert, der auf dem Endblech des Gehäuses sitzt. Der Diameter der Löcher in den Zylindern 8 und 9 kann z.B. 0,5-1,5 mm und die Distanz zwischen den Zylinderflächen 1-2 mm sein. Die Umdrehungszahl der Welle 7 sowie der Zylinder 8 und 9 kann passend 2800 U/Min. sein. Falls sie bedeutend höher ist, versucht die Zentrifugalkraft Wasser und Ölauseinander zu trennen.

Das Gerät der Erfindung gemäss fungiert auf folgender Weise: Wasser wird über eine Hochdruckpumpe, Druck z.B. 25 bar, durch einen mit einem elektrischen Widerstand ausgerüsteten Wassererhitzer 2 und weiter durch ein zwangsgesteuertes Ventil 3 zum Mundstück 4 gespeist. Öl kommt, wie gekannt, bis 80-120°C erhitzt und unter Druck 0,5-3,5 bar zum Rohrverschluss 14 und fliesst weiter in den Zylinder 8, wo das Wassernebel aus dem Mundstück 4 in das Öl sich mischt. Die auf dieser Weise erzeugte halbfertige Emulsion fliesst dann im Mischer turnusmässig durch die Löcher der rotierenden und festen Zylinder und wird in dieser Weise gut gemischt, wobei eine feingeteilte und homogenische Emulsion erzeugt und weiter durch den Rohrverschluss 15 zum Ölverbrenner eingespeist wird.

Also, dank dem erhitzten Wasser und der Anwendung des Mischers, hochgeartete Emulsion erreicht worden ist, trotz dem, dass sehr schweres rohes Öl vewendet wird.

Die Konstruktion des Mischers kann aber in Rahmen der Patentansprüche bedeutend variiert werden. Nummer: 3123743
Int. Cl.³: B01F 3/08
Anmeldetag: 15. Juni 1981
Offenlegungstag: 18. März 1982

Emulsion

Oil

Wasser

Fig.1

Fig. 2