Scilab Textbook Companion for Fluid Flow For The Practicing Chemical Engineer

by J. P. Abulencia And L. Theodore¹

Created by
Ashish Mishra
B.TECH
Chemical Engineering
DCRUST,MURTHAL
College Teacher
Prof.sunda
Cross-Checked by
Mukul Kulkarni and Lavitha Pereira

March 24, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluid Flow For The Practicing Chemical Engineer

Author: J. P. Abulencia And L. Theodore

Publisher: John Wiley & Sons, U. S. A.

Edition: 1

Year: 2009

ISBN: 978-0470-31763-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	et of Scilab Codes	5
2	unit and dimensions	11
3	key terms and definitions	13
5	newtonian fluids	16
7	conservation law for mass	19
8	conservation law of energy	24
9	conservation law for momentum	27
10	law of hydrostatics	32
11	ideal gas law	38
12	Flow Mechanisms	42
13	laminar flow in pipe	47
14	TURBULENT FLOW IN PIPES	52
15	compressible and sonic flow	62
16	two phase flow	66
17	prime movers	70

18 valves and fittings	75
19 flow measurement	81
20 ventilation	87
21 academic application	93
22 industrial application	100
23 particle dynamics	114
24 sedimentation centrifugation and flotation	123
25 porous media and packed beds	133
26 fluidization	138
27 filteraion	147
28 environmental management	151
29 aaccident and emergency	159
31 numerical methods	163
32 economics and finance	166
33 biomedical engineering	170
34 open ended problems	175

List of Scilab Codes

Exa 2.1	some basic conversion
Exa 3.2	determine the rise of the liquid in capillary tube
Exa 3.3	find diameter of glass tube for the capillary height
Exa 3.4	determine the magnitude of the normal and parallel
	force components and the shear stress and the pressure
Exa 3.5	determine the potential energy of water for 10 meter
	height
Exa 5.2	two parallel plates
Exa 5.3	couette and hatschek viscometer
Exa 5.4	viscosities
Exa 7.1	conservation law of mass
Exa 7.2	mass and volumetric flow rate
Exa 7.3	calculate mass flow rate at opening of flow device
Exa 7.4	mass balance in acontrol device
Exa 7.5	vertical tanl
Exa 8.1	gas flow from cooler
Exa 8.2	a fluid flow device
Exa 8.5	a cylindrical tank
Exa 9.1	the force required to hold the plate
Exa 9.2	the force required to hold the bend in place in water .
Exa 9.3	maximum flow rate
Exa 9.4	fire hose
Exa 10.1	Determine the pressure exerted at the bottomof the col-
	umn and calculate the pressure difference
Exa 10.2	Determine the depth in the atlantic ocean at given pres-
	sure
Exa 10.3	cylindrical tank
Exa 10.4	buoyancy force

Exa 10.5	in hydrometer calculate height at which liquid will float
Exa 10.6	calculate the gauge pressure
Exa 11.2	density of ideal gas
Exa 11.3	actual volumetric flow rate
Exa 11.4	standard volumetric flow rate
Exa 11.5	molecular weight of gas
Exa 11.6	virial equation
Exa 11.7	Rk equation
Exa 12.1	calculate size of outlet duct required
Exa 12.2	calculate the reynolds number for a liquid
Exa 12.3	determine the reynolds number of a gas
Exa 12.5	calculate the average velocity of fluid and the volumatric
	flow rate
Exa 12.6	calculate the time to pass the liquid through the cross
	section of pipe
Exa 12.7	calculate the actual volumatric flow rate and reynolds
	number
Exa 13.1	calculate the average velocity when flow is viscous
Exa 13.2	determine pressure drop per unit length
Exa 13.4	determine maximum air velocity
Exa 13.5	calculate length of the pipe for a fully developed flow .
Exa 13.6	velocity distribution
Exa 13.7	calculate the reynolds no of the flow
Exa 14.1	calculate the reynolds no
Exa 14.2	Detemine the minimum velocity at which turblence will
	appear
Exa 14.3	predict the friction factor by different equation
Exa 14.4	Calculate the equivalent diameter
Exa 14.5	pipe diameter and velocity
Exa 14.6	determine the tube diameter and velocity
Exa 14.7	kerosene flow in pipe
Exa 14.8	determine the fanning friction factor and friction loss
	and the pressure drop
Exa 14.9	calculate the force required to hold the pipe in place.
Exa 14.10	turbulent flow through a pipe
Exa 14.11	calculate the volumetric flow rate in different condition
Exa 15.2	nitrogen gas
Exa 15.3	propane flow through a pipe

Exa 15.6	pressure drop in the flow of natural gas	33
Exa 15.7	reynolds number	34
Exa 15.8	pressure drop across the line	34
Exa 15.9	friction factor	35
Exa 16.2	pressure drop	36
Exa 16.3	pressure drop	37
Exa 16.4		37
Exa 16.6	flow regime	38
Exa 17.1	fan law	70
Exa 17.2	fan operating	70
Exa 17.3		71
Exa 17.4	pump in opeation	72
Exa 17.6	centrifugal pump	72
Exa 17.8		73
Exa 18.1		75
Exa 18.2		75
Exa 18.3		76
Exa 18.4		77
Exa 18.5		77
Exa 18.6	volumetric flow rate	78
Exa 18.7		79
Exa 18.8	pressure rise in pump	30
Exa 19.1	air pressure in the oil tank	31
Exa 19.2		32
Exa 19.3	mass flow rate	32
Exa 19.4	volumatric flow rate	33
Exa 19.5	venturimeter	34
Exa 19.6	flow rate	34
Exa 19.7	orifice meter	35
Exa 19.9	orifice pressure drop	36
Exa 20.2	diluent volumetric flow rate	37
Exa 20.3	limiting reactant	38
Exa 20.4	vinyl chloride application	90
Exa 20.7	ventilation flow rate	91
Exa 20.8	ventilation air	92
Exa 21.7	reynolds number	93
Exa 21.8	reynolds number	93
Exa. 21.9		94

Exa 21.10	centrifugal pump	95
Exa 21.12	friction loss	96
Exa 21.13	pitot tube	96
Exa 21.14	flow rate	97
Exa 21.16	pressure drop	98
Exa 22.4	centrifugal pump	100
Exa 22.5	total energy required	101
Exa 22.6	reynolds number and head	102
Exa 22.7	mass flow rate	103
Exa 22.8	gradual contraction	104
Exa 22.9	friction loss in the conduit	104
Exa 22.10	discharge and NPSH	105
Exa 22.11	pump requirement in hp	106
Exa 22.12	friction loss	108
Exa 22.13	friction loss and friction power loss per unit length of	
	pipe	109
Exa 22.14	average velocity of gasoline	110
Exa 22.15	average velocity of the benzene	112
Exa 22.16	steam flow rate	113
Exa 23.1	aerodynamic diameter	114
Exa 23.2	aerodynamic diameter	114
Exa 23.3	cunningham correction factor	115
Exa 23.4	particle terminal velocity	115
Exa 23.5	size of fly ash particle	117
Exa 23.7	average height of soap particles	118
Exa 23.8	reynolds number and terminal velocity	120
Exa 23.9	drag force	121
Exa 24.1	terminal velocity and effective viscosity	123
Exa 24.2	reynolds number	124
Exa 2.3	minimum size of charcoal	125
Exa 24.4	number of Gs	126
Exa 24.5	angular velocity	127
Exa 24.6	equatio describing pressure	127
Exa 24.7	angular speed and film thickness	128
Exa 24.8	velocity to obtain pure galena	129
Exa 24.9	size range of galena particle	130
Exa 24.10	maximum diameter	131
Exa 25.1	effective particle diameter	133

Exa 25.2	reynolds number
Exa 25.3	particle specific surface and effective diameter 134
Exa 25.4	specific surface and effective particle diameter 135
Exa 25.5	a catalyst tower
Exa 25.6	hydraulic radius and hydraulic diameter 136
Exa 26.2	water softner unit
Exa 26.3	pressure drop
Exa 26.4	minimum fluidization
Exa 26.5	pressure drop in packed bed
Exa 26.6	a bed of pulverized coal
Exa 26.7	volumetric flow rate
Exa 26.8	friction factor and permeability of the catalyst 143
Exa 26.9	activated carbon bed
Exa 26.10	bed height and porosity
Exa 26.11	fluidization mode
Exa 27.2	a plate and frame filter press
Exa 27.4	press and filter plate
Exa 27.5	filtration coefficients
Exa 27.7	filtration experiment
Exa 27.9	filter press capacity
Exa 28.3	cement dust emitting source
Exa 28.4	filter system
Exa 28.5	fabric system
Exa 28.6	manning equation
Exa 28.7	a watershed
Exa 28.8	aerobic digester
Exa 28.9	deep cavern
Exa 28.10	compliance stack test
Exa 29.2	probability distribution
Exa 29.3	an iron foundry
Exa 29.6	a baghouse
Exa 29.7	a cstr type reactor
Exa 31.1	linear algebraic equation
Exa 31.2	temperature and pressure 163
Exa 31.3	newton rapson method
Exa 31.4	simpson rule
Exa 32.5	fluid transportation
Exa 32.6	particulate control device

Exa 32.8	a filter press
Exa 32.9	an outdated environmental control device
Exa 33.1	viscosity of plasma
Exa 33.2	pressure units
Exa 33.5	artery branches
Exa 33.6	a blood vessel
Exa 33.7	average velocity of blood
Exa 33.8	heart beat
Exa 33.9	volume of blood
Exa 33.10	minimum pressure drop
Exa 33.12	power generated by heart
	a moving gas stream

unit and dimensions

Scilab code Exa 2.1 some basic conversion

```
1 //Example 2.1(1)
2 // Page no.10
3 printf("Example 2.1(1) Page no. 10 \n\")
4 //convert 8.03 yr to seconds
5 printf("8.03 yr =a\n\n")
6 yr = 365 / day
7 \, day = 24 / / h
8 h = 60 // min
9 \text{ min} = 60 / / \text{second}
10 \quad a=8.03*365*24*60*60
11 printf("8.03 yr is %f seconds \n\n",a)
12 //Example 2.1(2)
13 // Page no. 10
14 printf ("Example 2.1(2) Page no.10\n\n")
15 //convert 150 mile/h to yard/h
16 printf("150 mile/h =x n n")
17 \text{ mile} = 5280 // ft
18 ft = (1/3) //yd
19 x=150*5280*(1/3)
20 printf("150 mile/h is %f yd/h\n",x)
21 //Example 2.1(3)
```

```
22 //Page no. 10
23 printf ("Example 2.1(3) Page no. 10 \n\")
24 //convert 100 \text{ m/s}^2 to ft/min^2
25 printf("100 m/s^2 = a n n")
26 \text{ m} = 100 //\text{cm}
27 \text{ cm} = (1/30.48) // \text{ft}
28 \text{ min} = 60 // \text{sec}
29 a=100*100*(1/30.48)*(60)^2
30 printf("100 m/s^2 is %f ft/min^2\n",a)
31 / Example 2.1(4)
32 //Page no. 10
33 printf("Example 2.1(4) Page no.10\n\")
34 //convert 0.03 g/cm<sup>3</sup> to 1b/ft<sup>3</sup>
35 printf("0.03 \text{g/cm}^3 = x n")
36 \text{ g} = (1/454) // \text{lb}
37 ft=(30.48)^3/\text{cm}^3
38 x=0.03*(1/454)*(30.48)^3
39 printf("0.03 \, \text{g/cm}^3 is %f lb/ft^3 \, \text{n}",x)
```

key terms and definitions

Scilab code Exa 3.2 determine the rise of the liquid in capillary tube

```
1 clc;
2 //Example 3.2
3 //Page no. 25
4 printf ("Example 3.2 Page no. 25 \n\n")
5 //given temperature (T), pressure (P), capilLary tube
      diameter (D), water density (rho), contact angle (
      ththetaeta)
6 sigma=0.0712//surface tension (sigma) of water at 30
      degree C temperature in appendix A.4
7 D = 0.008
8 R=D/2
9 \text{ theta=0}
10 g = 9.807
11 rho=1000
12 printf ("surface tension=%fN/m\n Radius=%fm\n theta=
      \% fdegree \ n g=\% fm/s^2 \ n rho=\% fkg/m^3 \ n, sigma, R,
      theta,g,rho)
13 h=(2*sigma*cos(0))/(rho*g*R)//height rise of the
      liquid
14 printf("height of liquid rise =\%fm\n",h)
```

Scilab code Exa 3.3 find diameter of glass tube for the capillary height

```
1 clc;
2 //Example 3.3
3 // Page no. 26
4 printf("Example 3.3 Page no. 26 \ln n")
5 //given at 30 degree temerature
6 // properties of water from appendix A.2 density (rho)
      , surface tension (sigma)
7 rho=996
8 \text{ sigma} = 0.071
9 printf("rho=\%f\kg/m^3\n surface tension (sigma)=\%f N
     /m n", rho, sigma)
10 theta=0//negligible angle of contact
11 g=9.807
12 h=0.001//less than one milimeter
13 printf("theta=\%f degree \n g=\%f m/s^2\n h=\%f m\n",
      theta,g,h)
14 R=(2*sigma*cos(0))/(rho*g*h)//by capillary rise
      equation
15 D = 2 * R
16 printf ("R=\%f m\n D=\%f m\n",R,D)
17 //if the tube diameter is greater than 0.029075 mm,
      then the capillary rise will be less than 1mm
```

Scilab code Exa 3.4 determine the magnitude of the normal and parallel force components and the shear stress and the pressure

```
1 clc;
2 //Example 3.4
3 //page no. 28
4 printf("Example 3.4 page no 28\n\n");
```

```
5 S=2//surface area ft^2
6 F=10//magnitude of force,lbf
7 theta=%pi/6//angle
8 F_p=F*cos(theta)//parallel comp. of force
9 printf("\n F_p=%f lbf",F_p);
10 F_n=F*sin(theta)//normal comp. of force
11 printf("\n F-n=%f lbf",F_n);
12 tou=F_p/S//shear stress
13 P=F_n/S//pressure
14 printf("\n tou=%f psf\n P=%f psf",tou,P);
```

Scilab code Exa 3.5 determine the potential energy of water for 10 meter height

```
1 clc;
\frac{2}{\text{Example }} 3.5
3 //Page no. 30
4 printf("Example 3.5 Page no. 30 \n\n")
5 //determine potential energy of water
6 // given height, mass of water, g
7 \quad m=1
8 g = 9.8
9 Z1=0//at ground level
10 Z2=10//at 10 m above from ground level
11 printf("m=\%f kg\n g=\%f m/s^2\n Z1=\%f m\n Z2=\%f m\n",
     m,g,Z1,Z2)
12 PE1=m*g*Z1//potential energy at ground level
13 PE2=m*g*Z2//potential energy at 10m height
14 PE= PE2-PE1
15 printf ("PE1=\%fJ\n PE2=\%fJ\n PE=\%fJ\n", PE1, PE2, PE)
```

newtonian fluids

Scilab code Exa 5.2 two parallel plates

```
1 clc;
2 //Example 5.2
3 //page no. 42
4 printf("Example 5.2 page no 42 \ln n");
5 //To calculate the force to maintain movement of
      left plate
6 //velocity of moving plate is equal to the velocity
      of the plate and velocity of the gas at the
      surface of the stationary plate is zero
7 k=1.66//kinamatic viscosity of gas
8 rho=0.08//density of gas
9 d=0.0833//distance between plate
10 v1=300//velocity of left plate
11 v2=0//velocity of stationary plate
12 \text{ g_c=4.17*10^(8)}//\text{gravitational constant}
13 printf ("given \n kinamatic viscosity = \%2f ft ^2/hr\n
     rho=\%2f lb/ft^3 n d=\%4f ft n v1=\%f ft/hr n v2=\%f
      ft/hr n gc=\%f (ft*lb/hr)/lbf*hr",k,rho,d,v1,v2,
     g_c);
14 tou_xy=-k*rho*((v2-v1)/(g_c*d))//the free necessary
      to mantain the movement of the left plate
```

```
15 printf("\n force tou_xy=\%f lbf/ft^2",tou_xy);
```

Scilab code Exa 5.3 couette and hatschek viscometer

```
1 clc;
2 //Example 5.3
3 //Page no. 45
4 printf("Example 5.3 page no. 45 \ln n);
5 D=0.25//diameter of fixed inner cylinder of
      viscometer
6 L=0.5//height of fixed inner cylinder of viscometer
7 T=15.3//measured torque
8 printf ("Given :\n diameter =%.2 f ft\n height =%f ft\
     n Torque=%f ft.lbf",D,L,T);
9 F = (2 * T) / D
10 printf("\n force = \%f lbf",F);
11 //the shear stress (force parallel to the surface)
      using equation 5.11
12 tou=F/(\%pi*D*L)
13 printf("\n shear stress tou=\%f psf", tou);
```

Scilab code Exa 5.4 viscosities

```
1 clc;
2 //Example 5.4
3 //page no. 45
4 printf("Example 5.4 page no. 45\n\n");
5 //refer to example no 5.3
6 //determine dynamic viscosity and kinematic viscosity
7 omega=26.2//angular rotation speed
8 D=0.25//diameter of fixed inner cylinder of viscometer
```

```
9 \text{ v=omega*D/2}
10 printf("\n omega=\%f rad/s\n diameter D = \%f ft\n
      linear velocity =\%2f ft/s", omega,D,v);
11 d=0.001//clearance between two cylinder of
      visometer
12 vel. gradient =v/(d/12)//velocity gradient
13 gc=32.14//gravitational constant
14 printf("\n clearance d=\%5f ft\n vel. gradient=\%f 1/s
     \n gravitational constant gc = \%3f ft/s*S",d,vel.
     gradient,gc);
15 tou=311.7//shear stress tou
16 meu=gc*tou/vel. gradient
17 printf("\n tou=%f psf\n meu=%f lb/ft*s",tou,meu);
18 rho=60.528//density of oil
19 neu=meu/rho//kinamatic viscosity
20 printf("\n kinematic viscosity=\%5f (ft*ft)/s",neu);
```

conservation law for mass

Scilab code Exa 7.1 conservation law of mass

```
1 clc;
2 //Example 7.1
3 //page no. 64
4 printf("example no. 7.1 page no. 64 \ln n");
5 //applying coservation of mass
6 // rate of mass in-rate of mass out+rate of mass
      generated=rate of mass accumlated
7 //according to conditions in this example
8 //rate of mass in = rate of mass out
9 Rf=4000//rate of feed of gaseous waste into an
      incinerator
10 Ra=8000//rate of air feed
11 Rm=550//rate of methane added for combustion
12 Rin=Rf+Ra+Rm//total rate of mass in
13 Rout=Rin//Rout is rate of mass out
14 printf ("\n Rf=\%f kg/hr\n Ra=\%f kg/hr\n Rm=\%f kg/hr\n
      Rin=\%f \ kg/hr\n \ Rout=\%f \ kg/hr", Rf, Ra, Rm, Rin, Rout)
```

Scilab code Exa 7.2 mass and volumetric flow rate

```
1 clc;
2 //Example 7.2
3 //page no. 65
4 printf("Example 7.2 page no. 65 \ln n");
5 //water flowing through a converging circular pipe
      fig 7.3
6 //we have to determine mass and volumatric flow
      rates, mass flux of water
7 D1=.14// diameter of pipe at section 1
8 D2=.07//diameter of pipe at section2
9 v1=2//velocity at section
10 S1=\%pi*(D1^2)/4//surface area at section 1
11 rho = 1000 / density of water
12 printf ("\n diameter D1=\%f m\n diameter D2=\%f m\n v1=
      %f m/s\n Surface area S1=%f m^2\n density of
     water rho=\%f kg/m<sup>3</sup> ",D1,D2,v1,S1,rho);
13 q1= S1*v1//volumatric flow rate at section 1
14 m1=rho*q1//mass flow rate at section 1
15 G=m1/S1//mass flux at section 1
16 printf("\n volumatric flow rate q1=\%f m^3/s\n mass
      flow ratem1=\%f kg/s\n mass flux G=\%f kg/m<sup>2</sup>*s",q1
      ,m1,G);
17 S2 = (\%pi*D2^2)/4
18 q2=q1//q2 volumatric flow rate at section 2, due to
      steady flow q1=q2
19 printf("\n surface areaS1=%f m^2\n volumatric flow
      rate q2=\% f m^3/s, S1, q1)
20 v2=(v1*S1)/S2//v2 velocity at section 2
21 printf ("\n velocity v2=\%f m/s", v2)
22 //conclusion : decrease cross section area results in
       an increase in flow velocity for an
      incompressible fluid.
```

Scilab code Exa 7.3 calculate mass flow rate at opening of flow device

```
1 clc;
\frac{2}{\sqrt{\text{Example 7.3}}}
\frac{3}{\sqrt{\text{page no } 66}}, fig. 7.4
4 printf("Example 7.3 page no 66, fig 7.4 \ln n");
5 //fluid device has four openings as shoen in figure
6 //we have to calculate magnitude and direction of
      velocity, mass flow rate at section 4
7 rho=800//density of fluid
8 v1=5//velocity at section 1
9 S1=0.2//surface area at section 1
10 v2=7//velocity at section 2
11 S2=0.3//surface area at section 2
12 v3=12//velocity at section 3
13 S3=0.25//surface area at section 3
14 S4=0.15//surface area at section 4
15 printf("\n velocity v1=%f m/s \n surface area S1=%f
     m^2/s n velocity v2=\%f m/s n surface area S2=\%f m
      ^2/s\n velocity v3=%f m/s\n surface area S3=%f m
      ^2/s \ n surface area S4=%f m^2/s, v1, S1, v2, S2, v3,
      S3,S4);
16 q1=v1*S1//volumatric flow rate at section 1
17 q2=v2*S2//volumatric flow rate at section 2
18 q3=v3*S3//volumatric flow rate at section 3
19 printf ("\n volumatric flow rate q1=\%f m^3/s\n
      volumatric flow rate q2=\%f m<sup>3</sup>/s\n volumatrisc
      flow rate q3=\% f m^3/s, q1,q2,q3);
20 //applying continuity equation
21 q4=q1+q2-q3//volumatric flow rate at section 4
22 \text{ v4=q4/S4//velocity at section } 4
23 printf("\n volumatric flow rate q4=\%f m^3/s\n
      velocity v4=\%f \text{ m/s} ",q4,v4);
24 m=rho*q4//mass flow rate at section 4
25 printf("\n mass flow rate m=\%f kg/s",m);
```

Scilab code Exa 7.4 mass balance in acontrol device

```
1 clc;
2 //Example 7.4
\frac{3}{\sqrt{\text{page no } 67}}, fig 7.5
4 printf ("Example 7.4 page no, fig 7.5 \n\n")
5 // Given pollutant in ppm in liquid stream , some
      pollutant in discharge volume
6 //calculate what fraction of liquid bypass
7 //liquid stream having 600 ppm pollutant
8 //pollutant in the discharge stream is 50 ppm
9 //if B = factio of liquid bypassed, then 1-B= fraction
       of liquid treated
10 //performing a pollutant mass balance around point2
      in fig. 7.5
11 B=poly([0], 'x');
12 N = roots((1-B)*0+600*B-50*1)
13 printf("\n calculation:\n
                                 calculation of liquid
       bypassed B=\%.4 f ",N(1));
```

Scilab code Exa 7.5 vertical tanl

```
1 clc;
2 //Example 7.5
3 //page no 67
4 printf("Example 7.5 page no 67\n\n")
5 //water flow in tank inletand outlet pipes
6 //applying continuity principle to the control volume
7 //since generation rate =0
8 d1=0.09//diameter of inlet pipe
9 v_in=4//velocity,m/s
```

```
10 \text{ v_out=} 3//\text{velocity }, \text{m/s}
11 q_in=(%pi*d1^2)*v_in/4//volumatric flow rate at
      inlet
12 d2=0.04//diameter of outlet pipe
13 q_out = (\%pi*d2^2)*v_out/4
14 printf("\n diameter at inlet d1=\%f m\n volumatric
      flow rate at inlet q_{in}=\%f m^3/s n diameter d2=\%f
      m\n volumatric flow rate at outlet q_out=\%f m^3/
      s", d1, q_in, d2, q_out);
15 q=q_in-q_out//for an incompressible fluid of volume v
      q = (dv/dt) = q_i n - q_o ut
16 D=1.4//diameter of tank
17 S = (\%pi*D^2)/4
18 printf("\n volumatric flow in tank = \%f m^3/s n
      diameter of tank D=%f m\n surface area of tank S=
      %f m^2", q,D,S);
19 //z=fluid height
20 R_z=(q_in-q_out)/S//R_z rate of water level rise
21 printf("\n rate of water level rise R_z=%f m/s",R_z)
22 //R<sub>z</sub> is positive , the water level is rising in the
      tank from it's initial height of 1.5 m
```

conservation law of energy

Scilab code Exa 8.1 gas flow from cooler

```
1 clc;
2 //Example 8.1
3 //page no 75
4 printf("Example 8.1 page no 75 \ln n);
5 // heat is transferred from a gas
6 Cp=1090//average heat capacity of gas
7 M_dot=9//mass flow rate
8 T1=650//gas inlet temperature
9 //kinetic and potential enargy effects are neglected
      , there is no shaft work
10 Q=5.5e+6//heat transferred
11 delta_H=Q//since there are no kinetic, potential, and
      shaft work effects
12 printf("\n heat capacity Cp=\%f J/kg.deg c\n mass
      flow rate M_dot=%f kg/s\n gas inlet temperature
     T1=\%f \deg c n \text{ heat transferred } Q=\%f W',Cp,M_dot,
     T1,Q);
13 T2=round(-Q/(M_dot*Cp)) + T1
14 printf("\n temperature T2=\%f deg c ",T2);
```

Scilab code Exa 8.2 a fluid flow device

```
1 clc:
2 //Example 8.2
3 //page no 77 fig 8.2
4 printf ("Example 8.2 page no 77 fig 8.2 \ln n);
5 //fluid flow in a device
6 //fluid flow with in the control volume is steady
7 q1=8//flow rate at section 1, direction in
8 q2=6//flow rate at section 2, direction in
9 q3=14//flow rate at section 3, direction out
10 h1=250//enthalpy at section 1
11 h2=150//enthalpy at section 2
12 h3=200//enthalpy at section 3
13 rho=800//density of fluid
14 printf ("\n flow rate q1=\%f m^3/s\n flow rate q2=\%f m
      ^3/s \ n flow rate q3=\%f \ m^3/s \ n enthalpy h1=\%f \ j/s \ 
      kg n enthalpy h2=\%f j/kg n enthalpy h3=\%f j/kg n
      density of fluid rho=%f kg/m^3, q1, q2, q3, h1, h2, h3
      , rho);
15 //applying total energy balance
16 \text{ hp} = 746 / / 1 \text{ hp} = 746 \text{ kw}
17 H=rho*(q1*h1+q2*h2-q3*h3)/hp
18 printf("\n enthalpy H=%f hp",H);
19 //for adiabatic steady operation, Q_dot=0
20 W_dot=H//W_dot is work
21 printf("\n work W_{dot}=\%f hp", W_dot);
22 //since work is positive , the surroundings must be
      doing work on the system through some device
```

Scilab code Exa 8.5 a cylindrical tank

```
1 clc;
2 //Example 8.5
3 //page no 81 fig 8.3
4 printf(" Example 8.5 page no 81 fig 8.3 \ln n;
5 //a cylindrical tank filled with water
6 //applying bernoulli equation
7 z1=9//elevation head at section 1
8 h2=1//height at section 2
9 D1=3//diameter of cylindrical tank
10 D2=.3//diameter of outlet hole of tank
11 g=9.807//gravitational acceleration
12 printf("\n elevation head at section 1 z1=\%f m\n
     height at section h2=%f m\n diameter of
     cylindrical tank D1=%f m\n diameter of outlet
     hole of tank D2=%f m\n gravitational acc. g=%f m/
     s^2", z1, h2, D1, D2, g);
13 t=2*[(sqrt(z1)-sqrt(h2))/((sqrt(2*g))*(D2/D1)^2)]
14 printf("\n time t=\%f sec",t);
15 x=-(D2/D1)^2/ratio of a/g
16 printf("\n x=\%f",x);
17 //for this example the maximum acceleration is 1% of
      g, therefore saftey use Bernoulli equation
```

conservation law for momentum

Scilab code Exa 9.1 the force required to hold the plate

```
1 clc;
\frac{2}{\sqrt{\text{Example } 9.1}}
3 //page no 87
4 printf("Example 9.1 page no 87 \n\n");
5 //a horizontal water jet impinges on avertical plate
6 rho=62.4//density of water
7 v=100//horizontal velocity of water
8 q=0.5//flow rate
9 g=32.2//gravitational constant
10 printf("\n density rho=%f lb/ft^3\n horizontal
      velocity of water v=\%f ft/s\n flow rate q=\%f ft
      ^3/\mathrm{s}, rho, v,q);
11 M_{in}=(rho*q*v)/g//momentum rate of inlet water in
      the horizontal direction
12 printf("\n momentum rate M_{in}=\%f lbf", M_{in});
13 M_out=0//momentum rate of water out
14 \quad F = M_out - M_in
15 printf("\n net horizontal force F=\%f lbf",F);
16 //negative sign indicate that to hold the plate in
      place, a force must be exerted in a direction
      opposite to that of the water flow
```

Scilab code Exa 9.2 the force required to hold the bend in place in water

```
1 clc;
2 //Example 9.2
3 //page no 87
4 printf("Example 9.2 page no 87 \ln n");
5 //a horizontal line carries saturated steam
6 //water is entrained by the steam, and line is bend
7 //select the control volume as the fluid in the bend
       and apply amass balance
8 / \sin ce m1_dot = m2_dot, v1 = v2
9 m_dot=0.15//mass flow rate
10 V_in_x=420//velocity in horizontal x direction
11 V_out_x=0//velocity out ,horizontal direction
12 printf ("mass flow rate m_dot=%f kg/s\n velocity in x
       direction V_in=%f m/s\n velocity out in
      direction = \%f = m/s", m_dot, V_in_x, V_out_x);
13 //applying linear horizontal balance in x direction
14 F_x=m_dot*V_out_x-m_dot*V_in_x//force in x-dir
15 printf("\n force F_x=\%f N", F_x);
16 //the x-dir force acting on the 90 deg elbow
      therefore, F_x = +63 \text{ N}
17 V_in_y=0//velocity in vertical in y direction
18 V_out_y=420//velocity out vertical in y direction
19 printf ("velocity in y dir V_in_y=%f m/s\n velocity
      out y dir V_{out_y}=\%f m/s", V_{in_y}, V_{out_y};
20 F_y=m_dot*V_out_y-m_dot*V_in_y/force in y dir
21 printf("\n force in y dir F_y=\%f N", F_y);
22 //y dir force is acting on the elbow is therefore
      F_y = -63 \text{ N}
23 F_res=sqrt(F_x*F_x+F_y*F_y)//resultant force F_res
24 printf("\n resultant force F_res=\%f N", F_res);
25 //this is the force required to hold the elbow
```

Scilab code Exa 9.3 maximum flow rate

```
1 clc;
2 //Example
              9.3
3 //page no 88
4 printf("Example 9.3 page no 88 \ln n");
5 //water flow in a pipe
6 rho=62.4//density of water
7 D=0.167//diameter of pipe
8 g=32.174//gravitational constant
9 M_dot_out=0//momentum out in x dir
10 F_x=5/foce in the x dir
11 printf("density rho=\%f lb/ft^3\n diameter D=\%f ft\n
      momentum M_dot_out=%f lbf\n forc in x dir F_x=%f
       lbf",rho,D,M_dot_out,F_x);
12 M_dot_in=M_dot_out+F_x//momentum in
13 printf("\n momentum M_dot_in=\%f lbf", M_dot_in);
14 S=(\%pi*D^2)/4//surface area
15 printf("\n surface area S=\%f ft^2",S);
16 v=sqrt((M_dot_in*g)/(rho*S))
17 printf("\n velocity = \%f ft/s",v);
18 q=S*v//volumatric flow rate
19 m_dot=rho*q//mass flow rate
20 printf("\n volumatric flow rate q=\%f ft^3/s\n mass
     flow rate m_{dot}=\%f lb/s, q, m_dot);
```

Scilab code Exa 9.4 fire hose

```
1 clc;
2 //Example 9.4
3 //page no 89 fig 9.2
4 printf("Example 9.4 page no 89 fig. 9.2\n\n\n");
```

```
5 //water is discharged through a fire hose
6 rho=1000//density of water
7 meu=0.001//viscosity of water
8 q=0.025//flow rate at section 1
9 D1=.1//diameter at section 1
10 D2=.03//diameter at section 2
11 printf("\n density rho=%f kg/m^3\n viscosity meu=%3f
       kg/m.s n volumatric flow rate q=\%f m^3/s n
      diametetr at section 1 D1=%f m\n diameter at
      section 2 D2=\% f m", rho, meu, q, D1, D2);
12 S1 = (\%pi*D1^2)/4
13 S2=(\%pi*D2^2)/4
14 printf ("\n surface area at section 1 S1=\%f m^2\n
      surface area at section 2 S2=\% f m^2, S1,S2);
15 v1=q/S1//velocity at section1
16 \text{ v2=q/S2//velocity at section 2}
17 printf("\n velocity at sec1 v1=\%f m/s\n velocity at
      \sec 2 \ v2 = \% f \ m/s", v1, v2);
18 //appuing bernoulli's equation between point 1 and 2
19 P2=0//pressure at point 2
20 P1=(rho/2)*(v2^2-v1^2)//pressure at point 1
21 printf("\n pressure at point2 P2=%f Pag(pascal gauge
     \\n pressure atpoint1 P1=\%f Pag", P2, P1);
22 m_dot1=25//mass flow rate at section 1
23 m_dot2=25//mass flow rate at section 2
24 printf("\n mass flow rate m_dot1=\%f kg/s\n mass flow
       rate m_{dot}2=\%f kg/s", m_{dot}1, m_{dot}2);
25 M_dot1_x=m_dot1*v1//momentum rate in x dir at
      section 1
26 M_dot2_x=m_dot2*v2//momentum rate in x dir at
      section 2
27
  printf("\n momentum rate M_{dot1_x}=\%f N\n momentum
      rate M_dot2_x=\%f N",M_dot1_x,M_dot2_x);
28 //applying momentum balance in the x direction
29 F_x=M_dot2_x-M_dot1_x-P1*S1//force from momentum
      balance
30 printf("\n force from momentum balance F_x = \%f N", F_x
     );
```

law of hydrostatics

Scilab code Exa 10.1 Determine the pressure exerted at the bottomof the column and calculate the pressure difference

```
1 clc;
2 //Example 10.1
3 //page no 98
4 printf("Example 10.1 pagr no. 98\n\n");
5 // in a column of liquid
6 h=2.493//height of the liquid (mercury) column
7 rho=848.7//density of mercury
8 P_at=2116//atmospheric pressure
9 printf("\n height of mercury h=\%f ft\n density of
     mercury rho=%f lb/ft^3\n atmospheric pressure
     P_at=\%f psf ",h,rho,P_at);
10 //refer to equation 10.5
11 g = 9.8
12 g_c = 9.8
13 P=rho*(g/g_c)*h//gauge pressure
14 P_ab=round(P+P_at)//absolute pressure
15 printf("gauge pressure P=%f psf\n absolute pressure
     P_ab=\%f psf", P_ab);
```

Scilab code Exa 10.2 Determine the depth in the atlantic ocean at given pressure

```
1 clc;
2 //Example 10.2
3 //page no 99
4 printf("Example 10.2 page no 99\n\n");
5 //determining the depth of
                               atlantic ocean
6 rho=1000//density of water
7 P1=10//pressure at which depth is to be determine
8 P2=1//pressure at the ocean surface z1
9 z1=0//ocean surface
10 g=9.807//gravitational constant
11 printf("\n density rho=%f kg/m^3\n pressure P1=%f
     atm\n pressure P2=%f atm\n height at ocean
     surface z1=\%f m", rho, P1, P2, z1);
12 z_{2}=z_{1}-(P_{1}-P_{2})*101325/(r_{1}o*g)/depth at pressure P2
13 printf(" \n depth z2=\%f m",z2);
```

Scilab code Exa 10.3 cylindrical tank

```
1 clc;
2 //Example 10.3
3 //page no 99 fig 10.1
4 printf("Example 10.3 page no 99 fig 10.1\n\n\n");
5 //a cylindrical tank contain water and immiscible
    oil ,tank isvopen to the atmosphere
6 rho=1000//density of water
7 SG=0.89//special gravity of oil
8 rho_oil=rho*SG//density of oil
9 printf("\ density of water rho=%f kg/m^3\n density
    of oil rho_oil=%f kg/m^3",rho,rho_oil);
```

```
10 //applying bernoulli equation between point 1 and 2
      to calculate the gauge pressure at water oil
      interface
11 z1=0//depth at surface
12 P1=1//pressure at point 1
13 z2 = -10.98 / depth at point 2
14 printf("\n depth at point 1, z1=\%f m\n pressure P1=
      \%f atm\n depth at point 2,z2=\%f m",z1,P1,z2);
15 g=9.807//gravitational constant
16 P2_gu=rho_oil*g*(z1-z2)//gauge pressure at point 2
17 printf("\n gauge pressure P2_gu=\%f Pag", P2_gu);
18 //gauge pressure at bottom z3
19 z3 = -13.72
20 P3=P2_gu+rho*g*(z2-z3)
21 printf("\n depth z3=%f m\n pressure at bottom P3=%f
      Pag", z3, P3);
22 d=6.1/diameter
                    of tank
23 s=\%pi*d^2/4//surface area of tank
24 printf("\n diameter of tank d=%f m\n surface area of
       tank s=\%f m^2",d,s);
25 \text{ P3\_ab=P3+101325}//absolute pressure}
26 F=P3_ab*s//pressure force at the bottom of tank
27 printf("\n absolute pressure P3_ab=%f Pag\n pressure
       force at bottom F=\%f N", P3_ab, F);
28 //the force on the side of the tank, within water
      laver
29 F_s = (\%pi*d)*integrate('-11910-9807*z', 'z')
      ,-13.72,-10.98);
30 printf("\n force on the side of the tank F_s=\%f N",
      F_s);
```

Scilab code Exa 10.4 buoyancy force

```
1 clc;
2 //Example 10.4
```

```
3 //page no 102
4 printf(" Example 10.4 page n0 102 \n\n");
5 W_a=200//weight of material in air
6 W_w=120//weight of material in water
7 gamma_w=62.4//specific weight of water
8 printf("\n weight of air W_a=\%f lbf\n weight of
     water W_w=\%f lbf\n sp.weight of water gamma_w=\%f
     lbf/ft^3", W_a, W_w, gamma_w);
9 F_b=W_a-W_w//buoyant force
10 printf("\nbuoyant force F_b=\%f lbf", F_b);
11 V_dis=F_b/gamma_w//volume displaced
12 printf("\n volume displaced V_dis=%f ft^3", V_dis);
13 rho_b=W_a/V_dis//density of block
14 printf("\n density of block rho_b=\%f lb/ft^3",rho_b)
     ;//printing mistake in book
15 //assumption of rho_b>rho_w is justified
```

Scilab code Exa 10.5 in hydrometer calculate height at which liquid will float

```
1 clc;
2 //Example 10.5
3 //page no 103
4 printf("\n Example 10.5 page no 103\n\n");
5 //a hydrometer is a liquid specific gravity
    indicator with the value being indicated by the
    level at which the surface of the liquid
    intersects the sten when floating in avliquid
6 F=0.13//the total hydrometer weight, N
7 SG=1.3//sp. gravity of liquid
8 D=.008//stem diameter of hydrometer,m
9 rho_w=1000//density of water ,kg/m^3
10 g=9.807
11 pi=22/7
12 printf("\n force F=%f N\n sp.gravity SG=%f \n stem
```

```
diameter D=%f m\n density rho_w=%f kg/m^3\n g=
    ravitational acc. g=%f m/s^2",F,SG,D,rho_w,g);
13 h=(4*F/(pi*D^2*rho_w*g))*(1-1/SG)//height where it
    will float
14 printf("\n height h=%f m",h);
```

Scilab code Exa 10.6 calculate the gauge pressure

```
1 clc:
2 // Example 10.6
3 / page no 105 fig. 10.3
4 printf("\n Example 10.6 page no 105 fig. 10.3 \ln n"
     );
5 // since the density of air is effectively zero, the
     contribution of air to the 3 ft. manometer can be
       neglected
6 //the contribution due to the carbon tetrachloride
     can be found by using the hydrostatic equation
7 rho=62.3//density of water
8 SG=1.4///specific gravity of ccl4
9 h=3//height in manometer
10 P=rho*SG*h/144//factor 144 for psf to psi
11 printf(" \n pressure P=\%f psi",P);
12 P_r=14.7//the right leg of manometer is open to
     atmosphere, atmospheric pressure at this point
13 //contribution to the pressure due to the height of
     water above pressure gauge
14 P_w=rho*h/144
15 printf("\n
               pressure at right leg P_r=%f psia\n
     pressure due to water height P_w=%f psi",P_r,P_w)
16 P_a=P_r-P+P_w/absolute pressure
17 P_g = P_a - 14.7 // gauge pressure
18 printf ("\n absolute pressure P_a=\%f psia\n gauge
     pressure P_g = \%f \text{ psig}", P_a, P_g;
```

```
19 P_af=P_a*144
```

- $20 P_gf = round(P_g*144)$
- 21 printf("\npressure in psfa $P_af=\%f$ psfa\n pressure in psfg $P_gf=\%f$ psfg", P_af , P_gf);

ideal gas law

Scilab code Exa 11.2 density of ideal gas

```
1 clc;
2 //Example 11.2
3 //Page no. 113
4 printf("Example 11.2-Page no.113\n\n")
5 //given
6 //Pressure(P),Temp.(T),Molecular wt. of gas(M)
7 P=1//atm
8 T_d=60//degree F
9 M=29//gram
10 //Gas constant R
11 R=.73
12 T=T_d+460// rankin
13 //density of gas
14 rho=(P*M)/(R*T)
15 printf("density of gas rho =%flb/ft^3",rho)
```

Scilab code Exa 11.3 actual volumetric flow rate

```
1 clc
2 //Example 11.3
3 //Page no. 114
4 printf ("Example 11.3 - Page no. 114 \ n\ ")
5 //given
6 //standard volumetric flowrate of a gas stream (Qs),
      standard conditions, actual conditions
    Qs = 2000 / scfm
    Ps=1//atm
    Ts=60//degree F
    Pa=1//atm
10
    Ta=700//degree F
12 \quad Ta = Ta + 460 / / rankin
13 Ts=Ts+460//rankin
    Qa=Qs*(Ta/Ts)*(Ps/Pa)
14
15 printf("actual volumetric flowrate Qa=%f acfm",Qa)
```

Scilab code Exa 11.4 standard volumetric flow rate

```
1 clc
2 //Example 11.4
3 //Page no. 115
4 printf ("Example 11.4 - Page no. 115 \ n\ ")
5 //given
6 //mass flowrate of flue gas , average moleculer
      weight flue gas, standard conditions
    m=50//lb/min
    M=29//lb/lbmol
9
    Ts=60//degree F
    Ps=1//atm
10
    R=0.73/atm. ft^3/(lbmol.degree R)
11
    Ts = Ts + 460 / / rankin
12
    Qs = (m/M) * (R*Ts/Ps)
13
14
    printf ("standard volumetric flowrate Qs=%f scfm", Qs
```

Scilab code Exa 11.5 molecular weight of gas

```
1 clc
2 //Example 11.5
3 //Page no. 116
4 printf("Example 11.5-Page no.1 116\n\n")
5 //given
6 //specific volume(V), temperature(T), pressure(P)
7 V=12.084//ft^3/lb
8 T=70//degree F
9 P=1//atm
10 R=0.73
11 T=T+460//rankin
12 Mw=(R*T)/(P*V)
13 printf("molecular weight of gas Mw=%f", Mw)
```

Scilab code Exa 11.6 virial equation

```
1 clc;
2 //Example 11.6
3 //page no 118
4 printf("Example 11.6 page no 118\n\n");
5 clear;
6 //first and second viral coeff.
7 B=-0.159//m^3/kgmol
8 C=0.009//(m^3/kgmol)^2
9 V_new=0
10 V=0.820;
11 for i=1:3
12     V_new=(1+(B)/V+(C)/(V^2))/1.22
13     V=V_new
```

```
14 end
15 printf("\nVolume of gas V=%f L/gmol",V)
```

Scilab code Exa 11.7 Rk equation

```
1 clc;
2 //Example 11.7
3 //page no 118
4 printf("Example 11.7 page no 118\n\n");
5 //given
6 T_c=343// critical temperature, deg R
7 P_c=45.4//critical pressure, atm
8 //emplying redlich kwong (R-K) equation
9 R=0.73//gas constant
10 a = round(0.42748*R^2*T_c^2.5/P_c)/R-k constant
11 b=0.08664*R*T_c/P_c//R-k constant
         V_{new} = [[490/(V-b)] - [a/(25.9*V*V+b)]]/10
12 //
13 // V=V_new
14 //by trial and error method
15 \quad V = 48.8
16 printf("\n Volume V=\%f ft^3/lbmol",V);
```

Flow Mechanisms

Scilab code Exa 12.1 calculate size of outlet duct required

```
1 clc;
2 //Example 12.1
3 //page no 124
4 printf ("Example 12.1 page no 124 \ln n");
5 T_i=660//temperature of flue at inlet in furnsce
6 D_1=6//inside diameter of pipe, ft
7 v_1=25//velocity at inlet
8 printf("\n temperature at inlet T_i=\%f k\n diameter
      at inlet D_1=\%f ft\n velocity at inlet v_1=\%f ft/
      s",T_i,D_1,v_1);
9 A_1 = \%pi/4*D_1^2;
10 q_1=A_1*v_1//volumatric flow rate at inlet
11 printf ("\n area at ilet A_1=\%f st^2\n volumatric
      flow rate at inlet q_1=\% ft<sup>3</sup>/s",A<sub>1</sub>,q<sub>1</sub>;
12 //applying charle's law for volumatic flow out of
      the scrubber
13 //given
14 T_2=2360// the temperature up to which furnace heats
      the gas
15 v_2=40//velocity of flow at outlet
16 printf("\n temperature T_2=\%f k\n velocity of flow
```

Scilab code Exa 12.2 calculate the reynolds number for a liquid

```
1 clc;
2 //Example 12.2
3 //page no 125
4 printf("Example 12.2 page no 125\n\n");
5 //to calculate reynolds number
6 L=2.54//diameter of tube in cm
7 rho=1.50//density of liquid in gm/cm^3
8 v=20//velocity of flow in cm/s
9 meu=0.78e-2//viscosity of liquid in g/cm*s
10 printf("\n diameter of tube L=%f cm\n density rho=
%f gm/cm^3\n velocity v=%f cm/s\n viscosity meu=
%f g/cm*s",L,rho,v,meu);
11 R_e=L*rho*v/meu//reynolds number
12 printf("\n Reynolds no. R_e=%f",R_e);
```

Scilab code Exa 12.3 determine the reynolds number of a gas

```
1 clc;
2 //Example 12.3
3 //page no 126
4 printf("\n Example 12.3 page no 126\n\n");
5 //to determine the teynolds no of a gas stream
```

```
6 v=3.8//velocity through the duct
7 D=0.45//duct diameter
8 rho=1.2//density of gas
9 meu=1.73e-5//viscosity of gas
10 printf("\n velocity v=%f m/s\n diameter D=%f m\n density rho=%f kg/m^3\n viscosity meu=%f kg/m*s", v,D,rho,meu);
11 R_e=D*v*rho/meu//reynolds no
12 printf("\n reynoldsno R_e=%f",R_e);
```

Scilab code Exa 12.5 calculate the average velocity of fluid and the volumatric flow rate

```
1 clc;
2 //Example 12.5
3 //page no 128
4 printf(" Example 12.5 page no 128\n\n");
5 SG=0.96//sp.gravity of a liquid
6 R=0.03//radius of long circular tube through which
     liquid flow
7 //flow rate is related with the diameter of circular
      tube
8 q=2*\%pi*(3*R^2-(200/3)*R^3);
9 printf("\n volumatric flow rate q=\%f m^3/s",q);
10 rho_w=1000/density of water
11 rho_l=SG*rho_w//density of liquid
12 m_dot=rho_l*q//mass flow rate
13 printf("\n mass flow rate m_{dot}=\%f kg/s", m_{dot});
14 s=%pi*R^2//surface area
15 v_av=q/s//average velocity
16 printf("\n average velocity v_av = \%f m/s", v_av);
```

Scilab code Exa 12.6 calculate the time to pass the liquid through the cross section of pipe

Scilab code Exa 12.7 calculate the actual volumetric flow rate and reynolds number

```
1 clc;
2 //Example 12.7
3 //page no 130
4 printf("Example 12.7 page no. 130\n\n");
5 //a gas is flowing through a circular duct
6 D=1.2//diameter of duct, ft
7 T=760//temperature, k
8 P=1//pressure
9 T_s=520//standard temperature
10 P_s=1//standard pressure
11 q_s=1000// standard volumatric flow rate, in scfm(
      given)
12 q=q_s*(T/T_s)*(P/P_s)//actual volumetric flow rate
13 printf("\n actual volumatric flow rate q=%f acfm",q
      ):
14 \text{ s=\%pi*D^2/4//cross sectional area}
15 s_m = s*0.0929 // area in m^2
16 \text{ v=(q/s)/}60//\text{velocity}
```

```
17 printf("\n average velocity v=\%f ft/s",v);
18 MW=33//mlecular weight of gas
19 R=0.7302//gas constant
20 rho=(P*MW)/(R*T)//density from ideal gas law
21 printf("\n density rho=\%f lb/ft^3",rho);
22 m_dot=rho*v*s_m//mass flow rate
23 printf("\n mass flow rate m_dot=\%f lb/s", m_dot); //
      printing mistake in book
D_m=0.366//diamter in m
v_m=6.55//velocity in m/s
26 rho_m=rho*(0.4536/.3048^3)//density in kg/m^3
27 rho_m=0.952//round off value
28 printf("\nv_m = \%f", v_m);
29 meu=2.2e-5//viscosity of gas in
30 R_e=D_m*v_m*rho_m/meu//reynolds no
31 printf("\n reynolds no R_e = \%f ", R_e); // calculation
      error in book
```

laminar flow in pipe

Scilab code Exa 13.1 calculate the average velocity when flow is viscous

```
1 clc;
2 //Example 13.1
3 //page no 136
4 printf("Example 13.1 page no 136 \n\n");
5 //calculate average velocities for which the flow
      will be viscous, laminar
6 //(a) water at 60 deg F in a 2-inch standard pipe
7 R_e=2100//reynolds number <2100, for laminar flow
8 meu_w=6.72e-4//viscosity of water, lb/ft.s
9 rho_w=62.4//density of water, lb/ft^3
10 D_w=2.067//diameter of pipe, ft
11 v_w = (R_e * meu_w)/((D_w/12) * rho_w)/velocity of water
12 printf("\n velocity v_w = \%f ft/s", v_w);
13 //(b) air at 60 deg F and 5 psig in a 2 inch
     standard pipe
14 meu_a=12.1e-6//viscosity of air , lb/ft.s
15 rho_a=.1024// density of air, lb/ft^3
16 D_a=0.17225//diameter of pipe , ft
17 v_a=(R_e*meu_a)/(D_a*rho_a)/velocity of air
18 printf("\n velocity of air v_a = \%f ft/s", v_a);
19 //(c) oil of a viscosity of 300 cP and SG of .92 in
```

```
a 4 inch standard pipe

20 meu_o=300*6.72e-4//viscosity of oil ,lb/ft.s

21 rho_o=0.92*62.4//density of oil , lb/ft^3

22 D_o=.3355//diameter of pipe ,ft

23 v_o=round((R_e*meu_o)/(D_o*rho_o))//velocity of oil

24 printf("\n velocity of oil v_o=%f ft/s",v_o);
```

Scilab code Exa 13.2 determine pressure drop per unit length

```
clc;
//Example 13.2
//page no 137
printf(" Example 13.2 page no 137\n\n");
//refer to part a of example 1
//appplying Hagen-Poiseuille equation
meu=6.72e-4//viscosity of water
v=0.13//velocity of water
D=2.067/12//diameter of pipe
P_1=32*meu*v/(D^2)
printf("\n pressure drop per unit length P_l=%f psf/ft",P_1);
```

Scilab code Exa 13.4 determine maximum air velocity

```
1 clc;
2 //Example 13.4
3 //page no 138
4 printf(" Example 13.4 page no 138\n\n");
5 //an air conducting duct has a rectangular cross section
6 w=1//width of rectangular section
7 h=0.25//height of rectangular section
8 D=2*w*h/(w+h)//equivalent or hydraulic diameter
```

```
9 printf("\n hydraulic diameter D=%f m",D)
10 R_e=2300//critical reynolds no
11 neu=1e-5//kinematic viscosity of air
12 v=R_e*neu/D//velocity
13 printf("\n velocity of air v=%f m/s",v);
```

Scilab code Exa 13.5 calculate length of the pipe for a fully developed flow

```
1 clc;
2 //Example 13.5
3 //page no 139
4 printf(" Example 13.5 page no 139 \n\n");
5 //a circulsr horizontal tube cntains asphalt
6 D=0.1667//diameter of tube, ft
7 s=%pi*D^2/4//surface area of tube, ft^2
8 q=0.486//volumatric flow rate, ft ^3/s
9 \text{ v=q/s//flow velocity}
10 printf("flow velocity v=\%f ft/s",v);
11 g = 32.174
12 P_grad=144//pressure gradient ,psf/ft
13 meu=(\%pi*P_grad*g*D^4)/(128*q)/dynamic viscosity,
      laminar flow
14 printf("\n dynamic viscosity meu=%f lb/ft.s", meu);
15 //check on the laminar flow
16 \text{ rho} = 70 // \text{density}, \frac{1b}{ft}
17 R_e=D*v*rho/meu//reynlods number
18 printf("\n reynolds no R_e=\%f ", R_e);
19 f=16/R_e//fanning friction factor
20 printf("\n friction factor f=\%f",f);
21 //the pipe must be longer than the entrance length
      to have fully developed flow
22 L_e=0.05*D*R_e/entrance length
23 printf("\n entance length L_e=\%f ft", L_e);
```

Scilab code Exa 13.6 velocity distribution

```
clc;
2 //Example 13.6
3 //page no 140
4 printf(" Example 13.6 page no 140 \ln n);
5 //liquid glycerin flows in a tube
6 //to obtain the properties of glycerine use table A
      .2 in the appendix
7 rho=1260//density, kg/m^3
8 meu=1.49//viscosity, kg/ms
9 neu=meu/rho//kinematic viscosity,m<sup>2</sup>/s
10 R=0.02//by no slip condition radius of tube, m
11 q=32*\%pi*integrate('r-2500*r^3','r',0,R);//
      volumatric flow rate from the given parabolic
      velocity distribution
12 printf("vol. flow rate q=\% f m^3/s",q);
13 r=0//for average velocity for laminar flow
14 \text{ v_av} = 16*(1-2500*r^2)/2//\text{average velocity}
q=0.010//approximation
16 m_dot=q*rho//mass flow rate
17 G=rho*v_av//mass flux
18 M_dot=m_dot*v_av//inear momentum flux
19 printf("\n av. velocity v_av=%f m/s\n mass flow rate
       m_{dot}=\%f kg/s n mass flux G=\%f kg/m^2.s n linear
      mometum flux M_{dot}=\%f N \text{ ",v_av,m_dot,G,M_dot)};
```

Scilab code Exa 13.7 calculate the reynolds no of the flow

```
1 clc;
2 //Example 13.7
3 //page no 142
```

TURBULENT FLOW IN PIPES

Scilab code Exa 14.1 calculate the reynolds no

```
1 clc;
2 //Example 14.1
3 //page no 148
4 printf("Example 14.1 page no 148\n\n");
5 //a liquid flow through a tube
6 meu=0.78e-2//viscosity of liquid,g/cm*s
7 rho=1.50//density,g/cm^3
8 D=2.54//diameter,cm
9 v=20//flow velocity
10 R_e=D*v*rho/meu//reynolds no
11 printf("\n Reynolds no R_e=%f",R_e);
```

Scilab code Exa 14.2 Determine the minimum velocity at which turblence will appear

```
1 clc;
```

```
//Example 14.2
//page no 148
printf("Example 14.2 page no 148\n\n");
//a fluid is moving through a cylinder in laminar flow
meu=6.9216e-4//viscosity of fluid,lb/ft*s
rho=62.4//density,lb/ft^3
D=1/12//diameter,ft
R_e=2100//reynolds no
v=R_e*meu/(D*rho)//minimum velocity at which turbulance will appear
printf("\n velocity v=%f ft/s",v);
```

Scilab code Exa 14.3 predict the friction factor by different equation

```
1 clc;
2 //Example 14.3
3 //page no 152
4 printf("Example 14.3 page no 152\n\n");
5 //calculate the friction factor by using different
      equation 's
6 R_e = 14080 / reynolds no
7 K_r=0.004//relative roughness
8 //(a) by PAT proposed equation
9 f_a=0.0015+[8*(R_e)^0.30]^-1
10 printf("\n fanning friction factor f_a = \% f", f_a);
11 / \text{equation for } 5000 < R_e > 50000
12 f_b1=0.0786/(R_e)^0.25
13 printf("\n friction factor f_b1=\%f", f_b1);
14 // equation for 30000 < R_e > 1000000
15 f_b2=0.046/(R_e)^0.20
16 printf("\n friction factor f_b = \%f", f_b = \%f
17 // equation for the completely turbulent region
18 f_c=1/[4*(1.14-2*log10(K_r))^2]
19 printf("\n friction factor f_c = \%f", f_c);
```

```
20  // equation given by jain
21  f_d=1/[2.28-4*log10(K_r+21.25/(R_e^.9))]^2
22  printf("\n friction factor f_d=%f",f_d);
23  f_e=0.0085  // from figur 14.2
24  printf("\n friction factor f_e=%f",f_e);
25  f_av=(f_a+f_b1+f_b2+f_c+f_d+f_e)/6
26  printf("\n average friction f_av=%f",f_av);
```

Scilab code Exa 14.4 Calculate the equivalent diameter

```
1 clc;
2 //Example 14.4
3 //page no 154
4 printf("Example 14.4 page no 154\n\n");
5 //for turbulent fluid flow in across section
6 //(a) for a rectangle
7 w=2// width of a rectangle, in
8 h=10//height of rectangle, in
9 S_a=h*w//cross sectional area
10 P_a=2*h+2*w//perimeter of rectangle
11 D_eq_a=4*S_a/P_a//equivalent diameter
12 printf("\n equivalent diameter D_{eq_a}=\%f in", D_{eq_a}
13 //(b) for an annulus
14 d_o=10//outer diameter of annulus
15 d_i=8//inner diameter
16 S_b=\%pi*(d_o^2-d_i^2)/4//cross sectional area
17 P_b = \%pi*(d_o-d_i)/perimeter
18 D_{eq_b}=(4*S_b)/(P_b)/eq. diameter
19 printf("\n equivalent diameter D_eq_b=%f cm", D_eq_b)
20 //(c) for an half-full circle
21 d_c=10//diameter of circle
22 S_c=%pi*d_c^2/8// cross sectional area
23 P_c = \%pi * d_c/2 // perimeter
```

```
D_eq_c=4*S_c/P_c//eq. diameter printf("\n equivalent diameter D_eq_c=%f cm",D_eq_c);
```

Scilab code Exa 14.5 pipe diameter and velocity

```
1 clc;
2 //Exampkle 14.5
3 //page no 157
4 printf("Example 14.5 page no 157 \ln n);
5 //air is transported through a circular conduit
6 MW=28.9//molecular weight of air
7 R=10.73//gas constant
8 T=500//temperature
9 P=14.75//pressure, psia
10 //applying ideal gas law for density
11 rho = P*MW/(R*T)/density
12 \text{ rho} = 0.08 // \text{after round off}
13 meu=3.54e-7//viscosity of air at 40 degF
14 //assume flow is laminar
15 q=8.33//flow rate , ft^3/s
16 L=800//length of pipe, ft
17 P_1=.1//pressure at starting point
18 P_2=.01//pressure at delivery point
19 D = [(128 * meu * L * q) / (\%pi * (P_1 - P_2) * 144)]^{(1/4)} / (1/4)
      diameter
20 printf("\n pipe diameter D=\%f ft",D);
21 //check the flow type
22 \text{ meu} = 1.14 \text{e} - 5
23 R_e1=4*q*rho/(\%pi*D*meu)//reynolds no
24 // printf ("\n reynolds no R_e = \%f", R_e);
25 //from R_e we can conclude that laminar flow is not
      valid
26 P_drop=12.96//pressure drop P_1-P2 in psf
27 f=0.005//fanning friction factor
```

```
28 \text{ g_c} = 32.174
29 D=(32*rho*f*L*q^2/(g_c*\%pi^2*P_drop))^(0.2)//diamter
       from new assumption
30 //strat the second iteration with the newly
      calculated D
31 \text{ k=0.00006/12//roughness factor}
32 K_r=k/D//relative roughness
33 \quad C_f = 1.321224
34 R_e_n=4*q*rho/(\%pi*D*meu)//new reynolds no
35 //printf("\n new reynolds no R_e = \%f", R_e);
36 f_n=0.0045//new fanning friction factor
37 D=[((8*rho*f_n*L*q^2)/(g_c*%pi^2*P_drop))^(0.2)]*C_f
      //final calculated diameter because last diameter
       is same with this
38 printf("\nD=\%f",D);
39 //iteration may now be terminated
40 S=\%pi*(D^2)/4//cross sectional area of pipe
41 v=q/S//flow\ velocity
42 printf("\n flow velocity v=\%f ft/s",v);//printing
      mistake in book in the value of meu in the
      formula of D is first time that's why this
      deviation in answer
```

Scilab code Exa 14.6 determine the tube diameter and velocity

```
1 clc;
2 //Example 14.6
3 //page no 159
4 printf("Example 14.6 page no. 159\n\n");
5 //ethyl alcohol is pumped through a horizontal tube
6 rho=789//density .kg/m^3
7 meu=1.1e-3//viscosity ,kg/m-s
8 k=1.5e-6//roughness ,m
9 L=60//length of tube ,m
10 q=2.778e-3//flow rate
```

```
11 g = 9.807
12 h_f = 30 // friction loss
13 A=(L*q^2)/(g*h_f)
14 \quad A = 1.574 e - 7
15 //D = 0.66 * [(k^1.25) * (A^4.75) + meu * (A^5.2) / (q*rho)]
      ] ^ . 0 4 ]
16 D=0.0377
17 //calculate velocity of alcohol in the tube
18 S=3.14*(D)^2/4//surface area
19 v=q/S//velocity
v = 3.93 / velocity
21 neu=1.395e-6//dynamic viscosity
22 R_e=D*v/neu//reynolds no
23 printf("\n R<sub>e</sub>=%f", R<sub>e</sub>);//printing mistake in book
24 printf("\n since R_e is more than 4000 flow is
      turbulent");
```

Scilab code Exa 14.7 kerosene flow in pipe

```
1 clc;
2 //Example 14.7
3 //page no 160
4 printf("Example 14.7 page no 160 \n\n");
5 //kerosene flow ina lng ,smooth ,horizontal pipe
6 rho=820//density, kg/m^3
7 D=0.0493//iside diameter of pipe by appendix A.5,m
8 R_e = 60000
9 meu=0.0016//viscosity, kg/m.s
10 v=(R_e*meu)/(D*rho)// flow average velocity
11 printf("\n average velocity v=\%f m/s",v);
12 S=(\%pi/4)*D^2//cross sectional area
13 printf("\n S=\%f ",S);
14 q=v/S//flow rate
15 printf("\n flow rate q=\%f m^3/s",q);//printing
     mistake in book
```

Scilab code Exa 14.8 determine the fanning friction factor and friction loss and the pressure drop

```
1 clc;
2 //Example 14.8
3 //page no 161
4 printf("\n Example 14.8 page no 161\n\n");
5 //refer to example no 14.7
6 rho=860//density
7 R_e = 60000 / reynolds no
8 f = .046/R_e^.2//fanning friction factor
9 printf("\n fanning friction factor f = \% f",f);
10 L=9//length of tube
11 \quad v=2.38//velocity
12 D=.0493//diameter of tube
13 g=9.807
14 h_f = 4*f*(L*v^2)/(D*2*g)//friction loss
15 printf("\n h<sub>-</sub>f friction loss=%f m ",h<sub>-</sub>f);
16 //applying bernoulli equation
17 P_drop=rho*g*h_f//pressure drop in pa
18 P_drop_a=P_drop/10<sup>5</sup>//pressure drop in atm
19 printf("\n P_drop_a =%f atm",P_drop_a);
```

Scilab code Exa 14.9 calculate the force required to hold the pipe in place

```
1 clc;
2 //Example 14.9
3 //page no 161
4 printf(" Example 14.9 page no 161\n\n");
5 //refer to example 14.7
6 D=0.0493//diameter of tuube
7 S=%pi*D^2/4//cross sectional area\
8 P=8685//pressure
9 F=P*S//force required to hold the pipe, direction is opposite the flow
10 printf("\n Force required to hold pipe F=%f N",F);
```

Scilab code Exa 14.10 turbulent flow through a pipe

```
1 clc;
2 //Example 14.10
3 //page no 163
4 printf("Example 14.10 page no 163 \ln n);
5 //a fluid is moving in the turbulent flw through a
     pipe
6 // a hot wire anemometer is inserted to measure the
      local velocity at a given point P in the system
7 //following readings were recorded at equal time
      interval
8 //instantaneous velocities at subsequent time
     interval
9 vz = [43.4, 42.1, 42, 40.8, 38.5, 37, 37.5, 38, 39, 41.7]
10 vz_bar=0;
11 n=10;
12 i = 0;
```

```
13 sums=0;
14 \text{ for } i = 1:10
15
        sums=sums+vz(i);
16 \, \text{end}
17 vz_bar=sums/n;
18 printf("\n vz_bar=\%f",vz_bar);
19 sigma=0;
20 \quad for \quad i=1:10
21
        sigma=sigma+(vz(i)-vz_bar)^2;
22
        vz_sqr=sigma/10;
23 end
24 printf ("\n vz_sqr=\%f", vz_sqr)
25 I = sqrt(vz_sqr)/vz_bar//intensity of turbulance
26 printf("\n intensity of turbulance I=\%f",I);
```

Scilab code Exa 14.11 calculate the volumetric flow rate in different condition

```
1 clc;
2 //Example 14.11
3 //page no 164
4 printf("Example 14.11 page no 164 \ln n");
5 //a fluid is flowing through a pipe
6 D=2//inside diameter of pipe, in
7 v_max=30//maximum velocity, ft/min
8 A=(\%pi/4)*(D/12)^2//cross sectional area
9 //(a) for laminar flow
10 v_a=(1/2)*v_max//average velocity
11 q_a=v_a*A//volumatric flow rate
12 printf("\n flow rate q_a = \%f ft^3/min", q_a);
13 / (b) for plug flow
14 v_b=v_max//average velocity
15 q_b=v_b*A//volumatric flow rate
16 printf(" \nflow rate q_b = \%f ft 3/min", q_b);
17 //(c) for turbulent flow
```

```
18 v_c = (49/60) * v_max // average velocity

19 q_c = v_c * A // volumatric flow rate

20 printf("\n flow rate q_c = \%f ft^3 / min", q_c);
```

compressible and sonic flow

Scilab code Exa 15.2 nitrogen gas

Scilab code Exa 15.3 propane flow through a pipe

```
1 clc;
2 //Example 15.3
3 //page no 170
4 printf("Example 15.3 page no 170 \n\n");
5 //propane is flowing in a tube
6 k=1.3//degree of freedom for propane
7 T=290//temperature, k
8 \text{ M=}44/\text{mol.} weight
9 R=8314.4//gas constant
10 c=sqrt((k*R*T)/M)//speed of sound in propane
11 printf("\n speed of sound in propane c=\%f m/s",c);
12 v=43//average velocity
13 M_a=v/c/mach no.
14 printf("\n M_a mach no=%f ",M_a);
15 //mach no is < 0.3, that 's why flow is incompressible
16 rho=6.39//density, kg/m^3
17 meu=8e-6//viscosity ,m^2/s
18 D=0.0254//inside diameter of tube
19 R_e=D*rho*v/meu//reynolds no.
20 printf("\n reynolds no R_e=\%f ", R_e);
21 //because R_e is >4000, flow is turbulent
```

Scilab code Exa 15.6 pressure drop in the flow of natural gas

```
1 clc;
2 //Example 15.6
3 //page no 173
4 printf("Example 15.6 page no 173\n\n");
5 //methane is flowing through a horizontal steel pipe
6 m_dot=10//mass flow rate, lb/s
7 D=1//diameter of pipe, ft
8 G=m_dot/((%pi/4)*D^2)//mass velocity flux
9 P=89.7//inlet pressure
10 T=530//temprature,k
11 MW=16//mol. weight
```

```
12 R=10.73//gas constant
13 //applying eq 15.7
14 rho=P*MW/(R*T)//density
15 f=0.008//friction factor
16 L=15840//length of pipe,ft
17 g_c=32.2//gravitational constant
18 P_drop=(2*f*L*(G^2))/(g_c*rho*D)//pressure drop
19 P1=89.7//inlet pressure,psia
20 P2=P1-(P_drop/144)
21 P2=54.7//corrected value
22 P_drop=P1-P2//updated value of P_drop
23 printf("\n pressure drop P_drop=%f psia",P_drop);
```

Scilab code Exa 15.7 reynolds number

```
1 clc;
2 //Example 15.7
3 //page no 174
4 printf("Example 15.7 page no 174\n\n");
5 //refr to example 15.6
6 D=1//diameter of pipe
7 G=12.7//mass velocity flux
8 meu=7.39e-6//viscosity,lb/ft.s
9 R_e=(D*G)/(meu)//reynolds no
10 printf("\n reynolds no R_e=%f",R_e);
```

Scilab code Exa 15.8 pressure drop across the line

```
1 clc;
2 //Example 15.8
3 //page no 174
4 printf("Example no page no 174\n\n");
5 //air flowing through a steel pipe
```

```
6 P_1=2.7/pressure, atm
7 T=288//temperature, k
8 v=30//velocity at the entrance of the pipe ,m/s
9 Mw = 29 //mol. weight of air
10 V=22.4//standard volume
11 T_s = 273 // st. temp
12 P_s=1/st. pressure
13 rho = (Mw*P_1*T_s)/(V*T*P_s)//density
14 printf("\ density rho =\%f kg/m\3", rho);
15 G=v*rho//mass veocity flux
16 printf("\n G mass velocity flux =\%f kg/m^2.s",G);
17 f = 0.004 // friction factor
18 D=0.085//diameter, m
19 L=65//length of pipe,m
20 //gravitational constant
21 P_2=P_1-2*f*L*G^2/(rho*D*101325)/pressure drop
      across the line
22 //factor 101325 for atm
23 printf("\n pressure drop P_{-2}=\%f atm", P_{2});
24 P_drop=P_1-P_2//pressure drop
25 printf("\n P_drop pressure=%f atm",P_drop);
```

Scilab code Exa 15.9 friction factor

```
1 clc;
2 //Example 15.9
3 //page no 175
4 printf(" Example 15.9 page no 175\n\n");
5 //refer to Example 15.9
6 meu=1.74e-5//viscosity,kg/m.s
7 D=0.085//diameter of pipe
8 G=99.3//mass velocity flux
9 R_e=D*G/meu//reynolds no.
10 printf("\n reynolds no R_e=%f",R_e);
```

two phase flow

Scilab code Exa 16.2 pressure drop

```
1 clc;
2 //Example 16.2
3 //page no 183
4 printf(" Example 16.2 page no 183 \ln n);
5 //cal. pressure drop if the flow for both phases is
      turbulent
6 //a. since the flow is tt and 1<X<10 , apply
      equatuion 16.16b to obtain Y<sub>g</sub>
7 X = 1.66
8 Y_g=5.80+6.7143*X+6.9643*X^2-0.75*X^3
9 printf("\n Y_g=\%f", Y_g);
10 //the value of Y<sub>g</sub> is an excellent agreement with
      the values provided by lockhart and Martinelli
11 //then pressure drop is
12 P_drop_g=2.71
13 P_drop_t=Y_g*P_drop_g
14 printf("\n P_drop_t=%f psf/100 ft",P_drop_t);
15 //b. applying eq. 16.17b to generate Y<sub>-</sub>l
16 \quad Y_1 = 18.219 * X^-.8192
17 printf ("\n Y_l = \%f ", Y_l);
18 // pressure drop from eq. 16.2
```

```
19  P_drop_1=7.50
20  P_drop=Y_1*P_drop_1
21  printf("\n P_drop=%f psf/100ft",P_drop);
```

Scilab code Exa 16.3 pressure drop

```
1 clc;
2 //Example 16.3
3 //page no 185
4 printf(" Example 16.3 page no 185 \ln n);
5 //if the flow for the gas phase is turbulent and the
       liquid phase is viscous
6 //cal. pressure drop total
7 X=1.66//from ex. 16.1
8 \quad Y_G_tv = 20 - 21.81 * X + 16.357 * X^2 - 1.8333 * X^3
9 printf("\n Y_G_tv=\%f", Y_G_tv);
10 //pressure drop from eq 16.1
11 P_drop_g=2.71
12 P_drop_a=Y_G_tv*P_drop_g
13 printf("\n pressure drop P_drop_a=%f psf/100 ft",
      P_drop_a);
14 //b. applying eq 16.20b to generate Y<sub>-</sub>l
15 \quad Y_1_tv=11.702*X^-0.7334
16 printf("\n Y_l_tv=\%f", Y_l_tv);
17 //pressure drop from equation 16.2
18 P_drop_1 = 7.50
19 P_drop_b=Y_l_tv*P_drop_l
20 printf("\n P_drop_b=%f psf/100 f",P_drop_b);
```

Scilab code Exa 16.4 laminar flow in both phase

```
1 clc;
2 //Example 16.4
```

```
3 //page no 187
4 printf("Example 16.4 page no 187 \ln n);
5 //if flow for both phases is laminar then cal
      pressure drop total
6 //a. apply eq. 16.22b to obtain Y<sub>G</sub>
7 X = 1.66
8 \quad Y_G=10-10.405*X+8.6786*X^2-0.9167*X^3
9 printf("\n Y_G=\%f", Y_G;
10 //pressure drop from eq 16.1
11 P_drop_g=2.71
12 P_drop=Y_G*P_drop_g
13 printf("\n pressure drop P_drop=\%f psf/100 ft",
      P_drop);
14 //b. apply eq 16.23b to generate Y<sub>-</sub>l
15 Y_1 = 6.4699 * X^-0.556
16 printf("\n Y_l = \%f ", Y_l);
17 //pressure drop from eq. 16.2
18 P_drop_l=7.50
19 P_drop_b=Y_1*P_drop_1
20 printf("\n pressure drop P_drop_b=%f psf/100 ft",
      P_drop_b);
```

Scilab code Exa 16.6 flow regime

```
1 clc;
2 //Example 16.6
3 //page no 191
4 printf("\n Example 16.6 page no 191\n\n");
5 //a mixture of air(a) and kerosene(k) are flowing in a horizontal pipe
6 rho_a=0.075//density of airlb/ft^3
7 meu_a=1.24e-5//viscosity of air ,lb/ft.s
8 q_a=5.3125//flow rate ft^3/s
9 rho_k=52.1//density of kerosene,lb/ft^3
10 meu_k=0.00168//viscosity lof kerosene,lb/ft.s
```

```
11  q_k=1.790//flow rate ft^3/s
12  D=.19167//diameter of pipe ,ft
13  S=(%pi/4)*D^2//cross sectional area,ft^2
14  printf("\n S=%f",S);
15  //superficial velocity of each phase can be obtained by applying either eq, 16.7 and 16.8
16  v_a=q_a/(S*60)//for air
17  v_k=q_k/(S*60)//for kerosene
18  printf("\n velocity v_a =%f ft/s\n velocity v_k=%f ft/s",v_a,v_k);
19  R_e_a=D*rho_a*v_a/meu_a//reynolds no. of Air
20  R_e_k=D*rho_k*v_k/meu_k//reynolds no. of kerosene
21  printf("\n R_e_a=%f\nR_e_k=%f",R_e_a,R_e_k);
```

prime movers

Scilab code Exa 17.1 fan law

```
1 clc;
2 //Example 17.1
3 //page no 201
4 printf("Example 17.1 page no 201\n\n");
5 //fan are operating for transporting gas
6 //two fans fan(a) and fan(b)
7 D_a=46//diameter of blade of fan (a)
8 rpm_a=1575//operating speed of fan(a)
9 D_b=42//diameter of blade of fan(b)
10 rpm_b=1625//operating speed of fan(b)
11 h_p_a=47.5//power requirement of fan (a)
12 h_p_b=(rpm_b^3/rpm_a^3)*(D_b/D_a)^5*h_p_a//power requirement of fan(b)
13 printf("\n power requirement h_p_b=%f bhp",h_p_b);
```

Scilab code Exa 17.2 fan operating

```
1 clc;
```

```
2 //Example 17.2
3 //page no 201
4 printf("Example 17.2 page no 201\n\n");
5 \text{ rpm} = 1694 //\text{speed of fan}
6 q=12200//flow rate of q_a
7 rpm_n=2100//new speed of fan
8 q_n=q*(rpm_n/rpm)//new flow rate
9 printf("\nnew flow rate q_n = \% f \ acfm", q_n);
10 //applyingeq 17.5
11 P=5//pressure, in
12 P_n=P*(rpm_n^2/rpm^2)//new pressure
13 printf("\nnew pressureP_n=\%f in H20",P_n);
14 //required power is calculated using eq. 17.6
15 hp=9.25//power at 1694 speed
16 hp_n=hp*(rpm_n^3/rpm^3)//new power required
17 printf("\n new powerhp_n=%f bhp",hp_n);
```

Scilab code Exa 17.3 gas stream

```
1 clc;
2 //Example 17.3
3 //page no. 201
4 printf("\Example 17.3 page no 201\n\n");
5 // a gas stream in a process
6 P_1_m=4.4// minor pressure loss for duct work, valves
      etc, in
7 P_1_mz=6.4//major pressure loss due to pieces of
     equipment, in
8 P_drop=P_l_m+P_l_mz//total pressure drop
9 printf("\n total pressure P_{drop}=\%f in H20", P_{drop});
10 //applying eq 17.7
11 q = 6500 // flow rate, acfm
12 neta=0.63//overall fan-motor effficiency
13 bhp=1.575e-4*q*P_drop/neta//brake horse power
     required
```

```
14 //1.575e-5 is a conversion factor for horse power 15 printf("\n brake horse power bhp=%f bhp",bhp);
```

Scilab code Exa 17.4 pump in opeation

```
1 clc;
2 //Example 17.4
3 //page no 208
4 printf(" Example 17.4 page no 208\n\n");
5 //a pump is in process
6 //given: parabolic pump pressure flow
7 /P=a-b*q^2 equation
8 //a and b calculate from conditions
9 a = 25
10 b = 5
11 //then equation becomes P=25-5*q^2
12 //pressure at 1\text{m}^3/\text{s}
                          flow rate
13 q=1/flow rate, m^3/s
14 P=a-b*q^2/pressure
15 printf("\n pressure P=\%f kpa",P);
```

Scilab code Exa 17.6 centrifugal pump

```
1 clc;
2 //Example 17.6
3 //page no 214
4 printf("\n Example 17.6 page no. 214\n\n");
5 //the total head developed by a centrifugal pump is given by a equation
6 //hc=42-0.0047*q^2
7 //the pump is to be used in a water flow system in which the pump head in feet of water is given by eq.
```

```
8 / hp = 12 + 0.0198 * q^2
9 //for cal. flow rate hc=hp
10 q=35//from condition hc=hp,gpm
11 hc = 42 - 0.0047 * q^2 / total head
12 printf("\n total head hc=\%f ft of water",hc);
13 rho = 62.40 // density
14 q_c=0.078//flow rate in cfs unit
15 m_dot=rho*q_c//mass flow rate
16 printf("\n m_dot mass flow rate = \%f lb/s",m_dot);
17 W_dot=m_dot*hc//fluid power requirement can be
      calculated
18 printf("\n fluid power requirement W_dot=%f lbf.ft/s
     ", W_dot);
19 neta=.6//efficiency
20 W_dot_hp=.32//fluid power requirement in hp
21 bhp=W_dot_hp/neta//brake horse power
22 printf("\n brake horse power bhp=\%f bhp", bhp);
```

Scilab code Exa 17.8 power requirement

```
1 clc;
2 //Example 17.8
3 //page no 216
4 printf(" Example 17.8 page no 216\n\n");
5 //compressed air is to be employed in the nozzle
6 T1=520//temperature
7 P2=40//pressure
8 P1=14.7//atmosphric pressure
9 gamma=1.3//degree of freedom
10 R=1.987//gas constant
11 W_s=-(gamma*R*T1/(gamma-1))*[(P2/P1)^((gamma-1)/gamma)-1]//compressed energy requirement
12 printf("\n energy requirement W_s=%f btu/lbmol of air", W_s);
13 hp=W_s*(7.5/29)*778//power
```

14 printf("\n power hp=%f ft .lbf/min",hp);

Chapter 18

valves and fittings

Scilab code Exa 18.1 sudden expansion

Scilab code Exa 18.2 equivalent length

```
1 clc;
2 //Example 18.2
```

```
//page no 227
printf("\n Example 18.2 page no 227\n\n");
//cal. equivalent length of pipe that would cause the same head los for gate and globe valve located in piping
D=3//diameter of pipe, in
L_gate=7//L/D ratio for fully open gate valve
L_globe=300//L/D ratio for globe valve
L_eq_gate=L_gate*D//equivalent length for gate valve
printf("\n L_eq_gate=%f in", L_eq_gate);
L_eq_globe=L_globe*D//equivalent length for globe valve
printf("\n L_eq_globe=Mf in ",L_eq_globe);
```

Scilab code Exa 18.3 pressure drop in a pipe

```
1 clc;
2 //Example 18.3
3 //page no 227
4 printf("\n Example 18.3 page no 227 \ln n");
5 // water is flowing at room temperature
6 rho=62.4//density of water, lb/ft^3
7 meu=6.72e-4//viscosity of water, lb/ft.s
8 D=0.03125//diameter of pipe
9 v=10//velocity
10 R_e=D*v*rho/meu//reynolds no.
11 printf("\n reynolds no R_e = \%f", R_e);
12 f=0.0015+0.125/R_e^{.30}/equation for friction factor
13 printf("\n friction factor f = \% f",f);
14 L=30//length of pipe
15 gc=32.2//gravitational constant
16 P_drop=2*f*rho*v^2*L/(D*gc)//pressure drop
17 printf("\n pressure drop P_drop=\%f lbf/ft^2", P_drop
     );
```

Scilab code Exa 18.4 frictional fitting

```
1 clc;
2 //Example 18.4
3 //page no 229
4 printf("\n Example 18.4 pageno 229\n\n");
5 //refer to example 18.3
6 //applying eq 18.4 for friction loss by globe valve
7 K_f=22//coeff of expansion loss
8 v=10//velocity
9 gc=32.2//ravitational constant
10 h_f=K_f*v^2/(2*gc)//friction loss due to globe valve
11 printf("\n friction loss due to globe valve h_f=%f ft.lbf/lb",h_f);
```

Scilab code Exa 18.5 total pressure drop

```
1 clc;
2 //Example 18.5
3 //page no 230
4 printf(" Example 18.5 page no. 230\n\n");
5 //refer to example no. 18.3 and 18.4
6 P_drop=34.16//pressure drop ,ft
7 h_f=43//friction loss due to fitting
8 rho=62.4//density,lb/ft^3
9 P_d_t=(P_drop+h_f)*rho//total pressure drop
10 printf("\n total pressure drop P_d_t=%f lbf/ft^2", P_d_t);
```

Scilab code Exa 18.6 volumetric flow rate

```
1 clc;
2 //Example 18.6
3 //page no 230
4 printf ("Example 18.6 page no 230 \n\n");
5 k=0.00085//relative roughness of pipe, ft
6 D=0.833//diameter of pipe, ft
7 f=0.005//we assume fanning friction factor
      0.004-0.005, select upper limit
8 K=0.45//entrance loss coefficient is estimated from
     eq. 18.10 and 18.11
9 L=5000//length of pipe, ft
10 h_f=4*f*(L/D)//the friction head loss in terms of
      the line velocity
11 printf("n h_f = \%f", h_f); // printing mistake in book
      12 instead of 120
12 //applying bernoulli equation between points 1 and 2
       to calculate v2
13 h_s = 0 //no shaft head
14 \text{ v1=0}//\text{large tank}
15 //because both locations open to the atmosphere, P1=
     P2=0 psig
16 h=260//height from point 1 to 2
17 V2_h = sqrt(h/(1+h_f+K))//total velocity head at point
18 g = 32.174
19 V2 = V2_h * 2 * g
20 V2=11.75
21 neu=1.0825e-5//viscosity
22 R_e=D*(V2)/neu//reynolds number
23 printf("\n reynolds number R_e=\%f", R_e); // printing
      mistake in book due to value of h_f
24 q=V2*(\%pi*(D^2)/4)/volumatric flow rate
25 printf("\n vol. flow rate q=\%f ft^3/s",q);//printing
       mistake in book due to value of h_f
```

Scilab code Exa 18.7 friction loss

```
1 clc;
2 //Example 18.7
3 //page no 232
4 printf ("Example 18.7 page no 232 \ln n")
5 //two large water reservoirs are connected by a
      pipe
6 D=0.0779//diameter of pipe (m), by appendix A.5 for
     3 inch schdule 40 pipe
7 k=0.046*1e-3//roughness of pipe
8 K_r=k/D//relative roughness
9 printf("\n relative roughness K_r = \%f", K_r);
10 q=0.0126//flow rate of water m^3/s,
11 S=(\%pi/4)*D^2//cross sectional area of pipe
12 v=q/S//flow velocity of water
13 printf("\n flow velocity v=\%f m/s",v);
14 neu=1e-6//viscosity of water
15 R_e=v*D/neu//reynolds no
16 printf("\n reynolds no R_e = \%f", R_e);
17 //from R_e and relative roughness K_r ,obtain
      friction factor
18 f=0.00345
19 L=2000*.3048//length of pipe,m
20 h_f = 4 * f * (L/D) * (v^2/2)
21 printf("\n head loss h_f = \%f J/kg", h_f);
22 //apply bernoulli equation between station 1 and 2.
      Note that P1=P2=1 atm, v1=v2, z1=z2
23 / P_d rop / rho + V^2 / 2g + z = h_s - h_f
24 //whera h<sub>s</sub> is the major friction loss
25 //above equation reduces to h_s=h_f
26 h_s=h_f//h_s is major friction loss
27 printf("\n major friction losses h_s = \%f J/kg", h_s);
```

Scilab code Exa 18.8 pressure rise in pump

```
1 clc;
2 //Example 18.8
3 //page no 233
4 printf("\n Example 18.8 page no 233\n\n");
5 //refer to example no 18.7
6 rho = 1000 / density
7 g=9.807//gravitational acc.
8 h_f = 38.39 // head loss
9 P_rise=rho*g*h_f//pressure rise across the pump
10 P_rise=475000//in book by mistake this value instead
       original value
11 q=0.0126//flow rate from example 18.7
12 W_dot=q*P_rise//ideal pumping requirement(the fluid
     power)
13 printf("\n W_dot fluid power=%f kw", W_dot);//
      printing mistake in book in putting value of
     P_rise
```

Chapter 19

flow measurement

Scilab code Exa 19.1 air pressure in the oil tank

```
1 clc;
2 //Example 19.1
3 //page no. 246
4 printf("Example 19.1 page no 246 \ln n);
5 //we have to find pressure at different point in a
      oil tank
6 //apply manometer equation between point 1 and 2
7 // \text{since rho1} = \text{rho2}, z1 = z2
8 // it gives P1=P2
9 //applying manometer equation between points 2 and 3
10 rho_oil=0.8*1000/density of oil
11 / \sin ce \ rho3 = rho_oil = rho2
12 rho3=rho_oil
13 z_32=.4//height difference between point 2 and 3
14 g=9.807//grav. acc.
15 P7=0//pressure at point 7, on gauge basis
16 z_76=0.8//height difference between point 6 and 7
17 rho_hg=13600//density of mercury
18 P6=P7 + rho_hg*g*z_76//pressure at point 6
19 P5=P6//pressure at point 5
20 rho_air=1.2//density of air
```

```
21 z_54=1//height difference between point 5 and 4
22 P4=P5 + rho_air*g*z_54//pressure at point 4
23 P3=P4//pressure at point 3
24 P2=P3 + rho_oil*g*z_32//pressure at point 2
25 P1=P2//air pressure in the oil tank
26 printf("\n pressure P1=%f Pag",P1);
```

Scilab code Exa 19.2 pitot tube

```
1 clc;
2 //Example 19.2
3 //page no 250
4 printf("Example 19.2 page no 250 \n\n");
5 //pitot tube is located at the center line of a
      horizontal pipe transporting air
6 rho=0.075//density of gas , lb/ft^2
7 h=0.0166667//height difference, ft
8 g=32.2//gravitational acc. lb/ft<sup>2</sup>
9 rho_m=62.4//density of medium which is air
10 v = sqrt(2*g*h*(rho_m-rho)/rho)//velocity
11 printf("\n velocity v=\%f ft/s",v);
12 v_max=v//because at that point where the reading was
       taken is the centerline
13 printf("\n maximum veocity v_{max}=\%f ft/s", v_{max});
14 //since the flowing fluid is air at a high velocity
      the flow has a high probability of being
      turbilent .from chapter 14, assume
15 / v_a v / v_m ax = 0.815
16 \ v_av = v_max * 0.815
17 printf("\n average velocity v_av=\%f ft/s", v_av);
```

Scilab code Exa 19.3 mass flow rate

```
1 clc;
2 //Example 19.3
3 //page no 251
4 printf("Example 19.3 page no 251\n\n");
5 //refer to example 19.3
6 S=0.785//cross sectional area, ft^2
7 v_av=24.4//average velocity, ft/s
8 q=v_av*S*60//flow rate, factor 60 for minute
9 printf("\n flow rate q=%f ft^3 min",q);
10 rho=0.075//density
11 m_dot=q*rho*60//mass flow rate
12 printf("\n m_dot mass flow rate=%f lb/hr",m_dot);
```

Scilab code Exa 19.4 volumatric flow rate

```
1 clc;
2 //Example 19.4
3 //page no 251
4 printf ("Example 19.4 page no n ")
5 //water flow ina circular pipe, a pitot tube is used
     to measure the water velocity
6 h=0.07//manometer height,m
7 rho=1000//density of water, kg/m^3
8 rho_m=13600//density of mercury, kg/m^3
9 g = 9.807
10 v = sqrt(2*g*h*(rho_m-rho)/rho)
11 printf("\n water velocity v=\%f m/s",v);
12 D=0.0779//pipe inside diameter, by using table A.5 in
       the appendix for a 3 inch schedule 40 pipe
13 S=(\%pi/4)*D^2
14 printf("/n cross sectional area S=%f m^2",S);
15 q=v*S//flow rate
16 printf("\n flow rate q=\%f m^3/s",q);
17 meu=0.001//viscosity of water, kg/m.s
18 R_e=rho*v*D/meu//reynolds number
```

```
19 printf("\n reynolds no R_e=\%f", R_e);
```

Scilab code Exa 19.5 venturimeter

```
1 clc;
2 //Example 19.5
3 //page no 254
4 printf("Example 19.5 page no 254\n\n");
5 //a venturi meter has gasoline flowing through it.
6 h=0.035//height of venturi meter
7 D1=0.06//upsteeam diameter,m
8 D2=0.02//throat diameter,m
9 rho_m=13600//density of mercury
10 rho=680//density of gasoline
11 g=9.807
12 v2=sqrt((2*g*h*(rho_m-rho)/rho)/1-D2^4/D1^4)/
      velocity of gasoline at the the throat
13 printf("\n velocity at throat v2=\%f m/s", v2);
14 q=(\%pi/4)*D2^2*v2//flow rate
15 printf("\n flow rate q = \% f m^3/s",q);
16 P1=101325//upstream pressure, Pa
17 P2=P1-g*h*(rho_m-rho)//pressure at throat P2
18 printf("\n pressure P2=\%f Pa", P2);
19 P_d=P1-P2//pressure difference
20 P_l=.1*P_d//pressure loss is 10 \%
21 printf("\n pressure loss P_l = \%f Pa", P_1;
22 \text{ W_l=q*P_l/power loss}
23 printf("\n power loss W_l=\%f W', W_1);
```

Scilab code Exa 19.6 flow rate

```
1 clc;
2 //Example 19.6
```

```
//page no. 255
printf("\n Example 19.6 page no. 255\n\n");
//refer to example 19.5
//if gasoline has vapor pressure of 50000Pa ,we have to calculate flow rate at whhich cavitation to occur
P1=101325//upstream pressure,Pa
P2=50000//given vapor pressure,Pa
D1=0.06//upstream diameter,m
D2=0.02//throat diameter,m
rho=680//density of gasoline
v2=sqrt((2*(P1-P2))/rho*(1-D2^4/D1^4))//velocity
printf("\n velocity v2=%f m/s",v2);
q=(%pi/4)*D2^2*v2//flow rate
printf("\n flow rate q=%f m^3/s",q);
```

Scilab code Exa 19.7 orifice meter

```
1 clc;
2 //Example 19.7
3 //page no 258
4 printf("Example 19.7 page no 258\n\n");
5 //an orifice meter is equipped with flange top is
     installed to measure the flow rate of air in a
     circular duct
6 D1=0.25//diameter of circular duct,m
7 D2=0.19//orifice diamter,m
8 v2=4/(%pi*D2^2)//velocity through orifice
9 printf("\n velocity through orifice v2=\%f m/s", v2);
10 C_o=1// assuming orifice discharge coefficient
11 rho=1.23//density of air, kg/m^3
12 P=rho*v2^2*[1-(D2^4/D1^4)]/2//pressure
13 printf("\n pressure P=\%f Pa",P);
14 meu=1.8e-5// absolute viscosity
15 R_e=rho*v2*D2/(meu)//reynolds no.
```

Scilab code Exa 19.9 orifice pressure drop

```
1 clc;
2 //Example 19.9
3 //page no 259
4 printf("\n Example 19.9 page no 259\n\n");
5 //air at ambient condition is flowing in a pipe
6 rho=0.075//density of air ,lb/ft^3
7 m_dot=0.5//mass flow rate ,lb/s
8 q=m_dot/rho//volumatric flow rate
9 printf("\n volumatric flow rate q=%f ft^3/s",q);
```

Chapter 20

ventilation

Scilab code Exa 20.2 diluent volumetric flow rate

```
1 clc;
2 //Example 20.2
3 //page no 269
4 printf("\n Example 20.2 page no 269 \ln n");
5 //ventilation required in an indoor work area where
     a toluene containing adhesive in a nanotechnology
      process is used.
6 //equation
               for estimate the dilution air
     requirement
7 C_a=80e-6//concentration of toluene
8 q=3/8//volumatric flow rate, gal/h
9 v=0.4//adhesive contains 4 volume % toluene
10 S_g=0.87//specific gravity
11 printf("\n C<sub>-a</sub> concentration of toluene=\%f \n q
      volumatric flow rate q=%f gal/h \n S_g specific
      gravity=\%f ",C_a,q,S_g);
12 //mass flow rate of toluene
13 m_{dot_{tol}=q*v*S_g*(8.34)/factor 8.34 for lb
14 printf("\n mass flow rate m_dot-tol=\%f lb/h",
     m_dot_tol);
15 m_dot_g=m_dot_tol*(454/60)//unit conversion of mass
```

```
flow rate in g/min
16 printf("\n mass flow rate in g/min m_dot_g=\%f g/min"
      , m_dot_g);
17 M_w=92//molecular weight of toluene
18 n_dot_tol=m_dot_g/M_w//no. of gm moles of toluene/
19 printf("\n no. of moles n_dot_tol = \%f gmol/min",
      n_dot_tol);
20 //resultant toluene vapor volumatric flow rate q_tol
       is directly calculated from the eidal gas law
21 //applying ideal gas law
22 R=0.08206//gas constant
23 P=1//standard pressure
24 T=293//standard temperature
25 printf("\n R gas constant=\%f atm.L/(gmol.K)\n T
      temperature=\%f K\n P pressure =\%f atm",R,T,P);
26 q_tol=n_dot_tol*R*T/P//toluene vapor volumatric flow
       rate
27 printf("\n toluene vapor vol. flow rate q_tol=%f L/
     min",q_tol);
28 \text{ q_tol=} 2.15//\text{round off value}
29 //the required diluent volumatric flow rtae
30 K=5//dimensionless mixing factor
31 q_dil=K*q_tol/(C_a)//diluent vol. flow rate
32 printf("\n diluent vol. flow rate q_dil=%f L/min",
     q_dil);
```

Scilab code Exa 20.3 limiting reactant

```
1 clc;
2 //Example 20.3
3 //page no 270
4 printf("Example 20.3 page no 270 \n\n");
5 // a certain poorly ventilated room chemical stroage room has a ceiling fan
```

```
6 //inside this room bottle of iron(3) sulfide sits
      next to a bottle sulfuric acid containg 1 lb
     H2SO4 in water
7 // an earthquake sends the botlles on the shelf
      crashing to the floor where bottles break and
      their contant mix and react to form iron (3)
      sulfate and hydrogen sulfide
8 //we have to calculate maximum H2S concentration
      that could be reached in the room
9 Mw_Fe2S3 = 208 //mol. weight of Fe2S3
10 Mw_H2SO4 = 98 //mol. weight of H2SO4
11 Mw_H2S=34//mol. weight of H2S
12 Mw_air=29//mol. weight of air
13 //balancing chemical reaction
14 // from the stiochiometric of the reaction , sulfuric
       acid is the limiting reagent
15 // 0.030 lbmol of Fe2S3 is required to react with
      0.010 lbmol of H2SO4
v_r=1600//volume of room, ft^3
17 \text{ n_H2SO4} = 0.010 // lbmol of H2SO4
18 Stoi_c_H2SO4=3//stoichiometric coeff. of H2SO4
19 Stoi_c_H2S=3//stoichiometric coeff. of H2S
20 n_H2S=n_H2S04*(Stoi_c_H2S/Stoi_c_H2S04)/lbmol of
     H2S
21 printf("\n lbmol of H2S n_H2S=%f lbmol",n_H2S);
22 m_H2S=n_H2S*Mw_H2S//conversion of moles into mass of
      H2S
23 printf("\n mass of H2S m_H2S=\%f lb", m_H2S);
24 //at 32 degF and i atm pressure an ideal gas
      occupies 359 ft<sup>3</sup> volume then, at 51 deg F
      occupies
25 T_r=51//temperature of air in the room
26 T_st=32//standard temperature
27 \text{ v_st} = 359 / \text{standard volume}
28 printf("\n stand. temperature T_st=\%f F\n
      temperature of air in room T<sub>r</sub>=%f F\n stand.
      volume v_st=\%f ft^3", T_st, T_r, v_st);
V_a=v_st*(460+T_r)/(460+T_st)/volume of air
```

```
30 printf("\n volume of air at 51deg F V_a=%f ft^3",V_a
    );
31 //the final concentration of H2S in the room in ppm
        C_H2S
32 C_H2S=m_H2S*(V_a/Mw_air)*1e+6/(v_r)
33 printf("\n conc. of H2S in ppm C_H2S=%f ppm",C_H2S);
```

Scilab code Exa 20.4 vinyl chloride application

```
1 clc;
2 //Example 20.4
3 //Page no 271
4 printf("Example 20.4 page no 271\n\n");
5 //vinyl chloride application
6 //calculation of density by using ideal gas law
7 Mw=78//molecular weight of vinyl chloride
8 R=82.06//gas constant, cm<sup>3</sup>.atm/mol.K
9 T=298//temperature,K
10 P=1/pressure, atm
11 rho=P*Mw/(R*T)//density of vinyl chloride
12 printf("\n rho density of vinyl chloride=\%f g/cm^3",
     rho);
13 //given
14 m_dot=10//mass flow rate,g/min
15 q=m_dot/rho//volumatric flow rate
16 printf("\n vol. flow rate q=\%f cm<sup>3</sup>/min",q);
17 \text{ q_acfm} = 0.1107 // \text{vol flow rate in acfm}
18 //cal. the air flow rate in acfm q_air required to
     meet the 1.0 ppm constraint with the equation
19 q_{air}=q_{acfm}/1e-6
20 printf("\n vol.flow rate q_air=%f acfm",q_air);
21 S_factor=10//correct for mixing by employing a
      saftey factor
22 //apply saftey factor to calculate the actual air
      flow rate for dilution ventilation
```

Scilab code Exa 20.7 ventilation flow rate

```
1 clc;
2 //Example 20.7
3 //page no 276
4 printf("\n Example 20.7 page no 276 \ln n");
5 //refer to illustrative Example 20.5
6 / (1)
7 //we have to calculate minimum air ventilation flow
      rate into the room containing 10 ng/m<sup>3</sup> of a
      toxic chemical
8 //ng means nanograms
9 rV=250//chemical generated in the laboratory, ng/min
10 c_o=10//room containg toxic chemical of 10ng/m<sup>3</sup>
11 c=35//limit of chemical concentration, ng/m<sup>3</sup>
12 //applicable modal in this case
13 //q_{o}(c_{o}-c) + rV = V*dc/dt
14 //substituting gives
15 q_o=(-rV)/(c_o-c)//minimum air ventilation flow rate
16 printf("\n q_o min. air ventilation flow rate=%f m
      ^3/\min, q_o);
```

Scilab code Exa 20.8 ventilation air

```
1 clc;
2 //Example 20.8 page no 277
3 printf(" Example 20.8 page no 277 \ln n");
4 //refer to example no 20.5 and 20.7
5 V=142//volume of room, m^3
6 q=12.1// flow rate of air, m^3/min
7 tou=V/q//time, min
8 r=30//rate of generation of chemical, ng/min
9 k=r/V/ng/(m^3.min)
10 c_i=85//intial concentration in laboratory, ng/m<sup>3</sup>
11 c_o=10//given concentration in room
12 c=20.7//final concentration in room
13 //by using trial and error mthod we get
14 function y=f(t)
     y=c_i*(exp(-t/tou))+(c_o+k*tou)*(1-exp(-t/tou)) -
15
16 endfunction
17 t=fsolve(30,f);
18 //by using trail and error method we get
19 t = 29
20 printf("\n t=%f min ",t);
```

Chapter 21

academic application

Scilab code Exa 21.7 reynolds number

```
1 clc;
2 //Example 21.7
3 //Page no 284
4 printf("Example 21.7 page no 284 \ln n");
5 // water is flowing through a 3/8 in schedule 40
      brass pipe
6 D=0.0411//diameter of pipe, ft
7 S=0.00133//cross section area of pipe, ft<sup>2</sup>
8 meu=6.598e-4//viscosity of water from table A.4 in
      the appendix, lb/ft.s
9 rho=62.4//density, lb/ft^3
10 q_gpm=2//vol.flow rate
11 q=q_gpm*0.00228//volumatric flow rate in ft^3s
12 \text{ v=q/S//velocity of fluid}
13 printf("\n veloctiy of fluid v=\%f ft/s",v);
14 R_e=D*v*rho/meu//reynolds no.
15 printf("\n reynolds no R_e = \%f ", R_e);
```

Scilab code Exa 21.8 reynolds number

```
1 clc;
2 //Example 21.8
3 //page no 285
4 printf("Example 21.8 page no 285 \ln n");
5 //water flowing through a pipe
6 rho=62.4//density of water, lb/ft<sup>3</sup>
7 meu=6.72e-4//viscosity of water, lb/ft.s
8 q_1gpm=1.5//vol. flow rate in gpm
9 q_2gpm=6//vol. flow rate in gpm
10 D_1=0.493//internal diameter of 3/8 in schdule pipe
11 v11=(0.409*q_1gpm)/(D_1^2)//flow velocity for an 3/8
      in pipe with 1.5 gpm flow rate
12 \text{ v12} = (0.409 * q_2gpm)/(D_1^2)/flow velocity for an 3/8
       pipe with 6 gpm flow
13 R_e11=D_1*v11*rho/meu//reynolds no for case 11
14 R_e12=D_1*v12*rho/meu//reynolds no for case 12
15 printf ("\n reynolds no R_e11=\%f\n reynolds no R_e12=
     %f ",R_e11,R_e12);//printing mistake in book
16 D_2=0.622//internal diameter of 1/2 in schdule pipe
17 v21 = (0.409 * q_1gpm)/D_2^2/flow velocity for 1/2 pipe
       with 1.5 gpm
18 v22 = (0.409 * q_2gpm)/D_2^2/flow velocity for 1/2 pipe
       with 6 gpm
19 R_e21=D_2*v21*rho/meu//reynolds no for case 21
20 R_e22=D_2*v22*rho/meu//reynolds no foe case 22
21 printf("\n reynolds no R_e21=\%f\n reynolds no R_e22=
     \%f", R_e21, R_e22);
22 //printing mistake in value of R<sub>e</sub>
```

Scilab code Exa 21.9 pressure drop

```
1 clc;
2 //Example 21.9 page no 286
3 printf("Example no 21.9 page no 286\n\n");
4 //water is flowing in a vertical pipe
```

```
5 //assume constant velocity
6 P_drop=-4.5//pressure drop from bottom to top
7 rho=62.4 //density of water
8 z2=15//height of pipe
9 z1=0//bottom level
10 //applying bernoulli equation
11 h_f=(P_drop/rho)+(z2-z1)//frictional loss
12 printf("\n frictional loss h_f=%f ft.lbf/lb",h_f)
```

Scilab code Exa 21.10 centrifugal pump

```
1 clc;
2 //Example 21.10
3 //page no 286
4 printf("Example 21.10 page no 286\n\n");
5 //a centrifugal pump is needed to transport water
      from sea level to 10000 feet above sea level
6 //using bernoulli equation
7 //neglectiing kinetic energy effects and frictional
      losses
8 P1=14.7//atmospheric pressure at sea level, psi
9 P2=10.2//atmospheric pressure at 10000 feet, psi
10 z1=0//at sea level, ft
11 z2=10000//height above sea level, ft
12 rho=62.4//density of water
13 g=32.2//gravitational acc.
14 g_c=32.2//gravitational constant
15 h_s=((P2-P1)*144/(rho) + (z2-z1)*(g/g_c))/\sqrt{\text{work}}
      deliverd by the pump to the water, in ft.lbf/lb
16 h_s = 9990 // ft . lb f / lb
17 h_sf=h_s*50//in ft.lbf
18 printf("\n work h_sf=\%f ft.lbf/s", h_sf);
19 //actual pump work is calculated by dividing the
      above terms by the frictional afficiency
20 neta=0.65//frictional efficiency
```

```
21 W_p=round((h_sf/550)/neta)//actual work
22 printf("\n actual work W_p=\%f hp", W_p);
```

Scilab code Exa 21.12 friction loss

```
1 clc;
2 //Example 21.12
3 //page no 288
4 printf("Example 21.12 page no 288\n\n");
5 //refer to illustrative Example 21.4
6 // if the pipe contains two globe valves and one
      straight through tee, what is the friction loss
7 \text{ K_f_globe=6}
8 \text{ K_f_tee=0.4}
9 v=2.53// flow velocity
10 g_c = 32.2
11 f=5/4//friction factor
12 L=144//lenth of pipe
13 D=62.4//diameter
14 h_f = 4*f*(L/D) + (2*K_f_globe + K_f_tee)*(v^2/(2*g_c)
15 printf("\n frictional loss h_f = \%f ft.lbf/lb", h_f);
```

Scilab code Exa 21.13 pitot tube

```
1 clc;
2 //Example 21.13
3 //page no 289 figure 21.1
4 printf("Example 21.13 page no 289 fig 21.1 \n\n\n");
5 //a pitot tube is inserted in acircular pipe to measure the flow velocity
```

```
6 // the tube is inserted so that it points upstream
     into the flow and the pressure sensed by thre
      probeis the stagnation pressure
7 //the change in elevation between the tip of the
      pitot and the wall pressure tap is negligible
8 //the flowing fluid is soyabean oil at 20 deg C and
     the fluid in manometer tube is mercury
9 //point 2 is a stagnation point ,P2>P1 and the
     manometer fluid should be higher on the eleft side
     (h < 0)
10 rho_m=13600//density of mercury, kg/m^3
11 h=0.04//height of mercury,
12 rho=919//density of oil kg/m^3
13 g = 9.804
14 D=0.055//diameter of pipe, m
15 meu=0.04//viscosity of oil, kg.m.s
16 v=sqrt(2*g*h*((rho_m/rho)-1))//flow velocity
17 printf("\n flow velocity v=\%f m/s",v);
18 //assuming uniform velocity
19 S = (\%pi/4) * D^2
20 m_dot=rho*v*S//mass flow rate
21 R_e=(D*v*rho)/meu//reynolds no
22 printf("\n reynolds no R_e=\%f", R_e);
23 printf("\n mass flow rate m_dot=\%f kg/s", m_dot);
```

Scilab code Exa 21.14 flow rate

```
1 clc;
2 //Example 21.14
3 //page no 290
4 printf("Example 21.14 page no 290\n\n");
5 //given: a 50 ft pipe with flowing water ,we have to determine the flow rate if there is an expansion from 3/8 inch to 1/8 inch and immediatly back to 3/8n inch with an overall pressure loss no
```

Scilab code Exa 21.16 pressure drop

```
1 clc;
2 //Example 21.16
3 //page no 291
4 printf("Example 21.16 page no 291\n\n");
5 //water flows in a concrete pipe
6 v_p=0.02// flow velocity,m/s
7 D_p=1.5//diameter of pipe
8 L_p=20//length of pipe,m
9 rho_p=1000//density of water,kg/m^3
10 meu_p=0.001//viscosity of water,kg/m.s
11 K_p=0.003//roughnes factor,m
12 //this prototype is to be modeled in a lab using a 1/30 th scale pipe
13 D_m=D_p/30//D_m is diameter of modeled pipe
14 L_m=L_p*(D_m/D_p)//length of modeled pipe
```

```
15 K_m=K_p*(D_m/D_p)//roughness factor for modeled pipe
16 // the fluid in the model is caster oil
17 rho_m=961.3//densiy of oil, kg/m^3
18 meu_m=0.0721//viscosity of oil,kg/m.s
19 //since R_e = (rho_m*v_m*D_m)/meu_m = (rho_p*v_p*D_p)/meu_p
20 v_m = (rho_p*v_p*D_p*meu_m)/(rho_m*D_m*meu_p)// flow velcity in molded pipe
21 printf("\n flow velocity v_m=%f m/s",v_m);
22 //pressure drop in prototype
23 P_drop_m=1e+5//pressure drop in model
24 P_drop_p=(P_drop_m*rho_p*(v_p)^2)/(rho_m*(v_m)^2)// pressure drop in prototype
25 printf("\n pressure drop in prototype P_drop_p=%f Pa",P_drop_p);
```

Chapter 22

industrial application

Scilab code Exa 22.4 centrifugal pump

```
1 clc;
2 //Example 22.4
3 //page no 298
4 printf ("Example 22.4 page no 298 \ln n");
5 //a centrifugal pump operating at 1800 rpm ,we have
     to find the impeller diameter needed to develop a
      head of 200 ft
6 h=200//height, ft
7 g=32.2//gravitational acc. ft/s^2
8 v=sqrt(2*g*h)//velocity needed to develop a head of
9 printf("\n velocity v=\%f ft/s",v);
10 N=1800//pump operating at this rotational speed, in
11 c=v*60/N//the number of feet that the impeller
      travels in one rotations
12 //this c represents the circumference of the
     impeller since it is equal to one rotation
13 printf("\n circumference c=\%f ft/rotation",c);
14 D=c/\%pi//diameter of the impeller
15 printf("\n diameter D=\%f ft",D);
```

Scilab code Exa 22.5 total energy required

```
1 clc;
2 //Example 22.5
3 //page no 299
4 printf("Example 22.5 page no 299\n\n");
5 //water for a processing plant is required to be
      stored in a reservoir
6 //assume the properties of water at 20 deg C are
7 rho=998//density, kg/m^3
8 meu=0.001//viscosity, N.s/m^2
9 L=120//length of pipe,m
10 D=0.15//diameter of pipe,m
11 S=(\%pi/4)*D^2//cross sectional area of pipe
12 //given:
13 q=1.2/60//volumetric flow rate, m^3/s
14 v=q/S//flow\ velocity\ ,m/s
15 R_e=D*v*rho/meu//reynolds no
16 printf("\n reynolds no R_e = \%f ", R_e);
17 //from value of R<sub>e</sub> , flow is clearly turbulent
18 k=0.0005//roughness factor for galvanized iron
19 K_r=k/D//relative roughness
20 f=0.0053//fricion factor from fig. 14.2
21 h_f = 4 * f * (L/D) * (v^2/2) / friction loss of energy
22 printf("\n h<sub>-</sub>f frictional loss=%f J ",h<sub>-</sub>f);
23 //for right elbows (from table 18.1), the estimated
      value of resistance coff. K for one regular 90
      deg elbows is 0.5
24 K=4//resstance coeff.
V_h=v^2/2/velociy head
26 \text{ e_l=K*V_h//the total loss from the elbows}
27 printf("\n e_l total elbow loss=\%f J/kg",e_l);
28 //the energy to move 1 kg of water against a head of
       22m of water is
```

```
29 z=22//height,m
30 g=9.81//grav. acc,m/s^2
31 PE=z*g
32 printf("\n potential energy PE=%f J/kg",PE);
33 TE = h_f + e_l + PE//total requirement per kg
34 printf("\n total energy TE=%f J/kg",TE);
35 W_dot_s= TE*q*rho//theoretical power requirement
36 printf("\n theoritical power W_dot_s=%f J/s",W_dot_s
);
37 h=TE/g//head equivalent to the energy requirement
38 printf("\n equivalent head h=%f m ",h);
```

Scilab code Exa 22.6 reynolds number and head

```
1 clc;
2 //Example 22.6
3 //page no 301
4 printf("Example 22.6 page no 301\n\n");
5 //oil is flowing through a standard 3/2 inch steel
     pipe containing a 1 inch square edged orifice
6 v_gal=400//orifice velocity of oil in gal/hr
7 v_0 = 400*144/(0.785*3600*7.48) // orifice velocity in
      ft/hr
8 D_o=1/12//diameter of orifice
9 rho=0.87*62.4//density of oil
10 meu = 20.6*0.000672 / viscosity of oil
11 R_e=D_o*v_o*rho/meu
12 printf("\n reynolds no =\%f ",R_e);
13 D_r=0.62//ratio of orifice plate to pipe
     diametersD_o/D1 = 1/1.61
14 C_d=0.76//discharge coeff. fro fig 19.8
15 g=32.2//grav. acc. ft/s^2
16 h=(v_o^2/(2*g*(C_d)^2))*(1-D_r^4)/height of oil in
     gauge reading
17 printf("\n gauge reading h=\%f ft ",h);
```

Scilab code Exa 22.7 mass flow rate

```
1 clc;
2 //Example 22.7
3 //page no 302
4 printf ("Example 22.7 page no 302 \ln n");
5 //natural gas consisting of essentially pure methane
       flows through a long straight standard 10 inch
      steel pipe into which is inserted a square edged
      orifice 2.50 inches in diameter, with pressure
      taps, each 5 inch from the orifice plate
6 //manometer is attached across the orifice reads
      1.60 in H20
7 D_o=2.50//diameter of orifice
8 D_1=10.15//diameter of plate
9 D_r=D_o/D_1//ratio of diameters
10 //assuming the reynolds no R<sub>e</sub> in the orifice to be
      over 30,000
11 C_o=0.61//coeff. of discharge from R_e value
12 g=32.2//garv. acc ft/s^2
13 rho_m=62.4//density of medium (water)
14 rho=0.054//density of methane gas, lb/ft<sup>3</sup>
15 h=1.60//manometer reading height, in
16 meu=12*0.011*0.000672//viscosity
17 v_o = C_o * sqrt((2*g*h*rho_m)/(12*rho)) // orifice
      velocity
18 printf("\n orifice veloctiy v_o = \%f ft/s", v_o);
19 R_e_o=D_o*v_o*rho/meu//reynolds no in the orifice
20 printf("\n R_e_o reynolds no =\%f ",R_e_o);
21 //from R_e_o value C_o=0.61 is permissible
22 \text{ m_dot=round}(v_o*(\%pi/4)*(D_o^2)*rho*(3600/144))//
      mass flow rate
23 printf("\n mass flow rate m_dot=\%f lb/hr", m_dot);
```

Scilab code Exa 22.8 gradual contraction

```
1 clc;
2 //Example 22.8
3 //page no 303
4 printf("Example 22.8 page no 303\n\n");
5 //refer to fig 22.1
6 D1=.1//upstream diameter (at station 1),m
7 D2=.06//downstream diameter (station 2).m
8 S2=(\%pi/4)*D2^2//cross sectional area at point 2
9 rho=1.22//density of air from ideal gas law
10 rho_m=827//density of medium, kg.m^3
11 g=9.8//gravitational acc.
12 h=0.08//manometer head, m
13 //from bernoulli equation
14 v2=sqrt(2*g*h*((rho_m/rho)-1))/velocity at point 2
15 v1=v2*(D2/D1)^2/velocity at point 1
16 q=v2*S2//volumatric flow rate
17 printf("\n vol.flow rate q=\%f m^3/s",q);
18 //calculation of mach number from equation 15.1
19 T=293//temperature in k
20 c=20*sqrt(T)//speed of light at this temperature, m/s
21 M_a=v2/c/mach no.
22 printf("\n mach no. M_a = \%f ", M_a);
23 //noting that M_a=0.095 < 0.3, we can conclude that
      flow is incompressible // given
24 P1=130000 //absolute pressure at point 1,pa
25 //by using bernoulli eq for P2
26 P2=P1-rho*v2^2*(1-(D2/D1)^4)/2//pressure at point 2
27 printf("\n pressure at point 2=\%f Pa",P2);
```

Scilab code Exa 22.9 friction loss in the conduit

```
1 clc;
2 //Example 22.9
3 //page no 305
4 printf("\n Example 22.9 page no 305 \ln n");
5 //water is flowing from an elevated reservoir
      through a conduit to a turbine at a lower level
      and out of the turbine through a similar conduit
6 //refer to fig 22.2
7 // since the diameter of the conduit is the same at
      location 1 and 2 , kinetic energy effects can be
      neglected and bernoulli eq. takes the form
8 / P/rho + z(g/g_c) - h_s + h_f = 0
9 P1=30///pressure at point 1, psia
10 \text{ z} = 300 // \text{height of point } 1, \text{ft}
11 P2=18//pressure at point 2, psia
12 z_{2}=-10//height of point 2, ft
13 rho = 62.4 // density
14 \text{ m\_dot} = 3600 // \text{mass flow rate, tons/hr}
15 W_dot = 1000 // output at the shaft of turbine, hp
16 neta=0.9//efficiency of turbine
17 h_s=W_dot*550*3600/(neta*m_dot*2000)//
18 printf("\n h_s = \%f ft.lbf/lb",h_s);
19 //put this value in bernoulli eq.
20 h_f = (P2-P1)*144/rho + (z2-z1) -h_s//frictional loss
21 printf("\n frictional loss h_f = \%f ft.lbf/lb",h_f)
```

Scilab code Exa 22.10 discharge and NPSH

```
1 clc;
2 //Example 22.10
3 //page no 306
4 printf("\n Example 22.10 page no 306\n\n");
5 //benzene is pumped from a large tank to a delivery station
6 //refer fig 22.3
```

```
7 q=0.003//vol. flow rate, m^3/s
8 //tank is at atmosphric pressure
9 D=0.03//diameter of suction and discharge line, m
10 v_2=q/((\%pi/4)*D^2)//discharge velocity, m/s
11 //since all diameters are same likewise velocities
      are same
12 v_3=v_2
13 g=9.807//grav. acc.
14 D_h = (v_3^2)/(2*g)//dynamic head
15 printf("\n dynamic head D_h=\%f m", D_h);
16 z1=0//height at point 1, tank level
17 z_{2=1.8}//height at point 3
18 //applying bernoulli's eq. between the top of the
     tank (open to the atomsphere) and the inlet to the
     pump(station3)
19 rho=865//density of benzene, kg/m^3
20 P3=101325-(z2+D_h)*(rho*g)/ptressure at point 3
21 printf("\n pressure at point 3 P3=\%f Pa", P3);
22 P_v=26200//vapor pressure of benzene, Pa
23 \text{ NPSH} = (P3 - P_v)/(rho*g) + D_h
24 printf("\n NPSH=\%f m", NPSH)
25 //the manufacturer NPSH is 8 m, which is greater
     than the calculated NPSH of 7.06m, therfore, the
     suction point of pump must be lowered
26 //calculation of new pressure
27 NPSH_m=8//NPSH by manufacturer
28 P3_n_ab=8*(rho*g)-D_h*(rho*g) + P_v
29 printf("\n new pressure at point 3 P3_n_ab=%f Pa
      absolute", P3_n_ab);
30 P3_n_bz=-1.77//pressure in terms of benzene height,m
31 z3=-P3_n_bz -D_h//desired height of point 3
32 printf("\n height z3=\%f m", z3);
```

Scilab code Exa 22.11 pump requirement in hp

```
1 clc;
2 //Example 22.11
3 //page no 308
4 printf ("Example 22.11 page no 308 \ln n);
5 //a storage tank on top of a building pumps 60 deg F
       water through an open pipe to it from a
      reservoir
6 \text{ q=1.36//vol. flow rate }, \text{ft}^3/\text{s}
7 D=0.333//diameter of pipe, ft
8 S=\%pi/4*D^2//cross sectional area, ft<sup>2</sup>
9 v2=q/S//flow\ velocity, ft/s
10 rho = 62.37 // density of water, lb/ft^3
11 meu=1.129*6.72e-4//viscosity of water
12 R_e=D*v2*rho/meu//reynolds no.
13 printf("\n reynolds no. R_e=\%f", R_e);
14 //from R<sub>e</sub> we can conclude that flow is turbulent
15 k=0.0018//roughness factor
16 K_r=k/D//relative roughness
17 f=0.0046//friction factor
18 L=525//length of pipe, ft
19 g_c = 32.174 // grav. acc
20 h_fp = (4*f*L*v2^2)/(D*2*g_c)//frictional loss due to
      the length of pipe
21 printf("\n frictional loss h_fp=\%f ft.lbf/lb",h_fp);
22 //friction due to the fitings from table 18.1
23 K_ff_gate=2*0.11//loss coeff. due to gates
24 K_ff_elbows=5*0.64//loss coeff. due to elbows
25 //friction due to the sudden contraction is obtained
       from eq. 18.10.
\frac{26}{\text{mode that }} D1/D2=0, since the upstream diameter is
      singnificantly larger than the downward diameter
27 K_c=0.42//coeff. of sudden contraction
28 K_e=1/coeff. of sudden expansion
29 K_s = K_f f_gate + K_f f_elbows + K_e + K_c/sum of loss
30 h_f = K_s * v2^2/(2*g_c)/friction losses due to fitting
      , expansion, contraction
31 h_f_total=h_fp + h_f//total frictional losses
```

Scilab code Exa 22.12 friction loss

```
1 clc;
2 //Example 22.12
3 //Page no 311
4 printf ("Example 22.12 page no 311 \n\n")
5 //turpentine is being moved from a large storage
      tank to a blender through a 700 ft pipeline
6 rho=62.4/density
7 SG=0.872//specific gravity of terpentine
8 rho_t=SG*rho//density of turpentine
9 v=12.67//av. velocity of the turpentine in the line,
      ft/s
10 z1=20//height of top surface in the storage tank
      above floor level, ft
11 z2=90//height of discharge end of pipe, ft
12 neta=0.74//efficiency of pump
13 W_s=401.9//average energy delivered by pump, ft/lbf/
     1b
14 \, \text{g_c} = 32.174 // \text{grav.acc}
15 L=700//length of pipeline
```

```
16 //from bernoulli eq.
17 h_f = neta*W_s - v^2/(2*g_c) - (z^2-z^1)/frictional
      loss if there is no pressure drop
18 printf("\n frictional loss h_f = \%f ft.lbf/lb", h_f);
19 k_c=0.4//coeff. of contraction
20 \text{ k_e=0.9//coeff.} of expansion
21 k_f = 0.2 // coeff. of bends and valve
22 //making equation (1) from the friction coeff. due to
       fittings between f and D, f = 0.0293*D
23 //making another equation(2) from Reynolds number in
       terms D , R_{-}e = 582250*D
24 //from trial and error method we get D
25 D=0.184//diameter
26 \text{ S=\%pi*D^2/4//cross sectional area}
27 S = 0.0266
28 q=v*S//volumetric flow rate
29 printf("\n q=\%f ft^3/s",q);
30 m_dot=rho_t*q//mass flow rate
31 bhp =m_dot*W_s/(550*neta)//brake horse power
32 printf("\n brake horse power bhp=\%f hp",bhp);
```

Scilab code Exa 22.13 friction loss and friction power loss per unit length of pipe

```
1 clc;
2 //Example 22.13
3 //page no 313
4 printf("Example 22.13 page no 313\n\n");
5 //hydrogen flows through a horizontal pipe
6 //properties of hydrogen at 20 deg C from table A.3
    in the appendix
7 rho=0.0838//density of hydrogen,kg/m^3
8 meu=9.05e-6//viscosity,kg/m.s
9 D=0.08//diameter of pipe,m
10 L=1//unit length of pipe,m
```

```
11 q=0.0004//vol. flow rate ,m<sup>3</sup>/s
12 S=.000503//cross sectional area
13 v=q/S//flow\ velocity\ ,m/s
14 m_dot=rho*q//mass flow rate, kg/s
15 R_e = (D*v*rho/meu) / reynolds no.
16 printf("\n R_e reynolds no=\%f ",R_e);
17 //since R<sub>e</sub> is 593 < 2100, flow is laminar
18 //since the tube is horizontal z1=z2, calculation of
      pressure gradient (P/L)
19 P_grad= 128*meu*q/(%pi*D^4)//pressure gradient
20 printf("\n Pressure gradient P_grad=%f Pa/m",P_grad)
21 \ v_{max} = 2 * v / / m / s
22 //calculation of fanning friction factor
23 //since the flow is laminar
24 f=16/R_e//fanning friction factor
25 printf("\n fanning friction factor f=\%f",f);
26 f_d=4*f//darcy friction factor
27 printf("\n darcy friction factor f_d = \%f", f_d);
28 \text{ g=9.807}/\text{grav. acc.}
29 h_f = f_d * (L/D) * (v^2/(2*g)) // friction loss
30 printf("\n friction loss h_f = \%f m", h_f);
31 W_f = m_dot*g*h_f//friction power loss
32 printf("\n friction power loss W_f=\%f W', W_f);
```

Scilab code Exa 22.14 average velocity of gasoline

```
1 clc;
2 //Example 22.14
3 //page no 315
4 printf("\Example 22.14 page no 315\n\n");
5 //gasoline is pump through a horizontal cast iron pipe
6 L=30//length of pipe
7 D=0.2//diameter of pipe,m
8 S=(%pi/4)*D^2//cross sectional area
```

```
9 q=0.3//vol. flow rate m^3/s
10 v=q/S//flow\ velocity\ ,m/s
11 rho=680//density of gasoline, kg/m<sup>3</sup>
12 meu=2.92e-4//viscosity of gasoline, kg/m.s
13 R_e=D*v*rho/meu//reynolds no.
14 printf("\n reynolds no R_e = \%f", R_e);
15 //since R<sub>e</sub> is >4000 flow is turbulent
16 k=0.00026//roughness factor from table 14.1 for cast
       iron, m
17 K_r=k/D//relative roughness
18 f=0.00525//fanning friction factor from fig 14.2
19 //Note that the flow corresponds to complete
      turbulence in the rough pipe
20 g=9.807//gravitational acceleration
21 //h_f = 4*f*(L/D)*(v^2/(2*g))//head loss
h_f = 14.647
23 //applying bernoulli equation to the fluid in the
      pipe
\frac{24}{\text{min}} this case the pipe is horizontal (z1=z2) with
      constant diameter (v1=v2) and no shaft head (h_s
      =0
25 //first convert the friction head to a pressure
      difference
26 P_diff=rho*g*h_f//pressure difference
27 P_diff= 97.68*10^3//after round off
28 W_s_id=q*P_diff//ideal shaft work
29 printf("\n ideal shaft work W_s_id=\%f W", W_s_id);
30 neta=0.8//efficiency of pump
31 W_s_ac=W_s_id/neta//actual shaft work
32 printf("\n actual shaft work W_{s_ac}=\%fW',W_{s_ac};
33 f_s=0.009//friction factor smooth
34 f_r=0.021//friction factor roughnes
35 \text{ k=f_r/f_s}
36 f_inc=100*(k-1)//percentage increment in f due to
      roughness
37 printf("\n f_inc=\%f",f_inc);
```

Scilab code Exa 22.15 average velocity of the benzene

```
1 clc;
2 //Example 22.15
3 //page no 316
4 printf("\n Example 22.15 page no 316 \ln n")
5 //liquid benzene flows through a smooth horizontal
     iron pipe
6 D=2.3//diameter of pipe,m
7 L=146.304//length of pipe,m
8 S=(\%pi/4)*D^2//cross sectional area, m^2
9 q=4000//vol. flow rate, gal/min
10 v=q/(S*264.17*60) //flow velocity
11 printf("\n flow velocity v=\%f m/s",v);
12 rho=899//density of benzene
13 meu=0.0008//viscosity of benzene, kg/m.s
14 R_e = D*v*rho/meu//reynolds no
15 printf("\n reynolds no R_e = \%f ", R_e);
16 //since the reynolds number falls in the turbulent
     regime, determine the fanning friction factor from
       fig. 14.2
17 f=0.0032//fanning friction factor
18 // calculation of pressure drop with the assumption
      of no height and velocity change, and no pump
     work
19 //since only frictional losses are to be considered
20 //applying eq. 14.3
21 P_drop = 4*f*(L/D)*(v^2/2)*rho/pressure drop
22 printf("\n pressure drop P_{-drop}=\%f Pa", P_{-drop});
23 W_dot_f = q*P_drop/(264.17*60) / friction power loss
24 printf("\n friction power loss W_dot_f=\%f W', W_dot_f
     );
```

Scilab code Exa 22.16 steam flow rate

```
1 clc;
2 //Example 22.16
3 //page no 317
4 printf("\n Example 22.16 page no 317 \ln n");
5 //a power plant employs steam to generate power
6 //adiabatic conditions
7 z1=0//steam vertical position at inlet, ft
8 z2=-20//steam vertical position at outlet, ft
9 v1=120//steam velocity at inlet, ft/s
10 v2=330//steam velocity at outlet, ft/s
11 H1=1505.4//steam enthalpy at inlet
12 H2=940//steam enthalpy at outlet
13 Q=0//for adiabatic conditions
14 \text{ g_c} = 32.174 // \text{grav} \cdot \text{acc}
15 //applying energy equation
16 \text{ W_s} = -(z2/778) - v2^2/(2*g_c*778) - H2 + z1 + v1
      ^2/(2*g_c*778) + H1//work extracted from system
17 printf("\n work extracted from the system W_s=\%f Btu
     /lb ",W_s);
18 m_dot=450000//mass flow rate , lb/h
19 W_dot_s=m_dot*W_s//total power generated by the
      turbine
20 printf("\n W_dot_s = %f Btu/h", W_dot_s); //approx
      calculation in book
21 W_hp=W_dot_s*3.927e-4//power generated in horsepower
      hp
22 printf("\n power generated W_hp=\%f hp", W_hp); //
      approx calculation in book
```

Chapter 23

particle dynamics

Scilab code Exa 23.1 aerodynamic diameter

```
1 clc;
2 //Example 23.1 page no 323
3 printf("Example 23.1 page no 323 \n\n");
4 //calculation of aerodynamic diameter for the
     following particles
5 d_es=1.4//equivalent dia of solid sphere, micrometer
6 sg_s=2//specific gravity of solid sphere
7 d_eh=2.8//equivalent diameter of hollow sphere,
     mirometer
8 sg_h=0.51//specific gravity of hollow sphere
9 d_pa1=d_es*sqrt(sg_s)//aerodynamic dia for solid
     sphere
10 d_pa2=round(d_eh*sqrt(sg_h))//aerodynamic dia for
     hollow sphere
11 printf("\n d_pa1=\%f micron\nd_pa2=\%f micron",d_pa1,
     d_pa2);
```

Scilab code Exa 23.2 aerodynamic diameter

```
1 clc;
2 //Example 23.2 page no 323
3 printf("Example 23.2 page no 323\n\n");
4 //calculation of aerodynamic diameter of irregular saped sphere
5 d_e=1.3//eq. diameter, micron
6 sg=2.35
7 d_pa=d_e*sqrt(sg)//aerodynamic diameter
8 printf("\n aerodynamic diameter d_pa=%f micron",d_pa);
```

Scilab code Exa 23.3 cunningham correction factor

Scilab code Exa 23.4 particle terminal velocity

```
1 clc;
2 //Example 23.4
3 //page no 336
4 printf("Example 23.4 page no 336\n\n");
5 //three different diameter sized fly ash particls settle through air
```

```
6 //we have to calculate the particle terminal
      velocity and determine how far each will fall in
     30 seconds
7 //assume the particles are speherical
8 SG=2.31//specific gravity of fly ash
9 rho_w=62.4//density of water
10 rho_p=SG*rho_w//density of particles
11 //properties of air
12 R=0.7302//gas constant
13 T=698//temperature, R
14 P=1/pressure, atm
15 Mw = 29 // mol. wt of air
16 rho_a=P*Mw/(R*T)//density of air, lb/ft^3
17 meu=1.41e-5//viscosity of air, lb/ft.s
18 g=32.174//grav. acc
19 D1=0.4//diameter of particle 1, microns
20 D2=40//diameter of particle 2, microns
21 D3=400//diameter of particle 3, microns
22 \text{ K1}=(D1/(25400*12))*(g*rho_p*rho_a/(meu^2))^(1/3)//
      dimensionless constant for particle 1
23 K2=(D2/(25400*12))*(g*rho_p*rho_a/(meu^2))^(1/3)//
      dimensionless constant for particle 2
  K3=(D3/(25400*12))*(g*rho_p*rho_a/(meu^2))^(1/3)//
      dimensionless constant for particle 3
25 printf ("\n dimensionless constant K1=\%f \n K2=\%f \n
     K3=\%f ", K1, K2, K3);
26 //first we determine which fluid particle dynamic
     law applies for the above values of K
27 //for particle 1, strokes law applies
28 //for particle 2, strokes law applies
29 //for particle 3, intermediate law applies
30 //terminal settling velocity for each particle
v1 = (D1/(25400*12))^2*g*rho_p/(18*meu)
32 printf("\n terminal settling velocity for particle 1
      v1=\%f ft/s", v1);
33 v2=(D2/(25400*12))^2*g*rho_p/(18*meu)
34 printf("\n terminal settling velocity v2=\%f ft/s", v2
     );
```

```
35 \text{ v3} = (D3/(25400*12))^1.14*0.153*g^0.71*rho_p^0.71/(
     rho_a^0.29*meu^0.43)
36 printf("\n terminal settling velocity v3=\%f ft/s",
     v3);
37 //calculation of how far x, the fly ash particles
      will fall in 30 seconds
38 t=30//time, sec
39 x2=v2*t//distance travel by 2 particle
40 x3=v3*t//distance travel by 3 particle
41 printf("\n distance by 2 particle x2=\%f ft\n
      distance by 3 particle x3=%f ft",x2,x3);
42 //for 1 particle K1 and v1 value are without the CCF
      . With the correction factor lemda=6.53e-8, gives
43 lemda=6.53e-8//correction factor
44 y=-1.10*(D1/(25400*12))/(2*lemda)
45 A = 1.257 + 0.40 * exp(y)
46 C=1 + 2*A*lemda/(D1/(25400*12))//cunningham
      correction factor (ccf)
47 //now equation 23.36 can be employed
48 v1_corrected=v1*C//corrected velocity of 1 particle
49 x1=v1_corrected*t//distance travel by 1 particle
50 printf("\n distance travel by 1 particle x1=\%f ft",
     x1);
```

Scilab code Exa 23.5 size of fly ash particle

```
1 clc;
2 //Example 23.5
3 //page no 338
4 printf("\n Example 23.5 page no 338\n\n");
5 //refer to example 23.5
6 //we have to calculate size of a flyash particle that will settle with a velocity of 1.384 ft/s
7 SG=2.31//specific gravity of fly ash
8 rho_w=62.4//density of water
```

```
prho_p=SG*rho_w//density of particles
//properties of air
R=0.7302//gas constant
T=698//temperature,R
P=1//pressure ,atm
Mw=29//mol. wt of air
rho_a=P*Mw/(R*T)//density of air,lb/ft^3
meu=1.41e-5//viscosity of air,lb/ft.s
g=32.174//grav. acc
v=1.384//velocity at which particle settle down,ft/s
W= v^3*rho_a^2/(g*rho_p*meu)//dimensionless constant
printf("\n dimensionless constant W=%f",W);
//since W < 0.2222 stokes' law applies
D_p=sqrt(18*meu*v/(g*rho_p))//diameter of particle
printf("\n diameter of particle D_p=%f ft",D_p);</pre>
```

Scilab code Exa 23.7 average height of soap particles

```
1 clc;
2 //Example 23.7
3 //page no 340
4 printf("\n Example 23.7 page no 340 \ln n");
5 // In a plant manufacturing ivory soap detergent
     explodes one windy day
6 //we have to calculate the distance from the plant
     where the soap particles will start to deposit
     and where they will cease to deposit
7 //the smallest particle wll travel the greatest
      distance while the largest will travel the least
      distance
8 //for the minimum distance , we use largest particle
9 D_1=3.28e-3//largest diameter, ft
10 g=32.174//grav. acc.
11 SG=0.8//specific gravity of soap particle
12 \text{ rho_w} = 62.4
```

```
13 rho_p=SG*rho_w//density of particle
14 rho_a=0.0752//density of given atmosphere, lb/ft<sup>3</sup>
15 meu=1.18e-5//viscosity
16 K_1 = D_1*(g*(rho_p-rho_a)*rho_p/(meu^2))^(1/3)/
      dimensionless constant
17 printf("\n dimensionless constant K_l = \%f", K_1);
18 //value of K indicates the intermediate range
      applies
19 //the settling velocity is given by
20 v_l=0.153*g^0.71*D_l^1.14*rho_p^0.71/(meu^0.43*rho_a
      ^0.29)
21 printf("\n settling velocity v_l = \%f ft/s", v_1);
22 H=400//vertical height blowen by particle, ft
23 t_1=H/v_1//descent time
24 v_w=20/w wind velocity in miles/h
25 L=t_1*v_w*(5280/3600) //horizontal distance travelled
       by particles
26 printf("\n descent time t_l=%f second\n horizontal
      distance L=%f ft",t_1,L);
27 //for the minimum distance we use smallest particle
28 D_s=6.89e-6//diameter of smallest particle, ft
29 \text{ K_s=D_s*(g*(rho_p-rho_a)*rho_a/(meu^2))^(1/3)}
30 printf("\n dimensionless constant K_s = \%f", K_s);
31 //velocity is in the stokes regime and is given by
32 \text{ v_s=g*D_s^2*rho_p/(18*meu)}
33 printf("\n settling velocity v_s = \%f ft/s", v_s);
34 t_s=H/v_s//descent time
35 L_s=t_s*v_w*(5280/3600)//horizontal distance
      travelled
36 printf("\n descent time t_s = \%f s \setminus nhorizontal
      distance travelled by smallest particle L_s=%f ft
      ",t_s,L_s);
37 \text{ m} = 100 * 2000 // \text{mass of particles}
38 V_act=m/rho_p//actual volume of particles
39 = 0.5 // void fraction
40 V_b=V_act/e//bulk volume
41 printf("\ actual volume V_act=%f ft^3\nbulk volume
      V_b = \%f ", V_act, V_b;
```

```
42 L_d=L_s-L//length of drop area
43 printf("\n L_d=%f",L_d);
44 W=100//width ,ft
45 A_d=L_d*W//deposition area
46 H_d=V_b/A_d//deposition height
47 printf("\n deposition height H_d=%f ft",H_d);
48 //deposition height can be ,at bestt, described asa sprinkling
```

Scilab code Exa 23.8 reynolds number and terminal velocity

```
1 clc;
2 //Example 23.8
3 //page no 342
4 printf("Example 23.8 page no 342\n\n");
5 //a small sphere is observed to fall through caster
      oil
6 v_t=0.042//terminal velocity of particle
7 meu_f = 0.9 / viscosity of oil
8 rho_f=970//density of oil
9 \text{ g=9.807}//\text{grav. acc.}
10 D_p=0.006//diameter of particle
11 rho_p = (18*meu_f*v_t)/(g*D_p^2) + rho_f
12 printf("\n density of particle rho_p=\%f kg/m^3",
      rho_p);
13 neu_f=9.28e-4//dynamic viscosity of fluid
14 R_e=D_p*v_t/neu_f//reynolds no
15 printf("\n reynolds no R_e=\%f ", R_e);
16 / \sin ce R_e < 0.3
17 //calculation of the settling criterion factor ,K
18 K=D_p*(g*rho_f*(rho_p-rho_f)/(meu_f^2))^(1/3)//the
      settling criterion factor
19 printf("\n K=\%f ",K);
20 / \sin ce K < 3.3, stokes law applies
21 //the drag coeff. C<sub>-</sub>d
```

```
22 C_d = 24/R_e
23 printf("\n drag coeff C_d=\%f", C_d);
24 F_d=3*\%pi*meu_f*D_p*v_t/drag force
25 printf("\n drag force F_d = \%f N", F_d);
26 \text{ F_b=(\%pi/6)*D_p^3*rho_f*g//buoyancy force}
27 printf("\n buoyancy force F_b=\%f N", F_b);
28 //Consider the case when same sphere is dropped in
      water
29 rho_w=1000//density of water, kg/m^3
30 meu_w=0.001//viscosity of water, kg/m.s
31 //the particle will move faster because of the lower
       viscosity of water , stokes law will almost
      definietly not apply
32 \text{ K_w=D_p*(g*rho_w*(rho_p-rho_w)/(meu_w^2))^(1/3)//the}
       settling criterion factor
33 printf("\n k_w settling factor = \%f", K_w);
34 / \sin ce K_w = 158 > 43.6, the flow is in the Newton's
       law regime
35 //employ eq. 23.31 but include the (buoyant) density
       ratio factor
36 \text{ v_t_w=1.75*sqrt}((\text{rho_p-rho_w})/(\text{rho_w})*g*D_p)//
      terminal velocity
37 printf("\n terminal velocity in water v_t_w=\%f m/s",
      v_t_w);
```

Scilab code Exa 23.9 drag force

```
1 clc;
2 //Example 23.9
3 //page no 344
4 printf("Example 23.9 page no 344\n\n");
5 //the bottom of a ship, moving in water
6 rho=1000//density of water
7 v=12//velocity of boat,m/s
8 L=20//length,m
```

```
9 W=5//width ,m
10 meu=1e-3//viscosity
11 R_e=rho*v*L/meu//reynolds no
12 printf("Reynolds no R_e=%f",R_e);
13 //from reynolds no flow is turbulent
14 C_d=0.031/(R_e^(1/7))//coeff. discharge\
15 printf("\ncoeff. discharge C_d=%f",C_d);
16 //calculation of the drag on area LW
17 F_d=(1/2)*C_d*rho*v^2*L*W//drag force
18 printf("\n drag force F_d=%f N",F_d);
```

Chapter 24

sedimentation centrifugation and flotation

Scilab code Exa 24.1 terminal velocity and effective viscosity

```
1 clc;
2 //Example 24.1
3 //page no 350
4 printf("Example 24.1 page no 350 \n\n");
5 //glass sphere are settling in water at 20 deg C
6 //the slurry contains 60 wt% solids
7 // start by assuming a basis of 100 kg of slurry
8 \text{ m_f} = 40 // \text{mass of fluid, kg}
9 rho_f=998//density of water, kg/m^3
10 V_f=m_f/rho_f//volume of the fluid ,m<sup>3</sup>
11 m_s = 60 // mass of solid, kg
12 rho_p = 2467 // density of glass, kg/m^3
13 V_s=m_s/rho_p//volume of glass,m<sup>3</sup>
14 V = V_f + V_s/total volume, m^3
15 v_frac_f = V_f/V/volume fraction for the fluid
      particles
16 printf("\n volume fraction fluid particles v_frac_f
      =\%f ", v_frac_f);
17 v_frac_p=1-v_frac_f//volume fraction for the glass
```

```
particles
18 printf("\n volume fraction for the glass particles
      v_f rac_p = \%f ", v_f rac_p);
19 rho_m=round(v_frac_f*rho_f + v_frac_p*rho_p)//bulk
      density of slurry
20 printf("\n bulk density of slurry rho_m=\%f kg/m^3",
     rho_m);
21 b=10^{(1.82*(1-v_frac_f))}/dimensionless correction
      factor
22 g=9.807//gravitational acc.,m/s^2
D_p=0.0001554//diameter of particle, m
24 meu_f=0.001//viscosity of fluid
25 \text{ v_t = g*D_p^2*(rho_p-rho_f)*v_frac_f^2/(18*meu_f*b)}
      //terminal velocity
26 printf("\n terminal velocity v_t = \%f m/s", v_t);
27 meu_m = meu_f*b//effective mixture viscosity
28 printf("\n effective mixture viscosity meu_m=%f kg/m
      .s",meu_m);
```

Scilab code Exa 24.2 reynolds number

```
1 clc;
2 //Example 24.2
3 //page no 352
4 printf("Example 24.2 page no 352\n\n");
5 //refer to example 24.1
6 m_f=40//mass of fluid ,kg
7 rho_f=998//density of water ,kg/m^3
8 V_f=m_f/rho_f//volume of the fluid ,m^3
9 m_s=60//mass of solid ,kg
10 rho_p=2467//density of glass ,kg/m^3
11 V_s=m_s/rho_p//volume of glass ,m^3
12 V = V_f + V_s//total volume,m^3
13 v_frac_f = V_f/V//volume fraction for the fluid particles
```

```
14 printf("\n volume fraction fluid particles v_frac_f
     =\%f ",v_frac_f);
15 v_frac_p=1-v_frac_f//volume fraction for the glass
      particles
16 printf("\n volume fraction for the glass particles
      v_f rac_p = \%f ", v_f rac_p);
17 rho_m=round(v_frac_f*rho_f + v_frac_p*rho_p)//bulk
      density of slurry
18 printf("\n bulk density of slurry rho_m=\%f kg/m^3",
     rho_m);
19 b=10^(1.82*(1-v_frac_f))/dimensionless correction
     factor
20 g=9.807//gravitational acc.,m/s^2
21 D_p=0.0001554//diameter of particle, m
22 meu_f=0.001//viscosity of fluid
23 v_t = g*D_p^2*(rho_p-rho_f)*v_frac_f^2/(18*meu_f*b)
     //terminal velocity
24 printf("\n terminal velocity v_t = \%f m/s", v_t);
25 meu_m = meu_f*b//effective mixture viscosity
26 printf("\n effective mixture viscosity meu_m=%f kg/m
      .s",meu_m);
27 R_e=rho_m*v_t*D_p/(meu_m*v_frac_f)//reynolds no.
28 printf("\n reynolds no R_e = \%f ", R_e);
```

Scilab code Exa 2.3 minimum size of charcoal

```
1 clc;
2 //Example 24.3
3 //page no 352
4 printf("Example 24.3 page no 352\n\n");
5 //classification of small speherical particles of charcoal with a specific gravity of 2.2
6 //the particles are falling in a vertical tower against a rising current of air
7 //we have to calculate the minimum size of charcoal
```

```
that will settle down to the bottom of the tower
8 rho = 0.075//density of air, lb/ft^3
9 meu=1.23e-5//viscosity of air, lb/ft.s
10 //assume stokes law to apply
11 SG=2.2//specific gravity of charcoal
12 rho_w=62.4//density of water
13 rho_p=SG*rho_w//density of charcoal
14 \text{ v=}15//\text{velocity of air}
15 g=32.2//grav. acc
16 D_p1 = (18*meu*v/(g*rho_p))^0.5
17 K1 = D_p1*(g*rho*rho_p/meu^2)^(1/3)/settling factor
18 printf("\n settling factor K1=\%f", K1);
19 //from value of K, stokes law does not apply
20 //therefore, assume Intermediate range law applies
21 D_p = ((v*rho^0.29*meu^0.43)/(0.153*(g*rho_p)^0.71))
      (1/1.14)
22 printf("\n particle diameter= D_p=\%f ft ",D_p);
23 K_n = (D_p/D_p1) * K1
24 printf("\n final settling factor K_n=%f", K_n)
25 //since the result is correct for the intermediate
     range
```

Scilab code Exa 24.4 number of Gs

```
1 clc;
2 //Exmple 24.4
3 //page no 354
4 printf("Example 24.4 page no 354\n\n");
5 //a particle is spining in a 3 inch ID centrifuge
6 r=3/12//radius of centrifuge, ft
7 omega=30//rotational speed, rad/s
8 g=32.2
9 G=round(r*omega^2/g)
10 printf("\n G=%f ",G);
```

Scilab code Exa 24.5 angular velocity

```
1 clc;
2 //Example 24.5
3 //page no 357
4 printf("Example 24.5 page no 357 \ln n);
5 //a circular cylinder filled with water is rotated a
       uniform , steady angular speed about it 's central
       axis in rigid body motion
6 //since the cylinder is full the water will spill
     the moment the cylinder starts to spin , spilling
      occur when omega > 0 rpm
7 // to determine the angular speed for 1/3 of the
     water to spill, consider the cylinder at rest
     when 1/3 of the water has already beem spilled
8 \text{ g} = 32.174 // \text{grav. acc}
9 R = 0.25 //radius of cylinder
10 z_st=2/3//the stationary height, ft
11 h = 2*(1-z_st)/(increase) in height is h/2, ft
12 omega=sqrt(4*g*(h/2)/R^2)
13 printf("\n omega = \%f rad/s", omega);
```

Scilab code Exa 24.6 equatio describing pressure

```
1 clc;
2 //Example 26.6
3 //page no 392
4 printf("Example 26.6 page no 392\n\n");
5 //a bed of pulverized is to be fluidized with liquid oil
6 D=4//diameter of bed ,ft
7 d_p=0.00137//particle diameter ,ft
```

```
8 rho_s=84//coal particle density ,lb/ft^3
9 rho_f=55//oil density ,lb/ft^3
10 e_mf=0.38//void fraction
11 L_mf=8//bed height at minimum fluidization ,ft
12 P_drop=(rho_s-rho_f)*(1-e_mf)*L_mf +rho_f*L_mf
13 printf("\npressure drop P_drop=%f psf",P_drop);
```

Scilab code Exa 24.7 angular speed and film thickness

```
1 clc;
2 //Example 24.7
3 //page no 358
4 printf("Example 24.7 page no 358\n\n");
5 //a cylindrical cup open to the atmosphere is filled
      with liquid to a height of 7 cm
6 //rotated around it's axis
7 //calculation of an angular velocity that will cause
      the liquid to start spilling
8 h=0.03//height, m
9 R=0.03//radius, cm
10 //applying eq. 24.22
11 g=9.807 // grav. acc
12 omega=sqrt(2*h*g/(R^2))
13 omega=36.2//printing mistake in book
14 //calculation of pressure at point A and B that is
     P_a and P_b
15 z=.1//liquid height above point A and B,m
16 rho=1010//density of liquid, kg/m^3
17 P_a = rho*g*z
18 P_b=P_a/from symmetry P_a = P_b
19 printf("\n pressure P_a=\%f Pa_gauge\n pressure P_b=
     %f Pa_gauge",P_a,P_b);
20 z_c=0.04//liquid height above point c,m
21 P_c=rho*g*z_c//pressure at point c
22 printf("\n pressure P_c = \%f Pa_gauge", P_c);
```

```
//to obtain the film thicknes, we have to find the
    original height
24 z_l=0.07//liquid height ,m
25 h_o=z_l-z_c//original height
26 r = 100*sqrt(2*h_o*g/(omega^2))//100 for centimeter
27 printf("\n r=%fcm ",r);
28 R=3
29 t_f=R-r//thikness of film
30 printf("\n thickness film t_f=%f m",t_f);//printing
    mistake in book
```

Scilab code Exa 24.8 velocity to obtain pure galena

```
1 clc;
2 //Example 24.8
3 //page no 360
4 printf("Example 24.7 page no 358\n\n");
5 //It is desired to separate quartz particles
     galena particles
6 SG_q = 2.65//specific gravity of quartz particle
7 SG_g=7.5//specific gravity of galena particles
8 rho_f=1000//density of water
9 rho_q=SG_q*rho_f//density of quartz paticles
10 rho_g=SG_g*rho_f//density of galena particle
11 //calculation of the settling velocity of the
     largest quartz particle with a diameter
12 D_q=9e-5//diameter of largest particle of quartz
13 g=9.807//grav. acc
14 meu_f = 0.001 / viscosity of water
15 K_q = D_q*(g*(rho_q-rho_f)*rho_f/(meu_f^2))^(1/3)//
      settling factor
16 printf("\n settling factor K_q = \%f", K_q);
17 / \sin ce K = 2.27 < 3.3, stokes flow regime applies, from
      the equation 23.36
18 v_q=g*D_q^2*(rho_q-rho_f)/(18*meu_f)/settling
```

```
velocity of thelargest quartz particle
19 printf("\n settling velocity (quartz) v_q = \%f m/s",
     v_q);
20 //calculation of the settling velocity of the
      smallest galena partilce
21 d_g=4e-5//diameter of smallest galena particle
22 \text{ K_g} = d_g*(g*(rho_g-rho_f)*rho_f/(meu_f^2))^(1/3)//
      settling factor
23 printf("\n settling factor K_g = \%f", K_g);
24 //since K = 1.6 < 3.3, stokes flow regime again applies
v_g = g*d_g^2*(rho_g-rho_f)/(18*meu_f)/settling
      velocity for galena particles
26 printf("\n setling velocity v_g = \%f m/s", v_g);
27 //to obtain pure galena the upward velocity of the
      water must be equal to or greater than the
      settling veloctiy of the quartz particle
v_w=v_q//velocity of water
29 printf("\n water velocity v_w = \%f m/s", v_w);
```

Scilab code Exa 24.9 size range of galena particle

```
1 clc;
2 //Example 24.9
3 //page no 361
4 printf("\n Example 24.9 page no 361\n\n");
5 //refer to illustrative example 24.8
6 //we have to determine the size range of the galena in the top product
7 //to determine the size range of the galena product , calculate the galena particle size that has a settling velocity equal to water velocity
8 //assume stokes law applies
9 v_w=0.0073//velocity of water
10 v_q=v_w//velocity of quartz particles
11 SG_q = 2.65//specific gravity of quartz particle
```

```
12 SG_g=7.5//specific gravity of galena particles
13 rho_f=1000//density of water
14 rho_q=SG_q*rho_f//density of quartz paticles
15 rho_g=SG_g*rho_f//density of galena particle
16 g=9.807//grav. acc
17 meu_f=0.001//viscosity of water
18 D = sqrt(18*meu_f*v_q/(g*(rho_g-rho_f)))
19 printf("\n diameter D =%f m",D);
20 //check on the validity of stokes law by calculating the K factor
21 K = D*(g*(rho_g-rho_f)*rho_f/(meu_f^2))^(1/3)// settling factor
22 printf("\n settling factor K=%f ",K);
23 //since K =1.82<3.3 , the flow is in the stokes law range</pre>
```

Scilab code Exa 24.10 maximum diameter

```
1 clc;
2 //Example 24.10
3 //page no 362
4 printf ("Example 24.10 page no 362 \ln n");
5 //air is being dried by bubbling through
      concentrated NaOH
6 q=4/60//flow rate of air, ft<sup>3</sup>/min
7 D=2.5/12//diameter of tube
8 S=(\%pi/4)*D^2//cross sectional area
9 v=q/S//velocity of air, ft/s
10 meu=1.23e-5//viscosity of NaOH
11 rho = 0.0775 // density of air
12 g=32.2//grav. acc.
13 SG=1.34//specific gravity of NaOH
14 rho_w=62.4//density of water
15 rho_p=SG*rho_w//density of NaOH
16 D_p_max = [v*(rho^0.29)*(meu^0.43)/(0.153*(g*rho_p))]
```

```
^0.71)]^(1/1.14)//assuming that the intermediate
  range applies ,maximum diamter of particle

17 printf("\nD_p_max=%f",D_p_max);

18 //settling factor

19 K=D_p_max*(g*rho*rho_p/(meu^2))^(1/3)

20 printf("\n settling factor K=%f",K);

21 //tus result for D_p_max is correct
```

Chapter 25

porous media and packed beds

Scilab code Exa 25.1 effective particle diameter

```
1 clc;
2 //Example 25.1
3 //page no 370
4 printf("Example 25.1 page no 370\n\n");
5 //calculation of efffective particle diameter for a set of packing
6 V=0.2//packing volume
7 n=100//no. of particle assume
8 V_p=V*1000/n//the volume of single particle ,mm^2//
9 S_p=2.18//average surface area of particle ,mm^2
10 a_p=S_p/V_p//specific surface area of particle ,(mm) ^-1
11 D_p = 6/a_p//effective diameter of particle ,mm
12 printf("\n effective partcle diameter D_p=%f mm", D_p);
```

Scilab code Exa 25.2 reynolds number

```
1 clc;
2 //Example 25.2
3 //page no 371
4 printf("Example 25.2 page no 371\n\n");
5 //refer to example 25.1
6 V=0.2//packing volume
7 n=100//no. of particle assume
8 V_p=V*1000/n//the volume of single particle ,mm<sup>2</sup>//
9 S_p=2.18//average surface area of particle,mm<sup>2</sup>
10 a_p=S_p/V_p//specific surface area of particle ,(mm)
      ^{-1}
11 D_p = 6/a_p//effective diameter of particle, mm
12 D_p=5.50//round off value for accurate answer
13 rho=0.235//density of fluid g/cm^3
14 meu=2e-4//viscosity, g/cm.s
15 v=10//interstitial velocity, cm
16 R_e=round((D_p/v)*rho*v/meu)//reynolds no
17 printf("\n Reynolds no R_e = \% f ", R_e);
18 //from R<sub>e</sub> value we can conclude that the flow of
      fluid would be in the turbulent region
```

Scilab code Exa 25.3 particle specific surface and effective diameter

```
1 clc;
2 //Example 25.3
3 //page no 372
4 printf("Example 25.3 page no 372\n\n");
5 //air flows across a packed bed
6 d_p=1.5//diamter of cylinderical particles,cm
7 h=2.5//height ,cm
8 V_p=%pi*d_p^2*h/(4)//volume of the cylinderical particles
9 S_p=%pi*d_p*h + 2*(%pi*d_p^2/4)//cylinderical particle surface area,cm^2
10 a_p=S_p/V_p//particle specific surface
```

Scilab code Exa 25.4 specific surface and effective particle diameter

```
1 clc;
2 //Example 25.4
3 //page no 373
4 printf("\nExample 25.4 page no 373\n\n");
5 //a absorber bed consists of cube particles
6 L=3/4//edge length of particle
7 V_p=L^3//volume of particle
8 S_p=6*L^2//surface area of particle
9 a_p=6*L^2/L^3//specific particle surface area
10 printf("\n specific particle surface area a_p=%f in ^-1",a_p);
11 d_p_e = L//effective particle diameter = edge length
12 printf("\n effective particle diameter d_p_e=%f in", d_p_e)
```

Scilab code Exa 25.5 a catalyst tower

```
8 R=10.73//gas constant
9 T=960//temperature, Rankine
10 rho=P*Mw/(R*T*144)//density of propane
11 L=50//height of bed, ft
12 D=20//diameter of bed, ft
13 V=\%pi*D^2*L/4//bed volume
14 theta=10//contact time, s
15 \text{ e=0.4//bed porosity}
16 q=V*e/theta//volumetric flow rate
17 v_s=4*q/(\%pi*D^2)//superficial velocity
18 printf("\n superficial velocity v_s = \%f ft/s", v_s);
19 v_i=v_s/e//interstitial velocity
20 printf("\n interstitial velocity v_i = \%f ft/s", v_i;
21 rho_s=77.28//ultimate density(spheres)
22 rho_b=(1-e)*rho_s/bulk density
23 printf("\n bulk density rho_b=\%f lb/ft^3",rho_b);
24 d_p=0.0833//diameter of particles
25 a_p=6/d_p//specific surface area
26 printf("\n specific surface area a_p = \%f ft^-1", a_p);
27 a_b=a_p*(1-e)//bed specific surface
28 printf("\n bed specific surface a_b = \%f ft^-1", a_b)
```

Scilab code Exa 25.6 hydraulic radius and hydraulic diameter

```
1 clc;
2 //Example 25.6
3 //page no 375
4 printf("Example 25.6 page no 375\n\n");
5 //refer to example 25.5
6 d_p=0.0833//diameter of particles, ft
7 e=0.4//bed porosity
8 D_h=2/3*(e/(1-e))*d_p//hydraulic diameter
9 r_h=D_h/4//hydrulic radius
10 printf("\n hydraulic diameter D_h=%f ft\n hydrulic radius r_h=%f ft",D_h,r_h);
```

Chapter 26

fluidization

Scilab code Exa 26.2 water softner unit

```
1 clc;
2 //Example 26.2
3 //page no 382
4 printf("Example 26.2 page no 384 \ln n");
5 //a water softner unit consists of a large diameter
      tank, the bottom of tank is connected to a
      vertical ion exchange pipe
6 h_f=1.25//total fluid height
7 h_l=h_f
8 \text{ g} = 32.174 // \text{grav. acc}
9 = 0.25 // \text{ bed porosity}
10 d_p=0.00417//ion exchange resin particle diameter, ft
11 L=1//pipe length, ft
12 //assume turbulent flow ,apply burke purmer equation
13 v_s = \sqrt{(g*h_f*e^3*d_p/(1.75*(1-e)*L))/superficial}
      velocity
14 printf("\n superficial velocity v_s=\%f ft/s",v_s);
15 meu=6.76e-4//absolute viscosity of water
16 rho=62.4//density of water
17 //check for turbulent flow
18 R_e=d_p*v_s*rho/((1-e)*meu)
```

```
19 printf("\n R_e=\%f", R_e);
20 //since reynold no is low the calculation is not
21 //assume laminar flow and use Blake-Kozeny equation
      26.9
v_s_t=rho*g*h_f*e^3*d_p^2/(150*meu*((1-e)^2)*L)//
      superficial velocity
23 printf("\n superficial velocity v<sub>s</sub>t=%f ft/s",v<sub>s</sub>t
24
    //check the porous medium reynolds no
    R_e_t=v_s_t*d_p*rho/((1-e)*meu)
25
    printf("\n reynolds no R_e_t=\%f", R_e_t);
26
27
    //since reynolds no R_e < 10, the flow is therfor
       laminar
   D=0.167//diameter of pipe
28
   S=(\%pi/4)*D^2//empty cross sectional area
29
    q=v_s_t*S//volumetric flow rate
30
31
    printf("\n vol. flow rate q=\%f ft^3/s",q);
```

Scilab code Exa 26.3 pressure drop

```
1 clc;
2 //Example 26.3
3 //page no 384
4 printf("Example 26.3 page no 384\n\n");
5 //refer to Example 26.2
6 //a water softner unit consists of a large diameter tank ,the bottom of tank is connected to a vertical ion exchange pipe
7 h_f=1.25//total fluid height
8 h_l=h_f
9 g=32.174//grav. acc
10 e=0.25// bed porosity
11 d_p=0.00417//ion exchange resin particle diameter, ft
12 L=1//pipe length ,ft
```

```
13 //assume turbulent flow ,apply burke purmer equation
14 v_s = sqrt(g*h_f*e^3*d_p/(1.75*(1-e)*L))/superficial
      velocity
15 printf("\n superficial velocity v_s = \%f ft/s", v_s);
16 meu=6.76e-4//absolute viscosity of water
17 rho = 62.4 // density of water
18 //check for turbulent flow
19 R_e=d_p*v_s*rho/((1-e)*meu)
20 printf("\n R<sub>-</sub>e=\%f", R_e);
21 //since reynold no is low the calculation is not
      valid
22 //assume laminar flow and use Blake-Kozeny equation
      26.9
v_s_t=rho*g*h_f*e^3*d_p^2/(150*meu*((1-e)^2)*L)//
      superficial velocity
24 printf("\n superficial velocity v_s_t=%f ft/s",v_s_t
      );
25
    //check the porous medium reynolds no
    R_e_t=v_s_t*d_p*rho/((1-e)*meu)
26
    printf("\n reynolds no R_e_t=\%f", R_e_t);
27
28
    // \mathrm{since} reynolds no R<sub>e</sub> < 10, the flow is therfor
       laminar
  //calculation of the pressure drop due to friction
      and the pressure drop across the resin bed
30 \text{ k=e^3*d_p^2/(150*(1-e)^2)//packed bed permeability}
31 P_drop_fr=rho*h_f//friction pressure drop across
      resin bed, psf
32 printf("\n fricion pressure drop P_drop_fr=%f psf",
      P_drop_fr);
33 z_d=-1/length from point 2 to 3, ft
34 P_drop_r=rho*(z_d+h_f)/pressure drop across the
      resi bed
35 printf("\n pressure drop across across the resin bed
       P_drop_r=\%f psf", P_drop_r);
```

Scilab code Exa 26.4 minimum fluidization

```
1 clc;
2 //Example 26.4
3 //page no 387
4 printf("\nExample 26.4 page no 387 \ln n");
5 //air is used to fluidize a bed of speherical
      particles
6 D=0.2//bed diameter,m
7 d_p=7.4e-5//diameter of 200 mesh particles from
      table 23.2, m
8 rho_s=2200//ultimate solid density
9 rho_f=1.2//density of air
10 meu=1.89e-5//viscosity of air
g=9.807/grav. constant
12 \text{ e=0.45//bed porosity}
13 L_mf=0.3//length at minimum fluidization
14 //assume laminar flow
15 //applying equation 26.29
16 \text{ v_mf} = (1-e) *g*rho_s*d_p^2/(150*e^3*meu) //minimum
      fluidizaton veloctiy
17 printf("\n min. fluidization velocity v_mf=%f m/s",
      v_mf);
18 //check the flow regime
19 R_e=v_mf*d_p/(meu*(1-e))
20 printf("\n Reynolds no R_e=\%f ",R_e);
21 / \sin ce R_e = 1.79 < 10, flow is laminar
22 m_dot=%pi*v_mf*D^2*rho_f/4//mass flow rate
23 printf("\n mass flow rate m_dot =\%f kg/s",m_dot);
24 P_{fr=round}((1-e)*rho_s*g*L_mf)/gas pressure drop
      across the bed
25 printf("\n gas pressure drop P_fr=\%f Pa", P_fr);
```

Scilab code Exa 26.5 pressure drop in packed bed

```
1 clc;
2 //Example 26.5
3 //page no 389
4 printf("Example 26.5 page no 389 \n\n");
5 //air flowing through a 10 ft packed bed
6 V_o=4.65//superficial\ velocity, ft/s
7 meu_g=1.3e-5//viscosity of air
8 rho_g=0.67//density of air, lb/ft^3
9 e=0.89//void volume
10 \text{ g_c=} 32.2 // \text{grav. constant}
11 L=10//length of packed bed
12 d_p=0.007815//effective particle diameter
13 P_drop = [(150*V_o*meu_g/(g_c*d_p^2))*((1-e)^2/e^3)]
      + (1.75*rho_g*V_o^2/(g_c*d_p))*((1-e)^2/e^3)]*L//
      pressure drop
14 printf("\n pressure drop P_{rop}=\%f lb/ft^2", P_{drop};
     //calculation error in book
```

Scilab code Exa 26.6 a bed of pulverized coal

```
clc;
//Example 26.6
//page no 392
printf("Example 26.6 page no 392\n\n");
//a bed of pulverized is to be fluidized with liquid oil
D=4//diameter of bed ,ft
d_p=0.00137//particle diameter ,ft
rho_s=84//coal particle density ,lb/ft^3
rho_f=55//oil density,lb/ft^3
e_mf=0.38//void fraction
L_mf=8//bed height at minimum fluidization ,ft
P_drop=(rho_s-rho_f)*(1-e_mf)*L_mf +rho_f*L_mf
printf("\npressure drop P_drop=%f psf",P_drop);
```

Scilab code Exa 26.7 volumetric flow rate

```
1 clc;
2 //Example 26.7
3 //page no 393
4 printf("Example 26.7 page no 393 \n\n");
5 //refer to example 26.6
6 D=4//diameter of bed ,ft
7 d_p=0.00137//particle diameter, ft
8 rho_s=84//coal particle density ,lb/ft^3
9 rho_f = 55 // oil density, lb/ft^3
10 meu_f = 3.13e - 4 / viscosity of oil
11 e_mf = 0.38 / / void fraction
12 L_mf=8//bed height at minimum fluidization, ft
13 L_f = 10 / bed height, ft
14 e=1-L_mf*(1-e_mf)/L_f//bed voidage
15 g=32.174//grav acc
16 \text{ v_s=(d_p^2)*g*(e^3)*(rho_s-rho_f)/(150*meu_f*(1-e))}
      //superficial velocity
17 printf("\n superficial velocity v_s = \%f ft/s", v_s);
18 q=(\%pi/4)*D^2*v_s/volumetric flow rate
19 printf("\n vol. floe rate q=\%f ft^3/s",q);
20 //check on the laminar flow assumption
21 \text{ meu}_f = 0.01
22 R_e=d_p*v_s*rho_f/(meu_f*(1-e))
23 printf("\n reynolds no R_e = \%f", R_e);
24 printf("\n since R_e is less than 10 , flow is
      laminar");
```

Scilab code Exa 26.8 friction factor and permeability of the catalyst

```
1 clc;
```

```
2 //Example 26.8
3 //page no 393
4 printf(" Example 26.8 page no 393\n\n");
5 //refer to example 25.6
6 //obtain the porous medium friction factor using the
      burke -plummer equation
7 //since the flow is turbulent ,eq.26.6 applies
8 f_pm=1.75//porous medium friction facot
9 v_s=2/superficial velocity
10 e=.4/porosity
11 L=50//length of bed
12 d_p=0.0833//particle diameter
13 g=32.174//grav. acc
14 h_f = (f_pm)*(v_s^2)*(1-e)*L/(g*(e^3)*d_p)/head loss
15 printf("\n head loss h_f = \%f ft of propane ", h_f);
16 //applying bernoulli eq. between the entrance and
      gas exit
17 //neglect the dynamic head
18 P2=4320//pressure at the bottom of the catalyst bed
19 rho_f = 0.0128 / density of fluid
20 \text{ z_d}=-50//\text{length from point } 2 \text{ to } 3,z2-z1
21 P1 = P2 + rho_f*(z_d-h_f)// absolute pressure of the
       inlet gas
22 printf("\n pressure P1=\%f psf",P1);
23 //since flow is turbulent, permeablity of the
     medium k can not be calculated
```

Scilab code Exa 26.9 activated carbon bed

```
1 clc;
2 //Example 26.9
3 //page no 394
4 printf("Example 26.9 page no 394\n\n");
5 //turbulent flow of water through a carbon bed
6 d_p=0.001//particle diameter
```

Scilab code Exa 26.10 bed height and porosity

```
1 clc;
2 //Example 26.10
3 //page no 395
4 printf("Example 26.10 page no 395\n\n");
5 //a bed of 200 mesh particles is fluidized with air
6 d_b=0.2//diameter of bed,m
7 d_p=7.4e-5//particle diameter
8 L_mf=0.3//bed height at minimum fludization
9 e_mf=0.45//bed porosity at min. fluidization
10 L_o=L_mf*(1-e_mf)//the zero porosity bed height
11 printf("\n zero porosity bed height L_o=\%f m", L_o);
12 rho_s=2200//density of particles
13 rho_f=1.2//density of fluid
14 \text{ g=9.807}//\text{grav}. acc
15 meu_f=1.89e-5//viscosity of fluid
16 //assuming laminar flow , use equation
17 v_mf = (e_mf^3)*(g*(rho_s-rho_f)*(d_p^2))/(150*(1-
     e_mf)*meu_f)//velocity at minimum fluidization
18 printf("\n velocity at min. fluidization v_mf=%f m/s
     ", v_mf);
```

```
19 v_t=0.35//terminal velocity from example 26.3
20 e=0.91//value of e porosity from eq26.9
21 L_f=L_o/(1-e)//expanded bed height L_f
22 m=rho_s*%pi*d_b^2*L_o//bed inventory
23 printf("\n expanded bed height L_f=%f m\n bed inventory m=%f kg",L_f,m);
```

Scilab code Exa 26.11 fluidization mode

```
1 clc;
2 //Example 26.11
3 //page no 396
4 printf("\n Example 26.11 page no 396\n\n");
5 //refer to illustrative example 26.9
6 d_p=7.4e-5//particle diameter
7 L_mf=0.3//bed height at minimum fludization
8 e_mf=0.45//bed porosity at min. fluidization
9 L_o=L_mf*(1-e_mf)//the zero porosity bed height
10 printf("\n zero porosity bed height L_o=\%f m", L_o);
11 rho_s=2200//density of particles
12 rho_f=1.2//density of fluid
13 g=9.807//grav. acc
14 meu_f=1.89e-5//viscosity of fluid
15 //assuming laminar flow , use equation
16 v_mf = (e_mf^3)*(g*(rho_s-rho_f)*(d_p^2))/(150*(1-
     e_mf)*meu_f)//velocity at minimum fluidization
17 printf("\n velocity at min. fluidization v_mf=%f m/s
     ", v_mf);
18 F_mf=v_mf^2/(g*d_p)//fluidization mode
19 printf("\n fluidization mode F_mf=\%f", F_mf);
20 //from value of F_mf , fluidization is smoth, F_mf
     =0.66 < 0.13
```

filteraion

Scilab code Exa 27.2 a plate and frame filter press

```
1 clc;
2 //Example 27.2
3 //page no 413
4 printf("Example 27.2 page no 413\n\n");
5 //plate and frame filter press is to be employed to filter a slurry
6 m_dot_slurry=600*60//mass flow rate ,lb/h
7 m=0.1//sluury contain 10% by mass solid
8 m_dot_solids = m*m_dot_slurry//the solid flow rate in the slurry
9 a=(1/5)//filter colth area required for 1 lb/h of solid
10 A=m_dot_solids*(a)//filter colth area for 3600 lb/h of solids
11 printf("\n filter colth area A=%f ft^2",A);
```

Scilab code Exa 27.4 press and filter plate

```
1 clc;
2 //Example 27.4
3 //page no 414
4 printf("Example 27.4 page no. 414\n\n");
5 m=1947//slope of curve b/w t/V vs V, s/ft^6
6 K_c=2*m
7 c=217//intercept on graph
8 q_r=c//reciprocal of q
9 printf("\n coeff. K_c=%f s/ft^6\n coeff. q_r=%f s/ft^3", K_c, q_r)
```

Scilab code Exa 27.5 filtration coefficients

```
1 clc;
2 //Example 27.5
3 //page no 415
4 printf("Example 27.5 page no 415\n\n");
5 //refer to example 27.4
6 meu=5.95e-4//viscosity
7 \text{ g_c} = 32.174 // \text{grav. acc}
8 P_drop = 20*144 // pressure drop
9 q_o = (1/217) // flow rate
10 S=0.35//filteration area per unit
11 K_c = 3894 // coefficentc
12 c=4.142//slurry conentration
13 R_m=S*g_c*P_drop/(q_o*meu)//filteration coeff.
14 printf("R_m=%f ft", R_m);
15 alpha=K_c*S^2*g_c*P_drop/(c*meu)//filteration coeff.
16 printf("\n alpha=\%f ft/lb",alpha);
```

Scilab code Exa 27.7 filtration experiment

```
1 clc;
```

```
//Example 27.7
//page no 418
printf("Example 27.7 page no 418\n\n");
//the following result were obtained during the running of a filteration experiment
alpha=4.57e+11//cake resistance,ft/lb
P_drop=1554//pressure drop ,lbf/ft^2
alpha_o=alpha/(P_drop^0.21)//specific cake resistance
printf("\n specific cake resistance alpha_o=%f ft/lb",alpha_o);
```

Scilab code Exa 27.9 filter press capacity

```
1 clc;
2 //Example 27.9
3 //page no 418
4 printf("Example 27.9 page no 418\n\n");
5 //a filter press operates at a constant pressure
6 P=50//pressure, psig
7 q=10//flow rate, ft^3/min
8 //applying eq. 27.12
9 / q = P/(B*V_s + C)
10 //in this case, V_s=0
11 C=P/q//constant
12 //for constant pressure applying equation 27.13
13 / t = B*V_s^2/(2P) + C*V_s/P
14 t=60//time, min
15 V_s=100//volume, ft<sup>3</sup>
16 B= 2*P*t/(V_s^2) - 2*C/V_s//constant
17 //during the washing cycle t_w = V_w/q_w
18 //B and C remain same
19 V_w=15//volume of water for washing per hr
20 t_w = V_w * (B*V_s + C)/P/time in washing
21 printf("\n washing time t_w=\%f min", t_w);
```

```
22 t_d=30//time for dumping and cleanig
23 t_c=(t + t_w +t_d)/60//collecting time, in hr
24 q_c =V_s/t_c//flow rate for 100 ft^3
25 printf("\n flow rate q_c=%f gal/hr",q_c);
```

environmental management

Scilab code Exa 28.3 cement dust emitting source

```
1 clc;
2 //Example 28.3
3 //page no 430
4 printf("Example 28.3 page no 430\n\n");
5 //we have to determine the minimum distance
     downstream from a cement dust emitting
     that will be free of cement deposit
6 //the souce is equipped with a cyclone located 150
      ft above ground level
7 //neglect meteorological aspects
8 h=150//cyclone height from ground level, ft
9 v_w=3/3600//wind velocity, miles/second
10 SG=1.96//specific gravity of cement dust
11 rho_w=62.4//density of water, lb/ft^3
12 rho_p=SG*rho_w///density cement particles
13 //applying ideal gas law for density of air
14 P=1//pressure, atm
15 M= 29//\text{mol.} weight of air
16 R=0.73//gas constant
17 T=520 //temperature, Rankine
18 rho_a=P*M/(R*T)/density of air
```

```
19 meu=1.22e-5//viscosity of air,lb/ft.s
20 g=32.174//grav. acc.
21 d_p=2.5/(25400*12)//particle diameter,ft
22 K = d_p*(g*rho_p*rho_a/(meu^2))^(1/3)//settling
    factor
23 printf("\n settling factor K=%f",K);
24 //since K=0.103<3.3,sokes law rane applies
25 v= g*d_p^2*rho_p/(18*meu)//terminal settling
    velocity)
26 printf("\nsettling velocity v=%f ft/s",v);
27 t=h/v//time for desent
28 printf("\n desent time t=%f sec",t);
29 x=v_w*t//horizontal distance travelled in miles
30 printf("\n minimum horizontal distance x=%f miles",x
    );//printing mistake in book</pre>
```

Scilab code Exa 28.4 filter system

```
1 clc;
2 //Example 28.4
3 //page no 432
4 printf ("Example 28.4 page no 432 \ln n");
5 //it is proposed to install a pulse jet fabric
      filter system to clean an air stream containing
      particulate pollutants
6 //we have to select the most apporpriate filter beg
     fabric
7 q_scfm=10000//volumetric flow rate of polluted air
     stream at 60 deg F ,1 atm
8 T=520//temperature, R
9 T_o=710//operating temparature ,R
10 q_acfm = q_scfm*(T_o/T)/flow rate in acfm
11 v_f = 2.5 // filteration velocity, ft/min
12 S_c=q_acfm/v_f//filtering beg area
13 printf("\n filtering beg area S_c = \%f ft<sup>2</sup>", S_c);
```

```
14 //(1) for bag A, the area and N number of bags are
15 D_a=8/12//diamter, ft
16 \text{ H\_a=16//height, ft}
17 S_a = \pi D_a + H_a/area
18 N_a = round(S_c/S_a)//no. of bags
19 printf("\n area S_a=%f ft^2\n number og bags N_a=%f
      ",S_a,N_a);
20 //(2) for bag B
21 D_b = 10/12//diameter, ft
22 \text{ H_b=} 16 // \text{height}, \text{ft}
23 S_b = \%pi * D_b * H_b / area
24 N_b = round(S_c/S_b)//no. of bags
25 printf("\n area S_b=\%f ft^2\n no. of bags N_b=\%f",
      S_b, N_b);
26 //total cost for each bag
\frac{27}{for bag A}
28 c_a=26//cost per bag
29 TC_a = round(N_a * c_a) / total cost for A bag
30 printf("\n total cost TC_a=\%f \$", TC_a);
31 // \text{for bag B}
32 c_b=38//cost per bag
33 TC_b=N_b*c_b//total cost for bag B
34 printf("\n total cost TC_b=%f $",TC_b);
35 //since the total cost for bag A is less than bag B,
      select bag A
```

Scilab code Exa 28.5 fabric system

```
1 clc;
2 //Example 28.5
3 //page no 433
4 printf("\n Example 28.5 page no 433\n\n");
5 //we have to determine the number if filtering bags required and cleaning frequency for a plant equipped with a fabric system
```

```
6 q=50000//volumetric flow rate of gas stream, acfm
7 v_f=10//filteration velocity, ft/min
8 D=1//diameter of filtering bag, ft
9 L=15//length of filtering bag, ft
10 S_c=q/v_f//filtering area, ft^2
11 S=%pi*D*L//area per bag, ft^2
12 N=S_c/S//no. of bags
13 printf("\n no. of bags N=%f",N);
14 c=0.0007143//dust concentration ,lb/ft^2
15 P_drop=8//pressure drop ,in H20
16 t=(P_drop-(0.2*v_f))/(5*c*v_f^2)//time sic ethe bags were cleaned
17 printf("\n time t=%f min",t);
```

Scilab code Exa 28.6 manning equation

```
1 clc;
2 //Example 28.6
3 //page no 434
4 printf("Example 28.6 page no 434 \ln n);
5 //comparison between flow in pipes and open channel
      flow
6 //water is passing through a trapezodial channel
7 l_b=20//length of bottom base, ft
8 l_t=50/length of top base, ft
9 h=7.5//height of channel, ft
10 A = (l_b+ l_t)*(h/2)/cross sectional area
11 P = l_b + sqrt(h^2 + (2*h)^2) / perimeter of trapezoid
12 r_h=A/P//hydrulic radius
13 S=0.0008//coeff. in manning equation
14 \text{ n=0.02//coeff.} in manning eq.
15 q = 1.486*A*r_h^{(2/3)}*S^{(1/2)}/n/manning equation to
       determine flow rate
16 printf("\n volumetric flow rate q=\%f ft^3/s",q);
```

Scilab code Exa 28.7 a watershed

```
1 clc:
2 //Example 28.7
3 //page no 435
4 printf("\n Example 28.7 page no 435\n\n")
5 //waste water treatment plant
6 //we have to compare the total nitrogen discharge
     from the watershed with that of the city 's
     sewage treatment plant
7 q_w=10//flow rate from waste water treatment plant
8 c=35//nitoren concentration, mg/l
9 m_dot_w=c*q_w*8.34//discharge from the treatment
      plant
10 printf("\n fdischarge from the treatment plant
     m_{dot_w}=\%f_{day}, m_{dot_w};
11 S=8//area of watershed, mi<sup>2</sup>
12 r=0.06//rate of rainfall, ml/day
13 n=.5//50\% rain reaches the sewers
14 q=n*r*S*(5280^2/(3600*12))//volumetric flow rate of
     the runoff
15 c_r=9//tota; nitrogen conentration in runoff, mg/l
16 rho=62.4///density of water
17 \text{ m_r=q*c_r*1e-6*(3600*24)*rho//total nitrogen}
      discharge from runoff
18 printf("\n total nitrogen discharge m_r=%f lb/day",
     m_r);
   //since the durinf rain , the runoff is over 2.5
19
       times that for the tratment plant
```

Scilab code Exa 28.8 aerobic digester

```
1 clc;
2 //Example 28.8
3 //page no 436
4 printf("Example 28.8 page no 436 \ln n");
5 //we have to determine the siaze an aerobic digester
       to treat the solids
6 m=1000//mass of solid that is generate by
      municipality, lb
7 OL=0.2//organic loading, lbcs/ft^3.day
8 VS=.78//volatile solids
9 V_ol=m*VS/OL//volume based on organic loading
10 printf("\n volume based on organic loading V_ol=%f
      ft^3", V_ol);
11 t_h=20//detention time hydraulic, days
12 TS=0.044//percentage solids enterning digester
13 V_hl=m*t_h/(TS*8.33*7.48)/volume based on hydrulic
     load
14 printf("\n volume based on hyraulic load V_hl=%f ft
      ^3", V_hl);
15 // \text{since V_hl} > \text{V_ol}, the hdraulic time controls and
      the design volume is V_hl
```

Scilab code Exa 28.9 deep cavern

```
1 clc;
2 //Example 28.9
3 //page no 437
4 printf("Example 28.9 page no 437\n\n");
5 //a large deep cavern has been proposed as an
    ultimate disposal site for both solid hazardous
    and municipal wastes
6 V_c=0.78//approximate total volume of cavern, mi^2
7 V_s=.75//% volume availiable for solid waste
    depositry
8 V=V_c*V_s*(5280)^3//volume of the cavern availible
```

```
for the solid waste ,factor 5280 to convert mi^3
    into ft^3

printf("\n volume of cavern available for solid
    waste V=%f ft^3",V)

r=20000//proposed maximum waste feed rate to cavern
    ,lb/day

rho=30//average bulk density,lb/ft^3

q=(r/rho)*(6*52)//volume rate of solid deposited
    within the cavern in ft^3/year

printf("\n q=%f ",q);

t=V/q//time to fill the cavern

printf("\n time to fill the cavern t=%f year",t);
```

Scilab code Exa 28.10 compliance stack test

```
1 clc;
2 //Example 28.10
3 //page no 438
4 printf ("Example 28.10 page no 438 \ln n");
5 // a compliance stack test on a facility yields the
      results , we have to determine whether the
      incineratormeets the state particulate standard
      of 0.05 gr/dscf
6 \text{ g} = 9.807 // \text{grav. acc}
7 rho_l=1000//density of manometer fluid, kg/m<sup>3</sup>
8 rho=1.084//density of flue gas, kg/m<sup>3</sup>
9 C=0.85//pitot tube constant
10 h=0.3772//mean pitot tube reading in H2O
11 m=0.16//mass of particulate collected ,g
12 V=35//volume sampled, dscf
13 C_p=m*15.43/V//partculate concentration, gr/dscf
14 printf("\n particulate con. C_p = \%f \operatorname{gr}/\operatorname{dscf}", C_p);
15 //since this does not exceed the particulate
      standard of 0.05 gr/dscf, the facility is not in
      compliance
```

```
16 //the stack flow rate is calculated from the
      velocity measurement
17 v=C*sqrt(2*g*(rho_1/rho)* 0.0254*h)/.3048//velocity
18 printf("\n velocity v=\%f fps",v);
19 D=2//diameter of stack, ft
20 v_s = (v * \%pi * D^2/4) * 60 / stack flow rate
21 printf("\n stack flow rate v_s = \% f \ acfm", v_s);
22 w_mo=0.07/\% moisture in stack gas
23 v_dry=(1-w_mo)*v_s//dry volumetric flow rate
24 //correct to standard conditions of 70 deg F and 1
      atm
25 T_s=530// standard temprature deg R
26 P_s=29.9//standard pressure, psi
27 P_g = 29.6 // pressure of stack gas, psi
28 T_g=600//temprature of standard gas, deg R
29 q_s=v_dry*(T_s/T_g)*(P_g/P_s)//standard volumetric
      flow rate
30 printf("\n standard volumetric flow rate q_s=\%f
      dscfm",q_s)
31 R_e=C_p*q_s*(1440/7000)//particulate emission rate
32 printf("\n particulate emmision rate R_e=\%f lb/day",
33 w_{co2}=0.14//percentage of co2 by volume
34 \text{ w_N2=0.79//percentage of N2 by volume}
35 mw_o=32//molecular weight of oxygen
36 mw_co2=44//molecular weight of co2
37 mw_N2=28//molecular weight of N2
38 \text{ MW_d=w_mo*mw_o} + \text{w_co2*mw_co2} + \text{w_N2*mw_N2}//\text{molecular}
       weight of flue gas on dry basis
39 printf("\n mol. weight of flue gas on dry basis MW_d
     =\%f lb/lbmol", MW_d);
```

aaccident and emergency

Scilab code Exa 29.2 probability distribution

```
1 clc;
2 //Example 29.2
3 //page no 455
4 printf("Example 29.2 page no 455\n\n");
5 //the probability distribution of the number of
      defectives in a sample of five pump drawn with
      replacement from lot of 1000 pump
6 //the probability distribution of x, thenumber of
      sucess in n performances of the erandom experiment
       is the probability distribution function
7 //P(x) = (factorial(n)/factorial(x)*(factorial n -
      factorial x) \times (p^x \times q^n - x)
8 n=5/no. of performances
9 \text{ x=3//no. of successes}
10 p=0.05//probability of sucesses when the sample of
     pump is drawn with replacement
11 q=1-p//probability of faliure
12 P=factorial(n)*((p^x)*(q^(n-x)))/(factorial(x)*(
      factorial(n)-factorial(x)))/probability when x
     =3//\text{probability} when x=3/\text{factorial}(x)*(\text{factorial}(x))
     n) - factorial(x))*(p^x*q^(n-x))//probability \ when
```

```
x=3
13 printf("\n probability P=%f ",P); //calculation error in book
```

Scilab code Exa 29.3 an iron foundry

```
1 clc;
2 //Examctple 29.3
3 //page no 455
4 printf("Example 29.3 page no 455");
5 //an iron foundry has four work stations that are
      connected to single duct
6 v_air=4000//the minimum air velocity required for
      general foundry dust, ft/min
7 v_{air_s}=v_{air}/60//velocity of air in ft/s
8 \text{ n=4//no. of duct}
9 q_e=3000//each duct transport air, acfm
10 q=n*q_e//total transport, acfm
11 A=q/v_air//cross sectional area required ,ft^2
12 D=sqrt(4*A/%pi)//duct diameter, ft
13 rho=0.075//density of air
14 meu=1.21e-5//viscosity of air
15 R_e=D*rho*v_air_s/meu//reynolds no
16 printf("\n reynolds no. R_e=\%f ", R_e);
17 f=0.003///fanning friction factor, since R_e > 20000
18 L=400//duct length
19 g_c=32.2//grav. acc.
20 P_drop_d = (4*f*L*v_air_s^2*rho)/(2*g_c*D)/pressure
      drop in the duct
21 printf("\n pressure drop in duct P_drop_d=%f lbf/ft
      ^2",P_drop_d);
22 \text{ P\_drop\_h=0.5*5.2//pressure drop in hood}
23 P_drop_cyc=3.5*5.2//pressure drop in cyclone cleaner
24 P_drop_t=P_drop_d + P_drop_h + P_drop_cyc//total
      prssure drop
```

Scilab code Exa 29.6 a baghouse

```
1 clc:
2 //Example 29.6
3 //page no 458
4 printf("Example 29.6 page no 458 \ln n);
5 //a baghouse has been used to clean a particulate
     gas steam
6 l_i=5//inlet loading, grains/ft<sup>3</sup>
7 l_o=0.03//outlet loading, grains/ft<sup>3</sup>
8 l_o_max=0.4//maximum outlet loading, grains/ft<sup>3</sup>
9 E_b=(l_i-l_o)/l_i//efficiency before bag failure
10 P_t=1-E_b//penetration before bag failure
11 E=(1_i-1_o_max)/1_i/efficiency on regulatory
      conditions
12 P_t_r=1-E//penetration regulatory conditions
13 P_tc=P_t_r-P_t//penetration associated with failed
     bags
14 printf("\n penetration associated with failed bags
     P_tc=\%f ", P_tc);
15 P_drop=6//pressure drop, in of H2O
16 T=250//temperature, deg F
17 q=50000//volumetric flow rate, acfm
18 D=8//diamter of bags, in
19 L= q*P_tc/(0.582*P_drop^0.5*D^2*(T+460)^0.5)/number
       of bag failure that the system can tolerate and
      still remain in compliance
20 printf("\n no. of bags L=\%f",L);
21 //thus if two bags fail, baghouse is out of complance
```

Scilab code Exa 29.7 a cstr type reactor

```
1 clc;
2 //Example 29.7
3 //page no 461
4 printf("\Example 29.7 page no 461\n\n");
5 //a reactor is located in a relatively large
     laboratory, the reactor can emit as much as of
     hydrocarbon into the room if a safety valves
     ruptures
6 v=1100//volume of reactor, m^3
7 T=295//temperature of reactor, K
8 v_s=0.0224//volume of gas at STP, m^3
9 T_s=273//standard temperature, K
10 n_{air}=(v/v_s)*(T_s/T)/total gmoles of air in the
     room
11 printf("n = air = \%f = gmol", n_air);
12 v_r=0.75//Hydrocarbon emit by reactor, gmol
13 x_hc = (v_r/(n_air + v_r))*10^9//mole fraction of
     hydrocarbon in the room, parts per billion
14 printf("\n mole fraction of HC x_hc=\%f ppb ",x_hc);
```

numerical methods

Scilab code Exa 31.1 linear algebraic equation

```
1 clc;
2 //Example 31.1 page no 486
3 printf("Example 31.1 page no 486\n\n");
4 //set of linear algebric equation using gauss elimination
5 A=[3,-2,1;1,4,-2;2,-3,-4]//matrix A
6 B=[7;21;9]//matrix B
7 X=inv(A)*B
8 printf("\n X=%f",X);
9 X1=X(1,1)//value of X1
10 X2=X(2,1)//value of X2
11 X3=X(3,1)//value of X3
12 printf("\n X1=%f\nX2=%f \nX3=%f",X1,X2,X3);
```

Scilab code Exa 31.2 temperature and pressure

```
1 clc;
2 //Example 31.2
```

```
3 //page no 492
4 printf("Example 31.2 page no 492 \ln n);
5 //the vapor pressure p' for a new synthetic chemical
       at a given temperature
6 t1=1100//assume intial actual temperature, k
7 T1=t1*1e-3/temperature, k
8 printf("\n T1=%f k",T1);
9 f1=T1^3 -2*T1^2 + 2*T1 -1/function of T, f(T)
10 f_d1=3*T1^2 -4*T1 + 2//derivative of f(T)
11 //using newton rapson formula to estimate T2
12 T2=T1 -(f1/f_d1)/temperature T2
13 printf("\n T2=\%f k",T2);
14 	ext{ f2=T2^3 } -2*T2^2 + 2*T2 -1
15 f_d2=3*T2^2-4*T2+2
16 T3=T2 - (f2/f_d2) / temperature T3
17 printf("\n T3=\%f k",T3);
18 //finally the best estimate is T3, t=1.000095
```

Scilab code Exa 31.3 newton rapson method

```
12  // df=derivat (213.5*v^2 +105.03*v- 22896.08*v)
13  df=- 22791.05 + 427*v
14  v1=5
15  f1=213.5*v1^2 +105.03*v1- 22896.08*v1// value of f
      at v=5
16  df1=- 22791.05 + 427*v1//value of df at v=5
17  v2=v1-(f1/df1)
18  // by iteration we get values of v3,v4,v5,v6
19  // at v6 result converges
20  v6=10.09
21  printf("\n v6=%f ft/s ",v6);
```

Scilab code Exa 31.4 simpson rule

```
1 clc;
2 //Example 31.4
3 //page no 497
4 printf("Example 31.4 page no 497\n\n")
5 //integration
6 I=integrate('(1-0.4*x^2)/((1-x)*(1-0.4*x)-1.19*x^2)', 'x',0,0.468)
7 printf("\n I=%f ",I);
```

economics and finance

Scilab code Exa 32.5 fluid transportation

```
1 clc;
2 //Example 32.5
3 //page no 512
4 printf("Example 32.5 page no 512\n\n");
5 // a fluid is transported 4 miles under turbulent
     flow conditions
6 //we have two choices in designing the system
7 OC_a=20000//per year pressure drop costs for the 2
     inch ID pipe,$
8 CRF=0.1//capital recovery factor for both pipe
9 OC_b=OC_a/16//operating cost associated with the
     pressure drop cost per year for 4 inch pipe
10 d=4*5280//distance, feet
11 c_a=1//2 inch ID pipe cost per feet,$
12 c_b=6// 4 inch ID pipe cost per feet,$
13 CC_a=d*c_a*CRF//capital cost for 2 inch ID pipe,$
14 CC_b=d*c_b*CRF//capital cost for 4 inch ID pipe,$
15 TC_a= OC_a +CC_a//total cost associated with 2 inch
16 printf("\n total cost with 2 inch pipe TC_a=\%f \$",
     TC_a);
```

Scilab code Exa 32.6 particulate control device

```
1 clc;
2 //Example 32.6
3 //page no 512
4 printf(" Example 32.6 page no 512\n\n")
5 //a process emits gas of containg dust, a particulate
       device is employed for particle capture
6 q=50000//vol. flow rate of dust, ft<sup>3</sup>/min
7 c=2/7000//inlet loading of dust
8 DV=0.03//value of dust
9 //recovered value RV can be expressed in terms of
      pressure drop
10 / RV = q * c *DV * P1 / (P1 + 15)
11 C_e=0.18//cost of electricity
12 E_f=0.55//fractional efficiency
13 function x=f(P1)
14
       E=P1/(P1+15)//collection efficiency
15
       RV=q*c*DV*E//recovered value in terms of E$/min
16
17
       C_p = q*(C_e/44200)*P1/(E_f*60)
       x=q*c*DV*P1/(P1+15)-q*C_e*P1/E_f
18
       x = RV - C_p
19
20 endfunction
21 P1 = fsolve(100, f)
22 printf("\n P1=\%f",P1);
23 //calculation mistake in book
```

Scilab code Exa 32.8 a filter press

```
1 clc;
2 //Example 32.8
3 //page no 514
4 printf("Example 32.8 page no 514\n\n");
5 //a filter press is in operation
6 //we have to determine the appraisal value of the
      press
7 i=0.03375//intrest on fund
8 n=9/time, year
9 SFDF=i/((1+i)^n -1)//sinking fund depreciation
10 P=60000//\cos t of filter press, $
11 L=500//salvage value, $
12 UAP= (P-L)*SFDF//uniform annual payment,$
13 printf("\n uniform annual payment UAP=%f $",UAP);
14 //in determing the appraisel value where the
      straight line method of depreciation is used
15 // B = P - (P-L/n)x
16 //where x refers to any time the present before the
     end of usable
17 \text{ x=}5//\text{let for 5 year}
18 B5=P-((P-L)/n)*x//appraissl value for 5 year
19 printf("\n apprasial value B=\%f $",B5);
```

Scilab code Exa 32.9 an outdated environmental control device

```
1 clc;
2 //Example 32.9
3 //page no 516
4 printf("Example 32.9 page no 516\n\n");
```

biomedical engineering

Scilab code Exa 33.1 viscosity of plasma

```
1 clc;
2 //Example 33.1 page no 524
3 printf("Example 33.1 page no 524\n\n")
4 //unit conversion of viscosity of blood
5 meu_cp=1.25//vicosity of blood in cp
6 meu_e=meu_cp*6.72e-4//viscosity in english unit,lb/ft.s
7 printf("\n viscosity meu_e=%f lb/ft.s",meu_e)
```

Scilab code Exa 33.2 pressure units

```
1 clc;
2 //Example 33.2 page no 525
3 printf("Example 33.2 page no 525\n\n");
4 //unit conversion of poressure given in mmHg into various units
5 P=80//pressure given in mmHg
6 P1=P*(29.92/760)//pressure , in Hg
```

```
7 P2=P*(33.91/760) // pressure ,ft H2O
8 P3=P2*12// pressure ,in H2O
9 P4=P*(14.7/760) // pressure ,psia
10 P5=P*(2116/760) // pressure ,psfa
11 P6=P*(1.013e+5/760) // pressure ,N/m^2
12 printf("\n P1=%f inHg\n P2=%f ft H2O\nP3=%f in H2O\n P4=%f psia\nP5=%f psfa\nP6=%f N/m^2",P1,P2,P3,P4
,P5,P6);//in book answers are round off after decimal but there are exact answers
```

Scilab code Exa 33.5 artery branches

```
1 clc;
2 //Example 33.5 page no 527
3 printf("Example 33.5 page no 527 \ln n);
4 //an artery branches into two smaller equal area
      arteries so that velocity is same
5 //because q1=q2, volumetric flow rate
6 / q1 = q2 = q/2
7 //because s1=s2, cross sectional area
8 / s1 = s2 = s/2
9 //let the values
10 q=1//flow rate at inlet artery
11 q1=q/2//flow rate at outlet artery
12 s=1//area of inlet artery
13 s1=s/2//area of outlet artery
14 //v = q/s
15 D_r=sqrt(q/q1)//ratio of diameters
16 printf("\n ratio of diameters D_r = \%f", D_r);
```

Scilab code Exa 33.6 a blood vessel

```
1 clc;
```

```
2 //Example 33.6
3 //page no 528
4 printf("Example 33.6 page no 528\n\n");
5 //a blood vessel branches into three openings
6 //we have to find the velocity in 3 rd opening
7 a=0.2//cross sectional area of inlet 1,m<sup>2</sup>
8 \text{ v=5//velocity inlet } 1,\text{mm/s}
9 a1=0.08//area of branch1,m^2
10 v1=7//velocity in branch2,mm/s
11 a2=0.025//area of branch, m^2
12 v2=12//velocity in branch, mm/s
13 a3=0.031//area of branch, m^2
14 q=a*v//flow rate at inlet
15 q1=a1*v1//flow rate at branch 1
16 \text{ q2=a2*v2//flow rate at branch } 2
17 \text{ q3=q-q1-q2//flow rate in branch } 3
18 \text{ v3=q3/a3//velocity in branch } 3
19 printf("\n velocity v3=\%f mm/s", v3);
```

Scilab code Exa 33.7 average velocity of blood

```
1 clc;
2 //Example 33.7
3 //page no 531
4 printf("Example 33.7 page no 531\n\n");
5 //blood flowing through the arota
6 D=2.5//diameter of arota
7 S=%pi*D^2/4//cross sectional area,cm^2
8 q=93.3//volumeric flow rate,cm^3/s
9 v=q/S//flow velocity
10 printf("\n flow velocity v=%f cm/s",v);
```

Scilab code Exa 33.8 heart beat

```
clc;
//Example 33.8
//page no 531
printf("Example 33.8 page no 531\n\n");
//one of the auther of this book is 74 year old ,we have to determine the no. of times that the the auther's heart has to beat to date

Y=74//age in year
d=365//days
h=24//hours
m=60//minutes
b=80//heart beats per minutes
T=Y*d*h*m*b// no. of times heart beats
printf("\n no.of times heart beats T=%f",T);
```

Scilab code Exa 33.9 volume of blood

Scilab code Exa 33.10 minimum pressure drop

```
1 clc;
2 //Example 33.10
3 //page no 532
4 printf("Example 33.10 page no 532\n\n");
5 //the flow of blood from the arota to the atrium is reprsented by a vessel
6 meu=1.1*6.72e-4//viscosity of blood
7 L=0.3//length of vessel, mile
8 g_c=32.2//grav. acc
9 rho=62.4//density of blood
10 D=2.53/30.48//diameter of vessel, ft
11 P_drop=32*meu*(19/30.48)*5280*L/(rho*D^2*g_c)
12 printf("\n pressure drop P_drop=%f ft*lbf/lb",P_drop
)
13 //snice the model is resonable from the fluid dynamics perspective
```

Scilab code Exa 33.12 power generated by heart

open ended problems

Scilab code Exa 34.4 a moving gas stream