Lecture 11: Hypothesis Testing Basics

Dr. Pooja Sarin

January 28-29, 2025

1 Introduction to Hypothesis Testing

Hypothesis testing is a statistical method used to make inferences or draw conclusions about a population based on sample data. It evaluates whether the observed data supports a specific claim or hypothesis.

1.1 Importance in Statistical Analysis

- Validates assumptions about population parameters.
- Provides a framework for decision-making under uncertainty.
- Helps determine the effectiveness of interventions or treatments.

Example: Testing whether a new drug is more effective than an existing one.

2 Key Components of Hypothesis Testing

2.1 Null Hypothesis (H_0)

The null hypothesis is a statement of no effect or no difference. It represents the default assumption.

• Example: H_0 : The mean sales of two products are equal.

2.2 Alternative Hypothesis (H_1)

The alternative hypothesis is a statement that contradicts the null hypothesis. It represents the claim we aim to support.

• Example: H_1 : The mean sales of two products are not equal.

2.3 Statistical Significance

Statistical significance measures whether the observed data is unlikely under the null hypothesis. It is determined by the **p-value** and a predefined significance level (α) .

2.4 P-Value

Definition: The p-value is the probability of observing results as extreme as the current data, assuming the null hypothesis is true.

- Low p-value: Strong evidence against H_0 .
- High p-value: Weak evidence against H_0 .

2.5 Significance Thresholds

Common significance levels:

- $\alpha = 0.05$: 5% chance of rejecting H_0 when it is true.
- $\alpha = 0.01$: 1% chance of rejecting H_0 when it is true.

3 Types of Errors in Hypothesis Testing

3.1 Type I Error (False Positive)

Definition: Rejecting the null hypothesis when it is true.

- Probability: α
- Example: Concluding a new drug works when it does not.

3.2 Type II Error (False Negative)

Definition: Failing to reject the null hypothesis when it is false.

- Probability: β
- Example: Concluding a new drug does not work when it does.

3.3 Balancing Errors

- Lowering α reduces Type I errors but increases Type II errors.
- Power of a test: 1β , representing the probability of correctly rejecting H_0 .

4 Steps in Hypothesis Testing

- 1. State the Hypotheses: Define H_0 and H_1 .
- 2. Select the Significance Level (α): Common values are 0.05 or 0.01.
- 3. Choose the Test Statistic: Depends on the data type and sample size (e.g., z-test, t-test).
- 4. Calculate the Test Statistic and P-Value: Use sample data to compute.
- 5. Make a Decision: Compare the p-value to α .

5 Examples

5.1 Example 1: Two-Sample t-Test

Scenario: Comparing mean test scores between two teaching methods.

• H_0 : Mean scores are equal.

• H_1 : Mean scores are different.

• Significance Level: $\alpha = 0.05$.

Outcome: If p-value < 0.05, reject H_0 and conclude a significant difference.

5.2 Example 2: A/B Testing

Scenario: Testing whether a new website design increases user engagement.

• H_0 : The engagement rate is the same for both designs.

• H_1 : The engagement rate is higher for the new design.

Outcome: Use a z-test for proportions to evaluate significance.

6 Conclusion

Hypothesis testing is a cornerstone of statistical analysis, providing a structured approach to decision-making. Understanding null and alternative hypotheses, p-values, significance thresholds, and error types ensures robust and reliable inferences in various applications.