THE CHIECETER & LOT I DESCRIPTION A LISTAGE BUILD

Examen 16-12-2024

1 a)	1 b)	1 c)	2 a)	2 b)	2 c)	3 a)	3 b)	Total A	Nota
4 a)	4 b)	5 a)	5 b)		6 a)	6 b)	6 c)	Total B	

Criterios de evaluación: Rigurosidad en el manejo de operaciones algebraicas. Capacidad de comunicación en forma escrita, clara y precisa justificando paso a paso. Cada parte es una unidad de la materia y AMBAS PARTES TIENEN QUE ESTAR APROBADAS.

N	om	bre	V	DI	pl.	lido:	

Documento:

Carrera:

PARTE A

- ▶ 1. 2 puntos Una compañía produce un compuesto químico y está preocupada por su contenido de impurezas. Se estima que el peso de las impurezas por lote se distribuye según una normal con media de 12.2 gramos y desviación estándar de 2.8 gramos. Se elige un lote al azar.
 - a) ¿Cuál es la probabilidad de que contenga menos de 10 gramos de impurezas?
 - b) ¿Cuál es la probabilidad de que contenga entre 12 y 15 gramos de impurezas?
 - c) Si se seleccionan 6 lotes al azar, ¿cuál es la probabilidad de que al menos 2 de ellos contengan menos de 10 gramos de impurezas?
- ▶ 2. 1.5 puntos Las distribuciones de probabilidad de las variables aleatorias X e Y , número de enciclopedias vendidas por día por dos vendedores en diferentes zonas de una ciudad, son:

x	0	1	2	3	y	0	1	2
P(X=x)	0.2	0.4	θ_1	0.1	P(Y=y)	θ_2	0.3	0.2

Se asume que X e Y son independientes.

- a) Encuentre los valores de θ_1 y θ_2 .
- b) Calcule E(X), Var(X), Cov(X,Y).
- c) Calcule la probabilidad de que, entre los dos vendedores, en un día vendan más de 3 enciclopedias.
- -3. 1.5 puntos Una persona tiene 5 monedas (todas equilibradas), dos de ellas con doble cara, otra con doble cruz y las otras dos normales. Toma al azar una de las monedas y la lanza al aire,
 - a) ¿Cuál es la probabilidad de que salga cara?
 - b) Dado que salió cara, ¿Cuál es la probabilidad de que en el otro lado de la moneda también haya cara?

PARTE B

▶ 4. 1.5 puntos Sea X₁,..., X_n una muestra aleatoria de la función de densidad

$$f_X(x) = \left\{ \begin{array}{ll} \frac{1}{2} + \frac{\beta x^3}{2} & -1 \leq x \leq 1 \\ 0 & \text{en cualquier otro caso} \end{array} \right.$$

donde $\beta \in [-1, 1]$

- a) Demuestre que la media muestral \bar{X} no es un estimador insesgado de β .
- b) Encuentre un estimador insesgado basado en momentos de β y luego, calcule su varianza
- ▶ 5. 1.5 puntos Un fabricante de una marca de baterías para automóvil asegura que sus baterías duran 3 años. El tiempo de duración promedio para una muestra aleatoria de 5 baterías fue de 2.8 años. Suponga que el tiempo de duración sigue una distribución normal.
 - a) Si con los datos de la muestra se construyó un intervalo de confianza del 95 % para la varianza poblacional que resultó [0.292, 6.735], ¿cuánto vale el desvío estándar muestral s_{n-1} para estos datos?
 - b) Construya un intervalo de 99 % de confianza para μ , la esperanza del tiempo de duración de las baterías.
- ▶ 6. 2 puntos Un informe periodístico afirma que en Argentina menos del 50 % de los docentes universitarios, entre 55 y 64 años de edad, desea jubilarse al llegar a los 65 años. Para verificar esta afirmación se realizó una encuesta a 1000 docentes universitarios dentro de dicho grupo etario, seleccionados al azar, de los cuales 470 respondieron que desean jubilarse al cumplir 65 años.
 - a) Plantee las hipótesis adecuadas, construya la región de rechazo para un nivel de significación de 0.05 y concluya.
 - b) Calcule el P-valor asociado a esta prueba y en función de este valor tome una decisión a un nivel de significación de 0.01.
 - c) Construya un intervalo de 95 % de confianza para la verdadera proporción de docentes que desean jubilarse a los 65 años.