Tổng Hợp Câu Hỏi Thống Kê Toán Nâng Cao

Kiến thức căn bản

Định lý Polya. Cho $F_n(x)$ và F(x) là các hàm PPXS, nếu

$$\lim_{n \to \infty} F_n(x) = F(x), \quad \forall x \in C(F) = \mathbb{R}$$

thì

$$\lim_{n\to\infty} \sup_{x\in\mathbb{R}} |F_n(x) - F(x)| = 0$$

Định lý Lindeberg - Levy. Cho ξ_1, ξ_2, \dots là dãy các BSNN i.i.d có moment cấp hai hữu hạn.

Khi đó

$$\mathbb{P}\left\{\frac{\sqrt{n}}{\sigma}\left(\frac{1}{n}\sum_{i=1}^{n}\left(\xi_{i}-\mu\right)\right) < x\right\} = \Phi\left(x\right), \quad \forall x \in \mathbb{R}$$

trong đó

$$\Phi\left(x\right) \quad : \quad \text{Ham Gaussian}$$

$$\mu = E\xi_1 \quad \text{và} \quad \sigma = \sqrt{\text{Var}\xi_1}$$

Định lý Glivenko. Cho $X_1,...,X_n$ là n BSNN i.i.d với BNN X thì với

$$F_n\left(x
ight) = \frac{1}{n} \#\left\{i \ : \ 1 \leq i \leq n \text{ và } X_i < x\right\}$$
 hàm PP mẫu

và

$$F(x) = \mathbb{P}(X < x)$$
 là hàm PP lý thuyết

ta sẽ có

$$\mathbb{P}\left[\sup_{x\in\mathbb{R}}\left|F_{n}\left(x\right)-F\left(x\right)\right|\to0\right]=1,\quad\text{as }n\to\infty$$

nói cách khác

$$F_n \longrightarrow F$$
hầu chắc chắn

Bài tập ôn tập

Câu 1. Từ KGXS $(\Omega, \mathcal{A}, \mathbb{P})$, phép thử là rút ngẫu nhiên một phần tử ω theo luật xác suất P. CMR nếu có hai phép thử độc lập ξ_1 và ξ_2 thì

$$\begin{bmatrix}
\mathbb{P}(A) = 0 \\
\mathbb{P}(A) = 1
\end{bmatrix}, \forall A \in \mathcal{A}$$

[CMR không thể xây dựng hai phép thử độc lập trong không gian cơ sở Ω]

CHỨNG MINH:

Từ không gian $(\Omega, \mathcal{A}, \mathbb{P})$, lấy phép thử thứ nhất là

$$\xi_1(\omega) = \omega$$
; ta có $\mathbb{P}(\xi_1 \in A) = \mathbb{P}(A)$

Ta lấy phép thử thứ hai

$$\xi_2$$
 với $\xi_2(\omega) = \omega'$; tương tự $\mathbb{P}(\xi_2 \in A) = \mathbb{P}(A)$

Ta có thể xem $\xi_2 = f(\xi_1)$. Giả sử nếu ξ_2 độc lập với ξ_1 thì

 $\Leftrightarrow \xi_2$ và ξ_1 cảm sinh bởi hai $\sigma\text{-}$ đại số độc lập

Ta có : ξ_1 cảm sinh \mathcal{A} bởi $\xi_1^{-1}(\mathcal{A}) = \mathcal{A}$

 ξ_2 cảm sinh σ - đại số con của \mathcal{A} , đặt là \mathcal{A}_2

Khi đó $\mathcal{A}_2\subset\mathcal{A}$. Vậy \mathcal{A} độc lập với \mathcal{A}_2 và do đó \mathcal{A}_2 độc lập với chính nó Do đó

$$\mathbb{P}(\mathcal{A}_{2} \cap \mathcal{A}_{2}) = \mathbb{P}(\mathcal{A}_{2}) . \mathbb{P}(\mathcal{A}_{2})$$

$$\Rightarrow \mathbb{P}(\mathcal{A}_{2}) = \mathbb{P}(\mathcal{A}_{2}) . \mathbb{P}(\mathcal{A}_{2}) \Rightarrow \begin{bmatrix} \mathbb{P}(\mathcal{A}_{2}) = 0 \\ \mathbb{P}(\mathcal{A}_{2}) = 1 \end{bmatrix}$$

Mà với mọi
$$A\in\mathcal{A}_2=\xi_2^{-1}\left(\mathcal{A}\right)$$
 thì
$$\left[\begin{array}{c}\mathbb{P}\left(A\right)=0\\\mathbb{P}\left(A\right)=1\end{array}\right]$$

Lấy $A \in \mathcal{A}$, ta có

$$\mathbb{P}\left(A\right) = \mathbb{P}\left[\xi_{2}\left(\omega\right) \in A\right] = \mathbb{P}\left\{\omega: \ \xi_{2}\left(\omega\right) \in A\right\} = \mathbb{P}\left\{\xi_{2}^{-1}\left(A\right)\right\}$$

Do $\xi_2^{-1}\left(\mathcal{A}\right)\in\mathcal{A}_2$ nên

$$\begin{bmatrix} \mathbb{P}\left(\xi_{2}^{-1}\left(A\right)\right) = 0 \\ \mathbb{P}\left(\xi_{2}^{-1}\left(A\right)\right) = 1 \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbb{P}\left(A\right) = 0 \\ \mathbb{P}\left(A\right) = 1 \end{bmatrix}$$

[Kết luận:

Nếu độ đo \mathbb{P} là độ đo không tầm thường thì không thể xây dựng hai phép thử độc lập.

Câu 2. CMR η hội tụ hầu chắc chắn đến ρ [ƯLVM] trong đó

$$\eta = \frac{m_{11}}{\sqrt{m_{02}.m_{20}}}$$
 và $\rho = \frac{\mu_{11}}{\sqrt{\mu_{02}.\mu_{20}}}$

trong đó η là hệ số tương quan mẫu và ρ là hệ số tương quan lý thuyết.

Chứng minh Ta có

$$m_{ij} = \sum_{k=1}^{n} \frac{1}{n} \left(X_k - \overline{X} \right)^i \left(Y_k - \overline{Y} \right)^j \text{ và } \mu_{ij} = \mathbb{E} \left[\left(X - \mathbb{E} X \right)^i \left(Y - \mathbb{E} Y \right)^j \right]$$

Xét

$$m_{11} = \sum_{k=1}^{n} \frac{1}{n} \left(X_k - \overline{X} \right) \left(Y_k - \overline{Y} \right) = \sum_{k=1}^{n} \frac{1}{n} X_k Y_k - \left(\sum_{k=1}^{n} \frac{1}{n} X_k \right) \left(\sum_{k=1}^{n} \frac{1}{n} Y_k \right)$$
(1)

$$m_{20} = \sum_{k=1}^{n} \frac{1}{n} (X_k - \overline{X})^2 = \sum_{k=1}^{n} \frac{1}{n} X_k^2 - \left(\sum_{k=1}^{n} \frac{1}{n} X_k\right)^2$$
 (2)

$$m_{02} = \sum_{k=1}^{n} \frac{1}{n} \left(Y_k - \overline{Y} \right)^2 = \sum_{k=1}^{n} \frac{1}{n} Y_k^2 - \left(\sum_{k=1}^{n} \frac{1}{n} Y_k \right)^2$$
 (3)

Mà (X_k, Y_k) là các quan trắc độc lập cho điểm ngẫu nhiên (X, Y) nên

 $X_1, X_2, ..., X_n$ độc lập và có cùng phân phối với X

 $Y_1,Y_2,...,Y_n$ độc lập và có cùng phân phối với Y

 $X_1Y_1,..,X_nY_n$ độc lập và có cùng phân phối với XY

Vậy theo luật mạnh số lớn Kolmogorov ta có

$$\sum_{k=1}^{n} \frac{1}{n} X_k \longrightarrow \mathbb{E}X \quad \text{h.c.c}$$
 (4)

$$\sum_{k=1}^{n} \frac{1}{n} Y_k \longrightarrow \mathbb{E}Y \quad \text{h.c.c}$$
 (5)

$$\sum_{k=1}^{n} \frac{1}{n} X_k Y_k \longrightarrow \mathbb{E} XY \quad \text{h.c.c}$$
 (6)

Từ đó ta được

$$m_{11} \to \mathbb{E}XY - \mathbb{E}X.\mathbb{E}Y = \mu_{11}$$
 h.c.o

Tương tự

$$m_{20} \rightarrow \mathbb{E}(X^2) - (\mathbb{E}X)^2 = \mu_{20}$$
 h.c.c
 $m_{02} \rightarrow \mathbb{E}(Y^2) - (\mathbb{E}Y)^2 = \mu_{02}$ h.c.c

Vậy

$$\eta = \frac{m_{11}}{\sqrt{m_{02}.m_{20}}} \to \frac{\mu_{11}}{\sqrt{\mu_{02}.\mu_{20}}} = \rho \quad \text{h.c.c}$$

Biện luận phương sai mẫu.

Nếu VarX>0 và VarY>0 thì ρ_{XY} nhỏ nhất sinh bởi HCN [σ -đ
s Borel]. Khuếch trương độ đo trên tất cả các σ - đ
s Borel. xác định và khi đó $P\left(\lim_{n\to\infty}r_{XY}=\rho_{XY}\right)=1$

Hơn nữa, do $\mathrm{Var}X=\mathbb{E}\left(X-\alpha\right)^2$ với $\alpha=\mathbb{E}X$ nên nếu

$$\operatorname{Var} X > 0$$
 tức là $\mathbb{E}(X - \alpha)^2 > 0$.

Nếu $\mathbb{E}(X-\alpha)^2=0$, đặt $Z=(X-\alpha)^2$; $Z\geq 0$ thì tồn tại dãy các hàm đơn giản không âm Z_k sao cho

$$0 \le Z_1 \le Z_2 \le \dots \le Z_k \le \dots$$
 và $Z = \lim_{k \to \infty} Z_k$

hay $0 \leq \mathbb{E} Z_k \uparrow \mathbb{E} Z$

Vậy
$$\mathbb{E}Z=0\Leftrightarrow \mathbb{E}Z_k=0, \quad \forall k$$
 với $Z_k=c_1I_{A_1}+...+c_mI_{A_m}$ và $c_1,...,c_m>0$ Ta có

$$\mathbb{E}Z_k = c_1 P(A_1) + \dots + c_m P(A_m) = 0$$

$$\Rightarrow P(A_1) = \dots = P(A_m) = 0$$

$$\Rightarrow Z_k = 0 \text{ h.c.c} \quad \forall k$$

$$\Rightarrow Z = 0 \text{ h.c.c}$$

Vậy Var $Z=0\Rightarrow \mathbb{E}\left(X-\alpha\right)^2=0$ h.c.c nên $(X-\alpha)=0$ h.c.c do đó X là hằng [Vô lý]

Kết luận : Nếu X và Y không phải hằng số thì hệ số tương quan mẫu sẽ hội tụ đến hệ số tương quan lý thuyết.

(1)

Câu 3. Cho $X_1,...,X_n$ là dãy i.i.d BSNN với

$$\alpha_1 = \mathbb{E}X_1, \ \alpha_2 = \mathbb{E}X_1^2; \ \sigma^2 = \text{Var}X_1; \ \overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \text{ và } m_2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X_n} \right)^2$$

trong đó α_1 là kỳ vọng lý thuyết, \overline{X}_n là kỳ vọng mẫu (n BSNN) và m_2 là phương sai mẫu CMR hàm phân phối của $\frac{\sqrt{n-1}\left(\overline{X}_n-\alpha_1\right)}{\sqrt{m_2}}$ hội tụ đều đến $\Phi\left(x\right)$ trên \mathbb{R} .

Từ đó suy ra KTC xấp xỉ cho α_1 với hệ số tin cậy $1 - \frac{P}{100}$

Chứng minh:

Ta sẽ ch.m qua các bước như sau:

Viết lại

$$\frac{\sqrt{n-1}(\overline{X_n} - \alpha_1)}{\sqrt{m_2}} = \frac{\overline{X_n} - \alpha_1}{\sigma/\sqrt{n}} : \frac{\sqrt{\frac{n}{n-1}m_2}}{\sigma}$$

ta thấy m_2 =Momen mẫu cấp 2 –(Momen mẫu cấp 1)² hội tụ đến $(\alpha_2 - \alpha_1^2) = \sigma^2$ Vậy $\sqrt{m_2} \longrightarrow \sqrt{\alpha_2 - \alpha_1^2}$ (h.c.c) nên $\frac{\sigma}{\sqrt{m_2}} \longrightarrow 1$ (h.c.c)

Dễ thấy
$$\lim_{n \to \infty} \sqrt{\frac{n}{n-1}} = 1$$
 (2)

Vậy

$$\sqrt{\frac{n}{n-1}}: \frac{\sigma}{\sqrt{m_2}} \to 1 \text{ (h.c.c)}$$

Mặt khác theo "Định lý giới hạn trung tâm" Linderberg-Levy với $X_1,...,X_n$ i.i.d, ta được

$$\mathbb{P}\left(\frac{\sqrt{n}}{\sigma}\left(\overline{X_n} - \alpha_1\right) < x\right) \text{ hội tụ yếu đến hàm Gaussian } \Phi\left(x\right)$$
 (3)

where $\alpha_1 = \mathbb{E}X_1$ và $\sigma = \sqrt{\operatorname{Var}X_1}$

Áp dụng định lý hội tụ cho (1), (2) và (3) ta có

$$\frac{\overline{X_n} - \alpha_1}{\sigma/\sqrt{n}} \to \Phi(x) \\
\sqrt{\left(\frac{n}{n-1}\right)m_2} \\
\sigma \to 1$$

$$\Rightarrow \frac{\sqrt{n-1}(\overline{X_n} - \alpha_1)}{\sqrt{m_2}} \text{ h.t. yêu } \Phi(x)$$

Áp dụng Định lý Polya. Đặt

$$F_n(x) = \mathbb{P}\left\{\left(\frac{\sqrt{n-1}\left(\overline{X_n} - \alpha_1\right)}{\sqrt{m_2}}\right) < x\right\} \text{ và } F(x) = \Phi(x)$$

là các hàm PPXS; ta được

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| = 0$$

hàm phân phối của $\frac{\sqrt{n-1}\left(\overline{X_n}-\alpha_1\right)}{\sqrt{m_2}}$ hội tụ đều đến hàm Gaussian $\Phi\left(x\right)$.

Step 5. Từ đó, ta có

$$\mathbb{P}\left(\left|\frac{\sqrt{n-1}\left(\overline{X_n} - \alpha_1\right)}{\sqrt{m_2}}\right| \le z_{P/100}\right) = \Phi\left(z_{P/100}\right) = 1 - \frac{P}{100}$$

với $z_{p/100}$ là phân vị mức $p/100.\,$

Vậy KTC với hệ số tin cậy 1-p/100 cho α_1 là

$$\left[\overline{X_n} - \frac{\sqrt{m_2}}{\sqrt{n-1}}.z_{P/100}, \ \overline{X_n} + \frac{\sqrt{m_2}}{\sqrt{n-1}}.z_{P/100}\right]$$

Câu 4. Cho X_1 và X_2 là các BSNN độc lập cùng phân phối có hàm mật độ f đối với độ đo Lebesgue trên đường thẳng. Dùng thống kê thứ tự biến (X_1, X_2) thành (X_1^*, X_2^*) với $X_1^* \leq X_2^*$. Hãy tìm hàm mật độ của điểm (X_1^*, X_2^*) đối với độ đo Lebesgue trong mặt phẳng.

Giải.

Ta có thống kê thứ tự $T(X_1, X_2) = (X_1^*, X_2^*)$ với $X_1^* \leq X_2^*$. Trong đó (X_1, X_2) là một điểm ngẫu nhiên trong mặt phẳng

Xét tất cả các σ đại số sinh bởi những HCN bằng cách lấy σ -đ
s nhỏ nhất sinh bởi HCN [σ -đ
s Borel]. Khuếch trương độ đo trên tất cả các σ - đ
s Borel.

Xét hình chữ nhật $A \times B$, ta có $\mathbb{P}\{(X_1, X_2) \in A \times B\} = \mathbb{P}[X_1 \in A, X_2 \in B] = \mathbb{P}_{X_1} \otimes \mathbb{P}_{X_2}$ Xét ánh xạ $T : \mathbb{R}^2 \to \mathcal{D} = \{(X_1, X_2) : X_1 \leq X_2\}$ xác định bởi

$$T(x_1, x_2) = \begin{cases} (x_1, x_2) & \text{n\'eu} & x_1 \le x_2 \\ (x_2, x_1) & x_1 > x_2 \end{cases}$$

Giả sử $\mathbb{P}_{X_1} \ll l$ và $\mathbb{P}_{X_2} \ll l$ khi đó theo Đl R-N.

$$\frac{d\mathbb{P}_{X_{1}}}{dl} = f_{1}\left(x_{1}\right) \text{ và } \frac{d\mathbb{P}_{X_{1}}}{dl} = f_{2}\left(x_{2}\right)$$

Ta có

$$\mathbb{P}\left\{ (X_1, X_2) \in \square \right\} = \mathbb{P}\left[(x_1 \le X_1 \le x_1 + dx_1) \cap (x_2 \le X_2 \le x_2 + dx_2) \right]$$
$$= \mathbb{P}\left(x_1 \le X_1 \le x_1 + dx_1 \right) . \mathbb{P}\left(x_2 \le X_2 \le x_2 + dx_2 \right)$$
$$= f_1\left(x_1 \right) dx_1 . f_2\left(x_2 \right) dx_2 = f_1\left(x_1 \right) f_2\left(x_2 \right) dx_1 dx_2$$

Do đó, ta có

$$\begin{split} \mathbb{P}\left\{\left(X_{1},X_{2}\right)\in\Box\right\} &= f_{1}\left(x_{1}\right)f_{2}\left(x_{2}\right)\times\text{Diện tích HCN vi phân}\\ \Rightarrow \frac{dP\left(X_{1},X_{2}\right)}{dl^{2}} &= f_{1}(x_{1})f_{2}(x_{2}) \end{split}$$

Xét

$$\{(X_1^*, X_2^*) \in \square\} = \{(X_1, X_2) \in \square\} \sqcup \{(X_2, X_1) \in \square\}$$

Vây

$$\mathbb{P}\left\{ (X_{1}^{*}, X_{2}^{*}) \in \square \right\} = \mathbb{P}\left\{ (X_{1}, X_{2}) \in \square \right\} + \mathbb{P}\left\{ (X_{2}, X_{1}) \in \square \right\}$$
$$= f_{1}(x_{1}^{*}) f_{2}(x_{2}^{*}) S_{\square} + f_{1}(x_{2}^{*}) f_{2}(x_{1}^{*}) S_{\square}$$

Do các HCN trong biểu thức là các HCN vi phân nên theo định lý Randon Nicodym, ta được

$$\frac{d\mathbb{P}\{(X_1^*, X_2^*)\}}{dl^2}.S_{\square} = \mathbb{P}\{(X_1^*, X_2^*) \in \square\}$$

trong đó l^2 là độ đo Lebesgue trên mặt phẳng. Do đó

$$\frac{d\mathbb{P}\left\{ \left(X_{1}^{*},X_{2}^{*}\right)\right\} }{dl^{2}}\left(x_{1}^{*},x_{2}^{*}\right)=f_{1}\left(x_{1}^{*}\right)f_{2}\left(x_{2}^{*}\right)+f_{1}\left(x_{2}^{*}\right)f_{2}\left(x_{1}^{*}\right)$$

Mà X_1, X_2 độc lập có cùng phân phối nên (X_1, X_2) và (X_2, X_1) sẽ có phân phối như nhau

$$\frac{d\mathbb{P}\left\{ \left(X_{1}^{*},X_{2}^{*}\right)\right\} }{dl^{2}}\left(x_{1}^{*},x_{2}^{*}\right)=2f\left(x_{1}^{*}\right)f\left(x_{2}^{*}\right)$$

Vậy $\mathbb{P}_{X_1^*,X_2^*}$ có hàm mật độ theo độ đo l^2 là $2f\left(x_1^*\right)f\left(x_2^*\right)$ với f là hàm mật độ của X_1 hoặc X_2 theo l.

Câu 5. Trong cấu trúc thống kê $(\mathcal{X}, \mathcal{B}, \mathbb{P}_{X,\theta}, \theta \in \Theta)$; giả sử với một độ đo σ hữu hạn μ trên \mathcal{B} , $P_{X,\theta} \ll \mu$, $\forall \theta \in \Theta$.

CMR nếu T là thống kê đủ cho Θ , thì ước lượng hợp lý cho tham ẩn θ sẽ là một hàm của thống kê đủ T và lượng thông tin Fisher $I_X\left(\theta\right)$ chỉ phụ thuộc vào phân phối của T. Áp dụng cho dãy các quan trắc về gieo một đồng tiền n lần có xác suất xuất hiện trong một lần gieo là $\theta \in (0,1)$; cmr số lần sấp ν là một thống kê đủ; từ đó để tìm KTC cho θ , ta chỉ cần xét tần suất $\frac{\nu}{n}$ và KTC sẽ là xấp xỉ của tần suất này.

CHỨNG MINH Từ cấu trúc thống kê $(\mathcal{X}, \mathcal{B}, \mathbb{P}_{X,\theta}, \theta \in \Theta)$; với mọi $\theta \in \Theta$ $P_{X,\theta} \ll \mu$ trong đó μ là độ đo hữu hạn trên \mathcal{B} và

$$T: (\mathcal{X}, \mathcal{B}) \to (\mathcal{J}, \mathcal{C}) \text{ thì } T^{-1}(\mathcal{C}) \subset \mathcal{B}$$

Theo tiêu chuẩn tách Neyman, khi T là TK đủ cho Θ thì ta sẽ có

$$\frac{dP_{X,\theta}}{d\mu}(x) = h(x)g_{\theta}[T(x)], \qquad \forall \theta \in \Theta$$

với h(x) là hàm không âm trên \mathcal{B} đo được và hàm này không phụ thuộc vào θ .

 $g_{\theta}[T(x)]$ là hàm không âm \mathcal{C} đo được.

Theo đạo hàm Randon-Nikodym thì $\frac{dP_{X,\theta}}{d\mu}$ chính là hàm MĐXS của phân phối XS P_X theo μ tức là

$$\frac{dP_{X,\theta}}{d\mu}(x) = f(x,\theta)$$

Khi đó, $f(x,\theta) = h(x) g_{\theta}[T(x)]$ ước lượng hợp lý cho θ

$$\log f(x,\theta) = \log h(x) + \log g_{\theta}[T(x)]$$

$$\Rightarrow \frac{\partial}{\partial \theta} \log f(X,\theta) = \frac{\frac{\partial}{\partial \theta} g_{\theta}[T(X)]}{g_{\theta}[T(X)]}$$

Khi
$$\frac{\partial}{\partial \theta} \log f(X, \theta) = 0$$
 thì $\frac{\partial}{\partial \theta} g_{\theta}[T(X)] = 0$

Khi cố đinh X và cho θ chay thì ước lương $\hat{\theta}$ là hàm theo T.

Vậy ƯL hợp lý cho θ sẽ là một hàm cho TK đủ T.

Lượng tin Fisher
$$I_X(\theta) = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X, \theta) \right]^2 \Rightarrow \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log g_{\theta} \left[T(X) \right] \right]^2$$

Do θ là tham số chưa biết nên $\mathbb{E}_{\theta}\left[\frac{\partial}{\partial \theta}\log g_{\theta}\left[T\left(X\right)\right]\right]$ chỉ phụ thuộc vào phân phối của T. Hay $I_{X}\left(\theta\right)$ chỉ phụ thuộc vào phân phối của T.

Áp dụng. Gie
on lần 1 đồng tiền có XS xuất hiện sấp trong 1 lần gie
o là $\theta \in (0,1)$

Gọi
$$X_i = \left\{ egin{array}{ll} 1 & \quad & \text{"xuất hiện mặt sấp với xác suất θ"} \\ 0 & \quad & \text{" xuất hiện mặt ngửa với xác suất $1-\theta$"} \end{array} \right.$$
 và

 $\nu = \sum_{i=1}^{n} X_i$ là tổng số lần xuất hiện mặt sấp trong n lần gieo.

Vì $X_1,...,X_n$ là n BSNN độc lập và có cùng phân phối của X_i cho bởi

$$P(X_i = 1) = \theta \text{ và } P(X_i = 0) = 1 - \theta$$

Cho nên phân phối xác suất của $X = (X_1, ..., X_n)$ là

$$\frac{dP_{X,\theta}}{d\mu}(x) = P(X = x) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

$$= P(X_1 = x_1) P(X_n = x_n)$$

$$= \theta^{x_1} (1 - \theta)^{1 - x_1} \theta^{x_n} (1 - \theta)^{1 - x_n}$$

$$= \theta^{x_1 + ... + x_n} (1 - \theta)^{n - (x_1 + ... + x_n)}$$

$$= \left(\frac{\theta}{1 - \theta}\right)^{x_1 + ... + x_n} (1 - \theta)^n$$

$$= h(x) . q_{\theta}(T(x))$$

trong đó $h(x) \equiv 1$,

$$g_{\theta}\left[T\left(x\right)\right] = (1-\theta)^{n} \left(\frac{\theta}{1-\theta}\right)^{x_{1}+...+x_{n}}, \quad \forall \theta \in \Theta \text{ và}$$
$$T\left(x\right) = \sum x_{i} \text{ với } x = (x_{1},...,x_{n})$$

Vậy tiêu chuẩn tách Neyman được thỏa và $\nu = T(X)$ là thống kê đủ.

Do $X_1,...,X_n$ độc lập có cùng phân phối nên

$$\mathbb{E}X_1 = \dots = \mathbb{E}X_n = \theta$$

$$\operatorname{Var}X_1 = \dots = \operatorname{Var}X_n = \theta (1 - \theta)$$

Áp dụng định lý giới hạn trung tâm Linderberg-Levy, ta được

$$P\left(\sqrt{\frac{n}{\theta\left(1-\theta\right)}}\left(\frac{X_1+\ldots+X_n}{n}-\theta\right) < x\right) \to \Phi\left(x\right) \text{ khi } n \to \infty$$

$$\Rightarrow P\left(\sqrt{\frac{n}{\theta\left(1-\theta\right)}}\left(\frac{\nu}{n}-\theta\right) < x\right) \to \Phi\left(x\right)$$
khi $n \to \infty$

Vậy KTC cho θ là một hàm của tần suất $\frac{\nu}{n}$ và

$$P\left(-z_p \le \sqrt{\frac{n}{\theta(1-\theta)}} \left(\frac{\nu}{n} - \theta\right) \le z_p\right) = 1 - p$$

do đó với mức ý nghĩa p phần trăm thì ta được KTC cho θ là nghiệm của BPT

$$\nu^2 - 2\nu n\theta - n^2\theta^2 \le n\theta (1 - \theta) z_p^2$$

trong đó z_p là phân vị mức p phần trăm.

Câu 6. Cho $X_1, ..., X_n$ là n quan trắc ĐL cùng PP với hàm mật độ $f(x) = \left[\pi \left(1 + (x - \mu)^2\right)\right]^{-1}$. CMR $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$ không phải là UL vững cho μ . Nhắc lại : với hàm mật độ $\left[\pi \left(1 + x^2\right)\right]^{-1}$ thì hàm đặc trung là $e^{-|t|}$.

Giải.

Áp dụng hàm đặc trưng của BNN ξ là $\varphi(t) = \mathbb{E}e^{it\xi}$. $\xi_1,...,\xi_n$ là n BSNN độc lập thì hàm đặc trưng

$$\varphi_{\xi_1 + \dots + \xi_n} (t) = \prod_{i=1}^n \varphi_{\xi_i} (t)$$

Ta có hàm mật độ ứng với hàm đặc trưng $\varphi(t)=e^{-|t|}$ là $\frac{1}{\pi(1+x^2)}$

Nếu ξ có hàm đặc trưng là $\varphi(t) = \mathbb{E}e^{it\xi}$ thì $\lambda \xi + \mu$ có hàm đặc trưng là $\mathbb{E}e^{i\mu t + it\lambda \xi}$ với μ, λ là các hằng số.

$$\varphi_{\lambda\xi+\mu}\left(t\right) = e^{i\mu t}\varphi_{\xi}\left(\lambda t\right)$$

Nếu ξ có hàm đ
 trưng là $e^{-|t|}$ và có hàm mật độ là $\frac{1}{\pi(1+x^2)}$ th
ì $\lambda \xi + \mu$ có hàm đặc trưng là $e^{i\mu t - \lambda |t|}$ và có hàm pp

$$F_{\lambda\xi+\mu}(x) = P(\lambda\xi + \mu < x) = P\left(\xi < \frac{x-\mu}{\lambda}\right)$$

do $\lambda > 0$. Vậy

$$F_{\lambda\xi+\mu}(x) = F_{\xi}\left(\frac{x-\mu}{\lambda}\right)$$

nên

$$f_{\lambda\xi+\mu}(x) = \frac{1}{\lambda} f_{\xi}\left(\frac{x-\mu}{\lambda}\right)$$

Do đó $\lambda \xi + \mu$ có hàm MĐ là

$$\frac{1}{\lambda \pi \left[1 + \left(\frac{x - \mu}{\lambda}\right)^{2}\right]} = \frac{\lambda}{\pi \left[\lambda^{2} + (x - \mu)^{2}\right]}$$

là hàm MĐ của PP Cauchy. Hàm đặc trung chung của $X_1,...,X_n$ là $e^{i\mu t-\lambda|t|}$ nên

$$\varphi_{X_1+\ldots+X_n}(t) = e^{i\mu nt-\lambda|nt|}$$

$$\varphi_{\overline{X}}(t) = e^{i\mu t-\lambda|t|}$$

suy ra \overline{X} và các X_i có cùng hàm pp.

Cần CM \overline{X} không phải là hàm UL yếu cho μ .

Theo Luật yếu số lớn Khintchine thì

$$\lim_{n \to \infty} P\left(\left|\overline{X} - \mu\right| < \epsilon\right) = 1, \quad \forall \epsilon > 0$$

Bằng phản chứng, ta xét : Giả sử \overline{X} là ULVY cho μ , i.e

$$\lim_{n \to \infty} P\left(\left|\overline{X} - \mu\right| < \epsilon\right) = 1, \quad \forall \epsilon > 0$$

Với mọi
$$k=1,2,\ldots$$
 thì $\lim_{n\to\infty}P\left(\left|\overline{X}-\mu\right|<\frac{1}{k}\right)=1.$

Ta có

$$\left|\overline{X} - \mu\right| = 0 \Leftrightarrow \left|\overline{X} - \mu\right| < \frac{1}{k}, \qquad \forall k \text{ là số nguyên dương}.$$

nên

$$\left\{\left|\overline{X} - \mu\right| = 0\right\} = \bigcap_{k=1}^{\infty} \left\{\left|\overline{X} - \mu\right| < \frac{1}{k}\right\}$$

Áp dụng Đ.
lý : Nếu $A_1\supset A_2\supset\ldots\supset A_k\supset\ldots$ thì $\lim_{k\to\infty}\!P\left(A_k\right)=P\left(\cap_{k=1}^\infty\!A_k\right)$ với

$$A_k = \left\{ \left| \overline{X} - \mu \right| < \frac{1}{k} \right\} \subset \Omega$$

trong đó $\Omega \in \sigma$ đại số $\mathcal{A} \Rightarrow A_k$ là một biến cố.

Nếu
$$\left|\overline{X} - \mu\right| < \frac{1}{k+1}$$
 thì $\left|\overline{X} - \mu\right| < \frac{1}{k}$

Do đó A_{k+1} xảy ra thì A_k xảy ra hay $A_{k+1} \subset A_k$ và

$$\begin{split} P\left\{\overline{X} - \mu = 0\right\} &= P\left(\cap_{k=1}^{\infty} \left\{\left|\overline{X} - \mu\right| < \frac{1}{k}\right\}\right) \\ &= \lim_{n \to \infty} P\left\{\left|\overline{X} - \mu\right| < \frac{1}{k}\right\} = 1 \end{split}$$

Vậy $P(\overline{X} = \mu) = 1.$

Mà
$$P\left(X_1=\mu\right)=P\left(\overline{X}=\mu\right)$$
 do $X_1,..,X_n$ và \overline{X} có cùng phân phối suy ra $P\left(X_1=\mu\right)=1$

 $\Rightarrow X_1$ là hằng số hầu chắc chắn mà X_1 có PP Cauchy nên X_1 không phải hằng số $\Rightarrow \overline{X}$ ko phải ULVY cho $\mu \Rightarrow \overline{X}$ ko phải UL vững cho μ [ko vững yếu cũng sẽ ko vững mạnh].