Tutorato Algebra Lineare e Geometria (A.A. 2023/24)

Lezione 11

30/05/2024

Esercizio 1

Nello spazio affine \mathbb{A}^3 sono date le rette:

$$r: \begin{cases} x+y-1=0 \\ 2y-z-1=0 \end{cases}$$
 e $s: \begin{cases} x-2=0 \\ y-2z-1=0 \end{cases}$

- (a) Si determini la proiezione ortogonale del punto P = (4, -3, -1) sulla retta r.
- (b) Si stabilisca se le rette r e s sono incidenti, parallele oppure sghembe.
- (c) Si scriva l'equazione cartesiana del piano π contenente la retta r e parallelo alla retta s.
- (d) Si trovino due punti $R \in r$ e $S \in s$ tali che la retta passante per R e S sia perpendicolare a entrambe le rette r e s.

Esercizio 2

Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati il punto P=(1,-1,-1)e la retta r di equazioni

$$r: \begin{cases} 2x - y - 4 = 0 \\ 2x + z - 3 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π che passa per il punto P e contiene la retta r.
- (b) Scrivere le equazioni parametriche della retta s passante per P, contenuta nel piano π e perpendicolare alla retta r.
- (c) Trovare il punto $H \in r$ che ha minima distanza dal punto A = (5, -3, 2).
- (d) Consideriamo i piani σ che hanno equazione del tipo $2x + \alpha y + 3z + \beta = 0$, con α e $\beta \in \mathbb{R}$. Trovare i valori di α e β tali che il piano σ contenga la retta r.

1

Esercizio 3

Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono assegnati i punti P=(1,0,2), Q=(3,-2,4) e la retta r di equazioni

$$r: \begin{cases} x - 4z = 2\\ y + 2z = 1 \end{cases}$$

- (a) Scrivere le equazioni parametriche della retta s passante per P e Q. Determinare se esiste un piano che contiene le rette r e s. Se tale piano esiste scrivere la sua equazione cartesiana.
- (b) Determinare un punto P' tale che il segmento di estremi P e P' sia perpendicolare alla retta r e che la retta r intersechi tale segmento nel suo punto medio M.
- (c) Sia π il piano di equazione 2x + y 3z = 0. Scrivere l'equazione cartesiana del piano σ parallelo a π e tale che dist $(P, \sigma) = \text{dist}(Q, \sigma)$.

Esercizio 4

Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati i punti A = (0,3,3), B = (1,1,2), C = (2,2,1).

- (a) Verificare che l'angolo \hat{ABC} è retto e trovare un punto D tale che \hat{ABCD} sia un rettangolo.
- (b) Trovare il punto E, intersezione delle diagonali del rettangolo ABCD.
- (c) Scrivere un'equazione cartesiana del piano π che contiene il rettangolo ABCD.

Esercizio 5

Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ consideriamo i seguenti piani

$$\pi: 2x - y + z - 1 = 0$$
 e $\sigma_{\alpha}: (\alpha + 2)x - 2y + \alpha z + \alpha = 0$

- (a) Determinare il valore di α per cui i piani σ_{α} e π sono paralleli. Per tale valore di α calcolare la distanza tra i piani π e σ_{α} .
- (b) Determinare il valore di α per cui le rette ortogonali al piano σ_{α} sono parallele al piano π .
- (c) Poniamo $\alpha = 0$. Determinare un vettore direttore della retta $r = \pi \cap \sigma_0$.
- (d) Poniamo $\alpha = 0$. Dato il punto $P = (1, 0, -1) \in \pi$, trovare un punto $S \in \sigma_0$ tale che la retta passante per P e S sia ortogonale a π .

2