Let F denote the female training set and M the male training set. Let d = |F| + |M|, and let N^2 be the number of pixels in each image. Determining the optimal decision boundary requires finding $\mathbf{w} \in \mathbb{R}^{N^2}$ satisfying $\mathbf{S}\mathbf{w} = \mathbf{m}_F - \mathbf{m}_M$, where \mathbf{m}_F , $\mathbf{m}_M \in \mathbb{R}^{N^2}$ are the means of F and M, respectively, and $\mathbf{S} \in \mathbb{R}^{N^2 \times N^2}$ is the within-class scatter matrix given by

$$\mathbf{S} = \sum_{\mathbf{x} \in F} (\mathbf{x} - \mathbf{m}_F)(\mathbf{x} - \mathbf{m}_F)^{\mathrm{T}} + \sum_{\mathbf{x} \in M} (\mathbf{x} - \mathbf{m}_M)(\mathbf{x} - \mathbf{m}_M)^{\mathrm{T}}.$$

(For brevity we use the notation **S** instead of \mathbf{S}_W .) In our case, N=256, so representing **S** in a computer is cumbersome (indeed, disallowed by MATLAB's standard settings). We seek a means to solve $\mathbf{S}\mathbf{w} = \mathbf{m}_F - \mathbf{m}_M$ without computing **S** explicitly.

We may represent **S** by $\mathbf{S} = \mathbf{C}\mathbf{C}^{\mathrm{T}}$, where $\mathbf{C} \in \mathbb{R}^{N^2 \times d}$ is the matrix whose i^{th} column is the i^{th} element of $F \cup M$. **C** has the singular value decomposition $\mathbf{C} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}}$, where

- $\mathbf{U} \in \mathbb{R}^{N^2 \times N^2}$ is a unitary matrix whose i^{th} column is the i^{th} (normalized) eigenvector of \mathbf{S} ;
- $\Sigma \in \mathbb{R}^{N^2 \times d}$ satisfies $\sigma_{i,i} = \sqrt{\lambda_i}$ for $1 \leq i \leq d$, where λ_i is the i^{th} (necessarily nonnegative) eigenvalue of $\mathbf{C}^{\text{T}}\mathbf{C} \in \mathbb{R}^{d \times d}$, and $\sigma_{i,j} = 0$ when $i \neq j$;
- $\mathbf{V} \in \mathbb{R}^{d \times d}$ is a unitary matrix whose i^{th} column is the i^{th} (normalized) eigenvector of $\mathbf{C}^{\text{T}}\mathbf{C} \in \mathbb{R}^{d \times d}$.

Henceforth let $\mathbf{B} = \mathbf{C}^{\mathrm{T}}\mathbf{C}$.

Therefore,

$$\mathbf{S} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}})(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}}\mathbf{V}(\mathbf{U}\boldsymbol{\Sigma})^{\mathrm{T}} = \mathbf{U}\boldsymbol{\Sigma}(\mathbf{U}\boldsymbol{\Sigma})^{\mathrm{T}},$$

and thus we seek w satisfying

$$egin{aligned} \mathbf{U}\mathbf{\Sigma}(\mathbf{U}\mathbf{\Sigma})^{\mathrm{T}}\mathbf{w} &= \mathbf{m}_F - \mathbf{m}_M \ \mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{\Sigma}(\mathbf{U}\mathbf{\Sigma})^{\mathrm{T}}\mathbf{w} &= \mathbf{U}^{\mathrm{T}}(\mathbf{m}_F - \mathbf{m}_M) \ \mathbf{\Sigma}(\mathbf{U}\mathbf{\Sigma})^{\mathrm{T}}\mathbf{w} &= \mathbf{U}^{\mathrm{T}}(\mathbf{m}_F - \mathbf{m}_M) \ \mathbf{\Sigma}^{\mathrm{T}}\mathbf{\Sigma}(\mathbf{U}\mathbf{\Sigma})^{\mathrm{T}}\mathbf{w} &= \mathbf{\Sigma}^{\mathrm{T}}\mathbf{U}^{\mathrm{T}}(\mathbf{m}_F - \mathbf{m}_M) \ (\mathbf{\Sigma}^{\mathrm{T}}\mathbf{\Sigma})(\mathbf{U}\mathbf{\Sigma})^{\mathrm{T}}\mathbf{w} &= (\mathbf{U}\mathbf{\Sigma})^{\mathrm{T}}(\mathbf{m}_F - \mathbf{m}_M). \end{aligned}$$

For i from 1 to d, the $(i, i)^{\text{th}}$ entry of $\Sigma^{\text{T}}\Sigma \in \mathbb{R}^{d \times d}$ is $\sigma_i^2 = \lambda_i$; all other entries are 0. In this spirit, let $\Lambda = \Sigma^{\text{T}}\Sigma$. Under the reasonable assumption that no eigenvalue of **B** is 0, Λ is invertible, and

$$(\mathbf{U}\mathbf{\Sigma})^{\mathrm{T}}\mathbf{w} = \mathbf{\Lambda}^{-1}(\mathbf{U}\mathbf{\Sigma})^{\mathrm{T}}(\mathbf{m}_F - \mathbf{m}_M).$$

Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \in \mathbb{R}^{N^2 \times d}$. For i from 1 to d, let \mathbf{e}_i be the i^{th} eigenvalue of \mathbf{B} . Then

$$\mathbf{C}^{\mathrm{T}}\mathbf{C}\mathbf{e}_{i} = \lambda_{i}\mathbf{e}_{i}$$
 $\mathbf{C}\mathbf{C}^{\mathrm{T}}\mathbf{C}\mathbf{e}_{i} = \lambda_{i}\mathbf{C}\mathbf{e}_{i}$
 $\mathbf{S}(\mathbf{C}\mathbf{e}_{i}) = \lambda_{i}(\mathbf{C}\mathbf{e}_{i}).$

Thus \mathbf{Ce}_i is the i^{th} eigenvector of \mathbf{S} , and is hence the i^{th} column of \mathbf{U} . (For i>d, the i^{th} column of \mathbf{U} is a basis vector of the kernel of \mathbf{S} .) Therefore, the i^{th} column of \mathbf{A} is $\sigma_i \mathbf{Ce}_i = \sqrt{\lambda_i} \mathbf{Ce}_i$.

Without loss of generality we may assume that $\mathbf{w} \perp \ker \mathbf{S}$, because we are trying to solve $\mathbf{S}\mathbf{w} = \mathbf{m}_F - \mathbf{m}_M$. Therefore, there exists $\mathbf{a} \in \mathbb{R}^d$ such that $\mathbf{w} = \sum_{i=1}^d a_i \mathbf{C} \mathbf{e}_i$. Therefore,

$$\begin{split} \mathbf{A}^{\mathrm{T}} \sum_{i=1}^{d} a_i \mathbf{C} \mathbf{e}_i &= \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}} (\mathbf{m}_F - \mathbf{m}_M) \\ \mathbf{A}^{\mathrm{T}} \mathbf{C} \sum_{i=1}^{d} a_i \mathbf{e}_i &= \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}} (\mathbf{m}_F - \mathbf{m}_M) \\ \sum_{i=1}^{d} a_i \mathbf{e}_i &= (\mathbf{A}^{\mathrm{T}} \mathbf{C})^{-1} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}} (\mathbf{m}_F - \mathbf{m}_M); \end{split}$$

this operation is valid because

$$\mathbf{A}^{\mathrm{T}}\mathbf{C} = (\mathbf{U}\mathbf{\Sigma})^{\mathrm{T}}(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathrm{T}}) = \mathbf{\Sigma}^{\mathrm{T}}\mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathrm{T}} = \mathbf{\Sigma}^{\mathrm{T}}\mathbf{\Sigma}\mathbf{V}^{\mathrm{T}} = \mathbf{\Lambda}\mathbf{V}^{\mathrm{T}}.$$

which as the product of invertible matrices is invertible. Thus,

$$\sum_{i=1}^{d} a_i \mathbf{e}_i = (\mathbf{\Lambda} \mathbf{V}^{\mathrm{T}})^{-1} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}} (\mathbf{m}_F - \mathbf{m}_M)$$

$$\mathbf{C} \sum_{i=1}^{d} a_i \mathbf{e}_i = \mathbf{C} (\mathbf{\Lambda}^2 \mathbf{V}^{\mathrm{T}})^{-1} \mathbf{A}^{\mathrm{T}} (\mathbf{m}_F - \mathbf{m}_M)$$

$$\mathbf{w} = \mathbf{C} (\mathbf{\Lambda}^2 \mathbf{V}^{\mathrm{T}})^{-1} \mathbf{A}^{\mathrm{T}} (\mathbf{m}_F - \mathbf{m}_M).$$

We therefore have the following algorithm for finding w:

- 1. Define $\mathbf{C} \in \mathbb{R}^{N^2 \times d}$: For $1 \leq i \leq d$, the i^{th} column is the i^{th} element of $F \cup M$.
- 2. Compute $\mathbf{B} = \mathbf{C}^{\mathrm{T}} \mathbf{C} \in \mathbb{R}^{d \times d}$.
- 3. Find the eigenvalues and eigenvectors of **B**. Store the eigenvalues as the diagonal entries in $\Lambda \in \mathbb{R}^{d \times d}$ and the (normalized) eigenvectors as the columns of $\mathbf{V} \in \mathbb{R}^{d \times d}$.
- 4. Define $\mathbf{A} \in \mathbb{R}^{N^2 \times d}$: For $1 \leq i \leq d$, the i^{th} column is

$$\frac{\sqrt{\lambda_i}}{\|\mathbf{C}\mathbf{e}_i\|_2}\mathbf{C}\mathbf{e}_i,$$

where \mathbf{e}_i is the i^{th} column of \mathbf{V} and λ_i is the $(i,i)^{\text{th}}$ entry of $\mathbf{\Lambda}$.

- 5. Compute $\mathbf{y} = \mathbf{A}^{\mathrm{T}}(\mathbf{m}_F \mathbf{m}_M) \in \mathbb{R}^d$.
- 6. Solve $(\mathbf{\Lambda}^2 \mathbf{V}^{\mathrm{T}}) \mathbf{z} = \mathbf{y}$ for $\mathbf{z} \in \mathbb{R}^d$. The matrix $\mathbf{\Lambda}^2 \mathbf{V}^{\mathrm{T}}$ is $d \times d$ and nonsingular, so this should be computationally inexpensive.
- 7. Compute $\mathbf{w} = \mathbf{C}\mathbf{z}$. Rescale if desired.