# 基础电路与电子学

主讲: 陈开志

办公室:学院2号楼304

Email: ckz@fzu.edu.cn

第1题: 电路如右图所示,本次实验采用虚拟三极管,其参数 为:  $U_{\text{BE}} = U_{\text{CES}} = 0.8 \text{V}$ ,  $\beta = 100$ ,  $r'_{bb} = 40 \Omega$ 

- 1) 该电路采用的是什么接法?
- 2) 请求解静态工作点 Q 的相关参数;
- 3) 请画出微变等效电路并按下式计算 $r_{be}$  =?  $k\Omega$

$$r_{be} = r'_{bb} + (1 + \beta) \frac{26(mV)}{I_E(mA)} = 40 + \frac{26(mV)}{I_B(mA)}$$

- 4) 请求解  $A_u$ ,  $r_i$ 和 $r_o$ ;
- 5) 若希望该电路具有最大动态范围,应调整 R<sub>B</sub>=?



第1题的电路图

求解过程请手写在 A4 纸上, 先写公式后带入数据计算。



 $U_{\text{omax}} = \min\{U_{\text{CEQ}} - U_{\text{CES}}, I_{\text{CQ}}R_{\text{L}}^{\text{T}}\}$  $I_{CQ} = (12..8-6.8) / 2k + 3mA$   $\frac{V_{CC} - U_{BE}}{R_B} = I_B = \frac{I_C}{B} \qquad R_B = 400\Omega$  $\frac{V_{CC} - U_{BE}}{R_B} = I_B = \frac{I_C}{B}$ 





第1题: 电路如右图所示,本次实验采用虚拟三极管,其参数

为:  $U_{\text{BE}} = U_{\text{CES}} = 0.8 \text{V}$ ,  $\beta = 100$ ,  $r'_{bb} = 40 \Omega$ 

- 1) 该电路采用的是什么接法?
- 2) 请求解静态工作点Q 的相关参数;
- 3) 请画出微变等效电路并按下式计算 $r_{be}$  =?  $k\Omega$

$$r_{be} = r'_{bb} + (1 + \beta) \frac{26(mV)}{I_E(mA)} = 40 + \frac{26(mV)}{I_B(mA)}$$

- 4) 请求解  $A_u$ ,  $r_i$ 和 $r_o$ ;
- 5) 若希望该电路具有最大动态范围,应调整  $R_{B}=?$



 $\longrightarrow$ 调 $R_{\rm B}$ 意味着改变静态工作点

求解过程请手写在 A4 纸上, 先写公式后带入数据计算。

第 2 题: 电路如右图所示,本次实验采用虚拟三极管,其参数如下:  $U_{\rm BE}=U_{\rm CES}=0.8{
m V}$ ,  $\beta=100$ ,  $r'_{bb}=40\Omega$ 

- 1) 该电路采用的是什么接法?
- 2) 请求解静态工作点 Q 的相关参数;
- 3) 请画出微变等效电路,并按照以下公式计算 $r_{be}$

$$r_{be} = r'_{bb} + (1 + \beta) \frac{26(mV)}{I_E(mA)} = 40 + \frac{26(mV)}{I_B(mA)}$$

4) 请求解 Au, ri和ro;



求解过程请手写在 A4 纸上, 先写公式后带入数据计算。



$$r_o = R_E / \frac{r_{be}}{1+\beta}$$

#### 如果接带内阻的信号源





基极电阻折算到发射极

#### 5. 共集最大输出电压幅值?

减小 in, 什么时候刚好不 发生截止失真?







i<sub>e</sub>=I<sub>EQ</sub>sinwt

 $u_{\rm o} = I_{\rm EQ} \sin wt \bullet R'_{\rm L}$ 

所以不发生截止失真下输出的最大电压幅度值为

 $I_{\rm EQ}R'_{\rm L}$   $\approx I_{\rm CQ}R'_{\rm L}$ 

极限情况, $\dot{\Sigma}$  交流  $i_{C}$  幅度值不能大于  $I_{CO}$ 



 $u_{ce} = U_{CEQ} - U_{OM} \sin wt \ge U_{CES}$  所以不发生饱和失真下 输出的最大电压幅度值为

 $U_{\mathit{OM}} \leq U_{\mathit{CEQ}} - U_{\mathit{CES}}$ 



减小 ii, 什么时候刚好不发生饱和失真?

饱和失真

### 5. 共集最大输出电压幅值

▶ 所以既不发生饱和失真,又不发生截止失真的条件下, u<sub>CE</sub> 的交流分量的最大幅值应当

$$U_{\text{omax}} = \min\{U_{\text{CEQ}} - U_{\text{CES}}, I_{\text{CQ}}R'_{\text{L}}\}$$

•在电路条件一定的情况下,将静态工作点设置得使  $U_{CEQ}$  - $U_{CES}$ = $I_{CQ}R'_{L}$ ,这时放大电路有最大的输出电压幅值  $U_{omax}$ ,或者说有最大的输出动态范围。

- 5-18 己知U<sub>BE</sub>=0.7V, β=50
  - (1) 该电路采用什么接法?
    - : 交流信号B入E出
    - ∴ 该电路采用共集电极接法
  - (2) 求解静态工作点

静态分析: -----只有直流作用的电路

步骤1: 画出直流通路 → 断开C

步骤2: 已知 $U_{\text{BE}}$ ,估算 $I_{\text{B}}$ 、 $I_{\text{C}}$ 、 $U_{\text{CE}}$ 

$$V_{CC} = I_B R_b + U_{BE} + I_E R_e = I_B R_b + U_{BE} + (1 + \beta)I_B R_e$$

$$I_B = \frac{V_{CC} - 0.7}{R_b + (1 + \beta)R_e} \approx 80 \mu A \qquad I_C = \beta I_B \approx 4 m A$$

$$I_E = (1+\beta)I_B = I_B + I_C \approx 4.08 \text{ mA}$$

$$U_{CE} = V_{CC} - I_E R_e \approx V_{CC} - I_C R_e \approx 11.76 \text{V或12V}$$



(3) 求解 $A_u$ ,  $r_i$ 和 $r_o$ 

动态分析: -> 只有交流作用的电路

#### 步骤1: 画出微变等效电路

$$r_{be} = r_{bb}' + (1 + \beta) \frac{26(mV)}{I_{EQ}(mA)}$$
  
=  $300 + \frac{26(mV)}{I_{BQ}(mA)} = 625\Omega \approx 0.63k\Omega$ 

$$A_{u} = \frac{u_{o}}{u_{i}} = \frac{i_{e}(R_{e} // R_{L})}{i_{b}r_{be} + i_{e}(R_{e} // R_{L})}$$

$$= \frac{(1+\beta)i_{b}(R_{e} // R_{L})}{i_{b}r_{be} + (1+\beta)i_{b}(R_{e} // R_{L})} \approx 0.984$$

$$0 < A_{u} < 1 A_{u} \approx 1 \longrightarrow u_{i} \approx u_{o}$$

共集电极放大电路也叫<mark>同相跟随</mark>器 或射极跟随器(无电压放大能力)



(3) 求解 $A_u$ ,  $r_i$ 和 $r_o$ 

$$r_i = R_b // [r_{be} + (1 + \beta)(R_e // R_L)]$$

发射极电阻折算到基极 ri和RL有关

注意: 当电流缩小  $(1+\beta)$  倍时, 电阻应相应扩大  $(1+\beta)$  倍。

$$r_i = 150k / /38.88k \approx 30.88k\Omega$$

 $r_o$ :  $R_L$ 两端往左除源后的等效电阻

$$r_o = R_e // \frac{r_{be}}{1+\beta}$$
 基极电阻折算到发射极 算到发射极 电流扩大(1+ $\beta$ )倍 电阻缩小(1+ $\beta$ )倍 电阻缩小(1+ $\beta$ )6



(4) 求最大输出电压幅值 $U_{
m omax}$ 

结论:  $U_{\text{omax}} = \min\{U_{\text{Rm}}, U_{\text{Fm}}\}$ 

不出现饱和失真的最大输出电压

幅值 U<sub>Rm</sub>=U<sub>CE</sub> - U<sub>CES</sub> (0.7)≈11V

不出现截止失真的最大输出电压

幅值 
$$U_{\text{Fm}} = \begin{cases} I_{\text{C}}R_{\text{e}} & \text{空载} \\ I_{\text{C}}(R_{\text{e}}//R_{\text{L}}) & \text{有载} \end{cases}$$



$$U_{\text{omax}} = \min\{U_{\text{Rm}}, U_{\text{Fm}}\} = 3V$$

(5) 若要使 $U_{\text{omax}}$ 为最大(忽略饱和压降 $U_{\text{CES}}$ ), $R_{\text{b}}$ 应为多少?

$$\diamondsuit U_{\rm Rm} = U_{\rm Fm} \longrightarrow U_{\rm CE} - 0 = I_{\rm C} (R_{\rm e} / / R_{\rm L}) \longrightarrow V_{\rm CC} - I_{\rm C} R_{\rm e} = I_{\rm C} (R_{\rm e} / / R_{\rm L})$$

$$\longrightarrow I_{\rm C} = 6.4 \,\mathrm{mA} \longrightarrow I_{\rm B} = 0.128 \,\mathrm{mA}$$

 $I_B = \frac{V_{CC} - 0.7}{R_b + (1 + \beta)R} \longrightarrow R_b = 29k\Omega \sim 35k\Omega$ 

本题主要关注公式

计算允许一定误差

5-14 己知β=80, U<sub>BE</sub>=0.7V

(1) 该电路的名称和特点是什么?

名称: 分压偏置式共发射极放大电路

特点: 能够稳定静态工作点

(2) 用估算法求解静态工作点

步骤1: 画直流通路→断开所有C

步骤2: 求静态Q  $\rightarrow$  求 $I_B$ 、 $I_C$ 、 $U_{CE}$   $\circ$ 



 $R_{b1}$  |  $R_{c}$  |  $R_{c}$  |  $R_{c}$  |  $R_{b1}$  |  $R_{b2}$  |  $R_{b2}$  |  $R_{b2}$  |  $R_{c}$  |

$$I_{B} = \frac{I_{E}}{1+\beta} \approx 33.5 \mu A \qquad I_{C} = \beta I_{B} \approx 2.68 m A$$

$$U_{CE} = V_{CC} - I_{C}R_{C} - I_{E}(R_{e1} + R_{e2}) \approx 7.09 V$$



画图 1、采用小写符号和下标注意 2、遇到电容做短路处理事项 3、遇到+Vcc做接地处理

$$r_{be} = r_{bb}' + (1 + \beta) \frac{26(mV)}{I_{EO}(mA)} \approx 1.1 \text{k}\Omega$$

$$r_i = R_{b1} // R_{b2} // [r_{be} + (1+\beta)R_{e1}] \approx 11.6 \text{k}\Omega$$





 $R_{\rm c}$  3.3k $\Omega$ 

 $150k\Omega$ 

#### 实现信号反相放大

 $r_o = R_c / / r' \approx R_c = 3.3 \text{k}\Omega$ 

- 5-18 己知U<sub>BE</sub>=0.7V, β=50
  - (1) 该电路采用什么接法?
    - : 交流信号B入E出
    - ∴ 该电路采用共集电极接法
  - (2) 求解静态工作点

静态分析: → 只有直流作用的电路

步骤1: 画出直流通路 → 断开C

步骤2: 已知 $U_{\text{BE}}$ ,估算 $I_{\text{B}}$ 、 $I_{\text{C}}$ 、 $U_{\text{CE}}$ 

$$V_{CC} = I_{B}R_{b} + U_{BE} + I_{E}R_{e} = I_{B}R_{b} + U_{BE} + (1+\beta)I_{B}R_{e}$$

$$I_B = \frac{V_{CC} - 0.7}{R_b + (1 + \beta)R_e} \approx 80 \mu A \qquad I_C = \beta I_B \approx 4 m A$$

$$I_E = (1+\beta)I_B = I_B + I_C \approx 4.08 \text{ mA}$$

$$U_{CE} = V_{CC} - I_E R_e \approx V_{CC} - I_C R_e \approx 11.76 \text{V或12V}$$



(3) 求解 $A_u$ ,  $r_i$ 和 $r_o$ 

动态分析: --> 只有交流作用的电路

#### 步骤1: 画出微变等效电路

$$r_{be} = r_{bb}' + (1 + \beta) \frac{26(mV)}{I_{EQ}(mA)}$$
  
=  $300 + \frac{26(mV)}{I_{BO}(mA)} = 625\Omega \approx 0.63k\Omega$ 

$$A_{u} = \frac{u_{o}}{u_{i}} = \frac{i_{e}(R_{e} // R_{L})}{i_{b}r_{be} + i_{e}(R_{e} // R_{L})}$$

$$= \frac{(1+\beta)i_{b}(R_{e} // R_{L})}{i_{b}r_{be} + (1+\beta)i_{b}(R_{e} // R_{L})} \approx 0.984$$

$$0 < A_{\mathbf{u}} < 1 \ A_{\mathbf{u}} \approx 1 \longrightarrow u_i \approx u_o$$

共集电极放大电路也叫同相跟随器 或射极跟随器(无电压放大能力)



(3) 求解 $A_u$ ,  $r_i$ 和 $r_o$ 

$$r_i = R_b // [r_{be} + (1 + \beta)(R_e // R_L)]$$

发射极电阻折算到基极 ri和RL有关

注意: 当电流缩小  $(1+\beta)$  倍时, 电阻应相应扩大  $(1+\beta)$  倍。

$$r_i = 150k / /38.88k \approx 30.88k\Omega$$

 $r_o$ :  $R_L$ 两端往左除源后的等效电阻

$$r_o = R_e // \frac{r_{be}}{1+\beta}$$
 基极电阻折算到发射极 算到发射极 电流扩大(1+ $\beta$ )倍 电阻缩小(1+ $\beta$ )倍 电阻缩小(1+ $\beta$ )6



(4) 求最大输出电压幅值 $U_{
m omax}$ 

结论:  $U_{\text{omax}} = \min\{U_{\text{Rm}}, U_{\text{Fm}}\}$ 

不出现饱和失真的最大输出电压

幅值 U<sub>Rm</sub>=U<sub>CE</sub> - U<sub>CES</sub> (0.7)≈11V

不出现截止失真的最大输出电压

幅值  $U_{\text{Fm}} = \begin{cases} I_{\text{C}}R_{\text{e}} & \text{空载} \\ I_{\text{C}}(R_{\text{e}}//R_{\text{L}}) & \text{有载} \end{cases}$ 

∵有载 ∴ 
$$U_{\text{Fm}} = I_{\text{C}}(R_{\text{e}} / / R_{\text{L}}) = 3\text{V}$$
 ∴  $U_{\text{omax}} = \min\{U_{\text{Rm}}, U_{\text{Fm}}\} = 3\text{V}$ 



$$U_{\text{omax}} = \min\{U_{\text{Rm}}, U_{\text{Fm}}\} = 3V$$

(5) 若要使 $U_{\text{omax}}$ 为最大(忽略饱和压降 $U_{\text{CES}}$ ), $R_{\text{b}}$ 应为多少?

$$\diamondsuit U_{\rm Rm} = U_{\rm Fm} \longrightarrow U_{\rm CE} - 0 = I_{\rm C} (R_{\rm e} / / R_{\rm L}) \longrightarrow V_{\rm CC} - I_{\rm C} R_{\rm e} = I_{\rm C} (R_{\rm e} / / R_{\rm L})$$

$$\longrightarrow I_{\rm C} = 6.4 \,\mathrm{mA} \longrightarrow I_{\rm B} = 0.128 \,\mathrm{mA}$$

 $I_B = \frac{V_{CC} - 0.7}{R_b + (1 + \beta)R} \longrightarrow R_b = 29k\Omega \sim 35k\Omega$ 

本题主要关注公式

计算允许一定误差

|                 | 基本共发射极放大电路(固定偏置)                                           | 分压偏置共发射极放大电路                                                                                                                                        | 共集电极放大电路(射极偏置)                                                  |
|-----------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 电路图             | $\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$ | $R_{\text{B1}} R_{\text{C}} C_{2}$ $R_{\text{B1}} R_{\text{C}} C_{2}$ $R_{\text{B2}} R_{\text{E1}} R_{\text{L}} U_{o}$ $R_{\text{E2}} C_{\text{e}}$ | $R_{S}$ $R_{B}$ $R_{C_{1}}$ $R_{C_{2}}$ $R_{E}$ $R_{L}$ $U_{o}$ |
| 静态<br>工作<br>点 Q |                                                            |                                                                                                                                                     |                                                                 |
| 微变<br>等效<br>电路  |                                                            |                                                                                                                                                     |                                                                 |
| 电压<br>放大<br>倍数  |                                                            |                                                                                                                                                     |                                                                 |
| 输入<br>电阻        |                                                            |                                                                                                                                                     |                                                                 |
| 输出<br>电阻        |                                                            |                                                                                                                                                     |                                                                 |

## 第5章 放大电路基础

- 5.1 放大电路的组成及工作原理 --- 定性
- 5.2 图解分析法 定量
- 5.3 计算分析法

补充: 阻容耦合放大电路

- 5.4 放大电路的三种接法
- 5.5 稳定工作点的放大电路
- 5.6 场效应管放大电路
- 5.7 多级放大电路
- 5.8 放大器的通频带

## 第5章 放大电路基础

- 5.1 放大电路的组成及工作原理 --- 定性
- 5.2 图解分析法
- 5.3 计算分析法 了
- 5.4 放大电路的三种接法
- 5.5 稳定工作点的放大电路 (怎么消除温度影响) (实验课中的电路)
- 5.6 场效应管放大电路
- 5.7 多级放大电路
- 5.8 放大器的通频带

放大器种类: 共发, 共集, 共基, 分压偏置 负反馈

问题:

要求电子电路

 $R_{\rm i} > 2{
m M}\Omega$ ,

 $A_{\rm m} > 2000$ 

 $R_0 < 100\Omega$  等。

怎么满足要求?

### 5.7 多级放大电路

### 多级放大

将前一级的输出信号作为后一级放大电路的输入信号。



#### 会产生什么问题:

各级静态工作点怎么设置? 会不会相互影响? 各级动态电路的放大倍数怎么计算, 会不会各级相互影响?

#### 耦合方式: 多级放大电路级与级之间的连接方式



各级静态工作点怎么设置? 会不会相互影响?

(1). 直接耦合放大电路静态工作点的设置  $U_{CEQ1}=U_{BEQ2}=0.7V$  使  $T_1$  饱  $E_1$  使  $E_2$  使  $E_2$  使  $E_3$  使  $E_4$  作  $E_4$  作

(2).用二极管或稳压管代 $^{\dagger}V_{\rm C1} = V_{\rm B2} = U_{\rm BE2} + U_{\rm Z} > 0.7{
m V}$ 

交流信号作用时: 稳压管等效于一个动态 电阻  $r_{r_{r_{r_{r}}}}$ 

#### 耦合方式: 多级放大电路级与级之间的连接方式



问题: 若B点电位逐级增大,直流能量大部分用于维持Q点

做法(4):用NPN和PNP的级联

解决方案: NPN 和 PNP 管子交替 使用。



#### 耦合方式: 多级放大电路级与级之间的连接方式



#### 1直接耦合特点:

- (1) 各级静态工作点彼此影
- (2) 能放大缓慢变化信号, 宜集成化
- (3) 存在零点漂移

#### 2 阻容耦合

将放大电路的前级输出端通过电容接到后级输入端的连接方式



#### 特点(1)各级静态工作点彼此独立

- (2) 不能放大缓慢变化信号, 低频特性差
- (3) 不宜集成

14

### 3. 多级放大电路的分析计算

#### 问题1:

各级静态工作点怎么设置? 会不会相互影响?

- 直接耦合的多级放大器各级静态工作点互相影响,分析较为复杂
- 阻容耦合的多级放大器各级静态工作点互相独立,可分开独立分析。

#### 问题 2:

各级动态电路的放大倍数怎么计算,会不会各级相互影响?

### 3. 多级放大电路的分析计算

① 电压放大倍数

在多级放大电路中,前一级的输出信号就是后一级的输入信号,如图所示。

因此多级放大电路的电压放大倍数  $A_u$  等于各级电路的电压放大倍数的乘积,即

$$A_{\mathbf{u}} = \frac{\Delta U_{\mathbf{0}}}{\Delta U_{\mathbf{I}}} = \frac{\Delta U_{\mathbf{01}}}{\Delta U_{\mathbf{I}}} \times \frac{\Delta U_{\mathbf{02}}}{\Delta U_{\mathbf{01}}} \times \cdots \frac{\Delta U_{\mathbf{0}}}{\Delta U_{\mathbf{0(n-1)}}} = A_{\mathbf{u1}} \cdot A_{\mathbf{u2}} \cdot \cdots \cdot A_{\mathbf{un}} = \prod_{k=1}^{n} A_{\mathbf{uk}}$$

•式中 $A_{uk}$  (k=1, 2, …, n) 为每一级的电压放大倍数。



#### 根据式子 5-54

$$\dot{A}_{u1} = \frac{\dot{U}_{o1}}{\dot{U}_{i}} = \frac{-\beta R'_{L}}{r_{be1}}$$

$$\dot{A}_{u2} = \frac{\dot{U}_{o}}{\dot{U}_{01}} = \frac{-\beta (R_{L} / / R_{c2})}{r_{be2}}$$

重点思考R'L是多少?

#### 多级放大电路

### ●考虑前后级的影响:

• 在计算各级的电压放大倍数时,必须考虑后级对前级的影响,常用的方法是把后级的输入电阻作为前级的负载电阻,即 $R_{Lk} = R_{i(k+1)}$  (k=1, 2, …, n-1)。



$$\dot{A}_{u1} = \frac{U_{o1}}{\dot{U}_{i}} = \frac{-\beta R'_{L}}{r_{bo}}$$

$$R'_{L} = (R_{i2} / / R_{c1}) \sharp + R_{i2} = (R_{b2} / / R_{be2})$$

## 1列5-

6]

图 (a) 为一阻容耦合两级放大电路。晶体管  $T_1$  和  $T_2$  的  $\beta$ =50 ,  $U_{BE}$ =0.7V 。各电容的容量足够大。求: ①计算 各级的静态工作点; ②计算 ,  $R_1$  和  $R_2$  。



## [例 5-6]

解:

①分别画出各级的直流通路如图 (b) 所示,根据直流通路计算静态工作点。

$$I_{\text{B1Q}} = \frac{V_{\text{CC}} - U_{\text{BE}}}{R_{\text{b1}} + (1 + \beta)R_{\text{e1}}} = \frac{12 - 0.7}{300 + 51 \times 3} = 0.025 (\text{mA})$$



$$U_{\rm B2} = \frac{R_{\rm b3}V_{\rm CC}}{R_{\rm b2} + R_{\rm b3}} = \frac{20 \times 12}{40 + 20} = 4(\rm V)$$

$$I_{E2Q} = \frac{U_{B2} - U_{BE}}{R_{e2}} = \frac{4 - 0.7}{3.3} = 1 \text{(mA)}$$
 $I_{B2Q} = \frac{I_{E2Q}}{1 + \beta} = \frac{1}{51} = 0.0196 \text{(mA)}$ 
 $I_{B2Q} = \beta I_{B2Q}$ 
 $I_{C2Q} = \beta I_{B2Q}$ 
 $I_{C2Q} = \delta I_{C2Q} = \delta I_{C2Q} = 0.98 \text{(mA)}$ 
 $I_{CE2Q} = V_{CC} - I_{C2Q} (R_{c2} + R_{e2})$ 
 $I_{CE2Q} = I_{C2Q} = I_{C2Q} (R_{c2} + R_{e2})$ 
 $I_{C2Q} = I_{C2Q} (R_{c2} + R_{e2})$ 

## [例 5-6]

●②画出放大电路的微变等效电路如图所示。



 $r_{\rm be1}$ 

$$\dot{A}_{u1} = \frac{\dot{U}_{o1}}{\dot{U}_{i}} = \frac{(1+\beta)(R_{e1}//R_{i2})}{r_{be1} + (1+\beta)(R_{e1}//R_{i2})}$$

 $R_{i2} = R_{b2} // R_{b3} // r_{be2} = 40 // 20 // 1.63 = 1.45 (k\Omega)$ 

$$\dot{A}_{u1} = \frac{51 \times (3 / /1.45)}{1.34 + 51 \times (3 / /1.45)} = 0.974$$

作业: 5-16, 5-21, 5-26

## 第5章 放大电路基础

- 5.1 放大电路的组成及工作原理 --- 定性
- 5.2 图解分析法 定量
- 5.3 计算分析法
- 5.4 放大电路的三种接法
- 5.5 稳定工作点的放大电路 (怎么消除温度影响)
- 5.6 场效应管放大电路
- 5.7 多级放大电路 (怎么提高放大倍数)
- 5.8 放大器的通频带