

PHM of Battery Flipped learning (Prognostics and Health Management: 건전성 예측 및 관리)

백지훈

Contents

- PHM for Battery
 - What is PHM?
 - Reason for choosing a topic
 - RUL(Remaining Useful Life) Prediction of Battery
- Reference

- PHM이란?
 - Prognostics and Health Management
 - 시스템의 건전성 관리를 위한 방법이다.
 - 사후 유지보수, 예방 유지보수, 그리고 상태기반 유지보수로 구분 가능하다.
 - 현재는 상태 기반(Data driven) 유지보수가 수행 되고 잇다.

Reason for choosing a topic (PHM of Battery)

- 아래 그림은 자동차의 고장 원인을 나타낸다.
 - 배터리 문제가 자동차의 고장 원인 비율에서 높은 비중을 차지한다.
 - 따라서, 배터리의 신뢰성을 분석하고 고장을 예지하는 기술이 필요하다.

BMS (Battery Management System)

Page. 5

Overview of BMS

Overview of battery management system

BMS (Battery Management System)

Page.

Overview of Machine Learning Approaches in BMS

Machine Learning Approaches in BMS Applications

Embedded |-SoftwareLab

Machine Learning approaches in BMS

- Classification of Battery Management System
 - Fault Diagnosis and Prognosis
 - Critical faults in BMS invoked by such as, over/under voltage and current, irreversible chemical reaction, and low temperature
 - A lot of efforts have been done on the fault diagnosis
 - Methods: K-NN, ANN, SVM, LSTM
 - Remaining Useful Life Prediction
 - Such as, deposition of lithium, decomposition of electrolytes, and so on, lead to capacity degradation
 - Guarantee battery reliability
 - Methods: Linear Regression, ANN, RNN, SVM, LSTM, and so on

Methods of Remaining Useful Life Prediction

SoftwareLab

Page.

- Linear Regression
 - Useful when not much data
 - Prediction based on capacity data
 - Mathematically expressed Y = ax + b

Linear Regression example

Embedded SoftwareLab

Methods of Remaining Useful Life Prediction

Page.

Linear Regression

Discharge capacity for the first 1,000 cycles

Discharge capacity curves for 100th and 10th cycles

Difference of the discharge capacity curves as a function of voltage

Embedded + SoftwareLab

Methods of Remaining Useful Life Prediction

Page. 10

LSTM

- Good for time series prediction
- Widely used for RUL prediction
- Time series capacity data based prediction

Capacity degradation over charging/discharging cycle

Input/Output format of LSTM base RUL prediction

Reference

- 조휘, et al. "실시간 잔존수명 추정을 위한 차량용 납산전지의 고장예지 및 건전성 평가 절차에 대한 연구 조사." *대한산업공<mark>학회 추</mark> 계학술대회 논문집* (2014): 2883-2888.
- Ardeshiri, Reza Rouhi, et al. "Machine learning approaches in battery management systems: state of the art: remaining useful life and fault detection." 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). Vol. 1. IEEE, 2020.
- Patil, Meru A., et al. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation." *Applied energy* 159 (2015): 285-297.\
- Severson, Kristen A., et al. "Data-driven prediction of battery cycle life before capacity degradation." *Nature Energy* 4.5 (2019): 383-391.
- Zhang, Yongzhi, et al. "Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries." IEEE Transactions on Vehicular Technology 67.7 (2018): 5695-5705.