Characterizing the Uncertainties in Non-Equilibrium MD for Thermal Transport

Manav Vohra[†], Sankaran Mahadevan[†]

Collaborators: Seungha Shin§, Ali Yousefzadi Nobakht§, Alen Alexanderian‡

†Vanderbilt University

§University of Tennessee, Knoxville

‡North Carolina State University, Raleigh

January 22, 2018

Classical MD is used to investigate heat transfer dominated by phonon-phonon interactions in material systems.

- Commonly applied to study non-metallic systems like C, Si, and Ge
- Typically conducted under equilibrium conditions characterized by thermodynamic ensembles like NVT, NVE, NPT, and μVT.
- Non-Equilibrium MD involves setting up thermostats in different regions to establish temperature gradients.
 - Thermostatting introduces errors.

WHY MD?

- Enables simulation of much larger systems compared to DFT in a reasonable amount of time.
- Trends from MD are useful despite possible errors in estimates.

PLAN

Part I: FORWARD PROBLEM:

- Investigate error in predictions due to size of the material system and fluctuations in thermal gradient.
 - Construct a response surface for the error.

PROBLEM SET-UP

- Characterize the impact of uncertainty in inter-atomic potential on predictions.
 - Dimension reduction using derivative-based sensitivity measures.
 - Construction of PCE in the reduced space.
 - Forward Propagation of uncertainty.

Part II: INVERSE PROBLEM:

 Calibrate critical parameters associated with the potential function in a Bayesian setting using experimental data.

NEMD ON A SILICON BAR

PROBLEM SET-UP

•000

Lattice Constant, a (Å)	5.43	
W, H (Å)	22a, 22a	
Temperature (K)	300	
Δt (ps)	0.0005	
BC	Periodic	
Structure	Diamond	
Potential	Stillinger-Weber	

L = 50a. $N \approx 200000$ atoms

DIRECT METHOD

OBSERVABLE: Average energy exchange b/w thermostats (q)

QoI: Bulk thermal conductivity (κ)

$$\kappa = \frac{q}{\left|\frac{dT}{dx}\right|}$$

INITIAL RUNS:

- Determine the time steps needed for equilibration.
- Select a reasonable width and height for the Si bar.
 - Small fluctuations due to changes in height and width.

Norm of the fluctuations (NF) is computed using:

$$NF = \frac{1}{N} \left[\sum_{k} \left(T_k - T_{\{nvt,nve\}} \right)^2 \right]^{\frac{1}{2}}$$

■ At $W = 22L_c$, the effect of length on fluctuations seems negligible.

NEED A SURROGATE?

BACKGROUND

- OBJECTIVE: Forward UQ. Sensitivity Analysis, calibration, Design
- COMPUTATIONAL EFFORT: Simulations are computationally intensive.
- ACCURACY: Can a surrogate represent the observable with reasonable accuracy in the domain of interest?

Model realizations at Gauss-Legendre quadrature nodes are used to construct the PC surrogate.

PC EXPANSION

BACKGROUND

$$\epsilon (= |\kappa_m - \kappa_{\mathsf{MD}}|) = \sum_j c_j \Psi_j(\xi_1, \xi_2)$$

 κ_m : Measured, κ_{MD} : MD Prediction, j: Multi-index

$$L: \mathcal{U}[50L_c, 100L_c] (\mathring{A}) \rightarrow \xi_1 : \mathcal{U}[-1, 1]$$

$$\frac{dT}{dx}$$
: $\mathcal{U}[1.5/L_c, 2.5/L_c]$ $(\frac{K}{\hbar}) \rightarrow \xi_2 : \mathcal{U}[-1, 1]$

RESPONSE SURFACE: $\epsilon(L, \frac{dT}{dx})$

PLAN

ACCURACY:

$$\epsilon = \frac{\left[\sum_{j} (\mathcal{G}_{M} - \mathcal{G}_{PCE}))^{2}\right]^{\frac{1}{2}}}{\left[(\mathcal{G}_{M})^{2}\right]^{\frac{1}{2}}} \approx 1.8 \times 10^{-3}$$

 \mathcal{G}_M : Model Output

 G_{PCE} : PCE Estimate

UNCERTAINTY IN INTER-ATOMIC POTENTIAL

OBJECTIVES

BACKGROUND

- Relative importance of potential field parameters using sensitivity analysis.
- Assess variability in thermal conductivity estimates due to perturbations in the potential field (Forward Problem).

$$\Phi(A, B, p, q, a, \lambda, \gamma) \mapsto k$$

 Robust calibration of the potential field parameters in a Bayesian setting.

CHALLENGES.

- Global sensitivity analysis and the forward problem are computationally intractable.
- Explore the applicability of a derivative-based sensitivity measure to reduce the dimensionality of the problem.

DERIVATIVE-BASED GLOBAL SENSITIVITY MEASURES

MOTIVATION

BACKGROUND

- Sensitivity analysis based on Sobol indices is commonly used to determine relative importance of the parameters.
- Sobol sensitivity indices are compute intensive:

$$\mathcal{T}(heta_i) = rac{\mathbb{E}_{oldsymbol{ heta} \sim i}[\mathbb{V}_{ heta_i}(\mathcal{G}|oldsymbol{ heta}_{\sim i})]}{\mathbb{V}(\mathcal{G})}$$

 Bounds on Sobol indices can be computed easily using DGSM and are shown to converge at a much faster rate.

DERIVATIVE-BASED GLOBAL SENSITIVITY MEASURES

BACKGROUND

BACKGROUND

 DGSM for Randomly distributed parameters [Sobol and Kucherenko, 2009]:

$$\mu_i = \mathbb{E}\left[\left(\frac{\partial G(\mathbf{x})}{\partial x_i}\right)^2\right]$$

where,

$$\frac{\partial G(\mathbf{x}^*)}{\partial x_i} = \lim_{\delta \to 0} \frac{[G(x_1^*, \dots, x_{i-1}^*, x_i^* + \delta, x_{i+1}^*, \dots, x_d^*) - G(\mathbf{x}^*)]}{\delta}$$

■ Total number of model realizations required to compute μ_i using N samples is N(d+1).

PLAN

BACKGROUND

DERIVATIVE-BASED GLOBAL SENSITIVITY MEASURES BACKGROUND

• Upper bound on Sobol Total Effect index (ST_i) [Sobol and Kucherenko, 2009]:

$$ST_i \leq \frac{\mathcal{C}_i \mu_i}{V} \; (\propto \hat{\mathcal{C}_i \mu_i})$$

$$\hat{\mathcal{C}_i \mu_i} = \frac{\mathcal{C}_i \mu_i}{\sum_i \mathcal{C}_i \mu_i}$$

C: Poincaré Constant V. Variance

 The Poincaré Constant is specific to a given probability distribution:

$\mathcal{U}[a,b]$	$(b-a)^2/\pi^2$
$\mathcal{N}(\mu, \sigma^2)$	σ^2

ALGORITHM: PARAMETER SCREENING

```
1 Generate n_1 points in \mathbb{R}^d;
 2 Compute UB_i for parameters \theta_i using n_1 points;
   % NF = n_1(d+1), NF: Number of model realizations;
3 Rank Parameters (\theta_i) based on UB_i estimates (\mathcal{R}^{old});
4 set k = 1 \% k: Iteration counter;
 5 repeat
         Generate \beta n_1 new points in \mathbb{R}^d (\beta n_1 \in \mathbb{Z});
 6
        Compute UB_i^{new} using (1+\beta k)n_1 points;
 7
        \% NF = (1 + \beta k)n_1(d+1);
        Rank Parameters based on UB_i^{new} estimates (\mathcal{R}^{new});
8
        if (\mathcal{R}^{new} = \mathcal{R}^{old}) then
 9
              Compute: r_i = \frac{UB_i^{new}}{max(IJB^{new})};
10
             Construct a set s = \{\theta_i \ni r_i < \alpha\};
11
              Exit the loop;
12
13
        end
        set k = k + 1;
15 until \mathcal{R}^{new} \neq \mathcal{R}^{old};
16 Construct a validation set: (\theta_i, \mathcal{M}(\theta_i)), j=1,2,...,NF;
```

MD SIMULATION

BACKGROUND

NPT NVE **NVE** NVT [Relax System Length] [Equilibrate system to 300 K] [Equilibrate thermostats] [Generate Data] N: Number of Atoms P: Pressure V: Volume T: Temperature E: Energy

PARAMETER SCREENING

$\mathcal{C}_{\hat{i}}\hat{\mu}_{i}$: 10 Samples	$\mathcal{C}_i\hat{\mu}_i$: 15 Samples	$\hat{\mathcal{C}_i\mu_i}$: 20 Samples	$\mathcal{C}_{i}\hat{\mu}_{i}$: 25 Samples	$\hat{\mathcal{C}_i}\mu_i$: 30 Samples
γ: 0.2531	γ: 0.2001	γ: 0.1933	γ: 0.2075	γ : 0.2024
α: 0.2170	α: 0.1723	α: 0.1593	α: 0.1495	α: 0.1487
A: 0.2014	A: 0.1508	q: 0.1468	q: 0.1493	λ: 0.1424
B: 0.0964	B: 0.1381	λ: 0.1325	λ: 0.1392	q: 0.1404
p: 0.0916	p: 0.1253	A: 0.1261	A: 0.1217	A: 0.1395
q: 0.0741	q: 0.1232	B: 0.1242	B: 0.1175	B: 0.1142
λ: 0.0664	λ: 0.0900	p: 0.1177	p: 0.1153	p: 0.1125

PARAMETER SCREENING

ERROR RESPONSE SURFACE