2/2

3/3

2/2

4/4

+41/1/40+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

IPS		
Quizz	$d\mathbf{u}$	13/11/2013

Nom et prénom : FAKLAK Youness

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des

points négatifs pourront être affectés à de très mauvaises réponses. Ne pas faire de RATURES, cocher les cases à l'encre.
Question 1 • Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?
flash - approximation successives - simple rampe - double rampe
double rampe - flash - approximation successives - simple rampe
flash - approximation successives - double rampe - simple rampe
approximation successives - flash - double rampe - simple rampe
approximation successives - flash - simple rampe - double rampe
Question 2 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1 \text{k}\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant
$V_G \bigcap$ $R_1 = R_C(26^\circ\text{C}) = 1,1\text{k}\Omega$ L'étendu de mesure est $[-25^\circ\text{C};60^\circ\text{C}]$. Fixer la valeur de V_G pour que le courant dans le capteur soit toujours inférieur à 5mA .
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Question $3 \bullet$ Quelle est la capacité d'un condensateur plan? On note : • ϵ : Permittivité du milieu entre les armatures. • S : Surface des armatures. • d : Distance entre les armatures.
$C = \frac{\epsilon S}{d} \qquad \qquad \Box C = \epsilon dS \qquad \qquad \Box C = \frac{\epsilon}{Sd} \qquad \qquad \Box C = \frac{\epsilon d}{S}$
Question 4 •
Le capteur sur la photo ci-contre permet de mesurer
des résistances des courants des différences de potentiels des températures.

...des différences de températures.

	Question 5 • Pourquoi faire du sur-échantillonnage ?
0/0	Pour réduire le bruit de quantification
2/2	Pour améliorer l'efficacité du filtre antircpliement. Pour supprimer les perturbations de mode commun.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?
1/1	La course électrique. Le pas de bobinage La résistance maximale du potentiomètre La longueur du potentiomètre La taille des grains de la poudre utilisée
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des flux lumineux des grands déplacements des températures des déformations des résistances des courants.
	Question 8 • Un capteur LVDT permet de mesurer :
1/1	des déplacements angulaires des courants des températures des déplacement linéaire
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
	De rejeter les perturbations de mode différentiel.
3/3	Le gain est fixé par une seule résistance. Les impédances d'entrées sont élevés.
3/3	Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Les voies sont symétriques.
	Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN ?
1/1	39 mV
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?
6/6	$p = -(1 + A_0)/\tau_C \qquad \qquad \text{Le système est oscillant}$ $p = (A_0 - 1)/\tau_C \qquad \qquad \text{Le système est stable}$ $p_1 = A_0/\tau_C \text{ et } p_2 = -A_0/\tau_C \qquad \qquad p = (A_0 + 1)/\tau_C$