SimBALink

1 Vehicle

This system models the forces acting on the vehicle.

1.1 Gearing and Chain

This system models the gear and chain in such a way to allow for wheel slip.

1.2 Inputs and outputs

1.2.1 Inputs

Input	Symbol	Unit
Motor Torque	$ au_m$	Nm
Tire Torque	$ au_t$	Nm

1.2.2 Outputs

Output	Symbol	Unit
Tire Velocity	ω_t	rad/s
Gear Torque	$ au_g$	Nm

1.2.3 Background, rationale, modeling strategy

The tire, chain, gear, and motor are modeled as a lumped inertia that is accelerated by the motor torque and tire torque (modeled as a load). The chain is modeled lossey through an efficiency map. Gearing is modeled as a ratio that linearly changes motor torque to gear torque. This method of modeling allows for wheel slip down the line.

$$\dot{\omega_t} = \frac{\tau_g - \tau_t}{J_m + J_g + J_t + J_c} \tag{1}$$

$$\tau_g = \frac{\tau_m \eta_c(\omega_t)}{R_g} \tag{2}$$

1.2.4 States

State	Symbol	Unit
Tire Velocity	ω_t	rad/s

1.2.5 Parameters

Parameters	Symbol	Unit
Motor inertia	J_m	$kg*m^2$
Gear inertia	J_g	$kg*m^2$
Chain inertia	J_c	$kg*m^2$
Tire inertia	J_t	$kg*m^2$
Gear Ratio	R_g	$\frac{ au_g}{ au_m}$

1.2.6 Functions

Type	Description	Symbol	Unit
Input	Wheel Speed	ω_t	rad/s
Output	Chain Efficiency	n/a	%

The function is modeled as a look up table following the curve below described in the paper "Optimization of Chain Drives in Sports Motorcycles".

1.2.7 Assumptions

- The chain and gearing is rigid (no chain/gear dynamics)
- Chain efficiency is only a function of wheel speed

1.3 Validation

The model was subjected to a motor torque of 10 and an increasing tire torque. The model works correctly. The wheel increases in speed and the correctly models the losses in the chain.

1.4 Brakes

1.5 Inputs and outputs

1.5.1 Inputs

Input	Symbol	Unit
Brake Command	beta	%
Wheel Speed	ω_t	rad/s

1.5.2 Outputs

Output	Symbol	Unit
Brake Force on Tire	F_b	N

1.5.3 Background, rationale, modeling strategy

The brake is modeled as a friction force and a constant that converts β to a force.

$$F_b = \mu_b \omega_t \beta k_b \tag{3}$$

1.5.4 Variables

Var	Symbol	Unit
Brake Coefficient of Friction	μ_b	$\frac{N}{rad/s}$
Force Constant	k_b	$\frac{N}{\%}$

1.5.5 Assumptions

- Brake percentage to friction force is linear
- The tire never locks

1.6 Tires

1.7 Inputs and outputs

1.7.1 Inputs

Input	Symbol	Unit
Brake Force	F_b	N
Gear Torque	$ au_g$	Nm
Wheel Forces[3]	\bar{F}_w	N[3]
Vehicle Velocity	v	m/s
Lead Angle	θ_l	rad

1.7.2 Outputs

Output	Symbol	Unit
Tire Torque	$ au_t$	Nm
Acceleration Force	F_a	N
Acceleration Torque	$ au_a $	Nm
Tire Road Torque	$ au_r $	Nm
Wheel Slip	κ	ratio
Max Force	F_{max}	N

1.7.3 Background, rationale, modeling strategy

The tire is modeled in three parts, rolling resistance, Load and Torque, and Traction Limiting. Force directions are defined as longitudinal(long), lateral(lat), and normal(n). Longitudinal is along the direction of the motorcycle (when moving straight). Lateral is orthogonal to Longitudinal axis. Normal 3-D orthogonal to lateral and longitudinal, in general the axis to the road on no incline.

The tire model attempts to make the tire torque (τ_t) equal to the gear torque (τ_g) . Which means all the remaining (after rolling resistance and Longitude force) Gear Torque (τ_g) goes into Acceleration force (F_a) . The Acceleration force is saturated at the maximum force (F_{max}) do to the tire coefficient so wheel slip occurs when some of the gear torque is not compensated for because of the saturation of the Acceleration force.

Rolling Resistance

$$Frr = \begin{cases} (0.0085 + \frac{0.18}{p_t} + \frac{1.59 * 10^{-6}}{p_t} v_{kph}^2) F_{w,n} &: v_{kph} \le 165 (km/h) \\ (\frac{0.18}{p_t} + \frac{2.91 * 10^{-6}}{p_t} v_{kph}^2) F_{w,n} &: v_{kph} > 165 (km/h) \end{cases}$$
(4)

Wheel Slip

$$\kappa = -\frac{v - \omega_t r_t(\theta_l)}{v} \tag{5}$$

$$\mu_{t,qnd} = D_{\kappa} \sin(C_{\kappa} \arctan[B_{\kappa}\kappa - E_{\kappa}(B_{\kappa}\kappa - \arctan B_{\kappa}\kappa)])$$
 (6)

Load and Torque

$$\tau_r = F_{w,long}r_t(\theta_l) + F_b r_b + F_{rr}r_t(\theta_l) \tag{7}$$

Traction Limiting

$$F_{max} = \mu_{t,gnd} F_{w,n} - F_{w,long} \tag{8}$$

$$F = \frac{\tau_g - \tau_r}{r_t(\theta_l)} \tag{9}$$

$$F_{a} = \begin{cases} F & : F \leq F_{max} \\ -F & : -F_{max} \leq F \\ F_{max} & : F > F_{max} \\ -F_{max} & : -F_{max} > F \end{cases}$$
(10)

Torque on Chain/Gear

$$\tau_a = F_a r_t(\theta_l) \tag{11}$$

$$\tau_t = \tau_a + \tau_r \tag{12}$$

The tire coefficient $(\mu_{t,gnd})$ is modeled using the "Magic Formula" as shown below. Where D_{κ} is the maximum tire coefficient of the tire.

1.7.4 Variables

Var	Symbol	Unit
Rolling Constant	K_t	n/a
Tire coefficient	$\mu_{t,gnd}$	n/a
Force	F	N

1.7.5 Parameters

Param.	Symbol	Unit
Tire Pressure	p_t	bar
Brake Caliper Radius	r_b	m
Magic Formula		
	$A_{\kappa}, B_{\kappa}, C_{\kappa}, D_{\kappa}$	n/a

1.7.6 Function

 $r_t(\theta_l)$

Type	Description	Symbol	Unit
Input	Lean Angle	θ_l	rad
Output	Tire Radius	n/a	m

1.7.7 Assumptions

- Maximum acceleration force should also depend on lateral forces on the vehicle. However this is not modeled because it requires modeling of high-side and low-side dynamics. The Rider model should control for a safe operating area of the motorcycle to compensate for this assumption.
- No tire deformation
- No tire temperature dynamics
- No change in rolling resistance with lean angle

2 Validation

The tire model was swept through different slip speeds to validate correct shapes. All validation looks right but multiple parts need to be connected to check for proper dynamics.

2.1 Wheel Forces

Wheel Forces does nothing. It would allow for the environment to affect tire forces.

$$F_{\omega,long} = F_{c,long} \tag{13}$$

$$F_{\omega,n} = F_{c,n} \tag{14}$$

2.2 Chassis

This system models the chassis of the motorcycle including the velocity of the motorcycle and forces on the road.

The forces have a notation of Longitudinal (long), Normal(n), and Lateral (lat). Longitudinal being the direction the motorcycle is moving. Lateral at a 2D right angle to Longitudinal direction. Normal is orthogonal to others.

Inputs and outputs

2.3.1 Inputs

Input	Symbol	Unit
Tire Force	F_t	N
Air Density	ho	kg/m^3 rad
Road Gradient	θ_r	rad
Road Corner Radius	R_c	m

2.3.2 Outputs

Output	Symbol	Unit
Vehicle Velocity	v	m/s
Distance Traveled	$\mid d \mid$	m
Lean Angle	θ_l	rad
Chassis Forces	F_c	N[3]

2.3.3 Background, rationale, modeling strategy

The Chassis is modeled point mass with drag.

$$F_a = \frac{1}{2}\rho C_d A v^2 \tag{15}$$

$$F_{c,long} = F_a + gm\sin(\theta_r) \tag{16}$$

$$F_{c,n} = mg\cos(\theta_r) \tag{17}$$

$$\dot{v} = \frac{F_t}{m} \tag{18}$$

$$\dot{d} = v \tag{19}$$

$$\dot{d} = v \tag{19}$$

$$O_l = \arctan(\frac{v^2}{gR_c}) \tag{20}$$

2.3.4 States

State	Symbol	Unit
Distance	d	m
Velocity	$\mid v \mid$	m/s

2.3.5 Variables

Output	Symbol	Unit
Drag Force	F_a	N

2.3.6 Parameters

Param.	Symbol	Unit
Drag Area	C_dA	$\frac{N}{rad/s}$
Gravity	g	$\frac{\overline{rad/s}}{m/s^2}$
Mass of Motorcycle	$\mid m \mid$	kg

2.3.7 Assumptions

- The full weight of the motorcycle is always on the correct tire for breaking or acceleration. That is not a bad assumption because maximum braking or acceleration will happen at wheelie or stoppie when there is only one tire on the ground.
- Lean angle does not affect Aero Drag
- No lateral forces
- lean angle is optimal lean angle given corner radius and speed

3 Validation

First the Chassis model was validated by checking the lean angle and normal force by changing road gradient and corder radius. Both normal force and lean angle behave correctly

Then the Chassis model was validated by simulating a coast down and comparing it against collected data. The data follows the simulation well, but the CdA value needs better calibrated

3.1 Validation

A PI controller was added to the vehicle model as a whole to control for speed. The test shows the vehicle starting at 20 m/s and going to 40 m/s. The model works well.

4 Environment

This system models the environment of the motorcycle is riding in.

Force directions are defined as longitudinal(long), lateral(lat), and normal(n). Longitudinal is along the direction of the motorcycle (when moving straight). Lateral is orthogonal to Longitudinal axis. Normal 3-D orthogonal to lateral and longitudinal, in general the axis to the road on no incline.

Inputs and outputs

4.1.1 Inputs

Input	Symbol	Unit
Distance Travel	d	m

4.1.2 Outputs

Output	Symbol	Unit
Environment Forces on Tire[3]	F_t	N[3]
Road Gradient	θ_r	rad
Ambient Temperature	T_{amb}	K
Air Pressure	P	Pa
Air Density	ρ	kg/m^3
Corner Radius	R_c	m

4.1.3 Background, rationale, modeling strategy

The Environment only models air density, air temperature, and road gradient.

$$\theta_r = \arctan\left(\frac{\frac{d}{dt}h(d)}{\frac{d}{dt}d}\right)$$
 (21)

$$T_{amb} = T_0 - Lh(d) \tag{22}$$

$$T_{amb} = T_0 - Lh(d)$$

$$P = P_0 \left(1 - \frac{Lh(d)}{T_0}\right)^{\frac{gM}{RL}}$$

$$\rho = \frac{PM}{1000RT}$$

$$(22)$$

$$\rho = \frac{PM}{1000RT} \tag{24}$$

4.1.4 Parameters

Parameter	Symbol	Unit
Temperature Lapse	L	K/m
Initial Pressure	P_0	Pa
Initial Temperature	T_0	K
Gravity	$\mid g \mid$	m/s^2
Molar mass of Dry Air	M	kg/mol
Ideal Gas Constant	R	$\frac{J}{mol*K}$

4.1.5 Look up Table

h(d)

Type	Description	Symbol	Unit
Input	Distance Travel	d	m
Output	height	n/a	m
$R_c(d)$	'	'	

Type	Description	Symbol	Unit
Input	Distance Travel	d	m
Output	Corner Radius	n/a	m

4.1.6 Assumptions

- The air is dry
- Temperature lapse rate right is correct (no inversion)

5 Validation

To validate the road gradient the Isle of Man altitude map was supplied to the model and the road gradient was plotted. To validate air density data from Colorado was compared to a simulated data.

Figure 1: Vehicle Diagram

Figure 2: Estimated Chain Efficiency

Figure 3: Gear and Chain Validation

Figure 4: Magic Formula

Figure 6: Chassis Validation

Figure 7: Chassis Validation Coast Down

Figure 8: Vehicle Validation Speed

Figure 9: Vehicle Validation Motor Torque

Figure 10: Vehicle Validation Slip

