

CSE103L Circuits & Systems-I Lab LAB REPORT # 10

2020

Submitted to:

Engr. Faiz Ullah

Submitted by:

TAYYABA

Registration No:

19PWCSE1854

Semester: 2nd

Class Section: C

"On my honour, as student of University of Engineering and Technology,

I have neither given nor received unauthorized assistance

on this academic work."

Student Signature: _____

Sunday, August 9, 2020

Department of Computer Systems Engineering

University of Engineering and Technology, Peshawar

ASSESSMENT RUBRICS LAB # 14

Analyzing RC-Circuit using PSpice

Marks			
	Criteria	Excellent	Obtained
1.	Objectives of Lab	All objectives of lab are properly covered [Marks 0.5]	Ostanica
2.	RC-Circuit	Brief introduction of RC-Circuit [Marks 1]	
3.	PSpice	Brief introduction about PSpice [Marks 0.5]	
4.	Circuit Diagram	Circuit diagram of RC circuit with proper labeling [Marks 1]	THE SHALL SHALL
5.	Procedure of PSpice, Graph	PSpice procedure and steps followed for RC-Circuit settings and to get graph. Simulated graph results are also shown [Marks 6]	
6.	Conclusion	Conclusion about RC-Circuit analysis [Marks 1]	

Experiment # 14 Analyzing First RC Transient Circuit

Objectives:-

In this we will analyze first RC circuit using PSPICE software.

Apparatus:-

A computer with PSPICE installed on it

RC-Circuit:-

A resistor–capacitor circuit, or RC filter or RC network, is an electric circuit composed of resistors and capacitors driven by a voltage or current source. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.

PSPICE Simulator:-

PSPICE is a computer-aided simulation program that enables you to design a circuit and then simulate the design on a computer. As this is one of its main purposes, it is used extensively by electronic design engineers for building a circuit and then testing out how that circuit will simulate. There are a lot of things we can do with **PSPICE**, but the most important things for you to learn are

- 1. Design and draw circuits.
- 2. Simulate circuits.
- **3.** Analyze simulation results.

Circuit Diagram:

Procedure for Circuit 1:-

- 1. Open schematic program of PSPICE.
- 2. Click on the "Get New Part" button on the toolbar.
- 3. Type 'r' in the search bar and place the resistors on the white sheet and assign value 100Ω .
- 4. Type 'vdc' in the search bar and place it on the white sheet and assign value 10V.
- 5. Type 'c' in the search bar for capacitor and place it on the white sheet and assign value of 1n.
- 6. Type 'switch' in the search bar for switch (tclose=0) and place it on the white sheet.
- 7. Type 'gnd-earth' and place it on the white sheet.
- 8. Now arrange these components on the white sheet according to the circuit diagram as following.

Figure 14.1 RC Circuit Diagram

- 9. Click voltage/level Marker button and place on the specified position in the circuit.
- 10. Now click Setup Analysis button.
- 11. A window will open check the transient box and then click on the transient button.
- 12. Set the Print step and final time to a suitable values.
- 13. Check the 'skip initial transient solution' box and click on ok.
- 14. Now simulate the circuit by clicking the simulate button.

Procedure for Circuit 2:-

- 1. Open schematic program of PSPICE.
- 2. Click on the "Get New Part" button on the toolbar.
- 3. Type 'r' in the search bar and place the resistors on the white sheet and assign value 10Ω .
- 4. Type 'vdc' in the search bar and place it on the white sheet and assign value 15V.
- 5. Type 'c' in the search bar for capacitor and place it on the white sheet and assign value of 1n.
- 6. Type 'switch' in the search bar for switch (tclose=0) and place it on the white sheet.
- 7. Type 'gnd-earth' and place it on the white sheet.
- 8. Now arrange these components on the white sheet according to the circuit diagram as following.

Figure 14.2 RC Circuit Diagram

- 9. Click voltage/level Marker button and place on the specified position in the circuit.
- 10. Now click Setup Analysis button.
- 11. A window will open check the transient box and then click on the transient button.
- 12. Set the Print step and final time to a suitable values.
- 13. Check the 'skip initial transient solution' box and click on ok.
- 14. Now simulate the circuit by clicking the simulate button.

Procedure for Circuit 3:-

- 1. Open schematic program of PSPICE.
- 2. Click on the "Get New Part" button on the toolbar.
- 3. Type 'r' in the search bar and place the resistors on the white sheet and assign value 90Ω .
- 4. Type 'vdc' in the search bar and place it on the white sheet and assign value 25V.
- 5. Type 'c' in the search bar for capacitor and place it on the white sheet and assign value of 1n.
- 6. Type 'switch' in the search bar for switch (tclose=0) and place it on the white sheet.
- 7. Type 'gnd-earth' and place it on the white sheet.
- 8. Now arrange these components on the white sheet according to the circuit diagram as following.

Figure 14.3 RC Circuit Diagram

- 9. Click voltage/level Marker button and place on the specified position in the circuit.
- 10. Now click Setup Analysis button.
- 11. A window will open check the transient box and then click on the transient button.
- 12. Set the Print step and final time to a suitable values.
- 13. Check the 'skip initial transient solution' box and click on ok.
- 14. Now simulate the circuit by clicking the simulate button.

Procedure for Circuit 4:-

- 1. Open schematic program of PSPICE.
- 2. Click on the "Get New Part" button on the toolbar.
- 3. Type 'r' in the search bar and place the resistors on the white sheet and assign value 50Ω .
- 4. Type 'vdc' in the search bar and place it on the white sheet and assign value 2V.
- 5. Type 'c' in the search bar for capacitor and place it on the white sheet and assign value of 1n.
- 6. Type 'switch' in the search bar for switch (tclose=0) and place it on the white sheet.
- 7. Type 'gnd-earth' and place it on the white sheet.
- 8. Now arrange these components on the white sheet according to the circuit diagram as following.

Figure 14.4 RC Circuit Diagram

- 9. Click voltage/level Marker button and place on the specified position in the circuit.
- 10. Now click Setup Analysis button.
- 11. A window will open check the transient box and then click on the transient button.
- 12. Set the Print step and final time to a suitable values.
- 13. Check the 'skip initial transient solution' box and click on ok.
- 14. Now simulate the circuit by clicking the simulate button.

Procedure for Circuit 5:-

- 1. Open schematic program of PSPICE.
- 2. Click on the "Get New Part" button on the toolbar.
- 3. Type 'r' in the search bar and place the resistors on the white sheet and assign value 15Ω .
- 4. Type 'vdc' in the search bar and place it on the white sheet and assign value 200V.
- 5. Type 'c' in the search bar for capacitor and place it on the white sheet and assign value of 1n.
- 6. Type 'switch' in the search bar for switch (tclose=0) and place it on the white sheet.
- 7. Type 'gnd-earth' and place it on the white sheet.
- 8. Now arrange these components on the white sheet according to the circuit diagram as following.

Figure 14.5 RC Circuit Diagram

- 9. Click voltage/level Marker button and place on the specified position in the circuit.
- 10. Now click Setup Analysis button.
- 11. A window will open check the transient box and then click on the transient button.
- 12. Set the Print step and final time to a suitable values.
- 13. Check the 'skip initial transient solution' box and click on ok.
- 14. Now simulate the circuit by clicking the simulate button.

Conclusion:-

After creating different circuit we analyze that capacitor stores charge and when it get completely charged the current across resistor becomes zero.

