Stock Price Trend Forecasting

Gulay Samatli-Pac

Agenda

- Introduction
- Features
- Modeling
- Linear Regression
- Logistic Regression
- The LASSO
- Random Forest Model
- Gradient Boosting Model
- XGBOOST
- Appendix

Introduction

- The underlying problem is interesting and appealing since even a slight improvement could make a significant increase in profit for the stock holder.
- It is a difficult problem:
 - o particularly due to the volatility in prices caused by their sensitivity to financial and economical noises.
 - The traditional statistical techniques including time series and regression models are difficult to apply for prediction due to this volatility.
- Machine learning algorithms like support vector machine, random forest, decision tree learning are trending to predict stock prices since they are more robust.

Features

- AT&T (T) Stock from 1/1/2010 to 4/25/2017
- Features (total 31 features):
 - Close
 - Volume
 - o **n-day price change (PCh)**, n in {1, 10, 20, 270}
 - Kaufman's efficiency ratio (EffR), n in {10, 20, 270}
 - o **n-day moving average (MA)**, n in {10, 20, 270}
 - n-day momentum,rate-of-change, (ROC), n in {1, 10, 20, 270}
 - Stock moving direction (PrDir), i.e 1 if closing price that day is higher than the day before, 0 otherwise
 - Calendar date (Action) eg. 2 for earning record date, 1 for ex-dividend date, 0 for regular date
 - **Weekday(Day),** day of the week
 - Shifted Volume (Volumelagged), n in {1, 2, 5, 10, 20, 270}

Modeling

- The part of the data including NA values- caused due to creating new variables- are removed.
- Data is scaled in R with scale(ATT, center = TRUE, scale = TRUE) except PrDir, Action and Day features.
- Scaled data divided into train(2/1/2011 to 4/22/2016) and test(4/25/2016 to 4/25/2017) subsets.
- LASSO, Logistic Regression, Random Forest, Gradient Boosting and XGBoost are applied to model the variable Price Direction (PrDir).
- Linear Regression is applied to model the variable Close.
- Any fitted value less than 0.5 is assumed to 1 for prediction.
- Models are fitted in R

Logistic Regression

Coefficients	Estimate	Std Error	Pr(> z)	
MA10	19.2139	2.5301	3.10E-14	***
ROC20	-5.35745	2.29738	0.0197	*
PCh1	-0.78296	0.18159	1.62E-05	***
PCh20	-5.48976	2.31805	0.0179	*
Closelag5	-4.37411	0.88023	6.72E-07	***
Closelag10	-3.59514	0.80939	8.92E-06	***

Response: Price Direction

MSE = 0.4033

Accuracy = 0.5967

Signif. codes: 0 '***' 0.001 '**' 0.01 '*'

LASSO (Least Absolute Shrinkage and Selection Operator)

- A regression analysis method performing both variable selection and regularization to improve the prediction accuracy and interpretability of the statistical model it produces.
- The lasso uses the shrinkage method.
 - Fitting a model containing all predictors using a technique that constrains or regularizes the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero.
 - By doing this, standard estimators can be improved, e.g. mean squared error (MSE).
- It produces robust models when the number of features is 'large'.
 - Large number of features usually causes overfitting (10 or more features) and causes computational challenges.

LASSO

(Intercept) 1.530451e+01	EffR10 1.982895e+00
Volume -7.535862e-09	EffR20 .
Day 2.055589e-02	EffR270 -6.401497e+00
Action -4.268921e-01	Closelag1 -4.552047e-01
MA10 2.558529e+00	Closelag2 -8.980179e-01
MA20 .	Closelag5 -6.824091e-01
MA270 -1.317049e-02	Closelag10 -5.376649e-01
ROC1 -1.463223e+01	Closelag20 .
ROC10 .	Closelag270 .
ROC20 .	Volumelag1 -1.184589e-09
ROC270 .	Volumelag2 1.468090e-08
PCh1 -1.223365e+01	Volumelag5 -1.518731e-09
PCh10 6.919621e+00	Volumelag10 6.305931e-09
PCh20 -1.830732e+00	Volumelag20 -2.544176e-09
PCh270 9.959585e-01	Volumelag270 5.709783e-09

MSE = 0.4033

Accuracy = 0.5967

- A tree-based algorithm which involves building several decision trees using a random sample of m predictors from the full set of p predictors. Then it combines each tree output to improve the performance of the model.
- Advantages are as follows*:
 - It is robust to correlated predictors.
 - It is used to solve both regression and classification problems.
 - It can be also used to solve unsupervised ML problems.
 - It can handle thousands of input variables without variable selection.
 - It can be used as a feature selection tool using its variable importance plot.
 - It takes care of missing data internally in an effective manner.
- Disadvantages are as follows*:
 - The Random Forest model is difficult to interpret.
 - It tends to return erratic predictions for observations out of range of training data. For example, the training data contains two variable x and y. The range of x variable is 30 to 70. If the test data has x = 200, random forest would give an unreliable prediction.
 - It can take longer than expected time to computer a large number of trees.

 $(*:from\ \underline{https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/tutorial-random-forest-parameter-tuning-r/tutorial/)$

Response : Price Direction

Variable Importance

Confusion Matrix and Statistics for number of tree = 2000 (ntree = 500)

	Reference		
Prediction	0	1	
0	107 (110)	105 (105)	
1	10 (7)	21 (21)	

- **Accuracy = 0.5267** for ntree = 2000
- **Accuracy = 0.5391** for ntree = 500

Gradient Boosting Method

- Boosting sequentially fits multiple trees using the information from previously grown trees.
- In boosting, smaller trees (eg than random forest) usually sufficient since the growth of a particular tree takes into account the other trees that have already been grown.
- Response : Price Direction
- Confusion Matrix and Statistics for number of tree = 200, interaction depth =4

	Reference		
Prediction	0	1	
0	17	9	
1	100	117	

Accuracy = 0.5514

XGBOOST

- XGBoost is similar to the gradient boosting algorithms but mostly more efficient.
- It supports various objective functions, including regression, classification and ranking.
- Response : Price Direction
- Confusion Matrix and Statistics for nrounds = 100

	Reference		
Prediction	0	1	
0	77	71	
1	40	55	

Accuracy = 0.5432

Linear Regression

	Estimate	Std Error	t value	Pr(> t)	
Volume	-6.70E-03	2.68E-03	-2.496	0.01268	*
Action	-2.32E-02	8.74E-03	-2.655	0.00803	**
MA10	1.10E+00	9.81E-02	11.189	<2E-16	***
PCh1	-5.19E-02	7.28E-03	-7.131	1.66E-12	***
EffR20	1.04E-02	4.94E-03	2.11	0.03503	*
Closelag1	9.17E-01	3.06E-01	2.998	0.00277	**
Closelag2	-6.56E-01	3.08E-01	-2.131	0.03329	*
Closelag5	-2.25E-01	3.50E-02	-6.435	1.73E-10	***
Closelag10	-1.91E-01	3.23E-02	-5.899	4.67E-09	***

Response variable : Close

Signif. codes: '***' 0.001 '**' 0.01 '*' 0.05

Conclusion

- Several models both statistical and machine learning are used to predict the stock price movement.
- The goal while building a model is to produce a higher prediction accuracy instead of exploring most exploratory features.
- Traditional statistical models like linear or logistic regression are easy to apply and interpret. However they are not so powerful for predictions, also sensitive to any volatility.
- Machine learning algorithms are powerful and robust for prediction but difficult to interpret the relation between response and features.
- For this data set, the XGBOOST model with proposed parameters yields the highest accuracy followed by Random Forest, LASSO and Gradient Boost.

Appendix

Logistic Regression

fit.log1 <- glm(PrDir ~ ., family = binomial,control = list(maxit = 50), data= subset(train, select=-c(Close)))

```
> summary(fit.log1)
Call:
glm(formula = PrDir ~ ., family = binomial, data = subset(train,
                                                                    EffR10
                                                                              -0.04792 0.10672 -0.449 0.6534
 select = -c(Close), control = list(maxit = 50)
                                                                    EffR20
                                                                               0.22948  0.12736  1.802  0.0716 .
                                                                    EffR270
                                                                               -0.07462 0.11395 -0.655 0.5126
Deviance Residuals:
                                                                    Closelaq1
                                                                               -0.55243 7.53131 -0.073 0.9415
                      3Q Max
                                                                    Closelag2 -11.12615 7.60849 -1.462 0.1436
        1Q Median
-2.4600 -1.1310 0.6796 1.0931 1.8795
                                                                    Closelag5
                                                                               -4.37411 0.88023 -4.969 6.72e-07 ***
                                                                    Closelag10 -3.59514 0.80939 -4.442 8.92e-06 ***
Coefficients:
                                                                    Closelag20
                                                                                0.09821 0.73203 0.134 0.8933
       Estimate Std. Error z value Pr(>|z|)
                                                                    Closelag270 0.29882 0.60576 0.493 0.6218
(Intercept) 0.02689 0.10738 0.250 0.8023
                                                                    Volumelag1 -0.01917 0.07146 -0.268 0.7885
Volume
          -0.09747 0.06758 -1.442 0.1493
                                                                    Volumelag2 0.17394 0.06980 2.492 0.0127 *
Day
         0.01359 0.04168 0.326 0.7444
                                                                    Volumelag5 -0.02432 0.05963 -0.408 0.6834
Action
         -0.43574 0.22469 -1.939 0.0525
                                                                    Volumelag10 0.10150 0.05979 1.698 0.0896
MA10
          19.21390 2.53010 7.594 3.10e-14 ***
                                                                    Volumelag20 -0.04033 0.05845 -0.690 0.4903
MA20
          -0.12082 1.60187 -0.075 0.9399
                                                                    Volumelag270 0.06846 0.06032 1.135 0.2564
MA270
          -0.04963 0.18618 -0.267 0.7898
ROC1
                                                                    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
          -0.67933 0.68384 -0.993 0.3205
ROC10
           2.82766 2.22155 1.273 0.2031
ROC20
           -5.35745 2.29738 -2.332 0.0197 *
                                                                    (Dispersion parameter for binomial family taken to be 1)
ROC270
           0.74691 0.81570 0.916 0.3598
PCh1
          Null deviance: 1821.2 on 1315 degrees of freedom
PCh10
           3.11088 2.24138 1.388 0.1652
                                                                    Residual deviance: 1710.9 on 1286 degrees of freedom
PCh20
          -5.48976 2.31805 -2.368 0.0179 *
                                                                    AIC: 1770.9
PCh270
           0.53360 0.80133 0.666 0.5055
                                                                    Number of Fisher Scoring iterations: 4
```

Logistic Regression

- > fitted.log1 <- predict(fit.log1, newdata=subset(test, select=-c(Close,PrDir)),type='response')
- > fitted.log1 <- ifelse(fitted.log1 > 0.5,1,0)
- > misClasificError <- mean(fitted.log1 != test\$PrDir)</pre>
- > print(paste('Accuracy for LogReg',1-misClasificError))

"Accuracy for LogReg 0.584362139917695"

> MSE

mean((fitted.log1 -test\$PrDir)^2)

0.4156379

LASSO

Lasso1=cv.glmnet(data.matrix(subset(ATT, select= - c(PrDir,Close))), ATT\$PrDir, family='binomial', alpha=1, parallel=FALSE, standardize=TRUE, type.measure='auc',nfolds = 5)

```
> coef(Lasso1)
30 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) 1.530451e+01
                                           EffR10
                                                     1.982895e+00
Volume -7.535862e-09
                                           EffR20
        2.055589e-02
                                           EffR270
                                                     -6.401497e+00
Dav
                                           Closelag1 -4.552047e-01
Action
        -4.268921e-01
                                           Closelag2 -8.980179e-01
MA10
       2.558529e+00
MA20
                                           Closelag5 -6.824091e-01
MA270
       -1.317049e-02
                                           Closelag10 -5.376649e-01
ROC1
         -1.463223e+01
                                           Closelag20
ROC10
                                           Closelag270
ROC20
                                           Volumelag1 -1.184589e-09
ROC270
                                           Volumelag2 1.468090e-08
                                           Volumelag5 -1.518731e-09
PCh1
         -1.223365e+01
PCh10 6.919621e+00
                                           Volumelag10 6.305931e-09
                                           Volumelag20 -2.544176e-09
PCh20
         -1.830732e+00
PCh270 9.959585e-01
                                           Volumelag270 5.709783e-09
```

LASSO

```
lasso.pred=predict(Lasso1,s=bestlam,
newx=data.matrix(subset(ATT[1317:1559,], select= -
c(PrDir,Close) )),type='response')
fitted.lasso3 <- ifelse(lasso.pred3 > 0.5,1,0)
>MSE
mean((fitted.lasso3 -ATT[1317:1559,]$PrDir)^2)
>0.4567901
confusionMatrix(data=fitted.lasso,
           reference=as.factor(test$PrDir))
Confusion Matrix and Statistics
      Reference
Prediction 0 1
     0 87 81
     1 30 45
```

Accuracy: 0.5432

95% CI : (0.4783, 0.607) No Information Rate : 0.5185

P-Value [Acc > NIR] : 0.2402

Kappa: 0.0992

Mcnemar's Test P-Value: 2.077e-06

Sensitivity: 0.7436 Specificity: 0.3571

Pos Pred Value: 0.5179 Neg Pred Value: 0.6000

Prevalence: 0.4815 Detection Rate: 0.3580

Detection Prevalence: 0.6914 Balanced Accuracy: 0.5504

Random Forest (ntree = 2000)

> fit.RF1 <- randomForest(as.factor(PrDir) ~ . , data=subset(train,select= - Close), importance=TRUE, ntree=2000)

> var.imp.acc\$V	'ariables <- row.names(var.imp)	EffR20	-0.6106158 EffR20
>		Closelag10	-0.8854782 Closelag10
var.imp.acc[orde	er(var.imp.acc\$MeanDecreaseAccuracy,decre	Volumelag5	-1.3572260 Volumelag5
asing = T),]		ROC20	-1.3968020 ROC20
MeanDe	ecreaseAccuracy Variables	Day	-1.5182843 Day
Action	12.2344292 Action	MA10	-1.5893293 MA10
Volumelag2	3.2476644 Volumelag2	ROC1	-1.9424468 ROC1
EffR270	1.3959861 EffR270	Closelag2	-1.9748308 Closelag2
ROC10	1.3455976 ROC10	EffR10	-2.1411866 EffR10
Volume	1.1405526 Volume	Closelag270	-2.4875222 Closelag270
PCh270	1.0168692 PCh270	Closelag5	-2.6011779 Closelag5
ROC270	0.8563360 ROC270	Volumelag270	-3.0548864 Volumelag270
PCh10	0.6316782 PCh10	Volumelag20	-3.1341430 Volumelag20
Volumelag10	0.2440491 Volumelag10	PCh1	-3.1473682 PCh1
Closelag20	0.1899665 Closelag20	MA270	-3.8911259 MA270
Closelag1	-0.3093074 Closelag1	MA20	-4.5365373 MA20
PCh20	-0.3741710 PCh20	Volumelag1	-4.5831185 Volumelag1

		1		
> var.imp.gini\$V	ariables <- row.names(var.imp)			
> var.imp.gini[or	der(var.imp.gini\$MeanDecreaseGini,decreasing =			
T),]	_	PCh270	22.301489	PCh270
1	ecreaseGini Variables	ROC20	22.108730	ROC20
Volumelag2	32.592224 Volumelag2	ROC270	22.095702	ROC270
Volume	32.203402 Volume	MA270	22.074565	MA270
Volumelag10	29.257658 Volumelag10	PCh20	22.032338	PCh20
Volumelag270	27.684779 Volumelag270	Closelag20	21.925983	Closelag20
ROC1	27.499856 ROC1	Closelag10	19.581243	Closelag10
Volumelag20	27.413053 Volumelag20	Closelag1	19.433687	Closelag1
Volumelag5	27.108157 Volumelag5	Closelag2	19.263077	Closelag2
PCh1	26.339998 PCh1	Closelag5	18.798464	Closelag5
Volumelag1	25.943577 Volumelag1	MA10	18.206973	MA10
EffR10	24.459775 EffR10	MA20	17.509621	MA20
EffR20	24.427091 EffR20	Day	10.481195	Day
EffR270	23.166893 EffR270	Action	3.973274	Action
PCh10	22.794556 PCh10			
ROC10	22.762264 ROC10			
Closelag270	22.458685 Closelag270			

Random Forest - confusion matrix for test data

confusionMatrix(data=test1\$predicted.response,reference=test1\$PrDir)Confusion Matrix and Statistics

Reference Prediction 0 1 0 107 105 1 10 21 Accuracy : 0.5267

95% CI: (0.4619, 0.5909)

No Information Rate: 0.5185 P-Value [Acc > NIR]: 0.424

Kappa: 0.0789

Mcnemar's Test P-Value: <2e-16

Sensitivity: 0.9145 Specificity: 0.1667

Pos Pred Value: 0.5047 Neg Pred Value: 0.6774

Prevalence: 0.4815 Detection Rate: 0.4403

Detection Prevalence: 0.8724 Balanced Accuracy: 0.5406

Random Forest (ntree =500)

> var.imp.gini2[order(var.imp.gini2\$MeanDecreaseGini,decreasing			
= T),]	Closelag270	23.253635	Closelag270
MeanDecreaseGini Variables	PCh10	23.176206	PCh10
Volumelag2 32.522905 Volumelag2	Closelag20	22.914681	Closelag20
Volume 32.117955 Volume	EffR270	22.619160	EffR270
Volumelag10 28.593796 Volumelag10	PCh20	22.483554	PCh20
Volumelag270 28.107207 Volumelag270	ROC10	22.453218	ROC10
ROC1 27.811562 ROC1	ROC270	22.229850	ROC270
PCh1 27.413313 PCh1	PCh270	21.969093	PCh270
Volumelag5 26.773434 Volumelag5	MA270	21.497584	MA270
Volumelag20 26.666458 Volumelag20	ROC20	21.337090	ROC20
Volumelag1 25.975683 Volumelag1	Closelag10	19.646474	Closelag10
EffR10 25.302223 EffR10	Closelag1	19.231937	Closelag1
EffR20 24.986024 EffR20	Closelag5	18.520719	Closelag5
	Closelag2	18.430917	Closelag2
	MA10	18.021254	MA10
	MA20	17.657862	MA20
	Day	10.047130	Day
	Action	4.244718	Action

Random Forest (ntree =500)

	>			
	var.imp.acc2[o	rder(var.imp.acc2\$MeanDecreaseAccuracy,decreas		
	ing = T),]		Closelag270	0.33934371 Closelag270
	Mean	DecreaseAccuracy Variables	EffR270	0.33466283 EffR270
	Action	6.62020318 Action	Day	0.31187319 Day
	PCh10	2.19675698 PCh10	Closelag20	0.27078840 Closelag20
	EffR10	1.93682786 EffR10	Closelag10	0.01786889 Closelag10
	PCh270	1.87573275 PCh270	ROC1	-0.01160016 ROC1
	Volumelag2	1.60819580 Volumelag2	Closelag5	-0.46628376 Closelag5
	Closelag1	1.51859291 Closelag1	Volumelag5	-0.62988688 Volumelag5
	PCh20	0.90858326 PCh20	Closelag2	-0.63590281 Closelag2
	Volume	0.80390553 Volume	MA10	-0.74609532 MA10
	EffR20	0.76000522 EffR20	ROC10	-0.77720032 ROC10
	ROC270	0.73069498 ROC270	Volumelag10	-1.03991167 Volumelag10
	ROC20	0.60630525 ROC20	Volumelag270	-1.45973823 Volumelag270
			Volumelag20	-1.68442445 Volumelag20
			MA270	-1.82379313 MA270
			PCh1	-1.91856303 PCh1
			MA20	-3.25165584 MA20
			Volumelag1	-3.84147394 Volumelag1
- 1				

Random Forest - confusion matrix for test data

confusionMatrix(data=test2\$predicted.response,reference=test2\$PrDir)Confusion Matrix and Statistics

Reference Prediction 0 1 0 110 105 1 7 21 Accuracy: 0.5391

95% CI: (0.4742, 0.603)

No Information Rate: 0.5185 P-Value [Acc > NIR]: 0.2819

Kappa: 0.1037

Mcnemar's Test P-Value: <2e-16

Sensitivity: 0.9402 Specificity: 0.1667

Pos Pred Value: 0.5116

Neg Pred Value: 0.7500

Prevalence : 0.4815 Detection Rate : 0.4527

Detection Prevalence: 0.8848 Balanced Accuracy: 0.5534

Gradient Boosting Method

fit.gbm1 <- gbm(PrDir ~ . ,			
C	lata=subset(tra	in,select= - Close),	
C	listribution="be	rnoulli",n.trees=200,	
interaction.depth	า=4)		
summary(fit.gbn	,		
> summary(fit.gl	,		
	var	rel.inf	
Volumelag2	Volumelag2	17.1579974	
Volume	Volume	12.4125175	
Volumelag10	Volumelag10	8.8226057	
PCh1	PCh1	6.2801673	
Action	Action	4.2204048	
ROC1	ROC1	3.6741411	
PCh20	PCh20	3.1384650	
Closelag270	Closelag270	3.0802335	
ROC270	ROC270	3.0699644	
Closelag1	Closelag1	3.0242737	

Closelag20	Closelag20	2.9523788
ROC10	ROC10	2.8811493
Volumelag1	Volumelag1	2.8384964
PCh10	PCh10	2.7675568
EffR10	EffR10	2.6818478
Volumelag270	Volumelag270	2.5437861
EffR20	EffR20	2.4452589
ROC20	ROC20	2.1837189
Volumelag20	Volumelag20	2.1329304
EffR270	EffR270	2.0420501
Volumelag5	Volumelag5	1.8831400
PCh270	PCh270	1.4679236
Closelag10	Closelag10	1.4101564
Closelag2	Closelag2	1.3709911
MA270	MA270	1.2971989
MA20	MA20	0.7853227
Closelag5	Closelag5	0.7539956
Day	Day	0.3815692
MA10	MA10	0.2997585

Gradient Boosting Method

> confusionMatrix(fitted.gbm1,test\$PrDir) Confusion Matrix and Statistics

Reference Prediction 0 1 0 17 9 1 100 117 Accuracy: 0.5514

95% CI: (0.4865, 0.6151)

No Information Rate : 0.5185 P-Value [Acc > NIR] : 0.1678

Kappa: 0.076

Mcnemar's Test P-Value: <2e-16

Sensitivity: 0.14530 Specificity: 0.92857

Pos Pred Value : 0.65385 Neg Pred Value : 0.53917

Prevalence: 0.48148
Detection Rate: 0.06996
Detection Prevalence: 0.10700

Balanced Accuracy: 0.53694

XGBOOST

```
> fit.xgboost1<-xgboost(data = data.matrix(subset(train,select= -
c(Close,PrDir))), label = train$PrDir, nrounds = 100,
objective = "binary:logistic", eval_metric = "error", verbose = 1)

>predict.xgboost1 <- predict(fit.xgboost1,
data.matrix(subset(test,select= - Close)))

>fitted.xgboost1 <- ifelse(predict.xgboost1 > 0.5,1,0)

> confusionMatrix(fitted.xgboost1,test$PrDir)
Confusion Matrix and Statistics
```

Prediction 0 1 0 72 67 1 45 59 Accuracy: 0.5391

95% CI: (0.4742, 0.603)

No Information Rate : 0.5185 P-Value [Acc > NIR] : 0.28194

Kappa: 0.0831

Mcnemar's Test P-Value: 0.04722

Sensitivity: 0.6154
Specificity: 0.4683
Pos Pred Value: 0.5180
Neg Pred Value: 0.5673
Prevalence: 0.4815
Detection Rate: 0.2963
Detection Prevalence: 0.5720

Balanced Accuracy: 0.5418

XGBOOST (nrounds =2000)

> confusionMatrix(fitted.xgboost2,test\$PrDir)
Confusion Matrix and Statistics

Reference Prediction 0 1 0 77 71

1 40 55

Accuracy: 0.5432

95% CI : (0.4783, 0.607) No Information Rate : 0.5185 P-Value [Acc > NIR] : 0.240214

Kappa: 0.0937

Mcnemar's Test P-Value: 0.004407

Sensitivity: 0.6581 Specificity: 0.4365

Pos Pred Value : 0.5203 Neg Pred Value : 0.5789

Prevalence: 0.4815 Detection Rate: 0.3169

Detection Prevalence: 0.6091 Balanced Accuracy: 0.5473

Linear Regression

```
Call:
Im(formula = Close \sim .., data = subset(train, select = -c(PrDir)))
Residuals:
  Min
         1Q Median
                       3Q
                             Max
-0.44914 -0.05057 0.00169 0.05353 0.38322
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.946e-04 4.415e-03 0.157 0.87501
Volume
          -6.699e-03 2.684e-03 -2.496 0.01268 *
Dav
        -1.198e-03 1.713e-03 -0.699 0.48458
Action
         -2.320e-02 8.740e-03 -2.655 0.00803 **
MA10
        1.098e+00 9.810e-02 11.189 < 2e-16 ***
MA20 1.694e-02 6.553e-02 0.259 0.79603
MA270
          -6.014e-03 7.650e-03 -0.786 0.43196
ROC1
          -3.883e-02 2.765e-02 -1.404 0.16049
ROC10
         9.068e-02 8.908e-02 1.018 0.30887
ROC20
          -1.696e-01 9.100e-02 -1.864 0.06252
ROC270
          1.038e-02 3.363e-02 0.309 0.75764
PCh1
         -5.193e-02 7.282e-03 -7.131 1.66e-12 ***
PCh10
       1.005e-01 8.988e-02 1.118 0.26357
PCh20
          -1.744e-01 9.188e-02 -1.898 0.05790
PCh270
          -1.941e-02 3.287e-02 -0.591 0.55494
```

```
EffR10
          9.072e-04 4.120e-03 0.220 0.82576
EffR20
          1.043e-02 4.944e-03 2.110 0.03503 *
EffR270
          1.229e-04 4.657e-03 0.026 0.97894
Closelag1 9.168e-01 3.058e-01 2.998 0.00277 **
Closelag2 -6.562e-01 3.080e-01 -2.131 0.03329 *
Closelag5 -2.252e-01 3.499e-02 -6.435 1.73e-10 ***
Closelag10 -1.906e-01 3.231e-02 -5.899 4.67e-09 ***
Closelag20 9.975e-04 2.991e-02 0.033 0.97340
Closelag270 4.216e-02 2.475e-02 1.704 0.08866.
Volumelag1 -1.833e-03 2.911e-03 -0.630 0.52907
Volumelag2 7.393e-03 2.705e-03 2.733 0.00635 **
Volumelag5 -5.129e-05 2.452e-03 -0.021 0.98331
Volumelag10 4.019e-03 2.393e-03 1.680 0.09321.
Volumelag20 -1.967e-03 2.389e-03 -0.823 0.41041
Volumelag270 2.224e-04 2.455e-03 0.091 0.92782
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.08566 on 1286 degrees of freedom Multiple R-squared: 0.9869, Adjusted R-squared: 0.9866 F-statistic: 3329 on 29 and 1286 DF, p-value: < 2.2e-16