Calcul Numeric – Temele 1 și 2

- **Ex.1** Folosind metoda bisecției pentru k = 2 să se aproximeze manual soluția ecuației $8x^3 + 4x 1 = 0$ din intervalul [0, 1]. Să se evalueze eroarea de aproximare.
- **Ex.2** Fie ecuația $x^3 7x^2 + 14x 6 = 0$
 - a. Să se construiască în Matlab graficul funcției $f(x) = x^3 7x^2 + 14x 6$ pe intervalul [0, 4];
 - b. Să se scrie un program în Matlab prin care se va calcula soluția aproximativă c_{100} prin metoda bisecției pentru fiecare interval în parte: 1. [0,1]; 2. [1;3,2]; 3. [3,2;4];
 - c. Să se construiască punctele $(c_{100}, f(c_{100}))$ calculate la b. în același grafic cu graficul funcției.

Ex.3

- a. Să se construiască în Matlab graficele funcțiilor $y = e^x 2$ și $y = cos(e^x 2)$;
- b. Să se implementeze în Matlab metoda bisecției pentru a calcula o aproximare a soluției ecuației $e^x 2 = \cos(e^x 2)$ cu eroarea $\varepsilon = 10^{-5}$ pe intervalul $x \in [0, 5; 1, 5]$.
- **Ex.4** Să se găsească o aproximare a valorii $\sqrt{3}$ cu eroarea $\varepsilon = 10^{-5}$.
- **Ex.5** * Fie $f \in C^2([a,b])$. Presupunem că $f(x^*) = f'(x^*) = 0$ (f are o soluție dublă) şi $f'(x) \neq 0, \forall x \in [a,b] \setminus \{x^*\}$. De asemenea, $f''(x) \neq 0, \forall x \in [a,b]$, atunci $\exists m, M > 0$ astfel încât $m \leq |f''(x)| \leq M, \forall x \in [a,b]$. Presupunem în plus că M este astfel încât M < 2m. Să se arate că dacă x_0 este astfel încât $|x^* x_0| \leq h = \min\{b a, \frac{m}{M}\}$ atunci şirul $(x_k)_{k \geq 0}$ construit cu metoda Newton-Raphson rămâne în [a,b], este convergent la x^* și convergența este liniară.

Indicație: Se urmărește demonstrația teoremei de convergență și se va dezvolta în serie Taylor funcția f' în vecinătatea punctului x_k iar dezvoltarea se va scrie în x^* .

- **Ex. 6** Fie ecuația $x^3 7x^2 + 14x 6 = 0$. Se știe că ecuația are soluție unică pe intervalul [0; 2, 5]. Justificați de ce șirul generat de metoda Newton Raphson nu converge la soluția din intervalul dat, dacă valoarea de pornire este $x_0 = 2$. Alegeți o valoare pentru $x_0 \in [0; 2, 5]$, astfel încât șirul construit de metoda N-R să conveargă la soluția din intervalul dat.
- Ex. 7 Să se rezolve Ex. 3 prin metodele Newton-Raphson în aceleași condiții alegând o valoare x_0 din intervalul dat. Să se calculeze prin ambele metode numărul de iterații necesar pentru obținerea erorii impuse. Criteriul de oprire este $|x_k x_{k-1}| < \varepsilon$.
- **Ex. 8** Să se rezolve Ex. 3 prin metoda secantei dacă $x_0 = 0, 5; x_1 = 1, 5$ cu aceeași eroare și folosind criteriul de oprire $|x_k x_{k-1}| < \varepsilon$. Să se calculeze numărul de iterații necesar pentru obținerea erorii impuse.
- **Ex. 9** Să se rezolve Ex. 3 prin metoda falsei poziții cu aceeași eroare și folosind criteriul de oprire $|x_k x_{k-1}| < \varepsilon$. Să se calculeze numărul de iterații necesar pentru obținerea erorii impuse.
- Ex. 10 Să se rezolve Ex. 1 prin metodele Newton-Raphson, secantei și falsei poziții.

Obs.: Exercițiile cu * sunt de complexitate ridicată și studenții care rezolvă aceste tipuri de exemple primesc 10 puncte bonus la examen.