Write your name here Surname	0	ther names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Physics Advanced Unit 4: Physics on th	ne Move	
Tuesday 13 January 2015 – Time: 1 hour 35 minutes	Afternoon	Paper Reference WPH04/01
You must have: Ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 5 0 3 8 A 0 1 2 8

Turn over ▶

SECTION A

Answer ALL questions.

For questions 1–10, in Section A, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- **1** A particle moving in a circular path completes 7.5 revolutions in 9.0 s. Its angular velocity in rad s^{-1} is
 - **△ A** 0.83
 - **■ B** 5.2

(Total for Question 1 = 1 mark)

2 A moving pion decays into two particles Y and Z. This decay occurs at point X in a particle detector and the tracks observed are shown.

Which of the following is a valid conclusion from these tracks?

- A Momentum has not been conserved.
- **B** The pion is a neutral particle.
- C Y and Z have different masses.
- **D** Z is a negatively charged particle.

(Total for Question 2 = 1 mark)

3 Select the row of the table that correctly identifies what happens in an elastic collision.

	Momentum	Total energy	Kinetic energy
	conserved	conserved	conserved
⊠ B	conserved	conserved	not conserved
⊠ C	conserved	not conserved	conserved
⊠ D	not conserved	conserved	not conserved

(Total for Question 3 = 1 mark)

4 A current-carrying wire is placed into a magnetic field. If the magnetic force experienced by the wire balances the weight of the wire, the wire will float.

The direction of the magnetic field is from west to east.

For the wire to float, it is placed

- \square A parallel to the magnetic field so the current flows from east to west.
- **B** parallel to the magnetic field so the current flows from west to east.
- $\ \square$ D perpendicular to the magnetic field so the current flows from south to north.

(Total for Question 4 = 1 mark)

5 Two capacitors of capacitance 1000 μ F and 10 μ F are charged so that they store the same amount of energy. The potential difference (p.d.) across the 1000 μ F capacitor is V_1 and the p.d. across the 10 μ F capacitor is V_2 .

The value of $\left(\frac{V_1}{V_2}\right)^2$ is

- \triangle **A** 1 × 10⁻⁴
- **■ B** 1×10^{-2}
- \square C 1×10^2
- \square **D** 1 × 10⁴

(Total for Question 5 = 1 mark)

6 The diagram shows the path of an α particle that is being deflected by the nucleus of an atom. The point P on the path is the point of closest approach of the α particle to the nucleus.

Which statement about the α particle on this path is correct?

- A Its acceleration is least at P.
- **B** Its speed is least at P.
- C Its total energy is greatest at P.
- **D** Its momentum is greatest at P.

(Total for Question 6 = 1 mark)

- 7 Which of the following is **not** a unit of electric field strength?
 - \triangle A J C m⁻¹
 - lacksquare **B** J C⁻¹ m⁻¹
 - \square C N A⁻¹ s⁻¹
 - \square **D** N C⁻¹

(Total for Question 7 = 1 mark)

- 8 A capacitor is charged to a potential difference of 12 V and stores a charge of 600 μ C. What would the potential difference across the plates have to be in order for the capacitor to store 50% more charge?

 - **■ B** 9 V

 - D 24 V

(Total for Question 8 = 1 mark)

- **9** Which of the following is **not** a valid conclusion from Rutherford's alpha scattering experiment?
 - A The nucleus contains most of the mass of the atom.
 - **B** The nucleus contains protons.
 - C The nucleus must be charged.
 - **D** The nucleus is very small compared to the atom.

(Total for Question 9 = 1 mark)

10 A particle Z has kinetic energy E and momentum p. A second particle X has twice the mass and half the momentum of particle Z.

The kinetic energy of X is

- \boxtimes A 2E
- \square B $\frac{E}{4}$
- \square C $\frac{E}{8}$
- \square **D** $\frac{E}{16}$

(Total for Question 10 = 1 mark)

TOTAL FOR SECTION A = 10 MARKS

SECTION B

Answer ALL questions in the spaces provided.

11 The table gives the quark structure of three particles.

The up quark has a charge of +2/3e and the down quark has a charge of -1/3e.

Particle	Quarks
neutron n	udd
pion π^-	dū
delta Δ-	ddd

(a)	Show	that	udd	is a	possible	combination	of	quarks	for	the	neutron
-----	------	------	-----	------	----------	-------------	----	--------	-----	-----	---------

(1)

(b)	State, in terms of o	auark structure.	why the Δ	is classed as a	a barvon and the	π^- a meson.
١,	\sim ,	State, III terring or t	100111 501000010,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	is ciassea as a	a caryon and the	,, a 111000111

(2)

(c) Another particle in the delta family, the $\Delta^{{}_{\!\!\!\!+\!\!\!\!+}}$, is also composed of up and/or down quarks. Its decay is shown by

$$\Delta^{\scriptscriptstyle ++} \, o \, \, {\rm p} \, \, + \, \, \pi$$

Deduce the quark content of the Δ^{++} and the charge on the pion.

(2)

Quark content of Δ^{++}

Charge on pion

(Total for Question 11 = 5 marks)

12 An electron is accelerated through a potential difference of 3000 V.					
Calculate the de Broglie wavelength associated with this electron.					
The second of th	(4)				
Wavelength =					
(Total for Question $12 = 4$					
(10tai ioi Question 12 = 4 i	mai noj				

13 The diagram shows a simple generator. It has a flat coil of negligible resistance which can be rotated in a magnetic field. The coil has 500 turns and an area of 2.5×10^{-3} m².

The graph shows the variation of the magnetic flux linkage $N\Phi$ with time t as the coil is rotated at a steady frequency in a uniform magnetic field.

(a) Determine the frequency of rotation of the coil.	(2)
Frequency	=
(b) Determine the magnetic flux density of the field.	(2)
Magnetic flux density	=
(c) Determine the maximum e.m.f. induced in the coil.	(3)
Maximum e.m.f.	=
(Total for Question 1	13 = 7 marks)

) State why a resultant force is required and the direction of this force.	
	(2)
) When an aeroplane is flying there is an upward force called lift which acts at right	
angles to the wings. When the aeroplane is flying in a straight line, the lift force is	
equal to the weight of the aeroplane.	
The diagram shows an aeroplane that is moving in a horizontal circle at constant	
speed.	
<u></u>	
$\frac{6}{\theta}$	
$\bigvee { m W}$	
*(i) Explain, in terms of forces, why the aeroplane is able to fly in a circular path.	
	(2)

(ii)	The aeroplane has a mass of 2.4×10^6 kg and is flying in a horizontal circle at a speed of 85 m s ⁻¹ when θ is 25°.	
	By considering both the horizontal and vertical motion, calculate the radius of the circular path of the aeroplane.	
		(4)
	Radius =	
	(Total for Oregin 14 9 more	
	(Total for Question 14 = 8 mar	ks)
	(10tal for Question 14 = 8 mar	KS)
	(Total for Question 14 = 8 mar	ks)
	(Total for Question 14 = 8 mar	ks)
	(Total for Question 14 = 8 mar	ks)
	(Total for Question 14 = 8 mar	ks)
	(Total for Question 14 = 8 mar	ks)
	(Total for Question 14 = 8 mar	ks)
	(10tal for Question 14 = 8 mar	ks)
	(Total for Question 14 = 8 mar	ks)
	(Total for Question 14 = 8 mar	ks)
	(Total for Question 14 = 8 mar	ks)

BLANK PAGE

15 A student was investigating the charge and discharge of a capacitor.

He set up the following circuit.

(a) Calculate the time constant for the	circuit
---	---------

(2)

Time constant =

(b) The student wanted to plot a current-time graph as the capacitor charged, but found that the current changed too rapidly for him to take readings.

Instead, he modelled the experiment using a spreadsheet. The switch was closed at time t = 0 s. V is the potential difference across the capacitor.

	A	В	C	D	E
1	t/s	I/mA	$\Delta Q/\mu C$	Q/μC	V/V
3	0.0	4.00	400	400	2.00
4	0.1	2.67	267	667	3.33
5	0.2	1.78	178	844	4.22
6	0.3	1.19	119	963	4.81
7	0.4	0.79	79	1042	5.21
8	0.5	0.53	53	1095	5.47
9	0.6	0.35	35	1130	5.65
10	0.7	0.23	23	1153	5.77
11	0.8	0.16	16	1169	5.84
12	0.9	0.10	10	1179	5.90
13	1.0	0.07	7	1186	5.93

(2)

Explain how the value in cell B5 is calculated.

(c) Some of the data from the spreadsheet has been plotted on a graph of current I against time t.

(i) Plot the missing points and draw a line of best fit.

(2)

(ii) Use the graph to determine a second value for the time constant.

(2)

Time constant =

(iii) Suggest how the student might change his spreadsheet to give a more accurate model of the charging of the capacitor.

(1)

*(d) An alternative method of determining the time con	stant is to use a straight line graph.
State and explain the variables that the student sho determine the time constant from this graph.	uld plot and how he should
	(3)
	(Total for Question 15 = 12 marks)

BLANK PAGE

16 The photograph shows the circular tunnel of the Large Hadron Collider (LHC), which is an underground particle accelerator. The circumference of the tunnel is 27 km.

*(a) In	the LHC,	a magnetic	field allow	s charged	particles t	o move	at a const	ant speed in	n
a	horizontal	circular pat	th of the req	uired radi	us.				

By reference to the force acting on the charged particles, explain how this is

6	achieved.	(4)

	omentum gradually increases.	
	tte and explain how the magnetic field in the LHC must change as the momentum the particles increases.	
		(2)
(c) (i)	Collisions between particles in high-energy physics experiments often result in the production of an electron-positron pair.	
	Calculate the minimum energy, in joules, required to produce an electron-positron	
	pair.	(2)
		(-)
	Minimum energy =	
(ii)	By converting your minimum energy into MeV, give the rest mass of the electron	
(11)	in MeV/c^2 .	
		(3)
	Rest mass of electron =	MeV/d
	(Total for Question 16 = 11 mar	·ks)
	, , ,	

17 (a) State the principle of conservation of momentum.	(2)
(b) State the relationship between the resultant force acting on an object and the momentum of the object.	(1)

	Force =	
		(2)
,	Calculate the average force that was needed.	
ii)	The mass of the car is 1500 kg and the change in velocity took 4.0 s.	
	Direction of change of velocity =	
	Magnitude of change of velocity =	
ii)	Determine the change in velocity of the car.	(3)
	12 m s^{-1}	
		(2)
(1)	The initial velocity is shown in the diagram. Complete the vector diagram to represent the change in velocity. You do not need to draw it exactly to scale.	[
	The initial valuative is shown in the diagram	

BLANK PAGE

18 A teacher is using an electron beam tube to demonstrate the deflection of electrons in a uniform electric field.

A potential difference (p.d.) of 4800 V is applied between the cathode and anode of the tube. The cathode is heated and electrons are emitted from its surface. These electrons are then accelerated from rest and pass through a hole in the anode.

(a) State the name of the process by which electrons are emitted from the cathode.

(1)

that the speed v of the elect	trons as they leave the anode is about 4×10^7 m s ⁻¹ .	(3)
	rons follow a parabolic path as they pass between a of 800 V between them. There is a uniform electric	
	o 800 V	
- v	$$ $\stackrel{n}{\vee}$ 5 cm	
electron beam		
	• 0 V	
	← 15 cm →	
	electric field that acts on an electron while it is	
etween the plates.		(3)

Force =

	$h = \frac{1}{2} at^2$	
	Calculate the value of h as the electron leaves the plates.	
		(4)
	$h = \dots$	
) (i)	Keeping the p.d. between the cathode and anode at 4800 V, the p.d. between the	
(i)		e
) (i)	Keeping the p.d. between the cathode and anode at 4800 V, the p.d. between the parallel plates is decreased.	
	Keeping the p.d. between the cathode and anode at 4800 V, the p.d. between the parallel plates is decreased. Draw the new path of the electrons on the diagram in (c). Label this path A. Keeping the p.d. between the parallel plates at 800 V, the p.d. between the	e
	Keeping the p.d. between the cathode and anode at 4800 V, the p.d. between the parallel plates is decreased. Draw the new path of the electrons on the diagram in (c). Label this path A.	(1)
	Keeping the p.d. between the cathode and anode at 4800 V, the p.d. between the parallel plates is decreased. Draw the new path of the electrons on the diagram in (c). Label this path A. Keeping the p.d. between the parallel plates at 800 V, the p.d. between the cathode and anode is decreased.	e
	Keeping the p.d. between the cathode and anode at 4800 V, the p.d. between the parallel plates is decreased. Draw the new path of the electrons on the diagram in (c). Label this path A. Keeping the p.d. between the parallel plates at 800 V, the p.d. between the cathode and anode is decreased.	(1)
	Keeping the p.d. between the cathode and anode at 4800 V, the p.d. between the parallel plates is decreased. Draw the new path of the electrons on the diagram in (c). Label this path A. Keeping the p.d. between the parallel plates at 800 V, the p.d. between the cathode and anode is decreased. Draw the new path of the electrons on the diagram in (c). Label this path B.	(1) (1) arks)

List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Boltzmann constant $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

Coulomb's law constant $k = 1/4\pi\varepsilon_0$

 $= 8.99 \times 10^9 \; N \; m^2 \; C^{-2}$

Electron charge $e = -1.60 \times 10^{-19} \text{ C}$ Electron mass $m_e = 9.11 \times 10^{-31} \text{ kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational constant $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Permittivity of free space $\epsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$ Planck constant $h = 6.63 \times 10^{-34} \text{ J s}$ Proton mass $m_{\rm p} = 1.67 \times 10^{-27} \text{ kg}$ Speed of light in a vacuum $c = 3.00 \times 10^8 \text{ m s}^{-1}$

Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$

Unified atomic mass unit $u = 1.66 \times 10^{-27} \text{ kg}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

g = F/m W = mg

Work and energy $\Delta W = F \Delta s$

 $E_{k} = \frac{1}{2}mv^{2}$ $\Delta E_{\text{gray}} = mg\Delta h$

Materials

Stokes' law $F = 6\pi \eta r v$

Hooke's law $F = k\Delta x$

Density $\rho = m/V$

Pressure p = F/A

Young modulus $E = \sigma/\varepsilon$ where

Stress $\sigma = F/A$ Strain $\varepsilon = \Delta x/x$

Elastic strain energy $E_{\rm el} = \frac{1}{2}F\Delta x$

Unit 2

Waves

Wave speed $v = f\lambda$

Refractive index $\mu_2 = \sin i / \sin r = v_1 / v_2$

Electricity

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VI efficiency $P = I^2R$

 $P = V^2/R$ W = VIt

% efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100$

% efficiency = $\frac{\text{useful power output}}{\text{total power input}} \times 100$

Resistivity $R = \rho l/A$

Current $I = \Delta Q/\Delta t$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} \quad \frac{1}{R_2} \quad \frac{1}{R_3}$

Quantum physics

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$

equation

Unit 4

Mechanics

Momentum p = mv

Kinetic energy of a

non-relativistic particle $E_k = p^2/2m$

Motion in a circle $v = \omega r$

 $T=2\pi/\omega$

 $F = ma = mv^2/r$

 $a = v^2/r$

 $a = r\omega^2$

Fields

Coulomb's law $F = kQ_1Q_1/r^2$ where $k = 1/4\pi\epsilon_0$

Electric field E = F/Q

 $E = kQ/r^2$

E = V/d

Capacitance C = Q/V

Energy stored in capacitor $W = \frac{1}{2}QV$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

In a magnetic field $F = BIl \sin \theta$

 $F = Bqv \sin \theta$

r = p/BQ

Faraday's and Lenz's Laws $\varepsilon = -d(N\phi)/dt$

Particle physics

Mass-energy $\Delta E = c^2 \Delta m$

de Broglie wavelength $\lambda = h/p$

28

