FATTI DI EPS

17 giugno 2015

Cose in Generale

- Se vari eventi A_1, \ldots, A_n sono indipendenti, allora anche i loro complementari A_1^C, \ldots, A_n^C sono indipendenti
- Legge dei grandi numeri: X_1,\ldots successione di v.a. i.i.d. , $S_n:=X_1+\ldots+X_n$. Allora vale $\forall \varepsilon>0$ $\lim_{n\to+\infty}P\left\{\left|\frac{S_n}{n}-p\right|>\varepsilon\right\}=0$
- $Var[X] = 0 \Leftrightarrow X \text{ è costante}$

FUNZIONI GENERATRICI

Si indica con $G_X(t)$ la funzione generatrice della variabile aleatoria X

- $G_X(t) = G_Y(t) \Leftrightarrow X$ e Y sono equidistribuite
- Se X e Y sono indipendenti, allora $G_{X+Y}(t) = G_X(t) \cdot G_Y(t)$
- $\mathbb{E}[X] = \lim_{t \to 1^-} G_X'(t)$
- $\mathbb{E}[X(X-1)] = \lim_{t\to 1^-} G_X''(t)$
- Var $[[]X] = \mathbb{E}[X^2] \mathbb{E}[X]^2 = \lim_{t \to 1^-} (G_X''(t) + G_X'(t) (G_X'(t))^2)$

PROBABILITÀ GENERALE

- Sia *X* una v.a. reale. Sono equivalenti le due seguenti affermazioni:
 - 1) *X* ha densità *f*

Ipergeometrica

2) $\forall \varphi$ reale, boreliana e limitata, vale la formula

$$\mathbb{E}[\varphi(X)] = \int_{\mathbb{R}} \varphi(x) f(x) \, \mathrm{d}x$$

- Siano X_n e X v.a. , F_n ed F le relative funzioni di ripartizione; supponiamo inoltre che F sia continua (cioè la legge di X sia diffusa). Allora sono equivalenti le seguenti affermazioni:
 - 1) la successione $(X_n)_{n>1}$ converge a X in legge
 - 2) $\forall x \in \mathbb{R}$, si ha $\lim_{n \to +\infty} F_n(x) = F(x)$

Tabella delle Distribuzioni di Probabilità Discrete

Nome	$p(k) = P\{X = k\}$	G(t) generatrice	$\mathbb{E}[X]$	$\mathbf{Var}\left[X\right]$	Condizioni
Geometrica	$(1-p)^{k-1}p$	$\frac{tp}{1-t(1-p)}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$p\in(0,1)$, $k\in\mathbb{N}$
Binomiale	$\binom{n}{k} p^k (1-p)^{n-k}$	$[1+p(t-1)]^n$	$\stackrel{\cdot}{np}$	np(1-p+np)	$p \in (0,1), k \in \{0,$
Poisson	$e^{-\lambda} \frac{\lambda^n}{n!}$	$e^{\lambda(t-1)}$	λ	λ	$\lambda > 0$, $n \in \mathbb{N}$
Binomiale negativa	70.				

La binomiale negativa : si ripete in condizioni di indipendenza un esperimento che ha probabilità p di successo fino a che questo si realizza k volte. La variabile conta il numero di tentativi che è stato necessario effetuare.

L'ipergeometrica: Consideriamo un'urna contentente r sfere rosse e b sfere bianche , ed in essa compiamo n estrazioni senza reimussolamento. Consideriamo la v.a. che conta il numero di sfere rosse che sono state estratte.

Tabella delle Distribuzioni di Probabilità Continue

Somma di variabili aleatorie In questa sezione si presuppone che le variabili siano indipendenti.

•
$$X \sim \Gamma(r_1, \lambda), Y \sim \Gamma(r_2, \lambda) \implies X + Y \sim \Gamma(r_1 + r_2, \lambda)$$

•
$$X \sim \Gamma(r, \lambda) \implies tX \sim \Gamma(r, \frac{\lambda}{t})$$

•
$$X \sim \Gamma(r, \lambda) \implies \mathbb{E}[X^{\beta}] = \frac{\Gamma(r+\beta)}{\Gamma(r)\lambda^{\beta}}$$

DEFINIZIONI E LEMMI

- **Disuguaglianza di Schwartz**: f,g quadrato sommabili. Allora il prodotto fg è sommabile e vale $\left| \int fg \ \mathrm{d}\boldsymbol{m} \right| \leq \sqrt{\int f^2 \ \mathrm{d}\boldsymbol{m}} \sqrt{\int g^2 \ \mathrm{d}\boldsymbol{m}}$. Inoltre, se sopra vale l'uguaglianza, allora f e g coincidono a meno di una costante moltiplicativa (ovvero $\exists \lambda \in \mathbb{R}$ t.c. $f = \lambda g$ q.o.)
- Disuguaglianza di Markov: X v.a. a valori positivi, t costante positiva. Allora vale $t\mathbf{P}\{X \geq t\} \leq \mathbb{E}[X]$
- **Disuguaglianza di Chebishev**: X v.a. dotata di momento secondo. Allora vale $t^2\mathbf{P}\{|X \mathbb{E}[X]| \ge t\} \le \text{Var}[X]$