Purpose of Program-

So basically, the branch- "Combinatorics" revolves around four fundamental concepts. They are listed as below-

- 1) Combinations without repetitions/replacements.
- 2) Combinations with repetitions/replacements.
- 3) Permutations without repetitions/replacements.
- 4) Permutations with repetitions/replacements.

Suppose we have a string of length- n and we want to generate all <u>combinations/permutations</u> taken r at a time <u>with/without repetitions.</u>

Below is a summary table depicting the fundamental concepts in Combinatorics Theory.

Summary Table

	Replacements/Repetitions allowed	Replacements/Repetitions not
		<u>allowed</u>
Permutations/Order	n ^r possibilities	ⁿ P _r possibilities
<u>Important</u>	See this-	See this-
	http://www.geeksforgeeks.org/print-	http://www.geeksforgeeks.org/write-
	all-combinations-of-given-length/	a-c-program-to-print-all-
		permutations-of-a-given-string/
	See the special case when r=n below	Here r=n, as we are permuting all
	http://www.geeksforgeeks.org/print-	the characters of the string.
	all-permutations-with-repetition-of-	
	<u>characters/</u>	
Combinations/Order	^{n+r-1} C _r possibilities	ⁿ C _r possibilities
Not Important		See this-
		http://www.geeksforgeeks.org/print-
		all-possible-combinations-of-r-
		elements-in-a-given-array-of-size-n/

Motivation behind the article-

As, I felt that there is no good article/code for the third case(*Order Not important and Repetitions allowed*) on the web (including-http://www.geeksforgeeks.org), hence this article came to my mind.

Explanation-

We will recur for all the possibilities of the string, even if the characters are repeating.

The base case of the recursion is when there is a total of 'r' characters and the combination is ready to be printed.

For clarity, see the recursion tree for the string- " 1 2 3 4" and r=2

Recursion Tree for the string= " 1 2 3 4 "

Time Complexity-

For a string of length- n and combinations taken r at a time with repetitions, it takes a total of $O(^{n+r-1}C_r)$ time.

Space Complexity-

Since, we have created another array-chosen[] of size- 'r', hence we need an extra O(r) space.

<u>References-</u> <u>https://en.wikipedia.org/wiki/Combination</u>