Flux émis par une sphère en expansion relativiste : calcul sans le formalisme du transfert radiatif

Calculs préliminaires 1

On considère un référentiel fixe et un référentiel en mouvement à la vitesse βc par rapport au référentiel fixe (facteur de Lorentz Γ), dit référentiel propre.

Effet Doppler et focalisation relativiste vers l'avant 1.1

- Effet Doppler relativiste dans la direction θ par rapport au mouvement :

$$u_{\rm obs} = \mathcal{D}\nu' \text{ avec } \mathcal{D} = \frac{1}{\Gamma(1 - \beta\cos\theta)}.$$

- Focalisation relativiste vers l'avant : (1) transformation des angles

$$\cos \theta = \frac{\cos \theta' + \beta}{1 + \beta \cos \theta'}.$$

- Focalisation relativiste vers l'avant : (2) transformation des angles solides A partir de la formule précédente, montrer que la transformation de l'angle solide déterminé par la couronne θ , $\theta + d\theta$ autour de l'axe de la vitesse est

$$d\Omega = \frac{1}{\mathcal{D}^2} d\Omega'.$$

Indications : a) écrire $d\Omega$ et $d\Omega'$ en fonction de θ et θ' ; b) utiliser la loi de transformation des angles.

1.2 Transformation du spectre

On considère une particule qui émet (référentiel propre) de manière isotrope N photons avec une probabilité d'être dans l'intervalle de fréquence $[\nu'; \nu' + d\nu']$ qui vaut

$$p(\nu')d\nu' = \frac{d\nu'}{\nu'_0} \mathcal{B}\left(\frac{\nu'}{\nu'_0}\right), \text{ avec } \int_0^\infty \mathcal{B}(x)dx = 1.$$

- La fréquence moyenne des photons dans le référentiel propre vaut

$$\langle \nu' \rangle = \int_0^\infty p(\nu')\nu' d\nu' = \nu'_0 \int_0^\infty x \mathcal{B}(x) dx = K \nu'_0, \text{ avec } K = \int_0^\infty x \mathcal{B}(x) dx.$$

- Cas particulier : spectre monochromatique avec $\mathcal{B}(x) = \delta(x-1)$ et K=1.

 Ecrire l'expression de l'énergie $\frac{dE}{d\Omega d\nu_{\text{obs}}}$ émise par unité d'angle solide et de fréquence dans le référentiel fixe et dans la direction θ .
- Intégrer en fréquence pour obtenir l'énergie $\frac{dE}{dQ}$ émise par unité d'angle solide dans le référentiel fixe et dans
- Intégrer sur toutes les directions pour obtenir l'énergie totale E émise dans le référentiel fixe.

Me faire vérifier ces résultats intermédiaires avant de passer à la suite...

Flash émis par une sphère relativiste

- La sphère émet un flash au rayon R_0 et au temps t_0 (référentiel fixe). Son facteur de Lorentz est Γ_0 . L'énergie totale émise est E_0 et le spectre dans le référentiel propre est donné par la fonction $\mathcal{B}(x)$.
- Montrer que les photons émis à la latitude θ sont détectés à la date

$$t_{\rm obs} = t_0 - \frac{R_0}{c} \cos \theta \,.$$

- Entre $t_{\rm obs}$ et $t_{\rm obs} + dt_{\rm obs}$, l'observateur reçoit les photons émis entre θ et $\theta + d\theta$. Calculer $dt_{\rm obs}$ en fonction de

- En déduire la surface de l'anneau qui émet des photons arrivant pendant $dt_{\rm obs}$. A quelle fraction de la surface de la sphère cela correspond-il?
- En déduire l'énergie totale rayonnée par cet anneau.
- En utilisant les calculs préliminaires, écrire le spectre émis correspondant $\frac{dE^{\text{anneau}}}{d\Omega d\nu_{\text{obs}}}$ (énergie émise par unité d'angle solide et de fréquence).
- Pour l'observateur, l'anneau a une luminosité apparente

$$L_{\nu_{\rm obs}}^{\rm anneau}(t_{\rm obs}) = \frac{4\pi}{dt_{\rm obs}} \frac{dE^{\rm anneau}}{d\Omega d\nu_{\rm obs}} \,. \label{eq:Lobs}$$

- Donner l'expression de cette luminosité apparente. Intégrer en fréquence pour obtenir $L_{\text{obs}}^{\text{anneau}}(t_{\text{obs}}) = \frac{4\pi}{dt_{\text{obs}}} \frac{dE^{\text{anneau}}}{d\Omega}$.

 Les premiers photons détectés par l'observateur correspondent à $\theta = 0$. Calculer \mathcal{D} , t_{obs} (que l'on appelera $t_{\text{obs},0}$), $L_{\nu_{\text{obs}}}^{\text{anneau}}(t_{\text{obs}})$ et $L_{\text{obs}}^{\text{anneau}}(t_{\text{obs}})$ pour ces photons.
- Montrer que pour θ quelconque, le facteur Doppler peut s'écrire

$$\mathcal{D} = \frac{1}{\Gamma_0 \left(1 - \beta_0 \right) \left(1 + \frac{t_{\text{obs}} - t_{\text{obs},0}}{\Delta t_{\text{obs},0}} \right)}$$

avec

$$\Delta t_{\rm obs,0} = \frac{1-\beta_0}{\beta_0} \frac{R_0}{c} \simeq \frac{R_0}{2\Gamma_0^2 c} \,. \label{eq:delta_tobs}$$

- En déduire les expressions finales de $L_{\nu_{\rm obs}}^{\rm anneau}(t_{\rm obs})$ et $L_{\rm obs}^{\rm anneau}(t_{\rm obs})$.
- Vérification : intégrer sur $t_{\rm obs}$.