Applied Machine Learning

- Clustering review
- Expectation Maximization (EM) for Mixture Models
- General features of EM

k-Means Clustering

- 1. Initialization: choose k data items as cluster centers \mathbf{c}_i
- 2. While (cluster centers have significant changes)
 - 1. For each data item \mathbf{x}_i
 - closest_center_from(X_i).assign(X_i)
 - 2. For each empty cluster center \mathbf{c}_i
 - c_i.assign(item_far_from_its_center())
 - For each cluster center \mathbf{c}_{j}
 - \mathbf{c}_{j} .center = \mathbf{c}_{j} .mean()

Expectation Maximization for Mixture Models

- EM
 - Each cluster *j*
 - probability distribution with parameters $heta_j$
 - Each item \mathbf{x}_i associated to cluster center j through weight $w_{i,j}$
 - Iterate similarly to k-Means, at each time step *n*
 - determine weights $w_{i,j}$ to associate each item \mathbf{x}_i to probability distributions j
 - update parameters of probability distributions $\theta^{(n)}$

EM Algorithm

- 1. Initialize probability distributions
- 2. While $(\theta^{(n)})$ has not reached convergence)
 - 1. E-step

•
$$p(\delta | \theta^{(n)}, \mathbf{x})$$

$$\mathcal{Q}(\theta; \theta^{(n)}) = \sum_{\delta} \mathcal{L}(\theta; \mathbf{x}, \delta) p(\delta \mid \theta^{(n)}, \mathbf{x})$$

- $= \mathbb{E}_{p(\delta|\theta^{(n)},\mathbf{X})}[\mathcal{L}(\theta;\mathbf{X},\delta)]$
- $w_{i,j}$ to associate each item \mathbf{x}_i to cluster center j
- 2. M-step

$$\theta^{(n+1)} = \underset{\theta}{\operatorname{argmax}} Q(\theta; \theta^{(n)})$$

- Number of clusters
- Initialization from k-Means clustering
- Local minima
- Numerical issues

$$\frac{\pi_k e^{-(\mathbf{x}_i - \mu_k)^{\mathsf{T}}(\mathbf{x}_i - \mu_k)/2}}{\sum_{u} \pi_u e^{-(\mathbf{x}_i - \mu_u)^{\mathsf{T}}(\mathbf{x}_i - \mu_u)/2}}$$

- Clustering review
- Expectation Maximization (EM) for Mixture Models
- General features of EM

Applied Machine Learning