	3 3 3	
-	Assign me	
	26, Number units of product in produced	Objective punition of each par ut 2-32+422
	daily sca number of units of product B	Conserpoint 24 212 2-374 + 422
	produced daily objective function majoringe	6,07 0 0 2=0
	profit. 2 = 32(1 + 42(2 constraints 1)	(6,0) 6 0 $2=18$
	machine time: 2x1+3x2 4 12:200, +3x=12	(0,4) 0 4 2-16
1	1 Kaw materi's ! 201 + 200 2 5 1 X1+2762=8	(2,3) + 3 = 18
35'	Non-nogativity: 20120.2020	max proply 132=18 allieved at
	find intercepts for each line	17 K6,0) - produce bunits of product 4 and
	- For 2011+3x 2=12: when on = 0:3x2=12	0 units of product B.
	202=4	ii) (2,3) produck 2 units of product A
	,when > C2 = 0: 2 > C1 = 12	and 3 units of product B.
	2 al al al and and a soit = 6 a madeil	entre and Character and a second
13,	Points 6,0) and (0, 124)	2 - () () () () () ()
	8	hours materials est perunits
. (8 10 8	Production 1 2 H2
	The C	
30		Producty 2 motorists
	23 7	tabal leker bhrs, total units of materials!
	2	5 vai ts.
-	2 46 8 10	Ob) ective function, minimize cost (-2xtsy
-	20 00 100	constray nos.
	MI (Product A)	DX+2466 Clabor constroint
-	identify the common paints of the	11) 2x+y6 8 (material constraint)
	possible region (0,0) intersetion of	
	x1=0 and x2=0 (6,0) - interection of	(cons brainb)
	200, +3002=120n 76, asus (0,4)-	Labor constraint
	intersection of both lines on x, an	
	Selve per intersection	when x = 0: y = 3- 1/2 = 3=> Point A (0,8)
	2 x(1 1 376g = 12 - ew)	when x = 0:0=3-4== = = = = = = = = = = = = = = = = = =
	274 + 22(2 = 8 - 6di	Point B C6,00
	20, = 8-202 - Sub into eq	
	2(b-2x)+3x2=12	x-2x+y=5=>4-5-2x
	16 2-0-13	Whomas = 014-5-2(0)=5. Point P 010
	$16 - \frac{1}{12} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$	Wen y=0:0-5-2x=572=25
	Sul 9/2 = 4 into avui = 20+21 = ====	201, -A Point (25,0)
	1019 112	10 30

Touch 12 - 2	
SubB = 20-24 into evenus	jubjetivo function
W+2(20-2A)=18	maximize total fevenue R=4A+ R5B
N+40-44=18=734-22=74=23/3	let it and its represent then in
1 100 # - 3 101 0 3	let 10 and 15 represent the humber op
73 = 20 - 444 - 601	whits of products It and B
= 16/13 = 5 33	1444
1010n paint 15 (22/2, 16/2)	Holvertising budget constroint : A +2B620
= (7-33, 5-33)	Production copacity constraint At 28 13
+28=18 +28=30 and 4	wan-negativity constraint AZO BZO
+2B=18	crappical Solution
3/4+28-306402	He vertiging budget constroint H+2B622 N= 20= H/2
A+212-306402	K= 1/2
17 + 213 - 18 - ew u3	plat paints
H1=18-28 Sub into equa	H=0, B=16
3 (17-28)+28=30	A-20, B-0
54-68+28=30=7-48=-24=78=	6 Production (exacting to be 15
Sub B-6 into ear 3	B - 15-19 Mon-negativity
A=18 -260=6	14 H-0, 12-25 130 07
intersection point (6,6)	14-15, R-2 A20, 820
objective function if = 5A+4B	Graphical Pappers on
NE (10,0): p=5(10) +4(0)=50	Supril a papiers ent
12+ (2.22 5 22) 0 = 5(2 00) 14(70
4t (7.33, 5.33): P=5(7.33)+4(5.33)= 4t(6,6): P=5(6)+4(6)=54	57.97
,	20
- oper med salationtion: max propis	2 4
of curs at (7.33, 5.33) with propit of	32
N 58	\$
æ	000 2.3 5.0 7.5 10.0 12.5 15.0 175 20.
Revenue industriment production	n presult Acunits)
budget copacity	<u></u>
Product A & 1	e comper porints
product B 5 2 2	1) intersection of 14+213=20 cons 4+128-
· Avola chip resources	the whos are peralled so an noi intersection
	i Dintersoction op 14 t 213 = 20 with 8=0:4=
"Maverti 81 my budget \$ 20 total	
production expacity 15	13-0
, ,	

in intersection of 4+28=15 with 18=0: 4=15, At (40): 2-8(4)+7(0)=32 B=0 the revenue function is R-4+15K At (2,2) 2- 8 (27+8 (2)-30 At(0,107: R=4(0)+5(10)=50 At (13,0): R=4(15)+5(0)=60 optimal solution 4t (0,75). R=4(0)+5(75)=375 man proper & 2 = 42 is achiove do Offinal Salutian corner perint (0, 6) - company should masumum revenue ollers at (15,0) ullerate all resources to proposect where marinum revenue - 1260 p2 and producebunit op it Lebour capital Proprit parunits 121 Pa Patal labor hours = 12 Hveriable of capital-6 Cangraints lat a represent units of project PI Elet 4 represent units of projected labour hours constraint 3x + ley 6 12 copilal units constroint: 2x+966 & P=420 Non-negativity x y 20 P=30.0 2 3 4 unt ap project P1 Ex Couphical Solution per resources Allocation Corner points Using 2-8x+7y) At (0,0) : Profit =0 At (0,6) 2=8(0)+7(6)=42

Bako nnystery nniko Vubliscia 218456	
((/)))	
Bakery production planning	
let 1 = number of planning	Carner points
Cottos et de de chocalate	Dintersoction op (+2v= 8 and 3ct.
cakes produced tate v= numb	2 (+ 24 = 4 - 60)
produced	30+212 -0002
objective function	Substract equi promocuus
maximize proprit P=5C+3v.P.	2 (= 4 = 7 (- 2
	- Dai
constrains	2+2V=8=7 V-3 Puints (2,8)
B. Ling Live 15 to 15	Dintersection of ct av = 8 with v =
Bateing time : (tavs8	(= 8 point 1 (8,0)
Plour : 3c +2V-6 12	i'ii) intersoction of 3Ctab-12 with v=
Non- negativity! (20, V7)	3(-12-70-4
Baking units of fropt	iv) intersection (= 0 with 3C + 2v=1
cholodote 1 3 5	2v=12=7v=6 point: (016)
Vohiya 2 2 3	objective - punction apat corner
	P=5C+3V
for (+ 2 V 6 F	18P At point (2, 3) ! P=5 (2)+3(3)=14
when = 0, V-4 pant (0,4)	177t p (7,0): P=5(8)+362-40
when v=0) 0 (=8 Polin (8,0)	111) pt (4,0) : P = 5(4) +3(0) = 20
for \$30 + 24 6 12!	iv) AE (0,6) P = 3(0)+3(6)-18
when c-0, v=6. Paint (0,6)	optimal Selution
when (=4, v=0 Point (4,0)	
non-negativity (170, V70)	88 Chordage 60to and or vanillar
/6.1	Of Chormate Eater and o vanimal
30	
6	
2-	
0 3 7 5 6	
2 3 4 5 6 2 - a 203 (vonilla (akes)	
((() () () () () () ()	