

InforMARL: Scalable Multi-Agent Reinforcement Learning through Intelligent Information Aggregation

¹Massachusetts Institute of Technology

Wenqi Ding ¹ Sydney Dolan ¹ Karthik Gopalakrishnan² Hamsa Balakrishnan ¹

²Stanford University

Project Website

Standard MARL Recipe

Siddharth Nayak ¹

Kenneth Choi ¹

Key Features Expected from MARL algorithms:

Need a method which is agnostic to number of entities in the environment

Motivation

Consider MAPPO (Yu et al. 2022) with different amount of information included as inputs to the actor-critic networks.

There is a significant improvement in performance when MAPPO has access to global information.

InforMARL

- **Environment**: The agents are depicted by green circles, the goals by red rectangles, and the unknown obstacles by gray circles. A graph is created by connecting entities within the sensing-radius of the agents. The inter-agent edges are bidirectional, while the edges between agents and non-agent entities are unidirectional.
- 2. Information Aggregation: $x_{aqq}^{(i)}$ represents the aggregated information from the neighborhood, which is the output of a GNN. Each agent's observation is concatenated with $x_{\text{agg}}^{(i)}$.
- 3. **Graph Information Aggregation**: The $x_{\text{agg}}^{(i)}$ from all the agents is averaged to get X_{agg} .
- **Actor-Critic**: The concatenated vector $[o^{(i)}, x_{agg}^{(i)}]$ is fed into the actor network to get the action, and X_{agg} is fed into the critic network to get the state-action values.

Task Environments

We perform experiments in 4 different environments: target, coverage, polygon-formation and line-formation environments.

Conclusions

- InforMARL uses a graph neural network (GNN)-based architecture for scalable multi-agent RL in a decentralized fashion.
- InforMARL is transferable to scenarios with a different number of entities in the environment. than what it was trained on.
- InforMARL has better sample complexity than most other standard MARL algorithms with global observations.

Results

Comparison to Baselines

Algorithm	Information	N=3			N = 10				
	mode	R	T	# col	S%	R	T	# col	S%
RMATD3	Global	105.49	0.51	3.07	67	-131.72	0.99	11.14	1
RQMIX	Global	19.21	0.77	1.42	28	-76.98	0.96	17.04	2
RVDN	Global	64.04	0.62	1.05	45	157.63	0.64	10.00	43
GPG (dynamic)	Local	-46.27	0.87	0.43	8	-173.53	1.00	4.68	0
DGN + ATOC	Local	67.70	0.66	1.49	35	-201.01	1.00	4.06	0
RMAPPO	Global	173.13	0.41	1.47	96	366.81	0.44	13.21	79
InforMARL	Local	205.24	0.38	1.45	100	429.14	0.39	10.50	100

InforMARL significantly outperforms most baseline algorithms. Although RMAPPO has similar performance, it requires global information.

Scalability and Performance in different task environments

Test	Train Test		n=7	n = 10
	Reward/ m	61.16	62.23	61.32
m=7	T	0.38	0.40	0.40
m-1	(# col)/m	0.74	0.66	0.70
	S%	100	100	100
	Reward/m	58.59	58.23	58.67
m=10	T	0.38	0.40	0.39
m = 10	(# col)/m	0.95	0.88	0.87
	S%	100	99	100
	Reward/m	53.19	53.46	54.21
m=15	T	0.39	0.40	0.40
m-10	(# col)/m	1.28	1.21	1.20
	S%	100	99	99

Environment	m	Metric	Algorithm			
Liviloiiiieit		IVICUIC	RMAPPO	InforMARL		
Coverage	3	T	0.34	0.36		
		S%	100	100		
	7	T	0.42	0.43		
		S%	100	99		
	3	T	0.31	0.30		
Formation		S%	100	100		
TOTTIALION	7	T	0.47	0.43		
		S%	100	100		
	3	T	0.24	0.21		
Line		S%	100	100		
LITIC	7	T	0.38	0.36		
		S%	100	100		

Table 1. InforMARL trained and tested in the target environment whereas MAPPO was trained in environment when then no. of agents is varied.

Table 2. InforMARL was trained with 3 agents in the environments with 3 and 7 agents.

InforMARL is able to achieve a success rate of almost 100% across all scenarios in different environments whilst also being transferable.