Chương 2: Họ vi điều khiển 8051 (Timer - UART)

Mục tiêu

- □ Hiểu được tập lệnh bên trong vđk 8051
- □ Biết được cách sử dụng các lệnh ASM trên 8051
- Biết được cách sử dụng các cấu trúc, các dữ liệu, hàm ASM
- Vận dụng để viết các chương trình đơn giản trên 8051

Nội dung

- □ Timer
- UART

Ôn tập chương 2-3

- □ RAM nội được phân chia như thế nào?
- Tác dụng của các bank thanh ghi, bit nào dùng để chọn bank thanh ghi?
- Nêu một số thanh ghi có chức năng đặt biệt?
- Các kiểu định địa chỉ nhớ?

Timer

- Giới thiệu timer
- □ Timer trong 8051
- Các thanh ghi timer
- Các chế độ timer

Giới thiệu Timer

Giới thiệu Timer (tt)

- Dịnh thời trong một khoảng thời gian
- □ Đếm sự kiện
- □ Tạo tốc độ baud cho port nối tiếp của chip

Timer trong ho 8051

- 8051 có hai bộ định thời 16 bit
- Mỗi bộ có 4 chế độ hoạt động
- □ 8052 có thêm timer 2

Các thanh ghi cho timer

Timer SFR	Mục đích	Địa chỉ	Địa chỉ bit
TCON	Điều khiển	88H	Có
TMOD	Chế độ (hoạt động)	89H	Không
TL0	Byte thấp của Timer 0	8AH	Không
TL1	Byte thấp của Timer 1	8BH	Không
TH0	Byte cao của Timer 0	8CH	Không
TH1	Byte cao của Timer 1	8DH	Không
$T2CON^*$	Điều khiển Timer 2	C8H	Có
$\mathrm{RCAP2L}^*$	Bắt byte thấp của Timer 2	CAH	Không
$RCAP2H^*$	Bắt byte cao của Timer 2	CBH	Không
$\mathrm{TL2}^*$	Byte thấp của Timer 2	CCH	Không
$\mathrm{TH2}^*$	Byte cao của Timer 2	CDH	Không

^{*} Với 8032/8052.

Các thanh ghi cho timer (tt)

	TH0					TL0									
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

TH1						TL1									
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

MOV TL0,#4FH EN EN EER MOV R5, TH0

Thanh ghi điều khiển TCON

Bảng 3.19 Tóm tắt thanh ghi TCON.

Bit	Ký	Địa chỉ	Mô tả
	hiệu	bit	
TCON.7	TF1	8FH	Cờ báo tràn timer 1. Đặt lên 1 bởi phần cứng khi tràn;
			được xóa về 0 bởi phần mềm hoặc phần cứng khi bộ xử
			lý chỉ đến chương trình phục vụ ngắt.
TCON.6	TR1	8EH	Bit điều khiển Timer 1 chạy. Đặt/xóa bằng phần mềm để
			cho timer chay/ngưng.
TCON.5	TF0	$8\mathrm{DH}$	Cờ báo tràn Timer 0.
TCON.4	TR0	8CH	Bit điều khiển Timer 0 chạy.
TCON.3	IE1	8BH	Cờ cạnh ngắt 1 bên ngoài. Đặt bởi phần cứng khi phát
			hiện có cạnh xuống ở $\overline{\text{INT1}}$; xóa bằng phần mềm hoặc
			bằng phần cứng khi CPU chỉ đến chương trình phục vụ
			ngắt
TCON.2	IT1	8AH	Cờ kiểu ngắt 1 bên ngoài. Đặt/xóa bằng phần mềm để
			ngắt ngoài tích cực cạnh xuống/mức thấp.
TCON.1	IE0	89H	Cờ cạnh ngắt 0 bên ngoài.
TCON.0	IT0	88H	Cờ kiểu ngắt 0 bên ngoài.

Thanh ghi chế độ TMOD

Bång 3.17 Tóm tắt thanh ghi TMOD.

			Dang 5.17 Tom tat mann gm TMOD.						
Bit	Tên	Timer	Mô tả						
7	GATE	1	Bit mở cổng. Khi bit này 1, timer chỉ chạy trong khi $\overline{\text{INT1}}$ ở						
			mức cao.						
6	C/\overline{T}	1	Bit chọn counter (bộ đếm) hay timer						
			1 = bộ đếm sự kiện						
			0 = timer khoảng thời gian						
5	M1	1	Bit 1 của chọn chế độ (xem bảng 3.)						
4	M0	1	Bit 0 của chọn chế độ (xem bảng 3.)						
3	GATE	0	Bit mở cổng cho timer 0.						
2	C/\overline{T}	0	Bit chọn counter (bộ đếm) hay timer của timer 0						
1	M1	0	Bit 1 của chọn chế độ của timer 0						
0	M0	0	Bit 0 của chọn chế độ của timer 0						

Các chế độ timer

Bảng 3.18 Các chế độ hoạt động của timer.

M1	Mo	Chế độ	Mô tả
0	0	0	Chế độ timer 13 bit (chế độ 8048)
0	1	1	Chế độ timer 16 bit
1	0	2	Chế độ timer 8 bit tự nạp lại giá trị đầu
1	1	3	Chế độ tách timer
			Timer 0: TL0 là timer 8 bit được điều khiển bằng các bit
			chế độ của timer 0; TH0 là timer 8 bit được điều khiển
			bằng các bit chế độ của timer 1.
			<u>Timer 1:</u> bị dừng lại

Chế độ 0 (timer 13 bit)

Chế độ 1 (timer 16 bit)

UIT
TRƯỜNG ĐẠI HỌC
CÔNG NGHE THÔNG TIN

Chế độ 2 (timer 8 bit tự nạp lại) (cdio

Họ vi điều khiển 8051 16 **Duy Phan**

Chế độ 3 (tách timer)

TRUÒNG ĐẠI HỌC CÔNG NGHE THÔNG TIN

Ví dụ 1: Timer


```
; Sử dụng Timer0 và chế độ 1(16 bít)
     MOV
          TMOD, #01
               TLO, #0F2H
                                ; TL0 = F2H, byte thấp
HERE:
          MOV
          MOV THO, #OFFH
                                ; THO = FFH, byte cao
          CPL P1.5
                                ; Sử dụng chân P1.5
          ACALL DELAY
          SJMP HERE
                                ; Nap lai TH, TL
                                  delay using timer0.
DELAY:
SETB TRO
                     ; Khởi động bộ định thời Timer0
                                ; Hiến thị cờ bộ định thời cho đến
AGAIN:
          JNB
              TFO, AGAIN
                                ; khi nó vượt qua FFFFH.
          CLR
               TRO
                                ; Dùng bộ Timer
                                ; Xoá cờ bộ định thời 0
          CLR
               TF0
          RET
```


Ví du 2: Timer


```
MOV
                 TMOD, #01H
                                  ; Chọn TimerO, chế độ 1 (16 bít)
HERE:
           MOV
                 TL1, #34H
                                  ; Đặt byte thấp TL1 = 34H
           MOV
                 THO, #76H
                                  ; Đặt byte cao TH1 = 76H
                                  ; (qiá tri bô định thời là 7634H)
           SETB
                 TR1
                                  ; Khởi động bộ Timerl
AGAIN:
                 JNB
                      TF1, BACK
                                  ; ở lại cho đến khi
                                  ; bộ định thời đếm qua 0
           CLR
                 TR1
                                  ; Dừng bộ định thời.
                                    Bù chân P1.5 để nhận Hi, L0
           CPL
                P1.5
           CLR
                 TF
                                  ; Xoá cờ bộ định thời
           SJMP
                AGAIN
                                  ; Nạp lại bộ định thời do chế độ 1
                                  ; không tự động nạp lại .
```


UART (tt)

Thanh ghi cho UART

- □ SBUF: Vùng đệm dữ liệu ra/vào cổng nối tiếp
 - Việc truyền dữ liệu tương ứng với việc nạp cho SBUF một giá trị

FR FNGINFFRING

Dữ liệu nhận tử RXD cũng được lưu vào SBUF

Thanh ghi cho UART (tt)

SCON: thanh ghi điều khiển hoạt động cổng nối tiếp

	Thanh	ghi	cho	UART	$(\dagger\dagger)$
UIT					
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN					

Bit	Mô tả
SM0	
SM1	Lựa chọn mode làm việc
SM2	
REN	= 1: Cho phép nhận
	= 0: Chỉ truyền
TB8	(=1) Bit truyền thông thứ 8, được sử dụng khi truyền thông ở chế độ 9 bit
RB8	(=1) Bit truyền thông thứ 8, hệ thống sẽ tự đặt nó =1 nếu phất hiện khung truyền là 9bit
TI	Cờ ngắt truyền. Khi một byte trong SBUF được truyền thành công thì TI=1. Trước khi truyền byte khác bit này cần phải được xóa bằng phần mềm
RI	Cờ ngắt nhận, Khi nhần thành công 1 byte vào SBUF thì RI=1. Sau khi đọc SUBF, RI cần phaiđược xóa bằng phần mềm

Thanh ghi cho UART (tt)

SM0	SM1	Mode	Description	Baud Rate
0	0	0	Thanh ghi dịch 8 bit	1/12 tần số clock
0	1	1	8-bit UART	Cấu hình qua timer1
1	0	2	9-bit UART	1/32 tần số clock (hoặc 1/64)
1	1	3	9-bit UART	Cấu hình qua timer 1

Mode O UART

Mode O UART (tt)

Mode 1 UART

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THỐNG TIN

Mode 1 UART (tt)

Mode 2 UART

Tốc độ BAUD

Tốc độ BAUD (tt)

TRƯỜNG ĐẠI HỘC CÔNG NGHỆ THỐNG TIN

HÔNG TIN	1					
Baud		Bit				
Rate	11.0592	12	14.7456	16	20	SMOD
150	40 h	30 h	00 h			0
300	A0 h	98 h	80 h	75 h	52 h	0
600	D0 h	CC h	C0 h	BB h	A9 h	0
1200	E8 h	E6 h	E0 h	DE h	D5 h	0
2400	F4 h	F3 h	F0 h	EF h	EA h	0
4800		F3 h	EF h	EF h		1
4800	FA h		F8 h		F5 h	0
9600	FD h		FC h			0
9600					F5 h	1
19200	FD h		FC h			1
38400			FE h			1
76800			FF h			1

Ví dụ 1 UART


```
A, PCON ; Sao nội dung thanh ghi PCON vào thanh ghi ACC
MOV
               ; \text{Đặt D7} = 0
SETB
     ACC.7
     PCON, A ; Đặt SMOD = 1 để tăng gấp đôi tần
MOV
                ; số baud với tần số XTAL cố định
     TMOD, #20H; Chọn bộ Timer1, chế độ 2, tự động nạp lại
MOV
                        ; Chon tốc độ baud 19200
     VOM
          TH1, - 3
                           ; (57600/3=19200) \text{ vì SMOD} = 1
     MOV
          SCON, #50H; Đóng khung dữ liệu gồm 8 bít
                      ;dữ liệu, 1 Stop và cho phép RI.
                     ; Khởi động Timerl
     SETB
          TR1
         A, #'B'
                     ; Truyền ký tụ B
     MOV
                     ; Khẳng định TI = 0
A 1: CLR
         TI
         SBUF, A ; Truyền nó
     MOV
H 1: JNB TI, H 1
                  ; Chờ ở đây cho đến khi bít cuối được gửi đi
     SJMP A_1
                      ; Tiếp tục gửi "B"
```


Ví du 2 UART

- □ Tìm giá trị TH1 (DEC và HEX) để đạt tốc độ baud cho các trường hợp sau:
 - 9600
 - 4800 nếu SMOD = 1 và XTAL = 11.0592
 MHz

Ôn tập

- □ Nguyên lý hoạt động của Timer
- □ Timer trong 8051 và các mode
- □ Nguyên lý hoạt động và các mode của UART trong 8051

Bài tập 1

□ Tìm giá trị TH1 (DEC và HEX) để tạo delay 1ms Timer mode 3?

Bài tập 2

- □ Tìm giá trị TH1 (DEC và HEX) để đạt tốc độ baud cho các trường hợp sau:
 - □ 19200 với XTAL = 12
 - □ 1200 nếu SMOD = 1 và XTAL = 11.0592 MHz

Kết thúc chương 2-4

09/2015