

MOSFET

OptiMOS[™] 6 Power-Transistor, 135 V

Features

- N-channel, normal level
- Very low on-resistance R_{DS(on)}
- Excellent gate charge x R_{DS(on)} product (FOM)
 Very low reverse recovery charge (Q_{rr})
- 100% avalanche tested
- 175°C operating temperature
- Optimized for motor drives and battery powered applications
 Pb-free lead plating; RoHS compliant
 Halogen-free according to IEC61249-2-21

- MSL 1 classified according to J-STD-020

Fully qualified according to JEDEC for Industrial Applications

Table 1 **Key Performance Parameters**

Table 1 110y 1 of formation 1 drainiotore							
Parameter	Value	Unit					
$V_{ extsf{DS}}$	135	V					
R _{DS(on),max}	2.0	mΩ					
I _D	297	A					
Qoss	274	nC					
Q _G	159	nC					
Q _{rr} (500 A/μs)	154	nC					

Type / Ordering Code	Package	Marking	Related Links
IPTC020N13NM6	PG-HDSOP-16	020N13N6	-

OptiMOS[™] 6 Power-Transistor, 135 V

Table of Contents

escription
aximum ratings 3
nermal characteristics
ectrical characteristics
ectrical characteristics diagrams 6
ackage Outlines
evision History
ademarks 1 ^r
sclaimer

OptiMOS[™] 6 Power-Transistor, 135 V IPTC020N13NM6

1 Maximum ratings at T_A =25 °C, unless otherwise specified

Table 2 Maximum ratings

Davomatar	Cumbal		Value	s		Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current ¹⁾	I _D	- - -	- - -	297 210 196 29	A	$V_{\rm GS}$ =10 V, $T_{\rm C}$ =25 °C $V_{\rm GS}$ =10 V, $T_{\rm C}$ =100 °C $V_{\rm GS}$ =8 V, $T_{\rm C}$ =100 °C $V_{\rm GS}$ =10 V, $T_{\rm A}$ =25 °C, $R_{\rm THJA}$ =40 °C/W ²⁾
Pulsed drain current ³⁾	I _{D,pulse}	-	-	1188	Α	T _C =25 °C
Avalanche current, single pulse ⁴⁾	I _{AS}	-	-	142	Α	T _C =25 °C
Avalanche energy, single pulse ⁴⁾	E _{AS}	-	-	832	mJ	$I_{\rm D}$ =69 A, $R_{\rm GS}$ =25 Ω
Gate source voltage	V _{GS}	-20	-	20	V	-
Power dissipation	P _{tot}	-	-	395 3.8	W	T _C =25 °C T _A =25 °C, R _{THJA} =40 °C/W ²⁾
Operating and storage temperature	T _j , T _{stg}	-55	-	175	°C	-

2 Thermal characteristics

Table 3 Thermal characteristics

Doromotor	Cumbal	Values			Linit	Note / Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Thermal resistance, junction - case, Top	R _{thJC}	-	-	0.4	°C/W	-	
Thermal characterization parameter, junction to lead (Pin 1-7) ⁵⁾	$\Psi_{J\!L}$	-	9	-	°C/W	-	
Thermal characterization parameter, junction to lead (Pin 9-16) ⁵⁾	Ψ_{JL}	-	3	-	°C/W	-	
Thermal resistance, junction - ambient, R_{thJA}		-	-	40	°C/W	-	

¹⁾ Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature as specified. For other case temperatures please refer to Diagram 2. De-rating will be required based on the actual

environmental conditions.

2) Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 µm thick) copper area for drain connection. PCB is vertical in still air

3) See Diagram 3 for more detailed information.

⁴⁾ See Diagram 13 for more detailed information.

⁵⁾ Ψ_{JL} is a temperature characterization parameter according to JESD51-12 referring to the temperature difference between junction and leads in the case of natural convection. It can be used to estimate the component junction temperature in the application by measuring the temperature at the leads in the stated application environment.

OptiMOS[™] 6 Power-Transistor, 135 V IPTC020N13NM6

3 Electrical characteristics at T_j =25 °C, unless otherwise specified

Table 4 **Static characteristics**

Parameter.	Corrects of		Value				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	135	-	-	V	V _{GS} =0 V, I _D =1 mA	
Gate threshold voltage	V _{GS(th)}	2.5	3	3.5	V	V _{DS} =V _{GS} , I _D =275 μA	
Zero gate voltage drain current	I _{DSS}	-	1 10	10 100	μA	V _{DS} =108 V, V _{GS} =0 V, T _j =25 °C V _{DS} =108 V, V _{GS} =0 V, T _j =125 °C	
Gate-source leakage current	I _{GSS}	-	10	100	nA	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	R _{DS(on)}	- - -	1.7 1.8 1.9	1.95 2.0 2.3	mΩ	V _{GS} =15 V, I _D =142 A V _{GS} =10 V, I _D =142 A V _{GS} =8 V, I _D =71 A	
Gate resistance ¹⁾	R _G	-	1.1	1.7	Ω	-	
Transconductance ¹⁾	g fs	140	280	-	S		

Table 5 **Dynamic characteristics**

Paramatan.	O. mak a l		Values			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance ¹⁾	C _{iss}	-	11000	14000	pF	V _{GS} =0 V, V _{DS} =68 V, <i>f</i> =1 MHz
Output capacitance ¹⁾	Coss	-	2200	2900	pF	V _{GS} =0 V, V _{DS} =68 V, <i>f</i> =1 MHz
Reverse transfer capacitance ¹⁾	C _{rss}	-	28	49	pF	V _{GS} =0 V, V _{DS} =68 V, <i>f</i> =1 MHz
Turn-on delay time	t _{d(on)}	-	21	-	ns	$V_{\rm DD}$ =68 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =71 A, $R_{\rm G,ext}$ =1.6 Ω
Rise time	t _r	-	17	-	ns	$V_{\rm DD}$ =68 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =71 A, $R_{\rm G,ext}$ =1.6 Ω
Turn-off delay time	$t_{\sf d(off)}$	-	48	-	ns	$V_{\rm DD}$ =68 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =71 A, $R_{\rm G,ext}$ =1.6 Ω
Fall time	t _f	-	22	-	ns	$V_{\rm DD}$ =68 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =71 A, $R_{\rm G,ext}$ =1.6 Ω

Gate charge characteristics²⁾ Table 6

Davamatav	Comphal		Values			Note / Took Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge ¹⁾	Q _{gs}	-	49	64	nC	$V_{\rm DD}$ =68 V, $I_{\rm D}$ =71 A, $V_{\rm GS}$ =0 to 10 V
Gate charge at threshold	$Q_{g(th)}$	-	33	-	nC	$V_{\rm DD}$ =68 V, $I_{\rm D}$ =71 A, $V_{\rm GS}$ =0 to 10 V
Gate to drain charge ¹⁾	Q_{gd}	-	30	45	nC	$V_{\rm DD}$ =68 V, $I_{\rm D}$ =71 A, $V_{\rm GS}$ =0 to 10 V
Switching charge	Q _{sw}	-	47	-	nC	$V_{\rm DD}$ =68 V, $I_{\rm D}$ =71 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total ¹⁾	Q g	-	159	207	nC	$V_{\rm DD}$ =68 V, $I_{\rm D}$ =71 A, $V_{\rm GS}$ =0 to 10 V
Gate plateau voltage	V _{plateau}	-	4.5	-	V	$V_{\rm DD}$ =68 V, $I_{\rm D}$ =71 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total, sync. FET	Q _{g(sync)}	-	145	-	nC	V _{DS} =0.1 V, V _{GS} =0 to 10 V
Output charge ¹⁾	Qoss	-	274	356	nC	V _{DS} =68 V, V _{GS} =0 V

 $^{^{1)}}$ Defined by design. Not subject to production test. $^{2)}$ See "Gate charge waveforms" for parameter definition

OptiMOSTM 6 Power-Transistor, 135 V IPTC020N13NM6

Table 7 Reverse diode

Danamatan.	Symbol		Values			Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Diode continuous forward current	Is	-	-	297	Α	<i>T</i> _C =25 °C	
Diode pulse current	I _{S,pulse}	-	-	1188	Α	<i>T</i> _C =25 °C	
Diode forward voltage	V _{SD}	-	0.87	1	V	V _{GS} =0 V, I _F =142 A, T _j =25 °C	
Reverse recovery time ¹⁾	t _{rr}	-	36	72	ns	V_R =68 V, I_F =71 A, di_F/dt =500 A/ μ s	
Reverse recovery charge ¹⁾	Qrr	-	154	308	nC	V_{R} =68 V, I_{F} =71 A, di_{F}/dt =500 A/ μ s	

4 Electrical characteristics diagrams

5 Package Outlines

PACKAGE - GROUP NUMBER:	PG-HDSOP-16-U0					
REVISION: 01	DATE:	18.12.2020				
DIMENSIONS	MILLIM	ETERS				
DIMENSIONS	MIN.	MAX.				
Α	2.25	2.35				
A1	0.01	0.16				
b	0.60	0.80				
С	0.40	0.60				
D	9.70	10.10				
D1	8.20	8.40				
E	14.80	15.20				
E1	10.00	10.30				
E2	5.57	5.77				
е	1.	20				
e1	8.	40				
L	1.40	1.60				
Р	2.90	3.10				

Figure 1 Outline PG-HDSOP-16, dimensions in mm

OptiMOSTM 6 Power-Transistor, 135 V IPTC020N13NM6

Revision History

IPTC020N13NM6

Revision: 2023-10-20, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)
2.0	2023-10-20	Release of final version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2023 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 11 Rev. 2.0, 2023-10-20