洲江水学

本科实验报告

课程名称:		数字逻辑电路设计		
姓	名:	NoughtQ		
学	院:	计算机科学与技术学院		
专	业:	计算机科学与技术		
即	箱:			
QQ	号:			
电	话:			
指导	教师:	洪奇军		
报告日期:		2024 年 3月 21日		

浙江大学实验报告

课程名称:	数字逻辑设计	实验类型:	综合	
实验项目名称:	常用电子仪器	的使用		
 学生姓名: 钱梓洋	学号: 32301035	02 同组学生姓名:	官欣	
	— 东四 511 室	日期: 2024 年	2 月 29	F

一、操作方法与实验步骤

1. 用示波器测量正弦波信号

通过选择频率范围开关和频率调节旋钮使 YB1638 型函数信号发生器发出频率分别为 100Hz、10KHz 和 100KHz 的正弦波,用示波器测出上述信号的周期和频率,比较是否与刻度值相一致。

2. 测量 YB1638 信号发生器输出电压

让信号发生器输出 1KHz(最好 50hz)、Vp-p: 4V-6V 任意的正弦波信号,将信号发生器的输出接到示波器,用示波器测量幅值。然后用万用表交流档测量信号发生器输出的信号的幅值。再折算有效值与万用表用交流档读取值有效值进行比较。接着将信号发生器输出接入万用表,红接正,负接负,万用表在 AC 档,并选用适当量程,通过调节幅度旋钮,使万用表显示 3V 有效值。最后将信号发生器输出接入到示波器中,读取峰峰值。

有效值 = $V_{p-p} / 2\sqrt{2}$ 。

3. 测量试验箱中的直流电源

将红表笔插入 VΩmA 插孔,黑表笔插入 COM 插孔。然后将功能开关量程置于直流量程,将测试笔连接到待测电路上,红表笔所接端的极性将同时显示在显示器上。最后用示波器和万用表来测量实验台上的一组直流稳压电源的输出,并记录测量结果。

4. 用万用表测二极管的单向导通特性

将表笔插入"COM"插孔,红表插入"VQ"插孔,此时红表笔极性为"+"。然后将万用表功能量程开关置于""位置,把红黑表笔分别接到二极管的两极,如果显示屏上显示 0.6 - 0.7 的数字,此时二极管正向导通,显示的数字是 PN 结的电压,红表笔接的极是二极管的正极,黑表笔接的是负极。如果显示屏上显示的数字是"1.",此时二极管反向截止,红表笔接的是二极管负极,黑表笔接的是正极。

二、实验结果与分析

1. 用示波器测量正弦波信号

(1) 实验数据

	函数发生器输出	示波器读数	灵敏度	实	测值
峰峰值	5.2V	5.0Div	1.00V/Div	5.	.0V
周期/频率	100.0Hz	5.0Div	2.000ms/Div	10.0ms	100Hz
峰峰值	5.2V	5.0Div	1.00V/Div	5.	.0V
周期/频率	10.01KHz	5.0Div	20.00μs/Div	100.0μs	10.00KH z
峰峰值	5.2V	5.0Div	1.00V/Div	5.	.0V
周期/频率	99.95KHz	5.0Div	2.000μs/Div	10.0μs	100.00K Hz

(2) 图片

图片	函数发生器输出频率
RIGOL DESCRIPTION OF THE PROPERTY OF THE PROPE	100.0Hz
RIGOL DISCRETE COLUMN AND AND AND AND AND AND AND AND AND AN	10.01KHz

2. 测量 YB1638 信号发生器输出电压

(1) 实验数据

函数发生器 输出频率	示波器读取值		折算有效值	万用表读取 值	说明
50Hz	5.0div	1.00V/div	1.767V	1.76V	
1KHz	5.0div	1.00V/div	1.767V	1.77V	
10KHz	5.0div	1.00V/div	1.767V	0.13V	异常数据,当 时测的时候 没有注意到, 但可以肯定 的是在读数 稳定的情况 下测的
100KHz	5.0div	1.00V/div	1.767V	0.00V	万用表不能 测量

(2) 图片

图片 函数发生器输出频率

3. 测量试验箱中的直流电源

(1) 实验数据

直流稳压电源输 出	示波器读数	灵敏度	示波器折算值	万用表读数
5.0V	5Div	1.00V/Div	5.0V	5.00V

(2) 图片

(这里没有拍好,图片左侧部分为接入试验箱直流电源的红黑表笔)

4. 用万用表测二极管的单向导通特性

方向	正向	反向
图片		
说明	正向电压 0.619V (导通)	反向截止,此时电阻无穷大

三、讨论、心得

示波器、万用表这些仪器,虽然我在高中课本中对此有所了解,但这是我第一次亲自体验使用这些仪器,有一种既熟悉又陌生的感觉。由于本人动手能力不佳,刚开始使用时有些手忙脚乱,险些跟不上老师的进度。好在有老师的详细解释和同学的鼎力相助,我才能较为顺利地完成这些实验任务。本次实验总体完成度不错,但还存在这一些不足:比如在第二个实验中,当时没有及时发现异常数据,导致没有及时纠正得到正确数据。希望在今后的实验中我应当要更加谨慎、沉着,更熟练地完成任务。

浙江大学实验报告

课程名称:	数字	逻辑设计	<u> </u>	_实验类型:		综合
实验项目名称	:		基本开关电路			
学生姓名:	钱梓洋	学号:_	3230103502	同组学生	E姓名: _	官欣
实验地占.	紫金港东贝	1511 室	实验日期:	2024 年	3 月	7 FI

一、操作方法与实验步骤

1. 用二极管实现正逻辑"与门"

先根据示意图在实验箱中通过导线连接电路,检查二极管、电源电压和极性、电阻值等是否连接正确。然后将 Vcc 接实验箱中+5V 直流电源。输入高低电平通过开关 S1/S2/S3/S4/S5/S6 产生。接着输入 A,B 的不同电平组合,用万用表或实验箱中的直流电压表测量 A,B 及对应输出 F 的电压值。最后判断逻辑关系是否满足 Y=AB。

2. 用二极管实现正逻辑"或门"

先根据示意图在实验箱中连接电路,检查二极管、电源电压和极性、电阻值等是否连接正确。输入高低电平通过开关 S1/S2/S3/S4/S5/S6 产生。然后输入 A,B 的不同电平组合,用万用表或实验箱中的直流电压表测量输入 A,B 及对应输出 F 的电压值。最后判断逻辑值是否满足 F=A+B。

3. 用二极管实现正逻辑"非门"

先根据示意图在实验箱上连好电路,检查三极管及电源极性、电阻值是否等是否连接正确。然后将+5V 直流电源接入 VCC 端。输入 A 端的高、低电平用开关 S1/S2/S3/S4/S5/S6 产生。 接着测量 A 和输出端 F 对应的电压值,填入右表。最后判断逻辑关系是否满足 $F=\overline{A}$ 。

4. 用晶体管实现正逻辑"与非门"

先在实验箱上连好电路,检查二极管、三极管及电源极性、电阻值等是否正确。然后将+5V 直流电源接入 VCC。输入 A,B 端的高、低电平用开关 S1/S2/S3/S4/S5/S6 产生。再测量 A,B 及输出端 F 对应的电压值,填入右表。判断逻辑关系是否满足 $F = \overline{AB}$ 。

5. 三极管极性测量

先将万用表红表笔插入 $V\Omega$ mA 插孔,黑表笔插入 COM 插孔,先判断被测三极管是 PNP 还是 NPN 型,定下基极 b。然后将功能量程置于 hFE 位置,把三极管插入面板上三极管测试插座,基极 b 要插对,集电极 c 和发射极 e 随便插。接着从显示屏上读取 hFE 近似值,若该值较大,说明三级管 c,e 极与插座上的 c,e 极对应;若该值很小,说明这时的三极管 c,e 极插反,应把 c,e 极对调后再读取 hFE 值。

二、实验结果与分析

1. 用二极管实现正逻辑"与门"

(1) 实验数据

V _A /V	V _B /V	V _F /V	F 逻辑值
4.53	4.50	4.15	Н
0.126	4.49	0.690	L
4.53	0.115	0.699	L
0.107	0.124	0.639	L

(2) 图片

(3) 结论

A和 B 只要有一个低电平,F 为低电平;只有当 A、B 均为高电平时,F 为高电平。因此满足与门 F = AB 的逻辑关系。

2. 用二极管实现正逻辑"或门"

(1)接 10kΩ电阻

①实验数据

V_A/V V_B/V	V _F /V	F 逻辑值
-----------------	-------------------	-------

3.23	3.31	2.77	Н
2.87	0.113	2.12	Н
0.182	2.56	2.00	Н
0.107	0.261	0.00	L

②图片

(2)接 20kΩ电阻

①实验数据

V _A /V	V _B /V	V _F /V	F 逻辑值
3.30	3.44	2.91	Н
2.68	0.097	2.29	Н
0.101	2.71	2.15	Н
0.112	0.139	0.00	L

2图片

(3) 不接电阻

①实验数据

O 2 (422 2 9 (4) H			
V _A /V	V_B/V	V _F /V	F 逻辑值
4.42	4.49	4.10	Н

4.23	0.084	4.07	Н
0.082	4.18	3.70	Н
0.092	0.084	0.00	L

②图片

(4) 结论

A 和 B 只要有一个高电平,F 为高电平;只有当 A、B 均为低电平时,F 为低电平。因此满足或门 F = A + B 的逻辑关系。而且通关观察 V_F 电压发现,当 R = 0 时, V_F 接近路端电压;随着 R 的电阻增大, V_F 变大。

3. 用二极管实现正逻辑"非门"

(1)接 5kΩ电阻

①实验数据

V _A /V	V _F /V	F逻辑值
0.087	4.89	Н
2.72	0.020	L

②图片

(2)接 10kΩ电阻

①实验数据

V _A /V	V _F /V	F 逻辑值
0.087	4.87	Н
2.71	0.020	L

2图片

(3)接47kΩ电阻

①实验数据

V_A/V	V _F /V	F 逻辑值
0.087	4.89	Н
4.19	0.068	L

②图片

(4) 结论

当 A 为低电平时,F 为高电平;当 A 为高电平时,F 为低电平。满足非门 $F=\overline{A}$ 的逻辑关系。

4. 用晶体管实现正逻辑"与非门"

(1) $R_b = 47 k \Omega$, $R_c = 5.1 k \Omega$

①实验数据

V _A /V	V _B /V	V _F /V	F 逻辑值
4.51	4.48	0.020	L
4.52	0.098	3.99	Н
0.095	4.50	3.94	Н
0.088	0.090	4.34	Н

②图片

(2) $R_b = 47k\Omega$, $R_c = 10k\Omega$

①实验数据

V _A /V	V _B /V	V _F /V	F逻辑值
4.52	4.52	0.020	L
4.52	0.083	3.97	Н
0.095	4.47	3.92	Н
0.088	0.091	4.34	Н

②图片

(3) $R_b = (47 + 47)k\Omega$, $R_c = 5.1k\Omega$

①实验数据

V _A /V	V _B /V	V _F /V	F 逻辑值
4.53	4.49	0.036	L
4.53	0.082	4.35	Н
0.089	4.55	4.34	Н
0.087	0.091	4.47	Н

②图片

(4) 结论

A和B只要有一个低电平,F为高电平;只有当A、B均为高电平时,F为低电平。因此满足与非门F=A+B的逻辑关系。而且通关观察发现: R_c 电阻的增大会降低 V_F 的大小, R_b 电阻的增大会略微提升 V_A 和 V_B 的电压。

5. 三极管极性测量

(1) 实验数据

	hFE 近似值
测试 1	202
测试 2	0

(2) 图片

(3) 结论

用万用表测得该三极管为 NPN 型,于是定下基极 b。且由实验结果可知,若 hFE 值较大,说明三级管 c, e 极与插座上的 c, e 极对应;若该值很小接近于 0,说明这时的三极管 c, e 接反了。

三、讨论、心得

虽然早在高中我就认识了逻辑门、二极管、三极管,但就仅限于理论知识,而今天我终于得以在实验室中见到实物了。实验室提供的电路箱简化了一些连线步骤,但导线还是连得乱七八糟,然而好在还能正常工作。没想到就算要一个简单的与门、或门、非门和与非门,想要实现的话也绝非易事,更何况一块集成电路呢!说实话,虽然我们早早完成了任务,但其实我还没有完全理解门电路的奥妙,我应该回去好好消化理解一下。

浙江大学实验报告

课程名称:	数字逻辑设计	<u>† </u>	实验类型:		综合	
实验项目名称:	集成逻辑	量门电路的功	能及参数	测试		
	辞注 学号:323	0103502	月组学生姓	名:	官欣	
实验地点: 紫	全港东四 511 室	实验日期:	2024 年	3	月 14	Н

一、操作方法与实验步骤

1. 验证 74LS00"与非"门逻辑功能

先将芯片插入实验箱的 IC 插座中,注意芯片的方向。然后按下图连接电路,Vcc 接电压 5V,地端接地线。高低电平通过 S14/S15/S16/S17 拨位开关产生。接着以真值表顺序遍历输入 A,B 所有组合,测量 A,B 及输出 F 电压并记入表格中。最后重复步骤 3~4,测量其他 3个门的逻辑关系并判断门的好坏。

2. 验证 CD4001"或非"门逻辑功能

先将芯片插入实验箱的 IC 插座中。然后按下图连接电路,VCC 接直流 5V 电压,地端接地线。高低电平通过 S14/S15/S16/S17 拨位开关产生。接着以真值表顺序遍历输入 A,B 所有组合,测量输入端 A,B 及输出端 F 电压值,记录表格中。最后重复步骤 3~4,测量其他 3个门的逻辑关系并判断门的好坏。

3. 测量 74LS00 逻辑门的传输延迟时间 tpd

先将芯片插入实验箱的 IC 插座,注意芯片方向。然后按图连接电路, V_{CC} 接 5V 电源,地端接地线。再将示波器接到振荡器的任何一个输入或输出端。接着调节频率旋钮,测量 V_o 的波形,读出周期 T 并计算传输延迟时间 (T=15ns~30ns)。

4. 测量 CD4001 逻辑门的传输延迟时间 tpd

先将芯片插入实验箱的 IC 插座,注意芯片方向。然后按图连接电路, V_{CC} 接 5V 电源,地端接地线。再将示波器接入到振荡器的输入或输出端。接着调节频率旋钮,测量 V_{o} 的波形,读出周期 T 并计算传输延迟时间 $(T=80ns\sim500ns)$ 。

5. 测量 74LS00 传输特性与开关门电平 Von 和 Voff

先将芯片插入实验箱的 IC 插座。按图连接电路。将直流电表分别接入 A 端和与非门的输出 2Y 端。从 b 端往 a 端缓慢调节电位器 W,观察 V_i,V_o 两电压表的读数,并记录数据填入表格。根据表格数据画出曲线图,并求 V_{ON} 和 V_{OFF} 。

$V_{\rm i}/{ m V}$	V_{o}/V	Vi/V	V_{o}/V
0		:	
0.2		:	
0.4		:	
0.6		:	•
0.8		2.0	
:	:	2.5	
:	Voff	3.0	
:	•	3.5	
:		4.0	
:	$V_{ m ON}$	4.5	
:	:	5.0	

二、实验结果与分析

1. 验证 74LS00"与非"门逻辑功能

(1) 实验数据

V _A /V	V _B /V	V _F /V
2.63	3.90	2.27
0.13	4.51	4.96
4.99	0.083	4.96
0.13	0.083	4.96

(2) 图片

(3) 结论

A和B只要有一个低电平,F为高电平;只有当A、B均为高电平时,F为低电平。因此满足与非门 $F=\overline{AB}$ 的逻辑关系。且相比上次实验,F的高电平更接近 5V。

2. 验证 CD4001"或非"门逻辑功能

(1) 实验数据

V _A /V	V _B /V	V _F /V
4.51	4.99	0
4.51	0.09	0
0.084	4.99	0
0.084	0.09	4.82

(2) 图片

(3) 结论

A和B只要有一个高电平,F为低电平;只有当A、B均为低电平时,F为高电平。因

此满足或非门 $F = \overline{A+B}$ 的逻辑关系。

3. 测量 74LS00 逻辑门的传输延迟时间 tpd

(1) 实验数据

示波器读数	23.50ns	
平均传输延迟时间	3.917ns	

(2) 图片

(实验过程中没有调整好示波器,导致 Prd 没有显示正确,因此通过数格子的方法读数)

4. 测量 CD4001 逻辑门的传输延迟时间 tpd

(1) 实验数据

示波器读数	358.0ns	
平均传输延迟时间	59.67ns	

(2) 图片

5. 测量 74LS00 传输特性与开关门电平 V_{ON} 和 V_{OFF}

(1) 实验数据

V _i /V	V _o /V	V _i /V	V _o /V
0.13	4.97	2.40	2.00
0.20	4.97	2.80	1.85
0.40	4.96	3.00	1.70
0.60	4.96	3.20	1.56
0.80	4.96	3.40	1.42
1.00	4.96	3.60	0
1.20	4.95	3.80	0
1.40	4.95	4.00	0
1.60	2.85	4.20	0
1.80	2.52	4.40	0
2.00	2.32	4.60	0
2.20	2.15	4.80	0

(2) 作图

(3) 结论

从折线图可以看出, $V_{ON} = 1.40V$, $V_{OFF} = 3.60V$ 。

但本实验仍存在一些缺陷,比如我们无法使 V_i 达到 0V,因此从 0.13V 开始测量;而且 开关门电平之间的输出电压变化有些不符合预期,可能是线路连接的问题,也可能是实验仪器的问题。

三、讨论、心得

这次实验出师不利——做实验一的时候没有发现连接 14 脚的那根导线有问题,连不到 Vcc, 因此发现四个与非门输入两个低电平还是出低电平时不知所措,直到老师发现这一问题。因此在连接线路前我们应该要仔细检查导线是否完好无损。除此之外,整个实验还算完成得比较顺利,但仍存在着一些缺陷: 比如实验三的示波器没有调整好,实验五的数据有一点点异常,没有达到预期等等。所以我要吸取教训,在今后的实验中应当小心谨慎,重点关注数据的可靠性和准确性。