FAST NATIONAL UNIVERSITY OF COMPUTER AND EMERGING SCIENCES

KARACHI CAMPUS

FINAL EXAMINIATIONS Spring 2018 Digital Logic Design (EE-227)

Total Points: 30 10 May, 2018 Time Allowed: 45 Minutes

"I certify that I have neither received nor given unpermitted aid on this examination and that I have reported all such incidents observed by me in which unpermitted aid is given."

Student Roll No: ______ Section: A / B / C / D / E / F

Signature: _____ Invigilator's Signature: _____

Instructions:

- 1. Please verify that your paper contains 05 pages including this cover.
- 2. Write down your Student-Id on the top of each page.
- 3. This exam is closed book. No notes or other materials are permitted.
- 4. Section A consists of 30 Multiple Choice Questions (30 x 1 = 30 Points). Section B consists of 08 Questions.
- 5. To receive points you must show your work clearly.
- 6. As shown, mark the best choice(s) with a clear dark down diagonals.

Section A											
	A	В	c	D	Е		A	В	С	D	E
1	A	В	С	D	E	06	Α	В	С	D	E
2	A	В	С	D	E	07	Α	В	С	D	E
3	A	В	С	D	E	08	A	В	С	D	E
4	A	В	С	D	E	09	Α	В	С	D	E
5	A	В	С	D	E	10	Α	В	С	D	E
11	A	В	С	D	E	16	A	В	С	D	E
12	A	В	С	D	Е	17	A	В	С	D	E
13	A	В	С	D	E	18	Α	В	С	D	E
14	A	В	С	D	E	19	Α	В	С	D	E
15	A	В	С	D	E	20	Α	В	С	D	E
21	A	В	С	D	E	26	A	В	С	D	E
22	A	В	С	D	E	27	Α	В	С	D	E
23	A	В	С	D	Е	28	Α	В	С	D	E
24	A	В	С	D	E	29	A	В	С	D	E
25	A	В	С	D	Е	30	A	В	С	D	E

Page 1 of 6 Roll No:

Choose the one alternative that best completes the statement or answers the question.

1)	minimum number two inpu	t NAND gates require to in	plement $X \oplus Y$?	nd Y' are not available, what is the
	(A) 2	(B) 3	(C) 4	(D) 5
2) V	Which of the following rep	resents the correct count	ing sequence from 9FE ₁₆ ?	
	A) 9FF, 1AF0, 1AF1, 1AF	F2, 1AF3, 1AF4	B) AFF, 1AF0, 1AF1, 1A	F2, 1AF3, 1AF4
	C) 9FF, A00, A01, A02, A	A03, A04	D) 9FF, 1A00, 1A01, 1A0	2, 1A03, 1A04
	Two signals (A and B) are (Which of the following exp	· ·	_	ignals C and D.
	A) A + BCD	B) (A + B)CD	C) $A + (B + CD)$	D) A + B(CD)
4) I	f you apply DeMorgan's tl	heorem to the expression	$\overline{\overline{(\overline{A}\overline{B})}}(\overline{C+D})$, you get:	
	A) \overline{AB}_{+C+D}	B) $(\overline{A} \overline{B}) + C + D$	C) $(\overline{A} + \overline{B}) + C + D$	D) $\overline{A}_{+}\overline{B}_{+}C+D$
Т	ou need to build a circuit he interconnections betwo	een the registers must be		_
	A) "D"	B) latch	C) "J-K"	D) "S-C"
	B) The FF is an active LC	red and can only change DW device and can only or red and can only change	states when the clock goe change states when the CI states when the clock goe	s from 1 to 0. $LOCK = 0$.
7) T	The process of designing a	synchronous counter tha	t will count in a nonbinar	y sequence is
p	orimarily based on:	1		. 1 1 1
		_	tates on every second inpo very second input clock p	-
		_	tion of combinatorial logic	
	D) external logic circuits levels to the J-K input		states of the counter to ap	ply the correct logic
8) A		the PRESET and CLEAR the J-K inputs are held F the PRESET and CLEAR	inputs are held HIGH. HIGH. inputs are held LOW.	is their ability to:
	A production plant needs a How many flip-flop stages			g and recycling.
-	A) 13	B) 12	C) 10	D) 11

Page 2 of 6 Roll No:

- 10) A parallel in/parallel out register normally has data inputs loaded _____ and data outputs transferred _____.
 - A) Asynchronously, asynchronously
- B) Synchronously, asynchronously
- C) Asynchronously, synchronously
- D) Synchronously, synchronously
- 11) The primary difference between a 3-bit up-counter and a 3-bit down-counter is:
 - A) An up counter's output decreases by one with each input clock pulse whereas a down counter's output increases by one with each input clock pulse.
 - B) In a normal count sequence, a 000 is followed by 001 (in an up-counter) and by 111 (in a down-counter).
 - C) An up counter's output increases by one with each input clock pulse whereas a down counter's output decreases by one with each input clock pulse.
 - D) Both B and C
 - E) Both A and C
- 12) The best way to eliminate decoding glitches in asynchronous counters is to:
 - A) Use a strobe signal to disable the decoding AND gates until the flip-flops reach a stable state in response to a clock pulse.
 - B) Use a strobe signal to disable the counter flip-flops until a time greater than $N(t_{pd})$ has elapsed.
 - C) Use a strobe signal to enable the decoding AND gates until the flip-flops reach a stable state in response to a clock pulse.
 - D) Use a strobe signal to enable the counter flip-flops until a time greater than $N\left(t_{pd}\right)$ had elapsed.

Figure 01

13) Refer to Figure 01. If A = 1, B = 1, and C = 0, the output (Y) will be:

A) HIGH.

B) invalid.

C) LOW.

D) floating.

Page 3 of 6 Roll No:

Table 1							
L	M	N	Z				
0	0	0	0				
0	0	1	0				
0	1	0	1				
0	1	1	0				
1	0	0	1				
1	0	1	0				
1	1	0	1				
1	1	1	0				

- 14) The truth table in Table 1 indicates that:
 - A) The output (Z) is HIGH only when the binary input count is an odd number.
 - B) The output (Z) is HIGH only when the binary input count is an even number greater than zero.
 - C) The output (Z) is HIGH only when a single input is HIGH.
 - D) The output (Z) is HIGH only when the majority of the inputs are HIGH.
- Which of the following methods would be used to disable the PRESET (\overline{PRE}) and CLEAR (\overline{CLR}) inputs to a clocked flip-flop in a circuit application where they are not used?
 - A) Connect the \overline{PRE} and \overline{CLR} inputs to a LOW logic level.
 - B) Connect the \overline{PRE} input to a LOW logic level and the \overline{CLR} input to a HIGH logic level.
 - C) Connect the \overline{PRE} and \overline{CLR} inputs to a HIGH logic level.
 - D) Connect the \overline{PRE} input to a HIGH logic level and the \overline{CLR} to a LOW logic level.
- 16) How many shift pulses would be required to serially shift the contents of one six-stage register to another?
 - A) 7

B) 5

C) 6

-) 8
- 17) For the initial state of 000, the function performed at the arrangement of the J-K flip-flop in the given figure is:
 - A) shift register
- B) mod-3 counter
- C) mod-6 counter
- D) mod-2 counter

- 18) The output of an 8-bit serial in serial out shift register is connected back to its input. Assume the initial content of the shift register is 11000011. After 4 clock pulses, the content becomes:
 - A) 11000011
- B) 00001100
- C) 00111100
- D) 00001111
- E) 11110000

4.0\					1.6				
19)	How many clock pulses are needed to shift a byte of data into and out of an eight-bit serial in - serial out shift register?								
	A) 4		B) 8		C) 12		D) 16	E) non	e of the above
20)	How many clock pulses are needed to shift a byte of data into and out of an eight-bit serial in - parallel out shift register?								
	(A)	`	B) 8		C) 12		D) 16	E) non	e of the above.
21)	Whe	en an 8-bit seria t be:	l in/seria		ft regist		d for a 24 ns t	,	the clock frequency
	A) 4	1.67 kHz	B) 333 I	kHz	C) 125	kHz	D) 8 MHz		
22)		ne timing diagra C is the clock ir	C 0 _	_				p's inputs, (Qs are the outputs, Figure 03
			A o						
			1				1		
			В 0_						
			Q n						
			1		100				
			Q o						
	A)	a positive ed	ge-trigge	red S-R f	lip-flop	•	B) a negati	ve edge-tri	ggered J-K flip-flop
	C)	a negative ed	ge-trigge	ered S-R	flip-flop)	D) None of	f the above	
23)	3) Assume the circuit above has initially been reset. X is high and Y is low. After one clock pulse, Q becomes:								one clock pulse, Q
			×	>0	D- D-		D SET Q		Figure 04
	A)	high	B)	low		C)	Can't be det	ermined	
24)	4) A combinational logic circuit which generates a particular binary word or number is								
	A)	Decoder	(B)	Multip	lexer	C)	Encoder	(D)	Demultiplexer
25)		nich one of the forestion.	ollowing	set of ga	ites are	best suit	ed for 'parity'	checking a	nd 'parity'
	A)	AND, OR, NO	T gates		B)	FY-NC	OR or EX-OR g	rates	
	C)	NAND gates	1 guics		D)	NOR g	•	Suico	

Page 5 of 6 Roll No:

26) In the circuit above, X is high. After one clock pulse, Y would become:

27) To make the following circuit a tautology?

Figure 06

- A) OR gate
- B) AND gate
- C) NAND gate
- **EX-OR GATE**

D)

28) In the following gate network which gate is redundant gate network

Figure 07

- A) Gate no. 1
- Gate no. 2
- C) Gate no. 3
- D) Gate no. 4

29) If a clock with time period 'T' (in sec) is used with n stage shift register, then output of final stage will be delayed by

- A) nT sec
- B) (n-1)T sec
- C) n/T sec
- D) (2n+1)T sec

30) The MOD number of a counter:

A) Indicates the value of the highest state.

B)

- B) Indicates the value of the lowest state.
- C) Indicates the number of possible counter output states.
- D) Indicates sum of inputs.

Page 6 of 6 Roll No: