09

추가 알고리즘

01유니온파인드

02 최소 신장 트리

- 유니온 파인드(union-find) 알고리즘
 - union 연산
 - 특정 두 노드가 속한 집합을 묶는 연산
 - union(3, 6) → A ∪ B
 - find 연산
 - 두 노드가 같은 집합에 속해 있는지 확인하는 연산
 - find(1, 3) → true
 - find(1, 7) \rightarrow false

- 서로소 집합(Disjoint sets)
 - 공통 원소가 없는 두 집합 (A ∩ B = Ø)
- 대표 노드(find 연산)
 - 각 집합은 유일한 대표 노드를 가짐
 - find(1) \rightarrow 2
 - $find(2) \rightarrow 2$
 - find(3) \rightarrow 2
 - find(4) → 2
 - find(5) \rightarrow 7
 - find(6) → 7
 - find(7) → 7

- 각 집합은 부모 노드를 갖는 트리 구조
 - 루트 노드가 대표 노드
- 부모 노드를 가리키는 1차원 배열로 표현

- 각 집합은 부모 노드를 갖는 트리 구조
 - 루트 노드가 대표 노드
- 부모 노드를 가리키는 1차원 배열로 표현

- 유니온 파인드 알고리즘 구현
 - Step1. 노드의 수 만큼 서로소 집합 만들기
 - {1}, {2}, {3}, {4}, {5}
 - 모든 노드가 대표 노드

- 유니온 파인드 알고리즘 구현
 - Step2. union(1, 2) → union(2, 3) → union(4, 5) 수행
 - {1, 2, 3}, {4, 5}
 - union(x, y): parents[y의 대표 노드] = x

- 유니온 파인드 알고리즘 구현
 - Step3. find 연산 구현
 - {1, 2, 3}, {4, 5}
 - find(x) : x의 대표 노드(루트 노드)

parents

- 유니온 파인드 알고리즘 최적화 skewed tree 방지
 - 다음과 같은 연산 수행 시 skewed tree 생성
 - union(1, 2) \rightarrow union(2, 3) \rightarrow union(3, 4) \rightarrow union(4, 5) \rightarrow union(5, 6) \rightarrow union(6, 7)
 - union(x, y): parents[y의 대표 노드] = x
 - find 연산의 시간 복잡도 O(N)

- 유니온 파인드 알고리즘 최적화 skewed tree 방지
 - union(x, y): parents[y의 대표 노드] = parents[x의 대표 노드] 로 연산
 - $union(1, 2) \rightarrow union(2, 3) \rightarrow union(3, 4) \rightarrow union(4, 5) \rightarrow union(5, 6) \rightarrow union(6, 7)$
 - find 연산의 시간 복잡도 O(1)

- 유니온 파인드 알고리즘 최적화 skewed tree 방지
 - find(x) 재귀 호출 시 모든 노드의 부모 노드를 대표 노드로 변경

- 0부터 6까지 7개의 노드를 크기가 1인 서로소 집합을 생성하고 다음 연산을 수행하세요.
 - union(0, 1)
 - union(1, 2)
 - 1과 2가 같은 집합인지 판단
 - union(3, 4)
 - union(5, 6)
 - 4와 6이 같은 집합인지 판단

■ 백준 온라인 저지 – 1717 집합의 표현

■ 백준 온라인 저지 – 1976 여행 가자

최소 신장 트리

- 신장 트리(Spanning Tree)
 - 그래프의 모든 정점을 포함하는 트리
 - 간선의 개수 : V-1 개
- 최소 신장 트리(Minimum Spanning Tree, MST)
 - 신장 트리 중 가중치의 합이 최소인 트리

Spanning Tree

Minimum Spanning Tree(MST)

크루스칼 알고리즘

- 크루스칼(Kruskal) 알고리즘
 - 최소 신장 트리(MST)를 찾는 탐욕(greedy) 알고리즘
 - 트리 조건을 유지하며 가중치가 작은 간선부터 선택
 - 신장 트리의 간선의 개수 : V-1 개

크루스칼 알고리즘

■ 크루스칼(Kruskal) 알고리즘

크루스칼 알고리즘

- 크루스칼(Kruskal) 알고리즘
 - 트리 조건 : 사이클(Cycle) 발생 x
 - 유니온 파인드 알고리즘을 사용하여 사이클 발생 여부 판단
 - 추가할 간선의 두 정점이 같은 집합이면 사이클 발생

■ 백준 온라인 저지 – 1197 최소 스패닝 트리