Lebesgue Theory

Ikhan Choi

February 17, 2022

Contents

Ι	Me	asure theory	3	
1	Mea	sures and σ -algebras	4	
	1.1	Definition of measures	4	
	1.2	Carathéodory extension theorem	4	
2	Mea	sures on the real line	7	
3	Mea	surable functions	8	
	3.1	Extended real numbers	8	
	3.2	Simple functions	8	
II	In	tegration	9	
4	Lebesgue integration			
	4.1	Definition of Lebesgue integration	10	
	4.2	Convergence theorems	10	
	4.3	Radon-Nikodym theorem	11	
	4.4	Modes of convergence	11	
5	Product measures			
	5.1	Fubini-Tonelli theorem	13	
	5.2	Lebesgue measure on Euclidean spaces	13	
6	Lebesgue spaces			
	6.1	L^p spaces	14	
	6.2	L^2 spaces	14	
	6.3	Dual spaces	14	

III	Li	near operators	15	
7			16	
8	Bounded linear operators			
	8.1	Continuity	17	
	8.2	Density arguments	17	
	8.3	Interpolation	17	
9	Convergence of linear operators			
	9.1	Translation and multiplication operators	18	
	9.2	Convolution type operators	18	
	9.3	Computation of integral transforms	18	
IV	V Fundamental theorem of calculus			
10	10 Weak derivatives			
11	1 Absolutely continuity			
12	2 Lebesgue differentiation theorem			

Part I Measure theory

Measures and σ -algebras

1.1 Definition of measures

1.2 Carathéodory extension theorem

1.1 (Outer measures). Let Ω be a set. An *outer measure* on Ω is a function μ^* : $\mathcal{P}(\Omega) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ such that

(i) if
$$E_1 \subset E_2$$
, then $\mu^*(E_1) \le \mu^*(E_2)$, (monotonicity)

(ii)
$$\mu^*(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$$
, (countable subadditivity) for any $\{E_i\}_{i=1}^{\infty} \subset \mathcal{P}(\Omega)$.

- (a) A function $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ is an outer measure if and only if $\mu^*(E) \le \sum_{i=1}^{\infty} \mu^*(E_i)$ whenever $E \subset \bigcup_{i=1}^{\infty} E_i$.
- (b) Let $A \subset \mathcal{P}(\Omega)$ with $\emptyset \in A$. If a function $\rho : A \to [0, \infty]$ satisfies $\rho(\emptyset) = 0$, then we can associate an outer measure $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ by defining as

$$\mu^*(E) := \inf \left\{ \sum_{i=1}^{\infty} \rho(A_i) : E \subset \bigcup_{i=1}^{\infty} A_i, A_i \in \mathcal{A} \right\},$$

where we use the convention $\inf \emptyset = \infty$.

1.2 (Carathéodory measure). Let μ^* be an outer measure on a set Ω . A subset $A \subset \Omega$ is called *Carathéodory measurable* relative to μ^* if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A)$$

for every subset $E \subset \Omega$. Let \mathcal{M} be the collection of all Carathéodory measurable subsets relative to μ^* .

- (a) \mathcal{M} is an algebra and μ^* is finitely additive on \mathcal{M} .
- (b) \mathcal{M} is a σ -algebra and μ^* is countably additive on \mathcal{M} .
- (c) The measure $\mu := \mu^*|_{\mathcal{M}} : \mathcal{M} \to [0, \infty]$ is complete. We call μ the *Carathéodory measure* constructed from ρ .
- **1.3** (Carathéodory extension theorem). Let $A \subset \mathcal{P}(\Omega)$ with $\emptyset \in A$. Let $\rho : A \to [0, \infty]$ with $\rho(\emptyset) = 0$. Consider two conditions
 - (i) $A \subset \bigcup_{i=1}^{\infty} A_i$ implies $\rho(A) \leq \sum_{i=1}^{\infty} \rho(A_i)$,
 - (ii) for any $\varepsilon > 0$ and B,A there are A_1,A_2 such that $B \cap A \subset A_1$, $B \setminus A \subset A_2$ and $\rho(B) + \varepsilon > \rho(A_1) + \rho(A_2)$.

Let $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ be the associated outer measure of ρ , and $\mu : \mathcal{M} \to [0, \infty]$ the measure defined by the restriction of μ^* on Carathéodory measurable subsets.

- (a) $\mu^*|_A = \rho$ if (i) is satisfied.
- (b) $A \subset M$ if (ii) is satisfied.

Proof. (a) Clearly $\mu^*(A) \le \rho(A)$ for $A \in \mathcal{A}$.

We may assume $\mu^*(A) < \infty$. For arbitrary $\varepsilon > 0$ there is $\{A_i\}_{i=1}^{\infty}$ such that $A \subset \bigcup_{i=1}^{\infty} A_i$ and

$$\mu^*(A) + \varepsilon > \sum_{i=1}^{\infty} \rho(A_i) \ge \rho(A).$$

(b) Let $E \in \mathcal{P}(\Omega)$ and $A \in \mathcal{A}$. Then, $E \subset \bigcup_{i=1}^{\infty} A_i$ and $A_i \cap A \subset A_{i,1}$ and $A_i \setminus A \subset A_{i,2}$ such that

$$\mu^{*}(E) + \varepsilon > \sum_{i=1}^{\infty} (\rho(A_{i}) + \frac{\varepsilon}{2^{i+1}}) > \sum_{i=1}^{\infty} \rho(A_{i,1}) + \sum_{i=1}^{\infty} \rho(A_{i,2})$$
$$\geq \mu^{*}(E \cap A) + \mu^{*}(E \setminus A).$$

1.4 (Carathéodory extension from semi-ring). Let $A \subset \mathcal{P}(\Omega)$ be a semi-ring of sets on a set X. A function $\rho : A \to [0, \infty]$ with $\rho(\emptyset) = 0$ is called a *pre-measure* if

(i) $\rho(\bigsqcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \rho(A_i)$, (disjoint countable subadditivity)

(ii) $\rho(\bigsqcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \rho(A_i),$ (finite additivity)

for any $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$ with $\bigsqcup_{i=1}^{\infty} A_i \in \mathcal{A}$ and $n \in \mathbb{N}$.

Let $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ be the associated outer measure of ρ , and $\mu : \mathcal{M} \to [0, \infty]$ the measure defined by the restriction of μ^* on Carathéodory measurable subsets.

- (a) A pre-measure is a priori countably additive.
- **1.5** (Uniqueness of Carathéodory extensions). The Carathéodory extension theorem provides with a uniqueness theorem for measures.

Monotone class lemma: alternative direct proof method without using Carathéodory extension.

Measures on the real line

distribution functions

Exercises

2.1. * A Lebesgue measurable set in \mathbb{R} with positive measure contains an arbitrarily long subsequence of an arithmetic progression.

Measurable functions

3.1 Extended real numbers

3.2 Simple functions

Pointwise limit of simple functions is measurable.

Proof. Let
$$f(x) = \lim_{n \to \infty} s_n(x)$$
.

Every measurable extended real-valued function is a pointwise limit of simple functions.

Part II Integration

Lebesgue integration

4.1 Definition of Lebesgue integration

4.2 Convergence theorems

Stein: Egorov \rightarrow BCT \rightarrow Fatou \rightarrow MCT \rightarrow L1 is a measure

Stein: BCT + L1 is a measure \rightarrow DCT Folland: MCT \rightarrow Fatou \rightarrow DCT \rightarrow BCT

4.1 (Egorov's theorem). Let Ω be a finite measure space. Let $(f_n : \Omega \to \mathbb{R})_n$ be a sequence of a.e. convergent measurable functions. For $\varepsilon > 0$, there exists a measurable $E_{\varepsilon} \subset \Omega$ such that $\mu(\Omega \setminus E_{\varepsilon}) < \varepsilon$ and f_n uniformly convergent on E_{ε} .

Proof. Assume $f_n \to 0$. The set of convergence is

$$\bigcap_{k>0} \bigcup_{n_0>0} \bigcap_{n\geq n_0} \{x: |f_n(x)| < \frac{1}{k}\},\,$$

which is a full set. We want to get rid of the dependence on the point x of n_0 in the union $\bigcup_{n_0>0}$. Since

$$\bigcap_{n\geq n_0} \{x: |f_n(x)| < \frac{1}{k}\}$$

is increasing as $n_0 \to \infty$ to a full set for each k > 0, we can find $n_0(k, \varepsilon)$ such that

$$\mu(\bigcap_{n\geq n_0} \{x: |f_n(x)| < \frac{1}{k}\}) > \mu(\Omega) - \frac{\varepsilon}{2^k}.$$

Then,

$$\mu(\bigcap_{k>0}\bigcap_{n\geq n_0}\{\,x:|f_n(x)|<\tfrac{1}{k}\,\})>\mu(\Omega)-\varepsilon.$$

If we define

$$E_{\varepsilon} := \bigcap_{k>0} \bigcap_{n\geq n_0} \{x : |f_n(x)| < \frac{1}{k}\},\$$

then for any k > 0 and $x \in E_{\varepsilon}$, and with the $n_0(k, \varepsilon)$ we have chosen, we have

$$n \ge n_0 \quad \Rightarrow \quad |f_n(x)| < \frac{1}{k}.$$

Since $\{f_n(x)\}_n$ diverges if and only if

$$\exists k > 0, \quad \forall n_0 > 0, \quad \exists n > n_0 : \quad |f_n(x) - f(x)| > \frac{1}{k},$$

we have

$$\begin{split} \{x: \{f_n(x)\}_n \text{ diverges}\} &= \bigcup_{k>0} \bigcap_{n_0>0} \bigcup_{n>n_0} \{x: |f_n-f| > \frac{1}{k}\} \\ &= \bigcup_{k>0} \limsup_n \{x: |f_n-f| > \frac{1}{k}\}. \end{split}$$

Since for every k we have

$$\begin{split} \lim \sup_{n} \{x: |f_{n} - f| > \frac{1}{k}\} &\subset \limsup_{n > k} \{x: |f_{n} - f| > \frac{1}{n}\} \\ &= \lim \sup_{n} \{x: |f_{n} - f| > \frac{1}{n}\}, \end{split}$$

we have

$$\{x:\{f_n(x)\}_n \text{ diverges}\} \subset \limsup_n \{x:|f_n-f|>\frac{1}{n}\}.$$

4.3 Radon-Nikodym theorem

4.4 Modes of convergence

4.2 (Convergence in measure). Let (X, μ) be a measure space. Let f_n be a sequence of measurable functions. If f_n converges to f in measure, then f_n has a subsequence that converges to f μ -a.e.

Proof. We can extract a subsequence f_{n_k} such that

$$\mu({x:|f_{n_k}-f|>\frac{1}{k}})>\frac{1}{2^k}.$$

Since

$$\sum_{k=1}^{\infty} \mu(\{x: |f_{n_k} - f| > \frac{1}{k}\}) < \infty,$$

by the Borel-Canteli lemma, we get

$$\mu(\limsup_{k} \{x : |f_{n_k} - f| > \frac{1}{k}\}) = 0.$$

Therefore, f_{n_k} converges μ -a.e.

Product measures

- 5.1 Fubini-Tonelli theorem
- 5.2 Lebesgue measure on Euclidean spaces

Lebesgue spaces

- **6.1** L^p spaces
- **6.2** L^2 spaces
- 6.3 Dual spaces

riesz representations

Part III Linear operators

Bounded linear operators

8.1 Continuity

Schur test

8.2 Density arguments

extension of operators

8.3 Interpolation

weak Lp, marcinkiewicz

Convergence of linear operators

- 9.1 Translation and multiplication operators
- 9.2 Convolution type operators

approximation of identity

9.3 Computation of integral transforms

Part IV Fundamental theorem of calculus

Weak derivatives

The space of weakly differentiable functions with respect to all variables = $W_{loc}^{1,1}$.

10.1 (Product rule for weakly differentiable functions). We want to show that if u, v, and uv are weakly differentiable with respect to x_i , then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

(a) If u is weakly differentiable with respect to x_i and $v \in C^1$, then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

10.2 (Interchange of differentiation and integration). Let $f: \Omega \to \mathbb{R}$ such that f(x,y) and $\partial_{x_i} f(x,y)$ are both locally integrable in x and integrable y. Then,

$$\partial_{x_i} \int f(x,y) dy = \int \partial_{x_i} f(x,y) dy$$

where ∂_{x_i} denotes the weak partial derivative.

Absolutely continuity

- (a) f is $\operatorname{Lip}_{\operatorname{loc}}$ iff f' is $L_{\operatorname{loc}}^{\infty}$
- (b) f is AC_{loc} iff f' is L^1_{loc}
- (a) f is Lip iff f' is L^{∞}
- (b) f is AC iff f' is L^1
- (c) f is BV iff f' is a finite regular Borel measure

Lebesgue differentiation theorem