

L 41726-66 EWT(m)/EWP(j)/EWP(t)/ETI IJP(c) JD/WW/JG/RM

ACC NR: AP6020370

(A)

SOURCE CODE: UR/0078/66/011/003/0520/0528

29

B

AUTHOR: Gorbenko-Germanov, D. S.; Zenkova, R. A.

ORG: none

TITLE: Potassium and cesium neptunoyl tricarbonates

SOURCE: Zhurnal neorganicheskoy khimii, v. 11, no. 3, 1966, 520-528

TOPIC TAGS: neptunium compound, potassium compound, cesium compound, carbonate

ABSTRACT: Potassium and cesium neptunoyl tricarbonates were prepared from neptunium dioxide, and analysis established their common formula as $R_5[NpO_2(CO_3)_3]^1/2$ ($R = K^+, Cs^+$). Their solubility in water, 0.2 M and 50% K_2CO_3 and Cs_2CO_3 solutions was determined. Data on the neptunium content of carbonate mother solutions indicate that the dicarbonate complexes $[NpO_2(CO_3)_2]^{3-}$ may be present in them. Absorption spectra of NpO_2^+ in 50% K_2CO_3 and Cs_2CO_3 solutions were recorded in the 9000-10500 Å range; a substantial decrease of the molar extinction coefficient ϵ (by a factor of about 30) was observed as compared to the value of ϵ in 1 M HNO_3 , indicating strong complex formation between NpO_2^+ and carbonate ions. A study of the absorption spectra of crystalline $R_5[NpO_2(CO_3)_3]$ ($R = K^+, Cs^+$) in the 9000-1000 Å range permitted the determination of molar extinction coefficients of the individual splitting components of the NpO_2^+ band in the 9500-9600 Å range. Analysis of vibrational IR spectra of the

Card 1/2

UDC: 546.799.3-386

I 41726-66

ACC NR: AP6020370

neptunoyl tricarbonates showed an increase in the interaction of NpO_2^+ with CO_3^{2-} on passing from potassium to cesium, manifested in a decrease of the force constant κ of the Np-O bond from 0.504 to 0.498 mdyne/cm ($r_{\text{Np}-\text{O}} = 1.80 \text{ \AA}$). The symmetry of CO_3^{2-} in the neptunoyl tricarbonates was found to decrease from D_{3h} to C_{2v} . Orig. art. has: 4 figures and 7 tables.

SUB CODE: 07/ SUHM DATE: 06Jul65/ ORIG REF: 009/ OTH REF: 003

Card 2/2 af

MASLOVA, O.V. [author]; ZENKOVA, V. [reviewer].

A valuable reference book "The glaciers of Central Asia; a bibliography.
(O.V.Maslova. Reviewed by V.Zenkova.) Vest.AN Kazakh.SSR 10 no.6:109-
110 Je '53. (MLRA 6:8)
(Asia, Central--Glaciers--Bibliography) (Bibliography--Glaciers--
Asia, Central)

MAKAREVICH, K.G.; ZENKOVA, V.A.

New data on the dynamics of glaciers in the Dzungarian Ala-Tau.
Vest. AN Kazakh. SSR 12 no. 7:45-59 Jl '56. (MIRA 9:9)

1. Predstavlena akademikom AN KazSSR N.N. Pal'govym.
(Dzungarian Ala Tau--Glaciers)

PAL'GOV, N.N., otv. red.; ZENKOVA, V.A., red.; MAKAREVICH, K.G., red.;
CHERKASOV, P.A., red.; KOVALEVA, I.F., red.; KHUDYAKOV, A.G.,
tekhn. red.

[Glaciological research during the IGY] Gliatsiologicheskie is-
sledovaniia v period MGG. Alma-Ata, Izd-vo Akad. nauk Kazakh-
skoi SSR. No.2. [Trans-Ili and Dzungarian Ala-Tau] Zailiiskii i
Dzhungarskii Alatau. 1962. 208 p. (MIRA 15:9)

1. Akademiya nauk Kazakhskoy SSR, Alma-Ata. Otdel geografii.
(Kazakhstan—Glaciological research)

PAL'GOV, N.N., otv. red.; ZENKOVA, V.A., red.; MAKAREVICH,
K.G., red.; CHERKASOV, P.A., red.; OSTROVERKHOV, A.P.,
red.; KHUDYAKOV, A.G., tekhn.red.

[Glaciological research during the IGY] Gliatsiologiche-
skie issledovaniia v period MGG. Alma-Ata, Izd-vo AN
Kazakhskoi SSR. No.3. [Trans-Ili and Dzungarian Alatau]
Zailiiskii i Dzhungarskii Alatau. 1963. 228 p.

(MIRA 17:2)

1. Akademiya nauk Kazakhskoy SSR, Alma-Ata. Otdel geografii.

PAL'GOV, N.N., otv. red.; ZENKOVA, V.A., red.; MAKAREVICH, L.G.,,
red.; OSTROVERKHOV, A.P., red.

[Glacial investigations during the IGY period] Gliatsiologicheskie issledovaniia v period MGG. Alma-Ata, Izd-vo AN Kazakh.SSR. No.4.[Trans-Ili and Kirghiz Alatau. Altai] Zailiiskii i kirgizskii Alatau. Altai. 1964. 166 p.
(MIRA 17:9)

1. Akademiya nauk Kazakhskoy SSR, Alma-Ata. Sektor fizicheskoy geografii.

PAL'GOV, N.N., otv. red.; VILESOV, Ye.N., red.; ZENKOVA, V.A.,
red.; MAKAREVICH, K.G., red.; CHERKASOV, F.A., red.;
PAL'GOVA, Z.N., red.

[Glaciological research in Kazakhstan] Gliatsiologiche-
skie issledovaniia v Kazakhstane. Alma-Ata, Nauka.
No.5. 1965. 189 p. (MIRA 19:1)

1. Akademiya nauk Kazakhskoy SSR, Alma-Ata, Sektor fizi-
cheskoy geografii.

ZENKOVA, V.A.

Extent of glaciation of the Trans-Ili Ala-Tau. Trudy
Sekt.geog. AN Kazakh. S.S.R. no.6:139-155 '60.
(MIRA 13:7)
(Trans-Ili Ala-Tau—Glaciers)

ZENKOVA, V.A.

Glaciers of the Ayutor River in the Talas Ala-Tau. Izv. AN Kazakh.
SSR. Ser. geol. no. 19:179-182 '55. (MLRA 9:8)
(Ayutor Valley--Glaciers)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

ZENKOVA V.A.

Glaciers of Dzungarian Ala-Tau. Trudy Sekt. Geog. AN Kazakh SSR
no. 3:138-155 '59.
(MIRA. 12:7)
(Dzungarian Ala-Tau--Glaciers)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

ZENKOVA, V.A.

Present-day glaciation in the Karatal Kora River basin in the
Dzungarian Ala-Tau. Trudy Sekt.geog.AN Kazakh.SSR no.3:156-175
'59. (MIRA 12:7)

(Kora Valley--Glaciation)

ZENKOVA, V.A.

Kora glaciers in the Dzungarian Ala-Tau. Izv.AN Kazakh.SSR,Ser.
geol. no.16:125-126 '53. (MLRA 9:5)
(Dzungarian Ala-Tau--Glaciers)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

ZENKOVA, V.A.

Glaciers of the upper reaches of the Baskan River in the Dzungarian
Ala-Tau. Geog.sbor. 4:90-97 '54. (MLRA 7:9)
(Baskan Valley--Glaciers) (Glaciers--Baskan Valley)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

ZENKOVA, V.A.

Distribution of present-day glaciation on the northern slope of the
Dzungarian Ala-Tau according to the altitude. Trudy Otd. geog. AN
Kazakh. SSR no.8:193-199 '61. (MIRA 14:8)
(Dzungarian Ala-Tau--Glaciers)

ZENKOVA, V.V., operatsionnaya sestra

Simplified method for preparing cotton cigarette-shaped tampons
for drying the eye during surgery. Med.sestra 21 no.9:48-49 S
'62. (MIRA 15:9)

1. Iz glaznoy kliniki Permskogo meditsinskogo instituta.
(EYE—SURGERY) (SURGICAL INSTRUMENTS AND APPARATUS)

RUBINSHTEYN, M.I.; OTAROV, G.O.; Prinimala uchastiyey: ZENKOVA, Ye.M.

Moisture conditions of the dry Sierozems in southern Kazakhstan.
Pochvovedenie no.4:36-43 Ap '64. (NIRA 17:10)

I. Kazakhskiy nauchno-issledovatel'skiy institut zemledeliya.

ZENKOVA, Ye. M., Cand Agr Sci -- "Certain problems of the cultivation of new lands in the dry-steppe belt of Kustanayskaya Oblast." Alma Ata, 1960 (Min of Higher and Secondary Specialized Education Kaz SSR. Kazakh State Agr Inst).
(KL, 1-61, 200)

-290-

ZEN'KOVA, Yefrosin'ya Savel'yevna

It happened near Vitabak. Efrosin'ia Savel'yevna Zenkova. As told to
K. Iakovleva. Rabotnitsa 36 no.8:7 Ag '58. (NIRA 11:9)
(World War, 1939-1945--Personal narratives)

AERAMOV, S.K.; KUZNETSOVA, N.A.; MUFTAKHOV, A.Zh.; Prinimala
uchastiye ZENKOVA, Ye.P. AERAMOV, S.K., red.;
SKVORTSOVA, T.P., red.; GOL'BERG, T.M., tekhn. red.

[Stratal drainage in industrial and municipal construction]
Plastovye drenazhi v promyshlennom i gorodskom stroitel'stve.
Moskva, Stroizdat, 1964. 180 p. (MIRA 17:3)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

ZENKOVA, Ye.Ya. [Zenkova, E.IA.]; KUPREVICH, V.F.

Rust fungi of the tribe Tranzschelliaeae in the U.S.S.R. Vestsi
AN BSSR. Ser. biol. nav. no.4:15-25 '62. (MIRA 17:8)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

ZENKOVA, Ye.Ya.

A new fungus from the family Pucciniaceae-Uromyces euphorbiae-polystimotica Zankova sp. nova. Dokl. AN BSSR 7 no.11:783-784
M '63. (MIRA 17:9)

1. Botanicheskiy institut im. V.L. Komarova. Predstavлено akademikom AN BSSR V.F. Kuprevichem.

ZENKOVA, Ye.Ya.

Hepaticas from the region of excavation of the Taymyr mammoth.
Bot. zhur. 39 no.6:915-917 N-D '54. (MLRA 8:2)
(Taymyr Peninsula--Hepaticae)

ZENKOVA, Ye.Ya.

A study of hepaticas of Taymyr (Ad floram Hepaticarum paeninsula
Taymyr). Bot.mat.Otd.spor.rast. 9:162-168 My '53. (MLRA 7:2)
(Taymyr Peninsula--Hepaticae) (Hepaticae--Taymyr Peninsula)

LADYZHENSKAYA, K.I.; ZENKOVA, Ye.Ya.

Liverwort spores as a systematic characteristic exemplified by the genus *Fessembreria* Naddi. Bot. zhur. 40 no. 6: 853-857 N-D '55.

1. Botanicheskiy institut imeni V.I.Komarova Akademii nauk SSSR,
Leningrad.

(Hepaticae) (Speres)

LADYZHENSKAYA, K. I.; ZENKOVA, Ye. Ya.

Ecology of the genus Mylia Gray within the U.S.S.R. (Ad oecologiam
generis Mylia Gray in URSS). Bot.mat.Otd.spor.rast. 10:231-240
Ja '55. (MIRA 8:7)
(Hepaticae)

ZENKOVA, Ye.Ya.

A study of hepaticas of Taymyr (Ad floram Hepaticarum paeninsula
Taymyr). Bot.mat.Otd.spor.rast. 9:162-168 My '53. (MIR 7:2)
(Taymyr Peninsula--Hepaticae) (Hepaticae--Taymyr Peninsula)

ZENKOVA, Z.A.

ALEKSANDROVA-ZAORSKAYA, V.V.; ARNOLD, V.S.; ADAMCHUK, V.A.; BARANSKIY,
N.N.; BARDIN, I.P.; VASYUTIN, V.F.; VITYAZEVA, V.A.; GORDONOV,
L.Sh.; DOLGOPOLOV, K.V.; ZENKOVA, Z.A.; NECHINOV, V.S.; OBRU-
CHEV, V.V.; RYAZANTSEV, S.N.; SOKOLOV, A.V.; STEPANOV, P.N.;
CHERDANTSEV, G.N.

A.M. Volkov; obituary. Izv. AN SSSR Ser.geog. no.6:106-107 N-D '54.
(Volkov, Aleksandr Mikhailovich, 1890-1954) (MIRA 8:3)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

PEREMETOV, B.V.; ZEN'KOVICH, A.M.

Installation of aluminum exhaust pipes. Prom.stroi. 41 no.9:11-13
S '63. (MIRA 16:11)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

ZENKOVICH, B. A.

BC

A-4

Milk of large cetaceans. B. A. ZINNOVITCH (Compt. rend. Acad. Sci. U.R.S.S., 1938, 20, 203-205).—Analysis of milk of various species of whales are recorded. In general the fat contents are high, especially in those species which migrate north with their young early in the season. A. G. P.

ZENKOVICH, B. A.		PROCESSED AND PROPERTIES INDEX										100 AND 101 AND 102	
												103 AND 104 AND 105	
												106 AND 107 AND 108	
												109 AND 110 AND 111	
												112 AND 113 AND 114	
												115 AND 116 AND 117	
												118 AND 119 AND 120	
												121 AND 122 AND 123	
												124 AND 125 AND 126	
												127 AND 128 AND 129	
												130 AND 131 AND 132	
												133 AND 134 AND 135	
												136 AND 137 AND 138	
												139 AND 140 AND 141	
												142 AND 143 AND 144	
												145 AND 146 AND 147	
												148 AND 149 AND 150	
												151 AND 152 AND 153	
												154 AND 155 AND 156	
												157 AND 158 AND 159	
												160 AND 161 AND 162	
												163 AND 164 AND 165	
												166 AND 167 AND 168	
												169 AND 170 AND 171	
												172 AND 173 AND 174	
												175 AND 176 AND 177	
												178 AND 179 AND 180	
												181 AND 182 AND 183	
												184 AND 185 AND 186	
												187 AND 188 AND 189	
												190 AND 191 AND 192	
												193 AND 194 AND 195	
												196 AND 197 AND 198	
												199 AND 200 AND 201	
												202 AND 203 AND 204	
												205 AND 206 AND 207	
												208 AND 209 AND 210	
												211 AND 212 AND 213	
												214 AND 215 AND 216	
												217 AND 218 AND 219	
												220 AND 221 AND 222	
												223 AND 224 AND 225	
												226 AND 227 AND 228	
												229 AND 230 AND 231	
												232 AND 233 AND 234	
												235 AND 236 AND 237	
												238 AND 239 AND 240	
												241 AND 242 AND 243	
												244 AND 245 AND 246	
												247 AND 248 AND 249	
												250 AND 251 AND 252	
												253 AND 254 AND 255	
												256 AND 257 AND 258	
												259 AND 260 AND 261	
												262 AND 263 AND 264	
												265 AND 266 AND 267	
												268 AND 269 AND 270	
												271 AND 272 AND 273	
												274 AND 275 AND 276	
												277 AND 278 AND 279	
												280 AND 281 AND 282	
												283 AND 284 AND 285	
												286 AND 287 AND 288	
												289 AND 290 AND 291	
												292 AND 293 AND 294	
												295 AND 296 AND 297	
												298 AND 299 AND 300	
												301 AND 302 AND 303	
												304 AND 305 AND 306	
												307 AND 308 AND 309	
												310 AND 311 AND 312	
												313 AND 314 AND 315	
												316 AND 317 AND 318	
												319 AND 320 AND 321	
												322 AND 323 AND 324	
												325 AND 326 AND 327	
												328 AND 329 AND 330	
												331 AND 332 AND 333	
												334 AND 335 AND 336	
												337 AND 338 AND 339	
												340 AND 341 AND 342	
												343 AND 344 AND 345	
												346 AND 347 AND 348	
												349 AND 350 AND 351	
												352 AND 353 AND 354	
												355 AND 356 AND 357	
												358 AND 359 AND 360	
												361 AND 362 AND 363	
												364 AND 365 AND 366	
												367 AND 368 AND 369	
												370 AND 371 AND 372	
												373 AND 374 AND 375	
												376 AND 377 AND 378	
												379 AND 380 AND 381	
												382 AND 383 AND 384	
												385 AND 386 AND 387	
												388 AND 389 AND 390	
												391 AND 392 AND 393	
												394 AND 395 AND 396	
												397 AND 398 AND 399	
												400 AND 401 AND 402	
												403 AND 404 AND 405	
												406 AND 407 AND 408	
												409 AND 410 AND 411	
												412 AND 413 AND 414	
												415 AND 416 AND 417	
												418 AND 419 AND 420	
												421 AND 422 AND 423	
												424 AND 425 AND 426	
												427 AND 428 AND 429	
												430 AND 431 AND 432	
												433 AND 434 AND 435	
												436 AND 437 AND 438	
												439 AND 440 AND 441	
												442 AND 443 AND 444	
												445 AND 446 AND 447	
												448 AND 449 AND 450	
												451 AND 452 AND 453	
												454 AND 455 AND 456	
												457 AND 458 AND 459	
												460 AND 461 AND 462	
												463 AND 464 AND 465	
												466 AND 467 AND 468	
												469 AND 470 AND 471	
												472 AND 473 AND 474	
												475 AND 476 AND 477	
												478 AND 479 AND 480	
												481 AND 482 AND 483	
												484 AND 485 AND 486	
												487 AND 488 AND 489	
												490 AND 491 AND 492	
												493 AND 494 AND 495	
												496 AND 497 AND 498	
												499 AND 500 AND 501	
												502 AND 503 AND 504	
												505 AND 506 AND 507	
												508 AND 509 AND 510	
												511 AND 512 AND 513	
												514 AND 515 AND 516	
												517 AND 518 AND 519	
												520 AND 521 AND 522	
												523 AND 524 AND 525	
												526 AND 527 AND 528	
												529 AND 530 AND 531	
												532 AND 533 AND 534	
												535 AND 536 AND 537	
												538 AND 539 AND 540	
												541 AND 542 AND 543	
												544 AND 545 AND 546	
												547 AND 548 AND 549	
												550 AND 551 AND 552	
												553 AND 554 AND 555	
												556 AND 557 AND 558	
												559 AND 560 AND 561	
												562 AND 563 AND 564	
												565 AND 566 AND 567	
												568 AND 569 AND 570	
												571 AND 572 AND 573	
												574 AND 575 AND 576	
												577 AND 578 AND 579	
												580 AND 581 AND 582	
												583 AND 584 AND 585	
												586 AND 587 AND 588	
												589 AND 590 AND 591	
												592 AND 593 AND 594	
												595 AND 596 AND 597	
												598 AND 599 AND 600	
												601 AND 602 AND 603	
												604 AND 605 AND 606	
												607 AND 608 AND 609	
												610 AND 611 AND 612	
												613 AND 614 AND 615	
												616 AND 617 AND 618	
												619 AND 620 AND 621	
												622 AND 623 AND 624	
												625 AND 626 AND 627	
												628 AND 629 AND 630	
												631 AND 632 AND 633	
												634 AND 635 AND 636	
												637 AND 638 AND 639	
												640 AND 641 AND 642	
												643 AND 644 AND 645	
												646 AND 647 AND 648	
												649 AND 650 AND 651	
												652 AND 653 AND 654	
												655 AND 656 AND 657	
												658 AND 659 AND 660	
												661 AND 662 AND 663	
												664 AND 665 AND 666	
												667 AND 668 AND 669	
												670 AND 671 AND 672	
												673 AND 674 AND 675	
												676 AND 677 AND 678	
												679 AND 680 AND 681	
												682 AND 683 AND 684	
												685 AND 686 AND 687	
												688 AND 689 AND 690	
												691 AND 692 AND 693	
												694 AND 695 AND 696	
												697 AND 698 AND 699	
												700 AND 701 AND 702	
												703 AND 704 AND 705	
												706 AND 707 AND 708	
												709 AND 710 AND 711	
												712 AND 713 AND 714	
												715 AND 716 AND 717	
												718 AND 719 AND 720	
												721 AND 722 AND 723	
												724 AND 725 AND 726	
												727 AND 728 AND 729	
												730 AND 731 AND 732	
												733 AND 734 AND 735	
												736 AND 737 AND 738	
												739 AND 740 AND 741	
												742 AND 743 AND 744	
												745 AND 746 AND 747	
												748 AND 749 AND 750	
												751 AND 752 AND 753	
												754 AND 755 AND 756	
												757 AND 758 AND 759	
												760 AND 761 AND 762	
												763 AND 764 AND 765	
												766 AND 767 AND 768	
												769 AND 770 AND 771	
												772 AND 773 AND 774	
												775 AND 776 AND 777	
												778 AND 779 AND 780	
												781 AND 782 AND 783	
												784 AND 785 AND 786	
												787 AND 788 AND 789	
												790 AND 791 AND 792	
												793 AND 794 AND 795	
												796 AND 797 AND 798	
												799 AND 800 AND 801	
												802 AND 803 AND 804	
												805 AND 806 AND 807	
												808 AND 809 AND 810	
												811 AND 812 AND 813	
												814 AND 815 AND 816	
												817 AND 818 AND 819	
												820 AND 821 AND 822	
												823 AND 824 AND 825	
												826 AND 827 AND 828	
												829 AND 830 AND 831	
												832 AND 833 AND 834	
												835 AND 836 AND 837	
												838 AND 839 AND 840	
												841 AND 842 AND 843	
												844 AND 845 AND 846	
												847 AND 848 AND 849	
												850 AND 851 AND 852	
												853 AND 854 AND 855	
												856 AND 857 AND 858	
												859 AND 860 AND 861	
												862 AND 863 AND 864	
												865 AND 866 AND 867	
												868 AND 869 AND 870	
												871 AND 872 AND 873	
												874 AND 875 AND 876	
												877 AND 878 AND 879	
												880 AND 881 AND 882	
												883 AND 884 AND 885	
												886 AND 887 AND 888	
												889 AND 890 AND 891	
												892 AND 893 AND 894	
												895 AND 896 AND 897	
												898 AND 899 AND 900	
												901 AND 902 AND 903	
												904 AND 905 AND 906	
												907 AND 908 AND 909	
												910 AND 911 AND 912	
												913 AND 914 AND 915	
												916 AND 917 AND 918	
												919 AND 920 AND 921	
												922 AND 923 AND 924	
												925 AND 926 AND 927	
												928 AND 929 AND 930	
												931 AND 932 AND 933	
												934 AND 935 AND 936	
												937 AND 938 AND 939	
												940 AND 941 AND 942	
												943 AND 944 AND 945	
												946 AND 947 AND 948	
												949 AND 950 AND 951	
												952 AND 953 AND 954	
												955 AND 956 AND 957	
												958 AND 959 AND 960	
												961 AND 962 AND 963	
												964 AND 965 AND 966	
												967 AND 968 AND 969	
												970 AND 971 AND 972	
												973 AND 974 AND 975	
												976 AND 977 AND 978	
												979 AND 980 AND 981	
												982 AND 983 AND 984	
												985 AND 986 AND 987	
												988 AND 989 AND 990	
												991 AND 992 AND 993	
												994 AND 995 AND 996	
												997 AND 998 AND 999	
												1000 AND 1001 AND 1	

20G48

USSR/Whaling Industry 4307.1000

Oct 1947

"Whale Fishing in the USSR and the General Outlook
for Its Growth," B. A. Zenkovich, 6 pp

"Ryb Khoz" Vol XXIII, No 10

Gives tables showing extent of whale fishing in
USSR from 1932, year of over-all Soviet intensifica-
tion of national economy, to 1946. Cites production
figures of USSR whaling industry in Far East, sum-
marizing statistics of Japan and Korea over same
period. Reviews whaling industry along North Ameri-
can Pacific Coast for similar period.

20G48

ZENKOVICH, B. A.

13G45

USSR/Whaling Industry 4307.1000

Dec 1947

"The Whaling Industry of the USSR and the Prospects
for Its Development," B. A. Zenkovich, 7 pp

"Rybnoye Khoz" Vol XXXI, No 12

Study of whaling regions and possibilities of Antarctic regions. Includes map of Antarctic regions with whaling fields indicated and tables giving data on whaling industry by season from 1919 to 1946, by varieties. This is conclusion of an article begun in issue No 10.

LC

13G45

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

ZENKOVICH, B.A.

[Around the world on a whaling expedition] Vokrug sveta za kita-mi. Moskva, Gos. izd-vo geograficheskoi lit-ry, 1954. 407 p.
(MLRA 7:12D)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

PAVLOVSKIY, Ye.N., akad., glav. red.; ZENKOVICH, B.A., red.;
FREYNBERG, S.Ye., red.; CHAPSKIY, K.K., red.; MAKAROV,
B.M., red.

[Marine mammals] Morskie mlekopitaiushchie. Moskva, Nauka,
1965. 317 p.
(MIRA 18:5)

1. Akademiya nauk SSSR. Ikhtiolicheskaya komissiya.
2. Vsesoyuznyy nauchno-issledovatel'skiy institut morskogo
rybnogo khozyaystva i okeanografii (for Zenkovich). 3. Zo-
ologicheskiy institut AN SSSR (for Chapskiy).

ZENKOVICH, B.A.

Observations on marine mammals and other animals made by the
Antarctic Expedition of the Academy of Sciences of the U.S.S.R.
(1957-1958). Trudy sov. Ikht. kom. no.12:23-24 '61. (MIRA 14:6)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut morskogo
rybnogo khozyaystva i okeanografii.
(Antarctic regions--Marine mammals)

ZENKOVICH, Boris Aleksandrovich; CHIZHOV, N.N., red.; POPOVA, V.I.,
mladshiy red.; KISMLEVA, Z.A., red.kart; OLEMYKH, D.A., tekhn.red.

[Voyage to the southern oceans and around the world; notes of
a participant in the First Soviet Scientific Expedition Around
the World of the Academy of Sciences of the U.S.S.R., 1957-1958]

Puteshestvie v Juzhnyi okean i vokrug sveta; zapis i uchastnika
1-i sovetskoi nauchnoi krugosvetnoi ekspeditsii Akademii nauk
Sovieta SSR, 1957-1958 gg. Moskva, Gos.izd-vo geogr.lit-ry, 1960.

326 p.
(Voyages around the world) (Antarctic regions) (MIRA 13:12)

ZENKOVICH, B.A., kand.biol.nauk

Observations on whales during the third voyage of the Soviet
Antarctic Expedition in 1957-1958. Inform.biul.Sov.antark.
eksp. no.3:75-76 '58.

(MIRA 12:4)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut rybnogo
khozyaystva i okeanografii.
(Antarctic regions--Whales)

PA 170T88

USSR/Oceanography - Littoral Dynamics Dec 48

"Deformation of a Trochoidal Wave at the
Shore," B. P. Zenkovich, V. I. Budanov

"Meteorol i Gidrol" No 6, pp 99-101

Describes the "Medusa", instrument designed in
the Inst of Oceanol, Acad Sci USSR, to measure
wave velocities at the bottom close to shore.
Complete unit has 4-cup vane, photocell, and
3-strand cable, and receiving unit (amplifica-
tion stage, relay, and control instrument).
Gives results of tests in Jul 47 on the Black
Sea at the Caucasus shore. Submitted
13 Feb 48.

FDD

170T88

FEDOSEN'Y, A.D. and F.A. SEM'KOVICH. Mostorozhdeniia glin SSSR; opisanie,
sostav, svoistva i primenenie; pod red. F.A. Semiatchenskogo. Moskva, AN SSSR,
1937. 662 p. (Akademija Nauk SSSR. Petrograficheskii institut im. F. Iu.
Levinson-Lessinga. Petrografiia SSSR. Seriia II, no. 2.)
Bibliography at end of chapters.

DLC: 1E420.A6

SO: LC, Soviet Geography, Part I, 1951, Uncl.

2
Fedorov, A. D. and Zenkovich, F. A. Ural deposits of Ogneupory, o. Sverdlovsk (URSS). A short description of the chief deposits of dolomite located in the Urals is given. Laboratory experiments show that these dolomites are excellent raw material for the production of forsterite refractories.

2

Co

19

Circulation of water in clay masses during their drying. E. A. ZENKOVICH. Keram. i Selsko 7, No. 11, 2, 46-50 (1931).—The circulation and distribution of moisture in clay masses during drying were studied. Different kinds of clay, kaolin and porcelain masses were examined. At definite intervals the moisture contents were detd. When the vol. of the clay mass with a definite water content was known, curves (called "deformation curves") of the modification of shrinkage were drawn. It was found that there is a certain max. in the difference in water content between 2 contiguous layers of the mass, beyond which limit deformation is inevitable. To obtain an easier elimination of water in the drying mass and to decrease the difference in water content between the surface and the interior layers, it is necessary (1) to add thinning materials to the paste, or (2) to change the surrounding air, making it cooler, heating it or humidifying it according to the kind of material used and its properties. M. V. KONDROY

Zemtcheoski, P. A., and Zenkovich, F. A.
 DETERMINING REFRACTORINESS OF CLAY. *Trans. Cram. Research Inst. (U.S.S.R.)*, 24, 20 pp. (1930) - Clays which were pulverized, mixed into a paste, and molded into cones of a definite size, were fused by an apparatus consisting of a soldering pipe heated by a blasted alcohol flame. Knowing the diameter of the cone, it was easy to determine the melting temperature of the clay cones. In cases where the clay samples did not melt, melting agents were added to the paste, and according to the quantity added, it was possible to ascertain the melting temperature. The diameter of the cone must remain constant. Iron oxide and lime, which do not produce a eutectic, proved to be the most appropriate melting agents. Tables were compiled from which the melting temperature could be ascertained. Comparing the results of these tests for the refractoriness of clays, a difference of about 50° was found. Only 30 minutes are required for the tests. This method used in practice give very satisfactory results.

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

ZEN'KOVICH, G., kand.arkhitektury

Designing and building sections of club houses. Stroi.i arkhit.
8 no.6:19-21 Je '60. (MIRA 13:6)
(Clubhouses)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

ZEN'KOVICH, O. [Zen'kovych, H.], kand. arkhitektury

Design of a clubhouse to be built economically. Sil'. bud. 9 no.2:
19-21 F '59.
(Clubhouses) (MIRA 12:6)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

ZEN'KOVICH, G. [Zen'kovych, H.], kand.arkhitektury; GAYDUCHENYA,
U. [Haiduchenia, O.], arkitektor; SAMSONOVA, T., arkitektor
Community center in a new village. Sill'. bud. 11 no.8:15-16
Ag '61. (MIRA 14:9)
(Chornobaiyka—Community centers)

TOPCHIYEVA, K.V.; ZEN'KOVICH, I.A.; TRESHCOVA, Ye.G.

Effect of hydrogen on the thermal and catalytic cracking of
n-octane. Vest.Mosk.un.Ser.mat.,mekh.,astron.,fiz.,khim.
no.6:164-170 '59.

(MIRA 13:10)

1. Kafedra fizicheskoy khimii Moskovskogo universiteta.
(Cracking process) (Octane)

TOPCHIYEVA, K.V.; ZEN'KOVICH, I.A.; BUKANAYEVA, F.M.

Catalytic activity of rare earth oxides deposited on silica in reactions involving the decomposition of alcohol. Vest. Mosk. un. Ser. 2: Khim. 16 no.1:34-37 Ja-F '61. (MIR 14:4)

1. Kafedra fizicheskoy khimii Moskovskogo universiteta.
(Rare earth oxides) (Dehydration (Chemistry))

69791

S/055/59/000/06/20/027
B004/B002

5.3300

AUTHORS:

Topchiyeva, K. V., Zen'kovich, I. A., Treshchova, Ye. G.

TITLE:

The Influence of Hydrogen on Thermal and Catalytic Cracking^{II}
of n-Octane

PERIODICAL:

Vestnik Moskovskogo universiteta. Seriya matematiki, mekhaniki,
astronomii, fiziki, khimii, 1959, No. 6, pp. 164 - 170

TEXT: For their investigation, the authors partly used a synthetic aluminosilicate ($30\% \text{Al}_2\text{O}_3 + 70\% \text{SiO}_2$) and partly a commercial aluminosilicate catalyst. The range of the experimental temperature was $450 - 550^\circ$. The mixture obtained from hydrogen and cracking products was analyzed, its density was determined, and Raman spectra were taken from the liquid products. Preliminary experiments showed that besides catalytic cracking, also thermal cracking took place (Fig. 1). Therefore, the total yield of cracking and the yield of thermal cracking were determined and from the difference, also the yield of catalytic cracking. The yield of thermal cracking decreases with an increasing flow rate of octane, while that of catalytic cracking remains unchanged, namely 8%. The yield of thermal cracking was above all dependent on the experimental apparatus

Card 1/2

The Influence of Hydrogen on Thermal and
Catalytic Cracking of n-Octane

69791
S/055/59/000/06/20/027
B004/B002

(Table 1, Fig. 2). The reaction furnace No. 1 used first had too much of lost space (gaps not filled by the catalyst) in which thermal cracking took place due to overheating. By using reaction furnace No. 2 thermal cracking of octane could be reduced to about one half. Table 2 and Fig. 3 give the results of the reaction after the addition of hydrogen and nitrogen. Hydrogen increases the yield of thermal cracking by 6%, and nitrogen by 3%. Fig. 4 shows that the yield of thermal cracking at 500° increases up to a constant value if the molecular ratio of $H_2 : C_8H_{18}$ is increased. Fig. 5 shows the same result at 530°. The yield of catalytic cracking was not affected by hydrogen. Table 3 gives the analyses of the cracking products. In the presence of hydrogen, isomerization of n-octane set in. At 500° 5% of 3-methylheptane was obtained and at 550° 10%. The authors mentioned B. T. Abayeva (Ref. 4). There are 5 figures, 3 tables, and 11 references, 6 of which are Soviet.

ASSOCIATION: Kafedra fizicheskoy khimii (Chair of Physical Chemistry)
SUBMITTED: February 25, 1959

Card 2/2

TOPCHIYEVA, K.V.; ZEN'KOVICH, I.A.; BUKANAYEVA, F.M.

Effect of rare earth oxide impurities on the catalytic properties
of some oxide catalysts in reactions of hydrocarbons. Vest. Mosk.
un. Ser. 2: Khim. 15 no.5:3-5 S-0 '60. (MIRA 13:11)

1. Moskovskiy gosudarstvennyy universitet, kafedra fizicheskoy
khimii.

(Rare earth oxides) (Catalysts)

S/189/60/000/005/001/006
B110/217

AUTHORS:

Topchiyeva, K. V., Zen'kovich, I. A., Bukanayeva, F. M.

TITLE:

Effect exerted by the addition of rare earth oxides upon the catalytic properties of some oxidizing catalysts in hydro-carbon reactions

PERIODICAL:

Vestnik Moskovskogo universiteta. Seriya 2, khimiya, no. 5,
1960, 3-5.

TEXT: Rare earths (Sm_2O_3 ; Nd_2O_3) are good dehydrogenating and cyclizing catalysts for paraffins and cycloparaffins, the activity of which is greatly increased by mixing with Al_2O_3 . The authors aimed at obtaining a catalyst with bifunctional action (rare earth component for dehydrogenation) by adding rare earth oxides to aluminum silicate. The most active aluminum silicate (30% Al_2O_3 ; 70% SiO_2) with admixtures of 5% of the total weight of La_2O_3 ; Nd_2O_3 ; Sm_2O_3 ; Pr_2O_3 ; Y_2O_3 ; Yb_2O_3 , was tested. $\text{Al}(\text{OH})_3$, silica gel, and rare earth hydroxide were mixed and activated in the N_2 current at 550°C to pro-

Card 1/5

Effect exerted by ...

S/189/60/000/005/001/006
B110/B217

duce the catalysts. Each experiment was followed by reactivation in the air current at 500-550°C. Cumene cracking was studied at 450°C and a volume rate of 1 ml/ml·hr. When 5% oxide were added, the cracking ratio, mole of the separated gas : mole of passed through cumene decreased from 45% to 35%. n-octane was also investigated at 500°C and a volume rate of 0.65 ml/ml hr. The ratio, gas weight : weight of the passed through n-octane decreased by ~ 2 mole%, with gas- and catalyzate composition remaining unchanged after analysis by means of BTM(VTI) apparatus. 5% Nd_2O_3 admixture at 320°C, H_2 pressure = 24 atm., volume rate, 1 ml/ml·hr resulted at unchanged composition of the catalyzate in a decrease of cracking by ~7 mole%. This reduction of activity is due to a contamination of the acid aluminum silicate centers by the strongly basic hydroxides of the rare earths and partial destruction of the aluminum silicate structure. Also the catalysts: 95% Al_2O_3 : 5% Pr_2O_3 ; 95% Al_2O_3 : 5% Yb_2O_3 ; 95% Al_2O_3 : 5% Sm_2O_3 ; 80% Al_2O_3 : 20% La_2O_3 ; 80% Al_2O_3 : 20% Pr_2O_3 , with n-octane at 500-545°C and a volume rate of 0.64-0.16 ml/ml·hr, resulted in no increase of activity. The increase of cracking by ~6-10% obtained with 80% Al_2O_3 : 20% Pr_2O_3 at a volume rate of

Card 2/5

Effect exerted by ...

S/189/60/000/005/001/006
B110/B217

0.16 ml/ml·hr is due to the hydrogenation properties of Pr_2O_3 . The results the authors obtained with the following catalysts: 85% Al_2O_3 : 15% Me_2O_3 ($\text{Me} = \text{Nd}, \text{Sm}$) were in complete disagreement with those of V. I. Komarewsky (Ref. 1: Industr. and Engng. chem., 49, No. 2, 264-265, 1957). The experiment made by this researcher with heptane and 85% Al_2O_3 with 15% Nd_2O_3 was repeated, the catalyst being produced by his method of mixing and coprecipitation. The calculated amount of highly acid 0.39 M $\text{Nd}(\text{NO}_3)_3$ was added to 0.725 M sodium aluminate solution. The catalyst was activated at 550°C in the N_2 current. No increase of activity as compared to pure Al_2O_3 was established. Possibly, Komarewsky prepared his mixing catalysts in a different way, or he compared their activity with that of the rare earth oxide and thought that Al_2O_3 was inactive. The higher activity of his catalysts may also be due to Al_2O_3 which, according to its way of preparation, may also have dehydrogenating properties (Table). There are 1 table and 3 references: 1 Soviet-bloc and 2 non-Soviet-bloc. The reference to English-language publications reads as follows: Ref. 2: Ciapetta F. G., Hunter J.

Card 3/5

Effect exerted by ...

S/189/60/000/005/V01/006
B110/B217

B. Industr. and Engng. chem., 45, 147-55, 1953.

ASSOCIATION: Moskovskiy gosudarstvennyy universitet im. M. V. Lomonosova,
Kafedra fizicheskoy khimii (Moscow State University imeni M. V.
Lomonosov Department of Physical Chemistry)

SUBMITTED: July 14, 1959

Legend to the Table: The conversion of n-heptane at 525°C on the mixing catalyst, 85% Al₂O₃ : 15% Nd₂O₃; 1) catalyst; volume rate ml/ml·hr; 2) thermal cracking 4.85 ml/hr; 3) coprecipitation method; 4) mixing method; 5) data by Komarewsky; 6) bulk factor of the catalyst, ml; 7) yield, wt%; 8) of gas; 9) of catalyst; 10) losses; 11) gas composition, vol%; 12) paraffins; 13) and 14) olefins; 15) aromatic components; 16) catalyzate composition, wt%.

Card 4/5

Effect exerted by ...

S/189/60/000/005/001/006
B110/B217Превращение н-гептана при 525° на смешанном катализаторе состава
85% Al₂O₃:15% Nd₂O₃, °C.

Насыпной объем катализатора, мл/мл.час	Выход, вес. %	Состав газа, в объеме, %			Состав катализатора, вес. %		
		газа	катализатора	потери /%	H ₂	парaffины	олефины
1 Катализатор: объемная скорость, мл/мл.час							
2 Термический крекинг 4,58 мл/час	—	15,0	85,0	0	1,00	85,8	13,2
Al ₂ O ₃ 0,15	30	22,6	72,3	5,1	18,1	71,5	10,4
3 (Метод соосаждения) 0,15 85% Al ₂ O ₃ :15% Nd ₂ O ₃	30	17,2	70,2	12,6	15,8	73,2	11,0
4 (Метод смешения) 0,15 85% Al ₂ O ₃ :15% Nd ₂ O ₃	30	21,9	62,8	12,3	13,5	68,9	12,6
5 (Данные Комаренского) 0,15 85% Al ₂ O ₃ :15% Nd ₂ O ₃	30	—	71,8	—	64,8	22,5	12,3
							21

Card 5/5

AUTHORS: Topchiyeva, K. V., Pletyushkina, A. I., 79-28-3-13/61
Zen'kovich, I. A.

TITLE: The Reaction of Allyl Benzene on Catalysts of Aluminum Silicates (Prevrashcheniye allilbenzola na alyumosilikatnykh katalizatorakh)
I. Investigation of the Reaction Kinetics
(I. Izuchenie kinetiki prevrashcheniya)

PERIODICAL: Zhurnal Obshchey Khimii, 1958, Vol. 28, Nr 3, pp. 624-631
(USSR)

ABSTRACT: The present work continues earlier investigations on the reaction mechanism of the isomerization of hydrocarbons in order to likewise check the assumption made before that there are two kinds of active centers acting in this reaction mechanism. For this purpose the reaction kinetics of an aromatic hydrocarbon with unsaturated binding in the side chain - the allyl benzene - was investigated; this was done in liquid and vapor phase on conditions excluding cracking. In this different catalysts from the aluminum silicate series as well as pure aluminum oxide were used. This preferred

Card 1/3

The Reaction of Allyl Benzene on Catalysts of Aluminum Silicates.

79-28 -3-13/61

I. Investigation of the Reaction Kinetics

reaction enabled the authors to observe not only the rules of isomerization showing in it but also to trace the di- and polymerization processes of allyl benzene. In the contact of allyl benzene with the mentioned catalysts not only an isomerization takes place which consists of a re-grouping of the double bond in the side chain, but also a profound rearrangement of the initial product under the formation of a di- and polymer. The active centers of aluminum oxide and of the other catalysts only direct the isomerization connected with the re-grouping of the double bond in the side chain. The aluminum silicate centers catalyze the reactions of isomerization, of the di- and polymerization, which was proved by experiments. The step-by-step reaction mechanism of allyl benzene on the mentioned catalysts was found. The difference in the reaction mechanism of allyl benzene under the influence of catalysts having different percentual quantities of aluminum oxide is mentioned. The applicability of the equation for monomolecular heterogenous catalytic reactions in the reaction flow is shown when the reaction

Card 2/3

The Reaction of Allyl Benzene on Catalysts of Aluminum Silicates. 79-28 -3-13/61

I. Investigation of the Reaction Kinetics

products are absorbed more quickly than the initial compounds in the case of the isomerization of allyl benzene above aluminum oxide in the vapor phase. There are 9 figures, 2 tables, and 17 references, 14 of which are Soviet

ASSOCIATION: Moskovskiy gosudarstvennyy universitet
(Moscow State University)

SUBMITTED: January 28, 1957

Card 3/3

ZEN'KOVICH, T.A.; TRESHCHOVA, Ye.G.; TOPCHIYEVA, K.V.

Transformation of phenylcyclopropane on aluminum oxide with
boron fluoride. Vest. Mosk. un. Ser. 2:Khim. 20 no. 5:19-22
S-0 '65.

(MIRA 18:12)

I. Kafedra fizicheskoy khimii Moskovskogo gosudarstvennogo
universiteta. Submitted Dec. 15, 1964.

ZEN'KOVICH, P.

"Bryansk antiquities" by A. Shkrob, V. Sokolov. Reviewed by
P. Zen'kovich. Geog. v shkole 25 no.3:93-95 My-Je '62. (MIRA 15:7)
(Bryansk Province--Names, Geographical)
(Shkrob, A.) (Sokolov, V.)

VOLKOV, A.A.; MURATKHODZHAYEV, N.K.; ZEN'KOVICH, S.G.; SINITSYN, R.V.;
BELYAYEV, V.V.

Radiation load of medical personnel working with Au¹³⁹ granules
in a neuro-oncological clinic. Med. rad. 8 no.5:39-43 My '63.

1. Iz Leningradskogo neyrokhirurgicheskogo instituta imeni
prof. A.L. Polenova. (MIRA 17:5)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

BADMAYEV, K.N.; ZEN'KOVICH, S.G.; SOKOLOV, I.A.

Scintillation gamma-encephalometer for the diagnosis of brain
tumors. Med. rad. 5 no.4:57-64 Ap '60. (MIRA 13:12)
(BRAIN-TUMORS) (RADIOMETER)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

ZEN'KOVICH, S.G.

Optimum collimation of the scintillation counter in radioisotope diagnosis of tumors. Med. rad. 8 no.3:77-81 Mr '63. (MIRA 17:9)

1. Iz Leningradskogo nauchno-issledovatel'skogo neirokhirurgicheskogo Instituta imeni prof. A.L.Folenova,

ZENKOVICH, V. P.

USSR/Medicine - Infectious Diseases
(Veterinary)

May 51

"Experience in the Elimination of Equine Infectious Anemia According to B. M. Bosh'yan (Preliminary Communication), V. P. Zenkovich, S. P. Kupreyshvili, V. F. Shatalov, Veterinarians

"Veterinariya" Vol XXVIII, No 5, pp 28, 29

Finds allergen Anemin VIEV [anemin of All-Union Inst of Exptl Vet Med] is sp diagnostic prep (although some clinically sick horses do not react to it in the eye test) and VIEV vaccine is effective in therapy and prophylaxis of equine infectious anemia.

LC

182T74

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

SHATALOV, V. F.; ZENKOVICH, V. P.; BONDAREV, G. A.; LUNIN, N. T.

Swine - Diseases

Evaluating the efficacy of vaccines against swine erysipelas. Veterinaria. 29 No. 7 1952.

Monthly List of Russian Accessions, Library of Congress, October 1952. UNCLASSIFIED

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

ZENKOVICH, V.P.; SHATALOV, V.P.

Freeing farms of infectious anemia in horses by using Doctor
of Biological Sciences G.M. Bosh'ian's method. Veterinariia 30
no.6:20-22 Je '53.
(MLRA 6;5)

ZENKOVICH, V.P., veterinarnyy vrach; LUNIN, N.T., veterinarnyy vrach.

Retained placenta in cows and methods of its removal. Veterinariia
32 no.11:74 N '55.
(VETERINARY OBSTETRICS) (PLACENTA--DISEASES) (COWS--DISEASES)
(MLRA 8:12)

ZENKOVITCH, V.P.

(Vsevolod Farovich)

PA 50T77

USSR/Oceanology

Jan 1946

Waves, Ocean

"On the Study of Littoral Dynamics," V. P. Zenkovitch,
12 pp

"Trudy Instituta Okeanol." Vol I

Briefly outlines results of submarine observations
carried out on the south coast of Crimean Peninsula
(Black Sea). Describes topographic relations, and
rocks and sediments of the bottom, observes and
experimentally determines the dynamics of the wave
action.

IC

50T77

ZENKOVICH, V.P., doktor geogr. nauk; GRIGOR'YEV, A.A., akademik, otv.
red.; SHPAK, Ye.G., tekhn. red.

[Dynamics and morphology of seashores] Dinamika i morfologija
morskikh beregov. Moskva, Izd-vo "Morskoi transport." Pt.1. [Wave
processes] Volnovye protsessy. 1946. 495 p. (MIRA 15:2)
(Coast changes) (Waves)

ZENKOVICH, V. P.

PA 27T52

USSR/Geology
Erosion

Nov 1946

"The Destruction of Limestone on the Caspian Shore,"
Dr V. P. Zenkovich, 1½ pp

"Priroda" No 9

Short discussion, with three photographs, of erosion
of the shore of the Caspian Sea.

ID

27T52

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

"Influence of Eustatic Oscillations of the Ocean's Level Upon Bottom and Shore Relief,"
Works of the Institute of Geography of Academy of Sciences USSR, No 37, 1946 (55-63).
(Meteorologiya i Gidrologiya, No 6 Nov/Dec 1947)

SO: U-3218, 3 Apr 1953

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

PA-2T81

USSR/Hydrography

1946

"New Ideas in the Study of Littoral Dynamics,"
V P Zenkovitch, 14 pp

"Izv Geog" Vol 78, No 5-6

Theoretical discussion illustrated with diagrams
and examples

2T81

21466

ZENKOVICH, V. P.

Izuchenije dinamiki morskikh beregov.
Trudy Vtorogo Vsesoyuz. geogr. s"yezda, T. P.M., 1948, s. 144 - 51

SO: Letopis' Zhurnal'nykh Statey, No. 29, Moskva, 1949

1. ZENKOVICH, V.P.

2. USSR (600)

"Observations of Origination of Beach Festoons" Trudy instituta okeanologii AN
USSR, Volume II, 1948 (35-42).

9. Meteorologiya i Gidrologiya, No. 3, 1949. [redacted] Report U-2551, 30 Oct 52.

ZENKOVICH, V. P.: BUDANOV, V. I.

Waves

Deformation of a trochoidal wave at the shore. Mat, i gidrol. No. 6, 1948.

9. Monthly List of Russian Accessions, Library of Congress, November ² 1953, Uncl.

ZENKOVICH, V. P.

Jun 48

USSR/Geology

Potamology

"Structure of the Estuaries of Some Caucaesian
Rivers," V. P. Zenkovich, 1 $\frac{1}{2}$ pp.

"Priroda" No 6

Briefly discusses theoretical and possible
reasons for great depth of the rivers, and
formations of the estuaries of rivers in the
Caucasus emptying into the Black Sea.

2/49154

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8

ZENKOVICH, V.P.
25438

Nablyudeiya Nad Obrazovaniem «Plyazhevskih Festonov». Trudy In-Ta Okeanologii
(Akad. Nauk SSSR,) T. 11, 1948, s. 35-42

SO: LETOPIS NO. 30, 1948

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R001964430006-8"

PA 62T59

USSR/Geology
Hydrography

Apr 1948

"Currents of Coastal Alluvium on the Caucasian
Littoral of the Black Sea," V. P. Zenkovich, Inst
of Oceanology, Acad Sci USSR, 3 pp

"Dok Akad Nauk SSSR, Nova Ser" Vol LX, No 2

Briefly describes the currents carrying alluvial
deposits along the littoral of the Black Sea as
reason for changes in the coast line, and coastal
hydrography. Submitted by Academician P. P. Shir-
shov, 13 Feb 1948.

62T59

PA 77T104

USSR/Oceanology

Bottom Sediments

May 1948

"The Forms of the Accumulation of the Conglomerate Alluvium on the Caucasus Coast of the Black Sea," V. R. Zenkovich, Inst of Oceanology, Acad Sci USSR, 4 pp

"Dok Ak Nauk SSSR" Vol LX, No 4

Along this coast three streams of conglomerate deposits move from northwest to southeast, consisting of material of predominantly alluvial origin. Describes structure of resultant formations with aid of sketches. Submitted 9 Feb 1948.

77T104

ZENKOVICH, V. P.

PA 55/49T78

USSR/Oceanography
Sea Bottom

Nov 48

"Developing an Abrasion Design in the Process of
Increasing the Sea Level," V. P. Zenkovich, Inst of
Oceanol, Acad Sci USSR, 3 1/3 pp.

"Dok Ak Nauk SSSR" Vol LXXXI, No 2

Three types of sea bottom are distinguished in
explaining rise in Black Sea level. Profile of
bottom is worked out for abraded sections. Compar-
ative data for various seas gives general outlines
of the direction and tempo of recent movements.
Submitted by Acad P. P. Shirshov 22 Sep 48.

55/49T78

ZENKOVICH, U. P.

Z1368 ZENKOVICH, U. P. Mirouye karty tipou morskikh Beregov. (Klassifikatsiya i sistema oboznacheniy)--V ogi: V. M. Zenkovich. Trudy vtorogo vseoyuz. Geogr. S"ezda. T. III M., 1949 , S. 36-38

SU: ~~vetopis!~~ Zhurnal'nykh Statey, No. 29, Moskva, 1949

ZENKOVICH, V. P.

Zenkovich, V. P. - "On preparing muddy sea deposits for mechanical analysis",
Trudy In-ta okeanologii (Akad. nauk SSSR), Vol. III, 1949, p. 157-72, -
Bibliog: p. 172.

SO: U-4110, 17 July 53, (Letopis 'Zhurnal 'nykh Statey, No. 19, 1949).

ZENKOVICH, V.P.

Coarse cobble bench as a characteristic of a submerged shoreline.
Trudy Inst.okean. 4:160-164 '49. (MLRA 9:3)
(Shore lines)

ZENKOVICH V.P. ; KASHIN, YuS.

Seashore

Displacement of pebbles along the Caucasian shore of the Black Sea, Met. i gidrol., No. 5, 1949.

Monthly List of Russian Accessions, Library of Congress, October, 1952. UNCLASSIFIED.

Zenkovich, V.P.

Some factors on the formation of sea terraces

Doklady Akademii Nauk, SSSR.
Vol. 65, No. 1, 1949, pp. 53-5

B.N.L. Guide to R.-scientific Per. Lit., No. 6, June 1949, p. 195

ZENKOVICH, V. P.

PA 165T55

USSR/Oceanology - Relief, Shore Line 1 Jun 50

"Latest Subsidence of the Banks of West Kamchatka,"
V. P. Zenkovich, A. T. Vladimirov, Inst of Oceanol,
Acad Sci USSR

"Dok Ak Nauk SSSR" Vol LXXII, No 4, pp 753-754

Discusses results of surveying coastal plain in western Kamchatka. Analysis of data obtained by surveying leads to conclusion that 6-7 m lowering occurred in certain parts of coastal zone and this process continued for 1,000-2,000 yr. Coastal line is stabilized now since no modification in its shape has been observed for several decades.

165T55

ZENKOVICH, V. P.

166T30

USSR/Geophysics - Oceanography 1 Jul 50

"Conservation of the Forms of Meso-Relief at
the Bottom of a Deep Sea," V. P. Zenkovich,
Inst of Oceanography, Acad Sci USSR

"Dok Ak Nauk SSSR" Vol LXXIII, No 1, pp 67-68

Accumulated data on pelagic soundings shows
sharp difference between reliefs of silt on con-
tinental shelves and of silt on deep bottoms.
On shelves, motion of waters levels the bottom,
while in quiet deep regions the Meso-relief is
preserved. Submitted 8 May 50 by Acad P. P.
Shyrshov

166T30

ZENOKOVICH, V. P., VLADIMIROV, A. T.

Coast Changes

Structural analysis of accumulated coastal terrace., Vop. geog., 26, 1951.

Monthly List of Russian Accessions, Library of Congress, April 1952. Unclassified.

- 1. ZENKOVICH, V.P.
- 2. USSR (600)
- 4. Technology
- 7. Seashore, Moskva, Gostekhizdat. 1952

- 9. Monthly List of Russian Accessions, Library of Congress, February, 1953. Unclassified.

ZENKOVICH, V. P.

USSR (600)

Sand.Bars

Double sand bars enclosing lagoons and estuaries Priroda no 2, 1952

9. Monthly List of Russian Accessions, Library of Congress, May 1952. Unclassified.

1. ZENKOVICH,, V.

2. USSR (600)

4. Navigation

7. The range of drift migration. Morflet 12 no.10, 1952

9. Monthly List of Russian Accessions, Library of Congress, January 1953. Unclassified.