Continuous Time Stochastic Processes

21 November, 2022

1 Preliminaries

A right continuous stochastic process.

There are three types of right continuous processes

- Normal
- Absorption
- Explosion

The **jump times** are random variables

The **holding times** are random variables defined as

A jump process

Compute probabilities using countable union

A counting process is a stochastic process $\{N_t\}_{t\geq 0}$ satisfying

- $N_0 = 0$
- $\forall t \geq 0, N_t \in \mathbb{N}_0$
- (Non-decreasing) If $0 \le s \le t$, $N_s \le N_t$
- (Counting)
- (Right continuous)

A counting process associated the sequence $(J_n)_{n\in\mathbb{N}_0}$

2 Poisson Processes

A Poisson process, denoted $\{N_t\}_{t\geq 0}$, is a non-decreasing stochastic process with nonnegative values satisfying

- $N_0 = 0$
- The increments are independent, $0 \le t_0 \le t_1 \le \ldots \le t_n$, the random variables $N_{t_0}, N_{t_1} N_{t_0}, \ldots, N_{t_n} N_{t_{n-1}}$ are independent
- The increments are stationary

$$\Pr(N_t - N_s = k) = \Pr(N_{t-s} = k)$$

• There is a single arrival (only one arrives in a small interval), for all $t \geq 0$ and $\delta > 0$, $\delta \to 0$

$$Pr(N_{t+\delta} - N_t = 1) = \lambda \delta + o(\delta)$$

$$Pr(N_{t+\delta} - N_t \ge 2) = o(\delta)$$

$$Pr(N_{t+\delta} - N_t = 0) = 1 - \lambda \delta + o(\delta)$$

An equivalent definition replaces the last condition