Übungsblatt 10 zu Modellkategorien

Aufgabe 1. Der klassifizierende Raum einer Gruppe

a) Zeige, dass eine simpliziale Menge X genau dann ein Kan-Komplex ist, wenn für alle Zahlen $n \geq 0$ und k mit $0 \leq k \leq n+1$ folgende Bedingung erfüllt ist:

Sind Simplizes $x_0, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1} \in X_n$ mit $d_i x_j = d_{j-1} x_i$ für alle i < j (wobei i und j ungleich k) vorgegeben, so existiert ein Simplex $y \in X_{n+1}$ mit $d_i(y) = x_i$ für alle $i \neq k$.

- b) Zeige, dass jede simpliziale Gruppe ein Kan-Komplex ist.
- c) Sei G eine Gruppe. Zeige, dass BG ein Kan-Komplex ist.

Aufgabe 2. Skelett und Koskelett

Die Kategorie sSet $\leq n$ der n-abgeschnittenen simplizialen Mengen ist die Kategorie der Funktoren $\Delta_{\leq n}^{\text{op}} \to \text{Set}$, wobei $\Delta_{\leq n}$ die volle Unterkategorie von Δ der Objekte $[0], \ldots, [n]$ ist

- a) Welchen kanonischen Funktor sSet \rightarrow sSet $_{n}$ gibt es?
- b) Finde einen Linksadjungierten zu dem Funktor aus a).
- c) Finde einen Rechtsadjungierten zu dem Funktor aus a).
- d) Deute die Funktoren aus b) und c) geometrisch.

Aufgabe 3. Wegzusammenhangskomponenten

Sei X eine simpliziale Menge. Finde einen kanonischen Isomorphismus $\pi_0(X) \to \pi_0(|X|)$.

Aufgabe 4. Rückzug längs Monomorphismen

Sei $f:A\to B$ ein Monomorphismus in s
Set. Sei X ein Kan-Komplex. Zeige, dass der induzierte Morphismus $X^B\to X^A$ eine Kan-Faserung ist.

