

Introduktion til bachelorforløb

Vejledningsmøde 1: Praktisk information + blød introduktion

Laurs R. Leth

Department of Mathematical Sciences University of Copenhagen leth.laurs@gmail.com

13. februar 2020

Praktisk information

Kontaktinformation:

- Laurs: leth.laurs@gmail.com
- Johan og Jonatan: fvr343@alumni.ku.dk og jonatansiegrist@hotmail.com

Tid og sted for vejledning:

- Laurs: Hveranden tirsdag klokken 13-15 på HCØ i mødelokale (tba).
 Første tirsdag bliver d. d. 25/02 klokken 15.
- Johan og Jonatan: Står til rådighed 15-17 (de andre tirsdage).
- Hjemmeside for relevante dokumenter, opdateringer, slides, litteratur osv.: https://github.com/LaursLeth/Math-Econ-Bachelor-Project-2020
- Projektets struktur og udbytte af vejledning:
 - Emner fra problemformuleringen diskuteres til vejledningmøder: 1 møde
 1 emne. Emner fungerer som et skelet for jeres selvstændige opgave?
 - I forbereder jer før møderne
 - Udbytte: slavisk gennemgang af øvelser? fokus på selve opgaven? en blanding?

2/8

Wiener processen (Brownian motion)

- En stokastisk proces $(W_t)_{t\geq 0}$ kaldes for Wiener proces (definition 1.7 i Seydel (2012) eller definition 4.1 i Björk (2009)), hvis den opfylder følgende:
 - i Starter i 0: $W_0 = 0$.
 - ii Uafhængige tilvækster: For $t_4 > t_3 \ge t_2 > t_1$ gælder, at $W_{t_4} W_{t_3} \perp W_{t_2} W_{t_1}$.
 - iii Stationære (Gaussiske) tilvækster: For t > s er $W_t W_s \sim \mathcal{N}(0, t s)$.
 - iv Kontinuerte stier: $t \mapsto W_t(\omega)$ er kontinuert.
- Nyttige resultater
 - $W_t W_s \perp W_s$ for t > s.
 - $W_{t-s} = W_{t-s} W_0 \sim \mathcal{N}(0, t-s) \Rightarrow W_{t-s} \stackrel{D}{=} W_t W_s$.
- Flere transformation af W_t er også Wiener processer:
 - Brownian symmetry: $(Y_t)_{t\geq 0}$ givet ved $Y_t = -W_t$.
 - Brownian scaling: For $c > \overline{0}$ er processen $(Y_t)_{t \ge 0}$ givet ved $Y_t = c^{-1/2}W_{ct}$.
 - Time inversion: $(Y_t)_{t>0}$ givet ved $Y_t = tW_{1/t}$.
 - Time reversal: $(Y_t)_{t>0}$ givet ved $Y_t = W_T W_{T-t}$ for t < T.

SP500: Price is erratic but increasing over time..

Figur: The top plot shows daily closing values for the SP500 index between 2004/01/02-2019/12/30. Source: https://finance.yahoo.com/quote/%5EGSPC/.

LITTERATUR

Kontinuerttidsmodellering: Risikofyldt aktiv

- Idé: Prisdynamikken kan beskrives af en stokastisk proces $(S_t)_{t\geq 0}$
- Modellering: (S_t) har dynamik givet ved den stokastiske differensligning

$$S_{t+\Delta t} - S_t = \mu(t, S_t) \Delta t + \sigma(t, S_t) \Delta W_t, \tag{1}$$

hvor $\mu(\cdot, \cdot)$ og $\sigma(\cdot, \cdot)$ er deterministiske funktioner, mens $\Delta W_t = W_{t+\Delta t} - W_t \sim \mathcal{N}(0, \Delta t)$

- Intuition: Over tidsintervallet $[t, t + \Delta t]$ er processen/prisen S_t drevet af to komponenter:
 - deterministisk led: $\mu(t, S_t) \Delta t$
 - stokastisk led: $\sigma(t, S_t) \Delta W_t$
- Kontinuerttidsmodellering: Lad $\Delta t \to 0$ for at få dynamikken

$$dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dW_t \tag{2}$$

$$S_0 = s > 0 \tag{3}$$

Den stokastiske differentialligning (SDE) givet ved (2)-(3) er *lazy* notation for et stokastisk integral. Læs s. 40-48 i Björk (2009).

...og risikofrit aktiv (tilskrivning)

 $\bullet\,$ Diskret tid: Årlig tilskrivning med nominel rente r og n terminer er givet vefd

$$(1+r/n)^n$$

- Fx hvis n = 4 tilskrives renten r/4 4 gange årligt (hvert kvartal)
- Kontinuert tid: Årlig nominel rente betyder tilskrivning med e^{rt} for perioden [0,t]. Vi kan tilskrive over enhver periode!
- Sammenhæng mellem diskret og kontinuert tid:

$$(1+r/n)^n \to e^r$$

for $n \to \infty$

• Vi laver kontinuerttidsmodellering \Rightarrow det finansielle marked består også (udover S_t) af et risikofrit aktiv (bankbog) med prisproces

$$B_t = e^{rt}$$

• Intuition: 1 krone i dag (tidspunkt 0) er e^{rt} kroner til tidspunkt t. Eller omvendt: e^{-rt} er nutidsværdien af 1 krone på tidspunkt t.

Model

• Introducer det filtrerede sandsynlighedsrum $(\Omega, \mathcal{F}, (\mathcal{F}^W_t), P),$ hvor

$$\mathcal{F}_t^W = \sigma \left\{ W_s \mid 0 \le s \le t \right\}$$

er informationen genereret af W_t på [0,t]. Specielt er W_s \mathcal{F}_t -målelig for $s \leq t$.

• Vi betragter to aktiver (et risikofyldt og et risikofrit) i kontinuert tid:

$$dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dW_t, \qquad S_0 = s > 0$$
(4)

$$dB_t = rB_t dt, B_0 = 1 (5)$$

• Bemærk at $B_t = e^{rt}$ er løsning til ovenstående differentialligning (5), mens (4) er short-hand notation

$$S_t = S_0 + \int_0^t \mu(u, S_u) du + \int_0^t \sigma(u, S_u) dW_u$$

References

Björk, T. (2009). Arbitrage Theory in Continuous Time (3 ed.). Oxford University Press.

Seydel, R. U. (2012.). Tools for Computational Finance (Fourth Edition ed.). Universitext. New York :: Springer.