

# **Approaches to Object Detection**



**Antonio Rueda-Toicen** 





### **Learning goals**

- Recognize object detection as a regression and classification problem
- Describe the use of anchor boxes on single shot detectors (RetinaNet,
   YOLOv1-v5) and two-stage detectors (Faster R-CNN)
- Gain familiarity with anchor-box-free object detection approaches (YOLOv6+, DETR, Grounding DINO)

## Object detection as bounding box localization



### Object detection as bounding box regression and classification



'Regression' = predicting a continuous value (bounding box coordinates)

## Loss functions combine classification and regression error



Image from Faster R-CNN: Down the rabbit hole of modern object detection

$$\mathcal{L} = -\sum_x P(x) \log(Q(x)) + \lambda rac{1}{N} \sum_{i=1}^N \lvert y_i - \hat{y}_i 
vert$$

## Partitioning an image into regions



### Possible approaches:

- Anchor-boxes
- Keypoint identification

## Anchor boxes - defining potential detections



Figure 14.7: **Left:** Creating anchors starts with the process of sampling the coordinates of an image every r pixels (r = 16 in the original Faster R-CNN implementation). **Right:** We create a total of nine anchors centered around *each* sampled (x, y)-coordinate. In this visualization, x = 300, y = 200 (center blue coordinate). The nine total anchors come from every combination of scale:  $64 \times 64$  (red),  $128 \times 128$  (green),  $256 \times 256$  (blue); and aspect ratio: 1:1, 2:1, 1:2.

## Anchor boxes - defining sizes and aspect ratios



## Anchor boxes - the challenge of filtering candidates



## Single shot detectors vs two stage detectors

### **YOLO** (original)





## Faster R-CNN's Region Proposal Network (RPN)

The RPN takes the convolutional feature map and generates unlabeled proposals over the image **Region Proposal Network** RPN Project Rol Pool 512 Rol 7x7x512 Proposal

classifier

Region of Interest (ROI) pooling uses the downsampled original features cropped on the proposal area to feed the classifier

## Grid-based anchor-free detection (YOLOv11)



Image from the <u>Ultralytics blog</u>

### Anchor-based vs anchor-free detection



- Require prior knowledge or aspect ratios and sizes of potential anchor boxes
- More settings to tune
- Remain competitive in different object scales and with partially occluded objects (Faster R-CNN excels at this)



- Fewer hyperparameters (less tuning)
- Difficulty handling partially occluded objects

### DETR's object queries replace anchor boxes



- Unlike achor boxes: no geometric prior
- Learned embeddings with same dimension as all other embedded components of DETR
- Each object query embedding specializes on a region
- 100 by default, max number of detections
- Output class and bounding box after FFN

### Language-guided detection with Grounding DINO



Image from Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection

### **Grounding DINO's architecture**



- 0.8M bounding box annotations
- 4M text-image pairs from Object365 and COCO
- 3M text-image pairs from Google's CC3M dataset

Figure 3. The framework of Grounding DINO. We present the overall framework, a feature enhancer layer, and a decoder layer in block 1, block 2, and block 3, respectively.

Image from Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection

## **Summary**



### Object detection combines classification and bounding box regression

 Regression loss functions (e.g. L1, L2) quantify the positioning error of bounding boxes, cross-entropy quantifies the classification error

#### **Anchor box-based detectors**

- Anchor boxes define potential object locations, scales, and aspect ratios
- Two stage detectors use region proposal networks to filter candidate anchor boxes, and tend to have higher accuracy at higher computation cost
- The number and variety of anchor boxes influences the performance of the model

### **Anchor-free and grounded detection**

- DETR removes anchor boxes by using object queries and the attention mechanism
- Grounding DINO enables language-guided detection, with an accuracy tradeoff vs fully supervised models





### References and further reading

### **Focal Loss for Dense Object Detection**

https://arxiv.org/abs/1708.02002

### **End-to-End Object Detection with Transformers**

- https://arxiv.org/abs/2005.12872
- https://www.youtube.com/watch?v=utxbUlo9CyY

### Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

- https://arxiv.org/abs/1506.01497
- https://pyimagesearch.com/2023/11/13/faster-r-cnns/

### **Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection**

https://arxiv.org/abs/2303.05499

