

附录 A 实现的 MIPS 指令集

附 A1 单周期 CPU 实现指令

(1) 无符号加法

 $GPR[rd] \leftarrow GPR[rs] + GPR[rt]$

(2) 无符号减法

SUBU rd, rs, rt R 型 26 25 16 15 31 21 20 11 10 6 5 000000 00000 100011 rt rd rs 5 5 5 6

 $GPR[rd] \leftarrow GPR[rs] - GPR[rt]$

(3) 有符号比较,小于置位

R 型 SLT rd, rs, rt 6 5 31 26 25 16 15 21 20 11 10 000000 00000 101010 rd rs rt 5 5 6

 $GPR[rd] \leftarrow (sign(GPR[rs]) \leq sign(GPR[rt]))$

(4) 按位与

AND rd, rs, rt R 型 16 15 31 26 25 21 20 11 10 6 5 0 000000 00000 100100 rt rd rs 5 5 6

 $GPR[rd] \leftarrow GPR[rs] \& GPR[rt]$

(5) 按位或非

R 型 NOR rd, rs, rt 31 26 25 21 20 16 15 11 10 6 5 0 100111 000000 00000 rt rd rs 5 5

 $GPR[rd] \leftarrow \sim (GPR[rs] \mid GPR[rt])$

(6) 按位或 R型 OR rd, rs, rt 31 26 25 21 20 16 15 11 10 6 5 0 000000 00000 100101 rd rs rt 6 5 5 5 6 $GPR[rd] \leftarrow GPR[rs] \mid GPR[rt]$ (7) 按位异或 R 型 XOR rd, rs, rt 31 26 25 21 20 16 15 11 10 6 5 0 000000 00000 100110 rs rt rd 5 6 5 5 6 $GPR[rd] \leftarrow GPR[rs] \land GPR[rt]$ (8) 逻辑左移 SLL rd, rt, shf R型 31 26 25 16 15 6 5 21 20 11 10 000000 00000 000000 rt rd shf 6 5 5 5 5 6 $GPR[rd] \leftarrow zero(GPR[rt]) \le shf$ (9) 逻辑右移 R 型 SRL rd, rt, shf 31 26 25 21 20 16 15 11 10 6 5 0 000000 00000 000010 rt rd shf 5 5 5 6 $GPR[rd] \leftarrow zero(GPR[rt]) >> shf$ (10) 立即数、无符号加法 ADDIU rt, rs, imm I型 26 25 16 15 31 21 20 0 001001 imm rs rt 6 5 5 16 $GPR[rt] \leftarrow GPR[rs] + sign ext(imm)$ (11) 相等跳转 I型 BEQ rs, rt, offset 16 15 31 26 25 21 20 0

offset

000100

rs

rt

6

5

5

16

	if GPR[rs] = 0	GPR[rt] then PC	$C \leftarrow B_PC + signature B$	gn_ext(offset) << 2	
	B_PC:分支	跳转参与运算的	的 PC,在不考	虑延迟槽时为分支跳转	指令的 PC,考虑延迟槽
时为	为延迟槽指令的	D PC,即分支路	兆转指令的 PC	+4。	
(1	2) 不等跳转				
	BNE rs, rt, of	fset		I型	
31	26	25 21	20 1	5 15	0
	000101	rs	rt		offset
	6	5	5		16
	if $GPR[rs] \neq 0$	GPR[rt] then PC	$C \leftarrow B_PC + signature B$	gn_ext(offset)<<2	
	B_PC:分支	跳转参与运算的	的 PC,在不考	虑延迟槽时为分支跳转	指令的 PC,考虑延迟槽
时为	为延迟槽指令的	DPC,即分支路	兆转指令的 PC	+4。	
(1	3) 装载字				
	LW rt, offset((base)		I型	
31	26	25 21	20 1	5 15	0
	100011	base	rt		offset
	6	5	5		16
	$GPR[rt] \leftarrow M$	[em[GPR[base]	+ sign_ext(offs	et)]	
(1	4) 存储字				
	SW rt, offset(base)		I型	
31	26	25 21	20 1	5 15	0
	101011	base	rt		offset
	6	5	5		16
	Mem[GPR[ba	ase] + sign_ext($offset)] \leftarrow GPF$	[rt]	
(1	5) 立即数装载	高位			
	LUI rt, imm			I型	
31	26	25 21	20 1	5 15	0
	001111	00000	rt		imm
1				•	
	6	5	5		16
	6 GPR[rt] ← {i	-	5		16
(1		-	5		16
	GPR[rt] ← {i 6) 直接跳转 J target	mm,16'd0}		型	
31	GPR[rt] ← {i 6) 直接跳转	mm,16'd0}		型	0
	GPR[rt] ← {i 6) 直接跳转 J target	mm,16'd0}		型 target	

 $PC \leftarrow \{B_PC[31:28], target << 2\}$

B_PC:分支跳转参与运算的 PC,在不考虑延迟槽时为分支跳转指令的 PC,考虑延迟槽时为延迟槽指令的 PC,即分支跳转指令的 PC+4。

附 A2 多周期 CPU 新增实现指令

(17) 无符号小于置位

 $GPR[rd] \leftarrow (zero(GPR[rs]) \le zero(GPR[rt]))$

(18) 跳转寄存器并链接

J	ALR rs			R型					
31	26	25 21	20 16	15 11	10 6	5 0			
(000000	rs	00000	11111	00000	001001			
	6	5	5	5	5	6	_		

 $GPR[31] \leftarrow B PC + 4, PC \leftarrow GPR[rs]$

B_PC: 分支跳转参与运算的 PC, 在不考虑延迟槽时为分支跳转指令的 PC, 考虑延迟槽时为延迟槽指令的 PC, 即分支跳转指令的 PC+4。

(19) 跳转寄存器

JR rs R 型 21 20 11 10 31 26 25 6 5 0 000000 00 0000 0000 00000 001000 rs 10 5 6 6

 $PC \leftarrow GPR[rs]$

(20) 变量逻辑左移

SLLV rd, rt, rs R 型 31 26 25 21 20 16 15 11 10 6 5 0 000000 00000 000100 rd rs rt 5 5 5 6

 $GPR[rd] \leftarrow zero(GPR[rt]) << GPR[rs]$

(21) 算术右移

SRA rd, rt, shf R 型 31 26 25 21 20 16 15 11 10 6 5 000000 00000 000011 rt rd shf 5 5 $GPR[rd] \leftarrow sign(GPR[rt]) >> shf$

(22) 变量算术右移

B PC: 分支跳转参与运算的 PC, 在不考虑延迟槽时为分支跳转指令的 PC, 考虑延迟槽 时为延迟槽指令的 PC,即分支跳转指令的 PC+4。

(27) 大于零跳转

	BGTZ rs, offset		I型	
31	26 25	21 20	16 15	0

000111	rs	00000	offset
6	5	5	16

if GPR[rs] > 0 then PC \leftarrow B_PC + sign_ext(offset)<<2

B_PC: 分支跳转参与运算的 PC, 在不考虑延迟槽时为分支跳转指令的 PC, 考虑延迟槽时为延迟槽指令的 PC, 即分支跳转指令的 PC+4。

(28) 小于或等于零跳转

if $GPR[rs] \le 0$ then $PC \leftarrow B$ PC + sign ext(offset) << 2

B_PC: 分支跳转参与运算的 PC, 在不考虑延迟槽时为分支跳转指令的 PC, 考虑延迟槽时为延迟槽指令的 PC, 即分支跳转指令的 PC+4。

(29) 小于零跳转

if GPR[rs] < 0 then $PC \leftarrow B PC + sign ext(offset) << 2$

B_PC:分支跳转参与运算的 PC,在不考虑延迟槽时为分支跳转指令的 PC,考虑延迟槽时为延迟槽指令的 PC,即分支跳转指令的 PC+4。

(30) 装载字节,并作符号扩展

 $GPR[rt] \leftarrow sign(Mem[GPR[base] + sign ext(offset)])$

(31) 装载字节,并作无符号扩展

 LBU rt, offset(base)
 I型

 31
 26 25
 21 20
 16 15
 0

 100100
 base
 rt
 offset

 6
 5
 5
 16

 $GPR[rt] \leftarrow zero(Mem[GPR[base] + sign ext(offset)])$

(32) 存储字节

SB rt, offset(base) I 型

B_PC: 分支跳转参与运算的 PC, 在不考虑延迟槽时为分支跳转指令的 PC, 考虑延迟槽时为延迟槽指令的 PC, 即分支跳转指令的 PC+4。

附 A3 静态 5 级流水 CPU 新增实现指令

(37) 有符号字乘法

010000	00000	rt	cs	00000000	sel
6	5	5	5	8	3

 $GPR[rt] \leftarrow CPR[cs.sel]$

(43) 向协处理器 0 寄存器存值

R 型 MTC0 rt, cd.sel 31 26 25 21 20 16 15 11 10 3 2 0 010000 00100 cd 00000000 sel rt 5 3

 $CPR[cd.sel] \leftarrow GPR[rt]$

(44) 系统调用

SYSCALL

31 26 25 6 5 0 000000 code 001100

 $CPR[14.0] \leftarrow PC, CPR[13.0][6:2] \leftarrow 01000, CPR[12.0][1] \leftarrow 1, PC \leftarrow EXC_ENTER_ADDR$ EXC_ENTER_ADDR 为例外入口地址,原本应为 CPR[15.1] + 0x180,但在课程设计中为 方便编写测试程序,将 EXC_ENTER_ADDR 设置为 0。

(45) 异常返回

ERET

 $CPR[12.0][1] \leftarrow 0$, $PC \leftarrow CPR[14.0]$

附录 B 实现的 cp0 寄存器

附 B1 Status 寄存器 (CP0 寄存器 12, 选择 0)

3	31	28	27	26	25	24	23	22	21	20	19	18	1716	15	10	9	8	765	4	3	2	1	0
(CU3.	.CU0	RP	FR	RE	MX	0	BEV	TS	SR	NMI	ASE	Impl	IM7	IM2	IM1.	.IM0	0	UM	R0	ERL	EXL	ΙE
														II	PL				KS	SU			

表 B-1 EXL (Exception Level) 域

域		描述	读/写	复位状态	规则	
名称	位	油化	决/ 马	文世 小心	NO NO	
		Exception 级别; 当出现任何除				
EXL	1	了复位、软复位、NMI 或缓存	可读/写	Undefined	Required	
		错误的例外时由处理器置位。				

表 B-2 EXL 编码表

编码	含义
0	正常级别
1	Exception 级别

附 B2 Cause 寄存器 (CP0 寄存器 13,选择 0)

31 3029 28 27 26 25 24 23 22 21 20 18	171615 10	9 8 7	6 2	1 0
BDTI CE DCPCI ASE IV WP FDCI 000	ASE IP9IP2	IP1IP0 0	Exc Code	0
	ASE RIPL			

表 B-3 例外编码表

例外编码值		助记符	描述		
十进制	十六进制	助此初	抽处		
0	0x00	Int	中断		
1	0x01	Mod	TLB 修正例外		
2	0x02	TLBL	TLB 例外(装载或取指)		
3	0x03	TLBS	TLB 例外(存储)		
4	0x04	AdEL	地址错误例外(装载或取指)		
5	0x05	AdES	地址错误例外 (存储)		
6	0x06	IBE	总线错误例外 (取指)		
7	0x07	DBE	总线错误例外(数据相关:装载或存储)		
8	0x08	Sys	系统调用例外		
9	0x09	Вр	断点例外		
10	0x0a	RI	保留指令例外		

表 B-4 Exc Code (Exception Code) 域

域		描述	读/写	复位状态	规则	
名称	位	1四亿	が、		73/17/1	
ExcCode	62	例外编码	只读	Undefined	Required	

附 B3 例外程序计数器 EPC (CP0 寄存器 14,选择 0)

31		0
	EPC	

表 B-5 EPC (Exception Program Counter) 域

域		描述	读/写	复位状态	规则
Name	Bits	1H/C	Ø/- 3	文型状态	//20/13
EPC	310	例外程序计数器	可读/写	Undefined	Required