

SOLUCIONES GUÍA Nº7 DE CÁLCULO I

N°1

$f(x) = x^3$	Potencia	x^4
$a) \ f(x) = x^3$	roteiicia	$\frac{x^4}{4} + c$
b) $f(x) = 5$	Constante	5x+c
$c) f(x) = 5^x$	Exponencial	$\frac{5^x}{\ln(5)} + c$
$d) f(x) = e^x$	Exponencial	$e^x + c$
e) $f(x) = 1$	Constante	x+c
$f) f(x) = \frac{1}{x}$	Potencia	Ln(x)+c
g) $f(t) = \sqrt[3]{t}$	Potencia	$\frac{3\sqrt[3]{t^4}}{4} + c$
$f(x) = e^{5x}$	Exponencial	$\frac{e^{5x}}{5} + c$
$i) g(x) = \left(\frac{5}{3}\right)^x$	Exponencial	$\frac{\left(\frac{5}{3}\right)^x}{\ln\left(\frac{5}{3}\right)} + c$
j) $g(x) = x^{-5}$	Potencia	$-\frac{x^{-4}}{4} + c$
k) $h(x) = x^{-1}$	Potencia	Ln(x)+c
$h(x) = \frac{1}{\sqrt{x}}$	Potencia	$2\sqrt{x}+c$
m) $f(x) = e^{-3x}$	Exponencial	$-\frac{e^{-3x}}{3}+c$
$f(x) = \frac{1}{\sqrt{2}}$	Constante	$\frac{1}{\sqrt{2}}x + c$

$o) \ f(x) = t^{\frac{3}{4}}$	Potencia	$\frac{4\sqrt[4]{x^7}}{7} + c$
$p) f(x) = 2^x$	Exponencial	$\frac{2^x}{\ln(2)} + c$

N°2

a) Contante	b) Potencia	c) Potencia
$\int g(x)dx = \frac{4}{5}x + c$	$\int f(x)dx = -\frac{x^{-16}}{16} + c$	$\int f(x)dx = \frac{3\sqrt[3]{x^8}}{8} + c$
d) Potencia	e) Exponencial	f) Exponencial
$\int f(x)dx = \frac{x^2}{2} + c$	$\int f(x)dx = \frac{e^{4x}}{4} + c$	$\int h(x)dx = \frac{9^x}{\ln(9)} + c$

N°2

	Descripción	Operación	Derivada
a)	Multiplicación por constante	$h(x) = 5 \cdot x^6$	$\int h(x)dx = \frac{5 \cdot x^7}{7} + c$
b)	Resta	$h(x) = 5^x - e^x$	$\int h(x)dx = \frac{5^x}{\ln(5)} - e^x + c$
c)	Suma	$h(x) = x^4 + e^{6x}$	$\int h(x)dx = \frac{x^5}{5} + \frac{e^{6x}}{6} + c$

N°4

a)
$$\int (3+x+x^2)dx = 3x + \frac{x^2}{2} + \frac{x^3}{3} + c$$
 b) $\int \frac{3x^2 + 7x - 1}{x} dx = \frac{3x^2}{2} + 7x - \ln(x) + c$ c) $\int (\sqrt{x} + 5x - 8) dx = \frac{2\sqrt{x^3}}{3} + \frac{5x^2}{2} - 8x + c$ d) $\int (3x^2 + e^x) dx = x^3 + e^x + c$

N°5

a) $f(x) = x^2 + 5x + 2$	b) $f(x) = -20x + 5$
c) $f(x) = e^x + x^3 - 3x^2 + 2$	d) $y = -3x^2 + 2\ln(x) + 7$
e) $y = \frac{2^x}{\ln(2)} + 6$	e) $A(x) = 3x^2 - 12x + 80$

N°6

a)
$$f(t) = -0.11t^4 - 28.91t^2 + 271.85t + 100$$

b)
$$C(x) = x + 0.001x^2 - 0.064$$

c)
$$T(t) = -20e^{-0.35t} + 5$$

d)
$$V(t) = 156,25e^{0,8t} + 185$$

e)
$$A(x) = 3x^2 - 12x + 80$$