Assessing Model Complexity

Editor: Daniel Wang

In the deep neural network domain, training on a deeper neural architecture often yields a better result, since deeper hidden layers can capture more complex features. However, is it true regardless of any other factors? So in this project, I will try to investigate whether a more complex DNN will always yield better performance.

```
In [8]:
```

```
import tensorflow as tf
import numpy as np
```

In this project, I will use a subset of the MNIST training dataset, since training DNNs on the whole MNIST dataset often yield accuracy higher than 99%, which makes us hard to tell whether a model is better or not. In this case, I only choose 2000 samples for training. Besides, I will try to resize the image from 28x28 into 32x32, for some of our models used later on are required to have an input image size of at least 32x32.

In [9]:

```
mnist = tf.keras.datasets.mnist
(x train, y train), (x test, y test) = tf.keras.datasets.mnist.load data()
x train = np.expand dims(x train, axis=-1)
x train = tf.image.resize(x train, [32, 32]) / 255.
x train = x train[:2000]
y train = y train[:2000]
y train = tf.keras.utils.to categorical(y train, 10)
x \text{ test} = \text{np.expand dims}(x \text{ test, axis}=-1)
x \text{ test} = \text{tf.image.resize}(x \text{ test, } [32, 32]) / 255.
y test = tf.keras.utils.to categorical(y test, 10)
print("x train", x train.shape)
print("y_train", y_train.shape)
print("x_test", x_test.shape)
print("y_test", y_test.shape)
x train (2000, 32, 32, 1)
y_train (2000, 10)
x_test (10000, 32, 32, 1)
```

Let's visualize some sample images.

y_test (10000, 10)

```
In [10]:
```

```
import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 2)
axes[0].imshow(x_train[0,:,:,0], cmap="gray")
axes[1].imshow(x_test[0,:,:,0], cmap="gray")
```

Out[10]:

```
<matplotlib.image.AxesImage at 0x7f6274196fd0>
```

```
0 - 0 - 5 - 5 - 10 - 10 -
```


In this project, I will use three kinds of different deep neural networks:

- 1. Customize CNN (inspired from VGG, the simplest model here)
- 2. DesneNet-121
- 3. ResNet-152

In [11]:

```
model1 = tf.keras.Sequential([
    tf.keras.Input(shape=(32, 32, 1)),
    tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(10, activation="softmax"),
])
model2 = tf.keras.applications.DenseNet121(weights=None, input_shape=(32, 32, 1), classes=10)
model3 = tf.keras.applications.ResNet152(weights=None, input_shape=(32, 32, 1), classes=10)
models = [model1, model2, model3]
```

Now we assess the number of parameters for each model. Since DenseNet and ResNet have a huge amount of neurons, I use logarithmic count for the y-axis.

```
In [18]:
```

```
n_params = []
for model in models:
    n_params.append(np.log10(model.count_params()))

names = ["my model", "densenet121", "resnet152"]
plt.bar(names, n_params, align="center")
plt.ylabel("logarithmic count")
plt.title("Model parameter counts")
```

Out[18]:

Text(0.5, 1.0, 'Model parameter counts')

As we can see, DenseNet has approximately 100 times more parameters than our customized model, and ResNet even has 10 times more parameters than DenseNet.

history lst = []

```
In [13]:
```

```
for model in models:
 model.compile(loss="categorical crossentropy", optimizer="sgd", metrics=["accuracy"])
 history = model.fit(x train, y train, batch size=64, epochs=5, validation split=0.1)
 history lst.append(history)
Epoch 1/5
29/29 [============ ] - 1s 13ms/step - loss: 2.2972 - accuracy: 0.1189 -
val loss: 2.2388 - val accuracy: 0.2950
Epoch 2/5
29/29 [============= ] - 0s 5ms/step - loss: 2.2384 - accuracy: 0.1855 -
val loss: 2.1699 - val accuracy: 0.4850
Epoch 3/5
val loss: 2.0746 - val accuracy: 0.5800
Epoch 4/5
val loss: 1.9046 - val accuracy: 0.6250
Epoch 5/5
val loss: 1.6361 - val accuracy: 0.6400
Epoch 1/5
- val loss: 2.3033 - val accuracy: 0.1200
29/29 [============= ] - 2s 61ms/step - loss: 0.8533 - accuracy: 0.7604 -
val loss: 2.3136 - val accuracy: 0.1150
Epoch 3/5
val loss: 2.3327 - val accuracy: 0.0600
Epoch 4/5
val loss: 2.3722 - val accuracy: 0.0900
Epoch 5/5
29/29 [============= ] - 2s 61ms/step - loss: 0.1764 - accuracy: 0.9674 -
val loss: 2.3983 - val accuracy: 0.0600
Epoch 1/5
- val loss: 338010.2812 - val accuracy: 0.1150
- val loss: 9801.8379 - val accuracy: 0.1050
Epoch 3/5
- val loss: 2018.0312 - val accuracy: 0.1000
- val loss: 794.3433 - val accuracy: 0.1050
Epoch 5/5
29/29 [============= ] - 4s 143ms/step - loss: 1.7522 - accuracy: 0.6577
- val loss: 115.0957 - val accuracy: 0.1000
```

After training is done, let's check the accuracy of training data and validation data, respectively.

In [36]:

```
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
for name, history in zip(names, history_lst):
  axes[0].plot(history.history['accuracy'], label=name)
  axes[1].plot(history.history['val_accuracy'], label=name)
axes[0].set xlabel("Training")
axes[1].set_xlabel("Validation")
axes[0].set_ylabel("Accuracy")
axes[0].legend(loc="best")
axes[1].legend(loc="best")
plt.suptitle("Performance Comparison")
```

Text(0.5, 0.98, 'Performance Comparison')

Performance Comparison

From the above, we observe that although our customized model yields the worst accuracy on the training data, it **turns out** to have the best validation accuracy. This is the phenomenon of **overfitting** for the DenseNet and ResNet cases since their parameter counts are too high.

To ensure this is the problem of overfitting, let's check the test set performance.

In [46]:

Out[46]:

Text(0.5, 1.0, 'Testing Result')

As we can see, our simplest model **outperforms** the others. But, we shall not blame the designer of DenseNet and ResNet, since our training data is too small.

In the next section, I try to increase the training data size from 2000 to 10000, and I want to see if there is any difference.

```
In [47]:
(x train, y train), (x test, y test) = tf.keras.datasets.mnist.load data()
x train = np.expand dims(x train, axis=-1)
x train = tf.image.resize(x train, [32, 32]) / 255.
x train = x train[:10000]
y_train = y_train[:10000]
y train = tf.keras.utils.to categorical(y train, 10)
x_test = np.expand_dims(x_test, axis=-1)
x \text{ test} = \text{tf.image.resize}(x \text{ test, } [32, 32]) / 255.
y test = tf.keras.utils.to categorical(y test, 10)
print("x train", x train.shape)
print("y train", y train.shape)
print("x_test", x_test.shape)
print("y_test", y_test.shape)
x train (10000, 32, 32, 1)
y train (10000, 10)
x test (10000, 32, 32, 1)
y test (10000, 10)
And do something the same as before.
In [48]:
history lst = []
for model in models:
 model.compile(loss="categorical crossentropy", optimizer="sgd", metrics=["accuracy"])
 history = model.fit(x train, y train, batch size=64, epochs=5, validation split=0.1)
 history_lst.append(history)
Epoch 1/5
- val loss: 0.6152 - val accuracy: 0.8380
Epoch 2/5
- val loss: 0.4641 - val accuracy: 0.8540
Epoch 3/5
- val loss: 0.3893 - val accuracy: 0.8890
Epoch 4/5
- val loss: 0.3504 - val accuracy: 0.8900
Epoch 5/5
- val loss: 0.3216 - val accuracy: 0.9060
Epoch 1/5
7 - val loss: 2.2179 - val accuracy: 0.1390
Epoch 2/5
- val loss: 0.5395 - val accuracy: 0.8320
Epoch 3/5
- val loss: 0.1101 - val accuracy: 0.9670
Epoch 4/5
- val loss: 0.0953 - val accuracy: 0.9730
Epoch 5/5
- val loss: 0.0879 - val accuracy: 0.9730
Epoch 1/5
66 - val loss: 2.4046 - val accuracy: 0.1760
Epoch 2/5
```

In [49]:

```
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
for name, history in zip(names, history_lst):
    axes[0].plot(history.history['accuracy'], label=name)
    axes[1].plot(history.history['val_accuracy'], label=name)
axes[0].set_xlabel("Training")
axes[1].set_xlabel("Validation")
axes[0].set_ylabel("Accuracy")
axes[0].legend(loc="best")
axes[1].legend(loc="best")
plt.suptitle("Performance Comparison")
```

Out[49]:

Text(0.5, 0.98, 'Performance Comparison')

Performance Comparison

Here, we see that DensetNet and ResNet not only perform better during the training stage, they also have a good performance on the validation stage after 2 epochs.

Finally, let's see the test set performance:

```
In [52]:
```

Text(0.5, 1.0, 'Testing Result')

Compared to the data volume that has merely 2000, DenseNet and ResNet can perform well as long as the training data is sufficient enough. Therefore, we can conclude:

- 1. If data volume is small, we shall use simpler model for training in order to prevent overfitting.
- 2. If we have sufficient training data, we could use more complex model in order to boost performance.