

PH451, PH551 February 18, 2025

Announcements

- Hands-on #4 due Thu
- Hackathon #1 due Fri
- Hands-on #5 due next Thu

Recap: Feature Selection

Filters

Feature Selection Model Building

Wrappers

Model Building

Feature Selection

Embedded-Hybrid Feature Selection during Model Building

Recap: Wrapper Methods

Selection tied to a model:

- More accurate
- Assess feature interactions
- Search for optimal subset of features

Types:

- Methodical
- Probabilistic
 - random hill-climbing
- Heuristic
 - forward backward elimination

Model Building

Recap: Regularized Trees

Inspired by J. Friedman and Popescu, 2008 work on rules regularization

Decision Tree:

Recap: PCA

Principal Components

- Linear Method, Pearson/Hotelling 1901/1933
- Find the hyperplane closest to data and project into it
 - Minimize the squared distance between original data and projection
 - Orthogonal axes that maximize remaining variance (principal components)
 - Find with Singular Value Decomposition (SVD)
 - Ignore components of lesser significance

MNIST

Unsupervised Learning

Why?

- Supervised learning:
 - Class labels
- Unsupervised
 - No labels
 - Part of human learning experience

Applications

- Dimensionality Reduction and Visualization
 - All methods we met so far were unsupervised (PCA/LLE/t-SNE)!
- Anomaly Detection
- Recommendations
- Clustering

Clustering

- Find groups of instances similar to each other and different from instances in other groups
- Key questions:
 - How many groups?
 - How to partition the data?

K-Means

Lloyd, 1957

- Popular algorithm
- Relatively quick
- Find cluster centers (centroids)
- Assign instances to closest cluster
- Note: have to specify # of clusters (k)

K-Means Algorithm

- Randomly pick k instances as centroids
- Label, update centroids, repeat...
- Issues: may converge to local minimum instead of global, strong dependence on initialization
- Improvements: K-Means++ (2006) start with centroids that are distant from each other, minibatches

Performance Metric

Inertia

 Mean squared (L2) distance between each instance and closest centroid

"Elbow" method

Predictive Clustering

Example of a multi-function regression model based on trees or rules

- Decision trees are equated to clustering trees by P. Langley in 1996, first noted by Fisher in 1993
- Cluster "hierarchy" each tree node corresponds to a cluster. Root node contains full dataset partitioned recursively into sub-clusters

Predictive Clustering Trees

Predictive clustering implementation

- Decision tree and rule induction system
- Designed for multi-task learning and multilabel classification
- Well-suited for both classification and regression problems

02/18/2025 Sergei Gleyzer PH451/PH551 16

Clustering Concept

Use decision tree induction to obtain clusters with:

- minimal intra-cluster distance
 - between examples from the same cluster
- maximal inter-cluster distance
 - between examples from different clusters
 - In classification trees distance metric is class entropy

Illustrative Example

- 14 input variables {a, b, c, d...}
 - 4 of them strongly correlated
- 14 target outputs to estimate {A, B, C, D...}
 - 4 of them strongly correlated

Challenge: build a predictive model to describe simultaneously all the outputs {A,B,C,D...}, provided a corresponding set of inputs.

Illustrative Example

Illustrative Example

Target Correlations

Prediction-Target Difference

Very close to Zero

Outline

- Neural Networks
- Shallow Learning

Neural Networks

Neural Networks

Biological systems built of very complex webs of interconnected neurons

- Highly connected to other neurons
- Performs computations by combining signals from other neurons
- Outputs of these computations may be transmitted to one or more other neurons

Real Neurons

Neural Network

Humans:

- Neuron switching time ~0.001s
- Number of neurons $\sim 10^{10}$
- Connections per neuron ~10⁴
- Scene recognition time ~ 0.1s

ANNs:

- Many threshold switching units
- Many weighted interconnections
- Highly parallel, distributed processes

Perceptron

Frank Rosenblatt, 1957

Perceptron Learning

Perceptrons

- Threshold Logic Unit/Step Function
 - Linear combination of inputs
 - Classify above threshold
- Hebbian Learning Rule:
 - "Fire together, wire together"
- Linear decision boundary
 - XoR Classification Problem Minsky and Papert 1969
- Stack into MultiLayer Perceptrons (MLPs)