EEPE USMENI 15 BODOVA- MIN ZA PROLAZ 2BODA/15BODOVA (ZI 3BODA/20BODOVA)

1. Nacrtat sinkroni stroj i nacrtat gdje je uzbudni, a gdje armaturni namot?

2. Nacrtat nadomjesnu shemu transformatora?

 $R_2(L_{12}/L_2)^2 I_2 L_2/L_{12}$ Teorijski korektna σL_1 R_1 nadomjesna shema U S k2L1 je T/2-shema, no za U2L12/L transformatore sa T/2 - shema željeznom jezgrom dovoljno točna je i uobičajena T-shema $(w_1/w_2)^2 L_{2\sigma} (w_1/w_2)^2 R_2 (w_2/w_1) I_2$ R_1 $L_{1\sigma}$ \overline{m} $(w_1/w_2)L_{12}$ U_1 (w1/w2)U2 T - shema

Pojednostavljena T - shema

U literaturi je uobičajen odabir koeficijenta $a = \frac{w_1}{w_2}$

s kojim se dobivaju rasipne reaktancije primara i sekundara.

Dodavanjem otpora u poprečnu granu R_0 koji predstavlja nadomjesni otpor na kojoj se disipira snaga praznog hoda (gubici u željezu) dobiva se sljedeća nadomjesna shema:

- za male transformatore vrijedi: R1 \approx R2' = 1 % X σ = L σ = 5%
- -za velike transformatore vrijedi: R1 \approx R2' = 0.1 % X σ = L σ = 12%

4.1 T - nadomjesna shema transformatora

Nadomjesna shema transformatora, kao i svakog drugog električnog stroja, daje se uvijek za jednu fazu nadomjesne zvijezde, bez obzira na to kako je transformator stvarno spojen (Y, D, Z).

Slika 4.1 T - nadomjesna shema transformatora

R₁,R₂' - radni otpori namota primara i sekundara (reducirana vrijednost)

X_{1σ}X_{2σ}' - rasipne reaktancije namota primara i i sekundara (reducirana vrijednost)

R_o - fiktivni radni otpor; gubici u njemu odgovaraju gubicima u željezu

X_m - glavna reaktancija.

Elementi nadomjesne sheme se određuju iz mjerenja otpora namota, pokusa praznog hoda, pokusa kratkog spoja i preračunavaju se na toplo stanje (75°C).

Pri tome se u praznom hodu zanemaruje uzdužna grana (tj. R_1 , $X_{1\sigma}$, R_2 ', $X_{2\sigma}$ ') i određuju se X_m , R_o , a u pokusu kratkog spoja se zanemaruje poprečna grana i određuju se X_k . Dobivene razlike u iznosima

3. Nacrtat nadomjesnu shemu asinkronog motora?

4. Nacrtat tiristor sa kutem upravljanja 45 stupnjeva (nije 45,jbg drugacije neznam)☺

5. Nacrtati yd5 spoj?

6. Rekatancije kod TG i HG?

Reaktancija u d-osi

Sinkrona reaktancija u uzdužnoj osi x_d sastoji se od rasipnog dijela $x_{a\sigma}$ i dijela koji predstavlja tok koji prolazi kroz zračni raspor x_{ad} :

 $\chi_d = \chi_{a\sigma} + \chi_{ad}$

Prijelazna (tranzijentna) reaktancija u uzdužnoj osi:

 $\chi_d = \chi_{a\sigma} + \frac{\chi_{ad} \chi_{f\sigma}}{\chi_{ad} + \chi_{f\sigma}}$

Početna (subtranzijentna) reaktancija u uzdužnoj osi:

$$x_{d}^{"} = x_{a\sigma} + \frac{x_{ad} x_{D\sigma} x_{f\sigma}}{x_{ad} x_{D\sigma} + x_{ad} x_{f\sigma} + x_{D\sigma} x_{f\sigma}}$$

Reaktancija u q-osi

Sinkrona reaktancija u poprečnoj osi x_q sastoji se od rasipnog dijela $x_{a\sigma}$, koji je jednak onome u uzdužnoj osi, i dijela koji odgovara toku u glavnom krugu u q-osi x_{ag} :

$$x_q = x_{a\sigma} + x_{aq}$$

Početna reaktancija u poprečnoj osi:

$$x_q'' = x_{a\sigma} + \frac{x_{aq} x_{Q\sigma}}{x_{aq} + x_{Q\sigma}}$$

7. Momentna karakteristika asinkronog motora i nacrtati statorsku struju?
$$\frac{M}{n_s \pi} = \frac{30 m_r E_{r0}^2 R_r}{n_s \pi \left[\left(\frac{R_r}{s} \right)^2 + X_{r\sigma 0}^2 \right]^3} Nm$$

8. Uvjeti sinkronizacije sinkronog generatora?

Paralelni rad sinkronih generatora s krutom mrežom

Uvjeti sinkronizacije:

- a) redoslijed faza generatora i mreže mora biti jednak
- b) vrijednosti napona generatora i mreže moraju biti jednake $E_{\it G} = U$
- c) frekvencije napona generatora i mreže moraju biti jednake $f_{G}=f$
- d) fazni kutovi napona generatora i mreže moraju biti jednaki $\varphi_G = \varphi$

9. Što treba napraviti da bi transformatori Yd5 i Yd11 radili paralelno?

ovo se još može prikazati spajanjem izvoda

10. Napisati koji su uvjeti paralelnog spoja transformatora?

<u>Paralelni spoj transformatora spajanjem izvoda (bez otvaranja kotla) je moguć</u> <u>spajanjem transformatora samo iz iste skupine s parnim satnim brojevima i spajanjem transformatora s obj</u> <u>e neparne skuine s neparnim satnim brojevima.</u>

Paralelni rad transformatora

- Uvjeti paralelnog rada:
 - Isti satni broj
 - lacksquare Jednaki nazivni naponi transformacije $U_{
 m 1n}/U_{
 m 2n}$
 - Približno jednaki naponi kratkog spoja, razlika do 10%
 - Omjer nazivnih snaga ne veći od 2

Paralelno spojeni transformatori

Dopušteno opterećenje n paralelno spojenih transformatora S_d :

$$S_d = u_{k \min} \sum_{i=1}^n \frac{S_{ni}}{u_{ki}}$$

Opterećenje pojedinog transformatora S_i :

gdje su:

- $lacksquare u_{ki}$ napon kratkog spoja i-tog transformatora
- lacksquare napon kratkog spoja transformatora s minimalnim u_k

Paralelno spojeni transformatori

Opterećenje pojedinog transformatora u slučaju kada se ukupno opterećenje paralelno spojenih transformatora S razlikuje od dopuštenog opterećenja S_d iznosi:

$$S_{i} = S \frac{S_{ni}}{u_{ki} \sum_{i=1}^{n} \frac{S_{ni}}{u_{ki}}}$$

Podjela simbola grupe spoja prema satnim brojevima i mogućnost paralelnog spajanja:

- Skupina I satni broj 0, 4 i 8
- Skupina II satni broj 2, 6 i 10
- Skupina III satni broj 1 i 5
- Skupina IV satni broj 7 i 11
- Paralelni spoj transformatora spajanjem izvoda (bez otvaranja kotla) je moguć spajanjem transformatora samo iz iste skupine s parnim satnim brojevima i spajanjem transformatora s obje neparne skupine s neparnim satnim brojevima.

11. Fazorski dijagram TG-a?

12. Fazorski dijagram HG-a?

13. Transformator, da li moze raditi transf 10kV kad se prikljuci na 12kV?

Ne može, zbog toga što će se stvoriti veliki tok (veći od maksimalno dozvoljenoga), a kao posljedicu toka imamo struju koja je također veća od maksimalno dozvoljene. Ta struja bi uzrokovala veliko grijanje i naposlijetku uništenje trafa.

14. Zašto klizanje asinkronog motora mora biti malo i koliko otprilike iznosi za motor snage 1000 W? Klizanje mora biti malo zbog toga što su onda i gubitci energije mali,a kod motora snage 1 kW inose 0.1 – 5 %.

Klizanje s:

$$s = (n_s-n) / n_s$$
, $n_s = 60*f / p$

15. Momentna karakteristika centrifugalne pumpe?

16. Napisati primjer reguliranja vrtnje izmjeničnog motora?

Iz formule:
$$n = n_s * (1-s) = 60 * f_s * (1-s) / p$$

zaključujemo da brzinu vrtnje možemo regulirati:

- Promjenom broja polova (veći broj polova, sporija vrtnja)
- Promjenom frekvencije (veća frekvencija, brža vrtnja)
- Promjenom napona (napon je proporcionalan s momentom -> M=f(U²), pa ako povećamo napon, raste i moment, a time mijenjamo i samu karakteristiku. To znači da će brzina vrtnje n ovisiti o samoj karakteristici.)
- Istovremeno mijenjanje napona i frekvencije

17. Moment as.motora, moment ako napon i frekvencija se smanji (omjer konst.), moment ako se samo frekv. poveća dva puta?

ILI Momentna karkt. asinkronog motora, kad se smanji U i f za 50% i kad U=konst. a f poveća dva puta.

->ako se samo frekvencija poveća x puta

ili možda ovo

$\mbox{Prekretni moment} \qquad M_{pr} \doteq k \! \left(\frac{U}{f} \right)^2$

$$\frac{M_{pra}}{M_{pr}} = \frac{\left(\frac{0.5U_n}{0.5f_n}\right)^2}{\left(\frac{U_n}{f_n}\right)^2} = 1$$

18. Nacrtati V-krivulje; zadani napon u ovisnosti o snazi (U=0, U=0,5*Pn, U=Pn, valjda...ali mislim da je umjesto napona U,struja I)?

19. Krivulje regulacije, tj. regulacija opterećenja kod sinkronog generatora u ovisnosti o cos fi?

20. Odnosi struje kratkog spoja i poteznog momenta za dva napona ? Naponi u spojevima zvijezda (Y) i trokut (Δ)...

 $\frac{M_{SY}}{M_{S\Delta}} = \left(\frac{U_{SY}}{U_{S\Delta}}\right)^2 = \frac{1}{3} \qquad \frac{I_{SY}}{I_{S\Delta}} = \frac{1}{\sqrt{3}} \qquad \frac{I_{SY}}{I_{I\Delta}} = \frac{1}{3}$

21. Rad asinkronog motora koji je spojen u trokut, nacrtati momentnu karakteristiku i u istom grafu nacrtati momentnu karakteristiku kad ga prespojis u zvijezdu?

UČINSKA ELEKTRONIKA

- 22. Nekakav silazni usmjerivač?
- 23. Silazni pretvarac izvod formula?
- 24. Nesta sa tiristorskim ispravljacima?
- 25. Reguliranje brzine izmjeničnog motora sa pretvaračem?