Introdução aos modelos DSGE

Modelo de Ciclos de Negócio Reais (RBC) com Governo

João Ricardo Costa Filho

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

O modelo

Trabalharemos com **três** tipos de agentes representativos:

Famílias

- Famílias
 - Oferecem trabalho.

- Famílias
 - Oferecem trabalho.
 - Detêm o capital.

- Famílias
 - Oferecem trabalho.
 - Detêm o capital.
- Empresas

- Famílias
 - Oferecem trabalho.
 - Detêm o capital.
- Empresas
 - Recrutam trabalhadores.

Trabalharemos com três tipos de agentes representativos:

Famílias

- Oferecem trabalho.
- Detêm o capital.

Empresas

- Recrutam trabalhadores.
- Utilizam o estoque de capital.

- Famílias
 - Oferecem trabalho.
 - Detêm o capital.
- Empresas
 - Recrutam trabalhadores.
 - Utilizam o estoque de capital.
- Governo

Trabalharemos com três tipos de agentes representativos:

Famílias

- Oferecem trabalho.
- Detêm o capital.

Empresas

- Recrutam trabalhadores.
- Utilizam o estoque de capital.

Governo

• Gastam no mercado de bens e serviços.

Trabalharemos com **três** tipos de agentes representativos:

Famílias

- Oferecem trabalho.
- Detêm o capital.

Empresas

- Recrutam trabalhadores.
- Utilizam o estoque de capital.

Governo

- Gastam no mercado de bens e serviços.
- Tributam as famílias (lump-sum).

"Bird's eye view"

Vamos introduzir o governo no Fluxo Circular da Renda.

Famílias

As famílias possuem preferências acerca do consumo de bens e serviços c e das horas trabalhadas h de tal forma que maximizam a seguinte utilidade intertemporal:

As famílias possuem preferências acerca do consumo de bens e serviços c e das horas trabalhadas h de tal forma que maximizam a seguinte utilidade intertemporal:

$$\max_{c_t, i_t, h_t, k_{t+1}} \sum_{s=t}^{\infty} E_t \left[\beta^{t-s} u \left(c_s, h_s \right) \right],$$

As famílias possuem preferências acerca do consumo de bens e serviços c e das horas trabalhadas h de tal forma que maximizam a seguinte utilidade intertemporal:

$$\max_{c_t, i_t, h_t, k_{t+1}} \sum_{s=t}^{\infty} E_t \left[\beta^{t-s} u \left(c_s, h_s \right) \right], \tag{1}$$

s.a.

$$c_s + i_t = w_s h_s + r_s k_s$$

As famílias possuem preferências acerca do consumo de bens e serviços c e das horas trabalhadas h de tal forma que maximizam a seguinte utilidade intertemporal:

$$\max_{c_t, i_t, h_t, k_{t+1}} \sum_{s=t}^{\infty} E_t \left[\beta^{t-s} u \left(c_s, h_s \right) \right], \tag{1}$$

s.a.

$$c_s + i_t = w_s h_s + r_s k_s - T_s, (2)$$

A lei de movimento do capital

Finalmente, a dinâmica do estoque de capital é dada por:

$$k_{t+1} = i_t + (1 - \delta)k_t.$$
 (3)

Lagrangiano

A partir das equações (1), (7) e (3), temos:

$$\mathcal{L} = E_t \left[\sum_{s=t}^{\infty} \beta^t u(c_s, h_s) + \right.$$
$$\left. \sum_{t=0}^{\infty} \beta^{s-t} \lambda_s (w_s h_s + r_s k_s - T_s - c_s - k_{s+1} + (1 - \delta) k_s) \right].$$

7

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff u_{c,t} - \lambda_t = 0, \tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff u_{c,t} - \lambda_t = 0, \tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial h_s} = 0 \iff u_{h,t} + \lambda_t w_t = 0, \tag{5}$$

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff u_{c,t} - \lambda_t = 0, \tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial h_s} = 0 \iff u_{h,t} + \lambda_t w_t = 0, \tag{5}$$

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} = 0 \iff -\lambda_t + \beta E_t \left[\lambda_{t+1} \left(1 - \delta + r_{t+1} \right) \right] = 0, \quad (6)$$

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff u_{c,t} - \lambda_t = 0, \tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial h_s} = 0 \iff u_{h,t} + \lambda_t w_t = 0, \tag{5}$$

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} = 0 \iff -\lambda_t + \beta E_t \left[\lambda_{t+1} \left(1 - \delta + r_{t+1} \right) \right] = 0, \quad (6)$$

$$\frac{\partial \mathcal{L}}{\partial \lambda_t} = 0 \iff c_t + i_t = w_t h_t + r_t k_t - T_t. \tag{7}$$

Escolhas ótimas

À partir das equações (4) e (5), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

$$-u_{h,t}=u_{c,t}w_t. (8)$$

Escolhas ótimas

À partir das equações (4) e (5), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

$$-u_{h,t} = u_{c,t}w_t. (8)$$

E a **equação de Euler** pode ser obtida ao combinarmos as equações (4) e (6):

$$u_{c,t} = \beta E_t [u_{c,t+1} (1 + r_{t+1} - \delta)].$$
 (9)

Condição de transversalidade

Além das C.P.O., precisamos também da condição de transversalidade, que pode ser representada por:

$$\lim_{k \to \infty} \beta^t E\left[\lambda_t k_{t+1}\right] = 0. \tag{10}$$

Empresas

Em um ambiente de concorrência perfeita, as empresas escolhem a quantidade de capital (k_t) e trabalho (h_t) que maximiza os seus lucros em todo período t, tomando salários (w_t) e o retorno do capital (r_t) como dados:

Em um ambiente de concorrência perfeita, as empresas escolhem a quantidade de capital (k_t) e trabalho (h_t) que maximiza os seus lucros em todo período t, tomando salários (w_t) e o retorno do capital (r_t) como dados:

$$\max_{k_t, h_t} \Pi_t = y_t - w_t h_t - r_t k_t, \tag{11}$$

Em um ambiente de concorrência perfeita, as empresas escolhem a quantidade de capital (k_t) e trabalho (h_t) que maximiza os seus lucros em todo período t, tomando salários (w_t) e o retorno do capital (r_t) como dados:

$$\max_{k_t, h_t} \Pi_t = y_t - w_t h_t - r_t k_t, \tag{11}$$

sujeita à tecnologia de produção (y_t) disponível

$$y_t = A_t k_t^{\alpha} h_t^{1-\alpha}, \tag{12}$$

$$\frac{\partial \Pi_t}{\partial h_t} = 0 \iff w_t = (1 - \alpha) \frac{y_t}{h_{j,t}},\tag{13}$$

$$\frac{\partial \Pi_t}{\partial h_t} = 0 \iff w_t = (1 - \alpha) \frac{y_t}{h_{j,t}},\tag{13}$$

$$\frac{\partial \Pi_t}{\partial k_t} = 0 \iff r_t = \alpha \frac{y_t}{k_t}. \tag{14}$$

Dinâmica da Produtividade

$$\ln A_t = (1 - \rho_A) \ln \overline{A} + \rho_A \ln A_{t-1} + \varepsilon_t, \tag{15}$$

onde \bar{A} representa o valor da variável no equilíbrio estacionário e ε é um choque exógeno com média zero e variância σ_{ε}^2 .

Governo

Assuma que o governo mantém o **orçamento equilibrado em todos os períodos**:

Assuma que o governo mantém o **orçamento equilibrado em todos os períodos**:

$$G_t = T_t, (16)$$

Assuma que o governo mantém o **orçamento equilibrado em todos os períodos**:

$$G_t = T_t, (16)$$

e que os gastos do governo são determinados por:

Assuma que o governo mantém o **orçamento equilibrado em todos os períodos**:

$$G_t = T_t, (16)$$

e que os gastos do governo são determinados por:

$$\ln G_t = (1 - \rho_G) \ln \bar{G} + \rho_G \ln G_{t-1} + \varepsilon_t^G. \tag{17}$$

Da equação (7), temos que a restrição orçamentária das famílias é dada por:

Da equação (7), temos que a restrição orçamentária das famílias é dada por:

$$c_t + i_t = w_t h_t + r_t k_t - T_t, (7)$$

Da equação (7), temos que a restrição orçamentária das famílias é dada por:

$$c_t + i_t = w_t h_t + r_t k_t - T_t, (7)$$

e, com os resultados do problemas das empresas (equações 13 e 14) e a restrição do governo (16), temos que

Da equação (7), temos que a restrição orçamentária das famílias é dada por:

$$c_t + i_t = w_t h_t + r_t k_t - T_t, (7)$$

e, com os resultados do problemas das empresas (equações 13 e 14) e a restrição do governo (16), temos que

$$c_t + i_t + G_t = (1 - \alpha) \frac{y_t}{h_{j,t}} h_t + \alpha \frac{y_t}{k_t} k_t$$

Da equação (7), temos que a restrição orçamentária das famílias é dada por:

$$c_t + i_t = w_t h_t + r_t k_t - T_t, (7)$$

e, com os resultados do problemas das empresas (equações 13 e 14) e a restrição do governo (16), temos que

$$c_t + i_t + G_t = (1 - \alpha) \frac{y_t}{h_{j,t}} h_t + \alpha \frac{y_t}{k_t} k_t = y_t.$$
 (18)

Formas funcionais

Utilizemos uma função utilidade CRRA ($Constant\ Relative\ Risk\ Aversion$), separável em c_t e h_t , para representar as preferências das famílias:

Formas funcionais

Utilizemos uma função utilidade CRRA (*Constant Relative Risk Aversion*), separável em c_t e h_t , para representar as preferências das famílias:

$$u(c_t, h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} - \psi \frac{h_t^{1+\varphi}}{1+\varphi}.$$
 (19)

Formas funcionais

Utilizemos uma função utilidade CRRA (Constant Relative Risk Aversion), separável em c_t e h_t , para representar as preferências das famílias:

$$u(c_t, h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} - \psi \frac{h_t^{1+\varphi}}{1+\varphi}.$$
 (19)

Então, temos que $u_c=c_t^{-\sigma}$ e $u_h=-\psi h_t^{\varphi}$.

Famílias

- Famílias
 - $\psi h_t^{\varphi} c_t^{\sigma} = w_t$

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$
- $k_{t+1} = (1-\delta)k_t + i_t$

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$

•
$$k_{t+1} = (1 - \delta)k_t + i_t$$

Empresas

$$y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$$

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$
- $k_{t+1} = (1-\delta)k_t + i_t$

Empresas

- $y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$
- $r_t = \alpha \frac{y_t}{k_t}$

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} (1 + r_{t+1} \delta) \right]$
- $k_{t+1} = (1-\delta)k_t + i_t$

Empresas

- $y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$
- $r_t = \alpha \frac{y_t}{k_t}$
- $w_t = (1-\alpha)\frac{y_t}{h_t}$

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} (1 + r_{t+1} \delta) \right]$
- $k_{t+1} = (1 \delta)k_t + i_t$

Empresas

- $y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$
- $r_t = \alpha \frac{y_t}{k_t}$
- $w_t = (1-\alpha)\frac{y_t}{h_t}$

Restrição de recursos

$$y_t = c_t + i_t + G_t$$

- Famílias
 - $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
 - $c_t^{-\sigma} = \beta E_t [c_{t+1}^{-\sigma} (1 + r_{t+1} \delta)]$
 - $k_{t+1} = (1 \delta)k_t + i_t$
- Empresas
 - $y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$
 - $r_t = \alpha \frac{y_t}{k_t}$
 - $w_t = (1-\alpha)\frac{y_t}{h_t}$
- Restrição de recursos
 - $y_t = c_t + i_t + G_t$
- Lei de movimento da produtividade

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t [c_{t+1}^{-\sigma} (1 + r_{t+1} \delta)]$
- $k_{t+1} = (1 \delta)k_t + i_t$

Empresas

- $y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$
- $r_t = \alpha \frac{y_t}{k_t}$
- $w_t = (1-\alpha)\frac{y_t}{h_t}$

Restrição de recursos

$$y_t = c_t + i_t + G_t$$

- Lei de movimento da produtividade
- Governo

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$

$$k_{t+1} = (1 - \delta)k_t + i_t$$

Empresas

- $y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$
- $r_t = \alpha \frac{y_t}{k_t}$
- $w_t = (1 \alpha) \frac{y_t}{h_t}$

Restrição de recursos

$$y_t = c_t + i_t + G_t$$

- Lei de movimento da produtividade
 - $\ln A_t = (1 \rho_A) \ln \bar{A} + \rho_A \ln A_{t-1} + \varepsilon_t$
- Governo
 - $\blacksquare \ \, \ln \textit{G}_{t} = (1-\rho_{\textit{G}}) \ln \bar{\textit{G}} + \rho_{\textit{G}} \ln \textit{G}_{t-1} + \epsilon_{t}^{\textit{G}}$

•
$$\psi h_t^{\varphi} c_t^{\sigma} = (1 - \alpha) A_t \left(\frac{k_t}{h_t}\right)^{\alpha}$$

•
$$\psi h_t^{\varphi} c_t^{\sigma} = (1 - \alpha) A_t \left(\frac{k_t}{h_t}\right)^{\alpha}$$

•
$$c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + \alpha A_{t+1} \left(\frac{k_{t+1}}{h_{t+1}} \right)^{\alpha - 1} - \delta \right) \right]$$

•
$$\psi h_t^{\varphi} c_t^{\sigma} = (1 - \alpha) A_t \left(\frac{k_t}{h_t}\right)^{\alpha}$$

•
$$c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + \alpha A_{t+1} \left(\frac{k_{t+1}}{h_{t+1}} \right)^{\alpha - 1} - \delta \right) \right]$$

•
$$k_{t+1} = (1 - \delta)k_t + A_t k_t^{\alpha} h_t^{1-\alpha} - c_t - G_t$$

•
$$\psi h_t^{\varphi} c_t^{\sigma} = (1 - \alpha) A_t \left(\frac{k_t}{h_t}\right)^{\alpha}$$

•
$$c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + \alpha A_{t+1} \left(\frac{k_{t+1}}{h_{t+1}} \right)^{\alpha - 1} - \delta \right) \right]$$

•
$$k_{t+1} = (1 - \delta)k_t + A_t k_t^{\alpha} h_t^{1-\alpha} - c_t - G_t$$

•
$$\ln A_t = (1 - \rho_A) \ln \bar{A} + \rho_A \ln A_{t-1} + \varepsilon_t$$

•
$$\psi h_t^{\varphi} c_t^{\sigma} = (1 - \alpha) A_t \left(\frac{k_t}{h_t}\right)^{\alpha}$$

•
$$c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + \alpha A_{t+1} \left(\frac{k_{t+1}}{h_{t+1}} \right)^{\alpha - 1} - \delta \right) \right]$$

•
$$k_{t+1} = (1 - \delta)k_t + A_t k_t^{\alpha} h_t^{1-\alpha} - c_t - G_t$$

•
$$\ln A_t = (1 - \rho_A) \ln \bar{A} + \rho_A \ln A_{t-1} + \varepsilon_t$$

$$\blacksquare \ \, \ln \textit{G}_{t} = (1-\rho_{\textit{G}}) \ln \bar{\textit{G}} + \rho_{\textit{G}} \ln \textit{G}_{t-1} + \epsilon^{\textit{G}}_{t}$$

Equilíbrio estacionário

Sistema de Equações (reduzido) - no equilíbrio

$$\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = (1 - \alpha) \bar{A} \left(\frac{\bar{k}}{\bar{h}}\right)^{\alpha} \tag{20}$$

Sistema de Equações (reduzido) - no equilíbrio

$$\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = (1 - \alpha) \bar{A} \left(\frac{\bar{k}}{\bar{h}} \right)^{\alpha} \tag{20}$$

$$\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} \left(1 + \alpha \bar{A} \left(\frac{\bar{k}}{\bar{h}} \right)^{\alpha - 1} - \delta \right) \tag{21}$$

Sistema de Equações (reduzido) - no equilíbrio

$$\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = (1 - \alpha) \bar{A} \left(\frac{\bar{k}}{\bar{h}}\right)^{\alpha} \tag{20}$$

$$\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} \left(1 + \alpha \bar{A} \left(\frac{\bar{k}}{\bar{h}} \right)^{\alpha - 1} - \delta \right) \tag{21}$$

$$\bar{k} = (1 - \delta)\bar{k} + \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha} - \bar{c} - \bar{G}$$
 (22)

Sistema de Equações (reduzido) – no equilíbrio

$$\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = (1 - \alpha) \bar{A} \left(\frac{\bar{k}}{\bar{h}} \right)^{\alpha} \tag{20}$$

$$\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} \left(1 + \alpha \bar{A} \left(\frac{\bar{k}}{\bar{h}} \right)^{\alpha - 1} - \delta \right) \tag{21}$$

$$\bar{k} = (1 - \delta)\bar{k} + \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha} - \bar{c} - \bar{G}$$

$$\bar{A} = \bar{A}$$
 (23)

(22)

Sistema de Equações (reduzido) – no equilíbrio

$$\psiar{h}^{arphi}ar{c}^{\sigma}=(1-lpha)ar{A}\left(rac{ar{k}}{ar{h}}
ight)^{lpha}$$

$$\left(\frac{\kappa}{h}\right)$$

$$ar{c}^{-\sigma} = eta ar{c}^{-\sigma} \left(1 + lpha ar{A} \left(rac{ar{k}}{ar{h}}
ight)^{lpha - 1} - \delta
ight)$$
 $ar{k} = (1 - \delta) ar{k} + ar{A} ar{k}^{lpha} ar{h}^{1 - lpha} - ar{c} - ar{G}$

$$\bar{k} = (1 - \delta)\bar{k} + \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha} - \bar{c} - \bar{G}$$

(20)

(24)

$$ar{A}=ar{A}$$

 $\bar{G} = \bar{G}$

Sistema de Equações (completo) – no equilíbrio

Sistema de Equações (completo) - no equilíbrio

Famílias

Sistema de Equações (completo) – no equilíbrio

- Famílias
 - $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$

Sistema de Equações (completo) - no equilíbrio

Famílias

- $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$
- $\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} (1 + \bar{r} \delta)$

Sistema de Equações (completo) – no equilíbrio

Famílias

- $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$
- $\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} (1 + \bar{r} \delta)$
- $\bar{k} = (1 \delta)\bar{k} + \bar{i}$

Sistema de Equações (completo) – no equilíbrio

- Famílias
 - $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$
 - $\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} (1 + \bar{r} \delta)$
 - $\bar{k} = (1 \delta)\bar{k} + \bar{i}$
- Empresas
 - $\bar{y} = \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha}$

Sistema de Equações (completo) - no equilíbrio

Famílias

- $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$
- $\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} (1 + \bar{r} \delta)$
- $\bar{k} = (1 \delta)\bar{k} + \bar{i}$

Empresas

- $\bar{\mathbf{y}} = \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha}$
- $\bar{r} = \alpha \frac{\bar{y}}{\bar{k}}$

Sistema de Equações (completo) - no equilíbrio

Famílias

- $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$
- $\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} (1 + \bar{r} \delta)$
- $\bar{k} = (1 \delta)\bar{k} + \bar{i}$

Empresas

- $\bar{y} = \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha}$
- $\bar{r} = \alpha \frac{\bar{y}}{\bar{k}}$
- $\bar{w} = (1 \alpha) \frac{\bar{y}}{\bar{h}}$

Sistema de Equações (completo) – no equilíbrio

- Famílias
 - $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$
 - $\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} (1 + \bar{r} \delta)$
 - $\bar{k} = (1 \delta)\bar{k} + \bar{i}$
- Empresas
 - $\bar{y} = \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha}$
 - $\bar{r} = \alpha \frac{\bar{y}}{\bar{k}}$
 - $\bar{w} = (1-\alpha)\frac{\bar{y}}{\bar{h}}$
- Restrição de recursos
 - $\bar{y} = \bar{c} + \bar{i} + \bar{G}$

Sistema de Equações (completo) – no equilíbrio

- Famílias
 - $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$
 - $\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} (1 + \bar{r} \delta)$
 - $\bar{k} = (1 \delta)\bar{k} + \bar{i}$
- Empresas
 - $\bar{v} = \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha}$
 - $\bar{r} = \alpha \frac{\bar{y}}{\bar{k}}$
 - $\bar{w} = (1-\alpha)\frac{\bar{y}}{\bar{h}}$
- Restrição de recursos
 - $\bar{y} = \bar{c} + \bar{i} + \bar{G}$
- Lei de movimento da produtividade

Sistema de Equações (completo) - no equilíbrio

- Famílias
 - $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$
 - $\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} (1 + \bar{r} \delta)$
 - $\bar{k} = (1 \delta)\bar{k} + \bar{i}$
- Empresas
 - $\bar{y} = \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha}$
 - $\bar{r} = \alpha \frac{\bar{y}}{\bar{k}}$
 - $\bar{w} = (1-\alpha)\frac{\bar{y}}{\bar{h}}$
- Restrição de recursos
 - $\bar{y} = \bar{c} + \bar{i} + \bar{G}$
- Lei de movimento da produtividade
 - $\bar{A} = \bar{A}$
- Governo

Sistema de Equações (completo) - no equilíbrio

- Famílias
 - $\psi \bar{h}^{\varphi} \bar{c}^{\sigma} = \bar{w}$
 - $\bar{c}^{-\sigma} = \beta \bar{c}^{-\sigma} (1 + \bar{r} \delta)$
 - $\bar{k} = (1 \delta)\bar{k} + \bar{i}$
- Empresas
 - $\bar{y} = \bar{A}\bar{k}^{\alpha}\bar{h}^{1-\alpha}$
 - $\bar{r} = \alpha \frac{\bar{y}}{\bar{k}}$
 - $\bar{w} = (1-\alpha)\frac{\bar{y}}{\bar{h}}$
- Restrição de recursos
 - $\bar{y} = \bar{c} + \bar{i} + \bar{G}$
- Lei de movimento da produtividade
 - $\bar{A} = \bar{A}$
- Governo
 - $\bar{G} = \bar{G}$

Podemos aproveitar a equação (23) para normalizarmos $\bar{A}=1$ e a equação (24) calibrar $\bar{G}=g_s\times \bar{y}$ como função do PIB em equilíbrio.

Podemos aproveitar a equação (23) para normalizarmos $\bar{A}=1$ e a equação (24) calibrar $\bar{G}=g_s\times \bar{y}$ como função do PIB em equilíbrio.

Da equação de Euler (21), temos:

Podemos aproveitar a equação (23) para normalizarmos $\bar{A}=1$ e a equação (24) calibrar $\bar{G}=g_s\times \bar{y}$ como função do PIB em equilíbrio.

Da equação de Euler (21), temos:

$$\frac{1}{\beta} + \delta - 1 = \alpha \left(\frac{\bar{k}}{\bar{h}}\right)^{\alpha - 1}$$

e como da equação de Euler do modelo "completo", sabemos que

$$ar{r} = rac{1}{eta} - 1 + \delta$$
, então temos:

$$\frac{\bar{k}}{\bar{h}} = \left[\frac{\bar{r}}{\alpha}\right]^{\frac{1}{\alpha - 1}}$$

Podemos aproveitar a equação (23) para normalizarmos $\bar{A}=1$ e a equação (24) calibrar $\bar{G}=g_s\times \bar{y}$ como função do PIB em equilíbrio.

Da equação de Euler (21), temos:

$$\frac{1}{\beta} + \delta - 1 = \alpha \left(\frac{\bar{k}}{\bar{h}}\right)^{\alpha - 1}$$

e como da equação de Euler do modelo "completo", sabemos que

$$ar{r} = rac{1}{eta} - 1 + \delta$$
, então temos:

$$\frac{\bar{k}}{\bar{h}} = \left[\frac{\bar{r}}{\alpha}\right]^{\frac{1}{\alpha - 1}}$$

Da equação de movimento do capital (22), podemos obter o valor, no equilíbrio, da razão $\frac{\bar{c}}{h}$:

$$\begin{split} \delta \bar{k} &= \bar{k}^{\alpha} \bar{h}^{1-\alpha} - \bar{c} - \bar{G} \iff \\ \frac{\bar{c}}{\bar{h}} &= (1-g_{\text{s}}) \left(\frac{\bar{k}}{\bar{h}}\right)^{\alpha} - \delta \frac{\bar{k}}{\bar{h}}. \end{split}$$

Com base nos resultados anteriores, podemos encontraro valor de \bar{h} à partir da equação (20):

$$\begin{split} \psi \bar{h}^{\varphi} \bar{c}^{\sigma} &= (1 - \alpha) \left(\frac{\bar{k}}{\bar{h}}\right)^{\alpha} \iff \\ \frac{\bar{h}^{\varphi}}{\bar{h}^{1 - \sigma}} \left(\frac{\bar{c}}{\bar{h}}\right)^{\sigma} &= \frac{1 - \alpha}{\psi} \left(\frac{\bar{k}}{\bar{h}}\right)^{\alpha} \iff \\ \bar{h} &= \left[\frac{1 - \alpha}{\psi} \left(\frac{\bar{k}}{\bar{h}}\right)^{\alpha} \left(\frac{\bar{c}}{\bar{h}}\right)^{-\sigma}\right]^{\frac{1}{\varphi + \sigma - 1}} \end{split}$$

Parâmetros do nosso modelo

Parâmetro	Valor	Descrição
φ	1	Curvatura da função utilidade em relação às horas trabalhadas.
ψ	2.29	Peso da desutilidade do trabalho na função utilidade.
σ	2	Curvatura da função utilidade em relação ao consumo.
α	0.44	Participação do capital na função de produção.
β	0.97	Fator de desconto.
δ	0.05	Taxa de depreciação.
ρ_A	0.9	Coeficiente AR da produtividade.
$\sigma_{arepsilon}$	0.01	Desvio-padrão dos erros do processo da produtividade.
Ā	1	Nível da produtividade no equilíbrio estacionário.
ρ_G	0.7	Coeficiente AR dos gastos do governo.
gs	0.2	Proporção dos gastos do governo no PIB no equilíbrio estacionário.

Comparação entre modelos

Qual é o impacto da introdução do governo no equilíbrio estacionário?

Qual é o impacto da introdução do governo no equilíbrio estacionário?

• O consumo como percentual do PIB (\bar{c}/\bar{y}) no RBC com governo diminui (de 0.73 no RBC sem governo para 0.53 no RBC com governo).

Qual é o impacto da introdução do governo no equilíbrio estacionário?

- O consumo como percentual do PIB (\bar{c}/\bar{y}) no RBC com governo diminui (de 0.73 no RBC sem governo para 0.53 no RBC com governo).
- As horas trabalhadas (\bar{h}) aumentam 38% no RBC com governo.

Qual é o impacto da introdução do governo no equilíbrio estacionário?

- O consumo como percentual do PIB (\bar{c}/\bar{y}) no RBC com governo diminui (de 0.73 no RBC sem governo para 0.53 no RBC com governo).
- As horas trabalhadas (\bar{h}) aumentam 38% no RBC com governo.
- Podemos ter outros impactos ao introduzir o governo de outras formas.

Simulação – Funções impulso-resposta

O que acontece após um choque nos gastos do governo?

Vamos ao Dynare!

Utilize o Jupter Notebook "em branco" da aula para resolver o modelo completo e simular funções impulso-resposta para os dois tipos de choque.

Gastos do governo

- Choque positivo de 1% (acima do equilíbrio estacionário).
- Comportamento auto-regressivo.

Consumo: não é hump-shaped!

- Para financiar o aumento dos gastos, o governo tributa as famílias.
- Portanto, há uma queda imediata no consumo.
- Conforme os gastos diminuem, o consumo retorna ao nível de equilíbrio.

Trabalho

- A queda do consumo gera perda de utilidade.
- Isso incentiva a oferta de trabalho.
- E, em equilíbrio, cai o salário real e aumentam as horas trabalhadas, inicialmente.

Investimento

- Crowding out: o aumento nos gastos do governo diminui a poupança.
- Isso diminui a oferta de capital.
- E, em equilíbrio, aumenta a taxa de juros real e cai o investimento, inicialmente.

Capital

- O menor investimento dimnui o estoque de capital ao longo do tempo.
- Note que o capital não "pula".

PIB

- Ótica da renda: horas trabalhadas aumentam mais do que o salário cai; estoque de capital inicialmente constante e maior retorno do capital.
- Ótica de produção: mais trabalho com o mesmo estoque de capital inicialmente: aumento da produção.
- Ótica do dispêndio: o aumento nos gastos do governo é maior que a queda do consumo e do investimento.

IRFs em perspectiva

- PIB e investimento não são "hump-shaped".
- O consumo aumenta menos do que o 1% inicialmente.
- O PIB aumenta mais do que 1% inicialmente.

O que acontece após um choque na produtividade?

Qualitativamente, temos as mesmas respostas

Qualitativamente, temos as mesmas respostas

Política fiscal antecipada

Anúncio ("news shock")

Como simular uma política fiscal antecipada? Assuma que o governo anunciou em t que irá aumentar os seus gastos em t+3. Como podemos implementar isso no Dynare? (Dica: lembre-se que o anúncio foi **inesperado** e que esse efeito leva dois períodos para impactar os gastos.)

Efeitos de uma política fiscal antecipada

Efeitos de uma política fiscal antecipada

