Coursework: requirements

Goal own max number of boxes on uniform $(n \times n)$ grid of dots

Rules

- join the dots
 join adjacent (vertical or horizontal) vertices to form an edge;
- each player must take turns; player must always play on turn;
- Owning boxes whoever completes the 4th side of a box owns it;
- βφημσ
 obligatory (bonus?) move for every box owned;
 double-cross (i.e. two boxes) entail only 1 extra move;
- **5** total number of boxes is proportionate to $(2 \times n) + 1$ dots.

Coursework: play strategy

Strategies

- Naive:
 - eagerly attempt to own boxes as opponent makes third move
 - show example on the board

Coursework: play strategy

Strategies

- Clever:
 - break bonus move by choosing least "ownership" moves
 - avoid double-cross moves
- ② Winning (2^{nd} player) :
 - 2nd player to force all long chains to go through centre
 - thus, prevent side chains using spoke moves
 - Swastika pattern prevents side chains

How?

- identify long (≥ 3 boxes) chains (*i.e.* box-owning moves)
- 1st player wins, if long-chains are even;
- 2nd player wins, if long-chains are odd;
- with perfect play, long-chain control is not possible;
- strategic player: cut long chains if they could make you loose;
- 2nd player should win in a even-sized (e.g. 4x4) grid (9 boxes)
- key feature on 4×4 grid is a single central box
- move types:

