3.5 (4) Несуществование универсальной тотально вычислимой функции.

Определение: $U:\{0,1\}^* \times \{0,1\}^* \Rightarrow \{0,1\}^*$ называется универсальной тотально вычислимой функцией, если

- $1. \ U$ вычислима и всюду определена
- 2. Если f всюду определённая вычислимая функция одного аргумента, то $\exists p \forall x U(p,x) = f(x)$

Теорема: Универсальной тотально вычислимой функции не существует

▲ Предположим, что такая функция существует. Тогда рассмотрим функцию d(x) = U(x,x) - всюду определена и вычислима. Тогда функция d'(x) = U(x,x) + 1 также всюду определена и вычислима. Значит, по определению универсальной тотально вычислимой функции $\exists p \forall x U(p,x) = d'(x)$. Рассмотрим U(p,p) = d'(p) = U(p,p) + 1 - противоречие \Rightarrow такой функции не существует \blacksquare

Замечание: Для обычных универсальных вычислимых функций такого противоречие не возникает, так как равенство U(p,p) = U(p,p) + 1 верно, если U(p,p) не определена

3.6 (5) Неперечислимость и некоперечислимость множества всюду определённых программ.

 \blacktriangle Пусть это множество перечислимо (обозначим его как A). Решим с его помощью проблему самоприменимости. Пусть F - исследуемая функция, имеющая номер n в какой то главной универсальной вычислимой функции. Тогда

$$F'(x) = egin{cases} x & \text{если } F(n) \text{ не завершилось за } x \text{ шагов} \\ \bot & \text{иначе не определена} \end{cases}$$

Значит F' всюду определена $\Leftrightarrow F(n)$ не останавливается. Пусть F' имеет номер m. Тогда:

- 1. Запустить и сразу остановить F(n)
- 2. Проделать ещё 1 шаг в работе F(n). Если F(n) остановилось, вывести 1
- 3. Вывести перечисляющем алгоритмом ещё один элемент множества A. Если он равен m (то есть $F'(x) \in A$, а значит всюду определена) вывести 0
- 4. Вернуться ко второму шагу

Так как F или самоприменима, или несамоприменима, то или 1 или 2 шаг когда нибудь выведет результат, значит проблема самоприменимости решена, противоречие. Коперечислимость решается аналогично, только F'(x) = F(n) (получается F' не всюду определена $\Leftrightarrow F(n)$ не останавливается).