STATISTICS

1. Mean:
$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

2. **Median**: If the number of observations
$$n$$
 is odd, then median is $\left(\frac{n+1}{2}\right)^{th}$ observation and if the number of observations n is even, then median is the mean of $\left(\frac{n}{2}\right)^{th}$ and $\left(\frac{n+1}{2}\right)^{th}$ observations.

- 3. Measures of Dispersion, Range and Mean Deviation
- 4. Variance and Standard Deviation
- 5. Analysis of Frequency Distributions
 - **Measures of dispersion** Range, Quartile deviation, mean deviation, variance, standard deviation are measures of dispersion.
 - Range = Maximum Value Minimum Value
 - Mean deviation for ungrouped data

$$M.D.~(ar{x})=rac{\sum |x_i-ar{x}|}{n}$$

• Mean Deviation from Median for ungrouped data

$$M.D.(M) = \frac{\sum |x_i - M|}{n}$$

• Mean deviation for grouped data

$$M.D.~(ar{x}) = rac{\sum f_i |x_i - ar{x}|}{N}$$

• Mean Deviation from Median for grouped data

$$M.D.\;(M)=rac{\sum f_i|x_i-M|}{N}$$
 where N = $N=\sum f_i$

• Variance and standard deviation for ungrouped data

Variance:
$$\sigma^2 = \frac{1}{n} \sum_i (x_i - \bar{x})^2$$

Standard deviation:
$$\sigma^2 = \sqrt{\frac{1}{n} \sum_{i}^{n} (x_1 - \bar{x})^2}$$

• Variance and standard deviation of a discrete frequency distribution

Variation:
$$\sigma^2 = \frac{1}{N} \sum (x_i - \bar{x})^2$$

Standarddeviation:
$$\sigma^2 = \sqrt{rac{1}{N}\sum f_i(x_1 - ar{x})^2}$$

- Variance and standard deviation of a continuous frequency distribution
- (i) If $\frac{x_i}{f_1}$; i = 1, 2, 3,, n is a continuous frequency distribution of a variate X, then $\sigma^2=\frac{1}{N}\sum f_i(x_i-\bar{x})^2$
- (ii) If x_1,x_2,\ldots,x_n be the n given observations with respective frequencies f_1,f_2,\ldots,f_n , then $\sigma=rac{1}{N}\sqrt{N\sum f_ix_i^2-(\sum f_ix_1)^2}$, where N = $\sum f_1$
- (iii) If $d_i=x_i- ext{A}$, where A is assumed mean, then $\sigma^2=rac{1}{ ext{N}}\sum f_id_i^2-\left(rac{\sum f_id_i}{ ext{N}}
 ight)^2$
- (iv) If $u_i=rac{x_i-{
 m A}}{h},$ where h is the common difference of values of x, then $\sigma^2=rac{1}{{
 m N}}\left[\sum f_iu_i^2-\left(rac{\sum f_iu_i}{{
 m N}}
 ight)^2
 ight]$
- Analysis of frequency distribution with equal means but different variances: If the S.D. of group A < the S.D. of group B, then group A is considered more consistent or uniform.
- Ananlysis of frequency distribution with unequal means: In this case we compare the coefficient of variation [Coefficient of variation (C.V. = $\frac{100 \times \text{S.D.}}{\text{Mean}}$. The series having greater coefficient of variation is said to be more variable than the other.
- Variance of the combined two series: $\sigma^2=\frac{1}{n_1+n_2}\left[n_1\left(\sigma_1^2+d_1^2\right)+n_2\left(\sigma_2^2+d_2^2\right)\right]$ where n_1 and n_2 are the sizes of two groups, σ_1 and σ_2 are the S.D. of two groups, $d_1=\overline{a}-\overline{x}$, $d_2=\overline{b}-\overline{x}$ and $\overline{x}=\frac{n_1\overline{a}+n_2\overline{b}}{n_1+n_2}$