Appendix

List of Low-Loss Ceramic Dielectric Materials and Their Properties

M.T. Sebastian

Abbreviations

ST = sintering temperature (°C)

 ε_r = relative permittivity

f = measurement frequency (GHz)

 τ_f = coefficient of temperature variation of resonant frequency (ppm/°C)

No. = serial number

Qf = quality factor frequency product (GHz)

The table lists the key property data of microwave dielectric materials available from published materials. These data are the relative permittivity (ε_r), the product of the Q-factor and the frequency (Qf), the frequency of measurement (f), and the temperature coefficient of the resonant frequency (τ_f). In tabulating these data, we make no judgment on the measurement method and the reliability of the result. It is known that the ceramic properties such as porosity, grain size, raw materials used, impurities, measurement methods, and equipment used for measurements affect the dielectric properties and readers should be aware that exact comparison of data on materials of identical composition and manufactured in different laboratories using different processing conditions and measured by different methods would be expected to lead to small variations in properties. The data of dielectric measurements carried out using impedance methods at low (MHz) frequency is excluded as the errors in these methods mean that a loss tangent less than 10^{-3} is unreliable. The data are arranged in the order of increasing relative permittivity. The quality factor of the microwave dielectric ceramics decrease significantly with increasing relative permittivity, as shown in Figure A.1. The inset in the figure shows the variation of quality factor frequency product with

Figure A.1 Variation of quality factor frequency product as a function of relative permittivity. The inset in the figure shows the variation of quality factor frequency product with relative permittivity in the logarithmic scale.

Figure A.2 Variation of coefficient of temperature variation of resonant frequency in ppm/°C as a function of relative permittivity.

relative permittivity in the logarithmic scale. The $0.993 {\rm MgO-}0.007 {\rm B_2O_3}$ has the highest Qf ($Qf=773~700~{\rm GHz}$ with $\varepsilon_r=9.3$ and $\tau_f=-55~{\rm ppm/}^{\circ}{\rm C}$). On the other hand, AlPO $_4$ has the lowest relative permittivity wth $\varepsilon_r=3.0$ and $Qf=900~{\rm GHz}$. SiO $_2$ has $\varepsilon_r=3.5$ with Qf of 92400 GHz and $\tau_f=-15~{\rm ppm/}^{\circ}{\rm C}$. In general, the low ε_r materials have negative τ_f and high ε_r materials with positive τ_f , as shown in Figure A.2. The DR table is an updated version of the table in Appendix II in *Dielectric Materials for Wireless Communication* by M.T, Sebastian, published by Elsevier in 2008 and the supplementary file by M.T. Sebastian, Rick Ubic, and H. Jantunen, in *International Materials Review*, vol. 60, (2015), p.392. There are several low-loss single crystal materials and the reader is referred to Appendix II in the above referred book.

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
<u> </u>	$AIPO_4+5 wt\% MgF_2$	1450	Orthorhombic	3.0	006	5.8	I	_
2	$50\% \text{Li}_2 \text{CO}_3 - 40.24\% \text{B}_2 \text{O}_3 - 9.76\% \text{SiO}_2$	009	glass	3.2	10500		-79	2
3	SiO ₂ sol-gel	1550	Tetragonal cristobalite	3.5	92400		-15	3
4	$0.2B_2O_3 - 0.8SiO_2$	1100	Amorphous (fused silica)	3.6	20600			4
5	SiO ₂ (solid state method)	1100	fused silica	3.7	44300		-15	5
9	SiO ₂ melt method		Fused silica	3.7	122100			5
7	$10.5CaO-22.2B_2O_3-67.3SiO_2$	1035	Glass	3.8	4300	12.9		9
8	SiO ₂	1650	Trigonal P3 ₁ 21	3.8	80400		-16	7
6	CaO-B ₂ O ₃ -SiO ₂ (29.3:9.3:61.4 mol%)	006	Glass	3.9	1800	6.6		8
10	27.8CaO-27B ₂ O ₃ -45.2SiO ₂	875	Glass	4.0	3200	12.8		8
1	KGaGe ₃ O ₈	890	Monoclinic P2 ₁ /a	4.0	10200	13		6
12	$SrCuSi_4O_{10}$	1100	Gillespite Tetragonal P4/ncc	4.0	11500			10
13	CaO-B ₂ O ₃ -SiO ₂ (19.8:30.9:49.3 mol%)	006	Glass	4.1	2000	6.6		8
14	CaO-B ₂ O ₃ -SiO ₂ (10.5:22.2:67.3 mol%)	006	Glass	4.1	2600	6.6		8
15	Na_2MoO_4	099	Cubic Fd-3m	4.1	35000		9/-	11
16	$Li_3AIB_2O_6$	650	Triclinic	4.2	12460	16.8	-290	12
17	27B ₂ O ₃ -4	850	Glass	4.2	3200	12.8		9
18	LiAlSiO ₄ +15 wt% Bi ₂ O ₃	006	α-eucryptite Rhombohedral R3	4.3	62400		-16	13
19		1000	Tetragonal I-42m	4.4	2500			14
20	BF33 glass	I	Glass	4.6	440	4		15
21	BF33 glass	I	Glass	4.6	860	2		15
22	BF33 glass	I	Glass	4.6	2900	24		15
23	BF33 glass	I	Glass	4.6	4560	77		15
24	Mg ₂ Al ₄ Si ₅ O ₁₈ Indialite recrystallized	1320	Hexagonal P6/mcc	4.6	207800	19	-27	16
25	MEMPAX glass	I	Glass	4.7	310	2		15
76	MEMPAX glass	I	Glass	4.7	700	2		15
27	MEMPAX glass	I	Glass	4.7	2400	24		15
28	MEMPAX glass	I	Glass	4.7	5130	77		15
29	K _{0.9} Ba _{0.1} Ga _{1.1} Ge _{2.9} O ₈	066	Monoclinic C2/m	4.7	10600	13	-18	6
30	LiAlSiO ₄	1350	α-eucryptite Rhombohedral R3	4.8	36000		8	17

12 118 120 120 122 123 133 140 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	7
) 2
-201 -32 -23 -244	-50
16.9 18 8 18.49 7 7 7 13 8 8 8 8 8 8 8 9 6 9 9 6 1 7 7 1 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	I
12600 112500 8000 38100 4000 1500 10000 5000 16000 42100 67000 360 290 1190 3470 7230 64000 118500 12500 18500 18500 18500 20450 80000	8000
4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.4
Triclinic Orthorhombic Cccm Orthorhombic Cccm Orthorhombic Composite Orthorhombic Tetragonal Gillespite P4/ncc Orthorhombic Cordierite composite Orthorhombic Orthorhombic Orthorhombic Orthorhombic Class Glass Glass Glass Glass Glass Glass Glass Grass Grass Grass Grass Grass Grass Grass Grass Anonoclinic P2 1/a Orthorhombic Trigonal R-3 α-eucryptite Rhombohedral R3 Orthorhombic Monoclinic P2 1/a Triclinic P-1 Orthorhombic	Composite
700 1420 850/2h 725 900/6h 850 950 850/2h 1020 850/2h 850/2h 850/2h Room Temp 950 1175 910/20h 1075/6h	875
Li ₃ AlB ₂ O ₆ (cordierite) Mg ₂ Al ₄ Si ₅ O ₁₈ +7 wt% Yb ₂ O ₃ Li ₂ MgSiO ₄ +5 wt% LMZBS Zn ₂ SiO ₄ -SiO ₂ -H ₃ BO ₃ (30:55:15 wt%) SrCuSi ₄ O ₁₀ +5 wt% LMZBS 30 wt% Al ₂ O ₃ +70 wt% [3ZnO-2B ₂ O ₃] Mg ₂ SiO ₄ +15 wt% LMZBS Li ₂ MgSiO ₄ +3 wt% LMZBS Li ₂ MgSiO ₄ +3 wt% LMZBS Li ₂ MgSiO ₄ +3 wt% LBS Li ₂ MgSiO ₄ +2 wt% LBS Li ₂ MgSiO ₄ +5 wt% LBS Li ₂ MgSiO ₄ +5 wt% LBS Li ₂ MgSiO ₄ +5 wt% LBS Li ₂ MgSiO ₄ +1 wt% LBS Li ₂ MgSiO ₄ +1 wt% LMZBS Sillimanite (Al ₂ SiO ₅) Li ₃ AlB ₂ O ₆ Li ₂ AlB	40 wt% Al ₂ O ₃ +60 wt% (SiO ₂ -B ₂ O ₃ -Al ₂ O ₃)
33 33 33 33 33 33 33 33 33 33 33 33 33	59

o N	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
09	0.85SiO,-0.15TiO, core shell structure	1200	Composite	5.4	40500		0	28
61	Zn_2SiO_4 - SiO_2 - H_3BO_3 (33:59::8 wt%)	825	-	5.4	48800	17.7		20
62	$Zn_2SiO_4-SiO_2-H_3BO_3$ (33:59:8 wt%)	875		5.5	40500	17.49		20
63	NaAlSi ₃ O ₈ (albite)	1025	Triclinic C-1	5.5	11200		-5	29
64	Li ₂ MoO ₄	540	Trigonal R-3	5.5	46000	13	-160	30
65	$_{4}+1$ wt% L	925/2h	Orthorhombic	5.5	114300	8		19
99	Li ₂ MgSiO ₄ +0.5 wt% LMZBS	925/2h	Orthorhombic	5.5	72700	8		19
29	$CaO-SiO_2-B_2O_3+0.5 \text{ wt}\% \text{ ZrO}_2$		Composite	5.5	28500	11.1		31
89	Li ₂ WO ₄	640	Monoclinic C2/c	5.5	62000	15.7	-146	32
69	$K_{0.9}Ba_{0.1}Ga_{1.1}Ge_{2.9}O_8+0.1 \text{ wt}\% H_3BO_3$	910	Monoclinic P2 ₁ /a	5.6	10400	13		6
70	Li ₂ MgSiO ₄ +1 wt% LMZBS	925/2h	Orthorhombic	5.6	80000	8		19
71	$K_2Mo_3O_{10}$	520	Monoclinic p-1	5.6	39300		- 92	33
72	$Zn_{1.8}SiO_{3.8}+20 \text{ mol}\% B_2O_3$	006	Rhombohedral	5.7	53000		-16	34
73	Al_2O_3+50 vol% ZBS glass	006	Composite	5.7	17800	12.6		35
74	$Mg_5 TaO_3 (BO_3)_3 + 1 \text{ wt}\% \text{ LiF}$	1300/2h	Orthorhombic Pnma warwickite	5.7	27000			36
75	$Al_2W_{3-x}Mo_xO_{12}$ (x=1)	810	Orthorhombic Pbcn	5.8	33810		-72	37
9/	μ -cordierite+ B_2O_3 - P_2O_5	098	Composite	5.8	3000		-55	38
77	α -cordierite+B ₂ O ₃ -P ₂ O ₅	950	Composite	5.8	0009		-15	38
78	Li ₂ CaSiO ₄ +1 wt% ZBS	975	Tetragonal I-42m	5.8	2000			14
62	$K_{0.67}Ba_{0.33}Ga_{1.33}Ge_{2.67}O_8$	1020	Monoclinic C2/m	5.9	94100		-25	39
80	$Al_2O_3 + MgO - Al_2O_3 - SiO_2 - GeO_2 + ZnO - B_2O_3$	006	Composite	5.9	5590	8.4		40
81	Li ₂ MgSiO ₄ +2 wt% LMZBS glass	875/2h	Orthorhombic	5.9	111000	8		19
82	$MgO-B_2O_3-SiO_2+10 \text{ wt}\% \text{ TiO}_2$	1050	Composite	5.9	16500			41
83	0.84SiO_2 - 0.16TiO_2	1275/3h	Composite	5.9	36700	12.5	-5	42
84	Al_2O_3+50 vol% ZBS glass	800	Composite	0.9	14400	12.5		35
82	$Zn_{2-x}SiO_{4-x}+25 mol\% B_2O_3$	006	Composite	0.9	70000		-22	43
98	$CaO-B_2O_3-SiO_2$	830	Glass	0.9	2000	10		44
87	Al_2O_3+50 vol% ZBS glass	850	Composite	0.9	16950	12.5		35
88	Al_2O_3+50 vol% ZBS glass	750	Composite	0.9	9200	12.4		35

89	K _{0.67} Ba _{0.33} Ga _{1.33} Ge _{2.67} O ₈	970	Monoclinic P2 ₁ /a	0.9	134000	13	-22	6
06	$K_xBa_{1-x}Ga_{2-x}Ge_{2+x}O_8$ (x=0.67)	910	Monoclinic C2/m	0.9	104500		-20	6
91	$Na_{0.8}Ca_{0.2}AI_{1.2}Si_{2.8}O_8$	1100	Triclinic P-1	0.9	17600		0	45
92	$MgO-AI_2O_3-B_2O_3-SiO_2-TiO_2$		Composite	6.1	4200			46
93	α - Mg ₂ P ₂ O ₇	1150	Throtveitite type	6.1	38180		-746	47
			Monoclinic P2 ₁ /c					
94	$CaWO_4+0.5 \text{ wt}\% \text{ B}_2O_3$	1050	Sheelite Tetragonal 14 ₁ /a	6.1	38100		-47	48,49
92	$(Mg_{0.9}Ni_{0.1})_2AI_4Si_5O_{18}$	1440/2h	Orthorhombic Cccm	6.1	99100		-32	50
96	MgO-B ₂ O ₃ -SiO ₃ glass ceramic		Glass	6.1	11300			51
26	K _{0.6} Ba _{0.4} Ga _{1.4} Ge _{2.6} O ₈	970	Monoclinic P2 ₁ /a	6.1	120900	13	-23	6
86	$Mg_2B_2O_5$	1310	Monoclinic P2 ₁ /c	6.2	32000		-45	52
66	$KGaGe_3O_8$	970	Monoclinic P21/a	6.2	19800		-21	39
100	Mg ₂ Al ₄ Si ₅ O ₁₈ cordierite	1440	Orthorhombic Cccm	6.2	40000		-25	38
101	50 wt% Al_2O_3+50 wt%	875	Composite	6.2	11400	I	-35	27
	$(SiO_2-B_2O_3-Al_2O_3)$							
102	45 wt% Al_2O_3+55 wt%	875	Composite	6.3	11500	I	-33	27
	$(SiO_2-B_2O_3-Al_2O_3)$							
103	$AlSbO_4$	1100/3h	Tetragonal P4 ₂ /mnm	6.3	3200	4	Ι	53
104	$CaO-B_2O_3-SiO_2+4$ wt% $La_2O_3-B_2O_3$	850	Glass	6.3	10000			54
105	$AI_2W_{3-x}Mo_xO_{12}$ (x=0)	1100	Orthorhombic Pbcn	6.3	0096		- 92	37
106	$AI_2W_{3-x}Mo_xO_{12}$ (x=2)	810	Orthorhombic Pbcn	6.3	36500		-55	37
107	$0.9 Mg_2 AI_4 Si_5 O_{18} - 0.1 Ti O_2$		Composite	6.3	55400	17.6	-21	55
108	$42.5 \text{SiO}_2 - 21 \text{MgO} - 20 \text{Al}_2 \text{O}_3 - 16.5 \text{TiO}_2$		Composite	6.3	27000	9.7	9-	56
109	$Al_2W_{3-x}Mo_xO_{12}$ (x=3)	810	Monoclinic P2 ₁ /a	6.4	49200		-41	37
110	55 wt% Al_2O_3+45 wt%	006	Composite	6.4	13000	I	-58	27
	$(SiO_2-B_2O_3-Al_2O_3)$							
111	$Mg_3(VO_4)_2$	950/5h	Orthorhombic Cmca	6.4	48800	I	-83	57
112	$K_{0.9}Ba_{0.1}Ga_{1.1}Ge_{2.9}O_8$	1040	Monoclinic C2/m	6.4	94700	12	-23	39
113	$Y_2BaCu_{0.75}Ni_{0.25}O_5$		Orthorhombic	6.4	8350	13.5	-40	58
114	$K_{0.4}Ba_{0.6}Ga_{1.6}Ge_{2.4}O_8$	1040	Monoclinic P2 ₁ /a	6.4	94700	12	-23	39
115	$BaAl_2Si_2O_8$	1475/3h	Hexagonal P6/mmm	6.4	44800		-47	29

O	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
116	$Ca_{0.99}Mg_{0.01}SiO_3$	1290/2h	Wollastonite	6.5	62400		-43	09
117	Mg, GeO, +3 wt% B, O,	1200/4h	Monoclinic P2 ₁ /a Orthorombic Pnma	6.5	91000		-28	61
118	ZnO-B,O ₃ -SiO ₃ glass (60.3:27.1:12.6)		Glass	6.5	4500	17.1	-10	35
119	0.3TeO ₂ -SnTe ₃ O ₈	099	Composite	6.5	8800		200	62
120	$Li_2CaSiO_4+0.5$ wt% BBS	925	Tetragonal I-42 m	6.5	5500			14
121	$Li_{2}CaSiO_{4}+0.5 \text{ wt}\% PBS$	925	Tetragonal I-42 m	6.5	1500			14
122	0.15ZnO-0.25Nd ₂ O ₃ -0.6B ₂ O ₃ + 50 wt% Al,O,	850	Composite	6.5	22500	18.9		63
123	Mg ₃ B ₃ O ₆ +35 wt% LMBS	950	Composite	6.5	21000		-50	64
124	$(Z_{n_1-x}C_{0x})_3 SiO_4 $ (x=0.05)	006	Willimite Rhombic R3	6.5	5700		-55	92
125	$(Zn_{0.095}Co_{0.05})_2SiO_4+2$ wt% Li,O-B,O,-SiO,-CaO-Al,O,	006	Willimite	6.5	57000		-55	99
126	$LiMgPO_4$	950	Orthorhombic Pmnb	9.9	79100		09-	29
127	$(Mg_0 + Zn_0 \epsilon)_3 SiO_4$		Trigonal R-3	9.9	95650		09-	89
128	Zn,SiO ₄ +sol-gel	1325	Trigonal R-3	9.9	198400		-42	69
129	$Sr_2Al_2Si_{0.9}Ge_{0.1}O_7$	1525	Tetragonal Gehhlenite type	9.9	22900		-28	70
130	Al. 0. +50 vol % 785 glass	200	F-42 ₁ III Composite	9.9	2600	11.8		35
131	Ca ₁ Sr.SiO ₂ (x=0.8))	Monoclinic P2,/a	9.9	00299)	-40	71
132	MgO-B,O,-SiO, (42:45:13)		Glass	9.9	2100	6.88		72
133	Willemite (Zn ₂ SiO ₄)	1340	Trigonal R-3	9.9	219000		-61	73
134	CaWO ₄ +1 wt% MnSO ₄	1050	Scheelite 14 ₁ /a	9.9	129540		-56	48,49
135	$K_{0.9}Ba_{0.1}Ga_{1.1}Ge_{2.9}O_{8}$	066	Monoclinic C2/m	9.9	12700		-21	39
136	Zn _{1.8} SiO _{3.8}	1300/3h	WillemiteTrigonal R-3	9.9	147000		-22	74
137	$MgO-B_2O_3-SiO_2$ (42:45:13) glass		Glass	9.9	2130	6.9		75
138	ZnO-0.6 SiO ₂ +Bi ₂ O ₃ -Li ₂ CO ₃	910/2h	Glass	6.7	33000	1	-33	92
139	CaO-SiO ₂	1320	Glass ceramic	6.7	25400			77
140	50 wt% $(La_2O_3-B_2O_3)+50$ wt% Al_2O_3	850	Glass	6.7	2800	17.7		78
141	Mg _{1.975} Mn _{0.025} SiO ₄ Fosterite	1400	Orthorhombic Pbnm	6.7	180000		-71	79

_
D
ė
⊇
.5
Ħ
≿
\ddot{c}
$\overline{}$

Friclinic 12/c
C
Composite 6.8
Composite 6.8
Orthorhombic Pbnm 6.8
Composite 6.8
Composite 6.8
Monoclinic C2/c wollastonite 6.8
Monoclinic C2/c 6.8
Orthorhombic Pnma 6.8
Friclinic p-1
6.9
Orthorhombic Pbnm 6.9
Glass 6.9
Monoclinic C2/m 6.9
Glass 6.9
Monoclinic P2 ₁ /a 6.9
Orthorhombic Pnmn 6.9
Composite 6.9
Glass 6.9
Mixed phases 6.9
Composite 6.9
Tetragonal P4 ₁ 6.9
Trigonal R-3
Orthorhombic olivine type 6.9

Z	Material	ST (°C)	Crystal structure	ú	Of (GHz)	f	1	Reference
				-			-	
170	(Mg _{0.95} Ni _{0.05}) ₂ SiO ₄ +12 wt% Li,CO,-V,O ₅	1150/4h	Orthorhombic	6.9	99800		-20	100
171	HfSiO ₄		Tetragonal amd	7.0	25000	10	-44	101
172	Sr _{0.05} Ba _{0.95} Al, Si, O ₈	1600/162h	Monoclinic celsian 12/c	7.0	92600		-22	102
173	$M_{83}B_2O_6+5$ wt% $M_{82}B_2O_5$	1310/20h	Kotoite Orthorhombic Pnmn	7.0	241000		-18	52,103
174	SrCuP ₂ O ₇	925	Monoclinic P2 ₁ /n	7.0	101110		-62	104
175	CaMgSi ₂ O ₆	900/1h	Monoclinic C2/c	7.0	43200		-22	105
176	CaMgSi ₂ O ₆ +8.5 wt% ZrO ₂	950	Composite	7.0	7300			106
177	Mg_2SiO_4+1 wt% TiO_2 Fosterite	1300	Orthorhombic Pbnm	7.0	230000		-65	107
178	$Ba_2V_2O_7$	950	Anorthic Triclinic P-1	7.0	19000		-74	108
179	δ -Ba $_2$ P $_2$ O $_7$	1150	Dichromatic type Hexagonal	7.0	12300			47
			P-62m					
180	Ba ₂ MgSi ₂ O ₇	1350/10h	Tetragonal P-421 m	7.0	31000		09-	109
181	Sr ₂ Al ₂ SiO ₇	1525	Tetragonal P4-2 ₁ m	7.0	33000		-34	110
182	LiMg _{0.95} Co _{0.05} PO ₄	875/2h	Orthorhombic olivine type	7.0	111200		-54	111
183	$SrZnP_2O_7$	950	Monoclinic P2 ₁ /n	7.1	52780		-70	104,112
184	$MgMoO_4$	006	Wolframite Monoclinic C2/m	7.1	79100		-46	113
185	ZnO:B ₂ O ₃ :SiO ₂ (50:30:20) glass	614Td	Glass	7.1	1670	15.9	-43	92
186	α -Sr ₂ P ₂ O ₇	1150	Dichromatic type Orthorhombic	7.1	33500		-23	47
			Pnam					
187	SrO-B ₂ O ₃ -SiO ₂ (32.85:52.09:15.05)		Glass	7.1	3600	6.7		72
0	glass	0,000	::	7	C	,		7
188	Mg II O_3 + 1.5 wt% C_3 Ti O_3 + 2 nO-8, O_3 - Si O_3 (3.5·25·40)	900/0.5n	Composite	- .	3200	9	0	-
189	O ₄ -0.05Ca	950	Trigonal R-3	7.1	26300		-5	115
	H_3BO_3							
190	Li_2CaSiO_4+3 wt% ZBS	875	Tetragonal I-42m	7.1	2000			14
191	0.88(Mg _{0.4} Zn _{0.6)2} SiO ₄ –0.12CaTiO ₃ +4 wf% 11,CO ₂ –H,BO ₂	950	Composite	7.1	28600		9-	116
192	$Mg_3B_2O_6$		Kotoite Orthorhombic Pnmn	7.2	150400	16		117

٩	5
1	U
1	Ξ
d	
1	~
-	õ
1	Ũ
	_

193	BaAl, Si, O ₈	1500/12h	Monoclinic	7.2	20000	10.5	-22	118
194	$Sr_{0.05}Ba_{0.95}Al_2Si_2O_8$	1500/40h	Monocelsian Hexagonal	7.2	77000	10.5		118
			P6/mmm					
195	Li ₂ CaSiO ₄ +1 wt% LBS	925	Tetragonal I-42m	7.2	4000			14
196	Sr ₂ Al ₂ SiO ₇	1525	Gehlenite Tetragonal P-42 ₁ m	7.2	33000		-37	119
	CaO-MgO-SiO ₂ +10 wt% Li ₂ O-Bi ₂ O ₃	890	Composite	7.2	25600		69-	120
	(Sol gel)							
	$Sr_2AI_{1.9}Ga_{0.1}SiO_7$	1525	Tetragonal P-42 ₁ m	7.2	21500		-41	70
	Mg ₂ SiO ₄ +0.5 wt% LMZBS glass Fosterite	1525	Orthorhombic Pbnm	7.3	121200			85
	Li ₂ CaSiO ₄ +3 wt% BZBS	006	Tetragonal I-42m	7.3	1700			14
201	Sr ₂ Al ₂ SiO ₇ +0.5 wt% LMZBS glass	1500	Gehlenite P4-2 ₁ m, Tetragonal	7.3	34200		-36	70
	Sr ₂ Al ₂ SiO ₇ +1 wt% LMZBS glass	1500	Gehlenite P4-2 ₁ m, Tetragonal	7.3	36300		-23	70
	$Sr_{2-x}Ca_xAl_2SiO_7 (x=0.25)$	1450	Tetragonal P4-2 ₁ m	7.3	26000		-34	110
	SrZnP ₂ O ₇	925/2h	Monoclinic P2 ₁ /n	7.3	71520		-64	104
	BaO:B ₂ O ₃ :SiO ₂ (30:20:50) glass	717 Td	Glass	7.3	1840	14.8	-62	92
206	$BaCu(B_2O_5)$	810		7.3	20000		-32	121
207	CaO-B ₂ O ₃ -SiO ₂ (69.7:16.2:14.1 mol%)	006	Glass	7.3	2300	9.6		8
208	CaO-B ₂ O ₃ -SiO ₂ (38.3:31.5:30.2 mol%)	006	Glass	7.3	1800	9.6		8
209	BaO:B ₂ O ₃ :SiO ₂ (30:40:30) glass	677 Td	Glass	7.3	2700	15.4	-34	92
210	BaO:B ₂ O ₃ :SiO ₂ (30:60:10) glass	627 Td	Glass	7.3	3390	14.9	-25	92
211	$CaCuP_2O_7$	900/2h	Monoclinic P2 ₁ /n	7.3	71620		9/-	104
212	$Mn_2P_2O_7$	1150	Monoclinic C2/m	7.3	23850		96-	47
	$Zn_{1.8}SiO_{3.8}+12 \text{ wt}\% V_2O_5$	875/2h	Trigonal R-3	7.3	17500		-28	122
	$Y_2BaCu_{0.6}Mg_{0.4}O_5$		Orthorhombic Pmmm	7.4	25320	12.9	-56	58,123
	CaAl ₂ Si ₂ O ₈ (Anorthite)	1500	Triclinic P-1	7.4	12000		-130	29
	MgAl ₂ O ₄ +Li-Mg-Zn-B-Si-O glass	1000	Glass-ceramic	7.4	48000	24	-90	124
	$Mg_2Si_{0.9}Ti_{0.1}O_4$ Fosterite	1425	Orthorhombic Pbnm	7.4	73760	15	09-	125
218	$ZrSiO_4$	1550	Tetragonal 14 ₁	7.4	8500	5.15	-50	126
219	19 ZnO- 13 La $_2$ O $_3$ - 68 B $_2$ O $_3$ +40 wt%		Composite	7.4	18100			127
	$A_2 O_3$	1			1		1	(
220	$xMgO-(1-x)B_2O_3$ (x=0.8)	1350/4h	Composite	7.4	247880		-65	93

o N	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
221	CaMgSi ₂ O ₆	1300/3h	Monoclinic C2/c	7.4	29700		-42	128
222	$Sr_{2-x}Ca_xAl_2SiO_7 (x=0.5)$	1450	Tetragonal P4-2 ₁ m	7.4	25000		-33	110
223	Alpha CaSiO ₃ +6 wt% SiO ₂	1350		7.4	33700		-11	129
224	$Mg_{2.15}SnO_4$	1620/4h	Spinel Cubic Fd3m	7.4	76800		-50	130
225	BaCu (B_2O_5)	850		7.4	23000		-75	131
226	$LiZnVO_4$ (Using V_2O_5)	800	Trigonal phenakite R-3	7.5	25400		-123	132
227	$CaO-B_2O_3-SiO_2$ (42:45:13)		Composite	7.5	2400	6.24		72
228	$20ZnO-16La_2O_3-64B_2O_3+50 \text{ wt}\%$	950	Composite	7.5	13500		-10	96
000	7.42(3 D.A. C. O	10E0/17b	// Cl oisiloosof/	1	74100		23	103
677	Da/N ₂ Ue ₂ U ₈	1330/1211	MOHOCHIIIC 1Z/C	C./	/4100		-32	701
230	SrSiO ₃ -NiO	1375	Monoclinic C2	7.5	26500		64	133
231	HfSiO ₄ +2 wt% LMZBS	1400/4h	Tetragonal 14 ₁ /amd	7.5	7500	2		134
232	$CaO-B_2O_3-SiO_2$ (42:45:13) glass		Glass	7.5	2380	6.2		72
233	DyBO ₃ , HoBO ₃ , YBO ₃		Vaterite Hexagonal P6 ₃ /mmc	7.5	10000			135
234	α -Zn ₂ P ₂ O ₇	1150	Throtveitit Monoclinic C2/m	7.5	20000		-204	47
235	Mg _{2.05} SiO ₄ Fosterite	1550/3h	Orthorhombic Pbnm	7.5	114700	10.6	-59	75
236	Ba ₂ ZnSi ₂ O ₇	1350	Monoclinic	7.5	48000		-74	109
237	$K_2Mo_2O_7$	460	Triclinic	7.5	22300		-63	33
238	ZnO:B ₂ O ₃ :SiO ₂ (60:20:20) glass	<800	Glass	7.5	1410	15.4	-84	92
239	ZnO:B ₂ O ₃ (60:40) glass	<800	Glass	7.5	1430	15.1	-3	92
240	LiZnVO ₄ (Using NH ₃ VO ₃)	720	Trigonal phenakite R-3	7.5	27600		-114	132
241	ZnO:B ₂ O ₃ :SiO ₂ (60:30:10) glass	<800	Glass	9.7	1440	15.5	-21	92
242	$CaZnP_2O_7$	900/2h	Pyrophosphate	9.7	63130		-82	136
243	$20CaO-20La_2O_3-60B_2O_3+40 \text{ wt}\%$	850	Composite	9.7	2000	17.4		137
	Al ₂ O ₃							
244	$BaO-B_2O_3-SiO_2$ (42:45:13) glass		Glass	9.7	4100	6.65		72
245	BaGa ₂ Si ₂ O ₈	1350/12h	Monoclinic I2/c	7.6	62300		-32	102
246	24 ZnO- 16 La $_{2}$ O $_{3}$ - 60 B $_{2}$ O $_{3}$ + 50 wt%	950	Glass	9.7	17600	16.9	-14	96
	Al_2O_3							
247	$CaMgSi_2O_6$	1300 CIP	Monoclinic C12/c1	9.7	121380		99-	138

8
ĕ
Þ
٠.5
ĭ
õ
, Ō,

248	$Zn_2SiO_4+8 \text{ mol}\% Bi_2O_3$ BaO-B,O,-SiO, (42:45:13)	885/2h	Trigonal R-3 Glass	7.6	12600	6.65	-22	139
250	LiZnVO ₄	750/2h	Rhombohedral R3	7.6	22000)	-110	140
251	$xMgO-(1-x)B_2O_3$ (x=0.9)	1350/4h	Orthorhombic Pnmn	7.7	376800		-58	93
252	Y ₂ BaCu _{0.9} Mg _{0.1} O _{5 CIP}	1250	Orthorhombic Pbnm	7.7	37500	14.5	-37	123
253	$CaMg_{0.9}Zn_{0.1}Si_2O_6+0.6$ wt% LiF	006	Monoclinic C12/c1	7.7	70000		-25	141
254	$0.91 M_{B_2} SiO_4 - 0.09 Ca TiO_3 + 12 wt\%$	950	Fosterite composite	7.7	11300	6.1	-5	142
255	DI ₂ O ₃ -LI ₂ CO ₃ -TI ₃ DO ₃ Li ₂ Mo ₂ (W/O.1) ₂	875	Orthorhombic Puma	7 7	00960	9	-16	143
256	c.2···82(··· 4/3 α-Ca, Ρ, Ο ₇	1290/4h	Monoclinic P2 ₁ /n	7.8	14100)	-97	144
257	Li ₂ CāSiO ₄ +3 wt% PBS	006	Tetragonal I-42m	7.8	2700			14
258	$Mg_3Sm_4AI_{44}O_{75} + B_2O_3 - SiO_2 - AI_2O_3$	920	Mgnetoplumbite	7.8	10000		1	145
259	$DyPO_4$	1600	Xenotime tetragonal 14 ₁ /amd	7.8	28700		-17	146
260	$TbPO_4$	1600	Xenotime tetragonal 14 ₁ /amd	7.8	20100		-18	146
261	27 ZnO- 16 La $_2$ O $_3$ - 57 B $_2$ O $_3$ + 50 wt%	950	Composite	7.8	22700	16.8	-19	96
	AI_2O_3							
262	45CaO-31.7B ₂ O ₃ -23.3SiO ₂	715	Composite	7.8	1130	12.5		9
263	27ZnO-16La ₂ O ₃ -57B ₂ O ₃ glass+50 wt%		Composite	7.8	1350	16.8		96
	Al_2O_3							
264	$xMgO-(1-x)B_2O_3$ (x=0.85)	1350/4h	Composite	7.8	307600		-58	93
265	$Li_xZn_{2-x}V_xSi_{1-x}O_4$ (x=0.8)	820		7.8	21100	11.5		147
266	$CaMg_{0.9}Zn_{0.1}Si_2O_6+5 wt\% MgF_2$	1050		7.8	169800	11.7	-26	148
267	Yb_2BaCuO_5		Orthorhombic Pnma	7.9	7290		-44	149
268	LiMgPO ₄ +0.05 vfTiO ₂	950	Orthorhombic Pmnb	7.9	93600		-36	29
269	$SrWO_4$	1150	Tetragonal 14 ₁ /a	7.9	26000		-55	150
270	$Mg_3(VO_4)_2$	950/10h	Orthorhombic Cmca	7.9	53000		-84	57
271	CaO-B ₂ O ₃ -SiO ₂ (50.1:22.2:67.3 mol%)	006	Composite	7.9	2100	9.6		8
272	$CaMg_{0.9}Zn_{0.1}Si_2O_6$	1200	Monoclinic C2/c	7.9	76100		-22	141
273	$ZnAl_2O_4$	1700	Spinel cubic Fd3m	7.9	82000		-63	151
274	Sr ₂ ZnSi ₂ O ₇ +15 wt% LMZBS	875	Composite	7.9	39000	12.71	-54	152
275	MgO	1490	Cubic Fm3m	7.9	113600	16.4		153

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_{f}$	Reference
276	Nd, SiO,	1500	Monoclinic P2 ₁ /c	7.9	38800	18.35	-53	154
277	Ca(Sn _{0.1} Si _{0.9})O ₃	1375	Monoclinic P2 ₁ /a	7.9	58000		-43	155
278	α -CaSiO ₃ +2 wt% TiO ₂	1300	Mixture	7.9	16500		_	156
279	$Ca(Mg_{1-x}AI_x)(Si_{1-x/2}AI_{x/2})_2O_6$ (x=0.08)	1275	Monoclinic C2/c	7.9	59800		-42	157
280	NaAgMoO ₄	400	Spinel Fd-3m	7.9	33000		-120	158
281	$Mg_2SnO_4+LiF-Fe_2O_3-V_2O_5$	1050	Cubic Fd3m	7.9	41400		-82	159
282	α -CaSiO ₃ +2 wt% Al ₂ O ₃ +2.5 wt% TiO ₂	1250	Composite	7.9	24000		<u></u>	160
283	5ZnO-2B ₂ O ₃ +6 mol% Pb _{1.5} Nb ₂ O _{6.5}	910	Composite	7.9	15000	7.4		161
284	CAS-T5 glass	950	Composite	8.0	22500	10	-20	163
	$(CaO.Al_2O_3:SiO_2:TIO_2:B_2O_3)$							
285	CaMgSi ₂ O ₆ +15 wt% LBS glass	925/2h	Monoclinic C2/c	8.0	15000	10.17	-49	164
286	$Ca_{1-x}Cd_xMoO_4 (x=0)$	1075	Sheelite fergusonite type	8.0	46500		-20	165
			Tetragonal 14 ₁ /a					
287	$CaAl_2Si_2O_8+5$ wt% TiO_2	006	Anorthic I-1	8.0	22500		-50	163
288	CaMgSi ₂ O ₆ +12 wt% Al ₂ O ₃	1250	Composite	8.0	60100		-48	166
289	$\text{Li}_2\text{O-B}_2\text{O}_3\text{-SiO}_2\text{-Al}_2\text{O}_3\text{-CaO}$	550	Composite	8.0	2400		-48	167,168
290	$^{2}B_{2}O_{3}-0.5Z$	006	Composite	8.0	72000	13		169
291	YPO_4	1600	Xenotime tetragonal 14 ₁ /amd	8.0	00629		-35	146
292	$Sr_{2-x}Ca_xAl_2SiO_7 \ (x=1)$	1475	Tetragonal P4-2 ₁ m	8.0	27500		-42	110
293	$0.94 Mg_2 SiO_4-0.06 Ca_{0.9} Sr_{0.1} TiO_3$	1440/3h	Composite	8.0	53400	14.4	4-	170
294	$20MgO-20La_2O_3-60B_2O_3+40 \text{ wt}\%$	950	Composite	8.1	19000			137
	AI_2O_3							
295	$BaWO_4$	1150	Scheelite Tetragonal 141/a	8.1	26000		-55	150,171
296	$SrWO_4$	1150	Tetragonal 141/a	8.1	57500		-78	150
297	$MgZn_2(VO_4)_2$	800/5h	Orthorhombic Cmca	8.1	44700		-108	172
298	Li ₂ CaSiO ₄ +3 wt% BBS	006	Tetragonal I-42 m	8.1	2000			14
299	60 wt% $La_2O_3-B_2O_3+40$ wt% Al_2O_3	850	Composite	8.1	4500	17.5		78
300	$CaZrB_2O_6$	1075	Dolomite type borate	8.1	39400		3	173
301	$Mg_{0.8}Zn_{0.2}Al_2O_4$		Spinel Cubic Fd3m	8.1	87000			174

-	
σ	
(D	
3	
~	
٠.	
+	
_	
0	
ũ	
_	

302	$20MgO-20La_2O_3-60B_2O_3+40 \text{ wt}\%$ Al, O ₂	950	Composite	8.1	19000	16.1		137
303	$(Mg_{0.95} Zn_{0.05})Al_2O_4$	1580	Spinel cubic Fd3m	8.1	165000		-68	175
	Ag_2MoO_4	450 2h	Cubic Fd3-m	8.1	17000		-133	176
305	MgTiO ₃ -CaTiO ₃ (MMT-20)+ SiO ₂ -B ₂ O ₃ -B ₃ O	875	Composite	8.2	3000	_		177
306	BaWO, +0.5 wt% B.O.	950	Scheelite Tetragonal 14.7a	8.7	32700		-18	48.49
307	20ZnO-20La,O ₃ -60B ₂ O ₃ +40 wt%	950	Composite	8.2	20000	17.1)	137
	Al,O,							
308	CaMgSi ₂ O ₆ +15 wt% LMZBS glass	900/2h	Monoclinic C2/c	8.2	32000	10.15	-48	164
309	$Mg_{0.6}Zn_{0.4}Al_2O_4$		Spinel Cubic Fd3m	8.2	93000			174
310	LiMg $_{0.9}$ Zn $_{0.1}$ PO $_4$ +0.05 Vf TiO $_2$	925	Orthorhombic Pmnb Olivine	8.2	80200		-39	82
			type					
	$Nd_2Mo_3O_{12}$	945	Monoclinic C2/c	8.2	80000		09-	178
312	$Mg_2V_2O_7+6 \text{ mol } \%Li_2CO_3$	800	Monoclinic P2 ₁ /c	8.2	20600		-35	179
	LilnSiO ₄	1150	Orthorhombic Pnma	8.2	12600		-55	180
314	$Zn_2(Sn_{1-x}Si_x)O_4 (x=0.07)$	1175/4h		8.2	55500		-120	181
	BaMgV ₂ O ₇	830	Orthorhombic	8.2	37600	11.7	-35	182
	$YbPO_4$	1600	Xenotime tetragonal 14 ₁ /amd	8.2	71600		-28	146
	70 wt% $La_2O_3-B_2O_3+30$ wt% Al_2O_3	850	Composite	8.3	5500	17.2		78
	Li ₂ CaSiO ₄ +1 wt% BBS	925	Tetragonal I-42m	8.3	10000			14
	Y_2BaCuO_5 (CIP)		Orthorhombic Pbnm	8.3	53300		-40	123
320	$20ZnO-20La_2O_3-60B_2O_3+40$ wt%	950	Composite	8.3	18600	17		137
	Al_2O_3							
	$Mg_{0.75}Ni_{0.25}Al_2O_4$		Spinel cubic Fd3m	8.3	130000	15.4	-53	183
322	CaMgSi ₂ O ₆	1300/2h	Monoclinic C2/c	8.3	53000	10.27	-45	164
323	$Mg_{0.4}Zn_{0.6}Al_2O_4$		Spinel cubic Fd3m	8.3	93000			174
324	Sr ₂ MgSi ₂ O ₂	1550	Akermite Tetragonal P4-2 ₁ m	8.3	55000		-48	133
325	20 ZnO- 20 La $_2$ O $_3$ - 60 B $_2$ O $_3$ + 40 wt%	850	Composite	8.3	1100	17.1		137
308	A ₁₂ O ₃ Lingio +1 w#/ LMZBS	1100	Orthorhombic Dama	α	72000		7	180
020		0011	Oldionionion I IIIIa	†.	77,000		CF	001

No.	Material	ST (°C)	Crystal structure	$\mathcal{E}_{_{I}}$	Qf (GHz)	f_0	$ au_f$	Reference
327	$Ca_3SnSi_2O_9$	1525	Cuspidine P2 ₁ /c	8.4	92000		09-	184
328	$Mg_{0.2}Zn_{0.8}Al_2O_4$		Spinel cubic Fd3m	8.4	98000			174
329	Sm ₂ SiO ₅	1500	Monoclinic P2 ₁ /c	8.4	64000		-37	185
330	$M_{8_2}SnO_4$	1550/4h	Cubic spinel Fd3m	8.4	55100		-62	186
331	$MgAl_2O_4$ (SPS)	1325	Spinel cubic Fd3m	8.4	54000		-74	187
332	$(1-x)Ba_3(VO_4)_2-xMg_2SiO_4$ (x=0.65)	1200	Composite	8.4	52200			188
333	80 wt% $La_2O_3-B_2O_3+20$ wt% Al_2O_3	850	Composite	8.4	9800	17.6		78
334	CaSiO ₃	1300	Wollastonite Monoclinic P2 ₁ /a	8.4	16000	10		189
335	$Ca_3SnSi_2O_9$	1400	Monoclinic P2 ₁ /c	8.4	93300		-70	189
336	$Sr_2ZnSi_2O_7$	1475	Akermite Tetragonal P4-2,1m	8.4	105000		-52	133
337	β -Ca ₂ P ₂ O ₇	1150/2h	Tetragonal P4 ₁ dichromatic type	8.4	53500		-53	104
338	$Ca_2AI_2SiO_7$	1500	Tetragonal P4-2 ₁ m	8.4	33000		-34	110
339	$0.86(Mg_{0.4}Zn_{0.6})_2SiO_4-0.14CaTiO_3$	1180/4h	Composite	8.4	28100		9-	190
340	$\text{Li}_2\text{Mg}_2\text{W}_3\text{O}_{12}$	720	Lyonsite-type orthorhombic	8.4	56700		-73	191
341	$BaZnP_2O_7$	875/2h	Triclinic P-1	8.4	27900	11.1	-57	192
342	$Li_2Mg_2W_3O_{12}$	720	Orthorhombic Iyonsite	8.4	26700		-73	193
343	$Yb_2Ba(Cu_{0.5}Ni_{0.5})O_5$			8.5	13300		-46	194
344	TbPO ₄	1650/2h	Tetragonal 14 ₁ /amd	8.5	20100		-17	146
345	$MgAl_2O_4$	1650/3h	Spinel Cubic Fd3m	8.5	105000		-63	195
346	Li ₂ MgSiO ₄		Orthorhombic	8.5	30000	15		117
347	$Li_2O-B_2O_3-SiO_2$ frit glass	<800	Glass	8.5	1800		-157	196
348	MgTiO ₃ -CaTiO ₃ (MMT)-20-ZnO-B ₂ O ₃ - SiO ₂ (44.57:17.32:6.95:30.16)	875	Composite	8.5	7000	^	9	177,197
349	ZnAl, O ₄	1375	Spinel Cubic Fd3m	8.5	26000	12.3	-79	198
350	ZnO-B ₂ O ₃ -SiO ₂ -MMT-20 (44.57:17.32:6.95:30.16)	875	Composite	8.5	3000	_	9	197
351	Mg ₄ Nb ₂ O ₉ (Precipitation)	950	Corundum type P-3c1	8.5	50000			199
352	CaMgSi ₂ O ₆ +1 wt% LBS glass	1300/2h	Monoclinic C2/c	8.5	64000	10.27	-45	164
353 354	$0.64 \text{ M}_2 \text{ O}_3$ -0.1611 O_2 +6 Wt% MCAS glass MnMoO ₄	1250 900	Composite Wolframite Monoclinic C2/m	8.5	9900 54100		-74 -74	200 113
	•							

8
õ
Š
.5
ıτ
õ
Ų

355 356 357	Mn ₂ SiO ₄ Ca _{0,8} Sr _{0,2} SnO ₃ 13CaO-19La ₂ O ₃ -68B ₂ O ₃ +40 wt% Al,O ₃	1100/N ₂ 1540	Orthorhombic Pbnm Perovskite Orthorhombic Pbnm Composite	8.5 8.5 7.	50000 6700 8100		-90 -44	79,201 202 127
358	$(Zn_{0.8}Mg_{0.2})_2SiO_4-TiO_2+3$ wt% Li,O-B,O ₃ -SiO, glass	870/2h	Composite	8.5	11500		0	203
359	$(Mg_{0.93}Zn_{0.07})_2 SnO_4$	1550/4h	Cubic spinel Fd3m	8.5	186100		-61	204
360	Mg _{0.8} Co _{0.2} Al ₂ O ₄	1475	Spinel cubic Fd3m	8.5	20000		09-	205
361	$CaW_{1-x}Te_xO_4$ (x=0.15)	006	Scheelite 14 ₁ /a	8.5	44000			206
362	Sr ₂ ZnSi ₂ O ₇	1475	P-42 ₁ /m Hardystonite	8.5	105000		-52	133,152
363	Li ₂ Ca ₂ Mo ₃ O ₁₂	630	Lyonsite orthorhombic	8.5	108000	13.2	-89	207
364	$Y_2BaCu_{0.25}Ni_{0.75}O_5$		Orthorhombic Immm	9.8	31290	12.5	-36	58
365	$0.88AI_2O_3$ -0.12TiO ₂ +2 wt% MCAS glass	1250	Composite	9.8	9580		2	208
366	$(Mg_{1/2}Zn_{1/2})AI_2O_4$	1600/4h	Spinel Cubic Fd3m	9.8	95000		-52	209
	Ca_2SiO_4	1450	Orthorhombic P2 ₁ /n	9.8	26100		-89	210
368	$SrW_{1-x}Te_xO_4 (x=0.2)$	800	Scheelite Tetragonal 14 ₁ /a	9.8	38400			206
	$SrW_{1-x}Te_xO_4 (x=0.0)$	006	Scheelite Tetragonal 14 ₁ /a	9.8	37900		-57	206
	$0.96\mathrm{Sr}_2\mathrm{Al}_2\mathrm{SiO}_7$ - $0.04\mathrm{CaTiO}_3$	1500	Tetragonal P-42 ₁ m	9.8	20400		6	119
371	LiSrBO ₃	800	Monoclinic P2 ₁ /c	9.8	00009		-39	211
372	Li ₄ WO ₅	890	Orthorhombic rocksalt	9.8	23100	11	-3	212
373	LiCaBO ₃	800	Orthorhombic Pbca	8.7	75000		-150	211
374	$ZnMoO_4$	800	Wolframite Triclinic P-1	8.7	49900		-87	113
375	$CaWO_4+0.5 \text{ wt% Bi}_2O_3+9 \text{ wt% H}_3BO_3$	850	Scheelite Tetragonal 14 ₁ /a	8.7	70220		-15	213
376	$CaWO_4$	1200	Scheelite Tetragonal 14 ₁ /a	8.7	75000		-54	150
377	$(AI_{1/2}Ta_{1/2})O_2$	1600	Tetragonal P4/nmm	8.7	00809		-55	214
378	$Ca-AI-B-Si-O+AI_2O_3$ (K8)	870	Composite	8.7	006	3	I	215
379	$NdPO_4$	1300	Monoclinic P2 ₁ /n	8.7	59500		-47	146
380	$(Mg_{0.95}Ni_{0.005})_2 SnO_4$	1550/4h	Cubic Spinel Fd3m	8.7	103100		-63	216
381	$ZnAl_2O_4SPS$		Spinel Cubic Fd3m	8.7	57000			151
382	$SrW_{1-x}Te_xO_4 (x=0.1)$	800	Scheelite 14 ₁ /a	8.7	40300			206
383	$(Mg_{1/2}Co_{1/2})AI_2O_4$	1600	Spinel Cubic Fd3m	8.8	107300		-54	217

No.	Material	ST (°C)	Crystal structure	$\mathcal{E}_{_{I}}$	Qf (GHz)	f_0	τ_f	Reference
384	Sr, MnSi, O ₇	1375	Akermite Tetragonal P4-2 ₁ m	8.8	32000		-59	133
385	$Ca_{0.5}Sr_{0.5}Zr_4P_6O_{24}$	1400	Trigonal R-3	8.8	1200	1	-32	218
386	$\text{Li}_2\text{Mo}_4\text{O}_{13}$	520	Anorthic P-1	8.8	7700	10.7	99-	30
387	$xMgO-(1-x)B_2O_3$ (x=0.95)	1350/4h	Orthorhombic Pnmn	8.8	432000		-55	93
388	BaO-ZnO-SiO ₂	1275	Composite	8.8	34000		-58	133
389	$Sr_2 ZnSi_2O_7 + 2 wt\% SrTiO_3$	1450	Akermite Tetragonal P4-2 ₁ m	8.8	00009		-13	133
390	$0.4Ba_3(VO_4)_2-0.6Mg_2SiO_4$	1200	Composite	8.8	55900		ī	188
391	$(Zn_{0.8}Mg_{0.2})_2SiO_4$ -TiO ₂ +3 wt% Li,O-B,O ₃	006	Mixed phases	8.8	15500		18	219
392	$CaO^{-}Al_{2}O_{3}-SiO_{2}-B_{2}O_{3}+Al_{2}O_{3}$	006	Composite	8.8	1500			220
393	Zn ₂ SnO ₄ +0.5 wt% BaCuB ₂ O ₅	1150/4h	Spinel Fd-3m	8.8	30900		-88	221
394	Li, Mg ₃ SnO ₆	1360	Cubic rocksalt Fm-3m	8.8	123000	10.7	-32	222
395	Sr ₂ CoSi ₂ O ₇	1375	Akermite Tetragonal P4-2 ₁ m	8.9	34000		-57	133
396	$ZnO-B_2O_3-SiO_2-MMT-20$	006	Composite	8.9	7000	8	-24	197
	(46.34:17.09:6.85:29.72)							
397	CaGeO ₃	1200	Orthorhombic Pbnm	8.9	32200	10		223
398	ZnO-B ₂ O ₃ -SiO ₂ -MMT-	006	Composite	8.9	810	8	-15	177,197
	20(44.97:17.2:6.9:29.93)							
399	$ZnO-B_2O_3-SiO_2-MMT-$	006	Composite	8.9	800	8	-24	177,197
	20(46.34:17.09:6.85:29.72)							
400	$ZnTiO_3+1$ wt% B_2O_3	900/4h	Trigonl R-3	8.9	49000		-32	224
401	$CaSiO_3 + 1 wt\% Al_2 O_3 + 1.5 wt\%$	006	Composite	8.9	19800			225
	Li ₂ CO ₃ +0.2 wt% CuO+10 wt%							
	$CaTO_3$							
402	$Mg(AI_{1-x}Ga_x)_2O_4$ (x=0.6)	1485	Cubic Fd3m	8.9	107000	14.8	-16	226
403	$LiMgVO_4$	700/4h	Orthorhombic	8.9	23300	10.2	-140	227
404	$xMgO-(1-x)B_2O_3$ (x=0.97)	1350/4h	Orthorhombic Pnmn	0.6	547700		-55	93
405	$Ca_{1-x}Cd_xMoO_4 (x=0.2)$		Scheelite Tetragonal 141/a	0.6	32500		-40	165
406	$BaWO_4$		Scheelite Tetragonal 14 ₁ /a	0.6	32200			228
407	$BaMoO_4$	006	Scheelite Tetragonal 14 ₁ /a	9.0	37100		06-	229

408	SrWO ₄		Scheelite Tetragonal 141/a	0.6	62600			228
409	$(1-x)Ba_3(VO_4)_2$ -xMg ₂ SiO ₄ (x=0.55)	1175	Composite	0.6	52500		0	188
410	ZnO-B ₂ O ₃ -SiO ₂ -MMT-	006	Composite	0.6	7000	8	-62	197
	20(49.21:16.15:6.49:28.15)							
411	Co_3O_4 -Nb ₂ O ₅ -TiO ₂	1010	Mixture	0.6	41000	7.5	-59	230
412	MgTiO ₃ -CaTiO ₃ -ZnO-B ₂ O ₃ -SiO ₂		Composite	0.6	7000	^	-55	197
413	PbO:B ₂ O ₃ :SiO ₂ (30:60:10) glass		Glass	0.6	1700	13.5	-15	92
414	5 ZnO-Ta $_2$ O $_5$ -TiO $_2$	1150	Composite	0.6	0006	7.9	-45	230
415	0.9CaWO ₄ - 0.1 Li ₂ WO ₄	1150	Composite	0.6	117600		-55	231
416	Yb ₂ BaNiO ₅		Orthorhombic Pnma	9.1	44600		-37	149
417	K ₂ O-B ₂ O ₃ -SiO ₂ -CaO-SrO-BaO	006	Composite	9.1	009	0.5	0	232
	$(glass)+Al_2O_3$							
418	Yb_2BaZnO_5		Orthorhombic Pnma	9.1	44600		-38	149
419	$DyPO_4$	1650/2h	Tetragonal 14 ₁ /amd	9.1	28600		-17	146
420	α -Ca ₃ (PO ₄) ₂	1500/10min	Monoclinic P2 ₁ /a	9.1	22000		-97	233
421	$xMgO-(1-x)B_2O_3$ (x=0.96)	1350/4h	Orthorhombic Pnmn	9.1	473890		-57	93
422	CaSnSiO ₅	1525	Monoclinic A2/a	9.1	61000		35	234
423	$Mg_3(VO_4)_2$	950/50h	Orthorhombic Cmca	9.1	64100	I	-93	57
424	Zn_2SiO_4+11 wt% TiO_2	1200	Composite	9.1	150800		<u></u>	69
425	0.89Zn ₂ SiO ₄ -0.11TiO ₂		Composite	9.1	118000		_	235
426	$Ba_3(PO_4)_2$ -0.2BaWO ₄ +0.8 wt% B_2O_3	925	Composite	9.1	45500		-2	236
427	LiMgVO ₄	675/2h	Orthorhombic Cmcm	9.1	33700		-160	140
428	$0.95 \mathrm{Sr_2Al_2SiO_7-0.05CaTiO_3}$	1475	Gehlenite Tetragonal P-42 ₁ m	9.2	14400		24	119
429	BaMoO ₄	800	Scheelite Tetragonal 141/a	9.2	26600		-17	49
430	CaO-MgO-SiO ₂ -TiO ₂ +1 wt%	880	Composite	9.2	46200		1.3	128
	$Li_2CO_3-V_2O_5$							
431	$xMgO-(1-x)B_2O_3$ (x=0.98)	1350/4h	Orthorhombic Pnmn	9.2	598370		-54	93
432	$Ca_{1-x}Cd_xMoO_4 (x=0.4)$	1025	Scheelite Tetragonal 141/a	9.2	38500		-40	165
433	BaO:B ₂ O ₃ :SiO ₂ (50:40:10) glass	<800	Glass	9.2	1220	13.1	-43	92
434	$Ca_5Mg_4(VO_4)_6$	800	Cubic garnet la-3d	9.2	53300	10.6	-50	237
435	$Y_2BaCu_{0.9}Mg_{0.1}O_5$	1250	Orthorhombic Pbnm	9.2	36798		-36	123

o No	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
436	$(1-x)LiYW_2O_8-xBaWO_4+y wt\% B_2O_3$ (x=0.48, v=0.5)	930	Mixed phases	9.2	28100		-52	48
437	0.88CaMgSi ₂ O ₅ -0.12CaПO ₃ +1 wt% Li ₂ CO ₂ -V ₂ O ₅ -	880/2h	Composite	9.2	46200		-	128
438	1.8MgO-1.2Al ₂ O ₂ -2.8SiO ₂ -1.2TiO ₂ - 0.41 a ₂ O ₂	1200	Composite	9.2	28600		66-	238
439	SmBO ₃		Vaterite Hexagonal P63/mmc	9.3	11000			135
440	LiMgP \vec{O}_4 +0.1 vfTO,	950	Orthorhombic Pmnb	9.3	45400		-12	29
441	0.84MgAl ₂ O ₄ -0.16T <u>i</u> O ₂	1410	Composite	9.3	82200	10.1	-27	187
442	BaMoO ₄	006	Scheelite Tetragonal 141/a	9.3	37200		62-	113
443	Zn_2SiO_4+11 wt% TiO_2	1250	Composite	9.3	113000		_	73
444	$xMgO-(1-x)B_2O_3$ (x=0.993)	1350/4h	Orthorhombic Pnmn	9.3	773700		-55	93
445	$xMgO-(1-x)B_2O_3$ (x=0.995)	1350/4h	Orthorhombic Pnmn	9.3	551700		-56	93
446	$xMgO-(1-x)B_2O_3$ (x=0.999)	1350/4h	Cubic Fm3m	9.3	380400		-56	93
447	$Ca(Sn_{0.4}Si_{0.6})O_3$	1450	Monoclinic P2 ₁ /a	9.3	63000		-52	155
448	0.8 ZnAl $_2$ O $_4$ - 0.2 Co $_2$ TiO $_4$		Spinal Cubic Fd3m	9.3	147000		-65	239
449	$Ba_3(VO_4)_2 + 40 \text{ wt}\% Zn_{1.87}SiO_{3.87}$	1100	Composite	9.3	23000		0	240
450	Zn_2SnO_4+1 wt% B_2O_3	975	Cubic Fd3m	9.3	62000		-59	241
451	Al_2O_3+20 wt% CaSiO ₃	1325	Composite	9.4	13700			242
452	$Ba_3MgSb_2O_9$		Complex perovskite	9.4	0029	8.98		243
			Hexagonal P6 ₃ /mmc					
453	$0.84AI_2O_3$ -0.16TiO ₂ +4 wt% MCAS glass	1250	Composite	9.4	8200		10	200
454	Y_2BaCuO_5		Orthorhombic Pbnm	9.4	3830	12	-35	244
455	α -Ca ₃ (PO ₄) ₂ Fluoro apatite	1500/8h	Trigonal R-3 m	9.4	15200		-97	233
456	0.88 CaMgSi $_2$ O $_5$ - 0.12 CaTiO $_3$	1300/2h	Composite	9.4	50800		9	128
457	$Mg_3(VO_4)_2$	1050	Orthorhombic Cmca	9.4	65500		-90	57
458	$MgCo_2(VO_4)_2$	900/5h	Orthorhombic Cmca	9.4	78900		-95	245
459	SrMoO ₄	1050	Scheelite Tetragonal 141/a	9.5	61000		- 92	113
460	$La_2O_3-2B_2O_3-0.5ZnO+La_2O_3-3B_2O_3-$	006	Glass	-6	72000	13		169
	0.5ZnO			10				

6
9
7
t.
5
Ŭ
$\overline{}$

BaO:B ₂ O ₃ :SiO ₂ (50:30:20) glass Y ₂ BaCu _{0.8} Mg _{.0.2} O ₅		Glass Orthorhombic Pbnm	9.5	1256 42300	13.5	-95	92 123	
$(1-x)Ba_3(VO_4)_2$ -xMg ₂ SiO ₄ (x=0.5)	1175	Composite	9.5	46600		9	188	
Li ₃ AlMo ₃ O ₁₂	570	Lyonsite Psudohexagonal	9.5	20000	14.1	-73	207	
$Ca_{1-x}Cd_xMoO_4 (x=0.6)$	1000	Scheelite Tetragonal 14 ₁ /a	9.5	35700		-48	165	
Sr_2SiO_4	1575	Monoclinic P2 ₁ /n	9.5	19100		-205	210	
$CaMoO_4-xY_2O_3-xLi_2O(x=0.306)$	775	Composite	9.5	63200		^	246	
$MgGa_2O_4$	1410	Spinel Fd3m	9.5	117000	14.7	4-	247	
LiMgVO ₄	200	Orthorhombic Cmcm	9.5	34800		-146	248	
LiM $_{80.9}$ Zn $_{0.1}$ PO $_4$ +0.1 Vf TiO $_2$	950	Orthorhombic Pmnb Olivine	9.5	69500		-15	82	
()	1	adá	L			7	0.00	
$CaVVO_4+0.12$ wt% $BaCu(B_2O_5)$	8/5		y.5			14-	249	
$0.75Li_2ZnSiO_4-0.25CaTiO_3+25$ wt% ZnO-B ₂ O ₃	950	Composite	9.5	11800	7.8	1-5	250	
$0.79 \text{ZnA} _2 \text{O}_4 - 0.21 \text{ Mg}_2 \text{TiO}_4$	1550	Composite	9.6	160800		-65	251	
$0.79 \text{ZnA} _2 \text{O}_4 - 0.21 \text{Mn}_2 \text{TiO}_4$	1300 SPS	Composite	9.6	30630		ı	151	
0.96 MgO-0.04LiF	950	Cubic Fm3m	9.6	282230		-63	252	
$Ba_3CaSb_2O_9$		Complex perovskite Monoclinic C2/c	9.6	3400	9.2		243	
$SrDy_4Si_3O_{13}$	1475/4h	Hexagonal apatite P63/m	9.6	9200		28	253	
BaO:B,O3:SiO ₂ (50:20:30) glass		Glass	9.6	1310	14.3	-114	92	
$Ba_3V_4O_{13}$	6001h	Monoclinc I2/a	9.6	26000		-42	254	
$Ba_2V_2O_7$	840/1h	Triclinic	9.6	30300		-32	255	
$Zn_2(Sn_{0.99}Zr_{0.01})O_4$	1225/4h	Cubic Fd-3m	9.6	87000		-51	256	
RE mixPO ₄	1250	Monoclinic P2 ₁ /n	9.6	45200	13.5	-35	257	
Ca(Mg _{0.92} Al _{0.08})(Si _{0.96} Al _{0.04}) ₂ O ₆ +10 wt% СаПО ₃	1250	Mixture	9.6	32600		<u> </u>	258	
ZnO-B ₂ O ₃ -SiO ₂ -MMT- 20(44.77:17.59:7.05:30.59)	006	Composite	9.7	7000	∞	6	197	
$CrTaO_4$		Rutile type Tetragonal P4 ₂ /mnm	9.7	1600	4		53	
$Y_2BaCu_{0.6}Ni_{0.4}O_5$	1270/3h	Orthorhombic Pnma	6.7	36000		-27	259	
							l	

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf(GHz)	f_0	$ au_f$	Reference
487	β -Ca ₃ (PO ₄) ₂	1125/8h	Rhombohedral R3C	9.7	10300		-47	233
488	0.79ZnAl ₂ O ₄ -0.21 Mn ₂ TiO ₄	1400	Composite	9.7	23500		-63	251
489	$(K_{0.5}Sm_{0.5})MoO_4$	800/2h	Monoclinic 12/b	9.7	20000		-65	260
490	Al ₂ O ₃ +1500 ppm MgO+300 ppm			9.7	300000			261
491	0.55 Ba $_3$ (VO $_4$),-0.45LiMgPO $_4$	850	Composite	9.7	50700		-	262
492	0.8LiZnVO ₄ -0.2TiO ₂	640	Composite	9.7	39200		-20	140
493	Li ₃ InMo ₃ O ₁₂	630	Lyonsite Orthorhombic Pcn	9.8	36000	15	-73	207
464	CaSiO ₃ +1 wt% Al ₂ O ₃ +10 wt%	006	Composite	9.8	19800		1	263
	$CaTiO_3+1$ wt% Li_2CO_3-CuO							
495	$LiMgVO_4$ (Using V_2O_5)	810	Orthorhombic Cmcm	9.8	26500		-166	132
496	LiMgVO ₄ (Using NH ₃ VO ₃)	720	Orthorhombic Cmcm	6.6	30800		-171	132
497	Y ₂ BaCu _{0.8} Mg _{.0.2} O _{5 CIP}	1250	Orthorhombic Pbnm	6.6	49200	12.8	-40	123
498	$(K_{0.5}Nd_{0.5})MoO_4$	760/2h	Monoclinic 12/b	6.6	00069		-62	260
499	$(Mg_{1/2}Ca_{1/2})WO_4+1 wt\% Li_2WO_4$	950	Wolframite P2/c	6.6	30150		-63	48
200	$MgWO_4$	950	Wolframite Monoclinic P2/c	6.6	5400			264
501	$0.79 \text{ZnAl}_2 \text{O}_4 - 0.21 \text{ Co}_2 \text{TiO}_4$	1500	Spinel cubic Fd3m	6.6	94000		99-	251
502	$Ca_{1-x}Cd_xMoO_4 (x=0.8)$	925	Sheelite Tetragonal 141/a	6.6	34000		-50	165
503	$CaW_{1-x}Te_xO_4 (x=0.05)$	006	Scheelite Tetragonal 141/a	6.6	53600			206
504	$Sr_2V_2O_7+1 \text{ mol}\% \text{ Li}_2CO_3$	800	Anorthic P-1	6.6	73800		-29	265
505	0.96CaWO ₄ -0.04Na ₂ W ₂ O ₇	875	Wolframite Monoclinic P2/c	6.6	64400			266
206	$Nd_4Si_3O_{12}$	1450	Hexagonal P6 ₃ /m	6.6	6300	11.7	-12	154
	$Zn_2(Sn_{0.95}Ti_{0.05})O_4$	1225/4h		6.6	00692		-38	267
508	$Li(Mg_{1-x}Ni_x)PO_4$ (x=0.05)	875	Orthohombic	6.6	50800		<u></u>	66
509	LiMg _{0.95} Ni _{0.05} PO ₄ +11 wt% ΠO ₂	875	Orthorhombic olivine type	6.6	50800		1	66
510	Na ₆ Mo ₁₁ O ₃₆	510	Anorthic P-1	6.6	57000		-68	11
511	BiCaVO ₆	006	Cmc2 ₁	6.6	23600		-71	540
512	$CaWO_4$	1290	Wolframite Monoclinic P2/c	10.0	50800		-50	264,266
513	$LiMgPO_4 + 0.12TiO_2$	950	Composite	10.0	26900		_	29
514	$Ba_3Nb_2P_4O_{18}$	1150	P-1	10.0	58400		-34	268

4	=
	3
	ž
	5
	z
	õ
	Ũ.
	_

515	0.83ZnAl ₂ O ₄ -0.17TiO ₂ +10 wt% BBSZ	950	Composite	10.0	10000		-23	269
	glass							
516	Al_2O_3	1400/8h	Trigonal R-3c	10.0	634000	14	-40	270
517	$CaW_{1-x}Te_xO_4 (x=0.15)$	850	Scheelite Tetragonal 141/a	10.0	42000		-61	206
518	0.5Ba ₃ (VO ₄)-0.5Zn _{1.87} SiO _{3.87} +3 wt%		Composite	10.0	40800		0.5	271
	i 5 0 3	9		0	1		,	
	IiO ₂ -CaAlSi ₂ O ₈	960/0.5h	Composite	10.0	22500		-10	163
520	$Y_2Ba(Cu_{0.8}Mg_{0.2})O_5$ (CIP)			10.0	49180		-40	123
	CAS-T10 glass	950	Composite	10.0	22500	10	-15	163
	$(CaO:A_2^1O_3:SiO_2:TiO_2:B_2^1)$							
	$Al_2O_3+0.5 \text{ wt}\% \text{ TiO}_2$	1550/5h	Composite	10.0	453000	6		272
	Al_2O_3	1550/5h	Trigonal R-3c	10.0	335000		09-	272
524	$CaO-4ZnO-Ta_2O_5-TiO_2$	1225	Mixture	10.0	15000	8.4	09-	230
	$Mg_4Nb_2O_9+3$ wt% LiF	950/10H	Corundum type Hexagonal	10.0	116420		-72	273
			P-3c1					
	LiMgPO ₄ +0.12 vfTiO ₂	950	Orthorhombic Pmnb	10.0	26900		<u></u>	29
	$Mg_4Ta_2O_9$	1450	Corundum trigonal P-3c1	10.0	345000		-20	274
	Al_2O_3+500 ppm TiO ₂		Hexagonal R-3c	10.0	500000	10		275
	Mg_4NbSbO_9	1450/10h	Corundum type P-3c1	10.0	280000		-20	276
	$BaTeO_3$	800	Orthorhombic Pnma	10.0	34000		-54	277
	$Sm_2Si_2O_7$	1375	Tetragonal P4 ₁	10.0	2000	10		26
	$Al_2O_3+0.015 \text{ vf TiO}_2$		Composite	10.0	300000	10	0	278
533	$CaWO_4$	1150	Scheelite Tetragonal 141/a	10.0	75000		-24	150,279
	$NaCa_2Mg_2V_3O_{12}$	915/4h	Cubic garnet la3d	10.0	20600		-47	280
	$45 \text{Vol}\% \text{ LiMg}_{0.9} \text{Zn}_{0.1} \text{PO}_4 + \text{Ba}_3 (\text{VO}_4)_2$	800	Composite	10.0	64500		-2	281
	$LiMg_{0.95}Co_{0.05}PO_4+16.1 \text{ wt}\% \text{ TiO}_2$	875/2h	Composite	10.0	58200		_	1111
	Al_2O_3	1550	Hexagonal R-3c	10.1	000089		09-	201
538	$Y_2BaCu_{0.1}Ni_{0.9}O_5$		Orthorhombic Immm	10.1	5830	12.3	-36	58
539	$Mg_5Nb_4O_{15}$		A _n B _{n-1} O _{3n} perovskite Orthorhombic	10.1	32300		-24	282
540	$CaW_{1-x}Te_xO_4 (x=0.05)$	850	Scheelite Teragonal 14 ₁ /a	10.1	40500		-61	206

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf(GHz)	f_0	$ au_f$	Reference
541	$CaW_{1-x}Te_xO_4 (x=0.2)$	850	Scheelite Tetragonal 14,/a	10.1	44300		09-	206
542	$Ca_{1-x}Cd_xMoO_4$ (x=1)	006	Tetragonal 141/a	10.1	53200		-57	165
543	$LiMg_{0.9}Zn_{0.1}PO_4+0.12 Vf TiO_2$	950	Orthorhombic Pmnb Olivine	10.1	52900		-5	82
			type					
544	$La_2Mo_3O_{12}$	930	Monoclinic C2/c	10.1	00009		-80	178
545	$0.55 \text{Li}_2 \text{WO}_4 - 0.45 \text{TiO}_2$	730	Mixture	10.1	32800		-17	283
546	$Ca_5Co_4(VO_4)_6$	875	Cubic garnet la-3d	10.1	95200	10.6	-63	284
547	$CaMoO_4-xY_2O_3-xLi_2O(x=0.066)$	775	Composite	10.1	00099		-57	246
548	AITeO ₆ -TeO ₂	900/2h+		10.2	24300	13.3		285
		anneal/750						
549	Y ₃ AI ₅ O ₁₂ +1.3 wt% TiO ₂	1550	Garnet Cubic la3d	10.2	80100		-30	286
550	Bi ₆ B ₁₀ O ₂₄	200	Orthorhombic Pnma	10.2	10750		-41	287
551	$0.9(0.79 \text{ZnAl}_2 O_4 - 0.21 \text{Mg}_2 \text{Ti} O_4)$ -	1450	Composite	10.2	158000		-64	288
	0.1TiO_2							
552	Al_2O_3 , Ti O_2 doped		Trigonal R-3c	10.2	119150			289
553	$(1-x)LiYW_2O_8-xBaWO_4+y wt\% B_2O_3$	006	Mixed phases	10.2	24300		-21	48
	(x=0.46, y=0.5)							
554	$Ce_2(WO_4)_3$	1025	Monoclinic C2/c	10.2	10500		-25	290
552	$Ba_3ZrV_4O_{15}$	800	Orthorhombic Pnma	10.2	30600	8.5	-102	291
556	CaV_2O_6	675		10.2	123000	10.2	09-	292
557	0.88ZnAl ₂ O ₄ -0.12TiO ₂	1380	Composite	10.3	79800	11.1	-22	198
558	$Mg_3 Yb_4 Al_{44}O_{75}$	1680	Magnetoplumbite	10.3	41000		-57	145
559	$Mg_3 Dy_4 AI_{44} O_{75}$	1680	Magnetoplumbite	10.3	28000		-49	145
260	$CaMo_{1.02}O_4$	1300/2h	Tetragonal 14 ₁ /a	10.3	71000			293
561	$NdPO_4$	1300/2h	P12 ₁ /n1 Monozite	10.3	59500		-47	146
562	SmPO ₄	1400	Monoclinic P2 ₁ /n	10.3	60500		-54	146
563	$\text{Li}_3\text{SbO}_4+1 \text{ wt}\% \text{ B}_2\text{O}_3$	930	Monoclinic P2/c	10.3	14600	13.5	-28	294
564	$BaLa_2(MoO_4)$	800	Monoclinic	10.3	29800		9/-	295
265	$(K_{0.5}La_{0.5})MoO_4$	089	Tetragonal 141/a	10.3	59000		-81	296
999	$Yb_3A_{12}O_{12}$	1650	Cubic Garnet la-3d	10.3	12900		-70	297

8	
õ	
ž	
.5	
ĭ	
õ	
્ઉ	

267	LaPO ₄	1400	Monoclinic P2 ₁ /n	10.4	64500		-56	146	
268	SrEr ₄ Si ₃ O ₁₃	1500/4h	Hexagonal apatite P63/m	10.4	18100		-24	253	
269	$Sr_2V_2O_7$	1000	Anorthic P-1	10.4	19500		-35	299	
570	Ba, V, O,	920/10h	Anorthic P-1	10.4	51600		-20	299	
571	$Y_3\overline{AI_5O_{12}}$	1650/24h	Cubic la3d	10.4	440000		-50	300	
572	$SrCe_2(MoO_4)_4$	840		10.4	54100	8.08	-46	301	
573	573 MgO-1.2Al ₂ O ₃ -2.8SiO ₂ -1.2TiO ₂ - 0 8CeO ₂	1150/2h	Composite	10.4	15300		-5	302	
574	ZnGa,O ₄	1385	Cubic spinel Fd3m	10.4	94600		-27	303	
575	$CaW\tilde{O}_4$	1100	Scheelite Tetragonal 141/a	10.4	76500		-24	49	
929	CAS-TB glass	950	Composite	10.5	14200	10	-20	163	
	$(CaO:Al_2O_3:SiO_2:TiO_2:B_2O_3)$								
577	0.83ZnAl ₂ O ₄ -0.17TiO ₂ +10 wt%	925/10	Composite	10.5	14500	5.5	-28	269	
	DD32+U.3 W[% LIF								
278	$MgTe_2O_5$	700/4h	Orthorhombic Pbcn	10.5	61000	5.3	-45	304	
579	$LiCa_3MgV_3O_{12}$	006	Cubic garnet Cubic Ia3d	10.5	74700		-61	305	
580	$Mg_2V_2O_7$	950/10h	Triclinic Anorthic P-1	10.5	58200		-27	306	
581	$Er_3A_2O_{12}$	1600	Cubic Garnet la-3d	10.5	11700		-45	297	
582	$Vb_3Al_2O_{12}+1$ wt% Ga_2O_3	1600	Cubic Garnet	10.5	20000		-50	297	
583	$Na_{0.5}Nd_{0.5}MoO_4$	260		10.5	19600	9.15	-49	307	
584	0.96CaWO ₄ - 0.04 YLiF ₄	750/2h		10.5	73000		-38	308	
585	85 0.83ZnAl ₂ O ₄ -0.17TiO ₂ +15 wt% BBSZ glass	950/10h	Composite	10.6	9300	5.5	-29	269	
586	MgTiO ₃ -CaTiO ₃ (MMT-20)+ SiO ₂ -B,O ₂ -BaO	006	Composite	10.6	0009	_		177	
587	$Ca_3Zrar{Si},ar{O}_9$	1400	Monoclinic P2 ₁ /a	10.6	93300		-77	189	
588	$CaZrB_2O_6+3$ wt% Bi_2O_3 -CuO	925		10.6	87350		2	173	
589	$Ba_3SrSb_2O_9$		Complex perovskte Triclinic P-1	10.6	4600	6		243	
290	0.8SrMoO ₄ -TiO ₂ .+3 wt% H ₃ BO ₃ -CuO	875	Composite	10.6	72000		-19	309	
591	Y ₂ BaCu _{0.7} Mg _{.0.3} O _{5 CIP}	1250	Orthorhombic Pbnm	10.6	29300	12.3	-44	123	
592	0.8 BaMoO $_4$ - 0.2 TiO $_2$	1275	Composite	10.6	51800		-56	229	

o. N	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
593	0.55Li ₂ MoO ₄ -0.45TiO ₂	200	Mixture	10.6	30000		-5	283
594	0.75MgAl ₂ O ₄ -0.25TiO ₂	1450	Composite	10.7	105400	7.5	-12	195
595	$CoWO_4$	1200	Wolframite Monoclinic P2/c	10.7	38600			264
296	0.87[0.79ZnAl ₂ O ₄ -0.21Co ₂ TiO ₄]-	1350	Composite	10.7	86700		-62	310
	$0.13\mathrm{HO}_2$							
297	$Ba_3ZrV_4O_{15}$	800	Orthorhombic Pnma	10.7	30600		-106	291
298	$Sm_2Mo_4O_{15}$	069	Triclinic (PI-)	10.7	63500	11.6	-50	311
299	$LiMg_4V_3O_{12}$	740/4h	Tetragonal	10.7	24000	9.65	-12	312
009	BaZnV ₂ O ₇	720	Orthorhombic	10.7	31000	11.7	-64	182
601	0.9 ZnAl $_2$ O $_4$ - 0.08 CaTiO $_3$		Composite	10.8	32300		0	313
602	$CaMoO_4$	1100	Scheelite Tetragonal 141/a	10.8	89700		-23	49,228
603	Nano $Al_2O_3+0.5$ wt% TiO_2	1400	Trigonal R-3c	10.8	000089	14		314
604	$CaCu_2 Nb_2O_8+3 wt\% V_2O_5$	935		10.8	9300		-16	315
909	$E_{r_3}Al_2O_{12}+1$ wt% Ga_2O_3	1550	Cubic Garnet	10.8	12600		-37	297
909	$CaGe_2O_5$	1180	Monoclinic Pbam	10.9	39000	10		223
209	$Y_3AI_2O_{12}+1$ wt% Ga_2O_3	1600	Cubic Garnet	10.9	25000		-33	297
809	$0.7 \text{Ca}_2 \text{P}_2 \text{O}_7 - 0.3 \text{TiO}_2$	1200/2h	Composite	10.9	44000		-1	316
609	0.83ZnAl ₂ O ₄ -0.17TiO ₂ +10 wt% BBSZ	950/10h	Composite	10.9	12000	5.5	-23	269
	glass							
610	$Ba_2V_2O_7+6 \text{ mol}\% \text{ Li}_2CO_3$	750	Anorthic P-1	10.9	74500		-20	317
611	$CaWO_4$		Scheelite tetragonal 14 ₁ /a	10.9	105600			228
612	Sr ₂ ZnTeO ₆ +1 wt%	950	Not available	10.9	4250		-57	318
	ZnO-B ₂ O ₃ -P ₂ O ₅ -TeO ₂ glass							
613		1290/4h	Tetragonal 14 ₁ /amd	10.9	68300		-54	298
614	$Ca_2ZnSi_2O_7$	1300	Tetragonal P-42 ₁ m	11.0	13500		-64	133
615	$MgO-Al_2O_3-SiO_2-TiO_2-CeO_2$	1100/2h	Composite	11.0	12100		26	320
616	$0.76 M_{B_2} SiO_4 - 0.24 TiO_2$		Composite	11.0	85000		0	107,321
617	$Mg_3(VO_4)_2$ -0.2Ba $_3(VO_4)_2$	950/5h	Composite	11.0	114000		-58	322
618	Sm ₂ BaCuO ₅ :Co		Orthorhombic Pnma	11.0	89000			323
619	$NdBO_3$		Aragonite Orthorhombic	11.0	17000			135

5	3
9	5
4:	5
2	5
5	ر

620	Ba ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃	1200	Orthorhombic Pnam	11.0	25000	5.5	-16	324
621	Sr ₂ CaSi ₂ O ₇	1300	Akermite Tetragonal P4-2 ₁ m	11.0	13500		-64	133
	$Mg_2 SiO_4 + 24 wt\% TiO_2$	1200	Composite	11.0	82000		0	87
623	Al_2O_3	1550	Trgonal R-3c	11.0	000089		-65	235
	TiO_2 -B ₂ O ₃ -: Ca-Al-Si-) glass		Glass	11.0	1400	10		163
625	Mg ₅ Ta ₄ O ₁₅ (MgO calcined)	1560	Psuedo-brookite Orthorhombic	11.0	18100	90.6	-54	325
			Cmcm					
626	$Mg_5 Nb_4 O_{15}$ (MgO calcined)	1450	Psuedo-brookite Orthorhombic	11.0	37400	8.3	-53	325
			Cmcm					
627	$Mg_4 Nb_2 O_9$	1300	Trigonal P-3c1	11.0	210000		-70	274
628	$0.50 \text{Li}_2 \text{WO}_4 \text{-} 0.5 \text{TiO}_2$	730	Mixture	11.0	32000		-3	283
679	TiP ₂ O ₇	1250	Pyrophosphate	11.0	77000		41-	326
630	$Na_{0.5}La_{0.5}MoO_4$	740/2h		11.0	25100	8.83	-59	327
631	0.81Mg ₂ Si _{0.9} V _{0.1} O ₄ 0.19Ca _{0.8} Sr _{0.2} TIO. +4 wt% LiF	900/4h	Multiphase	11.0	49000	9.5	-1	328
0	() = () = () = ()		-	7	000			
632	$(Mg_{4-x}Mn_x)ND_2O_9$		Corundum Irigonal P-3c1	<u>-</u> :	71000-			378
				16	20000			
633	$PbO:B_2O_3$ (40:60) glass	469Td	Glass	11.1	1320	12.22	-43	92
634	$CePO_4$	1400/2h	Monoclinic P2 ₁ /n	11.1	68500		-46	146
635	$Nd_4Mo_4O_{15}$	700	Triclinic (PI ⁻)	11.1	61500	12	-44	311
989	$0.35Ba_3(VO_4)$, $-0.65BaWO_4$	925	Composite	11.1	79100		-2	330
637	$0.8(0.79 \text{ZnAl}_2^{-1} \text{O}_4$ -0.21Mg ₂ TiO ₄)-	1450	Composite	11.1	155100		-62	288
000	0:2:10 ₂	063	1.000ito Outhouthouting	11	00002	116	0	700
020	$L_1_2 L_1_2 MO_3 O_{12}$	050	Lyonsite Orthornombic Phina	- - -	/ 0000	0.4-0	-30	707
639	$0.8[0.79 \text{ZnAl}_2 \text{O}_4 - 0.21$	1350	Composite	11.1	98700		-63	310
	Co_2TiO_4]-0.2TiO ₂							
640	$Tb_2Al_2O_{12}+1$ wt% Ga_2O_3	1500	Cubic Garnet	11.1	30000		-32	297
641	$Y_3Al_2O_{12}+1$ wt% Nb_2O_5	1625	Cubic Garnet	11.2	120000		-48	297
642	$NiCu_2Nb_2O_8+3$ wt% V_2O_5	935		11.2	5760		-11	315
643	$Cu_3Nb_2O_8$	910	Anorthic	11.2	25560		4-	315
644	SrTm ₄ Si ₃ O ₁₃	1650/4h	Monoclinic apatiteP2,1/m	11.2	14400		-20	253

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
645	SrEr ₄ Si ₃ O ₁₃ +0.5 wt% ZBS glass		Hexagonal apatite P6 ₃ /m	11.2	21000		-20	253
646	Ba ₃ (PO ₄) ₂ -0.2BaWO ₄	1100	Composite	11.2	71985		1.5	236
647	Na _{0.5} Ce _{0.5} MoO ₄	780		11.2	19400	8.98	-44	331
648	Mg ₅ Nb ₄ O ₁₅ Sol-gel	1300	Psuedo brookite Orthorhombic	11.3	43300		-58	332
649	0.7 BaMoO $_4$ - 0.3 TiO $_2$	1285	Composite	11.3	52600		-34	229
650	$MgCu_2Nb_2O_8+3$ wt% V_2O_5	935		11.3	2900		-27	315
651	$0.4Ba_3(VO_4)_2$ -0.6BaWO ₄	925	Composite	11.3	75100		3	330
652	0.83ZnAl ₂ O ₄ -0.17TiO ₂ +3 wt% BBSZ	1300/4	Composite	11.3	35000		41–	269
653	$\operatorname{Li}_2\operatorname{Zn}_2\operatorname{W}_3\operatorname{O}_{12}$	700	Li ₂ WO ₄ +ZnWO ₄	11.3	24500		-100	193
654	$ZnCu_2Nb_2O_8+3$ wt% V_2O_5	935	Not available	11.4	10200		-23	315
655	$LiMgPO_4+0.15 \text{ vf TiO}_2$	950	Orthorhombic Pmnb	11.4	21100		4	29
929	$CaCe_2(MoO_4)_4$	840	Not available	11.4	52100	6.9	-44	301
657	$(1-x)Ba_2V_2O_7-xBa_3(VO_4)_2$ (x=0.42)	875/4h	Composite	11.4	71700		<u></u>	333
658	Li ₂ SnO ₃	1325	Rock salt C2/c(15)	11.4	13100		14	334
629	Zn_2SnO_4+3 wt% $ZnO-B_2O_3-SiO_2$	1075/4h	Cubic spinel Fd-3m	11.4	33000		-107	335
099	$BaPr_2(MoO_4)_4$			11.5	24800			337
661	0.8SrMoO ₄ - 0.2 TiO ₂	1300	Composite	11.5	19200		80	309
662	Y_2 BaCu _{0.4} Ni _{0.6} O ₅	1360/3h	Orthorhombic Pnma	11.5	45200	13.11	-20	259
663	$BaTi(BO_3)_2$	1000/2h	Trigonal R-3	11.5	2300			338
664	$Mg_4Ta_2O_9$	1450	Corundum Trigonal P-3c1	11.5	347000		-70	339
999	$Yb_3Ga_5O_{12}$	1400	Garnet Cubic la3d	11.5	60300		-12	340
999	$Mg_4Nb_{0.5}Ta_{.1.5}O_9$	1100	Corundum type Trigonal P-3c1	11.5	25520			339
299	0.8NaCa ₂ Mg ₂ V ₃ O ₁₂ - 0.2 CaTiO ₃	930/4h	Cubic garnet	11.5	37500		2	280
899	$LiCa_3ZnV_3O_{12}$	006	Cubic Garnet	11.5	81100	-72	I	341
699	Li ₃ FeMo ₃ O ₁₂	580	Orthorhombiv Pnma	11.5	12000		-20	342
029	$(Na_{0.5}Bi_{0.5})_{0.1}Ca_{0.9}MoO_4$	850	Tetragonal Scheelite	11.5	35100		-52	343
671	$BaY_2(MO_4)_4$	925/2h	Monoclinic	11.5	47200	10.3	-35	344
672	$LiKSm_2 (MoO_4)_4$	620	Monoclinic Sheelite	11.5	39000		-16	345
673	$Mg_4(Nb_{2-x}V_x)O_9 \ (x=0.0625)$	1025	Corundum type Trigonal P-3c1	11.6	160250		-75	346

674	0.83ZnAl ₂ O ₄ -0.17TiO ₂ +1 wt% BBSZ	1300/4h	Composite	11.6	49000		-10	269	
	glass								
675	$ZnAIO_4-0.21TiO_2$	1500/3h	Composite	11.6	74000	6.5	0	347	
9/9	$CaCu_2Nb_2O_8$	1110		11.6	2300		-17	315	
229	$CePO_4$	1400/2h	Monoclinic P2 ₁ /n	11.6	68300		-46	146	
829	$SrEr_4Si_3O_{13}+0.5$ wt% LBS glass	1475/4h	Hexagonal apatite P6 ₃ /m	11.6	21000		-20	253	
629	$0.88AI_2O_3-0.12TiO_2+8$ wt% MCAS glass	1350	Composite	11.6	11500		-3	348	
	$Ca_{2+x}La_{8-x}(SiO_4)_{6-x}(PO_4)O_2 (x=6)$	1425/4h	Hexagonal P6 ₃ /m apatite	11.6	12700		-35	349	
	0.79 ZnA I_2 O $_4$ - 0.21 TiO $_2$	1500/3h	Composite	11.6	74000	6.5	0	350	
682	0.95[0.79ZnAl ₂ O ₄ -0.21	1425	Composite	11.6	49950		-5	310	
	$Co_2 TiO_4$]-0.05 SrTiO ₃								
683	$0.95(0.792 \text{ LnAl}_2\text{ O}_4-0.21\text{ Mg}_2\text{ TiO}_4)$ -	1450	Composite	11.6	55000		6	288	
	0.05 <i>S</i> rIiO ₃								
684	$0.6 \text{LiYW}_2 \text{O}_8 \text{-} 0.4 \text{BaWO}_4$	006	Mixed phases	11.7	19750		14	48	
685	$Ca_5Zn_4(VO_4)_6$	725	Cubic garnet la3d	11.7	49400	9.7	-83	237	
989	$Yb_2Ba(Cu_{0.75}Zn_{0.25})O_5$		Orthorhombic Pnma	11.7	11200		-43	149	
289	$BaDy(MoO_4)_4$		Monoclinic	11.7	11500			337	
889	CaMoO ₄ (hot pressed)	1100	Tetragonal scheelite 14 ₁ /a	11.7	55000		09-	293	
689	$Ca_{0.8}(Nd_{0.5}Li_{0.5})_{0.2}WO_4$	825/2h	Tetragonal scheelite 14 ₁ /a	11.7	36700		2	351	
069	0.83 ZnA I_2 O $_4$ -0.17TiO $_2$ +0.2 wt% BBSZ	1400/4	Mixture	11.7	120000			269	
691	0.83ZnAl ₂ O ₄ -0.17TiO ₂ +0.1 wt% BBSZ	1425/4	Mixture	11.7	00096		4-	269	
692	$BaNd_2(MoO_4)$	096	Monoclinic	11.7	45000	6.6	-41	352	
663	$LiMg_{0.9}Zn_{0.1}PO_4+0.15 Vf TiO_2$	975	Orthorhombic Pmnb Olivine	11.7	49800		17	82	
			type						
694	$MgO-1.2Al_2O_3-2.8SiO_2-0.6CeO_2$	1200	Composite	11.7	17300		48	320	
695	$(Mg_{4-x}Co_x)Nb_2O_9 (x=0.5)$	1200/10h	Corundum type Trigonal P-3c1	11.7	50700		-68	353	
969	$Sr_2NaMg_2V_3O_{12}$	900/4h	Cubic garnet la-3d	11.7	37900		-3	354	
269	$BaSm_2(MoO_4)$	096	Monoclinic	11.8	20000	9.7	-34	352	
869	$0.9Al_2O_3-0.1TiO_2+0.3$ wt% Nb_2O_5	1550	Composite	11.8	8000		2	355	
669	0.94(0.79ZnAl ₂ O ₄ -0.21Mg ₂ TiO ₄)-	1400	Composite	11.8	88080		8-	288	
	0.00Ca O3								

o	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	$ au_f$	Reference
700	$La(Mg_{1/2} \Pi_{1/2})O_3 + B_2O_3 - La_2O_3 - MgO$	800	Composite	11.8	14700		7.4	356
701	ZnO-B ₂ O ₃ -P ₂ O ₅ -TeO ₂ glass annealed			11.8	3500		06-	318
702	0.85CaWO ₄ -0.15LaNbO ₄ +3 wt% H.BO ₂ -1 wt% 1i,CO ₂	006	Scheelite+second phases	11.8	45200		-23	357
703	La(Mg _{0.5} T _{0.5})O ₃ +0.6B ₂ O ₃ -0.12La ₂ O ₃ -0.28MgO	850/2h	Composite	11.8	14700		7	356
704	Y ₂ BaCuO ₅	1250	Orthorhombic Pnma	11.8	3200	10.7	-38	244
705	$\widetilde{Mg_4}NbTaO_9$	1100	Corundum type P-3c1	11.8	281670		99–	358
902	LaBO ₃	1300	Orthorhombic Pmcn	11.8	00692	15	-52	359
707	Mg ₄ Nb _{1,5} Ta _{.5} O ₉	1100	Corundum type Trigonal P-3c1	11.9	234520		- 92	358
708	Li ₂ MnO ₃ +2 wt% BCB	1200/4h	Monoclinic C2/c	11.9	80600		0	360
200	BaO-SrO-SiO ₂ -ZrO ₂	<1000	Composite	12.0	1000	2		361
710	$CoCu_2Nb_2O_8 + 3 wt\% V_2O_5$	885		12.0	7530		-18	315
711	$CaO-4Co_3O_4-Nb_2O_5-TiO_2$	1100	Mixture	12.0	28000	6.9	-42	230
712	$Mg_4(TaNb_{1-x}V_x)O_9$ (x=0.025)	1200	Corundum type Trigonal P-3c1	12.0	200000		-73	362
713	$Mg_4Ta_2O_9$	1250	Corundum type P-3c1	12.0	347000		-65	235
714	$AINbO_4$	1250	Monoclinic fergusonite C2/m	12.0	34000		-56	363
715	0.85CaWO ₄ - $0.$ SmNbO ₄ +1 wt%	800	Composite	12.0	13300		-28	364
	$\text{Li}_2 \text{WO}_4$							
716	$Ba_3(VO_4)_2 + 60 \text{ wt}\% \text{ CaWO}_4$	006	Composite	12.0	37000			365
717	$Ba_3V_4O_{13}$	700/4h	Monoclinic C2/c	12.0	22500		- 92	366
718	$Ca_4Tb_6(SiO_4)_4(PO_4)_2O_2$		Hexagonal Apatite P6 _{3/} m	12.0	19000		-10	367
719	$Mg_{3-x}Ca_xV_2O_8 (x=9/4)$	950		12.0	5700		15	368
720	$Ca_2V_2O_7$	920	Anorthic Triclinic P-1	12.1	15400		-32	299
721	0.8CaMoO ₄ - 0.2 TiO ₂ +3 wt%	875	Composite	12.1	53300		-16	309
	H ₃ BO ₃ -CuO							
722	$0662BaMoO_4-0.338TiO_2$	1285	Composite	12.1	41600		-25	229
723	0.76SrMoO ₄ - 0.24 TiO ₂ +3 wt%	006	Composite	12.1	40700		10	309
724	H ₃ BO ₃ -CuO PbO:B ₂ O ₃ :SiO ₂ (40:20:40) glass		Glass	12.1	1420	12.2	-31	92

8
g
Ë
Ē
S
_

725	$MgWO_4$	1200	Wolframite Monoclinic P-2/c	12.1	41800		-45	48,49
726	$Li_{0.8}Mg_{4.1}V_3O_{12}$	092	Tetragonal	12.1	21800		2	248
727	5BaO-2V ₂ O ₅	900/1h	Composite	12.1	26800		7	255
728	$Ca(Mg_{0.92}Al_{0.08})(Si_{0.96}Al_{0.04})_2O_6+22$ wt% TiO ₂	1225	Mixture	12.1	0009		2	258
729	$Y_2BaCu_{0.75} ilde{Z}n_{0.25}O_5$	1250	Orthorhombic Pnma	12.2	25660	11.5	-40	244
730	$Dy_3Ga_5O_{12}$	1450	Cubic Garnet la3d	12.2	42100	14.6	-22	340,369
731	0.76SrMoO ₄ - 0.24 TiO ₂	1300	Composite	12.2	21700		40	309
732	$0.92 MgAl_2O_4-0.08(Ca_{0.8}Sr_{0.2})TiO_3$	1440/ 20 min	Composite	12.2	56200		-3	370
733	0.88Al, O ₃ -0.12TiO ₃ +2 wt% MCAS glass	1350	Composite	12.3	20485		2.5	348
734	$BaCe_2(MoO_4)_4$	840	Monoclinic	12.3	24700	7.5	-37	301,371
	$Mg_4Nb_2O_9$ sol-gel	1250	Corundum type P-3c1	12.3	165000		-48	372
	$Ca_{2+x}La_{8-x}(SiO_4)_{6-x}(PO_4)O_2 $ (x=4)	1675/4h	Hexagonal P6 ₃ /m apatite	12.3	15900		-28	349
	$Mg_3CoNb_2O_9$	1150	Corundum type P-3c1	12.3	34560		-64	358
	Yb ₂ BaZnO ₅		Orthorhombic Pnma	12.3	27000		09-	149
	$0.72 Ba(Mg_{1/2}W_{1/2})O_{3-}-0.28BaTiO_{3}$	1500/6h	Perovskite	12.3	11000		-5	373
	$Sm_3Ga_5O_{12}+TiO_2$	1450	Garnet cubic la3d	12.3	234700	14.1	-16	369
	$\mathrm{Sm_3Ga_5O_{12}}$	1450	Garnet cubic la3d	12.3	192200	14	-19	369
	$(Mg_{4-x}Co_x)Nb_2O_9 (x=1)$	1200/10h	Corundum typeTrigonal P-3c1	12.3	34500		-64	358
	$Ba_3V_2O_8$	1300/1h	Hexagonal	12.3	52200		42	255
	$0.50 \text{Li}_2 \text{MoO}_4 \text{-} 0.5 \text{TiO}_2$	720	Mixture	12.3	27000		23	283
	$CeVO_4$	950	Tetragonal zircon	12.3	41500		-35	374
	$Na_2YMg_2V_3O_{12}$	850	Cubic garnet la-3d	12.3	23200	10.2	4-	375
	$Nd_3Ga_5O_{12}$	1400	Garnet Cubic la-3d	12.4	137800	13.8	-33	369
	$0.9Al_2O_3$ -0.1TiO ₂ Annealed at 1000 C	1350	Composite	12.4	117000		1.5	376
	Al ₂ O ₃ -TiO ₂ :MnO	1300	Composite	12.4	274000	92	0	377
	$0.9A1_2O_3-0.1TiO_2$	1300/2h	Composite	12.4	148000		2	378
751	$(1-x)LiYW_2O_8-xBaWO_4+y wt\% B_2O_3$	006	Mixed phases	12.4	12100		33	48
	(x=0.2, y=0)							
752	$Ce_2(WO_4)_3$	1000	Monoclinic C2/c	12.4	10500	4.8	-39	290
								I

734 O3LiCa ₃ MogN ₃ O ₁₂ +0.1CaTIO ₃ 925/4h Cubic gamet la3d 12.4 57600 754 Mg ₄ Nb ₂ O ₉ 1200/10h Coundum type Trigonal P-3c1 12.4 192200 755 Mg ₄ Nb ₂ O ₉ 1500 Conundum type Trigonal P-3c1 12.5 25000 756 LaBO ₃ 1350 Connodum type Trigonal P-3c1 12.5 340000 758 LaBO ₃ 1400 Gamet cubic la3d 12.5 340000 758 LaBO ₃ 1400 Onthorhombic Phcn 12.5 340000 760 Ba ₃ CMNb ₂ , O ₃ (x=1 875) 950 Trigonal R-3cm 12.5 35000 760 Ba ₃ CMNb ₂ , O ₃ (x=1 875) 1410 Coundom type Trigonal P-3c1 12.5 35000 761 May ₄ , No ₂ O ₃ +3 wt% LiF 950/10h Coundom type Trigonal P-3c1 12.6 1406 762 Mg ₄ , No ₂ O ₃ O ₃ +3 vt 1550/4h Heragonal apatite P6, mm 12.6 5740 765 YsmBacuO ₂ 1550/4h Hexagonal apatite P6, mm 12.6 5750 <t< th=""><th>o N</th><th>Material</th><th>ST (°C)</th><th>Crystal structure</th><th>\mathcal{E}_r</th><th>Qf (GHz)</th><th>t_0</th><th>au_f</th><th>Reference</th></t<>	o N	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	t_0	$ au_f$	Reference
Mg ₄ Nb ₂ O ₉ 1200/10h Corundum typeTrigonal P-3c1 12.4 1 Mg ₄ Nb ₅ O ₉ 0.895A ₁ O ₂ -0.105TiO ₂ 1500 Corundum type Trigonal P-3c1 12.5 Lu ₃ So ₁ O ₂ 1350 Composite 12.5 1 Lu ₃ So ₂ O ₁ 1400 Carnet cubic 1a3d 12.5 1 Ba ₃ ZnNb ₂ So ₃ O ₁ 1400 Carnet cubic 1a3d 12.5 1 Ba ₃ ZnNb ₂ O ₂ +0.5 wt% B ₂ O ₃ 950 Trigonal R-32m 12.5 1 NaMg ₄ N ₃ O ₁ 1400 Corndom type Trigonal P-3c1 12.5 1 Mg ₄ NO ₂ O ₂ +0.17TiO ₂ 950/10h Corndom type Trigonal P-3c1 12.6 1 Yb ₂ Ba(Cu _{0.2} x N(a ₂ x) Sa ₂ Xn(b ₂)-1.2 Mg ₂ x Sa ₂ N(a ₂ x)-2 1410 Composite 12.6 1 YSmBaCuO ₂ SrG ₄ Si ₃ O ₁ 1525/4h Hexagonal apatite P6 ₃ /m 12.6 1 YSmBaCuO ₃ 1255/4h Hexagonal apatite P6 ₃ /m 12.6 1 1 NC ₂ Si ₂ O ₁ O ₃ O ₃ TiTo ₂ 1255/4h Hexagonal apatite P6 ₃ /m 12.6 1 <t< td=""><td>753</td><td>0.9LiCa₃MgV₃O₁₂+0.1CaTiO₃</td><td>925/4h</td><td>Cubic garnet la3d</td><td>12.4</td><td>27600</td><td></td><td>3</td><td>305</td></t<>	753	0.9LiCa ₃ MgV ₃ O ₁₂ +0.1CaTiO ₃	925/4h	Cubic garnet la3d	12.4	27600		3	305
Mgs, NbSbOg 1500 Corundum type Trigonal P-3c1 12.5 2 0.895Al ₂ O ₃ -0.105TiO ₂ 1350 Composite 12.5 1 Lu ₁ Ga ₃ O ₁₂ 1400 Garnet cubic la3d 12.5 1 Lu ₁ Ga ₃ O ₁₂ 1400 Garnet cubic la3d 12.5 1 Ba ₃ CNub ₂ , Sb, O ₉ (x=1 875) 950 Trigonal R-32m 12.5 NaMg ₄ V ₃ O ₁₂ 120 12.5 1 NaMg ₄ V ₃ O ₁₂ 120 12.5 1 NaMg ₄ V ₃ O ₁₂ 1410 Composite 12.6 Vb ₂ BalCu _{0,2} N (0,73) O ₅ 1410 Composite 12.6 Vb ₂ BalCu _{0,2} N (0,73) O ₅ 1410 Composite 12.6 Vb ₂ BalCu _{0,2} N (0,73) O ₅ 1400 Composite 12.6 Vb ₂ BalCu _{0,2} N (0,2,2) O ₅ 1400 Composite 12.6 Va ₂ Si ₂ O ₁₃ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 Va ₂ Si ₂ O ₁ O ₃ 1300 Composite 12.6 Li NMg ₃ CD ₆ 1300 Composite 12.6	754	$Mg_4Nb_2O_9$	1200/10h	Corundum typeTrigonal P-3c1	12.4	192200		-71	358
0.895Al ₂ O ₃ ·0.105TiO ₂ 1350 Composite 12.5 3 LayGa ₃ O ₁₂ 1400 Garnet cubic la3d 12.5 1 LaBO ₃ 1400 Garnet cubic la3d 12.5 1 LaBO ₃ 1400 Onthonhombic 12.5 1 Ba ₃ CNO ₄ 2+0.5 wt% B ₂ O ₃ 950 Trigonal R-32m 12.5 NaN\8,4\3,012 950 Trigonal P-3ct 12.5 NaN\8,4\3,012 1410 Corndum type Trigonal P-3ct 12.6 NaShaCu _{0.25} Ni _{0.75} O ₂ +3 wt% LiF 950/10h Corndum type Trigonal P-3ct 12.6 NaShaBaCu _{0.25} Ni _{0.75} O ₂ +3 950/10h Corndomic Immm 12.6 YamBaCu _{0.5} Ni _{0.75} O ₃ +3 950/5h Composite 12.6 Li ₂ CO ₃ Ni _{0.75} O ₁₃ 155/4h Hexagonal apatite P6 ₃ /m 12.6 Li ₂ Mg ₃ CO ₆ Ni _{0.75} O ₁ 1360 Composite 12.6 Li ₂ Mg ₃ CO ₆ Ni _{0.75} O ₁ TiO ₂ 1380 Composite 12.7 NTBaCuO ₃ Ni _{0.75} O ₁ TiO ₂ 1300 Composite 12.7 NTBaCuO ₃ Ni _{0.}	755	Mg4 NbSbO9	1500	Corundum type Trigonal P-3c1	12.5	275000		-45	379
Eu ₃ Ga ₃ O ₁₂ LaBO ₃ LaBO ₃ LaBO ₃ LaBO ₃ LaBO ₃ Ba ₃ ZnhNb ₂ ,x8k,O ₉ (x=1.875) Ba ₃ ZnhNb ₂ ,x8k,O ₉ (x=1.875) Ba ₃ ZnhNb ₂ ,x8k,O ₉ (x=1.875) Ba ₃ ZnhNb ₂ O ₃ +3 wt% LiF Oxthorhombic Pncn Coundum type Trigonal P-3c1 Coundum type Trigonal P-3c1 Coundum type Trigonal P-3c1 Composite VB ₂ Ba(Cu _{0,23} Ni _{0,75})O ₅ VSmBaCuO ₅ Wg ₃ NVO ₄) ₂ -0.5Ba ₃ (VO ₄) ₂ +0.0625 wt% Ba ₃ NO ₄ D ₂ -0.5Ba ₃ (VO ₄) ₂ +0.0625 wt% Ba ₃ NO ₄ D ₂ -0.5Ba ₃ (VO ₄) ₂ +0.0625 wt% Ba ₄ ND ₂ O ₃ +1 wth Coundary type Trigonal P-3c1 Composite Composite Composite Composite Composite Composite 12.6 VSmBaCuO ₅ SrC ₄ Si ₃ O ₁₃ 1525/4h Hexagonal apatite P6 ₃ /m 12.6 (La _{0,5} Na _{0,5}) _{1,x} Ca ₁ O ₃ Composite Li ₂ Mg ₃ ZrO ₆ Mg ₄ Nb ₂ O ₃ MgO Cubic rocksalt Fm-3m Cubic Rub ₂ O ₃ Cubic rocksalt Fm-3m	756	0.895Al ₂ O ₃ -0.105TiO ₂	1350	Composite	12.5	340000	80	2	380
LaBO ₃ Orthorhombic Pncn 12.5 Ba ₃ ZnNb _{2,x} Sb _x O ₉ (x=1.875) 950 Trigonal R-32m 12.5 Ba ₃ (NO _{4/2} +0.5 wt% B ₂ O ₃ 690 Tetragonal R-32m 12.5 NaMg ₄ Nb ₂ O ₉ +3 wt% LiF 950/10h Corundum type Trigonal P-3c1 12.6 0.83ZnAl ₂ O ₉₊₃ wt% LiF 950/10h Corundum type Trigonal P-3c1 12.6 1 V ₂ BaCul _{2,2} Ni _{0.75})O ₅ 1410 Composite 12.6 NSmBaCuO ₅ NGB3 (NO ₄) ₂ + 0.0625 wt% 950/5h Composite 12.6 NG ₃ NO ₄) ₂ -0.5Ba ₃ (NO ₄) ₂ + 0.0625 wt% 950/5h Composite 12.6 Li ₂ CO ₃ SrCd ₄ Si ₃ O ₁₃ 1525/4h Hexagonal apatite P6 ₃ /m 12.6 1-x(0.79ZnAlO ₄ -0.2TCo ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 1-x(0.79ZnAlO ₄ -0.2TCo ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 1380 Cubic rocksalf Fm-3m 12.6 Mg ₄ Nb ₂ O ₃ Na ₀ O ₅ x-x(Na _{0.5}) kWO ₄ (x=0.3) 800/2h Composite 12.7 0.9A1 ₂ O ₃ · 0.1TiO ₂ 1300 Composite 12.7 0.9A1 ₂ O ₃ · 0.1TiO ₂ 1300	757	Eu ₃ Ga ₅ O ₁₂	1400	Garnet cubic la3d	12.5	169100	14.6	-17	369
Ba ₃ ZnNb _{2-x} Sb _x O ₉ (x=1.875) Perovskite Pm3m cubic 12.5 Ba ₃ (NO4 ₁ 2+0.5 wt% B ₂ O ₃ 950 Trigonal R-32m 12.5 NaMg ₄ V3-O ₁ 2 690 Tetragonal I-42d 12.5 Mg ₁ Nb ₂ O ₉ +3 wt% LiF 950/10h Cornodum type Trigonal P-3c1 12.6 0.83ZaAl ₂ O ₄ -0.17TO ₂ 1410 Composite 12.6 Yb ₂ Ba(Cu _{0.25} Ni _{0.75})O ₅ Orthorhombic Immm 12.6 YSmBaCuO ₅ Orthorhombic Immm 12.6 H ₂ CO ₃ Orthorhombic Immm 12.6 Li ₂ CO ₃ Composite 12.6 Li ₂ CO ₃ 1400 Composite 12.6 Li ₂ CO ₃ 1525/4h Hexagonal apatite P6 ₃ /m 12.6 NC-E.O.08 1575/4h Hexagonal apatite P6 ₃ /m 12.6 SrCd ₄ Si ₃ O ₁₃ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 NCLIZNOO ₄ -0.3TiO ₂ 1380 Composite 12.6 NGA ₂ Si ₃ O ₁₃ 1400 Composite 12.7 NTMBaCuO ₅ 1300 Composite 12.7 <td< td=""><td>758</td><td>LaBO₃</td><td></td><td>Orthorhombic Pncn</td><td>12.5</td><td>53000</td><td></td><td></td><td>135</td></td<>	758	LaBO ₃		Orthorhombic Pncn	12.5	53000			135
Ba ₃ (VO ₄) ₂ ÷0.5 wt% B ₂ O ₃ 950 Trigonal R-32m 12.5 NaMg ₄ V ₃ O ₁₋₂ NaMg ₄ V ₃ O ₁₋₂ 690 Tetragonal 1-42d 12.5 NaMg ₄ V ₃ O ₁₋₂ 950/10h Corndoum type Trigonal P-3c1 12.6 1 0.83ZnAl ₂ O ₄ -0.17TiO ₂ 1410 Composite 12.6 1 YSmBaCuO ₅ Orthorhombic Immm 12.6 12.6 VSmBaCuO ₅ Orthorhombic Immm 12.6 12.6 Li ₂ CO ₃ 152Ay Hexagonal apatite P6 ₃ /m 12.6 Li ₂ CO ₃ 1525/4h Hexagonal apatite P6 ₃ /m 12.6 Li ₂ CO ₃ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 NCALiZnVO ₄ -0.2TCO ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 Li ₂ Mg ₃ ZrO ₆ 1380 Composite 12.6 Li ₂ Mg ₃ No ₃ -1,x-(Na _{0.5}) ₃ WO ₄ (x=0.3) 800/2h Composite 12.7 VTmBacuO ₅ 1300 Composite 12.7 VTmBacuO ₅ 1250 Orthorhombic Pmna 12.7 Wl‱ ₃ ₂ No ₃ ₅ :1Co ₂ ₃ (10-40:0.20) glass	759	$Ba_3ZnNb_{2-x}Sb_xO_9$ (x=1.875)		Perovskite Pm3m cubic	12.5	2290	9.7		381
NaMg ₄ V ₃ O ₁₂ 690 Tetragonal 1-42d 12.5 Mg ₄ Nb ₂ O ₉₊₃ wt% LiF 950/10h Corundum type Trigonal P-3c1 12.6 0.83ZnAl ₂ O ₄ -0.17TiO ₂ 1410 Composite 12.6 Yb ₂ Ba(Cu _{0.25} Ni _{0.75})O ₅ Orthorhombic Immm 12.6 YSmBaCuO ₅ Orthorhombic 12.6 NSG4Si ₃ O ₁₃ 1525/4h Hexagonal apatite P6 ₃ /m 12.6 1-x(0.792nAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 1-x(0.792nAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 1-x(0.792nAlO ₄ -0.21To ₂)- 1575/4h Hexagonal apatite P6 ₃ /m 12.6 1-x(0.792nAlO ₄ -0.21To ₂ 1400 Composite 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 1380 Cubic rocksalt Fm-3m 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 1400 Composite 12.7 0.9Al ₂ O ₃ -0.1 TiO ₂ 1400 Composite 12.7 0.9Al ₂ O ₃ -0.1 TiO ₂ 1300 Composite 12.7 VTmBaCuO ₃ 120.3 SiO ₂ (40:40:20) glass 1250 Orthorhombic Pmna<	092	$Ba_3(VO_4)_2 + 0.5 \text{ wt}\% B_2O_3$	950	Trigonal R-32m	12.5	41065		39	108
Mg ₄ Nb ₂ O ₉₊₃ wt% LiF 950/10h Corundum type Trigonal P-3c1 12.6 0.83ZnAl ₂ O ₄ -0.17TiO ₂ 1410 Composite 12.6 0.83ZnAl ₂ O ₄ -0.17TiO ₂ 1410 Composite 12.6 YSmBaCuO ₅ 12.6 12.6 12.6 YSmBaCuO ₅ 12.6 12.6 12.6 Mg ₃ (NO ₄) ₂ -0.5Ba ₃ (NO ₄) ₂ +0.06625 wt% 950/5h Composite 12.6 Li ₂ CO ₃ 5CGd ₄ Si ₃ O ₁₃ 1400 Composite 12.6 Li ₂ CO ₃ 5CGd ₄ Si ₃ O ₁₃ 1400 Composite 12.6 Li ₂ Mg ₃ ZrO ₆ 1380 Cubic rocksalt Fm-3m 12.6 NZI,ZnVO ₄ -0.3TiO ₂ 1400 Composite 12.7 Mg ₄ Nb ₂ O ₉ /MgO 1400 Composite 12.6 Li ₂ Mg ₃ ZrO ₆ 1400 Composite 12.7 YTm8aCuO ₅ 1300 Composite 12.7 YTm8aCuO ₅ 12.7 Orthorhombic Pmra 12.7 (Li ₀ , 5 Bi _{0.5} O ₁ , Ca _{0.9}]MoO ₄ 850 Scheelite Tetragonal I4, /a 12.7	761	$NaMg_4V_3O_{12}$	069	Tetragonal I-42d	12.5	35900	10.5	-58	382
0.83ZnAl ₂ O ₄ -0.17TiO ₂ 1410 Composite 12.6 Yb ₂ Ba(Cu _{0.25} Ni _{0.75})O ₅ YSmBaCuO ₅ Orthorhombic Immm 12.6 YSmBaCuO ₅ YSmBaCuO ₅ 12.6 12.6 Mg ₃ (VO ₄) ₂ -0.5Ba ₃ (VO ₄) ₂ +0.0625 wt% 950/5h Composite 12.6 Li ₂ CO ₃ 1-x(0.79ZnAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 1-x(0.79ZnAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 1-x(0.79ZnAlO ₄ -0.3TiO ₂ 680 Composite 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 1380 Cubic rocksalt Fm-3m 12.6 Mg ₄ Nb ₂ O ₉ /MgO 1400 Composite 12.6 Li ₂ Mg ₃ XrO ₆ 1400 Composite 12.7 (La _{0.5} Na _{0.5}) _{1-x-} (Na _{0.5}) _x WO ₄ (x=0.3) 800/2h Composite 12.7 PbO:B ₂ O ₃ ·SiO ₂ (40:40:20) glass 1300 Composite 12.7 YTmBaCuO ₅ YTmBaCuO ₅ Scheelite Tetragonal 14 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₁ Ta ₂ O ₅ 1250 Orthorhombic Pmna 12.8 Tm ₂ BaCuO ₅ 985 Orthorhombic Pmna 12.8	762		950/10h	Corundum type Trigonal P-3c1	12.6	116410		-72	273
Yb₂Ba(Cu₀₂₂5 Ni₀.75)O₂ Orthorhombic Immm 12.6 YSmBaCuO₂ YSmBaCuO₂ 950/5h Composite 12.6 Mg₃ (VO₄)₂-0.5Ba₃ (VO₄)₂+0.0625 wt% 950/5h Composite 12.6 Li₂CO₃ 1.2CO₃ 1525/4h Hexagonal apatite P6₃/m 12.6 1-x(0.79ZnAlO₄-0.21Co₂TiO₄)-xCaTiO₃ 1400 Composite 12.6 1-x(0.79ZnAlO₄-0.3TiO₂ 1575/4h Hexagonal apatite P6₃/m 12.6 0.7LiZnVO₄-0.3TiO₂ 1380 Composite 12.6 0.7LiZnVO₄-0.3TiO₂ 1400 Composite 12.6 0.7LiZnVO₄-0.3TiO₂ 1400 Composite 12.6 12.Mg₃ ZrO₀ 1400 Composite 12.6 12.Mg₃ ZrO₀ 1400 Composite 12.7 0.9Al₂O₃-0.1TiO₂ 1300 Composite 12.7 PbO:B₂O₃-0.1TiO₂ 1300 Composite 12.7 YTmBaCuO₃ 850 Scheelite Tetragonal I4₁/a 12.7 (Li₀.s Bi₀.s)₀.1 Ca₀.glMoO₄ 1250 Orthorhombic Pmna 12.7 Tm₂ BaCuO₃ 12	292		1410	Composite	12.6	100200	10	0	198,383
YSmBaCuO ₅ Orthorhombic 12.6 Mg ₃ (VO ₄) ₂ -0.5Ba ₃ (VO ₄) ₂ +0.0625 wt% 950/5h Composite 12.6 Li ₂ CO ₃ 1525/4h Hexagonal apatite P6 ₃ /m 12.6 1-x(0.79ZnAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 1-x(0.79ZnAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 x=0.08) 17x(0.79ZnAlO ₄ -0.3TiO ₂ 1380 Composite 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 1380 Cubic rocksalt Fm-3m 12.6 0.7LiZnVO ₂ -0.3TiO ₂ 1400 Composite 12.6 Li ₂ Mg ₃ ZrO ₆ 1400 Composite 12.7 NG ₄ Nb ₂ O ₃ /mgO 1400 Composite 12.7 0.9Al ₂ O ₃ -0.1TiO ₂ 1300 Composite 12.7 YTmBaCuO ₅ PbO:B ₂ O ₃ :SiO ₂ (40:40:20) glass 850 Scheelite Tetragonal I4 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 1250 Orthorhombic Pmna 12.7 12.8 Tm ₂ BaCuO ₅ 985 Orthorhombic Pmna 12.7	764			Orthorhombic Immm	12.6	50040		-41	149
Mg ₃ (VO ₄) ₂ -0.5Ba ₃ (VO ₄) ₂ +0.0625 wt% 950/5h Composite 12.6 Li ₂ CO ₃ SrGd ₄ Si ₃ O ₁₃ 1525/4h Hexagonal apatite P6 ₃ /m 12.6 1-x(0.792лAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 1-x(0.792лAlO ₄ -0.3TiO ₂ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 1-x(0.792лAlO ₄ -0.3TiO ₂ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 1380 Composite 12.6 1-xMg ₃ Nb ₂ O ₃ -MgO 1400 Composite 12.6 1-xMg ₃ Nb ₂ O ₃ -x-(Na _{0.5}) xWO ₄ (x=0.3) 800/2h Composite 12.7 0.9Al ₂ O ₃ -0.1TiO ₂ 1300 Composite 12.7 0.9Al ₂ O ₃ -0.3-0.1TiO ₂ 1300 Composite 12.7 PbO:B ₂ O ₃ -0.3-0.3-0.2 40:40:40:20) glass 850 Scheelite Tetragonal I4-/A 12.7 (Mg _{0.95} Zn _{0.05}) all al ₂ O ₅ 12.50 Orthorhombic Pmna 12.7 Tm ₂ BaCuO ₅ 12.50 Orthorhombic Pmna 12.7 Tm ₂ BaCuO ₅ 985 Orthorhombic Pmna 12.6 <td>765</td> <td>YSmBaCuO₅</td> <td></td> <td>Orthorhombic</td> <td>12.6</td> <td>25130</td> <td>11</td> <td>-30</td> <td>384</td>	765	YSmBaCuO ₅		Orthorhombic	12.6	25130	11	-30	384
Li ₂ CO ₃ SrGd ₄ Si ₃ O ₁₃ 1-2(C) ₃ SrGd ₄ Si ₃ O ₁₃ 1-x(0.79ZnAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 1-x(0.79ZnAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ SrY ₄ Si ₃ O ₁₃ SrY ₄ Si ₃ O ₁₄ SrY ₄ Si	992	$Mg_3(VO_4)_2-0.5Ba_3(VO_4)_2+0.0625 \text{ wt}\%$	950/5h	Composite	12.6	74400		9-	322
SrGd ₄ Si ₃ O ₁₃ 1525/4h Hexagonal apatite P6 ₃ /m 12.6 1-x(0.79ZnAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 6 (x=0.08) 1575/4h Hexagonal apatite P6 ₃ /m 12.6 5rY ₄ Si ₃ O ₁₃ 680 Composite 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 1380 Cubic rocksalt Fm-3m 12.6 1i ₂ Mg ₃ NV ₂ O ₉ /MgO 1400 Composite 12.6 1a ₀ SN Nb ₂ O ₉ /MgO 1300 Composite 12.7 1a ₀ SN Si No ₂ O ₁ -x-(Na _{0.5}) NdO ₃ (x=0.3) 800/2h Composite 12.7 1a ₀ SN Na _{0.5} O ₁ -x-(Na _{0.5}) MoO ₄ 1300 Composite 12.7 1a ₀ SN Na _{0.5} O ₃ -x-(1TiO ₂ 1300 Composite 12.7 1a ₀ SN Na _{0.5} O ₃ -x-(1TiO ₂ 1300 Composite 12.7 1a ₀ SN Na _{0.5} O ₃ -x-(1TiO ₂ 12.7 12.7 1a ₀ SN Na _{0.05} O ₃ -x-(1TiO ₂ 12.6 12.7 1a ₀ Su Na _{0.05} O ₃ -x-(1TiO ₂ 12.6 12.7 1a ₀ Su Na _{0.05} O ₃ -x-(1TiO ₂ 12.6 12.7 1a ₀ Su Na _{0.05} O ₃ -x-(1TiO ₃ 12.6 12.7 1a ₀ Su Na _{0.05} O ₃ -x-(1TiO ₃		Li ₂ CO ₃							
1-x(0.79ZnAlO ₄ -0.21Co ₂ TiO ₄)-xCaTiO ₃ 1400 Composite 12.6 (x=0.08) SrY ₄ Si ₃ O ₁₃ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 1380 Composite 12.6 12.6 1380 Cubic rocksalt Fm-3m 12.6 12.6 1400 Composite 12.6 1400 Composite 12.6 1400 Composite 12.7 12.7 1300 Composite 12.7 12.7 1300 Composite 12.7 12.7 12.7 12.6 12.7 12.7 12.7 12.7 12.6 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	292		1525/4h	Hexagonal apatite P6 ₃ /m	12.6	8800		-20	253
(x=0.08) (x=0.08) SrY ₄ Si ₃ O ₁₃ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 680 Composite 12.6 Li ₂ Mg ₃ ZrO ₆ 1380 Cubic rocksalt Fm-3m 12.6 Mg ₄ Nb ₂ O ₉ /MgO 1400 Composite 12.6 La _{0.5} Na _{0.5} I _{1-x} -(Na _{0.5} Nd _{0.5}) _x WO ₄ (x=0.3) 800/2h Composite 12.7 VTmBacuO ₅ 1300 Composite 12.7 12.7 YTmBacuO ₅ 1300 Composite 12.7 12.7 YTmBacuO ₅ 40.40:20) glass 850 Scheelite Tetragonal I4-/A 12.7 (Li _{0.5} Bi _{0.5}) _{0.1} Ca _{0.9} IMoO ₄ 850 Scheelite Tetragonal I4-/A 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 12.50 Orthorhombic Pmna 12.7 Tm ₂ BaCuO ₅ 985 12.8	268		1400	Composite	12.6	67500		T	310
SrY ₄ Si ₃ O ₁₃ 1575/4h Hexagonal apatite P6 ₃ /m 12.6 0.7LiZnVO ₄ -0.3TiO ₂ 680 Composite 12.6 Li ₂ Mg ₃ ZrO ₆ 1380 Cubic rocksalt Fm-3m 12.6 Mg ₄ Nb ₂ O ₉ /MgO 1400 Composite 12.6 (La _{0.5} Na _{0.5}) _{1,x} -(Na _{0.5}) _x WO ₄ (x=0.3) 800/2h Composite 12.7 0.9Al ₂ O ₃ -0.1TiO ₂ 1300 Composite 12.7 YTmBaCuO ₅ 1300 Composite 12.7 YTmBaCuO ₅ Glass 12.7 (Li _{0.5} Bi _{0.5}) _{0.1} Ca _{0.9} JMoO ₄ 850 Scheelite Tetragonal I4 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 12.5 Orthorhombic Pmna 12.7 Tm ₂ BaCuO ₅ 12.6 Orthorhombic Pmna 12.8 NiCu ₂ Nb ₂ O ₈ 985 12.8									
0.7LiZnVO ₄ -0.3TiO ₂ 680 Composite 12.6 Li ₂ Mg ₃ ZrO ₆ 1380 Cubic rocksalt Fm-3m 12.6 Mg ₄ Nb ₂ O ₉ /MgO 1400 Composite 12.6 (La _{0.5} Na _{0.5}) _{1-x} -(Na _{0.5} Nd _{0.5}) _x WO ₄ (x=0.3) 800/2h Composite 12.7 0.9A ₁ O ₃ -0.1TiO ₂ 1300 Composite 12.7 YTmBaCuO ₅ 1300 Composite 12.7 YTmBaCuO ₅ Glass 12.7 (Li _{0.5} Bi _{0.5}) _{0.1} Ca _{0.9} IMoO ₄ 850 Scheelite Tetragonal I4 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 12.6 12.7 Tm ₂ BaCuO ₅ 12.6 Orthorhombic Pmna 12.8 NiCu ₂ Nb ₂ O ₈ 985 12.8	692	SrY ₄ Si ₃ O ₁₃	1575/4h	Hexagonal apatite P6 ₃ /m	12.6	20500		-18	253
Li2Mg3ZrO6 1380 Cubic rocksalt Fm-3m 12.6 Mg4Nb2O9/MgO 1400 Composite 12.6 (La _{0.5} Na _{0.5}) _{1-x} -(Na _{0.5} Nd _{0.5}) _x WO ₄ (x=0.3) 800/2h Composite 12.7 0.9Al ₂ O ₃ -0.1TiO ₂ 1300 Composite 12.7 YTmBaCuO ₅ 1300 Composite 12.7 YTmBaCuO ₅ Glass 12.7 R[Li _{0.5} Bi _{0.5} O ₁ , Ca _{0.9}]MoO ₄ 850 Scheelite Tetragonal I4 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 12.6 12.7 Tm ₂ BaCuO ₅ 12.6 Orthorhombic Pmna 12.8 NiCu ₂ Nb ₂ O ₈ 985 12.8	770	$0.7 \text{LiZnVO}_4 - 0.3 \text{TiO}_2$	089	Composite	12.6	38000		5	140
Mg ₄ Nb ₂ O ₉ /MgO 1400 Composite 12.6 1 (La _{0.5} Na _{0.5}) _{1-x} -(Na _{0.5} Nd _{0.5}) _x WO ₄ (x=0.3) 800/2h Composite 12.7 0.9Al ₂ O ₃ -0.1TiO ₂ 1300 Composite 12.7 YTmBacuO ₅ Orthorhombic 12.7 PbO:B ₂ O ₃ :SiO ₂ (40:40:20) glass Glass 12.7 (Li _{0.5} Bi _{0.5}) _{0.1} Ca _{0.9} JMoO ₄ 850 Scheelite Tetragonal I4 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 12.6 12.7 Tm ₂ BacuO ₅ 12.6 Orthorhombic Pmna 12.8 NiCu ₂ Nb ₂ O ₈ 985 12.8	771	Li ₂ Mg ₃ ZrO ₆	1380	Cubic rocksalt Fm-3m	12.6	86000	9.3	-36	222
(La _{0.5} Na _{0.5}) _{1-x} -(Na _{0.5} Nd _{0.5}) _x WO ₄ (x=0.3) 800/2h Composite 12.7 0.9Al ₂ O ₃ -0.1 TiO ₂ 1300 Composite 12.7 1 YTmBaCuO ₅ Orthorhombic 12.7 1 PbO:B ₂ O ₃ :SiO ₂ (40:40:20) glass 850 Scheelite Tetragonal I4 ₁ /a 12.7 (H _{0.5} Bi _{0.5}) _{0.1} Ca _{0.05} Ha ₂ O ₅ 12.6 Scheelite Tetragonal I4 ₁ /a 12.7 Tm ₂ BaCuO ₅ 1250 Orthorhombic Pmna 12.8 NiCu ₂ Nb ₂ O ₈ 985 12.8	772	$Mg_4 Nb_2 O_9/MgO$	1400	Composite	12.6	196700		-47	385
0.9Al ₂ O ₃ -0.1TiO ₂ 1300 Composite 12.7 1 YTmBaCuO ₅ YTmBaCuO ₅ 12.7 12.7 PbO:B ₂ O ₃ :SiO ₂ (40:40:20) glass Glass 12.7 ((Li _{0.5} Bi _{0.5}) _{0.1} Ca _{0.95})MoO ₄ 850 Scheelite Tetragonal I4 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 12.6 12.7 3 Tm ₂ BaCuO ₅ 12.6 Orthorhombic Pmna 12.8 NiCu ₂ Nb ₂ O ₈ 985 12.8	773	a _{0.5}	800/2h	Composite	12.7	23500		ī	386
YTmBaCuO ₅ Orthorhombic 12.7 PbO:B ₂ O ₃ :SiO ₂ (40:40:20) glass Glass 12.7 [(Ll _{0.5} Bi _{0.5}) _{0.1} Ca _{0.9}]MoO ₄ 850 Scheelite Tetragonal I4 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 1250 Orthorhombic Pmna 12.8 NiCu ₂ Nb ₂ O ₈ 985 12.8	774		1300	Composite	12.7	176000		41-	387
PbO:B ₂ O ₃ :SiO ₂ (40:40:20) glass Glass 12.7 [(Ll _{0.5} Bl _{0.5}) _{0.1} Ca _{0.9}]MoO ₄ 850 Scheelite Tetragonal I4 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 12.7 3 Tm ₂ BaCuO ₅ 12.6 Orthorhombic Pmna 12.8 NiCu ₂ Nb ₂ O ₈ 985 12.8	775	YTmBaCuO ₅		Orthorhombic	12.7	17900	10.6	-27	384
[(Li _{0.5} Bi _{0.5}) _{0.1} Ca _{0.9}]MoO ₄ 850 Scheelite Tetragonal I4 ₁ /a 12.7 (Mg _{0.95} Zn _{0.05}) ₄ Ta ₂ O ₅ 12.7 3 Tm ₂ BaCuO ₅ 1250 Orthorhombic Pmna 12.8 NiCu ₂ Nb ₂ O ₈ 985 12.8	9//	PbO:B ₂ O ₃ :SiO ₂ (40:40:20) glass		Glass	12.7	1700	12	69-	92
$(Mg_{0.95}Zn_{0.05})_4Ta_2O_5$ 12.7 3 Tm $_2$ BaCu O_5 12.8 12.8 NiCu $_2$ Nb $_2$ O $_8$ 985 12.8	777	[(Li _{0.5} Bi _{0.5}) _{0.1} Ca _{0.9}]MoO ₄	850	Scheelite Tetragonal 141/a	12.7	41300	10	-17	388
	778	$(Mg_{0.95}Zn_{0.05})_4Ta_2O_5$			12.7	385000		-62	389
NiCu ₂ Nb ₂ O ₈ 985 12.8	779	Tm ₂ BaCuO ₅	1250	Orthorhombic Pmna	12.8	14400	9.77	-15	384
	780	$NiCu_2Nb_2O_8$	985		12.8	4240		481	315

5	5
2	ט
	5
5	=
j	2

781	$SrTm_4Si_3O_{13}+0.5$ wt% LBS glass	1575/4h	Apatite monoclinic P2 ₁ /m	12.8	16500		-26	253
782	0.8CaMoO ₄ - 0.2 TiO ₂	1325	Composite	12.8	29310		10	309
783	Li ₂ SnO ₃	1230	Monoclinic C2/c	12.8	20800		27	390
784	$(Mg_{4x}Co_x)Nb_2O_9 (x=1.5)$	1200/10h	Corundum typeTrigonal P-3c1	12.8	20500		-63	358
	$LiEr_9(SiO_4)_6O_2$	1250/4h	Apatite, Hexagonal P6 $_3$ //m	12.8	1300		17	391
	SrYb ₄ Si ₃ O ₁₃ +0.5 wt% LBS glass	1425/4h	Hexagonal apatite P6 ₃ /m	12.9	12000		-27	253
787	$BaTa_2P_2O_{11}$	1200	Rhombohedral R-3c	12.9	28900		-29	392
	$Y_2 Ba_{0.7} Sr_{0.3} CuO_5$		Orthorhombic Pnma	12.9	2960	10.7	2	393
	0.89Al ₂ O ₃ -0.11TiO ₂ -0.5 wt% ZnO	1350	Composite	12.9	187000		-2	394
	$Mg_4Nb_2O_9$	1300/10h	Trigonal P-3c1	12.9	217390	1	-70	346,358
	$Na_2Mo_2O_7$	575	Orthorhombic Cmca	12.9	62400		-72	11
	$Mg_3La_4AI_{44}O_{75}$	1680	Magnetoplumbite	13.0	7700		33	145
	2CaO-3ZnO-Ta ₂ O ₅ -TiO ₂	1300	Composite	13.0	20000	9.9	-24	230
	$Ba_3ZnNb_{2-x}Sb_xO_9$ (x=2)		Perovskite	13.0	1550	7.7		381
	$Ba_3(VO_4)_2$	1200	Rhombohedral R3 ₂ /m	13.0	46700		17	322
	$Mg_3(VO_4)_2$ -0.5Ba ₃ (VO_4) ₂ +0.0625 wt%	950/5h	Composite	13.0	74000		9-	322
	LI ₂ CO ₃							
797	$SrDy_4Si_3O_{13}+0.5$ wt% LBS glass	1425/4h	Hexagonal apatite P6 ₃ /m	13.0	9500		28	253
262	Mg_4NbSbO_9	1500	Corundum type Trigonal P-3c1	13.0	275000			395
662	$(Mg_{0.95}Zn_{0.05})_4Nb_2O_9$	1340/4h	Corundum Trigonal P-3c1	13.0	247000		- 92	396
800	0.77CaMoO ₄ - 0.23 TiO ₂ + 3 wt%	006	Composite	13.0	57400		1-51	309
	H ₃ BO ₃ -CuO							
801	$Li_3(Mg_{0.95}Mn_{0.05})_2NbO_6$	1140/4h	Fdd	15.6	52200	8.9	-20	397
802	$(Mg_{0.95}Zn_{0.05})_2(Ti_{0.8}Sn_{0.2})O_4$	1150/5h	Spinel Cubic Fd3m	13.1	119310	10	-59	398
803	SrYb ₄ Si ₃ O ₁₃	1525/4h	Hexagonal apatite P6 ₃ /m	13.1	11400		-25	253
804	Sr_2ZnTeO_6+2 wt%	950	Composite	13.1	4300		-53	318
	ZnO-B ₂ O ₃ -P ₂ O ₅ -TeO ₂ glass							
805	$0.67 \text{Ba} (\text{Mg}_{1/2} \text{W}_{1/2}) \text{O}_{3}$ - $0.33 \text{Ba} \text{TIO}_{3}$	1500/6h	Perovskite	13.1	35000		9-	373
908	$MgWO_4$	1150	Wolframite MonoclinicP12/c1	13.1	00069		-58	150
807	MgWO₄+9 wt% Li ₂ CO ₃	950	Composite	13.1	20000		-75	399
808	Ba_2SiO_4	1525	Orthorhombic Pmcn	13.1	17900		-17	210

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
808	Al ₂ O ₃ -WO ₃ -TiO ₂	1150	Multiphase	13.2	3580	6.9	12	400
810	$Mg_2Co_2Nb_2O_9$		Corundum type Trigonal P-3c1	13.2	14300		-51	358
811	$CeO_2 + 20 \text{ wt}\% B_2O_3$	006	Cubic flurite Fm3m	13.2	24200	4.3	-46	401
812	$(Mg_{0.95}Ca_{0.05})TiO_3 + BaO-B_2O_3 - SiO_2(50:50 wt%)$	006	Composite	13.2	10000		ı	402
813	Ca, MgTeO ₆ +0.2 wt% B,O ₃	1250	Perovskite	13.2	81000	5.5	-81	324
814	$LiGd_9(SiO_4)_6O_2$	1250/4h	Apatite, Hexagonal P63,m	13.2	0069		23	391
815	Ba ₂ Ti ₉ O ₂₀ +50 vol% BBS glass	006	Composite	13.2	1150			338
816	LiCa ₃ ZnV ₃ O ₁₂ -0.2CaTiO ₃	925	Cubic Garnet	13.2	29600	_		341
817	0.5MgAl ₂ O ₄ -0.5TiO ₂	1460	Composite	13.2	88000	8.9	4-	195
818	$Ni_{1-x}(Zn_{1/2}Zr_{1/2})_xW_{1-x}Nb_xO_4$ (x=0.25)		Monoclinic Wolframite P2/c	13.2	28700		-29	403
819	YErBaCuO ₅		Orthorhombic	13.3	16050	10.6	-34	384
820	$NiWO_4$	1200	Wolframite Monoclinic P2/c	13.3	24900			264
821	0.7CaWO ₄ -0.3LaNbO ₄	1150	Composite	13.3	50000		6-	279
822	$(Na_{0.5}Bi_{0.5})_{0.2}Ca_{0.8}MoO_4$	850	Scheelite Tetragonal	13.3	32900		-42	343
823	$0.8Mg_{1.9}Cu_{0.1}SiO_4-0.2(La_{0.5}Na_{0.5})$	950	Orthorhombic	13.3	14400		9	404
	TiO_3+4 wt% LiF							
824	$Sm_2BaCu_{0.5}Zn_{0.5}O_5$	1280	Orthorhombic Pnma	13.4	65740	10.6	9-	405
825	Sr_2ZnTeO_6+5 wt%	950	Composite	13.4	4500		-52	318
	$ZnO-B_2O_3-P_2O_5-TeO_2$ glass							
826	BaTa ₂ P ₂ O ₁₁ +5 wt% TiO ₂	1250	Rhombohedral R-3c	13.4	17200		9-	392
827	$0.47 Mg_4 Nb_2 O_9 - 0.53 (0.5 ZnAl_2 O_4 -$	1390/4h	Composite	13.4	210000		-2	406
	0.5TO ₂)							
828	0.77CaMoO ₄ - 0.23 TiO ₂	1325	Composite	13.4	31300		33	309
829	Sr_2ZnTeO_6+5 wt%	950	Composite	13.4	4500		-2	318
	ZnO-B ₂ O ₃ -P ₂ O ₅ -TeO ₂ glass							
830	$Mg_5Nb_4O_{15}+5$ wt% B_2O_3	1300/4h	Multiphase	13.4	55700	,	-55	319
831	Er ₂ BaCuO ₅	1500/64	Orthorhombic Pnma	13.5	12560	Ξ	97-	384
037	0.04 Bd (Mg _{1/2} $vv_{1/2}/O_{3}$ -0.36 Bd II O_{3}	10/0001	rerovskile	13.3	14000		0	5/5,40/

833	$ZnWO_4$	1200	Wolframite Monoclinic P2/c	13.5	62800			264
834	SrSm ₄ Si ₃ O ₁₃	1375/4h	Hexagonal apatite P6 ₃ /m	13.5	20800		-28	253
	$Mg_4Nb_2O_9+0.75 \text{ wt}\% \text{ Fe}_2O_3$	1240	Corundum type Trigonal P-3c1	13.5	280000		-62	408
	Li ₂ SnO ₃		Monoclinic C2/c	13.5	61600		29	409
	SrY ₄ Si ₃ O ₁₃ +0.5 wt% LBS glass	1475/4h	Hexagonal apatite P6 ₃ /m	13.5	21500		-18	253
	$ZnW_{1-x}Te_xO_4 (x=0.05)$	006	Wolframite P2 ₁ /n	13.5	22500		99-	206
	$MgWO_4$	1050	Monoclinic P2/c	13.5	00069		-58	150
	$Li_8Bi_2Mo_7O_{28}$	540	Tetragonal	13.6	8000	9.2	-59	30
	Te_2MoO_7	520	Monoclinic P2 ₁ /c	13.6	46900		-36	410
842	$Ba_3TiV_4O_{15}$	800	Orthorhombic Pnma	13.6	31800	9.8	10	291
	Li ₂ MnO ₃	930/4h	Monoclinic C2/c	13.6	97000		-5	360
	$BaY_2(MoO_4)_4$ -0.5TiO ₂	970/2h	Composite	13.6	30800	9.6	1	411
	$Ce_2(WO_4)_3 + 0.2 \text{ wt}\% ZBS$	006	Monoclinic C2/c	13.7	20200		-25	290
	Li ₂ SnO ₃ +1 wt% BaO-CuO	006	Monoclinic C2/c	13.7	36400		27	390
	$Ca_{2+x}La_{8-x}(SiO_4)_{6-x}(PO_4)O_2 $ (x=0)	1475/4h	Hexagonal P6 ₃ /m apatite	13.7	33100		-29	349
	$ZnMnW_2O_8$	950		13.7	10670		-17	48
	PbO:B ₂ O ₃ :SiO ₂ (50:40:10) glass	409 Td	Glass	13.8	880	10.7	86-	92
	$Y_2 BaCu_{0.2} Ni_{0.8}O_5$	1390/3h	Othorhombic Pnma	13.8	87200	12.8	-17	259
	$Ba_2CeV_3O_{11}$	1025		13.8	10000		-14	366
	$Ca_{2+x}La_6(SiO_4)_4(PO_4)O_2 (x=2)$	1475/4h	Hexagonal P6 ₃ /m apatite	13.8	27900		-11	349
	$Ca_4La_4Pr_2(SiO_4)_4(PO_4)_2O_2$	1475	Hexagonal apatite P6 ₃ /m	13.8	26000		_/	367
	$Ca_4La_2Pr_4(SiO_4)_4(PO_4)_2O_2$	1475	Hexagonal apatite P6 _{3/} m	13.8	21800		-5	367
	0.6 Ba MoO_4 - 0.4 ΠO_2	1285	Composite	13.8	40500		9-	229
	Nd_2MoO_6	1350/4h	Tetragonal I-42m	13.8	66400		-53	412
	$Te_2(Mo_{0.95}W_{0.05})O_7$	520	Monoclinic P2 ₁ /c	13.9	25800		-13	410
858	Sr_2ZnTeO_6+10 wt%	006	Composite	13.9	3300		-58	318
	$ZnO-B_2O_3-P_2O_5-TeO_2$							
859	SrNdSi ₃ O ₁₃ +0.5 wt% LBS glass	1350/4h	Hexagonal apatite P6 ₃ /m	13.9	20500		-33	253
860	SrSm ₄ Si ₃ O ₁₃ +0.5 wt% LBS glass	1350/4h	Hexagonal apatite P6 ₃ /m	13.9	21800		-28	253
861	$1-xCeO_2-xY_2O_3$ (x=0.5)	1650	Cubic flurite Fm3m	13.9	35000		-53	413
862	$YHoBaCuO_{5}$		Orthorhombic	13.9	12056	10.7	-30	384

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf(GHz)	f_0	$ au_f$	Reference
863	${ m Mg_4Ta_2O_9}$	1200	Corundum type P-3c1	14.0	350000	I	09-	339
864	YDyBaCuO ₅		Orthorhombic	14.0	42600	10.8	-22	384
865	LaMgAl ₁₁ O ₁₉	1700	Hexagonal P63/mmc	14.0	28000	_	-12	414
998	Y ₂ BaCu _{0.75} Zn _{0.25} O ₅	1270	Orthorhombic Pnma	14.0	56230	10.8	-39	244
867	$Mg_5 Nb_4 O_{15}$	1475	Psuedobrookite Orthorhombic	14.0	14600	7.3	-58	325
			Cmcm					
898	$5\text{Co}_3\text{O}_4$ - $7\text{a}_2\text{O}_5$ - 7iO_2	1150	Mixture	14.0	48000	6.5	-43	230
869	0.2 ZnAl $_2$ O $_4$ - 0.8 Co $_2$ TiO $_4$		Not available	14.0	148800		-52	239
870	$Mg_3Ce_4A_{14}O_{75}$	1680	Magnetoplumbite	14.0	0006		1	145
871	Ba ₃ NiSb ₂ O ₉		Perovskite	14.0	41840	7.8	-5	381
872	YGdBaCuO ₅		Orthorhombic	14.0	14300	10.9	-35	384
873	0.80ZnAl,O ₄ -0.20TiO,	1420	Spinal cubic Fd3m composite	14.0	90700	99.6	9	198
874	$Ba[Ti_{0.39}(Co_{0.5}W_{0.5})_{0.61}O_3$	1400	Perovskite	14.0	7700		-14	415
875	Li ₃ (Mg _{0.92} Zn _{0.08})2NbO ₆ +0.5 wt% 0.17Li,O-0.83V,O ₅	925/2h	Orthorhombic Fddd	14.0	83400		-37	416
876	$0.662 \text{BaMoO}_4 - 0.338 \text{TiO}_2 + 5 \text{ wt}\%$	875	Composite	14.0	48300		41	229
!	: = 0			,	1			4
877	Li_2ZrO_3	1200	Tetragonal	14.1	17600		39	390
878	$\text{Li}_3\text{TaO}_4+1 \text{ wt}\% \text{ B}_2\text{O}_3$	930	Rock salt type	14.1	29900	12.4	-48	294
879	$LiEu_9(SiO_4)_6O_2$	1250/4h	Apatite, Hexagonal P6 ₃ /m	14.1	7100		8	391
880	[(Li _{0.5} Bi _{0.5}) _{0.15} Ca _{0.85}]MoO ₄	092	Scheelite tetragonal 141/a	14.1	24000	10.3	1	388
881	$Yb_2Ba(Cu_{0.5}Zn_{0.5})O_5$			14.2	20630		-48	149
882	$Y_2BaCu_{0.5}Zn_{0.5}O_5$	1270	Orthorhombic Pnma	14.2	110660	10.7	-42	244
883	$M_{ m S2}{ m TIO_4}$	1500	Cubic spinel Fd3m	14.2	160000		-50	417,418
884	0.8(Al _{1,2} Ta _{1,2})O ₂ -0.2(Mg _{1,3} Ta _{2,3})O ₂	1450	Composite	14.2	62150		-41	214
885	80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60: 20 mol%)+20 wt % BaNd, Ti ₅ O ₁₄	850	Composite	14.2	9800	7.5	94	419
988	SrLa ₄ Si ₂ O ₁₃	1325/4h	Hexagonal apatite P6 ₃ /m	14.2	26300		-46	253
887	SrEu ₄ Si ₂ O ₁₃ +0.5 wt% LBS glass	1425/4h	Hexagonal apatite P6 ₃ /m	14.2	19800		-22	253
888	LiLa ₉ (SiO ₄) ₆ O ₂	1250/4h	Apatite, hexagonal $P6_{3/m}$	14.2	7300		18	391

8
õ
Š
.5
ıτ
õ
Ų

5 wt% LBS glass .Co ₂ TiO ₄ 1 (x=0.2) 3, (x=0.2) 3, (x=0.2) 3, 3003-0.32 TiO ₂ -0.32 WO ₃ -0.34 TiO ₂ 3, 25 O ₅ 3, 25 O ₅ 3, 25 O ₅ 3, 27 TiO ₂ in 20:60:20 1, 8 DaNd ₂ Ti ₅ O ₁₄ 0.32 WO ₃ -0.34 TiO ₂ 0.32 WO ₃ -0.34 TiO ₂ 0.32 WO ₃ -0.36 TiO ₂ 0.37 WO ₄) O ₅ 1, 0.95 Sh _{0.05} O ₄ 0.96 (x=0.5) 1, 0.97 TO ₂ 0.97 TO ₂ 0.97 TO ₃ 0.97	889	LiSm ₉ (SiO ₄) ₆ O ₂	1250/4h	Apatite, Hexagonal P6 ₃ /m	14.2	8500		2	391
Ba ₃ (VO ₄) ₂ Ba ₂ Bi(Y ₃ O ₁₁ LaVO ₄ SrTb ₄ Si ₃ O ₁₁ LaVO ₄ SrTb ₄ Si ₃ O ₁₃ +0.5 wt% LBS glass 0.2ZnAl ₂ O ₄ -0.8Co ₂ TiO ₄ SrTb ₄ Si ₃ O ₁₃ LiY(W _{1-x} Te _x) ₂ O ₈ (x=0.2) Mg _{0.95} Co _{0.05} TiO ₃ Sr ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃ BaO+0.35MgO-0.32WO ₃ -0.32TiO ₂ BaO+0.35MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈₊₇ O ₇ Zn ₃ Nb ₂ O ₈ +3 wt%	890	$LiNd_9(SiO_4)_6O_2$	1250/4h	Apatite, Hexagonal P6 ₃ /m	14.2	6400		12	391
Ba ₂ BiV ₃ O ₁₁ LaVO ₄ SrTb ₄ Si ₃ O ₁₃ +0.5 wt% LBS glass 0.2ZnAl ₂ O ₄ -0.8Co ₂ TiO ₄ SrTb ₄ Si ₃ O ₁₃ +0.5 wt% LBS glass 0.2ZnAl ₂ O ₄ -0.8Co ₂ TiO ₄ SrTb ₄ Si ₃ O ₁₃ LiY(W _{1-x} Te _x) ₂ O ₈ (x=0.2) Mg _{0.95} Co _{0.05} TiO ₃ Sr ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃ BaO+0.35MgO-0.32WO ₃ -0.32TiO ₂ BaO+0.34MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈₊₇ O ₇ Tr ₇ Cn _{0.03}	891	$Ba_3(VO_4)_2$	925	Trigonal R-3 ₂ /m	14.2	42200		52	330
LaVO ₄ SrTb ₄ Si ₂ O ₁₃ +0.5 wt% LBS glass 0.2ZnAl ₂ O ₄ -0.8Co ₂ TiO ₄ SrTb ₄ Si ₃ O ₁₃ LiY(W _{1-x} Te _{x/2} O ₈ (x=0.2) Mg _{0.95} Co _{0.05} TiO ₃ Sr ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃ BaO+0.35MgO-0.32WO ₃ -0.32TiO ₂ BaO+0.35MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈₊₇ O ₇ O ₇ 77C ₇ O ₉	892	$Ba_2BiV_3O_{11}$	870	Monoclinic P2 ₁ /c	14.2	68700	8.7	-81	420
SrTb ₄ Si ₂ O ₁₃ +0.5 wt% LBS glass 0.2ZnAl ₂ O ₄ -0.8Co ₂ TiO ₄ SrTb ₄ Si ₃ O ₁₃ LiY(W _{1-x} Te _x) ₂ O ₈ (x=0.2) Mg _{0.95} Co _{0.05} TiO ₃ Sr ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃ BaO-0.35MgO-0.32WO ₃ -0.32TiO ₂ BaO+0.34MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈₊₇ Arthonory	893	$LaVO_4$	850	Monoclinic Monazite	14.2	48200		-38	374
0.2ZnAl ₂ O ₄ -0.8Co ₂ TiO ₄ SrTb ₄ Si ₃ O ₁₃ LiY(W _{1,x} Te _x) ₂ O ₈ (x=0.2) Mg _{0.95} Co _{0.05} TiO ₃ Sr ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃ BaO+0.35MgO-0.33WO ₃ -0.34TiO ₂ BaO+0.34MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₁ Pr ₄ Al ₄₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2,x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	894	$SrTb_4Si_3O_{13}+0.5$ wt% LBS glass	1425/4h	Hexagonal apatite P6 ₃ /m	14.3	23500		10	253
SrTb ₄ Si ₃ O ₁₃ LiY(W _{1-x} Te _x) ₂ O ₈ (x=0.2) Mg _{0.95} Co _{0.05} TiO ₃ Sr ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃ BaO-0.35MgO-0.33WO ₃ -0.34TiO ₂ BaO+0.34MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄ 4O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	895	0.2 ZnAl $_2$ O $_4$ - 0.8 Co $_2$ TiO $_4$		Composite	14.3	148000		-53	239
LiY(W _{1-x} Te _x) ₂ O ₈ (x=0.2) Mg _{0.95} Co _{0.05} TiO ₃ Sr ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃ BaO-0.35MgO-0.33WO ₃ -0.32TiO ₂ BaO+0.34MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄ 4O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt% O 20B ₂ CO O 7071CO	968	SrTb ₄ Si ₃ O ₁₃	1500/4h	Hexagonal apatite P6 ₃ /m	14.3	19300		9	253
Mg _{0.95} Co _{0.05} TiO ₃ Sr ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃ BaO-0.35MgO-0.33WO ₃ -0.32TiO ₂ BaO+0.34MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄ 4O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈₊₃ wt%	897	$LiY(W_{1-x}Te_x)_2O_8$ (x=0.2)	850	Monoclinic	14.3	4000		9-	421
Sr ₂ MgTeO ₆ +0.2 wt% B ₂ O ₃ BaO-0.35 MgO-0.33 WO ₃ -0.32 TiO ₂ BaO+0.34 MgO-0.32 WO ₃ -0.34 TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.75} Zn _{0.25} O ₅ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34 MgO-0.32 WO ₃ -0.34 TiO ₂ Wg ₃ Pr ₄ Al ₄ 4O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	868	$Mg_{0.95}Co_{0.05}TiO_3$	1275/4h	Ilmenite Trigonal R-3	14.3	128000	_	-51	422
BaO-0.35MgO-0.33WO ₃ -0.32TiO ₂ BaO+0.34MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.73} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pt ₄ Al ₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈₊₃ wt%	899	$Sr_2MgTeO_6+0.2$ wt% B_2O_3	1250	Cubic Fm3m	14.3	27400	5.5	09-	324
BaO+0.34MgO-0.32WO ₃ -0.34TiO ₂ Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	006	BaO-0.35MgO-0.33WO ₃ -0.32TiO ₂	1500/6h	Perovskite Hexagonal	14.4	74000		6-	373
Sm ₂ BaCu _{0.75} Zn _{0.25} O ₅ La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34 MgO-0.32 WO ₃ -0.34 TiO ₂ Mg ₃ Pr ₄ Al ₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	901	$BaO + 0.34MgO - 0.32WO_3 - 0.34TiO_2$	1500/6h	Perovskite Hexagonal	14.4	87000			373
La ₂ Sn ₂ O ₇ Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	902	$Sm_2BaCu_{0.75}Zn_{0.25}O_5$	1280	Orthorhombic Pnma	14.4	47000	10.6		405
Ca _{1-x} (La _{0.5} Na _{0.5}) _x WO ₄ +30 mol%TiO ₂ (x=0.9) 80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	903	$La_2Sn_2O_7$	1580/34h	Cubic Fd3m	14.4	40500		-54	423
80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd ₂ Ti ₅ O ₁₄ BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈₊₇ wt%	904	$Ca_{1-x}(La_{0.5}Na_{0.5})_xWO_4+30 \text{ mol}\%TiO_2$ (x=0.9)	850/2h	Composite	14.4	14300		6-	424
BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂ Mg ₃ Pr ₄ Al ₄₄ O ₇₅ Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈₊₃ wt%	902	80 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+20 wt % BaNd, Ti ₅ O ₁₄	800	Composite	14.5	9100	7.5	98	419
Mg ₃ Pr ₄ Al ₄ Q ₇₅ Y ₂ BaCu _{0,6} Ni _{0,4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb ₂ xSb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wron (x=0.5) Zn ₃ O ₈ x CO ₈ y Caro (x=0.5)	906	BaO-0.34MgO-0.32WO ₃ -0.34TiO ₂	1500/12h	Perovskite Hexagonal	14.5	107000		8-	373,407
Y ₂ BaCu _{0.6} Ni _{0.4} O ₅ MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb ₂ x ₂ Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt% (A 200 x CO x O 2 10	206	Mg ₃ Pr ₄ Al ₄₄ O ₇₅	1680	Magnetoplumbite	14.5	10000		23	145
MnWO ₄ Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb ₂ x ₂ Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt% (O 200 200 10 10 10 10 10 10 10 10 10 10 10 10 1	806	$Y_2 BaCu_{0.6} Ni_{0.4} O_5$	1340	Orthorhombic Pnma	14.5	36000	14.5	26	259
Ba ₂ SiO ₄ Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb ₂ _x Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt% Coop ₂ O ₃ + 2 voo ₃ (x=0.5) Zn ₃ O ₈ -Coop ₃ + 2 voo ₃ (x=0.5) Zn ₃ O ₈ -Coop ₃ + 2 voo ₃	606	$MnWO_4$	1000	Monoclinic P2/c	14.5	32000		-64	150
Ca ₄ La ₆ (SiO ₄) ₄ (VO ₄) ₂ O ₂ Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	910	Ba ₂ SiO ₄	1525/4h	Orthorhombic Pmcn	14.5	17900		-17	210
Mg ₂ TiO ₄ +1.5 wt% CeO ₂ nano particles (Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt% (0.208-CO ₃) 0.71C _{1.03}	911	$Ca_4La_6 (SiO_4)_4 (VO_4)_2O_2$	1475	Hexagonal apatite P6 _{3/} m	14.5	22000		-20	367
(Mg _{0.97} Zn _{0.03})(Ti _{0.95} Sn _{0.05})O ₄ Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	912	$Mg_2TiO_4+1.5$ wt% CeO ₂ nano particles		Spinel Fd3m	14.6	167000			425
Ba ₃ MgNb _{2-x} Sb _x O ₉ (x=0.5) Zn ₃ Nb ₂ O ₈ +3 wt%	913	$(Mg_{0.97}Zn_{0.03})(Ti_{0.95}Sn_{0.05})O_4$	1390/4h	Cubic spinel	14.6	183500		-44	426
$Z_{\rm D_3}Nb_2O_8+3$ wt%	914	$Ba_3MgNb_{2-x}Sb_xO_9 (x=0.5)$		Perovskite	14.7	81300	6.3	2	381
_	915	$Zn_3Nb_2O_8+3$ wt%	950	Monoclinic C2/c	14.7	8200	8.3		427
CaO		(0.29BaCO ₃ +0.71CuO)							
916 SrLa ₄ Si ₃ O ₁₃ +0.5 wt% LBS glass 1300	916	SrLa ₄ Si ₃ O ₁₃ +0.5 wt% LBS glass	1300/4h	Hexagonal apatite P6 ₃ /m	14.7	25800		-40	253

o N	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
917	Cu ₂ ZnNb ₂ O ₈ +1 wt% LBS glass	935	Triclinic	14.7	5100		-18	428
918	Cu ₂ ZnNb ₂ O ₈ +0.7 wt% LMZBS glass	935	Triclinic	14.8	2500		-39	428
919	SrEu ₄ Si ₃ O ₁₃	1450/4h	Hexagonal apatite P6 ₃ /m	14.8	20700		-24	253
920	LiYW ₂ O ₈	006	Monoclinic	14.8	9550		-64	48
921	$0.2(\text{Li}_{1/2}\text{Nd}_{1/2})\text{WO}_4$ - 0.8ZnWO_4	850/4h	Tetragonal 14 ₁ /n	14.8	1370		-20	429
922	$\mathrm{Li}_2\mathrm{Zn}_2\mathrm{W}_2\mathrm{O}_9$	790	Corundum	14.7	15700	6.7	-77	430
923	$Ni_{1-x}(Zn_{1/2}Zr_{1/2})_xW_{1-x}Nb_xO_4$ (x=0.5)		Monoclinic wolframite P2/c	14.8	32650		-35	403
924	$Ba_3 NiNb_{2-x}Sb_xO_9 (x=1.875)$		Perovskite	14.8	38380	8.9	-10	381
925	Yb ₂ Ba(Cu _{0.25} Zn _{0.75})O ₅			14.9	52810		-45	149
976	Dy_2BaCuO_5		Orthorhombic Pnma	14.9	31610	10.56	9-	384
927	$1-xCeO_2-xGd_2O_3 (x=0.5)$	1650	Cubic flurite Fm3m	14.9	15300		-62	413
928	$0.1 \text{ZnAl}_2 \text{O}_4$ - $0.9 \text{Co}_2 \text{TiO}_4$		Composite	14.9	130000		-50	239
929	$Ba_2CeV_3O_{11}$	1025		14.9	12700	2	-15	366
930	$Bi_4(SiO_4)_3$	006	Cubic I-43d	14.9	36000		6-	431
931	$ZnW_{1-x}Te_xO_4 (x=0.1)$	006	Wolframite P2 ₁ /n	14.9	27700		-65	206
932	0.8 ZnAl $_2$ O $_4$ - 0.2 Co $_2$ TiO $_4$		Composite	15.0	148000		-50	239
933	Sr ₂ TiO ₄	1300/5h	Tetragonal 14/mmm	15.0	1600	4		53
934	$5MgO-Nb_2O_5-TiO_2$	1325	Mixture	15.0	59000	8.9	-77	230
935	$Mg_3Nd_4AI_{44}O_{75}$	1680	Magnetoplumbite	15.0	11000		35	145
936	$Ba_3MgNb_{2-x}Sb_xO_9$ (x=1.875)		Perovskite	15.0	84100	7.25	2.8	381
937	$Ba(Mg_{1/2}W_{1/2})O_3$	1550	Perovskite cubic Fm3m	15.0	57300	12.7		432
938	BiZn ₂ VO ₆	780/4h	Triclinic P-1	15.0	20650		-88	433
686	BaO-0.34MgO-0.33WO ₃ -0.33TiO ₂	1500/6h	Perovskite hexagonal	15.1	72000		-13	373
940	$Al_2O_3+Ca-Al-B-Si-O+Ba-(Sm,Nd)-Ti-O$	870	Composite	15.1	2800	33		215
941	$Ba_2 CeV_3O_{11}+1 wt\% ZnO-B_2O_3-SiO_2$	825		15.1	20300	4.9	-21	366
942	$CeTe_2O_6$	089	Monoclinic P2 ₁ /n	15.2	45400		-68	434
943	$Y_2BaCu_{0.25}Zn_{0.75}O_5$	1270	Orthorhombic Pnma	15.2	70080	9.95	-42	244
944	$(Mg_{4-x}Co_x)Nb_2O_9 (x=3)$	1200/10h	Corundum typeTrigonal P-3c1	15.2	2200		-36	358
945	$Ca_4La_6 (GeO_4)_4 (PO_4)_2 O_2$	1475	Hexagonal apatite P6 _{3/} m	15.2	20400		-11	367
946	$Ni_{1-x}(Zn_{1/2}Zr_{1/2})_xW_{1-x}Nb_xO_4 \ (x=0.75)$		Monoclinic Wolframite P2/c	15.2	41250		-45	403

947	$Li_3(Mg_{0.95}Ni_{0.05})_2NbO_6$	1140/4H	Fdd	15.2	84800	8.9	-23	397
948	Li ₂ Mg ₃ TiO ₆	1280	Cubic rocksalt Fm-3m	15.2	152000	8.3	-39	222
949	Ho ₂ BaCuO ₅		Orthorhombic Pbnm	15.3	9360	10.48	-19	384
950	LaSrAlO ₄	1375	Tetragonal 14/mmm	15.3	32820		-17	435
951	PbO: B_2O_3 :SiO ₂ (60:20:20) glass	348 Td	Glass	15.3	650	11.72	-124	92
952	$LiPr_9(SiO_4)_6O_2$	1250/4h	Apatite, hexagonal P63 _/ m	15.3	6400		33	391
953	Ca_3WO_6	1275	Monoclinic P2 ₁ /n	15.3	29200		-30	436
954	$ZnW_{1-x}Te_xO_4 (x=0.15)$	006	Wolframite Monoclinic P2 ₁ /n	15.3	41700		-61	206
955	$0.8(Mg_{0.95}Co_{0.05})_4Ta_2O_9-0.2CaTiO_3$	1375/4h	composite	15.3	390500		-35	437
926	Y_2BaZnO_5	1270	Orthorhombic Pnma	15.4	189000	10	-41	244
957	$Y_2Ba(Cu_{1/4}Zn_{3/4})O_5$		Orthorhombic Pbnm	15.4	220000		-65	235
928	BaO-0.35MgO-0.34WO ₃ -0.31TiO ₂	1500/6h	Perovskite hexagonal	15.4	77000		8	373
626	$Ba(Mg_{1/3}Ta_{(2-2x)/3}W_{x/3}Ti_{/3})O_3 (x=1)$	1550/4h	Perovskite Trigonal P-3m1	15.4	35400		-25	438
096	0.8MgTiO ₃ -0.2Mg _{2.05} SiO _{4.05} - 0.06CaTiO ₃	1380/4h	Composite	15.4	72700		<u></u>	439
961	$Li_3(Mg_{0.95}Zn_{.05})_2NbO_6$	1140/4H	Fdd	15.4	82200	8.9	-19	397
962	Sm ₂ Ba(Cu _{0.985} Co _{0.015})O ₅		Orthorhombic Pnma	15.5	59300	10.3	8-	323
963	SrSmAlO ₄		K ₂ NiF ₄ type tetragonal 14/mmm	15.5	95300			440
964	0.91MgWO ₄ - 0.09 CaTiO ₃ +5 wt%	950		15.5	20800		0	441
	Li ₂ CO ₃ -4H ₃ BO ₃							
965	$(Mg_{0.95}Zn_{0.05})_2TiO_4$	1330	Cubic Fd3m	15.5	275300		-34	442
996	$(Mg_{0.9}Mn_{0.1})_2$ TiO ₄	1330	Cubic Fd3m	15.5	172000		-57	443
296	$SrNd_4Si_3O_{13}$	1400/4h	Hexagonal apatite P6 ₃ /m	15.5	21000		-29	253
896	$ZnW_{1-x}Te_xO_4 (x=0.2)$	006	Wolframite Monoclinic P2 ₁ /n	15.5	24600		09-	206
696	$0.91 \text{MgWO}_{4-}0.09 \text{CaTiO}_{3}$	950	Composite	15.5	20800	7.1	0	441
970	$SrTe_2O_5$	580		15.5	8700		-116	444
971	$Cu_3Nb_2O_8$	900/2h	Anorthic	15.6	48400		-75	445
972	$(Mg_{0.9}Co_{.0.1})_2$ TiO ₄	1390/4h	Cubic Fd3m	15.6	162000	10.4	-47	446
973	$(Mg_{0.96}Mn_{0.04})_2$ TiO ₄	1330	Cubic Fd3m	15.6	237000		-52	443
974	BaO-0.33MgO-0.34WO ₃ -0.33TiO ₂	1500/6h	Perovskite hexagonal	15.6	00029		-10	373
975	$SrPr_4Si_3O_{13}$	1325/4h	Hexagonal apatite P6 ₃ /m	15.6	12200		6-	253

No.	Material	ST (°C)	Crystal structure	$\mathcal{E}_{_{I}}$	Qf (GHz)	f_0	$ au_f$	Reference
926	$Mg_2(Ti_{0.95}Sn_{0.05})O_4$	1390	Cubic Fd3m	15.6	318000	10.8	-45	447
977	$Bi_4(SiO_4)_3 + 3 mol\% B_2O_3$		Cubic I-43d	15.6	36300		-22	448
876	$SmNb_{1-x}(Si_{1/2}Mo_{1/2})_xO_4$ (x=0.69)		Tetragonal scheelite 14 ₁ /a	15.6	32800		-38	449
626	$Li_3(Mg_{0.95}Ca_{0.05})_2NbO_6$	1140	Fdd	15.6	96200	8.9	-18	397
086	$LiZnNbO_4$	1070	Tetragonal	15.6	85300	9.1	-64	450
981	(Mg _{0.95} Co _{.0.05}) ₂ TiO ₄	1390/4h	Cubic Fd3m	15.7	286000	10.4	-52	446
	$(Mg_{0.95}Mn_{0.05})_2$ TiO ₄	1330	Cubic Fd3m	15.7	276000		-53	443
983	Mg _{1.8} Ti _{1.1} O ₄	1450/4h	Tetragonal P4 ₁ 22	15.7	141000	10.57	-52	451
984	YAIO3	1650/2h	Perovskite Hexagonal P63/mmc	15.7	58000	10	-59	452
985	$Mg_4Nb_2O_9+3$ wt% LiF+6 wt% CaTiO ₃	950/5h	Corundum type+mixtures	15.7	22100		-3	453
986	$(1-x)(AI_{1/2}Ta_{1/2})O_2-x(Mg_{1/3}Ta_{2/3})O_2$ (x=0.2)	1550	Orthorhombic Pbcn	15.7	103600		-40	454
286	LaTi ₂ Al ₉ O ₁₉	1600	Monoclinic	15.7	68200		-22	455
886	0.7Ba ₂ BiV ₃ O ₁₁ -0.3TiO ₂	910	Composite	15.7	53200	8.57	-2	420
686	Li ₃ Bi ₂ P ₃ O ₁₂	725	Cubic I-43m	15.8	26600		-130	456
066	Li ₃ NbO ₄	930/2h	Cubic I-43m	15.8	55000		-49	457
991	$Y_2Ba_{0.7}Sr_{0.3}Cu_{0.25}Zn_{0.75}O_5$		Orthorhombic Pnma	15.8	20700	10.5	-13	393
992	Li ₂ CeO ₃	720/4h	Cubic Fm3-m	15.8	143700		-123	458
993	Li_2TiO_3 -13 wt% MgO+4 wt% LiF	850/4h		15.8	64500		0	459
994	SrNdAIO ₄		K ₂ NiF ₄ type Tetragonal 14/mmm	15.9	110000		-15	440
962	$Ca(Ta_{2-x}Nb_x)O_6 (x=1.5)$	1425	Cubic Pm3	15.9	102500		-56	460
966	YSmBaZnO ₅		Orthorhombic	15.9	63210	6.6	-23	58
266	$Y_2Ba_{0.7}Sr_{0.3}Cu_{0.75}Zn_{0.25}O_5$		Orthorhombic Pnma	15.9	12450		0.8	393
866	$MgCu_2Nb_2O_8$	1010	Not available	15.9	6780		-46	315
666	$Ba_3Ti_5Nb_6O_{28}+5 \text{ wt}\% B_2O_3$	900/2h	Monoclinic P2 ₁ /c	15.9	14000		-13	461
1000	$SmNb_{1-x}(Si_{1/2}Mo_{1/2})_xO_4$ (x=0.68)		Monoclinic+Tetragonal	15.9	33400		-39	449
1001	$(0.4Bi_2O_3-La_2O_3-MgO-TiO_2)$ -	006	Composite	15.9	14300		35	462
1002	0.6La(Mg _{0.5} Ti _{0.5})O ₃ BaNb _{2-x} Ta _x P ₂ O ₁₁ (x=1.5)	1250	Rhombohedral R-3c	15.9	13200		-25	392

1003	75 wt% ZnNb ₂ O ₆ . TiO ₂ +25 wt% (SiO ₂ - B ₂ O ₃ Al ₂ O ₃)	875	Composite	15.9	15000		-20	27
1004			Orthorhombic Pbnm	16.0	3320	11.05	-27	384
1005	$Mn_4Nb_2O_9$	I	Corundum Trigonal P-3c1	16.0	50000		I	329
1006	$3CaO-2ZnO-Ta_2O_5-TiO_2$	1325	Composite	16.0	34500	6.2	-49	230
1007	$NdYBaZn_{0.45}Cu_{0.55}O_{5}$	1250/50h	Orthorhombic Pnma	16.0	100270		I	463
1008	$^{1.2}O_{30}$		Trigonal P-3m1	16.0	30000		20	464
1009	$Co_4Nb_2O_9$	1200	Corundum Trigonal P-3c1	16.0	2000		-10	274
_	$(Mg_{0.95}Zn_{0.05})TO_3$	1320/4h	Ilmenite Trigonal R-3	16.0	210000		09-	465
	Y _{1.5} Sm _{0.5} BaZnO ₅		Orthorhombic Pbnm	16.0	120000	-32		466
	$Ba_{2-2x}Sr_{2x}SmSbO_6 (x=0.1)$	1500	Perovskite	16.0	93000		-50	467
1013	Sr ₂ SmSbO ₆	1550	Perovskite	16.0	93000		-50	467
	$(1-y)Li_3NbO_4+yLi_2SnO_3$ (y=0.7)		Composite	16.0	75300		3	409
1015	Tm ₂ BaZnO ₅		Orthorhombic Pnma	16.1	8040	6.6	-20	58
1016	$Sm_2Ba(Cu_{0.995}Co_{0.005})O_5$		Orthorhombic Pbn	16.1	87800	10	8-	323
1017	$(Li_{1/2}Nd_{1/2})WO_4$	775/4h	Tetragonal 14 ₁ /n	16.1	4210		142	429
1018	$MgTiO_3$	1350/4h	Ilmenite Trigonal R-3	16.1	289400		-54	468
1019	$(Mg_{0.095}Co_{0.05})_{1.8}Ti_{1.1}O_4$	1390/4h	Spinel cubic Fd3m	16.1	207500	10.7	-53	469
1020	$0.4 \text{LiFe}_5 \text{O}_8 - 0.6 \text{Li}_2 \text{MgTi}_3 \text{O}_8$	1050/2h	Disordered spinel	16.1	28500		I	470
1021	$Nd_2BaZn_{0.5}Cu_{0.5}O_5$		Orthorhombic Pnma	16.2	36570		-13	468
1022	$Zn_2 Te_3 O_8$	620	Monoclinic C2/c	16.2	00099	4.9	09-	471
1023	$(Mg_{.0.95}Ca_{0.05})TiO_3+3 mol\% V_2O_5$	1100	Ilmenite Trigonal R-3	16.2	62000		20	472
1024	Er ₂ BaZnO ₅	1300	Orthorhombic Pnma	16.3	6836	6.6	-28	58
1025	ErAIO ₃	1650/2h	Perovskite Orthorhombic Pbnm	16.3	44200	10	-40	452
1026	BaO-0.33MgO-0.35WO ₃ -0.32TiO ₂	1500	Perovskite Hexagonal	16.3	77000		-10	373
1027	Ba_3MgNb_2 - Sb_xO_9 (x=1)		Perovskite	16.3	33400	6.7	4-	381
1028	$0.9(Mg_{0.95}Zn_{0.05})_2(Ti_{0.8}Sn_{0.2})O_4$ -0.1	950	Composite	16.3	30800	8.3	-10	473
	$(Ca_{0.8} Sr_{0.2})TiO_3 + 5.3LiF-Fe_2O_3-V_2O_5$							
1029	$(Li_{0.5}Yb_{0.5})MoO_4$	820	Tetragonal Scheelite	16.3	6350		53	474
1030	0.7Li ₃ (Mg _{0.92} Zn _{0.08}) ₂ NbO ₆ - 0.3Ba ₂ (VO ₄),	950	Composite	16.3	50000	8.6	2	475
	7.4							

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	τ_f	Reference
1031	Pb ₂ WO ₅	520	Monoclinic	16.4	14800	7.6	-95	476
1032	$Co_4Nb_2O_9$	1100/10H	Corundum type Trigonal P-3c1	16.4	2000		1	358,477
1033	Li ₃ NbO ₄	1150	Cubic I-43m	16.4	47100	10	-45	478,479
1034	0.8Li ₂ Zn ₃ Ti ₄ O ₁₂ -0.2Li ₂ TiO ₃ +2 wt% 0.1.5B ₂ O ₂ -0.6CuO	925/5h	Composite	16.4	00069		-42	480
1035	Li, TiO ₃ -13 wt% MgO	1325/4h		16.4	87500		Ţ	459
1036	$(Mg_{1-x}Z_{n_x})_1 g_{Ti_1}O_4 (x=0.06)$	1360/4h	Cubic Fd3m	16.5	210700		-62	451
1037	$Ca(Ta_2 \cdot Nb_x)O_6 $ (x=1.4)	1425	Orthorhombic Pbcn	16.5	84080		-49	460
1038	$0.5 \text{BaMoO}_4 - 0.5 \text{TiO}_2$	1285	Composite	16.5	25200		46	229
1039	$ZnW_{1-x}Te_xO_4 (x=0.0)$	1100	Wolframite P2 ₁ /n	16.5	20500		-70	206
1040	$Y_2Ba_{0.7}Sr_{0.3}Cu_{0.5}Zn_{0.5}O_5$		Orthorhombic Pnma	16.5	17670	10.1	-2	393
1041	$Y_2Ba_{0.7}Sr_{0.3}Cu_{0.15}Zn_{0.85}O_5$		Orthorhombic Pnma	16.5	23640	10.5	-18	393
1042	Sm ₂ BaCuO ₅		Orthorhombic Pnma	16.5	53200	6.6	-5	323
1043	$Mg_3Sm_4AI_{44}O_{75}$	1680	Magnetoplumbite	16.5	11000		92	145
1044	MgTiO ₃ (slow cooled 1°/min)	1350	Ilmenite Trigonal R-3	16.5	220000		-55	481
1045	$0.84Ba(Mg_{1/2}W_{1/2})O_{3}$ -0.16BaTiO ₃	1500	Perovskite hexagonal	16.6	12000		-11	373
1046	$CoCu_2Nb_2O_8$	985	Not available	16.6	36800		-37	315
1047	$(Mg_{0.95}Ca_{0.05})TiO_3+5 mol\% V_2O_5$	1000	Ilmenite Hexagonal R-3	16.6	13700		-50	472
1048	$ErNbO_4$	1500	Monoclinic fergusonite	16.6	43900		-64	363
1049	$Li_{3-3x}Mg_{4x}Nb_{(1-x)}O_4$ (x=0.2)	1300/2h		16.6	85160	10	-32	479
1050	SrLaAlO ₄		Tetragonal 14/mmm	16.7	149400		-32	440
1051	$Mg(Ti_{0.95}Sn_{0.05})O_3$		Ilmenite Trigonal R-3	16.7	275000	10.3	-53	447
1052	Ba(Mg _{1/2} W _{1/2})O ₃	1500/6h	Perovskite cubic Fm3m	16.7	42000		34	373
1053	$0.6Ba(Mg_{1/2}W_{1/2})O_{3}$ -0.4BaTiO ₃	1500/6h	Perovskite Hexagonal	16.7	15000		12	373
1054	$Y_2Ba_{0.7}Sr_{0.3}ZnO_5$		Orthorhombic Pnma	16.7	4920	10.8	-35	393
1055	ZnCu ₂ Nb ₂ O ₈	900/2h		16.7	41000		-77	482
1056	$Sm_2BaCu_{0.99}Co_{0.01}O_5$		Orthorhombic Pnma	16.8	90700	6.6	6-	58,323
1057	$Y_2Ba_{0.7}Sr_{0.3}Cu_{0.1}Zn_{0.9}O_5$		Orthorhombic Pnma	16.8	23600	10.5	-21	393
1058	70 wt% (La ₂ O ₃ -B ₂ O ₃ -TiO ₂ in 20:60:20 mol%)+30 wt % BaNd ₂ Ti ₅ O ₁₄	800	Composite	16.8	2900	7.1	109	419

ଚ
ė
2
ŧΞ
2
9
\mathcal{L}

(Mg _{0.95} Co _{0.05})TiO ₃ SmNb _{1-x} (Si _{1/2} Mo _{1/2}) _x O ₄ (x=0.04) 1-xCeO ₂ -xSm ₂ O ₃ (x=0.25) Li _{3-3x} Mg _{4x} Nb _(1-x) O ₄ (x=1/3)
1550/6h
1700
1200/3h
009
950
900
1550/9h
1320
1000
,

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	τ_f	Reference
1087	LaSrAlO ₄	1450	Tetragonal K ₂ NiF ₄ type	17.1	30770	10.77	3	435
1088	$(Mg_{0.95}Zn_{0.05})TiO_3$	1300	Ilmenite Trigonal R-3	17.1	264000	_	-40	498
1089	NdYBaZn _{0.45} Cu _{0.55} O ₅			17.1	100300	-30		463
1090	Ba(Ni _{1/2} W _{1/2})O ₃	1450	Perovskite Cubic Fm3m	17.1	36300	13.3	-68	432
1091	$SmNb_{1-x}(Si_{1/2}Mo_{1/2})_xO_4$ (x=0.03)		Monoclinic+Tetragonal	17.1	46200		-46	449
1092	In ₂ O ₃ -WO ₃ -TiO ₂	1175	Multphase	17.2	5100	6.4	-68	400
1093	Gd ₂ BaZnO ₅	1280	Orthorhombic Pbnm	17.2	2580	9.8	-27	58
1094	$Eu_2BaCu_{0.25}Zn_{0.75}O_5$		Orthorhombic Pbnm	17.2	57920		-29	497
1095	Ho ₂ BaZnO ₅	1300	Orthorhombic Pbnm	17.2	6200	9.8	-23	58
1096	$Li_3 (Mg_{0.92}Zn_{0.08})2NbO_6$	1120/4h	Orthorhombic Fddd	17.2	142300		-23	416
1097	CaNb ₂ O ₆	1350	Columbite Pbcn	17.3	49600	6.9	-53	489
1098	$Mg_3 Eu_4 AI_{44} O_{75}$	1680	Magnetoplumbite	17.3	11000		147	145
1099	Li ₂ MgTiO ₄	1360	Rock salt	17.3	97300	9.8	-27	499
1100	$1-xCeO_2-xTm_2O_3$ (x=0.25)	1650	Cubic flurite Fm3m	17.3	27850		-40	413
1101	$Co_2 La_4 Ti_3 Si_{(4-x)} O_{22-d} (x=0.05)$	1300	Perrierite Monoclinic P2 ₁ /a	17.3	46600	4.75	-177	486
1102	MgTiO ₃ (Pecchini mehod)+0.1 mol% Cr	1150	Ilmenite Trigonal R-3	17.3	136400			500
1103	CoZnTiO ₄	1200	Cubic Spinel Fd-3m	17.3	00926	8.8	-36	501
1104	$Co_2 La_4 Ti_3 Si_{(4-x)} O_{22-d} (x=0.1)$	1300	Perrierite monoclinic P2 ₁ /a	17.4	48700	4.68	-155	486
1105	$Mg(Sn_{0.05}Ti_{0.95})O_3$	1390/4h	Trigonal Ilmenite R-3H	17.4	322000		-54	502
1106	$Ba_8Zn(Nb_{6-x}Sb_x)O_{24} (x=2.4)$	1425	Not available	17.4	9800		-3	503
1107	LuNbO ₄	1500	Monoclinic fergusonite 12	17.4	26600		-64	363
1108	$Ba(Mg_{0.33} Ta_{0.13} Ti_{0.267} W_{0.267})O_3$	1560	Perovskite Hexagonal P-3m1	17.4	43780	7.1	-29	438
1109	CaTeO ₃	840		17.4	49300	10		223
1110	$MgTi_2O_5$	1500/3h	Orthorhombic Psuedobrookite Bbmm	17.4	47000		99-	418
1111	MgTiO ₃ (Chemical Pecchini mehod)	1150	Ilmenite, trigonal R-3H	17.4	166400		ı	500
1112	$0.5 \text{Li}_2 Zn_3 \text{Ti}_4 O_{12} - 0.5 Ba_3 (VO_4)_2$	950	Composite	17.4	56500		-5	487
1113	$0.6 \text{Li}_2 \text{Zn}_3 \text{Ti}_4 \text{O}_{12} - 0.4 \text{Ba}_3 (\text{VO}_4)_2$	975	Compposite	17.5	73100		-16	487
1114	$BaTe_4O_9$	500	Monoclinic	17.5	54700		06-	277,504
1115	0.96MgTiO ₃ -0.036SrTiO ₃ +4 wt% CuO	1070/2h	Composite	17.5	25100		0	505

8
õ
Š
.5
ıτ
õ
Ų

0.81/27n Ti-20-0.2CarliO ₂ +2 wt% b ₂ O ₃ 1030 Composite 0.81/27n Ti-20-0.2CarliO ₃ +2 wt% b ₂ O ₃ 1030 Composite 0.48 ₂ O ₃ -0.6CaO Cup Osite 0.5CalliO ₃ O ₃ O ₃ +1 wt% B ₂ O ₃ 1100 MgTO ₃ +1 mol% wb ₂ O ₃ 1250 Cup Osite 0.95NgTO ₃ -1 mol% wb ₂ O ₃ 1150 Cup Osite 0.95NgTO ₃ -1 mol% wb ₂ O ₃ 1150 Cup Osite 0.95NgTO ₃ -1 mol% wb ₂ O ₃ 1150 Cup Osite 0.95NgTO ₃ -1 mol% wb ₂ O ₃ 1150 Cup Osite 0.95NgTO ₃ -1 mol% wb ₂ O ₃ 1150 Cup Osite 0.95NgTO ₃ -1 mol% wb ₂ O ₃ 1150 Cup Osite 0.95NgTO ₃ -0.6STTO ₃ 1150 Cup Osite 0.95NgTO ₃ -1 mol% wb ₃ 1150 Cup 0.95NgTO ₃ -1 (wb ₃ O ₃ O ₃ O ₄	1116	0.74CaWO_4 -0.26TiO ₂ $(\text{Zn}_{1-x}\text{Cu}_x)_2 \text{TiO}_4 (\text{x=0.005})$	1250 1060/4h	Composite Cubic Fd3m	17.5	27000		0 (506	
03-0.6CuO 1270 Ilmenite Cubic R-3 1650/2h Perovskite Orthorhombic Pnma 1005 1100 Monoclinic P2/c Perovskite Orthorhombic Pnma 1100 Monoclinic P2/c Periorite Monoclinic P2/c Periorite Monoclinic P2/d Perovskite Cubic Fm3 m 1275 Perrierite Monoclinic P2/d Periorite Monoclinic P2/d Portorite Monoclinic P2/d Periorite Monoclinic P2/d Periorite Monoclinic P2/d Pool Monoclinic P2/d Periorite Monoclinic P2/d Pool Moo			1050 925/5h	Composite Composite	17.5	22000 71000		-24 -44	508 480	
Mg(Zr _{0.05} Ti _{0.95})O ₃ +1 wt% B ₂ O ₃ 1270 Ilmenite Cubic R-3 DyAlO ₃ 1650/2h Perovskite Orthorhombic Pnma Nd ₂ BaCuO ₅ 1100 Monoclinic P2/c ZnWO ₄ 1100 Monoclinic P2/c Ba ₃ MgWO ₆ 1275 Perrierite Monoclinic P2/ra RayMer-38+10 wt% 1275 Perrierite Monoclinic P2/ra MWF-38+10 wt% 875 Composite Li ₂ O-B ₂ O ₃ -SiO ₂ .caO-Al ₂ O ₃ 1350 Ilmenite R-3H, Trigonal MgTiO ₃ +1 mol% Nb ₂ O ₅ 1350 Ilmenite R-3H, Trigonal O.95MgTiO ₃ -0.05CaTiO ₃ +15 wt% 1050 composite Li ₂ ZrO ₃ +1 wt% BaO-CuO 1050 composite Li ₂ ZrO ₃ +1 wt% BaO-CuO 14004h Othrorhombic columbite Pbcn Mg _{0.97} Zn _{0.03} TiO ₄ -0.6SrTiO ₃ 14004h Othrorhombic columbite Pbcn Mg _{0.97} Zn _{0.03} TiO ₄ +0.6 mol ⁶ Zn 14004h Othrorhombic columbite Pbcn Mg _{0.97} Zn _{0.03} TiO ₄ +0.6SrTiO ₃ 1250 Monoclinic fergusonite I2 Co ₂ -WO ₃ -TiO ₂ 1250 Monoclinic fergusonite I2 (Zn _{0.8} Sn _{0.2})TiO ₄ +10 wt% 950/4h Com		$0.4B_2O_3$ -0.6CuO								
DyAlO3 1650/2h Perovskite Orthorhombic Phma Nd₂BaCuO5 Integral I4/mcm ZnWO4 Integral I4/mcm ZnWO4 Integral I4/mcm ZnWO4 Integral I4/mcm Ra₂MgWO6 Perovskite Cubic Fm3 m Co₂La₁Ti_S(i₄-x)O₂2-d (x=0.02) 1275 RMVF-38+10 wt% Perrierite Monoclinic P2/ra Li₂O-B₂O3-SiO2-CaO-Al₂O3 1350 (28:27:30:5:10) Intenite R-3H, Trigonal 0.95MgTiO3-0.05CaTiO3+15 wt% 1050 0.95MgTiO3-0.05CaTiO3+15 wt% 1050 Ca(Nb _{0.93} Ia _{0.07}) 206 14004h MgG ₁₀ 27Cn _{0.03} TiO3+0.5 mol% Zn 1275 LMZBS Ilmenite R-3H, Trigonal Ca(AlNb _{0.93} Ia _{0.07}) 206 1440/4h Mg ₁₀ 37 Zn _{0.03} TiO ₂ -d (x=0.25) 1250 Monoclinic C2/c 1250 C92 La₄ Ti S(i _{4-x3} O _{22-d} (x=0.25) 1250 Co ₂ -WO ₃ -TiO ₂ 1250 Monoclinic fergusonite I2 1250 Co ₂ -WO ₃ -TiO ₂ 1250 Monoclinic cergusonite I2 1250 Monoclinic cergusonite I2 950/4		$Mg(Zr_{0.05}Ti_{0.95})O_3+1$ wt% B_2O_3	1270	Ilmenite Cubic R-3	17.6	108000		2	509	
Nd₂BaCuO₅ Tetragonal 14/mcm ZnwO₄ 1100 Monoclinic P2/c Ba₃MgWO₆ 1275 Perovskite Cubic Fm3m Co₂La₄Ti₃Si₄⋅x₀O₂₂₋a(x=0.02) 1275 Perrierite Monoclinic P2₁/a MWF-38+10 wt% 875 Composite Li₂O-B₂O₃-SiO₂-CaO-Al₂O₃ 1350 Ilmenite R-3H, Trigonal Li₂O-B₂O₃-SiO₂-CaTiO₃+15 wt% 1350 Ilmenite R-3H, Trigonal 0.95MgTiO₃-0.05CaTiO₃+15 wt% 1350 Ilmenite Pbcn Li₂CrO₃+1 wt% BaO-CuO 1275 Ilmenite Ca(Nb₀₃) Ta₀₀₁ TiO₃+0.5 mol% Zn 14004h Othrorhombic Columbite Pbcn Mg₀₃¬Zn₀₀₃ TiO₃+0.6 SrTiO₃ 1275 Ilmenite Co₂-La₄Ti₃Sia₂x₀O₂-a (x=0.25) 1440/4h Composite Co₂-WO₃-TiO₂ 1440/4h Composite DyNbO₄ 1025 Monoclinic P2₁/a Co₂-La√Ti₃Sia₂x₀O₂-Li₂O-CuO 1475/4h Trigonal R-3 Ilmenite BaO-B₂O₃-SiO₂-Li₂O-CuO 1475/4h Trigonal R-3 Ilmenite BaO-B₂O₃-SiO₂-Li₂O-CuO 1475/4h Trigonal R-3 Ilmenite Ca₁-Cu₁-Cu₁-Cu⟩ 11700/2h Orthorhombic Pana	_	DyAlO ₃	1650/2h	Perovskite Orthorhombic Pnma	17.6	38000	10	-34	452	
ZnWO ₄ 1100 Monoclinic P2/c Ba _a MgWO ₆ Perovskite Cubic Fm3m Co ₂ La ₄ Ti ₃ Si(_{4-x})O _{22-d} (x=0.02) 1275 Perrierite Monoclinic P2 ₁ /a MWF-38+10 wt% 875 Composite Li ₂ O-B ₂ O ₃ -SiO ₂ .CaO-Al ₂ O ₃ 1350 Ilmenite R-3H, Trigonal Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃ 1350 Ilmenite R-3H, Trigonal 0.95MgTiO ₃ +1 mol% Nb ₂ O ₅ 1050 composite Li ₂ ZrO ₃ +1 mol% Nb ₂ O ₅ 1050 composite Li ₂ ZrO ₃ +1 wt% BaO-CuO 1050 monoclinic Columbite Pbcn Mg _{0.97} Zn _{0.03} TiO ₃ +0.5 mol% Zn 1440/4h Othrorhombic Columbite Pbcn Li ₂ ZrO ₃ +1 wt% BaO-CuO 1440/4h Composite Co ₂ La ₄ Ti ₃ Si(_{4-x}) O _{22-d} (x=0.25) 1440/4h Composite DyNbO ₄ 1250 Perrierite Monoclinic P2/a Co ₂ La ₄ Ti ₃ Si(_{4-x}) O _{22-d} (x=0.25) 1250 Perrierite Monoclinic P2/a DyNbO ₄ 1250 Monoclinic Faguan RaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite Cl _{0.8} Sm _{0.2})TiO ₄ +10 wt% 950/4h Composite <	\sim	Nd ₂ BaCuO ₅		Tetragonal 14/mcm	17.6	2200		-18	463	
Baa,MgWO ₆ 1275 Perrierite Monoclinic P2 ₁ /a Co ₂ La ₄ Γi ₃ Si _{4+xi} O _{22-d} (x=0.02) 1275 Perrierite Monoclinic P2 ₁ /a MWF-38+10 wt% 875 Composite Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃ 1350 Ilmenite R-3H, Trigonal (28:27:30:5:10) 1350 Ilmenite R-3H, Trigonal MgTiO ₃ +1 mol% Nb ₂ O ₅ 1050 composite Li ₂ ZrO ₃ +1 mol% Nb ₂ O ₅ 14004h Othrorhombic columbite Pbcn Mg _{0.97} Zn _{0.03} TiO ₃ +0.5 mol% Zn 1275 Ilmenite Li ₂ ZrO ₃ +1 wt% BaO-CuO 900 Monoclinic C2/c 0.94Mg ₂ TiO ₄ -0.65 TiO ₃ 1440/4h Composite Co ₂ La ₄ Ti ₃ Si _(4x) O _{22-d} (x=0.25) 1250 Perrierite Monoclinic P2 ₁ /a Co ₂ La ₄ Ti ₃ Si _(4x) O _{22-d} (x=0.25) 1250 Monoclinic fergusonite I2 Co ₂ La ₄ Ti ₃ Si _(4x) O _{22-d} (x=0.25) 1250 Monoclinic fergusonite I2 Co ₂ La ₄ Ti ₃ Si _(4x) O ₂ -2i(0 ₂ -1i ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite DyNbO ₄ 1770/2h Composite Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite Bu ₁ -cu ₁ Cu ₂ D ₁ Cu ₂	3	$ZnWO_4$	1100	Monoclinic P2/c	17.6	65000		09-	150	
Co ₂ La ₄ Ti ₃ Si _{4+x₃} O _{22-d} (x=0.02) 1275 Perrierite Monoclinic P2 ₁ /a MWF-38+10 wt% Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃ 875 Composite Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃ 1350 Ilmenite R-3H, Trigonal 10.95MgTiO ₃ +1 mol% Nb ₂ O ₅ 1050 composite Li ₂ ZiO ₃ -10.05CaTiO ₃ +15 wt% 1050 composite Li ₂ ZiO ₃ +10.05CaTiO ₃ +15 wt% 1050 composite Li ₂ ZiO ₃ +1 wt% BaO-CuO 900 Monoclinic C2/c 0.94Mg ₂ TiO ₄ -0.65rTiO ₃ 1440/4h Composite Co ₂ La ₄ Ti ₃ Si _{4+x₃} O _{22-d} (x=0.25) 1250 Monoclinic fergusonite I2 CO ₂ La ₄ Ti ₃ Si _{4+x₃} O ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite Co ₂ La ₄ Ti ₃ Si _{4+x₃} O _{22-d} (x=0.25) 1250 Monoclinic fergusonite I2 CO ₂ La ₄ Ti ₃ Si _{4-x₃} O ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite Co ₂ La ₂ Da ₃ CiO ₃ O ₃ CiO ₃ O ₃ CiO ₃ O ₃	4	Ba _a MgWO ₆		Perovskite Cubic Fm3m	17.6	45200	10.1		432	
MWF-38+10 wt% 875 Composite Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃ 1350 Ilmenite R-3H, Trigonal (28.27:30:5:10) 1350 Ilmenite R-3H, Trigonal MgTiO ₃ +1 mol% Nb ₂ O ₅ 1350 Ilmenite R-3H, Trigonal 0.95MgTiO ₃ +1 mol% Nb ₂ O ₅ 1050 composite LMZBS 14004h Othrorhombic columbite Pbcn Ag _{0.97} Zn _{0.03} TiO ₃ +0.5 mol% Zn 1275 Ilmenite Li ₂ ZrO ₃ +1 wt% BaO-CuO 1440/4h Othrorhombic Pbcn Li ₂ ZrO ₃ +1 wt% BaO-CuO 1440/4h Composite Co ₂ La ₄ Ti ₃ Si _(4×x) O _{22-d} (x=0.25) 1250 Monoclinic P2 ₁ /a Co ₂ La ₄ Ti ₃ Si _(4×x) O _{22-d} (x=0.25) 1250 Multiphase DyNbO ₄ 1250 Monoclinic fergusonite I2 (Zr _{0.8} Sn _{0.2})TiO ₄ +10 wt% 950/4h Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite NiTiO ₃ 0.96MgTiO ₃ -0.036SrTiO ₃ 1170/2h Orthorhombic Pnma (Zn _{1,x} Cu ₂) ZiO ₂ (x=0.01) 1060/4h Cuboc F3m	2	$Co_2La_4Ti_3Si_{(4-x)}O_{22-d}$ (x=0.02)	1275	Perrierite Monoclinic P2 ₁ /a	17.6	40800	4.73	-174	486	
Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃ (28:27:30:5:10) MgTiO ₃ +1 mol% Nb ₂ O ₅ (28:27:30:5:10) MgTiO ₃ +1 mol% Nb ₂ O ₅ (295MgTiO ₃ -0.05CaTiO ₃ +15 wt% 1050 composite LMZBS Ca(Nb _{0.93} Ta _{0.07}) ₂ O ₆ Li ₂ ZrO ₃ +1 wt% BaO-CuO 900 Monoclinic C2/c Li ₂ ZrO ₃ +1 wt% BaO-CuO 1275 Ilmenite Co ₂ La ₄ Ti ₃ Si _(4-x) O _{22-d} (x=0.25) 1250 Perrierite Monoclinic P2 ₁ /a Co ₂ La ₄ Ti ₃ Si _(4-x) O _{22-d} (x=0.25) 1250 Multiphase DyNbO ₄ (Zr _{0.8} Sn _{0.2})TiO ₄ +10 wt% 950/4h Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite Co ₂ MgTiO ₃ -0.036SrTiO ₃ (Zn _{1-x} Cu ₂ Zn _{0.5} O ₅	9	MWF-38+10 wt%	875	Composite	17.7	3700		-15	510	
MgTiO ₃ +1 mol% Nb ₂ O ₅ 1350 Ilmenite R-3H, Trigonal 0.95MgTiO ₃ -0.05CaTiO ₃ +15 wt% 1050 composite LMZBS Ca(Nb _{0.93} Ta _{0.07}) ₂ O ₆ 14004h Othrorhombic columbite Pbcn Mg _{0.97} Zn _{0.03} TiO ₃ +0.5 mol% Zn 1275 Ilmenite Li ₂ ZrO ₃ +1 wt% BaO-CuO 900 Monoclinic C2/c 0.94Mg ₂ TiO ₄ -0.6SrTiO ₃ 1440/4h Composite Co ₂ La ₄ Ti ₃ Si(4-x)O _{22-d} (x=0.25) 1250 Perrierite Monoclinic P2 ₁ /a CeO ₂ -WO ₃ -TiO ₂ 1025 Multiphase DyNbO ₄ 1025 Multiphase CeO ₂ -WO ₃ -TiO ₂ 1250 Monoclinic fergusonite I2 (Zr _{0.8} Sn _{0.2})TiO ₄ +10 wt% 950/4h Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite NiTiO ₃ 0.96MgTiO ₃ -0.036SrTiO ₃ 1170/2h Composite Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ 1170/2h Cubic Fd3m MACTIO MC-2TIO Lavared 1060/4h Cubic Fd3m		Li ₂ O-B ₂ O ₃ -SiO ₂ .CaO-Al ₂ O ₃ (28:27:30:5:10)								
0.95MgTiO ₃ -0.05CaTiO ₃ +15 wt% 1050 composite LMZBS Ca(Nb _{0.93} Ta _{0.07}) ₂ O ₆ 14004h Othrorhombic columbite Pbcn Mg _{0.97} Zn _{0.03} TiO ₃ +0.5 mol% Zn 1275 Ilmenite Li ₂ ZrO ₃ +1 wt% BaO-CuO 900 Monoclinic C2/c 0.94Mg ₂ TiO ₄ -0.6SrTiO ₃ 1250 Perrierite Monoclinic P2 ₁ /a Co ₂ La ₄ Ti ₃ Si _(4,x) O _{22-d} (x=0.25) 1250 Perrierite Monoclinic P2 ₁ /a Co ₂ La ₄ Ti ₃ Si _(4,x) O _{22-d} (x=0.25) 1025 Multiphase DyNbO ₄ 21O ₄ -10 wt% 950/4h Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite Cz _{0,8} Sn _{0,2})TiO ₄ (x=0.01) 1060/4h Cubic Fd3m Czn _{1,x} Cu ₃) ₂ TiO ₄ (x=0.01) 1060/4h Cubic Fd3m Li zared Composite Ly z z z z z z z z z z z z z z z z z z z	_	MgTiO ₃ +1 mol% Nb ₂ O ₅	1350	Ilmenite R-3H, Trigonal	17.7	175000		I	511	
Ca(Nb _{0.93} Ta _{0.07}) ₂ O ₆ Mg _{0.97} Zn _{0.03} IIO ₃ +0.5 mol% Zn Mg _{0.97} Zn _{0.03} IIO ₃ +0.5 mol% Zn Mg _{0.97} Zn _{0.03} IIO ₃ +0.5 mol% Zn Li ₂ ZrO ₃ +1 wt% BaO-CuO 0.94Mg ₂ TiO ₄ -0.6SrTiO ₃ Co ₂ La ₄ Ti ₃ Si _{4-x} O _{22-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{22-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{22-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{22-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{22-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{22-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{22-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{22-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{2-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{2-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{2-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{2-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{2-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{2-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O _{2-d} (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ Si _{4-x} O ₂ Cund (x=0.25) Co ₂ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Ti ₃ O ₄ Cund (x=0.01) Co ₄ La ₄ Cund (x=0.01) Co	8	0.95MgTiO ₃ -0.05CaTiO ₃ +15 wt% LMZBS	1050	composite	17.7	29000		-10	508	
Mg _{0.97} Zn _{0.03} TiO ₃ +0.5 mol% Zn 1275 Ilmenite Li ₂ ZrO ₃ +1 wt% BaO-CuO 900 Monoclinic C2/c 0.94Mg ₂ TiO ₄ -0.6SrTiO ₃ 1440/4h Composite Co ₂ La ₄ Ti ₃ Si _(4x) O _{22-d} (x=0.25) 1250 Perrierite Monoclinic P2 ₁ /a CeO ₂ -WO ₃ -TiO ₂ 1025 Multiphase DyNbO ₄ 1250 Monoclinic fergusonite I2 CeO ₂ -WO ₃ -TiO ₂ 1250 Monoclinic fergusonite I2 BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1250 Monoclinic fergusonite I2 SaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite Ni TiO ₃ 1170/2h Composite CoyeMgTiO ₃ -0.036SrTiO ₃ 1170/2h Composite Ca ₁ -xCu ₃ ZiO ₃ -SiO ₅ Co ₃ 1060/4h Cubic Fd3m MartiO /Cario Invared 1250 1060/4h Cubic Fd3m	6	$Ca(Nb_{0.93} Ta_{0.07})_2 O_6$	14004h	Othrorhombic columbite Pbcn	17.7	117000		-51	512	
Li ₂ ZrO ₃ +1 wt% BaO-CuO 0.94Mg ₂ TiO ₄ -0.6SrTiO ₃ 0.94Mg ₂ TiO ₄ -0.6SrTiO ₃ 1440/4h Composite Co ₂ La ₄ Ti ₃ Si _(4-x) O _{22-d} (x=0.25) 1250 Multiphase Co ₂ La ₄ Ti ₃ Si _(4-x) O _{22-d} (x=0.25) 1025 Multiphase 1250 Monoclinic fergusonite 12 1250 Monoclinic F2 ₁ /a 1	0	Mg _{0.97} Zn _{0.03} TiO ₃ +0.5 mol% Zn	1275	Ilmenite	17.7	277500	8.5	-55	513	
0.94Mg2 TiO4-0.6SrTiO3 1440/4h Composite Co2_La4 Ti3 Si(4-x) O22-d (x=0.25) 1250 Perrierite Monoclinic P2 ₁ /a CeO2-WO3-TiO2 1025 Multiphase DyNbO4 1250 Monoclinic fergusonite 12 (Zr _{0.8} Sn _{0.2}) TiO ₄ +10 wt% 950/4h Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite Ni TiO ₃ 1170/2h Composite 0.96MgTiO ₃ -0.036SrTiO ₃ 1170/2h Composite Can, Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ 1060/4h Cubic Fd3m MattiO / CatiO I wared 1 wared commosite	_	Li_2ZrO_3+1 wt% BaO-CuO	006	Monoclinic C2/c	17.8	4300		12	390	
Co ₂ La ₄ Ti ₃ Si _(4-x) O _{22-d} (x=0.25) 1250 Perrierite Monoclinic P2 ₁ /a CeO ₂ -WO ₃ -TiO ₂ 110 ₂ 1025 Multiphase DyNbO ₄ (Zr _{0.8} Sn _{0.2})TiO ₄ +10 wt% 950/4h Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO NiTiO ₃ 1475/4h Trigonal R-3 Ilmenite 0.96MgTiO ₃ -0.036SrTiO ₃ 1170/2h Composite Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ 1170/2h Composite Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ 1170/2h Composite Composit	7	$0.94 \mathrm{Mg_2TiO_4-0.6SrTiO_3}$	1440/4h	Composite	17.8	20000	10	-3	514	
CeO2-WO3-TiO2 1025 Multiphase DyNbO4 1250 Monoclinic fergusonite 12 (Zr _{0.8} Sn _{0.2})TiO ₄ +10 wt% 950/4h Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite NiTiO ₃ 1475/4h Trigonal R-3 Ilmenite 0.96MgTiO ₃ -0.036SrTiO ₃ 1170/2h Composite Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ Orthorhombic Pnma (Zn _{1-x} Cu _{0.5} Zn _{0.5} O ₅ 1060/4h Cubic Fd3m MATIO A _{7-x} Cu ₃ TiO I wared 1 wared Commosite	3	$Co_2La_4Ti_3Si_{(4-x)}O_{22-d}$ (x=0.25)	1250	Perrierite Monoclinic P2 ₁ /a	17.8	30700	4.7	-150	486	
DyNbO ₄ 1250 Monoclinic fergusonite 12 $(Zr_{0.8}Sn_{0.2})TiO_4+10$ wt% $950/4h$ Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO $1475/4h$ Trigonal R-3 Ilmenite NiTiO ₃ $1475/4h$ Trigonal R-3 Ilmenite 0.96MgTiO ₃ -0.036SrTiO ₃ $1170/2h$ Composite Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ Orthorhombic Pnma $(Zn_{1x}Cu_{1x})_2$ TiO ₄ (x=0.01) $1060/4h$ Cubic Fd3m MATIO $(Z_{11})_{1x}$ Columerite $1000/4h$ Cubic Fd3m	4	CeO_2 - WO_3 - TiO_2	1025	Multiphase	17.8	13100	6.2	82	400	
(Zr _{0.8} Sn _{0.2})TiO ₄ +10 wt% 950/4h Composite BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite NiTiO ₃ 1475/4h Trigonal R-3 Ilmenite 0.96MgTiO ₃ -0.036SrTiO ₃ 1170/2h Composite Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ Orthorhombic Pnma (Zn _{1-x} Cu _{1.2})TiO ₄ (x=0.01) 1060/4h Cubic Fd3m MATIO Control of the composite Loared Composite	2	DyNbO ₄	1250	Monoclinic fergusonite 12	17.8	38500		99-	363	
BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 1475/4h Trigonal R-3 Ilmenite NiTiO ₃ 0.96MgTiO ₃ -0.036SrTiO ₃ 1170/2h Composite Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ Orthorhombic Pnma (Zn _{1-x} Cu _x) ₂ TiO ₄ (x=0.01) 1060/4h Cubic Fd3m MATIO Catio I wared	9	$(Zr_{0.8}Sn_{0.2})TiO_4+10 wt\%$	950/4h	Composite	17.8	12700		-	515	
NiTiO ₃ 0.96MgTiO ₃ -0.036SrTiO ₃ 1170/2h Composite Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ (Zn _{1-x} Cu _x) ₂ TiO ₄ (x=0.01) MATIO (Cario I wared		BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO								
0.96MgTiO ₃ -0.036SrTiO ₃ 1170/2h Composite Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅ Orthorhombic Pnma (Zn _{1-x} Cu _x) ₂ TiO ₄ (x=0.01) 1060/4h Cubic Fd3m	_	N:HO ₃	1475/4h	Trigonal R-3 Ilmenite	17.8	13900		-51	516	
$Eu_2BaCu_{0.5}Zn_{0.5}O_5$ Orthorhombic Pnma $(Zn_{1,x}Cu_x)_2TiO_4$ (x=0.01) 1060/4h Cubic Fd3m Mario (7.710 Invared	8	$0.96MgTiO_3-0.036SrTiO_3$	1170/2h	Composite	17.9	30400	6	2	202	
$(Zn_{1-x}Cu_x)_2$ TiO $_4$ (x=0.01) 1060/4h Cubic Fd3m 1060/4h Cubic Fd3m	6	Eu ₂ BaCu _{0.5} Zn _{0.5} O ₅		Orthorhombic Pnma	17.9	49849		-30	497	
MaTi Onaraya Janahan J	0	$(Zn_{1-x}Cu_x)_2TiO_4 (x=0.01)$	1060/4h	Cubic Fd3m	17.9	7500			517	
(x,y) = (x,y	1141	$MgTiO_3/CaTiO_3$ layered		Layered-composite	17.9	61400	9.64	0	518	

O	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
1142	Ba[Ti _{1-x} (Co _{0.5} W _{0.5}) _x O ₃ (x=0.61)		Perovskite	18.0	7700		-14	519
1143	0.94(Mg _{0.95} Zn _{0.05}),TiO ₄ -0.06SrTiO ₃	1270	Cubic spinel	18.0	125600	10	0	520
1144		1060	Cubic Fd3m	18.0	9700	7.4	-166	517
1145	$0.91 Mg_2(Ti_{0.95} Sn_{0.05}) O_4 - 0.09 CaTiO_3$		Composite	18.0	92000		0	521
1146	2/3LaCa _{0.5} Zr _{0.5} O ₃ -1/3CaTiO ₃	1575	Composite	18.0	26000	5.3	-75	522
1147	5MgO-Ta ₂ O ₅ -TiO ₂	1325	Mixture	18.0	114000	6.61	-56	230
1148	$Z_{n_{0.6}Mg_{0.4}TiO_3+5}$ wt%	1100	Composite	18.0	29400		ı	523
	B_2O_3 -SiO ₂ -ZnO-K ₂ O							
1149	$Sm_2 BaCu_{0.5}Zn_{0.5}O_5$		Orthorhombic Pbnm	18.0	65700	-6.4		524
1150	$(1-x)LaCa_{0.5}Zr_{0.5}O_3-xCaTiO_3 (x=1/3)$		Composite	18.0	16000		-75	522
1151	$0.5 \text{CeO}_2 - 0.5 \text{Sm}_2 \text{O}_3$	1650	Composite	18.0	00006		-30	525
1152	5ZnO-Nb,O ₅ -TiŌ,	1050	Mixture	18.0	0009	5.9	-57	230
1153	5MgO-Ta ₂ O ₅ -TiO ₂	1325	Mixture	18.0	114000	9.9	-47	230
1154	CeO_2 -0.5NiO-0.5TiO ₂	1200	Mixture	18.0	25300		-58	488
1155	0.8Li ₂ Zn ₃ Ti ₄ O ₁₂ -0.2Li ₂ TiO ₃	1160	Cubic P4 ₂ 32	18.0	100000		-48	480
1156	$Ca_9Nd_2W_4O_{24}$	1450	Tetragonal scheelite 141/a	18.0	4050			526
1157	Eu ₂ BaZnO ₅		Orthorhombic Pnma	18.1	23360		-25	497
1158	$0.7 \text{Li}_2 \text{Zn}_3 \text{Ti}_4 \text{O}_{12} - 0.3 \text{Ba}_3 (\text{VO}_4)_2$	1000	Composite	18.1	88980		-25	487
1159	MgTiO ₃ /CaTiO ₃ /MgTiO ₃ layered		Layered-composite	18.1	61400	9.6	0	518
1160	$MgTiO_3 + 6 wt\% CuO - Bi_2 O_3 - V_2 O_5$	900/2h	Ilmenite Trigonal R-3	18.1	20300		-57	527
1161	$Nd_2 BaZn_{0.25}Cu_{0.75}O_5$	1250/10h	Tetragonal 14/mcm	18.1	25170		-18	463
1162	BaO-0.32MgO-0.28WO ₃ -0.4TiO ₂	1500/6h	Composite	18.1	48000		-3	407
1163	Ba(Ni _{1/2} W _{1/2})O ₃	1450	Perovskite cubic Fm3m	18.1	52000	8.22	-45	528
1164	0.92(Mg _{0.95} Co _{0.05)2} TiO ₄ -0.08(Ca _{0.8} Sr _{0.2}) TiO ₃ +0.5 wt% B ₂ O ₃	1200/4h	Composite	18.1	95000	9.5	1-5	529
1165	0.91(Mg _{0.97} Co _{0.03})2(Ti _{0.95} Sn _{0.05})O ₄ - 0.09CaTiO ₃	1390/4h	Composite	18.1	87600		4	530
1166	$Sr_{1,x}Ca_xLaAlO_4 (x=0.4)$ $Mg(Zr_{0.5}Ti_{0.95})O_3$	1475 1420	Tetragonal 14/mmm Ilmenite Trigonal R-3	18.1	150500 380000		-26 -50	531 532
1168	0.85Li ₂ TiO ₃ -0.5Li ₂ WO ₄	950	Mixture	18.1	81000		2	533

4		
,	=	

1169	CaNb, O,	1400/4h	Orthorhombic columbite Phen	18.1	20000		-54	534	
1170	$(Zn_{1-x}Cu_x)_2TiO_4 (x=0.05)$	1060/4h	Cubic Fd3m	18.2	7500		-82	507	
1171	$Mg(Z_{0.05}T_{0.95})O_3+1.5 \text{ wt}\% \text{ CuO}$	1300	Ilmenite Trigonal R-3	18.2	223000		-2	535	
1172	$(Zn_{0.95}Mn_{0.05})_2TiO_4$	1180	Cubic Fd3m	18.2	9550	7.5	-200	517	
1173	$Mg_{1+\delta}TiO_{3+\delta} \ (\delta=0.03)$	1400	Ilmenite Trigonal R-3	18.2	326600		-50	536	
1174	CaSmAlO ₄		K ₂ NiF ₄ type Tetragonal I4/mmm	18.2	51060		-3	537	
1175	CandalO ₄		K ₂ NiF ₄ type Tetragonal I4/mmm	18.2	17980		-52	537	
1176	$0.9(Mg_{0.95}Zn_{0.05})_2(Ti_{0.8}Sn_{0.2})O_4$ -	950	Spinel+Perovskite Composite	18.2	49100	8.1	15	473	
	$0.1(Ca_{0.8}Sr_{0.2})TiO_3$								
1177	$SrLa_2Al_2O_7$		Tetragonal R-P phase	18.2	71700		-22	538	
1178	$Zn(Mn_{1-x}TI_x)3O_7 (x=0.68)+5 wt\%$	006	Multiphase	18.2	12000		4-	539	
	$ZnO-B_2O_3$								
1179	$0.6LiMgVO_4-0.4TiO_2$	740	Composite	18.2	21600		-11	140	
1180	BiCuVO ₆	675	Monoclinic P2 ₁ /n	18.2	7800	7.7	-177	540	
1181	$0.995 MgO-0.005 BaO-TiO_2$	1320	Cubic Fm3m	18.3	18500	9.83		541	
1182	$Mg_3 Gd_4AI_{44}O_{75}$	1680	Magnetoplumbite	18.3	4800		175	145	
1183	$Mg_3 Tb_4 Al_{44} O_{75}$	1680	Magnetoplumbite	18.3	2300		200	145	
1184	0.5 ZnNb $_2$ O $_6$ - 0.5 Zn $_3$ Nb $_2$ O $_8$ -12 wt%	875	Orthorhombic mixture	18.3	39750	5.9	-88	542	
	$ZnCuB_2O_5$								
1185	$Sr(Ni_{1/2}W_{1/2})O_3$	1570	Perovskite Cubic Fm3m	18.3	26000	8.4	-50	528	
1186	$(1-x)CeO_2-xNd_2O_3$ (x=0.7)	1600	Cubic flurite Fm3m	18.3	44700		-62	413	
1187	$Mg_{1+\delta}T iO_{3+\delta} (\delta=0.02)$	1400	Ilmenite Hexagonal R-3	18.3	357600		-50	536	
1188	$0.93 (Mg_{0.95}Zn_{0.05})_{1.8}Ti_{1.1}O_4-0.07CaTiO_3$	1375	Composite	18.3	00096		-2	543	
1189	$0.93(Mg_{0.97}Zn_{0.03})(T_{0.95}Sn_{0.05})O_4-0.07CaTiO_3$	1390/4h	Cubic spinel	18.3	94700		4	426	
1190	$0.91 \text{Mg, TiO}_4^{-}-0.1(\text{Ca}_0 {}_8\text{Sr}_0 {}_7) \text{TiO}_3$	1300/4h	Composite	18.3	90200	9.5	0	544	
1191	0.8MgNb ₂ O ₆ -0.2CaTiO ₃	1300	Composite	18.4		73700	-45	545	
1192	GdAlO	1650/2h	Perovskite Orthorhombic	18.4	11000	10	-54	452	
1193	$(Zr_{0.8}Sn_{0.2})TiO_4 + 10 wt\%$	950/8h	Composite	18.4	10500		0-	515	
	BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO								
1194	$BaNd_2Ti_5O_{14}+La_2O_3-B_2O_3-TiO_2$	750	Composite	18.4	6100		4	546	
									ı

No.	Material	ST (°C)	Crystal structure	$\mathcal{E}_{_{I}}$	Qf (GHz)	f_0	$ au_f$	Reference
1195	0.93 (Mg _{0.95} Co _{0.05}) TiO ₄ -0.07 Sr TiO ₃		Composite	18.4	102200	9.5	-	547
1196	0.88Mg ₂ TiO ₄ - 0.12 CaTiO ₃ +4 wt% ZnNb ₂ O ₆	1360/6h	Composite	18.4	31000	9	0	548
1197	Sm_2BaZnO_5		Orthorhombic Pnma	18.5	35500	9.5	9-	549
1198	$Sr_{1+x}La_{1-x}Al_{1-x}Ti_xO_4$	1500		18.5	95000		6-	550
1199	$(1-x)CeO_2-xSm_2O_3$ (x=0.85)	1600	Cubic flurite Fm3m	18.5	44700		-55	413
1200	$(Zn_{1-x}Cu_x)_2 TiO_4 (x=0.2)$	1060/4h	Cubic Fd3m	18.5	7400		-15	507
1201	$(Mg_{0.7}Zn_{0.03})_{0.95}Co_{0.05}TiO_3+7 wt\%$ BaCu(B,O ₅)	950/4h	Composite	18.5	35000		-51	551
1202	$Mg_{0.95}Zn_{0.05}Ti_2O_5$	1450/4h	Orthorhombic Bbmn	18.5	45000		-41	552
1203	$0.2 \text{Li}_2 \text{Zn}_3 \text{Ti}_4 \text{O}_{12} - 0.8 \text{Li}_2 \text{TiO}_3 + 3 \text{ wt}\%$	925/5h	Cubic composite	18.5	42000		-38	480
	$0.4B_2O_3-0.6CuO$							
1204	$\text{Li}_2 \text{Zn}_3 \text{Ti}_4 \text{O}_{12} + 2 \text{ wt}\% \text{ BCB}$	006	Cubic Fd-3m	18.5	31100		-36	553
1205	$Mg_{0.95}Co_{0.05}Ti_2O_5$	1425/4h	Orthorhombic Bbmn	18.6	00089		-39	552
1206	(Li _{0.5} Er _{0.5})MoO ₄	800	Tetragonal Scheelite	18.6	10650		186	474
1207	$(Ca_{1+x}Sm_{1-x})(Al_{1-x}Ti_x)O_4 (x=0.02)$	1450	K ₂ NiF ₄ type Tetragonal 14/mmm	18.6	74600		-11	454
1208	$Co_2La_4Ti_3Si_{(4-x)}O_{22-d}$ (x=0.5)	1250	Perrierite monoclinic P2 ₁ /a	18.6	20700	4.6	-131	486
1209	$0.77(0.5 \text{ZnA} _2 \text{O}_4 - 0.5 \text{TiO}_2) - 0.23 \text{MgTiO}_3$	1390/4h	Composite	18.7	190000		-2	406
1210	$DyTiNb_xTa_{1-x}O_6$ (x=0.05)	1575	Orthorhombic Pbcn	18.7	31000	5.7	-28	555
1211	0.96MgTiO ₃ - 0.036 SrTiO ₃ + 4.5 Wt% CuO	1070/2h	Ilmenite Trigonal R-3	18.7	19600	6		505
1212	$(1-x)(Mg_{0.95}Ni_{0.05})TiO_3-xSrTiO_3 (x=0.01)$	1300/4h	Composite	18.7	105000		-38	556
1213	$Nd_2BaZn_{045}Cu_{0.55}O_5$	1250/10h	Tetragonal+Orthrohombic	18.8	44100		-20	463
1214	SmNbO ₄	1250	Orthorhombic Ima2	18.8	56300		-40	363
1215	$CaNb_2O_6$	1350	Orthorhombic Pbcn	18.8	49600		-53	557
1216	$[(Mg_{0.5}Zn_{0.5})_{0.95}Co_{0.05}]_2TiO_4$	1225	Cubic spinel Fd3m	18.8	206000		-21	558
1217	0.9MgTiO ₃ -0.1CaTiO ₃ +5 wt% Li.O-B.OSiO.	950	Composite	18.8	19000		10	559
1218	Mg _{0.95} Ni _{0.05} Ti ₂ O ₅	1425/4h	Orthorhombic bbmn	18.8	20000		-48	552
1219	$(Li_{0.5}Y_{0.5})MoO_4$	780	Tetragonal Scheelite	18.8	10400		193	474

8
ė
2
ŧ:
ū
9
\subseteq

1220	$(1-x)Ii_*Bi_*P_*\cap_{**}-xTiO_*(x=0.45)$	750	Monoclinic P2, /m	18.9	13700		-43	456	
	(* **,=3=:2, 3=12 **** 5 (* * 5:2) CaYAIO.		K ₂ NiF, type Tetragonal 14/mmm	18.9	39980		9	537	
	$Sr_{1-x}Ca_{\nu}NdAIO_{A}$ (x=0.6)	•	$K_2 NiF_4$ structure	18.9	91300		-13	560	
	$Sr_{0.6}Ca_{0.4}LaAlO_4+0.15 wt\% B_3O_3$	1300	K_2 NiF $_4$ structure	18.9	63000		-25	561	
	$(Ca_{1+x}Sm_{1-x})(AI_{1-x}Ti_x)O_4$ (x=0)	1400	K ₂ NiF ₄ type Tetragonal 14/mmm	19.0	54600		-15	554	
	Sr ₂ AlNbO ₆ (oxygen atm)	1550	Perovskite	19.0	16000	8.3	-5	562	
1226	VINDO ₆	1400	Aschenite Orthorhombic Pbcn	19.0	8820	8.2	-45	563	
	Sm _{0.1} Y _{0.9} TiNbO ₆	1420	Aschenite Orthorhombic Pbcn	19.0	11700		-42	564	
1228	Zn _{0.6} Mg _{0.4} TiO ₃ +5 wt% B-Si-Zn-K glass	950	Trigonal R-3	19.0	18950			565	
	ZnTiO ₃	1100	Trigonal R-3	19.0	30000	10	-55	566	
1230	0.96MgTiO_3 - $0.036 \text{SrTiO}_3 + 2 \text{ Wt}\% \text{ B}_2 \text{ O}_3$	1170/2h	Composite	19.0	75300	6	6-	505	
1231	$\mathrm{Bi}_2\mathrm{Mo}_3\mathrm{O}_{12}$	610	Monoclinic P2 ₁ /n	19.0	21800	9.7	-215	494	
	$(Zn_{0.95}Co_{0.05})_2$ TiO ₄	1180	Cubic spinel Fd3m	19.0	2100	7.3		517	
1233	$Ba_{2-2x}Sr_{2x}SmSbO_{6}$ (x=0.4)	1500	Perovskite	19.0	30000		-40	467	
	$Ba(Zn_{1/2}W_{1/2})O_3$	1250/4h	Cubic perovskite Fm3m	19.0	14000		-35	567	
1235	$Ca_{1-3x/2}La_x(Mg_{1/2}W_{1/2})O_3$ (x=0.02)	1375/2h	Complex perovskite Monoclinic	19.0	55000	I	-75	568	
1236	$0.4Li_2Zn_3Ti_4O_{12}-0.6Li_2TiO_3+3$ wt%	900/5h	Composite	19.0	29000		-38	480	
	$0.4B_2O_3-0.6CuO$								
1237	$(Nd_{0.99}Co_{0.015})_{1.02}Nb_{0.988}O_4$	1250/4h	Monoclinic fergusonite 12/a	19.0	43300		-48	699	
1238	$Ca_9Sm_2W_4O_{24}$	1450	Tetragonal scheelite 141/a	19.0	3100			526	
1239	$(Ba_xMg_{1-x})(Sn_{0.0}5Ti_{0.95})O_3$ (x=0.01)	1210/4h	Ilmenite type Trigonal	19.0	120000		-42	570	
1240	0.75ZnWO ₄ - 0.25 TiO ₂ + 0.5 wt%	950/2h	Composite	19.0	13500		-11	571	
	Li ₂ CO ₃ -H ₃ BO ₃								
	$(Nd_{0.99}Mn_{0.015})_{1.02}Nb_{0.988}O_4$	1250/4h	Monoclinic fergusonite 12/a	19.1	38600		-43	699	
1242	$(Nd_{0.99}Ca_{0.015})_{1.02}Nb_{0.988}O_4$	1250/4h	Monoclinic fergusonite 12/a	19.1	35300		-38	269	
	$(1-x)MgTiO_3-xCa_{0.8}Sr_{0.2}TiO_3$ (x=0.02)		Composite	19.1	110600		-38	572	
	Tb(Ti _{1/2} W _{1/2})O ₄	1375	Tetragonal Scheelite	19.1	2000	9.9	9-	400	
1245	0.99MgO-0.01BaO-TiO ₂	1320	Composite	19.1	21500	9.53		541	
1246	80 wt% ZnNb ₂ O ₆₋ TiO ₂ +20 wt%	875	Composite	19.1	0096		6	27	
	$(SiO_2 - B_2O_3 - Al_2O_3)$								
1247	$0.25 \mathrm{Li}_5 \mathrm{FeO}_8$ - $0.75 \mathrm{Li}_2 \mathrm{ZnTi}_3 \mathrm{O}_8$	1050	Composite	19.1	11770	6.84	09-	573	

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	$ au_f$	Reference
1248	$Nd(Mg_{0.47}Ba_{0.03}Sn_{0.5})O_3$	1600/4h	Cubic perovskite	19.1	97500		-64	574
1249	$\text{Li}_2\text{Zn}_3\text{Ti}_4\text{O}_{12}$ +1.5 wt% $\text{Li}_2\text{O-ZnO-B}_2\text{O}_3$ glass	900/2h	Cubic P4 ₂ 32	19.1	63800	6	-49	575
1250	Pb, MoO ₅	610/2h	Monoclinic	19.1	21960	7.46	09-	576
1251	$(Na_{0.5}Bi_{0.5})_{0.5}Ca_{0.5}MoO_4$	775	Tetragonal scheelite	19.1	22700		-10	343
1252	$(Ba_xMg_{1-x})(Zr_{0.05}Ti_{0.95})O_3$ (x=0.01)	1210/4h	Ilmenite type Trigonal	19.1	180000		-38	570
1253	$(Ba_xMg_{1-x})(Zr_{0.05}Ti_{0.95})O_3$ (x=0.03)	1210/4h	Ilmenite type Trigonal	19.2	156000		-35	570
1254	85 wt% ZnNb ₂ O ₆ -TiO ₂ +15 wt%	875	Composite	19.2	11000		17	27
	$(CaO- B_2O_3-SiO_2)$							
1255	$CaO-Sm_2O_3-Al_2O_3$	1425	Composite	19.2	120000		-10	577
1256	0.76Li ₂ TiO ₃ -0.24MgO	1250	Rocksalt Monoclinic C2c	19.2	106220		4	578
1257	$1-xCeO_{3}-xLa_{3}O_{3}$ (x=0.25)	1650	Cubic flurite Fm3m	19.2	14700		-64	413
1258	$(Mg_{0.95}Co_{0.05})_2TO_4-0.08(Ca_{0.8}Sr_{0.2})TO_3$		Composite	19.2	123200	9.2	3	579
1259	Nd(Mg _{0,45} Co _{0.05} Sn _{0.5})O ₃	1550	Perovskite	19.2	00689		- 92	580
1260	$Bi(Sb_{1-x}Ta_x)O_4 (x=0.05)$	096	Monoclinic 12/c	19.2	000'09		-55	581
1261	$Li_{2.081}$ $Ti_{0.676}$ $Nb_{0.243}$ O_3 +5 wt% LBS glass	850	Composite	19.2	41400		-2	582
1262	YbTiTaO ₆	1560	Euxenite Orthorhombic Pbcn	19.3	31800	6.2	-41	583
1263	$CaTe_2O_5$	780	Monoclinic	19.3	13400	10		223
1264	$BiSbO_4$	1080/2h	Monoclinic 12/c	19.3	70000		-62	584
1265	$Nd(Mg_{0.5}Sn_{0.5})O_3$	1550/4h	Perovskite	19.3	43300		-57	585
1266	MgTi ₂ O ₅ +10 wt% LBS glass	950/2h	Composite	19.3	0089	I	-16	167
1267	Ba(Co _{1/2} W _{1/2})O ₃	1390	Perovskite Cubic Fm3m	19.3	21000	7.76	-55	528
1268	TeO ₂	640/15h	Tetragonal P4 ₁ 2 ₁ 2	19.3	30000	4	-119	586
1269	$Zn_2 Te_3 O_8 + 4 wt\% TiO_2$	650/2h	Monoclinic C2/c	19.3	27000	5.14	6-	471
1270	LaNbO ₄	1250	Fergusonite Monoclinic 12/a	19.3	54400		6	363
1271	$Y(T_{1/2}W_{1/2})O_4$	1425	Tetragonal Scheelite	19.3	6200		-19	400
1272	$0.4 \text{Li}_2 \text{Zn}_3 \text{Ti}_4 \text{O}_{12} - 0.6 \text{Li}_2 \text{TiO}_3$	1240	Composite	19.3	28000		-31	480
1273	$Nd_{2.9/3}Ca_{0.05}(Mg_{0.5}Sn_{0.5})O_3$	1550/4h	Cubic	19.3	00066		-65	587
1274	$(Ba_{0.05}Mg_{0.95})(Zr_{0.05}Ti_{0.95})O_3$	1210/4h	Ilmenite type	19.3	132000		-32	570
1275	LiNi _{0.5} Ti _{0.5} O ₂	1275/6h	Fm-3m	19.3	51300		-20	588

٩	5
1	U
1	Ξ
1	~
-	õ
1	Ũ
	_

589 554 569 553	545 590	516 405	591 27	592	593	594 517	595	296	597	598	474	92	363	384	554	472	373	599	009	290	444
		-49	18	-12		99	←	<u></u>	-33	-,	209	-155	-24	6-		-3		-	13 (-24	, 68–
	8.6	-6.4	4.7			7.3	!					10.3		11.36		10				8.6	
35800 120700 33100 57600	30000		2700 9200	26700	93400	129200	49000	84800	56500	100400	3900	200	33000	3400	113700	86000	37000	16320	21500	26500	12600
19.4 19.4 19.4 4.61	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6
Cubic K ₂ NiF ₄ type Tetragonal 14/mmm Monoclinic fergusonite 12/a Cubic Fd-3m	Composite Perovskite Monoclinic P2 ₁ /n	Trigonal R-3 Ilmenite Orthorhombic Pmna	Trigonal R-3 Composite	Composite	Tetragonal 14/mmm	Perovskite Cubic Ed3m	Monoclinic fergusonite 12/a	Monoclinic rock salt	Tetragonal 14/mmm	Perovskite	Tetragonal Scheelite	Glass	Monoclinic fergusonite 12/a	Orthorhombic Pnma	K ₂ NiF ₄ type Tetragonal I4/mmm	IlmeniteTrigonal R-3	Perovskite Cubic Fm3m		Columbite Pbcn	Perovskite	
1400/4h 1500 1250/4h 900	1300	1375/5h 1320/2h	006	950	14,000	1500/4n 1180	950/2h	1300	1425	1550/4h	750		1250		1500	1200	1500/6h		1400	1500	
La(Mg _{0.5} Sn _{0.5})O ₃ +2 wt% ZBS glass (Ca _{1+x} Sm _{1-x})(Al _{1-x} Ti _x)O ₄ (x=0.06) (Nd _{0.99} Sf _{0.015}) _{1.02} Nb _{0.988} O ₄ Li ₂ Zn ₃ Ti ₄ O ₁₂ +1.5 wt% BCB	0.94CaNb ₂ O ₆ -0.06CaTiO ₃ Ca(La _{1/2} Ta _{1/2})O ₃	CoTiO ₃ Sm ₂ BaZnO ₅	ZnTiO ₃ +0.25 wt% V ₂ O ₅ 90 wt% ZnNb ₂ O ₆ .TiO ₂ +10 wt% (SiO ₂ - B,O ₃ _Al,O ₃)	90 wt% (Mg,Ča)ΠÕ₃+10 wt% Li ₂ O-B ₂ O₃-SiO ₂	$C_{1+x}Nd_{1-x}Al_{1-x}O_4$ (x=0.15)	Nd(Mg _{0.4} Zn _{0.1} Sn _{0.5})O ₃ (Zn _{0.0} -Ni _{0.0} -),TiO.	$LaNbO_4+3 wt% CuO$	$Li_{2+x}Ti_{1-4x}Nb_{3x}O_3$ (x=0.07)	SrLaAlO ₄ (co-precipitation PH=8)	$Nd(Mg_{0.43}Ca_{0.07}Sn_{0.5})O_3$	$(Li_{0.5}Gd_{0.5})MoO_4$	PbO:B ₂ O ₃ :SiO ₂ (70:20:10) glass	$NdNbO_4$	Sm ₂ BaCuO ₅	$(Ca_{1+x}Sm_{1-x})(Al_{1-x}Ti_x)O_4 (x=0.1)$	$(Mg_{0.95}Ca_{.05})TiO_3+5 mol\% B_2O_3$	$0.92Ba(Mg_{1/2}W_{1/2})O_3$ 0.08BaTiO ₃	$Nd_{0.5}La_{1.5}BaZnO_5$	$CaNb_2O_6$	$Ca(Sm_{1/2}Ta_{1/2})O_3$	$CaTe_2O_5$
	1280	1282	1284 1285	1286		1288					1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
1305	Liybw, O ₈	006	Monoclinic P2/n	19.7	8720		45	48
1306	Ba(Mg _{0.33} Ta _{0.33} Ti _{0.167} W _{0.167})O ₃	1580	Perovskite Trigonal R-3	19.7	58200	6.5	-11	438
1307	$(1-y)Li_3 NbO_{4-v}Li_2 TiO_3 $ (y=0.6)		Composite	19.7	91200		24	409
1308	$La(Mg_{0.5}Sn_{0.5})O_3 + 0.5 \text{ wt}\% B_2O_3$	1500/4h	Perovskite	19.7	45000		-85	601
1309	Li ₂ TiO ₃ +1 wt% BaO-CuO	006	Monoclinic C2/c	19.7	46300		31	390
1310	$La_4 Tl_3 O_{12}$		Hexagonal	19.7	9950		-10	602
1311	$(Ba_xMg_{1-x})(Zr_{0.05}Ti_{0.95})O_3 (x=0.07)$	1210/4h	Ilmennite type Trigonal	19.7	100000		-31	570
1312	Li ₂ TO ₃	1230	Monoclinic C2/c	19.8	23600		39	390
1313	$Zn_2Te_3O_8+30$ wt% TiTe $_3O_8$	009	Composite	19.8	50000		3	603
1314	$(1-y)Li_3NbO_4-+yLi_2TiO_3$ (y=0.6)		Composite	19.8	91200		-24	409
1315	$Ca_{1.15}Sm_{0.85}Al_{0.85}Ti_{0.15}O_4+0.15$ wt%	1325	Tetragonal 14/mmm	19.8	89400		ī	604
	B_2O_3							
1316	$Dy(Ti_{1/2}W_{1/2})O_4$	1425	Tetragonal Scheelite	19.9	0009	9.9	-5	400
1317	$MgNb_2O_6+2$ wt% CuO	1170	Columbite Orthorhombic Pbcn	19.9	110000	10	-44	605
1318	BaNd ₂ Ti ₅ O ₁₄ :	850	Tungsten bronze	19.9	8200			909
	$(20La_2O_3-60B_2O_3-20TiO_2)$							
	(60:40 wt%)							
1319	1-xCeO,-xNd,O, (x=0.4)	1650	Cubic flurite Fm3m	19.9	34100		-55	413
1320	$Ba_8Zn(\bar{Nb}_{6-x}S\bar{b_x})\bar{O}_{24} \ (x=1.8)$	1425		19.9	18600		9	503
1321	$La_{0.97}Sm_{0.03}(Mg_{0.5}Sn_{0.5})O_3$	1500/4h		19.9	70200		-77	209
1322	$(Li_{0.5}Sm_{0.5})MoO_4$	640	Tetragonal Scheelite	19.9	4600		231	474
1323	$(Sr_{1-x}Ca_x)La_2Al_2O_7$ (x=0.1)	1600/3h	R-P I4/mmm	19.9	135400		-19	809
1324	Ca(Al _{1/2} Ta _{1/2})O ₃		Complex perovskite	20.0	8500	I	-90	609
1325	Ca[(Li _{1/3} Nb _{2/3}) _{0.95} Ti _{0.05}]O _{3-d} +5 wt%	900/3h	Perovskite	20.0	6500		4-	610
1326	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	1250	Monoclinic fergisonite 12/3	20.0	45000		1	898
1327	Ca(Nd1, Ta1, 2)O,	1500	Perovskite Monoclinic P2./n	20.0	2400	6.7	-16	590
1328	0.95MgTiO ₃ -0.05CaTiO ₃ +0.25 wt%	1275/4h	Composite	20.0	51000		8-	611
	CnO							
1329	$Ca(Nd_{1/2}Nb_{1/2})O_3$	1500	Complex perovskite	20.0	17500	9.6	-33	290

	8
	ĕ
	7
	ţ;
<u>م</u>	2
4	. 6
^	_

1330	GdTiNbO _k	1385	Aschenite Orthorhombic Pbcn	20.0	9050	7.27	-52	563	
1331	$MgO-SiO_2-TiO_2+15$ wt%	1160	Composite	20.0	100000	10		612	
	$ZnO-B_2O_3+2.4 wt\% Co_2O_3$								
	$Sm_{0.3}Y_{0.7}TiNbO_6$	1420	Orthorhombic Pbnm	20.0	19200		-33	564	
	LaNbO ₄		Monoclinic 12/a	20.0	15000		20	279	
	$Li_{2.081}Ti_{0.676}Nb_{0.243}O_3$	1100	Monoclinic	20.0	20000		13	613	
	$CaO-4ZnO-Nb_2O_5-TiO_2$	1125	Composite	20.0	0006	5.9	-47	230	
	5NiO-Nb ₂ O ₅ -TiO ₂	1125	Composite	20.0	8200	5.9	-64	230	
	CaO-4MgO-Ta ₂ O ₅ -TiO ₂	1360	Composite	20.0	50000	5.6	-33	230	
1338	5NiO-Ta ₂ O ₅ -TiO ₂	1300	Composite	20.0	14000	5.9	-53	230	
	$Sr_3Zn_{0.75}Mg_{0.25}Nb_2O_9$	1300	Hexagonal, perovskite	20.0	8500		-16	614	
	$CaO-4Co_3O_4-Ta_2O_5-TiO_2$	1210	Composite	20.0	26000	5.8	-30	230	
1341	$Ba_{1-3x/2}La_x(Mg_{1/2}W_{1/2})O_3 (x=0.02)$	1450/2h	Complex perovskite cubic Fm3m	20.0	87680	I	_	268	
	$xBa(Mg_{1/2}W_{1/2})O_3-(1-x)BaTiO_3 (x=0.92)$	1500/6h	Perovskite Fm3m	20.0	37000		-19	373	
	$0.95 Mg \Pi O_3$ -0.05Ca ΠO_3	1400	Ilmenite Trigonal R-3	20.0	26000		0	615	
1344	0.94MgTiO ₃ -0.06CaTiO ₃ +0.25 wt%	1275	Ilmenite Trigonal R-3	20.0	48000		-3	611	
1345	0.75MgAl,O₄-0.25TiO,		Composite	20.0	10500		0	195	
	$Ba(Mg_{1/3}Ta_{2-2xy/3}W_{x/3}Ti_{x/3})O_3 (x=0.15)$	1550/4h	Perovskite Trigonal R-3	20.0	00006		0	438	
1347	Ba[Ti _{1-x} (Ni _{1/2} W _{1/2}) _x]O ₃ (x=0.6)	1425	Perovskite Hexagonal P63/mmc	20.0	42000		-10	616	
	Zn ₃ Nb ₂ O ₈ +2 wt% V ₂ O ₅ +0.5 wt% CuO	800	Monoclinic C2/c	20.0	36000	11.8	ı	617	
	BiSbO ₄ +V ₂ O ₅ -CuO	930	Monoclinic 12/c	20.0	40000		-75	618	
	$La_{2.98/3}Sr_{0.01}(Mg_{0.5}Sn_{0.5})O_3$	1550/4h		20.0	57100		-77	619	
1351	$Ba(Mg_{1/2}W_{1/2})O_3$	1550/2h	Perovskite Cubic Fm3m	20.0	120000		-28	620	
	$Ba(Zn_{0.49}W_{0.5})O_{2.995}$	1360/4h	Perovskite Cubic Fm3m	20.0	40000		-35	267	
1353	Zn _{1.8} Ti _{1.1} O ₄	1090	Cubic Fd3m	20.0	20200		-58	451	
1354	$La_{2.98/3}Ba_{0.01}(Mg_{0.5}Sn_{0.5})O_3 + 0.25 wt\%$ CuO	1500/4h		20.0	20000		-78	621	
1355	$0.5Mg_4Nb_2O_9$ - $0.5CaTiO_3$ +1.7 wt% V.O.	1150/5h	Composite	20.0	48000		-12	622	
1356	(Co _{0.95} Zn _{0.05})TiO ₃	1350/3h	Trigonal R-3	20.0	107000	9.27	09	623	
									ı

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
1357	$\begin{array}{c} \text{La}_{2.98/3} \text{Ba}_{0.01} (\text{Mg}_{0.5} \text{Sn}_{0.5}) O_3 + 0.25 \text{ wt\%} \\ \text{CuO} \end{array}$	1500/4h	Not available	20.0	50100		-78	621
1358	0.95MgTiO ₃ - 0.05 CaTiO ₃ +1 wt% ZnO	1300	Composite composite	20.0	65000	_	9-	624
1359	Ba($Mg_{1/2}W_{1/2}$)O ₃ +xBa($Y_{1/3}W_{1/3}$)O ₃ + (x=0.02)	1575	Cubic Fm-3m Perovskite	20.0	160000		-21	625
1360	ZnNb ₂ O ₆ -0.2CaTiO ₃ +4 wt% BaCu(B,O ₅)	950/4h	Composite	20.0	12500		3	626
1361	0.95MgTiŌ₃-0.05CaTiO₃+1 wt% ZnO+0.5 wt% WO₃	1310		20.0	62000	^	1-5	627
1362	La(MgSn) _{0.5} O ₃	1600/4h	Perovskite Monoclinic P2 ₁ /n	20.1	63000		-78	628
1363	La(Mg _{0.43} Ba _{0.07} Sn _{0.5})O ₃	1550/2h	Cubic perovskite	20.1	51600	-82	8-	629
1364	$(Ba_xMg_{1-x})(Sn_{0.05}Ti_{0.95})O_3$ (x=0.03)	1210/4h	Ilmenite type Trigonal	20.1	100000		-26	570
1365	0.96Mg _{0.95} Co _{0.05} TiO ₃ -0.04SrTiO ₃ +1 wt% ZnO	1250	Composite	20.1	74000		8	630
1366	NdNbO ₄ +2 wt% CaF ₂	1225	Monoclinic fergusonite 12/a	20.1	75000		-19	631
1367	$(1-x)(Mg_{0.95}Ni_{0.05})TiO_3-xSrTiO_3 (x=0.03)$	1300/4h	Composite	20.1	85000		1	556
1368	$SrNb_2O_6$	1300	Columbite Monoclinic P2 ₁ /c	20.1	16900	6.5	I	489
1369	0.55LiMgVO_4 - 0.45TiO_2	260	Composite	20.1	20100		16	140
1370	Zn ₂ TiO ₄	1300/2h	Cubic Fd3m	20.2	19000		-55	632
1371	$(Ca_{1+x}Sm_{1-x})(Al_{1-x}Ti_x)O_4$ (x=0.15)	1400	K ₂ NiF ₄ type Tetragonal 14/mmm	20.2	97800		-0.5	554
1372	$Ba_3 NiNb_{2-x}Sb_xO_9 (x=0.5)$		Cubic Pm3m	20.2	16780	9	-29	381
1373	$La_{1-x}Bi_x(Mg_{0.5}Sn_{0.5})O_3 (x=0.1)$			20.2	58100		-84	633
1374	$La(Mg_{0.4}Ca_{0.1}Sn_{0.5})O_3$	1500	Perovskite	20.2	80500		-79	634
1375	$La(Mg_{0.4}Ni_{0.1}Sn_{0.5})O_3$	1550/4h		20.2	74600		-85	635
1376	$La_{0.97}Yb_{0.03}(Mg_{0.5}Sn_{0.5})O_3$			20.2	56800		-79	636
1377	MgLi _{2/3} Ti _{4/3} O ₄	1125/2h	Cubic Fd-3m	20.2	62300		-27	637
1378	$(1-x)MgTiO_3-xCa_{0.8}Sr_{0.2}TiO_3$ (x=0.04)		Ilmenite Hexagonal R-3	20.2	97200		-21	572
1379	$0.2 \text{Li}_2 \text{Zn}_3 \text{Ti}_4 \text{O}_{12} - 0.8 \text{Li}_2 \text{TIO}_3$	1240	Composite	20.2	24000		-	480
1380	$(Ba_xMg_{1-x})(Sn_{0.05}Ti_{0.95})O_3 (x=0.05)$	1210/4h	Ilmenite type Trigonal	20.2	84000		-17	570
1381	$(Ba_xMg_{1-x})(Sn_{0.05}Ti_{0.95})O_3$ (x=0.07)	1210/4h	Ilmenite type Trigonal	20.3	75000		-14	570

8
é
2
Œ.
5
ŭ

1382	SrLaGaO ₄	1275/3h	Tetragonal 14/mmm Tetragonal 14/mcm	20.3	16200		-34	638
1384	NdLaBaZnO ₅		Orthorhombic	20.3	7900		-5.3	599,633
1385	$ZnTiO_3 + 0.5 wt\% V_2O_5$	006	Hexagonal R-3	20.3	5200	7.8		591
1386	90 wt% ZnNb ₂ O ₆ -TiO ₂ +10 wt%	875	Composite	20.3	8200		2	27
	$(L_1^2O - B_2O_3 - SIO_2)$							
1387	$0.95(Mg_{.95}Co_{.05})TiO_3-0.05CaTiO_3$	1275/4h	Ilmenite Hexagonal R-3	20.3	107000	7	-23	422
1388	CeO_2 :(at 30K)	1675	Cubic flurite Fm3m	20.3	000009	5.5		640
1389	$Pr(Ti_{1/2}W_{1/2})O_4$	1300	Tetragonal Scheelite	20.3	0069	6.53	-20	400
1390	$MnTa_2O_6$	1350	Columbite Orthorhombic Pbcn	20.3	16500		-44	009
1391	$(Li_{0.5}Nd_{0.5})MoO_4$	099	Tetragonal Scheelite	20.3	3000		235	474
1392	$(1-x)Mg_{0.95}Ni_{0.05}Ti_{0.98}Zr_{0.02}O_3-xSrTiO_3$		Composite	20.3	85400		3	641
	(x=0.04)							
1393	SmAIO ₃	1650/2h	Orthorhombic Pbnm	20.4	65000	10	-74	452
1394	MnTiO ₃	1350/2h	Hexagonal R-3(148) Ilmenite	20.4	15200		-56	516
1395	$Ba_3NiNb_{2-x}Sb_xO_9$ (x=1)		Hxagonal P6 ₃ mc	20.4	43880	6.3	-18	381
1396	$CoNb_2O_6$	1300/4h	Columbite Pbcn	20.5	81000		-70	489,642
	$(Ba_xMg_{1-x})(Sn_{0.05} \Pi_{0.95})O_3 (x=0.1)$	1210/4h	Ilmenite type Trigonal	20.5	37000		-3	570
1398	$Li_2Ti_{1-x}(Zn_{1/3}Nb_{2/3})_xO_3 (x=0.2)$		Monoclinic C2/c	20.5	75300		15	643
1399	Sm _{0.4} Y _{0.6} TiNbO ₆	1400		20.5	15000		-30	564
1400	$Co_{1+0.01}Nb_2O_6$ (sintered in O_2)	1400	Columbite Pbcn	20.5	114000		09-	644
	$\mathrm{Sr_2La_2MgW_2O_{12}}$	1525	Trigonal R-3m	20.5	35000		-83	645
1402	$SrNd_2Al_2O_7$		Tetragonal R-P phase	20.5	65500		4-	538
1403	$(Ba_{0.1}Mg_{0.9})(Zr_{0.05}Ti_{0.95})O_3$	1210/4h	Ilmenite type	20.6	25000		-28	570
1404	$ZnL_{12/3}T_{14/3}O_4$	1075	Cubic Fd-3 m	20.6	106700		-48	553
1405	0.5CeO_2 - $0.5 \text{BaTi}_4 \text{O}_9$ +12 wt% $\text{B}_2 \text{O}_3$ +1	950/4h	Cubic flurite	20.6	17000	5.7	48	646
	wt% CuO		Fm3m+Orthorhombic Pnmm					
1406	ErTITaO ₆	1560	Euxenite orthorhombic	20.6	85500		-29	583
1407	$(Li_{0.5}Ce_{0.5})MoO_4$	580	Tetragonal Scheelite	20.6	2000		228	474
1408	$Ca(La_{1/2}Nb_{1/2})O_3$	1500	Perovskite	20.6	38000	9.4	-51	290

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf(GHz)	f_0	$ au_f$	Reference
1409	$MgTiO_3+5 mol\% Bi_2O_3-7 mol\% V_2O_5$	875	Ilmnite Trigonal R-3+second phase	20.6	10420	6.3		647
1410	0.97MgO-0.03BaO-TiO,	1320	Mixture phases	20.6	32600	9.35		541
1411	$(Ba_xMg_{1-x})(Zr_{0.05}T_{0.95})O_3(x=0.1)$	1210/4h	Ilmneite type Trigonal	20.6	25000		-28	570
1412	$ZnTiO_3+0.75 \text{ wt}\% \text{ V}_3O_5$	006	Trigonal R-3	20.6	8800	8.2		591
1413	$(Ba_{0.75}Sr_{0.25})(Mg_{0.5}W_{0.5})O_3$	1400	multiphase	20.6	152600		24	648
1414	Nd , $BaZn_0$ $_3Cu_0$, O_5		Tetragonal 14/mcm	20.7	11680		-2	463
1415	$Sr_3\bar{Z}nNb_2O_9$	1300	Complex perovskite Cubic Pm3m	20.7	7500		-27	614
1416	LaAlO ₃ +0.25 wt% CuO	1460	Perovskite Trigonal R-3m	20.7	48000		-80	649
1417	$(Ca_{1+x}Sm_{1-x})(Al_{1-x}Ti_x)O_4$ (x=0.2)	1500	K ₂ NiF ₄ type Tetragonal I4/mmm	20.7	99400		_	554
1418	CeAlO	1500	Tetragonal P4/mmm	20.7	40110	9.5	-57	650
1419	$Ba_4\Pi_3\vec{P_2}O_{15}$	1200/4h	Monoclinic	20.7	42200		37	651
1420	Ba ₂ SmSbO ₆	1500	Perovskite Cubic Fm3m	20.7	86500		25	467
1421	$Sr_{1-3x/2}La_x(Mg_{1/2}W_{1/2})O_3$ (x=0.01)	1550/2h	Complex perovskite Tetragonal	20.7	00009	ı	-40	568
1422	$\text{Li}_2\text{TiO}_3 + 2 \text{ wt\% Li}_2\text{O-ZnO-B}_2\text{O}_3 + 35 \text{ wt\% LiZnNbO}_4$	006	Composite	20.7	19300		0	652
1423	(Zn _{0.95} Ni _{0.05}) ₃ Nb ₂ O ₈ +4 wt% B ₂ O ₃ -CuO	930/2h	Monoclinic	20.7	00086		-85	653
1424	Ba ₂ Mg _{0.9} Ca _{0.1} WO ₆	1500	Perovskite Cubic Fm3m	20.8	120700		0	441
1425	TeO ₂		Tetragonal P4 ₁ 2 ₁ 2	20.8	34700		-101	444
1426	$0.964 \mathrm{MgTiO_3-0.036SrTiO_3}$	1270	Ilmenite Trigonal R-3+Perovskite	20.8	71000		T	654
1427	$La_{2-x/3}Na_x(Mg_{1/2}W_{1/2})O_3$ (x=0.5)	1450	Perovskite Orthorhombic 1222	20.8	5700		-47	655
1428	$Nd_2 BaZn_{0.7}Cu_{0.3}O_5$		Tetragonal 14/mcm	20.8	19793		-3	463
1429	$0.96Mg(Zr_{0.05}Ti_{0.95})O_3-0.04SrTiO_3$		Composite	20.8	257000		0	656
1430	$(Zn_{0.95}Co_{0.05})Nb_2O_8+4$ wt% B_2O_3 -CuO	930	Composite	20.8	105000		-84	657
1431	$0.94(Mg_{0.95}Co_{0.05})TiO_3-0.06CaTiO_3$	1275/4h	Composite	20.9	102000	_	-10	422
1432	$Ca(Sm_{1/2}Nb_{1/2})O_3$	1500	Perovskite	20.9	24500	9.4	-28	590
1433	$0.95 MgO-0.05 BaO-TiO_2$	1320	Composite	20.9	32500	90.6		541
1434	$0.96 Mg Ti O_3 - 0.04 Sr Ti O_3$	1300/4h	Composite	20.9	135000	6	0	658
1435	Zn _{1.01} Nb ₂ O ₆	1300/4h	Columbite Pbcn	20.9	120000		-74	642

6
an
ţ'n
ηt
CO
\circ

COLI ₂₃ T ₄₃ O ₄ + 1.5 wt% BaCu(B ₂ O ₅) (1-x)Li ₃ Bi ₂ P ₃ O ₁ - xTiO ₂ (x=0.50) Li ₂ ZnTi ₃ O ₈ -0.2 SnO ₂ (1-x)(Mg _{0.95} Ni _{0.05})TiO ₃ -xSrTiO ₃ (x=0.04) Mg _{1.03} Nb ₂ O ₆		Composite Cubic spinel Fd-3m Monoclinic P2 ₁ /m Cubic spinel Composite Columbite Pcan	20.9 20.9 20.9 10.9 21.0	34100 203000 27800 14000 89500 73000 121000	6.8	8 2 2 -24 -25 -60	613 659 660 456 661 556
0.964МgTiO ₃ -0.036SrTiO ₃ BaTe ₂ O ₆ Ca(Mg _{1,3} Ta _{2,3})O ₃ Zn ₃ Nb ₂ O ₈ 0.95MgTiO ₃ -0.05CaTiO ₃	1270 650 1150/2h 1450	Composite Orthorhombic Cmcm Complex perovskite Monoclinic C2/c Composite	21.0 21.0 21.0 21.0	71000 50300 78000 83300 56000	I V I	-1 -51 -61 -71	654 277 609 445,632 611
TbTiNbO ₆ SZnO-2Nb ₂ O ₅ Sm _{0.6} V _{0.4} TiNbO ₆ Ca ₅ Ta ₂ ZrO _{1,2} ZnTiO ₃ Ca[(Li _{0.33} Nb _{0.67)_{0.9} Ti_{0.1}] O₃₋₆+20 wt%}		Aschenite Orthorhombic Pbcn Mixed phases Euxenite Orthorhombic Pbnm Perovskite Trigonal R-3 Composite	21.0 21.0 21.0 21.0 21.0 21.0	88000 11500 23800 30000 20400	5.38 5.38	-45 -73 -27 -90 -18	563 325 564 662 663
Ba _{0.95} (Zn _{1/2} W _{1/2})O _{2.95} NiNb ₂ O ₆ Mg _{0.95} Ca _{0.05} TiO ₃ +0.2 mol% Bi ₂ O ₃ Mg _{0.95} Ca _{0.05} Ni _{0.05}) TiO ₃ -0.04Sr TiO ₃ SrLa ₄ Si ₃ O ₁₃ +8 wt% TiO ₂ 0.54BaWO ₄ -0.46Ba ₅ Nb ₄ O ₁₅ Mg _{1+0.01} Nb ₂ O ₆ 0.6Mg ₄ Nb ₂ O ₉ -0.4Sr TiO ₃	1250/4h 1200 1250 1300/4h 1225/4h 1100 1400	Cubic perovskite Fm3m Columbite Pbcn Ilmenite Trigonal R-3 Ilmenite Trigonal R-3 Composite Columbite Pcan Composite	21.0 21.0 21.0 21.0 21.0 21.0 21.0	25000 19300 55600 73000 13000 49500 1121000 112000	6.5 7 7 10 9.7	-40 -71 -12 -10 -60 -60	567 557 665 666 253 485 644

.00	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf(GHz)	f_0	$ au_f$	Reference
1465	$Nd(Mg_{0.5}Sn_{0.4}Ti_{0.1})O_3$	1550/4h	Perovskite	21.1	50000		09-	699
1466	$(Sr_{1-x}Ca_x)Nd_2Al_2O_7 (x=0.5)$		Ruddlesden-Popper solid solution	21.1	68200		0	029
1467	$0.4BaTa, V, O_{11}-0.6Ba, BiV, O_{11}$	885	Composite	21.1	44750		2	90Z9
1468	Ba[Ti _{1-x} (Zn _{1/2} W _{1/2}) _x]O ₃ (x=0.6)	1420	Hexagonal P6 ₃ /mmc perovskite	21.2	26800		-3	695
1469	Mg _{0.95} Ca _{0.05} TiO ₃ +2 wt% B ₂ O ₃	1200	Ilmenite Trigonal R-3	21.2	62000	8	4	615
1470	$(1-x)MgTO_3-xCa_{0.8}Sr_{0.2}TIO_3$ (x=0.06)	1300/4h	Composite	21.2	110900	9.3	1	969
1471	$Ca(Yb_{1/2}Ta_{1/2})O_3$	1500	Perovskite	21.2	24000	9.6	-38	590
1472	SmZrTaO ₆	1650		21.2	24190		-58	671
1473	CaTa ₂ O ₆	1600	Cubic Pm3m	21.2	11600		_	009
1474	$Sr(Co_{1/2}W_{1/2})O_3$	1450	Perovskite Cubic Fm3m	21.2	14000	7.72	-73	528
1475	Li ₂ Zn(Ti _{0.9} Sn _{0.1}) ₃ O ₈ +1.5 wt% 0.4B ₂ O ₃ -0.6CuO	875	Cubic spinel	21.2	12000		-20	672
1476	$Ca_{1-3x}Bi_{2x}A_x)MoO_4$ (x=0.15, A=A site vacancy)	200	Tetragonal Scheelite	21.2	29300		<u></u>	673
1477	$Ca[Li_{0.33}Nb_{0.67}]_{0.9}Ti_{0.1}]O_{3.5}+20 wt\% LiF$	840	Perovskite	21.3	20450	4.59	-18	664
1478	$ZnTiO_3 + 1 wt\% V_2O_5$	006	Trigonal R-3	21.3	8000	8.8		591
1479	Nd(Ti _{1,2} W _{1,2})O ₄	1285	Tetragonal Scheelite 14 ₁ /a	21.3	10600	5.5	-22	400
1480	0.98CeO ₂ -0.02CaTiO ₃ +0.25 wt% B ₂ O ₃	1380/4h	Fluorite Cubic Fm3m	21.3	00009	8	-41	674
1481	$0.34BaMoO_4-0.66TiO_2$	1300	Composite	21.3	20700		119	229
1482	$(1-x)MgTIO_3-xCa_{0.8}Sr_{0.2}TiO_3 (x=0.06)$		Ilmenite Trigonal R-3	21.4	83700		-2	572
1483	$PbWO_4$	620	Tetragonal	21.4	43000	_		476
1484	CaHfO ₃	1750/6h	Orthorhombic perovskite Pnma	21.4	15950	8.9	-33	675
1485	$Li_2 TiO_3 + 5 wt\% Li_2 O - MgO - B_2 O_3$	850	Monoclinic C2/c	21.4	64100		27	9/9
1486	$(Rb,Bi)_{1/2}MoO_4$	550	Scheelite Monoclinic P2 ₁ /c	21.4	6200	7.5	-30	229
1487	$CoLi_{2/3}Ti_{4/3}O_4$	1050	Cubic spinel Fd-3m	21.4	35000		-22	099
1488	0.5CeO_2 -0.25MgO-0.25TiO ₂ : 1 WO ₃	1400	Mixture phases	21.4	00006	5.57	-50	488
1489	$SrNdGaO_4$	1300/3h	Tetragonal I4/mmm	21.4	16600		7.1	638
1490	$0.9 \text{ZnNb}_2 \text{O}_6 - 0.1 (\text{ZnO-V}_2 \text{O}_5)$	950	Columbite Pbcn	21.4	29500			829
1491	$MgNb_2O_6$	1300	Columbite Orthorhombic Pcan	21.4	93800		-70	009

_
0
Э
2
П
t.
7
0
ŭ
$\overline{}$

177	629	089	400	407	681	682	592		683	557	381	684	632	49	685	616	989	538	687		688	999	689	413	557	413
	4	-2	41-	_	-48	6.1	-15		-30	-75	9-	-44	-71	-22	-2	8-		4	09-		_	-29	2	-40	I	-40
_			5.5						6	6.3	5.1				_							_			6.51	
26000	14600	59200	7100	49000	115800	32950	3400		64000	84500	23020	108000	83300	34500	92000	38400	98900	64700	62000		20700	52400	94000	23000	16900	23000
21.4	21.4	21.4	21.5	21.5	21.5	21.5	21.5		21.5	21.5	21.5	21.5	21.6	21.6	21.6	21.6	21.6	21.6	21.6		21.6	21.7	21.7	21.7	21.7	21.7
Composite	Composite	Composite	Tetragonal Scheelite	Composite	Columbite Orthorhombic Pcan	M phase	Composite		Perovskite Trigonal R-3m	Columbite Orthorhombic Pbcn	Perovskite Hexagonal P6 ₃ /mmc	Columbite Orthorhombic Pcan	Monoclinic C2/c	Scheelite Tetragonal 14 ₁ /a	Ilmnite Trigonal R-3	Perovskite	Composite	Tetragonal R-P phase	Mixture		Trigonal P-3c1 Corundum	Ilmenite Trigonal R-3	Composite	Cubic Flurite Fm3m	Columbite Monoclinic P2 ₁ /c	Cubic flurite Fm3m
1360	950	1240/2h	1300	1500/6h	1260/3h	920	875		1410	1200		1050	1150/2h	850	1275/4h	1425	1275		006		920	1250	1275/4h	1650	1300	1650
MgTiO ₃ -CaTiO ₃ (MMT-20)	0.5BaCaV ₂ O ₇ - 0.5 TiO ₂	0.95(Mg _{0.98} Zn _{0.02})TiO ₃ -0.05CaTiO ₃ +4 wt% CBS glass	Sm(Ti _{1/2} W _{1/2})O ₄	BaO-0.32MgO-0.26WO ₃ -0.42TiO ₂	$MgNb_2O_6+0.25 \text{ wt}\% B_2O_3$	$5Li_2O-0.583Nb_2O_5-3.248TiO_2+1$ wt% V_2O_7	85 wt% Ba ₅ Nb ₄ O ₁₅ +15 wt%	$Li_2O-B_2O_3-SiO_2-CaO-AI_2O_3$	$NdAIO_3 + 0.25 \text{ wt}\% \text{ V}_2O_5$	ZnNb ₂ O ₆	$Ba_3MgSb_2O_9$	$MgNb_2O_6+2$ wt% CuO- B_2O_3	$Zn_3Nb_2O_8$	$PbWO_4$	$0.93(Mg_{0.95}Co_{0.05})TiO_3-0.07CaTiO_3$	$Ba[T_{1-x}(N_{1/2}W_{1/2})_x]O_3 (x=0.55)$	0.93(Mg _{0.95} Co _{0.05})TiO ₃ - 0.07Ca _{0.8} Sr _{0.7} TiO ₃	$SrSm_2Al_2O_7$	$(Zn_{0.7}Mg_{0.3})TiO_3+1$ wt%	$\text{Li}_2\text{O-B}_2\text{O}_3\text{-SiO}_2\text{-CaO-Al}_2\text{O}_3\text{-}$ glass	$0.93 \text{Li}_2 \text{Mg}_2 \text{W}_2 \text{O}_9 - 0.07 \text{CaTiO}_3$	$Mg_{0.95}Ca_{0.05}TiO_3+0.5 mol\%Bi_2O_3$	$1-x(Mg_{0.95}Ni_{0.05})TiO_3-x(Ca_{0.8}Sr_{0.2})TiO_3$	$1-xCeO_2-xEr_2O_3$ (x=0.15)	$SrNb_2O_6$	$(1-x)CeO_2-xEr_2O_3$ (x=0.7)
1492	1493	1494	1495	1496	1497	1498	1499		1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510		1511	1512	1513	1514	1515	1516

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	<i>Qf</i> (GHz)	f_0	$ au_f$	Reference
1517	CeO, +1 wt% CuO	1580	Cubic flurite Fm3m	21.7	20000	6	-59	069
1518	$0.9M_{\rm S0.95}{ m Co}_{0.05}{ m TiO}_3$ -	1250	Composite	21.7	58000	2.0	-10	691
	$0.1Ca_{0.6}La_{0.8/3}TiO_3 + 0.25 wt\% V_2O_5$							
1519	MgO-TiO ₂ -ZnO-CaO+10 wt%	006	Composite	21.7	20000		-22	692
1520	$MgTiO_2 - (K_0 \cdot La_0 \cdot I)TiO_3 + 0.5$ wt% ZnO	1300/4h	Multiphase	21.7	00089	8	_	693
1521	$0.56Ba(Mg_{1/2}W_{1/2})O_{3}$ -0.44BaTiO ₃	1500	Composite	21.8	13000		4	373
1522	0.9(Mg _{0.95} Co _{0.05})TiO ₃ -	1350/4h	Composite	21.8	131000	7	-16	694
	U.1Cd _{0.6} Ld _{0.8/3} IIO ₃							
1523	$(Ca_{1+x}Sm_{1-x})(AI_{1-x}Ti_x)O_4 (x=0.3)$	1500	K ₂ NiF ₄ type Tetragonal I4/mmm	21.8	83100		10	554
1524	99 wt% BiSbO ₄ +1 wt% CaTiO ₃	1100	Monoclinic 12/c	21.8	61150		-40	269
1525	0.94MgTiO ₃ -0.06Ca _{0.8} Sr _{0.2} TiO ₃	1300	Composite	21.9	128000		-68	869
1526	Mg _{0.95} Ca _{0.05} TiO ₃ +1 mol% Bi ₂ O ₃	1250	Ilmenite Trigonal R-3	21.9	41100	_	0	999
1527	90 wt% CaZrO ₃ +10 wt%	875	Composite	21.9	4700		-39	592
	Li ₂ O-B ₂ O ₃ -SiO ₂							
1528	Li ₃ NbO ₄ -0.15CaTiO ₃		Composite	21.9	24900		-58	669
1529	$(Na_{0.5}Bi_{0.5})_{0.6}Ca_{0.4}MoO_4$	750	Tetragonal scheelite	21.9	20660		8	343
1530	$Ca(Ca_{1/3}Ta_{2/3})O_3$		Perovskite	22.0	22000	I	9	609
1531	$Li_{2.081}Ti_{0.676}Nb_{0.243}O_3+0.5 \text{ wt}\% B_2O_3$	880	M phase	22.0	32000		-41	700
1532	$Sr(Ca_{1/3}Ta_{2/3})O_3$		Complex perovskite Trigonal P-3m1	22.0	27300	_	10	701
1533	$Ca(Ni_{1/3}Ta_{2/3})O_3$		Complex perovskite	22.0	21000	I	-91	609
1534	CrNbO ₄	1300/5h	Tetragonal P4,/mmm	22.0	4000	4	-80	53
1535	$(Zn_{0.7}Mg_{0.3})TiO_3$	950	Trigonal R-3	22.0	65000		-80	663
1536	Sr(Mg _{1/3} Ta _{2/3})O ₃		Complex perovskite Hexagonal	22.0	2600	_	-50	701
1537	Y(Mg _{1/2} Ti _{1/2})O ₃	1650/2h	Perovskite Cubic Fd3m	22.0	33700	10	-46	702
1538	NdGaO ₃		Perovskite Orthorhombic Pbnm	22.0	85000			703
1539	Sr_4AINbO_8	1525		22.0	3700	10.25		562

_
0
ē
7
ŧ.
ū
9
\subseteq

1540	$(Zn_{0.3}Co_{0.7})TiO_3$	1150	Trigonal R-3	22.0	80000		09-	704
1541	DyTiNbO ₆	1385	Aschenite Orthorhombic Pbcn	22.0	19100	7.76	-42	563
1542	YbTiNbO ₆	1400	Aschenite Orthorhombic Pbcn	22.0	11000	7.4	-63	563
1543	$Sm_{0.71} Y_{0.29} TiNbO_6$	1400	Orthorhombic Pbnm	22.0	1400		-2	564
1544	$Ca_5Nb_2HfO_{12}$	1700	Perovskite	22.0	16000	5.4	-29	490
1545	0.5CeO_2 - 0.25ZnO - 0.25TiO_2 :4 $\text{Co}_3 \text{O}_4$	1250	Mixed phases	22.0	32100	5.5	-48	490
1546	CeO_2 -0.5CoO-0.5TiO ₂	1200	Mixed phases	22.0	20000		-47	488
1547	$CoNb_2O_6$	1150	Columbite Orthorhombic Pbcn	22.0	41700	6.7	99–	489,600
1548	$Zn_{0.5}Mg_{0.5}Nb_2O_6$	1150	Columbite Pbcn	22.0	33100		-29	705
1549	$Ca_{1-x}Bi_xW_{1-x}VxO_4$ (x=0.3)	950/2h	Tetragonal Scheelite (14 ₁ /a)	22.0	16700		2	902
1550	$(1-x)(Mg_{0.95}Zn_{0.05})TiO_3-xCa_{0.6}La_{0.8/3}TiO_3$	1320/4h	Composite	22.0	94000		-20	465
1551	$5 \text{Li}_2 \text{O} - 0.58 \text{Nb}_2 \text{O}_5 - 3.23 \text{Ti} \text{O}_2 + 0.5 \text{ wt}\%$	006	M phase	22.0	32000		10	707
1552	$(1-x)(Mg_{0.95}Ni_{0.05})TiO_3-xCa_{0.6}La_{0.8/3}TiO_3$	1325	Composite	22.0	118000		-25	708
	(X=0.1)							
1553	Li ₂ TiO ₃		Monoclinic rocksalt C2/c	22.0	63500		20	209
1554	$Li_2 TiO_3 + 20 \text{ vol}\% Li_2 Zn_3 Ti_4 O_{12}$	006	Composite	22.0	28400		-2	710
1555	NdAIO ₃		Perovskite Trigonal R-3m	22.0	58000		-35	711
1556	$5 \text{ ZnNb}_2O_6 + 10 \text{ wt}\% \text{ V}_2O_5$	900/2h	Columbite Orthorhombic Pnca	22.1	10300		-83	712,713
1557	$La_{2-x/3}Na_x(Mg_{1/2}W_{1/2})O_3$ (x=0.4)	1450	Perovskite Composite	22.1	5500		-45	655
1558	YTiTaO ₆	1625	Euxenite Orthorhombic	22.1	51400		-20	583
1559	$0.6(AI_{1/2}Ta_{1/2})O_2$ -0.4(Mg _{1/2} Ta _{2/3})O ₂	1450	Orthorhombic Pbcn	22.1	90930		-16	214
1560	$0.92(Mg_{0.95}Co_{0.05})TiO_3-0.08CaTiO_3$	1275/4h	Composite	22.1	86400	_	5.4	422
1561	$Nd_2 BaCuO_5$		Tetragonal I4/mcm	22.1	4910		4.6	463
1562	$Nd_2 Ba(Zn_{1-x}Cu_x)O_5 (x=0.15)$		Tetragonal I4/mcm	22.1	7700	2		463
1563	$ZnNb_2O_6+5$ wt% CuO	925/2h	Columbite Orthorhombic Pbcn	22.1	59500		-65	482
1564	$Ba(Yb_{1/2}Ta_{1/2})O_3$	1700	Perovskite Cubic Fm3m	22.1	14000	6.7	89	590
1565	$Sm_2 Ba_{0.95} Sr_{0.05} ZnO_5$		Orthorhombic	22.1	10000		30	549
1566	Li ₂ TiO ₃		Monoclinic rocksalt C2/c	22.1	63500		20	714

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	$ au_f$	Reference
1567	Bi[Sb _{1-x} (Nb _{0.992} V _{0.008}) _x]O ₄ (x=0.05)		Monoclinic 12/c	22.1	41000		-54	715
1568	$Ca_{1-x}Bi_xW_{1-x}V_xO_4$ (x=0.3)	950/2h		22.1	16700		2	902
1569	$(1-x)Li_3Bi_2P_3O_{12}-xTiO_2$ (x=0.55)	725	Monocklinic P2 ₁ /m	22.1	14900		-3	456
1570	La ₃ Ti ₅ Al ₁₅ O ₃₇	1420	Monoclinic Cc	22.1	57100		19	455
1571	$(1-x)(Mg(Sn_{0.05} Ti_{9.5})O_3-x(Ca_{0.8} Sr_{0.2})$ TiOvwt%, ZnNb, O_(x=0.7_v=4)	1320/2h	Composite	22.1	00909	_	0	716
1572	0.95MgTiO ₃ -0.05(Ca _{0.8} Sr _{0.2}) (Zr _{0.1} Ti _{0.9})O ₂	1300/4h	Composite		116000		5	717
1573	$ZnTiO_3+5$ wt% B,O ₃ -SiO ₃	850	Composite	22.2	52460	9		718
1574	Mg _{0.93} Ca _{0.07} TiO ₃	1350/3h	IlmeniteTrigonal R-3	22.2	68550		9	719
1575	Gd(TI _{1/2} W _{1/2})O ₄	1375	Tetragonal Scheelite	22.2	5000	5.5	-16	400
1576	Mg _{0.95} Ca _{0.05} TiO ₃ +5 mol%Bi ₂ O ₃	1250	Ilmenite Trigonal R-3	22.3	22500	_	-110	665
1577	NdAIO ₃	1650/2h	Perovskite Trigonal R-3m	22.3	58000	10	-33	452
1578	$Sr_3Zn_{0.5}Mg_{0.5}Nb_2O_9$	1300	Trigonal, complex perovskite P-3m1	22.3	8200		4	614
1579	$Nd_2BaZn_{095}Cu_{0.05}O_5$	1250/10h	Tetragonal I4/mcm	22.4	6340		2	463
1580	NdAIO ₃ +0.25 wt% CuO	1420/2h	Trigonal R-3m	22.4	63000	10	-35	720
1581	MnNb ₂ O ₆	1150	Columbite orthorhombic Pbcn	22.4	34300		09-	009
1582	0.5CeO ₂ -0.25MgO-0.25TO ₂	1400	Mixture phases	22.4	17500	5.5	-62	488
1583	Zn ₃ Nb ₂ O ₈ +2 mol% V ₂ O ₅	850-1000	Monoclinic C2/c	22.4	67500			712
1584	CeO ₂ +10 wt% Bi ₂ O ₃ -B ₂ O ₃ -ZnO-SiO ₂	950	Cubic flurite Fm3m	22.4	12000	4.5	-57	401
1585	LaLuO ₃	1525	Orthorhombic Pnma	22.4	14400		-7.5	721
1586	$(1-y)Li_{2.02}Ti_{0.92}Nb_{0.06}O_3$ (y=0.2)	1070	M phase	22.5	13600		14	722
1587	$0.91(Mg_{0.7}Zn_{0.03})TiO_3-0.09CaTiO_3$	1310/3h	Ilmenite trigonal R-3	22.5	86000	7.5	3	723
1588	Zn _{1+0.005} Nb ₂ O ₆	1300	Pbcn Columbite	22.5	122000	70	-75	644
1589	ZnO-B ₂ O ₃ -P ₂ O ₅ -TeO ₂ glass		Glass	22.5	1500	_	-100	318
1590	$0.95(Mg_{0.7}Zn_{0.3})_{0.95}Co_{0.05}TiO_3$ - $0.05Ca_{0.8}Sr_{0.2}TiO_3$	1150	Composite	22.5	00006	6	0	724
1591	$0.9 (Mg_{0.95}Co_{0.05}) TiO_3$ - $0.1 Ca_{0.8} Sm_{0.43} TiO_3$	1275	Composite	22.5	108000	80	8-	725

_
0
Э
2
П
t.
7
0
ŭ
$\overline{}$

1592 1593	0.75ZnNb ₂ O ₆ -0.25TiO ₂ 0.91(Mg _{0.7} Zn _{0.3})TiO ₃ -0.09CaTiO ₃	1200 1310/3h	Columbite-Orthorhombic Pnca Composite	22.5 22.5	15000	7.5	15	545 726
1594	La _{5/3} MgTaO ₆	1500/6h	Perovskite	22.5	2000	7.2	-80	727
1595	0.95(Mg _{0.95} Zn _{0.05})TiO ₃ -0.05CaTiO ₃ +1 Mol% LaAlO ₃	1200/4h	Mixture	22.6	89000		_7	728
1596	NiNb ₂ O ₆	1150	Columbite Orthorhombic Pbcn	22.6	40100		-38	729
1597	$Nd_2 BaZnO_5$		Tetragonal 14/mcm	22.6	12451	8.9	4.6	730
1598	$La_{2-x/3}Na_x(Mg_{1/2}W_{1/2})O_3$ (x=0.1)	1400	Perovskite	22.6	19700		-34	655
1599	$La_{2-x/3}Na_x(Mg_{1/2}W_{1/2})O_3$ (x=0.2)	1400	Perovskite	22.6	16600		-27	655
1600	0.94MgTiO ₃ - 0.06 CaTiO ₃ + 0.2 mol% Bi ₂ O ₃	1250	llmenite Trigonal R-3	22.6	53000	_	-3	999
1601	$0.95 MgLi_{2/3} TI_{4/3} O_4$ - $0.05 CaTiO_3$	1200/2h	Composite	22.6	48000		-2	637
1602	$0.93(Mg_{0.95}Zn_{0.05})TiO_3-0.07CaTiO_3$	1300/4h	Composite	22.6	93000	10	-3	731
1603	0.7Mg _{0.95} Co _{0.05} TiO ₃ - 0.3Zn _{0.975} Ca _{0.075} TiO ₃	1200	Composite	22.6	57000		0	732
1604	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Sn_x]O_3$ (x=0.3)	1150	Perovskite Orthorhombic	22.6	46300		-39	733
1605	$0.5 ZnNb_2 O_6 \text{-} 0.5 Zn_3 Nb_2 O_8$	1200	Orthorhombic (mixture)	22.7	95500		-65	542
1606	0.9(Mg _{0.95} Zn _{0.05} Ti)O ₃ - 0.1Ca _{2.5} Sm _{2.2.7} TiO ₃	1300	Composite	22.7	124000		9-	734
1607		1270/4h	Composite	22.7	00206		0.8	735
1608	$(1-x)Mg\PiO_3-xCa_{0.8}Sr_{0.2}TiO_3$ (x=0.08)		Composite	22.7	72400		14	572
1609	0.9(Mg _{0.95} Co _{0.05} TiO ₃ - 0.1Ca _{0.6} La _{0.93} TiO ₃	1225	Composite	22.7	00092		-12	736
1610	$\operatorname{BiCu_2VO}_6$	740	Monoclinic P2 ₁ /n	22.7	12000	1	-17	737
1611	0.45TiO_2 - $0.55 \text{CeTe}_2 \text{O}_6$	700	Composite	22.8	8300		25	434
1612	Li ₂ ZnTi ₃ O ₈ +5 wt% LMZBS	006	Ternary spinel Cubic P4332	22.8	25000		-17	738
1613	$LaAlO_3+10 mol\% Sr_2 Nb_2O_7$	1575/3h	Composite	22.8	18610	9.7	46	739
1614	$CoNb_2O_6$	1100	Columbite Pbcn	22.8	93800		-45	009
1615	$0.92 \text{CoNb}_2 \text{O}_6 \text{-} 0.08 \text{TIO}_2$	1150	Columbite Orthorhombic Pnca	22.8	29000		-12	545
1616	$La_{2-x/3}Na_x(Mg_{1/2}W_{1/2})O_3$ (x=0.3)		Perovskite	22.8	11500		45	655

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	$ au_f$	Reference
1617	CeO ₂ :1 mol% Nd ₂ O ₃	1650	Cubic flurite Fm3m	22.8	51000		-63	525
1618	Li _{2.08} TiO ₃ +0.13LiF	900/2h	Monoclinic Rock salt C2/c	22.8	63000		_	740
1619	0.89MgTiO ₃ -0.11(Ca _{0.6} Na _{0.2} Sm _{0.2})TiO ₃	1250	Mixture	22.8	00092	8	-3	741
1620	$Zn(Nb_{0.95} Ta_{0.05})_2O_6 + 4.5 \text{ wt}\% CuO$	930	Columbite Orthorhombic Pnca	22.9	77200		-71	742
1621	Ba[Ti _{1-x} (Zn _{1/2} W _{1/2}) _x]O ₃ (x=0.55)	1420	Hexagonal perovskite P6 ₃ /mmc	22.9	15200		<u></u>	999
1622	0.9(Mg _{0.95} Ni _{0.05})TiO ₃ - 0.1Ca _{0.5} Sm _{0.05} TiO ₃ -	1275/4h	Composite	22.9	92000		-2	743
1623	$(Ca_{1+x}Sm_{1-x})(A _{1-x}Ti_x)O_4$ (x=0.4)	1400	K ₂ NiF ₄ type Tetragonal I4/mmm	22.9	49100	0	15	554
1625	Nd_2O_3 -TiO ₂ +BaO-SiO ₂ -B ₂ O ₃ -ZnO-SrO	006	Glass	23.0	009	16.0)	745
	glass							
1626	Sm_2O_3	1650/2h	Monoclinic C2/m	23.0	46000		22	525
1627	$(Zn_{0.65}Mg_{0.35})TiO_3+1.5 \text{ wt% BiVO}_4+5$ wt% CaTiO ₃	930	Composite	23.0	16200			746
1628	Ca(Cu _{1/3} Ta _{2/3})O ₃		Complex perovskite	23.0	5500	I	I	609
1629	$0.93 Mg Ti O_3 - 0.07 Ca Ti O_3$ (SPS sintering)	1150/ 10 min	Composite	23.0	7000		I	747
1630	$Ca(Co_{1/3}Ta_{2/3})O_3$		Complex perovskite	23.0	12000	I	-65	609,701
1631	$Ba_{0.99}(Zn_{1/2}W_{1/2})O_{2.99}$	1250/4h	Cubic perovskite Fm3m	23.0	22000		-35	267
1632	Sr(Ni _{1/3} Ta _{2/3})O ₃		Complex perovskite Trigonal P-3m1	23.0	49000	^	-18	701
1633	$Sr(Co_{1/3}Ta_{2/3})O_3$		Complex perovskite Trigonal P-3m1	23.0	17500	_	-71	701
1634	Ba(Ni _{1/3} Ta _{2/3})O ₃		Complex perovskite Trigonal P-3m1	23.0	49700	_	-18	701
1635	$La(Co_{1,p}Ti_{1,p})O_3$		Perovskite	23.0	32000		-57	748
1636	$Dy(Mg_{10}T_{10})O_3$	1650/2h	Perovoskite	23.0	36800	10	9-	702
1637	0.7MgTiO ₃ - 0.3 MgTa ₂ O ₆	1460/3h	Mixed phases	23.0	81000		-2	749
1638	Ca(La _{1/2} Ta _{1/2})O ₃	1600/4h	Complex perovskite Monoclinic	23.0	20600		-32	750
			F 2 ₁ /11					

\sim
\circ
(D)
~
\approx
Œ.
~
≥
0
()

1639	CaTiO ₂ -CaZrO ₂ +frit glass (70:15:15)	875	Composite	23.0	2400		С	196	
1640	Sm, Ba ₀ sSr ₀ 1ZnO ₅		Tetragonal	23.0	8520		36	549	
1641	$Ce\tilde{O}_2-CoO_4-TiO_2+0.5 \text{ wt}\% \text{ CuO}$	1050	Mixture	23.0	45000		-55	366	
1642	$CaO-4NiO-Ta_2O_5-TiO_2$	1340	Mixture	23.0	8500	5.5	-48	230	
1643	$CoNb_2O_6$	1150	Columbite Orthorhombic Pbcn	23.0	40000		-35	729	
1644	0.4(0.5ZnNb ₂ O ₆ -0.5Zn ₃ Nb ₂ O ₈)- 0.6ZnTa ₂ O.	1275	Composite	23.0	9300		-55	542	
16.15		1340	A1:x+1:x0	22.0	2,000	L	30	230	
1043	$CaO-4IMgO-IND_2O_5-IIO_2$	1340	Mixture	0.07	32000	U. r	000	730	
	$2CaO-3ZnO-Nb_2O_5-IIO_2$	1140	Mixture	23.0	15000	5.5	-34	230	
1647	$Nd(Mg_{1/2}Ti_{1/2})O_3$	1650/2h	Perovskite	23.0	36900	10	-49	702	
1648	Li ₂ MgTi ₃ O ₈	1100/5h	Cubic spinel P4 ₃ 32	23.0	54050	7.29	2	751	
1649	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Sn_x] O_{3-\delta} (x=0.3)$	1150/3h	Perovskite	23.0	46300		-39	752	
1650	$0.93(Mg_{0.6}Zn_{0.4})_{0.95}Co_{0.05}TiO_{3.}0.07$ CaTiO ₃	1200	Composite	23.0	79400		_	753	
1651	0.93МgTiO ₃ -0.07СаTiO ₃ SPS method	1150/ 10 min	Ilmenite+Perovskite	23.0	70000			754	
1652	CeO_2	1675	Cubic flurite Fm3m	23.0	65000		-55	640	
1653	$\text{Li}_2\text{TiO}_3 + 2 \text{ wt\% ZnO-B}_2\text{O}_3 \text{ frit+0.9 wt\%}$	920/4h	Composite	23.0	34900		33	755	
7 7	Z-1-1	, L	.:	, , ,	00007		c	C	
1654	HolliaU ₆	1550	Euxenite Ortnornombic	73.1	46900		ρ	583	
1655	$Nd_{1.95}La_{05}BaZnO_{5}$		Orthorhombic Pnma	23.1	7165		7	299	
1656	$Li_2TiO_3 + 2.5 \text{ wt}\% \text{ ZnO-B}_2O_3$	900/2h	Monoclinic C2/c	23.1	32300		36	756	
1657	$Ba_5Li_2W_3O_{13}+4 \text{ wt}\% BaCu((B_2O_5)$	006	Hexagonal Perovskite	23.1	34300		4	757	
1658	Li ₂ ZnTi ₃ O ₈ +3 wt% LMZBS	006	Cubic P4 ₃ 32	23.2	31300		-16	738	
1659	$0.87(Mg_{0.95}Ni_{0.05})TiO_3$ -	1275/4h	Composite	23.2	86500		3	758	
	$0.13(La_{0.5}Na_{0.5})TiO_3$								
1660	Li _{2.08} TiO ₃ (sol-gel)	1050	Monoclinic C2/c	23.2	56400		38	759	
1661	PrAIO ₃	1650/2h	Perovskite Trigonal R-3m	23.2	51000	10	-25	452	
1662	$ZnNb_2O_6$	1200	Columbite Orthorhombic Pnca	23.2	84500	6.3	9/-	557	
1663	$\text{Li}_2\text{TiO}_3 + 2 \text{ wt\% Li}_2\text{O-ZnO-B}_2\text{O}_3$	006	Monoclinic C2/c	23.2	38900		30	652	
									ı

o N	Material	ST (°C)	Crystal structure	έ	Of (GHz)	f_0	1,	Reference
1664	0.2(LiNb _{0.8} Ti _{0.5} O ₂)+	1100	Composite	23.2	14900		. 4	092
	0.8(Li _{2.02} Nb _{0.06} Ti _{0.92})O ₃							
1665	$Na_2BiMg_2V_3O_{12}$	660/4h	Cubic garnet	23.2	3700		8	761
1666	0.87Li ₂ TiO ₃ -0.05MgO-0.08LiF	950	Composite	23.2	131700		0	762
1667	$Zn(Nb_{1-x}V_{x/2})_2O_{6-2.5x}$ (x=0.15)	975/2h	Columbite Orthorhombic Pbcn	23.3	37000		-71	712
1668	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Sn_x]O_3$ (x=0.2)	1150/3h	Perovskite	23.3	20600		-30	752
1669	Ca(La _{1/2} Nb _{1/2})O ₃	1550/4h	Perovskite Monoclinic	23.3	31000		-43	763
1670	ZnNb, O ₆ +5 wt% CuO+4B,O ₃	006	Columbite Orthorhombic Pnca	23.3	46800		_/	764
1671	$Ca(Li_{1/3}Ta_{2/3})O_3-\delta+6$ wt% B_2O_3	1100	Perovskite	23.3	27900	10.99		765
1672	$Ba_2Ca_{1-x}Sr_xWO_6 \ (x=0.5)$	1200	Perovskite Cubic Fm3m	23.3	45200		41-	992
1673	$Li_2Zn(Ti_{0.9}Sn_{0.1})_3O_8$	1120	Cubic spinel	23.3	71000		-22	672
1674	$ZnNb$, O_6+1 wt% V , O_5+1 wt%	880	Columbite Orthorhombic Pnca	23.4	47000		-45	292
	$Bi_2O_3+2.5$ wt% CuO							
1675	0.88(Mg _{0.95} Zn _{0.05})TiO ₃ -		Composite	23.4	103000	6		768
	$0.12(Na_{0.5}La_{0.5})TiO_3$							
1676	$LaAlO_3+5 mol\% Sr_2 Nb_2 O_7$	1575/3h	Composite	23.4	20790	10.81	-25	692
1677	LaAlO ₃	1650/2h	Perovskite Hexagonal R-3m	23.4	00089	10	-44	452
1678	CeO_2 :1 mol% Er_2O_3	1650	Cubic flurite Fm3m	23.5	74000		09-	525
1679	$La_6Mg_4Ta_2W_2O_{24}$	1350/4h	A _{1-d} BO ₃ perovskite Monoclinic	23.5	13600	5.4	-46	770
1680	0.96(Mg _{0.6} Zn _{0.4}) _{0.95} Co _{0.05} TiO ₃ - 0.04SrTiO,	1250	Mixture phases	23.5	92000		-2	771
1681	SrHfO ₃	1750/6h	Orthorhombic perovskite Pnma	23.5	33500	9.3	-63	675
1682	$Ba_2Ca_{1-x}Sr_xWO_6$ (x=0.1)	1200	Perovskite Cubic Fm3m	23.5	60100		-16	992
1683	$0.3\text{Li}_2 \text{Ti} \hat{O}_3 - 0.7 \text{Li} (\text{Zn}_{0.5} \text{Ti}_{0.5}) \text{O}_4$	1100	Composite	23.5	88360		0	772
1684	Ba(Mg _{0.33} Ta _{0.53} Ti _{0.067} W _{0.067})O ₃	1590	Perovskite	23.6	75900	5.7	-3	438
1685	$La_{2/3}(Mg_{1/2}W_{1/2})O_3$	1250	Orthorhombic 1222	23.6	32500		-43	655,773
1686	$(1-x)Li_2 TO_3 + xLiF (x=0.1)$	1100/2h	Composite	23.6	10800		4	774
1687	$La_{2/3}(Mg_{1/2}W_{1/2})O_3+2 \text{ mol}\% \text{ TiO}_2$	1330	Orthorhombic 1222	23.6	14800		-10	775
1688	$Zn_{0.95}Mg_{0.05}TiO_3+0.25TiO_2+1$ wt%	940/2h	Composite	23.6	30990	7.75	-8	922
	52110^{-1} 2 3							

o N	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	τ_f	Reference
1717	Ca(ln _{1/2} Ta _{1/2})O ₃	1600/4h	Complex perovskite Monoclinic	24.0	16700		-35	750
1718	1718 Ca(Pr _{1/2} Ta _{1/2})O ₃	1600/4h	Complex perovskite Monoclinic	24.0	22200		-31	750
1719	LiNb,O,	1075	α -PbO, type Monoclinic P2 ₁ /a	24.0	58000		96-	788
1720	Nd _{0.3} Dy _{0.7} TiNbO ₆			24.0	27750		-22	564
1721	$Ca(Li_{1/3}Ta_{2/3})O_3-\delta+3 \text{ wt}\% B_2O_3$	1100	Perovskite	24.0	40300	10.86		765
1722	$(Zn_{0.3}Co_{0.7})T_{1-x}Sn_xO_3$ (x=0.02)	1220/4h	Cubic spinel+rutile	24.0	00/99		-5	789
1723	$0.75(Al_{1/2}Ta_{1/2})O_2-0.25(Ti_{1-x}Sn_x)O_2$	1450/3h	Tetragonal TiO ₂ type	24-	55000-		-25 to 15	062
				30	80000			
1724	$0.85Ba(Mg_{1/3}Ta_{2/3})O_3$ - $0.15BaSnO_3$	1640/20h	Complex perovskite Trigonal P-3m1	24.0	330000		1	791
1725	La _{3/4} Mg _{2/4} Ta _{1/4} W _{1/4} O ₃	1350/4h		24.0	13600		-46	770
1726			Orthorhombic 1222	24.0	14800	9	10	775
1727	Sm ₂ SrZnO ₅		Tetragonal	24.1	19283	8.1	76-	549
1728	$Ca(Li_{1/3}Ta_{2/3})O_3-\delta+1 \text{ wt\% } B_2O_3$	1100	Perovskite	24.1	38900	10.8		765
1729	$0.20 \text{MgAl}_2 \text{O}_4 - 0.80 \text{TiO}_2$	1460	Composite	24.1	48900	5.5	11	195
1730	$Ca[(L_{1/3}Nb_{2/3})_{0.8}T_{10.2}]O_{3-d}+15 \text{ wt}\%$	006	Complex Perovskite	24.1	13500		-21	792
	LMZBS		Orthorhombic					
1731	$\text{Li}_2(\text{Mg}_{0.3}\text{Zn}_{0.7})\text{Ti}_3\text{O}_8\text{-}0.12\text{Ti}\text{O}_2\text{+}2$ wt% BaO-B $_2\text{O}_3\text{-}\text{Si}\text{O}_2$	006	Spinel	24.1	22000		4-	793
1732	Ba(Sn,MgTa)O ₃		Complex perovskite Hexagonal P-3m1	24.2	120000	0.9		794
1733	$Ca(Pr_{1/2}Nb_{1/2})O_3$	1550/4h	Complex perovskite Monoclinic	24.2	31500		-39	763
1734		1425	Perovskite	24.2	35000		9-	616
1735	$Ba_8Ta_6(Ni_{1-x}Mg_x)O_{24}$ (x=0.75)		Complex perovskite	24.2	93100		26	785
1736	Ba(Mg _{1/2} Ta _{2/3})O ₃ :0 Ba(Mg _{1/2} W _{1/2})O ₃		Complex perovskite Trigonal P-3m1	24.2	400000	10		795
1737	$(1-x)MgTIO_3-xCa_{0.8}Sr_{0.2}TiO_3$ (x=0.1)		Composite	24.2	59200		35	572

$\overline{}$
σ
ď.
~
\approx
.=
=
_
0
Ü
$\overline{}$

1738	$Bi[Sb_{1-x}(Nb_{0.992}V_{0.008})_{x}]O_{4} (x=0.1)$		Monoclinic 12/c	24.2	33000		-46	715	
1739	BaHfO ₃	1750/6h	Cubic perovskite Pm-3m	24.2	14250	8.9	111	675	
1740	Li ₂ ZnTi ₃ O ₈ +1 wt% LMZBS	925	Ternary spinel Cubic P4 ₃ 32	24.3	58000		-14	738	
1741	Li ₂ ZnTi ₃ O ₈ +1 wt% LZB	925	Ternary spinel Cubic P4 ₃ 32	24.3	41400		-13	962	
1742	$Sm_2Ba_{0.75}Sr_{0.25}ZnO_5$		Orthorhombic Pnma	24.3	8670	8.17	30	549	
1743	$0.85(Mg_{0.95}Zn_{0.05})TiO_3$ -	1300	Mixed phases	24.3	112000	8	-10	797	
	0.15Са _{0.61} Nd _{0.26} ПО ₃								
1744	$0.9 \text{ZnNb}_2 O_6 - 0.1 (2 \text{ZnO-V}_2 O_5)$	950	Columbite Orthorhombic	24.3	72800		I	878	
1745	ln_2O_3 -Ti O_2 -Ta $_2O_5$	1525	Composite	24.3	15400		39	583	
1746	0.5 Zn $_3$ Nb $_2$ O $_8$ - 0.5 ZnNb $_2$ O $_6$	1200/2h	Composite	24.3	95500		-65	542	
1747	$0.82BiSbO_4-0.18Bi_2Mo_2O_9$	825	Composite	24.3	24000		4-	798	
1748	0.92NaMg ₄ V ₃ O ₁₂₋ 0.08CaTiO ₃	730/4h	Composite	24.3	29200	10.5	4-	382	
1749	LaTiTaO ₆	1530	Multphase	24.4	45300		-39	583	
1750	$Sm_2 Ba_{0.15} Sr_{0.85} ZnO_5$		Orthorhombic Pnma	24.4	12200	8.19	3	549	
1751	$(Ca_2Mg_3)Ta_2(Ti_{0.75}Zr_{0.25})O_{12}$	1375		24.4	12400		-32	66/	
1752	$Ca(Nd_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovskite Monoclinic P2 ₁ /n	24.4	22400		-30	750	
1753	0.84(Mg _{0.95} Co _{0.05})TiO ₃ - 0.16(Na _{0.5} Nd _{0.5})TiO ₃		Ilmenite Trigonal R-3	24.4	70000		2	800	
1754	$(Ni_{1-x}Zn_x)Nb_2O_6$ (x=0.2)	1280	Columbite Orthorhombic Pbcn	24.4	24300		-64	778	
1755	Li ₂ MgTi ₃ O ₈ +3 wt% LMZBS	925	Ternary spinel cubic P4 ₃ 32	24.5	44000		0	738	
1756	$0.99(Mg_{0.7}Zn_{0.3})_{0.95}Co_{0.05}TiO_3$ -0.1 ($La_{0.5}Na_{0.5})TiO_3$	1150/4h	Composite	24.5	00089		0	801	
1757	Sm ₂ Ba _{0.1} Sr _{0.9} ZnO ₅		Orthorhombic Pnma	24.5	14950	8.2	-36	549	
1758	$Ba(Mg_{0.33} Ta_{0.63} Ti_{0.017}W_{0.017})O_3$	1600	Complex perovskite Trigonal P-3m1	24.5	100700	5.4	13	438	
1759	$Ca(Nd_{1/2}Nb_{1/2})O_3$	1550/4h	Complex perovskite Monoclinic	24.5	31800		-37	763	
1760	$Sm_{2} Ba_{0.05} Sr_{0.95} ZnO_{5}$		Orthorhombic Pnma	24.6	8690	8.2	82	549	
1761	$Li_{2+x}TiO_3 (x=0.08)$		Monoclinic C2/c	24.6	00099		22	802	
1762	$Ba_4 LiNb_{3-x} Sb_x O_{12} $ (x=1)	1400/4h	Cubic Im3m	24.6	52100		0	803	1

Š	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	τ_f	Reference
1763	0.85(Mg _{0.95} Ni _{0.05})TiO ₃ -	1325	Composite	24.6	102000		4-	804
1764	Z1)Zc4 _{0,6} t4 _{0,8/3} i1O ₃ Zn _{0,95} Mg _{0,05} TiO ₃ +0.25 TiO ₂ +1 wt% 3ZnO-8,O,	880	Composite	24.6	4000		41-	805
1765	Li ₂ ZnTi ₃ O ₈ +0.5 wt% LMZBS	1000	Ternary spinel Cubic P4 ₃ 32	24.6	70000		41 -	738
99/1	$(1-x)(Mg_{0.95}NI_{0.05})IIO_3-xCa_{0.6}La_{0.8/3}IIO_3$ $(x=0.15)$	1325	limenite Irigonal K-3	24.6	102000		4	80/
1767	$(1-x)(Mg_{0.095}Zn_{0.05})\PiO_3-x \ (Na_{0.5}Nd_{0.5})\PiO_3$ ($x=0.16$)	1300	Composite	24.7	82000	6	0	908
1768			Psuedobrookite Bbmm	24.7	30,000			807
1769	Ba(Mg ₁₃ Ta ₂₃)O ₃ Annealed 1500/50h WGM		Complex perovskite Trigonal P-3m1	24.7	326250	13.05	8	808
1770	$Ba_{0.9925}(Mg_{0.33}Ta_{0.67})O_3$	1600	Complex perovskite Trigonal P-3m1	24.7	152, 00	5.7	-	808
1771	La(Mg _{2/3} Ta _{1/3})O ₃	1600	Perovskite	24.7	65500	10	-65	810
1772	Li ₂ (Zn _{0.92} Co _{0.08})Ti ₃ O ₈	1140	Ternary spinel Cubic P4 ₃ 32	24.7	140000		-13	811
1773	$Ca(Sm_{1/2}Nb_{1/2})O_3$	1550/4h	Complex perovskite Monoclinic	24.7	33200		-34	263
1774	$0.5 \mathrm{Mg_4Nb_2O_9-0.5CaTiO_3}$		Composite	24.8	82000	9.1	0	812
1775	$Mg_{0.95}Co_{0.05}TI_2O_4-0.78TiO_2$		Composite	24.8	38500		<u></u>	813
1776	$Ca[Li_{0.33}Nb_{0.67}]_{0.9}Ti_{0.1}]O_{3-\delta}+10 wt\% LiF$	006	Composite	24.8	19300	4.2	-15	664
1777	SmTaTi _{0.25} Zr _{0.75} O ₆			24.9	25200		-44	671
1778	$Ba(Zn_{1/6}Co_{1/6}Ta_{2/9}Nb_{2/9}Sb_{2/9})O_3$	1575/6h	Perovskite	24.9	83000		-13	814
1779	$(Ni_{1-x}Zn_x)Nb_2O_6 (x=0.4)$	1220	Columbite Orthorhombic Pbcn	24.9	35400		99-	778
1780	0.85MgTiO ₃ -0.15Ca _{0.6} La _{0.8/3} TiO ₃ +0.5 wt% ZnO	1250	Composite	24.9	65200	8	0	815
1781	$0.93(Mg_{0.95}Ni_{0.05})_2$ TiO ₄ -0.07SrTiO ₃	13404h	Composite	24.9	00086	8.6	_	816
1782	$Ba[Mg_{1-x}Zn_x]_{1/3}Ta_{2/3}]O_3$		Complex perovskite Trigonal	24-	200000-	8	-5	817
1783	CaO-ZrO ₂ -glass		r-siiii Glass	25.0	3500			818

8	
16	
'n	
ŭ	
5	
Ŭ	

1784 1785 1786	Ba(CO _{1/3} Ta _{2/3})O ₃ Ca(Eu _{1/2} Nb _{1/2})O ₃ I a(Co. , Ti. , n)O ₃	1500 1550/4h 1550	Perovskite Trigonal P-3m1 Complex perovskite Monoclinic Complex perovskite	25.0	71400 35800 67000		-16 -30 -42	701 763 748 819
1787	Ca(Ga _{1/2} Ta _{1/2})O ₃	1500/2h	Complex perovskite Orthorhombic Pnma	25.0	80000		-81	820
1788	$Ca(Al_{1/2}Nb_{1/2})O_3$	I	Complex perovskite Orthorhombic	25.0	7500		-87	609
1789	Sr ₂ AINbO ₆	1600	Complex perovskite	25.0	4100		-3	562
1790	Ca(Zn _{1/3} Ta _{2/3})O ₃		Complex perovskite	25.0	25,000	ı	99-	609
1791	$ZnNb_2O_6$	1150/2h	Columbite Orthorhombic Pnca	25.0	83700		-56	729
1792	$NiTa_2O_6$	1600	Tetragonal P4 ₂ /mmm	25.0	31000		35	009
1793	$Pr_{0.1}Gd_{0.9}TiNbO_6$	1385	Aeschenite Orthorhombic Pcan	25.0	3450		-15	564
1794	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Sn_x] O_{3-\delta} (x=0.15)$	1150/3h	Perovskite	25.0	49100		-25	752
1795	$(Sr_{2/3}La_{1/3})(Li_{1/3}Ta_{2/3})O_3$		Perovskite	25.0	25000			821
1796	$La_6Mg_4Nb_2W_2O_{24}$	1400/4h	Perovskite Monoclinic	25.0	16400	5.4	-56	770
1797	$(Zn_{0.9}Mg_{0.1})TiO_3+4$ wt% Bi_2O_3	1000/4h	Composite	25.0	70000		-10	822
1798	$Sr(ln_{1/2}Nb_{1/2})O_3+0.2 \text{ wt}\% B_2O_3$	1350/4h	Complex perovskite	25.0	38600		-63	823
1799	$Sm(Mg_{1/2}Ti_{1/2})O_3$	1650/2h	Perovskite Orthorhombic Pnm2 ₁	25.0	65500	10	-26	702
1800	BaO-TiO ₂ -WO ₃ (N-35):5 wt%	1100	Composite	25.0	6500	9	I	786
	PbO-SiO ₂ -B ₂ O ₃							
1801	$Ba_3MgNb_{2-x}Sb_xO_9 (x=0.25)$		Perovskite Trigonal P-3m1	25.0	96290	5.6	9	381
1802	Sr _{2/3} La _{2/3} [Li _{1/3} Ta _{2/3}]O ₃	1350	Monoclinic P2 ₁ /c	25.0	25200	10.2	-25	821,824
1803	$(1-x)(Mg_{0.95}Zn_{0.05})TiO_3-xCa_{0.6}La_{0.8/3}TiO_3$ (x=0.15)	1320/4h	Composite	25.0	86000		—	465
1804	(Zn _{0.65} Mg _{0.35})TiO ₃ -0.15TiO ₂ +1 wt% CaO-B,O ₃ -SiO ₃	950	Composite	25.0	47000		10	825
1805		575	Composite	25.0	19300		-3	826
1806	$Ba_{4-5x}Mg_xNb_{2-v}O_9$ (x=0.425, y=0.002)	1320	Trigonal P-3m1	25.0	160000		-	827
1807	$(Ni_{1-x}Zn_x)Nb_2O_6 (x=0.6)$	1260	Columbite Orthorhombic Pbcn	25.0	53400		-68	778
1808	$La(Co_{1/2}TI_{1/2})O_3$	1550	Perovskite Orthorhombic Pbnm	25.0	38000		-42	828

Š.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
1809	Li ₂ ZnTi ₃ O ₈ +2 wt% MgO-B ₂ O ₃ -SiO ₂	900/4h	Ternary spinel Cubic P4 ₃ 32	25.0	56200		-10	829
1810	$Li_2ZnTi_3O_8+1.5 \text{ wt}\% B_2O_3$	925/4h	Ternary spinel Cubic P4 ₃ 32	25.0	49600		1	830
1811	$0.4 \text{Li}_2 \text{Zn}_3 \text{Ti}_4 \text{O}_{12} - 0.6 \text{Ti} \text{O}_2$	1175	Composite	25.1	62000		-5	831
1812	0.9LaAlO ₃ -0.1SrTiO ₃	1680	Perovskite Composite	25.1	128000	10	-51	832
1813	Sm ₂ Ba _{0.25} Sr _{0.75} ZnO ₅		Tetragonal	25.1	1900	8.17	18	549
1814	Ba(Mg _{0.3183} Ta _{0.67})O ₃	1600	Perovskite Hexagonal P-3m1	25.1	120500	5.6	3	809
1815	$Ba_4LiTa_2SbO_{12}$	1480	Hexagonal Perovskite P63mc	25.1	77700		4-	833
1816	$\text{Li}_2(\text{Mg}_{0.3}\text{Zn}_{0.7})\text{Ti}_3\text{O}_8\text{-}0.12\text{Ti}\text{O}_2\text{+}3 \text{ wt}\%}{\text{ZBS}}$	900/3h	Ternary spinel Cubic P4 ₃ 32	25.1	19600		2	834
1817	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Sn_x]O_3 (x=0.1)$	1150/3h	Perovskite	25.2	48200		41-	752
1818	0.17Ba ₅ Nb ₄ O ₁₅ -0.83BaNb ₂ O ₆	1300	Composite	25.2	59300		0	835
1819	90 wt% $CoNb_2O_6+10$ wt% $CaTiO_3$	1150	Composite	25.2	21700		2	545
1820	$0.5 \text{ZnAl}_2 \text{O}_4$ - 0.5TiO_2		Composite	25.2	277000		177	406
1821		840	Monoclinic C2/c	25.2	40000		-65	836
1822	$1-xCeO_2-xYb_2O_3$ (x=0.25)	1650	Cubic flurite Fm3m	25.2	47800		09-	413
1823	Li ₂ MgTi ₃ O ₈ +1 wt% LMZBS	950	Ternary spinel Cubic P4 ₃ 32	25.2	55000		-	738
1824	$Li_2Cu_{0.1}Zn_{0.9}Ti_3O_8$	950	Ternary spinel Cubic P4 ₃ 32	25.2	32100		2	837
1825	$Sm_2 Ba_{0.5} Sr_{0.5} ZnO_5$		Tetragonal	25.3	10075	8.1	30	549
1826	$Li_2ZnTi_3O_8+0.25 \text{ wt}\% ZnO-B_2O_3$	950	Ternary spinel Cubic P4 ₃ 32	25.3	61600		-13	838
1827	$TeO_2+7.5 \text{ wt}\% \text{ CaTiO}_3$		Composite	25.3	10200		-16	444
1828	$0.9 MgNb_2 O_6 - 0.1 TiO_2$	1300	Composite	25.4	19000		-23	545
1829	$1-xCeO_2-xEu_2O_3 (x=0.1)$	1650	Cubic flurite Fm3m	25.4	70300		-64	413
1830	Ba[Ti _{1-x} (Zn _{1/2} W _{1/2}) _x]O ₃ (x=0.5)	1420	Cubic perovskite Pm3-m	25.4	11800		6	695
1831	Li ₂ MgTi ₃ O ₈ +0.5 wt% LMZBS	975	Ternary spinel Cubic P4 ₃ 32	25.4	51000		2	738
1832	$PbMoO_4$	850	Scheelite Tetragonal 14 ₁ /a	25.4	35200		-21	49
1833	$La(Mg_{0.5}T_{0.5})O_3 + 30 \text{ wt}\%$	1200/3h	Composite	25.4	13200		-55	839
1834		1120	Havagonal Parovskita	25.4	39000		10	757
1004	ba₅ Ll2 W3 O13 [ba(Ll2/5 W3/5) O3.]	0711	Пехавонан гегоузкие	4.07	29000		2	/2/

1835	0.6Li ₂ ZnTi ₃ O ₈ -0.4Li ₂ TiO ₃ +1 wt% ZnO-B,O ₃ -SiO ₃	006	Mixture	25.4	86400		ī	840
1836	$Nd_2Ba_{0.5\tilde{S}r_{0.5}ZnO_5}$		Tetragonal 14/mcm	25.5	6120		26	730
1837	$Sm(Co_{1/2}Ti_{1/2})O_3$	1360/4h	Perovskite Orthorhombic Pnm2 ₁	25.5	26000	10	-16	841
1838	$Ba[Mg_{1/3}(Nb_{1/4}Ta_{3/4})_{2/3}]O_3$		Complex perovskite Triagonal P-3m1	25.5	140600		2	842
1839	$Ca_2Mg_3(Ta_{1.75}Sb_{0.25})TiO_{12}$	1375	Mixture phases	25.5	13500		-24	843
1840	$0.85 MgTiO_3-0.15 Ca_{0.6} La_{0.8/3} TiO_3$	1275/4h	Composite	25.5	82500		0	844
1841	Ba($In_{1/2}Ta_{1/2}$)O ₃ +0.5 wt% Nb ₂ O ₅	1575	Complex perovskite cubic Fm3m	25.5	40050		26	845
1842	$BaMg_{1/3}Nb_{2/3}O_3-Mg_4Nb_2O_9$	1320	Composite	25.5	160000		0	846
1843	$Ca(Gd_{1/2}Nb_{1/2})O_3$	1550/4h	Complex perovskite Monoclinic	25.5	11000		-26	763
1844	$(Ni_{1-x}Zn_x)Nb_2O_6 (x=0.8)$	1220	Columbite Orthorhombic Pbcn	25.6	90400		-71	778
1845	$Ba_{10}Ta_{7.04}Ti_{.045}Sn_{0.75}O_{30}$		Hexagonal P6 ₃ mmc	25.6	59100		30	464
1846	$(Zr_{0.8}Sn_{0.2})TiO_4+10 wt\%$	1000/4h	Composite	25.6	13000		8	515
	BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO							
1847	Li ₂ ZnTi ₃ O ₈	1075	Ternary spinel Cubic P4 ₃ 32	25.6	72000		-11	847
1848	$Li_2ZnTi_3O_8+0.75 \text{ wt}\% ZnO-B_2O_3-SiO_2$	925	Ternary spinel Cubic P4 ₃ 32	25.6	51600		-11	848
1849	$\text{Li}_2\text{ZnTi}_3\text{O}_8+1.5 \text{ wt}\% \text{ Bi}_2\text{O}_3+0.25 \text{ wt}\% $ CuO+1.5 wt% V,O _E	875	Spinel cubic $P4_332$	25.6	53400		-5	849
1850	CaHfO,	1750	Orthorhombic	25.6	15900	9.7	-33	850
1851	Nd ₂ SrZnO ₅			25.7	25830	9.7	-80	58,730
1852	$Ba_5 Nb_3 TaO_{15}$	1500	Trigonal P-3m1 perovskite	25.7	21600	4.93	16	851
1853	LiMgTi ₃ O ₈ +3 wt% MgO-3 wt% LiF	825	Spinel cubic	25.7	57100		4-	852
1854	$0.4(Al_{1/2}Ta_{1/2})O_2-0.6(Mg_{1/2}Ta_{2/3})O_2$	1450	Tetragonal	25.8	111230		-5	214
1855	0.8Mg _{0.95} Co _{0.05} TiO ₃ -0.2Ca _{0.6} La _{0.8/3} TiO ₃	1300	Composite	25.8	80000	0	-11	853
1856	$La_{6}Mg_{4}Ta_{2}W_{2}O_{24}$	1400/4h		25.8	16400		-56	770
1857	$Ca(Sm_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovskite Monoclinic P2 ₁ /n	25.8	25000		-25	750
1858	$Ca(Yb_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovskite Monoclinic P2 ₁ /n	25.8	59200		-21	750

o N	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
1859	Li ₂ ZnTi ₃ O ₈	1100	Spinel cubic P4 ₃ 32	25.8	78200		-11	854
1860	In _{0.06})Ti	1075	Ternary spinel cubic P4 ₃ 32	25.8	39400		-13	855
1861	$0.4(Mg_{0.95}Co_{0.05})_4Ta_2O_9-0.6CaTiO_3$	1375/4h	Composite	25.8	200000		-5	437
1862	Li ₃ ZnTi ₃ O ₈ +1 wt% H ₃ BO ₃	880/4h	Ternary spinel Cubic P4 ₃ 32	25.9	50200			856
1863	Li ₂ ZnTi ₃ O ₈ +1.5 wt% B ₂ O ₃ +3 wt% TiO ₂	006	Ternary spinel Cubic P4 ₃ 32	25.9	46500		0	857
1864	$Li_2Mg_{0.4}Zn_{0.6}Ti_3O_8$	1075/4h	Ternary spinel Cubic P4 ₃ 32	25.9	65000		8-	858
1865	$Sr(Yb_{0.5}Ta_{0.5})O_3+0.5$ wt% Nb_2O_5	1600/4h	Complex perovskite	25.9	32300		62-	859
			Orthorhombic Pnma					
1866	$Ca(Ni_{1/3}Nb_{2/3})O_3$		Complex perovskite Orthorhombic	26.0	11000	I	-78	609
1867	85 wt% BaTi ₄ O ₉ +15 wt%	875	Composite	26.0	10200		0	592
	Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃							
1868	$0.85(Mg_{0.95}Zn_{0.05})TiO_3$ -	1320/4h	Composite	26.0	86000		0.5	465
	0.15Са _{0.6} Lа _{0.8/3} ПО ₃							
1869	0.5 LaCa $_{0.5}$ Zr $_{0.5}$ O $_3$ - 0.5 CaTiO $_3$	1575	Composite	26.0	13500	4.5	- 92	522
1870	$Nd(Mg_{1/2}Ti_{1/2})O_3$	1650/2h	Perovskite Monoclinic P21/n	26.0	00009		-72	702,860
1871	$Ca(Sm_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovsite	26.0	25000		-25	750
1872	$Ca(Er_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovskite	26.0	29600		-12	750
1873	$Ca(Yb_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovskite	26.0	59200		-21	750
1874	Sr(Yb _{1/2} Ta _{1/2})O ₃	1600/4h	Complex perovskite	26.0	32300		-79	861
1875	$Sr(In_{1/2} Nb_{1/2})O_3$	1600/4h	Perovskite	26.0	32700		-62	823
1876	BaO-TiO ₂ -WO ₃ (N-35):5 wt%	1100	Composite	26.0	8400	6.1	I	862
	BaO-SiO ₂ -B ₂ O ₃							
1877	$Sr_3TI_2O_7$	1300/5h	Tetragonal I4/mmm	26.0	2400	4		53
1878	LaYbO ₃	1600/4h	Orthorhombic Pnma	26.0	20600	_	-22	863
1879	0.75Ca ₂ AINbO ₆ - 0.25 Ca ₃ Nb ₂ O ₈		Mixture phases	26.0	13200	6.97	-14	864
1880	$2CaO-3NiO-Ta_2O_5-TiO_2$	1410	Composite	26.0	11000	4.9	-41	230
1881	$Ca_5Nb_2ZrO_{12}$	1690	Perovskite	26.0	22800	4.8	-25	662
1882	3CaO-2ZnO-Nb ₂ O ₅ -πO ₂	1325	Composite	26.0	22000	5.3	-25	230

5	
g	ز
2	2
:	5
2	=
. 0	ز

1883 1884 1885	2CaO-3MgO-Ta ₂ O ₅ -TiO ₂ 0.2CaTiO ₃ -0.8Sm(Mg _{0.5} Ti _{0.5})O ₃ MWF-38+10 wt% Li ₂ O-B ₂ O ₃ -SiO ₂ .CaO-Al ₂ O ₃ (52.45:31.06:11.99:2.2.5)	1450 1550 875	Composite Composite Composite	26.0 26.0 26.0	30000 13500 10200	5.1	-28 -33 -4	230 865 510
1886	Ca(T_{2-x} Nb _x)O ₆ (x=1.2) 1.3Bi,O ₂ -MoO ₃	1450	Orthorhombic Pbcn P2/a	26.0	25300		54 -139	460
	$Ba_3Co_{1+v}Nb_2O_9+y$ (y=0.07)	1470	Perovskite Trigonal P-3m1	26.0	00006	10	1-5	998
1889	Sr(ln _{1/2} Nb _{1/2})O ₃ +0.5 wt% CeO ₂	1600/4h	Complex perovskite Orthorhombic	26.0	32700		-62	823
1890	Ba(Zn _{1/3} Ta _{2/3})O ₃ +5 mol% B ₂ O ₃ +10 mol% CuO	870/2h	Complex perovskite Trigonal P-3m1	26.0	11000		0	867
1891	MgZrNb, O ₈	1340/4h	Wolframite Monoclinic P2/c	26.0	120800	6.85	-50	898
1892	$MgZrNb_2O_8+2$ wt% $BaCu(B_2O_5)$	1100/4h	Monoclinic P2/c	26.0	65100	8.7	-47	698
1893	Ba ₁₀ Ta _{7.04} Sn _{0.75} O ₃₀		Hexagonal P6 ₃ mmc	26.0	59100		ı	870
1894	$Li_2Mg(Ti_{1-x}Sn_xg_{0.06})_3O_8$ (x=0.15)	1100/4h	Spinel Cubic P4 ₃ 32	26.0	74700		-5	871
1895	0.5CeO_2 - 0.25ZnO - 0.25TiO_2	1250	Mixture phases	26.1	24100	5.1	-43	488
1896	$Ca[(Li_{1/3}Ta_{2/3})_{.95}Ti_{0.05}]O_{3-d}+3 \text{ wt% } B_2O_3$	1050/4h	Perovskite	26.1	22000	10.3	- 67	292
1897	$0.35(Al_{1/2}Ta_{1/2})O_2-0.65(Mg_{1/3}Ta_{2/3})O_2$	1450	Composite	26.1	112500		0	214
1898	$ZnNb_2O_6$	1200	Columbite Orthorhombic Pbcn	26.1	103730		-73	778
1899	$Li_2(Zn_{0.94}Mg_{0.06})Ti_3O_8$	1140	Ternary spinel Cubic P4 ₃ 32	26.1	150000		-14	811
1900	$0.9 \text{Li}_2 \text{ZnTi}_3 \text{O}_8 - 0.1 \text{TiO}_2$	1100	Ternary spinel Cubic P4 ₃ 32	26.1	44500			872
1901	0.81Mg _{0.95} Ni _{0.05} TiO ₃ - 0.19Nd _{0.5} Na _{0.5} TiO ₃	1300	Composite	26.1	69100		9–	873
1902	Li ₂ ZnTi ₃ O ₈ +1 wt% LZB+3.5 wt% TiO ₂	900/4h	Ternary spinel Cubic P4 ₃ 32	26.1	45200		4-	874
1903	0.8(Mg _{0.95} Zn _{0.05})TiO ₃ - 0.2Ca _{0.61} Nd _{0.26} TiO ₃ +1 wt% V, O ₅	1275	Composite	26.1	46000	8	2	875
1904	$Bi(\tilde{Ga}_{1/3}Mo_{2/3})O_4$	830	Monoclinic sheelite C2/c	26.1	49800		98-	928
1905	$Ca_2Mg_3Nb_4TiO_{17}$	1525		26.2	13750		-24	877

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	τ_f	Reference
1906	$MgTa_{1,3}Nb_{0,7}O_6$	1450	Columbite tetragonal P42/mmm	26.2	43100		4	878
1907	Nd(Mg _{0.5} Ti _{0.5})O ₃ +10 mol% B ₂ O ₃	1325	Monoclinic P2 ₁ /n	26.2	61300	9.63	-46	879
1908	$1-xCeO_2-xDy_2O_3 (x=0.20)$	1650	Cubic flurite Fm3m	26.2	70150		-57	413
1909	0.87(Mg _{0.7} Zn _{0.3})TiO ₃ -	1270	Composite	26.2	120000		-3	880
	$0.13(Ca_{0.61}La_{0.26})TiO_3$							
1910	$(Zn_{0.65}Mg_{0.35})TiO_3+1$ wt% CuV_2O_6+9 wt% TiO_2	930	Composite	26.2	31930		0-	881
1911	$Li_2ZnTi_3O_8^{T}$	1050	Ternary spinel Cubic P4 ₃ 32	26.2	62000		-15	882
1912	TeO ₂ + 17.5 wt% SrTiO ₃	610	Composite	26.2	12000		16	444
1913	Ca[(Li _{1/3} Nb _{2/3}) _{0.8} Ti _{0.2}]O _{3-d} +12 wt% LMZBS glass	900/4h	Composite	26.2	13000	4.8	-20	792
1914	Ba(Mg _{0.30} Ta _{0.60} Ti _{0.10})O ₃	1600	Complex perovskite Trigonal P-3m1	26.3	100000	5.2	4	883
1915	0.5CeO_2 - 0.25MnO - 0.25TiO_2	1200	Mixture phases	26.3	17100	5	-30	488
1916	$(1-x)(Mg_{0.95}Zn_{0.05})TiO_3-x(Ca_{0.6}La_{0.8/3})$ $TiO_3 \ (x=0.21)$		Composite	26.3	00209	6.44	0	884
1917	$(Ca_2Mg_{3.75}Pb_{0/25})Ta_2(Ti_{0.75}Zr_{0.25})O_{12}$	1375		26.3	14000		-22	662
1918	$(Ag_{0.5}Bi_{0.5})(Mo_{0.5}W_{0.5})O_4$	580	Tetragonal Scheelite 141/A	26.3	10000		20	885
1919	Bi ₂ Te ₂ W ₃ O ₁₆	700/6h	Monoclinic C2/c	26.3	2250	7.9		988
1920	$ZnZr(Nb_{1-x}Sb_x)_2O_8$ (x=0.08)	1250/4h	Monoclinic wolframite	26.3	89400		-57	887
1921	$0.75(Al_{1/2}Ta_{1/2})O_2-0.25(Ti_{1-x}Sn_x)O_2$		Tetragonal	26.3-	63400-		<10	260
	(x=0.05-0.3)			30.0	70700			
1922	$Nd_2Ba_{0.5}Ca_{0.5}ZnO_5$			26.4	6185		24	730
1923	Ca(Er _{1/2} Ta _{1/2})O ₃	1600/4h	Complex perovskite Monoclinic P2 ₁ /n	26.4	29600		-12	750
1924	Ba[Ti _{1-x} (Zn _{1/2} W _{1/2}) _x]O ₃ (x=0.7)	1420	Perovskite	26.4	22900		-2	962
1925	LiBiW ₂ O ₈	650	Monoclinic	26.5	16400		70	888
1926	$Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-d}+12 wt\% LBS$	920	Perovskite Orthorhombic	26.5	7000		-18	792
1927	$0.2(AI_{1/2}Ta_{1/2})O_2 - 0.8(Mg_{1/3}Ta_{2/3})O_2$	1450		26.5	103190		25	214

381 889 616 890	763 761	785	785	891 855	892	893	444	394	895	832	62	444	968	268	868	750	899	515		006
13				Λ 4 ~ ~	6	-7	•	-21	-		32 (31 4	-3	9	-18	-22	98-	<u></u>		-
5.8.3					6					10				6.2						
31110 30580 30800 11800	34600	86800	80900	21300 43600	54900	11950	12400	61350	9100	139000	10000	11400	82000	42800	20000	23600	52000	21900		23600
26.5 26.5 26.5	26.5	26.6	26.6	26.6 26.6	26.6	26.6	26.6	26.6	26.7	26.7	26.7	26.7	26.7	26.7	26.8	26.8	26.8	26.8		26.9
Perovskite Cubic Pm3m Perovskite Monoclinic P2 _{1,} n Perovskite Composite	Complex perovskite Monoclinic	Hexagonal P6 ₃ cm	Hexagonal P6 $_3$ cm	Cubic spinel P4 ₃ 32 Cubic spinel P4 ₃ 32	Composite	Composite	Composite	Mixture	A ₆ B ₅ O ₁₈ type perovskite	Composite	Mixture phase	Composite	Cubic Spinel	Tetragonal 14 ₁ /a	Perovskite	Complex perovskite Monoclinic P2 ₁ /n	Perovskite Rhombohedral	Composite		Cubic+rutile
1425 1100/2h	1550/4h 900/2h	17/000		900 1075	1175	006	610	1275	1625/2h	1680	650	610	1170	650/2h		1600/4h	1500/4h	1000/8h		900/4h
Ba ₃ NiNb ₂ ×Sb _x O ₉ (x=0.1) (1-x)La(Mg _{1/2} Ti _{1/2})O ₃ -xLa _{2/3} TiO ₃ (x=0.1) Ba[Ti _{1-x} (Ni ₁₋₂ N _{1/2})X ₁ O ₃ (x=0.45) BaO-Sm O - 4TO - 10 weo. R O	Ca(Tb _{1/2} Nb _{1/2})O ₃ Ca(Tb _{1/2} Nb _{1/2})O ₃ Ra Ti Nb O 45 w#% CuO	Ba ₈ Ta ₆ (Ni _{1-x} Mg _x)O ₂₄ (x=0.5)	$Ba_8Ta_6MgO_{24}$	LI2 CO II 3 O 8 + 2 MT% B 2 O 3 Li2 (Mg _{0.04} Co _{0.06}) Ti 3 O 8	0.8Mg _{0.95} Zn _{0.05})πO ₃ -0.2Ca _{0.61} Nd _{0.26} TiO ₃ +1 wt% B ₂ O ₃	$Ba_2 Ti_9 O_{20} + 20 \text{ wt\% BaO-B}_2 O_3 - ZnO$ glass	$TeO_2+15 \text{ wt}\% \text{ SrTiO}_3$	$Ca_xZn_{1-x}Zr_{0.8}Sn_{0.2}Nb_2O_8$ (x=0.15)	$Sr_6Ta_4ZrO_{18}+3$ wt% $Bi_2O_3-B_2O_3$	0.8LaAlO ₃ -0.2SrTiO ₃	0.9 Te O_2 -SnTe $_3$ O $_8$	$TeO_2 + 20 \text{ wt}\% \text{ SrTiO}_3$	$Li_2Mg_{0.95}Co_{0.05}Ti_3O_8$	$PbMoO_4$	Sm(Mg _{0.5} Ti _{0.5})O ₃ +10 mol% B ₂ O ₃	$Ca(Eu_{1/2}Ta_{1/2})O_3$	$La(Mg_{2/3} Nb_{1/3})O_3$	$(Zr_{0.8}Sn_{0.2})TiO_4+10 wt\%$	BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO	$Li_2ZnTi_3O_8+4$ wt% TiO_2+1 wt% CBS glass
1928 1929 1930	1932	1934	1935	1936 1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951		1952

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	τ_f	Reference
1953	$Ca(Cu_{1/3}Nb_{2/3})O_3$		Complex perovskite Orthorhombic	27.0	3300	I	1	609
1954	Li ₂ Mg _{0.2} Zn _{0.8} Ti ₃ O ₈	1075/4h	Ternary spinel Cubic P4 ₃ 32	27.0	66500		-50	858
1955	SI(كرايا 1 _{1/2}) اعزاريا اعزاريا اعزاريا [La(Mg _{1,7} Ti _{1,7})O ₂ sol-gel	1300/311	Monoclinic Perovskite P2,/n	27.0	74500		- 6-	901
1957	Ca(Y _{1/2} Ta _{1/2})O ₃	1600/4h	Perovskite Monoclinic P2 ₁ /n	27.0	42300		Ţ	750
1958	0.6Ca(Y _{1/2} Ta _{1/2})O ₃ -0.4 Ba(Y _{1/2} Ta _{1/2})O ₃	1600/4h	Perovskite	27.0	42000		-77	750
1959	Sr(Er _{1/2} Ta _{1/2})O ₃	1600/4h	Pervoskite	27.0	22100		-88	861
1960	Ca_2AINbO_6		Perovskite Monoclinic P2 ₁ /n	27.0	14000	7.02	0	864
1961	$Ba(Mg_{1/3}Ta_{2/3})O_3$ - $Ba(Zn_{1/3},Ta_{2/3})O_3$		Complex perovskite Trigonal P-3m1	27.0	150000	10		903
1962	BaO-TiO ₂ -WO ₃ (N-35)+5 wt% ZnO-B,O ₃ .SiO,	1000	Composite	27.0	8400	7.0		786,862
1963	$Ca(Yb_{1/2}Nb_{1/2})O_3$	1500	Perovskite	27.0	7200	8.4	-30	290
1964	BaO-TiO ₂ -WO ₃ (N-35):5 wt% PhO-Al ₂ O ₂ -SiO ₂	1100	Composite	27.0	8400	6.1	I	786,862
1965	B, T, N; Z, O		Trigonal D6 cm	27.0	01730		35	781
1966	Bag ia610,02521,075,024 BaTi ,O^+20 wt% B,O,-7nO-1 a,O,	900/3h	Composite	27.0	20000			904
1967		1440/4h	Monoclinic P2,/n	27.0	140000	6	-46	905
1968	Ba ₆ Ta ₄ TiO ₁₈	1625/2h	-	27.0	27500		45	895
1969	CaZrO ₃		Perovskite Orthorhombic Pcmn	27.0	20800			906
1970	Ba(Mn _{1/3} Ta _{2/3})O ₃	1600/air	Perovskite Trigonal P-3m1	27.0	15500		45	206
1971	Ba(Mn _{1/3} Ta _{2/3})O ₃	$1600/N_2$	Perovskite Trigonal P-3m1	27.0	104000		45	206
1972	$0.3CaTiO_3-0.7Sm(Mg_{0.5}Ti_{0.5})O_3$	1550	Composite	27.0	11970	5.8	-29	865
1973	ZnO-TiO ₂ -2 wt% ZnO-B ₂ O ₃ -SiO ₂	930/3h	Composite	27.0	20000		2	806
1974	$BaO-2CeO_2-4TiO_2$	1250	Composite	27.0	18560		6	606
1975	$Ba_5 Nb_2 Ta_2 O_{15}$	1475	Trigonal P-3m1 perovskite	27.0	10600	4.7	22	851
1976	$\text{Li}_2\text{ZnTi}_3\text{O}_8\text{+2} \text{ wt}\% \text{ Li}_2\text{WO}_4$	860/4h	Composite	27.0	51100		4-	910
1977	$Nd_5 \Pi_4 CrO_{17}$	1600/4h	Monoclinic	27.0	6400		-94	911

_
D
ė
⊇
.5
Ħ
≿
\ddot{c}
$\overline{}$

1978 1979 1980	$\begin{array}{l} \text{CaO-4NiO-Nb}_2\text{O}_5\text{-TiO}_2\\ \text{Ba}_3\text{NiNb}_2, \text{Sb}_x\text{O}_9 \;(\text{x=0.25})\\ \text{LaGaO}_3 \end{array}$	1185	Composite Perovskite Cubic Pm3 m Perovskite Orthorhombic Pnma	27.0 27.0 27.0	4000 27370 97000	4.6 5	-58 -21 -80	230 381 912
1981	Ba(Zn _{1/2} Ta _{2/3})O ₃ +1 mol% CeO ₂	1525/6h, 1350/5h	Complex perovskite Trigonal P-3m1	27.0	123000		14	913
1982	$Ba[(Mg_{0.4}Zn_{0.6})Ta_{2.3}]O_3$	1600/4h	Perovskite Trigonal P-3m1	27.0	109900		4	883
1983	0.7Ba(Mg _{1/3} Ta _{2/3})O ₃ - 0.3Ba(Co _{1/2} Nb _{2/2})O ₃	1530/5h	Complex perovskite Trigonal P-3m1	27.0	172700		Ī	914
1984	Li ₂ Mg _{0.9} Zn _{0.1} Ti ₃ O ₈	1075/4h	Ternary spinel Cubic P4 ₃ 32	27.0	62000		_	858
1985	Li ₂ Zn _{0.95} Ca _{0.05} Ti ₃ Ō ₈	1075/4h	Ternary spinel Cubic P4 ₃ 32	27.0	51100		-2	858
1986	$Bi(Sb_{0.6}Ta_{0.4})O_4$	1000	Monoclinic I2/c	27.0	35000		-15	915
1987	$Ca(Z_{r_{x}}T_{1-x})O_{3}$ (x=1)	1515/15h	Perovskite Orthorhombic Pcnmn	27.0	16500	5.35	-20	916
1988	$Ba_3LiTa_{3-x}Sb_xTi_5O_{21}$ (x=3)	1220	Hexagonal P6 ₃ /mcm	27.0	29400		-25	917
1989	Nd(Co _{1/2} Ti _{1/2})O ₃ +1 wt% P ₂ O ₅ -ZnO- La ₂ O ₃ -Al ₂ O ₃ -Na ₂ O-MgO-Yb ₂ O ₃	1300	Monoclinic P2 ₁ /n Perovskite	27.0	64000		-29	918
	glass							
1990	Ba _{1/3} Pr _{2/3} Zn _{1/3} Ti _{2/3} O ₃		Not available	27.0	1000	5.07	-22	919
1991	$Ba_{1/2}Sr_{1/2}(Zn_{1/6}Co_{1/6}Ta_{2/9}Nb_{2/9}Sb_{2/9})O_3$	1550/6h	Perovskite	27.0	32100		-23	814
1992	Ba ₈ NiTa ₆ O ₂₄		Hexagonal P6 ₃ cm	27.0	81800			785
1993	$Ba_5Sr_2Ta_4ZrO_{21}$		A _n B _{n-1} O _{3n} Hexagonal Perovskite	27.0	0086			920
1994	Ba(La _{1/2} Ta _{1/2})O ₃	1450	Perovskite Cubic Fm3m	27.1	18000	8.7	51	290
1995	$Sr(La_{1/2}Ta_{1/2})O_3$	1500	Perovskite Cubic Fm3m	27.1	2600	8.4	-29	290
	$(Mg_{1/3}Ta_{2/3})O_2$	1550	Tetragonal P4 ₂ mmm	27.1	95360		51	454
1997	$Li_2(Mg_{0.94}Zn_{0.06})Ti_3O_8$	1075	Cubic spinel P4 ₃ 32	27.1	44800		2	855
1998	$Sr(Nd_{1/2}Ta_{1/2})O_3$	1500	Perovskite ubic Fm3m	27.1	25000	8.3	-68	290
1999	$Sr(Er_{0.5}Ta_{0.5})O_3+0.5 \text{ wt}\% \text{ Nb}_2O_5$	1600/4h	Complex perovskite Tetragonal	27.1	22100		-77	859
2000	$Mg_{0.5}Zn_{0.5}ZrNb_2O_8$	1260	Monoclinic P2/c	27.1	91100		-18	921
2001	$Ca(Gd_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovskite Monoclinic	27.2	26000		-16	750
2002	$Nd(Co_{1/2}Ti_{1/2})O_3+0.75 \text{ wt}\% B_2O_3$	1320/4h	Perovskite Monoclinic P2 ₁ /n	27.2	153000	6	0	922
2003	$Ba_3LiSb_3Ti_5O_{21}$	1220	Hexagonal P6 ₃ /mcm	27.2	29400		-25	923

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	t_{f}	Reference
2004	Li ₂ MgTi ₃ O ₈	1075	Ternary spinel Cubic P4 ₃ 32	27.2	42000		3	847
2005	Bi ₃ FeMo ₂ O ₁₂	845/2h	Monoclnic sheelite C2/c	27.2	14500		-80	924
2006	$Ba_2Ti_9O_{20}^2+1$ wt% ZnO- B_2O_3	940/2h	Monoclinic P-1	27.3	8300	7.2	3	925
2007	MgTa _{1.4} Nb _{0.6} O ₆	1450	Columbite Tetragonal P4 ₂ /mmm	27.3	40800		-3	926
2008	$Ba_8Ta_6(Ni_{1-x}Zn_x)O_{24}$ (x=0.5)		Hexagonal P6 ₃ cm	27.4	83800		36	785
2009	Nd(Co _{1/2} Ti _{1/2})O ₃ +0.5 wt% ZnO	1350	Perovskite Monoclinic P2 ₁ /n	27.4	147000	8	-30	927
2010	$ZnZr_{0.8}Sn_{0.2}Nb_2O_8$	1275/6h	Monoclinic P2/c	27.4	76800	_	-55	928
2011	TeO ₂ +10 wt% SrTiO ₃		Composite	27.5	13100		-46	444
2012	Ba ₈ Ta ₆ NiO ₂₄		Hexagonal P6 ₃ cm	27.5	81750		33	785
2013	Sr(La _{1/2} Nb _{1/2})O ₃	1500	Perovskite Cubic Fm3m	27.5	2000	8.3	-33	590
2014	$Sr(Zn_{1/2}W_{1/2})O_3$	1360	Perovskite Cubic Fm3m	27.5	51000	7.0	-45	528
2015	$0.8 \text{La}(Mg_{1/2}\text{Ti}_{1/2})\text{O}_3 - 0.2 \text{La}_{2/3}\text{TiO}_3$	1500/2h	Composite	27.5	16600	7.9		929
2016	Ba(Mg _{1/3} Nb _{2/3})O ₃ +B ₂ O ₃	006	Perovskite Trigonal P-3m1	27.5	8500		27	930
2017	$(1-x)La(Mg_{1/2}Ti_{1/2})O_3-xLa_{2/3}TiO_3$ (x=0.2)		Perovskite Monoclinic P2 _{1/} n	27.5	16600	7.89		889
2018	$Sr(Y_{0.5}Ta_{0.5})O_3+0.5$ wt% Nb_2O_5	1600/4h	Complex perovskite	27.5	54300		-77	859
			Rhombohedral R3m					
2019	90 wt%(Zr,Sn)TiO ₄ +10 wt%	875	Composite	27.5	0006		14	592
	Li ₂ O-B ₂ O ₃ -SiO ₂							
2020	$ZnTiO_3$ -0.25 TiO_2	925	Composite	27.5	14000		-20	931
2021	$Ba_8Ta_6(Ni_{1-x}Zn_x)O_{24} (x=0.75)$		Hexagonal P6 ₃ mc	27.6	91700		37	785
2022	Ca[(Li _{1/3} Ta _{2/3}),9-Ti _{0.1}]O _{3-d} +3 wt% B ₂ O ₃	1000/4h	Perovskite	27.6	9800	10.2	I	765
2023	$La(Mg_{1/2}Ti_{1/2})O_3$	1600	Monoclinic perovskite P2 ₁ /n	27.6	114300	7.1	-81	932,933
2024	$(Ca_2Mg_3)Nb_2(Ti_{0.75}Zr_{0.25})O_{12}$	1275		27.6	0092		-36	662
2025	$Li_2Zn_xCo_{1-x}Ti_3O_8 (x=0.4)$	1050/2h	Cubic spinel $P4_332$	27.7	57100		_	934
2026	$Li_2Zn_{0.9}Ca_{0.1}Ti_3O_8$	1075/4h	Ternary spinel Cubic P4 ₃ 32	27.7	44500		11	858
2027	Sr(Sm _{1/2} Ta _{1/2})O ₃	1500	Perovskite	27.7	29000	8.5	-63	590
2028	$Sr(Ho_{0.5}Ta_{0.5})O_3 + 0.5 \text{ wt}\% \text{ Nb}_2O_5$	1600/4h	Complex perovskite Tetragonal	27.7	38800		-75	859
2029		1575	Complex perovskite Trigonal	27.7	109900	4.6	6.3	883
			P-3m1					

8
2
ž
2
Ð
Ξ
8
<u> </u>

2030 2031	Ba ₆ Ta ₄ ZrO ₁₈ +2 wt% Bi ₂ O ₃ -B ₂ O ₃ Li ₂ ZnTi ₃ O ₈ +2 wt% Bi ₂ O ₃ B ₂ C-T ₂ Z ₂ O ₃ 1 2 2 2 0 0 0 0	1625/2h 950	A ₆ B ₅ O ₁₈ type perovskite Cubic P4 ₃ 32	27.8	36400		5 2	895 935
2033	Ba ₅ SrIa ₄ ZrO ₁₈ +2 wt% B1 ₂ O ₃ -B ₂ O ₃ Sm _{0.78} Y _{0.2} ,TiNbO ₆	1625/2h 1400	$A_6B_5U_{18}$ type perovskite Orthorhombic Pbnm	27.9	18500 2300		3/	895 564
2034	MgNb ₂ O ₆	1450	Columbite Orthorhombic Pcan	27.9	91500			976
2035	$MgTa_{1.5}Nb_{0.5}O_6$	1450	Columbite Tetragonal P4 ₂ /mmm	27.9	33100		1	976
2036	0.8(Mg _{0.95} Co _{0.05})TiO ₃ - 0.2(Ca _{0.6} La _{0.8/3} TiO ₃ +1 wt% ZnO	1250	Mixed phases	27.9	36000	8	41	936
2037	$Ba_8Ta_6(Ni_{1-x}Mg_x)O_{24}$ (x=0.25)		Hexagonal P6 ₃ cm	27.9	81500		32	785
2038	$Sr_{1-x}Ca_x(Ga_{1/2}Ta_{1/2})O_3$		Perovskite	26- 28	18000- 90000	∞	-50 to-97	937
2039		1240/4h	Monoclinic P2/c	27.9	00989	6.95	-62	938
2040	BaTi ₄ O ₉ -10 mol% BaO-ZnO-B ₂ O ₃ glass	925	Composite	28-	20000	9.9		939
2041		1650/2h	Monoclinic personshite D2 /n	0 80	36900	10		702
2047	\(\alpha \cdot	17/000		28.0	1500	5.03	-19	919
2043	$(Z_{n_0}Mg_{0,1})TO_3+1$ wt% V ₂ O ₅	950/4h	Trigonal R-3	28.0	67200		· 8	940
2044		1450	Hexagonal perovskite P6 ₃ mc	28.0	103600		25	941
2045	0.47 BaTe $_4$ O $_9$ - 0.53 TiTe $_3$ O $_8$	260	Composite	28.0	12000	10	4	942
2046	$Ca(Zr_xTi_{1-x})O_3 (x=0.8)$	1470/15h	Perovskite Cubic Pm3m	28.0	3500	4.35	170	916
2047	$Ba(Tb_{1/2}Ta_{1/2})O_3$	1625	Perovskite	28.0	28200		-38	943
2048	$Ca(Mg_{1/3}Nb_{2/3})O_3$		Complex perovskite Orthorhombic	28.0	58000	1	-48	609,944
2049		1500	Perovskite Cubic Pm3m	28.0	21700		-54	701
2050	$Ba(Zn_{1/3}Ta_{2/3})O_3$	1350/ 120h	Complex perovskite Trigonal P-3m1	28.0	168000			903
2051	0.6Ca(Yb _{1/2} Ta _{1/2})O ₃ -0.4 Ba(Yb, "Ta, ")O ₃	1600/4h	Perovskite	28.0	48000		2	750
2052	Ü	1600/4h	Perovskite	28.0	41000		-2	750

	Maccia	ST (°C)	Crystal structure	\mathcal{E}_{r}	<i>Qf</i> (GHz)	t_0	\mathcal{L}_f	Reference
2053	Ba[Zr _{0.0645} Ni _{0.1625} Zn _{0.816} Ta _{1.957}]O ₃	1520/48h	Perovskite Trigonal P-3m1	28.0	136770		-3	945
2054	Ba(Zn _{1/3} Ta _{2/3})O ₃ +1 mol% Cr ₂ O ₃	1525/6h	Complex perovskite Hexagonal P-3m1	28.0	125500		-5	913
2055	Ca(Ho _{1,2} Ta _{1,2})O ₃	1600/4h	Perovskite Monoclinic P2 ₁ /n	28.0	23700		8-	750
2056	Sr(Dy _{1/2} Ta _{1/2})O ₃	1600/4h	Perovskite	28.0	34200		-73	861
2057	Sr(Ho _{1/2} Ta _{1/2})O ₃	1600/4h	Perovskite	28.0	38800		-75	861
2058	Sr(Y _{1/2} Ta _{1/2})O ₃	1600/4h	Perovskite Monoclinic P2 ₁ /n	28.0	54300		-77	861
2059	$Ca(Ca_{1/3}Nb_{2/3})O_3$		Perovskite Monoclinic	28.0	17000	I	-22	609
2060	$Zn(Nb_{0.35}Ta_{0.65})_2O_6$	1300	Columbite Orthorhombic Pbcn	28.0	50000		0	946
2061	0.5Ca ₂ AINbO ₆ -0.5Ca ₃ Nb ₂ O ₈		Mixture phases	28.0	8900	98.9	36	864
2062	$MgTa_2O_6+0.5 \text{ wt}\% \text{ CuO}$	1400	Trirutile structure Tetragonal	28.0	58000		18	947
			P4 ₂ /mmm					
2063	Zn _{0.4} Co _{0.6} TiO ₃	1200	Spinel+rutile	28.0	70000			948
2064	Pr(Mg _{1/2} Ti _{1/2})O ₃	1650/2h	Perovskite	28.0	27800	10	-17	702
2065	$Ba_5 Ta_4 O_{15} (A_n B_{n-1} O_{3n})$	1550	Trigonal P-3m1 perovskite	28.0	31600	5.55	12	325,851
2066	$3CaO-2CoO-Ta_2O_5-TiO_2$	1400	Mixture	28.0	19500	4.8	-14	230
2067	$0.75(Al_{1/2}Ta_{1/2}O_2)-0.25(Ti_{0.85}Sn_{0.15})O_2$	1450/3h	Composite	28.0	00089		0	949
2068	$(1-x)LaMg_{1/2}\Pi_{1/2}O_3-xLa_{2/3}TiO_3 (x=0.1)$		Perovskite	28.0	26000	9.9	99-	950
2069	$(1-x)Sr(Li_{1/4}Nb_{3/4})O_3-xSr(Li_{2/3}W_{3/5})O_3$ (x=0.283)	1450	Provskite Monoclinic P2 ₁ /c	28.0	23800	9.1	30	951
2070	Ba ₈ Li,Ta ₆ O ₂₄		Hexagonal P6 ₃ mmc	28.0	103600		-29	952
2071	MgZr _{1,32} Nb ₂ O _{8,64}	1320/6h	Wolframite	28.0	00989		_	953
2072	La ₅ AITi ₃ O ₁₅	1600	Hexagonal perovskite	28.1	28600	3.4	-39	954
2073	0.09[0.5ZnNb ₂ O ₆ -0.5Zn ₃ Nb ₂ O ₈]- 0.91ZnTa ₂ O ₆ +5 wt% ZBS	006	Composite	28.1	32800		8	955
2074	$Ba(Zn_{1/2}W_{1/2})O_3$	1340	Perovskite Cubic Fm3m	28.1	22700	8		432
2075	Al_2O_3 -Ti O_2 -Ta $_2O_5$	1575	Composite	28.1	1000		20	583
2076	SrHfO ₃	1750	Cubic Pm3m	28.1	33500	9.3	-63	850
2077	Ba(Ti _{0.5} Mn _{0.5})O ₃ +5 wt% Li ₂ CO ₃	1200	Perovskite Hexagonal	28.1	5300		35	926
2078		950	Cubic P4 ₃ 32	28.1	34300		6	957

2079	$\begin{array}{l} Ba[Ti_{1-x}(Zn_{1/2}W_{1/2})_{x}]O_{3}\ (x{=}1) \\ Ba_{10}Mg_{0.25}Ta_{7.9}O_{30} \end{array}$	1380 1600/12h	Cubic perovskite Fm3 ⁻ m Hexagonal P6 ₃ mc	28.2 28.2	15200 33500		-16 29	695 958
2081	$Sr(Dy_{0.5}Ta_{0.5})O_3+0.5 \text{ wt}\% \text{ Nb}_2O_5$	1600/4h	Complex perovskite tetragonal	28.2	34200		-73	859
2082	Ca(Ho _{1/2} Ta _{1/2})O ₃	1600/4h	Complex perovskite Monoclinic P2 ₁ /n	28.2	23700		8-	750
2083	$BaTa_2V_2O_{11}$	870	Rhombohedral R-3m	28.2	41950		91	336
2084	$La(Zn_{1/2}Ti_{1/2})O_3$ (sol gel)		Perovskite	28.3	66500			959
2085	La ₂ Ti ₂ SiO ₉	1325	Monoclinic C2/m	28.3	29500		23	096
2086	$Ba(Zn_{1/3}Ta_{2/3})O_3+1 \text{ wt}\% V_2O_3$	1600	Perovskite Trigonal P-3m1	28.4	236000			961
2087		1075/4h	Ternary spinel cubic P4 ₃ 32	28.4	40000		4	858
2088	Ca[(Li _{1,3} Nb _{2/3}) _{0,75} Ti _{0,25} JO _{3-d} +12 wt% LMZBS glass	920/4h	Perovskite	28.4	11000	4.8	-3	792
2089	Ca[(Li _{1/3} Ta _{2/3}), ₈ Ti _{0.2}]O _{3-d} +3 wt% B ₂ O ₃	1050	Perovskite	28.4	12900	6.6	-15	765
2090	$Sr_6Ta_4ZrO_{18}+3$ wt% $Bi_2O_3-B_2O_3$ glass	1625/2h		28.4	9100		-39	895
2091	$ZnZrNb_2O_8+3$ wt% $BaCu(B_2O_5)$	950/4h	Monoclinic	28.4	26700		-53	962
2092	$Ba_3MgNb_{2-x}Sb_xO_9 \ (x=0.125)$		Perovskite Trigonal P-3m1	28.5	101300	4.7	14	381
2093	0.8(Mg _{0.5} Zn _{0.4}) _{0.95} Co _{0.05} TiO ₃ - 0.2Ca _{0.61} Nd _{0.96} TiO ₃	1250	Mixed phases	28.6	80600		4	963
2094	TeO,+10 wt% CaTiO,	645	Composite	28.7	15600		-3	444
2095	$0.6 \tilde{0}.7$ ZnNb $_2$ O $_6$ - 0.3 Žn $_3$ Nb $_2$ O $_8$]-	029	Composite	28.7	5700		3	964
	$0.4 \mathrm{TiTe_3O_8}$							
2096	$(Mg_{0.95}Ni_{0.05})Ta_2O_6$	1525	Tetragonal P4 ₂ /mmm	28.7	88300		45	965
2097	$(Pb_{1-3x/2}La_x)(Mg_{1/2}W_{1/2})O_3$ (x=0.56)	1200	Perovskite Orthorhombic	28.7	18100		9–	996
2098	$Li_2Mg_{0.96}Zn_{0.04}Ti_3O_8$	1200	Cubic Spinal	28.7	151200		-3	968
2099	$Sr(Tb_{0.5}Ta_{0.5})O_3+0.5 \text{ wt}\% \text{ Nb}_2O_5$	1600/4h	Complex perovskite Tetragonal	28.8	46200		-70	859
2100	$Mg_{0.3}Co_{0.7}Ta_2O_6$	1500/2h	Tetragonal P4 ₂ /mmm	28.8	22900		34	296
2101	Li ₂ CoTi ₃ O ₈	1025	Cubic spinel $P4_332$	28.9	52600		_	896
2102	$Ba_8Ta_6ZnO_{24}$		Hexagonal P6 ₃ cm	28.9	85000		40	785
2103	$SmTaTi_{0.6}Zr_{0.4}O_6$			28.9	38320		-12	671
2104	0.7LaAlO ₃ -0.3SrTiO ₃	1680	Composite	28.9	120000	6.6	-44	832
2105	$Zn_{0.95}Ni_{0.05}ZrNb_2O_8$			29.0	83600		-49	696

O	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
2106	Ca(Co _{1/3} Nb _{2/3})O ₃		Complex perovskite Orthorhombic	29.0	6200	I	-65	609
2107	BaO-TiO,-WO ₃ (N-35): ZnO-B,O ₃	1100	Composite	29.0	7000	5.8	I	786,862
2108	CoTa, O ₆	1500	Trirutile Tetragonal P4,/mmm	29.0	2300		23	009
2109	$La(Mg_{1/2}T_{1/2})O_3$	1650/2h	Perovskite Monoclinic P2 ₁ /n	29.0	114000		-81	933
2110	Ba(Zn ₁₁₂ Ta _{2/3})O ₃ +0.3 mol% Ta ₂ O ₅	1620/10h	Complex perovskite Trigonal P-3m1	29.0	152000			162
2111	0.95 Ba(Zn _{1/2} Ta _{2/3})O ₃ -0.05Sr (Ga _{1,7} Ta _{1,7})O ₃	1550/2h, 1450/24h	Perovskite	29.0	162000		0	970,971
2112	$Ba_{3}(Zr_{0.0645}^{''}Zn_{0.816}^{'}Ni_{0.1625}^{'}Ta_{1.957}^{'})O_{9}$	1510/24h	Complex perovskite Trigonal P-3m1	29.0	126860		-2	972
2113	Sr(Tb _{1/2} Ta _{1/2})O ₃	1600/4h	Perovskite	29.0	34200		-70	861
2114	3CaO-2NiO-Ta ₂ O ₅ -TiO ₂	1500	Composite	29.0	18800	4.9	-33	230
2115	2CaO-3CoO-Ta ₂ O ₅ -TiO ₂	1175	Composite	29.0	18500	4.9	-28	230
2116	La ₁₀ MgTi ₉ O ₃₄		Perovskite slab series	29.0	13000	5.9	-22	950
2117	BaTiTe ₃ O ₉	650		29.0	1700	9.7	-372	973
2118	$(1-x)Ca(Li_{1/4}Nb_{3/4})O_3-xCa(Li_{2/3}W_{3/5})O_3$ (x=0.333)	1150	Provskite Trigonal P2 ₁ /c	29.0	15700	9.7	-35	951
2119	$(Sr_{2/3}La_{1/3})(Li_{1/3}Nb_{2/3})O_3$	1300	Not available	29.0	6300	8.9	9/-	824
2120	$CeO_2 + 0.06CaTiO_3$	1650/2h	Cubic flurite Fm3m	29.0	25000		0	525
2121	$La(Mg_{1-x}Zn_x)_{1/2}Ti_{1/2}O_3 (x=0.3)$	1475/4h	Perovskite Cubic Pa3	29.0	74000		-63	974
2122	$Sr_{4-m}La_mTi_{m-1}Ta_{4-m}O_{12}$ (m=1)	1560	Cation deficient Hexagonal perovskite	29.0	16050		-43	975
2123	$Mg(Nb_{0.7}Ta_{1.3})O_6$		Columbite	29.0	67800		-	926
2124	$Ba_8Ga_{0.8 Ia_{5.92}}O_{24}$	1450/24h	Hexagonal P6 ₃ cm	29.0	29000		1	952
2126 2126	$Ba_8CUIa_6C_{24}$ $Ba_8CUIa_6O_{24}$		Hexagonal P6 ₃ cm	29.0	8600			932 952
2127	0.5CeO ₂ -0.25MnO-0.25TiO ₂ :0.4 Sb ₂ O ₃	1200	Composite	29.1	7000	4.9221	1	488
2128	$Ba(Zn_{1/2}W_{1/2})O_3$ $La(Mg_{*-},Ca_{*})_*$, TiO_* (x=1)+1 wt% ZnO_*	1330 1375/4h	Perovskite cubic Fm3m Perovskite	29.1	36000	8.9	-31 -59	528 977
							1	

4	Ξ	÷	
ď	ì	₹	
1	4	₹	
i	7	ζ	
1	3	3	
i	c	5	
1	Č	5	
1		5	
-	-	-	

						1			
	$BaHtO_3$	1750	Cubic perovskite Pm3m	29.1	5400	8.82		850	
	$Zn_{0.95}Mg_{0.05}ZrNb_2O_8$			29.1	81200			696	
2132	$Ca_2Mg_3(Nb_{1.75}Sb_{0.25})TiO_{12}$	1250	Mixture phases	29.2	18800		-22	843	
	Pr ₂ Tl ₂ SiO ₉	1325	Monoclinic C2/m	29.2	33700		20	096	
2134	0.9La(Mg _{1/3} Ti _{1/3})O ₃ -0.1SrTiO ₃		Perovskite Pbnm	29.2	14500	7.33		878	
2135	0.9Nd(Co _{1/2} Ti _{1/2})O ₃ -0.1SrTiO ₃	1440/4h	Perovskite mixtures	29.3	80900		0	626	
2136	Ba ₆ Ta ₄ TiO ₁₈	1550/2h	Not available	29.3	27500		45	895	
2137	$(1-x)La(Mg_{1/2}Ti_{1/2})O_3-xLa_{2/3}TiO_3 (x=0.3)$		Perovskite Orthorhombic Pnma	29.3	6500	8.3		889	
2138	$Sm(Mg_{0.5}Ti_{0.5})O_3+10 \text{ mol}\% Bi_2O_3$	1300	Composite	29.3	26300	8.84	-33	868	
2139	Mg _{0.7} Co _{0.3} Ta ₂ O ₆	1500/2h	Tetragonal P4 ₂ /mmm	29.3	45700		40	296	
2140	$SrYb_{1/2}Nb_{1/2})O_3+0.2 wt\% B_2O_3$	1350/4h	Complex perovskite	29.3	30600		-75	823	
			Orthorhombic						
2141	Ca[(Li _{1/3} Nb _{2/3}) _{0.95} Zr _{0.15}]O _{3+d} +5 wt% Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃ glass	940	Perovskite	29.4	5400		-25	086	
2142	$Sr(Yb_{1/2}Nb_{1/2})O_3$	1500	Perovskite Hexagonal	29.4	20000	8.1	-72	290	
2143	$0.8(AI_{1/2}Ta_{1/2})O_2^2-0.2TiO_2$	1450/3h	Tetragonal	29.4	75470		0	981	
2144	$Ca[(Li_{1/3}Ta_{2/3}), 85Ti_{0.15}]O_{3-d} + 3 wt\% B_2O_3$	1050/4h	Perovskite	29.4	20700	10.47	-57	765	
	$Ba_6 TI_{1-x} Sn_x Nb_4 O_{18} (x=1)$	1530	Trigonal R-3m	29.5	28500	90.9	0	982	
2146	$Sr(Gd_{0.5}Ta_{0.5})O_3 + 0.5 \text{ wt}\% \text{ Nb}_2 O_5$	1600/4h	Complex perovskite Tetragonal	29.5	4000		99-	859	
	$BaZn_{1.98}Cu_{0.02} T_4O_{11}$	1190/2h	Orthorhombic Pbcn	29.5	51400		-34	983	
2148	$0.85(Mg_{0.7}Zn_{0.3})_{0.95}Co_{0.05}TiO_3$ -		Composite	29.5	65000	6		984	
	$0.15 \mathrm{Ca}_{0.8} \mathrm{Sm}_{0.4/3} \mathrm{TiO}_{3}$								
2149	$ZnZrNb_2O_8$			29.5	61000		-53	696	
	$Pr_{x}Y_{1-x}TiTaO_{6} (x=0.23)$	1600		29.6	41000		2	985	
2151	$Zn_{0.95}Co_{0.05}ZrNb_2O_8$			29.6	60500			696	
	$0.94 \text{CoNb}_2 \text{O}_6 \text{-} 0.06 \text{TiO}_2$	1150	Composite	29.6	20300		4	545	
	0.78 ZnNb $_2$ O $_6$ - 0.22 TiO $_2$	1200	Composite	29.6	27700		22	545	
2154	$Ca[Li_{1/3}Nb_{2/3}]O_3$	1150/3h	Perovskite	29.6	40000		-21	752	
2155	$Ca(ln_{1/2}Nb_{1/2})O_3$	1550/4h	Complex perovskite	29.6	37900		-33	763	
			Orthorhombic						
2156	2156 La($Mg_{1/2}Ti_{1/2}$)O ₃ +1 wt% CuO	1450	Perovskite P2 ₁ /n	29.6	33800		-68	986	
									ı

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	$ au_f$	Reference
2157	Sr(Nd _{1/2} Nb _{1/2})O ₃	1500	Perovskite	29.7	2500	8.1	-32	290
2158	SmTaTi _{0.5} Zr _{0.5} O ₆			29.7	32173		-21	671
2159	Ba ₁₀ Co _{0.25} Ta _{7.9} O ₃₀	1600/24h	Hexagonal P6 ₃ mc	29.7	36700		29	865
2160	$0.23 \text{ BaWO}_4 - 0.77 \text{Ba}_5 \text{ Nb}_4 \text{O}_{15}$	1100	Composite	29.7	44600		28	485
2161	$(1-y)Li_{2.02}Ti_{0.92}Nb_{0.06}O_3$ (y=0.4)	1070		29.8	10000		24	722
2162	Mg _{0.93} Co _{0.07} Ta ₂ O ₆	1500/2h	Tetragonal P4 ₂ /mmm	29.8	68200		42	296
2163	Ca[(Li _{1/3} Nb _{2/3}) _{0.9} Zr _{0.1} 1O _{3-d}	1150	Perovskite	29.8	36300		-5	286
2164	$Ba[Ti_{1-x}(Ni_{1/2}W_{1/2})_x]O_3$ (x=0.4)	1425	Perovskite Hexagonal P6 ₃ /mmc	29.8	26700		^	695
2165	0.9La(Mg _{1/2} Ti _{1/2})O ₃ -0.1CaTiO ₃	1600	Perovskite P2 ₁ /n	29.8	16700	6.9	-70	932
2166	$La(Co_{1/2}Ti_{1/2})O_3+0.25$ wt% CuO	1380	Orthorhombic Pnm ₂₁	29.8	64000	8	-56	988
2167	NdNbO ₄	1150	Fergusonite	29.8	49000		53	686
2168	$Zn_{0.95}Mn_{0.05}ZrNb_2O_8$			29.8	59800		-40	696
2169	$Ba_3YNb_3O_{12}$	1450		29.9	39500		24	066
2170	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Zr_x]O_3 (x=0.05)$	1150	Perovskite orthorombic	29.9	46300		-20	733
2171	$La(Mg_{1-x}Zn_x)_{1/2}T_{1/2}O_3+1$ wt% B_2O_3	1475	Perovskite Cubic Pa3	30.0	74000		-63	991
2172		820	Composite	30.0	1900		-20	494
2173	$Ca(Dy_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovskite Monoclinic	30.0	26500		9-	750
			P2 ₁ /n					
2174	$ZnZrNb_2O_8$	950	Monoclinic P2/c	30.0	61000		-52	992
2175	$Ba(Yb_{1/2}Nb_{1/2})O_3$	1700	Complex perovskite	30.0	16500	8.7	118	290
1	() i			0	7		,	
71/6	Nb2O5-Zn _{0.95} Mg _{0.05} IIO ₃ +0.25 IIO ₂ +5 wt% Bi ₂ O ₃	096	Composite	30.0	12000		71-	993
2177	$Ba_4LiNb_{3-x}Ta_xO_{12} (x=2)$	1400	Hexagonal perovskite	30.0	37500		34	941
2178	$Sr(Al_{1/2}Nb_{1/2})O_3 + 0.2 \text{ wt}\% B_2O_3$	1350/4h	Complex perovskite	30.0	22500		-2	823
2179	La ₄ Ba ₂ Ti ₅ O ₁₈ +B ₂ O ₃		Hexagonal R	30.0	20000		52	994
2180	Ba(Zn,Ta)O ₃ -Ba(Zn,Nb)O ₃		Complex perovskite Trigonal P-3m1	30.0	164000	12	0	903
2181	Ba(Ca _{1/3} Ta _{2/3})O ₃		Perovskite Hexagonal	30.0	27400	_	145	701
2182	BaNb ₂ O ₆	1300	Orthorhombic C222 ₁	30.0	43000		-45	962
2183	$Pb_{0.5}Ca_{0.5}(Al_{1/2}Nb_{1/2})O_3$		Perovskite	30.0	1500	5.1	-23	966

(panu
conti
_

2184	$CaZrO_3$		Perovskite Pcmn Orthorhombic	30.0	26400	11	-27	866'266
2185	$SrZrO_3$		Perovskite Orthorhombic Pcmn	30.0	13600	11	- 92	866'266
2186	$La(Co_{1/2} \Pi_{1/2})O_3$	1440/6h	Perovskite Orthorhombic Pnm2 ₁	30.0	00029	10	-64	819
2187	$Ba_{8}Li_{2}Nb_{2}Ta_{4}O_{24}$		Hexagonal P6 ₃ mmc	30.0	37500			952
2188	Ca[(Li _{1/3} Nb _{2/3}) _{0.9} Zr _{0.1}]O ₃₋₆	1150	Perovskite	30.0	36300		-5	666
2189	$(1-x)Sr(Li_{1/4}Nb_{3/4})O_3$ - $xSr(Li_{2/5}W_{3/5})O_3$ (x=0.385)	1450	Provskite monoclinic P2 ₁ /c	30.0	21200		-33	951
2190	$(1-x)Ca(Li_{1/4}Nb_{3/4})O_3-xCa(Li_{2/5}W_{3/5})O_3$ (x=0.238)	1150	Perovskite	30.0	22700		-33	951
2191	$ZnTiO_3 + 0.25TiO_2 + 1 \text{ wt}\% B_2O_3$	875/4h	Mixture	30.0	26000		10	1000
2192	Sm _{0.8} Y _{0.2} TiNbO ₆	1400	Orthorhombic Pbnm	30.0	11000		17	564
2193	$Ba_5Ta_4O_{15}$	1550/40h	Hexagonal perovskite	30.0	31600		12	325
2194	$Bi_2ZnNb_2O_9+ZnNb_2O_6+3$ wt%	006	Composite	30.0	3500	9		1001
	$PDO-BI_2O_3-B_2O_3-CNO-11O_2$ glass							
	$Ba_2Ti_9O_{20}+9 \text{ wt\% } B_2O_3$	1050/2h	Monoclinic P2 ₁ /m	30.0	13700		9	1002
2196	$Ba(Zn_{1/3}Ta_{2/3})O_3+1 \text{ mol}\% Mn$	1550	Perovskite Trigonal P-3m1	30.0	145000		0	787
	$Ba_3[Zr_{0.09}Ni_{0.125}Zn_{0.845}Ta_{1.94}]O_3$	1520/48h	Perovskite Trigonal P-3m1	30.0	138710		1	945
2198	$Ba(Zr_{0.05}Zn_{0.32}Ta_{0.63})O_3$	1500/4h	Complex perovskite Trigonal	30.0	148000		8	1003
			P-3m1					
2199	$0.15 \mathrm{TiTe_3} \mathrm{O_8} 0.85 \mathrm{TeO_2}$	200	Composite	30.0	22000	5	0	586
	BaO-CeO ₂ -TiO ₂ +1.5 wt% CuO	1050	Composite	30.0	32000		-11	366
2201	$Ca_{1-x}Nd_{2x/3})TiO_3+3ZnO-2B_2O_3$ glass	880	Perovskite Tetragonal	30-	200-		20-60	1004
	(20-40 mol%)			09	2200			
	$3CaO-2MgO-Ta_2O_5-TiO_2$	1550	Composite	30.0	185000	4.6	-24	230
2203	$La(Zn_{1/2}Ti_{1/2})O_3$ sol-gel	1350	Perovskite Orthorhombic	30.0	00009		-71	1005
2204	$Ca(Yb_{1/2}Nb_{1/2})O_3$	1550/4h	Complex perovskite Orhorhombic	30.0	32500		-25	763
2205	Sr(Fu, , Ta, ,)O,	1600/4h	Complex perovskite	30.0	45500		-43	861
22.06	Sr(Cid. "Ta. ")O.	1600/4h	Complex perovskite	30.0	4000		99-	861
2207	Ca(Dv ₁ , Ta ₁ , n)O ₂	1600/4h	Complex perovskite	30.0	26500		9-	750
2208	$BaZn_2TI_4O_{11}$	1200	Orthorhombic Pbcn	30.0	00089		-30	1006

ON	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	τ_f	Reference
2209	Ba ₅ SrTa ₄ ZrO ₁₈ +2 wt% Bi ₂ O ₃ -B ₂ O ₃	1525/4h	Trigonal R-3m	30.0	18500		37	895
2210	8aZn _{1.95} Ti ₄ O _{10.95} La(Co, ,, Ti, ,,)O, +0.25 wt% B, O,	1200 1350/6h	Orthorhombic Pbcn Perovskite	30.0	110000	∞	-48	1006
2212	$(1-x)Sr(Li_{1/4}Nb_{3/4})O_3-xSr(Li_{2/5}W_{3/5})O_3$ (x=0.385)	1450	Perovskite	30.0	21200	9.2	-33	951
2213	$(Ca_{2\beta}La_{1\beta})(Li_{1\beta}Nb_{2\beta})O_3$	1250	Monoclinic P2 ₁ /c	30.0	26500	8.7	-26	824
2214	(1-x)CaTiO ₃ -xSm(Mg _{1/2} Ti _{1/2})O ₃ (x=0.8)		Orthorhombic Pnm1 Perovskite	30.0	13000		-20	1008
2215	$BaZn_{2-x}Ti_4O_{11-x}$ (x=0-0.1)	1250/4h	Orthorhombic Pbcn	30.0	83000		-30	1006
2216	Ba ₁₀ Co _{0.25} Ta _{7.9} O ₃₀	1550	P6 ₃ mc	30.0	36700	3.78	29	958
2217	$Sr(Eu_{0.5}Ta_{0.5})O_3+0.5 \text{ wt}\% \text{ Nb}_2O_5$	1600/4h	Complex perovskite Tetragonal	30.0	45500		-63	859
2218	$Nd_5 TI_4 FeO_{17}$	1400	Monoclinic P21/b	30.0	7400		-104	911
2219	$Ba_6Ta_4ZrO_{18}+2$ wt% $Bi_2O_3-B_2O_3$ glass	1625/2h		30.1	41000		5	895
2220		1350	Multiphase	30.1	9225	5.8	-17	400
2221	Nd ₂ T ₂ SiO ₉	1300	Monoclinic C2/m	30.1	19600		10	096
2222	TeO_2+15 wt% CaTiO ₃		Composite	30.1	21400		29	444
2223	MgTa ₂ O ₆ (Sol-gel)	1200	Columbite Tetragonal P4 ₂ /mmm	30.1	57300		29	1009
2224	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Zr_x]O_3$ (x=0.1)	1150	Perovskite Orthorhombic	30.1	36000		-5	733
2225	0.8Sm(Mg _{0.5} Ti _{0.5})O ₃ - 0.2 Ca _{0.8} Sr _{0.2} TiO ₃	1550/3h	Perovskite	30.1	115000		6	1010
2226	LiBiW ₂ O ₈ +30 mol% TiO_2	700/2h	Composite	30.2	13000		6-	888
2227	$La(Co_{1/2}Ti_{1/2})O_3+0.75 \text{ wt}\% \text{ ZnO}$	1320	Perovskite	30.2	73000	8	-35	1011
2228	MWF-38+10 wt% $Li_2O-B_2O_3-SiO_2$. (56 92.37 59.5 49)	875	Composite	30.2	9500		3	510
2229	Bali, Ti ₆ O ₁₄ +0.5 wt% BaCu(B ₃ O ₅)	920	Orthorhombic Cmca	30.2	28400		-18	1012
2230	MgTa, O ₆	1550	Tetragonal P4,/mmm	30.3	29600		30	009
2231	$ZnTa_2O_6$	1400	Orthorhombic Pbcn	30.3	87580		6	1013
2232	$\operatorname{Eu}(\operatorname{Zr}_{1,3}\overset{\circ}{\operatorname{Ti}}_{2,3})\operatorname{O}_6$	1600	Aeschyenite Orthorhombic Pnma	30.4	11000	4.5	1	1014
2233	$Nd(Zn_{1/2}Ti_{1/2})O_3+1.5 \text{ wt}\% CuO$	1240	Complex perovskite Monoclinic	30.4	14000	8	-44	1015
2234	(AgBi) _{1/2} MoO ₄	069	Tetragonal 14 ₁ /a	30.4	12600	8.7	57	229
2235	Mg _{0.99} Co _{0.01} Ta ₂ O ₆	1500/2h	Tetragonal P4 ₂ /mmm	30.4	72500		44	296
2236	$Eu(Zr_{1/3}TI_{2/3})O_6$	1600/4h	Aeschyenite Orthorhombic	30.4	11000		4-	1014
			Pnma					

_
Ö
ε
\approx
÷
Ħ
$\stackrel{\sim}{\sim}$
\approx
ತ

2237 2238	Ba _{1-x} La _{3x/3} ZrO ₃ (x=0.1) Ca[(Li _{1/3} Nb _{2/3}) _{0.8} Ti _{0.2}]O _{3-d} +5 wt% LBS glass	1430/15h 950/4h	Cubic Pm3m Complex perovskite Orthorhombic	30.4	9000	4.7	165 -18	1016 792
2239	Ba(Y _{1/2} Ta _{1/2})O ₃ Ba(Y _{1/2} Ta _{1/2})O ₃		Complex perovskite Complex perovskite	30.5	38500 38500	9.4	135	1017
2240	$Sr(A _{1/2}Nb_{1/2})O_3$	1600/4h	Complex perovskite	30.5	10800		-27	823
2241	0.09[0.5ZnNb ₂ O ₆ -0.5Zn ₃ Nb ₂ O ₈]- 0.91ZnTa ₃ O ₆ +3 wt% BBS	950	Composite	30.5	32600		11	955
2242	$Ba_{8}ZnTa_{6}O_{24}^{-}$	1400	Hexagonal perovskite	30.5	62000	8.9	36	818
2243	$Sr(Sm_{0.5}Ta_{0.5})O_3 + 0.5 \text{ wt}\% \text{ Nb}_2O_5$	1600/4h	Complex perovskite Tetragonal	30.5	45200		-61	859
2244	$Ca(Li_{1/3}Nb_{2/3})O_{3-d}+4 wt\% B_2O_3$	1000	Perovskite orthorhombic	30.6	31000		-18	1018
2245	$MgTa_2 O_6$	1550	Tetragonal P4 ₂ /mmm	30.6	58200		29	976
2246	$Mg_{0.97}Co_{0.03}Ta_2O_6$	1500/2h	Tetragonal P4 ₂ /mmm	30.6	89000		43	296
2247	$Sr(Ho_{1/2}Nb_{1/2})O_3 + 0.2 \text{ wt}\% B_2O_3$	1350/4h	Perovskite Tetragonal	30.6	16650		99-	823
2248	$Sr(Y_{1/2}Nb_{1/2})O_3 + 0.2 \text{ wt\% } B_2O_3$	1350/4h	Complex perovskite	30.7	42500		- 92	823
			Orthorhombic					
2249	$Mg_{0.95}Co_{0.05}Ta_2O_6$	1500/2h	Tetragonal P4 ₂ /mmm	30.7	106200		43	296
2250	$Sr(Yb_{1/2}Nb_{1/2})O_3+0.5 wt\% CeO_2$	1600/4h	Complex perovskite	30.7	26600		-73	823
			Orthorhombic Pnma					
2251	$Nd(Zn_{1/2}Ti_{1/2})O_3+1$ wt% CuO	1270	Complex perovskite Monoclinic	30.7	158000	8	-45	1015
2252	Ca(Fe _{1/2} Ta _{1/2})O ₃		Complex perovskite	30.7	3000	5.38		1019
2253	$Mg_{0.5}Zn_{0.5}TiNb_2O_8$	1120/6h	Not available	30.7	00699		4-	1020
2254	Ca[(Li _{1/3} Nb _{2/3}) _{0.8} $\overline{\text{H}}_{0.2}$]O _{3-d} +5 wt% LMZBS	975	Complex perovskite Orthorhombic	30.7	22600		-18	792
2255	$Sr_6Ta_4ZrO_{18}+3$ wt% $Bi_2O_3-B_2O_3$	1625/2h	A ₆ B ₅ O ₁₈ type perovskite	30.8	2600		-19	895
2256	$Nd(Zn_{1/2}Ti_{1/2})O_3+0.75 \text{ wt}\% CuO$	1300	Complex perovskite Monoclinic	30.8	147500	8	-45	1015
2257	$Zn(T_{1-x}Sn_x)Nb_2O_8$		Orthorhombic Pbcn	30.9	43500		-54	1021
2258	0.8Li ₂ ZnTi ₃ O ₈ -0.2TiO ₂	1100	Ternary spinel cubic $P4_332$	30.9	56100		29	872

Š.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	τ_f	Reference
2259	0.1ВаПО ₃ -0.9La(МВ _{1/2} Ті _{1/2})О ₃		Perovskite Pbnm	30.9	16330	8.29	-72	933
2260	Li _{0.774} Zr _{0.057} NbO ₃	1150	Orthorhombic Pnma	30.9	3550		-16	1022
2261	$Ba_3ZnNb_{2-x}Sb_xO_9$ (x=0.75)		Perovskite Cubic Pm3m	30.9	23700	2	0	381
2262	$Ba_3ZnNb_{2-x}Sb_xO_9$ (x=0.5)		Perovskite Cubic Pm3m	30.9	35620	5.3	11	381
2263	0.85BaTi ₄ O ₉ -0.15BaZn ₂ Ti ₄ O ₁₁ +11 wt% BaCu(B,O ₇)	006	Composite	30.9	20200		12	1023
2264	$Ba_{1-x}Ca_x(Nd_{1/2}Nb_{1/2})O_3$		Perovskite Cubic Fm3m	30-42	25000-			1017
2265	$Ba_{1-x}Ca_x(Y_{1/2}Ta_{1/2})O_3$		Perovskite	30-22				1017
2266	$(1-x)LaMg_{1/2}T_{1/2}-xLa_{2/3}TiO_3$ (x=0.2)		Perovskite	31.0	43000	6.3	-54	950
2267	2CaO-3NiO-Nb,O ₅ -TiO,	1275	Composite	31.0	7500	4.3	-49	230
2268	$(1-x)Sr(Li_{1/4}Nb_{3/4})O_3-xSr(Li_{2/3}W_{3/5})O_3$ (x=0.333)	1450	Perovskite monoclinic P2 ₁ /c	31.0	27400	8.7	-23	951
2269	$(Sr_{0.15}Ba_{0.85})(Yb_{0.5}Ta_{0.5})O_3$	1600/4h	Complex perovskite	31.0	32100		0	859
2270	$(1-x)Ca(Li_{1/4}Nb_{3/4})O_3-xCa(Li_{2/3}W_{3/5})O_3$ (x=0.238)	1150	Provskite monoclinic P2 ₁ /c	31.0	22700	10.3	-33	951
2271	$(1-x)Ba (Li_{1/4} Nb_{3/4})O_3$ -xBa $(Li_{2/3} W_{3/5})O_3$ (x=0.333)	1470	Perovskite Cubic P-3m1	31.0	19000	7.8	18	1024
2272	Sm(Zn _{1,2} Ti _{1,2})O ₃	1310/2h	Perovskite Orthorhombic Pnm	31.0	37000	8	-19	1025
2273	$Ba_3Zn_7Ti_{12}O_{34}$	1150/4h		31.0	4300		-25	1026
2274	BaO-TiO ₂ -WO ₃ (N-35):5 wt% Al,O ₃ -SiO ₂ -B,O ₃	1100	Composite	31.0	5400	5.7	I	786,862
2275	Ba(Mg _{1/3} Nb _{2/3})O ₃ +2 mol% B ₂ O ₃ +10 mol% CuO	875	Perovskite composite	31.0	21500		21	1027
2276 2277	$0.5Ba(Mg_{1/2}W_{1/2})O_3$ - $0.5BaTiO_3$ $Ba_8Zn(Nb_{6-x}Sb_x)O_{24}$ (x=0.9)	1425	Perovskite composite	31.0	8200 11550	1	125	373 503
2278	Bi ₂ MoO ₆	750	Monoclinic P2 ₁ /n	31.0	16700	6.4	-114	494
2279	$(Zr_{0.8}Sn_{0.2})TiO_4 + MnO_2$	1350/4h 820	Orthorhombic Pbcn	31.0	93000	9.3	141	1028
2281	022_3_2mo_3 Mg4_La2_Ti ₅ O ₁₇	1350/4h		31.0	15000		4	1029

•	ξ	5
	11011	3
	2	3
	+	2
	þ	=
	ć	3
•		-

900 1150 1150 1150 1150 1150 0.05[Sr _{0.25} Ba _{0.75}] 1500 1150/4h 1600/4h 1625 1625 1625 1625 1625 1625 1625 1625	31.0 18200 4 1030	60000	31-26 54600- 13 to -9 949	31.0 210000 971	31.0 4300 10 -25 1026	32000 0	450042	45200 —61	31.0 10800 -27 823,1031	3500013	26600 -73	3100018	31.0 12000 5.3 -28 865	33000 4.6 -10	31.0 43000 4.7 -62 230	19000 7.8 18	40000 4.7 -26	31.0 48000 -18 1032	31.0 46000 18 1033	31.1 9500 5.2 8 851	3180 —8	31.1 38400 –71 823	37481 –2	31.1 27100 -15 733	14800	313 73600 687 1034
1-0.25(Π _{1-x} Sn _x)O ₂ 1-0.25(Π _{1-x} Sn _x)O ₂ 1-0.25(Π _{1-x} Sn _x)O ₂ 1-0.3-0.05[Sr _{0.25} Ba _{0.75}] 1-1-0.3-1 1	Composite					Ū			Ū			_		_						•		_			Composite	/4h Orthorhombic Pbcn
			$5(\Pi_{1-x} Sn_x)O_2$	ν =		,Ta _{1,0})O ₃		1		-	_	wt% B2O3	_	•	•	-Ba(Li _{2/3} W _{3/5})O ₃		•		3,0)		7	smTaTi _{0.7} Zr _{0.3} O ₆		$100_2 + 12.5 \text{ wt}\% \text{ CaTIO}_3$	CaF,

2310 Sr(La _{0.5} Ta _{0.5})O ₃ +0.5 wt% Nb ₂ O ₅ 2311 O.75(Al _{1/2} Ta _{1/2})O ₃ +0.2 wt% B ₂ O ₃ 2312 Nd(Zr _{1/3} Ta _{1/2})O ₆ 2313 (Zr _{0.8} Sn _{0.2})TiO ₄ +10 wt% BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 2314 Nd(Zr _{1/3} Ti _{1/3})O ₆ 2315 (Zr _{0.8} Sn _{0.2})TiO ₄ +10 wt% BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 2316 Nd(Zr _{1/3} Ti _{1/3})O ₆ 2317 Ba(Ti _{1-x} (Zn _{1/2} Wl _{1/2})X ₁ O ₃ (x=0.2) 2318 O.9Ba(Zn _{1/3} Ta _{2/3})O ₃ -0.1BaTi ₄ O ₉ 2319 Ba([Mg _{1-x} Ca _x)t _{1/3} Nb _{2/3}]O ₃ (x=0.05) 2320 (Zr _{1-x} Sn _x)(Li _{1/3} Nb _{3/4})O ₄ Ti _{0.6} O ₄ (x=0.3) 2321 Sr(Nd _{0.5} Ta _{0.5})O ₃ +0.5 wt% Nb ₂ O ₅ 2322 (Li _{0.5} Bi _{0.5})(W _{0.6} Mo _{0.4})O ₄ 2323 Nd(Zn _{1/2} Ti _{1/2})O ₃ 2324 Sr(Sm _{0.5} Ta _{0.5})O ₃ +0.5 wt% Nb ₂ O ₅ 2325 SmTaTi _{0.8} Zr _{0.2} O ₆ 2326 (Zr _{0.8} Sn _{0.2})TiO ₄ +10 wt% BaO-B ₂ O ₃ -SiO ₂ -Li ₂ O-CuO 2327 Ba ₅ NbTa ₃ O _{1.5} (A _n B _{n-1} O _{3n}) 2328 BaSt ₄ Ta ₄ O _{1.5} (A _n B _{n-1} O _{3n}) 2329 Owt% BaTi ₄ O ₉ +10 wt% Li ₂ O-B ₂ O ₃ -SiO ₂ 2330 Ba[(Mg _{1-x} Co _x)] _{1,2} Nb _{2,2} O ₅ (x=0.8)							
Sr(Dy _{1/2} Nb _{1/2})O ₃ + 0.75(Al _{1/2} Ta _{1/2})O ₂ Nd(Zr _{1/3} T _{1/2})O ₆ Nd(Zr _{1/3} T _{1/3})O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Nd(Zr _{1/3} T _{1/3})O ₆ Ca(Ho _{1/2} Nb _{1/2})O ₃ Bi [Sb _{1-x} (Nb _{0.992} V ₀ Ba [Ti _{1-x} (Zn _{1/2} W _{1/2} O.9Ba(Zn _{1/3} Ta _{2/3})C Ba [(Mg _{1-x} Co _x) _{1/3} Nb ₃ Sr(Nd _{0.5} Ta _{0.5})O ₃ + (Li _{0.5} Bi _{0.5})(W _{0.6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Nd _{0.5} Ta _{0.5})O ₃ + (Li _{0.5} Bi _{0.5})(W _{0.6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ + wt% TiO ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O ₁₅ (An ^B BaSr ₄ Ta ₄ O ₁₅ (An ^B) Ba (f(Mg _{1-x} Co _o)) ₁₋₁₂		Khombohedral K3m complex Perovskite	31.2	4500		-42	859
(Z _{10.8} Sn _{0.2}) Ti ₂ Ti ₂ Ti ₂ Nd(Zr _{1/3} Ti _{2/3}) O ₆ (Z _{10.8} Sn _{0.2}) Ti ₂ O ₄ + 1 BaO-B ₂ O ₃ - Si ₂ O ₅ Nd(Zr _{1/3} Ti _{1/3}) O ₆ (Za(Ho _{1/2} Nb _{1/2}) O ₃ Ba [Ti _{1-x} (Zn _{1/2} W _{1/2} O ₉ Ba [Ti _{1-x} (Zn _{1/2} W _{1/2} O ₉ Ba [Ti _{1-x} (Zn _{1/2} W _{1/2} O ₉ Ba [Ti _{1-x} (Zn _{1/2} W _{1/3} Nd _{2/3}) C (Zr _{1-x} Sn _x) (Li _{1/3} Nb ₃ Sr(Nd _{0.5} Ta _{0.5}) O ₃ + (Li _{0.5} Bi _{0.5}) (W _{0.6} Mt Nd(Zn _{1/2} Ti _{1/2}) O ₃ Sr(Sm _{0.5} Ta _{0.5}) O ₃ + (Li _{0.5} Bi _{0.5}) (W _{0.6} Mt Nd(Zn _{1/2} Ti _{1/2}) O ₃ Sr(Sm _{0.5} Ti _{0.5} Co ₆ (Zr _{0.8} Sn _{0.2}) Ti ₂ + 1 BaO-B ₂ O ₃ - Si ₂ O ₅ Ba ₅ NbTa ₃ O _{1.5} (An BaS ₄ Ta ₄ O _{1.5} (An	1600	Composite	31.2	30300		-63 13	823
(Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₅ Nd(Zr _{1.3} Ti _{1.3})O ₆ Ca(Ho _{1/2} Nb _{1/2})O ₃ Bi[Sb _{1-x} (Nb _{0.992} V ₀ Ba[Ti _{1-x} (Zn _{1/2} W _{1/2} 0.9Ba(Zn _{1/3} Ta _{2/3})C Ba[(Mg _{1-x} Co _x) _{1/3} N (Zr _{1-x} Sn _x)(Li _{1/3} Nb ₃ Sr(Nd _{0.5} Ta _{0.5})O ₃ + (Li _{0.5} Bi _{0.5})(W _{0.6} Mt Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sn _{0.5} Ta _{0.5})O ₃ + wt% TiO ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O ₁₅ (An ₆ BaS ₇ Ta ₄ O ₁₅ (An ₆)	70101	Aeschyenite Orthorhombic Pnma	31.4	15800	4.3	9	1014
Ca(Ho _{1/2} Nb _{1/2})O ₅ Nd(Zr _{1/3} T _{1/3})O ₆ EliSb _{1-x} (Nb _{0.992} V ₀ Ba[Ti _{1-x} (Zn _{1/2} W _{1/2})O Ba[Ti _{1-x} (Zn _{1/2} W _{1/2})O Ba[Wg _{1-x} Co _x) _{1/3} N (Zr _{1-x} Sn _x)(Li _{1/3} Nb ₃)Sr(Nd _{0.5} Ta _{0.5})O ₃ + (Li _{0.5} Bl _{0.5})(W _{0.6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sn _{0.5} Ta _{0.5})O ₃ + wrf Ti _{0.5} Zn _{0.5} O ₆ (Zr _{0.8} Sn _{0.2})Ti _{0.4} +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O ₁₅ (A _n BaSx ₄ Ta ₄ O ₁₅ (A _n B _n BaSx ₄ Ta ₄ O ₁₅ (A _n B _n BaSx ₄ Ta ₄ O ₁₅ (A _n B _n BaSx ₄ Ta ₄ O ₁₅ (A _n B _n BaSx ₄ Ta ₄ O ₁₅ (A _n B _n BaSx ₄ Ta ₄ O ₁₅ (A _n B _n BaSx ₄ Ta ₁ O ₂ O ₅ (O ₁)] _{1,2} TaSx ₄ O ₁₅ (O ₁₅)	1050/411	Orthorhombic Pbcn	31.4	32200		ī	515
Ca(Ho _{1/2} Nb _{1/2})O ₃ Bi[Sb _{1-x} (Nb _{0.992} V ₀ Ba[Ti _{1-x} (Zn _{1/2} W _{1/2} 0.9Ba(Zn _{1/3} Ta _{2/3})C Ba[(Mg _{1-x} Co _x) _{1/3} Nb ₃ Sr(Nd _{0.5} Ta _{0.5})O ₃ + (Li _{0.5} Bi _{0.5})(W _{0.6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ + wt% TiO ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba5,NbTa ₃ O ₁₅ (An ^B Ba5, NbTa ₃ O ₁₅ (An ^B Ba5, Ta ₄ O ₁₅ (An ^B Ba5, Co ₂) _{1/3} P	1600/4h	Aeschyenite Orthorhombic Pnma	31.4	15800		9	1014
Bi[Sb _{1-x} (Nb _{0.992} V ₀ Ba[Ti _{1-x} (Zn _{1/2} W _{1/2} 0.9Ba(Zn _{1/3} Ta _{2/3})C Ba[(Mg _{1-x} Co _x) _{1/3} Nb ₃ Sr(Nd _{0.5} Ta _{0.5})O ₃ + (Li _{0.5} Bi _{0.5})(W _{0.6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ + wt% TiO ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba5,NbTa ₃ O ₁₅ (An _B) Ba6(Mg _{1-x} Co _{0.}) _{1/3} P	1550/4h	Complex perovskite Orthorhombic	31.4	32000		3	763
Ba[Ti _{1-x} (Zn _{1/2} W _{1/2} O) 0.9Ba(Zn _{1/3} Ta _{2/3})C Ba[(Mg _{1-x} Co _x) _{1/3} N (Zr _{1-x} Sn _x)(Li _{1/3} Nb ₃ Sr(Nd _{0.5} Ta _{0.5})O ₃ + (Li _{0.5} Bi _{0.5})(W _{0.6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ + Nd(Zn _{1/2} Ti _{1/2})O ₃ + wt% TiO ₂ SmTaT _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O ₁₅ (An BaSr ₄ Ta ₄ O ₁₅ (An Ba (Mg _{1-x} Co ₀)] _{1-x} h	0.2)	Monoclinic 12/c	31.4	8000		8	715
0.9Ba(Zn _{1/3} Ta _{2/3})C Ba [(Mg ₁ , Co _x) _{1/3} N Zr _{1-x} Sn _x)(Li _{1/3} Nb ₃ Sr(Nd _{0.5} Fa _{0.5})O ₃ + (Li _{0.5} Bi _{0.5})(W _{0.6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ + wt% TiO ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O ₁₅ (An BaSr ₄ Ta ₄ O ₁₅ (An) Ba Sr ₄ Ta ₄ O ₁₅ (An) Ba Sr ₄ Ta ₄ O ₁₅ (An) Ba Sr ₄ Ta ₄ O ₁₅ (An)	1420	Cubic perovskite Fm3 ⁻ m	31.4	20900		1	962
Ba[(Mg _{1-x} Co _x) _{1,3} N (Z _{1-x} Sn _x)(Li _{1,3} Nb ₃ Sr(Nd _{0,5} Ta _{0,5})O ₃ + (Li _{0,5} Bi _{0,5})(W _{0,6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sm _{0,5} Ta _{0,5})O ₃ + wt% TiO ₂ SmTaTi _{0,8} Zr _{0,2} O ₆ (Zr _{0,8} Sn _{0,2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O _{1,5} (A _n] BaSr ₄ Ta ₄ O _{1,5} (A _n BaSr ₄ Ta _{1,5} (A	1320	Perovskite Hexagonal Composite	31.5	68500	9	4	1035
(Z ₁ , Sn _x)(Li ₁ ,3 Nb ₃) Sr(Nd _{0.5} Ta _{0.5})O ₃ + (Li _{0.5} Bi _{0.5})(W _{0.6} Mc Nd(Zn ₁ ,2 Ti ₁ ,2)O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ + wt% TiO ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O ₁₅ (An BaSr ₄ Ta ₄ O ₁₅ (An Ba (Mg ₁ , ZO ₀)] _{1,2} h	05)	Perovskite Trigonal P-3m1	31.5	45000		17	1036
Sr(Nd _{0.5} Ta _{0.5})O ₃ + (Li _{0.5} Bl _{0.5})(W _{0.6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ + wt% Ti ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O _{1,5} (A _n) BaSr ₄ Ta ₄ O _{1,5} (A _n B _n) BaSr ₄ Ta ₄ O _{1,5} (A _n B _n) BaSr ₄ Ta ₄ O _{1,5} (A _n B _n) BaSr ₄ Ta ₄ O _{1,5} (A _n B _n) BaSr ₄ Ta ₄ O _{1,5} (A _n B _n) Ba Sr ₄ Ta ₄ O _{1,5} (A _n B _n)	(x=0.3) 1140	I	31.5	58300		-33	1037
(Li _{0.5} Bi _{0.5})(W _{0.6} Mc Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ + wt% filo ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O _{1,5} (A _n BaSr ₄ Ta ₄ O _{1,5} (A _n B _n BaSr ₄ Ta ₄ O _{1,5} (A _n B _n BaSr ₄ Ta ₄ O _{1,5} (A _n B _n BaSr ₄ Ta ₄ O _{1,5} (A _n B _n BaSr ₄ Da ₂ O ₃ -SiO ₃ Li ₂ O-B ₂ O ₃ -SiO ₃	O_5 1600/4h	Complex perovskite Tetragonal	31.5	38500		-55	859
Nd(Zn _{1/2} Ti _{1/2})O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ + wt% TiO ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O ₁₅ (A _n) BaSr ₄ Ta ₄ O ₁₅ (A _n) BaSr ₄ Ta ₄ O ₁₅ (A _n B _n) O wt% BaTi ₄ O ₉ + Li ₂ O-B ₂ O ₃ -SiO ₂ Ba((Mg _{1.2} Co ₂)) _{1.3})	620		31.5	8500	8.2	20	1038
Sr(Sm _{0.5} Ta _{0.5})O ₃ + wt% TiO ₂ SmTaTi _{0.8} Zr _{0.2} O ₆ (Zr _{0.8} Sn _{0.2})TiO ₄ +1 BaO-B ₂ O ₃ -SiO ₂ Ba ₅ NbTa ₃ O ₁₅ (A _n BaSr ₄ Ta ₄ O ₁₅ (A _n BaSr ₄ Ta ₄ O ₁₅ (A _n B _n) Ui ₂ O-B ₂ O ₃ -SiO ₂ Ba (Mg _{1.2} Co ₂)] _{1.3} Ba (Mg _{1.2} Co ₂)	1330/4h	Pervskite Monoclinic	31.6	170000	8.5	-42	1039
	O ₅ 0.2 1600/4h	Complex perovskite Tetragonal	31.6	46400		-55	859
		Cubic Fd3m	31.7	30654		9	671
	1050/12h	Composite	31.7	29700		-2	1040
	1500	Trigonal P3m1 perovskite	31.7	21500		16	851
	1600	Trigonal P3m1 perovskite	31.7	2800	5.34	09-	851
	875	Composite	31.7	0006		10	592
	(8)	Dorovekita	31.7	76900		c	1041
		Outhoutombio Conce	7.1.0	00607	7	, L	101
	1025	Orthornombic Cmca	31.7	23300	ζ. '	<u> </u>	7101
$2332 ext{ Sr(Sm}_{1/2} ext{Nb}_{1/2}) ext{O}_3$	1500	Complex perovskite Monoclinic P2 ₁ /n	31.8	41000	8.1	-45	590

	1	7		
		Ċ	i	
		1		
		2		
	•	÷		
		2		
		200		
		Ċ		
	•	-		

2333	$Nd[(Co_{0.02}Zn_{0.8})_{1/2}Ti_{1/2}]O_3$		Perovskite monoclinic	31.8	176000	0.6	-43	1042
2334	$BaNb_2P_2O_{11}$	1150	Trigonal R3-c	31.8	24100		45	268
2335	$(Zr_{1-x}Sn_x)(Li_{1/4}Nb_{3/4})_{0.4}Ti_{0.6}O_4 (x=0.3)$		I	31.8	58300		-33	1043
2336	ZnTiNb ₂ O ₈ +2 wt% Li ₂ O-ZnO-B ₂ O ₃	875	lxiolite	31.8	25000		-62	1044
2337	$Ba[(Ni_{1/3}Nb_{2/3})_{1-x}Zr_x]O_3$ (x=0.1)	1650	Perovskite	31.8	36100		8	1045
2338	MBRT-90+10 wt%	875	Composite	31.9	2200		20	510
	Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃ (28:27:30:5:10)							
2339	$Ba(Mg_{1,3}Nb_{2,3})O_3$		Complex perovskite Trigonal P-3m1	32.0	55500	10	33	787
2340	$Sr(Pr_{0.5}Ta_{0.5})O_3 + 0.5 \text{ wt}\% \text{ Nb}_2O_5$	1600/4h	Complex perovskite Tetragonal	32.0	8400		-50	859
2341	Ba(Yb _{1/2} Ta _{1/2})O ₃ +0.5 wt% Nb ₂ O ₅	1575	Complex perovskite	32.0	35850		112	845
2342	Ca[(Li _{1,3} Nb _{2,3}) _{0.95} Zr _{0.15}]O _{3+d} +15 wt% ZnO-B ₂ O ₃ -SiO ₂ glass rit	940/4h	Perovskite orthorhombic	32.0	66400		-27	1046
2343	La ₆ Mg _{0.913} Ti _{4.04} O ₁₈		Perovskite slab series	32.0	31000	6.1	-46	950
2344	$Ca_{5}Nb_{2}Ti_{0.4}Hf_{0.6}O_{12}$	1675	Perovskite Orthorhombic Pnma	32.0	22000	4.5	±0.5	490
2345	$Ba(Mg_{1/3-x}Nb_{2/3})O_{3-\delta}\ (x=0.02)$	1450	Complex perovskite Trigonal P-3m1	32.0	00096		30	1047
2346	$Ba(Co_{1/3} Nb_{2/3})O_3$	1400	Complex perovskite Trigonal P-3m1	32.0	78000		-12	1048,1049
2347	$Ba(Yb_{1/2}Ta_{1/2})O_3$	1625/4h	Complex perovskite	32.0	35900		112	943
2348	$Ca(Fe_{1/2}Ta_{1/2})O_3$	I	Complex perovskite Orthorhombic Pbnm	32.0	20000		-61	609
2349	Ca(Er _{1/2} Nb _{1/2})O ₃	1550/4h	Complex perovskite	32.0	31800		-18	763
2350	$Ca(Dy_{1/2}Nb_{1/2})O_3$	1550/4h	Complex perovskite Orthorhombic	32.0	32500		72	763
2351	$Sr(Sm_{1/2}Ta_{1/2})O_3+0.2$ wt% TiO_2	1600	Complex perovskite	32.0	46400		-46	861
2352	$Sr(Pr_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovskite	32.0	8400		-50	861
2353	$Sr(Nd_{1/2}Ta_{1/2})O_3$	1600/4h	Complex perovskite	32.0	38500		-55	861
2354	$Sr(Ho_{1/2} Nb_{1/2})O_3$	1600/4h	Complex Perovskite	32.0	20400		-65	823
2355	$Sr(Y_{1/2}Nb_{1/2})O_3$	1600/4h	Complex Perovskite	32.0	38800		99-	823
2356	$Sr(Er_{1/2}Nb_{1/2})O_3$	1575/4h	Complex perovskite	32.0	36100		29 -	823

, Š	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	τ_f	Reference
2357	BaO-2CeO ₂ -5TiO ₂ FutinbO ₂	1250	Composite Orthorhombic Phum	32.0	19100	7.3	14	909
2359	5CaO-2Nb,O _E	1500	Mixed phases	32.0	6500	6.48	-37	325
2360	BaTi ₄ O ₉ +10 wt% glass frit	875	Composite	32.0	0006		10	1050
2361	0.1(Na _{0.5} La _{0.5})TiO ₃ -0.9CeO ₂	1400	Mixed phases	32.0	8200		0	1051
2362	SrLi ₂ Ti ₆ O ₁₄ +0.5 wt% BCB	006	Orthorhombic Cmca	32.0	12900		-5	1012
2363	$3CaO-2CoO-Nb_2O_5-TiO_2$	1400	Composite	32.0	15000	4.3	-18	230
2364	0.25Ca ₂ AINbO ₆ -0.75Ca ₃ Nb ₂ O ₈		Mixture phases	32.0	7500	6.34	64	864
2365	$ZnTa_2O_6/MgNb_2O_6/ZnTa_2O_6$ (6:1:6) Vf lavered	I	Composite	32.0	82800		0	1052
2366	La ₅ Tí ₄ CrO ₁₇	1600/2h	Orthorhombic Pnnm	32.0	5700		-24	911
2367	$Ba(Cd_{1/3}Ta_{2/3})O_3 + B_2O_3$	1350	Complex perovskite Cubic Pm3m	32.0	20000	2	80	1053
2368	$Ca_5Nb_2Ti_{0.4}Hf_{0.6}O_{12}$	1675	Perovskite Orthorhombic Pnma	32.0	22000	4.458	∞0	490
2369	BaO-TiO ₂ -WO ₃ (N-35):5 wt% Al,O ₂ -SiO,	1100	Composite	32.0	11000	5.6	I	862
2370	$Ca[(\dot{L_{1/3}}Nb_{2/3})_{0.8}\dot{T_{10.2}}]O_{3-d}+3$ wt% LBS	1025	Complex perovskite orthorhombic	32.0	20000		-18	792
2371	SnTe ₃ O ₈	700/15h	Cubic Ia3	32.0	13200	4		53
2372	La ₆ Mg _{0.913} Ti _{4.04} O ₁₈			32.0	31000	6.1	-46	950
2373	$Ba(Sn_{0.226}Zn_{0.258}Nb_{0.516})O_3$	1500	Perovskite Cubic Pm3m	32.0	97000		12	1054
2374	Ba(Zn _{1,3} Nb _{2,3})O ₃ +5 mol% B ₂ O	006	Perovskite Cubic Pm3m	32.0	3500		20	1055
2375	$Sr(Sm_{0.5}Ta_{0.5})O_3+0.5 \text{ wt\% Nb}_2O_5 0.25$ wt% TiO_2	1600/4h	Complex perovskite Tetragonal	32.1	38600		-46	859
2376	$(Ca_2Mg_{2.75}Pb_{0.25})Nb_2(Tl_{0.75}Zr_{0.25})O_{12}$	1275		32.2	12250		-35	662
2377	$Sr(Er_{1/2}Nb_{1/2})O_3 + 0.5 \text{ wt}\% CeO_2$	1600/4h	Perovskite Orthorhombic	32.2	36100		- 92	823
2378	$Sr(Y_{1/2}Nb_{1/2})O_3 + 0.5 wt\% CeO_2$	1600/4h	Complex perovskite Orthorhombic	32.2	38850		99-	823
2379 2380	$Ba_5 Nb_3 TaO_{15}$ Sr(Ho ₁₇ ,Nb ₁₇ ,)O ₂ +0.5 wt% CeO,	1435 1600/4h	Trigonal P-3m1 perovskite Complex perovskite Tetragonal	32.2	4700	4.4	35	851 823
	2							

5	3
9	Ù
2	2
:	3
2	3
6	3
_	-

2381	$Sr(Tb_{1/2}Nb_{1/2})O_3+0.2 \text{ wt% } B_2O_3$ $Ba_6Nb_4ZrO_{18}$	1350/4h 1625/2h	Complex perovskite Tetragonal A ₆ B ₅ O ₁₈ type perovskite Trigonal R-3m	32.3	33500		-64 25	823 895	
2383	$\begin{array}{l} (Zr_{1\text{-}x}Sn_{x})(Li_{1/4}Nb_{3/4})_{0.4}Ti_{0.06}O_{4}\;(x{=}0.2)\\ Bi,W,O_{o} \end{array}$	875	Not available Orthorhombic Pbn21	32.4	50300	5.5	-24 -63	1037	
2385	$(S_{r_{0.05}}Ba_{0.95})(Y_{0.5}Ta_{0.5})O_3$	1600/4h	Complex perovskite	32.5	47300		0	859	
2386	Ca[(Li _{1/3} Nb _{2/3}) _{0.8} Ti _{0.2}]O _{3-d} +5 wt% ZnB,O ₄ glass	940	Perovskite Orthorhombic	32.5	20600		-26	1057	
2387	0.6Ba(Co _{1/3} Nb _{2/3})O ₃ -0.4Ba(Ni _{1/3} Nb _{2/3}) O ₃ +0.5 wt% CuO	1270	Composite	32.5	82000	6	-21	1058	
2388	0.09[0.5ZnNb ₂ O ₆ -0.5Zn ₃ Nb ₂ O ₈]- 0.97ZnTa ₂ O ₆ +3 wt% ZBS	950	Composite	32.5	32400			955	
2389	$Ba_6 T_{1-x} Sn_x Nb_4 O_{18} (x=0.75)$	1510	Trigonal R-3m	32.6	25800	6.2	18	982	
2390	0.9MgTiO ₃ -0.1BaTiO ₃	1325	Composite	32.7	31700		-85	1059	
2391	$ZnTiNb_2O_8+BaCu(B_2O_5)$	950	Orthorhombic Pbcn	32.6	20100	5.1	-64	1060	
	$Nd[(Zn_{0.925}Co_{0.075})_{0.5}T_{0.5}]O_3$	1390/4h	Not available	32.6	185300		31	1061	
	$ZnNb_2O_6+1.5 wt\% (CuO-V_2O_5-Bi_2O_3)$	870/2h	Orthorhombic columbite Pbcn	32.7	67100		-47	1062	
	$0.7 \mathrm{TeO_2}$ -SnTe $_3 \mathrm{O_8}$	650	Mixture phases	32.7	8800		-33	62	
	$(Bi_{0.8}La_{0.2})_2Mo_2O_9$		MonoclinicP21/n	32.7	13500		-2	1063	
2396	$(Zr_{1-x}Sn_x)(Li_{1/4}Nb_{3/4})_{0.4}Ti_{0.6}O_4$ (x=0.2)		I	32.7	47900		4-	1043	
2397	$0.09[0.5\text{ZnNb}_2\text{O}_6-0.5\text{Zn}_3\text{Nb}_2\text{O}_8]-0.97\text{ZnTa}_9\text{O}_6+1 \text{ wt% ZBS}$	1050	Composite	32.7	41000		-22	955	
2398	Ca[(Li _{1/3} Nb _{2/3}) $_{0.75}$ Ti _{0.25}]O _{3-d} +5 wt% LBS glass	950/4h	Perovskite Orthorhombic	32.8	11500	4.5	-3	792	
2399	$0.\overline{\text{Ba}}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.7\text{ZnNb}_2\text{O}_6$	1200/8h	Composite	32.8	34100		-10	1064	
2400	$\begin{array}{l} Ba_{1-2}Sr_z \left[Zn_{1/3} (Ta_p Nb_{1-p}].Sr_{1-x} Ca_x \right. \\ \left. (Ga_{1/2} Ta_{1/2}) JO_3 \right. \end{array}$		Perovskite	32- 34	180000-	_	0-10	1065	
2401	$Sr(Mg_{1/3}Nb_{2/3})O_3:Mn$		Perovskite Trigonal P-3m1	33.0	23700	10.3	-14	787	
2402	$BaTi_4O_9+5 \text{ wt\% ZnO-B}_2O_3 \text{ glass}$	900/2h	Orthorhombic+ $Zn(BO_2)_2$ second phase Pmmn	33.0	27000		^	1066	
2403	3 CaO- 2 CoO- N b $_2$ O $_5$ -TiO $_2$	1400	Composite	33.0	15000	4.3	-18	230	

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
2404	Sr(Dy _{1,2} Nb _{1,2})O ₃	1575/4h	Complex perovskite	33.0	32700		-63	823
2405	Ba[(Ni _{0.6} Zn _{0.4)1/3} Nb _{2/3}]O ₃ +1 mol% B _{2.0}	1300	Perovskite Cubic Pm3m	33.0	39700		4-	1067
2406	Ba[$\Pi_{1-x}(Zn_{1/2}W_{1/2})_x]O_3 (x=0.9)$	1380	Cubic perovskite Fm3 ⁻ m	33.0	19900		0	695
2407	$Ba_{0.95}Sr_{0.05}(Y_{1/2}Ta_{1/2})O_3$	1600	Complex perovskite	33.0	47300		0	861
2408	Ba(Y _{1/2} Ta _{1/2})O ₃	1625/4h	Complex perovskite cubic	33.0	50200		120	943
2409	$(1-x)LaMg_{1/2}Ti_{1/2}O_3-xLa_{2/3}TiO_3$ (x=0.3)		Perovskite	33.0	43000	6.3	-54	950
2410	Bi ₆ Te ₂ O ₁₅ (oxygen atm)	800/15h	Orthorhombic	33.0	41000		-85	1068
2411	Ca[Li _{1/3} Nb _{2/3}] _{0,75} Ti _{0,25}]O _{3-δ} +5 wt% Li ₂ O-B ₂ O ₃ -SiO ₂	950/4h	Perovskite Orthorhombic	33.0	11500		15	792
2412	Ba(Cd _{1/3} Ta _{2/3})O ₃ +2 wt% ZnO	1550	Complex perovskite Cubic Pm3m	33.0	37500		80	1069
2413	La ₅ AITi ₃ O ₁₅	1600/3h	Not available	33.0	28600		-39	954
2414	Li _{0.774} Zr _{0.057} NbO ₃	1150	Perovskite Orthorhombic	33.0	4460		-28	1070
2415	Ba _{1/3} La _{2/3} Zn _{1/3} Ti _{2/3} O ₃		Perovskite	33.0	19000	6.7	1	919
2416	0.5SrTiO ₃ -0.5LaAlO ₃	1550/20h	Psuedo Cubic perovskite	33.0	54000			1071
2417	$Sr(Dy_{1/2}Nb_{1/2})O_3+0.5 \text{ wt}\% \text{ CeO}_2$	1575/4h	Complex Perovskite	33.0	32700		-63	823
2418	$Ba(Y_{1/2}Ta_{1/2})O_3+0.5$ wt% Nb_2O_5	1575	Complex perovskite	33.0	50150		120	845
2419	$Ba_3Sr_2Ta_4O_{15}(A_nB_{n-1}O_{3n})$	1575	Hexagonal perovskite	33.2	4300	5.2	-15	851
2420	$Sr_5Nb_2Ta_2O_{15}(A_nB_{n-1}O_{3n})$	1575	Hexagonal perovskite	33.2	2500	5.65	-2	851
2421	$Ba_3ZnNb_{2-x}Sb_xO_9 (x=0.375)$		Perovskite	33.2	44940		-3	381
2422	$(1-x)La(Mg_{1/2}Ti_{1/2})O_3-xLa_{2/3}TiO_3$ (x=0.37)		Orthorhombic Imma	33.2	8560	8.3		889
2423	La ₅ CrTi ₃ O ₁₅	1625/2	A ₅ B ₄ O ₁₅ type cation deficient perovskite Trigonal P3m	33.2	27500	4.88	-34	1072
2424	La_4 PrCrTi $_3$ O_{15}	1575/2	A ₅ B ₄ O ₁₅ type cation deficient Perovskite Trigonal P3m	33.2	23700	4.7	-22	1072
2425 2426	Ba ₅ SrTa ₄ TiO ₁₈ Ba ₂ Ti ₃ Nb ₄ O ₁₅ +3 wt% ZBS	1550/2h 925	A ₆ B ₅ O ₁₈ type perovskite Tetragonal	33.2 33.2	33000		65	895 1073

6
ė
\supset
.5
Ţ
Ä
ŭ

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	τ_f	Reference
2452	$Sr_6Nb_4ZrO_{18}+2$ wt% $Bi_2O_3-B_2O_3$	1625/2h	A ₆ B ₅ O ₁₈ type perovskite	33.9	21000		8-	895
2453	$(Bi_{0.9}Nd_{0.1})_2Mo_2O_9$		Monoclinic P2 ₁ /n	33.9	15200		8	1063
2454	$Ba_{1-x}La_{2\times3}(Co_{0.7}Zn_{0.3})_{1/3} Nb_{2/3}O_3$ (x=0.01)	1425/10h	Complex perovskite	34.0	03000		2	1083
2455	$Ba_4 LiNb_{3-x} Ta_x O_{12} (x=1)$	1350	Hexagonal perovskite P63mc	34.0	26000		43	941
2456	Ba(Dy _{1/2} Ta _{1/2})O ₃ +0.5 wt% Nb ₂ O ₅	1575	Complex perovskite	34.0	20650		-48	845
2457	$Sr_{4-m}La_mTi_{m-1}Ta_{4-m}O_{12}$ (m=2)	1580	Not available	34.0	35000		-15	975
2458	$Ba_8Li_2Nb_2Ta_4O_{24}$		Hexagonal P6 ₃ mmc	34.0	26000			952
2459	$Bi(Sb_{1-x}Ta_x)O_4 (x=0.6)$	096	Orthorhombic Pc2 ₁ n	34.0	30,000		-16	581
2460	$ZnTiNb_2O_8$	1250/2h	Orthorhombic Pbcn	34.0	42500		-52	632
2461	$0.2 \text{TiTe}_3 \text{O}_8 \text{-} 0.8 \text{TeO}_2$	029	Composite	34.0	22000		24	586
2462	BaO-TiO ₂ -WO ₃ (N-35): B_2O_3	1200		34.0	70500	8.5	I	786, 862
2463	La(Zn _{1/2} Ti _{1/2})O ₃	1550	Perovskite	34.0	59000	10	-52	1084,
								1085
2464	$Ba_{10}Ta_{g-0.8x}Ti_{x}O_{30} (x=0.6)$	1400/40h	A _n B _{n-1} O _{3n} Hexagonal Perovskite P6 ₃ /mmc	34.0	30820		57	920
2465	$Ca_5 Ta_2 Ti_{0.6} Hf_{0.4} O_{12}$	1675	Complex perovskite Orthorhombic Pnma	34.0	26000	4.4	0	490
2466	$Ca_5Nb_2Ti_{0.2}Zr_{0.8}O_{12}$	1670	Complex perovskite Orthorhombic Pnma	34.0	24000	4.	0	662
2467	0.25Ba(Zn _{1/3} Nb _{2/3})O ₃ - 0.75Ba(Mg _{1/3} Nb _{2/3})O ₃ +B ₂ O ₃ -LiF	1350	Perovskite Trigonal P-3m1	34.0	26700	9.7	4	1086
2468	La ₅ Mg _{0.5} Ti _{3.5} O ₁₅		Trigonal P-3m1	34.0	31000	9	-16	950, 958
2469	La ₄ SmCrTi ₃ O ₁₅	1575/2		34.0	15900	4.89	-38	1072
2470 2471	0.5CaTiO ₃ -0.5Sm(Mg _{0.5} Ti _{0.5})O ₃ (1-x)(Mg _{0.95} Zn _{0.05})TiO ₃ -xCa _{0.6} La _{0.8/3} TiO ₃ (x=0 3)	1550 1320/4h	Perovskite	34.0	10400	4.91	-24 66	865 465
2472	Ca[(Li _{1/3} Nb _{2/3}) _{0.84} Ti _{0.16}]O ₃₋₆ +2 wt% LiF+3 wt% B ₂ O,	900/2h	Perovskite	34.0	17400		-5	752
2473	$Ba(Dy_{1/2}Ta_{1/2})O_3$	1625	Complex perovskite Tetragonal	34.0	20600		-48	943

8
ě
7
Ĭ.
0
Ũ

2474 2475	Sr(Gd _{1/2} Nb _{1/2})O ₃ 0.99Ba(Co _{1/3} Nb _{2/3})O ₃ -	1575/4h 1380	Perovskite Perovskite	34.0 34.0	8800 38690		-56	823 1087	
	$0.01 \text{Ba}(Y_{1/2} \text{Nb}_{1/2}) \tilde{O}_3$								
2476	$0.95 Ba(Yb_{1/2} Nb_{1/2})O_3 - 0.05 Ca(Y_{1/2} Nb_{1/2})O_3$	1600	Perovskite	34.0	47500			763	
2477	$Sr(Tb_{1/2}Nb_{1/2})O_3$	1575/4h	Perovskite	34.0	36300		-61	823	
2478	$Ca_5Nb_2Ti_{0.2}Zr_{0.8}O_{12}$	1670	Perovskite Pnma Orthorhombic	34.0	24000	4.4	0	662	
2479	$Ca_{5}Ta_{2}Ti_{0.6}Hf_{0.4}O_{12}$	1675	Perovskite Pnma Orthorhombic	34.0	26000	4.4	0	490	
2480	$xBa(Zn_{1/3}Nb_{2/3})O_3-(1-x)Ba$	1500	Perovskite Hexagonal P-3m1	34.0	26700		4-	1086	
	$(Mg_{1/3}Nb_{2/3})O_3(x=0.25)$)						
2481	$Ba[(Ni_{0.6}Zn_{0.4)1/3}Nb_{2/3}]O_3+0.5 mol\%$	1340	Perovskite Hexagonal P-3m1	34.0	42100		8-	1067	
	B_2O_3								
2482	LiNb ₃ O ₈	1075/3h	Monoclinic P2 ₁ /a	34.0	58000		96-	788	
2483	$Z_{\Gamma_{0.034}}Hf_{0.966}TiO_4$		Orthorhombic Pbcn	34.1	34000	6.6		1088	
2484	0.09[0.5ZnNb ₂ O ₆ -0.5Zn ₃ Nb ₂ O ₈]-	1000	Composite	34.1	37100		-3	955	
	0.91ZnTa ₂ O ₆ +1 wt% ZBS								
2485	$ZnTi(Nb_{1-x}Ta_x)_2O_8 (x=0.05)$	1140/6h	Orthorhombic Pbcn	34.1	40000		99-	1089	
2486	$Ca[(Li_{1/3} Nb_{2/3})_{0.8} Ti_{0.2}]O_{3-d}+15 wt\%$	006	Composite	34.1	11500		-21	792	
	LMZBS								
	$Ba_2SrYNb_3O_{12}$	1450	Perovskite Trigonal R-3	34.1	31900		74	066	
2488	$Ba_{8}Ta_{4}Ti_{3}O_{24}$			34.2	23050		9/	920	
2489	$Ba_5Nb_2Ta_2O_{15}$	1475	Perovskite	34.2	10500		22	1090	
2490	0.7 BaTi $_4$ O $_9$ - 0.3 BaZn $_2$ Ti $_4$ O $_{11}$	1240/3h	Composite	34.2	00909		-2	1091	
	$Ca[(Li_{1/3} Nb_{2/3})_{0.8} Ti02]O_{3-d} + 1 wt\% LBS$	1100	Perovskite Orthorhombic	34.2	22900		-10	792	
2492	$Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-d}+3 wt\%$	1025	Complex Perovskite	34.2	24500		-5	792	
	LMZBS		Orthorhombic						
2493	Ba(Sm _{1/2} Ta _{1/2})O ₃	1500	Perovskite	34.3	27000	7.7	5	590	
2494	$Ba[Ni_{0.6}Zn_{0.4}]_{0.33}Nb_{0.67}]O_3+0.5 mol\%$	1350	Perovskite Hexagonal P-3m1	34.3	42100		-3	1067	
	B_2O_3								
	$0.5 \text{ZnNb}_2 \text{O}_6 \text{-} 0.5 \text{TiO}_2$	1250/2h	Composite	34.3	42500		-52	1092	
2496	$ZnTiNb_2O_8$	1250	Orthorhombic Pbcn	34.3	42500		-52	1093	

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
2497	$Zn_{0.89}Co_{0.11}Ta,O_6$	1325/2h	Tri rutile Tetragonal	34.3	72000		44	1077
2498	Ca[(Li _{1/3} Nb _{2/3}) _{0.84} Ti _{0.16}]O ₃₋₆ +2 wt% LiF+3 wt% ZnO-B,O ₂ -SiO,	900/2h	Complex Perovskite Orthorhombic	34.3	17400		-5	1094
2499	$Ba_3Sr_2Ta_4O_{15}$	1575		34.3	4000		-15	1090
2500	$Sr(Gd_{1/2}Nb_{1/2})O_3+0.5 \text{ wt}\% CeO_2$	1575/4h	Complex perovskite Tetragonal	34.3	8800		-56	823
2501	$Sr(Eu_{1/2}Nb_{1/2})O_3 + 0.2 \text{ wt}\% B_2O_3$	1350/4h	Complex perovskite Tetragonal	34.3	37600		-54	823
2502	$Ca(Zn_{0.333}Nb_{0.662}V_{0.005})O_3$	1200/3h		34.3	16400		-17	1095
2503	0.5La _{2/3} TiO ₃ -0.5LaAlO ₃	1425	Perovskite Orthorhomic	34.4	45000	6.7	-23	1096
2504	$(NaBi)_{1/2}MoO_4$	069	Tetragonal 141/a	34.4	12300	7.5	43	229
2505	$(Zr_{1-x}Sn_x)(Li_{1/4}Nb_{3/4})_{0.4}Ti_{0.06}O_4$ (x=0.5)			34.4	44500		-14	1043
2506	Bi ₂ Te ₂ W ₃ O ₁₆		Monoclinic C2/c	34.5	3200		-92	988
2507	$Ba_3Co_{0.7}Zn_{0.3}Nb_3O_9+0.4$ wt% CeO,	1450/4h	Perovskite Trigonal P-3m1	34.5	84000	4	0	1097
2508	0.7Ba(Co _{1/3} Nb _{2/3})O ₃ -	1400/20h	Complex perovskite Trigonal	34.5	97000	6.5	0	1097,
	$0.3 Ba(Zn_{1/3} Nb_{2/3})O_3$		P-3m1					1098
2509	$0.5 \text{LaAIO}_3 - 0.5 \text{SrTiO}_3 + 0.25 \text{ wt}\% \text{ B}_2 \text{O}_3$	1430/2h	Perovskite Psuedocubic	34.5	43200	^	1	1099
2510	$Ba_3Co_7Zn_3Nb_2O_9+V_2O_5$	1450	Perovskite Trigonal P-3m1	34.5	85000	4	0	1097
2511	La ₄ SmCrTi ₃ O ₁₅	1650	Hexagonal P3m	34.5	17300	4.7	-38	1072
2512	$MgO-0.4Nb_2O_5-1.5TiO_2$		Composite	34.5	81300		-2	926
2513	$Ba_4LiNb_3O_{12}+4$ wt% BCB	950	Hexagonal P6 ₃ mc	34.5	29600		12	1100
2514	0.5CeO_2 - $0.5 \text{BaTi}_4 \text{O}_9$	1260/4h	Cubic flurite Fm3m+	34.5	20050	4.2	2	646
			Orthorhombic Pnmm					
2515	$NdTSb_{x}Ta_{1-x}O_{6} (x=0.2)$	1480		34.6	14500	4.2	41	1101
2516	$ZnTa_2O_6+0.5$ wt% CuO	1230	Orthorhombic Pbcn	34.6	65500		5	1102
2517	DyTiTaO ₆	1500	Aeschneite Orthorhombic	34.6	40100		_	583
2518	BaTi₄O ₉ +3 wt% MCAS glass	1200	Orthorhombic Pnmm	34.6	42050	_	14	1103
2519	La ₄ PrCrTi ₃ O ₁₅	1575	Trigonal P3m	34.6	23700	4.8	-22	1072
2520	0.09(0.5ZnNb ₂ O ₆ -0.5Zn ₃ Nb ₂ O ₈)-	1350	Orthorhombic mixtures	34.7	41950		0	542
2521	Bi[Sb _{1-x} (Nb _{0 992} V _{0 008}) _x]O ₄ (x=0.4)		Monoclinic 12/c	34.7	16000		16	715
2522	Sr(Eu _{1/2} Nb _{1/2})O ₃ +0.5 wt% CeO ₂	1575/4h	Complex perovskite Tetragonal	34.7	44000		-52	823

$\overline{}$
0
Э
2
П
<i>:</i>
П
0
Ü

2523	BaSr, YNb, O ₁ ,	1450	Perovskite Trigonal R-3	34.7	26200		8-	066
2524	La ₅ CrT ₃ O ₁₅	1650	Trigonal P3m	34.8	34000	4.8	-35	1072
2525	$Sr_6Ta_4TiO_{18}+3$ wt% $Bi_2O_3-B_2O_3$ glass	1625/2h		34.8	2600		-19	895
2526	$BiNbO_4+0.03$ wt% CuV_2O_6	1050	Monoclinic P-1	34.9	9870		-3	1104
2527	Ba ₅ SrTa ₄ TiO ₁₈	1550/4h		34.9	33000		65	895
2528	Sr ₃ YNb ₃ O ₁₂	1450		34.9	15300		46	066
2529	0.09[0.5ZnNb ₂ O ₆ -0.5Zn ₃ Nb ₂ O ₈]-	1250	Composite	34.9	53900		-2	955
2530	Bi.O2.2MoO.	620	Mixture	35.0	12000		-13	494
2531	Cal(I i Ta) Ti 1O +3 wt% B.O.	1050	Perovskite Orthorhombic	35.0	22800	9.45	4-	765
	$Ca[(Li_{1/3}Nb_{2/3})_{0.9}Ti_{0.1}]O_{3-6}+0.7 \text{ wt}\%$		Perovskite Orthorhombic	35.0	22100		-5	765
	B ₂ O ₃							
2533	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x] O_{3-\delta} (x=0.1)$	1150/3h	Perovskite Orthorhombic	35.0	27200		-2	752
2534	0.5TeO_2 - $0.5 \text{SnTe}_3 \text{O}_8$	650	Mixture phases	35.0	8500		176	62
2535	BaTi ₄ O ₉ -0.1WO ₃	1400	Orthorhombic Pmmn	35.0	52000	8	<u></u>	171
2536	$0.46LaAlO_3-0.54SrTiO_3+2 wt\% B_2O_3$	1460/2h	Perovskite Psuedo cubic	35.0	38000	7		1105
	0.5LaAlO ₃ -0.5SrTiO ₃		Psudocubic perovskite	35.0	27000		-18	1106
	$Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-d}+5 wt\% Bi_2O_3$	900/3h	Perovskite Orthorhombic	35.0	11000		13	610
2539	$BaZrO_3$		Perovskite Cubic P23	35.0	8800			906
2540	$Ba_{10}Ta_{8-0.8x}Ti_{x}O_{30}$ (x=1.2)	1400/40h	Hexagonal perovskite	35.0	25760		64	920
2541	$Ca(Zn_{1/3}Nb_{2/3})O_3$		Perovskite	35.0	16,000	ı	-43	609
	$0.42 \text{Zn}_3 \text{Nb}_2 \text{O}_8 - 0.58 \text{TiO}_2$	1250	Composite	35.0	48000		0	1092
2543	$Pb_{0.75}Ca_{0.25}(Al_{1/2}Nb_{1/2})O_3$		Perovskite	35.0	1100	4.7	133	966
	$Ca_{4.75}Ni_{0.25}Ta_2TiO_{12}$	1625	Perovskite Orthorhombic Pnma	35.0	34000	4.5	±0.5	230
2545	0.5CeO_2 - 0.25CaO - 0.25TiO_2 : $6.5 \text{Cr}_2 \text{O}_3$	1550	Composite	35.0	4300	4.4	0	488
	$Sr(Cr_{1/2}Nb_{1/2})O_3$	1600/4h	Perovskite Cubic Pm3m	35.0	6400		-80	823
2547	$Sr(Eu_{1/2} Nb_{1/2})O_3$	1575/4h	Perovskite Monoclinic P2 ₁ /n	35.0	44000		-52	823
2548	$0.9Ba(Zn_{0.6}Co_{0.4})_{0.33}Nb_{0.67}IO_3$ -		Perovskite	35.0	93550	3.06	0	1107
	$0.1Ba(Ga_{1/2}Ta_{1/2})O_3$							
2549	$BaO-4TiO_2-0.1WO_3$		Composite	35.0	52400	9	0	171

2550 Ball(Zh _{0.3} Co _{0.7}) _{1/0.7} Nb _{2.9} O ₃ +0.25 wt% 1450/4h Perovskite Trigonal P-3m1 35.0 85000 0 1 2551 Bal(Zh _{0.3} Zh _{0.3} J _{1/0.3} Nb _{2.9} O ₃ +0.4 wt% 1450/4h Perovskite Trigonal P-3m1 35.0 97600 0 1 2552 0.9Bal(Zh _{0.0} AD _{0.3}) _{1/0.3} Nb _{2.9} IO ₃ +0.4 wt% 1450/4h Perovskite Trigonal P-3m1 35.0 97600 0 1 1 2553 0.9Bal(Zh _{0.0} AD _{0.3} Nb _{2.9} IO ₃ +0.2 wt% 1450/4h Perovskite Trigonal P-3m1 35.0 97600 0 1 1 2554 BaO-AH _{0.2} -HIO ₂ 1625 Complex perovskite 35.0 36000 4.49 0 1 1 2554 BaO-AH _{0.2} -HIO ₂ 14002h Perovskite 35.0 36000 4.49 0 1 1 2554 BaO-AH _{0.2} -AlinO ₂ -Districoly-Molas 1460/2h Peucovskite 35.0 360400 4.49 0 1 1 2556 BaO-AH _{0.2} -AlinO ₂ -Districoly-Molas 1460/2h Peucovskite 35.0 360400 <t< th=""><th>No.</th><th>Material</th><th>ST (°C)</th><th>Crystal structure</th><th>\mathcal{E}_{r}</th><th><i>Qf</i> (GHz)</th><th>f_0</th><th>τ_f</th><th>Reference</th></t<>	No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	<i>Qf</i> (GHz)	f_0	τ_f	Reference
Ba(1Co _{0.2} Zh _{0.3}) _{1/3} Nb _{2.3} O ₃ +0.4 wt% 1450 Perovskite Trigonal P.3m1 35.0 94000 0 CeO ₂ 0.98al(Zh _{0.6} Co _{0.4}) _{1/3} Nb _{2.3} O ₃ +0.4 wt% 1450/4h Perovskite Trigonal P.3m1 35.0 97600 0 0.18al(Za _{0.2} Ba ₁ Nb _{2.0} O ₃ 0.18al(Za _{0.2} Ba ₁ Nb _{2.0} O ₃ 1450/4h Perovskite Trigonal P.3m1 35.0 25000 - -15 0.65Ba(Zn _{0.3} Nb _{2.0} O ₃ -4ThO ₂ 1625 Complex perovskite 35.0 34000 4.49 0 BaO-A ₁ Co ₂ -4ThO ₂ 1400/Zh Complex perovskite 35.0 34000 4.49 0 BaO-A ₁ Co ₂ -4ThO ₂ 1400/Zh Psuedo Cubic perovskite 35.0 35.0 -15 BaO-A ₁ Co ₂ -4ThO ₂ 1400/Zh Psuedo Cubic perovskite 35.0 4.49 0 BaO-A ₁ Co ₂ -4ThO ₂ 1460/Zh Psuedo Cubic perovskite 35.0 4.49 0 BaO-A ₁ Co ₂ -4ThO ₂ 1460/Zh Psuedo Cubic perovskite 35.0 4.49 0 BaO-A ₁ Co ₂ -4ThO ₂ 1460/Zh Psuedo Cubic perovskite 35.0 43200<	2550	Ba[(Zn _{0.3} Co _{0.7}) _{1/3} Nb _{2/3} O ₃ +0.25 wt%	1450/4h	Perovskite Trigonal P-3m1	35.0	85000		0	1108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2551	Ba([(Co _{0.7} Zn _{0.3}) _{1/3} Nb _{2/3}]O ₃ +0.4 wt%	1450	Perovskite Trigonal P-3m1	35.0	84000		0	1097
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2552	$0.9 Ba[(Zh_0, 6Co_{0,4})_{1/3}Nb_{2/3}]O_3$ - $0.1 Ba(Ga_{1,n}Ta_{1,n})O_3$		Perovskite	35.0	00926		0	1109
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2553	0.35Ba(Ni _{1/3} Nb _{2/3})O ₃ - 0.65Ba(Zn _{1/2} Nb _{2/3})O ₃ -	1450/4h	Perovskite Trigonal P-3m1	35.0	25000		-	1110
BaO-4TIO ₂ -0.1WO ₃ 1400/2h Composite 35.0 34000 4.49 0 BaO-4TIO ₂ -0.1WO ₃ 1400/2h Composite 35.0 50400 4.49 0 0.5LaAlO ₂ -0.5SrTiO ₃ +0.25 wt% 1460/2h Psuedo Cubic perovskite 35.0 43200 -11 0.46LaAlO ₃ -0.54SrTiO ₃ +0.25 wt% 1460/2h Psuedo Cubic perovskite 35.0 43200 -11 B ₂ O ₃ La ₅ GaTi ₃ O ₁ 1550 A ₅ B ₄ O ₁₅ type cation deficient 35.0 30300 3.09 -55 La ₅ GaTi ₃ O ₁ 1200 Orthorhombic Pbcn 35.1 49100 -28 Zn _{0.9} Ti _{0.8x} Sn _x Nb _{2.2} O ₈ (x=0.05) 1120/6h Orthorhombic Pbcn 35.1 49100 -28 (1-x)LaMg _{1.7} Li ₂ O ₃ +0.2 wt% B ₂ O ₃ 1350/4h Complex perovskite Cubic 35.1 49100 -73 Sr(Cr _{1/2} Nb _{1/2} O ₃ +0.2 wt% B ₂ O ₃ 1350/4h Complex perovskite Cubic 35.1 12500 -73 Ba ₂ Sr _{1,35} Zn _{0.55} O _{10.25} 1250/2h Hexagonal perovskite 35.2 2400 -73	2554	BaO-Al ₂ O ₃ -4TiO ₂		I	35.0	2000	I	-15	1111
BaO-4TiO2-0.1WO3 1400/2h Composite 35.0 50400 —0.5 0.5LaAlO3-0.5SrTiO3+0.25 wt% B2O3 1430 Psuedo Cubic perovskite 35.0 43200 —11 0.46LaAlO3-0.5SrTiO3+0.25 wt% B2O3 1460/2h Psuedo Cubic perovskite 35.0 43200 —11 0.46LaAlO3-0.54SrTiO3+0.25 wt% B2O3 1550 As B4O15 type cation deficient 35.0 30300 —11 2n13-O6 2n13-O6 As B4O15 type cation deficient 35.0 30300 —11 2n13-O6 2n13-O6 As B4O15 type cation deficient 35.1 49100 —11 2n13-O6 2n13-O6 Orthorhombic Pbcn 35.1 49100 —28 2n13-O6 1120/6h Orthorhombic Pbcn 35.1 49100 —28 3n1-Al-3-O3-AL2-AB2-ABAD2-O3-C4-O2-W/S B2O3 1350/4h Hexagonal perovskite 35.1 12500 —28 BaT4.35-CA-0.55 O10-25 BaT4.35-CA-0.55 1550/4h Hexagonal perovskite 35.2 2400 —25 0.05 Ca(Y _{1/2} Nb _{1/2})O3 1480 Orthorhombic Pbnm 35.2 <td>2555</td> <td>$Ca_{4,75}Ni_{0.25}Ta_2TiO_{12}$</td> <td>1625</td> <td>Complex perovskite</td> <td>35.0</td> <td>34000</td> <td>4.49</td> <td>0</td> <td>230,</td>	2555	$Ca_{4,75}Ni_{0.25}Ta_2TiO_{12}$	1625	Complex perovskite	35.0	34000	4.49	0	230,
0.5LaAlO ₃ -0.55YiTO ₃ +0.25 wt% B ₂ O ₃ 1430 Psuedo Cubic perovskite 35.0 43200 -11 0.46LaAlO ₃ -0.54SrTiO ₃ +0.25 wt% 1460/2h Psuedo Cubic perovskite 35.0 38000 -1 0.46LaAlO ₃ -0.54SrTiO ₃ +0.25 wt% 1550 A ₅ B ₄ O ₁₅ type cation deficient 35.0 30300 3.09 -55 La ₅ GaTi ₃ O ₁₅ 1200 Orthorhombic Pbcn 35.1 50600 10 Zn ₁₀ s Ti ₁₀ S ₃ ,Sn _x Nb ₁₂ O ₈ (x=0.05) 1120/6h Orthorhombic Pbcn 35.1 49100 -28 (1-x)La(Mg _{1/2} Ti _{11/2})O ₃ +0.2 wt% B ₂ O ₃ 1350/4h Complex perovskite Cubic 35.1 1250/0 7.9 Sr(Cr ₁₂ Nb _{1/2})O ₃ +0.2 wt% B ₂ O ₃ 1250/2h Hexagonal perovskite 35.2 59300 -25 BaT _{4,3} S Zn _{0,55} O _{10.25} 1250/4h Complex perovskite 35.2 2400 -25 Ba ₂ Si ₃ Ta ₄ O ₁₅ 1550/4h Complex perovskite 35.2 2400 -25 0.95Bal(Y _{1/2} Nb _{1,2})O ₃ 1480 Orthorhombic Pbnm 35.2 12700 4.7 48	2556	BaO-4TiO ₂ -0.1WO ₃	1400/2h in O,	Composite	35.0	50400		-0.5	171
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2557	0.5LaAlO ₃ -0.5SrTiO ₃ +0.25 wt% B ₂ O ₃	1430	Psuedo Cubic perovskite	35.0	43200		-11	1099
La ₅ GaTi ₃ O ₁₅ La ₆ GaTi ₃ O ₁₅ La ₇ GaTi ₃ O ₁₅ La ₁₀ O ₆ Zn _{0.9} Ti _{0.8×S} n _x Nb _{2.2} O ₆ (x=0.05) La _{10,9} Ti _{0.8×S} n _x Nb _{2.2} O ₆ (x=0.05) La _{10,9} Ti _{0.8×S} n _x Nb _{2.2} O ₆ (x=0.05) La _{10,9} Ti _{0.8×S} n _x Nb _{2.2} O ₆ (x=0.05) La _{10,9} Ti _{0.8×S} n _x Nb _{2.2} O ₆ (x=0.05) La _{10,9} Ti _{0.8×S} n _x Nb _{2.2} O ₆ (x=0.05) La _{10,9} Ti _{0.8×S} n _x Nb _{2.2} O ₆ (x=0.05) La _{10,9} Ti _{0.8} Ca ₁ Ti ₂ O ₃ -xLa _{2.3} TiO ₃ (x=0.4) Pm3m O.17Ba ₅ Nb ₄ O ₁₅ -O.83BaNb ₂ O ₆ (hex) La ₅ O ₅ O ₆ (hex) La ₅ O ₅ O ₆ O ₆ Hex Derivskite L2/a Pm3m O.17Ba ₅ Nb ₄ O ₁₅ -O.83BaNb ₂ O ₆ (hex) La ₅ O ₆ O ₆ Hexagonal perovskite Ba ₇ Sr ₃ Ta ₄ O ₁₅ La ₅ O ₅ O ₆ O ₆ O ₆ Ba ₇ Sr ₃ Ta ₄ O ₁₅ La ₅ O ₆ O ₆ O ₆ O ₇ La ₅ O ₇ O ₈ O ₈ O ₇ La ₅ O ₈ La ₆ O ₈	2558	0.46LaAlÖ ₃ -0.54SrTiO ₃ +0.25 wt% B,O ₃	1460/2h	Psuedo Cubic perovskite	35.0	38000		<u></u>	1113
ZnTa ₂ O ₆ 1200 Orthorhombic Pbcn 35.1 50600 10 Zn _{0.9} Ti _{0.8} x,Sn _x Nb _{2.2} O ₈ (x=0.05) 1120/6h Orthorhombic Pbcn 35.1 49100 -28 (1-x)La(Mg _{1/2})Ti _{1/2})O ₃ -xLa _{2/3} TiO ₃ (x=0.4) Perovskite L2/a 35.1 6700 7.9 -73 Sr(Cr _{1,2} Nb _{1/2})O ₃ +0.2 wt% B ₂ O ₃ 1350/4h Complex perovskite Cubic 35.1 12500 -73 Parish Nb ₄ O ₁₅ -0.83 BaNb ₂ O ₆ (hex) 1250/2h Hexagonal perovskite 35.2 59300 0 BaTi _{4,35} Zn _{0.55} O _{10.25} 1260/6h Hexagonal perovskite 35.2 2400 -25 Ba ₂ Sr ₃ Ta ₄ O ₁₅ 1575 Hexagonal perovskite 35.2 48300 1 0.95Ba((Y _{1/2} Nb _{1/2})O ₃ - 1550/4h Complex perovskite 35.2 48300 1 0.95Ba((Y _{1/2} Nb _{1/2})O ₃ - 1480 1540 Orthorhombic Pbnm 35.2 12700 4.2 48 Ca ₄ La ₂ Ti _{5-x} (Mg _{1/3} Nb _{2/3})x _{O₁₇} (x=4) 1540 Orthorhombic Pbnm 35.2 21300 -17	2559	La ₅ GaTi ₃ O ₁₅	1550	A ₅ B ₄ O ₁₅ type cation deficient Perovskite	35.0	30300	3.09	-55	954
Zn _{0.9} Ti _{0.8} x, Sn _x Nb _{2.2} O ₈ (x=0.05) 1120/6h Orthorhombic Pbcn 35.1 49100 -28 (1-x)La(Mg _{1/2} Ti _{1/2})O ₃ -xLa _{2/3} TiO ₃ (x=0.4) Perovskite 12/a 35.1 6700 7.9 Sr(Cr _{1/2} Nb _{1/2})O ₃ +0.2 wt% B ₂ O ₃ 1350/4h Complex perovskite Cubic 35.1 12500 -73 O.17Ba ₅ Nb ₄ O ₁₅ -0.83BaNb ₂ O ₆ (hex) 1250/2h Hexagonal perovskite 35.2 59300 0 Ba ₁ A ₃ Sr ₃ Ta ₄ O ₁₅ 1260/6h Hexagonal perovskite 35.2 2400 -25 Ba ₂ Sr ₃ Ta ₄ O ₁₅ 1575 Hexagonal perovskite 35.2 2400 -25 0.05Ca(Y _{1,2} Nb _{1/2})O ₃ - 1550/4h Complex perovskite 35.2 48300 1 0.95Ba((Y _{1,2} Nb _{1/2})O ₃ - 1480 1480 1540 4.2 48 Priïsb _x Ta _{1-x} O ₆ (x=0.2) 1480 Orthorhombic Pbnm 35.2 21300 4.2 48	2560	$ZnTa_2O_6$	1200	Orthorhombic Pbcn	35.1	20600		10	1114
(1-x)La(Mg _{I/2} Ti _{I/2})O ₃ -xLa _{2/3} TiO ₃ (x=0.4) Perovskite 12/a 35.1 6700 7.9 Sr(Cr _{I/2} Nb _{I/2})O ₃ +0.2 wt% B ₂ O ₃ 1350/4h Complex perovskite Cubic 35.1 12500 7.9 O.17Ba ₅ Nb _{I/2} O ₃ +0.2 wt% B ₂ O ₃ 1250/2h Hexagonal perovskite 35.2 59300 0 BaTi _{4,35} Zn _{0.55} O _{10.25} 1260/6h Hexagonal perovskite 35.2 5000 36 Ba ₂ Sr ₃ Ta ₄ O ₁₅ 1575 Hexagonal perovskite 35.2 4800 -25 0.05Ca(Y _{1,2} Nb _{1,2})O ₃ - 1550/4h Complex perovskite 35.2 48300 1 0.95Ba((Y _{1,2} Nb _{1,2})O ₃ - 1480 1480 4.2 48 PrTiSb _x Ta _{1-x} O ₆ (x=0.2) 1480 1540 0rthorhombic Phnm 35.2 12700 4.2 48	2561	$Zn_{0.9}Ti_{0.8-x}Sn_xNb_{2.2}O_8$ (x=0.05)	1120/6h	Orthorhombic Pbcn	35.1	49100		-28	1115
Sr(Cf _{1/2} Nb _{1/2})O ₃ +0.2 wt% B ₂ O ₃ 1350/4h Complex perovskite Cubic 35.1 12500 -73 0.17Ba ₅ Nb ₄ O ₁₅ -0.83BaNb ₂ O ₆ (hex) 1250/2h Hexagonal perovskite 35.2 59300 0 BaTi _{4,35} Zn _{0,55} O _{10.25} 1260/6h Hexagonal perovskite 35.2 5000 36 Ba ₂ Sr ₃ Ta ₄ O ₁₅ 1575 Hexagonal perovskite 35.2 2400 -25 0.05Ca(Y _{1,2} Nb _{1/2})O ₃ - 1550/4h Complex perovskite 35.2 48300 1 0.95Ba((Y _{1,2} Nb _{1/2})O ₃ - 1480 1480 4.2 48 PrTiSb _x Ta _{1-x} O ₆ (x=0.2) 1540 Orthorhombic Pbnm 35.2 12700 4.2 48	2562	$(1-x)La(Mg_{1/2}Ti_{1/2})O_3-xLa_{2/3}TiO_3 (x=0.4)$		Perovskite I2/a	35.1	0029	7.9		889
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2563	$Sr(Cr_{1/2}Nb_{1/2})O_3 + 0.2 \text{ wt\% } B_2O_3$	1350/4h	Complex perovskite Cubic Pm3m	35.1	12500		-73	823
BaTi _{4.35} Zn _{0.25} O _{10.25} 1260/6h 35.2 5000 36 Ba ₂ Sr ₃ Ta ₄ O ₁₅ 1575 Hexagonal perovskite 35.2 2400 -25 0.05Ca(Y _{1/2} Nb _{1/2})O ₃ - 1550/4h Complex perovskite 35.2 48300 1 0.95Ba((Y _{1/2} Nb _{1/2})O ₃ - 1480 1480 4.2 48 PrTiSb _x Ta _{1-x} O ₆ (x=0.2) 1540 Orthorhombic Pbnm 35.2 12700 4.2 48 Ca ₄ La ₂ Ti _{5-x} (Mg _{1/3} Nb _{2/3}) _x O ₁₇ (x=4) 1540 Orthorhombic Pbnm 35.2 21300 -17	2564	$0.17Ba_5Nb_4O_{15}-0.83BaNb_2O_6(hex)$	1250/2h	Hexagonal perovskite	35.2	59300		0	1116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2565	BaTi _{4.35} Zn _{0.55} O _{10.25}	1260/6h		35.2	2000		36	1117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2566	$Ba_2Sr_3Ta_4O_{15}$	1575	Hexagonal perovskite	35.2	2400		-25	1090
PrTiSb _x Ta _{1-x} O ₆ (x=0.2) 1480 35.2 12700 4.2 48 Ca ₄ La ₂ Ti _{5-x} (Mg _{1/3} Nb _{2/3}) _x O ₁₇ (x=4) 1540 Orthorhombic Pbnm 35.2 21300 -17	2567	$0.05Ca(Y_{1/2}Nb_{1/2})O_3 - 0.95Ba((Y_{1/2}Nb_{1/2})O_3$	1550/4h	Complex perovskite	35.2	48300		—	763
$Ca_4La_2 Ti_{5-x}(Mg_{1/3}Nb_{2/3})_xO_{17} \ (x=4)$ 1540 Orthorhombic Pbnm 35.2 21300 –17	2568	$PrTiSb_x Ta_{1-x} O_6 (x=0.2)$	1480		35.2	12700	4.2	48	1101
	2569	$Ca_4La_2T_{5-x}(Mg_{1/3}Nb_{2/3})_xO_{17}$ (x=4)	1540	Orthorhombic Pbnm	35.2	21300		-17	1118

$\overline{}$
0
Э
2
П
<i>:</i>
П
0
Ü

2570	$Ca[(\text{Li}_{1,3}\text{Nb}_{2/3})_{0.8}\Pi_{0.2}]O_{3\text{-d}}\!+\!0.1~\text{wt}\%\\ \text{LMZBS}$	1050	Complex perovskite Orthorhombic	35.2	22800		4-	792
2571	$Sr(Cr_{1/2}Nb_{1/2})O_3$	1600/4h	Complex perovskite	35.3	6400		-80	823
2572	0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ - 0.4Ba(Co _{1/3} Nb _{2/3})O ₃	1450	Perovskite	35.5	86000	2	0	1119
2573	$Sr(Sm_{1/2}Nb_{1/2})O_3+0.2$ wt% B_2O_3	1350/4h	Complex perovskite Tetragonal	35.5	34500		-48	823
2574	$Ba(Tb_{1/2}Ta_{1/2})O_3$	1625	Complex perovskite Tetragonal	35.5	31900		-38	943
2575	$Ba(Tb_{1/2}Ta_{1/2})O_3 + 0.5 \text{ wt}\% \text{ Nb}_2O_5$	1575	Complex perovskite Tetragonal	35.5	31900		-38	845
2576	$(Zr_{1-x}Sn_x)(Li_{1/4}Nb_{3/4})_{0.4}Ti_{0.6}O_4$ (x=0.1)			35.5	37800		-2	1043
2577	0.8 ZnTa $_2$ O $_6$ - 0.2 MgNb $_2$ O $_6$	1350/2h	Composite	35.6	65500		0	1120
2578	La ₄ NdCrTi ₃ O ₁₅	1650	Trigonal P3m	35.6	19400	4.7	-34	1072
2579	$Dy(W_{0.5}Ti_{1.5})O_6$	1450	Orthorhombic Pnma Aeschynite	35.6	20200		10	1121
			type					
2580	$Ba(Sc_{1/2}Nb_{1/2})O_3$	1700/12h	Perovskite	35.7	20000			1122
2581	$Ba_3ZnNb_{2-x}Sb_xO_9 (x=0.125)$		Perovskite Hexagonal P-3m1	35.7	26980	4.8	14	381
2582	SmTaTi _{0.9} Zr _{0.1} O ₆			35.8	27730		15	671
2583	$Ba_3ZnNb_{2-x}Sb_xO_9 (x=0.25)$		Perovskite Trigonal P-3m1	35.8	35090	5.4	9	381
2584	0.615BaTi ₄ O ₉ - 0.35 ZnO- 0.3 Nb ₂ O ₅ + 0.3	1280/2h	Composite	35.8	50800		-	1123
	wt% Mn							
2585	$Bi(Nb_{0.7}Ta_{0.3})O_4$	006	Orthorhombic Pnma	35.8	2200		-48	1124
2586	$Sr(Sm_{1/2}Nb_{1/2})O_3+0.5 \text{ wt}\% CeO_2$	1575/4h	Complex perovskite Tetragonal	35.8	32300		-47	823
2587	$Ba_{3-x}Sr_xLaNb_3O_{12}$ (x=3)	1430	Trigonal R-3m	35.8	44300		6–	1125
2588	BaO-0.6ZnO-3 π IO ₂	1180	Composite	35.8	21300		-	1126
2589	$Zn_{0.7}Co_{0.3}TiNb_2O_8$	1075/4h	Orthorhombic Pbcn	35.9	35100		0	1127
2590	$Ba_8Zn(Nb_{6-x}Sb_x)O_{24} (x=1.5)$	1425		35.9	16900		6	503
2591	0.5LaAlO ₃ -0.5SrTiO ₃	1680	Perovskite	35.9	108800	9.7	-21	832
2592	$(Zr_{0.8}Sn_{0.2})TiO_4+0.2 \text{ wt}\% \text{ NiO}$	1280	Orthorhombic Pbcn	35.9	26700	9.2		1128
2593	$Ba_6Nb_4ZrO_{18}$	1625/2h	Trigonal R-3m	35.9	52000		25	895
2594	$(Ag_{0.5}Bi_{0.5})MoO_4$	580	Wolframite Monoclinic C12/m1	35.9	13000	7.5	69-	1129
2595	$BaO-TiO_2-WO_3$ (N-35)		Composite	36.0	50400	9	0	862

 2596 Ba_{1-x}Ca_x(Sc_{1/2}Nb_{1/2})O₃ 2597 Sr(La_{1/2}Nb_{1/2})O₃+0.2 wt% B₂O₃ 2598 Ba(Nd_{1/2}Ta_{1/2})O₃+0.2 wt% B₂O₃ 2599 Sr(La_{1/2}Nb_{1/2})O₃+0.2 wt% Nb₂O₅+wt% 2599 Fr(Sm_{0,5}Ta_{0,5})O₃+0.5 wt% Nb₂O₅+wt% 2600 Ba₂Ti₃O₂₀+9 wt% BaB₂O₄ 2601 Ba₂Ti₁O₂₀ 2602 Ba₁Ti₃O₂₀+9 wt% BaB₂O₄ 2603 Ba₁Ti₄O₉-Citrate route 2604 Ba₁₀Ta₇O₃Ti_{1,2}O₃ 2605 Ba₁₁Ti₂O₃ 2606 Ba₁₁Ti₂O₃ 2607 TiTe₃O₈ 2608 Ba₁₁Ta₂O₉-Citrate route 2609 Ba₁₁Ta₂O₉-CanO-Ta₂O₅+0.1 wt% Mn 2609 Ba₁₁Ta₁₂O₃ 2609 Ba₁₁Ta₁₂O₃ 2609 BaO-TiO₂-wO₃ (N-35)+5 wt% SiO₂ 2609 BaO-TiO₂-wO₃ (N-35)+5 wt% SiO₂ 2610 ZrTiO₄ (polymer route)+0.5 wt% Hf 2611 Ba(Yb_{1/2}Nb_{1/2})O₃ 2612 Nd₂Ti₂O₇ 2613 Ba(Cd_{1/2}Ta_{1/2})O₃ 2614 Ba(Tb_{1/2}Ta_{1/2})O₃ 2615 (Pb_{0,2}Ca_{0,8})(Ca_{1/3}Nb_{2/3})O₃- 2616 O.6Ba(Zn_{1/3}Nb_{2/3})O₃- 2617 Sr(Sm_{1/2}Nb_{1/2})O₃ 2618 Ca₄NiNb₂TiO₁₂ 2619 BaO-TiO₂-wO_{1/2}Ca_{0,8}NCa_{1/3}Nb_{2/3}O₃- 2610 Perov 2611 Comp 2612 Ca_{1/3}Nb_{1/2}O₃- 2613 Ba(Cd_{1/2}Ta_{1/2}O₃- 2614 Ba(Tb_{1/2}Ta_{1/2}O₃- 2615 Perov 2616 O.6Ba(Zn_{1/3}Nb_{2/3}O₃- 2617 Perov 2618 Ca₄NiNb₂TiO_{1,2} 2619 Perov 2619 Perov 2619 Perov 2610 Perov 2610 Perov 2611 Perov 2612 Perov 2613 Perov 2614 Perov 2615 Perov 2616 Perov 2617 Perov 2618 Perov 2619 Perov 2619 Perov 2610 Perov<th></th><th></th><th></th><th></th><th>,</th><th></th>					,	
Sr(La _{1/2} Nb _{1/2})O ₃ +0.2 wt% B ₂ O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ +0.5 wt% Nb ₂ O ₅ +wt% Ba(Nd _{1/2} Ta _{1/2})O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ +0.5 wt% Nb ₂ O ₅ +wt% TiO ₂ Ba ₂ Ti ₉ O ₂₀ +9 wt% BaB ₂ O ₄ Ba ₂ Ti ₃ O ₂₀ +9 wt% BaB ₂ O ₄ Ba ₁ Ti ₄ O ₉ -Citrate route Ba ₁ Ti ₂ O ₃ Ba ₁ Ti ₂ O ₃ Ba ₁ Ti ₂ O ₃ TiTe ₃ O ₈ TiTe ₃ O ₉ TiTe ₃ O ₈ TiT		36- 55	20000-			1122
Ba(Nd _{1/2} Ta _{1/2})O ₃ Sr(Sm _{0.5} Ta _{0.5})O ₃ +0.5 wt% Nb ₂ O ₅ +wt% 1600/4h TiO ₂ Ba ₂ Ti ₉ O ₂₀ +9 wt% BaB ₂ O ₄ 1050/2h Ba(Zn _{1/3} Nb _{2/3})O ₃ +5 mol% B ₂ O ₃ +CuO 875 Bi ₂ TiTeO ₈ BaTi ₄ O ₉ -Citrate route BaTi ₄ O ₉ -Citrate route BaTi ₄ O ₉ -Citrate route BaTi ₄ O ₉ -ZnO-Ta ₂ O ₅ +0.1 wt% Mn 1280 Nd(Zn _{1/2} Ti _{1/2} O ₃) TiTe ₃ O ₈ TiTe ₅ O ₈ TiTiO ₄ (polymer route)+0.5 wt% Fif 1600 Ba(Yb _{1/2} Nb _{1/2})O ₃ TiTiO ₄ (polymer route)+0.5 wt% Hf 1600 Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ Ba(Gd _{1/2} Ta _{1/2})O ₃ Ba(Gd _{1/2} Ta _{1/2})O ₃ C6Ba(Zn _{1/3} Nb _{2/3})O ₃ D6Ba(Zn _{1/3} Nb _{2/3})O ₃ D6Ba(Zn _{1/3} Nb _{2/3})O ₃ D6Ba(Zn _{1/2} Nb _{1/2})O ₃ D7FO D7FO D7FO D7FO D7FO D7FO D7FO D7FO	/4h Complex perovskite Tetragonal	36.0	5200		-22	823
Sr(Sm _{0.5} Ta _{0.5})O ₃ +0.5 wt% Nb ₂ O ₅ +wt% 1600/4h TiO ₂ Ba ₂ Ti ₉ O ₂₀ +9 wt% BaB ₂ O ₄ Ba(Zn _{1/3} Nb _{2/3})O ₃ +5 mol% B ₂ O ₃ +CuO 875 Bi ₂ TiTeO ₈ BaTi ₄ O ₉ -Citrate route BaTi ₄ O ₉ -ZnO-Ta ₂ O ₅ +0.1 wt% Mn 1280 Nd(Zn _{1/2} Ti _{1/2} O ₃ TiTe ₃ O ₈ TiTO ₂ -WO ₃ (N-35)+5 wt% SiO ₂ ZrTiO ₄ (polymer route)+0.5 wt% Hf 1600 Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ Ba(Gd _{1/2} Ta _{1/2})O ₃ Sr(Sm _{1/2} Nb _{2/3})O ₃ O.4Ba(Ca _{1/3} Nb _{2/3})O ₃ O.4Ba(Ca _{1/3} Nb _{2/3})O ₃ O.4Ba(Ca _{1/3} Nb _{2/3})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ TiO ₂ D.4Ba(Ca _{1/3} Nb _{2/3})O ₃ D.4Ba(Ca _{1/2} Nb _{1/2} O ₃ D.4Ba(Ca _{1/3} Nb _{2/3})O ₃ D.4Ba(Ca _{1/3} Nb _{2/3} O ₃ D.4Ba(Ca _{1/3} N		36.0	18000	7.3	2.9	290
Ba ₂ Ti ₉ O ₂₀ +9 wt% BaB ₂ O ₄ Ba(Zn _{1/3} Nb _{2/3})O ₃ +5 mol% B ₂ O ₃ +CuO B75 Bi ₂ TiTeO ₈ BaTi ₄ O ₉ -Citrate route BaTi ₄ O ₉ -Citrate route BaTi ₄ O ₉ -Citrate route BaTi ₄ O ₉ -ZnO-Ta ₂ O ₅ +0.1 wt% Mn 1280 Nd(Zn _{1/2} Ti _{1/2} O ₃ TiTe ₃ O ₈ Nd(Zn _{1/2} Ti _{1/2} O ₃ TiTe ₃ O ₈ TiTe ₃ O ₈ D.25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ TiTe ₃ O ₈ D.25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ TiTiO ₄ (polymer route)+0.5 wt% SiO ₂ TriO ₄ (polymer route)+0.5 wt% Hf Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ Ba(Gd _{1/2} Ta _{1/2})O ₃ Ba(Gd _{1/2} Ta _{1/2})O ₃ Ba(Gd _{1/2} Ta _{1/2})O ₃ C6Ba(Zn _{1/3} Nb _{2/3})O ₃ D.4Ba(Cn _{1/2} Nb _{1/2})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ TiTe ₂ O ₇ D.4Ba(Cn _{1/2} Nb _{1/2} O ₃ TiTe ₂ O ₇ T		36.0	22300		-38	859
Ba ⁽ Zh _{1/3} Nb _{2/3})O ₃ +5 mol% B ₂ O ₃ +CuO 875 Bi ₂ TiTeO ₈ BaTi ₄ O ₉ -Citrate route 1250/10h Bati ₁ O ₉ -Citrate route 1250/10h Bati ₁ O ₉ -Citrate route 1250/10h Bati ₁ O ₉ -ZnO-Ta ₂ O ₅ +0.1 wt% Mn 1280 Nd(Zh _{1/2} Ti _{1/2})O ₃ TiTe ₃ O ₈ 0.25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ TiTe ₃ O ₈ C25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ BaO-TiO ₂ -WO ₃ (N-35)+5 wt% SiO ₂ 1200 ZrTiO ₄ (polymer route)+0.5 wt% Hf 1600 Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ 1300 Ba(Gd _{1/2} Ta _{1/2})O ₃ Ba(Gd _{1/2} Ta _{1/2})O ₃ C6Ba(Zh _{1/3} Nb _{2/3})O ₃ C6Ba(Zh _{1/3} Nb _{2/3})O ₃ C6Ba(Zh _{1/3} Nb _{2/3})O ₃ C6Ba(Zh _{1/2} Nb _{1/2})O ₃ C7Gm _{1/2} Nb _{1/2} O ₃ C6Ba(Zh _{1/2} Nb _{2/3})O ₃ C6Ba(Zh _{1/2} Nb _{1/2})O ₃ C7Gm _{1/2} Nb _{1/2} O ₃ C7Gm ₁	/2h Monoclinic P2 ₁ /m	36.0	12600		-2	1002
Bi ₂ TIFEO ₈ Ba ¹ (140 ₉ -Citrate route Ba ¹ (1 ₂ O ₉ -Citrate route) Nd(Zn ₁ , Zn ₁ , Zn ₂ O ₅ + 0.1 wt% Mn 1280 Nd(Zn ₁ , Zn ₁ , Zn ₂ O ₅ 1200 Zrio, Nb ₂ O ₈ -0.75 TiO ₂ 1200 Zrio, WO ₃ (N-35) +5 wt% SiO ₂ 1200 Zrio, WO ₃ (N-35) +5 wt% SiO ₂ 1200 Zrio, WO ₃ (N-35) +5 wt% Hf 1600 Ra(Yb ₁ , Zn ₁ O ₃ Nd ₂ Ti ₂ O ₇ 1300 Ra(Cd ₁ , Za ₁ , Zn ₂)O ₃ 1300 Ba(Cd ₁ , Za ₁ , Zn ₂)O ₃ 1625/4h Ba(Tb ₁ , Zn ₂ , Nb ₂ , Zn ₃)O ₃ 1625/4h Chang Nb ₂ Ca ₀ S(Ca ₁ , Nb ₂)O ₃ 1750 0.6Ba(Zn ₁ , Nb ₂)O ₃ 1750 1750		36.0	19000		21	1130
BaTi ₄ O ₉ -Citrate route BaTi ₄ O ₉ -Citrate route BaTi ₄ O ₉ -ZnO-Ta ₂ O ₅ +0.1 wt% Mn Nd(Zn _{1/2} Tl _{1/2} O ₃ TiTe ₃ O ₈ 0.25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ TiTe ₃ O ₈ ZrTiO ₄ (polymer route)+0.5 wt% Hf BaO-TiO ₂ -WO ₃ (N-35)+5 wt% SiO ₂ ZrTiO ₄ (polymer route)+0.5 wt% Hf Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ 1200 Nd ₂ Ti ₂ O ₇ 1400 Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ 0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ 1400 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1/2}		36.0		5.7	41	1131
Ba1 ₁₀ Ta ₇₋₀₄ Ti ₁₁₂ O ₃₀ BaTi ₄ O ₉ -ZnO-Ta ₂ O ₅ +0.1 wt% Mn Nd(Zn _{1/2} Ti _{1/2})O ₃ TiTa ₃ O ₈ 0.25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ BaO-TiO ₂ -WO ₃ (N-35)+5 wt% SiO ₂ ZrTiO ₄ (polymer route)+0.5 wt% Hf Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ 1600 Nd ₂ Ti ₂ O ₇ 1625/4h Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ Co.6Ba(Zn _{1/3} Nb _{2/3})O ₃ 0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ 1550 Co.6Ba(Zn _{1/2} Nb _{1/2})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ 1550	/10h Orthorhombic Pnmm	36.0	50470		16	1132
BaTi ₄ O ₉ -ZnO-Ta ₂ O ₅ +0.1 wt% Mn 1280 Nd(Zn _{1/2} Ti _{1/2})O ₃ TiTe ₃ O ₈ 0.25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ BaO-TiO ₂ -WO ₃ (N-35)+5 wt% SiO ₂ ZrTiO ₄ (polymer route)+0.5 wt% Hf 1600 Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ 1200 Nd ₂ Ti ₂ O ₇ 1300 Ba(Cd _{1/2} Ta _{1/2})O ₃ Ra(Cd _{1/2} Ta _{1/2})O ₃ 1625/4h (Pb _{0.2} Ca _{0.8})(Ca _{1/3} Nb _{2/3})O ₃ 0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ 1625/4h (Pb _{0.2} Ca _{0.8})(Ca _{1/3} Nb _{2/3})O ₃ 1625/4h (Pb _{0.2} Ca _{0.8})(Ca _{1/3} Nb _{2/3})O ₃ 1550 Ca ₄ NiNb ₂ TiO _{1/2}	Hexagonal P6 ₃ /mmc	36.0	30000		52	464
Nd(Zn _{1/2} Ti _{1/2})O ₃ TiTe ₃ O ₈ TiTe ₃ O ₈ 0.25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ BaO-TiO ₂ -WO ₃ (N-35)+5 wt% SiO ₂ ZrTiO ₄ (polymer route)+0.5 wt% Hf 1600 Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ 1300 Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ Cb(Ba(Zn _{1/3} Nb _{2/3})O ₃ 0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ 1550 Ca ₄ NiNb ₂ TiO _{1/2} Sr(Sm _{1/2} Nb _{2/2})O ₃ 1550	Orthorhombic Pnmm	36.0	45000	4.5	0	1133
TiTe ₃ O ₈ 0.25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ 1200/2h BaO-TiO ₂ -WO ₃ (N-35)+5 wt% SiO ₂ 2rTiO ₄ (polymer route)+0.5 wt% Hf 1600 Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ 1300 Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ Cb(Ba(Zn _{1/3} Nb _{2/3})O ₃ 0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ 1400 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1/2}	Perovskite	36.0	42300		-47	1134
0.25Zn ₃ Nb ₂ O ₈ -0.75TiO ₂ BaO-TiO ₂ -WO ₃ (N-35)+5 wt% SiO ₂ ZriiO ₄ (polymer route)+0.5 wt% Hf Ba(Yb _{1/2} Nb _{1/2})O ₃ Nd ₂ Ti ₂ O ₇ Ba(Gd _{1/2} Ta _{1/2})O ₃ Ba(Gd _{1/2} Ta _{1/2})O ₃ Ba(Cd _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ CBa(Zn _{1/3} Nb _{2/3})O ₃ 0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1/2}	5h Cubic Ia3	36.0	13600	4	133	53
BaO-TiO ₂ -WO ₃ (N-35)+5 wt% SiO ₂ 1200 ZrTiO ₄ (polymer route)+0.5 wt% Hf 1600 Ba(Yb _{1/2} Nb _{1/2})O ₃ 1500 Nd ₂ Ti ₂ O ₇ 1300 Ba(Gd _{1/2} Ta _{1/2})O ₃ 1625/4h Ba(Tb _{1/2} Ta _{1/2})O ₃ 1625/4h (Pb _{0.2} Ca _{0.8})(Ca _{1/3} Nb _{2/3})O ₃ 1625/4h (Pb _{0.2} Ca _{0.8})(Ca _{1/3} Nb _{2/3})O ₃ 1400 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1/2} 1550	/2h Composite	36.0	5160		4	632
ZrTiO ₄ (polymer route)+0.5 wt% Hf 1600 Ba(Yb _{1/2} Nb _{1/2})O ₃ 1600 Nd ₂ Ti ₂ O ₇ 1300 Ba(Gd _{1/2} Ta _{1/2})O ₃ 1625/4h Ba(Tb _{1/2} Ta _{1/2})O ₃ 1625/4h (Pb _{0,2} Ca _{0,8})(Ca _{1/3} Nb _{2/3})O ₃ 1625/4h (Pb _{0,2} Ca _{0,8})(Ca _{1/3} Nb _{2/3})O ₃ 1625/4h (Ba(Zn _{1/3} Nb _{2/3})O ₃ 1400 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1/2} 1550	Composite	36.0	4500	8.5		786
Ba(Yb _{1/2} Nb _{1/2})O ₃ 1600 Nd ₂ Ti ₂ O ₇ 1300 Ba(Gd _{1/2} Ta _{1/2})O ₃ 1625/4h Ba(Tb _{1/2} Ta _{1/2})O ₃ 1625/4h (Pb _{0,2} Ca _{0,8})(Ca _{1/3} Nb _{2/3})O ₃ 1550 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ 1400 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1,2} 1550	Orthorhombic Pbcn	36.0	29700	5.3		1135
Nd ₂ Ti ₂ O ₇ Ba(Gd _{1/2} Ta _{1/2})O ₃ Ba(Tb _{1/2} Ta _{1/2})O ₃ (Pb _{0,2} Ca _{0,8})(Ca _{1/3} Nb _{2/3})O ₃ 0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1/2}	Complex perovskite	36.0	38100		2	1136
Ba(Gd _{1/2} Ta _{1/2})O ₃ 1625/4h Ba(Tb _{1/2} Ta _{1/2})O ₃ 1625/4h (Pb _{0,2} Ca _{0,8})(Ca _{1/3} Nb _{2/3})O ₃ 1350 0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ 1400 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1,2} 1550	Monoclinic P2 ₁	36.0	16400		-118	1137,
Ba(Gd _{1/2} Ta _{1/2})O ₃ 1625/4h Ba(Tb _{1/2} Ta _{1/2})O ₃ 1625/4h (Pb _{0.2} Ca _{0.8})(Ca _{1/3} Nb _{2/3})O ₃ 1350 0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ 1400 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1,2} 1550						1138
Ba(Tb ₁₂ Ta ₁₂)O ₃ 1625/4h (Pb _{0.2} Ca _{0.8})(Ca _{1,3} Nb _{2,3})O ₃ 1350 0.6Ba(Zn _{1,3} Nb _{2,3})O ₃ 1400 0.4Ba(Co _{1,3} Nb _{2,3})O ₃ 1575/4h Sr(Sm _{1,2} Nb _{1/2})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1,2} 1550	/4h Complex perovskite Tetragonal	36.0	3200		-18	943
(Pb _{0,2} Ca _{0,8})(Ca _{1,3} Nb _{2,3})O ₃ 1350 0.6Ba(Zn _{1,3} Nb _{2,3})O ₃ - 1400 0.4Ba(Co _{1,3} Nb _{2,3})O ₃ 1575/4h Sr(Sm _{1,2} Nb _{1,2})O ₃ 1575/4h Ca ₄ NiNb ₂ TiO _{1,2} 1550		36.0	31900		-38	943
0.6Ba(Zn _{1/3} Nb _{2/3})O ₃ - 0.4Ba(Co _{1/3} Nb _{2/3})O ₃ Sr(Sm _{1/2} Nb _{1/2})O ₃ (1575/4h Ca ₄ NiNb ₂ TiO _{1,2}		36.0	12500		-27	1139
$Sr(Sm_{1/2}Nb_{1/2})O_3$ 1575/4h $Ca_4NiNb_2TiO_{1,2}$ 1550	Perovskite Trigonal P-3m1	36.0	86000		0	1119
$Ca_4NiNb_2TiO_{12}$ 1550	/4h Complex perovskite	36.0	32300		-47	823
	Perovskite Orthorhombic	36.0	31500	4.1	-30	230
2619 Ca _{4.88} Co _{0.12} Ta ₂ TiO ₁₂ 0rtho	Orthorhombic Pnma Perovskite	36.0	35000	4.49	0	230,
2620 Ca ₅ Ta ₂ Ti _{0,7} Zr _{0,3} O _{1,2} 1650 Perov	Perovskite Pnma Orthorhombic	36.0	28000	4.4	0	662

36.0 36.0
36.0
36.0
36.0
A _n B _{n-1} O _{3n} Hexagonal Perovskite 36.0
36.0
36.0
36.0
36.0
36.0
36.0
36.0
36.0
36.0
36.1
36.2
5.2
36.2
36.2
36.2
36.3
36.3
36.3
36.3
36.3
36.4
36.4

Š.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	$ au_f$	Reference
2649	$Sr_6Nb_4ZrO_{18}+2$ wt% $Bi_2O_3-B_2O_3$ glass 51 i O-1Nb O -5TiO +1 wt% B O +4	1625/2h	Multiphase	36.4	21000		8-	895
2002	Vt% ZnO	026	Manuphase	t. O			t	<u></u>
2651	Nd ₂ H ₂ O ₇		Monoclinic P2 _{1/} n	36.5	16400	9.1	-118	1137
2652	$Bi_2Mo_2O_9+2 mol\% Nb_2O_5$	620	Monoclinic P2 ₁ /n	36.5	14100		9	1154
2653	Ba(Eu _{1/2} Ta _{1/2})O ₃ +0.5 wt% Nb ₂ O ₅	1575	Perovskite Tetragonal	36.5	41200		-16	845
2654	$Ba_2 \Pi_9 O_{20} + 5 \text{ wt}\% B_2 O_3$	1200	Monoclinic P2 ₁ /n	36.5	40200		38	1149
2655	BaO-TiO ₂ -ZnO+0.5 mol%	1160/6h	Mixture phases	36.5	42000	4.7	2	1117
2656		1500		36 5	23000	Γ,	-39	954
7657	B3T: 7n O ±0.5 mol% SnO	1160/6h		36.5	42000)	6	1117
7658	0 3TeO -0 7ShTe O	660/2h	Mixture phases	36.7	8800		200	, , , , , , , , , , , , , , , , , , ,
2659	Sr(Nd., Nb., 5)O, +0.2 wt% B,O,	1350/4h	Complex perovskite Cubic	36.5	22200		-45 -42	823
2660	C_3 T_3 T_1O_3 +1 $Wt\%$ C_0 O_4	1625/4h	Complex perovskite	36.5	38500		و إ	1155
)))	(45) 42 - 1 (12 - 1 - 17) (4)		Orthorhombic Pnma))
2661	0.7SrTiO ₃ - 0.3 LaAlO ₃ +10 wt% ZnO-B,O ₃	1100/3h		36.6	10800		4	1156
2662	$Ba_3 TI_5 Nb_6 O_{28} + 3 \text{ wt}\% ZnB_2 O_4$	925	Monoclinic P2 ₁ /c	36.6	19100		5	1157
2663	$Sr(La_{1/2}Nb_{1/2})O_3+0.5 \text{ wt}\% CeO_2$	1575/4h	Complex perovskite Cubic	36.6	4025		-20	823
2664	0.6ZrO_2 - $0.4 (\text{Zn}_{1/3} \text{Nb}_{2/3}) \text{O}_2$ - 0.2SnO_2 - 0.8TiO_2	1220	Tetragonal	36.6	43200		9-	1158
2665	MgO-2NI	1200	Mixed phases	36.7	20000		61	1159
2666	$(Zr_{0.8}Sn_{0.2})TiO_4+0.2 \text{ wt}\% MgO$	1320	Orthorhombic Pbcn	36.7	00009	6.5		1160
7997	$Sr(Pr_{1/2}Nb_{1/2})O_3 + 0.2 \text{ wt}\% B_2O_3$	1350/4h	Complex perovskite Cubic	36.7	4600		-35	823
2668	$Ba_6T_{1-x}Sn_xNb_4O_{18}$ (x=0.5)	1500	Monoclinic P2 ₁ /c	36.7	21400	5.7	34	982
2669	$ZnTiNb_2O_8$	1075/5h	Orthorhombic Ixiolite Pbcn	36.7	54000		-70	1161
2670	$Ba_4ZnTi_{11}O_{27}$	1200/2h	Monoclinic C2/m	36.8	16460		17	1082
2671	$Ba_3LaTa_3O_{12}$		$A_4B_4O_{12}$ Cation deficient	36.8	22000	6.4	-50	1162
2672	NdTiSb _x Ta _{1-x} O ₆ (x=0.05)	1480/4h		36.8	15700	4.13	48	1101

Ō
8
Ė.
nt
8
$\overline{}$

2673 2674	CaTi _{0.3} (Al _{1,2} Nb _{1,2}) _{0.7} O ₃ Ca(Fe _{1,2} Nb _{1,2})O ₃	1500/5h	Perovskite Perovskite Orthorhombic Pbnm	36.8	29800 15800	8.2	-61 -93	1152 1163, 1164
2675	TbTiTaO ₆ BaO-ZnO-TiO,+0.5 mol% MnCO,	1525 1250	Orthorhombic	36.8	32300		10	583
2677	Ba(Zn _{1/3} Nb _{2/3})O ₃ +1 mol SnO ₂ annealed at 1325	1450/4h	Perovskite Trigonal P-3m1	36.8	83200		29	1165
2678	$CeTiSb_xTa_{1-x}O_b (x=0.1)$	1480/4h		36.9	10100	3.98	29	1101
2679	$Sr(Nd_{1/2}Nb_{1/2})O_3 + 0.5 \text{ wt}\% \text{ CeO}_2$	1575/4h	Complex perovskite Cubic	36.9	20100		-40	823
2680	$La_4\Pi_9O_{24}$	1350	Orthorhombic Fddd	37.0	24800	8.1	15	1137,
2681	Ba(La _{1/2} Ta _{1/2})O ₃	1625/4h	Complex perovskite	37.0	20950		-36	943
2682	Ba(Eu _{1/2} Ta _{1/2})O ₃	1625/4h	Complex perovskite	37.0	41200		-16	943
2683	Sr(La _{1/2} Nb _{1/2})O ₃	1575/4h	Complex perovskite	37.0	4000		-20	823
2684	$Sr(Nd_{1/2}Nb_{1/2})O_3$	1575/4h	Complex perovskite	37.0	20100		-40	823
2685	0.9Ba(Co _{1/3} Nb _{2/3})O ₃ -0.1Ba(Y _{1/2} Nb _{1/2})O ₃	1380	Perovskite	37.0	25560			1087
2686	0.35CaTiO ₃ -0.65LaAlO ₃	1600	Perovskite Rhombohedral	37.0	47000		-2	1166
2687	$0.42 \text{ZnNb}_2 \text{O}_6 - 0.58 \text{TiO}_2 + 10 \text{ wt}\% \text{ CuO}$	875	Composite	37.0	17000		_7	1167
2688	Ba ₂ Ti ₉ O ₂₀ (citrate route)	1300/2h	Monoclinic P2 ₁ /m	37.0	57000	10.7	9-	1132
2689	0.9Ba(Zn _{1/3} Nb _{2/3})O ₃ - 0.1Ba(Ga _{1/2} Ta _{1/2})O ₃		Perovskite	37.0	93500	2.9	15	1107
2690	Ba(Y _{1,2} Nb _{1,2})O ₃	1600	Complex perovskite	37.0	49600		15	1136
2691	$Zr_{0.8}Sn_{0.2}TiO_4+1$ mol% $Sb_2O_5+0.35$ wt% $B_2O_3-Li_2O+slow$ cooled	1300/5h	Orthorhombic Pbcn	37.0	62000		I	1168
2692	$Ca_{4.18}Co_{0.82}Nb_2TiO_{12}$	1550	Complex perovskite Orthorhombic Pnma	37.0	30000	4.31	0	230, 1112
2693	$Ca_{4.85}Zn_{0.15}Ta_{2}TiO_{12}$	1625	Complex perovskite Orthorhombic Pnma	37.0	35000	4.15	0	230, 1112
2694	2694 Ca _{4.82} Mg _{0.18} Ta ₂ TiO _{1.2}	1625	Complex perovskite Orthorhombic Pnma	37.0	36000	4.356	0	230, 1112

o N	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	τ_f	Reference
2695	$Zr_{0.8} Sn_{0.2} TiO_4 + 2 wt\% La_2 O_3$, 1 wt% NiO	1370/2h	Orthorhombic Pbcn	37.0	62000		6-	1169
2696	$Zr_{0.648}Sn_{0.33}$ TiO ₄ +La ₂ O ₃ +NiO	1370/20h	Orthorhombic Pbcn	37.0	41500		ı	1170
2697	3CaO-2MgO-Nb,O ₅ -TiO,	1340	Composite	37.0	19000	4.2	-20	230
2698	0.1TeO ₂ -SnTe ₃ O ₈	670/2h	Cubic la3, mixture	37.0	9300		220	62
2699	$NdTiSb_xTa_{1-x}O_6$ (x=0.0)	1480/4h		37.0	11200	3.96	54	1101
2700	(KBi) _{1/2} MoO ₄	630	Tetragonal 14 ₁ /a	37.0	4000	7.5	117	229
2701	$0.65m(Co_{1/2}\Pi_{1/2})O_3-0.4Ca\PiO_3$	1420	Perovskite	37.0	43000		_	1171
2702	Ba ₃ Ti ₅ Nb ₆ O ₂₈	1250	Monoclinic P2 ₁ /c	37.0	11400		8-	1172
2703	Ba ₈ Li ₂ Nb ₆ O ₂₄		Hexagonal P6 ₃ mmc	37.0	57500			952
2704	$Ba_4LiNb_{3-x}Ta_xO_{12} (x=0)$	1275	Hexagonal perovskite P6 ₃ /mc	37.0	57600		65	941
2705	$Ba_8(Mg_{1-x}Zn_x)Nb_6O_{24} (x=0.6)$			37.0	14600		53	1147
2706	$La_5 TI_4 FeO_{17}$	1500	Orthorhombic Pnnm	37.0	00009		-27	911
2707	Ba(La _{1/2} Ta _{1/2})O ₃	1625	Complex perovskite	37.1	18200		-35	943
			Orthorhombic					
2708	Ba(La _{1/2} Ta _{1/2})O ₃ +0.5 wt% Nb ₂ O ₅	1575	Complex perovskite	37.1	20950		-36	845
			Orthorhombic					
2709	Ca[(Li _{1/3} Nb _{2/3}) _{0.8} $Ti_{0.2}$ IO _{3-d} +0.5 wt% LMZBS	1125	Complex perovskite Orthorhombic	37.1	22100		2	792
2710	$Ba_{3-x}Sr_xLaNb_3O_{12} (x=2)$	1415	Trigonal R-3m	37.1	33900		-18	1125
2711	$Ba_8(Mg_{1-x}Zn_x)Nb_6O_{24} (x=0.4)$		Not available	37.1	16900		22	1147
2712	Ca[(Li _{1/3} Nb _{2/3}) _{0.8} Ti _{0.2}]O _{3-d} +0.5 wt% LBS	1125	Complex perovskite Orthorhombic	37.2	21800		-5	792
2713	$Zr_{0.8}Sn_{0.2}TiO_4+1$ wt% V_2O_5	1300	Orthorhombic Pbcn	37.2	51000	_	-2	1173
2714	0.6CaTiO ₃ -0.4NdAlO ₃	1450/10h	Perovskite Orthorhombic	37.2	40750		114	1174
2715	0.7La(Mg _{1/2} Ti _{1/2})O ₃ -0.3CaTiO ₃	1600	Perovskite Monoclinic P2 ₁ /n	37.2	15300	6.3	-54	932
2716	Ba ₅ Nb ₃ TaO ₁₅	1435	Hexagonal	37.2	4500		35	1090
2717	Ba(In _{1/2} Ta _{1/2})O ₃	1625	Perovskite	37.2	35500		25	943
2718	$Ba(Y_{1/2}Ta_{1/2})O_3$	1625	Perovskite	37.3	45900		120	943
2719	$0.6Ca(Al_{0.5}Nb_{0.5})O_3-+0.5SrTiO_3$	1500	Perovskite	37.3	25400		22	1175

$\overline{}$
0
Э
2
П
<i>:</i>
П
0
Ü

2720	0.6Li,ZnTi,O ₈ -0.4TiO,	1100	Spinel Cubic+rutile	37.3	11700		102	872	
	SnTe ₃ O ₈	660/2h	Cubic la3	37.3	10000		223	62	
2722	$Bi_{12}(B_{0.5}P_{0.5})O_{20}$	780	Sillenite	37.4	850		-19	1176	
	BaTi ₅ O ₁₁ +1 wt% CuO+4 wt%	925	Monoclinic P2 ₁ /n	37.4	25500		33	1177	
	$BaCu(B_2O_5)$								
	$Ba(La_{1/2} Nb_{1/2})O_3$	1650	Perovskite	37.4	8000	7.2	8-	290	
2725	$Sr_2 TiO_4 (Sr_{n+1} Ti_n O_{3n+1})$		Perovskite	37.4	8160	3.1	137	1358	
2726	$Zn_{0.5}Ti_{0.5}NbO_4$	1100	Orthorhombic Ixiolite Pbcn	37.4	194000		-58	1179	
2727	$Nd_4TI_9O_{24}$	1300	Orthorhombic Fddd	37.5	24100	8	65	1137,	
								1138	
	$Ca_3Mg_2Nb_4TO_{17}$	1225		37.5	22500	3.9	4-	877	
	$Sr(Pr_2 Nb_{1/2})O_3 + 0.5 \text{ wt}\% CeO_2$	1575/4h	Complex perovskite cubic	37.5	3250		-34	823	
2730	$CeTiSb_xTa_{1-x}O_6 (x=0.2)$	1480		37.5	8400	4	53	1101	
	$Ba_8Ti_3Nb_{4-x}Sb_xO_{24}$ (x=1.5)			37.5	38000		15	1178	
2732	$0.425La_{0.97}Sm_{0.03}(Mg_{0.5}Sn_{0.5})O_3$ -	1600		37.5	40300		2	1180	
	$0.575Ca_{0.8}Sm_{0.4/3}TiO_3$								
2733	$Bi_2Mo_2O_9+3 mol\%Y_2O_3$	640	Monoclinic P2 ₁ /n	37.5	14750			1176	
	$ZnTa_2O_6$	1350	Tri- α PbO $_2$ Orthorhombic Pbcn	37.6	65200		6	009	
	$Ba(Sm_{1/2}Ta_{1/2})O_3$	1625	Complex perovskite Tetragonal	37.6	15000		-10	943	
2736	Ba_5 SrNb $_4$ ZrO $_{18}$	1600/2h	A ₆ B ₅ O ₁₈ type perovskite Trigonal R-3m	37.6	36000		89	895	
2737	Bi ₁₂ SiO ₂₀	850	Cubic 123	37.6	8100		-20	1176	
2738	Beta-Bi ₃ SbO ₇	096	Orthorhombic	37.6	5080		-120	1181	
2739	$Ca_5Ta_2TiO_{12}+1$ wt% NiO	1625/4h	Complex perovskite	37.6	38000		_	1155	
			Orthorhombic Pnma						
2740	Ba($Sm_{1/2}Ta_{1/2}$)O ₃ +0.5 wt% Nb ₂ O ₅	1575	Complex Perovskite Tetragonal	37.6	16000		-10	845	
2741	$CeTiSb_xTa_{1-x}O_6 (x=0.15)$	1480/4h		37.7	9300	3.98	64	1101	
2742	$Ca_5Ta_2TiO_{12}+0.5$ wt% CuO	1625/4h	Complex perovskite	37.7	38000		12	1155	
		•	Orthorhombic Pnma						
2743	2743 La ₆ ZnTi ₄ O ₁₈	1600/4h	$A_6B_5O_{18}$ type perovskite	37.7	21850		-37	895	

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf(GHz)	f_0	$ au_f$	Reference
2744	$(Z_{f_0.8}S_{n_{0.2}})TiO_4+1$ wt% ZnO, 0.25 wt% WO ₂	1340	Orthorhombic Pbcn	37.8	61000	7	4-	1182
2745	Ba, La, Ti Ta, O ₁ ,	1520	Trigonal P-3m1 perovskite	37.8	36200	5.7	-52	1183
2746	GdītīāO ₆ _ :	1540	Aeschneite Orthorhombic	37.9	12900		11	583
2747	$Gd(W_{0.5}\breve{Ti}_{1.5})O_6$	1375	Orthorhombic Pnma Aeschynite	37.9	2600			1121
			type					
2748	$Ca_5 Ta_2 TiO_{12} + 1$ wt% ZnO	1625/4h	Complex perovskite Orthorhombic Pnma	37.9	39000		5	1155
2749	$Ca_{5-x}Zn_xNb_4TiO_{17}$ (x=0.2)	1340	A _n B _n 3 _{n+2} type Perovskite P2 ₁ /C	37.9	22000		-62	1184
2750	Ba, Ti, Nb ₄ O ₁₈	1220	Monoclinic P2 ₁ /c	38.0	23700	4.8	-3	1185
2751	$Zr_{0.8}Sn_{0.2}TiO_4 + B_2O_3$		Orthorhombic pbcn	38.0	61500			1186
2752	Bi, Mo, O ₉	620	Monoclinic P2 ₁ /n	38.0	12500		31	494
2753	Ba ₂ Ti ₉ O ₂₀ (Hydrothermal)	150	Monoclinic P2 ₁ /m	38.0	1200	5.6	9	1187
2754	$Ca(Zr_xTi_{1-x})O_3 (x=0.7)$	1470/15h	Perovskite	38.0	2900	3.9	168	916
2755	$0.95Ba(Zn_{1/3}Nb_{2/3})O_3$ -		Perovskite	38.0	102950	2.9	19	1107
	$0.05 \text{Ba} (\text{Ga}_{1/2} \text{Ta}_{1/2}) \text{O}_3$							
2756	$Bi_{12}GeO_{20}$	850	Cubic 123 Sillenite	38.0	7800		-31	1176
2757	Ba(Sm _{1/2} Ta _{1/2})O ₃	1625/4h	Complex perovskite	38.0	15000		-10	943
2758	$Ba(Ho_{1/2}Nb_{1/2})O_3$	1600	Complex perovskite	38.0	21600		-11	1136
2759	$Sr(Pr_{1/2}Nb_{1/2})O_3$	1575/4h	Complex perovskite	38.0	3300		-34	823
2760	$Ca_3Nb_2O_8$		Tetragonal P4/nnc	38.0	7100	5.9	113	864
2761	$Zr_{0.8}Sn_{0.2}TiO_4$		Orthorhombic Pbcn	38.0	62000	4	0	1188
2762	$0.24 \text{Li}_2 \text{O} - 0.71 \text{Nb}_2 \text{O}_5 - 0.05 \text{TiO}_2$	1350	M phase	38.0	40000		66-	09/
2763	Zr _{0.8} Sn _{0.2} TiO ₄ sol-gel derived	1300	Orthorhombic Pbcn	38.0	55000	9	_	1189
2764	$0.5 La Ca_{0.5} Zr_{0.5} O_3 - 0.5 Sr Ti O_3$	1575	Composite	38.0	7000	3.8	8	522
2765	$BaO-2CeO_2-3TiO_2$	1250	Composite	38.0	7200		159	606
2766	$Ca_5Ta_2TiO_{12}$	1625	Complex perovskite	38.0	33000	4.2	10	1190,
			Orthorhombic Pnma					1191
2767	$Ca_5 Ta_2 TiO_{12} + 0.2 \text{ wt}\%$	1550	Complex perovskite	38.0	38000		8	1191
	$Al_2O_3-B_2O_3-SiO_2$		Orthorhombic Pnma					

8
ě
ä
Ĭ.
ō
$^{\circ}$

2768	Ca ₅ Ta ₂ TiO ₁₂ +0.1 wt% 2MgO-Al,O ₂ -5SiO,	1550	Complex perovskite Orthorhombic Pnma	38.0	40000		rV	1191
2769	$Ba(Zn_{1/3}Nb_{2/3})_{0.9}Zr_{0.1}\tilde{O}_{3}$	1400	Perovskite Cubic Pm3m	38.0	61000	10	15	1192
2770	Ca ₅ Ta ₂ TiO ₁₂ + 0.5 wt% MgO	1625/4h	Complex perovskite Orthorhombic Pnma	38.0	40000		9	1155
2771	$La_{0.42}Ca_{0.58}[Ca_{0.05}Mg_{0.16}T_{0.79}]O_3$		Perovskite	38.0	20000	5.3	25	950
2772	$Ca_{(1-x)}Y_xTi_{1-x}AI_xO_3$ (x=0.3)		Perovskite Orthorhombic	38.0	14200		-14	1193
2773	$Ba_{0.2}Sr_{0.71}(Zr_{0.951}Ti_{0.039}Ta_{0.01})O_3$		Perovskite Orthorhombic	38.0	1700		0	1194
2774	$Ba_{0.29}Sr_{0.71}(Zr_{0.973}T_{0.027})O_3$		Perovskite Orthorhombic	38.0	2000		-40	1194
2775	Ba(Zn _{1/3} Nb _{2/3})O ₃ +1 mol% WO ₃	1450	Perovskite Cubic Pm3m	38.0	95150		39	1165
2776	0.4Nd _{1525/4} Yb _{0.04} (Mg _{0.5} Sn _{0.5})O ₃ - 0.6Ca _{0.08} Sr ₀ , TiO ₃ +1.25 wt% B ₂ O ₃	1525/4h	Composite	38.0	00989		2	1195
2777	Ba ₂ Ti ₃ Nb ₄ O ₁₈		Monoclinic P2 ₁ /c	38.1	14200		-11	1196
2778	$Ba_3Ti_5Nb_6O_{28}+BaCu(B_2O_5)$	925	Monoclinic P2 ₁ /c	38.2	19200		12	1172
2779	$Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-d}+0.2\ wt\%\ LBS$	1125	Complex perovskite Orthorhombic	38.2	21500		-2	792
2780		1430/3h	Hexagonal perovskite	38.2	18700	5.4	12	1352
2781	BaO-ZnO-TiO ₂	1250		38.2	2000		36	1117
2782	$Sr_{1-x}Ca_x[(Li_{1/4}Nb_{3/4})_{1-y}Ti_y]O_3$		Perovskite	38.2- 45.8	35000		30 to -70	1197
2783	$0.7 \text{La}(\text{Mg}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - 0.3SrTiO_3		Perovskite Pbnm	38.3	10550	9.9		878
2784	0.87La(Mg _{1/2} Ti _{1/2})O ₃ - 0.13Ca _{0.8} Sr _{0.2} TiO ₃ +0.5 wt% B ₂ O ₃	1475	Composite	38.3	00029	∞	0	1198
2785	$Z_{n_{0.97}}Co_{0.03}Ta_2O_6$		Orthorhombic Pbcn	38.3	109200		10	1077
2786	$PrTiSb_xTa_{1-x}O_6 (x=0.15)$	1480/4h	Not available	38.3	12300	4.05	09	1101
2787	0.4Nd(Mg _{0.4} Zn _{0.1} Sn _{0.5})O ₃ - 0.6Ca _{0.8} Sr _{0.7} TiO ₃	1350/4h	Composite	38.3	35000		-5	1199
2788	Ba($Z_{n_{1/3}}Nb_{2/3})O_3+1$ mol%WO ₃ annealed at 1325	1450/4h	Perovskite Cubic Pm3m	38.4	95150		38	1165

No.	Material	ST (°C)	Crystal structure	$\mathcal{E}_{_{I}}$	Qf (GHz)	f_0	$ au_f$	Reference
2789	Ba(Pr _{1/2} Ta _{1/2})O ₃	1625	Complex perovskite Orthrohombic	38.5	42800		8-	943
2790	Sm(Nb _{0.25} Ta _{0.25})TiO ₆			38.5	22100		76	671
2791	$Z_{I_0 g_5} C_{O_0 I_5} T_{a_2} O_{b}$		Orthorhombic Pbcn	38.5	112000		11	1077
2792	$(Z_{n_{0.95}}M_{n_{0.05}})$ Ta ₂ O ₆	1325	Orthorhombic Pbcn	38.5	92700		6	1200
2793	Ba($Pr_{1/2}Ta_{1/2}$)O ₃ +0.5 wt% Nb ₂ O ₅	1575	Complex perovskite	38.5	47150		-39	845
2794	$(Sm_0 \cdot ^5 V_0 \cdot ^5)(Ti_1 \cdot ^5 W_0 \cdot ^5)O_6$	1400/10h	Not available	38.5	36900		9-	1201
2795	$Eu(W_{0.5}T_{1.5})O_6$	1375	Orthorhombic Pnma Aeschynite	38.6	30500		3	1121
			type					
2796	0.5Ba(Y _{1/2} Nb _{1/2})O ₃ - 0.5Ba(Ca _{1/9} Y _{3/9} Nb _{5/9})O ₃		Perovskite	38.6	17400	8.1		1202
2797	MWF-38	1360	Composite	38.6	44500		1.3	510
2798	Bi ₁₂ PbO ₁₉		Cubic 123 sillenite	38.6	2900		-84	1176
2799	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_{x}]O_{3} (x=0.2)$	1150/3h	Perovskite	38.6	26100		0	752
2800	$Ba_3Ti_5Nb_6O_{28}+3$ wt% B_2O_3+1 wt% CuO	900/2h	Monoclinic P2 ₁ /c	38.6	29800		57	1203
2801	$Ca_5Ta_2TiO_{12}+0.5 \text{ wt\% Al}_2O_3$	1625/4h	Complex perovskite Orthorhombic Poma	38.6	36000		9	1155
2802	Ca(Fe _{1.2} Nb _{1.2})O ₃	1250/3h	Perovskite Orthorhombic Pbnm	38.6	1830	5.9	-107	1164
2803	$Ba(Nd_{1/2}Ta_{1/2})O_3 + 0.5 \text{ wt}\% \text{ Nb}_2O_5$	1575	Complex perovskite Tetragonal	38.7	12050		4-	845
2804	$Zr_{0.8}Sn_{0.2}TO_4+1$ wt% $ZnO+0.2$ wt% B_2O_3	1150/3h	Orthorhombic Pbcn	38.7	61500			1186
2805	$PrTiSb_{v}Ta_{1-v}O_{\delta} (x=0.1)$	1480/4h		38.7	12800	4.02	64	1101
2806	$\mathrm{Bi_4B_2O_9}$	099	Monoclinic P2 ₁ /c	38.8	2620		-203	287
2807	Ba(Eu _{1/2} Ta _{1/2})O ₃	1625	Complex perovskite	38.8	36200		-10	943
2808	$Ba(Dy_{1/2}Nb_{1/2})O_3$	1600	Complex perovskite	38.9	20600		4-	1136
2809	$Zr_{0.8}Sn_{0.2}TO_4$	1600/4h	Orthorhombic Pbcn	38.9	51500		0.7	1204
2810	$Ba_{3-x}Sr_xLaNb_3O_{12}$ (x=1.5)	1405	Hexagonal perovskite R-3m	38.9	25800		-35	1125

8	
ĕ	
2	
÷	
5	
Ųζ	
_	

2811	ZnTiNb ₂ O ₈ -0.8TiO ₂ +2 wt% BaCu(B,O _E)	950	Orthorhombic Pbcn	38.9	14500	4.71	0	1205
2812 2813 2814	Ba(In _{1/2} Nb _{1/2})O ₃ +MoO ₃ additive Ba ₅ Nb ₄ O ₁₅ (A _n B _{n-1} O _{3n}) Ba ₅ Nb ₄ O ₁₅ +6.3 vol% BaNb ₂ O ₆ +3 wt% B.O.	1600 1380 925/2h	Complex perovskite Hexagonal perovskite P-3m1 Composite	39.0 39.0 39.0	30700 23700 18700	7.4	17 78 0	1136 325 1206
2815	$(1-x)Ba_3(ZnNb_2)O_9-xBa_3W_2O_9$ (x=0.007)	1380	Perovskite	39.0	118000		21	1207
2816	Ca[(Li _{1/3} Nb _{2/3}) _{1-x} Ti _x] O _{3-δ} (x=0.15)	1150/3h	Perovskite	39.0	26100		0	752
281/	Ba(1D _{1/2} ND _{1/2})O ₃ Ba ₃ Ti₅ Ta ₆ O ₂₈	1600 1430	Complex perovskite	39.0 39.0	52400 4000	5.3	30	1136 1208
2819	$Ca_4SrIa_2TiO_{12}$	1625	Complex Perovskite Orthorhombic Pnma	39.0	21000	3.59	12	1209
2820	$Ba(Mn_{1/3}Nb_{2/3})O_3$		Trigonal P-3m1 Perovskite	39.0	9300	9.3	27	787
2821	Ba ₄ LaSnNb ₃ O ₁₅ (A ₅ B ₄ O ₁₅)	1480/4h	Hexagonal perovskite	39.0	14800	5.9	-29	1210
2822	$(1-x)LaMg_{1/2}Ti_{1/2}-xLa_{2/3}TiO_3$ (x=0.48)		Perovskite	39.0	3800	4.6	23	950
2823	$Li_{0.774}Zr_{0.057}NbO_3$	1150	Orthorhombic Pnma	39.0	4500	9	-17	1070
2824	$Ca_5Ta_2TiO_{12} + 0.1 \text{ wt}\%$ $2MgO-Al_2O_3-55iO_2$	1600	Perovskite Orthorhombic Pnma	39.0	40000	21	8	1211
2825	$Ca_5Ta_2TiO_{12}+0.1 \text{ wt}\%$ B,O ₃ -Al,O ₃ -5SiO,	1600	Complex perovskite Orthorhombic Pnma	39.0	38000	5	_	1211
2826	$Ca_5Ta_2TiO_{12}+0.1$ wt% SiO_2	1600	Complex perovskite Orthorhombic Pnma	39.0	35000	2	6	1211
2827	$Ca_5Ta_2TiO_{12}+1$ wt% SnO_2	1625/4h	Complex perovskite Orthorhombic Pnma	39.0	35500		2	1155
2828	$Ca_5Ta_2TiO_{12}+1$ wt% Cr_2O_3	1625/4h	Complex perovskite Orthorhombic Pnma	39.0	40500		13	1155
2829	$Ca_5Ta_2TiO_{12}+1 wt\% ln_2O_3$	1625/4h	Complex perovskite Orthorhombic Pnma	39.0	37000		2	1155
2830	SrTiO ₃ -LaAlO ₃		Perovskite	39.0	00009		0	1212

No.	Material	ST (°C)	Crystal structure	$\mathcal{E}_{_{I}}$	Qf(GHz)	f_0	$ au_f$	Reference
2831	Sr(Sm _{0.5} Ta _{0.5})O ₃ +0.5 wt% Nb ₂ O ₅ +2 wt% TiO.	1600/4h	Complex perovskite Tetragonal	39.0	11600		-20	859
2832	BaMg ₆ Ti ₆ O ₁₉	1450	Hexagonal P6 ₃ /mmc	39.0	20000	2	370	1213
2833	$Ba_2TI_9O_{20}$	1350/3h	Monoclinic P2 ₁ /m	39.0	32000	2		1214,
2834	$Ba_{\Sigma}Nb_{A}O_{1\Sigma}+3 wt\% B,O_{3}$	925	Perovskite Hexagonal P-3m1	39.0	18700		0	1206
2835	Bi, Te, O ₈ (oxygen atm)	650/10h	Monoclinic C2/c	39.0	23000		-43	1216
2836	0.9BiNbO ₄ -0.1ZnNb,O ₆ +0.8CuV,O ₆	006	Mixture phases	39.0	31000		-10	1217
2837	Baq12 La3/12 Zn1/3 Ti3/12 Nb5/12 O3	1400		39.0	1500	5.46	-42	919
2838	$Sr_2La_2TiNb_2O_{12}$	1450	Hexagonal perovskite	39.0	40600		-5	1143
2839	$Sr_{4-m}La_mTi_{m-1}Ta_{4-m}O_{12}$ (m=3)	1600		39.0	42000		8-	975
2840	0.6La(Mg _{1/2} Ti _{1/2})TO ₃ -	1475	Composite	39.0	41000	8	-3	1218
	0.4Ca _{0.6} Nd _{0.8/3} IIO ₃ +0.5 wt% B,O ₃							
2841	Bi _{11.8} SiO _{19.7}	825/4h	Cubic 123	39.0	74000		41-	1219
2842	$Bi_4B_2O_9$	099	Monoclinic P2 ₁ /c	39.0	2600		-203	287
2843	$Ba(Dy_{1/2}Ta_{1/2})O_3$	1625	Complex perovskite	39.1	18200		-48	943
2844	0.8BaZn ₂ Ti ₄ O ₁₁ - 0.2 BaNd ₂ Ti ₄ O ₁₂	1250	Composite	39.1	37850		6-	1220
2845	$(Zr_{0.8}Sn)TiO_4+2$ wt% ZST nano	1300/3h	Orthorhombic Pbcn	39.2	72900		ı	1221
2846	$Sr_{1.6}Ca_{0.4}TiO_4$	1600	Tetragonal I4/mmm	39.2	8100	3	195	1222
2847	$(5-x)BaO-xMgO-2Nb_2O_5$ (x=1)+1 wt% CuO	1200	Composite	39.2	43800		38	1159
2848	Sr ₂ La ₄ Ti ₅ O ₁₈	1625/2h	A ₆ B ₅ O ₁₈ type perovskite	39.2	27350		20	895
2849	Sm(Nb _{0.5} Ta _{0.5})TiO ₆			39.3	19600		33	671
2850	$Ca_5Ta_2TiO_{12}+1$ wt% Sb_2O_3	1625/4h	Complex perovskite Orthorhombic Pnma	39.3	36800		^	1155
2851	$\mathrm{Ba_2}\mathrm{T_9O_{20}}$ +1.64 mol%SnO ₂	1390/6h in O ₂	Monoclinic P-1	39.3	38400		I	1223
2852	$Ba_3LaTa_3O_{12}$	1500	A _n B _{n-1} O _{3n} perovskite Trigonal R3 m	39.4	26800	9	-46	1224

	C	3
	ã	5
	C	:
,	F	3
	ç	
	ς	٥
	ι	ر
	.,	Continuo

2853	$Bi_{12}MnO_{20-d}$ PrTiSb_Ta_, O_c (x=0.05)	720 1480/4h	Cubic 123 Sillimanite	39.4	800	4.001	-35 65	1176
2855	$Sm(W_{0.5}T_{1.5})\breve{O}_6$	1350	Orthorhombic Pnma Aeschynite type	39.4	35500		T	1121
2856	5.7Li ₂ O-Nb ₂ O ₅ -7.3TiO ₂	1100	M phase	39.5	16200	0 0	65	1225
2857	$CellSD_{x}^{x}Id_{1x}O_{6}^{x}(x=0)$ $Ba_{a}^{x}SrIaNh_{a}O_{a}^{x}(x=1)$	1400	Perovskite Trigonal R-3m	39.5	22600	0.01	90	1101
2859	$Ba_{1-x}La_x[Zn_{(1+x)/3}Nb_{(2-x)/3}]O_3$ (x=0)	1350/4h		39.5	112280		19	1226
2860	$Ba_2Ti_9O_{20}+1.64 mol\% ZrO_2$	1390/6h	Monoclinic P2 ₁ /m	39.5	41700		2	1227
7861	0, 2, N. 2, S. 8	U ₂ 1600/4b	Trigonal B 3m	30 5	36000		89	805
1007	D 17 T T T 10	1500/1	Decomplish and in	700	1000	7		1770
2002	Da[Z11]/4 11/4 141/2 J O 3	1400/225	Perovskite cubic	0.00	00000	t. \	<u>-</u>	1006
2864	0.0Lα _{2/3} ι ι Ο 3-0.4LαΛι Ο 3 Βα(Η0, η Τα, η) Ο ,	1625	Complex perovskite	39.6	21900	o	130	943
2865	PrTiSb _v Ta _{1-v} O _k (x=0.0)	1480/4h		39.6	12500	3.97	56	1101
2866	0.95Ba(Zn _{1/3} Nb _{2/3})O ₃ -0.05BaZrO ₃ +1 wt% CuO	1360/2h	Perovskite cubic Pm3m	39.7	70000	_	17	1229
2867	Ba(Sm _{1/2} Nb _{1/2})O ₃	1500	Complex perovskite	39.7	21500	7.1	21	290
2868	$(1-x)La(Mg_{1/2}Ti_{1/2})O_3-xLa_{2/3}TiO_3$ (x=0.45)		Perovskite 12/a	39.7	5800	9.7		889
2869	$Ba(Yb_{1/2}Ta_{1/2})O_3$	1625	Complex perovskite	39.7	31700		112	943
2870	$0.65 \text{CaTiO}_3 - 0.35 \text{Sm}_{0.9} \text{Nd}_{0.1} \text{AIO}_3$	1415/3h	Orthorhombic Perovskite	39.7	50000		_/	1230
2871	$Ba_6Ti_{1-x}Sn_xNb_4O_{18}$ (x=0.25)	1480	Hxagonal R-3m	39.8	19800	5.5	46	982
2872	GdTiTaO ₆	1540		39.9	12900		1	583
2873	$Ba(Gd_{1/2} Nb_{1/2})O_3$	1600	Complex perovskite	40.0	5700		2	1136
2874	$Ca_{5}Nb_{0.5}Ta_{1.5}TiO_{12}$	1600	Complex perovskite Orthorhombic Pnma	40.0	31500		19	1231
2875	Ba(Eu _{1/2} Nb _{1/2})O ₃	1600	Complex perovskite	40.0	40200		^	1136
2876	$Ba_3Ti_SNb_3Ta_3O_28$	1375		40.0	8000	4.8	6	1208
2877	$Ba_5Nb_4O_{15}$	I	Trigonal perovskite P-3m1	40.0	53000		78	1232-
								1234
2878	2878 Ca ₄ ZnNb ₂ TiO ₁₂	1550	Perovskite Orthorhombic Pnma	40.0	30500	4.2458	-37	230

2879 Sr 2880 Ca								
	$Sr_5Nb_4O_{15}(A_nB_{n-1}O_{3n})$ $Ca(Fe_{1/2}Nb_{1/2})O_3$	1400 1500/6h	Trigonal P-3c1 perovskite Complex perovskite Orthorhombic Phym	40.0	19400	4.84	55 -76	325 609
2881 Ca	$Ca[(Li_{1\beta}Nb_{2\beta})_{0.8}Ti_{0.2}]O_{3.6}$ $Ca[(Li_{1\beta}Nb_{2\beta})_{0.8}Ti_{0.2}]O_{3.6}+12 wt%$ B. O ZnO-SiO PhO frit olass	920 900	Orthorhombic perovskite Composite	40.0	20500 12500	80	15 8	1235 1236
2883 Sr	\mathcal{L}_2		Perovskite Cubic Pm3m	40.0	36800	9.2	-39	787
2884 0.	0.3Sr(Eu _{1/2} Nb _{1/2})O ₃ -0.7Sr(Fe _{1/2} Nb _{1/2})O ₃	1600/4h	Complex perovskite	40.0	22600		4-	823
2885 Ba	$Ba[(Zn_{0.8}Co_{0.2})_{1/3}Nb_{2/3}]O_3$	1410	Perovskite Cubic Pm3m	40.0	50135		18	1130
2886 Ba	$Ba(Zn_{1/3}Nb_{2/3})O_3$	1390	Perovskite Cubic Pm3m	40.0	87000		30	787, 1237
2887 Ba	$Ba_{0.3}Sr_{0.7}(Zn_{1/3}Nb_{2/3})O_3$	1500/1h	Perovskite Cubic Pm3m	40.0	30500	10	-5	1238
2888 0.	0.7Ca(Mg _{1/3} Nb _{2/3})O ₃ - 0.3 CaTiO ₃		Perovskite	40.0	27900	3.8	-15	1238
2889 (Z	(Zr,Sn)TiO ₄	1600	Orthorhombic Pbcn	40.0	53000	10	0	1240
2890 Ba	$Ba_8 Ta_{4+0.8x} T_{3-x} O_{24} (x=0)$	1400/40h	A _n B _{n-1} O _{3n} hexagonal Perovskite P63/mcm	40.0	12960			920
2891 0.	$0.6La_{2/3}$ TiO ₃ -0.4LaAlO ₃ (oxygen)	1400/33h	Perovskite Orthorhombic	40.0	50800	9	-15	1096
2892 Ba	$Ba_{0.75}Sr_{0.25}(Zn_{1/3}Ta_{2/3})_{0.94}Ti_{0.06}O_3$	1400	Perovskite	40.0	65000	10	-13	1194
2893 Ba	$Ba_5 Nb_4 O_{15} + 0.3 \text{ wt}\% ZnB_2 O_4 \text{ glass}$	006	Hexagonal Perovskite	40.0	12100		48	1241
2894 Ba	Ba-Nd-Sm-Bi-Ti-O+9 wt% BaO-B ₂ O ₃ -SiO ₂	950/2.5h	Composite	40.0	3000			1242
2895 Zr	$ZnNb_2O_6-1.8TiO_2+4$ wt% $BaCu(B_2O_5)$	950/4h	Composite	40.0	11000		2	626
2896 Bi	Bi(V _{0.008} Nb _{0.992})O ₄	830	Orthorhombic Pnma	40.0	18500			1243
2897 La	La(Mg _{0.3} Ti _{0.5})O ₃ +15 mol% Bi ₂ O ₃	1325	Composite	40.1	60200		70	1244
2898 Ca	$Ca_5Ta_4TiO_{17}$	1525	Monoclinic P2 ₁ /c	40.1	16450	4.22	-54	877,
								1245
2899 Ba	$Ba_3 T_5 Nb_6 O_{28} + 2 \text{ wt\% } B_2 O_3 + 2 \text{ wt\%}$ CuO	900/2h	Monoclinic P2 ₁ /c	40.2	32200		Ŋ	461
2900 La	La ₆ MgTi ₄ O ₁₈	1625/2h		40.2	35000		-39	895
2901 Ba 2902 Ba	$Ba_5Nb_4O_{15}+1.5 \text{ wt}\% BaCu(B_2O_5)$ $BaO\text{-}CeO_2\text{-}3\text{Ti}O_2$	1300	Hexagonal perovskite Composite	40.2 40.3	28600 19900		60	1246 1247

4	=
	3
	ž
	5
	z
	õ
	Ũ.
	_

wt% B2O3+3 wt% 900/2h Monoclinic P2,/c 40.3 4.8 TiO2-2.5Nb2O3+4 900 Composite 40.4 5) 3TiO2+1 wt% B2O3 900 M phase+Li2TiO3 40.5 (x=0.8) 1200/2h Orthorhombic Pbcm 40.5 (x=0.8) 1540 Orthorhombic Pbcm 40.5 (x=0.8) 1550 Orthorhombic Pbcm 40.5 CuO 1100 Monoclinic P2,/n 40.6 At % ZnO+1 mol% 1400/5h Orthorhombic Pbcm 40.8 At % ZnO+1 mol% 1400/5h Orthorhombic Pbcm 40.8 At % ZnO+1 mol% 1400/5h Orthorhombic Pbcm 40.8 At % ZnO+1 mol% 1500/4h Orthorhombic Pbcm 40.8 At % ZnO+1 mol% 1500/2h Orthorhombic Pbcm 40.8 At % ZnO+1 wt% B2O3 1320/3h A1.0 At % Mbr/s D3 1400 Hexagonal perovskite Cubic 41.0 At Monoclinic P2, /m An O3 A1.0 Annealed in N2 1500 Perovskite cubic Pm3m 41.0	2903	Ba(Zn _{1/3} Nb _{2/3})O ₃ +1 mol% ZrO ₂ annealed at 1325	1450/4h	Complex perovskite trigonal	40.3	77800		26	1165
2.5ZnO-0.2SnO ₂ -4.8TiO ₂ -4.SNb ₂ O ₅ +4 900 Composite wt% BaCu(B ₂ O ₅) wt% BaCu(B ₂ O ₅) 5.7Li ₂ O-Nb ₂ O ₃ -7.3TiO ₃ +1 wt% B ₂ O ₃ 1200/2h Orthorhombic Phorm 6.4La ₂ Ti _{5,x} (Mg _{1/3} Nb _{2/3})×O _{1,7} (x=3) 1540 Orthorhombic Phorm 7.2Li ₂ O-Nb ₂ O ₃ -7.5TiO ₄ +1 wt% CuO 6.2a ₄ Mg ₁ Nb ₂ TiO ₄ 6.2a ₆ Mg ₁ Nb ₂ TiO ₄ 6.2a ₆ Mg ₁ Nb ₂ TiO ₄ 6.2a ₆ Mg ₁ Nb ₂ TiO ₄ 7.2n ₆ Sh _{0,2} d ₄ 7.2n ₆ Sh _{0,2} d ₄ 7.2n ₆ Sh _{0,2} TiO ₄ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% ZnO+1 mol% 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% ZnO+1 mol% 7.2n ₆ Sh _{0,2} TiO ₄ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% B ₂ O ₃ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% B ₂ O ₃ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% B ₂ O ₃ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% B ₂ O ₃ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% B ₂ O ₃ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% B ₂ O ₃ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% B ₂ O ₃ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% B ₂ O ₃ 7.2n ₆ Sh _{0,2} TiO ₄ +1 wt% B ₂ O ₃ 7.2n ₆ Sh _{0,2} TiO ₄ 7.2n ₆ Sh _{0,2} TiO ₄ 7.2n ₆ Sh _{0,2} TiO ₄ 7.2n ₆ Sh _{0,2} TiO ₂ Sh _{0,2} 7.2n ₆ Sh _{0,2} Sh _{0,2} 7	2904	$Ba_3Ti_5Nb_6O_{28}$ +1 wt% B_2O_3 +3 wt% CuO	900/2h	Monoclinic P2 ₁ /c	40.3	32500		6	461
5.7Li ₂ O-Nb ₂ O ₅ -7.3TiO ₂ +1 wt% B ₂ O ₃ 900 M phase+Li ₂ TiO ₃ 40.5 ZnTi(Nb _{1-x} Ta _x) ₂ O ₈ (x=0.8) 1200/2h Orthorhombic Pbcn 40.5 Za ₄ La ₂ Ti _{5-x} (Mg _{1/3} Nb _{2/3} Vo ₁₇ (x=3) 1540 Orthorhombic Pbnm 40.5 BaTi ₅ O ₁₁ +1 wt% CuO 1100 Monoclinic P2 ₁ /n 40.5 Ca ₄ MgNb ₄ TiO ₁₇ 10.4 Za ₄ MgNb ₄ TiO ₁₇ 10.4 Za ₄ MgNb ₄ TiO ₁₇ 10.4 Za ₆ SP ₆ Ja ₄ O ₄ 1 wt% ZnO+1 mol% 1400/5h Orthorhombic Phna 40.7 Za ₆ SP ₆ Ja ₂ O-Nb ₂ O ₅ -7.5TiO ₂ +1 wt% B ₂ O ₃ 875 1100/6h Orthorhombic Pbcn 8b ₂ O ₅ 5.5Li ₂ O-Nb ₂ O ₅ -7.5TiO ₂ +1 wt% B ₂ O ₃ 875 1100/6h Orthorhombic Pbcn 8b ₂ O ₃ 875 1100/6h Orthorhombic Pbcn 8b ₂ O ₃ 5.5Li ₂ O-Nb ₂ O ₅ -7.5TiO ₂ +1 wt% B ₂ O ₃ 875 1100/6h Orthorhombic Pbcn 8a ₂ Ti ₃ O-Nb ₂ O ₅ -0.8TiO ₂ 1320/3h 1100/6h Orthorhombic Pbcn 8a ₂ Ti ₃ Nb ₄ O ₁₈₊₁ .5 wt% LBS 1400 Hexagonal perovskite Cubic 41.0 Ba ₂ Ti ₃ Nb ₄ O ₁₈₊₁ .5 wt% LBS 1400 Hexagonal perovskite Cubic Pm3m 41.0 Ba ₂ Ti ₃ Nb ₂ O ₂ O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic Pm3m 41.0 Ba ₂ Ti ₃ O ₂ O ₃ -NTiO ₁₋₂ 1550 Orthorhombic perovskite Pmma 41.0 Ba(Zn _{1/3} Nb _{2/3} O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 Bi ₁ O ₂ Sn _{0,2} Nb ₂ TiO ₃ Annealed in N ₂ 1500 Orthorhombic Pmma 41.0	2905	2.5ZnO-0.2SnO ₂ -4.8TiO ₂ -2.5Nb ₂ O ₅ +4 wt% BaCu(B ₂ O ₅)	006	Composite	40.4	19000		ī	1248
ZnTi(Nb _{1-x} Ta _x) ₂ O ₈ (x=0.8) 1200/2h Orthorhombic Pbcn 40.5 Ca ₄ La ₂ Ti _{5-x} (Mg _{1/3} Nb _{2/3}) _x O ₁₇ (x=3) 1540 Orthorhombic Pbnm 40.5 BaTi ₅ O ₁₁ +1 wt% CuO 1100 Monoclinic P2 ₁ /n 40.5 Ca ₄ MgNb ₄ TiO ₁₇ 1250 Tetragonal P42/nmm 40.6 Ga _{0.5} Ta _{0.5} TiO ₄ +1 wt% CuO 1400 Tetragonal P42/nmm 40.6 BiNb _{0.6} Sh _{0.4} O ₄ 1400 Tetragonal P42/nmm 40.6 Z _{0.5} Sn _{0.2} TiO ₄ +1 wt% CuO+1 mol% 1400/5h Orthorhombic Pbcn 40.8 Z _{0.5} Sn _{0.2} TiO ₄ +1 wt% ZnO+1 mol% 875 40.8 40.8 S _{0.2} O ₃ 1400/4h Orthorhombic Pbcn 40.9 S _{0.5} Cu _{0.5} TiNb ₂ O ₈ 1100/6h - 40.9 S _{0.5} Cu _{0.5} TiNb ₂ O ₈ +1 wt% B ₂ O ₃ 900 40.9 S _{1.2} O-1Nb ₂ O ₅ -2TiO ₃ +1 wt% B ₂ O ₃ 1320/3h 41.0 Ba _{1.5} Cu _{1.7} Nb _{0.7} Su ₂ Al _{1.0} Ti _{1.0} Nb _{1.6} O ₃ 1400 Hexagonal perovskite Cubic 41.0 S _{1.4} Su _{1.7} Su _{1.6} O _{2.5} Min _{1.6} D _{1.2} 1450/4h Composite 41.0 Ba _{1.7} Cu _{1.3} Nb _{2.0} O ₃ Ann		$5.7 \text{Li}, \text{O-Nb}, \text{O}_{5} - 7.3 \text{TiO}, +1 \text{ wt}\% \text{ B}, \text{O}_{3}$	006	M phase+Li, TiO ₃	40.5	13900		42	1225
Ca4La2Ti5x(MgI/3)Nb2/3}\cdot OTTO T540 Orthorhombic Pbnm 40.5 BaTi5O11+1 wt% CuO 1100 Monoclinic P21/n 40.5 Ca4MBNb4TiO17 1250 1250 40.6 Ca4MBNb4TiO17 1400 Tetragonal P42/mnm 40.6 BiNb06,5bb4,04 1400/5h Orthorhombic Phna 40.6 ZCa8Sh0,2 TiO4+1 wt% ZnO+1 mol% 1400/5h Orthorhombic Pbcn 40.8 Sb2O3 5.5Li2O-Nb2O5-7.5TiO2+1 wt% B2O3 875 40.8 Ni 03-5Zn0.65 TiNb2 O6 1000/4h - 40.9 Ni 03-5Zn0.65 TiNb2 O6 1320/3h - 40.9 SLi2O-1Nb2O5-5TiO3+1 wt% B2O3 900/2h Composite 41.0 Ba2Ti3 Nb4O1e+ 1.5 wt% 1320/3h - 40.9 MnCO3-CuO+0.5 wt% LBS 1400 Hexagonal perovskite 41.0 SrLa3 Ti3 Nb4O1e+ 1.5 wt% 1480 Hexagonal perovskite 41.0 Ba2Ti3 Nb4O1e+ 1.5 wt% 188 1400 Pm3m SrLa3 Ti3 NbO12 1480 Hexagonal perovskite 41.0 Ba2Ti3 O22		$ZnTi(Nb_{1-x}Ta_x)_2O_8$ (x=0.8)	1200/2h	Orthorhombic Pbcn	40.5	41000		0	1249
BaTI ₅ O ₁₁ +1 wt% CuO 1100 Monoclinic P2 ₁ /n 40.5 Ca ₄ MgNb ₄ TiO ₁₇ 1250 40.6 Ga _{0.5} Ta _{0.5} TiO ₄ 1400 Tetragonal P42/mnm 40.6 BiNb _{0.6} Sb _{0.4} O ₄ 27 1400 Tetragonal P42/mnm 40.6 BiNb _{0.6} Sb _{0.4} O ₄ 27 1400/5h Orthorhombic Phorn 40.7 Sb ₂ O ₅ 25.5Li ₂ O-Nb ₂ O ₅ -7.5TiO ₂ +1 wt% B ₂ O ₃ 875 40.8 40.8 1a ₂ AnTi ₄ O ₁₈ 1600/4h 1100/6h - 40.9 40.9 1a ₂ AnTi ₄ O ₁₈ , 15 wt% 1100/6h - 40.9 40.9 40.9 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 900 1320/3h - 40.9 40.9 SLi ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 1400 Composite 41.0 41.0 MnCO ₃ -CuO+0.5 wt% LBS 1480 Hexagonal perovskite Cubic 41.0 Ba ₂ Ti ₃ Nb ₂ O ₂ -3Mn Ba(Zn ₁₃ Nb ₂)O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic 41.0 Ba(Zn ₁₃ Nb ₂ O ₃ O ₃ Nh Ba(Zn ₁₃ Nb ₂ O ₃ O ₃ Nh 1500 Perov		$Ca_4La_2Ti_{5-x}(Mg_{1/3}Nb_{2/3})_xO_{17}$ (x=3)	1540	Orthorhombic Pbnm	40.5	19100		_	1118
Ca4MgNb4TiO17 1250 40.6 Ca4MgNb4TiO17 1400 Tetragonal P42/mnm 40.6 BiNb _{0.6} Sb _{0.4} O ₄ 920 Orthorhombic Phona 40.7 SiNb _{0.6} Sb _{0.4} O ₄ 1400/5h Orthrhombic Phona 40.7 Zr _{0.8} Sn _{0.2} TiO ₄ +1 wt% ZnO+1 mol% 1400/5h Orthrhombic Phona 40.8 Sb ₂ O ₅ 5.5Li ₂ O-Nb ₂ O ₅ -7.5TiO ₂ +1 wt% B ₂ O ₃ 875 40.8 Sh ₂ O ₅ 1100/6h - 40.8 Ni _{0.35} Zn _{0.65} TiNb ₂ O ₁₈ 1100/6h - 40.9 Ni _{0.35} Zn _{0.65} TiNb ₂ O ₁₈ 1320/3h 40.9 40.9 SLi ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₉ 900 40.9 40.9 Ba ₂ Ti ₃ Nb ₂ O ₁ -4 mol ₂ O ₃ -5TiO ₃ +1 swt% 900/2h Composite 41.0 MnCO ₃ -CuO+0.5 wt% LBS 1400 Hexagonal perovskite 41.0 SrLa ₃ Ti ₂ NbO ₁₂ 1480 Hexagonal perovskite Cubic 41.0 Ba ₂ Ti ₃ Nb ₂ O ₂ O ₃ H mnealed in N ₂ 1500 Pm3m 41.0 Ca _{4,35} Mg _{0.65} Nb ₂ Nc ₃ Nb ₂ Annealed in N ₂ 1600/5h Orthorhombic perovski		BaTi ₅ O ₁₁ +1 wt% CuO	1100	Monoclinic P2 ₁ /n	40.5	44500		39	1177
Ga _{0.5} Fi _{0.4} Sh _{0.4} O ₄ 1400 Tetragonal P42/mnm 40.6 BiNb _{0.6} Sb _{0.4} O ₄ 920 Orthorhombic Pnna 40.7 Zr _{0.8} Sn _{0.2} TiO ₄ +1 wt% ZnO+1 mol% 1400/5h Orthrhombic Pbcn 40.8 Sb ₂ O ₅ 5.5Li ₂ O-Nb ₂ O ₅ -7.5TiO ₂ +1 wt% B ₂ O ₃ 875 40.8 SLi ₂ O-Nb ₂ O ₅ -7.5TiO ₂ +1 wt% B ₂ O ₃ 875 40.8 Ni _{0.35} Zn _{0.65} TiNb ₂ O ₈ 1100/6h - 40.9 Ni _{0.35} Zn _{0.65} TiNb ₂ O ₉ -0.8TiO ₂ 1320/3h - 40.9 SLi ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 900 - 40.9 SLi ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 900/2h Composite 41.0 MnCO ₃ -CuO+0.5 wt% LBS 1400 Hexagonal perovskite 41.0 SrLa ₃ Ti ₂ Nb _{0.13} 1480 Hexagonal perovskite 41.0 Ba ₂ Ti ₃ O ₂₀ :Mn Ba(Zn _{1,3} Nb _{2,3})O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic 41.0 Ba(Zn _{1,3} Nb _{2,3})O ₃ Annealed at 1325 1500 Perovskite cubic Pm3m 41.0 Ga _{4,3} Sn _{0,0,2} Nb _{O₃} 200/5h Cubic La ₃ 41.0		$Ca_4MgNb_4TiO_{17}$	1250		40.6	18250		1.5	877
BiNb _{0.6} Sb _{0.4} O ₄ 920 Orthorhombic Phna 40.7 Zr _{0.8} Sn _{0.2} TiO ₄ +1 wt% ZnO+1 mol% 1400/5h Orthrhombic Pbcn 40.8 Sb ₂ O ₅ 5.5Li ₂ O-Nb ₂ O ₅ -7.5TiO ₂ +1 wt% B ₂ O ₃ 875 40.8 La ₆ ZnTi ₄ O ₁₈ 1100/6h - 40.9 Ni _{0.35} Zn _{0.65} TiNb ₂ O ₈ 1100/6h - 40.9 SLi ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 900 40.9 SLi ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 900 40.9 SLi ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 900 41.0 Ba ₂ Ti ₃ Nb ₄ O ₁₈₊ 1.5 wt% 900/2h Composite 41.0 MnCO ₃ -CuO+0.5 wt% LBS 1400 Hexagonal perovskite 41.0 SrLa ₃ Ti ₂ Nb _{O13} 1480 Hexagonal perovskite Puma 41.0 SrLa ₃ Ti ₂ Nb _{O23} 1450/4h Complex perovskite Puma 41.0 Ba(Zn ₁₁₃ Nb ₂₃)O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Puma 41.0 Ba(Zn ₁₁₃ Nb ₂₃)O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 Ri _{0.95} Sm _{0.05} NbO ₄ 1040 Orthorhombic Pnma <td></td> <td>$Ga_{0.5}Ta_{0.5}TiO_4$</td> <td>1400</td> <td>Tetragonal P42/mnm</td> <td>40.6</td> <td>17500</td> <td></td> <td>110</td> <td>1250</td>		$Ga_{0.5}Ta_{0.5}TiO_4$	1400	Tetragonal P42/mnm	40.6	17500		110	1250
Zr _{0.8} Sn _{0.2} πO ₄ +1 wt% ZnO+1 mol% 1400/5h Orthrhombic Pbcn 40.8 Sb ₂ O ₅ Sb ₂ O ₅ 40.8 40.8 Sb ₂ O ₅ 5.5Li ₂ O-Nb ₂ O ₅ -7.5 πO ₂ +1 wt% B ₂ O ₃ 875 40.8 La ₆ Zn π ₄ O ₁₈ 1.00/6h - 40.9 Ni _{0.33} Zn _{0.65} πI ₁ Nb ₂ O ₈ 1100/6h - 40.9 O. 8ZrO ₂ -0.4 (Zn _{1,3} Nb _{2,3} O ₂ -0.8 πO ₂ 1320/3h - 40.9 SLi ₂ O-1 Nb ₂ O ₅ -5 πO ₅ πO ₈ πO ₁ 1320/3h - 40.9 SLi ₂ O-1 Nb ₂ O ₅ -6.5 πO ₇ γ τος πος πος πος πος πος πος πος πος πος π	2912	$BiNb_{0.6}Sb_{0.4}O_4$	920	Orthorhombic Pnna	40.7	9500		-31	1251
5.5Li ₂ O-Nb ₂ O ₅ -7.5TiO ₂ +1 wt% B ₂ O ₃ 875 La ₆ ZnTi ₄ O ₁₈ Ni _{0.33} Zn _{0.65} TiNb ₂ O ₈ La ₆ ZnTi ₄ O ₁₈ Ni _{0.33} Zn _{0.65} TiNb ₂ O ₈ 0.8ZrO ₂ -0.4(Zn _{1,3} Nb _{2,3} O ₂ -0.8TiO ₂ 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 8a ₇ Ti ₃ Nb ₄ O ₁₈₊ 1.5 wt% MnCO ₃ -CuO+0.5 wt% LBS Ba ₇ Ti ₃ Nb ₄ O ₁₈₊ 1.5 wt% Ra ₇ Ti ₂ Nb _{1/6} O ₃ 8a _{1,2} La _{1,2} Zn _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 8a _{1,2} La _{1,2} Zn _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 8a _{1,2} La _{1,2} Zn _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 8a _{1,2} La _{1,2} Zn _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 8a _{1,2} Ta ₃ Nb _{2,3} O ₃ +1 mol% CeO ₂ 8a _{1,3} Ta ₃ Nb _{2,3} O ₃ +1 mol% CeO ₂ 8a _{1,3} Ta ₃ Nb _{2,3} O ₃ +1 mol% CeO ₂ 8a _{1,3} Ta ₃ Nb _{2,3} O ₃ +1 mol% CeO ₂ 8a _{1,3} Ta ₃ Nb _{2,3} O ₃ Annealed in N ₂ 1550 Chrhorhombic perovskite Phma 41.0 Ra(Zn _{1/3} Nb _{2/3} O ₃ Annealed in N ₂ 700/5h Cubic la ₃ 710,0 Ra(2n _{1/3} Nb _{2/3} O ₃ 710,0 710,0	2913	Zr _{0.8} Sn _{0.2} TiO ₄ +1 wt% ZnO+1 mol% Sb,O ₅	1400/5h	Orthrhombic Pbcn	40.8	00609			1252
La ₆ ZnT ₁₄ O ₁₈ Ni _{0.35} Zn _{0.65} TiNb ₂ O ₈ 1100/6h 0.8ZrO ₂ -0.4(Zn _{1/3} Nb _{2/3} O ₂ -0.8TiO ₂ 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 6Ba ₂ Ti ₃ Nb ₄ O ₁₈₊ 1.5 wt% 6Ba ₂ Ti ₃ Nb ₄ O ₁₈₊ 1.5 wt% 6Ba _{1/2} La _{1/2} Zn _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 8An _{1/2} La _{1/2} Zn _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 8An _{1/2} TiO _{1/2} 8An _{1/2} Ti ₃ Nb _{2/3} O ₃ +1 mol% CeO ₂ 8An ₂ Ti ₃ O ₃ +1 mol% CeO ₂ 8An ₂ TiO _{1/2} An ₂ TiO	2914	$5.5Li_{2}ONb_{2}O_{5}-7.5TiO_{3}+1$ wt% $B_{2}O_{3}$	875		40.8	15500	5.78	20	1253
Ni _{0.35} Zh _{0.65} TiNb ₂ O ₈ 0.8ZrO ₂ -0.4(Zn _{1/3} Nb _{2/3} O ₂ -0.8TrO ₂ 1320/3h 2Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 8a ₂ Ti ₃ Nb ₄ O ₁₈₊ 1.5 wt% MnCO ₃ -CuO+0.5 wt% LBS Ba _{1/2} La _{1/2} Zh _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 8a _{1/2} La _{1/2} Zh _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 8a ₂ Ti ₃ NbO ₁₂ Ba ₂ Ti ₃ NbO ₁₂ Ba ₂ Ti ₃ NbO ₂₂ Ba ₂ Ti ₃ NbO ₂₂ Ba ₂ Ti ₃ NbO ₂₃ Ba ₂ Ti ₃ Nb ₂₃ O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic Pm3m Ca _{4,35} Mg _{0.65} Nb ₂ TiO ₁₂ Ba(Zn _{1/3} Nb _{2/3} O ₃ Annealed in N ₂ Toolofsh Cubic la3 Cubic la3 H0.0 R1.0 Pm3m A1.0 R24.35 Mg _{0.65} Nb ₂ TiO ₁₂ Ba(Zn _{1/3} Nb _{2/3} O ₃ Annealed in N ₂ Toolofsh Cubic la3 H1.0 R1.0 R1.0 Pm3m A1.0 R1.0 R1.0 R1.0 R24.35 Mg _{0.65} Nb ₂ All A1.0 R1.0	2915	$La_6ZnTi_4O_{18}$	1600/4h		40.8	21900		-37	895
0.8ZrO ₂ -0.4(Zn _{1/3} Nb _{2/3} O ₂ -0.8TlO ₂ 1320/3h 40.9 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 900 41.0 5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 900/2h 41.0 MnCO ₃ -CuO+0.5 wt% LBS 1400 41.0 Ba _{1/2} La _{1/2} Zn _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 1400 41.0 SrLa ₃ Ti ₂ NbO ₁₂ 1480 Hexagonal perovskite 41.0 Ba ₂ Ti ₃ O ₂₀ :Mn Nonoclinic P2 ₁ /m 41.0 Ba ₃ Ti ₃ Nb _{2/3})O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic 41.0 Ba ₄ Ti _{1/3} Nb _{2/3})O ₃ +1 mol% CeO ₂ 150/4h Orthorhombic perovskite Pnma 41.0 Ba(Zn _{1/3} Nb _{2/3})O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 Ti _{0,8} Sn _{0.2} ,Ti ₅ O ₈ 700/5h Cubic la ₃ 41.0 Bi _{0,95} Sm _{0.05} NbO ₄ 1040 Orthorhombic Pnma 41.0	2916	$Ni_{0.35}Zn_{0.65}TiNb_2O_8$	1100/6h	I	40.9	40900		_	1254
5Li ₂ O-1Nb ₂ O ₅ -5TiO ₃ +1 wt% B ₂ O ₃ 900 Ba ₂ Ti ₃ Nb ₄ O ₁₈₊ 1.5 wt% MnCO ₃ -CuO+0.5 wt% LBS Ba ₁₂ La ₁₂ Za _{1/3} Ti _{1/2} Nb _{1/6} O ₃ 1400 SrLa ₃ Ti ₂ NbO ₁₂ Ba ₂ Ti ₃ Nb ₂ O ₂₀ :Mn Ba ₂ Ti ₃ Nb ₂ O ₂₀ :Mn Ba ₃ Ti ₃ Nb ₂ O ₂₀ :Mn Ba ₃ Ti ₃ Nb ₂ O ₃ O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic annealed at 13.25 Ca _{4,35} Mg _{0,65} Nb ₂ TiO ₁₂ Ba(Zn _{1/3} Nb _{2/3})O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 Ti _{0,8} Sn _{0,2} Ti ₅ O ₈ 1500 Ti _{0,8} Sn _{0,2} TiO ₃ 1700 Ti _{0,8} Sn _{0,2} NbO ₄ 1700 Ti _{0,8} Sn _{0,5} NbO ₄ 1700 Ti _{0,8} Sn _{0,5} NbO ₄ 1700 Ti _{0,8} Sn _{0,5} NbO ₄ 1700 Ti _{0,9} Sn _{0,6} NbO ₄ 1700	2917	0.8ZrO_2 - $0.4 (\text{Zn}_{1/3} \text{Nb}_{2/3} \text{O}_2$ - 0.8TiO_2	1320/3h		40.9	43300		4-	1255
Ba ₂ Ti ₃ Nb ₄ O ₁₈₊ 1.5 wt% 900/2h Composite 41.0 MnCO ₃ -CuO+0.5 wt% LBS 1400 41.0 Ba ₁₂ La ₁₂ Zn _{1/3} Ti ₁₂ Nb ₁₆ O ₃ 1400 41.0 SrLa ₃ Ti ₂ NbO ₁₂ 1480 Hexagonal perovskite 41.0 Ba ₂ Ti ₉ O ₂₀ :Mn Monoclinic P2 ₁ /m 41.0 Ba ₂ Ti ₃ O ₂₀ :Mn 1450/4h Complex perovskite Cubic 41.0 Ba(Zn _{1/3} Nb _{2/3})O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic 41.0 Ba(Zn _{1/3} Nb _{2/3})O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 (Ti _{0.8} Sn _{0.2})Ti ₅ O ₈ 700/5h Cubic la ₃ 41.0 Bi _{0.95} Sm _{0.95} NbO ₄ 1040 Orthorhombic Pnma 41.0	2918	$5Li_2O-1Nb_2O_5-5TiO_3+1$ wt% B_2O_3	006		41.0	0886		43	1256
Ba ₁₂ La ₁₂ Zn _{1/3} Ti ₁₂ Nb _{1/6} O ₃ 1400 Hexagonal perovskite 41.0 Srl ₂₃ Ti ₂ NbO ₁₂ 1480 Hexagonal perovskite 41.0 Srl ₃₂ Ti ₃ NbO ₁₂ 1480 Hexagonal perovskite 41.0 Hoxoclinic P2 ₁ /m 41.0 Ba ₂ Ti ₃ O ₂₀ :Mn 41.0 Pm3m 41.0 Pm3m 41.0 Ca _{4.35} Mg _{0.65} Nb ₂ TiO ₁₂ 1550 Orthorhombic perovskite Pmma 41.0 Ba(Zn _{1/3} Nb _{2/3})O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 (Ti _{0.8} Sn _{0.2})Ti ₃ O ₈ 700/5h Cubic la3 41.0 Hoxoclinic Pm3m 41.0 Bi _{1.05} Sm _{0.05} NbO ₄ 1040 Orthorhombic Pmma 41.0	2919	Ba ₂ Ti ₃ Nb ₄ O ₁₈₊ 1.5 wt%	900/2h	Composite	41.0	15000	4.8	4	1185
SrLa ₃ Ti ₂ NbO ₁₂ 1480 Hexagonal perovskite 41.0 Ba ₂ Ti ₉ O ₂₀ :Mn Monoclinic P2 ₁ /m 41.0 Ba ₂ Ti ₉ O ₂₀ :Mn 1450/4h Complex perovskite Cubic 41.0 Ba(Zn _{1/3} Nb _{2/3})O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic 41.0 Ba(Zn _{1/3} Nb _{2/3})O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 (Ti _{0.8} Sn _{0.2})Te ₃ O ₈ 700/5h Cubic la ₃ 41.0 Bi _{0.95} Sm _{0.05} NbO ₄ 1040 Orthorhombic Pnma 41.0	2920	Ban Lan Zung Tin Nb. 60	1400		41.0	1550	5.04	18	919
Ba ₂ Ti ₉ O ₂₀ :Mn Monoclinic P2 ₁ /m 41.0 Ba(Zn _{1/3} Nb _{2/3})O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic 41.0 annealed at 1325 Pm3m 41.0 Ca _{4,35} Mg _{0.65} Nb _{2,71} Co ₁₂ 1550 Orthorhombic perovskite Pnma 41.0 Ba(Zn _{1/3} Nb _{2/3})O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 (Ti _{0.8} Sn _{0.2})Te ₃ O ₈ 700/5h Cubic la ₃ 41.0 Bi _{0.95} Sm _{0.05} NbO ₄ 1040 Orthorhombic Pnma 41.0	2921	SrLa ₃ Ti ₂ NbO ₁₂	1480	Hexagonal perovskite	41.0	33600		3	1143
Ba(Zn _{1/3} Nb _{2/3})O ₃ +1 mol% CeO ₂ 1450/4h Complex perovskite Cubic 41.0 annealed at 1325 Pm3m 41.0 Ca _{4.35} Mg _{0.65} Nb ₂ TiO ₁ 1550 Orthorhombic perovskite Phma 41.0 Ba(Zn _{1/3} Nb _{2/3})O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 (Ti _{0.8} Sn _{0.2})Te ₃ O ₈ 700/5h Cubic la ₃ 41.0 Bi _{0.95} Sm _{0.05} NbO ₄ 1040 Orthorhombic Phma 41.0	2922	Ba ₂ Ti ₉ O ₂₀ :Mn		Monoclinic P2 ₁ /m	41.0	45000	6	2	1254
Ca _{4.35} Mg _{0.65} Nb ₂ TiO ₁₂ 1550 Orthorhombic perovskite Pnma 41.0 Ba(Zn _{1,3} Nb _{2,3})O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 (Ti _{0.8} Sn _{0.2})Te ₃ O ₈ 700/5h Cubic Ia ₃ 41.0 Bi _{0.95} Sm _{0.05} NbO ₄ 1040 Orthorhombic Pnma 41.0	2923	Ba(Zn _{1/3} Nb _{2/3})O ₃ +1 mol% CeO ₂ annealed at 1325	1450/4h	Complex perovskite Cubic Pm3m	41.0	69500		14	1165
Ba(Zn _{1/3} Nb _{2/3})O ₃ Annealed in N ₂ 1500 Perovskite cubic Pm3m 41.0 (Ti _{0.8} Sn _{0.2})Tr ₃ O ₈ 700/5h Cubic Ia ₃ 41.0 Bi _{0.95} Sm _{0.05} NbO ₄ 1040 Orthorhombic Pnma 41.0	2924	$Ca_{4.35}Mg_{0.65}Nb_2TiO_{12}$	1550	Orthorhombic perovskite Pnma	41.0	33000	1.1	0	230
(Ti _{0.8} Sm _{0.25})Te ₃ O ₈ 700/5h Cubic la3 41.0 Bi _{0.95} Sm _{0.05} NbO ₄ 1040 Orthorhombic Pnma 41.0	2925	$Ba(Zn_{1/3}Nb_{2/3})O_3$ Annealed in N_2	1500	Perovskite cubic Pm3m	41.0	00006		4	787
Bi _{10 95} Sm _{0.05} NbO ₄ 1040 Orthorhombic Pnma 41.0	2926	$(Ti_{0.8}Sn_{0.2})Te_3O_8$	700/5h	Cubic Ia3	41.0	22000	4		53
	2927	$Bi_{0.95}Sm_{0.05}NbO_4$	1040	Orthorhombic Pnma	41.0	5200		-200	1258

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
2928	Bi ₁₂ TiO ₂₀	800/5h	Cubic 123 sillenite	41.0	10400		1	1176,
2929 2930	0.65CaTiO ₃ -0.35SmAlO ₃ 0.9BiNbO ₄ -0.12ZnNb ₂ O ₆ +1.2 wt%	1450/12h 850	Perovskite Orthorhombic Composite	41.0	42000 28120		4 4	1174 1217
2931 2932	BaTi ₅ O ₁₁ (hot pressed) 0.65CaTiO ₃ -0.35LaAlO ₃	1050/48 1450/12h	Monoclinic P2 ₁ /n Perovskite Orthorhombic	41.0	46000	10	40	1260 1174
2933	Sr ₅ Ta ₄ O ₁₅ (Å _n B _{n-1} O _{3n}) Ca ₂ Nb ₂ O ₅	1610	Hexagonal perovskite P-3m1 Cubic	41.0	2400	5.99		325 864
	Ba ₃ Tr ₂ C ₈ Ba ₃ Tr ₅ Nb ₆ O ₂₈ Z ₂ 1.15 Tr	1300	Monoclinic P2 ₁ /c	41.0	4500	5.4		1208
2937	Z10.5131110.48711.74 5CaO-2Ta,O _E	1550	Mixed phases	41.0	5900	5.9	140	325
2938	NaCa ₄ Ta ₅ O ₁₇	1350	Monoclinic (P21/b)	41.0	11600		-14	1261
2939	$CaLa_4Ti_4O_{15}(A_nB_{n-1}O_{3n})$	1550/24h	Hexagonal perovskite P-3c1	41.1	50240		-25	1262
2940	$CaTi_{0.4}(AI_{1/2}Nb_{1/2})_{.6}O_3+1$ wt% Li_3NbO_4	1300/5h	Perovskite Orthorhombic	41.1	36200	7	-36	1152
2941	$Ba(Zn_{1/3}Nb_{2/3})O_3$	1390	Perovskite Cubic Pm3m	41.1	00698	9.5	31	787,
2942	BaTiO (reaction sintering)	1100	Monoclinic P2./n	71.7	47400		36	1250
2943	0.4La(Mg _{0.4} Sr _{0.1} Sn _{0.5})O ₃ -	1550/4h	Composite	41.2	26900		9-	1264
77.00	0.6Ca _{0.8} Sr _{0.2} IIO ₃	7,001	1	71	00170	1	-	11
2945	Ca 110.4(21/12/12/16/3 EuTiTaO.	1525	Aeschynite Orthorhombic	t 4 5 5	59500		1 6	583
2946	Li, O-Nb, O ₅ -TiO, (5:1:5)+1 wt% B,O ₃	006		41.3	9320			1140
2947	ZnO_Nb ₂ O ₅ -0.08SnO ₂ -1.92TiO ₂ +1 mol% MnO ₂ +4 wt% BaCuB ₂ O ₅	850	composite	41.3	1690		-16	1265
2948	CaTi _{0.5} (Al _{1/2} Ta _{1/2}) _{0.5} O ₃ Zn ₅ -Ni ₅ , TiNb ₂ O ₃	1500/15h 1125/4h	Perovskite Orthorhombic Orthorhomic Phen	41.4	31800	8	-20 -9	1266
2950	Ba, cCa, (Y 205 ND1,2)O2.15		Perovskite	41.5	48860	7.85	258	1202
2951	BiNbO ₄ :0.4 wt% B_2O_3	960/2h	Orthorhombic Pnma	41.5	21000		-2	1268
2952	$0.7 \text{CaTiO}_3 - 0.3 (\text{La}_{0.5} \text{Nd}_{0.5}) \text{AIO}_3$		Rhombic perovskite	41.5	37000	8	4	1269
2953	$Ca_2Zn_4Ti_1_5O_{36}+8$ wt% B_2O_3	066	Hexagonal	41.5	11400		92	1270

1450 A _m B _{n-1} O _{3n} Hexagonal Perovskite 41.6 8100 4.31 -25	Ca[Ti ₁ Sm(N	Ca[Ti $_{1,x}$ (Mg $_{1/3}$ Nb $_{2/3}$) $_x$]O $_3$ (x=0.7) Sm(Nb $_{0.75}$ Ta $_{0.25}$)TiO $_6$	14504h		41.6	29450 18900		-12 36	1271 671
ν V ₂ O ₅ 900/6h M phase+Li ₂ TiO ₃ 41.7 7800 45 240 3 ₅ Nb ₄ O ₁₅ 1475 Hexagonal Perovskite 41.7 3200 5.5 240 3 ₅ Nb ₄ O ₁₅ 1475 Hexagonal Perovskite 41.7 42100 -16 1500 Aeschneite Orthorhombic 41.8 24500 24 1300 Rutile Tetragonal Pa ₂ /mmm 41.8 3500 -15 1400 Orthorhombic Pnma 41.9 9500 -15 1400 Orthorhombic Pnma 41.9 1500 6.8 13 1450/10h Perovskite Orthorhombic Pnma 42.0 42.00 45 -65 1450/2h Tetragonal La/mmm 42.0 9600 7 27 O ₆ +0.3 900 Composite Perovskite Cubic 42.0 9600 7 40 1120/24 Monoclinic P2, In 42.0 9600 7 40 1050 Perovskite 42.0 42.0 42.0 42.0 42.0 <t< td=""><td>$CaLa_4Ti_3O_{15}$</td><td></td><td>1450</td><td>A_nB_{n-1}O_{3n} Hexagonal Perovskite P-3m</td><td>41.6</td><td>8100</td><td>4.31</td><td>-25</td><td>1272</td></t<>	$CaLa_4Ti_3O_{15}$		1450	A _n B _{n-1} O _{3n} Hexagonal Perovskite P-3m	41.6	8100	4.31	-25	1272
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5Li ₂ O-Nb ₂ O ₅ -	$5 \text{ TiO}_2 + 1 \text{ wt}\% \text{ V}_2 \text{O}_5$	49/006	M phase+Li ₂ TiO ₃	41.7	7800		45	1273
2 Trī₂O₂ type Orthorhombic 41.7 25100 2 2 Trī₂O₂ type Orthorhombic 41.8 24500 -16 Pbcn Aeschneite Orthorhombic 41.8 20600 3.5 1300 Austhorie Paragonal P4₂/mmm 41.8 3500 -15 1400 Orthorhombic Pnma 41.8 3500 -15 1500/96h Perovskite Orthorhombic Pnma 41.9 9500 3.5 1450V3h Perovskite Orthorhombic Pnma 42.0 31000 7 58 1550 Orthorhombic Pnma 41.9 9500 6.8 13 1450V10h Perovskite Orthorhombic Pnma 42.0 31000 7 58 1550 Perovskite Orthorhombic Pnma 42.0 36000 7 58 1550 Perovskite Perovskite Cubic 42.0 96000 7 57 Pm3m O₀+0.3 900 Composite 42.0 86000 7 27 Pm3m O₀+0.3 900 Composite 42.0 18000 5.0 9 Perovskite slab series 42.0 18000 5.0 9 Perovskite slab series 42.0 18000 8.4 -11 Perovskite perovskite multiphase 42.0 18000 8.4 -11 Perovskite perovskite multiphase 42.0 18000 8.4 -11 Perovskite slab series 42.0 18000 8.4 -11 Perovskite slab series 42.0 18000 8.4 -11 Perovskite perovskite multiphase 42.0 18000 8.4 -11 Perovskite slab series 42.0 18000 8.4 -11 Perovskite slab series 42.0 18000 8.4 -11 Perovskite multiphase 42.0 35000 8.4 -11 Perovskite perovskite multiphase 42.0 35000 10 44	$(LiBi)_{1/2}MoO_4$		260	Scheelite	41.7	3200	5.5	240	229
Strip_Ob type Orthorhombic 41.7 42100 -16	0.8Ba _{0.6} Sr _{0.4} La ₂	$_{4}\text{Ti}_{4}\text{O}_{15}$ -0.2Ba $_{5}\text{Nb}_{4}\text{O}_{15}$	1475	Hexagonal Perovskite	41.7	25100		2	1274
1500 Aeschneite Orthorhombic 41.8 24500 24 1300 Rutile Tetragonal P42/mmm 41.8 20600 35 1400 Orthorhombic Pnma 41.9 9500 35 1500/96h Perovskite 41.9 15000 6.8 13 1450/10h Perovskite Orthorhombic Pnma 42.0 24200 4 1450/10h Perovskite Orthorhombic Pnma 42.0 28200 4 1450/10h Perovskite Orthorhombic Pnma 42.0 28200 4 1450/2h Perovskite Orthorhombic Pnma 42.0 28000 7 58 1550 Perovskite Perovskite Cubic 42.0 28000 7 27 1450/2h Perovskite Perovskite Cubic 42.0 28000 7 27 150/2h Perovskite Perovskite Cubic 42.0 28000 7 27 1120/24 Monoclinic P21/n 42.0 86000 5.0 9 Perovskite Perovskite Public P21/n 42.0 18000 4.8 -30 Perovskite Perovskite Public P21/n 42.0 42.0 43.0 -800 Perovskite Parovskite Public P21/n 42.0 43.0 -400 Perovskite Parovskite Parovs	$Zr(Zn_{1/3}Nb_{2/3})_{0.6}Ti_{1.4}O_6$	₆ Ti _{1.4} O ₆		ZrTi ₂ O ₆ type Orthorhombic Pbcn	41.7	42100		-16	1275
1300 Rutile Tetragonal P42/mmm 41.8 20600 35 950 Orthorhombic Pnma 41.8 3500 −15 1400 Orthorhombic Pnma 41.9 9500 35 1500/96h Perovskite 14390 Trigonal R-3 m 41.9 15000 6.8 13 1450/10h Perovskite Orthorhombic Pnma 42.0 28200 4 51 1400 Orthorhombic Pnma 42.0 28200 4 51 1300/5h Tetragonal I4/mmm 42.0 28200 4 52 1450/2h Perovskite Orthorhombic Pnma 42.0 28200 7 27 Pm3 m O ₆ +0.3 900 Composite Cubic 42.0 86000 7 27 -	$SmTiTaO_6$		1500	Aeschneite Orthorhombic	41.8	24500		24	583
950 Orthorhombic Phma 41.8 3500 -15 1400 Orthorhombic Phma 41.9 9500 35 1400 Orthorhombic Phma 41.9 1500 6.8 13 1500/96h Perovskite 41.9 1500 6.8 13 1450/10h Perovskite Orthorhombic Phcn 42.0 42.00 45 45 1450/2h Perovskite Orthorhombic Phma 42.0 28200 4 27 58 1300/5h Tetragonal I4/mmm 42.0 9600 7 27 Pm3m Perovskite Perovskite Cubic 42.0 9600 7 27 06+0.3 900 Composite 42.0 86000 7 27 Pm3m Perovskite 42.0 18000 5.0 9 1120/24 Monoclinic P21/n 42.0 18000 6.11 1450/12h Perovskite 42.0 42.0 42.0 6.00 150 Hexagonal columbite 42.0 42.0 <td>$(Ni_{1/3}Ta_{2/3})_{1-x}Ti$</td> <td>$^{*}O_{2} (x=0.3)$</td> <td>1300</td> <td>Rutile Tetragonal P4₂/mmm</td> <td>41.8</td> <td>20600</td> <td></td> <td>35</td> <td>1276</td>	$(Ni_{1/3}Ta_{2/3})_{1-x}Ti$	$^{*}O_{2} (x=0.3)$	1300	Rutile Tetragonal P4 ₂ /mmm	41.8	20600		35	1276
1400 Orthorhombic Phma 41.9 9500 35 1500/96h Perovskite 41.9 15000 6.8 13 1390 Trigonal R-3m 41.9 1500 6.8 13 1450/10h Perovskite Orthorhombic Pbcn 42.0 28200 4 58 1550 Perovskite Orthorhombic Pbcn 42.0 28200 4 58 1300/5h Tetragonal I4/mmm 42.0 9600 7 27 Pm3m Pcovskite Perovskite Cubic 42.0 9600 7 27 O ₆ +0.3 900 Composite 42.0 86000 7 27 Pm3m Composite 42.0 86000 7 27 Pm3m Perovskite slab series 42.0 18000 5.0 9 Perovskite Perovskite, multiphase 42.0 15000 8.4 -11 O ₃ (x=0.45) Perovskite 42.0 4000 -8 -800 O ₅ (x=0.45) Hexagonal columbite 42.0 4000 10 -400 O ₆ (x=0.45) Hexa	BiNb _{1-x} Mo _x O ₄	(x=0.01)	950	Orthorhombic Pnma	41.8	3500		-15	1277
1500/96h Perovskite 41.9 15000 6.8 13 1390 Trigonal R-3m 41.9 1500 6.8 13 1450/10h Perovskite Orthorhombic 42.0 42900 7 58 1450 Perovskite Orthorhombic Phoma 42.0 28200 4 ≈ 0 1300/5h Tetragonal I4/mmm 42.0 96000 7 ≈ 0 1300/5h Tetragonal I4/mmm 42.0 96000 7 ≈ 0 06+0.3 900 Composite 42.0 28000 7 ≈ 0 - Pm3m 42.0 86000 7 ≈ 0 - 42.0 86000 7 ≈ 0 - Perovskite 42.0 61100 - 40 - Perovskite slab series 42.0 15000 8.4 -11 03 (x=0.45) Perovskite, multiphase 42.0 42.0 42.0 -800 1050 Hexagonal columbite 42.0 42.0 4000 -80 40 42.0 42.0 42.0	Pr _{0.2} Gd _{0.8} TIN	,00°	1400	Orthorhombic Pnma	41.9	9500		35	564
1390 Trigonal R-3m 41.9 19400 —65 1450/10h Perovskite Orthohombic Pbcn 42.0 42900 7 58 1450/10h Orthorhombic Pbcn 42.0 28200 4 58 1550 Perovskite Orthorhombic Phma 42.0 28200 4 50 1300/5h Tetragonal 14/mmm 42.0 9600 7 27 D ₆ +0.3 900 Composite 42.0 9600 7 27 D ₆ +0.3 900 Composite 42.0 86000 7 27 - - 42.0 86000 - 40 - Perovskite 42.0 61100 - 40 - Perovskite 42.0 18000 5.0 9 - Perovskite Perovskite 42.0 42.0 42.0 40 - Perovskite Perovskite 42.0 42.0 42.0 42.0 42.0 - Perovskite Perovskite 42.0 42.0 42.0 42.0 42.0 42.0	Ba(Nd _{1/2} Nb _{1/2})O ₃	1500/96h	Perovskite	41.9	15000	8.9	13	290
1450/10h Perovskite Orthohombic A2.0 42.900 45 1400 Orthorhombic Pbcn 42.0 31000 7 58 1550 Perovskite Orthorhombic Pnma 42.0 28200 4 ≈0 1300/5h Tetragonal I4/mmm 42.0 9600 7 27 Pm3m b ₂ O ₆ +0.3 900 Composite Cubic 42.0 96000 7 27) - A2.0 96000 7 27 1450/2h Perovskite Perovskite Cubic 42.0 96000 7 27 120/24 Monoclinic P2 ₁ /n 42.0 86000 - 17 1120/24 Monoclinic P2 ₁ /n 42.0 86000 5.0 9 Perovskite slab series 42.0 15000 8.4 -11 1450/12h Perovskite, multiphase 42.0 35000 - 11 1450/12h Perovskite, multiphase 42.0 35000 4.8 -30 Hexagonal columbite 42.0 39000 10 44	Ba _{3-x} Sr _x LaNb ₃	${}_{3}O_{12}$ (x=0.5)	1390	Trigonal R-3m	41.9	19400		-65	1125
1400 Orthorhombic Pbcn 42.0 31000 7 58 1550 Perovskite Orthorhombic Pnma 42.0 28200 4 ≈0 1300/5h Tetragonal I4/mmm 42.0 9600 7 27 Pm3m b ₂ O ₆ +0.3 900 Composite Cubic 42.0 96000 7 27 Composite Perovskite Cubic 42.0 96000 7 27 Composite Perovskite Slab series 42.0 86000 -17 1120/24 Monoclinic P2 ₁ /n 42.0 86000 -17 Perovskite slab series 42.0 15000 8.4 -11 1450/12h Perovskite, multiphase 42.0 15000 8.4 -11 1450/12h Perovskite, multiphase 42.0 35000 -11 3TiO ₃ (x=0.45) Hexagonal columbite 42.0 39000 10 44	0.67CaTiO ₃ -(0.33 NdAlO ₃	1450/10h	Perovskite Orthohombic	42.0	42900		45	1174
1550 Perovskite Orthorhombic Pnma 42.0 28200 4 ≈ 0 1300/5h Tetragonal 14/mmm 42.0 960 4 ≈ 0 1300/5h Tetragonal 14/mmm 42.0 96000 7 27 $P_2O_6+0.3$ 900 Composite 42.0 28000 7 27 1120/24 Monoclinic P21/n 42.0 86000 - 40 1120/24 Monoclinic P21/n 42.0 61100 - 40 1120/24 Perovskite 42.0 15000 8.4 -11 1150/12h Perovskite 42.0 15000 8.4 -11 3TiO ₃ (x=0.45) Perovskite, multiphase 42.0 35000 4.8 -30 1050 Hexagonal columbite 42.0 4000 48 -800 ssed) 1050/72h Monoclinic P2 ₁ /n 42.0 39000 10 44	$ZrTiO_4$		1400	Orthorhombic Pbcn	42.0	31000	_	58	1188
1300/5h Tetragonal I4/mmm 42.0 960 4 57 27 Pm3m b ₂ O ₆ +0.3 900 Composite Perovskite Cubic 42.0 96000 7 27 27 1450/2h Perovskite Perovskite Cubic 42.0 96000 7 27 27 1120/24 Monoclinic P2 ₁ /n 42.0 86000 -17 42.0 97 1120/24 Monoclinic P2 ₁ /n 42.0 86000 -17 42.0 97 1120/24 Monoclinic P2 ₁ /n 42.0 18000 5.0 9 Perovskite slab series 42.0 15000 8.4 -11 1450/12h Perovskite, multiphase 42.0 15000 8.4 -11 970.3 (x=0.45) Perovskite, multiphase 42.0 35000 -11 9800 1050 Hexagonal columbite 42.0 39000 10 44	Ca _{4.38} Ni _{0.62} N	$b_2 TiO_{12}$	1550	Perovskite Orthorhombic Pnma	42.0	28200	4	∞0	230
55 BaZrO ₃ 1450/2h Perovskite Perovskite Cubic 42.0 96000 7 27 b ₂ O ₆ +0.3 900 Composite 42.0 28000 0 1 - 42.0 86000 - - 1 1120/24 Monoclinic P2 ₁ /n 42.0 61100 - 40 Fi _{0.78} IO ₃ Perovskite slab series 42.0 18000 5.0 9 Perovskite slab series 42.0 15000 8.4 -11 3TiO ₃ (x=0.45) Perovskite, multiphase 42.0 35000 4.8 -30 1050 Hexagonal columbite 42.0 4000 4.8 -800 ssed) 1050/72h Monoclinic P2 ₁ /n 42.0 39000 10 44	$\mathrm{Sr_4Ti_3O_{10}}$		1300/5h	Tetragonal 14/mmm	42.0	096	4		53
b ₂ O ₆ +0.3 900 Composite 42.0 28000 0 1 1120/24 Monoclinic P2 ₁ /n 42.0 86000 -17 1120/24 Monoclinic P2 ₁ /n 42.0 61100 - 40 Frowskite slab series 42.0 15000 8.4 -11 1450/12h Perovskite, multiphase 42.0 35000 -11 To50 Hexagonal columbite 42.0 4500 4.8 -30 From Sted) 1050/72h Monoclinic P2 ₁ /n 42.0 39000 10 44	0.95Ba(Zn _{1/3}	$Nb_{2\beta}$) O_3 -0.05 $BaZrO_3$	1450/2h	Perovskite Perovskite Cubic Pm3m	42.0	00096	_	27	1278
) 42.0 8600017 1120/24 Monoclinic P2 ₁ /n 42.0 61100 - 40 Ferovskite slab series 42.0 18000 5.0 9 Ferovskite slab series 42.0 15000 8.4 -11 1450/12h Perovskite, multiphase 42.0 3500011 3TiO ₃ (x=0.45) Perovskite Hexagonal columbite 42.0 4500 4.8 -30 -800 ssed) 1050/72h Monoclinic P2 ₁ /n 42.0 39000 10 44	$0.84Ba_5Nb_4C$	15 -0.16BaN 2 O 6 +0.3	006	Composite	42.0	28000		0	835
1120/24 Monoclinic P2 ₁ /n 42.0 61100 – 40 Perovskite Perovskite 1450/12h Perovskite, multiphase 42.0 15000 8.4 –11 3TiO ₃ (x=0.45) Perovskite 42.0 35000 1.0 –10 Hexagonal columbite 42.0 4000 4.8 –30 Hexagonal columbite 42.0 4000 4.8 –30 1050 Hexagonal columbite 42.0 4000 4.8 –30	Ba,La,Ti,_O	(x=0.2)	I		42.0	86000		-17	1279
Fig. 78 Og. 78 Og. 71 Og. 71 Og. 72 Og. 72 Og. 73 Og. 74 Og. 74 Og. 75 Og	BaTi ₅ O ₁₁		1120/24	Monoclinic P2 ₁ /n	42.0	61100	I	40	1280
Perovskite slab series 42.0 15000 8.4 –11 1450/12h Perovskite, multiphase 42.0 35000 –11	La _{0.43} Ca _{0.57} [C	.a _{0.08} Mg _{0.14} Ti _{0.78} JO ₃		Perovskite	42.0	18000	5.0	6	950
1450/12h Perovskite, multiphase 42.0 35000 –11 Perovskite 42.0 4500 4.8 –30 Hexagonal columbite 42.0 4000 –800 ssed) 1050/72h Monoclinic P2 ₁ /n 42.0 39000 10 44	La ₉ Mg _{0.5} Ti _{8.5}	O_{31}		Perovskite slab series	42.0	15000	8.4	11	950
STO3 (x=0.45) Perovskite 42.0 450 4.8 -30 Hexagonal columbite 42.0 4000 -800 ssed) 1050/72h Monoclinic P2 ₁ /n 42.0 39000 10 44	0.6Ca∏O ₃ -0.	4SmGaO ₃	1450/12h	Perovskite, multiphase	42.0	35000		-11	1174
1050 Hexagonal columbite 42.0 4000 800 1050/72h Monoclinic P21/n 42.0 39000 10 44	$(1-x)LaMg_{1/2}T$	$_{1/2}O_3$ -xLa _{2/3} TiO ₃ (x=0.45)		Perovskite	42.0	4500	4.8	-30	950
1050/72h Monoclinic P2 ₁ /n 42.0 39000 10 44	$BaNb_2O_6$ (hex	(;	1050	Hexagonal columbite	42.0	4000		-800	835,
1050/72n Monoclinic P2 ₁ /n 42.0 39000 10 44	i		1 1 0 7		9		(;	995
	Ba _{0.79} Sr _{0.21} II ₅ C	J ₁₁ (hot pressed)	1050//2h	Monoclinic P2 ₁ /n	42.0	39000	10	44	1260

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	<i>Qf</i> (GHz)	f_0	$ au_f$	Reference
2981	$Ca_{4.38}Ni_{0.62}Nb_2TIO_{12}$	1550	Perovskite	42.0	28200	4	0	230,
2982	$Sr(Sm_{0.5}Ta_{0.5})O_3+0.5$ wt% Nb_2O_5+3 wt% TiO_3	1600/4h	Complex perovskite Tetragonal	42.0	8750		3	859
2983	(a. Sr. Ta. TiO	1600	Perovskite Orthorhombic Pama	42.0	16000	۲.	14	12.09
7007	0 60°T; 0 0 45°C(44°T; 000)	1 550		5.4	0000	 	- 9	222
2904 2985	0.8Ca11O3-0.45III(Mg _{0.5} II _{0.5} /O ₃ R2 Sr (7r T2) Ti O	1330	composite Perovskite	42.0	9200	0.4 -	013	063 1192
2986	Ca _{0.6} (Li _{.5} Nd _{.5}) _{0.4}) _{0.45} Zn _{.55} TiO ₃ +2 wt% 0.33ZnO-0.67H:RO ₃	900/4h	Multi phase	42.0	10300	2	19	1281
7987	0.1CatiO, 0.9Nd(M8:, Ti, ,,)O,	1400	Perovskite Orthorhombic	42.0	35000		-10	1282
2988	Sr(Sm _{1/2} Ta _{1/2})O ₂ +3 wt% TiO ₂	1600	Perovskite	42.0	8800		· ~	861
2989	0.76ZrT, O ₆ -0.24ZnNb, O ₆	1300/4h	Composite	42.0	22976			1283
2990	Nd(W _{0.5} T _{1.5})O ₆	1350	Orthorhombic Pnma Aeschynite	42.0	26200		6	1121
			type					
2991	0.4La(Mg _{1,2} Ti _{1/2})O ₃ - 0.6(Na _{0.5} Nd _{0.5})TiO ₃ +1 wt% B,O ₃	1475	Composite	42.0	33000	80	_	1284
2992	5.5Li ₂ O-Nb ₂ O ₅ -7.5TiO ₂	1075		42.0	16900	5.75	64	1253
2993	$Ca(Z_{r_x}\Pi_{1-x})O_3(x=0.9)$	1515/15h	Perovskite Orthorhombic Pcmn	42.0	10700	4.6	82	916
2994	0.36Ca ₄ La ₂ Ti ₅ O ₁₇ -0.64LaAlO ₃	1560/4h	Composite	42.0	12500		0	1285
2995	0.4LaAlO ₃ -0.6SrTiO ₃	1680	Perovskite	42.1	83000	9.5	8	832
2996	$Ba_5 Nb_{4x} (W_{1/2} Ti_{1/2}) O_{15} (x=0.4)$		Perovskite	42.2	38600		53	1286
2997	Ba ₄ LaTiTaO ₁₅	1540/6h	Trigonal P-3m1	42.3	28790		33	1287
2998	$Ca(La_{0.5}Nd_{0.5})_4Ti_4O_{1.5}$ (A _n B _{n-1} O _{3n})	1525	Hexagonal Perovskite	42.3	15200	8.3	9-	1288
2999	Ba ₁₁ TiNb ₈ O ₃₃	1400		42.3	27000		47	1289,
								1290
3000	$CaLa_{0.5} Nd_{0.5} Ti_4 O_{15}$	1525	Hexagonal Perovskite	42.3	15200	8.3	9-	1288
3001	Ba ₄ LaTiTa ₃ O ₁₅	1540/6h	Perovskite Hexagonal	42.3	28800		33	1291
3002	$Sr_{0.92}$ [Li _{1/4} Nb _{3/4}] $_{0.92}$ Ti $_{0.08}$ O $_3$	1350/2h	Perovskite	42.3	31500	6	I	1197
3003	$ZnO-Nb_2O_5-TiO_2-SnO_2+1.5$ wt% $CuO-V_2O_5$	098	Mixture phases	42.3	0006		∞	1292

1226 1293 1294 1253 1295 1296 1202 1202 1300 1301 1303 1303,	1305 1306 950 1307 835 1209, 1231 1308 895
35 66 -34 -96 -96 -96 -4 -25 -25 -25 -10 -10 -10 -13 -15	-5 to 5 -19 -19 0 28 0 53
5.85 7.23 7.78 5.65 5.6 4.6 4.6	3.5. 3.9. 1.0
46530 33600 40200 14225 16800 7300 31130 21700 29000 63500 11530 86800 44700 14500 39100 3800 15700	25000 26000 5000 19500 30000 5500 29000 9500
42.4 42.5 42.5 42.5 42.6 42.6 42.9 42.9 42.9 43.0 43.0 43.0 43.0 43.0 43.0 43.0	43.0 43.0 43.0 43.0 43.0 43.0
Perovskite Hexagonal perovskite Orthorhombic α-PbO ₂ Perovskite 14/mcm Not available Perovskite Trigonal R-3m Cubic 123 Hexagonal perovskite Orthorhombic Pnma	Perovskite Perovskite Orthorhombic Pnma Composite Complex perovskite Orthorhombic Pnma Tungsten Bronze Orthorhombic perovskite Pnma A ₆ B ₅ O ₁₈ type perovskite
1350/4h 1460/6h 1300 11100 1350 1440 1460 800/5h 1620 1520	1575 900 1580 1020 1550 1625/2h
Ba _{1-x} La _x [Zn _{(1+x)/3} Nb _{(2-x)/3}]O ₃ (x=0.05) BaLa ₃ Ti ₂ NbO ₁₂ Zr _{0.7} (Zn _{1/3} Ta _{2/3}) _{0.3} TiO ₄ 0.3BaTiO ₃ -0.7La(Mg _{1/2} Ti _{1/2})O ₃ 5.5Li ₂ O-Nb ₂ O ₅ -7.5TiO ₂ SrLaSm ₃ Ti ₅ O ₁₇ Ba ₂ La ₂ TiNb ₂ O ₁₂ Ba ₂ La ₃ Ti ₃ NbO ₁₅ (A ₅ B ₄ O ₁₅) Ba ₁ Ba ₂ La ₃ Ti ₃ NbO ₁₅ (A ₅ B ₄ O ₁₅) Ba ₁ Ba ₀ Ba ₂ La ₃ Ti ₃ NbO ₁₅ (A ₅ B ₄ O ₁₅) Ba ₁ Ca _{0.1} (Y _{0.315} Nb _{1/2})O ₃₊₆ Ba ₆ Ti _{1-x} Sn _x Nb ₄ O ₁₈ (x=0) Bi ₁₋₂ SiO ₂₀ Sr ₄ LaTiNb ₃ O ₁₅ Li _{0.215} Nb _{0.645} Ti _{0.14} O ₂ Ba _{2-x} Sr ₄ La ₃ Ti ₃ NbO ₁₅ (x=1) Pb _{0.5} Ca _{0.5} (Cr _{1/2} Nb _{1/2})O ₃ BiNbO ₄	Sr(Zn,Nb)O ₃ -SrTiO ₃ La _{0.57} Ca _{0.43} [Ca _{0.11} Mg _{0.18} Ti _{0.71}]O ₃ Ca ₄ BaTa ₂ TiO ₁₂ 0.16BaNb ₂ O ₆ -0.84Ba ₅ Nb ₄ O ₁₅ +0.3 wt% B ₂ O ₃ +0.3 wt% V ₂ O ₅ Ca ₅ NbTaTiO ₁₂ Ba(Nd _{0.8} Sm _{0.2}) ₂ Ti ₄ O ₁₂ +1 wt% B ₂ O ₃ Ca _{4.36} Zn _{0.64} Nb ₂ TiO ₁₂ Ba ₆ Nb ₄ TiO ₁₈ Sr ₆ Nb ₄ TiO ₁₈
3004 3005 3006 3007 3008 3010 3011 3014 3015 3015 3016 3017 3018 3018 3018 3018	3023 3024 3025 3025 3027 3028 3030 3031

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
3032	$Zr_{0.7}(ZnTa)_{0.3}TiO_4$	1300/3h	Orthorhombic Pbcn	43.0	40200			1294
3033	Ba(Sm _{1/2} Nb _{1/2})O ₃	1600	Perovskite Cubic Fm3m	43.0	18400		6	1136
3034	Sm _{0.9} Y _{0.1} TiNbO ₆	1560	Aeschneite Orthorhombic	43.0	10230		47	564
3035	0.52Nd(Co _{1/2} TI _{1/2} O ₃ -0.48CaTiO ₃	1550	Composite	43.0	4000		0	1309
3036	$Ba_x La_4 Ti_{3+x} O_{12+3x}$ (x=2.3)			43.0	23480		-17	1310
3037	$La_2Ti_2O_7$		Monoclinic P2 ₁	43.0	2200	5.5	9-	950
3038	0.7CaTiO ₃ - 0.3 La(Ga _{0.5} Al _{0.5})O ₃	1540	Composite	43.0	40000		13	1269
3039	BiNbO ₄ +0.4 wt% V_2O_5 +0.1 wt% CuO	006	Orthorhombic Pnma	43.0	20400		8	1311
			Stibiotantalite					
3040	$0.5 \text{La}(\text{Mg}_{1/2} \text{Ti}_{1/2}) \text{O}_3 - 0.5 \text{CaTiO}_3$	1600	Composite	43.0	28000	5.5	-13	1312
3041	$Ca_{4.5}Mg_{0.5}Nb_4TiO_{17}$	1250		43.0	17850		-33	877
3042	NdTiTaO ₆	1550	Aeschneite Orthorhombic	43.1	26400		30	583
3043	Ca[(Li _{1/3} Nb _{2/3}) _{0.7} Ti _{0.3}]O _{3-d} +6 wt% Bi,O ₃ 2 wt% B,O ₃	920	Perovskite	43.1	10600	7.68	10	1235
3044	Ca[($\tilde{\text{Li}}_{1/3}$ Nb _{2/3}) _{0.7} Ti _{0.3}]O _{3-d} +3 wt% Bi,O ₃ . 2 wt% B,O ₃	940	Perovskite	43.1	12900	7.73	54	1235
3045	Zr _{0.752} Hf _{0.248} TiO ₄		Orthorhombic Pbcn	43.2	20000	8.5	I	1088
3046	Alpha-Bi ₃ SbO ₇	890	Anorthic	43.2	2080		0	1181
3047	BiNbO ₄ +0.5 wt% CuO	006	Orthorhombic Pnma	43.3	13000	6.3	12	1313
			Stibiotantalite					
3048	$Ca[La_{0.875}Nd_{0.125})_4Ti_4O_{15}$ (A _n B _{n-1} O _{3n})	1550	Hexagonal perovskite	43.4	32900	7.52	-13	1288
3049	$(1-x)Ca(Mg_{1/3}Ta_{2/3})O_3-x(Ca_{0.8}Sr_{0.2})TiO_3$ (x=0.4)	1425/2h	Composite	43.4	46000	6.8	-3	1314
3050	Ba ₃ LaNb ₃ O ₁₂	1500	Hexagonal perovskite R-3m	43.5	0006		-100	1315, 1316
3051	$Sr_5Ta_4O_{15}$	1510	Hexagonal perovskite	43.5	2400		I	1090
3052	0.7CaTiO ₃ -0.3NdAlO ₃		Perovskite	43.5	30000	8	-2	1269
3053	Ba ₁₁ Nb ₈ TO ₃₃			43.5	12000		33	1289
3054	$BiTaO_4$	950	Triclinic	43.5	12000		-40	1317
3055	$Bi_{0.99}(La_{0.38}Nd_{0.62})_{0.01}NbO_4$	820	Orthorhombic+Triclinic	43.5	12300		13	1318
3056	$0.66CaTiO_3 - 0.34(La_{0.5}Nd_{0.5})GaO_3$		Perovskite Rhombic	43.6	43000	∞	-10	1269

_	
₹	3
ď	b
- 5	š
2	5
1	5
c	=
7	5
Č	5
-	-

3057 3058 3059 3060	CaLa ₄ Ti ₄ O ₁₅ (A _n B _{n-1} O _{3n}) 0.7CaTiO ₃ -0.3NdAlO ₃ Ba(Ti _{0.85} Mn _{0.15})O ₃ +15 wt% Li ₂ CO ₃ (Sr _{0.2} Ca _{0.488} Nd _{0.2} 0 ₈)Ti _{1-x} Ga _{4x/3} O ₃ (x=0.5)	1550 1450/10h 950 1350/4h	Hexagonal perovskite Rhombic perovskite Perovskite Orthorhombic Perovskite Pnma	43.6 43.7 43.7 43.7	33850 34800 2500 60000	7.8	-17 14 -30 8	1288 1174 1319 1320
3061 3062 3063	0.7Ca(Mg _{1/3} Nb _{2/3})O ₃ -0.3(Ca _{0.8} Sr _{0.2})TiO ₃ Zn _{0.17} Nb _{0.33} Ti _{0.5} O ₂ SrLa ₄ Ti ₄ O _{1.5} (A _n B _{n-1} O _{3n})	1080	Perovskite - Hexagonal perovskite P-3m	43.8 43.8 43.8	45200 35000 50200	7.2 9 4.15	4- 41-	1321 1322 1262,
3064 3065 3066	Ba _{1-x} La _x [Zn _{(1+x)/3} Nb _{(2-x)/3}]O ₃ (x=0.35) Bi _{0.992} Gd _{0.008} NbO ₄ Ca[(Li _{1/3} Nb _{2/3}) _{0,7} Ti _{0.:3}]O _{3-\vartheta} +1 wt% Bi ₂ O ₂₋₁ 1 wt% B ₂ O ₂	1350/4h 900/3h 960	Perovskite Orthorhombic Pnma Perovskite	43.8 43.9	2180 16850 16600	4.3	-10 0 35	1226 1323 1235 1235
3067	$Ca_4MgNb_2TiO_{12}-xCaTiO_3$ (x=0.3) 0.66Ca(Mg_{13} Nb _{2/3})O ₃ -0.34CaTiO ₃ + 0.25 wt% B,O ₃	1250	Composite Composite	43.9	20200	6.7	-7	1324 1325
3069	0.1CaTiO_3 -0. $9 \text{Nd}(\text{Mg}_{1/2} \text{Ti}_{1/2}) \text{O}_3$ +0.5 wt% ZnO	1325	Composite	44.0	43800			1326
3070	0.32Nd(Zn _{0.45} Mg _{0.05} Ti _{0.5})O ₃ - 0.1NdAlO ₃ -0.58CaΠO ₃		Composite	44.0	32200	1.97	0	1327
3071	Bi ₂ Ti ₃ TeO ₁₂ ZrTiOZnNb,O.	900/10h	Composite	44.0	12500		146	1131
3073	Ca_S_N_Ta_TIO_1_2	1575	Perovskite Orthrohombic Pnma	44.0	8500	3.5	91 ;	1209
3074	BaTiNb ₄ O ₁₃ Sr ₂ Zn ₄ Ti ₁₅ O ₃₆	1250 1150/8h	Orthorhombic Pbma Trigonal R-3m	44.0 44.0	3600	4.7	15 160	1208 1026
3076	$Ba_8Ta_{4+0.8x}Ti_{3-x}O_{24} (x=0.8)$ $Ba(Nd_{1,0}Nb_{1,0})O_3$	1400/40h 1600	Complex perovskite	44.0	9720 11700		10	920 1136
3078	Ca _{0.7} Nd _{0.3} T _{0.7} Al _{0.3} O ₃ Ba(La _{0.99} Al _{0.11)4} Ti ₄ O ₁₅ (A ₀ B _{0.1} O ₃₀)		Perovskite Orthorhombic Hexagonal perovskite	44.0	40000 47000		0 -	1328 1329
3080	066CaTiO ₃ -0.34LaAlO ₃	1450/12h	Perovskite Orthorhombic	44.0	30000		-3	1174
3081	Ba _{0.9} Ca _{0.1} (Y _{0.33} Nb _{1/2})O ₃₊₆ 0.7Ca(Li _{1/4} Nb _{3/4})O ₃ -0.3CaTiO ₃	1250	Complex perovskite Composite	44.0	41210 12000	7.7	234 –9	1202 1330

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
3083	Sr ₂ La ₄ Ti ₅ O ₁₈ +0.3 wt% Bi ₂ O ₃ -B ₂ O ₃	1625/2h		44.0	23000		22	895
3084	0.6 CaTi O_3 - 0.4 NdGa O_3	1450/12h	Perovskite	44.0	30000		-18	1174
3085	BiNbO ₄ +0.5 wt% V ₂ O ₅	895	Orthorhombic Pnma	44.0	15800	_	18	1311
3086	BiNbO ₄ +0.25 wt% CuO+ V_2O_5	006	Orthorhombic Pnma	44.0	18660		8-	1311
3087	Bi _{0.95} Sm _{0.05} NbO ₄ +0.5 wt% CuO	006	Orthorhombic Pnma	44.0	12900		4-	1331
3088	BiNb _{0.4} Ta _{0.6} O ₄	940	Orthorhombic Pnma	44.0	21000		-30	1332
3089	$0.5 \text{La}(\text{Mg}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - 0.5CaTiO_3 +1 wt%	1400	Perovskite	44.0	28000	_	8	1312
3090	62U3 0 22511: 0-0 67NB- 00 1710.	1350		44.0	28000		-20	092
3091		1200	Monoclinic P21/a A. B. O.	44.0	13800		-120	1333
3092	Ba _s Nb ₃ Ti ₃ O _{3,4}	1450	Hexagonal P6 ₃ /mmc	44.1	22000		115	1334
3093	0.66CaTiO ₃ - 0.34 (La _{0.5} Nd _{0.5})GaO ₃		Rhombic perovskite	44.1	43000	8	_	1269
3094	$Ba_2La_2TiNb_2O_{12}$	1350/6h	Hexagonal perovskite	44.2	31660	6.9	-5	1316
3095	$Ca[Ti_{1-x}(Mg_{1/3}Nb_{2/3})_x]O_3 (x=0.65)$	14504h	Perovskite	44.2	28340		-2	1335
3096	CaLa ₄ Ti ₄ O ₁₅ +1 wt% BiVO ₄	1425		44.3	51400		6-	1336
3097	$BaLa_4Ti_4O_{15}(A_nB_{n-1}O_{3n})$	1600/2h	Hexagonal perovskite P-3c1	44.4	41000		-26	1262,
								1329
								,1337
3098	$Bi_{0.95}Sm_{0.05}NbO_4$	950	Orthorhombic Pnma	44.4	13000	7.2	4-	1338
3099	$(Li_{0.5}Bi_{0.5})MoO_4$	260	Scheelite	44.4	3200	5.5	245	30
3100	$Ca_4La_2TI_{5-x}(Mg_{1/3}Nb_{2/3})_xO_{17}$ (x=2.5)	1540	Orthorhombic Pbnm	44.4	16400		15	1118
3101	$0.67 \mathrm{Zr} \mathrm{Ti}_2 \mathrm{O}_6$ - $0.33 \mathrm{ZnNb}_2 \mathrm{O}_6$ + $0.7 \mathrm{wt}\%$ MnCO ₃	1270	Composite	44.4	44800		_7	1339
3102	$0.5 \text{Nd}(\text{Co}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - $0.5(\text{Ca}_{0.8}\text{Sr}_{0.2})\text{TiO}_3$	1340/4h	Composite	44.5	20000		0	1340
3103	BiNb _{0.95} Sb _{.05} O ₄	880	Orthorhombic Pnma	44.5	14300		-5	1251
3104	BiNb _{0.88} Ta _{0.12} O ₄ +0.5 wt% CuO	920	Orthorhombic Pnma	44.5	14000		0-	1313
3105	$Ba(Pr_{1/2}Nb_{1/2})O_3$	1600	Complex perovskite	44.5	28500		-22	1136
3106	$Ba(Y_{0.3}Bi_{0.2}Nb_{.5})O_3$	1300	Complex perovskite	44.6	2000		9	1341
3107	$\mathrm{Ba_4}\mathrm{Nd_2}\mathrm{Ti_3}\mathrm{Nb_2}\mathrm{O}_{18}$	1450/8h		44.6	13100		18	1342
3108	$Ba_{1-x}La_x[Zn_{(1+x)/3}Nb_{(2-x)/3}]O_3$ (x=0.3)	1350/4h	Perovskite	44.7	1990		7.7	1226

6
ė
\supset
.5
Ţ
$\stackrel{>}{\sim}$
ŭ

3109	$Ca_2La_4Ti_5O_{18}$		A _n B _{n-1} O _{3n} Trigonal perovskite R-3m	44.7	20100	4.19	9	1272
3110	$Ca_2Zn_4T1_5O_{36}+4$ wt% $CaO-B_2O_3-SiO_2$	1050/2h	Trigonal R-3	44.7	31000			1343
3111	0.67CaTiO ₃ -0.33(La _{0.5} Nd _{0.5})GaO ₃		Rhombic perovskite	44.7	41000	8	6.3	1269
3112	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_3$ (x=0.3)	1150/3h	Perovskite	44.7	22500		20	752
3113	Ba ₆ Nb ₄ TiO ₁₈	1450	Trigonal R-3m	44.9	12000		33	895
3114	$Sr(Fe_{1/2}Nb_{1/2})O_3 + 0.2wt\%B_2O_3$	1350/4h	Complex perovskite Cubic Pm3m	44.9	10600		-15	823
3115	$Sr(Fe_{1/2}Nb_{1/2})O_3$	1600/4h	Complex perovskite Cubic Pm3m	44.9	4800		-24	823
3116	0.7 La $_{2/3}$ TiO $_3$ - 0.3 LaAlO $_3$	1400/33h	Perovskite Orthorhombic	44.9	33000	9	_	1096
3117	${ m Ca_5Nb_4TiO_{17}}$	1475	Monoclinic P2 ₁ /c	44.9	17600		-113	877,
3118	BiNbO, +0.03 wt% CuV, O. (2-1-2)	1000	Orthorhombic Pnma	44.9	16100			1104
	(Ortho)		3			,) '	- :
3119	0.55Ca(Mg _{1/3} Ta _{2/3})O ₃ - 0.45Ca _{0.8} Sm _{0.4/3} TiO ₃	1450	Composite	45.0	41700	9.9	0	1344
3120	$Ba_{2/3}La_{1/3}Zn_{1/3}TI_{1/3}Nb_{1/3}O_3$	1400		45.0	6500	60.9	9-	919
3121	$NiNb_2O_6+30$ wt% TiO_2	1300/2h	Orthorhombic Pbcn	45.0	7700	9	73	1345
3122	0.73CaTiO ₃ -0.27NdAlO ₃	1450/10h	Rhombic perovskite	45.0	31000		-15	1174
3123	Ca[(Li _{1/3} Ta _{2/3}),5Ti _{0.5} JO _{3-δ} +3 wt% B ₂ O ₃	1050	Perovskite	45.0	12300	8	75	765
3124	$Na_{1-x}K_xCa_4Nb_5O_{17}$ (x=0.25)	1300	MonoclinicP2 ₁ /a A _n B _n O _{3n+2}	45.0	4600		34	1333
3125	$0.81 \mathrm{BiVO_4} - 0.19 \mathrm{YVO_4}$	87072h	Monoclinic+Tetragonal	45.0	14000		10	1346
3126	$Na_{1-x}K_xCa_4Nb_5O_{17}$ (x=0.75)	1300	MonoclinicP2 ₁ /a A _n B _n O _{3n+2}	45.0	3700		123	1333
3127	$0.58 \text{ZnNb}_2 \text{O}_6 - 0.42 \text{TiO}_2$	1250/2h	Composite	45.0	0009		0	1092
3128	$0.42 \text{ZnNb}_2 \text{O}_{6}$ - 0.58TiO_2	1250	Composite	45.0	48000	8	0	1092
3129	$0.45 \text{Nd}_3 \text{Ga}_5 \text{O}_{12} - 0.65 \text{CaTiO}_3$	1450	Composite	45.0	46000	2	-2	340
3130	0.7CaTiO ₃ -0.3SmAlO ₃	1450/12h	Perovskite Orthorhombic Pbnm	45.0	42000		_	1174
3131	0.7CaTiO ₃ -0.3NdAlO ₃	1450/10h	Perovskite Orthorhombic Pbnm	45.0	44000		3	1174
3132	$Ba(La_{1/2}Nb_{1/2})O_3$	1600	Complex perovskite Monoclinic	45.0	5700		_	1136
3133	$BaLa_4Ti_4O_{15}(A_nB_{n-1}O_{3n})$		Trigonal perovskite P-3m1	45.0	48000			1329
3134	$Sr(Fe_{1/2}Nb_{1/2})O_3$	1450/4h	Perovskite Cubic Pm3m	45.0	4800		-24	1163
3135	$CaSr_4Ta_2TiO_{12}$	1550	Perovskite Orthorhombic Pnma	45.0	15500	3.4220	21	1209

o N	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_{ ilde{f}}$	Reference
3136	$Ba_xLa_4T_{3+x}O_{12+3x}$ (x=0.4)	ı	Trgonal perovskite P-3m1	45.0	00009		-15	1279
3137	$Ba_x La_4 Ti_{3+x} O_{12+3x}$ (x=0.6)	I	Trigonal perovskite P-3m1	45.0	50000		-13	1279
3138	BaTiTa ₂ Nb ₂ O ₁₃	1350	Orthorhombic Pbma	45.0	3500	5.2	96	1208
3139	$BaSr_4Nb_4O_{15}(A_nB_{n-1}O_{3n})$	1400	Trigonal Perovskite P-3m1	45.0	23300	4.57	82	325
3140	$0.2CaTiO_3 - 0.8Sr(Mg_{1/3}Nb_{2/3})O_3$	1600	Perovskite	45.0	0006		0	1347
3141	Ba ₂ La ₃ Ti ₃ TaO ₁₅	1520		45.0	26800		_	1348
3142	0.6СаПО ₃ -0.4LaGaO ₃	1450/12h	Perovskite	45.0	34000		-20	1174
3143	0.65CaTiO ₃ - 0.35 SmGaO ₃	1450/12h	Perovskite	45.0	34000		_	1174
3144	SmTiNbO ₆	1400	Euxenite Orthorhombic Pnma	45.0	18000	4.89	50	563
3145	0.7CaTiO ₃ -03NdAlO ₃	1450/10h	Perovskite Orthorhombic	45.0	44000		0	1349
3146	0.65CaTiO ₃ -0.35NdGaO ₃	1450	Perovskite Orthorhombic	45.0	46000		-2	1349
3147	Ca[(Li _{1/3} Nb _{2/3}) _{1-x} Ti _x] O ₃₋₆ (x=0.3)	1150/3h	Perovskite	45.0	22500		20	752
3148	La _{2/3} TiO _{3 -} LaAlO ₃			45.0	33000		_	1096
3149	0.48La(Co _{1/2} Ti _{1/2} O ₃ -0.52CaTiO ₃	1550	P2 ₁ /n Monoclinic perovskite	45.0	2000	7.8	0	1309
3150	$0.5 \text{Nd}(\text{Zn}_{1.2}\text{Ti}_{1/2})\text{O}_3$ - 0.5CaTiO_3	1300/4h	P2 ₁ /n Monoclinic perovskite	45.0	26000		0	1350
3151	$Ba(Mn_{1/2}Ti_{1/2})O_3$	1450/2h	Perovskite Hexagonal	45.0	11600	5.75	4-	1351
3152	$Ba_3La_2Ti_2Ta_2O_{15}$	1540	Trigonal P-3m1	45.1	31000		-13	1353
3153	0.71CaTiO ₃ -0.29NdAlO ₃	1450/10h	Perovskite Orthorhombic	45.1	38450		9	1174
3154	$(1-x)Ca(Mg_{1/3}Ta_{2/3})O_3-xCaTiO_3 (x=0.45)$	1550	Perovskite Orthorhmbic Pbnm	45.1	34800		17	1354
3155	$0.7CaTiO_3-0.3LaGa_{0.5}Al_{0.5})O_3$		Rhombic perovskite	45.2	40000	8	13	1306
3156	$0.7CaTIO_3-0.3 (La_5Nd_5)(Ga_{0.5}Al_{0.5})O_3$		Rhombic perovskite	45.2	43000	8	6	1269
3157	$0.7CaTIO_3-0.3Nd(Ga_{0.5}Al_{0.5})O_3$		Rhombic perovskite	45.3	38000	8	11	1269
3158	$Ba_8Nb_4Ti_3O_{24}$	1400	Hexagonal P6 ₃ /mmc	45.3	23500	9.6	115	1334
3159	Ba ₄ LaNbTa ₂ O ₁₅		Hexagonal perovskite	45.3	25100		52	1355
3160	$Ba_{1-x}Sr_x La_4Ti_4O_{15} (x=0.6)$	1550	Trigonal P-3m1	45.4	47500		ī	1356
3161	0.6La(Mg _{1/2} Ti _{1/2})O ₃ -0.4Ca _{0.6} La _{0.8/3} TiO ₃ +w wt% CuO	1450	Composite	45.5	44600	80	2	1357
3162	$Ba_{0.2}Ca_{0.8}(Fe_{1/2}Nb_{1/2})O_3$		Perovskite Orthorhombic Pbnm	45.5	2300	7.4	-34	1163
3163	$(Ba_{1-x}Sr_x)La_4 TI_4O_{15}$ (x=0.4)	1450/4h	Trigonal P-3m1	45.7	44200		9-	1356
3164	PrTiTa O_6	1500	Aeschneite Orthorhombic	45.8	32300		33	583
3165	$Pr_{0.5}Gd_{0.5}TiNbO_6$	1400		45.9	9500		41	564

3166	Zr _{0.992} Hf _{0.008} TiO ₄		Orthorhombic Pbcn	45.9	13000	8.5	53	1088
3167	$Pb_{0.25}Ca_{0.75}(Mg_{1/3}Nb_{2/3})O_3$		Perovskite	46.0	8700	3.7	-34	966
3168	$BaLa_4Ti_4O_{15}$		Hexagonal perovskite P-3m1	46.0	47000		-1	1329,
								1337
3169	$Ca_3Ti_2O_7$		Orthorhombic Ccm2 ₁	46.0	2600	2.69	20	1358
3170	$0.1 \text{La}_2 \text{Ti}_2 \text{O}_7 \text{-} 0.9 \text{La}_4 \text{Ti}_9 \text{O}_{24}$	1300	Composite	46.0	5500		0	1137,
								1138
3171	BaTiTa ₄ O ₁₃	1450		46.0	0009	4.6	145	1208
3172	$La_{0.39}Ca_{0.61}[Ca_{0.11}Mg_{0.08}Ti_{0.81}]O_3$		Perovskite	46.0	17000	4.7	36	950
	$Ba_2La_4Ti_5O_{18}$	1575/10h	A _n B _{n-1} O _{3n} perovskite Trigonal R-3m	46.0	31850		-36	1234
3174	$Ca_5Nb_{1.5}Ta_{0.5}TiO_{12}$	1560	Complex perovskite	46.0	28400		35	1231
			Orthorhombic Pnma					
3175	CeTiTaO ₆	1540	Aeschneite orthorhombic	46.0	33300		41	583
3176	$0.3 \text{SrTIO}_3 - 0.7 \text{Ca}(\text{Mg}_{1/3} \text{Nb}_{2/3}) \text{O}_3$	1475/3h	Perovskite	46.0	29300	8.9	2	1359
	$Ca_{0.7}Ti_{0.7}La_{0.3}O_3+0.25 \text{ wt% Al}_2O_3$	1500	Perovskite Orthorhombic	46.0	38200	4	12	1360
	$7Bi_2O_3$ -2TeO ₂ (oxygen atm)	750/15h	I	46.0	1100		-144	1068
	$Ca_2Zn_4Ti_15O_{36}+5$ wt% V_2O_5	930	Trigonal R-3	46.0	13400		164	1361
3180	$La_3Ti_2TaO_{11}$	1560		46.0	7500		-47	1362
	$CaLa_4(Zr_{0.05}Ti_{0.95})_4O_{15}$	1550	Hexagonal	46.0	47500		-10	1363
	$Bi_{0.95}Ce_{0.05})NbO_{4.025}$	950	Triclinic+Orthorhombic	46.1	15000			1364
3183	$(Ba_{1-x}Sr_x)La_4Ti_4O_{15}$ (x=0.8)	1600	A _n B _{n-1} O _{3n} Trigonal P-3m1	46.1	52800		-3	1356
	$Ba(Er_{03}Bi_{0.2}Nb_{0.5})O_3$	1300	Perovskite	46.1	1500		-27	1341
	$0.65 \text{LiNb}_3 \text{O}_8 \text{-} 0.35 \text{TiO}_2$	11002h	Composite	46.2	5800		0	788
3186	Sr ₆ Nb₄TIO ₁₈	1625/2h	Not available	46.2	0029		76	895
3187	0.4 ZnNb $_2$ O $_6$ - 0.6 TiO $_2$	1125	Columbite+rutile	46.2	48000		ī	1365
3188	0.5ZnTa ₂ O ₆ - 0.5 TiO ₂		Composite	46.2	36700		74	1366
3189	0.55La(Mg _{1/2} Ti _{1/2})O ₃ -0.45SrTiO ₃	1475/4h	Composite	46.3	34000	8	0	1367
3190	$Ba_{2-x}Sr_xLa_3Ti_3NbO_{15}$ (x=0.5)	1500	A _n B _{n-1} O _{3n} Trigonal P-3m1	46.3	33600		4	1301,
								1297
3191	$BaLa_4Ti_4O_{15}$	1450	A _{nBn-1} O _{3n} Trigonal perovskite	46.3	16200	5.15	-13	1272
			P-3m1					

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
3192	$Ba_{0.2}Sr_{0.8}La_4TI_{4.2}O_{15}$	1450/5h	Perovskite Trigonal	46.4	36100		-3	1368
3193	0.64CaTiO ₃ -0.36LaGaO ₃		Rhombic perovskite	46.5	48000	8	-3	1269
3194	Bi _{0.95} Ce _{0.05} NbO ₄ +0.4 mol% CuO	950	Orthorhombic Pnma	46.5	3000			1369
3195	$Ba_3La_2Ti_2Nb_{2-x}Ta_xO_{15}$ (x=1)	1500	Trigonal P-3m1	46.5	27140	ı	4-	1353
3196	$CaTi_{0.54}(AI_{1/2}Ta_{1/2})_{0.46}O_3$	1500/15h	Perovskite Orthorhombic	46.5	27300	8	0	1266
3197	$Ca_5Nb_2TiO_{12}$ +1 wt% NiO	1550/4h	Complex perovskite	46.5	29000		34	1155
3198	Ca-Nb, TiO., +1 wt% Co.O.	1550/4h	Complex perovskite	46.5	29000		32	1155
)	(~5) 2 (12 (2) (4		Orthorhombic Pnma				1)
3199	$(1-x)La(Mg_{1/2}Ti_{1/2})O_3-xLa_{2/3}TiO_3$ (x=0.49)		Perovskite 12/a	46.5	8300	6.2		889
3200	$Sr(Ga_{0.5}Nb_{0.5})_{1-x}T_xO_3$ (x=0.3)	1575	Cubic perovskite Fm3m	46.6	42200		5	1370
3201	$Ba_3Nd_2Ti_2Nb_2O_{15}$	1450/3h	Hexagonal perovskite	46.8	19500	5.1	28	1352
3202	$(1-y)Li_{2.02}Ti_{0.92}Nb_{0.06}O_3$ (y=0.6)	1070		46.8	8040		35	722
3203	$(Ba_{1-x}Sr_x)La_4Ti_4O_{15}$ (x=0.2)	1450	Trigonal perovskite P-3m1	46.8	24500		8–	1356
3204	$Ba_{2-x}Sr_xLa_3Ti_3NbO_{15}$ (x=0.75)	1510	Trigonal perovskite P-3m1	46.8	36500		2	1301
3205	$Ba_{1-x}Ca_x(Sc_{1/2}Nb_{1/2})O_3$ (x=0.5)	1650	Perovskite	46.9	28000			1371
3206	$La_2Ti_2O_7$		Monoclinic P21	47.0	8500	7.8	-10	1137
3207	0.75CaTiO ₃ -0.25LaAlO ₃	1450/12h	Composite	47.0	36000		13	1174
3208	$Bi_2\Pi_4O_{11}$		Monoclinic C2/m	47.0	4800		-540	1372
3209	$Ca_2Zn_4Ti_{15}O_{36}$	1150/8h	Hexagonal+residual rutile	47.0	41200	10	120	1026
3210	$Na_{1-x}K_xCa_4Nb_5O_{17}$ (x=0.5)	1300	Monoclinic P21/a A _n B _n O _{3n+2}	47.0	5000		-23	1333
3211	$BaTi_{0.3}Ga_{0.35}Nb_{0.35}O_3$	1500/4h	Perovskite-Mixture	47.0	2470	5.5		1373
3212	0.65CaTiO ₃ - 0.35 LaGaO ₃	1600	Perovskite Orthorombic Pnma	47.0	40000		0	912
3213	$Ba_{2-x}Sr_xLa_3Ti_3NbO_{15}$ (x=0.25)	1490	Hexagonal P-3m1	47.0	29400		9	1301
3214	Ba ₂ La ₃ Ti ₃ NbO ₁₅	1470/6h	Hexagonal perovskite P-3m1	47.0	2000		20	1374
3215	$Ba_{2-x}Sr_xLa_3Ti_3NbO_{15}$ (x=0.75)	1510	Trigonal perovskite P-3m1	47.0	36500		2	1297
3216	$Ba_{2-x}Sr_xLa_3Ti_3NbO_{15}$ (x=0.25)	1490	Trigonal perovskite P-3m1	47.0	29400		8	1297
3217	$0.222 \text{Li}_2 \text{O-} 0.668 \text{Nb}_2 \text{O}_5 \text{-} 0.11 \text{TiO}_2$	1350		47.0	25000		0	09/
3218	$Ca_5Nb_2TiO_{12}+1$ wt% ZnO	1550/4h	Complex perovskite	47.0	28000		34	1155
			Orthorhombic Pnma					

_	
₹	3
d	b
- 5	š
2	5
1	5
c	=
7	5
Č	5
-	-

47.1 47.1 47.1 47.1 47.2 47.2 47.3 47.4 e 47.4	1375 1400 1260/4h 0xygen 1475 1125/5h 14504h 1480/6h 1550
47.1 47.1 47.2 47.2 47.3 47.4 e 47.4 e 47.4	400 260/4h xygen 475 475 125/5h 4504h 480/6h 550 550
47.1 47.1 47.2 47.3 47.4 e 47.4 e 47.4	260/4h xygen 475 475 125/5h 4504h 480/6h 550 550
47.1 47.2 47.3 47.4 e 47.4 7.4 47.5	5.55h 0.0/6h 0.0/6h 0.0/4h
47.2 47.2 47.3 5-3m1 47.4 ee 47.4 47.5	75 25/5h 80/6h 50 50 50/4h
47.2 47.3 -3m1 47.4 e 47.4 47.5	125/5h 4504h 480/6h 550 550/4h
47.3 -3m1 47.4 e 47.4 47.5	504h 80/6h 50 50/4h
-3m1 47.4 e 47.4 47.5	80/6h 50 50/4h 50/4h
e 47.4 47.4 47.5	50/4h 50/4h 50/4h
47.4 47.5 4	50/4h 50/4h
47.5	50/4h 50/4h
	50/4h 50/4h
Complex perovskite 47.5 33000 Orthorhombic Pnma	50/4h
Complex perovskite 47.5 30000 Orthorhombic Pnma	
Mixture 47.5 9600	_
Composite 47.6 30000	
Cubic Ia3 47.6 48800	750
Trional P-3m1 Perovskite 47.7 47100	I 575/4h
Trigonal P-3m1 Perovskite 47.7 47400	575/4h
Perovskite 47.8 26500	
$A_6B_5O_{18}$ type perovskite 47.9 7000	ı 450/2h
	1300
47.9 25300	1480
Monoclinic 47.9 18000	006

O	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	<i>Qf</i> (GHz)	f_0	$ au_f$	Reference
3244	$Pb_{0.75}Ca_{0.25}(Cr_{1/2}Nb_{1/2})O_3$		Perovskite	48.0	3600	4.3	8	966
3245	0.65CaTiO ₃ -0.35LaGaO ₃	1450/12h	Perovskite Orthorhombic	48.0	32000		2	1174
3246	Ca[(Li _{1/3} Ta _{2/3}) _{1-x} Ti _x]O ₃₋₆ +3 wt% B ₂ O ₃ (x=0.5)	1150	Perovskite	48.0	21000		I	765
3247	$Ca_5 Nb_2 TO_{12}$	1550	Complex perovskite Orthorhombic Pnma	48.0	26600	3.7	40	1307
3248	Ca ₃ Ba, Ta, TiO ₁ ,	1540	Complex perovskite Cubic	48.0	3000	3.8	18	1307
3249	Ba ₃ Ti ₄ Ta ₄ O ₂₁	1380	Hexagonal P6 ₃ /mcm	48.0	7000	4.3	50	1208
3250	$(Ca_{1-0.3x}La_{0.2x})[(Mg_{1/3}Ta_{2/3})]_{1-x}Ti_xO_3$ (x=0.5)		Orthorhombic Pnnm complex Perovskite	48.0	21000		2	1387
3251	Pr _{0.7} Gd _{0.3} TiNbO ₆	1400		48.0	4500		47	564
3252	$Ba_4SrNb_4O_{15}(A_nB_{n-1}O_{3n})$	1400	Hexagonal perovskite	48.0	14600	4.7	140	325
3253	0.34CaTiO ₃ -0.66Ca(Mg _{1/3} Nb _{2/3})O ₃	1450	Perovskite	48.0	32500		-2	1388
3254	$CaTi_{0.5}(AI_{1/2}Nb_{1/2})_{.5}O_3$	1500/5h	Perovskite orthorhombic	48.0	26100	_	4-	1152
3255	$CaTi_{0.5}(AI_{1/2}Nb_{1/2}).5O_3+1 \text{ wt}\% Li_3NbO_4$	1300/5h	Perovskite orthorhombic	48.0	32100	_	-2	1152
3256	$Ba_8Nb_4Ti_3O_{24}$	1450	Hexagonal P6 ₃ /mmc	48.0	23500	5.5	115	1389
3257	$Sr_2La_4TI_5O_{18}$	1625/2h		48.0	27350		20	895
3258	$Sr_5LaTi_2Nb_3O_{18}$	1520		48.0	27800	4.3		1390
3259	$Ba_4Sm_{9.33}Ti_18O_{54}+15 \text{ wt } \% BaCu(B_2O_5)$	950	Tungsten Bronze Orthorhombic	48.0	5500		-41	1391
3260	$(Ca_{1-0.3x}La_{0.2x})[Mg_{1/3}Ta_{2/3})O_3 (x=0.5)$		Orthorhombic Pbnm	48.0	21000			1387
3261	$[(Ca,Sr)_x(La,Nd)_{2/3-2x/3}]TiO_3 (x=0.1)$	1350/24h	Tetragonal 14/mcm	48.0	3700		61	1392
3262	$0.5 \text{La}(\text{Mg}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - 0.5SrTiO_3		Perovskite Pbnm	48.1	5800	9.9		878
3263	$Ba_3LaNb_3O_{12}$	1350/6h	Trigonal R-3m	48.3	38000	92.9	-40	1315
3264	$Ba_{2-x}Sr_xLa_3Ti_3NbO_{15}$ (x=0)	1480	Hexagonal perovskite	48.3	20290		8	1301
3265	0.2SrTiO ₃ -0.8Ca _{0.61} Nd _{0.26} Ti _{1-x} Al _{4x/3} O ₃	1520/4h	Orthorhombic Perovskite	48.3	40700		4	1393
3766	(A-C.S.) (A-C.TiO	1100/4h	Trigonal R-3	484	31600	2	48	1394
3267	Ca ₂ Tr ₄ Tr ₆ C ₃₈ Ca ₂ Nb, Tr ₆ Tr ₇ Tr ₇ SnO,	1550/4h	Complex perovskite	48.5	28000	:	36	1155
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Orthorhombic Pnma					
3268	CaLa ₈ Ti ₉ O ₃₁	1550	Orthorhombic Pbam Perovskite	48.6	19350	3.65	9-	1272
3269	$Ba(Dy_{0.3}Bi_{0.2}Nb_{0.5})O_{3}$	1300	Perovskite	48.6	2000		9	1341

1395 1155	092	895	1356	1356	1327	1155	1155	1396	906	1174	1269	1397	1152	1272	1269	1152	1398	1356	564	1355	1276	1152	1297
33	32	22		_/	0	44	36	-234		35	0	58	32	9	22	12	472	15	21	75	40	_	_
					1.957										8	_						_	2
38000	16350	23000	42400	41200	29000	34000	30500	800	10800	32000	43000	8840	16000	20100	29000	31400	3100	42400	9500	24100	17600	26000	22000
48.7	48.7	48.7	48.9	48.9	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.2	49.2	49.3	49.4	49.4	49.4	49.5	49.5	49.5	49.6	49.8	49.8
Perovskite Complex perovskite Orthorhombic Pnma			Trigonal perovskite P-3m1	Trigonal perovskite P-3m1	Composite	Complex perovskite Orthorhombic Pnma	Complex perovskite Orthorhombic Pnma	Flurite 8-Bi ₂ O ₃ Fm-3m	Perovskite orthorhombic Pcnm	Perovskite	Perovskite	M phase+Li ₂ TiO ₃	Orthorhombic Pbnm	Trigonal perovskite R	Perovskite	Perovskite Orthorhombic	Perovskite Hexagonal P6 ₃ /mcm	Trigonal perovskite P-3m1	Euxenite OrthorhombicPnma	Hexagonal perovskite	Tetragonal P4 ₂ /mmm	Perovskite	Hexagonal perovskite
1300 1550/4h	006	1625/2h	1575/4h	1575		1550/4h	1550/4h	900/3h		1450/12h	1540	006	1540			1300/5h	1200	1575	1400		1300	1500/5h	1460
0.64CaTiO ₃ -0.36LaGaO ₃ Ca ₅ Nb ₂ TiO ₁₂ +1 wt% Al ₂ O ₃	$5.7 \text{Li}_2 \text{O-Nb}_2 \text{O}_5 - 14.7 \text{TiO}_2 + 2 \text{ wt}\%$ $\text{B}_2 \text{O}_3 - \text{CuO}$	$Sr_2La_4Ti_5O_{18}+0.3 \text{ wt\% Bi}_2O_3-B_2O_3$ glass	$Ba_{(1-x)}(a_x)La_4Ti_4O_{15}$ (x=0.4)	$(Ba_{1-x}Ca_x)La_4Ti_4O_{15}$ (x=0.6)	0.45La(Zn _{0.395} Ti _{0.385} Ta _{0.01} Al _{0.21})O ₃ - 0.55CaTiO ₃	$Ca_5Nb_2TiO_{12}+1$ wt% Cr_2O_3	$Ca_5Nb_2TiO_{12}+1$ wt% Sb_2O_3	$0.9Bi_2O_3-0.1Nb_2O_5$	$Ca(Zr_{0.8}Ti_{0.2})O_3$	$0.7CaTIO_3-0.3NdGaO_3$	0.66CaTiO ₃ - 0.34 (La _{0.5} Nd _{0.5}) GaO ₃	$11Li_2O-3Nb_2O_5-12TiO_2+0.5 \text{ wt}\% B_2O_3$	$Ca_4La_2Ti_{5-x}(Mg_{1/3}Nb_{2/3})_xO_{17}$ (x=2)	$Ca_2La_4Ti_5O_{18}$	0.7 Ca Π O ₃ - 0.3 LaGaO ₃	$CaTi_{0.53}AI_{1/2}Nb_{1/2})_{0.47}O_3+1$ wt% Li $_3$ NbO $_4$	$Ba_3LiTa_3Ti_5O_{21}$	$(Ba_{1-x}Ca_x)La_4Ti_4O_{15}$ (x=0.8)	Pr _{0.8} Gd _{0.2} TiNbO ₆	Ba ₄ LaNb ₂ TaO ₁₅	$(Ni_{1/3}Ta_{2/3})_{1-x}Ti_xO_2$ (x=0.4)	$CaTi_{0.53}(AI_{1/2}Nb_{1/2})_{0.47}O_3$	$Ba_3La_2Ti_2Nb_2O_{15}~(A_5B_4O_{15})$
3270 3271	3272	3273	3274	3275	3276	3277	3278	3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291	3292	3293	3294

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	$ au_f$	Reference
3295	$Li_{1+x+v}Ta_{1-x-3v}Ti_{x+4v}O_3$ (x=0.1, y=0.175)	1175/1h	M-Phase	49.8	10528		32	1399
3296	$Ba_6Ti_1 Nb_2O_{39}$	1260/4h	Orthorhombic Bm21b	50.0	2600	4	165	1401
3297	Ca[(Li _{1,3} Nb _{2/3}) _{0.9} Ti _{0.3} IO _{3-d} +1 wt% B ₂ O ₃	940	Perovskite	50.0	6500		8-	1402
3298	Pb _{0.7} Ca _{0.3} La _{0.5} (Mg _{1/2} Nb _{1/2})O ₃	1350/2h	Perovskite Cubic Fm3m	50.0	86000		0	1403
3299	$0.5 \text{La}(\text{Mg}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - $0.5 \text{La}_{2/3}\text{TiO}_3$	1400/2h	Perovskite	50.0	10000		5	1404
3300	0.5 CaTiO ₃ - 0.5 La(Zn _{1/2} $\Pi_{1/2}$)O ₃	1550/3h	Perovskite Orthorhombic	50.0	38000	_	0	1405
3301	$Ba_2Sr_3Nb_4O_{15}(A_nB_{n-1}O_{3n})$	1400	Hexagonal perovskite	50.0	16500	4.7	232	325
3302	La _{0.33} TaO ₃	1525	Perovskite Tetragonal P4/mmm	50.0	8000	3.8	144	1406
3303	$Ca_5 Nb_2 TiO_{12} + 0.1 wt\%$	1520/2h	Orthorhombic Pnma	50.0	30000	4	38	1407
	$2MgO-AI_2O_3-5SiO_2$							
3304	TiTe ₃ O ₈	720	Cubic Ia3	50.0	30600	5	133	586
3305	$(1-x)(Mg_{0.95}Zn_{0.05})TiO_3-xCa_{0.6}La_{0.8/3}TiO_3$	1320/4h		50.0	43500		122	465
0	() :: (CiOly)	0	-	(0		,	0
3306	$Ba_3Ii_2(Fe_{1/2}Nb_{1/2})Nb_4O_{21}$	1280	Hexagonal	20.0	5200		10	1408
3307	$Ba_3 Ti_{4x} (Mg_{1/3} Nb_{2/3})_x O_{21} + BaCu(B_2 O_5)$ (x=2)	950	Hexagonal	50.0	10500		18	1409
3308	$Ca_{4x}Mg_xLa_2T_5O_{17}$ (x=2)			50.0	9450		63	1029
3309	$Ca(Zr_x Ti_{1-x})O_3(x=0.6)$	1470/15h	Perovskite Orthorhombic Pbnm	50.0	3800	3.46	460	916
3310	$NiNb_2O_6+40$ wt% TiO_2	1300/2h	Composite	50.0	5700	9	66	1345
3311	$3Li_2O-Nb_2O_5-3TiO_2+2$ wt% B_2O_3-CuO	006	M phase+Li ₂ TO ₃	50.1	8300		35	1410
3312	$(1-x)La_{2/3}TiO_3-xNiTiO_3$ (x=0.2)	1340	Perovskite	50.7	13900	3.5	24	1411
3313	Sr ₅ LaTi ₂ Nb ₃ O ₁₈	1520		50.7	27800		19	1412
3314	Ba _{0.2} Sr _{0.8} La ₄ Π ₄ O ₁₅ +1 wt% La ₂ O ₃ -0.5B ₂ O ₃ -0.5ΠO ₂	1550/3h	Hexagonal perovskite	50.7	72700		-7	1413
3315	0.5)(1300	Perovskite	50.8	1600		14	1341
3316	Ba ₅ SrNb ₄ TIO ₁₈	1450/4h		50.8	7000		83	895
3317	0.75CaTiO ₃ -0.25SmAlO ₃	1450/12h	Perovskite Orthorhombic	51.0	31000		31	1174
3318	0.7CaTiO ₃ - 0.3 SmGaO ₃	1450/12h	Perovskite Orthorhombic	51.0	18000		41	1174
3319	$Ba_3Sr_2Nb_4O_{15}(A_nB_{n-1}O_{3n})$	1400	Hexagonal Perovskite	51.0	21200	4.6	117	325
3320	$Ca_{0.6}(Li_{0.5}Nd_{0.5})_{.4})_{0.45}Zn_{0.55}TiO_3$	1150		51.0	12700		17	1281
3321	$Pr_{0.9}Gd_{0.1}TiNbO_6$	1400	Euxenite Orthorhombic Pnma	51.0	8400		23	564

3322	$Zr_{\alpha\beta}(Zr_{\alpha\beta}Nb_{\beta\beta})_{\alpha\beta}TiO_{\beta}$	1290		51.0	26600		70	1414
	$Na_{1-x}K_xCa_4Nb_5O_{17}$ (x=1)	1300	MonoclinicP21/a A _n B _n O _{3n+2}	51.0	2300		473	1333
	Sr _{0.5} Ba _{0.5} Ca ₄ NĎ ₄ TľO ₁₇		Orthorhombic Pnnm	51.6	10200	5.37	41-	1415
3325	0.3La(Mg _{1/2} Ti _{1/2})O ₃ -0.7CaTiO ₃	1500	Perovskite Pbnm	51.2	43800	5.8	ı	932
3326	$3 \text{Li}_2 \text{O-Nb}_2 \text{O}_5 - 3 \text{TiO}_2 + 1 \text{ wt}\%$ $0.83 \text{Li}_3 \text{O-}0.17 \text{V}_3 \text{O}_5$	006	M-Phase+Li ₂ TiO ₃	51.3	7200		22	1416
3327	TiFeNbO ₆ +2 wt% 2 Bi ₂ O ₃	1125/5h	Tetragonal	51.3	1400	3.6	103	1379
3328	$(1-x)La_{2/3}TiO_3-xNiTiO_3$ (0.01)	1380	Perovskite	51.4	1600	3.55	25	1411
3329	$Ba_3La_2Ti_2Nb_2O_{15}$	1450		51.5			15	1417
3330	$Ca[(Ga_{1/2}Nb_{1/2})_{1-x}Ti_x]O_3$ (x=0.47)		Pbnm	51.6	34100		0	1418
3331	$(Pb_{0.2}Ca_{0.8})[(Ca_{1.3}Nb_{2/3})_{0.8}Ti_{0.2}]O_3$	1350/3h	Perovskite	51.7	7270		0	1419
3332	$Ba_{0.5}Ca_{0.5}(Fe_{1/2}Nb_{1/2})O_3$		Perovskite	51.7	096	6.9	45	1163
3333	Bi ₂ (Zn _{1/3} Ta _{2/3}) ₂ O ₇	850	Cubic Fd3m	51.8	2600		-26	1420
3334	0.3LaAlO ₃ -0.7SrTiO ₃	1680	Perovskite	52.0	50800	9.3	26	832
3335	$(Li_{1/2}Sm_{1/2})TiO_3$	1300	Perovskite Orthorhombic	52.0	2290	3	-266	1421
3336	$Ca_4SrNb_2TiO_{12}$	1550	Orthorhombic Pnma	52.0	15000	3.59	42	1209
3337	$Ce_{0.33}TaO_3$	1525		52.0	10000	3.58	159	1406
3338	NdTiNbO ₆	1370	Euxenite Orthorhombic Pnma	52.0	4480	4.93	46	563
3339	$Pr_{0.95}Gd_{0.05}TiNbO_6$	1370	Euxenite Orthorhombic Pnma	52.0	18500		54	564
3340	$CaTi_{0.6}(AI_{1/2}Ta_{1/2})_{0.4}O_3$	1500/15h	Perovskite Orthorhombic	52.0	13200	8	37	1266
3341	0.7 CaTiO $_3$ - 0.3 LaGaO $_3$	1450/12h	Perovskite	52.0	27000		40	1174
3342	$Ba_4LaTiNb_3O_{15}(A_5B_4O_{15})$	1450	Hexagonal perovskite	52.0	15600	4.47	93	1210
3343	$Ba_4 Sm_{9.33} Ti_{18}O_{54} + 10 \text{ wt}\% BaCu(B_2 O_5)$	950	Orthorhombic	52.0	4000		-29	1422
3344	$Ba_{6\cdot3x}Sm_{8+2x}T_{18}O_{54} (x=2/3)+3.5$ $Bi_2O_3-B_2O_3$	1050	Tungsten bronze Orthorhombic	52.0	4500		9	1422
3345	$3Li_2O-Nb_2O_56TiO_2+21$ wt% B_2O_3	006		52.0	12000		32	09/
3346	$Ca_{5-x}Zn_xNb_4TiO_{17}$ (x=0.4)	1260	Perovskite A _n B _n O _{3n+2}	52.0	9950		6-	1423
3347	$Ba_{0.9}Ca_{0.1}(Fe_{1/2}Nb_{1/2})O_3$		Perovskite	52.1	620	8.9	45	1163
3348	$Pb_{0.4}Ca_{0.6}(Mg_{1/3}Nb_{2/3})_{1-x}Sn_x]O_3 (x=0.1)$	1280/2h	Perovskite Tetragonal	52.2	8150	2	-3	1424
3349	$CaTi_{0.5}$ (Fé _{0.5} Nb _{0.5}). ₅ O ₃ +3 wt% B ₂ O ₃	900/2h	Perovskite orthorhombic	52.3	2930		13	1425
3350	0.4(La _{1/2} Na _{1/2})TiO ₃ - 0.6Ca(Mg _{1,2} Nb _{2,2})O ₃	1450	Perovskite Orthorhombic	52.3	29700	9	2	1426
	0 .514							

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	$ au_f$	Reference
3351	0.5Ca _{0.6} La _{0.267} TiO ₃ - 0.5Ca(Mg., Nb, ,)O,	1490/4h	Perovskite Composite	52.4	36400	5.8	3	1427
3352	Sr _{1-x} Ca _x La ₄ Ti ₅ O ₁₇ (x=0.85) SrCa.La,Ti-O, (x=1)	1580/6h 1580/6h	Orthorhombic Pnnm Orthorhombic Pnnm	52.4	12600		-23 -37	1428
3354	$(1-x)S_{0.2}$ Na _{0.4} Sm _{0.4} TiO ₃ -SmAlO ₃ (x=0.25)	1470/4h	Orthorhombic perovskite	52.7	9700		2	1429
3355	Pb _{0.2} Ca _{0.8} (Fe _{1/2} Nb _{1/2})O ₃		Perovskite	53.0	10000	4.1	69-	966
3356	$Bi_2Ti_4O_{11}$	1100	Monoclinic C2/m	53.0	4900		-520	1372
3357	$Ba_3T_{4-x}(Zn_{1/3}Nb_{2/3})_xNb_4O_{21}$ (x=2),+1 wt% MnCO ₂ -CuO+1 wt% ZBS	900/2h		53.0	14600		9	1430
3358	PrTiNbO	1370	Euxenite Orthorhombic Pnma	53.0	12300	4.85	26	563
3359	$Ba_3T_{4-x}(Z_{n_{1/3}}Nb_{2/3})_xNb_4O_{21}$ (x=2)+1 wt%, ZBS+1 wt%, MnCO ₃ -CuO	900/2h	Hexagonal P6 ₃ /mcm	53.0	14600		9	1430
3360	BaLa ₄ Π_4O_{15} (textured)	1600/2h	Hexagonal Perovskite P-3m1	53.0	41400		T	1431
3361	$(Ca_{1-x}Nd_{2x/3})TiO_3$ (x=0.3)+2 wt% CaO-ZnO-B,O ₃	900/1h	Perovskite Orthorhombic	53.0	3800		55	1432
3362	$Ca_{0.07}Zn_{1.98}Sn_{0.08}T_{1.97}Nb_2O_8$	1120/6h		53.1	48000	21		1433
3363	0.8TiO ₂ -0.2Bi ₂ O ₃		Mixture phases	53.2	4500		-550	1434
3364	$(1-x)La_{2/3}TO_3-xNiTiO_3$ (0.15)	1340	Perovskite	53.3	12950	3.4	21	1411
3365	CaLa ₄ Ti ₅ O ₁₇	1550	Perovskite Orthorhombic Pnnm	53.7	17400	3.7	-26	1272
3366	$Sr_{1-x}Ca_xLa_4Ti_5O_{17}$ (x=1)	1580/6h	Orthorhombic Pnnm Perovskite	53.7	11500		T	1428
3367	$0.8La_{2/3}TiO_3$ - $0.2LaAlO_3$	1400	Perovskite Orthorhomic	53.9	29000	5.4	35	1096
3368	CeTiNbO ₆	1360	Euxenite Orthorhombic Pnma	54.0	6530	4.4	29	563
3369	0.4CaTiO ₃ - 0.6 Ca(Mg _{1/3} Nb _{2/3})O ₃	1450	Perovskite	54.0	32000	6.7	18	944
3370	0.8La _{2/3} TiO ₃ -0.2LaAlO ₃	1400	Perovskite	54.0	29000		35	1096
3371	$Ca_3Sr_2Nb_2TiO_{12}$	1540	Orthorhombic Pnma	54.0	10000	3.5	45	1209
3372	Y_2O_3 -2TIO ₂	1460	Mixed phases	54.0	6565	4.65	-31	1435
3373	$Ba_{6-3x}Sm_{8+2x}Ti_{18}O_{54} (x=2/3)+3.5 wt\%$	1050	Tungsten Bronze Orthorhombic	54.0	3400		29	1422
3374	$(C_{3_0,85}Nd_{0.1})[T]_{0.5}(Mg_{0.33}Nb_{0.67})_{0.5}]O_3$		I	54.1	2660		_	1436
3375	$0.48Nd(Zn_{1/2}Ti_{1/2})O_3$ - $0.52SrTiO_3$	1350	Composite	54.2	84000		0	1437

1271	1319	1163	1319	1400	1228	1272	1400,	1438	1398	1439	1250	1208	1440	752	1164	1441	752	1272	1442	510	1443	1152	1428	1444	1422	1422
39	254	22	183	34		9-	28		472	17	165	100	-260	83	-52		83	-20	30	26	70	47	6	5	15	23
		9.9			6.1		6.2					5.5			5.3	5.1						^				
22900	3400	009	1300	10400	13200	19300	8890		3200	2900	16600	9500	2000	18600	450	21270	18600	17400	17500	2500	18500	21800	118000	15600	4300	3900
54.3	54.4	54.5	54.7	54.8	54.8	54.9	54.9		54.9	54.9	54.9	55.0	55.0	55.0	55.1	55.1	55.2	55.2	55.3	55.3	55.6	55.7	55.8	55.9	56.0	56.0
	Composite	Perovskite	Perovskite	M-Phase	Perovskite cubic	Orthorhombic Pbam	M-Phase		Hexagonal P6 ₃ /mcm	Multiphase	Tetragonal P42/mnm	Hexagonal P6 ₃ /mcm	Perovskite	Perovskite	Perovskite Orthorhombic Pbnm	A _n B _{n-1} O _{3n} perovskite Trigonal R-3m	Perovskite	Orthorhombic Pnnm		Composite	Hexagonal P6 ₃ /mcm	Perovskite Orthorhombic	Orthorhombic Pnnm	Orthorhombic Pnnm	Tungsten bronze Orthorhombic	Tungsten bronze Orthorhombic
14504h	1100		006	1175/1h	1400		1100/1h		1200	006	1250	1270	1350	1150/3h	1250	1450/6h	1150/3h		1200	875	1180	1500/5h	1550/6h	1500/4h	1050	1050
$Ca[Ti_{1-x}(Mg_{1/3}Nb_{2/3})_x]O_3$ (x=0.5)	$Ba(Ti_{0.85}Mn_{0.15})O_3+10 wt\% B_2O_3$	$Ba_{0.6}Ca_{0.4}(Fe_{1/2}Nb_{1/2})O_3$	$Ba(Ti_{0.85}Mn_{0.15})O_3+15 wt\% Bi_2O_3$	$Li_{1+x+y}Ta_{1-x-3y}Ti_{x+4y}O_3 (x=0.1, y=0.15)$	Ba[Zn _{1/4} Ti _{1/4} Nb _{1/2}]O ₃	CaLa ₈ Ti ₉ O ₃₁	$Li_{1+x-v}Nb_{1-x-v}Ti_{x+4v}O_3$ (x=0.1, y=0.175)		$Ba_3LiNb_3Ti_5O_{21}$	Ba _{0.75} Sr _{0.25} (Nd _{0.75} Bi _{0.25)2} Ti ₄ O ₁₂ +20 wt% La ₂ O ₃ -B ₂ O ₃ -ZnO-CaO	$Ga_{0.5}Nb_{0.5}TO_4$	$Ba_3Ti_4Nb_4O_{21}$	$Sm_{(2-x)/3}Li_xTiO_3 (x=0.5)$	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x] O_{3-\delta} (x=0.5)$	0.2PbZrO ₃ - 0.8 Ca(Fe _{1/2} Nb _{1/2})O ₃	$\mathrm{Ba_4La_2Ti_3Nb_2O_{18}}$	$Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_3 (x=0.5)$	CaLa ₄ Ti ₅ O ₁₇	$(Zn_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}O_2$	MBRT-90+10 wt% Li ₂ O-B ₂ O ₃ -SiO ₂ - (56.92:37.59)	$Ba_3LiNb_{3-x}Ta_xTi_9O_{21}$ (x=3)	$CaTi_{6}(Al_{1/2}Nb_{1/2})_{4}O_{3}$	$Sr_{1-x}Ca_xLa_4Ti_5O_{17}$ (x=0.5)	CaLa ₄ Ti _{4.95} Zr _{0.05} O ₁₇	$Ba_{6-3x}Sm_{8+2x}Ti_{18}O_{54} (x=2/3)+5 wt\%$ $Bi,O_3-B_3O_3$	$Ba_{6.3x}Sm_{8+2x}Ti_{18}O_{54}$ (x=2/3)+3.5 wt% Bi_2O_3 - B_2O_3 +01LiF
3376	3377	3378	3379	3380	3381	3382	3383			3385		3387			3390		3392	3393	3394	3395		3397		3399	3400	3401

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
3402	0.64BaTi ₄ O ₉ -0.35BaPr ₂ Ti ₄ O ₁₉		Composite	56.0	1000			1445
3403	$(Sr_{0.1}Ca_9)_3Ti_2O_7$		Orthorhombic Ccm2 ₁	56.0	3000	2.5	141	1358
3404	BaTi ₃ Nb ₄ O ₁₇	1310/4h	Orthorhombic Bbmm	26.0	8400	4	98	1401
3405	BaTi _{0.95} Ni _{0.05} O ₃₋₈	1450/2h	Perovskite	56.0	2400			1446
3406	Bi ₂ TeO ₆ (oxygen atm)	720/15h	Orthorhombic Cmca	56.0	10400		-49	1068
3407	TiFeNbO ₆ +4 wt% Bi ₂ O ₃	1125/5h	Tetragonal	56.1	1000	3.45	17	1379
3408	$Li_{1+x-y}Nb_{1-x-y}Ti_{x+4y}O_3$ (x=0.1, y=0.15)	1100/1h	M-Phase	56.2	8350	9	15	1400,
								1438
3409	0.5MgTiO ₃ - 0.5 CaTiO ₃ - 0.25 (Nd ₂ O ₃ - 2 TiO ₂)		Composite	56.3	23500		89	1383
3410	$Ca_{0.99}M_{80.01}La_4Ti_5O_{17}$	1500	Orthorhombic Pnnm	56.3	12300	6.4	-10	1447
3411	Ni _{0.5} Ti _{0.5} NbO ₄ +2 wt% ZnO	930/6h	Tetragonal P4 ₂ /mnm	56.3	00029		78	1448
3412	$Ca_{1-x}Zn_xLa_4Ti_5O_{17}$ (x=0)	1500/4h	Orthorhombic Pnnm	56.5	12500	9.9	4	1449
3413	$L_{i_{1+x-y}}Nb_{1-x-3y}T_{i_{x+4y}}O_{3}$ (x=0.1, y=0.1)	1150/10h		56.5	4500			1450
3414	$Sr_{1-x}Ca_xLa_4Ti_5O_{17}$ (x=0.25)	1150/6h	Orthorhombic Pnnm	56.5	10960		39	1428
3415	$CaTi_{.6}(Al_{1/2}Nb_{1/2})_{.4}O_{3}+1 wt\% Li_{3}NbO_{4}$	1300/5h	Perovskite Orthorhombic	9.99	28000	_	53	1152
3416	$Ba_x La_4 Ti_{3+x} O_{12+3x} (x=3)$			9.99	13380		-191	1310
3417	$Ca_{0.97}Mg_{0.03}La_4Ti_5O_{17}$	1450	Orthorhombic Pnnm	26.7	10800	5.3	-16	1447
3418	$Ni_{0.5}Ti_{0.5}NbO_4$	1100/6h		56.8	21100		29	1448
3419	0.7CaTiO ₃ - 0.3 Sm(Mg _{0.5} Ti _{0.5})O ₃	1550	Composite	57.0	11150	4.1	54	865
3420	$La_{0.4}Ba_{0.6}T_{0.6}Y_{0.4}O_3$	1600/4h		57.0	750		12	1451
3421	Bi ₂ O ₃ -CaO-Nb ₂ O ₅ (46.15:23.08:30.77)	950		57.0	470	3.7	24	1452
3422	$Ca_{1-x}Zn_xLa_4Ti_5O_{17}$ (x=0.025)	1500/4h	Orthorhombic Pnnm	57.0	17400	6.7	8	1449
3423	$Ca_{0.99}Zn_{0.01}La_4Ti_5O_{17}+0.5$ wt% CuO	1450	Orthorhombic Pnnm	57.0	15000		8-	1453
3424	CaLa ₄ Ti ₅ O ₁₇	1500	Perovskite Pnnm Orthorhombic	57.0	0006		-10	1454
3425	$Ba_{5}LaTi_{2}Nb_{3}O_{15}$	1420/6h	A _n B _{n-1} O _{3n} perovskite Trigonal R-3m	57.3	18450	4.7		1441
3426	$SrLa_4Ti_{4.9}Zr_{0.1}O_{12}$		Orthorhombic	57.3	9800		70	1455
3427	$Pb_{0.4}Ca_{0.6}(Mg_{1/3}Nb_{2/3})_{1-x} Sn_x IO_3$ (x=0.05)	1280	Perovskite tetragonal	57.4	8120	2	4	1424
3428	$Ca_{1-x}Zn_xLa_4Ti_5O_{17}$ (x=0.01)	1450	Orthorhombic Pnnm	57.6	17100		2	1449

3429 3430 3431	Ba _{0,7} Ca _{0,3} (Fe _{1/2} Nb _{1/2})O ₃ 0.85La _{2/3} TiO ₃ -0.15LaAlO ₃ (Zn _{1/3} Nb _{2/3}) _{0,4} (Ti _{0,7} Sn _{0,3}) _{0,6} O ₂	1375 1150/3h	Perovskite Perovskite Orthorhomic	57.7 57.7 57.8	830 27900 14800	7.8	101 65 58	1163 1096 1456
3432 3433	Sr ₃ Tr ₂ O ₇ (Sr _{n+1} Ti _n O _{3n+1}) Sr _{2.4} Ca _{0.6} Tr ₂ O ₇	1600	Perovskite Tetragonal 14/mmm Tetragonal 14/mmm	57.9	18850 25700	2.5	317	1358
3435	EIND _{0.6} $H_{0.5}O_3$ textured $Ba_{6.3x}Sm_{8+2x}T_{18}O_{54}$ (x=2/3)+3.5 wt% $Bi_2O_2-B_3O_3+0.5$ wt% LiF	1050	Tungsten bronze Orthorhombic	58.0	4500		9	1422
3436	(Sr _{0.8} Ca _{0.2}) ₃ Ti ₂ O ₇		Tetragonal 14/mmm	58.0	2500	2.5	359	1358
3437	$0.8Ca_{0.85}Nd_{0.1}TiO_3-0.2SmAIO_3$	1400	Perovskite	58.0	14000		13	1458
3438	$4CaO-BaO-Nb_2O_5-TiO_2$	1490	Composite	58.0	4000	3.4	44	1307
3439	Bi_2O_3 -CaO-Nb ₂ O ₅ (45.75:21.75:32.5)	1050	Composite	58.0	1060	3.8	20	1452
3440	$(1-x)La_{2/3}TiO_3-xNiTiO_3$ (0.075)	1340	Perovskite	58.0	15000	3.4	22	1411
3441	TiFeNbO ₆ +6 wt% Bi_2O_3	1125/5h	Tetragonal	58.1	650	3.32	118	1379
3442	$(Ni_{1/3}Ta_{2/3})_{1-x}Ti_xO_2$ (x=0.5)	1300	Rutile Tetragonal P4 ₂ /mmm	58.3	13900		98	1276
3443	$Li_{1+x-y}Nb_{1-x-y}Ti_{x+4y}O_3$ (x=0.05, y=0.1)	1100/1h	M-Phase	58.4	6230	6.3	-31	1400,
								1438
3444	$0.3 \text{La}(\text{Mg}_{1/2} \text{Ti}_{1/2}) \text{O-}0.7 \text{CaTiO}_3$	1500	Perovskite Pbnm	58.8	40390	5.5	71	932
3445	$0.8Ca_{0.85}Nd_{0.0.1}TiO_3-0.2SmAlO_3$		Perovskite Orthorhombic	58.9	14600		13	1458
3446	$Li_{1+x+y}Ta_{1-x-3y}Ti_{x+4y}O_3 (x=0.1, y=0.1)$	1175/1h	M-Phase	58.9	7720		26	1400,
								1438
3447	$0.42(La_{1/2}Na_{1/2})TiO_3 - 0.58Ca(Fe_{1/2}Nb_{1/2})O_3$	1300/10h	Complex perovskite Orthorhombic	58.9	14070	9.9	0	1459
3448	$Pb_{0.4}Ca_{0.6}(Ni_{1/3}Nb_{2/3})O_3$		Perovskite	59.0	7100	4.2	9	966
3449	Bi ₁₈ Ca ₈ Nb ₁₂ O ₆₅	950		59.0	610	3.7	25	1452
3450	$Ca(Zr_xTi_{1-x})O_3 (x=0.5)$	1470/15h	Perovskite Orthorhombic Pbnm	59.0	4400	3.14	459	916
3451	$(1-y)Li_{2.02} Ti_{0.92} Nb_{0.06}O_3 $ (y=0.8)	1070		59.1	0069		36	722
3452	$Li_{1+x-y}Nb_{1-x-y}Ti_{x+4y}O_3$ (x=0.1, y=0.125)	1100/1h	M-Phase	59.2	7560	9	22	1400,
								1438
3453	$Ca_4La_2Ti_{5-x}(Mg_{1/3}Nb_{2/3})_xO_{17}$ (x=1)	1540	Orthorhombic Pbnm	59.3	15500		72	1118
3454	$Ba_{0.8}Ca_{0.2}(Fe_{1/2}Nb_{1/2})O_3$		Complex Perovskite	59.5	220	6.3	80	1163
3455	$(1-x)La_{2/3}TiO_3-xNiTiO_3$ (0.05)	1360	Perovskite	9.69	14860	3.2	22	1411

o	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
3456	$Li_{1+x+y}Ta_{1-x-3y}Ti_{x+4y}O_3 (x=0.15, y=0.1)$	1175/1h	M-Phase	59.6	9100		42	1400,
3457	$Pb_{n,25}Ca_{n,25}[(Mg_{1,3}Nb_{2,3})_{n,25}Ti_{n,25}]O_3$		Perovskite	0.09	11000		0	1460
3458	Ba(Ti _{0.85} Mn _{0.15})O ₃	1400	Perovskite	0.09	12000		225	1461
3459	BaSm, Ti ₄ O ₁₂ +16 mol% BaCuB ₂ O ₅	875	Tungsten-Bronze Orthorhombic	0.09	4500		-30	1462
3460	$Ba_4Sm_{9.33}Ti_{18}O_{54}+8 \text{ wt}\% BaCu(B_2O_5)$	1050	Tungsten Bronze Orthorhombic	0.09	4100		-26	1391
3461	$(Sr_{0.2}Ca_{0.8})_3Ti_2O_7$		Orthorhombic Ccm2 ₁	0.09	2630	2.5	232	1358
3462	$0.5CaTO_3 - 0.5Sr(Mg_{1/3}Nb_{2/3})O_3$	1600	Perovskite	0.09	14000		09	1347
3463	BaNd ₂ Ti ₃ O ₁₀		Tungsten bronze	0.09	5300	4.2	140	1463
3464	$Ca_2Sr_3Nb_2TIO_{12}$	1530	Orthorhombic	0.09	0009	3.5	48	1209
3465	$(Ca_{1-x}Nd_{2x/3})TiO_3$ (x=0.3)+25 vol%	006	Perovskite	0.09	3700		62	1004
	3ZnO-2B ₂ O ₃							
3466	$Ba_3LiNb_2Sb_3Ti_5O_{21}$	1140		0.09	14000		143	923
3467	Ca[Ti _{0.4} (Mg _{1/3} Ta _{2/3}) _{0.6}]O ₃	1350	Perovskite Orthorhombic	60.2	36900		-10	1464
3468	$Ba_3 LiNb_{3-x} Ta_x Ti_9 O_{21} (x=2)$		Hexagonal P6 ₃ /mcm	60.3	15100		100	1443
3469	$\text{Li}_{1+x+y}\text{Ta}_{1-x-3y}\text{Ti}_{x+4y}\text{O}_3 \text{ (x=0.1, y=0.075)}$	1175/1h	M-Phase	60.5	5014		-5	1399,
								1400
3470	$7 \text{NiNb}_2 \text{O}_6 - 9 \text{TiO}_2 + 3.2 \text{ wt}\% \text{ CuO}$	935	Composite	60.5	1040		62	1465
3471	0.42(La _{1/2} Na _{1/2})TiO ₃ - 0.58C ₂ (Fo. NIP.)O	1350/10h	Complex perovskite	9.09	1300	9.9	6.5	1459
	0.30 Ca($16_{1/2}$ 1 $40_{1/2}$)		Citionionion	(1		ì	
3472	$Nd_{0.5} Ii_{0.5}NbO_4$	1140/6h	letragonal P4 ₂ /mnm	9.09	70100		9/	1448
3473	$Ba(Pr_{0.3}Bi_{.02}Nb_{0.5})O_3$	1300	Perovskite	60.7	1500		15	1341
3474	$Sr_{1-x}Ca_xLa_4Ti_5O_{17}$ (x=0)	1500/6h	Orthorhombic Pnnm	8.09	0266		117	1428
3475	$0.5BaTiO_3-0.5La(Mg_{1/2}Ti_{1/2})O_3$		Perovskite 14/mcm	6.09	0096	5.2	-2	933
3476	Ca ₂ Ba ₃ Ta ₂ TiO ₁₂	1525	Cubic perovskite	61.0	1800	3.4	21	1307
3477	0.2Li, O-0.62Nb, O ₅ -0.17TiO,	1350		61.0	15000		100	09/
3478	$_{\rm X}({\rm Ba_4Nd_{9.33} T_{18}O_{54}^{-}})$ -(1-x)BaLa ₄ T ₄ O ₁₅ (x=0.75)+Bi ₂ O ₃ -B ₂ O ₃ -ZnO-SiO ₂	1140	Composite	61.0	2300		38	1466
	glass							
3479	Ba ₄ (Sm _{0.5} Nd _{0.5}) _{28/3} Tl ₁₈ O ₅₄ +2mol% TiO ₂ +2 wt% Li ₂ O-Al ₂ O ₃ -B ₂ O ₃ glass		Tungsten Bronze Orthorhombic	61.1	2900		17	1467

1468 510	1469	1396	1209	1399, 1400	1399,	1163	1470	1096	1271	1424	1422	1471	1096	1472	1473	1411	373	1307	1474	1475
42	-15	-372	51	13	-53	82		82	92	4	-19	-20	82		198	22	303	24	223	0
			3.4		.9	6.3	TCF65	4.9		ιC				5.35		3.3		3.6		I
15900	0006	260	11500	6190	3750	640	13500	26100	12200	7540	8500	10000	26100	0089	9100	6210	3800	1400	12800	8500
61.5	62.0	62.0	62.0	62.1	62.4	62.4	62.5	62.6	67.9	63.0	63.0	63.0	63.0	63.0	63.0	63.3	63.9	64.0	64.0	64.0
Tetragonal rutile P42/mnm Composite	Complex perovskite cubic Pm3m	Flourite Fm-3m		M- Phase	M-Phase	Perovskite		Perovskite Orthorhomic	Perovskite	Perovskite Tetragonal	Tungsten Bronze	Composite	Perovskite			Perovskite	Perovskite Hexagonal	Cubic perovskite	Hexagonal	Tungsten Bronze Orthorhombic
950 875	1050/3h	900/3h	1530	1175/1h	1100/1h		1120	1350	14504h	1280	1100		1350	930		1380	1500/6h	1500		1175
CoTiNb ₂ O ₈ +2 wt% CuO MBRT-90+10 wt% Li ₂ O-B ₂ O ₃ -SiO ₂ -CaO-Al ₂ O ₃ (52.45::31.06:11.99:2:2.5)	$(Pb_{0.4}Ca_{0.6})(Fe_{1/2}Ta_{1/2})O_3\\$	$0.83Bi_2O_3-0.25Nb_2O_5$	$CaSr_4Nb_2TiO_{12}$	$L_{i_{1+x+y}}T_{a_{1-x-3y}}T_{i_{x+4y}}O_3$ (x=0.15, y=0.075)	$Li_{1+x-y}Nb_{1-x-y}Ti_{x+4y}O_3$ (x=0.1, y=0.05)	$Ba_{a,z,s}Ca_{a,z,s}(Fe_{t,s}Nb_{t,s})O_{s}$	Ni _{0.3} Zn _{0.2} Ti _{0.5} NbO ₄	$0.9 La_{2/3} TiO_3 - 0.1 LaAlO_3$	$Ca[Ti_{1-x}(Mg_{1/3}Nb_{2/3})_x]O_3$ (x=0.4)	$Pb_{0.4}Ca_{0.6}(Mg_{1/3}Nb_{2/3})_{1-x} Sn_x IO_3$ (x=0.03)	$Ba_{6.3x}Sm_{8+2x}Ti_{18}O_{54} (x=2/3)+3 wt\%$ $Bi_2O_3-B_2O_3$	$(1-x)BaLa_4 \Gamma_4 O_{15}-xBa_4 Nd_{9.333} \Gamma_{18} O_{54}$ (x=0.55)	$0.9La_{2/3}TiO_3-0.1LaAIO_3$	Bi ₂ Zn _{2/3} Ta _{4/3} O ₇ +0.05 wt% CuO+0.05 wt% V ₂ O ₅	$Ba_3La_4Ti_6O_{21}$	$(1-x)La_{2/3}TiO_3-xNiTiO_3 (x=0.02)$	$0.4Ba(Mg_{1/2}W_{1/2})O_{3}$ - $0.6BaTiO_{3}$	CaBa₄Ta₂ TiO ₁₂	$Pb_2Ta_{1.5}Nb_{0.5}O_7$	$Ba_{6\cdot3x}$ $Sm_{8+2x}\Pi_{18}O_{54}x_{-2/3}+3$ wt% $AI_{2}O_{3}$ - $B_{2}O_{3}$ - SiO_{2}
3480	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493	3494	3495	3496	3497	3498	3499	3500	3501

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
3502	$Li_{1+x-y}Nb_{1-x-y}Ti_{x+4y}O_3$ (x=0.15, y=0.075)	1100/1h	M-phase	64.0	4610	5.9	-15	1438
3503	$Co_{0.5}Ti_{0.5}NbO_4$	1120	Tetragonal P4 ₂ /mnm	64.0	65300		223	1179
3504	0.84CaTiO ₃ -0.16Sm _{0.9} Nd _{0.1} AIO ₃ +0.4 wt% MgO	1375/3h		64.2	30900		26	1476
3505	$Pb_4Ca_6(Mg_{1/3}Nb_{2/3})_{1-x}Sn_x]O_3 (x=0.01)$	1280	Perovskite Tetragonal	64.7	7130	2	0	1424
3506	LiNb _{0.6} Ti _{0.5} O ₃ +0.5 wt% 0.17 Li ₂ O-0.83V ₂ O ₅	850		64.7	2900		6	1450
3507	$\text{Li}_{1+x-y} \text{Nb}_{1-x-y} \text{Ti}_{x+4y} \text{O}_3 \text{ (x=0.1, y=0.1)}$	1100/1h	M-Phase	64.8	6385	5.7	8	1399,
								1400
3508	La _{2/3} TiO ₃		Perovskite Orthorhombic Pbnm	65.0	15700			1477
3509	La _{0.4} Ba _{0.6} Ti _{0.6} Yb _{0.4} O ₃	1600/4h	Not available	65.0	4500		_	1451
3510	Ba ₃ Ti ₄ Nb ₄ O ₂₁ +3 wt% CuO+1 wt% B ₂ O ₃	900/2h	Hexagonal P6 ₃ /mcm	65.0	16000		101	1478
3511	$Ba_4(Nd_{0.85}Bi_{0.015})_{9.33}T1_{18}O_{54}+30 \text{ wt}\%$ $Li_2O\text{-}ZnO\text{-}B_2O_3$	875	Composite	65.0	2500	5.5	35	1479
3512	$(Pb_{0.4}Ca_{0.6})[(Mg_{1/2}Nb_{1/2})O_3Sn_x]$ (x=0.01)	1350	Perovskite	65.0	7100		136	1424
3513	Ba ₄ Sm _{9,33} Ti ₁₈ O ₅₄ +6 wt% BaCu(B ₂ O ₅)	1075	Orthorhombic	65.0	4200		-24	1391
3514	$Ba[Ti_{1-x}(Co_{0.5}W_{0.5})_xO_3 (x=0.4)$		Perovskite	65.0	3000		45	519
3515	$0.1 \text{Pb}(\text{Fe}_{2/3}\text{W}_{1/3})\text{O}_3$ -	1000	Perovskite	65.3	2270		-24	1480
	$0.9 Pb_{0.2} Ca_{0.8} (Fe_{1/2} Nb_{1/2}) O_3$							
3516	$CaTi_{0.7}(AI_{1/2}Ta_{1/2})_{0.3}O_3$	1500/15h	Perovskite Orthorhombic	65.4	20000	8	113	1266
3517	$CaTi_{0.7}(AI_{1/2}Nb_{1/2})_{0.3}O_3$	1450/5h	Perovskite Orthorhombic	65.4	19300	_	-2	1152
3518	0.5CeO_2 - 0.25CaO - 0.25TiO_2	1550	Mixture phases	65.5	9500	3.2	399	488
3519	$Ca_3Ba_2Nb_2TiO_{12}$	1475	Cubic perovskite	0.99	2600	3.3	48	1307
3520	$(1-x)(Mg_{0.95}Zn_{0.05})TiO_3$ - $xCa_{0.6}La_{0.8/3}TiO_3$ $(x=0.7)$	1320/4h	Composite	0.99	39000		168	465
3521	ВаТ _{0,4} Са _{0,3} Nb _{0,3} O ₃	1500/4h	Perovskite Tetragonal P4mm	0.99	3720	4.7		1373
3522	$LiNb_{0.6}Ti_{0.5}O_3)+2$ wt% V_2O_5	900/1h	M-Phase	0.99	3800	5.6	1	1450
3523	Bi_2O_3 -CaO-Nb ₂ O ₅ (52.5:17.5:30)	925		0.99	330	3.6	35	1452
3524	$Ba_3 Ti_4 Nb_4 O_{21} + 0.2 MnCO_3 - 0.8 CuO$	950	Hexagonal P6 ₃ /mcm	0.99	13400		09	1481
3525	LiNb _{0.6} Ti _{0.5} O ₃ +1 wt% LBS glass	006	Rhombohedral	66.2	5200	4.3	19	1482

8
ě
7
Ġ.
5
ŭ

3526	Pb _{0.4} Ca _{0.6} (Mg _{1/3} Nb _{2/3}) O ₃	1280	Perovskite Tetragonal	66.3	6940	5	3	1424
3527	$Bi_2(Zn_{1/3}Ta_{2/3})_2O_7$	850	Cubic Fd3m	66.3	6200		6-	1472
3528	$(Ni_{1/3}Ta_{2/3})_{1-x}Ti_{x}O_{2}$ (x=0.6)	1300	Rutile Tetragonal P4 ₂ /mmm	66.4	2180		147	1276
3529	$Ba_{4.2}Nd_{9.2}T_{18}O_{54}+13 \text{ wt}\%$ NdAlO ₃ +0.3 wt% MnO,	1380/2h	Tungsten Bronze	66.5	14000		0	1483
3530	0.92La _{2/3} TiO ₃ - 0.08 LaAlO ₃	1350	Perovskite Orthorhombic	6.99	28350	4.8	82	1096
3531	$(Ba_{4,2}Sm_{9,2})Ti_{16,6}Al_{1,4}O_{54}$	1440	Tungsten Bronze	0.79	1543	5.4	-90	1484
3532	BaNd ₂ Ti ₄ O ₁₂ +B ₂ O ₃ -Bi ₂ O ₃ -SiO ₂ -ZnO glass+La ₂ O ₂ -B ₂ O ₂ -TiO,	006	Tungsten Bronze	0.79	0009	9	4	1485
3533	$(Ca_{0.3}Li_{0.14}\tilde{S}m_{0.42})\tilde{T}i\tilde{O}_3$ - $M\tilde{g}_{0.93}Ca_{0.07}TiO_3$ stacked layers	1350	Stacked layers	67.2	7900		0	719
3534	ZrTe ₃ O ₈	760/15h	Cubic Ia3	67.5	1800	4	362	53, 62
3535	$CaTi_{0.7}(Al_{1.0}Nb_{1.0})_{0.3}O_3$	1500/5h	Perovskite	67.8	18700		138	1152
3536	$0.8CaTiO_{3-} 0.2Sm(Mg_{0.5}Ti_{0.5})O_{3}$	1550	Perovskite	0.89	12400	3.5	147	865
3537	$Ba_{e\cdot 3x}(Sm_{1\cdot y}Nd_y)_{8+2x}(Ti_{1\cdot z}Sn_z)O_{54}$ (x=2/3, y=0, z=0.1)		Tungsten bronze	0.89	4020		20	1486
3538	$0.6 \text{CaTiO}_3 - 0.4 \text{Ca}(\text{Mg}_{1/3} \text{Nb}_{2/3}) \text{O}_3$	1450	Perovskite	0.89	17000	5.4	108	944
3539	BiVO ₄	006	Monoclinic 12/b	0.89	8000		-243	1487
3540	$0.3 \text{La}(\text{Mg}_{1/2}\text{Ti}_{1/2})\text{O}_3$ -0.7 Sr Ti O ₃		Perovskite Imma	68.4	4950	9.9		826
3541	$ \begin{array}{l} (Pb_{1\text{-x}}Ca_x)[Fe_{1/2}Nb_{1/2}]_{1\text{-y}}Zr_y]O_3 \ (y{=}0.01,\\ x{=}0.6) \end{array} $	1150	Perovskite	68.7	0089	4.2	-17	1488
3542	$(Ni_{1/3}Nb_{2/3})_{1-x}Ti_xO_2$ (x=0.3)	1200	Rutile Tetragonal P4 ₂ /mmm	68.7	19300		57	1276
3543	$(Ca_{0.2}Sr_{0.8})_3Ti_2O_7$	1460/2h	Tetragonal I4/mmm	8.89	10600			1489
3544	$Ba_4(Sm_{0.5N}d_{0.5})_{28/3}Ti_{18}O_{54}+2TiO_2+5$ wt% $K_2O-B_2O_3-SiO_2$ glass	1075/3h	Orthorhombic Tungsten Bronze	68.8	0089		29	1490
3545	$Ba_4Cd_9Ti_{18}O_{54}$	1350/10h	Orthorhombic Pbam	0.69	3300	_	09-	1491
3546	$CaTi_{0.7}(Al_{1/2}Nb_{1/2})_{0.3}O_3+1 wt\%$ Li_3NbO_4	1300/5h	Perovskite Orthorhombic	0.69	21500	_	145	1152
3547	$(1-x)La_{2/3}TiO_3-xNiTiO_3$ (0.03)	1375	Perovskite	69.4	16960	3.1	18	1411
3548	$Ba_{2-x}Sm_{(4+2/3x)}II_9O_{26} (x=0.3)$	1360/4h 1440	Tungten Bronze	69.4	00/6	5 22	0 7 7	1493 1787
6166	(Da4.2 Jil. 9.2)a 117, Al 54	0++-	idilgateli Diolize	0.0	0000	7.77	/۲	+0+-

O	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	<i>Qf</i> (GHz)	f_0	$ au_f$	Reference
3550	LiNb _{0.6} Ti _{0.5} O ₃ +1 wt% ZnO-B ₂ O ₃	900 1320/4k	M phase solid solution	70.0	5900		70	1493
3552	$Ba_{6.3x}Sm_{8+2x}Ti_{18}O_{54}$ (x=2/3)+1 wt% $Bi_{.0.2}Bi_{.0.2}$ 08.0.	1200	Tungsten Bronze	70.0	8500		-13	1422
3553	Bi ₂ (Zn _{1/3} Nb _{2/3}) ₂ O ₇ +1 wt% of 0.15CuO-0.85MoO ₃	006		70.0	4800	3		1495
3554	Ba_{6-3x} Sm _{8+2x} Ti ₁₈ O ₅₄ (x=2/3)+0.5 wt% (50Al,O ₂ -50 SiO ₃)	1220	Tungsten Bronze	70.0	8500	1	-21	1475
3555 3556	$Ba_4Sm_{9.33}\tilde{T}_{18}O_{54}+4$ wt% $BaCu(B_2O_5)$ 0.97La _{2/3} TiO ₂ -0.03NiTiO ₂	1175	Tungsten Bronze	70.0	4700		-16 18	1391 1411
3557	Ba _{6-3x} Sm _{8+2x} Ti ₁₈ O ₅₄ (x=2/3)+0.5 wt% (44Al, O ₂ -30B, O ₂ 26SiO ₂)	1220	Tungsten Bronze	70.0	8600	ı	-12	1475
3558	$LiNb_{0.6}Ti_{0.5}O_3 + 1 wt\% B_2O_3$	880		70.0	5400		9-	1496
3559	$(Ba_{4,2}Sm_{9,2})_{\alpha}Ti_{18-y}Al_{y}O_{54}(y=1,$ $\alpha=1+y/36, x=0.6)$	1440	Tungsten Bronze	70.2	4350		-57	1484
3560 3561	Pb _{0.4} Ca _{6.} [(Fe _{1/2} Nb _{1/2}) _{0.9} Sn _{0.1} O ₃ 0.1CaTiO ₃ -0.5(Li _{1/2} Nd _{1/2})TiO ₃ - 0.4(Dv., Nd.,)TiO.	1150/3h 1350/3h	Perovskite Orthorhombic Tetragonal P-4b2 Perovskite	70.3	8200		-19 -156	1497 1498
3562	Ba _{6-3x} Sm _{8+2x} Tl ₁₈ O ₅₄ (x=2/3)+0.5 wt% (22MgO-22Al, O ₂ -56SiO ₂)	1200	Tungsten Bronze	71.0	5890	I	-19	1475
3563	Ba _{6-3x} Sm _{8+2x} Ti ₁₈ O ₅₄ (x=2/3)+0.5 wt% (35Bi,O ₃ -32ZnO-6SiO,27B,O ₃)	1200	Tungsten Bronze Perovskite	71.0	8900	ı	-10	1475
3564	0.14(BaO-Nd ₂ O ₃ -4TiO ₂)-+0.86(BaO- Al,O ₂ -4TiO ₃)			71.0	8200	ı	0	1111
3565	$Ba\{Ti_{0.95}Mn_{0.05}\}O_{3-\delta}$	1450/2h	Perovskite	71.1	7700	4.8		1446
3566	$Ba[T_{1-x}(Zn_{1/2}W_{1/2})_x]O_3 (x=0.4)$	1420	Cubic perovskite Pm3-m	71.2	4800		48	695
3567	$Cu_{0.5}Ti_{0.5}NbO_4$	49/096	Tetragonal rutle	71.2	11000		49	1499
3568	$SrO-2CeO_2-4TiO_2$	1330/3h	Tetragonal	71.3	10400		187	1500
3569	$0.2 Pb(Fe_{2/3}W_{1/3})O_3$ -	1000	Perovskite	71.4	1520		-29	1480
3570	$0.8 Pb_{.2} Ca_{.8} (Fe_{1/2} Nb_{1/2}) O_3$ $Ba_{(2-x)} Sm_{(4+2/3x)} Ti_9 O_{24} (x=0.25)$	1370		71.5	10700	5.1	4	1501

9
õ
ž
.5
7
$\stackrel{\sim}{\sim}$
ŭ
_

3571	$Ca_{0.66}La_{0.387}Ti_{0.88}O_3$	1550	Orthorhombic Pbnm	71.5	13400		136	1502
3572	0.2Ca _{0.8} Sr _{0.2} TiO ₃ -0.8Li _{0.5} Sm _{0.5} TiO ₃ +5	950		71.6	3400		-11	1503
	wt% BaCu(B ₂ O ₅)+1.5 wt% TiO ₂							
3573	$SrO-2CeO_2-5TiO_2$	1330/3h	Mixed phases	71.7	0299		203	1500
3574	$LiNb_{0.63}Ti_{0.4625}O_3+0.1$ wt% $B_2O_3-SiO_2$	006		71.7	4950		-2	1504
3575	$(1-x)Ca_{0.61}Nd_{0.26}TO_3-$	1300	Perovskite	71.8	17300		94	1505
	$\times Nd(Zn_{0.5}Ti_{0.5})O_3 + x = 0.2$							
3576	$0.92 \text{BiVO}_4 - 0.08 \text{Li}_{0.5} \text{Nd}_{0.5} \text{WO}_4$	750	Monoclinic	71.8	7500		_	1506
	$0.96La_{2/3}TiO_3-0.04LaAIO_3$	1325	Perovskite Orthorhomic	71.9	23900	4.5	123	1096
3578	$Pb_{0.5}Ca_{0.5}(Na_{1/4}Nb_{3/4})O_3$		Perovskite	72.0	1500	3.5	230	966
3579	$Ba_4Sm_{9.33}Ti_{18}O_{54}+2 \text{ wt}\% BaCu(B_2O_5)$	1175	Orthorhombic	72.0	5500		-14	1391
_	$Pb_{0.5}Ca_{0.5}(Zr_{0.95}Ti_{0.05})O_3$	1350	Perovskite Rhombohdral	72.0	4100	4	2	1507
	$0.96La_{2/3}TiO_3-0.04LaAIO_3$	1325	Perovskite	72.0	24000		123	1096
3582	$Ba_{6.3x}Sm_{8+2x}Ti_{18}O_{54}$ (x=2/3)+0.5 wt% (60ZnO-30B ₂ O ₃ -10SiO ₂)	1200	Tungsten-bronze Orthorhombic	72.0	4530	I	-17	1475
3583	$Ba_{6.3x}Sm_{8+2x}Ti_{18}O_{54} (x=2/3)+0.5 wt\%$ (40MgO-40B ₂ O ₃ -20SiO ₂)	1200	Tungsten-Bronze Orthorhombic	72.0	4450	I	-16	1475
3584	$Ba_{6-3x} Sm_{8+2x} Ti_{18}O_{54}-1.9TiO_2 (x=2/3)$	1350/2h	Tungsten Bronze	72.0	10300		7.2	1508
3585	$(Ba_{4,2}Sm_{9,2})_{\alpha}Ti_{18-y}Al_{y}O_{54} (y=0.8, \alpha=1+v/36, x=0.6)$	1440	Orthorhombic Tungsten Bronze	72.1	4600		-42	1484
3586	$(1-x)CaTiO_3-xSm(Mg_{1/2}Ti_{1/2})O_3$ (x=0.2)		Orthorhombic Pnma	72.0	12000		160	1008
3587	Pb _{0.5} Ca _{0.5} (Ni _{1/3} Nb _{2/3})O ₃		Perovskite	73.0	5100	3.5	52	966
3588	$Pb_{0.4}Ca_{0.6}(Mg_{1/3}Nb_{2/3})O_3$		Perovskite	73.0	4100	3.1	3.7	966
3589	$Ba_{6.3x} Sm_{8+2x} Ti_{18} O_{54} (x=2/3)+0.5 wt\%$ (71 ZnO- 29B ₂ O ₃)	1200	Tungsten-Bronze Orthorhombic	73.0	4830	I	41-	1475
3590	$(Pb_{0.5} Ni_{0.5})(Mg_{1/3} Nb_{2/3})O_3$		Perovskite	73.0	4900		52	966
3591	$Ba_{6.3x} Sm_{8+2x} Ti_{18} O_{54} (x=2/3)+0.5 wt\%$ (40 $B_2 O_3 - 60SiO_2$)	1200	Tungsten-Bronze Orthorhombic	73.0	7900	I	-16	1475
3592	$Ba_{6-3x}Sm_{8+2x}\Pi_{18}O_{54} (x=2/3)+0.5 \text{ wt}\%$ B_2O_3	1220	Tungsten Bronze Orthorhombic	73.0	9500	I	-14	1475
3593	$Ba_{0.98}Sr_{0.02})Sm_2TI_4O_{12}$	1375/6	Tungsten Bronze	73.0	7920		9-	1509

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
3594	$Ca_4La_2\Pi_5O_{17}$	1550/4h	Cubic perovskite	73.0	16000	3.3	127	1118,
3595 3596	Ba ₃ LiNb _{3-x} Ta _x Ti ₅ O ₂₁ (x=1) Ba _{6-3x} Nd _{8+2x} Ti ₁₈ O ₅₄ (x=2/3)+2 wt%	1075	Tungsten-Bronze Orthorhombic	73.0	13600 8200		172	1443 1511
3597 3598	Ba ₄ Nd _{3.33} Eu ₆ Ti ₁₈ O ₅₄ Ca _{0.8} Sr _{0.2} TiO ₃ +x w#%,N8. O(1-x)O ₁ O ₁ (x=7 5 x=0 5)	1460 950	Tungsten-Bronze	73.9 74.0	8900		<u>-</u> -	1512 1513
3599 3600 3601	BaTi _{0.95} Co _{0.05} O ₃₋₆ Pb _{0.5} Ca _{0.5} ZrO ₃ Ba _{6.3x} Sm _{6+2x} Ti ₁₈ O ₅₋₄ (x=2/3)+0.5 wt%	1450/2h 1500 1220	Perovskite Perovskite Tungsten bronze	74.0 74.0 74.0	1300 3900 5330	3.7	177	1446 1514 1475
3602	$Ba_{6.3x}Sm_{8+2x}Tl_{18}O_{54}$ (x=2/3)+0.5 wt% (30 BaO- 40B, O ₂ +-30SiO ₂)	1220	Tungsten Bronze Orthorhombic	74.0	9700	I	-12	1475
3603 3604 3605	TiO ₂ +zinc borosilcate glass 0.88TiO_2 -0.12Bi ₂ Ti ₄ O ₁₁ BaO-Sm ₂ O ₂ -TiO ₂	900	Composite composite Tunesten Bronze	74.0	8000 9500 12000		340	1515 1372 1516
3607	BaTf _{0.92} Ca _{0.08} O _{2.96} 0.7Ca _{0.6} La _{0.267} TiO ₃ - 0.3Ca(Sm _{0.5} Nb _{0.5})O ₃	1450	Tetragonal Perovskite Perovskite	74.0	7810	5.5	6	1518
3608	$Ba_4(Sm_{0.5}Nd_{0.5})_{283}$ $T_{18+x}O_{54}$ -2 TiO_2 +2 2x+1.5 wt% Al, O ₂	1260/5h	Mixture	74.3	11900		72	1519
3609 3610 3611	$Ba_{(2-x)}Sm_{(4+2)3x)}Ti_9\hat{O}_{28}$ (x=0.2) $Ca_2Ba_3Nb_2TiO_{12}$ Ba_{6-3x} $Sm_{8+2x}Ti_{18}O_{54}$ (x=2/3)+0.5 wt% (40PbO-40B, O, -20SiO,)	1370 1500 1200	Cubic perovskite Tungsten-Bronze Orthorhombic	74.8 75.0 75.0	10900 1600 6500	5.78	2 53 -17	1501 1307 1475
3612 3613 3614 3615 3616	(Pb _{0.5} Co _{0.5})(Mg _{1.3} Nb _{2.3})O ₃ (Bi _{1.92} Zn _{0.08})(Zn _{0.64} Nb _{1.36})O ₇ Ba _{.98} Sr _{0.02.2} Sm ₂ Ti ₄ O _{1.2} Pb _{0.5} Ca _{0.5} (Co _{1.3} Nb _{2.3})O ₃ Li _{1.2} Nd _{1/2} TiO ₃	1000	Perovskite Pyrochlore-Monoclinic Tungsten Bronze Perovskite Perovskite	75.0 75.0 75.0 75.0 75.0	1400 1800 7920 1450 2000	3.7	16 -6 -274	996 1520 1509 996 1498

6
ė
\supset
.5
Ţ
Ä
ŭ

3617	$0.6(\text{Sm}_{1/2}\text{Li}_{1/2})\text{TiO}_3$ - $0.4(\text{Sm}_{1/2}\text{Na}_{1/2}\text{Ti})\text{O}_3$	1350		75.0	2000	10		1521
3618	$Ni_{0.15}Nb_{0.3}Ti_{0.55}O_2$	1080	Tetragonal rutile	75.0	12800		280	1522
3619	$xBi_{2/3}MoO_4-1-x BiVO_4 (x=0.5-0.7)$	850	Monoclinic/Tetragonal phase boundary	75	8000			1523
3620	Ba ₄ Sm _{9.33} Ti ₁₈ O ₅₄ +0.5 wt% GeO ₂	1200	Tungsten-Bronze Orthorhombic	75.2	5200		-12	1524
3621	BaSm ₂ Ti ₄ O ₁₂ +1 wt% CuO	1160	Tungsten Bronze	75.8	4900		8-	1525
3622	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}Ti_{1-z}Sn_z)_{18}O_{54}$ (x=2/3, y=0, z=0.05)		Tungsten Bronze	76.0	6260	4.1	7	1526
3623	$Ba_{6-3x}Sm_{8+2x}Ti_{18}O_{54} (x=2/3)+0.5 wt\%$ (30BaO-40B ₂ O ₃ -30SiO ₂)	1220	Tungsten Bronze Orthorhombic	76.0	9100	I		1475
3624	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}Tl_{1-z}Sn_z)_{18}O_{54}$ (x=2/3, y=0.1, z=0.05)		Tungsten-Bronze Orthorhombic	76.0	7130	4.2	9	1526
3625	$(Bi_{1.92}Ca_{0.08})(Zn_{0.64}Nb_{1.36})O_7$	096	Pyrochlore-Monoclinic	76.0	3900			1520
3626	$(Bi_{1.92}Cd_{08})(Zn_{0.64}Nb_{1.36})O_7$	086	Pyrochlore-Monoclinic	0.97	200			1526
3627	Ba ₄ Sm _{9.33} Ti ₁₈ O ₅₄	1350	Tungsten-Bronze Orthorhombic	0.97	10000		-12	1475
3628	Y ₂ Ti ₂ O ₇ +8 wt% Bi ₂ O ₃ -+1 mol% Nd ₂ O ₃ -Nb ₂ O ₅	1350	composite	76.0	18950		26	1527
3629	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}(Ti_{1-z}Sn_z)O_{54}$ (x=2/3, y=0, z=0.05)		Tungsten-Bronze Orthorhombic	76.0	6260		7	1526
3630	$Bi_3(Nb_{0.8}V_{0.2})O_7$	870	cubic	0.97	460		3	1528
3631	$Ba_4Sm_{9.33}Ti_{18}O_{54}+0.5 \text{ wt}\% B_2O_3$	1200	Tungsten-Bronze Orthorhombic	76.1	10500		-19	1524
3632	$Ba_{4.5}Gd_{9}\Pi_{18}O_{54}$		Tungsten Bronze	76.1	2050		-35	1529
3633	$Sr_4Ti_3O_{10}(Sr_{n+1}Ti_nO_{3n+1})$		Perovskite Tetragonal 14/mmm	76.1	12700	2.2	929	1358
3634	$Ba_{(2-x)}Sm_{(4+2/3x)}Ti_9O_{24}$ (x=0.15)	1370		76.1	12800	5.2	_	1501
3635	$(Ba_{4.2}Sm_{9.2})_{\alpha}Ti_{18-y}Al_{y}O_{54}$ (y=0.4, α =1+y/36, x=0.6)	1440	Tungsten bronze	76.1	3800		-33	1484
3636	$Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$	950/2h	Monoclinic Pyrochlore	76.2	2980		200	1530
3637	$L_{i_{1+x,y}}Nb_{1-x,y}T_{x+4y}O_{3}$ (x=0.15, y=0)	1100/1h	M -Phase	76.2	1000	5.3	-62	1400, 1438
3638	$Ba_4(Nd_{0.7}Sm_{0.3})_{9.33} Ti_{18}O_{54} + 2 \text{ wt\% BBS}$	1000	Tungsten-Bronze Orthorhombic	76.3	8300		18	1531
3639	$Ba_4Sm_{7.33}Eu_2Ti_{18}O_{54}$	1460	Tungsten Bronze	76.4	8990		-16	1512
3640	$Ba_4Nd_{1.33}Eu_8Ti_{18}O_{54}$	1400	Tungsten Bronze	9.92	8590		-21	1512

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf(GHz)	f_0	$ au_f$	Reference
3641 3642	Ba(Mg _{0.167} Ta _{0.33} Ti _{0.50})O ₃ Ba ₄ (Nd _{0.7} Sm _{0.3}) _{9.33} Ti ₁₈ O ₅₄ +1 wt% BBS	1550 1100	Perovskite Tungsten-Bronze Orthorhombic	76.6	10000	4.1	113	883 1531
3643	$^{3}Nb_{2/3-x}V_{x})$	990	Pyrochlore Monoclinic	7.97	3580		-88	1532
3645	0.3 B1 V O 4 - U. U3 L1 0.5 L4 0.5 W O 4 B24 , SM0 , T1 , O 5 , + 0.2 W 1% A 1, O ,	730 1340/3h	Monosten-Bronze	76.9	10100		, -23	1533
3646	Ba ₄ Eu _{9.33} Π ₁₈ O ₅₄	1400	Tungsten-Bronze Orthorhombic	77.0	6580		34	1512
3647	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}T_{1-z}Sn_z)_{18}O_{54}$ (x=2/3, y=0.3, z=0.05)		Tungsten Bronze	77.0	7850	4.2	6	1526
3648	$(T_{i_0.9}Z_{r_{0.1}})O_2$	1400/5h	Rutile Tetragonal P4 ₂ /mmm	77.0	14000	4		53
3649	24 wt% BaTiO ₃ -76 wt% Nd ₂ O ₃ -3TiO ₂	1220	composite	77.0	11000		123	1534
3650	$(Ba_{1-\alpha}Sm_{\alpha})_{4.2}Sm_{9.2}Ti_{18}O_{54} \alpha=0.1$	1450/2h	Tungsten-Bronze Orthorhombic	77.0	0899		-11	1535
3651	$Ba5m_2Ti_5O_{14}$		Tungsten Bronze Orthorhombic Pbam	77.0	9300		12	1536, 1537
3652	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}(Ti_{1-z}Sn_z)O_{54}$ (x=2/3, y=0.3, z=0.05)	1360/12	Tungsten-Bronze Orthorhombic Pbam	77.0	8185	4	_	1536
3653	$Ba_4Sm_{9.33}$ $Ti_{18}O_{54}+0.5~wt\%~GeO_2$	950	Tungsten-Bronze Orthorhombic Pbam	77.3	8900		-19	1524
3654	$Na_{0.5x}Bi_{1-0.5x})(Mo_xV_{1-x})O_4 (x=0.05)$	720		77.3	8000	3.8	20	1538
3655	Ba_{6-3x} Sm _{8+2x} $\Pi_{18}O_{54}$ +0.5 wt% GeO ₂ +0.5 wt% B ₂ O ₃ (x=2/3)	1150	Tungsten-Bronze Orthorhombic Pbam	77.3	8900		-13	1524
3656	$Ba_{(2-x)}Sm_{(4+2/3x)}Ti_9O_{24} (x=0)$	1360		77.5	11200	5.2	-3	1501
3657	$Li_{1+x\cdot y}Nb_{1-x\cdot y}Ti_{x+4y}O_3 \ (x=0.05,\ y=0.05)$	1100/1h	M -Phase	77.8	2180	5.2	-42	1400, 1438
3658	$Ba_4Nd_{5.33}Eu_4Ti_{18}O_{54}$	1460	Tungsten-Bronze Orthorhombic Pbam	78.0	10460		10	1512
3659	$(Ba_{4.2}Sm_{.9.2})_aTi_{17.8}Al_{.0.2}O_{54}$	1460	Tungsten-Bronze Orthorhombic	78.0	8233	4.8	-18	1484
2661	$1.0_{0.5}$ $1.0_{0.5}$ $1.0_{1.4}$ $1.0_{3/4}$ $1.0_{3/4}$	1150/05	Denotation Outbouleto	10.0	2007	· ·	3	1407
3661	P0 _{0.4} Cd _{0.6} [(Fe _{1/2} ND _{1/2} / _{0.95} SH _{0.05} O ₃ Ca(Zr _{0.6} Ti _{0.4})O ₂	1150/31	Perovskite Orthorhombic Perovskite Orthorhombic	78.0	6000 7840		g.	149/ 906
3663	$(Ni_{1/3}Nb_{2/3})_{1-x}Ti_xO_2$ (x=0.4)	1200	Rutile Tetragonal P4 ₂ /mmm	78.0	17060		86	1276

- (5
	Ų
1.	
	Ξ
	5

3664 3665	Ba ₃ LiNb ₃ Ti ₅ O ₂₁ (Ba _{4,2} Sm _{9,2}) $_{\alpha}$ Ti _{18-y} Al $_{y}$ O ₅₄ (y=0.2, α =1+y/36, x=0.6)	1100 1460	Hexagonal P6 ₃ /mcm Tungsten-Bronze Orthorhombic Pbam	78.0 78.0	9800		205 -18	1443 1484
3666	$K_{0.5x}B_{1_{1-0.5x}}(Mo_xV_{1-x})O_4 \ (x=0.8-0.1)$ $Ba_4(Nd_{0.82}Yb)TI_{1.8}O_{5.4} \ (v=1)$	700 1480/2h	Scheelite Tetragonal Tungsten-Bronze Orthorhombic	78.0	7800		53	1539 1542
3668	$Ba_{(2-x)}Sm_{(4+2/3x)}Ti_9O_{24}$ (x=0.05)	1360		78.5	11900	5.2	-2	1501
3669	$Bi_2(Zn_{1/3}Nb_{2/3-x}V_x)_2O_7$ (x=0.001)	850/2	Pyrochlore Monoclinic	78.5	3780			1530
3670	Ba ₄ Nd _{8.33} Dy Ti ₁₈ O ₅₄	1480	Orthorhombic Pbam	78.6	10040	4.8	34	1537
3671	$Ba_{6-3x}Sm_{8+2x}Ti_{18}O_{54}$ (x=0.75)		Orthorhombic Pbam	78.6	8700		I	1536
3672	$Bi_2(Zn_{1/3}Nb_{2/3-x}V_x)_2O_7(x=0.003)$	850/2	Pyrochlore monoclinic	78.6	3140			1530
3673	$Ba_4Sm_{8.33}EuTI_{18}O_{54}$	1460	Tungsten-Bronze Orthorhombic Pbam	78.7	9260			1512
3674	Ba ₄ Sm _{9.33} Ti ₁₈ O ₅₄ +0.3 mol% TiO ₂	1350	Tungsten Bronze Pbam	78.8	10750	4.8	-21	1508
3675	(1-x)Ca _{0.61} Nd _{0.26} TiO ₃ - xNd(7n ₀ -Ti ₀ -1)O ₂ +x=0.15		Perovskite	78.8	19200		134	1505
3676	Bac 2Smo, 2Ti 2.Oc. (x=0.5)		Tungsten-Bronze Orthorhombic	78.9	8400		-19	1536.
	7		Pbam					1540
3677	$Pb_{0.5}Ca_{0.5}(Na_{1/4}Nb_{3/4})O_3$		Perovskite	79.0	400	3.7	550	966
3678	$(Ba_{0.97}Ca_{0.03})$ -Sm ₂ O ₃ -4.5TiO ₂		Tungsten Bronze	79.0	10500	10	-5	1536
3679	$Bi_{18}(Ca_{1-x}Zn_x)_8Nb_{12}O_{65}$ (x=0.725)	925		79.0	1000	3.2	_	1452
3680	$Bi_3 NbO_7 + 20 wt\% Bi_4 B_2 O_9$	006	Composite	79.0	1000		8	1541
3681	$Ba_4Nd_{8.33}HoTI_{18}O_{54}$	1480	Tungsten-Bronze Orthorhombic Pbam	79.3	0696	4.7	31	1542
3682	Ва ₄ Nd _{8.33} ЕгП ₁₈ О ₅₄	1480	Tungsten-Bronze Orthorhombic	79.5	8290	4.1	53	1542
3683	$Ba_4Nd_{8.33}YbTi_{18}O_{54}$	1480	Tungsten-Bronze Orthorhombic Pbam	79.4	6780	4.7	33	1542
3684	$Ba_{6-3x}La_{8+2x}Ti_{1-z}Zr_x)_{18}O_{54} (x=2/3, z=0.1)$		Tungsten-Bronze Orthorhombic	9.62	0299	4.83	109	1543
3685	$Ba_{6.3x}Sm_{8+2x}Ti_{18}O_{54} (x=2/3)+1 wt\%$ Bi_2O_3 and $Ba_xSr_{1-x}TiO_3$		Tungsten-Bronze Orthorhombic	9.62	10800		7	1544
3686 3687	$Ca_{(1-x)}Nd_{2x/3}TiO_3 (x=0.3)$ $Ba_{6-3x} Sm_{8+2x}Ti_{18}O_{54}-0.1TiO_2 (x=2/3)$	1350/2h	Perovskite Tungsten-Bronze Orthorhombic	79.7 79.8	13000 9880		295 –18	1545 1508
3688	Bi ₃ NBO ₇		Cubic Fm3m	80.0	300	2		1546

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
3689	Ba ₄ Sm _{9.33} Ti ₁₈ O ₅₄ 91 9TiO8 1Bi.O.	1450	Tungsten Bronze Mixture phases	80.0	10700	4.7	-15 21	1524
3691	0.58(Sm _{1/2} Li _{1/2})TlO ₃ - 0.47(Sm Na Ti)O ₃	1350	Tetragonal	80.0	2000	10	1	1521
3692	$0.8Bi,O_2-0.3Nb,O_5$	920/3h	Flourite 8-Bi, O, Fm-3m	80.0	420		-306	1396
3693	$(T_{0.9}Ge_{0.1})O_2$	1400/5h	Rutile Tetragonal P4 ₂ /mmm	80.0	24000	4		53
3694	(Sm _{1/2} Na _{1/2} Ti)O ₃	1350	Perovskite Tetragonal 14/mmm	80.0	13000	10		1521
3692	(La _{0.44} Sr _{0.33})TiO ₃	1350	Orthorhombic Ibmm	80.0	7500	3	70	1547
3698	$(Li_{1/2}Nd_{1/2})TiO_3$		Perovskite Orthorhombic	80.0	3100	4	-310	1548
3697	$0.15(Ba_{0.95}Sr_{0.05})-0.15Sm_2O_3-0.7TiO_2$	1380		80.0	11000	3	0	1549
3698	$Pb_{0.4}Ca_{0.6}(Fe_{1/2}Nb_{1/2})O_3$		Perovskite	80.0	6100	3.2	-25	966
3699	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}Ti_{18}O_{54} (x=2/3, y=0.1)$	1340/6h	Tungsten-Bronze Orthorhombic	80.0	9620	3.75		1550
3700	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}(Ti_{1-z}Sn_z)O_{54}$ (x=2/3, y=0.8, z=0.05)	1360/12	Tungsten-Bronze Orthorhombic Pbam	80.0	10600	3.9	1	1526
3701	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}(Ti_{1-z}Sn_z)O_{54}$ (x=2/3, y=0.5, z=0.05)	1360/12	Tungsten-Bronze Orthorhombic	80.0	10050	4	5	1526
3702	BaO-Bi ₂ O ₃ -Nd ₂ O ₃ -TiO ₂ +0.4 wt% Mn(CH ₃ COO) ₂ +WO ₃	1320		80.0	7000		0	1551
3703	$(Ba_{1-\alpha}Sr_{\alpha})_{4.2}^{2}Sm_{9.2}^{2}Ti_{18}O_{54}^{2}$ (α =0.01)	1450/2h	Tungsten-Bronze Orthorhombic	80.0	8890		11	1535
3704	$(Ba_{1-\alpha}S_{r_{\alpha}})_{6-3x} Sm_{8+2x}Ti_{18}O_{54} (\alpha=0.06, x=0.6)$		Tungsten-Bronze Orthorhombic	80.0	10075			1535
3705	$Bi_3(Nb_{0.9}V_{0.1})O_7$	870	Tetragonal	80	009		-22	1528
3706	$(Pb_{1-x}Ca_x)ZrO_3$		Perovskite	80- 120	2000-		I	1460
3707	$Sr(Bi_{1 \times} Nd_{\chi})_8 Ti_7 O_{27}$	1250		80-	120-2100		I	1552
3708	$(Ba_{0.952}Sr_{.0.048})_{4.2}Sm_{9.2}Ti_{18}O_{54}$		Tungsten-Bronze Orthorhombic Pbam	80.1	10205	4.9	6-	1535
3709	3709 $(Ba_{1-\alpha}Sr_{\alpha})_{4.2}Sm_{9.2}Ti_{18}O_{54} (\alpha=0.06)$	1450/2h	Tungsten-Bronze Orthorhombic Pbam	80.2	10075			1535

	(54 (\$-6.0)	1450/2n	Tungsten-Bronze Orthorhombic Pbam	80.3	9500		6-	1535
12 (Ba _{1-x} Sr _x) ₄₋₂ S 13 Ba ₄₋₂ Nd ₉₋₂ T ₁ , 14 Ba _{6-3x} Sm _{8+2x} 15 Ba _{6-3x} (Sm ₀₋₂ N 16 BaO-Pr ₆ O ₁₁ - 17 (Ba _{1-x} Ca _x)O-5 19 B _{1-x} Ca _x (Fe ₁ y ₁ N 19 B _{1-x} O ₃ -TiO ₂ (19 B _{1-x} O ₃ -TiO ₂ (10 B _{1-x} O ₃ -TiO ₂ (10 B _{1-x} O ₃ -TiO ₂ (11 B _{1-x} O ₃ -TiO ₂ (12 Ba _{3-x-5} Nd ₉₋₅ Ti 13 Ba ₄ (Nd _x -Sm 14 Ba ₄ Sm ₅₋₃ Eu ₂ 15 Ba ₄ Nd ₇₋₃ Eu ₂	$Ca_{0.8}Sr_{0.2}TiO_3-Li_{0.5}Sm_{0.5}TiO_3+x$ wt% [YB ₂ O ₃ -(1-y)CuO] (x=7.5, y=0.5)	006	Perovskite	80.4	3000		I	1513
113 Ba ₄₋₂ Nd ₉₋₂ T1 ₁ Ba _{6-3×} Sm _{8+2×} 115 Ba _{6-3×} (Sm _{0.2} N 116 BaO-Pr ₆ O ₁₁ 117 (Ba _{1-x} Ca _x)O-Si 118 Pb _{1-x} Ca _x (Pe ₁ 119 Bi ₂ O ₃ -TiO ₂ (Ba ₁ O ₃ -TiO ₂ (Ba ₂ O ₃ -TiO ₃ (Ba ₂ O ₃) (Ba ₂ O ₃ (Ba ₂ O ₃) (Ba ₂ O ₃ (Ba ₂ O ₃) (Ba ₂ O ₃ (Ba ₂ O ₃) (Ba ₂ O ₃ (Ba ₂ O ₃)	$m_{9.2} Ti_{18} O_{54} \ (\infty = 0.04)$	1450/2h	Tungsten Bronze	9.08	9290		-12	1535
14 Ba _{6-3x} Sm _{8+2x} 15 Ba _{6-3x} (Sm _{0.2} N 16 BaO-Pr ₆ O ₁₁ 17 (Ba _{1-x} Ca _x)O-4 18 Pb _{1-x} Ca _x (Fe ₁ 19 Bi ₂ O ₃ -TfO ₂ (20 Ba _{6-3x} (Sm _{1-y} N 19 Bi ₂ O ₃ -TfO ₂ (21 (Li _{0.5} Bi _{0.5})xB 22 Ba _{3.75} Nd _{9.5} TI 23 Ba ₄ (Nd _{0.7} Sm 24 Ba ₄ Sm _{5.33} Eu, 25 Ba ₄ Nd _{7.33} Eu, 26 Ba ₄ Nd _{7.33} Eu, 27 Ba ₄ Nd _{7.33} Eu, 28 Ba ₄ Nd _{7.33} Eu, 28 Ba ₄ Nd _{7.33} Eu, 29 Ba ₄ Nd _{7.33} Eu, 20 Ba ₄ Nd _{7.33} Eu, 20 Ba ₄ Nd _{7.33} Eu, 21 Ba ₄ Nd _{7.33} Eu, 22 Ba ₄ Nd _{7.33} Eu, 23 Ba ₄ Nd _{7.33} Eu, 24 Ba ₄ Nd _{7.33} Eu, 25 Ba ₄ Nd _{7.33} Eu, 26 Ba ₄ Nd _{7.33} Eu, 27 Ba ₄ Nd _{7.33} Eu, 28 Ba ₄ Nd _{7.33}	$_{8-x}Sn_{x}O_{54}$ (x=0.5)	1340/2h	Tungsten Bronze	9.08	9200		61	1553
15 Ba _{6-3x} (Sm _{0.2} N 16 BaO-Pr ₆ O ₁₁ - 17 (Ba _{1-x} Ca _x)O-2 18 Pb _{1-x} Ca _x ([Fe ₁ y=0.05) 19 Bi ₂ O ₃ -TiO ₂ (20 Ba _{6-3x} (Sm _{1-y} N y=0.3) 21 ((Li _{0.5} Bi _{0.5})xB 22 Ba _{3.75} Nd _{9.5} Ti 23 Ba ₄ (Nd _{0.7} Sm, 24 Ba ₄ Sm _{5.33} Eu, 25 Ba ₄ Nd _{7.33} Eu,	$Ti_{18}O_{54} (x=2/3)$	1360/3h	Tungsten-Bronze Orthorhombic	80.8	11330	4	-11	1508,
15 Ba _{6-3x} (Sm _{0.2} N 16 BaO-Pr ₆ O ₁₁ - 17 (Ba _{1-x} Ca _x)O-5 18 Pb _{1-x} Ca _x ([Fe ₁ y=0.05) 19 Bi ₂ O ₃ -TiO ₂ (Ba _{6-3x} (Sm _{1-y} N y=0.3) 21 ((Li _{0.5} Bi _{0.5})xB 22 Ba _{3.75} Nd _{9.5} Ti 23 Ba ₄ (Nd _{0.7} Sm ₁ 24 Ba ₄ Sm _{5.33} Eu ₂ 25 Ba ₄ Nd _{5.33} Eu ₂								1554,
15 Ba _{6-3x} (Sm _{0.2} N 16 BaO-Pr ₆ O ₁₁ -7 17 (Ba _{1-x} Ca _x)O-5 18 Pb _{1-x} Ca _x ([Fe ₁ y=0.05) 19 Bi ₂ O ₃ -TiO ₂ (20 Ba _{6-3x} (Sm _{1-y} N y=0.3) 21 ((Li _{0.5} Bi _{0.5})xB 22 Ba _{3.75} Nd _{9.5} TI 23 Ba ₄ (Nd _{0.5} Sm ₁ 24 Ba ₄ Sm _{5.33} Eu ₂ 25 Ba ₄ Nd _{7.33} Eu ₂		•						1555
16 BaO-Pr ₆ O ₁₁ - 18 Pb _{1-x} Ca _x ([Fe ₁ y=0.05) 19 Bi ₂ O ₃ -TiO ₂ (20 Ba _{6-3x} (Sm _{1-y}) y=0.3) 21 [(Li _{0.5} Bi _{0.5})xB 22 Ba _{3.75} Nd _{9.5} TI 23 Ba ₄ (Nd _{0.7} Sm ₁ 24 Ba ₄ Sm _{5.33} Eu ₂ 25 Ba ₄ Nd _{7.33} Eu ₂	$Ba_{6-3x}(Sm_{0.2}Nd_{0.8})_{8+2x}Ti_{18}O_{54}$ (x=2/3)	1330/3h	Tungsten Bronze	80.8	8100		36	1556
17 (Ba _{1-x} Ca _x)O-5 18 Pb _{1-x} Ca _x ([Fe ₁ y=0.05) 19 Bi ₂ O ₃ -TiO ₂ (20 Ba _{6-3x} (Sm _{1-y}) y=0.3) 21 [(Li _{0.5} Bi _{0.5})xB 22 Ba _{3.75} Nd _{9.5} TI 23 Ba ₄ (Nd _{0.5} Sm ₃ 24 Ba ₄ Sm _{5.33} Eu ₂ 25 Ba ₄ Nd _{7.33} Eu ₂	TiO_2		Tungsten Bronze	81.0	0006	2	130	1516
148 Pb _{1-x} Ca _x ((Fe ₁ , y=0.05) 19 Bi ₂ O ₃ -TiO ₂ (20 Ba _{6-3x} (Sm _{1-y} N y=0.3) 21 ((Li _{0.5} Bi _{0.5})xB 22 Ba _{3.75} Nd _{9.5} Ti 23 Ba ₄ (Nd _{0.5} Ti 24 Ba ₄ Sm _{5.33} Eu, 25 Ba ₄ Nd _{7.33} Eu,	$Sm_2O_3-4.5TiO_2 (x=0.05)$		Tungsten Bronze	81.0	9500		2	1557
	Pb _{1-x} Ca _x [(Fe _{1/2} Nb _{1/2}) _{1-y} Sn _y]O ₃ (x=0.6, y=0.05)	1150/3h	Perovskite	81.0	4830		3	1497
	Bi_2O_3 -TiO ₂ (1:11.3)+0.112 wt% CuO	915/2h		81.0	8900		0	1558
	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}Ti_{18}O_{54} \ (x=2/3, y=0.3)$	1340/12h	Tungsten Bronze	81.0	9630	3.9		1550
	$[(Li_{0.5}Bi_{0.5})xBi_{x}][Mo_{x}V_{1-x}]O_{4} (x=0.098)$	650	Monoclinic sheelite	81.0	8000		10	1559
	$_{17}({ m Mg}_{1/3}{ m Nb}_{2/3}){ m O}_{54}$	1350/2h	Tugsten Bronze	81.0	7300		17	1560
	_{0.3}) _{9.33} Ti ₁₈ O ₅₄ +0.5 wt% Ag	1100	Tungsten Bronze	81.1	11000	4.6	3	1531
	TI ₁₈ O ₅₄	1460	Tungsten Bronze Orthorhombic	81.1	7109		-20	1512
	TI ₁₈ O ₅₄	1460	Tungsten Bronze Orthorhombic	81.1	10660		31	1512
	Ti ₁₈ O ₅₄	1400	Tungsten Bronze Orthorhombic	81.2	8604		-26	1512
3727 Ba _{4.2} Sm _{9.2} Ti ₁	${}_{8}O_{54}+4 \text{ wt\% SrTiO}_{3}$	1360/2h	Tungsten Bronze Orthorhombic	81.2	8470		-2	1561
	_{0.3}) _{9.33} Ti ₁₈ O ₅₄ +1 wt% Ag	1100	Tungsten Bronze Orthorhombic	81.2	11000	4.84	-	1531
3729 Ba ₄ Sm _{9.33} Ti ₁₈	$Ba_4Sm_{9.33}TI_{18}O_{54}(SPS)$	1200/ 5mn	Tungsten Bronze	81.2	10099	2	-17	1562
3730 (Ba ₀₉₈ Sr _{.0.02}) ₄	1.2 Sm _{9.2} Ti ₁₈ O ₅₄		Tungsten Bronze Orthorhombic	81.4	9661	4.8	-11	1535
	$_{3}O_{54}+14 \text{ mol}\% \text{ TiO}_{2}$	1350	Composite	81.5	10415	2	0	1508
3732 Ba _{6-3x} Sm _{8+2x} (x=2/3)	$\begin{array}{l} Ba_{6.3x} \; Sm_{8+2x} \; \Pi_{18} O_{54} 0.1 \text{Ti} O_2 1.4 \text{Ti} O_2 \\ (x=2/3) \end{array}$	1350/2h	Tungsten Bronze	81.5	10400		0	1508

3733 Ba _{6-3x} (Sm _{1-y} Ndy) _{8+2x} Ti ₁₈ O _{5-y} y=0.84) 3734 LiNb _{0.6} Ti _{0.5} O ₃ textured 3735 (Li _{1/2} Nd _{1/2})TiO ₃ 3736 Ba _{6-x} Sm _{8+2x} Ti ₁₈ O ₅₋₄ (x=0.5) 3737 (Pb _{0.45} Ca _{0.55})([Fe _{0.5} (Nb _{.96} Ta 3738 Ba _{6-3x} (Sm _{1-y} Nd _y) _{8+2x} Ti ₁₈ O _{5-y} y=0.5) 3739 (Ba _{0.8} Ca _{0.2}) _{6-3x} Sm _{8+2x} Ti ₁₈ O _{5-y} 3739 (Ba _{0.8} Ca _{0.2}) _{6-3x} Sm _{8+2x} Ti ₁₈ O _{5-y} 3740 Ba _{6-3x} (Sm _{1-y} Nd _y) _{8+2x} Ti ₁₈ O _{5-y} 3741 Ba ₄ Sm _{8.08} Li _{0.25} Ti ₁₈ O _{5-y} 3742 Ba{Ti _{0.95} Fe _{0.05} }O _{3-d} 3743 Ba _{6-3x} (Sm _{0.2} Nd _{0.8}) _{8+2x} Ti ₁₈ O wto, Bi ₂ O ₃ 3744 Ba ₄ La ₄ Ti ₇ O _{2-y} y=0.05) 3746 (Ba _{0.5} Sr _{0.2}) _{2,4,2} Sm _{9.2} Ti ₁₈ O _{5-y} y=0.05)	$^{1}V_{3+2}$, $^{2}T_{18}O_{54}$ (x=2/3,							
	Y-01-24	1400/10h	Tungsten Bronze orthorhombic	81.7	10500		2	1563
	3, textured O.		Pervskite Tetragonal	81.8	5750		-43 292	1563b 1564
	1, O _E (x=0.5)	1300	Tungsten bronze	82.0	10150		-17	1563
	[(Fe _{0.5} (Nb % Ta _{0.04}) _{0.5})O ₃	1150/3h	Perovskite cubic Pm3m	82.0	7650		-5	1565
	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}\Pi_{18}O_{54}$ (x=2/3, v=0.5)	1340/16h	Tungsten Bronze orthorhombic	82.0	9500	3.75		1550
	$(Ba_0 _8 Ca_0 _2)_{6-3} Sm_{8+2} Ti_{18} O_{54} (x=1.5)$	1350	Tungsten Bronze orthorhombic	82.0	10000		-20	1566
	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}Ti_{1-z}Sn_z)_{18}O_{54}$ (x=2/3, y=0.8, z=0.05)	1360/3h	Tungsten Bronze orthorhombic	82.0	1000	4.1	17	1526
	25 Ti ₁₈ O54	1400	Tungsten Bronze orthorhombic	82.1	5620	4.7	-2	1567
	02 Sold	1450	Perovskite	82.1	4800	4		1446
	$Ba_{6-3x}(Sm_{0.2}Nd_{0.8})_{8+2x}Ti_{18}O_{54} (x=2/3)+1$ wt% $Bi_{7}O_{3}$	1200/3h	Tungsten Bronze orthorhombic	82.1	8530		17	1556
	. 4		Hexagonal	82.2	200		317	1473
	$(x_1)^{-1}B(y_1)^{-1}\Pi_{18}O_{54}$ (x=2/3,	1380	Tungsten bronze	82.2	0926		62	1519
	Sm _{9.2} Ti ₁₈ O ₅₄		Tungsten Bronze orthorhombic	82.3	2860		0	1535
	35)9+1/3 Ti ₁₈ O ₅₄	1420	Tungsten Bronze orthorhombic	82.3	8810		-17	1568
	$Ti_{18}O_{54} (x=0.6)$	1450	Tungsten Bronze orthorhombic	82.5	10500	4.6	-12	1554
	8O ₅₄	1460	Tungsten bronze	82.5	10060		71	1516
3750 (Pb _{1-x} Ca _x)[Fe $x=0.55$)	(Pb _{1-x} Ca _x)[Fe _{1/2} Nb _{1/2}] _{1-y} Zr _y]O ₃ (y=0.01, x=0.55)	1150	Perovskite	82.5	0089	3.8	-3	1488
3751 Ba ₄ Nd _{8.33} EuTi ₁₈ O ₅₄	$\Gamma_{18}O_{54}$	1480	Tungsten Bronze orthorhombic	82.6	10400	4.8	47	1542
3752 $Ba_{6-3x}(Sm_{1-y})$ y=0.72)	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}T_{18}O_{54} (x=2/3, y=0.72)$	1400/10h	Tungsten Bronze orthorhombic	82.7	10500		4	1563
	₈ O ₅₄	1500	Tungsten Bronze orthorhombic	83.0	8950	3.5	-13	1569
	5ПО ₂	1450/2h	Tungsten bronze	83.0	10500		70	1516
3755 Ba _{4.2} (Sm ₀₉ Nd ₀ 3756 CaBa ₄ Nb ₂ TiO ₁₂	Ba _{4.2} (Sm ₀₉ Nd ₀₁) _{9.2} Ti ₁₈ O ₅₄ CaBa ₄ Nb ₂ TiO ₁₂	1500 1470	Tungsten Bronze orthorhombic Cubic perovskite	83.0	8936 1200	3.5	9-	1569 1307

	_	
1	ζ	3
	Q	ر
	Ξ	2
	5	•
٠	-	2
	⊱	7
	Č	5
		•

3757	$(Pb_{0.45}Ca_{0.55})[(Fe_{0.5}Nb_{0.5})_{0.9}Sn_{0.1}]O_3 + 0.2 \text{ wt% CuO+0.1 wt% Bi,O.}$	1000/3h	Tungsten Bronze	83.0	0809		8	1570
3758	$(N_{1/3}Nb_{2/3})_{1-x}T_{1x}O_2$ (x=0.5)	1200	Rutile Tetragonal P4 ₂ /mmm	83.1	19300		165	1276
3759	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}Ti_{18}O_{54}$ (x=2/3, y=0.6)	1400/10h	Tungsten Bronze Orthorhombic	83.4	10700	4	=======================================	1550
3760	$Ba\{T_{10.92}Ga_{0.008}\}O_{3-\delta}$	1450	Perovskite Hexagonal	83.7	4200	4.2		1446
3761	$\begin{array}{c} Ba_{6-3x}(La_{1\cdot y-z}Sm_yBi_z)_{8+2x}Ti_{18}O_{54} \ (x=2/3,\\ y=0.7,\ z=0) \end{array}$	1350/3h	Tungsten Bronze	83.8	8000	4.0	33	1571
3762	$(Pb_{1/2}Ca_{1/2})(Fe_{1/2}Ta_{1/2})O_3\\$	1250/ 30 min	Perovskite Cubic	83.9	0899	_		1572
3763	$Ba_4(Nd_{.95}Bi_{.05})_{9.33}Ti_{18}O_{54}$	1360	Tungsten Bronze Orthorhombic	83.9	8330		32	1568
3764	$Ba_{4.2}(Sm_{0.9}La_{0.1})_{9.2}Ti_{18}O_{54}$	1500	Tungsten Bronze Orthorhombic	84.0	9050	3.5	2	1569
3765	$Ba_{6-3x} (Sm_{1-y}Nd_y)_{8+2x}Ti_{18}O_{54} (x=0.6, y=0.2)$	1500/2h	Tungsten Bronze	84.0	0006		0	1569
3766	BaO.(Nd _{0.8} Bi _{0.2}) ₂ O ₃ .4TiO ₂ +Bi ₂ O ₃ - B,O ₃ -ZnO-SiO ₂			84.0	3000		24	1573
3767	$Ba_{6-3x}Sm_{8+2x}Ti_{18}O_{54}$ (x=0.7) hotpressed	1200	Tungsten Bronze Orthorhombic	84.0	0966		-14	1574
3768	$0.95 \text{TiO}_2 - 0.05 \text{Bi}_2 \text{Ti}_4 \text{O}_{11}$	1200		84.0	12500		230	1372
3769	BaPr ₂ Ti ₅ O ₁₄		Tungsten Bronze Orthorhombic	84.0	0006	2	150	1575
3770	$(Ba_{0.9}Ca_{0.1})$ -Sm ₂ O ₃ -4.5TiO ₂		Tungsten bronze	84.0	9500	10	25	1557
3771	$Ba_4(Sm_{0.9}Bi_{0.1})_{9+1/3}Ti_{18}O_{54}$	1380	Tungsten Bronze Orthorhombic	84.1	7840		-21	1568
3772	$0.4 Pb ZrO_3 - 0.6 Ca (Fe_{1/2} Nb_{1/2})O_3$		Perovskite	84.7	3000	4.2	41	1576
3773	$Ba_{4.2}(Sm_{0.7}Nd_{0.3})_{9.2}Ti_{18}O_{54}$	1500	Tungsten Bronze Orthorhombic	85.0	9160	3.5	6	1569
3774	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}Ti_{18}O_{54} \ (x=2/3, y=0.8)$	1340/12h	Tungsten Bronze Orthorhombic	85.0	9460	3.9	-	1550
3775	$0.77Bi_2O_3-0.23Nb_2O_5$	900/3h	Flourite δ -Bi $_2$ O $_3$ Fm-3m	85.0	350		-215	1396
3776	$Pb_{1-x}Ca_x[(Fe_{1/2}Nb_{1/2})_{1-y}Sn_y]O_3$ (x=0.55, y=0.1)	1150/3h	Perovskite	85.0	8600		0	1497
3777	(Pb _{1-x} Ca _x)[(Fe _{1/2} Nb _{1/2}) _{1-y} Zr _y]O ₃ (y=0.1, x=0.55)	1200	Perovskite	85.0	8600		1	1488
3778 3779	Bi ₃ Nb _{0.8} Ta _{0.2} O ₇ Pb _{0.45} Ca _{.0.55} I(Fe _{1.2} Nb _{1.2}) _{0.9} Sn _{0.1} O ₃	855/4h 1150/3h	Perovskite Orthorhombic	85.0 85.3	800		24	1577 1497

o No	Material	ST (°C)	Crystal structure	\mathcal{E}_r	Qf (GHz)	f_0	$ au_f$	Reference
3780	Ba ₄ Sm _{8.33} LiTi ₁₈ O ₅₄	1400	Tungsten Bronze orthorhombic	85.4	5045	4.5	45	1567
3781	${\sf Ba}_{4.2}({\sf Sm}_{0.5}{\sf Nd}_{0.5})_{9.2}{\sf TI}_{18}{\sf O}_{54}$	1500	Tungsten Bronze	86.0	9170	3.4	25	215 996
3783	(Pb _{0.45} Ca _{0.55})[(Fe _{0.5} Nb0 _{.0.50} ,9Sn _{0.1}]O ₃ + (2 м4% СпО+0.4 м4% Ві.О.	1000/3h	Perovskite Orthorhombic	86.0	4340	2	6 8	1578
3784	0.74Bi,O ₃ -0.26Nb,O ₅	900/2h	Flourite 8-Bi,O ₃ Fm-3m	86.0	1000		120	1396
3785	ВаТ _{0.5} Са _{0.25} Nb _{0.25} О ₃	1500/4h	Perovskite Tetragonal P4mm	86.0	3050	4		1373
3786	Ba _{1,37} Na ₀₆₃ Nd ₂ TiO ₁₀	1250	Orthorhombic Amam	86.0	1500		270	1579
3787	$Ba_{6-3x} Nd_{8+2x} Ti_{18}O_{54} (x=0.75)$		Tungsten Bronze Orthorhombic	86.0	10450		ı	1536
3788	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}\Pi_{18}O_{54}$ (x=0.5, v=0.67)	1400/10h	Tungsten Bronze Orthorhombic	86.0	7850		234	1563
3789	BaNd, TiO ₁ , +0.075 wt% Bi ₄ B,O ₉	1200	Orthorhombic	86.0	5400		4	287
3790	BaO-Nd, O ₃ -4TiO, +10 wt% Bi ₄ B, O ₉		Tungsten Bronze	86.0	4700		-	1580
3791	0.15(Ba _{0.93} Sr _{0.07})O-	1370)	86.2	16700		95	1581
	$0.15(Sm_{0.4}La0.6)_2O_3-0.7TiO_2$							
3792	$Pb_{0.45}Ca_{0.55}[(Fe_{1/2}Nb_{1/2})_{0.95}Sn_{0.05}O_3$	1150/3h	Perovskite Orthorhombic	86.3	6250		2	1497
3793	$(Pb_{1-x}Ca_x)[Fe_{1/2}Nb_{1/2}]_{1-y}Zr_y]O_3 \ (y=0.01, x=0.5)$	1150	Perovskite Orthorhombic	86.3	0089	3.7	25	1488
3794	$Pb_{0.45}Ca_{0.55}[(Fe_{1/2}Nb_{1/2})_{0.9}Sn_{0.1}O_3$	1150/3h	Perovskite Orthorhombic	86.7	2006		0	1497
3795	$Ba_{6-3x-z}Sr_zNd_{8+2x-y}$ $Bi_yT_{18}O_{54}$ (y=0, z=0.9, x=0.5)		Tungsten Bronze	86.7	7200		63	1582
3796	$Ba_{6-3x}(La_{1-y-z}Sm_yBi_z)_{8+2x}\Pi_{18}O_{54}$ (x=2/3, y=0.5, z=0)	1350/3h	Tungsten Bronze Orthorhombic	86.9	7360	3.8	83	1571
3797	$0.9 \text{CaTiO}_3 - 0.15 \text{m}(\text{Mg}_{0.5} \text{Ti}_{0.5}) \text{O}_3$	1550	Perovskite	87.0	9500	3.2	285	865
3798	$(Pb_{1-x}Ca_x)[(Fe_{1/2}Nb_{1/2})_{1-y}Zr_y]O_3$ (y=0.05, x=0.55)	1200	Perovskite Orthorhombic	87.0	8500		-10	1488
3799	$Sr(Bi_{1-x}Nd_x)_8Ti_7O_7 (x=0.05)$			87.0	190			1583
3800	$(Ba_{1-z}Pb_z)_{6-x}Nd_{8+2/3x}Ti_{18}O_{54} (x=2/3, z=0.4)$	1400/2h	Tungsten Bronze Orthorhombic	87.0	4000		-32	1584
3801	$Ca_{(1-x)}Nd_{2x/3}TiO_3 (x=0.39)$		Perovskite	87.5	12400		242	1545
3802	${\sf Pb}_{0.46}{\sf Ca}_{0.54}{\sf I(Fe}_{1/2}{\sf Nb}_{1/2})_{0.9}{\sf Sn}_{0.1}{\sf O}_3$	1150/3h	Perovskite Orthorhombic	87.8	7870		2	1497

•	₹	3
	g	
	5	2
	;	
	ŝ	3
	Ć	
,	٩	١

3803	$Ba_{4.2}(Sm_{0.1}Nd_{0.9})_{9.2}Ti_{18}O_{54}$ $Ba_{2}Nd_{6,Ti_{10}}O_{2.1}(x=0.7)$ hot pressed	1500	Tungsten Bronze Orthorhombic Tungsten Bronze	88.0	9500	3.44	64 55	1569
	$Ba_{4,2}(Sm_{0.7}La_{0.3})_{9,2}Ti_{18}O_{54}$	1500	Tungsten Bronze Orthorhombic	88.0	8050	3.44	44	1569
3806	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}T\bar{\Gamma}_{18}O_{54}$ (x=0.6, y=0.9)	1500/2h	Tungsten Bronze Orthorhombic	88.0	8500		64	1569
3807	$Ba_{6-3x}(Sm_{1-y}Nd_y)_{8+2x}Ti_{18}O_{54}$ (x=0.6, y=1.0)	1500/2h	Tungsten Bronze Orthorhombic	88.0	8300		92	1569
3808	BaO-Bi ₂ O ₃ -TiO ₂ -Nd ₂ O ₃		Tungsten Bronze	88.0	5500		8	1534
3809	$(Ba_{1\cdot3z}Pb_z)_{6\cdot x}Nd_{8+2/3x}T_{18}O_{54} (x=2/3, z=0.22)$	1400/2h	Tungsten Bronze Orthorhombic	88.0	5500		0	1584
3810	BaO-Nd ₂ O ₃ -4TiO ₂ +0.5 wt% Al ₂ O ₃ +8 wt% Bi ₂ O ₃		Tungsten Bronze	88.0	8000	I	0	1111
3811	$(1-x)(Mg_{0.95}Zn_{0.05})TiO_3-xCa_{0.6}La_{0.8/3}TiO_3$ (x=0.9)	1320/4h	Composite	88.0	32800		205	465
3812	$Ba_{4,2}Nd_{9,2}T_{18}O_{54}$	1500	Tungsten Bronze	88.0	8315	3.4	76	1566
3813	$L_{0.2}Nd_{0.6}IIO_3$	1450		88.0	2400		-210	1585
3814	$Pb_{0.46}Ca_{0.54}[(Fe_{1/2}Nb_{1/2})_{0.95}Sn_{0.05}O_3$	1150/3h	Perovskite Orthorhombic	88.2	6100		_	1497
3815	$Ba_{6-3x}(La_{1-y-z}Sm_yBi_z)_{8+2x}Ti_{18}O_{54} \ (x=2/3, y=0.7, z=0.04)$	1350/3h	Tungsten Bronze	88.4	0699	4.4	-	1571
3816	0.05Pb(Fe _{2/3} W _{1/3})O ₃ - 0.95Pb, (Ca.c (Fe. 5 Nb, 5)O ₃	1000	Perovskite	88.4	3800		9-	1480
1	0:50: ~0.4 (~0.6 \cdot 0 /2 \	0,00		0			ć	, ,
381/	$Ba_4(Sm_{0.85}Bl_{0.15})_{9+1/3}l_{18}O_{54}$	1360	Iungsten Bronze Orthorhombic	88.9	0799		-20	1568
3818		1300/2h	Tungsten Bronze	89.0	0889	4.5		1586
3819	$(Pb_{0.45}Ca_{0.55})[(Fe_{0.5}Nb_{0.5})_{0.9}Sn_{0.1}]O_3 + 5$ wt% BiO ₃ -LiF	950	Perovskite Orthorhombic	89.0	800		-15	1587
3820	0.2CaTiO ₃ -0.5(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(Dy _{1/3} Nd _{1/3})TiO ₃	1350/3h	Tetragonal P-4b2 Perovskite	89.4	4650		-87	1498
3821	$(Ni_{1/3}Nb_{2/3})_{1-x}Ti_{x}O_{2}$ (x=0.6)	1200	Rutile Tetragonal P4 ₂ /mmm	89.4	12800		193	1276
3822	$Ba_{6-3x}(Nd_{1-y}Bi_y)_{8+2x}Ti_{18}O_{54} (x=2/3, y=0.04)$	1340/3h	Tungsten Bronze Orthorhombic	9.68	7700	4.0	21	1588
3823	$Ba_{6-3x}^{'}Nd_{8+2x}Ti_{18}O_{54}+PbO/Bi_{2}O_{3}$		Tungsten Bronze	0.06	0006	I	0	1569
3824	$BaO-(Nd_{0.95}Bi_{0.05})_2O_3-4TiO_2$	1300	Tungsten Bronze type	0.06	2600		33	168

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
3825	0.96La _{2/3} ПО ₃ -0.04СаПО ₃		Perovskite Orthorhombic	90.0	27000	10	190	1589
3826	MBRT-90	1300/2h	Composite	90.0	6100		9	510
3827	$0.75Bi_2O_3-0.25Nb_2O_5$	900/3h	Flurite δ -Bi ₂ O ₃ Fm-3m	0.06	630		09	1396
3828	0.5Sm _{1/2} Li _{1/2} TiO ₃ -0.5Sm _{1/2} Na _{1/2} TiO ₃	1300	Tetragonal	0.06	1500		-140	1521
3829	BaNd ₂ Ti ₅ O ₁₄ +25 wt% Nd ₂ O ₃ +0.5 mol% PbO	1250/2h	Tungsten Bronze Orthorhombic	90.0	0009		-20	1590
3830	$Ca_0 \epsilon_1 Nd_0 \epsilon_0 TiO_3$ (Sol-gel)	1200	Orthorhomic perovskite Pmna	90.2	25200		243	1591
3831	$0.1La(Mg_{1/2}Ti_{1/2})O_3-0.9CaTiO_3$	1500	Perovskite Pbnm	90.4	31900	5.8	I	932
3832	$(Pb_{1-x}Ca_x)[Fe_{1/2}Nb_{1/2}]_{1-y}Zr_y]O_3$ (v=0.01,x=0.45)	1150	Perovskite	9.06	2500	3.6	4	1488
3833	BaSm _{1.8} La ₂ Ti ₅ O ₁₄		Orthorhombic Pbam	200.7	8900	ı	4	1592
3834	$Ba_{6-3x}(Nd_{(8+2x)-y}Bi_y)T_{18}O_{54} (x=2/3, y=0.1)$	1360	Tungsten Bronze Orthorhombic	90.7	7020		24	1568
3835	$(P\dot{b}_{0.5}Ca_{0.5})_{0.92}La_{0.08}(Fe_{0.5}Nb_{0.5})O_3$	1190/ 2.5h	Perovskite	8.06	5800		15	1593
3836	(Ca _{0.61} Nd _{0.26})(Ti _{0.98} Sn _{0.2})O ₃ - 0.6(Li _{0.5} Nd _{0.5})TiO ₃ +5 wt% H ₃ BO ₃ -CuO+0.5 wt% Li ₂ CO ₃	006	Composite	8.06	3400		6	1594
3837		1300	Tungsten Bronze Orthorhombic	91.0	10870		3	1574
3838	Bi ₃ NbO ₇		Cubic flurite type Fm-3m	91.0	730		100	1595
3839	$(Pb_{0.5}Ca_{0.5})_{0.92}La_{0.08}(Fe_{0.5}Nb_{0.5})O_3+1$ wt% Bi_2O_3 -Mn O_2	1050/4h	Perovskite+Pyrochlore	91.1	4870		19	1593
3840	$Ba_4Sm_{6.33}Li_3Ti_{18}O_{54}$	1400	Tungsten Bronze Orthorhombic	91.3	3990	4.4	11	1567
3841	0.3Pb(Fe _{2/3} W _{1/3})O ₃ - 0.7Pb,, Ca _{0.8} (Fe _{1/2} Nb _{1/2})O ₂	1000	Perovskite	91.3	1650		^	1480
3842	(Li _{1/2} Pr _{1/2})πO ₃		Perovskite	92.0	1010		403	1564
3843	Ba _{4.5} Nd ₉ Ti ₁₈ O ₅₄ +15mol% Ba _{2.5} Cd ₂ Ti _{2.0}	1350/10h	Tungsten Bronze	92.0	2000		0	1596
3844	0.75Bi ₂ O ₃ -0.25Nb ₂ O ₅	850/3h 1350	Flourite δ -Bi ₂ O ₃ Fm-3m Perovskite Orthorhombic	92.0	720		96	1396
2042	$(\sim \alpha_{0.3} = 10.14.3 = 10.42.7 = 0.3$	0001	reiovsnite Officialionio	72.1	0232		7.0	617

₹	3
Ċ	Ď
:	Ċ
2	=
+	3
2	Ξ
ç	Ç
3	ر

																								·
1588	1567	1568	1597	966	1567	1598	966	1569	1599	1372	168	1582	1600	1568, 1601	1600	1568	1571	1514, 1602	966	53	966	1603	1497	
10	303	-12	6		89	657	630	118	228	230	15	40	18	17	2	17	29	-10	130		130	^	24	
4	4.4		4		4.4	3.95	3.2	3.3	_								4	3	3.2					
6460	3580	5680	4900	5970	3720	3950	2000	1300	6940	12500	5900	5700	7100	6350	0229	6350	4337	3600	3800	5200	3800	0009	5950	
92.3	92.4	92.4	92.5	97.6	92.7	93.0	93.0	93.0	93.0	93.0	93.0	93.4	93.6	93.7	93.7	93.7	93.9	94.0	94.0	94.0	94.0	94.0	94.3	
Tungsten Bronze Orthorhombic	Tungsten Bronze Orthorhombic	Tungsten Bronze Orthorhombic		Perovskite	Tungsten Bronze Orthorhombic	Cubic Im3m	Perovskite	Tungsten Bronze Orthorhombic	Perovskite Orthorhombic	Composite	Tungsten Bronze	Tungsten Bronze Orthorhombic	Perovskite Orthorhombic	Tungsten Bronze Orthorhombic	Perovskite	Tungsten Bronze Orthorhombic	Tungsten Bronze Orthorhombic	Perovskite	Perovskite	Composite	Perovskite		Perovskite Orthorhombic	
	1350	1360	1300/2h	1100/3h	1400	1100		1500	1400		1300		1150/3h	1380	119/2.5h	1360	1340/3h	1450		1400/5h		1400	1150/3h	
$Ba_{6-3x}(Nd_{1-y}Bi_{y})_{8+2x}Ti_{18}O_{54} \ (x=2/3, y=0.08)$	Ba ₄ Sm _{3.33} Li ₆ Ti ₁₈ O ₅₄	$Ba_4(Sm_{0.8}Bi_{0.2})_{9+1/3}Ti_{18}O_{54}$	$Ca_{2/5}Sm_{2/5}TiO_3-Li_{1/2}Sm_{1/2}TiO_3-0.8TiO_2$	$(Pb_{0.45}Ca_{0.55})(Fe_{0.5}Nb_{0.5})O_3$	$Ba_4Sm_{7.33}Li_2Ti_{18}O_{54}$	CaCu _{2.85} Mn _{0.15} Ti ₄ O ₁₂	$Pb_{0.5}Ca_{0.5}$ (Li _{1/4} Nb _{3/4})O ₃	$Ba_{4.2}(Sm_{0.5}La_{0.5})_{9.2}Ti_{18}O_{54}$	$Ca_{1-x}Nd_{2x/3}TiO_3 (x=0.42)$	$0.95 \text{TiO}_2 - 0.05 \text{Bi}_2 \text{Ti}_4 \text{O}_{11}$	$BaO-(Nd_{1-x}Bi_x)_2O_3-4TiO_2 (x=0.1)$	$Ba_{6.3x-z}Sr_zNd_{8+2x-y}$ $Bi_yTi_{18}O_{54}$ (y=0.5, x=0.5)	$(Pb_{0.48}Ca_{0.52})Fe_{1/2}Nb_{1/2})_{0.9}Sn_{0.1}O_3$	$Ba_4(Nd_{0.85}Bi_{0.15})_{9.33} \Pi_{18}O_{54}$	$(Pb_{0.48}Ca_{0.52})(Fe_{1/2}Nb_{1/2})O_3+2.2 \text{ mol\%} $ CeO ₂	$Ba_{6\cdot 3x}[\tilde{N}d_{(8+2x)\cdot y}Bi_y)_1\Pi_{18}O_{54} \ (x=2/3,\\ y=0.15)$	$Ba_{6\cdot3x}(La_{1-y-z}Sm_yBi_{0.04})_{8+2x}Ti_{18}O_{54}$ (x=2/3,y=0.5,	$Pb_{0.6}Ca_{0.4}ZrO_3$	$Pb_{0.6}Ca_{0.4}(Ni_{1/3}Nb_{2/3})O_3$	3SrO-Ta ₂ O ₅ - 3 TiO ₂	$(Pb_{0.6}Ni_{0.4})(Mg_{1/3}Nb_{2/3})O_3$	CaO-Sm ₂ O ₃ -Li ₂ O-TiO ₂ +1 wt% Li,O-Bi,O ₂ - Π O,	${\sf Pb}_{0.48}{\sf Ca}_{0.52}{\sf L(\tilde{F}e}_{1/2}\tilde{\sf N}b_{1/2})_{0.95}{\sf Sn}_{0.05}{\sf O}_3$	
3846	3847	3848	3849	3850	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868	3869	

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf(GHz)	f_0	$ au_{f}$	Reference
3870 3871	Ca _{1-x} Sm _{2x/3} ITO ₃ (x=0.6) CaO-BaO-Li ₂ O-Sm ₂ O ₃ -ITO ₂ (14-4:9-12-63)	1450 1325	Perovskite, Orthorhombic	94.5 94.5	14900 7400	52	33	1604
3872	Ba _{6-3x} Nd _{8+2x} T ₁₈ O ₅₄ x=0.5+10 wt%	1300/3h	Tungsten Bronze	94.9	5620		21	1606
3873	Б14 П3О12 Ва _{6-3×} Рг _{8+2×} П ₁₈ О ₅₄		Tungsten Bronze Orthorhombic	95.0	0009	I	200	1607,
3874 3875	Ba ₄ Sm _{5.33} Li ₄ Ti ₁₈ O ₅₄ Ba _{6-3x} (La _{1-y-2} Sm _y Bi _z) _{8+2x} Ti ₁₈ O ₅₄ (x=2/3,	1350 1320/3h	Tungsten Bronze Orthorhombic Tungsten Bronze Orthorhombic	95.0 95.0	1000	4.4	142	1567 1571
9288	y=0.5, z=.08)	1350	Totmacon	0 2 0	1000	10		1531
3877	0.98TiO,-0.02Bi, Ti ₁ O ₁ ,	1200	Composite	95.0	18000	2	351	1372
3878	$(Ba_{0,6}Pb_{0,4})_{6-3}$ La_{8+2} $Ti_{18}O_{54}$ (x=1.5)	1380	Tungsten Bronze Orthorhombic	95.0	0009		200	1566
3879	0.35m _{1/2} Li _{1/2} TiO ₃ -0.75m _{1/2} Na _{1/2} TiO ₃	1300	Perovskite	95.0	1000		-240	1521
3880	Pb,Ca(Fe, W, Nb)O ₃	1000	Perovskite	95.7	3840		10	1480
3881	0.67Ca _{2/5} sm _{2/5} TiO ₃ -0.33Li _{1/2} Sm _{1/2} TiO ₃	1300/3h	Perovskite	95.5	7200		0	1548
3882	$Ba_{6-3x}(Nd_{1-y}Bi_y)_{8+2x}Ti_{18}O_{54}$ (x=2/3, y=0.12)		Tungsten Bronze Orthorhombic	95.8	5820	4	8	1588
3883	$Ba_{6-x}^{'}Sm_{8+2x}Ti_{18}O_{54}$ (x=0.3) hot pressed	1300	Tungsten bronze	0.96	1440		41–	1574
3884	CaO-BaO-Li ₂ O-Sm ₂ O ₃ - Π O ₂ (14:4:8:12:63)	1325		0.96	7580		9-	1609
3885	$0.92 Ba_{4.5} (Nd_{1\gamma} Bi_{\gamma})_9 Ti_{18} O_{54}$ - $0.08 Ba Ti_4 O_{9} (y=0.12)$		Tungsten Bronze Orthorhombic	0.96	5590		27	1610
3886	$0.4Ca_{0.6}Sm_{0.83}TiO_3-0.6(Li_{0.5}Nd_{0.5})$ $TiO_3+3 \text{ wt\% BaCu(B,O}_5)$	1100	Perovskite Orthorhombic	96.3	3100		-20	1611
3887	CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Yb ₂ O ₃ TiO,		Perovskite Orthorhombic	96.4	2690	I	36	1612
3888	$Ba_{6-3x-z}Sr_zNd_{8+2x-y}$ $Bi_y\Pi_{18}O_{54}$ (y=1, x=0.5)		Tungsten Bronze Orthorhombic	97.0	5500		22	1582
3889	$Sr(Bi_{1-x}Nd_x)_8Ti_7O_{27} (x=0.1)$			97.0	740			1583

8
9
'n
Ĕ.
Ö
=

0.3CaTiO ₃ -0.4(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(Dy _{1/3} Nd _{1/3})TiO ₃
930/3h
006
1200/3h
1325
1300
1325/3h
1200/3h
1300
,
1300/2h
1210

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf(GHz)	f_0	$ au_f$	Reference
3911	Pb _{0.5} Ca _{0.5} [(Fe _{1/2} Nb _{1/2}) _{0.9} Sn _{0.1} O ₃	1150/3h	Perovskite, Orthorhombic	9.66	6570	1 9	32	1497
3913	(Pb _{1/2} Ca _{1/2}) _{0.94} (La _{1/2} Nd _{1/2}) _{0.06}	1200/3h	Perovskite Orthorhombic	9.66	5800	5.5	0	1622
3914	(Ca, VNd _{2√2})TiO ₂ (x=0.5)	1300		100.0	14600	3.2		1619
3915	$Ba(Nd_{0.82-5}Sm_zBi_{0.18})Ti_4O_{12}$ (z=0.1)	1300/2h	Orthorhombic Tungsten Bronze	100.0	3950	4.7		1586
3916	$[(Pb_{0.5}Ca_{0.5})_{0.95}Nd_{0.05}](Fe_{1/2}Nb_{1/2})O_3$		Perovskite	100.0	5800		0	1623
3917	$CaO-SrO-Li_2O-(1-x)Sm_2O_3-xDy_2O_3-$ $TiO_2(x=0.17)$			100.0	2900		30	1498
3918	0.45CaTiO ₃ -0.35(Li _{1/2} Nd _{1/2})TiO ₃ - 0.2(Dv _{1/2} Nd _{1/2})TiO ₃	1350/3h	Orthorhombic Pbnm Perovskite	100.1	6430		118	1498
3919	16CaO-9Li ₂ O-12Sm ₂ O ₃ -63TiO ₂ +0.75 wt% V ₂ O ₇	1200/3h	Composite	100.4	2600		^	1624
3920	0.05 Pb $(F_{2/3}W_{1/3})O_3$ -	1000	Perovskite	100.8	3250		20	1480
3921	$(P_1, P_2, P_3) = (P_1, P_1, P_2, P_3) = (P_1, P_2, P_3) = (P_2, P_3) = (P_3, P_3$		Perovskite	>100	1000	ı	ı	1602
3922	Ba_{6-3x-2} Pb_zNd_{8+2x-y} $Bi_yTi_{18}O_{54}$ (y=1, z=1.0, x=0.5)		Tungsten Bronze Orthorhombic	101.0	4000		4	1582
3923	Bi _{1,733} (Zn _{0,733} Nb ₄₃)O _{6,67}	1000	Cubic	101.0	4800	4.8		1625
3924	(Pb _{0.5} Ca _{0.5}) _{0.95} La _{0.05} (Fe _{0.5} Nb _{0.5})O ₃ +1 wt% PbO-B,O ₃ -V,O ₅	1050/3h	Perovskite Orthorhombic	101.0	5400		9	1626
3925	0.55Ca _{0.61} Nd _{0.91} TiO ₃ -0.45Li ₁₇ Nd ₁₇ TiO ₃	1400/4h	Perovskite Orthorhombic	101.0	5300	7.2	13	1599
3926	$Ca_{1-x}Sm_{2\times 3} \PiO_3 (x=0.4)$	1450	Perovskite Orthorhombic	101.0	14090	2		1604
3927	$Ca_{(1-x)}Nd_{2x/3}IIO_3$ (x=0.21)	1250		101.0	8000		, <	1545
3320	CaO-51112 O3-E12 O-11O2 +5 W C/0 Li,O-Bi,O3-TiO,	1230		6.10	0000)	5001
3929	$Pb_{0.5}Ca_{0.5}[(Fe_{1/2}Nb_{1/2})_{0.95}Sn_{0.05}O_3$	1150/3h	Perovskite Orthorhombic	102.0	4900		38	1497
3931	$Ba(Nd_{0.82-z}Sm_zBi_{0.18})T_4O_{12}$ (z=0.03)	1300/2h	ומונאלושו	102.0	3650	4.74	666	1586

5	3
2	b
	5
2	Ξ
j	2

3932	TiO ₂ +0.05 mol% Al ₂ O ₃ TiO ₂ +0.05 mol% Fe ₂ O ₃ TiO ₃ +0.05 mol% MaO	1500/10h 1500/10h	Tetragonal rutile P42/mmm Tetragonal rutile P42/mmm Tetragonal rutile D4 /mmm	102.0	47100 50100			1628 1628 1628
3935	TiO ₂ +0.05 mol% CuO	1500/10h	Tetragonal rutile P4 ₂ /mmm	102.0	48000			1628
3936	$TiO_2^++0.05 \text{ mol}\% \text{ ZnO}$	1500/10h	Tetragonal rutile P4 ₂ /mmm	102.0	48900			1628
3937	$0.1 \text{La}(\text{Mg}_{1/2}\text{Ti}_{1/2})\text{O}_3$ -0.9CaTiO ₃	1350	Perovskite	102.5	20200	4.3	395	932
3938	$Ba_{6-3x}(Nd_{1-y}Bi_y)_{8+2x}Ti_{18}O_{54} \ (x=2/3, y=0.18)$		Tungsten Bronze Orthorhombic	102.6	4400	4	-17	1588
3939	$ \begin{array}{l} [(Pb_{0.5}Ca_{0.5})_{0.95}La_{0.05}] [Fe_{0.5}Nb_{0.5})_{1-\gamma} Ti_{\gamma}] \\ O_{3+\rho} \ (\gamma=0) \end{array} $	1250	Perovskite Orthorhombic	102.8	2900		_	1593
3940	CaO-BaO-Li ₂ O-Sm ₂ O ₃ -Nd ₂ O ₃ - TiO _{2 (14-4-8-10-2-63)}	1350	Composite	103.0	7200		7	1612
3941	0.4CaTiO ₃ -0.5(Li _{1/2} Nd _{1/2})TiO ₃ - 0.1(Dy _{1/3} Nd _{1/3})TiO ₃	1350/3h	Orthorhombic Pbnm Perovskite	103.0	4214		146	1498
3942	$Ca_{1-x}Nd_{2x/3}TiO_3(x=0.39)$	1350	Perovskite Orthorhombic Pnma	103.0	15340		247	1629
3943	$(1-x)Li_{1/2}Sm_{1/2}TiO_3-xNaNbO_3$ (x=0.1)			103.0	2120		-3	1630
3944	$Na_{0.5}Sm_{0.5}TiO_3+0.6 \text{ wt}\% CeO_2$	1425/2h	Orthorhombic perovskite	103.0	0096		193	1627
3945	$Ba_4(Sm_{0.7}Bi_{0.3})_{9+1/3}Ti_{18}O_{54}$	1320	Tungsten Bronze Orthorhombic	103.3	2980		6	1568
3946	$(Pb_{1/2}Ca_{1/2})_{0.95}La_{0.05}$ [Fe _{1/2} Nb _{1/2}]O _{3+δ}	1150	Perovskite	103.4	5640		_	1622
3947	$Pb_{0.5}Ca_{0.5}(Fe_{1/2}Nb_{1/2})O_3$		Perovskite	104.0	4000	2.8	26	966
3948	TiO ₂	1200	Tetragonal rutile	104.0	44000		I	53,
								1631
3949	$Sr(Bi_{1-x}Nd_x)_8Ti_7O_{27}$ (x=0.3)			104.0	350			1583
3950	$TiO_2+0.05 \text{ mol}\%$ Fe	1500	Rutile P4 ₂ /mmm	104.0	50300			1631
3951	$CaO-Li_2O-Sm_2O_3-TiO_2$ (16:9:12:63)	1325		104.1	4320		13	1564,
								1605
3952	Ba _{6-3x} La _{8+2x} Ti ₁₈ O ₅₄		Tungsten bronze	105.0	2000	I	450	1606,
								1607
3953	$5BaO-Ta_2O_5-3TiO_2$	1400/5h	Composite	105.0	800			53
3954	$0.5Ca_{0.6}La_{0.2667}TIO_3-0.5Li_{1/2}Nd_{1/2}TiO_3$	1400/4h	Perovskite Cubic	105.0	2000		2	1632
3955	$Ba(Nd_{0.82-z}Sm_zBi_{0.18})Ti_4O_{12}$ (z=0.12)	1300/2h	Tungsten Bronze	105.0	4150	3.64		1586

Š	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	τ_f	Reference
3956	$Ba_{6-3x}(La_{1-y-z}Sm_yBi_z)_{8+2x}Ti_{18}O_{54}$ (x=2/3, v=0.7, z=0.12)	1325/3h	Tungsten Bronze Orthorhombic	105.1	4170	4.59	-15	1571
3957	0.45CaTiO ₃ -0.45(Li _{1/2} Nd _{1/2})TiO ₃ - 0.1(Dy ₄₋₂ Nd _{-a})TiO ₃	1350/3h	Orthorhombic Pbnm Perovskite	105.1	5160		155	1498
3958	0.7BaTiO ₃ -0.3La(Mg _{1,7} Ti _{1,7})O ₃		Perovskite Pm3m	105.8	6940	4.55	525	933
3959	$BaO-(Nd_0 Bi_2)_2O_3 - 4TiO_2$	1300	Tungsten Bronze	106.0	4200		8	168
3960	CaO:BaO:Li ₂ O(Sm _{1-y} N _d) ₂ O ₃ :TiO ₂ (14:4:8:12:63) (v=0.33)	1400/3h		106.0	0099		22	1609
3961	0.3Ca _{2/5} Sm _{2/5} TiO ₃ -0.7Li _{1/2} Nd _{1/2} TiO ₃		Perovskite	106.0	3100			1614
3962	Sr ₂ Ce ₂ Ti ₅ O ₁₆ (Sr _{1-3×/2} Ce _x TiO ₃ x=0.4)+0.4 wt% NiO	1300/2h	Psuedocubic	106.0	10000		315	1620
3963	$0.5Ca_{3/5}Sm_{3/5}TiO_3-0.5Li_{1/2}Nd_{1/2}TiO_3$	1300/3h		106.0	3710	2		1614
3964	$Ca_{1-x}Nd_{2x/3}TiO_{3}$ (x=0.3)	1400	Perovskite Orthorhombic	107.0	6590	_	316	1599
3965	Sr ₂ Ce ₂ Ti ₅ O ₁₆ (Sr _{1-3×2} Ce _x TiO ₃ x=0.4)+0.4 wt% In,O ₃	1300/2h	Psuedocubic	107.0	9400		310	1620
3966	$Ca_{3/5}Sm_{2/5}TiO_3-Li_{1/2}Nd_{1/2}TiO_3-0.6TiO_2$	1300/2h		107.0	3300	4	0	1597
3967	CaO-Sm ₂ O ₃ -Li ₂ O-TiO ₂ (11:8:5:40)	1250		107.2	5700		0	1633
3968	$0.2 \text{Pb}(\text{Fe}_{2/3} \text{W}_{1/3}) \text{O}_3$ -	930	Perovskite	107.2	3790		48	1480
	$0.8 Pb_{.4} Ca_{.6} (Fe_{1/2} Nb_{1/2}) O_3$							
3969	CaO-SrO-Li ₂ O-Sm ₂ O ₃ -TiO ₂		Perovskite Orthorhombic	108.0	5480	I	15	1612
3970	$(Ca_{1-x}Nd_{2x/3})TiO_3 (x=0.39)$	1300	Perovskite	108.0	17200	3		1619
3971	$Sr(Bi_{0.6}Nd_{0.4})_8 T_7 O_{27}$	1260	Aurivillius type	108.0	2000		I	1583
3972	Ca _{0.6} La _{0.2667} TiO ₃	1400/4h	Perovskite cubic	109.0	17600	4.5	213	1632
3973	Ba _{3.75} La _{9.5} Tī ₁₈ O ₅₄		Tungsten Bronze Orthorhombic	109.2	1800	3		1536
3974	$0.1 \text{Pb}(\text{Fe}_{2/3} \text{W}_{1/3}) \text{O}_3$ -	930	Perovskite	109.4	3500		2	1480
	$0.9Pb_{0.45}Ca_{0.55}(Fe_{1/2}Nb_{1/2})O_3$							
3975	$Pb_{0.63}Ca_{0.37}ZrO_3$	1450	Perovskite	110.0	3000	2.8		1514
3976	$0.2CaTiO_3-0.2(Li_{0.5}Nd_{0.5})TiO_3$	1300	Perovskite	110.0	2600		-15	1634
3977	$(1-x)Ca_{2/5}Sm_{2/5}TiO_3-xLi_{1/2}Nd_{1/2}TiO_3$	1300/3h	Perovskite	110.0	3400	72	155	1614
	(x=0.0)							

4		
	a	
	Φ	
	Ď	
	-	
	9	
	\circ	

3978 3979	$ \begin{array}{l} [(Pb_{0.5}Ca_{0.5})_{0.98}Nd_{0.02}](F_{1/2}Nb_{1/2})O_3 \\ 0.15CaO-0.01SrO-0.09Li_2O- \end{array} $		Perovskite	110.0	5800 4500	3	525 8	1623 1564
	$0.125m_2O_3-0.63TiO_2$							
3980	0.3CaTiO ₃ -0.4(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3La _{1/3} Nd _{1/3} TiO ₃	1350	Perovskite composite	110.0	1400		22	1498
3981	$Ba_{6-x}La_{8+2x}Ti_{18}O_{54}$ (x=0.5) hot pressed	1300	Tungsten Bronze Orthorhombic	110.0	2460			1574
3982	0.2CaπO ₃ -0.5(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/2})TiO ₃	1350/3h	Perovskite composite	110.4	1460		315	1498
3983	$Ba_2Sr_2Sm_2^{"}Ti_{4+x}Ta_{6-x}O_{30-x/2}$ (x=3)	1340/2h		111.0	200	3.3		1635
3984	$[(Ca_x(La,Nd)_{2/3-2x/3}]TiO_3 (x=0.9)$	1350/24h	Tetragonal 14/mcm	111.3	4500		273	1392
3985	$Ba_{6.3x}(La_{1\cdot y\cdot z}Sm_yBi_z)_{8+2x}Ti_{18}O_{54} \ (x=2/3, y=0.5, z=0.12)$	1320/3h	Tungsten Bronze Orthorhombic	111.3	2470	3.7	-30	1571
3986	$Ba_{6-3x}(La_{1\cdot y \cdot z}Sm_yBi_z)_{\theta+2x}Ti_{1\theta}O_{54} \ (x=2/3, y=0.7, z=0.16)$	1300/3h	Tungsten Bronze Orthorhombic	111.4	2530	4.3	-21	1571
3987	$(1-x)Ca_{0.8}Sr_{0.2} TO_3-xLi_{0.5}Nd_{0.5} TiO_3$ (x=0.87)		Perovskite Tetragonal	111.6	2000		-3	1636
3988	$ \begin{array}{l} [(Pb_{0.5}Ca_{0.5})_{0.95}La_{0.05}][Fe_{0.5}Nb_{0.5})_{1-y}Ti_y] \\ \\ O_{3+d}\;(y{=}0.05) \end{array} $	1250	Perovskite Orthorhombic	111.7	5200		24	1593
3989	$0.6(Na, La)TiO_3 - 0.4(Li, Sm)TiO_3$		Perovskite	112.0	1060		18	1421
3990	$Sr_2Ce_2Ti_5O_{16}(Sr_{1-3x/2}Ce_xTiO_3)$ x=0.4)+0.4 wt% CeO ₂	1300/2h	Psuedocubic	112.0	9400		305	1620
3991	$Pb_{0.95}Ca_{.05}ZrO_3$	1250	Perovskite	112.0	720	2.8	ı	1514
3992	$Ba_{6-3x}-Nd_{8+2x-y}$ $Bi_{y}Ti_{18}O_{54}$ (y=2, x=0.5)		Tungsten Bronze Orthorhombic	112.0	3000		25	1582
3993	CaO-Sm ₂ O ₃ -Li ₂ O-TiO ₂ +1 wt% Li ₂ O-Bi ₂ O ₃ -TiO ₂₀	1250		112.1	3600		-	1603
3994	$0.05 \text{Pb}(\text{Fe}_{2/3} \widetilde{W}_{1/3}) \widetilde{O}_3$ -	1000	Perovskite	112.2	2730		52	1480
3995	0.95Pb _{0.5} Ca _{0.5} (Fe _{1/2} Nb _{1/2})O ₃ CaO-SrO-Li,O-0.83Sm,O ₃ -0.17Nd,O ₃ -		Perovskite Orthorhombic	112.5	4900	I	13	1612
	TIO ₂							
3996	[Ca _{0.4} (Li _{1.2} Nd _{1.2}) _{0.6}]TiO ₃	1350	Perovskite Perovskite	112.6	4480		8	1464
1666	31_{2} Ce ₂ 11 ₅ O ₁₆ (31 ₁₋₃ x/2 Ce _x 11O ₃ x=0.4)	1300/211	rsuedocubic	0.611	0000		200	1070

Sr ₂ Ce ₂ Ti ₅ O ₁₆ (Sr _{1-3x2} Ce _x TiO ₃ x=0.4)+0.2 wt% La ₂ O ₃ 0.3CaTiO ₃ -0.7Li _{1/2} Sm _{1/2} TiO ₃ 1300/3h Ba ₂ Sr ₂ Sm ₂ Ti _{4+x} Ta _{6-x} O _{30-x/2} (x=2.5) 1340/2h Ba ₂ Sr ₂ Sm ₂ Ti _{4+x} Ta _{6-x} O _{30-x/2} (x=2.5) 1340/3h 0.25CaTiO ₃ -0.75(Li _{1/2} Nd _{1/2})TiO ₃ +10 1200 wt% Bi ₄ B ₂ O ₉ Ba ₄ (Nd _{0.7} Bi _{0.3}) _{9,33} Ti ₁₈ O ₅₄ CaO-SrO-Li ₂ O-0.835m ₂ O ₃ -4TiO ₂ 0.17Pr ₆ O ₁₁ O ₃ -TiO ₂ EaO-(Nd _{0.7} Bi _{0.3}) ₂ O ₃ -4TiO ₂ 110O ₂ 0.7(Li _{1/2} Nd _{1/2})TiO ₃ -0.3(Na _{1/2} Sm _{1/2})TiO ₃ Ba _{6-3x} (La _{1-y-x} Sm _y Bi ₂) _{8+2x} Ti ₁₈ O ₅₄ (x=2/3, y=0.5, z=0.15) 0.3(La _{1/3} Nd _{1/3})TiO ₃ ((Pb _{0.5} Ca _{0.5}) _{0.95} La _{0.05}][Fe _{0.5} Nb _{0.5}) _{1-y} Ti _y] 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.835m ₂ O ₃ -0.175m ₂ O ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6} O ₃)	Material		ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf(GHz)	f_0	$ au_f$	Reference
0.3CaTiO ₃ -0.7Li _{1/2} Sm _{1/2} TiO ₃ 1300/3h Ba ₂ Sr ₂ Sm ₂ Ti _{4+x} Ta _{6-x} O _{30-x2} (x=2) Ba ₂ Sr ₂ Sm ₂ Ti _{4+x} Ta _{6-x} O _{30-x2} (x=2.5) 1340/2h Ba ₂ Sr ₂ Sm ₂ Ti _{4+x} Ta _{6-x} O _{30-x2} (x=2.5) 0.25CaTiO ₃ -0.75(Li _{1/2} Nd _{1/2})TiO ₃ +10 1200 wt% Bi ₄ B ₂ O ₉ Ba ₄ (Nd ₀ -7Bi _{0.3}) _{9.33} Ti ₁₈ O ₅₄ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ - 0.17Pr ₆ O ₁₁ O ₃ -TiO ₂ BaO-(Nd ₀ -7Bi _{0.3}) _{2.3} Ti ₁₈ O ₅₄ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ - 0.17Pr ₆ O ₁₁ O ₃ -TiO ₂ BaO-(Nd ₀ -7Bi _{0.3}) _{2.3} Ti ₁₈ O ₅₄ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ - 0.7(Li _{1/2} Nd _{1/2})TiO ₃ -0.3(Na _{1/2} Sm _{1/2})TiO ₃ Ba _{6-3x} (La _{1-y} -Sm _y Bi ₂) _{8+2x} Ti ₁₈ O ₅₄ (x=2/3, ye ₂) (RP _{0.5} Ca _{0.5} O _{0.95} La _{0.05} I Fe _{0.5} Nb _{0.5}) _{1-y} Ti _y] 0.3(La _{1/3} Nd _{1/3})TiO ₃ (RP _{0.5} Ca _{0.5} O _{0.95} La _{0.05} I Fe _{0.5} Nb _{0.5}) _{1-y} Ti _y] 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ - 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6})O ₃ Ca(Zr _{0.4} Ti _{0.6} O ₃)	$x_2 Ce_2 Ti_5 O_{16}(S)$ x=0.4)+0.2	ir _{1-3×/2} Ce _x TiO ₃ wt% La,O ₃	1300/2h	Psuedocubic	113.0	9700		287	1620
Ba ₂ Sr ₂ Sm ₂ Ti _{4+x} Ta _{6-x} O _{30-x/2} (x=2) 1340/2h Ba ₂ Sr ₂ Sm ₂ Ti _{4+x} Ta _{6-x} O _{30-x/2} (x=2.5) 1340/3h 0.25CaTiO ₃ -0.75(Li _{1/2} Nd _{1/2})TiO ₃ +10 1200 wt% Bi ₄ B ₂ O ₉ 181 ₈ O ₅₄ 1320 caO-SrO-Li ₂ O-0.83Sm ₂ O ₃ - 1275 TiO ₂ 17Pr ₆ O ₁₁ O ₃ -TiO ₂ 1275 TiO ₂ 11O ₃ -TiO ₂ 11O ₃ -TiO ₂ 1275 TiO ₂ 11O ₃ -TiO ₃ 110O ₃ 110O ₃ 130O/3h y=0.5, z=0.15) 1350/3h 0.3(La _{1/2} Nd _{1/2})TiO ₃ -0.3(Na _{1/2} Sm _{1/2})TiO ₃ 130O/3h y=0.5, z=0.15) 1200 O _{3+d} (y=0.1) 1200 O _{3+d} (y=0.1) 130O Ba _{6-3x} (La _{1-y-x} Sm _y Bi ₂)8+2x Ti ₁₈ O ₅₄ (x=2/3, 1275/3h y=0.7, z=0.2) 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 1450/3 TiO ₂ Ca(Zr ₀ Tr ₀ O ₀ O ₃ Sm ₂ Co ₃ -0.17Sm ₂ O ₃ -140/2 TiO ₂ Ca(Zr ₀ Tr ₀ O ₀ O ₃ Sm ₂ Co ₃ -0.17Sm ₂ O ₃ -140/2).3CaTiO ₃ -0.7	Li _{1/2} Sm _{1/2} TiO ₃	1300/3h	Perovskite Orthorhombic	114.0	3700		12	1637
Ba ₂ Sr ₂ Sm ₂ Ti _{4+x} Ta _{6-x} O _{30-x/2} (x=2.5) 1340/3h 0.25CaTiO ₃ -0.75(Li _{1/2} Nd _{1/2})TiO ₃ +10 1200 wt% Bi ₄ B ₂ O ₉ xd ₁ E ₂ O ₉ Ba ₄ (Nd _{0.7} Bi _{0.3})9 _{3.3} Ti ₁₈ O ₅₄ 1320 caO-srO-Li ₂ O-0.83Sm ₂ O ₃ - 0.17Pr ₆ O ₁₁ O ₃ -πO ₂ 1000 0.17Pr ₆ O ₁₁ O ₃ -πO ₂ 1000 0.17Pr ₆ O ₁₁ O ₃ -πO ₂ 1000 0.7(Li _{1/2} Nd _{1/2})TiO ₃ -0.3(Na _{1/2} Sm _{1/2})TiO ₃ Ba _{O-3} x(La _{1-y-2} Sm _y Bi ₂)B ₃₋₂ x Ti ₁₈ O ₅₄ (x=2/3, y=0.5, z=0.15) 0.3CaTiO ₃ -0.4(Li _{1/2} Nd _{1/2})TiO ₃ 1300 Ba _{O-3x} (La _{1-y-2} Sm _y Bi ₂)B _{3-2x} Ti ₁₈ O ₅₄ (x=2/3, y=0.5, z=0.15) 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.7(Li _{1/2} Sm _{1/2})TiO ₃ 1300 Ba _{O-3x} (La _{1-y-2} Sm _y Bi ₂)B _{3+2x} Ti ₁₈ O ₅₄ (x=2/3, y=0.7, z=0.2) 0.3(La _{1/3} Nd _{1/3})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ -175O ₃ TiO ₃ Ca(Zr _{0.4} Ti _{0.6} O ₃)	3a, Sr, Sm, Ti ₄₊ ,	$T_{x} = 0$ (x=2)	1340/2h		114.0	150	3.63		1635
0.25CaTiO ₃ -0.75(Li ₁₁₂ Nd ₁₁₂)TiO ₃ +10 1200 wt% Bi ₄ B ₂ O ₉ Ba ₄ (Nd _{0.7} Bi _{0.3}) _{9.33} Ti ₁₈ O ₅₄ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ - 0.17Pr ₆ O ₁₁ O ₃ -0.75(Li ₁₁₂ Nd ₁₁₂)TiO ₃ BaO-(Nd _{0.7} Bi _{0.3}) _{2.3} 4Ti _{0.2} CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ - 0.17Pr ₆ O ₁₁ O ₃ -0.3(Na ₁₁₂ Sm ₁₁₂)TiO ₃ BaO-(Nd _{0.7} Bi _{0.3}) ₂ O ₃ -4TiO ₂ 1000 0.7(Li ₁₁₂ Nd ₁₂)TiO ₃ -0.3(Na ₁₁₂ Sm ₁₁₂)TiO ₃ Ba _{6.3x} (La ₁₁₂ Nd ₁₂)TiO ₃ -0.3(Na ₁₁₂ Sm ₁₁₂)TiO ₃ 0.3(La ₁₁₃ Nd ₁₁₃)TiO ₃ 0.3(La ₁₁₃ Nd ₁₁₃)TiO ₃ 0.3(La ₁₁₂ Nd ₁₁₂ Nd ₁₁₂)TiO ₃ -0.7(Li ₁₁₂ Sm ₁₁₂)TiO ₃ 0.3(La ₁₁₃ Nd ₁₁₃)TiO ₃ 0.6CaTiO ₃ -0.1(Li ₁₁₂ Nd ₁₁₂)TiO ₃ - 0.3(La ₁₁₃ Nd ₁₁₃)TiO ₃ 0.4CaTiO ₃ -0.3(Li ₁₁₂ Nd ₁₁₂)TiO ₃ - 1350/3h 0.3(La ₁₁₃ Nd ₁₁₃)TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6} O ₃)	3a, Sr, Sm, Ti ₄₊ ,	$x = A_{6-x} O_{30-x/2}$ (x=2.5)	1340/3h		114.0	140		I	1635
Ba ₄ (Nd _{0.7} Bi _{0.3}) _{9.33} Π ₁₈ O ₅₄ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ - 0.17Pr ₆ O ₁₁ O ₃ -ΠiO ₂ BaO-(Nd _{0.7} Bi _{0.3}) ₂ O ₃ -4ΠO ₂ 11275 TiO ₂ 0.7(Li _{1,2} Nd _{1,2})TiO ₃ -0.3(Na _{1,2} Sm _{1/2})TiO ₃ Ba _{0.3x} (La _{1-y-z} Sm _y Bi _z) _{8+zx} Πi ₁₈ O ₅₄ (x=2/3, y=0.5, z=0.15) 0.3CaTiO ₃ -0.4(Li _{1,2} Nd _{1,2})TiO ₃ -0.3(La _{1/2} Nd _{1/2})TiO ₃ 0.3CaTiO ₃ -0.4(Li _{1/2} Nd _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ ((PP _{0.5} Ca _{0.5} O _{0.55} La _{0.05})HFe _{0.5} Nb _{0.5}) _{1-y} Πy] 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 1350/3h y=0.7, z=0.2) 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6} O ₃)	0.25CaTiO ₃ -0. wt% Bi ₄ B ₂ O	$75(\text{Li}_{1/2}\text{Nd}_{1/2})\text{TiO}_3 + 10$	1200		114.0	2830		8	1638
CaO-SrO-Li ₂ O-0.835m ₂ O ₃ - 0.17Pr ₆ O ₁₁ O ₃ -TiO ₂ BaO-(Nd _{0,7} Bi _{0,3}) ₂ O ₃ -4TiO ₂ 1000 0.7(Li _{1,2} Nd _{1,2})TiO ₃ -0.3(Na _{1,2} Sm _{1/2})TiO ₃ 1000 0.7(Li _{1,2} Nd _{1,2})TiO ₃ -0.3(Na _{1,2} Sm _{1/2})TiO ₃ Ba _{6,3x} (La _{1-y-2} Sm _y Bi ₂) _{8+2x} Ti ₁₈ O ₅₄ (x=2/3, y=0.5, z=0.15) 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ ((Pb _{0,5} Ca _{0,5}) _{0.95} La _{0,05}][Fe _{0,5} Nb _{0,5}) _{1-y} Ti _y] 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ 0.6CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.835m ₂ O ₃ -0.175m ₂ O ₃ -	$3a_4(Nd_{0.7}Bi_{0.3})$	9.33 Ti ₁₈ O ₅₄	1320	Tungsten Bronze Orthorhombic	114.1	2700		44	1568
BaO-(Nd _{0,7} Bi _{0,3}) ₂ O ₃ -4TiO ₂ 1275 TiO ₂ 1000 0.7(Li _{1,2} Nd _{1/2})TiO ₃ -0.3(Na _{1/2} Sm _{1/2})TiO ₃ 1300/3h y=0.5, z=0.15) 0.3(aTiO ₃ -0.4(Li _{1,2} Nd _{1/2})TiO ₃ -1350/3h 0.3(aTiO ₃ -0.4(Li _{1,2} Nd _{1/2})TiO ₃ -1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 1200 O _{3+d} (y=0.1) 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 1300 Ba _{6,3x} (La _{1-y-x} Sm _y Bi ₂) _{8+2x} Ti ₁₈ O ₅₄ (x=2/3, 1275/3h y=0.7, z=0.2) 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ -1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ -1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ -145O ₃	CaO-SrO-Li ₂ O 0.17Pr ₆ O ₁₁ C	-0.835m ₂ O ₃ -) ₃ -TiO ₂		Perovskite Orthorhombic	114.3	4850	I	4	1612
TiO ₂ 0.7(Li _{1/2} Nd _{1/2})TiO ₃ -0.3(Na _{1/2} Sm _{1/2})TiO ₃ Ba _{6-3x} (La _{1-y-z} Sm _y Bi _z) _{8+2x} Ti ₁₈ O ₅₄ (x=2/3), 1300/3h y=0.5, z=0.15) 0.3CaTiO ₃ -0.4(Li _{1/2} Nd _{1/2})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ ((Pb _{0.5} Ca _{0.5}) _{0.95} La _{0.05}][Fe _{0.5} Nb _{0.5}) _{1-y} Ti _y] 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ ((Pb _{0.5} Ca _{0.5}) _{0.95} La _{0.05}][Fe _{0.5} Nb _{0.5}) _{1-y} Ti _y] 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ Ba _{6-3x} (La _{1-y-z} Sm _y Bi _z) _{8+2x} Ti ₁₈ O ₅₄ (x=2/3), 1275/3h y=0.7, z=0.2) 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ 0.6CaTiO ₃ -0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6})O ₃ Ca(Zr _{0.4} Ti _{0.6})O ₃ Ca(Zr _{0.4} Ti _{0.6})O ₃	$3aO-(Nd_{0.7}Bi_{0.}$	$_{3}^{})_{2}O_{3}-4\Pi O_{2}$	1275	Tungsten Bronze	115.0	2100		26	168
0.7(Li _{1/2} Nd _{1/2})TiO ₃ -0.3(Na _{1/2} Sm _{1/2})TiO ₃ Ba _{6-3x} (La _{1-y-2} Sm _y Bi ₂)g _{+2x} Ti ₁₈ O ₅₄ (x=2/3, y=0.5, z=0.15) 0.3CaTiO ₃ -0.4(Li _{1/2} Nd _{1/2})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ 0.6CaTiO ₃ -0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ -1.60	iO,		1000	Rutile	115.0	46000			1639
Ba _{6-3x} (La _{1-y-z} Sm _y Bi _z) _{8+2x} Γi ₁₈ O ₅₄ (x=2/3, 1300/3h y=0.5, z=0.15) 0.3CaTiO ₃ -0.4(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ - 0.6CaTiO ₃ -0.3(La _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ - TiO ₂ Ca(Zr ₀ ATi _{0,6})O ₃).7(Li _{1/2} Nd _{1/2})7	$FIO_3-0.3(Na_{1/2}Sm_{1/2})TIO_3$		Orthorhombic	115.0	3800		15	1640
0.3CaTiO ₃ -0.4(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.3(La _{1/3} Nd _{1/3})TiO ₃ ([Pb _{0.5} Ca _{0.5}) _{0.95} La _{0.05}][Fe _{0.5} Nb _{0.5}) _{1.7} Ti ₇] 1200 O _{3+d} (y=0.1) 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 1275/3h y=0.7, z=0.2) 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6})O ₃	$a_{6-3x}(La_{1-y-z}Sn_{y=0.5, z=0.1}$	$n_y Bi_z)_{8+2x} Ti_{18} O_{54} (x=2/3, 15)$	1300/3h	Tungsten Bronze Orthorhombic	115.4	1884	3.58	-22	1571
[(Pb _{0.5} Ca _{0.5}) _{0.95} La _{0.05}][Fe _{0.5} Nb _{0.5}) _{1-y} Ti _y] 1200 O _{3+d} (y=0.7) 0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 1300 Ba _{6.3x} (La _{1-y-z} Sm _y Bi _z) _{8+zx} Ti ₁₈ O ₅₄ (x=2/3, 1275/3h y=0.7, z=0.2) 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ - 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 1350/3h CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6})O ₃	0.3(La _{1/3} Nd _{1,}	(Li _{1/2} Nd _{1/2})ΤiO ₃ - _{/3})ΤiO ₃	1350/3h	Orthorhombic Pbnm Perovskite	116.0	1675		23	1498
0.3(Na _{1/2} La _{1/2})TiO ₃ -0.7(Li _{1/2} Sm _{1/2})TiO ₃ 1300 Ba _{6.3x} (La _{1-y-z} Sm _y Bi _z) _{8+2x} Ti ₁₈ O ₅₄ (x=2/3, 1275/3h y=0.7, z=0.2) 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ - 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.835m ₂ O ₃ -0.175m ₂ O ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6})O ₃	$(Pb_{0.5}Ca_{0.5})_{0.95}$ O_{3+d} (y=0.1)	$_{5}^{\rm La_{0.05}][{\rm Fe_{0.5}Nb_{0.5}})_{1-y}\Pi_{y}]}$	1200	Perovskite Orthorhombic	116.6	4950	17	17	1576
Ba _{6-3×} (La _{1-γ-z} Sm _γ Bi ₂) _{8+2×} Ti ₁₈ O ₅₄ (x=2/3, 1275/3h γ=0.7, z=0.2) 0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 1350/3h 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ 1350/3h 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.835m ₂ O ₃ -0.175m ₂ O ₃ - TiO ₂ Ca(Zr ₀ 4Ti ₀ ₆)O ₃ 14.7.0).3(Na _{1/2} La _{1/2})	$TiO_3-0.7(Li_{1/2}Sm_{1/2})TiO_3$	1300	Perovskite Orthorhombic	117.0	2280	3	-19	1421
0.6CaTiO ₃ -0.1(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ 0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ - TiO ₂ Ca(Zr ₀ 4Ti ₀ ₆)O ₃ Ca(Zr ₀ 4Ti ₀ ₆)O ₃	$a_{6-3x}(La_{1-y-z}Sn_{y=0.7}, z=0.2)$	$n_y Bi_z)_{8+2x} Ti_{18} O_{54} (x=2/3, 2)$	1275/3h	Tungsten Bronze Orthorhombic	117.0	1780	4.29	-36	1571
0.4CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(La _{1/3} Nd _{1/3})TiO ₃ CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6})O ₃).6CaTiO ₃ -0.1 0.3(La _{1/3} Nd _{1,}	(Li _{1/2} Nd _{1/2})TiO ₃ - ₃)TiO ₃	1350/3h	Orthorhombic Pbnm Perovskite	117.0	3950		258	1498
CaO-SrO-Li ₂ O-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ - TiO ₂ Ca(Zr _{0.4} Ti _{0.6})O ₃	0.3(La _{1/3} Nd ₁	(Li _{1/2} Nd _{1/2})TiO ₃ - ₃)TiO ₃	1350/3h	Orthorhombic Pbnm Perovskite	117.0	2070		119	1498
$Ca(Zr_{0.4}Ti_{0.6})O_3$	CaO-SrO-Li ₂ O TiO,	-0.83Sm ₂ O ₃ -0.17Sm ₂ O ₃ -		Perovskite Orthorhombic	117.5	4120	I	15	1612
1430	${\sf Ca}({\sf Zr}_{0.4}{\sf Ti}_{0.6}){\sf O}_3$ ${\sf Pb}_{0.65}{\sf Ca}_{0.35}{\sf ZrO}_3$)3)3	1450	Perovskite Orthorhombic Perovskite	118.0	6400 1260	2.8	29	906 1514

6
g
ij
'n
8
_

4018	$Sr_{5.7}Al_{0.7}Nb_{9.3}O_{30}$	1375	Tetragonal Tungsten Bronze P4bm	118.0	80	3.1		562
4019	$Bi_{1.5}Zn_{0.92}Nb_{1.5}O_{6.92}+3$ wt% (0.81MoO ₃ -0.19CuO)	900/4h	Cubic	118.2	1000	2.3		1641
4020	$Ba_{0.75}Sr_{0.25}(Nd_xBi_{1-x})_2Ti_4O_{12}$ (x=0.75)	1250		118.5	4900		<u></u>	1642
4021	$Ca_{1-x}Nd_{2x/3}TiO_3 (x=0.2)$	1400/4h	Perovskite Orthorhombic	119.0	4200	7.2	433	1599
4022	$Ca_{1-x}Sm_{2x/3}TiO_3$ (x=0.2)	1450/3h	Perovskite Orthorhombic	119.3	12330	5		1604
4023	$(1-x)Li_{1/2}Sm_{1/2}TiO_3-xNaNbO_3$ (x=0.2)			120.0	2300		6	1630
4024	$B_{1.5}Zn_{0.92}Nb_{1.5}O_{6.92}+3 \text{ wt}\%$ (0.21BaCO ₃ -0.79CuO)	950/4h	Cubic	120.1	1050	2.3		1641
4025	$Ba_{6-3x}(La_{1\cdot y-z}Sm_yBi_z)_{8+2x}Ti_{18}O_{54} \ (x=2/3, y=0.5, z=0.18)$	1300/3h	Tungsten Bronze	120.2	1571	3.8	-15	1571
4026	0.4CaTiO ₃ - 0.5 (Li _{1/2} Nd _{1/2})TiO ₃ - 0.1 (La _{1/3} Nd _{1/3})TiO ₃	1350/3h	Orthorhombic Pbnm Perovskite	121.3	3040		113	1498
4027	0.45CaTiO ₃ -0.25(Li _{1/2} Nd _{1/2})TiO ₃ - 0.3(Dy _{1/3} Nd _{1/3})TiO ₃	1350/3h	Orthorhombic Pbnm Perovskite	121.3	3650		109	1498
4028	$(La_{1/2}Na_{1/2})TiO_3$	1300	Cubic perovskite	122.0	0086	3	480	1421
4029	0.15CaO-0.011SrO—0.09Li ₂ O- 13Sm O -0 63TiO			123.0	4150		10.8	1612
4030	0.5CaTiO ₃ -0.4(Li _{1/2} Nd _{1/2})TiO ₃ -	1350/3h	Orthorhombic Pbnm Perovskite	123.0	4148		136	1498
4031	Sr ₃ Ce ₂ TI ₆ O _{1a} (Sr ₁₋₃₋₂ Ce ₂ TiO ₃ x=0.333)	1350/2h	Psuedocubic	123.0	10000		392	1643
4032	$Ba_{6-3x}(La_{1-y-z}Sm_yBi_z)_{8+2x}Ti_{18}O_{54} (x=2/3, y=0.5, z=0.2)$	1300/3h	Tungsten Bronze Orthorhombic	124.5	1430	3.58	6-	1571
4033	0.4CaTiO ₃ -0.6Li _{1/2} Nd _{1/2} TiO ₃		Perovskite Orthorhombic	126.0	2600	2.1	127	1644
4034	$Bi_{1.5}Zn_{0.92}Nb_{1.5}O_{6.92}$	1050/4h		126.2	520	2.4		1495
4035	$Ba_3La_3Tl_5Ta_5O_{30}$	1425		126.6	110	3.1	100	1645
4036	$ \begin{array}{l} (Pb_{_{1}\text{-x}}Ca_x)[Fe_{1/2}Nb_{1/2}]_{1\text{-y}}Zr_y]O_3\ (y{=}0.01,\\ x{=}0.4) \end{array} $	1150	Perovskite	126.7	3630	3	118	1488
4037	хВі ₄ В ₂ О ₉ -(1-х)(0.2СаПО ₃ - 0.8Lі _{0.5} Nd _{0.5} ТІО ₃)		Composite	127.0	2700		4	287

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_f$	Reference
4038	0.2Pb(Fe _{2/3} W _{1/3})O ₃ -	930	Perovskite	127.2	2300		96	1480
	$0.8 Pb_{0.45} Ca_{0.55} (Fe_{1/2} Nb_{1/2}) O_3$							
4039	0.6CaTiO ₃ -0.3(Li _{1/2} Nd _{1/2})TiO ₃ - 0.1(La _{1/2} Nd _{1/2})TiO ₃	1350/3h	Orthorhombic Pbnm Perovskite	128.2	4460		256	1498
4040	0.5(Li _{1/2} Nd _{1/2})TiO ₃ -0.5(Na _{1/2} Nd _{1/2})TiO ₃		Perovskite	130.0	2000		20	1640
4041	0.2CaTiO ₃ -0.8Li _{.5} Nd _{.5} ΠO ₃ +5 wt% Bi,Ti,O ₇	1300	Perovskite Orthorhombic Pbnm	130.0	2400		20	1646
4042	(La _{0.44} Pb _{0.33})TO ₃	1300	Orthorhombic Ibmm	130.0	5000	3	300	1547
4043	Ba ₄ La, Ti ₄ Ta ₆ O ₃₀	1425		131.8	540	3.47	I	1645
4044	$Pb_{n7}Ca_{n3}ZrO_3$	1400	Perovskite	132.0	1800	2.8	98	1514
4045	0.2CaTiO ₃ -0.68(Li _{1/2} Nd _{1/2})TiO ₃ - 0.12(La _{1/3} Nd _{1/3})TiO ₃	1350/3h	Tetragonal P-4b2 Perovskite	132.6	1450		-17	1498
4046	Sr ₄ Ce ₂ Ti ₇ O ₂ ,	1325	Psuedocubic perovskite	133.0	11100	2.3		1643
4047	Sr ₀ 8Ca ₀ ,TiO ₃	1400	Perovskite	133.9	3950	1.62	1534	1222
4048	$5CaO-2Nb_2O_5-3TiO_2$	1300/5h	Composite	134.0	1500			53
4049	$0.8CaTiO_3-0.2(Li_{1/2}Nd_{1/2})TiO_3$		Perovskite	134.0	13800		200	1644
4050	$0.5(Ca_{0.7}Nd_{0.2})TiO_3-0.5(Li_{1/2}Nd_{1/2})TiO_3$	1150/4h	Composite	134.0	2200		20	1647
4051	$Sr_4Ce_2Ti_7O_{22}(Sr_{1-3x/2}Ce_xTiO_3 x=0.286)$	1350/2h	Psuedocubic perovskite	136.0	10800		428	1643
4052	0.4CaTiO ₃ -0.48(Li _{1/2} Nd _{1/2})TiO ₃ - 0.12(La _{1/3} Nd _{1/3})TiO ₃	1350/3h	Perovskite Orthorhombic Pbnm	136.4	2220		122	1498
4053	$La_{(1-x)/3}Na_xNbO_3$ (x=0.02)	1350.2h	Peerovskite	138.0	1700		350	1648
4054	$Ca(Zr_xTi_{1-x})O_3 (x=0.3)$	1430/15h	Perovskite	138.0	4900	2.3	588	906
4055	Ca _{0.16} Sr _{0.04} Li _{0.4} Nd _{0.4} TiO ₃ +0.75 mol% Li	1270	Perovskite Pnma	138.0	1600		52	1649
4056	0.4CaTiO ₃ -0.6(LiNd)TiO ₃		Perovskites	139.0	3250		110	1650
4057	$Pb_{0.6}Ca_{0.4}[(Fe_{1/2}Nb_{1/2})_{0.95}Sn_{0.05}O_3$	1150/3h	Perovskite cubic	139.4	2450		140	1497
4058	PbZrO ₃ -CeO ₂	1250/4h	Composite	140.0	2500	3	-1080	1651
4059	0.6PbZrO ₃ - 0.4 Ca(Fe _{1/2} Nb _{1/2})O ₃	1250/3h	Perovskite	140.7	1776	3.02	120	1576
4060	$(Ca_{1-x}Nd_{2x/3})TiO_3 (x=0.15)$	1300	Perovskite	141.0	11300	2.77		1619
4061	$Ca(Zr_xTi_{1-x})O_3 (x=0.2)$	1430/15h	Perovskite	141.0	2900	2.14	732	906
4062	$(Ca_1Nd_{36})TiO_3 (x=0.27)$	1300	Perovskite	141.0	10350	3.07		1619

8
ĕ
Ξ
₹
Ë
$_{\rm S}$
ے

1325 Psuedocubic Perovskite 1150/3h Perovskite Cubic xTiO ₃ x=0.25) 1375/2h Psuedocubic Perovskite Tetragonal 14/mcm 2.6 wt% V ₂ O ₅ 850/1h Composite Composite 1170 ₃ +15 wt% Cubic Cubic Cubic Cubic Perovskite 1375/2h Psuedocubic Perovskite Perovskite 1400 Orthorhombic Perovskite 1200/3h Perovskite Perovskite 1200/3h Perovskite Perovskite 1250/4h Orthorhombic Perovskite Perovskite NiO-Nb ₂ O ₅ Orthorhombic Perovskite NiO-Nb ₂ O ₅ Porthorhombic Perovskite NiO-Nb ₂ O ₅ Provskite Cubic Perovskite NiO-Nb ₂ O ₅ Perovskite	0.6€aπ 0.12(I	$0.6 ext{CaTiO}_3 ext{-} 0.28 (ext{Li}_{1/2} ext{Nd}_{1/2}) ext{TiO}_3 ext{-} 0.12 (ext{La}_{1/3} ext{Nd}_{1/3}) ext{TiO}_3$	1350/3h	Perovskite Orthorhombic Pbnm	142.0	3327		283	1498
1150/3h Perovskite Cubic 1375/2h Psuedocubic Perovskite Tetragonal I4/mcm 850/1h Composite Composite Composite 1410/15h Perovskite Perovskite Orthorhombic Perovskite Orthorhombic Perovskite 1375/2h Psuedocubic Perovskite 1400 Orthorhombic Perovskite 1400 Orthorhombic Perovskite 1300 Perovskite cubic 1375/2h Psuedocubic Perovskite 1250/4h Orthorhombic Perovskite 1250/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	e_2T	8O ₂₅	1325	Psuedocubic Perovskite	142.0	11100	2.3		1643
1375/2h Psuedocubic Perovskite Tetragonal 14/mcm 850/1h Composite Composite 1410/15h Perovskite 1175 Cubic Cubic Cubic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite 1375/2h Psuedocubic Perovskite Phnm 1200/3h Perovskite cubic 1300 Perovskite cubic 1300 Perovskite Composite 1250/4h Orthorhombic Perovskite 1250/4h Orthorhombic Perovskite 1250/4h Psuedocubic Perovskite 1250/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	Ca_{ℓ}	$[(Fe_{1/2}Nb_{1/2})_{0.9}Sn_{0.1}O_3]$	1150/3h	Perovskite Cubic	142.6	2520		130	1497
Perovskite Tetragonal 14/mcm 850/1h Composite Composite 1410/15h Perovskite 1175 Cubic Cubic Cubic Perovskite Orthorhombic Perovskite Perovskite 1375/2h Psuedocubic Perovskite Perovskite 1400 Orthorhombic Perovskite Phnm 1200/3h Perovskite cubic 1300 Perovskite Cubic 1300 Perovskite Cubic 1300 Perovskite Cubic 1250/4h Orthorhombic Perovskite 1250/4h Psuedocubic Perovskite 1250/3h Psuedo Cubic Perovskite	e_2T	${}_{18}O_{25}(Sr_{1-3x/2}Ce_xTiO_3 x=0.25)$	1375/2h	Psuedocubic	143.0	11000		478	1643
850/1h Composite Composite 1410/15h Perovskite 1375/2h Perovskite Orthorhombic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite 1375/2h Psuedocubic Perovskite Perovskite 1300 Orthorhombic Perovskite 1200/3h Perovskite 1250/4h Orthorhombic Perovskite 1250/4h Orthorhombic Perovskite 1250/4h Orthorhombic Perovskite 1250/4h Psuedo Cubic Perovskite	Ca_0	.2 TiO ₃		Perovskite Tetragonal 14/mcm	145.0	4050	1.62	1534	1358
Composite 1410/15h Perovskite 1375/2h Perovskite Orthorhombic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite 1375/2h Psuedocubic Perovskite Phnm 1200/3h Perovskite cubic 1300 Perovskite 1300 Perovskite 1250/4h Orthorhombic Perovskite 1250/4h Orthorhombic Perovskite 1250/3h Psuedo Cubic Perovskite 1250/3h Perovskite Cubic	Zn_0	$_{.92}$ Nb _{1.5} O _{6.92} +0.6 wt% V ₂ O ₅	850/1h		148.0	120			1495
Composite 0.1) 1410/15h Perovskite 1410/15h Perovskite Cubic Perovskite Orthorhombic Perovskite Perovskite Orthorhombic Perovskite Phoma 1375/2h Psuedocubic Perovskite Phoma 1375/2h Psuedocubic Perovskite Phoma 1200/3h Perovskite cubic 1300 Perovskite cubic 1300 Perovskite Cubic 1300 Perovskite Cubic 1375/2h Psuedocubic Perovskite 1300 Perovskite Cubic 1375/2h Psuedocubic Perovskite 1300 Perovskite Cubic 1375/2h Psuedo Cubic Perovskite 140/110/110/110/110/110/110/110/110/110/	aTi 1(Bi	O ₃ -0.5(LiNd)TiO ₃ - ,Na)TiO ₃		Composite	148.0	2650		123	1650
0.1) 1410/15h Perovskite 1400/15h Perovskite Cubic Cubic Cubic Cubic Cubic Cubic Cubic Cubic Perovskite Orthorhombic Perovskite Perovskite Orthorhombic Perovskite Orthorhombic Perovskite Perovskite 1400 Orthorhombic Perovskite Phmm 1200/3h Perovskite cubic 1300 Perovskite 1300 Perovskite 1300 Perovskite 1300 Perovskite 1250/4h Orthorhombic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1200/3h Perovskite Cubic 1200/3h Perovskite Cubic 1200/3h Perovskite Cubic 1200/3h Perovskite 1200/3h Perovskite 1200/3h Perovskite 1200/3h Perovskite 1200/3h Perovskite	aTi	O_3 -0.6Li $_{1/2}$ Nd $_{1/2}$ Ti O_3 +15 wt% -2Ti O_2		Composite	150.0	2200		65	1646
Cubic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite 1400 Orthorhombic Perovskite 1200/3h Perovskite cubic 1300 Perovskite cubic 1300 Perovskite cubic 1300 Perovskite Cubic 1300 Perovskite Cubic 1200/3h Orthorhombic Perovskite Orthorhombic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite 1400 Orthorhombic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite	r. T	$O_3(x=0.1)$	1410/15h	Perovskite	150.0	2000	2.02	749	906
Cubic Cubic Cubic 12.0 O_3 13.75/2h Psuedocubic Perovskite Perovskite Orthorhombic Perovskite Orthorhombic Perovskite Orthorhombic Perovskite 1400 Orthorhombic Perovskite Phnm 1200/3h Perovskite cubic 1300 Perovskite cubic 1300 Perovskite 1300 Perovskite 1300 Perovskite 1200/3h Psuedocubic Perovskite 1200/3h Perovskite Orthorhombic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite 1400 Perovskite	CaTi		1175		150.0	2400		70	1644
1375/2h Psuedocubic Perovskite Perovskite Orthorhombic Perovskite Orthorhombic 1375/2h Psuedocubic Perovskite 1400 Orthorhombic Perovskite Pbnm 1200/3h Perovskite cubic 1300 Perovskite 1375/2h Psuedocubic Perovskite 1250/4h Orthorhombic Perovskite 1250/4h Psuedo Cubic Perovskite 1375/2h Psuedo Cubic Perovskite	ZnZ	4b _{1.5} O ₇		Cubic	150.0	300	2.9		1652, 1653
Perovskite Orthorhombic Perovskite 1375/2h Psuedocubic Perovskite 1400 Orthorhombic Perovskite Pbnm 1200/3h Perovskite cubic 1300 Perovskite 1375/2h Psuedocubic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	e ₂ T	$_{19}O_{28}(Sr_{1-3x/2}Ce_{x}TiO_{3} x=0.222)$	1375/2h	Psuedocubic Perovskite	150.0	0096		497	1643
Perovskite 1375/2h Psuedocubic Perovskite 1400 Orthorhombic Perovskite Pbnm 1200/3h Perovskite cubic 1300 Perovskite 1375/2h Psuedocubic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	_r 0.2	Π _{0.8})Ο ₃		Perovskite Orthorhombic	153.0	4400			906
1375/2h Psuedocubic Perovskite 1400 Orthorhombic Perovskite Pbnm 1200/3h Perovskite cubic 1300 Perovskite 1375/2h Psuedocubic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	\mathbb{C}_{a_0}	$_{1.4}(Fe_{1/2}Nb_{1/2})O_3$		Perovskite	154.0	1700	2.3	135	966
1400 Orthorhombic Perovskite Pbnm 1200/3h Perovskite cubic 1300 Perovskite 1375/2h Psuedocubic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	e_2T	$_{10}O_{31}$ (Sr _{1-3x/2} Ce _x TiO ₃ x=0.2)	1375/2h	Psuedocubic Perovskite	157.0	9300		544	1643
1200/3h Perovskite cubic 1300 Perovskite 1375/2h Psuedocubic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	<u>Ö</u>		1400	Orthorhombic Perovskite Pbnm	162.0	1290	1.5	859	1358
1300 Perovskite 1375/2h Psuedocubic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	²b(F€	$^{2}_{1/2}Nb_{1/2})O_{3}$ -0.9CaTiO $_{3}$	1200/3h	Perovskite cubic	164.0	6180	2.8	583	1654
1375/2h Psuedocubic Perovskite 1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	75 Cé	$_{ m 10.25}ZrO_3$	1300	Perovskite	167.0	096	2.4	111	1514
1250/4h Orthorhombic Perovskite 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	e_2T	$I_{11}O_{34} (Sr_{1-3x/2}Ce_xTiO_3 x=0.182)$	1375/2h	Psuedocubic Perovskite	167.0	8000		601	1643
Orthorhombic Perovskite 1200/3h Perovskite Cubic 1375/2h Psuedo Cubic Perovskite	õ	$-CeO_2$ -SrTiO ₃ -NiO-Nb ₂ O ₅	1250/4h		170.0	3600	3	800	1651
1200/3h Perovskite Cubic (=0.167) 1375/2h Psuedo Cubic Perovskite	Ca_0	PIO ₃		Orthorhombic Perovskite	170.0	8320	_	931	1358
(=0.167) 1375/2h Psuedo Cubic Perovskite	b(Fe	$^{2}_{1/2}Nb_{1/2})O_{3}$ -0.7CaTiO $_{3}$	1200/3h	Perovskite Cubic	172.7	810	2.7	392	1654
	e ₂ T	$_{1_2}O_{37}$ (Sr _{1-3x/2} Ce _x TiO ₃ x=0.167)	1375/2h	Psuedo Cubic Perovskite	173.0	3000		637	1643
	aTii 2(Bi	O ₃ -0.4(LiNd)TiO ₃ - ,Na)TiO ₃			174.0	1300		91	1650
1340 Cubic Pm3m	\mathcal{O}_3		1340	Cubic Pm3m	177.0	2900	3.6		1655

No.	Material	ST (°C)	Crystal structure	\mathcal{E}_{r}	Qf (GHz)	f_0	$ au_{f}$	Reference
4088	$Sr_{10}Ce_2TI_{13}O_{40} (Sr_{13x/2}Ce_xTiO_3 x=0.154)$	1400/2h	Psuedo Cubic Perovskite	179.0	8000		724	1643
4089	$Ca_{1.8}Sr_{0.2}Bi_4Ti_5O_{18}$	1175/5h	Orthorhombic	180.0	8000			1656
4090	Sr _{0.2} Ca _{0.8} TiO ₃		Perovskite	181.0	3900	4.1	991	1358
4091	$Sr_{11}Ce_{2}\Pi_{14}O_{43}$ ($Sr_{1-3x/2}Ce_{x}\PiO_{3}$	1400/2h	Psuedo Cubic Perovskite	185.0	0009		789	1643
4092	x=0.154) 0.4CaTiO03(1iNd)TiO			2040	1300		147	1650
5	0.3(Bi, Na)TiO ₃			5			<u>:</u>	
4093	Sr _{0.4} Ca _{0.6} TiO ₃		Perovskite	218.0	7180	1.3	1164	1358
4094	Ba _{0.5} Sr _{0.5} TiO ₃ -BaWO ₄			225.0	580			1657
4095	Sr ₈ Ce ₂ PbTi ₁₂ O ₃₆	1300		229.0	4400	2	950	1658
4096	0.5Pb(Fe _{1/2} Nb _{1/2})O ₃ -0.5СаПО ₃	1200/3h	Perovskite Cubic	232.1	870	2.3	433	1654
4097	Sr _{0.5} Ca _{0.5} TiO ₃		Perovskite Orthorhombic Pbnm	236.0	4120	1.2	1234	1358
4098	0.4CaTiO ₃ -0.2(LiNd)TiO ₃ -			253.0	740			1650
4099	Pb _{1.5} Nb ₂ O _{6.5}		Cubic	259.0	3010		1239	1659
4100	Ca _{0.5} Sr _{0.5} TiO ₃	1350	Orthorhombic	260.0	7000		384	1660
4101	SrTiO ₃		Cubic perovskite Pm-3m	270.0	3000	2	1500	1358,
								1661
4102	$Ag(Nb_{1/3}Ta_{2/3})O_3+1 wt\% CuO$	875	Perovskite Orthorhombic pbcm	271.0	800			1662
4103	BaTi $_{0.7}$ Ga $_{0.15}$ Nb $_{0.15}$ O $_3$	1500/4h	Perovskite Tetragonal P4mm	275.0	100	2.4		1373
4104	$Ag(Nb_{2/4}Ta_{2/4})O_3$	1200	Perovskite Pbcm Orthorhombic	285.0	300	2.4		1662
4105	$Ag(Nb_{1/4}Ta_{3/4})O_3$	925	Perovskite Pbcm	295.0	009	2.6		1662
4106	$Sr_7Ce_2Pb_2TI_{12}O_{37}$	1250		301.0	4300	1.8	1287	1658
4107	40 wt% Ba _{0.6} Sr _{0.4} TiO ₃ -60 wt% BaZn ₆	1300	Composite	324	400			1663
4108	6.219 0.8PbZrO ₂ -0.2Ca(Fe _{1.7} ,Nb _{1.7})O ₃	1250/3h	Perovskite Rhombohedral	335.8	314	2	386	1576
4109	$\mathrm{Bi_6Ti_5TeO_{22}}$	1010/10h		350.0	220		2600	1131

1664 1665 1666 1667 1667 1358	1668 1669 1662 1662 1664	1654 1663 1664 1373 1664 1670 1670
2218		1075
2.3 2.3 2.17	2.11 1.97 1.89 1.9	1.42
2400 1500 800 400 430 2250 2300	365 580 200 200 850	120 250 250 1600 40 300 720 330
365.0 365.0 380.0 398.0 415.0 420.0	431.0 449.0 463.0 487.0 560.0	566.0 584.0 672.0 760.0 838.0 1038.0 2553.0
Cubic perovskite Cubic perovskite Perovskite Perovskite, Perovskite, Monoclinic P2/m Perovskite	Perovkite Perovskite Orthorhombic Perovskite Orthorhombic Pbcm Perovskite	Perovskite Cubic Composite Perovskie Perovskie Perovskie Perovskite Perovskite Perovskite
1450/3h 1350 1200 900 1250/20h 1200	1400/4h 925 925 1450/3h	1150/3h 1300 1450/3h 1500/4h 1450/3h
Ba _{0.2} Sr _{0.8} TiO ₃ Ba _{0.3} Sr _{0.7} TiO ₃ -10 mol% MgTiO ₃ AgTa _{0.57} Nb _{0.43} O ₃ Ag(Nb _{2/4} Ta _{2/4})O ₃ +1 wt% CuO Ag _{0.52} Ta _{0.48} O ₃ Ba _{0.5} Sr _{0.5} TiO ₃ Sr ₆ Ce ₂ Pb ₃ Ti ₁₂ O ₃₆	Ba _{0.5} Sr _{0.5} Ti _{1.3y/2} W _y O ₃ (y=0.05) Ba _{0.4} Sr _{0.6} Ti _{0.9} Mn _{0.1} O ₃ Ag(Nb ₃₄ Ta _{1,4})O ₃ . Ag(Nb _{1,4} Ta _{3,4})O ₃ (5:55) Ag(Nb _{3,4} Ta _{1,4})O ₃ Ba _{0.8} Sr _{0.2} TiO ₃	0.7Pb(Fe _{1/2} Nb _{1/2})O ₃ -0.3CaTiO ₃ 60 wt% Ba _{0.6} Sr _{0.4} TiO ₃ -40 wt% BaZn ₆ Ti ₆ O ₁₉ Ba _{0.4} Sr _{0.6} TiO ₃ Ba _{10.5} Ga _{0.25} Nb _{0.25} O ₃ Ba _{0.6} Sr _{0.4} TiO ₃ +2 mol% BaCu(B ₂ O ₅₎ Ba _{0.6} Sr _{0.4} TiO ₃ +2 wt% MgCO ₂ (VO ₄) ₂
4110 41112 41113 41114 4115		4122 4123 4124 4125 4126 4127 4128

References

- Abhilash, P., Thomas, D., and Sebastian, M.T. (2013) International Journal of Modern Physics. Conference Series, 22, 159–163.
- Li, E., Zhang, P., Duan, S.Y., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 8398–8403.
- 3. Hu, C. and Liu, P. (2013) Journal of Alloys & Compounds, 559, 129–133.
- 4. Li, L., Lui, C. H., Zhu J. Y., et al. (2016) Journal of European Ceramic Society, in press.
- Li, L., Fang, Y., Xiao, Q., Wu, et al. (2014) International Journal of Applied ceramic Technology, 11, 193–199.
- Wang, S-F., Wang, Y-R., Hsu, Y-F., et al. (2012) Journal of Alloys & Compounds, 498, 211– 216.
- 7. Fang, Y., Li, L., Xiao, O., et al. (2012) Ceramic International, 38, 4511–4515.
- 8. Chiang, S.-C., Wang, S-F., Wang, Y-R., et al. (2008) Ceramic International, 34, 599-604.
- Qin, N., Krzmanc, M. M., and Suvorov, D. (2008) Journal of American Ceramic Society, 91, 2593–2600.
- 10. Manu, K. M., Anjana, P. S., and Sebastian, M. T. (2011) Materials Letters, 65, 565-567.
- 11. Zhang, G.Q., Wang, H., Guo, J., et al. (2015) Journal of American Ceramic Society, 98, 528–533
- Ohsahi, M., Ogawa, H. Kan, A., et al. (2005) Journal of European Ceramic Society, 25, 2877– 2881.
- 13. Jeong, B.J., Joung, M-R., Kweon, S-H., et al. (2012) Journal of American Ceramic Society, 95, 811–813.
- 14. George, S., Sebastian, M. T., Raman, S., et al. (2011) International Journal of Appled Ceramic Technology, 8, 172–179.
- 15. Schott AG, Germany.
- Ohsato, H., Kim, J-S., Kim, A-Y., et al. (2011) Japanese Journal of Applied Physics, 50, 09NF01.
- Kweon, S-H., Joung, M-R., Kim, J-S., et al. (2011) Journal of American Ceramic Society, 94, 1995–1998.
- 18. Okamura, T. and Kishina, T. (1998) Japanese Journal of Applied Physics, 37, 5364–5366.
- George, S., Anjana, P. S., Deepu, V. N., et al. (2009) Journal of American Ceramic Society, 92, 1244–1249.
- Ando1, M., Ohsato, H., Igimi, D., et al. (2015) Japanese Journal of Applied Physics, 54, 10NE04/1-7.
- 21. Zhou, D., Sun, R., Gong, S., et al. (2011) Ceramic International, 37, 2377–2382.
- Sasikala, T. S., Suma, M. N., Mohanan, P., et al. (2008) Journal of Alloys & Compounds, 461, 555–559.
- 23. Chen, X., Zhao, X., Luo, L., et al. (2008) Japanese Journal of Applied Physics, 47, 3572–3575.
- Kahari, H., Teirikangas, M., Juuti, J., et al. (2014) Journal of American Ceramic Society, 97, 3378–3379.
- George, S., Sajith, V. K., Sebastian, M. T., et al. (2011) Journal of Advanced Dielectrics, 1, 209–213.
- 26. Nair, I. J., and Sebastian, M. T. (2015) Proceedings of Kerala Science Congress, India
- Choi, Y-J., Park, J-H., Ko, W-J., et al. (2006) Journal of American Ceramic Society, 89, 562– 567.
- 28. Hu, C., Liu, Y., Zhang, W., et al. (2014) Materials Research Bulletin, 53, 54-57.
- Krzmanc, M. M., Valant, M. and Suvorov, D. (2005) Journal of European Ceramic Society, 25, 2835–2838.
- Zhou, D., Rindall, C. A., Wang, H., et al. (2010) Journal of American Ceramic Society, 93, 1096–1100.
- 31. He, M., Zhang, S., Zhou, X., et al. (2011) Journal of Alloys & Compounds, 509, 4260–4263.
- Zhou, D., Rindall, C. A., Pang, L-X., et al. (2011) Journal of American Ceramic Society, 94, 348–350.

- 33. Zhang, G-Q., Guo, J., He, L., et al. (2014) Journal of American Ceramic Society, 97, 241–245.
- 34. Kim, J-S., Nguyen, N-H., Lim, J-J., et al. (2008) Journal of American Ceramic Society, 91, 671–674.
- 35. Yoon, S. O., Shim, S. H., Kim, K. S., et al. (2009) Ceramic International, 35, 1271–1275.
- 36. Sebastian, M. T. (Unpublished)
- Surjith, A., James, N.K., Ratheesh, R. (2011) Journal of Alloys & Compounds, 509, 9992– 9995.
- 38. Wu, J-M. and Huang, H. L. (2000) Journal of Materials Research, 15, 222–227.
- 39. Krzmanc, M. M., Meden, A., and Suvorov, D. (2007) *Journal of European Ceramic Society*, 27, 2957–2961.
- 40. Lim, M-H., Park, J-H., Kim, H-G., et al. (2003) Proceedings of IEEE International Conference on Properties and Applications of Dielectric Materials, 2, 757–760.
- 41. Dosler, U., Krzmanc, M. M., and Suvorov, D. (2012) Ceramic International, 38, 1019–1025.
- 42. Li, F., Liu, P., Ruan, P., et al. (2015) Ceramic International, 41, S582–S587.
- 43. Kim, J-S., Song, M-E., Joung, M-R., et al. (2010) Journal of European Ceramic Society, 30, 375–379.
- 44. Zhu, H., Zhou, H., Liu, M., et al. (2009) Journal of Materials Science: Materials in Electronics, **20**, 1135–1139.
- 45. Krzmanc, M. M., Valant, M., Jancar, B., et al. (2005) Journal of American Ceramic Society, 88, 2472–2479.
- 46. Wakino, K., et al. (1992) Proceedings of ISIF-92, 308.
- 47. Bian, J.J., Kim, D-W., and Hong, K. S. (2004) *Japanese Journal of Applied Physics*, 43, 3521–3525.
- 48. Kim, M-H., Lee, J. C., Cheon, C. I., et al. (2006) Japanese Journal of Applied Physics, 45, 7397–7400.
- 49. Kim, E.S., Chun, B.S., Freer, R., et al. (2010) Journal of European Ceramic Society, 30, 1731–1736.
- 50. Terada, M., Kuwamura, K., Kagomiya, I., et al. (2007) Journal of European Ceramic Society, 27, 3045–3048.
- 51. Dosler, U., Krzmanc, M. M., and Suvorov, D. (2012) Ceramic International, 38, 1019–1025.
- 52. Dosler, U., Krzmanc, M. M., and Suvorov, D. (2010) *Journal of European Ceramic Society*, **30**, 413–418.
- 53. Maeda, M., Yamamura, T., and Ikeda, T. (1987) Journal of Applied Physics Supl., 26-2, 76-79.
- 54. Zhou, X., Li, E., Yang, S., et al. (2012) Ceramic International, 38, 5551–5555.
- 55. Wu, S., Song, K., Liu, P., et al. (2015) Journal of American Ceramic Society, 98, 1842–1847.
- 56. Nekoute, K. A. and Khosroshahi, R. A. (2016) *Journal of Materials Science: Materials in Electronics*, in press.
- 57. Umemura, R., Ogawa, H., Ohsato, H., et al. (2005) Journal of European Ceramic Society, 25, 2865–2870.
- 58. Kan, A. (2003) PhD Thesis, Meijo University, Japan
- 59. Lei, W., Ang, R., Wang, X-C., et al. (2014) Materials Research Bulletin, 50, 235–239.
- 60. Sun, H., Zhang, Q., Yang, H., et al. (2007) Materials Science and Engineering, B138, 46-50.
- 61. Chen, C., Wu, S., and Fan, Y. Z. (2013) Journal of Alloys & Compounds, 578, 153-156.
- 62. Subodh, G. and Sebastian, M. T. (2008) Japanese Journal of Applied Physics, 47, 7943–7946.
- 63. Yoon, D. H., Jo, VY.H., Saji, V.S., et al. (2009) Journal of Electroceramics, 23, 127–132.
- 64. Dou, G., Guo, M., Li, Y., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 4207–4211.
- 65. Chen, H-W., Su, H., Zhang, H-W., et al. (2014) Ceramic International, 40, 14655–14659.
- 66. Chen, H-W., Su, H., Zhang, H-W., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 2820–2823.
- 67. Thomas, D. and Sebastian, M. T. (2010) Journal of American Ceramic Society, 93, 3828–3831.
- 68. Song, K.X., Chen, X. M., and Zheng, C.W. (2008) Ceramic International, 34, 917–920.
- Dong, M., Yue, Z., Zhuang, H., et al. (2008) Journal of American Ceramic Society, 91, 3981– 3985.

- 70. Arun, B., Manu, K. M., and Sebastian, M. T. (2013) *Proceedings of International Conference on Ceramics*, Bikaner, India
- Kagomiya, I., Suzuki, I., and Ohsato, H. (2009) Japanese Journal of Applied Physics, 48, 09KE02–KE04.
- 72. Chen, C-S., Chou, C-C., Shih, W-J., et al. (2003) Materials Chemistry and Physics, **79**, 129–134.
- Guo, Y., Ohsato, H. and Kakimoto, K. (2006) Journal of European Ceramic Society, 26, 1827– 1830.
- Nguyen, N-H., Lim, J-B., Nahm, S., et al. (2007) Journal of American Ceramic Society, 90, 3127–3130.
- 75. Song, K.X. and Chen, X.M. (2007) Journal of American Ceramic Society, 90, 1808–1811.
- Tzou, J. L., Zhang, Q-L., Yang, H., et al. (2006) Japanese Journal of Applied Physics, 45, 4143–4145.
- 77. Wang, H., Zhang, Q., Yang, H., et al. (2008) Ceramic International, 34, 1405–1408.
- Seo, J. J., Shin, D. J., and Cho, Y.S. (2006) *Journal of American Ceramic Society*, 89, 2352–2355.
- 79. Sugiyama, T., Tsunooka, T., Kakimoto, K., et al. (2006) Journal of European Ceramic Society, 26, 2097–2100.
- 80. Song, M-Y., Kim, J-S., Joung, M-R., et al. (2008) Journal of American Ceramic Society, 91, 2747–2750.
- 81. Wang, H., Chen, J., Yang, W., et al. (2012) Journal of European Ceramic Society, 32, 541–545.
- 82. Thomas, D. and Sebastian, M. T. (2012) Journal of European Ceramic Society, 32, 2359–2364.
- 83. Wu, X-G., Wang, H., Chen, Y-H., et al. (2012) Journal of American Ceramic Society, 95, 1793–1795.
- 84. Songa, K., Liua, P., Lin, H., et al. (2016) Journal of European Ceramic Society.
- 85. Sasikala, T. S., Pavithran, C., and Sebastian, M. T. (2010) *Journal of Materials Science: Materials in Electronics*, **21**, 141–114.
- 86. Zhou, D. X., Sun, F., Hu, Y-X., et al. (2012) Journal of Materials Science: Materials in Electronics, 23, 981–989.
- 87. Tsunooka, T., Sugiyma, H., Kakimoto, K., et al. (2004) Journal of Japanase Ceramic Society, 112, S1637–S1640.
- 88. Dou, G., Zhou, D., Gong, S., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 1601–1607.
- 89. Kagomiya, I., Suzuki, I., and Ohsato, H. (2009) *Japanese Journal of Applied Physics*, **48**, 09KE02.
- 90. Chen, S-C. X., Wu, S. P., and Li, J. H. (2013) Journal of Alloys & Compounds, 578, 153–156.
- 91. Jang, S. W. and Kim, E. S. (2015) Materials Research Bulletin, 67, 239–244.
- 92. Wu, J-M. and Huang, H-L. (1999) Journal of Non-Crystalline Solids, 260, 116-124.
- Kan, A., Ogawa, H., Sumino, M., et al. (2009) Japanese Journal of Applied Physics, 48, 09KE03.
- 94. Hu, Y., Wei, D., Fu, Q., et al. (2012) Journal of European Ceramic Society, 32, 521-524.
- 95. Sun, H. P., Zhang, Q-L., and Yang, H. (2009) Ceramic International, 35, 637–641.
- Doo, S.H.N., Jo, Y. H., Lee, J. S., et al. (2010) Journal of American Ceramic Society, 93, 334–337.
- 97. Renjini, S. N., Thomas, S., Sebastian, M.T., et al. (2009) International Journal of Appled Ceramic Technology, 6, 286–294.
- 98. Wu, S.and Ma, Q. (2013) Journal of Alloys & Compounds, **567**, 40–46.
- 99. Dong, Z. W., Zhen, Y., Cheng, P., et al. (2014) Ceramic International, 40, 12983–12988.
- 100. Zhang, C., Zuo, R., Zhang, J., et al. (2015) Journal of American Ceramic Society, 98, 702–710.
- 101. Varghese, J. and Sebastian, M. T. (2015) Daltons Trans., 44, 5146-5152.
- Krzmanc, M.M., Jancar, B., and Suvorov, D. (2008) Journal of European Ceramic Society, 28, 3141–3148.
- Dosler, U., Krzmanc, M. M., Jancar, B., et al. (2011) Journal of American Ceramic Society, 93, 3788–3792.
- 104. Bian, J-J., Kim, D-W., and Hong, K. S., (2005) *Materials Research Bulletin*, **40**, 2120–2129.

- 105. Choi, B. K., Sun, G. N., and Kim, E. S. (2013) Ceramic International, 39, S677–S680.
- 106. Feng, K-C., Chou, C-C., Chu, L-W., et al. (2013) Materials Research Bulletin, 47, 2851–2855.
- Tsunooka, T., Andou, M., Higashita, Y., et al. (2003) Journal of European Ceramic Society, 23, 2573–2378.
- Umemura, R., Ogawa, H., Yokoi, A., et al. (2006) Journal of Alloys & Compounds, 424, 388–393.
- Yokoi, A., Ogawa, H., Kan, A., et al. (2007) Journal of European Ceramic Society, 27, 2989– 2993
- Manu, K. M., Karthik, C., Ubic, R., et al. (2013) Journal of American Ceramic Society, 96, 1504–1511.
- 111. Dong, Z. W., Zheng, Y., and Cheng, P. (2014) Ceramic International, 40, 14865–14869.
- 112. Guo, T., Wu, W., and Wang, Y. (2012) Ceramic International, 38S, S187–S190.
- Choi, G-K., Kim, J-R., Yoon, S.H., et al. (2007) Journal of European Ceramic Society, 27, 3063–3067.
- 114. Huang, C-L., Pan, C-L., and Lee, W-C. (2008) Journal of Alloys and Compounds, 462, L5-L8.
- 115. Dou, G., Zhou, D., and Gong, S. (2012) Journal of Alloys and Compounds, 513, 466-473.
- 116. Wang, W., Li, L., Xiu, S., et al. (2015) Journal of Alloys and Compounds, 639, 359-364.
- 117. Mori, N., Sugimoto, Y., and Harada, J., et al. (2006) Journal of European Ceramic Society, 26, 1925–1928.
- Krzmanc, M. M., Valant, M. and Suvorov, D. (2007) Journal of European Ceramic Society, 27, 1181–1185.
- 119. Manu, K. M. and Sebastian, M. T. (2012) Materials Chemistry and Physics, 133, 21-23.
- 120. Wang, H. P., Xu, S-Q., Zhang, B., et al. (2009) Materials Research Bulletin, 44, 619-622.
- Nahm, S., Lim, J-B., Paik, J-H., et al. (2006) Journal of American Ceramic Society, 89, 3124
 3128.
- 122. Kim, J-S., Song, M-E., Joung, M-R., et al. (2008) Journal of American Ceramic Society, 91, 4133–4136.
- Mori, K., Ogawa, H., Kan, A., et al. (2004) Journal of European Ceramic Society, 24, 1749– 1753.
- 124. Mori, N., Sugimoto, Y., Harada, J., et al. (2004) Journal of Ceramic Society Japan, 112-1, S1563–S15666.
- 125. Song, K. X. and Chen, X. M. (2008) Materials Letters, 62, 520–522.
- 126. Varghese, J., Joseph, T. and Sebastian, M. T. (2011) Materials Letters, 65, 1092–1094.
- 127. Jo, Y. H., Doo, S. D., Lee, J. S., et al. (2011) Journal of Alloys & Compounds, 509, 849-853.
- 128. Zhang, Q-L., Yang, H. and Sun, H. P. (2008) Journal of European Ceramic Society, 28, 605–609.
- 129. Hu, W., Liu, H., Hao, H., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 1977–1981.
- 130. Zhou, J., Yang, H., Xu, N., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 500–504.
- Zhou, H. F., Wang, H., Zhang, M. H., et al. (2010) Journal of Materials Research, 25, 1793– 1798.
- 132. Li, C., Wei, Z., Luo, H., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 9117–9121.
- 133. Joseph, T. and Sebastian, M. T. (2010) Journal of American Ceramic Society, 93, 147.
- 134. Varghese, J., Joseph, T., and Sebastian, M. T. (2015) Dalton Transactions, 44, 5146-5152.
- Takada, T., Yamamoto, H., and Kageyama, K. (2003) Japanese Journal of Applied Physics, 42, 6162–6167.
- 136. Zhang O. L., Yang, H., Zou, J. L., et al. (2005) Materials Letters, 59, 257–260.
- 137. Jo, Y. H., Kang, M. S., Chung, W., et al. (2008) Materials Research Bulletin, 43, 361-369.
- 138. Ohsato, H., Terada, M., and Kawamura, K. (2012) *Japanese Journal of Applied Physics*, **51**, 09LF02–1.
- 139. Kim, J-S., Nguyen, N-H., Song, M-S., et al. (2009) International Journal of Appled Ceramic Technology, 6, 581–586.
- 140. Li, W-B., Xi, H-H., and Zhou, D. (2015) Ceramic International, 41, 9063–9068.

- 141. Zhang, J., Zhou, Y., and Yue, Z. (2013) Ceramic International, 39, 2051–2058.
- 142. Dou, G., Zhou, D., Guo, M., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 1431–1438.
- 143. Guo, M., Li, Y., Dou, G., et al. (2016) Journal of Materials Science: Materials in Electronics, in press.
- 144. Bian, J-J., Kim, D-W., and Hong, K. S., (2003) Journal of European Ceramic Society, 23, 2589–2592.
- 145. Kagata, H., Saito, R., and Katsumura, H. (2004) Journal of Electroceramics, 13, 277–280.
- 146. Cho, I-S., Choi, G. K., An, J-S., et al. (2009) Materials Research Bulletin, 44, 173–178.
- 147. Busuioc, C. and Jinga, S. I. (2014) Ceramic International, 40, 5931–5936.
- Zhang, J., Zhou, X., Peng, B., et al. (2014) Journal of American Ceramic Society, 97, 3537–3543
- Kan, A., Ogawa, H., Ohsato, H., et al. (2001) Japanese Journal of Applied Physics, 40, 5774– 5778.
- Yoon, S. H., Kim, D-W., Cho, S-Y., et al. (2006) Journal of European Ceramic Society, 26, 2051–2054.
- Lorite, I., Rodriguez, M. A., Azough, F., et al. (2012) Journal of American Ceramic Society, 95, 1023–1028.
- 152. Joseph, T., Sebastian, M. T., Jantunen, H., et al. (2011) International Journal of Appled Ceramic Technology, 8, 856–864.
- Chen, J-Y., Hsu, W-H., and Huang, C-L. (2010) Journal of Alloys & Compounds, 504, 284– 287.
- 154. Jiang, C., Wu, S., and Mei, Y. (2012) Journal of Alloys & Compounds, 544, 141-144.
- 155. Ma, Q., Wu, S., Jiang, C., and Li, J. (2013) Ceramic International, 39, 223–229.
- Hu, W., Liu, H., Ho, H., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 4730–4734.
- 157. Wang, H., Li, D., Yang, Q., et al. (2014) Ceramic International, 40, 3333–3339.
- 158. Zhou, D., Pang, L-X., Qi, Z-M., et al. (2014) Scientific Reports, 4, 5980.
- 159. Zhou, J., Xu, N., Zhang, Q., et al. (2015) Materials Letters, 139, 169–172.
- 160. Hu, W., Liun, H., Hao, H., et al. (2015) Ceramic International, 41, S510–S514.
- 161. Hu, Y., Jin, Z., Fu, Q., et al. (2015) Ceramic International, 41, 10531–10536.
- Jeong, Y-H., Kim, M-H., Nahm, S., et al. (2005) Japanese Journal of Applied Physics, 44, 956–960.
- Lo, C-L., Duh, J-G., Chou, B-S., et al. (2002) Journal of American Ceramic Society, 85, 2230–2235.
- 164. Joseph, T., Sebastian, M. T., Sreemoolanathan, H., et al. (2010) International Journal of Appled Ceramic Technology, 7, E98–E106.
- Rao, S.D.R., Kiran, S. R., and Murthy, V R K. (2012) Journal of American Ceramic Society, 95, 3532–3537.
- 166. Wang, H., Li, D., Yang, Q., et al. (2014) Materials Research Bulletin, 54, 66–72.
- 167. Shin, H., Shin, H-K., Jung, H. S., et al. (2005) Materials Research Bulletin, 40, 2021–2028.
- 168. Cho, I-S., Kim, D-W., Kim, J-R., et al. (2004) Ceramic International, 30, 1181–1185.
- 169. Takada, T. and Kageyama, K. (2005) Japanese Journal of Applied Physics, 44, 6629–6635.
- 170. Liu, L., Feng, Y., Qiu, T., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 1316–1321.
- 171. Nishigaki, S., Yano, S., Kato, H., et al. (1988) Journal of American Ceramic Society, 71, C-11-C17.
- 172. Umemura, R., Ogawa, H., and Kan, A. (2006) Journal of European Ceramic Society, 26, 2063–2068.
- 173. Kim, H. T., Nam, M-H., Kim, J-H., et al. (2009) International Journal of Appled Ceramic Technology, 6, 587–592.
- Zhang, S. W., Fan, X. C., and Chen, X. M. (2008) *Journal of American Ceramic Society*, 91, 488–493.
- Huang, C-L., Chien, Y-H., Tsai, C-Y., et al. (2011) Journal of Alloys and Compounds, 509, L150–L152.

- Zhou, D., Li, W-B., Pang, L-X., et al. (2014) Journal of American Ceramic Society, 97, 3597–3601.
- 177. Jantunen, H., Uusumaki, A., Rautioaho, R., et al. (2000) Journal of European Ceramic Society, 20, 2331–2336.
- 178. Pang, L-X., Sun, G. B., and Zhou, D. (2011) Materials Letters, 65, 164–166.
- Joung, M-R., Kim, J. S., Song, M. E., et al. (2009) Journal of American Ceramic Society, 2, 2151–2154.
- 180. Rose, A., Lazar, A., Manu, K. M., et al. (2013) Journal of Alloys and Compounds, 552, 83-87.
- 181. Chen, Y-C., Su, C-F., Weng, M-Z., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 2120–2125.
- 182. Fang, L., Wei, Z., Su, C., et al. (2014) Ceramic International, 40, 16835–16839.
- Huang, C-L., Tai, C-Y., Huang, C-Y., et al. (2010) Journal of American Ceramic Society, 93, 1999–2003.
- 184. Wu, S. P., Chen, D. F., Mei, Y. X., et al. (2012) Journal of Alloys & Compounds, 521, 8-11.
- 185. Wu, S. P., Jiang, C., Mei, Y. X., et al. (2012) Journal of American Ceramic Society, 95, 37-40.
- Chen, Y-C., Wang, Y-N., and Hsu, C-H. (2011) Journal of Alloys & Compounds, 509, 9650–9653.
- 187. Fu, P., Lu, W., Lei. W., et al. (2013) Ceramic International, 39, 2481–2487.
- Meng, S., Yue, Z., Zhuang, H., et al. (2010) Journal of American Ceramic Society, 93, 359–361.
- Kan, A., Ogawa, H., and Ohsato, H. (2007) Japanese Journal of Applied Physics, 46, 7108–7111.
- 190. Wang, W., Tang, L., Bai, W., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 3601–3607.
- 191. Fang, L., Wei, Z., Guo, H., et al. (2015) Journal of Materials Science: Materials in Electronics, **26**, 5892–5895.
- 192. Xie, H., Chen, C., Tian, R., and Xi, H. (2016) *International Journal of Applied Ceramic Technology*.
- 193. Fang, L., Wei, Z., Guo, H., et al. (2015) Journal of Materials Science: Materials in Electronics, **26**, 5892–5895.
- Kan, A., Ogawa, H., Ohsato, H., et al. (2001) Japanese Journal of Applied Physics, 40, 5774– 5778
- 195. Surendran, K. P., Bijumon, P. V., Mohanan, P., et al. (2005) Applied Physics A, A81, 823–826.
- 196. Choi, Y-J., Park, J-H., Park, J-H., et al. (2004) Materials Letters, 58, 3102–3106.
- 197. Jantunen, H., Uusumaki, A., Rautioaho, R., et al. (2002) Journal of American Ceramic Society, 85, 697–699.
- 198. Surendran, K. P., Santha, N., Mohanan, P., et al. (2004) European Physics Journal, 41, 301–306
- 199. Kan, A. and Ogawa, H. (2004) Journal of Alloys and Compounds, 364, 247–249.
- 200. Fang, C.F., Chen, Y-C., Tzou, W-C., et al. (2003) Materials Letters, 57, 2945-2949.
- Ohsato, H., Tsunooka, T., Ohishi, Y., et al. (2003) Journal of Korean Ceramic Society, 40, 350–353.
- 202. Hsu, C-H. and Chang, C-H. (2012) Ceramic International, 38, 4411–4413.
- 203. Zhang, Q-L., Yang, H and Zou, J-L. (2008) Materials Letters, 62, 3872–3874.
- 204. Chen, Y-C. (2012) Journal of Alloys & Compounds, 527, 84–89.
- Tsai, W-C., Liou, Y-H., and Liou, Y-C. (2012) Materials Science and Engineering, B177, 1133–1137.
- Wu, N. X. and Bian, J. J. (2011) International Journal of Applied Ceramic Technology, 8, 1494–1500.
- Zhou, D., Rindall, C. A., Pang, L-X., et al. (2011) Journal of American Ceramic Society, 94, 802–805
- 208. Tzou, W-C., Chang, S-L., Yang, C-F., et al. (2003) Materials Research Bulletin, 38, 981–989.
- 209. Tseng, C-F., Tung, H-H., Hsu, C-K., et al. (2010) Journal of Alloys & Compounds, **502**, 136–138
- 210. Joseph, T. and Sebastian, M. T. (2011) *Materials Letters*, **65**, 891–893.

- 211. Liu, Y., Wang, Y., Li, Y., et al. (2016) Ceramic International, in press.
- 212. Lie, J., Fang, L., Luo, H., et al. (2016) Journal of European Ceramic Society, 36, 243–246.
- Kim, S. K., Kim, B.S-H., Lee, B. I. (2006) Journal of European Ceramic Society, 26, 2101– 2104.
- Choi, J. W., Kucheiko, S., Yoon, S-J., et al. (2001) Journal of American Ceramic Society, 84, 2570–2572.
- Higuchi, Y., Sugimoto, Y., Harada, J., et al. (2007) Journal of European Ceramic Society, 27, 2785–2788.
- Chen, Y-C., Wang, Y-N., and Hsu, C-H. (2012) Materials Chemistry and Physics, 133, 829– 833.
- 217. Husu, C-H., Tung, T-H., and Hsu, C-K. (2011) Materials Chemistry and Physics, 131, 1-3.
- 218. Ajith, M. R., Umerji, A. M., Sreemoolanathan, H., et al. (2010) International Conference Recent Trends in Materials Science & Technology, Trivandrum, 6.14-6.15
- Zhang, Q-L., Yang, H., and Zou, J-L. (2009) Journal of Materials Science: Materials in Electronics, 20, 181–185.
- 220. Murata Manufacturing Company, Japan. Product Catalogue
- 221. Chen, Y-C., You, H-M., and Hang, K-C. (2015) Journal of Materials Science: Materials in Electronics, 26, 7614–7620.
- Fua, Z., Liua, P., and Ma, J-L., et al. (2016) Journal of European Ceramic Society, 36, 625–629.
- 223. Valant, M. and Suvorov, D. (2004) Journal of European Ceramic Society, 24, 1715–1719.
- 224. Wu, S. P., Luo, J. H., and Cao, S. X. (2010) Journal of Alloys & Compounds, 502, 147–152.
- 225. Wang, G., He, Z., Li, D., et al. (2013) Ceramic International, 40, 3895–3902.
- 226. Wu, S., Xue, J., and Fan, Y. (2016) Journal of American Ceramic Society.
- 227. Yao, G. G., Hu, X-S., Tian, X-L., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 1795–1798.
- Krzmanc, M. C., Logar, M., Budic, B., et al. (2011) Journal of American Ceramic Society, 94, 2464–2472.
- 229. Guo, J., Zhou, D., Wang, H., et al. (2012) Journal of American Ceramic Society, 95, 223–237.
- 230. Bijumon, P. V., Sebastian, M. T., Mohanan, P. (2005) Journal of Applied Physics, 98, 124105.
- 231. Zhang, Z., Su, H., Tang, X., et al. (2013) Ceramic International, 40, 1613–1617.
- Dai, S. X., Huang, R-F., Wilcox, D. L. (2002) Journal of American Ceramic Society, 85, 828–832.
- Cho, I-S., Ryu, H-S., Kim, J-R., et al. (2007) Japanese Journal of Applied Physics, 46, 2999– 3003.
- 234. Wu, S. P., Chen, D.F., Jiang, C., et al. (2012) Materials Letters, 91, 239–241.
- 235. Ohsato, H. (2010) Proceedings of Materials Research Society Meeting.
- 236. Zhen, W. and Bian, J. J. (2014) Ceramic International, 40, 8507–8511.
- Yao, G-G., Liu, P. and Zhang, H-W. (2013) Journal of American Ceramic Society, 96, 1691– 1693.
- 238. Wang, H-J., Li, B-T., Lin, H-X., et al. (2014) International Journal of Applied Glass Science, 5, 436–442.
- 239. Lei, W., Zhong, W-Z., Wang, X-H., et al. (2011) Journal of American Ceramic Society, 94, 20–23.
- 240. Lv, Y., Zuo, R., and Yue, Z. (2013) Materials Research Bulletin, 48, 2011–2017.
- 241. Ma, Q., Wu, S. and Fan, Y. (2014) Ceramic International, 40, 1073–1080.
- 242. Chen, J-M., Wang, H-P., Feng, S-Q., et al. (2011) Ceramic International, 37, 989-993.
- Ling, C. D., Rowda, B., Avdeev, M. et al. (2009) Journal of Solid State Chemistry, 182, 479– 483.
- 244. Watanabe, M., Ogawa, H., Ohsato, H., et al. (1998) Japanese Journal of Applied Physics, 37, 5360–5363.
- 245. Bian, J. J. (2007) *Journal of European Ceramic Society*, **27**, 3855–3859.
- Pang, L-X., Zhou, D., and Liu, W-G. (2014) Journal of American Ceramic Society, 97, 2032– 2034.
- 247. Wu, X., Xue, J., Wang, R., et al. (2014) Journal of Alloys & Compounds, 585, 542–548.

- 248. Zhou, H., He, F., Chen, X., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 1480–1484.
- 249. Zhang, Z., Su, H., Tang, X., et al. (2014) Ceramic International, 40, 10531–10535.
- 250. Dou, G., Guo, M., and Li, Y. (2016) *Journal of Materials Science: Materials in Electronics*, in press.
- Lei, W., Lu, W. Z., Hua, J-H., et al. (2008) Journal of American Ceramic Society, 91, 1958– 1961.
- 252. Kan, A., Ogawa, H., and Moriyama, T. (2012) Journal of Materials Research, 27, 915-921.
- 253. Thomas, S. and Sebastian, M. T. (2009) Journal of American Ceramic Society, 92, 2975–2981.
- Kalathil, S. E., Neelakantan, U. A., and Ratheesh, R. (2014) Journal of American Ceramic Society, 97, 1530–1533.
- Unnimaya, A. N., Suresh, E. K., Dhanya, J., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 1127–1131.
- 256. Chen, Y-C., Weng, M-Z. and Hong, J-M. (2014) *Journal of Materials Science: Materials in Electronics*, **25**, 5000–5005.
- 257. Arun, B., Varghese, J., Surendran, K. P., et al. (2014) Ceramic International, 40, 13075–13081.
- 258. Li, D., Wang, H., Yang, Q., et al. (2014) Ceramic International, 40, 14185–14190.
- 259. Chen, H-C., Weng, M-H., Hung, C-I., et al. (2004) Physica B, 349, 304–309.
- Zhou, D., Pang, L-X., Guo, J., et al. (2011) Journal of European Ceramic Society, 31, 2749– 2752.
- 261. Yuan, L., Wang, H., Lin, H., et al. (2014) Ceramic International, 40, 2109–2113.
- 262. Dong, Z. W., Zheng, Y., Cheng, P., et al. (2014) Materials Letters, 131, 151–153.
- 263. Wang, H., He, Z., Li, D., et al. (2014) Ceramic International, 40, 3895–3902.
- Pullar, R. C., Farrah, S., and Alford, N. (2007) Journal of European Ceramic Society, 27, 1059–1063.
- Joung, J.M-R., Kim, J. S., Song, M. S., et al. (2010) Journal of American Ceramic Society, 93, 2132–2135.
- 266. Wang, L. and Bian, J. J. (2011) Materials Letters, 65, 726–728.
- 267. Chen, Y-C., Liou, J-M., Weng, M-Z., et al. (2014) Ceramic International, 40, 10337–10342.
- 268. Cho, I-S., Lee, J-S., Bae, S-T., et al. (2009) Journal of Electroceramics, 23, 154–158.
- 269. Thomas, S. and Sebastian, M. T. (2008) Materials Research Bulletin, 43, 843–851.
- 270. Huang, C-L., Wang, J-J., Yen, F-S., et al. (2008) Materials Research Bulletin, 43, 1463–1471.
- 271. Lv, Y. and Zuo, R. (2013) Ceramic International, 39, 2545–2550.
- 272. Alford, N. Mc N. and Penn, S. J. (1996) Journal of Applied Physics, 80, 5895–5898.
- Yokoi, A., Ogawa, H., Kan, A., et al. (2004) Journal of Ceramic Society Japan, 112, S-1633
 S1636.
- Kan, A., Ogawa, H., Yokoi, A., et al. (2007) Journal of European Ceramic Society, 27, 2977– 2981.
- Alford, N. Mc N., Breeze, J., Wang, X., et al. (2001) Journal of European Ceramic Society, 21, 2605–2611.
- Ogawa, H., Taketani, H., Kan, A., et al. (2005) Journal of European Ceramic Society, 25, 2859–2863.
- 277. Kwon, D-W., Lanagan, M. T., and Shrout, T. R. (2007) Materials Letters, 61, 1827–1831.
- 278. Breeze, J., Aupi, X., and Alford, N. Mc N. (2000) Electronic Letters, 36, 883–884.
- 279. Kim, E. S. and Kim, S. H. (2006) Journal of Electroceramics, 17, 471–477.
- 280. Xiang, F., Fang, L., Su, C., et al. (2013) Ceramic International, 39, 9779–9783.
- 281. Lv, Y., Zuo, R., Cheng, Y., et al. (2013) Journal of American Ceramic Society, 96, 3862–3867.
- 282. Lee, C., Chen, C-T., Huang, C-Y., et al. (2008) Japanese Journal of Applied Physics, 47, 4634–4637.
- Guo, J., Zhou, D., Zou, S-L., et al. (2014) Journal of American Ceramic Society, 97, 1819– 1822.
- Yao, G., Li, P., Zhao, X., Zhou, J., et al. (2014) Journal of European Ceramic Society, 34, 2983–2987.
- Kagomiya, I., Kodama, Y., Shimazu, Y., et al. (2015) Journal of Alloys & Compounds, 640, 383–387.

- 286. Zhou, Y., Yue, Z., and Li, L. (2010) Ferroelectrics, 407, 69-74.
- 287. Chen, X., Zhang, W., Zalinska, B., et al. (2012) Journal of American Ceramic Society, 95, 3207–3213.
- 288. Lei, W., Lu, W-Z., Liu, D., et al. (2009) Journal of American Ceramic Society, 92, 105-109.
- 289. Breeze, J., Aupi, X., and Alford, N. Mc N. (2002) Applied Physics Letters, 81, 5021–5023.
- 290. Anjana, P. S., Joseph, T., and Sebastian, M. T. (2010) Ceramic International, 36, 1535–1540.
- Suresh, E. K., Unnimaya, A. N., Surjith, A., et al. (2013) Ceramic International, 39, 3635–3639.
- 292. Yao, G-G., Pei, C-J., Xu, J-G., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 7719–7722.
- Choi, G-K., Cho, S-Y., An, J-S., et al. (2006) Journal of European Ceramic Society, 26, 1969– 1971
- 294. Pang, L-X., Liou, H., Zhou, D., et al. (2012) Journal of Alloys & Compounds, 535, 22-24.
- 295. Pang, L-X., Liou, H., Zhou, D., et al. (2012) Materials Letters, 72, 128–130.
- 296. Pang, L-X., Zhou, D., Cai, C-L., et al. (2012) Materials Letters, 92, 36–38.
- Sunny, A. R., Viswanath, V., Surendran, K. P., et al. (2014) Ceramic International, 40, 311– 4317.
- 298. Su, C-H., Wang, Y-S., and Huang, C-L. (2015) Journal of Alloys & Compounds, 641, 93–98.
- Joung, M-R., Kim, J-S., Song, M-E., et al. (2009) Journal of American Ceramic Society, 92, 3092–3094.
- 300. Kagoyama, I., Matsuda, Y., Kakimoto, K., et al. (2009) Ferroelectrics, 387, 1-6.
- 301. Surjith, A. and Ratheesh, R. (2013) Journal of Alloys & Compounds, 550, 169–172.
- 302. Wang, J., Chen, W., and Luo, L. (2007) Japanese Journal of Applied Physics, 46, 5218-5220.
- 303. Xue, J., Wu, S., and Li, J. (2013) Journal of American Ceramic Society, 96, 2481–2485.
- 304. Subodh, G., Ratheesh, R., Jacob, M. V., et al. (2008) Journal of Materials Research, 23, 1551–1556.
- 305. Fang, L., Su, C., Zhou, H., et al. (2013) Journal of American Ceramic Society, **96**, 668–690.
- Joung, M-R., Kim, J. S., Song, M. E., et al. (2009) Journal of American Ceramic Society, 92, 1621–1624.
- 307. Xi, H-H., Zhou, D., Xie, H-D., et al. (2015) Ceramic International, 41, 6103–6107.
- 308. Bian, J. J. and Ding, Y. M. (2015) Materials Research Bulletin, 67, 245–250.
- 309. Guo, J., Zhou, D., Wang, L., et al. (2013) Dalton Transactions, 42, 1483-1491.
- 310. Lei, W., Lu, W. Z., and Wang, X-C. (2012) Ceramic International, 38, 99–103.
- 311. Surjith, A., Suresh, E. K., and Ratheesh, R. (2013) *Journal of Materials Science: Materials in Electronics*, **24**, 1818–1822.
- 312. Zhou, H., He, F., Chen, X., et al. (2014) Ceramic International, 40, 6335–6338.
- 313. Tseng, C-F. and Tsai, P-S. (2013) Ceramic International, 39, 75–79.
- 314. Huang, C-L., Wang, J-W., and Huang, C-Y. (2007) Journal of American Ceramic Society, 90, 1487–1493.
- Pullar, R. C., Azough, F., Freer, R., et al. (2007) Journal of European Ceramic Society, 26, 1943–1946.
- Cho, I-S., Kang, S-K., Kim, D-W., et al. (2006) Journal of European Ceramic Society, 26, 2007–2010.
- Joung, M-R., Song, J-S., Nahm, S., et al. (2010) Journal of American Ceramic Society, 93, 934–936.
- 318. Abhilash, P., Thomas, D., Surendran, K. P., et al. (2013) Journal of American Ceramic Society, **96**, 1533–1537.
- 319. Wu, H. T. and Mei, Q. J. (2015) Journal of Alloys and Compounds, 651, 393–398.
- 320. Wang, J., Chen, W., and Luo, L. (2008) *Journal of Alloys & Compounds*, **464**, 440–445.
- 321. Ohsato, H., Tsunooka, T., Sugiyama, T., et al. (2006) Journal of Electroceramics, 17, 445-450.
- 322. Ogawa, H., Yokoi, A., Unemura, R., et al. (2007) Journal of European Ceramic Society, 27, 3099–3104.
- 323. Mori, K., Ogawa, H., Kan, A., et al. (2003) Journal of European Ceramic Society, 23, 2603–2606
- 324. Dias, A., Subodh, G., Sebastian, M. T., et al. (2009) Chemistry of Materials, 20, 4347–4355.

- 325. Jawahar, I. N., Mohanan, P., and Sebastian, M. T. (2003) Materials Letters, 57, 4043–4048.
- 326. Wang, Y. N. and Bian, J. J. (2015) Ceramic International, in press.
- 327. Xi, H., Zhou, D., Xie, H., and Li, W. (2015) Materials Letters, 142, 221–224.
- 328. Fu, Z., Liu, P., Ma, J., et al. (2016) Materials Chemistry and Physics.
- 329. Kan, A., Ogawa, H., Yokoi, A. (2005) Journal of Materials Research, 20, 2456–2461.
- Zhuang, H., Yue, Z., Meng, S., et al. (2008) Journal of American Ceramic Society, 91, 3738– 3741.
- 331. Xi, H-H., Zhou, D., Yie, H. D., et al. (2016) Ceramic International.
- 332. Wu, H. T., Wu, W. B., Yue, Y. L., et al. (2012) Ceramic International, 38, 4271–4276.
- 333. Zhang, C. and Zhuo, R. (2015) Journal of Alloys & Compounds, 622, 362–368.
- 334. Wang, Y-N., Chen, Y-C., and Syu, R-Y. (2015) Journal of Materials Science: Materials in Electronics, 26, 1494–1499.
- 335. Chen, Y-C. and You, H-M. (2014) Journal of Alloys & Compounds, 616, 356–362.
- Fang, L., Guo, H., Fang, W., et al. (2015) Journal of European Ceramic Society, 35, 3765–3770.
- 337. Surjith, A., James, N. K., and Ratheesh, R. (2012) CICMT, Erfurt, Germany
- 338. Huang, W., Liu, K-S., Chu, L-W., et al. (2003) Journal of European Ceramic Society, 23, 2565–2568.
- 339. Ogawa, H., Kan, A., Ishihara, S., et al. (2003) Journal of European Ceramic Society, 23, 2485–2488.
- 340. Kim, J. C., Kim, M-H., Kim, J-B., et al. (2007) Journal of American Ceramic Society, 90, 641–644.
- 341. Su, C., Fang, L., Wei, Z., et al. (2014) Ceramic International, 40, 5015–5018.
- Liao, Q., Wang, Y., Jiang, F., et al. (2014) Journal of American Ceramic Society, 97, 2394
 2396.
- 343. Guo, J., Zhou, D., Li, Y., et al. (2014) Daltons Transactions, 43, 11888–11896.
- 344. Li, W-B., Xi, H-H., and Zhou, D. (2015) Journal of Materials Science: Materials in Electronics, 26, 1608–1611.
- Zhai, X-L., Zheng, X., Xi, H-H., et al. (2015) Journal of American Ceramic Society, 98, 2716–2719.
- Kan, A., Ogawa, H., Yokoi, A., et al. (2003) Japanese Journal of Applied Physics, 42, 6154–6157.
- Lu, W-Z., Lei, W., Zhu, J-H., et al. (2007) Japanese Journal of Applied Physics, 46, L724– L726.
- 348. Dai, Y., Guo, T., Pei, X., and Chen, W. (2008) Materials Science and Engineering, A475, 76–80.
- 349. Thomas, D. and Sebastian, M. T. (2011) Journal of American Ceramic Society, 94, 2276–2278.
- 350. Lei, W., Lu, W-Z., Zhu, J-Z., et al. (2009) Ceramic International, 35, 277–280.
- 351. Bian, J. J. and Wu, J-Y. (2012) Journal of American Ceramic Society, 95, 318–323.
- 352. Zhou, D., Pang, L-X., Guo, J., et al. (2011) Journal of American Ceramic Society, 94, 2800–2803.
- Kan, A., Ogawa, H., and Ohsato, H. (2004) *Journal of Ceramic Society Japan*: Suppl. 2004, 112, S1622–S1626.
- 354. Xiang, H., Fang, L., Jiang, X., et al. (2016) Journal of American Ceramic Society, in press.
- 355. Yue, X., Lei, W., and Lu, W-Z. (2009) Ceramic International, 35, 2131-2134.
- 356. Lin, H., Yang, A., Luo, L., et al. (2008) Materials Letters, **62**, 611–614.
- 357. Jeon, C. J. and Kim, E. S. (2008) Ceramic International, 34, 921–924.
- Kan, A., Ogawa, H., and Ohsato, H. (2004) *Journal of Ceramic Society Japan*: Suppl., 112-1 S1622–S1626.
- 359. Chen, X. M., Bai, S., Li, M., et al. (2013) Journal of European Ceramic Society, 33, 3001–3006
- 360. Tseng, C-F., Tseng, P-J., Chang, C-M., et al. (2014) Journal of American Ceramic Society, 97, 1918–1922.
- 361. Mandai, H., et al. (1990) In Proceedings of Ceramic Science & Technlogy Congress, p. 83
- 362. Kan, A., Ogawa, H., and Yokoi, A. (2006) Materials Research Bulletin, 41, 1178–1184.

- Kim, D-W., Kwon, SD-K., Yoon, S. H., et al. (2006) Journal of American Ceramic Society, 89, 3861–3864.
- 364. Kim, S. J. and Kim, E. S. (2008) Ceramic International, 35, 137–141.
- 365. Lv, Y. and Zuo, R. (2013) *Journal of Materials Science: Materials in Electronics*, **24**, 1225–1230.
- Anjana, P. S. (2008) Investigations on ceria based dielectric ceramic materials for wireless communication. PhD Thesis. Cochin University of Science & Technology, India.
- 367. Thomas, S. and Sebastian, M. T. (2012) Journal of Alloys and Compounds, 546, 72-76.
- 368. Guo, H., Wei, Z., Li, C., et al. (2016) Journal of Materials Science: Materials in Electronics, 26, in press.
- Kim, J. C., Kim, M-H., Nahm, S., et al. (2007) Journal of European Ceramic Society, 27, 2865–2870.
- 370. Yu, J., Shen, C., and Qiu, T. (2015) Journal of Materials Science: Materials in Electronics, 26, 2737–2741.
- 371. James, N. K. and Ratheesh, R. (2010) Journal of American Ceramic Society, 93, 931–933.
- 372. Wu, H. T., Li, L-X., Zou, Q., et al. (2010) Journal of Alloys & Compounds, 509, 151-155.
- 373. Takahashi, H., Ayusawa, K., and Sakamoto, N. (1997) *Japanese Journal of Applied Physics*, **36**, 5597–5599.
- 374. Wang, Y., Zuo, R., Zhang, C., et al. (2016) Journal of American Ceramic Society, 98.
- 375. Xiang, H., Fang, L., Jiang, X., et al. (2016) Ceramic International, 42, 3701–3705.
- 376. Ohishi, Y., Miyauchi, Y., Ohsato, H., et al. (2004) Japanese Journal of Applied Physics, 43, L749–L751.
- 377. Kono, M., Takagi, H., Tatekawa, T., et al. (2006) Journal of European Ceramic Society, 26, 1909–1912.
- 378. Miyauchi, Y., Ohishi, Y., Miyake, S., et al. (2006) Journal of European Ceramic Society, 26, 2093–2096.
- 379. Kan, A. and Ogawa, H. (2009) Journal of Alloys & Compounds, 468, 338–342.
- 380. Kolodiazhnyi, T., Annino, G., Spreitzer, M., et al. (2009) Acta Metellurgica, 57, 3402-3409.
- 381. Lufasso, M. W., Hopkins, E., Bell, S. M., et al. (2005) Chemistry of Materials, 17, 4250–4255.
- 382. Joang, X. J., Fang, L., Xiang, H., et al. (2015) Ceramic International, 41, 13878–13882.
- 383. Surendran, K. P., Mohanan, P., Manjusha, M. V., *et al.* (2005) *Journal of Applied Physics*, **98**, 044101–9.
- Kan, A., Ogawa, H., Ohsato, H., et al. (2001) Journal of European Ceramic Society, 21, 2593–2598.
- 385. Yang, T., Han, Z., Liun, P., et al. (2015) Ceramics International, 41, S572–S575.
- 386. Bian, J. J. and Wang, L. (2011) Journal of American Ceramic Society, 94, 3188–3191.
- 387. Ohishi, Y., Miyauchi, Y., Ohsato, H., et al. (2004) Japanese Journal of Applied Physics, 43, L749–L751.
- 388. Zhou, D., Wang, H., Wang, Q-P., et al. (2010) Functional Letters, **03**, 253.
- 389. Huang, C-L., Chu, C. H., Liu, F. S., et al. (2014) Journal of Alloys & Compounds, **590**, 494–499.
- 390. Pang, L-X. and Zhou, D. (2010) Journal of American Ceramic Society, 93, 3614–3617.
- Manu, K. M., Karthik, C., Leu, L-C., et al. (2013) Journal of American Ceramic Society, 96, 1504–1511.
- 392. Thomas, D., Rethika, K. T. and Sebastian, M. T. (2012) *Journal of Materials Science: Materials in Electronics*, 23, 1268–1271.
- Kan, A., Ogawa, H., Ohsato, H., et al. (2000) Japanese Journal of Applied Physics, 39, 5654

 5657.
- 394. Ohishi, Y., Miyamauchi, Y., Kakimoto, K., et al. (2004) Proceedings of AMF.
- 395. Kan, A. and Ogawa, H. (2009) Journal of Alloys & Compounds, 468, 338–342.
- 396. Huang, C-L. and Yang, W-R. (2011) Journal of Alloys & Compounds, 509, 2269–2272.
- 397. Zhao, Y. and Zhang, P. (2016) *Journal of Alloys & Compounds*, **658**, 744–748.
- 398. Yao, G. G. and Liu, P. (2012) Ceramic International, 38, 2239–2242.
- 399. Guo, M., Li, Y., Dou, G., et al. (2015) Journal of Materials Science; Materials in Electronics, **26**, 608–612.

- 400. Bijumon, P. V., Solomon, S., Sebastian, M. T., et al. (2003) Journal of Materials Science: Materials in Electronics, 14, 5–8.
- 401. Anjana, P. S. and Sebastian, M. T. (2009) Journal of American Ceramic Society, 92, 96-104.
- Shen, C-S., Chou, C-C., Shih, W-J., et al. (2003) Materials Chemistry and Physics, 79, 124– 128.
- 403. Ramarao, S. D. and Murthy, V. R. K. (2015) Daltons Transactions, 44, 2311–2324.
- 404. Li, J., Liu, P., Fu, Z-F., et al. (2016) Journal of Alloys & Compounds, 660, 93-98.
- 405. Kan, A., Ogawa, H., Watanabe, M., et al. (1999) Japanese Journal of Applied Physics, 38, 5629–5632.
- 406. Huang, C-L., Yang, T. J., and Huang, C-C. (2009) Journal of American Ceramic Society, 92, 119–124.
- Takahashi, H., Ayusawa, K., and Sakamoto, N. (1998) Japanese Journal of Applied Physics, 37, 908–911.
- 408. Huang, C-L., Yang, W. R., and Chen, Y-R. (2010) Journal of Alloys & Compounds, 495, 15–17.
- 409. Wu, N. X. and Bian, J. J. (2012) Materials Science and Engineering B, 177, 1793–1798.
- 410. Wang, S-F., Wang, Y-R., Hsu, Y-F., et al. (2010) Journal of American Ceramic Society, 93, 4071–4074.
- 411. Li, W-B., Xi, H-H., and Zhou, D. (2015) Journal of Materials Science: Materials in Electronics, 26, 1608–1611.
- 412. Chen, Y. C. and Weng, M-Z. (2015) *Journal of Materials Science: Materials in Electronics*, **26**, 3502–3505.
- 413. Anjana, P. S., Joseph, T., and Sebastian, M. T. (2010) *Journal of Alloys & Compounds*, **490**, 208–213.
- 414. Bijumon, P.V., Mohanan, P., and Sebastian, M. T. (2002) *Materials Research Bulletin, Materials Research*, **37**, 2129–2133.
- 415. Tian, C., Yue, Z., Meng, S., et al. (2012) Journal of American Ceramic Society, 95, 1645–1650.
- 416. Zhang, T. and Zuo, R. (2015) Ceramic International, 40, 15677–15684.
- 417. Belous, A., Ovchar, O., Durylin, D., et al. (2007) Journal of European Ceramic Society, 27, 2963–2966.
- 418. Shin, H-K., Shin, H. S., Jung, H. S., et al. (2005) Materials Research Bulletin, 41, 1206–1214.
- 419. Hwang, S. J., Kim, Y-J., and Kim, H. S. (2007) *Journal of Electroceramics*, 18, 121–128.
- 420. Li, J., Li, C., Wei, Z., et al. (2015) Journal of American Ceramic Society, **98**, 683–686.
- 421. Wang, L., Bian, J. J., and Guo, Q. H. (2010) Materials Chemistry and Physics, 124, 748–750.
- 422. Huang, C-L., Pan, C-L., and Hsu, J-F. (2002) Materials Research Bulletin, 37, 2483–2490.
- 423. Chen, Y-C., Chen, K. C., and Lee, W. C. (2013) Journal of Materials Science: Materials in Electronics, 24, 1878–1882.
- 424. Fan, Y. and Bian, J. J. (2014) Journal of Materials Science: Materials in Electronics, 25, 5084–5088.
- 425. Bhuyan, R. K., Santhoshkumar, T., Goswami, D., et al. (2013) Materials Science and Engineering B, 178, 471–476.
- 426. Li, H., Tang, B., Zhang, S., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 3318–3323.
- 427. Wu, M-C., Huang, K-T., and Su, W-F. (2006) Materials Chemistry and Physics, 98, 406–409.
- 428. Varghese, J., Gopinath, S., and Sebastian, M. T. (2013) *Materials Chemistry and Physics*, **137**, 811–815.
- 429. Zhou, H., Wang, H., Li, K., et al. (2010) Journal of Materials Science: Materials in Electronics, 21, 252–255.
- 430. Guo, H., Fang, L., Jiang, X., et al. (2016) Ceramic International, in press.
- 431. Kim, J-S., Joung, M-R., Song, M-E., et al. (2008) Journal of American Ceramic Society, 91, 4165–4167.
- 432. Khalyavin, D. D., Han, J., Senos, A. M. R., et al. (2003) Journal of Materials Research, 18, 2600–2607.
- 433. Luo, H., Li, J., Xu, J., et al. (2016) Journal of Materials Science: Materials in Electronics, in press
- 434. Li, Y. Z., Bian, J. J., and Yuan, L. L. (2009) Journal of Materials Science, 44, 328–330.

- Liu, X. Q., Chen, X. M., and Xiao, Y. (2003) Materials Science and Engineering B, 103, 276–280.
- Pang, L-X. and Zhou, D. (2011) Journal of Materials Science: Materials in Electronics, 22, 9807–9810.
- 437. Li, B-J., Wang, S-Y., Chiu, C-Y., et al. (2016) Journal of Alloys & Compounds, 661, 357–362.
- 438. Surendran, K. P., Mohanan, P., and Sebastian, M. T. (2006) *Materials Research Bulletin*, 41, 784–790.
- 439. Li, H., Tang, B., Li, Y. X., et al. (2015) Materials Letters, 145, 30-33.
- 440. Fan, X. C., Chen, X. M., and Liu, X. Q. (2008) Chemistry of Materials, 20, 4092–4098.
- 441. Guo, M., Dou, G., Gong, S., et al. (2012) Journal of European Ceramic Society, 32, 883-890.
- 442. Huang, C-L. and Liu, S-S. (2008) Journal of American Ceramic Society, 91, 3428–3430.
- 443. Huang, C-L. and Chen, J-Y. (2009) Journal of American Ceramic Society, 92, 675–678.
- 444. Wang, S-F., Huang, C-Y., and Liu, Y-L. (2010) Journal of American Ceramic Society, 93, 3272–3277.
- 445. Kim, D-W., Kim, I-T., Park, B., et al. (2001) Journal of Materials Research, 16, 1465-1470.
- 446. Huang, C-L. and Chen, J. H. (2009) Journal of American Ceramic Society, 92, 379–383.
- 447. Huang, C-L. and Chen, J. H. (2009) Journal of American Ceramic Society, 92, 2237–2241.
- 448. Joung, M-R., Kim, J-S., Song, M-E., et al. (2008) Journal of American Ceramic Society, 91, 4165–4167.
- 449. Ramarao, S. D. and Murthy, V. R. K. (2015) *Journal of Physics and Chemistry of Solids*, **17**, 12623–12633.
- 450. Zhou, H., Gong, J., Fan, G., et al. (2016) Journal of Alloys & Compounds, in press.
- Huang, C-L., Tseng, Y-W., Chen, J-Y., et al. (2012) Journal of European Ceramic Society, 32, 2365–2371.
- 452. Cho, S-Y., Kim, I-T., and Hong, K. S. (1999) Journal of Materials Research, 14, 114-119.
- Yokoi, A., Ogawa, H., Kan, A., et al. (2005) Journal of European Ceramic Society, 25, 2871– 2875.
- Choi, J-W., Kang, C-Y., Sim, S-H., et al. (2003) Materials Chemistry and Physics, 79, 247– 251.
- 455. Dhanya, J., Unnimaya, A. N., and Ratheesh, R. (2016) *Journal of Materials Science: Materials in Electronics*.
- Liu, X., Zhou, H., Liang, F., et al. (2012) Journal of American Ceramic Society, 95, 3357– 3359.
- Zhou, D., Wang, H., Pang, L-X., et al. (2008) Journal of American Ceramic Society, 91, 4115–4120.
- 458. Tseng, C-F. and Lin, P-A. (2014) Journal of American Ceramic Society, 97, 1020–1022.
- 459. Ma, J-L., Fu, Z-F., Liu, P., et al. (2016) Materials Science and Engineering B, 204, 15–19.
- 460. Kan, A. and Ogawa, H. (2008) Journal of Applied Physics, 47, 7716–7720.
- 461. Kim, R., Kim, D-W., Yoon, S. H., et al. (2006) Journal of Electroceramics, 17, 439-443.
- 462. Yang, A., Lin, H., and Chen, W. (2006) Japanese Journal of Applied Physics, 45, 1698–1701.
- Ogawa, H., Kan, A., Taketani, H., et al. (2004) Journal of Japanese Ceramic Society, Suppl., 112-1 S1627–S1632.
- Yokoi, A., Ogawa, H., and Kan, A. (2006) Journal of European Ceramic Society, 26, 2069– 2074.
- Wang, J-J., Huang, C-L., and Li, P-H. (2006) *Japanese Journal of Applied Physics*, 45, 6352

 6356.
- Tsuji, Y., Kan, A., Ogawa, H., et al. (2005) Journal of European Ceramic Society, 25, 2883– 2887.
- Zhou, Y., Tian, C., Meng, S., et al. (2012) Journal of American Ceramic Society, 95, 1665– 1670.
- 468. Li, L., Ding, X., and Liao, Q. (2012) Ceramic International, 38, 1937–1941.
- Huang, C-L., Tseng, Y-W., and Kuo, Y.C. (2011) Journal of American Ceramic Society, 94, 2963–2967.
- 470. He, L., Zhou, D., Feng, X., et al. (2013) Journal of American Ceramic Society, 96, 3027–3030.
- 471. Subodh, G. and Sebastian, M. T. (2007) Journal of American Ceramic Society, 90, 2266–2268.

- 472. Ichinose, N. and Yamamoto, H. (1997) Ferroelectrics, 201, 255–262.
- 473. Yao, G., Liu, P., and Zhang, H. (2013) Journal of American Ceramic Society, 96, 3114–3119.
- 474. Pang, L-X., Zhou, D., Guo, J., et al. (2015) Journal of American Ceramic Society, 98, 130–135.
- 475. Zhang, T., Zuo, R., and Zhang, C. (2015) Materials Research Bulletin, 68, 109–114.
- 476. Xie, H-D., Xi, H-H., Chen, C., et al. (2015) Ceramic International, 41, 10287–10292.
- Kan, A., Ogawa, H., Yokoi, A., et al. (2007) Journal of European Ceramic Society, 27, 2977– 2981.
- 478. Bian, J. J., Yuan, L. L., Li, Y. Z., et al. (2009) Ferroelectric, 387, 1–7.
- 479. Bian, J. J., Liang, Z., and Wang, L. (2011) *Journal of American Ceramic Society*, **94**, 1447–1453.
- 480. Wu, Y., Zhou, D., Guo, J., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 1505–1510.
- 481. Hsieh, M-L., Chen, L-S., Wang, S-M., et al. (2005) Japanese Journal of Applied Physics, 44, 5045–5048.
- 482. Kim, D-W., Ko, K. H., and Hong, K. S. (2001) Journal of American Ceramic Society, 84, 1286–1290.
- 483. Sohn, J-H., Inaguma, Y., Yoon, S. O., et al. (1994) Japanese Journal of Applied Physics, 33, 5466–5470.
- 484. Chen, Y-B. (2012) Journal of Alloys & Compounds, **543**, 125–128.
- 485. Zhuang, H., You, Z., Zhao, F., et al. (2009) Journal of Alloys & Compounds, 472, 411–415.
- 486. Chameswary, J., Thomas, S., and Sebastian, M. T. (2010) *Journal of American Ceramic Society*, **93**, 1863–1865.
- 487. Zhang, T., Zuo, R., and Wang, Y. (2014) *Journal of Materials Science: Materials in Electronics*, **25**, 5570–5575.
- 488. Anjana, P. S., Sebastian, M. T., Axelsson, A-K., et al. (2007) Journal of European Ceramic Society, 27, 3445–3452.
- 489. Pullar, R. C., Breeze, J., and Alford, N. Mc N. (2002) *Key Engineering Materials*, **224-226**, 1–4
- 490. Bijumon, P. V., Mohanan, P., and Sebastian, M. T. (2006) *Journal of Electroceramics*, 16, 239–245.
- 491. Wakino, K. (1989) Ferroelectrics, 91, 69-86.
- 492. Ferreira, V. M., Azough, F., Freer, R., et al. (1997) Journal of Materials Research, 12, 3293–3299.
- 493. Kumar, T. S., Gogoi, P., Perumal, A., et al. (2014) Journal of American Ceramic Society, 97, 1054–1059.
- 494. Zhou, D., Wang, H., Pang, L-X., et al. (2008) Journal of American Ceramic Society, 92, 2242–2246.
- 495. Hsiang, H-I., Mei, L-T., Yang, S-W., et al. (2011) Ceramic International, 37, 2453-2458.
- 496. Wang, Y-N., Chen, Y-C., Yao, S-L., et al. (2014) Ceramic International, 40, 2641–2645.
- 497. Kan, A., Ogawa, H., and Ohsato, H. (2002) Physica, B322, 403-407.
- 498. Huang, C-L. and Liu, S-S. (2007) Japanese Journal of Applied Physics, 46, 283–285.
- Tseng, Y-W., Chen, J-Y., Kuo, Y-C., et al. (2011) Journal of Alloys & Compounds, 509, L308– L310.
- 500. Ferrira, V. M., Azough, F., Freer, R., et al. (1997) Journal of Materials Research, 12, 3293–3299.
- 501. Lyu, X., Li, L., Sun, H., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 8663–8666.
- 502. Tseng, C-F. and Hsu, C-H. (2009) Journal of American Ceramic Society, 93, 1149–1152.
- 503. Suresh, M. K., John, A., Thomas, J. K., et al. (2010) Materials Research Bulletin, 45, 1389–1395.
- 504. Kwon, D-W., Lanagan, M. T., and Shrout, T. R. (2005) *Journal of American Ceramic Society*, 88, 3419–3422.
- 505. Cho, W. W., Kakemoto, K., and Ohsato, H. (2005) *Materials Science and Engineering B*, **121**, 48–53.

- Yoon, S. H., Choi, G-K., Kim, D-W., et al. (2007) Journal of European Ceramic Society, 27, 3087–3091.
- 507. Butee, S., Kulkarni, A. R., Prakash, Om., et al. (2011) Materials Science and Engineering B, 176, 567–572.
- 508. Sanoj, M. A. and Varma, M. R. (2009) *Journal of Alloys & Compounds*, **477**, 565–569.
- 509. Tseng, C-F. and Tang, H-J. (2010) Journal of Alloys & Compounds, 491, 314–320.
- 510. Park, J. H., Choi, Y-J., Park, J-H., et al. (2004) Materials Chemistry and Physics, 88, 308-312.
- Ferreira, V. M. and Baptista, J. L. (1996) Journal of American Ceramic Society, 79, 1697– 1698.
- 512. Chen, Y-C., Weng, M-Z., and Chang, K-C. (2014) Journal of Materials Science: Materials in Electronics, 25, 2475–2481.
- 513. Li, L., Gao, Z., Ren, Q., et al. (2014) Journal of Alloys & Compounds, 617, 841–844.
- 514. Huang, C-L. and Liu, S-S. (2009) Journal of Alloys & Compounds, 471, L9-L12.
- 515. Wang, Y-R., Wang, S-F., and Wen, C-K. (2006) Materials Science and Engineering A, 426, 143–146.
- 516. Anjana, P. S. and Sebastin, M.T. (2006) Journal of American Ceramic Society, 89, 2114-2117.
- 517. Butee, S., Kulkarni, A. K., Prakash, Om., et al. (2010) Materials Science and Engineering B, 168, 151–155.
- 518. Li, L., Chen, X. M., and Fan, X. C. (2005) Journal of Electroceramics, 15, 209-214.
- 519. Tian, C., Yue, Z., Meng, S., et al. (2012) Journal of American Ceramic Society, **95**, 1645–1650.
- 520. Huang, C-L., Liu, S-S., and Chen, S-H. (2009) Journal of Alloys & Compounds, 480, 794-797.
- 521. Huang, C-L., Chen, J-Y., and Li, B-J. (2011) *Journal of Alloys and Compounds*, **509**, 4247–4251.
- Levin, I., Vanderah, T. A., and Coutts, R. (2002) Journal of Materials Research, 17, 1729– 1734.
- 523. Wang, Y-R., Wang, S-F., and Lin, Y-M. (2005) Ceramic International, 31, 905–909.
- Kawaguchi, S., Ogawa, H., Kan, A., et al. (2005) Journal of European Ceramic Society, 25, 2853–2858.
- 525. Sebastian, M. T., Santha, N., Bijumon, P. V., et al. (2004) Journal of European Ceramic Society, 24, 2583–2589.
- 526. Varghese, J., Presumy, M., Sebastian, M. T., et al. (2014) Materials Chemistry and Physics, 148, 96–102.
- Zhang, Q-L. and Yang, H. (2007) Journal of Materials Science: Materials in Electronics, 18, 967–971.
- 528. Zhao, F., Yue, Z., Gui, Z., et al. (2005) Japanese Journal of Applied Physics, 44, 8066–8070.
- 529. Li, B-J., Chen, J-Y., Huang, G-S., et al. (2010) Journal of Alloys & Compounds, 505, 291–296.
- 530. Li, H., Li, Y., Tang, B., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 717–722.
- Peng, L. Q., Mao, M. M., and Chen, X. M. (2010) Journal of American Ceramic Society, 93, 4066–4070.
- 532. Tseng, C-F. (2011) Journal of Alloys & Compounds, **509**, 9447–9450.
- 533. Zhen, W., Li, S., and Bian, J. J. (2013) Ceramic International, 39, 9767–9772.
- 534. Chen, Y-C., Weng, M-Z., and Chang, K-C. (2014) *Journal of Materials Science: Materials in Electronics*, **25**, 844–853.
- 535. Tseng, C-F. (2011) Materials Science Forum, 687, 199–203.
- 536. Huang, C-L., Liu, S., and Chen, S-H. (2011) Journal of Alloys & Compounds, 509, 9702–9707.
- Xiao, Y., Chen, X. M., and Liu, X. Q. (2004) *Journal of American Ceramic Society*, 87, 2143– 2146.
- Yi, L., Qiang, X., Li, L., et al. (2013) International Journal of Appled Ceramic Technology, 10S1, E177–E185.
- 539. Cao, Q-S., Lu, W-Z., Wang, X-C., et al. (2015) Ceramic International, 41, 9152–9156.
- 540. Xie, H-D., Chen, C., Xi, H-H., et al. (2016) Ceramic International, 42, 989–995.
- 541. Chen, H-C., Weng, M-H., Huang, C-I., et al. (2004) Japanese Journal of Applied Physics, 43, 2564–2567.

- 542. Anjana, P. S., Jawahar, I. N., and Sebastian, M. T. (2009) *Journal of Materials Science: Materials in Electronics*, **20**, 587–596.
- 543. Li, L., Zhang, M., Liao, Q., et al. (2012) Journal of Alloys & Compounds, 531, 18–22.
- Huang, C-L., Chen, J-Y., and Jiang, C-Y. (2009) Journal of Alloys & Compounds, 487, 420– 424.
- 545. Pullar, R. C., Okereme, K., and Alford, N. Mc N. (2003) *Journal of European Ceramic Society*, 23, 2479–2483.
- 546. Jung, B-H., Hwang, S-J., and Kim, H-S. (2005) Journal of European Ceramic Society, 25, 3187–3193.
- 547. Huang, C-L. and Chen, J-Y. (2009) *Journal of Alloys & Compounds*, **485**, 706–710.
- 548. Zhu, H., Lu, W-Z., and Lei, W. (2011) Ceramic International, 37, 1515–1519.
- Mori, K., Ogawa, H., Kan, A., et al. (2004) Journal of European Ceramic Society, 24, 1745– 1748.
- Mao, M. M., Chen, X. M., and Liu, X. Q. (2011) Journal of American Ceramic Society, 94, 3948–3952.
- 551. Chen, Y-B. (2011) Journal of Alloys & Compounds, 509, 6884-6888.
- 552. Huang, C-L. and Shen, C-H. (2009) Journal of American Ceramic Society, 92, 384–388.
- Zhou, H., Liu, X., Chen, X., et al. (2012) Journal of European Ceramic Society, 32, 261– 265.
- 554. Fe, X. and Chen, X. M. (2009) Journal of American Ceramic Society, 92, 433–438.
- 555. Joseph, J. T., Padmakumar, H., Varma, M. R., et al. (2008) Materials Letters, 62, 911–913.
- Shen, C-H. and Huang, C-L. (2010) International Journal of Appled Ceramic Technology, 7, 207–216.
- Pullar, R. C., Breeze, J., and Alford, N. Mc N. (2005) *Journal of American Ceramic Society*, 88, 2466–2471.
- 558. Chen, Y-B. (2012) Journal of Alloys and Compounds, 513, 481–486.
- Shin, H-K., Shin, H., Bae, S-T., et al. (2008) Journal of American Ceramic Society, 91, 132– 138.
- 560. Zhang, C., Yi, L., and Chen, X. M. (2014) Ceramic International, 40, 6077–6082.
- 561. Li, B., Yi, L., and Chen., X. M. (2015) Materials Research Bulletin.
- Chen, J. Y., Levin, I., Vanderah, T. A., et al. (2000) International Journal of Inorganic Chemistry, 2, 107–114.
- Sebastian, M. T., Solomon, S., Ratheesh, R., et al. (2001) Journal of American Ceramic Society, 84, 1487–1489.
- 564. Surendran, K. P., Varma, M. R., and Sebastian, M. T. (2003) *Journal of American Ceramic Society*, 86, 1695–1699.
- 565. Wang, Y-R., Wang, S-F., and Lin, Y-M. (2005) Ceramic International, 31, 905–907.
- Golovchanski, A., Kim, H. T., and Kim, Y. H. (1998) Journal of Korean Ceramic Society, 32, S1167–S1169.
- 567. Durilin, D. A., Ovchar, O. V., and Belous, A. G. (2011) *Inorganic Materials*, 47, 313–316.
- 568. Bian, J. J., Yan, K., and Dong, Y. F. (2008) Materials Science and Engineering, B, 147, 27-34.
- 569. Zhang, P., Song, Z., Wang, Y., et al. (2014) Journal of American Ceramic Society, 97, 976–981.
- 570. Tseng, C-F., Wei, T-C., and Lu, S-C. (2014) Ceramic International, 40, 7081–7085.
- 571. Wang, W., Bai, W., Shen, B., et al. (2015) Ceramic International, 41, S435-S440.
- 572. Chen, J. Y. and Huang, C-L. (2010) Materials Letters, **64**, 2585–2588.
- 573. He, L., Zhou, D., Yang, H., et al. (2012) Journal of American Ceramic Society, **95**, 3732–3734.
- 574. Chen, Y-C., Weng, M-Z., and Chen, Y-Y. (2013) Journal of Materials Science: Materials in Electronics, 24, 2970–2975.
- 575. Sayyadi-Shahraki, A., Taheri, E., Hassanzadeh-Tabrizi, S. A., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 355–360.
- 576. Xie, H., Xi, H., Chen, C., et al. (2014) Journal of European Ceramic Society, 34, 4089–4093.
- Fan, X. C., Mao, M. M., and Chen, X. M. (2008) *Journal of American Ceramic Society*, 91, 2917–2922.
- 578. Bian, J. J. and Dong, Y. F. (2009) Journal of European Ceramic Society, 30, 325–330.
- 579. Chen, J-Y. and Huang, C-L. (2010) *Journal of Alloys & Compounds*, **496**, L10–L13.

- 580. Chen, Y-C., Yao, S-L., and Wu, C-Y. (2012) Journal of Materials Science: Materials in Electronics, 23, 1320–1326.
- Zhou, D., Wang, H., Yao, X., et al. (2008) Journal of American Ceramic Society, 91, 2228– 2231.
- 582. Li, E., Niu, N., Wang, J., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 3330–3335.
- Surendran, K. P., Solomon, S., Varma., M. R., et al. (2002) Journal of Materials Research, 17, 2561–2566.
- Zhou, D., Wang, H., Yao, X., et al. (2008) Journal of American Ceramic Society, 91, 1380– 1383.
- 585. Chen, Y-C. and Tsai, R-J. (2011) Materials Chemistry and Physics, 129, 116–120.
- 586. Udovic, M., Valant, M., and Suvorov, D. (2001) Journal of European Ceramic Society, 21, 1735–1738.
- 587. Wang, Y-N. (2013) Journal of Materials Science: Materials in Electronics, 24, 4510–4515.
- 588. Lyu, X., Lin, L., Cai, H., et al. (2015) Ceramics International, 41, 9168–9171.
- 589. Chen, Y-C. and Li, C-H. (2014) *Journal of Materials Science: Materials in Electronics*, **25**, 4312–4318.
- 590. Tagata, M. and Kageyama, K. (1989) Journal of American Ceramic Society, 72, 1955–1959.
- 591. Liu, X., Gao, F., Zhao, L., et al. (2007) Journal of Electroceramics, 18, 103-109.
- Choi, Y-C., Park, J-H., Park, J-H., et al. (2007) Journal of European Ceramic Society, 27, 2017–2024.
- Yuan, H. X., Chen, X. M., and Mao, M. M. (2009) Journal of American Ceramic Society, 92, 2286–2290.
- 594. Chen, Y-C., Chang, K-C., and Yao, S-L. (2012) Ceramic International, 38, 5377–5383.
- 595. Lee, H-W., Park, J-H., Nahm, S., et al. (2010) Materials Research Bulletin, 45, 21-24.
- Bian, J-J., Wang, L., and Yuan, L. L. (2009) Materials Science and Engineering, B164, 96– 100.
- 597. Chen, X. N., Wu, S Y., and Chen, X. M. (2013) Journal of Materials Science: Materials in Electronics, 24, 2445–2452.
- 598. Chen, Y-C., Chen, Y-U., and Yao, S-L. (2013) Journal of Materials Science: Materials in Electronics, 24, 1150–1157.
- 599. Kan, A., Ogawa, H., Mori, K., et al. (2002) Materials Research Bulletin, 37, 1509-1518.
- Lee, H-J., Kim, I-T., and Hong, K. S. (1997) Japanese Journal of Applied Physics, 36, L1318– L1320.
- 601. Chen, Y-C. and Chang, Y-H. (2009) Journal of Alloys & Compounds, 477, 450–453.
- 602. Li, Z., Wu, W., Liu, F., et al. (2014) Materials Letters, 118, 24–26.
- Wang, S. F., Hsu, Y-F., Wang, Y-R., et al. (2010) Journal of American Ceramic Society, 94, 812–816.
- 604. Liu, B., Yi, L., Li, L., et al. (2015) Journal of Alloys & Compounds, 653, 351–357.
- 605. Hsu, C-S., Huang, C-L., Tseng, J-F., et al. (2003) Materials Research Bulletin, 38, 1091–1099.
- 606. Hwang, S. and Kim, H. (2007) Thermochemica Acta, A45, 119–112.
- 607. Wang, Y-N., Chen, Y-C., Pan, Y-D., et al. (2012) Ceramic International, 38, 3097–3103.
- 608. Yi, L, Li, L., Qiang, X., et al. (2014) Journal of American Ceramic Society, 97, 3531–3536.
- 609. Kagata, H. and Kato, J. (1994) Japanese Journal of Applied Physics, 33, 5463-5465.
- Ha, J-Y., Choi, J-W., Yoon, S-J., et al. (2003) Journal of European Ceramic Society, 23, 2413– 2416.
- 611. Huang, C-L., Pan, C-L., and Shim, S-J. (2003) Materials Chemistry and Physics, 78, 111-115.
- 612. Li, L., Wu, X., and Zhu, Z. (to be published)
- 613. Zeng, O., Li, W., Shi, J-L., et al. (2006) Journal of American Ceramic Society, 89, 1733–1735.
- 614. Thirumal, M., Jawahar, I. N., Surendran, K. P., et al. (2002) Materials Research Bulletin, 37, 185–191.
- 615. Huang, C-L. and Weng, M-H. (2001) *Materials Research Bulletin*, **36**, 2741–2750.
- 616. Zhao, F., Yue, Z., Pei, J., et al. (2007) Journal of American Ceramic Society, 90, 2461–2466.
- 617. Shlykhtin, O. A. and Oh, Y-J. (2006) Journal of American Ceramic Society, 89, 3366–3372.
- 618. Zhou, D., Wang, H., Pang, L-X., et al. (2012) Materials Chemistry and Physics, 119, 149–152.

- 619. Chen, Y-C. and Hsu, W-Y. (2010) Journal of Alloys & Compounds, 506, 441–445.
- 620. Wu, J. Y. and Bian, J. J. (2013) Ceramic International, 39, 3641–3649.
- 621. Chen, Y-C. and Hsu, W-Y. (2011) Ceramic International, 37, 55–58.
- 622. Yao, G-G. and Liu, P. (2010) Physica, **B405**, 547–551.
- 623. Huang, C-L. and Huang, S-H. (2012) Journal of Alloys & Compounds, 515, 8-11.
- 624. Huang, C-L., Hou, J-L., Pan, C-L., et al. (2008) Journal of Alloys & Compounds, 450, 359–363.
- 625. Wu, J. Y. and Bian, J. J. (2014) Journal of American Ceramic Society, 97, 880-884.
- 626. Guo, M., Li, Y., Dou, G., et al. (2015) Journal of Materials Science: Materials in Electronics, 25, 4319–4325.
- 627. Xie, W., Zhou, H., Zhu, H., et al. (2014) Ceramic International, 40, 6899-6902.
- 628. Babu, G. S., Subramanian, V., and Murthy, V. R. K. (2007) Journal of European Ceramic Society, 27, 2973–2976.
- 629. Wang, Y-N. and Chen, M-D. (2013) *Journal of Materials Science: Materials in Electronics*, **24**, 3730–3735.
- Huang, C-L., Chen, Y-B., and Lee, M-L. (2009) Journal of Alloys and Compounds, 469, 357–361.
- 631. Zhang, P., Wang, T., Xia, W., et al. (2012) Journal of Alloys and Compounds, 535, 1-4.
- Kim, D-W., Kim, J-H., Kim, J-R., et al. (2001) Japanese Journal of Applied Physics, 40, 5994–5998.
- 633. Chen, Y-C. and Lee, W-C. (2011) Materials Chemistry and Physics, 129, 110–1115.
- 634. Chen, Y-C. and Chen, M-D. (2011) Journal of Physics and Chemistry of Solids, 72, 1447–1451.
- Chen, Y-C., Yang, S-K., and Chang, K-C. (2011) Journal of Alloys and Compounds, 509, 9518–9522.
- 636. Chen, Y-C. (2012) International Journal of Applied Ceramic Technology, 9, 606–614.
- 637. Zhou, H., Liu, X., Chen, X., et al. (2012) Materials Chemistry and Physics, 137, 22–25.
- 638. Liu, X. Q. and Chen, X. M. (2006) Journal of European Ceramic Society, 26, 1969–1971.
- 639. Mori, K., Ogawa, H., Kan, A., et al. (2002) Materials Chemistry and Physics, 79, 273-275.
- 640. Santha, N., Sebastian, M. T., Mohanan, P., et al. (2004) Journal of American Ceramic Society, 87, 1233–1237.
- 641. Mannan, A., Khan, D. N., and Ullah, A. (2015) Journal of Materials Science: Materials in Electronics, 26, 2066–2069.
- 642. Belous, A., Ovchar, O., Jancar, B., et al. (2007) Journal of European Ceramic Society, 27, 2933–2936.
- 643. Chen, G-H., Xu, H-R., and Yuan, C-L. (2013) Ceramic International, 39, 4887–4892.
- 644. Belous, A., Ovchar, O., Jancar, B., et al. (2009) Journal of Electrochemical Society, 156, G206–G212.
- 645. Venugopal, V., Anjana, P. S., Prakash, Om., et al. (2010) Journal of American Ceramic Society, 93, 2467–2469.
- 646. Anjana, P. S. and Sebastian, M. T. (2008) *International Journal of Appled Ceramic Technology*, **5**, 84–89.
- 647. Zhang, Q-L., Yang, H., and Tong, J-X. (2005) Materials Letters, 60, 1188–1191.
- 648. Lina, Y. J., Wang, S-F., Chen, S-H., et al. (2015) Ceramics International, 41, 8931–8935.
- 649. Hsu, C-S. and Huang, C-L. (2001) Materials Research Bulletin, 36, 1939–1947.
- 650. Feteira, A., Sinclair, D. C., and Lanagan, M. T. (2008) Journal of Applied Physics, 101, 064110.
- 651. Zhou, H., Wang, H., Zhang, M., et al. (2010) Materials Chemistry and Physics, 119, 4-6.
- 652. Chen, G-H. and Yang, Y. (2013) *Journal of Materials Science: Materials in Electronics*, **24**, 1012–1017.
- 653. Huang, C-L., Yang, W-R., and Yu, P-C. (2014) Journal of European Ceramic Society, 34, 277–284.
- 654. Cho, W. W., Kakimoto, K., and Ohsato, H. (2004) Japanese Journal of Applied Physics, 43, 6221–6224.
- 655. Bian, J. J., Yan, K., and Li, J. (2006) Journal of European Ceramic Society, 26, 1957–1960.
- 656. Tseng, C-F. and Li, S-C. (2013) Materials Science and Engineering B, 178, 358–362.

- Yang, W-R., Huang, P-Z., and Huang, C-L. (2015) Journal of Alloys & Compounds, 620, 18–23.
- Huang, C-L., Wang, J-J., and Chang, Y-P. (2007) Journal of American Ceramic Society, 90, 858–862.
- Yu, H., Cheng, J., Zhang, W., et al. (2012) Journal of Materials Science: Materials in Electronics, 23, 572–575.
- 660. Zhou, H., Liu, X., Chen, X., et al. (2012) Materials Research Bulletin, 47, 1278–1280.
- 661. Zhang, P. and Zhao, Y. (2016) Ceramics International, 42, 2882–2886.
- 662. Bijumon, P. V. and Sebastian, M. T. (2004) Journal of Materials Research, 19, 2922–2928.
- 663. Kim, H. T., Nahm, S., Byun, J. D., et al. (1999) Journal of American Ceramic Society, 82, 3476–3480.
- 664. Tong, J. X., Zhang, Q. L., Yang, H., et al. (2005) Materials Letters, 59, 3252–3255.
- 665. Huang, C-L. and Pan, C-L. (2002) Japanese Journal of Applied Physics, 41, 707–711.
- Shen, C-H. and Huang, C-L. (2009) International Journal of Appled Ceramic Technology, 7, 207–216.
- Huang, C-L., Chen, J-Y., and Liang, C-C. (2009) Journal of Alloys & Compounds, 478, 554– 558.
- 668. Tay, K-W. and Wu, W-F. (2012) Procedia Engineering, 36, 462–467.
- 669. Chen, Y-C., Tsai, R-J., and Wu, C-Y. (2012) Ceramic International, 38, 2927-2934.
- 670. Lei, Y., Liu, X.Q., and Chen, X. M. (2012) Materials Chemistry and Physics, 147, 162-167.
- Oishi, T., Kan, A., Ohsato, H., et al. (2006) Journal of European Ceramic Society, 26, 2075– 2079.
- 672. Wu, Y., Zhou, D., Guo, J., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 4942–4946.
- 673. Guo, J., Rindall, C. A., Zhang, G., et al. (2014) Journal of Materials Chemistry
- 674. Hsu, C-H. (2008) Ceramic International, 34, 243–247.
- Feteiro, A., Sinclair, D. C., Raja, K. Z., et al. (2008) Journal of American Ceramic Society, 91, 893–901.
- 676. Chen, G. H., Zhou, M., and Yang, Y. (2012) Materials Letters, 89, 16–18.
- Zhou, D., Rindall, C. A., Pang, L-X., et al. (2011) Materials Chemistry and Physics, 129, 688–692.
- 678. Wang, J., Yue, Z., Gui, Z., et al. (2005) Journal of Materials Science Letters, 40, 6581–6583.
- 679. Xiang, H., Jiang, X., Fang, L., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 9134–9138.
- 680. Xie, W., Zhou, H., Jiang, Q., et al. (2016) Journal of Materials Science: Materials in Electronics. in press.
- 681. Huang, C-L. and Chiang, K-H. (2008) Materials Science and Engineering A, 474, 243–248.
- 682. Zeng, Q., Li, W., Shi, J-L., et al. (2006) Journal of American Ceramic Society, 89, 3305–3307.
- 683. Huang, C-L. and Chen, Y-C. (2003) Journal of European Ceramic Society, 23, 167–173.
- 684. Tian, Z. Q. and Lin, L. (2009) Journal of Materials Science: Materials in Electronics, 20, 867–871.
- 685. Huang, S. J., Kim, Y-J., and Kim, H. S. (2002) Materials Research Bulletin, 37, 2483–2490.
- 686. Rajput, S. S. and Keshari, S. (2013) Journal of Alloys and Compounds, 581, 223–229.
- 687. Ding, Z., Su, H., Tang, X., et al. (2015) Ceramic International, 41, 10133–10136.
- Guo, H., Fang, L., Jiang, X., et al. (2015) Journal of American Ceramic Society, 98, 3863–3868.
- 689. Shen, C-H., Huang, C-L., Chen, W-T., et al. (2012) International Journal of Appled Ceramic Technology, 9, 447–453.
- 690. Chen, W-S., Tseng, C-F., Lee, Y-M., et al. (2009) Journal of Material Processing and Technology, 209, 2277–2281.
- Shen, C-H., Huang, C-L., Lin, L-M., et al. (2009) Journal of Alloys & Compounds, 489, 170–174.
- 692. Zhang, Y., Wu, S., Zhang, B., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 3085–3089.
- 693. Li, S., Li, L., Lyu, X., et al. (2015) Materials Letters, 161, 527–529.

- 694. Huang, C-L., Pan, C-L., Hsu, J-F., et al. (2008) Journal of Alloys & Compounds, 461, 521–528.
- 695. Tan, C., Yue, Z., Zhou, Y., et al. (2013) Journal of Solid State Chemistry, 197, 242–247.
- Zhang, J., Yue, Z., Zhou, Y., et al. (2015) Journal of American Ceramic Society, 98, 1548– 1554.
- 697. Wang, S-F., Chen, J-H., Hsu, Y-F., et al. (2013) Ceramic International, 39, 2857–2861.
- 698. Pan, C-L., Shen, C-H., Chen, P-C., et al. (2010) Journal of Alloys and Compounds, 503, 365–369.
- 699. Zhou, H., Wang, W., Chen, X., et al. (2014) Ceramic International, 40, 2103–2107.
- 700. Zeng, Q., Li, W., Shi, J. L., et al. (2006) Journal of American Ceramic Society, 89, 1733–1637.
- Tamura, H., Konoike, T., Sakabe, Y., et al. (1984) Journal of American Ceramic Society, 67, C59–C61.
- 702. Cho, S-Y., Kim, C-H., Kim, D-W., et al. (1999) Journal of Materials Research, 14, 2484–2487.
- 703. Kim, M-H., Nahm, S., Choi, C-K., et al. (2002) Japanese Journal of Applied Physics, 41, 717–721.
- 704. Kim, H. T. and Lanagan, M. T. (2003) Journal of American Ceramic Society, 86, 1874–1878.
- 705. Zhang, Y-C., Yue, Z. X., Gui, Z. L., et al. (2003) Materials Letters, 57, 4531-4534.
- 706. Yaomin, D. and Bian, J. J. (2013) Ceramic International, 39, 1555-1560.
- 707. Zeng, Q., Zhou, Y., and Hou, L. (2011) Materials Chemistry and Physics, 129, 892-895.
- 708. Shen, C-H., Huang, C-L., Shih, C-F., et al. (2010) International Journal of Appled Ceramic Technology, 6, 572–570.
- 709. Yuan, L. L. and Bian, J. J. (2009) Ferroelectrics, 38, 123-129.
- Shahraki, E. A. S., Nassaj, E. J., Tabrizi, S. A. H., et al. (2014) Journal of Alloys & Compounds, 597, 161–166.
- 711. Cho, S-Y., Kim, I-T., and Hong, K-S. (1999) Journal of Materials Research, 14, 114–119.
- 712. Wang, J., Yue, Z., Gui, Z., et al. (2005) Journal of Alloys & Compounds, 392, 263-267.
- 713. Wee, S-H., Kim, D-W., Yoo, S-I., et al. (2004) Japanese Journal of Applied Physics, 43, 3511–3515.
- 714. Bian, J. J., Yuan, L. L., Li, Y. Z., et al. (2008) MMA 2008, Hangzhou, China, pp. 79
- 715. Zhou, D., Wang, H., Yao, X., et al. (2009) Materials Chemistry and Physics, 113, 265–268.
- 716. Xie, W., Zhou, H., Zhu, H., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 3515–3520.
- 717. Hsun, C-H. and Chang, C-H. (2015) Ceramics International, 41, 6965–6969.
- 718. Chai, Y-L., Chang, Y-S., Hsiao, Y-J., et al. (2008) Materials Research Bulletin, 43, 257–263.
- 719. Cho, J. Y., Yoon, K. H., and Kim, E. S. (2003) Materials Chemistry and Physics, 79, 286–288.
- 720. Huang, C-L. and Chen, Y-C. (2002) Japanese Journal of Applied Physics, 41, 1459–1464.
- 721. Varghese, J., Joseph, T., Sebastian, M. T., et al. (2010) Journal of American Ceramic Society, 93, 2960–2963.
- 722. Zeng, Q., Li, W., Shi, J-L., et al. (2008) Journal of American Ceramic Society, 91, 644-647.
- 723. Su, H. and Wu, S. (2005) *Materials Letters*, **50**, 2337–2341.
- 724. Huang, C-L., Lin, S-H., Liu, S-S., et al. (2010) Journal of Alloys & Compounds, 503, 392–396.
- 725. Huang, C-L., Shen, C-H., and Lin, T-C. (2009) Journal of Alloys & Compounds, 468, 516-521.
- 726. Su, H. and Wu, S. (2005) *Materials Letters*, **59**, 2337–2341.
- 727. Khalyaviv, D. D., Senos, A. M. R., Mantas, P. Q., et al. (2007) Journal of Solid State Chemistry, **180**, 41–48.
- 728. Li, L., Yu, X. L., Sun, H., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 5871–5876.
- 729. Lee, H-J., Hong, K. S., Kim, S-J., et al. (1997) Materials Research Bulletin, 32, 847–855.
- Ogawa, H., Kan, A., Yokola, S., et al. (2001) Journal of European Ceramic Society, 21, 1731– 1734.
- 731. Huang, C-L. and Liu, S-S. (2009) Materials Letters, 62, 3773–3775.
- 732. Huang, C-L., Chen, Y-B., and Lin, S-H. (2009) Journal of Alloys & Compounds, 477, 712–715.
- 733. Sumesh, G. and Sebastian, M. T. (2010) In *Perovskite:Structure Properties and Uses* (ed. M. Borowski), pp. 283–317, Nova Science Publishers Inc.
- 734. Chen, Y-B., Huang, C-L., and Tasi, S-T. (2008) *Materials Letters*, **62**, 2454–2457.
- 735. Huang, C-L., Chen, J-Y., and Huang, G-S. (2010) Journal of Alloys & Compounds, 499, 48–52.

- Shen, C-H., Huang, C-L., and Lin, L-M., et al. (2010) Journal of Alloys & Compounds, 504, 228–232.
- 737. Li, C., Xiang, H., and Fang, L. (2016) Journal of Electronic Materials, 45, 262–266.
- George, S. and Sebastian, M. T. (2011) International Journal of Appled Ceramic Technology, 8, 1400–1407.
- 739. Liu, X. Q. and Chen, X. M. (2004) Journal of European Ceramic Society, 24, 1999–2004.
- 740. Bian, J. J. and Ding, Y. (2014) Materials Research Bulletin, 49, 245–249.
- 741. Li, L., Li, S., Tian, T., et al. (2016) Journal of Materials Science: Materials in Electronics, in press.
- 742. Huang, C-L., Chen, J-Y., and Jiang, C-Y. (2010) Journal of Mareican Ceramic Society, 93, 2755–2759.
- 743. Shen, C-H. and Huang, C-L. (2009) *Journal of Alloys and Compounds*, **477**, 720–725.
- 744. Huang, C-L., Tseng, Y-W. and Chen, J-Y. (2012) Journal of European Ceramic Society, 32, 3287–3295.
- Hsiang, H-I., Mei, L-T., Liao, W-C., et al. (2010) Journal of American Ceramic Society, 93, 1714–1717.
- 746. Li, B., Tang, B., Zhang, S., et al. (2010) Journal of Materials Science, 45, 6461–6466.
- Shim, S. H., Choi, B. G., Kim, S. H., et al. (2005) Japanese Journal of Applied Physics, 44, 5073–5075.
- 748. Cairns, D. L., Reaney, I. M., Zheng, H., et al. (2005) Journal of European Ceramic Society, 25, 433–439.
- 749. Huang, C-L. and Chiang, K-H. (2007) Journal of Alloys & Compounds, 431, 326–330.
- Khalam, L. A., Thomas, S., and Sebastian, M. T. (2007) Journal of American Ceramic Society, 90, 2476–2486.
- 751. Yao, G. G., Liu, P., and Zhang, H. W. (2013) Journal of Materials Science: Materials in Electronics, 24, 1128–1131.
- 752. Choi, J. W., Kang, C-Y., Yoon, S-J., et al. (1999) Journal of Materials Research, 14, 3567–3570.
- 753. Cha, H. J., Kang, D. H., and Cho, Y. S. (2007) Materials Research Bulletin, 42, 265-273.
- Shim, S. H., Choi, B. G., Yoon, J. W., et al. (2005) Japanese Journal of Applied Physics, 44, 5073–5075.
- 755. Liang, J., Lu, W., Lei, W., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 3625–3628.
- 756. Liang, J. and Lu, W-Z. (2009) Journal of American Ceramic Society, 92, 952–954.
- 757. Fang, L., Wei, Z., Liao, W., et al. (2014) Journal of American Ceramic Society, 97, 498–500.
- 758. Shen, C-S., Huang, C-L., Shih, C-F., et al. (2010) International Journal of Appled Ceramic Technology, 7, E64–E70.
- Hao, Y-Z., Zhang, Q-L., Zhang, J., et al. (2012) Journal of Materials Chemistry, 22, 23885– 23892.
- 760. Liu, Z., Wang, Y., Wu, W., et al. (2013) Journal of Asian Ceramic Societies, 1, 2–8.
- 761. Zhou, H., Miao, Y., Chen, J., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 2470–2474.
- 762. Yu, N. X., Zhou, J-H., Yang, H., et al. (2014) Ceramic International, 40, 15191–15198.
- Khalam, L. A. and Sebastian, M. T. (2007) Journal of American Ceramic Society, 90, 1467– 1474.
- 764. Huang, C-L., Lin, R. J., and Wang, H. (2002) Japanese Journal of Applied Physics, 41, 758–762.
- Liu, P., Ogawa, H., Kim, E. S., et al. (2003) Journal of European Ceramic Society, 23, 2417– 2421.
- Zhou, Y., Meng, A., Wu, H., et al. (2011) Journal of American Ceramic Society, 94, 2933– 2938
- 767. Fang, G., Jiaji, L., Rongzi, H., et al. (2009) Ceramic International, 35, 2687–2692.
- 768. Huang, C-L., Li, G-J., and Wang, J-J. (2009) *Journal of Alloys & Compounds*, **472**, 497–501
- 769. Liu, X. Q. and Chen, X. M. (2004) Journal of European Ceramic Society, 24, 199–2004.

- 770. Rajamma, R. and Sebastian, M. T. (2007) *Journal of American Ceramic Society*, **90**, 2472–2475.
- 771. Wang, J-J., Wang, C-H., and Hsu, T-K. (2009) Japanese Journal of Applied Physics, 48, 081402.
- 772. Wu, Y., Zhou, D., Guo, J., et al. (2011) Materials Letters, 65, 2680–2682.
- 773. Bian, J. J., Gao, H. B., and Wang, X. W. (2004) Materials Research Bulletin, 39, 2127–2135.
- 774. Yaomin, D. and Bian, J. J. (2013) Materials Research Bulletin, 48, 2776–2781.
- 775. Bian, J. J., Yan, K., and Gao, H. B. (2006) Materials Chemistry and Physics, 96, 349-352.
- 776. Lee, Y-C., Lee, W-H., and Shiao, F-T. (2004) *Japanese Journal of Applied Physics*, **43**, 7596–7599.
- 777. Zhang, C., Yi, L., Li, L., et al. (2013) International Journal of Applied Ceramic Technology, E70–E76.
- 778. Butee, S., Kulkarni, A., Prakash, Om., et al. (2009) Journal of American Ceramic Society, 92, 1047–1053.
- 779. Prasanth, C. S., Kumar, H. P., Pazhani, R., et al. (2008) Journal of Alloys & Compounds, 464, 306–309.
- Belous, A. G., Ovchar, O. V., Kramarenko, A. V., et al. (2007) Inorganic Chemistry, 43, 277– 280.
- Xia, W-S., Yang, F-Y., Zhang, G-Y., et al. (2016) Journal of Alloys & Compounds, 656, 470– 475
- 4/5. 782. Wu, H. T., Guo, J. D., Bi, J. X., et al. (2016) Journal of Alloys and Compounds, **661**, 535–540.
- 783. Shen, C-H., Huang, C-L., Shih, C-F., et al. (2009) Journal of Alloys & Compounds, 475, 391–395.
- 784. Hao, Y-Z., Yang, H., Chen, G-H., et al. (2013) Journal of Alloys & Compounds, 552, 173–179.
- 785. Kawaguchi, S., Ogawa, H., Kan, A., et al. (2006) Journal of European Ceramic Society, 26, 2045–2049.
- 786. Takada, T., Wang, S. F., Yoshikawa, S., et al. (1994) Journal of American Ceramic Society, 77, 1909–1916.
- 787. Nomura, S. (1983) Ferroelectrics, 49, 61-70.
- 788. Yoon, S-O., Yoon, J. H., Shim, S. H., et al. (2006) Journal of European Ceramic Society, 26, 2031–2034.
- 789. Tang, B., Li, Y-X., Li, H., et al. (2015) Journal of Materials Science: Materials in Electronics, **26**, 2795–2799.
- 790. Choi, J-W., Ha, J. Y., Yoon, S-J., et al. (2003) Journal of European Ceramic Society, 23, 2507–2510.
- 791. Matsumoto, H., Tamura, H., and Wakino, K. (1991) *Japanese Journal of Applied Physics*, **30**, 2347–2349.
- 792. George, S. and Sebastian, M. T. (2009) Journal of Alloys & Compounds, 473, 336-340.
- 793. Tong, J., Zhou, J., Yang, H., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 1293–1297.
- 794. Tamura, H., Matsumoto, H., and Wakino, K. (1989) *Japanese Journal of Applied Physics*, **28-2**, 21.
- 795. Furuya, M. and Ochi, A. (1994) Japanese Journal of Applied Physics, 33, 5482–5487.
- 796. Lu, X., Zheng, Y., Dong, Z., et al. (2014) Ceramic International, 40, 7087–7092.
- 797. Huang, C-L., Tasi, C-F., Chen, Y-B., et al. (2008) Journal of Alloys & Compounds, **453**, 337–340.
- 798. Wang, S. F., Hsu, Y-F., Wang, Y-R., et al. (2011) Journal of European Ceramic Society, 31, 2975–2980.
- 799. Suresh, M. K., Padmakumar, H., Warrier, P. R. S., et al. (2012) Journal of Materials Science: Materials in Electronics, 23, 200–205.
- 800. Huang, C-L., Chen, J-Y., and Wang, Y-H. (2009) *Journal of Alloys & Compounds*, **478**, 842–846.
- 801. Chen, Y-B. (2009) Journal of Alloys and Compounds, 489, 541-544.
- 802. Bian, J. J. and Dong, Y. F. (2011) Materials Science and Engineering, B176, 147-151.
- 803. Zhou, H., Liu, X., Chen, X., et al. (2013) Materials Letters, 96, 199–202.

- 804. Shen, C-H., Huang, C-L., Shih, C-F., et al. (2009) International Journal of Appled Ceramic Technology, 6, 562–570.
- 805. Lee, Y-C. and Lee, W-H. (2005) Japanese Journal of Applied Physics, 44, 1838–1843.
- 806. Huang, C-L., Wang, J. J., Li, B-J., et al. (2008) Materials Letters, 62, 2516-1519.
- 807. Jayanthi, S. and Kutty, T. R. N. (2008) Materials Letters, 62, 556–560.
- 808. Ratheesh, R., Sebastian, M. T., Tobar, M. E., et al. (1999) Journal of Physics D, 32, 2821–2826.
- 809. Surendran, K. P., Sebastian, M. T., Mohanan, P., et al. (2005) Chemistry of Materials, 17, 142–151.
- 810. Youn, K-J., Kim, I-T., Hong, K. S., et al. (1997) Ferroelectrics, 193, 167–174.
- Huang, C-L., Su, C-H., and Chang, C-M. (2012) Journal of American Ceramic Society, 94, 4146–4149.
- 812. Huang, C-L., Chen, J-Y., and Liang, C-C. (2009) Materials Research Bulletin, 44, 1111–1115.
- 813. Huang, C-L. and Chen, J-H. (2010) Journal of Alloys and Compounds, 509, 6273–6275.
- 814. Wang, S-F., Wang, Y-R., Liu, C-Y., et al. (2012) Ceramic International, 38, 1127–1132.
- 815. Chen, Y-B. (2009) Journal of Alloys & Compounds, 477, 883–887.
- 816. Shen, C-H. and Pan, C-L. (2014) International Journal of Applied Ceramic Technology.
- 817. Shimada, T. (2003) Journal of European Ceramic Society, 23, 2647–2652.
- 818. Mandai, H. and Okube, S. (1992) Ceramic Transactions, 32, 91.
- 819. Huang, C-L. and Tseng, J-F. (2004) Materials Letters, 58, 3732–3736.
- 820. Kageyama, K. (1990) Ferroelectrics, 109, 173–178.
- 821. Davies, P. K., Borosevich, A., and Thirumal, M. (2003) *Journal of European Ceramic Society*, 23, 2461–2466.
- Hsieh, M-H., Chen, L-S., Wang, S. M., et al. (2005) Japanese Journal of Applied Physics, 44, 5045–5048.
- 823. Khalam, L. A. and Sebastian, M. T. (2006) *International Journal of Appled Ceramic Technology*, **3**, 364–374.
- 824. Boriosevic, A. and Davies, P. K. (2004) Applied Physics Letters, 84, 1347–1349.
- 825. Li, B., Zhang, S., Yuan, Y., et al. (2009) Journal of Materials Science, 44, 4993–4998.
- 826. Wang, S-F., Wang, Y-R., Su, Y-F., et al. (2010) Journal of European Ceramic Society, 30, 1737–1741.
- 827. Kolodiazhnyi, T. (2012) Journal of European Ceramic Society, 32, 4305–4309.
- 828. Cairns, D. L., Reaney, I. M., Zheng, H., et al. (2005) Journal of European Ceramic Society, 25, 433.
- 829. Zhang, P., Wang, Y., Hua, Y., et al. (2013) Materials Letters, 107, 351–353.
- 830. Lu, X., Zheng, Y., and Zhou, B. (2013) Journal of Electroceramics, 31, 360-363.
- 831. Liu, X., Zhou, H., Chen, X., et al. (2012) Journal of Alloys & Compounds, 515, 22-23.
- 832. Shimada, T. and Ohtsuki, S. (2004) In *International Conference on Microwave Materials and Their Applications*, Inuyama, Japan.
- 833. Tang, Y., Gang, L., and Su, C., et al. (2014) Ceramic International, 40, 7633–7636.
- 834. Tong, J., Zhang, B., Huang, W., et al. (2013) Materials Letters, 95, 168–171.
- Kim, D-W., Youn, H. J., Hong, K. S., et al. (2002) Japanese Journal of Applied Physics, 41, 3812–3816.
- 836. Pang, L-X., Zhou, D., Guo, J., et al. (2013) Ceramic International, 39, 4719–4722.
- 837. Fang, L., Liu, Q., Tang, Y., et al. (2013) Ceramic International, 38, 6431–6434.
- 838. Li, H., Lu, W., and Lei, W. (2012) Materials Letters, 71, 148–150.
- 839. Lin, H., Zhang, Y., Zhao, X., et al. (2008) Japanese Journal of Applied Physics, 47, 7243–7245.
- 840. Lu, X., Zhang, Y., Dong, Z., et al. (2014) Materials Letters, 131, 1-4.
- 841. Song, H-T., Hsu, C-S., Kuo, M-T., et al. (2004) Materials Letters, 58, 2829–2833.
- 842. Lin, C-F., Lu, H-H., Chang, T-I., et al. (2006) Journal of Alloys & Compounds, 407, 318–325.
- 843. Suresh, M. K., Warrier, P. R. S., Thomas, J. K., et al. (2010) Journal of Materials Science: Materials in Electronics, 21, 1191–1194.
- 844. Huang, C-L. and Liu, S-S. (2008) *Materials Letters*, **62**, 3205–3208.
- 845. Khalam, L. A., Anjana, P. S., and Sebastian, M. T. (2009) *International Journal of Appled Ceramic Technology*, **6**, 571–580.
- 846. Kolodiazhnyi, T. (2012) Journal of European Ceramic Society, 32, 4306–4309.

- 847. George, S. and Sebastian, M. T. (2010) Journal of American Ceramic Society, 93, 2164–2166.
- 848. Lv, X., Zheng, Y., Zhou, B., et al. (2013) Materials Letters, 91, 217–219.
- 849. He, M. and Zhang, H. (2014) Journal of Alloys & Compounds, 586, 627–632.
- 850. Feteiro, A., Sinclair, D. C., Rajab, K. Z., et al. (2008) Journal of American Ceramic Society, 91, 893–901.
- 851. Jawahar, I. N., Sebastian, M. T., and Mohanan, P. (2004) *Materials Science and Engineering* B106, 207–212.
- 852. Zhang, P., Liu, J., Zhao, Y., et al. (2016) Materials Letters, 162, 173-175.
- 853. Keshri, S. and Rajput, S. S. (to be published)
- 854. Shahraki, A. S., Taheri-nassaj, E., Bafrood, H. B., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 1117–1121.
- 855. Wang, L., Sun, Q., Ma, W., et al. (2013) Ceramic International, 39, 5185–5190.
- 856. Zhang, P., Hua, Y., Xia, W., et al. (2012) Journal of Alloys & Compounds, 534, 9-12.
- 857. He, M. and Zhang, H. (2013) Journal of Materials Science: Materials in Electronics, 24, 3303–3308.
- 858. Sumesh, G. and Sebastian, M. T. (2010) Journal of European Ceramic Society, 30, 2585–2592.
- Khalam, L. A. and Sebastian, M. T. (2006) Journal of American Ceramic Society, 89, 3689–3695.
- 860. Kim, J. B., Yoon, K. H., and Cho, Y. S. (2003) Journal of American Ceramic Society, 86, 1159–1161.
- Kalam, L. A. and Sebastian, M. T. (2006) Journal of American Ceramic Society, 89, 3689–3695.
- 862. Takada, T., Wang, S. F., Yoshikawa, S., et al. (1994) In Proceedings of 9th International Symposium on Applications of Ferroelectrics, IEEE, p. 626
- 863. Feteira, A., Gillie, L. J., Elsebrock, R., et al. (2007) Journal of American Ceramic Society, 90, 1475–1482.
- 864. Vanderah, T. A., Febo, W., Chan, J. Y., et al. (2000) Journal of Solid State Chemistry, 155, 78–85.
- 865. Santha, N., Jawahar, I. N., Mohanan, P., et al. (2002) Materials Letters, 54, 318-322.
- Belous, A. G., Ovchar, O. V., Krameeranko, A. V., et al. (2010) Inorganic Materials, 46, 529–533.
- Kim, M-H., Nahm, S., Sung, W. S., et al. (2005) Japanese Journal of Applied Physics, 44, 3091–3094.
- 868. Cheng, Y., Zuo, R., and Lv, Y. (2013) Ceramic International, 39, 8681-8685.
- 869. Tang, X., Yang, H., Zhang, Q-I., et al. (2016) International Journal of Appled Ceramic Technology.
- Yokoi, A., Ogawa, H., and Kan, A. (2006) *Journal of European Ceramic Society*, 26, 2069– 2074.
- 871. Zhang, P., Wang, Y., Liu, J., et al. (2014) Materials Letters, 123, 195–197.
- 872. Wang, W., Zhou, H., Chen, X., et al. (2014) Journal of Materials Science: Materials in Electronics, 24, 2641–2645.
- 873. Shen, C-H., Huang, C-L., Shih, C-F., et al. (2009) Current Applied Physics, 9, 1042–1045.
- 874. Chen, G., Hou, M., Bao, Y., et al. (2013) International Journal of Appled Ceramic Technology, 10, 492–501.
- Huang, C-L., Chen, Y-B., and Tasi, C-F. (2008) Journal of Alloys & Compounds, 454, 454–459.
- 876. Pang, L-X., Liu, W-G., Zhoub, D., et al. (2016) Ceramic International, 42, 4574–4577.
- 877. Anjana, P. S., Joseph, T., and Sebastian, M. T. (2007) Microwave dielectric properties of $Ca_{5.v}Mg_vNb_4TiO_{17}$ (x = 0-3) ceramics, in *Proceedings of IEEE AEMC*, Kolkatta.
- 878. Cheng, C-M., Chen, Y-C., Yang, C-F., et al. (2007) Journal of Electroceramics, 18, 155-160.
- 879. Tay, K-W., Fu, Y-P., and Huang, T-Y. (2009) Ceramic International, 35, 3195–3199.
- 880. Huang, C-L., Zhao, L., Qiu, T., et al. (2012) Ceramic International, 38, 5493–5496.
- 881. Li, B., Zhou, X., and Zhang, S. (2009) Journal of Materials Science, 20, 1123–1128.
- 882. Zhou, H., Chu, X., Fang, L., et al. (2010) Journal of Materials Research, 25, 1235–1238.
- 883. Surendran, K. P. and Sebastian, M. T. (2005) Journal of Materials Research, 20, 2919–2928.

- Rajput, S. S., Keshri, S., and Gupta, V. R. (2013) Journal of Alloys & Compounds, 581, 223– 229.
- 885. Zhou, D., Li, W-B., Guo, J., et al. (2014) Inorganic Chemistry Frontiers, 53, 5712-5716.
- 886. Schileo, G., Dias, A., Moreira, R. L., et al. (2014) Journal of American Ceramic Society, 97, 1096–1102.
- 887. Zhang, P., Zhao, Y., and Wu, H. (2015) Daltons Transactions, 44, 16684–16693.
- Zhou, H., Chen, X., Fang, L., et al. (2010) Journal of American Ceramic Society, 93, 3976–3979.
- 889. Salak, A. N., Khalyavin, D. D., Mantas, P. W., et al. (2005) Journal of Applied Physics, 98, 034101.
- 890. Yoon, J-M., Lee, J-A., Lee, J-H., et al. (2006) Journal of European Ceramic Society, 26, 2129–2133.
- Fang, L., Tang, Y., Chu, D., et al. (2012) Journal of Materials Science: Materials in Electronics, 23, 478–483.
- 892. Huang, C-L., Chen, Y-B., and Tasi, C-F. (2008) Journal of Alloys & Compounds, 460, 675–679.
- 893. Zhou, L., Lin, H., Chen, W., et al. (2008) Japanese Journal of Applied Physics, 47, 7246–7249.
- Li, L., Ye, J., Sun, H., et al. (2016) Journal of Materials Science: Materials in Electronics, in press.
- 895. Santha, N. and Sebastian, M. T. (2007) Journal of American Ceramic Society, 90, 496-501.
- 896. Huang, C-L., Su, C-H., and Ho, Y-D. (2014) Journal of Alloys & Compounds, 607, 67–72.
- 897. Xi, H-H., Zhou, D., He, B., et al. (2014) Journal of American Ceramic Society, 97, 1375–1378.
- 898. Tay, K-W., Fu, Y-P., Huang, J-F., et al. (2011) Ceramic International, 37, 1025–1031.
- 899. Park, J. H., Choi, C., Nahm, S., et al. (1999) Journal of Materials Science Letters, 18, 889–993.
- 900. Li, Y., Li, J., Tang, B., et al. (2014) Journal of Materials Science: Materials in Electronics 25, 2780–2785.
- 901. Takahashi, J., Kageyama, K., Fuji, T., et al. (1997) Journal of Materials Science: Materials in Electronics, 8, 79–84.
- 902. Seabra, M. P. and Ferreira, V. M. (2001) Key Engieering Materials, 206-213, 1501-1504.
- 903. Kawashima, S., Nishida, N., Ueda, I., et al. (1983) Journal of American Ceramic Society, 66, 421–423.
- 904. Guan, E., Chen, W., and Luo, L. (2007) Ceramic International, 33, 1145-1148.
- Tseng, C-T., Huang, C-L., Hsu, H. (2007) Journal of American Ceramic Society, 90, 1619– 1622.
- 906. Subramanian, V., Murthy, V. R. K., and Viswanathnan, B. (1997) *Japanese Journal of Applied Physics*, **36**, 194–197.
- 907. Nomura, S. and Kaneta, K. (1984) Japanese Journal of Applied Physics, 33, 507-508.
- 908. Zhang, Q. L., Yang, H., Zou, J. L., et al. (2005) Materials Letters, 59, 880-884.
- 909. Sreemoolanathan, H., Sebastian, M. T., Blachnik, R., et al. (2004) Journal of Solid State Chemistry, 177, 3995–4000.
- 910. Li, Y-X., Li, H., Tang, B., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 1181–1185.
- 911. Muhammed, R., Iqbal, Y., and Rambo, C. R. (2015) *Journal of Materials Science: Materials in Electronics*, **26**, 1918–1922.
- 912. Zheng, H., Csette, G. D. C., et al. (2005) Journal of Materials Science, 40, 5207-5214.
- 913. Varma, M. R., Reghunathan, R., and Sebastian, M. T. (2005) *Japanese Journal of Applied Physics*, **44**, 298–303.
- Lee, M. K., Chung, J-H., Ryu, K. W., et al. (1998) Proceedings of International Symposium on Insulating Materials, Toyahashi, Japan, pp. 139-142
- Zhou, D., Wang, H., Yao, X., et al. (2008) Journal of American Ceramic Society, 91, 2228– 2231.
- 916. Parida, S., Rout, S. K., Gupta, N., et al. (2011) Journal of Alloys & Compounds, 546, 216–223.
- 917. Liao, W., Fang, L., Xiang, F., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 272–276.
- 918. Hsu, C-H., Chang, Y-H., Yang, H-W., et al. (2013) Ceramic International, 39, S203–S208.

- 919. Sarol, S. L., Rao, G. L. N., Raju, K. C. J., et al. (2009) Japanese Journal of Applied Physics, 48, 061401.
- 920. Baranov, A. N. and Oh, Y. J. (2005) Journal of European Ceramic Society, 25, 3451–3457.
- 921. Cai, H., Li, L., Sun, H., et al. (2015) Materials Letters, 144, 78-81.
- 922. Tseng, C-F. and Huang, C-L. (2006) Materials Research Bulletin, 42, 9–16.
- 923. Fang, L., Liao, W., Xu, M., et al. (2012) Materials Letters, 76, 73–76.
- 924. Zhou, D., Pang, L-X., Guo, J., et al. (2011) Journal of Advanced Dielectrics, 1, 379-382.
- 925. Lee, Y-C., Lee, W-H., Shiuc, F-S. (2005) *Journal of European Ceramic Society*, **25**, 3459–3468.
- 926. Yang, C-F., Chen, C-C., Cheng, C-M., et al. (2005) Journal of European Ceramic Society, 25, 2849–2852.
- 927. Hsu, C-H. and Chang, Y-S. (2009) Journal of Alloys and Compounds, 479, 714–718.
- 928. Ye, J., Li, L., Li, S., et al. (2016) Journal of Materials Science: Materials in Electronics
- Salak, A., Khalyavavin, D. D., Mantas, P. Q., et al. (2005) Journal of Applied Physics, 98, 034101.
- Lim, J. B., Son, J-O., Nahm, S., et al. (2004) Japanese Journal of Applied Physics, 43, 5388– 5391.
- 931. Kim, H. T., Kim, S. H., Nahm, S., et al. (1999) Journal of American Ceramic Society, 82, 3043–3048.
- 932. Seabra, M. P., Avdeev, M., Ferreira, V. M., et al. (2003) Journal of European Ceramic Society, 23, 2403–2408.
- 933. Seabra, M. P., Avdeev, M., Ferreira, V. M., et al. (2004) Journal of American Ceramic Society, 87, 584–590.
- 934. Fang, L., Chu, D., Zhou, H., et al. (2011) Journal of Alloys & Compounds, 509, 8840–8844.
- 935. Lu, X., Zheng, Y., Zhou, B., et al. (2013) Ceramic International, 39, 9829–9833.
- 936. Chen, Y-B., Huang, C-L., and Lin, S-H. (2006) Materials Letters, 60, 3591–3595.
- 937. Shimada, T. (2001) Journal of European Ceramic Society, 21, 2617–2620.
- 938. Ye, J., Li, L., Li, S., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 8954–8959.
- 939. Jhou, M-Z. and Jean, J-H. (2006) Journal of American Ceramic Society, 89, 786–791.
- 940. Hsieh, M-L., Chen, L-S., Hsu, H-S., et al. (2008) Materials Research Bulletin, 43, 3122–3129.
- 941. Fang, L., Li, C., Peng, X., et al. (2010) Journal of American Ceramic Society, 93, 1229–1231.
- 942. Jiao, X., Zhong, C., Zhang, S., et al. (2010) Journal of Materials Science, 45, 3331–3335.
- 943. Moreira, R. L., Khlam, L. A., Sebastian, M. T., et al. (2007) Journal of European Ceramic Society, 27, 2803–2810.
- 944. Huang, C-L., Yang, R-Y., and Weng, M-H. (2000) Japanese Journal of Applied Physics, 39, 6608–6611.
- 945. Rong, G., Newman, N., Shaw, B., et al. (1999) Journal of Materials Research, 14, 4011-4019.
- 946. Zhang, Y-C., Yue, Z. X., Qi, X., et al. (2004) Materials Letters, 58, 1392–1395.
- 947. Huang, C-L., Chiang, K-H., and Huang, C-Y. (2005) Materials Chemistry and Physics, 90, 373–377.
- 948. Kim, H. T. and Lanagen, M. T. (2003) Journal of American Ceramic Society, 86, 1874–1878.
- 949. Choi, J-W., Ha, J-Y., Yoon, S-J., et al. (2003) Journal of European Ceramic Society, **23**, 2507–2510.
- Vanderah, T. A., Miller, V. L., Levin, I., et al. (2004) Journal of Solid Chemistry, 177, 2023– 2038.
- 951. Wu, H. and Davies, P. K. (2004) Journal of Solid State Chemistry, 177, 4305–4315.
- 952. Cao, J., Kuang, X., Allix, M., et al. (2011) Chemistry of Materials, 23, 5058–5067.
- 953. Lv, X-S., Li, L-X., Suna, H., et al. (2015) Ceramics International, 41, 15287–15291.
- 954. Kuang, X., Allix, M. B., Claridge, J. B., et al. (2006) Journal of Materials Chemistry, 16, 1038–1045.
- 955. Anjana, P. S., Gopakumar, N., and Sajan, S. (2013) *Journal of Materials Science: Materials in Electronics*, **24**, 2035–2042.
- 956. Wang, S-F., Hsu, Y-F., Huang, H-S., et al. (2011) Ceramic International, 37, 1327–1331.

- 957. Tang, Y., Fang, L., Zhou, H., et al. (2013) Ceramic International, 39, 8503–8506.
- 958. Mallinson, P., Clridge, J. B., Iddles, D., et al. (2006) Chemistry of Materials, 18, 6227–6238.
- 959. Kucheiko, S., Kim, H-J., Yeo, D-H., et al. (1996) Japanese Journal of Applied Physics, 35, 668–672.
- 960. Thomas, S., Sayoojyam, B., Sebastian, M. T. (2011) *Journal of Materials Science: Materials in Electronics*, **22**, 1340–1345.
- 961. Jinga, S. I., Stolerin, S., and Busuioc, C. (2012) Materials Research Bulletin, 47, 3713–3718.
- 962. Tang, X., Yang, H., Zhang, Q-L., et al. (2014) Ceramic International, 40, 12875–12881.
- 963. Wang, J-J. (2009) Journal of Alloys and Compounds, 486, 423–426.
- 964. Cao, X., Gao, F., Hu, G., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 3021–3028.
- 965. Huang, C-L. and Chen, J-Y. (2012) Materials Letters, 76, 28–31.
- 966. Jiang, B. J., Bo, G. H., and Xiaowu, W. (2004) Materials Research Bulletin, 39, 2127-2135.
- 967. Huang, C-L. and Chen, J-Y. (2010) Journal of American Ceramic Society, 93, 470-473.
- 968. Fang, L., Chu, D., Zhou, H., et al. (2011) Journal of Alloys & Compounds, 505, 1880-1884.
- 969. Li, L., Sun, H., Cai, H., et al. (2015) Journal of Alloys & Compounds, 639, 516-519.
- Reaney, I. M., Wise, P. L., Qazi, I., et al. (2003) Journal of European Ceramic Society, 23, 3021–3034.
- 971. Kageyama, K. (1992) Journal of American Ceramic Society, 75, 1767-1771.
- 972. Davies, P. K., Tong, J., and Negas, T. (1997) Journal of American Ceramic Society, 80, 1727–1740.
- Kwon, D-W., Lanagan, M. T., and Shrout, T. R. (2005) *Journal of Ceramic Society Japan*, 113, 216–219.
- 974. Chen, Y-B. (2011) Journal of Alloys and Compounds, 509, 1050-1053.
- 975. Fang, L., Li, C., Peng, X., et al. (2010) Journal of American Ceramic Society, 93, 1884–1887.
- 976. Khalam, L. A., Thomas, S., and Sebastian, M. T. (2007) *International Journal of Appled Ceramic Technology*, **4**, 356–366.
- 977. Chen, Y-B. (2011) Journal of Alloys and Compounds, **509**, 9226–9229.
- Sebra, M. P., Salak, A. N., Ferreira, V. M., et al. (2004) Journal of European Ceramic Society, 24, 2995–3002.
- 979. Tseng, C-F. and Huang, C-L. (2007) Japanese Journal of Applied Physics, 46, 1571–1573.
- 980. Hu, M., Fu, Y., Zhou, D., et al. (2012) Journal of Materials Science: Materials in Electronics, 23, 1775–1782.
- 981. Choi, J-W., Yoon, S., Kim, H-J., et al. (2002) Japanese Journal of Applied Physics, 41, 3804–3807.
- 982. Zhang, H., Fang, L., Su, H., et al. (2009) Journal of American Ceramic Society, 92, 238–240.
- 983. Tans, B., Yu, S., Chen, H., et al. (2013) Journal of Alloys & Compounds, 551, 463-467.
- 984. Chen, Y-B. (2010) Journal of Alloys and Compounds, **507**, 286–289.
- 985. Padmakumar, H., Joseph, J. T., Thomas, J. K., et al. (2009) Journal of Materials Science: Materials in Electronics, 20, 551–554.
- 986. Chen, Y-B., Huang, C-L., and Lo, C-W. (2006) *Materials Science and Engineering B*, **128**, 98–102.
- 987. Choi, J-W., Ha, J-Y., Yoon, S-J., et al. (2004) Japanese Journal of Applied Physics, 43, 223–225.
- 988. Tsens, C-F and Huang, C-L. (2006) Japanese Journal of Applied Physics, 45, 826–830.
- 989. Mu, Q. J., Li, C. Y., Guo, J. D., et al. (2015) Ceramic International, 41, 907–912.
- 990. Sithara, S. P., Rajesh, S., Rajani, K. V., et al. (2008) Scripta Materiala, 59, 424–427.
- 991. Chen, Y-B. (2011) Journal of Alloys & Compounds, **509**, 1050–1053.
- 992. Liao, Q., Li, L., Ren, X., et al. (2012) Journal of American Ceramic Society, 95, 3363–3365.
- 993. Lee, Y-C., Chiang, C-S., and Huang, Y-L. (2010) Journal of European Ceramic Society, 30, 963–970.
- 994. Hsiang, H-I. and Chung, S-H. (2008) Journal of Alloys & Compounds, 465, 356-360.
- Kim, D-W., Hong, H. B., Hong, K-S., et al. (2002) Japanese Journal of Applied Physics, 41, 6045–6048.

- 996. Kato, J., Kagata, H., and Nishimoto, K. (1992) *Japanese Journal of Applied Physics*, 31, 3144–3147.
- 997. Yamaguchi, Y., Komatsu, Y., Otobe, T., et al. (1980) Ferroelectrics, 27, 273–276.
- 998. Choi, Y-J., Park, J-H., and Park, J-G. (2004) Materials Letters, 58, 3102–3106.
- 999. Choi, J. W., Ha, J-Y., Yoon, S-J., et al. (2004) Japanese Journal of Applied Physics, 43, 223–225.
- 1000. Kim, H. T., Kim, S. H., Nahm, S., et al. (1999) Journal of American Ceramic Society, 82, 3043–3048.
- 1001. Wang, H., Peng, Z., Du, H., et al. (2004) Ceramic International, 30, 1219–1223.
- 1002. Lee, J-A., Lee, J-H., Kim, J-J. (2006) Journal of European Ceramic Society, 26, 2111–2115.
- 1003. Wakino, K., Murata, M., and Tamura, H. (1986) Journal of American Ceramic Society, 69, 34–37.
- 1004. Wei, C-H. and Jean, J-H. (2003) Journal of American Ceramic Society, 86, 93-98.
- 1005. Kucheiko, S., Kim, H-J., Yeo, D-H., et al. (1996) Japanese Journal of Applied Physics, 35, 668–675.
- 1006. Belous, A. G., Ovchar, O. V., Macek-Krzmanc, M., et al. (2006) Journal of European Ceramic Society, 26, 3733–3739.
- 1007. Tseng, C-F. and Huang, C-L. (2006) Japanese Journal of Applied Physics, 45, 8766–8768.
- 1008. Santha, N., Jawahar, I. N., Mohanan, P., et al. (2002) Materials Letters, 54, 318-322.
- 1009. Wu, H. T., Jiang, Y. S., and Yue, Y. L. (2012) Ceramic International, 38, 5151-5156.
- 1010. Yao, L., Qiu, T., Wan, W., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 4046–4050.
- 1011. Hsu, C-H. (2008) Journal of Alloys and Compounds, 464, 412–417.
- 1012. Su, C., Fang, L., Wei, Z., et al. (to be published)
- 1013. Kan, A., Ogawa, H., and Ohsato, H. (2002) Journal of Alloys and Compounds, 337, 303-308.
- 1014. Solomon, S., Padmakumar, H., Jacob, L., et al. (2008) Journal of Alloys and Compounds, 461, 675–677.
- 1015. Huang, C-L. and Yang, W-R. (2009) Materials Letters, 63, 103–105.
- 1016. Bisen, A., Satapathy, A., Parida, S., et al. (2014) Journal of Alloys and Compounds, 615, 1006–1012.
- 1017. Ikawa, H. and Takemoto, M. (2004) Materials Chemistry and Physics, 79, 222-225.
- 1018. Liu, P., Kim, E. S., and Yoon, K. H. (2001) Japanese Journal of Applied Physics, 40, 5769–5773.
- 1019. Lv, X., Wang, Z., and Chen, X. M. (2011) Ceramic International, 37, 1033-1037.
- 1020. Liao, Q., Ding, X., and Ren, X. (2012) Journal of American Ceramic Society, 95, 1501–1503.
- 1021. Liao, Q., Li, L., Zhao, P., et al. (2011) Materials Science and Engineering B, 176, 41–48.
- 1022. Lu, C. A., Lin, P. and Wang, S-F. (2007) Ceramic International, 33, 1389–1393.
- 1023. Tang, B., Guo, X., Yu, S-Q., et al. (2015) Materials Research Bulletin, 66, 163–168.
- 1024. Wu, H. and Davies, P. K. (2004) Journal of Solid State Chemistry, 177, 3469–3478.
- 1025. Hsu, C-S., Song, H-T., Yu, C-C., et al. (2006) Ceramic International, 33, 951–955.
- 1026. Kim, H. T., Byun, J. D., Kim, Y. (1998) Materials Research Bulletin, 33, 975-986.
- 1027. Lim, J. B., Kim, D. H., Nahm, S., et al. (2006) Materials Research Bulletin, 41, 1199–1205.
- 1028. Laishram, R., Thakur, O. P., and Bhattacharya, D. K. (2011) Materials Letters, 65, 1678–1680.
- 1029. Chen, G-H., Di, J. C., Li, M., et al. (2012) Journal of Materials Science: Materials in Electronics, 23, 746–752.
- 1030. Chen, Y., Chen Y., Zeng, Y., et al. (2012) Ceramic International, 38S, S147–S152.
- 1031. Guo, R., Bhalla, S., Sheen, J., et al. (1995) Journal of Materials Research, 10, 18–25.
- 1032. Kim, I-T., Kim, Y. H., and Chung, S. J. (1997) *Journal of Materials Research*, 12, 518–525.
- 1033. Kim, Y-W., Park, J-H., and Park, J-G. (2004) Journal of European Ceramic Society, 24, 1775–1779.
- 1034. Xia, W. S., Li, L-X., Zhang, P., et al. (2011) Materials Letters, 65, 3317–3319.
- 1035. Tzou, W-C., Yang, Y-S., Yang, C-F., et al. (2007) Materials Research Bulletin, 42, 1897–1904.
- Chen, C-T., Huang, C-Y., Lin, H-J., et al. (2012) Journal of European Ceramic Society, 32, 2373–2380.

- 1037. Pang, L-X., Zhou, D., Chen, Y-A., et al. (2011) Materials Chemistry and Physics, 125, 641-
- 1038. Zhou, D., Guo, J., Yao, X., et al. (2012) Functional Materials Letters, 5, 125004.
- 1039. Tseng, C-F., Huang, C-L., Yang, W-R., et al. (2006) Journal of American Ceramic Society, 89, 1465-1470.
- 1040. Wang, Y-R., Wang, S-F., and Ken, C-K. (2006) Materials Science and Engineering A, 426, 3053-3057.
- 1041. Sun, T. T., Li, L., Mao, M. M., et al. (2013) International Journal of Appled Ceramic Technology, 10, E210-218.
- 1042. Tseng, C-F. (2008) Journal of American Ceramic Society, 91, 4101–4104.
- 1043. Pang, L-X., Zhou, D., Chen, Y-H., et al. (2011) Materials Chemistry and Physics, 125, 641–
- 1044. Li, K., Wang, H., Zhou, H., et al. (2010) International Journal of Appled Ceramic Technology, 7, E1494-E1500.
- 1045. Sun, T., Zhao, Y. F., and Chen, X. M. (2015) Ceramic International, 141, 5872–5880.
- 1046. Hu, M., Xiong, J., Gu, H., et al. (2012) Ceramic International, 38, 3175–3183.
- 1047. Paik, J. H., Nahm, S., Byulin, J-D., et al. (1998) Journal of Materials Science Letters, 17, 1777-1780.
- 1048. Ahn, C-W., Nahm, N., Lim, Y-S., et al. (2002) Japanese Journal of Applied Physics, 41, 5277-5280.
- 1049. Azough, F., Leach, C., Freer, R. (2006) Journal of European Ceramic Society, 26, 2877–2884.
- 1050. Choi, Y-G., Park, J-H., Ko, W-J., et al. (2005) Journal of Electroceramics, 14, 157–162.
- 1051. Hu, M-Z., Qian, J., Gu, H-S., et al. (2006) Materials Science and Engineering B, 134, 89-93.
- 1052. Zhang, Y., Fu, B., Hong, M., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 5475–5480.
- 1053. Li, S., Sun, J., Taylor, R., et al. (2004) Journal of Materials Research, 19, 3526–3533.
- 1054. Sun, J-S., Yu, J-J., You, J-C., et al. (1995) Journal of Materials Science, 28, 2163–2168.
- 1055. Ahn, C. W., Jang, H-J., Nahm, S., et al. (2003) Journal of European Ceramic Society, 23, 21473-21478.
- 1056. Feteira, A. and Sinclair, D. C. (2008) Journal of American Ceramic Society, 91, 1338–1341.
- 1057. Pang, L-X., Wang, H., Zhou, D., et al. (2008) International Journal of Appled Ceramic Technology, 5, 341-346.
- 1058. Hsu, C-H., Shih, C-F., Yu, C-C., et al. (2008) Journal of Alloys and Compounds, 461, 355–359.
- 1059. Choi, E. S., Lee, Y. H., and Bae, S. G. (2001) Proceedings of International Symposium on Electrical and Insulating Materials ISEIM-2001, PI-5, 99-102.
- 1060. Zhou, D., Gou, G., and Gong, S. (2011) *Materials Chemistry and Physics*, **13**, 903–908.
- 1061. Li, J. and Qiu, T. (2012) Ceramic International, 38, 2597–2600.
- 1062. Zhang, Y-C., Yue, Z. X., Gui, L., et al. (2005) Journal of Electroceramics, 14, 67–74.
- 1063. Zhou, D., Rindall, C. A., Wang, H., et al. (2010) Journal of American Ceramic Society, 93, 2931–2936.
- 1064. Li, Z., Gao, F., Hu, G. X., et al. (2014) Journal of Materials Science: Materials in Electronics, **25**, 5020–5026.
- 1065. Shimada, T. US Patent 6,413896B1.
- 1066. Kim, D-W., Lee, D-G., and Hong, K. S. (2001) Materials Research Bulletin, 36, 585–595.
- 1067. Lee, J-H., Jang, Y. I., Youn, H. J., et al. (1995) Jounal of Materials Science, 34, 625–628.
- 1068. Udovic, M., Valant, M., and Suvorov, D. (2004) Journal of American Ceramic Society, 87, 591-597.
- 1069. Liu, S., Taylor, R., Petrovic, N. S., et al. (2005) Journal of Applied Physics, 97, 014105.
- 1070. Lu, C-A., Lin, P., and Wang, S-F. (2007) Ceramic International, 33, 1389–1393.
- 1071. Sun, P-H., Nakamura, T., Shun, Y-J., et al. (1998) Japanese Journal of Applied Physics, 37, 5625-5629.
- 1072. Rejini, R. and Sebastian, M. T. (2006) International Journal of Applied Ceramic Technology, **3**, 230–235.
- 1073. Liu, X., Zhou, H., Chen, X., et al. (2012) Journal of Materials Science: Materials in Electronics, **23**, 640–644.

- 1074. Ma, P. P., Yi, L., Liu, X. Q., et al. (2013) Journal of American Ceramic Society, 96, 3417–3424.
- 1075. Wang, Z., Huang, B., Wang, L., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 4273–4279.
- 1076. Tseng, C-F., Hsu, C-H., Huang, C-L., et al. (2006) Japanese Journal of Applied Physics, 45, 2680–2682.
- 1077. Huang, C-L. and Chen, J-Y. (2010) Journal of American Ceramic Society, 93, 1248–1251.
- 1078. Su, Y-S. and Jean, J. H. (2008) Japanese Journal of Applied Physics, 47, 7254–7256.
- 1079. Bian, J. J., Song, G. X., and Yan, K. (2007) Journal of Europen Ceramic Society, 27, 2817–2821.
- 1080. Ma, P. P., Yi, L., Liu, X. Q., et al. (2013) Journal of American Ceramic Society, 96, 1795–1800.
- 1081. Kan, A., Ogawa, H., and Ohsato, H. (2002) Journal of Alloys and Compounds, 337, 303-308.
- 1082. Zhou, H., Chen, X., Fang, L., et al. (2010) Journal of American Ceramic Society, 93, 1537–1539.
- 1083. Bian, J. J., Dong, Y. F., and Song, G. X. (2008) Journal of American Ceramic Society, 91, 1182–1187.
- 1084. Cho, S-Y., Seo, M-K., Hong, K. S., et al. (1997) Materials Research Bulletin, 32, 725–735.
- 1085. Ubic, R., Hu, Y., Khamoudshi, K., et al. (2006) Journal of European Ceramic Society, 26, 1787–1790.
- 1086. Veres, A., Marinel, S., and Roulland, F. (2005) *Journal of European Ceramic Society*, 25, 2759–2762.
- 1087. Melodetsky, I. and Davies, P. K. (2001) Journal of European Ceramic Society, 21, 2587–2591.
- 1088. Ikawa, H., Harita, H., and Fukanaga, O. (1990) *Journal of Ceramic Society Japan*, **98**, 860–863.
- 1089. Liao, W., Li, L., Zhang, P., et al. (2011) Solid State Sciences, 13, 1201-1204.
- 1090. Jawahar, I. N., Sebastian, M. T., Mohanan, P. (2004) *Materials Science and Engineering B*, 106, 207–212.
- 1091. Yu, S., Tang, B., Zhang, S., et al. (2012) Materials Letters, 67, 293–295.
- 1092. Kim, D-W., Kim, D-Y., and Hong, K. S. (2000) Journal of Materials Research, 15, 1331–1335.
- 1093. Lei, Y., Yin, Y., and Liu, Y. (2011) Advanced Materials Research, 217-218, 1235-1238.
- 1094. Tong, J-X., Zhang, Q-L., Yang, H., et al. (2007) Journal of American Ceramic Society, 90, 845–849.
- 1095. Zhou, H., Chen, X., Fang, L., et al. (2014) Ceramic International, 40, 3737–3741.
- 1096. Suvorov, S., Valant, M., Skapin, S., et al. (1998) Journal of Materials Science, 33, 85–89.
- 1097. Azough, F., Leach, C., and Freer, R. (2006) Journal of European Ceramic Society, 26, 1883– 1887.
- 1098. Ahn, C-W., Jang, H-J., Nahm, S., et al. (2003) Journal of European Ceramic Society, 23, 2473–2478.
- 1099. Huang, C-L. and Hsu, C-S. (2001) Materials Research Bulletin, 36, 2677–2687.
- 1100. Fang, L., Chu, D., Li, C., et al. (2011) Journal of American Ceramic Society, 94, 524-528.
- 1101. Kumar, H. P., Joseph, S., Solomon, S., et al. (2008) International Journal of Appled Ceramic Technology, 5, 347–352.
- 1102. Huang, C-L. and Chiang, K-H. (2004) Materials Research Bulletin, 39, 1701-1708.
- 1103. Yang, Y-C. (1999) *Japanese Journal of Applied Physics*, **38**, 3576–579.
- 1104. Kim, E. S. and Choi, W. (2006) Journal of European Ceramic Society, 26, 1761–1766.
- 1105. Huang, C-L. and Chiang, K-H. (2002) Materials Research Bulletin, 37, 1941–1948.
- 1106. Cho, S-Y., Hong, K.S., and Ko, K-H. (1999) Materials Research Bulletin, 34, 511–516.
- 1107. Hughes, H., Iddles, D. M., and Reaney, I. M. (2001) Applied Physics Letters, 79, 2952–2954.
- 1108. Azough, F., Leach, L., and Freer, R. (2005) *Journal of European Ceramic Society*, **25**, 2839–2841.
- 1109. Kamba, S., Hughes, H., Noujini, D., et al. (2004) Journal of Physics D, 37, 1980–1986.
- 1110. Barwick, M., Azough, F., and Freer, R. (2006) Journal of European Ceramic Society, 26, 1767–1773.
- 1111. Azough, F., Lowe, T., and Freer, R. (2005) Journal of Electroceramics, 15, 183-192.
- 1112. Bijumon, P. V., Sebastian, M. T., and Mohanan, P. (2005) Journal of Applied Physics, 98, 124105.

- 1113. Huang, C-L. and Chiang, K-H. (2002) Materials Research Bulletin, 37, 1941–1948.
- 1114. Zhang, Y-C., Wang, X., Fu, B-J., et al. (2012) Ceramic International, 38, S169–S172.
- 1115. Li, L., Ren, X., and Liao, Q. (2012) Ceramic International, 38, 3985–3989.
- 1116. Kim, D-W., Hong, K. S., Yoon, C. S., et al. (2003) Journal of European Ceramic Society, 23, 2597–2601.
- 1117. Guoqing, W., Hua, W. S., and Hao, S. (2005) Materials Letters, 59, 2229–2231.
- 1118. Chen, G. H., Di, J-C., Xu, H-R., et al. (2012) Journal of American Ceramic Society, 95, 1394–1397.
- 1119. Scott, R. J., Thomas, M., and Hampson, C. (2003) Journal of European Ceramic Society, 23, 2467–2471.
- 1120. Fu, B., Zhang, Y., and Yue, H. (2013) Ceramic International, 39, 3783–3793.
- 1121. Kan, A., Ogawa, H., Oishi, T., et al. (2005) Japanese Journal of Applied Physics, 44, 7103–7106.
- 1122. Ikawa, H., Ohara, M., Iida, T., et al. (2004) Journal of Ceramic Society Japoan, Suppl., 12, S1614–S1616.
- 1123. Lee, M. J., You, B. D., and King, D. S. (1995) Journal of Materials Science: Materials in Electronics, 6, 165–172.
- 1124. Kim, D. M., Kim, S., Kim, K. S., et al. (2009) Journal of Electrooceramics, 23, 164–168.
- 1125. Hu, C., Fang, L., Su, H., et al. (2009) Journal of Alloys and Compounds, 487, 504-506.
- 1126. Yu, S., Tang, B., Zhang, S., et al. (2010) Journal of Alloys and Compounds, 505, 814-817.
- 1127. Huan, Z., Sun, Q., Ma, W., et al. (2013) Journal of Alloys and Compounds, 551, 630-635.
- 1128. Iochim, A., Banciu, M. G., Toacsan, M. I., et al. (2005) Materials Science and Engineering B, 118, 205–209.
- 1129. Zhou, D., Pang, L-X., Xie, H. D., et al. (2014) European Journal of Inorganic Chemistry, 296–301.
- 1130. Kim, M. H., Jeong, J. H., Kim, H. T., et al. (2006) Journal of European Ceramic Society, 26, 2139–2142.
- 1131. Udovic, M. and Suvorov, D. (2007) Journal of American Ceramic Society, 90, 2404–2408.
- 1132. Choy, J. H., Han, Y. S., Sohn, J. H., et al. (1995) Journal of American Ceramic Society, 78, 1169–1172.
- 1133. Negas, T., Yeager, G., Bell, S., et al. (1993) American Ceramic Society Bulletin, 72, 80-89.
- 1134. Ubic, R., Khomouski, K., and Spary, A. C. (2004) In *International Conference on Microwave Materials and Their Applications*, MMA 2004, Inuyama, Japan.
- 1135. Bianco, A., Gusmano, G., Freer, R., et al. (1999) Journal of European Ceramic Society, 19, 959–963.
- 1136. Khalam, L. A., Sreemoolanathan, H., Ratheesh, R., et al. (2004) Materials Science and Engineering B, 107, 264–270.
- 1137. Takahasi, J., Kageyama, K., and Kodaira, K. (1993) Japanese Journal of Applied Physics, 32, 4327–4331.
- 1138. Takahashi, J., Kageyama, K., and Hayashi, T. (1991) Japanese Journal of Applied Physics, 30, 2354–2358.
- 1139. Kim, E. S., Kim, Y. H., Chae, J. H., et al. (2003) Materials Chemistry and Physics, **79**, 230–232.
- 1140. Zeng, Q., Li, W., Shi, J-L., et al. (2006) Materials Letters, 60, 3203–3206.
- 1141. Parvanova, V. and Iliev, I. (2006) Journal of Materials Science: Materials in Electronics, 17, 815–818.
- 1142. Baranov, A. N. and Oh, Y-J. (2005) Journal of European Ceramic Society, 25, 3451–3457.
- 1143. Fang, L., Li, C., Peng, X., et al. (2010) Journal of Materials Research, 25, 1239–1242.
- 1144. Fu, M. S., Liu, X. Q., Chen, X. M., et al. (2010) Journal of American Ceramic Society, 93, 787–795.
- 1145. Kim, K. S., Shim, S. H., Shim, S., et al. (2010) Ceramic International, 36, 1571–1575.
- 1146. Chen, Y. B. (2010) *Journal of Alloys and Compounds*, **496**, 660–664.
- 1147. Solomon, S., Suresh, M. K., Thomas, J. K., et al. (2012) Ceramic International, 38, 6487–6494.
- 1148. Chen, X., Zhou, H., Fang, L., et al. (2010) Materials Research Bulletin, 45, 1509–1512.

- 1149. Lim, J-J., Nahm, S., Kim, H-T., et al. (2005) Journal of Electroceramics, 17, 393-397.
- 1150. Liao, Q., Li, L., Ren, X., et al. (2011) Journal of American Ceramic Society, **94**, 3237–3240.
- 1151. Yu, S. Q., Tang, B., Zhang, X., et al. (2012) Journal of American Ceramic Society, 95, 1939–1943.
- 1152. Kucheiko, S., Yeo, D-H., Choi, J-W., et al. (2002) Journal of American Ceramic Society, 85, 1327–1329.
- 1153. Zeng, Q., Zhang, N., Zhou, Y., et al. (2014) International Journal of Appled Ceramic Technology, 11, 200–206.
- 1154. Lee, Y-C., Chiu, J-D., and Chen, Y. H. (2013) *Journal of American Ceramic Society*, **96**, 1477–1482.
- 1155. Bijumon, P. V. and Sebastian, M. T. (2007) International Journal of Appled Ceramic Technology, 4, 60–74.
- 1156. Lei, S., Fan, H., Chen, W., et al. (to be published)
- 1157. Kim, J-R., Kim, D-W., Cho, I-S., et al. (2007) Journal of European Ceramic Society, 27, 3075–3079.
- 1158. Zhu, H., Cui, Z., and Shen, C. (2016) *Journal of Materials Science: Materials in Electronics*, in press.
- 1159. Liou, Y-C., Shih, C-Y., and Shiu, W-H. (2007) Materials Research Bulletin, 42, 1104–1110.
- 1160. Ioachim, A., Banciu, M. G., Toacsen, M. I., et al. (2006) Applied Surface Science, 253, 335–338.
- 1161. Bafrooeia, H. B., Taheri Nassaja, E., Ebadzadehb, T., et al. (2016) Ceramic International, 42, 3296–3303.
- 1162. Zhang, H., Wu, Y., Meng, S., et al. (2009) Journal of Alloys and Compounds, 460, 460–463.
- 1163. Ikawa, H., Tsunneyama, T., and Takemoto, M. (2004) In *Microwave Materials and Their Applications*, MMA 2004, Inuyama, Japan.
- 1164. Hu, X. and Chen, X. M. (2004) Japanese Journal of Applied Physics, 43, 215-218.
- 1165. Varma, M. R. and Sebastian, M. T. (2007) Journal of European Ceramic Society, 27, 2827–2833.
- 1166. Moon, J. H., Jung, H. M., Park, H. S., et al. (1999) Japanese Journal of Applied Physics, 38, 6821–6827.
- 1167. Kim, D-W., Hong, H. B., and Hong, K. S. (2002) Japanese Journal of Applied Physics, 41, 1465–1469.
- 1168. Ahn, Y. S., Yoon, K. H., and Kim, E. S. (2003) *Journal of European Ceramic Society*, 23, 2519–2523.
- 1169. Houivet, D., Fallah, J. E., and Haussone, J. M. (199) *Journal of European Ceramic Society*, **19**, 1095–1099.
- 1170. Houivet, D., Fallah, J. E., and Lamagenere, B., et al. (2001) Journal of European Ceramic Society, 21, 1727–1730.
- 1171. Hsu, C-H. and Ho, H-A. (2010) Materials Letters, 396-398.
- 1172. Zhou, H., Wang, H., Chan, Y., et al. (2009) Materials Chemistry and Physics, 113, 1-5.
- 1173. Yang, R-Y., Weng, M-H., and Kuan, H. (2009) Ceramic International, 35, 39–43.
- 1174. Suvorov, D., Valant, M., Jancar, B., et al. (2001) Acta Chimie Slovania, 48, 87–99.
- 1175. Hu, M., Fu, Y., Luo, C., et al. (2010) Journal of American Ceramic Society 93, 3354–3359.
- 1176. Valant, M. and Suvorov, D. (2001) Journal of American Ceramic Society 84, 2900–2904.
- 1177. Zhou, F., Liu, X., Wang, H., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 299–304.
- 1178. Fang, L., Su, C., Wei, Z., et al. (2013) Ceramic International, 39, \$579–583.
- 1179. Tseng, C. F. (2014) *Journal of European Ceramic Society*, **34**, 3641–3648.
- 1180. Chen, Y-C. and Lee, W-C. (2013) *Journal of Materials Science: Materials in Electronics*, **24**, 345–351.
- 1181. Pang, L-X. Zhou, D., Wang, H., et al. (2011) Journal of Physics and Chemistry of Solids, 72, 882–883.
- 1182. Huang, C-L., Hsu, C-S., and Lin, R-J. (2001) Materials Research Bulletin, 36, 1985–1993.

- 1183. Yu, Q., Fang, L., Zhang, H., et al. (2009) Journal of Materials Science: Materials in Electronics, 20, 671–674.
- 1184. Li, C., Wei, X., Yan, H., et al. (2013) Journal of Avanced Dielectrics, 1320003.
- 1185. Zhou, D., Zhang, Q., Yang, H., et al. (2008) Journal of European Ceramic Society, 28, 2777–2782.
- 1186. Pamu, D., Rao, G. L. N., and Raju, K. C. J. (2011) Journal of Alloys and Compounds, 509, 9289–9295.
- 1187. Bijumon, P. V., Antar, Y. M. M., Freundorfer, A. P., et al. (2008) International Journal of Applied Ceramic Technology, 5, 382–393.
- 1188. Tamura, H. (1994) American Ceramic Society Buletin, 73, 94-97.
- 1189. Ho, Y-S., Weng, M. H., Dai, B-T., et al. (2005) Japanese Journal of Applied Physics, 44, 6152–6155.
- 1190. Bijumon, P. V., Mohanan, P., and Sebastian, M. T. (2002) *Japanese Journal of Applied Physics*, 41, 3834–3835.
- 1191. Bijumon, P. V. and Sebastian, M. T. (2005) Journal of American Ceramic Society, 88, 3433–3439.
- 1192. Parnova, V. D. and Andreev, S. K. (2005) *Journal of Materials Science: Materials in Electronics*, **16**, 249–252.
- 1193. Feteira, A., Sinclair, D. C., and Lanagan, M. T. (2005) Journal of Materials Research, 20, 2391–2399.
- 1194. Joseph, J., Vimala, T. M., Raju, K. C. J., et al. (1996) Japanese Journal of Applied Physics, 35, 179–181.
- 1195. Chen, Y-C., Fu, J-Y., Li, C-H., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 4760–4766.
- 1196. Guo, D., Lin, Z., and Hu, X. (2008) Ceramic International, 34, 1931–1934.
- 1197. Ichinose, N., Mizutani, T., Hiraki, H., et al. (1977) Ceramuraga International, 100-102.
- 1198. Chen, Y-B. (2011) Journal of Alloys and Compounds, **509**, 2375–2380.
- 1199. Chen, Y-C. and Yao, S-L. (2012) Journal of Physics and Chemistry of Solids 73, 1240–1244.
- 1200. Huang, C-L., Chen, J-Y., Tseng, Y-W., et al. (2010) Journal of American Ceramic Society, 93, 3299–3304.
- 1201. Oishi, T., Ogawa, H., and Kan, A. (2007) Materials Research Bulletin, 42, 2072–2081.
- 1202. Ikawa, H., Itou, Y., Takei, Y., et al. (2003) In 11th US-Japan Seminar on Dielectric & Piezo-electric Ceramics, Sapporo, Japan, pp. 93–96.
- 1203. Kim, J-R., Kim, D-W., Yoon, S. H., et al. (2006) Journal of Electrioceramics, 17, 439-443.
- 1204. Kim, D-J., Hahn, J-W., Han, G-P., et al. (2000) Journal of American Ceramic Society, 83, 1010–1012.
- 1205. Guo, M., Gong, S., Dou, G., et al. (2011) Journal of Alloys and Compounds, 509, 5988-5995.
- 1206. Kim, D-W., Kim, J. R., Yoon, S-H., et al. (2002) Journal of American Ceramic Society, 85, 2759–2762.
- 1207. Wu, H. and Davies, P. K. (2006) Journal of American Ceramic Society, 89, 2239–2249.
- 1208. Sebastian, M. T. (1999) Journal of Materials Science: Materials in Electronics, 10, 475-478.
- 1209. Bijumon, P. V., Sebastian, M. T., Dias, A., et al. (2005) Japanese Journal of Applied Physics, 97, 104–108.
- 1210. Fang, L., Zhang, H., Huang, T. H., et al. (2004) Materials Research Bulletin, 39, 1649–1654.
- 1211. Bijumon, P. V. and Sebastian, M. T. (2005) Journal of American Ceramic Society, 88, 3433–3439.
- 1212. Reaney, I. M. and Iddles, D. (2006) Journal of American Ceramic Society, 89, 2063–2072.
- 1213. Jayanthi, S. and Kutty, T. R. N. (2006) *Materials Letters*, **60**, 796–800.
- 1214. Plourde, J. K., Lim, D. F., O'Bryan, H. M., et al. (1975) Journal of American Ceramic Society, 58, 418–420.
- 1215. Wang, S. F., Hsu, Y. F., Weng, T-H., et al. (2003) Journal of Materials Research, 18, 1179–1187.
- 1216. Udovic, M., Valant, M., and Suvorov, D. (2004) Journal of American Ceramic Society, 87, 591–597.

- 1217. Lee, H. R., Yoon, K. H., and Kim, E. S. (2003) Japanese Journal of Applied Physics, 42, 6168–6169.
- 1218. Chen, Y-B. (2010) Journal of Alloys and Compounds, **502**, 153–157.
- 1219. Jeong, B-J., Joung, M-R., Weon, S-H. K., et al. (2013) Journal of American Ceramic Society, **96**, 2225–2229.
- 1220. Yu, S., Zhang, S., Tang, B., et al. (2012) Ceramic International, 38, 613–618.
- 1221. Pamu, D., Rao, L. N., and Raju., K. C. J. (2011) Journal of American Ceramic Society, 95, 126–132.
- 1222. Wise, P. L., Reaney, I. M., Ubic, R., et al. (1999) In *Institute of Physics Conference Series* 161, Electron Microscopy & Analysis Conference EMA G99, Sheffield, 161 pp., IOP Publishing House.
- 1223. Yoon, K. H., Kim, J. B., and Kim, E.S. (1996) Journal of Materials Research, 11, 1996–2001.
- 1224. Fang, L., Wu, Y., He, C-Z., et al. (2007) Materials Letters, 62, 594-596.
- 1225. Zhou, H., Wang, H., Li, K., et al. (2008) Journal of Materials Science, 43, 3725–3727.
- 1226. Lee, C-T., Lin, Y-C., Huang, C-Y., et al. (2007) Journal of American Ceramic Society, **89**, 3662–3668.
- 1227. Lin, W-Y., Speyer, R. F., Hackenberger, W. S., et al. (1999) Journal of American Ceramic Society, 82, 1207–1211.
- 1228. Marinel, S. and Rolland, F. (2005) Materials Research Bulletin, 40, 962–969.
- 1229. Weng, J-J., Hsu, C-H., Huang, C-L., et al. (2005) Japanese Journal of Applied Physics, 44, 8039–8042.
- 1230. Yang, X., Wang, X., Yao, G., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 4662–4668.
- 1231. Bijumon, P. V., Mohanan, P., and Sebastian, M. T. (2003) Materials Letters, 57, 1380–1384.
- 1232. Ratheesh, R., Sreemoolanathan, H., and Sebastian, M. T. (1997) *Journal of Solid State Chemistry*, **131**, 2–8.
- 1233. Sreemoolanathan, H., Sebastian, M. T., and Mohanan, P. (1995) *Materials Research Bulletin*, **30**, 653–658.
- 1234. Vineis, C., Davies, P. K., Negas, T., et al. (1996) Materials Research Bulletin, 31, 431-437.
- 1235. Liu, P., Ogawa, H., Kim, E. S., et al. (2004) Journal of European Ceramic Society, 24, 1761–1764.
- 1236. Ha, J-Y., Choi, J-W., Kang, C-Y., et al. (2005) Japanese Journal of Applied Physics, 44, 1322–1325.
- 1237. Yue, Z., Zhao, F., Zhang, Y., et al. (2004) Materials Letters, 58, 1830–1834.
- 1238. Onoda, M., Kuwata, J., Kanaeta, K., et al. (1982) Japanese Journal of Applied Physics, 21, 1707–1710.
- 1239. Lu, W., Azough, F., and Kipkoch, E. R. (2004) In *International Conference on Microwave Materials and Their Applications*, MMA 2004, Inuyama.
- 1240. Hirano, S., Hayashi, T., and Hattai, A. (1991) Journal of American Ceramic Society, 74, 1320–1324.
- 1241. Kim, J-R., Kim, D-W., Jung, H. S., et al. (2006) Journal of European Ceramic Society, 26, 2105–2109.
- 1242. Cheng, C-C., Hsieh, T. E., and Lin, I. N. (2003) *Journal of Europen Ceramic Society*, **23**, 2553–2558.
- 1243. Zhou, D., Pang, L-X., and Wang, H. (2009) Materials Chemistry and Physics, 115, 126-131.
- 1244. Tay, K. W., Fu, Y-P., Huang, Q-F., et al. (2010) Ceramic International, 36, 1239–1244.
- 1245. Joseph, T., Anjana, P. S., Ltourneau, S., et al. (2010) Materials Chemistry and Physics, 121, 77–82.
- 1246. Zhou, H., Wang, H., Zhang, M., et al. (2010) Journal of Materials Research, 25, 1793–1798.
- 1247. Xiao, Y., Huang, X., and Zhang, Q. (2012) Advanced Materials Research, 197-198, 323-327.
- 1248. Zhou, H., Liu, X., Wang, H., et al. (2012) Ceramic International, 38, 367–372.
- 1249. Park, J-H., Choi, Y-J., Nahm, S., et al. (2011) Journal of Alloys and Compounds, 509, 6908–6912.
- 1250. Muhammed, R., Iqbal, Y., and Ali, H. (2015) Journal of Materials Science: Materials in Electronics, 26, 6819–6822.

- 1251. Wang, N., Zhao, M-Y., Li, W., et al. (2004) Ceramic International, 30, 1017-1022.
- 1252. Yoon, K. H., Kim, Y. S., and Kim, E. S. (1995) Journal of Materials Research, 10, 2085-
- 1253. Zhou, H., Wang, H., Zhang, M., et al. (2009) Applied Phsics A, 95, 513–516.
- 1254. Cai, H., Li, L., Sun, H., et al. (2015) Journal of Materials Science: Materials in Electronics, **26**, 998–1003.
- 1255. Cui, Z., Shen, C., and Qiu, T. (2015) Journal of Electronic Materials, 44, 320–325.
- 1256. Zeng, Q. and Li, W. (2009) Materials Science and Engineering B, 164, 151–155.
- 1257. Nomura, S., Tomaya, K., and Kaneta, K. (1983) Japanese Journal of Applied Physics, 22, 1125–1128.
- 1258. Chen, Y-C., Tzou, W-C., Yang, C-F., et al. (2001) Japanese Journal of Applied Physics, 40, 3252-3255.
- 1259. Jeong, B. J., Joung, M-R., Nahm, S., et al. (2013) Journal of American Ceramic Society, 96, 3742-3746.
- 1260. Hirano, S., Hayashi, T., Kikuta, K., et al. (1990) Ceramic Transactions, 12, 733–740.
- 1261. Muhammad, R., Iqbal, Y., and Rambo, C. R. (2015) Journal of Materials Science: Materials in Electronics, 26, 2161–2166.
- 1262. Tohdo, Y., Kakimoto, K., Ohsato, H., et al. (2006) Journal of European Ceramic Society, 26, 2039-2043.
- 1263. Zhou, H., Wang, Y., Chen, H., et al. (2008) Journal of American Ceramic Society, 91, 3444-3447.
- 1264. Chen, Y-Y., Chen, Y-C., and Chen, M-D. (2013) Journal of Materials Science: Materials in Electronics, 24, 3126–3131.
- 1265. Zhang, Y., Dong, X., Chen, H., et al. (2016) Ceramic International, 42, 1293–1297.
- 1266. Kucheiko, S., Choi, J-W., Kim, H-J., et al. (1996) Journal of American Ceramic Society, 79, 2739-2743.
- 1267. Chen, T., Ma, W., Li, R., et al. (2014) Journal of Materials Science: Materials in Electronics, **25**, 2494–2500.
- 1268. Shihara, D., Xi, Y., and Yong, Y. (2004) Ceramic International, 30, 1195–1198.
- 1269. Nenesheva, E. A., Mudroliuba, L. P., Kartenko, N. F. (2003) Journal of European Ceramic Society, 23, 2443–2448.
- 1270. Yang, H. B., Lin, Y., Zhu, J. F., et al. (2009) Journal of Physics and Chemistry of Solids, 70, 55-58.
- 1271. Zhao, F., Yue, X., Zhang, Y., et al. (2005) Journal of European Ceramic Society, 25, 3347–
- 1272. Jawahar, I. N., Santha, N., Sebastian, M. T., et al. (2002) Journal of Materials Research, 17, 3084-3089.
- 1273. Zeng, Q., Lei, W., Shi, J-I., et al. (2007) Journal of American Ceramic Society, 90, 2262–2263.
- 1274. Zhang, X., Zhang, J., Xie, Z., et al. (2015) Journal of American Ceramic Society, 98, 1245–
- 1275. Tang, B., Yu, S., Chen, H., et al. (2013) Journal of Materials Science: Materials in Electronics, **24**, 1475–1479.
- 1276. Kim, E. S., Kang, D. H., and Kim, S. J. (2007) Japanese Journal of Applied Physics, 46, 7101-7104.
- 1277. Mao, Y., Ding, S. H., Yao, X., et al. (2006) Materials Chemistry and Physics, 98, 198–202.
- 1278. Huang, C-L., Hsu, C-S., Lu, S-J. (2003) Materials Letters, 57, 3602–3605.
- 1279. Yamada, H., Okawa, T., Tohdo, Y., et al. (2007) Journal of European Ceramic Society, 26, 2059-2062.
- 1280. Fukui, T., Sakurai, C., and Okuyama, M. (1992) Journal of Materials Research, 7, 192–196.
- 1281. Kim, E. S., Chun, B. S., Kim, J. D., et al. (2003) Materials Science and Engineering B, 99, 243-246.
- 1282. Huang, C-L., Chen, Y-B., and Lin, S-H. (2005) Solid State Ionics, 49, 1921–1924.
- 1283. Riazikhoei, P., Azough, F., and Freer, R. (2006) Journal of American Ceramic Society, 89, 216-223.
- 1284. Chen, Y-B. (2010) Journal of Alloys and Compounds, **500**, 190–194.

- 1285. Chen, G-H., Di, J-C., Xu, H-R., et al. (2012) Journal of Materials Science: Materials in Electronics, 23, 280–284.
- 1286. Zhuang, H., Yue, Z., Zhao, F., et al. (2008) Japanese Journal of Applied Physics, 47, 4658–4663.
- 1287. Fang, L., Zhang, G., Hu, C.Z., et al. (2008) Materials Letters, 62, 670-672.
- 1288. Yue, Z., Zhao, F., Gui, Z., et al. (2005) Journal of Alloys and Compounds, 395, 126-131.
- 1289. Zhao, F., Yue, Z., Pei, J., et al. (2006) Applied Physics Letters, 89, 202901.
- 1290. Cho, I-S., Kim, J-R., Kim, D-W., et al. (2007) Journal of European Ceramic Society, 27, 3081–3086.
- 1291. Fang, L., Zhang, G., Hu, C., and Zhang, H. (2008) Materials Letters, 62, 670–672.
- 1292. Zhang, Q-L. and Yang, H. (2005) Materials Research Bulletin, 40, 1891–1898.
- 1293. Fang, L., Liu, H-F., Zhang, H., et al. (2006) Materials Research Bulletin, 41, 1281–1284.
- 1294. Kim, W. S., Kim, J. H., Kim, J. H., et al. (2003) Materials Chemistry and Physics, 79, 204-207.
- 1295. Manam, A. and Iqbal, Y. (2011) Journal of Materials Science: Materials in Electronics, 22, 1848–1854.
- 1296. Fang, L., Meng, S-S., Zhang, H., et al. (2006) Materials Letters, 60, 1147–1150.
- 1297. Fang, L., Zhang, H., Hong, X. K., et al. (2004) Materials Letters, 58, 3884-3887.
- 1298. Joung, M-R., Kweon, S-H., Kim, J-S., et al. (2012) Materials Research Bulletin, 47, 4510–4513.
- 1299. Fang, L., Su, H., Yu, Q., et al. (2008) Journal of American Ceramic Society, 91, 2769–2771.
- Pang, L-X., Wang, H., Zhou, D., et al. (2008) Journal of American Ceramic Society, 91, 2947–2951.
- 1301. Fang, L., Su, H., Yu, Q., et al. (2008) Materials Letters, 62, 4121–4123.
- 1302. Kagata, A., Inoue, I., Kato, J., et al. (1992) Japanese Journal of Applied Physics, 31, 3152–3255.
- 1303. Kim, E. S. and Choi, W. (2004) In *International Conference on Microwave Materials and Their Applications*, Inuyama, Japan.
- 1304. Hirahara, S., Fujikawa, N., Enami, S., et al. (1994) US Patent 5,356,844.
- 1305. Jancar, B., Valant, M., and Suvorov, D. (2004) Chemistry of Materials, 16, 1076–1082.
- 1306. Takasugi, A. and Kitoh, R. (1988) In National Conference of IECE Japan, SC-96.
- 1307. Dias, A., Bijumon, P. V., Sebastian, M. T., et al. (2005) Journal of Applied Physics, 98, 084105.
- 1308. Chang, L. C. and Chiou, B-S. (2004) Journal of Electroceramics, 13, 829–837.
- 1309. Cairns, D. L., Reaney, I. M., Otten, N., et al. (2006) Journal of European Ceramic Society, 26, 875–882.
- 1310. Ohsato, H., Harada, A., Okawa, T., et al. (2005) US Patent 6,905,994.
- 1311. Huang, C-L., Weng, M-H., and Shan, G-M. (2000) *Journal of Materials Science*, **35**, 5443–5447.
- 1312. Huang, C-L., Chen, Y-B., and Lo, C-W. (2005) Japanese Journal of Applied Physics, 44, 6706–6708.
- 1313. Huang, C-L., Weng, M-H., and Yu, C-C. (2001) Ceramic International, 27, 343–350.
- 1314. Huang, C-L., Chen, Y-T., and Tseng, Y-W. (2010) Materials Science and Engineering B, 167, 142–146.
- 1315. Rawal, R., Feteira, A., Hyatt, N. C., et al. (2006) Journal of American Ceramic Society, 89, 332–335.
- 1316. Fang, L., Meng, S-S., Zhang, H., et al. (2006) Transactions of Nonferrous Metals Society, China, 16, S521–S523.
- 1317. Huang, C-L. and Weng, M-H. (2000) Materials Letters, 43, 32–35.
- 1318. Wang, N., Zhao, M-Y., Yin, Z-W., et al. (2004) Materials Research Bulletin, 39, 439–448.
- 1319. Wang, S-F., Wang, Y-R., Wu, Y-C., et al. (2009) Journal of Alloys and Compounds, 480, 499–504.
- 1320. Liu, F., Yuan, C., Liu, X., et al. (2015) Materials Research Bulletin, 70, 678-683.
- 1321. Huang, C-L., Chen, J-H., and Li, B.J. (2009) Journal of Alloys and Compounds, **484**, 494–497.
- 1322. Nenesheva, E. A., Redozubov, S. S., Kartenko, N. F., et al. (2011) Journal of European Ceramic Society, 31, 1097–1102.
- 1323. Pang, Y., Zhong, C., and Zhang, S. (2007) Journal of Materials Science, 42, 7052–7055.

- 1325. Huang, C-L., Wang, J-J., Li, B.J., et al. (2009) Journal of Alloys and Compounds, 461, 440–446
- 1326. Chen, Y-B. (2009) Journal of Alloys and Compounds, 478, 781–784.
- 1327. Feteiro, A., Iddles, D., Price, T., et al. (2011) Journal of American Ceramic Society, 94, 817–821
- 1328. Suvorov, D., Valant, M., Jancar, B., et al. (2001) Acta Chimica Slovania, 48, 87-89.
- 1329. Okawa, H., Kiuchi, K., Okabe, H., et al. (2002) Ferroelectrics, 272, 345–350.
- Yoon, S-O., Kim, D-M., Kim, S. H., et al. (2006) Journal of European Ceramic Society, 26, 2023–2026.
- 1331. Huang, C-L., Weng, M-H., Wu, C-C., et al. (2001) Materials Research Bulletin, 35, 827–835.
- 1332. Weng, M-H. and Huang, C-L. (2000) Journal of Materials Science Letters, 19, 375–376.
- 1333. Muhammed, R. and Iqbal, Y. (2013) Journal of Materials Science: Materials in Electronics, 24, 2322–2326.
- 1334. Rawal, R., Feteira, A., Hyatt, N. C., et al. (2006) Journal of American Ceramic Society, 89, 336–339.
- 1335. Zhao, F., Yue, Z., Zhang, Y., et al. (2005) Journal of European Ceramic Society, 25, 3347–3352.
- 1336. Huang, X., Li, Y. M., Tang, D. P., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 2033–2038.
- 1337. Okawa, T., Kiuchi, K., Okabe, H., et al. (2001) Japanese Journal of Applied Physics, 40, 5779–5782.
- 1338. Huang, C-L., Weng, M-H., and Wu, C-C. (2001) Materials Research Bulletin, 35, 827-835.
- 1339. Yu, S., Tang, B., Zhang, W., et al. (2012) Materials Letters, 80, 124–126.
- 1340. Tseng, C-F. and Huang, C-C. (2012) Journal of Materials Science, 47, 3982–3988.
- 1341. Solomon, S., Nathan, H. S., Sebastian, M. T., et al. (1996) Materials Letters, 28, 107-111.
- 1342. Zhang, H. and Fang, L., Elsebrocke, R., et al. (2005) Journal of Materials Science, 40, 4427–4429.
- 1343. Zhu, H., Shen, W., Jin, Y., et al. (2013) Journal of Materials Science: Materials in Electronics, 24, 1090–1094.
- 1344. Chen, J-Y., Tseng, Y-W., and Huang, C-L. (2010) Journal of Alloys and Compounds, 494, 205–209.
- 1345. Liou, Y-C., Shiue, C-Y., and Weng, M-H. (2009) Journal of European Ceramic Society, 29, 1165–1171.
- 1346. Zhou, D., Li, W-B., Xi, H-H., et al. (2015) Journal of Materials Chemistry C, 3, 2582–2588.
- 1347. Badshaw, H., Iddles, D., Quinby, R., et al. (2003) Journal of European Ceramic Society, 23, 2435–2441.
- 1348. Fang, L., Yu, Q., Zhang, H., et al. (2007) Journal of American Ceramic Society, 90, 1626– 1628.
- 1349. Jancar, B., Suvorov, D., Valant, M., et al. (2003) Journal of European Ceramic Society, 23, 1391–1400.
- 1350. Tseng, C-F., Huang, C-L., and Yang, W. R. (2007) Materials Letters, 61, 4054–4057.
- 1351. Keith, G. M., Krik, A. A., Sarma, K., et al. (2004) Chemistry of Materials, 16, 2007–2015.
- 1352. Fang, L., Diao, C-L., Zhang, H., et al. (2004) Journal of Materials Science: Materials in Electronics, 15, 803–805.
- 1353. Fang, Q.L., Yu, Q., Zhang, H., et al. (2007) Materials Letters, 61, 3093–3095.
- 1354. Fu, M. S., Liu, X. Q., Chen, X. M., et al. (2008) Journal of American Ceramic Society, 91, 1163–1168.
- 1355. Gui, D., Zhang, H., and Fang, L. (2008) Journal of Materials Science: Materials in Electronics, 19, 543–546.
- 1356. Pei, J., Yue, Z., Zhao, F., et al. (2008) Journal of Alloys and Compounds, 459, 390-394.
- 1357. Chen, Y-B. (2009) Journal of Alloys and Compounds, **480**, 820–823.
- 1358. Wise, P. L, Reaney, I. M., Lee, W. E., et al. (2001) Journal of European Ceramic Society, 21, 1723–1726.
- 1359. Wang, J-J. and Huang, C-L. (2006) *Materials Letters*, **60**, 1280–1283.

- 1360. Ravi, G. A., Azough, F., and Freer, R. (2007) *Journal of European Ceramic Society*, 27, 2855–2859.
- 1361. Pang, L-X., Wang, H., Chen, Y-H., et al. (2009) Journal of Materials Science: Materials in Electronics, 20, 528–533.
- 1362. Li, C., Wei, X., Yan, H., et al. (2012) Journal of European Ceramic Society, 32, 4015–4020.
- 1363. Hsu, C-H. and Huang, C-J. (2014) Journal of Alloys and Compounds, **587**, 45–49.
- 1364. Wang, Z., Yao, X., and Zhang, L. (2004) Ceramic International, 30, 1329–1333.
- 1365. Li, B-J., Chen, J-Y., and Huang, C-L. (2009) Japanese Journal of Applied Physics, 48, 100203.
- 1366. Park, J-H., Nahm, S., and Park, J-G. (2012) Journal of Alloys and Compounds, 537, 221-226.
- 1367. Chen, Y-B. (2010) Journal of Alloys and Compounds, 491, 330-334.
- 1368. Tang, B., Si, F., Li, Y-X., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 2719–2725.
- 1369. Wang, Z., Yao, X., and Zhang, L. (2004) Ceramic International, 30, 1329–1333.
- Ma, P. P., Liu, X. Q., Zhang, F. Q., et al. (2015) Journal of American Ceramic Society, 98, 2534–2540.
- 1371. Ikawa, H., Ohara, M., Iida, T., et al. (2005) Journal of Ceramic Society Japan, Suppl. Special Issue, 112-1, S1614–S1616.
- 1372. Axelsson, A. K., Sebastian, M. T., and Alford, N. Mc N. (2003) *Journal of Korean Ceramic Society*, 40, 340–345.
- 1373. Feteiro, A., Sinclair, D. C., Reaney, I. M., et al. (2005) Journal of American Ceramic Society, 88, 3055–3062.
- 1374. Liou, Y. C., Liu, C-Y., and Fung, K. Z. (2008) Ceramic International, 34, 2079–2083.
- 1375. Zhang, C., Zhuo, R., Sun, Q., et al. (2013) Ceramic International, 39, 5675–5679.
- 1376. Huang, C-L., Chen, Y-H., Shih, C-F., et al. (2015) Materials Research Bulletin, 63, 1-5.
- 1377. Huang, C-L. and Chen, J-Y. (2011) Journal of Alloys and Compounds, 509, L99–L102.
- 1378. Mann, A. and Reaney, I. M. (2012) Journal of Materials Science Poland, 30, 3415.
- 1379. Sousa, D. G., Saraiva, G. D., Filho, J. M. S., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 4450–4458.
- 1380. Fang, L., Zhang, H., Yuan, R. Z., et al. (2005) Materials Letters, 59, 535-538.
- 1381. Zhang, X., Zhang, Y., Peng, B., *et al.* (2014) (to be published)
- 1382. Nahm, S., Joung, M-R., Jong, B-J., et al. (2004) In Proceedings of Microwave Materials and Applications, MMA 2014, pp. 21
- 1383. Takado, T., Kageyama, K., Yonemura, M., et al. (2003) Journal of Materials Science: Materials in Electronics, 14, 205–214.
- 1384. Wang, S-F., Wang, S-J., Wang, Y-R., et al. (2009) Ceramic International, 35, 1813–1812.
- 1385. Chen, J-Y. and Huang, C-L. (2011) *Journal of Alloys and Compounds*, **509**, 426–430.
- 1386. Zhou, D., Pang, L-X., Guo, J., et al. (2014) Inorgic Chemistry, 53, 1048–1055.
- 1387. Fu, M. S., Nei, L., and Chen, X. M. (2013) Journal of European Ceramic Society, 33, 813–823.
- 1388. Huang, C-L., Huang, H-L., and Wu, C-C. (2001) Materials Research Bulletin, 36, 1645–1652.
- 1389. Rawal, A. R., Feteiro, A., Flores, A. A., et al. (2005) Journal of American Ceramic Society, **89**, 336–339.
- 1390. Zhang, H., Fang, L., Su, H., et al. (2009) Journal of Materials Science: Materials in Electronics, 20, 741.
- 1391. Santha, N. and Sebastian, M. T. (2008) Materials Research Bulletin, 43, 2278–2284.
- 1392. Salim, C. M., Iqbal, Y., Qin, S., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 5282–5287.
- 1393. Qu, J., Liu, F., Yuan, C., et al. (2015) Materials Science and Engineering B, 191, 15–20.
- 1394. Zhao, F., Yue, Z., Pei, J., et al. (2006) Journal of Solid State Chemistry, 179, 1719–1725.
- 1395. Wang, S. F., Wang, Y. R., and Hsu, J-C. (2011) *Journal of Physics and Chemistry of Solids*, **72**, 1011–1014.
- 1396. Samaoukhima, P., Kamba, S., Santhi, S., et al. (2005) Journal of European Ceramic Society, 25, 3085–3088.
- 1397. Zeng, Q., Li, W., Shi, J., et al. (2008) Materials Research Bulletin, 43, 411–417.
- 1398. Dhanya, T. P., Simna, P. S., and Ratheesh, R (2011) *Journal of Materials Science: Materials in Electronics*, **22**, 974–977.

- 1399. Borisevich, A. Y. and Davies, P. K. (2002) Journal of American Ceramic Society, 85, 2487–2491.
- 1400. Borisevich, A. Y. and Davies, P. K. (2001) Journal of European Ceramic Society, 21, 1719–1722.
- 1401. Ratheesh, R., Sreemoolanathan, H., Suma, S., et al. (1998) Journal of Materials Science: Materials in Electronics, 9, 291–294.
- 1402. Liu, P., Kim, E. S., Kang, S-G., et al. (2003) Materials Chemistry and Physics, 79, 270–272.
- 1403. Liu, C-L. and Wu, T-B. (2001) Journal of American Ceramic Society, 84, 1291–1295.
- 1404. Salak, A. N., Seabra, M. P., and Ferreira, V. M. (2003) Journal of European Ceramic Society, 23, 2409–2412.
- 1405. Yeo, D-H., Kim, J. B., Moon, J. H., et al. (1996) Japanese Journal of Applied Physics, 35, 663–667.
- 1406. Gowri, L. (2004) MSc. Project Report, Regional Research Laboratory, Trivandrum.
- 1407. Bijumon, P. V. and Sebastian, M. T. (2005) Materials Science and Engineering B, 123, 31–40.
- 1408. Zhou, D., Zhang, Q-L., and Yang, H. (2009) *Journal of Materials Science: Materials in Electronics*, **20**, 756–760.
- 1409. Zhang, J., Zuo, R., Lv, Y., et al. (2012) Journal of Materials Science: Materials in Electronics, 23, 1449–1454.
- 1410. Zhou, H., Wang, H., Li, K., et al. (2009) Journal of Materials Science: Materials in Electronics, 20, 283–288.
- 1411. Houivet, D., Fallah, J. E., Bernad, J., et al. (2001) Journal of European Ceramic Society, 21, 1715–1718.
- 1412. Zhang, H., Fang, L., Su, H., et al. (2009) Journal of Materials Science: Materials in Electronics, 20, 741–744.
- 1413. Li, Y-X., Si, F., Tang, B., et al. (2016) Journal of Electronic Materials, in press.
- 1414. Huang, C-L. and Chien, Y-H. (2011) Journal of Alloys and Compounds, 509, L293–L295.
- 1415. Manan, A. and Iqbal, Y. (2014) Bulletin of Materials Science, 37, 1215-1219.
- 1416. Zhou, D., Wang, H., and Ding, X. (2009) Journal of Materials Science, 20, 39–43.
- 1417. Liou, Y-C. and Liu, C-Y. (2007) Materials Science and Engineering A, 448, 351–355.
- 1418. Zhang, S. L., Ma, P. P., Liu, X. Q., et al. (2015) Journal of American Ceramic Society, 98, 3185–3191.
- 1419. Kim, E. S., Kim, Y-H., Chun, B. S., et al. (2003) Materials Chemistry and Physics, 79, 233–235.
- 1420. Hong, H. B., Kim, D-W., and Hong, K. S. (2003) Japanese Journal of Applied Physics, 42, 5172–5175.
- 1421. Ichinose, N. and Mutoh, K. (2003) Journal of European Ceramic Society, 23, 2455–2459.
- 1422. Santha, N. (2008) International Journal of Applied Ceramic Technology, 5, 334–340.
- 1423. Li, C., Wei, X., Yan, H., et al. (2013) Journal of Advanced Dielectrics, 3, 1320003.
- 1424. Choi, J-W., Ha, J-Y., Kang, C-Y., et al. (2000) Japanese Journal of Applied Physics, 39, 5923–5926.
- 1425. Wang, K-W., Kim, H. T., Lanangan, M., et al. (2006) Materials Research Bulletin, 41, 1385–1391.
- 1426. Huang, C-L., Liu, S-S., and Chen, C-C. (2009) Journal of Alloys and Compounds, 468, L13– L16.
- 1427. Xu, P., Yang, J., Li, J., et al. (2012) Ceramic International, 38, 3861–3867.
- 1428. Iqbal, Y., Manan, A., and Reaney, I. M. (2011) Materials Research Bulletin, 46, 1092–1096.
- 1429. Qui, J-J., Yuan, C., Liu, F., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 4862–4869.
- 1430. Zhang, Q. L., Zhou, D., and Yang, H. (2011) Journal of European Ceramic Society, 31, 265–272.
- 1431. Wada, K., Fukami, Y., Kakimoto, K., et al. (2005) Japanese Journal of Applied Physics, 44, 7094–7097.
- 1432. Wei, C-H. and Jean, J-H. (2003) Journal of American Ceramic Society, 86, 93–98.
- 1433. Li, L., Cai, H., Yu, X., et al. (2016) Journal of Alloys and Compounds.

- 1434. Fukuda, K., Kitoh, R., and Awai, I. (1993) Japanese Journal of Applied Physics, 32, 4584–4588
- 1435. Ting, T. T., Xi, W-L., and Tu, Z. Q. (2009) Journal of Alloys and Compounds, 486, 606–609.
- 1436. Kim, E. S., Kim, S. H., Kang, S. G., et al. (2004) Journal of Ceramic Society Japan, Suppl., 112-1, S1641–S1644.
- 1437. Huang, C-L., Tseng, C-F., Yang, W-R., et al. (2008) Journal of American Ceramic Society, **91**, 2201–2204.
- 1438. Borisevich, A-Y. and Davies, P. K. (2002) Journal of American Ceramic Society, 85, 573–578.
- 1439. Tang, B., Xiong, Z., Li, H., et al. (2015) Journal of Materials Science: Materials in Electronics, **26**, 8017–8021.
- 1440. Bian, J. J., Yan, K., and Ubic, R. (2007) Journal of Electroceramics, 283–288.
- 1441. Zhang, H., Fang, L., Dronskowski, R., et al. (2004) Journal of Solid State Chemistry, 177, 400–412.
- 1442. Kim, E. S. and Kang, D. H. (2008) Ceramic International, 34, 883–888.
- 1443. Fang, L., Wu, M., Liu, Q., et al. (2012) Materials Chemistry and Physics, 76, 73-76.
- 1444. Chen, Y-C., Lee, W-C., and Chen, K-C. (2009) *Materials Chemistry and Physics*, **118**, 161–164.
- 1445. Fukuda, K., Kitoh, R., and Awai, I. (1995) Journal of Materials Science, 30, 1209–1216.
- 1446. Keith, G. M., Pampling, M. J., Sarma, K., et al. (2004) Journal of European Ceramic Society, 24, 1721–1724.
- 1447. Chen, Y-C., Yao, S-L., Tsai, R-J., et al. (2009) Journal of Alloys and Compounds, **486**, 410–414.
- 1448. Tseng, C-F., Chen, C-C., and Lin, C-W. (2014) *Materials Chemistry and Physics*, **147**, 535–539.
- 1449. Zhao, F., Yue, Z., Gui, Z., et al. (2006) Journal of American Ceramic Society, 89, 3421–3423.
- 1450. Kang, D. H., Nahm, K. C., and Cha, H. J. (2006) Journal of European Ceramic Society, 26, 2117–2121.
- 1451. Feteira, A., Slsebrock, R., Dias, A., et al. (2006) Journal of European Ceramic Society, 26, 1947–1951.
- 1452. Kagata, H., Inoue, T., and Kato, J. (1992) Japanese Journal of Applied Physics, 32, 3152-3155.
- 1453. Chen, Y-C. and Tsai, J. M. (2008) Japanese Journal of Applied Physics, 47, 7959.
- 1454. Chen, Y-C. and Zeng, Y.W. (2009) Microwave Optical Technology Letters, 51, 98.
- 1455. Iqbal, Y. and Manan, A. (2012) Journal of Materials Science: Materials in Electronics, 23, 536–541.
- 1456. Kang, D. H. and Kim, E. S. (2008) Ceramic International, 34, 889–892.
- 1457. Lu, Z., Li, Y., Wang, Y., et al. (2011) Journal of American Ceramic Society, 94, 4364–4370.
- 1458. Kim, E. S., Chun, B. S., and Kang, D. H. (2007) Journal of European Ceramic Society, 27, 3005–3010.
- 1459. Kim, H-J., Kucheiko, S., Yoon, S-J., et al. (1997) Journal of American Ceramic Society, 80, 1316–1318.
- 1460. Kagata, H., Kato, J., Nishimoto, K., et al. (1993) Japanese Journal of Applied Physics, 32, 4332–4334.
- 1461. Yang, S-F., Chuan, Y-C., Hsu, Y-C., et al. (2007) Japanese Journal of Applied Physics, 46, 2978–2983.
- 1462. Kim, M-H., Lim, J-B., Nahm, S., et al. (2007) Journal of European Ceramic Society, 27, 3033–3037.
- 1463. Ratheesh, R., Nathan, H. S., Sebastian, M. T., et al. (1998) Ferroelectrics, 211, 1–8.
- 1464. Liu, T., Zhao, Z-Z., and Chen, W. (2006) *Journal of American Ceramic Society*, **89**, 1153–1155.
- 1465. Gong, S., Li, L., Guo, M., et al. (2012) Journal of Materials Science: Materials in Electronics, 23, 1346–1351.
- 1466. Zheng, H., Reaney, I. M., Muir, D., et al. (2007) Journal of European Ceramic Society, 27, 4479–4487.

- 1467. Chang, G., Zhou, X. H., Li, Y-X., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 4750–4754.
- 1468. Zhang, Y., Zhang, Y. C., Xiang, M., et al. (2016) Ceramic International, 42, 3542–3547.
- 1469. Yoon, K. H., Park, H. S., Cho, J. Y., et al. (2003) Journal of European Ceramic Society, 23, 2579–2582.
- 1470. Chen, T., Ma, W., Sun, Q., et al. (2013) Materials Letters, 113, 111–113.
- 1471. Zheng, H., Reaney, I. M., Muir, D., et al. (2005) Japanese Journal of Applied Physics, 44, 3087–3090.
- 1472. Shen, B., Yao, X., Kang, L., et al. (2004) Ceramic International, 30, 1203–1206.
- 1473. Ohsato, H., Harada, A., Okawa, T., et al. European Patent EP1422207A1.
- 1474. Ubic, R. and Reaney, I. M. (2001) Journal of European Ceramic Society, 21, 2659–2662.
- 1475. Santha, N., Sebastian, M. T., George, V., et al. (2006) Materials Chemistry and Physics, 100, 423–429.
- 1476. Yang, X., Wang, X., and Li, L. (2015) Materials Research Bulletin, 67, 226–229.
- 1477. Petzelt, J., Buixaderas, E., Komandin, G., et al. (1998) Materials Science and Engineering B57, 40–45.
- 1478. Yim, D. K., Kim, J-R., Kim, D-W., et al. (2007) Journal of European Ceramic Society, 27, 3053–3057.
- 1479. Shih, Y-T. and Jean, J. H. (2013) Journal of American Ceramic Society, 96, 3849–3856.
- 1480. Nakano, M., Suzuki, K., Miura, T., et al. (1993) Japanese Journal of Applied Physics, 32, 4314–4318.
- 1481. Zhou, D., Zhang, Q., Yang, H., et al. (2008) Journal of Materials Science: Materials in Electronics, 19, 1000–1004.
- 1482. Li, E., Zhang, P., Mi, Y., et al. (2015) Journal of Electronic Materials, 44, 4316–4321.
- 1483. Huang, B., Wang, Z., Chen, T., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 5264–5268.
- 1484. Mizuta, M., Uenoyama, K., Ohsato, H., et al. (1996) Japanese Journal of Applied Physics, 35, 5065–5068.
- 1485. Dernovsek, O., Naeini, A., Preu, G., et al. (2001) Journal of European Ceramic Society, 21, 1693–1697.
- 1486. Chen, X. M. and Li, Y. (2002) Journal of American Ceramic Society, 85, 579–584.
- 1487. Lee, S. H., Kim, D-W., and Yoo, S. I. (2004) Journal of American Ceramic Society, 87, 871–874.
- 1488. Hu, M., Zhou, D., Zhang, D., et al. (2003) Materials Science and Engineering B, 99, 403-407.
- 1489. Hsu, C-H. and Chen, Y-C. (2012) Ferroelectrics, 43, 107–112.
- 1490. Zhou, X., Zhang, Y., and Chang, G., et al. (2016) Journal of Materials Science: Materials in Electronics, in press.
- 1491. Valant, M., Suvorov, D., and Kolar, D. (1994) In Proceedings of the Conference on Euroceramics (eds Wasser et al.), pp. 146-148, RWTH.
- 1492. Chen, Y-C. and Huang, C-L. (2002) Materials Science and Engineering A, 334, 250–256.
- 1493. Zhou, H-F., Wang, H., Zhou, D., et al. (2008) Materials Chemistry and Physics, 109, 510-514.
- 1494. Yao, X., Lin, H., Zhao, X., et al. (2012) Ceramic International, 38, 6723–6728.
- 1495. Chen, S-Y. and Lin, Y-J. (2001) Japanese Journal of Applied Physics, 40, 3305–3310.
- 1496. Zeng, Q., Li, W., Shi, J-I., et al. (2007) Journal of European Ceramic Society, 27, 261–265.
- 1497. Kucheiko, S., Choi, J-W., Kim, H-J., et al. (1997) Journal of American Ceramic Society, 80, 2937–2940.
- 1498. Kim, J-S., Cheon, C. I., Kang, H-J., et al. (1999) Japanese Journal of Applied Physics, 38, 5633–5637.
- 1499. Tseng, C-F. (2015) Journal of European Ceramic Society, 35, 383–387.
- Satheesh, R. and Ratheesh, R. (2010) International Journal of Appled Ceramic Technology, 7, E151–E155.
- 1501. Chen, Y-C. and Huang, C-L. (2002) Materials Science and Engineering A, 334, 250–256.
- 1502. Muhammed, R. and Iqbal, Y. (2015) *Journal of Materials Science: Materials in Electronics*, **26**, 9092–9096.
- 1503. Gu, F-F., Chen, G-B., Yuan, C-L., et al. (2015) Materials Research Bulletin, 61, 245–251.

- 1504. Long, Y., Wang, Y., Wu, W., et al. (2009) Journal of American Ceramic Society, 92, 2630–2633.
- 1505. Liang, B., Zheng, X., and Tang, D. (2009) Journal of Alloys and Compounds, 488, 409-413.
- 1506. Chen, G. H., Gu, F. F., Pan, M., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 6511–6517.
- 1507. Huang, C-L. and Weng, M-H. (2001) Materials Research Bulletin, 36, 683-691.
- 1508. Ohsato, H., Komura, A., Takagi, Y., et al. (1998) Japanese Journal of Applied Physics, 37, 5357–5359.
- 1509. Yang, C-F. (2009) Japanese Journal of Applied Physics, 39, 1430–1434.
- 1510. Rejini, R., Subodh, G., and Sebastian, M. T. (2008) *Journal of Materials Science: Materials in Electronics*, 19, 1153–1155.
- 1511. Pang, L-X., Wang, H., Zhou, D., et al. (2010) Materials Chemistry and Physics, 123, 727–730.
- 1512. Futamata, Y., Ohsato, H., Kakimoto, K., et al. (2002) Ferroelectrics, 272, 213-218.
- 1513. Yang, K., Karak, T., and Adachi, M. (2009) Japanese Journal of Applied Physics, 48, 09KE01.
- 1514. Kato, J. (1991) Material produces small resonators with high dielectric constant, *Journal of Electrical Engineering*, September, 114–118.
- Yoon, S-H., Kim, D-W., Cho, S-Y., et al. (2003) Journal of European Ceramic Society, 23, 2549–2552.
- 1516. Fukuda, K., Fijui, I., Kitoh, R., et al. (1993) Japanese Journal of Applied Physics, 32, 1712–1715.
- 1517. Fetira, A., Sarma, K., Alford, N. Mc N., et al. (2003) Journal of American Ceramic Society, 86, 511–513.
- 1518. Li, J. and Qiu, T. (2012) Ceramic International, 38, 4331–4335.
- 1519. Chang, G., Zhou, X-H., Zhang, S-R., et al. (2014) Journal of Materials Science: Materials in Electronics, 25, 4439–4443.
- 1520. Wang, H., Kamba, S., Zhang, M., et al. (2006) Japanese Journal of Applied Physics, 100, 034109.
- 1521. Belous, A. G. and Ovchar, O. V. (2003) Journal of European Ceramic Society, 23, 2525–2528.
- 1522. Pang, L-X., Wang, H., Zhou, D., et al. (2009) Journal of Electroceramics, 23, 13-18.
- 1523. Zhou, D., Li, W-B., Pang, L-X., et al. (2014) Daltons Transactions, 43, 7290–7297.
- 1524. Ota, Y., Kakimoto, K., Ohsato, H., et al. (2004) Journal of European Ceramic Society, 24, 1755–1760.
- 1525. Zuo, M. W., Li, W., Shi, J-L., et al. (2006) Materials Research Bulletin, 41, 1127-1132.
- 1526. Chen, X. M. and Li, Y. (2004) Journal of Applied Physics, 96, 5683–5686.
- 1527. Ding, J., Wang, Z., Gong, Z., et al. (2011) Journal of Rare Earths, 29, 683.
- 1528. Pang, L-X., Zhou, D., and Liu, W-G. (2015) Ceramic International, 41, 5182-5185.
- 1529. Valant, M. and Suvorov, D. (2001) Journal of Materials Science, 36, 2991–2997.
- 1530. Choi, G-K., Kim, D-W., Cho, S-Y., et al. (2004) Ceramic International, 30, 1187-1190.
- 1531. Pei, J., Yue, Z., Zhao, F., Gui, Z., et al. (2009) Ceramic International, 35, 253-257.
- 1532. Zhou, D., Wang, H., Yao, X., et al. (2008) Ceramic International, 34, 901–904.
- 1533. Yao, X., Lin, H., Chen, W., et al. (2012) Ceramic International, 38, 3011-3016.
- 1534. Durand, J. M. and Boilot, J. P. (1987) Journal of Materials Science Letters, 6, 134-136.
- 1535. Imaeda, M., Ito, K., Mizuta, M., et al. (1997) Japanese Journal of Applied Physics, 36, 6012–6015.
- 1536. Ohsato, H., Nishigaki, S., and Okuda, T. (1992) Japanese Journal of Applied Physics, 31, 3136–3138.
- 1537. Laffezz, P., Desgardin, G., and Raveau, B. (1992) Journal of Materials Science, 27, 5229–5238.
- 1538. Zhou, D., Pang, L-X., Wang, H., et al. (2011) Journal of Materials Chemistry, 21, 18412– 18420.
- 1539. Zhou, D., Pang, L-X., Guo, J., et al. (2011) Inorgic Chemistry, 50, 12733–12738.
- 1540. Cheng, P-S., Yang, C-F., Chen, Y-C., et al. (2000) Ceramic International, 26, 877.
- 1541. Zhang, W., Chen, X., and Bai, S. (2013) Ceramic International, 39, 3957–3963.
- 1542. Ohsato, H., Sugino, J., Komura, A., et al. (1999) Japanese Journal of Applied Physics, 38, 5625–5628.

- 1543. Gao, X. and Tai, Q. (2010) Journal of Rare Earths, 28, 411.
- 1544. Zhou, L., Zhou, H., Shao, H., et al. (2012) Journal of Rare Earths, 30, 142.
- 1545. Lowndes, R., Azough, F., Cernik, R., et al. (2012) Journal of European Ceramic Society, 32, 3792–3799.
- 1546. Zhou, D., Wang, H., Yao, X., et al. (2008) Journal of American Ceramic Society, 91, 139–143.
- 1547. Liu, Y-W. and Lin, P. (2006) Materials Research Bulletin, 41, 1845–1853.
- 1548. Yoon, K. H., Chang, Y. H., Kim, W. S., et al. (1996) Japanese Journal of Applied Physics, 35, 5145–5149.
- 1549. Nishigaki, S., Kato, H., Yano, S., et al. (1987) Amerian Ceramic Society Bulletin, 66, 1405–1410.
- 1550. Li, Y. and Chen, X. M. (2002) Journal of European Ceramic Society, 22, 715–719.
- 1551. Valant, M., Suvorov, D., and Kolar, D. (1993) 3rd Euroceramics (eds P. Duram and J. F. Fernandez), vol. 2, pp. 235–240.
- 1552. Xiong, Z. X., Fang, C., Huang, J. R., et al. (2000) Materials Science and Engineering B, 99, 138–142.
- 1553. Huang, B., Wang, Z., Chen, T., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 3375–3379.
- 1554. Ohsato, H., Imaeda, M., Takagi, Y., et al. (1998) In Proceedings of Symposium on Applications of Ferroelectrics, XI, Switzerland, August, pp. 509–512.
- 1555. Xu, Y., Huang, G., and He, Y. (2005) Ceramic International, 31, 21–25.
- 1556. Zheng, Y., Zhao, X., Lei, W., et al. (2005) Materials Letters, 60, 459–463.
- 1557. Belous, A. G. and Ovchar, O. V. (1999) Journal of European Ceramic Society, 19, 1119–1122.
- 1558. Axelsson, A-K. and Alford, N. Mc N. (2006) Journal of European Ceramic Society, 26, 1933–1936.
- 1559. Zhou, D., Rindall, C. A., Wang, H., et al. (2010) Journal of American Ceramic Society, 93, 2147–2150.
- 1560. Chen, H., Tang, B., Duan, S., Yang, H., et al. (2015) Journal of Electronic Materials, 44, 1081–1087.
- 1561. Zhu, J., Lu, W., Lei, W., et al. (2009) Ceramic International, 35, 855–860.
- 1562. Guo, Y., Kakimoto, K., and Ohsato, H. (2003) Japanese Journal of Applied Physics, 42, 7410–7413.
- 1563. (a) Webhoffer, A. and Feltz, A. (1999) Journal of Materials Science Letters, 18, 719–721.
- 1563. (b) Lu, Z., Li, Y., Wang, Y., et al. (2011) Journal of American Ceramic Society, 4364–4370.
- 1564. Ezaki, K., Baba, Y., Takahashi, H., et al. (1993) Japanese Journal of Applied Physics, 32, 4319–4322.
- 1565. Yoon, K. H., Kim, E. S., and Jeon, J. S. (2003) Journal of European Ceramic Society, 23, 2391–2396.
- Belous, A. G., Ovchar, O., Valant, M., et al. (2001) Journal of European Ceramic Society, 21, 2723–2730.
- 1567. Ohsato, H., Komura, A., and Nishigaki, S. (2004) Journal of Ceramic Society Japan, Suppl., 112, S1616–S1621.
- 1568. Okawa, T., Imaeda, M., and Ohsato, H. (2000) Japanese Journal of Applied Physics, 39, 5645–5649.
- 1569. Ohsato, H., Kato, H., Mizuta, M., et al. (1995) Japanese Journal of Applied Physics, 34, 5413–5417.
- 1570. Ha, J-Y., Choi, J-W., Kim, H-J., et al. (2003) Materials Chemistry and Physics, 79, 261–265.
- 1571. Qin, N. and Chen, X. M. (2004) Materials Science and Engineering B, 111, 90–94.
- 1572. Kim, E. S., Park, H. S., and Yoon, K. H. (2003) *Materials Chemistry and Physics*, **79**, 213–217.
- 1573. Hsiang, H-I. and Chen, T-H. (2009) Journal of Alloys and Compounds, 467, 485–490.
- 1574. Hoffmann, C. and Waser, R. (1997) Ferroelectrics, 201, 127–135.
- 1575. Fukuda, K., Kitoh, R., and Awai, I. (1995) Journal of Materials Research, 10, 312–319.
- 1576. Yang, Q., Kim, E. S., Xu, J., et al. (2003) Materials Science and Engineering B, 99, 332-339.
- 1577. Skapin, S. D., Pirnat, U., Jancar, B., et al. (2015) Journal of American Ceramic Society, 98, 3818–3823.

- 1578. Choi, W., Kim, H. J., Yoon, S. J., et al. (2003) Materials Chemistry and Physics, 79, 261–265.
- 1579. Yamada, Y., Wada, K., Kagomiya, I., et al. (2007) Journal of European Ceramic Society, 27, 3049–3052.
- 1580. Chen, X., Zhang, W., and Bai, S. (2013) *Journal of Materials Science: Materials in Electronics*, **24**, 224–229.
- 1581. Sun, J-S., Wei, C-C. and Wu, L. (1992) Journal of Materials Science, 27, 5818-5822.
- 1582. Negas, T. and Davies, P. K. (1995) Materials and Processes for Wireless Communication (eds T. Negas and H. Ling), American Ceramic Society, Westerville, OH, pp. 179–196.
- 1583. Xiong, Z. X., Fang, C., Huang, J. R., et al. (2003) Materials Science and Engineering B, 99, 138–142.
- 1584. Podlinik, M., Valant, M., and Suvorov, D. (1997) Key Engineering Materials, 132-136, 1211–1214
- 1585. Azough, F., Wang, W., Leach, C., et al. (2008) In International Conference on Microwave Materials and Their Applications, Hangzhou, China, p. 26.
- 1586. Wu, Y. J. and Chen, X. M. (2000) Journal of American Ceramic Society, 83, 1837–1839.
- 1587. Qin, C., Yue, Z., Gui, Z., et al. (2003) Materials Science and Engineering B, 99, 286–289.
- 1588. Wu, Y. J. and Chen, X. M. (2001) Journal of Materials Research, 16, 1734–1738.
- 1589. Kim, I., Jung, W. H., Inaguma, Y., et al. (1995) Materials Research Bulletin, 30, 307-316.
- 1590. Ioachim, A., Toacsan, M. I., Banciu, M. G., et al. (2004) Materials Science and Engineering B, 109, 183–187.
- 1591. Zhong, Q-L., Wu, F., Yang, H., et al. (2008) Journal of Materials Chemistry, 18, 5339-5343.
- 1592. Ichinose, N. and Amada, H. (2001) Journal of European Ceramic Society, 21, 2751–2753.
- 1593. Zhe, H. M., Xiang, Z. D., Haoshuang, G., et al. (2005) Materials Science and Engineering B, 117, 199–204.
- 1594. Zhang, Q., Sun, H-P., and Yang, H. (2012) Journal of Alloys and Compounds, 509, 9986–9991.
- 1595. Valant, M. and Suvorov, D. (2003) Journal of American Ceramic Society, 86, 939-944.
- 1596. Valant, M., Suvorov, D., Kolar, D. (1994) In *Proceedings of the Conference on Euroceramics* (ed. Waser *et al.*), Aachen, pp. 146–147.
- 1597. Kim, W. S., Kim, E. S., and Yoon, K. H. (1999) Ferroelectrics, 223, 277–284.
- 1598. Li, M., Feteira, A., Sinclair, D. C., et al. (2007) Applied Physics Letters, 91, 132911.
- 1599. Chen, H-L. and Huang, C-L. (2002) Japanese Journal of Applied Physics, 41, 5650-5653.
- 1600. Xiang, Z. D., Zue, H. M., Lin, J. S., et al. (2004) Materials Letters, 58, 2684–2687.
- 1601. Okawa, T., Imaeda, M., Ohsato, H. (2002) Key Engieering Materials, 214-215, 37-42.
- 1602. Kato, J., Kagata, H., Nishimoto, K. (1991) Japanese Journal of Applied Physics, 30, 2343–2346
- 1603. Kipoch, E. R., Zhu, J., and Lu, W. (2006) Journal of Applied Physics, 100, 054105.
- 1604. Kim, W. S., Kim, E. S., and Yoon, K. H. (1999) Journal of American Ceramic Society, 82, 2111–2115.
- 1605. Chen, Y. C., Cheng, P-S., and Yang, C-F, et al. (2001) Journal of Materials Science Letters, 20, 863–865.
- 1606. Wu, Y. J. and Chen, X. M. (1999) Journal of European Ceramic Society, 19, 1123-1126.
- 1607. Ohsato, H. (2001) Journal of European Ceramic Society, 21, 2703–2711.
- 1608. Ohsato, H. and Imaeda, M. (2000) Materials Chemistry and Physics, 79, 208–212.
- 1609. Huang, C-L., Tsai, J-T., and Li, J-L. (2000) Journal of Materials Science, 35, 4901-4905.
- 1610. Suvorov, D., Valant, M., and Kolar, D. (1995) Materials and processes for wireless communication, in *Ceramic Transactions* (eds T. Negas and H. Ling), vol. 53, pp. 197–206.
- 1611. Chen, G-H., Yuan, C-L., Zhou, C-R., et al. (2013) Ceramic International, 39, 9763–9766.
- 1612. Takahashi, H., Baba, Y., Ezaki, K., et al. (1996) Japanese Journal of Applied Physics, 35, 5069–5073.
- 1613. Kim, D-W., Park, B., Chung, J-H., et al. (2000) Japanese Journal of Applied Physics, 39, 2696–2700.
- 1614. Kim, W. S., Yoon, K. H., and Kim, E. S. (2000) Japanese Journal of Applied Physics, 39, 5650–5653.
- 1615. Takahashi, H., Baba, Y., and Ezaki, K. (1991) Japanese Journal of Applied Physics, 30, 2339–2342.

- 1616. Li, L., Jin, Y., Dong, H., et al. (2014) Journal of Alloys and Compounds, 604, 31–35.
- 1617. Yoon, K. H., Park, M. S., Cho, J. Y., et al. (2003) Journal of European Ceramic Society, 23, 2423–2427.
- 1618. Huang, G., Zhou, D., Yu, J., et al. (2005) Materials Research Bulletin, 40, 13–19.
- 1619. Yoshida, M., Hara, N., Takada, T., et al. (1997) Japanese Journal of Applied Physics, 36, 6818–6823.
- 1620. Subodh, G. and Sebastian, M. T. (2007) Materials Science and Engineering B, 136, 50-56.
- 1621. Marinel, S., Choi, D. H., Heuguet, R., et al. (2013) Ceramic International, 39, 299–306.
- 1622. Yang, Q., Kim, E. S., Xu, J., et al. (2004) Materials Science and Engineering B, 99, 259–261.
- 1623. Yang, Q. H., Kim, E. S., and Xu, J. (2004) Materials Science and Engineering B, 113, 224–227.
- 1624. Gu, Y., Huang, J-L., Li, Q., et al. (2008) Journal of European Ceramic Society, 28, 3149–3153.
- 1625. Schwartz, S. L., and Shrout, T. R. (1995) US Patent 5449652.
- 1626. Yang, Q. H., Kim, E. S., Kim, Y. J., et al. (2003) Materials Chemistry and Physics, 79, 239–242.
- 1627. Fang, Z-X., Tang, B., Si, F., et al. (2016) Journal of Materials Science, in press.
- 1628. Pullar, R. C., Penn, S. J., Wang, X., et al. (2009) Journal of European Ceramic Society, 29, 419–424.
- 1629. Fu, M. S., Liu, X. Q., and Chen, X. M. (2008) Journal of European Ceramic Society, 28, 585–590.
- Liang, Z., Yuan, L. L., and Bian, J. J. (2011) Journal of Alloys and Compounds, 509, 1893– 1896.
- 1631. Templeton, A., Wang, X., Penn, S. J., et al. (2000) Journal of American Ceramic Society, 83, 95–100.
- 1632. Huang, C-L., Tsai, J-T., and Chan, Y. B. (2002) Materials Research Bulletin, 36, 547–556.
- 1633. Kipokoch, E. R. and Lu, W. (2004) In *International Conference on Microwave Materials and Their Applications*, MMA 2004, Inuyama, Japan.
- 1634. Aziz, D. A., Sterianou, I., and Reaney, I. M. (2009) Journal of Materials Science, 44, 6247–6250.
- 1635. Li, J., Chen, X. M., and Wu, Y. J. (2002) Journal of European Ceramic Society, 22, 87–91.
- 1636. Yan, K., Fuji, M., Karaki, T., et al. (2007) Japanese Journal of Applied Physics, 46, 7105–7107.
- 1637. Kim, E. S. and Yoon, K. H. (2003) Journal of European Ceramic Society, 23, 2397–2401.
- 1638. Chen, X., Bai, X., and Zhang, W. (2012) Journal of Alloys and Compounds, 541, 132–136.
- 1639. Zhang, L., Shqau, S., Verweiji, H., et al. (2010) Journal of American Ceramic Society, 93, 969–972.
- 1640. Ichonose, N. and Chida, N. (1998) In Proceedings of IEEE International Symposium on Applications of Ferroelectrics, pp. 513–516.
- 1641. Wu, M-C., Huang, Y. C., and Su, W. F. (2006) Materials Chemistry and Physics, 100, 391-394.
- 1642. Zhu, L. M., Bin, T., Shenquan, Y., et al. (to be published)
- 1643. Subodh, G., James, J., Sebastian, M. T., et al. (2007) Chemistry of Materials, 19, 4077–4082.
- 1644. Lowe, T., Azough, F., and Freer, R. (2003) Journal of European Ceramic Society, 23, 2429–2433.
- 1645. Chen, X. M., Sun, Y. H., and Zheng, X. H. (2003) Journal of European Ceramic Society, 23, 1571–1575.
- 1646. Lowe, T., Azough, F., and Freer, R. (2006) Journal of Electroceramics, 16, 257–261.
- 1647. Kim, E. S., Chun, B. S., Yoon, D-W., et al. (2003) Materials Science and Engineering B, 99, 247–251.
- 1648. Bian, J. J. and Li, Y. Z. (2010) Materials Chemistry and Physics, 122, 617–622.
- 1649. Yuan, C., Chen, G., Zhou, C., et al. (2015) International Journal of Appled Ceramic Technology, 12, E55–E63.
- 1650. Moon, S. H., Kim, J. S., Cheon, C., et al. (2010) Japanese Journal of Applied Physics, 49, 09MC-13-1.
- 1651. Tatsui, K., Murano, K., Kawamura, T., et al. (1987) Japanese Journal of Applied Physics, Suppl., 26-2, 80–82.
- 1652. Su, W-F. and Lim, S-C. (2003) Journal of European Ceramic Society, 23, 2593–2596.

- 1653. Nino, J. C., Lanagan, M. T., and Randall, R. C. (2001) Journal of Applied Physics, 89, 4512–4516.
- 1654. Hu, X., Chen, X. M., and Wu, S-Y. (2003) Journal of European Ceramic Society, 23, 1919–1924.
- 1655. Axelsson, A-K., Pan, Y., Valant, M., et al. (2009) Journal of American Ceramic Society, 92, 1773–1778.
- 1656. Niu, B., Ma, W., Li, Q., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 916–920.
- 1657. Zhang, M., Zhai, J., and Yao, X. (2010) Materials Research Bulletin, 45, 1990–95.
- 1658. Kamba, S., Savinov, M., Luafek, F., et al. (2009) Chemistry of Materials, 21, 811-819.
- 1659. Ubic, R., Reaney, I. M., Lee, W. E., et al. (2003) In Conference Dielectrics for Emerging Technogies, Institute of Physics, Edinburgh.
- 1660. Saleem, M., Iqbal, Y., Qin, S., et al. (2015) Journal of Materials Science: Materials in Electronics, 26, 1507–1511.
- 1661. Alford, N. Mc N. London South Bank University (unpublished results)
- 1662. Kim, H. T., Shrout, T., Rindall, C. A., et al. (2002) Journal of American Ceramic Society, 85, 2738–2744.
- 1663. Wang, S., Zhai, J., Chou, X., et al. (2009) Materials Chemistry and Physics, 115, 200-203.
- 1664. Wu, L., Chen, Y-C., Chen, L-J., et al. (1999) Japanese Journal of Applied Physics, 38, 5612–5615.
- 1665. Lin, T. N., Chu, J. P., and Wang., S-F. (2005) Materials Letters, 59, 2786–2789.
- 1666. Petzelt, J., Kamba, S., Buixaders, E., et al. (1999) Ferroelectrics, 223, 235-246.
- 1667. Valant, M. and Suvorov, D. (1999) Journal of American Ceramic Society, 82, 88-93.
- 1668. Zhang, M., Zhai, J., Shen, B., et al. (2012) Journal of Materials Research, 27, 910-914.
- 1669. Zhang, J., Zhai, J., and Yao, X. (2009) Scripta Materiala, 61, 764.
- 1670. Zhang, Q., Zhai, J., Yao, Z. (2010) Journal of American Ceramic Society, 93, 2560-2562.
- 1671. Jiang, H., Zhai, J., Zhang, J., et al. (2009) Journal of American Ceramic Society, 92, 2319–2322.
- 1672. Jiang, H., Shen, B., Zhai, J., et al. (2012) Ceramic International, 38S, S183-S186.