

PRO-DEX, INC.

OREGON MICRÓ SYSTEMS
TWIN OAKS BUSINESS CENTER
1800 NW 169th PLACE, BUILDING C-100
BEAVERTON, OR 97006
PHONE 503-629-8081
FAX 503-629-0688
EMAIL sales@Pro-Dex.com
WEB SITE www.Pro-Dex.com

COPYRIGHT NOTICE

© 2005 Pro-Dex, Inc. ALL RIGHTS RESERVED

This document is copyrighted by Pro-Dex, Inc., Oregon Micro Systems. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the express written permission of Pro-Dex, Inc., Oregon Micro Systems.

TRADEMARKS

IBM, IBM PC, IBM PC/XT, IBM PC/AT, IBM PS/2, and IBM PC DOS are registered trademarks of International Business Machines Corporation. Windows 98, 2000, XP, and Win NT are registered trademarks of Microsoft Corporation.

DISCLAIMER

Pro-Dex, Inc., Oregon Micro Systems makes no representations or warranties regarding the contents of this document. We reserve the right to revise this document, or make changes to the specifications of the product described within it at any time without notice and without obligation to notify any person of such revision or change.

3301-1400000 Revision A

	PC78 Intelligent Motion Controls							
Model	Interface		Servo	Stepper Axes Axes control I/O		I/O	User I/O	
	PC/104	RS-	Axes	(Open or	Limits	Aux	Home	GPIO
		232		Closed –loop)				
PC78-25	Yes	Yes	2		4	2	2	8
PC78-45	Yes	Yes	4		8	4	4	8
PC78-26	Yes	Yes		2	4	2	2	8
PC78-46	Yes	Yes		4	8	4	4	8

TABLE OF CONTENTS

1.	GENERAL [DESCRIPTION	1-
	1.1.		
	1.2.	SYSTEM OVERVIEW	1-2
2.	GETTING S	TARTED	2-
	2.1.	PREPARE FOR INSTALLATION	2-
	2.2.		
	2.3.	SET THE I/O ADDRESS RANGE	2-
	2.4.	SET THE INTERRUPT REQUEST (IRQ)	
	2.5.	INSTALL THE PC78 INTO A PC/104 SYSTEM	2-
	2.6.	CONNECTING THE PC78 FOR RS-232 COMMUNICATION	2-
	2.7.	CONNECT AND CHECKOUT THE SERVO SYSTEM	2-0
	2.8.	TUNE THE SYSTEM	2-
	2.9.	SETTING THE USER DEFAULT CONFIGURATION	2-14
	2.10.		
3.	COMMUNIC	CATION INTERFACE	
	3.1.	INTRODUCTION	
	3.2.	PC/104 INTERFACE	
	3.3.	PC/104 COMMUNICATION THEORY	
	3.4.	PC/104 ADDRESS SELECTION	
	3.5.	USING INTERRUPTS	
	3.6.	DATA REGISTER	
	3.7.	DONE FLAG REGISTER	
	3.8.	INTERRUPT CONTROL REGISTER	
	3.9.	STATUS REGISTER	
	3.10.		
4.	CONTROL	SIGNAL INTERFACE	
	4.1.		
	4.2.	LIMIT AND HOME INPUTS	
	4.3.	CONTROL OUTPUT	4-
	4.4.	IO68 ADAPTER MODULE	4-
	4.5.	ENCODER FEEDBACK	4-(
	4.6.	ENCODER SELECTION AND COMPATIBILTY	4-0
	4.7.	HOME PROCEDURES	4-
5.	COMMAND	STRUCTURE	5-
	5.1.	INTRODUCTION	5-
	5.2.	COMMAND QUEUES	
	5.3.	COMMAND SUMMARY	5-4
6.	HOST SOF	TWARE	
	6.1.	INTRODUCTION TO PC78 SOFTWARE SUPPORT	6-
	6.2.	COMMUNICATION METHODS	6-
7.			
	7.1.	USER SERVICE	
	7.2.		7-
A.	LIMITED WARF	RANTY	
B.	TECHNICAL IN	FORMATION / RETURN FOR REPAIR PROCEDURES	
C.	SPECIFICATIO	NS	
D	INDEX		

This page is intentionally left blank.

1. GENERAL DESCRIPTION

1.1. INTRODUCTION

The OMS PC/104 products are built around the base controllers, the PC78 and the PC68, and can expand to satisfy most any motion control application. The PC78 intelligent motion controller is a 100% PC/104 (IEEE P996.1 specification) compliant controller. It is capable of fully supporting the PC/104 ISA bus, as well as the RS-232 interface.

The PC78 family of motion controllers is a four axes follow-on product for the PC68 family, and shares the same footprint, command syntax, and capability of the PC68. (See list of PC78 models.)

The PC78 family of single PC/104 board controllers has models that can manage up to four (4) stepper or four (4) servo axes with encoder feedback. For open loop stepper operation, the encoders are not connected. It can manage coordinated or independent motion of each or all of the axes simultaneously. With high level functionality, such as circular and linear interpolation, multi-tasking, custom profiling, etc., the PC78 can satisfy most any motion control application. In a PC/104 computer stack of boards the PC78 functions as a motion co-processor. Through the RS-232 interface the PC78 operates as a stand-alone controller. It utilizes a 32-bit microprocessor and patented, proprietary technology to control the trajectory profile, acceleration, velocity, deceleration, and direction of selected axes. In response to commands from the host computer, the PC78 controller will calculate the optimum velocity profile to reach the desired destination in the minimum time while conforming to the programmed acceleration and velocity parameters.

The stepper control of the PC78 produces a 50% duty cycle square wave step pulse at velocities of 0 to 1,044,000 pulses per second and an acceleration of 0 to 8,000,000 pulses per second, per second. The encoder feedback control can be used as feedback or position maintenance for the stepper axes or as strictly a position feedback of any axis. The encoder input supports either differential or single-ended quadrature TTL signals at a rate of up to 12MHz and counts at a 4 times resolution. This means a 1000 line encoder will produce 4000 counts per revolution in the PC78 controller.

The PC78 is commanded using virtually any programming language to the pass simple ASCII command strings to the PC78 through either the PC/104 I/O address or RS-232 port. For a typical motion requirement of 1,000,000 counts at 400,000 counts/second and an acceleration of 500,000 counts/second/second the following string would be sent from the host computer to the PC78:

<u>VL</u>400000; <u>AC</u>500000; <u>MR</u>1000000; GO

For additional command programming examples see Chapter 5.

1.2. SYSTEM OVERVIEW

The PC78 is only 3.55" x 3.775" and is intended to be embedded into a stack of PC/104 boards where it behaves as a slave expansion board to the ISA bus of the PC/104 CPU. As a standalone controller it communicates as a slave device through an RS-232 port. The PC78 utilizes Flash Memory where programs (command sequences) can be stored permanently as macros.

The PC78 utilizes the Motorola 68332 32-bit micro controller and FPGA technology for extensive logic integration and flexibility. The firmware, which resides in Flash Memory, can be upgraded through either of the communication interfaces, RS-232 or PC/104, without having to remove the controller from the system, if you have a 32-bit operating system such as Windows NT\2000 or XP. All signals to and from the PC78 are buffered through TTL devices and are found on the shielded SCSI-3 type connector (J5). The IO68-M breakout can be used to route the signals of the PC78 to individual screw terminal blocks. Both the PC78 and IO68-M utilize a resettable fuse on the +5V on the SCSI-3 connectors for protection.

As a stand-alone controller the PC78 obtains its power from connector J3 and the RS-232 communication port connects to J4. The PC78 supports baud rates of 300 to 38.4K baud. With the ability to store macros into Flash Memory the PC78 could essentially be programmed once and then be embedded into a machine where it could run independently.

When the PC78 is configured into a PC/104 stack it supports four I/O address registers that provide near real-time information. The data communication is performed by sending and receiving strings of data through the data port register. The status register provides the handshaking information for writing to the data register as well as some status information including error conditions, motion complete, etc. The PC78 can generate an interrupt to the PC/104 host and the conditions that cause interrupts can be individually selected by writing to the control register.

More details on each of the communication interfaces, as well as the functionality of the controller, are included in the following chapters.

2. GETTING STARTED

2.1. PREPARE FOR INSTALLATION

The installation of the PC78 board is flexible and dependent on the type of communication interface being used, either the RS-232 or PC/104 bus.

Minimum Requirements:

For RS-232:

Controller must be ≥ 0.1 " from the top of the surface it's mounted on.

+5V power must be supplied. This can be done through the on-board 6-pin connector (J3).

For Servo Models:

+/-12V power supplies are also required. This can be done through the on-board 6-pin connector (J3).

For PC/104:

Install PC78 in a PC/104 system that complies with the PC/104 bus specification.

Set the PC78 to use IRQ and I/O Address Settings that do not conflict with other devices in the system.

The power for +5V and +/-12V is provided through the PC/104 bus connector.

For All PC78 Models:

Allow for proper ventilation, including forced air, around the PCB.

2.2. TO PREPARE FOR THE INSTALLATION INTO A PC/104 STACK

Before installing the PC78 into a PC/104 stack you must first:

- Set the I/O Address Range (default is 300 [hex]); discussed in Section 2.3 SET THE I/O ADDRESS RANGE
- Set the Interrupt Request (IRQ) (default is IRQ5); discussed in Section 2.4 SET THE INTERRUPT REQUEST (IRQ)

FIGURE 2-1 ILLUSTRATES THE LOCATIONS OF THE SWITCHES ON THE PC78 FOR THE DEFAULT ADDRESS AND IRQ SETTING.

2.3. SET THE I/O ADDRESS RANGE

The PC78's I/O address range is selected with the switch (S2) located on the top of the board. The PC78's I/O address ranges from 200 to 3FF (hex). The default address is 300 - 303 (hex).

FIGURE 2-2 ADDRESS SELECTED SWITCH (DEFAULT SETTING)

2-2 PC78 USER'S MANUAL

The A0 and A1 address signals of the host are decoded internally by the PC78 and are treated as 0 for base address calculations. A closed switch sets that bit in the address low and an open switch sets the bit high. For example, an open on A9, A5 and A4 with all other switches closed selects base address 230.

FIGURE 2-3 PC78 I/O ADDRESS

	Byte 2	Byte	e 1	<u>B</u>	yte 0
88WO 0 = 0 0 1 = 1 1 0 = 2 1 1 = 3	(Not Recommended!) (Default)	8	(Default)	88NO 0 1 = 0 0 1 = 4 1 0 = 8 1 1 = C	(Default)

FIGURE 2-4 I/O ADDRESS SWITCH CONFIGURATION

2.4. SET THE INTERRUPT REQUEST (IRQ)

The interrupt level that the PC78 board uses for communication is selected with switch S1. The default setting is IRQ5. Close the specific switch to select the desired IRQ. All open IRQ switches disable the interrupt capability. There should never be more than one IRQ switch closed at the same time on S1.

The switch on the far left of S1 is used to determine PC/104 or RS-232 communication mode. When communicating through the PC/104 bus, this switch should be open (off). When communicating to the PC78 via RS-232, this switch should be closed (on).

FIGURE 2-5 INTERRUPT SWITCH

2.5. INSTALL THE PC78 INTO A PC/104 SYSTEM

Reference installation instructions provided in text files (i.e. README.TXT) that came with the support software disk.

- 1. Turn off power to the PC/104 computer and disconnect its power cord from the wall socket.
- 2. Align the PC78 on to the PC/104 J1/J2 connector, ensuring that the board is lined up correctly and push the boards together.
- 3. Make sure that the four standoffs are aligned with the four holes on the PC78.
- 4. Double check the board to ensure it is properly seated in the connector.
- 5. Either screw another set of standoffs in to the standoffs on the lower board or use screws to secure the PC78.
- 6. Replace the power cord and turn on the computer.
- 7. Allow the computer to boot up.

For ease in troubleshooting, do not connect the PC78 to other parts of the system until communication is established with the host.

You can test that communications are working by running PC78BCOM.EXE from a command prompt. Otherwise, you can run Terminal or Executor from the OMS-EZ™ Suite to test communications to your PC78. Using one of these programs, send a "WY" to the controller. If

2-4 PC78 USER'S MANUAL

you get a response that identifies your controller model and its firmware version, then you have a communication link. If you need assistance, contact Pro-Dex, Inc. - Oregon Micro Systems.

2.6. CONNECTING THE PC78 FOR RS-232 COMMUNICATION

The first requirement for communication through the RS-232 interface is to ensure that the PC78 is securely and safely mounted where damage is unlikely. This includes the exposure to possible static discharge, moisture, debris, etc. Special mounting efforts may be required to protect the extended pins on the bottom of the PC78.

<u>CAUTION:</u>

The PC78 is a static sensitive device and standard ESD (Electro Static Discharge) techniques are required when handling and installing the PC78.

The RS-232 communication port is a DTE com device so that straight connection can be used for communication; RxD to TxD, TxD to RxD. Two handshake signals are supported, CTS and DTR, that can also be connected straight through, baud rates of 300, 600, 1200, 2400, 4800, 9600, 19200 and 38400 are supported. The 9600-baud rate is the factory default. Any terminal device that supports these signals and baud rates, be it a computer, dumb-terminal, etc., can be used to communicate to the PC78.

TABLE 2-1 SERIAL COMMUNICATION PARAMETERS

Default Baud Rate	9600
Data Length	8
Stop Bits	1
Parity Bit	None

Select an unused COM-Port, COM1, COM2, etc., on the computer or terminal to be used. Connect a straight-through 9-pin RS-232 cable between the host terminal and the PC78. To prevent motors, switches or other devices from unexpected activation do not connect the cable to output connector J5 at this time.

Connect a +5VDC, 1 Amp power source to the power connector at J3. (See <u>Table 2-2</u> for the connector pin-out)

NOTE: +/- 12VDC is required only for servo operation.

TABLE 2-2 CONNECTOR J3

	PIN	PIN	
+5V DC	5	6	Digital Ground
-12V DC	3	4	No Connect
+12V DC	1	2	Analog Ground

Reference the support software disk to find a serial communications utility that will work with the PC78.

FIGURE 2-6 CONNECTOR CONFIGURATION

2.7. CONNECT AND CHECKOUT THE SERVO SYSTEM

Servo systems tend not to respond gracefully to connection errors. You can reduce the chance of making connection errors by following a step-by-step procedure:

<u>Caution</u>

The servo motor may jump or spin at a very high velocity during connection and configuration. The motor should be restrained via fastening to the physical system or by some other means before beginning this procedure. Keep hands and clothing clear of the motor and any mechanical assemblies while performing this procedure.

2-6 PC78 USER'S MANUAL

2.7.1.CONNECT AND CONFIGURE THE MOTOR\AMPLIFIER

- 1. Connect and configure your amplifier per the manufacturer's instructions (for "Torque" or "Open-Loop" mode).
- 2. With the motor and amplifier power turned off, connect the PC78 to the amplifier. Do not connect the encoder yet.
- 3. Balance your motor:
 - a. Using a voltage meter, verify that the command signal from the PC78 is within +/-500mV. If it is not, send the command "DZ0"; to the PC78 and recheck the voltage. If the voltage is still too high, contact Pro-Dex, Inc. Oregon Micro Systems' Technical Support department for guidance.
 - b. Turn on power to the amplifier and then to the motor.
 - c. Adjust the balance setting of your amplifier (if equipped) until the motor stops moving.
 - d. If the motor continues to revolve or your amplifier has no balance adjustment:
 - i. Send the command "DZ100;" to the PC78.
 - ii. If the motor spins faster, reduce the command parameter and resend the command, e.g. "DZ50;"
 - iii. If the motor spins slower but does not stop, increase the command parameter and resend the command, e.g. "DZ150;"
 - iv. Continue adjusting and resending the <u>DZ</u> command until the motor comes to rest. Write down the final <u>DZ</u> value for later reference as your "zero" setting.
- 4. Maximize your system's usage of the PC78's DAC:
 - a. Connect the servo encoder to the PC78.
 - b. Set the signal/command gain of your amplifier to its minimum setting.
 - c. Send the "DZ3277"; command to the PC78 and observe the velocity of the motor. The output of PC78 will be near 1VDC.
 - d. If the motor does not move at all, your amplifier does not work well at a low velocity. In this case, adjust the signal/command gain of the amplifier to approximately 20% of maximum or until the motor begins to move.
 - e. Using a frequency meter, measure the pulse rate of Phase A of the encoder. The frequency measured is ¼ of the actual pulse rate.
 - f. Adjust the signal/command gain of the amplifier until the pulse rate of Phase A (4 is approximately 10% of your desired peak operational velocity. If the pulse rate is already greater than 10% of peak, your amplifier is not designed for low velocity motion and you will likely have some difficulty tuning your motors.
 - g. Send the "DZ-3277;" command to the PC78 and recheck the velocity. You may need to readjust your amplifier. If so, do not reduce the signal/command gain only increase the setting as needed. Increasing the gain will not impair the forward peak velocity but reduction will.
 - h. Send the <u>DZ</u> command with the "zero" value noted at the end of step 3d (iv) to the PC78. Send the same value using the <u>KO</u> command, e.g. "<u>KO</u>-175;"
- 5. Verify the direction of your servo encoder:
 - a. Send the "LP0;DZ2000;" command to the PC78.

TUNE THE SYSTEM GETTING STARTED

- b. Send the "RE" command to the PC78 and observe the response.
- c. If the response is positive, no further action need be taken; go to step 6.
- d. If the response is negative, your encoder must be reversed.
 - i. If your encoder produces a differential signal, swap Phase B with Phase B-not and repeat from step (a.) above.
 - ii. If your encoder produces a single-ended (or TTL) signal, swap Phase A with Phase B and repeat from step (a.) above.
- e. If the RE response is still negative, contact OMS Technical Support for assistance.
- 6. Repeat from step 1 for the other servo axes.
- 7. Remember to set <u>DZ</u> and <u>KO</u> for each axis at every power-up unless you store the values in flash (see Section 5 COMMAND STRUCTURE)

NOTE: Most encoder problems are caused by lack of power or incorrect connections. If the encoder position changes by only 1 count, this is an indication that one of the phases is not connected.

Caution

Do not proceed until you perform all the steps in this procedure, ensure that the outputs of the PC78 are as described, and ensure that the encoder is operating correctly

2.8. TUNE THE SYSTEM

2.8.1.INTRODUCTION

Tuning a servo system is the process of balancing the conflicting requirements to achieve optimum performance of a real world system.

The first of these requirements is that of accuracy. In a closed loop system, an error signal is derived, then amplified, then supplied to the motor to correct any error. Clearly, if a system is to compensate for infinitely small errors, the gain of the amplifier needs to be infinite. Real world amplifiers do not possess infinite gain; therefore, there is some minimal error which cannot be corrected. In order to have the greatest possible accuracy, the gain needs to be as high as possible. Unfortunately, other real world considerations limit the maximum gain of the system.

The second of the requirements is that of stability. The system must not be unstable, e.g. oscillate. The degree to which a system is stable affects its performance. The effects can be seen when looking at the system's response to a step change at the input. The step response falls into one of three categories: under damped, critically damped, over damped. Over damped systems are slow to reach their final value. Critically damped systems reach final value quickly, without overshoot. Under damped systems reach final value quickly, but have various degrees of "ringing" that decay to zero.

The third requirement is that of bandwidth. The system should respond to the highest input frequency possible. The motor/load combination is the predominant feature of the open loop bandwidth. In the closed loop situation, the amplifier attempts to compensate for the limited

2-8 PC78 USER'S MANUAL

GETTING STARTED TUNE THE SYSTEM

response characteristics of the motor load. Increasing gain extends the closed loop bandwidth at the expense of stability.

2.8.2. MANUAL TUNING

In most all motion control applications the optimum tuning of the servo system is achieved through a manual tuning process. Auto-tuning algorithms typically can only get the system parameters close and require manual steps to fine tune the parameters. An empirical trial and error approach will be discussed first.

NOTE: You may want to use the OMS software to help during this process. It is capable of capturing the actual data and plotting it in reference to an ideal motion profile.

There are some system parameters that need to be defined to before attempting to tune a motor. The encoder resolution, counts per revolution, is one element to be determined. Another is the systems maximum velocity. Note that a motor should never exceed 90% of the motor's top rpm. If the system requirement is for a velocity higher than 90% of the motors top rpm, then another motor with higher rpm capability is to be used.

The system's maximum acceleration is determined a couple of different ways. The best method is to determine the system time constant, which includes "hitting" or "bumping" the motor under system load and measure the time from 0 rpm to maximum rpm and divide this value by 5. The maximum acceleration is either 2.5 times this value, or is based on the system requirements for handling the load as defined in the operating specifications of the system. This value is always lower than the calculated value and if this acceleration value is not high enough then a different motor/amplifier with more power or band-width should be utilized.

The PC78 can control either current mode or voltage mode amplifiers. The servo update rate of the PC78 is $488\mu s$, for four axes. High following errors can be compensated for using the feedforward coefficients explained later in this section. There are some general formulas that have been developed to determine acceptable following error for both current and velocity mode systems:

Current mode following error for KP = $(3^{\circ}/360^{\circ}) \times (counts per revolution)$

Voltage mode following error for $\frac{\text{KP}}{\text{CP}} = (90^{\circ}/360^{\circ}) \times (\text{counts per revolution})$

It is obvious that the voltage mode allows for much greater following errors than the current mode. This value is the following error when the motor is at peak velocity and will be used when determining the proportional gain (KP).

The following error for the integral term (\underline{KI}) or long-term gain value will follow the following guidelines:

Current Mode following error for KI = 0 counts

Voltage Mode following error for KI = 80° of 360° (expressed in motor counts)

While still in open-loop mode, hold off ($\underline{\mathsf{HF}}$ use the $\underline{\mathsf{DZ}}$ command to zero the motor. This variable is used to provide a constant output that will compensate for any torque offset from the load. So, when the system should be stationary, the necessary voltage will be sent to the amplifier to cause the motor to maintain position. With the correct $\underline{\mathsf{DZ}}$ value, the motor should successfully maintain a zero position.

TUNE THE SYSTEM GETTING STARTED

 $\underline{\mathsf{KO}}$ is the offset coefficient used while in closed-loop mode, hold on ($\underline{\mathsf{HN}}$. $\underline{\mathsf{KO}}$ is essentially the same as $\underline{\mathsf{DZ}}$, but used for closed-loop operation. Once you have determined the correct value for $\underline{\mathsf{DZ}}$, this same value should be used for the $\underline{\mathsf{KO}}$ variable before beginning to tune the PID filter

The values for DZ and KO range from –32767 to 32767.

Set the known values for velocity, acceleration and the move distance for a trapezoidal profile with at least a 20% flat spot at peak velocity. Formula:

Profile distance = ((peak velocity)^2/(2×acceleration))×2.4

Example: $((50,000)^2/(2\times500,000))\times2.4 = 6,000$

Execute the move by sending the move commands to the PC78.

Example: MR6000; GO;

Adjust the <u>KP</u> term while repeating step 2 until the following error at the flat spot of the profile is acceptable. If the motor becomes unstable prior to obtaining the optimum <u>KP</u> term than increase the <u>KD</u> term until the motor stabilizes.

```
Example:
              LP0;
              KP3;
              HN;
              MR6000;
              GO:
              LP0;
              KP10;
              HN:
              MR6000;
              GO:
              <u>LP</u>0;
              KP25;
              HN,
              MR6000;
              GO;
              LP0;
              KD100;
              HN:
              LP0:
              KP35;
              HN;
              MR6000;
              GO;
              LP0;
              KD125;
              HN;
```

The values in the above example are totally arbitrary and may vary drastically with different systems. The $\underline{\mathsf{LP}}0$; command is used to set the position error to 0.

The values for KP range from 0 to 32767.

Once the $\underline{\mathsf{KP}}$ term has been obtained, and then continues executing the motion while rising the $\underline{\mathsf{KI}}$ term until the long-term following error is acceptable. This error can be measured at the two

2-10 PC78 USER'S MANUAL

GETTING STARTED TUNE THE SYSTEM

knees of the motion profile. By increasing the <u>KI</u> term, the response time of your system will increase. The motion profile should have a steeper slope as <u>KI</u> increases.

However, as <u>KI</u> increases the system can also become unstable. If the instability becomes unacceptable increase the <u>KD</u> parameter. This will increase the dampening on the system's motion profile (therefore reducing oscillation, or "ringing"). Continue adjusting the <u>KI</u> and <u>KD</u> terms until the proper response time is obtained.

The values for KI range from 0 to 32767.

FIGURE 2-7

If you are getting too much "ringing" in the motion profile, then increase $\underline{\mathsf{KD}}$ to help dampen the system's response. If, instead, the system is over-damped and is reaching the final velocity too slowly, then reduce the $\underline{\mathsf{KD}}$ parameter. Optimally, the system's motion profile should show the motor reaching the desired velocity as quickly as possible without overshoot and oscillation ("ringing").

The values for KD range from 0 to 32767.

FIGURE 2-8

TUNE THE SYSTEM GETTING STARTED

FIGURE 2-9

KP, KI and KD are the primary parameters of concern when tuning a servo system. Once the optimum values for these variables have been determined, then you can adjust some of the secondary parameters that will help fine tune your system's performance. These other variables are described in the subsequent steps.

The <u>KV</u> variable is used when tuning velocity controlled servos (voltage mode servo amplifiers). This is the velocity feedforward coefficient. <u>KV</u> determines how closely the system follows the desired constant velocity portion of the motion profile. By increasing this term, the following error of the system's response can be minimized. However, too large of a value may result in unstable behavior after command velocity changes.

The values for KV range from 0 to 32767.

FIGURE 2-10

The <u>KA</u> variable is used when tuning torque controlled servos (current mode servo amplifiers). This is the acceleration feedforward coefficient. Systems with high inertial loads may require additional torque during acceleration or deceleration to achieve optimum performance. <u>KA</u> determines how closely the system follows the desired acceleration and deceleration portions of the motion profile. Increasing this term reduces the following error occurring during acceleration and deceleration of the system. Although, if <u>KA</u> is too large, instability may occur.

The values for KA range from 0 to 32767.

2-12 PC78 USER'S MANUAL

GETTING STARTED TUNE THE SYSTEM

FIGURE 2-11

The block diagram below describes the feedback loop that is taking place in the servo system:

FIGURE 2-12 FEEDBACK LOOP

You may want to save the values for KP, KI, KD, etc., for future reference. These values can be saved in the board's Flash Memory, so they can be accessed easily on reset or power-up. The command AP will store your current parameter assignments, such as KP, KI, KD, etc., into flash memory. These saved parameters will then be used as the power up default set of values. Refer to page 5-33 for more detailed information regarding how to use the commands to save and load parameter sets from flash memory.

Once the $\underline{\mathsf{KP}}$ term has been obtained, continue executing the motion while raising the $\underline{\mathsf{KI}}$ term until the long-term following error is acceptable. This error is to be measured at the two knees of the profile. If the motor becomes unstable before obtaining the optimum following error than increase the $\underline{\mathsf{KD}}$ term until the motor becomes stable.

To verify that your motor is tuned properly after you have completed the first 11 steps perform the following test to test the holding torque: Send <u>LP</u>0;<u>HN</u> commands and check the shaft of the motor to make sure it is stiff. If there is play in the motor shaft when you turn it then you may have to re-adjust your PID filter.

Once you are satisfied with the static holding torque you could check for position error. Send the command "AC100000;VL5000;MR64000;GO;". With an 8000 line encoder this move would be equivalent to 8 revolutions of the motor. After the move is complete check the position error by sending the RE and RP commands for the specific axis you are moving. Compare the difference in the two responses. If they are the same then you are on the right track, if the error was greater than 32768 than the controller will disable the PID so that you don't have a runaway motor and major changes to the PID parameters may be required. For minor differences in the encoder and the position reading you can fine-tune your PID filter according from the earlier steps.

2.9. SETTING THE USER DEFAULT CONFIGURATION

There are several parameters that can be defined by the user as default. These parameter values supersede the factory default values and are stored in Flash Memory for power-up configuration. Most of these parameters consist of axis specific values, i.e. velocity, acceleration;, limit switch logic sense, etc. The configuration of the User I/O must be configured once the communication interface has been established.

2.9.1.SETTING THE USER I/O DEFAULTS

The factory default of these signals sets I/O bits 0 through 3 as inputs and 4 through 7 as outputs. If these signals are to be used in a configuration other than the factory defaults then they must be reconfigured before any hardware is connected. If an input device, such as a position sensor or limit switch, is attached to a User I/O signal configured as an output then the logic gate on the PC78 may be destroyed and additional damage to the PC78 could occur. The "IO" command is used to change the User I/O from input to output and visa-versa. User I/O bits are configured in blocks of four. The syntax for the IO command uses a 0 to set the corresponding four I/O bits to inputs and a 1 to set them to outputs.

Example: $\underline{10}0,1;$

This will set I/O bits 0-3 as inputs and 4-7 as outputs (factory default).

Example: $\underline{10}1,1;$

This will set all bits (0-7) to outputs.

Refer to page 5-102 for more on the **O** command.

The "Report Bits command is used to check the configuration of the I/O bits. This command should be executed to ensure that the configuration of the I/O bits is as required by the system. This should be performed PRIOR to connecting hardware to the User I/O signals of the PC78.

The eight User I/O bits all have a 2.2K Ohm pull-up resistor connected to them. By default, the active state of the inputs is a low true. When the I/O bits are configured as inputs it is only necessary to have a switch closure to ground to activate the input. The BX command is used to check the status of the input bits. The use of a 100-Ohm pull-down resistor can be used to change the state of the inputs for testing. Refer to page 5-42 for more on the BX command.

The "BH" Bit High and "BL" Bit Low commands are used to toggle the logic state of the User I/O bits. Before connecting the User I/O signals to exterior hardware, you should be certain that the bits are configured correctly. An LED connected through a 100 Ohm resistor to +5V can be used to test the I/O bits when toggling them. Refer to page 5-37 for more on the BH and page 5-39 for more on the BL commands.

2-14 PC78 USER'S MANUAL

2.9.2.OTHER USER DEFINABLE DEFAULT PARAMETERS

The PC78 comes from the factory with default values for all parameters. For instance, the default value for the velocity of all axes is 100,000 counts per second. (A count is equivalent to a step pulse or one count of an encoder.) In a typical application, when the system is powered up, the main host computer would initialize all of the peripherals, such as the PC78, sending to each of the axes the peak velocity. When the User Definable Default Parameter value is defined for the velocity then the initialization of the system can skip initializing the velocities of the defined axes. This feature can greatly simplify the software and initialization process.

Once the values for all of the associated parameters are defined, i.e. velocity, acceleration, PID values, etc. then the "AP" Archive Parameters command is executed to place the values into Flash Memory. From this point forward these defined values will be used after reset or power-up. The individual parameters can be over-written at anytime by using the associated command, i.e. VL, AC, etc. To restore the factory defaults the command "RF" Restore Factory Defaults is executed. To restore the User Defined Default Parameters the command "RD" Restore Defaults is executed. Refer to Section 5 COMMAND STRUCTURE for more information on these commands.

The following is a list of parameters that can be defined as part of the User Definable Power-Up Default Parameters.

	Factory Default Settings
Baud Rate for serial communication (?SB)	9000
I/O bit configuration (BX)	00
Overtravel limit (soft limit or hard limit) (?SL)	sf
Overtravel limit (enabled or disabled)	enabled (0)
Overtravel limit polarity (active high or active low) (?LS)	II
Software based overtravel for each axis (?TF)	tf
Direction bit polarity (<u>?DB</u>)	dbn
Acceleration value for each axis (?AC)	ac2000000
Trajectory profile for each axis (linear, parabolic, custom) (?RT)	la
Velocity Peak (<u>?VL</u>)	vl2000000
Velocity Base(?VB)	vb0
User Unit values for each axis (?UU)	uf
Auxiliary output settle time for each axis	0
Automatic auxiliary control axis by axis	disabled
Encoder Ratio for each axis (?ER)	1:0
Encoder Slip/stall tolerance for each axis (?ES)	es1
Position Maintenance Dead-Band, Hold Gain and Hold Velocity.	hd0
(<u>?HD</u>)	
Servo axis unipolar/bipolar output (?SO)	bi
Servo PID values: KP, KD, KI, KO, KV, KA, KF, KB, KU	10, 20, .04, 0, 0, 0, 0,
	10, 200
Servo zero value: (<u>?DZ</u>)	dz0

NOTE: Use the <u>AP</u> command sparingly since it writes to Flash Memory. There is a finite number of times the Flash can be re-written (i.e. less than 10,000 times, typical.)

2.10. POWER SUPPLY REQUIREMENTS

The PC78 is designed to operate from the power supplied by to the PC/104 bus which must be capable of supplying +5V at 1 amp (typical) to the PC78. Servo models of the PC78 require +/-12V at 0.1 amps (typical) and these voltages must be present for proper servo operation.

CAUTION

Under no circumstances should the PC78 be installed in or removed from the PC/104 bus with the power on.

FIGURE 2-13 PC78 DIMENSIONAL LAYOUT

2-16 PC78 USER'S MANUAL

^{* =} NOTE: The PC78 has a notched connector for J5 to better accommodate the SCSI3 connector.

3. COMMUNICATION INTERFACE

3.1. INTRODUCTION

The PC78 is 100% compatible with PC/104 ISA (IEEE P996.1 specification) computers and can also communicate through a RS-232 port. The PC78 can be considered a motion coprocessor in the PC/104 computer where it can execute the motion process independent to the PC/104 CPU or continue to be interactive. The PC/104 interface of the PC78 has four consecutive 8 bit I/O ports available for control of interrupts, status of interrupt requests, data transfer, as well as done flags. The PC78 can generate interrupts for several different conditions or can be polled.

The RS-232 port on the PC78 provides the ability for the PC78 to be a complete stand-alone controller without interaction from the host computer or it can be continually interactive through the RS-232 port when supplied with appropriate power source. Baud rates of 300 to 38.4K are supported by the PC78.

The J5 connector has been moved back into the board to better accommodate the connector and latching mechanism, compared to previous PC68 configurations.

3.2. PC/104 INTERFACE

The PC/104 interface to the controller consists of four consecutive I/O registers. Factory default address is 300 – 303H. The base address is selectable with switch S2 located on the top of the controller board (See also FIG. 2-13).

Note: Because the PC78 is a double-sided PCB, the top of the controller board is considered the side with the female half of the PC/104 connector and the I/O connector (J5). Where the bottom of the PCB is considered the side where the pins of the PC/104 connector are exposed.

The PC78 registers are all 8-bit I/O registers and are addressed using decode logic for addresses A0 - A9 of the PC/104 bus. (See Table 3-1 for I/O Register Description)The four registers, in order of the address sequence, are the Data register, Done Flag registers, Control register and the Status register. The PC78 supports interrupt levels 2 - 7 and can be set to any one of these levels with switch S1 located on the top of the controller board. If interrupts are not desired the PC78 can operate in a polled mode without generating any interrupts; however, it is preferred to use interrupt mode when communicating with the PC78.

FIGURE 3-1 DATA COMMUNICATION FLOW CHART

3.3. PC/104 COMMUNICATION THEORY

The process for communicating to the PC78 through the PC/104 bus at its simplest form consists of the data register and the status register of the PC78.

The host CPU first reads the status register. The information provided in those 8 bits informs the host whether the PC78 is initialized and ready to receive a character and if there are any characters in the data register to be read by the host. The other information provided in the status registers is not a function of the communication at this point. It is required that the INIT bit of the status register is set low and that the TBE_S bit of the status register is set high before the host can write a character to the data register. If those two bits of the status register are acceptable then the host CPU writes a character to the data register. The TBE_S bit will go low until the PC78 reads the character from the data register. The host is either waiting for an interrupt generated by a high TBE_S or polling the status register so that the host may send another character. When the host detects an active TBE_S then it writes another character to the data register. The TBE_S bit goes low until the PC78 reads the character from the data register.

If the two characters written to the PC78 have requested a response from the PC78 then the IBF_S bit will go high. This can generate an interrupt to the host or the host can poll the status register to detect this condition. At this point the host would read the data register. This will cause the IBF_S bit to go low and then return high very quickly; as long as there was more than one character to be read from the data register. The host would continue checking the status register between each read of the data register until all characters that the PC78 has sent to the data register are read.

Some rules of thumb:

Every time the host reads the status register it must check the INIT bit for a low before continuing to read or write anything to the controller.

Every time the host reads the status register and the IBF_S bit is high the host should read the data register until the IBF_S bit goes low.

The host should never write to the data register when the TBE S bit is low.

While developing your system, it is a good idea to monitor all bits of the Status Register so you have a clear picture of what is happening on the controller.

If the controller has been reset (i.e. via the RS command), you should allow 3 SECONDS before reading the INIT bit for valid data.

3.4. PC/104 ADDRESS SELECTION

The PC78 is operated as an I/O mapped device and occupies a block of 4 continuous I/O addresses. The factory default addresses are from base address 300 through 303 hex.

NOTE: A closed switch sets the associated address bit to low where an open switch sets the associated address bit high.

ADDRESS OFFSET	FACTORY DEFAULT	DESCRIPTION
0	300 hex	Data Register
1	301 hex	Done Flag Register
2	302 hex	Control Register
3	303 hex	Status Register

TABLE 3-1 I/O REGISTER DESCRIPTION

3.5. USING INTERRUPTS

Full interrupt capability is provided by the PC78 in accordance with the PC/104 specification, but not required. Interrupts provided are: input buffer full (IBF), transmit buffer empty (TBE), overtravel fault (limit) and operation complete (done). Interrupt levels 2 through 7 are selectable with switch S1. Polled operation is also supported with separate status bits for each of the above interrupt sources. See Section 2.4 SET THE INTERRUPT REQUEST (IRQ).

3.6. DATA REGISTER

The data register is the data communication port between the PC78 and the PC/104 host CPU. All data is passed between the host processor and the PC78 through this port. The port is full duplex in both directions. This allows for faster processing of the data between the host and the PC78.

3.7. DONE FLAG REGISTER

The done flag register is a Host CPU read only register of the PC78. Each bit of this register identifies the done status of each of the axes of the PC78. It is an 8-bit register where the first 4-bits are used for the four axes of the PC78 and the other 4-bits are supported when an expansion board is used to expand the total number of axes to 8. When requested by command, the PC78 will set the appropriate bits of the done flag register to indicate when a process is complete on the associated axes. The host can then read the register at any time to determine the done status of any axes. The register is cleared at the completion of the host read or by the execution of the RA or RI commands. The detail definition of the register is shown in Table 3-2.

DONE STATUS REGISTER DESCRIPTION

BIT DESCRIPTION

0 Done Status of X Axis

1 Done Status of Y Axis

2 Done Status of Z Axis

3 Done Status of T Axis

TABLE 3-2 DONE FLAG REGISTER DESCRIPTION

3.8. INTERRUPT CONTROL REGISTER

This is a host read/write register that provides different interrupt sources from the PC78 to be individually enabled or disabled. This may be performed at any time by a write to the associated bit of the register. The register may be read back at anytime to verify or determine the state of the interrupts. Reference Table 3-3 for a detailed definition of the control register.

BIT	NAME	CONTROL DESCRIPTION		
7	IRQ_E	Interrupt enable bit. This bit must be on to enable any interrupts.		
6	TBE_E	Transmit buffer empty interrupt enable bit. This bit should be checked before writing to the data register to avoid sending a character when the interrupt has been disabled.		
5	IBF_E	Input buffer full interrupt enable bit.		
4	DON_E	Done or error status interrupt enable bit.		
3	Unused			
2	Unused			
1	Unused			
0	Unused			

TABLE 3-3 CONTROL REGISTER DESCRIPTION

3.9. STATUS REGISTER

This register is a host read only register that provides status information to the host CPU. This status is independent of the enable status of the interrupt, allowing the board to operate in a polled mode if desired. In an interrupt mode the host would read this register upon receiving an interrupt. The information provided in this register can define the source of the interrupt. The functionality of this and the other registers is consistent with other OMS products. Future expansions to these registers may be performed to enhance the controller's capabilities. See Table 3-4 for details on the status register.

BIT NAME STATUS DESCRIPTION 7 IRQ S Interrupt request status. Transmit buffer empty status. This high true bit indicates 6 TBE S a character may be written to the transmit buffer. Input buffer full status. This high true bit indicates a char-5 IBF_S acter is available in the input buffer to be read by the host. Done or error status. This high true bit indicates the command is complete; i.e. an ID command has been detected. If bits 0 through 3 are all false it indicates a DON_S command completion; i.e. an ID command has been executed. The error bits indicate one or more errors have been detected. Overtravel. An overtravel switch was true, indicating 3 **OVRT** attempted travel out of bounds. Encoder error. This bit flags a slip/stall error on models 2 with the encoder option if the interrupt on slip/stall (IS) ENC_S command has been issued. Init flag. This bit indicates the PC78 is being reset or the 68332 microprocessor has not completed initialization. INIT Host initialization routines should check this bit for a zero before proceeding. Command error. An unrecognizable command has been 0 detected or LS and LE commands are not in matched CMD S pairs.

TABLE 3-4 STATUS REGISTER DESCRIPTION

In order to resolve the source of a done or error interrupt, the DON_S bit (bit 4) of the status register should be read first. This bit in the status register is automatically reset upon the termination of the read cycle. If the DON_S flag is true the error bits should be checked to determine if the interrupt was caused by an error condition. If no error condition is present, the done flag register should be read to determine which axis or axes are done. The error bits of the status register and the done flag register are automatically cleared when these registers are read.

The transmit buffer empty (TBE_S) bit of the status register is reset by a host write to the data register and the input buffer full (IBF_S) bit of the status register is reset by a host read of the status register. If the PC78 is responding to, for instance, an axis query and there are several

characters to be read from the data register by the host the IBF_S bit of the status register may never appear to reset, though it does very fast. Also, the PC78 can read characters from the data register very fast which may make the TBE_S bit of the status register appear to never reset, though it does very fast.

The error bits, command error (CMD_S), encoder slip/stall (ENC_S) and overtravel (OVRT) of the status register are automatically cleared when the Status Register is read. This will reset these bits in the status register without altering the state of the done flag register.

The INIT bit only goes high when the board is initializing and cannot communicate. It will go low and remain low when initialization is complete.

3.10. RS-232 INTERFACE

The PC78 is compatible with the EIA standard RS-232 specifications for serial communication at baud rates of 300, 600, 1200, 2400, 4800, 9600, 19200 and 38400. The factory default baud rate is 9600. The PC78 is configured as a data terminal device so that the signals of the host terminal can connect straight through, there is no need for a null-modem, and a standard RS-232 cable can be used. The RS-232 interface to the PC78 consists of transmit data (TxD), receive data (RxD) and handshake signals clear to send (CTS) and data terminal ready (DTR).

FIGURE 3-2 RS-232 CONNECTOR PINOUT

Due to the lack of registers when operated in RS-232 mode the PC78 returns status information to the host via special characters inserted into the response stream. If a "Done" or "Command Error" condition occurs, the PC78 will send one or more of these characters to the host. These characters are:

- # Command Error
- \$ Motor Slip/stall (with encoders only)
- @ Overtravel Limit
- ! Done

These characters are not axis-specific. It is necessary for the host to query the PC78 for that information if it is required.

This page is intentionally left blank

4. CONTROL SIGNAL INTERFACE

4.1. INTRODUCTION

The PC78 family of motion controllers is a four axes follow-on product for the PC68 family, and shares the same footprint, command syntax, and capability of the PC68. The PC78 family contains a two or four axes stepper with encoder feedback motion controller or a two or four axis servo motion controller. A single 68- pin shielded SCSI-3 connector incorporates all the control signals of the PC78. The mating connector is an AMP, Inc. part number 749621-7 with a 749195-2 hood and strain relief. As a convenience in system integration, connections to the PC78 for +5VDC power, +12 VDC, -12 VDC, digital ground and analog ground are provided at the output connector (J5).

Two red LED's are used to assist in fault diagnosis, and if either is "on" steady, a fault exists in the PC78.

4.2. LIMIT AND HOME INPUTS

To facilitate system implementation, limit and home inputs are provided for each axis. Limits may be activated by mechanical switches using contact closures or other suitable active switches, such as a Hall Effect switch or opto-isolator that connects to ground.

If the motor travels beyond its allowable limits and trips the switch, the limit switch closure removes the excitation from the affected axis. You can select the limit switch active signal state with the $\underline{\mathsf{LH}}$ and $\underline{\mathsf{LL}}$ command on an axis by axis basis. The behavior of the limit functionality can be controlled with the System Control Commands.

The home switch provides a means to synchronize the motor controller with the load at some home, or reference position. The home switch, when used with the software commands $\underline{\mathsf{HM}}$ or $\underline{\mathsf{HR}}$, causes the motor to decelerate to a stop when the switch closes. On finding the home position, the position counters are initialized to the parameter supplied with the command. You can change the sense of the home switches to TRUE when open by use of the $\underline{\mathsf{HH}}$ command (described on page 5-88).

4.3. CONTROL OUTPUT

The stepper version of the PC78 is configured at the factory for control of stepper axes with encoder motors. The servo output may be either unipolar analog (0 to +10V) or bipolar analog ($\pm 10V$). (See the <u>UN</u> and <u>BI</u> commands). Step pulse output is TTL open-collector which will wire directly into most driver inputs but may require a 2K Ohm pull-up resistor to +5 VDC to operate some other drives. See wiring diagrams that follow.

FIGURE 4-1 CONNECTION TO STEP DRIVES WITH INTERNAL PULL-UP RESISTORS AND OPTO-ISOLATION

FIGURE 4-2 CONNECTION TO STEP DRIVES WITHOUT PULL-UP RESISTORS

FIGURE 4-3 CONNECTION TO STEP DRIVES WITH DIFFERENTIAL INPUTS

TABLE 4-1 OUTPUT CONNECTOR PIN LIST (J5) (AT CIRCUIT BOARD)

	SIGNAL CONNECTOR (J5)					
Pin#	Description	Pin#	Description			
1	Digital Ground	35	+5VDC			
2	I/O-1	36	I/O-0			
3	I/O-3	37	I/O-2			
4	I/O-5	38	I/O-4			
5	I/O-7	39	I/O-6			
6	Digital Ground	40	+5VDC			
7	X Index +	41	X Servo			
8	X Index -	42	X Step			
9	X Phase A +	43	X Auxiliary			
10	X Phase A -	44	X Direction			
11	X Phase B +	45	X Limit +			
12	X Phase B -	46	X Limit -			
13	Y Servo	47	X Home			
14	Y Index +	48	Y Step			
15	Y Index -	49	Y Auxiliary			
16	Y Phase A +	50	Y Direction			
17	Y Phase A -	51	Y Limit +			
18	Y Phase B +	52	Y Limit -			
19	Y Phase B -	53	Y Home			
20	Analog Ground	54	+5VDC			
21	Z Index +	55	Z Servo			
22	Z Index -	56	Z Step			
23	Z Phase A +	57	Z Auxiliary			
24	Z Phase A -	58	Z Direction			
25	Z Phase B +	59	Z Limit +			
26	Z Phase B -	60	Z Limit -			
27	T Servo	61	Z Home			
28	T Index +	62	T Step			
29	T Index -	63	T Auxiliary			
30	T Phase A +	64	T Direction			
31	T Phase A -	65	T Limit +			
32	T Phase B +	66	T Limit -			
33	T Phase B -	67	T Home			
34	Digital Ground	68	+5VDC			

4.4. IO68 ADAPTER MODULE

The optional IO68-M is an adapter module designed to provide easy connection for each signal of the PC78. It incorporates a three row terminal block and some on-board filters for the limit inputs. A cable (CBL68-10) is available with the mating connector on each end to fit the PC78 connector (J5). The +5VDC on the IO68-M is supplied by the PC78 and is protected by a resettable fuse on the PC78. A green LED lights up when 5VDC is present.

This supply voltage is intended to be utilized with accessories used in conjunction with the PC78 such as sensors, motor driver modules, etc., and is specified to supply a maximum current of 0.5 amps for these purposes.

If the fuse detects an over current situation (such as an external short circuit), the supply will shut down. It can be re-activated by powering down the PC78, ensuring the over current situation has been removed, and by powering the PC78 up again after 3 seconds.

As the fuse is a semiconductor device, it never has to be replaced and requires no maintenance.

4.4.1.EXPLANATION OF ADDITIONAL CIRCUITRY ON THE IO68-M

The IO68-M board is to be used in conjunction with a PC78. The IO68-M board contains low-pass filtering circuitry for the positive and negative limit signals. The default values for the RC constants are 100Ω and 1.0μ F. With these RC constants used the average cutoff frequency is 21.5 kHz, in a worse case scenario, where all other signals are left unterminated.

In addition to the above mentioned circuitry, there are also 2.2K pull-up resistors that have been added to the step output signals for each axis. These resistors have been added to the IO68-M to help reduce noise that may occur on the step output signals.

The resistors and capacitors are packaged as through hole devices. Should your particular application require different RC constants, these devices can be removed from the board and replaced with the appropriate components. When changing these components, use appropriate methods to desolder and solder the components to avoid causing damage to the board (i.e. lifting pads from the board).

There are two switches on the IO68-M (S43 and S45) that are used in regards to encoder signals. If your system uses differential encoders, then these switches should be in the OFF position (except where indicated). The switches are set to the OFF position as default from factory. If, however, your system employs single-ended encoders, then the negative encoder signals need to be fed a biasing voltage. Since a biasing voltage has been made available on the IO68-M, simply change the position of the switches to ON to tap into this voltage. Be sure to change the position of these switches only when power to the board is OFF (the green LED should be off).

TABLE 4-2

1068-M ENCODER BIAS SWITCH (S43)

Switch Number	Signal Description		
1	Y Phase B-		
2	Y Phase A-		
3	Y Index-		
4	X Phase B-		
5	X Phase A-		
6	X Index-		
7	(Leave ON)		
8	(Leave ON)		

IO68-M ENCODER BIAS SWITCH (S45)

Switch Number	Signal Description
1	T Phase B-
2	T Phase A-
3	T Index-
4	Z Phase B-
5	Z Phase A-
6	Z Index-
7	(Leave OFF)
8	(Leave OFF)

FIGURE 4-4 IO68-M DEFAULT SWITCH SETTING

If only one of the axes is using a single-ended encoder, while the others are using a differential encoder, you need only turn on the switch positions that relate to the axis with the single-ended encoder.

Besides biasing the negative encoder signals, these switches also configure the IO68-M. Placed in the position shown in Figure 4-4, the IO68-M is configured to work with the PC78. For the IO68-M, S43, switches 7 and 8 are to be ON, while S45, switches 7 and 8 are to be OFF.

All other signals on the IO68-M are straight through connections, with no additional circuitry added. Should you need filtering circuitry on any of these other signals, it would have to be added external to the IO68-M. See the Pro-Dex, Inc. (http://www.Pro-Dex.com) website if you need further instruction.

Description Row 1 Description Row 2 Description Row 3 X Direction X Step 24 47 X Auxiliary 2 X Phase A+ 25 X Phase B+ 48 X Index + 3 X Phase A-26 X Phase B-49 X Index -X Limit-X Home 4 X Limit + 27 50 5 5VDC X Servo Digital GND 28 51 6 Y Direction Y Auxiliary Y Step 29 52 7 Y Phase A+ 30 Y Phase B+ 53 Y Index + 8 Y Phase A-31 Y Phase B-54 Y Index -Y Limit + 9 32 Y Limit-55 Y Home 10 5VDC 33 Y Servo 56 Digital GND 11 I/O-0 34 I/O-3 57 I/O-5 12 I/O-1 No Connect I/O-6 35 58 13 I/O-2 I/O-4 I/O-7 36 59 5VDC 14 37 Z Servo 60 Analog GND 15 Z Step 38 Z Direction 61 Z Auxiliary Z Phase B+ Z Index + 16 Z Phase A+ 39 62 17 Z Phase A-Z Phase B-Z Index -40 63 18 Z Limit + 41 Z Limit-Z Home 64 19 5VDC 42 T Servo 65 T Auxiliary 20 T Step 43 T Direction 66 T Index + 21 T Phase A+ 44 T Phase B+ 67 T Index -22 T Phase B-T Phase A-45 68 T Home 23 T Limit + 46 T Limit-69 Digital GND

TABLE 4-3 IO68-M TERMINAL BLOCK PIN-OUT

4.5. ENCODER FEEDBACK

Incremental encoder feedback is provided for each axis. The PC78 encoder option accepts quadrature pulse inputs from high resolution encoders at rates up to 12 MHz (after quadrature detection). The encoder monitors actual position through the encoder pulse train. It then continuously calculates the position error on the servo axes and for servo axes the output based on that error through the PID filter. The stepper axes can monitor the error and correct the position after the move is finished. The encoder input can also be used as an independent feedback source. All modes are capable of slip/stall detection and encoder tracking with electronic gearing. These options are selectable by the user through software commands.

4.6. ENCODER SELECTION AND COMPATIBILTY

The PC78 is compatible with virtually any incremental encoder which provides quadrature outputs. Times four quadrature detection is used to increase resolution. This means that an encoder rated for 1024 counts (or lines) per revolution will result in 4096 counts. The inputs are compatible with encoders, which have single ended or differential TTL outputs. The PC78 inputs have built in hysteresis to minimize effects of noise pickup. The PC78 has differential line receivers to accommodate encoders with differential line driver outputs.

4.7. HOME PROCEDURES

When single ended encoders are used the unused negative inputs, i.e. Phase A-, Phase B-, etc. must be biased at or near +1.5V. The IO68 provides convenient switches for this. Single ended encoders with long leads are not recommended.

Two modes are provided to synchronize the physical hardware with the PC78 controller, i.e. put the controlled motor in the home position.

HS mode (factory default):

The home switch input is a TTL level input signal that can be used to physically home a mechanical stage. This signal can be either a logic HIGH or logic LOW true by using the HH and HL commands. The HM or HR commands are used after reducing the velocity to no more than 2048) pulses per second. This limit on velocity is necessary to avoid ambiguity of the home position if more than one pulse occurs per sample interval. When this functionality is used the axis position counter will be reset to a select value when the switch is activated. At this point the PC78 can either ramp the axis to a stop or stop the axis immediately. The control of the direction of travel, the logic active state, and the response to the active switch are controlled through commands.

HE mode:

PC78 home inputs can be used with encoders which provide one home pulse for the complete travel of the stage. The index input uses internal logic to establish the home position when used with the <u>HE</u> command mode. The default home position consists of the logical AND of the encoder index pulse, the home enable external input (LOW true only) and a single quadrant from the encoder logic. The home enable pulse must be true for less than one revolution of the encoder thus allowing only one home for the complete travel of the stage. The home logic expressed in Boolean terms is:

Home = PhaseA × PhaseB × Index × Home Switch

It is necessary that the above quadrant occur within the index pulse as provided by the encoder for this logic to function properly. It may be necessary with some encoders to shift the phase of this quadrant by inverting one or both of the phases. Inverting one phase or swapping Phase A for Phase B will also reverse the direction. The encoder counter (read by a RE command) must increase for positive moves or the system will oscillate due to positive feedback. This is the default for the HE mode and is compatible with the PC68 family.

NOTE: The PC78 has additional options for the $\underline{\text{HE}}$ mode. (See details in the $\underline{\text{HE}}$ command description.)

FIGURE 4-5 ENCODER HOMING STATE DETECTION (DEFAULT)

4-8 PC78 USER'S MANUAL

5. COMMAND STRUCTURE

5.1. INTRODUCTION

An extensive command structure is built into the PC78 family of intelligent motor controls. It includes over 200 commands, a parameter buffer for each axis, and a command loop counter which allows for multiple executions of almost any command string. Please visit the http://www.Pro-Dex.com website for the latest product releases.

The following commands in this section are included in the PC78 family of controllers. Most of the commands are two ASCII characters and may be in upper or lower case. Some of the commands expect a numerical operand to follow. These commands are identified with "#" after the command. The operand must be terminated by a space, carriage return, or semicolon to indicate the end of the number. No terminator is required on the other commands, but it is recommended to improve readability. Semi-colons are the preferred termination character because they are visible in your code. The operand must immediately follow the command with no space or separation character. The "#" indicates a signed integer input parameter or a signed fixed point number of the format ##.# when user units are enabled. With user units enabled distances, velocity and acceleration parameters may be input in inches, revolutions, etc.

Some commands that are usable in both single-axis and multi-axis modes do not take a parameter in single-axis mode. These commands require numeric parameters in multi-axis modes, and the parameters indicate whether of not to take action for each axis. If a parameter exists for an axis, then the command affects that axis and if the parameter does not exist for that axis, then the command has no affect on that axis. For example, the single-axis format of LN (Limits On) is simply "LN" without any parameters of any kind. The multi-axis format of LN is "LNb,b,b,b,b,b;" for 4-axis systems where 'b' represents the parameter for the corresponding axis. Like other multi-axis commands, a 'b' parameter may be omitted if that axis is to remain unchanged and the command may be prematurely terminated with a semicolon. Each 'b' position, if used, can be any numeric value. For example, to enable the Y and Z axes limit switches and leave the X and T axes unchanged, send the command "LN,1,100;". The 1 and 100 parameters could be any numeric value whatsoever, and the effect of the command would be the same. For example, the following commands are equivalent:

```
"<u>LN</u>,1,1;"

"<u>LN</u>,0,0;"

"LN,50,99;"
```

Synchronized moves may be made by entering the AA command. This command performs a context switch which allows entering the commands in the format MRx#,y#,z#,t#, Numbers are entered for each axis which is to be commanded to move. An axis may be skipped by entering a comma with no parameter. The command may be prematurely terminated with a ";", i.e. a move requiring only the X and Y axes would use the command MRx#,y#; followed by the GO command. Each axis programmed to move will start together upon executing the GO command. The PC78 can be switched back to the unsynchronized mode by entering the desired single axis command such as AX.

The AM command is provided for complex applications where the host manages multiple motion processes by a multitasking operating system. This mode shares the same

instructions as the AA mode, but allows starting a task while some other task involving one or many axes is active. For example, the X and Y axes could be doing linear interpolation while the Z axis is making an unrelated move simultaneously.

Constant velocity contouring provides another mode wherein the move parameters are predefined by entering AA then CD. The PC78 will then calculate the move profile in advance and move at constant velocity in the prescribed pattern. It can do linear interpolation on as many as 4 axes between the predefined points or it can do circular interpolation mixed with linear on two axes.

5.2. COMMAND QUEUES

The input characters are placed in a character buffer on input then removed and interpreted. The commands are then placed in separate command queues for each axis. As they are executed the space is reclaimed allowing the host to pass commands ahead of the moves actually being processed. Most of the commands are placed in the appropriate command queue for execution, while others are executed immediately allowing return of status information in a timely manner rather than when encountered in the command stream. This information is provided in a table for each command which shows the queue requirements, if any, and indicates immediate in those cases where the command is not queued. The queue requirements shown in the tables are typical. Depending on the circumstances in which the command is issued, the actual queue requirement may vary slightly. The single axis cases are indicated by the mode reference indicating the appropriate axis. The synchronized mode is indicated by the mode identifier \underline{AA} or \underline{AM} . The contouring case is indicated by $\underline{AA/CD}$ for multiple axes in contour definition mode. The RQ command may be used to determine the actual space available at any time. The gueues operate independently allowing each axis to perform separate processes concurrently. The synchronized modes (AA) insert special wait op-codes which allow the axes to be synchronized in this mode. When the commands are nested within loops, the queue space is not reclaimed until after the loop has been executed the programmed number of times. For loops larger than the queue space, the loop may never be completed since it cannot reclaim the queue space and cannot accept the loop terminator. The RQ command may be used to examine the remaining queue space. A Control-D may clear this condition if the input character queue is not also filled since it bypasses the command interrupter.

Some commands are valid only for stepper axes, others for stepper axes with encoder feedback, and still others for servo axes. Most are valid for all three types or some combination of types. A set of symbols to the right of each command identifies which motor types with which each command may be used. The symbols' meanings are as follows:

Stepper motor with or without an encoder

Stepper motor with an encoder

Servo motor

If a command is usable with one of these motor types, the symbol will appear in black. If the command is not usable with a motor type, that motor symbol will be displayed in gray:

This command is not usable with servo motors

Indicates an example.

5.3. COMMAND SUMMARY

The following commands are included in the PC78 family of motor controllers.

ALPHABETICAL COMMAND SUMMARY C = COMMAND O = OUERY				
	PAGE		C = COMMAND, Q = QUERY	
COMMAND	#	TYPE	COMMAND DESCRIPTION	
AA	5-25	С	Any following commands are for the AA mode	
<u>AC</u>	5-26	С	Set acceleration/deceleration register	
<u>?AC</u>	5-27	Q	Report AC command	
<u>?AD</u>	5-27	Q	Report default auxiliary bit state	
<u>ADH</u>	5-28	С	Set auxiliary default to high	
<u>ADL</u>	5-29	С	Set auxiliary default to low	
<u>AF</u>	5-30	С	Auxiliary off	
<u>AM</u>	5-31	С	Axes multitasking mode	
<u>AN</u>	5-32	С	Auxiliary on	
<u>AP</u>	5-33	С	Make the current parameter set the power up default values	
<u>?AQ</u>	5-34	Q	Query current axis	
<u>AT</u>	5-34	С	Any following commands are for the T axis	
AX	5-35	С	Any following commands are for the X axis (default on reset)	
AY	5-35	С	Any following commands are for the Y axis	
<u>AZ</u>	5-36	С	Any following commands are for the Z axis	
?BD	5-36	Q	Report the direction of a general purpose I/O	
<u>BH</u>	5-37	С	Set selected I/O bit high (off)	
<u>BI</u>	5-38	С	Bipolar, set the analog torque outputs to bipolar	
BL	5-39	С	Set selected I/O bit low (on)	
BS	5-40	С	Set all bits of the general purpose output port to the state specified by the hex argument	
<u>?BS</u>	5-41	Q	Report the state of the specified I/O bit	
<u>BW</u>	5-41	С	Wait for input to go low	
BX	5-42	Q	Report bit status in hex format	
CA	5-43	С	Clear done flag of currently addressed axis	
CB	5-43	С	Clear all macro links to input bits	
CD	5-44	С	Define a contour	
<u>CE</u>	5-46	С	End contour definition, ramp to a stop	
CG	5-47	С	Execute a constant velocity contour and prevent MT parsing	
CK	5-49	С	End contour definition, immediately stop step pulses	
CN	5-50	С	Cosine on, enable cosine velocity profiles	
CR	5-51	С	Circular interpolation, move in a circle	
CV	5-52	С	Contouring velocity, definition	
CW	5-52	С	Clear while flag, i.e. terminate WH/WG loop	
CX	5-53	С	Contour execute	
<u>?DA</u>	5-54	Q	Report a custom ramp	
<u>DAB</u>	5-55	С	Define custom ramp breakpoint	

ALPHABETICAL COMMAND SUMMARY C = COMMAND, Q = QUERY				
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION	
DAE	5-55	С	End custom ramp definition	
DAR	5-56	С	Begin custom ramp definition	
?DB	5-57	Q	Report direction bit logic	
<u>DBI</u>	5-58	С	Invert direction bit	
DBN	5-59	С	Normalize direction bit	
DC	5-60	С	Set the deceleration rate that will be used by the GU command	
<u>?DE</u>	5-61	Q	Report an acceleration ramp definition table entry	
<u>?DS</u>	5-62	Q	Report the size of a custom acceleration ramp table	
<u>DZ</u>	5-63	С	Offset coefficient, used in open-loop mode	
<u>?DZ</u>	5-64	Q	Report DAC open-loop offset	
<u>EA</u>	5-65	Q	Report encoder status axis	
<u>EF</u>	5-66	С	Echo off, (default at power up)	
<u>EH</u>	5-67	С	Encoder home definition	
?EH	5-68	Q	Report encoder home	
<u>EN</u>	5-69	С	Echo on, turn on echo to host	
ER	5-70	С	Set encoder count to motor count ratio	
?ER	5-71	Q	Report motor:encoder ratio	
<u>ES</u>	5-72	С	Encoder slip/stall tolerance	
?ES	5-73	Q	Report encoder slip/stall tolerance	
<u>ET</u>	5-74	С	Encoder tracking	
<u>FL</u>	5-75	С	Flush an axis command queue	
<u>FP</u>	5-76	Q	Force position, flush queue and attempt to stop	
<u>FX</u>	5-77	С	Enable axis gantry mode	
<u>GD</u>	5-78	С	Go and reset done flags	
<u>GN</u>	5-80	С	Go and notify when done	
<u>GO</u>	5-81	С	Go command, start execution of motion	
<u>GS</u>	5-82	С	Go and use the home switch to monitor for motor slip/stall	
<u>GU</u>	5-83	С	Go and use the <u>AC</u> values to accelerate and the <u>DC</u> values to decelerate	
<u>HD</u>	5-84	С	Hold deadband, specify tolerance for position hold	
<u>?HD</u>	5-84	Q	Report position maintenance deadband	
<u>HE</u>	5-85	С	Encoder home mode, set home on encoder logic	
<u>HF</u>	5-86	С	Hold off, disable position hold, slip/stall detection and tracking modes	
<u>HG</u>	5-87	С	Hold gain, specify position hold gain parameter	
?HG	5-87	Q	Report position maintenance gain	
<u>HH</u>	5-88	С	Home high, home switches are active high	
<u>HL</u>	5-89	С	Home low, home switches are active low	
<u>HM</u>	5-90	С	Home, find home and initialize the position counter	

	ALPHABETICAL COMMAND SUMMARY C = COMMAND, Q = QUERY					
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION			
<u>HN</u>	5-92	С	Hold on, enable position correction after move			
HR	5-93	С	Home reverse, find home in reverse direction and initialize position counter			
<u>HS</u>	5-95	С	Home switch, enable home switch mode			
HV	5-96	С	Hold velocity, specify maximum position hold correction velocity			
<u>?HV</u>	5-97	Q	Report position maintenance velocity			
<u>IC</u>	5-98	С	Interrupt clear, clear done interrupt status and error flags			
<u>ID</u>	5-99	С	Interrupt host when done and set done flag			
<u>II</u>	5-100	С	Interrupt independent			
IN	5-101	С	Interrupt when nearly done			
<u>IO</u>	5-102	С	Designates I/O bits as inputs or outputs			
<u>IP</u>	5-103	С	Interrupt when in position			
<u>IS</u>	5-104	С	Interrupt slip/stall, interrupts host on slip/stall detection			
<u>IX</u>	5-105	С	Interrupt when done. Sends Hex character via RS-232			
JF	5-106	С	Jog at fractional rates			
JG	5-107	С	Jog command, run motor at specified velocity			
KA	5-109	С	Acceleration feedforward coefficient, used in tuning servo systems			
<u>?KA</u>	5-109	Q	Report acceleration feedforward			
<u>KB</u>	5-110	С	PID upper bound limit coefficient			
<u>?KB</u>	5-110	Q	Report axis PID upper bound limit			
KD	5-111	С	Derivative gain coefficient, used for PID filter			
<u>?KD</u>	5-111	Q	Report PID derivative gain			
<u>KF</u>	5-112	С	Set servo axis PID friction coefficient			
?KF	5-112	Q	Report servo axis friction offset			
<u>KI</u>	5-113	С	Integral gain coefficient, used for PID filter			
<u>?KI</u>	5-113	Q	Report PID integral gain			
<u>KL</u>	5-114	С	Kill			
<u>KM</u>	5-115	С	Home and kill pulse generation			
<u>KO</u>	5-116	С	Offset coefficient, used in closed-loop mode			
<u>?KO</u>	5-116	Q	Report PID closed-loop offset			
<u>KP</u>	5-117	С	Proportional gain coefficient, used for PID filter			
<u>?KP</u>	5-117	Q	Report PID proportional gain			
<u>KR</u>	5-118	С	Home in reverse and kill pulse generation			
<u>KS</u>	5-119	С	Kill selected axes			
<u>KU</u>	5-120	С	PID integration sum upper limit			
<u>?KU</u>	5-120	Q	Report PID integration sum upper limit			
KV	5-121	С	Velocity feedforward coefficient, used in tuning servo systems			
<u>?KV</u>	5-121	Q	Report velocity feedforward			
LA	5-122	С	Linear ramp selection per axis			
<u>LE</u>	5-123	С	Loop end, terminate most recent LS command			
<u>LF</u>	5-124	С	Disable limit switches for selected axis			

ALPHABETICAL COMMAND SUMMARY C = COMMAND, Q = QUERY					
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION		
<u>LH</u>	5-125	С	Limit high, limit switch is active high		
<u>LL</u>	5-126	С	Limit low, limit switch is active low		
<u>LN</u>	5-127	С	Enable limit switches for selected axis		
LO	5-128	С	Load monitor position		
<u>LP</u>	5-129	С	Load position		
<u>LS</u>	5-130	С	Loop start		
<u>?LS</u>	5-132	Q	Report limit active state		
MA	5-133	С	Move absolute, move to absolute position		
MD	5-135	С	Define a temporary macro		
ML	5-136	С	Move linear		
MM	5-137	С	Move minus		
MP	5-137	С	Move plus		
MR	5-138	С	Move relative		
MT	5-140	С	Move to		
MV	5-141	С	Move velocity		
MX	5-143	C	Execute a macro command string		
NV	5-143	С	Set a new contour velocity from with in a contour		
PA	5-144	С	Power automatic		
?PA	5-145	Q	Report power automatic state		
<u>PE</u>	5-146	Q	Report encoder positions		
<u>PF</u>	5-146	С	Parabolic off		
<u>PM</u>	5-147	С	Print a macro command string		
<u>?PM</u>	5-147	Q	Report PID state		
<u>PN</u>	5-149	С	Parabolic on		
<u>PP</u>	5-150	Q	Report motor positions of all axes		
<u>PR</u>	5-151	С	Parabolic ramp selection per axis		
PS	5-152	Q	Reports macro link to specified PC78 input bit		
PT	5-153	С	Preserve a temporary macro by copying it to non-volatile memory		
QA	5-154	Q	Report status of switches and flags for addressed axis without affecting flags		
QI	5-154	Q	Report status of switches and flags on all axes without affecting flags		
<u>QL</u>	5-155	Q	Report the state of the limit sensor inputs		
RA	5-156	Q	Report status of switches and flags and reset flags		
<u>RB</u>	5-157	Q	Report programmed direction of I/O bits in hex format		
<u>RC</u>	5-157	Q	Report current acceleration or deceleration of the current axis		
RD	5-158	С	Restore the current parameter set to the power up default values		
<u>RE</u>	5-158	Q	Request encoder position, return current encoder position		
<u>RF</u>	5-159	С	Restore factory defaults		
RI	5-159	Q	Report status of switches and flags for all axes and reset flags		
RL	5-160	Q	Report slip/stall status of each axis		

ALPHABETICAL COMMAND SUMMARY C = COMMAND, Q = QUERY					
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION		
<u>RM</u>	5-161	Q	Report remainder of position divided by parameter in position counter		
<u>RP</u>	5-162	Q	Request position, returns current position		
RQ	5-163	Q	Request queue status, return number of queue entries available		
<u>RS</u>	5-163	С	Software reset of PC78		
<u>?RT</u>	5-164	Q	Report ramp type		
<u>RU</u>	5-165	Q	Return current position in user units		
RV	5-166	Q	Return current velocity at which the axis is moving		
<u>SA</u>	5-167	С	Stop all, flush queue and stops all axes with deceleration		
<u>SB</u>	5-168	С	Sets the controller's serial communications baud rate		
<u>?SB</u>	5-168	Q	Report current baud rate setting		
<u>SC</u>	5-169	С	Cosine ramp selection per axis		
<u>SD</u>	5-170	С	Stop all axes and clear any done flags		
<u>SE</u>	5-171	С	Set settling time before power is reduced in PA mode		
<u>?SE</u>	5-171	Q	Report settling time		
<u>SF</u>	5-172	С	Soft limit off, restore normal overtravel operation		
<u>SI</u>	5-173	С	Stop selected motors		
<u>SK</u>	5-174	С	Links KILL function to specified PC78 input bit		
<u>SL</u>	5-175	С	Soft limit mode, allow pulse train to ramp down on overtravel		
<u>?SL</u>	5-176	Q	Report soft limit status		
<u>SM</u>	5-176	С	Enables/Disables stand-alone mode		
<u>so</u>	5-177	С	Stop at a designated position using a specified ramp down distance		
<u>?SO</u>	5-178	Q	Report analog output mode		
<u>SP</u>	5-178	С	Stop at position, stop at specified position if possible after all commands have been executed		
SR	5-179	С	Selects custom ramp		
ST	5-180	С	Stop, flush queue and decelerate to stop		
?SV	5-181	Q	Report servo voltage inversion state		
SVI	5-182	С	Invert servo voltage		
SVN	5-182	С	Normalize servo voltage		
SW	5-183	С	Sync wait, wait for the input bit to be released by other controllers		
SX	5-185	С	Links macro to specified PC78 input bit		
TF	5-187	С	Turn encoder slip/stall kill off		
<u>TL</u>	5-188	С	Set software travel limits		
?TL	5-189	Q	Report software overtravel ranges		
<u>TM</u>	5-190	С	Jog at the current velocity for the specified number of milliseconds		
<u>TN</u>	5-191	С	Turn encoder slip/stall kill on		
TX	5-192	С	Track the X axis		

ALPHABETICAL COMMAND SUMMARY C = COMMAND, Q = QUERY					
COMMAND	PAGE TYPE		COMMAND DESCRIPTION		
<u>UF</u>	5-193	С	User units off, turn off user unit translation		
<u>UN</u>	5-194	С	Unipolar, set the analog torque outputs to unipolar		
<u>UU</u>	5-195	С	User units, multiply acceleration, velocity and distance parameters by specified parameter		
<u>?UU</u>	5-196	Q	Report axis user units' axis assignment		
<u>VB</u>	5-197	С	Base velocity, set base velocity		
<u>?VB</u>	5-198	Q	Report axis base velocity		
<u>VL</u>	5-199	С	Set maximum velocity to be used in profile		
<u>?VL</u>	5-200	Q	Report axis velocity limit		
<u>VS</u>	5-201	С	Velocity stream, slave velocity mode for profiling		
WA	5-202	С	Wait until all moves on all axes are finished		
WD	5-203	С	While end, WS loop terminator		
WG	5-203	С	Terminate WH loop		
<u>WH</u>	5-204	С	While, execute all commands until WG loop terminator, until flag cleared by CW command		
<u>WQ</u>	5-206	С	Wait until current axis queue is empty		
<u>WS</u>	5-207	С	While sync, execute while sync is true		
WT	5-208	С	Wait, wait for specified number of milliseconds		
<u>WY</u>	5-209	Q	Who are you, returns model and software revision		

5.3.1.AXIS SPECIFICATION COMMANDS

The following commands set the context to direct the commands which follow to the appropriate axis. They remain in effect until superseded by another command of the same type, specifying a different axis.

	COMMANDS SUMMARY BY SECTION					
C = COMMAND, Q = QUERY						
COMMAND	COMMAND PAGE # TYPE COMMAND DESCRIPTION					
<u>AA</u>	5-25	С	Any following commands are for the AA (All Axes) mode			
<u>AM</u>	5-31	С	Axes multitasking mode			
<u>AT</u>	5-34	С	Any following commands are for the T axis			
AX	5-35	С	Any following commands are for the X axis (default on reset)			
<u>AY</u>	5-35	С	Any following commands are for the Y axis			
<u>AZ</u>	5-36	С	Any following commands are for the Z axis			
?AQ	5-34	Q	Query current axis			

5.3.2.SYSTEM CONTROL COMMANDS

These commands allow control of various system parameters and operating modes to allow the user to optimize the response of the system for his/her application needs.

COMMANDS SUMMARY BY SECTION					
	C = COMMAND, Q = QUERY				
COMMAND	PAGE#	TYPE	COMMAND DESCRIPTION		
<u>AP</u>	5-33	С	Make the current parameter set the power up default values		
<u>?DB</u>	5-57	Q	Report motor direction bit logic		
<u>DBI</u>	5-58	С	Invert motor direction bit		
<u>DBN</u>	5-59	С	Normalize motor direction bit		
<u>EF</u>	5-66	С	Echo off, turn off echo to host (default at power up)		
<u>EN</u>	5-69	С	Echo on, turn on echo to host		
<u>HL</u>	5-89	С	Home low, home switches are active low		
<u>HH</u>	5-88	С	Home high, home switches are active high		
<u>LF</u>	5-124	С	Disable limit switches for selected axis		
<u>LH</u>	5-125	С	Limit high, limit switch is active high		
<u>LN</u>	5-127	С	Enable limit switches for selected axis		
<u>LL</u>	5-126	С	Limit low, limit switch is active low		
<u>?LS</u>	5-132	Q	Report limit active state		
<u>PR</u>	5-151	С	Parabolic ramp selection per axis		
<u>RD</u>	5-158	С	Restore the current parameter set to the power up default values		
<u>RF</u>	5-159	С	Restore the current parameter set to the factory default values		
<u>RS</u>	5-163	С	Software reset of PC78		
<u>SF</u>	5-172	С	Soft limit off, restore normal overtravel operation		
SL	5-175	С	Soft limit mode, allow pulse train to ramp down on overtravel		
?SL	5-176	Q	Report soft limit status		
<u>?SV</u>	5-181	Q	Report servo voltage invert selection		
<u>SVI</u>	5-182	С	Invert servo voltage		
<u>SVN</u>	5-182	С	Normalize servo voltage		
<u>TL</u>	5-188	С	Set software travel limits		
?TL	5-189	Q	Report software overtravel ranges		

5.3.3.ACCELERATION RAMP COMMANDS

	COMMANDS SUMMARY BY SECTION				
	C = COMMAND, Q = QUERY				
COMMAND	PAGE#	TYPE	COMMAND DESCRIPTION		
<u>CN</u>	5-50	С	Cosine on, enable cosine velocity profiles		
<u>?DA</u>	5-54	Q	Report a custom ramp		
<u>DAB</u>	5-55	С	Define custom ramp breakpoint		
<u>DAE</u>	5-55	С	End custom ramp definition		
<u>DAR</u>	5-56	С	Begin custom ramp definition		
<u>?DE</u>	5-61	Q	Report an acceleration ramp definition table entry		
<u>?DS</u>	5-62	Q	Report the size of a custom acceleration ramp table		
<u>LA</u>	5-122	С	Linear ramp selection per axis		
<u>PF</u>	5-146	С	Parabolic off, disable parabolic ramps, i.e. linear ramps will be generated		
<u>PN</u>	5-149	С	Parabolic on, enable parabolic ramps		
?RT	5-164	Q	Report ramp type		
RS	5-163	С	Software reset of PC78		
<u>SC</u>	5-169	С	Cosine ramp selection per axis		
<u>SR</u>	5-179	С	Selects custom ramp		

5.3.4.USER I/O COMMANDS

The following commands are for accessing the bit I/O functions of the board. See also the \underline{SW} (page 5-183) and \underline{WS} (page 5-207) commands.

COMMANDS SUMMARY BY SECTION					
	C = COMMAND, Q = QUERY				
COMMAND	PAGE#	TYPE	COMMAND DESCRIPTION		
<u>?AD</u>	5-27	Q	Report default auxiliary bit state		
<u>ADH</u>	5-28	С	Set auxiliary default to high		
<u>ADL</u>	5-29	С	Set auxiliary default to low		
<u>AF</u>	5-30	С	Auxiliary off		
AN	5-32	С	Auxiliary on		
<u>?BD</u>	5-36	Q	Report the direction of a general purpose I/O		
<u>BH</u>	5-37	С	Set selected I/O bit high (off)		
<u>BL</u>	5-39	С	Set selected I/O bit low (on)		
<u>BS</u>	5-40	С	Set all bits of the general purpose output port to the state specified by the hex argument		
<u>?BS</u>	5-41	Q	Report the state of the specified I/O bit		
<u>BX</u>	5-42	Q	Return bit status in hex format		
<u>IO</u>	5-102	С	Designates I/O bits as inputs or outputs		
<u>PA</u>	5-144	С	Power automatic		
<u>?PA</u>	5-144	Q	Report power automatic state		
<u>RB</u>	5-157	Q	Report programmed direction of I/O bits in hex format		
<u>SE</u>	5-171	С	Set settling time before power is reduced in PA mode		
?SE	5-171	Q	Report settling time		

5.3.5. MOVE SPECIFICATION COMMANDS

These commands allow specification of move parameters. They allow move parameters to be tailored to the user's system requirements.

	COMMANDS SUMMARY BY SECTION				
	C = COMMAND, Q = QUERY				
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION		
<u>AC</u>	5-26	С	Acceleration, set acceleration/deceleration register		
<u>?AC</u>	5-27	Q	Report AC command		
DC	5-60	С	Set the deceleration rate that will be used by the <u>GU</u> command		
<u>LP</u>	5-129	С	Load position, load position counter with parameter		
MA	5-133	С	Move absolute, move to absolute position		
ML	5-136	С	Move linear, move specified distance relative from current position		
MR	5-138	С	Move relative, move specified distance from current position		
MT	5-140	С	Move to, move to specified position		
<u>VB</u>	5-197	С	Base velocity, set base velocity		
<u>?VB</u>	5-198	Q	Report axis base velocity		
<u>VL</u>	5-199	С	Set maximum velocity to be used in profile		
<u>?VL</u>	5-200	Q	Report axis velocity limit		

5.3.6. MOVE EXECUTION COMMANDS

These commands allow execution of the moves which have been previously specified.

	COMMANDS SUMMARY BY SECTION				
	C = COMMAND, Q = QUERY				
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION		
<u>GD</u>	5-78	С	Go and reset done flags		
<u>GN</u>	5-80	С	Go and notify when done		
<u>GO</u>	5-81	С	Go command, start execution of motion		
<u>GS</u>	5-82	С	Go and use the home switch to monitor for motor slip/stall		
<u>GU</u>	5-83	С	Go and use the AC values to accelerate and the DC values to decelerate		
<u>JG</u>	5-107	С	Jog command, run motor at specified velocity until a new velocity command is sent or it is stopped by a stop or kill command		
<u>JF</u>	5-106	С	Jog at fractional rates		
<u>TM</u>	5-190	С	Jog at the current velocity for the specified number of milliseconds		
<u>VS</u>	5-201	С	Velocity stream, slave velocity mode for profiling		

5.3.7. MOVE TERMINATION COMMANDS

The following commands allow termination of move sequences in process.

COMMANDS SUMMARY BY SECTION				
		C =	COMMAND, Q = QUERY	
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION	
<u>FL</u>	5-75	С	Flush an axis command queue	
<u>KL</u>	5-114	С	Kill, flush queue and terminate pulse generation immediately on all axes without decelerating	
<u>KS</u>	5-119	С	Kill selected axes	
SA	5-167	С	Stop all, flush queue and stops all axes with deceleration	
<u>SD</u>	5-170	С	Stop all axes and clear any done flags	
<u>SI</u>	5-173	С	Stop selected motors	
<u>so</u>	5-177	С	Stop at a designated position using a specified ramp down distance	
<u>ST</u>	5-180	С	Stop, flush queue and decelerate to stop	

5.3.8.LOOP CONTROL COMMANDS

These commands allow move sequences to be repeated within loops. Loops can be nested up to four levels deep on each axis.

COMMANDS SUMMARY BY SECTION						
	C = COMMAND, Q = QUERY					
COMMAND	PAGE#	TYPE	COMMAND DESCRIPTION			
<u>CW</u>	5-52	С	Clear while flag, i.e. terminate WH/WG loop			
<u>LE</u>	5-123	С	Loop end, terminate most recent LS command			
<u>LS</u>	5-130	С	Loop start, set loop counter, from 1 to 32000 loops; (may be nested to 4 levels)			
<u>WD</u>	5-203	С	While end, WS loop terminator			
<u>WG</u>	5-203	С	Terminate WH loop			
<u>WH</u>	5-204	С	While, execute all commands until <u>WG</u> loop terminator, until flag cleared by <u>CW</u> command			
<u>WS</u>	5-207	С	While sync, execute while sync is true			

5.3.9.INITIALIZATION AND HOME CONTROL COMMANDS

These commands allow the initialization of the physical stage with the controller.

	COMMANDS SUMMARY BY SECTION				
		C	= COMMAND, Q = QUERY		
COMMAND PAGE TYPE COMMAND DESCRIPTION					
<u>HM</u>	5-90	С	Home, find home and initialize the position counter		
<u>HR</u>	5-93	С	Home reverse, find home in reverse direction and initialize position counter		
<u>KM</u>	5-115	С	Home and kill pulse generation		
KR	5-118	С	Home in reverse and kill pulse generation		

5.3.10. MOVE SYNCHRONIZATION COMMANDS

These commands allow the synchronization of moves with external events or multiple axis sequences.

	COMMANDS SUMMARY BY SECTION					
	C = COMMAND, Q = QUERY					
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION			
<u>BW</u>	5-41	С	Wait for input to go low			
<u>CA</u>	5-43	С	Clear done flag of currently addressed axis			
<u>IC</u>	5-98	С	Interrupt clear, clear done interrupt status and error flags			
<u>ID</u>	5-99	С	Interrupt host when done and set done flag			
<u>II</u>	5-100	С	Interrupt independent			
<u>IN</u>	5-101	С	Interrupt when nearly done			
<u>IP</u>	5-103	С	Interrupt when in position			
<u>IX</u>	5-105	С	Interrupt when done. Sends Hex character via RS-232			
<u>SW</u>	5-183	С	Sync wait, wait for the input bit to be released by other controllers			
WA	5-202	С	Wait until all moves on all axes are finished			
WQ	5-206	С	Wait until current axis queue is empty			
WT	5-208	С	Wait, wait for specified number of milliseconds			

5.3.11. SYSTEM STATUS REQUEST COMMANDS

These commands allow the host to request the status of various move parameters, including the status of limit and home switches.

	COMMANDS SUMMARY BY SECTION				
	C = COMMAND, Q = QUERY				
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION		
<u>BX</u>	5-42	Q	Return bit status in hex format		
<u>PE</u>	5-146	Q	Report encoder positions of all encoder and servo axes		
<u>PP</u>	5-150	Q	Report motor positions of all axes		
<u>QA</u>	5-154	Q	Report status of switches and flags for addressed axis without affecting flags		
QI	5-154	Q	Report status of switches and flags on all axes without affecting flags		
QL	5-155	Q	Report the state of the Limit Sensor inputs		
RA	5-156	Q	Report status of switches and flags and reset flags		
RC	5-157	Q	Report current acceleration or deceleration of the current axis		
RI	5-159	Q	Report status of switches and flags for all axes and reset flags		
RM	5-161	Q	Report remainder of position divided by parameter in position counter		
<u>RP</u>	5-162	Q	Request position, returns current position		
RQ	5-163	Q	Request queue status, return number of queue entries available		
<u>RU</u>	5-165	Q	Return current position in user units		
RV	5-166	Q	Return current velocity at which the axis is moving		
<u>WY</u>	5-209	Q	Who are you , returns model and software revision		

5.3.12. AXIS SCALING COMMANDS

The following commands allow specification of move parameters in user defined units. The OMS controls will automatically convert all move parameters to these units once they have been initialized.

COMMANDS SUMMARY BY SECTION					
	C = COMMAND, Q = QUERY				
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION		
<u>ER</u>	5-70	С	Encoder ratio, set encoder count to motor count ratio		
?ER	5-71	Q	Report motor:encoder ratio		
<u>UF</u>	5-193	С	User units off, turn off user unit translation		
<u>UU</u>	5-195	С	User units, multiply acceleration, velocity and distance parameters by specified parameter		
<u>?UU</u>	5-196	Q	Report axis user units' axis assignment		

5.3.13. PID FILTER CONTROL COMMANDS

The following commands are valid only for servo axes and should never be executed while the specific axis is in motion.

COMMANDS SUMMARY BY SECTION						
	C = COMMAND, Q = QUERY					
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION			
BI	5-38	С	Bipolar, set the analog torque outputs to bipolar			
<u>DZ</u>	5-63	С	Offset coefficient, used in open-loop mode			
<u>?DZ</u>	5-64	Q	Report DAC open-loop offset			
<u>HF</u>	5-86	С	Hold off, disables PID filter			
<u>HN</u>	5-92	С	Hold on, enables PID filter			
KA	5-109	С	Acceleration feedforward coefficient, used in tuning servo systems			
<u>?KA</u>	5-109	Q	Report acceleration feedforward			
<u>KB</u>	5-110	С	PID Upper Bound Limit Coefficient			
<u>?KB</u>	5-110	Q	Report AXIS PID upper Bound limit			
<u>KD</u>	5-111	С	Derivative Gain coefficient, used for PID filter			
<u>?KD</u>	5-111	Q	Report PID derivative gain			
<u>KF</u>	5-112	С	Set Servo axis PID friction coefficient			
<u>?KF</u>	5-112	Q	Report servo axis friction offset			
<u>KI</u>	5-113	С	Integral Gain coefficient, used for PID filter			
<u>?KI</u>	5-113	Q	Report PID integral gain			
<u>KO</u>	5-116	С	Offset coefficient, used in closed-loop mode			
<u>?KO</u>	5-116	Q	Report PID closed-loop offset			
<u>?KP</u>	5-117	Q	Report PID proportional gain			
<u>KP</u>	5-117	С	Proportional Gain coefficient, used for PID filter			
<u>KU</u>	5-120	С	PID integration sum upper limit			
<u>?KU</u>	5-120	Q	Report PID integration sum upper limit			
<u>KV</u>	5-121	С	Velocity feedforward coefficient, used in tuning servo systems			
<u>?KV</u>	5-121	Q	Report velocity feedforward			
<u>?PM</u>	5-147	Q	Report PID state			
<u>?SO</u>	5-178	Q	Report analog output mode			
<u>UN</u>	5-194	С	Unipolar, set the analog torque outputs to unipolar			

5.3.14. POSITION MAINTENANCE COMMANDS

COMMANDS SUMMARY BY SECTION						
	C = COMMAND, Q = QUERY					
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION			
<u>FX</u>	5-77	С	Enable axis gantry mode			
<u>HD</u>	5-84	С	Hold deadband, specify deadband tolerance for position hold			
<u>?HD</u>	5-84	Q	Report position maintenance deadband			
<u>HG</u>	5-87	С	Hold gain, specify position hold gain parameter			
<u>?HG</u>	5-87	Q	Report position maintenance gain			
<u>HF</u>	5-86	С	Hold off, disable position hold, slip/stall detection and tracking modes			
<u>HN</u>	5-92	С	Hold on, enable position correction after move			
HV	5-96	С	Hold velocity, specify maximum position hold correction velocity			
<u>?HV</u>	5-97	Q	Report position maintenance velocity			
<u>IP</u>	5-103	С	Interrupt when in position			
<u>LO</u>	5-128	С	Set axis motor position but not the encoder position			
<u>TX</u>	5-192	С	Track the X axis			

5.3.15. SLIP AND STALL DETECTION COMMANDS

	COMMANDS SUMMARY BY SECTION					
		C	= COMMAND, Q = QUERY			
COMMAND	COMMAND PAGE # TYPE COMMAND DESCRIPTION					
<u>ES</u>	5-72	С	Encoder slip/stall tolerance, set tolerance before slip/stall is flagged			
<u>?ES</u>	5-73	Q	Report encoder slip/stall tolerance			
<u>HF</u>	5-86	С	Hold off, disable position hold, slip/stall detection and tracking modes			
<u>IS</u>	5-104	С	Interrupt slip/stall, interrupts host on slip/stall detection			
<u>RL</u>	5-160	Q	Report slip/stall status of each axis			
<u>TF</u>	5-187	С	Turn encoder slip/stall kill off			
<u>TN</u>	5-191	С	Turn encoder slip/stall kill on			

5.3.16. ENCODER TRACKING COMMANDS

COMMANDS SUMMARY BY SECTION					
	C = COMMAND, Q = QUERY				
COMMAND	PAGE #	TYPE	COMMAND DESCRIPTION		
ET	5-74	С	Encoder tracking, set encoder tracking mode		
<u>HF</u>	5-86	С	Hold off, disable position hold, slip/stall detection and tracking modes		

5.3.17. ENCODER HOME CONTROL COMMANDS

	COMMANDS SUMMARY BY SECTION				
	C = COMMAND, Q = QUERY				
COMMAND PAGE # TYPE COMMAND DESCRIPTION					
<u>EH</u>	5-67	С	Encoder home definition		
<u>?EH</u>	5-68	Q	Report encoder home		
<u>HE</u>	5-85	С	Encoder home mode, set home on encoder logic		
HE HS	5-95	С	Home switch, enable home switch mode		

5.3.18. ENCODER STATUS REQUEST COMMANDS

COMMANDS SUMMARY BY SECTION					
	C = COMMAND, Q = QUERY				
COMMAND PAGE # TYPE COMMAND DESCRIPTION					
<u>EA</u>	5-65	Q	Encoder status, return encoder status of currently addressed axis		
<u>PE</u>	5-146	Q	Report encoder positions of all encoder and servo axes		
PE RE	5-158	Q	Request encoder position, return current encoder position		

5.3.19. VELOCITY STAIRCASE COMMANDS

The following commands describe the velocity staircase mode. This mode is useful in applications requiring a change in velocity at a prescribed position without stopping.

COMMANDS SUMMARY BY SECTION					
C = COMMAND, Q = QUERY					
COMMAND PAGE # TYPE COMMAND DESCRIPTION					
<u>FP</u>	5-76	С	Force position, flush queue and attempt to stop at specified position		
MM	5-137	С	Move minus, set minus direction for MV type move		
<u>MP</u>	5-137	С	Move plus, set positive direction for MV type move		
MV	5-141	С	Move velocity, move to first parameter (absolute position) at second parameter velocity without stopping at end of move		
<u>SP</u>	5-178	С	Stop at position, stop at specified position if possible after all commands have been executed		

5.3.20. CONSTANT VELOCITY CONTOURING COMMANDS

The PC78 will attempt to generate any profile which it is asked to do. It is the responsibility of the host to be sure the acceleration required when generating a circle or any other change in direction is possible within the mechanical constraints of the system. All corners must be defined by arcs and tangents to those arcs, else the change in direction will be instantaneous and generate very large accelerations. The arc radius must be chosen so that the acceleration constraints of the system are met.

	COMMANDS SUMMARY BY SECTION					
	C = COMMAND, Q = QUERY					
COMMAND	PAGE # TYPE COMMAND DESCRIPTION					
<u>CD</u>	5-44	С	Define a contour			
<u>CE</u>	5-46	С	End contour definition, ramp to a stop			
<u>CG</u>	5-47	С	Execute a constant velocity contour and prevent MT parsing			
<u>CK</u>	5-49	С	End contour definition, immediately stop step pulses			
CR	5-51	С	Circular interpolation, move in a circle			
CV	5-52	С	Contouring velocity, definition			
CX	5-53	С	Contour execute			
MT	5-140	С	Move to, move to specified position			
NV	5-143	С	Set a new contour velocity from with in a contour			
RQ	5-163	Q	Request queue status, return number of queue entries available			

5.3.21. MACRO CONTROL COMMANDS

Macros are typically used as a shortcut to save some keystrokes. They can be used to save common parameter settings that may need to be recalled. They can also be used to store common command sequences that may be used for a particular process.

Once macros are defined, an entire command sequence can be sent to the controller through just executing the $\underline{\mathsf{MX}}$ command and the appropriate macro number. As a result, sending a stream of frequently used commands to the controller is done simply through the use of one command. Detailed information regarding the macro commands is shown below.

COMMANDS SUMMARY BY SECTION					
C = COMMAND, Q = QUERY					
COMMAND	COMMAND PAGE TYPE COMMAND DESCRIPTION				
<u>MD</u>	5-135	С	Define a temporary macro		
<u>MX</u>	5-143	С	Execute a macro command string		
<u>PM</u>	5-147	Q	Print a macro command string		
PT	5-153	С	Preserve a temporary macro by copying it to non-volatile memory		

5.3.22. STAND-ALONE COMMANDS

The Stand-alone mode allows a PC78 Motion Controller to run in a completely independent operation mode when powered by a separate +5 VDC power supply (for steppers) and ± 12 VDC (for servos). This mode has several commands that can establish links to macros. When set up properly in this mode the PC78 can scan for a predefined I/O Input bit, until it changes to the specified state Upon sensing that this condition has been met, it will execute the permanent Macro from Non-volatile flash memory that had been previously associated or linked with this I/O bit and its state.

A common application the stand-alone mode is to incorporate the KILL (<u>KL</u>) function. Reference the <u>SK</u> command. This will allow the user to stop motion of the device.

All of these selections are temporary. They can be made permanent by executing the AP command, which assigns the current parameter values as the Power Up defaults.

Note: The AP command should be used sparingly as it causes a write to the on board Flash Memory and there is a finite amount of times that it can be re-written to (i.e. less than 10,000 times, typical).

Application Overview:

The setup of the stand-alone mode is performed through the communication interface by the use of the commands. The user would define the required motion and processes and store them in a macro (see section 0 on page 5-22). Then, with the use of the commands below, the execution of the specific macros would be defined. Once all of the setup is completed the controller would be put in the stand-alone mode (SM) and the execution of the macros controlled by the defined input bits.

There are no queue requirements for these commands.

COMMANDS SUMMARY BY SECTION						
	C = COMMAND, Q = QUERY					
COMMAND PAGE TYPE COMMAND DESCRIPTION						
<u>CB</u>	5-43	С	Clear all macro links to input bits			
<u>PS</u>	5-152	Reports macro link to specified PC78 input bit				
<u>SK</u>	5-174	С	Links KILL function to specified PC78 input bit			
<u>SM</u>	5-176	С	Enables/Disables stand-alone mode			
<u>SX</u>	5-185	С	Links macro to specified PC78 input bit			

5.3.23. SERIAL COMMUNICATION CONFIGURATION COMMANDS

COMMANDS SUMMARY BY SECTION					
C = COMMAND, Q = QUERY					
COMMAND	COMMAND PAGE TYPE COMMAND DESCRIPTION				
<u>SB</u>	5-168	С	Sets the controller's serial communications baud rate		
?SB	5-168	Q	Report current baud rate setting		

5.3.24. COMMAND DEFINITIONS

AA ALL AXES

The AA command performs a context switch to multi-axis mode. All commands entered after this one will be treated as "all axes" commands which must be formatted for multi-axis use rather than single-axis use. Each command will be executed in the order in which it is received. This is true even if the second command affects axes other than those affected by the first command. For example, if AA mode is entered followed by a move of the X axis and then a move of the Y axis, the Y axis move will not begin until the X axis move has completed.

1

Example: Perform an absolute move using the X and Y axes. When this move is

complete, perform a relative move using the Y, Z, and T axes.

Enter: AA;

MA12000,14000;

GO;

MR,5000,1500,100000;

<u>GO</u>;

Response: None

NOTE: This command changes the axis mode immediately, but has axis queue requirements because it places synchronization entries in all axis queues.

QUEUE REQUIREMENTS						
FORMAT	MODE	COMMAND	ARGUMENT			
AA;	AX - AT	1	1			
AA;	AA-AM	1	1			
-	AA/CD	Not Valid				

Related commands: AM, ?AQ, AT, AX, AY, AZ, CD

AC ACCELERATION

The AC command sets the acceleration/deceleration register to the operand which follows the command. The parameter must be greater than zero (zero is not valid) and less than 8,000,000, and the unit is in steps per second per second. All the following move commands for the axis being programmed will accelerate and decelerate at this rate until another AC command is entered. See the <u>AP</u> command, page 5-33 to preserve the AC settings as the power-up/reset values. The default value is 2,000,000.

RANGE: 1 ≤ AC ≤ 8000000

Note: The range denotes values after User Units have been applied. (See UU command.)

Example: In the single axis mode, set the Y axis acceleration to 200,000 counts per

second per second.

Enter: AY;

AC200000;

Response: None

Example: In the AA mode, set the acceleration of the X axis to 200,000 and the Z

axis to 50,000 and leave the other axes with their previous values.

Enter: AA;

AC200000,,50000;

Response: None

	QUEUE REQUIREMENTS					
FORMAT	MODE	Axis Ramp Type	COMMAND	ARGUMENT		
AC#; or AC#,#,#;	AX-AT or AA- AM	Linear (<u>LA</u> or <u>PF</u>)	3	3		
AC#; or AC#,#,#;	AX-AT or AA- AM	Short Parabolic (<u>PN</u> 0; or <u>PR</u> 0:)	3	5		
AC#; or AC#,#,#;	AX-AT or AA- AM	All other parabolic forms	3	12		
AC#; or AC#,#,#,#;	AX-AT or AA- AM	Custom Ramps (<u>SR</u>)	3	No. of ramp segments +12		

Related commands: ?AC, DC, RC, VB, VL

REPORT AC COMMAND ?AC

This command will reply with the current acceleration value for the selected axis.

Example: Report the current AC value for this axis.

?AC Enter:

ac200000<LF> Response:

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT		
?AC	AX - AT	Immediate			
-	AA-AM	Not Valid			
-	AA/CD	Not Valid			

Related commands: AC

REPORT DEFAULT AUXILIARY ?AD **BIT STATE**

This command reports the power up default selection for the axis aux bit.

Example: Report the power up state of the Y axis auxiliary bit

AY; ?AD Enter:

Response: adh<LF>

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT		
?AD	AX - AT	Immediate			
-	AA-AM	Not Valid			
-	AA/CD	Not Valid			

Related commands: ADH, ADL

ADH SET AUXILIARY DEFAULT TO HIGH

The ADH command sets the default power up or reset state of the auxiliary line for the current axis to high. This change is stored as a power up parameter in flash automatically and need not be stored via the AP command. Since this command writes to non-volatile memory it should be used only when necessary and not in repeatedly called functions.

NOTE: This command will also archive all other parameter values as power up defaults.

Example:

Example: Set the power up state of the Z axis auxiliary line to high

Enter: AZ;

ADH;

Response: None

QUEUE REQUIREMENTS						
FORMAT	MODE	COMMAND	ARGUMENT			
ADH;	AX - AT	Immediate				
-	AA-AM	Not Valid				
-	AA/CD	Not Valid				

Related commands: ?AD, ADL

ADL SET AUXILIARY DEFAULT TO LOW

The ADL command sets the default power up or reset state of the auxiliary line for the current axis to low. This change is stored in nonvolatile memory automatically and need not be stored via the AP command. Since this command writes to non-volatile memory it should be used only when necessary and not in repeatedly called functions.

NOTE: This command will also archive all other parameter values as power up defaults.

Example: Set the power up state of the Y axis auxiliary line to low

Enter: AY; ADL;

Response: None

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT		
ADL;	AX - AT	Immediate			
-	AA-AM	Not Valid			
-	AA/CD	Not Valid	_		

Related commands: ?AD, ADH

AF **AUXILIARY OFF**

The AF command turns off the selected auxiliary outputs. That is, it causes the signal to be driven low. The AF command may be used to change power level on driver modules so equipped or as a user specified output. Note that this command will turn power automatic (PA) mode off.

Example: Turn off the Y axis auxiliary output in the single axis mode.

Enter:

AF:

Response:

None

Example:

Turn off the X and Z axes auxiliary outputs when in the AA command

mode. The Y axis is unchanged in this example.

Enter: AA;

AF1,,1;

Response: None

QUEUE REQUIREMENTS						
FORMAT MODE COMMAND ARGUMENT CONTOUR						
AF;	AX - AT	1	0	N/A		
AFb,b,b,b;	AA-AM	1	0	N/A		
AFb,b,b,b;	AA/CD	N/A	N/A	2*		

^{*}When AF is used in a contour definition the aux bits of all axes included in that definition will be turned off when the contour is executed.

Related commands: AN, BH, BL, BS, PA

AM AXES MULTITASKING

COMMAND SUMMARY

The AM mode allows several tasks to be managed simultaneously. This command changes the mode of all future commands to multi-axis mode. In this mode, a task may be performing coordination motion on 2 axes, while a second task is performing unrelated but simultaneous motion on another axis. All commands sent in this mode must be formatted for multi-axis mode rather than single-axis mode.

Examp

Example: Perform a coordinated relative move on the X and Y axes, while moving

the T axis as a separate move at the same time.

Enter: AM;

ML2000,3000;

GO;

<u>MA</u>,,,10000;

GO;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
AM;	AX - AT	Immediate	
AM;	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: AA, ?AQ, AT, AX, AY, AZ

AN AUXILIARY ON

The AN command turns on the selected auxiliary output ports. That is, it allows the signal to be pulled high. This is the default mode for the auxiliary line at power up or reset. The AN command may be used to change power level on driver modules so equipped, trigger another board's input or as a user specified output.

A parameter must be supplied for the desired axes when used in the <u>AA</u> mode so that the other axes are not affected. No parameter is required in a single axis mode. Note this command will turn power automatic (<u>PA</u>) mode off.

Example: Turn on the Y axis auxiliary output in the single axis mode.

Enter: AY; AN;

Response: None.

Example: Turn on the X and Z axes auxiliary outputs when in the AA command

mode. The Y axis is unchanged in this example.

Enter: AA;

AN1,,1;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	CONTOUR
AN;	AX - AT	1	0	N/A
ANb,b,b,b;	AA-AM	1	0	N/A
ANb,b,b,b;	AA/CD	N/A	N/A	2*

*When AN is used in a contour definition the Aux bits of all axes included in that definition will be turned on when the contour is executed.

Related commands: <u>AF</u>, <u>BH</u>, <u>BL</u>, <u>BS</u>, <u>PA</u>

AP ASSIGN CURRENT PARAMETERS AS POWER-UP DEFAULTS

The AP command stores the current parameter set as the power-up default set of values. This is done by writing the current parameter set to flash memory. The following list of parameters will have their values saved to flash memory when this command is used: AC, BI/UN, BR, EH, ER, ES, ES,

Note: This command should not be issued when an axis is in motion and it should be used sparingly because the flash memory has a limited number of write cycles.

Example: Save the current parameter set to be the power up default set of values.

Enter: AP;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
AP;	AX - AT	Immediate	
AP;	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: RF

?AQ QUERY CURRENT AXIS

The ?AQ command reports the mode that the current axis is in, i.e. AA mode, AM mode, etc.

Example: Determine the mode of the X axis.

Enter: AX;

Response: ax<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?AQ	AX - AT	Immediate	
?AQ	AA-AM	Immediate	
?AQ	AA/CD	Immediate	

Related commands: AA, AM, AT, AX, AY, AZ

AT AXIS T

The AT command directs all following commands to the T axis. Commands sent in this mode will be executed in the order in which they are received (subject to queued versus immediate execution) and are expected to be formatted for single-axis use.

Example: Move the T axis to absolute position -2468.

Enter: AT;

MA-2468;

<u>GO</u>;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
AT;	AX - AT	Immediate	
AT;	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: AA, AM, ?AQ, AX, AY, AZ

AX AXIS X

The AX command directs all following commands to the X axis. This is the default mode at power up or reset. Commands sent in this mode will be executed in the order in which they are received (subject to queued versus immediate execution) and are expected to be formatted for single-axis use.

🔦 Exam

Example: Make the X axis step at a rate of 5,000 steps/second.

Enter: AX;

JG5000;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
AX;	AX - AT	Immediate		
AX;	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: AA, AM, ?AQ, AT, AY, AZ

AY AXIS Y

The AY command directs all following commands to the Y axis. Commands sent in this mode will be executed in the order in which they are received (subject to queued versus immediate execution) and are expected to be formatted for single-axis use.

1

Example: Examine the status of the Y axis.

Enter: AY;

RA

Response: PNNN<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
AY;	AX - AT	Immediate		
AY;	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: AA, AM, ?AQ, AT, AX, AZ

AZ AXIS Z

The AZ command directs all following commands to the Z axis. Commands sent in this mode will be executed in the order in which they are received (subject to queued versus immediate execution) and are expected to be formatted for single-axis use.

1

Example: Move the Z axis 2,000 steps at a rate of 500 steps per second.

Enter: AZ;

<u>VL</u>500; <u>MR</u>2000; <u>GO</u>;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
AZ;	AX - AT	Immediate		
AZ;	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: AA, AM, ?AQ, AT, AX, AY

?BD REPORT BIT DIRECTION

The ?BD command reports if a general purpose I/O bit is an input or output.

1

Example: Find out whether I/O bit 2 is configured as an input or an output.

Enter: ?BD2;

Response: If the bit is an input the response will be: io0<LF>

An output bit response is: io1<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?BD	AX - AT	Immediate		
?BD	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: BH, BL, BX, IO, RB

BH BIT HIGH

The BH command turns the selected general purpose output off (i.e. logic high). The default state of general purpose outputs is off at power up or reset.

Note: Output bits should not be used as triggers for applying power to any device unless master power is applied separately and after the PC78 is fully configured. The states of the outputs are unpredictable during power-up and reset and can toggle several times before settling at a high level.

Range: $0 \le bit number \le 7$

•

Example: Set general purpose bits 4 and 5 to high.

Enter: BH4;

BH5;

Response: None.

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT	CONTOUR	
BH#;	AX - AT	1	1	N/A	
BH#;	AA-AM	2	1	N/A	
BH#;	AA/CD	N/A	N/A	2	

Related commands: AF, AN, BL, BS, BR BX

BI BIPOLAR

Example: Set up servo axis X for bipolar operation.

Enter: AX;

BI;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
BI;	AX - AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: DBI, DBN, ?SO, SVI, SVN, UN

BL **BIT LOW**

The BL command turns the selected general purpose output line on (i.e. logic low). The default states of all output bits at power-up are logic high (off). The BS command can be used to set all outputs to a known state at once.

Note: Output bits should not be used as triggers for applying power to any device unless master power is applied separately and after the PC78 is fully configured. The states of the outputs are unpredictable during power-up and reset and can toggle several times before settling at a high level.

RANGE: 0 < bit number < 7

Example: Turn on output bits 4 and 5 after a move. Note that this is only valid for

output bits; input bits cannot be modified.

Enter:

MA 1000; GO: BL4;

BL5;

Response: None.

	QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT	CONTOUR		
BL#;	AX - AT	1	1	N/A		
BL#;	AA-AM	2	1	N/A		
BL#;	AA/CD	N/A	N/A	2		

Related commands: AF, AN, BS, BX

BS BIT SET

Set all of the output bits to a known state at the same time. This command will affect all output bits, setting their states to the specified bit mask nearly simultaneously. The mask must be in ASCII hex format where the least significant bit (bit 0) is on the right. To set a line low, the corresponding bit in the hex mask must be a 0. A one (1) in any bit position will set the corresponding bit high.

Note: Output bits should not be used as triggers for applying power to any device unless master power is applied separately and after the PC78 is fully configured. The states of the outputs are unpredictable during power-up and reset and can toggle several times before settling at a high level.

Range: 00 < Hex number < FF

₹ ,

Example: Assume I/O bit direction IO = FFFF, all outputs. Set output 0 high, 1-3

low, and 4-6 high (71 = (hex) 01110001)

Enter: BS71;

Response: None.

NOTE: Data written to input bits has no effect

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
BS#;	AX – AT	1	1	
BS#;-	AA-AM	3	1	
-	AA/CD	Not Valid		

Related commands: AF, AN, BH, BL, BX

?BS REPORT BIT STATE

The ?BS command reports the state of the specified general purpose I/O bit.

Example: Determine the state of I/O bit 6.

Enter: ?BS6;

Response: If the bit is set to a TTL high the response will be:

1<LF>

If the bit is set to a TTL low the response will be:

0<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?BS	AX - AT	Immediate		
-	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: BH, BL, BX

BW WAIT FOR INPUT TO GO LOW

The BW command is just like the <u>SW</u> command except that it waits for the input line to reach a TTL low rather than a TTL high. Refer to the <u>SW</u> command for more detail.

RANGE: 0 ≤ Bit Number ≤ 7

1

Example: See the examples for the <u>SW</u> (see page 5-183) command

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT		
BW#;	AX - AT	1	1		
BW#;	AA-AM	3	1		
- AA/CD Not Valid					

Related commands: SW, WA, WT, WQ

BX BIT REQUEST IN HEX

The BX command returns the states of the general purpose I/O bits in a hex format. The rightmost character represents the least-significant-nibble (4 bits) and, if the nibble is rewritten as bits, the rightmost bit is the least-significant bit. An input set low will be represented as a binary 0 and a high as binary 1, similarly for an output.

1

Example: Assuming the default I/O bit direction of $\underline{IO} = 00$, bits 0-7 inputs

User input lines 0 and 2 are high and the remaining 6 inputs are low.

Use the BX commands to verify these states.

Enter: BX

Response: 05<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
BX	AX - AT	Immediate		
BX	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: BH, BL, BS

CA CLEAR AXIS DONE FLAG

The CA command operates like the <u>IC</u> command, except it clears the done flag of the addressed axis only. In multi-axis modes, the CA command clears the flags of all selected axes. Unlike the <u>IC</u> command, CA will not clear other error flags in the status register such as slip and limit.

1

Example: After a multi-axis move, clear the Z axis done flag only.

Enter: AA;

MR1000,2000,3000,4000;

GO; ID AZ; CA;

Response: None.

Ł

Example: After a multi-axis move, clear the Y and Z axis done flags only.

Enter: AA;

MR 1000, 2000, 3000, 4000;

GO; ID CA,1,1;

Response: None.

NOTE: In <u>AA</u> or <u>AM</u> mode, a null value in the argument list specifies the done bit of that axis is not to be cleared.

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
CA;	AX - AT	Immediate			
CAb,b,b,b;	AA-AM	Immediate			
-	AA/CD	Not Valid			

Related commands: GD, IC, ID, II, IN, IP

CB CLEAR MACRO LINKS

This command clears all macro links of input bits to macro executions and/or the KILL (KL) function.

•

Example: Clear all previously defined macro links to input bits.

Enter: CB;

Response: None

CD CONTOUR DEFINE

The CD command enters contour definition mode and defines a constant velocity contour. The only way to exit this mode is to issue a CE or CK command. Commands following the CD command must be in multi-axis format and be commands valid in CD mode. All multi-axis commands entered in CD mode can address only those axes assigned in the CD command. No commands entered will be executed until a CX command is received which must be issued outside of CD mode.

The CD command takes up to eight parameters. Each parameter specifies a starting point for each axis to be involved in the contour in absolute coordinates. If an axis is not to be involved in the contour, its parameter position should be skipped just as it would be in any other multi-axis command. Commands issued within CD mode must be formatted to include only those axes indicated in the CD command. Those that are not in the CD command simply do not exist in the formatting of commands entered in CD mode. For example, if a CD command is issued that uses the X, Y, and T axes (such as CD100,300,,400;), commands entered within CD mode will only consider the X, Y, and T axes. An MT command that moves X to 200, Y to 600, and T to 200 would take the form: MT200,600,200;. Note the lack of a placeholder comma for the Z axis.

Contours that will include circular interpolation (<u>CR</u>) must be defined for only 2 axes in the CD command. Contours involving more than 2 axes may not use the <u>CR</u> command. The size of the contour definition buffer for the PC78 is 32,763 positions.

When the contour is executed, the PC78 will use the distance between the current position and the contour starting point to linearly ramp up each axis such that all involved axes reach a combined, vectored velocity equal to the value set with the CV command. If this distance is zero, no ramp will be generated resulting in an instantaneous jump to contour velocity. Most stepper systems cannot achieve this and servos will tend to oscillate wildly before settling down if at all. Care should be taken to allow sufficient ramping distance between the contour starting position and the current position when the CX command is issued.

Once the contour is completely executed, the PC78 will ramp the axes to a stop using the rate defined with the <u>AC</u> command. This ramp down will take each axis beyond the final point of the contour. Without manually calculating the ramp down distance for each axis, there is no way to force the contour to come to a complete stop at a predetermined point.

1

Example:

The following demonstrates cutting a hole with a 10,000 count radius using constant velocity contouring and circular interpolation. The contouring velocity is set to 1000 pulses per second. A contour is then defined beginning at coordinates 0,0 on the X and Y axes. The auxiliary output of the Z axis is turned on, which could turn on the cutting torch or laser starting the cut at the center of the circle. A half circle is cut from the center to the outside of the hole, positioning the cutting tool at the start of the desired hole. The hole is then cut, the torch turned off, the stage stopped and the definition is complete. The stage is then positioned and the hole cut with the \underline{CX} command. The \underline{AN} and \underline{AF} commands must have commas for all axes since they can all be addressed from within the contour definition.

Enter:

<u>AA;</u> <u>CV</u>1000; CD0,0; <u>AN</u>,,1; CR5000,0,-3.1415926; CR0,0,-6.2831853; AF,,0; MT10000,-1000; CE; MT10000,0; GO; CX;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT CONTOUR				
-	AX - AT	Not Valid		
CD#,#,#,#;	AA-AM	5 + number of axes in the contour		
-	AA/CD	N/A		

Related commands: <u>AF, AN, BH, BL, CE, CK, CR, CV, CX, NV, MT</u>

CE CONTOUR END

The CE command marks the end of the contour sequence. It will terminate the \underline{CD} mode and, when executed, ramp to a stop and exit to the \underline{AA} command mode. The end of the contour should contain at least a short linear segment just prior to the CE command to initialize the parameters for the deceleration of the stage.

Example: (see <u>CD</u> command on page 5-44)

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT	CONTOUR	
-	AX – AT	Not Valid			
-	AA-AM Not Valid				
CE;	AA/CD	N/A	N/A	2	

Related commands: CD, CK

CG CONTOUR PRIORITY

The CG command is a form of the \underline{CX} command, use if \underline{CE} is followed by a \underline{MT} command. When CG is used to execute the contour, the following \underline{MT} commands will be on hold until the contour execution is complete. After the contour has been executed, the \underline{MT} commands that follow can be parsed.

CG is preferred over the \underline{CX} when the \underline{MT} commands are issued after a contour is executed. The CG command ensures that the \underline{MT} command that follows starts from a known position. This makes for a more accurate calculation of the \underline{MT} move.

1

Example: See page 5-44 (CD), Make sure that the hole is completely cut before

executing the move to the new command position.

Enter: AA;

<u>CV</u>1000; <u>CD</u>0,0; <u>AN</u>,,1;

<u>CR</u>5000,0,-3.1415926; <u>CR</u>0,0,6.2831853;

<u>AF</u>,,0;

MT10000,-1000;

CE:

MT-10000,0;

GO; CG;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
-	AX – AT	Not Valid		
CG;	AA-AM	7*	2*	
CG;	AA/CD	Not Valid		

- If <u>PA</u> (power automatic) mode is selected add 2 to the command queue.
- If an aux bit settle time has been specified add 2 to the command queue and add 1 to the argument queue.
- If the axis is stepper and encoder or servo add 1 to the command queue.
- Add the following queue requirements for the ramp types listed.

QUEUE REQUIREMENTS				
Axis Ramp Type	COMMAND QUEUE	ARGUMENT QUEUE		
Linear (<u>PF</u> , <u>LA</u>)	4	4		
Short Form Parabolic (PN0, PR0)	4	8		
All other Parabolic Forms (PN,	4	22		
PR)				
Cosine (CN, SC)	4	22		
Custom (<u>SR</u>)	4	(2*number of ramp segments) + 2		

Related commands: <u>AF, AN, BH, BL, CD, CK, CR, CV, CX, MT, NV</u>

CK CONTOUR END AND KILL

The CK command will end the contour sequence, like the <u>CE</u> command, except there is no ramp down; i.e. motion will stop abruptly. It is used in place of the <u>CE</u> command.

NOTE: This command should be used with caution to prevent the stage from slipping or losing its correct position.

Exa

Example: Same scenario as <u>CD</u> command, but we want to end the contour with the

minimum ramp down.

Enter: AA;

CV1000; CD0,0; AN,,;

<u>CR</u>5000,0,-3.1415926; <u>CR</u>0,0,-6.2831853;

<u>AF</u>,,0;

MT10000,-1000;

CK;

MT-1000,0;

<u>GO;</u> <u>CX</u>

Response: None.

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT	CONTOUR	
-	AX – AT Not Valid				
-	AA-AM	Not Valid			
CK;	AA/CD	N/A	N/A	2	

Related commands: CD, CE

CN COSINE ON

The CN command enables cosine velocity ramps; i.e. half sinusoid acceleration profiles, for all axes. The cosine profile is not truncated in moves cannot reach full velocity, but instead the velocity is reduced sufficiently to preserve the cosine profile. This command should not be given while an axis is in motion or the results may be unpredictable. This command affects all axes even if issued in the single axis mode. The PF command is used to return to linear motion profiles. See the AP command, page 5-33, to preserve the CN setting as the Power up/Reset ramp.

1

Example: Set the board to be in cosine mode.

Enter: CN;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
CN;	AX - AT	5	24	
CN;	AA-AM	5	24	
-	AA/CD	Not Valid		

Related commands: LA, PF, PN, PR, ?RT, SC, SR

CR CIRCULAR INTERPOLATION

The CR command defines a move in a circular pattern from the entry position. The first two parameters are the center of the circle in absolute units and the third parameter is the distance to move in radians. Positive radians equal counterclockwise movement. Negative radians equal counter clockwise movement. The radius of the circle is the linear distance between the current position and the first two parameters of the CR command.

The CR command generates a circle by breaking the circle into a series of linear segments. The number of segments will be equal to the total distance traveled divided by the contour velocity divided by the update rate. If finer resolution is required, the MT command may be used to produce smaller segments but the segments must be calculated by the user

RANGE:

Min Pos. Value ≤ Parameter 1 (First Coordinate for Center of Circle) ≤ Max Pos. Value Min Pos. Value ≤ Parameter 2 (Second Coordinate for Center of Circle) ≤ Max Pos. Value

Note: The minimum and maximum position value depends on the settings used on PC78, see the specifications for more detail.

1

Example: (see <u>CD</u> command on page 5-44)

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	CONTOUR
-	AX - AT	Not Valid		
-	AA-AM Not Valid			
CR#,#,#;	AA/CD	N/A	N/A	8

Related commands: CD, MT

CV CONTOUR VELOCITY

The CV command allows specification of a contouring velocity. It is executed from the AA mode before a contour definition. A contour defined by a CD command cannot be executed if followed by a CV command. Changing this parameter will make any previously defined contours invalid. The contour velocity defaults to 1000 at power up or reset. Use WQ between contour definitions to avoid having a CV associated with a second contour definition affect a prior contour still in motion. A CV cannot be issued between a CD and CE command. To change the contour velocity within a contour definition, use the NV command.

RANGE: 1 ≤ CV ≤ 4,000,000

1

Example: (see <u>CD</u> command on page 5-44)

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
-	AX - AT	Not Valid		
CV#;	AA-AM	Immediate	_	
-	AA/CD	Not Valid		

Related commands: CD, NV

CW CLEAR WHILE

The CW command breaks the $\underline{\text{WH}}$ loop upon execution of the remaining commands in the loop; i.e. the current execution of the loop is finished. The $\underline{\text{WH}}$ loop is always executed at least one time since the test for the flag is at the bottom.

Z

Example: (see <u>WH</u> command page 5-204)

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
CW;	AX - AT	Immediate		
CW;	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: WG, WH

CX CONTOUR EXECUTE

The CX command will execute the previously defined contour sequence. The stage must be positioned such that it can accelerate to speed by the absolute position specified by the <u>CD</u> command it is executing and must be traveling in the proper direction. Once a contour is defined it may be executed at any time by executing a CX command until it is replaced by another contour definition. The CX command cannot be placed within a loop or while construct.

*

Example: (see <u>CD</u> command on page 5-44)

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
- AX – AT Not Valid				
CX;	AA-AM	6*	2*	
-	AA/CD	Not Valid		

- If the axis is a stepper and encoder or servo add 1 to the command queue.
- If <u>PA</u> (power automatic) mode is active add 2 to the command queue.
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue.

QUEUE REQUIREMENTS				
Axis Ramp Type	COMMAND QUEUE	ARGUMENT QUEUE		
Linear (PF, LA)	4	4		
Short Form Parabolic (PN0, PR0)	4	8		
All other Parabolic Forms (PN, PR)	4	22		
Cosine (CN, SC)	4	22		
Custom (<u>SR</u>)	4	(2*number of ramp segments) + 2		

Related commands: CD, CE, CK, ID

?DA PRINT A CUSTOM RAMP

This command will report the entries of a previously defined custom ramp table.

RANGE: 1 ≤ Ramp Table Numbers ≤ 8

Example: Print out custom ramp table #2

Enter: ?DA2;

Response: <u>DAR</u>2<LF>

DAB0.10000000,0.200000000<LF>
DAB90000,0.80000000<LF>
DAB10000,1.00000000<LF>

DAE<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?DA#;	AX - AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: DAB, DAE, DAR, ?DE, ?DS

DAB DEFINE CUSTOM RAMP BREAKPOINT

The DAB command sets a breakpoint in a custom ramp table. This is the only command that should be used after <u>DAR</u> and before <u>DAE</u>. Each custom ramp may contain up to 25 breakpoints, each defined by a DAB command.

The DAB command takes two parameters; the first specifies the acceleration level that should be used to achieve the second parameter, velocity level. Both levels are expressed in terms of percentage in decimal format; i.e. 1.00 is 100%. At no time should a DAB command be entered in which the velocity parameter is less than the velocity parameter of the prior DAB. The PC78 will not flag this as a command error but the results of such a ramp will be unpredictable. Each DAB command sent should be equal to or greater than the DAB command that preceded it. It is the user's responsibility to make sure this command is used properly.

RANGE:

0.0000000 ≤ Parameter 1 ≤ 1.00000000 0.0000000 ≤ Parameter 2 ≤ 1.00000000

Example:

See the <u>DAR</u> command (page 5-56) for a complete example of a custom profile.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
DAB#,#;	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: <u>?DA, DAR, DAE, ?DS, ?DE, SR</u>

DAE END CUSTOM RAMP DEFINITION

The DAE command terminates a custom ramp table definition initiated by the DAR command.

Example:

See the $\underline{\mathsf{DAR}}$ command (page 5-56) for a complete custom ramp table definition.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
DAE;	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: <u>?DA</u>, <u>DAR</u>, <u>DAB</u>, <u>?DS</u>, <u>?DE</u>, <u>SR</u>

DAR BEGIN CUSTOM RAMP DEFINITION

The DAR command starts the definition of a custom ramp table. A parameter supplied with this command, from 1 to 8, specifies which ramp table to create. If a ramp table by that number has already been defined, it will be overwritten.

Once the DAR command has been issued, only the <u>DAB</u> and <u>DAE</u> commands will be valid. A series of ramp table breakpoints may be entered using the <u>DAB</u> command which define the profile breakpoints for this ramp table. Up to 25 breakpoints may be defined but a smaller number may be used. A ramp table containing no breakpoints is invalid and will result unpredictably if used.

RANGE: 1 ≤ DAR ≤ 8

Example: Create a ramp table definition resembling a jerk-limited linear profile.

Enter: DAR3; * Store as table #3

 DAB.1,.05;
 * Ramp at 10% of AC until 5% of VL

 DAB.3,.1;
 * Ramp at 30% of AC until 10% of VL

 DAB.9,.9;
 * Ramp at 90% of AC until 90% of VL

 DAB.3,.95;
 * Ramp at 30% of AC until 95% of VL

 DAB.1,1;
 * Ramp at 10% of AC until 100% of VL

DAE; * End table definition

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
DAR#;	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: ?DA, DAB, DAE, ?DE, ?DS, SR

?DB REPORT DIRECTION BIT LOGIC

The ?DB command reports the direction bit logic: inverted or normal. If the direction bit is low when moving positive, this command will return 'normal'. If the direction bit has been inverted, this command will return inverted.

1

Example: Report whether the direction bit for the T axis is low or high when making

positive moves

Enter: AT; ?DB

Response: dbi<LF> (The inverted result indicates the T axis direction bit is high for

positive moves)

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?DB	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: DBI, DBN, ?SV

DBI INVERT DIRECTION BIT

The DBI command inverts the logic of the direction control output of the addressed axis or axes. By default, the direction output of an axis is a TTL low when traveling in the positive direction and high when traveling negative. After using the DBI command, the direction bit will be high when traveling positive and low when traveling negative. This is useful for inverting the logical direction of a motor when the encoder counts opposite the motor direction. This command can be canceled using the DBN command. To make this the default at power up or reset, use the AP command.

1

Example: Set the direction outputs for axes Z and T to output high when traveling

positive and low when traveling negative. Leaves X and Y as they are.

Enter: <u>AZ</u>;

DBI; AT; DBI; Or AA; DBI,,1,1;

Response: None.

Note: In <u>AA</u> or <u>AM</u> mode a null value in the argument list specifies that the sense of that direction bit is not to be changed.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
DBI;	AX - AT	1	0
DBlb,b,b,b;	AA-AM	1	0
-	AA/CD	Not Valid	

Related commands: BI, ?DB, DBN, SVI, SVN, UN

DBN NORMALIZE DIRECTION BIT

The DBN command normalizes the logic of the direction control output of the addressed axis or axes, returning their output logic to default; i.e. TTL low when traveling in the positive direction and high when traveling negative. This command negates the effect of the DBI command. To make this the default at power up or reset when DBI has already been made the default, use the AP command.

•

Example: Set the direction outputs for axes Z and T to default output logic; i.e.

output high when traveling positive and low when traveling negative.

Leave X and Y as they are.

Enter: AZ;

DBN;
AT;
DBN;
Or
AA;

DBN,,1,1;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
DBN;	AX - AT	1	0
DBNb,b,b,b;	AA-AM	1	0
-	AA/CD	Not Valid	

Related commands: BI, ?DB, DBI, SVI, SVN, UN

DC DECELERATION

The DC command sets a deceleration rate overriding the <u>AC</u> parameter when the <u>GU</u> command is used to initiate a move. Only the <u>GU</u> command will use the DC value. The deceleration rate defaults to 200,000 and will take on whatever value is entered via the <u>AC</u> command. Therefore, the DC command must be reentered after using <u>AC</u> if a different deceleration rate is desired.

RANGE: 1 ≤ DC ≤ 1044000

Note: The range denotes values after User Units have been applied. (See <u>UU</u> command.)

Example:

Send the Y axis on a 100,000 count move that accelerates at 100,000 counts per second per second up to 50,000 counts per second and

decelerates at 20,000 counts per second per second.

Enter: AY;

AY; AC100000; DC20000; VL50000; MR100000;

<u>GU</u>;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
DC#;	AX - AT	1	1
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: AC, GU, RC, VB, VL

?DE REPORT A CUSTOM RAMP TABLE ENTRY

5-61

The ?DE command will return a specific entry from a specific custom ramp table. The first parameter specifies the table to examine and the second parameter specifies the entry to return from the table.

RANGE:

1 ≤ Parameter1 ≤ 8 1 ≤ Parameter2 ≤ 25

•

Example: We can't remember what the 23rd breakpoint in table 4 was set to. Use

the ?DE command to find out.

Enter: ?DE4,23;

Response: <LF> (there is no 23rd entry in table 4)

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?DE#,#;	AX - AT	Immediate	
-	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: <u>?DA</u>, <u>DAB</u>, <u>DAE</u>, <u>DAR</u>, <u>?DS</u>

?DS REPORT THE SIZE OF A CUSTOM RAMP TABLE

The ?DS command returns the number of segments in the specified custom ramp table.

RANGE: 1 ≤ ?DS ≤ 8

Example: The 3rd custom ramp should be 17 breakpoints long. Make sure this is

true.

Enter: ?DS3;

Response: 17<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?DS#;	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: <u>?DA</u>, <u>DAB</u>, <u>DAE</u>, <u>DAR</u>, <u>?DE</u>

DZ DEFINE ZERO POSITION IN OPEN-LOOP MODE

The DZ command defines the offset coefficient needed to produce a zero or stationary position by the servo motor. This command is used in the open-loop mode, hold off (HF). The factory default value is zero. See the AP Command on page 5-33 to preserve the DZ settings as the

Power up/Reset values.

Value range: -32640 to +32640

Example: Define the offset coefficient to be 250 for the X axis.

Enter: AX; DZ250;

Response: None

QUEUE REQUIREMENTS			
MODE	Min (pf)	Max (pn/cn)	Custom ramp
AY – AT	2	2	Not valid
AA-AM	Not Valid		
AA/CD	Not Valid		

Related commands: ?DZ, ?KO

?DZ REPORT DAC OPEN-LOOP OFFSET

The ?DZ command reports the current setting of the <u>DZ</u> command in <u>DZ</u> command format.

Example: The closed-loop offset needs to be set the same as the open-loop offset.

We've already set the open-loop offset but forgot what value we used.

Send the ?DZ command to find out.

Enter: ?DZ;

Response: dz28<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	Min	Max
?DZ	AY – AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: DZ, ?KO

EA ENCODER STATUS

The EA command returns encoder status of the currently addressed axis or axes in the following format:

	EA COMMAND RESPONSE DESCRIPTION		
CHAR	SENT	DESCRIPTION	
1	LF	Line feed	
2	CR	Carriage return	
3	CR	Carriage return	
4	Е	Slip detection enabled	
4	D	Slip detection disabled	
5	Е	Position maintenance enabled	
3	D	Position maintenance disabled	
6	S	Slip or stall detected (reset by execution of EA command)	
O	N	No slip or stall detected	
7	Р	Position Maintenance within deadband	
1	N	Position not within deadband	
8	Н	Axis is home	
0	N	Axis is not home	
9	N	Unused/reserved	
10	LF	Line feed	
11	CR	Carriage return	
12	CR	Carriage return	

*

Example: Examine the status of the Y axis encoder.

Enter: AY;

EΑ

Response: DDNNNN<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
EA	AX - AT	Immediate	
EA	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: QA, QI, RA, RI

EF ECHO OFF

The EF command disables echoing from the PC78 motion system. This is the default mode at power up or reset.

1

Example: Stop echoing to the host.

Enter: EF;

Response: None

QUEUE REQUIREMENTS				
MODE	Min (pf)	Max (pn/cn)	Custom ramp	
AY – AT	Immediate			
AA-AM	Immediate			
AA/CD	Not Valid			

Related commands: EN

EH DEFINING ENCODER HOME

<u>HH</u> and <u>HL</u> commands are active in <u>HE</u> mode. This allows for an encoder home operation with the Home Switch being active HIGH. Previous OMS controllers required and active LOW Home Switch to do an encoder home operation, and this will be the "default" setting here as well. This command sets the true states of the A, B, and Index encoder signals and the true state of the Home Switch for the Encoder Home condition.

The new EHbbbb command provides variants that will completely determine the logic states of encoder signals A, B, Index, and Home Switch that make for a true encoder home event. This allows the user more flexibility to adapt to the schemes of most encoder manufacturers. All bbbb are ones (1) or zeros (0) representing the states of the Home Switch, Index, Phase B and Phase A, respectively, or X to indicate a "don't care" condition.

Format: <u>AX-AT</u>: EHbbbb

All b's are 0, 1, or X representing the states of Home Switch, Index, Phase B, and Phase A respectively. A 1 represents a high true state, a 0 represents a low true state, and an X represents a "don't care" state.

1

Example: AX-AT: for the currently selected axis, the EH command: sets true states

as follows:

EH1000; HomeHigh/Index low/PhaseB low/PhaseA low EH0100; HomeLow/Index high/PhaseB low/PhaseA low EH0010; HomeLow/Index low/PhaseB high/PhaseA low EH0001; HomeLow/Index low/PhaseB low/PhaseA high

EH01XX: HomeLow/Index high/PhaseB "don't care"/PhaseA "don't care"

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
EHbbbb;	AX – AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: ?EH

?EH QUERY ENCODER HOME

The ?EH reports the state of the Home Switch, Index, Phase A and Phase B true states in both single axis and multi-axis modes. It is an immediate command and does not require any queue space.

Example: ?EH AX- AT Single axis mode

The controller's response to the ?EH command has the following meaning:

eh1000	HomeHigh/Index low/PhaseB low/PhaseA low
eh0100	HomeLow/Index high/PhaseB low/PhaseA low
eh0010	HomeLow/Index low/PhaseB high/PhaseA low
eh0001	HomeLow/Index low/PhaseB low/PhaseA high

eh01XX HomeLow/Index high/PhaseB "don't care"/PhaseA "don't care"

NOTE: The encoder home pattern set by the $\underline{\sf EH}$ command and the true logic state of the home switch as set by the $\underline{\sf HL}$ or $\underline{\sf HH}$ command are archived in the flash with the parameter archive commands.

The factory default encoder home pattern and home switch state would be the same as the current OMS standard home pattern, that is, Encoder Home pattern is Index HIGH, Phase A HIGH, Phase B LOW and the Home Switch is active LOW.

EN ECHO ON

The EN command enables echoing. All commands and parameters will be echoed to the host. This mode is useful for debugging command strings from a terminal. This mode also outputs an English readable error message to the host which may be echoed to the terminal or computer to aid in debugging.

1

Example: Enable echoing by the PC78 so that commands are echoed and the error

message is returned to the host as a readable ASCII string. This command would probably be the first command executed after turning on

the system when this mode is desired.

Enter: EN;

Response: None

QUEUE REQUIREMENTS				
MODE	Min (pf)	Max (pn/cn)	Custom ramp	
AX - AT	Immediate			
AA - AM	Immediate			
AA/CD	Not Valid			

Related commands: EF

ER ENCODER RATIO

The ER command allows specification of encoder:motor ratio for position maintenance mode. This command is not designed for use with servo motors. ER takes two arguments: encoder counts and motor counts. Both parameters must be integers unless user units (<u>UU</u>) are enabled. The ratio need not be per full revolution; reduce the fraction as far as possible and use those values.

The factory default ratio is 1:1. See the <u>AP</u> command, page 5-33, to preserve the ER settings as the Power up/Reset values.

NOTE: That if an encoder ratio has been defined by the ER command, then the slip tolerance defined by the ES command is defined in encoder units and not in motor units.

Parameter 1 = Encoder Count

Parameter 2 = Motor Counts

Example: You have an encoder connected to a stepper motor through a series of

gears. When the motor steps 25,000 times, the encoder produces 10,000 counts. Set up an encoder ratio so hold mode will work correctly.

Enter: ER10000,25000;

or

ER2,5;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
ER#,#;	AX - AT	1	0
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: <u>?ER</u>

?ER REPORT MOTOR:ENCODER RATIO

The ?ER command reports the motor-to-encoder ratio as set with the ER command.

Example: Find out what the last <u>ER</u> command sent was.

Enter: ?ER

Response: er2.00000000<LF>

(The encoder produces 1 count for every 2 steps of the motor.)

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?ER	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: **ER**

ES ENCODER SLIP TOLERANCE

The ES command parameter specifies the slip detection tolerance before slip or stall is flagged in the status register and in the <u>RL</u> command response. The encoder may get off target by as much as this value before the PC78 will consider the axis slipped. This mode must be turned on with an <u>IS</u> command and off with an <u>HF</u> command. The factory default value is 1. For servo motors, the default is 32,767. This value determines when the PID is disabled due typo excessive following error. See <u>AP</u> command (see page 5-33) to preserve the ES settings as the Power up/Reset values.

NOTE: If an encoder ratio is defined with the $\underline{\mathsf{ER}}$ command, then the slip tolerance defined by the ES command is in encoder units and not in motor units.

NOTE: The <u>GS</u> command allows an open-loop stepper axis to perform a limited form of slip detection by using the home switch as a reference when executing a move command.

STEPPER RANGE: $0 \le ES \le 65,535$

SERVO RANGE: $0 \le ES \le 327,670$

Fxampl

Example: Your application can tolerate being up to 5 steps from the desired

position before the controlling program should be notified of a slip

condition.

Enter: ES5;

<u>IS</u>;

Response: None.

NOTE: That if an encoder ratio has been defined by the $\overline{\text{ER}}$ command, then the slip tolerance defined by the ES command is defined in encoder units and not in motor units.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
ES#;	AX - AT	1	1	
-	- AA-AM Not Valid			
-	AA/CD	Not Valid		

Related commands: ?ES, IS, RL, TF, TN

?ES REPORT ENCODER SLIP TOLERANCE

The ?ES command reports the current value of the slip detect tolerance assigned to an axis.

3 |

Example: Report the current value for encoder slip detection tolerance

Enter: ?ES

Response: es15<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?ES	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: ES

ET ENCODER TRACKING

The ET command turns on the encoder tracking mode. The axis will track its encoder input, thus allowing one axis to follow the activity of another or a thumbwheel for manual positioning or the movement of another device that produces a signal compatible to the encoder inputs. No acceleration or deceleration ramps are generated. The axis will duplicate the encoder input. The ER command allows the user to scale the motor's movements relative to the encoder. This command is intended to be used with stepper motors with encoders and not with servo motors.

Example: Set up the Y axis so it will follow its encoder input.

Enter: AY

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
ET;	AY – AT	1	1	
-	- AA-AM Not Valid			
-	AA/CD	Not Valid		

Related commands: ER, HF

FL FLUSH

The FL command will flush an individual axis' queues. This command is similar in operation to the <u>KL</u> and <u>ST</u> commands except that current motion will remain unaffected by the FL command. All unexecuted commands remaining in the current axis queue will be flushed upon receipt of this command.

*

Example: Several motion commands have been sent to the X axis but a situation

arose and now those commands must be cleared out. The currently executing motion must be allowed to complete to avoid damage to the

product.

Enter: AX

FL;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
FL;	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: KL, KS, SA, ST

FP FORCE POSITION

The FP command will flush the command queue and attempt to stop at the specified position. The axis will overshoot if there is insufficient distance left to stop at the programmed acceleration. This command should not be given to a servo axis while it is in motion; the results may be unpredictable. Force the axis to stop at a specified position.

1

Example: Force axis to stop at 25,000.

Enter: FP25000;

Response: None

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
FP#;	AX - AT	2*	1*
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

- If <u>PA</u> (power automatic) mode is active add 1 to the command queue
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue

Related commands: MM, MP, MV, SP

FX ENABLE AXIS GANTRY MODE

The FX command pairs the current axis with the X axis to form a gantry crane. (i.e. the axis follows the X axis.)

1

Example: Pair the X and Y axis to form a gantry crane.

Enter: AY;

FX;

Response: None

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
FX;	AY – AT	1	0	
-	- AA-AM Not Valid			
-	AA/CD	Not Valid		

Related commands: None

GD GO AND RESET DONE

The GD command may be substituted for a GO command. It will reset the done flags and then initiate the move which has been previously programmed with such commands as MA, MR, MT, and ML just as the GO command does. In single axis mode, only the done flag for the selected axis will be reset.

In <u>AA</u> mode, all the done flags will be reset. In the <u>AM</u> mode, only the axes involved in the move will be reset. This allows the host to reset the interrupts on the axis involved in the next move without affecting other axes which may be still active. Note that this command is probably only useful in applications where commands are queued in advance since the interrupt may be reset before the host has the opportunity to service it if the GD command is waiting in the queue.

If this command is issued without having defined a move, the results are undefined. Issuing a GD command to execute an already-executed move also has undefined results. Only one GD command should be issued per defined move.

Example: In the single axis mode, move the Y axis 12345 counts in the negative

direction and set the done flag when the move is completed. Then clear the done flag, move the motor 12345 counts in the positive direction, and

set the done flag again when the move is completed.

Enter: AY;

MR-12345;

GO; ID;

MR 12345;

GD; <u>ID</u>;

Response: None.

Example: In AA mode, perform a linear absolute move with the X and Y axes to the

position 10000, 20000 and set the done flag when the move is completed. Then clear the done flag, perform a linear relative move on both axes moving the X axis 10000 steps in the negative direction and the Y axis 20000 steps in the negative direction, and set the flag once

again.

Enter: AA

MT10000,20000;

GO;

ML-10000,-20000;

GD;

Response: None.

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
GD;	AX - AT	6*	0*
GD;	AA-AM	8*	0*
-	AA/CD	Not Valid	

- If the axis is a stepper and encoder or servo axis add 1 to the command queue and add 2 to the argument queue.
- If <u>PA</u> (power automatic) mode is active add 2 to the command queue
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue

Related commands: GO, GN, GS, GU, MA, ML, MR, MT,

GN **GO AND NOTIFY WHEN DONE**

The GN command will initiate a move which has been previously programmed with such commands as MA, MR, MT, and ML and set the axis done flags when the move is complete. No operand is required with the GN command. If this command is issued without having defined a move, the results are undefined. Issuing a GN command to execute an already-executed move also has undefined results. Only one GN command should be issued per defined move.

Example:

In the single axis mode, move the X axis to absolute position 12345.

Enter: AX;

MA12345;

GN:

None

Response:

Example:

In the AA mode, move the X axis 2468 steps in the positive direction and

the Y axis 2468 steps in the negative direction.

Enter:

MR2468,-2468;

GN:

Response: None

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
GN;	AX - AT	6*	0*
GN;	AA-AM	7*	0*
-	AA/CD	Not Valid	

- If the axis is a stepper and encoder or servo axis add 1 to the command queue and add 2 to the argument queue.
- If PA (power automatic) mode is active add 2 to the command queue
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue

Related commands: GD, GN, GS, GU, MA, ML, MR, MT

GO GO

The GO command will initiate a move which has been previously programmed with such commands as MA, MR, MT, and ML. No operand is required with the GO command. If this command is issued without having defined a move, the results are undefined. Issuing a GO command to execute an already-executed move also has undefined results. Only one GO command should be issued per defined move.

Example: In the single axis mode, move the X axis to absolute position 12345.

Enter: AX;

MA 12345; GO;

Response: None

Example: In the AA mode, move the X axis 2468 steps in the positive direction and

the Y axis 2468 steps in the negative direction.

Enter: AA;

MR2468,-2468;

GO;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
GO;	AX - AT	5*	0*	
GO;	AA-AM	7*	0*	
-	AA/CD	Not Valid		

- If the axis is a stepper and encoder or servo axis add 1 to the command queue and add 2 to the argument queue.
- If <u>PA</u> (power automatic) mode is active add 2 to the command queue
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue

Related commands: GD, GN, GS, GU, MA, ML, MR, MT

GS GO AND MONITOR SLIP TRIGGER

The GS command works exactly like the GO command except that the home switch will be monitored during the motion. If the home switch becomes active the slip flag will be set for the axis. The host application can read the slip flag and see that the home switch was encountered during the move. This is useful in applications that register slip conditions by means other than encoder position verification; in fact, this command is not valid in controls with encoder feedback which includes servo motors.

If this command is issued without having defined a move, the results are undefined. Issuing a <u>GD</u> command to execute an already-executed move also has undefined results. Only one <u>GD</u> command should be issued per defined move.

*

Example: Move the X axis 50,000 counts in the positive direction. If the motor slips

it will close a switch wired to the home input of the X axis. Monitor this switch during the move and set the slip flag for axis X if the switch

becomes active.

Enter: <u>AX</u>;

MR 50000;

GS;

Response: None

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
GS;	AX - AT	5*	0*
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

- If the axis is a stepper and encoder or servo axis add 1 to the command queue and add 2 to the argument queue.
- If <u>PA</u> (power automatic) mode is active add 2 to the command queue
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue

Related commands: GD, GN, GO, GU, MA, MR

GU GO ASYMMETRICAL

The GU command initiates a previously defined move using the <u>AC</u> value for acceleration and the <u>DC</u> value for deceleration. This command may be used with only one axis at a time; i.e. it is not valid with the <u>ML</u> and <u>MT</u> commands.

If this command is issued without having defined a move, the results are undefined. Issuing a GU command to execute an already-executed move also has undefined results. Only one GU command should be issued per defined move. GU is used only with linear acceleration ramps

S Ex

Example: Move the Y axis to position 1,500 using the current acceleration and

velocity and a deceleration of 5,000 counts per second per second.

Enter: AY;

DC5000; MA1500; GU;

Response: None

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
GU;	AX - AT	3*	0*	
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

- If the axis is a stepper and encoder or servo axis add 1 to the command queue and add 2 to the argument queue.
- If PA (power automatic) mode is active add 2 to the command queue
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue

Related commands: AC, DC, GD, GN, GO, GS, MA, MR

HD HOLD DEADBAND

The HD command specifies dead band counts for position maintenance mode. If the encoder count is within this distance of target, it is considered in position and no further correction will be made. This parameter interacts with the HG and HV commands; i.e. a larger dead band will allow a larger gain parameter in many applications. This command is designed to work with stepper motor applications using encoders and is not designed for use with servo motors. The factory default value is zero. See the AP command, page 5-33, command to preserve the HD settings as the Power up/Reset values.

RANGE: 0 ≤ HD ≤ 64,000

Example: (see <u>HN</u> command page 5-92)

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
HD#;	AX - AT	1	1
HD#,#,#,;	AA-AM	1	1
-	AA/CD	Not Valid	

Related commands: ?HD, HF, HG, HN, HV

?HD REPORT POSITION MAINTENANCE DEADBAND

The ?HD command reports the current setting of the <u>HD</u> command. This command will only work on stepper axes with encoders.

Example: Find out what HD was last set to.

Enter: ?HD

Response: hd5<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?HD	AX - AT	Immediate	
_	AA-AM	Not Valid	
_	AA/CD	Not Valid	

Related commands: HD, ?HG, ?HV

HE HOME ENCODER

The HE command enables encoder index, and phase A and B signals to be considered in addition to the home switch input when an <u>HM</u> or <u>HR</u> command is executed. This command does not execute the home motion which must be initiated with an <u>HM</u>, <u>HR</u>, <u>KM</u>, or <u>KR</u> command. Default home behavior (considering only the home switch for home commands) may be reestablished via the <u>HS</u> command. In the HE mode, home is defined as the logical AND of the encoder index, the external home enable and the encoder quadrant where channel A is positive and channel B is negative. The default home logic expressed in Boolean terms is:

Home = Phase_A × / Phase_B * Index × / Home_Switch

The default logic can be changed to any required combination with the use of <u>HL</u> and <u>HH</u> commands to set the true home switch state and the <u>EH</u> command to set the encoder signal (Index, PhaseA and PhaseB) states required for a true home condition.

Z

Example: Set up the Y axis so it will use the encoder signals to recognize the home

position.

Enter: AY;

HE; or

AA; HE,1;

Response: None

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
HE;	AX - AT	Immediate	
HEb,b,b,b;	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: EH, HH, HL, HM, HR, HS, KM, KR

HF HOLD OFF

The HF command disables position hold, stall detection and tracking modes, for stepper with an encoder axis. If the current axis is a servo, this command will open the loop and turn off the PID. If the current mode is multi-axis, all axes will go into open-loop mode. This is the default mode at power up or reset.

Example: Turn off encoder hold mode on the X axis.

Enter: AX;

Response: None

NOTE: In \underline{AA} or \underline{AM} mode, a null value in the argument list specifies feedback for that axis is not to be disabled.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
HF;	AX - AT	2*	0*
HF;	AA-AM	2*	0*
-	AA/CD	Not Valid	

^{*}Values in table are for a stepper with encoder axis. For a servo axis the command queue requires 1, and the argument queue requires 1.

Related commands: HN, ?PM

HG HOLD GAIN

The HG command allows the user to specify the position hold gain parameter. This gain parameter is multiplied by the position error in determining the velocity during correction. The velocity used will not exceed the value set with the hold velocity (HV) command. This command is designed to work with stepper motor applications using encoders and is not designed for use with servo motors. The parameter should be set experimentally by increasing it until the system is unstable then reducing it slightly below the threshold of stability. The factory default value is 1. See the AP command, page 5-33, to preserve the HG settings as the Power up/Reset values.

RANGE: $1 \le HG \le 32,000$

Example: (see <u>HN</u> command (page 5-92))

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
HG#;	AX - AT	1	1
HG#,#,#;	AA-AM	1	1
-	AA/CD	Not Valid	

Related commands: HD, HF, ?HG, HN, HV

?HG REPORT POSITION MAINTENANCE GAIN

The ?HG command reports the current setting of the position maintenance hold gain constant for the current axis. This command works only with stepper + encoder axes.

Example: Position corrections seem slow. Check the setting of HG to be sure it is

correct.

Enter: ?HG

Response: hg100<LF >

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?HG	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: ?HD, HG, ?HV

HH HOME HIGH

The HH command sets the sense of the home switch on the current axis to active TTL high. This command allows TTL logic high to be treated as the "true" state for applications where this is more convenient. Once this command has been sent to the PC78, active high homes can be made the power-up default by using the AP command; refer to the AP command for details. This command sets the home switch "true" state to TTL logic high for both the HS and HE modes of the home operation.

Example: (see HL command on page 5-89)

Note: In \underline{AA} or \underline{AM} modes, a null argument in the parameter list specifies that axis home switch to be unchanged.

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
HH;	AX - AT	1	0
HHb,b,b,b;	AA-AM	1	0
-	AA/CD	Not Valid	

Related commands: EH, HE, HL, HM, HR, HS, KM, KR

HL HOME LOW

The HL command sets the sense of the home switch on the current axis to active TTL low. This is the power-up and reset default "true" state unless <u>HH</u> has been saved as a user power-up default (See the <u>AP</u> command, page 5-33.). This command sets the "true" state of a home input to a TTL logic low.

This command sets the home switch "true" state to TTL logic low for both \underline{HS} and \underline{HE} modes of home operation.

1

Example: The stage is moved through home with the home switch set for active low

at low speed to meet the less than 2048 steps per second requirement of

the home command.

Enter: AX;

<u>VL</u>2000; HL; <u>HM</u>0;

Response: None

Note: In \underline{AA} or \underline{AM} modes, a null argument in the parameter list specifies that axis home switch to be unchanged.

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
HL;	AX - AT	1	0
HLb,b,b,b;	AA-AM	1	0
-	AA/CD	Not Valid	

Related commands: EH, HH, HE, HS, HM, HR, KM, KR

HM HOME

The HM command will cause the current axis or specified axes to move in the positive direction at the predefined velocity until the home is detected for each axis. The position counters will be initialized to the positions supplied as parameters.

How home is detected depends on whether the $\underline{\mathsf{HS}}$ or $\underline{\mathsf{HE}}$ modes has been selected. The default mode, $\underline{\mathsf{HS}}$, detects home based on an external home input only. The $\underline{\mathsf{HE}}$ mode detects home based on the external home input and the encoder signals (Index, PhaseA and PhaseB).

The velocity should be less than the update rate to maintain accuracy of the home position loaded. A velocity set to less than or equal to the update rate will provide a homing accuracy of +/-0 counts. Every multiple of the update rate adds +/-1 count to the error range.

Each axis will, when home is detected, reset its position counter to the parameter specified in the HM command. Once the counter is reset, the axis will ramp to a stop at the rate specified previously via the AC command. This will result in the axis stopping beyond the home switch so care should be taken to ensure adequate stopping distance is available beyond the switches. The axis can be easily returned to the precise home position by using an MA command after the HM command.

If no parameter is specified in single axis modes, the HM command will use zero as a default value. Parameters must be specified in multi-axis modes to inform the PC78 which axes are to be homed.

*

Example:

Find the physical home position of the X axis of the stage. The motor runs until the home switch input is activated and then initializes the position counter to the parameter supplied. Since the motor decelerates to a stop after reaching home, it is necessary to do an MA to the same position as specified in the home command if it is desired to physically position the device at home. The following commands will find home, initialize it to 1000 counts, and then return to home. In many cases it will not be necessary to return home, only find the position and synchronize the controller to it.

Enter: AX;

<u>VL</u>1000; HM1000; <u>MA</u>1000; <u>GO</u>;

Response:

None

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
HM#;	AX - AT	3*	1*
HM#,#,#;	AA-AM	3*	11*
-	AA/CD	Not Valid	

Axis Ramp Type	Command queue	Argument queue
Linear (<u>PF</u> , <u>LA</u>)	4	4
Short Form Parabolic (PN0,	4	6
<u>PR</u> 0)		
All other Parabolic forms (PN,	4	22
PR)		
Cosine (CN, SC)	4	22
Custom (SR)	4	(2 x number of ramp
		segments) +2

- If the axis is a stepper and encoder or servo axis add 2 to the argument queue.
- If <u>PA</u> (power automatic) mode is active add 2 to the command queue.
- If an auxiliary output bit settle time has been specified add 2 to the command queue and 1 to the argument queue.
- If the last profile move, just prior to this home command was either a MT or ML move then the axis acceleration and velocity values will be reset to the AC and VL values just prior to the execution of the home. This will add to the queue requirements under the following conditions:

Related commands: <u>HE, HH, HL, HR, HS, KM, KR, LO, LP, RP</u>

HN HOLD ON

For servo axes, the HN command closes the loop, enabling the PID. For servo axes, this mode is disabled when the <u>HF</u> command is entered, when the servo error becomes too large or a limit is encountered.

For stepper with encoder feedback axes, the HN command enables position correction after a move and activates the <u>HV</u>, <u>HG</u> and <u>HD</u> commands for stepper axes with encoders. For stepper exes with encoders, this mode will be cancelled (as though via an HF commands) is an <u>CG</u>. <u>CX</u>, <u>HM</u>, <u>HR</u>, <u>LP</u>, <u>MV</u>, <u>SA</u>, <u>SO</u>, <u>SP</u>, or <u>ST</u> commands is entered, if a limit is encountered or the minimum allowable position error is executed.

(Stepper)

Example: The following commands could be used to set up the position correction

mode on a stepper axis. This sequence sets up a move velocity of 100,000 steps per second and an acceleration of 500,000 steps per second per second. The position correction velocity is set for 50,000 steps per second, a deadband of 10 steps and correction gain of 2,000. The correction is then enabled. A 200,000 step move is performed, then that position is maintained within the 10 step deadband until commanded

to a new position.

Enter: AX;

VL100000; AC500000; HV50000; HD10; HG2000; HN;

MR200000;

GO:

Response: None

(Servo)

Example: Close PID loop or X axis after having modified one of the PID parameters

Enter: <u>AX</u>;

HN;

Response: None.

QUEUE REQUIREMENTS				
MODE Min (pf) Max (pn/cn) Custom ramp				
AX - AT	1	3	3	
AA	1	3	3	
AM	1	3	1	
AA/CD	Not Valid			

Related commands: HF

HR HOME REVERSE

The HR command will cause the current axis or specified axis to move in the negative direction at the predefined velocity, until the home is detected for each axis. When the home input is detected, the position and encoder counters are loaded with the parameter(s) supplied in the HR command. Then the axis is ramped to a stop. It behaves exactly like the <u>HM</u> command, except it travels in the reverse direction.

How home is detected depends on whether the <u>HS</u> or <u>HE</u> modes has been selected. The default mode, <u>HS</u>, detects home based on an external home input only. The <u>HE</u> mode detects home based on the external home input and the encoder signals (Index, Phase A and Phase B).

1

Example:

In a long stage it may be awkward to travel the full distance to home at less than the update rate. The following will get close to home at higher speed, and then refine the position at lower speed in the reverse direction.

Enter: AX;

VL100000;

HH; HM; VL1000; HL; HR:

Response: None

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
HR#;	AX - AT	3*	1*
HR#,#,#;	AA-AM	3*	1*
-	AA/CD	Not Valid	

- If the axis is a stepper and encoder or servo axis add 2 to the argument queue.
- If <u>PA</u> (power automatic) mode is active add 2 to the command queue.
- If an auxiliary output bit settle time has been specified add 2 to the command queue and 1 to the argument queue.
- If the last profile move, just prior to this home command, was either a MT or ML move then the axis acceleration and velocity values will be reset to the AC and VL values just prior to the execution of the Home. This will add to the queue requirements under the following conditions:

Axis Ramp Type	Command queue	Argument queue
Linear (PF, LA)	4	4
Short Form Parabolic (PN0,	4	6
<u>PR</u> 0)		
All other Parabolic forms (PN,	4	22
PR)		
Cosine (CN, SC)	4	22
Custom (SR)	4	(2 x number of ramp
		segments) +2

Related commands: $\underline{\text{HE}}$, $\underline{\text{HH}}$, $\underline{\text{HL}}$, $\underline{\text{HM}}$, $\underline{\text{HS}}$, $\underline{\text{KM}}$, $\underline{\text{KR}}$, $\underline{\text{LO}}$, $\underline{\text{LP}}$

HS HOME SWITCH

The HS command disables <u>HE</u> mode and returns the PC78 to the default home behavior. Default behavior defines a home state to be active when the home switch input is either low in default or HL mode or high when in <u>HH</u> mode. This mode can also be used with encoders which contain internal home logic by connecting their output to the PC78 home input for the appropriate axis. The active level of this input may be controlled by the HH and HL commands.

Example:

Set up the Y axis so it will ignore the encoder signals and only use the

home input to recognize the home position.

Enter: AY

HS;

or

<u>AM;</u> HS,1;

Response: None

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
HS;	AX - AT	Immediate	
HSb,b,b,b;	AA-AM	Immediate	
_	AA/CD	Not Valid	

Related commands: HE, HH, HL, HM, HR, KM, KR

HV HOLD VELOCITY

The HV command specifies the maximum velocity to be used when correcting position error. The factory default setting is zero; some value must be set for position correction to occur at all. See the AP command, page 5-33, to preserve the HV settings as the Power up/Reset values. This command is not designed for use with servo motors.

Hold gain (<u>HG</u>) will be used to scale the HV value based on the total error that must be corrected. In most cases the HV value will never be reached unless the position error is very wide or the <u>HG</u> value is set very high.

RANGE: 1 ≤ HV ≤ 1,044,000

Example: (see <u>HN</u> command, see page 5-92)

NOTE: In \underline{AA} or \underline{AM} mode, a null value in the argument list specifies that the hold velocity parameter is not to be changed for that axis.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
HV#;	AX - AT	1	1
HV#,#,#;	AA-AM	1	1
-	AA/CD	Not Valid	

Related commands: HD, HF, HG, HN, ?HV

?HV REPORT POSITION MAINTENANCE VELOCITY

The ?HV command reports the current setting of the position maintenance hold velocity limits for the current axis. This command works only with stepper + encoder axes.

Example: Check the peak correction velocity for the T axis

Enter: AT; ?HV

Response: hv20000<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?HV	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: ?HD, ?HG, HV

IC INTERRUPT CLEAR

The IC command or the ASCII character Control-Y (hex 19) is used to clear the done and error flags in the status register and the done flag register on PC78, otherwise the axis would always appear to be "done". This command will be executed immediately and will usually be placed in the done and error handler interrupt service routine to clear the interrupt and the associated flags. The flags may be polled by an RA or RI command which will also reset the flags.

Note: That this command is not recommended in Windows environments using OMS-supplied device drivers and DLLs. The preferred method is to use the device driver and DLL to handle the reporting and clearing status flags.

•

Example: Clear the flags after an X axis move relative of 5000 steps was flagged

as done when an ID executes.

Enter: AX

MR5000; GO;

ID; (done flag set)

IC; (done flag cleared on PC78)

Response: None

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
IC;	AX - AT	Immediate	
IC;	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: CA, GD, ID, II, IN, IP

ID INTERRUPT WHEN DONE

The ID command will set the done flag for the axis or axes to which the command was issued. An interrupt to the host will be generated if interrupts have been enabled in the PC78. In Windows environments, this interrupt is captured by the device driver which will store the flags to pass on to the host application when requested.

This command allows the PC78 to signal the host when a string of commands has been completed. In AA mode, the done flag register bits will be set as each axis encounters the ID in its command stream, but the done flag in the status register will not be set until all axes have executed the ID command. In the AM mode, only the axes active in the most recent move will set their done flags.

Though move commands are most commonly used with the ID command, others may be used as well. The ID command may be sent to the PC78 to tell it to set done flags whenever the host application could benefit from knowing an event or series of commands has completed.

₹.

Example: Interrupt the host CPU after the execution of Move Absolute is finished.

When the move is finished the ID command will be encountered in the

command queue and will set the done flags.

Enter: <u>AX</u>;

<u>MA</u>100000;

GO;

Response: None

Example:

Wait until an input line becomes false then notify the host that this

occurred.

Enter: <u>SW</u>2;

D;

Response: None

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	CONTOUR
ID;	AY – AT	1	0	N/A
ID;	AA-AM	1	0	N/A
ID;	AA/CD	1	0	1

Related commands: II, IN, IP

II INTERRUPT INDEPENDENT

Like the <u>ID</u> command, the II command tells the PC78 to interrupt the host when each axis finishes a move. Unlike the <u>ID</u> command, only those axes which have been supplied parameters in the most recent move command will get their done flags set and cause interrupts.

Example:

The following command sequence would cause interrupts when the Y and T axes finish. If they do not complete at the same time, two separate interrupts would be generated.

Enter: AM:

MR,1000,,10000;

GO; II;

Response: None

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
-	AX - AT	Not Valid	
II;	AA - AM	1	0
-	AA/CD	Not Valid	

Related commands: ID, IN, IP

IN INTERRUPT NEARLY DONE

The IN command allows the PC78 to interrupt the host when the axis or combination of axes is nearly complete. When used in an application involving probing a part after a move, the probes could start accelerating down while the stage is finishing its move, improving the overall system throughput. This command is valid in all modes. The IN command must be entered before the GO or GD command since it is executed before the move is complete. The test is only performed during deceleration. If the IN parameter is greater than the ramp down distance, the interrupt will be generated when the control starts decelerating.

RANGE:

Min Position Range ≤ Parameter (Distance Before the End of Move) ≤ MAX Position Range

NOTE: The position range depends on the settings used on PC78, see <u>Specifications</u> for details.

S E

Example: The following sequence would interrupt the host when the X axis is

complete and the Z axis is within 10,000 counts of being complete. The

Y axis completion would be ignored in this example.

Enter: AA;

IN0,,10000;

<u>MR</u>100000,100000;

GO;

MR,,50000;

GO:

Response: None

NOTE: In AA or AM mode, a null value in the argument list specifies the position tolerance for nearly done is not to be set for that axis.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
IN#;	AX - AT	1	2
IN#,#,#,#;	AA-AM	1	2
-	AA/CD	Not Valid	

Related commands: ID, II, IP

IO SET I/O BIT DIRECTION

The IO command defines the direction of the general purpose I/O bits 0 to 7 as inputs or outputs. The bit direction selection is made in groups of four bits. A null argument skips that bit group. A zero value sets that bit group to be inputs. A one value configures that bit group to be outputs. The factory default configuration is: bits 0-3 are inputs and bits 4-7 are outputs.

See the AP command on page 5-33 to preserve the IO setting as the Power up/Reset setting.

NOTE: Bits 8-15 are not configurable.

1

Example: Set bits 0-3 as output and bits 4-7 as inputs.

Enter: IO1,0;

Response: None

QUEUE REQUIREMENTS			
MODE	Min (pf)	Max (pn/cn)	Custom ramp
AX - AT	Immediate		
AA - AM	Immediate		
AA/CD	Not Valid		

Related commands: None

IP INTERRUPT WHEN IN POSITION

The IP command operates like the $\underline{\mathsf{ID}}$ command except the interrupt is deferred until the stage is within the specified step encoder dead band. If the position hold ($\underline{\mathsf{HN}}$) is not enabled for an axis, the command will behave like an $\underline{\mathsf{ID}}$ command for that axis.

1

Example: Set the done flag when axis is within its dead band.

Enter: AX;

HV1000; HG100; HD10; HN; MR1000; GO; IP;

Response: None

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
IP;	AX - AT	1	0
IP;	AA-AM	1	0
-	AA/CD	Not Valid	

Related commands: HN, ID, II, IN

IS INTERRUPT ON SLIP

The IS command enables the PC78 to interrupt the host on slip or stall detection if the appropriate bit has been set in the interrupt control register. Slip detection are disabled if an ET, HF, HM, JG, LP, or TM command is entered or if a limit is encountered. If a slip occurs, slip detection must be re-enabled. The factory default slip tolerance (ES) value is 1. This command is intended to be used with stepper motors and not servo motors.

1

Example: (see <u>ES</u> command on page 5-72)

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
IS;	AX - AT	1	0
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: ES, RL, TF, TN

IX INTERRUPT WHEN AXES ARE DONE

The IX command is a special form of the <u>ID</u> command. It is intended for use by the serial communications version of the PC78. Each axis which has been supplied a position in the most recent move command will send a special done character to the host as they complete their move.

AXIS DONE INDICATOR CHARACTERS		
AXIS DONE CHARACTER IN HEX		
Χ	80	
Υ	81	
Z	82	
T	83	

•

Example:

The following command sequence would cause two characters to be sent to the host. An 81 hex character will be sent when the Y axis finishes and an 83 hex character when the T axis finishes.

Enter: AM;

MR,1000,,10000;

GO;

Response: None

QUEUE REQUIREMENTS					
FORMAT	MODE	Min	Max		
-	AY – AT	Not Valid			
IX;	AA-AM	1	1		
-	AA/CD	Not Valid			

Related commands: ID, IN, IP

The JF command will jog one or more axes at the velocities specified, like the $\underline{\mathsf{JG}}$ command. The parameter may include a fractional part allowing better resolution at low speeds. The velocity set by this command will remain the default velocity until altered by a $\underline{\mathsf{VL}}$, $\underline{\mathsf{JG}}$ or another JF command.

RANGE: $--1,044,000 \le JF \le 1,044,000$

Example: Jog the Y axis at 2 2/3 steps per second.

Enter: <u>AY;</u> JF2.667;

Response: None

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT		
JF#;	AX - AT	3*	0*		
-	AA-AM	Not Valid			
-	AA/CD	Not Valid			

— If PA (power automatic) mode is active add 1 to the command queue

— If the axis is a stepper and encoder or servo axis add 1 to the command queue

— If the profile move, just prior to this home command was either a MT or ML move then the axis acceleration and velocity values will be reset to the AC and VL values just prior to the execution of the home. This adds to the queue requirements under the following conditions:

AXIS RAMP TYPE	COMMAND QUEUE	ARGUMENT QUEUE
Linear (<u>PF</u> , <u>LA</u>)	4	4
Short Form Parabolic (PN0, PR0)	4	6
All other Parabolic forms (PN,	4	22
PR)		
Cosine (CN, SC)	4	22
Custom (<u>SR</u>)	4	(2 x number of ramp segments) +2

Related commands: JG, SA, ST, TM

JG JOG

The JG command is a velocity mode and will move one or more axes at the velocities supplied as parameters. The JG command will accelerate to the programmed velocity at the current AC rate and run until altered by an ST, SA, KL, HF (servo models), another JG command, or a limit switch is encountered while limits are enabled.

The jog velocity may be changed by following the command with another JG command of a different velocity. A change in direction between two JG commands will cause an axis to ramp to a stop then back up in the opposite direction.

This command modifies the move velocity parameter (VL) for the affected axis or axes. The JG command does not require any other command to start the motion.

RANGE: -1,044,000≤ JG ≤ 1,044,000

Example: Jog the motor at 100,000 counts per second then change to 35,000

counts per second when the second JG is entered, stay at that velocity for 5 seconds, then stop by decelerating to a stop. Next, jog the motor at

5,000 counts per second in the negative direction.

Enter: JG100000;

JG35000: WT5000;

ST:

JG-5000;

Response: None

Note: Output events waiting for completion of JG will begin when JG is up to its requested velocity. In this case, the motor will ramp from zero to 100,000, ramp back down to 35,000, flatten out at 35,000 for 5 seconds, then ramp to a stop, before moving in the negative direction at a velocity of 5,000.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
JG#;	AX - AT	3*	1*	
JG#,#,#;	AA-AM	3*	1*	
-	AA/CD	Not Valid		

- If <u>PA</u> (power automatic) mode is active add 1 to the Command queue
- If the axis is a stepper encoder or servo axis add 1 to the Command queue
- If the profile move, just prior to this home command was either a MT or ML move then the axis acceleration and velocity values will be reset to the AC and VL values just prior to the execution of the home. This add to the queue requirements under the following conditions:

Axis Ramp Type	Command queue	Argument queue
Linear (<u>PF</u> , <u>LA</u>)	4	4
Short Form Parabolic (PN0,	4	6
<u>PR</u> 0)		
All other Parabolic forms (PN,	4	22
PR)		
Cosine (CN, SC)	4	22
Custom (SR)	4	(2 x number of ramp
		segments) +2

Related commands: <u>JF</u>, <u>SA</u>, <u>ST</u>, <u>TM</u>

KA ACCELERATION FEEDFORWARD

KA is the acceleration feedforward gain coefficient used in the PID filter calculations. The factory default value is zero. See the <u>AP</u> command, page 5-33, to preserve the KA settings as the power up/reset values. The default value is 0.00

RANGE: 0.00 ≤ KA ≤ 32767.00

Example: Define KA to be 2 on the T axis.

Enter: <u>AT</u>;

KA2;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
KA#;	AX - AT	1	1	
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: HF, HN, ?KA, KD, KI, KP, KV

?KA REPORT ACCELERATION FEED FORWARD

The ?KA command reports the current setting of the acceleration feed-forward constant (KA) for the current servo axis. Default value is 0.00

Example: Find out what the current KA value is for servo axis Y

Enter: AY; ?KA

Response: ka10.50<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
? <u>KA</u>	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: KA, ?KV

KB PID UPPER BOUND LIMIT COEFFICIENT

The KB command sets the servo axis PID output value upper bound limit from DAC. (This can be useful in debugging servo drives.) The default value is 0.00

RANGE: 0.0 < KB < 10.0

Example: Limit the servo output from DAC to 9 max on Y axis. This is

approximately half of its normal range.

Enter: AY; KB9;

Response: None

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
KB#;	AX - AT	1	1
-	- AA-AM Not Valid		
-	AA/CD	Not Valid	

Related commands: ?KB

?KB REPORT AXIS PID UPPER BOUND LIMIT

The ?KB command requests the value of the $\underline{\text{KB}}$ parameters for the upper bound limit to the DAC.

Example: Determine PID upper bound limit for X axis

Enter: <u>AX</u>;

?KB

Response: kb5.00<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?KB	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: DBI, DBN, ?SV

KD DERIVATIVE GAIN COEFFICIENT

KD is the derivative gain coefficient used in the PID filter calculations. See Section 2 for more information regarding this parameter. The factory default value is 20.00. See the AP command, page 5-33, to preserve the KD settings as the Power up/Reset values.

RANGE: 0.00 ≤ KD ≤ 32767.00

•

Example: Set KD to 56 on the Z axis.

Enter: A

KD56;

Response: None

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
KD#;	AX - AT	1	1
-	- AA-AM Not Valid		
-	AA/CD	Not Valid	

Related commands: ?KD, KI, KP, HF, HN

?KD REPORT PID DERIVATIVE GAIN

The ?KD command reports the current setting of the derivative gain coefficient (KD) in the PID of the current servo axis.

1

Example: Forgot to write down the Y axis KD setting which is working well. Report

the setting so it can be recorded.

Enter: <u>AY</u>;

?KD

Response: kd5.12<LF >

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?KD	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: KD, ?KI, ?KP,

KF SET SERVO AXIS PID FRICTION COEFFICIENT

The KF command sets the friction offset coefficient of a servo axis PID. This assists in the smooth start up motion of the X axis, and compensates for friction. The default value is 0.

Range: 0 ≤ KF ≤ 32767

Example: Set the Y axis friction coefficient to 100.

Enter: AY;

<u>AY;</u> KF100;

Response: None

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
KF#;	AX - AT	1	1
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: ?KF

?KF REPORT SERVO AXIS PID FRICTION COEFFICIENT

- 111- 18-

The ?KF command reports the value of the frictional offset coefficient.

Example: Verify Z axis friction offset coefficient is 12

Enter: AZ;

Response: kf12<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?KF	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: KD, ?KI, ?KP

KI INTEGRAL GAIN COEFFICIENT

KI is the integral gain coefficient used in the PID filter calculations. See the AP command, page 5-33, to preserve the KI settings as the power up/reset values. Default value is 0.04.

RANGE: $0.00 \le KI \le 32767.00$

Example: Define KI to be 3.42 on the X axis.

Enter: AX;

<u>AX;</u> Kl3.42;

Response: None

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
KI#;	AX - AT	1	1
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: <u>HF</u>, <u>HN</u>, <u>KD</u>, <u>?KI</u>, <u>KP</u>

?KI REPORT PID INTEGRAL GAIN

The ?KI command reports the current setting of the integral gain constant (KI) in the PID of the current servo axis.

Example: Report the setting of the KI coefficient on the Z axis

Enter: AZ;

?KI

Response: ki1.00<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?KI	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: ?KD, KI, ?KP

KL KILL

The KL command will flush the command queues and terminate pulse generation of all axes immediately. It is intended for emergency termination of any program and to reset the input queues to a known state.

Step motors may not stop immediately even though no more step pulses are delivered due to inertia of the motor and system load. This may result in slippage of the motor. Therefore, the position counter may not accurately reflect the true position of the motor following this command. All axes should be re-homed to return the position counters to a known state.

Due to the encoders used in servo systems, position will not be lost, so re-homing servo axes is unnecessary.

*

Example: Stop all previously defined movement and flush the queue of a partially

entered incorrect move command (you wanted a negative move not a

positive one), before GO is entered.

Enter: AX;

MR5000; (oops!)

KL;

MR-5000;

GO;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
KL;	AX - AT	1*	0*	
KL;	AA-AM	1*	0*	
-	AA/CD	Not Valid	•	

- If PA (power automatic) mode is active add 1 to the command queue
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue

Related commands: FL, KS, SA, SD, SI, SO, ST,

KM HOME AND KILL

The KM command will move the current axis in the positive direction until home is detected and then kill motion immediately; i.e. without using a deceleration ramp. The position counter will not be reset or cleared. Due to motor and/or payload inertia, the motor may not stop immediately but slip some distance instead. This will result in inaccurate position counters. This command's primary purpose is to move an axis out of the way quickly or to get the axis near home rapidly to speed up the homing process.

1

Example: Move the Y axis in the positive direction to the home sensor and stop

movement as quickly as possible.

Enter: AY;

KM;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
KM;	AX - AT	1*	1*	
-	- AA-AM Not Valid			
-	AA/CD	Not Valid		

- If PA (power automatic) mode is active add 2 to the command queue.
- If an auxiliary output bit settle time has been specified add 2 to the command queue and 1 to the argument queue.
- If the last profile move, just prior to this home command, was either a MT or ML move then the axis acceleration and velocity values will be reset to the AC and VL values just prior to the execution of the Home. This will add to the queue requirements under the following conditions:

Axis Ramp Type	Command queue	Argument queue
Linear (<u>PF</u> , <u>LA</u>)	4	4
Short Form Parabolic (PN0,	4	6
<u>PR</u> 0)		
All other Parabolic forms (PN,	4	22
PR)		
Cosine (CN, SC)	4	22
Custom (SR)	4	(2 x number of ramp
		segments) +2

Related commands: HE, HH, HL, HM, HR, HS, KR, LO, LP

KO OFFSET COEFFICIENT

The KO command defines the offset coefficient to cause the motor to remain stationary and compensate for additional torque on the motor from loading. The factory default value is zero. See the AP command, page 5-33, to preserve the KO settings as the power up/reset values.

The factory default value is zero. Full-scale, the KO command has a range of ±32,767 which corresponds directly to the 16-bit range of the DAC less a few counts as a buffer zone. Each increment/decrement of the KO value will result in an approximate change in the output voltage of 0.0003 volts.

RANGE: -32767 ≤ KO ≤ 32767

Example: Define the offset coefficient to be −2000 (≈ -610mV) on the Y axis.

Enter: <u>AY;</u> KO-2000;

Response: None

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
KO#;	AX - AT	1	1	
-	- AA-AM Not Valid			
-	AA/CD	Not Valid		

Related commands: HF, HN, ?KO

?KO REPORT PID OFFSET COEFFICIENT

The ?KO command reports the voltage offset (KO) setting for the current servo axis.

Example: The open-loop offset is 218. Make sure the closed-loop offset is the

same.

Enter: ?KO

Response: ko218<LF >

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
?KO	AX - AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: KO

KP PROPORTIONAL GAIN COEFFICIENT

KP is the proportional gain coefficient used in the PID filter calculations. See the <u>AP</u> command, page 5-33, to preserve the KP settings as the power up/reset values. Default value is 10.00.

RANGE: 0.00 ≤ KP ≤ 32767.00

Example: Define KP to be 45.6 on the Z axis.

Enter: AZ;

KP45.6;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
KP#;	AX - AT	1	1	
- AA-AM Not Valid				
-	AA/CD	Not Valid		

Related commands: HF, HN, KD, KI, ?KP

?KP REPORT PROPORTIONAL GAIN COEFFICIENT

The ?KP command reports the current setting of the proportional gain coefficient (KP) in the PID of the current servo axis.

Example: Find out what the X axis proportional gain is set to.

Enter: AX; ?KF

Response: kp10.00<LF >

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMEN				
?KP	AX - AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: <a>?KD, <a>?KI, <a>KP

KR HOME REVERSE AND KILL

The KR command will find home by issuing a <u>JG</u> in reverse. When home is found, it will stop generating pulses immediately; i.e. no deceleration ramp will be generated. This command is identical to the <u>KM</u> command except that the direction of motion is reversed.

*

Example: Move the Y axis in a negative direction to the home sensor and stop

movement as quickly as possible.

Enter: AY;

KR;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
KR#;	AX - AT	1*	1*	
-	- AA-AM Not Valid			
-	AA/CD	Not Valid		

- If <u>PA</u> (power automatic) mode is active add 2 to the command queue.
- If an auxiliary output bit settle time has been specified add 2 to the command queue and 1 to the argument queue.
- If the last profile move, just prior to this home command, was either a MT or ML move then the axis acceleration and velocity values will be reset to the AC and VL values just prior to the execution of the Home. This will add to the queue requirements under the following conditions:

QUEUE REQUIREMENTS			
Axis Ramp Type	Command	Argument queue	
	queue		
Linear (PF, LA)	4	4	
Short Form Parabolic (PN0, PR0)	4	6	
All other Parabolic forms (PN,	4	22	
PR)			
Cosine (CN, SC)	4	22	
Custom (SR)	4	(2 x number of ramp	
		segments) +2	

Related commands: <u>HE, HH, HL, HM, HR, HS, KM, LO, LP</u>

KS KILL SELECTED AXES

This command performs the same operation as the $\underline{\mathsf{KL}}$ (kill) command except that individual axes can be killed without affecting others. KS will flush only the selected axes' command queues rather than the entire board. Refer to the $\underline{\mathsf{KL}}$ command for more details.

1

Example:

The Y axis has hit a limit switch and is now executing commands that were waiting in the queue. This axis must be reset but the other axes must be allowed to continue operation.

Enter:

AY; KS; or AA;

KS,1;

Response: None

NOTE: In AA or AM modes, null values in the argument list specify that motion on that axis is not to be killed.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
KS;	AX - AT	1*	0*	
KSb,b,b,b;	AA-AM	1*	0*	
-	AA/CD	Not Valid		

- If PA (power automatic) mode is active add 1 to the command queue
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue

Related commands: FL, KL, SA, SD, SI, SO, ST

KU PID INTEGRATION SUM UPPER LIMIT

This command sets servo axis PID integration sum upper limit.

RANGE: 0 < KU < 32767

Example: Set the integration sum upper limit of X axis to 150

Enter: AX;

KU150;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
KU#;	AX - AT	1	1	
-	- AA-AM Not Valid			
-	- AA/CD Not Valid			

Related commands: ?KU

?KU REPORT PID INTEGRATION SUM UPPER LIMIT

(D-

Report servo axis PID integration sum upper limit.

Example: Check to make sure the integration sum upper limit of X axis is less than

200.

Enter: <u>AX</u>;

?KU

Response: ku150<LF>

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
?KU	AX - AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid	_	

Related commands: <u>HF</u>, <u>HN</u>, <u>KD</u>, <u>KP</u>, <u>KU</u>

KV VELOCITY FEEDFORWARD

KV is the velocity feedforward coefficient used in the PID filter calculations. The factory default value is zero. See the $\frac{AP}{AP}$ command, page 5-33, to preserve the KV settings as the power up/reset values.

RANGE: 0.00 ≤ KV ≤ 32767.00

Example: Set KV to 35.3 on the Y axis.

Enter: AY;

KV35.3;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
KV#;	AX - AT	1	1	
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: HF, HN, KA, KD, KI, KP, 2KV

?KV REPORT VELOCITY FEED FORWARD

The ?KV command reports the current velocity feed forward coefficient ($\underline{\text{KV}}$) of the current servo axis. Default value is 0.00

Example: Make sure the velocity feed-forward setting of axis T is zero

Enter: AT; ?KV

Response: kv0.00<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?KV	AX - AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: ?KA, KV

LA LINEAR RAMP PER AXIS

The LA command specifies that the linear acceleration ramp is to be used by the selected axes. This is the factory default for all axes. See the AP command, page 5-33, to preserve the LA settings as the power up/reset values. This command is similar to the PF command but can be used to switch a single axis rather than all axes at once.

1

Example: Select a linear ramp for the X axis.

Enter: AX

LA;

Response: None

Ł

Example: Select the linear ramp for the Y and T axes.

Enter: AA;

LA,1,,1;

Response: None

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
LA;	AX - AT	5	6
LAb,b,b,b;	AA-AM	5	6
-	AA/CD	Not Valid	

Related commands: CN, PF, PN, PR, ?RT, SC, SR

LE LOOP END

The LE command terminates the most recent <u>LS</u> command. The axis will loop back and repeat the commands within the loop the number of times specified in the <u>LS</u> command. The loop will start repeating as soon as this command is issued.

1

Example: Perform a relative move on axis Z five times. After each Z move, wiggle

the T axis 20 times.

Enter:

LS5; MR5000; GO; AT; LS20; MR50; GO;

MR-50; GO;

LE; (terminates the LS20; command)

AZ:

LE; (terminates the LS5; command)

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
LE;	AX - AT	1	1	
LE;	AA-AM	1	1	
-	AA/CD	Not Valid		

Related commands: LS

LF LIMITS OFF

The LF command disables the limit switches for the addressed axis or axes. This allows the stage to move beyond the limit switches and should be used with caution. The PC78 will still recognize that a limit switch has been closed if the stage runs into one and will report this information via the query commands (See the QA command). However, the limit switch closure will have no effect on motion; i.e. the axis will not be forced to stop as a result.

NOTE: In systems not designed to handle motion beyond the limit switch points, this can potentially cause damage to the system and/or persons operating the system. This command should be used with extreme caution.

1

Example: Set up a board to ignore the Y axis limit switches.

Enter: AY;

LF; or <u>AA</u>; LF,1;

Response: None

Note: In AA or AM modes, a null argument in the parameter list specifies that axis home switch to be affected.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
LF;	AX - AT	1	0
LFb,b,b,b;	AA-AM	1	0
-	AA/CD	Not Valid	

Related commands: LH, LL, LN, SF SL

LH LIMITS HIGH

The LH command sets the senses of the limit switches on the current axis to active high. The default "true" states of the limits are TTL logic low. This command allows TTL logic high to be treated as the "true" state for applications where this is more convenient. Through the execution of the AP command, limits can be made to default as active high on power-up or reset; see the AP command for details.

Example: Select the limit switch high true condition for the X axis.

Enter: AX;

Response: None

Example: Select a high true limit condition for the Z and T axes.

Enter: <u>AA;</u> LH,,1,1;

Response: None

Note: In AA or AM modes, a null argument in the argument list specifies that axis is not to be affected.

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
LH;	AX - AT	1	0
LHb,b,b,b;	AA-AM	1	0
-	AA/CD	Not Valid	

Related commands: LF, LL, LN, ?LS, SF, SL, TL

LL LIMITS LOW

The LL command specifies that over travel occurs when the limit input signal is low (active low). This is the factory default mode. See the <u>AP</u> command for information on how to preserve the LL settings as the power up/reset values.

Ł

Example: Select the limit switch low true condition for the X axis.

Enter: AX

LL;

Response: None

1

Example: Select a low true limit condition for the Y and T axes.

Enter: AA;

LL,1,,1;

Response: None

Note: In AA or AM modes, a null argument in the argument list specifies that axis is not to be

affected.

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
LL;	AX - AT	1	0
LLb,b,b,b;	AA-AM	1	0
-	AA/CD	Not Valid	

Related commands: LF, LH, LN, ?LS, SF, SL, TL

LN LIMITS ON

The LN command restores the operation of the limit switches for the addressed axis or axes. This is the default mode at power up or reset. With limit switches enabled, if the axis encounters a limit switch in the course of executing any motion, the axis will be instructed to stop and the host will be notified of the event. Limit conditions are treated as critical errors and should not be used as simple positioning inputs to the PC78.

1

Example: Set up the Y and T axes to stop immediately when a limit switch is

encountered.

Enter:

<u>AA;</u> LN,1,,1; or <u>AY;</u> LN; AT;

LN;

Response: None

Note: In AA or AM modes, a null argument in the parameter list specifies that axis is not to be affected.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
LN;	AX - AT	1	0	
LNb,b,b,b;	AA-AM	1	0	
-	AA/CD	Not Valid		

Related commands: LF, LH, LL, SF, SL

LO LOAD MOTOR POSITION

The LO command sets the motor position independently of the encoder position unlike <u>LP</u> which sets both to the same supplied value. The <u>LP</u> command will override the LO command and reset the motor position. If the <u>LP</u> command is used and a different motor position value than the encoder position is desired, the LO command must be reentered. Any valid position within the allowable position range may be used.

Example: Set the motor position to 50,000 and the encoder position to 100,000 on

the T axis

Enter: AT;

LP100000; LO50000;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
LO#;	AX - AT	1	1	
LO#,#,#;	AA-AM	1	1	
-	AA/CD	Not Valid		

NOTE: For \underline{AA} and \underline{AM} modes that any values in the argument list specify that axis is not to be affected.

Related commands: LP, RE, RM, RP, RU

LP LOAD POSITION

The LP command will immediately load the number supplied as a parameter in the absolute position registers of the axis. In models with the encoder option, the parameter will be loaded into the encoder position register and the parameter times the encoder ratio will be loaded into the position counter. If no parameter is supplied, the value of zero is used.

The <u>LO</u> command can be used after this command to set the motor position independently of the encoder position.

RANGE: Min. Position Value ≤ LP ≤ Max. Position Value

NOTE: The position value range varies with the specific settings used on PC78.

Example: The following would load the X axis position register with 1000, and the Z

axis position register with 2000.

Enter: AA;

LP1000,,2000;

Response: None

Example: The following would load the Y axis position register with 20,000 and the

encoder position register with 30,000 counts, in encoder models.

Enter: AY;

ER3,2; LP30000;

Response: None

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
LP#;	AX - AT	1*	1*	
LP#,#,#;	AA-AM	1*	1*	
-	AA/CD	Not Valid		

— If the axis is a stepper and encoder or servo axis add 1 to the command queue and 1 to the argument queue.

Related commands: LO, RE, RM, RP, RU

LS LOOP START

The LS command sets the loop counter for the axis being programmed in the single axis mode and all axes in the AA mode. The command expects a loop counter operand following the command. The commands up to the LE loop terminator will be executed the number of times specified by the operand. Loops may be nested up to four levels deep on each axis. The parameter must be less than 32000.

The first loop of commands will occur immediately as they are entered. The remaining loops will be executed after the loop terminator (LE) has been entered.

The axis mode (e.g. AX, AY, and AA) must be the same when entering and exiting the loop, otherwise the matching loop termination command will not be found by the board's command processor. The axis mode may be switched within the loop provided the board is in the same mode when the LE command is sent as when the LS command was sent.

If you want one axis to wait for another in the loop, you must be in the <u>AA</u> mode throughout the loop. If you are in the single axis mode in the loop, each axis' commands will go into their separate queues and execute independently of each other.

If, when entering a looping sequence of commands, the command queue is filled before the <u>LE</u> loop terminator is entered, the board will hang. This is because there is no space for the <u>LE</u> command. When programming a loop of more than four or five moves, the queue size should be examined with the <u>RQ</u> command to see if it is nearing zero.

RANGE: 1 ≤ LS ≤ 32000

•

Example: Execute a 100,000 count relative move on the Z axis 5 times.

Enter:

<u>AZ;</u> LS5:

MR100000;

GO; LE;

Response: None

NOTE: The first move will occur immediately after entering the <u>GO</u> command. The remaining 4 moves will be executed after the loop terminator <u>LE</u> has been entered.

Example: Execute a 100,000 count move relative on the X axis together with a 100

count move on the T axis, followed by a move absolute to 100 counts on

the X axis and 200 counts on the T axis, four times.

Enter: AA; LS4;

MR100000,,,100;

GO;

MA 100,,,200;

GO; LE;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
LS#;	AX - AT	1	1	
LS#;	AA-AM	1	1	
-	AA/CD	Not Valid		

Related commands: LE, WH, WS

?LS **REPORT LIMIT ACTIVE STATE**

The ?LS command reports the active state of the limits for the current axis. The LL and LH commands are used to set this value.

Example: Find out whether the Y axis limits are active high or active low.

Enter: <u>AY</u>; ?LS

Response: II<LF> or Ih<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?LS	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: LH, LL

MA **MOVE ABSOLUTE**

The MA command will set up one or more axes to move to the absolute positions supplied as parameters. In AA mode, an axis may remain stationary by entering a comma but omitting the parameter. The move is actually initiated by a GO or GD command.

In AA mode all axes begin their move at the same time. Each axis will use its predefined acceleration and velocity values to move to the new absolute position. Each axis may or may not get to the destination at the same time because each axis utilizes individual velocities and accelerations. The MT command will ensure all axes reach their target positions simultaneously.

Example:

In the single axis mode, move the X axis to absolute position 100,000

counts with the previously entered acceleration and velocity parameters.

Enter: AX;

MA100000;

<u>GO</u>;

Response: None

Example:

In the AA mode, move the Y axis to absolute position 10,000 counts and

the T axis to absolute position 1,000 counts. The other axes will remain

in their current positions.

Enter: AA;

MA,10000,,1000;

GO;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
MA#;	AX - AT	1*	1*	
MA#,#,#;	AA-AM	1*	1*	
-	AA/CD	Not Valid		

- If the axis is a stepper encoder or servo axis add 1 to both the command and argument queues.
- If the axis is using the cosine acceleration ramp, and velocity needs to be adjusted so the profile is not truncated, add 1 to the command queue and add 10 to the argument queue.
- If the acceleration and velocity values need to be reset to their AC and VL values because the last move just prior to this move was either a MT or ML move, add the following queue requirements:

QUEUE REQUIREMENTS				
Axis Ramp Type COMMAND QUEUE ARGUMENT QU				
Linear (PF, LA)	4	4		
Short Form Parabolic (PN0, PR0)	4	8		
All other Parabolic Forms (PN,	4	22		
PR)				
Cosine (CN, SC)	4	22		
Custom (<u>SR</u>)	4	(2*number of ramp segments) + 2		

Related commands: \underline{GD} , \underline{GN} , \underline{GO} , \underline{GS} , \underline{GU} , \underline{ML} , \underline{MR} , \underline{MT}

MD TEMPORARY MACRO DEFINE

MD is used to begin defining a temporary macro. A macro can contain up to 250 characters. Macros 0 through 4 are temporary and they will be erased when the controller is reset or power is turned off. Macros 5 through 24 are stored in non-volatile memory and will be preserved when the controller is reset or powered off. This command cannot be used to define a macro directly into numbers 5 through 24. They must be defined with this command and then moved into the non-volatile space with the PT command.

Enter the macro number immediately after the MD command. The macro number must be between 0 and 4. Next enter the command string, which is made up of up to 250 ASCII characters. After entering the command string for the macro, enter a control Z to end the macro definition. The control Z may be ASCII value 26 or the string "^Z" (carat, shift 6 on a US keyboard, followed by a Z.)

Be careful not to exceed 250 ASCII characters or the size of the axis queue when working with macros.

RANGE: $0 \le MD \le 4$

Exan

Example: Define macro 2 to set velocities to 20000 on all axes of a two axes board.

Enter: MD2;

<u>AA</u>;

VL20000,20000;

^Z

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMEN				
MD#;	AX - AT	Immediate		
MD#;	AA-AM	Immediate		
- AA/CD Not Valid				

Related commands: MX, PM

ML MOVE LINEAR

The ML command uses linear interpolation to perform a straight line relative move. Input parameters are relative distances for each axis involved in the move. The ML command should be followed by a GO or GD to start the axes together. The velocity and acceleration parameters are scaled to allow the axes to move and finish together. All axes are scaled to the axis with the longest move time (the master axis). At the end of the move, all involved velocities and accelerations will be restored to their pre-move values.

1

Example: In the AA mode, move the Y, Z and T axes 10000, 100 and 1000 counts

respectively with all axes starting and finishing together. The other axes

remain in their previous positions.

Enter: AA;

ML,10000,100,1000;

GO;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
- AX - AT Not Valid				
ML#,#,#;	AA-AM	2*	2*	
-	AA/CD	Not Valid		

- If this is the master axis for this move and its acceleration and velocity values need to be reset to their original <u>AC</u> and <u>VL</u> values, because a previous move altered them, add the following queue requirements:
- If this is not the master axis, then the acceleration and velocity values will be modified, and the following queue requirements will be added:

QUEUE REQUIREMENTS				
Axis Ramp Type COMMAND ARGUMENT QUEUE QUEUE				
Linear (PF, LA)	4	4		
Short Form Parabolic (PN0, PR0)	4	8		
All other Parabolic Forms (PN, PR)	4	22		
Cosine (CN, SC)	4	22		
Custom (SR)	4	(2*number of ramp segments) + 2		

If the axis is using the cosine acceleration ramp, and velocity needs to be adjusted so the profile is not truncated, add 1 to the command queue and 10 to the argument queue:

Related commands: GD, GN, GO, MA, MR, MT

MM MOVE MINUS

The MM command sets the direction logic to move in the negative direction. The direction output for the current axis will change (if necessary) to reflect the new direction. All non-direction-specific move commands will now move in the negative direction.

1

Example: Set the direction line to move in the negative direction on the Y axis.

Enter: AY;

MM;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
MM;	AX - AT	1	0	
-	AA-AM Not Valid			
-	AA/CD	Not Valid		

Related commands: FP, MO, MP, MV, SP

MP MOVE POSITIVE

The MP command sets the direction logic to move in the positive direction. The direction output for the current axis will change (if necessary) to reflect the new direction. All subsequent non-direction-specific motion commands will now move in the positive direction.

Ł

Example: Set the direction line to move in the positive direction on the Y axis.

Enter: AY;

MP;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
MP;	AX - AT	1	0	
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: FP, MM, MO, MV, SP

MR MOVE RELATIVE

The MR command will set up one or more axes to move relative from their current positions at the time the move is executed. In the <u>AA</u> mode, an axis may remain stationary by entering a comma but omitting the parameter. The move is actually initiated by a <u>GO</u> or <u>GD</u> command.

In <u>AA</u> mode all axes will start at the same time. Each axis will use its predefined acceleration and velocity values to move to the new position. Each axis may, or may not, get to the destination at the same time, because each axis utilizes individual velocities and accelerations. To ensure all axes reach their destinations simultaneously use the <u>ML</u> command.

Example:

ample: In the single axis mode, move the X axis 2468 steps in the negative

direction.

Enter: AX;

MR-2468; GO;

Response: None

Ł

Example: In the AA mode, move the X axis 12345 steps in the positive direction

and the Y axis 6789 steps in the positive direction. Both axes will start at

the same time.

Enter: AA;

MR12345,6789;

<u>GO</u>;

Response: None

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
MR#;	AX - AT	1*	1*	
MR#,#,#,#; AA-AM 1* 1*				
-	AA/CD	Not Valid		

- If the axis is a stepper encoder or servo axis add 1 to both the command and argument queues.
- If the axis is using the cosine acceleration ramp, and velocity needs to be adjusted so the profile is not truncated, add 1 to the command queue and add 10 to the argument queue.
- If the acceleration and velocity values need to be reset to their <u>AC</u> and <u>VL</u> values because the last move just prior to this move was either a <u>MT</u> or <u>ML</u> move, add the following queue requirements:

QUEUE REQUIREMENTS				
Axis Ramp Type COMMAND ARGUMENT QUEUE QUEUE				
Linear (<u>PF</u> , <u>LA</u>)	4	4		
Short Form Parabolic (PN0, PR0)	4	8		
All other Parabolic Forms (PN, PR)	4	22		
Cosine (CN, SC)	4	22		
Custom (SR)	4	(2*number of ramp segments) + 2		

Related commands: GO, GD, GN, GS, GU, MA, ML, MT

MT MOVE TO

The MT command uses linear interpolation to move two or more axes to the specified absolute positions. The syntax is similar to the ML command. This command is invalid if loops are being used due to the overhead involved. The command will become valid again after executing an ST or KL command. When used in the contour definition mode, only the axes being used in the contour must be provided for in the MT syntax. A GO or GD command initiates the move.

The axis that will reach its destination first (the master axis) is used as a gauge to modify the acceleration and velocity values of the other axes. This is done to ensure all involved axes arrive at their targets simultaneously. At the end of the move, any velocity or acceleration value that was modified is restored to its pre-move value.

1

Example: In the AA mode, move the X, Y and T axes to absolute positions 1000,

10000 and 100 counts, respectively, with each starting and finishing

together. The unused axis remains in its previous position.

Enter: AA;

MT1000,10000,,100;

<u>GO</u>;

Response: None.

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT CONTOUR					
-	AX - AT	Not Valid			
MT#,#,#;	AA-AM	2*	2*	N/A	
<u>MT</u> #,#,#;	AA/CD	2*	2*	4 + (number of axes included in contour definition	

If this is not the master axis, then the acceleration and velocity values will be modified, and the following queue requirements will be added:

QUEUE REQUIREMENTS				
Axis Ramp Type	COMMAND QUEUE	ARGUMENT QUEUE		
Linear (PF, LA)	4	4		
Short Form Parabolic (PN0, PR0)	4	8		
All other Parabolic Forms (PN, PR)	4	22		
Cosine (CN, SC)	4	22		
Custom (SR)	4	(2*number of ramp segments) + 2		

[—] If the axis is using the cosine acceleration ramp, and velocity needs to be adjusted so the profile is not truncated, add 1 to the command queue and 10 to the argument queue:

Related commands: GD, GO, GN, MA, ML, MR

MV MOVE VELOCITY

The MV command causes the current axis to move to a new absolute position (parameter 1) at a new velocity (parameter 2). When the destination is reached control will be passed to the next command which should be another MV command or a <u>SP</u> command. If the command is not received in time the controller will continue to move at the specified velocity. Note that this is a slave mode and it is the responsibility of the user to provide the commands in time. They may be queued ahead of time. If a new MV command is sent after the controller has already passed the destination specified in the command, the controller will continue to move at the old velocity.

The PC78 will ramp up or down as needed at the rate previously set with the <u>AC</u> command and travel at the new velocity until the new position is reached. The controller will not reverse direction if the position has already passed, but will behave as explained above. Thus the direction of the move must be specified before starting the move with the <u>MP</u> or <u>MM</u> commands. All destinations must be in absolute position; no position relative moves are allowed due to the nature of these commands. Cosine and parabolic acceleration will not apply.

RANGE:

Min Position Range ≤ Parameter 1 (Absolute Position) ≤ Max Position Range

1 ≤ Parameter 2 (Velocity) ≤ 1044000

NOTE: The position range depends on the settings used on PC78, see specifications for more details.

Example: (

Generate a velocity staircase with the breakpoints given in absolute

position. Default acceleration (AC) of 200,000

Enter: MP;

MV10000,30000; MV20000,50000; MV30000,10000; SP35000;

Response: None

FIGURE 5-1 VELOCITY STAIRCASE PROFILE

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
MV#,#; AX - AT 2* 2*				
- AA-AM Not Valid				
-	AA/CD	Not Valid		

- If PA (power automatic) mode is active add 1 to the command queue
 If this axis is a stepper encoder or servo axis add 2 to the command queue

Related commands: FP, MM, MP, SP

MX MACRO EXECUTE

The MX command will execute the command string stored in the specified macro. The macro number that is entered as the argument of the command must be between 0 and 24.

RANGE: $0 \le MX \le 24$

3

Example: Execute macro number 6.

Enter: MX6;

Response: None

NOTE: MX itself is an immediate command. However, the commands contained within the macro may have gueue requirements.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
MX#;	AX - AT	Immediate		
MX#;	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: MD, PM, PT

NV NEW CONTOUR VELOCITY

The NV command will set a new velocity for a contour currently in execution. When the velocity changes, the PC78 will switch to the new velocity at the start of the next command in the contour queue without ramping. An NV command issued without a contour currently executing will have no effect.

RANGE: 1 ≤ NV ≤ 4,000,000

Example: The contour is executing at 25,000 counts per second. Change the

velocity to 30,000 counts per second upon execution of the next

command in the contour queue.

Enter: NV30000;

Response: None

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT	CONTOUR	
-	AX - AT	Not Valid			
-	- AA-AM Not Valid				
NV#;	AA/CD	Immediate			

Related commands: CD, CV

PA POWER AUTOMATIC

The PA command will turn on or off the auxiliary outputs at the beginning of each <u>GO</u> or <u>GD</u> command execution and complement the outputs after the move is executed. The auxiliary will be turned on; i.e. pulled high, upon the execution of the <u>GO</u> or <u>GD</u> and off at the end of that move if the parameter is zero or not specified in the single axis mode. If the parameter is non-zero, the sense is reversed; i.e. the auxiliary output is turned off (driven low) upon the execution of the <u>GO</u> or <u>GD</u> command and on at the end of the move.

The <u>SE</u> command can be used to apply a settling time at the end of each move before complementing the auxiliary bit. This is useful for systems that need to retain torque for some specific amount of time before allowing the motor drive to reduce current output.

This mode need only be set once and can be turned off by using the <u>AN</u> or <u>AF</u> commands. Axes can be selectively affected in the <u>AA</u> mode. The values of the included parameters set the state of the auxiliary line during the move. The following queue requirements apply to each <u>GO</u> or <u>GD</u> command in the command stream in the <u>AA</u> and single axis modes. This mode is off by factory default. See the <u>AP</u> command to preserve the PA settings as the Power up/Reset values.

1

Example:

Turn on the Y axis auxiliary output at the beginning of a move and turn the T axis output off at the beginning of a move, while in the AA command mode. (Note - the reversed logic; i.e. 0 = on, 1 = off. "On" pulls the signal line to ground. "Off" lets it rise to 5 volts or its pull-up reference voltage.)

Enter:

PA,0,,1;

Response: None

NOTE: PA selects the mode immediately but places entries in the axis command queue to set the state of the aux bit to the idle state.

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
PAb;	AX - AT	1*	0		
PAb,b,b,b;	AA-AM	1*	0		
-	AA/CD	Not Valid			

^{*}If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue.

Related commands: AF, AN, SE

?PA REPORT POWER AUTOMATIC STATE

The ?PA command reports whether the current axis has power automatic mode enabled. The <u>PA</u> command is used to set this value. If power automatic mode is enabled, it will report whether the aux bit goes high or low during a move. The axis is stationary if the aux bit is low.

•

Example: Determine if X axis power automatic is high or low.

Enter: AX; ?PA

Response: pa0<LF>

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
?PA	AX – AS	Immediate			
-	- AA-AM Not Valid				
-	AA/CD	Not Valid			

^{*}Power automatic mode is enabled for X axis such that the aux bit is high during a move.

Related commands: PA, ?SE

PE REPORT ENCODER POSITIONS

The PE command reports the encoder positions of all encoder and/or servo axes. All encoder positions will be reported even in single axis mode. (This is the same as AA;RE;.)

*

Example: Report the encoder positions of a four axis servo board.

Enter: PE

Response: 0,50,156,0<LF>

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
PE	AX - AT	Immediate			
PE	AA-AM	Immediate			
-	AA/CD	Not Valid			

Related commands: PP, RE, RP

PF LINEAR ON

The PF command restores all axes to linear acceleration and deceleration ramps. This command should not be given while an axis is in motion or the results may not be predictable. This command affects all axes even if issued in the single axis mode. PF is the factory default setting. See the AP command to restore the PF setting as the power up/reset mode.

Ł

Example: Turn off cosine or parabolic ramps, returning to linear.

Enter: PF;

Response: None

QUEUE REQUIREMENTS						
FORMAT MODE COMMAND ARGUMENT						
PF;	AX - AT	5	6			
PF;	PF; AA-AM 5 6					
-	- AA/CD Not Valid					

Related commands: CN, LA, PN, PR, ?RT, SC, SR

PM PRINT MACRO

The PM command will return the command string stored in the specified macro number as a command response. The macro number entered as the argument for this command must be between 0 and 24.

RANGE: 0 ≤ **PM** ≤ 24

Exam

Example: Print the command string contained in macro 19.

Enter: PM19;

Response: If a macro string is defined for macro 19, the macro string will be the

response. If no macro is defined there will be no response.

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
PM#; AX - AT Immediate					
PM#;	PM#; AA-AM Immediate				
-	AA/CD	Not Valid			

NOTE: Macros are stored as ASCII character strings. If <LF> character is used as command terminator it will be sent back to the host computer by the PM command. If the application software stops reading a character string first it will appear that the PM command did not return the macro contents. To avoid this issue, save macros without <LF> terminator. Use semi-colons instead to terminate commands

Related commands: MD, MX, PT

?PM **REPORT HOLD STATE**

The ?PM command reports whether the PID for the current servo axis is enabled.

A limit switch was hit by servo axis Y. See if the PID is still enabled for Example:

that axis.

<u>AY;</u> ?PM Enter:

Response: hf<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?PM	AX - AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: HF, HN

PN PARABOLIC ON

The PN command sets all axes to truncated parabolic ramps. This acceleration profile starts at 100% of the programmed acceleration and decreases in steps of 10% of the initial acceleration down to as low as 10%. The parameter supplied selects the number of steps. It must be in the range of 3 to 10 corresponding to 70% and 10% acceleration at the peak respectively. A parameter out of this range or no parameter supplied defaults to 70% or 3 steps. Note that the parameter is the number of steps, not the acceleration values. The larger number is a lower acceleration at the peak. This command should not be given while an axis is in motion or the results may not be predictable. This command affects all axes even if issued in the single axis mode. The PF command is used to return to the default linear motion profiles. See the AP command to preserve the PN setting as the Power up/Reset ramp.

See PR for single axis.

RANGE: 3 ≤ PN ≤ 10

Example: Set the board to be in the smoothest parabolic acceleration ramp.

PN10; Enter:

Response: None

QUEUE REQUIREMENTS						
FORMAT	FORMAT MODE AXIS RAMP TYPE COMMAND ARGUMENT					
PN#;	AX - AT	Short Form Parabolic (PN0;)	5	10		
PN#;	AX - AT	All Other Parabolic (PN,PR)	5	24		
PN#,#,#;	AA-AM	Short Form Parabolic (PN0;)	5	10		

Related commands: CN, LA, PF, PR, ?RT, SC, SR

PP REPORT MOTOR POSITIONS

The PP command reports the motor positions of all axes in ASCII format. All axes will be reported even in single axis mode. (This is the same as AA; RP)

*

Example: Report the motor positions of a four axis controller.

Enter: PP;

Response: 0,0,0,125 <LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
PP;	AX - AT	Immediate		
PP;	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: PE, RE, RP

PR PARABOLIC RAMP PER AXIS

The PR command defines parabolic acceleration/deceleration ramps for use with one or more axes. This command is similar to the \underline{PN} command except that only the specified axes are affected. The \underline{AP} command can be used to store the settings of PR as the power-up/reset defaults.

RANGE: 3 ≤ PR ≤ 10

Example: Select a 10 step parabolic ramp for the T axis.

Enter: AT; PR10;

Response: None

Example: Select a 10 step parabolic ramp for the Y axis and an 8 step parabolic

ramp for the T axis and the R axis.

Enter: AA;

PR,10,,8,,,8;

Response: None

QUEUE REQUIREMENTS					
FORMAT	MODE	AXIS RAMP TYPE	COMMAND	ARGUMENT	
PR#;	AX - AT	Short Form Parabolic (<u>PN</u> 0;)	5	10	
PR#;	AX - AT	All Other Parabolic (PN,PR)	5	24	
PR#,#,#;	AA-AM	Short Form Parabolic (<u>PN</u> 0;)	5	10	
PR#,#,#;	AA-AM	All Other Parabolic (PN,PR0)	5	24	
-	AA/CD	Not Valid			

Related commands: CN, LA, PF, PN, ?RT, SC, SR

PS REPORT MACRO LINK

This command reports the macro link or KILL (<u>KL</u>) function link to the specified input bit and bit state.

First Parameter

This specifies the standard input bit number. The factory default bits are 0, 1, 2, and 3, but it can be configured by the user to be the I/O bits 0 to 7

Second Parameter

Valid bit states are 0 and 1

If the value of the selected bit state is ZERO, the selected macro will be executed if the selected bit changes from a TTL high to a TTL low.

If the bit state is ONE, then the selected macro will be executed when the selected bit changes from a TTL low to a TTL high.

NOTE: Each bit and state can be linked with a macro. So, up to two macros can be assigned to an input bit. For example, macro 15 could be executed when I/O 20 goes low, and macro 16 could be executed when I/O 20 goes high.

Output Formats:

If the bit is linked to the execution of a macro, the text response is the text of the \underline{SX} command used to link the bit with the macro

Example: <LF><CR>SX1,0,23;<LF><CR>

If the bit is linked to the $\underline{\mathsf{KL}}$ (KILL) function, the output will be the text response of the $\underline{\mathsf{SK}}$ command used to link the bit with the kill function

Example: <LF><CR>SK1,0,1;<LF><CR>

If the bit is not linked the output will be: <LF><CR><LF><CR>

Example: This will report if there are any macro or KILL (KL) function links to input

bit 2 when it goes from low to high.

Enter: PS2,1;

Response: None.

PT PRESERVE A TEMPORARY MACRO

Use PT to save a temporary macro permanently by copying it to non-volatile memory. The temporary macro number, which is entered as an argument for this command, must be between 0 and 4. The non-volatile macro number, which is also entered as an argument for this command, must be between 5 and 24.

RANGE:

 $0 \le Parameter 1 \le 4$

 $5 \le Parameter 2 \le 24$

Example:

Copy temporary macro 3 to non-volatile macro 19.

Enter: PT3,19;

Response: None

QUEUE REQUIREMENTS				
FORMAT	MODE	Min	Max	
PT#,#;	AX – AT	Immediate		
PT#,#; AA-AM Immediate				
-	AA/CD	Not Valid		

Related commands: MD, MX, PM

QA QUERY AXIS STATUS

The QA command returns the status of the single addressed axis like the RA command except the limit and done flags will not be cleared. Refer to the RA command for details.

*

Example: Check the status of the X axis.

Enter: A

Response: PNNH<LF>

Refer to the table "Character Meaning" in the RA command on page 5-156.

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
QA	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: <u>EA</u>, <u>QI</u>, <u>RA</u>, <u>RI</u>

QI QUERY INTERRUPT STATUS

The QI command returns the same information as the QA command but for all axes at once. The 4 character fields for each axis are separated by commas. The state of the status flags for all axes with out clearing the controller's copy of the done flags.

Example: Check the status of an four axis board.

Enter: AA;

QI

Response: PNNN,MNNN,PDNN,MNLN<LF>

Refer to the table "Character Meaning" in the RA command on page 5-156.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
-	AX - AT	Not Valid	
QI	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: EA, QA, RA, RI

QL QUERY ALL LIMIT SENSORS

QL is an immediate command and is valid in single axes, AA, and AM modes of operation.

The response of the QL command is a hexadecimal value representing the state of the response of the positive and negative limit sensors of each axis. A limit sensor in the TTL "High" state will have a value of ONE (1) and a limit sensor in a TLL "Low" state will have value of Zero (0). The order of the limit sensors is as follows:

0xf8f0	T Axis Positive Limit	0xf0f8	T Axis Negative Limit
0xf4f0	Z Axis Positive Limit	0xf0f4	Z Axis Negative Limit
0xf2f0	Y Axis Positive Limit	0xf0f2	Y Axis Negative Limit
0xf1f0	X Axis Positive Limit	0xf0f1	X Axis Negative Limit

1

Example: Query all limit sensors

Enter: AA;

Response: ffff<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
QL	AX - AT	Immediate	
-	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: LH, LL, ?LS

RA REQUEST AXIS STATUS

The RA command returns the state of the limit and home switches and the done and direction flags for the currently addressed axis. The done flag register will be reset by this command.

See RI command for multi-axis mode.

The status is returned in the following format:

CHARACTER MEANING			
CHAR	CHAR SENT DESCRIPTION		
1	LF	Line feed	
2	CR	Carriage return	
3	CR	Carriage return	
4	Р	Moving in positive direction	
4	М	Moving in negative direction	
5 D N		Done (<u>ID</u> , <u>II</u> or <u>IN</u> command has been executed, set to N by this command or IC command)	
		No_ID_ executed yet	
6 L N		Axis in overtravel. Char 4 tells which direction. Set to N when limit switch is not active.	
		Not in overtravel in this direction	
7	T	Home switch active. Set to N when home switch is not active.	
<i>'</i>	N	Home switch not active	
8	LF	Line feed	
9	CR	Carriage return	
10	CR	Carriage return	

1

Example: The Y axis just encountered a limit, verify its status.

Enter: AY

RA

Response: PNLN<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
RA	AX – AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: EA, QA, QI, RI

RB REPORT BIT DIRECTION

The RB command reports the bit direction of the general I/O bits.

Example: Report direction of all I/O's. In this example I/O bits 0-3 are set as

outputs and I/O bits 4-7 are set as inputs.

Enter: RB

Response: 0f<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
-	AX - AT	Immediate	
RB	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: None

RC REQUEST ACCELERATION

The RC command will return the current acceleration rate of the current axis. This may differ from the programmed acceleration if a cosine (CN) or parabolic (PN) ramp is being generated. When the stage is stopped, the parameter returned will be zero (0). When the stage is running at programmed speed; i.e. not accelerating, the parameter returned will be zero (0). While a contour is executing, the value computed to generate the appropriate lead in will be returned. The response to the RC command is surrounded by linefeed + carriage return pairs.

Example: Display current acceleration values for all axes on an four axis board.

Enter: $\underline{\underline{AA}}$;

RC

Response: <LF><CR>2000000, 2000000, 2000000, 2000000<LF><CR>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
RC	AX - AT	Immediate	
RC	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: ?AC, AC, RV

RD RESTORE DEFAULT VALUES

RD assigns the current parameter set to be the default values that are in flash memory.

QUEUE REQUIREMENTS			
MODE	Min (pf)	Max (pn/cn)	Custom ramp
AX - AT	Immediate		
AA - AM	Immediate		
AA/CD	Not Valid		

1

Example: Assign the current parameter set to be the default values.

Enter: RD;

Response: None.

Related commands: AP, RF

RE REPORT ENCODER POSITION

The RE command returns the current encoder position of the currently addressed axis or axes in encoder counts.

1

Example: Examine the current encoder position of the Y axis.

Enter: AY;

RE

Response: 12345<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
RE	AX - AT	Immediate	
RE	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: PE, PP, RP

RF RESTORE FACTORY DEFAULT VALUES

RF assigns the current parameter set to be the factory default values.

Example: Assign the current parameter set to be the factory default values.

Enter: RF;

Response: None

QUEUE REQUIREMENTS			
MODE	Min (pf)	Max (pn/cn)	Custom ramp
AX - AT	Immediate		
AA - AM	Immediate		
AA/CD	Not Valid		

Related commands: None

RI REQUEST INTERRUPT STATUS

The RI command is a multi-axis mode command that returns the same status information for all axes as the $\frac{RA}{L}$ command does in single axis mode. The 4 character fields for each axis are separated by commas. The done flag is reset by this command as it would be via the $\frac{RA}{L}$ command.

૾ ⊦

Example: Check the status of a 4 axis board.

Enter: AA;

RI

Response: MDNN,MDNN,PNLN,PNNN<LF>

Refer to the table "Character Meaning" in the RA command on page 5-156.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
-	AX - AT	Not Valid	
RI	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: EA, QA, QI, RA

RL REPORT SLIP STATUS

The RL command returns the slip detection status of all axes. S is returned if a slip condition has occurred for that axis, or else an N is returned. The number of characters returned corresponds to the number of axes available on the board. This command is intended to be used with stepper motors with encoders and not with servo motors. Open-loop stepper always returns "n" and servo axes always returns "N" in their RL response.

Example: On a four axis board, see if any axis has slipped.

Enter: RL

Response: NNSN<LF> (The Z axis has slipped.)

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
RL	AX - AT	Immediate	
RL	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: ES, IS, TF, TN

RM REMAINDER

The RM command divides the position counter by the parameter supplied and replaces the position counter with the resulting remainder. The parameter must be greater than zero and less than 32,000. This command is used in applications where the controller is managing the motion of a continuously rotating object. It allows the position counter to keep track of the absolute position without regard to the number of revolutions it may have rotated. This command has the same effect on the encoder position register on axes with the encoder feedback enabled.

RANGE: 0 < RM < 32,000

Fys

Example: The current position of a rotating stage with a full-revolution count of

6000 is needed. Since this stage has been rotated several times without regard for the position, the position counter has reached 163,279. Send an RM6000 command to find out what the real position of the axis is.

Enter: (Current position is 163,279)

RM6000;

(Current position is now 1,279)

Response: None.

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
RM#;	AX - AT	1	1		
-	- AA-AM Not Valid				
_	AA/CD	Not Valid			

Related commands: LO, LP, RE, RP, RU

RP REQUEST POSITION

The RP command returns the current position of the currently addressed axis in single axis mode or all positions separated by commas in \underline{AA} or \underline{AM} mode. The position will be returned to the host in ASCII format. This command is not queued; i.e. the current position will be returned immediately even if the axis is in motion.

1

Example: The current position on the Y axis is 12345. Use the RP command to

verify the position.

Enter:

RP

Response: 12345<LF>

Ł

Example: Verify the positions of all axes.

Enter: AA;

RΡ

Response: 100,200,300,400<LF>

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
RP	AX - AT	Immediate		
RP	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: RE, PE, PP

RQ REPORT QUEUE SIZE

The RQ command returns the number of entries available in the queue of the currently addressed axis in single axis mode or all axes separated by commas in multi-axis modes. The ASCII string is delimited by linefeed + carriage return pairs. The maximum available in each command queue is 800 except the contour queue which is 7160. The response is at a fixed length of 3 characters for all modes except contour mode which is fixed at 4 characters. For example, if the current free queue space is 67 in AM mode, the response from the controller to the RQ command is <LF><CR>067<LF><CR>.

1

Example: Report the command queue space remaining in contour mode.

Enter: RQ

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND MAX Value				
RQ	AX - AT	Immediate	200	
RQ	AA-AM	Immediate	200	
RQ	AA/CD	Immediate	7160	

Related commands: None.

RS RESET

The RS command is a software reset which causes the local PC78 microprocessor to reset. All previously entered data and commands are lost. All internal parameters are initialized to defaults. All interrupts are disabled. This command is intended for catastrophic failure recovery only. The KL command should be used to reset queues or return the system to a known state. Monitor the INIT flag in the status register for completion of the initialization process; see Table 3-4. The "Initializing" in process bit goes high during the initialization process. You should not try to communicate to the controller for approximately 5 seconds after issuing the RS command.

Ł

Example: Clear everything in the board and stop all movement. Reset all hardware

registers.

Enter: RS;

Response: None

QUEUE REQUIREMENTS				
MODE Min (pf) Max (pn/cn) Custom ramp				
AY – AT	Immediate			
AA-AM	Immediate			
AA/CD	Not Valid			

Note: The Polling for the Dir Flag should be at a frequency of 1500ms or more.

Related commands: None.

?RT REPORT RAMP TYPE

The ?RT command reports the current acceleration ramp assigned to the active axis. Possible responses are:

la Default linear ramp

prn Parabolic where n specifies number of segments

sc Cosine ramp

srn Custom ramp where n specifies the table number

pr Parabolic ramps

Solution Example: Make sure custom ramp #3 was assigned to the Y axis

Enter: AY;

?RT

Response: sr3<LF>

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
?RT	AX - AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: <u>CN</u>, <u>LA</u>, <u>PF</u>, <u>PN</u>, <u>PR</u>, <u>SC</u>, <u>SR</u>

RU REPORT POSITION IN USER UNITS

The RU command returns the current position in user units (see <u>UU</u> command on page 5-195). The format of the response is a floating-point number.

Example:

One revolution of a motor is 2000 steps. Define user units so moves can

be referenced in revolutions. Move the Z axis 3 1/2 revolutions. Use RU

to display the position when the move is complete.

Enter: AZ;

<u>UU</u>2000; <u>LP</u>0; MR3.5;

GO; (Wait until move is complete.)

RU;

Response: 3.50000<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
RU;	AX - AT	Immediate		
RU;	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: RE, RP, UU

NOTE: While the user units' mode provides a certain level of convenience to the user, it does so at a cost, namely accuracy and control. User unit conversions may cause round off error and may possibly truncate key information.

RV REQUEST VELOCITY

The RV command will return the current velocity at which the axis is moving. This may differ from the programmed maximum velocity if the axis is accelerating or decelerate. If the <u>JF</u> command is executing, the command only reports the integer part of the velocity.

₹

Example: Jog the Y axis at 12345 steps per second.

Display the current velocity.

Enter: AY;

JG12345;

RV

Response: 12345<LF>

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
RV	AX - AT	Immediate		
RV	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: RC, ?VL, VL

SA STOP ALL

The SA command flushes all queues and causes all axes to decelerate to a stop at the rate previously specified in an AC command. All status and position information is retained. Even when executed in a single axis mode, this command will cause all axes to stop.

*

Example: Send all axes on a move and then ramp them to a stop before they finish.

Enter: AA;

VL100,100,100,100; MR1000,2000,3000,4000;

GO; (wait awhile)

SA;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
SA;	AX - AT	1*	0*	
SA;	AA-AM	1*	0*	
-	AA/CD	Not Valid		

Related commands: KL, KS, SD, SI, SO, ST

SB SET BAUD RATE

The SB command sets the controller's serial communications baud rate. Valid baud rates include 300, 600, 1200, 2400, 9600, 19200 and 38400. The factory default baud rate is 9600. See the AP Command to preserve the SB your baud rate as the Power up/Reset rate.

NOTE: The PC78 uses CTS/DTR hardware handshake for flow control.

3

Example: Sets the serial communications baud rate to 19200.

Enter: SB19200;

Response: None.

QUEUE REQUIREMENTS				
MODE	Min (pf)	Max (pn/cn)	Custom ramp	
AY – AT	Immediate			
AA - AM	Immediate			
AA/CD	Not Valid			

Related commands: ?SB

?SB QUERY THE BAUD RATE

The ?SB command queries the board to determine the current baud rate setting

1

Example: Query the board to determine its current baud rate setting.

Enter: ?SB

Response: If the board is set for 9600 baud rate: sb9600<LF>

QUEUE REQUIREMENTS				
MODE	Min (pf)	Max (pn/cn)	Custom ramp	
AX - AT	Immediate			
AA - AM	Not Valid			
AA/CD	Not Valid			

Related commands: SB

SC COSINE RAMP PER AXIS

The SC command specifies that the standard cosine acceleration ramp is to be used by the selected axis/axes. This command is similar to the <u>CN</u> command except that only the selected axis or axes are affected. The <u>AP</u> command will store the settings of SC as the power-up/reset defaults.

🗣 Ex

Example: Select the cosine ramp for the X axis.

Enter: AX;

SC;

Response: None.

Ł

Example: Select the cosine ramp for the Y and T axes.

Enter: AA;

SC,1,,1;

Response: None.

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
SC;	AY – AT	5	24		
SCb,b,b,b;	AA-AM	5	24		
-	AA/CD	Not Valid			

Related commands: CN, LA, PF, PN, PR, ?RT, SR

SD STOP AND RESET DONE

The SD command may be substituted for the \underline{SA} command. It will reset the done flags for all axes, stop all axes at the rates previously specified via the \underline{AC} command, and then flush all axis command queues. This allows the host to be interrupted when all axes have stopped by using the \underline{ID} command after the SD. The \underline{SA} \underline{ID} combination may flag the completion early if one of the axes is already done from a previously executed \underline{ID} .

Ł

Example: Stop all axes and reset all done flags. When all axes have stopped set

all done flags.

Enter: AA;

SD;

<u>ID</u>;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
SD;	AY – AT	2*	0*	
SD;	AA-AM	2*	0*	
-	- AA/CD Not Valid			

- If PA (power automatic) mode is active add 1 to the command queue.
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue.

Related commands: KL, KS, SA, SI, SO, ST

SE SETTLING TIME

The SE command allows specification of a settling time, in milliseconds, to be used before the auxiliary output is complemented when using <u>PA</u> mode. The parameter may be any value up to 1000 milliseconds. Specification of a parameter of zero disables SE mode.

The factory default settling time is zero. See the AP command to preserve the SE settings as the Power up/Reset values.

RANGE: 0 ≤ **SE** ≤ 1000

Example:

Turn on the Z axis auxiliary output upon execution of a move and have it

remain on for 500 milliseconds after the move is complete.

Enter: AZ;

<u>PA;</u> SE500;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
SE#;	AY – AT	Immediate		
SE#,#,#,;	AA - AM	Immediate		
-	AA/CD	Not Valid		

Related commands: AF, AN, PA, ?SE

?SE REPORT SETTLING TIME

The ?SE command reports the settling time setting (\underline{SE}) used with power automatic mode (\underline{PA}) for the current axis.

1

Example: Report the current settling time for axis X

Enter: <u>AX</u>;

?SE

Response: se250<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?SE	AY – AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: ?PA, SE

SF SOFT LIMITS OFF

The SF command restores the default operation of the limit switches; i.e. causes the affected axis or axes to abruptly halt when a limit switch is encountered. If soft limits have been made the power-up default, the AP command must be used to store hard limit operation as the default.

Example:

Set up a board to make the X axis stop immediately when a limit is

encountered.

Enter:

AX; SF;

Response:

None.

Z

Example: Set up a board to make the Y and T axes to stop immediately when a

limit is encountered.

Enter:

\A; SF,1,,1;

Response:

None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
SF;	AX - AT	1	0	
SFb,b,b,b;	AA-AM	1	0	
-	AA/CD	Not Valid		

Related commands: LF, LH, LL, LN, ?SL, SL, TL

SI STOP INDIVIDUAL

This command can be used to stop only certain axes. In a single axis mode, the SI command behaves identically to <u>ST</u>. In a multi-axis mode, however, SI can be used to stop any number of axes and can be used in place of <u>SA</u>. Like <u>SA</u>, SI will ramp those axes to be stopped using the rate previously specified via the <u>AC</u> command. This command is useful for stopping a specific axis when the current axis mode is unknown and for stopping several axes without affecting current motion on other axes.

Each parameter represents an axis from X through S. Any non-zero value in a parameter will cause the corresponding axis to be stopped.

1

Example: Start a motion on all four axes. When input bit 1 becomes true, stop axes

Y and T without affecting X and Z.

Enter: AM;

MR15000,30000,20000,40000;

<u>GO</u>; <u>SW</u>1; SI,1,,1;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
SI;	AX - AT	1*	0*	
Slb,b,b,b;	AA-AM	1*	0*	
-	AA/CD	Not Valid		

- If <u>PA</u> (power automatic) mode is active add 1 to the command queue.
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue.

Related commands: KL, KS, SA, SD, SO, ST

SK DEFINE KILL LINK ON PC78

The SK command links the execution of the KILL function (<u>KL</u>) to the defined change of state of the assigned input bit.

First Parameter

This specifies the standard input bit number. The factory default bits are 0, 1, 2, and 3, but it can be configured by the user to include bits 0 to 7

Second Parameter

Valid bit states are 0 and 1

If the value of the selected bit state is ZERO, the selected macro will be executed if the selected bit changes from a TTL high to a TTL low.

If the value of <Bit State> is ONE, then the selected Macro will be executed when the selected bit changes from a TTL low to a TTL high.

NOTE: Each bit state can be linked with a macro. So, up to two macros can be assigned to an input bit. For example, macro 10 could be executed when I/O 0 goes low and macro 11 could be executed when I/O 0 goes high.

Third Parameter

If the value is ZERO the KILL function linkage for the specified Bit State is deleted.

If the value is ONE, the KILL function linkage for the specified Bit State will replace the current linkage.

*

Example: The current macro linked to I/O bit 2 as it goes from high to low is to be

replace with the KILL (KL) function.

Enter: SK2,0,1;

Response: None.

Related commands: None.

SOFT LIMITS ON SL

The SL command enables the PC78 to ramp an axis to a stop rather than abruptly killing the motion when a limit switch is encountered on that axis. The output queue is not flushed except for the current move. This mode is effective for point to point and <u>JG</u> moves only. Soft limits can be made the power-up default via the AP command.

Set up a board to allow the X axis to ramp to a stop when a limit is Example:

encountered.

AX; SL; Enter:

Response: None.

Example: Set up a board I/O to allow the Y and T axes to ramp to a stop when a

limit is encountered.

Enter: <u>AA</u>;

SL,1,,1;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
SL;	AX - AT	1	0	
SLb,b,b,b;	AA-AM	1	0	
- AA/CD Not Valid				

Related commands: LF, LH, LL, LN, SF, ?SL, TL

?SL REPORT SOFT LIMIT STATUS

The ?SL command reports whether soft limits are currently enabled for the active axis.

1

Example: Find out whether soft limits are enabled for axis Z

Enter:

<u>AZ;</u> ?SL

Response: sI<LF>

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
?SL	AX - AT	Immediate	
-	AA-AM	Not Valid	
-	AA/CD	Not Valid	

Related commands: SF, SL

SM ENABLE/DISABLE STAND-ALONE MODE

This command enables or disables the SM mode (Stand-Alone Mode).

SM mode value of 1 enables the SM mode

A SM mode value of 0 disables the SM mode.

*

Example: Enable Stand-Alone Mode

Enter: SM1;

Response: None.

QUEUE REQUIREMENTS			
FORMAT MODE COMMAND ARGUMENT			
SM#;	AX - AT	Immediate	
SM#,#,#,;	AA-AM	Immediate	
SM#,#,#,;	AA/CD	Immediate	

Related commands: CB, PS, SK, SX

SO STOP AT POSITION BY RAMPING FROM A DISTANCE

The SO command instructs the PC78 to continue moving until reaching a specified distance (parameter 2) from a specified stop point (parameter 1). The axis will then ramp to a stop within the specified distance. This allows the user to control the point at which deceleration begins, the rate of deceleration, and the stop point, all with a single command.

RANGE:

Min. Position Range ≤ Parameter 1 (Stop Position) ≤ Max. Position Range
Min. Position Range ≤ Parameter 2 (Distance from Stop Position to Start Decelerating) ≤
Max. Position Range

NOTE: The position range is dependent on the PC78's settings, see Specifications for more detail.

1

Example: The X axis is jogging at 10,000 steps per second. We want the axis to

stop at position 50,000 but it must not start ramping until reaching

position 46,000.

Enter: SO50000,4000;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
SO#,#;	AY – AT	3*	2*	
-	AA-AM	Not Valid		
-	- AA/CD Not Valid			

- If the axis is a stepper and encoder or servo axis, add 1 to the command queue
- If PA (power automatic) mode is active, add 1 to the command queue
- If an aux bit settling time has been specified, add 2 to the command queue and add 1 to the argument queue

Related commands: KL, KS, SA, SD, SI, ST

?SO REPORT ANALOG OUTPUT MODE

The ?SO command reports whether the analog output type for the current servo axis is bipolar or unipolar. The possible responses are <u>BI</u> and <u>UN</u>, the same commands used to set one mode or the other.

Exa

Example: The Y axis should be setup with unipolar outputs. Use ?SO to make

sure.

Enter:

?SO

Response: un<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?SO	AX - AT	Immediate		
-	AA - AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: BI, UN

SP STOP AT POSITION

The SP command will cause the controller to attempt to stop at the specified destination. If there is insufficient distance to stop at the previously specified deceleration when the command is received, the controller will stop as soon as possible at that deceleration. This command is not compatible with the <u>JG</u> command.

Example: (see MV command on page 5-141)

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
SP#;	AY – AT	2*	1*	
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

- If the axis is a stepper and encoder or servo axis add 1 to the command queue
- If <u>PA</u> (power automatic) mode is active add 1 to the command queue
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue

Related commands: FP, MM, MP, MV

SR SELECT CUSTOM RAMP

The SR command selects a previously defined custom ramp profile for use with a currently active axis. This command will override previous ramp type selection for the given axis such as \underline{PN} and \underline{CN} .

RANGE: $1 \le SR \le 8$

Example:

Select custom ramp number 4 for use with axis Y.

Enter: AY

AY; SR4;

Response: None.

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
SR#;	AY – AT	15	5 + (2* number of segments in ramp definition)		
-	AA-AM	Not Valid			
-	AA/CD	Not Valid			

Related commands: CN, DAB, DAE, DAR, LA, PF, PN, PR, ?RT, SC

ST STOP

The ST command flushes the queue for the current axis or axes only and causes the axis/axes to decelerate to a stop at the rate previously specified via the <u>AC</u> command. This command is used to stop one or more motors in a controlled manner from jog mode or an unfinished <u>GO</u> or <u>GD</u> command. This command is executed immediately upon receipt. All status and position information is retained. When executed in a multi-axis mode, the ST command is equivalent to the <u>SA</u> command.

₹

Example: Move the Y axis for a while at 1200 steps/second and then ramp to a

stop.

Enter: AY;

JG1200; (Wait awhile)

ST;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
ST;	AX - AT	1*	0*	
ST;	AA-AM	9*	61*	
-	AA/CD	Not Valid		

- If <u>PA</u> (power automatic) mode is active add 1 to the command queue.
- If an auxiliary output bit settle time has been specified add 2 to the command queue and add 1 to the argument queue.

Related commands: KL, KS, SA, SD, SI, SO

?SV REPORT SERVO VOLTAGE INVERSION STATE

The ?SV command reports the current logical direction for the current servo axis. The state is set with the <u>SVI</u> and <u>SVN</u> commands. The possible responses to the ?SV command are svn for normal and svi for inverted.

Example: Report whether servo voltage is positive for positive moves on axis X

Enter: AX; ?SV

Response: svn <LF> (voltage is normal; i.e. positive for positive moves)

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?SV	AY – AT	Immediate		
_	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: ?DB, SVI, SVN

SVI INVERT SERVO VOLTAGE

(D-

The SVI command inverts the voltage output for the current axis. After receiving this command, the PC78 will produce a negative voltage for positive motion and a positive voltage for negative motion. To cancel this command, issue an SVN command. To make inverted servo outputs the default at power up or reset, use the AP command.

9

Example: The Y axis encoder is counting opposite the expected direction. Setup

the Y axis to produce a negative voltage when moving positive instead of

a positive voltage to correct the problem.

Enter:

SVI:

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
SVI;	AY – AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: BI, DBI, DBN, ?SV, SVN, UN

SVN NORMALIZE SERVO VOLTAGE

The SVN command normalizes the voltage output for the current axis, negating the effects of the SVI command. After receiving this command, the PC78 will produce a positive voltage for positive motion and a negative voltage for negative motion, the default behavior. To make this the default behavior (if it has been changed via SVI/AP), use the AP command. (SVN is the factory default setting.)

Example: The Y axis encoder was rewired and now counts in the correct direction.

Return the Y axis servo output to normal; i.e. output positive voltage for

positive motion.

Enter:

AY;

SVN;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
SVN;	AY – AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: BI, DBI, DBN, ?SV, SVI, UN

SW SYNC WAIT

The SW command allows synchronization of multi-axis moves or other tasks on one or more PC78 boards by using one of the general purpose input lines. This command causes the PC78 to stop processing new commands until the general purpose input line has been released (allowed to go high) before proceeding with the next command.

The SW command can also be used to cause an axis to wait until the others are finished. To do this, wire-OR the auxiliary lines from several axes together and connect them to a general purpose input line. Use power automatic (PA) mode with the SW command on that line. All commands after that will wait until all axes release their auxiliary lines; i.e. come to a complete stop.

RANGE: 0 ≤ Bit Number ≤ 7

NOTE: The parameter used to specify Bit Number must be configured as an input. See, RB and IO.

Example:

The following command sequence will cause the X axis move to wait until the Y axis has finished its move and turned off its auxiliary output which has been wired to the general purpose input 0 line.

Enter:

<u>AY;</u> <u>AN;</u>

MR2000;

<u>GO</u>; <u>AF</u>; <u>AX</u>;

SW0; <u>MR</u>10000;

GO;

Response: None.

The SW command provides a way to synchronize moves on two or more controllers. The following example shows one way to do this.

Example:

You have 3 four axis controllers, for a total of 12 axes to move together. Call board 1 the "master" and boards 2 and 3 the "slaves". Wire board 1's X axis auxiliary line to the two slave boards' general purpose input 0 line. Send to the master the command "AX PAO", setting the master's X axis auxiliary line low until its move starts. This also sets the slaves' general purpose input 0 line low. Enter the "SW0" command to the two slaves, followed by the move and GO commands. On the master, enter the move command, followed by the GO command. When the master's move starts, the PA command will set the auxiliary line high releasing the wait on the slave boards. All three boards will start their moves. This provides synchronization to within 480us of each board.

Procedure: Wire board 1's X axis auxiliary line to board 2's and board 3's general

purpose input 0 line.

Enter: (Board 1) AX;

<u>PA</u>0;

(Board 2) <u>AA;</u>

SW0;

MR200,200,200,200;

<u>GO</u>;

(Board 3) AA;

SW0;

MR300,300,300,300;

GO;

(Board 1) AA;

MR100,100,100,100;

GO;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
SW#;	AX - AT	1	1	
SW#;	AA-AM	1	1	
-	AA/CD	Not Valid		

Related commands: BW, WA, WQ, WT

SX DEFINE MACRO LINK ON PC78

This command creates the link to execute the previously defined permanent macro when it senses the change in state of the defined standard input bit.

First Parameter

This specifies the standard input bit number. The factory default bits are 0, 1, 2, and 3, but it can be configured by the user to include bits 0 to 7.

Second Parameter

Valid bit states are 0 and 1

If the value of the selected bit state is ZERO, the selected macro will be executed if the selected bit changes from a TTL high to a TTL low.

If the value of <Bit State> is ONE, then the selected Macro will be executed when the selected bit changes from a TTL low to a TTL high.

NOTE: Each bit state can be linked with a macro. So, up to two macros can be assigned to an input bit. For example, macro 10 could be executed when I/O 0 goes low and macro 11 could be executed when I/O 0 goes high.

Third Parameter

Specifies the macro number (5-24) to be executed when the conditions are met. A macro link can be deleted by specifying the bit number and the bit state along with a macro number zero. The macro assigned to a given input bit and bit state can be changed by issuing the same SX command using a different macro number.

Example: When I/O bit 1 goes from low to high, macro 20 will be executed.

Enter: SX1,1,20;

Example: Upon Power-up, the user presses an "Activate Button-short to ground",

(linked to bit 1). This should cause the PC78 to position the X-axis at a position 1000 steps from zero and the Y-axis at 2000 steps from zero. At that point, it should execute Macro 10. The stop button (short to ground)

is linked to bit 2.

Enter: MD0; begin the definition of Macro #0

4X;

MA 1000; move X-axis to position 1000

GO;

<u>AY</u>;

MA2000; move Y-axis to position 2000

GO;

<control Z> terminate the definition of macro #0
PT0,10; store macro #0 to non-volatile macro #10

SX1,0,10; define I/O bit #1, active low will execute macro #10

MD1; begin the definition of macro #1
KL; send a KILL to stop everything
<control Z> terminate the definition of Macro #1
PT1.9; store macro #1 to non-volatile macro #9

PT1,9; store macro #1 to non-volatile macro #9 SX2,0,9; define I/O bit #2, active low will execute macro #9

SM1; enable the stand-alone mode

AP; set the current parameters to the power-up defaults

Related commands: CB, PS, SK, SM

TF TURN OFF SLIP KILL MODE

The TF command disables slip kill mode (enabled with TN.)

1

Example: Slip kill mode is enabled but a move needs to be performed where slip is

likely and not important for this move. Disable slip kill mode.

Enter: TF;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
TF;	AY – AT	1	1	
-	- AA-AM Not Valid			
-	AA/CD	Not Valid		

Related commands: ES, IS, RL TN

TL SET SOFTWARE OVERTRAVEL - IMITS

The TL command sets logical limits on the range of travel for an axis. Two parameters must be supplied; one for the upper travel limit and the other for the lower travel limit, both as absolute positions. If the axis reaches either of these logical limits, the PC78 will flag a limit condition just as it would be using the physical limit switch inputs. Move Absolute (MA), Move Relative (MR), and Jog (JF,JG) commands are subject to software travel limits because the PC78 checks an internal absolute position register.

Note: Software overtravel limits and physical limit switch inputs can be enabled at the same time.

RANGE: + Position Range

Note: The position range on PC78 is dependent on the adder rate and update

rate selection. See <u>Specification</u> section for more detail.

Example: Set logical position limits for the X axis of +/-1,000,000.

Enter: <u>AX;</u> TL1000000.-1000000:

Response: None.

Note: TL0,0; Turns software limits off.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
TL#,#;	AY – AT	1	2	
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: LF, LL, LH, LN, SF, SL, ?TL

?TL REPORT SOFTWARE OVERTRAVEL LIMITS

The ?TL command reports the software travel limits for the current axis assigned via the <u>TL</u> command. The first value returned is the upper (or "positive") limit and the second value is the lower (or "negative") limit. These are not physical limits but rather positional limits that an axis should not exceed. If one of these limits is exceeded, the PC78 will set the current axis' limit flag and notify the host computer of the condition as though the axis encountered a hard limit.

Example: Find out what the software limits of the Y axis are currently set to.

Enter: AY;

Response: tf<LF>

Example: Find out what the software limits of the T axis are currently set to.

Enter: AT; ?TL:

Response: tf<LF> (software limits for axis T are currently disabled)

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
?TL	AY – AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: TL

TM TIMED JOG

The TM command performs a jog at the current velocity limits defined for the axis/axes for the specified number of milliseconds. In multi-axis mode, all axes begin moving at the same time and ramp to a stop when their respective jog times have elapsed. The overall jog time will be the parameter passed to the TM command plus deceleration time and acceleration time.

RANGE: $0 \le TM \le 200,000$

1

Example: Jog the X axis for 1000 milliseconds.

Enter: AX

TM1000:

Response: None.

A

Example: Jog the X axis for 1000 milliseconds and the Z axis for 2000 milliseconds,

starting both at the same time.

Enter: AA;

TM1000,,2000;

Response: None.

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
TM#;	AX - AT	5*	1*		
TM#,#,#;	AA-AM	5*	1*		
-	- AA/CD Not Valid				

- If PA (power automatic) mode is active add 1 to the command queue
- If the axis is a stepper and encoder or servo axis add 1 to the command queue

Related commands: JF, JG, SA, ST

TN TURN ON SLIP KILL MODE

The TN command enables slip kill mode. In this mode, if the motor slips beyond the dead band set by the $\underline{\mathsf{ES}}$ command, the PC78 will kill motion on the axis that slipped as though a $\underline{\mathsf{KL}}$ command had been issued to the axis. This mode can be disabled (default) with the $\underline{\mathsf{TF}}$ command.

Example:

X axis is sent on a move. Its encoder cable was not connected to the controller (oops!). The controller issues a $\underline{\mathsf{KL}}$ (Kill) command to the X axis after receiving the slip interrupt. The slip interrupt is generated once the difference between the motor position counts and encoder counts exceed 20.

Enter: AX;

ES20;

TN; <u>IS</u>: <u>LP</u>0;

MA30; GO;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
TN;	AY – AT	1	1	
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: ES, IS, RL, TF

1 -

TX TRACK THE X AXIS

Set up the current axis so that it tracks the X axis. The command argument is the tracking ratio specified as a floating point.

NOTE: If this is a negative, then the axis moves in the opposite direction of the X axis. The command is invalid for the X axis.

N E

Example: Set the Z axis to track the X axis.

Enter: AZ

TX;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
TX;	AY – AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related Commands: ET, HF

UF USER UNITS OFF

The UF command turns off user units returning all numeric commands and responses to their factory default raw representations. This command is equivalent to and preferred over <u>UU</u>1; since it turns off the mode thus minimizing unnecessary overhead. See the <u>AP</u> commands to preserve the UF settings to flash memory.

₹

Example: Turn off user unit conversion on the X, Y, and Z axes.

Enter: AX

UF;

UF;

UF; Or AA;

UF1,1,1;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
UF;	AX - AT	Immediate		
UFb,b,b,b;	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: ?UU, UU

NOTE: While the user units' mode provides a certain level of convenience to the user, it does so at a cost, namely accuracy and control. User unit conversions may cause round off error and may possibly truncate key information.

UN UNIPOLAR

The UN command sets the analog torque outputs of servo axes to unipolar. The analog output will range between 0.0VDC and +10VDC when unipolar is enabled. At maximum positive velocity, the board outputs +10VDC. At maximum negative velocity, the board output approaches 0.0VDC. To maintain position the board outputs 5VDC. This command is valid only in single axis mode.

Example: Set up servo axis X for unipolar operation.

Enter: AX; UN;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
UN;	AX - AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: BI, DBI, DBN, ?SO, SVI, SVN

UU USER UNITS

The UU command converts all move velocities, distances, etc. to user specified units by multiplying by the specified parameter. The <u>UF</u> command is used to terminate this mode. Factory default is with this command off. See the <u>AP</u> command on to preserve the UU settings to flash memory.

*

Example: The motor, driver, and gear ratio you are using requires 10,000 steps to

move one inch. Set up the X, Y, and Z axes so you can enter move

information in inches.

Enter: AX;

UU10000; AY;

UU10000:

AZ;

UU10000;

Or AA;

UU10000,10000,10000;

Response: None.

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
UU#;	AY – AT	Immediate		
UU#,#,#,;	AA-AM	Immediate		
-	AA/CD	Not Valid		

Related commands: RU, UF, ?UU

NOTE: While the user units' mode provides a certain level of convenience to the user, it does so at a cost, namely accuracy and control. User unit conversions may cause round off error and may possibly truncate key information.

?UU REPORT AXIS USER UNIT

This command returns the current user units' multiplier as set via the $\underline{U}\underline{U}$ command. Factory default is UF.

1

Example: Make sure the <u>UU</u>512; command we sent earlier is still current. The

command will return the $\underline{U}\underline{U}$ value with six digits to the right of the decimal point. If the $\underline{U}\underline{U}$ value exceeds six digits for the fractional value,

the value will be rounded off to the sixth decimal place.

Enter: ?UU

Response: uu512.000000<LF>

If user units are turned off (UF) ?UU returns:

uf<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?UU	AY – AT	Immediate		
	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: UF, UU

NOTE: While the user units' mode provides a certain level of convenience to the user, it does so at a cost, namely accuracy and control. User unit conversions may cause round off error and may possibly truncate key information.

VB VELOCITY BASE

The VB command allows the acceleration ramp to start off at a specified velocity. This allows faster acceleration and the ability to pass through resonance quickly in some applications. The velocity jumps instantly to the specified velocity, and then accelerates as usual. The deceleration is the same in reverse. This mode is active only for linear ramps; it is ignored for cosine and parabolic ramps but not flagged as a command error. The parameter must be greater than zero and less than the programmed velocity, where the factory default is zero steps per second. This command is not valid with the <u>JG</u> command nor will it work in conjunction with the <u>DC</u> command. See the AP command to preserve the VB settings as the power-up/reset values.

If the $\underline{\text{VL}}$ command is used after the VB command and the velocity value set with $\underline{\text{VL}}$ is less than the previously set VB value, the initial velocity used at the start of a move will be the $\underline{\text{VL}}$ value minus one. This will result in a one-step acceleration ramp and must be taken into consideration in applications making use of the VB command.

RANGE: 0 ≤ VB < VL value

Example: In the single axis mode, set the Y axis velocity base to 200.

Enter: AY; VB200;

None.

Example: In the AA mode, set the X and Y axes velocity bases to 200.

Enter: AA;

Response:

VB200,200;

Response: None.

QUEUE REQUIREMENTS					
FORMAT MODE COMMAND ARGUMENT					
VB#;	AY – AT	1	1		
VB#,#,#;	AA-AM	1	1		
-	AA/CD	Not Valid			

Related commands: AC, DC, ?VB, VL

?VB REPORT BASE VELOCITY

The ?VB command returns the base (starting) velocity setting for the current axis as set by the VB command. Note that the base velocity must be lower than the command velocity.

1

Example: The acceleration ramp should start at Opps. Make sure we didn't leave it

at some other value.

Enter: ?VB;

Response: vb1500<LF> (Oops! We forgot to set it back to zero)

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?VB	AY – AT	Immediate		
	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: VB, ?VL

VL VELOCITY

The VL command sets the maximum velocity register of one or more axes to the operands which follow the command. The factory default is 200,000 steps per second. See the <u>AP</u> command to preserve the VL settings as the power-up/reset values.

RANGE: 1 ≤ VL ≤ 1044000

Example: In single axis mode, set the X axis velocity to 10,000 counts per second.

Enter: <u>AX</u>;

VL10000;

Response: None.

Example: In the AA mode, set the peak velocities of the X and T axes to 5,000 and

50,000 respectively. Leave the other axes with their previous values.

Enter: AA;

VL5000,,,50000;

Response: None.

QUEUE REQUIREMENTS					
Format	Mode	Axis ramp type	Command	Argument	
VL#; or VL#,#,#,#;	AX-AT or AA-AM	Linear (<u>LA</u> or <u>PF</u>)	1	1	
VL#; or VL#,#,#,;	AX-AT or AA-AM	Short Parabolic (PN0; or	2*	26*	
		<u>PR</u> 0:)			
VL#; or VL#,#,#,;	AX-AT or AA-AM	All other Parabolic	Not Valid		
		Forms			
VL#; or VL#,#,#,#;	AX-AT or AA-AM	Cosine (CN or SC)			
VL#; or VL#,#,#,#;	AX-AT or AA-AM	Custom Ramps (SR)			

Related commands: AC, DC, ?VB, VB, ?VL

?VL REPORT PEAK VELOCITY SETTING

The ?VL command returns the peak velocity setting for the current axis as set by the $\underline{\text{VL}}$ command.

•

Example: Make sure our "AX;VL50000;" command worked.

Enter: ?VL

Response: vI150000<LF>

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
?VL	AY – AT	Immediate		
-	AA-AM	Not Valid		
-	AA/CD	Not Valid		

Related commands: ?VB, VB, VL

VS VELOCITY STREAMING

The VS command will generate a pulse train without acceleration or deceleration at the rates specified using the X and Y axes. The parameters are time in 1 update rate second sample intervals, X velocity, and Y velocity. This is a slave mode and cannot be mixed or queued with other commands; i.e. no other motions involving the X and Y axes or AA mode may be currently in execution when this command is issued. AX mode is the only valid mode for use with this command. The VS command does not require a GO command to start the motion; motion begins immediately upon receipt of the complete VS command.

RANGES:

 $1 \le Parameter 1$ (Time in 1 update rate of a second) $\le 200,000$

0 ≤ Parameter 2 (X Axis Velocity) ≤ 1044000

0 ≤ Parameter 3 (Y Axis Velocity) ≤ 1044000

Example:

Create a stair step profile on the X and Y axes, with the X axis moving in the negative direction and the Y axis in the positive direction. Make each step last 1 second long and increase velocity by 1,000 steps/second, until a velocity of 3,000 steps/second is reached, then step down to 0 steps/second. (Example assumes an update rate of 1024.)

Enter: AX;

VS1024,-1000,1000; VS1024,-2000,2000; VS1024,-3000,3000; VS1024,-2000,2000; VS1024,-1000,1000;

VS1,0,0;

Response: None.

QUEUE REQUIREMENTS					
FORMAT	MODE	COMMAND	ARGUMENT		
VS#,#,#;	AY – AT	2	3		
- AA-AM Not Valid					
-	AA/CD	Not Valid			

Related commands: MV

WA **WAIT FOR AXES**

The WA command, valid only in AA mode, allows a command to wait until all moves on all axes are finished before executing any further commands. Some commands which can affect a nonmoving axis, such as AN, AF and PA, may execute before a previous move on other axes has finished, especially while in a looping (LS-LE, WH-WG) mode. By preceding these commands with a WA, they will not execute until all previously defined moves have finished.

Example:

The Z axis auxiliary line controls a laser beam that you only want on while the Z axis moves in a positive direction. The X and Y axes position the laser. You want to repeat the action 10 times.

Enter:

<u>AA;</u> <u>VL</u>1000,1000,1000; AC10000,10000,10000;

LS10:

MR1000,1000; GO; WA; <u>AN</u>,,1; MR,,500; GO; <u>AF</u>,,1; MR,,-500; GO; LE;

Response: None.

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
-	AY – AT	Not Valid		
WA;	AA-AM	2*	0*	
-	AA/CD	Not Valid		

^{*} This command places entries in all axes' queues.

Related commands: BW, SW, WQ, WT

WD WHILE END

The WD command serves as the loop terminator for the WS command.

Ł

Example:

(see WS command on page 5-207)

QUEUE REQUIREMENTS				
FORMAT	MODE	COMMAND	ARGUMENT	
WD;	AY – AT	1	1	
WD;	AA-AM	1*	1*	
-	AA/CD	Not Valid	_	

^{*} In AA or AM mode, entries are made in all axes' queues.

Related commands: WS

WG WHILE FLAG

The WG command serves as the terminator for the WH command.

*

Example:

(see WH command page 5-204)

QUEUE REQUIREMENTS				
FORMAT MODE COMMAND ARGUMENT				
WG;	AY – AT	1	1	
WG;	AA-AM	2*	1*	
-	AA/CD	Not Valid		

^{*}In AA or AM mode, entries are made in all axes' queues.

Related commands: <u>CW</u>, <u>WH</u>

WH WHILE

The WH command will execute all commands between it and the terminating <u>WG</u> command as a loop until terminated by a <u>CW</u> command. This allows repeated execution of a command sequence which can be terminated by the host. These commands may not be nested but may be executed sequentially.

Example:

You have a 3 axis platform that you use to drill holes in the center of a ¼ inch thick sheet of metal. The sheet is 6 inch square. The driver / motor / lead - screw pitch provide 10000 steps per inch. The operator must manually insert and remove the square from the platform. The X and Y axes move a drill into the desired position. The Z axis lifts and lowers the drill. The operator presses a switch which tells the motion controller that the square is in place and ready to be drilled. The operator will continuously remove and replace the squares until ready to take a break.

The following is a description of how to set up an OMS board to perform this task.

Procedure: Connect a normally closed momentary switch between user I/O input line

0 and ground. This will be the "Ready to Drill" switch.

Enter: AX; UU10000: *set up user units so we can reference move to inches AY; **UU**10000; *10000 steps = 1 inchAZ: **UU**10000; *10000 steps = 1 inch<u>AX</u>; <u>VL</u>.1; <u>AC</u>10; *set up X axis homing velocity and acceleration <u>VL</u>.1; <u>AC</u>10; *set up Y axis homing velocity and acceleration <u>AZ</u>; VL.1; AC10; *set up Z axis homing velocity and acceleration <u>Α</u><u>Χ</u>; HR; AY; HR; HR; *send each axis to home VL3,3,.5; *set normal move velocity for X, Y and Z axes *start of loop to drill squares indefinitely WH; SW0: *(operator removes/replaces square into platform) *wait until operator presses switch MA3,3; *move to center of square GO: MA,,.5;

*move the drill through the square (1/2 inch move on the Z axis drill

GO:

<u>MA</u>,,0;

through the square)

GO; *lift the drill

MA0,0;

<u>GO</u>; *move the platform to home position<u>WG</u>; *loop back to starting WH command

(CW;) *operator wants a break so he/she sends CW from keyboard and presses

switch once more (since loop will most likely be waiting for the switch at

this point)

MA0,0,0; *the loop ends and the following commands execute

GO; *move to home position

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
WH;	AY – AT	1	1
WH;	AA-AM	2*	1*
-	AA/CD	Not Valid	

— In AA or AM mode, entries are made in all axes' queues.

Related commands: <u>CW</u>, <u>LS</u>, <u>WG</u>, <u>WS</u>

WQ WAIT FOR QUEUE TO EMPTY

The WQ command is a special command that stops the board from processing any new commands until the command queue for the current axis mode is empty; i.e. all previous moves have finished. This command is not valid in looping (<u>LS-LE, WH-WG</u>) modes.

1

Example: Move the Y axis 1,000 steps and wait until the move is complete before

asking for the position.

Enter: AY;

MR1000; GO; WQ RP;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
WQ;	AY – AT	Immediate	
WQ;	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: BW, SW, WA, WT

WS WHILE SYNC

The WS command will execute the commands between the WS and $\frac{WD}{WD}$ commands as a loop while the specified general purpose input line is true; i.e. low (default). When the line goes high the PC78 will exit the loop and execute the commands which follow the $\frac{WD}{WD}$ command. The test is at the bottom of the loop; i.e. the commands between WS and $\frac{WD}{WD}$ will always be executed at least once.

If the input line specified is already in the specified state to exit the loop when the WS/<u>WD</u> loop is issued to the PC78, those commands will be executed only once.

#RANGE: 0 ≤ Parameter ≤ 15

•

Example: Execute a continuous loop, moving the X axis 10,000 counts and then

move the Y axis -1000 counts, until an external device terminates the

loop by setting general purpose input 1 high.

Enter: AA;

WS1;

MR10000;

<u>GO</u>;

MR,-1000;

<u>GO</u>;

<u>WD</u>;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
WS#;	AY – AT	1	1
WS#;	AA-AM	1*	1*
-	AA/CD	Not Valid	

^{*} In AA or AM mode, entries are made in all axes' gueues

Related commands: LS, WD, WH

WT WAIT

The WT command will wait for a specified number of milliseconds before proceeding with the next command in the queue. In the AA mode, all axes will wait and entries are made in all axis queues. Immediate commands will not wait since they are not queued.

RANGE: 1 ≤ WT ≤ 200,000

Example:

You want to produce pulses on the X axis at 5,000 steps/second for 2 seconds, then 10,000 pulses/second for 3 seconds, and then stop.

Enter: AX;

JG5000; WT2000; JG10000; WT3000; ST;

Response: None.

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
WT#;	AY – AT	2	1
WT#;	AA-AM	2	1
-	AA/CD	Not Valid	

Related commands: BW, SW, WA, WQ

WY WHO ARE YOU

The WY command returns the model type, firmware revision number, and number of controlled axes of the board being addressed.

1

Example: You want to examine the board identification string.

Enter: WY;

Response:

QUEUE REQUIREMENTS			
FORMAT	MODE	COMMAND	ARGUMENT
WY	AY – AT	Immediate	
WY	AA-AM	Immediate	
-	AA/CD	Not Valid	

Related commands: None.

[THIS IS THE END OF THE COMMAND SEQUENCE]

This page is intentionally left blank.

6. HOST SOFTWARE

6.1. INTRODUCTION TO PC78 SOFTWARE SUPPORT

A CD-ROM containing device drivers, application software, and demonstration code for Pro-Dex, Inc. - Oregon Micro Systems PC family controller is supplied with the initial purchase of an OMS PC78 board. Reference the text files (i.e. README.TXT) on the disk for installation instructions and other information.

Some programs on the demo disk that include source code may be adapted for use in application programs that use OMS motion controls. No license is required. An additional CD-ROM contains OMS User Manuals.

6.2. COMMUNICATION METHODS

There are two possible ports that may be used for communication on a PC78. They are a RS-232 port and a PC/104 bus interface.

6.2.1.PC/104 MODE

6.2.1.1. INTERRUPT DRIVEN COMMUNICATION (PREFERRED METHOD)

This method provides the most efficient means of communication and status gathering with regard to CPU cycles spent. When the PC78 has a character to give to the host, it will generate an interrupt to which the host responds and collects the character. Interrupts will also be generated when the PC78 is ready to accept a character from the host. Further interrupts can be generated for status events such as encountering a limit switch or an invalid host command.

In interrupt-based communications, the host spends as little time as possible talking to the PC78 which frees up its time for other purposes. Instead of constantly polling the PC78 for status information, an interrupt can trigger a function that collects status just once.

Although this method can be more difficult to code and requires a programming language capable of compiling interrupt-driven code, it provides the greatest degree of efficiency. This is also the preferred method recommended by Pro-Dex, Inc. - Oregon Micro Systems.

6.2.1.2. POLLED-MODE COMMUNICATION (NOT RECOMMENDED)

Polled-mode communication can be easier to write code for than interrupt-driven communication. However, this method places a much higher load on the host CPU than interrupt-driven methods and leaves less time for other processes. Using polled mode also makes the code more temperamental should the timing specifications change in the Host PC that the code is running on, for example.

Instead of generating an interrupt, when the PC78 has a character to give to the host, a flag is set in the status register of the PC78. It is the responsibility of the host software to periodically check the status register and, if the flag is set, collect the character from the PC78. Similarly, if the host wishes to send a character to the PC78, the host must first check the status register for the appropriate flag. If the flag is present, the host can go ahead and send the character. If the flag

is not present, the host must wait until it becomes set. Status information must be gathered in a similar fashion.

6.2.2.SERIAL (RS-232) COMMUNICATION

6.2.2.1. INTERRUPT DRIVEN (PREFERRED METHOD)

Most serial port software and drivers use interrupts although it is possible to operate in polled-mode. Serial communication, when interrupt driven, is much faster than in polled-mode and, at 9600 baud and higher, are the only possible method; the host simply cannot keep up with the port at high rates and still pay attention to other tasks.

There are a couple of different options available for communication methods when using RS-232. The first and most difficult is to write the serial port driver directly into the code. This method, while the most efficient, requires the programmer to write an Interrupt Service Routine and deal with interrupt hooking and unhooking. Second, access the serial port as a character device, i.e. COM1: or via an operating system API, opening it as though it were a file. This method is far simpler and allows higher-rate communications but puts more overhead on the host software, slowing down response times for status events from the PC78.

6.2.2.2. POLLED-MODE (NOT RECOMMENDED)

Polled-mode communication can be done in virtually any environment and programming language. However, polled-mode communication requires enough attention from the host CPU that high-rate character transfers are generally not possible and there is little time left over for performing other tasks. This is usually not an issue in non-multitasking environments but systems like Windows NT do not deal well with attention-hogs like polled-mode, high-speed serial communications.

In polled mode, the serial port does not use an interrupt. This means that the interrupt normally assigned to the serial port is available to other devices and that a large number of serial ports can be supported without running out of resources. This is an advantage in systems that require several serial devices.

For PC/104 mode PC78 controls, the best method by far is interrupt-driven bus communication. For RS-232 mode, standard interrupt-driver ports are best. As with any other system, non-multitasking environments allow the software to run with the full attention of the CPU which provides a better response time and causes fewer race conditions. If a multitasking system must be used, the system should be chosen with a heavy bias toward those that multitask most smoothly, spreading the CPU attention span evenly across all running tasks rather than toward those that allow the foreground task to take over.

There are several example applications on the support disk shipped with your PC78. Reference the source code and "README" files on the support disk.

SERVICE USER SERVICE

7. SERVICE

7.1. USER SERVICE

The PC78 family of controllers contains no user serviceable parts.

7.2. THEORY OF OPERATION

The 68332 microprocessor on the PC78 controllers maintains four concurrent processes. The highest priority process calculates the desired pulse frequency 2048 times/second, with a proprietary algorithm (patent number 4,734,847). This frequency is used to generate the pulse trains. The velocity profile and synchronization of each axis is also handled by the 68332.

The commands from the PC or compatible host computer are temporarily stored in a 124 character buffer until the 68332 microprocessor can parse them. The command is then executed immediately or routed to separate command queues for each axis. The command queue contains a list of addresses to execute followed by an optional parameter. A command from the host may be expanded into several commands to the appropriate axis. The GO command, for example, will expand into start, ramp up, constant velocity and ramp down commands. The LS command will save its parameter, i.e. the loop count, on a loop stack along with the address of the LS command to be used by the next LE command as a target for a jump command. The LE command will decrement the loop count and jump to the most recent LS command providing the loop count has not reached zero. If the loop count has reached zero and it is not nested inside another loop, the queue space will be flagged as available and the next instruction in the queue will be executed. Interrupts to the PC host are generated. Status of the interrupts and error flags may be read by the host. The PC78 address is compared to the I/O address selected by the host. When a match is detected the board decode logic is enabled.

This page intentionally left blank

APPENDIX A. LIMITED WARRANTY

APPENDIX A.

LIMITED WARRANTY

The Seller warrants that the articles furnished are free from defect in material and workmanship and perform to applicable, published Pro-Dex, Inc. - Oregon Micro Systems, Inc. specifications for one year from date of shipment. This warranty is in lieu of any other warranty express or implied. In no event will Seller be liable for incidental or consequential damages as a result of an alleged breach of the warranty. The liability of Seller hereunder shall be limited to replacing or repairing, at its option, any defective units which are returned f.o.b. Seller's plant. Equipment or parts which have been subject to abuse, misuse, accident, alteration, neglect or unauthorized repair are not covered by warranty. Seller shall have the right of final determination as to the existence and cause of defect. As to items repaired or replaced, the warranty shall continue in effect for the remainder of the warranty period, or for 90 days following date of shipment by Seller of the repaired or replaced part whichever period is longer. No liability is assumed for expendable items such as lamps and fuses. No warranty is made with respect to custom equipment or products produced to Buyer's specifications except as specifically stated in writing by Seller and contained in the contract.

PC78 USER'S MANUAL

Α

This page intentionally left blank

APPENDIX B.

TECHNICAL SUPPORT

Pro-Dex, Inc., Oregon Micro Systems can be reached for technical support by any of the following methods:

1. Internet E-mail: mailto:support@OMSmotion.com

2. World Wide Web: http://www.Pro-Dex.com

3. Telephone: 8:00 a.m. - 5:00 p.m. Pacific Standard Time

(503) 629-8081 or (800) 707-8111

4. Facsimile: 24 Hours

(503) 629-0688 or (877) 629-0688

5. USPS: Pro-Dex, Inc., Oregon Micro Systems Inc.

1800 NW 169th Place Suite C-100

Beaverton OR 97006

RETURN FOR REPAIRS

Call Pro-Dex, Inc. – Oregon Micro Systems' Customer Service at 503-629-8081 or (800) 707-8111 or mailto:sales@OMSmotion.com.

Explain the problem and we may be able to solve it on the phone. If not, we will give you a Return Materials Authorization (RMA) number.

Mark the RMA number on the shipping label, packing slip and other paper work accompanying the return. We cannot accept returns without an RMA number.

Please be sure to enclose a packing slip with the RMA number, serial number of the equipment, reason for return, and the name and telephone number of the person we should contact if we have further questions.

Pack the equipment in a solid cardboard box secured with packing material.

Ship prepaid and insured to: PRO-DEX, INC, OREGON MICRO SYSTEMS Twin Oaks Business Center 1800 NW 169th Place, Suite C100 Beaverton, OR 97006 This page intentionally left blank

APPENDIX C. **SPECIFICATIONS**

APPENDIX C. **SPECIFICATIONS**

Velocity

0 to 1,044,000 counts per second simultaneous on each axis

Acceleration

0 to 8,000,000 counts per second per second

Position range

67,000,000 counts (±33,500,000)

Accuracy

Position accuracy and repeatability counts for point to point moves

Velocity accuracy ±0.01% for step pulse output

Environmental Operating temperature range: 0 to 50 degrees centigrade

Storage temperature range: -20 to 85 degrees centigrade

Humidity: 0 to 90% non-condensing

Power

- +5VDC at 1 amp typical
- +12VDC at 0.1 amp for servo model
- -12VDC at 0.1 amp for servo model

Dimensions

3.550X3.775X0.5 inches high

Communication

PC/104: Meets all signal specifications for ISA bus specifications (IEEE PC/104 P996.1)

RS/232: Baud rates of 300 to 38.4K

Update Rate

488 µs for PC78 family

PC/104 bus I/O address

The I/O address block utilizes 4 consecutive addresses and is user selectable. The factory default is 300-303 hex.

Limit switch inputs

TTL input levels with on board 2.2K pull up resistor, requires only external switch closure to ground or TTL level input signal. Input sense (low or high true) selectable by command input for each axis.

Home switch inputs

TTL input levels with on board 2.2K pull up resistor, requires only external switch closure to ground or TTL level input signal. Input sense (low or high true) selectable by command input for each axis.

User definable I/O

Up to 12 bits of user definable I/O on PC78 models with 4 axes or less. 8 bits are user configurable as inputs or outputs. auxiliary output per axis and these are fixed as outputs. Factory default is 4 inputs, 4 outputs and 1 auxiliary output per axis TTL input levels with on board 2.2K pull up resistor, requires only external switch closure to ground or TTL level input signal. The auxiliary outputs are TTL open collector outputs (7406, max 48mA). The other outputs are TTL totem pole outputs (74LS243, max 24mA).

Analog outputs

+/-10V and 0 to +10V (servo models only)

Step pulse output

Pulse width 50% duty cycle. Open collector TTL level signal (7406, max 48mA).

Direction output

Open collector TTL level signal (7406, max 48mA).

Encoder Feedback

Maximum 12 MHz after 4x quadrature detection

Differential TTL level signal MC26G32, max 150mA

PC/104 interrupt

Interrupts are user selectable, 2 through 7. The factory default is level 5.

SPECIFICATIONS APPENDIX C.

PC78 CONNECTOR (J5)					
Description	Pin#	Pin#	Description		
Digital GND	1	35	+5VDC		
I/O-1	2	36	I/O-0		
I/O-3	3	37	I/O-2		
I/O-5	4	38	I/O-4		
I/O-7	5	39	I/O-6		
Digital Ground	6	40	+5VDC		
X Index +	7	41	X Servo		
X Index -	8	42	X Step		
X Phase A +	9	43	X Auxiliary		
X Phase A -	10	44	X Direction		
X Phase B +	11	45	X Limit +		
X Phase B -	12	46	X Limit -		
Y Servo	13	47	X Home		
Y Index +	14	48	Y Step		
Y Index -	15	49	Y Auxiliary		
Y Phase A +	16	50	Y Direction		
Y Phase A -	17	51	Y Limit +		
Y Phase B +	18	52	Y Limit -		
Y Phase B -	19	53	Y Home		
Analog GND	20	54	+5VDC		
Z Index +	21	55	Z Servo		
Z Index -	22	56	Z Step		
Z Phase A +	23	57	Z Auxiliary		
Z Phase A -	24	58	Z Direction		
Z Phase B +	25	59	Z Limit +		
Z Phase B -	26	60	Z Limit -		
T Servo	27	61	Z Home		
T Index +	28	62	T Step		
T Index -	29	63	T Auxiliary		
T Phase A +	30	64	T Direction		
T Phase A -	31	65	T Limit +		
T Phase B +	32	66	T Limit -		
T Phase B -	33	67	T Home		
Digital GND	34	68	+5VDC		

RS-232 CONNECTOR (J4)					
Description	Pin	Pin	Description		
Ground	5	9	No Connect		
DTR	4	8	CTS		
TxD	3	7	No Connect		
RxD	2	6	No Connect		
No Connect	1				

APPENDIX C. SPECIFICATIONS

IO68-M TERMINAL BLOCK PIN-OUT					
Row 1	Description	Row 2	Description	Row 3	Description
1	X Step	24	X Direction	47	X Auxiliary
2	X Phase A+	25	X Phase B+	48	X Index +
3	X Phase A-	26	X Phase B-	49	X Index -
4	X Limit +	27	X Limit-	50	X Home
5	+5VDC	28	X Servo	51	Digital Ground
6	Y Step	29	Y Direction	52	Y Auxiliary
7	Y Phase A+	30	Y Phase B+	53	Y Index +
8	Y Phase A-	31	Y Phase B-	54	Y Index -
9	Y Limit +	32	Y Limit-	55	Y Home
10	+5VDC	33	Y Servo	56	Digital Ground
11	I/O-0	34	I/O-3	57	I/O-5
12	I/O-1	35	No Connect	58	I/O-6
13	I/O-2	36	I/O-4	59	I/O-7
14	+5VDC	37	Z Servo	60	Analog Ground
15	Z Step	38	Z Direction	61	Z Auxiliary
16	Z Phase A+	39	Z Phase B+	62	Z Index +
17	Z Phase A-	40	Z Phase B-	63	Z Index -
18	Z Limit +	41	Z Limit-	64	Z Home
19	+5VDC	42	T Servo	65	T Auxiliary
20	T Step	43	T Direction	66	T Index +
21	T Phase A+	44	T Phase B+	67	T Index -
22	T Phase A-	45	T Phase B-	68	T Home
23	T Limit +	46	T Limit-	69	Digital Ground

			PC78	3 Intelligent Motion (Controls			
Model	Inter	face	Servo	Stepper Axes	Axe	es control	I/O	User I/O
	PC/104	RS-	Axes	(Open or	Limits	Aux	Home	GPIO
		232		Closed -loop)				
PC78-25	Yes	Yes	2		4	2	2	8
PC78-45	Yes	Yes	4		8	4	4	8
PC78-26	Yes	Yes		2	4	2	2	8
PC78-46	Yes	Yes		4	8	4	4	8

C-3 PC78 USER'S MANUAL

SPECIFICATIONS APPENDIX C.

This page is intentionally left blank.

INDEX

?

?AC, REPORT AC COMMAND	
?AD, REPORT DEFAULT AUXILIARY BIT STATE	
?AQ, QUERY CURRENT AXIS	5-34
PBD, REPORT BIT DIRECTION	
PBS, REPORT BIT STATE	5-4 ²
PA, PRINT A CUSTOM RAMP	5-54
PDB, REPORT DIRECTION BIT LOGIC	5-57
PDE, REPORT A CUSTOM RAMP TABLE ENTRY	5-6 ⁻
PDS, REPORT THE SIZE OF A CUSTOM RAMP TABLE	
PDZ, REPORT DAC OPEN-LOOP OFFSET	5-64
?EH, QUERY ENCODER HOME	
PER, REPORT MOTOR:ENCODER	
?ES, REPORT ENCODER SLIP	
?HD, REPORT POSITION MAINTENANCE DEADBAND	5-84
?HG, REPORT POSITION MAINTENANCE GAIN	
?HV, REPORT POSITION MAINTENANCE VELOCITY	
?KA, REPORT ACCELERATION FEEDFORWARD	
?KB, REPORT AXIS PID UPPER BOUND LIMIT	
?KD, REPORT PID DERIVATIVE GAIN	
?KF, REPORT SERVO AXIS PID FRICTION COEFFICIENT	
?KI, REPORT PID INTEGRAL GAIN	
?KO, REPORT PID OFFSET COEFFICIENT	
?KP, REPORT PROPORTIONAL GAIN COEFFICIENT	
?KU, REPORT PID INTEGRATIONSUM UPPER LIMIT	5-120
?KV, REPORT VELOCITY FEEDFORWARD	
?LS, REPORT LIMIT ACTIVE STATE	
?PA, REPORT POWER AUTOMATIC STATE	
?PM, REPORT HOLD STATE	5-148
?RT, REPORT RAMP TYPE	
?SB, QUERY THE BAUD RATE	
?SE, REPORT SETTLING TIME	
?SL, REPORT SOFT LIMIT STATUS	
?SO, REPORT ANALOG OUTPUT MODE	
?SV, REPORT SERVO VOLTAGE INVERSION STATE	5-18 ²
?TL, REPORT SOFTWARE OVERTRAVEL LIMITS	5-189
?UU, REPORT AXIS USER UNIT	
?VB, REPORT BASE VELOCITY	
?VL, REPORT PEAK VELOCITY SETTING	
A	
AA, ALL AXES	
AC, ACCELERATION	
ACCELERATION FEEDFORWARD, KA	
ACCELERATION, AC	5-20
ADH, SET AUXILIARY DEFAULT TO HIGH	
ADL, SET AUXILIARY DEFAULT TO LOW	
AF, AUXILIARY OFF	
ALL AXES, AA	
AM, AXES MULTITASKING	
AN, AUXILIARY ON	
AP, ASSIGN CURRENT PARAMETERS AS POWER-UP DEFAULTS	
ASSIGN CURRENT PARAMETERS AS POWER UP DEFAULTS. AP	5-31

	5-34
AUXILIARY OFF, AF	5-30
AUXILIARY ON, AN	5-32
AX, AXIS X	
AXES MULTITASKING, AM	5-31
AXIS T, AT	5-34
AXIS X, AX	5-35
AXIS Y, AY	
AXIS Z, AZ	
AY, AXIS Y	
AZ, AXIS Z	5-36
D	
В	
BAUD RATE, FACTORY DEFAULT	
BEGIN CUSTOM RAMP DEFINITION, DAR	
BH, BIT HIGH	
BI, BIPOLAR	
BIPOLAR, BI	
BIT HIGH, BH	
BIT LOW, BL	
BIT REQUEST IN HEX, BX	
BIT SET, BS	
BS, BIT SET	
BW, WAIT FOR INPUT TO GO LOW	
BX, BIT REQUEST IN HEX	
,	-
<u>^</u>	
С	
	5-43
CA, CLEAR AXIS DONE FLAG	
CA, CLEAR AXIS DONE FLAG	5-43
CA, CLEAR AXIS DONE FLAG	5-43 5-44
CA, CLEAR AXIS DONE FLAG	
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END	5-43 5-44 5-46 5-47
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR. CK, CONTOUR END AND KILL	5-43 5-44 5-46 5-47 5-51 5-49
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA	5-43 5-44 5-46 5-47 5-51 5-49 5-43
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS	5-43 5-44 5-46 5-47 5-51 5-49 5-43
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW	5-43 5-44 5-46 5-47 5-51 5-49 5-43 5-52
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON	5-43 5-44 5-46 5-47 5-51 5-49 5-43 5-52 5-50
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION	5-43 5-44 5-46 5-47 5-51 5-49 5-43 5-52 5-50 5-10
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD	5-43 5-44 5-46 5-47 5-51 5-49 5-43 5-52 5-50 5-10 5-44
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK	5-43 5-44 5-46 5-47 5-5-1 5-49 5-43 5-5-2 5-50 5-10 5-44 5-49
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END AND KILL, CK	5-43 5-44 5-46 5-47 5-5-51 5-49 5-5-52 5-50 5-10 5-44 5-49 5-49
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END AND KILL, CK CONTOUR END, CE CONTOUR END, CE	5-43 5-44 5-46 5-47 5-5-51 5-49 5-5-2 5-50 5-10 5-49 5-49 5-49 5-49 5-40
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END, CE CONTOUR END, CE CONTOUR EXECUTE, CX CONTOUR PRIORITY, CG	5-43 5-44 5-46 5-47 5-51 5-51 5-43 5-43 5-52 5-50 5-10 5-44 5-49 5-46 5-53
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END AND KILL, CK CONTOUR END, CE CONTOUR END, CE CONTOUR PRIORITY, CG CONTOUR VELOCITY, CV	5-43 5-44 5-46 5-47 5-5-51 5-49 5-43 5-5-52 5-50 5-10 5-44 5-49 5-46 5-53 5-52
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END AND KILL, CK CONTOUR END, CE CONTOUR END, CE CONTOUR END, CE CONTOUR PRIORITY, CG CONTOUR VELOCITY, CV CONTROL REGISTER DESCRIPTION	5-43 5-44 5-46 5-47 5-5-51 5-49 5-43 5-5-52 5-50 5-10 5-44 5-49 5-46 5-53 5-52 3-4
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END AND KILL, CK CONTOUR END, CE CONTOUR END, CE CONTOUR EXECUTE, CX CONTOUR PRIORITY, CG CONTOUR VELOCITY, CV CONTROL REGISTER DESCRIPTION COSINE ON, CN	5-43 5-44 5-46 5-47 5-5-51 5-5-43 5-43 5-5-52 5-50 5-10 5-44 5-49 5-49 5-46 5-5-3 5-52 5-50 5-50 5-50
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END AND KILL, CK CONTOUR END, CE CONTOUR END, CE CONTOUR END, CE CONTOUR PRIORITY, CG CONTOUR VELOCITY, CV CONTROL REGISTER DESCRIPTION COSINE ON, CN	5-43 5-44 5-46 5-47 5-5-51 5-5-10 5-10 5-52 5-52 5-53 5-52 5-52 5-52 5-53 5-52 5-50 5-10 5-16
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END AND KILL, CK CONTOUR END CE CONTOUR END CE CONTOUR EXECUTE, CX CONTOUR PRIORITY, CG CONTOUR VELOCITY, CV CONTROL REGISTER DESCRIPTION COSINE ON, CN COSINE ON, CN COSINE RAMP PER AXIS, SC CR, CIRCULAR INTERPOLATION	5-43 5-44 5-46 5-47 5-5-51 5-5-10 5-48 5-49 5-5-10 5-49 5-49 5-49 5-49 5-5-3 5-50 5-10 5-10 5-10 5-5-5 5-50 5-50 5-5
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END AND KILL, CK CONTOUR END, CE CONTOUR END, CE CONTOUR END, CE CONTOUR PRIORITY, CG CONTOUR VELOCITY, CV CONTROL REGISTER DESCRIPTION COSINE ON, CN	5-43 5-44 5-46 5-47 5-5-1 5-51 5-43 5-43 5-5-2 5-50 5-10 5-44 5-49 5-46 5-5-3 5-52 5-50 5-10 5-10 5-10 5-10 5-10 5-22
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END, CE CONTOUR EXECUTE, CX CONTOUR PRIORITY, CG CONTOUR VELOCITY, CV CONTROL REGISTER DESCRIPTION COSINE ON, CN. COSINE ON, CN. COSINE RAMP PER AXIS, SC CR, CIRCULAR INTERPOLATION CURRENT MODE	5-43 5-44 5-46 5-47 5-5-1 5-51 5-43 5-43 5-43 5-5-2 5-50 5-10 5-44 5-49 5-46 5-5-3 5-52 5-50 5-10 5-10 5-10 5-10 5-5-52 5-50 5-50 5-10 5-10 5-50 5-50
CA, CLEAR AXIS DONE FLAG CB, CLEAR MACRO LINKS CD, CONTOUR DEFINE CE, CONTOUR END CG, CONTOUR PRIORITY CIRCULAR INTERPOLATION, CR CK, CONTOUR END AND KILL CLEAR AXIS DONE FLAG, CA CLEAR MACRO LINKS CLEAR WHILE, CW CN, COSINE ON COMMAND LISTING BY SECTION CONTOUR DEFINE, CD CONTOUR END AND KILL, CK CONTOUR END, CE CONTOUR EXECUTE, CX CONTOUR EXECUTE, CX CONTOUR VELOCITY, CV CONTROL REGISTER DESCRIPTION COSINE ON, CN COSINE ON, CN COSINE ON, CN COSINE RAMP PER AXIS, SC CR, CIRCULAR INTERPOLATION CURRENT MODE CV, CONTOUR VELOCITY	5-43 5-44 5-46 5-47 5-5-1 5-51 5-49 5-43 5-52 5-50 5-10 5-44 5-49 5-46 5-53 5-52 3-4 5-50 5-10 5-10 5-10 5-10 5-52 5-50 5-50 5-10 5-50 5-50 5-50 5-50

D

DAB, DEFINE CUSTOM RAMP BREAKPOINT	5-55
DAE, END CUSTOM RAMP DEFINITION	
DAR, BEGIN CUSTOM RAMP DEFINITION	
DBI, INVERT DIRECTION BIT	
DBN, NORMALIZE DIRECTION BIT	
DC, DECELERATION	
DECELERATION, DC	5-60
DEFAULT ENCODER RATIO	
DEFINE CUSTOM RAMP BREAKPOINT, DAB	5-55
DEFINE KILL LINK ON PC78, SK	5-174
DEFINE MACRO LINK ON PC78, SX	5-18
DEFINE ZERO POSITION IN OPEN-LOOP MODE, DZ	5-63
DEFINING ENCODER HOME, EH	
DERIVATIVE GAIN COEFFICIENT, KD	5-11 ²
DONE FLAG REGISTER DESCRIPTION	
DZ, DEFINE ZERO POSITION IN OPEN LOOP MODE	5-63
E	
EA, ENCODER STATUS	5.61
ECHO OFF, EF	
ECHO ON, EN	
EF, ECHO OFF	
EH, DEFINING ENCODER HOME	
EN, ECHO ON	
ENABLE AXIS GANTRY MODE, FX	
ENABLE/DISABLE STAND-ALONE MODE, SM	5-176
ENCODER RATIO, ER	
ENCODER SLIP TOLERANCE, ES	
ENCODER STATUS, EA	
ENCODER TRACKING, ET	5-74
END CUSTOM RAMP DEFINITION, DAE	5-55
ER, ENCODER RATIO	5-70
ES, ENCODER SLIP TOLERANCE	
ET, ENCODER TRACKING	5-74
F	
FL, FLUSH	5 71
FLUSH, FL	
FORCE POSITION. FP	
FP, FORCE POSITION	
FX, ENABLE AXIS GANTRY MODE	5-77
G	
GD, GO AND RESET DONE	5-78
GN, GO AND NOTIFY WHEN DONE	5-80
GO	5-8 ⁻
GO AND MONITOR SLIP TRIGGER, GS	5-82
GO AND NOTIFY WHEN DONE, GN	5-80
GO AND RESET DONE, GD	5-78
GO ASYMMETRICAL, GU	
GS, GO AND MONITOR SLIP	
GU GO ASYMMETRICAL	5-83

Н

HD, HOLD DEADBAND	5-84
HE, HOME ENCODER	5-85
HF, HOLD OFF	5-86
HG, HOLD GAIN	5-87
HH, HOME HIGH	5-88
HL, HOME LOW	5-89
HM, HOME	
HN, HOLD ON	
HOLD DEADBAND, HD	
HOLD GAIN, HG	
HOLD OFF, HF	
HOLD ON	
HOLD ON, HN	
HOLD VELOCITY, HV	
HOME AND KILL, KM	
HOME ENCODER, HE	
HOME HIGH, HH	
HOME LOW, HL	
HOME REVERSE AND KILL, KR	
HOME REVERSE, HR	
HOME SWITCH, HS	
HOME, HM	
HR, HOME REVERSE	
HS, HOME SWITCH	
HV, HOLD VELOCITY	5-90
I/O REGISTER DESCRIPTION	2.3
IC, INTERRUPT CLEAR	
ID, INTERRUPT WHEN DONE	
II, INTERRUPT INDEPENDENT	
IN, INTERRUPT NEARLY DONE	
INTEGRAL GAIN COEFFICIENT, KI	E 440
INTERRUPT CLEAR, IC	
INTERDUCT CONTROL REGISTER	5-98
INTERRUPT CONTROL REGISTER	5-98 3-4
INTERRUPT INDEPENDENT, II	5-98
INTERRUPT INDEPENDENT, IIINTERRUPT NEARLY DONE, IN	
INTERRUPT INDEPENDENT, II	
INTERRUPT INDEPENDENT, II	5-98
INTERRUPT INDEPENDENT, II	5-98 3-4 5-100 5-101 5-104 5-105 5-99
INTERRUPT INDEPENDENT, II	5-98 3-4 5-100 5-101 5-104 5-105 5-105
INTERRUPT INDEPENDENT, II	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-105 5-105 5-105
INTERRUPT INDEPENDENT, II	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-105 5-105 5-105 5-182
INTERRUPT INDEPENDENT, II	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-105 5-105 5-182
INTERRUPT INDEPENDENT, II	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-105 5-105 4-4
INTERRUPT INDEPENDENT, II INTERRUPT NEARLY DONE, IN INTERRUPT ON SLIP, IS INTERRUPT WHEN AXES DONE, IX INTERRUPT WHEN DONE, ID INTERRUPT WHEN IN POSITION, IP. INVERT DIRECTION BIT, DBI. INVERT SERVO VOLTAGE, SVI. IO, SET I/O BIT DIRECTION IO68 ADAPTER MODULE IO68-M	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-105 5-105 4-4 4-4
INTERRUPT INDEPENDENT, II	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-105 5-105 4-4 4-4
INTERRUPT INDEPENDENT, II INTERRUPT NEARLY DONE, IN INTERRUPT ON SLIP, IS INTERRUPT WHEN AXES DONE, IX INTERRUPT WHEN DONE, ID INTERRUPT WHEN IN POSITION, IP. INVERT DIRECTION BIT, DBI. INVERT SERVO VOLTAGE, SVI. IO, SET I/O BIT DIRECTION IO68 ADAPTER MODULE IO68-M IO68-M ENCODER BIAS SWITCH (S43)	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-105 5-105 4-4 4-4 4-5
INTERRUPT INDEPENDENT, II INTERRUPT NEARLY DONE, IN INTERRUPT ON SLIP, IS INTERRUPT WHEN AXES DONE, IX INTERRUPT WHEN DONE, ID INTERRUPT WHEN IN POSITION, IP. INVERT DIRECTION BIT, DBI. INVERT SERVO VOLTAGE, SVI. IO, SET I/O BIT DIRECTION IO68 ADAPTER MODULE IO68-M IO68-M ENCODER BIAS SWITCH (S43) IO68-M TERMINAL BLOCK PIN-OUT	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-105 5-105 4-4 4-5 4-5
INTERRUPT INDEPENDENT, II INTERRUPT NEARLY DONE, IN INTERRUPT ON SLIP, IS INTERRUPT WHEN AXES DONE, IX INTERRUPT WHEN DONE, ID INTERRUPT WHEN IN POSITION, IP. INVERT DIRECTION BIT, DBI. INVERT SERVO VOLTAGE, SVI. IO, SET I/O BIT DIRECTION IO68 ADAPTER MODULE IO68-M IO68-M ENCODER BIAS SWITCH (S43) IO68-M TERMINAL BLOCK PIN-OUT IP, INTERRUPT WHEN IN POSITION.	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-106 5-106 4-4 4-4 4-5 4-5 5-106
INTERRUPT INDEPENDENT, II INTERRUPT NEARLY DONE, IN INTERRUPT ON SLIP, IS INTERRUPT WHEN AXES DONE, IX INTERRUPT WHEN DONE, ID INTERRUPT WHEN IN POSITION, IP. INVERT DIRECTION BIT, DBI. INVERT SERVO VOLTAGE, SVI. IO, SET I/O BIT DIRECTION IO68 ADAPTER MODULE IO68-M IO68-M ENCODER BIAS SWITCH (S43) IO68-M TERMINAL BLOCK PIN-OUT	5-98 3-4 5-100 5-101 5-105 5-105 5-105 5-105 5-105 5-106 5-106 5-106 5-106 5-106 5-106 5-106 5-106 5-106 5-106 5-106 5-106

J3 J5	
JF, JOG FRACTIONAL VELOCITIES	
JG. JOG	5-107
JOG FRACTIONAL VELOCITIES, JF	5-106
JOG, JG	
K	
KA, ACCELERATION FEEDFORWARD	5-109
KB, PID UPPER BOUND LIMIT COEFFICIENT	
KD, DERIVATIVE GAIN COEFFICIENT	
KF, SET SERVO AXIS PID FRICTION COEFFICIENT	5-112
KI, INTEGRAL GAIN COEFFICIENT	
KILL SELECTED AXES, KS	
KILL, KL	
KL, KILL	
KM, HOME AND KILL	5-11
KO, OFFSET COEFFICIENT	
KP, PROPORTIONAL GAIN COEFFICIENT	
KR, HOME REVERSE AND KILL	
KS, KILL SELECTED AXES	
KV, VELOCITY FEEDFORWARD	5-12 ⁻
LA, LINEAR RAMP PER AXIS	5-122
LE, LOOP END	
LF, LIMITS OFF	
LH, LIMITS HIGH	
LIMITS HIGH, LH	
LIMITS LOW, LL	5-126
LIMITS OFF, LF	
LIMITS ON, LN	5-127
LINEAR ON, PF	
LINEAR RAMP PER AXIS, LA	
LL, LIMITS LOW	
LN, LIMITS ON	
LO, LOAD MOTOR POSITION	
LOAD MOTOR POSITION, LO	
LOAD POSITION, LP	
LOOP END, LE	
LOOP START, LS	
LP, LOAD POSITION	
LS, LOOP START	5-130
М	
MA, MOVE ABSOLUTE	5-13
MACRO EXECUTE, MX	5-143
MD, TEMPORARY MACRO DEFINE	5-13
ML, MOVE LINEAR	5-136
MM, MOVE MINUS	
MOVE ABSOLUTE, MA	5-13
NAC 33 (1 1 1 N 11 A 13 N A 1	F 407

MOVE MINUS, MM	5-137
MOVE POSITIVE, MP	
MOVE RELATIVE, MR	
MOVE TO, MT	
MOVE VELOCITY, MV	
MP, MOVE POSITIVE	
MR, MOVE RELATIVE	
MT, MOVE TO	
MV, MOVE VELOCITY	
MX, MACRO EXECUTE	
IVIX, MIACINO EXECUTE	J-140
N	
NEW CONTOUR VELOCITY, NV	5-143
NORMALIZE DIRECTION BIT, DBN	
NORMALIZE SERVO VOLTAGE, SVN	
NV, NEW CONTOUR VELOCITY	5-143
0	
OFFSET COEFFICIENT, KO	F 116
OUTPUT CONNECTOR PIN LIST (J5) (AT CIRCUIT BOARD)	
_	
P	
PA, POWER AUTOMATIC	
PARABOLIC ON, PN	
PARABOLIC RAMP PER AXIS, PR	
PC104 - INTERRUPT DRIVEN COMMUNICATION	
PC104 - POLLED-MODE COMMUNICATION	6-1
PE, REPORT ENCODER POSITIONS	
PF, LINEAR ON	
PID INTEGRATION SUM UPPER LIMIT, KU	5-120
PID UPPER BOUND LIMIT COEFFICIENT, ?KB	
PM, PRINT MACRO	
PN, PARABOLIC ON	
POWER AUTOMATIC, PA	
PP, REPORT MOTOR POSITIONS	
PR, PARABOLIC RAMP PER AXIS	5-151
PRESERVE A TEMPORARY MACRO, PT	5-153
PRINT A CUSTOM RAMP, ?DA	5-54
PRINT MACRO,PM	
PROFILE DISTANCE FORMULA	
PROPORTIONAL GAIN COEFFICIENT, KP	5-117
PS, REPORT MACRO LINK	5-152
PT, PRESERVE A TEMPORARY	5-153
Q	
QA, QUERY AXIS STATUS	
QI, QUERY INTERRUPT STATUS	
QL, QUERY ALL LIMIT SENSORS	
QUERY ALL LIMIT SENSORS, QL	
QUERY AXIS STATUS, QA	
QUERY CURRENT AXIS, ?AQ	
QUERY ENCODER HOME?, EH	
QUERY INTERRUPT STATUS, QI	
QUERY THE BAUD RATE, ?SB	5-168

R

RA, REQUEST AXIS STATUS	
RB, REPORT BIT DIRECTION	
RC, REQUEST ACCELERATION	
RD, RESTORE DEFAULT VALUES	
RE, REPORT ENCODER POSITION	. 5-158
REMAINDER, RMREPORT A CUSTOM RAMP TABLE ENTRY, ?DE	. 5-161
REPORT A CUSTOM RAMP TABLE ENTRY, ?DE	5-61
REPORT AC COMMAND, ?AC	5-27
REPORT ACCELERATION FEED-FORWARD, ?AC	. 5-109
REPORT ANALOG OUTPUT MODE, ?SO	. 5-178
REPORT AXIS PID UPPER BOUND LIMIT, ?KB	. 5-110
REPORT AXIS USER UNITS', ?UU	. 5-196
REPORT BASE VELOCITY, ?VB	
REPORT BIT DIRECTION, ?BD	
REPORT BIT DIRECTION, RB	
REPORT BIT STATE. ?BS	5-41
REPORT DAC OPEN-LOOP OFFSET, ?DZ	5-64
REPORT DEFAULT AUXILIARY BIT STATE, ?AD	5-27
REPORT DIRECTION BIT LOGIC, ?DB	
REPORT ENCODER POSITIONS, ?PE	
REPORT ENCODER SLIP TOLERANCE, ?ES	5-73
REPORT HOLD STATE, ?PM	
REPORT LIMIT ACTIVE STATE, ?LS	5-132
REPORT MACRO LINK, PS	
REPORT MOTOR:ENCODER RATIO, ER	. 0 102 5 ₋ 71
REPORT MOTOR POSITIONS, PP	5-7 1 5-150
REPORT PEAK VELOCITY SETTING, ?VL	5-200
REPORT PID DERIVATIVE GAIN, ?KD	5 ₋ 111
REPORT PID INTEGRAL GAIN, ?KI	
REPORT PID INTEGRATION SUM UPPER LIMIT, ?KU	
REPORT PID OFFSET COEFFICIENT, ?KO	
REPORT POSITION IN USER UNITS, RU	
REPORT POSITION IN USER UNITS, RU	. 5-100
REPORT POSITION MAINTENANCE GAIN, ?HGREPORT POSITION MAINTENANCE VELOCITY, ?HV	5-07
REPORT POWER AUTOMATIC STATE, ?PA	
REPORT PROPORTIONAL GAIN, ?KP	
REPORT QUEUE SIZE, RQ	
REPORT RAMP TYPE, ?RT	. 5-164
REPORT SERVO AXIS FRICTION OFFSET, ?KF	. 5-112
REPORT SERVO VOLTAGE INVERSION STATE, ?SV	
REPORT SETTLING TIME, ?SE	. 5-1/1
REPORT SOFT LIMIT STATUS, ?SL	. 5-1/6
REPORT SOFTWARE OVERTRAVEL LIMITS, ?TL	
REPORT THE SIZE OF A CUSTOM RAMP TABLE, ?DS	
REPORT VELOCITY FEED FORWARD, ?KV	
REQUEST ACCELERATION, RC	
REQUEST AXIS STATUS, RA	
REQUEST ENCODER POSITION, RE	
REQUEST INTERRUPT STATUS, RI	
REQUEST POSITION, RP	
REQUEST VELOCITY, RV	
RESET, RS	
RESTORE DEFAULT VALUES, RD	
RESTORE FACTORY DEFAULT VALUES, RF	
RETURN SLIP STATUS, RL	. 5-160
RF, RESTORE FACTORY DEFAULT VALUES	
RI, REQUEST INTERRUPT STATUS	
RL, REPORT SLIP STATUS	. 5-160

RM, REMAINDER	5-161
RP, REQUEST POSITION	5-162
RQ, REPORT QUEUE SIZE	5-163
RS, RESET	
RS-232 - INTERRUPT DRIVEN COMMUNICATION	6-2
RS-232 - POLLED-MODE COMMUNICATION	6-2
RS-232 CONNECTOR PIN-OUT	
RU, REPORT POSITION IN USER UNITS	
RV, REQUEST VELOCITY	
INV, INEQUEST VELOCITY	
0	
S	
SA, STOP ALL	5-167
SB, SET BAUD RATE	
SC, COSINE RAMP PER AXIS	
SD, STOP AND RESET DONE	
SE, SETTLING TIME	
SELECT CUSTOM RAMP, SR	
SERIAL COMMUNICATION PARAMETERS	2-5
SET AUXILIARY DEFAULT TO HIGH, ADH	5-28
SET AUXILIARY DEFAULT TO LOW, ADL	5-29
SET BAUD RATE, SB	5-168
SET I/O BIT DIRECTION, IO	5-102
SET SERVO AXIS PID FRICTION COEFFICIENT, KFKF	5-112
SET SOFTWARE OVERTRAVEL LIMITS, TL	5-188
SETTLING TIME, SE	
SF, SOFT LIMITS OFF	5-172
SI, STOP INDIVIDUAL	
SK, DEFINE KILL LINK ON PC78	
SL, SOFT LIMITS ON	5-175
SM, ENABLE/DISABLE STAND ALONE MODE	5-176
SO, STOP AT POSITION BY RAMPING FROM A DISTANCE	5-177
SOFT LIMIT OFF, SF	
SOFT LIMITS ON, SL	
SOFTWARE SUPPORT	
SP, STOP AT POSITION	
SR, SELECT CUSTOM RAMP	
ST, STOP	5 100
STATUS REGISTER DESCRIPTION	5-160
STOP ALL, SA	
STOP AND DECET DONE OD	5-10/
STOP AND RESET DONE, SDSTOP AT POSITION BY RAMPING FROM DISTANCE, SO	5-170
STOP AT POSITION, SP	
STOP INDIVIDUAL, SI	
STOP, ST	
SVI, INVERT SERVO VOLTAGE	
SVN, NORMALIZE SERVO VOLTAGE	
SW, SYNC WAIT	
SX, DEFINE MACRO LINK ON PC78	
SYNC WAIT, SW	5-183
_	
T	
TABLE OF COMMANDS, ALPHABETICAL	5-4
TEMPORARY MACRO DEFINE, MD	
TF, TURN OFF SLIP KILL MODE	
TIMED JOG, TM	5-190
TL, SET SOFTWARE OVERTRAVEL LIMITS	
TM, TIMED JOG	5-190
TN, TURN ON SLIP KILL MODE	5-191

W

U

TRACK THE X-AXIS, TX	. 5-192
TURN OFF SLIP KILL MODE, TF	. 5-187
TURN ON SLIP KILL MODE, TN	
TX, TRACK THE X AXIS	. 5-192
U	
•	
UF, USER UNITS OFF	E 102
UN, UNIPOLARUNIPOLAR UN	
USER UNITS OFF, UF	
USER UNITS, UU	
UU, USER UNITS	. 5-195
V	
VB, VELOCITY BASE	. 5-197
VELOCITY BASE, VB	
VELOCITY FEEDFORWARD, KV	
VELOCITY STREAMING, VS	. 5-201
VELOCITY, VL	
VL, VELOCITY	
VOLTAGE MODE	
VS, VELOCITY STREAMING	
W	
YY	
WA, WAIT FOR AXES	5-202
WAIT FOR AXES, WA	
WAIT FOR INPUT TO GO LOW, BW	
WAIT FOR QUEUE TO EMPTY, WQ	
WAIT FOR GOLDE TO LIVIT IT, WG	
WD, WHILE END	
WG, WHILE FLAG	
WH, WHILE	
WHILE END, WD	
WHILE FLAG, WG	
WHILE SYNC, WS	
WHILE, WH	
WHO ARE YOU, WY	
WQ, WAIT FOR QUEUE TO EMPTY	. 5-206
WS, WHILE SYNC	
WT, WAIT	. 5-208