Errata Version 6 Dec 2024

This is the errata for the book

Cryptography and Embedded Systems Security, Xiaolu Hou, Jakub Breier, ISBN: 978-3-031-62205-2, Springer Nature, 2024. published version

https://link.springer.com/book/10.1007/978-3-031-62205-2

The author's copy with errors corrected can be found in the following link:

Location	Original	Change
Page 9, Algorithm 1.1, lines 2-4	Input: $m, n//m, n \in \mathbb{Z}, m \neq 0$ Output: $\gcd(m, n)$ 1 while $m \neq 0$ do 2 $r = n\%m//$ remainder of n divided by m 3 $n = m$ 4 $m = r$ 5 return r	Input: $m, n//m, n \in \mathbb{Z}, m \neq 0$ Output: $\gcd(m,n)$ 1 while $m \neq 0$ do 2 $r = m$ 3 $m = n\%m//$ remainder of n divided by m 4 $n = r$ 5 return n
Page 18, first paragraph below Definition 1.2.12	By definition, for any $a \in F$, there exists $b \in F$ such that	By definition, for any $a \in F$, $a \neq 0$, there exists $b \in F$ such that
Page 20, Example 1.2.24	$f(1 \oplus 0) = f(1) = a, \ f(1) + f(0) = a + b = a$	$f(1 \oplus 0) = f(1) = b, \ f(1) + f(0) = b + a = b$
Page 49, Theorem 1.5.1	of $\deg(f(x)) \ge 1$	if $\deg(f(x)) \ge 1$
Page 51, Example 1.5.6	$\mathbb{F}_2[x]/(f(x)) = \{1, x, x+1\}$ $\mathbb{F}_2[x]/(g(x)) = \{1, x, x+1\}$	$\mathbb{F}_2[x]/(f(x)) = \{0, 1, x, x+1\}$ $\mathbb{F}_2[x]/(g(x)) = \{0, 1, x, x+1\}$
Page 59, Definition 1.6.6	A binary code C is said to be $k-error$ correcting if the minimum distance decoding outputs the correct codeword	A binary code C is said to be k -error correcting if with the incomplete decoding rule minimum distance decoding outputs the correct codeword
Page 106 Table 2.2 (b)		
	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$
	÷ 11110111 F7	÷ 1100001110110111 C3B7
Dago 122	When () — () the Sherring () bit Sherr	When (1 — (1 the Show is an (1 bit Show
Page 133 Page 139, RSA security	When $\omega_1 = \omega_2$ the Sbox is a ω_1 -bit Sbox Nevertheless, post-quantum public key cryptosystems are being proposed (see e.g. [HPS98, BS08]) to protect communications after a quantum computer is built.	When $\omega_1 = \omega_2$ the Sbox is an ω_1 -bit Sbox Nevertheless, post-quantum public key cryptosystems are being proposed (se e.g. [HPS98, BS08]) to protect communications after a sufficiently strong quantum computer is built.
Page 160, Example 3.2.4 last sentence	Then $\varphi_0(\boldsymbol{x}) = 0$.	Then $\varphi_0(0) = 0$.
Page 170, first paragraph	which is computationally infeasible according to property (c) of hash functions listed in Sect. 2.1.1.	which is computationally infeasible according to property (b) of hash functions listed in Sect 2.1.1.
Page 177	$m = m_p y_q q + m_q y_p p \mod n = 2 \times 2 \times 5 + 2 \times 2 \times 3 = 32 \mod 15 = 2.$	$m = m_p y_q q + m_q y_p p \mod n = 2 \times 2 \times 5 + 2 \times 2 \times 3 \mod 15 = 32 \mod 15 = 2.$
Page 209, last paragraph of Section 4.1.1	Similar to SPA, the attack does not require statistical analysis of the traces, only visual inspection is enough.	The sentence should be removed
Page 236, Example 4.2.15	$\left[\operatorname{E}\left[\operatorname{wt}\left(oldsymbol{v} ight)^{2} ight] = rac{1}{\left \mathbb{F}_{2}^{8} ight } \sum_{oldsymbol{v} \in \mathbb{F}_{2}^{8}} \operatorname{wt}\left(oldsymbol{v}^{2} ight) = \ldots$	$\left \operatorname{E}\left[\operatorname{wt}\left(\boldsymbol{v}\right)^{2}\right] = \frac{1}{\left \mathbb{F}_{2}^{8}\right } \sum_{\boldsymbol{v} \in \mathbb{F}_{3}^{8}} \operatorname{wt}\left(\boldsymbol{v}\right)^{2} = \dots$
Page 248, Remark 4.3.1	For AES, the correlations between the first AddRoundKey outputs are higher than correlations between the first SubBytes operation outputs, that is why in	For the PRESENT cipher, correlations among outputs from the initial addRoundKey operation are stronger than those between output of the initial sBoxLayer. Therefore, in
Page 262, last sentence	With our profiling traces, we can compute M_{signal} templates.	With our profiling traces, we can comput M_{signal} templates, with each template correspond to one possible value of the target signal.
Page 263, first paragraph	For our illustrations, when the target signal is \boldsymbol{v} , we will have 16 templates. And when the target signal is wt (\boldsymbol{v}) , we will have 5 templates.	For our illustrations, when the target signal is v , we obtain 16 templates, each corresponding to a possible value of v from 0 to F. When the target signal is $\operatorname{wt}(v)$, we derive templates, each corresponding to a Hamming weight value from 0 to 4.
Page 263 Template Step c	For a fixed key hypothesis \hat{k}_i , we divide the M_p attack traces from P-DPA Step 10 into M_{signal} sets, $A_1, A_2, \ldots, A_{M_{signal}}$, depending on the hypothetical target intermediate value \hat{v}_{ij} obtained in P-DPA Step 11. In particular, for an attack trace ℓ_j , let s_{ij} denote the index of the set that it belongs to. Namely	We are only interested in the leakages at the POIs for each attack trace $\ell_j = (l_1^j, l_2^j, \dots, l_q^j)$. Define $\ell_{j,\text{POI}} := (l_{t_1}^j, l_{t_2}^j, \dots, l_{t_{q_{\text{POI}}}}^j).$ For each key hypothesis \hat{k}_i and attack trace ℓ_j we compute the hypothetical target intermed
	$\ell_j \in A_{s_{ij}}$ given key hypothesis \hat{k}_i . We are only interested in the leakages at the POIs for each attack trace $\ell_j = (l_1^j, l_2^j, \dots, l_q^j)$. Define $\ell_{j,\text{POI}} := (l_{t_1}^j, l_{t_2}^j, \dots, l_{t_{q_{\text{POI}}}}^j)$.	diate value given the knowledge of the associated plaintext. Let $\mu_{s_{ij}}$ and $Q_{s_{ij}}$ be the template for this hypothetical value, corresponding to \hat{k}_i and ℓ_j , as obtained in Template Stepb. The probability of ℓ_j given \hat{k}_i can then be computed using the PDF
	With the mean vector $\boldsymbol{\mu}_{s_{ij}}$ and the covariance matrix $Q_{s_{ij}}$ obtained in Template Step b, we can compute the probability of $\boldsymbol{\ell}_j$ given \hat{k}_i using the PDF	
Page 334, below Equation (4.83)	The size of T1 is 8×4 , and the storage required is $2^8\times2^4=2^{12}$ bits, or 2^9 bytes. The table T2 requires 16 bits of memory.	The size of T1 is 8×4 , and the storage require is $2^8\times4=2^{10}$ bits, or 2^7 bytes. The table T requires $2^4\times4=64$ bits of memory.

 $q = \gcd(s'^e - m, n) = \gcd(7^{11} - 2143) = \gcd(1977326741, 143).$

Page 395, the last equa-

tion