Вступ до теорії складності обчислень

Андрій Фесенко 01.09.2021

Поняття складності обчислень

Що "складніше"?

ullet розв'язати рівняння $x^2-5x+6=0$ або розв'язати рівняння $2^{78} \cdot x^2-5673971753579x+111111011111=0$

Поняття складності обчислень

Що "складніше"?

- ullet розв'язати рівняння $x^2-5x+6=0$ або розв'язати рівняння $2^{78} \cdot x^2-5673971753579x+111111011111=0$
- ullet розв'язати рівняння $2^{78} \cdot x^2 5673971753579x + 1111110111111 = 0$ або розв'язати довільне квадратне рівняння

Поняття складності обчислень

Що "складніше"?

- ullet розв'язати рівняння $x^2-5x+6=0$ або розв'язати рівняння $2^{78} \cdot x^2-5673971753579x+111111011111=0$
- ullet розв'язати рівняння $2^{78} \cdot x^2 5673971753579x + 1111110111111 = 0$ або розв'язати довільне квадратне рівняння
- розв'язати довільне квадратне рівняння або побудувати життєздатну колонію на Марсі

Теорія обчислень або **теорія алгоритмів** (англ. computability theory або recursion theory) є розділом математики та теоретичної інформатики, що досліджує задачі, які мають алгоритмічний розв'язок за певної моделі обчислень, ефективність та точність наявного розв'язку.

• теорія автоматів

- теорія автоматів
- теорія формальних мов

- теорія автоматів
- теорія формальних мов
- теорія обчислюваності (або теорія рекурсивних функцій)

- теорія автоматів
- теорія формальних мов
- теорія обчислюваності (або теорія рекурсивних функцій)
- теорія складності обчислень

- теорія автоматів
- теорія формальних мов
- теорія обчислюваності (або теорія рекурсивних функцій)
- теорія складності обчислень
 - аналіз алгоритмів

• використання формальних моделей обчислень (теорія обчислюваності)

- використання формальних моделей обчислень (теорія обчислюваності)
- визначення кількості необхідних ресурсів для обчислень

- використання формальних моделей обчислень (теорія обчислюваності)
- визначення кількості необхідних ресурсів для обчислень
- дослідження складності алгоритмів (аналіз алгоритмів)

- використання формальних моделей обчислень (теорія обчислюваності)
- визначення кількості необхідних ресурсів для обчислень
- дослідження складності алгоритмів (аналіз алгоритмів)
- побудова класифікації обчислювальних задач у відповідності до кількості використовуваних ресурсів

- використання формальних моделей обчислень (теорія обчислюваності)
- визначення кількості необхідних ресурсів для обчислень
- дослідження складності алгоритмів (аналіз алгоритмів)
- побудова класифікації обчислювальних задач у відповідності до кількості використовуваних ресурсів
- створення методів класифікації задач

- використання формальних моделей обчислень (теорія обчислюваності)
- визначення кількості необхідних ресурсів для обчислень
- дослідження складності алгоритмів (аналіз алгоритмів)
- побудова класифікації обчислювальних задач у відповідності до кількості використовуваних ресурсів
- створення методів класифікації задач
- використання класифікації задач для аналізу методів розв'язку

Об'єкт дослідження теорії обчислень

 \mathcal{F}_1 — множина всіх часткових функцій виду $\mathbb{N}_0
ot \rightarrow \mathbb{N}_0$

Об'єкт дослідження теорії обчислень

 \mathcal{F}_1 — множина всіх часткових функцій виду $\mathbb{N}_0
ot \rightarrow \mathbb{N}_0$

сучасний підхід: використання формальних мов множина всіх часткових функцій виду $\{0,1\}^* oup \{0,1\}^*$ множина всіх функцій виду $\{0,1\}^* oup \{0,1\}$

Об'єкт дослідження теорії обчислень

$$\mathcal{F}_1$$
 — множина всіх часткових функцій виду $\mathbb{N}_0
ot \rightarrow \mathbb{N}_0$

сучасний підхід:

використання формальних мов множина всіх часткових функцій виду $\{0,1\}^* o \{0,1\}^*$ множина всіх функцій виду $\{0,1\}^* o \{0,1\}$

Приклад

Число
$$12_{10}=1100_2$$
, але $001100_2=01100_2=12_{10}$

ullet 001100₂ \mapsto 1001100₂ = 76₁₀ i 01100₂ \mapsto 101100₂ = 44₁₀

Модель обчислень є формалізованою моделлю, яка описує як обчислюється результат відображення за заданим вхідним значенням.

3 точки зору теорії обчислюваності — підмножина множини всіх часткових функцій виду $\{0,1\}^* oup \{0,1\}^*$

• послідовні (англ. sequential)

- послідовні (англ. sequential)
 - скінченні автомати

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга
- функціональні (англ. functional)

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга
- функціональні (англ. functional)
 - абстрактні системи переписування (нормальні алгоритми Маркова)

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга
- функціональні (англ. functional)
 - абстрактні системи переписування (нормальні алгоритми Маркова)
 - частково рекурсивні функції

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга
- функціональні (англ. functional)
 - абстрактні системи переписування (нормальні алгоритми Маркова)
 - частково рекурсивні функції
 - λ-числення

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга
- функціональні (англ. functional)
 - абстрактні системи переписування (нормальні алгоритми Маркова)
 - частково рекурсивні функції
 - λ-числення
- паралельної обробки даних (англ. concurrent)

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга
- функціональні (англ. functional)
 - абстрактні системи переписування (нормальні алгоритми Маркова)
 - частково рекурсивні функції
 - λ-числення
- паралельної обробки даних (англ. concurrent)
 - модель акторів

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга
- функціональні (англ. functional)
 - абстрактні системи переписування (нормальні алгоритми Маркова)
 - частково рекурсивні функції
 - λ-числення
- паралельної обробки даних (англ. concurrent)
 - модель акторів
 - клітинні автомати

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга
- функціональні (англ. functional)
 - абстрактні системи переписування (нормальні алгоритми Маркова)
 - частково рекурсивні функції
 - λ-числення
- паралельної обробки даних (англ. concurrent)
 - модель акторів
 - клітинні автомати
 - мережі Петрі

- послідовні (англ. sequential)
 - скінченні автомати
 - машини Поста
 - автомати з магазинною пам'яттю
 - машини з довільним доступом до пам'яті або RAM-машини
 - машини Тюрінга
- функціональні (англ. functional)
 - абстрактні системи переписування (нормальні алгоритми Маркова)
 - частково рекурсивні функції
 - λ-числення
- паралельної обробки даних (англ. concurrent)
 - модель акторів
 - клітинні автомати
 - мережі Петрі
 - модель елементарних вентилів

Властивості алгоритму

Обов'язкові фундаментальні властивості алгоритму:

• скінченність (або об'єктивність)

Обов'язкові фундаментальні властивості алгоритму:

- скінченність (або об'єктивність)
- дискретність

Обов'язкові фундаментальні властивості алгоритму:

- скінченність (або об'єктивність)
- дискретність
- детермінованість

Обов'язкові фундаментальні властивості алгоритму:

- скінченність (або об'єктивність)
- дискретність
- детермінованість

Необов'язкові властивості алгоритму:

• масовість алгоритму

Обов'язкові фундаментальні властивості алгоритму:

- скінченність (або об'єктивність)
- дискретність
- детермінованість

Необов'язкові властивості алгоритму:

- масовість алгоритму
- правильність

Обов'язкові фундаментальні властивості алгоритму:

- скінченність (або об'єктивність)
- дискретність
- детермінованість

Необов'язкові властивості алгоритму:

- масовість алгоритму
- правильність
- завершуваність

Ресурси алгоритму

• час виконання

- час виконання
- пам'ять

- час виконання
- пам'ять
- енергія

- час виконання
- пам'ять
- енергія
- кількість елементарних вентилів

- час виконання
- пам'ять
- енергія
- кількість елементарних вентилів
- кількість обмінів повідомленнями

- час виконання
- пам'ять
- енергія
- кількість елементарних вентилів
- кількість обмінів повідомленнями
- кількість процесорів (розпаралелювання)

- час виконання
- пам'ять
- енергія
- кількість елементарних вентилів
- кількість обмінів повідомленнями
- кількість процесорів (розпаралелювання)
- розподіленість

Означення

Математичний об'єкт, який представляється множиною питань, що можуть бути вирішені за допомогою алгоритмічних методів в певній моделі обчислень. Нескінченна множина **екземплярів** задач з, можливо порожньою, множиною розв'язків для кожного екземпляра.

Означення

Математичний об'єкт, який представляється множиною питань, що можуть бути вирішені за допомогою алгоритмічних методів в певній моделі обчислень. Нескінченна множина **екземплярів** задач з, можливо порожньою, множиною розв'язків для кожного екземпляра.

масова задача **vs** індивідуальна задача

Означення

Математичний об'єкт, який представляється множиною питань, що можуть бути вирішені за допомогою алгоритмічних методів в певній моделі обчислень. Нескінченна множина **екземплярів** задач з, можливо порожньою, множиною розв'язків для кожного екземпляра.

масова задача **vs** індивідуальна задача

Види обчислювальних задач

• задачі пошуку (бінарне відношення)

Означення

Математичний об'єкт, який представляється множиною питань, що можуть бути вирішені за допомогою алгоритмічних методів в певній моделі обчислень. Нескінченна множина **екземплярів** задач з, можливо порожньою, множиною розв'язків для кожного екземпляра.

масова задача **vs** індивідуальна задача

- задачі пошуку (бінарне відношення)
- ullet задачі розпізнавання (відповідь 'так' або 'ні', $Y_\Pi\subseteq D_\Pi$)

Означення

Математичний об'єкт, який представляється множиною питань, що можуть бути вирішені за допомогою алгоритмічних методів в певній моделі обчислень. Нескінченна множина **екземплярів** задач з, можливо порожньою, множиною розв'язків для кожного екземпляра.

масова задача **vs** індивідуальна задача

- задачі пошуку (бінарне відношення)
- ullet задачі розпізнавання (відповідь 'так' або 'ні', $Y_{\Pi} \subseteq D_{\Pi}$)
- задачі оптимізації (пошук найкращого розв'язку)

Означення

Математичний об'єкт, який представляється множиною питань, що можуть бути вирішені за допомогою алгоритмічних методів в певній моделі обчислень. Нескінченна множина **екземплярів** задач з, можливо порожньою, множиною розв'язків для кожного екземпляра.

масова задача **vs** індивідуальна задача

- задачі пошуку (бінарне відношення)
- ullet задачі розпізнавання (відповідь 'так' або 'ні', $Y_{\Pi} \subseteq D_{\Pi}$)
- задачі оптимізації (пошук найкращого розв'язку)
- задачі підрахунку (кількість розв'язків)

Означення

Математичний об'єкт, який представляється множиною питань, що можуть бути вирішені за допомогою алгоритмічних методів в певній моделі обчислень. Нескінченна множина **екземплярів** задач з, можливо порожньою, множиною розв'язків для кожного екземпляра.

масова задача **vs** індивідуальна задача

- задачі пошуку (бінарне відношення)
- ullet задачі розпізнавання (відповідь 'так' або 'ні', $Y_{\Pi} \subseteq D_{\Pi}$)
- задачі оптимізації (пошук найкращого розв'язку)
- задачі підрахунку (кількість розв'язків)
- функціональні задачі

числовий параметр — розмір індивідуальної задачі

числовий параметр — розмір індивідуальної задачі

• складність в найгіршому випадку

числовий параметр — розмір індивідуальної задачі

- складність в найгіршому випадку
- складність в середньому

числовий параметр — розмір індивідуальної задачі

- складність в найгіршому випадку
- складність в середньому
- складність в найкращому випадку

числовий параметр — розмір індивідуальної задачі

- складність в найгіршому випадку
- складність в середньому
- складність в найкращому випадку

Складність задачі визначається складністю найкращого розв'язку у найгіршому випадку на асимптотиці