Concavidad y Optimización

Abelardo Jordán Liza

Maestría en Matemáticas Aplicadas PUCP

Setiembre 26, 2023

Ahora considere el problema

$$(P) \qquad \begin{array}{ll} \min & f(x) \\ s.a. & g_i(x) \leq 0, \ i=1,\cdots,m. \\ & x \in C \end{array} \tag{1}$$

donde $f,g_i,i=1,\cdots,m$ son funciones diferenciables en \mathbb{R}^n y C es un subconjunto convexo no vacío de \mathbb{R}^n . Si x^* resuelve (P), entonces existen escalares $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

$$(i)0 \in \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + N_C(x^*)$$

$$(ii) \ \lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$$
(2)

Ahora considere el problema

$$(P) \qquad \begin{array}{ll} \min & f(x) \\ s.a. & g_i(x) \le 0, \ i = 1, \cdots, m. \\ & x \in C \end{array} \tag{1}$$

donde $f,g_i,i=1,\cdots,m$ son funciones diferenciables en \mathbb{R}^n y C es un subconjunto convexo no vacío de \mathbb{R}^n . Si x^* resuelve (P), entonces existen escalares $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

$$(i)0 \in \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + N_C(x^*)$$

$$(ii) \ \lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$$
(2)

Dem: Análogo a la demostración de la proposición anterior, probando que el sistema

$$(I): \langle \nabla f(x^*), v \rangle < 0 \; ; \; g_i(x^*) + \langle \nabla g_i(x^*), v \rangle < 0, \; i = 1, \cdots, m$$
 (3)

no tiene solución para $v \in T_C(x^*)$.

Ahora considere el problema

donde $f,g_i,i=1,\cdots,m$ son funciones diferenciables en \mathbb{R}^n y C es un subconjunto convexo no vacío de \mathbb{R}^n . Si x^* resuelve (P), entonces existen escalares $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

$$(i)0 \in \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + N_C(x^*)$$

$$(ii) \lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$$
(2)

Dem: Análogo a la demostración de la proposición anterior, probando que el sistema

(I):
$$\langle \nabla f(x^*), v \rangle < 0 \; ; \; g_i(x^*) + \langle \nabla g_i(x^*), v \rangle < 0, \; i = 1, \dots, m$$
 (3)

no tiene solución para $v\in T_C(x^*)$. Aplicando el teorema de la alternativa, existen $\lambda_0,\lambda_1,\cdots,\lambda_m$ no negativos y no todos cero, tales que

$$\lambda_0 \langle \nabla f(x^*), v \rangle + \sum_{i=1}^{m} \lambda_i (g_i(x^*) + \langle \nabla g_i(x^*), v \rangle) \ge 0, \ \forall v \in T_C(x^*)$$
 (4)

lo que indica que

$$-(\lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*)) \in (T_C(x^*))^{\circ}$$

Para el problema (P), denotemos por $I(x^*)$ al conjunto $\{i\in\{1,\cdots,m\}:g_i(x^*)=0\}$ llamado el conjunto de los índices de las restricciones activas en x^* .

Corolario

Si en el problema (P), $x^* \in int(C)$ y los vectores $\{\nabla g_i(x^*)\}_{i \in I(x^*)}$ son l.i. Entonces existen $\lambda_1, \dots, \lambda_m \geq 0$ tales que

$$\nabla f(x^*) + \sum_{i \in I(x^*)} \lambda_i \nabla g_i(x^*) = 0$$
$$\lambda_i g_i(x^*) = 0, \ i = 1, \dots, m.$$

Condición de primer orden para restricciones de igualdad

Sean C un subconjunto convexo de \mathbb{R}^n , $f:C\to\mathbb{R}$ una función diferenciable, $A:\mathbb{R}^n\to\mathbb{R}^m$ una función lineal, $b\in\mathbb{R}^m$.Considere el problema

$$(P =) \qquad \begin{array}{ll} \min & f(x) \\ s.a. & Ax = b \\ & x \in C \end{array}$$
 (5)

Si $x^* \in int(C)$ resuelve (P=), entonces $\nabla f(x^*) \in A^t \mathbb{R}^m$.

Condición de primer orden para restricciones de igualdad

Sean C un subconjunto convexo de \mathbb{R}^n , $f:C\to\mathbb{R}$ una función diferenciable, $A:\mathbb{R}^n\to\mathbb{R}^m$ una función lineal, $b\in\mathbb{R}^m$. Considere el problema

$$(P =) \qquad \begin{array}{ll} \min & f(x) \\ s.a. & Ax = b \\ x \in C \end{array} \tag{5}$$

Si $x^* \in int(C)$ resuelve (P=), entonces $\nabla f(x^*) \in A^t \mathbb{R}^m$. Dem: Sea X el conjunto factible, entonces

$$y \in N_X(x^*) \Leftrightarrow \langle y, x - x^* \rangle \leq 0, \forall x : Ax = b, x \in C$$

$$\Leftrightarrow \langle y, z \rangle \leq 0, \forall z : Az = 0.$$

$$\Leftrightarrow \langle y, z \rangle = 0, \forall z \in Nu(A).$$

$$y \in Im(A^t)$$

lo que nos dice que $y \in A^t(\mathbb{R}^m)$, en consecuencia $\nabla f(x^*) \in A^t(\mathbb{R}^m)$.

Condición de primer orden para restricciones de igualdad

Sean C un subconjunto convexo de \mathbb{R}^n , $f:C\to\mathbb{R}$ una función diferenciable, $A:\mathbb{R}^n\to\mathbb{R}^m$ una función lineal, $b\in\mathbb{R}^m$.Considere el problema

$$(P =) \qquad \begin{array}{ll} \min & f(x) \\ s.a. & Ax = b \\ x \in C \end{array} \tag{5}$$

Si $x^* \in int(C)$ resuelve (P=), entonces $\nabla f(x^*) \in A^t \mathbb{R}^m$. Dem: Sea X el conjunto factible, entonces

$$y \in N_X(x^*) \Leftrightarrow \langle y, x - x^* \rangle \leq 0, \forall x : Ax = b, x \in C$$

$$\Leftrightarrow \langle y, z \rangle \leq 0, \forall z : Az = 0.$$

$$\Leftrightarrow \langle y, z \rangle = 0, \forall z \in Nu(A).$$

$$y \in Im(A^t)$$

lo que nos dice que $y\in A^t(\mathbb{R}^m)$, en consecuencia $\nabla f(x^*)\in A^t(\mathbb{R}^m)$. recuerde que la condición necesaria de optimalidad es $-\nabla f(x^*)\in N_X(x^*)$, pero como el último conjunto es un subespacio vectorial, equivale a $\nabla f(x^*)\in A^t(\mathbb{R}^m)$, esto significa que existe un vector $y\in \mathbb{R}^m$ tal que $\nabla f(x^*)=A^ty$.

Problemas con restricciones mixtas

Sean f,g_i,h_j funciones continuamente diferenciables en \mathbb{R}^n y C un conjunto convexo cerrado. Para el problema

$$(ProMix) \qquad \begin{array}{ll} \min & f(x) \\ s.a. & g_i(x) \leq 0, \ i = 1, \cdots, m. \\ & h_j(x) = 0, \ j = 1, \cdots, p. \\ & x \in C \end{array} \tag{6}$$

sea X su conjunto factible.

Problemas con restricciones mixtas

Sean f,g_i,h_j funciones continuamente diferenciables en \mathbb{R}^n y C un conjunto convexo cerrado. Para el problema

$$(ProMix) \qquad \begin{array}{ll} \min & f(x) \\ s.a. & g_i(x) \leq 0, \ i = 1, \cdots, m. \\ h_j(x) = 0, \ j = 1, \cdots, p. \\ x \in C \end{array} \tag{6}$$

sea X su conjunto factible.¿Cómo describir $N_X(x)$?

Sistema de restricciones

Considere el sistema

$$g_i(x) \le 0, \ i = 1, \dots, m.$$

 $h_j(x) = 0, \ j = 1, \dots, p.$
 $x \in C$

cuyo conjunto solución X se asume no vacío. Se asume que f,g_i,h_j son funciones continuamente diferenciables en \mathbb{R}^n y C es un conjunto convexo cerrado. Para un punto $\hat{x} \in X$, sea $I(\hat{x}) := \{i \in \{1,\cdots,m\} : g_i(\hat{x}) = 0\}$ (la colección de los sub-índices de las restricciones de desigualdad activas en \hat{x})

Sistema de restricciones

Considere el sistema

$$g_i(x) \le 0, \ i = 1, \dots, m.$$

 $h_j(x) = 0, \ j = 1, \dots, p.$
 $x \in C$

cuyo conjunto solución X se asume no vacío. Se asume que f,g_i,h_j son funciones continuamente diferenciables en \mathbb{R}^n y C es un conjunto convexo cerrado. Para un punto $\hat{x} \in X$, sea $I(\hat{x}) := \{i \in \{1,\cdots,m\}: g_i(\hat{x}) = 0\}$ (la colección de los sub-índices de las restricciones de desigualdad activas en \hat{x}) Si $G(x) = (g_1(x),\cdots,g_m(x);h_1(x),\cdots,h_p(x))'$ y $Y_0 := (-\mathbb{R}^m_+) \times \{0\}_p \subset \mathbb{R}^m \times \mathbb{R}^p$, entonces el sistema puede escribirse como

$$G(x) \in Y_0 \\ x \in C \tag{7}$$

Sistema de restricciones

Considere el sistema

$$g_i(x) \le 0, \ i = 1, \dots, m.$$

 $h_j(x) = 0, \ j = 1, \dots, p.$
 $x \in C$

cuyo conjunto solución X se asume no vacío. Se asume que f,g_i,h_j son funciones continuamente diferenciables en \mathbb{R}^n y C es un conjunto convexo cerrado. Para un punto $\hat{x} \in X$, sea $I(\hat{x}) := \{i \in \{1,\cdots,m\}: g_i(\hat{x}) = 0\}$ (la colección de los sub-índices de las restricciones de desigualdad activas en \hat{x}) Si $G(x) = (g_1(x),\cdots,g_m(x);h_1(x),\cdots,h_p(x))'$ y $Y_0 := (-\mathbb{R}^m_+) \times \{0\}_p \subset \mathbb{R}^m \times \mathbb{R}^p$, entonces el sistema puede escribirse como

$$G(x) \in Y_0 \\ x \in C \tag{7}$$

Definición

(Condición de Robinson) Sea $\hat{x} \in X$, se dice que (7)satisface la condición de Robinson en \hat{x} si se cumple

$$\{G'(\hat{x})d - v : d \in K_C(\hat{x}), v \in K_{Y_0}(G(\hat{x}))\} = \mathbb{R}^{m+p}$$
 (8)

Observaciones

• Note que el conjunto del lado izquierdo de (8) es un cono de \mathbb{R}^{m+p} ¿Cuando un cono coincide con el espacio vectorial ambiente? Esto ocurre si 0 pertenece al interior del cono, es decir la condición de Robinson equivale a

$$0 \in int (\{G'(\hat{x})d - v : d \in K_C(\hat{x}), v \in K_{Y_0}(G(\hat{x}))\})$$

Observaciones

• Note que el conjunto del lado izquierdo de (8) es un cono de \mathbb{R}^{m+p} ¿Cuando un cono coincide con el espacio vectorial ambiente? Esto ocurre si 0 pertenece al interior del cono, es decir la condición de Robinson equivale a

$$0 \in int (\{G'(\hat{x})d - v : d \in K_C(\hat{x}), v \in K_{Y_0}(G(\hat{x}))\})$$

• Si en (8), $C = \mathbb{R}^n$, entonces (8) toma la forma

$$\{G'(\hat{x})d - v : d \in \mathbb{R}^n, v \in K_{Y_0}(G(\hat{x}))\} = \mathbb{R}^{m+p}$$

Observaciones

• Note que el conjunto del lado izquierdo de (8) es un cono de \mathbb{R}^{m+p} ¿Cuando un cono coincide con el espacio vectorial ambiente? Esto ocurre si 0 pertenece al interior del cono, es decir la condición de Robinson equivale a

$$0 \in int (\{G'(\hat{x})d - v : d \in K_C(\hat{x}), v \in K_{Y_0}(G(\hat{x}))\})$$

ullet Si en (8), $C=\mathbb{R}^n$, entonces (8) toma la forma

$$\{G'(\hat{x})d - v : d \in \mathbb{R}^n, v \in K_{Y_0}(G(\hat{x}))\} = \mathbb{R}^{m+p}$$

• Si en (8), $C=\mathbb{R}^n$, $Y_0=\{0\}$ entonces (8) se reduce a que las filas de $G'(\hat{x})$ sean linealmente independientes .

Condición de Robinson y el Cono tangente a X en \hat{x}

Teorema

Si el sistema satisface la condición de Robinson en \hat{x} , entonces

$$T_X(\hat{x}) = \left\{ d \in \mathbb{R}^n : d \in T_C(\hat{x}), G'(\hat{x})d \in T_{Y_0}(G(\hat{x})) \right\}$$
 (9)

Condición de Robinson y el Cono tangente a X en \hat{x}

Teorema

Si el sistema satisface la condición de Robinson en \hat{x} , entonces

$$T_X(\hat{x}) = \left\{ d \in \mathbb{R}^n : d \in T_C(\hat{x}), G'(\hat{x})d \in T_{Y_0}(G(\hat{x})) \right\}$$
 (9)

¿Existe alguna condición suficiente para la condición de Robinson?

Condición de Robinson y el Cono tangente a X en \hat{x}

Teorema

Si el sistema satisface la condición de Robinson en \hat{x} , entonces

$$T_X(\hat{x}) = \left\{ d \in \mathbb{R}^n : d \in T_C(\hat{x}), G'(\hat{x})d \in T_{Y_0}(G(\hat{x})) \right\}$$
 (9)

¿Existe alguna condición suficiente para la condición de Robinson?

Proposición

(Mangasarian) Asuma que existe $x_M \in int(C)$ tal que

$$\langle \nabla g_i(\hat{x}), x_M - \hat{x} \rangle < 0 \quad , i \in I(\hat{x})$$

 $\langle \nabla h_j(\hat{x}), x_M - \hat{x} \rangle = 0 \quad j = 1, \dots, p.$

y los gradientes $\nabla h_j(\hat{x})$, $j=1,\cdots,p$ son linealmente independientes, entonces el sistema satisface la condición de Robinson en \hat{x} y concecuentemente se cumple el teorema previo.

Problemas con restricciones mixtas especiales

Sean f,g_i,h_j funciones continuamente diferenciables en \mathbb{R}^n y C un conjunto convexo cerrado. Para el problema

$$(ProMix) \begin{array}{c} \min & f(x) \\ s.a. & g_i(x) \le 0, \ i = 1, \dots, m. \\ h_j(x) = 0, \ j = 1, \dots, p. \\ x \in C \end{array}$$
 (10)

Suponga que adicionalmente las funciones g_i son convexas y las funciones h_j son afines. Se dice que el sistema satisface la **Condición de Slater** si existe $x_s \in C$ tal que $g_i(x_s) < 0$ para cada $i = 1, \cdots, m$, $h_j(x_s) = 0$ para cada $j = 1, \cdots, p$; adicionalmente $x_s \in int(C)$ si p > 0.

Teorema

Asumiendo que la condición de Slater se satisface, entonces para $\hat{x} \in X$, se cumple

$$(T_X(\hat{x}))^{\circ} = (T_C(\hat{x}))^{\circ} + cone(\{\nabla g_i(\hat{x})\}_{i \in I(\hat{x})}) + span\{\nabla h_j(\hat{x}) : j = 1, \cdots, p\}$$
(11)

Teorema

Asumiendo que la condición de Slater se satisface, entonces para $\hat{x} \in X$, se cumple

$$(T_X(\hat{x}))^{\circ} = (T_C(\hat{x}))^{\circ} + cone(\{\nabla g_i(\hat{x})\}_{i \in I(\hat{x})}) + span\{\nabla h_j(\hat{x}) : j = 1, \dots, p\}$$
(11)

Retomando el problema (ProMix), si las funciones f,g_i son convexas y las h_j son afines y C es convexo cerrado, entonces $\hat{x} \in X$ resuleve (ProMix) si y solo si

$$-\nabla f(\hat{x}) \in (T_X(\hat{x}))^{\circ}.$$

Teorema de Karush-Kuhn-Tucker (KKT)

Si el sistema satisface la condición de Robinson o de Slater, se dice que el sistema satisface la **condición de calificación**.

Teorema

Sea $\hat{x} \in X$ un mínimo local del problema (ProMix) y asuma que en \hat{x} se satisface una condición de calificación. Entonces existen $\lambda_i \geq 0$ para $i=1,\cdots,m$ y $\mu_j \in \mathbb{R}$ para $j=1,\cdots,p$ tales que

$$0 \in \nabla f(\hat{x}) + \sum_{i=1}^{m} \lambda_i \nabla g_i(\hat{x}) + \sum_{j=1}^{p} \mu_j \nabla h_j(\hat{x}) + N_C(\hat{x})$$

$$\tag{12}$$

$$\lambda_i g_i(\hat{x}) = 0, \quad i = 1, \dots m.$$

Si C es un conjunto convexo y cerrado, f,g_i son funciones convexas, h_j afines, entonces es válido el recíproco.

Teorema de Karush-Kuhn-Tucker (KKT)

entonces es válido el recíproco.

y C es un poliedro convexo.

Si el sistema satisface la condición de Robinson o de Slater, se dice que el sistema satisface la **condición de calificación**.

Teorema

Sea $\hat{x} \in X$ un mínimo local del problema (ProMix) y asuma que en \hat{x} se satisface una condición de calificación. Entonces existen $\lambda_i \geq 0$ para $i=1,\cdots,m$ y $\mu_j \in \mathbb{R}$ para $j=1,\cdots,p$ tales que

$$0 \in \nabla f(\hat{x}) + \sum_{i=1}^{m} \lambda_i \nabla g_i(\hat{x}) + \sum_{j=1}^{p} \mu_j \nabla h_j(\hat{x}) + N_C(\hat{x})$$

$$\lambda_i q_i(\hat{x}) = 0, \quad i = 1, \dots m.$$
(12)

Si C es un conjunto convexo y cerrado, f, q_i son funciones convexas, h_i afines,

El teorema es válido sin condición de Robinson si las funciones q_i,h_j son afines

Función Lagrangiana

Asociada al problema (ProMix), se introduce la *función Lagrangiana*, definida en $C \times \mathbb{R}^m_+ \times \mathbb{R}^p$ por

$$L(x, \lambda, \mu) := f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$
 (13)

Función Lagrangiana

Asociada al problema (ProMix), se introduce la *función Lagrangiana*, definida en $C \times \mathbb{R}^m_+ \times \mathbb{R}^p$ por

$$L(x, \lambda, \mu) := f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$
 (13)

Por tanto, la condición necesaria para el (ProMix) puede expresarse como

$$-\nabla_x L(\hat{x}, \lambda, \mu) \in N_C(\hat{x}).$$

• (Minimizando una función de pérdida) Un modelo representa una variable respuesta $y\in\mathbb{R}$ como una función lineal de la forma

$$y = \sum_{i=1}^{n} x_i u_i$$

dependiente de n variables características u_1,\cdots,u_n . Las cantidadaes x_1,\cdots,x_n son coeficientes desconocidos del modelo. Se tiene N observaciones $(u^j,y^j)\in\mathbb{R}^n\times\mathbb{R}$ para $j=1,\cdots,N$.

• (Minimizando una función de pérdida) Un modelo representa una variable respuesta $y\in\mathbb{R}$ como una función lineal de la forma

$$y = \sum_{i=1}^{n} x_i u_i$$

dependiente de n variables características u_1,\cdots,u_n . Las cantidadaes x_1,\cdots,x_n son coeficientes desconocidos del modelo. Se tiene N observaciones $(u^j,y^j)\in\mathbb{R}^n\times\mathbb{R}$ para $j=1,\cdots,N$. Un criterio para elegir los coeficientes x_i es minimizar la suma de errores cuadrados:

$$f(x) = \sum_{j=1}^{N} \left(y^{j} - \sum_{i=1}^{n} x_{i} u_{i}^{j} \right)^{2}$$

• (Minimizando una función de pérdida) Un modelo representa una variable respuesta $y\in\mathbb{R}$ como una función lineal de la forma

$$y = \sum_{i=1}^{n} x_i u_i$$

dependiente de n variables características u_1,\cdots,u_n . Las cantidadaes x_1,\cdots,x_n son coeficientes desconocidos del modelo. Se tiene N observaciones $(u^j,y^j)\in\mathbb{R}^n\times\mathbb{R}$ para $j=1,\cdots,N$. Un criterio para elegir los coeficientes x_i es minimizar la suma de errores cuadrados:

$$f(x) = \sum_{j=1}^{N} \left(y^{j} - \sum_{i=1}^{n} x_{i} u_{i}^{j} \right)^{2}$$

Sean $Y=(y_1,\cdots,y_N)'$ y $U=[u_i^j]_{N\times n}$, entonces f toma la forma $f(x)=\|Y-Ux\|^2$ y se busca x que resuelva el problema

$$\min_{x \, \in \, \mathbb{R}^n} \quad \|Y - Ux\|^2$$

• (Minimizando una función de pérdida) Un modelo representa una variable respuesta $y\in\mathbb{R}$ como una función lineal de la forma

$$y = \sum_{i=1}^{n} x_i u_i$$

dependiente de n variables características u_1,\cdots,u_n . Las cantidadaes x_1,\cdots,x_n son coeficientes desconocidos del modelo. Se tiene N observaciones $(u^j,y^j)\in\mathbb{R}^n\times\mathbb{R}$ para $j=1,\cdots,N$. Un criterio para elegir los coeficientes x_i es minimizar la suma de errores cuadrados:

$$f(x) = \sum_{j=1}^{N} \left(y^{j} - \sum_{i=1}^{n} x_{i} u_{i}^{j} \right)^{2}$$

Sean $Y=(y_1,\cdots,y_N)'$ y $U=[u_i^j]_{N\times n}$, entonces f toma la forma $f(x)=\|Y-Ux\|^2$ y se busca x que resuelva el problema

$$\min_{x \in \mathbb{R}^n} \quad \|Y - Ux\|^2$$

f es 2- differenciable con $\nabla f(x) = 2U'(Ux - Y)$ y Hf(x) = 2UU'.

• (Minimizando una función de pérdida) Un modelo representa una variable respuesta $y \in \mathbb{R}$ como una función lineal de la forma

$$y = \sum_{i=1}^{n} x_i u_i$$

dependiente de n variables características u_1,\cdots,u_n . Las cantidadaes x_1,\cdots,x_n son coeficientes desconocidos del modelo. Se tiene N observaciones $(u^j,y^j)\in\mathbb{R}^n\times\mathbb{R}$ para $j=1,\cdots,N$. Un criterio para elegir los coeficientes x_i es minimizar la suma de errores cuadrados:

$$f(x) = \sum_{j=1}^{N} \left(y^{j} - \sum_{i=1}^{n} x_{i} u_{i}^{j} \right)^{2}$$

Sean $Y=(y_1,\cdots,y_N)'$ y $U=[u_i^j]_{N\times n}$, entonces f toma la forma $f(x)=\|Y-Ux\|^2$ y se busca x que resuelva el problema

$$\min_{x \, \in \, \mathbb{R}^n} \quad \|Y - Ux\|^2$$

f es 2- diferenciable con $\nabla f(x)=2U'(Ux-Y)$ y Hf(x)=2UU'. Note que $\nabla f(x)=0\Leftrightarrow U'Ux=UY.$ Si U tiene rango n, entonces la solución es única $\hat{x}=(U'U)^{-1}U'Y.$

Previo: (Ejercicio): Sean $m\in\mathbb{N}$, a^1,\cdots,a^m vectores de \mathbb{R}^n y α_1,\cdots,α_m números reales positivos. Se define la función H en \mathbb{R}^n por

$$H(x) = \ln \left(\sum_{i=1}^{m} \alpha_i e^{\langle a^i, x \rangle} \right)$$

Probar que H es una función convexa.

Previo: (Ejercicio): Sean $m\in\mathbb{N}$, a^1,\cdots,a^m vectores de \mathbb{R}^n y α_1,\cdots,α_m números reales positivos. Se define la función H en \mathbb{R}^n por

$$H(x) = \ln \left(\sum_{i=1}^{m} \alpha_i e^{\langle a^i, x \rangle} \right)$$

Probar que H es una función convexa.

• Sea $\mathcal M$ una colección no vacía de subconjuntos de $\{1,2,\cdots,n\}$ y $\theta\in\mathbb R^n$ dados. Para cada $M\in\mathcal M$, sea $\mathbb 1_M$ el vector indicador del conjunto M. Se define en $\mathbb R^n$ la función

$$f(x) = \theta' x + \ln \left(\sum_{M \in \mathcal{M}} e^{\langle \mathbb{1}_M, x \rangle} \right)$$

y el problema de optimización global $\min\limits_{x \,\in\,\mathbb{R}^n} f(x)$

Previo: (Ejercicio): Sean $m\in\mathbb{N}$, a^1,\cdots,a^m vectores de \mathbb{R}^n y α_1,\cdots,α_m números reales positivos. Se define la función H en \mathbb{R}^n por

$$H(x) = \ln \left(\sum_{i=1}^{m} \alpha_i e^{\langle a^i, x \rangle} \right)$$

Probar que H es una función convexa.

• Sea $\mathcal M$ una colección no vacía de subconjuntos de $\{1,2,\cdots,n\}$ y $\theta\in\mathbb R^n$ dados. Para cada $M\in\mathcal M$, sea $\mathbb 1_M$ el vector indicador del conjunto M. Se define en $\mathbb R^n$ la función

$$f(x) = \theta' x + \ln \left(\sum_{M \in \mathcal{M}} e^{\langle \mathbb{1}_M, x \rangle} \right)$$

y el problema de optimización global $\min\limits_{x \,\in\,\mathbb{R}^n} f(x)$

Dado que f es convexa y continuamente diferenciable en \mathbb{R}^{\ltimes} , el problema tiene solución si la ecuación $\nabla f(x)=0$ tiene solución x. Es decir

$$\theta + \frac{\displaystyle\sum_{M \in \mathcal{M}} e^{\langle \mathbbm{1}_M, x \rangle} \mathbbm{1}_M}{\displaystyle\sum_{M \in \mathcal{M}} e^{\langle \mathbbm{1}_M, x \rangle}} = 0$$

Previo: (Ejercicio): Sean $m\in\mathbb{N}$, a^1,\cdots,a^m vectores de \mathbb{R}^n y α_1,\cdots,α_m números reales positivos. Se define la función H en \mathbb{R}^n por

$$H(x) = \ln \left(\sum_{i=1}^{m} \alpha_i e^{\langle a^i, x \rangle} \right)$$

Probar que H es una función convexa.

• Sea $\mathcal M$ una colección no vacía de subconjuntos de $\{1,2,\cdots,n\}$ y $\theta\in\mathbb R^n$ dados. Para cada $M\in\mathcal M$, sea $\mathbb 1_M$ el vector indicador del conjunto M. Se define en $\mathbb R^n$ la función

$$f(x) = \theta' x + \ln \left(\sum_{M \in \mathcal{M}} e^{\langle \mathbb{1}_M, x \rangle} \right)$$

y el problema de optimización global $\displaystyle \min_{x \; \in \; \mathbb{R}^n} f(x)$

Dado que f es convexa y continuamente diferenciable en \mathbb{R}^{\ltimes} , el problema tiene solución si la ecuación $\nabla f(x)=0$ tiene solución x. Es decir

$$\theta + \frac{\displaystyle\sum_{M \in \mathcal{M}} e^{\langle \mathbbm{1}_M, x \rangle} \mathbbm{1}_M}{\displaystyle\sum_{M \in \mathcal{M}} e^{\langle \mathbbm{1}_M, x \rangle}} = 0$$

¿Cómo influye θ para esta ecuación tenga solución ?

• Sea A una matriz de orden $m \times n$ de rango m y $b \in \mathbb{R}^m$. Dado $z \in \mathbb{R}^n$ deseamos evaluar la distancia(Euclidiana) de z al conjunto afín $\{x \in \mathbb{R}^n : Ax = b\}$.

• Sea A una matriz de orden $m \times n$ de rango m y $b \in \mathbb{R}^m$. Dado $z \in \mathbb{R}^n$ deseamos evaluar la distancia(Euclidiana) de z al conjunto afín $\{x \in \mathbb{R}^n : Ax = b\}$. Entonces se genera el problema:

$$\begin{array}{ll}
\text{min} & \|z - x\| \\
s.a. & Ax = b
\end{array}$$

el cual es equivalente a

$$\begin{array}{ll}
\text{min} & \|z - x\|^2 \\
s.a. & Ax = b
\end{array}$$

• Sea A una matriz de orden $m \times n$ de rango m y $b \in \mathbb{R}^m$. Dado $z \in \mathbb{R}^n$ deseamos evaluar la distancia(Euclidiana) de z al conjunto afín $\{x \in \mathbb{R}^n : Ax = b\}$. Entonces se genera el problema:

$$\begin{array}{ll}
\text{min} & \|z - x\| \\
s.a. & Ax = b
\end{array}$$

el cual es equivalente a

$$\begin{array}{ll}
\min & \|z - x\|^2 \\
s.a. & Ax = b
\end{array}$$

Se trata de un problema con m restricciones afines de igualdad, del tipo $h_j(x)=a_jx-b_j$, donde a_j es la j-ésima fila de A y $C=\mathbb{R}^n$. Por las condiciones de A automáticamente se cumple la condición de Robinson.

• Sea A una matriz de orden $m \times n$ de rango m y $b \in \mathbb{R}^m$. Dado $z \in \mathbb{R}^n$ deseamos evaluar la distancia(Euclidiana) de z al conjunto afín $\{x \in \mathbb{R}^n : Ax = b\}$. Entonces se genera el problema:

$$\begin{array}{ll}
\text{min} & \|z - x\| \\
s.a. & Ax = b
\end{array}$$

el cual es equivalente a

$$\begin{array}{ll}
\min & \|z - x\|^2 \\
s.a. & Ax = b
\end{array}$$

Se trata de un problema con m restricciones afines de igualdad, del tipo $h_j(x)=a_jx-b_j$, donde a_j es la j-ésima fila de A y $C=\mathbb{R}^n$. Por las condiciones de A automáticamente se cumple la condición de Robinson. En tal caso, la función Lagrangiana es $L(x,\mu)=\|z-x\|^2+\mu'(Ax-b)$ y la condición necesaria de optimalidad es

$$2(\hat{x} - z) + A'\mu = 0$$

¿Se conocen μ , \hat{x} ?

• Sea A una matriz de orden $m \times n$ de rango m y $b \in \mathbb{R}^m$. Dado $z \in \mathbb{R}^n$ deseamos evaluar la distancia(Euclidiana) de z al conjunto afín $\{x \in \mathbb{R}^n : Ax = b\}$. Entonces se genera el problema:

$$\begin{array}{ll}
\text{min} & \|z - x\| \\
s.a. & Ax = b
\end{array}$$

el cual es equivalente a

$$\begin{array}{ll}
\min & \|z - x\|^2 \\
s.a. & Ax = b
\end{array}$$

Se trata de un problema con m restricciones afines de igualdad, del tipo $h_j(x)=a_jx-b_j$, donde a_j es la j-ésima fila de A y $C=\mathbb{R}^n$. Por las condiciones de A automáticamente se cumple la condición de Robinson. En tal caso, la función Lagrangiana es $L(x,\mu)=\|z-x\|^2+\mu'(Ax-b)$ y la condición necesaria de optimalidad es

$$2(\hat{x} - z) + A'\mu = 0$$

¿Se conocen μ , \hat{x} ?En la última ecuación multiplicamos por A y así $\mu=2(A'A)^{-1}(Az-b)$ y sustituyendo μ en la ecuación previa, podemos obtener $\hat{x}=z-\frac{1}{2}A'\mu=z-A'(AA')^{-1}(Az-b)$ (Verificar que \hat{x} satisface $A\hat{x}=b$).

• Sea A una matriz de orden $m \times n$ de rango m y $b \in \mathbb{R}^m$. Dado $z \in \mathbb{R}^n$ deseamos evaluar la distancia(Euclidiana) de z al conjunto afín $\{x \in \mathbb{R}^n : Ax = b\}$. Entonces se genera el problema:

$$\begin{array}{ll}
\text{min} & \|z - x\| \\
s.a. & Ax = b
\end{array}$$

el cual es equivalente a

$$\begin{array}{ll}
\min & \|z - x\|^2 \\
s.a. & Ax = b
\end{array}$$

Se trata de un problema con m restricciones afines de igualdad, del tipo $h_j(x)=a_jx-b_j$, donde a_j es la j-ésima fila de A y $C=\mathbb{R}^n$. Por las condiciones de A automáticamente se cumple la condición de Robinson. En tal caso, la función Lagrangiana es $L(x,\mu)=\|z-x\|^2+\mu'(Ax-b)$ y la condición necesaria de optimalidad es

$$2(\hat{x} - z) + A'\mu = 0$$

¿Se conocen μ , \hat{x} ?En la última ecuación multiplicamos por A y así $\mu=2(A'A)^{-1}(Az-b)$ y sustituyendo μ en la ecuación previa, podemos obtener $\hat{x}=z-\frac{1}{2}A'\mu=z-A'(AA')^{-1}(Az-b)$ (Verificar que \hat{x} satisface $A\hat{x}=b$). El valor óptimo es $\|z-\hat{x}\|=\|A'(AA')^{-1}(Az-b)\|$

Caso particular: Distancia a un hiperplano

$$\begin{aligned} & \min & & \|z-x\| \\ & s.a. & & a'x=c \end{aligned}$$

Caso particular: Distancia a un hiperplano

En este caso A es el vector fila no nulo a' de dimensión $1\times n$. \hat{x} que resuelve el problema es $\hat{x}=a'(aa')^{-1}(az-c)$. El valor óptimo es

$$||z - \hat{x}|| = \frac{|a'z - c|}{||a||}$$

