PREDICTIVE MODEL

Linear Regression:

You are a part of an investment firm and your work is to do research about these 738 firms.

You are provided with the dataset containing the sales and other attributes of these 738 firms. Predict the sales of these firms on the bases of the details given in the dataset so as to help your company in investing consciously. Also, provide them with 5 attributes that are most important

Data Dictionary:

- 1. Sales: Sales (in millions of dollars).
- 2. Capital: Net stock of property, plant, and equipment.
- 3. Patents: Granted patents.
- 4. Randd: R&D stock (in millions of dollars).
- 5. Employment: Employment (in 1000s).
- 6. sp500: Membership of firms in the S&P 500 index. S&P is a stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United States
- 7. Tobinq: Tobin's q (also known as q ratio and Kaldor's v) is the ratio between a physical asset's market value and its replacement value.
- 8. Value: Stock market value.
- 9. Institutions: Proportion of stock owned by institution

Problem 1.1:

Exploratory Data Analysis - Problem definition - Data background and contents - Univariate analysis - Bivariate analysis - Insights based on EDA

A) Rows And Column Views: (Rows - 738,9)

_		sales	capital	patents	randd	employment	sp500	tobinq	value	institutions
	0	6.719007	161.603986	10	382.078247	2.306000	no	11.049511	1625.453755	80.27
	1	6.013113	122.101012	2	0.000000	1.860000	no	0.844187	243.117082	59.02
	2	9.037039	6221.144614	138	3296.700439	49.659005	yes	5.205257	25865.233800	47.70
	3	6.113682	266.899987	1	83.540161	3.071000	no	0.305221	63.024630	26.88
	4	5.170075	140.124004	2	14.233637	1.947000	no	1.063300	67.406408	49.46

Statistical summary of the dataset :

		sales	capital	patents	randd	employment	tobinq	value	institutions	
	count	738.000000	738.000000	738.000000	738.000000	738.000000	738.000000	738.000000	738.000000	
	mean	6.167375	2028.505862	26.322493	449.882342	14.497931	2.794910	2797.505101	43.104390	
	std	1.959889	6550.941548	98.569850	2034.803742	43.887131	3.366591	7159.919660	21.732167	
	min	0.129272	0.057000	0.000000	0.000000	0.006000	0.119001	1.971053	0.000000	
	25%	4.819261	52.832747	1.000000	4.621146	0.926250	1.018783	102.982570	25.430000	
	50%	6.114605	205.811964	3.000000	36.824968	3.035500	1.680303	418.519363	44.430000	
	75%	7.557078	1147.033133	11.750000	145.604980	10.358501	3.139309	2091.235844	60.547500	
	max	11.818186	93625.200560	1220.000000	30425.255860	710.799925	20.000000	95191.591160	90.150000	

Univariate Analysis

Histplot (count vs sales):

Histplot (count vs capital):

Histplot (count vs patents):

Histplot (count vs randd) :

Histplot (count vs employment):

Histplot (count Vs sp500):

Histplot (count vs tobinq):

Histplot (count vs value) :

Insights using univariate analysis 1) Mostly the sales of the firms is around 10000.

2)Most of the firms are having capital less than 25000 and the patents acquired by them were also in small quantities. So, this indicates that most of the firms are smaller or mid-sized ones. However, there are certain outlier populations indicating the firms belonging to larger sizes.

BIVARIATE ANALYSIS:

Heat Map:

sales	1.00	0.50	0.39	0.38	0.51	-0.29	0.56	0.51	1.00
capital	0.50	1.00	0.63	0.77	0.77	-0.13	0.72	0.10	- 0.75
patents	0.39	0.63	1.00	0.82	0.63	-0.05	0.62	0.13	- 0.50
randd	0.38	0.77	0.82	1.00	0.78	-0.06	0.58	0.05	- 0.25
employment	0.51	0.77	0.63	0.78	1.00	-0.11	0.67	0.14	- 0.00
tobinq	-0.29	-0.13	-0.05	-0.06	-0.11	1.00	-0.01	-0.03	0.25
value	0.56	0.72	0.62	0.58	0.67	-0.01	1.00	0.14	0.50
institutions	0.51	0.10	0.13	0.05	0.14	-0.03	0.14	1.00	0.75
	sales	capital	patents	randd	employment	tobinq	value	institutions	1.00

When the capital is High the Patents are also high. This indicates that firms with higher capital are holding many patents.

Problem 1.2: Data Preprocessing

- Duplicate value check - Missing value check and treatment - Outlier check (treatment if needed) - Feature engineering (if needed) - Data preparation for modeling

There is no duplicate value in the dataset

Missing Value Check:

Data Preparation for Modeling:

Defining the dependent and independent variables:

```
6.719007
    6.013113
   9.037039
   6.113682
    5.170075
4
Name: sales, dtype: float64
      capital patents
                            randd
                                  employment sp500
                                                     tobing \
   161.603986
                   10 382.078247
                                    2.306000
                                                  11.049511
0
                                               no
   122.101012
                         0.000000
                                   1.860000
                                                   0.844187
                                               no
2 6221.144614
                  138 3296.700439
                                   49.659005
                                                   5.205257
                                              yes
   266.899987
3
                   1 83.540161 3.071000
                                                   0.305221
                                               no
   140.124004
                   2 14.233637
                                  1.947000
                                                   1.063300
                                               no
         value
               institutions
   1625.453755
                     80.27
0
    243.117082
                     59.02
1
2 25865.233800
                     47.70
3
     63.024630
                     26.88
                     49.46
     67.406408
4
```

Creating dummy variables:

→		capital	patents	randd	employment	tobinq	value	institutions	sp500_yes	
	0	161.603986	10.0	382.078247	2.306000	11.049511	1625.453755	80.27	0.0	
	1	122.101012	2.0	0.000000	1.860000	0.844187	243.117082	59.02	0.0	
	2	6221.144614	138.0	3296.700439	49.659005	5.205257	25865.233800	47.70	1.0	
	3	266.899987	1.0	83.540161	3.071000	0.305221	63.024630	26.88	0.0	
	4	140.124004	2.0	14.233637	1.947000	1.063300	67.406408	49.46	0.0	

Number of rows in train data = 590
Number of rows in test data = 148

Outlier Check:

The black circles represent the outliers and it is present in all the columns except Institutions. The majority of the variables are highly skewed towards the right.

Problem 1.3:Model Building - Linear Regression

- Build the model and comment on the model statistics - Display model coefficients with column names

Dep. Variable	::	sales	R-square	d:		0.669	
Model:		0LS	Adj. R-s	quared:		0.664	
Method:	1	Least Squares	F-statis	tic:		146.7	
Date:	Sun	, 23 Feb 2025	Prob (F-	statistic)):	4.33e-134	
Time:		03:39:30	Log-Like	lihood:		-907.85	
No. Observati	ons:	590	AIC:			1834.	
Df Residuals:		581	BIC:			1873.	
Df Model:		8					
Covariance Ty	pe:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	4.7634	0.116	41.158	0.000	4.536	4.991	
capital	1.893e-05	1.38e-05	1.370	0.171	-8.21e-06	4.61e-05	
patents	-0.0007	0.001	-0.886	0.376	-0.002	0.001	
randd	3.853e-05	5.56e-05	0.693	0.489	-7.07e-05	0.000	
employment	0.0032	0.002	1.699	0.090	-0.000	0.007	
tobinq	-0.1384	0.015	-9.285	0.000	-0.168	-0.109	
value	7.105e-05	1.04e-05	6.806	0.000	5.05e-05	9.16e-05	
institutions	0.0257	0.003	10.220	0.000	0.021	0.031	
sp500_yes	1.4808	0.129	11.499	0.000	1.228	1.734	
======= Omnibus:		 22.073	Durbin-W	atson:		1.980	
Prob(Omnibus)		0.000	Jarque-B	era (JB):		55.245	
Skew:		-0.023	Prob(JB)			1.01e-12	
Kurtosis:		4.498	Cond. No	٠		2.87e+04	
======== Notes:		me that the co					

Problem - 1.4 Model Performance Evaluation and evaluate the model on different performance metrics

Problem 1.5)Now we'll check the rest of the assumptions on olsmod2.

Linearity of variables

Independence of error terms

Normality of error terms

No Heteroscedasticity

TEST FOR LINEARITY AND INDEPENDENCE

We will test for linearity and independence by making a plot of fitted values vs residuals and checking for patterns.

If there is no pattern, then we say the model is linear and residuals are independent.

Otherwise, the model is showing signs of non-linearity and residuals are not independent.

		Actual Values	Fitted Values	Residuals	
	652	5.772882	5.774955	-0.002073	11.
	366	6.340426	5.396227	0.944200	
	447	9.259054	9.546073	-0.287019	
	618	6.229126	5.588692	0.640434	
	610	5.455543	5.333378	0.122165	

TEST FOR NORMALITY

We will test for normality by checking the distribution of residuals, by checking the Q-Q plot of residuals, and by using the Shapiro-Wilk test.

If the residuals follow a normal distribution, they will make a straight line plot, otherwise not.

If the p-value of the Shapiro-Wilk test is greater than 0.05, we can say the residuals are normally distributed.

→ ShapiroResult(statistic=0.9822825883697885, pvalue=1.4029046526110507e-06)

TEST FOR HOMOSCEDASTICITY

We will test for homoscedasticity by using the goldfeldquandt test.

If we get a p-value greater than 0.05, we can say that the residuals are homoscedastic. Otherwise, they are heteroscedastic.

```
→ [('F statistic', 1.0339466399164483), ('p-value', 0.3883948729469446)]
```

Final Model Summary

ep. Variable odel:	::	sales OLS	R-square Adj. R-s			0.667 0.664
Method:		Least Squares				233.5
ate:		, 23 Feb 2025				1.09e-136
Γime:			Log-Like			-909.96
No. Observati	ons:	590	AIC:			1832.
of Residuals:		584	BIC:			1858.
of Model:		5				
Covariance Ty	•	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
onst	4.7867	0.115	41.533	0.000	4.560	5.013
mployment	0.0053	0.001	3.947	0.000	0.003	0.008
obinq	-0.1406	0.015	-9.555	0.000	-0.170	-0.112
alue	7.475e-05	8.81e-06	8.488	0.000	5.74e-05	9.2e-05
institutions	0.0251	0.002	10.122	0.000	0.020	0.030
sp500_yes 	1.4786	0.129	11.487	0.000	1.226	1.731
 Omnibus:			Durbin-V			1.983
Prob(Omnibus)		0.000	Jarque-E	Bera (JB):		68.680
skew:		-0.020	Prob(JB)	1:		1.22e-15
Curtosis:		4.671	Cond. No).		2.28e+04

1.6) Actionable Insights and Recommendations:

The investment criteria for any new investor is mainly based on the capital invested in the company by the promoters and investors are vying on the firms where the capital investment is good as also reflecting in the scatter plot. To generate capital the company should have the combination of the following attributes such as value, employment, sales and patents. The highest contributing attribute is employment followed by patents. When the Employment increases by 1 Unit the Sales increase by 80.33 units, by keeping all the predictors constant, When the Capital increases by 1 Unit the Sales increase by 0.42 units by keeping all the predictors constant.